afex/0000755000176200001440000000000013111654014011171 5ustar liggesusersafex/inst/0000755000176200001440000000000013070227703012153 5ustar liggesusersafex/inst/extdata/0000755000176200001440000000000013073241461013605 5ustar liggesusersafex/inst/extdata/freeman_models.rda0000644000176200001440000511073413073241436017272 0ustar liggesusers7zXZi"6!X80])TW"nRʟjh/9s"=·?smJ $w<SW@ Yט Y0}řsl~:BZh螻-T )8i=W_NK&#eah =Jj2#U _j98FYY71mDv87_k>Ap]fh<b{6]͂%Wֱ FQIڥп_ >0Bڢ#S C#2,'T,Ji2>àOXݴqJw̘3o 2ױ 5XKo $$PC@q>k0w{t^gY,?25QC VGw d"3? p)"ryCY[TIjb%l dd+FDlt2$m9LM(X*W1&/11UmGo-NuGMԘ>ŏV qn^JiB=EhoiLE2=LHDGskf4@t2s]兽&*ij$~{ PLuv6h/D $2ֱ]<]chk$x~Ah^ .L[HO-IeǥY9(iFk'mu/77m.SʦUe"FYgn*w8>&S0ٛ!+-Yf % r""[~ V&CYBz.O4hΐݻ~֝fTezfo ?!u0C&˝clF{:|oWNC">4u#Nixw,Vg:9/)0ƅg3<_@ۇEr鄭r$ȧ&KQBbY\Lĉ3<`H-,VaNIk%ه.׫k*W@~ ѩNH켅P z 54arxHS_dTi\\va.PkRKnDBkLdiJ8Nxۛ}fJU S y,Ntw/D[DE-z-5E޴ďJLr[w8f A7 (c撤RƵǨ xRJQmE8\l#\}[z`OMa8̷>൉-oy8jMM:f{Sكm͍ 3\f6=_S(7|oVd2l2IFV"GXQZArv#y j𒹍P]@ F!B3L쪑`mnJoc؀B yr=]X{G_x?+?÷g 5ꀞ@c*VM7uj+7ppaA&l0~hfb-}Y˦}H?vFeAK? `ڲr-W-C/c_9ԧa/ Oc6^IΥэF b1/pZrP(Of9FJr@av=]Gk} d|?U['7qޚ6aQc "ʢnX?q˗Zw)Qt  r e;XPqu T{5F!gmg<)GuF%B“ % HԆ %lG]c OJi!,4KZkei"AeYaa;iO̻qd)%]uءYr ~>'|2LZz^bQHW`mUgarOm3I薯!8wTb1$eu@-{B QƆZpcC'|JOx۹u~pIC#>VVHS9"h@4c<0ٰ6k< _TM ^\rX3:In,)f.zXHBZo`3!۽ JDmѪhwC?:]q)zs>! t'OϚ5w&pk%r"zn,4= Z_~.X˪I ;(x[D:F_'ir\!gXH{!-h8V&/h1!HV֢JcW'B$VX a"'TN2@%NJMW!A/򡋳Nńm2K<)1ɗcBf] c06`CdB"ؖYζ"|;sT֢.ٻ/D޺a4V9d)SI`O-")/ yL7Cׄv4{mb?<)9c5rF 0 ؀ $>E`]kn+_BF5|׮*ePee'/ܥesSA n?sal̩v24D(dJ `a%M>sc` lgCһ a^KMu29[jF& J(=Ⱥ @*~I\2/1BYr7bKvq/X6)mNH2cTeH_Ar҆xn!\Ҟ Jϼcڲn_'Ik^H=*292=ԑX}gOdn[g!&='a LVL8S(L)L44vXpۯgb2ag/ӽҀHA98\jhWL` Š6:Fr0X y-`X\Gj!j3h=Y$l)_mM'ITf!aۭQCe@w)L۝N]*[y@>M kvdzXٟ8J_'>Ï"hldNؤkUƿ}ڳJz>St$ RlPX`pۏ @~G'-haO\.:+>zhWMaeQD4ajjжK!qX}.D,K=tl f~vs,g9[I~nhM1Vh :S!Eͪ^wc۰ *N0"Pk>!ךN]2|!Y*_;}gNZg2x˹=Bc{qˋ[EPaxyʆ̂ŋB0xdg@FH@6N'52PIsnWW$Ŀ,4CɀvMM8TRw Q~xjŷJv9q.:nN(SV۫l=3O nELVҹѿkA3>UM$`s B ,!Ϛ&U2)dQX:HfJ2AJm24⟪E :]>Q+sP*j~Pߒ-Ox?Bt]N!Etl!6DV߂XA%ܰ:ɥ2F$ޓD7j鴟Vsž]|׷̂{ɗlz%\ę)"_7S;ܢG#o&J[J/K }N; 18Ӝ:& J s`r,)bF:SnyAH0E3a ;ZHMVAIokM9TrW! N2&|}r(+-⋪L;qY!#mIGf F὜鸉KʶLlC6iH=Fm]j7󼒳Hb ۙ*۔a0cǒfq.P=WWo1QKfFAWFVp'] %kQSr@8cĆUC-{GEMSk`tԅש^&9ԕଏ{y۽Ҫf\,aE_C^5 YCW-8،)Bcbqk02|=;@lW@dsoGT]*3J "Z,C5O`%h}ìoCHSN|c_}1,eXlZt x(h6~Pz,6~ x۞ \On|¦H4+|J!ǝ0x x >Z[^@[i5Lig:G6il㉲5yf?jbsIC<}WMXu>k;eIxY yi_fv 4Tx< rXb];ssk66}kK Cck?{~#,V -Z\6-QfU䴃u6le~Ap$]O `q^DtSl߉Y&>Qɦf"IΌG0zT{皽!+;͈eyꀂ,E (Hw&]"Fi͞,Ͻ{4ǦV'?| /+M]6`{SדTѼk BTYMA<"vo{&#JVmQS]p ] 4&o+ ) pwO2y^ʣz!;rD\Lmk@-%vCS7 =X_Z+3:oaӿsmLQk31ºG 0mʩIuká4wGщ΃/3ӗʂ}d$Us;Iv#1}RZ ~_CwMVR,зX2"mPCS6z2=o2[K(xwKG|mR l% zK~7([=ed$SH9+{ʶ.K'ͱ8 DF[*me/U>!*f{r-ڴk:ѿUI?Jdk.hiDj<@w=e({]uۋ5cљ⇬ɨO5^d} ZDI;MٲRA;WU.xI~Jn[8IXAG"mwK&;@ b`wo~rqPgi`lUˑܽFݒ]bWӒKDƿ3_IBgZ-avҳGMQCc(Kq 3S$^^19_'xdNB\{LRb|Z]WsnOjIyLlBh63=,؉YkM{!uEΤUؒ'vu\QTrqZ?`rWMo5pCF7),';Puy*`<{fzEPXrh\!vbl`ɣFj7{}ϛyP Z,ͻg|  -y!N`csYT(ha(7IYr,h^|Ϭ] M+'֑ģRC?[OjubiJ~/Ѵ H^A4yH?/8"C%iKkd N,%"׭X 8sfl酻r/G(;)oK89W&Eb@hEA9 x`vc 5Ox}G̘ƍ$wlO݉@iiL" x"i%H,dle൝{:w>Mר2>yd``pGIp2lv;,}_BNc:{Jjx2Fۑ惧˺Uj$,sV+ݽvlI!7 qRծ4Čg;B=?0Cvs 7Kjc]& 1\#%lx7y'Ux2w„a&h\&}pYS |G~{:BjE%ZpsOHf4;katfh~UMf<ˡu @!Kx].0Q?VCw!&vTdp>7OS2ǜ# x}V]ĀS7!|OchQ`(FJp}S}EPuTtMuAɤ :"l[SyXzKqvEf;FC}݈h%}9(jVx|;  FZAa԰1~OFvhn JM'ND!xhˁH??s1yc+ Ӭ~6zU.bJs,ڗ`ww.^ܰtY/E)&OONW;xi;e/l;ccUn5C/2 ,klK\-#h1jȊ~Q=!D$6 бt9&8 b 2XwG=ViVV23dl dig_9Wf F^,XLn!QحPMA0k{ccl.>L?3(FldDѢ(TۋrO0WM̸@?jK5O.Wd8"ȟ-\o2Zz|" +2Vkz>S!oOZ{yhy;Sh(n4Ѿ5m,Av)PIuù=аn`{"ڟ]/t?~rHl,gF-2d'tٟuvtAQ(h:ـ} 8'la.prA4vKm7b#^Fݠr {>7B֕ދ:fp5?u ] 5@0JȒ'F 20OXWxd}*K|K0)EZ7?t{id`HIc'6Vq?#hvZLQx N;N+TE ȹpGc"j/vX&AT3fӶ6}B51 nym[*{Pn7r,-ÌѪZfT!w)]bQ8^kN]~MꉑT"CЮ2o]r:F}^FqH&󛣰I%t>{_[.UĬ=w$$1i68c ;ek,DG pj ǘNѭѷccV Fq.fg d񍉲at@,>NxDTۆu~{$cܗH+B&M-U;%.!GE{ިwgX}*H%_%UdMt)J; M0of;Tq/,N4u* A:K]lÄh/մ!Mz]c:z:E3 HyX~~a^υ|M]փˋ3XTYELDYn Vy~빨Crn2QiT`l.?ZCŖ7Y0t;&孩Ћcu7֝u{h[xF I]bh8$QsJ<GX1p@Ӧ=LBWa %#b,VB/6s}hza/mO6jQ)".BWiXv}5<<tldc9ov3'k4Z|FmҧrcHC] iy,CQ.%ؓ"5k6{.j)}v|*Rg tx4 = kmJB+`7B1CQ6ÿge_!O+ß/i~JpHxdO'iLjD J"6h@jQWN+[ZjᏧ(¯KN(bUbG/GX ~-^?P܎ P뎥<#g4RFzY>uD"]~ ),6Ie$qc{P87wJOzK;(*-ҁFʋoߴ@u[qs7!#ڐi)t y |.E5/ l%*2kIIܖTqA+&l0dY[܅ @Zˌnp yk#s1nQ+EU0% ۑeeO5< 椗'9@b;GLy;Xn"u/n$ځ.5ꍙPD_n0vg.xhkP P|Zz=qCdcaTՅFuf0q ܞuJ `KѣeA $lJ'qGVk!Q=/ zvy=NÇsNq&ƒ|l!`H{>ҺE6.+y1Q2.jrL#dpc8U6 I`vTl1 4.z98}X:M36H["v(Sp-_[D&u2=DRFس[J`oHi?L8=SejGX[!)zaȠwJB,!eN.2XWx uz$"cJ1b$ Ӊ Ej`m(n:Sܪ_1Q %ȭSGXSaN,JM̏`F~Z8$u؜^Q+>L7UC,"&s~$k͡?+ 0ir(Y!}kfa0GPkۈx[8c"a {\XeQ9=N,nw(L5,4wN{;ж2o_޾y&ތCph{ 7ɟSփl^u g8Cj:^x5.i>#=e`6$-eTMuabb5В+Z8ﷴanF (gNNJ>2yocTTNvi 4[>4'B۲<5 ;V#3vp!zZo# Z\g;M_خIgߝʜH0^H~4ҔY EAaV׶s Ӱ NVrOV4&y|%7C9p,Re5P.*j6xBMaz t/Q`@ۓ>Ԏ\Gq Hu\x閧ZKmX2<΃(ЛDѱ1[n}Î >L<'pO_Sm9A(_u?[D-lzr?Bo 7՟0/NBxчRD FZ&fPm gqqC)K~_ױE$/+:W[7mgk#?"/ڇDyꏄ͛})l.}B6JVԺ#~%j4x-tQ,:(1Я.ѿ:]ڞTa=Ơ_fQ&M{@.s31iFI2h҃$MبMuZyܒk(#*D+K;V64G K4/zF\?w0 R3{N_C8(![g{ -'g܉` =rЂgNTҴLLP)=x@bKåoup'!HN3YO9HTm,~nbQ~e}VtDyJՕ 0@6nG Gp~e,xIrː# oVQUu8 Q| gs[˙ b3 "*R`$0e^ #" yxRRՎ- e"?8)!WmE^)q\5U+S/ H ?2^7+(Bc[䮨'VIɚyuɩ[shKsNMYݘ̄NocMz CO(Fa/K^M(cfS>T7kg R- Ue%x2wȴ|Ajf=njKx/DʒZ;fs}sÌ7G;iRAr)]/2Fᘟ#||)Jb:4< t7f ]f'P3)S,[|T6밖C,TTizEfq͆=uۺ?pR=  8>՛W\xz]Xq~xNm;aV?27C^6tO|; nS?̚%H-1,U. i4|nҊևaqBV!(u<@o{l!|hQOٷ5 cCfLpz-ms7uJv%Walַ/Td&ZC mlk^@Lb\+|HLYFĎGX/ԲNЧ(?zwkgzSᕅkLNWw~x}s۬#O4*=g-SI0\oQAYV#:|#ꘋ>tnhmP~Lno~CZ6\j tM7+,A} EZy r: IdV(S5DehP2Nн`"+h',~rN,/:1EG.)abB H۲fB{5 ')?rvƲ~f|mcmA5Gr{/b! r)'1S퀇?tTl~nVFRg؄p4WBy3tDNӪ&}ti@etoOR uS'dna9#d\޺!MprQ?t|v &Zw  ~Sѽ_)ड़QG*RxmIo?JUp0ӿJr݅tyj++.p|̟U[bq2:*EXi,GQf<}>3:xnD1Pǩ\|;JwH}s1Yy]@HֶpkLt}KUq2@UlDT!}wg޼/ÔNJwQy.+A; ^_@JNM\a*iMxL?&O%1IzYO?V`xΈ5&{UE4KN30(:JhB.VI|X(6t{X9(+̼$T=DA<{?npô rni6ff6,5%TzcY/_J4nhM~b_LD&]=Z&~պUE:K/p]V/q^СNa. ۽BH@P72 2;bߍ*VwĻ(zx f0ʪPoK6i8o<`H\Fh@حl}w? "bxU9h! .;šh/yt1"bn}P-tDiuOdk}짪-A<"(y0;0Hq?"fy@Lp.a D8MV%uh6L՛IU7HhmOG }{xeah~!4O!EB%u]raJFNye0hS r+㑠m~n-Z!('D'an}tNt~ )a96m R+A(Ь.a=hzkP/Q4*?g9 5 Dz*1jZ0-S,uj쳤su-ȝ"YE PjALLG9w<9A ${'֫3#4`jDY RAHiz7rA3 h:\Ԯ'(2w4us~l-QoWb]D#t#o,ھY%1qm#_XTqEZ2h)C{cx \=՟2.$p<%GctO5?U(-U3`Byȕg݁vDJG$ԋHeDl5 ` /iIU`C`BdIeEbG)?YY|7_rJ!ˣxKޓWINnӼwU@ >u`t$|3: 4]- ٭bvq [? 8w^RwRY%cEWO@ Њ};=y}Q ɝwzGmnՌVM)hͬD7+Li>#]HTLЇo3o({9O} *յeHfT&-hM -Kspi~ c)} l꓇+gSS ue ef`+0ɡ«燗`)!bCTpzȳX} 䴭1ݗh2JN@@>^OCPLB M2k˳,jc-Ǘt~jɄE /HPz!{޸弥>S̫%DQ+>O\DRƴj,:6~6./Lx7pVjb> GGdO ھ1b==c63 [˿tz;'lė"Vο1k,q/i,.88zKW[8[hFKuQ0xw"Ǜ2HfuÓmbY݅jjfsnI!eR`ʜt79L "*ceU :@QyLߕl\(8pIW-HRzOO7Զs4_V)6,W بqBaoisr0wEӆd^O)Aw,>ý?\GB!A1_z߱t Z6zG0KSGmxiz`tƭ*x4 :P˖+;MG 24FH8X )o4+܍:YӧUQ-kېm'%-ߋ~~7iYO\%T,˒CʛCX$v'k jAA%n>}'Mkb*j /􍐑1`Bݮ<A/L9Cтҗԙ]rj8[q4n=xYݵ5BV⸀G5; f\x  }g R\KYJǰٙV(2#}~.W;8k2S1bTO1S8T 75i-U\F`g1_7>uPmno'YrtsȖX+Iw#r3ݑ >Zk͑V ,Is[ڶVI;g dlYqjD{A-82 *1dW wp;raoڪDaF!r|=b@ɘmUWߘN@Sn//yTtV HCƺ40:~ꨫ,6.B]>_=*p1/`iUbR<@^͌lڹhX y,J.lw!0I&{fx&JtCu$SGBαrrhd!yHđ`*,󭨳殰ژRP<}|K?5i{>򰨡EakA/SFpn*#渌$(uUЭV%=|O[oiFAT?"iF5ٶE% GȇwBTnK"*ٿ!euvJ,rxw RrW海Zz3PL׬UBY*B6j,;;\F}N;Hz{@Wm i=l](w M2}Ů!HCHnkqpW #QޞλIl~B A~7ݺlBz;E\K!=m$ FڝX"+a_QVg|p*5#UG1`{.1J]DgDoYOm~Rg6ҽUN!d2'YY3tjɋ5C|T -+KL ' ӑѓ٩KSy!#fiV+݈M^]ˁA Jg6>K0)i d~k}H d@tChߞ1s|3rVwdff,>ey{+^'^q;[\5 `@ѱj{̰QmnT=pϽv4F| ndPH°>8=.z3VE>< &bЀ(.rCpՙY?W &bi?TvDfLj'J)oˡHCAT,DjKeWpK_P7wpi_l}bS zkm*ϋHg/N!Za6+*~E}0km#xLO Pr Q+͂ȇ9XҒ,#;GE˸0L9`zo[Jpr{g@2qL)'ᘴ8/[:[d<ދ jӔ& I2Z5~Q8FM8p"9`0ߍ5ju\]c>V ):NKiʪX; : Ax; 0$ t*$Vf&*Tq@}t9r5Ү!{C3)HJl,.<ُ͌>h: \dкP,ŗ8w u"xKoAHGG'*_Ë9\h>B][kUV/ :ڹ}p-ijkP0`|{8!"Ͳ_>d?m=j+XGcY-eACu AqHyx~rǷ:3%.pr?_>diDU򢳦5b!if])[+sXU$dcK-q /_heߝZ滄L 6,:LW]"bMeo̙)c2FsRjnrol<üm \g Ȫ!X䌺P`}H$mZʱfE. ul]vcu*̤8jf)K+ 4& &T;d`VҞ6ljIqa6VSxM.{4R\:b)8tཱུLG>C)D݊2vvwe]%(8WZaa6IRc9QɺE6{*Pz(ƞoQ4GOttȿ)K1ܮ(6p:,Nh+Ğ 't/mA-fsH.xWrLn궐[$Y?}3N'Fxn:Rcָ໛=Rnd頤Ɵ{l_[kso$y[-C'達8-xy#vCh9iSktjN-Ϋr vPzU>IO{J,u%?x1U0nrTAf\J e`y.A]_3]߷7YqASG4qV먩& UshvUؗ3aOXQTz]B'ª5JF7`KvkzpVP璵+}Fgr˜|Oj9IJuZ^V%u .Ho , &EDzD@.X>jT`9F^߀g̝3IrHONV)5 n %i!wsPiF/#g?d+Z~RRhݷdv~1B xMq&j*Ѫ@Ϥ A.NM\*shFc2r6r0?mm'm~`*Ҹ/N}A.OCwهOnf=.s6= T^(̃(J̕c@fU}uQUH}ղ 10fm5GGp @*_7ύ1ZiPExncA?qyw 4c ײ {1P]8;&L*p^AZd{TZ ǧ:Zw<!{iնN'_pՍy+Wt]$ENEd"dV y{?uI $k |0pȲ-:0~#\dެDOtSӏF AߊQ ɽ͆Fֶvap@jW< Qu H|dE$f=D]Ժ[PQ=)E AmVTU! .pWVh+GƈY_e7o? |P G0prS%8/(8xpMlM dYA$vd Uj%P~[(KVR1tIJ pAGmf2C4 ) > T*J2C 3Q()G ?,HWʗSk1>& #,;Ȼ0l/QM0JZ7p`&cT' r =CL%@![Յk+.as+O+Shm8o&H:}z ~CAȏ6 gpdZ}֫m8=Z|.俦(|V6ͣ[L҂\>xãoYo {$xW5%hO-.5UDҋnW|ȬL!g,Ż?r=`=?bPsqy~UHDP<įwr/ S|h`DBY5$W|Up\"1U/0rD+.>YQj!qW1ݛr:9/*`>x-pbaZD0˒4ÐMH_bu3.X 3[q^;-d1BGty^͓Lr>6^ p7%|ح(W Ԫ7!N%bwݦq+ =Y:a)7/,r`<Yc6Kn2,H8ikEU~;{Ո(]k*jq .)FK/hP(ٗH zD';(K=Wlm DaҲ˺#qIʽ2/r 7H{ j;Kwû(?"t] NNP$ݘdyk+W j L&ۺw((~ֽBS1:"N}MHStn:UpH.w ]]Mk _kfq&޲g+JH8 1p;U(ʉ-ϫ_\wsZ$h/j`ͳ}t[J߆P *^_CP'iRme+{n,#vRd&AZz+Moc?2wɾ HXABY8!4Tk^R!x\YZ-_\4Wb}E]fğanuCcPHsSԂ~ڐ b]Pq < R'*E:qa?Au=[3LށT1srHF<ѪKAzE~ҕg1ܰ |Y!<%L HXW0˟L/(b-pCQK/C"ϩ|,6(2m]O=LAI/qYGB0T~W Zz4Wg, na`74PyWo.%'L "~^=08=rs%?U"Uj y߃ޥLglM^Pֿp[|m(UIe 'LYN'FTBn5›KɟTz;<{UlфmB歄oL%NMTMoJ,_0~|+s=&ׄM ^,皺@]A{ JK@;TL(X2.ďn' CDBAl̻QB5SnQLeNQQbo%ф\>eY3I+=8s  0 zܦ;0tv(m4D+a@-$M\0YH '[s$.ӿaNc> j@#5y}zq ׍&cbJw07?Ue;BhC%>lȷ'cPVHvy\Z%O(mKDdRe>:4h?:sv`ԄsDuSn@|\WRMf2Bj\ JMm*qX=k/ʳ纄WF_=KWOGP),', xdwe1,xmoquF/4&Lv`et_첀 ƖBjEaf+_<3Ox>2䢛T@\]?HUmK,_p 26nF8"t @dNͶ~܇I# #yH24Q'-St:<x í(l]la$P_xIv#a󂃣5- Lae͋ =&';MΡ1wBK+D!3 貫D 50OnlN<~-z~2N\RԱqkvO0 ڜ jqJ8|&HLg:}tkTQD{YQ] }}ܓЫ Ou4 *3CXۃ,iEf*olnu*#Bn̯Ji#{pqҒkIH m^F'njJmuAW{^)a.e5x I4qz }ePiN> +Sc;jE8ej`',i_L.P;Mhҕm%ض}Dލtz/0U>UCWxhvٙp3θmR≪y%2]]~%XkT i>5[4Z_ ,fʣQ9B'z$&AR|"A8Z0@ŕΫJ`CUl'à<0>x|޲6Vޱq0'D]/:DjS,jNfϟA/u'68,mOw@Lp:j;x݅]D‰[+Ph֮[esk3ע܍2یk45i~YX_j].U㫆|j@cgM2u¥Z_2/Ͱ_4m'0| q+I E?31á{:)]H.ɇm!ut1p%-(*o `єqЇCq˰AX8 (\X֤ Y,Vp2$; mBd+-G32 O|z '4$󁞁c啭1  :U"~K$ù8` `gߣFTiN(Gޠ-K߸Cvi"3+0Oroko ڃzySQg?ąoLc\։E7ɁM>\16KG&56ߪٜHG9,x6T h,u(^8l)k] FSC yq4@M-+5"eP rN}slz*h6_ c`;^q%tڐf A$߸-_M!%c0=Hc5=g"NYy"ܻe.ġݒ )dva qO "T "=cilR.߫R2VodE6Tso6<1f8m\ɾdJD)B.+9a%I(q캔ZS;f1>p|,o|HV7ITV0=8qqp;[שr)u{Qn ٙ< vv y -c:xǝr1N3)Op?G T!(3`4j/.Z0/?̺g-i|I7x3c\R.]`wvBdzo 3f>b^Nb{Ӄ #wbҖi?c9N|lUBfe&/1 4srawF YIHSM00ܪ|j(̹€c |JB4&s wH O)=γԺ=VEVcԭ$. yPrsʗ:y9̕|6s*8P} JD+#tZ՟t[sP& P||ʀ-reZMP~j4%lf)@jEbcuMh4tzW*K\󢎛cx&7 H  J)qa y}5s9&^>a0,ĚF=Ȃ%2D*?xNyۚYW>&[h>J,u;Sy#Kݻ('c>@9)S놁+M{  LBq|;Xզ#oh;}ZY[˝ښ]Ybpnz3šX-傔湡Pq(n9{|qqah_^'K;훗Db tВPनU>3̏9sul:_(&,&b~C㣲#`X||\%񡅠KcVR>I,Ǣ0;]Ou[SiC.R6%u1Ts0c>K(j(7khI]xz{O)]'g{δocl[ȅ>)>q @KyfPʽݗ]pI]rl?67\ɂ{[ඟ8"fGl bd p1VZ3y-fLYMGP|d`i69&]׀ Gy8a߿E{nuOESŠ0X2Τs1)՘BiTfp==/~N5yckGQ&|JC'9d[y]h%) @v QeϐN 259^< /@4ѧc_4ͪgUn\;$N:Y 3q$ǦWD\!znbgk p\Ravڤ-0F?֬|,UZE,AesR\i X;zA%C$w|j5&Nu`O! 5nBc=KHxF2}-(5"PA ,{eKFV!C oLNeGD`b;n)<w[oO-d+ˈv-Y :A3T5XiI&0\%$J90`$2.PGRɢ" J* 8*V`Õ}vEpWKߘhSc#L@ H:wpNA3pJם幓K%X}hY?~\ṣsݳ780zN NIuکTѦAV6~F 43=QNd]b>ظ.WwMb|n'w4 'lOw!@T~l!mqу2ů¢t t7zN/K*&rbE/Xml LUcIjy74}QHjyb3Vk(`.!p|ywfcXVz&Aj";oKue߫Q =?{XL`\<@ qړDž%uϫ6ua-'a-MK?m;{GJ r݀af..UpߘIzLΥ(IP-v^iڝ..'f%* !Ɠ`pӳL="}],v3, <2Svv1V>[6墽E%/wՃJz,Fܶ1+]Ń=sO+9 *}r)Ǔ$ f+{he Q$rژ\CӲx@IkMrz(5M\tvX=\jDDHX8yi/.=R}R"aSNv{fPUwCiB-|hZG}yHIcod XPtv6>n\q/L"&®8XJl(\HI.Hk9nG.{|?}e@eD-l9n+I^/ YUC˶!+a׬&nb"^ 9O<.eEZ`EC. Dӕ[ 1dAmn3vȍٚ/ʁy+[lζcechZO ^_L "Z/g|!ٗp_yCMT7*n,w$0S"n61yqks&s 쳊0H>fdjJiʫINEq&Az5^ܯl A5ZNą.J=/\$?YY_vd;%SzM@}o+޷-Aol2riD4k*ھ9.`Uh|' #K`D)lE:߳4Ҭ6a'sѮP>gV F>H`VA)؇Z >1onhS4+'eo佐ځ D>곒2R8pX۴ɜAŤy7KC7ʉq>QIhI9f*J_HHf6"+CKұ']뿔/҇2S5$z_šX.fwEpJd'JO _g cJ\ Bg+lH,]deocy$0 =h}|rWPp ƾfd3pV3]uPoyrgdb䇩-c2zSe. o V׵"q=pke:>35H@đ@ܭQn1|rD&Q&k|Q+*P'E`)0*A+p^fJMx1|bExQ5{.U[%юTU׮2ᕑi%2- Fliቁ ERҳ*q7 7ͯX5@MH$$ ǛOn,ĈIdU:hMv (:E]'[:7vRAI dN]+CE}rk<0o9/_*k!Gȏ$$CpC*A"Y-P]v)}8acO6֧yF.2&qKi2ͭpuUPepXPMxX;Nf|h ?t)v)0(!K+%P|^hbcxMh\GJ<"kݪg9C/!2_r `oUmD)=,yXP~pL" \>d:pP/jbZyX7'Q| ]vMqe]ȻtO=ə9N"Y\&qWճVnttr)3ۜ/4.HqFᦼ.W,/[R/%2>٣Li.e׉k#GX?b*so ֿEGA6S>?I%<>X:?wBpK^^B̳ޢ/vřYsOUm\tpjQoB&QD$bcQzEK̷Bv{sܧvEUOk՘J2OІ'!kSaO$ UXaI4;/E;KJ6QQd:~RmS6xp->LtTƻƻ 8a'_Qn3lHom()-KӸ2  RvH{we1+Q}޻,aPUPײ̞tA\^CQ2roYèc>GV3 LΚ!Llnd0KF:L#DDY888!!Яrb pe\=V~̎n9M>UzDzqf\"O'rI;CVa-y$8Lw}> ux2.@@ t|4w4Xj/e4w lM#+ 3{ɈrCdEaoT<O8s? 03aw֦ H<~,^Cׯf:gO2k0-Ļ{N(X+9Gxf, ZrXˠA0+-gwJ nKc2[p=K~>I}' Q!pU}kL&pkIl|寢g.,uɊqVOg7ZxTW%j)7퓼0h h2F`ܩ*PJ)تFb0:tK櫽+Y 4F}ɸߡ: G?DςMW5 V^nƸeKeo2u?i`k| LI1.lR{ x3d޷tƄx^/ YYn#|/wa %Y6 O`MS11/㨝40'Ȩ6R4#ٮv#yGzhTՓORH!@VkT6D_s6i&l%?@E^^Xn[G5P.+jZYf#;cփgW/uR$Fl2$ž53+S<х|\P9ajn;,kK>oZDڔ;T)!pL.]iM:f 27_iGS NsiD yuf~c7ٜB1>RHnL)Y2,g;?~A'&iѼO&Lŕ#Kς=rEg*="0=ξC 8\UtŬTԢ+*xg9螕Cq_1@N)vUS^[c cne(Qef{kX+Qx˙9Q@Cr|?ܛ̍t`qO Ќni9PI^n<`JnS8mpin)B=hV5U ZCB'5K]X!= a>u8N6V @UMR*EғtZ#,3ssi`4T:Pj5jiD(1z E0},R}5\rYWDa;SّԝĔe*;D f[}^0:Ѳ*#4Ņ8"SMEX[sgUeR3&ya좆a@ CAwḫO= SЮMm~;`;ҳA磇}5 wxru^ߩ{z#? 2Ctw"NrZ<-d-ꆶ! 3"C~XK`HOy/v\b^r &,ǑIY }H{oY8C " d@CHM<&F?+c&s^7#ތ6P[!,0KVJ$ˁpJ#GHLQlA4h>6ɄZGuY 7t2uKIRh-DRO?DÎdP$৫-Yk. DvJpuaK9āʎldم<=.\ 'wasژ)&]3.d\#Dqd0WZ>؎[COzŒM^FX@ L厤8p|>{v=6z9_3[BVo޵SHgA.K=6iF|;J B;t !3jߗvcڔ>C !/kjOl`6w~03' ?2k'L^$^^w[,&x[:&J<]`1 v˥*6хKV|<Ҭ1q2dqw=okJ52145d'1/SM01&#GTkҌ\m0ETF,Vs.2(ΤY`σkM1Ŀ-ZzMDTPt7%@;_2I\HM?B+`)kk4Y=E(kV 7T+sQ.J|Z-ψU$~jx>DZ#)R=A}F7jQz,'y܋qN G&gE|B6 Mh G7O8֦:֜8NRHi jwQ^vJ tKy(Lv&{w?O`̡vYҐ B-"g9u5?r1㨎  i\鉤48-A_xNj$clm_]dJ)$+Dm$ hg/`_-nΰ.KlrT+1Yt(4/E#a׮-t"BFi7GmUkw{1'¥*ܗqp}0re~ޖE)zn /陬zNiܡRߤo"8e1$ŠZRpf6AM34L5R;"v #Y,X3Pt ^ŷB/` 'E} jGش1 mJ80\Ï&"M9Zr &vX70 cugNBEd%$P^Lc;W^J "ϩت6퉙ZKڥ@|Ϛ#p}ϋ$-Q׷$vX#B*/VwZ\ kl &} &{Ug;c4KcF3nͿCÅ1 q11@SjW(f\r ? NC^duT {}Rաpk+ M[V3 ź2=!}b?5ϐuHbSBcTM'hfwYͱ7% G+5#%Ѫ?V o_g4@ݓ 5&쓁Q3VB ˡr FL~׳'Nuo+6w4Uz{]%MF#-l;Fg5Pmـ'%&j,K׿j08uoǝ>y2N Qn|}acg?Ǿ_6ERN_dLm:HVUǭ>sP 0#y3KU]HW#|^gT#=C姣Aj9߬$ӬEw@" aRqBUAbř-KZ #ڤ+%8ϣje[싐(ǐZ{@UFDf߾˯Y BDsn3ƿ6Ƃ?R>FnmMɬtU=Z#ZKg\aPlz5AsdgrU%u?vc ]33k>0H83$ax)z"@[Tx0J::ҥkX,3R@@(][IJKI6M&dGfdx- m}_f +!-SѶv|]5GSRJMqVZ؏‰{.>SKphQAy~8kѬv P]"*~doniAL8uĈnD'҅6]~BN&`]B+ *3jZvJ)]“ (H^C5%`^Ho0yS nvMgqd/;@O !ˊy$\x _J}%/b(Y@E-&W&>Ș)1*HdbJsи3wF}e0rY'NoBZN\~&F4FѥJbŌ_!!NzN|lZ>읚Lrs/#B׽ɜB{aSd|Bw%\|F Anoy]NIQٕiM[zP7EA2 qb{,/pRR|| dGG iȋ8L;c,3MjL}L|Ox[~AR샴63Fuse4tmKthl?@ TP=Od [$M,Aiosh)YZA];6ǔj 9YՔbLl[rGD_2\'F7,bd*CQ%J,[7πSrpVĮ?<]W?jah T:7حء~ٝ%#7Uȳ!59W'd_}@"a9CV!8!+n:Qh 42p&J]^`hW1yTNgZf[ۗ6z^B$W[=^2rɸD’,JEZFF*2UW7ϖs u+ΓDO'+"x-RoL[Zܠ'%&gFB}[C,/ߪNTKy`&$cYchšG( [V8u*'cocՕWAe3C=q!/_"cc<V.s \H_ vR~樳{7q:##BYeaU9 W5{q_":]ce1O47bS],)5HcebzK?\(W벹 Eƫo+9*@(_r0c2sƶO ojwGz@o~$Mxq=1KuJgx3R}So۲k\O#C_಻4\rƽ/=l ogFk&JLvnh`3z. cUݲNO{0}u2Quq3A6ӶilퟷNKsq lFꨚ"O=NV<p{`zRH8GmI[ 'R+T~~9ǁW@V&EGТmQ.4Rʞ`C4'=d_㇅<٠I)EiTSũi`d]5}TFӸPn̠FP%C BhK|\qk6h}Y;ǹy5VD c?Nv,R 4̷u˳0 G V=KV&@@$g8##UxeVj)sB i\5JCt44GSi =0WZnNf_SA:<,zuݖ X>2d Aj7z4%kxf9].O!*-w#[m1D P:;sxsM|gNR9p4zTn]犓v?$rZZӽ Q 73&>>6 $s;VR,ifɮE3_2p8 R7b.+|s7Vv[K8^?(mU ghdO\d"0KtW8HS"It#;cc)sPPe W)?-Sojnx}3e7Pq#`ۮR\% FB^\1EyWݔE] h> ;,`3']^kFuRxuAU4/׀*?W@ A%*!M'L/̡Usd0uc?b`<; FKar ȜJm\{-skD>75#?VJX= yސn㑋蕥BݫS._+m \{<&}( fkڙJwkz-r$d b(CE S˿<]g 1;e;C)WUae_>*Bt|7>fꔘL '0Io%1~R7sM ViಁwYE-}<~TQsv+߹wXGbm6Fl$8;6l,N_s֙{\)B򨻔jK=PGRBm6 Bz #'HS*Ȼ>nUA A0-fM6ad 7[C'0mID]5O vbL28s%pmlvP8?c ckFq(TrC]@(ֻS 6:8%hQ- K'TWT d𧺮ff8!ؗHr奰vcpp-g"tpaHqs/A¯k5#2=42 %NCġ'/S.܆[%%Lđ\A}TƢ@=$ 4Oj72;mB{RP|#MkcoOJ_Y|/L{9R/:;2 pa*WqufV#ees<' Uele47p/M8JXmoaRRQԂ+/'B-FsC$~ow ?mws}WBSۜyW1}3TDF;:%K]exM9HAi1:NyLNWw>9렚@Tf 4\GXCWqg1jl:RBTm)j껢׵G /;cfs:ҕ2h$ -~YEK]B|#:EQp_DUhP@31DZ+ y_ B*uw=J@:@bj+<+MJ݅7]6`4GIֶvPD'o7MTBر1ˑ]5#w_S3wL^5*v|vif"b_"vNMԚPT IJ&]*20~gcSg-.l*  z#Nk{PXmvz_WZRzs\SaMMzWt- S*xTԲpڥQq8m,[#0D/mrrEFF[۲%}BW}#"g\5.{F(xixJrPԯ[fy3a+֩FXv (֦IcAmL޿V ;mx:dpѣub_k,G*A1Mup`vM *eB4WD "##G߇o ׺ pI-cWDj}q >Ƽ *u^"ő$g 9O:)#'y nj %rdţ= <mBhЭaUV1sDA7tɬ*ʑ;UHsAa2%C= Ki8ncJ T%nG!'TpWgL% _",aR螄G}&8rG~[40ijp٩- /#ݻM* t_ژWF&jkz5 K"4|*xT_IFHE)S$3@LjͤqՕbJ@lřrpGJ7wܧ-0׆ P_Ŕ aaHr,5̨ )9ZCP"F/{h#PMK5'hLiYC+Pl_z,8oF}fk\(Sɉxhv<.ȊptgwXAI8F(0F`;0% ]MSjoP~Ľ|DR8z=|3:ե_/5\ߢPJP])o5 PdQcL [ r{+ucőKW"b򷠗DVɐàسAbͪ ˹dּy+A{[!P SBU8+3mط@I=P^HtŒ%!r, LSsɒ ) Jw.r 4q,W U/@3~ܼ+,GRqY?Ue0-KyxXURq2.ﴕ6]6دZ$[N ?15܉Dkh/fi{Cu|p ZiNu:]Y=?Ze@oTFgEo ?*6`!Ku4/̿}\U5?+Fw{Op8P=K "gzphf og%d?`/ɓH^-U>"^ 7 ﱪo/E;؊e TdvĢEc` S_E/JJѬh 2I)ZO <V`/^L`]|;Z_J1_H${ð`-BLT2o8|C-O b?GA2`*EIڿXam( rv)srHvt CEengpT*~ɗd.\f_G]J,Kǚyo:$dS1o&moZ3 +/j,L9S`ϭ@7 Tjg]a*rR:+ZڳrC-`-9>˳[MTd1힔g ZGWV0yDiVG';ZII7.p' LEj!Sm 7Ign@p v֮ϱWipVJ75#H/"TmPOWk%1_¶{F\׸dZ'OōwHbVNQ}+~OmhK/F0lүfˁ|E>`f IX Τ#u ʨ~nB}9x4n6 Hk"؀sO"`@6|7C2'Ȉ&38VN\`VWTgǶM? ~l'C1Ö[z]Ȑ1߀|Yv/7uV!w)Ϧf/@YoeXE)ov6u\1BiۼTёGciѬy8J —F{gもb%+9syc%t+Kْ]kNQ\^Esa }_w3'[5ߦL݅aΌ;HG[3a\ZL"n]c@LoꉥiDWuqg-ؐ~ژYd'{Ȟѓ68ƟD7^Sq.W=$w %PQ]jЙQ/Tj[@C_֚UɕR(3~j34k/H P:G>]Ac۸\=ڑtxuSZOr(Hɶ*}V%Łc>DB}zZ/~'@5 npF0c좠؂?3RC&pXߝ[PZI5,DDdY<AtY6#G.Va@W. JQTj3sʣ$.0L9-M@9YwbC#`^=V9N7b1lQ%9hoTgfqSRe# dY=PM뉀;h>pL|Z$Q5xB uC^|c#oSI!98zV9T=o:*A gWbP jjJ*ۚj8k|,4بn]̍rcŇ$1&m<@|S{F%?{55ɍ_T՜!Z8;V}Y6 ,αL2oٔm_Sx `4^>ï43^ 9oƎe5 ,3-jScv$|x%TPOKŤdٛ${mr tDڭB˟JOC:[z"r,7\1$ਮ.L3Ee*.X&|+Gc BO*Ҧ[GvEus7)?$7񨪍B}"]_& j*6L>=U~S//CMM4tWA[dZ`.鎂hX a1Bu^kՂ9M)BK!(ԯUoJJMj~Oj .hB?ǘ6ĵ?§h*OAY=97H)S)4b@W0ReM^cqM!Ξ(!CuqI+׶;2q;|sVphF6! /H14r#ue2]CŨ+Ik&ao4>HAvLggêP@OT6J*砠1κrT<"=uDzƬ%V}bzGMMYs%<~%80dDS}A8Oəu4W[Xϗu5(BԽq<':.ek!ĺ'{_:`h((`c?u@W}|?(/WH8Uiuܖ[gw\;EX}'Go8wjKc^dH@GznUf1nA& O셟"Ku/nt73I?bws%TK ,>\}w9T>. hmT7χs.Rj0G8=co\5i叇xQ>gѷ/֮Ijrj~7F^Nז%;1,j|jq r0J: {ذom>؉oT$uO9ӧD2@ ĸ sJKke%YmHh6/\h%Y[ߏm7]h|PSnX'a<r+Ue=0Ou 3%ѵv˳٥ 7ْD7םS?ù̂\7Cݭ|3jb B Kq#u0KqY+t Zkֆ!jqU/3hUUO ?x_5Ѯs#`w[.sj4ȴ0nG&Ap-Ab!GO:^%&Pvm84(t ) &+ ދ%ݞzᦁvb %n5ܠ<~.RGÒ̞㝁.a~#S!YW[sl1Skw.B%/anns<8>1kƠ?FGJ)Dr*F{f d]4*b#Qؚ^3W|1R;=jph*oJ3wxZqZ#&Z٪uf Yswgl@}Gq w3Y+&qVj9 EwK-D]v*ivćKn#q3pW0&768cX;,C Xgjd~ܥsr9e'^+!򉷴EWh9(x5o#'IgPItÀ9X[^g+:S{'"RbGfqˤj;"l;& ́&DjM-hS#}2?Q5P9M<J f]`. $ж.J6tpl5Vxf4ԙԴЎN4"zYUXYEx<| (mZ/;R po\*, s3(*υz,YP+މj 3r%!/NeP3tV$m 15eFѝIN-0| k!OpeeY+S>sFq0C#$bi݈%\H&HX3Ovd ys i\[X@|˥XSZCPuJ1sO&Y@zA.VlemӼ }b~WŜ:[Ɋ ){"v% O@k=dZ#|.frEX2]Rc,eٻΫP^amNJ(hfcMpjOv>JK?2 L}e$~ ;EV^p}ps7K&V5'`uej}|b$wCkX "E45= xβtϫx ㅕMsPmLW#U!5:]拉xy؜PW6~+By8ΒTRg0dM0ӧM )y" -+3 @-ժ(mc4y:9/J؇ TP:ХIφ R?.-0!F!rJ7Š2zxLQz`Di}E4q w6$ƫz@e}{0 +MPͪ$g.l&Ҋ1nb꒦pqM9VtTYܧ胘sjӫT812|等-"}\CͅtcDNK<"Q?!-Z W>jf֌QpSY>#67(7tf7TfճC˛a?ރO]Mhh~r[>!&jp I~ b:vA)Q}_#OrisEK0)Gxn.1jݟ~`v9 9Għ:̏ +W.Px7EJ ${skX^Rp|!hWPIc!~JMM}+ֈlٻU)Ρ?b I~1Jj"'++Mn~F'nc J)(&e  ND];tһ /Q* &Dfc*:Pw>GYغ;,b|Z7_35l?_e,-f:"|K]V5mkrxֻmLLF=.op%MAXdPxy }*KK_Gc7_ՊSG!: Yi 4{ƵcĆd)ptLVrQ G5,!nܫwhtEU&ƖyL[|rIc= r}nR{6'O4>%[fWbi v\gyg @e^Rbo`˒`Qgg VSt7N[9U&/܂sN.'E6$S{:6 F&1Yt>w)Y ;.m]r#zC_1݁4g<&VwcM!gÐܠRㅕ{u+ q-W< 9sh{{%Jf/(wms6v12h~NioSȄP>GzMmݢdot>932lK(ǽx?ug5 ghЊS䜀q%+1a=\£9 S5xϷrБ#Ga&O6Io@N`STQ>'ō8ޏ8|)Y(D**!aVC%qB_#R:9aX~#Vh1,)Rb {-SQږUrEq%~OW^\AHȀ-[;ߏR}[CkiڿEw[˅Bcl8 9a[Uy#: di!8js7ESie An,4ltGd

l fB`<̭R f{e[j']1xser LToaɘ=m 6re[)BYO룆T!dew%2bpwuLΐz Jp _#G wD\NJ&vf{C~ 5,98)g+s&2Ъ)Y4.R~]EX{{t&3^Íbm(c}jPD,@,N(VH1?vv{L@/bo@GL.Sr!qrp=!R~Ö=7{ RYg?P/|=z4ƣav˒ i왓_%owqpv{`sAw+*Epu 25g}m/ů墶Hv0obD(Uē],柋i7.\F b}b$ÍKЉG* ؂h+䌇VCw?1:6dGLɨ<v`"ج?_tԎ_Se GPn5N<7pTwܞD$Z}WZ ҁ`u P Rsv ޱT c+L=}J{]}~U.VN͋h!-7,>)WHCJH7_]$/?C_V-p$ؽPc\yf=s8Sd`[$;6p#71OMWAʕ{d.s- rنbSET2w=/k).grjv=5ݔ扝埩f$D5 @dWfG[ Tu\4,gv "a AP`+mfxo?I'd{:a[}%'ۉʮƷQ!8R7^1} y8pxF2׸%*0yt/"^cӻYx심WN |2*-ݗkgYNwC*`'4ڈpϞ(/4 G3[&r-mg xQRic >6~HC>V&- b?GxƘJt5f=ŶԞ RgG%>gĸXQXr^ oĞOoh{Bgש-~ XTvq9>\Z fvib[gkޔ.%^,]UVp#os-BTЦ7a9JJ$]`ǗuiÀ:т.EC]< ݪn.D+@Sfk&p'?-u=sZ@l穥/y@3SPYeo@q!n6izdp!w;6+mPNiΘBG|r3]?!Иe?KZ7%.Y"4!Bx̒ͻlDG_Ԣe`Ƒ[b% x9[j'KHnvNx1_!>f$m35 b2$ /U9+3';Ծ̝ v6u_Sr4l {U̎6oj[nq{ 3pmp$B!3?k C$ݓ ;CiY1PY]m VM2w}1|w(94g5 !ڵ\Hz^!ThM0Ru| 2D)F9VG` :q'9"<ɼ:(/DH_v<.x}{ h#(vU{P m(f ohھDxtb鴪m78g]0c c&"ɋ$fqR"-;Mi }#81YaeU)vK6OP\Mcw;. ЩԽ4@hXZEkeKli-n$L:6d(O(3QVnܱQ IMrd;b*&iUj,-W+aw]0X$,KKQlTO\zz5҅{aN%?NHe_߭T2UAU(!"_K`l Krp huGԻ&<'} 0dIY <-Z← ⣄8%L.;ړsʹy -rgNki-#,)4_83/=;s+wL!C;nWh070D-m1 ܓ8mˠ ˜P]h퓄BէŇd)N"(ZzTh)Ii:0_%c /XR 6{DRҔ:TsWQM#p1'5Y ^<~V4t '`'FKmƜ_Ep7&wܱT{  Yv]GC9!AL77)7{WD$K8 AI폺nu@Őt_qMZ]E!W"mV-oY8ŕQc~ٲkњJSr7whX8'2߸lᩞ&~YG/剖}0T$k'r0; dA(Ps>Ttb{Z{č0d,$u MH@ՊLg RL7QODWap⌏yɲ"/*rLl:ʖgU4w[3p@_*X:3RIT 9#_~jSunDžwÅ4?WNZ* =8QՎR\g*P< c`7b~E`M2اi!^P&R '=ys+am`1 鄮Ɩ N"n8U^,%X2%=JB0UΞ?/щ$xMKxb@w6ʺnP4JR)R3G`X$!ZVYIs`(өq˘Fѓk9x$m íUb:vѾ[X/_ y xrP?oz3hM ߷W|Td6*lߢ+,$|WWSFhUcmr禜/D]٤/MX1N"JE{*,t[TlU#YyC_8IzS?HkxFO\!Lx )N>Gn?2Ɩv\pԺAo͈ 9ӺQ C)|-_ 2 #jb6Q{6pt(d:mlkr?#%vnjpLLls HI:VaUC>|iltgS/&VW% l"^Ȫ;!GҖΞ& V[r뇖6o"ziMxi6Z1:*]:]73o@}~?vU1VgGm!KLUe /,$ {If.`>śJ? <%񪶩Ѐ\'l|WZ mMQD%:O0J1x ݌m9  3?Y9f:V|t{PuaZ5y6oq$'Ҵ#f\CԴ3| S% ~5@Fg>trK#`7w0i$bY2OG_D.`aG5߭bYSI$)#U 69|;5,KP&SYÑμ@P/2LFQ[t\6-mOyy>rgH>{g| &(phHmyyLsgd}8r޻4V{\k"t_JJ1rC|D8ךQd܂S<7fr:Hl"5 !^?_Hˎ8VBH>iP4)卓%'I?w9v2? T 9nShwT$~S2ƌ5GÆP-ZhGfŢ[?GuN %'AaDnGzLn-b2Wc :CY ΡI R*̐ayH=W/]:!v'&KZ!&wcbҵ)%lWIМ*ZnDc3QzގɰX4?ʼnLzsFt9BH/9DvHWqc<Ti,R;6SUΡ &eb_afw߱)|H A%@(#Gѩg R Z@:A=n,M$*3ТMJv ˎ!LxUn͜ ޲>6a$×n8tTťhiJt#X}a췯ɒtrt۴ρVI^#zA $ Egrl) PT"!G!*/,H4sTD2/<N"AxPR)jr/] 4"8pBd/I| (W(9p೶RGZ:G2 )6/P1ͽ;&VXKVM Wjdq\MHy1*jWoU-!vPnNγe"r 5v?cB=p W涰> ̝:}ao^2;'각K9Da[y*t5[,w^/^k2a* \o`B_ӻe<3w2g`1ۢD;(œҿ9 J.:iXʑ_QRLj)H\egii06QЊwhЪpaP_]< <\f&/fV!b(S%] 5-̈QLz"Fl~XmZ@l>8jRŹG:S@#ZbWimd )(«ŀG<]= Ih\#J2UwJe4-vAIkZeJɱwC@_͎K#)ؠ%.AnpN~*S幤,s1*Cbbp` ?4}QOpHj1>~aD݈v`@AVgN+o/c!y<$z|(<;%8#4]lA[K2=W3Y"O/3H z?fM&];5)y?pZ_u/X鈬ל?ӆ0:1%]:1Gy4:'gĨF\o3jUh Y ӧ~"{XP a'4".Z*4ϟ;WDj0Ȇ#EDj| 83?36*8^!F ߪ/i?k\Y:(;Y뿳y-Z)*/N fjA^)[D؆o6:dwIS4iP6v8$k 7pT\*[5-]$ЖeB];'VB紐UBj$t^+IMʵq:UF)UI4?')>vѡ BJgB'hXFiEҚ"i\S27%;D0$a&v:=N1 T=n,@/+.8| -^L-%=}2QRg݉T~ A|.mRb д׫-Q )%;R'7)NRoD 0ɗ֥OGg̃TD>uت/n ߝ.͊^TD9xƝZC|!O2| tSljk1Nu thQK\(8Vtq?QDlQV U0CペYG|u@N1elCN:;$GVsṫ &ٙ̉?Wk8G b 05M *! >=Oir:,?_! iXZ5#[_T2QeuΣ@bG.&\볈q 0+|sO/,¼0],.R~kͨҨCƨ9iGhL0jb_5fD1ˤYK pXe1xr2#CF # Sd%t5i|F."u2G"JȵR4:K:i2\Gzy[oyP]$ gk俉8=9Cn]1[qZ}#ss_G6( MP T$M\VPM5u7S] l~.@^q5.F~=03Sdٿ(piƲAp1T=B&nEpvO޾P_פ'8$z(-A*Ubm J>4qXwDr\z9$n&"RRB*+!N)(C%¾ˍ26_[ե6q\Ka!OSڄSN#Y57(Qus%9F&Bxπ]ni)}.F7Ī17դ,i 7x8,Qza(cyrV9ZY =P UANmnz5y.(,-[d!;rs(XwpߕvJ:M6+Dy"M2q\.|sW*-~JAv0ӯ\zcF#-a(u Jx*_h, ւ EhDzC`lq_ ,ZXenJ7Zӆ#va![`3DȊhME|Yӻ  _j^LY~+e_t_džu9gLrdy=mHQtҮORDkr^NSO[( 㱌j GFe m$V#Ϡkٴ>f>,|J!^No w“$ -F^ppFG}7+;0:hsnQ؆;Ⱦ^W2x% XS.'~BaeWܸ+Ƣ;LC=ĺ$ku5`qO]K*ceIq71Azwr&{n?]VY< P[ffM?.-W˪Xg1|41.v=J> mCꉊڼćS3 tԓ3f(Qϭa7FDh{y vʀ#!MO=W/a*v t1yο@ɏ!PUZ}|mqȑ:4>ؚiJf㝎WR>wu[ A&"Zn~ngɽA?0]hn1UD*R0Z+bϤ`oz6oBɺLGw"%qߎrPɞ $!ѫoya{<#BBOw~J?S vR%#O{#^^j G}П0c@7F3I/RM꾐ʼncV~F X$TpPb#~3yFCr`u5TN7|Ҩ!O.5⼏m&YTW]D>l',Kќ0&b k=?[b.p#܀2l L)@3}F76BBJ +eo$l+496a20 ǓJf9,|Ɨv`geŠ+,`N8<w'p>bZ  ͓^r߾d݉xzL.W%9YD4|JAx?Mq=WIeFEn9%y^g&m;UP&ەkAiwFP e2nB*OQigD CD)wcT:RkŠ/؈f`NO]Y]c=Mx޴V5DU?ׅ p`p NܥE[/g9Y] s;eCAi%Å:u3 wE/6-Ë3t[6\)⒬,ԣ8xńyV^/ ^<=}KHp]dAZ3HV<6bR֤bLgG+fU΋f{SP-JzD;=n`iƧjʝ#TIz-\q$x6k #Qa*М _2'm-:ǯsi)\/Clq#+OS ]1h F2R1Jޘ &-r4|vmTZXk _q>ձl ;$O=k-zѝ3u*?XZ|ǰN夗)f;clty}%O#Þd7UD&է xD{#uL m;'sDh3kV$ glJÁglǵG 8jx(eI)>Vŭ|.u3'?h'%=mꬳJ1`OL]X '[ShQw:$.dz͗y4>p'8>QTy9Qtdpu_~4/0w:DΌުc7"6,u0JTɽ7c. v9@Zs4ݹL9pH,SRG/LCVlMGkCjbJ~T_cOXJԷ 0&&?k?w]Ygṟl[])ϚbN<;=9B%K/z:g*PL`&s|tf "X#PM6ze  Eփ Pl TA6 !0$Ons zQ=6 ߅m{09.PJ H;@>ΰv(Zr^\:Wh^b5쉺\ճ{%$pHaSGwD9}cu+Ѭ|D: ,vLUk7hFsU:dU'o˂IEV3D|ˎU;{\y[d?sH(} Vv]x̻l(E+Q ?>DJ;vlQa#s7."I4 rfe)zʅh(&`RT7 \.ML 1y3N?9"Sz.ZJBoJ?|nDP1:؍qtYؽ9j' O17/]UvsqpzY"^Q|+[EY1ھE@Փy>_2[;4z p~#EG0cF[]Cg!aNi-Y`S;}UŅ;FYgm㖾k vgr(?{(PCyk$1sལ/ؾka݀Xъd Z;fTT͕2f~^,ۙK:[Du5ϝ  O+6ΞF3٨Lcc/R'cS`+c!0ٕE/AUܘr{lGLvDxdM&҂]Yi6KБr n)P7ot4E%~vȰteU4Tc2}yUp3Ipk~b,Y E9lZ"n1)Jej)3;} /@~Pm;ϸgIȪ09qϵy-8`vK9j>Ƴ+ )Eŗ:Gi &r0P% 1s @*R5>!d}6^0ߥ\&j:\df,L9" zU{䔧9D)m`Pi: o|D.tM)J:W={-yU 5tAē%M"#cvF S6CukI,KK^iz#R \g{4I] -Iݽ&W"̊U Op SNHīP fc/6jſ8qcL$SB>@JPXF*+-Zh ӍdF"[J,+ zSgDzcI_ /T}B}YR1/Hzx#=u|$&xbJa@1l:,LR$|yf]]񎃡D<_s*]k<#j&uZ*ܑlal*2$KtXk&P^e,eRto#iS@{%&s (eE+2208 p kysj/tW%^AX N#@ߘ=_W,.zr-͸4 =~ztݛ~R1.9=7FsBg-CM5uf@|M&"7:QA݌zcxӇH{.ke*ѿ&_w ),Kfj! TtH o: qrb#7aCjKUeaK8Ikq>M5qJ΀"o'ȋL*+5wfNhIcФ?!aox=&"'XPSS ;}fuw9NѸr*WĴ3~Ok[}} vUIͮղɊF}n& G""S7yУ-Bx+nyiӴ|dA 2Xy2`11+#!r${ή=&t{~B#dzKu V?0j#v(+֮lNR"rR鉫1f] sRvDoČZ%:ưDICMU+zWBvKq(vU yxءu2&ɄnZfGx~>1]t[8c˻SAP"1)lq4yw|Xz/0 .չBp6n6 H_:˱oL8yS1T tqzrvO x__p?hK1*,4GMfDk~10u=UfVG&BsҏBWֆхu^hmLxv_)[ *k橹C{榾a'*hyw:x4DU4NH 2H}MAjzM̽' &[D>S7nѕ6p"&9Q[u>$uzh~c{Vqh2(y䂟OF0;aB'>-5N%RN4;8|tŇ뜩p XȚtC2 >iBHxJJ.Aн>@ߋ/ 8I&$)l)F L5^|^=_L~1&&>M0DWlV 9e.uo}CԺo k&ffeXa@kB^MB^ 6wAZƍ 7M*Fqz .yݢzo"*Kuy8;T7dKݻpJV [\ԗ])B )Z3">{Ωp'.˕U+B\U4uv{j&'P popaPxC_ 6{"ྌdӽZFk(fZR K;IHw[VDXOGzE"Ll4*ZW-!LKRbG!ma IcT1(dOk\*}X!r@VESҰ{"0>VK\Nd]!Yȕ*zqx5C]luJ3,@Ds#zufGh_./PCpČ[+*vlN&q!e%Eׂ(?̉;^Ӽ##v0H p<6Y;uKbt}vvv D،iFA/x_c,|+;Q`(pL7 gqG1ftF"JGutׄBՁBr 2W(E[}ٛΫq9%+oކ1NעݥPoc!˞{їu ܹ|GJ\Zey (_$cH\Gd&B7psJ0/וq]9M -/;h)m?ҞZ6L54w"e'IVdz[.L5TnD:Ofl(OH[7}hov0 S2AbErg8`/U)K$كad  -OUYɇ_,d(JE2_̩~:9ͅ|  YOa{bG|1h(9MoZHleaVnf|F\t J9HwuI#h@//̱*Ur zpUI(OLFmi LS]b@S%2xOcNJM(_AO b)\'؝?m;ԙHX1WGL-m`:B:sx*6CF'tMSxmْHiPh{ޏZh;hY|yb$d_f,攈/2'Vzv+4z' 0ej暚]ȿȺ'|2 M#D~uh6Ճ/N@ȝ G? H,fya`ݹ6C/xE]V#Ens Rb%Fc Rfv~GxD8f*sٔZcڷCUޙUbM2K.Py̛A?Ѯ.km1 X0뽡+ZCZ.BS_ѿ'-& J'AS[_8i,zh3{` ~ja{=OIz<cG4|Ő*h+@i30gHs%H<+Ä]IF4)]kī׭c37ZZeo\]3l7*`|zPh3aQ%W1%YF]*~!x6Ϳ]#o\hi5R2Gz;,ZuwSӧ]+/i܀m7C%2/>85&Ǘ/ڲ1ܼl!8.C߮nHl[]Ǜw|{v]8Qrmԃ8);u׃qߦHfKbwҰ+fs}R%@-wdWP6>8MN48]? F~\{pEpV>3 Kx]w3ck0;[ݗ 3C;;*7^(*{@xƹR gF#: R}6 $ÎOy~VE`Nx -n1,q\tfwwQwj*{g6Y#sD" OЧRڑ`zw-|emGOtʺgnr ;NȚ-snӬ=#@Q4oPOۨfhbri0C8{ᎾpD"GD:z{ڤ3ⓧxMD%ʔ MO!4"c'mŮ3&3m&_t B2BQ}@_x49lIo~;Y=ptZ zC#eW~\[ %WǺyÿ84|2(g'x5#`8`A$V+L^j,F\lkޟi1yb c xB*k__d)q| > `1!JHNtePTlXEv\K僽%}`w.d=v xnH7T8;6=>qgw"22]@  oFĨ,*|7V{;Mֵ }&~ɚd!3\TAֆa%lWarnu |^xI~%Q5:SeV0"SKJ<;GאF<·.%1A.%-#`{ ϲyNt`vqM=qJ<ϡLϝ% hDn fQ,ME1Gsa 8jIŃ߀ ^KAif[㣓jNsAFO- C20S&J(]Er:M6^ȫsLbeh1r-\$MK^ :I̮AWF.kmP o`kaM<4tef' .5U~H5op*#z;)_Ԭˎ8T8'U8gg.èC)Q6hJl/5DOrR/ex]IO< 61+`*9XۥyKU_x=-1̨OЭҹm b(fļT ;#G7Y~']LA(͂֎jXb(Q@ @jV!#\Z'7䈽]42 ]t[]KhpnA ޿7^`ld!.bqPp@ 4Ht]q5l#O\Pdʆ9Ի6lY]K&,rva狄ם h/ƛvGMkDntaźBhl@A,UѢUiV:uc%BSI?`&`|FwgBڔe$NK>Oo院mBa1DQ\B29",_ܓ ddmG 4xn7{GSkf_n8(+pW}DB$8ixѷ C#9lA[~Q~wJ}謠Ԛҥ=/yzbIjX q?KT5P2 T3(vA~맕2U6Sꔸ1V>MqrP74O#[*'ʢ95ZGxd 'V|?4Btj)߽"-E cT1eԕwtk[( Su?~1Gҩ`U*Df.џSfz &&&J܆%rpUwkѤH/^, ި>`HݸSNnGeW3Tt *uz 4CdUFD`@}!iUWs3}S;hЇ8XOݢy(mmu]"EcJhwT&po-Ս7/THfQ:n5~o{_q Wt޹~Lg( Em.妨 V1=%+O =\X|М7WYUlɣר}/Qǖ0iWۣ/z=7룍fd*)5}h瞳3aǃ$Re} d(A+O&)2Ior7*$ jlt!r:r+1@iwF ؚU_ hXrZXz<,ߡL1;q9W7|hq9,]Z@LѴ} At0r|U6\ (8[ѥ:.s'6W G^ӟ9*`&9YzmG^I<{YYSr 4{IE,9-ymx“0ڙtcz0RnXer_|tM0p0dI?> ZW#TȟsI@|/=%bYRRiS E;^_^ut4]h,8Tў7!@6lwUJHa^h5+RB9Yh2x<"Z7"H"Th Ijl$l|Ma酼{|>i9h)v)b^cSR%=߮ ,?tcbL$a#m\戮) u= 7淨J]MOѮ*QwWlC_֏GZK9)Fd 5 )7B25F&r(oO9f-x~*5y[rn&psޭvpbG;?ݷwLvm0#O%{[uI>FѤ؃xVA>-d`|!W" bvW-ޒE톚}hBLDkjtnC!z>ӳzm`/Ibzt 7?4|=l!l*ү=wbWB{h JOP@-dDgg7I CL+8Qc;^٤4bj'nv@,(r 72lߢ\?^Z3㭫"BݴeA1&єD7 vN!6*`*B~@K[;=TF_I.AoŘrԖl ٺܗ1J^ Tႜe9t]XzTKwF;ZRoE6`FPʻ&0gW-tnAE{4z!iVhX{4?mxe CB jkZkjչRwMmS.T<vNrϢĤR?L٢N Ē7|#85TU}9%w8GL5mS]J?M=9 }$nl%z}3{tZ̓!R_6E֛͝Sr!*Ub /l(0ۆL >=ďceťM+mS`iv k+{^p YLघc=l ?i r'S|z{iw?l#3w% iNxaI>Mc̚f#hXodzڽF_!FcXrUV? A5/4}J!r_jPE߶d}ىܿyʠy:zD 1МDr]GYȪ!ƪ^=6ϟTjCmK.$y^Lk>!2]8ZH(eS5IrvfN|@ M1(rVGUIZS 7$Y5LiJMXHҨIO`k\MeC.$"ou&g>Eoma/xAgYB>I8%Ej 8Z9\Fe&m]UfTmc'%n.w[;Wt3I^䟋HӦNc☂伻!tM&s&oxTT,d@pHxbк l%fHu:Uo^SȀ~˝Z/ &+ OO%P Q "B=_mV]F(z: 28S-0m00/cZIzRWҒzlAU 7qyVOxεJ}/[Ҁ]sB5uȱqm}d]V.pxLb%|kz{s̲,7rӏ+RF 7fȑUi ݿ. R2of?FV=yZFG/H BT:|;r!ʑe|]5i|-$:.w$jIa$j7=ddgJN@ބ;o v a/[<8gKT/ hbj?&2HY aJmymt$xٽC.l{a,E j<"-/<4>ߏ|5㘥,kB+Jړ2B2e]5y@O_;(},xoyE̡I[ (] q,wЅ$1u'ff) hdփ'm,Y3µJtD=ߠxvǨ%V %@e N̚\.WvhI0wX7)eIC比C DoBVɠkz'=?e1$ :EڭLݐZE0|mX8?A'+"iUZ,MSUضΖH\ZJ/onAjM;%łS6({*'W*}`;Ԛg_1&Jbf]s\񱽜%|ZL%o*(N[zSõ}7nG\*)?CK$9yZJ 혘(¦a&wXi*̓Yߍp+RhU^=㽆sHfa yS6v$0)i>0 u6W( Ar9ن9G#ιc j}ңhB[}2(X}r [uS%;im,c0i(Jo8Tu0ω4޿Þ QA #4(K* Llʴd%*̨>Wt)\MQ vS9DRJ?) 1VajmDY -񌠍޿8eQNc?oG_L4I{b>"b1TEfqR-;3뉞M(-&".Ry#L!Ć;A,Y|n6ES\62bVIrNɻ'/Q !u4T575jHQ8GcodWd"G:s^bX]^ o Yώ4t6,@P=bwKeN9n9g$rф*dTfF:m8-U(Z'nI45iqCI4oC̽cYU`hBDm[ř^K# b?7x/݂*ÌL([M/-\_cFzTG{ߑ'7#Ӑ Aen9/^54~qO4=[hwMX7(K7zq3 {歓[;RvLov[*pY*_`5O"GV Fz{)9)[j X#:9ujppſp1,eLvu]&);/Ka簘j?SdT1Xә;Zj՘V~zsjop`K9tsВdu-'#dT?XΘ?~KxIHMu摣P3{8ђm{\Bc}D%뙨h~c&OΙN&oֻ?'g[S d1?݇f+?:k%sYT+7$*kCqbC)hSsÃKth5ÆحNyHwtXB)/te&\3%o}`cy'+'ЦƁ!.QL* tZFo7u_*N-_e҃>f.Nǐ,ܫ=R\Y4,Wլ5mmI*% S[ЄsZ8uiW@//|ܙ*fl:g@ND͖GcC/]f&>An! Yf _p^v@ E*0Vcnfw5,fS}X i2FJns ߪ(p_ $V2f^TRܠ]loX(Ub %gZD;zN`m:> 9~,tOwEb*gv [ ı/~.dZ4hk 0܍+g= _\Q,ޔQ /R\ eQKu/\m]؁YGPLW~w\?F lElGrCFTU Hս+WX`rp YگG# n[*is"]WeޫB=` b,8 2>#g 06ChA-JaeΟ>P⊊kaw, w3JLl.1a(_ߠBLސ/Fh|5%oZs3A=tj,![}1"6;&ϼnKbo P($9bކLlcG1=H>#4NY mmbxߍ4MہڈS0#N5G'I{p#=O)+[=0dȀp\\i΂h׸yŒJt,NZϵO_BdC_ bJ("pE{dm6zXi:CX;,֯ԒqւZG?x3'-ߩcf@3[7l?_A-'jN۶Ӭ/v mƯS^fп[O" Ih<.!)%ڰ/ڶqV͕vlsȚ-64,R4H~ۤ۱kF2 T^5&P*so~b: uE 9uN%ȱdzvuHvnH/ljV-3[if qh+gPL FEHѼלXp  P{BU7/Sk5%с&(߳=?:2 2lb ,oaޕC*C9f_; j<ʼndNJؓ=&Lmoո>2c,hw) 3?ڽElGG!AiP0SHYtIo;ZF~ю#GoqO~GC6Z>}Ǘ QKYg9J].F8dh^_\#+>/`vX3h"GoYy߷8jlDx7mq?Z۴bC;̀h~yݖ]RH$O/bB!t-#XNZ ="M;#-I,6)2Nb_ID}+GbJZ*&B8nݳk¸6^MI£ޔ>K{?Mۜ_RXdFkHkAp~*L 'Cȑnעe :dBInH(S NbYt )ˢADnR]|8$qmǏ7ֳuIEps_!Kq@EjkgG-Ip̔W䅥,c#qb~1=#?<"D *6,~xxlG'5}wZáug40rmq|8;Wߟ[#ӂЩ%`/^?3ϿkIɝGattA]tj6G-3GJN[߆ !<'o>~QBoK;֧\cFG Z=1W@;f{My7I\MtfB' Q=["b˟?OL '4|SJ/lcF:j!W{ʓ/{FTy4MHܐlPHn4P61KFuoƘ0U0$_d ir_aS:/8zry x-sb5xw& )%\ļ6BRnW~2*H5\ JC*[*1sYcҮwߚCa xyNEs廖{VQh{|s#z8ȶp ȏ3C^*@!M:Kԗu>LFك6P;DRqV19C=%I*9uG_Jp= F~,+|WU~ʜ"μq'{e(5 GJ@S>tc;TCE=+ r+M)z,-˥i?8Q1`IuOFMF 7 V:\9G_6?; _tt 3W 2ND# 5z<-5gB \Ğ$ߖ tD O%0fxm<гHC|aϟF/8NJ[w 0 dW2#N?FaʃE1׸n nc&2]^OrV#Cw(* G5ܠsh֊cZmX-{:""slfdT.uU4Bˌz |ٞ~j[|A~`[J *5;PC2(|~j̀!М|wnC#Vio "g6AO_ɨE/쪚 uniĤ"!D\'}<>j!QڍR6VX*@ %ʸy%L%QQ*7p厪l(Ŵ4 Sxr2p}Uc~zrwNu9%D:S⶚4Mh85* B^ D旲Q像z {%_Wzfnݕ84YFyx`F )JtlA3v5,"=V;!| ܶ*Jm}RmQY-y^VD }"(LY.$iV%U3=i{J>%Ž;ka)LS˔0er2Mn} ?&E8lOL"أ<3͌ħ '~;,Zޥ'K C}zgS`l4\YXmޛt2YB'\$l2[$V犠V`w?5S TF<] zt75|:V ~(= B0dloO.TL@Cw`;WFΣXiзR:=MaiCzosBw(<^0&qpݫ'lyԟt]A,ʏY.RaYGz>}dUvu\C e#>qb@ۘh*e֞#F @e8@TW.@@~꜈Hxm(Lye gMl(tw IHЄ2Si/JOMCt2(]FZ<)YpPrYׯfBAVhۘiF2QOO' %#aovWjW[Bi'z8ձݥmGAgs'<'bXȘDܩ*fV~/m,yCjM)>1kÉl+*Z*r[ld+t?F-ozpJ6f ;P;*'uqo ~-}Jd9s -T$R#yGt%JE ?&Fڐ]iFfʼn9U}U'zzlU_+kʖsDH:(&0DVw$j6@c * Dw+Z)A>;gc؇/U-@u AпFUXA. 4Q ;QpQ=iLIpidao*N'7:4lx 5ֆs[{yZ tzvDMvP'A %u`/XgU͗M'TpӃ> ELsw!ᑭMF/gHn*Az?˓ TteQQceh(‰H;Aˌ2qi-*lj\%# 8xn_Ȼ"}c+YzHz}@!£ p "frTue DmXk}TDZoCߥF ̘);}~ss+ā(ދEm]~}QMfuG+gu8qN*&=9 'W(ys"taoVV)RVv.nu3 _^C#_ȫFsxâu'MfK^ܑmy  q$8Diy EIL-ixXU=+m[͵J\a.h$}$F5sb8FI<C@sDbp ^ v>Chc$_sNQ=#S`HEbօ/+zKPk70eE&z%P$3gO͹gJ?y7PNȑBf P :<'}?hI- O齋^#.k>DTݶs)Z<SxR<1΅RP.܊!(R(=L{(Y+Dп_c1/<FcMl* F!7ȱJහ[45*w6mZ᳑%4<<3F[`rӹg:] XfO*v G8 O5Mк7\M2i|<8EjIPG>4SֲF2Bb JUHK,jzh`'s*pʖ?':fo,fjLOh R*^`pFiujW/ϰIa7{(܃Upse )ALf#=Om8.?4U%CEn&dzE>GwԵnJk'[IH9f QI@5. sl #\ F m?iݳjy/K[\[:"Du'ļ`rby4ȗbcGr9+N}jMy BDf"V.,'߅8dZReO;Q來4z=(0xIw O>b,f.^s.ddWOUxS?< cɚ=KEPE!dfxz\'-CUT鶠.cզc(nf7eʣ̛+G8}14t;*ZdUUzK~^MOSqԷY@4:L:'0Wv,|ɠǃ`l!/۷@ZFà׶š] ^>{15p@I1JhZo>Wm_BA]28/9bD']QY# n:9jN kï Ԥbo`m`OX IKLh_f0w+ |r&O=iA/UUuJZڣ4 j"Vc;x COW5X?zVh9hg_ Q?+|q2iŔ4MoOMOu0d~aA}V0ZT&CgХlc_&n@C{F@-?}B$FFf%((]_̇/X+zNA4@M-Y*$e+jy,)bhn8-wփ&pX)d CoِRJ5)~:O|oqN#˫ÁL{tZ.l[W) ,1FxjYK?ᤦ{=Oo.W!41Hԡ#3xKhq];Gm(?OuvZ%fW)%c&{3}C@Ia#Ƹx9Vd/+u: *Ë+ IKu'cb(itWl9ov OVIǏ\SjRK44/,眾_kX]宰"s} ?:jv' XM!g}p#;?:voN[MC!|+/pґ۬zDV1 1߬x[AE,n_SFz8Imsf5nqxΩu䁂Cdbkj=qBLu-B  |#}qx,RDWǯ4yo'{驤hbI[+O0?-<@Ľg 7 .Rdd,g0=xܫ N֢r#өblM[kM 1*ωq&l)J (3%O0~PxWCGXsv&4ώTշ%h\J"dcEbT@yØќ Hn.!/B!Ʈ΄OH"q@^9۹suh&^VK̤~G$_mp{& ^hjӈJd\[ ?;P,'B 9SgqZ0TTq0j^vlz KU>-M_=νssb[='Vyr9 b,}8. U]VFfg%9j2~/Ȼa G-!&B |T|yۇ l72ټcL #ScsIGL*x2k(]u_)Xd&"_؀jP/!tQ!%c. oCaϹKޟѻHt{?<]Kws>%}bIkpJhh !vObx*Kjg`5^xDlzU<{|FUR,8PjQ)w9y؃XiOVy 0w"9`?H L=ԍK忺S?]Adg]18IqExwލl 8/>5W]Gh H%۟Iv܌]YuIc7!՜8P3i=?Lwh .juhk|"1l8W, C[:,~:Ool$1"UN4C ϝӂ'ERJ ^ʎܜ>cf^>% R;Z;_#uf[V5xm?0`Člm,0ncpaЏff=sj몶wkEzGIEUj.o^sʝcf>ZBթ H-8bBmɕ]ED̮!$6P>aB46dV!GW3:/9W񻚟 ]\)z6 ,vmx|e!' R w:9OY%ΔwU㽁ˁUsH' .M6&S5Dud۾|8Du)E4I'a7)eq ހ fTE뎣^-B3X%K4v~\Fe?g={BX+5n.I; >ezec? //N+'Zo+:Zeg(ܤ>PHvf%M`A[tJ(%i+}|T3SxMuJ~RLHbN ȕ J$U.ޡa >,gW&.:MڋÏpJ x#,Uhփ?+mzxK-V| ML>^o6}y)0~_@$Q 9r^Z}wgB.Ei(=^b i7N#~Yup)&c94rO 朘e Iބ5nBstb9ݷ#K>?. %ղ32]JY<@ _th,TtvN wNz,_t/xLAR:nIզC( êSUcH0*I{9h8V={R<#rl@Jk/T"lkVؚMB<پ]sM{gops Ȱ0X׫>"Hs2Y$G)uWwLS l X1MfL}ܝ(6]^3\0ٻ"Zܾ 1IodEW^7P A > oI&h2RWAq4VZ]ֺ`gMr/Mb|OD@k;`9N·Pcz[ bAOc>Q٥?-T 5>($ԧ'6Q%UW_7Xrw;rZ}"ǂ[c'ʤk\7LW`f8u~[2]x F/xٽlj/FGtpoq%_r"^04%J> + 3ᝮ P_+1E*bTx# e})MA^a{lpoL{+PG+Ɛ%KJɞZc䮈PQW(Y ;Cۅ6a]Igr+Y藵Zq@g/@L`g A{+wUΓ"hFpUr^|fJ*N ..0RuR#%" O4C!2~ j#Nd\W`-b'@Պ~Q?6 = _{7YF(iM`/tmir/Z&xQiF B~(K?#PE)nN[_ g=` csbʄ5[pt%U[ŭyF* Z\rZ/w-. RZ /%f ɬPdPԹgKa!{\0n"O5SJ]+0WS/pBBnQ : 7!c)*vBV bU9Q .:z{Ӌ_-3rLTLD ˜ҐIMx(3-V`W;LMfV+aN<ܩBe#"[#o?Wn5u/{ҁR:(,G?)4ZEְU,>V{1*\L֛51ws T`Ԑ6olfk_B7a37l&?H}>YHd@{g;cRBq=-_͸ڑ a0:~AES@gI[Cu))y"WU3 p$yqJM&;_`u@k鿝tҍR'(7_&ɶn dDd1КQ.WczB&&' %qU%0翃jnPy)E^(C/Mg34$7.\ ~I1B&.DBJ7=o?bV-0ǓK)wVa ܮÛ˸ jb?.>;:`&#TcrU]9R/)5u3 P}2[8?Zᆾ{Hi[) uTBK4fd2=ʾ;=R^\.scl?f5Tr`E^e:/+2NpBHUm>YK=@{tBRkE% {g)wsP w4YESt6e`a1p\KdA.UƄq".:_n$%#j:+QT| 9vn?V |ܬ_rW<%~9X  kJl|+7 c82p1ZYʖkƆ8BV:"L%!bU'-aï<  [jl;G 1h# ݫDxX#6_@@rDh|IŠ YyѶW *IeCJBZ33/y#z|?&z9.Ly]AIz j7^!L6: nD)dry&3\2xw҆Ao. M3#*_7PxЄӸQ!v _!"N:|ŹL Υ"zXDݐm.1 $eE& W~o@AcMR%F4p m>vxS*~ \nj1G{MBA~ f %Pv^G,vLY2;$_69 c)t}v J~(Ʉ:^Њz!MTv9ljѼϸw JOCMN揪5.ZTp Y?bݎ\Mz>x 3/b(an)0sic{O!l7$1wzP#&#gHXO/g 箏Ƃo4m} -ab,̐EwBԀSE̽Gr4D9G_3-.mYٷkgv{DWLUN±_|eۡ=\|ѷ  ( .-bqyc4w~<޸>#8ŀV h$m.޳3KDћU}Uhh}z|M+3ucLi`Uj,+;7 %Zdf\ѳ| :I6R7dzhGu Xd潘^/uEŌ~Aa7~#oiW ̦&yDUp;gPkz9:IUnDTn>iNIi Oߖ1AHxVLO?$)Fj"Zq^(.qd7(x1ízH'Dm.*l[;эZjv K2`K&k%0]eQEiv?z9Y,+}czDpU7ղ.ߠ&EC rtinK$'%_>к#,^'nVG uq1SJ \E|@T8紪Sa#$Ŭ9a>7B |ȑ B~ᗿkXƚH|)s'EVeX C{nF,S(Pɩ9j+l?/t$0XuF9-Gאּ*WaӇ * ȍfM;EX!&vwb Y" X]祸>F}ͳVe- !Hrp2Cܒ|O$'6_:#Wj:iREb@i"L(Oxgh$kxbk0qJHɭj&e7P=J0&/ -ߘ[O i* d{jdtI貘}Lpc;c!au*$)p fG\įk)K|^i%khԫ eF HysO]d nӒղvΗdHO,y_T-%XѮ,0HICeV,OB*4R+Ф6ʓc= FP,(!c-v+?+4453s{Y(%F+3O\F!=al} *b<{uݳ0EXHJWo\ _QIjZg0ph 1GOiv|}_@.țU@{;!\6+tэ9U4S !"8)JԿW/lH4І%`Y3'q#U6F_"dK6 J#e}_Le%m.W]eZO G{C&&4-Iŷ^ښU<[Ș]YYMLPFF/XTwLCI#ڮ$g.sžJ#L]"$wqb{&V\Va8")"XԬЊOA>+;*h1z=lt^8R \\1}&T԰M7IQi?mF\0?"'oÓh2Jn3KtP67ѮuRK $|ʖ!-+Ew wl,zaHډK;i痴+'>*Q*M PkLshEd7}?v邫Z(.kyR8TvfvZM51^˕Sf-;ix| 6@#J(3oG:Ջk 6uzf٢}OUe)g@GX9٤s5RMjϒۏ2hKK8&78x6i~!b@ɯFo$$ Dfc9{ x&/MyQ1>W)#]G7>ǓqIvl{ QD\gc; qJF`ȁ j (J%JUr`)3TXvEH5pޅ 2+.|Y<ō2.[$=P7ܲ=tBP?j5e rb02̐;Vy'h2d<6G({]p_-|]٦+eW4>ph@|=}~.k$,(\*?RVDb)wYwvL}BVHV*ƤҾ-ǀ.zMtP>xv%7סsmlu0 ,@Nq?RW- ZGah*xyZ:Fr,=x ff Db, bM䪵[1C6k^sQRt^)*.X;ʱznmKe>Ert$lziI e6i; Cw0=H;ݿĵIYx7TxCjl!` ᴔ/}գN)JNs|a;;|Z3몈djv,_Q*tS O_ޯ}U,g6#_2IO+ cOP@Ȗ~8{N0#8)IC,8~EH>0z (a.JtRBx-~"/N]wgF{${4 F5Y '@ߪޔCTJP ﶥ -KOo$Uqp#Ynk{Gx lk6BWUX>Oj4}b;o3k\7(NPmlH!CioK{"g+)!H30gKZincO_I"Q3D;r{ KCGԷHWPk[Ccw]`aP@98e>I`F~1z*LRi@oUy:X(;2NIذ=5n&Sq<,w?dӈ@W@J){7E Sl?īi( T5Jv􂗀Y I;EɤV56?wWJAd8%݉ǶwU-[Н,2 tj1`Ĕ3n4p2@䬾#5k#K ̑!#uG@]0-ʺ$ CD_j&#bi5C.?i۾tn*ӛXF6iIRoARf];.0H ~nm#M'-@x 0HH)]A.҆O;s46a[PܹIsz2*}/[#t!>F|^φb(g-Bؾ _k>3v_l|S_Èn{_zduxjn[{aT4SO5!oRbZITgzG5 foB1\s*1uRe`W)T=bU N};J zW$Ɔ=K*-@㺐eNWXŁNxm:'*[!鿍KmÅ{5VQl"P` a 7" `azqJ\7v9P=+pj m+ϬjݣEsZ 'W2/TTxyBHjr#\\R;}R~,͘gU#~C=R=,αeN\\+笰Vg$ĹwzpP5yɄxc!G"\i+FٜF:{We/W԰|kF$G.bPCV]i;gt恱=$wD8WPBbz[1#G lFN;]͊w7J^un؅sMҩOml7o 4*s)kx8W%M]R-!}.u'CRFf؛P+s':Lِ~gv(\Vp2nH"0<\68cסZx fC֓Z\Y߰tv,oO:L/Ke8+kBbԖCRkHJ4U lNymC ӷEo->nbp$bi&F|n*w? l}*E_Mf8`"R;!oA yh<'"qȩlFd0[8s:BE5ڸ=Ր KoQI _+Iq|Yn~paZQˡ[ufK"7dEiw!VbNt1\u (pTL RUS_KA@iEw8]tC#T.y94HQ{⭸Mt54Eu@`ƺs#{gf]@ vaAr-Ik ;t%!|-*b4JuzH?,EJ~IKZ~RΞW O-s,*.rpI^@vyZ?,ߤEc }j7VKܳ;Կ˞SDx @ EPzSi|O<է%wpx %Pm6;3hFB@FXdט,l`Ki pRa4 ,)=>XܛpLoWOUC9*-mV9+ـwG+c{cŪ^"G)W@ *_҂#mD`||a6,xjI^n1tAw֓ ϵ/'+&t~8A!^r^i҅li<* =Jˤ^g}G+4f~# ̮lbm(@J^6rg,hpVac 64&PŗM]c+ Sc3o {GS-c`[8 c>ihzD/kղ~.@MŨз0 hXs6muin&* XϪ j?ilf=5nzYA,%3O`3J֮n i6D1y-B)z R1U^i\X'Sy*K*x0Ofb_HZ}Xݪnݭfʛ4^j1fԨ^Z-1 6O?j|Eh!~ϞP2 wx,s=s,07I$Q~:4] +g_ON+?*i ;Ӑ. ARD)F2jבIh V=rJZz>W-&hyӸ b7fʹ~Z:$m\cÍPضToŵ4:^}UrܦUx(w x-E=?u?EIӍʷ􅝾R$"]L<"|}9!r zm@CxL/7.n2`]m,p_e?F76Cp n$ɕ$P?Iʔf ZKrܵ1<86YLY3lj+X@c>E搡y g- 9MH*9?CHkk;x^Yy_j[L˱A޾,+X$ H=f)S~Ze*M!PMgլ+6eOp4eTݯ}|'25 ?6k7`|&e 3FNyC}Ds q4NKu8P˽kMڟ+`Oex1IC"+#x:Ih&Sjt+%Np[xz*P?λLՙw 97+И{d6퐩 rc㡨G~P n5"r&B"Q0'Tng˔Z)0`4D0ɯR I[zGQb6$m&q N 9ĜQf_cgSWwm]\,[0o9oIg6yYo%76 =iV#>^okM?fz$=ۨ.مq#-k$%Z`ȍr2d (/(݂:Z$,v P=jv;LMȒm e;3GIz <ύ3:+0صU.MɅo:oWvxy -Ck(߼ =WoRj)ayTM@E73dT hnE bJ XCZ4ЎLb;4C)3`l%fY3k`z~ $QbQ~˦v)QaQeSxiC e/=)md\@glU&qv 8d-.=/ſCUtlMX"g0c5E+ޯzlo3j$xLl2lĖe&] X*Z,(Áu|;Sn*%3T2:MSӡ8 C<U|D'Z6'A6InH; tz8+( 9k:HDS#U;fjZ%KUr'y̳;Úـ}A;; p 5Lg ÞG\Z4%*٩K44q0 \9JJ/JDJ7lqZ:I8\$qwvy9>t *ayAsD@Rrp8Ϙ3)*WQrc6UNzv-Y=Kr}'M  {W+{E-q2Ϳ@Do kءslCNjeB]泬"wBC02=8;h9ltZTg2; Ev~(b>r~Xl(NرLE(uhכMԭ_%WZWRܑlV= [Z0xPW7UV1|=W|L?r'Ԅcq*%jr$2.&@קētjȤwel ~4Q!tqcŮ,Tmbq@ID8;r%I*N:R1t:ߓ 1CqƃBAYiKTbPoOȂQ<,C kFg8GGI$2م |aJJ?`c6v8KP]W)&;%ߴvv PEhb_-.U Æ^nvIYxU'E96]iYΰ֫zV s>?`p&iNlAY5:\x1ņҭ֢Ůc (οo,~}M^XA4]~wc6rPȑXe(u1l\̝^:&Yv=)5$֑ކ lLYܯ^4/id(Y.KE-t7jA]@>\atðؗpõ1JE۝䜹d:C6W>~\4K$/lGռ?/}KMt#Im@|$a*f``**Q'[TSީ%}aB}Kɩ$HNؼP=D>ͫ{`EȞO+De ,nkrʬs[T]XQeO@C$"V^ 1Ӈ`\48Whߨ;Y z ˅"/S<9|iMvX5p82i}"y4Mۆn3* aΫ-F,_ O6}N%6kPP\>oڃ- oOg@[֜dl %tkOӚjwF0=: W3 ɭ>\9ZH)Qնg'&F{W{@Et |*ZCURuM~+; h7@o9_r4iM ޝ)KɕF .V|s1dQ֦,.o1|\&8q qh wwRawOI1Jvctka)(G\W:DqwTBM9D;cU!;y{ ZuJK: sR̎A/r&=9XCәiky$R^<] B(%>Y¢lBˈ?\N&(q=$p#_ esS|11np#_(˅ѕ~*]]z@BT;7hhu^6xX8 w!y!3b}ZQS"&}:u&o$/ó|ޥBˈ?\N&(q=$p#_(˅ѕ~*'uMدՐ%S61opMG ё`α'\YfRXvY[ڭR+t[ BS=)d ;&0CbZpP쾻T T-@y@8Eg _9ϱ%mghuyCc_zȤ?#&R Q@R .{vtv Hw#inge[u"9jCˀZ]>X'C7A:;v|>/ű'fN+hH{j5-~T{AA]Bf߿^6:6ˁ=qphmk֒ X|nqjհ%uNQI&s?<(p%d30vU$_Xn:?@ۥ|Iͽ5_oF،csd$ƭz$4y$= D7af -&jPdvW:\7 ZD{n7,MJr*7lC]qZsu_k s1vJ1k81=;[l |Z@+?`|M5Hq^Ux%I(:, $vzsy/}c곁V=V+3>6<^;`3^DžӜ ^TZ@gHj] Ƹ[2'qr5O3~wWTJN.`nR۠7xLg%<<'Rw]} w/Gthfq\{Tj.p':oyճP9! zgB3osë]/riեλic;1zk\0f(1runBXΆ0#j(X܍g3D\,_ s,@^`e5Rr}8dvZ~_I"ȳ^)=fwv)_QUM(<=JyLvғ{Z!g\=^er|LO`dQq'k 2MӜs<vbKwE`Z%NX$}- ZOe0J"ruIFE_ڷ`ƸΦ.wI U.g3l8 wA ?CD!G;\xnSyVբsbRyHqg") gY䕂a)0_|7CBm9 tC{f<8K)< ,R]bO9|By$y^|)xv)z-8)jz6-]Kz$*߉/TD7(<':J ЛU7|b8&rkAħ uݻRYNťZpUf,(͖`ѣ>@>$ \3=tP58T2FbFk8 U욟+ yb;_kꟚ[33$j6z6WEJ1r/ZySp0-gKv0 ]kC[h.r^߰8 U"ٱEufnn5 \F^?s:efcɦHH?SxBgxE  8fk~֒H8\-_OM泳 ?H𬣒rҨ@; cyjlz=@,I(ރ!]KMnazYuxe7~jkXd+is{Di5zYړwr~ 1=>3QijhV%2]Ȋ5PU(BC&^RuT킞gAFSqDӯm eFakX]| n{J6e]u?&(/h^躗%AM<Z=JYZf4~ƠZ~c }.0享&W&{&޷\|҇JLOȺۄ96΍èa uǥ}HtꌥG'n[Z\XFK]xr@Iz}Ài +U6,\U5tU\Sh4-jf,GC)r8dֺ?(0+ӣÂIQlW2KF¤kQAr vDCo(AxL󣹀ٖ|k)T\ Fή}|?|"8Zi)ۘ{tpw#١eOTgV GMJT5p$|UV/y;@#P DN8רGhu,9oNy^l4Sw p~aǰMd^)'J@ܾĦ@:m1L:wX[ |/[j/8=עs$g$Uc,*wic0jLΛCNR1k ߦ2&Lfښ;0 @/R)kW7bsB䔬DH6p;Mü -dN|Y5[/Ps˝`yUڈU t*p|Hx 7_iR0 wk/_UT(a߰Ci;J$E[TK/t~ZS('$]ud!1.`& r͜ѳ*]\^(^<:G TR7|k,mi1mҳ3>p1b᫦a405PЛ] @_q$I(z*~˩ FEJ-v僂-#ؐq+~SI޻/Ltw 4NOtv?ht!,%bo#RaFLkUNd(:Ogo{~7d%\5mqQv&Ɏ,ej5c !t,y7^h +Y!_ T#}#R^! ;uQ)D,-\:/ ~U\~E)[9OXɗNm'V"Ee\x.6kS+ 6"m-;F~5f@J.P"m/O'y0%|-I+D?dڙKE] Gn8 m$RG1(Z*;2e xv{g$j,1 r5~4p!ܻ0jL=~@pbԵtFV)n"r,2c Cw:H~MtŞy#yg%1WNӼf$fK馐p\9'Y^o aRmb?IȀ~ng\m%d; ŁUۀ9Oc{"Os-F%ڮlV% :ÅPpy6K%@ICT{q O #I6TF+s0vl®G5'uC3k%Ȫn:r˦W"wPІ&AE¸n'-8U!JqvSeZEyS 1m۴vK(DV<ܛ| 2" iw!lHQZ~' / o|[aJ S$hyQ,nwZ9*ȫ֛-9(*v÷BMUFc;VsJTˇ[2?m7X\S35tV:i"pfu|>- 3-v @kvo~2RslRZ= B4ZKkQe߈5U}\fu *>l"bUGPSY^xtՖS4E )ӊSFOq8zuT9h$C]!~'s @J* B6QF#"@d xá+3>*Y/L +X餞*u9"^> 0x/ʙ8 3AjE? ~:Zp12,)ǧJibsbS >ŮdV{9_!Y}dT6qx&G/ȟ<"oFYuO+Zuy1lO!lhn~r 0y ]v OWCFK>~/[h= %ٓ,yX`;i֪ygo 1l} dǘbCxܼ1zĵ(2B'5 v%(kˉ-8imݞT0ͱwL~ћr+;Iwem^7^ۣO@3<2}N&4z)X*՚m-+gq]1LR_E {b濣E6"y-p:^ /9eHH+kKSUҞZQ ձSʹy˱:˾Cˆhun(N*'m"SkiW2|&$҆54ӡvG* E?~x7b{ܹ19)!(U ʑx9"!(TEJ^8 UnEH'a mnI*B"Bt7K8( l?Ä%7 WᦦKpЄ̄.3ȧ^ E u8`˟`8|0N$-s|W.J@H.y ҔRݼr4~n CK^F27tp'V3`2' 'S~)0] ?~ߎlF|Iѿ+X `|[5"Le[S'L2Yn@:IڣUʬd{21&kgW)a }=#0b\A G _߫,R$`j9 εx~q \cy:JV /2́i"+d_BJqKi@ `0 COW ߿c+\zŬ[׿ Srvˎb N˵#ً3,r]P9/S4azEϨ>.0 x +(O/T s?R0,E1yt̀O _;.U- ?_N/4o[FsX+]74 ">h2 6Yiuag:T{,bL"mi`CwH0"y-…ޙ c05 26"21g2)v11!V%U^[0( 9.ZX#֊*$-"wמD/d "+PXAnMM'1nRNҗsٗ1QnuI lJuWSl?)9*=-m`TsI1vLӷ vgȒaȦV:-(armd3 \H3zRN.2(lϥp(H9?0e*Žǘ%$%thq#s~P~vsu.dMBW~l浺WrOm4.Z^tHz{lInkZDr:u r.N QPߝy硕@v8^`L^ՆL2u'SYPSE?epi2FևҖz laq;st&*T\T5pLciC=5? `(擎%F[?q.mAB ;pj%q$>ߏJѪڈ:zԝh6)iqc)Hn~Dnڕ H \)V8?=EFը4I[\7lh=rl=/uQ,2vdؙP4BXƑlv_l>I4 .Uՠy@kQkmnBB:dpZw@z}^lk1nH g=@'?#2FѮxy9:_~;0r4_!7w+38ntokeCz'|{Y[GDQ:,EaߩU>EZq|a6lkp^=r;=RQ yhWPS = ow 8oL-FȚy/P=QK {[O?KtH*lWPLPHhfMʼn z!dqIpq$Jip)\_꘎B~dPm(PAzP^%8fb ŁHIZB) ~wEF㻬hD͆͛Dl<`rYE»ߵ0'J@Vb\B1ڤcMd=b1BxƃO5#`v2--ji(N8`R@xH@m_ i1g1%bbE?Ily`CX(H,'Ϸ ߼5U"`BᅪٸT`V%CKQ4F`"_<*7f̠D-uW7 7rwo>Jx;ٌ"$S!}e27)ܭ ajd}˘Gͦfř-vy3O}i%RwifzCKbP`(MY'ji($GIDM\ $*x0ĩ_r#{~)6$Z,Zc6Tմhv6TڽC;Ӫ .hGP0\~Gmb^?SZ'P{7OKN1KۜEpRtس+TQɹKQiuXJ>]'!O)%aX4P~*Yakk4NcQ) vOv-d3-Hwy0>GURb+0U;f곺hDIڔ_A?{y3L^:ţ*C2 eZ^7t\)br²EVslь444+a Eκt8Va6  ~FXD[V%sԄ&͉UKbVƫ q!ųUOMǜ= nu9=|kdwͩ=CR0ZNWEzprmtZG!( Z,C_*EbRIT*>f/WN̝Jz)BKe_ 'FڲmVi"QsbƼ+<(NYL=++92m~@Jo9um-00 <{9:02þ/IhkYEڏ/?~HG /ZzakO*`̬3jZ"  HzLbeFy\;f$B+8x`lEGi=Б7o fG1Ts:pf[~Ѕ>Ɋ7,5;M_xkp=D[֒Ǭ-W]F3}t/=dl. DO QuQe:eȫoXϩ'MDc.I؀V]BygzuPhHo?NƤ}JcOz iU+8i_4nj*}z]o#,K$ѻ7-d`\}iV ?Hy1bDڍMcʫ}#To@=l jd7 /[5ы=VRCNTZ~* lX'TN|l:y9lTi*ג6/D4WXqDX헓Tߠ6 1_Z.﨓/_Z;zG&~z?ľ~LÐWk;Rɣȿ@¿$p>u =I  ›%dֹIfiYyRa[~T}$F!y^YB/0D`@yFn$l9-MN64fvK R;LLT ᒨ9ܳ }kYQngxHӐU06k[~Q8wU-}X[Ridj*[,b+s&lm;è_R|хb{AHc׊(t qJ6c]5@l =Rs]iꈰ[]\M=m9JB~uOQ`"z^|( waMQ& gt4i=|Tg~?uM'eb(@%Xf0?׬[W/jrJ_`v\JE펥XXuThʡoٵO 8*ApoƀHǷ¢ZĒWCMyc D{ ) AqJ72f9E!zHE)nx&"% ;BoJ<.hu eyVb^C<;v^|nwuu.2WD{\hJX%eI3[x&:lEL'@d\8{AG;5*>2kWһ0BYNJI$;p䍆Cwb2h>y3!daWG,!1I(K>J*2 #o!,^|+<p:{vh]GedpE|K$f 'ss|wf, JlqdЃ+ ĉA8g/w{wOj1[TMڮM!Oa4/n̎}ki7sĹEwPߘzSs5lzr͡zkdkyvL=$YOe5UB8y^C6W;_qp$.w^dp"mM (ZZrtc #{®Q$5}>znUF6v:Ӫ5%4>ޟ.;Za8)u\ ّq/DGv]ЍV2Ǵpd90 Q @=} )ۦ~O=J?uwJ$D5e+*3TnUKSD 'l)t*D_(vVW*][#/b Ts IVKeivu,[͒K4Cе vfxy|cJ#"Ic`'L`QʈXV{4[PaIP~g5hX?JVO*E`{ٹ꠫9)vN3=Ѳn oi93nϭ+&e?K? <uJE^Q4J97W'rD>n$c~"AGdܦM.bQ5 DUV޼$ֻǞeDD}5!)b ;mmʽqZ5O;T+\6u}UݐJLjQ9LFǀSWcU Fb ͐$Q f_y;-?t&'Dkf4vM߭꿫ˡHFI=AUh# 2.wINY4>.ަ-Fё~...05BK⬯Lj#m\I7xΔoIԔS*Vҏ++Q42| J0V[}WD8,V4YgIyDUḻL \OȪh^*~uLZ v"ǚl#.jN<*43~hSǛdހؑG:,2k]7* l ]-S|L;B7l.06C5^Q8 %UAf͵zc;|Ah)x**?m*Ct)NTWtq`E;5vW(*btB $|LptX ~h-?J3C\ӵk` ą+5ACxbgù<r$8LGؒ(]-& nڿ;0򪏚#BcXw"<UmqN֝PhaVS 5š7109dmKʢNh&{-@or>؟L ʱ#DyGdb;^ ;<7 r6Jeh:q`^kTiAT'BF׀Y:{UKɺWxl#$ 4Yb"E)Yeh-k7& siqlw~ &&9Ϊ&Dsm^ )MuXZs$&<`gۥE/F:ZKQ[47Iђ̇qE*zYQޔ8Uux )W> s эb̖ͣ=Ip>Y H-6MD%B0=m2zSU0:Mڣrvl,ȴ[/uBI h>MO ^Ӕ3ie뻢:U{O=m~ѫR~Ou0ܤOGZLv GuET_AxaY^)vijj?:p8>L^'&Nh6%uKPxzTa[VczpMS(Oi!>Z,6P@Xk+KLZɴ>. 8[#ٿ! #VYк:m\h` e"G:IQn\nyLO*(%*Rh+}Tf)ճcٷ/%].4΢*1csC/jv8GPm,33m6kAY<ݵ2.=)d I)AӓOAz ~iY83)7rP o/aujڱv,#W͍=2Y0W`CNvwvSlCX*-Vx/& Ԛč@@l2mx퐑9ϯl*T)~`%食Ạ ~g ELxX^uT 6wW02J1--nVUvݞr4RބX8:$d6xޜze9̚x R"=y=rnT?_8êeMFC8V2O0FF1! ut!ҋ9va J#QaT; }]{BMM~PÔlldOݫkP@`k~úfΤ%F/ZщZ%;:E ࣻ9(!e}CLdJ2S s83]4~bEXa7c3k3}\:^ꂄ>e{״3GjsR1f -J=0Ilj;vN8@{$JOފ>;WjB+36dIՠ"'t o!;s,#ڼqnɕE #.o)"<@0)mX]R }%ykM*w_P n:î r}TUǘNQR-H2T[.vau|Y^ Bl*O-a>PHT{橶 TA|pynY=ryπaSc<1Jsi o ,`œdxIpW N֧1/]2K$Xdc߷g4A\x}P:ji8XnIC=P3fɫ2{`NFEKl7Q4[ctm4̐^9s""P/t*@Kgi:FFq_NcpuSa+=o$Cކj8,D"ϣ6L:XRR0ܸ>;ǜ%C=Z9nym1a¢MO,040]PFWSn˵]O%2pӚDˏK P(t;Z,[U~Gx%$4I+6\|*?{ w~wxFU_NE6tn谄s1*wǟZ$FaC3Egg@t\&JˆY7bNO 37-vM8D Lk -ݱəpشB#n9DXfH܁]%UNRͽ=pNux)h 'p#fgZHz%Fa]A4]Hcx1kGu>@I+( 5ܠz7[זZB<+BTwxc3M|*ת'̹d |#ēE/,E)")5mpȴ,vkΩ//BfǛSM/MK$5 ߛ[,ƃCFy[FdFv3SG@rΜ]>/E̐ka @[R=iFrj6xu,0 QUtp}-K>:4Le3~nl+Ndӏ 5TE EL}>?I&I^V涃 ΘD">jfF0鳂1~- _oɑk|<@'I3V[Ҥ K{+O|Lij^܅tM[{sևx♩%ek{(>$: %Hp|O=""H? b[|x%3 ŷh(mH`IޑUGƃ\c@TiLuұ7Ba.7z{lM[;؉63+ ;7m g,.UV)&=56l;,BS3jE DoiHDeuZp=H#}cwhg+Mb93i+n΢VIDc@8QJt.: @(B>6Ly)`)Ŕo)O8q9ԸU Uզ?-6UBx&'9Ch+X]ӚY.▖Kkq9iRM%(qтBbP#(zΆ i'.ѴBDZ5B-*Xw{eۼ-IgP>QB7 06=ODEM5vm,-6ҰF@N- a3,zz!pdW=GRr%VǖUwNEKtrƠ1a2}(UÛdg1& 1sPtk`<RUBoZYt[Pc.,e"lT6Yr ϡwPqS"`v$"&O}t(2~x mn.&\RP[ 8b.>*a&?;BQNfԲkÐR#!j_C+Uܑ׮_T=fN-Xz/}j lJͻ|\MBjsk`}l( //C&oE:"- I-_𢡊58 :#GDWrZShEv-c&_xmN*1.xWtǎc2nNߕN NF u26)TL41'[}KnumCAR):UkB Me9}oeX:g2"V(D\*7DYr'S] 38!̊޼:x | a{1 wereYR%cT{;LYPMZh5={yarfǐ؃ߞp[6Nc]9N(@j?Tm(e.Mݏ&Rg̐@U:٤z;(jFweVxqVIbs~d䆆 "'VzңVRn]cc%'A_3 χH&92^|x-o\bRwDO.sag9}Oep6+c KpN1Ra#V~jKkwEġlwz_Aq7t?*= CSu幉m-\Pg gD%|nګ`,qK 1:257^YFbΗ&!*Ge@ ߍuzt]Nj<1 WWr&z\D]rP7KZH~/!Y*4.*  S%5`k{MnE?kmV('Yhi-G@0K kUNYsCƕn^`T:n:MZDo~$J}͞1:ʀ?jnu=c uѢSU—(4Cp"јH, zO:g-dP!U@5CjŒ>cڜos^Ϣ`K^%2QGt 8;k^l:CZt1H}emxQh1w"t?MdX޾7&("bdDJ  NH#p+l'wxmc6"?O%nBۉ`;'M7FsTrgNө'sr(y`NfBGIүEڈ+[,9$vS|'(NOv bM!La/ 9 n/a6I8xF v=~%8i2n 2xR6{# %IWR%;qn!~{hKVU8] фai*7=q+E#Y-g =Gq&>;øþ/r&unw?y *_V C\l(ѼA /Jj +u|JMޝr𤹿C c١à vpTN"t? 6a;N{w(7c'ŒtxS7 3 ^` neP(׵€XO>J"d~9e"v˂/$O$1>]7 ]BbmCoog=)ѐI瀁a(jJw?85;eWD%/%"]sp1t l$c%#~8CN gCޮ.ת}O;+(y\b$;17G+U=#RM!z,n#ST|,zm#00BÕF-ae]9s20&Wz]u`UE,uc[HLjsn$IJ D4%L< UNouLFgsX# Uߓ}0[ݖIR4wFE[6Zj9(W` d4TjϬD箁b8Zxv߫ 4_d'Iۆj]/"&>2b0KzM\8Q!O~ɗ值3X/./*c^e+;q@L?LO&$)xn4wtA'";&af EŸZsW%N7Ŀ{#֒0^ep8o4?:ĻrSaI$ 1- cts%W"}D X9ZrǍc:z@>o|5:V *P2 I Wä0*h>/ K9NG >,Z}=TkAOacVpJφD`ޗ~Wh *q yF*LN4UB4ZoJٮwUˇ/b,& F$><I;wX-S_5#$e5ip%ʌ;ާߛ9՝'yw~_p@h:PL WJ*϶&غS5A7\Z+5/6Gm،.O_Jdߏ4D̽ ys0qS75zĂk~[ 7,j=y]aCbWcG@rX5;6ĘGeTbNڲYTh{ы^:xz5sA aEe| o"BhKx83!"5̿z/O.Jgo32  wȫJSdۼYgQSbsXBAڅ2ȃ3ޮ3(L~.2 ({$|4T?~Otawhm={)kV&؂wkz|S8S4+E\BRi cA.Ɓ~*h\W B ʞ_~fAξs \_(>#|k?㧭uh]=!!}A''>8w6;d\pEǑ}=IzX7G> {J3Cv8Wy*@*01`ۆ=lXFvn=(ߚonRQ^iՅU)lԓ8ynwNdSP1Kgͬa- 2-!v4e_zvrxhŕ:\̙Z7`,3ڏ4/9F#Kc-6+](3,V@ I^Ub1||W0,(Cde>_ Ȇr^*m -(%Y0*Ēpp+XSLpJވ9cDEDUXLcmOb4*v))B99)Ks\mϼp0WLR#~N_"LXZE"ْـMGnݤ7&SZ1Ԛ>|jmX\r1`*4'M, ̡սa^k9Owa g^٦vۍ*Xr ۉ`O^([W .x˜ުsck"K4##+Ą ;SRϗ`'hTE'6-L##"?RrE/PZu9N]FɈKVZ/ңLݙJl@47KFT` TW֜Ds=)OUJdE]qd/G">ĮYH?,EU)㌃Sb+@?lú㶭/Zt4/^|-~uܥYJbQnY/ { *t^$}`Fa^s?lDo"ҟVpٽIQՃ9%:l2>9V-zJxTzAEx؇x[^j*z&ﵶoCtWĴ%+`3o<H:c$# fyZD7MaXIyZF5C|REs?x%!D#[b# _-f-$)f)V(T/? .3tmVa [e0h!D RO ,nDJUϽ/*l;yym^&ž%@~8kBaVsz4U*>PՅegsEaou gNaЛZKCʙq/|L6{,5,4b-PW^CAr[. lplxT!OT'}M8'Θ]YdwtkL@)c48Vfhg7Lu<9G)qBD\ICcUpx CH_,=Y=-YK󧧩Hf?e-i+fWVTr:T▯QdDžH\~ >b13_)zZޑjq7>.N4 Њ^W=R [)}#tEmRZoTL*.B܃5,sc,EͶt1%k읊&:XoVXA B) ] Z%!^zJ!v {ɏv1d/I4' s߁cg> E0}0!@~Cj6 2.o|>A]?=ȝۧģcRL)8 W`}zTa2,,|\G-/jqDVDsB+%bf;.\0a1 ߿BԡV MKe+] 2y#z?oOG #}1w*Pi3! "Je`9;Rߎ-WrqylEFoCFEdzONt`0 3"3kd 3(벚ff_(!3=M}CtC.reT`d4=ܼ9}@~eh3uvpmz}kx ksP~ 4L0d9,=<^0xu)+jݍb&1'DK̘}mh` /#qi|TlP)} kuIr嫡ɞzG PqU^;"%$ggwk썻8rB$e u3Ƶr_Ezb3ƛgų 7wAɸ9k}yNpDinN޷ݧ*<|tTo{:[Jyy#%_W Ba~ҁoy1R-d;}p%LrEh臧РPeP*Ͷ$B1\S:-j*NhW5 O 6GOt+yDb869ed>Ϯ;5UdoWJM:cfz 3ԯH*r-f͝,@_HP ǣ rRoKdI[E2,)]Y H%;,܇?̥9j ?F I2|ڣHEY̑sۼm;'N<7Ds$8!]!LB7#J㑂 ηԇQ~A=֞Z;l[ 4r@/s j" C!ID(\ʫ/ʑpU'- ENC `fI_uwq57[ |7HA\؎Qw4ދ<ΰo#@BE|<SH>q}YDoZyS@T/T\a龟/Ƭqj=(}hQ|g-U?n ǹߣa.,7M)|b۝/&75v"?hTjt#LQ (" 'w7kk$κP%,Ed#o+i7-\;`$F=٨iVkg"GzŤ b:X-jѨ&5jgb֘fYEf: (WEjnUAM9غi+ِAmufj~#vNY`n#W^YN% /~O $C`30}쳄=*(rX>o֛p|{8~}=p:e owS1M e.#p>rFAq._~f3a6"r̯Ւh$nn4e2MT"-qP@>`{|6l`پ.e5zM@到Ih[:}`1hI &םJ\ľ89f{}C0ɋ̨n_A 妁K^*,\E4'%g  Wf=pM G G]xBN1lg [\ICdv~$JɒycPѪ1+u.5V+Ph:L9w/G*k,s͋7ܺÄ Fޥ0M#yL[P0Kuf ꫿7)BHԾ{p;o !_NQ}NBMCNI,(9CMxVż]Mip?JZ2GVvV+(. NW03_+\zso^\0<тG`clF45}BBȆ<+U{%{!@Iҟc!q Jv_ FvZ3/ĔCPh'҄BZĩEbcAMs{aHmڵok eAJ2fgrƾY:S16zDb~3*+5kO5S(L0Z#<,krQeۻ`{t(HM~u|fv>u L,H]դ̌l|7?iwn$UXbj M'={NuTfэtp#WKkW.@ SU؁6]7E)niw}Ve,"L)*&}[O@{U˕'tc3:g4M#JHY*8'QjJԀc4ԹV:9AmMXޡb8ɡj|H .YF\`@e#<~|EzU)L> N0KP١SkqɼmNo*9>W!}1r 99<*h҉Kv x7֤ŏP?}/{_*퉚rRF.٠EQ{;Xx]DE,ޝ(؉gŽ'5u<m "ٖ.bz\SJTHV[=dr>>8o] 8e,c ,9>.cÛWowP!uzbӜw,͑/Ep`ch7OEMZ!(PZ */VHߏQ\.SPv.wyKdu̶Bt$ RR{*n2P.bWA7-sץ/j%py۵0t ba]Z = vJ<[a":Z"ςp{m;^me.zN,3W޿-wS5=3Lq Lq.y!+bPv3rQUtHE Wh'bIo\ ,Dk,[y%x2#ZfbqlN L'!*2V,3伂| 58ZrwXξ7:neqG5 = û.}i7}5U?Odx6=,7U_\MIJs[ 6[;ih@7Aj/q{).OWXPtDz#kM\ I B+7<ýƋvVR h:2 *; ;PWbUJY%T/+z﹐p*M>I %x&;Ȕ.'NiMᰖV'!1AUc!!'WB 9M GCVެϘB+xL<cIjAiK4N.'c*eEM 匿P=Z Xң[_,K鬜<)\(U4/qL5;؅%Fl*sI|bwdezէ(M=[=! Zh[yo^9Uɾu ߈JLy6)ݥ佐;̣1M'FPs:>desg,,yev@XWm,{<+N]Z``+ HMyFRrdN'7;yɟNI6^:ZFQy+7!__zZ MqKM,V'`"pKcE];?- t0+xP=@(}U2EΊӗ7 8K zϦCk5lּS{2>DֻTFT&scdK?b6dV<@li[ w!Y/c9!+&3s1|"l(>&3+pUJJGfoM}H&tڅ)+z@ ($2w{Ҭ9%dD- z. R.8~Rެ#Og71ΧNwH[:B3#3±w(.0; T~:&UIuɯ4.1 lSSr#6\k)R}Zdtg(V 6lr0v S 4GHm p'B!C6/o+W)1X`IJҒEWjA}K){2Es*s 텰n{Odas F[;xlq6ʔ()1,0GW9Ρj$}!L?h{ahha c)=:sKGӡh(ԛ~]/]j".e[}/u}sP_~, FNZ~yQy!/+rnY԰#Qu*[AE.*4IfF,ٍ5+|m48>OB{/) E10e_*?7FD  4Y$ihqȰU5V#Hk9ɘ9R^ܙ~P %=7uܭob{wbn( "?ׇ '2tS7utֶ_&4oV)C-ؙyBJiE2#[(hx0wQ@AwG]e899NMJ "Yt[DBN x 5КA}}_"[{bF|DGa4ֽL_59Svu[Q jx!g~ GL{ijQKCK@b7Mx]ߝdCQҌ8JQM|92f#B`1#9/'z 6I*4eZ [uy' $ҷ$pUMQLEN> :2*|=0UJ\ON#z =ߥݱ3I=4  |,"~x҂0J/#(/Eh$J vu;/Kp= SP3*v(pXaUM79[0f5:kI9?֫bStX˘Ҽen5V5 Q6IAMSGW^@2JCNJ̬1&~ìBy}|T8`$ɝbZ4q ҢO!=0WN v_TQopǹ״ޫ56tA3N8|3_GM?Ԏ:RXV/KsbkudQ KƜ>Nu)68R*]BtJ- eaBNt[[& 'z*{mМ{ D>* 0YwꦾO_O#eYK|%Hthڸ-3u4Bj ucOA7 ц߼~UesyCx;6tf3ſ |2Sjje$dU5Z ޢ00$@_]Ƕ.uQ!Jgv⌳)!@GԓֳmYVlRŚw,B鯁WL848*!繴ptf_¬bJbzz~ "5$u^jhꕌ =nkM$U^Lj>0Z[&>I<ֽm+ϫ&NWuAXU>a# Gn uz VE:m釁1X=#@V] | v³b TON|uESG^b .ک9 g:ek@I{Hp5Xh/u:Lg6.DAmaw 1ֵ0@a0`:JD8|Bamԕ=CuL9Xw%g QY-̌?hӾ.|H*Z/<Əbil-Nh[cOFKHK==n ͍]1*Ra}UJ}KٲQamrAQg2E_%.+5QK1XI2$Fa25Zv`Ա%}4h8X oyHoBc1D%Qh~KIS63!.zJEqNq·PvՕLdQlё-&:Zgؤc=&9ѹv\J `yҪCn3%O1/B{q3ͷ h"#a@Ң!70p؂y5;c2H-@r>[K[hrTxޣ`OM'RhשJfձV1%;jlgd!Eatx4cXE 8ԥTu#|l׮̋V[ÿ0cu e);?"36Nje%Y9]f4E&H^y@B~m!c!2C2QM_!@} t\FufปI _\җZlmNJhiEO.xG-G32ʶoL Yiq}ԍ҄\Cnj2{П?3 8}2f&,d>tRpm˜AE/dQ JsPSW׿= |c7S>,P<]\P/|&'{ A}t `;ui)Q!cQ f$.*d:"˥h.],c#x"وOe7_*č w \k} GZ hbDմVUi5? o6.|޿ÎⳭAD*-إhZaWn1E$5I,Ny "8@&]xmZE^=r-OvJz7#&Y,RI_帬QiEwo{ܦӾ{KcFg=\M.uªJh{bdS7/ dZT w$9zWG`ݑO{J+ʼnZByrCTa? G-)>19Mο#l#v1!'UULשIIIX?(%#ժ[@srL]HW_rgʰ`/%/L?'##o\ IzAm$/Agh4ָķN'K.7.}mz( 81(뎂7qpX#*}HwdWA$eQ“ϐ%zDkv_+rn{ b-rr: =4ĒGZ4;g,TLOmK{uz*&|ݹ}C 8G7NU>7-,TO[HgP5~Nj|VC"P^R lZ/`NO3dm 7fܲm/PKd27}BA tC\);\ee-P!]膯Q8lSes"n瞉n][?yp07ڸ(L&ҎDa!fb-~us`RB#2=:64`<vnUn(h/]W t/TsYH"R8M {sXwи#j94ús. \\]@td_u$Fx}F(qW6X" VSY}Nwm=a #ܳ"č,jS{Q% #.*fb! !Q o~p|KwpWa'q~%nfdiWMs'Dz5ߎwD+Mmt#DfThXVU(;6Z_W'{{ޞ͹4hAkŃay <h> ]_ɫV2O44~Rc G-zwB}?Y= 9D4e7\wڈ RbZ"?Qd5C;CsWv]%ӫwK9n'JmMߓ +\x%x`V~$K?OI|?n`@-*k 'C`:,|Z`vH{הONζ;7&$}U+YT͜;=3~M7 ;1ˊb"1hFˠ "Ec=o@a9+ 5?y?K{Vcb-9J2x̄QMV=e 4Y ; ZQޯ^ɯ HHq)^R k_mU=!iA^ $И (6j('!cX5'eb⡗ 2y2y,t;A~G<9 wjV2c=w`"$&!'#P!!16]w?g1؈^F=>soSng([?*sԪʝR8H)qģ^y Tw[/k%d?a*_?M\ aQ'9*yFϕ DQ9x󝫓sDfo-j(adYKdOSZ8kL=RT.ֿIOJeqQwSOfXOxbZ:Fvq *Hth{et]dwN2sFLJ(5S+9JX}EIE\6WgM~UC(LZmv>:S$h"UqO[}f|4׿řl3\_sE!mY|}v[&DY]-x+Y 4g) >ܯzLEbWN[@Sł}.IR+cg)li*ݚ@؀nMkikCHTTpYs"S05xfEUfnR4U.Rf$Yƒf=_3.wt\fMʁ{H<2,ky*=.171 g$([\ KVöSV18ua;PEzk`%Z 怤H>"WkR.M2֠ :K.ENx`˹":VeY? Ex^-Pw.aƕdKhhk 8 ΑP-{a^bXZ^;+|ӇXzeZAeyC#)*΁~ zV~E6]Dr.H EυҀEq8[ұ;AIR1kG3#؉.KߥgvËL@f=S?8Ϣ+bЋ@WU^(ݔD5~4dHOZ?t z,|^WBnQh+ڄ5wg\NnKܮ9I=o-o= ߯usO%DM[O[a1T!hď%1_@^A,5;cl*`h|}kqRZ:XJ*s~GM5`ѷ] O`Cg8К ~L- N G;5>ᶏrwr[Bg)f=Ȃa%6C̙TXgBx-Mu%ّG޻A;t(z"0v:IQ%׃`Ϩx)#9T"tXRSP\"`)Y (?`4.bRyz[^N9-!SEiu18USebt\͍W{ -'fq3D -&,:<+~6=7|qԇz0?VvUamq5"djLt`Z .…3V"'}YৡUsMQC8\ ٛ//{)_{`kTe^Yvw^|ހUܙ P:FhHns~^;y(p5rɏ> @L`.BT鉅@^&m)I4= **U]ES֡tz@7G {:Cf>qpk]: -=5!3uHJĉmGb_& {е}pŞ+jڈ̎(rGR|Q;-"uM~Hc,G2{eU3rm;mn]lrݮ/u#Z VC]mL$PbZyZHH)RFI7(%52y ܩ=ޑt[Wy#]hKd"G}paYL_L˝נ98t; 1U>O"{1P3sEPuĂzA4Ϥ6UU` !d΃#{֞7kAC6| (02L>E$@MkZҫ2h F X1*ICM5м0βP;YUMMKR +i2"@qh-=8#[l W[( `/3ѣbwﺪ١Dyhb9 jo ,tu^I]&?QWyAI":rA`U3B-IiA!RK^oa\e#AH9. ~M.2t=RZvJZ8Ůk}.(FrzK߾ Y\-0#p0Do7qm9[+/K-މgxb b[Bj!}xQƻj?2CL4wp  ڨa4()LJsdc0|~;\mL;BskY>SbM},NZS&''Vi O!+% 2ځ8 ^MtGOTs̈>0dz8'= mp?(4ylW}um {L7 ]Rc, z̰M-vtHw\>$D'!#;W_B.6Cc}hsP8~S=3eɊi9LIssmO{+%'|7!14~u[(5V"B5w=`/'&"<394 g՗iG=lJ: j13HF4r|8}(#[[ C/!y'"t!rc4mN+#풦نtSW$(5nSzd7x8c~gA1-&fdU|A+ mY z>f j83Tl~ۇ`ǙD2eG"}cK 8qbZ}?i \1ḖIlCAw@}) a9,hZw.}z_b<"]?WTo9Cda#xI}A+t& `V*0'Y=5*}yىV\\6bMؔ]A0;l;I/I8i ,`,H0QJ׾)ǽ` Q9E.jd `!HINw>(ys(UJ#΀9H)(kM fhͨjR/1L֊!I~^XfJw()Zp`z-9r]SH](1N:Y+.~y@ sc1mBbWXew"ݱ*QbP: 625vG"8ŕ,ABh DT SC4pYHdߵPBt#6Q-^eNC {R&9;?> ׃~U1DɃxO3 R/.JnWHqO9Ks0]pceEJŢI^&4Ph(o xF*@CLf>PՊy%9vvs 庠 ƙ5&%h NB[7d\ mq]vɳH/դYT * L!"y&Xf5U> jzEG/mRL#rIsd8=rmDvDS'iڝ`caJ0 D4 y m d%Յ.*ΦČv?{ .-hJN#$}I=Aꨜ9}1]$6`w"tS :hs@f+\Ta&SGťdB+ZS9w+jS$OgB2Y Lg!`Kf&vs95/d+)gƊb/ђukרO:]f4nV>6e.2PPlgxVTh!<H0˕ܧj׵8So.蚷ssYuYOyZ0-P33-83ڐIk(Vl6=+9;fDoמ8]mʁw W%]*Z3+FJa,sl4fl`} pQ⸼Solb“:}m57oeGۍu{Ep&0S7k *Z==rnamHsF~21Âܹ^t\e+_n;8PxX\4HYfAEL=\tW?cCoIw wO~٨&lͥa[iG3wRA9@6gDo 0˘40H\W4osk|ML5T3B5"8IW(CL T༼ܙ ԣi[:n- jaD]L wmCf99L[PKv.q  @@c.pW 5~d[yOeIZhCvD] C\T+&ߛ(S$ɔG/iڨui :!AC/ ./[GāQzd,B'W2?vĀaxlW7EC:vgd(6b M٫ ߡ"p>7 #/ D0?-MH lL='"PcEOu4f9.~I!k6glW3R+YKv=jUh)JBҀyg J14:Qԅ%sg~ ||E[g3wFA=8pf0 1輾FX=۵?` 8W㉯;n,`GAs]m MzͅT^iN ,,Bexr1 !d8v؆Vi4lT/@ҲG? 9f=}P v_KpX2Gd6ɉ|nMxNbB'U.a9H#Ű1Y" JXw2p"/U'w _@V^9{듼38ZUaMgQEP :f4!U)39z8.*LΊiʃp-UU~*!hf ! M}J jl \yٛ ,EKcEڂ-Wڮꋈ  1j!4P b=X lDt.c4(gPW & #v ^aG6|1 >`3Ds;юr7MqtY_U^I Uxf\"6JK'0n"HvYid*<&T/ GmES6<i*@B9qL[iەBg%SJmkA(Pmap4CP!DC:w0H[鏲|OWss qfԇ͘1r]_FwU]\H@DJN!KtP֖ !wYdo^UI ,pH{u{"k@62|fl&4BI#ev곑~9,u)~=EX`۬YP 'vDXpMn 4_C:*HADgveUwj7|MJX/81J۷d-!V))#K>)=trd.Um%5N';PlXX,GLG K^VW[ wa:{\ ")έpKw&҇;ʼ>ayQhc͹XªR%}nHhZNq^Pbobpp^zk3yPgJcÞ %Z$t5>~@\H.=P} h&s ~232J%b˻IL1]Vm_U&<ā uf ÿlܸ5OkA}wh"87j ޞZrSwX*b]$:x*vwN z}G[C驳FA7<fs!b ͓޵%J\{C3[]|Y@i::yvM G ވD@,l@?kI6MrWuM>='M׊Q6;SRE&^of~M_NB+ @ыð8Q[g)P)Cb1Uq1KNչ04'DEAIܲ*N9ԅXǂiJxDse<}`b\}\8s!u&3[Q=bSiar cdؠt;j ]kOy: c3S١! Bݪ`c[f`oENS@Ir=VKw,:\,$/|@l~g^Ϲe{_eh8״jߧ9X=,E#mNb?onq`U֓A;)}X̚Hޒq(ܩ$ i΅lF!YQwHGZthz(8" X쉉|?"\zqLx'"K+(_]n*lۗTXL:O9xƆlܘ32|s3dzDtI/59^ϩERޠ% >ڙo|AEn}X^xOy'o@5y6K.>I6jB\1h2NJO`q [yqz^UfIۆamwwUoWG:'s͏ø!M9Yx-,9y?⫦DvkIsutiWFݲ; #֯g%rgBtC#߼ QwY yhT4q20(#@K 9lf&X6/Z9#LJK^?<{! q4iJVM*QZW>W\gp]dO:d_& .EQyA!$ih1  ]kS@Wيx6-ߢ C;,фROb \ kbIigp>V*4F]TώQ[4 ,{ׇv2Zm-*\Mŭ銐09:5N[F1ؖGЮp͑d wLtIBž$q6LnyBY9u렕LrxmwxTT F#5 [)bH& JumE߀:qW꺰0rtXx`~@y)v뒽wa4/zÊ |RzQѢ4% ΜhU^zYZ#FGXZ}O)m[V"tiOT.Y=_1l~#PV*:M>9ǂ6JS1/ !HHvO\q*PwDjj51sɵʇ^Bg J12 R+W<&#^k@Y),OlÚ5lW*Żb[_}`O"}M D;!mBIoA8A oؾF0H< pu'm-Mý) V+~Pw]2TPhVJ5B?wOhBUw$¿4#uQɳr}{rCyPqA*Y;D1y>#p, {?7O0.L%ϧɌC <`ַ6T Ddo:W4`9gO.{2|AI8NY ,~ C[h^`VbçnfG+Q;C@sl`²2-+֘ŷN@£VuJDΩNٶ6]e,1bqCcAc~tpnUEwh</d!;,zf]L^ig7m{ߧFqZg4L+@) 9:(k+?P;urV9D³5WAR~G ~'SFZ3#J¡'VP:Ș"+}+;J~&=n6W1k'eqJB CβLc#((MzL҃vџ&n6 1й{d8㐛ɲ4Ձcۧdd L)TC *[|z2 _[Jh {֑@ᶶ-<4gt 4IT*POuUtLr&8mKVqUC,#RCԸ/6mBlNY -'n_0$#u_DM'G×o,z6 W]2`Fo$R-f*9]_E5Gr _)@28ЄNIEV%N%KT_QM KvQZgЎӇ2x[QNE}hi>cQ+?d?6 {Z>~K hۯuqZe9}:;isL}2a)Q!/N;9]K @[,j{I, kSzsη{E0S!va_KaÛ%[rwقHG;*=3 [zǧ"GG\֠@Ij#cGj:l^GwB3Oe$){!VSwAe$.0AlZ|ő{9=cא͘\bЏ#|Ho?m;FsNqc)R>G65[>^'%DUyv#9R">\/B%h}X+C?#Yuk7 lpbLսyY "Z9&5wo9w:U= $D0ؙkNx-o3__0>UC?yf;:lu⸍;)mФwZԋjEa 7Ll9<OIYR}=y k9yn+[^y5ZyZZՒZu}]3;BAWU**""k0glkon9gt|o^t^AO~)/rWee?-Yg2"Yuݟ|5A-7te&M.'ޚ'%%+>ZĮ8:i@MnFTMIwL4Ksޜ(,] s@g3IkJ|6Zdg[p #:pӐ z~m j"IE?!C#ʾX )j"ٷ@Xajxik:("2ԩ/5U&h03Zm RoUHtOk[px sܑF,l@뼗,c&MBXa!z2ϝw\Ad)E2UK!pZ>EJaSJխIfAsx0^Ka2\ EБK-&w=MPva@q'fMQz (rVH4N*7sP*V*ќü_ K9 2 {7' Y咱oOze7aBPtkf{ |ǰ*!^Ia;~M܍9D&i7}%!Z,ݓ)B9+6C'kw,iiXacJZ"6r ʳlsߞsq@RݮSEQ"2nI!ZnԩS>x)[ j_Yh s{ c`d4L#1|ccQM@)~#?={a$2Sl_yXɀ9 t6.G5 䝊' "҇D1qUNZ5I<:Eh+Ff)'}-* FeX FI,ST9h($03 ṱLѷ) : X̷t"{Sl9shDsF~l ;4lqy~snu ٦GwijMM7>d)CʐQnL\ YK Trʗp+^ n4 ڴt#CKKM3 (OdB$;El&7=zV| z{=tgcᘛ4Ct,>P$ Ӕ^hYJY|[0/>3cN_WZؕBo|( %@-3O,~\On%:O.8숶;0m~y(7̌9A'DES'Ϥ-3EqB'Ū΂u TY; FvR JEd;gs1S$H ſ%11K'{6XB ~[9>tv)F]B"}[EqFM!`88ݷbu".RB;V=MtAr˳ozbzrMh}NfqכZ~4+e rZ4xyP2HvY Q/IpSt'q׺`&tq0T#v$r߳B2fH _qjˣ,( Q[CqgzS -Ӡha]E\'] $UszyU%/+zUZ$#%" F5*{MnVûC팝ǥ vu@C>L037P8JN0jnE]z*v )okƉ'xmLvI Lgp ᪿNr`ؔ|H wH6c^Ň[nj2Ra)Bljq[c S:O|`(2BїG1}q4T: .m-cx{LMܰe*H*Z=9jБMC*nNy5Z1S!8-ߦEɶUd" `{kj:AZ |Bܵ!_rTmy.ˎخ?1Ģ{ӊtB!tTO¹1$/ D ]Mtij&&o+L>h$g5Tir2!)^'&c6"ЉN塌7Pm?1H]5g,gs9Yy[`ɩ&Wmu˙S("xGDbe~5[mb>HhW旹׸ 8Pgρg\O4J`XS ',D2ŹN!ds,Y+TU$< ٓ*Ro_tOWG#4XO}#TFh$ c.޹2L߇0prs5ܜWq-5`K_i!RuT9 oh\ٝ#`HL"6C'la:+ &䅌p(" &sZmBs%XmcΚY.&Z*6%c\xLtCa.FE .h-ksL6.̒[6Ă_B=eUT7I/QѬ^f.`"簎O%І11]@kO@QisߌöXw"a4v|tY@ϻC1ri-AP< +^#NoMѻkV9Cc7|GqꜞQW^J5)PO $a OŚm!3}yHI9PM7/.߾(= & II?>OCC&=sA,oɗ@#-߲{0W;?ڢ_y;hc,Ocn6ps5wmӷNncf@  <4~Ho}e<,|G`h쩏6}WxTxI%gc-$3FZ9ͺVbڀ97J"fe&Yٜ2!&lOi4MFJQkuIcYxN(Iڧ쭦OIZw> s_EД=_8;i.,HAg9UOdq eڜfLgWYyha/B |d5i95"grT8)A/:UA%\TI1^\KfTk}}bG~ꎌgy4^@G2K<%Ptuɠ]GIZkʰ';8\sgQH,N7"dI !aT`K1ŒD ֧DA{KQ?W-d"5_[^&>%&aCuD!Rl XH0z|2<"t^1^ua!A3Ӌ+rH/Gix5BK8{y`W+oS>.W)*M{Gڽ+ِbDF;,qQ$JU7k&;V2K"2 ֐c," '>a%;1X2f~ |+ӎ*/X$\/XZViNjnid#&eF*3:9J:dbMϭ2TGeϒgAo7090/7[Nn*VcAS~BV5A,Oct ,; C!~B+j߿Y6 n=KFicK]33u#ə!@N[C T Ukqf.5IC қ 2Sn4UD=8mZ%q+mtչt\6ZV͙`/Dy}v4(eN})(4 tAt:_{QDs_Wfd}6Vm ݄~Y"~#|_X\"UG3rNx"\]i@\dT_jtwߝy3kn]` msl`p#axn)*JTLQ^D,gW&xJ}޲͗ M[>^a0 gz+L-ŷ}rm,Q զ_F~m՜Wдk $s738W(:j\S-;%HI4;^3oNv$2lRyA4p7 p'N=_LluS DEuҺOlN'*1SjV/r}8T07)YiRXf)`x#@;т^ʱ!-TW}k8Ҹ?a`ZnM[#ݠpF&>Yꒁ)qEK3/1`iSzi_F9 69ks|g; WωeSsa߻y]E>ik_DO K'#29Ba^4T6 a`$;s37iqye/ ] A= ɲCU!j->TXeMxPq,y J6oAEߒ>?j+g0ewÁ*X:qI!!¦_~+k@b[w<@7ZэaGu?^'3B741M-( wAhDde 飵.r{a2$i0@ (0ȋBp$AݵTsxoTQm-Jx ~yH k7)pv7 :ۺ_Rr^OӣegK馵Tkk jدkϕ >8fL+_ StZ_Ӕv3x,qJt- ܶrl/XD gv0s8σ}u&|8Kpx ǿOz"D{ZuY@1Y8SMDU{Eߒ맣ZE.eK]p0J_rq7ׂ1jrh@|ˉ@8dTJ״@EJK"D7: Tdp&gFLCVl "]2`T n&ǜy8ՏIRG@E)FdYrmQO ?e" NW!H\)75>h>щ@$tM"`26IiдG%4" U(wAS@hb쫴KI&17D%}[Hh]a!.F '1Iu!duHE}17>#d*trIvw}DQVWowdpn8 DC8HZ{(GwAekKt@E0o [ZT7M~i m}dJ4TC{&':8{ؖ9\߫̇ 6\J_y"n>Z J%xv^} ?jTdsceM VeYҮ~X2j5ffT.9U3PL)!d+p4q Y|2k0>>>5?YpĔrBw̻]AOn ?@W;=M( Xގ蓼cΎ;~ut G8ܚp^|Xg< R+?Tn@/vv,iC~\5_N-18_ٍ*)b>nAhEl;1.|uC-Xjj; ;_˷ BBJy+Q1LkwM240Y/L&QIbop$z::ךU1SO 92etkj$?UK疁 m/K8gzҎv{K9#|*lqaRN7D\N +Ž'/LLj nrS*ɲdžNp;'{@(%T[~&&i63n.zҢS*s-4ЮPqn6*M .+֩}-{e7~V1++u"//DEz: L,<9ؤ2fan&j'`ϱ4٭.tΔ+e{TQdYr\Ͻ u`_ߩt*\\k]YK{*NzK#=Inpo܇{dM7rKс=p!^Y9"ɖnΰJp6'K_\ d`a8s7zӶ/CKNw`ݖ “HEd|@0?Kdsux_B)'κVr7j1-.oU)18Q \syj"ͣ!/C9@eN'zK]*D D:] QNMO]?q(p(W;hCjE!AQY-bοYm-*[aާ a /̥O`lx PMiܚNJ~`!G(0y2Ky9ҾG+>I­םf&gN~(6-k#8QEn=F<0U`UN߫15w?hY_gRMR5ܯck6EBJ<& Z `Xk?eܝ__tmp@hurGpa 'StSfnFBp_]({UNPhA(te1KTnNj١FN1&3  )1h?iFdF4#8}5RJ"d9b𾊀*C4ȼ)2 L;Bv(Tryd{KET-Yb,]KM\EubZiq} !8`oڜ_l&6J$iaM 󈁼]"xK}Lκ \ PTFDV؏+F;]C\wA `+b2} gIea4lSחЪ}"ABDhk3|2Fl|yzXžssucn~h1 S z,ڴL\6~q0M4>E^kHP(]3? z\NG <07VAFCRz (l­sˊhҁ*r`,|{4 1Mi4chff.DL.IȈ>xA81aq& m*K EԶTa.ЭRkyרHj'^w<VP+ in E`W+Q)Mn&wfnMy0z&!-U,驖>#գ8=gK.z&yD l;0FRL$?)"jBG藵r.%kt|C}O,ҿ.8Z60*|(`~>v\3дj67t9ǡ4@Z]BۣkbIOa~Z8tAyw)Z Bkbd.ocjѬu4% c+}`XeB /04w9A:xƈ$W;>G)kZ=ڹv8"EGy5 h!x?x61cTq-o񰁲M)Rp_5d]6 YŪ+8iʙ5j{VF#W&.4rg-4Ҟ]8vH}_'scl{;Iy'zT"@ [CCK)}ϼG76 YCU*-UB /rEy m,Ap0/[A|xO#5]-\_S猐>dcCcH@iÍ/MkMm\$ywqu "qbU#"64 pBB)b ^,͎^,@nV>) /{ZFPz03P'cW|rCc {A0ؕaȹ3'sE}IT柈&<$|B%.ݵr12 ;)HxG8P> )Epe4Sg19V8M,(soXz߈#kť17S]DԋL8lb Um灅Җ+sXX+P1 Sp7DƵ$CO93!GDFD||I-܃÷=v=tV9߆st0x{]h("6Mɠ=w93E Wr?=ʘ;s1P*xmk.,J᭡w]<ꎤ@ kn"Sbn^qOmc(mu,Z l߼H;bi16MVzafA<ɁgiPa\5A_E3(05QQG3m.6c@rm_.Z:ca]՞/GX},I+t̉#j* ?vp|vɐrL.R M1 ~Ǻ  b?Yd(􆟁H;}Jp,C@S3#,2VO?aOK3DrPՉ {,ģ߀x[G\YqŢj*g͞Bqm~ fA`X P? QB4]}\kҤDGb|AԵnߛfu<X[+]UOn?V ̩2:v70blt(o~Ht5 Hk;n˥t+Xdu#wIzO5GPhMY<8v kv E%+axAZQ5{7yi "W =K'ջXX6HDyťBA?;z2A P/po^ak:Cݶuqj)w=)1-W$AG_I{@WOJ( sQ@R6qrt `y #+t@ej^- Ҥ0OB1@5 >G w-Z3 -HSKϕM IjvgB{rwF%ol)Vv`qjd:YAm\\,a6Pi@wr9>3~ 2oy1 2-mpk9,Jd.m=]5"2Q?n̖A`_Y93z LՌEN*Ʃ<F"*nV C=tauUq.95\E8ov?94 80F4YK8@^cOFpT I:eFc2+alTi$ C7`)3. mMjO^Yf5 aDBNT?:G9HQ:Щ4sĮ۲`= OYJVΑ{Yu4{dBqg44 # ۶i׋=‮w<2B$,=H-,qk s@(ۓ|Sany<";'<9p6'J4ȝ7hD[V;IA+¥`MZ:}5Ezol (Z ̖ Κ5.G uxoz.~}԰ńEIa;pT衕ZTaz;@m8yҹ2 '5 alY[jK[3&Q]΍ZpX:!gwϷnH0mJgs*p<[1QqOvg_'@i)l}6 ]J+۬[ЀW(B֩XTbx|'NhArkg$dCX>D<6n-(512no e_ ~G_H\ ? +G=FBD•e?F"u\&B H F{fnƗHů*0 >=N_[%|fB+ˈ27*h ?]J2y )[X)__F۪7iT'P݌G= |sy_kL AUz w\c{<]2Q,@ir5K]|^(#kT#`__o V5_ث:^7&U37< ʝJI\,YJ_LHJafk5՛(ĕ5#^2hamY(|1 jldXXJKil;kS^cs <;kxjO \ʀ0@k̍w$Q7Pح8eNH7ubafk,ocy\T$|ѓEnz, dR9WQ? s#Sq5Rf!oWh 2Mdn$.$yQKƒU8b['YCy0 },\f6eo9+vy#(1(29-1SXjJ6 Yf5!C"V( T]\y}nmpGetsqIlext@0x>k^#tXK03'Y,̳" }#Y94o_q7s!l_{,vQ3loۖe$9T9Yf۳" w|z2_mPcn?$Y$o>f.$pM!yB9JDLԴU%^q F p]tROs/8졌GʡR.< g(]:E>½T{}e <ۮ~--|Gº7'!⒙:=ޘUuTɾw4g);qywև>xgFlJcѤqeg5_h8wY$ {O~[LRۉ"P<n/!bK dgvV ZC^OY)rOKsϐ6s&8^'KKDz |G(^PsaY?@mD0iW2)8/-x(/0g7ɹe7ε?4j7Bd]#!AT(s-l颀(3G!t*ݬL[RqnrLeP5U=Cztyډ_pr5h(#Db*ղSXD*x| ͹Pޣj S’?vNl:$g~UG+ )Ͽ3UxiL&PϢ>z"iǏX: @`N-C?iaKPByF45 YnDJ|<8>j:t:4ֺj&'[Qb` ފaPhíai;EQ$"5GKU^wC9?՜48'Elukݫ)H 5ILnXh 뺿 `vQ&OؿۼOh; =wը.AgpHU1vO,|(zWo1u@<ԣp߇1-Ϙ {7Q75iA~+\k` /F_0ԞxCм6H )|=MG\S1)] ` ϷR vg.kIS?5|v o||qop 'TKމ˭#mRR&q Xǎ|[V^ k9$5Q ?Y.>3Y?(Rw{:$@5}"!spG٨f?'aXQ@6/^\֐"4 {wF',rIԩfeL2 ?Y-9 'Ć|XuA'Urmw(~ E1G"[ne%Qc IgзNfKr=,v0ƻ]ʛgnKӅ7-j=g}ųK NjC>!z|bt _.{z_I7W]:dڢFG_5 bX:Tʳ7~X?-cu9;..-5eoHJzZeXA _0kIp?LzU@b T7Xb e"x]O$L4(old=fXBe E%|FhB0]U%I0\f Z:m;juS7ӪWbۡI9Ne24hXN{D kknuƏCDN{& hbS0 @T%kLLB8B-1ނkNp_5ðu`A|`E*?7K?le x03 X0(o0ɗCSW"P*]ZMbG3TaD:6Nڃ_X}W9ѲB٠䈻ҌgףJ"Ś# ;IiV\(ސ>zCg$\>LVWC6$8 ߾zuZ+:;Jt%WJ ɧ=Pƾ$ڃ~s=k*Nm>J (7BtfbLZjYs_R l`Xv]㤸i˶xPqwFu9گFv;^5Ʌ{<+Ӽq<1^d2@;bJQ׼mRSD^1iͰQX]:d,h]J}Feׁ6KtT*\ﴠWea/a)ZB(B}4]?7v;ܞ*/?*d>)פZ#G?=U=&rMn֒&Í^w5?WxeENUE=}?<4dACϕq p~Yu&DyDBVg"qH DgH#Gi-uTL Mbp ױ3'h킚4拏}ubWUhݴ6ZZT+9]JFYjv)´[hrUQ)@%ƌR[ pM“cn8}kѦٺ!B ֱXq> Y ];G~?A[%[ֺ`T ,vj AMa~ȁ暤  b2kx ,I_#&А[~ ~ir 7epIDG/e>74)3tL1JqByL!+c"RtE@oD$![48+ *}6ۂu12yBh FdT*B]{ N [=Rt u=*r/y:lHJ7ںFfECf@{Vh$%5c}d[q=vlM6m s܂ vg*,|+,&\U ae2n6$H i&aF It*8B@[;}^jd-Ň*hPDg=VzFGİ\mftRmBeRƥu|Z`H[-zQ{5 ޙ/IAAɉy {-}[6H*ؙUN(,c7=Wx ڸrёw|v?7+)(;~<+"|ng񨁗ӭ qJ\VEp-2Z`]E ~Й ZXʩ3%^:4:>CO .<}+gdõpҵtXJ9>EW4jL FK+fׇ<8L8v}c|w d{nmE+?l4"@_60_;z8lճE@V/ڎjSMӉ3(@^ - J{vh^{ғ`_hC+HZSpN'e_Ϯt׽H 0sIK Hӻلi/q:Rt~P/$IsOǴM$KD8sޡ>M~`>{B&:+ʔ5ṽP|TPnjAȃV077@B+aLkŠY`Zf7-YV~D\)k9M`$# e?0p-pq; [10Et.a]Czm.P|N#Ǔ,4V|!\C1v&ZXi$GAN3FZ zoZ'\rĄi mR;2:־BrɡQ<d57kE{&m[bv4'lO9;:Iu m2_7 [.mH:77c2s 9?Q0=1Jx 4]}ͨ'hbTF7-tgDVC]+ 1rBrfZ>! Yoj/G`OfOTlvc,bTGU_^G̬)-O#O)H=^YfA| 2(M不͡2Qt-Z0;ሚOŁlYc cgGp 72ȴqݜ/hZ>;J'6xOB o*Px1YQKf[KN)d)- EPU\O\QXJ0LK[}5ڞ(=٦ݲWIUD~+@e9PFZx[___RQƔcLltߟ^IK7V .ZOZ tf>[vi7iq!kA'7)tYS[݂#q0B DJ K2z?Bsɣuf1~ᑿ^Qm[ ͳv$ΜୋV6RoHdEH'qj"0Ioց+oŻ}TVOo UBSTBgwd<RtS3Qp8vFxžS7I<nñ!6a7^CG/c>Vޫ=ԏ^?_YKΆ}Kh;̨o^R>**``;|vnƮ|ͬxܙDkk ecQWSҞ.?Aw$q]K"=Z1p!X R6p+mLķê鞁XhJ0(JTUSLr!Fb?.0zQ(o\(~ot鑏IDי4멚F?VLؤKGڦw,=E)e죴5 LG@p TFʎ5*<^FWf{ॵfTc{baJa$]CJbT %4= N/:pIZb'G:| uVz }"7M'7,0be~`@py;]xźC\oenu `@bwTX)x 1Z]aV(ّgJ l+h1c=7rb CL=ļuۙJ˽Scb}Q@jx!JP[!Ra/[ DwD~^>}S"8oM33QBL>Z,`b8lCGB*S7V1_x_qG zDW\?h(8L^DK sG+'Slz$"2sURew+ovWceDө8b f⨥vb4 v)6|oL.`퉓澅KxV(gWmoiG%$,jo?Jw(8 Bٯ#\ϚxQ"r~U {M{X"3NYtA @,Qda6)@_Q+fE`\bqɑUŻYTjhb0}wɔUW5G1yv[Qp8QջqNjGBats032 F0 z|$ֲ5`?C Z%[yJBvL;ixJo`Y-αU s +`GqQJLחmgke@D(8SEU!}M@ ԦJu{0#X}k&?L V͈-hVJ@0%WH/Y 2}qS<&Gp,,-)^#xXDX-ws'oޭ Nc!٥*%7Npj<ʫS!l\DŽD7U'~Vk^]Y>aG,͙}7HM+1B߳%M&{ h̪넃Ø<f;rS ;װapV%or K*P䂵%JuC1=T c f`(Y8`y|,fؼϽ= ls#_)u<+spBˮ:9 ā0Iy WIcBwpZ҉늯l_ΌR&mN f=fOeϺ!с)Cʓ|86> cl-%:lG^7NPhA-n*Uac} 1ɐ}-++{y8{{ &.>(fuα&# ?}w!nz>SbvY[ڭR+t[ BS=)d ;*lߵ;Ľ._>KfBqxY (FE)BgsS|11np#_(˅ѕ~*'uMدՐ%S61opMG ё`α'\YfRXvY[ڭR+t[ BS=)d ;)cԱ@̔ cPT"_p;26_HQգGc@ L:2r B&>ʀT& m-@ZuX0O>qd@| >@m%5=3Qt/@jկ)|Zc~lC4 t""O.{T C>kC/q%"U6$08}`vuI"ݜW]oWV3q2u269],[shFY1iޠԢQA| 4[`H/[7yWߑ,2:a3両M _9}=G``#jsLpZuwvD=1S=p$q!+-@vkF` 5uDE F/O\!#s^cqb ;U ³L>DUo iH:; r>#=!kgMEĴVYfEV^Y3R@6tJuܫPHϋLK{9 VQ-^N]NU"s@gllx֌hN%*|.Փ;_SvħxcormL$Fi`ur6^̍B16X:"Q\Ӊ6F-je/}|12.8@m~\e1R9]^&eOd|y*;^V&z^>hgNAQfx [r8tк (6i0 ј #*W>oRC%` Tn~ǯ5$- [ћ`%m;Yؕ}Q7s *ҪH;ӕv[b2G%GۙGWy"ͺt|* 2J w{I.V:%O @CZ+Լ=ݛّ덼]6Ш#dPCϛ*f1yz@C$):t68? {UW8(;8'dH˅^c;(QUD:Z{0KDⓨ;6q,sk^Y6>Šȹ<}3/qЮ[ @pîKskq] f0$J{A&(;X2F1C||'Ih >(: QJ~g:zNrD,oP~5{ eȷSl*.qNC"Eh;bf:$4ON=-'_20/XS#R7R1גVŽeᣔƧ,R΃A'5RfBbyTY4k1v_O~BؓrFtlʘV hv`>|C'tKO^}V|RrA3ϸe .zFFu =B4 +Iin)1c1W3DR(L0|{z 3+m6rJW M!hoF $iX$-r9(2NDȍDst[Mg70WՍtC^L5d =υts7n$"vHdn|{w& Ʌ:Ƭ'hm$2锏±4 ԡAO18B{h7aH NEςm.D LPkBܣrmg9ܺq)r8\뚺 mŲ]GYBc(a‰R P;K6m%qf"MRkBBe<޻̩["s@P1!\O]˂k Dҋ{A7+iwc5| [ zXxjUʢx Xvf?`5j¼W;#P,bjVr~k6. [OZsR0<=7n/ IXa?34q4š )l GT|IofA"h>D9V;茽åp|A͔9i&w[fwɟɍ(/6 aǻ7/y&Q:z9T[QIZuǂ5&"z2뙳f}`DSػ /F8B+EZ+jS::o#ZKkُ*e#bmXZ}穲WWN@M[KlM2*x+pQJ̶YO  B%~1譬s6H,tX1/V>]>iMrA.\c\C-zħG)Xvi +ɂ>݃ߴOڛ\6.8̘3 }™sI =0Ce %pk\0m1H}%_MS?(A.>K{ NtdH?ߥZ3/YRҟ}|λo _$5Ũ s5juIzO0{ʣ ۟O6ly\ybpmX ^6,{135W h6^8JA bFsN"Iaf˕r++Ei:-_b+_vbr@p Snqo~P|ut2IORUgj15"\V!֍ڔ{L 6R𠥭FђIvtrR>~ jݘC<{Z3߇;[~(.J=$UMUNڗdkWHZ2+3z8r*&#bE;v#ЫnwPiV̉.ᆓzP~4kOW&bbsw9WNbfhyTTna,חb?ar#PI+[n WK:tnNC&_v"t!=׎k+uS't1+u\k|#;;)8W#W62H%DcE&Viw,’`ztE!)qeQg@nUWTzdƶlbJl,0".Z|=#Dɦ@bOV]5OSP( p䩴쮷G&bDZ0bȥT`~ )sf޳jao*5NǚœZl %%:kGX{yu٧7eKn@~:)@#W;CcPZځ;+Cd-ӑ/0ox25O$ CV3P挷H/DD,mn&5=G84ߙvrSF>F6F[%y3sRW:d`^#Y% ySNt oR%_O碘SOL?cട}ѵ4U3ZNKzOv1CnqNmpIkuGA?֦>!ۻ2SmRWM"U0L7*`7&(θ OO""$&{Q[f)n,5W)RIgU\ 8.:sh}:RA>{ yf{OCI`u]o=nme?X燙rsv'HD|ϤȖ`#rtUy LF )Er;wc!FLۋm4cwbPn?قGK5nrDg'5d OcLe~>EG:I^| !Q#Q!(l0? 4XJ@]Elp0V[ +x@( anaZ͢ɵq?3 ϙ>}ˍ(ʂ/Xm?A\9&=q&.]W8G6@FX+U 1x~{46؍]zÁ¸5}MǏ]8w 9vظ0$vXLaqWc80au(uJr"Diz^r䓓2HFH ;/KAUU mIVI:5V +c{xH;_9rdx7;7 9HIsrrV7Me2-z9m4]Cq15Ue|~K_xԁ%HsgI}h\Edm64Oc 1òKf.w:P}"Mbhe.{{_nvb>qb",žE3 |sl}ε^QmPfN=uKqb'ONΦ6A,$iࣸC6Bpnz3ۍQk ͠#ү_ͧ gnń{*}| £1fRm_Pg?4#-KDXĔ|ˈ%hmR#-&nmaȥ9+!mB+T"rԉJV3E{d vRRݛ; X)=:ŅQ|q8Ʒ݄M #(tݷW/ ]O[#IICi$-xsF)ҖyP[OVKbE9 L%8"pj.@9Й?iyAC6Px hnyg`EE v^I RI}.:Kid<}'Dq`FHoV|akXE1aXO:J,E!!#/RK:7~ %O#ZL]0o' K;XŒ?J9`No)W*>mqB4w`y^ߎ}+Ck\Ԯ$'^-vjlP۴{xaƒWikk'50R;0 wNlj ;DwR8*[G^P-v!μMQry҉Dj%Ǩ;r~6YUUՇ璉G9"-{2oQ bs|XPklգhx4j2sWcMI2/ߖ4o"yq߱7jG@sPKqn9tzb;Fbm==jk$@ѬlB!;~g>S~a,ݯMȈwIfx `"+d(Ӆ ıC:{u5] Gc.꼫E <=~WGՌi8ɌQ_zvT =J΀y~N*:5Qt5 HȄ;;2@^0G:Sb%Dgϛ͂;$@\;/t\&0y3ž HXSmB5bcH "_G$Sx+]s rBg2 #o} J+-)oЕxc /WONIooޅhx|+d7`56̟*= iU|_Pwz̩3Re) TXF u_NuUxA$)X3kU4986ܥ>2vAw#vT3AVGBQ=U8\!zΔc|jM2 n W-fM\5@Whn"5U|,?]0 Qm]y&B!1`1A@TnQɋG+Krް}2/)LDgߍ` ?k*\!L./ EoYi.JqId /·^B9ڭ,yx4sl :rv!s HtqC -@'͟6q 잎-秝F0SydM$OIܛ@ vxInk9f!c֛݁6` '2DL"Xu)Hk;"mKZ x"2CCtPFB%TO笞a3P^vi Kc /&GKs߿#i]A7*ZUP5j6E?ңYH.2;{5}ud+h(פ7KbF?M.Ϙ>gskg&"Zgsg|=4BҤo1LmɷEv7[f.u'HxbnJ5-ލã,׫Z+gg2r*ЈNӤV7&Sii=%aIg<$:t&H(/6wZvS~²%85EiۿDYG8Z6*pEѳ*ZX/){9w08LNWnZ% ZVc^Rt\Z%|z'C95A3*;> cA Ln!sa2#ݥƯ_!w;=涎srWRlHKa8R:iz/)'Zj f#t Ү_4AX۽ݗ'Z{@B eޓi'IjOp9v/D3{GxwG, Yݬ;0`d /iUm*:f},ls~T Chv7uM~ h7o߮Ρ=Cc\ @O=ٸDR=ʘi$[糃i34QYX1c^G|r{iqLE<) xu&}&njI],X_CHGA 2ݙFiy?C\+&kmĽk.|^)0 /U+]1@1nEnAM=ѣNH`Č [ #z΍lzFdoLڱX:IoW6SRph-oq{ӄ9qω!\+g0+ɂ%yzpSRAԇ`8 qh. BT n{L!_}Q)g|íEM+R".MQ1 r|G+cl|pLA>+)A@``])3E+ #}L?ED|\9 ں^>Y` `xk `<e+>RY哶qmJ+el 3OP0gh r;Ok 6`Kۦ>'JDj[^uϲ{TPg EѯY6O'L>P56K`Zoٌ %פm*ǹ^^R7"bq\>`r%T۰ )i sRօS(? 4yoD@+ `;۾CCaMFObjl-E:nzfPt;YJ)s??,8ßƤwn n޴ҧq6xqiB'*)@oCҞ4IFiGG[`ciK;K>pވPMp |P 5Tg X$V.FZø٫1-T0i!L _tuj_ ~N ;!bڪÎq[j$6hUd7 7q?(lM"Kl4{T-?-źtgc N)҅TRĜo"! K` Nߏ;[?ɔ b^}bSn83-z{EH:p6hU|GrGlʽ8v9V \S*Ocm1A\2W;`!)$T;i`U {WEF¸u 0-B?LS(8D(AClڛ!yKyQbc),`R^^~ٿT~=֪}R;{ E,r1"*y//:Aʲ=#uߪ*KdrQ7F*C-QQzwZ&8{O='G1_UǶ5>x:]扤&|~w'_`۝_rsVL эRԪH_oD+.Xhy3\-qMߟ%櫯wOƯ(a\ > :֟!sO1E|'^닲K\cL ]- Md\D2biWe@ϻsqYU(;ʪnѸEaa} ;{412Tdk&{yqi/,$7n?>{i^N ߱Oy vN51_xlg$A< (Yu榬P^ c(mekB +H {T|{^ c/6aoWi=ɟKX:SŊSBT"sBTJ|؅O{7Iu(S*?Q+۵@FKJ!&MEکqpkv\zEe˭:cdA/ 4`6lY>E%(y\ $%(zZ)ȡ2F֟;-'d*,={ s^4_;#Չ [ 3)*pFOx̍Xg WG*uKVո?Jg̵Nα!L59m#]Q@,S-PPkֱL^ -Ůzη;^nlOf¹XҌ/~*o| a_=īfmUK jü@m)yZ:|") 7eEך?CXa۷mJ]")|s?jo'׬'KCG.>$F@3ܟ~e._(W:(>ު-#7a'\d&uL\J[7@LzXZ1F}%HkL\6ߏǛ,p$/FZ}^ n6Ƴ߾QuzXp˯̳Fv0LΥL-.`߲Fo~8bS#xSq;7;&DP0vJ\3Em@9gp^@/٧2Ij(@2:)2sWJ8u]U5!B&k(7t +c{+űѩ@D%TQA~ˈH:#F0mKɑ˻%$}y-i٩L ᤧX4V7z-׻'yp2 ;*5 lH/HZ:QCnЋi%Ec84FP{L.Z&: *_=+y06qu+>\EZם },!fRXvY[ڭR+t[ BS=)d ;*lߵ;Ľ._>KfBqxY ;U73PqD`pN^t%Eؓ:թ?ft`vjp|p"y GB/7l?K~'"Z[;˒>pԺzݰ)%epU{x(̽w6M@Ŕm4 [o ?(`L?ZۮP$ Ñ[VKsT OV fL٦I٬ɒ͕(AiqAv]ZXc{ǿ?ҎnZ5iCNN.=ҬX٤o4̊yTQ?H`o-ebh' Q$pM+MɳIn~S0S4P7ˊsa+8e@2MXmg+Nz&BpYқ Cl>џ|<  5,ցhSK4@>i .pnS6Z)HK%!nx@c t\0n&^>7%6i808-c\&E䜀}'<[WȵҜhS2kukɈW ?b.8#փdqBݰq4ew-i7"k1PAZ ]U sNhgRҞH]\Q7 %/]MIף߼z .mpCpyEN,DV(uj<Ϸ{2Qy& ~RyLLݭ8\=j]8R6U&k(gs3hm!1Lu[\q2n5Ǐe<4U 4cIH[ʒc`O ɮ gޝ|y2CFٯamg:9;.K퀌EɄXN{iDg!pBD/ڝz` 'eK#yUx|Pߔv١g'i@n%b+ע}8MkJGEw'qOb۠8rktU|Cf?ڢPcf}^( *ЬȏEA$Vs`"=ZL i.#ϐ\|9v]oo)TQ Aiz. Q0)1WsFG\j(z=\y: V)7xaF$KpVdBvf!ӝ=K@F`O^a[mg L̑ $w_OyWhZ,Y|ғڶDAT){L׭rZ]7+O#/G7?ApF * @u&_AUpʼn~,e6W-Tj=X迮% ȳ|2"Nĺ{w0l\EkUW7vGC^O DLZ‹)|;8|r2AR\4&eD&N@oj瞘2faM4褒My(dӳ#;-C,A`M1Fޥ_K{aOÕ_O8 ;0Z' 5:8L i]K4CmH3/~tEesɬ,g} 2˳EZϢs}qE1#FFAToɝ3!>Pឩxֹr8H\+ٛ VWZ[*ExEDh/Y/jp;ᤣJ A`NmP_@YayysYv![4*h蜎^>o\MZeDq 9oz㏊jQ ˑ58Nk/Qz]| yQsM#(ʑ"RKnw02m6N!ǂRPRii2!p(~X3YQM J6;+Wp@|=pt}@jY-#LM'n7.7B>2-/ҍ3=I !>u=|\! uMB*W:'eћ7\np=3;^o4k*]3\4o`|,g2E}[ba?֐ %.--{&RV_M a0}83qOQ^?y|1߷J:|i,^`G|uڛ0\b,=a:lT bĤa*z_Vm<߫3I2Hk,$=uh=&QGDHt qmXMKlQ=7qaiLnN>8g8O5KPlQNZ# bSW be!< .]q}\;ZLT ;πBئ*uM5ķXS3■^~ϓW۠2Ӂd^hWD5jQZWO K=Jy\j陋;_"h"eHR^r8M vuOB,\%.dA4OJIgC2?AY;ic.gpjͧkd9>S,'ݸ`"^CAʾ5F ~*_Oŭ\/-SQs1.8D%N%}*xZ]_>Ht&݃oށbCڨi_wVӇXd_^z뉐(PNҨS$|c)j[ + hG;LĨ"fܪ qEoK}MzjS뙨q.}2Z~֣f?EI+sn|MW-嚿2+#bj _h)t 8ST `ܟ?YtٿS~0yT%C2g%GQWkӎ˛wJ(.ޅ2rZXyq>Kѓw5:_N⍽ FbӔgg./'hmgze\&pdN# |I}@HZ1$uiWEۗ[\f\84uN%&}9grEqkBwH‹xz4zZ΀o$,Y(`4Y:7zzI cq4])-3bKA8mous4D!\W٭tו٣AQ%0Yc=NP =,툣Zzqs*:qjJ?<C ',ǻn1n=`6#ͳCZX--؁jkld׺TC ">8[Q} 50xx2 ȸkO H&f GɱpI鮠2 e /y\ףwq>4})^őFjёR[(ŻrY2Wweb[pK_rH\^xoAᜌ_S%1doK'xiYUCdDo 5UH?,yLV~|ȺOc˻b$̩@p0Z׭AOךݷ{sMzQ|wjX(eMD Lc˵:1" ׌elxFxQ&|fDl{RI,^MTJ]ِi7{6VMͦ18݄t]CO$p1_kyeUD ȸN`3%Fq-nX3[}4"]šER0"NBtt(kB,UuhU \nN< ӎyU(?7N]K巽= ̙p NЧ$"@ ?lKssn=@e> RG X l`[e[+6o4kuk}|<OgAR:=s"HY$xv8 Kv@IMh*eZp?l6ǿ:_w _vW'^?gl R]4ߍ[ uw`3(89-O[XR&j>6". }YiYY,3hCAl0ql(> rUSī24_z+-&laudnHE"=F|*US Goni#^K4.dc"u>9զJZAUgʌH@S-p9LˡQ:mkP;h*&~1?3Sp`;1ץJ6wȽA=u F5`G̬;Ģͅ-$pED@,xG맽pN !I9L\/xNߺӓO7zlpC^^n~𳂃6,X >$G Z>N:+ᩫ=LpO|obCuw6<=^#yF [bީ{VTuЌ?~Kc6T,&G+AP@O N iHd2 ێ_POAE?+'1-dAB2dnC 4?ZL+.$|erœAGӌ f{M"iI,~w{7'1E.h (:p&iRF5Jhz8ԛa\(Cxl:yIFfXl;6+]||P,cWqMbY3(P k'sʒNНfb\23Ro0N2{?XØg&IJRG{:\ fmbsu+M} oM~QȎzDz_ MCW3hBLZHR ?@Gz0m}0H oR&iL"ԥsTz} {ҙ U_8T-# 0ʹz 0)-y(=3 .4Uk]Xg~󸼲Ǒ|!0wr<#Ǒ{lV(UJ#GEΟ9թpY:A{ $tͱYp}4;Wx;_|ڡiz z4bh)'m;EqLO &kPQ \_GpD?Yu>e20&մ&w [ly藘t-FH$y{=!g%m+@pٕǤ(yyĩG83!s[T\ @GNg1P9[ R(Ejyd b[]*?2z=^Clʞ_cd{M9Y7Im$چ"[S$"*T7}ڋé{!_9 o7+Fk';rC2GI褃7IL!. ,V,F֝ȖQ<ҵv>m۵l5EA>ky /uJXp{@Ԍf sy-$T4c tjYV4{0/U-։Pӯ>Vp}*Q @C/tei6F z,?J2Qy^d[,vBL I*8;IN%P(E"nRb#'#M̈fK/a8gsM.ׅxAMM^6f+3l$!maw9EF~G EqȼrqGjV XsjD0Su`G^˩ % U~X2, 6x6#r{Uw@gkM0s6S:Ռttg]弋)tIݭQx2G-%Tj?t*L֢ƵvaxFkGr=9fLVu B{|8X)tD[wlM_ce>PXG{g^q=EIrîGB➔FĘl8빣KV{ ;7φ`&Uo0,LYJN܆ /ۘ.?y_eb-#WS2Dʸ12 jy rN\uXm"FJ*J/6^BfhNS /̽aT0ub9`贼1&E e6QRXϼxfwݶ#@pHap 8y3_gtsk3p{$Ӎ6\*mb4gY-kxTBUj5h? 5ؙ[I5~tGe&_TLY"+~֗L=Piuؽ7kvB̛%DH(k!kmyY瘤$q+MT╵R_Wɟ1f3p&W=%W\mAкP~aGc'͌Sa>ݠ.Laֆ>}$@iǔy<swE%Đ @ XWKƾ;;)V|X4!1ƟΈ[}rj|"9511QqLl7(e$X ds:\=DŽh4;sE蹜0<6,M |(2sR09B0@``p\%ώxpy)p> ,Hڛ"qt:Tz|pOZkVan{QN!PDCƿS.:O! 1zqp32MSWep¹U 7bC+a8SvHRu+ nrjc3h1!g&3g48ĿLRP*x[jmS> zڲ`uZ@,?-^Wñ5ZVma51quw\0bVjg% dT# L9JK;#2C7ɁEH<~-:A yeZ^1e0Q5/)\Bd+[m Iy)H #n(iòMbۦ[Q>baXv3+(h4\s;:`keŸcHfRS1ZD7f0 1zB'"0.6VAhS)c#pᕡ!u&~ _3h7=nաj`X9Ur0xkΫgIɰˆjGc }0$;m&rLz[au' 셫jjV.wdsRgdAG(Kv/'; oB?)E"E Tmnjd'74a8xƗa ӄ^H{HʠBGphhB^2Qp1uBFV<'| (@۱cjsP{=+,T\ar^ JT' υ,:h#430XG=c:Kv]ch${q`PgtDP2M|.U+}6`4%$rz7iW]Ҝp4++gCCxO {|A@c'i7+ ̢2ģkWd:(Q+j,ƨ",{7Y9>!F}=k602:= +zҜwch+L݉V䝑,rHmtQ{"דLIX$בŋa@ UbВsc[y[^ CZrz,f7K^cY 7&.V+zC#@.|xNd+ yj n5[eNFr;E ga?-_?@7c~mOk7 HLk4 HhG700s󁚐w>L#_Qɽ ^>@: FL,uW2)(# |AB9wayrTXqł|FԏL3lܼw[+')h2\i)y|Q'[y|NJ儕}wϱ'2a[îapr.+Rg6ɒZyLUMfS$KL͙N `?m>U11?7ŏ,aw =x~z`z[&ﰫlPd:rB`)aH W}d $HY}Y.dZA} s CNHW˕MƫԴp衴>mZb,uNoF-' -|t Q=~ SS+L6ڞ٨훁Gݥe)Thϳ'U8Ok4}d]u |] IR; ?3~D=׶ݞ r⬁=>hf7zȔ^JJY\>nP"q1 /$CFX $R[_`;zTmDœA=VH2/B]݅ ^^#2jz[ExBpTŠ+xr!{Mp"K@0D; IQӒxi?E:ҋѴbUm&E[k9jA J,ɦ+")ka;ҍWO!.|},aեYaZVIS ΅`nЄZs\5HGSj>yf_T"zI,BWENv#1&7ɼ8 2\`'xq& Ϊ<%SFAmSXʛ?A<`/%k al c'_](OyN-R2v+6ܩ*>&ډ[t +M1tz1Ok9t)yjVTUtX̀ҬKɝFzK8D^v( ҦLl5;9;yX4d">#t2843"=+A.P|@-w`:(-a~cgyɎմ8+t txuP&M2r;y[ӻcwZCKoZEl҈Ħ/n-zbU( x(c '0(/:a~ Hը.%HĘ !(23˴$:h-6@Ad6SGp W;껮t?"j*'T*(ɍLA΍R=֬d>o\& VG{ptwdL̅!L˹HOFQ=I$O__梩ĺ0M&W[T8(njL`leZ6V'ګCt! 2n_%9&S#ĉ*Vo^(UVZBfcjV4A iZ" So4]NTȸh)0/f*fvqyq(}~zLE4v7iO^ʌY<[2҈P{#k?nMrW6~˺F(_UU*Lm`mįglʊPp3Z H.( pz`yمn5NaQbA@oɓoSl'͎*q⣬AvfNZ$OiPMjȻF|DcoJ /_ ',61t F.(gj{&eڃ_M$`ےu/9sm{eඓ ~${إBMwV2oW_h*E Ǽ,ŒȠ.V jLj/ |,=% P7mDpڔ1U%4V.pQR$Hp{^ 8A`JBs'GN`u>0d&]hpɳ{38iwCi, ɓJ0v tje&<!hÂC:pU$ڱ)QQw|ư~%wQ A_8)6~3K]_׼f'=hs"]1SN'.so&] aZ!ӸVqpO?3g|GB!HBawŏUTcDUx!9yÊϢ7.d#VG5ܜ̔ci#%ҹf8kӉ}VB/@SA ֦>ό!5ʪ87qv1#>bGRR4x:~ d% Ά<Zl)I.7T鍣}P͂2=9RWuvCʻO C'>!ꧢ} |5b;Wlb5][c ձy3kj^p7II~T FȺ +GO8vΪ(XPLW~e|YyPf%oFz*ٿ Yj\ESExbߕ=ŬƅnyxȴF}~]UpiqЃ*oK?l]t!H_pʹGOY`/쫦CE¡zyN#pf]KE]G)sj-Ɋ,MKFz$ʕ(TuExAND.Tj߈&G䫝Pz1i cdNqG5Oz<95A(24X%CWO_:BXhp5QR(duqLKLsy,XO)`Ou]!BfN%@cn2cмl>e϶Rqՠ+  ]^Þtcw|3饱tJM I,~N63h8k!\<?3LKu3ߎd20*stWW8,qey`u{5UT_pT<]ɻUj $`w.ab-._.M?o Y係Zz&XEreF" ݴH|fƧs+gՔclPEP2Ox;DGQLҁÄxw<'ڠteq^~|A,Dt*d+ek!v]?ɜQ,}A<ރf/̗J5[U!0V v`(VGN+{g<( k6 >\kcA:Swp̗Ag΀{]8jD1$ZCZYك=B -N*5`Y-@ O0Pma.$戳%a^I$q?ܪ&ƈڂ]aHE SOUٵ]$=_ O#p=>ljaby)p徻 $l) ӆ:! ESIt`HNB^oh5$!/Ss#Pm^@7wp#w@˙WkǘEvlԮ;ڌ\z^<*z )2L╣;$2}nGwFd=5+Gҫnhz18 Ъd>?Mg މs5ӡKDX]iF'c jb,M? C̚}X_$y/ Q*Wu<r5[^nVp)}V} JHtpc+3Hڼy|ѳ& }uP֘s.礘oO;}諄OL8p~9TODh G&7[ET)g(A z_/Q{w$Lƹ FE c?}w'f!fy^#U:RıN!adD|USsS!f*[7fۻ#"]8VG@j%3A8b,fp6 pabYINUsOvɺcCbŠ!y/F%ZŴ:x~'4w 4V+.y޵ 6x*)öYS1o߶>ت [X<p%+p$O2NU=\\ZSl/Mfs pa7wpI-$x,jnr=ыWu* 'pR@WyQ!s'ƨ ӀLќHzãp%t_0*2RV$Aie yIԈLX\"!#;=saSgVQŧ-ưT suUО3تh]hFc}9(}Ai8=l4[U: +*:KA{!@f4"( 嫭(캊2sq (ޑȈbyQϫbبI)S2߬nq?8)ip9aMb]D2.㣣tt ryRs)ɨQ;Y:ihn7,SKJ4["Ē_u" Uv0ft>;P?3qNa-H ^Eb,xO1cr3c)Ue>eH̎1`Y0Ju#b~`6499\"s' bZ3J7({ӗ@J8B7fFLw^4 /}=3b ~={ 3KVYʞnJuL/BY>a(z=E*Ҟ?=";0Аt=ciJ'-۟vx:!Ӣbg)jP]#N V?{|19[ݝP.2%zw&DkK LZ_X}&g J|Up ,nc:O9qt#:F 7L 6`bTs虉cD6yA CWe~l׬@VjA&u!긲P38}\Z\QGLL{>$'4]/C V O>ATRvn c {g!Q~Ǝ` ]H5Kqͧ~h)iYy;d c"7,AkWo/HH_߳,:QIXu\,'hx"eCF $F#npZ-ojzҥUᕴaSĬPްWA FK ҥHA=iHf/ɜrᢠ듶JL$AhmS!Ȭ98o(6[v ^Z?%%&ʻ&h`[~rP5.-lK% Ug^ZBaQ4 ʿ{V(yK{&RUQ> pս҃|2pP:0B/{ $ @!Z vJǻF;bSx6Wq4= Ңr+Vy^d1sNpgb;%8OrJGkvq9,8ziDfBRep80:狟6&YlB?u᷏e; K@5Į^5 9Kّ+F=Љ+{ؚ)" *@I71-U-0="ޕwJ3rXqg&b.2Wo2Fey( YVTp8 k5#>}083ф7jjh K~[K!SLfR^|f0qWv! pv |zn\vE,{ɕbCT+9^}=#cƾw1ԒJ@0Ϻv xKe?.l ҙz¥'4~홧NpF޷sӳ6dр,ٮRsaG$IUˈx%?7srzi<f9#d3.ӎa7~* -Zwj{:P/^Geo>F!bWC%IbsI?R3*s{}D#'43*HcqiW΢G?FV$S~EqzZ1٣uD!?8I%%0 b dW`h;vIE& D|L~T.EP*q"k*0+%z#^Q֢&VHE`tNT%KQl- excTOiI+&ҔϾߐe&S:*R *e6K3:u΁&S-C)9`|[ǎRem!rcAO9|uSg^r.;$nݻ|zB֌vyM_6~%>+h8z+j {; 64!4D t؁]ѡ_NYD@nXvJqODǖk25+PӗXߜL|9y'kڞara×c I הu˟ȐeՒH[;_"{po/ y { ^j^SKhV.sCIQ(?Y V9t>ޡ)9gS! t5ĥ}qN)O#j`юbN}F:<ʋS}rELkWH*Ϙwd UvyM;& lX>>[I\,l!~s 0Ƭ\Ru\}غ$s“?.|H:ͧ VIl"U ?I՛9 HW,"FYFqך^K޽ߌ;*/M)P@R߾ c7 w߶j~FJq$/=CY9RVK5GdңRb~Vqw{ߨBmV ;R26)J*%#o.Lب'Ճ  XwTO' 9ߖa8և, O0XGw5V[/A!#=^ 7!A_~:W)k{-%f :gҨ B'7f}/)lgN/^qGA2q߅,+zTwT;(BӱjM/K&u3_KKpX/mC WsE`޶Lْ":|ɡw%6ї7%ȯoyCt6PUΤ;FItɆw,ŰlGrW SǶ ꮻ'#;!4"snˤL[xM5dӁˎI@ŧw[k[Wo1܇xjΘ< dF(ukeɏ2ig2_j(1b~3nrЅؒd*|=x3o@;|z- iuhuVB:=4G"EZz`b,^@mNYc=r,W)c~U/Zʾ Mt659YX鐁I*wc5~(N,DbS8iya( !zviA6E,ދ/a$9<ń5l沯K' WHW̧'Z.Vmg&B(P-J: Y5AQ̟0ɍ(0Y-? BUfPq1\-nci&Lw @GO?Nh>dmzcnWS16+pd/L)/;|uʹ]Ò-4»V+c0aً$ xVL'muDZ, ܵIΞH{:Dou6{r~AԚC8G(RAHvo?ry??;Rt ](2Ah=F / $-dHYO`ozr iNbHEdFJs4ݹS%-O=ɪ<^DSG\pT(ɆT5ģ$j ]ڋ1'^ Sfnv([,5A7?5706׻@]Z@m[xjsrS`*IU Q3-y[# Co{F#R8͋c1_(~ bHeϧY;NO2^L@ ۶ $϶ Q75:E%AvgrO4Vj+R=kdXu,E̲R3~^aZzj(7/HހEde³,%I%j^'_*VL&;W`#R9QCDzy) ^aS\!~^ؗ(}JH Fo,X,U%N@}S!DzwQvLm3+BKE+Q 0.Ma`gPHVW6,qp]ܩK_NFS΃ gZU??C(e vKF@}T )1 z0F?:H jzip"o-b(=qQWQpl]7d"h \#7ٛ/y}E?٨CfQxU8rS ݟ0YA,Kl & g0% j< OAMy6JS-G$ofrnfo`wn+bа}-A ehb-t@gm7| ,xTgbdX`l[A~dzA8RқHii-V~bQC"&tӶ/!5j\B.Nȧ816Tl@ji%ۡxi)Dd|[ yPKR,Ə-;S1SwROBH )Wuh{g$584Ay ^Ӷ<؈*+"V*՞m/4h apF4ԣ6iQ:q |pMY< mQ/4\c`x4U9"W}{ Jkɛ:ѣp g|]MKwx,viD~yS f5( [BxJĤS0b^g/jC6%(C@N䔏>|l8lm$cf`ꏫBby 6'pr 3@UjW4#Uΰ̣ݸ ڄVLM|*|&ޡ{8٢-nx v2zؐ03,|^ 1Q9?&ƞ$WIHDĂIO{n2YA@?cIacj]|2MўA-2Vy*6OAđW`AV?pnU)AeuWB*C,FX-5},80E˞dD7@_T%1~윅4Jl@u$F|&<(D3֯ʛèz9#)713.{H۲2Ŧ-֘lԻfgۋ3D$rDm.⧢hIe&8NW1B^o0b S/eX)O!cFxeiH+/ ws`A#}!RQ VOO& 0I_17vED%AїVXƤ_iǫ8ȚEm!S} B- ]]4!+cDrs hB[V l=j9xd~H}_x=CB궠N{;aaI :(H]<5E: "_C&I?o]_mh^ÌdD`S5+?0(tBe70k{Q]&E#O1'ph'/s5>fU6S4tqI'K`JK6H@5U׏Zlu 3J=.`W>S#H}:Y2BzvlxrIU߅H gxՁjW1X4 q-tYfh:h?ж`4.]Z+VC>3[]$ã"Ssw.39s`MVg&bPvsr j^v\m=xb0vM}ԃ MM "n^&omL2o#S˯zCg睩cٙܢ<" @UjFN]|s4cӸS'ˤ J6@woӸ3 L3̔7qCx.ʤs8;#m+(IDB;| E6{Oj,95#~yaT#XIeP[ ZR}uJZ[Sqnu?j-S[{M~>nw{p P#jV?'2q 9CbYIvt4PG~Ф0 _D*W3uhEP[*J']@Zwr,+/p#?ADe/fmIµ_vm޷IuM ߅찎\C%}HAv"ٕft*(ʼnlqMk(  *r/*}6VtH[hc?K}Z5kc UL-) ͫJsucv0hK 5$ )% ;I3ܭX:vYb'B`wZԝ^x=&{$ A|3c:z^C˫b\!oڅ5T ~Q;lS0H0ûwM{|uNUWa ްLjT\.?V6BzM^V{Q_2}?^b+{o>{s9TN%̀L6p/lPqXa F1DA7 hx<%ղ1~F!H|Sˠ|Fv$:q v8IHDuȹs`S-ݙt P -23nC;hO17,? hKb;=w_Tlƺ7>o&C;7PLj5JxQgU~Ze<"jїx3σmmR>wM+ ?w1B[q%AWQe`whꝂAssӒ XXޅpZ^ ?Wt U?ՔC')f͞e}\wо4?,.0۸Gjb!|@L55bfoYp3Kh#򳳧i B"h?JG Xk=ئ𢀿@oDetr]?q/{d}u$Ts NeLec[n8Bxvؘl"P~Xёl_ZѰ29ܑ;X^ ~cu[)9 [ُ`'^q{?8 I^74R5e6{JN+K7瀘:<Kn*@yfJ$;{?ݺ`boȞQlxD-nd4?9VS+< ,Vy 7YGVv/K(%z Ɔ]o}sKC,x# E(ѝ.J\sIPA߮u^ȃ>w!nsn\bYhǕ kV=b\nttF$=#yzsm%Goi.)4##o#}2EQ$n %lL62 Sa] xL;"]ௌ޹Ap5VV1El3 栢\9-r7@oL锔"fv T2'FJOhK.V{.';':G]ï['A]8othOU7(w&IҜ*6EL9`jxί`~]֪ݫ' ڏJO"*pT5+ D(VTd_ ]}HsA8, 4aa 9Nm8% 5#Šk{=ڌvZ2b3a}li"~;/gUŘm?j|Nd^wCTѮΒ N(&.>aH]Bր'T{Cb 05N->\\[izCvz'NբNd@Dr.:4œ/{ aIΏ)*Y97n $ن'4Btd]j 42R+͗H$"@H HWﶒ*= KX=GzooG{֋!M~Gã8qV.U\7&t*x786ƙaVR?|PONuZ%ӷ ҿAaH$] bJNa*aLӹj} ` itfK=n9 ըh:=8M)"B=-B Mz4+^#|{x9C A8UUmߝe'#$@l?}ϛY~TmwFBV<m6be- @Ů[Qo%$2Y瓟RNTjJ9Q 5p-YrgYsSdwXE>dr4qjcu̱S_:,:c9L!8rd'(R0T=:0 M%Lm8>8ṘF*%~wLK2!}鈓oN8Po%9|꺕2L opQ|{4'#Ch NiNK [>o$S_}<}FH y;ź=agIC(9qՊE7v@5\X06_AqQ # |\̇ѳ\wECřS>:LB-#ڞeб|%}2[e OUٟEOҎ.?l:]Y!@T V@@ށ{Xp+or-/±7ElSSI:x}T||T&0o'38[}(aĝMCb"S{l9r/K0U>2KZsBþ+WkccwG~^CW}9,v3\f](DŽi3\^B Y*){D8h>3+vpa'(尠A4^Z-@b[ k0JMH8NwR3 B:t\/82c`~j~( y{9Hmn% Țd3>Ҏ LI}2WYwMx&'@ϯ\VvtQx`mP x4cY[(oU=ڌ+(S脕˨Io< vZR~Kt_աiWSY~ /m|5¦fo(ʜ X)_73<UF M=jW#I%:U_Zwka`Φg @of׏JoT9Ցz̃&H.!,O.hIJ i~,&T׌21c^ڶRdQC&50j]6CuGۢݒ"b\eU УeJ<ǘHhs;,)BB;7eX'nΘIfEPeKK0bydϫbO7Cc"<+2(#öR8T`&"xjU7#VqbgS&:dSηfs- 9v)ѝgĂ 驶R B˱:0DTŚ7C8HYegnOk֎QS[%qW";t KD+TCOcK^|E"j5CG++Qk#[_j]bYQJTलs F4 +zBfXӝR퍴6D777\p>Ԗ3Z=h`(Wh ͪaJ▐FIpf}{1&:{ّTjUiaz`]3^?!$}a:sG37 A:PƄ P!wR=?|l5baL{FgM:9 j 6sOh'Ab'-h+7ұxmѯ&+96wdw[=[QITk%'H:^ÂaRwN5X\&4> * /|EyAyE+OE9e#FJDFALzZ\d[+J>ċ7J]iE`i䲛vV5趶krWyǼg̎Ft=fRsQe' !K qQcnB1JPm|yg.%w]$cu9ˍ95kk*쑆ch بXێ#yJ K*c%o.)ԾEJo'xk^/%4TLRjb3k5]UՐ:mP}Zek̂]w܅}>h6s4~VDC`!>nDg2P'|Kyb.¼7hMJ'Ѳ~2@Xx|4D\qh ltz[nP1PV=6[Υyף^R,_$Ѻ D4qfE{⨓ڃMkn@<}ۊqfx|G!j纣ʋEnXv&FƮ±X1 >,*þUq`>D ".v;p4=|G|7+6ku}DNv5+3YqyDY+d.i~3Wqchp@ Izf8A4-c1"7/m4/Nmcftl*KXX,]R_{!ZO50@BۖdqZ \]3ħ z Ũ<:a yuMbn \% 5+Lʲ+uԓx%>m>E +&jA} JI?c}^HMQ{5a9CRyM'2E Ƚl~!YY(m qAYwu #_b'Ғ#^ Ҟ.q4Tma„$86 =}y}e@ER3-]9j'&;(;I/Fbh]mξMk@\c*SG:e~Vc(؍ʬhw l N?y|BjyJ6]6]jh?Lޯ(5Ó|]UhtT /-s~Gh%B|3s "ulyN7ג\ғY&zqmNVd:%/v6J% mAu*+Q)Ab?awK6D[7SW`ϊQ@=(—4ge 1iSW8>}T%l5.[e7)98Źt@=z$.[)A}:,$ ! Z!;5I²r" <]i *0{)Bv:S k[GJA-3rcR{ 0;д%wt8/`ӓ2z}BBHվ䦂uV_0D܉s܊JHW˞pZ;Dmv@ե58W=+p5(o)Go\sd@72DW},$KCJ t/&ۼӞ'qO2?Ɣ lu@x¨ l>ɮ NoN~fwt ;^7,1Kyۅ >h\6X$"Үa=Մ+F=̧H `~UpQrVR!kEXyeIc+j\Бp \z{f{aUĎ5eyIF)d?F Сa}m4}j(kRk4t0Dm_p \@)@xn@NXL< }٪;NZJى* xfg`߻r>Ӏ7V)T#OgXGOHxkꁒQ7Ċض_4:=?vZhS͌Q4vML'I3r $)Б <+ߍ8FՒt6In!8M薈UUbֽ v@>wg?+ct,!veGMj";@XA">3A5B׊K|ټfO3#%3z{d4|#?רhAK*dz*5[~2k|+2^V\Cxn2L jwMPqq>700HB+%qw4 nC:$gijpC@0}r!p a8?Ad@.qw]{%*5Z0zA 4$!}If5W1ܨ&I F_:goϐ9MB|/PMREy4٧_F3FΧLl))g;%#e}~ltj"UЊQ9 H{4sR蝹2ܠMa?%av !%U*O{e1aO?.MzZ'e4x*CȜz6\6`ٞ=mIHSbví|ݍy>~|Ō/+tV>Dͺi9ݧκeaf#9,i%mvI<`ЧPS^>mLO.رi1,1h௭ ?c?꛾U$ImQ $V[u$OL͒4V1}{7<ahbO] Uynr4=MΛ6R^ ,,D%|'U'#f@Z Ǔ+7E/AIM T7bĈ tIyX7Ekb0h_4qMVmh7 ŰF>wMۃ6%ˈV 96@󨵩pYZʓ0|#:M!TsUi-@27<@MՍ7CNіlR*鉍mnfcdź Ap$9ځM1 !@.>{S'SS՟3.?il_5Ҽ`9RYȯqeiӃaP¥\p|ry.K ΰ]h =n#=@+6&KU0\$pT!v^0]@3(졶g_'%=وX|p^YPU{Bb\&M#|s00neEviO#vfxep6el JZW'P4·2Űw1G/-dw1Zo'r4kAǣ"f IִH-k90] ߀Q ~4.^QPgHe}Y' /#gnAE+iOp.۸ܞB5$.p\AW-{(uxCb{" }5="Z0@7 EØJ-Ƞߖa'@ 4gcGvLCɼeEUQYG^uIsd49j"ȸN>| j[c\ѦT* 53f_XJl$ycMu(mWC$^4> J ;zrZ kCn7w[jd85ey"iׇ.?^QMtK`Vm2WS8@?'wT49`p1/~~j;aKĶ(V{C{BTia' f<7w7;{?e(bLȉ ͨbUzN|J' y7 'Hl=~˔#-ִ32;TC?!T(ܔ#Ψ&r$@<18dmp_ܖle=-Z΂asԜ&!ǜxϠ:}`)#/ )bToquZ{Drrh<(lV' nVE "<ݗ6؍5p YRF,@Oϟn^CPwY !#}?Ǧ[lHrҠoR) Jx1Ȑ}PDaG!MR&YvUAK=-6kxxy².a裢_/ !V^:}070ש ibx}z ʻ'sK~ki2!+&7h:,Puхjph^rǖQ hN__2 t*>gEDX^e@-F .z\s'?EԶ1WgB=EQڼ!rkTLg>4;|̺ʓ3P{]gTẢeOꡐ?_S! i(}ucg *>έIwQ&kZF oS2wMAe,_vL6XEּiW+`?`Em,Xq|3<wO4/>716iw&A ` qMt_͗L+f3yT41]"G_} T|^BvJh9Ff4:9PI8#SNb 6p:[p|?c* K:oةHE]?:ܡB@Mws\t2Q 6pz+0G,尋n(\-S$ `MѼ`i$j->Lg̒q`ճwYRX10Yč˫#|uE ۇlat#稓2)! M`1ZR28^УZrsx^bv] $C%veBT7"vQlcn$GQgd"p;J6IKs埖TnXx&[`-ì_,L@s*qߋЃ drQn/J_o8XBtq!?6Pxv?IM&f ELmlY+)C#aKGS*ӍL}U_4uV i*8/jJ^:to)?OM/Pq ՜1Ɇ2KY}G_V<=~bT?%R+#ymakL`"N=v e#Ő]uѝ,.t p_V UaW}~`og$_(pΚao`  0њLJa.yZuEc~ֆip{TyuڎPM^55CH:2nRŚ`icEToHw?a<[#@j9AMA.1gע 窹+ OsdH 0R>w`PΛEEz@a_tY.]NRh\Ajj>:ޚid9U]FnzRZ2k>JxfÂAĴ_?UM mC9%( švHY޹F*Bo"6)j=UXx)؝PYN/Qn")JcR Rbn!j'W6[6&fF߇ }%R젩kد•DoJ=,l&R6Ý]$ʕs;_ߔ >9{ <]i9l8⪴Ipl]#aa}֒ѧv'`8r=uK.OPIücm5^} ~@{1V"f!}O\s esIؓ5ƿسn.p.Sc};FRDCn{#01A6o(_>["z!E%H,ΣRdHw-mq,Up|ٸKm;KSW<~T05 mNo } +Hլ򏦞u}{[:ߵ>6'ݢEOG̊hbn`4#&Ty^}ف s)nWL4ݶjsDeHˡގPRWQ@ :3ߙbNњw?$)0DOtW:F8&rhhTBڊ?i*vRs@]!ea&Hۢ&M;\!? K2n-oḐ&lF?L$C$R_!T Q$q+6yF!:>g)l@`. nePCG*Q"ޥ|Ed;6 hI ;z^l ?' 1 |?Q 373yu2oAEgb;$XoZtdT,-XMnD94^l}̛Gc]Cxūdh40bpy3]/,=K? D"LO #Azq`{;ֺO MZM;,&N ͙xJ%ӓJo})D)%JT/. {5;>(Y23˲^tQ$uNνGo n6 hP4ppz@iS)QSԼHmbj7ݑC^ {!8Q+SO4E/Α֢FXc_e y 6@>tbBny|øK8Tϸ mztpry(,>Z|b Cw4t+Vΰ]tQ{,U 9t"Do;`r:KCZ[gxm 9|R5IK7Ѓ c2u$$ES-c7X)dH`W=s9Kp{31D4wd_/BЂQd(m GMh}iځJC^5FٓTAASظҬXwg 8`T jOxD[Ց~3 *E!1M~: i15wGVPtT(ú#99Azmag*HzYq|L_JϖJz}"-IKje [\_Q"=R[Kd=.UlA\z[vhN:р]7QuMY J0n8UI-VEMSU_iVMey/bTX*g[ 2ZV;p?%]NMCĹz.17B 'Y4ċRtڮ4)^D`@Q۠~]Te\h^Tg5Qkz` @5 ~Lix>3N* M/1&<@ /*9QFnj}_a*ZTH*YPlP~$ 8{ U|-- Gבb?b#/6(1Z~|%6g_L\fTW6(HY6  B9saˆNCRZlC'&#컄[7l_3U!A]թ_t%t"Je?÷ ^#9 eѵ ˛RÒU2MU4 [ͣ'= *ző!#%I´~2T+Vǰ[fV_T;o qg68AT&Bg9OjO;q}Q%k"}*g?hkdh*T8> ò,Zt&AOT<|WixQmpVeLye3R7E_=a_5;Pc߰xDjj}DKЬ'9KMUp{a72rY:}{Iq;5:)dMكDs1i !"(ԯ:nL4 .t{d8[}W<玄>P}cq>ifq$A# .x9o5 {R}f|*sܴP-gk2y)պB"?c4&^$R1wC,+H92h&?@㐒RvS0Ih\:JȲd1z"B,deHpaKJ\Hx3-9GǥM8'_  N>>zbSLMh mf NND7)@Sho)slD) 񆤂T9w=ZgpyEtVf3[bV+v'}|(4~^Tx|-*W2N^"` wK MkN1ݏ,]!t!̛U[~j{hSAoEpk1]\ݥ(#;qL/~8P^A#vUxms!oZh_c4,E;ta%Ư.PD[w`oS?-K5jYٴ}QaeEE3ͦm~z۸.IZ:$,igBn> Jb "&A;ig1gp]; ܵIccCWVr3ux,BHqI -#.hM@"-˴%b]KsbGz50uLnd, /RU71hDզ=%ބU_7Pe'7 .JH~5g̯3y)L\mTB @F!EhUr̾C¥O<F7Rb1Ycbg]σؚ|=;2: +TAk;pGU us_j6GMhK7T"-؇H&1}'@C]5AgN`.S_ɿQUNH)Z/a޷]vN=g\uuWPIM7rZ WTO#h.khHn-ԯj-iHq̓tD˿!@,X1>$D+[zU18]EI _UeE 5qކ9D~@XH_m\ckG+{jHYqՎiP!p:{g*L27ծ87}I;zx;ZnzdArcOC(`ӶcDP^P2ӄkj Jv wS#6,k9(ꔌ'mK`Ƞ$ʜHݻ63$TY&_hí ,zBL\t6=L9`w{Ff+Z]UF@W-9.~~w>|-AvO\> @=/4JK: K81M^E?(Zf&6{ͫt;_}ڎpнhq Vܻ^`sI ǚ=J&q#Ne$wY[3]SA nIE}S{jq8NBwHr6zO\n%2?64T D?B󐠼8eoVF@Mk{toTi)q !"i-PBG-!0vp=g߱`En>#{PTFzM/HQ\X@Q|jD R"B>Sq*UТ7Mb'RH ܃}]/)9*z_|V{xbv2ȯa8aATЎ" .ۨ,UJsf֬\Sz#, 뎲囦-卟Ew/u.I$wt/3S8 Q_U}[ ' HjDlskl&,mPh _ՔKg'Br抗ۍ>k{(>D/$hBNa]FJL['j^yѭ)gb222Puۘqq Uz 6쐒fuZ^ 2p II }x\@'=|yW3ko o1q-%S+Lqvۧ'U3_-z"8QI17 z5@˳lf4=´W"%6"\Z^UsƃP|3 nEcWmf,Ыp1R 6D6TӺ;H驪&wZ#U2&ZLsDtyhK7/~zQkgielK`Ig {Q( n(L3*%̎AT(A7+;-eٍ(_Z}X-q|UpeDQ!ey02 7nB'}n(3r0K @?Nhw)@ GƥxY9Ih/"~hh,#t7&ZΊԸKuYLHGӑ۩jnV Iz/_;XdZcFci7xـD_c~vvOkn20@𵩪کbB^XSCN8Ϯ{B=?0/R[r@Y<&Fβi6ۀ e*R``'7_./NԦq 3BfH@ Ϭ3Gh<[ W(ʇSg K)U}V#|1fr'# jX؝a^1u7Kۗ@P.$QtYi&ι5nZcY7Wvې4 S]WHTy)nu_CX^е̖GU8~w]Si]He6|B X/ǔ%?g^FPߺ@ŬXfEMeMƝ"0<[@Z YL GH_ 4|i)l@ARh5ѫCғ3aTu#=nᙘ琯oeY3QYF_͂8Zb~7J;#8o_f=i&$eܤ'=1&B-\Ը x+6~NM o&L/!+1-z{>rB:p3TU!Qq3lwi\ym i"P텤@#R?u~8rvy6d]nHDnE#`s7Sm( S 1cj O5CS_ >vȪgr >Ÿe \-jJvmeqhJTM’I4AepNTJ֠, r?'¨3Yu P=YҒ[v\Tڜ"6ͣ&g. 'PVa$/3lў{=vI҆QxyR'fEwmc>2~AӝEB/Gq˒:!s/%*&f+$Z$#!kDLH8j05Z9yO KwvcO.f!MU,4e{>OjQUY?q~BbC1=Z^7vp` hc)YCRvP41u40WmEn\AUvC#ؾybh(uϷme4{(P۱L7x+pL/՗DwSg`"EO<5a<[C'0W N|/g+ #I|Y±Ay$Y$.ԎB碿e"DL{dzkZDb%$R60L"el j]獡GO29=X_˒Fx(Wg6%sz;lBVN6Lc* H| 0#kqvȁy'ABSOr1ްUO }*ۮ]YYiR@tk=qA ݋Lt5m`X=|K>:C@mQf,lCk y }9[xC3jݠ %2g‡S:f2?5NR}L/>7IV Z%?1E~;Nftf d8K4zt@蜂fXA[i˭9Kw *d)EjG@/32ET!6nV$~hyy/kS7Lo T$o SΈ> S )x~o͸\CR:b57jU *g<}!~yj\WSVqkY uJk<Q\-X. (?^se{/Z;I^?.ʋZ;)$C)Zяf{N]E@`;bQL@,(I}Z)"ï\g@($ip҂zk{[sn2Gl8g1q%X7л5K0 ذ3NjZ.ptjektMGf猫yo#ebgIZ D|:={"S)DiR o$>FT .<ֿ`X)aXj[M[={9n&}E¶._{֏3#1˂6.ƏFby'D]VgYxФd oұ83 ]֍"mw^l1f<0S3t}Vr43(Z~g\E[.pZd8arW(J*0 4.Bk{JސRzd\ϸIVwg7m87TS S~yI5_m)Iǯ AEC͠# LBXtydygs!!cH'K]rLo;/ˍ79 `%0<|bIy<еϵ&VnVuwp74ɎSvF~M}~Q$)d>&H -b]cy[ YKԛi;^cm#F.D8idsn܏8W{뢾 UoWV|!MsPfh4N`R0-J(l.Wh>CPxСAwf&sT k׌{rSERjY v}vA(10_83K=& 㾈]{iZ  ݿW9l-6o}c7I1XWAl( rx{>.\}"lɉ1M DBB'?e6:O5 I7ݶ+Œ/>P[dILtLRXλugaǒZФp^?"t0vF<.Xx¬]t\W̥Fjsxr0(vG~҆PM!<- ?9R7Q5@ E3%}#z =:*?*;Hsh܇C?TRUY D:=_=cbvܤA}1y8Cq0;Á4S|7UwW Nf?鲯%:ʼn[O$ltS$@x8{m{@jΈa\ůWK~"R/ |2Ƞ2PhWwM)5A%juu LX2 DKQ1'#' yh~ a/28v"X?G' O;*\Z~}KBrk"L?//C kX,Fx6N3v蕴KASгmrA ѓ>\p͢\~NrW8ܚ)2߻d[,X~Uf[l$#_5^}z!qh g3fBtQ& n/)\_^NyB 9~o ׮ȣفŔӺ֜𾬠XsU?a&]H7WZN}ݛxuab , ˮ@V& {],{ ΅c(|< 5>@n–a>V8Wfq6.{q7HB /n;Iu$,awxk mgC &j7aR)XeJX+F Cjx2ʴ.l t"Nr V?0x3ǒ8' wVdzh*,^t~!!sfOXXUX35sԞ30|?i}/"@K,7Y{ҦGpFU8x a&JogmvƽvIkDr;9T^S1 QG~,;en-H4ZPQ(K(~{0YaW'e$UI}l3yI$2IZR{oY9WjVI}٧k<^@;Nk#=D4A ";)qKY;G yn5oĂl7cρʬa:G?-U'/(Tۤ4-*ZB4AR$U尡,hPz?58OИc ҘRy\zRn)7ȟ!Qq\`-/nNj>O*Ɇta1ډV9*$(ì (anYd3kiȻtxhqe1mW9O! [a,G.ނgZJȼBy?1;$JZ؍em-8 +0Jgo8 4]߫vag t Bn5 g먎bcNMOh1le"}ٹy,M!3cnO>jg91 a<\vċ-/ax#l>1{!11it]E0KF?yN5kU(,2[dyCc.c)Kl(!g"x;U|Svep!|EC NO; ,uk~ڟ6I ,!|%t_`Jq0uu`9FJzᴚ.6LGd³sG1څ7lxhHGBB|RU(mye/`a I}D.HBd-x >H#|:;1p/R?$5lݡ-g.kL!e Sh y&?|-Pm50tb2-^);D@,zpM.e ip];a}!a9?p-gzLBgo)P8 iy=@|p4\]b{C8>łS[Upk#~⊀;nϽH6?i^"չ[03KTr>/ppM7B4 D}ZڒBQ+D舿fTT~ x[(snuat&~tBeg=йE:_;*_kh\Q\V!Ԓ+јXjb~^4%"rCcmG|7R/ fBu| =2>fVt0]@t3ΥfYr9QbH0iA,oss:EMlٵ3+|񣼌@lg,\¢ 92m𘾴h I$N>P۾, ;… wU;&Y+kDC ۅ8H'EjGX-{\q $v2Be tZ< ;BH׾Al)ȜN(w 6lU"ɶґQܱXުpYP`(қC_`' 27/blWĬDn-hCTnPWL9_TI /U$Ԍ}4G0b^9CWu4xf=\촊G=+*+0AqwxӺgcR&e`ĺWfdE/ldKljCUڢƹn&6] pGC=`=PJ߀#2WJT{,M݇hK/4r6$.ho*2_Cly y' M~a70~ďhF0swd]}:ZE|W}AiR~-I8) by36pYؘq@^÷`s$<U~3V9*Bmƕ\eRwA̮C+8px;^jd)b߹JbUziOv#YJQAqqBMR!mp:&'m).{5rnΪ%O ` dN$vM خ5&iQBax@MTLoj6UWxh!Ƒ1\I3p.=\%쟮U?R!" w|5BrEROiXSݩ^ q?7CL |2e7-6k1lIoy#MU/XOksxg9\?8CJAõ򊆣_ }o,Ƒk*ҳ ғ)ײEPBf8ៗ.?2Gf(_>ѱ0y Rח)UM)g+ώnwJLbIeOCgȍ_*ts\8˨fn0t>@N5(L|#f!bIYzm맂U3s]v?#$TVNDTJ^ũr_}qHrne[,X+۵h:|b'"L?1|{-[ <,a{_-JOxZԻ.wHrh[i ;| 3~μHe%tW]^7il xd*Dn8)S>`m 6sn{DJɆfIrix 8˚ Gm=) Пk:_Է3 ީf4[4qbS{#2"H?dDŲDlsN b<ޔ򶐂nfhb8OI뷻=2_ Aǚdٱ7pKAY>"Uv' ,@W8;:m(F- ou{<'7@rDdٵQW/Cq0?zHb6``F8gt]e"^BL5Np?Q^:q0B6 LsBT.FB. 'Q+HB?taEh$cK8(ӥޡEɤlW@rLkzG ^qX (e?LEN9.Z+٬g`O 'c7_- Ed+a rZ͡%0*g )453zN OujGtOضy6 㣇\ '4Ge(n{P 0IRf 1u2ZE>i aWڳD%9;`5Ќ@;^/m"x|:ϐ#F3[f{Vb:&.C6 3Ԭk˹ ߕ SlN~h]?{'wTc'SInڂ_pM2ƕZwRp[YF9*zUJQ@ 6/d[@[fٕ0ƖDcѯ Z寂O ޜKӌ U1#t5lCIU)]/D8diXX9@w(ҥҌdLhq . 1} ;djA0s.7ۮDhO6+1j#~\Yob/Tf"F.[ys!^Bӷ==5MRg,g8A]/55;aUVG.x)"- :yֆ|Sf8I ({/ۑ,V d9,Սz#[mh-9:j Iz3ѩ[a0YXd6u~14feEt2]p dDKF<;6 j^Vh X+b\.r]\")ZXQ&5~Vt3ob[<2X"$\dFJ3ؽEm?sa/эϼ]lRjư:zx QZA+hڛ.TUO{E2͔X)kwכqìgϟq T*o뛺3w I1PiM:ݞ_79d%-LE ˱*S@hz(+&L`l~ܙP5wXRUlFHpB,oti_關j:iJJ˦` "fPOX#i/> 5搖c;-lO_Ԫz QzS!e`x'd9'!&DU&_mp–vsfP!Ѩ&en|x3nj*i I(;N6ۇ;xE (5wH  E 4.(hoR X.ycJyB~3][oL7ĤA-VKU;+S3HR)Cg m?{<rj,W~dJe2\ueL'yWbzvy4~TxyJY<@@DKf$ І7p S%ĈaCzM}S؃'ʛx<9Ś d13BX)>JlpP% O5=&Do=*a^Ζ/; q^HԲvg፡A](~`KϮOa; _UB3A7q나f忩'g3\+/Dio?wm9,_CQU"(Y$6K~]Yğ\a⼟k YfJp^d-2 <}6? ߜTDք&\=Lo &eo5 22/MTqo՜[)y=69WvC N0uYT%S~p,&f~kWwc<3?]6'(9uɾv%?p:U*7EHe(ΐ݂HA/Ha9F|ĭQ9ڛP6VR.b A;E.`\>#}y52 pxvG|Ve\ab"zLVDd-Mq́ wDqj,vMͫIV}Eo´}X^q|L)n9(l2uUhGrM>LX?澔EvT>wy:#xjlGJ ;n*Ӈb w+J GTͺL]HE,~G@j 89=LZX@xlPz%%A;CL!/ylY; CXV)'Sܓf&vY)M9i羲4F%\7а <I` C.wawK;칚$7$Jʥ'r_zhDFLM_M2|5?П❻=+,[uOet)s#Cѭs9o@`щ{roE}ڔ lo7O7<'X̬2)koO',יyH^VrbǪ"ȊVс;s.b߰J eG1]0GFl,h`^:ȸ`z|a\Pu՝:K-9C?\]X3~FpdVQxU:7S#66tPO?, (L PƘ G}yW<~JJ:C(t=&'0MzC6Ec* t^˞^x)2-bspѧ_mN4_ f_6(A#wߞ)G_[W!I۰~9DSI[b ]/4]wSۏ;2w#1cz4.橣%&i1&OE*k>u@b_n q'oaF`/ 1(fX5.9lWg,*;hSiT%)SkA"?AaJ\4JsS{xIhNkHs[0G^+eTLF5XApE=C%푛Ѯ0ܗoIb.!A0 kwQ[b`"]2Uл(|ᩱB x nLov{%gF2H` s q'Dlz~#4馯t. ~fKuN|FRu2LBEA,,V20P=SūJYWA(`IW| A!KD>asd yC#J*Hy ܉p[Xp\ AB]4>MNDMLepܮ-Rܜ@pIv@H}2|!gYXu!dWo嚴(k8OjνMėZ0;/)F('*BtyQKڿC$ FV}]&\BUsD Qy0f)j+NoqgZ M;9OcIEvN,1j]m:cxǰ0kEA*ɋ> >Zhq ֝wpO/Ba2|mx;y] ~2 ypEHUq־יWf2_yϘЎ˫3_zIwuT9C)0u El "aOc+f@\GG PÌ ϶5R ,j Ap8p-lhrCM5"lmPzU>[G$^`j;hAqj"C#>9@ײiyV ~D5TUtAQfus(-6ipp$F.k&6WǜiI;<čQ b睊&? ⫱} _}bJa AM\{`/22mj qHz}}.]q`U{8%x)*[ zOt(N*? i=o@ %XJ˞OΉ4d#A3ąȊh9g.X8k&$N>&f+>oGfj8*XJhB"Bl>x]9CUP&CY];"· +5* s_0p`"ea8 O\-)Ye\_G 8$$<~F}C VͽfҭX"$=Hs. st^J /['_y0H{#[ &!*@!L=LzgQowjw\j?.JNW"U)TwJPj% pЈspX0$pkjk2F؄'x:ˡ~{Mu!=xɹ6 OiSf6b);6ZB20_skm\ 45z`LaQvl@۝?VSS^QᝯԸs좊HO}/y{ EH]aȟGK''57A\b3<8_ZtDpЍ, h 7$%]7વ& TWSյSmRl$Ri% 'Z\B^= #AD n%I@=v۳ꢵL,PK@yzB5yidbG,e<&p"K0&N0{5NTO7bF^EgkLW.z @[0f,4"- e$#bM`'S\N[+_n##0Iz.Z6YW=[ĹX˽K\w b+VOJnXqRx 񢑛g!:lGBER_ J3% _?ڍ"!Eпw0_M=PKo2ӏ8(9eep:Ų"㟢>gDf9&MhtkgJ$%e7*)tkr^[.^}-ohG5(="V-wcѡ5>9(gK4㑖 EBh\_ਆlA~1],% G̥CSĀ[4'B=ЗzfzkJo# C+frncblz3iİƥ]4u ٽ7]"|}&1Q?lg)C" `K^E϶@ =*KVmn6`V#aԯjP~+uI;(<\KIV3uM *1C*z8jgX^#H9&CT|#M Yg`cr!Y}"tM,ARb kraߪ~Qw.?I][+Mf6$6b^Ϩ=nuML ^Rb(P)|ZFQj6^r%snebǂ,v P e찫t!>T8.fWd[U=J, Ԏ^%n~%tOK! dX =\ )Di;ob0/,S_6L띛x(ff;-&p;J Je0RP8nF|DeˆHs GZTS1`(ɤqOaX#\wVܿplWmPv.lɞЎ=:7~V _w@VHRLEA?ji>o}Ab=ynsRRx=r0$3]ꀨXRYuEUu -[K4,!g i1tS^[6v߈I1E5p-ba UBTA Bٍfǎ0J98VmI+ _d06JO%:*Wr-4O0>q޲(w^g#ٰ|&a x{aMN$s#}Sgz 10Ys=رА%Xv)SL`!2Q^J)rOV4T ѷ˝aˊ{D9BL`L<1CUjiOpkӟ!啙umH$wR+'ÁlŲxչP); =Bܝ=bQ'~W?7Ι4~% -S_u`>᎗;rD6s pdlDcN10m2j kG֔k380YQ&L)KRÑ9FFhY3zem8NGƬ\avZ1XK6B. "%#w|3RZUǟm0J|)eG껧BlRX%_GTs$F ̈x fjqV{[b{ Ŋqs3(`wjتMHA#jMIEKXyOYbDž:;ѺUuQb0]Kqbä7Xdibȱ尢Њ\)iVo,P\{10=9Zrh4h-( }u]/@|0l~,s8B5|q1Ȫ;;@{o &b.i4w !xa9!?!}J@?ĝAa5D.U Z`U2Qz32 [q=oTl\R4Ql &uc}/K0]Z6?A:oA50Dsm;7bjl!5}0)sA)TN6,w{b)ΩLؐFSvkߠd#U /zUr [p!4M^:\KuTGt+肀I7`Ӭ>[`O7%+ vOF 1A;zԥag) 4 4œׯ"Ie攄mZG'ι?NaqJZ#ܕ$78eؚk  cVފSw-.gE5每7pWRqUI^_Icz/>:FCUB2놪m MXg +s_Yo͎K4l2 =0LAe7J+:fd@&RK$2z^7 Տywֿ"~Gn3N(N;bbwa—/`̙舕e4RYY+e)D_ }Ř9{!%-"/Y\54Ij:1{6Ȩ)>Mz5viˆ 6UJLʷpы_"^}<58VE(VI\ۀdtZx{ЭbK]:1TѲm<^~͟BwirgJ-8a\MS^Tjz8r_ٌCU!*ibђ\P'= 8CiO*&rrpE 0v4I=tK_@Bc W<ן,r98~|R x,֑ԢU>?&WA}(2xh BʛTlvDh3DGЛ0ԥTdӁ򳔝q2 ;` BF?aMEAв:|d |GHZoB_sB{Qjؓt";ɚ1 R!' Dʸ7H# '᪌[1|urM6JMc6 7hE2}NuDd`{US&soFv~ͅTz q7HnoX[ :X$WWXHl*EBGjJp ^xyʻ.TNfV!eWdN" RE;R(m,˗H^m58äEe;ACt#k{Frڏ  #~dQRRt~oƆ@yTqV8;_yşY#%hAf[iqط]Ϋ3j#,ר`#-0 |n#nݽXKG0fAa%xq &JX1 } {qNaP%Tna4A\!Wq`֩W=v`&姝Kj#(O_'o {4ю.;s}q!Xw $&v i^|<<0jGg='Zi\{xa穞$^&ݖʦ }e7NE Dܥe^絤<1#oH<:n` )6ISo1A=䋨`25TZvF Yص2~aDvV,&ĬqTH4fo 誡kec6ykK"dx%4'.ݜ`tN<1 }Jr^lCP5n_tDӵu 8qa]`9v8Wc\V3Su%6taP=D׿:{Šr$@z;E%q`ęC)1c >=''72^աǨjz_u ~&6&h 7ePꈲXhSŸk2S}eEctX$qdh%f0yrU.?uѣf3~Nz1?f܇략`w6KSZ& GC2`V&^ .vPi\-|]4E><4w&uS_ kN|\5 CiUXpYרwKYk\xXٞoA-5UgT͙](?ӎ]. ٚ:2t *?Xqx,8'9$*>3K XkmK^uE])dNo&o/a>2C2`J_oŠh"tB>!rFZ. YB+bNxp <+6VQ:}H!~,G1ZU n7ϡҼ#nl͚U^K/m(Ƣs#h6sK Z}m=65ApxihTf=Zuʯ5A iՠK6ˆFhˣimmG9EoYkAGU, m0“("_{_ sܠ6‰q~naQ*bLNiû+/|׺rnԆpp:7hI z"Npɺֿ:L G%k5T?nyuW+{?2jT;[YаG0vRx+]tt͋cOB &ҫ {qJI< ܘ!] h/G=)PpcY'.SM(IOjuxeb۸]ޮaf *wlĸL8ꍦQy̓a3&4]C{"KuQ$ZZ#7-`׵:g(<ʏEQ_%7|$^L<E9 你M+ h jxe2XXh^:#lsfi!/czkր~TBMW_v yvq֧u*>GH;:#w|ok CdǮՒY775\p ([3X"ڡҕ 76O DoO!Z;IguTTy}B p?yO֞xZ+,Hr492,haγXO`C#̋@-j:T9(+SܟKJI+w^dny 4D߱Rx  f+US@d Ĵ>o^7l>tBHANLȅcYH(5϶Ю!&DǣlвTA'2sW <#,μLanj?AE81l'5:p [c`Byq=NjXw: 7sbZNnc_.@⹅QLAE:[ =SI@jW%V(9ys¥OiuAHL+8aR{,,M5(%UN7 ZiyS**Vw p"CA+9A5"yiz K8uX ) owLCߔ<[ڪ)p}"zDP{ywA&ѻ2t0lD7FyiJPkEބGN]g hkL0͋ kHOtY۽fX,3Q?"dJHN9MQGS{Vm/W`aq[ uXlLC7jЇQXra 'F=t_4'O n 80<e3F/ &wڕ!0?vx\5wq@稱;{j?Ydcf[w)!E>Zh>}ɼ93fD zU/IUjxI85[礕y,ijcYWd'f8xjqN":WEGSF-6Qp>vMfql 8P_* Nq]ο. \lN, <$ ι$O|++៛r} \Z9t &/Xe<"to~mhTi^a»7!f>p 8"d͜rL荪:CL C{ryk>JRaNHH"d|6Y&~0_:!D9_[l X$~U{+W:]*8ל1mhAdӧ*)Yiox%yFv'ށsNq'}=:!&6>H6Q Y'H?wmS:eUۅ"5GQlCG4=H IXB)/½z'P$"!l}v UMt}slzsPze:Y(%tD]m溌J s",@:9KQT>CuA7Nt8,N-66R߁}g-\/65ݱgXUTSFu-3Wz/w{/DD(hVVgRĥ>pGb㐫4M K<gsdGe=z-"F7VzgC2-(ZD*. ħ."uS7Ķ!BD(8˴oJN{CgPscC ac?9Mªnp~hSv7WYy !^6M"Z3DvEo˦ۈ͂7kk\ѱ3+2u(2 Vy# 2e,Bx5n[C9r$ hL忙崙Աb\Z^)SY̕C|\:mؘ}읦NA_D}ߧ! ov_tz˃&!RŦ U(&(@5(Nȭ]7vW=L Gӆ&MΊ7=:8.J2[˴,!;P~DN"7ph/Aaǔw;N۪/-HZ2 b!ԗXmid>{?G"-޲$+Zn5Bݗ"UL<p8ծ*A'=AN<9mXB8<E56t$ؐ"k_@cOW\H)# {P@;W|R[|b9ƫgi=zuQcbXЙyKz) y8}Sl1ORuuW SJB;=赐XZ=7K$=W7rŃC٠򡢏EG .0ٜl8ݿÁDp'9͓h@W@D_2bw_{ v'w#,kC-gi:8]Wb@W>R#}M͘'sր^p [Dq!ͯ@L*\IxrVXyZ S_Hs |#f1ɲ)\" VaR4:lC(fLsd }!D\ ֕NpD>T [D~EgZr6+ /Nc=G  ]!Ex>>Mtr?y n?;noPLu󯾚xyj!Qytrm$,rt{w)"Iѓ3DhAC".{qZ Aq?!xi8Q&GU?%džBgP7^P\]B f,+ D&Xx(ݖsQg[18:وCD9*潷L5ߩ)VtnSzy@w\}=0'iET&(ͯm,V {+u  3Փ%|ܿ\0uNUnY.U0.2e6w2ek~qhm\ !zY 0W(9όH|C(\33|<FK *GLXV5#X@6urD-{v"6 A5Fj؄c4MlnEq!|N I}؜R,hV ؙ6S9>wnFN=m֝Q⑥,]&ܑ+=s ru"7Fyk'5ƥ6kC1EHk $mV;M_[ڠia} %jHWNǯ's Bv#u5 &ځ=i} v/>iڬ7,8Y?IkL?Uȱ  zjDR.?8E'[2S]q0;yY)9 _ZHlथw~j` U[4׉U=&gkx*<)=ovvJ׿B,b xR3QΘ,Wh-C57+JSոCD.e#3΃|D\j=tt YVU6@M?KbbE"[NAq,`>^ J3nA;&Rl gx@XzJG(wV}^$Ae4|R,(^rrL'Ɯu »ۇ|;U;R@$2ŵ?t\%0L$d(AC-Ճҭycqeݰ-a7I[Jm vkT_C|*{q,ψqݍn;EVjf\Rvj i_*I\2Z%ܗ{0=_-CTH7Q@S 6) m Q:$ۿbS<`0ZbZgy@3>J[ϭ)DS̰X{H[Qg:A4z$Bw5s6]^]O0T۵D{LDiق T:R 4hM!ik#C> \bEVguC\#v4h/$D\!C'\pTK'՟ajdwz *hIycL* .mF,/-Ao@O~R$fJ3q D6>Q,*V4]O$hަNa &T^D/) śMdy{ Ě@`袋u|Iw㉥][| }a9U>c$F $pUH1hWlw0jmn! K}2R4W^A%,#DEaXB#=ݪ7iIޛFO~+ k D&n$JYNfQN~9@{SA}_\6^A<˞D gyRqru'QUy:^ Z>gics@"b12)(&P+muDo㦓8C齏LI0L2my ev1(M"rnK?_7zFBNٙFʺ?;$׌uqY=b^`W]5/-jdo*E¿@oѼ큼$7{UOo drXm:"hޏ<VDW}@`~Q ܞ-30N ͇O2 fv0Նy:oٝ(Y=R73XPQng禳[:rq~4Ժ#>@6 }꠪wiv?YUw"~1Suk)uqEDmdᶛ<ړ_3BKr_)(3I;y) =!C+[:pXcDX daPNjtНɢBu\V;ǻI{eRRe Ŝ#+۶V``vPs{vIj{rv SE!Ȋ(+k2^5^=S;B=5ƙv?m8<* w)c* Ys*J1h Z8oyss369!cf\@s7*_+xգg5Bm !^6=GY槒ŢҾL61JoAZ܅=#7Kκ؅s\I*# NgQ吇E8a1X.hä\|K9=t/H=J aAX(LW1s,v }BiO4O/tQQuoQ*}@\HfdΙ|?;Xƿ[N˃!8_֨e:N Pד,H|BVыj:/}鏍[a6b]FHi]/h߃J #4Gw:eH6>I)HZq2& 4j(ejIVIMȑW mL1{+U^1P2N\PPPAQNAn4^1|[~W%ggnn}wթԏj@쐢v;5ɺUѭgk 2U@8j&[lwu5;+i=VY`DCE240HVx~Ml[v3{}}&[e MVx֢`kˈ Ga'#lh:f^Kk\p ,|WRRB{u=wHv7k|Pm" YGyQ-mF-|wHŎ{M>Lf{KPeM1H+ - BI& )VFX(֣epUx8ݨ5siwEVP% y1tن.|z.ܹE]Սi^utGh *t;TRvaa-Qw&Kl|I_\A4!OhӷeWc;L|ڣq/G< ]0k jw(k __5TMϰdV[&j!v{˝ te@6+" l*K,pYSqd,+g|H9H#+Fh2o(V" \_QK DeM|mbi0UVW<4LO :[/&Ʀ[\a>wBHY؃LCU.~gLX/OɁ&_B3mBv@F@:.;d[\rL+4V5{2v}= wNzHfRи'|(= JZ?紉YLI ߥ\3TZqK7ymsvGMR<s9 v6I5n~…mfeDc׌M'EՅҶ.BtpMA >Jђ 1O:o ]]tNͯä넏3y36.m7M$E첻sz_( H&n۸QQ$ üL.,[9{S+2QZ5{3u] ^Uuf7s*p Q:hbۆ3|slZ%R0E UPv9 ޣo T΢WV q~4XDq]u$0Y?$aК%!y*XyI7(tӃ'}:cECBL%2Q?#~q6A'ׂd3.|- I|6'㱺պf8yYk&fZ? C{bø {S.Fm.p;xT~+f V9-NTy8Jj=ˆe{$S3)6b"Ѷ^k0ʇg(oP>;$@K G=9['-N0U7#DCrc⮡W4rƼ5z_{z`p/{(nw#NQ?@!D 0 [ޛzh іՇG.DEMs HHX1oH[ w~ͯHK"t 5ar#ñir&R.fAv$M& o) v OegR3h- eLo9~細35#&VІ_+ Y{hZU[m?؁#{loj^D*fx<#9.?SYđ1tfc<.c%L=@yue^w0|U@Ț\2E%E/TLkCbO`A60C]R 3zK % &EC`T,>*+D eKn4fԣ 爑YA[KZF<{P-{ x!0+ 1JE$Z@k8 D|T0YXTf 46_ckz [,mlk/ջHDIҷ < ;jێ4v.3H]TGԥhY2֖b]q$JSU)o]_ANIFi & & Z5Coͽ,|e&+Dd|'06^2?orv.qoG)dGeAF3")ŶflE\qӮ'A[ӗ@q r[OFG^S%Jѯ[R}?o L όZ~Eri];* G ׯ=n#>7;91SKfI6THHʳh0 :> q(4nƸf؏^1?i2_tyS(`O'ӗ#y 2xLd9Ə|'ex=S:G=vz.a7B;@+^DL%IK!i65L`7FF)1xIǜu5OL)O;ZoD2-!)R(?2m7#|QIܱĹd@ }u Fy/"f؋/<٩y^!Ѳ@O|{ i3gq >j9sfP*[j_* C֓PRor؂q-}aaTl R]]t؞燺B}rNwcMX7T?.Z*eMz4#j` 5flط\oy)P2hzvJg[1xVJ!2GWTj#ܟ??(d]trH?'ITI`޹6ܛr^ȫD۪Ĕ肀@,K~ ʛlJ opyQJVn|l@B&;58'F Sj.N2qvv spAk.Q'ċXu܆@X+/`kd}o75%>,p뜁?ؙiB/i&p»t_#O,z7n޲*oEYe=ylfd+-,y.T^Al K{ -;&ѤKQ/|+Gar W#[\޽.Hؠ8Hn >k짝AI>󑺼t7Eѩ:0-z|xhK(o(zuy~Mw8VtrIwB+Q'V*P 8 &yd}Oп|TTMJl 9'q(SoGy8 GiSiJMK,{: P635HGI[Cl͸Yx䟭#`X= "~]>RK)4_+ww#j5e t] I IluX`<ڽ@^{CZ/\w tDZ W+p74]ȘQU`vwzu_#1" q81bdX nU높 ?0lU]TjU9n]`.&CU^ Zhk4V* 6$Œ&;z?4GʿZDmm'V:A*XF]Mt܉PrtWe+n~EemVl\BhNA8% 6湷uﴢlj}ށE.]WJxx3oȔW"z"Sx9w` S ${\x!%^<S`` 9`ȱt0ˡ̋g&k =Iߙ0 LU({4*D>޵{NCmCy,zA*bU{*2%xv y`!3]_ cx#?|T gSѴhG> '{fEavI0DR4䛭Tj7}xZ_1JhyTƃՑt<ΉTvlֻu%3}F/ 2LN2»}w!mTgbfd1׹d)PQZ'Žs=|#pz+yyLL";2uH7. 0HAKrFm5=.zeqq W%j`{;|yE툙q>7:9pi_Oה"Nwiw]/:_&ODo GDWTkbL gw"d~Cl?8lzICp tMCRlvƷMޮ?/erƧqhtP3l8IM2Ń _] i45vIX=Ez܅ĝ 6ppŝb> K86vG9'eolbX$T b' t+)1+.p*yCӖŎlIʶɫYcsHML$>ʯi\3}YVGk ):fjW2-k?aǝkbb:dV1X;s*_M u&U\ɼߍz>ҽC0-ϭa&uJ^ðs>l@ՃNݡmE0_MatgH]\,s\G7 1H,4Z*s?xrH>4 pvpt93Mb~驓S5[+;rgTy?`ڟC1Άqm[^rwߖKI+`ƭoK֦hAhPs7.1Z^GoKQ2£`7'7>_ݘ{iNiSZ/rMQIqoY0aj"NjmYZKTd odLSLAJ o}F D 0/ɳ  v yЀō5+)$.fz4vԨC&Dk1]=Jk><~fFĬ9)c r>]ީ7 >&3g+ԄƕxmQ+T9$ e7cBu];@sf^:yS3OA2 ډ=?P4\!Ӯ  רS~ЮQ;JW i|Pʐ:?_Ht7qG󟌰*?lr ŚmR;5aLpZ@vA.?5wZÕP-G9^e'ԧB֛?(C3](Ȍ7Q 4-'zKa*! rE@[Yj,{/= L:&as(9Ìr$e̥&G/Nœ w%~^^FF<ǽ3ԅ  Q~?M1)ORSϷ"mƽ{ C AY|}`&в|Zj^X=%N'26!ńdẨnwzzce%#wp?%vV:>*vT[Q&-7.'m&:7~dly^i@'R#a5q)g#, ?pFT\%/~AֽZH"Nkٝzk j+X! B>9{9I"!),56a;]$;3)שׂA}xwkHlT%eRz~cXp{* m0Dn)UXy}8s?;>UQw'Fcca VݻhR͏%~@:_$%/eH2 6CDi]M ٠'BSmgǎ\1"H9&\%r_G S`*AwEJ] ݌50904|՗gp1 S(V݋G21&}dRKi gyO+`$L?%Xs,]B,y3?G}/i%MQc )A}Sr: AGB "|p&@6IZR|;QfI1%ׄ,#:c68~2c A]i9Y\##,4Hw5(a\P/LS |OVԭs>UyB ru 6"L_ ) M77:]ZglEA]4ɫ4`?&zr+A"b`;PK+E|]6Pވ4q: w_= ! 0kXbz@}ʂ6;fiY3>rq:(G;ڀȤ\km' dEڛl;V`[D)"R $:njgfCqs]M/x*>  :Rv,$n)Ǒmg JLi=]~2}55>reגb.A久+8B'ea #e>aI,lCLNXD)˴knP7Buv},XYhpՇeVE&k$6{(G"%CGaU}J"Yw4ÊoH ʴ,=I 2(ڣưYB[A|ɭUSދ5dHnpx1}ڷҴ_V6]bs shsÎ9Ki5AD93ׯ4 \ՐnWwpF*;Ϸ: !(/,9$6{  '؈Ƶ0 ԑCw"Ckz_#5J?4W{mj]&ģV؇·$=8CnCrn0):{kgI4bNI@籍Ro kbCaT."kXa V!jBtXdq X$&w_xH* %:C81ƥdsxyv&{ъ˵A rgnϻ^8ٮU%^gD-3/8c[y=>Mؕ7D7-okݻl8ݡ.^^e*q=@OY)ƚy(2̕wlSVhLUtD[pI1 /9D&YZγ-]e\W'- s ^sH[BJW˓L`-/=SOeϪJU'igϯ/" +Y(CB )ixЗ%NGv.j]+A[Ac]6^{n6#fgzf:Maȱߌ5|-1KKHL&4pHTL0b~wKHؤSa;01"*#,O)u__`\> +O`𮗯b[DGs 6>Nu+'U~2R6.px'BsmVjB`x@UL03{KU|N5ϑ8~APn3{/. ,7v R,""B8bsxi(PQ"xqm.o Ԟ,1pU8l瞵W.<ʣ*wdIkau[~E9e";)Gf.xosGnҞ7Q FF>'1k0\JyOMHOs9w pqo78]loLCS"??4w݋<)zhܝa9 ΋0ӿf6qag(=cՒ1/,``J6q>EMm0:Ѳrs>JH՞^b:GUԔÓ} eXOU*E(U)(E=[v.CI1~'a,GG( U]a%,T|p CLj;7`.&3Pgb{рk٦W7BB: " xTc:CP&~`?[Gz\J9NE.ߘɒoW+qp Igl'g#'Y_y7aJ L R/u/5}&[@(C{|Þof b514T#ce]A I|p ӼhG’8g?%qnϡG~u}@+;U-tSYV3JRؑ#G|Ƴd[Ģy &.C(sгJ"sRn ;s{- ?}TNpZG7wU ބO6JAP0[:R(H!8ljIaC"G5uҥۊ7w-Jmp ֞E֌;%'o$$;FD}}jzdXу?QDJ'l Ŀ##`ک(j|at垮C%{WuS=CrCB(}3Et5nː EC1v&Ѱ)X-V.d j_<] \<VaY!( 9cvAweR߱%v`v[?]jQ.d1x#^?Ylr]fe_>[E<'AhT賝Mb$Z&5r ,k 9z=qbe9i@@I{vsG>Ů'7ӊZZ m6.ɌVO`F&TV Aq~3>RLI?]=6v=.X~p$D<",1]'^F=+,2 kқؐmi0D[ʲf'xU0])[_T,zR uOg,o'{^Yd>XWarX?3}Wv5Ґ!sqkZ9G;oHbNGP+ !`&@wd(֋t }|4I4N*R 1t4pW8+wD#0!pH72 j>$pzEBv "'ԅe.H5Vb@9UvԮD-Bh©qyք"BQ*Wv]]2ByWǬc]Ӯ@epJ N 5f0h`h <OStNp;l0-&Y:]4'c={-jrw݉He}K-cyJOZh@+Ӡ&?Բ&cg}}v׻ 0iZr *:yLu!;% 7"?ʴcDݼN Lʲp Ο#}z@L#V<9s'tr;%e R hBdZLm=oR=\ew͗L+?J15Qŷ~4qãX~C5`xR k'Kt C1Cb':Y]Au}U;V(",X-iGw]ׯvgi_M1doL uߒ.'~C1@u>ʳӤ;lUylOoo]T[Ųm {9FlRnu+h[ ޤ4pq!2{e)d#qCGOfdkأ3ubl'&6,d}-ز{%b>XgV\.\%MRʒ2+Phlu:IwO|ΐ؆hR59әEXڣkXTHU *:}4Nr/RUJY2ܪ0ۈ05ENFaVΎ:W;Β[LB`x(7|ɋ+Ni#mj`+vg,EZAv_Yт_9D7k .%$c)j@GP4:U0!:eŠ:j5:4ov_ n,t>d![Ӕ]ݧ\z(u] (cȨl7b!LU}׷(O󒃧.zթbG;3屛*m} hZ>%>Z{U 5sA}Lz펯T1@%=2>J; K$Tc=NfC`fW2Ƴ+@Q#U*i:]5D|e11Սz Sli.FsT=x4J}P:w`a?hJj-ݱnck\v&'aQߙ%=j /(DNA|>LgJ,Ev PL(Ak?0MaX~ QMJtL$'mZ$$YX`FS^vn-7g}ެ"4*amSE!hUlt 4/A>q$%C1D?Y7Lbtl`{=%zown`maB38 ) q@OۉpXLNCi $p9}g̊`g4F we@A UmjHr]DSh'U[e~_[^Sat'b-~Yck^oca¾,~^mEO:s&[npf j~ѵ새 FΔ2R"JĹ]ڹS;!K80$b\ϋ%)O-WglM;n Zp4pAd|@uB?yQKˮ)\,-#̝c3B9+(KbgcGI`OfxWY&fCQs *aJGia8|xb 4TbBR9grz{]Ŕ쩴8qA?beYV_˸* ]z rVx͡md>A M7񡶞RW(V,? !hXeCo[S@-YGZqтd(Fਛ}"T0RA,XwJ|0<o5$v 𧭺4$B̠S71ZCpL( "2H<d`'Q},ZVyD %gͣJ(Ah) 7 J1r8@K׾%RSݦ7 lVśb`.2!cU0X㼁ġnلEhJ!l` iy$zYZiw .K|XT2P2WBKٌg d"j qkڼ8v ' .늓 />uA %Y5ȚrXed0^HEigHnZm >'98`[-v$+65R08R1<ߛ50xsJ1xaEC1s `qC.Y28byZl=V );<$ype!?Tɾ1O#2we84s6T&ְ+"Լkx84dX h1!Z5tmr=e20Ybd%6u'qjƾٖs>c \tx/b ^;^ԥEd b' Q0ohL&m&kǿF> 7+ 'jYz? )_80bVpgeu gk"MLMr]=/L'Ta1) mCq^4ǭ̅rI~c.8 s@.EYKXߌ%nn{YJdW3TW~1^?.ݩpY=N᤮% ݒ\ײլʶݛʐ܏3/h^{6a-Ȃз ~{JWs ÔfG2nRZ)=itLWC<ܰpKPHM\7vi>1eks!yL3E5#\)QכHF.͵吝ř@DQMDiSd4ӘF5W-N +u3k}lc $+9 oڄ{׺g2rtG&.p/~ +{1׍;ć$a=G^E1! ; Ш[?˾8 vvӸ{h%Sy݊C|oİW,E|V5KJMFoh(nM=%nLiîeU9ƾyƭaK%DF]z!S&{Bmx<;id%а[c4.EN3{ xd>>#ptl k*}EMlavMR`7J]Fv蝵frπb|! ^T e0*ʽ o1W(Mvǣ[ BBm9摍<}k'29lkkO'#+*S &oIMm\{F a Eb-S,(9DxdԂSuU,gW3R@0M4#WHg9FO)mD0MpC[ ] b@#u"pO -?b;Xk}u[EmDkzP6նVHyΐE1B|_lmʖ<@ݡh!3×Y cnz4" Ʀ] 'juRmP:U@$A jh2ajw1,)nRA3s&4tB-2/@ڦ0]vrPDѩEK_ܠ*:Fy=gh: %cMt`\e'7)T ˘w@`Yuiyfbyj`}`3Q<M)dAS#I S#̬%\]aOeY6N}>~q´B'`hD@pGF.Q?RԛE9Kw( 鏘g`{LT; ,cP5DM`Rhd}x Vsƪ-@پ&ʞqEF+re#^67fM¥X?j6?Kk6T0U! - n&65snd ;M%}Œje2U_LN=EA0] :F98zڔEHK)" )nV jvA31cZlcmM]{s>.Ig'?)^xp$)CuB uر;LrR 8@ B<.##+\pR=R q/|X]O~oh?{q 1 e @+~죯N5|b#F~sCЈWט3\4c:>T/)#) Kԃ珝ЋU Wy?B4DKg ΗhLk~(P]LAHhZ8lZľ^4M_'ǻPceK)3@cf%AGK䮭Cܐke6@YYg=ʒmwܡw+] CEwxf^P:rVhYdyKd*1`ab_B[$n;#KwU/ɟF߾egx[$p jk(EfڦtXŹ#Ie Zh"/u@4VfoݔB&F*] J(O+Ũ_5be&B^jG?@_l׳wNR)_Xdz>f!;L\8G𽈥ؚ֡y$z86jg ^D_kT*Z?0/]~+~%2Vm-r_'❏CQVrY3S\&R碘!h| ƉhQB e)?v2\s Ӭ0*e;>JhJC#8"p DN%gs6r.\ mF>űïkbR9Հ|Ts=VWMK e-aYHLZ;[V#'A0c%Vm7'+l:$5 Gi5 9Jn[|T\lQHiḌ$?`4^5}֐mIP k1\r>fB=SRx"_bȀG6KKE9ΞS/+akb3×CWH `;S1D1fn]lYBWLt >l◴~}6HPBnzbG{+Mwl,3C mY FNzKS3u|.E"-]-t姰Aaۉw34:X@; zf>RfGlM:lfP[kq!wk^X5z/8;{=' ̃7Mtxv8uvƣg4qEP}"QmDf@ih ҸT`Z(w6پdx3nT>:}ivntLeP97[ͭ5y<Fo3mJ yqXkS`a獥)᫥ReDRH"maV.Bn祫0JP|%s)QKRt,$!V1Iq ZWxBUf'-%g͇:|#+/0 pcd|h: 9EftU l[o/$z`n!“A,Ye (|VjN=񍨰AHhGzu? :%!T7HN8s(7 ~l?+4C{Oٓ ^ҘP4/pK{/Fg 7hX|%aUB@8@;Άs3%SIZ4E;y< 9|U_Q>ֻۤ-pұx/ߕ (b.к%4Q4zZ {$f'n v Xck% s2lԞ[HC`-=75 U/eQiqoZj2Y:'!]6?7ߨRs1]d:Ȓ9n z.{eH.ܼH1` Xt0& 6~퀷U$I ɿ&[wr-qaRvB)F?9(5;X2FMG5MС4y@ZHhl]ƖlƺeyTI:ErӿX:e=]Ma1mS*?B3 @, /]-y ]\v:4[į,ܦOc&K )1R7ɢv>8@-Qg7<4p4PYq6mHsAV@rbA(:vȆ^n3=+sϮԯ3BoI'W,a[\K(EKM{&YݯG;]VovM Y D>#cw̸PTv7^ֲ^iۺS9gF#}E_y{ʌd88w\mVb>|yB8O`0\K0RMP?VEdo5ba# D_sDp:kvBİO+G}mGR<.~Ğ}Df]XBdOs2ƿ3JҠ2\n`-pQW5D`$(9U׆2̃wTuBI9KYCoЯ럻fXo5Kbo:: B@o` 5YT]hTxpS|oQQu㥮m;g75RAc&.7RV&y.#8 ^{'(P8I!KV|5#&-*p1K TP~2$f9o}bCd-6#O dW<婏j_ Ud5uv=w ElZrnD$砿)ozR< 'dFsSui7_ؿʍf}vI+)@q#GK9|=&FPhbY%ߺ'@Hzemo2{ $oBHG=9.VlO쎴{o 8;^2MS6] 1z`r14jnu h\B"yutbpxUW&m (4Ro1HPgazU(?|׮G܍-R-I9j?*J Z#SpM_ X ?_ LE">7Q^טRdwA bMրt` 44w{-1fՀ6om֎|mOTǸg񎟷+(kXQ%7}t̋Ej`[[%ay=#5~z4(v\#J\esLsMUͽxT8|ϫ<0#̦|E ڴ-6e&(5zBI?j Ltxت{ D46e ,c":ȗn{W 2lCZr1{1(WeY^\lvcId ~J[-(LP]gR@Ow CZ`5m21zGMT@ 5JW`dk_2)(bQ\*y#Sq/=)sܮ"ɗ-6nąx,vh#FVxki&wke \Ε\.뿝%/ ٦="!*!@P޾!!i. z5q7z{M:O%qꊏ]v0Ib0,bn{͹:$FKR lrK\~Z}逍d%#g5&h}:΄:'|*L>0kVݺ;a$2)9b- Qߴoq̣H#a Si/$YH5.a]l)%9U猏QPA FMų¶l+V⎏ OLj"E]Lꖖ ;up97Vh*)/قt6mҾ=,9r|<<@㪾\+>&sE>CGv>_IJ0(G+ ]CW)J88+rNבy=b&Af_ƃ{n58)6.ő[‡QBRh5bEH w2Y&)҉>AN?2Jln`;p!PM@Suoyjg2uڽ0oJ6ECSj MQ~ Q߬TgpD7^5ϲLV_op:rod@@6(R>Y V\C^V/5DʼVAɀ zyԧQ5AAuH(/zsemZi'Iz,;=kvWd]Uid!wbRcPhBާ)#B`OogѿG"rW=yP׆4o;nmby=9r9gn#O hqWv5HLItO՝-0'N73Q,A?xNw6CN(P$E@d2 Ǖ;pJC_zj(WA3uqq(N7oAOhOOcKRAoXg,6N V@mgE߉GW J:wYRMrIrà89aEq+ö1}l9xW~p/e /sH+XSHڌi3KB~Nʢm3GzwUhz;3fOan+r(Q8\< ԊpuaQ,V1»9KS ʸhbP1CG>*$#΋*zӇ2DfL" ktBS-_Aǚ_ o*ܗ1Wn*A͹n :7/L%aJSN:h-RyZ>i!}!&H4X7f"|J2bUyҖ  3j6 W d28tO^XSCoT" 0LmyO#*Cv1&:9W /I^nJ,/pn'`BO4B/R^m),2rИٹ:ǧ@]kGi\D$B@'=Йc'~)]rs$=pVk-:˄?47`>p,P P8CCDSCWA|""q5xU-I B4:%!7./Q`*1p,S=1.gz"UBO(Mpt $!X^7=7-2q)W6A3;&xu^7V ښNݣ`'WAT 5\˂ e5 -N׭4yxcTcd6_ArӼߢ[I؋ (J-4}iEʳ]yGyG?4xJs^#ΜF,N|z<#jeo{>oY1Z9) 9yw$o,V4H?xmG#&$u.?p/ا=0 ,"  xBe9R[To5~P+_fyBvmF#&)(f1wwgXMK4tM ,rҴՑDUouv:i'aX}1+//^)ZA+sjͯ:&48¬c,;GIg*)/xslҍ1LWc,!5~rÉMAx2ԯWG;^8iڑ@|W(Dcۤ:!* 5!v*ڇ(|^ƨnβub{-&6R;籉Z^2&W $>  5iF$'O9}_ܢʳRdƷR!*\^˙4+eǻ&<1 W6@&TmJ!5|C==p" { 4af0e$(@f;fm|Mƻ~U;6 N&/dKU `e{GLD<gƣƂK#{ўU KL7+]rwk%,ͿBD0TnX F;dkk.xaW.NRg'gڣLWILdޔ8CɰuɁ|ZiԁL`vfV+1y p+80IX@*B VCJ9m=Q-!nw1JXxoYX*8MO3y"^ 2ju=?,I4h] %NqKez(7$$EP+ \{6;M*6-`N3*f y<#tBIn3Chb< HO=;jD? dNILbClΔx+:eۧ$G ź{& L;t?/ʂdc~F;Tj i-fSd _TO ,*׫>&yP*@b}.~ZbfIo5)䞺W62N1+Udq/`ݧyAw:/q!m4{?Wmfw.Ϲ} ,[!$ҼŖI@ʆ)CRDcUF$$Gmc{)텊;~\[" /A Fq K6]+_oa  k*xqP켗tDkQr<Ǒ^&Ig~-|g_LoqT+pYmzI sxxIQE/@}t:ZXWAܭS28z2!,4uSpjL,z l1Be}ÅzIp霧9{Ѹ:l""-M{h+r&ױD+%Pke05lhOn `c!ߒ p/DujV"v>?0^OzxQSx=]>(`fxoLAU7 ZnP\%R/O1 I59RV˛#נD LDSغZ gswIkll;ΓKwⷦvǎWMsŅGAg+S)wf,U)˕dJg6C  a7Fcgr݄DH;IoF ̬}}Ć)5yCֻxAĹ_BR`v;׷6U_Œ RLD* ޻hycGጕChi* P`oA|(q>l4v5nף*喾.2dFGֵhICD8.Zhܰ*3 M"')}8lq"'LžsЕ:9PJn _ 5ɏnF!1\v^]ndJ+rd$Y:E$!)juה@"} Q-h :.ii& p0ա:4՗gqQIuTPOn>PF*8]l,HBle#~6rL GP)`Fق椛/A-/Ӂ<->5և܂4RzS̪nj|M?dS_3Y= ,>LTKck߿RQpx寰m5k,T͇{=*ݖnhɡMòxUKeIxԭ|*LV~|0B@85E@g}/O%_5Ҫ,!u,uNhPR"\Bt`'&LvW-^h/_Jq> s{;2KFP/.$DcrXMCJ[ZAjT?63;qqV]uF(Q3u$xd5Tqd/)(Md&4dh_膵JY瘭 P*Sb/?ιrh\F;LC1,)d+@D ɐLT̔ة#T΃2Bsp\\qb几`i,V"!LǧFT ^L:Vt& BAlU':]vR%.Q̟^`~!At8W*A'uWupgp/ǂqW'q[DqWr.XQ]]h p]Vj ;FYI˨R d¸xݑV?[:kwE-EE>eN RRq /e)S, EyE,AhmHW&*R/SQBD)f|}MEˣ +K0lMC:P-nɼWM~wxiלrLL=DQ]El}`g=sG˵ WXn.Z?9F/;,.}E9S5/O="l/bpſtmlp;7~=tl\lިS)vTo,7 9N5fy*tf#d7$u𰨆3czjn-g#opz~MmR Jy֑+|ŦVk_vTbD^.6Dž0A2ab=YXW 趣eBX&;XPF:w6OclϳDuЯ=]*reI,{¾T0dIfoTZ K5h.<˓xyZ%I6ytRFI*^3eE#ʋC[BCbRVsĺ%jp#?h~λy>"U 2'5.'L>FRc-s mV<ɠtm0W؋h=WK8BVc5E4ѪL+n+%5i J#alJ*Zׂl;?$U<`iYnV GϛT HW %dbэ‘G09VC9_ū0bӆ˰N$QLٜ!._;Jܿߎ䲭Gb;0>ku7IUqV)Uhug T_D w`a'l[f;?vD=4vmlIF'24< NDp3d􃩣C>k\vP.NG(osQI0B%weKjf164"cѵ=L6Ns"^N:T۟0,e_rjDw 7q{(w/X}X ^wgOT^a5*iaW1-շ~ӤG$ I}_Ճ@kYǤ!7P'b{>dPvN̍ƝasS b;J-j2f>A),Z"%L`./(tm8oJX1osIcEfyc}4teST5n,q>4 Sv?Rܰ;?S:^smvײ ;S hL";}JAPO->+ϳΩCnޯO1 7׷GZkL@Y"[u'ȏ q'TFn ]aaP~8 |SϬz?f v *g6]ttl1n;E;V pӹmU$x%E!u 5ځ?QEt!F>wzStRɡ4uDҖDZF Bx}]n^ I0B+6&Lm˨ \Km:f9'OP7ߕ^bKC<+GpǎϬ1nˉ^7? l@o"U7u SB'Qdi(2SNmFP]PǓ0ӘQTc3(YhjEYV!"3Qءhbi# t,mF3.(_R ^MxNĮ`fmzt &3#k:w P9OHpԝn*V#͚9d,T 뱓O0"؇ kkjt?DIaB$^ho̟^x2ǢT~-%k_ܯveksԠtCu)5<_S]:26M1q\awޢ[bO<[prg`jZDk ;8$Tv>0'0B*=RKl iCQin$*pMgp$ ßڗ)5{~QB/v)?L'j KY)RT*tF<Ƨ-5K^?8Hҟ 3lxeHmO8%mOEj,x3cTxenKɏbaNqehtm@[j΢o=[ o) 5CAt_!k?fLPg{,nz%JJH[POΰ m1"x*fRw?F*YTZFVH򓟋SZBtadK+C;ÂD(n +دnXۨXğՔD,/UM 8?4m[D9TX~17S> - g@BOzg 5Psl+d߿O:#F~gMW7X@}ĮR%:\K `uh^*1'T0޶9` ԄJyBOҡ/>``2LܬaFэZy~xGK!//_P>v6ˠ?Ƭ~L:kbNJ66n~1}Q8X'Ҭ[T?3D'tk9HQ;%{+eRR7R`ӌܾ%[ pܽCmq+ƛRU]DvJR?@n{)Xj eB!ReQvu-ONCa^Έ~#T6KPKˊL޶?*M<6Zkƅz106L}qq!*m{a]< '¨ hF z{4R3K = *o@qjM䅾{[$<.w̞Q  >Iq}~I.KI׍fzdUj, \܈-~=N7^AA\^=oe$UF)KHݶ]J08E kH`"cH~np|\?=R:\k#a +ܧe;m!a7*8b{28 \y(ϩZ'q:;pʣ9<Ǩf,ak<:Tl[}zstf-*9}%0u{#P2ØJzpgo2.O+>ةYdLn1Pb+_ԍRz_ 2#2,}$bG6(T<\]}JAmZAxsxQERZլr@F+{?.NQ$~;~F +t *BOHl'K OgfS5q'?ybnINBԯ-P *E>~ r-FIbφ;g@&#jklDLA^$5V=p|g(vfAp_Y`8x]N֞RD_ wC0[qs ݗAnWf+'9㤂]s>QqP:{QZ>A#BH0:lM)\@Qw# "4*N_; k6\-aS1ם%itv%뾣H9e⻜sVGWlBl8)$ >GFbc׃'jY5(e'M88IBs;~&9 šm,j.!/$`R:b39囡cXwAX<'*^ciOɡi{m#]THuۃ!I=II#JElP&c螁4U^fksFdPפL, Zi•d [QGgkI:{I>;j8/NX`ZF*1ty e5K,m> %ULMmv=x:,>A/1"e[YZEk99|݌ؔQNJD5?~$9t s;=巨9EQѯB<⅖ߊ _@V=rKNfd|ChK8F?(݈Œvg4%K`YZ062ZȫT| 3rLiLԗv!Lc{WeÅEFU%5&P=_6F&{ډ7, Ã.Ģʫ@5>ek/@bbS9qtG*'pq?a7$,%[A^&mȃ>ބ3ʂ J0Q].+;r_߬1J _ߌ-5kYcw3Q+ڿJk{M)ŋ-(Kg$Tuj't0XY_LJh'Qx`bCK,3M/!%D 2J>YQ3[tp/+=ٌRr[ޥzy@]QWWvx֚aCqȠQuMWx!a>"ic Hr(VMq2lDz VY[[&Y;I"#tb*i0[{UanCW$]O_d(ny6 <9+ǀ)ōx^V=~{YkǢio*V`$ΚRn>=|0 f\,7vaR-X*0̢҈2j-i#Qk?tZQ/ }EfH;DEuM6P7EU@yo1aʬ݈/ +^7c&.l,dul j^o}ze-9Ay÷iRcRYmL:,Q7%}~\V25ո'SjZw䐲$KxD!D|襣nK2\sA{Ea$:(辈 Lm. cR J%-c Nvp$1Eܟa+[Vn͹>G cc\.ijd8Tgg\:O%}a EH`,S-& :K)\_:ko"ED$_Ҳ3ttz<mƊiyl oEYAv;W @T)}w~?<ъ}(SͪpiG IZFۜйRLZiBA;*7S4H51lͱ SSʀ,z(o#3p'[!1'Y*>ZϪ<>XOPP1P 0)ެ{homx*!(YM_i4ɺ&\pDke>A KHC#P Cu~fcj+R,* )RNt:w#RS{8/.$JP^n:LZa#נFQQ[/5i&,Zgcp $ܺGy?:k+Kv'QN$"7]%ŬZm{>w^Saޅ|7o>r85>Ee jؕۮ}'NX)ozj<|"E0?Pi.4;Z0Ă~D0L~s ODPoQ0kB& fZh<󼤃LB"Y4+CQ9~Nsj4t<ϑWBu*H:xCLY:BQ %r3mvBݴ,ːX9;KxcKX"-Y}* ;)9ͯQ$_tB跓IsHRC"<@ɂx<ZԄP\֐b oS4vOpVHrj‚x5-i>n?wlQ8vݏzP_!solSӛzƼditFu" )/.Z. 4֘)Maa%?dnpB/\h *;Y( prdX>ǖuU,_Xϵ*>RUHkTE Md$.DѫM7#dV9ӟ?(;oXq>ZF1:(=D|7k{g"@FQ8Kwz[5$TE!Ty"^dyJD+"gEE>GK>e?;_s9 ?| RUHӜ1LG#@GA#|c$jx NTpflͭSn P;j'y_ÏFKf[nԔ5RPi*Gzǔ@2>R4zK^@3P+Qz-錱.l4rM?͜q"zr4 ϒa#BUf!$rw'mqr #)i>`|a͛:ҋKH/nBk"mgHdM4(8v]Xv^@Zx I/Ygܒ>Oa Vyoc#^[&Q̂Vm-RP)VU*;9ɬAŀ,t<`}wLJ=<& ˼ox.A.މ. Z+w_Ij"w&l]"J+H^VUkDD@O]L-{E%,5{ຄNT]I-K4xW]Gߟ_P`! Y F`SF|+1[sFjETn\(BټX<~11Y2k%zN6vF("%\A[Bl͓yax@>F %dK‡8긅>a&IvߍSAL[(j{xaͮb >ˈ{:o$',< ۖz%U~{C4?hşzV"29iwPe~q. kְ ҲYl dN}h4FҌͭ*ƗkLڔ|CsgQJx# QG^?!O4$+쇃}"{:ȟٻF_p,T0oҳ*zOb@! H-o 87D3ȳcLzDbЂot3:覔~Ks!.01Ќ@75`[+;1z B Q< 톳Ë~T'l,ʶ1:?`"?܍4| K߫Cm5G#3H9[kzq&k{y4%w/8:/{QL_0o1 c9xVg5AC5o<`]\׃NEbimAoFc_qJ~ ٟQT@ژgu_՗F.Lhˎ1] I~2( ,(.ۧSKYLL%0a9XEM.E8 ( ϛuDk7RTR`%xګ6;Cn/,0(7 Kz!ž;yx~cɧ7vQ.9]Zaz;1/lmM__A!S|h1"ڬ{C*m]`8r53,ȟÄI` fb0MfoKw Iyz=gc֌@}ţMEb<|9/py .L|4I25UffGZ.(jzosvQ,@'må![#5\qj*8ieps8D ޗg\E C<ٰCW-|.NwQ!vSD36;]-/NwkukUJ.[bEa3Z/c&" }@pd;'^Ombb"'N,B8@TQVe/.^`$u\x^W7L/@[YH Ƽ&H*O#RD]9ia?nns[,c[AJF_;_ o5ͣ iIw ܰ^!3+&'E5fܐ=([4CSW`x}7<\z{J]'ЇC<_*e&3qnX&j;| ?l#Yj;"D}=z+yhYNWvW^FD[kHc%;|}Rpt""AN`1N`Y{` 3KGS d. F Y͔+>.2C r5u&i[i5wPD Z߇: fMN~GW XH.gI$<]1ԅ ~Z&O!X20\@ʨUay ]f!,X5 9 t6u_„RϬ`*/z%>#eϭ%VD imt ڃ>x@#G X sMюSaUGYĂW/)Mʗ03kjgPAJȤ2 y\+ƀ} ʵpSf%ݪW3p=F' 7B!Wܓn?:"%򎖂Ѐ `KU}ρ|;YWn׬dns#B+Cb{iD> d8B򁪦S-:֟gH յ*;ya.{gu(A!Bxm윆0ćy:hVJNϰSr&wߕD=-0YɹTԙjo_ Eq )`+WX1l8Pq:3B{AUR LOҿYЋpBg*`M'* ѿ\vCqlp?L-dr'v( B ےԍՍN+UћQ˴<wb)kR;M#當Zgc:ˉոfA혮znpp4Ô(2^Yۢ[b?3 WOHlMi1k+ mj+rE pm#GcIrK c?LysĠ͖ jac0n~ȍtM*.m[ 3 dޢ(_GG?GIoCkM9/9R܈\;sIO99QcUM>t gSM沏].:okJ7An¼==0Ÿ%7.Tϴ[I3zmN1wXN,!ݥގڦһ0I3?Kҫt7_f ޤ؁rȌ5TߢXE>h D"; O鲉x]!dNXc om["}`wC"!%sӁ̂OrV

328 7ء) 7~+`YT2򽦯\¥ nC_=Bd贷q"Py~$ oxċz2#دN\n>=SDX:Zam" ۂme2 k S|er-$>a׫=S8Ç|7=QuYQe`UuE_}ϞU܊Jz2i@D7PiWlɋR X}DҾ=ħ]>*5EPRncKHP XM TqbiWOs_ЧE$-Qghb75mNU G1Ø&?B5ۉ\o=(2W&?XHB/ #)|Ʉ_=ܦ ^7P[ORgxӎ@*_eiHKmUED,"1ufز  pԫSX5w e»=-f@?+()Q&}|ClaL~RQD~p$9dz=OqAy¾Lq܅r I̠.f{$ܾ`4/rQ'86,ĔTC.vIsV]pr='0h`Sie R?a=g./ ;w7Z8~@8)pr7o^嶮rӼ9 \caruִȣ;xd0r'679IW؝q؈1|›iX$]BzUi !*7l?jgXjH-0[VqJ:A `7wd[~z ףj-~Blh(^|+Tg.-`RJ8R|7O ^C5bkdk hIm]`pNW"rUE֯ NZbpK묚/mDM|"APz'Wld+^X2ch+4Qk<&K@K3xmg8a׍\9N?EGr)a])2ś53cH T"È1붞ycv?dD$ OЄ&-]֯bZ.Ys!J5u}e1–r>uSLL_&lnyf3!s2dqu|,cL ,#EspI oLNBTX`}.:Si݇qh&r$RJ(T}gR;>@>)o.\N_[(ٳ_$0jWz1A7UI44)VoMXkU5 IG麑9V x{ÉOE,@ Pc K&q9oj7lyq"nPݺ,dB݇5q,ߩs zИ4TR0F(SFq`gOp,X?9D>`4 wwO*#%\Y0{9#Jݼ0\(mirƗb{Q]AL%d&LO#ծCvd:#@l)=N}Wi9Ǧ%4y2R l`k g׃pŚ~6pٌvV_6‡~8yl§!K&y %&D(j݊g3nTXB\{!t hwYjf:VJ2E!X?؜T9r| "=pA5RT5if-YHFSI$A7Vh ?Bxo `6D8i@T=yj7围f+E<50tis|d-ۅ8 Av&sQ&:ҥzERA$iJfN, (,ĆҀ^[v9V%~EY`V￁l x)DՉkOI- e$&z[9:=:I:yt74cF}=)UsvfkSF kV)-cGl R;8X:+f%FzMe(eJ'k'RD0[d^dbiAbڟC'Y4c!2W P l<9}]uG!0~Ljps}7T7@CÔ016Hh]~q6{6|F@ߗBB EF=c#jfԊꀂd=E?2,U *!.J 7" V1[e).0G e wif㨋f?_NS1u~w<1:VhH5UH*N-Z齆T%5wnjROZ4#XuK\sMB_ךc=)&һL Z!a?|DMvWuV|H"y>/m}@6՚Y eE[+JY/$Wh-1!^VvHPDdj&&4Fn9ìe}VtI@? *[̱o4 !}2lR꒕o>k *5 Ky-DNKd렧rGV jw_/V=5s!0ϐ7 -۠2lxTcqN-TN gDgE|'QKyJmd\FU·MthdBB؀FS+=ʨ^DܽSNC毭MjmՒ,X8 3 ErIeߐBԩ`J?FqIqjI KqdWCmQ6?ǂ .5=N=yx~ؗ [ Qg[Xe[C$֩HI'Ǔ'nQBw%_jlwyƺCu9޳~Zݚaf05[;O2NIb;-1=$ԙ$i2Uhï:,Rd8Sc] m"!/w*lg5{EVʹ_IbZ&CȓC&c;l$\KcQ5dgzH%WUA^W%.^gwoQK+.~rSbIedjN-A>Ǎ̿ a~@I[Ί~k9xP&SǐSɨvSd.g_(Z͏֍gٸG{w Wx^[-WABBX$<Yj9BT8h{ U[C̓殜:=sLj4liԐKL=-yܣ9^%95(X3}I"z7ͻD{CY _\2PkNxþaƎrdG,-`s>4DI=PK5b3&XlO4'ݘ\$MA@Q;4htuc8NoDphIH{ vZJCPǡH ݯ*ӂOa|~B4)tY['BjB]A\ItY (<X'x -%KZmߍJWDY?Nq~ @B/ڴ?Sٟ.?s#첃]?QLNS4PtV}~=_vYq0Ї-ܔsB9Sa֢=rJh^ UhseE_ p}΃4\*B|&|^e~v:=R*8 E; %\v j̠aė 'ۘgHɍ(iΐ1>KRvJڟQշz}6C+fva*b@ſ U3{is~=U餗ox-%Sd/yq`EB8fZ&V_CHO ` )C V~sCY`G,u]0 ?28:a[ģrGBhQZ"ePف؋ \ްNapQ'IPRӥƙg P8v 9"̼ρKV@bW|L˘ u'pX&iG)vĺ<.'=ϡs;߲<ε Kn_LA9=jHc`womUZ$5ohI76v|&tÖFH knJiYsPW^ϏqkdyEY#S,V7JY ROq[(1Ҧ&84'}pD}=gXA_D4uT6[FP U<əN(ǀqEzuPn [g6mKn  5?EycN~s+qRe}czqU(c+0BrIaP.9p7ݚ^"&͟ژD+{'jIW+K2s tjq Jas'CxңnH6 5o@®RVI ڐ~w?WF&%!FۖwgrmF2PkGj5"yEl lo8bK_XxJڌYƎcyZU:ZBQ1vU &Zm3 ZpU_Ughh4]5*r1v4y¤_d(Ƃ74[<ӇkZ c,ī _&Pּ]]ҁ_?hݝ|Tۑ˨~CvZ4\;9+Su'&I #u)4[4 hݜkXA8ߴ:xv3OnW]cjޟ6zkX La\AOΙ8b#aJh =r!$;1q #6R6*KlK{@Kx{::27B92eˈ" 7p;)7z {nƇ|MJz魯 13&9m[i*Ir&'U^@Kד \֑T1`_Am+q'N'xp`ͺf͕ Vl03~i/3BVl=A{2=*V%N?pr'˸ۣhW2dQq!l@ HNC?paa(T?:l5I5V!kP9.Q ̵qC(ݐ>7@-2swiO@[yu֧[j> RQP+)=MGC؝_>mKl9_Var <8wqǁf)vʑ^p9>K:q?-8)"ι_A2=y!z"w WV8aU(Y$Q} ]9Y鑪IοDyϕĿNV.C~Ʋm-Z"ɬWA[Wo~ߑ|W~`؅VuLvA|s1% CYol sD8P#H$[鲲=<q)mm WLg{ِpRҠ`:DaR<+S|[ԇۭI1TͶ 3䄅Yl3Z٘op' 0<γBjw_}T1FPNKuޭ';>D3M! .OSF$S `S:Rm]C{Sˢ5Q8 GL! b9Ve@$2DAS0) !_F&UE~u5ːgdw(VіIkO@Q*gPcӋ:nDNYa(,, G33C5im CSf&O݃&޵u:5V ;lknWOI- ڭ Љ(c+ezfpц 1 tSw]A`3zEc<##TKsa? Gmc"}޻xd""̍% Z?NQb^"2Uѐ4UaS}y)ڬN@ ʅ xHW/I[9GeI y‹A0x?Fη3BC]߾S7.Git8[7.j [aq';P3б^uoڿtwy_1ZR 0z+i6Vǔ#Y7Yrrrg0HZQ(rm5ߞE_hB1Hi M")r'K=g"B9x~TO h])h 6 ` S]mN|#@p9Ki3dW _!# !FkDDkch {/]4~V 6OA~Zrp&`#QnY2maX_JNw$CǺ)]8 1A+jq e9~m4eX)?!UeeԚl{1m2f"#okp*jYH@?#Y harKc-a?y< jH_3i9g.9dtX$fxd-ztr_z<@L@B@d @kTWUFJ8 Yy#)|x1ZUlUq*OGrLMo!Aݩfr|C'59ځ&ׯ8@znTIښ|hj\=Ϭ@r,Tr#ߍ_tJ,x+_JYTVUt5¡eѥRh#ߺG7_59mAw>bo N: #OGI{avQ qbQ^ ~̜",dՎ((Ҥ丼< )ݝ*'=QuZ ;cz& -M{::A";Ռ" t(%i*;"50`*_ǼB h,Y8VRQBsDȵӽI.H#p.cSfu7BZie[@N⾄:u4gzc*GGJ3&r j\)0%̺0tᵬD;8$"+8)h} e`/7x|JxᆳLtp?#:b$2K-GK F X݉ף [Of6ЫѴvǩA".OA52'W >D^SPZѲ/g+{Y#{^7rS%g+p'xG]Lґݵo ʸ!0b|LVrP-.u(ە!Y\y{~_tyߨa"\m8(ԎRCjWutӅtQ: [1^9dp{m'ْx5;L Hڦ \hmZPV,/Bmߧ1NBq2rN7n͂WGH=6Dw8gPfrLf xdx*RSy9ÁNEL*R+ Rg-qWE((DyUR)m0XMIFW !\W^2O!2“E.R1ʳ[`"D$w-"> W9Vw𣥈IUvc?6}^MaPg88,U-  GV"0jЮaĥ)s8*3´q[cDu4?2wsKoЎ'[Dອ0EbW :d~fPPkdlL4W c/M?@_0 0֊viO-K ep&zi1p[I7z{(AkpCL=S;L҂r|3mpA5m΅\r()L\Y@`<uJ\f<2!!YiJ7+(ERzW}^4?OBF0KخtS=ݩ"}RtøN R4K)|s !G8g-j\ KY+\nh Մ/FG3oG.KkqSQJ5S.L |}!&@;p}=ux0r@;;g.`%!g ; pspP Bډd]mib䰁 Z|F9V m;@d\rC],[Hu+y-ZpBCěa4H*\矎'1 Fv{dz2% ͠nA.P2lP z1w=JCSO٦W wm qP +G)oў$żmTbTWC;9Jmîv'vg%srCsTn5ߨLkmXnO#qc9W30& F"Mc\q`*Rd^H)U:>8CvΊcl}jo899?+mclSXZƃ%)Hq< g޷ǻA @')O;I\Y˩ɐU FHҬGtIx=>c# _z9.yۥf!w~ 캟/0y1Ea Z㛑b {t ʩ wddOi(^L(gEnOV0Żdy͚`NקC1x{wӈEеOW30;k_!W;_̢{rU?~ER:G%#NiKˌ.W 1f ,wv&[Lr >+Ȩ-39CeXuԤkˎ>gD I1V]%uKPRۦkxJz>4r05Cm6q/ۇ@?Da`C3i 0cW,F?3%;eHcɜu1 POdm+JjTQvW̲|a_/dU odf`>Fr\fw]WG "&o9jƬ=J kgɗ2&>A&Y/ TZkc5؉+j L>ƊhSΓ3}AqC8&O-Eלrҟ\JpUa1Rv /k>+RRQq (6jIkOc!4dJIx0O b]`\:IqOvJ_ڸ )*YƝ]N-ܬX^c;(x G/g<hqAa앖-Jw0A_M2x gV. v}`gO-r."w[CvYɮjqW A˪o>+cMH[:ơZ2s{%0We_l>5XЪOwp q45" O?@M(a:w^ț'F]m$Wz˱"\`LaE#Z {\^$޻ ,8}.gѥUe s33IWfߓ k6gs "j6)&gRDWZG{#|_ZXUHʶm+0>ɷRRku'e sٰA9P EF<tZv\08uΔgUv}9ؕ:=IFar`9$Qd 7`χ|#jJ >(,ǯFi2PٖywGPz()49)KW7Tь?{:' \_fҫغ- M D>"u0)VU);@+X]O0 ~b+0G"*Q=G퉋Sm*%deV&_(㇛*ƻåbQd^ޢ6mHWi5izOhZ25NZxNr:3Y;o)ꎋTQapyiuJI'm+Eh"2x^iCz(^kW4 nJT<Ǖ7f79kvro{fvZUT'N/ԑ /DR|j>foT ͜va %.x #V `؊([ewRLg(~{([a, J:5T~2$cǂ2V~ZJ-pĉ9Ax'R |$ʇI E5f CF8 bKd:^K\Ը;N>.h߈Q̳Z [g&Iz`nYgFYw40\HqvyGEwe4eog6a=e ,mlOw`xGTOdCg&1B 0[L})e$wB6jB*UR}O`8LbGo~:B1x ~F  V0CO5cJU6b;4&Ӳ80 _HNh]@~uo= y.47%a`A̲pdr ,]P敊sHxY`gcS&:Kj,V*])s *j I:й9.LD)xjȣ'txBkqRE,#yf7rz\X8H'fuc:wxLcMZ.n"ti^} oӪp ÷uQ\}rUp7TVB)5Ō=$n?j, i$[G9ͳ^ 8:ܲw5m3g+9X_;ɞV 4qp6Ex RBl-tr.l49|W׳o5oG&l,K.;l5e{(NԩJpk;La*9r#Ӥ?_vbd έp bA}Zܾ}̿Q/ Ouo$FsL;H Zqsn2)֝CC6_Lg!ZIe=U#2-@fJBD~8A 6l~D4MK '^Qg/C ;c:L@,H-G[m>$7p"#:ƪBv5pկQ]nUh.[_X[PT}`gE_\WD0Wbtt;'wzmI*)TIxh.i!a@ҟ~%"M&];Z:u '`m[aX6F^V|S)j(5mnoC>h`GaZHWz5d&Hډ'<ՀZy_J9KHޛ!gv^xQ: u/xӆݥyًM}3ۛ+_T+W=G]a = mMWWo(J27t7X):"5L$w0ÑG-1E-Tw)#Ah" ؿ"$e\_xo(6d"Rz(=w vA To 8=@<_V=%(f7X_,8)ʼnʨC_4&֪bHT+L: ?K5tjG"_f0W?qd.\)p ⸷B#`iϧcebe}q{ nD PP9*_μwy,v8qfD|/EJl{}CV2JHYg Fgp{ M3>0-]SQ0b[ ;_]Nt;<.bxuXf67<7b:<XHlƛn®A/_`v) um^ 2s3(1"g|܂P%!v@K) V\ᐟݶ4%16t`WB?FMWizgz__b:o aVBl,\JG+K!NBN8S^ça=Lҟv8n9HA ~Q,~!Zv{YI~81M]1.Z@P%b6h B;ΰ'`5GB H6N`G%?I>ЦQtrR(T\P2Fn:̓6m/uciqLܐ4M悽_<1nwE7}Y0/Ι |.q3ƼxG4j.|//6Nކd$Dcu:ѭ1@sJʲmu՘ɏĸ@%v'Af.9`]y <(/q%tjsP㦛 6,$!9FP -0XDI̍ZBu'5~t&V,Ɛа?/(+}!?]uj'%o6 >\>l;QI- vʽ^&$VH=a6~ "Lu`^=y,g9=!lи|@fge"-qr`9Ʈmdˁ=^1{=1! {x]l) Eƛo؋UoILI/dgyk_  }>;ܧC܍uMI4 =DI M寔7Bj2_Rv5 HW\=pgL40phIݟ}Q$G5d_^M?_peoѥ15!`QW]sZcE`};K65*|"Ta8͊r7{{r _Әn˭@*I&r.Z>.fiٝ.J@x]Xb*׎֡0&t C&fX:D; L CU$7<'L$˷Lػ9ZA[]٫o)f\kpcW`,LJ6]"?ZOyrٰj|%ioJW=AnC8jxYÜރfwx w[h;gU, b, A̞(Lm",;*66NbmΥq>>xXQ5;-v] }cʃ' QiK "7ԫ/^8 _r7YNk me0v3d~3ga5KLϥt$g?u4k*:KYb~Uϭ-0!GLeSe,5Bꭶ|5|'vy%B?+ vͻ6:tN=}mt9CV٭9MkW;tJ'JuS"JUe3EYY֭i5lsS2W7ZàTmO:w`dLjJP~f2[ 2襤3YF;=GvY~-֯{8@(JmoTvSrUKp²_SV$~jx6B):'Vu4I&1~b1fCw tAab=]{r)TYG/ U{p_WP'뻃uCO^(ӰO5GܤfK~dHK)*wkQ'iN!10xC UC.jD'Z l"L41<#Ѕ'(?u A@[ck7Qh͛!F<."/D=Uf}4l>.Z؋' ^I 5)wVc\j\c`Bx0d\tSy=BVc1.f@1F[PrZ˟4BU!SDB, g3͂Ԕ8GQCK)kkLh*NWe!V :\'`$2R33&wp6c2ek+ 2(^>YuDZا^fȟe:B0HדzPO:+=McuHۋ#~Q0SdmmL M&p֍숻b>n;UPVLTFr<Tٲ}:qtI7Y"O^6W)vMSKD@l"USiKIԐܬ̋)]=m+"%q'$=RZ}6Pb];{GfơuwgFe S})wKk UAjgh+Ag&:fXu\_ԍ)%^֨Z.K/k7%q}HˊVL"%eܣ26lacyWi hrךQj=Ed5y6eJh xGiǐ,fh!g Tђy9ư~$I ՀDij QkM@/22#؟ZhH?ܴeʼn+YZ(,*KP3zg8@?QrjFNSQJ+eMP$o1oAvw&{Z/$>|!)ḨMRV Fh+!ܛ"`'2NFH¾"<|:Kuj=iqWO`4P<4e{^4=0^}ufTA(wž0笼Ni?t{p@9B+@"\ R} B3 TKwlK3s~? zc:YcaԠarv}? =D՚V/ Jeu=rԚj])0}N <&Jugjqn(-hvS0,:TR~ȿ?r,TPd&x|>i@r$Ȭ] r.%U qûE Mf5~fZ=ߖmOS⏠pAH L`-&gk*vA^(R B8Ӟ)٧*ba]L\[ Z|/F'QL)xi OcL:r;YW^]m.K[Jh"Vyttow1tkkgYP@#I~5|P{9~s }3&Yi|Em+}sTAH'A]gYπ#<>Y'մ[ ;% VتP15fd~0Q4Q5~)6 805xsQRJ]6%8`6lUlB>7`mHG}Ww ,Hp>CR"K@fhVCCU^X;ׯFt?W.8#i.^F^tXHY hRSxMnUJov%[ YweUlb4oj"^*AցߠO{aEANvhԮ) ޮ|`ɻ2!a hd;%b+$,3&y MTcJK"\wN>wgxNf/$7tkzD IMc9Ol}UؖmX`ocP<#hqtbo]; P6^jLMQ_1mΆkIy&rI[U܈q^@mNtԔ"ΒrB[ @*34R^sCKfU(4Ҏ\X1Pc!ݞt,uga"o_̻>?ztH=-Mw_Ǖr 3#cl/dA6њ7 Nݜ,%r(߮cQbUF.H,i2,f2IdWn2#IS;JaBX ![AA%L)&Dr] ډrʵ\ͪ陠HAH=be9>Yn4GXSñ:YZLSjƢl6EC (#1O+8B:#YWɄrK^`: LqB 0?aKߊjh,wSIIUN7=PK (4'}Q>9Ha7ćHyl#@olӳv+e*p6lWC!rʰS1;GugԂp-P:v#^E?bVӦALB'j8*OȲMo{ TL lw^ҁT;6F/ __5FVS:HAB9rk4rU 7wLsCz\ d AuީGq7g.+)k;>bf#4 *\mAՄX8B :57#Ɇ3 ڱLxKW4wY}׿wMA<>J9 ^Ic05jLe(Q4,Y RFMRJщ?,[|0RSoM]!O6`ChQ38Ki6!,{ d^qb5Mv o ײ Z媍.VGH 6qb߀ uTa˽i3'ɼBE73Ixa.@Hh%&?'7Ȼ"Bx Ch+OJ6&?5K[g}>"K!7Kl~5*W Kro ˲7z0*A>_}U:c/̿yt[[fZc eηT &IDϪ=&6Kǵ+X-jP"F\ ]s[1m᤟$SCe[vdKydPzh-K1b=a!h>y#|5&BO2]_- O˜y"m0sGzH ʸ5$ " Ui& H1" ~UxbQRB&}pF?`]:80 q4K@_!ĪTRAP$f nnpV::W[w(][#Vl^,^/.Zը}0_.ԯ[5ed;RXS?+'8u3YyBBXtJDxQS'<[rPr+61H="_F"i-)߁8 TeLC>g)JS7NSsBLpދr!WE.ުH56=cHӸ@_҃kYt8AM, 6 w^<}Dg$iM򹪄NbOE& Q}f2%` |r9]wg3{2}~@;-a= mE1Wz@O]nw.^T"f'۟ۜ8v^\Uhcqm\RNЫb U 0(O+5Nb3G~硠i]|kfن`=FgM>)#GM p;+}`;޻Yo5>6\J!Ls 9j52=}i4I4`G>2~@HtfEsy?<޺\wݬIc=R.~S/ )V,՟{z?a,J·RǞQv{hͤkvL'?i $_ZVvkHQ}ЕG6Gc.,1M#Z dbg ۢU=mo<0sĂaO0:u lh<'$*SzHf'|(_rW5F/:K٘f_G΀ni4@HT_20aAR& ?F~8\wD>VKfsݝ'ⶇFӶ7C2qmj֯ Bb'Mb`hBnpsxuat_FXgib.^)jP|ӆkVw4_TeuemZ?qC6k &> 03vܝ3 g6r*ySַ 8GƟeVHkQ֦|&uFk_HUǓ=N#:hSH#h/I6<$leax'Z!`ͭ3TUZFɨ؊jjiR#v _c~ N!>!eAe>#5@_ArÑ vSuB#Ѐ [ iKL:^7SmE8A[Խɦ'^[q۾Nl}f9\0bVL7p81v# Y`O@ɆbQŧB_(W?w:1ePD9g)(n{[=/eA]j(Lc*jEW ?oWĪ/(7G54jtn+/8,k}{ ['(۵^ W5"=$LJsĩq[2Z:]eNTxӥnĉUq5og:Kߐp$Щ3tWsCuҺ$ vD.Pt3R/o0fƣ;j$hdvcqIh+ڇ);9`ɟH>*Z[EL󮦼7.>x?xrk5Ȍb=1S+$];$UM AD?ȥtfMXQ@O YE1z:f#Y4 5,0`ss'%P"Kw{ُShY[ ;Nt1BryR~)VIZa4_$bNbFo)qb~\.x-=(ZM?l#tn$+no" Ga7o' w͑"Dvo}Oj.jb#Hm*Ncl£-D7ˌ+ AJ mSξk̢R<jSh4p>tzM5y-ȠX"t0ʆOA4pɨ73掜/jy<1z* =ޙd%i-UT EWDo(J^2 HId85Sm|T3ޣ8 is)m:@4K MFeڷ9ڗW^1w$xe'$dAdbP,y'\[viwViG50`K9YzN8GF;[M̢}@'(}nG N@PD &%b46 Xm+90fkSY@^T8* 809Ca6-EVƼ=x! ZQ8]Y<`ˀ ޏ&5fz71CϢchV E EHOx˂&rxD"p&JM;X5pF" $/A٬E0dYXviNxî'&4XҲnrp-5AyoqKOb;;"2^Uډz|U3kpNhK#,'2]=,0+|PU*4-v'yre_U&(ytnrdtus Dy C5^x0 =$ejG%TG>R6Naqs}PUɯT'z eCU<)gu+ PH(fVkI MvٲwM%N'@5I6vsL5>(0׎Z0/M[9d}өVw;xW9 Ij3{c@_X[;:FB8cMu%* SyYZh`T! XhG 9Pv)b;ЉSRGDI{+XfPf +NQg.h[K]T`"u4 P yh ID鈻[-ܫO/h;I-Nk=/G*:DEGT.Dp?.IC'H[u9l=9C21F[2I, ?$+9-W17 =N,ng\1/;!#!KCb\}Ub ETdp)C@(\:ѐw 05wF|+;2Ǵ.=—|[X&rjC9;ծG2JPq~Κ6S\ς'mfXAq(!aBBCIOcfJb{(@2'kp.%%?kD8HiB1׮I}` t57xB17~!4%)q:uj+N!2\R>?*uNdch1ڋ1̘OTX pӳ$]%U>S`{, Y< esZܯBSaMHP29~F#2L#5'`>0r?6  Yl(Ifٺ|JYOdlޯ%]{-JpjD)A{18M8bRN\hsh_p*Oֿ$6EhVnC g'Tkrn~%MB1I IM`g 67uIBecdnE2j r] wdf[SߌG8vިʋ v:oJ v|)TKe9py|y,E _d ]۶,"TZe,A }5ӈ[#.$OY6(f;p[ ?|[s)̷on*Nj=4 ~aRBƳEԦ_l%e Ւ;P)9ü}`q;\GQRxAJC`<3I\$koIVUg 5P{u@ƃEv\+uw^ٝF!#(dV #qr)%c4²/8c-[=+!ꅻf7M7:i*Yܫ= Ӆ :!]t?勸 #isV b$lxTx& {ib74T&J8;@Yq..- o\dt )ӭ\|N˝:/ư0^-o R>֑G Y?T[E4/aIR`zYF vQ"^^_ yv3W}MB{i v܈ƴJ ܘ)TgTA*3;ԏN197:|?ktu+A Nqē.}yBV`0N]O(PE#jRӉˏ\f"I&{D8G8B{cZ ejљ|'K R2}_JǓڜQQܱS7l3իFE9pyKn 'hv";llOCQʋh1=`l%Mle9rA_eR@dʋbp d? {=߾v+NG:Xl:Lajх:=^#nMY=WGܾ*83Y oH\.kyW`9g9%"qǬM^K$ V\1#H{t (E몳^A6Cm`lV}ui}2|Id=!V=(Db׏˗_: u k 1MS iW;7'OXU[Z3?P?=PfNxo2.xPT>vǹe$ʃLZW&.}o`zF8y`ivOD 8Ydi>RO%GBe}佀ysJA܎5>Aj/*HyP.W5_.FsT6^q 8CrP=~fbZu( |&lmЗTiJ}|Ejb5[Oh|9&e]ؚ 4+t9K=G,|/؞m%Re!=Orfږ-CBM`NNM3*dcLc3"ݥt]XP_ɫS7ޟ8_UՍ2J)jTfks7p6# k\ӏZ{jѲԦ4?)t;Q! ~x<p]#UJEIҳX;֊U{onU떕%@eҺXXD^Rqg|t^f ҰU/p7e;JKJJ`d4yn77xf?y .7Wd!aOlV$VeZ4 2"!,U|PruXtWANޣtZҎ))ls& PE)ea{dg^|+JDWP__)}.%ǢTFBL>q4CFߖ0YFI"ydȜ_- EF%ʧ)&{>'• CY*_ v5[qf=  Fq<#T^3 w.3 ED/T32iLz.juْ mEQ r[>mT:QtTv^%upo_k*Nk>%wب ֓y@L-=SX;l,3vO67)EFWgxi 2U7]RFl8OM]z"E`3j:w˝>nʰn/aS޹.SNUQe|ͫ%[]d1'St1l;~R)nqI߅%f=&˲(>b!L{x6^_|]ׄ(8& D\;-NVvSQ45v= G~֭X>I50&D,ggP&ǽ;\ZEIh?jXB8kۍhqeUAEfN kK1כ'8RY l~}-/iؘ>ru2MZO$E>Sgd@q)1>.Xk ~&a}2d֮V6NP }KD;=+,.TXzvŤ*h(\t20X\ÉP445u ﮆ!槱bsKz3zHr:IE>;FcY>lu E҃ҲBNyR^{$叵)q?ڻ<_.3K86'9d}K 1vV/.rnRbnhL$.nj+vfha{}# oSp. ;QT+0+R~ΚTtMx &ŖjJB#P ;1hBقBCڬf%6;ղ?{ ۍ\`BDz&(UnFPcZ#_*]^ߙ©Sp{LUc'W3<+!cc` JD)LN׭;]|e%3ӿ1q&K{ d+}̫5}Rf V5(6MGP;+)L /s_J\8R-?cqWLf^UT􋮿):JoUoM?pX8t{yw,}|FOߞҒ>gn1JFWC{ P$&4"Mʽ}\6vMEװ." /S7tOlunNSps`l1\z<'M;=;r9 >2lcuPZ5<& S~N+ =NȞy`Ζ[hn6sIXz$3-A$)x,(j<"QO])^x9B48/Uib۠Vc+RWYy?|j&vf贱ӣX08Q)s-'͌.2Ж."9wgLvۤ*(9.m`$m{={8/aVL>eYK5}]>8PIA$Geu5mq;G ;v[36|U t9">6i, HPjtFx~BQ% I%q~aʜ>[(X⼤qуZף!MN󓸐5pp=jP)4'Ʊ*رBd:rJz|3X/b[pC-6 <ڳΨ`s'=IqH܌4&L”(lTq?ئoR PO6JVgE 5HN?֣qps:1L\ǃk Uuqd09PF#Fa_WR+jkmF%irֈaF{{5Z Xrď5n!aBBjS _Cºi{L@޹p&Y QnKUD.@l݀: E% rNx+zl4OH?׸ibDy!Sg{R}7=nt͗2!Vv{ϑee$j`b^rA0Lh+^ɟo& өRזKⲂ<OZ7`4.[m þb-Z?Pwsz$ug^4[+")LA$ AH?R3d"r981fD~!sꌔ|mtr=.§vt}  I,Ju> ɀi*'fY%j;ћ7MpPXaWZϜ>|37 dI|=t/I!5gh"-娓 RPenA۸\묓GL S9wuZy,EHU"MpR8lO܈Xh$99@S'SRy=m!vF{vsH]O1}?TSHA9(p춽;3lL؇<>$im\,T\0ۇ}u.1Kts(w<5k  {Ǔl rrTU}}dL:j>w$b +2:Jں$or{8{vA%RZ9c(, BU%(J51U;_hrގ쿜[Z5Գjjp__],"$9[@8:B,Ǣ2o bUcp_Y/4-Gn)RUw!";l~0JGkLK,ҧR?.$?#/%RtvZwȫ_F [&ΦrC-ݻvL0'BeȨh5KH*\ұ T g YT9Qk*)FFaS:U]c{n!/'1v }s\!Yo' TlyN:+=I#T*7\5-ca~+?k /4|!n[9CpB㠮pQk2f-Bʣ7+A>t<|'2IWMtJݳ/yţTGRdf$Ep ќk@^Q<0t V+%h,)5B,!Id#H8N;)QV3F0?OƎ6LB*D΋ˏVit̄Og% cC"cO18MlpHdCiF/fi(RlF V۠ XԽ^0q1NLh0JigJpp>wV"h8ȠԈZr{T8eNo!?1l_XZ #P}̖]xIr(z0액>Yu_u-y$(Vbm%IV3nFQM]A\ޚo$8g.b}txb^3lڧ4sqfk4<50\Vdy} A2zmDIE}n!ofxzPb@j?ElƏz9 W`6ܹSeKVH0 GevD ~(dW̛`FE Aa|ze8 @Úڀ$`Tju %-Poe=HxH60%sN2ڰxIĹ.S ΰB2Dg;*^c:?%;Ze@Ěb>ܾ`h5w }6{n>U {}ܚsj7VbDr$7n |Z#7,#\^CVZ3AB0xgx`K Z%-l"Tsϫ'/ 20.:"˺$/Gx۵ L\hJ.}t><`.e]7#zbx)u>MdZI>jj/5\iȊ[1GfjYj&LIBBY=`9r HVe-ngEyj#I|ݣ㯝'Mn"9o ϧ) {L9siC> غO[^6'.v?c'}3Bͭb|B _mܤmD q*Q#4+ 4[A%z"h:Yot%/U.IsХ,I=DF T0 5\-d'6Crد46IF{7H/M^Bnt :6< I%EɦD*^~q}=/zJ~ foF1аH}He"{$іBP>)CH~S.)2hX`3t칕U#ȅxd8'N_lR0f`@91cһ- q+m@*>an<9]-hn?Ͻ0E[˻l$Hw<7ⅾ ̏g*_RvT-RzU5UR7dDgw.M 9_[؊!L7|+\[ٮp8ؾS<ޑW0r:W-1!-:KmT2 ~;@[f94Hs*y1U~7PH|˪Gɪ?&0 B<,28Ywd {滈olut= NO-.2fyZ&7h$Qg,q)u g@`[ǝ7HtJk3L8%4A,j UGE>࿑!{.;N,]XI)+PJwn!gQ 4jݻ`* d;;NmPNl8kecdQJ>sè ĖX+I$>PT P N50"c;Mx,ٴaqJ2}!O[ c!փBQ$(A-#jÆ͊@]Kl1gy^6jDþMvٻ5MxX}Nҭ${f$GQkrs\k'#H xwVYˋo&Ch@ft!"4PFV|ef[Μ(|:yv*ea2cاU~"w"_ gCUA4讂mwED-T2-e"z)z.<ϧi5?liC4,\ko| p`[W>ivEPK4f'+^!}@zlfԧdcj"lqz~[v*MN!,, yF(}통a!ݔ $֢v-G.4~#)\~k^dx Ckc;yƄFOۤPl[L! ; VP}Qhwp#nJq%Qb֚Ճ5w{ݔ}[gN 0~dNoKyb;IA;YNcꎑP7q:cLs=9[V(hC V\Ⱦ E )֢vHo[Z:1)U!cRSc8[p*:Н 7ʾ,9oAFW!XouAJݵ?Dong9]_ Tk|#JPS ٹ.bT0 3.'=k#x<79u,۳YSB سpP#gf=}Nrx$,kyO\ّˀa^S÷rf5 p=m7*w=ހʼnO9?"ȂQ";{um}m"#ךJOAf&kBؚM1[状H+ũȇ`x;&ӬZP1sQ7g5/Hǔ)=e*+[`a<@!+\244,|f/Qz[)_ųj9;Y}>-" zjS*Il:aese!@.~´ 䈫A3 *[8qU^-dJMsFUnNv7WHa0 9[⥍4.렞] /Giņ9b#6PJs)Abe-JTzMGL':%|á $lJrh帤IUU_b$,x@: i4@jϧ zyﳱh8~duFNP\_/|EYX˷ oU9;Er^J^ }1rMgߐ[R? T`!`zW009.KN3Gߖ-LHlH~5)akCy+Q9:5?xlvj.@rp!LNs$aRԃovilqfi#⾬O8FVwG,2zcCց w𛎚Mp܁ح |~ ]DpǕD3BÆ6z*DLzܜa1YiJ0G.)ө*8?}!:^Grj'* .Q8J6:TtڅiuZޝlCΎq=q1Ŗ;xD a_'p@!nvSn(=xT/a!9cTJ2]T[5Cdڔz5k~O}ZjyGyne=O_ 3U ŹW"X]N%?x rWD̎/{/zrgmx`,obpS 8$Z@;8D*Q<8/ '$> 닎7uLIj_A)0R^e?l8| @cx;hh(lt%r %lJE]*nc2݁-ju<))+'lv' ^k_ZnC'H^)jBb9XyVɠ}㍵%K 0eY9WDP3n%bnd|Q(Ɗ̀،|+G 7c@!]BG2,d3&UyH,T@7ɪ-A0@d~7E͆2rA |4(SHwViÞM,І UBA"ߴ:9ո{E8Gu~O^[~3G@g@^IݼUYZqQF) =ǩ9r>*ŋ,9hX + @+; ̈A!q:Ł"TWPfZ̲ cmprV}ͼ״9[+LOn#z3!KP2w&T_܃RP5aHlH$%ɭ 2qJ$׈YȴELH&~-peS]&O+| a7a ]@^Ϻ&MR[UZ1_c[U,-F9xu:wD3gXaR *7ooPݡ#W ,.yQdPJ 5AixwUň@^ rX(f?}Ҵse@C6mq3$ ᅣ+́x=B:WMb["_w e.@Pd?]x;\"♦筧Z I$Ce-wpH3Кr,I{mhqaxX"o1'cWGg.mXgG殛v{&$>6Sy Wi(x`sTDNT Pߥ Ng-{uu2Rl~=&ߋMP}t#rOEmHh9o"F` o-}n@- [(Z ?+Y6όaN=PFRNt'Ѝ^OEd;+f<0<&rbOdI?TRlҮW:۽82\()=#*ѧ6]'PZ|Lآ?BrCQwVzV)}*[]4ap/a|Ad@ X{|V^i68v..]8'DlE\uskfWqa>@ ߿(1 ۫=%a.그LxϜҢٻIs'\M^}1th` g|9VįB c: JJk1T\hnfnR4ҚdbK,ѶDߵ&8(iA4K58e"<"ƨQP ʝ'Ԫ%7b=H0 0P1~mu^J4Q֕&͒stl㸒b٦2E9?w([^쀃 d[qCfF=!.dpu)Lqq̗pQ͙ @{ H2oN ta'urZH\]ʡZIf2!N=MMRdI=i/3]M.yͶ6\o55VըKa2<0*03 sˮȅr-ڹصuZʯIHͼLຕΰY9sӻvffQNC\"MCQ$XY)@&#Vy/F?7tSĎ8mT-jlYh"jnmi"C`ٚξwy+)4wߕb:RXQ|FAR֬Nô(f v F㋔3|91X+73 zbr\Y@'>Qbr$"\oz~ݔpxHfXu7v#7^5|I~݆wW)CqwtAioN(s'_eM,[JXբ n`|$ak#8$[g]x@ CMEjH N^!kK !!IJjAmtTe9"zAYHp{ӬH4Ήg]-`0L FPgL>}a1_4/-gdIʛz4N%\ -ʳ|Wٗ w1z e"~4-\x'o7 1wf_,#hp4Ф d>Ⱦݽj6 ,fՕUfk gFm/VLl}+aјur)  J[^N!HAzuX˸w_FC3T'G.Y F@HթhƐ:&)9_KoZгqkp*A;$n<^9H;O&qT7^R׶?~G1J5OD9Ylx} 1i9cG-JXU~Rbq6&*z[w}_h;JQkPA?fxo}A|]0(hYQlRnВ>.-D+FQ2A>7Vr-%|b ) [^m #QI-'8 5T:(TΣ;#ǛeoB"~8.w fK!(iWO$?(vu9L8~{eTBw!P}j #}D<S?ީžvP>5in~ys;~$(CRag_ga,-}jܰjvD>{C ^ΒB/^opeO^;pٞifz3AIjbޙ3hVg wߥ%>;aOH^[y}7D^*ܱ~(Z٣a)ENؕ6]Pj5%n!~lx$B//lHpI֯)5㞦]_^`@?=W,bpJ4n(ʌ!Su[xEn<}0avzz ~GB@C+"V?(1+F~ߗF9|x9rp~4OdSYafĜ 3ίٕ̩m<YwiJ;ճ`$:SjzOw IqE$)#.??0vfL sp6G7T>t>B; iw!!YHJ&=ܦ >4︁TO]1- 42w9j*!с\mjx%f?HEs\u Bp:)&-4䎣AE^ IP2}o^i\0JWj=͐mI Rjcgm&=d>cB~ր~V|Qљȃ8Ύ9δ3Uk9hفJ|A`3ؘ/#O!sTL:C\>W; G>2k'{y#EV:VT;Ǹl(涳xP# `Poe4M8Ըs>N- ܵQ:kv 1tA+* Z .Vū\ɭ'/_ '-c,;#AYQY ct7*KN]C ךw]ٮC.Vӣ-+a 7ALo 6zi[eJs7[〣42i3PIG$eRIt a}K/ိmsɱE2"3n;3C!!ӵ2hE{a{lnL{9f}~r)F ?3W]!WvN GHxmO(K3?g pgȶAnAo}9]dl> ap] ZR_5ԅފmT{*qSh{…>mV']V IjX  DjLɌdZDTR's Lc Ɓq%$^ɏ5C`^z)|H̏K(ͺI $hՀ]fOJ2;}9vmm `Sp`;ܨ[[t,AȾP>"Üv>|P3[Sk3QG͕GL~\qY ׊"l>+;r-֫Ͱ1sVDD8_9 qWX\uziEN*1Ƌ_)S)FGŒkZh 8f R!?2T$U>X\.\R1$5+4OAiɳd0WXd́Zu 9 +h(` R<,94:UظD_Y~8`LXm1]46+ޗˤ˃xr9EeIt/{dGH;[/ 2F0@GI194qboCxm Gʁfz'uoA !6J9۽ 'c4`$oNĿ|},T2 &k3>+ q0EcnRmۣti;nYxRX[GNM^lԌ,QdwfK\!EG]AjĀ-f i꣚L[!YWWj&p@`b糼19zCy9+ m V`K|5iП/'{{pXik,=i4 une:zqxuh@RiULT4%tDv^8,{U:kA)]O%u|/XtN^tXosxrK6t:iTjRtgZ0W#Y￶Pk}<ÞЭ|po* b{;F]uv,d&vvPP ci/#m@gd8^;zpx[=7h#i7}&buIĺ H`K{n5h >VbU,62A??dTjh#,2r`/_B -(\mZY?y}$fN?gm'ϴBNvw0]4zk}\՗0*ޜRBnN u*?5 47%{%B?/2vX!|ɥ$kSd7t)sࣺ[RF2w`<܆K sʋ[|@,!uK3*Q91[A_DYH'Jq}_A23&3^G&Pk80( UJeOdun]{O(o[@c΁u&Xi$ҫ_))QR[7KD),~M5 $qhҲʏJUv PK.?GX~fT|f;LuGRGn6kwփ6'Z)HX@7Gs;פUTgzԤtقN8ϓ4s*`xD'~v\Qf:f m&veC&JAV;0n޽vc֛DG9.r.=Xw[@WD?s8-yj,EH8CM r|x(omڵ&~cٓ]Һђ*y 'PWz"ΉZx$/ZShj41{ke?pES^KL^w?epp9qcNr܇[ݽz̒6'~tg? dx OhDo2/uYc3ccԚs>YIP|qNQcsFUsnv@O]lD#^{*^a"f圴oA&]y{[+:vU4z,\}VCYW.{vP*fW+\ ~;׾̐iEJMWeL׎ ^~>Xt?T)6//" ;R@=8'4@@ϓPTІ v5Qh*KEF4nYJɗsJuL@b\y\Zn e\)\ɋ/>tj~l=.#S0wq[kZqF#G5b Sr]8~n3+gp(ńa9I_(z۽TnHHGHI"xܽYP=#tDy?gO7׶ ,Z16CWӠ4E{䷅a6-3m) {Yĉ'Ŵ`2<3M]Z#ʪV!G)xTjuewzT^D.4' ;2uʠFK+(oΜc}Y? A\/11֪+a (tj.,5:2q1:T BT\d",)t?: h Q Ӆѧr9EXA"! ?KzY >[,I-hz@|>Q{dP20U`=K9g逷FjVyDv rM:gR@=<_3ň|1tcKUEсD2d=!%&hX>zEؐgn`hZ!n,hͧNՃ|d%1`] 5e%_,w wi AO]YDl:igi&&H$m9uYz'eM*~U3IUj "syrG8ei&X6#?Z)DBć['u6(1(c66fۉp>edj ^M*&RYkhryf~yE&GO{{-,cBa>p6u!KT27.!e hiq? ɗf]qBְ(#%-LpDWZD MTK&&mw #?0SEm<` ik{p[}G/al,Ws8m]9ڌFl}S#4MR0Ct`'y6ty2d݉ >H7ҡmqwBk=hLċ+7n-gHӢT+]Z,8_o#I$&c/9u&$̴^mNOUz8Ѳ+IiY(z,pQ$q7OP 0 o#D$NCl`AQձ?~" 7HeǞam Pَˠ.(05G*CnUP DmnYp ki9x153n><]> ټP)V[]L)⺮~xdח˚ԯ5to`l`^|٫<c07]Cmf<ʷ6篂fcX=3kфʳL{W9Oȧcqv:v̇Z&x"lUxKBIp?x`BPU:1%ZVwJ"}'YZü_sOsj[=͐MIiQɵX\h2lxW( | g:.) O?.z:[CBhGxƏ6MZb¨nw/וkI~ {0V`8pSC< qR3SW> R2}%aB PNLDb~GZ̾ע!{T BGĬ=7"[:k)̡G:Ց܋U J2 !FYz+5RyjkYԗ_N.W¸PwZM֖/>E|ؕqfSp%Q ;)h o~~ŞRE Qr{KΗǯSH PQN4dCt5K,g:djkB 6NJc;& ,G0˥:rW*-N0jaGRtN)|lB83TtU(4(|d y˙MN? 4#M]tBư]oCuTLb5dY8|(a{˜l<+}U )pG{sPVn8.H%d }NF'SAAn~dQ;(q,N%gq2M%fT)d+yT&!<籿.<@%-k] BV]q`WΎ%NtJ˥u]!G7FVjm>-gRP~4>ģ--r _Xf $)[͖ /rF m_=W&={S8Gav-sdΆ&M/#/nSHƣOL`"K"< Vw ϹAwFzXd0KAd;Yd";ϹFjsXo(H$ 0Uq98\!:9.))N6}K]oYT Hȁe9Vv-K!ta0Ȩm@i&`KvL+hvN&&xՕ'`kw>ٽeҕ1`EeNb^T^-AդZKAqͳDz,CcSsDU*^+PWLMY+ [a˨,7W,@*2-fq[fi)H"*A:8 W1MPhUe]0MfKkYom u/;yk1u·UEN>8%z +Գ -'"&]$/nȭ'oX;jh]u̍yz2جlTH"Sgo8w@79 Nڷ ,fu831Osρ9uxk-v{X"N!MCT'Ӂ_d|'ktE|ob8!\UK"7AR<#{L3&3\/pb#Vϋ-Q{SO+k2ܓB(P կl*q r*q>'f,#`cs#uJ>tN_&hAb) e o >mw\T(?z&1[@ҹʣH~*$Ae۾kAXlifSbs>L S}lph(54VARzVsϚ QGӕ:{1 !gZ^KA#iϵBhNNIʫxSK]qYaOODw҅~/HJ?UYԪ͵†!^~g&6BǤAW`rV}ֱx\ݏ5Qvj~%;=`מJu{^ *{@ӯ/ܽa;&x!^#5Zi5$Ee^49 jdr: SyK!)Fܞmk%dmh*΅[TϜLFeh؊5B/*,? VzTUښqfJ/BZFt(czqaa$=ꍖ9x]gq&BSA?kn!=0ryf49xip1Jy/gy(T]EVVF\M$2lΊ>w4#'jCj vZŧ>Ȩrz/י&(Lz EY?U+_eM; ncQ Wlusas5P56Hԅ?&z훉Ž]vItk$]GÎ,ADD0/'LEY67ʛ¥M,(7ٸGZ=:%/*]8WpO<dʑde1xR0ACD*4(u&kRMfzY 0PBƽo3a<>QF#$:絨 Im)38MCNm=S!=>|rQc&537mo%D^ֻE AoC19\qdT3V q\Ojըl1 JIaOJ}ӃSA@B$A&~ذDZ'*Yps 3XU'o~xWWJaX}FK$JI[i1b23QCJ6&%mŃVP!n(fƳƄgԍ?XNOk1Б-#1|{"vaW:f 0s=xk~8[ X]!H\^@)y rw-A\[ux&ބ>&-MG\MVh5ELQd;SBKv%0%\x]ْOuym:3o'rr ;ٖB(NfS\hH! #J5}k^lx[Jأbe|+"4 *' Z{PSgdzPfah^ܫ6_ة1,^SQ6:EĹ=}\c *Q0d!* ?ǭ{F=APvQֱc:i\/H]5c& p͙_d 6'n_N-+BJ"\S;R1yb]pn٣*$&yJ/sd#9Nr ߐYt?_xn@3.3ϦJwzG*U%؅R( u@ ļ1N&YFtDByw wb%|;UHY>r,SikvX%a\H$ - ?_ye*|Ux/N̐AU^'`;7ljG_ZTJ%dw'Zw߉9fW"T,DwݿT/ޖj鰂bac`Sn@ع(IVp+aoapDUE*~<@dPn^EIf1|}U,B)7{ûjgJ#hW_i\bײ0EysMW$I(%[ByZ\'@mEL=q7Q{UYcx[{SY0a3{I=B) 4l{Yi^K`t: zf])\ݙi wp:9)-_1dY?6mP|xJ@Qsy/k$+|W={gnZKY#ʎd]'J4 y 1w<)>*ĵ9e7SǪE3TpY4 ߍA_Op-X4: $;#=¼yBGo.$?m/7i=ʚ=spKm ɼehٔ8jp0WUNngw>Ba/kH5fBŲF He00u[ΨDfnS^#\BPiLr.hcsAysLeb"aLr@2-;2שT⩡_YPt}+{XcŤUZGnڃsM-kfH0@|k%^<Ēsp^Ð?6LX|"BʳKjx x?G ְA( X53:H.!N-\ʎ܊NϱSPy&[[ʓ=,ϖ%N_ ;ct gA%r!ŃP;2%yQE]KMk9rLEt o;smD\yĈCo=F0(t9TʡkFyZ-uՈ*xDLT?g hM*3B. 73h-N{Z,cf]S#y@Poc$xpחP1Cish5 sMXPyПX&a$(dC.0]M>S$f^јۙj \X.Φ_]=Z?iNZ%u eu6h=gB"UoѭWF{L~_m:bGw8^<9,5krxF ;ѹ:fq3 (aHJ _*5 ,uȗ r/<pbd0Ws<22%6&M(bZ_im]"98^wv("fmO Z!q^|ң!'gz:<#NiVuWu 6dcE fK^ ֹph5ãE}QM.nop G1wy^ףs[ G\%IUuU-l4q+M1ua^;EIT-Acrol U?dEeg@ JƜ?nԨ {LW`sTd-53+oD?rK2 Nk4]9W#|xt3mM?cw:foMMH-k߰|4`b.lwP3VK©araKK譁NxjUC |mc.Z< E_v(%kRmup$&Sq,An}Q12d͚n/ZyhJg.Pp]g}Y׊ rp{ď7z *dT \vt֕,'Eskps>Wr.uu1?EJb-w|~ 0,F.`䐝~ ˬm_ )/gSVUnq|/I{2X-ڐ_?G\m^wZץJEpXpY]E8O:cCV4y8 r>Sm]$h.VH #t7Wve , w 28 _0 Y\nպwbI |Vk|#VuMRm rͦ #[T"?<ڿUd)&$ }`$He)?s Xa"J5E{kuAVkK 8ysAٚ| Ĩ0tmNF S-$0=h@*_f&.}GW{ _(O*φI1>1 ,)]Fұat>U#4 RS2g%&y뻕@zr4ZTV{[]b'Q%]($3sLyZ"h2&dTRSN(STu9-sPdzVӃW㈜ni$n&h3z^L)m پ- wwMf%9]Ql]Hz`cgÜH/ŋ^1eg+O DˑƷ{C'vDխ{8/]SѱE|êDL'poM#$S|8PwBA15,NÍ0RX]TCwB{Qj-kB{5fBo_쪵} 9֔n @qjS(1>~i|jq!YL݂H뵂͍~.~| 0d@^%6 ]!H;6L ՗݅?2)u`;mj}fǩgi*b%6DzW{5&zkc[>fh9IEgmԆp$\I~+I2X1f5_0c"CZ]&Eִ"FՊvrU^"yN_ϥe[Tx>09A!oRo)ʇ3׌>JL ?uDR ,q!gk~9'3댻e5^Z@Szp+2u>BGqص+!uh}}߁^IwC$؛0ң͛r'Oӷ߱uPfh~Nh >]raEVV20Y-΂ڎ<4KM9F.uS{' aJN5|j}?s۟㍇jÑd}\c8]Q?龔OL;ogpJP3iAc@.?|>9$2QKx4 򶞪rhIya=qY)#f<2>`~o2z[䘝?zJ\]=;lQ>sj㸀fVژ L6đhV5 U~2Yf-/)S!8i P8]]<[6kwk-~جf]fՅ2,Ea7Ki 85"+j)mѕ,p;퇒6 f3eMw@-A ck6?l6Mӆ}Gw{:w( ⋪CLdaF WtbRO-|fJpv_dU良<&l3l$V`Q 8iۢmA޹0'l15͡EᔓU#:Hy۴4Hh9sAsA{j,wBks p$7 lO"ܺ]u UNÑVl-XgR u[X2n ʅr7mA֍go;3S'a}b2[[2툝?_})o"p+@mnɊ+M*$ 5at0{xر4?~(fy,>, @|ҷ}d A$\ jL! #:2J@ \-Gek]>>)n5"ݴ*]A.Z;g#\dNBY0#1HwP!3!uK{{C0kPƅ7J1 +頱_](-\pA.ivͤYmuz:&+}r3nZ#+9xٜ1@ȚuS ;=>ӵGLfp*1C*Z؜;)EXu_}R!.)&Re͏ea&`}.83^&hO>2g4Y˜heáPJ4xv1c$팦 5?)UÉj $fn\I=]2d8Tkrrf. XP5֭NAd2jk狪z R[UayKmD U~{^|3ұqJ|Ç9A)Op{+nR NZ(&Vٵt"r3+ ~;(zxmb1ᡋqs77#b7hpݿڡ[F 稰TxQbLt2I̓7Z_~>6Ps_+NGWT0{Cî08Lxx41kZn&4"U X"EscPHyBR;ma "O"/a(rgT8a`ɚ[gdgknldDNt2v/R`/Hb[^ז?oTHہںKfdUq!byr!%c{e8`J0UNu[ %ѫoG;ȩto ۺEPVqh _{2DuՐۇ-8gG7i*.~homX&Hɽ“ߋȷ6p}<'͚w^0֧Nj Ҩg:X\S$'{A+}p͟5aV72dDr#^(?~nK6"5lV0]a bSo\>0|NZu>P¼)oh+a\f$27XF% xaq>jӌlUyV̦4[qNBFhsr䔟CYC/eͷ7H&JMjZg$ e=JY9+>-HPa4Yƍ͍#p|/Pok;i3|L-at8) 8^xF5nhP{1Y4tCvszȀנp1Ghwָ <;g{ y@tx_%2D>86^CTe=~($o# TۘlNH䔬TlRǠ PEeV#A2a`zBWgqf-返՟#}VB/e74U%bCqm6!7mQ iC %Rhc~uTŘgƫ_Dl+H{߮ & |wGLa苂'a{\\fUTrY8A c= {pĪV Ж i8)AYڦ'Eh,] c4h9^N)ѷYp<'b$.7&(U"q\u U14^bܪûΨ'<  e&t_f!94?n%RnJH985p#%MJRyhT4ΙZvfaϹ[e6 T&fTvH@,X9}@'3 V|,w#;ZhxN\w2!ֵ%Qu5e#JX^7YN$NPЌwJR+kNSLiRr427X/ ۸ }ӚiD&Z ob֎J`4n+j(\Kx*wJNvɨ"op/N G, [gQ!XO#`, {@hgoZ(_8E0-g/mGhAI1A VkڦQ8,‰W*7 h|=zh7;E<#|kF[p w.+hy !9Hr1 BMX]*,{ 7]VߨRG4 ,I-V.mME?C=-.Gb_к=h(o~ . Kn% AvҨD&d.|<6%g@94<ГuR*Uy>Ծv;FSջ(۳_VŸ苃BR%R[6F`GbY^hbo3t1zIԔ]O΂ f9x14荡~f{CPD <1MsSfS7)coW`i`ĚMcnsA8A7c۔x\HY]<]f)HQ瓎K4{۬p A URbKܜX&bbsjbj%vmyܿtO׸7 ypy\bjvym;~DžD[y:qg2M9'$iŋ9#mhV*v%!PR[M_ކD+OPxm2Yx?i_)3}=~+ 0?N9lJZPz.E#&l?[_{<+B&UA=%=VBKWR]A4tP.0Fge#t]D@Mнk~Sl( wS#%y;..0-;x(_Xv*$1RwVT!ٺt2#q2ZFuvp\INMUOp8)//uCU p/HY1. fP//&G3B4$pu5 \jnt3ry̓mܑr4zBA}ۚD =߼۪;/= zra%dwT4KVw$T?RS{fAeS|H9$7#ZxӶu.saq.yЀ1%@NCUNVT4C}.lC/qS5Dżw!9;AjhWD`Yf!J #NDfEAK,p1辙V.xhz& >yr'g%xVۥNK9X`Y>[Cf6 VZzjVWo>MI.K!ܗ1aٓW8S/oKOe=|׫ !LL~l47+"KPzxBcܟ t.=aO`6쌛o<^EBvrP]yk-QC(nҹdHt&N4Z~`#"D Jkcx&Yc"|KV e޺KQ*_zsBpNoiw9 ֩i?1>,5u蕳j? Rqc Kdg.7gPx$aUXX,6߿8qi&G | L_1U%Ü:tbD(-&G8[+~  y:u@AV`!*bDdB "DS&MjL~ϾY*T%E7hQ`qe-CGWd7v 0M~}cjweVHRyh(۟a9s!\>C}[A :&iuI'\l ]wfsXs<%c0q D佚%nR2ۖ'0нs;c Hr*L=gBhD -dXFDk)|a6/ϼ#F[> y(s'h8nuwGA w9_|{\$.4+Bʱj1(y}X(88U}!h\VG@QE_'po<fb^V"We/b >_VS2Oe^ƅ*\,0|%:CneH !WP_!"_4c~0N/^dJ<|rY !u=Mb(X:16A]jh zg{i=Ȟ vϦ`heL' bJm78Cp(փ,tI!}QMLq<5pXh[TO'{RDxr}Bw71{Wuu6֙@-I6)T(XŴ+cA!@ljqT}#!9PR9I1n ;eᓘ!a¹пh[>DE >ް{o{p:& b"{ ]5'?d](X*,%_P8'`˥*NF"`4 R2o g[ŨQy)Fp_%x Hptx g\ qY:i"n0/5cbۮEpw \48ܾNI"0F&S ƲM7F_hz6ySL|M./Ox eؓM曄R4t/׳s`ďgdW~igݟ׶E( ` T|cD'o7%ɓqt :f G^LYb@YOL!sTIf=9l%'T^sXfT9=b)qUn!–e9kJEIl\)떎 `v5сKˣUqjDt׺imc8Գ%ۚbtn=m"F}\Y6P_7@_Y~F7֣} i·?{}Bʰ4ÒEBD#'0oz9jN4Ib|CZeʼ8(ovUA4#.eJTEBE55i8h0ك Ws+0xA p< /RшLMgDP5 t edu ax9g#|jܟ}=zd!ܡzi#vDfz˕̋C'U4$xyQ﵍&MthDnUP0_xrBlB5לDb2fC*s68INkS7V@`M2x89O= ݿ\x CKwۭ祯D`:#X+o3R1Fߔ ˻{Tj2G90j~r#:9`N6#cDAQ3joK@Z%u9(@'ӦLk[S/f9tWmBo,1!5+̄7L$r0R:z#^'L\x͜$iG[U¦UZJ@$ԦDT0GGXR'C 2| {\'zqYbʜ[RIm\m,EdF%rQч,Pxuڛ휌qڳ^hʊR@/U'y7]4Qv !;y_ƃ "N|z0Q ׅ9dI,}ڎ~ N կ(Adhp|—Z+$4^J/+ˎ^q0f":S:/$E©ffN_aeFuфAup<dQދ FG{Mp<^PVQqws0XTHc(+>;inh:_IXʖMD6=㼹OƏg. =C̪- jp焗':AlT٨Rliv.5 |/: TV:.YhsM$j'w/5X*>3%3!]'R}Zނ(foSuaC/l!r9xJ^jw|7Z?g8"p Cstw)+ɸ5M+V p>6I1WO-mp ZI%:b1Fp p\A[ _+w7 #˯6C(,2yp`2̔&p;M׻QJDxڬpwUU Ś h”V9HlRp8 Fig-Q0h?lG"-zdc~Cj(Twg}?^aў ̚.J33 %TͰ6DZό1IPt6?A1zLoXkb Gx/ehn5k2>ḝ!k 8} i58`vD}4G%`n#G3>;p'h, 2aL,o,RxPI/Mc߼cxExtvlEbjhy4P=`:h iw M- 5ҽ E , Uuc}7(D ֱgu1+gI"sH>w=VD~*o)0љ9#.t+#m34H&ctCS"oVnUM\ Utd;;Sj` jH^X{¨g"%`] @Ӥ~] 7|ˏ?vWm;8Xy{%&1˰oPHR\ժA bir4>'S.ֿ*)4u}cR!W,6TwkΧ{(ı: ['CDR&jb(<ߪd MQPeC'%搌pQ|F+s5F `mcNdq 9C2>\:;D7ϰ #Ăw[ɞBm5 :jbujc|&KlO[r`gB Ԙ1RM[ 7V>|(EOW]ιfyAf'CIYd6 BXhT G˩p Z/fm~r+"Cy9{RYHDuhc),~ EUQx ΰJM\W®V?12+M(3&@!R zk - #G~89 y!x;/.UrW^7Ⱦ"(yX wdgZuTy`<8)RCks}D7d 78!+KY$Lb9<OlbнS̿ne깖ծ\~Ұ'wb jDM]8mNOl)WG#P;i=ȴ50Y2C7Ō{d8c ;\sHRiZRߛe.Dݷ W׬TG轳(U!j)47פE\RGQw!h=,ӳ?++shf1a[' ":!H64@٪Liw"F5'*@8< S75B$hiH@X6n0S7e`wV.P<TB1lpc)N9zVCɫɩWU`ROk+U~G `KuC:]ղ-3LFA&⹏KMKWsX絓VetmRR5R~ZAEd_f y|7-/gXaJz؎S %%J}I*JZKHn?$ކ,4-V~no=ʤZysPbg5Ť utU]2w`9@2wGI .*pR%k<6›!/{˛`yEJ{g{T]wܲbL[&݁۹ɍjn0\'%b9~#xryb;t#E\nWx|(q8oDݜϼA.ibgc3!z/4;I{U4r$8z|nf+ͷkgcvQ->A:煕8!*Q%GlvXehM/ODf (US'rX h iu_]3pӭWy9_AǩX26>Ey H*̀@R¨OlN?`ޜ/l:2y?c#͚!t}IOah/:yܙ>_58-^t0Wbޞbz9\/ֲp]< y?s3hq%þ8IHDq ^zfWtv{b itת䤯`^(g>qpT0Csw}=k]j|"ժ P붋 .iˮ .` Uke /G4GnΰHxRjJ3#^Bx 1SpLrmG؟tf26|2G7!_`![.W!Ŏ_K9"y+&XO{UfYycX Jy+&ur&{1Ȗ|(*7d2ۃTrml@H bIc4^yL| R]1AMjc˅4$ݩ0Y pLk&Hp lKZ5ubLv)ӒW٫m>7XHqSN  -9А%% ^>\b3%{1h 8ֲ O@k G|~f[,O?Khx4[ 0-,}&Rxk9|k=di%Z%ejֶ8%V] _b~!3ڇ!1+p|@/ m(ddο+N>W.@PBͿ㋣?ZeHhRS{Ũ̲?g^j$ wѺGtjK*\ْe -CQDy҅F K2hI嶦ar=}' ؑY]շ\e!Pz`i| aʚ?-JⱇИ`Xl?ЊV)ZWccڕR{ߟ74/ө)9s@ɱh+%zl%vu5`ާ$~4)( S2HTbtb1OXT(Yej %G4JۀH&iHEP]Wr=rT&ri.@&_JHZ!LOh C<۱g!lI^lNUYc+Z>i23~^0ڿ;P! }nݦͬ~T*Gg0gx^a6@Sxuʂ!(O#;x#)AIOg 0X6 scܬ<+EUo gZ]#BNdaTS;ӚfՋ3i_ޙ^ 5!qn8P,.^6  5y (T 4Im(ԟPשxI؋9YVxr̉2 @ <17 IQ(KHyヾJj J܂Tnal'Dm%LQYXX) K mrT5ּ(:g-Nuo3S!+_rO]k@Q墚A$,0!Q#Tr'w.a />ԲPpwOGiZf ,D9N7bw ޷\ 40`6p#Q廜󱑥NVʵKs0™9z!U9xeh)MMpœvD"sTd!L"<+OPzkdA oGv7 V6 Pq!fG+l tYɚ);"6)L<~,T'6TRs=ʘTO$!xwroƸ8=%%}뜆/a JZ5ݙAs{*3oɉ16"6'#1JǗ{?&/̙9['.QIWM)fw%ZYcy׏}7uQ_i(X}"%!35y,iea21$X*Sƨ--*(bFd0&03}yB 61,}(q;qBz$Cj=}-i.m Qc6L+w?#!0]*^4HYy,4=~ul8dȡZCFÐ7lρ۠ǤMLvNN$|](g$ USM#a/ w⾜ᛳ5"bAM KLZµ %5EY^oȇ шG 4 ?\)L8l^>ehDўfҀK0,o,RK QT *DvLX0ն|dfR@ 0vADyݞ.kS2x>0Ve()'VwiŧKE.MZFLi]P<>>??J/ G2f.n\\!o\f d\-95 d>1Ij/Gwe睱s<C?etI8EwȍXLɼh 8 ȹ~23Etq&]fvkCIަB*r2U K=cX4/X>5)o+_W'A7bl>K*\KQ|H<`¹lBhak~RːNG sGR7A>7Q J$ފ&M`ӭR\18ItKv1cč:G85oxŞs 8Z'^;=(Ҝ-ĄZͥ}\~2j &m.Z.ח!b-ͨEhoc6sL QP!YI0gحavuQzu>hqj8DƕMvpPagF7wɱ}ĞH#R(qX& TVP/fˆV;H |\v>Aua(qv@. 'l5BvC&&iز0Qh g6CK6 zfM)e;- rnf6ګ\QXoSS\k~ѩˆ|&+fYn?('%Cu R IW]Io }6>d` Dh48P1HMeQ|Y4~ ě骗Ixphei|p*p RJgO W?Moqh_Uo(hQ( ̣*\yr5+P`x8"ilKa]tKRCK[ۨ}Q1[\RFNc'pjeGJ%x\U0YAS-ĜI+`މnPҍKeV>,7IK"(.ު]^-săihU+L,VVy-^~E[C0 ,=.fL D]Kq> ;6#YDP @ܕGqx  8>ɮp"ELsT fM(坨:?1m<# MxqNgu*[m \'ʥ*!~% *ȹaBOf%*zw[WoZAdgl]|$`sHcT#PL3^MGOy#:ʕKءEP78_2 CI7d׀E\{CY6fP/?QYa5,|b;9/Qfto;|1I3穄y,] 06"^i!;.|bv~fn K Q M1h]`#/\m,cCg-|Ș]E04oDV9"Jn32J;a*ZdaDAtn 019iğ`LD- |Bш+*;k~[LfФN[LK]`~k=Sg]jGA͌WBi(J)R\PUy֍6U˝,آҥ?΋5ًà#Jx 7WoWvK,QLuT&[}Y0`taþ4/ZW5 WVV}}Q-ڲ7-b`-cad7>ۿU'Ⱦj`U!K5lNL l!+(@V@-5,IIOnj|^s#f@r/>sėBHu0|GpV xCcCq aF TB;&yvp^ atj!x:DKa3<-CUA[c dL+}}ݓ%WBv!TȪ/6ގI`uKgVEbz u]ى)kmImY#"l41h[Z{K>oMhA3y);w, Bn;Cne&;ono]ԋ v=%2k#/DexJɉG.~^OV.1L|ܢgEH'VIn6aYeLvB)%'o+.^׃.1Ed˖\?) \"ʌMoS v9ș' 8O~ȣkPջV "]ϬKTEkqʟ\аkC(Ǟ"#bV8lހ.3հuc? s81k<4 .UYdgŚ TE"SB&(/1v 7̓_j1%]Oy+Y 8\\.)j_3hۼ9Y>4QJ*Sث̸4VC]S}v5m~u}dd|{[2)6ljGW܍b g@^ʢTeMYkc̴fs w :gDـpKCOzΪ@jۏ= RMSaϟ)4%nAnޖD Hݰ\澼y+{zdVPpAFN66Q(>uѻSOcfO`НH}dHv~)Ymh)MXrӃU!t _ު #34 iKFBd [Zڝ}?IgMD##aL-UΝdiig_āeZ2횹$sq|dc7oF+}َiDX()_лdq£mGྵY!H@N#E3ZˍdK=\(IM쾍x#hWbA4$)B< %vVvFr{<z-yb9z^lY:zgI#o|ôK=opfJ(GOH-C^H<,{\jr@HW^"jHK⇚-LGv Y,͇:r4>5^A,mOѬ7i7 L/j{# @J Te!r ϤO8KrfZ0diNu(}o(}R5`ArJ@BѮYQl@H"M슎E:g4  a08V @[ i&ƁVZ/L,D&~ln{V8#?8M-Z@Ե^e rҋDs$Vb$Sׅw"V fq?Z_!JI99MX9C@pHwL` P0k&)lA\>+|HN=a+Y GLbym-`ހ<0+[P9m Z~kb3R

O~LDȜ3kT!̶DW G=Bܛ)Atg{%!vB_ ѼW61`CDpgخ| (lNoBl^p#JޯnS4:DݥrI=hFͅ9¦ڮ-t62- Z3e%&~2oV-@a|@6*^:sT J a]Q ?huuΠJR ~e_U$%U,%T#3`&7Ś \׷B ;")|B2)sO5[dAv d%Si&Qkʸgh=n+pU8 Bha9xB=,D/FoYwV-Ta?Q-ISuES'Ehnڅ46gO}G_YB(z hRQ>,O?˓D9DWvo# ܅? >1n8W5WlHlFQ<͜Qɴ|lRoy^nXf?._hL!S2$fɯ=d8Vm ^X=ZxPޟ/1PyROT p`Ћ,.^Ew>q$vᦪm.O>Hgpա/0[Pɿg1j_dE sXzY,}`DlZM"#^~*6l=Hf\CPH7/Sm0\͚\~ D݈s|UiW@Jkw;5r }t=t̚C7I+մ2fOdCF#K)*K::<miJe{pè:gˬe3+Vx6g$aVn:dxOoEM(=C*R2.؄.4=F5¸16qEcc>or~4c4+'s 6y57{@ydV#u5 =}m;dj~=7FzthU=Eusʛ&[LV@ň2#a*]4H^?xP3q*޴qIs]Zz_`hD0~(|2n#e_d>F5xdfC 7hX&=d\lG,Z=7=^" 拇!:zM ?yãsp:N3^P@Rt X^5IUB+GYJqڐSsGLOS?VҰ~ [&S"/_Ӑ@ >=,RR$b%FIE4s.=r Vp/xt Z:>rk.]}?x}s zv^e:;:˓Wi;ɱ!#-|a^f6xbYP%rm ~ލ2;>VweN3íc+=A;E?Ⲁp[|}sfM0M]͒Lџ3 >5n)xG@c,6q>f<ޕmZ2 )݄v[p#ݫY; m%0m`p%N*m;jb<[-.Vo;1v fOGxӊޏ6\ iCsJ y% h˽5ԃGY^hEZc_Q=ejN鋃1 Ng<8Q뮛{\!?޴sɔA(g s9UTq;o&ΡhS\:UL8dݼI&Ƭߴ,>41+I:Zjyle8^@V5 (-_[ip @zR&'Dv 1 h9X=g3/׌|ʥ3~uhb(sIv |,W]~kĊ46:ўo.#)Ĩۏ,yq-)VҼO$h |Fc`rJ/bA  & TZe$ iKp!+OR1yӚ6KuNA @kwU@$B3-90)=|nF_B)74ݝ#{4uT,*#IgZh~6lGM9GPƝ) x>4x,#ƕJLǂ2@jƒQ2Np]2h(|i:LCfbׂ3{<3X]$EA"N<\}Lu c["F钩V, L[@/Z+oaĸ-UzAУ`N9*wTAdnq@H5[y~;xF՚ijcMpws%MQW#['"5_W(H N{}-S҄ ɨÝHv`ggnG251{Hguٌc\9̃{r BVս%pps1G <dž\.gtaA3՟{g0h2ː-da)v!EeJVm,jf[5iLz*#8oBgF+Y_};t,CRlt:)^my0NN" ̉&R'wPfw¨Hxe uÂѤApt*E7GA.)d.I\|UiJpgȿeq6k\SuuHԠ0ՆVb!A͑doqr qA[b /.{C6C*[_ՠ׀sͅRpYcGuWp/9Ӎo#/& C 4,P(5s^yVbnI>bWɐ\'%lZ_㪅Oa#U |_n&~=g^tFEhO|%hW€0aꎸ\zXh?!LMz'}@t8k)PϢs4f& ?3 Qe0I1fgz$[? rT^^D=[+μչ 7zFoNuJqţ5<_b/:lXzzt:>Krp'͢&Fl'h=_Ǭjb9m`)RY \jp3~àJ{<ђ~Ŵ-Y % +7!Rv@rI `2ּ@ri|⩳4dz>MNE^9MoiI8?fmq$ ,Kap-+'^rgH]O?{lض׺`Y|3F-)jpA{MF靤O~p-Pw. \6O Cp8+Xvv.[} TxhfZβDw̪6e:@yg\u1@! bU _I ˙>.պVϲlP(_pބ#;a^ -ITE Qڙx;V{PKمBGpv6'_~ẑۼMs?.9dL=Xk8D^J Uw{pJmЅbEK l7 %8aoJ>7(`:=q٩Qd 6pGtoy+Xo5ipRl#^#`6oCDH$㺭殾C%[.ICx(K&T@$8`24cك}g-vl LKQA ēF9FQ/N!RϟG,;{|B|3M~<"_f2}ON? W64ƐRJ>vӣLaD#>$Vsđ06 sս$ c@-0oб@xVۍ-_Vr[T ne['ԱO AJf<_JE㣃WIf&~ZWHVI~#NRQDX;YH\>~8AGxT,Pfh:0xa"깝ewsr,Lr\:,61|$ԅw! r h]^%)EhE{YNfH=6ʘ p\U; +`iPcXJqnֆEԵs5mz&?f8sYJZæ)x%Q3M-k M:02䃞c.%? \Wfy w6TP&yꁧv~$x5'eS[ndcxWv$PU"I- &:UlvwR(Z͘ r@?[Ae  1v$p;f9L%xqUp[*)Nk4O{plTSdT\b#xTH%'O0o352fl~*@ZVpODr&Ƭ'q%D.A`Jĉ}Xe:[%zfzp "fW~.82'%hߑצrN ePB՗p~vW5P֛s|,BMdtF+=sC!Lj:7T~ ;F,VF[qPӕLcV9aym"w*N9b-љ篕&'Ih/+Ak>.5tۖVˠ_6qve!;)spC$[=5+9G2%N`C쓏myX$h7Jx5V~>ua]T"v*V.D x "d\j:!fWPQKc䷳JS3!z:c6Et/\pkrT<-Gr:}, :}m[+҃}.퇝ML%0Oh]:>@)߾/bfu? N\BUI~ޱκwqqLVy9INɅSьg\e %EO7HIE^)}3jO͞Vn*(sfV@p o4_+vqxwDchgۭ9:W$,1(ݮeI2Z^25 )%B[ Jm"P#%W λGw-/*+=X~֍Dv-n~Aw6@{_gSWK55 8 Rx^F^ ̎v(Jjwk qUJyv͋)aFծsS}b*7T2_w\WA[a2Zx/nY,+:h|PcZID|Qt,gְgؓo!A:XZF LϻP RZq  gЦ ]BK̜!4zwm mG&j3`0'+S"?e7%_[gv:]&!cbhcS<Ъ!OujStP@ĆASw\LɦU~J]0רlTf_uY>{%-\ ͣ4o qJW& Z@oRzk¼u޶ɨapyz S9޻_ٜ) |Sc [W ҃̇XI=B&ɢp]G+`MO'^}\|B1Ӣ$SuG6BI{ExUUx^l7m!=FwԂ{/`:ƒt/E5a1Ј{7ռD9:*,rO jVT&L دg\j9kbg cÝLS9xqZ1+U 8JijLׂl("Ș1t:V֘C~re|%rz '(Xt7t\oRA}/V[ws?MVI B?^~65|2L;+T;'.]b Ι/ә8-TT`: ;\Y9ڌ6>h~74; CK'.kgfQkV:\6@dZv[3d53l_%:X_'Y1 E(ny%J2F*ʷb\ 5T7L$9WJE3c 'Xt~}y[i? I~85er*cc_ъ wb?/vR rN̐>X qbsF Q1̊f ew(*T Pѱf 6o5A@7``%C7=P0cGϺ7O_ҧHa`'Vtyи R~@gl4SՄ|6QH(Hc!6Q[z@ V7v5'bIV r`|gy 2×$·A^/)X!kMgA:*wr5 :.)PNa`ۥixՄ[RF2xQ )%>vhP&6&!ҟYhd@?6%.$_*Xu<;m|!u+&yJ$5N>`WJH8->#[>n)?~ȿT&Aۇ_wX?$YP8 W5@㜶O@a~Q9%)(A_a7֥s2=>4:?1{.J9p2v aT[ @f17<o5^~N0E=bJD#~J*):wh^97WuB#fif>>^6teFȝ^ ćqvh [LcI1h9_*#uf E^]`, `TV#g(g(.xX.KIC*Ek:J:RT-{M|UK-QI^&eW=/R?nM bzΕʌů7F0+:X|u>*z/jW#ق.E=.M\:+SW4|x S%{^U1gح>SLTɸ`y E.wX0F)J09KB.ydg/Hw/g?T" 5 6 A,fbCk #hl>l@&Vk^&mϝ HDN"p) kS 7.K7BL,Ozj^ "ӻ\vb\:2rǬ}I/SFkDYL"ji1cs圈nq6=[7W47 7IXeSؕf't(e:>6Ǫ)5p~pojBqpvȹKDLTVɵBܨN L#v^Vņc۝뜃]P ܬgx(SkHH)A7(`2T߀ BI%[U \0mQtgw9MD*Ld{WK/ EEO=Rpd?cgKms%bҊrs:hR rhNM䮉1#-쇰VaY{L嫯)Kjf_E$[}b ;J|t}o;R8㐃h+6Cb◰ ;2+"~~|պtl/Fی֥gۦ"\ab] ^Ȓ4*c |@֑,u+5{jIA ҟܠuU*}V]rxBDؼSKj|i"eWF. oѨe5 `qvDH2KDJim&{!psn.8m첵w"MB(LcJ'Q7,='Ԉ:R Dznqv@y3d0(<핀G4~070(J<2K*y2}[aQme>5@|eI@b0AS4}sflq֢bU+8-،teKiREIw"3* a7e/iF CO*3vTGMG>Jfц eȽ$vx.4|Y&6kRE}jM~59O߈fNBc_d4C0²-G}5';{R2R/\8.] C7wz3z{3OpvEB^,_ZmrP-aCѷ4#3$ HN94J`\aq=oP8K>^Gߔ)E fAd+;|b&H{<@\'.3VrlÇʴ` !ϖŕ69ZZ!hV68KJǘ;aΆ&J=o@}}trٻ(Ãrq&=nB 62k T:P>ӇqL<3ߙ`QA,k4' as'awf\_9jߣJi'oK6 F,s,_/ ߔX\v뀮Mwq:]l.x6J Z^gzEΑGpvʎ2CoU|h@4}&ݩ_Eu/A9g&UM滳b:# λ1xC* pű<~&fZUD]Iּ)l?e1 c8>nF+Udxt"q,dH a0Lf \Em iڥ}Oq膳;6 W_u+̃ۤc*7if}P;Yb,F m".ҐV˟v dqΌ=r{YIUWtfGхh&|ݣܟqil' 2EYs[`$(.J2tM6M"zZd6%U?F#BvC'rq`y>+S(9&-}:a᎜øzȖ3"d\~ bD @1Nܣ+ɼÉ#Es7{JūL1 omǘ8,z-ⷍqOT$m\q+iw6ک[`5PH\7"c6:lUmv _߾ 4WUXeb\ыue+L+' єk#鄃Vn2}MG#+ZօJiS+3+v|% ;1*TQi!(edk+ &9 )[;j,胮<g6ґ00l7{J9/v*h`ܡ@ku RܷZRۊ;pT(rYfoxB?୾쪰ZL17 -ʹอI]D(筹sm4DS_н/QD~#sy7 #qZmÿG5{d"?C-K`ŰŭlU8s}ֱ['7|忹C₏_0bD$a OTfcIǏ̆; .GzQR DinC0mE$D^eƎ3ec:r)beE [`N{ YJw4dsnڕR33v&62jA|RifƼ OJ"`ȃhcSv|D  .;wL(f3ӾRʙÐ^^GK Ȳr?'bVǏxt_w pdͮMn[x[(#Dh( Z@ՈAֆjwD 7.:s~'k mXC}{Z˰NP};}ICÉUgщ9n}F"Uwz.Y@%~Wx CvrVpx`ޟԾO62ita`-bM{kto,aρ.c4-Y>o!Clڵ)g~;qkA](*11g y}AQϰs` ϜPG\&#t҂ 6jRqG:po1DԿ{"|՗EgZHxh߯B~URfNx,M|&GAh«D0L` >OvIDj=g"C݊C܏˾7E(qUvo:?1 -/:h^uc+5-VRgNm=; _)n)b?Ĝ, 8uekAS ];hH߭z+CfPa>6 lj=j4kU!bm0]}BY.5lSII HW`C+m٘-9CZSHծa? 7CPo^ fK ƥh;`e[ϊ]&ku 9.]˻>8UGS! a1 u>g˲,Dvɫf?TXwpd0_)ngM/zP2j~]|"7uiE}>n*wi.832 #W0B6SV-ʹ(X_e(c4 ZSo9<qҜ\/>U5:zw"$f0%2z4bzxF}|vR1]HXe8b*}|3ʑFb/o}abVׂ79KAoK[ao)YLMw,]sW5!rƈ̞ƒJ9V©7KlCU٫Ԟs,'|*7i穚rBG!t"ޡE -dPc]f 7)&r:7} YF8q0OF!YLUpӡ iE?XSOYR < _$NfbU2˺yذDh+K,_{xLQ Þw t &ekE G1Et+4oT_#n'%g(ݽ؞U]LfRW-8TF-xJ2mf} Sƣ"qU8j˯ =6@)k(#T8uoS`w6G}Z@f+_AsfU_EӣEpc~/YQGn5#{-+8N*~u6\OP9?][:kL#hp7yXEJQPqyeC0M.1 zngBEp>T袃lZ@œG7OׇAe?sKe'^ou3:KuD,[qJNjW?͍/tpPoYo׽$p\|baBuۣW D0Y6Zyꛛٱ 8+d^`NJ]ϋ6udagvW1=ɃvI\IG_ {Hw@=X2#>>puxdI EG?8:JKDrN3=rerMBVjSrN}nd &1;OL hjc8_׾v wWBí[8xP C@khe'ڣ3ۮxVd^~氋rH\"b|fv.T:ʥN*)7a_)ZckO4] b+vwSdԖ0[9ąVցt7wTxsdm{nu>&}@Bߙ݈xإtHuӨ8>VjQ33\0?lϤ)nݣׇ͔J?9!H11D{fYn YmC5qس!4 ~3ԚYB4o)Y4+go}OsƧ ±NBngF?Bzs롎.(G1Tߌc\0Y2DFAuSz<4"n ҩhR-Jqze^U5֡?8iR& 0`oG;Oҥ~jN^^ ov@#`9UX*B~,YgUqM 08?7%vCDlʁSo=@}CP2w," 3{ymiGC\)Baz#A-E{|̛iTW4kjFm-\L A:9ihL:Ll#nQąpD68^:!MLCsp3Rq=cg:-$"mȋKtY]b. >oL6?JdCM^Hi6b4f 7>A#8J#6?@r" Ȃ$R$]{'%"i9,/mnm57 8p{HEW9I;Aony+^$+v#n9Ț)4RfiVΝ$ #5fՌ 9?x4DYxiu1~GY=tڔ08̍ t@ (o:EOצpʿɟ'Caiyլ">φ*N:u:.W=֡A%PBA](84m;i*5K|!o=]q>I1 Ch-ao A Y,UH^J̃ 7@3Z|r,LXT&|M0{ n6+~;(VnN)P<$Y&xY"iL.S{\nCXwuN}X6y ,2`B}'uًe(b}_u . ~R1Y4]H.# l{-%hNUkKQ okY!fS"@|O2k8,Y5XY-fR[k0-e>Kl> A[e>Od'BHbwOgt=>\!s0O\Fq#4;WU ]؃OuP_q k_4ngBݚc.v*Ne2L fsx b**[E7%ز=_>V<Ң ЮeOSNI DzQEMyٕCD笞ͤ\ t:O2h8oE%Pe܇i.,PM=cq0֗bwWTjh Wj'ɣ nd_miPXdY+ߢlKiy=z#y^qaέQek&F[BʵJe;6Ҳx{*~! @J릺)oh `y0KHqXJ_3 JY%LE&I3AĘՂ\m.MamkDGQRlgj +miNeqFR|L7% Q{5TT5_q zA Mrz̤ק;,|!Ͽ&'%v/+vwpsX>ZA'gqxgFiqE[!e߹?Wcs ~fNes?=?Zʦ:?#SN]t;p15) !V7]'j~-"p&7g)V);<b5Ei#Fy>e uV;Fbz\>iJR rhr XLPjd~ 0dsAJPJ{:Bd^?\~v=rR#W{uHL~9?%ArXu yK⧏6B PcjŊePb0aJs81VB|g >FghCc tD3H;~^ N9՛Lnr%B1cB1? gSM@h"A=J%ϾJY쉈^ 5(~yYcr\mHU3*Ds+!sLCr|]!Q_VP<(n3c}s>`)bͿh2¬5(]P}|=YH_"AX szd}wrkpJ0 Ã@+2l2C(?"FtM z7]K[6,+4?DF^~"cfXgK>3,CZ8JdPLOZˏawC=x v{U.Sx;h Ҫ;TòRȶ;AJ`2Q}.9ŭaT"]X#V_O)VG.]o=syf 5CkOh.Bueq˂ VGU(YNGđ yb>NF!<\B*:OΡyʓGh"v!,K؏'>Вß&KV^@rOSv+NN&; ;(G<o *Xb1'8e~f L7B/ږ'fFo^Ar˂_>m>88yΛQ^g+xU^.?Y.+TO5޶];0KE2Gd81e-ۭG朷Ny0%ŧ<:. a^ـ8Jm~AD0N`Re3+J$%X\#m96͞Zv[WУQ孕Y*;[N KW=sh(V/Г5=FB "R _'[ XqhxYm82@{{}$X ١Z2͚bl[fuSL4DGoR}/]4dE]d(҅o?Yj:ePG\u;Z\Ĉ/ ';HBIi3PR$IŸ^?@<^qAT@NhQъɮx\Kћ# rGysiRň@$0dEݫp=~1B! Yof6 NFnĆ6D*u~"1I*C'rŏaPF=\Wx`|PaG6|~O..Nx[3;F-qgdP9uߢŻrƿ9taEd)IϊW AY1@۽FqUCN@Sζ: % ȳ/ 443ra 6>4]5$sNzFK;'y`uz&d9<~9RcSw?š}aY n55ر[۾rnU+W|?@'QmfWS|#,n,3VhEU,i:M06q  ;Ol@zb&Uv\K`npC–upOX@NW2?)} RAs%5)Mb4FJwUoW '[؟ [Np#!k?=[>T!)n!:+R B<G1,(>t;)Ԓ{$@ |Y?iY?&=ہAE7~Pb&9s9XS, Em"mbn3:#嬜eMޣ|rUǙx pWׂ%CWc1Vh1Kl<\N%cnSK|zkw!9:FПe qx-c.8 9ͩ}vb*gG9_hC@NS~p%|U?|@j&#YNߒ!Lj}d: _Rnl׋ʄ,@bPeBuiz8%i`"06tLL&++KvO?"C|-= x! &]؇_nުJ):W\bEK2|vPAawF)ul1CQx-'DE`Õ[{KХ?X3ߟ)pq\lj O2 |Xƛo͂}(gjm|?-EΕ RbXt]9yqmP~>R&jIqҡrݍM o=s&-F*1T{'kOLۙP8/'BL4j2~qFq#mW4O|11np#_(˅ѕ~*'uQ IsS|11np#_(˅ѕ~*'uMدՐ%S61opMG ё`α'\YfRXvY[ڭR+t[ BS=)d ;*lߵ;Ľ._>KfBqxY (F|0.Ve%S61J{Ap3V'"zNmYSF'>L?U]"65E25t}!ԕ2qMde}S -HY8T\mCYL",zm5[dv>i1VmM#*/+AE^RlZX[Y͗)kQ10{JV̎4XܺEUώ+dn6T#qhd|; 몌WZMFL}n >H)qjcn&]p^qwنk ȶ#ٮݕh551w;5ӏΞ`D7..Ck"P0،Q /ty4}nACq.LКfmUvC U9fKfB-zöTY?Wyӫh H8UG%"UwWكUm>X:bt? MXv΃?UAje֛ѥ9?: [`i M"fo*x'`@@- 8}oQkSղY[\ o1Н^^0|&,SSĉ+711n^nI:K $|t12~&?n*fLYLقLh-r;  1p.doeZ׭xj?o͓{sLWRI׶SogM v'̍T/O0dqxBK3 4Nq % ti/?u/ֱ9j@,/~ ?h2X*I1n-@] .|˓Ƣ?7Jw{QXFe3ja1gHhb/Kxl^S(4xlP%|U+|饳H۸ @78}/,bf1WCo|:XkٖVfWڀ9" DW{L*V^YKދU 4Rc"\Mo+m<)筎*?Or@U&>$[.f/X&DB4޿Q2p&]TvvRAuJ;OC\rٶRvC<| ȓV\J [/lM%} _8U/`޲Ft['򀴪+vk*Rל P;i}NVuVTu [xʣ}Tb&t>zvCؓHuNoÄp+cqO3ʊS,^xВY`3)2`@$'sƐ%+6J5jjg5 bf䬉[=mȭ-}a]fXw$l~Ni"|/w&V1E/ollk+8+_hv(bfV(Y0!6I4Rܜ7&Ɛ{,'¦u!sM] , ʃҗE"(.̘Hس&ϟO3fKe1)pJoY HE@nq1my֣EQ Fz(nNoE"zd;?R-N $r/.T"'N̖ݥ.wb$\(f6$"d2;{@ϺBIx=d)/r )Lo7_QF.J9 _KV\(QQV9Uh!"xt- ihLfe,hr4~/UH`Yr-H2,_;XF>/Vp#9Bv3 YzTCh14^5#b9bD^ooH{A@Q8vv/[ǟ;w LڒY A&D+mbV`lnx~?XؾE^3qNc (i1Jj@]jN_ߡzOF4'Dk+J`'UŤ.x<1qptߤñgWO~|bP8R9բwh5Cŝ$)2M֍DAl< dQk$gu?$|MDr$`==r~&LT Sfy^&ϟ VFzNY]kY˧?/k[j|i2pKc-=6OUdI4Ɗ~6jʉ#vJh@FُϙGM\&j8:Xjit-ٳAPXX1:;K!p(ʘdd-TJqKdԃnloL7`VLgʙp[^TnEP| <\D];,vMfK7Q+]Oi{eҙ豷GG iLlb`1Mm#8*H)_~f6_OXş2HnǷ_@mZ,7f,-BPAC' (u'`zZ $=)V7u2/)MCziz 3B~XqmOYv[|řUѥBE4ɞP'uuTfL7wh9aFl9q[vj-UR mB̳C_xrS-Q ;ap>#s_){iN ̻ӵxiVkFٝCqQ"#r1O$)H*׺(D#)1吭] |T,0^SMz.Q=85Zd԰wsU{6OS;aKRmԣ3(i#mX r7]ATE2 ѓ=U7''C\5Lp^G0.d :Q\`Ɖۢ=NY.f`pM7ٕ ;UVى%E>kIψBwuv!%6Yǻ J\*rx >LXWv ?ӊy,~8m'gt&(R!*~Ps7"Z!yK`VyM&jL޳ 4wԱZ֠W`٫c+aعRYΛ|Џa7% :Rf-Zhc,I3h)x6mF;=[gTl-{EFј$B TfnB+Lt@9 kYqfM&m0W򱍔@{]_:kHֆX = KK$ŮeoT%iZ WP]*YY~6/0>4x<{A` 2D^c1@O-Wܱ^eL?XO N=uzbuq)iIUT[66;BCaHNB$Z齫''2kmfQ|CЬ$X2|z)bpA\-\+vuHtd?} ʝux;WiʫcRh 7>^"-=v ~ rK ?`>n)L[0-)BfV}W'z3SVި*Z+aBj`xg1FDqk c7Yhܳs H,EBnN<`gwY 7rGBܬ>,ꢂdh#ـ2bK#ZO:FlQq^Loo;Braozl+]K2'5 ?;h? ]!~BQٰ{miR9[B'1G '⮂kf)DzW ŜEw;#˖17, @h5$lY6, +՛_4U>nSO39:P}pTHk~+ZD7N ]^*yQS+ dݐ"ZÞWv0v櫬jIay,}Ll,n\f%te#> -ݠpOI[Zv?~barXX~u0gU`WĬC8uV*j$nAtf"uXf)F,"ev$6\Y-}x(HVE!JT0Akٶ!n(ěM%1t,w$!; t=r?vurꦿrc熞!\[$sQ:F*^Iͣ /~8J"}^<?G?OT5JyK|"}:n\b!Y-mYNap fflw֓xR[C8yP~Pȥ|a6ygC>~Y#DmVx6Q^^y L=f[m=wSJx]6@x'v4{k欖ž uhv-~?"?ʴq}ʽ11 X2/0VB={ϯEҰ]Q4$z >!q2"g 8B C$j^{dʇW(e;Q'%sx|z'[gtLѭwI?-PV󛒌cR މeC`*[8&+H5 UW^쬕b!5WSSkE@4zLCH2o=)9mM}7Ej`d)d ùQ]ԩ%SVOj8ТJݣh2d|iH-_Yjabz4s.}QDO2D熭"UZ:#)8ש1ֽIR w4°FaҦUZT# Re᝹IxR# LvSSCuA9)2gf];L@JXuuJ6Cq$lSXW_RL4Ϭ}x!帕/ ~JKמF*%.? `gd乨 ~#ˇ .NQ sr.Jg1ɺX,Ŏ,VnƟMf((=czfQkd|[+yy;[Y4n Z:Lxfa,)3|Ut5v7gWn0x~ {?"(> 첧!`gv;c&-rkW̆kj%dqX:FК8WJW\*ZŊ8XtO!#2-խncnid al6V}\Xhsqx=*=%$tW }" 6~.;1Ƃ瑊% ^Y2wO#BᆉȵQl/Qfw/g2쵣K]"qnو 35w&zznw&B\$3R>?T<AXyx_6CEClHW{#%]4r "NŌ[Ivh._]5/Qs--0/ScVҜh#VrDb 9W4kuҰ<`/X _3zSU3h9c)mC42Lqiy&a.ו%wOkb j P폴kR ??G@j02@-z yg ǘzUrR*v& $)NlQ:mľD3xPl6ZyzIRXvtNhWÇ8/MR] 0[XֆpwWr}k͔r8nӈ_CܜϦbC Ұv[o6d̗ވ[͈UEBJ츎WBSe9Dfhȟ譚Ss>zw҂Suk[o )rU -g4p|Π PwA@#0D|x.݂s Ow^S4ziBEKV7,fU9[&MYa|ϹRjOZT&>}7fK!T-%m9Ջ&(F%ﻻ P$V:| UPU$v?CNlLL9/_f|$|j6S0Rfij8F=ѕq1MˏF-;ZBt %$1׍30h3â*XzNpDEX.loDs$|Y_QRiTdL+Q1"o?ٓ]*Rcr>2%t>8aCEw *8MV[XǶ<HM@:ݾr\+-;ayk{=ۣo Ę[H\Y1۾RՈieݐMVIanQ$_3@ZWdݒӃwkNt%͈Hү ߠWhlXď,@h[X܋u'QU!z%Zh5b7WoLGӟe* x[vW S͂K]{t=WՏ^Xw|q䠼BT/ߙ-1vL)%B'Eu w)L_HFUm? \q[8F{tڛޱ}AYj%#@dߵ^dGq kT}&c{`.M!֖6*$Gd?]}ϑ7>u7<ɫD%,_2qF "ishPo0 \y }rnptwffMDb+$|/*ͫYr,EFROۡevd ]k~IxD~vQK0RoI׫Ъ>V\X1Zqd%<@mof7LL T>Mf;k(.SoVC!ir۔A܎/}tWxYdr{X1viR?4G8lq4?R4ֵK< ij\,.psVe4㦬V1[SgQQMM*$Rma~*v]/c:3`DtzFk%d1M_&?}]#$ƽ:V vog FE<t۠!]z6ҝRY0<\&kةƙ 8$ȪŖ S6,x;+y|`8\'p[Sj||&9u1ƒHZeew.yM$x܂>{n 8IHRn&_SB嬹9*B/Yt]A}!U嘝^"㜮#)qP:~P){4Bf6"ñ (Xw]U )l6Yl:BFa D3]E/ۻG)}MaC\GqъWfYWՖɓ䞨lR%zGo xecx&lbT8'̿V-}G>~%O  s1R6¡ukĻ{nǭ0UY;sȎEHzUp0:ow1rbXWW[5%s?z62B;0<jL}WX/U]:q}=]AkLsDH$]C1Ƙq%q[:k~z0H0yEZ0%GڐLJSņux'Hy`GbƗ5 kb_Pj|ƅ'iq8( `TlKWG!=i+q3m#8KYN}. bji [r=~, &;A 3] +bO`}t !XY4VOx _B1bUȢ"D(Dgde>)0w(8gEqY% ďKޱq Du 2S5`&-fI^v|+"r}ZU%zS'S~SDD]hG"9g V !'3."}ioeMYT)e5䠩u,1rw}&*ڳD[G[-29G"!]C$XxrL(gXIJ홿.kLNcҌu1ڔѕ6C['NF_3F:0Rs m[jx<)]vHaLس<kVJ4ǼK񆕋 I}_2̠K0՗Ώ@_!}*_w'-:(\kߛQ^zD%4xj\)[,&%JDZ&K,JO?'~no@vEwp1Y`{oȓUlG}n1Bv-zs?<%_s>Y]zQ a?Y0xT6[kA=`?\*)ɻK> $׶!IEgS .S:y!YaNo <`@*&DM :0NCSFju502 NGD#vG:bD '\=63#]@SHU40g=Sp?Ahk|a*>$ʶ(p#O?+m7p1Ljbɔ_UOH߻'u'P=`\Oھ:;Z( 1sÞ 1m*)imŗ$lw^"s(eu{9;#T^2r- Jx jT}I2?4$qzR)%᪽Fss腖bغ *6C&K4ߗpt}AP"_(?<#`cO(o9e|bF"6Ds=m }ݞXC_7K]e#yLI9p8B7; =imexq/Uo`:j럋Zs~d}I[Eiβ}}k2xY,JyqP\IkZ_ل/#L~`? M^(| ,Ss+׆(״H TP9GLGN>` CJPlQM.޾G9G;7gȗun*S}y. z:N ԞLAt5%h?ԻtlAQtcS?& @_X^t%Hp p? `2ܦG!ggr4GeT2$Yt%<ɨc5] 2aWJ/ |0%_HO(ɉp>ɽh"eHN~_c\=5]ZAZ7Q,R8N ͗zb퀹Hs*D̡AP V]{[Y=1:#! WAE*pnQ63hrg笡4BSUaSznr ~Ϣ]g40;+ 3#~ڶ`*:'AyTb 4grQ: VIc4ڝjN1I b39oRO(A\]CYUoZG)[_BA lcse7ve6+Fh;SW|Ɗ2*L[ez, d!Y2GKívFb ]"? ŭE 㻇FBպk(0aa{\z+a+'xP! (NtKE )>;-0 <|L;S[l`0pkto .oZҪgpERgd# x!8 ljyXN7Pq@C ]We"2X2 V{)`tg-o<>=|N|cZ*iceƌ,aq2ězfn^̐/tq62F\1te!{MtSOŘTl= Whô')^ .ydB41',#2SA6EZ)Ka \V6OnueO~r^7@\&fw/M$DΜzh G8RhT0[H'ju |;-ՋxqlLCDLʙڈfLZlr-P+(c`N*BPYQ#o2ռT$~mo.Iˁ2^+U_Ş=)¡Kg0&8&]kPt>=SkԕF;bOzc$K1>{!oQ8 |!*q~TS>;cc, ;/?WlˡzXAMP_k_M)+ /\͕A|L (-JsgNݼ=3?aAfwpNڂ] tTKlM%\IUfX.np+3y'eL3lep%zɶg{&&\7 jJR(r_FI{]e^N;=X56U$E_+` 1/s~ʭ|BvH=$|a)!-ϊ/dDs0.V9;g/OS LǠTH$3:EntQlk8#8io<10`e K c_sBy@W}L"qHa W2n[8'xŨNZir߱[aK`a L|̮ཌྷoG.š "_[^EWե<$Ah-@Ѓzg&Iy.uLJx;v}g71,dزKGjYE7x{FOH;p-T\/=}N|@^R=hҷY؎)ΡPd1oJ^F)4NxsUXV Fe}&M]˥!cp_1'.𲓶H@&gSbYSǣ48J,RjW0(ݚ)wڌnIvblZ~o>"9ו\cNj_ν~b+ ,FZEw*>k@VM!dUkGQu}XuH{fciiٯ~e̼&ӔjAfigBͶ%^Ŵ3-)g {od̅OM㰠B0 Uu`G'e𵅻cBxCv rQHLO@ *&[.Q% "B|) 0`?ӕ.i3[ƇcСȞϸ n y0*ta^Nn9wL;Ygzi 'Nnzp#mp|b4K^=RIG c3L:Q{k__%"m@j(-UG= "7 Ƈc! ( ӕK7:4ͱ\0*"ڹP౽f2?@AAdv'_m[o&% y@Qв_C38ТQHf[Zkun1jVla.HKƕ(XsfFMx #[M"@fƠ-gd]ų 3OC wd#h2hE\&npo(kVV uمę]ǃ[X]Ew7`xr5l$%bDkb'C=K|RL|"s'TKh-t(4pZ#UޫP.}B!P_&fmWۍ9w2-fFs}X 퍬G圱$U(12L np?BX_>S* c˄"vBœ~ Aumr9! LK[5yT*+[VlH5X# ^ه϶;bu=df (M?: &>x"+AFHBWLzвs()鸧!HФWr!Ɔ>Mh.☲nϯ xs _1jl%I Sta8_#EI0o}z Iǖv,$ł`5I̖X N\gЃrꄜjy{g]n2UT %5NXVeJJnvJ+~i}"9L0LxR'1#4VKҪP彀fOwxjWUDZB&Q~M=^Zw"'LQ>z0T}1 Z֚@m  F["ԳF|$F%' eK,Q"8 )*umU5!Aʑc`2%. 史N Sbx>S C/K+÷1´{ϸ5QאB.Yh`Pb\0^5*z5*b@(v \a!. H`>Gw9 مs#^eL.q[5L_z7"Ǜe {74-2`Zs@2RƆ$ +D|:gy$.WIYl:ۼ~PQAMȜMڢu1V1ٟ4R- 7*tEaUyrj /Trp kﮃ&_h'hMT_*.[Γ aEz]?r $ń=;a|"ÕG81n,Z9Ma'd>ωG %d !:gV?N 8MA@p>Xuh@e2 WuAu!e,AfXiqɧAt`%M>r|NF})b|cLᒹd".ER(׎x'+ Y^VZ[ܿi^g$_Vc;ٌ'Б+A8soJūލ)J2h8^K|]%,ws_B *3C }ƣ_cp)OfhџRWwKw,H,Q7yQK̪U:MGФXvn^spYl(ŲHځ1v NF(p_*MbĉTGl~<1MuH5n-DS^? @)WMAP݆o5ZR s@erX(I,SR">_;-"Dq!i`u8a;D3-S iYDأ]p1HVټ\ǒ;B=!#]4zHXb? ݮsu6Cr;xEI"ĦB'st<۹E |`sn)()2\15s;OpKyIhaqZUg􏹑@ESאXkјXfcoXb\In)G0#)G:#qe;{Ū]:I3#<->`uEno!@h|@i)p>JwJD<ClZd&Y(":Z>c%h Ԗ܉ T<SnfHTs QP"^^7ƀO:3pi,@{jl"2}l[E|eaccrfmvYucΌ \2x|RW6VG:=2§^}"2 T\H|V?m}.hWi=̏&%V]#*`s0NGZ 4JEOӄ/W "z:ou-qre[Q\e92;TH!e`J*9P m!f?Ȥ M9C_p193Y30GŁQjpM8f; `^}TXl[%^DLXiQn5Oh\Isy_Y4,P[IP6L$1[Ɋ0ڕ7~@K!)s\Q:e0-h$=/1R." tM?׏wq^>&.6rG(M?msK²%#}x{L}38+*:rzMa}loʈ=?li:T*3@#oRy[\ۙ2R aWqL_?t]f]1\0ʍT{vӺjW$stGI.)䆘VAi(sۊ1<4\X]ycs)ẒJZzzM8;[-jU fF*!1՞/#r@b@JcOYܧɡ3OG?uhߒiJw |Ji|)RkmO&W#d˜M%pw$x.,Og-:9'&&ё@ SuٴZytIzF8TܐtR#tZ3e,t%WZ<pmO(oɶ Y$Wglog\Ka6xbNF򁎒uc3!p. .ͧ u ЖE11hdGȪ}/%g*gϜv"Awa(o.O''pO;xx{wsCa^64 %{;DtE('ॸݡΘvPPrpXt+JoHCE6mNu@]'F+9*%(T% ܖxA_/H@o/O]&k Y']O/CD>i76Id^kz*DKFL 1O,>>US<-;X4^mE#L ؼS`I=4? ), ږNvBsp4߈=*16P Y筳_sLZ}*"X +0K7y~!Yq TS $E%K,',k]|lqޫ?ToTܨEVbHPQa)Ro kwکXOUDM&Z,JѬl{UGm/Ջ,ZUNm]7gB{܅䈯=Ǽ+*2KW =L¼x^ޠvVʽ k#c.Y Kƒ52i4Y^LHЖGBWdQ@<%U6пȰx]W@.*}ܚ""gیQWa 9Z NWiҝ9uv[eE1F Q3ߙa)WqwT!'>êGPu[]FAѾ"} L+)̸Sǣjqض$v6ixQ×9h8{뚴>fozo7 ^|j<(>cYʄ'e$+y BNK7#Օ{Zˡ5G,L W.a[ʎ!|Kww]fuEGjDiq!U>r{4WUbشoҶ .jt v_BdE]{а Xg1 ~5&gƢ#mU2ZsZ> ȪqzV6'^wi4t \N*/,/Og4"N{rT.j?#-$om7]1\y (fNs}Qj4< D/Ƣό\ Y?ځaty"@Mh_*џ}u9RFzay۞z#Ug)дa쭚%SQ- yў^71opEJ&^D׫Re5Ӑ}"$_xG&!QwqMxm%]QHWYwQ2^v|o 9X9qϡ諤i^Y/6yYagd02 7zaeΒ@+B1aSCץ i2q3i./ ׵3\M:4fu(&3FHJG)8dv%\tK@ beL` mG;E'HJ>_3TFFǁ/J_7iK y_ެ~4gZKѼydgUVd< f5 A4.>8%*?tV!RAi"w(['C-Vչ#ipEl74LŤ?ZעC%c%:V&] 7 H26HWK>$a]kÆp"nD8Ŕͦ;-\D0f鿤w)Ր?,(v"!2{PK}$Ө )5At>ߋ+qsd0 +DFLz`ض. Ȭ_ֺ꘦TWt*Oe6~[ZLhdJm*fR1hbL {4VU9ƺ+A%VIb=7$tX_I3=ȍN) G+KŲ?y$瀢w)%懯|/DO]c듶 nR"ɥLL+ĕ3A&T<ߌ.>19 SR~(${xi L)f̽8'/?bnz :oC(҃=98ʼnWw4[E~|&dLx0@.:^ߢл (X6IedȅٛiwPvѫ!ob* &.WH A/PU\V@ެ|j7aܝuBT2ٶQuC c|愍"2'ѯP񠯙nXƏk bR/Vdݞب_%6˂PC(a]ė,|6 uW4ܳ '5tH*XIjs(>@޿cS)o{.NS`nr7j'T^aBI(o^B> E؜`UG\QMj)S3Wjm V\ɤbk6>D3ű)u͏G1Arڮ\Rd+'3#gг WY9Eejw+X]˯ b[񕰃\ԙ<f iQ:D16w(IWk?Jq/¾t eqp'rB^M.46Ϭt~O--u g駘;?7 S%TKaL(T[MR/^9xk$ZJ6 g lA{&9Q g)܅}z!D>pnJt.u׶Zu$#l/UѝD!DL!~17CT^ŋQ*ȘG"WoEaS7T-=@Ju0kvN`!2y8^c#P3|rNeթԪƉj@r/}sIH^=޲B=(> =if1O/Ah"'/ :M=O%ýSMS-^e|ؕDve{Yd[9g$6~:'ۊ:0 vJcq6Y $=~:p 84?#v3࢈l]}pw $ěo[nG%$~Lܩ3Bl[L:f۲tp(CCscѐg &װn ~usVQ{ϯ}A6F!́[@V;6 'ɼ}6yVqN%[_- DM@+9unV|D} y[CS<,9,:vg M~$F >':U Avp CfKV})Χ[r2 !SAXUFB:eAYʹk ~pVPf0D7&=G3[SH< v}4j`Js‰%f|ץWӾ,f٠?[I{EP9uPJ˧7#C e69} T!!Vʣ Q <Ҽ,XuƂPGc16BKx77* bn),;VaX`%:vpzؓ@yx$.q: _ Q{DILifl(4{/-hK)quuqn&дIa^/)!mjA U@>ش̳ݎ'fjI U^V:'`y"NȶbT< ƔD~XAXqkǑc#5sßABQw0Z'CHJ Pqߏ@^k{J0$xu rQDhүm,LAd5H16ջ Nz$#;F;ȻƖlLOyҊD gӲJn﫫RW^Oq>ky]Q|ll]l WvO0kmM)]KQ?R ݥ+FK)$Ez'O/EҚmLY";;N ;[8Zi_@jn2&tOG (zX6Q^Z&K1{@HQ(mn+%ÐiŠgRZϻyc+ Qutqzѩ[CٵU *JnĎjl7"ěrM{/U: a)+O[;p3Sd7oFec /V^~0CzQ1ar:tr_vng2Ǡmb4L8u| \saTb {j9#.-ݎ &X/-2 {h 8DYK+!wP`aTlU)TxC8ePVm&;8Jd ҿ,vO ez<-F7s ;1x;ڥG`]0}{K!<#+yUs0WOikr;J3!ifw^#!*vkÚMpV?wJ/2 w%dSFF>?Hz6kS5Ѱw:g>' 2`hdN8mq.=Nf!ug8懘4qcUFR vTZ Ϟxu{啍9po+J=}VlËVN&x#Py,ܛʏ8AG?;9s|,3n).;eVPS>?ېjJz|օvIZv6Q}~$zLr%B}K'[\i&6-S+EVbTN/?bF6$G6.J_rK,)8#BI˜r DE?q\Z `(CR< Lv|:N*>P '?.]_}qrUl.FCYM=wwɏM՝ԉ}J 3KMfПx -bf[ѡBoaHBAq!BEBLn1p SC:1"-L%w`49nƽ:Uk|[@[4"] Gr`sF2X!8hv #@"xF|2d^ + JhŘ)k')!b/}u!VnXнB熍fV\|s)\&-A%UmtvI0mbQ5)a0 Nڐ'kqh艅3Š@q(zKi II#bTl+,ƚᲾ%v>ΰ4e#oJNѽ P?bHKIQD"!;E1Nc܀P`iB`x-Dȗ$P( 2L@0i)/nLHW$?1_킍T^%*ᷝ0)+ <{S޸HB;2ϱv$4^q6S|.k[ܷkww Cϊ_n C܂ZK1yebZ~)W8=oR&s*imƸY,)!gbxڍV ,"r 7ٌC9_eKMNNBk_hky i! (wvѴJ9@\O +#loql,lmGj"ႿʑJ0pE,,*o~pd ~;*+V@zCv+ }p mqh*&u>{pű]%?ט΅aB`:0SY gXTb }*zq!y펺=H8SE{` ܜ.79pUIs F; v׏Զh?"N.IĠ`g{ p69.<9'9)@BY30aBK#?D7 .N9M%]K4'єďܶɏBz';.PJ": vF)%j.vLZ֫s1P4|Pyl.l!^3h-/w+2R#} i<;bd B >Ry8F88\NSc۪-V g ֟%5A Hm!OnDs+m1n66Ic"{Ĉm? w0z⻕U/*S}jhCc,-] <ڰ=G]Ȗ2Nfe6J~;gK*p/5uKN+ $.lsQ"47UȴQH|. YKo»@{)9g v=+WRn-)ݯЯ"Hnn4ȰH_׽՘Nꁞ?KUOf[At1@sI$9~Qg8ӒZs 2;8l:ڇА=or *Nl6= PH~o<|ݟ?&l_S.dMci|)`XJ']5AAl۠vq1xӟ"o(ѳh۝ kwuۺ ׊]|񘤉1[\Ͳ_fkoQDuPIilP5B,< 镸L iVJ ^a3I>>}q*9;ًƽ~WEw=\xVwYΎk~ [ bahliyQ gidc \&v{ѧ ܏/pDoT|1X.s2@f>W0oi! L)NtKVK#_nq %7.wDZ|7sK+5x,TV M;4SJqSx */"Th\X8v$p;Џ(W+U'aH{"iEH#U߂&rpHd\sx@ـ߅CE5/DCبR= l?~ . 76C^X:Snp xn4&.;Deȝ|D Aؠ =B˶t]9m1&;#dv={r&*'o0y Q@Sllt - ,y;ht4z;M)kmLS׳h *ҟMƗE˶8uoOqK=4v˖*dh*yuީ# ?]>PjH c ofăs.+LW Y쯞iu |{LpFlBECS )W\!.;ԀQ 㒐2aI*Hi~vg#o'̍tz4 -̈ڈPV1~ t"і/huv&TP abj'T"\ 'UZ 4WD +ΰmOP`KVFp&ϲESy\D,->z٧q}C3vV#qul@Em%ESuwH?4klvIP5v wiwLtIxU߻ҤXvxWq?w$~;>y%KdHkNm]>Lw>ZPtǻ _Mjns%D.|H42JҚx;Gn&F@P?}J2rQ)]1,]Ԝ}nE𻜉jq!|1o3_5WHU90P>wD_(Bhs '4$;r&>L%-xt ͯA_&3QVRQw[V3{0k29M@xj_<*+TEkTAx=k_d i V6R:cw4gЭ_'mXVUNY$S?+> J@IG%O.',xfa~W-61gDx2MtLۂ-:ŷ_,:.msob4[U?`7amf$[GYG*9#U FWu9BUBee/نȁYΎ,u|.uy|8(S }v5Yt)}i~,%^%ːgK:jXavl%IRqq&}:+}(L #m9[X=|2{1[1n}ZBRwRPD"ЉSKX&aӲEń#_#i4E]+ RizdfRh=]hD dY)UTّ4LbS5b6ɮq #;E5-U޸ F> "`#h"j0`!&{ #tdh3+ @~[L-h#4Q_^F&1hF`=F}3JYEVLBΈྫ1^>7݆oG-F6E\,e:b;/2n W#lTPEYxgpŠl$NJ>˫3;"oX# 9=%o ފBj.xʪ.+9ors ޢ?L>Fa{#qPNgRKIpZ: sR- g:-hBeb"-K[ $6 [zkL@ T$OLc&Q{ gecsm)=ﺹyo%%dg2ښ*zebaw:lҋҨQA1K河II;49A) [Q%eQ9ObkagGk0J"jY̼A)[,UOLETK|ibeV| >t\F+W4zRiA9zkfץiSL 'Ԗ}v (FAQ8AŹJt*ѕijۮgq1߭wOP+u;ݼXҶ(S\m"`+D?"]L A*6v Bc ֊x?)3e`AQ{10LO‹C-jb<#fy&W <ŅPI$SWqAiCuhqFc& FQYX/6 qe p|XNg[a20gNVpZ&ވ9\f4SEǸS#fB!rYgP5T9b?UB8~EnW$t9H4CWЯ }7$:22Hf\3~x~Y=$j{粦aTzouv%;oap! F>5j ה8#بGrN ~ ݓGn!s<֕vvx?mOZ `}R!G VAO"rb0SD/ܔwȧJCv&D S9B#H NZNH,isHc?7'^n:S&3,o;ĸR$otH+ { /@'8XQy(کo[QK2pA瓺g,pϘHx#nj $D Z{|mtMn[U;K;++iL^t K6U٦;j?|=dogRhy"P ˱ cbL\4H}`%Jqy<LaL" 9)dIЩA㺌~h+ s ^K6hetGѱ,hrDEwp3 )_a# 3VAIoBА5Xʰb'ݤ z/M0hIT Qgo;qy4%) ٪i}0k*ts{ ύ~Vv.ی`r,DP|kRt&3y[ E,@BPm? +GcAMQyܼ>0yW2=|b&+LjEBFUTԸ0-}$+,ꓧYf1)O_hGjcX?Q,hl T˲E/~08bˡ3.`NCN#{kOc[" Z8OJf\&(w)iۓ@#V?**80p,`o' V43Ho;+ #ZXE0'wbj7w =, zv1w ~Nlt,Mřv@߀`H2"ꅥ1F2QŕFhв,2N&$N+NXV/i69(@Zzqk$UNjQd}tjakJK+b(wW rȧv3,/:׼WhwA Ț/ԼF>M㞔#8ʙRk\L V u;dTbcxM ;,kּѤk^Yo2o##P6kPt) *ٓ3l$'%X[j$Q20%^~pߞ s35~*^'E[- GPD+'b_~Zbh/z}~`"GAOHn3/b5!b wP035 ڣ #L(;ʫU҉F kjfϻ×Xr'UrIl"Ȍ9A>0t&|*zHA.f5 \_2= )Xf}A{v0))y-$RaCJ$C񨞡c,NjSx8pX` 9E8@G`0`# 6uYį7D?PeuS9I}ԥ` 1șSsIC9/a4T62X47-p:&qцΰOӔuM~ *MPZ>>w(`q^x'wHR@nƛV>pm}nz*ҀsHJ6{\Fu{'ߌ|q)g24M~n4CW4Ч٘ۈY*A+iF#A uMǢ.tX۾ ?: L;6g`M]04'XiFf_" ƚoشzy-lڙZ@{6F L"5JU$ԙS0]v*PaY=k ,4*5X􌅜gE+kl b4MD z< u9E86=,gj[`e uH\lN#*lj_ZC/[o^h39 @2R h.+ߓԒۥݜfW+ zIyc*Vj-} Vх5Z)=s%o_89x =:}iG:3-`{ El m_0cHNg]p-}Pf" ''m} Sx?v嘟O<(<}!M?7>EfDwv.M{u 5'#Qd5R`c ؅:>;e5Nb.tybUOQxnU_Jd=2yѤ(y[|124}x^^m§xtiL*0RU7m>O UDZ//\B$5Nu'-Lny$nXmV8жo_@Ɣh鞠;p{:VanIiaPC.ICρpV-T@π8,\)`1?̪a lB媬Z@tghSWَnˆ|TDe#i%EL=f̎\_Cuenw ,UAIĜwcfY_4sAE5V!n# D 'ꜫmtM?-] ל>fiR8¦kiXI(B'g{.b:0Գ3B=l8t>&3֎}]z,rXW8i{c\Р]µovf7>E=3jdӃBnW/|($Al&]qޏsh9f5O=yya,QD0ĴWXx=PjW sHF`a@ z.yVk{;(tMQcat@i;t[ Lp8S ]k0:2YO ̜Wn.WR'%Y,oQ>u`d;jA؇ǫ=?  du;k;VV_M*kyeM@aI~F<^[_A"PqtLX`;0 I}TRsoU6VPTh!jRլ KKTέ.ZV/xEi+{d3P6VǮf$e]ٯ_!f؊qJ,JvK,hmU\ r_S ëtfPƢޙ/8rg}T9CXbQPg~V!5AV)Ny_`F\`+潭0r\֝ruhQ!m\Q8|5I8Kƣƃj(oT^$ baS(~άc[:LU(FUy9n.i+B( ܍] c?4]/t.O9ΣՊnϮCzzM,8|O؋sr :rd"v}7mz}ؤk6fR:+v1\qYm}B N=zxOMmD:Xdɋ865ijo#TAHHڔ$ T sm;yY<_ďM à/E7L42n{ܦ-c0}5 C 3e%蹐7ahX~{ɮ^;xVC=w7Ecgr Fx秭ݹZ>B/H)<EVQS# bt +7&POg:N|qvRYI!VUC$`t\E2 VvSG6lDZ[W.  .ƒů+StM=ݍM~ le#gAݓ3g8t + Qҧ) EJe˔Sa[>^ߟ4]頡PI,=h8 5qƢ+;cl`A?hڻ<0lMp[7Zs>p VUx[HTx(2{iiY{LHQ:MN6mt)fP`e Lu R;{Qa o,LõW}\2C;Ic:X&8<Eyie+3Uv@CpWQVYa6|rWb'hQL݅9Qg/ЭŮ1~[]/@ ^g'M)"!.pylfaW̉-kݥGEr# kW&I).{ޓ\ PC%W " &lgغUv7K}ʨl8p{ >(ןσCNc"!OkT.bs׼ٸԐ>P0G sGpP&QM~Ep"v絴ttVp.?뛕c`1CmhU<`~+H1gyIfXPY9IwF"^F0p2jdGFX=CZ:)gJ/n^B\G7)So{uĢ)Njf i5>R{u_=l|'hY%]ZZX3Z9al"h*PC 4{5r1ÂOa_ a=Ъ4w6Wkڕ4y'1EqBXA84S׾Mlnr_Rj#^ Zޟ,m)/9JBeyOG}!zUAGn:ri-Z^Fv#_Q- *3bTmH}]z=I#.>wg> d M^%p>QIdWG6Tz}m "\A Hޓ7o|j%L5#b?"qYz ,$<>?'l~6EeR1H'V6˴<'=^ $;˱`_2R9oF'%|w$1t ˜nz͑fu_~Mf&. ` 2!9= `mpH0сT˖b0֏"X 4+W\'Qc pIkgu4yw)/'P3a|EH g|Zfka&Xm5Bur|LiwEWhOwu2!p I~^뫃;uۭ r:UQXkνު{Qb&NnPߵTj$fp?̞BTPj;J[γ]ldtO ĞA}LkO)ӯ VWqXph+E‹ZnT.#Jd[>Hv} I$WUt9Hz6Bk1o)Gh$U+@[R`ݲl&ȮEG1s*GRVu'rO!\ cKu  %ʱX1D/=ȯ\Orێ/|[W}z+P$) U[SA=d^AOvBLI?9A5 ovXQ^湓|[8eIx\M[9Bo|Ym?h(=FmNhc0Ofk83IbB|j Ɋj1gM{{mOfB&a0J`в8TB#G`ѧog{pªR^8q\`Gò_t E1Lf /5/;Nj} *3m[~9F &; ~n5wӽ"._^AW%e}u;%Oc0LE׳A9q썣ΕYHZh1xWFe ӌ _6o(:@uIkn>nˀ8Y|\(K_3)##.vQcZ(ԏb tG~->?埽5F++-KoP2rY3d1?gO 7k%&E^5ǸN])I|VZX48O<)Nrhbrϑyc9֛㽍z8J-DI? }W=7PEb k%ф5*fs֔5?G+~kۯ SSG:Ⱥuc0|]Ut;x ɤ rRL|Q NҴWZvA5~QGuH hNM.vj8 {2N}c#M+}$]tɵsa_:7|)XA}Rl]w2#ȿm^')6%h8TWqS oqJ]M+5gp~@>N8ɥy3'+?.v9oKTu:{|[RFX@F.ŕUJbNT![:.f}`Dgg)hp(?6CᮉKPt1 4$#>-٩^+A6]iҺBN*:!zG1iHtbƪ|su ߭`eQaJ8p_-)Yr]#d&4S]DOO Kif_$+ȲΨ gA%1мmq`jT!_{ϔfvVς2s# +IguíPtp׆?K"[bvz3xu?Ja2Hxl;F!Ѕ-u]CC~$*zis#H\d/(*v Mx,=>.d:Z!|TÑi>ɥb#I=%VԳjvBThk0:{0d 7N' 3r&{Cg IN: U8(h(Oߵ%_EF6VlHowj\xys{C$]A[k6yVJ-"*ǖ+&'#۪Ҿ%4{9`Qie(3v|Ѫ@}p,,7WW.Y&aR8˯^6Bu ,<# Ϭ$IShwv )6>4)_aqLq? +y 5|eOkrk&lR#IC4,}zWE&|Cx#*-X;sf9#apDY>5` h;qƫ&.gʳuARbfu#|ِV T捭qOuXfB [H<\^ ^360V9|ܞv(>ކ:7Q7TKN\Kk* 97 b{xLtF1yoӵ$|2h ^ډq̐.7r`{+ը;d5SIlXr`` Bޙn1SsS2umlS?7S+yGܺk[1NuL<Br@uy rg- l6Nf*KlN ʧN(eq|tcS;hl߶+6 e畜}KHQb1"T`|Fer $4!r3v>h-ʁcIqz]lI~BY`gaA#S\ݔ\.R2c`;_@Mqu jILamy99>Ɔ O1Qo/ٺj#̿_F5C[ךPgWm6d=a]8&c"bںпHoϥ)4RB}JFB(]Lգ{fvՆ$b}?9cJoQ`#5Q5lv!?n!~C)`5:v28\Мz\Μ _q ˏNU0߳]OӴNt^O3 aPFiI1\'2tLY]2C0җYĖ5$߁kF%qM;Q#zjsg[(1Qu7m9Rv?''"@uϝG\NlI@@~?-/0*ƍgEgY0Xd征ݒ` V2> Edhs ֎tg(ffL "^1;.(#լP|CPGN+6׻$3@s {ύ!p9X9m:vrK6}|B;[Q[_ڱ1& L37 h?Ҡ5[z%_dEoٿodNm9Q٣qrCkÏLk,ԸVj3bFW\CywrN]0bxd Pn5_շ> ,+(?b,錶,mRnH%N&(ODAi![FRs i.b=%K1%Z 6x;SS_.ͮ_2sC%4JBjuQg~O4/_iQSlDY=E #CEsc/JiILž$v9kۼ.PExKx(+U>~E+P ަeM3dV?`"mv#yTw[c]zИg`$\s)#]oVn5s,V_hQ#1,Gmz{C}Z#vs),$:<tVC|ՠr#jZ#9dT z%@#!DGhۣ qJ1ٿqg7QZ)ݿ|o|wA8tY*!s,lej.lLӆX]ѩ "oUYx˭Ӛaՠl2v#0G\gE~0/ƆcYMvYH3}uxɋ&q,Ҡ/ R,^_VXl)@(B!OJ]Ka+E[^s; YR[(,cM=kNqZ%]FV6?7u/,vlߊr; вTh?˺ C 6ZhC.uÃ8-I#FjL:eRb?*bS[()OœIR0b 7K*dN J0ڧoQ$&?]j;=kܝzw`cHlY?{FɉL7j11i$aΚz]?˲syӜUq-\ 6 BB)naj) [Smu &R ya+} XTtkPe]t% x_YkF"/NO*Еz;:ZA6Q=yؚ",}ojJߧoǛb϶Ec]Jg:%vՙ*#;naUhf{Pp 0wn'CRqۥmCL-8g04-4<"@aga4-wveICjًJmоNWLRvl7kp[[bE&믃ta2Y }}w&z0M^1HEn [qB]ρׯS;(<Jǥki"!ps26q$o?U`] ˤKyޱ 8N8 e>Fc+A%hףn^ o~u}|׎'HG+7#4B w,-0',FPT5&-eݻh+Qh-2M H[N^A)P`H\f/\3Z窳=jU D{Ξ׽BCeǴTqn4]l0^ ޼};ЫWd|^GH^̐ɨ"*ٓ&$-c<( 3,Gi(2d1=룄2^9Έ1 6DPK9%cqO"$n~zBZnV^EޠVӝ\[z_Qh x7>.:M00s뿞qRMP79gcOb9P9&Ae>ԫJ?2kCk GD6/w+=Aw۸"{#~zotS Džw2 G\{Pl1W~/g%X; sp{sMPmy 8Brt3kd Ț:7ky:8:>h9Y6iҹh@lvko:mQHRD$EfOfhv"N[ձ[X!"f{@:Hߎp)8hfL'Eom }\6CR"#$2{{B,\@,(R.A @mwƝd}`wIEC! #%}0dŧtћtxaotay&K HP*:rU@OsI}im f>仨""oRi{lLğ3甬e?fCIA2t]t8;̇X5T`\]qս7oS8CNOw|дy(KPPqpVFXzgƠsTIqfQi/hd>4 |y8RP"q;gu i pz0v+x 1DF;yIO+=}\d6CLcRӅeu^R3 qQe|%K+n-qn*Qe@P2s~Z;DԂ P6oi6 7vOhd׿)|JVy9dяID Nܢc` Y8-"`T0|XQ.{*ub>fZ.5<\)@7^Uyb30 qU%WhIӄ}@.D  -BR}.^`m-k6  z6Ǩ,JC<B}4 Q6_ #kGw/D8%؃;vиf']kO'Rs ͓Se{7ܭAtfJh%!’{k~ued^nB UQ\f~~E={ML؋ZWw42M"IGIZgC$+bl _UW_UN}W=YXc{Tˆs ~? 8Eib1_)ܳ`&!9c΃h`%?Ѝ ! ~u];qv$,K ,JhB&ؼD8=<]+9Nf0SN֔DMC9 #xczdIQ!A"O#fwp+[Xr%޹he0%C[t<=2Ox = pb%9qe+)K-duΕv/y5UP-v+nsףtν@5*b1oDFGS>kek7 }`}[,RʾDYxjt>S71R/^@^ S[@`Jlc.˞+Q4q>CMaL]QT  C'D +Lsz.t=064LF%˳Ǐixceg5B斮E?,k>U>.<^2tĝ@ל[CM=| L5_ǼP==6CFf,9GexϷ 61tm̎B Š-|#MjpHgx<^9zOyoųk%xɛ_# l&B OID9ԓt<"CeԥY*cHҕ,qY~{?GoHN6X~(ne&Jw,ݩtG͂_Wԗђu>҄gŷT#ƂA}5BV5{:Ha6v SIQ#oA2A~_HOќ$V,#xO/{㾜Ā*-ƹ-1~n_vˤ\=+a 4uMq'0C}HSFͼco q^78rR\tatɮ7mԱz DGhmU/t9D rr륜-҆<۬D_m~Y>צ\8~չY3R '.'Ny. .mVd=qwWlMPI{2۟q`Z~aĪhW=hra%i{[swFzYfgR@zXgg[ pdX*&2EV:4Q.*J,Jls6?C \y6 6ox ܄q1-icXG[huF!;#{ڕv^ 5 yl' jYL֚k*lU(Q/=xj=$ߤk5L};IʿVܪ 5_=d:u^,HmtzP%6)1O:l- *j{YN/t2*(l?uvF@(*ϐ MܲznV<A;-B%u}GJ;ApfF A/_psa˃~ U4k3B{eO:*/QL54o%f.KnU5-Cةqn /!m"`iFGV iIkUD#DG6zl f?OƝ}y_Ɖӎ ,H$l\ PNk+}jTf-v@b3xݾmeCBz2ab6żq49,ʾaRoݳUHmxY&?΀-Bաv°}1 WRj_:A]ROԂu oڹ7vg^|pN=79 U?=fQ).,$\:X V겇zKy2@!$LL{\l>hlZsmp|eٸ *v`'.z?HBd=-oʑtsV\.+Ĕ˜æFUG3dzftx}Fk@^1;fw~z5;Uųg$EcL,龯.E<_kU'EQ"U,t#mGw})IBetk ;Ccw4o\!NuXl%N }ޓoaj#Ɯ)!H 4GՓRtx v3 hC;m L6I| _lc1w"H>tD#s' k5aPZIs ܦ>sg'cۦjY:g1'v)xA:Dn'}1*kI!l.l6ޕz,zF0NG&1*$ ~H{ (k9Ev7 ɲ"3Q>t5A. X0*o xbPNGy-]dND RBIIKl*:])[l\'^lx–wFd'U T0eQck}z`Oa^A3Kko3{Ep*2 [ݓ䫑v['(knH (=P1[tݲ?Iߜ>H B{(}wGA3!< ިΰ9m/Xw ̞]Y;So?Y :2lpBx0Kx^dVm+E%zx'E{-/_Jc\SU 0ANaU^()=VdI//{AJGCx_e^#pC2m`R#qIL^F=.h>*t]!چGD݌TlfQivU0}w4 3'Mm3Q5!5}Bpκ9y/2^cWg26T?O}`0"=o YvC#9^1/ʯH@( Pa QqCDD>AALV`k1=0ג`+5qݱit}z`x%*V3zȮ׈ 1ۋw\Atfdt ^s.bp~2pgš6c˵#28FN}]nBJ[0iS2J0C?oΚfGő41r+۾=ՏU71$3 &Hi+и"um^ .KK2|gr# ?kvԙ}gM]@k|gѲL@r9p-4-:=V]HВ;|1TRͽ аA 2xٶڨaF)j8)r&?YBx!Va+3oHWFd6Em &_ݼ@P:cE֐~4/߉QZ6q;gCsMC$\|kF/JψZՖ[פV`WXu&}2az\O9ɨͽ"WI}$>q}۝촆^y«/+' QAsKkSaZσy& ac'wSOVM 6 R`& Gٺy:Bu`^2,l-p?^^EOʡWqJ`|k#n*3z^ pkg^n TQW9A/A &<"2џN@g9wBVX`HPt\&G\s *IhQtoF K}XUv!+c$6 1Xm;yS\B@d#R|?!&vH6Pt@lXۛv:7 fyUٌ=AΩj6w EXrS_cdN3RVe,l>4DtuHRrDPY$[T;45-cGc% @!>iϏׁqvd(joq+S]$Ẹ#}_k@~e %[6GJf |ӈB5{`jw^PpCu\T|"*9k+9P9~}F3e 'Yv~? a~E{/h+[(AA6~\.˅ ~ArMÊƯqy¿C ?mrS\ I19Fw_F'fdC*=Tj8-eq8 ;Lp5pl'iOz~JuB6xQ1-Ϲ42m! \G9{P)bCT o m.a&+ leәBJ٨Z]-0;di!X'0>`z_ZuX8۝&N ؙfOjӝD lr"1&ds"dÖp_m&cҋ"u,d9Pθ^b懈ʺ#`uC}e052 N|$~r[@{Y\&~`V̐@nw$v{< ͺq&]W\,>,"QLܥR(nl׉+b!t;)8.JtCZg+[OphUޫr/gL)?z^p#,vZIs SlH/*)tA>-<^ "s)?9 Y=IKɛke SJv[ e۽ǂK \CPI8w*k,n _E9Hc*B|OM368AĥB.ԓF2u#'Ah<>L7 F2z(}`tK,!okÌ v&LI\Kh﫫^T\u|d KE4@r A!LZ}׉Ҡ{SvDP~2o"՞O=.a!H,e e+tMO<΋ۈפl\f+$D7z*cegtUcHbRW R:eZV!bFCzm[bmḳٖ2Ai|#O#AfL6rT{+gѷ"bqmѤPJ7چDDJSz X)Ax.0ݾ0s:FF{ VzNYJas]^ŲC%UnrOO`ÝHk蚊myubݯXu%a|ɂ,ħQ(}m;/ ֮$3?\#PANl|L^'iՐqP>rLD v' Ǵ㍲p~EO\j!~x& !HV§~y[fF{s 9_ шoX!u5/7ttm,qT֌VWLe}~ 35,FRj,5gc߉Uλ$Ò&ui5I=MѸѢ}0d!)T{H /x8/Q"`AK%^TEvEkHq}5+Uv$HK(rKAz]ll$>qKؤAh oz3L>`K}'S'IbM\!x#-M*ׯ.6C3%By@ &o\Jݙbxݜ)Q,=[S:\r-iT6e`Q>NCOy5q#Q ZM>17 \ R@,h<7Lw&id=9}sM躽S@{8cm-k.!{1< 3`,/-CCzquڑ};lWF,B;L6K楜n5c\$qPP^h`X05M +;Ud63'H'nSV.u_ 8jM_I?x$U9<ގTThJtk` uQpRU|"rΠ}}8ŨP|`jvlv0[' D^ЀBT{L.8̫ӓxynYpqreac_#ZJ#jI~g  [6AU y KSP2BHgpM'*>D_W\ 'O.Ҳ,[zuA%`*VZg4w튮I/;롄%8ng+K9 %]Bwdd3kjR iZL',ݚ{L0_'\*5ԩ|m}(JvT!9hRAS K&FWNb?R`eCRʴ~ p%sCTXw1`{1nX FVkU3?b8 |ϵ :a"_iq9֛2!LcO+(hC!_:J<=j [f;5ŸE|ud_Uqm~+v u7_ nA[bIVxNt3uc+/W_ЎV[=}Cy' K55;8SI1@GtV=7j fA=sVEkS_A`ROTгcۑJuJQkEr]ecvRWNPNo@2twcFb<;fRQckݜJA>mJëyo0n105UDs!H!ojXn&4i@2px5a{`~ʼnJ踹cq#2%υyXHDw 2 Wp+ #j/>eܙRT(AxGy+`AޢSOss&7} t2ˎDC#nY̛% %ad$O=RU.>O`Ax2\ih+N9j囄D?"%<# %qԚQ3K=9T2zR~f,UT#ZL^ )\ᄏVI0 Z (fLԉw'&o~8NI< obӎ= )ysx7;UU2*$H/N"rN/@2Td' wt$W<0CYdwXwG $`~kBodHz ]/V$'lΞ0MMO[ nPM \i+}%lN+hU\˪KǴ)lv~+ 9g6^:y0k皙wO/ze-K?+(pƷŊ}:F1Z7 45=O+GxvÏRubB+ӢT퇎a> ԕ39%\ЧIz{'{N2A.FuAx ѩWžn\iN<VvofL@V}p4zml)z >Gj `iigƐ-Cc^RaYLH㷣p WR MCXfQ}֙^H%wuO%\aѷoyA4] {_c4,~nbLabgYSu2na|Q`܄>CyoQxS'ns@G.Ohx lF ɽŠ%Qj9[ yT D6סּX^9BFpv@|{hdIi)/:c|=6BG^S:+L 0E.k G3Y{"rSK%a5#| 7؋ 27ƞΨtS&-wr&c1@uJ <=s]%-kP/4Q_ $޴ҹ R~E,3Aq$jVx:,6L"COb{ J)fb<s'AddWw{sdQUy4d|f E\3)6~TO͒tL1L ՂCO p4=+ou+fs-iD;mp?3Dy*`\g{Q$ڢ^=Y_:?O_G}A~RPBOby V S?[ȯm?8t/^;{{BK=峑=CKOɢMry[%R,Fg^U3>OOyoPxOr]_)Y$Lo(}j= D6v1AFf\!:洤Xs>N&ykp[_ՈAR:t)4¬V%hs{g~<2\YX3Xݢy#nd oyď֣ޮ±\c;`ӏN!<k(3Q }XOڳ.,\BRm<|NDrU/j nqD_|_C_@t?(B*m%<}R`566H L[|y(/;">KfBqxY (F|0.Ve%S61opMG ё`α'\X|DV)Is:iޅex&(XP?%:yeՀ" Fu\bs.ȆZJ-ŀ߮Rٍ'+s^2šվƓF7nRU+}^S"9oj,}v)hޯ)2oruSEnyƓX}g vrH/BenK W)Flm۷.K.<Òi6J*+ ixb^D@C6b.`t1y} ( F <)~Yi;Кi#r`[YBw >;uHRI-?rcvy,nS gڮѝ*iF(4 q Y2& ;[$1K`dC7|7%ZmM;ӦKVϟS;fcB=P20U>bEĪ R#)ZQTO,_5wXGbe YB e=ڒ`%ٺ#$|q5~O UIҞytOOMc (/T陃M8"LV>"Y57hO}*Ʊ؆uz(̣xm~O# r@XĬn}Dc8 /˷x/o=}7N`U@dgd:EK,om4Es)--pN^w( Tn׋ʈ?_1O=〺# ?}w!nz>SbvY[ڭR+t[ BS=)d ;*lߵ;Ľ._>KfBqxY (F|0.Ve%S61opMG ё`α'\YfRXvY[ڭR+t[ BS=)d ;*lߵ;Ľ._>KfBqxYGR]piIs8P@)&0"( Gaҏa߼d$]{t TޮR IYJ $Zߥ(qS!Bzdv];mIRLKג3vYb%D1R߾Sog30{3~A}̚y$L-?u3QFiLl>5"v% R5HoSj ,*;CJj?cL̴pO7 5-:,|GN+g1ƛ{GB8q$i[ Ju5'd5< ԭ'Tb׀:um /h?ebjt5W6y: v^vtqҿt Q;'䚍R{˲, \O_-&َk]tS [k}"ZL̘N;YE(^LG'P#q(ʙ[NT1;F[l"(6p`jMv }6؁TlwF6e"ˮAtғ)n=׺4@ڈlq]Tj<1Ʒ*{u3)QoJ?"tZ)<{GJb6{o\[cƣ·n>j)W* 9jF"lDc¿ Y6Ft~ou7ɍ/,dlkw'Tiڿe/#]ِ ]ïcXJ/LcP̺LSJg/~ėQQd*ZW,?F|xN~㸴DUf=? \6m-R/K0J<]~&gIv{Q >=y&zLxR7ru@E/]RxnNs\}iCѲ(R NCwa55)k xE֮=zŲ.=Jٸӿ/M ]`?w3: i^8*n*D1 =*+B# +t?6CV*W<@Ҳ[,3};,:Hr|eKT7_ NI3KVr}3ݥNuυkh_{`7RhdLach9uJ5'S 1Fg;efcO*S/ӝޛ%Ҡ+sf'*!# uKsCR!O`^}#(dL=vue-*5-1KqrBߛ>mS,* sSkah4WJr76/{ p]p%qFhʥ:]qϘwޒJ!j4V%K6Sq@>ځ0lə(2g0LFK=ԩeRrZpRa /DV@NHO:܉ݸ R,ARϼbyBAZ/CY ڹ$AVxnAvQ eBA`ȶY*0,rȦoXjS,s>+p;u=?%g{/a)"~trTlx1uU$_= ҥ!]F#pB$]qz[Q&W[Dn 0gdXLlp+,((a!8rhC mh?:5LB-WW&YVXA |^]g?E6暅ϡ14R$%>ESYPҶV'ACu)HMC4%j?A<8rvf]~sjRg0KZ H{+ӖwRƿNMK+3rr휔̉i!xa~v/΁rm)/MJ a^s)4 fgDh;Lxո۝sx)ZԹ?'r3WaOMZ"7!"E4a)*"k/t_g}y,豙U|*-о5pJ.x0z8p6ڙqm\a)$tQ:f!%{tjCqY: {7eڔ vS5QNk[.RVonlmt>v zT {DUÔKCb2<ɼ;U3: QdS|Zau@+\+ ͩ40~GWf1 v}`J =0TI>>Q]q^k_SXXֆFK!]o-%-{xcy^u| / 3+00GŘ<5W0 d5= SE(a'YfPV4"+g_(BR4.=4j @GR[|:"`*-")_T/`1$N#q3 N2\I8(qc!"Mm-c'>UK.߸vIt9*uvu1|p4_?kz {H](R:jz2c4`_1cux鏂tV-͵&+9<2\b sif } 1n.či~){q3(몗!Bk\" OlXoS ޫGØ|"³ܺ8ИY~reX{;"ǖZ/hт~ǽlsXfD4,e`5T x z뛅 ;ى..kЬ,o+ε%dUZE) 2W>IuLJ gLX',E hK(Sa2N:b[Q ;j=Lk8Ɠldžx z7e.`q& []DrO+aֽ |'p?ӮTa$;b0SAAf:0| lh0ܾX=֜"1l/#H^jîXO@pwwP@ly$P8,2y1j8!~uu3u=,+Z偫7cu(LԌ W)gvHdځ[A`T{-r`s`!E#riAijAkoF`} A*.uuʟ #tQ1;!g΅}WY'pFsş?Cq.BK`c-N(T$;."o% ؕ.%OJ\:VyO0/7kP(u`Q*-7qYAmPW*o$24*&a>ž8vmȜH^!]>Vʨ~( t&񱠿c='|1흽WUi-qԚFt&! ptg>vK[h7h˿9E63؍JР%tUoA+c`XHo&seo?4j'nLv,)+zf}yKFOhsQArM_bLԇa8F_bl\{{WbB8RV(? ´2 _F{Ն>~^ ڿX >% \ԭpZ&G)P8P' ,v3h!P~5}]s/d}3Eo;Uݞ 4W1i?n0/O͙2?<QHBurcvm;7OGWh!Enrdv<IGZ8JAH9CX.P=b7a Cnj ]ΉG[O0;f%žg8_+ctj]S?2 'M[3$o0'y1&SE wb~tݺl&\Xֺ֢}wLH'zi>*N*NSlk- \`X#FW7~!i:c1(e(8"Wˉ=Wҹl$hy)LDV 2젦[:gbzʉqi5a%|?5;#g!8Qي$yqNjSЇ\I"El*}ɊWY#cr^vAZo ڐv7p\(UPS8> i5CEwr M*q jNS D_B$gWvƊ1G@>.7R+ʨ^wմ/B NJ2= LCpH<d1 SyI5- 3}7r7BZ{RQQq@kՉ?Տ=" 3a_ _Z-JX.dAavk55 ۣgnB2rXYY⽐v5@j Ki$ ŗrt N?U$R޺O|rJ+ &qJ²mRB-MvPiMdE=NE4|Z0ɯj^0$8y)(TOF6";5lB SjS\1 mjY|< #2v{~;*أ|Af[Q5~G6u;=xz^zNVA ݗ| : OI!Q {'98@nŽ[~|nM#S0| p ~TdQ6D\L{:TG]h{YɌ-(fG 63m8qCDyyS3>ee*0k|4rX7gSk\/WИ ɹ=R!V;2Ȉ%.}Z&ʪX +p!07 d`&z&<"8t/XQq_1ʟ5Hp%خC<ݙ] g1"Oܓ\E zEa^)=iZ4Ɲ))M$%\vI\lh2+TVSى,zQ"/lɩEȓxs&52Z8rE7/,EJ՜eCkC`Nchzo]g!d`bjO K5@jƳ0u_w^cѐmZ -&G͸[5HW#B!w~U4F^G i}9@c[%c,6mK]@b;Ԋq{S-t9+mߪܫFSib)\L7*TPDaIW5s9+re-8$UK|Hkf|~F|[3JDz`GF- >z=D?p+/9p P#?$XӥTD[s;615J;{Sʂ ٶ1QAb45Bw|[5f LrX4C)hp!$LT57uv\cnCsM&rG&:*7W䡥FA ]U-E݄w߾C ^)L H8Ⱦ+8@jh5F`!8*oɺW0:مՄ|=UZ,-~!W imnX6BڶN4Gx:=L% ~^&i̎Rƿ&-ӽR-ǔbv P)yN&\#pVЙns jl  -5}>!Vt:.#У~5ԊskL~I<#ȼQ%\_$PK *Qxrz)Ybطz?O1ʱ18;/`x#|Yyc▌8ҩ pG(UC evi;kR#@ԱB<4e*= o ) Q>Ӊ)'ʾ2 c4pQ)G+3!ˉޛ&'贐VP2 }:>ۢݔ9=x_iQf, \d9c+\}wi ̧&|UE^&ιgnl7zb8Q:&FToþ19ӳW@ZBB;UW~5iRs[#_8P`Tx$2$$YݖMeͬL!ȑZ'{$Vcyy/9wctܤƶ&b.7]^p Ǥ s"6raOF,Џzi[[ôX]6lZc\G.z]\"1K.ӯMܖqgfKi@FH >qZW $C 95 UDѿZγ9 yLGThzfBܱL tf^>AF/Ӑu}:L3)d4& T7ZKİ4;c**Hqf̢r,KׂgCw$T)õG(Ǐߺт4;mqz9vgI،-^c=ˆ5 ێ #k\ޚͿ:`\ɨR.< dF:RVţHpA"[#y_lW8A6x[ŦV(W72Yd=X'h2G> ^^8M̠q3A{;毐 e=sԶ_4qKk%mU=n# _:cuVcWʈ1\j_a0 %hQj#)c'̶BV {)pv؛6F'6GWq wR'Ze:$(,*7K -13SʻE lHgbҫ{_ЧxfĠє"R(Eÿk'b˿S&5\ #Gl]v}>wBM+xEW4Ѐzb9?fӀkWg}6,@aᤪbMc+ 븤#q + !ȝ BE',sl5"+:m][d50XJoe$+sThX{{&8D ɂ^x ,b{ 695AܾӶ 5җ;oidH.b)]_sІGO-fh<7\+0h,O((v6 ,|XN6X8Z7YPDN:(TDfEl;xOc7f6= #BH%Xl>on+^ShSwsP͛(4YR}W;$g̀K`biM<%{Te=wqh?47#?&җNk y=Ux5(Jz,4^C}}YwAg &|aJW%hD9iΧ`k`"ݽ5@Uc7 y|L86AYoď+#k O ?H~Q%L)`[g)eݤk(rW2{ڻR [5!&O%) l6dگe*NZ 0lHd0GAAp }K;C º}q*9h-J`X3,n JGր9 ~m=oϫQDLiAmA⧟JBmqԌ z._:M80BŬ: Hw;O\zH`c$Y'[G䑷R1V'Wir4-yn$:t2Q-gno=J[|%00d&+nPbVYiTwWcz2N࠼T Eװ[~c COvHR7#NTC4;mIDYvr׷)PP>j=@ԕA跛KSCz`)jM =' ϫc wQչ@|YAj*Y|`cU@L] Wc>X~ C=Xag$lU VE0o\pRrbxFStBH) ;NXIt/ @[dy6Ӣld\E[0a #(5Mn^wvX-+"'@Rm`ÔՖxn_Pxy-z=Ij)݀ح4 ʀ*e_whLnY*u![^1'/t"$cwgHTe$ Lx6MAmu;vFٖ/ Ɏan1qdw")VKʼn*.Kːӷ%C=>oLX>r#vG+8f}"vC8x+^-hX$bO-wq5qyM&̳u;PH 6Ue9&N+9> G}6ǘJ֫r / U:Q5'a1qU=Rvwߖ;Q9iwUi1R\2oW,q;&J* +Og` bg6.tB!|Oճ SێƼ{p DB j`>6 ܒBz-hwhgՌ:C-sRgs3eN Uoѵ)|HXC1 w D 3hţ\r'ZC$n2_Lf+\9"lRjv&1a޴QY&%z'2d`)F(g6k5Cw)3駸Wakc$[S1k4?6U CF3_Q; Sn+TgMLvmw>KT k}*Rg"[l9 XEԽ!7R]F}Ip:r !,QFNϤ"e \ &: 7\/tׁ/.`ܰf8(;(ک ̄UP\8pٟt̻rpE4J}~=3}!2vHc^nr UKA`AŎYZ HL-'-=63ېpYݕbj" >TuZZ5>z[mY Z3DXonT(&3tj?gIi@R뿖 :z3Eƚl}.1Cz~x넲O°aNj˹le3|^O h`Dܬ^5&䣃D;ZWa[ e+~/]捸[aC^ XR`1qK2xkv,r+m ޢY;7\xm=ff6UB(=Z㤻$lZS RL{rk+Nh.r@/vI[I(*ïM5#"2ï؉B;ЧjC;sr>d*M6 Qhtz}٧i>E.qZ-+^)zwu ʷj}Uwlc1V(vAiqA]|A _86E'_+=B[B'0$ J3r֠qL>/$M,(U|>MB%a J*Iz%ŭ#XŗV2>nvE\ED̛EcX+8yH~~ۙaŦZsa RΦbͣl0eCZb&M+BkguEZN=Ec<' ؽfL s]yrwK`T<*3@I Y*9%R4ibS,z טab %4LOvpYfmoˋ.R$P`Ƌr=w^ޱX]hƱ/w kwFW~QE^Z48+(\۰<凴tRN.9)a0ӢQ$uݝm"7w>b"m -Lh$!_6qjqh=`w,-u$7u/S/r=VȢ :S),Uk &A7xk۴DP,"=L02BcC5y#a?q6s|jhbZt?1Mrx$&brX É |H OŸ BnfB})ђ@vq$[;ϼ $DžYpfx(^d.U#fř<& /H[uH2=C๻:b` ˲V.Yr'1 P[ϭZ8{@\:[?Їnx7UA ].{혋bCS2.bյu"׮ k#h|>.N{P*>t#i,=EK/C˼a5<輠, ~Ǟbo{ z.ޏT.s: yԃ.zkͲR<$ $'b6fmzX?oyMs5p>(&1NX||>G }H1LaXC7NRhUcJUZ`Gcy"9* nlQ Dz%i,V=i]Z[*2mPuD2k1f"Zw p7:B`M֤y@tY$`&ʞF\PHubvnbXJ-(ğ^'&[7cc}w2-l"Oe^19*> -`WK6].i%2VӻBhGVx$վ!tg PP\ʗ q41/n2q竜]q¼pyUQ( c;ΐIc^M=g8P]2LaT!l E Nм*1QXe 6<Ҷw~W8lpaa$o40,bS8ZMP.B>~lJ)8) ?ϼ.!_>LP~K"aA zb~ zG_Yݻݐ=V(7|| R*,!: -K{1.V%92qNSES݉ەg- 2WG"?i[!6[E k#hI1ziDo卥t)Y t6E[&@C[Fw\6 aZRj! Ij@}^ksBꟚ$)'">G(iK 2?,mQ?N;Ȑql/e6۹FMf=,IR%@ۂbAI2zvC ֤[SRD*#eFy^|K3 BKsӚ~qꬉh=ye$V##+QUNӬ ^^x[uzd]6TIL(_j9@^t*^*an5fXVQ1X)~$7ylA-֝5mLTěGgwZٙ; ?^[9ς1S .NdV=I `]_{BhMV;<=z8I<+AMNGɽZ^K70ANICՄ#l#'e:"ms7*;!E/- N?juq' r3!* <`,]`e—vg4Nr-7-_;l'1H~rz6ԄSB TH7{9M{ e01~o}5GG?\vԑfLK:S8aoS0T[زrY?f%9y[jn"c0Hၧ F~T]jn$Omҝ+oE 穱gsΈ:{a@Ji>6T0a@?+Wx1ϨJ}nC~8ğ^͐ hTd.= ‰O3P1pwqu6RE~d, ğvVLT7"u,,6|t܈vYKÆ^hB͌j%Aqyx$b&mZq6&eC.> .zey[SYkbMm⪍XܘM=^ˉnMɖ%hџC~/%9 p&R?cCqK/MJqNϕsׂ'wqF#ȓ0+9R5?t]\bo[؉c' i=<2s4H l1^2e xG``+{dU_p` % kjO>pblK˷\ y ({Um؏ ^ٜʊlUp 6d5^2 ~INʸtiU9 1ƀ[$K> Nαa :\/] 6eZ~v?!ͳ_TÄUخVQV.Uh`FQT3] ΐǔnh7g\W{ Ӧ1CW1|TvƣʜI^vJxPv]/dBvƵu?/l1^I ϸmvzQ3l32>FNJ@\N'KsiY_ U٨χa8@B^e0Y8'k]j>ȧgY Dϒ_Eߔi[^sY\0Eȫ4֋:ɻe,|}jDحӅi-T) c-XDqd'(=5 HԂ!Z((XBMقip㓝HsA!> ElHQ9 hZ隚)σrB-OYK{sC2dBz[FV]p-q@qh-BoCXe_w-J0| /hRF}؃q2"`ikEjw&Eu sD\^ O iU|L0Q44)2,[ Riy~P._,cK2Vvafg74Y/2y.Ϧ>R:p""}[7xjL%Qjؚ}`gsZc ]Q A l'ͣX3jUMtE]5P3,X>W\[SI BAb<|ns9`I%)Rtѐ=%$SŒYoog$VRhfa<Κ3 &3 x1- І6 ޠ@}Pp _H篠P$rqh% Ԋ#I8ʶ=C6_NU\iXrl>3Q? 3G̞3F~Tz`s8,֕_AZ:y?@ } Zrx81o:bltC?P4~|NP[cǓWyܜu p r%=GS*_FX8\[D@av}$~.y$=/:|5.4ߖ{DY})3,u474Z)JvAeq)b[ 06 k!K5i$@4}G}xH^UcTwc˭rDzRl!)%L%t>@ DR{e;a>=7*]pqU_a M1Jl%Er$T*fx=tyui"(@].6I+u(@ܔ2CZMT!Rj\ւtnkvb'9ʙ0('FQX{ H0UsՠnY[51$e( Up溜]S> -[QVc =Yk: RHX~,7¢WH،SDCxkl&Z-իind59Bg*ܩxxWZ2s:SȪhhmE<\]WnVnPnPeqSʼn9,2": أ"X%ưEٖT,EiA뵭mVϪ>n #@Shj;>%yg)۲+MЉ NP+wQ-dFlGW칥鯉Ԑq*:tRiy׬MN'mW[̬X TG)}dtj"."]hCC@Zܞ6/8 }Nod߮C2 F  np wEfK' }7^5m SB!Q wcai#Ű4~n89VCf\HgMDh}IDpF-/syUkk}`DBM,2|Wi7[~P hcm0aMk^YY"z< E1^/ݪ?Em× Wc*,mTgA hTDdOJ(;FtB y|nL`<O o6VfLWޫkyQC'k'”v2_CX !ׅ:Pe+bvUsEjT5 ৙ǸyQ[ zUNL~0aCTvn{M Qٳ#oz|*-v x/[)Nz$.5ܿh-I,6b- \Rg)n䲬վeFs|Ddsb%T)e1"[+yM0W4NZ:DRG܂ ݰY*A OI\2*xn2l1QfZq'tkѕ1,gAR2*rXfN@`P@`q?''8XǯyE޹6~sfurX *s+^mA -,BܦVE,sGm, FQ6 ^k֣ |E%TrJA#L9mSu;"xHEx#{n&Qrooba5q[fUzqC[˻{;qKczj]Fa ++"x-MBj<6Z'>fAϴhrL^Cs>e96w(mnM-;ENCxI-yNUI=vKoM7lQBRq|I^}pdq%\ȇך'~iӳD6]Tscg0wؔ[p]QF2(W6OZf 56pC­[$s߸o{[x]LU#ps^c_!z& ̮f! JnUs:U,*~QPiL2M`QSJ)$~3=X/zf饍otQ4Y:%5WDX* 飸e{4mS,wpOB/pd(,d\ҞFsBZ'\ ;jC?^"gj*͌C?ő#Z5 QjqQ,E:25:!ÉĨʫ/22~1[s"y~}/g+u|PԑfN[Lɥ#VڹS!I烡S0%3qzMyAx2e;%W1Pn/~! S䱆~IFƊd JQj ~7Q 8]+cg|;۝ԇEyG\{X$84lR%pȞf`u}Ax,'RZN?8EV>JTf9:X-f%ޠ0i^p+{vM:/D+nX!hxS:Ϭ48cQ %`ڪXҶc25*n\*-iGMZP$&tV˫ nѨER(씫j?]3"zF,zYʊ ;WD@7lE l&Ua.<#!t}ڳZ}BWy]=s`ޥACPxk+oA Sǩ­IĔ1  <|n -ki)64db|_asCgƦ6 %'z~{6Re_Y|/N՞g(.x \!R&\/gRY83 |-xq*C.rsrS [㘘-ǙKTfHHCHUBEϺrۺ ϯ$6i2?IXvR\KHa9P\65~gE"G41IpYK|7T{9o3ڍA$ :Ԍ!sJ: ,׻jq(~LF @̸N_G4a(K?#1Ԧow1n>Tg#/ iβZ'OkطZPɴen SίxxNA|^iLղߘÇ ͞;O}ߚ/dYDz) YN. 0"k/ۇ~en:⍉*e0y (5XRo|ޔ*3w B!Ҁ#!E`5ϥ2qF!)[nҲx)=}6VŖF&7AyMn5+OM+d!zg[#ozdt`(.^COd%<\QZ-z5~\F.HlZ^C뱱"׿sn?8e-z~E/"3LYͩY ! VicrWXB<߿p/{۱2qN 0|m`gTB8DB cjFUq06yHx++yYJ['V_OOuSm ‚',͝Vs)IDӯs:sXd;w|`g ,o򭼎TMp7ogCʴ/7j;k [9nM9|3,Ȣ.fbnHt י n%UQΊޘ F9jk*,ؿx4MH2XAQR(=QcT+s@D"PYT3QLlr\aM }F/WrS>t'QGc ޺[E;`<;+ s7p#1iWCRXZWBV<^9wM+z !6A8-H1Ln6nxƺkRˈҹ)Ju)V/l| E_RI5ѳMSX>6;ݱ@̸x 6sKlOw֠oyrQ ZB87ufdCY`|;DO]}Q4Цa%lFp-$b?Gw_$wffI~p=B' ZZG 8gshFZ [ B n(`ZHUĈ0=8XG>z /Ƨ5jk"5wI32ZQ(n⍒c&U6=GX ?l $|c6T_QiG-Dw.#+ :&^xӳDhi@,G trO6tų}>(Չiu}d=h7OUW4,yTeJl2;|sf4˘kܬpȂJO% xFZOW^zx Tڙlr[1M@?vg7jt,L`\g#k濲D 63ɒVA IB=<= F>wAx@W A&Q>eǐvԆMIZZ?l9'&'ڞ^Z//,ʡ9uSQi tc|usŴ?N[J,8RMݵ~W+QY79 A*S&{eOP($a4%t R&ZqcP;#C C`,JFalHmi(p;c3 ڊS5rK꿯A]g^P@Wp|rg?TӔ@Z=]eɩ&4#W1IKGY-8 ^ \ҍFn ` i! F;37K]\`]g:1"Y$_J2oHĔ(^WC0؄\ 릜!jYLJHйN^SiX exb-CAC"`#R7aIO$!FDP7BA5Z׻#%i?!$TBlNB5E pβ^Y䂑"qįAVYMٲqׁa4D9=R-Y9Lyo,ah@&˟7]Rϻ~^5&4\Zʩح*O-Bx *Pu-{s12UZ鎏i FZfOcU96 ?lSXn9Ior U(LL ȉ:gԌA8Z`7Hyr( ~ kjkUO5#oH^'Nwce i( x."׋O#7oHk0P;#ܔ;Fw(f#TN޻~[q(ž3X)e-OSkc[r $~Px1_[hܻ&^D7;iB"Xmp.T1֣:F~uëU*8W;~QU~ֱ%xfwԻ8B/^'-`~B ?@+oP̜p:Cϕ\<AJB(Uͯx/_ 2zqEA)_Rlzvz?#XeN.drYt3X0tj5ESC 5j͸Pt5mJ]O'O ?H_˗tç^ ג݊Uq=`O}(f*i;M& 6 g+ 63c 'giniNII$A93>'BMPea~9ugIcapQ$@{֜X쇋t{_XcoVH򉤉|=QɧT3ދYjB^j <J󂲈"ugz+&z%]6?+8ЙX)j/GZ)Ai)0gp*s]#wgΜ ®:YlEt /!^Әʌc:,<ԐƁC}6X"RGϲz r`:[Jakpx/L!pv rDlOښI@+2k.1kh4S[FYߜI@,8diOGcSqX ƙZtŭ)If]>ݺ7`Q'10}Y- KLc0`; Aw ~6/l!l+?f.S+c[(RX`l"PIn$dgK FyU{$eaDzPءvGY&ib=<{e];[2WKQ'}+Zh% հ㬩fgϜ:z2`6!,y.@̃1% #t֞6\Vo$i ~e&&_/NE\$ 8 BSh=@ V#]}O2蝊1|~dkHHX^ؘI؂`؃ah\\!,4!ks5RL)j`T/0,q+K/۲W1WM˸ Cǚڋ\F ٣tpƫc7>GkY)i@x5R|Vp8 0岱1\X*mchRI?VeMZՄXR5 k< ͼ  ۱AQMb*ba ÂKA[H~l XH NWeS/O+P 2gPW\qTRDkpC0Cg*9] ִƟA1{*4G Knzޢ/I#guc^;|\JJC>QwW"p8`WAEqEQC[QjJ#c/Xo)Iiw;`Tf7qB˂8fG;x&kp*2Q= _ ͯ[#LC ~nkWW(g :!h7%z=[H8xm%[@`n D/^22NÎ:g9{5JkE7ˇ\ ؞ԭ)0$U$]A^2CXiu0@WdVM̷^=ӥg^8E'(4>F?i& #ЕbhQJaD@0AZ5^0]_)GYv(QY )Msf#\FH6*Cי  v ?N9Kdt{X!?¿HuV:\pdžΓp0[; Q _hqԖ[7j 7ⴒ%| f10W\bZ'7{Ugu{[p,6'3Ў8E›%[Q fOM`؀qz3VA@fDѴ;VqB /'"/JȮwMf TBn#@Re.P} o0 ,.hZJE>Z-M.mXmSk.`v!dlI*Ry'~K@Pa@ZYZ^\[2P_"J[v9_CK(:\qL^]_t ~}Ǝ̀]U|(0г@(\;y!ra/[0#Acx,yo-ul6Ѿ!i}߳ߓÊʤf==RPI73=l?6K]Vti5w O5PcH7`7+pupU,Vb-E-lUq/e#//-.jHvN_>MI0$oeEThmj֊)+!d!Hͫ1Nf5jd0*U'ز׵02n=$yxbݴJ_ 8hcXh"χFϲ=ţ8N84>e։צvƙOw@$i]ēpMKW4b@)v\/* 5Og}fk%(.[,_vM;Hp1.Y>R'K1@:nXbɉ7#ZjOnt.j ԟ%gƴ&yn*w)PkpXH?~VC:N<'SP=faѹA qTSDDY@ڟ_|`Gq/Ήnf NɈkȡZkb@m2e]+:YVјo'L`DGK o#pRўV)Q}JiqdJiLud3oP`jX1[>lBZxe4*GE86[%94q7 :PjvU,XRl(SnW{Wzû3\EZOd VJရ52 ˕ܹ %*PTv.ur:tsZV"Ϗ737U~zieiU?}c*.H@.iXXDj+:6Nfo!^j7. z1*}ONL YwBԔgY-Ɗ8q8[y)kY^UǶ,w~{+ino,߫Ó,s =: Fa4tb-m|@)Ǧ$ŷi C&ՉYPdͭNL>/(3:CV.~m'y GY~_dpNc)'{x;l ڤ)ԕ`j` 72[]:BQpL3~يm(dHD}} KA[}Ƙ2wc=Ln0 +*UZ_8UkPY⍳n8?|fUDd4O drB g%<,lv3~ Iuq\+ࡆ!_~&f`|>$(-&itPlrZqMtO&nP]_4&j!騿?@KF@/-^;5 %5eU iѐMc1['¯GmV*'bc \4ݲ@)JR@ bTT`˶;|-jBes, bq@=㵻{nf? vU'rFSR> ڋJ`!'lW䤦-څ_~V) Q׻6у >'J&HXpbˡ2T?(7ۑ}Ϫ fb,Z.|+j=K4%axYCtmgCkI7n0ɤ Jɒ_ W&` kETtS|CC3.b%6 /d |˵`5KQcެLr ޴d]E5=.XÆ/U ;Զ M?zq|u"蹈׀—: byi8^YxY*BiD'ZvTǟ pzjr<6.䉃k=!ↀx"t/G3{`ƔNcs$zS&aC[G/t1ҊX;ȆT$Q8dhIwy7ּ]?Y1 19 X`Sw ɥƂA$OfݹռD?if/KP:m>e+䠣@2+'bAlJm[HQ1&щ]bc :c6Nt%jqM%N2^_((bג_zK`Ą1ΌѬ%.=c}r/Z1&b3YvZÎKpkۿw!u;vuϝ"oN MQ&wgH:x㬟Qh,t_)NaQu0~>m0BFy kbȮk7GÐ. d#.5׾Oh\\R yvdx%.D (]~j{8Qx2@YFs/LE[}Iգ*h8w蒫ME&yDw ='HJcpjʣq]RmGVۆs(Kve(0#GK?Ȁ1#jn=ߤw[廙𫭪N S}Iʵ:iaC>.ǀ o*m>i=Ǟ ?5c!S͕ Ҫjb>?g\y $ϧ8{BAl{UB!B9jYxk_aq՗"ԉ%U4,9]S {ܫ2|MfPaMXLmE*t#2#v&PZl/;{KE)B̿v7"N~L_~Y*,eaf)jP{#%#H36cK̛2Q#Ӌ7z|XI̎:ݪ(rXi>Ħ-"NNS`yl<خR) h_"U E/Rhsg nEwuZXG^934}5 eI:Q 4G$ ] TC @zyAi3HՃv?)%D66¸jNs`wg,U)}nqPT3?3zO%|(G0`bHhAv/Wٜ{̪iHNk ofF/{5a] s葐gHe%{y^ms/jUBEX7/k$~ 5ȉgupd |EˀR&XBS(E'}pg^yCn9Oܶin0eզzmX3MN]mQϔcjQBiܯLD~$v!̮Wx4+>(ǙDuX%@^ZǺ*8k*%כ/J)Ҥ\@'Q~6\qC !,wAn{ހp4A/9tDq"5zP2 Z pXA.a]V[\ 2|Е9|u;X&edb|KӝcXͬvF{][ z> KG퓯+Z1f Kx"sK<B E dGF&LN[ ΛC[/Kvv`H9=j@dʗ;t+1BD;R~73S .ƭEГ'0pt # $~a.+#Kn nY4(1x7DĿ8y78&zUzK}bũu̇%m!8ߐ6=O+ܗ9"s ><[UʵK]_O;` ײrhfF7-uz;1ݗRyĨ?|TTJR#ʱfBz[e@PۨMV$+n:h6en$ŽdV'j( Hj.&!Da{S͌sW+Q?*(. UQޡFϹf 9X: \u{P fU[܈%ln 1kKto-zhN+TPr'?_3SH8[}rvpQrTBq; g6Oo~j<D>Jl@-~װbsuXOs rwy]s 'fCѥM[M] a Qјثt0* ?C=%GCbf`t8si8A̾t,7<`%}0x AfYOMDhK/MuU c-c 7Qֶ<Vl8L 5%9.h<q_-U1i7!3hDl?W [$GPM%p4i:AF7O C*f 5c=0(CXzHƜ@8@竼9}I;xBߎ?:k.GLKSV5cJCEQ9®u8oNL @ŒK9P>lA[TjwNB!7._ṉy8:B~߭PAEꝇӷ'uVyH,VVVc-kN@h$E;֝!B{>hM'3w;nq7cB_(޷@QY+ |t%jhH)hú2[B·$+z6kv?SJQc%`_\"{WE4*; Rowϥ>>̍\띄2-f׭". ;0ٟݎ+Xh*w7K`ˡv]|,[jhRw? &06 9RUW .FybD1:y $ҕ oџ1_h¹_w+*2FƽpԦFwVDҚSx47Jj.O d=@9mH'AJ7.0G%@> ll7^ߓWS($CMQ3"WJB^%Lo[K, UVNZ{ -lȵ8.Iq1Aⴴ\ݞ"'^!rw K%ܓ ֘ [%aJ\70˗>&Ͳڤ1J\$J H4'dIJ2"{{jVYdR>A0ȳ9MBAh45E{t3LbvHI4g΂9w&GXYih^6iIjO`iJ,!}C/t etJK83#QW=HBJ&&uܡ>ᒺ>>?@NI4do@0fNFN(k}wkK. Goi}K^xslIcb.qj_7 .;?9Ŏ\]>D`b -T`*cԟ)VuÜWGOQ +(a!p o6zI5Bl8@p-dMli*Q9hKt%׆/"匼MI13d0Cx̯'?X3TݫeY@D{ԨbT5nӹ3%-R}?sah+bڿinfQ(@ B^K߀q.v>gw mf< O'uRi13|W`EX A). /B^|gh(ڢ@.*\o9qxEV]"Sgp4S gC'ޡl%~3&4j8l0бuj!#Zv SC8πlM*^Haj"e)n @f-cIãk2Pi}_ě,ɗT !: TT0g{@[f9T'8bS`M ǼR,g@yWTE(z@^gi9HLI1=hk_v ҄h3I)^wG%%ġwܒFrM'a9ʇ>e+Ir`Tf̪򦭊]"טD@N ʟRbD0N&\r31rb5fxj 9M koB8;G.(t9Mg) lR 3v3 9#G_:v$JfmAz}Oqɋ[EkrלV~P{5kR[5 #||sw(ǹJ6{ Z+ N9C (_հI$aJLHtN .}JbT~&NV;o7gRꂷBssAz5BuSPme-=#,tETT5B_,5k/9>lO=0b!&=SN#NaH9poѣS\5 * rB#ηyl$/˱O´'|u}Vfc8 20?c ܀9Jye.F6u_-_.K$_Ih }\_03ne\_zA#{ |"f#`ߊGj'Epˎ8}kpMYy rE$X@pNfYO~MLKiԽwdNHk7eVO*ˉ홸ꞗˆfۍHz*r,r-6[r]d2楷'ϓ+]= #.@n;RK ]7<3|!lnC1]C ֭X1,<؏8o4C:]V6y" .a 5=Ay80m&Q{Ũ ޼i:Cff.2ԕ5FE1wY6&C|Gm,ti`y:o)danS9+qmUȚڙ\ox%y0vȑځam0]?*kJ/Vݻ_SPz_CbrSAu˘K6#!;{)t)VfSEI Hu9[N'[۪7<*S_}pc%VjXπa~; _d2;xy;Ngoܓ8ېm@0} tT%^ᒇ< \@(Dل-)˿3F2ˈ>fpBcDdc_~vPFM^DDHLCFʠj{s aqIC ف̭v}B7˨O>g$Xt}Jҽap3=֚fW S&W<ȢA1lVRPho`\\HNQ4FO71DLpe9ˏcè8 5 DE( ѳ/9BObQ\ DiR<2]tgW[W"IQĐM'e2?V ՂȩPR190VsI^ $V'Vj,;I{x]1h$U G|~UQz~I`*P4Lz"T ~Ǖa@L̀]ESnc ,{J1K 4Eum`ԊG`V0/aAbBuMP!2IՂ};Db!#^`4/4@ˊߜm{@}K z∟`DN 5~&U1C4t_dV&jrH/ž]rV6SqC,5xN@0ei:F)33Q*}P$emlII| .BQ*qA|[9@z'I! {o."$/&\ahDRVT2lBMoGΕ> YTrEӔkB[qQ̍j39>Θ(niDһȴC0" ʰN-_04ԽvpECkbX\=y&B)Jm%iΉj<ÁBgMʹTXK8L*O3 ٍ &[=?֛g~X0eZ=>-$4 9$T IC&=U)L-~c7mӋŌ>_MXߢm15RmW!cI^R숱gΎ?.Qz@"r\[+嫏@%:RuF뢆 als;DKhRe_poF2ze|AMYn5Q,ح Q83 ]JBoh'[}^ޙэYi1(o/ǺyMYD; 9lnLLk~E4 ߔseVŹ^Tf<@zohF_2ޏ&ZBCm[p914}ۭϣHXR~Z̍+uGME(0ۗ$u #P2 V>(iT/~@:i;M+@[3SF\Wjޙ a5fWeI ɐOlOep A_21dU'"M^ghr->4=|t7`,aF{~ F3,<@5%^N{#}ӣsbr6YWDt3}ۭTOφD섒[mZYYCg r A4M|P"e)xe`F'*h"*SHXol4K󎣁~EuamQ- 2vsM2 xlHF2 +!plh-| W(ʇbCGA4v40򇈗й w](LsY{!%pθEL{SGeCn"[Fs9 dn̽u4Q4r[`\Vt4jpr'5rlгn8CTMsfC,fqb٧1nQ6{l;k*uV 蚿/ $, ^Cntm{]̄#1$ ޴C .C^o=9n&^Q0}o7l r;Ll=f9P?CQ2 QNYCw Y:gJk,EBa,@h=k# EGNpo\cwsHϺ5"u9 `ͯGH6BE_C[EK7ֿ{_Ó.ޏB ho#N(/aY0O08Ae)j>'}Y3yňԂJݐxyf6Z!7M|JE(5M<5㼺rX`LWc}dzu8-B.% l!{ݩăF} zjŨ}@s7/Bu cEfؽ<5u7}Ta ]+I5)2(?&I}耫Uu^‰mKRt?kĭh^+XX>?U^'j)f(GmJqձ~d1ot1T_K/_o8!z!bɐExSׂ7PVx2"9"M˒jDP~s^g?_cjWT@ H<>\f;/h)2lwN۩0.#>U\a}!ڼje20%Hr^aWZ$l>Zawk3Ç.2g'f.ȩ9Ճ̎MpZbRJw׸KE`WV·GZG/՜?ċSDg{ "M** mbClʺt4-ƏMç roeN`\ʼ3.2V qG9duS n[3(= 5`sF}QZB0:0`)(sn$ !/9.=/3?8L|z!fW%Rk96>A[HlWjXS,)U4A!3O6+ Q㘌!Ј@xspCsHp3R#Olv)Ng5!@6.R)];7QV gldb1g;5Jv* 2څB Řuvrug>*(fYOzr,]CϢEړk7eU5b.̰2F}A8ɶd﹐ N#+D5,zȪ ʵ`9/*Ecl6Ix<Od _ mI"(`zWE`z.P~vX2dAzwʦg}n5 xڇW\ٰtexI9ۛ~nI ]7]˰t:$Q q=3`[-XL4cm[5f-UK9q.lH& Y:7Q}I{HrV?y*|5;mu&\lg+ k߫dHfqrV`,WaijW=iWׄ+OВ)~5 i!JY+211np#_(˅ѕ~*'uMدՐ%S61opMG ё`α'\YfRXvY[ڭR+t[ BS=)d ;*lߵ;Ľ._>KfBqxY (F|0.Ve%S61opMG ё`α'\YfRXvY[ڭR+t[ BS=)d ;*l*.sS|11np#_(˅ѕ~*'uMدՐ%S61opMG ё`α'\YfRXvY[ڭR+t[ BS=)d ;*lߵ;Ľ._>KfBqxY (F|0.Ve%S61opMG ё`α'\YfRXvYך@#]K;wϡP Ng?'PV>ۦ?;uZcpƗzT0PYzdJHpYE ]9I2^ofxEpu祻+UR˷@Ѐ+;i*FOGﱫg4e֋6 ZZ4+z pov 0vU .>5YAR}m[%6UCX.n4[o~ 56v9UXEB1CD!jӦkQ N3k2Wny4/Ww1bRh\HLԗUCL*rpiq}ԩS@f4#mLky ]޷P$4e@:uCt6^ .Q|sRj= ^1 mgWS#1m2UpGajNIԫcL7ѮI9bBO$;rVbjXaM.I;U8 A"#&"uG /eNo##įrswg]eci,*eғ+RP8F#AV -04` Ty&4Hm_!:yk}gFgѕ|;HAgkE\ }Iŭ=m?#l˺!\8bK(> B9Jϕ|`~zQsMX@DBT`<)8gܛ_:i͑xRo epK왦rxWy37^ \ ueprŞ ~Sh`g3~aFkp&SUܚ&9XEGk5V3+B8aD'#~@zsm ,ήGYGye"o~Z'MѣFO (xCK:&I]qk| (3M_!Pɵk_6f23ҚT^{x}#9h"k)Uo4c;dÿ)X!6(\K{4oF{1; bٳuW icj*I|ںV {VU7Ld|Lub r5pu$OxNsVHY"rٶG#پ;Ƀ'Jsfr3"vuA&f 2>: U/:e55I'YN  xðC%C^Jޘ<ϊeי˙J7l$Tʎn"^ݐ%F-gnKRݐwb"nlA dB%BݕrNP<-FLhlX3|B_}ٟLЯWogwG}iAAt2 vRٿVDdoz\E67n<̊_Kj)Ámn_rg=󜻓#%yNѓXK?bR*K`^{}uŊYN8?P'~nut h9ވځrbtf[$ V\?IlXH ;VRG^Ooy>@ kD~5CE Y E,D욁sGh# TR gֆ3jxW,dߵmh뇠.$VSL(=ÂL5Mn 1a\k5qCZ ǧx:Y0݄3UlFBm 'WLq`fw #mx&R|i+=eɰ-w;wBƠYj XA3}$]V;h!,҃×~V9`SSq^<ڿ`=2wv"n<8iMgxYbntPN3\&mA/"Ilv9&uҪd!co*CVwE6[@ޡ@8,*ҶiyiA N7m8H # Y1E,ToMC'3mZ#^B6 7lOs{(WY.@3C.Zꡲ>~ M26] ]o]cTo` G$Վ-oM_,Fu?*n@QutlH>Hm\/Jjona P$PlCϳ?bFAaIXNEizy4wD>=*~GBg \ue1A(Ʌ.?{F(KgQ;ᮏڣr~_5˵>ќEj΋,TOǥ| +*nGH'ْ ˈ\YJ1c!QaΊBo45ĕQ7K f, ĉPg Szheρ4-w QS 'f$V &cMLӧ<_aY ]!u-&. 3c6_?B 1 ^϶g5qJ,ʖr nʻ-EIO{)Yd짧8N33>ĨPW8z~gnݬb/T=Zi_MWabZ`ϾPLgs)gxm.g!oX%y 8z `HTEˇ4S72zofH4:@!X*QAYRt*Lשێ7 vl ~;,TG$:\4@rJ/6sƚ Ԏ%\_͛fa{#gLujj!=.<+jÄ V, (>jܦ$?JMdV,}l{,•4GwѐLI,;mD|=x?&qJ21 1X+{ٜ['\KEaWA/3ֈeQnL#W>WR !Dhg0Pne] Lm}[˯d`I8+E)>cc!x )WG9$eہ9k@Z{Jd.ilNJ(V?xO 5Y?%EbJ}̶oҀU"KذID A+q{>\"pW4:f'4\ѫDpT4Mt]!btaj.lxg|?[%ԜkN%P`Q ha ?$@h#" a}F0RG&bmYU$S#y#/gD+%GIDŘSwc4 V_>IgW׫ݥ<32]E[DnH$QigY,wۧ_20okլZ\vĈ\gK `|B[B5J\9 u[`ҙz5' ^F8*1K!Tu!v.ljѴ|/v&tP>ID=(sˋw+ Wԉx *el[ z 8GfUD#=KωGAI3u)dYjfrhSYP8,$$8(˳-D:M v*,642$CFUC RNؾ NwƛAf/TfΜWRH֯,r-#H"1E 96C{n,|qXj|$do;1!כYhJPBv4,iW 1s5/rfpn%{F2};_=k(c32Kwp.ڏ$eFe72&rU,J{x7`\IQxɪlnTE޺$ΜKDAޒhYgk8gbY*\ [g&8 ,3zqoQ&6!|zJ^ ~`ņ^|([TYt4|sTÛOzF4 *5S =ܪ1aNG3\JIiNg"{z 3φ48fÞn[#>m.рy;Mc[O&zcVF@hǹnZ*5-K(]`(v{C{6,=MES)k޹y\Kq}&S`sǖ͹]چ mCXv/c2>v.8dۓ8d] QFC1WuAh҂Cֿl*"0zá8Y (8V9h@rQNXltZqpR\@) cɭbj bz2Mʏ \$#;Vl-xUY`G  W$R9I}2:t;3~Gʴijj0M2$8SCvA=3u*+6I| UYYtFLC{QfRh eTt*E9u$WJ_ɾ|}4גّH e\ܟW^w.;L6SKFЄ =gB 6XynR[/9=RHs6qhMsM}3}Z)[(2t F!P;cv,t /%goC.P2flx\LnhSXM'!t׎ eldc݃ ޽H2TՉʲ#qEx'Pc!D# 0苾lũ$)=IY LT"| &F7׸Y ͽdSq[nЖ2 f_wo絜Z 3be( $꾩l|A'5u\UMT G55AqX׭fۅSJ ?L7|ݪʥ?Lrq)6iZ2ã}o>`t!ӻ ҫ h5iSTsqN+l#ҷz7(O;8;!EFdMcAn>i E'YަÓ?A*[ihHXI260$j_=k OFy  `t'L2gNa, 8}ﺭgb3 >@Tg/ah`F}t -( y_|mj-3t ;4g\y3`Ak^ޅyOFj<t\Ygc/&13}\Gv@OA3J`*Hͅ"65b_@ /Y^n -<2z& - FF#Rg|FKi%n8 plb 8Cd~Z92nUvy*dC73c;(3M9\8˨/_Mͨ%b0t>q4#Lcҧt)&:ssΒԘqV.OSK ,iܗ2'ҒZNA*fe" C~z`2{5JpFZ06gQ*qP8>V4/b/=j]{J6jqVf?!{*SFTZI2m`<]jp׀Nkh&kGOGGw>A}\TP'`3lZI |&m{A!hQr8 Z4H?7y = ow+y }wwy<Š ݛLS̐T wjL\ AN68Wc8!;p+| tVLiqRrE_Ph!MR}oŵ %MJZ%Jsf,A2sG^X-Z]?P>oZ 3Gn4Q`ޞ`I/UQ.p7Hmr&"MEYBu!?O^R$}郵R2 H"I,lH E*@9ruzNN DI|M݇v&͢_5*Dc\G@d֍J,O! K$( w& yZT  R{k,g; n ҽ;_FAvcn߇<Ӯ=B'VIݣ}0Mqn1.D=kK9Ü_%Kc(acSAC L^7Y~YsAeKph- fޠm\;4>&C7AjYms3 6nt/ 2@VVp.)3,BRTKdr)eIVtZ)>rkcigv%n|A`e ^vVd~] [ڙfQڽ>FڃhuqGOK'B6^$MɚXsZncEq>4ԆfKTb"ZYN+epKp!bcN͘p|?g&`Tq Ѩ)_|i4GE#~ 7(*k1WHx\b֡is)ڏ,|&CsЇ̩~:ຉ+s$I$alkGQbQz6e!EO(T*N_2-+A"Џڅfr-jZֵ6'rɥDvxVB *snnAi}5m7S>^l#cLkAʃK#M!PO=8zD$d@1dӰ|x..-/1s9ߵ@n٧o*XC 1v5\9NQ=dӠ3'C"0L\gϐc J@Wa$4#ShX/؜p[Rt+zcRU1k3EaĭpsBc~[.[&$׳u |f47r?Itଋs'.ne'ug.NNQ>=*5ոMZ͂mwiQABxc5=i_Nmo ϑ:^lň3vZk3&u)ϓIFx'ۃJy nfY {s\j0݉!xtw : p^Hь6 $gh2֞LS;@Z{ $Zph:0#nzFh~ v;3 vhGW %fY=XJ l;B;ᢵ!F>x8ru}L ɲs#ձsS8a_T$.{qYq&:7OQFiodvvL_2aa5Ġ?ы1`SFnD=!q_v.mk,FʉaΤ;?Kޞ6w9BMߌ)Rρ6>[r!P/%9A9) J)ljN Yo :oW~K˙"wΚڶD^NKBRdA%ũGfa 981ӏfd!\AۄrLW+$LwWb7UټιߘwC8gQd|"@ 3z讇}<񞗘 T KrԦ90+)x=L77VgQqu D$rĐ{~!B}oqom^erzbǺRbѦXH(¹WǍXhf^5c[Q+G> Ȓ[-uyT`6^EHLi~TvŅp=3_X; u26 h5j<KYlڡlQ{rCQn-*"笲a'`"//}B3"J'{Q ~AG;sA~lY }a}-AeȖ^7$&r@&81.[[8W>F=uQepUs> ll?ճ"#$"Jx䇔)p \vsw6ʌ0ӗ2/ZvF5?S_L~oBKqINkd./CL>E--I I"{'o>]e\|XdqOgtpwRMyEGR,|2 ee%Fg\;5 znDKHB\ lto,J>訊>ʡDYA>Lg"w>pP%>jOȉwbn^ Aߘ Ώ7w*i?9"f<@I,y(&]M8Բ&B򍋑DCeU-rq5Y[֯jZuĂ[Vj;&s02ǵ C~o0*Z˯LLdte9JzvOVg@'%G[ SV*$)zO/(t`Au2U dC -!63Xڎm(A*\(Ek, -!'_Ω&6461}Ƹl#RR}7]#uU%aRuxU)vL:KyWLGc gߺ~EW%;0m- 5(Ц7U%ԑ]xjjǖo؜H#?,_|z: &%CP+}"Wuɚ%^8=@F+N姊KfjpM);ƶqeGoaJMw$43їm/F {gU#"9>V@+$7j\{Y(d \[P/s(*cF#@LS1ƌ4~l^Luq2#h_TZ[!|1aT) 4(EG "4Hv 2緲en'ǵœK\E&׫Ì)zof AK}Ch͎[2L|y-4$TZ?םMD'w{l9 Zs=v3 ?$y J>;nu$_V 8@X]u#"8S\}z,$kOW,ws@2 *cfg7jǝ?_bekA}"\V ?7q#ȡF&{NHA(lꕀ|L2 ٹ Dº1f?.Xf,ׅڮ VB}`>5=Cg9ehx6)}R 4\܌3@IQ2@ZU9ὢ>Ve~HtVn̽芭-.α'\YfRXvY[ڭ֋2҅!FTu,0PT"y:~zKMDN9u @.!U)u6ƧlUCeĐSxĒmlg0huѫYG3wyeTyb3 ϵ6$)Q^LV@)ոS7B TГFӒ$HG50mqg٨7=vyE8Z(60 dj)H;XqC~y0M l4(%_&E <_33ç9@cvcmyU5DV LV ]]+ ||A!߹X=$m95a4>ӓKзȏ*xCЇr:T)*9te+KC4G%]NeiL[@@1o6p)8 VH!6cQcĜ6@%62>g}ĚPL\eܟQ_7߶DK7riD8 ;1#yQt`0)+ kz9 YVy9)2dhWuwBf%}~&X` W]\ P*|*MNSÐd<&/<$HfGAJla+@%__[@(1ٵZ `;} 7{Q:\-6[ inXj +];Yhq}>FYJ5^k'$: v,-0<5YNtJ7_rƋ#7T;=e6 ahQx@ٍCZ07Ye.J*X@3NHh%MjWN~4*5bF;s7|!".3˜gmݩᅭ)NFS+3JO&P&E-,>07[1Ȣ8:'J[j0cHLօ|Dup؄@?~Q Omn3t_jiP2΢3^+xsBv^- et ɳXUc2l“Ps٭4-9=m@bJ A?/5Aӭ\eݬffc'4u$#)R3BŁW$Sg4c*o\aPxtT J=:d@(S174z-*`~r8n򣣣]-uB!ա_ xw}zSFw^G$8igAZwhӥwSi1K ĩ1LNh_7ysS19] ڴ@rMn|ݑrΪ#,2AL²y1?Tp4_FXO>z]<)P,w~N5lY!6?%`"`U6Jh]kZUÎXIq1B)R*3_67/mKǼprz0, uK￸)KStטkY )[ ֻ*2%hŹ4+\2C/h_߭yjYSZs_Żx_:WM~tt. k"jg 3 Nu ; %,72HoHs/=pfxȜӤjȆ_l9!5yHsIHo0=rv q.O3 o5$=?ʮgҥGZ'C,L"';ҔEz(ꕲ oDEޙnZ3n>Sj$Pu6Qt?" f^b2wtjDRp6G)76dʪr $нpo~Szql;4~t<>XYE)Đg7#1qbbz}_] UE`&N7øw3 N\r\*;pkFv!&`fЕ]8HC]`Ch]kݿdalM0b9\ViŊ-1H%| $8bN>Ce( 8{/$>U$Q%gk$3V#> Zw7LFy?Vޔ9=ŎZB[zTu 5NӚ$`,E > ?gf3IPǍ2I9׮f5 8D+=FTiq)e>vMUJU^qs+g+lyО3&yg9&uE+ ^`e[uƕr.$ːx_pPMxVp@*;Tn9tc/]N? sU=! l#0M넊 sBb\Y?ˁZU[[-|Lw4c_)hsԠp-]c &`J [E"4 QYvaL /98$@w8rY,Lac |󒈈LPYM(pij,xr 9&kÊdIRJmAc dLW5jrNf8 2C(;$*CV$KD|\S?&Z"FtrtL.m { IP\_l/:3ט#Qr6? _hPeZ_6\qm_LI{O{Ԯf-."0/.clfukxx5ii<0LR I >7lle "H;5UӯXp^n!]C$FsNZ:gI$|k" L'f ҵvNv{m8mVHoY3oCpl|#, aqURHA'wSh2ʄ&gb/[#gH9H*b D3Oh=+Š ͽ:v5ua:p O+S=%$ _雌,u gi9W)I V1f |멙PVrVl(%9}8)4&DaZrm@ڃ rmҿg&:iF$Ěh8IxgeO 62eq~p)ppBs9<| h]ȩ}YuVGftHùKvtG.(`%0hyO&y}vm~E ?Y'WczabZڽ;&?lB]s`&Da%1UJ E$Szpᲀuj Iu, ]h_]'lL5||%yaC<#X>I)9"vg &Xw#w+(8s Hb1.L6Gw4 0>'5 >zT!^w/5DsK7Γ26k&!q OdU|A&>E sfI9+Fº1k7q\8A[Y0|pNe%EDp%sUE5[CZƬT>Ʊ `e;{)8R-Km|v~኶\U62]{Nrwa0-~-( }~ 6mzS <a/4X|DGOk'~w9P=1 t‹?t" =* QJ`<([R𱼝,(&6S bi.B](x/tӣVNB&u[:zFLP<2x7uV! vB-;j+WT[O7cv5DQ_`?JZx~zy0ŋfyd6hZDIv\~N|=06$[]bz`7ZWP;tw9> #MVu6V%q2GD!mJ ϋ"?~ZfS,Ϛу$=ePϣr5P ȑhր(* K+j+p8V0e[08\:G?_̂E"w<[:Yw8r!>/w UB'(&/DIG[i˝4<V,r+2!iEkV 8K|mAcqbb@|o3 >yC<1N^mjcW:ǙŒdnW6wwDo?&}< ᄐP_9o̐qaS` q&%H9N;v->HbʕR~06S0*KP]0; &ߢI<{cXežÖ~٨dw.}m9^B󊏠0Z@+L8V'-{>˝3 r4^F2 3ΰ+2lHSTt !-/CاR0EG~pjU4L)Wql=WTfuAq[ : ɽf5>^y)"jA^X):dQi~pWJ4SS4[AjmXq`-K$XLhF7epTG*IMEs{3۸ WZn-Ϊ̝da˪jQpQl #;k =VtKbO3}+@^2n'Hh~J|@X{RRxXg$0Q'JX JfB0߄{(C.XBժag X"hˍB)ވ2 kIBr*ki0w"6n ߩvHj:Fŝnvx"K 0.u| tԐ>ʬt,a-[x2Y}7*4 4D3CeV6km`O iNjᣗ$RKoYl#ȱcZTl2GpX{[2+lXt51'L/.U1@b[=9r%UFA?Z;- ,}qo1IFer'$j:ײ;ojIG[K&0b # ia),{gRU 3hCN/!$WSWCvRRH1ÃUC퇘J@Aސ펐9tDcH ۾[S!}ws̼V0aKKgb*#.({G^gT@G8DaV3:<`LZ1"Z=-A?VhY%Z}ݣ[Fh` b Jb܋]>ɱ  LWOCJE HI_ ]Jx _ٮ Cj,__JhrXgƪ)lQٺVO^$)tL9@ۤ.v#oT%tD-dT,Ѧ6yuvty ?beWF캞+csDs~:T'Z2)9@]ʟB27}{㯩Hru6^r1;FPo 6X5NN5@CjK@hzۻѶxzCgzO.A,g#;C$Dif#:rmv( 48APF]\S`*QoEGR|'EW(ڠ򬻋џA8Sԗv ^r im-"򒄆Z!]HNRVXzqKteS!^I(@oOQ %~(m4\tVB j R1ʤ~du@)nϏAYE΋{IY3SZ. ),a7ZO4#9Ҷ g cEiؤ0Ж疷p`5 Y7F9=S EPIKgYl^zVKnzkO,H300L`aR?? Q'G} =*֗=KId'&rI%ډOʝcȲ C, $V0EGqӍbꖇ vRV%֬h"D vslYޮߊTۑO<Ճx?m){*QN]߻‚(BH]W~}u& tۭg~fGjpcȒRxHbiv:v~uo@; H`V}̃>d{wnץ,+t"TR:mDoex~otWgf"b5HZ+1 Pa()er5TC8eI24WZLqD dma<\{vjj.i JB^oSj PNF]ܦ0ꓙM__^pz4(c̆O*x%ԣ@QOESMnhp +ϭA~# 'O˹p4Q{V  U"݊DɝdX@@2+R ϩjJ-͊i``ΦDJD~k%N@KCb@݌_IP"Q`)!1Sf;aaIc;s+JPޏZX,v{/NV|1I7-+<e qJIOΖϤ^Ӭf;(QBo {YnSC|<L/s fC(Bú0[-L$zP;sFT-8*S ]Q L9@VkŎu^CeVv(uvb>>^[mGw#d:Qj)8BuWk!t-Qt9Pk{=!|UwO JhQT{Khsu ywux$`Cl'P7fEs+-$A냡 gԳ4q bn <KPS?q0'TLNnAD#ll1 {vFrײ,ЏO^UE}CT J8lMBpݘ=Y i*ضX'hM ~:<2fIv?KNJ}KZW>*ejps{-8~" AvԆG [童Y||9B Ɂ\k2'K4@ⰹH N?_}̍Jm0*t4y[Ѿ`#᡼AeRX\/1deͧp4*CyW 6~*y$`jW#0fLFsգj1Vʆ;;%5Y5u! ܻwR%к=3.zV&2C`Qt p?ϵf4M=wۘn00rġȃ.jS>jKyR0Gbza~d}Oǿt]THyJ\%Lϟ&a&T\WSyt-"Ϙ|7%I깽$ M#EdB c'DlϬ4Aqi8 _ęŬy=<H-XdjK0'T} @@~pf.P0m69A0C} {qBuFQ;v*6 Q;W M$j0^AMeg!g*y (IbNЉD/n]&pEݧuGy(27Nv2kDaP81CVa G=+/3XKH>+Vo5äWMxEƓ _3uv&M&la24NRlNS`x0~:ξi1}@ ۶=M8izy;;m7s.ƽHרV=Bi]Q%Ô-&͋쉶`~< |jJOJ-*!*XLJuVEX++Q*wK&dH3u 5:t2v6e]4=@ew/5Kx~, al (1 yW){V}FgyS-U!VɕT"j*(C]чsb׹?lWsYVb& /YËX}Gnc<z}JB|ZjO473GNWcᄉ}2n^Y[H/F0~nz:Xi559㭐@'lbR[fݯl\hY\Vxg)ofMk2̃;i ?S@o26Ƀ%ۨP f%87smAyZ?]tHe Ǩ/6=bB,Ju%NGj`6vh᳴=CH7;r6n`Ly#&NTQXiqcJ +VʼnwXyWsG~t]FzC[flǂރIgKyh~6ZulU?8 UҀH)$]?!sb!bKW?ɗ>} E $G ̽i7/ͺՄhȝ2_ =iKřx{AUjiȔ#zMV~F$rC qOhf_2*t2O(eܛ%r`aAc]?m".[} =\.^:7UT/b^ }Mb@Z!_Ro+WQ}s@P9KJ5 LXL&J, .)RMo`TՌc 3RFpW_[P޹&0e.ȖBUQŒvi9|_4 S>ꈦt;v&XpC0Xwq=+MNޤlY^&wzg̶e4xbUaG>e; TzõL檳e ש{]گ4k`]fu)t64K:^C," +xaɚawʯ{H(EO;r9•q!2_hIdW_A&"c 6cf}M4QbwV0=:ue7V8zO"f"^ŢuTNG:$,r3EĊ2*]d\κ'̬P"p^/BE`-6i6!hۺ%%a~~MvDR$k-;3Y 0cE26V"CX&?'z5["חsC?$&vM 9Ø֍%[Hq@E\IvfC̟mT@5nY<G.YuDmGz%1uxFZkJ2`b6/cM"kVo+'J=s` ~>o=qIKd-P2c0;̸Go< 2=๘-}9Tx"c-|r[)jB*?[`9GjMPn*)㵺jN9u;P^ Ki8X^GFāDՠa(.w'&}X-6I]Xj%dlx1||,[V;єUV5Ұ"L$\8# ?zYHIUq+Q]gX\vlCZcjzK#Y. Psal+͎%uVoqS8 DJnH Q=oKd"qtJ[kxM7y';t9'(3`bOέؕ ;Ci-{Piѝ0;edf \>%~}$R>pMK 1#v TC 6j7oy6M'W2GJI@g@Q>+ $8 lTN L/:OttۍQ x>NPZ,bPWet*K12UɈQVA!eHz~8ĄG\ų H¨,g%9.XЦ0O+p m{NjG'%o /^ YwKB-+ H@[ ޽Bto΂nvc/z2Z+3ڳ50NDɻ1 ؔzUk'սs|؇ʒI ;54 | |ĞK"Fn-LQ{7A+¦ނ?h]7AKoZx-Iȕ1¥|%sI]\j-NHC(&R2 HFp@1QV&?a^MYQ!^TuI<{q(ij˵.m2ܓpzm{ ԗoCL'>Cιsiޞ{C7rhzCj&weI/-K]Y 7! XݣO*L2[\v:4vH &ej>b2]`(T]@LBhD"kP5,V> T|! Gzʽh|@̎=-I9?,[f1C'ʊjm7r5So1{\Cp,lXԞwf-cd`T>rQZB8"Ox؏CǚWZO,<^[ݴl*`v.L`z. jA7sG2-w?v6\Grp Ҫة.+Z#7{c ! [i]l%|ɠik;QVdϬ̠3|Z~ P0(1 ,Zi"ˡ6tfq4Mw F޼@wIN/d M%S!tZSߠ?DSLFlJ7X۽*A䮉hysH D'Ѧ!/%._>Nx^%NN&*)b:m%D-sU[Jt` = !bßvQOsWoCKrnG}⌞Vª?%2NɋD"+l8̅[RL)7Zi9ٌmd@XGֹD9Fi@$R\H }` ޴ˉYYLju;H(<2SuH>OeҨD2uF*1ݱd6g+qr, ;٤`ʤDu3E~$<{Z7om"[-խy <I$P4@>.Q_j[[Z[B)* ԓU%v= @4nEk'{ km9%|ZŨK蒿%ʟT>I9rw=r2"gj,nk"6+*LvrEm[DA 0֌j~җVF -%Yh~(ipю C,A_nf&2"zDˍ}cu#f=Mw@꽕Xx&_h mħrRd@sgeuL9L1{2x W[df812}ɟUr*Z wGJ86ޟ ^Zp ~o#D%H+^9IQ4N-=w!'+[,Ԣ"ov-Iz{C|K. fWmaOEnɠQNP T\ߡ_$\ٻQQV;GmO?CxvѪ9Ow6r+Ⱥj@& #QРx5IA@P[;eEo0*s;U>4dQb bLZ`#ڝ}umO]z_9B(]Lh6A&w#lk llbx98RxYV&0a˨&`x6yЕ"wϰn.FGv ș^-jNb(sabW-RzX8RjBhq=G?7ɯ ;CD Ըp4x.N΍}m!+S=c29fn1)C4Y=lwOEs'x'(9hܒ0R^33lD}C1kF)% ɅVEiJ[ۄ}n>EwZrӲe d2̳E DKeTrAayF*7w6xB(/{}Fo濱h{" em TM@LWhlosږe6P,v֥|cuZ2̨g,s.+4ԛ/%anEY~ko0y|3 *>B%ƻyPgkQ 'T#n\׸øJ($>2۳/[ݕKϙJJ_z;!fڼhHӃ״K>3 Ѐ-X d#r"9r7[mS0MAqՃ)M43ՉW҇Sk+_PXeVyF Jj?^c(Ѯ}c_|7gD5g-X gC_AU$Fp`z,(TȑcY{+±nTx*b^귈crk_8]D^UnyLE:Q@M.lbKƂ4؆i@;5N)wa'/_ڻS}Q* iE X(}޹U8sЧ/9^_ _j% jPzo,kuĉgV3/_wssO_J9#\2քwNK4QQtUhvqzܐRwPvBF0 JᧁN92 ?0 ;ʋ{ k9zQ̤Bϰ/I<{bi:/C>*~Dpb_^v~5PD^ݏ7s_)5"ʋzvRq>`*=a 0ljǼ =~]wlߌ#k5ȂMkv~5AϡD&ko &_1455,{38R@Qcqo#+f!Z1=yMUU>ݳTu 1RXzS؜XjLl[R9ˆhso$`HTL,&b8h-%i.?Š$]DSkh"_pkQGdn-Eju˄"z2=n~k~9 뀷Y3‰N![do%z#9fa"0kˏ1-Q% G ekaozLBҹνa] ѿ\\j#A\m֕+e ;./e %"ϓ`F&FC@Xi ^{M2!vOh q8W3/ocR؋hBׂ?;_o+p仏lK29|?\ kGzqi lj.=v%˘jŦ]"SyA@O,=1!i--X|FۡsvI6'j?)d;Ay J`2EQAXX5lhf{{~lYdY:ac#(9Ϣ;MQ~~Ne6[|{ܚ79k@ƴA1<dB?pofGIN] _@\/}8wۖa%8~fouds(`ۯzӦ=r/9rߡ[?҆.'M 'i'p擢\Jy}w*)z.xU{Ə1va5&ÝDnc%Gjxy!ھ,-Gݵ6[r6׆aXɜ{E`UeaKCMoHNPC;3#=Vg}RBm|[$_La:}Nn=|GV~S%ma筇/e:)LuidV; K!=vWy$&}P;PnMvplMxO˜2-+~2bД* J]Aծ3"S;Gc[L>vwwa߂yL ]ZIgxΎth[0"lMP rR&8Ϻw*_Zw_BAG'I)J\#BInm1ǫmO2*PA'#[ & µZH:@bRuDY_f[y=X묪Ǘp Eth;GG /)*Օj GOQL C֏=1eҜY^8;Z%@>t56sKt~DZ2zp"PLBCjMt[uE\JSh_}׳LٰHx`yfa>/sk5%jaSřl+c)4N;Bm|S\ \|<Ҡ8yљ:x)dZLϴ%|_<ׯ5fU!lݟ%> ޡ l&gçGgD)(x}>`TCmlCrj$ pB ̮،N7̆ǚ ԡI]7/"v p.#_` K,9Nn/yG/CxLpDſV:nD Y v Js8bj.m k./cLd j9VXPja{y#٬mO<'մ/gp'QkZt Drv.1ҁu!w{WIϲ=?l M@X! X JbȘvf/C3"7mm)}5 KY;/Uc FD$;?DiFc5Zw 4$d"0DNvH~+AZgcvo|!^X1tFghLL9O\y?0|F=N ۫n!EҼѵ:g* 8+~~jDx*xŚn@Au{΃D7~9/V`7˜+>2ng[N1`"?3/=C=sq2 `J{Bde)bshw#6zp*#>1NC[i^[R#d OZW;tMDZ+ZHJE(際bX.W_Oo߫l249fV7+lnmH`?,ȺKNߵ/oV@E]Om [%#-}^|ƾ@f'` iAbLi &0ܘjWII zf? 9>agƘ:_ΥW59^@NSjhVR95Wgk#GYm-8!utHDUFJT4W ˄pz<'F#Ny*I֏[I6G5VUjL+rgnS(%9NPa $(Hͨ w yJˤ7"}OzXGʤس},+].RWCӪV< I`twjyxV 0ʛLBꄠVzGCSv C'wNhlwR ٥r?*Jrx]Rasn Q+a{RA u9Urp%p1O-& [_͏:@6)x䕐:LDU[abrX5snGe:OJύ+%)ҝdj&˳S"y8GP̗DAPͦHҠgzNo`uV`1gFcuA&m"EJlb`E7W^'ʞ}`>D2!!kIK}{5t-ik" }DI/D/ާnҨiFYʹmSZLy UHf!aDIpRz lAeǾjkߦglUo[ejzh m KNo,"NtN'btͨPW0/.`u` j!`ѺݟPUmFYamTm-//mo>3g$Əx&19X̂~:bAERIF~X#pWS]WIo+}6p Aj$z{K%U&fr"c&eutܥ-ޟʜuN{TprcjTϧDSg=(Ph{Xe#ΛoUǵS#%By8^hq<5e2#7-mm`\C$>SyBtzolDwA~iI9ٍJT@ݤbQ[Y_)W8"S8iezc4za=ibzRW9(o'n8QJբZUMrnjygȱ0Q *4bcu$sBr.6QgM>ht͚oBؘRWRszi¤/vLy!9G3VE.CTQcM. ?V &pFj}Uo0'pQ}/9HG7LZZyKډ~'T!؀]?WƸ-#%!؋u# Du2ko5z'ܠ׼MݚH4 k0E(lRwaH) D;4)mUiEyd6Uk</|Wd:XCjz>0t]KM](Da?l]\41t͗nLJ#a~#:¡e81 _KEH>a-`JPהS*ӛd8Ӿo `,jVS",ze20Oz:MXMcwë0fe+#i(p?K n@XM/UR6n깘d ͣF~ EUs›lI%s'trY&S2(KCMD}@:m'Z* 8'"hOW?J*L%פQ(yk`:莀\+4lNv(jTr<\J>!#׉ ]OndJ% T+>Œ5Ϲ4Eß&{QNW-{kwhfo >8iBn>D,@J>PzÖO ׎{0:ƸNCA6BA^݆PL_CR0ĊSr~t$;x q|)똉SF9OUߣx"t'~@:Q6  Ft@!Y?;XPFciL:>7.ّr$"mrkqMoQ <>Oى^vsg҅GƇ,+Yw]u=[2P9U+GbRӘE֌ &M!GGG8"7"J L wM I2n*C%sFr'4 k6DCgT;t~g/9շb5,L'xŽ >(>M 㦼q|fN{)avE;P F\Jfs*JUQaތ=#-%}qQKIV$#1v=kfXaP<-Jl5yuy9TIH Hȕ*&<"ű֩l!-Yhb uZhm~vBw}E;+pDUi0閰 rN@#<#A}_2uXpQԯ?s^WD/PAb̍l2˲*zV?= Y 5-7*%cִs{l+`[= zxHez4-̽NXGcN,|x{v͖ T~qOHcH0OL)K xX,pP~zXzGl$ S~>H0gknw9}Ud|,H,qy[&Ƃr>YkS5H³KH};6$ ٜj!BD$=W<(_ !4Rw1V"czeL LtZKD S,FCd/?bMޥH}BGa՝'Q9/,Eڔ`mN=tȩ8&͘!1j Қ9"`A~*WvlbCMW [ mbۨ+۝0 UH 8w-Y֍,,XJc~&;vK>cdz&'_ǾSbX6Bi)I>5Rt\ȭ!Ӌcb;*¥ 2_6H!2No1E,^)x rG k7&tfY!e)ߍtˏi$ dG16zqvF@]wG!HaO)wdh_%1OId%p٢wxwC,U/?sT_ .fe 6]'hQ?ܣ81ER@^1Lf-? ,Tp3oe謎;g5>y3,x#95>>iI?9>GRml+=3440vq4fA"5}kԄKSK'N5h%~J@m^?j2#2}o Dsb6E`kbpBXy kؼfSO;t~F+FZNy"ƽ8EZKߗ7PG&|w= L/9LZqIe_8]tXK\ 2r)Լ`><ioD2)fl>d6hvקyyoMj u]Gq.Ep, z'鹋Dk&9v;']H1oN4#.eRl¹2&0voCbVu{fl P0 ƔE!nia;f L6d}BB&ZPe"TswۚϵE O*w <ek6z,#6\w{P- Z]>v;MD>6q&oX>~P#}VJA0+3{mѹf ",'@$2E NFfS2;ɼú5-NzG΋k"ߩ aTq 4$[}=W#Fi_Z8*T`;P*\*[rm`GtFc6o?U6rʚ NB1orxP.nc?L-c=;_]k\Ū72 m{@sᵣE#B@߅GՅ 7L*B#5y{w 5S}"a<i7{&P2N;$s6_ Ekpݙ8@&0ܚPčGLD[ I:5U.'f6!M1Kg>uϚ }kY ZڨL˪'H`&\}09: ]]A^C?9@)|[*@qfT[-ٽ±;a~f6kܱ(̫&d$p!%;,Rb ^C)cXpK# Hs rZE}~ᔃQңPsj@`'9ٳaB dGU4$ $3j{#re"AZx(#bgu|qRZmN`¢1j]PvXϷxSNUW"$''zMnjoLx7v2]yH%'P"돆>cU^`mE-&|ss((x\̍Qjt*J(-.CD7/5X /ATZgՈI_d\ku2ylQu5q%O,BӋ,wE^I+Kرh~&݅+9?QQp?05--I'\ SN;g;猆*@NmM-1 *2Ԁoj34?/uf;GAM!),ȕ|7|S,Ra>-,O!xn /9iBs%eR?+g;$d`X`gA~o1 3^s,1 t%{h ]ʠ)lαWGw|jBkԯ/hP!|-w emފBsMSXEg Z?нr&9#U`t5ǵ ^C@MN!Z;J27yBjJ#=){9@Z{oD]} 1O& 1G/[%)_FWh/ki[=(GnίDZ @%+k95>.~'~M)!Թ m;1"% (Ik|lHԥrFh첓QepF X>*D%;fKgaU,?/Y_8R>.pc˝꽜rHi/)Ӌb/H6x/"1H } mv C>A$i:zę0׵S;YY}"SΧ6 &64lDqqc1S- oǛV6OՌy;(M9.qUh/t:6@_eiyHoy~OD q d Q㎽޸VƁa9!ϳVHP즆?'<_E'dqYL[-8+dQ9as_B:2|DaMTVXŮ5:}9~ƒh+WT$ԌMUt M1e~,83Gv^Htf*"1+L}[;~' *?d1pp@㽗xa5 P(/&. cD# |m?Z߾3rJm`>Qr>]Ḟ+!D(XqE8 z.:EzW, ,hT]ŒAPBj#NJ`J;@s+uMOA%MfQXBEȮ=pR SԎ9!]T` ˦%~W7<5%|pxq:6W R# :(q_րH]/9#8BD :YׅW]ěhmAC9)G'ۓx^d;16iFZEzâG}pm%=1}ߒ:Rڧ1$&Gz5=H߬J|ڞL[]%fJz2 emeȥȖrW!6(Flvrö?Zh41Rlm$1 H},FhݽZg!|AHT)s 7\gL\Fb;+NP=io7}'Uݼ앻ci+eK$Xkeb Pc/oQ\?vܨb-[*=ƉQ*-Ή?$c)+ ,b'w`7ؑ@ \<)_$&V|@X;C/G?"ܤn j2Sd<5y,BSo(?]3٥qH>Ww@u#N*ͶR^\&i_PL$dvM'9yDɐr.oy0&II |м8utp|ftA^ )@϶uǟ@dȠJF$,xdw9\lb/OwzB i헁/qv+^Jz`%:[41-)b -ԛ VU; -N/(5P@W H- xTxQ@VHo'>v9D>c#QַoQcϴF g>>2ѳv].({ƨW^A @ד& b]NJuEptkƠg<~:t^T/%+RsNޗs$.fiFYX}*a.^hwHSg[= CĤҠVYE-E\FM(tbWN/WWjtTN^3s/V~x8BMABdB6[B3HҽR*YHw\<`.ɬ$ymO9W@>tPPo|˴Rm,Gk)O hn'voF#3Չ zK{@;}3"oDH=Bkn:)"n; F:Jnb5Li2p(QJ^d۱<ZH⻐pohoBͻn6R0= W<7[ _EEyW[|);ROὢS y\-U}ckAݭdәѸ{$eLw"P;]Dщ\- g2:=s.`rUp&dxJP,E+wt9sdB gbz=%җYs Gx0x,'cOXp6;`xJH"OsH*R0SRF* Gό&nI={/0ibiyùWN8gSApwv.>mWj g-j{mص.|{}A7DAq/i< ܐJ,1 801ijփ%,o|>~Z>q}:>hȡ: J@< EA3++2z+c_uBbRXȹkcH&9CWpuu*jOxlŅ-K]Ϟ$ϒm10mBwaPСC66q;.؅ \1&liM~컔dk|"X(AkW!SId[ѶasJ3Kk(rW[[O'l;_E*JQ:QwlP"b"~-ĠhX PkJI?=,:q-~3kP`6BC}v##EAʜes[aSK*۝_)!8Dڴ.-;EEl({Z:WAWsYy 6L7B:φ?>6j̀ޕG\wB: 1|+ ZV@4񒟦=U9ш^w2F86\U35"ۋ\rC3YH[ZbǨ3#uh`?%>AK=VfcbI %اgMIi:aqZo'Ԥx&*CNm_?| &40VO-e4H{tۂ=H~ly&mx?ըk`(KSWݸbݞw}+ Q[mCp]7I[a,OEGj2y^nvL32eY#B*6q.5YĈ vHTZOCZrc)VNޟU@}q{Ijᬒo-j>[~BPM1Pt˄V|M'ývif<ܥ'ތm”u͠-{9/w t;A[##𙰄S>9NꝜniNS*5 !rןMo#$#o,8J|Qݲ=J.9unTpVzX$LY񵫍TU`mL&:(w!6uJ=fKTɑ|R(mpVxR0G#j>i{;x_oMͼ'9IApL&DcNIn SGUj4#k6s4`*z9C+E&SqAN ==<lC Lr?Zy!H+C "oh13.ma[F )4hKWKNw4{6jfZC1!YO /q̅d<$?PQzd$ls2N%rm;]o"1jI<fPJD094 NPZ++b iR6 P܄pֶ<g>Y\g 7@w܅ pcLdI7u5"-D%oxG{@M9ه`=BTm}Fo䞏9$ի01]_ns -Ѵdڍuꎅd2H:\# D7Iv-"?X:l!Ec@-ٞRZ"S3 #\tvcYPq2L#ZכD;K̳ϤJ0vD)l/pB^nõ땈 YB[h?+M)z]ΥÉ,kqʍwRw!-{I ̺L DH$<؇׫ dOHݵ)y&͕TB+y{r$Y'hcdoxglY]Q/ZiQVp/[w$K`'e͕Ju%2+pn 0R>y! 0 "a ξ9<֋6*d#T96~c>ٜT_fi{*ٶ'6BMIlE][r)4nKtRH?k[[桒CpYKP.9+"muMJ~'>xH*&Q#A$2VOj4; [V,pyCOu]pqbi?auEL-b`?wLM6,^7>R Էls?<i##Ϯ(gQBbYl<8Ocvo{fP0*~6e*YcRu6 aָ)-kU-67-i~ft1s΅kMK a+"iˊ149E+Gf?Mv0R 1 ОP-2hW ֔HLa=`[6F/.þŇ|{'Ը{p%;r[V!̬͒ښ7o$?s%.ŎnّXpECFrbM6%l㇜de»Jg;ՙ13,CS+@glN{ (-ʂWUkUCÚNe9SWn hZ%@'uJ}ԋPW)B&o3L+F?:P/Lp&Y|,7eaF*L76kHQeGѵo" >d w`-՜V )?Fӓ"NfESkB#7#=W41%w`wLGX-Llu%Mzͻᾲ S7$VwRd?ym0&+`ݒG}jC;p"spa:/T u? SHKYzH2@&'`yi~<^kGi^4[bQ*Hˎ{NKfÇ W(xJ=+I R+)b v3YڛmOkoE+ֵ_ ؗi%iqڼ[]5="Y '8: /kq< @6U V!kekG@F]qf[]@[4ZLTцY|_m4̔rYJF}f*c>QR-j+@kʶ T\17)*٨LpR .  ˆk(GJ4ixIRm+MN:>dٿ&nECAOr?$*(f B,AH(._dmy{= H:yј-'>%s {ft$0yi]L|Ri7@i;CF65+&҇h糓n#P-p Yޗo){Pd*ǡ?ߌ\Ž(Ƴ|=j ]᥺#Lf(QI|'ro& G=U^/il$kTr'jȪ]W ;38Љp]ԘS<Wppf@GA[J)gKk]X[7#+\%G 8&޵FKmKGx9MUYp0|,?C ͂)WU #K]Bis`{-+[?2<2MdhZM tN@ (qT\ʁW[q|^9uGHyI4Ȇ#~yQvAA7ܴ@BFD #cم?/ROpֱG7ǣd2)q"J:AeqTAiZIe/^ӣ" &ڎX2Qi_j]/r 8 7q.MAL[>SC7md;$dLl?4˗fO6-)_# P}5\Yx~|9;wVʔcvYPRs -K&b ƨ># Nh\>dT8(yEOnio`mID<{ʂ+q|䖠i\Bgx6$7~rjAR|~wp>"߫{|Bt&rMcfM!.AoXV#eg v ΅`ƟD+/pdS!lvf_ۺ;?䍪F7"J`7mD:^Gm]&)yv l)ځz5R 0aQik HJA^6KtFY~\0u[IK_KɄ)b2H",mL(WduwymMe-yYC\?:z4ȱMU [X|E3~\E0;c^2fDg溿HQfEWJV`‚5K FFSX#1M06F;`k݅8$nmCE?4%oD"~ 'o&&0uI~~) #yxU LI'm''"S'L/`" lz+rNU~6Bfei?IVBxO57H$"vmċcjPZt$Hm.g^G ϊ7^ênXVd` c\vju3\w%qd2s88Z1@L~) 2Q$ofqURԪpw;ĸ] f3I<(&ɘQfC Os4{WpS&8ׅxu9ᑕ mԠO32N)CJOE7M]Q&j! v-|||py{'ȥMR3RӘBn,Sn3Z'vBbHQSjLG2)ac bao,Ci@vhl!c-w8icv=̵ww5$$b+*,;7ϩd8qk,Sщ^"'fr媚+(e^qO r!\C*655[!*Sj][HA/&b\4;;+9 Hs"z`Ѳq5I1OW,J8Tߵ=L`~צ;.udCȕzGM%Iq$ݔ>1/eߝՁԻ' ^ޭ(@L%&>\i0ѻ݆9 /{ߩN<9Mp\6Pem~=LBIj+$ز& V1AAvm pۦZ~{ fFE)5b @IɆ#q5Aѓ YV$&ªcw#~j@߅Nl▕OC$<_nR Au3)Nǿ!=~F{~ZSD<䃔g#XuGT&{eWd^͝"0ۧz҆C&d*Xy3Lc u ([B78fQ@LJI&á]\:UʹSpԑL*^9<c$jJr{Y5X{l{FPRLvrXky %F=D?k v~qP'_d5{8}(.Yr.ُ"9ʜ n{:D yp\>̻QR[BW#>^ߊޅPcb3"ZV@(V#CB6‘.wxC=@I'\ &nckiܹ^|I=Bz6&%Jd߭kڀ--ggupu$ă"ʕ7&|KLUrq*1ԪX%2 u=$K 7\O:gv.v09^`(UD3@{My ~)W4B!ϊ(?f}kxñJ pY|+)ˌWL*Gpcgk,x &Y9cID#Ii7A^ IYiOGˊ׏n?%ckeV$f+ j](L3"{@JA**-H|uDyVEcK{?TVlOS,XA<_ 1Jh30m QU*:%`%Y3H}bj/`fjG-{iu!%Kc s](iJjmq>K'˚EuR*zBV\',t3ky'߃6C[KμAJ &zqupٓYD;-GUODp|7ykq_YMٰ[d l^k9.\{ tD2 bK{MU-9e| D"BF#\Noڬ"/+^_ u'YQ4i7E7p[2︧)olR i`Jܱzy@)ZHW {n}bye O=)hmc'Xyv6-N8"*Fk|Saf2@wT+rk~@QY{\F4jZ0-Z߾S@ ]PY0_]쟲1Pg>Lq8RS-%M tX=McV̨1 4AC&ӳKAk`!x3\V̍, pPYv#(a|PIGp`)"rMdT=mfRg.l<dWi@04SE.`DPST؉d'd+.:Ǩw唎AQ*(\?0AqLۓ sD%/nP[{ڛiP! H~V{KP(x"`xI,*)ҮZ-baU0QKΠ&@L[O#("p֐SH+?1- \x, ?R؀knɷY @ۗO } ePn>$\Y ~v1o5\j“E}VB:N&|(] b?چ$gPras,e:A Z:ݰm lO3F"<:;GY7DY93CExa3/uK+?|0^#Iorʺ5+1ma4a+\MW6go3L?i$FTCjӸVtP+GO?>%fEmPJ_lz0͛KR +N?Z> 28ԩRrǼqy śޗV)g8v]do6i;u|A?4[&RF rv$n3TӅӓrG? MS"cL/Z"1,9 c̘ϙC)EnkpM8`l\IzF<ˁ _ChLK;uN&d `WItQT":^]^S\U{[\xAhuՅBX aĕR $u"l!{b7=myfn؄[ گ[ ޗ nM;KiM ]F DjtB6l{7eR:Nc4,n#A$SΉ)VpƁ!v&r&YdDmMLNJwbs [B'8Wh=6>^N4: |6R'JCL֊ X[cR@5OA =]DZqc~׳`I&5HYc@S!#~~2=J'K~HdIo^JKw{qsH(vWjc B\Ro&hdOĈ2QW 7 j2T`!,doʟ3q}܆ >l `K(+ck\kI0:LKNNYr olF\HEP&nugoQ ?G #&ɻ^[/,ߚu}&5ֿ0gCo"9,Owπ-EQ!f ~ynvACҳ.@ŭCx'-E+i&`q׸ s4!cTjxՅCj=vze!|aWPoEcܙb?q/vѝfɹ"-OBwPpi c9aM>/oCKG.[U̬i_{yI4aJRp>宂?@I,Qz:}Gsm3V=h{SЀu Y X{@MFn^f~a =B94Z]Pf]\}a)UK 5X `cߵ|eiC`pSuV\ά}H?E@.0[hh{bv4Qjvsxu1Vc qbKH;a⩹a6o- mCzvFÃ0*[ # B ],/Wj@P[bA"{.F*R"<HĒ*&3$͋,r)_pi5_2ET@7{>9]GX'q 9½AN%M/E p 4(M)F[S>h lE1HTF¬Ph!p-Ddd{sӞBdlZ y~ŀ%+Q <ߍ|_rV_*5ɧs%io8iA@|`L,*JdInQer0 Ϟ,^x]z=x|%+\L*vDZʇ~ 3O-_&XƈOMvHzc^8`yF7q@s*qh{['W_ ㌸$sC|}68r_#`o)\h,;QSvƱ }\p(֣I(]L3؆y]hyC7~!dO8+me,tvf|v`4z0^W-;lc){ N^- " Z+}hvIzp|><}!͡/FΞڡy'ڭ3hZ$`;3;RԚZHĕ3J7(@3QɚR3UNF|m&Cj?qj,s e pŎ"d{*04+AIfc3#굫]^ 4Sԁ3_>Ž=FL+֯>ХTD0>jx A(s+G}GYByg9>Xڮ_*L23d?+ T~TH߬/&b0PEq?.Iy:_me`0[-bb_ mw,AHӡ(h= efbssh&j x0#̔ڮ'M:]`C):q gWpiU6.\e ޙ%D03-/SSPy(Yjzɘ>,@;(:7z.KKbt uε[Ji}qHB"ug0Y$N`m/"uHO|WVaw@m.seAꞾC\+}jxөվףۢ>q[4OU,Xe$1w6Ryw9]Sz" 3V(}cQ>bƦF:Wݿ5aܔPE;Zq̲ d_ͅ7? b9V329@=9H^wvZR{i+ A;UD f$BUi¢bˆ.j釉I5t_o;.ǸL3[9B'T17ZTS!lKM(NHB)\Ys`IE}s #)ё&PaEezצHW7.2IjoIV7=KH ʵa#`;瑭\-}J)[QdU#.–2;U/**-GY he`wD Kj?0j \ w|SRqkCU0%dT\7R@9ș^ :r..vR5@kXR%3>kHuzB@b O+>"c_$[a#}ɇ@l40sa7G$lPUP|^{ s!*70SF!{Kf+clm ƕk;R8Sl"5"_im2,J˫JٜlX@vmYϴ*CdKCOli%"QQ->zCLql(n5~a8D! OBNƘGC 3Wpss1>?G`gٗj85.T{}1eƒgl(+Όna}F>H~2YqQW4ND7&f'_]}W:aՂ Qx/@ehhXB˔i]ĜV-9z =@%o?|( 8TK^I$)!C}xY5I^0 uR7amB6ܫV oyJ~B9(v UrYcgW\_\S  ,+}UDb{,Lr(‹׿ʮNj|-xE.#xHE^W1GuVjb?2IQ*+O)ͨ@]7JoON0UQsk4PLA8S>t ĶZmԩCUAb@dnSig Dn5T>0Oo2Ғk@C. iz\~ Z\'3p5voڳc ck%řr ^oXG}o3ilۏ8)Lmqlj1O8FՑA{ݹP@zp5])p]gKO©g}:TdZYˈF5aRS~1C/p0r ҧ|{$rDF| 1pqq)bA,-!\-}玶q K2b¹MI7<6@}ǹ-˸E{ kF H=ϧ D‰a]P0nF B9 \ԗM`FHq浛>w)PVSS^MPj]qROF4oGkyb2AV}|df4~m mk2IL-ӕa 0cu{-85gbf_ODX4c.z2 v0g{ nT5D>X.?jS-O[x8=FD>Ni'd2JCtӌ۸?QMTM$(h^tٚvGHܯZFApBD ҈A .9x3 Ҧ>Դim-E)3r )O{}OQQfb;RȱƼ5N D' Ђ1Q &輠X^H cpџ\)HajU}f#lSMmuyX㍰G?/qV5ႂ^`Y_6wTzzOzh6-iGѫNÁښ̂Qwi#9Y/5`N~#'w3c.@CL/@FOZ/NTX!}mn<¤Z{z˰ǛͲ_ 7z6IxsVzV9oYRÃBD,PvXş Y0XWD@g#xvxQ:O&@n$R)…cֵ~EtKVʓlxU(`vvx bA]c3_$ ls{ZBxDY$gOĮ9w{ Ĕ2p#c~v4¬ Y&6vE3')ٌO)i ֌W* J67qXk }K"U|CHBS۷P9-+ `TXgզ%Җco?YC;sMa# تsh+M|t{ke+Gҏmi}b": 7^E ~О[b"kĹҹ}Brpc@8k+YYWu,6G_Z2h@ރ)Ѡ76Z_p1;u}oW?]'DJAcne1p!Q2:?YZ;D;6NPPe nݯ!o/!ElLXb˶(izX"W}{D6DC=$H!t( p4KH)l: MaYnSf>xYȓv}mVcyb- H{us duH]nVtN].7` R).)Z8h~4$l*<2]b"djhBjĜ#;RuG/O[ _jUm]mt++K_$/*>TrE : Nto45Htnr/$?M9$V>c^4Mh8S7X4klGN"dd\44&E\|y \I?!@X|<-#o`I$]3i{&1b|W\`SPnoǧ[߆}%dGPr5 L ذsDCڌٍ"4Ę s' zuLMͬ|._܏zZdJ6uOƺJ7uCrhZ߲Ztj$>uҡ+[%,T4?N<ݪZU<`H?ϨFL5R57WSri^*>xjؘP;f펆" Q塌ڜ3AkhJԮwz+s/?ʬAZʐ!+@=F.|ls jnq̀/PivFcyrOy#NAgtrm5)lF*oԆz,cψt-|QO'qp!\<l<9X\)EkBfWz~ &*~u'\ 4)#vŃ; {=2EL%**d e%fS o2}AS  R *P/=3''OA!ƻz>|(8ܼᶟOe ;j<(F fެQ2L8yyOШ_-Q#"SoHf`tdCi 2$l ݳcAܖg6,Ksӊa.{N&9h`VEu\Ϛ_A$bRڶZ6aniv\Z:)lw5q_q~k}\8K)k>0WBO>"\jʈbԡ6{0{G_;W#iւpD\y5TEj؋ToM#E55-ģqtɾ>ARjfv#ʞ.&}S͓%X Y@WLrLCaO\{z Mi x L"UEwP<8]ȒÎpVdo=thZj#{vbFT]D V% Kųq-?|${| ?Q0nl]PUDɡ 47mG%#ɓ]ZSKR#˰W6@D|F<,[ヌ x.\J`Q: =y^U ( <_ĭ J^YPgv}Aщ3LybÕ1F_ޡC#=FqzFIwQQ ղTI mV]wE8VG aeDHOrY]1 C&UupXhpʗH7K Xq!~YNP;>#75Id N{kn|P&wӨ K|YԔ$›$Us.I$>?p/pa!j‡8hYgM}rڙq\+l5)ZPM]֊P:-[tOU$'ff ?W߽rm4s:cZO+Hg݃w2?ϼ+&~t v&``d1ڟmO CcY,0mg?+Bz;3g\BMtʂY 9:soܰ=I >%HӜp/]iEЛO2`n76FJVn,W孟V׋}kk'mzBy4<ɺ)OhreS ;(^ၴEҕL\GHj'?6uO54%j<Vù J?. $ںi&16k? ]h dOGMPwݒ>KЙw%ٟOhNMҼse8D󝓃m@ ӌ\ 8xBw7j*=2)6? X=UB X) ۀTo4gMc3%g5xܔ6gލ^_a>̄Bګ>b18IooEml 5B\NQ&ŝ!omap>sOYCR5'|xԄ +r}/(J7۰3[#GvS#$3(6Pjk ,N"EۍrXy_eaOi*9\upo΂5x1~tm?"n Fw{k*΀4JHxz|Z5IS:#oDP|I3רLVXqtP.! u<~ hz+I\B۞?K& ENf{+<̲'#jzF7Ru_ӐJuAx22=W#>js]Z0mrՙPk6$Ԛ"}3pJV%/J*Ux*djFy1 N.e;O<.[nia,Tk "kx7C?LO= %|X#L[W./Er_åcݣA=ƥ{{]TEGTq; =˾ J>h٭,{h"$)HnQe9gD))#{qNjy+${+C@NjC9ohNH8? i<5I eCJl⨾5;W1^P8@:FS)i{xQ*Wg\ѨРsP,0ֶW fdU qL%6KS54r+fFƘ1N72kE#Du|&$:( A&, "e &so_GW)ktZ)6ر$j+4j$0!SKh +Hfѻ(;׷Y9LﱛF}F6Z9dH+LCβ1(iuz.`B>_RZXkmP0Q:uHgwN<) x39Ɂ2u0ancTK>WzCXq.8`, YSJ~r$KM^ڧ'P,.0G[^f@Hylg*po;{|^" \0˘l֯bN -tx8Eɻm5W緞QnN wY>@AMn;6erYR?/NmM19BKK~*~C"d Qttu_X(-O hYן3||'asp( *+0zؒtp]!1|BJGtUi.JjDU~~2]^RZOh+b1j1ꍽ-pZ#ct)/sOSLR=a'.2I.I.ŵH2(RCؓŎmטBlx5&5PnbU?G&|Y)֘`{R M)|gYr-FXEP 13+OQl!왖<Ø ?DU\]`7>\m~7dH43>Ս0cRo v6AB/~=$8gU,p ~xknm ;>xT*ǒ4MquPò(+:ےTlmv>3h И !5]@w9@'^/.ng2Pko-{N3>7ӽ_D& 0̴ Ȍd ݆iw MB=ϖ*kDZrwL)mdq_fKtNkarNQ?L*uu%I,,- z K|Oi7\/#5VRMAYi#ٶ;jF=t)=9u4`qBKPi_`<2i4;*x5XF{IMGp~[J5c᪱.<Ճ98@<,u1hq6oRJ8ՉQ_UǓʩB~Z)ιO&YLd:_ +p/'6 D"Ma _$}əCK9!N^矗oӨ|Mg@t*~&H=G'NTHA_m ;+ $S0J*-'3cf5`e4گMI{X"ؕȊK#.ylc0.oCmjD'_k (Znvn8NEE*<ЧUã7Fh D9ydnE0Awp2e$NWc*)fK+Ǧ;v[0vPWv=Ԧ*Mgv_[^cPG"Nt) 51?#1zC3Ԧ`;D\;\y)K҈UX$\C_ҕ_:+:/@qQҘhN_ox)pF7Ӱ'ȍz8\м6&*CxɂMÉ=Hp1g-!O@ ʵloKqIЂw TȔ34rlrA!䮺VeexFI&u0=Q .ޯ=}O)<Tn H[e_1efuɁh(Mwyj[ƒ[=n_v-k'(y){t#\vkN=JGnRDgU(HWakZ_? pȾ;h H t3BIOp"΍7 .ar3ZZNjq+qkHjoXO .=|Y}=M➯"8f\d=!j @W(Do&ZRd۽g](fV4Ί38LTqe_FݿD.qxiA!M|Ѥh<,m1cnIH$jnT49HZQCGZB]v68ħb!!@ @:^PTTlpE顔nq%[>|L8_/ 27;ݎ*({1H XNb;́hMcS=Vw 2PiIДS0׏˒`I_Z7Vf*O:KfQ(Ck4USszqZl (S؟9Dzo*ˤJH#,H|eӵְm$.!kfja4Xiǝ;0F N>! (}ꇐie0 t1-a)Ԗ&6hVA⿢V(D۱* I &sE8b/'gjċ֑i7VTi Tk϶0``ꐖ~=wd TíGTQ[zøĝw&˿"&v;5Kܛ ]p26@_{ gOܽ(YL(u3r,YN$М~m|Zt@Uݕu*FCh#z,x2 =i;ElqiݿZx=m;!uyG+d-[dӛfD2Ey o,`{RLTOLBkN59IўC y9&`4C Pj7Azn~:@gql\~&ZXzZ T]G?L6l)TٌeNIseд&3kՄ t_؛P' 9RQO0';M2->΅T ?m`G¿ L )3ěQYhibeX"wk1:PNCC/jK/ @Xxx7a?#| EMiZݬ|iz iBD~')q}e7"6y@Gs槳alC=7_8.[Dy nulэI+ EUdl_Ǝ =)]1Jc}}&Bx6.yg\7t/Mká| w_ATG|J֣-oS7dpӾP/b1aDK264X.ƛT_4gX+^@}n5F6* l@ғՇ&xY yzp6G%5&$~PDtEӕJmcuxQ7.ys{2!Gl< p ۦ'EGYePt&J{p\!FTnihΆ=Us`pA3 b !GG ?p'(ix?6z^[=R8VaE&~KV4kw JAEE&ɫѺp/ Cu՟+hO´'V<QQRwpQ5xk Gu&ǖ:[G)nd;#ekŞ{+~y" #Z~І *q2T4og+ &ZpD 5~RO>20b 4浼11\+' 1֯#Wlhvѧc:2q4vy5gP~(`!&1rgqWq] Jk>I߻ WLuu/_HE<4,S4OjYRq~*=J6ʒc;'^E]؉T7` tb{uu`s?$6%:P]Hkؘn%hE{mϑv`>&Y +7)Q#M";;VTI=u"Czqߡk â!_q,"I#Cdm鿡-N7sЇz -wG?g}A*=􏝒>B?R ճ:*@fS&ΰб&sWwcc {lǽrxB;&#Ue0c(tjS1t͆$L~s2POH`T2.dFl8SrT0t+t6w}`I y Ds Yyt[p*b?I5xv6hc;2JlN߃XMHj09 2.۟0z?g9nskHb#V}_Ahuf<]] vvu$-ɔ(N=]A(Έy?LmW }l X[r<>OJr!sGLzG9&bx犗ӤaJ#yp WOx{*6/Z\e v{i^G;PKwLh4םDn-:|c#+ 6Ar֦|1h#YG4ilKom& Y%|0пbS =1"<\  ޲2q0aCª=d%& F'-0X]&SP ѰCZ2:|ی0D r{';HMi6zu&HqS<F]'95e57ǪeAYǶ}KDV]׌w ;I# y,ƭ!*̤Nڕ +HȧniKR`ݖVꫠ=gU4P *z7CGl=w;*]Ɣ}'*Am`13Ϻ-b!2yjc4pݒιX8vIRm\Z2e\ F@?u(X(BA%jQ*GB"G>z?nmԼV˗1ݕ 2tBDS1z[`0F[ޡAsoBtIN c~t MnϦs #,O˨^3-DߌزXex9 T]z/ m{3v)X$og6{Vuz{9p̞%[ˌZ0S]ȾO\\y/†z˥.ɿqHmUulAƪDʈ|~G#+%XHN9b2UŚkWG*meUEfb۸]<֋nQn0 dWr܅sSJr'5ȘE.fa闅ےN֘np܃Hٔ! &INJDmI~ RN]g?~<+aǥ>\D`>+ 6D"=qq~QmOmE?Yb쏭 FąIgc!}C;/w@e1w[J'w>CiQesfI/OjHq鹿{#MȵMkt&Aa.R0J(Kπa c)dF fE!! +vگ<-~TB5m%a1jAuS=b8 fo#o#{,҈Xi_?LV`u띚9;X ALStkL._0 ,3YRu2 ߤ˿τT9'>F`勁|ɐ쨪F?nAW*"9d%=2-em( lT6S_njǴ : 6-2 T 5حCpiu%,CΙ$QzIGP.jHs#0"CGFl1(~B0]نʛiXOoI3Z&ΖaN TDVixv:0x!}sc~$|Z.K>)_|c.&&-5;)ԹJX,c޽ F:nߤews6GPRT䮮ߟ&~Q k@[Cb;a]Ȟ詳Lb;RcZz}ҹh!Bӱhw>4}Ԯe֎.Fi#PҜ9b&~곔*msD+,OLɞ(>%Mlxx66qil@edu%Í<^rlޅʇ9.x[g.οq+-RPݙ6BFCauTd E%|2c?GjdWzאϘ?RZ'{i MA_x /|LLAnb#W`UlUKS>s8m42X{PNB5M䳀IVfGHR@ /A@Q~*&41sXUk ɥݸwT@;LfH|],4l;mb%i5TAZlyqab4*LM'#Hgh-.smJ+0/Ӛ7-O=밊nkM waTwҺ9 h[^1IBcaL'8d&HFo_\D}f7 Y%r1w X?I~ai4$at?- `ȝ;,=؆ʬ$Lu킗abnyDqMUߖ† LVv IGk].FsUEBHxC2;rdp_(tp+1= <^Y ]I<0ւoK[NL4[c1Xc'h7tø(O(4+#<؅st {g* 9ϘTs&ԇmT#evgoK;&-Z2|mpD-bAmn[+Ge6z.CŖwyfTRX nYƿdG䶩>T o.9scB˼~)G7.+f+.f~ u,Ϲ-6r-7H㉲6"9(C_X^q+_Ar4e 4]QLzE#ԍSLAj(OU̔A0G>yZ Q[9J jK1XP$Ÿy#$(uJ 0dqpP3E$c^fDSv5p啡׷ԙBO)&=',Cp!>|GI['5PWy@ɨ`a';\~9h@˶Ξ&Yq'tj0s^)[7.!u&%}F`yӶxv!t,Ed =NQ{(<@W/ujIgBV%QJ:Zb靾qgd҅Vp+]j j~kSvJhJ^$Y3WfD+LC4JaZ7={%zḃɰ/7c%!ת['8 gSmZ!Jbq]4RKRLU՗;},4lOBFEP#2>BͳUc=!/m|3;R~AJŭ&Z]3;vpM*-TLT=L%R0| ;()lތ3@`fRKEZxK uEoSȏ!Ki/o2T] jnݙ( ᑿw!dU*Y9z{ʷ?['&?ʖQYJER^ 1R_?V -A4#!00Rݟ0n]:KAbSlHOJȫ"C/jg%rOL!|FȈ1%a&{Џp١r2"X>lpX]ߖHHUt%=n+[="j&ܬģPY-dws/yw: >nCb,NC2O?M1·6!>]³.o{g5+V ADC~;6!W_*_#dմrm (& PIw{Q "\|18o' kI6N.帨Y:v}Ȫ \TcCV)|^M?зE xt G 0í@{&;mn_ ʲ tE&?Nm雋 Q[|3^5%PLgޕq[C>q@B+Y0 jzGk(p6B ێ jZso-*%tWq:\1]XaJlYYϧ Nl,*!&^0Ѫc|N ?mVP'_PK >ą$@iŀ7cmuyk| aanԯzu \!+2/$ġ7hѩڀZPUtX}.k+6DYehaJ;/GUU `Px2x$;[Kr#"aAh!P Ӑ+j#hLIyZ!%5CR}2Pa|?Ҕ4TbT߂Ji b4@$k!_F[6|%iø'PjB$/@ށgv86 i)uSUT$2; )̛ˬRNզY@NaU?1{&|n {KJEq4B q 7 #mMo}b};+Ԏ\gլce-|mzPÁ<{S4踿ӟ'fS6J)HOr"hYU gzpuz$9xb7<ѤZv]],)>"zqQf#OJEAQ [9e ;QxP^c[D9uufW/rބ=YUSh` F6K,x#:>Lf"USQMsa!Y1[8,T½Y[վ f"iF68ʁ! ԇh- -tScD~~e$?Q:&nD I9rT'{5΂&Ap~w#ȡ o'TΗm6lAzDwry˃ԅ>L Glڪ% ~Vj0,B9S `q@~NK4 n^WtA2s?>Zk#ph=B5L0Vit3e8 57R~X(<4\8J 33H~#]Q'7!Ie Y nBPLHL/R)Z- U>XCS(پ2u"8X[#16XQbn2kF=p>OElX LW\3W$r;M!(lOt7蟡$-ڔ|9eD 0{ΐ]L#$!2>4P+t7Ao9-P=(Ȫώ &3&UT#ޜuĤD$ ;s3Ium_ftc{,ن_@@vVS=qCptl 9w- )ӮԅX6!$xABaa E*_<^$b'h6.~o:*oghrJ}qI$D<\n6@f0 ʦvЯĻ,c_>/wnWoh`j} 6,&2L7gB_ y"zR1Dy1aMedoڲʵ{9|~:16*][\Uv*r谵O]\')O-8ר6_}{R=XkKHuIb1t3MHW h xr[SCYjs!3O49S'62;:{<7AB#O0 < -8"=\92hۥTm+c@NF) y;SA251'`Ys0 t s,ߐo?լ>;f T.a33Df*60)A|.^k scs6tȹ {ňR'}1}q TUW0/ݕԾ|Iv O&}ũW0Oqg:k.X*ܲq w@? 2ogǒg=-&+S{wJA,߹cM(,0tGO<y6-0:+@[&"BGis"TN5`6Ѧ ,{%o&W_[a%H16_㾟Ai?WHY--jhmY;?UaaD(G*'"lfΩqΊDM0eX\dKk?J}1xM_ӧߟȲ;3!*G#R 8'2LrKPT:NW߮?Ăilj&yPJʦxNLˆDҬYG3 RP^FUɧ*>~v;9{H%?Dx3\#ʅ bC2)8ui*; lk.Ƿjgr7 ic:('jMlQ:A:fF ȭv9=~K7hPU FiB8sf z+Tf/R@[b-"Wv#vt fy֔@#f D9%YyhEu 6͡kl;jj C4'm|Bn2pYs7S6J8]C։pZCO/ƽ@$NL& 4bތۛ(2k?Ò{)jO-tŁ;zר>!z;&k 6%Q:kEI2 )ȍv:}}aJ G0VCh m#}@@e}«/.~ٶwgtW_BtIvKJEX>Ph c#dq}_quC'%柬1d^(͂܄Z4,,t(Y\W}ZTnxYVN CiE2pf\jѾUo5Qc-?cڸ̓R;Cc" pB(ЧSN^PMpIo,D=^ϑojI,`T`^ӣ3hjkpL$ J {~N:Tِ I .7k|ⶊпl7 Flg ĺW=~e|<[Zs\sQYsV 'ѩ?%^ U)֞SDZ3IxwWvy|2x'&; OILdyJYL42Zҵ}]vH~#K]v8W`3x=&kcS8ǃ-҇ﺐU4lM{,a2RS7p(Q.T Qhvzn<~=(CpD@,+'r@ihs_GZ kH۵8}89K (nJ]@zX,e .35`-"ӿ ~l=g1mIFW3eFƷy>ZDjVb7>'?[6w^Icu[$M_n#5?aowv{Wl[2V%<(',#7 e37 3V,j հ:5,v9_yZȍ9ӋK\~[;7i 4y$ot~rr2 A:q{s6& qgٗBRfY9u&ttD:usZ&Xrpzky/TLLzT&i`If,BdR7u,4!Zi&qXϨp$_ +pf i@UXYߪ{'&]i4-UN8=guVü2C+e RN!8$mkm|`%Ȣ`t(ƈ0|ЊJ7ɵP~#>9!@N 冶r@SȿMֲaBL%H/=*D?Q5ycbI~oX0V2)ɾ+eQ(Iu[CiRv KFh EC!18c~g9~;ˉI/`[0ǡC@{bI󟌶iSqH+QTAq{qit|:J\S -:@ˆsӾ h?k{U.Q 1 ~ S޺&50J&g{ Gr$YGY`񞙑WLFVF!vw\=)lN ~O ->t)l6Clb-.K~ ׇ٧Uox225Yn,2"`HN_C`ҙ w OC("E26ٮeZ{b: [U 88h  3WTuo_H2CM{x,w(5%& /ug잗*ڙR@`y4[VjC6 ɴt+J+9oTl֔@nBE4_Dd׸/l(%휤vKp|sVwe tЉd |5RAW!den1K_[w!VKE>i8p;(ob:Uj98a}J"m2?(\S t4<}M߲,o0b1 uO3kN&ѨGpc*J?ʑ.c ^z?2"g^WĦAq$V} Z{9)$&W݋=b!|p'͵BJ)!Als=!P%Jq7wB 4GbmeooVL a* 6"YЭ˷+reA~U'C+!uP _&Ѫ;a{yDfh}|xcny>}&C_SvwZcͰ "9@(h aN ZvU\04SD^ybжRU8h1du=i69R`K4"Y#u,g-Ўd%mϣTX!6H? Ŋp DoGK!&k>;c d  ]1QULw)?*RjRJxJ|UT+#X.:Y/%:\Kw $_Ş0*lXQT0R E?bu"-I lǫjZ ~c|ӧ^<"p +ἦOi'`K/Ĉ5T* lklM&Spq`-DUvn N5rů=PzRw)ʈ,`!iřGG'{ Qlb1풝V+$3ƂŁnpD&Qk~:aG F,I:70BT]1ԚtoGTnbWO)Mg1i闵 T,#q=L;ɂ}ΞpU3k5m `o!{̉ۇ1kF*!*yʷʍIqͦf`~Kf)tRI0?hwo8,=8iBm6;E-^o-W/(wWAqM0^&w7C;P7'S2*d,;|yItS"ON0t8u"Cͩ[Gܳ잺y! H\$xqؚ XI\.Wf*ߋT.{`LOfK P8# hW9X2qyk10OE*U T nIs&;_AK{$@O4X7j1JaCLa]CVWr=jތyYĪbᴜE6e8! }e/ .Ce7H˥Pc^Re=7D#8ƪQ*;7UT\iT-K uU˸ƒ2c^2RLc´:UXh~0H+݋>sC,[E՘1[ӈfw;ܕ,&EJK 6F i_zi]ZDj8aѧQZ#5pC Iq|UDz`a*@)Cߘ#H9EVlo@E$~;h,.ku^X:Z%퐓f\u^7Cc72 ,u)#d9E 몟+. h' wH|hs騤olz˗Iw2WtQaiqfs=v4Cˣ/u U;hKf LRJF7 Ta_7{dWɒsFsQX- {UR۱"DkQWU)&B|2 X2tdgk+/ʐ&e\}qz!fIN_P߾Y$U_dAZV%PlI`>"|he{9t$#$>\< %!;C+JSDmEV9sƒzl\W5aD?n!mPv rMtĔ|.쭎=Ӆ mc{;v!\lm c.w[sB/OEkrڻV؋ Հ!,꒯vq]6.~P,1A+ETTsU ]"~*qAbWXԎqOی.'4FBe!ZQ}5YDM9@FygUtiU7i1B13|1;j"f nmppDYf {J_gg(kKދ Fl6T:o.iǞ".2G`eĐODb`k&PeMTС4kȏ`Ȁi>J#Z7F'Mxj!뫶߮v4-S#-^9H'I]Fɏ 6ސ+=aAr}3.҆8ڄ"t~b|D6 6qE t̍ "9F,F;6x2]!ZW{ҫ\K6 Ɔ9 ObN6+"\t͗uL71v ]$Mޠ$'ri/&.ǁk+&ơ_)%3pz::5E=pz1i ԊL$;|j%w2 CFv'k+~u*ܥ2U5$M2|2wxq Dg; 9ܻK퉨0)ʩfעJn<"qiZlI4 X՝e XvW'4]֕x~>Y]8 KId4AjM{.bix$NL߶c^[ _C}̪++1Ї'hj<#@ >ϲrMb8֘2Jk.< Oa[g O>#4Z{ *iH? .ߴb̟hyH~#6(nn)PzJr7JbNT#RjOċ) M.}/ Tɨ(zc6"ixm|ϩˍ{-encFq&c5\|UF>9plf[L[j̈.d]  5\dQ@hS+ ֪2p":H\5+a d:` RJj:P FTiM+d}c(%B۲4[jFT.I4vL&>(|X 岱o}8z^o36`NKXQNTINcn\z2郣mBAIr@p.$ͬӦpn]I4q|ࣣ~LRd\.7 (ΆG5\N`#+v.4&2/R%~s]Ωt`_zj7ȅael.+Re?K@Kf{ ?ٱ%Il礖kR"wh5mӳ[AjjcɡkBDFa3]G'a8[\e9},lFRCxc |L>`i0IT'ՊEPzQ2Kd̯2&~mP!$ +(\k t2ʍ^A﫹ҝ6'$|:.gxpeFҼV$]Z'֓;i<2Sae3)U+ОZ߷ 5$_CA֚qwbhq|V6̸$W3i"8JG2 *{RI*POORM9txZ 0 抲դHTО]W"(vavFWBI; [&HTpt,>=fIo 5(4rwr5mh>kƌ -_^g>`츋;ptdp4\Gm6.=_l躾mj<L6]62Eșz"quƀkb0ox6 qi4r~=Nl>+'Keo6${`|Y,9h-j)QW"Zٻצc_JLɋ-CAftMÿc)# M>(ۑqYR];?7!6ui.F.J-"| јW$!ؐF+5%DxԾ(,ٿP_0G,u1ْMo70]γE[Wb|ڮTa 7r%44L6%ADwu5?S1﫜S9řSX!ʃt_W4Kq B(߱lZ/NXa~#~i!Lq$yhg3<%\/ʕADd' K|*UA@0|#sg8 3T#)}R&{&;Z;)$Kŭd@`  ܨhv5F87F޵h! xzߤ3ر7a2/@~Ejghv0bLRW1Ѻ; !q~u_ {m>g%j kƲ{u2vx՝ɶlM+9B;hاv ɶG8T?L=ZuN>Ov#yqڃ@&]f.5S$03$8BTCgoԦ:):Jn|鍆OOCQ*_G֨wVSb!|S'oC*Ϫ^RSr5jtC/mZ6v6b#L[LI-NIB*xURS68a9}jd򅜙GDY\ AawW'6+pgY\4Xdjb~ ܛz7ÄOΑkn bQ%h@~7-^3((Nva~ "Q ءQєt2pYu[l)Ӛ2ޖ Cw8e0P|z>ɑd+=l,/ϡGrU?a"*Empa<pkXBa8򰈸p"s!h.&W="Y P)|bnK:Dԛ̨ jHu;Wp.Q:a?Y&lC3QKW#Uu:<oVɼ`sݖUO:^ CQ3`U+fPik:`po{%_{u.bfW.)!z߼Z+oϴ^l #00 L5! BB<ƈw8nЬ(@Wƙ)R{7~-ܞoPf y[̍?+xC8'rqnQzJY8xA7 =~;0D/DE% [ @ˢ@g/DơmC3mdՓ욌_ԓ2J 9Un ^iY0}dB;R-^oɹgwkpnn: M.@bqsZڲW.CǯZS4Srlj+#,zk ;ɊsQ ^ᖈKpvq0O\PTQ%JX *XM֟6FEMUYKFon#+fg)8$U?Ӈ0" JĘ7[qp&9-Z\dTLR-aĊNy}}P`ouL"?eO :R^8iחQ1K13DC W\nL]_/[4hW`筰pUOk]5~gٴes @7ۛ?L'ɒk)ۇѺ?ifv 4~̾Ÿa qqCha bPE2V(mkW:ҏ\j;.=Ꮌw:` Ő1(Q  #PG6݋$LFvxDKkM&ORTxR$3Mk5e!y z9\Aݎ%C5ැHmU6v^{Rx .0R'BDnQeۿ'DTYہ|)|4КtXS3WxP6bgŢk]诇5= !Ӌ0(̵ WCǮ|Wi8%M_1u$+Mܔ#ɈI9Q{_ "HL5m廃`hLT4y:ɝFu%h<:3RFIԾNQ hC-yY%o5/i||M~$ѝ0Y<$n+)MF4=db)TGKwH$*^# +uYNJP!=3&ag/:8ҫ<8Ɲܸa|pr)?>IQCQ/U"'k[M,b׻ oF}pRkfuN_d'LTzTc<-Mӏ9"1GKtt!VзYY>A(yFD_EZ‰<㔏9Xٹ h <tdDؐ|kYW_n'9݈)nyOԑ%>(Rƚc;\62 `5Mr,l-MLp̭oi ,PI[G !\gaP{~&aPn& Suj9(h7.;sg,SA` NZK!UP1yŎӢL%^TrGӱ{Q`5ׅ嬞pٱ㪅{S_KtӿȆ &!jY)'d-!|԰=\mQn.qƔ>zI.}8˽wFTz@ y:9oL?E#KfXUI8<[vz2B-u|f4cDi#K/{zlBUqg)#ܥJ3C;q䤮MGB K{ cĔF~>HY_+S|ۋwu~tDŽ[SrHWPLeDUc!>m>v*T+zZiz}1/3K vJIk7EC>wȥ[B*yl$tjT$aw{x?m'nL.TS\z  Ք%> bn0w \^ΑEz4dgPbH]_*4XYYf1):5,O$9Y)3p!u5[4̪mS:DHC C $_46 R-]C:E`jqb %r4z"t x!]aTD`sga~H;[7ɔW鲄 XYL6'~"B$zC!Es҆)B؆y ՟6w(YϱpаS e=V"mсN qu\EZR9K f{?QQ1[Ik76eP iqR: = e}AN;n2ѹdw"Q=K/r1}Fs(mdA,.l !^g<&ioNV:kU&h[3)C#:XsXqRc8])`5,;jqN?#t/yQcU؀vE@W(d n,FŒ`{q,M5FگO(:+-R*Ud)#A’QAjeOxsފ*'}nc _6d̲ irD0sae#Lm @Kr>E1=#g>¾۲s(Mnko %0Y qҁ++6rZFG}w_n;~V9]jvN|뇁_xS$$t#WrCCa«7!yEtugTt i>: j+ee G P8Y+*McgKecR9 f>Jŕv"z#wdw#BȽ)C`^{hwp eMF#Z@u_n1SṉY m-,Oӏ>iI,,Q{ə f/VJ]nQ|*?Q]+a+ }L9»c֔c[Ώ=-h:]Fv7ʂF[;]zţ_Uyvox-Q LU5^3$`Eְu7{ԔߘMj+Rm>24 a+ "IތpARC-y)nO : @x4-ͬ͗dh1FZqT~,RU7`t62?$Ä0ܐ=6Tz`:[(hN?F pd9b ܤdOAoCF] BA8#Uwf; _^b0-Qa-ݭO_p8~*4hklPwqZkCk1Yqf)*X,3IP#t*m3, rJgiP ٍT߶F^L T;s)HT=6H:ὊG­fFGB{uznFCTzMR>ޔr{aÜk[i1k)}&.AV-# ՜pVgȣ f7ԋ@ u](Ўʻ/1O]l ^Lo8G{) e6W P lFЍ_8u ldL[р]` -Ê=d0͚yW"wAh, 2S'O%]'2;W)joN'_{DC3 .GNvtFweJdІʴnkw_ ?$ u?mf,T _ҥl/ C,M钛eByo+ 5+%RA(#Jڷ=4ʮ}zt-͉[q>\ù6iKk -:juAJoQk'~Α+#%!GU'ᄀ)ҝKc xOh|"WIUѤ 7KIK%T\)\4籺`,_@Ye|P|ի7PlMιsK/ւl{)-ۛ͡BűWF01=zn ٍDdHi9!l1z-N+K"{`s;6Uթ/4{T?wFxm >jr@G+%uJnq7)i'?|2M ryn:E`yzScpd|JFZ%am&ǭO>;Ӷ^:f9$onoJbFRJUW |-Z[mgϑɜ TG`qk_wko9!ҬyZP:)5G?-AX2 >X5](oARpnAcA˽-?TɁMsP]B5a0{qx1 Lt:*N#p}(uB;LqɓYξ7ƛa, Bν[:cscurk%! 6lU KTҩarDo^;&u Y^Vx >.O_,ҋuZ#V?prO[lj:s4yl,A2g?3 H6lߵA g>]YCC(qDGt!mϢxq_߲>(v {;{ȏXD%k%,碉33J vMnF' .G"aNHD4)D=\;Z!FQr'^P_$6B'<)KW/HvvV5mLIl\u5" ඡtk]*hal_6G܌2bB݂⟉g<8xI@C6b }^~>T?jNDYc,hx }F [МGlc Du՟El$Z%}_KfK${c CΦ3O "B{<'Tb0U_"Y+4~76(p@uf%*CUoGڗө9GFo}ڷOe1WWQ`>%EI\(k`-$bu&'1PQlRk5 ;~iJM-}GU"H8aD_Dm3Hn^*Sw 0(ǁ}GWD s &f.*nz FLBnƲ|O^~ƣIkڥwɖn$l[PtwT' :en8/W1!T"[NCd82`P]$> p~c8֪?<멤lҷM$SzB.Utvi2k׮dcom0Y_aJ|P!;bqp9SA={Àaf2;'V&A=@~ёf^jO;}W2 t/LJ4=}̽=|kf:;bš*6ArhQhWK2<(ӈ.–峮z_ka691 pO+量:Mȓdǰ4Y}GQc_ /ՄWxI @ͯi 9>\ҶwG<0ޜ%_ -MƆhB\pKL=(wOAk,tې;aK|g5kn8c=~"Q{l%HoC<|Xo.#@Kp@ƍf<V+f7x@_RxlZ&_(CǾ5\!̲6 AT[0>nn:;LT`yBG+Q+7Q=3gW=8 /'vYer/(|9邒XW&If$ V eoW8hIn)'$vмaJV$, 1ټi 󑩉>GI=P8IX)|1vDvȑPR0RO#vGtsL&*Fܒ>CSN84{_rd~5qʫ~CKx[c 0ܪT6BPr{)uJGc]k\c|8K$ԗp_*ы5`@iv &6SrUބǤdu:KcrZ .7 MAO٪=u4_. ԑ$5|>6oԔ&$xEߧCfh K`iSW,'oEkIIS97}Z;&^fJ7pBB)B'c_ JqO4CЎ=-tKd\\~7MX+"B4eB& Q\'r a*/E4R:Gd8>%} S(h<Li>GhZR-ߘ)+EKX^ٸdE-j;\J\ą~lRPsxI] \g<- IcY5QZc ūDOC!8i2TVUsEapqwh5Ī`.TW0s.՗1T|ǵ&H[۟n\NS6i͘Ɛ!@ pqLjq<+XKk/,I JG䇩w,:r?:@h i0bKMa+D&ާ7MݛҒ<I1빺T7p5}{Ӏ]Qn*_{} @`~9ggzqZ<{k\څtiM(^`TGثu `u3O3=cG7'իZD3<cx|Aw[ ]-HZ%l-H TWÇUO!o[RrLU-/|1 % Z]Fn4tRNt^l _( ,ԡ7uizvW6WIr@+vEH:>ixOVqF|PF'!M"di*6)L=) FlO.UlrGvϻ,9К7 OsI-g}.Y)\%6!@rSݓ][`Q-;pF)=C@;|8 X]{. #EF߼jϴ! $vNio#xiQv&` b JvmuMVګ&@FpYܔF|65` L\7Q{/k[;a @7g*Yk bKc4Tp]ğ]Sn3ts#)2ǭ1WHVW#"܏ȫ`RD'%7Kbα3JZ,(պ-c,(l^*Ԛc~5rfl+ԫ#퍚q 0ө}Q`PF$bA U31R%6c~Pm>$CFCp™:i9EbpnD|$x((SM-@NWKܰL xʚ=64Z^ pIŨ*7䣝4顣w?Px);"l<CFl[WyT6&Mީ]+}0z@fu-}( EL%.Y-Vg}G7|O(ӚJɱA7rrچ,.R W6vsMJfG.oVNu9acUD5*L_Έh_T _3`Jqq i)F6T<ȗ|5|b3_R1D4&NS,U /ϟi I*¦.Ut~A''XByՠr&ͽ GfxD(4y͟?m}QV'-o}.*J4kk*Pd(XIΒ?Kzv\/Q?!&\ _ k5&mcWA q .I@b[Xlw=M0m(Y:hug2\؛!r񷛮y]HD*(YFUχDA7kMD !RqhAw*fC_i gԤ0t%!;i[o0.%NCYk )sEW/BZ^v%KTiw:y#{OpV_ߔDי:=; &O{2ֵ\ŀ]E}N|80ß wRS2{V~CW(-$Rz.ea @ty3[-jS;%ͳAxEOYbt3פLjjFwʒ&T:"9Dza ClYW Խ2 Ea!ۅk/V~4?^^D*ZH1Muq5 ﳚAUtKCVL '@sr6 W+_P:0'5wۘr:0蝣 л%"x/bѐ`xon|ЏT!`dKwD`:<ɋ۽3G C7ܚTUl?\ٿO{0v=D`<֫"*KtwYh*P` K'f\{b; c}GC:H#ŅP&S:l53pWdeوI6^ja{ 22cE/ W(v* #HRd;Bz"#Ǝv,R&#gj{bȥ4>oHeG5\oN,d"M=$ 0[c} Λ]\ j( ;Riwް 1K"JߌwBKp!~Vݭ>|,8 b5 ˱{$ f߄3Dt Ѥ˝uVSSQ P%B4uŇ-qEX|\9}8PHs_~HM."lm5j`)䩂GUT:Nc45g9t+CҞc4zc|K= jd'Y 56C^)}O&QVR}3zg fqJf1)]dl[Ϊ.C{90zOQ8 9!oto f3oO+"Fp]k+=u1uks3 -p2sTCR)K:5La(u4jt eՄ3uX0Ua}!F"zQdoJ9iz O"{T]U輂ܦa+<'yC RFeޯv4cTp5XիU= 2a1a]-D!1$4d5ЏY΃/vbRGxx F ;0{3XT1)Jl<U̞l[PCճQ^lsa.b ^Mz?1 O=TΫ98t\9x;9RO&l* L &(Qo ]}LF7u[DH9]A3TDi YUWs/g>+CD؂D↩҄CwDed?zZWRRmJ㉚b9U+ژ/8m~X?ȵ;K7N"*:[|KcR$j!ld /v{j-o5B 1mBt,QMG|5mVe.',@)as^=jSl`}RR=hgKI#طn7DxjŲc^z|<0+?6|5yDB4 W oݡ%.R +'dD}z[xZB3*6O. 2UBXc\߀"=ioj;EDž)k.up-Õ#Ha;a1H=o)8gh_+k=*%stuMcN`cԦ;MNYyc p/F33X@3%MqV;pc]q'j[MIT@Lhd_YkbPkwN=P$S9iq,TFGi፶wƦCU“jtǺVHwG M^ZnZQ9ٮ;&.O"̭fw}xa%s`Fѩ䠪KqN"KWA2tG蹼,ޚFIˀQ @"c%=1 Rʙ3_^c&^KlB +q^F*q(.mdoC+'63A~-4Ppa 9X g$P`(ܓ}:YjR<[A(cz+!ۑ+؝pOy°w;OlI;D{ mIb'ҲEY!fSȊ"[ SzMKjZ'LFpAvO"biUgGwΩHkl5?w5&Ze߃[}Xf%~+eAYًOeT!Q?y͚1#"ٛF;X?sņिU&UѤB|3V=Aez[z.HfūZo/-P3hLub^x=S? А&ÂȌIƄJPO`s{RvR,_VS>$M](U=֓dlupJ7; ؓM+C_NWRap^ ء3۶ք_jl [3l P1F`jSWƠ2ŢC}>lH"x\^~%ɲgnG l` *򇑹2q?`C` mc[;v3U֡r+-G1m&!̃CƩU,E$!AuΑr@_׿9d0| T+pܤ^np ߊBSH(cuX6SyZ?flo9|+opyp( ^0β *ԣn|o-冩=:"Ό~hΡ⍂RR~Gt|6kHu3uYVmBṰliнK~ g';$_}n$ii? V(fYf\ݴ+_o $!`8.F|F/>͖:ɺ!FGQ'QOL'hB3P}naYC2.ZܾMk>Bޮ2=欞9/lVE7-a:85wE&/'imזYֻ l/Eww?Hel)r*[e̲&Slo´}'T,el#ݣQ >G՞q oKxK݃pm)5@NsI+ C:D!W3S/e ⶖ&eiD/;I%mnꩼSΟLnzit N~fK]y"HpPԲ -Ƹ1w#}6ba?dzJ#$뭈i::ۿϑ.Ĕ"ѫN |dZH⧔g2⫹պ}Oto]r "s%3*unM)b`i$UH0?vH>u·s _y|tZxRJH*dLiփ1r4ѷ | a%qBHe|V4=Oͬ{5a&ņ[ f\e6||jG22g7V ^ǍN#?X!Kf[DJg8ɩN쳴'rXſ>~I}]"V'3s=@ 0iԣ.&8 /^w/HXpA1ec}<{9saj /bV$&4WHiڒu'avӗ&[b+7cC)MțfkΕ} T?g.686֘Xy`Q"L$ \CnNgfPɑ|dJ,Q z~Y U8V:bh֑$0KhlXghcq,{FjU jIf4߈_m1)MmS÷QzzXzgx,/>5Q&<G^`ꚇ-$l$dcl>|||i²M߿fdTq{r@U E^嚝;p.k&l>_3A_LoR֎Bg[2I&roV>+OENGj^nLìIM^' |>c>B;'pB&@ҐjP_!I0wӳj3p;NZC,݄p)xr xPp֙DVb\KieŋDY-wM,S4IԻ Ύָ 0g!lf-D˔ڢiM_S-ۉ O֓/*/כ4W9l3k2=_/T ~n0xZt/岰t4E#)Wj`wsɶK& WO%GmΞz|ҤqAϝlK P= G'8cciIQ%xOKjD2'i#2&T')\9& E~'%T{X]T)^ 0zG٫44=$V<!,+&:6 3'Od>$ߐ@(aYYNrW8)ٮQrǷ[ՎY;`4`]x:CmxS}8U::mKVE'/&; Op;I,u{fpDAk@5+q? ?PNc`ԽO ~lB},?-D9QިRkl> ű0fJ 6ЪE/oiAv04p~ +Ũ#a!.kWW/$g:$eZ3.X \ &TopD V[:S'ZM]Ăuawu׷'ͮ?P@륽8?Tud?X;pj߻٣ܨc3~#+etKm!=.Ց@?o3ά5㻤~@oO,=LP.à_GWP7=3\"5ܯK']Z ^N89LbS5\1\;d̂n# /y}"";;FXJFr}O3C}?Ya&vnn%U"Z'nlv؍D;THbg{m ] 8^ ~ Lk/vU_ i;&WXڛ$>#_תm1^ >@6C;;`gy޵J%A`gD32V2di7 #nK\f}m,NhG؊^_a6pWʃˮK(ha9P7 hWD(E&Qc{Jغ]ڣ6 4 B0Cmje"⧌ .2yS?fP 4B}g$z),0bIVna!q5΢Ea)z ԙq>>zK6nC`I5]"o s{|I+zLdið'2 ЄfF-CH`VNEi');nR7:4vx%S#f]epe?ov.6iҰ-@$ 6A خ4<|{e9* uOb8<:=RcTQ Suj6uyYXɶͺ7 g=Ƀ;b7x|V`dS߄)ҏ=`wº5U;1NpdĪ> ;$prZ X&_sZS/$eek;ps 'O)O脤h(& k,"='j%®tZƥN`EX)ܰ0rmT*+x0<xAxD MX7Dh idžJ gipWz:CNasA`w&cei" 6mNͤ9]],EH#M xQoL$ղy ȶnh} h:Ϥ*P#xX;~u$uDqSM/LayI}9Qg#iVh*hN *ANY֢2a}4eY(* w_ox0XC fx/ڴ `jDmoC2TzMRG(YVz: {jds`@wﵦFR섕0 - 0aS'/x>m:^9S.yI0SY`F<*LeTKf$`bhy S}-$<3޽@j|39pm*:Q tx1xn]"GH{!B&Y<~`#w!lԀ'J` ;cv!$wx $G*Fn2}8h|?/!wIUKM6~nc/5dn׿CD#kILHPDG LYP=q͞[~A(PWFnýԮhGp 6Xx K tAʼN+/yi*̑Č@!z.9RvgLx`CX! ^UI˳IɈi#zKMH UӚ@_ju28q(Zz$fՄl-?cEh Nb=?3*Ok@ϙjTAVRɴy2:Ql|bYR,!wg(̻:~B"ϳK&iUol8\ Y! .ۦ:' ٶ;#@"Dn[,2[埴dd)?&'~ IE,k~6Z?#2}W/B%SX\]5pڐmy/Jtg[LVBfcy'rCE(o,dn㮚 1| R]ޮQܙ4:N@;6>'И[ڗPTyѴFg2'y|ȁ b6rvrnr&s)1F0Z=13ZŦCY#.DJrۧe8ɽWñ!OȮƫ]f1 <.R"yTy83.巃_yէӇ:fɎpRCn]|;$\$X&o#t!3 TxRY}8kCqm~'DBp6@NHuAZ+v2u`&,bXz&V;BpO85H}ICyw3 KFN6*+qϰ|D(v&vM jFQ3񥪲*SR9@ $@`@Px/N_h5USeY˘$rY"Jv@aop)q|֕[dABxMyJr R뾚||n_o0x{߷G <99Vg[5֭p BcA/ ~f "VfCyVM c31.D%[eXB*Wh_]?zNwh[ ÌoO(ΟT uUk4=\jH^">81>{h@z! i^iJ/'ÜUߴquE}4pbŨ1a7TJE}[FBL p[K?B =h7@< 2r.I>A598/dȿ&4sԕ)4PpA.qIxVȻ̳N$+cY*7 LoUhmRП)Gxnjw %ɖd[)K攌E&<E r<$co#o9Y;K^?t&uq,3e4n ^H_W}TӥR̾D8pnv\qƛC;AIg;"7 =NBI/%풟ػw=/t"W3Uy n ,O$SȼT_AkT?L(Y(0jc 쉭Ǔ$P!z؃:% e1O欑E McOSf׶wgʚ%.m-S {`+OUv2)xsMizܽPAyj8KSq]ru!p) +b*s_C{MǺFGh\BU=uvStJjѮuBĺ٥Ja J=Ƒb(TX$ׂF^+uOQ9+Նa82BmLsy8e ih40;qΖ5y5u+[TU(WG5M7DQnf2D쫤O`=}%n~w [DDg.{ kS}DO|A6n9cnU2eL zh1lJ$$Yn%*Iq|n&t2 O5+g>Wq>N^qL&iщ7@55||X @ lB$ܕiC#%^4eclM 4vuFK쓺~Z -gS?fYJ!.܏*'^_O!},Zg_Ihylp,`jxm:xPB6d;;H}FȵT9'>D)B–M+uyZhhx$ӄ_yWs.~׸(0g$d)ejT^6s&X)9J`_2)0,@HyO$ڢ]x&nŎQXlsTD4$BT7YV 9s"C dA#E3R8Wf:;+p sV+\O#ag@9 Q.GMc=k4gSL!>mU:o-#rN FGAQ6 kUoe# ֺ8qsaS ^8;qǧ$- tw5}(bD+&dWܟ遗Wݐ3{g4[[GB*TyT+q:; a7*aa{/Uqכތ úK`ҨW(Kbí>nm",>Wm1@N(q

5[7)֘r[2eI1rLc>= RnUylnŴ'x aScu)] )rkw7C0vRrUOQa)3'0vjW8{mwsn zF:?s(=;MPt,-U+Mc0WEy26 TfsƻQ u227D„ C&Mk#iOZB#CR9r;?îWLyYI>Q!8t]{&t7^˰͉ i7F}ӣg|J1HK""Sñ )z+^ʬl])WjGQJsF`l"WyԕD phiRVU.D8BĺB Uf}[\{b"0&R/Jg"i]n'vU|3 *&@S0jr,>Oڶrgh ⸞{U:G$_ _1Frg硙.sI~7|A$s=bK i'/6F¸t*kiNx%i7#")"۔v7|Nugtf7ݳj6ݤM:˄wP?eV29[d l]K(I1WIU Yp{KS[QA<.p{cѭ''`ՅwI:ڪr~3![}n.Q_)`xd%Z Tܹ+j;ח?9Z_VdwHͰ{_֓6=eU@ G:ܸ؂CաR9Jtz?Mk,)O-~ @TЪ odN! $4 .1,=~'cEv(!x6H3X8~M!ڡ?e,}r#M.ttj\L^ObXڀ/V Izn~/gi~+q=cJ+xo$m\BF8v(q~ڸ2BN3SHΓB>VÄLim]á8fOx*M,8J-U;% )(ϗk Mp:NxZ];\(BV!WrX,V|39MOBn7d^٩-2 +tOguX.KtR I忁)y$ 8hAg Y{8-mEL]K`)Tr(Bn 3-g/KƖLMg+3j'/_M0.՜Tp ԯ`$2[1~׫gp}( ڥO RS'y9|B!y{6z\yk'6ԆuGL: A =(|΂ޖo ^,i:5 ʫHE{"'@ՂbF *_J, @ HEOoLOkԳ졂;]V0(g5zΨ&-]~e 1%3.@` S ! SѶIE7ˎشØߟ{QfIۇIVQ>rˁTӗHR,#/J/b0Axt5Ypv#yAh+P^oCQ]Z%T<ԉcd̙;n]Aُ-@/u!G <+?C>PRB1[ti KpT)>`ܕ"lg]'K 5.6;qys\rdwur.o|E7l?X6U$ҜKM X\w2]C `=Zh5PT ٞFȵA''#9ϐ9"4lҳ|Ώ@X2-1ِ́"тe{KYu@nj@=}КNrЌ2J?k"JF>#Cuel݌uV lbrݜ%⠽gz~řb+ 'xlbPxˆ?`ڲڠݷpB$Ӛך.1ˣM%@5(64*q=+9w(,qS\f'mK P3It1 uЊL؍řZAo%Ƙp6 ~@l~3i%Nh%Ikt|JF;KWoퟲC@&dlM}d LMfSTblj|pawdىX<ї#Jw:.6"jDl>=ofF(K. n JuOmӚʼ:e!K[γ -|*2/4*#.mƽ Lg(J8fC>om|t3H%B=b)X[ҙVDOϜ&F096$ M& *jaJiK{@4a@*EE7i`zSh5<Ql~ZȹlPJaօo|՞m)xE(mQ`+I:𜲞ϙ'{&z(:桡^ `@:f)*h}ډۊRA΍!J4S"o0WWp.9ZV`6klbiഠ܋ER`c-}{6kjhDW # BAUslr=ShxB|PS=vγ>dr M ,1.o[\>jDݽr|qz붱ב@uV(́ficF9b&UzCèKSV,r ) p8m\"bK=JOT(\T=1'`a+q`= 8!qX/.j:^;?9 JƒsryJ/ ?5n4 b z4th_ַ7krrO'7^`lOmI!1#Y# *׵Ds?ڐ<|4 zkvZ(vn 58|.zhTH:($ua.jR'@)Ɇ,X4;RcT8|{ZQuRKrZDH\\\ cb\qIښ<Ǫ飥i轌0 fvf Y?mE!)-Q0;I~& biruD/hLրR'~06ݷH/8X×sob$^[^旓;|owJV|OЩ4YRX)/^!)o*5a˖d$u/j\M+u҆ G)cNӣ<E 4axwa4X UzrmV{fKhᔩw / Ox)D8!e3>ȾQdglωDd54Qٛvm2\7Q&Ҡ9:Ӽr\u}[?У-7e;RdĈmc,]-Wn|qx=oޱW'R榍[3:'iZ,V řLGD)JOfcU;*N}xI}߂3,ȗbfcv(_O?zlw?w࣢R[_T+P]-D\hKqTQ+ǣ'Ʉ4쭍K 諔*i7S&Yy_!}u] :Y.@4Oh \bFAvDwp-ЁhjG0Q2MYqGi1#- U>hע /rG+luH:[ ݶڌ.٠`VU vv$ SBhD.`%0X$"<`;T\9ȜCW,d<{q^ bLid)Z:}D5\R0q^f"KAz}[-bm Ϛ^پ)Ima9u{F?QX} s(dkϢ يEΆԾ%݀4y-zj0egOD2Nˣ`Ӈe)| -a(mAcб & J7 jƒMr+{pu,awWbmTCė'ڂ/wb؜r5%/TIkDYvtؓ,`!)E ^l57?y]D4h]=`n4YAY+,`~oJ́+U_w饚?߶;ηmZ4EFE|r))k ´3mi(;=@+qd WFRSvv4b?_bK/˖d2Lqʟ#')zu${_y$i:EXvI]Y[ap0Z)Y⸱JK!fs D(r$U†q/S{2uƍ(WufcUVRvա(ھsU@yM>}m3۽70{bˬBrA1.!C"nnS#]fBXʰpjREہ_!#q5C2ӃvJ]oM~d@"o![5YUlψ|4r0= ȡ NOy9siV`8_ X<1ʹnMU:H7F(.Q*cy'FNY3Kp?'0"qṶ.(?TxlS,sewzgj'oY2@LϖV|&2>f/e3?LG`#L)5\ ܲ>Sbw3gP%"Zp刼Cp,D_tfeBɼ`xXg&QPG&MgR"w힛W0bG OUP @Ca!vfB4lPZ< n-\Tf}>U㞌lmrc;MkCP*!}TΝ|ķ6;lrGV.#xkC,zq ٱ>c%Dfd;[Y AUw#ZItrflXO7MkD=5f[k#Ӆvw& F9|(][ZSn&ulC:  ]T]> HKFЖ'"*H%!A!ȦC>e=~ӤD|Q,+;=蝃s-m<(\TyJ.Ǿ$D+Hoi !a0(vԮ>3 *(VyryJݪro"FZO̥)vb{IP/߉?`ۀtzXm4"iQ)#9nxS\O(H$EDcZ$VNnQ(~طTMSc\S2B XXTDOV]FJ-T`SqYaiV?i꾟]ODȡVXP.D!(bSqW?F|{3)sC07OlbG"C 5,fĎٯy>{,\oӶw$8FKؑgX"\ BUqO)X֝`æX!Bz/K"SDKg g Y ~`nu * ΦՓ-%5*=BvqKTÖn .@4K=YHnٖ%EkP}q܅3Jkh 31A|⾴o|)QiǙ&srW 䭌JNLAtY.-0g}#A<,m>Vf[zI03?|#I)$.D#:Qԟγw =CSHM/)69Piゅ|V^[e@s+&|#HOBᦀ" m4YH&Eoû1k\t}"I~ e'ҐF?+V :gMDjf&Bn!O_/wBgĚ W@ *<͘ p|гaוujӺ_r(FS2*{}|[AU~h~Uв~b$$D^GdHi",T zaOÕ#8;O'@޴ L810)`N0pfiѵ@z!w hvCz]GA ׹MāvoD͉ i :. W@ԁΑs|W.$w*r|jd̘9(C_7t6JreSa|n!sTXJa?Q5Zj2 &~`h6+w8\uf -r(4 døZVlS*piPrs{ w95Q?IBٜ|F9ȖA(KGR@Ұ.!Z9pT5;mUJ%Tr~S3IvuL.P'CJk܅q8O1puvz!ByA:WNxB,{J~uz8Tw)+KMrb.Ĭ}$]QҾ:ylA$tfbpHI~ ˅]CGFO#m&#k1/?Оօ؁H!`7@+n^[ӉO:jȊ&kgrAs/?ׁKp;3DZrh60>ELIZ$B(BmRmUd1FюGpBX]I|:wYxP_z~x8\pI,w l:8_؎ Ap7?%9esXRupQ=>ksѤ[4)*L5NŰ{y&5 i;OP='mL3ṙ; ] MÊNAPIf59O@.".=Rt|5C?pҨCAJݒ>>E;B>mbX }?/kz 7PE!g!flLhxkGP^#wH)7IS/bLdG}j'IT/Ԙ:i6WI2Q=NIϣ͡ӂ;Qn b+)A_jd24'rr[@mH 'K0z]>p^F_ܛ !׵ z؎/rUތǟYtYnfiMeLK#xx) ~u3B=˛*A<@SPoí|#1g ed{r$ՉhLX'Ս j)g㓻u2uުH"8LZ,G#2uܐad净+FF"( tHcx^##:@YXBL n;5HQ,_J<<(FNУȵbG:qȴBϧ&q _4c~@ͽ."& lEh5ϲxWR;ˁbӞ7 …v *B&4mIa1_/+G~%q¸5|3-K0ě͕̋ GEϽd Ic"/N|H" rgBpԌ,pTsW~#ɀw:F5K fi6yc-Y~r@"`8UxW.T)$E|GI8(*2\=W_(au(jf'h2۷"a):{1|6!Cç#O⃰]t^ԧ7@n5QnP,Ѕ(85|R&i`]RW{ɷ>S%o( ;u퀕v=.lL5'p-W㘃)o JFo(2wojDM_;erK'EI+1Of@VbF} AQh?ʼPW#7o˫=b]lcK;|PfSb\@#8  5lcX2XQCKAZEn ¶!6$EΖzaKdB'VH{x| ҫh8q.mi5wgh \?=~9| '!M;ʏRlK ̃E+2Kyr.|ҕs h#/'V;)b `T!dmԢԱȇ -WᵽnBJŸx%:=:_ 7?d3"m1=+K!jgY91SQdDS #l36&_R:j$GURS0"Ms6DȴYF/E{MBm:Jx='.Kphl _?d[AbWY/v%OP.Tyd Q\RIu{Z? ͊nOIRPDǒ[.tL,Ux/TcSekwi 9A=0o 1n͆֒MF(y7h ejF*>䬮~?c9O3 )%BH_Xf@B[N !nx pS]I[rPH_3t+bp \ ?!\>9 {0G˹0Ic#UpxQZ:1\})٢Y9ńVs$dΏÃ`r._2h柁I5nciLŚ,J;Bbl%$4O<9P8zHږ?(Rj/ۮGRЕb4R} ydy9(ni(JHx:̖5}oVsoƌ]Ŋ@)MF"=VWb:X| (n^ 99%ot!g]}`VuĦI-Jm&W_4@LPikj@=]]#|w4k4}G)K= F`DdcP)R0ɴdQgβ]K BVhk'5fS1 m@:{x|0CH1y"Ą>ߍs܎gFO4{.k~?ew%lC V4k7 _L|zp)|c%,=} l㓏I7+$!5MA?njKJ\ٛjFۄC=سRkϲ; ϳ}0r*zR1ٲ=[Ae O9gp+FdyTAMH'Y: S9-G-4kRzeCy%9l1og)tE3S Hm}hYNF-V2HA848'2y0-B2h(Vk/C㱘˧]1 >5+RYt~ zܸz@Ž UnuGV(y@SSkW4Ɂs*G+'"sF%?m}a1ym]$2m!um+;R"v:S7 ݨqH(&\;SҨ*[ Nqz3xhX0OcP)xmFCn9PR82;nc! g6UsGlD1o+ ս>]KLVv{iPe4)\r]C{`bМg.EP5-Yb,\*^~+9>[. 3biW}h}6u<+:EWl[*7~.|ΈWd@*GvXi?#? t-3Sۈ4׾17 9cA¿Do.P_^S:twtd+:fƶ-.kqGm$I<}O9ԄҴ9:rQ +7*f`Ё9PjGL}`:cY#S0͊%dRJ9򧴛6<5}('jQ;aH|v 3$.wQKڛ431b4'U8>.h ;?g?}qW7FfdPVp@A?% ,V=H` 9a[ Y͝fJ;%o CQ{A]h&GUFXZHiq]W$Nm}_C j@D2.Ɩ/#O>bА/DA+8kT0O&n_1ʍ%i 'U'cnط.yX"vl0c;:01S v眪-BxRG@f%2y4djx;, "?TGQFno.1NT֝!4-M9ȴ(i{:7?<ޏ]:ܜna L3D RX]r+|B :?^ڡ#,x֏J(°s?vIa-41xiY륞'ń$n˷OBN6xu`F{_Pkt́ A#V=*d{0,x j-wEء[ n41<UfKUj*BLY6L* h16[,ahh/L4#;#,wIJ=xccƈ|,rz̃nT{^\|)?HWvr37F7促q,jI4ꂍZ+˖-mn-26܏u>"\&/lRADILLgmVLaSGޔ-%~fmc}Q`@dɃ9qv) ڒw_CL2!ba8!"z!hW~OY K]̳kIw_Eⱁ,Oz_6)VH rheO+y3q0я%_DBe! gp6.nУ[6r~z\#`TneQoT5O`Y\q@it&?2-_jnJay6 󫁱b#CDUbH|3UU1:I'1ڶ-)/|aC#yB3&Ibc^{klOΎuWrs0U6N2UNNB {B>F2+v>ur$w _T]@ KU4mI[0w$bEE1+< KN_"\:ftG ngq"81bVl'#cSB[(/?0 4Ff5r=PSb.DG&xvJJ}5Nu{&zFMbGdrP{5:*Жx vUX9-x{0p xV%ċyQI\+ҐUK5X 8}ׁidWoF5N o OHq}r.+0aFɡA!,y&-:*/=ka%:̟FA k*Skws$`&j\,O viA4PdTȚTZIdLpvzjkn8ݱ K[kp*mӴNsLp}^Z~]]ȦrjE6[ qo O'y Cجaߌ\ㅾt.z{1&~| UQL@,DѢ%RsJ=bq;bLT,Okw~.$e#c٣2$R 0Kxo"< )ύ;a/^Z՗BqhCZ;IϘ}KKKKv9!,\%ݧ"Nl<Md>KJDکsG) dBVӴX\g,oT9O[okp_2RdaukW݋){}mt#X5 P Cvm8NOE7$x5IHvWs~֙:NӐHʨ=1Z6=IH4(rn.LzjmiNW'K3;̬Jj l Sx=[anCo)}sAx6(.[B5k\ɇ6Sܙ/.I17 dpD/446AW=HWAJ4݃w'}S[zWtE?QhJo]=v߷wL#SUVmUDFx]/'7_?=@O,9#$6Si~G8S7ڣ["k4#@S&& ?NK V5RCQՠg+|`[sT̬ ip)~#RY0:>T');s7K7"r3i6i&ƛϮ?#i6LEd6s"Rqn?z=qF,94aƅNjOiќ.A*dOz%l>հ|}KOeP5* wF5?b+t=%<߲trhKohMW8i)^M*8v1{A6ݗ3P0X=Cbw~EΥ׻=%?<, $V M^>AxO|Ž߲/5wY.5Bh&pTNF#Z5}8)NwfokҲL@ b%aƿ-L!:C;.YH8=9C5nb5TNgoDdFjf ^t$ViZ*O0Q~ɬ ϗYvp>L3_Pݻ3 cи?.gک^Bj+H9Nr{UgI>}k¤>`ԃǘ-2S%`Cc4J[' ^yOQe(cĸBGymuRByKW!Uc;31tIBs QM./,`z8ˉuiz=/Ut,ӤWoVHF fi,lSWŔ@rmMҲ74ɚ  cƎ}b9t&>a~{]IUCr8DՄ>zstZ*JgwxR&%>=KF6`" ygnrMhv>Sj#Ƞu \}<^GEN1Ōz L`8žqeH*5/Ao{]L8iF^rs|ԮWM5@J.ԙe0p}Z6!=,kzhczCaw{Ԟ(Yveo-a42Y*N<,M>]M9y58t+(*xc ؄ڂ'{M.;@8(}'XN=2F,F`f_2tY$ƌ LRk?RpAb|tzy{B5[JX.Fl[#匀E>CP2q##i̞.um5o4JsyGR;g'bKO%B2=R }5O;ER*V)Gg5[zf}0+a _)O d2d:U Յ<6%*.cv) 7aZ߅T.xpdsu3To"%S]p"hڷEصߋ" 1] g3},|yNWß~Y` E}=gEO=(a7Qy_QOk2(a 8.Njf04at}<Ž"ߓK#XS9`WMXc 6{No Y{FqxJWL?~tkP  ù=@k9V+c0Cf'/6 ;5̕.(,Vl"^DsXX3*ab0W Z?iXHi6} 4t;X@Ț翹NS4֘C( V%lfI"ke6N+qtCBmT'0!3?hRkؿ,[I3fI /t-c̖jfa?]8J <p2[8@9=@_ܳ5Lh%~W}{mqpg|3yZ g^!ҿIIUֽ:KhIN;NS7[J4A =҅c=$-&JJM(!y*3GuR]LsOyZWA1|/[zAeɧQ6ס.*IHt9.HCґ4´-1PͷQ Cռ(3ma@IpzZ$/q$9f^p?tDxR ezTmL'ζHwr6NϷRs:MPXEn 6,֫תi&3C8O*Hg]E@Ш6Q;FyETisHBjW8ˆ@HO)k>Ҳp协GZ#^5ASd2'|2y󘽢vγTh^$&[>\CGF7~ʅo@5wph݁^1mөZ&1 Bx(˦+vbr ^ɿ0A2p95X.XOݶ# *^vaq@xri2 Hu=GV@-&YWV"W 8{ Jk\cն0r${ @Ny:3ƲDydHfKٍ@+HvE I竌,?UTh :=MM\sl6X$Хh N4Ğ?z^9;gxȱ|Z %\\a}[O;~l].pb!J>{|FTG):ӌovBqR+hY?xrxNO|" 0J372ݲthr˦K4Gt7>,hԴDQN1֨)ύtl')EAП7 nÚ2]QDuN; *\!} w>cɝ(.CQ,B&F/ˣwA0n4 _wŒm>:Ԍ/aȁC^Bp4 9d>r`\ { W~`pΤg~PR2 BI0UWL 0kFE[7dd{V&hCBNeQ6} *hf$kk1Kn3JO ?C5Lz}=`Mj˰צ2 =pǧ=R)edyJ$.Hךw̍x ޫj>]'ī[s oy(Zw8Uꙻ(kv+pP@*DoѨ=}P)<-/'yS}' JM-M/+v+6c/ }6${7iSum& JrJ1[y (^m KOwLN-U!X֪}9mZy!U l16 ,(黉```;6i=1+7߫!&@ȍ3E暃OhE^dIte6]|?mF(V5T<&^$7mV'$Q)J|>kYpJb$,J#sC-YBj˛}ǾMFet\َF+;5,jzOg;Ucr澟T#m]{Dj *|ъDD̘>c/c q1ȕ m 'lIiJ_Pcט?h5I&i-n)ܿ}|"ZMWrjYun^0l:`ns} tdկM}CS̑ތ~]xE_i'OpR2ɶO  H-狼jq<;GZ l)j&l:q?$@txZ`'ϙSl)*wB;I^Qh/xv~p_)}N+hM";umJEx Vt:bz &xkRlʔkdf-sbs^M" G!i>L:<5ȉj=dOF=\~EGAX$[ wZl!Cm PJ '.mfNK~1O45*+7Co4>qPCxPd[< M E~aNzі.CyD\4KOBQd+S 9 AC1 wV0+Ć)/6M0: rW>V)t`7ന3 :;XVSڔ3îI=/V@9e_d% 2._Q'\=Chn`L^PXJιZ5iCnlLެdi\dT81LK4gӘˮFh&JYz/qpp6!*ۂJVt.<6ep8" ;:`4=2$,)vl.%GĠU7`5HTeN^7k3}:ԶsOS0#\P3# K`fz*) ?G 5ٙWЊՆ_w0XJ_}Fr{M%y,9ޅx_yx€i:ɫ{Tˣ n~5 BLRRYS/.T%'kbXRzBr౷= WIl7-|G^ W }呹 @3nьOq$Mb=F)ކܘzLs×{,>4<t돮_bnDv`4>gIMuXXFd/2K6hjAiZz>AcXt+A| "pЃU>Gh#f;0 8MN c "QYbƩa5?]ߛD =;h؍jB1T7[y-|0pU<= ߛ}m,Fm2)3E'En^`#CԺaO%?RnEXJclBY!$V8U#ʍF$L~tF@ Ji`NN :~wHAO[+M76 k9[\־|3Z+Je"!r1b糼5x9(DWe4 .}iM TY?$\qy5?}[ @(aC'6ẽ; ۥnJ[bH,ut݄em6eǚv_^OkA2n);uOH5{91Gt *l39X>W"[joč .ym .tvf@4n*s^wG'dfDZ{` ! Aq:Rdbg%IÞe܀VٲEOhH G̈A_2ql3$o-},6ᑩ00SN[Tb4s+p8G}ͺblSwBYjt t+ G'm+A.8fܢ86gTgh W\8[vro+rpcuN }n}wW9+ WuNN8i;{oS G_x8[tX"0׾X +dts~)xvm߻ #*\1+E8u&T\hE&kINȏQkP,9;[crTrE]J G+"߰{F( '6vEEhQm\mygU_涺TAŠ kM +'w01@db9>겳*Y/M9|ADHjE D –l )j+($0|aY?)1oOH,bz?i ;sNٍyhRwc0hVy$^KCL[r eB'"ܡBOdx:yvpt=&=ӳD/vk壤\S#~e\u9j9DR( 1Z}vi e n\ wXyB~\JXăK1-.aȤ)~¤`D u3D1(.φ!)(CI@N$U$n"5&W * ,m%d6g[M:Jq#![y #D_JM?( w7T~ q&)]0rxs o/]$Ή⒛eg:pTE)$_<;W!J̸%p[Z,63jo =-&zN[v.?Oڀ&=be' ̷k4yzrrh()rXY_ݪ-XOB? 0hRx@);(Hu1Z6I:[cGKN_ nUDhBE"Q-%}q%[;#K 6 .XHg[Ax|zwQBg6;s y8'R/ ~vYe&e-gDJc#2]j*ez8| xF-ؔ{jL!OJ|]x 4-`" \e:/C6/f=}jT_Jcjq^:H`FE~=g[Ejfxp eVcsA鴬ԉ<+*f}(\}"wv6iFt.~) mЂ8 t^+ լ[Iٷr#tL!**,R 4%23Mf!:Y=Si3R-h2AٜH* A}FN(X|{E#Lw:<MWsg[6㿇AX﨔Ώb+pY#32AuN7OAƝweR5щhU $ն*^bmv}q@T_+0HuL!)DavQGbx:}$ж;yoEL4 (QNj:g y7? \˂ePg% q5a_A6_Q'=Dc4FHM80oO`>@C^(*Yt"B$v10s7{$N ܇ӦBS"y޷ĬWZ|. '[@Y,_[^F"ɞ2$sKE4qD L ڐ`8) @5_9*ʱxP'TГ^O<5H9^2!`J C&b7irflSkf'(OtzW0\ ˊc 4cJKn j%YUPryږl^f:y߶sRz<&Ra3:mXn[.I@!Y0 ; O*ы8.x;LgSXoe5csι?n`Рr#Y:`oa`T1Sܰ-ԷJysHqpS$BR?OQ(4U_rF@\{D8]-$0U$e+֕Fډ=# )xɞOBoƿnÚtK-< ^Lz!*_bKoZdɾ@UaY(8ӏ~r-tq"u< mڄ(a<MD.. 2 ||kyqȥ(.*͂+<72d[i}6,9l2"[1FZ25ZR$GCqF {d8;"Egq2]PYgZrw42 C&>3K6bù eDj!m?,-'TaFPQ[ R >)!T?aQKFSb F? )w=GhjGɷ Թ;/^$^r-\v7A-"W pP%ymS^-w$ԱW }|8U8\ީrH6OQW>D mpCك4i&⬷*b߇b.zh<ȭzRKǖ YB)x|Oԓ"_̬or]Sr`A\:K@T'LZoz#4ֵ|{&HUơ`|/dnҖ XÒ(X /;2 )2w.ro;}r1uWphgQPt#o94"r`tNGMigUr~2~vvE%-'`>ɧWQzuN0\nCLr$r0Jk)ҰBO\p— l1V mT%[TԀk> ૛i7*,eZ0W~4V{U֤Iq$kxA7 c`gNt{7ʃ@MI{a4`2X~b&f=#b5ŝ#+9ӆQ)0s }"QTF JHa m&Y?R}.λɵߖ4̓e-a)ԗ]I~:OK#+y:p@ izey`:n aUmf ]-"AMH:fJRhh ~8(`pS@7َrs!efvu8H} TÆX0t$OcpԘF5 g!jq:CBg}3_=y`\ bh%4I FX=/?Y.-yh(Vo+eKw+չ/cz4P߃3[Bu0=x~xwF?eMKH{|3!CxZyF{}Ӹ+@  )vV~!uB`w=F0``afN?h)+gBm 7Nylơ1/告q7.Lଈ*JB$8 !SsǵI%boP `dxnRPCYeWq(Ml4ްOe`aR߽޺%5XL)恂yNnK'i+f2LUxp /~ %0m0Fw\M% Ƙ9d+Qr"ee!-P|yQ䯀vɭ #FvMN4Zܙ10g4S>zکp3ꖒ{ NQlMQ4 /yXjO:Jj4՘(J%Zc({ݚRuob<o|nh懝ޫfnaaBGA05NTTr43h;8h^ "N'qxe{.(Oae" ?Nү2rv2:Ǜ86]-]MXg:j$r6Z዇*mʄEb5"(PLP5XnEo:ޥkda~e6-rˡH1T6T`ϡՀ4oXRͬ0]̣^4^P T^. NeĽ4jdqzD."XBC̈$L SW|{$4/6/Ŕk>놪+IEDT=Yu_GGT'Ο%X}Ҋ5bM[b*ȠE32w܏QO·~3ꇿб-Jpqe&RCzpL @Ȝ&2.e3ӠV:E 2@_MiGl'϶zμ'4_[PZ2㾏")x%bM7wjfî3"PP<; ǃA 2qZB{ eREPG&I2C0M}=Z"N"8 9m''.# а2-D(eQ KkL}%kP䰨ّx#[l~יQzSP$LA-UWs9YrskELh\> -CF{Yn,], :qh1 WTYLI9y 6lG~:ӆz^0H&oq=Q76}rvm"}ofv{N3?ȇaT/p NERKUA3o/7PrvBp3 Ǎ^!4&Z1fe}ءb4sh0[.;Gԣ)VUC'5ye/W ?x -2qԲIV\̋{'kio@aYrߴ "r# RƔ௭y[U&쇖 }(RNhK|d2`9Pz= .|;FaiP͗>ةDf,I~馱e/$u˗S{pʟ%ù @'۝N<όina|C﹤?{K- `~JOokUaIB9X-AF\a:BxͰK {U5JܕAr*غ3-|"U察1LhW@ƫ(n=V aY1ʝdmp3MG~Kʼ\`wȳy=<袝+Hv#1@I5upg W(l50/{}SRC'o 1V$)ntx@% +AC.aIV;oy:Wg5\.<3EhjAV~̟d4!iK !Gmj.U34* Xzc&}&w <: fz?f1 *IQZ? I{&af_W6,LO.ի3,((!c iLݬArW]Zc\̡Uk V?Q{b$'5g~myF^ZFGl;,8)<#RD]QqNӉlmnb0 pT <9w0m,..u/E9&.hHL1>_r|:o$s/֨nuGQfm on?$߁XU@ L&"aJ=c)3Պbq̋zcE{.vOr@Ů%m+/o$Mom3_'H;#gD\gOȖu]< 9:>C.ѭ(^4QO:BtMīۼKpjYRzrL)>m A~=diU W*<4N=M~RɯIR7Ҫʂ|8D]\0WtUFxԲۨ [l xz$^/ Nɽպ?E{)*^ҩА@9B1xky\)T}y*5MPc`Fx4 ;eM:CRCٶL.)ltVH9t,gQo{0ڀq>U. Z޹+PdL.z+GF@ʗ =1UҪސn'?suyKCE={pm/6׎߈6` cs^.la&,"sSU>3JJ2? @a:"sV}BSFj z++.gnEtXޞvԺh280$MXp\.EaZfQA) ͂arq' P[;/ޯ '_er2-IlsTeU>e5״c~CTpeHah NlU's5W m+ r{[W{tUB ͹FfzQR"qqEmLqE+<~&ό;(pꤰ}n~WG29<|*:Abdv.щ'jDxFl]Ũt0;~Фδ6V}_`0;jDܑsǚ2q71s ꦄ,$tOgUϠ|d&r *200Qx g@\^Uyjv3Mw_~ZoH*D,c!VF* AZ1{9.03{R-;oN\?-iDW L[c8X4)pMry$Q=(P yΊtҺո8ݭ s$އ#9yrmp%_%fN+(Ao$%O,d1 M" ]b#υ蛇Bmh49Bo^>( k%kblM#UNP$1Ni>lǑp >\ŎK7sCHeS,-H$__1Nu# aoF0}zsrNx*}'mlOh`5.iUy)m[Kє@)XPHٙ?exʅuTr}}W9);^+RU5#WمF2>GSd`XN Ky^H,r Th(E)3F$X6l9AϏ خ\gs9KfH/0SȻ_7xݷvhڒFрv[eg9uQ*IFe[_vBp Qv "@T+v96=ҩ;P߷k k,)IݓC79IZy }d +nQW&dV~nyD`>mB?{YŶ~ pO=g+ɎpЪԀ ߋ'2$vK n'i[r #T|7j^RU xR{㴢:(8ҡV2]X@M&{ͥ9QɻďngroJ"ssTHhYu@gBrشUwsaR% 5ϗQG=kS]kڠl9©^ 9$\r#Uʽ[{Ý'.8tU)tCLϞ_B!w>YyP ֹ|؆B}ly )qR+]L[~w6n h26c1wۘ99:r. XTBǓ< _j4HؾAF.\]4!lgGkVwQb 1Ed1TBvB# x95(áɤ>I-j=:Z=ì<5Fk WzD⨽ւ:ٵkl e82>g[D;,r{Kcb*jO-aҧht&-{o_Z]Y;q.ֶcߧAJEo@/b K`B(9,j01:[|,iU3a;=CD9+vq`Ht}Jjx>ZCYP*0jkMb1rV\Ϫsk ?zL*$ѵ`;̊#a (ѵN5H%?@wveD((97 l `]3NvdJL+Cxp ꟲ1km #Z|O:qK7*wfG&갻d5A)N| KJ"#isz[>6Р95sbhhĪwi@X(mig=N6!9m[b$c'GK[ϩQӽbQ6fi}" O*i$4;@ dI!BL:𤪛La'C?BϺRF훾× x_tPtde Sr,8_i"'[Et9, .&0E6 >=uC!]Yf_yُs>Ic/ <=]볊Yx\Ik 4x[MJdO?Rm}>߃%n-H-'BYܫ%Vhy K"LX[1a)K䏐51 ^kz=􍲵׫!4 [ԡlV8 r Prcq 'Z@_',D~tt]zt?bbJ oiO)/Kl|]$r~faGxjLtvWG`_󃣔e]t$Vw3]\{$]\epEӇ;W Ȫ~P8WZ4.d%ͺ8*nEj0D/Ug|O˵0}z.%zB*]12\7DQ'u놸4Uk>Ȝn9/C݈l 1}y$QG5Zʎ(Ḡd V2\8>s|_&+6Ƌ|vP\ [ZCs\maN:wzzA'Z9^a>l i\rAVa֩t&oM4],vn5駯1yK, ~bb%;aĿ鱢h4owTMHcSWT}g{ܰ!`#Ĭ_aCP䒨բ$Y)yZ A=oAPl~kK)| { [Nׇmw`9nKV}dRUN!DmN4`KT?"mABv-ߋ_>Y}3D]nyFF0]qqq$ H-)3?/iIS`8Fr{eHsYoAMVEUΡFCCCUXZİ"YPXOwުs)]`%bHC "w߼])N=9#2<=h4%#bY o)))썒!nhT*/pzV%1Sd/ǞT+{IֲZI}H{iOp8'#P&#z@f=zC%9 j׀ĀtOߦ ]y"+&YS@4e_qS1(izuW=:U^E/׉0n&e*GЍ?n󫘠cwgjV2UyҲ0L3xߴO "82eǑ8H4^ VI? nA_koŠ}-Itܶj?ND8J pNO6h1sCQCdlrBd PsxTьC6= phm y TjH!?ҟZ1osG͏uGCƉ fOǭJonQh1QA 9e(q!IC嶆 L  0o@5Ab(/Uau-߭IS_2ɺI(8P j ~z`9V3W2xtA7hJ|{6E-fQoeDީ$o5Jڨ=Y㈷ q#VM}-Bg69.,QI$z Dp7yCv)FXYRRmt]CQr&8"[h$Y<?K"~ .Jl31P8%J7ýtD<))XoNLJr;q3'[95f}]s!Sװmŭ}뵂z*G~tz8z cNh#sIQs TYjD!nžX \B6 @ˋ,.vś?\D_KY S hp_VPoR 6㿇?.7Pʼd׳NH*9kYTlAd^|Jޢ[mQG!P߶Ni=%<^r"/ >,2l`XWH}q;3E՞?K.M8^ɮ?6tI5I3eOn3FtM`etGz3@-` OFzWUЦum=$U軰%LP|(% ֣tG"AT +0z0 cx e!s v jl^֍.B{H /¯J9sZo~7n;= wiKSͩ[@E#X] H~7N(N ^.0{YvB\;ryXfK %axxk LQ ^`>Jg; @@X G%RwM_0:VISh}/28~1&Aϐ|ըĴ,!kUNH![T?UGl0q*#nmვe5S|ɮ[1q.2aO&d{!n}3ݤzKݮ*efvtLsA.Q*urAtg] tLiG#f=-GJHL?7SGJ.!{*cjz xvy592@00Q'!x%dtt :=*(U=S"w-'"OSlYxJP¥VqƘmT機H,͌ur+D1֗I@yenpwr\Ԭ/rdݛ^Ɉa{JJ6'|Sb#{"oh ~h6`JNƣ^G W,ȸ0q:h'6^-v rX/`WxLN%lq*7Kmт: Xhgjmqpd[6,

|N6&*ν#Ʉ,ˆVgmN¶pvub6%۱ IڱvR&*pܸ~+ S7.\b_i*`(=u琛(p-f]**A;<J';j9@Jib&-5Uor}^Rl|:"ocXM3C[ sAwPbvrd&C+JB϶ ?H[a qgB%0NW<0nDM׺tD}? &wq ;'0lP0TTk=sOI)Zʔ&ZLs<]V}0n6:-_ƈ<{ 8-%>½U4/pvuCTwIzI\H0Pfx.E^|φ7x +`{ɹhAuk*SFR37WFct8p薫U)3&vQ3$L\ZvJDtf}]+*?|G&`짠+tǧq/ :|\e([%ORizqFbCr+ɼs&\爴.9mԊl{;' :|b>  Ȕ@ҴrS 9/%t S),Ggtt^0DOSP{_Z:o/0%|=4^ Z1ْ]fXPgdr!kj܇^1;Mɓa %mL1)d.Ն`fZt!>`~5|X^RCg]$  {[pkojv\X: (bI?WF58'j%J ah7 aR™Vvg5g=yU'@V44cÝ#Jh "(XʫK^tn}/tȜ2AEv5n$lnl)RRRSpY)PE3M ̂9sY`M*oJ;kqC/'@zIabtv67va?!gЧ-wg|m]@oaWomEqÛ"HXS-}O(ʗT,yj|h}#mtϵ'l@mԨB f[sFϘ<ۛ.o3)Xаf:% cOq.?~z7xMOX[kiRJ(_}Zv#h'%:xXWr~"#5`0.^]bM(A{O3{kZX/}2Tâ )m8/hM"  шabޞ=5;׫O ~s X Έt}Vt("žuL{ne3:4NK[v<]!r ۣ"ϭ/^{2geD7kJ@KzޠMqqWtڜJϑ,ofZO&J=9_ı+U%pCzufxYZ$ImqУum iL>e4h6f!DΣ-60IP"Y1!Z(}T^3Ǘɸ}ByqLO^RB.$)I2,^_;8&% X7{TҎwHU`\7'',A+1;P]Q٬|$95:۾p}a˺kƈ?cN: %69nG,$VTMۻHOFhrD<{vX'ˆ!nh`8=pi'*_zc '^B$]\ ZT>J?f&F ۚʇquhYg|w&?FF(jXy,4pg3,oD`n,-@}ꡈ0% %1I5%EV}-u~Kv3.\7v͝e%FhYj\ʽ[sjA%#$]u8R`q jr3k xС9*5'x|{o8n*WPfAqѷo!kǫ4|{ )$n ꁯz+_RWzypa)B)+Fœ:piIVR?2kT$W &dωϞOvfhIs ɉdFQL*:Z'Z"jף`@Rg n(i#^(T|8 6EIAG[G*\xGJ?vu?NsKP/MT6' 4i/{ UhP>-d|Aۭ̫@{=[-eg:r\O2SmbkՖ$ + Ax4 /<,w5/I7-,m_='A|FZO%>r.& 3CzcOߋ5 9kMR W8<\1)tG˃t&h=<nsթ- gίP9BiSAӐQa,!6g\]w`ِ? ]:g@l)%KFX hoh$KNlJInM-։Ewk3[NwwA;q( E&hɛxf^8m% !?L.wQ&d)K"B s+AiXr 2؈3zؕMrAFI u ba-jRw+ZG"՚*IQExR{&ʗL|()BK0+MLXdR+p;wsxƴ{tu\BX75c ͫj!F)"Rk v Cj;8"sm.˷Ob@君)"-Q|Ο؊η뚉/ FFWX(1i(;aYɣ .௳s Cap?4r$j}şd,OŸlFu0|c%~T86DNJns4d^K^Q GB96ZP4ѱH&ba]8VA#;*xŭ /Q >xSd8O1x*ij+fF //}.,C4x7'|37gM,0~J:"(yr΀zCԬT_ٿ_*ș[ {;yNjl.h8i2J?z*I;/U0լ>3~%#ZҁWe ] \=-l$SiCq5vA+""l?iBV&_ iNM2KCB%r4⌋-E`z`bT*8=4$k󇃶pU.s!BLF]V܌Gr~ wvaRXWn?`HKn],h[= ٵ2uIh_sϕ8iEaRFS cKl/'4A8M2KE7U~FU/(bw91(3d,Nd?Bd QK-I>lCRg4%+A[*Wh WSXMcNM-9MH~jtDv7q-+=KaYJT/|NɲQ KsO: =)[[$`bʑ}8[4rÜܲN`$/VA6!ast]۾٣OvnF!U>n`7 > A&TNn4cjpDo՚WH/`N䆘,eS 8 Ey˳xAi,͖;C[E&R}M̑75Yz~O aLmIg/E`Bd(NWf FJXPw`Q΀ݝFUNyQ-gQth 6Uzf9f*= G`%:PnA+]" c镱a"On8*Nj7VQLhMZSNz@h hs|{ˢ57D+,vQ1y 1xZ0H!.ъGT^>A\)Ԏr⺾NjAbtF~ӧo߃qIOK}ׯ+/^fi2H]h`JX76/)`Pǝ&kX[_`ƒ.kqSn`-phh!\~u{BlgGݼ^hPb'1,0r,ڪԵsN>g-:Hg|>[v4Gb(𐾺۸._YmwZ oD^pw"<可sPB&v04-Vu-^`.9sg٢Y<ooA˔ ċā;\Єv.R'g4>PF )rK5/,v`!)r43YZ'TXG:?Z]-"ᄡ9cdw>//w>maER"c씎@²D< !g]om'N ҍZ؂"m3VL 4FGKB5c&khlKD ]1^v6!#@OD{XrDa#ǽ_S΋YYDO ы9]$̽b=ja (UWm4h>=MVrJdkTl=lՀ-=V3Hw|: zp yZuN0z@<{,:xfMm \6:^}ŒS9xY5!໚z'H$K[w"bhO$DWL^"LUGI_K?S[Qs-MwC"D^1!OB|r]e}f"qͶڤ0Ә  6 !MORK?#I'"1^QvĎwrVvX0>2i-FqGCO-AaԘ| ȽDඇ" B_@k&`ʰ8`L@P[AGsF:Q Yx.x_圁ҨϙmvX2(Pe@~\pFb;#sOh3?~#x;Zw\Y A` }u/B@4)tÌI m~`ѩQ sN=zo|4 QvdYsO'gIJI(XqBRcxq[WDeMTZ=ćmjv@0T8b_Юfaf\ưeKZR6>hSS 8hNpw:t ȕ7~ڗtmw/K{ϸ[{Ֆ15سG *n 9lƦ~__Njr3QC$ɋ@./1`Z( u;;qt{m;[ggXr3~wGD cc21?K=&^6Mw\z^V~_@lP asxq̱ vRg&ƶuLs`׹-1$ffh8Ek;MEP:;yPSç-9 E{WB&%~I,E"z翅^ϙyjHsHƯpKRʴzѭ&51+eG NE*O;lYl[wClRf7ՆSi4h0Bv^8R'+ >y64;:#[ƅTבS<ҥm{ jfcYYK!r ~bJcGf?PZ"ä{&idKDH(}/Ƴ =LbYQ.&blv?eڱ9}'ł 3Gɺ! Ӑo{j3YO+ ECrAwc- R*/rYK6RG%33gb8g^rSTS8eC̔ :&*- Q2~ NeDoBGܹA)bv&(@܈T \ =S +A7Ms9`㞁>b#Z1;GVegom| (a@"rI?gт_7 Sz)8R`{-:@Z}ͪCUjC: dK,fw/Eh?| }NOrZV 9A:ҋz>ЇGð?{,+N˙GDE.4 >IJ$hzwr6s>2do_J}8lj_UYiuHR)\h!n;U̎MW `pM:2~ϯX;eEq Θf%7`m2fȢ":u,K*`Ucn ECs` Cb;j,sFAH\ƐT u *^,0GrRPb@ؿ9ۛ,U"YTrvZ uvoK:.s!n4SrxuIlPD7b)l-029=L]θ0hZ 7;4E0e?T%TND@;QN9䕯Ibe-"$o-7 >Pe!fD NZj[-Wϸy<|i0ROn.3< =%xmJ)U#GXsVoVʅi&)(6}3KjW. S=0Դ/.rNp&}_4He)UŠ1.?`?(3Dh=oTysE 6Ǧef1865Mu˅cb~"Xw&pߚPJ.A*E-8(.`" T_|2x*~V+tIDƛ7Fb\8{]9p/,H2Uy]ZS{XE<xTq`s?vi @JZE@i7i"=| Ī@S6Vt̞65CΝ,vr#Pg bD8#+q ~va5DYWނxd<WaFBܩ|;bE ?K!Ŵ-5l/ ʈDdAI&mWANIzĚ睬ҢL:QakmP WŕUE1o<EH>'xU1Z:g fh@ bfqo=nEY{䓁\z ;k 6Vr? &'TlG?Yܾ9^5Hm|E, $bHZ:9( g\,9?&D4=HS^} =}4hM_L*+C-Rx j{U7!Pl0CU x8S!\#c47Atq)8)f O6FfPMm`S|*Iu!1LE˨mo&_ kNi$'%;+֜3j)Շ僯 rsيtdS4IN ɣy F4Rk 20l13t5Pw)haKMjS)͏7d ?-i8L ftD)8v<}1ӫ@ٟdW&xwZ/g67@^-jriC0zq0ȁʖiTGҳ$p([u(/¤!tmf8!^9xXg>{6ʇ݁{RI#Xc"68g,#a>FQb#pcMp{}\?o5Wo…D4_0 F?tH(mA`O%@RwZ0 N:q)f:K!v` !nޕsDrk91Zj2&=(w/f/a`S4V58ʹC䒢fY?.<9N[b"CQrd-[٧Ķ's-JD( >֍wXZf _mPB3Z j,fyhu uB''&٪.Xկ:mr͂U %%ٍ͟j'\"ea۸5l<Fx$+Zz9p6նIϊ,^?KЉ5@D{O{MyMj5 l Eab?[[wktF1'"EIh"6t`$ ʐ A[yɧ߶zh鴢#d_Xa?S/O]E".*ތD#)23J"XfV;R. -ŴyzQWã4TEܒт~C1]Q3fKǂ(unYR-@3C^}ac@0K}Ȥ@b<CSjhUAyP<ҷ EJnH&qbBD˚37DdNGdqGS=u ڣilpץC԰Mk3õOw) "EúIs%X;X KPЩ`nŚsIC~ GW4>|%IN䎩iJnwiw>J A'dQrLAl|JjX-qO"r}eFG|_H3-E&hS,.yo'T \r揶A@ި}%͠,c eF)1 IJqa;8ʺ>`7O”w=ypσM{nu$7dsnE. yIZd3+v? dm4= }f$d, rX]uj^ȳ>JyXWӐl<-ċ΁G*xX`ֶ0s%}%^o?QJ$v$=5#q̶'\X߰)[1ϫo-6@THeYCY д*c2¤!׬m*f85XB9iOŢG7Юݱ0*ۼX1ϔ@]3~n4 •/9ql;jK5MRXh%A=#J\@?eS]p0ٴO))ߏU$J*4r/6z]-F^9Or pǚ 7k.,Bj9Aݑ(]U .w͇WEZ=w'V;Ol?(Bek / -+t:ڲxup~#&Ht}M` FL(Vli V (R\w|Li}?B[ dES}[ (t࠶͎MsV^qT뽬d%>iht?.)ư"Tj|ϸJ0MՉKn*iyX*ϛL%S.e yPԡ8PX´e0=cTV٠s"7R *-7Ƽ8ƙ2||A#cW4apbKaI4(r/ ud[reRfvs<%L"dD N 8̬>lDH$-I$'{*x+4:BHxē>A0Jq@m}N8%p~I=iiӫ6&|AWu<* 4qqEw}aeB;ff_1aM)ҹʋUg#Qè#r]F#| vX Tw*5ԾD^n6x9+Oՠ (lm^\I+8oYM ٔ[$4Q j_fNX);<.6%qPxv7>:t\yO# V" \:"*&WFKF 'ڦ0AzHcpr :<G9mݶXLK  ݚhwR/X M|f΂*Tr[{.2bt]S9ȜŒ1D:OeeVB6VD^f\Q@֝U/l\nO39u܍K 5Ƀ^Ri=z3$FaJf \䰛o' T\Iy@ (OnX^~A+)Oo9XwOyǡ%:s'rG#yɘ8"0*)B>dZ"xXN`!>Rjt8^dфTS''i܃Gفj$ba' q.?\Z׿$ӏJ]pcFc80n:5ޜyWֲmd>VgSN| 5/T/^jnƇO#[3A9[!4u[f9q`.wE9Ji'Rn a 4#ͅ!_CXn*Gb9а=_Cܥ.,p>վW)(rצj,b,kQƙGݮ;ۖJ͒RvD{X. TVHr! =)& >#*iDXq=/[̭YThCVF]vivғƷJ:/FIhC= >Jϝ~NN γJLoH\IC7ߠqWrJ( ˩g{#hlYXȫoH?i-< iO4ȱ:"^֋ v㥲πsd^?×!XkMԥIkT4R6L4i%nL-Zmc<$LdOJD"t䅁;@mUE781CT ~o}ixx-lX>{AsXfw/~D0HV#ƉB<Eטbd3Q8$R 6qo/Fg:' էa/ߥ"ާE?X^~oz5/\^EXZEhw:||SC˔P yc0ҌNڱ܅Z_F.bkT1fw_ȭ"E)@Dsי,t=Q9\דh`drliW#u;Fn5NTl㝦T]heKĠCƴ]O_ףKa:NBtq7"?t#Vc`P`6Q'0ܰ.ń7[|z &N6E+ʉN߭+r>7IG:eHSX{(oR`C z.22}&4ɫU* F}Rp6kkr)aD,5Jf{*n0+j,D%ǚ@ړ74hIk^Ł4wZ&0["m&;=: yj=4\/_[ctzhG=N}E{y"x?{0 ^}?tp" 4j\ve+vؤ=D+` Q0)Ipi!R4\uI [[U5W WT3Guo>(QL%a%`~-`N7|LEf>kԹyD8uGc:x]̨HE Ey(y8|"P&)* SG$t9uQhΨT;tR e֛/h2ƥG ṗK"܆ kRq֙y0o9oxKwT;<֒A/C$kIzdOL݉5&TpNQ<P@{]tgo4`nY qשm;]!'nSS @`:~p  M^b[lH? v=0^ALrq8\uTܲE!XZWV#L=)lݹVlCl:`O(j‰j JPVKXjɅSG#K a~ps/5ԃSu -Q\M<ʐ̾.aze\C0~^~$IC9AhqwtH+[+Y_,<ފC-=PIA5nwrj<2ǟEƳ-M˸zVRxJѱ* _"ܾOl8H"m\sZ28C&2%WT-bh#v&q^IOIz ٵ\yA7Y;c Wݺ)ARt8Д߲tU_J *HCeƖ Ű ܀VHo¦sCӲBVVp<pJkySj@ɟ 3jq"ʊCIغvK*Qg_t/ \ oaaÕ/RmJ dhyR\uc0#]vPDLs8<VEX6 bxWPeI$Ff 9VbjIrSfE b},1kzWqEmxR05=#\NdħZszc'y7(9UK%/38?/WIAvVD+ ?RdD>fėB .¬L}|5 _J\7yz NEN%k5:xWYuL TDLvwUZuc"[E)$ߟZp) 2$0-b0X a9lx?~jd1~4z[jүl UA@WHRNYfcd{'GyKB64~eCXIa9L4%/[em/PK>N~|b4 EWC%2u+tAhp3Dz6!= | a}g}-.|^3ektt0ydë߰ùX w9Z TB6cG%lPSD88[xb I]-ZUcp%@>fb:ɴ.B'?uuJpZ*wOᘒOBK\ZkJ]qGUutDl}^ÜE]!Jo*К:ߥ5&gGYV,[lOB4 $E[Wp" Bzc05N˹9bvzd[urŵ ֕\? 0u hj6!:T8JA]#N J.U[BG89;.o_`ξ;UZ>> ND?^ u~­[fpذ|AP}PܻHlкf4$MV.5$cC*C3AJ v*Yquc,]m{P2<pmcuwBA W,.F{K* L&`1S [+B[I qT1yA@F ֪sVc'FfjMgfA? I,\.Ї'eqIHe) G(?|Of Xٵat& v!ZFy5Ƣ&M.y[ǖd`>$; W^u'?hLIT6SkE*C]k7pm vc9{!WE~ (?s$%13ͯ*VDA.r}GCvoO ([|^=x+VJk\!\h@Û+ÁmOB*9H|Td kji"|NB%d88Kʛ>Ta ~oeE\c1%@xƎưO(#o/3ʙBX%i2ϺNbRi4S]&xkA ޤy[cG+IFR>W5@} "<4KDΓYP;Z^fe+܇<6^Ut~XSQµaA⤕JzZ/uE gtC ;7"]ď_,[ZЫ;ocp~B$4_P[\ԩ"*4aQM4$eks /|0hY791|boG*]x(?qd茥=@LK<_F tUsy}Jf q?xڱXWy E^*PhPr>RLkD**I^.' T;L*7jUD5kFdK7g“|Vv2@5g*RT T#;f;\.ZS%:RuNS;z0b2Cay g|5zM𱸆ŢU|K/n؁A#tN'cmFuIѼJb 5*08|@hN%KPk~ :QռW=s0tVy''EZQl2#9W ɸ0>4Yi}$! !!&\5UBo}:׾ꑧHկ`T 0#ɡm' <"B3 W ~iSOtjjM~ q.gPVMfC!OX{\ȷb%3{:8po "kqb.V']p<[F D$]02ptch}SCpoF&7)3@ +'-QۭC 0>Ugw2d㨽`aU  p פ哺z;jڃ1/pRکw fF v) /z|wLוb"՜i rLǩF(ϗf{rKݬ{ML)}$ۤs s.{ mja !߱}tV['=qϡemuUdk!8atW괎6bSf6 ~ K'kh=V-,[Thv$"']t͠l5VM7xInUQ/;k6v5GXQaWQB8˷88;X]16tVFГeA?\ܮ//n=^"ܒ# ?-]_% ܔ`n®C}_qiohk鎚ڬ,@)Z4` rp2f/㷙2{?:$kH+D|$o,\< 9jsHGp$bZmS㞍3mlE*Y< 'i`@-b}a c t \-*O=k=Gv>]ȋg {G0O}erWE6`Vr{Y:pӄM^ϼ6d}\3 hBeEhE`N3?*eP Jz~ֿ]VV~!bm+,w3*snv \AT$@@I.2+{͈g ,BO͉Am3LlGp~pwY-I09whܼ/?r?n f1Ķ6{voN4%= $8.^ qk8w3`?N&Hh22y=ixW#7 EN)~]'V-L5Lzqj*jQ(pj)&z(yj-  cO!i$@mM9fG ɨ k$ :F(ZSG17\6.-dvQhr^$ꮉv,xE}m6aVacơe}+bK91vg}NV6% _"i?幱Щ9}[@MEnӉRJjCDP.",s@Ov}uh\ w F2,)B6I] C6NI^  !`H HlSsޟ臾sT(ٷA-Qye_rƥԨZCah^'w`Ĺ}DF snVu-oМ_[QbAP/]Y.'%&vYOF J)c ״WI* F!MyI*/GzAcHx @r .A4=uC1: qj#777rZ9CEw$ԘI ڶr.~E쎜QRR5aP`_R[/FϹjsH:g+-5{!npXYZ |Fb-Dva9%y-sXH /\J 3>Jآڕ` ڹFja/ݽ:6aUYgƶCTeJ;klHٌ'׼;LAD=58y_Iuf\5ˌh~I]X?쭹azke x0ra-Kk&+/Ϥs1*3s]/cջ V`JṀCVR^(ܱ.%aIjkbYݫOaɵU, a> 5we"3bm;u 'riX{] T4J{sM8Xmi2e X#^; n6X4蒓x6'.'18&K ϣ'L«(ac `^4M _npjbIڞ4.1:ͬsfjbҥ(rŀ_^ILj# oן=+0nc-(,.vE܏TX(c!Y"^< ۤF@lfp|ouN)5E[нrT5آo(Ԛlh۫s5H),xqܾwwW?5J_E>l<-Tdb E~w+-ZESl HhDk4-:˩saz;BpC1vy5[9~#Gu\1(P9Sæȿf0))xS[˪1Ա*oh}w_ЮTÓ=]ebkX ǔx2BZ6㏎bS~&}F&3|3b\<ŋzE{ Lz]2Pe6ZB8ę"7D*2|[H_n" S"!J ro)'ܰ2V`),,K& Sü/qvG5fB/Cyxʹ V@7R>Wg;Pm1I7ć{{ru0j?ɯ"WMq2K1)eIzj'&ؿ>BH;L"mmHdMȅ&.d杞tZCD.:DJ W<7>KT1B85Ec~C_e#-CϪhI ueBFȵǟ!luh)9@YAWctsZl OfP/7u5Ma &w[y>S*=h~QվF&,_Y6sbOR+͇,Ĵr}v,Rk3iZSYh _Ø Eo>[VCeյ>u:]RTN}bXT 4= FXjfs% q:b`O[P)oG?oZ 'Cߡ+3xE*6. dScrV49C v-lt: = ER\\Wkcp»y9yVS܆w6iniG}WT^"ZT q}b_XYItՃ$ o1| 4^Ԍ!`2Vqؓ>˔ v?W ukVK}$B |H2rd怌D/-[H&c!NQMjnx_53@F&+zk\XxR{5uqd1Lcպ4 .G5/_4ө ~KCl(PdN foN09P2naا1iBX{9`͊O7i\o:lG9M, 1-h)KC{KEuޔmAGj _͑aӀn$Rx91ab!KC-}Rg @,7)2JuB%n6\,6AP](J^>0e+uƍ"rz# b`iAmZf[0`V=#P.뉓gP.:#蜑ů97bx&z>IF6܋=hU3\W?k^cƊL`gZn|+aen_ &u|OVk .T8X xm%2H瞋ӷ"n*4.>V`FX_-:XorH*@2ېH,tϜ,ǂR]Arl]-M0?-XF+S˭rcА f {!oiʾ;B!2) LɊ؃W}Øj̐ b`h_ 1fU-eˣ`q ^t{Ww_*x B`VMpDv/[wuHJ"uB'%fLXs"^cgr |zYk [{.[HDx|j%ُ[Rv!,c8Wfˌ.o|5Ky_H.lk8Z9'ɘtmֳ l}H PxMd3~*F07b!Y6G7rgPO2M=n@2oa+ (Asf}h@U]#a\yy*Pm . ?13$s_#鄾I @NjXy!ĭP=Q&6J&wbGv|oh<Ĩ+#,-|d:M568K8C#9雪7 P,N.M=!~B:Շ#+Wʌhpb= T_>vy%ׯ|ݐp(݉X=on7,6j"X:;T' ! D htZN SqGBz%tT8*p{aVzlh,xx[KKocAdeت㹝b*u+𥞮/@ wy?uحyqd6ӄvy=3].SБH#G|Sݍ!"}mϨ8[šyC΃PCQpd{ nKj^\| +Xi~78=35x99K5)lcޜRd/t5%ZUa9hsW2bDyJ_Lc 0>EN.ߠArL3 մDEOB]h֖VvF9蕇*P~nE #{up d^OqEtlhSe_VoY_ٞt? Qȑ35$&ԋ?"q#<_X^̮[uRϫ<҈:165P3yہ2Շnٸ5ks9:-< 9 ~?aT  A1 ui $RG5 U N!\h\!f~ kioSwxAD:W_}b95؝֌ڒ:Ė D)XO_=M qfJ K؀c}}j@V\Ɉ!7@rL᧹$h1gh@ђm7%ZPJ{psu}Az6Dh@aK!z8ˬ>0rFs J3=yx"]q%R3IY#EGLN~ ~Bf9,Lȩh\wmL%t Ơ-Z!Rvfm jqwܵ+^VyqC#ו#_9|Wts?W`J(xoB;z?\%NU>x` M0ܾޮ"MXZ nғݔ%NvcC{]ҚO>5u"V8g f{|Um`8w$Hi'ŘT|uvM2׭4o/ĽtIrjޫapNoh-Ϻ|c.~GkJI0tr$L$[&- x3=t}XGP.ې_yͼГ7ܽAKE'3z+f<_%"xY|h/ ii qS{! -`J`d}J4Ysx7 +S+!V)֏[B^c0D}]KU l$1r5f !tPi'*z=Ltnmvƿl Mv֛ ?2:j~gj2=,X4OD>$2L'ObƶAomA\+5LD%bmr.Na>`zU͈BۉZAv=(pOf:z,I+?ǩAcpC=U#8EΜr T( 6LE|bIRjt4ud|q[mdDe0ǢٮBȔOnIkn<0A;tpw GVI}N9k e`0މI{:.b?~$ a|T K/XKFurP4;kD8o̚!GІl4^+^@ԙlTY:Z22'e:߹',-y8re7;p w.?R3n~` K*d\W:w2M1YIlH$Rh9ɸƉ@dG /gbRnU@;phZ(j0h6vOt)}YdB)?2G̈_Z ,Nc/lQ޻]=+6M4R/uiiˉ٢.hɐ).LU{,P v]JlA,PJJ  ~y#|uN}i .G>$t-гZ(&G?;%Uq8=dT Vt܎rg l3HsAL"[{Кޔ `o/.tfTEhΦ)u2|r~V`^}&xuV3K֠ɛφ@[x;=#F>ן(Y'M#$5/ߵzJLө=0J}X>oX~.~ >"ćv"tc,pZKL[_QTܬ+$Nj}{͈$XB }G*tJ Ѱ=KcqIlÒNj{%&bAؔ:UE T[aqFuE/,PP|6 `Ӝq5yQoӥnm`x]AH4$ܙ%9!,mĺS5KċgㄼX,sn%TXrw4Z ϓ;"QI}Z;D-!Wyug2bJP}2efkx iRg8^ҭu:~k@r6d 6fŶKx8f)4`UJ=wu5oam詈szi&UE%r>{w PP8TSaTiUMA5 1cb2]KtQK&1[|I :DQVPަ +%gkbwi@u|HK[1E`W<ŶQI"z,?_T &lb 亯Fk2_t8~ukasA2Ƹiy~+ysajtPV(!,< wN붱(x֐3ֲes/gqCĘZزfdzzEr֗n܊|&eO*: 4Ig?@r6~kYb oD\fCJSNgqxB>J kK{&M`~n~ƽf_`B!A%jZiӻ"?in. { #s5 3R*t.(Ƶikb4][IU{/KdJ7"c~]btyT?UOgLҽAK1MckvOZ*ȺWUd۴v QRڔ'EN.8^tP1DNyL O͚N>|F\nݮC6kGHSYVBoDk)bWPPrn~f;>PtOQpGA& T65?|3}OSxaU0$Gz"ni퐸(/@b R*|½a*^gۮӣ Q!XSu8D."Nƒl 17b <Ұe'т/O=85uvR+~nҗ JuR?T`f)`f/}Qp8J 4ŲA`NT (5.[[vnIMeӿ3,|sujޘi`Ge0kRI4NEpf~(U 4rP1l5XH]r&ѹ_ný\~7^&ֳ1PM!(LZaTv֭]uM[ԩB;V/*6fauCzvqaSM65d5G& ͥ4[R(v zk/GïQ#iGj\j͗c}i:D8RH#Z`BMR>sx,'Hv$6mx]⛌b7x\~հN`5baTFTEwVZN3AIa_ռj7'O*gZ_/ma<.qdL:*A\s_5Λ;:8 [L-">I=I3gq=I3g׀D;O% ̟3 6j t_bTϙ9Z1AJ!ٻHJ~pw.MhX \BfeS˨|aN;QWVumoj#z{3|k/VCMi Y8` p5^}6­Z$# vk5Rf:jxI&&amI9Q*V_\5(E,=㳩||ubf.:i1!XS!!EHVs Ξ>.=͎?$sogq% 5P˚Y,ח9s8 EC,rje#]P$g:6Nɋs({e}1Jo0ݘndz[)\Zߣ > "-ҪjLX3Ŧ:! 9x2\fJDz@%D$z/i*nngAH&J h' '*!V'zǥ'޼LVRiNwe4 &-4BBـȩP-U[PŜo6n D/>b kl"-| hVEcGTT TSψ<k>KP-?{MS6Tl3 (6 w2bimSL: QD|Wn:"L~vœ8X(`2CSh' %u.(h' kq!c UɢynR9J4 h7&V6=n?NRzlb_!I/8P"60Yņlir E7q!i @=t'YW4Zykw1DbgJrU &@GǢPWk2G%5XL:'q2),UOt~G s8l (+G 8Ə_GqVe'/ JtȈ>oc*Kb?JAӃC%HЫ:DXk˩7YhFsYV^)\.R"BEepw"ң29v¯dr~#y>K`@Qx]\ *3጖T)p7gy`eXhcϜT17nr8v.JиE6RWÍ(ElËWc1H:9rF7IʋϊO}:5% ]\L RcAGLQ"~ ^|K+;5IDKS]~X,$f r?MԗUhӀxzgpj5GϹ8Q"=7n[,RdӃkJSdS"@p'MW 3x0=ǀuG5 _TP%IVù bmq C}/%?v_v\qWGw^U5QUPbD1y8K*,X8 K$1D:)2Gu$C*ܮ6ilVC3]JA K[+h R-i8TO D~RsOGJ$:(l$̰tVj;T|)Hal uR!w7шGtV;Q4-j48dN]ej鹐)Nh󲅰?LE7BY덿 ׀&n Q!0N}{ns(dw{0;7JImKy4nrHd '.tIo'{ž `OwOkV%!|wк#ί"-)TCM{)q-Ƈ*;Rb$џ fĜ4/̟ʺkY?AAN)}0 s,|AXIx*[ct* qyfj8,5f6%rgq{J'"!fcg["5~Wr*];/9琯yq{a/{=x>Bag@rBq!!(}*@Dϰ5Oڙ:l{1.!V.(o;…4S#q}(P:[2upkLs*Zw*@9o>jfd)B^I#j+&'(GUN nje|E -G>R: gyQb|E>`js/ ,xe;D_nҰ2 w$ZF6[s`c Z3!οZzy~=ϙ:(hѼ5q5Uއx;#p%m]?OE~:{CX*'Z> nFad49>- Qgsݰţ|58Z+=J0Z5adGu1dUqVOvXc*?"De1T~QwZ@z-;ߋU f] Taxõ5p,YpFϔe㔀]#Lps\*Ai3{>x; ;=67<")0z qZ7*iqrLr} Ob+Ws4>#PN2Z&[edBPs6bIc>;`g)Я&cD+*[,ؿXx3hfW5uOFz_A\͌>G:yU\^>v|gһ9 h=a:쨚F}Bzac5_݋ԸWpCCw.aYotyׄ)u`RӮEuI2t1O4p}=l+C蒼 1n I.E;w6Uf*ԯX <9l&c+0nkWO%A!h/@m>TR!TMdf)uy5 JtdG6mw%R]β%ܵCU Nc^~! @Cb/-9~ޱ;ȚaYy=-~ſȬZ@3mB9͓gob|7p ,Ρ WɁ@[-BW;(V)QmᠨE!xiF IPtFζBr@n3u;=@*å1kC-̦N.̧tW+(vWbYus @I: L@* M*zdMvHO;&}֐~"H۞RL1CV`?^[) -  Rܙg$v2#z X.4;V`,;FAuPd4ؠEe~Ηa1}$?E9= ^#ʠ4 '$%hI2F9JMgI":L|rUO}{AS;3z[>Ҿwa R;m1a.~M:)%[3s =F^*A+:ⵏt1 0&$ybWKr0O=[w/^ ^!~ڲǹz{_gKƧ#$Ý_,se.N*,LA# (Ѕ:ŭ@}Y1nq08[T֌HtmPp;0 ԁ(=Q/;VP#G׻Yλ;)C"]I#)br~tZcѮ^rzwc{QyNNfs:l$/d 1!T{.ȡ*U{AP\}N0j ĉ;] #;砻YK~4*l[ײleaS{SjVO.Nٓ zR JoNW ab&@Lf/GX }d˚$ϐ9Q4ӬasDm, }J,dtZ}f=P86 :¤%̈f %}\-5+]\ ü}**eKhMA=LI|ҡ΅HtSѿV_UW<&нrЯ&-2)0|`N-x8 Ť9ȧ4!nB%385s(?h&c()'G/SmsD!- ;73Hh[/(;lɧKVD-@5L^$FEeͬʫ Ӏ5#rn?2.ۆ):,ƼJb:Lktoc?Kv])z(xgrhb_X509hܠͱ]٘x\${D08f3ۏ~MS4>vz|c(_}Td6tCpfJ6vȘӒIz$~|1q_NVWDox3ؾ2ȜFqk|E,): lax k`l (x+ř|4TPo׳5mG.MlUa;:vxv62R8jmnۥc ޲f~٣I*=6wC8('7tM|aHlcqq5̫]ޙ6ǖ~իOrbS)D^ H (\IVQ'&GtX}Ā o;M'ǕTB@ |#Mg )W2yBQEZȤKge iNcĂ EW:&"RH ئT/ݢ ~>өs`}E7=:tS?Bhr/ [OK$pdcƉ( _;!PGDkƇl,gF $Mgrďؕem~M5\AC(J @^W:~xf@/FoJr_J7wsr1Br֡~Ruc!@vTX acPlÕ0eƺ3ހTh$[bf\`S$sgs O 䛤Y*`hsOp9W/y[쬾|ѩp/eKW6kǁO/^h0`48wDBn8٘i7gL44zXm:8J쥸-z jmA&"WcжBձTyN#v=w}Miug,ج/XěA}kCfFg95PuvL-p؎jӦe~w1{s *|`,4Yw3$>{us5y,@9`Js\HC7lawo–LE]O`pgcQ~ޣ[%O ?qFĐ#]HsPA[1toRO= nQxlGD/,|#> ˆkosXq}XP5-mmpj*_pߧG먩 w|O /{t#sLIXAaNi0Ƈ q( H- +2&BrzՂ,I؞ؠYt{!Pޗgg3"{GtAmpb9s!5X kH{#eߣrV3jQ\|AҳhcJQ5e4 ės \^Xiy^-JEg @܍+7*씜ޖA!{濊W9döOTiBD!t%Q~f zAiZ<LqAX˘alz}tVr{ܩ\;B+\nM j5V LS}-l<t݀WPPEN -Ⱦ},HnR`-^]UĴPXdxYR*I/Р&cc܆&{&@TݕH21E]f$ >'`o.l%R4ǘkUM/qJh9d-ދ^.oeQ-JkYθ)=î*6ZmG;>?#Bٕ U*jeHpWhg5%o 7Rr2? |Roׁ,e:1`Ag=]-z.#L_6zdi qp&}*HtJ]_z 2nsL#?X> :ZdYf8&th89yt??%fnКgޟm ,Ԛ^~?@f6h!C,voeNm]}OT\hfwWVO%ۄ`jZ`qkWOՈYw|uC ;jL5W]׷.`b ϔKy4{_%\̈́J&S2 "6# ɿ[nHXҼ׍I)k)JgڃWOGZIPvJζBW2ǹawEH?-yA4S`D#MW}j_vjLn@RlqAtdLIBoH1%$2b,rz,}eqD5V- ծ%?MҶUoS:aiP@Y$ xꅿ <BoSA MK!uݙNFLz+FR qjD[%,'?&ުQҩN_6.7bYZSfmzӽH.7Uƹ@>$8SOAJ*oL8Iě]%F(u#G1!ҪDT -V`H"՚ Y>;UλilS*kEx%c9Aj<Ox:Pl3ĺ"nձ5Z:8{J/Y"մ^`~]%l#ܡ9LM)nOH%ǺbLB=$ uDTCPUY(YJ6[Ϧ4.r0;|͹l?Ls?.K~#e1n Fڅ$W*>m3nY,}+H+x&>wC ; 3zKaJ|CjS]|u~ϰ̕[0/iw&)NfRXvY[ڭR+t[ BS=)d ;*lߵ;Ľ._>KfBqxY (F|,F3~؃:Ve~HtVn̽芭-.α'\YfRXvY[ڭR+t[ BS=)d ;*lߵ;Ľ._>KfBa<1pF!k$ ;Vŭ+@B;6_-Qdْ4 fq7/نc,8P` i^ktfl_4'-'N뎏kxM__~G{`bŻ -/r կ J<7v6˔Հ &t8^%Dƃg8I 7ǬlJFm!hͪy zCN͙uja-͜ՁgpU>»}&gaDykX9e84WEy&P]Æg1 (w5Y6d,mOx$*nڬVYȔ ď㐫eJgR(F|0.Ve%S61opMG :#{sS|11np#_(˅ѕ~*'uMدՐ%S61opMG ё`α'\YfRXvY[ڭR+t[ BS=)d ;*lߵ;Ľ._>KfBqxY (F0wmj ' ho]*a(&c\$ta(>ᑄxOx8ϝ^z@)rժ(BhfsSLV9&g4.]p|0w!Y`^뎥 %BNӧh=:Y?붌Gn!ED*űW>wر\ $uJ wgcR$,QgMݧML;J|1ݎk0#vx3dT++kefm8sjM|:8C2NX7Bp R2 z0x-%9Y=2Ÿ[d%h"$YC.kC95G\~m5q|yg.%`1BqL#rb 2ɥ$!Ic=CKBAN4[xafCA0B>!BZrGE qW#x1m:IxB8e9&|6n>VƤ T2Q*Sj(Ɖc?J0bÉ׾?8ܐ]ڂtS}oeG߹k\qk( uƃP;(6 mɮbzDŽ 'bp ZYxz<Ϲ-tk3#šRڽ<Z@;ޓq፿?ĪO47Y 0y2z i?dcWxzUCJ Vʕ\TSawR+Pv,ؙ"\R dns(AKfхFi1g4 P_#3/وLUJ3KQ0ZȅˋVeZk!T<߂_Wwė/cLÁ6U}4=$֒%4]zْ˵jji?5-$s7|U/z 2: {5.8-Vz})$]ε㱣Ty ]^73_C^Ypݾ ^h:?QVP‘Hm۪`9"rny؜-WLèT.>ݛ //h<O |6bM& ILM:A(J_Bulrl4?y|bV=/!}yGGn|h|xA=wJ྽eك!8COoKǻ8 /X vҜ{nRI#=52ʓtV w }r@>a` A#JsL,5K 9%i̳qE:4CXd9uY3 FS m_#֤ƾaKkE^vX- ;3G=]¾kJV#OTo`|~4Q6}s*CΡ0 E0&=54l(U.,0~'$CAE",\k6FqL\'Yqns QVk0$5VG9b٣c[[i_Yd_ 끽sJ-RZ̏QzcE85o (|ƷFixxv;k$%7\ofKVS8#M05qAuvV4VKV%}50Dv;{n%kIVrg,"> Z͓q,ד{G.'*_ysi/:H T a\\qPTT[N;1"J^Mh@QJelz#gVe4xgtwRy!xi xyo_ X  Xē !ܾl9lxN}V+s$w$Ǒa`sn? 0z{=fB7Yx+yRm:#Ƅ[H#>S -S9uV^3b+.cGHutǕ{5M_rߩH~%գO;jl_l=rHLJd8qH9b\73e?UA05Yʗt豔Y֭wל6u\GM 'Cj{)eT1滺a*l1iqg"۪TM$iauǦ~UifgM!SB\7JqVka'W ٤!Rc;Џ3"Nd Q,s/7J3x ݋f"vVAAyu5/;iGF:erW#ΘCUip/3~ &SgCzyUx1 k @*>^Wi™0H z?nh0۹R5륦IښU\3&{Q4潟uHůfVt_ͽuU<2T{^qI6~r噚fA 1uOjbqTMp;Ҳf5#ڜi92K>WcsR 2V*Ibwgj0@&Pnr\u:hJ ʮ*|dh=e㩨 *Vs~jLRy|lj:yoi>O!U>/$YaO(~x W)05<^$L0\:Aodz̟{~O~+vѻ[}R!@ FP>vĵBkZJa!Xo !M$8"qלG LR4+J@٩0-u㑹Dc `G6%[je%9J_˜~sY *噁nTrX|s4O jy" Kn Ւ՞ሟDa! 69XyNWht!t$;kL@5s]Ud$ JlПzi_gAћ5CHX#}O'v8 0NzМ޻^UזrYAN`f#P<.S`MVRi98LICSmVfvwa^at>0/'Uݔӽ-IOHnن?7uiRǿR![.>(THaF[t5"z,jh0$RkL5y(s\oͤK'@M7V ␬Gu(#&Dhsjf}?t zԍ2r?Y!RVOZvK"C?-Pb"hh$vQŵIY,h=x[23Ke6Q9&CL iNib?9cҤ>DˬNP4E #prÒ*KשM c`TV8LkE kU^!Ju;\֫{}!I͈1uXw"!K O+wEq<> +qpWk&7rܩKaS7xgwiOZ|1ר-0/p͏v5b&xJ MQfh+vZL,bnT Ӄ/_{`@akep@L3OdZ ˢ bV@+^Ɯshsh=^%㠻(ػ6Hnqdf 4Oľk%!.4%_\<&ra1,[<zDF19) B`%aR^+\FAv:D<+:0+x_齜M=A.J\"JUoFN  d݃!o쉂FGqm-6=\@o Κ]~~|%Kc”QK|n#lb u }oarPhZ.$ <'妘Tvߢ׫EGpT0KL6A~eH~ᮘ˖ ˔̊#bi3&Ĝ\^y23{)ޟcON9nh) 0k`%f1u(;s3 GvYkR I-ХP|o ol=+G%]Пf˛Sh ap2Oh (G1e-A#;ݬa*$)+>ѡ+KqE?ZƢ]}(A(_E/Y,A1dٵ$Wr⽅(DY,=0pSL*24.f;ظ);*@ݏa0hOV{\晇HJ2⺣X:*t/t:h&NNkZXtMvilI2c1$rԪ.fsQ5@n0'S<{a<.~م* |XLb=.-ЩȎس @]43c4((p ȅRu 3sAJ EM4K: Β򡷲DSv4vkk,,mtZz]E@Ly|0j-6'9-D UY6\ZU2䝥M1f^#VߵmCsL*ؠwGRngcR,Y 1$Z[S(>1P:YFR[-mi:^^$ wcF0 )uh#wHhDhu1ooYєT('AK@yezRxG)8@Ec^%ˠ :){'Op_J"5t f(]qdLQqVM.t  W՚4?#=Hf c4̄ک w-oepJArVk4РvT*+=,pYC@.ZR9`6q-c'򙴆F!a|E)hRtƍ4k (D ;.=}ڛŋ6g!pјv4/xx&azx(@ v.R0Q !c_ IGyp)6pi~,}NP~Gx8MY3s G {delw(ϰybwoYўsᾫk&q"D㗒)6ҿlN3x\2tQ2EOq4=2w4Jia.B[PϘ| 8᭑͔L,|ST%E^J*-~'1DG {퐘+GHJ}#[~C8)cPy:CK^GsZro45GzIv"7XjC5w1Ss8a埉/ީAڰR[\6:@_t}e%FhvF%n-!^ۏ"Xr}3x+n-)%-QG5+.KXcDèVI=qB YE9f.~K-c欓-*27,Nr= 2trw '+{1jMlFf ôja9 pBx?U"6'ji *#lR  ^CԶ+\cjwKtj˹(PWnO$S7 >X7l,]0dE6Qd?*-䷉(|! 3M+⁛(lFCyH\vաDe@6m1` EͅmҼ hC6mzjub,o!)rc,ܚAv h!"*i mǴdMJL̤M:?a=c|٤YMBhT&cz7` N*l-+텢SΡr<|-q+>8gVޒ T9q}KXZ tK%qUZPY2d B 4柈yuGLdNw0dHwEI6l4 LE:Uce'6/6mnvNQF! {-Q2XӝC"*qZMg4X0U !t{Tgi!ioe;}1F@ŕ6Ha7#%gfȉw5 űKV?;#IyK(=Ndf%˂-,= LGX\O(Mo]U)D6u~PG:ZX[qY;諸BHP2xY `5$OASyrhm[ 03?s|k5C'fN= x-;ވb~@PءK#_LgT$p#_(˅ѕzLބ+kszqBK)vŴ4ʍFRKϽI.EO6Hpqs{ۄ*фh/"|`b211np#_(˅ѕ~*'uMدՐ%S61opMG ё`α'\YfRXvY[ڭR+t[ BS=)d ;*lߵ;Ľ._>KfBqxY (F|0.Ve%S61opMG ё`α'\YfRXvY[ڭR+t[ BS=)d ;*lߵ;Č걟Cs9iO׸Kfoiܑ_>ɽrk/E q4x:6.c`O\mIdF%@?U9FsN+~SBw$0{$`9u75V].c+T J;!~ZH|E4;aAqx4BsS|11np#_(˅ѕ~*'uMدՐ%S61opMG ё`α'\YfRXvY[ڭR+t[ BS=)d ;*lߵ;Ľ._>KfBqxY (F|0.Ve%S61opMG ё`~){ _EcҮ&M”# ө3jd2h"dZkY;PCYnR34Lh&|*1CڇVpFDgIϝݝ%xY (F|0.Ve%S61opMG ё`α'\YfRXvY[ڭR+t[ 2 ԟ2sS|11np#_(˅ѕ~*'uMدՐ%S61opMG ё`α'\YfRXvY[ڭR+tA ngc}svWMioKlBˈ?\N&(q=$p#_(˅ѕ~*'uMدՐ%S61opMG ё`α'\YfRXvY[ڭR+t[ BS=)d ;*lߵ;Ľ._>KfBqxY (F|0.V^Q7sS|11np#_(Si0,Ͳx| %*+""=7^Ztckm5_%H֩ P ~ <ǖ$`S X󄮹+ hT.K8;U aI:D$"3kD5IHY}G,RX2,:+؏x\K[EieƹyĬ>?UrQZv[Mn:lg:[5i#&h+]9,kbW9RAQ  w!WmC3v#$!:B۸?씿:[V f,˻M8QYܤH &*iBgå&7hJEqb þ۞Ss.Uf/pGO^_͘6~5RU9xqjpc/*kOQ? 0Ù7jŒ |6ړ4j2~q=Fa "שeUu/,#NH9F?@j7jŒ |6ړ4j2~qFq#mW4O|11np#_(˅ѕ~*'uMدՐ%S61o n\>qَtRܑ4rd+^CWKǽfMCO[ݔ`%-75`pv \,=R0~jt~L2=VESTфzx=!KŴ}"+˵œM V]I@Oy o)3]Y-3C@q#Œ |6ڎZ%hp<9`{?3H7U H < ߲O?Vr!BS?56jA!y|m>#?RvHSe1]2EZ;g O?6Ruֱosjݻ~X^uQ6Y lHtZ7G;e&W)m2 9fd ,)qSssT,?"P/ⅽq@Ed+]6PKܢ%xm]mm2X=T l`sHU^v9;ʌyҬY}ܓU+$>i6D/o#+J7,ѬrChBK=W+mmC1m'l^' UHTـ~37>x_mp 0| */p{WCUVǍИ^*ÜF,=@,z^a!->y($ƞ8^Y?^8]Sn|d.B}3>رyH6R$T؍(>8Vugzu}cfChvaոs_9(}m #6缈p*9WVm#JM?(liۥ`GZ}l97 '|#@LzULl0} ^CV .nA!ꨞWs~i겣FXkYAG ӕ+XKͺũ厭 fnpSIF9l:˩n}|YdM~?o9#B&k\Dn5[| ܩDxnuBͨGmDmkeq^lj8(s"=K!e=۔"s`?ت`.MD0r.EՒfȦصkjh!}V4+cmAMͤy5!эoiVA%9Ġ-_b?2YphiM <6#=ã P=gM7XM n-6VW3ܮXKJ Ze;\Mé3!(':jZJ̱qF o L A!{ W6LK*M^Բl_< QXl/dN5VX55hRx:,yDNR"$#tQbxsED8tD'eE @CkhRS<7iA4lb>)wBDVv-_r B2yN6iU s6˴ObY)n*,bpJ1/T 8v"hoSSMA ^_̭Ô7WKs jc^ Đr2<#Bb1/U)Z\xVR-Py+޼kAIS֘DZY4Ҕ7-TZ>Pv% +4?xgg2gS`Ǽ*=).Ѻ#bw {RZH`_\ʝ6_E%`ۯiÈz;}j_a6Rd8Ůxaj(e?)`PuXVk*R&(Y +]}FUKYsyҀ߽žHoz4ua9NT<0 ֟u^¸O A5k Z0hg78r`tȥ'R퀅ۿk5p?v{W! #r6BL,KqLkȥ 0`-o <_FDZo(x' 9o-#_ iw{էManc9߬6Aje4C mZG{,G6J\p~!;>4چ*[oI6&zMC7F +YpnDG(+gSt z 0o4[UE RюK1dud]2|ǰF`(S@̻n]n_ٛD|2,$E xeVzC1U)ek8+{{NEp :姀_ g 4T~%qHkWMׂVY79q0q.3'h"r̯j(.'Nga`@U%[L'2 v)'3;DRׄԯD CO[z9(/\sa cɑƃg충"-uJDwaЙ~u L= H=ӋaTܜFjB "W9 z^wzq6.Ui|!қg݈/>翋t:{GҼڅʚѢ5t0)? ..LPr Շ^ /҅[wb4R_ǒ -fxƊ=fˉgy3\sPtصyN8nAr=a%}yrK7nj)^,@x>-ӾctϥNBpt_;,= YMbǻ} OTfT2U}wCH_@#Gѹ,:4˂гx^Mg֖fc wOT,GuωwN7B5̨oM8rxHXl;tڷGU(`vAAv.wYoBZ"G࢕{xI> [7\ 2R?ʚ,/mqb?~c&Vւ{Y4z܂k]k\ΛRӲrIo=:G=<^"^xv`f1\Uf XPMz.ΰǞkJ'g % gQ/+mB;u Z-1I{NZ#T'u`". O4Go'tAfF<1x캈me{cpvr+n;ߡ) %gbV;Zjh1f?YD#J.v,|MTZsspv?.wqa|mwT̔,jLmx5" H YRTpD7H8!k _i^-+?|/Ǣ |xm6[[`Fg ,Hc PZe$2y,cGy4!.6G"ط2ΐk0)\ܟްy*;y/mlN\4)FWWJ܄G5~1 ̃Y2kMw(b rAM=5dn?Gg;U>㲰Й[(O0aܜmV*HEjJL+[RZFggFc-)h=*u-zvnjJr+~l!H7/Сn,&iǽ({`X| =jus7X?SDG2) `HR+mzu GkA^nO \վlmHӫ'dKg ^I5޳OCUXm_Oy F șAG\ONhqaʂ=LYhfwrŖ8'1n]$/ݺ?}cU%9ttLQL~L_1O7wk{8VB}Y]}7 ^S7nc^3!PYGČ@#սU"F/)Cn<r<$#vVatOjܢ4F!dxm30MU&{⻶;5(DQJx`drl+p/#@9EL=Jo[taPEe AC1֟eec(L:`_]8]i<ZIt%W4u;ӑA\T2X3K6H"ϕd.h4;dȆss\Y$ _ݸrW{U(^Fq0Co8,טls ;#IƵϑt؍Ly_}oh$d!BMzLf̥HNòKq͆b=+Y)`QdR=H׶9Lw).ڕFU#b/X0șyTxºQTPqhSüyNE.l*G2*!j?B'I\G=&JZm7KnP-Ȝd./I mKH2b4!yџ;5i1ʡ䉋7 5eD![z Le} wIe#vh9?z$y+ U7nJx hH[k%ؙBݡtw.ЋTRa[R(k¯ہ5;Ah5McҝŒXR=usڤ-pEjn{Mn23)[O3}+zEl".8&]`q. BL.Zx !īp|%R rZ 9rhh-| )۽U al+DKmP8]:SB&юUWL|5X;.8l.]9 T8ϥz] ^vB}DSy05MnM>XGggQK\L&H] E~<^]Y=%HM2ȍ+; ?D sݡCBSg%sXPZ:K`W9:4a#=D1Es,[mȾ_ wI&\7U dz.Mo fn1Z2Ǫ>@K8T}s}`%-|bpZxLwu :Euwƭɍpla[IJ1Z,-nz"+wK&nC&}RjP$NyE rY{@$d ʅ1aER| <σ:\/6 9/UT5NB~˭ltK#|++Ah\ Pŗh bZmo1bzP/7 B?v[*,~εYeU8Q+c k6Z{x<9}( b ̕ш-l|.;C8 d[VT.yad&x.Bs{&ƀKh= +B~cҷu9+[te> 3`vkm 113wF/VAlj8q29,DvhQQu]HC/+ڡ쪓*^h 3wkC&!ǚ;N0*,z%(|^rlUo&q ;'^ 4^^!eO\>qF298^SEϝDl`.8`DrISbEH,$k8!+L7sXOFZ0{6cprQՠؑ$BpBr2_gdyؒjԫkE  3)u22>|O;1Y < =д^ s< rkVjB|v-dKn`:5'nJLjQON!wnVzfo`XوÃo˪͈&Vvf}_Dŭlƽb_B%EZJK (V_`\#O`H\3L:ҏџx76nߎ,DžrcUz!#Fuj nMСJfF`*W2 އͱ"(VwZG{l[@r~) . T8tkzǂAfEe\dwVIk`\J!b8.Mo<Ї*|$?>0-J^_Rvw_%20 D !ρ_ WH m 6R9^4R9 hd@ȶ-blxNM"')` }[qr;ߟⰲctҭws9+cMiI^Fc{62F?ywc0uK-w{\Mf;9 G *i 1Jĺϩx} \y]At#4}*}2h0/糙R'u;~CN[ : Xq0pmώ= 4j4e-FL4Zc-@Qn=\v:Ar0a&rB5u3 Eڃ$Fͽ&m2sۻyQSM'W2@T-Ŝ뒀WgkaƼ^)B3B( |*xzR֓,%G[Tj_ir'3JB9;>|PGO8PhNQYJ<[+f;WƵ>kt;VśR(4Hf4ZG)+E9:\"c*j% r-oF a[ 2;XuRۢOak Y2xh\7fREI UW҄:^a_|ͮe mk˯jZoS@iI1)p:YH K M -4xdU2=+Mss oCA`}5(BDcZ[3+_^4AԤVuC ݘ/0X7ଆIܽD5HTyƽ?}C*OnǂRiV}6 :u2#ŠwsLJh˞rv}a1vbeBLf3Z7KG``_wt{q29x'#. :}ўxb'<REBxι0/_IoTApK0\''B5x;aڗ&jY\m".J!/势< 'rmLAA}L`dn j_.P+귖)@Ѧ[vk|#"eyQqŗ5ߡbK|4F+[iK:J0Iߦ2 ~/ kJ9x%Nj>h:CB󡻢&I u҉g)(̭){nYUuupB \C2XD ,h]456O\aNI9o#dPqJ88hyT,-&Fŕ-!veM:9vo!;&k@5)eYW9i8bQ`lb/}H!G;=}+^an0JO[ybP'@е}KjX'S9U_o3ΒƶW۾uy`XQNeS1…is{]P:u!JRG҆~ 4 륫&uMu'1:KN+61TϬ9_u 4S݄s'/ܜ)x|Yӳb^*3%D0O %60 RŃj!+!}@\zHPĐI*239틧94cJF6JO@_QRRwބywa&BWs2ti'6U- q!^li{RL]8Uʩ[Kc`М]9޵<ӗ@R(:Bx$(h9Jn T! s-lߺq`[%?;guFs;OS8:M[t0,lYa 2Y@}WJݐbiT ЧKh)l'`(jP"84NïQȋby_F W'C D:ǀl&}&`l4vt_H1|z{r6>$@97'UVC| k;bi\2"xI - f9^5Uu\(۬uUAl+aIxqUDCMGfcin9/D~0u֊Zg"qk/_$0@U A-8 fwzY5ZN(2(0t BD?olS^яlF'T+h% Vhx*py Nï$-xX涻<҇Q1&hWHiDsX>1^KsJIϒ/|1/q 7k#*a(8B `b5H%NwY$𦬡ccG#wl0HMaZM#F9w)Qκ#$SWE1L[F52̱\vaqce60KYF*-J0>*YXRw&$/95*-Uf4kH[ö[`iȉ`_KYW-NMM}}:4. .9f谲=^,cZ/YRx: \:q[ #5ЊruOM^lX )͓^ 7Γ{v$Hs^DYfXMCE84֧b $y/4ЂlO( 6v+ l=5N!76DN c, *˫p+gȼS}5P):\_*r&\cЯ%7>稬DT]iƥ3dx-8- Dvj (~dNBC f&@dHk+GFQFnj"n ~{J;͵v /ݏC <{T54&w1 fwGj jSDmX0Ι2o.<|,{A%rM4nk P88$NQ PTo-xyuA AxpeC 6迠nK,)z HZrŚz D*,=x|a*t}v ހHz]O|G၈H4Z0g[>-؏3vdi FnCid5<=M;%{2wOnQ= 1MxSYE|4#8 sgQ 1ʲa6ѾaLoX!nnL_>w(Z7]@U]׼1Ny @B ճdܠVT/$'Ur"飂?$ %[&B6 kLipmSBV,X׾_sW8$ȵ  *^&wwRYeF@'hT&e/1;YgX]Ha=ݠ*hL Pb ^nɪ)h )2 M rװ/umLtڎq(֟p`Yb,R׌l}c0­KӺxR{O_ P);eTF5Zxڗt*O}Cn]_Rq0PILSi6d*$DE]L7}dBX:G"ۻmHoBW-L?̙wW sy )T6g6_| C#א%ߕhtg0sU#!:ԁJ T#-4L06nL,&N_u~&Z1w 钄gGKfun5p#,,4jIQHy}l]iK H)~ p49gĈHAQ6/*>,d #_Zv3ZN^i@nx8И#uryMh $IݳeHtMAL6Eo0>:K ԃ 7R/^p$uiݵ ΢5Տ @cy.˽!zt![ ;W#5\Uͯؕn5Q࿋kۿ` fZ5(w/y_d^=9MeFQCf#dhnH*ٮ0]S/Z1Uf( O X3P#J_c~Tݘ׍L:ᆴq` ׍c S,Ot>~,@r$!̘PKP]kчO{{36/+JmI-FwJa1 )B:#|PjH U^m"m3ЧsTGpʰ;'yA>/)/bMlXLٙgERщcuk#) ,ѧ|tr9Vo %r&eZ/'q J9Na*p"?%:>-; 7Q} MD[ HN $ngwjpo<˂@*_O[19-\ E[Ib;DՒNQ*J1Je 6ˊ1`s%wTwhyK&, ),ytBÀWi|i5 è\XA$LROܶ?Ь\ăFz=a͟mG TgQ 39(Mbm'a=!{Q_y 9؅xq;3?)m>kΣ5?Xb۳db]R8YSK'w),O" P# @oAMVg {͌N9 nq|NrCA6ļ j>pr"G X­#RWFTYN貕 sml'ޚ͗{ZEMB8W}L2  g [cBwFalݾT(8q. FweܚP+9+(چ-ӽW׮KVC\_T#Lp L[ur5)]61]\fhxxg4XO)An'-]^ÆyjIV":VLFܨ@XhK lS_ɱU/Lɪl[jwJwUF ˤGKgg$&Ѿ+:QOd@n-h2Un뫎mQRuO?_AD[aS*L\s<%6〔Ȱ\cgjmZ*?ORUwt.bYwn[tͪH@汻Z0wcz&5Zv]W(?yM\Q~c-yq57?kJݑ^rDu0'KbMy~wxy~/3Ws8A0$ isv 7 oP{S.lEsb4>8`dMl{YVZQ-S8䂥-  Ci3{SW3[}FZ*Cv<4,sD0avI8zxf_f2\ +'lM:%-|[x?o!n͗;t;m0.{~$+ 5qMqe-N_! P:q'ooA^W"i:Lm]&/ gJ连IE]a*5ؒN!eҵwnon(y^9lṥ5kբO1 p$C\sxؔ+#r# :AB,^캫ZU# :ś)/rl$XY.e$3r]hک<3mv`zrR$kCﭖoWEȎPqiZ tPO}mxBAd}>Y ;m ϖ=R~;Gձ:Z'MW60(q,_9۝3>LZ3svLazy(U*\g]vI$πd%7 DX,ZSΉvH'ռ7S,q.`u gk]s]hhbź]Zx[~t>` gEZvgO`x:ٵCce"k)7$@*}) eu  I 噊Ix`S-S`fujsq)vo!)gBld2DJ&k\B$O/?A˒~Q٦E-~?D.GS.?V=g/&ǫjƘJl;7Msp2},+@ x֜ct*;N|/*'bsdoC*z1X?aHGވ/x Xp[daX5K pl3j.ῐe@5[\0P)Or{9႐c{R}.cMDB&)Ih5{14BZD8<3kaQl :A7,Zl'^ b\MbN٬$AM<<+֟9r$=`)WN,!:ZQOiKaD7 zE$: k,n{b5C6nҰxC|X"q]NC(e'ddž•w  `-}וC7ętq&.iFI撠8`?ULz@|3C0f J2tAKyJΏU7&FT H4+&Lvj-] `Pώ .jozh nԪi:8EA 7Q氰HHl+rKp%=EÜ8D9fM3A#hKE|9tr[ֶ=9%b-$w&zBDDh%LUo=q/DC} q|Wݯ'͔N/߫ݠ3ˍ ؤ6!1!"*“B>%`D% 5l "߬uJ4O-pXʟ okyOJmԱT@] .%(|'!])L INh&"{)#$"s\YR˨*D;ɵ,<øQ `VȢ ;E`C"|oMnWqn90t4_r( 'qyˡ: 6jkwC oȣlJ[59lъ^Vʹu Z뷒ϾQ3Zh)t%: p>&Ghz2"6襮)vHߖ'3JOԎ-~\->nmNLCCG\P(*%U@ XwZ$ xs yfa_A}fB}&;>pvgrF r2#){c-=U E`~5i ܶ]i|7Ǩ昄'ORpEq1^UQGP~],UpҵsPaCc˝3ЋR_EĖE&M5ben gE"#8Da!Y_ٟ087/{.y`oUCywclj9QNlчaOTuµj>yBYĐ'xTˊȞkEϔӆ HSCߺ('$(bAF@zW1?wu~XF+]X7Fgi!N?7SS{mQ(KV*>PTer$V0:s8ǧbaϊW9P1&l)jTqB{|}JV+lVaKW|n9)4MQch>#VD]AUF>f,l/;1`G/^鄦oME<CGK/6;h 1|=]ߴ 30B$ C$ũ*dxPE7ܘ%_Isy8rH>fk2$<=EZE R+Zsx&ץ@PgkݶWJ%>ο9QMRv%PMoW{W>^Z V?YR%U%z1GPوiЎ<ow;j3R3?/QׯtQm0/o0R!4s|EUD+/rO ,W ep5jy%p7%V?(= l&6>T5ӱV2H&.K_xs1pʩiX+1i׏27qg  q\AJօ͵ u .]_&#-7jG,hVq#kvJG1"k1RS۸0WB6\wWESMym.vӁ/峕kCׯ5SЕ?E&B`[o7KB[C~ X2pӨX>PMvA3H%Zv IB4"p@ iGTvFL;d'Df,CLy@[Y[2?_I2k]dMY-0;.'Iz æoB$jh,eY2}|.X|bσ3Z7,$ Og\M@U뀙HE-+"hF/Bs1a"_ Rhu'27Y,DUdcXLj)5wf6h.V\Lڠ20YN7}/Q+$ >v IjiVI}: fUC 4-om~w[% ݢt>ĻrЎ<ͧ;E+.YԊ5&@1\GV!q{!ElDFiti#FmLZn;/+Cg/I*% E¶s|hգ*3>XPm7r"h-I/6Ky1Lo][22 $I9>(y.b$;>ƾ)x0]8Qr`rqՖ(n.?YÒ 9 y@>qr$S< ƾ.4]. %L25zYJ׃pOW ᤶulsr+57/ 2AH5+~j^"E]pJhuh%ڎU+NǮtj [GKtu6.?rGÝaSX[>fbO%;;zW?PS}^XrW2 >Ό @`@%ưlI3k ? px=_٘jJKX{#P5?!LLAF? tcq Ann};P-7mZUp" B#ȐCbGQ@E^!\j2ȉEBJ(`jp.G3Jl+Sfz&A aeuMh i'x8Y +5 P LrDuf59][Eʝ1ow1si512n9} &S4j4 (oY9I\_{]"a>նJ|DU\E@ -RDD* L҆473X:nA~XHEBcv2E1p,r6$e*2Q@8~X |CG '_2:38׃~fF'挰)$ۓ-WvL&3+Oamηkӗͱ<еu Xpo'THXe!(pl7zn 8TOIVveTM7ᄽP-§~W.b"8$y{ ͥwWU۬C} =mDm#l6T%(U% (CuÉO/8߂aMvw,ڟ}%r_h$UaZ>u",=NR#=o/%>O>e;_HF3\Tl:(| f`Q?KX26d! ̎o[e3h"7QLp }j;O./Ppʽqimgs4$P5nQjP0x25l%U>WLl;gWU9g?XJg[׵NǟKFc@`$JA8@ϋs$+x1=R)/[zs )!?lE:Au4h__#7LXذzJ"G 0ʑբ|BJOu@CޑΖʀ WHr@0DX1`7@8\Lu2 Yܛϫ 7o!D'3@BbrE=K!?q4<kEtDz4Dm%~H^nGC7 5o5(DvF% A4g&LN{AͩB0dҊ̏Y3!=2yIÝ҂J]sUl}cs3C1Tj_fo׎d9J&g$俎n㮳&1k""vUt :oVY pE(NXf+P"R=+ m1P՘h&w_"Ul+Wh8@QU="rU+]wCqvd=F@+fHON!z.uwf22,zPyv6U-UVE?Yl_|D}8=6LΓ^kg[/= y n/>|&MoTU27 o)QE g1aw.J4\Exقsm`3d4Gb(=Gv#a^9Y!1 QF@^5TXz z=xL)?'0t0r Q$%XDva`*6RK@ d $_B ̫qA Vrr6ae'qeE" USe$ VH-*N;v~uGRH˓$n9.(o61Nʘ.MXkGV܇6.}Wp:W8-դP{6u XeHtfy.ՑM `췤fZ8V35jlސtN4^H =›I^=/;?(CѳOai\'Tq]wg Q@ Լ8φ3~vtչX(n>_(I;]<,{qJđ57xts2ݒQwIcx WH^zgsNRߠyjC:RܨaL0qb\w԰P ^93 HD,9,D\>n Qk+@T%+VP_-o+ 6ѧK{:#[ X*ބ~9Yq%pďDlr CY u#A wWkX04u2#wF0dtZYQVkZ~U2U=AХV/ 8@ߵQ.8clWVht`M٩z`*N1G9/1~+'D blݟ$7!|J?vRQ&";|jݪgtjx8vm唷˽yQ(!28Bu'Qɩ疤*,8@ rӜ[0q٫^ !Ov"& $vĜ1BVL G"2KkؗaCd' a0!/dcU4XX+ZD'H%o5Gvz7Go,+oKO$0Cu LTt|fH`-ۧzyr>?=gӛg[3!s^BoC]tDEw6[Ho??sE4 WP\t 0GdXϤ5Ycѹpو#|I s. Zݝ;r~U'~r,ێ|$3#5r fyQfݯ\emٚa|[i DF\>eŸ3{1JþƎԌ?N~--eV1]bIYcL"%s0.Y/'c:MM -MOơXuN]2$ կ?M@IH9ufZ=4rI=S:dI '|ss뎝`bKSB ܋KY"\f6è9|Tچ 2<z^ }[kAe6 mjCqv=[0 ƻWm&킯rϑHJ/V[x0D'f9f}Ь0qC)T7ÿMQc11C9m'B7t?`K`? ՈMnǁl3 P#B.8i ) 10FZ 1{=o0(G dyl,P'JR9Mɖ(lxUHw⫇Y>lM0sgLl"U 44owk6=9d^D=Tp#xmk6n>i*!{\VA*$Cvܲ62`}d~`\<kewIa|6=!K˞`0Vjw?aH&m`XDQ|`/J 7H3;-tXٯf+E.E)PW;66Ce2GR=\IG(n{Yu26n1k dY,):e!4}ED|6u-;UgWγuypFKH*sz^yj"˿n?'.nPaVa,g5|~Lj+_1':-{(BA7_NV6?_)icjj~aR9@,­PK7*,Ccd:lNAM&lQfnTiK3' D|.5\/Fؘ}OeD0:@F4q0226֓' "1_~O[[>8Lg8GP RXKKͲ8kk J[Ḯ{ QOLY]U LC&_f|D>VwPBߧM@+g) 'FěC0]&{}›8ɉUZ>Ѳ .UB`@(":v2r:2gs 1$Ls:p-CgeDSM83 ˞n8zB2菎= oUicʝ+(9=]ҟsO~o'ZZkI˭d%0w/SDQrQC$GKdļo0'蛃"4BΠEYa}29[oz7`% 2耿(aKOQ(+C}8%CRݤ{DӋL $rA0ZɈ wcp÷t! 7q +bF@<yMf@JMO2_+)7)}"[Œݕ+DMPvASZ43-¦4ڵdA={$b& Ń+D60uǥȒwkxX݌19|iXY`nqHX;e#2CcktKaFr"zɖ'תg}$ )2ys5`-W ;#85k ~Yj3Ay/\n]r0ݿdWFV}a|S(=6H'.o,Sn (76tzj2u.~8II?$8o9K J-*4tyi@mA)S`TlaN-)Ws")∑x! [*N9[i >.YȍtVA!]GwË-;@ U>R*#< \6';%V&f)Ynj*D@Zl8nu,\9l#ʮ5P{|tAJEd +;S˶ ^ĘmṺ@kY4j 03 5m^V^`Y<BdE;9 Hso89sps4* -J_1EB|]oFɓlaYn-Z |~K7$T^6KLHD6KavKl ALy8wb[spި* FwƨttDzD>j%azYWX\g \ =F/ςT!C5'?r4^>z8g&+ST-y˨Xx$Q"Nj$R29&ZiHV\wߛH!k,^n6|- <&s=u;: L4Mم!iXv醙 a߸yޓ9\pT[d?ӪF&qR 4y_KNݴ(󿰹yD'3V1tbT7OHH}'nHg5'lQkHH9Q1M^ %>_Q|ӏ)\ cM_#/fZT^n4[tzoـ㑲,O.M!ZpVU}X.`,l !l"O>xE:M}IgٙOhToR5O\r?7$ pl B8ѵ[ ?1RTՎ"8X͜۸{:m<% .r~|?頤6Mü@>C$t+eJ[:&D{u JqhXF[G3\B=3milD3 8WL~D$Kw|\|BhlA m;\RǝL$bP O..ØCŝkݞc^'TvP% T֣٪.`!%ʹ6hqm TF lum1Eܰ(6xzMVӚR}PO!ň_ڧ7;v$|6-Nm88߃.i' -ߖ#wSZ6{ތR?8y&𺝫.|au#׮IF"j9Əȇ/BW|n|6LSd+XBWkfz,P8G#l7zN q L|O^N('%^D/}nOU#z43)c{$Jd.#|D{7 *g C=O?ǞgYX0||pT;o'[ֆyJ0m_"Sn2Z"Ju#0YIWzIi \տ':():{ɦjQYVB.Ql. $\$0rI)Tm\f:D{Y,NnEf3HCQ;Ц_]'\3uU>p rAޘ_ n.ush*uɣ^ =9G v*N"4K-F8M{ r0d-LHo(z]h]23Zś/ˮ-}yLi|ggy|"uݏ:r bp? WOo|] M_(j@oH`MjAM_51[Du\Ӎ:sV2wX~t)JQTM DzļdH8pQ-Ck,6f؎ʯs\wƈŁqj% m13M>_'1Og/4pQK#|<#?}@>ˏ,z9e@nNQ"lOVP@<(`.1X IMuNHbl1}_Ƚ0P;ܔ 9okQܻugD4(cyߦni8ZqU`oS.IK"<ɫl= ?$fbnv9 4Zn]#cxBV:;+Pɧiݍ/w^yW 1je+u7/8#as)3ZBY㥗&F7WlYr flT2hrsi%[iԠtA,w2M6-|';te?!Yg XGadDs&|r>a"^&TP *^CV5׺pB`kоo _ʏ_я{eRQ]G0vL rx/S'ha)ʜpk/*cJ"! {pr%23Df㤣 cXL2@_Stb5L~}۞?GeISe62Pfg^m0J G;M>.`?Q~\p) EB[#S>D# *NIT&lk&DZ,\Oe(b*m(s9wh NOFc:&bpSNo0{/~tw4"&"ʄW}hqU]dqlf"W%; L%(Rg( !Xci8/ s.G#'>+%*Hי:)*)I̗vH-^mL-Wl;zxPFm#`{&LV"}Zt>;T5Md{]SNd"_k5l.Źf}3Rf_^(ln;f iSX gv >6oB01e#ikyEĈ{1(i8p) "GV-љ a]-,mSgLuuLJOT%کmy4ĸ;R5*0X0%?96 E1o ׸mt#0M nQ;*;g.6v.v4$lvO4F347l2šx2Z"o@_^hˊ$JXi]%z՘o‰c)*#9$n\ӷ6E6£VJ |wTҴ+PHL;0>\D픹Ig6u20tmoMd 6|3 5upC-UA {e'5^I^UJmst< )nvcӪ4Jq2eM;>4Z߆;}6?*ϔ?6v=H7o,x&"߻[fƬ0-+AXɽÉϲ{il>͏1pLxvhcnlshLdumoKZ2gyGK,LtJdlml:4X{)SEk܄hI-d5lzi~ m.a"3 y`Ӭdp\(egJσstwy.%/R.*ۋ &]_bHhe@fuPg |2y-P4ka2S2VEWQ> ?AdHjҹ?bLxXb+x: #wGuR`DX%z!+9`𘈘z][s`M0H:D_UZRv {9$ADO/bR|1NCtH f4.W֞X;jL6~}7 a,#ӥGIV5d!I#ʶU^+E|po\Ȅnq69_zԯq-~P5$K: .ƌKKV }튵cVʣA_Pһf\!BrZ 3&l7Nkx%2E4sЃi+xF@}jv1I z!eH D9mUǜ_u^_BܵΏbͧwL u'wPg޾QuF ZL@p:~9C?.LCCO[dȕAkjFK{o$$ v2*#^$+'fxCEXb$ii<.6D泶PȆ @c .w5uX: wLkV3[kAxHAË&GNb@H7nw60ZoEjh߈]QcF223^;1]*&4$0nXl16okB4+f#mj)?0Mc$1e\p_S eJiw#`Ғ@OiGǙG3?]!)p$K1u+RP&5fܧ5?v2 ~>EN3}QOw$UJIў(m1ۢAd(]5e;̮@ѱA!#B"%LN0؈ {qؗFZnSڬ.Y K$1+Bd~A98Llj(8|î3M8'Bm 0XHp,]qYe "u'3wCG`Bn`߶>m*xhXVRTvԞ'ЁB0H b!,$U;pPL u#\TG!&,B<9P{pt1X`,[w6`)Iӷ/WnVɰWK amQ1L--0\dWos0MNz+|d7H#"KW tO$tȶg<an96 gf%2OW\@gןtMg/w ra)7 ^˕vgg(2[TZ(cb2o vǜ@ww(Lɦf;]BѬ!S W$S"}J^3bz'>c ΋ taQH]E O;W==mI75X+,,rGz&4 L Vp._'s >UfD>.;w5"^6^xP ^܋!* Js'SD˙,J_ $cCznP#(-ǡ\n2{ÞUWMKaף[j>f"ߗ5q}ag]p$߀LG\  i^:ѐ7]6яBV}ߌ8gXa ?qܗG}7F>Hy, aCMBI)8C-: 7|ذe濯}=:B-YgԽ+H=veX3Q\eq8#,ʝIAiEFTDq7vNh;>} ?r- xCcFLPUz>ij~}\V,R~5c+.&ѥPB'=qT % D&z<#UB_udt^Ŷ6GY WƏ7ӕqw*55IJF9^*5pMT׏/mҢ,wQ#HipsO vi4sFL'|bR>qrq'a3L-_vS6Ա 05RS2P˽iTC]EtepuqE*0t8[ ?7Z'4PN]g2{cC²|"]3z׈ZO<9WٯjPDahIiBr0y=6jaʕ(uH"-)1(#ي8kRtbM:ڻr4EkurV+ro(ҹc{ZjZ h'T!]vPfPI&]/pVy'VoE}tzHPCT'ϋ{{KjÈ]aCKmbPA_4AR 5 ]^!p)Ol9MH_Iir~a \IXόɆlr"inyd*#5h$ p,X: ff yMs4I3*7tFxz9H$!dd;=ЩN sm.9iid敉x^f=l#ooy?BmTtraU}qU;fpL[X*jwpPcX Nɶ5 Yt{sf&Z[?l'd-ePӏ,b('Č,(Vb\ug뢫%yptOtrlSMt\kYQY9ܵZ'z1Li /upK~#>M`@+%q=/y1E2\v?[($W,;gS ț#u|\XU=/JĪBsݚ2EP"dMpQMhv$l4U xݟ&iW/ Vc*lGEm;=+G!6v_- |i%uϮ"B%ϛĺv\X ZA̵ڇW}2&~66:Yy5+`N8 M=&զO(3 8ta:͕GD:||DE&%J +wb )yjEě<\'[ñ(eju-z * SڠKo)g^KΰxD\ݰ9arlxʥV%F%S`9iᮂ@"&QBl&tSmp~Uϟ12a[:=1a˭0$A<Azv8cթkiݽ!>^.z]0tCdԮ ˒ۛ{b@S@Zxj1(2RKb[0n˅?Zw4gOJ^504?(4P4$`eH&1K9fk$I(|bp6"DHwycͅ>CK?J Th5(^g5WMj>1kx ?B3t4j`n$h,zW/^R(:cgCQbs_Ժ/2@)2X5.Sb=p/uU/ր:-axT *Ĥ6^Oա gRM8%{Xa^2HKX-É{&~4H%)S:8/~A$5JlCd^6yVB!zsk͋E1 iqϞbB)l֛3G83ģ6飁WVyJL?[?mrEv^G~5+J7,wO(0kBNLNe*皶]& {-+ fQy[5o;TV9ׂ=M YUaIu z3Ns!xESGw6- o]UPH7~ ;Fko>p馁xK vC9HaC,eXy[9Lig@t7Ѽ0Wt%qp Gw aJ.v/y*0uZ3x-=L ֆ!)5EḰeCsV@`?(|#"_Bb?E> 3!R83c&[?X1.2(Co>k(؁GMlQ]㺐rC^Pf,b7Ic^ _Ŵ1 x׳)x  oeȵu5Mle3Tv"):x.w.~%9Yfyo5co},"3)]T ?\|&" t; KRcQǦ<\=sb%|p)9еQu ű!ǵf]a*O:->r ? J}Cs(.U"d*&0i _"Q3Q6" ؟mo 嵰[?ٳ݅5rxjo(EqKk-p{ZwWҮqL4}V# oi`piHHU^~?dJ_;؏¤A.8- O@}[ /1Y428LyjB,G]&C&ITx$NHve%aj113'8km-:ך8NEwCwml^R>JJy!KsTJO-n4;َj5ʌ Vg6t0ĸrS3s]5OK2ѳ侁s=;zQ[`i`qゟ`H5a3W!yGUt0Mpfp6MHz`=70}h*@(#ku J]}p0Dr=zEYR8IumStHB~VyLKx@,)X;ϮBr*'C>92?6BV+Sh1oSdiJσ .@t[2+ ,^{SDl%=+d6&՘AF^t~x0=j&/C{mJ^xR2N Ehh>[|nTNm7\dzSdҽJGՄW6l"[=NܹTvڕEZ77&*/|c$& NᯨfWo(R,LJ?pb1h@,BfOpلn;J}4h14:i>lJ g(6B8. UXIihƗ)z,3w~;~B<)F}t%C-wܦZYu"uI=t{K A\žgf4德kqZ(-%ߢu~C{oD'Uc'wwjz5i BQc'yA'ج0[ ^.Bf>] JQ$XE (EVcZ11-0ЃԣK2i];.t)1L2Rtb9Na4˧e=:Fd i?i\OMƫp1r֠W}Y-TcoRR 0X9Ab<'m0.\ G[@!pCo@L*@6 ve<"Wl~)Bo4hN{}j0V @+&Ij2kuyn3HFVGvhpCupvae5}\WM;; }$ ZH %n!4pʢhܢ/!3VOlx]4\ZRA*'+K0ο@)kdU*\='~6&)҃'[ciBﳧܙEm[} SwOÃ[㴒lFPR]>C" m7@i ?. ȯ\v}љv^7B?ߗ`~ZC]b_΅F#'w QQclx9S pp$3fQW)t۝"7d0ʣafX%cgJX1t|{X $`Fҕ349(ɺjȴOTt{4柘us!Zoû`5T wOY-)R%Էeイ\sU`NwE*e ~Rqv~$tl}jIi9 9h% Xeiw6/pwܪj{pø|rW}d7LV`fbm?D&1Dz' ~K y0|XxPg6jtMReqhנ]ju ɓwez܇7O\OC-az2Q%GJ DH"-1آnFn/րn 4}D=@'K7$}9-&kW#n a)0.Vr43e]o(v{PG۞ʀئce)i7ɂcp" rkU`эEUq`eT7_ 7C ˖S fws1)7?}+h ۴B0QJW? u/ P{e fC?eZf~ub Cu, z=IyT=RbojX3>%kWP>K)bV 6Dq"bJw1#IpM@@A E#)z]a/ǯB$,qk$ZS*m;bc}og]Mğۏf[WSBh`kJ]@4{QF8p^a q)î;Et9"/.;Ujn䭅uaEHq)#WO2(?51웗*6uMրT^s*ZI gFWk(DΕi֚iqnL*b.glXMjQv \[Vl@D\`e1(Sί54訷NJ}nn__[UZt/H ;1򪔳$D|!ޓn h[ۥWqV1f#Kz넭NSEjHf| gмq^yLc|Lp_懪OkKޝεsir'trt#UPPHBhbH˳/xCYxA-MzJw\.vX("<|& 7.JdVE<5Ӗ\ ׳HUJ:.xb L̫Q[)kk9"w/)נº%]D+ƌ`xq׌AJlκrdL)}-Di,mnAT̬ez䫋] awXaٵp6|83.5ãL~{xƙ%؟$nB ^SPRy˿ 0@V&vwovY{f_ElqV ނzWr\Y_.ܑ,3Yz@& )<˒֥vǼ/_= +NV8c!|[4ûabM:y\w%Rz&V9H*T"'Ke{-~ ]4kO@Ά> uafj}'0y DžJ5!q rc6PuG./s+GcVeP:{0$e*7| A=)}(k .< ?~1SlV?,!^t}~DgR)թro*YS m$mnG#k\W j0ĞNvPUI!=`b5ߗO֨};d Z˩T<,+t[ BS=)d ;*lߵ;Ľ._>KfBqxY (F|0.Ve%S61opMG ё`α'\Y AJsS|11np#_(˅ѕ~*'uMدՐ%S61opMG ё`α'\YfRXvY[ڭR+t[ BS=)d ;*lߵ;Ľ._>KfB,8ɡw(-~77Y Ê3doy -Tm>v_XsldE8q=j{r opYrQ5$O(`nXD~`ƿmod6M0 (+c,O]xx~ǽ1Mknxb'.xZ;NĩVP(Wr =!h@$BVdwN;0l}^}Pd. չthB53b9Z~Oѩe2,Qo{p,WNj[bd#pFRȠJm^y8Gɮ"\Ey^{c3pS"60 *W ]d@KD ]T3Bq}{Թy< JYT}OE DuBqs<,6II7qU+Fۅ nC ^5ΩcܜU+%$Q# $kb:b.WB1?x_ϋN͗ Kzol̋cM/b`;^Ǒ( S>pԮ#vm)9@Z?ҘEc1K3&8ogDGO(7wu%n%{w87A{u2/,,q4\Dhp5 K@sLWq=B@;H} 3 MS9e^ck3%m4V=kWk ; oORHx*\ﺢ4M# b7!s'@J2t>툛aF1q!EIrk|N5osB"F=S/1/Qd*6< I%#u+GI0)i={,PDnZJ݃(}ت=Q@8=O%ZIXAUNtP^!%-ZiaEi"7_AMT6શ<Xj@>'kil^&g7䀡.oȯ0I{% NT 70rܩ0q3GoH> EkDS)t$aS+ ^k {fKpnqv8[r8+PR+矬#(S_}+KXB dCck|2mVEEPk-e8͎" zj/yn+4ݳa}3^`e`ѕTђ_t|-F.J݈f5dW,W:JZbG%SVođDz!t4A]3ծWtcA1G/}frؒ=ԗ-o`QG`;˽-Mҷ)k.&YjƺY8 -1` ~߄ޯnoiTɚOdR*EKZI%1_If[>ȦB5״=4 Bni-y,sZUymw,|3c^nGqxOrBp8HhzUlhϑ'~۹(#v%j.֭^Ul&`5}eѴ?¥&-{.:iG+QOA]OX=֙ltb},A F }3.A;74 -1d|ʌAwUpmoJ)shB,'+_KiTm!)];O2b'::lռ#Ҹ0'@6^(AX3ѫ] 4~ߑQ<\˒0|<#}jPoPqņPLs#6pO0/Zu^<`za5DzGVUn?R/{suLܜ9x5d3iܫFdgd4 TuF5F3k{őkIB+[ǔY -L2"\/Tg0aO]]xDo`&,jBz#D*/{(,?%w '\ Y+{1NeΆEV`!ra8Z;v '3WXnP=[|eA).~:Q{8!jDǕRDi"RO~ؘxF!UDr;hH0AM8pչ9I~k],ܦ -\54T6W0RUF-=|-L6#byp+nx;'cnן7RǢspbDPA[ZmRa3Z :zQ3.2.IIwm, dToN5};jAV//>yV}2@X͇^5# S2%nZ1VZ.)tF. ^8źiNh"82nl';ɗ 7;ww,0g>cOLRUx\O%6CրV0+ |ӼYu߸T{P!}8AM'nzL2? 5aF?ڌC1΄V{ZG3#>q (=tmJ4gY{W:kV`mϣ06P 쎇~| WQփJTbO}l?0/p$Iē2? -+{3Ҡm" fɳ;L@]wJӳKG=[eTh"X]%&浅+ם#AI[bTG8_ؐJex 5%(%u1Ĝ2^wVݙ1S/ 7,IW^.r)5A.B(^鼎z)>F@L=^&KP+ sb]dqTz6&b6s[#Cbv I>Rh!K ̜:ϚU RI㟫X|ZFCFƃA t Lxz @p] awX#n*}Q@_z Y1B¥P1%;vr(:)V PTtA" 4/$wemP=y7nF ߘ}_aaf%@U4=z_$>v>TJ,xikgir YxeZuԤ"6>27v_>X½ùK&~~DS {aUb0nQ5kbJ ̃W>AZt[F-7N=B~pj!x'E?ɼkQ!L.Tz6"b2\R w~^Pu`4ę 7T 3(P P>MDT EL8AE:JmNhO{'$:恼)ea ˍJxFDYtS qyJL Z󧯺/C~)/Ge41&7Z=\Pb  }+;:OpXZ>zCt'#d q)}4]hb+4@Z_r۸MǫYR6<=1u˾c2w++ë=u}TfaK6)kg7 6o콧33ЊFhP077SL F/cҲ6E%Kib ~mVzMt$N`0 # `cEj̋ڦcF2E|O./`[lG,RQħF{H`YX .z n%?^Q LB4d(kPonǿbĞz'$O;!N^g;:^^3K&QM+ۈN7!aNA4TmunJ< `9{J{UpgISŁN.+Q?`p 0*03+LHߊ ,Z+e̎ˮ .dK jՇaf4a,m;p!Id TCNBGvGЬBXe]x֔[Q.@^~D[߻F6aE!r;4ȻY=쐏nċ킩j{{r$@R"X J4A? [+y3(zfפqX MPB̖ڜ-n7w N]L%0[ٴ,rS|:_aHJ("᩺G/R/,CfLq䬎 'Pa-3.-}y!f|`v`%!Lju2"⸺EuuWNVV8ad Nq>$j;Cw&;\ݚ^nW=i$bέR=p)W}rD^o-G7̦Oq/ @B|lTR?KX;7aoC %Jߔ[հ"5<>)DX2Xyabr:u2o_ `}$fB`wr<{E5LHa(w5kpl5xvr)3jZDm~@jc5"6"ipfծHU<v(s`8A })a{ 2[WYOsjZŚO]D0]m(1444s7[4F\)KdH%|)_p"[ar/*]z,{ q&BKN^7\.MKZF (D: 0 S7jaCISR 7@i:oW0q1d/Ùu3pQc|S7P̣!CڰkA m-."m je-ho3zIn4WX&G.,}7 +50Xu#|7qF|o*z3dcjT-wjƈ( Z o)* vB1#$eZ ]|XR'8',4!ؐHC7Wv ǀ6F7zGiĚV@'M PǍg[>zH1Gݴ?aәrJU);*L;xw&w eq~XG$.t 8B `;݋riCgy)25. :LjnB vrnάĻ[Vj|qht:e)Al9~il&inb 2[1˙`3 V?"^;%|>ʔdd0Э&1.Sp2Nt =!lq6Z-W9<%쯯+6?Jk4O4K * cˎ-qq$L?w' k`bjyie)_Vh>5C^wp+:1'` tu%xxPm, v/KXM(ooGH&u)0h鯕ň3uq9B b^-tD_*b:LhF8.Ѽdf{/B Vx*BΩwsON~]dߋWYdL%CA(˴87@!iD4V>Ftv~ "+檼ND1.I-=3>C3՟l VfFN?cįdr-X(Z꫌{ k"`l-&Oj̟DC_5evJȻ_W{Fxp 6卹焤DvЄ'+a7tF$ cgWKGocʅ>kuZ!d=7\;3?>1V&הN1XP-I2M%Hd0vČȚWN4CXgdWHSmFp/9ѭ,0PE51 }fֲo ?aEJoÛס+|ٝGw@=9peaMaee y4{W}v6E' }gCewZ cډ1A3ȵ}ဌ܌FʜN' D<ed!N֑yH Ef CX꡻k~ b3[xE=J$Jc I!<1(sYI~kv1x|ᩢOs\36yӳվiXu. "fh8|#~p}kapyr`CiQuj.ԭ.Y? Dxam19 t/rl!@y wHVIbc'Umwl: q",)$cάn0/az\5 _҇C2ZJRX64„s*\L܍+BUxߧbY:=@gApl_f]Fpm7gVf!eI:- 'ѴU-G&`Pm1T#sxU>_S}S_珛Vlr]β;uO pSq[y$)oQ-JI֋^UzjNg{$lN C. rdNԯ ,*9(:Rmkr(.]fV.Yn|nhdРo%\ KhvHh`ա1AZqܢ>/Y,,kwTM/̣ h~KpδkFJUǓ30WNFf)+rl!aq05T !XƗn}izʭֲ Y tϗ!IR/,9]5Wtȅ NXD5/EX%iuHuGxA x.d3$ z5@<~I+s 3jKb#Zl1aT뱾sa'd</ ks@{ϒ<5!Yi|c̈r]zn5r<ЭPjR:?["i DΕFߪZġ/p)K%NkE }RAlsS Y4/Nzdfy60߁%6-0!*wT͏8$:+)RI `&ʧr[k뽗@!n`*?vYGh@EՔZ͏xww:]X^c׫qÌ .p⏐'^\ދT~IQ:4+LVfp1VH1ҏ F?_AF`t7wy2͐fM$[3\b-h=fυVPү=lMgx7C"`y 2cwD7M& uz0׾E691˙r yd%m @#yE}םγnSʔßYep3D+<+*n@JXԦ L 0h)큻L_!{-X V%SFJr'ޣ5*>k<ѐ"PM{^oCry<խ3$8'KxR? M q;ol}uJ3UmQ_x/?a\ZmuouҴg(Ŭ4 +V?`ǀr0J[X eNl_ʢ{"oa4Ǫ$?T1Usæ?.=|Ɛ]MŒjvj0-I֊E<n$p<.ѶiWڸ^-#STޝ8p\H! KAH;=Kj㲒S$ܹ2}ԃ:  Lgo9M\g60zWCXU2+F?^fw,b HJ6<}CNظ:]tUr}\|]fXk܏V1ho>V51 ]wM-u4Ŭw![Y[ܽܲ㓕>(,:}@AXdF~e`UOؖk! +,./ҵ#r9k+,v@jo] )\ޤ=דWzd\],OX.x]pپ"J.֔Zp,5Us87H?5޿ksXmTՇˡ,V)ɱ[H딌KfRAl!]?]g~Yz/"]OlbeҪCNSA'JIXg(`!˩%,X޷L`C:pb6FabkAP'Vjiе~!&nGm!׎fVcNz+F"_"뷟bf˹/Iga^T28M#:VeU8M|ݓrMBrJVH`_$)KBk"TB~LfpFJoo>OwP DEιXk$I[aJEJ6WC0-N)zg'Ol=b8<өۙM~GOD:DzTT#*GTn*j[HVMeڲ(֦d:Z;ɼ㘂upf ũt=)PT$.w5'|BaK.yohR=q.8ɸjblh %]k)١$&U AS0,m-"urR^BL_lБV习 @ sW2o&ύ >4K wN.j!Q8)|1VzG*FBlaPJ8<YiE?p$ 2L4X:/.٣VӠ&=h_G֋rJAC!T>'vaB;˄\]iPu übނyx^ϣ>e ˿!p cs@(i:RCkG ZqǛ,UORm9a+ {,v0'klJ dH{q?ò$=ezK`#ߔu!i,!gWf1 &g Gny&L&>bjCFL5q̋hCgD&)Vo7es! ljpԵ$hI۔!Y ]ǖK]4f&"Zi< Ȝc|" c$$GQ谤Qi>=蝴gLdŅ-:q?9x-' Yi"Na;(:Aza w(#N)מZ,RǢŝ# 0i.T~㹷0ʖv{ןmwCAm'JX^SljrAόŵ@Zh2|Ttd'JzG -2N׾)aƸc;=P٦û=Ο`єvD;"zR1} DVlA=My>4P""Own/Xi⯎h98䗸uZo SWAZ*+Jq7rӬ^sMrv[FftxьgZv) vp7lkI^HyV4TRs%y/dU.*Բ2gt __ya JY rв&d#o B/D,l~NFu׬)+VKBu`jL`ջ;sB.D?;vh͸TST/ cžt(2V &XoP*cCWŠ"ކE,d$EFvG#5V/Aܺ ghtuAQPn(ucNyLHVjDa%'əqW3$| Pl¡*̾ VyXRKb@f$hY^7!6К#hrNWa4S=M;CSRqoXCϧ2kc~oX3e"9WkSSLӇ^Tͱ""WJmY ň5Vc䀃r5\[(PFf`k{Y]7S(nCP)1BRa1͜)ʬ]AlD}! C$38_wnly&*Oؕom_^7OoVkKgbJ^~J_)a/ڎC=ÜrR?]qG3o1y Q׭e9`7{=3OyaZU-)ڗĝp<άX;ylo:|m>OcƮLU _8$y-LåYhj߭IG11J I(ka-LSwQEY5ͦj- - 5os`ȝ8FuL>q-;qCkϕ6ࣈN(h#d8' j@D/@b UFsȮS8%Ak43$Bt36TW`47mސ2Ő.Z-=cMZ+6+ETTܻPѹaa*5SLcc8213@>sd|q^5?sʈȍ6ͦ ho/0 As-:40kiۥ3@BҶbvd?Qd|1I3D;eP(hcS!53%xw%H%pK8l_'-W׫i+0Lp"#]hƉq|Ǝ_/i Z5Y+.XnIDЖ 5G. 9tu?M.[%8M,22NDo=,1phcJitg!Q0UFК rYvflDB\Rٗ$N̈́^Dc2vw~b=D-Dǔ镵"s:ʆF[cBڱ)icyGu#^!PT:fNiN\Q;@gܰžIKK7hPatGKiJ>iKvdsE28 /yX+m= 3_2{:*aJ%בS%fjJ:\'<({/h`hy +25;D(MB~ݳfm`Fx)o1fT4(84'U>Ў@; zS` sۘP6\q>bv8#FR8 Câo$QW T`*+EIx)ӾT^aU] tnt7לx~h6BjIнVlI,Kh'{\iab\cԆg Fھ;n M,^[" Vs– ɜ{dbɳ30 qP/JfN @zx]3 %Zs+ !|&L;:׮>VD~>;@ºIz: {?ֵUyN[&j4{ SԈ.^=7QEGe[N7%e.lϯd Q-/t1ak0HWpT@n -x;[-ځܭ^|Hb.H9uNΪ 5sGPFDC,Bʠ0~azC4MOie ɼ!&_yDIJO:-b7T.Ugf\c{/>`ǿC"gog3W5k - (J) rk((yi2&X@4D8Ԗ5@xݸ[l8G ^LԴYu:'<}ę@2<좢@̣ X,kˣ7Ye_T݄"KLы(^Xo u<FSG Gggd7Ҡ߶]N~iIƿ?g+|3?yq IyF|?|`ws^,uf,4 i|\׫{nV+4L[$,0kX8G;{]1qIД<.m/™odV5PT>e9`j FuaCKnAs;US} eZR݈ly_UW5h.zT5j'm#OՒ[N6C܇S+КC'Z{D ɞ\MEBeqMxJ8.A '=|AaKБ?W&jJ>knHow=Ym]rc׬rbN7m63w\Sd 廈Vyj}5DX%9z~CEU_M7D#}Bu^fm&$,Y8^`-/| Xz9{6#IaUQ5L9]}/>tTtT"幖Ҏ3VMkjKR^bx_S8_N87^yNZ [hU|Xj$td|Lg"7( ƤL[)̒PPTsݻM7vD?k7Gvi9^#l/is~ën@{X[~RV4+ #DŽwSZ0@ RC9-"OBZ j_rӄMks XG,Wr9<))ZMh,}=^fΡ.vp|7) r|S/AT#rD T`N,avsxua pj pdg ^IP_pϣUi3FQ_&PBj1BZm*|J;xl(j1< F9rN7'J.L}"\(6=LxDej@[f4 㟍 ROR.*؜'&%% .zqs6䉦q i3YLV^Bǜt(QX7SVByWtC3IokP_ӧ_4ȟnliO J s;۴S 4QDKl/IJ7')󈂭0o [ϛ]Doܞ5C  6Zb&Iї$"_`m2}Pӽ:xn&ZPY)T@ByLĊ#أCun3@@S/8zĩZk K6G8HQXj1pbh]֙Ӡ;C[Fʡq&_nln5ٰ kw]b1YYItLx(pL~JU\Ŝ{.Q#MК@_+*.G4h"yK!IFv_j!Ԣм1GHVOڏ'+$*c,䦣ZB>t_ΏM[Hkmb~5JNbtmpDEُJgSCv*M 3S}#ZثM K5C>8)5-)$695,h@-Zz A@ ]2Nu,ow-~x~ M7>;/𾙃(U=ķV%|H@1LW22 YR۔h6.)4\ [?.xj]}CO4Oy4ap[l|H\3ɼcI׉>BDoU$=\.f恊# Ds4 `>Yoh-no6w[";PV|L7'zp.{:0Nf,LU`+EL#7#jt1Ծ}|n8S#t`,0o^McHɬ c7[X[\gr]O(- RKCPؤZlE8 Nl\) DxWu% eOvFY_n!Wn5w J1q6RiNNoq+/kAiX&.- }S&ԾCт(=u9_t 'SkGѱ8'•?|8I.a͉`ZqRܴ1m| il)6n#\C+ @B96Z||o?݈7+b:OITs\-B.uǐM#,ĚbJ8B;XC.Vw GnVzPh`'(i*E 0x&J'w= -B&8<{F=jxbwA[J,* xy3/6 eh _9an0%Kw'om鑡n99o0 (y V 64o)N\1qkFq~aK9  V=ø$V`۟ [>k[2$iR(BȎ&s 2 n 6sߍ|Cp5I;&21ʕ,7K ՟[ǻVYMa7/H|vFGʁyn{M/-6( "Nk]+`?.Avî5Q0eD0Mg0ՙʃ|nٔ Oz߬(E2:njɖǸA =pUQ"}ؖ5zl&(B;<~epV*(<(ߪ `k~`wIonʳԂJ(7JK$w}*%oۊB&;l3ئZdT`hX+݈u[<͖F^;'tJc8$h|4E3ux > RS+ih6vE'lo^f1b0=Y2ENzfɟ>nN5<e$Uae (n> ?!87aa=KBS|T;zXjDs%Ovzi%t]^ C?iD%-!yO` "T}lCI^9C?FG_n`X KO>i娺vjHw$by٤"geŦi>F!umBҔƛ>pE:VpD^^_[G$iĦľ:^׍]|M0M4G?<"hzI.}URQ {#r;-5toĂA+H)+iI4)@6챷>sVCjGpLn?.3r^gp75<*gS7Gáy%S=2iNhvOѠ͎a 3 $DςQb<{{ҠAIOee3UAGWFV*QD"Т\1)T'T+ Z4ӆÔH_]Y*>[So^:tU T~A733uedS' X[޸vvl/ 32༏h "M\=`IM?$z57-RyR>!H8sY+AB |e P]s Y``\MDqFJ2 ]R8% DSaNtwo-?n0J[!+876=,4V+XeI5dzq$x5;$_¶-UzGgC mW0CCg6|,-^ߏH1.F @377۩BKu-! Z1Pu۶<~7bRv|" HJFDE qdDiU >A6;]ȁɆ o`ƣ^^?$𡃎o\S;kṼBwlfpdw:Hk4yf۾@~=8AX7;-%[5/ 8^Ͳk0k]F ȺzwN( inhZ7͏|*(ĦnflHKIs5Z|^l:CuCoLJbleUO12sdq8Y g3¶vc"oz3h7z͒k!B×`T 6ar*H(x3yCi@#/DyPpBRŻ ,ִ!zԖ׻kź9fl* .($N6ŶRSIaNrњ{C )kꈣsfPx֍K(N ^(Iz+G9UQ|l^hCh1IqJΖ"h7wtq[fK F9ʹ(/6a`\&EiS)y~v$7,p';S 904/ŁP8p5p)%w2%cn[% vPGht4hGQH%CԤgm}lƭ|>~(ZixP< \ˮ^fa~,VX4񱏟s@_ :f7'ǪC[tSuySeC֐RT6 Ԟ_߳Zᐢ*[Ot!t;˗F"#CjBWG~WOf_,ʼW.hmkZvLVKC9{Q?ruse=>K&f}X¨kr[R{$xk5yR/c7 {jS J`oyxjW*{b 5/SgkxJ!a% :!\69HnT 937?oߌA'ZhFM1"=gRO!7 6'ϚPҩx" `:-$g!SE/7?[yrHwSIFqGʶY! .|r.B.о(Z@DX#co]Z=Y&^[B,Jƿ9 9{JKyr,8 𙫄e?r>6$Ww? T:Վl!e4)ui }تtvğsE :=L4;Fz6,T|ߘr.1cf@hiaޑQ/ɁU zm \Dh˔(ov;OzQROu'R~~ l0 nxQ/KHU.5{3_jV62<6}!!L$^oF1WHfV h5 ~3/WqBf7J$no 'FzMDo*g_^D e{MUV5- N9}ahDwsBr`!9WnxѾyu]_89ḣ(=ӕcFf ., #rMGKM4˓zx]x'1Hϩa GgI4A$YMwH_y*h٧:wrڄ;$iYPbu6o񍔒] nyi"cfC{QwTN_F]ndB,濖R{m5Q&Di£f;1 \^[[#3o/n)Dn `6ʨ'ZB~g=s dMrc}o l/٧p}DU[<:2Ѻx*2]4 5( 虄(kak@$-XNV`B^XfcKP pJ?U'JWT)SGx R[{0ͪY.42aDNCv-®=o VKmi)'n*Jg$܇أOz~ 9ָnK]N}rhj2+ZQY % )ǩJa\HdøCB<'=ہU}Ű~kc UYS=yL3 (xyf=4KW>@y.BXaKah͂#zPpimM$QX/^^1|(bښ: &F+s$!:`Wr&~<9U6,>_)<_6BvD<!3zX.707덧84q|X8.C(hXIzroAȑ/M'Mf`=r^  o?@XNѡK\`_~}Ֆ~Fz'!U~H&ǙMyvD,X/í݃gНǪ/bK-j4$3s-45IU7jG$8ۑ5tLzX'j9SoŚԕkfs?n 1TBaEŘ's PZb7S,msr'{' ӰcyLoYqfٍ[lU5dԛc!LDO6X %Ut4hªדl>0~iS2b`}W4bQ%yj_n ~%{u^wh <<֟'rW5:v2?:~haӕ]1T5[Sܱ6Q!E>.֊YwGt^*EfO:=r&4,rCc+^q&;wkPz&L znJC\lqp\RHV qQF# \/FԊn>8]. p{41|zqx~:`ޭWTsdu /k(L3XQGyAr>ojwܼy _L>X/nޚ"&C69f:dUUePASpսzaqPÝ3vThi]l wUm&,o}ŗnD(L_V"KRK]mې;tݹ{z.ďH3W~+Rv<񅦣"abF'O}Y@/(7Z\ľoAs4!;꭯*C)x1*>7’nQƘ5 6|8B/|Co#ߩ䦦=ֳc#\EX~!3#$<`0K.1QvzXgץ`sT!%uGIЍhqR\ϑ܎4Fut틼W0L$P=)M6QY!\/G׾1vPnDA ye$ 9B+lDڧeqKbOL"N5 AXEBhC6 k),J#G L;gX+w^TT2!Zl&y'eSвeJD6]QجV=TL,If}=J[|&ⴎj\=~md{E? ]s$;;O}n(u\[f3 "=8&JH:[Q,ξ%]Gsj@-b4}MY5|7uśRg۔_VO ~$j. r\&XcmLm΁o';L<܍$"yQlPf`DnN\ਇ1$f@]tB-YL޼G"y~v%h%427pB,g5ˣ]aR2|TlA1Z'؜RC#nBTc`Sl C=^ƣX6Agsqc1dmk=Eiy1_Oøكh̦.8›?Nhh؁bzW/JUmt9CicZppWN׳C~@;GH6-30]żK7LxWRΌCww0F&'5G獸D.KCBFvc|.dVuv]"hϰ|4q4 xMiZ?^f.H[AEv"AnvL&~P;)ٛKpNR]3&ދhФ2ribd5BNne$k뻙;+MXčɐdPYfQj\H*8bj l.@&P׻1rPHmo~϶I!ԛ1zc1+ tY-=U vѹ] !B-h.>ŧ֛ QqAs?1/ L;|Hd^f>]Rf$Z"qߵmsH"Z(|GKQnf6xeU|rU߿zS~; `i_N K LsX|- B>IʠkSª}f79R+M[`+v1ld{/gh~Ӹ#+a|-8zK>=F;; %lKU#KG̟hW## `7 9q/f@1(9#P,cPn".[Ze OUc.ʧS׆@>3/5Dbْ5ג)=X `:5޾Nv01inVHS}߷SBkm"t$b^n.Xp2괋D4:Z7պU;o͝rIbR}/ns3,n,/+6&Tcoe` 13i츏Ac{uPrZz Aő FQ{|>e:pFh*iL8]97X֏H(M!G]1Uߕha ' R := ^x~[B{ժG>,A9U S-̵ | EweYPdߙc-IvES2GϧIYdu|6ӻim0`K~ |+L [.0eDiuF0]qm49RXB}簟FKIRk}EStG} cmծD| P/> ]÷rc`H;)i;,ˣi= k\b^r%t;_eMgPLP6ǝ5z,.+'yn̹^tK.1F-Q">H0Rt@l=7/U@? x*[@! mϾꯎbI~2(:2hKfGc,s!RFoR MU{PzfǸ8),+NuzFL%H th Մ<%y{|2Ċ$G%&X_7a]ڊiKGFAUzqU]RTGC~s7=z"i] AH9_C:rM<3|IJmE[,S #J #^IMm3Z"|?[ 6+\"Ott=cNtC28ҢuHQzH db7Ȥ[g p!ͰI+HfXn(PP`"-o<1G|IOũ[]$JcJ 8{et{&zyHH:Mi!4?-:u@hb/ eџnj#' D4j͜GDϓwxj%RP9_ rIL-m r/4" K|1G9;(?3,5PL*zj B;ٖ*w$爛\]Ͷ`z3sXOt7vt[;yё%'2r}CZ M^]3|:.ы-+LJ\L/petOĄp$ir.1W_ež..z$d>¤ڸ_\0h!єP 'Y5jUXhߨd_ !kApf5/}ٯ HQNdB( åBwG~d%CԾx)!hKJjD\lnUɮr QE<1f},ٗv]NЊ_$[_fxGD q 3=t. V6,ޗJ!O~>;V)zxX sN21z}#bZRT&|}-8rbvY\0 R0TInEybZrOItWV]+q݊nrQˆ/j?f83%w+!Eg5nnQ*&QnT䝬KgJ:j(H$p7ڪt$ӂq3)z`dX@iQueN9i:7IHZhBvoԙ6hw >/uRQyQd>lrE{#ԿKD_)}*';̼RsKqp 4ۊ=WHmzຬV:U'߹ غ5vj׳ŵlK$;tA㖀ajˈa槬}{v>q.6 mQ rIGӦr#U?m1|g^1Aag'nץA)y%ƸF^x׍0Z>bkCS',P1jCQGUATD0.[ "xvb\0;כ+zVmk C{ pER6%;gx45ർzRiL=tOmNJICt x& R]OJKز!(%}xAGYzʬzEXq9A,(/ZFlnvq}1_Ŕ5@IĄ?}g]f8reZG/mEΨ@#qd|/^V%)T]8|6R]6t7ߵ[M4긿, 5EN<ٖ2;1 " 5rX j7EoGa$'^XEsdk # 9W$ufvFU2|m/"Zit=)kEydnO-)nbQ}dXu>i)%z9x%Ι粴}%RnZ[?ޗݻI1B{Oc*x@O4ml-7N=.!]+5+ㅳ{-pM*Ao1ѽeJB3A6Wճ@j<,{zu(W_G6%ͻع]=*j`R3%=Nta|S2ɝJL;A>ipKa<<\֯Ol4 i; iԣ9nv[$gMUnló>'K])$b!Fu{hbs!џ~ JiiD}Y<plT f).WGJ ?8/x<>I|-edx~k!0F7qY{BLؕufP"KpbѸRIli"| _RH%-TS>'mT2-ATL 0֟z}!r?N6Xv;eᩪt1WEO߾)Ru"\_ףOkc\e9Ԃ8= ן;̆AHD8`^].xNx*6G^h(ًp@h`#p&GCȢe8ȰhKXc6\Fd]=fSwZPN=`<2~8w EJiT@Vf,ᄘ']OZߺ\7I3IJ]]?CH16BOƬ?FS.s/[zgt/P?@!H(:$6TcH4o\^JJi:OUP TJ6dW) WU''O!/n??Z&Hɂx_:1r=a8⥣Vhk*vڼB #SR`jkGa :9oH#,Qv JD@/%W!0e8b κ+`3?[%߉Deر;ycm9 G9 uE|,W6Xv}% /6Ya4Z x#jzhWcl;y62ggg/tȒŲקS)3[ )JBQEO(SeJF `zxuր:7p2 `=qu%|_+PAvV`ܒiD#_yvX7J~l_h|9͆"^E }vđ?#.;v-|YQFXS)0NA.ؒׯ,7iU@Y{3,e=^U;IO+R7d-w7͋vS2g۹JT%VOֻq޲T j?f3{UW% Ѱ.q;8rm\|(SΕUQA׷X?14r2X M[5`ZRxNDs;j00YX.mb|#¬!^IfG}Q0_d4PH87t`)LdۙoSZEaWuoNDݩ̈́|n.UdBf5Cp]23WY:+gOw~YILd5yȮH LSzw&&D#`*0CvtDa1%GPJ:s?S7VdLa"_YXL{'!]PX]hᒢ{ vQŰ#M+c;+Zv=r?Qupdǡf~bA$+b;q_k9e& 0$[qv+y̼)>YK`';V%hhJg0vujEALzH6K"e Lk@ǻИ7P)]nYNQo.y>9Fr0G<&{#ziSȫI?ywMh+mtF(VJIЙ_ xRw5gP ivBvZ* Sn5J]!0Ug5#c@CZs07oM'U^UlܭY4\q;>N9I8q;$q5]6ow7݌!.n .~f aw$c}Ǒ `Vz8$Rvbs-M(iT r7}t!&\mj8JwJskWws®59c$$Sׂi8Y s%lmthN$ ,s`;_:ؕ nTX{OIEA=u-IѼzlj@xԲ& Ecsx!rLSӒ{Z!vvZs^B*ĉ3]= yv@~~cΩ>Ixcf`%AYj=t7/)r8Z;aT"Og^=@kmLyXHfuy*# :#F1g`A+;-!2]RFu3Tm"e-! !v.R]U1nOXmGoOA+L+;gC, | {WLWg?kZ i&8)+՘ -EW@un-Rց<\(`!r=d{Шfbp&& \v QHR!Ń-\$iX=ۈsgG@'V| ;@QWaxDZć^| =Pw3iJwLaf-^ռ׫-o[$뵖Z`&gv9ɖS2y_bD"G~7ɞ̛NȎ'15Rkuo7A{zRzj<,0NExq #ExIw9.amZ J ־G3EHB!aqj ?I*>FY[Y$~H5). Q@豋i˟\z<5/s(O7Z3ui/:|#{&1ޮW.;`Q9kqùu|ff%a^ԨcE2_dݯ9ZT ]=pZ*_uD=sfGŅ[(ђ׀SlL4?1L cfyJ1"12 )3wǪRKD_9~`0Mr/BW * qUpgDcX';=jZÆ:z0mhLD_kݲ9RatBԬ O`!4&QnVv=(|* *5Cy(JHa2HL+xwuȊx M4H5d  <#|F1J)3r)uWɗ1 N9mNEdvĽ"=!Wow OۊfeH] 9Svc(z><w+M^lf(S杙6 Ae]qZ"o" 4 Ɏe1r׈ah$2e!]uDCyq?ΡyF9P}&'D>&7Ov|-[xD=W@XrՙNi׊utwQL`| <%ÔD@5T` ^JU+{ʼE$V.8EmJ Aq$1\7ZS5 e(Jȉ'9} p9;oi8$ w onٰwALq)82U֋)8`Qr^@9'P.ȼ^vpb#Rk^0ba/T?~/ *.#$W.WtFE}b8堡%ao-KN߉L Π6Mrx<[C+.@^6jС Y1i-J.eŗዬ%"9 Y83CKĆ;BȲJk_ E4Gپ]H| ²{l],x={8kZgu(~PkĤV6 5p󠕛/6)' kˢ([?Pn҇Y+W)S%Wk;Eଏ`vz׋]VҐ LYf!i(Z?UZHԃJY;(Bw%Eք. 10p]u* _׎ H ן~$#Co{\ҏc^-ӸB ZfE9h;f"#qw*ЅcG9 "_Ĭ.UP3 owvUn:ɪ'zXNl$Gkw#++,zҒJ醖wvɤW܇QhD8yNL>U֯c0hKAeŅ>_ e8Z OHqּ,X>a KC`-QdԤ{u*TTǭfo2&yGb}|XAmJt|cix‰ ؈l ^гW8OӜu%tڻYgfsЯBI%DoN!s}x4ji^څLɞ:yUv(FW |&:[CfaMW)th郑ꇙPͳ(- 2.HbćTT*z8js.8$|p>0:MaR ] !=gߤлYB_A)p OJ Z3xҔ 7Di+~ɺ um9;̌`7!O0<`){׳1nhBa+` NkHٷ`A'iX;ܑU5"95K?ק?:%/@;U%)*)6fEzt~р2/iry@JptO~v ljzLݽbr*#j61f٭lRH7_6TYe*60W>;ucZSvEo<ӟOlӔ0Ȇ?6UGpukb6bdjxt4ә {)2Whc9]~}KcʹLׯ$4%ٚT|}\۰.]م4?-%Ԉ7VTBF&4j@&c9~h`D;+!^Y>;YS΁YqCyX rEQtZ4iXm5EbZޑOzx EN7^lT,;-1No~&*(6Foŧ+_lO]\gq|{GUr D}T ȻL7 }喍/r=x_e@9,yԝ7C¬һK,fRKά(g9s_THl|Tv1npfz~Y|$μggi#w`#saMFF~֥~O ն?lImz'[gm"qj{*7}دD;0.N>ΆTܪe> qԭ+I phW!-R0a8}A 8zv ?B>oЎ߮+F?|`ȰtVU^BMG6o;TeK/&9 a$<3ESwN" B5_RFjWrU ٔO03gq)_0-ndwdoB eaJ̴|]ܠ!X@H#t\PeĒIP*zJD Z}s} 59$<Ċ֌ d(ñdМ OBr<p]SW9[87-V"56Cbն6Km5,EИ!,qU5@M$UƲ(fBiYە4Tu>~jiuT;'gC]x3ʎvM"z#[nQG@sA߫AC(Aǃ/ax`5\}"?~%(hwe걒(Ui|-Ԁfq\#9]36Lc1efQyw O4776$x<]8ᕅn*zYtvt&O b$ju[S nVá;Sd?]T :;%G%=F'ݽR CS֩O*pe*A{$=l~@@QO֠9+$_Ȉ:*8ly@jwba“٥T\Cًn< a[" Hf1 wY%BQU%wڠ/o{Io:@FNe4XLj\B!x) !jH6š.aw6Pcat _TwQ4c8s) ;(*[ }gB=lsu~Ih(ˬOr70^Qz6Y;k]'3Rh>.j'!M2ZPBσ] (&(|?`n%*)1/9dqvhC̃$n!ձ[[ߐx!10G񝷺iA73w?e]LE:I4I'0}[MGWWB}iަM'U畫^=t n{d dd. @Ҵf~V{퓍(|+?2ɄXG@M 5KUӹx*>):.S9-6m/p3ȱFa%אs7hq.R_EQ9Sb+>)h6~hEdFCFvLnaldv i  (:oq s 0~(]Zkk0;7p( /ZڸYJҗxBʣ^t~2u/)?ai^(ҫ s9J?vڋ$v-)3zKb]Q/piO3>Xf#cvQU$=[qnjw'=)LRVژQce| o`h*f;S7F|jp$ q+^v.Gy_V4*$ 7M ̟_Տ61 HqT0iBޒmVRx]̝qMB=s;;ѽ#>GIj,lq"T(cCdm D۬bB`)%Ŷxa *SbvY[ڭR+t[ BS=)d ;*lߵ;Ľ._>KfBqxY (F|0.Ujҟ+sS|11np#_(˅ѕ~*'uMدՐ%S61opMG ё`α'\YfRXvY[ڭR+t[ BS=)d ;*lߵ;Ľ._>KfBqxY (F|0.Ve%S61opMG ё`α'\YfRXvY[ڭR+t[ BS=)d ;*lߵ;Ľ._>KfBqxY (F|0.Ve%Q?FsS|11np#_(˅ѕ~*'uMدՐ%S61opMG ёM WP_2y(^h͵9cHixx4<\?"SIK44,mPd,OTLPM%4ծhqsfckL^@1#~wK0ק/K _4H3&w rte*u"|"њ솼U1Z[57B˻ͭZ;v5m}5P1+H#{f|0Dݐ<R\hy ȋbos‡č;ƚ˹}I鳈6cP^,d:CsvVdأ_F.Ʌ)E>X.gF ٺU?u9[gn j8Bl  wW6 c)1'P WoPN[Fܾ? 4KM 4l4]?~. ']=#0|' ]|ZCvC550`YdW] awSCiGǂ"(M2.!DLDb%/3]ӷNQ7&'6$"'j/5цWt}ߩkR?P+?y?DV Y I~#?I6NSG\ePm AU|P=Z\~ F> b*gJ]VrgmDݦGCNBNshU9e\-;R6Ŝ)ĤyFLdjF614I|ͨlE(k{d\DOO1(߭"2.bAm(M;_.LOvc{y]Z܄<]+N?68)z0t?ʫge \" +^k᡹e(Z]8#v@4%ynxt3Q_u_ocXb) P2T~%g1t}1: . Fl~$!l"A9n6~Aq%=9,`%#z,"Q*.Ż<{m@jEuZTor><_%=O4 2ٞV7w㡀TZyZir2 PNX?xIFIR#^`yqE&]Pz ,PjF[Uy9.0fvOL ~}$iN7!kcϫ/*#lx>QGybo'~SD {aEK Do{)}oflxCuk gfKPyNOaH޻S6KX!3# 1>$e:ll׌DL̟x^T1p<MބChbmX%0E}sLfg0-9g؟s_^B:l1*q(YOTkP$!ֳ:܈~|_dHdX?؃/7Qn%`-QIMaHaLa x}A#*u-_c+UM?q}{aBon$HZV,žx֮è'k3E$?"1ś\ .Hwz;I/oϰx"{D6b|rt@T&Zft&聒IY nCE.K\:շ[MNіqgi-{.tzoZlo1hģ1<0gҔ5]>Yl 6BcX;B]<w 0U5/Piú.1Ǘ<jTW2ޠF̶,(f}<'OvZL'M.3jhCLp  uCN4|sF`: |u(ղPNs=kZ̅GIBǨφ߷{RIjI_ λ3V"{BYB5rѳW 79ݧzTo. r˵3>8\M^?%9*C%qg{}K)LVMYԩytԄl>Z*lM2XzJE9tGh|-W54%wVNN 1T,,W=ԮI(cyOǫ'*T{3=&`׳ Nkާ;udp̰l*H8/X'9tl jKfkP_ o1Pȡmfz50*n[!43x~ϼ;jdY ֠6<8NQm`.I񀝶B%\ΏJ]$U{ݞNJ}kxaZI"٥^\Fpu\Ywע2A9EGr DYS>z-6'-7(EB =$>6SD:p>^ q\#a_:ń4S Gɟ^;8nZlo:ii'~8-&Xw"~.t4Eg5tKa@fp:tB9f IСmPJKpƪyEWu n)b;U! ?Õ5j"vtB*)*w$&+F۪ Av<=$6?3_>E`lx_K伪2I6="{A㖂F/-85V0Aw[A"q0JMfxӝaDg;ݬ50!s-3b=b4λImG1b`Q(o!(vL_0W۠T ['kiԩ8p6fs{T-LRUfr}q-SA] O95ʭB-1 L'[?Ew7?.8zMȯ $mD@Hg)a0.zTq7^a{q)8kQ^.g_\Ú HZP"9. qNOt12z37uӺbD,?S[@9\/[ðˤJ4fܜ=wjy9lD7g$B M}4X!޽P$2L&5)ѷNvL~wO 8Tg`LD]H# NRs/p-Ȋ$m0t8zw"v#r4%Jok/BC&]֗渳KT,] @YIf_NSnc9ߑ?N7O'hߋ,n' Fb4L_дfšu^o꟧4unIs^}Ûߪn WHfD'+ ~@?J//4ʼnΛ774e &J+_WCۣBq-1~Np{);&`/&ݪB]FvH&#cϠc?&QJ 8r4 ȴg҉j@s5aD Gǐxb*# jHOبJGǡ!Y3me얇G2$B,:A"IΣwG$kAcYiAw-f%] y N1n`=˭(`+_x*Xi~`.Cm>>t'{Aǎm`:HE\V:Gv;% <1Z*60yV34t(|ּ6JRړ472>&K^}cdN_ʟ,Pf; %t49; 4kU ̈N(EpZ,і51|o\&,AK:CIoQ0: wW[5*-ࡊ|h`c]D]'!f!&ڜs} )ևjE&ؓŠn A%( W>Z4I1?shM}E_r\CcV"I4> 'KH,v2 uIy|<7\ybT*lZ-*>CX H<8!Y)J[c}~v )jaHf4M'[w+bXApj2*%#/vv~={~Asxc'd})2A5|sH9Nf0{VjVz<1.ʚD̏vsd؛|*U:LY9LS"Us]_=,1PgH=ϲWCBK L,Ga1$::A6jul}(y_#lr3T2tx#b*8:tDgQRଽ&V\ ùaמKJ/j\RüLZS+L1XdE{J$yJ" '7x`ӚʬI;CQ4X7u[Yhol%ܒ"פnbe8}CCf2, RA7<ҷ/ev`ˉ< 55(E>~uM>bPh3s 2(b>:=ӡ kD7%b o(<qv(.>}La(ZFմd=rHo7pga7e9>5Fnfԟ[Z~\ -SPNF*AވH9Z0t Wq >IHQiKsP:ĞNY ~}亱P?s)hQâlng{}"ii0#5Xx+%y=] _Z5{[M@4-isYOj@٦ЕO)y:n礪cz,(l%FfuyڊNN"(pKзkord#Hk6S+arPSa:PȊFt#to |Uk,íEE3^csn:TT vs`xP׮jW.pJ@=dg*I~FHGeç7MsA);m^o_x$ƭMj dwK/!X?8B6cm{%NV z[19j0D=Z.XvI*:yH7 |c%? H,xCW!=0g8_u!ܺo{ [zh%|RBVn/% Q<5vY@)l,IP*H{zNb12^ z{2bS٦Mi?U&BauU,}9ck4%ABXe*!C|+7VVIKrG luP^3TC A)x,FȞ_P8lsg!%eh1-*b'J oyTAѰH ) =o*$3udc>-7$iF@˂i4#h4*y+w8 >ɋRO| yO+,))LIHQ•ܳ([RnnC{"xq4(MĢ?MgLy<$tHPȄwvu ԞảQ sPE[bY,Iax1 /Hł|x nic3ym> eIFG87|O7B]RqӀtBFqFcۭ0T6/|M߾x S:|)KhWH ǥȡh͘`/A1[i˭T tkJ62 мj1Aynμ쿔OS{KzrJ e -IkiE/ ]hR-s2tBb0jfh2bRbug:wz`k`p`>8}>k0).ua9=jQ]YkRC4,t48I;9eIըpuzD(W恊%g}Njj(`6mܐq6]7q՜SyBigBG)Ź~nPJvb_,J9 $ 1?6#CC/6F.c8->hum-r͛.Ůu\MZ]rKx3 5ԕqd^*UCRgҦaUW/g0& P{671 XөrE$l Κ"6 skŨ˜]( "*XWeg Q΁VO֌:[R ]֤5"ן^pJiwhݧ?Wikit03gxpUhs柢_ŚG4i΍S/sx K`jbtܚ.@F'L(~[;FJ ;B/&ٰ ^4CcTp|O YcFB<r7P7Ws*$'*q}duiڲ" /I{o\]Ǝj\ ߎ8:uzK{w5gNG @9gZ kz[W6s p,WӐpIX+9uhhꡠ,xln&W%iC}wq~T8t)k]{:fe3p>1^le^f'}(1IԎ^9ب45'njQCDM}ӽWcvT_D8'&h]3U^g:]W僮h"7w'2n>1=83;pMI@HQb̌ *;Wrc/eAxTH㇋Kjd qx;02(g0濙WN+|.aۘ,) p!)(\:7>2!~0XEA 6r)oAc!Q˧$ 35Ytr ʛ CY=K $(ZD)8![fK\@[M팢 /a|@ǧiuW3ITpM$ERnɫqa~]&jmR\N2ĶHډlt_`֘(vUUI,iM[ 3^Z >Ā =&=4gBG4؟DVkn6g#L2DB0Ey~F;nEȉe("<+8 =wu'$'Pl_dž;O&&{"Q&j#_`Ƿ P})`lxP7HlBӊ6w6[b/#4k4d@Ez;޻>6?3SGtQ;R/ &GV-ylCb |UM1w< :,(5{8v4 d 3U*|{]Xj{lI[CN%Z|_ SYނT땑q&3i gMG"MYX6>wوe>'8v."p\7fA+e_va_[sg0Ŗ""j|rv{)IVtf\I*FWMjc?`;F!qGmI? bB8n5pf6m2וkdKѤ,2$; ឆ F,!@E>Z!NaQZfGCa"~_"^$iݝ%xY (F|0.Ve%S61opMG ёvt퓡mԎfN7ǁ4Ipp[_pߣfm ï2s<!*9 Ր+uYR)Hc+,ّ#TT;WZ` (TLo_礭}ٶ?Q#BI1'o YڲA㭳聡~fXMidԾ!#L Qڀ8ܐpKC7BwfaЉOcJq]z‹JSw y$X&$)gRҍ,iàS7`˜yF-ࡊug֔6VHeijel&ZEf Apu)NµLmTR4.zVy[MNs?>}jQfuo)>m/Cf4]`a=,pc5529u%^GNas=H".5;w4<a@?`|W>)T 1|%*N> $zEbpdj.P]%q[66W(EErWS6֠LOx{hCoo?/ŀPa&tҷ|["3FΊ^wY#]Cgl#pC+m`Q QKV2[eӥi\[mQ߮acvrmBD,}Jhd.=`+k8o ,BRFLAuSJ5 K*Z}`Nu7mal<G(\%-c?:r'۰.ZgGёbdTBW{t6~ZlI%mJxpƴwj3ȝ΍9]ˎq7墘z4}PL7X+=Xvdr $`}H/o1u煁&cTkv릵Q6nJeVy`TGVBB,b4Yw=FXߺb]@@?.#7bB=נlrĠX0Q) b57ժʜ)KrV3(6θ$iʠU)'\K,!|.5o5XrFJOzZBg[-L# f3* uZ`_+xJ%+P8)[=vn&FP53b1ejnvŪdwD9XYGYac B'@#t#6n+ӟΝi8"o@Gc+{NK/[sL=PO*Xc 4bt~w+HE8Ԯ{qCr9}U"w_ėarPorI(D|D8,*h"8k3̵إ^!@/ԆCD}~v Wu .v"jyt;8d Ь*ʡdU͢(CVa|h++,ÊF4GZ`hP7&_+s]݀#SʯTӼһ 9ކQ^\w':Xm.i QPFqQ%azQ~r ѨV@sR]cx;+7T_ QUL"m7&:/ r'S\x13铘d[g4(8*mc@]xclTrEsxO̿~tTIZծn;_BYQNCg*ޯ`.P=w1(r=5Ћ\5 Y_hڮ# hkYU>-SՋS+(L`K0RמFt۞%]y5 Y_D5zaB/95v( pZx vqV+[x<~'&c}M M<5&ulPf~AyҊ놔>rTt'lhB=E \O^K;;jReZv5aZԝ #<,JT˄ \)$NJ{n'shZܳ \ZR9G~#7_ZrO4ߝskL d.'&Vzy ̈,5JԼΚ=> 4~] '>Jhabc߆Ō 'G ϤLTh+_oZ!,ű -0*lЕى?AMA.'@ۚsHVa)v^/:]Y7ˋj~ϨG_ f3EMG2Okk˩Vg3'Cj" Ϙ#/ =I8GZp٦AaK/%V.C+cU>oOneҩkhcf' #юlv}Z1)i!I۞wS-jƚKk;›ʍ7m?b$_K:Zu;Y,.SI{ J B)MMj5HO%y^24 k&+Ft=8T@>XaGZebcޠ6O6[>}x!Q, $]-M_f ί-v|wز>eu e7[9UFݲXQ*PBqN=co)Y?ȵ+#㏔ w q@MJJLy%C&+ uQIeGWV?t]yKmYkZui| qz5H6}9t  +iqj\E`> y% +9;@^J4-;s$pQ##v#? Qd] W5kqŚGKckۭ]cg |6^%r0%> R5Yq^=gEqUM61M'N #c]+CcŸygXHhۥ|8N8f3@EN` ;f"1 bea5T< 2ML !]){I]X h"fx7j׋>_޻$1aUE[ŧڟCć\@dӚ+!R+MI!&mehtN&I1œ-TLa+5yEԔagaBOCS\~SkEOY \z".Hȇ깹a1pb!ΌLgn?-tP>aޗ !f,eW3Ӓē3]navLT/cz/8\[}&$Vݿz/ڮLj~x22Xy$1T@^(p@0CU)e[O]>"81!*ut*_c{qs{Tv'D(rF%C$/`Z/ʅJ_/ex4…jx@$Oɳ9-*mk׵bYDȸfb1 Yr=Dx%8U8" c y{LJ;0]+[kgHֵndɚa t(M`sHbW.p`U(dre &_p1`v̌1%J_ʤ/(TƳn):*a5,D2;g4a|v@.Qqsԃ@Nb \UM)z3bpo鏅eglUFNUx*d_* SwGgޡ}n޲3f=z;>QahVd)`@'f ^ACǻ8T f0,ޮBb)-Xz'Nw`K#xv\8V1#cx,3^XA/1{NsOV܈MCyAekHoaP"H`5WϠh-qqs 57V'JƴuS7tϝ}5YXp, C=(i\Y|.P8ܵT[O%VfAh5gbݡ/rxXti/KtBs\ExWaNDchH~[Ϊ ryzr_ɏ&B8<5 iCpsGNz_J+s^1; Z%<`w'WxaY@,cSضn6yl˓k<6Tb1G,Ӵ~1ǽc) dB}bШۄGn65 ۋ_nLDUҲlw; YC`^rS‹ R%pf;8FJIsd%}tOԈwU.4ΚZDm4%ccnƙ-O1%h ySa/gӞ.&RK%lӓ*͔?^zQ|Cm8+F)O/ LHI=ԵRۗ5,QhBW %HM#|ł3V`6 5ĚlFjM6$ I ٰv 2)XѲu$'Z t~؅Os7Kn%f::ϝnvHt})59a-ȕYҏ-9`aX<ʅV{ [ð05a>eUɆk-Eah /9>|f`=#1܋S <dYs&)RlL|x,9,Sqzz1]1JȏaЧ:|v1?,WA,ObFq:VK& gjdQK]HQ;sJ[M]=ʟx:?YZ8%ʘ+= iu_)bapenvD(5]w4xCo:cHڲWy[ZGR;e? ^YMfhtP{EZ3;xZJ!h={Jze&J"ܾŅNҼK!gqE  yH/ۛ<6"3Z*r[Τea%RNaKKKuZdt;n`ŒnIY/ȷҎ<4ǘG3m[-qS|8!zYuG,oZne(Bx0.AEE%: A>|O˪p.(%֏.n5diw4ٯa>ܽK5y+g{ ͺGO o+}3VTct\Ut6F0tR- &$|^O )LJ3m<XjAm歚oRVĎOJl¤"X:{/ I3O=c|(m1&v% Zq-Yʀ5p9N"ӓLGR<0k*)&S}AʈqڙEwXएn_V.!vo顄5h@k92hXIKJ8=鴚^6s6VG _/f +Q?3@;edDTLmzqSzs׫/zJ\1Qd vpٱgѬK?!gNX~.屈OrD`f*)d! zQ=3qsKƱR89,0b 9䉺q5@ 48syb$9YҍI5K5t`II y3WړD^4Z"ʂC#q+@ qXsfn E-:nҘEN*9Ofi#=#e(v;|"~!@2$cXU+BѓI6)%Kor ׆,oy~J?Èci}(0ѨG$ ]|o>("::fպB(ïV.+ Y)#Z-}g0O2Hyʝ#U}1@ ݛr0Y-?`q ''hQyGV&#<88]V07[F0MX~LU25D m#;:OIX3o瀨2kۏBǹYɇ̨k 2Q;mnuko] p=3& @ 1$W?>Ӳq?;:(5)CdI$blë%E7ɏhBPԶ ccUz]ڎ)R.= 0TF~q^:F<)~Ya֬8! \ZK$zY=_gE0+˲2$N ⠟'3fظRaX%GMDۂ@))#4tS+uVwG|0 $y9PdZ\3suDi R (]kǞqHTg i}875WzKZu,*~޹$@ǿ`͊Ni5T߄QD׊eҊA4[9B(ń*WąN~6^d3c=i0ʐ5y 7}m2p5"B ͐$>xj-bf9ǤU،鸦}=}UJ(naDPY'8:N~l̍K!dWƏa>^1~GJf ȖE5vot*{ڤ!Le6T+G}T+tzd3~\j fZpCS$ ǮP×-|Aj>aH=qb`,r7¢wDּRUϐ!{WX~QL,\]}ulW<57%}C#JLye 2R=mDfV#Q`Hb>W.-Mx[g$f q^ Sɳ,X\PXEa|*w~zhy;Kxcr$4a|0@ŬGo}uQ!XҏWA31xPՀ0S38em"ٿ++72T|c#Zkr!Hn_}bI#`$ŭ֊FKWF ),?E}W˻Hՠ~dw/# -YTuXݷ˓;hwQ^ƍvdO*'~4=kY)՝j A*kAwqdP!)%,Rk\L ȅRpT9Pʄ, {6w$qy1Kqzv/o=AD귴ղQh N!)naI@=RΒ]5վ55ay9EmqFb1"&F\NFb4d(;g,c*`Zts }촋xVg63q5}js ! "#uZ,#rEo؎AHaٸJb5=J/qPuLեhIc&rJUZŽÃ3bm(;I X 6L g GD b@T_P#.#<9&O~R[2z䔃B}'^4aJ>]~"b%' ccj#jg#`AǍYeݷkn))! Ν˓;eQE>7ӶZ,=~b{(#ELOf4)ec̻l;T lImZ`|=?'- T-HU H"%)‰U`p-\q9lMUU+%? 60-?,}Fztv.ʨx0C,vw5~Gwgٖ&$buz7d0 ޡy]tгL6L1#ʚ9>QaO5E%ޤwdX"v@;dN_FTU{KK:)#P!"y\w]: 8 "_I}L=DlA#Mtǩ$8d0n0+Dp1e%:E?LaG4|1ﴎdu*F6uNrV+Ӥתo[Bm*Uax|ŸmFYO:5ƮvU%z],}D<呭էKhnVt"`\ ʦK,$>nt[*B߂?K42S@qMB 4NрB.dLN. k:B D"c<@Q5M%M{@/ hPPUF!7>"rcJNa7}n%MymЛ}9(&nσbii*,&hJ^Pe&Em sqgaP\^Y;0i v' |GK R'n6*`iǏvL 9ήx gSä=$-Dlܷ ╲¢OE}+czEXAXt7b$3,UH%8<Uݿ=>r9o" TV[-+pʙY@zoXR~Y%*Cx!JlS{0\|ahi[^EԀ= No C5l~h~w͐ Ne4k'V)_dHk0jb <ײ_:}gn3 TF& e8qn׭PI:wTZd1`Rc *}t^v)uX,-JZ/7u:A_?zQD-LEbd̨4Vmc㝏 cfмEKY3l5pNpu`>q,?j!H=V'0~)Vpk:ETso]tY8H(Z|2.yl\aˈOP0BW`-iW{tA}v%ZFbɭ%@qY*{aCPmtPm~ߞŌҼܛqa!"S$k*pʓX폻Ӎnt"(9pc)Hv${-Mx[͓= Daq@@!r#lأ MӐ+ayfuxL3罊L_z{̯ S]u|\vL! rM?"Q! +jg(ږM+$p]ҖMyfHЏlvv,4pe+N: 7Ն+ũŷ Yb+ JL]E&A*3,ئ.ϓuOP˼3%M\CoxM3ȳ/'¾ө#vͯB?^^r؎uƫ6G]߹U[ޞA}ufzk|׬-1[[`R h˪pŗu.]vY W a[hS8_e.T؂;:<, 7KM%KX*2'3-B/t`=R7XGAj^7~ 5Ŏ؁)t_&]+nH8*Ё~^ƾ"N-, er!yBp?ciQbdvL(WrAKϴrʡzpN68Myn BۗPQ3Zu-O?-g%S,0a~u=L1øG~:*1/橁߬J5LID2bcUZǴxD!6 w""fJ`TK X#}S|sx1x9Twe.5uw.\=p omV\YǹQLY¡Z@|PiI) v6޶Ƹdˉ8>̩7%W8z;p7?Ą ļux I\M9U$$DrZ S>6"oikz=gi巌jpªTAOP3|]/Xd>SPͽ}9 EO:ћ#:wW*($z3mMmF/O<1}:{D4đ  g\S{?-.q;RA.B'BqL:UIew>;p>@*IњM |k=+~JdJ&`z9ZQXmn=W:ДL&t$2.Y ?. /k9X?1]q`vqbYOdb a,(ܞܒK1((tk]t z; \¦Ϯ͢цj5#fJؔ7]J+ԷelrAhHT#8CˇB\@'zxn q 5@A,-uPvn,UO֪*NgF͡oay ."qr}X51 ߬~-cvZ=;gԎ5}\YaT$ao{j3O>Lo[tҥhKh"i0fc2 C 9Y TwYæ7VM7bGkq_ϷU+`{jI|z@X>nY!{tA30Fȱ_WQg|R!hS5( D Dz0 [^ ;-}%͈rؿf;Ȣ[n13YP6 CKJ@IU΂EMZHGn;đv΂M)&BͱʅatjgT2[[*"jNaN~j?"m'D DM(Qȋ6zURÁ#PKi eԇ 4I:lc=8Y[3Dio=/PmJQ0ܢ㋱ Vڪsgo ]i`G;`\V}̡fSj=F_x+x1u^žWjGIr B&.sOQK e\I'y&Pe+]ǪqYŴ-ߎ5!bކ"Q15YUr۴Nd#֗K=ND{G9>#>1}4ɷsWZߩGqJ) 0@ %'Ls鷍QU %ᄋ[ @ h뀳TK~ 't`}@hvt!_$[9 v'X0䶲zS «  9MFvyM0DB.Վ"ÃC= ={e&?Fȃ$YۤMr~30e47W9q'O}`~ڙFɛbI@ٰi(yf~!1b#BeP@ۆsCƒ)Z"OO#҃rdnЈf (oAR=?L=׎*IHC9H?$K50G#k䊂>j B r0w u2i̞7/E`e99 v4⹶݃yLӈƞԀ^ }. r܇ Ql^]7JX Lg^- L, O2¥9oU#9 -@ SyjLI#GDv7[&z\`\f &"}-wќ`;#p`s o =H+=74089q88>]M3CY)N$ǦUMIPOҹcvWQ2Bu7_bP 鈣ѥMЭS|Ϯx GۙZR)/ md3`gz+ ;3Q?ޞiӔ^$a,)ay1)eL-8[\BZ]ˎ8 ?5{pe[߼D;Yy>,#7պ݆- 'JL"@  U୊HS_e-^C%A^=˳J0֕}+frިe^[ QC`R^ KB""hw1F ;l0`^f&f3|ymxp5N]ly':LmrOWq~aX/]ڪΝ&#nX ur{Y D@ tjsVk~B2,7_ _;ňl_"#uUy.%`P4O Z>B4Z5jVN1{+ WOB$#U. &c˟)-f{l3dp6j~ 䨈_^R0d_8sY)kVql#ZwI78ZY#!=/mׇT1MW0љ;߿pcQ448Q1IFKqQv5yD&-z,a;_18 y+Hm,,Qv=zZ/l;>2&S?XȚTN$x8;NN¯`c8!*VZ}r׽x"ˀo[ qko2pYʾ/+4 &z 8/p9a :԰zGʁ'@w*$BhQsG+ߣ;jb-nwI-GaUM{IZxq3uk"~BF`gD?H\:$(gɸ‘`}DLK۠|2#g| yT%8gBLd&C^ *W ٻK "n $8·iy.tobjh(󘈦~ZЃʛj}c9OCC4 +!4AnA%2qTS8B3xzfzzhEԌҥސ=ۃWR۵5:0 K rDS@=Bf^@MN axzzra/s/bf\uˢFKzʷ ^Ш{zlY*sf16 stwl˩grN'L]-M_骂v%?@P+^,ԨV6)Ce~nD+(j8F2;/99=su/FT'"r?O/ OV@oRA"(E[Vnx:hNLrPK13Bڅyw>V4l'6zF``٬rNx өZM G֕meL?]zg?/ŇVQWjHevj\u ͆B@X"\o+#(P&fB2_ X%phԉ4j- &@oChDMcvK˰LPFVk7$ajFJ"9J;dVUk,|T4Zvtt3~RLh m-R{(>ӽNsfj٘GgVyXo}Y )0,(E)Cp31w oY]^e2e{d;^ܦvO&̡h~o -16N>6$̿ aq?8 R7[-92- V]H u /տYȂP S|i#)ke+ #A5Olж0;ّ̙1FԢaRxNi}"A茺%7sB5sH8kLUt3Ec|v$HO%%$l꺈w9gp_ tema6uEL>T[gå{5oHܙ/윚CU Wbu5wڦ Wd&9[pƲ@?JZŧq`+%Al\{pG{<Ntq= kM"PKLo~^5ߗ/]Yd=s ABZ(Q?=t{H-*"aIh;Y0b[sR-#=<+|l@-IW+n*ih9yi7ܣuRq)>ހ T3џkV}^ƕDFe#NY9Ѽ\y㳹rl;A E&KWpcHIHwH V"3f tzLY<{T ⵧ}sX"wء-d134F\J»oh9Fܒ!4e8aR5-Q N7SBOq@fɰez)X4y-GWdd04`MIȼlL|n5[5^nںIs#"0KZhϊ^i xveq7bp{KFN%<߻d5g|΂չ|O!mľx }x4Q\{Ÿ ) pK+K%]`,Sz#-M{p#\q*2Jtܞʟj*næ>8xY?ejxτ@)vQ]|FSY7J`QdN}%P*e?F4IJ+Ҹu8Yl)f0Ѵ|!dUzxUQQS`K3|gaBInFT[ꕢ()ʋ*M*؟j ̳Z@[*d)T[6cPh7=UCbv\YI(nͪaV%=+ 7<{B4r;Y[/\@{3*iC7MZQwP{ز82(NOqYdi'|fN*÷y{e(ҫY}g|Tz{2TZL@=ܬ{pAm{嫏iib,nJzޕ<[D6A~t8*F.< lS}Y:>h(H[6\#A꼁8󩰈3QQgF= =¥`W9<oV5wkLE.s<&y#si`xgё>Wx&v{)uK<1 Ҳ*uu Z_xkox 8,%?g"<÷ÛhMb^s!*ಽ!VlreO mms;Utd}4OAdhJPH);dܶrlg'vEooqg&dEtt\'oED)YNV C9٪Ytk<^꩔! xK#Ltfz_Y7+p+/qѼFB&jB¨kB !=6&q G<w"0&4ǽy5;EYT!rs*"#i{fIsDbs$̑b ڨALB zAIHKLfG|oZ"Zomy2FJg$YwbKHrGV4VJcŗfy4\8 <콹|qdijVN}R=QPջ?r/`Py ~L:WlU ^%R_83кxMxtwu4[aN}Uת,#sX) Q&ْ~H;O/V1-Z-F@G)1<Ҥo^Z7rʇI/UzY;UN|!'hov!j:^F2|{ 0qG~xauE `\}Zf8n>b1MתfL1":JOur:Uσ޾'\$ݩ:EJh%\EP&JaWtCEϽ&PHY-_nCtr2xR%T~R`4g 멇U&r 甪 ܰ}'_nA ]f󮰻s=#g(E ѣڮE4dޢu[`T\Kհ?xNj *^8! .+vG"1zsRIC5z K> RձmvИeT? =,bLt|Wx;Wn}0Y0BPFL6c٩ܨiWAaDP \c&0?*Eaf?/Y(b%z]tfPea= r撙=֏͐_;#}oaA#5Lr{̲ChwS9/e]:k>aOW\ 7e PQDl^iޑoDiwJ`$ *l.iyX}p~kb@TFz?ZCqumx&|kLy V= r=/LSqݜXAeF&BX±WP[0t ]ȗa(KzDݳh+c:㩻Q0BTW· 2>rBk? :J2{`ְpV OD_t^ZHh˚{JaQP!\x[Ԫ(* 4I?`,cx:#q>jc\.ok$;2&szU<Ѥ4 ~' uS]H xڏ)"SjE,jLѮlŚ堟WzxGuįF! lǝgKŖL&S7 1Upٚ]P`pV_: )QMzάg\d`.D@K@6dⰭHՙw^mswM Yo3mK`d2݄zф^*tmE (nYiej)YPNqF1Q~[F T@oc^EXtZ'DO }tvsBmSo!C)\</l".GrޮlX7,pԓF2:"4aUawCz=MH}#;ʬ? D8L|07L&jщ;[':p-1c^AA> Ø ^ݔO [J0TH^, IDK,RpKDWG{:'8'|\' 0"|ǘK˰{9Ɨ: ?baNyiptL(;7~H )7c6G *@b(5koYVnD!MD]?Gj=Y J MpKxaåD D֛pϽ\nB ëgl QRQ Ԡkkk ď'Ml(D3kTdqt-TweDI9Ž4.4qS#n! sV;^F8t!9VLV"իbz@COQ'Tep?Mj`'Ӊj/ JELo%eqrcWS!0Eby(W[]RU ]B^@e2ˆ6^c>D_JxJ\\c֖gKj3Fǟ#7F86*-_Ui7r\Q'"+ W Rd||{=#@]j5QDY(=I1aHɳiNo@}Ƶ>Ŭ4)YƉòntA=㻟UeRwnR$~YnHzi' LD.jBG?24ۀ:P{b;dGH2\jvakRΡqI< w.-fk?G~NgU(FWF?QBi!:A졍,p0Іyi&ոbjٷ+'(9=3#19ӥXT8\GUQDY:I R$V,'h!;bqi\T T qv!1X8;q{G4Jb^[ZZPL_xyn91y>h4(WA7F4|8uo?f>8g8Bz0|d&kaw+pz;3g ]I+KIm54wRt+]KNb_3`с6iumqT(e4!cEb؏Fp*2Z Q!dY@v?Ʋxtp=3La"P=qBe&W_,|pӥc^+Or~HTn,Z~* c$φT xd7ȖJrd{cnLAX_NfIn[rmt ~iP?]HN}!OXqDSVB bz)w1UYm5"a>~&Z7 ԮSv,2Ť !0;r )5$bdG]R(^ gKswC \ҰODOLb=2Bcm<^ ,qEҟ[Shq9H6p:־eBs3"Л!U t@QHڧrpU\g/ka ʙr?c H 9ŀS @1s4=K]jqzm9V@$7sת8BSo͏ ',AèKCl||CPShf!8W$+ȔYĘhVJsCkwydUa`A%H0nM:ب>XX<1o.RūY|qЏBw=6v/$K\_=0=IP"Eh8.oUΝb&s=C .J_-̰Mj@Md? d5T*{ 0x߿IvGO&~ Ln*_%]~@~0b:X߈y_BpTjէmB^.8@L=F+HY%(y٥ݡ:k.e&sټ=fmW<7hiH&T q}4OYbbW|i/'R/uPLڎu*,|B_qQ >R3D⹹2cX'e.&FnT {h"͵:n鳊b8˜EhBg؋+.g$-v($ '~F xBf/W$p_E_ߖ!z̡[U ?dW!QCv )Y R۾e0ĞjK'#BC֜c;EK|/ZZ_GȘx@U1 /UT4ۑv`TU M8䡮Q}&9Lp?"6(n 2}Ph)_=FO)ؒZA]t7CIeF@ ]hF!~c` BJ(xNϭ )dIIqRoJ%v˜ $!<7[+X=wWЎF=r20Lo~;BNj\*Ss­FuTQ6I)ʬmb `5bVMiB#PQODەjFiK+pC8Fh93Yf^'85|i]3Ȥ mI>zvwf]g}^nm%eS02} hEJܫ{PH$$Tb}ճ$B xbݺ'Hupܔ(Ҏ\AXi1qC9%6TQ#Fjp FNla@RC/Q>,qSFfG#zO~NSm[@'ܕEi9ڧ+C@z]3JXL^^oV0c7#H;"G "树8ݴ_^9y6kTԟă_t4.-k`L:j2v8v0/>9}ْG,@L/#;ƐdX 8*eǠjN S ѹ^PLgfY3r_ =RJƼ9iwBW|z;jؤ0bOL)#$RNa_ŨZuUSRtpipOi54Oʬ3%;r蝯1][O 2l4In::mĖyA^~O HUD-3i q;H̠xBbd\N`Y@:spQ>XN ^ao8ݱIPpr-]h ʎJ=ed(} 9u>ȍh;Soe]i9}jGhǡɤHBi8R9,=3 ;G rlcwx %FQl}YTD`ˌfD &zq-7fPw׊;ƪ]YX>~v=9\NV $̷I *zfzЫ4*S$iuL[X[([gAUi'MQ֌+tBē郳z:{3~\:m}jz+*K۷U0hěR8B ]bC%c<|s#J;`Ԅ_ `F9?aiǾ!D`~U4wCvnUv 3%z, IŮ\\5gF ʹNe42 {B*k٩\~9:!n82Y"s_AIЎZj4:1Y:4c4Nīz_╒]w7b ۰\eYP6:6uRH[+Q4nvmɴ#%1ZOz9ubtTējCyj*RfpN>UC7#Gn{F{o RؗZF^`Ym=Qu5:ZgݒxgxWh+^.PF%=%\F^twyMzlo=7,or+ҁWO;qwhLJECcAy:qW_uFTF'f1:`i s#d0m,ŏjxtSjpOXɞš)A0>{kHMQȋyN>G9yH eY-b)ЊybvQ#h؎gܻ_L2&~מoZT+Bnݎ.bFy|IRWPO/k7d#b s"P:}M+Mg[ݖFDD\%[eun{\g@|^Ѿ xv ktPpETZRKvA?ed8!:K$N:1f?tݘ[e8Z"$ Ԭ'M9 Bv)O;_^Z|HKd4glMX |,DL2LTgI [~$C/MM襣 T V2fC?6/fYRDz fFTMz+S]i*`ej:g~:hΖcV @!Au ^M Y( RҪbbc*B;u13E(HS8 ;|RHA;{O&QO@sbfP]p3VX0骀 e慗oR+B?Aif>}p(j&9reƀe%L뗚J>Dk;J{,M-K" N=\7j F4=$|T]eU#ZB-N*k_#~`/,ʯrg D5%J1id+a6ĸ{ +!ԯ5Π28(`p5–퓳m\Y@-TJ 0.2A<,iZΒĿT\ʙ'~h#w5F[aT}r?i &pPMz̬C+Iy}Υ`jۄ6*w@|R(z5L{01荤 '9h+MkɏG ($/&IܧloYeFg(E8_ltxN[M% )Ai'Xh`1~#.o؛6&Rd%j4(8PEy ]w7הo t o$] 1xDaQa)O6prh4N$> /232 sZT9$ +uP7'l:p_&(/~0ա}2Shw p X U` beA U4c#ZSn6MW2UL߅SֱOv_HUJAuݿ 2 قN5(fX/<;9@iyc 4_јo`@P&RBAͭ+<9{]Ws:1 Zه{mk0ե: ;v'[Qcs\ E+-}v!v?DߗɶCS~-̵AJۣn|d@6^hggjix5x&wcm[Ep9%q(?O'd.h61C,mY1Xw@RY6cQcvv(Lk0)vs\~<ε帛<"= /בw_;D92M y!g8TؖTQGL~֑3>*"'^\.)n~ !ň ])M)a!G/ 3{nz>%Ȑ+wc$u٬0l&> E6Vյ#fD)J̙`9s}UFuoH,7P<]NTnBY^}+ he8y?0/ܣQouE#;iw%q%د^,@-&: ENpF 6R/ p*UN Y4Vv*C4twO^FV̦TuVY( 0t"BJUꢛKJfYayHQ!]c0y{.\rRDzG,ZCh6' <mTN LtAC+`x] Eڑ|uf@O_o$T` 6bbK^b!QWV7Rh6Zž2͔xl[7,G9Mk[n/+M!ct~O^QŒjQhI:(`%3K|6n#QQ9^X[1->Js;~oP7^nCmt!ʙ#B[)"E(=oe_^  ;Zw&tGXy(`C=%,r{΍Q32\Q~J%jd,ސU64| hb>Q~Xcnp m"bʂFP?cɾbw VxLUD<0މt5NOZDjm*Z|H|mdYnͼb`a*=rЧ"ҡ"uu_m?Yŧv f6|d]ޣ T^HbpLq4Q%\̙$ga@ʪúܢ&Yp|,zD84)Q-Ǭ4F,¾)a$k^{v̬kdzO Ȣ%+sŽ Kh:q%l 'ل]) 󿝜+it0 Ѻ-w:3e)(h[>IL]&Ad-r;yr=2 2qwCy;ʟ$Ck-#YvCo.6AYߔK AEٺŢmrbpjӻʾd8Z&B cs4twX$GKBݢCYn.9Ez1dI饢+)r0e isSG pvAtqqt'S$d9BSmeXw 4]v]϶k|ֺ"0)> gcjt_f}bwsD7?v%un>:Znᐢ\%ՉREzƫӪ,lZ a/N$_[p;'.?.^pLLa"}f'}| l)ݤջ%Y(uݣ3(SzN4*pysS4b/ od\.ZhY Uvwb|'b e%6k?}^ʙvQ4\ht:4Tu?JP>l82o;O\~u\[" G ϐӞ{}u:CYC,0p]G"^ݷp %y)Af樎Ji -/)4ޢƚF?^+ḯ$GYr fkdZ7MH.Y"6ߥHz"4F!LЅIK/ѩ6 MJg D> t0JC\M RqjT V=["t#+E'?Sv,#(Lc=|Yl` 9EE@p`Mf gD} xs׾+~e#I-P/ܡlT3&D%h!3NzVCMue<-<_mB Ω@^PZc<>+18Sݲx 1Hh|o&Rubw#Y~Z&~Zx.Hd\3 oyq^tn߅?R挪d)q6v|N'f; _+X1D}>fIdyq< bPh aB,BF`J8tRXMf#RAR;يq4$4vQ q/r:XM"CCm'?k%σ#<d>0- `gD5hș%J@A E9O*vMYBĻq\!eH~tpODïխzqpf2,:2J{qNxP 򙗁4]\cs a 0!r{wE?ILsKG xӃi W\+ϻfP$͠v>=[m!uA*."FRϛQOoڳR# bszkuC<V2A{o@vVgbWjcM&km?äSZiDy:vg{=z(#"Kmӟm;X<>CS.Wm^e 9z]\geJnWޱRLbu1luWW3?0ođ&аRaRkcGaljTORq~xO*YK{IeOs=0S?hw A*=YD4tۻܝ@3[:fgGvB| "E~Jby%j1a*4k~jهtwdLkYݛWl^(^D\ʐea/ۺѾKcC#M%vWWtk dtԊԚu}!Lܘ,jēh#Uic~ {K>u4눁ax:f`YBSl*!B f,7SK:F%(寓܍b襻S?2@-ǙC2Q[B |Wτ<1qz$|*w^uU 4H뮹A C6&~DBM6ڑ6݊#CgQI.}80(6G$#Ў-#irZR/|VaȦ%PA@G>y"dl@%Zfo$ CfcHel+( 䖲-\ۄ\yRmB, )*ԂO-hEl0WNeF#|A5eZGY婠FlPTlO%^B1f 2 .ZXWC%p HJ;prt7nW>Wv?6l %}! xnX u<w1ҿߚcI{Jvo6rEU \Ai2f//w+;I>: RۇIbO낁!ws6G|>0W;bPۆ}U&a[$90/^P3K7Bz4EZ뽝Q ԛzgqNr)  {D5WD  h4W> Ҁё7@@/|]0s=tdB@&߫Ev sGJǪ~'Zg{ /6ޯ<WhV>tفPb4a{2V~jXec'|׳j",^Ih'O'1|48T pX>x Z0-:إ? qiiO9tde.pڑ凒K@'hd({Gd~8lz5+F+4(%BrSGt(m=zDG9GVֱ/r2=J!Yio{3?i%Ì"Қ:;_>ul1 tא+~)!IBAnh`/°r @`ݞlAxֿ-e eBNCH/i4,?% ?Ҿt˧?ˡYV+7BDRb ͂8M;L;u|2:h;3駭0+4x)+ْڎ U2bW`z[RN(&cE23QHg If4ꃸ~MWTL[ߋ3Bte~G{FhŜ>2V;(?X!_i4~dl(S 1#Lي/%AnR&VFRIwe-_0[&(aUoOUDw Ë|V0G6R 4}i(c=e%%ejΊ- R@ }Ҵ0Í#h UݡqA\"XOh*pbGd6 H<val3TC]̖Fmo(h"$&&zwЖѫX,Zݹ_gF1?fLN3r7:.}^rF,vp@D tZjnE<w~;Ikm*ޞXds v5aj.ehJ&/Z;_nz*۟;8%H"ʘj٥="#=C=̗޽6'K*Ҿn׻P8% 9!ron2MDJA4<1ep%®hiBJzӘ`xYL _*%Bŕ ךZ,,`bR@VeNc-?h}-< 2YAdeɚPUNÖq^Ok0R~$w*pmDbpsjbI-gD7둪nJ+fj501laZH^\ٟ9>N?N<2t _EM~t[N ǭb1a;gr2eVU,g|C)VQu?,| 0U/F,,H(ʄQo4]f?j;\BvA/<5jZU*v*h]NYɢغ^䁶Yb<(:xޠJ" =3d xYYYz \Muq6X7Ya`{N7E}GC/&-oH;CJAp@3QGBѴ Գi G?=$MU}ׇF[H}T@"i m\(="] xԑHX~ zM>I{+iVK+;E;c(3[ 6c23{L %!rzn :MC2>g8D?: RЧ(R]/L 7Nn0*̍ySEPC+ڱ鳞;UuTL5%=vPW2r2{Oګ"0~&-zO矕[+M*ww~ՙBL64wE_YbQ;T1'22C{JSd 3jٷf~UR5fC,^QKK׊ԇesܚvZ_1ɲ1$;O1'k^ɱ>#G)mNKK1 LjH}\sHQ3aMaϗP9*vv*00}zȶaz]~vjVBM/)Yehw tg ;$d+i"R"cfv4%h$k}ytA[`=0^w%b]\D)p*Him 9,\vbD=* 8Y4544a+>u56o#'PlRBZMChhvhTHy }7u{4T4ͿUK"qKZ9ű]G>̈뀹PC(liq6+UZSK홀,5 T$"̂[؆Ikjb˜H +L-9Xgp( H΍W7J=]i[ J Uk{œ+l8k`p]D,Ve*Y# 11SWh-SҮN3ƌ]Mvn"V$^,BڔXHnlڃ<@RH{+ Tln`74Q,so҃\`d@<|@n~_03)s?s +ioN8{uaŒ5X`D CY<^r9UhF/0v!"G}Gq`C,[TW`.@mUE ٳv} Qc1bo)zH@.ýV8#_kA1bP|-T{S8wu`2}ӮL GGpZgVq`]3}۔Pŕ{@^FbX~K)M/ )#1ld=Z { fC#m/a~j Yrk6`UtAbW1!X&+a:"_\Suhv @n8 Dޫr&x'p~h{>4 D鸷?ђ.Da|؋Vg)Cq`T8nJ*u'[}rm3aH[#kR))OBh6޶NV7 ~5f`YQLaS:pN|jڵ`~gHWO==yByI@+ p9YS=^:x< Ӏs?q_:2Fe_Ӑ =F>М_p~,w~d-a3^t!9›^}b~nr8Κsa?l)~/l(MHE@02>*s=I` .|^r#xw|:z3#eM0#njq5 N~]NT,X@(5RiCі3u 'eȐ]]Bu|2c\,r%n!uvUs vK~! `@gJpp1)~Xz2pD}u@̯o@$˚Ӓy238p5ifd.]p(V㬁]$Rc~WcDiy} &ҌiMz+6IFҏ&LJcnAa(+|;fP:4!^ Nud:Tv"6 e2G_ފz,}` H)宁0>`Q^߳zsv}1@5%?ܒ(Ncϰ}JN˳zPG ٯt@],\~aj/)X' <\㳮J|=soF6קžpPb{eqGRwYA"aT01)IrdM.R)>Ky8>)f!ݖ3Eٷ1v @2HE0A8a[,tO73q#Q-p~ e)m[W#hVۡ?P?CucI2`7-Oͅ_67Bby#fI :\o^C16@ܪ+rC!qw>t ԏUC6[nYY !܄(PVƭQY򖶑=-㴲*J !Rv:KFipCCu`4}1hAe T14\>zFDynz]}:=S - +yIUW iઑ9nщ+eB٩<.Ͽ(QmoODϭ5X75 #S6@l1˃P> lj|9y<\Ќ2  *(/0qV[:Jg/6eyӦ&"rM͛ y4UKF]4^gy+[[-#U)YIRSQtLϛ+ L9cShя}πp)>*: ɛ˒ԟ ;фފYR6JdqpGbsm&Q+'[+ifϻn8G27d좁:㜪p_Uy#bтu'dy'VCN,WP!#=|jyi{X@}tEgIWE<]Ab挅*)s[XnpPSmo{~)A_ibhBḾ <-,Op Q|KtR]m ;Ф!Qhك =cX`y<` _6iM(S4cѼkΓ%{sCF!o95=%D|}qCR5[7_\I1cuX:w`99jh,\A"S)Ck;zoHs.ۊM ?y~}l!fgsfDKlYw='́1_su5S!ݬe8m3RFN@!*D"nَD]K>=QYN= 6)<-ϩ}Q>f/f۔{N5@6ۅVy|eaš2gJ7 Oua f%5qʾ7D36=zwQƶ ǐF[}pXZr@]&mCai6aC\b>ՅiM'ޫz*fj^ytknlҹΚ' )@ B'?t6\rCOֲH ~\!NY+Ғj|bR1bxDu,`*vL!:2*{c eDbeE#.\e{?bM Zľ fB-sIh AHCT LFD MDSc]7#I>lƕGJ9~Őn~~aB }RJ~iqӄNu~ً?qJB'/"IȲ0 ,T;P򹁭_`'!DvZ)Ȕ£Z)!4DpGK -7<|3zcO{9`cA$\!ti]Qpǒ}rv7~n*P..?w2rs7RAM8IW,aZe "Ԟ*l/ 9SRD^8 }Y8fȗ%PZ]P3Lx|ַpE־za΢daٛ8_&gtִjz;?M۩vsx[`Mǀrb/Ws%NϒKVB~"!~-uu]4|ѯU*9,.&ot0XNL_6~4|] $CZXTv́1)SE놀=!}BD_!=Ì> \| fή&=;>*A -o4C-, ~Ώ߸!"Rb'ώbwZ3߰4m fk赵ΠcP,!se-BӞ`﷞ٗ ,R,S-$Kޛ}{bq·<4!wF^DNmķ~*`gɜf:mc <<*\S>5cY9ӭqCuy[sՕ"OWFhAPhkGltfj(1l!ܤ ` -EUDH]uBo.M+͘C ;1hbgd Ti0x? 2CBP)Tw2<^ݠcddiZ% QܹmӵTD1Jx#kT?ĄU'ptpy)b "׮fRa[\ 5(8!UY]z:76:m AKmG*+'gӿZ`&eoxLᆪ;nMD6CPLU<8KɥK~Bg:dgCV?|Ok%bMhR.j| Xa[u:j)7/pLFrKĝD|!ܑ|cGeATJ{Wa:"!Q^j2tAo k?c& r};&`hlgf.'*ы:2͎_[IO'h IfuKz9vDSH72 3 e$M#.9J褼wL>)Ү%Y} T2xSCEeR;om5IhJ.`/(l2Q\i)+߶D: єQRѽ:ɸz p"F8|[56HGZ3V S1 a_m25H/iJO)LfƓp 6q-QPkp?\*gcYd@<w ʣWuaa g"Uv\zŠ&g+0H&Dh HcPhq7DjD?^L*Ȑ4h(5$+DSJ;lT6X5:Ziσa޺яqa, aUeIo2^Ӟ;l|ͼP`IE~:mqIrI YX :5̙7xU%-P|o0j|h>rs00_Tƨ@{x (ZlnQ*e"l\"@ʺ'HO b<;=#Щ>dTꨉRˈ,̯`F":FWMc7#^ևHg|p (8PZz~쪱>uEU_yKh '?mqbp Z,ߴ0E iܬ#X4n;v/g*;1%tke1E[< 7pbFA*dY3CW5B}Pcp IC{ARb-|#q>iȎijY9Weȗ=[Vl%py WOiH:O$JAI"8E (8^;K݋J+cH|LL=4t=2 Xu?`X$le* bs4rL;_HaN_*IG?ں ~$;;oYv jS̒>U^ -[b%ˤ0#WQƛkIVq}% ۰b'%-|0ay9R6 k ؑ Pö} 4kvC?^%h0w?n& \۫}vGgA |#sv=V@SbwBC(%k*դP!)➜s*gǂ}iphU$17xGo5>{k/Ia Y?;&% $֘ѻv>m-8Pi+^IM_g˜ #ܽo;t=s%;i`mƻdqr{.̐+ݖ ?O(9v`KbYRh&C M-_VD<u2^0Stas!PkD^&tg?k.Bܞ=A^+W57"BzƷl3)駋L:օ*p4hG{GWgNc[Qi@=iFPp8ߺY  !30TQͺ-\6zz6mO@5_;J<~ Y @Qwr4qvuiΦ}5 )A_aglv i3^ѩ"2Y&F#}cgA@P:OM3d3VkuB6suSI(蛏R,vK_yZ&bs5=:8y@1X8Sgs2$Uo߶(\6_>)8T|oP6>.a9ڪ)y=~̎TK"C X{# -^ʢgkpœ!1դMO w]m <6O{@!>xB_/W$g0*. g˺La}!>Mrvs$Ex "K+_/&VZ^ \ʉmѽ>󓾷d $OWLXIb~9*[(K>~QݐEjR;$sȮ<މjUfOHz|_^&A`f4zl>q TT+| -հ%HZPVM~vv 0z(z B$~=:mQXTd;ur/e cܟ:ͲlrZvonDy( F|vѲh^8e1k<6rG[ՏJS:`\Yfs @86@Kd/ِ0&1 Du,7 dn+Yg82T$*)̝ k(U@!%u2tA.ٲ]PpLruILC.$bp~xø!:lS̞ w@gVۛj=u݂lI7n|N1ԟAbzPlډYܼ"}Bmд;OIN\޲|USVx3\{$AZ!CZoGnTʴa跇4` O7FHE6֤!>L_:n<|n nվ45] NFK Ul`ZlΑ~Gv&YU~?,kæ h:Fs9Vzz6[ .ZvK{Bܴx)^jawpDL Ewq?rž{NDa{dFHe~ѫ[6|ߥ+{TJĝ L B:#Q CoF};.&̒KaxgJ M> V&3_{N+43QbJT_{%riB*C+# $aIƖ/e[0r=.YSb1%qF?tgsgWf]Φ tY zlfpXa%tCԜN'쮌eԎ!W84:3z69G~<-&o`SL=@/dFQ1`aXsuz-6K<c@5 @ƀK}yN Bgm^]n:&',2g P1n ߖrc=rNĒ%AU])LLs?" TPFiCSO:4G_f2 ?wh!J3yO]vCln*Hwpk8T+zP7A%Ggz2r.Oߞc%%DWjI ZXnn8nwP{ʯ͠4wY~ʻgWLW=jָpRbƶߦ$h:ͭ4a.]Ѫ'?` n 'KT1U“n I^Gտ(VOJ:=2;i]`!L;˃$弹љ\K64sFWGuR-Yd*7+E p%*lnǼX 0n2QY8sBAv1QwF7 BXaf0Xvn8-C"ǵJ)/8 ʨ>4>e gF`wHO{MoL(3[!R)s66OS J7pvɤT cGpxSVhwǑp+%%8w;%-bI,|y MM%'܅]0]Dlִ`  "Cv\|(!nCl5 XeY#"Q-A:H\sp\ :7ku7q`VV@s%1a|Z(Wa#1Vwh uc[F;S4L^dcIߧ/C\۽=33ٞM~7ңŔ}4hF]#UD醖 dZ|[]>g}ب.;̏7*㴓9ctUm_pNkbB! B$]pљQχ{ʬ y@5[jCAN\ *b_|j^!\ b`i<5:DUΗZ$5DgM g=4;@aSx/yҫd[ \ͼկiϜ EN'_Od]mL.0T[2+0w(  YޭWdB6I| mZчYD֠O !依F%n}57FT>VF "f*pV53y2 ^J %PZy$OA|%ڋ-4\Uo2|rD]Z]^jg:m5{s;l?.1d"t^YHBzM'7n$8waI70N1&Ps–!6| gZҼ\ڋTA-HcEsdI0.Nob6X8 [HcX"Y%836JIy'D\較1:AȺCeV8XK6"dVZ` }@Pd)nnGRcH z>{M:XAa1\;eYm.]fh eل8 eڻ̰I ƒ?gU1+.\xm#Wȏ) !07Jg_&B]-@'ATN%~Y7iA(>fO_˺,YrX 7#">{&hKVCBrÈ_L68~ B bLBTc&TWڟh0r9LK[6}`زL;WTץÒ䟹 $-DzI"`lP#E8k(ܭ%6Qg4 7JD+K7YÊ[HQ@Ogn@seduV~yos-syO9iHܜո+AΧmRr&@ְQ(yFyԅ1F ZEKż{FkpfUW^9[;`@B0jMpx\8 n̂ 6϶8?ߘ!473ڄ`g_-v:xr@~Q?lF[Ksd/a eBʇ{ (q9#Yc۩5ˉ~JeUɄHpO;[&Md;-Iɘ9"p0 v o:S2B}0$gJ8t|Hzy:LYDI3x֭36 Lv #xj&LV|_!$%*ZTOHI۟uBЅķK/!+mr}G"I2xuudJdPjq__|Y41qDƈp +)MA սI0q^7Jk~Zoԫ;bd\^ؒ.6RV9֠,`sW@"[m|j <ƀIj#˻DՀ*cHM +IkYGF^{aBcP>ṷGG\[Ɨ;$u؝ TNʑ1`Y1,9cG|4^~$4X C N4A_UBo4tVepS=c ";|񝆗2N1-/9[3,xVOb9Tz#OB=WQ=铥shj؃߿O[6<%?J -$@&Z &DW{=\oΗpg m\$LO!H"y~]OF.1>`lȃZcĎwbz<"2r~f!Jӣ=|vմ m>>Sdm{#"5'T|^,ΤiJe<0Iqhה#aNͿZLgN1UTp-* N׶!ܩBѶBUynz|ufiD~9|0xKyK@ j+M VFGZC-U #z#u8K+5^ktct-P(빐} ؖG0"[.r%/ ?J\1r'mJC )zίQ.V otcZb8ړʵ.$V+!2rZ.< n}V?!<#:"eޗž{&o}Is?E+R3F2yEr,W4tq,> SfrQD9J d;1q˺FpՔ7rjhAi嵤hfoz_W^m|A%NRE='Q?ݯ̟L:+AQqvbfԤ{O`fIw$rHC~ DZi#CP Y5}(>Yw!Vk%CH&{?EU :akL[<(!`i񜓖_fd+q(sٮ|̍.%(]f!Fq%D7P:r{Bk̖=35 AEӬ,Gcv꠨3"˒i"ٞDS( "Fu>;LDdolfcPXƎ!µ(Nz9#y%Qpɽ .|6Tِc26GXb@G"0>N'3Vp'/WiCm4h !8` z잣KDӇ8(.ɚ%b-:cmd#7rcMkh8ف6VK?\?"hrJ߬tb&{>dlIc0ř4j=1,eLܟ.,5rkUv̨6d{(m T+K r+pɆp~4_4돶*崙u$_5xdY%3M 쮔hFXyB>r( ʮ06}ZQ@,rsη9T>z!wYaX:hz HdSnU|:UD$O`cZ\(:gX; # kk=E#@{Im +Wl~a{@u e(V#eg}d#B+K,o*.ɇZcvڠH zqkV%AŠѭ C]4;> k3db'k~Uym" Fk<"gQ.Mn;~w~8"9J\>Pbj ~U\_\#pB5|Ʊ٥nRՙ8&qQdAƟhd6EK^W֣!TY@/HX/Hg.ءX>HkmNh$6&JvR㾹Tr"ړ0MѭHie=Q#hJX"l njJ+)Lrf6$3ph_kŤ/bo鬕6Aftk#!f曄wP܀vWF ( >:wa^+f{D>˜Nr4-wqmrD7e8'R( W.p1QԟH 2{ brIdG(7}7@Ygܲ59C+͖=. UˮyK[ThU %5v yfLP7X;SSzprSu6G]%rȟtIj+#)c$/EEjT4RB죟tu)[/AH[,O/V>!ޫ9ռdOo+y`'C7&uŠ_[PXv4 sp<"MdzgbٞV:4+%us(?(DfXx'\uw.|7Ҷ |q&(% 1AhҨ.ɂ3#޹Eih)ԤQybG9'6]]%V:Aʏq[v :'Z| Hn*dn;w(ycZI$a[;J*0GNXjn#F\uc3`T-`hץ,[%TZjss$D{˵)Um L )PsԙL;ϳVcTqz"R4!F|fDۍ9NiN'\ƘfE0nVDeӬn p oDΏzaJ90_Ghkfif;j: b݅ 0N>/bV빩O7js^j0G7~|σhHĩО1#uӛ48ZR.xo*CRbq1U#F*i[T%瘠weYȶ&Cj>#8x_,ul}?7UHot׼Gj'NJ]LͪTiHwP<Ǎ Uϕ0 !⧟fj[|V,[%H7W|8 ŲIi&zE9FMh#jֆ"XDF!1sm@0"3PǓ@XԶL7Wxc}'n$<5`*P9X}Q"}xXНpUËQIw=IgJY8,Οt*yc.-@&dCcdiʵ>|)TsO-l&5 Y{`B͎<"C)L$_Y2F,(TQE@I󜆧9vM\klk=6@X-և]"QW!Ԭ_2u&cCVAyPDVB!X,sa#Kz0ԡV}gڋeԤA0Ar854U+w&yH嗞ZL:8!:T^ǐ>!l%h*/խMkig*3+%P9T[)4^)"sR deTfw'0u'烒˅XK6 )DRD zjcP7 1|,Ña3;YlqGк+XY")Gb &K#EFIgX4?RD.aD}vrT:i󣸇%YVR<q>Ab%|i79b_Y6O!?W 3 ܌ 0Yv;9HKN7+d[aPT%z(LĞ;*ɝtdŮ=.Tnjgs| 1̈́_1ۮRW7bEEie5g; UW,E* ߩMMz|#mDr^@yR4"P>x^vtX%SKP}j9OhLFv"$UwT)'IZ|~'Nv`RfԽ; R,D| #]=4ʏlj4_M@ɽamAP;0s>;<D/Kh|Ϯ$RYq0nEQrz0Kɽ_ 8xMm*~e<6%,z+ dP{?Kh&;;L!JOρADбX@ѴF4DE)lͅ8?KIzƀy{UeQ@#ٻ; p$:)ء m:hOYT[WRkhTآG`Uȷ R둉Ϲ/`) ?|f5eYL!$AdX UwH+0H ŷS3%Fz=<`ƒK.* _iب2r}Ϧ|06g ԶK!*3鼣ol2ke=sdցBPIvJSq^Tģ>;?ꔳDk /ۉz)>Kho0鵿w>B(v9pt6eW:;ֱ8 3Qgt,Љ}5 _EiqֿSѾb'WWsIVF32νӾj5_F%2dG-!Bc`Z&!##^BTήh4_T:XAt >4P+ c֦An/B+N\Β?E=3Dht.=,VP-a5mj|-boiH G/UFZUq$,LϽ9p'rp09>#$@.w`9Sfv*j=dbS^̶f0Ѓ/ xS}hk>(I4 od$ =.͇$_z&q21[)XceuW ՜#مIok?ʓsB L܉<$t0xM .fXT=:NH Uw,GJf;&+QPjFv oK'ԥO~*XQ( LȖ(S{CR;'ÃGAïQ Q Gɵ'a7 \k|q\89g$k8.UK(>nY Or^;0*]ԉ#C8d<14, 1I|DZ4.I2Y(te}9t/M+0fiZ\ WbЪ&3 ?q&Pۡ9a:x[O1":z7tm96zMW)@ ME`'7XL~ Pϳug[T7OFYNxBڏ ڸO/H&,Z#|5Hj<EQfbi2s#n0L5AdjꟋUj:'j9}衆v./nX9IhF~uU@: Ğ/_~ֆ׷]ݷ< 8 UDg(A=~2WДeIMz>ŋGh*yē0#IϠ.8Z']toL:yb W粖"ra髻oS% |m+Fv`o$ʒ2ml5}k$TtiXb>f󚢦44ʩst ղR›(Ϡj5˄r6**'(ǡݞBI3h~Bm0q@we\nBz囘ہF`01K =M qvynlgAbUL2ZdHh/o]\cBJy_1m!ۉQJMCpͥP#;euI8XT1%ir&tZa֛C5\&.~S(o ae"^̐%;!K-W)^VAe䞋imk4T*$\Gz2#;V1L>oǝQ2"U'R0 <ʔ-@ڲHgTFLh<,-G#|_.]Eb8TUxb`p !AhN-sP#,6;}v*^RDw.O2%εBKV܍!k]*y ZHW舌3jidp+Ņ|.Wz&+buoϔ)[1`,쎇KMpFIB?wL#Fƕ2>Lv]l"Y ISeZu0|Ia5)q{fC.%Y c,yTP8z9l~ѤOՠ3f0ao䡫њ`c-{egHɖԤt Ɨ7q04w/φ3-tTjnꉎjpq2iQ7e$ lɬyZ y M42CR xIv"=eѫOlW,gt~NKԲ}u2˽u-hXe +~Hٻן]Sè بC"7;;J9] = ֐݋ D6b#&Q W%8!=1,Bq<0KH굯}7, PI+(?i5xz 555+@n5Pj9m,Y+h*DSnQݟ #P&E3=|o>QzTgq,g.7AېyC2@/":r";h~Vy(]Ypɽi+y|X7|9 )fTB-]p3ЛbnX0L&R1GtT!+Y"1ghuuBQ"S]WST,+^X9g :H̫u4yP{bbj"gi&@vRKY!4ܤHtWV"Y`%xt@6ׂ h0^3!2-=3:w{.0qfUW9\čD\I-=x&пRV!~7b%}WsLOw>M{ +abB sg5^jޕ]A/GIQ\$h՝sY=8y r)?UvS20uGʕdg6ӺF0nntoZ&uK6B+lSJw=[1R2៺(~E8kϋrާDY[U(ػ{QqpWxR쩿լDDUz@h#eTwWkc|StSUT-Ŀ&ȍD 2a!OJ Ǔ C,QjuӍgB22pl'0#9Mёnacs?w|`UT]d>< E4wnsh (hwXY4<9gLa2GY 8\4=t!w|d-J6Ro&mv<m>^M mMɔy݋n4b7|VkHhoܺzՙqDYIy3y-@fWUU8amYrK jplpT󻏙Ʀpah @h]`4F9uO oݬGm4s$axV2jwх}o܊ ,&=+J8Rޞ@L n˜V&/ҏV:;vJ{"ą~X|D94]YQa!yKMc4'>XAB+NnpQQF7b5Wh*4L,)4>ƣW6 Ջ_ŠOV շAev x5{m Zĥ\1"[/­dՀ7 k.`&blޟl*U:>Pr:U'sdeC ?zOs TARԟshRmv\$ܖa39#7 ت٫i 8hql{%~ag^k#X50Cs/o*vnA{LZԃ0e;%>H1)ir"IML|Fm#Q]s_b;*d) \nV1@\R 䄰WU@W! :b Aqp#?ثPZ~Kz)~-J0t}vYH=#N;{3Pf`3Bc~NC WS24{NܭpD][^['{74]6-Hb Z^cdĽlYʀ&4i6ۆ]hpHcϫ5U0ZBw)nM_'[|\ (F0jZ[?}[5W6}=M/̦ Do >"`'Ⱥ3HrN|OZ3BؘYl R"42d?p!FHl1v/H O{r~N|&+` ABzWm<(y1tA.,d{O(%#A]VdZTSS'קinM*8Vy{*9>%|IN.:K!O&XdiW%HlS >ߤ&%-;oG!+Q(uE" }>4^h@AY5[!өG,ISx}w/2LW瘢sT3'ϙ1v#bQUYuTi4o&"z ]axcvfxۏج\6)쭋ƥӄ4*O{'>"_N1ELJeݠmיb ],h}p?9> kʂ0o/`/&FŇ4Gt=.f֌eL䝞JvV !>k hdI4cP2MRg·$B| 60䳃'S cf8zL1j8"za 0bWX8eHOJ1Cjn<}@-q*Ǵ$)1Sdrͅ>XI&[_ 1KÌ =rVǹ0!cK<@Ses^TІdN Lc&9 ,EZyAG+E5 ,TYBvKz71.\S,K$mqv9|]D,< 946"Z ^N#?>Rx+#K"3~bsSI/nZ={6D`D6+\&D4r@:V1vHF[&[G Ehޡ:^C0NWO & VTlQnrx},u4 0$0s"ЃAR4RP֔+$D_ܻl ; .ϼ^_̺OTjF.knLT*V:VXS/f.E@. PS\H+r%᪘AoW"tÇj: p sac i|S[^t0hyҕdhAdGqϏ+e~! }YW:']֪쪷 6hҽ82qLL%kr0ak EǯIaաC s^J!eӢ; !qaX]Žp /*z1bΒpGG`g tF.)lӱ$::ă!9roo14#7 RlyBa Ҽ@6@3ʄ!5*w^9*炠bDs)3ilyc&C[Qfq֞kŋ*bjt~D$E$}` HV0ѹQi{L[;N ܘF"H.bϝ9\6~QV$uG}0@y8F<D,#C>qu(W4O~I&_%/@\bԸIe/^=ne`X?)+-m^w8ArPxb53  `Mx6Z*4a$tJ!'C/+?1̟o&cZช/) :d:5t *`L0 Vf-el(`5y57"d Q/WRyզ.&)C[bYNk*Smي!.7ܭ슊w3Ѱ`rt:(eNULWa39XsPwcQ@)GŔ _Dn}p z!Vb#"2h,_A7siS2( s6 6)?fj՜PNQed"_k6A`1H@ _s%1%'s. R7Zfr99Z&>0c[]sp`c5l~-<А&N*cgX*G_j+u4OA=UW=Pd&ܗq6_} xqu|Iyj*$sWI&|6M-^~'G=nOb/F uXX!!8|#.|ZbqOoKjAOUGdž\HB2 D]5m@᳨y7KTu41f9AvHJ@s ^MFqe#7D@Շ{CUP Vߔĩ=dk'tԀ[T3<!/QJCU2@)Q>jwfQ!H *NNrff[s}e`s+?EWl:LO"T[w& @S? td_ %$ }'@}Xش ԢSv9NJ:D_c*OPHFZјt#3@zO.d)يfzCN}MU%_9[чSb]ӻJ iN|VxZ= i?OxwIJ5edV{SviTҁCmǡCx92@kG.p$ܤ9 ]=]:L0[<(&M7+PI ϔ!Q?K8I}Uzܰ5RԶ:Y-?*+thd-EꀜKAbHe5(Xqٔ Gۮ/`"[76fS0l`ǿ!0Z>JvGq!aښF$X![l>jL[Μa9*2]hE6G{4<m53UAWk[>oEYwc)w> K=Ve:4~t Q T Zqh:Cŀ'WnO|" ;V|~V* RoUhy'XdGoqrԺ>Xa[jSs{% +"Hgjt^$U[-~͂yLѝ%D.Em@|&H|2KM3ĎŽk%XJl^ӾշŌ/pe 퉖͏bfRˏl7%KjhȿL{VƏQC[`Uv*>Uu䑑>5Gyz9,rŰlanp "#bZAĬY׊`4 H#DP.7#9ֹX l𬐖%G~n4q^Ly'lsw)ȭbjtJxN͖%oCyļ7t-L=( (9{cQﴲɩ;,'QM'[ECEIvOQ X*#S_&٠Qjqj_ -UJ ~tm}յjM\]~X}8IjH{8Е-B8~m/g;`/R5U^(T\Shqp5&6[5c,]mUSN'kM #)-" euhP3VVŌ 9Sa0")gѳ`Աd] Myܬ*xh~T6Y-~G/l6JT ,$]a^[& ox9q g 3%V5 ,g5P\!c{D6Ccjr{t dH~5T4iL$%VJ4 gn/׆8c5 1ҷ \A2PLf&?kͥ#*vKR3G3#׉L9կtŒ cM0Rhx~SBv]nN,Ʀk.~E0'J7` c2g;s'pAtN3ѧb.5}"pe^rجF!|ǧ`Om5۟6M̂o}$#&O s}A=UlNa1nxN*oO^ri YW%[&[ X\S\# |ލ%5j˵6IYUAb{0ѱ">LyéffbȏΐI_oszθ㓥NDVIn]U)-2p":wN/ȓ\y̼KԺc$RCo="/4:/^or%kOy-,,O+L"}Z.f Qۂ[vf|,۟w0[}SqtP/$fE~<ެtiB!1^'3`ѯV3'V=3x s=?f3mg_cMe5(wc2{. nQwv6HZ YIϳe~nS!k݂ꂁ|1 ͗Hu0J"R-"h iv11,$@a?t:)4y<v/ *ei֧ ]QpΘYEe]JT\>A{N}\]f aI0|؆|wʂ],_)ZLp!k}u5 ICcd獊+. RM||e̯=y][@-9+{Vf9v/iOJ័<_hDG(K kZnh(~DnzʣˈްCM SKR5Ւ[ϐ[e-(rlU"Yl3 xg0l_.цp)tdM\ιhm]L3}Q28\8-i*dIsOt}) (K{ lы ny(-f ,Ik+0ii@Q7WfdWfjNhC8!,<B_LUe%.Y֔DK=άnL[ԟkFlv-= ( aenJͶwDcnDDHJh7  C e?>VNSpc|[<9R֠mׯ8w  bLj0WV?mYV*W>_~q OdЂ(QሀK-־ޞo #Rנ1 rôZ\K^A=d텛KIl‹~u^RgԸbR*br?4_ 3JsUbsq2JT<誵T[0L0F1]1#Y(#8ɋpObIپz썃~e< rRz1qh A^[dP֙ aLj.R3ʒ%%ӬFp>uGwVx}l]z F#c&:tKRԥ7.~ :#rk(f1ob]I}M2?dItudF`&kjk4c9 q;&;^\)[Yarȁ0*(p#y9ڹYe|k'ڊQ3E !}Ä˶ӚO?з>ZP19.II`73x"y%GrV $+j9潲!?Ôw _F`˧Nnmh)ǘpai#{Q.NWԸPt+,-~S ~?$UTxO#})uƷ^-co}={g`q*Lтq\8h ՐcԫsZ#xqvx6~Svh~K&td-@c4\QҶWk$?qBia{RKf(f l\%nP\g la]|Pr;oʰGup1WiU=>bF#pR+ L{Jr2@6-B2W. Zp,h_&1M@/u]6dͪ ̺O#|&}@Z آrp^ވC&v?D{ *=f ƃvȑ=ûRK3FRhxĢW+sHK_lG'thAJh9BElAr9S{b: LdptR( f]hv7\! ϨhdMi_9wQ=(V>MB䀬l/s-yd?`KaY1SA guht *tpX? u (74DtH`"9Aة[Uz}6E [^9 /+}FWVq\NHqr6?#tW=޿[NJFc ~„ " h9<(]_{X 9P}`ckJ 2UJ]WֈI"O`]8ٝ ڕBS+lYܳ/4L_@Xcwx,NYGj9T|:ς t }dlD{XCL)|a߀5&b:nE/?oG-սʪWX[v򷬹Xfu^ٽڣ!k,~G/<[ eӉ51Hè LTغʇw ֽup<0kG0)ho_p Tlh;RDr_8I2ʦ&9{,1@H,]iR) Fy*NA0x1.v z>ZzVb PNX( 38Y5Cf?N*Ghvs)* sc\Mʾdcd hP]gTm&AbE ?hu1)?oy+:y.d# feS=eƛNՆs8 s`q>kPO/&4Pf:c߁JK_M"a/G:sϳ#W`ݚՔfcKѾI/>b *YxjJ5.I`$DH'pז9J3NZVR7ʣzunR/`} ?wm#ktF9+Q!44Y Nu#(*pߓZmݪ.+oԡ ?P"ċ1U/ DxLYI=nY 8gZ#.}=o|Z0Z.YWG6 & !N^O 'U\?33kiQ*{deM{b)`Y2F!(^jRx&wD 6Uc : 0E?p?'5+qQr/qο9^[o5i0Ē9kpgy% vY{"|T] Gs$S'ss=cǧHpDBQ/?NMa-j=M|Eb tR ҼL))Md!7O{e_4}{U FNkk ۉ1X*49"Cy 6$k- Z{GnMhdO g.!F\m_4ykhSbFIjhIBuCq;,dd\;!Wrr0w7+ɧ]}%wmIPdz QGyl=' L X5l6vh"N"BEOI.Yo2vnlQIE5BZ"EAdĢ>X=۽TA㶠|r4#fO.M( B7h29m5ep(pyރp1 G7-K񍤫\VK[KqnK.p.ʦh)>E0DW +$Fw ڜ;)&#i9SSpd#k'YYQ$݄Ɗ=$T}l=[j۵d~QIZ9DRH!'y{ktM[YV ] Py]Q?bxSҭxkt ިm$_r݄na-Ugf{y$"of{ 5~BxsR{N⁹]D{]UwF$e G^>.2]zGU/GP)hV-TUd-U1%M~ÁmbM̩),,.OTnS[qR: oi(U»BTf4{uP8Bnes}z.7Bth CrSEQ;:\Y r#8fPIL\ec$kn) B NLVeNFL= TQ`RlؓcO;2C?H@ک# };S,r^ s~hl$~c 9(`UڳYm^/YCst+rmקpm'=6up A!ӫG"iq"CK A4LHrIL=*R0 K"- = !*hנ8 `>m>QHMw,Ǫ׿ 5Ls$ 9w ,ZQr1R4_bMUŬ;dC"$tsz҆h}/:^S2'nßBɹs7~ c JL"ZtVn>T"g>z mn"am/Lp"؈ސvEi:G2Qm  gB駹APOM3s*7b?E@M>o+zPG֊eЃmq@QΎTVdmuX*!*St9 %^bOvb.48;ɱ$2u)VLa {2VQS5̾ZU*r+v 8~͋H^4Z7'lpw.)_".:TK,*}ò&RH[+o 8:Fa@K g:OH=$h#"Œ٬Ŕo{XNeTFw Ji6:Tvhe:tbJo׊8r^>B`xrD..{f̟p(ʢCxPѣ:^׉>w)mY郘 JzJI6t'+SjtFp~ &/r2^6_U,"7ب_5V?J3dPP=,(q_e`%hVX8L)^Y"[tuWcIcD%%I=n^h 3<֐"c*ʶ!g|ETg-{-B''TbN%1RSDZc*|O,ކ`y(Ǩ;)"R JЊ^ hKΣH YR|Y" j):_0Jr/?䬖QîHwU'bK9`Lb@bǀM 1l!SWF"b'Gۺ0W]?E_,ML$_ln KmS!vb*L(cʆUl?9@wJs*uκ1+!7{k~P,c޻= 7y%6s6@-jմ4mu+ApB!<1 (Z7})_@AĽXu}WxqęQUv8f$Xf TB@ugpށ,Ny8r:AN֣W@ꁹ:['/X!:"{'vaǖ>#,*7m+u|v%&H}e"rNRܗ8툇b]n>`jݼ|^_q[5)MDK?Q( .H*L~'_[IL,~!aXZ_b8e"g i-hx+VR~uezLkM7p· ey\L`gFQzGpgr[t:Kal& e<ے^,xnQO64&P _鐣(̏'?܇iW54#n:•EQ 5yV~ A5!*C%j% bϦlƼķ~lY]%kz9tTخ?yWaXana<2~ELY[ 5&c6;l]F[;ͯw:a"lrf<вvWXDf&j.RO%m*: l&5cH"򳸠ҕ46rm>u_n N&XZw[M@= -W-E/Ga8Zǐ{3"Lj kU3L0E=k3k+/Rob.ζh *fFa2uv`.g)4wl|6A`??%b-vդMxTԎB!0q,JdLޱ)8˜b2 WVsoV8رYp(xE4=ֳ" .tTڻMDɠôb=HCھi-V,VxРW\d2BB]ׯegq]=@6'J6iRkwH~U)a7k2TWx8#AΑx@G}lN}.FaLO:ꔫ9յN*@Jr堎țG]񤀌Iz-=uK$eqaht-lсa4$)ޖNF/ty3&e>w(j\whM.j<`GmVR SX *Ke>]eAECSONKC?4HKdNOEMh  ,}@ PJa;n9(9 GUԛѭ~4ҝ殖x;3%}zdłC"`Û2j lK*$ ѵ%%Z;1i~a((."Fp>C6P9 Zq/r),VS xj7!)*YL_;XQ}ˡ'Cn Mp@aS0PFB ^k TT ?Z٬KX(Wo| 9$*xm)cԾ" ULפ-\S 3I2oKKbD髐MQbϠzl*7䰀r96 %eӚ]=@cfWJ-@$8Q>h@>X*á?ޔ PU՛)#yq2Zr/rJwvI9DOfZGq9d ɍ4O%?1 71h=g)6YkUyJW^ӏsl*ôoֶ@-e&"Nm1"![fM2[ jj[E?/avZ8W//ANB2I6oș̒zywcEz3(z$g}$ ),~ɷ5QoJ[hj&oҟG w(dAvre#ŕSFb5d($tEOks+haE"}_SXW!}4vwt^r\-ZXhH8({c%Gg%60Tt_`U(V!567c.! 2cI8C <-;o}t7 p\ImI,~RJV6" Q#vvKLnzw%E-E,yp^MOd!hT5cµN -iĔejaJwZ&q'nXi 4Dѹ#ȹ%Q$NN|ԩa MI}z }|FsB gV,͗1# l..|?U8Z=ݏ=T0aޑún[kuEӆg7ʨ%hR0y\E#V-4LS{.%Y-U;5߻lMGb= "#Hk|4*X1V뜣:ư&AN MpmDRdPSL&%]0yąi\E i<\V[v޷NofeaR^3B*`3=bpsr5T\p\$Y=;? ~z{r; +Cq74dq&e>lY—^wOrd(XL'<765H->R?a?vGN4mc33JG|GAFEeO4Bڰn 1z3*nW!>ܧC ah"(*a1f;i`ym# UOXI",v b v@;& c~cfSv;~F '_Io@ W*UT\Ɩ96yɿ=<_0P!㰎}z&Π%Lo|ݢT)5<62M."N:C8\v  ~v:7Τ(v6w8O|R'S-QB:s"V[:wsz]~sB(7vSPoFL>䱂+谉WK?*J+xO#pv ̙-eWIiHT$(Wm+DFm{'Y`-pv2=6,8ڮ85گp L ë"`ZiTg qzˤЫxio/~(זh0C>&gM75*֠sBR< u3w."َ8\!!xSB$FYiJqu \=saթ7İP*e=7&UMN1cʋvf}aROzAӎ`wtlY6{{װ]J~V7Lt~2-҈,bo+ 45Ѥ0R??mf@@XB$ Y$2+3pqv}3ˡi8q#1haLASq~, / C4oŧ,!k8[G\-!Sn4\CLB~.DsiJa>Sstye)gAk1j4-P.Mk柟Xs] RFmp =Uk)}pƢI39-nd9Z3[Oo ^]uS8?1lS=wjJڍG)E1@Oo',wй!%#=H/v2A֫Do KfeG@hH"~-g DY+_:s*;/Zq-* j˒z*3!fe 5-Vv]nHs )JQa .kٙ96.#@%%nL{z J39aDv0b²<۷c8A؜ AU?N+.rǁv (7&'_dDΣgl-$2 (c?uX0>ԧrGG7{2OsPձDu3񓂂]# t\GK}6x30j,^ s:r5˜LI"e5zm5C`4]Zy3I)5;cϵcmc(,<ώ:M1kQ0/0ax'A[~Qpg, -ek)kDɁ[h BsLh{#e5^h; fhvdd>yD[O3~#7U"vnY`һY4ؕ[e~c6x0QS}uKh'3a4\YHT{$ Ի$/A E\n:)@ Lmą]Y dI0QQ.[GsPAhs<}~p`IL@^ h2Oz1}l1nCE+|Eœf3E⯗v^~.!ؤ /b*FAsv]I]>Ķ-$ѐ.aO&dnK:#5υ@&P0eE_'Rq*Pk' "nN ¢d ]C+RWL*b%N86DhU% *'E KLM{ES~b^n %%אcMP"KW\O%Mbz(> zG05Okb.,T:܃j@֟E?oip"O׾#28n?i"hvބi¼$Mf?k@[0Z.'|TTIrڝйkTr=dgNM_rDI5 K 5?,RLu~>w}r%"T<~wᄀ߭2OOz50c]m7e=aJ6,7X*4vȫG\kvdh rK(\c`3˳} (>ܙ؃LnS q^LK؎(i$HNNڴKN9h=HI_TȲB ǿ4YmF)̿>z}2)6nߗ~%+a }|WE/kfojk *.NMK2 twZX\$(]H.,UphSIN8An]11}zV'C|IGY!N>:ʷ"zμ!hgU-)(,IcAf]PbC5R-Y^%𭆖]&3b'܄nL$Q-W}–6)a=t#n~aPeW<n.Rj%+ )pGxNո.۞ }I %mh2l튎nK2?ݬ&\Q(tLb&^:I17I?K}#>hrF7n4kV$޽S3t2p);5O:X7g[̿4L(Я w̒P[?ؔ*+$Ub2{&lj [+4gBjI* w 1IvLk7.X4Jdo"}{͓3;gN p5/̞DEöR}a&N'@P9:<@ n&ùMn':q pښJ%K _{\ `=%qæ' h5Qp6*ڼPcGT 5D_#wӇĸN7cFJFҊLGh)D,jaYԁ;`xFw%gIm$)WnW'=n:D+Rb t^ұI |ϫLK"&T-MY(w'r?(.B)R.R&yEFP|U>a}'L=!5ݦ~w4sՓ =cy+5 #S¥y83TrRvACc;lddZ翎Kio@#b6F~)'ŒS;({Vmі:(/稭kl +FCe;C_k4(0 (o5i \xRo+u4a ZVf1u{Xpy [U,}ol~yec PR& %o:JӵF0_% *U 2H~ ޠݧ?) kIK-/id0|ci ZCm5H+@ pg \6KcOEl1P+SB{"1Z\j+)e>~Q@n{vqr-tmzI< MMMURmE)@PN3N~Eq;qjӊX1~2vTWC֟0 0#q͊>P"!MTnTMSX*g v OHCqyGs7SrZ2Z Wl&O7Sdg4YukG>gJaKc7qK%: S/J*v;?-$4WKpC)Y'IJ`8p wn쇁)%w$@ѼoJoUㆢI͡Tf9=n{> Ƚ|HMعhwZ8Z4` N;mgLSQO!Ϋ!g@q?$Q1Z Dv]ꛖVU#:0j~d0lg.U[V%B|;'O qZoފI3ܟ/^$?މɸ3u˨'a(%8!u?,T5=|{i)@fw-ɚkMn4dsv՞I.i草\ WȚɊ)-%8zH`/թ$AF,ԇ@*Z}*|kA 4}umCUyxrJa/8Y b{V+N>a_P Bt;cߡ=FB w, UXT`az+R34u7tr4x׹WY[c"M51>TcAMc>|g* Id[GTFkNڳtX7 l';Ԇ#B (H*#(S$ .Uɢ; slB:&!Wt58[iqUraYvN 7[hN9g&-,&LuYA;''4 hQs p3Qup2ϰ#foKwilL+ EqXYzpn)Wו6^"cZDyU!c4q1(70JFN;*]l;skW.? L1-=%c b@% Yi :Ry̵yr~:ˮM).I9Tj&'Mƕ0wF 伔V#Z~:=@ ېEo y-r;H͉]*y>;Oq&8 t1?lý]*x&݋A~h-G3M:R,UEly?D$ʹ(̓8oU*R"jv!C@z)^AV U;%eN3.#i -[Ukd1uKjGمgcKi)"(ɓß5`'.Y6 e7p'-ԠV`țq),㡔<wQdUN N :2%vy#PlQRr%@ v^<6B&NCqNUKu` hW|Sv)S:z!|8zf"N=HTO P]t ˝epJ-O1>ދs^gvoCב|WGW'e澜 'CSøYo!Dd?~B:3KILptHJ|?nqp {mCIDÄe.rݎVcBǵ_6>@zcNF%J!|~]2N4Kh2E^3'µ6YY0hy DK(;-(BEpP[Tg{c{Gyw(UI ':V4Bx`2l)m )|OROI{AbN4}}V˙Y`!9sdEl +5@N*f1_Hs,4ud +6ս!7îwG&sCf -ʷ ھj=0bH0^м~9V$eK H⫥*@QaҮrW>J* wƠR %) .X}WM:u CAbH]Mwk-@}ϣr~W/h%y% L*i'PU:Fy|Zh#j H| X8FfhO='{ c FT#U}hLXz6Bw>̝_ۘ[VХ]cK-,iN r:|$mE\yƸUdF+B=,\d _XdXBʆ709&\K/qp#=;Um*_1g.Has>q1vW{bI-c@ 2}>*#N@ {oOhmE_@%X aqn.2 bў[l| : lYoάPYS0YouFdK/^'QQ T~M]Q"){e}m`m01J`eԆ >wօpiF_'rR '6i~iIiV̏"r[e9U'=6M;㺩./w%c6)``S󬩺k_4`1wG/t0N͊Neʿ8^ o9WɣI@+,Pz ;l"D-W =zɂpvN3] ?9`Ҁ+T6Y6%l@fB>HC'1j8=L _rxMz C-'?|2_C:h ~VN_0}wGƆ4A=ؽ J|-2q-נ@C][@P훨gEH B 57@JyIiZ\iSz0:릵 漻NDX.P;6I'187# RM/7T/ %!q_ZٜYm!IT@Ad>wnsP\-V4[졩$WG bB`2`o䞄كIL0(o)$S볇Z&deEeG$ҫR6&QkUYSUS*3ϭH7ەW+1svX9p^X@zH'QpOQFmv] _HCAbFeh{"gcѳ ?[<+&+ ;|Ǿ(JUKXʅŞge [Eʼ|^•=skĭQq+:LTVB4UExiХZr 24Q!/ឌq:(l%62Ϧt9+:%Bʎg% DHf gƾ`G#ƒu%A BF)[qZH(%G7qřar)B6 "}3}!s} =x#ܟf"s1WXZAC)f.4("AƎAeP̃pguq|E,1|DaCkAyQNc37JtvBgmMW8/Jbnʦ |SYn oT~BP1{[lte.K_ h  -8,iAp.s"[9|Fb[)}>oxxku#QT2bWVo%-d`0d*RxKu"}SB"H0A"C ~)$#wJc,C0d4/?lRwuX٦͍n^53 D6ZHJ-J^g _7N@;vJ n8cǑ; ݥLH&Kۘ"bY;DxUd @8Gڟy8,!PQ96rqV_60ږ\2 NA\" P?v%cuwy/R&[J9!b+r3Y [dJ?϶cPHTdJtބol½DAgs^`l6 9AJjUY:62uΆy͞4eM OX\ .d NS3wDS˗$9 >Xc~|J&+ˣRV^)t!X(9n6˨"?;[(Uތ6IS]sj7b+,WV ++E+bSSzJ~ .3UH) \h A|%_[G3":FnrnJʀs ۅ\^ CMe(ۄmXQ=7wIO+cV&:|?68Q0jɾ1r_gXwWAdSШ~fj:_c,z4>XG՘5JqIWʑ|EpEw.Ј̔?X6Į4@ZS}O3.3;\~Uh7kysG3Cqӎzf>d53#á8PJ>ym~vh\RQ~ J*z~j}ðK{h)w,2é%;%":+#TQg^`J_ EiEv]ʐ(*&_+ M^=3܅^p/}6ZeC~AnE&ϝDAg\uRS$-?EFt܄S4_ x78!yzc1:d昐;7iGN8#B#UX\bi]֞8҅ B ިH-;/t)Z!zqA;_ɋ=tPäX Xl%z#Rx`_2y'2Aϟ"V.m+=g_8̮@q@S% 0-Kaȁ/C&+dٌ ۡM`lݘ_̡f!@^nvM!ں()J.V?}WnDo) "v[0k!<'GJiǴ>;u TN>~e3&߸2\6lͦTS-YGmtNw%i%Dxg~9LE5m+&佸zy \Z]Qu@ u ~0Nd A'L@ڧBRmdc6jfJmCDp`VcNUo);"X qJ}bxJ[ėz78^WDHPftV\3Iwp9EH8>p {O,j't8 ]m6j1/㏜ͲTQO)_U;&Syo;"xO"m/[T2ʥ,J P'Cl111;d%͑KȨAJ ݺ9˝2> z'zr_l}rF)>#~[)?e B|nC&bNnS=xPdsWdp`t o/9Il(omd_<$V)[4Ak2WvfLy09fˈ.RLUr]9EO%?j'8(K1X^zا܎ cMҪhZ<(%a Vo-zbHpOkSmu32񒵀at d[GM{//x1T%0s ȦV` @x6@qp=oȭkFgEWsOSmfɘg|>@sxwN*W&rb/$ ݙ7O~]1 gb'ݥ?$2Qc@]4dh8b*Ŷ;K"ԇ0¢DZX%\@)JUϔ>B7cR[ɲqW-C#W\ڦwzdtǦc/Dhw`ۥ-mKpc No5&3Ȣu"%蚇ʍmF^i_ՄNRnj"^ҪS9ndqc?E~Șfye`0'm66y(T2F”[DsI҆0A-$e:}ESRP8l{N )+BE?-.ͯQ.}#+.!hucac쪒SfsRN\tGm;Pdmdn,.eRO"dc1n"=pnGP8i0. \hnQOݟXڔ>XX*T12 ư<ᄐO!j<>c\;O&=pK GBbcC3mџ4z24d|oS Uo5) o[If7$S &Au/CjG lѧJޘA9zC8ts\n#Ru`&ʨRhŶ`rٌ).YmBmpRy'&&ve)56Ǚ 4Hݽz 7VL|>şxڨ]ytȨ\IꮗCtJYN0h~"m#Dtih  8~A]~3G244 M^Ϯ[]=s12Aѿi[ܛ6GtZ@iB9찡O/=2Q`gplu (*ES-2 oTu\v3uwBNLGuWjZzxe+=ӆiv{f-_;rZ,pHDwEw3v;L}mFL‹K(!2CKVP(Lh^|SŹf]+jS3RWpP; Z(."$yWq#6aFwGe[bRw)aY/alL'0$/vqֶ.TޛC;Meo>|enRnP؊RkwYEodn5޺4 \&^Wgr?XKM ktc'ȢD\~!n:- bzii^]\q M}TJ͞}j4RP,2rݐ%m@bΔD[4F "Dp=8 BVM2E!%|ps> '9DBšFMLڙmH&K[HO›7v1%dt:xVqTXH|h}FB5yզ3z&7挭c]BuS5dQ"h4&S]@$Wo9a@rsN0^P}f}v& –DCtx9\`E6z:6 q+嬥%>e#)~&s'YDWPWbP͉DN⊴6Tj8/%65bȭǥwdԙ &W ToL,a Gi7էxNQqRHTObQ*#4R咥L%/mJzkܕ'=4C\ƝMg02/N XW X3MgaD BE+tZ-1 E)|n:x,?:ȇގeȺ{ #W (˕s[V>m֚<.Dڍg;V"hx,eW2[k4s6lF3kѤ Zjg]$Zlz F,?O{&yhږљM~|AcKs1sKyVp31eqGa:2 ?KM-2UE9q0%6%EYOvhnihx,$])zܩ8`Q8ϗ|"f H~:n83^j;󿤨5Ākq~i!t~ 5bTt܈._ y~eCzbun!\~pQ,OUbIfƿ՚`(u9^eECvjCgBYS`+ȶm.*dߢ:TpA41Q:eeB!|#> 8BVpB}I~u`<@/ Q?G`.on%C?j5/rP l[3WSFƱ${ T'彟i@7է9/NC;<*NrB>֛g; ,[t$66G $'z &8i~p`]7ҫ5òC36dd}7qu6ظx\Ap^R-F.mo!S?{_*NdvӁkE[iB324mOs$0%- GlPMߑ,Eg>omirMw |l0XvBQph,n{c=l3g@Q}keܑm CФ~/}KcGVU[:Iۡf֊a젍dwʬ*0G49u#dӲIz\Wm#nT:1oJE@'Zr4mk>D^ ^#}P^]Řa4,ÏNqJ-,({"s;="_1_Bm a=5ܕx];ue35kA$ >验M6Rdh4z8/JьoQti(zԆmE+h-H_&19%­q^蠨9FGG+𨅮h Pn^ pїW E9DwAvY)mT=\xD[T^Ui= U<%PCX%G]U6ذbG);$J/Ps8$V,6 r('as2:v }o M;.J)*͑M2;p1* i@^.ؽQ&s x0x#vR.p尨^`+@咾ӻyƛ07]22sҿ =;6tI: ?FqtpkꓣJi T[[K-[S"`kJՒO$t xRD >`1J-w1\" Umg^g t.J}k}ߦr7{+;ƕ$ ]x=0jٍM=YlB8 m\`\!cU4A%WX?OxoY#Va5\}B*u t`2\'>=0~-\AJrb>CUaE}l{YCE.xnB{e/ѻIyhM5'ެ:u64H#Ȟ\#]GܹߨJP |!ʆI>J8XU 4 )g[]L#Zq"\_"%hwOE|\SPTRTrN_37:]=66R ʘ3bjHDY!'u 4 JF_)3 GK ao_+2t ,{ߤI,0EY Y,;ƛ"?H#b 2nNj8:l*0*yf; mgS_-ު@):5Avb}cyqD 4\J]*fg*y^[`*Л!>OxrGYV9sKT6,&c\ݿ>2pЉ`=.\ŦCgvO-ƽ SNՐeW|.hkx*Ki{SUSD_+?20~U>'vhӚx$q|]}HU}wr;{D!B#&*'4l9!)q~b--+-e֊o6 $6ńR9hWI |dKlE/6ΓJX=+qk~t[ĤXUSޤMWW<ll6l¨C˾7BF#R 6)MP RBgywwyRrըNU 1al:׎Co.2g y;έgf"cRVw@RgBAԟ~-|[A*n) ƫvv؍̯V-kyp][2:EWkL䀬ɝ6*FU}jN6m,6|JXz[O1TQP^8~dZ>ty[5t8O6lw#ܨ Lנ#6ӽٴ!a25+IIF)97.R)6`}8)̀1UJ<(zqN',DH~^ F4b]} he1Kp`՝uveaiYSB5L&C X.#\vR&ƩۘEbS]j&r/-CKeܟid0!:Y!?-0 "*kףHdž26XDeݟWC 9Ps/*\"m5vb.[lSXҍ{/m1zK0Gwo fVYt[ǺE47[P,% Hr@)5e `7F#:>]yNޔ/=yyO/UKzL)ڦ5绌6<=e=@Q+KbR'C&SBo9 jHEC{^Nz05n׌Ճ0DNuTD\+n̥r7a#)&WK  |z0f)33IB>2d, B lu T9̈x[%p9gfkxma)GѤoAKB < I jj[[3^ϑ7j2y!$w^`˳VYj쥔p'tdzZ(d˘j+2#.iƉ}ΐ$:_zl3$܃sn ّ: ^Ł(#ރGeM4K&T4ÙU]o}#4H$lf bZ};2?(o3Z^3]k( Woqlw w?h^/XfA"; \Х1l;oq܇3m] Qswq)n(NuV9gn|:nl/z{E}†zw7P:X XR*jCړ,[d?O3E 8::%{֡>@Ay=OIH,t /~7غ&x؝%YF:P'U3D`\ q@9g&KL,St[D~wԽtt 6Lz>RhboV{;oUJY-ra5 "5jgwM2(iv+7/iKjR6O46`g\ĆTCč%)M̽ 2YY2М#qdMx>h]J]"!Z$[9AOP秆<9A:W؜|8nE! *ؕ?.fcYbwTQ"\~rڜa2䆿.DL`؊#cϧ`M[? vw?:[_}Aɐ@e=39?i D/.L6Z6K9.I-~/yz9^R-2Hqo*t/?J5g4x Ly~w-H}FNHZbXedT~=qcJԭ]n }e3fFHkҜ0Ч5a؂|py &ld4"K.ZM:e7 *PEy|U 4Tǖ úu*&𵢇;wTz@-B0*݈V pqD&C p)" NOBq[,sm柷Dv5NڂS޼ޡiԏ =$Ń1iS{/M{s _H+:[Z}*Slz#59|^c.B桎o򰺝;Lu)h|0XF" !D "ګ6!M2!zϠჴ ;u%:+pk)>"Dx}чBmVУ?K63^}?6m/vqOC 8pbR\ PrqϒO\_LϽ-i𤙸˼ϥ,~l;מ`L? 1q]v0 㱡!SPGdH.2X^BRW.\u.6}j>=pZ&_+,|E$ XvS\^rxxkwD;F6&iJ6$p꾀_؇"t0D߳ MxPV8a 9 Áy5kaj<ڟGq?feJ` $ #l62/Ѻz4%أRo# 2T-r4r*8Eq2пɊTx4ZE#IA4b{{mn-=t ,OnN/6&`WNPe#rWn FThOK=󭇐( Kӕ1 bz+9q̓{p:4\J;Q"Y#sn% LQ#={/[}ȱ]WZȌT[D4~ƨc0Fu NBZUcq>`" C l imi]n:IS%Os8_Zňdl0f#S``FptDJ#A+XttIjʞsu=?']@?mN$w:5QB;'Zx Y+lLiOV-M'{1YrƩ@rTmaK'MO/`!m[b{?XƊ0Иzf0̭,V7:vν89z_NfLd6]?Թ?IFF,ЇI<9?HA#cU$Al JYw*h!l]:JDW߅%΀xQ{;2y[* w4+'ڻM%eid9_ȹvq(R5x>[G oSǝ\ThaFMQ&&g*.쳝T\lH(͟?!B=mj{$$$؍:A=ꑎ^z폴MGb &"{ o%mn/ AoɎ/d 6 iVHJek^#<2`Y}/8(]bGT되ai $i|l\RIR=Nྦr4$@Zrc-5fPC0ߨom߿cap\o`z}@w{);LLp=d`:!3I7%qȾl&UyQJ ]+EI DvﯩC$TE UҵCXm~PMɱaWǮ3'v1[Խfcxl=sw/crN#1 ?063z@蕡aMO]Q͏~SH{ŒauٝQd+c98!Z8;#ǚ-a<:7n9;iG& uS|!HE )y,8{K:ZM)CPErv(PWʛl0N>*PSW'Mb$2 d/'W%8Ў^a$^52y_\RoUP-%-ԩv=54d[F9i"7Tb_9s u,d"SLm k6Yu9FB{ˊb%" ]ZQ1abkX-N6޵6)9(Cf!^,ͼyl2b8J.-۬ xX<&rș1MR13ؚ'(2AS[յ;YWI2,R+T74ua09#SʼnwS.,_~aS3.I`5!" 1Wx>%˜UxMY縴dB@@jkg횷'"a'yGQlz}<I+rrri7輶 CAB:Ln&fkӜ RdoԂxH\&SxmtB9ЏZ1RS l 89TBX[GҹE~zKx鰛Fןln8}LrguCuqI7~MK+.gYa:*i'tOI5{iq5(#zJ<ڶkZIzNhc @8 _ͩSp_)dZUi^_L #ǵFW?^lƃشHr-L S :/\46Jw3,CW!UfQPuUg}z b ܸSS>5[lP=QZӉvg54R|bsL! Y =x;2[z4&Z2cG2r," Q#I$VdEM:^Ԓ ҆XPhn[a&Z2[ Ea9;N ̼f|sy[H~4񓢐ycJB&OrW>k(wɥvX :ctԏ t`K$@OuͿ5fQ%MzpjYmay1tzm,*7\iȧKPE[.@ b(>|E@$ע"6tʬia5}ߎK]LQ6aD__xf7gsҴmS+ AhEb^3*iͿ-tl!9g ѻc٥KLO~`ٴ_ _ʂ_;V}wLiұpNٔFNX\'kĴPf">ˮVob7"]C26R:vL7dTzƉ1)xI]^D\(֮exvmv>wGضEDr}ڪ4ݯ|ô)^BB&tSpL-&[92ONMFT,p!va^mt4?Lܫl{H*Ęh?+fE+5XC 1wF*֡U46T%pjFSlz>`-2m]qh襯*,la9 Y퇉1' ~E_ʽsxT\q /;Ne_81Dqcmؗ䈲Di6RG$fHK'fRH$EyNZ?7n3ӎHt)E-[S4L cuxh̪#~M1(nUU3iAhMibX:?v8]g1 7ִcֵ9 uXlxZ8a޶5VGv ?,\h=t`%'ŘtjA{:8PU0막%AGqP Y3{M. έf-L;J@. @GЎ&Ъɺǯ+ίoN7N^dʷ>R@]o탹A)=POF~YnhHJLdDs0۟ejLk o(MIzLmIݑNБ;+&:<Ȟ_3+(sq ,9+T*KڰX%sؗPi~F}gy2 (*ExJL,1M{_i%lIF Qq Z:"1?aD("쩱Jhq;\uז3:[aNT {v7`oE 9p>NP04RQr%@E¡2/@] jXϣl3^tԿ_<'@Ԩ!AVD\='%@l.[=.FlBoL(2AYha8mbbٱ$ }:@ޔi{nj9HFדqn_e߼/FhDE1T4P"5W;4{ڡД-YaI3BuNA3>[dWKc,h C&O|% +fkUA v18s05\[cVI$X-ō#N%tL&PL0ei3_H5{7/ĭe8NZ=4R 2֫:҄v?jsf[.zHVp88CV;UdL?Ʃ_)Q>!pGlZ5彁؃h^6)6wDɩՏ+O#iu@-TԔ7!I[܏ 'بh8tehe!Ν2AvK;[-5_#w' ,jT@N3h8Gf_+wmi8tvs dV?ԛSlM i2\"^D39dϓR:;䳭G[]nddS&unJ1Rrk❲/ռvNs BVn%X,aA٦,.g bgu/% (mdewl.&r/Iͳ>쨊|`]HY Y*gz/bYB_V=FڲqVNPbU3^eZK}8M-Ϣ+tBbS}qQo.(d^ ŐIbK_9MGR"uz]U, aoaӅZ`L.y2Bi} ^iQ h>s@*7FX%M= `nH2u}Sf2J8Qoz_8xFOR(O8Ka $VRF4jci14g=[k'Rd4F5bMQťO!lIo? ,MMkL .PIGp %MfA©&mb9 Q_ާ^!)k7pT6!EA.&6ͽ<ƪl9z#*' 5U}e.39  ɲPwݟ (5d}ⰾFK*A|PS{Bu! 0fђbn_lL󝪒{X"xoRՀa{͞unih;fuM 옏 ou"Ch8adϛ$i =DR"l[8T_aX-'}ezp8UvW¬^rgFy Xkkt+80p `: BFkԟ8$z7!G\TxC &c|#6Nk[qxi.{ݷNQqjfɈ k1aDzWkdQzަ;> *!X <-<}#vb\ww) nkXtS@GmYb] }Bbqg?MG#iC#BCw鐼*xROtԉV\N&KcV|F ?~Df{m[M$#GP3|a9ܯL|F满 ~ @-Em3uatKpFt]g+H|TKGl}$jd 'kYI!y~d l;f#ֽ/b`.iA(靫D\vM0H6 j/f&"φx+ςHzqLLT.w,kq` c$^g֌jի\юHY_v5Y[ޱ" m稊 <^:Ν^]Nf z,͟XNa4W @G|+h([Xa䙮ɡZ2|$^RUO#*9QS‹˿7Gv : c2T<ܓ_yV,%c@pMw"SG8G};Nc/P k^Y`h;΁W¦9&-ы^jz@ݼ2H꼥,uq&L\٧ܮ6 >uf\"dߵp{{or`{[4o[̉];$x0!褁wJ_7[K\ +@31T#45MX,Nv{ɳƣD#c81n8cH.{2UqLZ;`X *CN|M^]Ws"k, uVvmE$ %:X!UWP*iӨ ϞU0It$D=I d  xd{KX;#D/>wOQ׈t#Iu8ӺL nk\{4s6&1UW=t5fp+Yqpc߉|Bď~߿K KvMD׿U'ҫϒ㚸|3 glpCkPx! Ff )=.ھFHXȔ&"AҒ׉C[LwR nCFMy@/lcxFW{=s=>D s3Ȳj0eA>b? ρ@I/b9T r-Ng]~tp/  ,95 Ndžb#AJ QtANpɟ3pU(W,L`DV }aL{J }KƼcy)!#/ }hYv(t#OODjUk%ꙵL iĻI\5Xm@ѾU;CqGh@yl(Z0* Z %KkY ӡ[Me2񧦴Wq֯nkn̑l :fcEiyfЕ(V|it\)<>d 3۪s6[ivBvݽkfסkɐꖮ{hɷ!52dRfSVsnVI,fEa ,4n8~>r+dLC?Zf D1vEfXm$ڂF}E7u"ܢK+J#b _ř~2,!je]yj@K%v P49o . ~29wM J bE򡟁iX#rGFg *rwxIߝʋ`YfJ;{C@=m )i]W^S P|eӚ5NlB0fhIII:0xH0 @giZfLぎUAo^ OfMi=_S߹˩WF6ļ0g S78>a"i2G r|"=LE"/Yr`xEL[<¨SU45m"^c ݰ8)8*x6Fý1E%yǗCЛZ#|{YG(IHX]CE` obȤ Lx끚ۛZ{G9k =yy;`]qЋ{ v!SR؁cv)sC?ΠkA $=() $*v @F a; o@&TW#],&D~l,3Pᾑ'S&Wf*y#z]QC[NDp8~?2EPg~ʠJڋr):Y5'WJ3<>B5WZ(u+}@walk{C +;w~z2AM^Ox@~Z M}k`rKL 4\tc8Fig˕$CB-K0#Z*|ƅ`Ak$ Z'!6f&N{1޻,Ff]`Lx6 z"id|i ՓypК+5y;-:̍װ4k-pLzO I*l:}g~0qo"G sD ?"n̙eEfMtYNzu(F*0RY =UҕCMxAƏͯjq7Tdi\\G'_ѭs!Yhx0@6YPuL Wʅoo<2o44]vu|cg5R]@"I5bCX P,69 Aˇ3ϽJ3;SyAq 들I^V dPW8֊dyQ8μsYn M|2h}jfi2u)k /iwy͸/Y<+Q*Ȳ5bdEM;Qq{q~;R=XtpA:`Sp0c{$=lO&_Fw{kw`M\=#\EՎ_Ts v-?tpI-Ybx%Y;so&Qx%1=H,ANDpH+63[α@GAJDYkm!S~)C"R;I">7:sMr(m(*\2:m@Тauo4+锡bBoj͜{H~]>c_&bQ_(ԟ0.Oޗ$7-?"^kH ZAj \fޏcHOމi)24>^ G̮`2l^s|d8%;;eȦWڙ2d|d4KᦵR pQ5Q! 4FiO%@푮zM+Dօw;ݏV`^eQ |~J,!htxy5&]Y'@߫,ә6C\PC|zy0 a_RLC~=?yA}b#'*!M2}9CG9n݀mTD4v]G(@B7.TteƳJ`W~<3ܠfE y[֛TA?w` ₤^K<\C%,TpbcokNNa/zp4QXa=RJ.ܩ /O5ZD1.b(x1ƾpcG'ځ~%F:dض|æH25U%@a=e٧LWmYFֻԲЂ-BK|!#WMR,KIY UJc ~Ԫ+W5cK?O*4ZeL+4<y-L3C5H^(}=`| w/>նK+ۗ @ v;"C<#ڮsW,e(d(t[#4H9fJD<6+ WwD14D1PV4QDZqא8@wXvpC._Q#ӉcA$rFl:~ 阑 sK%m5O3?(R:QX[.y>8 Ϫӭ#QMENG)#uf28}X?Jb|UK ߨ8Z;1__ĵ6&(Ϙ|R)T9)5 qpES{ĕ94eآ!W^$iߧ^!crk%~O^ f"*hzb,wyo8*;sތa(@_n2Y 0ök!=HI?b̙/vT'y1$%>~Ж(~ GZI<2T`K]?'I񇣢D=?R8;F%r%MlA\&<;LGdlH$\doNsPodzD9jqVdDUr$tag#m_Bw mtG7s*yR5 vZKR)K։M@ӱBvɺih v?V]Hi#/GFx~*>i/m>̿HC$S]݆Ӈ@q5'?/kjbhU VU _ō.[bG/}R_=тd}jd"hj䅓MMye=5КsKX0!,j ߶{حeNd4EsAs׷INWS J_Khd\]0tGG룺n(T~i!cY^EDjBZaa93U;϶xBZ3 z,BEMCbJˡpB0bA=c5(܈|æB' , *_0i=Oɛ8#.Z-iC#@OS~;꼸A/U2 ޯ{x14\=8QJFEA.8 E8JEEd%n-:U x(JDG'".4K+5aO>t$_\qe=޻dMz#rg*#D19<,8ӱ1qBF!{_: RK%.0_5ScњlT+ 4{iYm Th [tfg8%̍doԷa뭈d0q fh'Ub) 1QQK8Q*VW$^+V1Z0lm(叵xD\s`">*M7J͋zUlk[dУQiٓD>vZPwJ6lF$,Lz* 'g/8pU*WZvL}N.{&ka,vEy{b3P}jF$^Ƕl//*.i[0WGR1a_w4wIy[P3i[k~ϓ ,Ζ KFlO0ppQ̈{`L"Yæ6]OÙ}%j 5S Y іYkOmucus%2(|= 4~ uZق!wĚe2bz=Hz{e$@5e*I I?Η ! %̰a+_I)F$LacD}\ %Tl fkRvןFړ"ޣ=6>A/[o1wk؋ E:VKuP?|P]ҴAy0Y[DZ8ZW0x6_JWuUus9;?Pa €C랗Ʉu*E :5t*APg PS:ldZ0_ #fλ+MRDh6xG7 2)xra{) O k<~VA ObB*OSfd8USRy@⤸Ϋ~Y _4|̗YGٔ )bTb)=>gͯ;TcHŮ1)y|_4.+z _ѭA juP~q[UpR297|:7>eu[o-),Sb'IAAtgDPz:k<ʨ?:8N|D` ®-[Rgn_X@H_PǗ)}5;Mg/io3'z 钝BIs{ìOTjʸvb:nLM8Gb-;%bfHP- /19Z*$pnr\)S |zܚrL-j{)A=,062}̰@^N!5A1h 3[%b# pǑ!#"XEe2,upes2*IXfܗ\lm)7zNbgg>7M`rF>IIE:<`*ՎSQ ݂_i}h%,fb:YuԽߝK ;Pއ^{y2!~:|?[bu5á/Ʈ:Lư:0?sK( hUMoRcuUD72gIZL9Z|\k6tQF.tG@mV@rr>F':|&'!X_ZP;"|Z^ =n'Kt0[XGٚג5$נSdZ0<-+1St'e]aj#ߡLH tĹ0b#b?S!gBD.!uTD>>&>:z>0k?e{O5|[G$>e߬A6ui,V9ϡkP*̝fi%=!o Bo AbxgkL ):2X'ލV@`xu0Qӱl=OnPFKMՅRulH(3l&!NfD?! ZWZyk*6߮' &I7E]-tMAwQÉO v㘄W0"l1zMғ"HdN֛hͮ Ra]JQJ ea5X/(K*#xx8A ;Y\m(5D~jK^DKIYd/}tpa͗.Ɖ&<t?eo(HVy,˰C8B4K?XK%e3בVSky!h3 `Riy:ߏV&b ΗI7q4A{dMX^e UP# `4B74O~!)Ok`XpTk5r$Xq,~JgH+Cw!$GL|#pRWaDR=Q0WIz>{O'k[-T=[}쑟kŗlNQ '"B ]á%SE⦹Iyvh8 0%$.}Rjxb`O)a`a}I{O@S{d j_P7Wm0X3z llF[kwymM5b9f 7FIz Ea+Pn5@UXn.G ;ݽ(̎(E_m F9J2%ۙthqg7@JϸmǼo[нwRvjY&G99-L :d\ WaDº|c*^B*-V| ʱusLyаgH2BBӷtCɡ|1R1Ba:8ڛ(ش4a6Gcq"םC"aiZ}6-)d=cV S: } 3X,Mꄳ\촉2S;*r5&n[~\`+9톗YH}G\zb8 že4d\$h[X67ig<# w'q7e)۪Lʾ4ͬ)F7pA -wA6D Qc+:=AyKv0'm'^ ٝaHq5P\ja[ a`9<;tSQuLٍ֓i3F-WbvLFݝQ?wa< @ *4|u6j[`"&]8A2[Uiڐs'kld I3 GʶU/4Y/h}8̞/ rF^Zfё#YΌ Oۻg / mO \ϫ͇?PN TIs/6yŰ@|#!n8Kl~9^;vuyψov,s)h}_)_$w/&=ܤs9~xy`Q #.*z&YjD( Ԓhape.]Q|%\$< (1/C]į9s%-LfX&u~$ Zg)Y{Q1VX{٬2T̒fNA{zPF#Wf-W_@R"IN93?NRnRHQ19>WwBȩa:\]UEoLr^Gc,gZm]y|#Q}MLi:a.OJC-<`DDTJi a.ursn*#1wkM-W!ZƆh;I籷]Ӏp@=DlnLĹr7ӉdUfYt1Gܴ-KNLZ\6w1;ƭD0b]:b9o':dĞLOlS{MGJ<|&cwb;sOz,y 'Lj=tz+7UnnD Remۓqa 7̟:m'K¬7ـ5 7ց ̡(;X:OmR3^־±9PW<2}.\NXu}-9pS]&Ci= cAiu$2yxJ#mus_`q?mZidmξ\q=/9ZT9"Q?p:[-3L]b@PaBFp4 ]_͠\j'M{zuD 郚r|odK^E"t`R9f 00 s]!H#U)\.K{(R7+ȭ΋|`/yqT \2ְ@ɢ [.ZDo7C' u~vB_O iw-T! 6!3A;qϖiO! CNIz3WYjA[I\U#nLYB!/lB@][SC>vZ ]~ |H9lAp"8X|,H@{3Wǀ?Y\fڈktVR>$ | B'Z"⌛4bكspJ'uqV}MMn]=iҢoe]2ЅbzʵKbfB )Pl&T[ ̎GT_XߋR+W(\ӃPZvhµgth[&tr$4%poyhW]b. \:ԓn 2س 8C*a.NXqK%C'S*~5WPϧ> f3p'>q& 3u`;Ե  OHAX,yY?ҎKcE@AʜFq\'+5QѼfkK^$z Dg1RwRHqA*ّ65&m|)ƯmB ZHKE!\ 5E1D0JQc"ͣ7%\ G&GP9oU**6lJ3c}_ ²#]׷a)EyaM+oيmkE@Rd8c^q%[dWLM)+-NL`W_ߊh ;ky; z;UN>r?g?y\ tD biP(3=ɲ nD\EN>+fjK0n&lџWg\DNPIꊐ'A-rzDEࣻGp65wWU٣n6ð(͏T3됞J]UL e8~0C:x(9/4DT;pNx rJe|z%^2ZsݷZza\ 19i\(hShW<"3T *K)KdKN0&B LAf~~g}'R}7=u)Td'~*k̙6;T a+{*]9NGйSTM6 TiQ9D7k%A r D l7;MS P. r\V>@E:9',4dt_88I@P=q(n$Zu~)Ͳׂ?6AUǼ߅Y xl ~nRExoW ޤq܇(cNMꊘLE\#E#^>Bɛ%Q'G&"SSÀg X^EmG(v8®%CKeޯ=X)AmW^;.W%/Xݷ-Qt2< - ;ºԎ[_,!6%㛔' @}[eDM䡙RQ 8F efA@G;k2[Df-(۰MKSJTEP8.oj97q' Y/U֗3ѰpyfApAt| [k]G19E؀`G^;x@̊rݴbp[m*e˖*je HɍYX$sv1c m<w[b+48'W$k-r Bd D͈qp"6>PLnufY w/.ww|p$9b. $ț2DNeQ8 ^%|{: vE|N"n+Lbqֱ8Rvsq8e(ToNmCRT!] WdЉSޏLb gim5ɖ OO%}7Xz\AGn~P V ~ԠWމ/B%$I,pIIgQމՈ:"s>ip}AM) O /u"W֥ypQD;9Vڰ-uye?(7ڈg=-i<bľIMse58]к"qT-ru(Y5ȭ~ZųiRS/wq}7b-*$(Ԛj+s9&_o;v A1;NHٰ꘍l$=Pv)k#QmϮ 4.onn!.iߞ8\_Mߢe %$[G2dZ{5|,5}Bxe@H厾hq:܊9[0Z@e%lYWXg *7 .i$Q.8ygj)G߱6Y,sr<$&S&Zy uG E! 9vECVjyŒU-P>S13b$/4KMF6'@ ԏ0ʹBD~H!];kT$ыMMۮ˒ǖ(FݹR5VByMx >vDS4V1等)M?')aWj%2n?<.hő^=4 |Wuz%x*5wpHQP n+Pv~6}EV(x!"te򧑭F&?$߱?U]Lp83FdƅE檢Mۉ+ԧWd~ֺ XOfi1%! ~+zk(Um'b\OIQrN=1\o,;f_dOGK1I~6 lf]k ]! u 7M'e.G#~AC`$> UV4ˁqzrbLJ#3}ߙ@|` fCnPuokPc+g 5>pVg$V2-٫ԜKU A " KބɎuilҢҿe1x#)玑KY{=THO%t}_^4Vb7?IK9_  z%Ñ=v0;)4oInU ɶ41\`ƵhPeno6jBtbkD!qΛGx$?^4CU*3ŀjscZLLbY?? ư Cvf^xFca+GPy Rn/ i T!}ۅK a>I4j}zi7gɜ=֢,Cal¦mF!O*/0БFNa@R{  b?w ɨqO1|?Sv5H*kUZQd^]jĐlSCx'&İ;@a763z>ӞU(8&*4 @JG WS$&S &N.z,)"E?{M&@ 4Hղ*.>GKv+jYxFL?tf˒{+qQv ~&PvI"&wޅ7Y0R ^EkI"^aH-'R?JlLfhGqt:ڙWߎ݋IIg/ةϓrkDe&Y^m`- Ks7HSjJd5 Q0LU8ʋDML6Z5@rpQ*rH&y!M * KW&? QA] &i6.4_VV`ϣ NA O^`eZU]ŤuI゚ۛ+f©g1 %fڒwǑ 5x;た>m˴Dzۇ A[ù!YHEMӝ`E}rBGqECώ]75f_\RIcn'91ή+zV/4mmc37klH#-TyeFM!7Tuunnn*忷vk ӞTl T#(9g;N A*2OF-K^lvӵq U{ƎȘbR4)^B(D,t0@τŶ12⨨[(15?#XL܌= I[\RWgݙĿ[Oll!S}1NaLsHgOuĶ#9M1XS1m $fM ݰ^;LSsN#oJKLh9(v=W/n^p5D?Яtky-_TfY}5? Nh ]ҐD\NiCU J338X.H-fBk.1T:Jia/;N8gM9to]s;2IisshႌUƪ(kTg'?:M,\>QQ0! U"J[`nR&%%;*Z1J#Gj1Srm0OZUMi-Zuk "ͧdmjAB 9̹ t8Џ-Q6q;}* $As?e֑;Mb"{6 I)7]iWP >VjE&m=-os%1y:.Xrs'Jn)noOe*m "G,$x-!OՍ)r)Pst?, ]૾(i-^[|ႴhgDT`ԘKi3M+\ j{U,Pmt#֝.} +j x4};" |L-e){& H;b] /8 +=jRᄾ;N Я1o9`"t 뒪W^ Oq7^AR]0:G ZY ~fLan2`y)Wsc21Jbq;󠫬maK,$XfcҜPpP 8PS#阡(| O 7p8$l~9&ѐ(8YC7\ѲGI jF O؉ ?8g:>l7*4 Ņ)C ;Bu(qf@L͸Rw h/ξזuč O?}2ZVZK΃q7 P%=:/4cvzָ@XJ{-puuʏ/&!v$5Uly__+ \Vq_@sˍN*fC|b/RNojeoO__Cqq1vs"2Z&M}&wFUؤRK?MUAgay RИdT_x 8 ؘA_+RD'u S4>{J.·6@IgЏԢ*z*mOaz<` @[/ݾzIBF?&o-֡ɜf-jiY| +Hئ"LeIK 岢 $p,구HCe0t@7RZwh,DŽJ&e%?1 _kw)Z<3lUJ-6S\ GvS5F[bcGjP8[x?עF+ `v+MA_|ߟpQ7U[/sǒ62AFA&P8l>Sio'Vo8p3Ld%tlܮԝs>NU2-B*(}1w K~jHBNxDoMwjUN.ihB@l 0˼L|vÈ}$BudF6"$L3{@dq"C7$qE|a_Jq97d#V$4ѢOx)'Mdm\ҧ25^@ZURF$nZqF0 Of{KT* QWg TDkuY]XTҙZ%CUA|>7X|{ΌEi??qԳѕM p^9d5T3xſ}W^y֢ W' |upC9crg jvTi:~bjINYVFyEѷxЦzH\>cÛ .2oxдkQgu~}ݶ,*G>wJ);u"'?x|I͛7=g-}c5 Eslf֤q S$iwmPDa~R-L)&KN+;&c>bbE*sIr.sR!4?>ԲtA8L_<(I Hy֕W9tl:(5}]cf$jvfӪ`; S>iPKg| q'?am D7,%bJ2>)h<ﲍ W~ц $ka7uk~$B;KIksfZBdm85_,Vg "!KJA~wf0  7وmٸVл5ҽ`K?P ә>_ƍmcmRF5NބW%~Ja8`a{WJ)F~/* C|_`d"!mߗReUy#0.h .^~qӗԌB)x&v&}hO5R/7g5) 2PQffW|TnR"4fY>&.^h볳Z]PZUܨܤ)E6~|GtJ":KAfU:|.5Qjk7HF=Մ1 B8O@X+(#Y#p KIg2Y߭iAWOQq&+ 5Sa*T?B2,ftbu[ #TQrCy-7wj C<%߳+.I)ȼb{- }bǾ #6gQ]@$=Tq>&bS iᅴnLTɯ~ᮤUjdkcfOl)X݋G~l@ tgb[Μ\UGxxȥX>8yQ[E7N&%!;ך6`QIkg'b u Qz{E3@\qmKz8z:Ψϛ/9JD?thdķ RkAj;1qOJs9z2 ᢞm!VgYsݷug/ʉ fwJ5{+&^Qz@ϓO?ݩ|cY~ӌf78+1\W*n!S@]n~:R {9ft(&3ޜ$;xz+Ev6m+7 %QmjFKj7h* =)| y?@PxkX7dٕjyeoB Eȳ!=;0"'jNhE 8j] ǃvC(2W (x;QUb Tvo܄VTCEro`T{QX8zR'_ѧEk.8wh/YҎEZץTE"C-FH!?k?I:WSwk}clP2-͏RYߨp{r~){oYY %F4nBB/R=0u 0'kz9UTP)(=}m&JkAJ$VJO VUU{oPFt@'6XwD5fFY&@1S ~w)R@O`fW_V%ߐ@0ͭH5pfQvVa6u1&,WHWm,:ts/Nuz(917(Hw|H4 bֺGs7;!b* +zj~-P>&3lL$!ޡeCp. &8r-(88U 36["lpRYW&P7Wev}8rQKa`bdDv>po뉥 \Z9JgqҮeFcALKz`m &[ CsLi]F^* :HÖIzGy.|PtXBfkmVR Aq˅Z & _9g@bq MX%RcMyH2C., Ua(F"$pڟP%)h8|9;[lDXw I5)rVYGAhKm!7etXNbq 'qstl04Ev1Z`U®(}acIt")i{-? r.;F4'X w7r׳.ꅆ͉"Ebs$\ *>u;:25a>(dC38QөC#&vN?aQAU+Dʸ fqkœ[(Xd8b4f ^,D q梾yf_' YlԲS,^~jP\EUseŽ?8doi)Ta֔IX IRjr>(?4 sYKWҀ4l18/ R`f,EdqtwPIs7e:e)P 4Qo*Iae).htYꈣᇇ_s L",\.h83}.)v?F f!.o!WKW !LI*.?nYQj(`UI/"o'frn_+k iRGp'!zJ+]Z7.!u@@tӏ ǛyV,%NM =rTv8րb$D}l,ŕe9JٟY9 q^šh%b9S߸k.^G}ɲuDhu Lo^aV90u}eTZS2 )Qsg.[I8HVHF?Wc'Bw'Lg_ZP(SW+nUg0ʏXֲfղ\-Pf[icٞy,Vޣ~-5&lʧ \OAjz0P0b f3N^fsX JWP`6:n H4}G +R"u%(&<6d( JbIHb+ N>t)idIZKxg ޯŋE{nb1-}mzwے*처 e"5tKbKD}8C]tVi6—Aiu+k :J@6b^#l:[lYKk?*=@EtTPv}Ё\ cD+:|Z7n hNPElwK n!vqT ߆9e+؄9"ֈ]2w0a1pt[Q L?c˄JyU0ٜ5G])qu(؞{ -mi|duFvFTk=Cţ.ˏ$>'Nu/Y@iF$s3& ®%իDA=t ;Xff. Z@;?D%ETe?aZovh.U:ěDȲF;ä$؈]krx R֧5\^# $J &NiHuUhC֥ TSbb 2hy6 V1?]A_?Ŝf 0'O8L-,I/|W A7:MZq۽I}IVJ^_&ȃwqyPPE{P#\HG2<5P&W zvbC-Ca@"l\c l|۔=FKDM_%AM&vq^I<9Yv \؁mfRJHleު`i?1<\)6f_\S<ۭn{-*qCUU1ڍ['4S ZY.Hd%}KzpR- Oä5 t +wސh pFS ;eC/33dxKz:.a<;@tsF5)5**tj̤|]}[Z!ƫ\V|f~B3,ՖUZN|Iwݹ–L!(\T}#0r r2oZT 2\ eFd;)_qc%E =R]~uP~,N,gt=H #@^yj`{#Ÿ,96ĕEo'Q #"HMM*T݉yIn# =ĻH< !*ZxˎtG˹xB4+&,[<$?526f<@2#̸ZҩH"t=~F q>c!G4V\n wzpk[׭["֢F@my9~ > #J yInHRcu|$$@[A{|| tG|:=\:9_Cu ir9뇆xSz֙ tVw@Hs0ƶaa[8 xୟy9݈8؅ SY|뭸l䫽 zW:n\T?{)\QnmŞ/fN5%Iie?f+hsUA!X> #b""0 R%j[=䰶S!2 eYFwD9 |T:aA~d3{٧SqUQO-8oc9 dRի9[*mANkA3|n2t&|CIR : n.%hO/bceԁ2]Xa]xbae"݆d%) g[ -$[#VgOv1޻SiȍZlalun.Lf(=dHmj 2[?63m-=zœENqx-\vn3TM{6e ۍ>:̌iQ7 ?~*{E9ޜj4 V}:J:{׻ݫTlAnʽ"N v7{8$7V}^GYb8L 68 G鏌`a%!RAǟ7s|@=R9y#M]cZC%oY }PMcBFo}%5)ڻEx v,m>p4+knDCb=l@ٔ6ޙ=ATr2 %/:ϸ5t &؈#*{Z렣KNW`o! Jlt]xs+`R% @rTjI$57{Sh0ScZd lWB'?"a7Kgr{Z`i˓ xisyZTXPԭ'G<-mFλ)+(?sq+īhY_%]Hk7rQ; p l#K?]bev=ݳkZ2smd`xbk QJ\Cr]s Պ6ͯbs Rgh"B&-}I#ʞrnjٌGTW##Aޟ$Pvӗ`D d&A޴;Y'@mJM4M扯KQAv$ YL`3'o@jRޭ,ŝoQ #X,Ua9V lI=IjxŋY?LtAC?(?r2AcJ*'f>2P62yuf_ 9F<ZH}߆Llmi=gܵ.XL>TmbvJbjh]J 3K-C Bq_cx]./fϴN\Zwި~|:p-ՁRXOw[Qo] [-|TAoQ. ؐhR'b%nfz0*p 0n6%J汻␘l!xCR|÷a;]hwXi>K@ɐ + *QidVÓNMCrFrhJGbZ˯|r`E gmtm2uS!潐_]ڥ<\C՛',4oV tSU9_OTa[5qUdGNVu 쾑=Tsh%g m~&gh\D{jT+0YdY; R_s.#, Ɵ㠖S!&GX5DYhMs*MsJ 8ݒ:CM!޸eZaGx3DmnP>i Ba 駛jod̑bHcCة"se r&a&%CDqk׎UG_6nruӥzyЛ M?\}I\ 9OM'Ѳ-S,cMtV<ǓEPDxFᤤn gQtSvtpѠN o9XxoWZ"_Z+6d\v @ZҹmA[M7oo#JBp>PөxJwM~s\)JuB7<:|_@YCxVIl^ۘ3!y '0@&f. كx*|G.ؽPܔwxAoȰWSY˼{M- y9͙}dDH[> L̒aZ0;.c}uoWr/kq >Q8CW{lf'jvF^A!\|BQn*MwЀ+{_׃`͚6D)̙v=WVPd \Щ*%'z848 mW||| hN))/Mj a4{O[m wٻ񾙽D3/Ww!' v"$h1\ܠrHr gˡ펌Q1w]؉:yE!~M>)H1CPã% )YXq-Ml`c rM̑dsNVm u+b BnN_@ԇ<ɓx`ko) qNX7+9 4|>&QZY5U4/ s Ŗe. aL 28[6Xp#>`z;x1fn9]2c=D!U!f26l,hLvj$&)rSw+k@-|ߩ.8(q:[3׶n+Z)wh٧SCfe:8:+gpDД4,0͞Jv7? DQd =Ri~0ZPRMQE([\ trvyHV>Wh/EtE> <7N) ~U&d` ԏuIEzҼRܵ5܁;1q*wNp a|g,, /VCڐs3!\/~.u|Q"oXѾ&'X.A."V |ǟW5I$C4Y[ALp:?%f+cŊ'> ˣk\W:8DnL}qC'$5 QBFE+t`MLKg7˙olʌ9mKEw[YZg[יhP C/E3~ICcv6ZnT|}xeϥWb &|$CYƮ0_ȱ|w1YPBU7v"yFK(ƬK. BJH cܝ!)ps%=mߡ*Ua3uL=qsvV/d!@=BY+%x q l5ސ X@ŧ5q([WL5mx6_`,^MYF' f;3U#7N7 gK,ik#&=&QSC8L~ ԙ«;"iYsH4gYL~)q&]gةI[]bS'v@] `'|!d؛(*pBNtkS àdLk;i* `D%0VRdnhd ٿڠWc |Xuù>H0a|FdY|>!TU`1e;e0bj-XsT3ًP4nu.ya +ރjzJ#rB2/nDL¸ϛ?r 5S/[q%-64}'VQ!nhIiSnܡ#Ux/Bb`Oїωi ~:v ]L5C4%:FVU·q>#撵E$)CFft3OMy#3S6"0Ugxw"ZYe`@eC'D3-ͥX0SDڳi7_h@``L^oR۞<'n#CBW Hl3ɶB2\x%1Gw,#T!LUyf$kӳ3KI7'攵 .Pi5qji; #EU7*&,^EJbpju1%/ZHC):6 oH䁀J.k$Q6@Xƫ&7_ʮ;[`G$[řC.̍J%2]Y 5:VMt@#$K$o ]%[v qjzTCN.m2 fF@ /P_%I٘nm,x @"Luo/v`@K"W_jh4@pO˅xVQ@NӛՊ_ksE?] pG\e:T׸~H~旴Y$X0<c_Y01'E{{I)}B*Z mȽ2 z=7٬حY3#}^ MB6G17㩦Þ6/"間0/^ZÐI0eYz.B Wr6(pZ_ YQY,n%]EmU- zaS5eilSUaGܜ`vV^#}B.c$Rs1fb^9t JV,7"of> .;>)wE[-=SM =;.4b, i0d9Q1 - F^հ8ukfǷ}i{;VrXjw u+0@- l.k\3ML6<'[k{{p.4Y=T ;+]QwF)*3q stv#>۬L5v -5 %Y)}L-]-rPx9$t =xyPEPwӑ79Gdnn@CyZg˜} 4rOV8F9ɅC7DCđt>d>' >pt.zt3ˮVKl޺͕_31&ulc$-7L-xj| OhǿHyH&nYx$I Q*-`Gˆ{vof` i2Q@ۋT%4Ma VFنs5$x sSI u8;X~RJf9vGɯAnwvx|5S_:f, VS'g6UMY "IV:K7zC#x^㏭mx"y}_+ʸ?d!r\aEKaPѕQH(X*aH8}(fu$J<,8(+Ì\: jTi lk1+ c#,n*mW(% +7EbF/ 2{?jߡ ^.Eq^ ’צ @K=9VT-q٪F@3N2v["XgC;=cDfC)fhѧC5`M[O }@-|#i{ס%,!iK*DRn&W{(ΈFB\YBZYbS\`P=uMKcҁ3hi:m6?"a!UzJv@:aA$C YH*+w'h 5d2b==Tyi.,2D#>qd~2SBNʎ^¾5Թæ*C#mf$e6LOU 1C'F C\ˤmqy]qHVϳa$NַtV RoLX LwB_ -a_|j96(KkkQ&?ii4y}=M//7`J_qkߕgcdz-maʑM3J2!B>5 1B dD ];63I[ėޭ$l22GYi:Fz;VyJ3t9*+/P 6UY" ޭܺ]bp6tl9M~o$DWl/#^PªNָ_ylA2S878AAspP v @ :Mz{>S9 ߃70&nF)ڭ²a:4ksnI7eZiZZ jl+B)*Em_J;*K2*,!V5 7aJ;IȦf@]3W8p`6?Omhdy`ZШW(N:pl) ^-4ݟ,+^@.:P v^ic~0SQ[b;D,K鳈$ ˍsң 0V̳"sHbwz/{ $N8}{)_`*_cydEUKDu~hlj{~MA*'cՏk1#>N-DrZ|vg^pw'n V "6 y"?$tic7"1PV/+іN'c!6 9ʂ|l?݄L;vVnҽPx0(Sl;ɨv,t)u|9}ј@\} I_"bOïRɎ̂R~==`o}\U86R{X^FU&6q3MupSs)zK gp' EI姘") K -B_7zW[nCD6s9\2; [2Cvߡ "hحl+in47(2rXO&OZN|!aX'/r]}܍{0L+CCoUMsQHy-5pqA,]m>W/>t0t8 ԿL)L_jHYcjl%nd nYS︜mMy(uv;X{chKzVՏk }]|N]6P[%]ڱp=kAdA'(u h0v0IB1G k $TA2J\80!5UC =bQfNtCeq!z\"dL v_wΤVX"= ߏ{tW;Q*R_]mv1TkRq}݋=@/&kJ6;W,#"+;WMtB9R栆CRcџ"[~eb)Bw l`kg9RQ \w#xvմՕQϝʦIim1ua,vUEgF(C@L/XܝUlE 2}-1?kdiG?"}C$GU3;Q #xhi%xԭ8{6.S('ʹeR|-*r l }[ypޝlePxl"%'pLq26IYkCsҴs5^Qsi48EވMCiY!l Ho&Z@!( /"UH:)FOrYKF@YV䛒q&̧-mGrްIzue9g:*N3?+3wU"hQRiI% D鉊hSCC0][B5ļA6JޒT1CuS[KGl! hgVMr$syQCKE&_7DgG6E݄rHѮC H3`M W5,tJt Z6n޿ZǨ BP.F1EMr#׃WrjNS#KUg{*Tvh)V2D X6aict(G;7E){Qfwr6y9IFαS?0YF%;NVӦ]ߎ3$?Kf:L⏊;ٖ!Yiyky /ױυY1[(e9:?hGD9M-_fAC A]U0z2xfK%J\wq|QC,6H<2Mj kƦPJDEQZլ+YEm7U0c17g4_>D.&h"0:JqPjl"t>X^挽N NoѴ\"cEN<6BلS1'1Gv=0ra2/xwpqu@Bߥi1M]չښ6d|Ї/ Yɖ <ׁSj?z0|&;lHP?:Szʘ\0HOŧ΃yPc*`@2ydǙ_%gy}`:P"y+vQ*cmAt‡YTe>1LؽB1FI UĭXHb j14x颀i J`QL~&F" P\wIT>Vʋ<ͫClewgLRHzm0H+[P;-a62\xW%1 2(<f&TRpc7]q_"eHuk$u..,6Iu9dVOi;f\-ohݰIwk'Ch.#&w֖ev]:&ܫXb}e!>0! G w"Fid+Ay Z>)vT JSЇ"W)X*^Gmxk}{CyadF\Z3-@! d :FwUiE)}ˆyoD-7i񅪏&X?6"SMq:Xqjj&eZ4vžW\/GyZ+>dBd B鈢 oOan[(neq*]d$kAB$Խ؃:'@\dUr7(@}b ;+˛0':.0ֲw {fngW?&暦'Rs>*o|PC. J2=˜h: C$MF2kZO$t8O =C ䷨Js v$qlkq` h@%P]3G(?՝z778'v8sv(sAMhP5?OŮjnݳdwplV J5%NW-id&ڢҊk"& Xv/HFyy[ـBbuHùwn-8jA=ӯ{j5lQYLjr퐹P׼Rj_7Rtrחɔu˝Ţi:gTLu 1?LVIdIKbK%MY]5YnjdNtd ᜴ n"| $c@Jo-8 ϱqK_Wz:긚KCĥ8}0"V5O S(650Fy1Rv2zԟ}ѿ)uAIB1~Y9("PlGD֗AeIG#QytKD Y6굡:wW'S0u`Š] h3r,a '%??W˂"|rj@)|>0*V%3CiYx̞86~kY%&vO,`=0-!X Og*L史V{H"&]hHVך0r|$>8ƄE[oïJ- H6 "~ıLj4l"j3"1{ũ:)W8ϰSFQ[ ^۔&:g[q2ZTϕWV r9f5~ ?\zØJ7O1t]+ H([|svͤC@ڡ h+tcwb +P5+籋z_kl"w#a4\ bk\tt Tve:!RU$j<]cE !u+joxr%ڱW u܌z:Y )q푿"%va7w9rY^)"{,G"Ps~;SC:8+@7Fnrh֢caAWB: 6Wg&q` E{Fg"ZaYU:=.->9Rڢλs2 OhG)S`bf$ 1'IJ#Z/+8ɿ>Fy*f^ZwVr *ܼ buZGO~^"y^vY _+^!$*AsjsE-IJ-rb,5([4\e軟0NMr5݄'m}k@$[tΊ5%1Tk;~C{E&Iͥ"Je_̡\tN '-[$Ѡq !+nc)'ա[~i#GYs!a{T;!D2,IXQ ?8Q|*_ctCPTt%#w _icXeC]7[!Ot?G^TUZݹk E]Ḻ囘bf巔.Sƃ$]ӆe4'`{uj{&~{:(b⧍bBFк຺BN//qJB9䦎,VxzIJK`0+}ja@ ՟%?i??3#luvbR+DbOf"T0@qk :S]ASC@y/B.WCRLG Q4]1I5E}"HǼdIE݈=s+%.!}g60(uQ*_HC#آ.)?Y/ՉpRUhd6 =:QnAObJifgT84vuEPWaZ!Kf  \ OӶFgH Zxо[{p:VkkG?0쉛=a N d8"hbuM4V,2iNv7 ˘Dn3Cw"m>vDɷ#ɳItBi%\-}#dy{fKƽk9i/*`50rV/{akVNWk퉓,ro tX~gkF&g{a>gk儲 =ʀXh͚ PwzYX2G 3Η uxf^A<ɜ*!K:h?ӗ>;Vq,MmӸfrm* ` jMFl~VqjUyx斌99V <6Zq\iJy1S;C'2ϫ,,JAuǢnQr8,І{qnT[/ 2,GtLu9U>Yl[ʍ\$}ﱤ:.Tf<26D;J:⃡Ls<,@&,^e.2? bC 4ND$pK{Ui^XtEg, [AnE=i׳kiD €uf6&՛%)pLj(l8DȈ<鯯^RKKL{/psD b*r`A;z٭SU ˀ郲=]mb&@|A[@ٕ&RǏl2~󐶠6&&ޭR]+~ax *ӥA-^ ,_u]um?Xs]0'c:7W]$_E?{槿7E5 5|^"4_.L8ޢVRpaERw czK:#3E;K0FQ}]"Q [U=-*v9K5K]aW@ $Q>sjo1}1ev铺WR㍺HS;#g4xwQR8-6Vђio*UP)H%F =!RoRD!:~sgmLn+8ȓbw3o*{H:kLfv!S01o &*6עB`IֲZj~EtiP~LpYIfxp,𩢐?Nv ˮL0^kQGLH_: `9%iIBi}p'`wzt0$<Lӂpƪ%y4(GN(6LA&:=u< 4&N*qOf\S"juFIӺۙτa9q1U7,;S6t'M|HxqۭY]O _`„%Y-tIp> aRvsUYU? ~oJQ3 9[@"=: z{C;7nD]/D!6ιI}vԚK%cxgwk;;m|/z姽} :k9l=w݈fId4S GĻ= T:-3B6VZ+&TrAG7Bҳ33H*oQgB<߲!<1q&F]iʒݟ5τ% -v,z@~pLI;kSr|VPG.+]r0uH!*hu݁rmteؚ ]ルVb>~޿5@1Tg=Tm5Er'K@: u*{w#E3#TTkZMv9w.5yp(>vTF҄'ܐe0|~K$w"&RmM:Ѩh]Ű E7,FmƚOlx-a~Z.[maRZxs{?+泊oim4ʡkFNёI`woGRO_PuDNj uO^wM1R83I6.,xnY)6!^u\i$e1ڷH:$01*PWj\vPK5l1an'g%XHr@65bQuKXkfC sg,Z浨8-{$>y8"9; =pB2Phτ%+}lq_tDԭj>R=IRK&[lڞ_xtQ/Į=mRi/NK 'ux9{vݩW$c&Aa \p6⭐f_~ǓuAXL^ˋqJI|-2_2s#;n3s׃]IWnkUyL ]klsQXTnL=xë6w 5,zHg C bzʊkm4Xo#eQޛEWr;QSvxS"$μ4 `e5#A4l4}W QƲ 3Ӹ=o+0 }.{_T:U8Pl[/&_{fKVh;#ɑ[S|ă{o\ ׁVߌPZ|(^GzƌmMVB'-[[ ~7H? 1_1ZLsINiGiV,bwO8 W"?~KLOd٬.qגlDզ_!RbElHb'm6᐀ #ljmj}=mv+#j8f)1PlAhB'O+_3ᬤ|Ӽ٠pC܃agwҫOՔ,saGC:eыr.Kρm1v9U]`xc!ZVzz@ q3~zP ABpY3?0hw CpR nT0̯B]! w}%HKXv@ d v8HMk\fWJ\F_!hp204j6$uϖ0=2.9qBtena!PX3Pcˋ֣9a`1!5PgeUPfGw1=XDu/?*ƃ1**B'= On)e c-H밋 .:o(n T^OO̓9?ꋎ+`"ӄ%KgCW|a$d>X.`CwyJmrjG.5 +M2L&.1HBWSG-e jZgQʱҫRov8bT?fpA.Slp yqEW$߿MF _&()b0$IB:̫|x5UQ9&7ê0C-124+.F\q$RnYX1Ξ Qjx~D(f^bbeη1\Kx~4)'<^>Zy& tX`dE@$8m<鉀8^)#= c69G=NkH"<<Rc&|0l"gN{)Q1au=;u1# 3 &H rzn<>^6464"kDK_ W.$HbWH4̾c|i^FIz[Ckda)l-`a_j^mxza׌)`ObW kik[  :I3.("pil[5E]|, "v^/x)FcЖO򷝥;3IܗI~!\K_4'&,<-q5z;Aܫo"kxV~_lLPA/;ن=N - BFXIcһ^$ǧ_LAfsþ!n{!LMdȊQ筤a{>'[(FIO#{s9z,~6Ui^'02W!{,-%^>YO\&4J0b%/ZJDqgҧC```\V.kH!qͽR5= oSʑO~0l/g?u%RD h`1+VQ@nѢ OuUM`EgXbZGJ )io>cL2vLUaNCƫۏx|-:^-!ꏙ)&3 7A2"~< X E])~XRU$6tGpXcސ;ZCQs = HlԽTZUqP@!G{Ƈ/ akB3v!u-D gj4@a_b'_qz*vCV)/DƗR$GQHKZjo_^z!VնNd%㝑,1#I(3T/&SsEeqXV#X ZlB ?)x-¢Ӊq,9dKH3- vyX 3 @qPg!e+ۅ_TNdD%=2Qɗ.٠m*~ n fWqß xHŵ`rim yN]Qe<F" _N(fj'/ lۨwE{cJ JLo72^ka AsYe-r`iS^ ><>u(eDkL;ԯM=p~L1" b"ۣ ?{8'|Q$Bl*-!˻ԉFu%NtnD ޵Kxm\ ͝>]Z6|Vx3>laFRDwZ 2 f]cJe?G B}n\<"9r# 3zOn2yϣ.!\gjD>59^-l<"UhQ/r)Oi [qO/ <`VϿ=^{b]韎MinBH3V8Ot{aB\>Aٰ9Ʒz _net 1 E`O1lMP]M~lE*!}/딼$8040(,b&׬3I^x29 (2a٭qw:#<޻5oDd59}&vWffեpcG %9~hZbCRx"F3c!IPP7}U8ͷ$˙iG|,Β[Ks8%ZeE>"32=v&&J~%aSe&Y& eԚqNA?R&)鎭9uh4U#/OE;4sf#t\|HN"r@S }A@(^{NjGH:d硸,n}N<{_:W`4C~NG |AW8HGfPrbt` wrF:urѵ 'C/0Zf q'JȶK%$uWhR=tV b"2ɫT֣'NqZQa hA2_uڇI&=mCot޿<9 7֩6^W"Lƾ'^&!x,ʑT>&W?ַCk+=~^:W)iUȩ,ƙiwvcӻ}\فˌ$쵳لjV<~+l! @;Q)an 7)- wy2?Rӹ/o2VXc0ƚj.C 촊 d>3=D.kU0`=G:(61*yթ8Cp ueE_U7 @HY׵Bٷ[9RTe8ybE"\f 7"tX IbV7'̂ZpTx8g=<ƚc6ا5ED o*HY:m'2^)'`ǧj:2uL ~3r.~1tDO|%n8&+wH^0P kVOf>(+'6sv _헊M+h=͆_f>%᫲L`Ki%Qb!t RAGڡ3>|sr;Q94oYIih rvH,R£xg Km Ļ(wFr FR /s#Wnp_uZ 2#"j(U(ƅeOO2:OñBxe-4@ _ꀼVtVKm^ ξt Ra\Pvܺt75l'uV3h!38W(BXȴbUIH ظgׂ  ߿I{]XS3Y)Am 2':͉Xġg:H^g6w?'O(uEW?J(75]cR՗jeM^Op7/?xy:Y_c#1[RT3DCq]p)Gf @]XL: ~CrZ^s6V@ļ@G0YM_jI`ɰ4uk3bvegH" :@geySqϸs/AgyB?3!@;QJzzJb%Ѱy8 moŶ7 y@9(s@J-~rgl~B(H 3F/LK{v[noJ(EQ%q mza& C-? d\بrC+MXE}xziX]e&pC=b=mp4մ W`igHV`21vֵ}=5ip56{ N 1`61'I8Pѓj5(B|?Kcsd#宺ց>dhYrsv:?u55*"s :mg-VWqh {̃W7 9_3Cnm-t *y.}o:fW[,g<9~2 _&?z#AYMiTsdhiwz&:5\au~(D ' ovB_Q_@ɸq$?2cqHI i.c G'd0p濝X! `S2>V_ 2xTţ'4ԉfKU>Rǯj뒉E/{U nek>Ew@i' "G;u{L/i>q` 5WWHh87mGp^'qr4'(>(~7]3wN:1CT?J4Ke<4{*0Oa~yV۶-lW||=d 'HvoƈK!MLm$*s G}qS֏&[rDwi2)zFE_ {G+Xw*edK4U~;`vw֑]91;s͒pPv(iM88yAx@W1gwLB~EsJ3J ̖ GW!ͼwTOCf(#EURbv5l]Ԫ[ U5|dh3* Cnƀ$7[FfHr œf4Z*NV=L"uG-}wqq|d aY%*{6;>r)6 M$Gonsc뉴ʗkߛ |y=e}tۤ`2Gg= DiМ `u<(A,Nyj7Aq@95ݶ#.7}?Uϑ,OsEM`hq"*ϩK.p~rL‚u;P.q s`#i0RRH!W TryEu*9|kWPV) aMX@>Eh˟JJƀ!&qAW1-prVꯤD.z:?ï|Gs@f^^W&Qa-;ދfaKd9aCau0gdvl9kB|j92Ե|6_cXhN1\i둳Y.t 蝿b%Uʞ^YM@@wxѮ/Z Q\4,rVB4}Fwr{k)u)圹BZJ*!ti>Y{pq8"}]-2J@Ojd̢,Trp~c ѾlK.o^1CّzH}W~ ٦uv't呪 Vi5+T@&B1[اĥ!EYDA #Mެ@9}k69_Ԟf 6%iAp]%yzu[|>Vibi9c,ajyTHg CcxK>Fdk}zk:YX7_­6IcLzYn1/ЙؾlWs.HPCFNRx?XW,w;l7N9@ITms?eЁ$JJǭJȱˑ _s>dgntMt,?ADؙi/GGnǪ-IYWzigl }WAjV\ը]֗Frr+#U|6]=^转 '&&jBKZ Oa^k T^SgM oZ(&5M>^kщ^o$(ۡNQo>)Pv畞V  ݚQAQKo9~aohozƗ$T1(|DU^rlCZ$M<6`1Nq~mK  lҊASDiU5&%o(~"dS0^3h{=yE]A{_E=K B!~ik{TsdPV8gšC xI+| GzIR|-QF^ڥ<&+I#xV9-m0LM Eô`hf *.nH}Znizfv$qH+!٭CXu72Ƴ}j=V}M -1={!gƫxWpe9zs  ]v'@mX>:#pCu248UHK6D%v;gɍfNp%&lQX+Q¹#vw6eAjP( ؜11&z914#|*rCܸ룕.uL<ƀ( vXVa fك0h'zh?UYWDiPةv 6[n4r٬,KCPB01K5Ce+@Ք2u~dj tZAXX?sDmU& 2%.GJøugs'fU&Ys'zϑN3Petm;)J<ܹBo~3,e9  ](c!9QGWPyw# 9i)LTƨ~c)DC,7+{g wp4ʮmQԺg+ʫ*n70Yg{Xi%܌}i^kHBRm͏% 5u} WgPy.$^U8{Oaо4׊):Uٔ|XܺYŖ`EvL| iȨ^:Q{E9ܟCXG 0-=y_]&_&r34 zUƱb\ V!}(5:r2 15-O55YQ(X{U(Cd&kHd][a»?YzЮh~bS!(̆D5_X&+ʏHVBKzv~5%eo}'^8;%9K7+-C%`ZXWqu{dHJGi{b~ۦ&: @NJf%~PyPƫa.NP }s#J3jı&p}(w3V3R=E)BF.zG2HhL " 9:5 tJ =SJ !RdJ4D,w l)iLgⱃ:9=z\Ɲܜ"}`ҭ{i5(5.lE"+U۱jzŊ9BCϓBl[wsߠ$5з@JO) C;ѫ4>I7!OhӻVd7Y*&iQAx\b$79gUOȆ(1;"j Tݚ-bwx+K?j_; pXJ (v FeJE\ChOmŘ\)ō]KV墣[֍ oI"x%_K(煾'365^8a1Hc ne1CMy# M Ӟ-4+AMjߪG2t pHvk՟i0!Ir^;V{<@Ua.Y~;D:BS]nͼ(][{i6Y |$r,W%ZB='3bVvWe /{T;I[*r)3żJ!} KJ~%>(x6,g]٤1>iIsuu+ Hr |^&jC؂ y¶jH[Gd# 5\'֝k7<,h1 cLFmꭥ?D)B0=XhE7)|wG۪Y2ך2X~]Z9",˘[hB(ڀ QCݻ1og'ކ.ְhqaT"̊;-'c~YU (5y#%XO䪛Gɜb HɆ,7(~4 WH;}BɣdbF"sBYzޭ0a˩B4xX͍EzYemYB-qЎv9Dj{dֆBǩ$އ Ozg[Z.$78Q!TfWP 4 O*+ +V_[ & >P 2@ X@uZ'CX/Ӕ ]]du ¨g"㌴iWvPV8v-ݠ&G NEuJw,+>mN:I!XW]$]NäFpJ2^m&|$Wij# u/DOM* a|m\9"mnwmh{ǎ?I$[ bA >pevbxiZA6G?KK[2(A=`ݙvtc={GV c!Jވ)`g] ާaȟo 563!$DjGu~lV}I;[)ƔWnCO}ܠ 7)i QB‚S(PP"6QrHk0RUU VJ"P=7z6m Q!qY) &MMSEX G;B@G"Z6jDs7qOkQ;yҰZ\rA]#̥`~Y#;s28idJKs ,~9JwgXBAIݫ~ ,Z~Nl+1)ДtNzp]Wu/Sj@@SP" +4plۑ?^%d=3Os TV X.zG٭h./!Hq2曚߯V^^o^*YOPfE/9@Uq CIeKJM˩Ȇ/P\bƃoٌa,="%knՌJE3?W c_"M]@8d&et&Zj,m7PG|//ek;Z1nt3XXbbE:(/\@z. \>ӋCTil51CXog`;y5c]|?\ZX\U_5-gm1X& Ʊ*AKᴲOC\+// "Í^^ X]Ooc,˒Ol\ȎUaRgVGۆrd*|=`Ƭ<4Nا&_оE]q72,"\,2ymSCnb&vĦ70#yW.nPfI"'O;RkQvw)fr43zn>aXеfx!> PerCN/#jˋ.F+ăD,1|e)ٙ%Zc.A&؆9r_֦w[ DEO OеcM~HOhn! R2sG"&|dKCvRwפuQ3?*W K*.jw9 %Rレe u6W:y@4kz>PN~\9A"̩*z% .-YnQa)NugC ezɱ's{(7)`V`jhq.(s9ϊ^*l]tN)9ПvI8F*djZkqϏ7(Hhq|qZESMf0TH=FbA5D6qCqiG){:+C=p/i/WM.L%ة^~2Cb%=`> W6HKhccQ4ڏ@ pkL=Qgwi1%&\H9B#:N?:-p텦Df潯ҝrրOGZ G,jhť"_śgwJpGCzF52 G)ZQ `z4B{Mv%'ꔿArl(x Eu3u89`nմ'HMaqD}27,3)HCo,W&uL+`1T@w)Z\~~iׇi$t蠎]1W;DTNp/Ά%>$۬ }+a@t#-'̚@YNʷsۺ(b9&t &yXX&_66+@CXh߂䝁EclBM$Up<貜 Jx3D *k@{ܿzjN\1h'C5OupBk1Aݪ@]_oQBl8VՐi6+~hb؊شW➊[VKm_^O>ј9S$h$Ɯ\EB[ƝBB$p,;W7 |^DL $Frot,v9ןly_K9xT;>pL 1m":L8cinxj18n3Gn&&vw!y{U4×ZqfZFYfjM4O nt̒ZFa?AU_02.)o5F߹5̦\~LU"ʕqCDF "fH,Ӿ%1*!1MrB \@gCo>(QR SυF)O.f/ <>6uAu z?7]3\u#sbfW 4P6اK̆o9ۏ]}=YSM~ulB*$,E0m+ y'^$GEJ"[g_Ե =taK#gj<WCK[Z@~!rIN+ds%ɠ5Kn}w^;N`/4EuJ"n5}8dX qu6%ƦlmNnUcAG}rlJ!I wFtDݿ|{x%? |?Ds)+?(80-Q+'^Կ0 tmmDqJz2$E-9Ϛ\T(1F@Ć = 'a; 12CQcXJZii"%t6.Ae%eC\ޱόʁAƃ=f{vÀm.9n[/LiꁰV[/Í}kv}2{OUkm@A4jPHō8ӷ7FS˴>X wp,Ixdw`_火lLdhSϼAf"Ìe@qJ')jKF-?m(x-_>ޘĠt\8>{?WL*кk0}sp U(#`U)ve`E6&;DC…e>He7<2Q-9|͟SiITʃE T= )o W#ίWivy[<(}iSF^ #=Mqq~#& pe=oȺA`gSHߝϕu>qfvzq2V1m@rq Qp*䧂UcTsrd8)r8g14 u&n&>11iZ}xnè֍>`ӕbc窍՚KVq9&DNXG8 [ڬ|>nOÅE! a/^߯x`ӗHd6VfrY+ xX2 t -v3rwXĐK'@6;-{}] ]C/xd߆j@X@[c¸z\xh,A/z$܂+c㒛H5;Oi4i 22clsi%#ʛf%bp6m:h$hZnu[@9xׇ)w:6a+-^Q8^kk@sq+H (>3QsAR{Az\,{k<@ݮ ө}ǒzrO]hM{j %ڸ[|?ύ QcHIRnϜ a_lg6lX[FKm b,]~c* 4&sc1dX[#h࣠{RFyɤAvS_hmJq.z 퓷ruEIZӚ: ;wߐk>:b|4Y#J%Zk/'-4XKVDkΤDDL@D-݁ eDcMLɢtF- *3,C8VMX!!\ I`r%TVhgl }sBO|ſSm~5SYM|Hfk|3=XMB`*~'q,2Q.PN8Hl!cm<4^r 1lB[/`Ġd8G`rmfՎ;y$ l<ı62Tk?]V)ZH£nGz!o&DƁ|pp 켟Uޮf}Db{90Ŝ4)+9$eL#_ULmؙ ΁X롋Oܟv_ 3Ʃ6Gbb5 PAi]'cB:+Yib@HA9 GFe,Kyvh!;TJ:';ҬMR4f 48QrRPl}P]E *Z7`+?TX]Ir U۪- 0KZ\"qH3SP~s$ d hv ؅m[ Jm zwӫҰ'ᢢdSI?[C3~-GvXZ6@SP)0#Z;nBO>:>HgP`;y3Pq| -.iSI"lD)*@$7Y ʯ;YyGz%b *'hW:.DNop0osTx:H8Yym[Fƃi>5е QօC͗6XDu? i,*fMn~?8J;EiccGwLMDMc@iʨ O륡BY{%68DE#hOl7ܽj2| l(+x. m|K;4`= [~$Ww3QO)SNh^1~Mʨ~iA!rm!o']2J5\YXʋW?T-a{2i9T0L2u ~-zSRPtw Z8i"C*+a?Iw( Naz uHKˠܧ0a$fV7wO2ՏJpcC-i-;5e \ԧ A8E\TpJܫK S;{nj} ^)o78Z ໫m>"P]bakLfn{TGe$XǓn6肋ĭViGQLzf테f\aB Kg+ U2|g׋we{E .O|7bp!ĘuHE?PxY O7qfj&|]Rt{ 'C"懵J&QS& bSmBw`*4UyC&w_f-|&jgpFmȳDS$}mH6>x[s Aͭq yl6dIBpy[*nW?g 0b+oIExe xǦQ7ځ7ZA]6)9"(2 `KK BDr_u=+y #kwf):ov5E EyrB9;@,#0)%ZPQtaxLku;}ly/ i,480rA-" gfq5l{DJ d.T` "K-}AV \Iج*Hi>c+jcSe1Rc|^`CxՁOޤ2\O4Co UH-BXJ5^ .UFt&es >Uƾ/09J̍*/y1vP@Vu*cˤ`ޝ %WtIDp:0Ǵ ]{Kxb<>yXNM1tlHANz@3_Jtcr(0I 1$U(b?/SfG14fBMτew`;%3 ?bDZ} l^l0nQW*iǛx|汔:u 7۰r[)T|/Ϫ) YgD4թ4(x j$e=[~&?M?Ay2ϕ?)uGXٌ|%t O+ ^c[ݐζ$~Hɬ/)4`qmH'!q|P=/+n}>}ӽAeVIhIUA&+ l4q}*Fb?ԻU@[wJ̦*P'ԯ֟  ۴ Sx~׼*Ƶ]w.d|+ "`$W˾,J6]%/E5\53 [9z5oH B%gݰ*faz=Jch`ci`]ęP>f!aCLۼ{dL˄po8Ψ܃-+}Us?qfy^nN`?k)-k5VJ2ʆJ١LB*,N)"$![-S; .ճ̅Dʅ1啇5bԫMAT,:ϡ*L N?4?0UJ( pvm"3r,`[ۜڒwGf/8q1 cEJqOfrˍTFyӪŻu`u:(}4<` ]{𿹷 :q׀fƙ%^b0#]=@ejtȒ@c-k1'[ &c7.XLV=,&oi5al̰j'} N* xZ"۟Om{#@1OщK@'_>"+m9K3UvG-1s\T. )OsOH@yG3N`R"rxߌBrQ;KCƫkb'"@_lUB'bCc+ k̍AV]*gyisSMNRm_~?fWsqJg'$|%aiҸm+Th`'|N\,%cbџ-EH$l2jqlrpC> ن\Fm4[FSiLy؄r1pgp$xG~RUWIN ؞j|d̒(LDdR yp]g<<ǣf1-O ]2Xo`+VtKEMkgJ- 2{2<5\jуC<܁yb Nbc&e ʤRa5v'aSRD-BjfoQl=AollzE$cՅsF%~wws;Pq߯53 uq+ \7Z˽hIYk@ y BGKeK&+lI3gӗcZЍ84.J1./| )tBC Wf*43!vxQ3]s~L.ewkw.^VO̯"Ux(Reӡ:l l/?XP?%ciB3 p\o$/\j&-I0J(gH$L)ꌙISfA[$K/3.tm6ܶ u6cԭnɩZ^?H{{~3@[n?D0W /a/sOf aaek:VӲ:e)b(; _\_Ul3Ҍ)T :n$HPMfHμDQ75E5%ǁvգ*/?#qWZ~Q!dZk?%0asyDe)ڭjJ\?ve̥6. U5X  KՇ0?^@2K?^a;t6] k܋W`&2EH.٣unQ=lYCd\k^}N|{TY?*pvbjH[3ss}iݝio\zmhm_ ! N b=CGe>Kn7X񶡷wNҸI$9.ZRA$ vw ( Q1nl\^/]|<Ƕ=[.%n)MW|A%2u_:٭2 \띓P8ξa۷y~CG96{0pԡ=iE q`z|R@5c>@"(P:[Jӳ-U$R$fEJxܾb&V\ 2K2@!N:Y{)|vo7'X-v^r_~(,aT՛V@$\yz7a<`i" :sH[paCXSө; H !'UwQˊ>Pq~$^ŢT`9$V7x 80:e#^Viv'RJ4F$a'pl6 ;B%2n+?$nRv6PjƨĚPm 4?K[̩Ȯ1PȎf3dp~׸9rip2;ˆtJXA3p(?vյ fFt5<ԏ!'^"xwhzdSQ+\jOVBeS2,}dᔦ兒=7L(Z3q`B0E~'L+; aa(Hm}*BLZ]4grM$`If+>+b)ȔKmDfjCkU!ͶLKyMRȏP陬w6ǧ7* 1S4!*CuSSG3'~0?_ ;lF#ΰN]gTDbMޑ$Z-0asa.L=V@#}3?t>IYr8+acˌؕVT6O˕$.vΉBg%l-@BU4Ij<&QܱpnMX;x(f``K@fPֶ"B? قyZ\!MbpjVt_ob(ɞt y<ܦ|a),%IYݝHr=zZym mH .r: ݽ-Ӱ7D,x6ޡ lɛTe, $ ]|pK9@k 0nSgypy~y|\h !S7Z&E)@ݏxiB R5fs7_e 5y> o~ L,Zy_$3w3X*̋6JZp%}yAS='[&5KP4:_2a{!vqg ݐ۹k)% ܈7)OHeԽ/K|pDZ*/qPX3M 8WZ@p>A ͩυקqL?Ͱ)Rù~jeC^[o5ZbE57Ze5}UqqUlzΫf{%Tp*;\US"m) 4AVyFYKz͠GESa4LMF]YLycGߛ3kYk eJ<}q 7ٸQn<+0e}(~- 䮱lJꋴg3InR闃'@ dzAy/tK+r`2pz-XtGoT/;JeʄS*^^5޶}M~߅ͥ`k^gy!WxXԙkR:She$pYt (5_-)L|XN$ ͹N:~o$hurXp7o&N_m h"m*3uN˥:8N&@+QGM*pCOf3om:&&O_ tpzbdweAL9(: tEɩsr;@-޲ } _Q3Y-WC:pUl9Hߌ.&3,, Kn^d}iV hΏq}xjkK ņ99h[e37kW#7`BP /p![YÑ^=L_.E>cǁ!Z5pƁg7̫: <6RC zX<=cB[5001^u*oI a‏Ҹ`)+ m-u%?IX4Tr؈c E^>{h`Jc *$~KE."p#0WB 779Q,A>$Yf S(ڎ5fg/(nH}sKbFƽd6V꭮kaxp.һ=&.{cnqeOC'&1-@Yrt gr\ܷYM3)RYYQP/2uIp8VׁA|nUOwquoͪ>EK'/.%81 VvC>kze/ EԅC6X"KҔqYhBЎDe6pXJ]Ԏ35lD;9s Uk{. ' ^o%~1oY8P?-i֦&Aap=/Y ߌ}5 с`菫,a$:cXP>CxP p=wemgViBm }BPd%bg1 b  j&%u[4NOihlg{HKA4ΊX<\: Rҗ}<؜35S/O˦m#%)av0RpbC49c)DTrP9 G4e!4%XO ?nPH`V~{㣉qxY (F|0.Ve%S61opMG ё`α'\YfRXvY[ڭR+t[ BS=)d ;*lߵ;Ľ._>KfBqxY (F|0.Ve%S61opMG ё`α'\YfRXvN+CIWȖmmGթ7EI&T-6nT7ԅ )_@$z,O ,~xp5WjYx.KfBqxY ']ċsyɞ醻|b_M՘=A.sO֌#WX -|{sp3r{]p+b,SbvY[ڭR+t[ BS=)d ;*lߵ;Ľ._>KfBqxY (F|0.Ve%S61o"DsS|11npB:HL :]zN5G(Ta,0:qa |?(:61 %Q ҃ mZW҂ޥBˈ?\N&(q=$p#_(˅ѕ~*'uMدՐ%S61opMG ё`α'\YfRXvY[ڭR+t[ BS=)d ;*lߵ;Ľ._>KfBqxY (F|0.Ve%S61opMG ё`α'\YfRXvY[ڭR+GXHa|G R"MKfBqxY (F|0.Ve%S61opMG ё^K\(J#`uX`0M b3#'{vG" =g#MدՐ%S61opMG ё`α'\YfRXvY[ڭR+t[ BS=)d ;*irݟ2sS|11np#_(˅ѕ~*'uMدՐ%S61opMG ё`α'\YfRXvY[ڭvqN;GWMioKlBˈ?\N&(q=$p#_(˅ѕ~*'uMدՐ%S61opMG ё`α'\YfRXvY[ڭR+t[ BS=)d ;*lߵ;Ľ._>KfBqxY (F|0.VeöކhsS|11np*|7m.G2Z R"a0q M'[c6kݝ͊=)R[ƀ2ۑUk3w^HCžDG۰uUVTZ4x c8ylh4̲;3"FҬ wh5N&C$9;h$وYudItK o6!Hc1 ݋AfMΔK$Tx 5F%*>QaׁL52Zaz|61'dLk;GJljɃ;̋n*9fKoosZl&QofՌMjp½u"Yu7 :ĜJk㷭]'2L.T<,+t[ BS=)d ;*lߵ;Ľ._>KfBqxY (F|0.Ve%S61opMG ё`α'\YfRXvY[ڭR+t'd2UnZHHoT)E$%FWBmqcϭrXfәOʖxli=kxr\Mbqgr@RXvV= шhWP2Ցn;[CEu``B,tu߀#G#y?dzO "d[0MS Ekػm=Q[Ou/ie03$6OQGsb(Oѥ咽0ʝOia3 KZӿVō}z@ԘhЈ o@%an7!`\ՙU + ,RLY>M;>+'r׬<k,\eFWֱ4`(*+n'ՠYKDzgpˣ#28&$"Ȇ(! nƗ5ၵqD:LZ#B)2z8qd.Dli`l2,s?gL'?]aoOsHA(8wy8aƃ oBtYz}@"%aZbż(9P87O9ҢN\O(HL=6~^1_ QI˕,}l䁜;{m87M$w?1͏ecIؤ+첇CXB6zB1.=%]ԛNTVӷ ѽT~mW w˙?ZeyUwΣ2ӥ^k=V9>D,׸Dah|*>vpиDcƏLc9.\ܙ\@{Yu,Ac[*PDt sL#}~\c([VNҹueJDWm5lSm0 PQk݆[YYOcmQzi24$c͂;Shmev|+OkWlx%[AG((/[m(|^٥x!Vp>MZ=2 ÄNu7xB}(eN%yMY@g$@1EIU>+̖>MѺdeh+;5ma<³znmG^\D;Ϭeqފ]ҋf2B"t*Tkg%#%C%9ƒZ: x ;:e5&2RozϞć s{2ivE'ÈyP7^[BuƻM=gtV5M'º(>TИvDM gesq# l޷$AOQ|X109/ ć$ ̵;m@L*V ^Z»e> R}6zXxu9Ӹ*35n ^r@93o9w =9?g_I9gޙK5?M iCNe[Oay\P_W|[~@iʚb@>3))ZƄ\gMCA+!Ml(dir7d솬 qB+b;3qEijY? m- 7LJ{)(zvgv*hDA)>#GQ|sA2]ٴtc kӞ70|$pZ^2zik.\fŝT Hjc EOBKb^ .SiBjvs힫X#ZNkPAΕQ]yq9A@UG`HG1-Tg  WcJ$ڹ"&fP !ԻMSPa#4 Р8M?)`q#W Y3.iX[ow/*0_9ZhW\7J~ t- KqW^ v=q7oA\hA_k ZIA@=¶F7\VX@<^yLJPS/w[jކ>;B?& rsaMn.JSƨrAH 1M#M$?]].Kc.L 5\2C/'}=ߧ '{ jkIuRhr~F6f0-/R'HY QeX@0Cei8FAQٖ7f%^?hu+Y{9o5 ^%2]\ΟO}Bb`:uV+H͎lpC }yЫ" Olv';Q{I:oRI4.Ky{QE$>sn -dDUJڢrfi=u'|d1 q<lr3w܇nڦYT!~ p8CP+.lt%ΏCm9(\QNƫIppX*]?dg#ARGɈ$aՠ=GV~1xe9 n{(}u@m^}zޛop,5suGqdx^E9TڗujhV5Qw[[& a*`lhībJ3='tކ2 NP#i,ۭ|l[}9YV.L ) m+t¨`'^1;r0&iG[E|AgRJmU|܏2;I[l0) y\xuHJۊ/4y S0,v.@9 t٠3Y7d i?ޜߙQAHqs~̯Sc\6nL_ 9;Lhd=:ok8C5XcP]?{XT+A7X7>#" =]V]h̯(ٺUoP4h/1~/'`:*(v6\(?ZJlV~IgdbUvC4pCVbSj3in-v<LZdC`4֞) /h6jo "h 3SRV2-Vy"Τ1C:,]/lu?mu]…J︖bI;Y(߯x/9 *cdc@v}>oPF`߃{Sxl>Y ìve*P|)=pۏ5m j3p 19N@D'r0ު:|H'=En%B{w9<[bk[}*Xƌl]H.n<` }3O?{ƏOR;} …e sZC—Gᾜ{bB$kNݘ Jc`;zP-@H$#Y 9ndn G2t\|H߰PWp<|òO$N+j'6ZS|v]7Eerxo_+eEI.j:ў ~^f*<|00p'=u{9ӲXb>'_zrU i BM*Z2ٜ9, $„,]ObIr77GHj1.؎.Һl=`pj#e nwCi/xcS.R^t R6Q8 YKs$h|iO)ʼXS굎n4OcVMk9MUM\t ěO tA++o !Н :ٷ8 % m%LyiiX\V~5Wf++=@:1%&a:DSZhZe7]ºݵu) `A8[W" i׆kCl2uao p;nD*sAfIEӼ#4mlYD%1\DL+O˞L d {`nsbVh#ڹ 6l_F Ć}YVf3ھY>U_fj55Y6Mu"G[m_`pLH}:ɻRҶh{%t~Toֆ`~ _s6 CwJ֪Ten#KGIh|:>dVJ=? ? C}/~vlf 7-nq#ߖE{JgWBKQ?'ހ` d[񁯟%h`QYH*ybg=# CLZ 5]58b_jX@I ʾ(m.am 5kwJ{o/f|%?:jWgB]h C8]UD^ 1R%YɒҢfa7a^1.yQ&JG=2D ~M #,Su&sO -!z{/d/xוe ): g_8~~Wh7'ŏDꩥoS>k, رy$9÷DkzARSje,;Q\nͯouą$hGu]6U+ @h7n @B|u$ŶB$zsAz0efNj!N1OOS~kRnaAYWIx +B]{4s&X}#F# p& j>4,0&rO@{d#Z㸄WEqf2հN,^T}]Jy… ԸԀ gN{Q:1.oHMk4IOișU e%Ŭk2|j̰ogkbLIABVUJ8ĸ5$Tg`~LDz9Q|)}[")w'ZS̘lK[ |3&l3r \ug"U C(qFlwOnzKASX-{ `54,s~ѳvZ̲%{Uh9PKڳk{Q[4rQ00j_"AWf3; 򺆪x7f!H {F9AB#P0pOܞs?r<0mw^EEdtBHBA}ޟzn鮦d^שPֹ ;hSdtlۍҤo5>a团n7j!]o8+n5DY v).dЍ۴cy̗@Eϸ,)!LHA?yy9gK|A+.%0k'=5j\Ea{M[eACx"hҽ`};ҕ1dz(ϲ R73OG9*ATsvx~0 |l@%?R ; 0 ".Qf+TCj*HW?Gao"{6uʸQN脱N8D,[&,[D@#IDc\_sYj?P$ lS8zOp> 4יWb4MvpV U/Sw]n8kH)axc⒜ eɀ%,0?#˫~ Q\44dec3&MКy=]RwRr}8()ppwn@Ph6'Q>[;ʴ'WpiB<RSa`) zHx~Mxޜ dȱY ~2H?7HK$9i8sT`)*'ZhTx$J?yذ$rsه9nc8f"o(꿜H+[u!χ#Sd8 8i 7rҖFxƽ:Y3~tnO8CP65J&l/:(wp%ks#ò_} շI=dKКCD@͘Bڰ.rDvzrQw_7Ԝ*8UK[0QJՊ꣗>E: ZT6pŘIF9TRBEh@| ;@(h)&4rxV9cGKqhݾWi PcהLaDCGDr -5$#NⰆkscs #TxtCUAcbg-p(vo @iA2XAL"˅3!?e}\ +ѩk]wmyQz5I?k[jvCB5!g]7fbr@)FWX#?ˀСd)pe8S7f4`j2\:h@xK._8L8h)?OM QE)"Q3,C.14áݪج2Ut>}y$0]t>5LH[Y&KF"y89uj/D[Y!Bו/5z;V[+9!ACuFuFPl*㶛ݯ_J#>&$ `ސc#z@0zdevENz +uQ5 9;ȝZ%e9P3-zH ࡙Wڲ톴݇k}#ӯ g[S&<@( ,،mC;qɝpJK&aV}@b>U^H.V|o0G55WʷRfC쇍v nl+Ytf37^G vSb"||% Nx1 %A=dXD6Y8bXl1Raq Ց]b\/yEiH׃Gzb߉E{/ &z}NcNpؗ#|DjQEbn{Q!h{9+ɏi Me`X&1X Mm#[x@^5˵ZO;ƌ\-b \EW&wѭ]ѮL"e %b` -&(s&px?QFL-,ѝϡ+;K?JV-zpOIaf)k0&vU#Ϫz@e_?p#K:Zv79QΗUqURSMV[. z\Άh+UG&=#'m{~W ]foE}Sd-i[̲yχ}]YNޝ"'FĬ3,ڝw$H!ݿ޼XtPgb m:ʝ?UNA͛ &o2gqq@߶7l\ij`iΙ?T_.2>MP!Kfy%}ݡQtҗ]r='3}:NI_"jG0C%@DA.Zf_B oyzec˙*4zس X]K626b?C\5H|8f 2Hk=z #;=ңfTE`$̏p6کRs UKݱtʭ 1_ŒalLW|R`3R9\ӚGb5֛OFm  ';hÚb%۸c(_FlJuV_k|۩ڱH%eR!>@edE"tDk9wT:^wM@*药Fh {:SGWVhkz%XNkPH/rA/t*.A]gb_e?v&AD]R9e[[ ##.ϫk>xJ1B٢T&-펠+J #Ӏ|6RlX0ˍ t_b~hG_w`YQ4( CH<3>;b1ͦ-d؆N ZO'G ]:43sFn MpՏϠIoιs@ #(ꧡWu\ ɜD:uzMhB̲5КR75[Z> ɗS2zH-_v,L ٯ(NOFaw<dopŪ!'ev`j9Ӥ C cL;X}#*1Z%:휩" T%Έ{!b[](^]_R _emt"b;rHr~h8vYJJyҝM$|cɭ 9呍!v#d]>b w|n2rK*NrL>qCtw%/GP7hZOE L#H&?k^GY{GR /#]?h:<χEZ؏8]۪PBV @%F!L'ȣ1͈ba綁hRqwx$"觶QVHtSh XKA60P 6YR(/T1D;Dm!ȯlÄjYFΦ,aB=r-YHK|+V Q{G[S TO;%\TZ].fKH xQ^ |e[!T t':=ӄES|='q . H&L5:qv=iIz>< 6˓uT )US<4JŷXrj.A ^/"D( NUVa)D#^G! `2+.Xu/}»pIqQB=XGŊZ{K T`˫_)Pݫ7F<݂6yvÙhy\ol?aK)ض, 1g+ Mxn/຺ 6+_ =#(f)ՑS]BŔPbߚ?8“yvC=<7se"؏NM:R59ƪ?gPhkᕱ~9E5$lπ}`'ǮK^-ך6A9ܧQqS^xJb:oX62^F$'OZC$l\WPt<]ؓ{8${D: Nah h|X0RMf]Ωo> ۅ)/mi8v \!kKl' =3Nk%L3sWy&p?̳'b#TD#U$¯3Cq3',_o P: c fvf$]ͅ- Gn^1Uy<ȧ4~i30=ɥ:6Ϊ Otg(}X`){o?Yŋ)}/Ҹ42t^ ~Zyօڒ7pJe4ȯR/^ho|^/@ vr.?&jX[E5"VJ{&VBJg`1s'f*Lᇩ>?elBSʋ;1 f3v Vm 嫰i7myg۽EQ x.%o7gVFxoTM]nn/urzOR&s3{M-xTK"EvߨRqnk.|h|Q?,<6HyqLt<[l[_jBPWOвJs7`EmU̺{C[ȘJO3 6T0|zy g9U}L2ﵭu][&T W okeY.A%~f.a6Ls1KKdRKw/ʹ%"~ S /]7 H1.]<JuJ~ DTF2Fb #B(XO4\MюX`0`v133ZQxH\Xt eoh{dN1+-SF0*E] _>pd]4[ۣD! 1$MP Tgᅭ8rs6L9 ߟ~P.óf::7R;(3O}1O,)ANC0P3k4Tj߭hAg~KيpLĿ͈fQ]):ѿ`!r(қ- Ven +N) Dj:՟O!FuDCt/h-8 x VU9Zl0/Z&-L${53%No1nuWfZt\Mk+}pMwkXBv,X']9W&mT_iB[SK/ћljb-Y;(_$*lQ'X}i0l N$Tz=ޓZ7 :cLmxH̃]lw L§/37 2g+t!^!!IiBSQ^>Nŭm"k -DNcK3#8WqaaA4'!$^U)yV-]LO'4TEX/mZR:9gG%jZZ*5}*˦fZi]h$lYlI-9T'Et@z-iGU[.c[P{)BUHxh̴qǯePŒW7F2&ɇg2…Q-Z Itjh36e ۅԗxa V Vث -|8W~587L˖K|s6& MeD FI\L;){aY'ϒ8~(K&qCIMU> t]K6a߱{/(ZܔcP op[7T~o`6] s}%-YfPfIHJ2鳵$ӭ) iv97w!XUē?!7vC\xzLEvZX7D:<\譁 0TG.׀ۛo4a]ƗtꥒƑkh Am2LI( 62i)! ^~N6G qL<kύx..{U][s%tb"f]oPVT+)q' |i0ѲcsF`?~L/L^qR;q l4ʀ..ڏIQĭ!3a"ǮOZd>zǵpj^?tƌ::gşdyVP݄.^Ю 1<'DNAK't#n? ܄h$qUwSQ_kS:$b:-_j)Ǟ}8 R}Jqy^cѯiЇ $:glmFR$WeEEV-&KxӘgx;"qFޮ\9~ފ{Ad-ƶ/#^.8`\Heܤ߁BL@vp ?ar jbLR^ȗsi-I] u6DUw*͔ Sxn @lٞ!&VZ>Ƒu3κeao Wr\ v%. 3 Z0!OXε5sEמ-~ 4'arVQ%LP_)Ch X+L #ZddhfS勩QP@9gLjX XQ I~F85ܠχ?^l`3a(y%e(3(^ֶȷ/$hG׸U_4h<_,ŐwV]ONC6T9mU3'57fBxT"jRi]̂?~?>%Yr8;Z\z=jo/~06J"4ő&CNymg 1Ϣ?8˥4 ;q c /(%%:l(|#:kf)#d@}ߝǕ[|%Dj)~ W߄֓]>(v ňߴEJy$-]d-zle5tЧI͑cƱ m & WGE7|RBA~mWT WcǢl{5Ry|]F{,;.$Qr*e5*3lUe L{Ft)-֣H`7$^`֤'Nvp}ޱq-rN`ivB/PI,7ŕV$DVHG'y7R1lP6ky=50En-\k{=/fp:*cY4\>z{;ev @NՅy\̋!@NINjh:Qf&.4C\Q{#n@^ݦ8X,v3 d2+gi`u,䀟ϯ kZ O s{`6uR $?<*qw&Ƕgn%޳ejugN?Z-xf|9Ln -ZiW\zS$q"q><2ͩ;iT0KMKs;@F 8PI7ay[Yݜ'-AAH(Sq5hd>akJs倢nDkڜ8LmzACOo!(Q_QU e2!ar2?_5(.o sN ˟"'Fm\aJm-^v9ᡔQjwv5ѷ D%}>{A nlu- YŵSMUB?pےƽpis@wiNnQ!,E?z6zYnd_SjI)@,э2%.}4[:%K(X8*NP52BBmbyxM!m;jq./{Ҁ?ֱ!|WŸ{eՈI]#/%n` _9Haq] bB%\}Og^!,-Aj~V8TنJ &vy?t3#Tq.O扠e`6Efy6?υG$mX@Se2p&Ht _%HGߨ` j/Њ*C%㒖 ~,^ -5-A1lLg+0?w dv4H:vE>eMd. +Ȃ37N,v̪[R ōe|iHXphc,wpq$BN[#>)"BO2E> |ּYcΩGԉQrDs3n4heY 3'S,Ud{9&bzidoVWg5=r&ގ.{p:a=BhHT { #tU&Rɿ[49aq&_0qOcKs+̿/,Q5avو*Xpn wVJ1.*ж !(dÂ3+g^0OU Xhm|6yEBң)@@Bsd?G@pV*J3Rq#2;i-uw)eЪ>1d9uE9k6TtƮMaN$~c,ps6GW6n8IAu?dOpm;\n`&&zNdIN_?,Eg 7ҬY䭰@tM:,f\ixs{reK|m6da-EهO z^z-Җx3w5.8-0PCG28:'كuC?]t9 F90AnYǝN ײQ[\@x؎9f#ə 8qCD L3mgf r)n4Ӻzϟ]Gk 2ANU2]?N|Lvy ^!82m}s9wnRzV)rJ? s[Ɍ'ŚDm73k H ٻn0>j;BcJKj~{oVIדLv9aFĂopq͉KeG)v33sX&<-nqyY/egҪsu@ff4^.ڿ%O+#@UMoW 3*%(EYt?LD#bW #^"GrEA\ n~.@*g ҈h_s!N$;L\A ?h-}YXbH* sU{O5# uUp&fP$E 7Ul@I+5g55e;N)2[e#6uGdY7|CfMɺ=32z~?y+Rįm }y t[W|ߩ5-H?'hQ a!4 =vP!Ym 77e.^잟vt~ .d2UbﮫIc~k6بv)bT'gtE!`57;HhOA"qaɓ.v75./mg8ˁp<5n!~PL]l?"ABGYl-l!`bAE8_?눢b&8?qWz-o$fP6%}\|Nyv85l?xqL:./u9Saî_]ב6`e6OiX>0~h(v$;N.5Cu=>;b>Bm]"ÖvlPD4WɸK+(D{v%*.XrʏòJ\O϶b@i'sg,72xG'òKkᔢAoH38X⯁2vUWv›- 0!lKs1YX\d,@ !"%l ?0݅6| Y.-}ztQ7IQ ߐ^Нqgg-k0'g|F@Hhhx^YTD3+.uA;d[#8;#@l"ߛ+$T x`DLbLGـ-K^H✼ޖ0w),^enn~3Z.u{KWeZ R亀v^դ8O!yg]'vjZni}sa0dAqW gCr{2iAcQ_5.sɈ7`qcfFz2tbp7;1yze+_&ČaHʖeq--E 7[͏Ɓ*܏"r97x@7-K}W =a4HitW7'зV9cF8CH#AV!NKʆPu(סL/X%ѢXBo Zs$2^$Huj*PQVyiPUUXw6%E^iF^%@Dr3vIo!])T]LO>ZM͟q^_#n " Z{(`pM3v.,?ɳYr׆zٛP]PS s:x$oF1Tf񛆹w7H6m% &y+p^-rw6  &M]C G K13?Cude9!}Bnyeh *DTT '$){)'41k Sks\E 9|ƂsނR}WY.2jqB@89&8m\d=G 7 %4E\p/F~Kd *: 6?h D )(',_%O &Fsp>ܻ' K&deTEg *5U$\CSKMt&__7coͽf?W`?Gծ)zuǨQRnO{ njټ_OBaLx*O(Fۤ(Dѣ׊͸c'GEE]DEy X w"c [oe-,I(R*4 sGPѢfEj7=Dc.koj^#BD*aA+>~xZ%] 7յe&w87͂'|k4v;DvG x/@]7@ٝ=kKFH3`꯾{]A#6"ᶘVݷY#m'0ozcђ馘UQ]5vsB<xcd +؄Â;Ю+UX6 j4wY|W.ɨɱAsxYX[=k軕 {FB?6k!2u7۵@c:|y'Us՘dg'K$?0;j2/ *cZj[P]o +jNGq"LIQ";}|^)KYly06DYŚB +cˢrXK :cLFFRɳe-ٿzCe&6 `Z@: m5e}/%Oi>kSDg0{a[t Z͖̒R70#A~KY\ (![niTSƃrW*trVöNބ/_  T;ݹ%'DiC!'o[VmkN3 mEHu㦢)sp4Df2(zW MZC[,Ԡ2YƗ&pˎSěIG2SR*1Z*'{=C<Z̈my--/[Fs\ZFվ:Q$}C+(B8aڒM~#Ŋ#_1,5\TCКwצf5oAkf'8UBFy+>]' иr5!Pδ_|:Bkxk=RD+1|&T'`'":+ -F_l~*߮9#'Iw{]~dzvW_&jXt9+- u\ 5[/[>jķ F]CF #g$!J*-8[Sė$y/}î ^Fn|?ccwMӉOs;ٔ?XL IZS^dQ3B+G/nA*f b3nDHpiglz?HvoQ LsV]M{XVL4f o^D{;hGE 7E4#& TY5 &za]4P 1#O<5󋳶Uq"v|+ه=z@ *2? ȿQJ8n ̯DӘkoe2%$nIC z8^@C;䓢{~z^_jdL?>IR P:DfDy.+):mk|Or_K$}~dĈ[c^;1VZ~Hr,cQTQh=3a|уrP,@%usnFe=|TX/FSq;YZ*b_s P'o!ݓW5aƇ%'ѸlQrP5@ 9=D_Fcz376 `lJ"ǹ/'e ,nZkZԖ:h6"P1ߪˎO/z+}TI[s`2<~l˨,{zS0}X N*lqu a;c]B+`nhƖV$XNRo?-yz-JamJXDCV/Uo 7W˔El+ pLLT-hȫO["zPIU{na T#WtwP|ĉOVraq pω=%brYaKnj":Įu!ʩTkĦn+)4 gxNBN4咥.{QrEP;>HQ.97qeZHꨘ d=T}sv[p8| X"epɞEGSЍ(VЄ|ͻ}퍫rңy\αV,|씛{xj+_ez%J\Pۤ([zڟ[)g[Va (m2_`rsI:4"օp:WOfJ)a3 1.ԺTt|DfMHʺDF#RTdiK.Y u>t.d2,- r^ ԥf[b.LUɌI*Y\]}DVng⯀oy~,&:S"zS0ϖE,5˘gO~g_h6;,Aň1>ٰM^[Zt5\wSvp"V_;墔Ed Y_yKfT6-Ị-=W|:H0pMbVUycwbL\ Y|7/xPV׀Ǘ-آt$cA]CʱEzH3L/w 5E&'UOv-rtyvW ։;Yh#G+wpy 5t)[Uc=./d!9ϑq ӻ,џ .!T'f9"F`:SAIL~h͋ޢF̊rR\S@o=k,04k6* Jwq~Fnja<1A")խ\ӽQs|?``]D2gОU_L}yD/}5G~C2 +ܙ6ઝSZ i>)-Hxb`->B5A^Լm ړm{R6ԃv2˧+S/ Ov\P0"$ Ӯld`,'6W]T:/%gG L ێ*n.xM'N@"ARv!"}eLt' x3KiICEmK/{P~lu$i 6nRdtG7F=B vF"kȉJ;+׽5ƅxJFleg$L3f`BV3be /.!@<޽I+Q)<rʿ K&86ڡ}].]Jh_1v3 6⢊?(QU$m?9EBU$=rvY{hghmySCY7聆\ٽ^?TGsb98yp#Vo'OCMӶ~šzы2hZ[opEF%)ũf6H .Ske _W21f>6b_)Qh2*r*6Ī=BL$nB}U[o*ۿ #[& y.P'{$LY86@hHZ5p~O@q*9,_5x/TUTj|gFZHeU$iFd _ <2?uޝ%->Yg87{|mn+durs &Z 2u2&>[>nʖn:l6'E}1u/ ڱo:Ѡ_d/(*Jɚz߂DI}DzY֕79'~!A<"92u0&Us,> Lc|l] LB]:%zo``:>nH[sjy+?CJa?GL?O.~x%~˷;טFEDج0$ o+2˓$K/"7.;]Zwo+_{# W췃4|ZQUū4P0jVf8Yx4VXںĉkْ@} $Eš,B!|9^Ej޾AuYW{OFs^5͞VZc~wږ%\===?\c noa_xRT2UBZڅAQ#m]!=#W]߳ o.RkrA @!he"0O | Jg/_==uZHJZ|_Qbrl*yJ<Gl#=l5΢AP74@5R[&:l/9̆&žUh<C(JR]~8Q7G )bD."msDHF*?lh2Qɯ3lx?hM1A9G~y~̪ӾX :ZyǵT=,1_ڭ/93_֢e Æ;gtTܦCaE y7Pɰ;+QېtWa,Hqnyln|oGֵL~]K*s\+v/\t] k*)->8Z+g >mCo_%߇  o4[Jrؕu (S pr&WJ^'g~%-Yp~F1Óog0ƍ h1VB¡SA C&ykL\#e^ 6 Fl:Li%/9VL;I:waSOق⺕}t{y._L+h {"&h#>itd2DBwkZUKbWJ7Dl{(FD;5CO&؆8> {т.Z 13Ո,'t{oe֐* `d?={Sk"T>3ysP+5?`'NU)1ÏDUAe 䔾n~m ~O 4_lE0r9D%FgvK*<{>#z\෬MNYk8"mrVqWA.ֺ'ߖ=HcEPUz#1bҎ{EYvWv7$}&8$L9)ڹ2xf9@Snxdl]sYP 0 rƱ:5*|m;C Gpliأet i5d5~ '<L u{7ɱ4/FVge(?߻5lzUucs,*Shp'}UHZVS]f-j6**풫F?s2^E;znZv@P0s+-;)ky(F|T),-g$T9LG0r2G3FCWO޺f'j1@ ?.i뾓fGk/$=-,Z" ZPrUi3;'MS,FiC̀j*ƚ-vvV۲ao}@^7foAC.>P׵&ZԠyy9A.Xӆ\YN8֡DJ{c/ p#Ϳۮh] ,kB e$:镌N{SX[Նd 8gyO)h3<7qƖH> 3A9Un˨S.Qv{N3RUyi#tK~;% Bnmp׭0[ [N ?G TYk%6It+qM+/|#؉BW+9 23̾ vg?zZ,s 'g67xyL+]׍g,>{RwLzni&h+ 3:~ 1 [3q>Ę[p[M~6 >xDuuM@a7٩g ˶NI8f{h˾ݸ;.+&dл^E){.M]HߑH3^aƵ};6$818&G}.Tr\s>*m?rRB1S!|B|S-;},[JfFU^)n dE[׮.B2;JӠrK 4Cn@9qD_i(ܪJo^sO͉ZB@\C;2HyDgnV3R,Fw[EpVr~y Sb=g_e^(/JK 8ء(jXWfX m~;c#)IjtzĔpɝQ5DwWt.[<rݏa>-~#M%큱B+&QB,ѧA]V4[si^>{`WQK^٠vZ{Q&<ڰhEdh5MUC|I̘X^.os>haEqRU&{&9.vm<',t}VPN]:>?Nu%k*%}iKm™ߗh/VD} -<3r|*l0==('41*RDS\B ,Q yS!p:2V/=S.1 K,~ܲY^o@Y|" ~]&r{;M*'~2d'&> R'ѿV<}XPh\ۭ G0_z;Ź/mq$mܴ:+3qXAV6/%f_m;G|Kdx-h==oAk2&Sir'p?4 IwUL1r r.VW' 0pMSTR|5br[=qt,TTE/*ł..Ǿ @惔Hۯqr#`ښYF'Z2Dd.ʼn]{]?c!"lyo ˺V**&k:4G*I09q*yE}oq: IX-yh4vߍxSE6H ձq ^n&~ Cig,>?ƲɈ\r{ ΁5CKi]*iNCb G b4S?ɹ"WT7{Ԅ͜ԃVסp'] 780rzE19%63mNLf.ۮW+0Wv9I~f* 6~&D1+bc$$ρd.ut\t~Hv IЛ!Uzn>қ12m28%󠖘S#۬c]I$0b.үY5 l$ܒ gxKr ]3{MCDC6'-˓yd>bеY\5. WgicjaicU| >x+ W7@Yq69ךkiWL^dھHLLY,YPf6Kʋ2Bɘ%zC)Ln*z5ݵO7y6OWlMs1g,ğjT !ցL 5P[DC'4^!myt&??wpRkCBwh1+ DK 'o\IQ֊S48V ʷڧ nAǡL-{.W#EW3\iP 45D6?[1x\xtFAzkKw5`n2gRXDfī:`F+A`C!='2GÚ{ڎ1咟Yi x%<Ȍ>c\4RB0زPy $8(3ak l/\/k.|ެ1щ{4ݩ/UnE} r!,y)R!-H`^Јc7;F bh{rJsDyzYɘ.`f'EUH1).l=G+*ۖXD348 ¸ ^)*{`z&d֔ݐ,yog8ʅ=t8)Pqߕgo^hһ1}B(sYUңwѠY̨C6pt' zHV(J׸VJ0vyg/iMUkmp_=O?_.&Bw5ڋ` }e+S7$.scu9\3b@YULG0oDN"xnR8Z_wLcHs@Mzws`٦ha~{}*-&#Ba(ٱt)R=_NzJKe-;+(臕b GٕVg N0TY<<{lmB2p,@.nԑHÂ2;⮰#+D|_|ҒLVa?h'xn3]LݚD}gy"!YXZo;%ulcXV2f^ԛ~R/ҪŽ.W24`r7B}u){tZw)HmBv &|Xl%TK r@~ hzŞg4!+sjSSctU?[/3dۅg[O[S$tT yʁrДdY$ BX@O=$_V:/#/RH:W]Lc!E } H wD &o2]0\ ''{? /36mvS2`Z)\r=jL-hv'=;^>uQ^GV6}I`\ܞʏ]$u%(1Mc꼁3mw2*SN߳$HhtEBXOY$Hϯh0x |k@:o_P{290 (>VY12cB tc,dz9 %p W꓉3[/IAM{QMcR;v:?g#{ODBHVOE1\x*\Ђ`)tN@lƄ ޲Z[b:hܜUw{+)ӱm>}yK$|ǘcEnY)b|3ɄFmҎ=@~a^ɯbY^8[ieDIVy(}fI N#ォ֘2)oŽ5 Wav kF S 2BU&"zh/?)Jm^@v fj.neA l$״4Q/t+fvH c3 z}UoNnE5aWlawy?b̴b1Md% Բ՞8#}&&Q$^\b }gw4hɄs9aW8p[O.S2‰̄d&z /0 &K3@ ?M9>[0<&D*u np?k'P_Mi=" iVGw/[%@WV2]mI}\]i*U<5v2Fm0gS~ Ͷ7IE@8{zRa]2ӣ3q!SqIDPFQR͈>e7vyn;M40w81* G<}WoYsZg?) 6پJf*I~kݡtJ`_N"OuFF$#'g/znu.O>@Bc%?}pyz^μmgr2z c-K<.;,ґ@kX5#*ιcn&K3#F"QV% `GM7k @vC}a˞\ƻk ԓ|H@M 8a/cHHf!_. \Ag} ϊj9TƫFԠYF`9`eR {o5Be " ۣ X]zA_BJl*D_\ը8/L,.۶'{%sX6o+bU"+8i7GqSi`؛)"/J vM]nlSl.8=ݱO~z`g\W(#|0Զ6AxJa폞xmq@S~j^љN(9jiudn |r {7Y"" C1',a)ZGݭ-d1 7lz3\mHMUg hZ|Lw}s +n -nԕ͑v,KfBqxY (F|0.Ve%S61opMG ё`α'\YfRXvY[ڭR+t[ BS=)d1sS|11np#_(˅ѕ~*'uMدՐ%S61opMG ё`α'\YfRXvY[ڭR+t[ BS=)d ;*lߵ;Ľ._>Kfm4_D;0T{p7bwM.Ga]]$M>ʼn\#bM+ ҉Lw&\<:Zz4!+5p\&KX2QsEQ3ngE<,&(pt $$~ lInri["TBu߅v> b΄1`; |s.`Gko\oFH:iWmk%n_% u#4ٗ ؟]PFZ;֤!Χ$))PbB/nTQʧ" )rǞ|{\uoR37ڀ/u@YHJHmb#_CNDIms0qM'6H0IO30`PZ YF .mkȎYlv^![i5mx*#5nF=jP@3?>ⴱ_PWI3M4Wb kl <㩗q?؇tt"0J sKDьX/v9kI WA%>)M0Qxљ\+ `'[񐇊ޮUtеJ-;|IDa ǀhCn% ȁJD (?[Q].YT#qc ԥ}ruXcZw$oҐ( 9M/PwC]؍Xhmĝ]A+F]K%pq4{CdqbdLk@Q̎=w/5]|,T^ Қvs7qΐ)q(OWd>DWS#a'ȋoͷUMYPkP/E3~@`q^IIZSQ21CAhBi9`#~S#C< ƍ}DL44~Kd>MéA8݈T0W)ިӪ`lhC@.\ACb Ib6 MBNpqLriLN[T `ٻHu Rxˆ}^ԹVX8G0if^dGٴ,߲" Im3{!(Ƹ3Mm BsF883i!k" $cֱ!l-5IEBP=*(5}BEǷ6 z A:OsL+le%ě*ĩ$qz'+;S ,>^tT,.AW?j UCX=Qt>o ~Z5T!9ua'[i~`@؄xV?Co$4)ʔ8AK|o |6acÒe}'7/&+b5WۍYT|8 ?%bΦ%3`cq#~q#nF⤑N TRV?Ȼz{,oC@y^?i\L ݊eͷˤxfsK[gYS4C\$~,}ިn1TUoq{A+#A"Jy:݃d?eO=U=^G+x9,N8-{A[4~$ ɖ6MWQA}d8?>* FHW;v/Z/)Uj4G;Я0 FAdW 7& Py/xW͹yt4gf%_C)BMQ\jUeicvsLu\M-_=MY%݂g>ma~!=IMLhnQLXv怣N.,hJ"i#0V9UP+s:x р\zA$- BY~ 6FE )$f2@ -:@}ONz]hϤ'EWbV.%p>qI̗9QlA<ĎL)oL)An\`W.rCKG&Nڦፇ I i ~KX[u !G_`o=Ertϊ0_`]'tS(6g!qf_om7fgtq!A4vy^f.}fXͤaSxyxF6Ԡn=a0_f%afX$ʳ1l4K ~sKe4Bߎ. [~67WjK=5 !̸'R<.I%Z v(Q ($:Ky.R$ 8Lv=;tyn1dQ4|<d\hXB lsOVDبi|6ݎ4;" l -,"K6du^xas7_)@z:yR7^۲Bb3;Ey2Su^Ʉz:HŠP/hQoNG!T@MrB_zj uu׎BP t6jOX8:oT9ݶwc"*޺rHV8B J$Z>Pj~wX3F%o^XTlx^'KJF=\Vf3+n 3Xᝓq }2){U M\_9 w"jK ;]tzdbpuYSAp7u꧞oR3~Ag{s/ci7 J -Nn s/+]瘒)5W](Bq fKFyL|-ڗtkQj'6FB5`Vqʻ"ʓi&ł2BX~ %gNt=15+ޛ8Ԋe3 ʽ?vKcykJd!o}G+7 ݢSG]1y!e+g`]5S9PeaHmLcKHoRp{Nh&{ ț*~81]y pl1ɖ }+…hd?8`iXڤjl3_Q[b힕{ 6<=`Oe~zA5Yp=O:ė>s #Km[x7zM>GHvq?栀;Z"ˆ'[括,Q`--$0b`e"rSLk \Lw'v7{0R b~ҹݤoؙD7S J ϻNj Y(lHM%~/(x{+3#b3wV6<_Gqv 1DreNHhw ~T=SҶ`nEQHRq lqi|f 5 mLRɾNs`+mlep>Y'c?.|O0<1tLd]rqg7eЦR0H.t'S J9f,f&Hr:{( T*lì*4tVh'l(WiI0G?3 %S,==]½oNry&n~z$MõNwnK`f^Br+\3pm hwKC[Kj8nQvegWr=ZTj4NEƥ,̿t>COZ/d!4iߊYe>|!#h!SrKBϡL>QY(xgIݺd&˖dԖjKlCp~ōGidVV,ưD3(.:r) 7BO2䝨5AY?dЊ?1tɽ\AC>"UϨjݛ0oըb)v L}H|-=\ګC"7#~%WYsS.VJ*Hf£KEt?nA̸.gEDD窴Nk6#-teΚsyvrD?DlgxZɾ b' IQ kmI.z_,]WH%#>82ķq o8ԣ*R(שToSGffi,Ǩ3nޘO]IGLQo m"݈Vۓv} y& 5ex2hjN,e!1U @Հ|ߚMmV6@c6k^I$hvV%QdܸUsWQby-l-Oo}/qP*{Zs <=1IXI{U ]|aoYפB @B3,Jiq-gCHTczx,3l|ՌUnޣDi=+FxG@|γ2RTkOE4#qw Fͧ}R f8i)MNhܵv,|oqӭF- piPh]Űmޭ< ߪKF$[BkwfC+8z /q-}t~ / }h.^t:Hc6Ӡ+0"ُ\Esw* h4)yܫlBT(ׅj={8-nj, yt*j'_g}^wSHR?]~5ccG4M8'9J-*k&I]qW^=9Ƭ82Q*kEe_c,7 ǴLD^/&R$Rlf 1M*_GG$Q)e-IzHoO]V̬}*I 4Z,bUiwxY2mt+ngL~8w@φ ).^PmD6k#nu]̃5ʽd+'$$i7b Fq9S;2#m_~*KS~MŽQ |uf.h/Yݜ=呃)'8.j-P`Y^]Yb#uxݐb= ,ԕt@1`|eus 毷v)hd'!0 V.ч- aN:*zdN9J{7@ALk$ľ]Q O9vKP<.A1F :]ylL38;3R8UAA ˃Hqg\ )cG;'P01Mr93bmqm;1vzW"߇zOsHo7<<,v&#J!80(:ku^WpZ i&WxNPu a8,KC j-$A!:\o2qj%A[Gwy3-Z-f [aT]gׁL0#Yj.l8tp>6p*]$jd6 2 Kp&Jy([* hϢ.2("?e 81%"]8KG/.{P=nE+i{d9; v|7GB_ ]9F޲Ny4Hm6 ؼV)qqǯ<98GG:o[}^?}%~.Z)X0霰~;|o;m0b|x^u4@h|1&w#z1d¿% ! Jw $Kt1¶CSWۻhvH5H:庂 l 54CJ ?HZMʫ0{z6Cdʓ($3cc$ʮEWxbṿ'&b2ݶC7hM݅&O^+vQH+qYg":xe"B!ǐpLef=4Op<GH\f$Br1 Ij:CpGR(~^i>+Œ1V[~p;2ߊT[F&cR(oq%Kl> ´D1YruCS_h7o(Ex#X鳴$}%KnpNݵE3R4tƛ+d:V1{sjy֚->C/DXrٖ-l^T9%SjDeP)(e2NݮUWܲ_ 1~ u7xZP<E;gNbPޕ|ed>GpX"h2N!Xظ|+z:8 QƒaQ%vǁ0e~%oʊ'&΁g  9ǮK%NJv]HPg2q>safWئTs'4"&4 =JxP&?@M6@A͊}@ j|76A1T)+U8Gq%0+A暈du'zRG+ԛ8.ָd=~fe()N¸*nh3Fa 7qfē2|6@mitHf& +lbD4 wNYVsZfJwUDb CM܀D qxS- dXg,QeYEY`V*38Lvh<)9SDHk<3B(xȭm;\1∩N$ڤ'T&7~^E>MBg\6nR"dP ,[>_Y47I[`1R - #Fϻ]`c/^i/ x;nSyG2ērHČP>ǐ^ZWxo}}%= 9QměAHm[Z@B!"JlƱd6^J}fu)hx3W(zԋ G<O{8߳MN۞ M-?S+ޗcC;@uEsy ̰9꬧ƑnW[yD/,{3aWhY&e܇ι\C(vؼIs!$rstsW/VA|ÄUZ&m޳nid+!oƕ8&,9l[ a?5v)6YԈsK'_69W1nyk+kS[$2zXz74^DҲ&WǎE L~628ټf t^%AxY;ZMաϷ%_iJ\+8̹m#•Zh >f?NAe#W u7*lf/=aY&v%_J<,Y<7S۠^_#-9{1v)XE(! |Y.6H c{ B@2 ԍ4[+5!aieD۝{rjPkU>9t F8RJOA&ʈ]O*hY:#ڢ{v x 1/~fmbnMOlĽi/pk:xf5)Jm-L-rp+%u;7~!Aӷ''D2|Luk?H]e R'eP'%(v\Mwu6WfD&5}.WCmKtwRd5s2m->N&f=1ؓ7^Y(zϧ v8ߩ*PrN`AO׫jqCVӤ ,9re_S8$M("E +HCB|dteGɷ.ّaDwW6@&Liq!<^y"+r@7{&7-#r8YϚ`^ۙf0d#]ax3 ruψ?ϲ=h̽M=^s7P*ρZO;X &eDD/ &bo-؜?&6"(N:y\%I(c urƂ3L@.7~y9`櫧DR@Yo<߈aL88t sך_#؄`Bgm$ aPxvQR.~Y]UJ>J stMV½4==3CTPrB ݪ|fAT@C:sԟn˨YXUE9dQ>K^{ fɵ櫭4FqΠs싲@77B,#GWgG? x5y9-8?8dV E8.^冮&n'pJܛygByznX ܣЦô7?Nj)ѡG ڇZܥς%AKiQ$hx*Tq8q5^%bg||Ka||(Qj X7;%Ĝ2ޣuD8"C Co9L~*,FD 4Ll& 2ap/1E?Vܵ9y` KL]J_ 낑^c' xꑛ(sq&S0 i(S"Z0tSYv9(LqKw4 怆6R"lS-N h0M MGgcxcR%<8(&=;5jj1Љ:Ǝ]rȜ^jG&;*_7>1vA :ӧB8L_pwU'SpLw svR0I} E2swKdyg7Cx!UhܼNlT;/d~ Nhf:q;*a?Shf^p\-U*MEϜ(`Uk}uP!ŷg!h2R09_xr,;XP̩:=~OGKFL29}Ҫ&;׫𧳟ȶOyR3VbMި#~t5J٧$:OQϖ\Ω%5|yk/̈G=,E~#B\}~i"T˼%i[Z `*c.^H kWd¤ljBn&g:AUH((`+iv4X3.! xi\OI,hPvؖbGYrz3ѿQH P#YyِX)vK=}$l(?54*ş,=Kcc;b$C}c$BV`2sL)Br1 ՉB 'b vFn1k09)it/ǫfH:"E,~ψ043MJUgvƒua;\,7n5%Ee9г3h)^ ;}:R[f-~ h&Vma[A]97OTK:-V1̰@$7i *6%o{7,:l* 6ᇑ!*:ݴe(ƃ`pCHST^!N(_m.N`"5j^{7EIElЁKy\ ZF3Sk 8(LA $6F0]Nr@%Cs؍c:cHL}M'VCް0SԹIIinc}w{';8_eiAB{g짗ohJ^iY0:bYu 0+nˌqaquQ*CHky ek{CO zC> [OLBs 7Nkfhiߖz\'+֊uj 'G 3rQ\SdSwv4 pS@o`h gDKKH˥Zlc<*y04fx xrgrrFUXrL#3/]s}, (y>dud|1QHcCNtM:n o a-P*a*ڻ#S^PkهOJ\<|2.eWާFQ[|כm77chI }cW-B{}_Oiv].?S"ͬv|J0xɣGL;zlm?$$iBA\X*u*hl,? V7JG=l ȭM CU݌XrkF{.f$=!Ōy3BEiܯdT=M L&L NӤ:%ZZ>%_A2ƩXy :=h;tn3'4bPʯ=<(#]O7퓔wZCy$Uаan(EUӽDe"cN/=l* iYsP͕I3`!QZhe_WV%,ѣ*?G`~O,:N`d8On4-+\^mt2٘:2'^7)!/FPq]zI ]Y>82ij3CY|yoŮԡdJ$:~/z>ך-D'W@>ܝF=o6XCzEާj0b:<ܷ%`X7Lx |03lT|mFA:`Ab.iiS#cnhG.D$7kT/eTr˼6Mm48,n;,Lf5TeyM}r PGe? u EzkS|#,k'K:ǫ<¾2̮i՛0k6k_$e~$n[b9q+``,z @ݟZv86(F]q&p?ҿOogep)D*Meo~n hyA2uܜ @.6h~<%pi)gk b=RvqTrж FIb+b! ܽRD23I J᝕g)KS!& EG&q8?I\q.L| fBEEU|6q)mhhn<[ZaWgA;)Ko JM^Jl/(nZ%'8P#0GP]xǕ*+4x^&{[ES:G|V _ G-;Ϟ/LGhѓLPٶh[l-l"DٞNEx Iq迃Qx,蔖kR`҅_Nȝc4%j"I(^%Wh 2Qm=L#QgJb K%vJ5Y =W,!,aM샠5~ȓ:jm t}`|H޶?!203BYwhyɆg1S754Ux4cq5=_t.$w ڇjY0|>2r~:*V->uezRToYsl,w0M%85wD8@'"FC{Q_ʒB,Z.}=TguH"˩ÞnlVSqZֱǦO?s+kSﴟX?"+T 26Ό2~0ia<żSEp?RC+ [o?E=[PH:ؾL¢n@ i+k ym8!Eep$p0_N8*lUaxt+uPb 9.wp_k}?]YPD!ƒq z&i1`Fȏ>4@`؎igyPW܀SZ"zgIUew:U,TgX}G!+k vk,R>/ Z ^ζ#+s=B ~;+ٜFT(;̌q\d/kΞz6nʡ$Xq4- ] w.wk.偁 }4 ɿ+sOm*3`ƌfD`B{pV,?i( uJ^Qͳ' 1ey{&W;-:@hqѭx̗f[T݂;G@RE˗Q#b?wgSYï|Jx3>fiSi @z}#/}e52dhCQ+4 `qXH&82FVx_1A|wȥ PzF.N<{GfGt/lYd 2Zj:ɱ.RW.5:vrBGi5dD/[QlgU C8":V,.| "iAO7=$crx?2ȏ> .\K7*1c. `Ϩ%sޟ&@)LyVd5^yR/he| FM=4 ۋ&.2W, Cن>r1BZ{e 4\|eIbu%-2&Sby| ]@˫~-8Г6_PzyVm$e'r7w|`$!Ou nu^!qu̔P٩_8h{7˸΁2<,vhK= p {qlª!vĄUyD8Xgɳnx ~/=\U ..4q䩶[[Fxyi (:DŴ憶, $oEF,9*ɓ@V:aO-ͽDL u1D@_f(I%FHVn,xW(Eܮ"-Q$z28=N /~ާ!-UZIBa'9X}χ~}_=-2yЁ ]YYP%"eD.쪀E\%b# [oĒE'e",%C<2=]5/GIgsP'`BRG<@˕1 MSTb,MUY!̄ { }TbPnAz#O gxkۢw|Vo v](f0š>x;R2:+^9-ԇ8EUQ>qe|Di _.j-8AP ᩕu0 >kQ)``A/ NaD9iJjRNˣăNLB,rݔ7XࢶDoNL03«4]^"c<9/LauDae|KFR GX^n=h3 f 2SaO{fd)oR sX>+:m56Dxm1j ibpc"=øV}ͷWGw7FvhTI='jgM߳EdM ]43r!*~8 _ `!7 QaCBbH}!"g+I6.!6yx,M[m?֯/%owUK`Z`BvP#k,̗V=/YmM.ѡ]^ԯ F) _2M̓TސkJXG> &hV|K R)WRLC|ۻj|}yT?<^'2,Þ8r[Lq&RMu"ڭ!b!2 e k,\˴apc:nO'%]3>͡LtMOui4]Sp~s3y3.ˮ\N ݀ ϣXm\M J>0 }(q4О*GȕGyiEU4lG'{h٥EadPڂkoAO8'%y(Y c~y+8N/}QeW2|#L CO3c>띭d)H Q`aGEob$VLD~6dK(sn{rY1[9b1ORtͅ%v_%#g&NNL /0CKV*2e[h2$ҖgJ~]Gx)o}cV)L$Ľ75 >'.kGyF`YY܍Vе_|0ȝ:Y[8aKvI 1O% VLSQh=5,|b[ 0 t5XR-Eu,Ud5O4~C[qqyvA Ҕ|&BJ3TQ]2@6*2Sq~:8* Kio[JB~YM)d;aÔ(=C{oJW6Z#?l{F{nlVC8[BJ.8 >[MOd՛Rk \y)b!ݑ %b[HW(-K(Q C!bk'EBFaP"C*4+yVXiN4c!ɫ;Z9U1,Х8c̑ DF9^tO\^alZ\ ER$2+z$ei3tFp*]:;Ʈ>@27Zm9Rl'鎿 @c~f`* Fy!׭d]饿qőAf->`e*KmN5!<1E^< kebL1tٯM#F~$)@6 /; T[H^朄|B&Ɏi[>KW`C7՗b. TSwi[w۶64ՙ;f5uDã )sU̙px TrDJ䮶I@aQm+P- n+L2'$j$Q<@`F<Nk.L`pc@ ,# ^b̄f="G/rbW;K;@'o?5$K6~eI1(tdkMCP%ګM[V w')+Sl1D ŻjuwhXwmTai}B bq:u*.7t0uz}YƻadZ +xU`lA^.y!Q%:"o31X`-B,J5@P{[B[z>~KR.zvV='Q\4W#Wˉ5pRpf~rHbu- iϫ2YjdDLϨZMiZA5mys7ei(Zs-nk2|/.l ֳE:nMΪ/I M'!!B6æRz/ȥ^^OA( K,u gqoEf$?[)3+XGs//ӭI%UNuOhr7<&Y?U%"DYxii*5 ޺7|H2c@)*NFz[~&Hvr  @, nԏߚW[RꅳTL̸瘣wnRxIpذfOW!t6x-?R 7; &{wrh^+W3dCFјxѵ+IK7$W}_q} 6,yᅑ`,߻oUD 5ehN>!ɲnOv٥ܾ2M>FLTBe.gꆲ|ȒV7 egb_w{m JvOO(_zL+-bmӟY XT"V%9(1tP{AxSoMZJqOuv@(#e1F2(͝pnls+RHnf _wDAmV|WJw&pyM=NzY7ܙD` =OՄ-(8Ǻ'40Q=8Z[2Ҟwe\8yͪ, fc5qil99HՕHN;_~9 \9-I ^ o̦([􅅰k17Ye'3&ZU9)p 49×U =kSo 'M6vIݷHfk}+d KHaw &}8u~(4GVoa P`M|_)ins۳/pB ^0g%6>^׍L#4O^G[`6SGDѯZa1n"{q۸6{_IdG7+C7蓍oT*3b6uB@xb]; !ANj3S-/mZ0خwLbK̪ ]qXlV*d^hXF@Z)mgMG VȘ,md!W{J E7GX'k.;P$_5_*{+= HW&]/Q ?rh[v`l)bk X*lZR+ᅐ19+Bh ֌v;&E% x3eގ?.(!s4OAijb;R(b;nb;?AUU\J)OlҧZ1@Go2/)r$X2ğuRhS[sr8bRn03Rl9 &Nv4%eH 7{\}T);>Y?bDYP5?%eWzN՟I/ X @1ʯ)XYG:&(eJ";յ1b&Wl甕Q3鏅]3 \rKN$"Bcaw蝆:гx1!ޙϏ:gM$-MX՘.A):=bq2?aɳ);h5"G|xީstad]QSha1!n~VU u{MOGfjb+ҿyL] uh/Et87ڰ\+(Ѥ n\N1䛝_PɠfRsk3h.*ڄT'u|I 7_תDq53JCUQUާcvypMm8K>1uHf,-_,c0 Lk lOlQ VoJ5axgERGadl3ER }#wΛ7iگppe_`a/]{s˂#;+ hJūyůeHU#@bQ?|n?ZNר|31zggaVbĩ7㔲max k_'ҿ#kT-/)zitI5,V19F⩭$Pk!F#Dd( [m/Ct9jeRˎQ/é&sjwsR'1F&'>4xsM2WR6FODrɂ >(mod2b08-˾_g1 ؒmX(Q'tr1>7{UT8d\rЩ ǢjKCUAI76MwHR{aFw 3/Rj癖^udbj<>u;YoKz?-i_o%@x}J~ $&>o%Gl\8r ZzI S['F:J&éۙC eSOþk]<\Xb0<dz=yRz`qusJ u bZN*w tIXDJ}0BG1Sޱ4}vD褕7/ӅMۓ/H~vBYlb<16Mȋ.]]_iWL#0bqߡ| Ǝgg7!s\stѿlm.-$f<0*+xy0{kGCQsFa@JILY_OӾ'=P)7EU+^@ZP{zuϾ/@"]; #A]̶ZQ4Ƹ+FER3^z|GH \XKH@X4GR\gL0)&mci(4SCAqN {8 `[ݺw P]Dj)]h1vB,k@B' L^>f `Ew4܅(YrP6[ivE8L6/`'n6msBuyrWEIY}l ME5\$8'!`ak'%`}4{eix\H~w+o KlI8T \Izcu^lYkEZuKu92?i\']j,רSæ2$Z]_,Yz$/dKUMZ̳|qwd\">o"A&*4MQe(XI 2zJ.Ar\S=DN 7P9Tk[Vx*ı]C3Z`>Mlfeʏ $k`lͱv 1Dzs':(AJ܌jAfW#J*-]@}|uE ԄF: ɋ|Q$0܁_})Y(~N|u(ߝNkX'{ź 9O]6+q ^Pfl.ҁG;AB[$>^X="5s~ H d0Dm wqCt0778H]05УQ1-duHSڎ B7}|xiqj;U12+{_T#/9׍Mds~Q/?#;n,I@'A_bq[O1s K@JmSrLz]"N K;O<Vokw@ꗐn@+6r r[&oK$=>3张,C <m/#/E 7cJffKzzѾm},( sr/2lnSShhMx2fǚ"3^FL6FC ~ 2Bj/Ph;>vHcgGu17xp8%GK ݿ>0 ~H.tFm Snow4=f$Z*@&4+3-%⦝!W t 3kg֌숊.a@!dN-Eae۪Lhl\n|6O,@3Rs.ŧqz >Ă"9;!!A.;ZL~I ]qVgۋ٫`K&$rSFI9c Z4Ҹ ?CU{ݛ]|sfup OTH769 |ؠ"|3[y]d⽏l%/au K-^ALb TM "6r r1&}I\^4Vn@fV>NtG!:gMIH"%DA4wI5&ə0i[$_ 55y FN9H1חv~bT0=]d@ǘy[T- IwRheO ݤ#oJ V_3Qq9?]#wjURPn8o} 8?jߨsc{"7dDw7Xى-#k 1祿 KZ(5YY1ԯ #|s O>K Wa@L|PO6C|~`/}Z& .}/zA HN^ͤ;r:)la3OD^#iɃ W|?PxFcOaxgT-p5lw%vDG3oquߺa)X"dbVmO5c#R }m.m+GàalEQ+wA; z!-L  vd41zCޠDb}ݬ&Ϧ۽PGIp[63HǕMf增pD)Dr$.i *YߓYCv\蚔ҹA55@ 87)8"et U`>3BluY)q3J"(k .%HV- SN'Ưc[[s΍?)Thh+Iw)baLbdBMs0kk?#qeefW:|&IyPґ){ `I ccڵm&#a'˛5;6, 8i]E .ә!|νS .2\3t{7[[ƒB >+[M[Q)4K"h MB TLԃ1rQ2@ע)k8Aaʝ^8 ͚ζEkby>noQMɮI9̘uly7K׾lQTbyabTtql7\g4i#=s*)NP:"X:owЩqk(# TE愋L*)^pzUF$LKٸ"?(5TTAw4;YEHdʚxJ EZ+@K43ՏmK"",H6\uCc XWagۤϼ=&m$tIeۨrKk a`1Pv/@-͗:^FĥwG![p8/6iWfM84PI9VOFUܯ@%\ZkQ7mG%y`D@U^&ZfyB> יD6OmGm^p9,E% 5wQzʵoLW_Ur:xɉ%k܁V1uO-bI 3VjHDf<~0Oqkg@ڎa+ C}l[_%g_v ]\؋*1٨oSb0 օNPŔ- %<  ѯ,6%7/oJu0\ƅY@cf-\a->A63pJXeAZpmjq0EXR,|%8nuxYЉ4B-NeM:Q; ~ZXq5CI ,=fU>tt)_M@m< QiN [aQ֐qgXv~ c("~ ;Db{5ef[s-[P3q>co|RIJ+. HE'ђ]ڮ=iuY u@qn"afL@@մ@좱|*B;lHlBWqkUԴwJ{0HBWdSd"_Nc[7C|W)U^jd2L7aS<5ic;W1\!IxQѧ%1t|*_-⯖EW2g 2lk|v3Ÿ}t`!x+\y=tF] _rkLy)8 GL;gr6vPjk-sr!$7#6S z1iD$B|D} bĖY'u|I9ϖ~>"FkpaݢOx-o(Yo4dRZ:O˔Y!m.˭f~s%J$xMZ|FbIB7E(ڀ@)V6M(e|rk/eVcfhŨ>WCW'. uü1@x+NwM PoZFX@&4#'sg^AˡGw>{AŶ%ФP+]LDKu##nQ!T-r$`  g0} W$R+u^~[e![5tٙSی}|3x$DڠN @ty58. ˝)z83yzSJҷn.1: 儐Plךs<ТϐFxB_+  ҏE6A^ؿ>c-E%vD5  *۶^_9>Q@M{)Q28$DA] {#,ַuzjXд7R9anK2$d{mfY%#C٤D` D{'ϛG?AjPK+ U!YO] ?|X6O?A2•Zw}h:8,8XȬ& U 5 J=jI3Mcݽ_|q!J,c} =NjK&~e&3N \;(eB!)b}F?VkC8̨/ߗnkV4 {+V:K3lu,<s,όQJ`@V" ~Th3qS۴]Xh5KM54O uhIgj`h״?UWڅ6!9ylUZ9+3G:r 'Ŋ6?0U7%O#y+YiRJe}{5JN v/5Wk֎npxpq$ϊaPBf!FU5̘O'}dy%$tD=. ; _맊tz@p9E䘎܃I;,I"[X`wH`u17њx鉂r/XV쀫\.S{lԒ1`b>Uglpa먈S pÀ@9yԩX눖Лoя$CSnS `*l8Jvdo"iޡ3k~U~Jp*c9C1qϮO V^xOow8GXuL52cnKE$a h4"QQ.)HXO b 6ZeX0kڎ8z2RdkSğyFI..)-\]>\A|!(b^T"~[PrJf.1@{(8EX]&]) y{\xskFqm<;O)ö ;gDFoW*8_yw%1teچ-\E{ 7TE6KtAVBob&(> J!3c7qMʯ7eKYmiE{3w_ 2Ta3smxi\k CW2 M ez4IF HJ83vnn{Y (v̀|_Vh1HUW,Nqf,fJq%pxQV(T]y>.rlk}7Ԕ]sa, =;Dc}趇ioqO>jt"K/hР2 j"!Z>onQ{eVKm@n)du B"+ⱛbhXGQf8k7eiˑK_sЕ"!"$Uޟp&S{iX3̟@wqї'k(=6$4ۄ3%-tA8: r ~'T\vsy`FTt sIIuky2!% 1k#`Di#V R#00< 5S|_;%TrAšYAi0_uHmw@`=g3:3uMb)b*)-6NB)(C|iGŘQV N {d73`VrϚe9 u._>KfBqxY (F|0.Ve%S61opMG ё`α'\YfRXvY[ڭR+t[ BҸm+sS|11np#_(˅ѕ~*'uMدՐ%S61opMG ё`α'\YfRXvY[ڭR+t[ BS=)d ;*lߵ;Ľ._>KfBqxY (F|0.Ve%S61opMG ё`α'\YfRXvY[ڭR+t[ BS=)d ;*lߵ;Ľ._>KfBqxY (F|0.Ve%Q?BsS|11np#_(˅ѕ~*'uMدՐ%S61opMG dPr)=z.|MB|%u&{ߺWϒS塮lOm6γQC,&GmXșꥎP@n`w[BפT:֫q]feZ w(g0_48*|gT)9Č')by[X%=1M͈yˌSO1wepϧl![զk!ũ)hx% N\f*w6JH|,idNC&{%FxNV` )/X$ngiXjg< Ԇq**8Tu),A~ZZn u *!| }SsձKj=%3*=gM#t.l7qM=s73Y V=蘿[(srES[$§"qC+_1RqO*d|aҹaDa2M1m}wɍq XcdټY+C?aoWݍ2姵 B>:} 5OrXdq.ZzKLS,<5 cѺsEՓuYݳ/8 P4p@L 񆲋8-p `Pݶ\&?)8MBΧr B7v^3s65"3}C~ ķ ̞QK7Gm@ ף, v"(qe]vׂBgUGmn..l{aE x DKb٬x&y%Ǎ9ZQuJjw)Wή쓽P[S1}J@ E= ,ğC#*9U׶$2)±AX'P%V6I%qm(䐘>bhoD5R" zp`YSʖ]YB.6UoUjPj=.lvg c?>rG444 7%(bZf1[R?I/=%޷{_|ڜnIZ~H@4ky~Xjt1ؓFt溘f${32^1׵Lcv8 $ كu¾;M$ǯ4C]OđI|[+ʽ4~`>&07 9:nK`u [^t f$fQh-sY`t?"*xT X8˄fVs%VpXM!eEg+Zt[w%-S]:ݹ'AJ{A@v=MWgҞaU* ,!fX/7O zbC\%D>/.IMP|d,q5W%WȺkYAY[^о5.B"/ّ34x& Q*Q瑲.`%T#kNqaX__tc Uc{zj÷i3 tl|RqP{Z +F_C#ܣ=.9ᮈe&Ug!\u7uދ-& "I]GxRQUP_+l˳\0"_{pt 63 =Auf@.5^?7 ZEBF XÂĿ0-B4;q8 Ïv %@)Z*/"1yyO\vH|Z6R K}R@.,c>$m$Ag3[1kE b⨝f3lPukdzqt%2 IbB33KEa3..XLꀲ_}'%j_sT6xco=Dg1ևY )pB[d +k:Sj;p>rol2=`(YัV`K$.< &6V. 1SVB2" HC'6ZCGُWTb6R9kTi3'ҹ/s53:p}If*+tMiy @7z:RzrF滣],G*eCj6ּ5,4TJ+kww-ɍV0!09/> A-o^>;/H8USӝx\ݶyYnr8s@UT$:u9t]oe}zPp]nB.[${5,=Wـ$Vh/ '&mfg_Sl]f\yRmhɍ^I&@n*Y =U[7Rh;BPx&g15 q>et^;)Ȼ;zl~JJ˥_ΧmƲU:|>B}kuks~ jLQAh[^?yZg^#Fy4Pܣ9⡨Y Ž:\r\n<<'n7VUC`Ǥ1T(p؏|ac_Im9"z-7Ype{k((d}cwnƋ)IOq:YhsQW,kRa f-:q̼⵮MQЩ7)G#tMrL/uE%6mH1Ě\CQP퇪*9 ੵV~So{tV roSvJX2x`hUJ^ B֘mI;bh-'V;rrQ{4h5\NO`Z)Z:e}8WU^ǯJd"3J{\\$ i 2Z-Ĥڷ~"Ea!{K8- |ixi5Qa(Seh+o/RkSAc<3x_'YDzl:I]y--vai-]mҞz8a9_ c|RQGŨu AgR/kN3Z8Y 26F <|_Ɋ5n8y @` d*h&ԎOټ=*Uٻy1,3%)lOznD ݏtF?:T S'S_׌M݂Q: <#+vp"hYEa8[;\iXMv$_bbshȃNTAunWQ;}`M{3TJ5cQ4OoF[<'r l9&|n` GMKB  ^34}LZt[r}DBBìebS :/&0gLF5sCJk\nQ`W~9]f1Q[,吼[^<xR D܂:TXI/'y& v SN>obp@h+Kh%',HTľc0`IpLg>z$Y/FY Iʏa?#ea*iL|3YdM&O'U;4կ` Qa0iC˹ yx(MJm \$9y@#||đMN"5+_wr+$y_ʼwIPz(z[8Hj&]QM,Kڤ_kvw"y"j0CX`MH&3T((81 hC%k껜]Rx P]A}dsNZzi4D/mʾ9&[yV]c0žk tĨ (eaDN :"9rKzVl=W[^n#@nIc~Jhd =N)>/豖1WEbL#pT.}f[تcH}ǽϸ *#:hFn(_e_&h؈oŎ ?Gk0˼O HJ,0,HU^! L+ͯ c\q=r[qP ^jbsyl kglPJa]?a/.x@ׅsX>fFask 6]8T3u5Qzvvo~GV* "Q?Lk(٥49RmTҾs棩4P )iM,KH{_oG՛/.a -b(r!򼟶<Blb RF(U*E3ps[ʉvS r Ͻ, cތڇ1E=qt5 4Z$Y^ce\|9?]Uk [z7$+V4EGz`^ Ϫ|U;l ,`jL 8?ara@ߛ#)aWGI [;(BTL'Y%S[I~C&-1Q tJ}o0٠Dt*Wfl@1`gnFG_%aE̚. @JipsXh<^֪j7&dj>8Օ;xG@1&h+֠#jEeE]`k(FhJth#u{bO'O Hf2z0N=A)) GJ1/itMj (>fTZl}B必o30je+,,Z%y |j?xC??1,aF^ƮrCc,,n"H?<Tn;TǮ?@2DF/SGK EzftK})-kooNԺ|"si~h 3Xfll Pg/T+X: CW[,CķM; YIw0DaR3@{WsF\f:Mx&dC|ЏǰGjѦ$2: ],@y<A9e!)I +kEWJ^&'.O-֏e :eu"Ck98!?ڊG瓯w)Wď_hٿh$}kF H3j Ì ʢ q*]Rn?.aɐ e+vE#\J IK6h4z79l&˖K,gӊTk>)-J.AQAKTcJpJT\vURȥ\b$&z:wr PM:_8o&C &hA2h7YʹJ\k*#Y.Ѕ+/]Izfe&X q*IyEUE ;4j) 谋Wm76~uy C}D51Al}6m 63t@.t%L ʒ~.(O$$[$ akO9Ya c;%򨱝jUkpOă掿9W;U\rRVɋ{q_g#F5ʏNIvh6٦Noȥw*˿kD'Ő[}\YEL h^cWS)/Xn؁)PSQPW]DxF0fwD9pOIr#h!j姸[=ݨJWM 0G.4[(kVg~.ihI>~+0 ^*mԎw+PbXkf/n&@R>*j)J_Յ̥}ü@ l;;W^Hga! bHa627 *Z&r 9$p#_(˅ѕ~*'uMدՐ%T'$@NR+t[ BRJϪac&{S8v0t-=<@#,L9pe@C`n ܢ1)_;NW5㊸zSw ,k#8T0`ڬ Y`z*a˒qE'Zb{iPL k*#'W<=ԿmڐO%aѸ#<|]g^vBQnpbIXdwc>zsWY 3mJ_8ʈ+y$gi!l?c@֌K^KYz'o=:HΉr#ꡝ%] d{VӜy}._l#e3Ct)3fI) kdžvv 6 ߼1dAN;o lE9g # ׊qV v8hxnj5FΨamg <ZFRK]?O/]+g2b& #t(ڼBQ>PePG#ƷG|;, p S#2^C5B:1fźZ'd\2otX k"ą{MNKѺq;ID&`^5u$HdI0o'^ 6ѣ^8 ߄ 88F !e$]< -cNvש|Mc{cX,OԩdPDW.U}K[N%F\q۾fgя_~jv s d |ͶӬS"1:lF Ȫ?I#Ĥ׷#C3feOo?k{*})s V[mj~.xQ<,~{ @YuTOspRWv*iibN_!FIߪ!R{NwP(|.0P\*6F*'+)HB|/VѶб(KUpaw]\Px ZFf9㙥pk0¡jj)%+EOj[RދW{;uYB-ԿX? $VͩM9Q$SQ vK Qh7QV% U1c`y@rcn;8f3%u?=Sj+ɑHk:Md8zb9=2l6ZPj K K (>td8mcשXO)R6?MF|)|TtBd8DXů"I@bp3TۥF@ !b~x!_}δ:iԏ= ,<3*؇lPicDβyـͷk };%X:ȴ;K&m%-خD+K):O,4 ?'62z[nj+DC5}q,G%nwq#{*j ]*Irt YIAfg"!)LRKғl#v]6hJc[@s >.^SNe\M;7\ .<+b^'a0lFZ7e@NFZWw迳)$۸N:9ڳf;]d!i#sKOd 7NgxuDQQ[~#C+ikt )[va8zD&]i{*hnd<H1M}z잱3E-ϥ!x3 ٝJ`|x+ֻy-YXRӈ&Fqx z{MDf}WeMRO=F<|4&"y\_,[iJRBR YA4V`ݭY_WM[f.awζlEBO`{ r霈*C*p~D0(αjrR7Ř9pAX]~9K6rLohFJtVySяY'VH1z37;yBW =r 6ͯƈ9lwn,Vu QCm%f_'RUc߶| `Y@d2ݴ>Y=xT3MPw` W=z 2'18V=Y-)hK*Y*b[: U>{{rš EsYX}n{2Goϡݑ*vEelCEo5VK&x|+9en8whP7QC~]hG/}/K`6%\d\Mnh:JmY~R7p;'%iaqC%RhV~L@g׭Fg37զ3]m#5'(-urO[ WGqzVqe'vU`/ KwA<XDAHY}vF]J\5-i]_A@i^`z4l$\soXU*inD5_ *PQD>TNR>6DKGCRRön`FQSݱCX_pl+w Ҕ*8I|Lb4ǴO4fs^ .^oEɅXeBxtXyP"M_{ DO7af7;4a{19' Կ){"3P$*)5  T_Ơ !y π"9WotFKE{}vO._`B>L=u?oi$t <G^M5Ts!#`ÕmPێ%[b'*y.ygDB 1@o<~6pLD%nXAaғOΚ3F oyYZ.Μ"sB6\oGct4lۛnR]0uX[*J]/j^]%+v߫zF7t4C '8O! 0A9xcE<<4 JEQFY,1?ƔiJbZ2Yϩ268VD"#E7$~Z:2tCzVz?Mow׾656qZE^E qaQK'40) Ťx߾*-.¸w$zEnn}bG\[ZU3Ea;h);%HszwWRf?k[ͬ*; YX%um9E:3/Yܕp[{Lf^M~V:K^jrIfK~T+ڥMX~zcp (0vwF%K.m-6/Ôz/vA0;)vE/]PkgceB)|LfrKW,򁠵 pI4"]7kGRN6rH>h.9FX{DUloTH&iU`nTX~ٯBGiz!y;Hsf:_P-Ȃ5`pN\Kj]=i9RKEҽ8nql~U:7x%e]ek߂m?)ޅ ּ#L39iL+c0}o҇[AI[<6pFI%IFEfA/w'@m#)&J;t+zwn+V5g B)B1(oq߽u};ک+*;d=h[U%6hͬpqSv%{9b+g7Pvuaǫp'㱾MT ]<ͪ'J K܁%[0eMQ׵G︶5(i"(g݀F)IO^QB"1;M;0[֖% 8\F؉\ ȳzc"#ZREX'?D#,X(I%-ckX2@E`ϰP\ԑzy??P BC$bZV&-; cDR͞%ذo1vfkAwcЇzfeTmHyD9Jߨ$93pЕ{Ne׸`/A Jka=Nz8yԏzp?&2utjSf﷽5((HFpuH.+52(UzAŸB&"mNe?KY=l;?Ҩ(Aڲ/Dfrk!\vo2rԙe"t y#MzPXZ[4zAўn9Ky˰l}Y`{" +3?)֐^^p1Rd ܫ[{Ә0Vޛy*"@i̜@` Nl&Fz |ŏ`Lڹvlԯ|kDJn -P0:,?؏t [uQ&H{41:f"VF&*%EǮ|lzM&Wi@=/r3Tڵ7}?IeNrkɷ7 4hHBeBi|kh S+,E N 1?esњŠsh/:Z9=)vęHHehK[PR FxnFdO[H yj`7L;pIkeer Hܿ^φ,גu=gm/%1A= w\ʱEd%i[@@Ex֣~lJn5P\O~\ˀ +a$] :dj)ƍOL:{x T#$uPUX(^˜7C iDv ¾cz7 Ҡxz# ~6up]ʪ3/-Fޮ2† (l.C&D^Yhܱ-Sn W_htלDSc̓> OjKL H RԹ,kΟ~YČc=bGB uMM)lݱGl*Z:en3EJրH=-&z~^64(}}`rǓCRcmg t3 &c۹XoWM:R'R:j:' %ZLAij @&n"IEaeuC(#Ż7'd6̼):r"dMS?xAg3Ym!;VM=#=sl7F,q9/''K̐Ҟ6|d6WL$x]WD5{'Ѹ.qhGh-V#y48@RNUa}j082jt˫SQSczZ͆#FwwCB|."}Oa^f#~nb6h'݆=mM`'a~; V7123pcn}=SjqN没7y($=7vŕ/jpfK}>yNG-P 1>b>0"gݯ\~8P$?2n4,̐GI.0-:dCjV0ycfvxu5s)JU*a&JE,pL+Dtl0ҒRI'jPd&:zla8>5r˭O#ߦBxQ:ǴaUR=>4!yx[JLB a7m~kHbߩf`ja7y>ß"h<`٘wK_.r 7%cA[нDr_;Uj6IrY3r-Ī]4$2ۇ)SńnK+F+[;+~XY`:p@V$\; cUs$6 W2$Ii) T(6idDl'(=LS|[1H _H)3K!6푺EMnwN>WeҚHg9 oHsؖ!Td\#GsXjTɈ1HZ,Wʇ:(p}J̚B!җ3H<<(T*8;=`nx{_nSX"5Wi8a@m6DĠ`^I 3mv>S0CSLjVWdDRWavYG&(R246h7 Qg0KrGoU6o]b;4U}".߫9T*C`vW sfIf<ף5EXہHxֶY1{]Iw}˙i;(SQg (I5Xr\:<3eaXuxAJk<}gM?aȇ-Ҳݖ0Q|!k]S=9160rg`ݐ"zN -S#tF(`$.Gd8ثX-uv1[n嗵,PÆVnˀ4K@|Ԕ]E@ewјA.he%猥;RF,qnOs PyΜT瞏Xdc8y/[,ڠ:5Q.+CM e E4[f>DwV䝷d#)b13(#3!%ΫGAKleID_ݝzss h>V暷?6~f_TDF: AHÇY)msU GaO<˲39ޜ)䮿Kd,Fc4K^j>q8J .g`oN̏քe 8T/O Ƌsn+.fW!2mcuD9)4^hSP2mzܫ|!ɥz]xӄlcBdeǴg,i3Ԣ`L!C͆D0E%(^]#N_f:xzфӌ>%L% 3* p&AX7>̖V);YP}2XDV.ZT[tog&(%]K"yF >;DhPf}kCV';Ʀ߻p~:΁6ޓt8 Β),h{6݆`FQ ugb:o?jUG]taԭFYp-͎kFo)OEKT4il@IqțUl$˫@ŃtC9vOzH>#TOL( /qdo%9p9+3ĖVJ}³c ]-ޣe.~Mt} ez&ނdS'ZE /#P5Ι|/yG!>BØ*,STzFwG^ˀq?GϩQk; Ρ-f>.)-r+ܩܖuЀh2o\ 9$W D;,2fg)p(8 n 9^,N!Ey(3t-1Ari'&G*TTB-+PX*P_{2?#Qwy˥s]GaK?q/&FDRsuK3CXQQ%4*n~[1y@4 v.,QJbD툰 -RϭiZ˱T%fzrŭY+IkVz$#= cHK8~Г^"~-[ P|W4" fqSgUU>H&U=A>L Zt_ Nn? )k]ƀi>$ (i/7#% H?RzPq ziSb9W=wv[ KVxJ.P@‚nnVUG!4" 1:O_$tރvj_;{ԏbܩ_ ZVn O,MBZ Aڤ(r ] E D%k3K;3=ztfO5Ci!OPtnLtwVJgH.HE53C@e cOMr.J2 =Z`',i ݥ@u+YN~ѠQ /ef҉¶7ZVJQ!,]$ k 8Sꂦ;ٙ8+Y(< ["W3~4QO$q\%$QpcP\nDx}X]85LpwO%j7L׀U3d[0ر< >ܙ ]0@'^സꔉA*h'*[5~DqiZa^éԬiT w_k?+m{{g'PsшiJE ԆlUxAn02{ο5aOLi*H6O5*V+f `txcxKRkͱə5y[f3M!_ϠwRԅh t^ ҇E}tj׻>5ʵ'tyG%bg}nO9Ygl5MkLgS~cV D2jxظ-2+XBD EɣMm$*.(p/Ug59aS"}_~:a%cXKQ&(ǼM˓Ÿ7N;;Y_ u S( L.L ۣZ#=9,uv>SL*?iW) xrQܲh} cS? >S?.`ǼVBĭ x? (b@@'͔{2\ݐ*:R6.Bl`XfjG|Z/2$՞(]@cĴۭ¤38RJ)V,jcb7ײxS`;9wSe#cnOV\4PExҚ%XNU1&ջ3JTU[ GW 18 ;f CY6eL8M0NO@6J?VO? GLjsG_s3sS~Hk#ꄱfg,\(.ӊSxޝ.kCD 0Dę׫| ~)w` YWdy-9w$Ps?R;pc k_wˢ{NI0.*@?қ͵uXK'{td!2Gݭd@MNR>/w ַ?(J-,qnJ4d%N~-Q޴ 6'Uhz8F=U%|(ihW6 xd|_n?ϳkZt×&j7~¢@*xtc{PӞ;Z7js5T@GβUgIi%DƧ/0^lU}Mhm#n֮7hh!LDB@- P6Ե9@D0W[K%&^|QKB=55[6PbL>{* @31zV-eo:)'܄'z],@ɷ{ey9A=d;;ZZ-ףX;4nLfaßr ? F>2IaYo!G~P4?t|ԺPo6,[MES/Eut͉Rу|^2߱m %* qu(pHgbހO;~Fg׶5= =zp3CcDzA9A.nn2\tUQEdÉrrįPa 醹';&̑u(\()I'Q؀{CR$sQVcU2sb.t{=mDo ȰsR>$y%l ӷBa߽ ћ*|>e|ck \虲pE:VE3dh$ֲWLXv?W7e$a<n*Ѵ췖50Qq8jXf&>;(HHS?z__aԀ?z=X_Aj{VU6"c# aiG'iV{[Bq@+7Iy,HPh6)8|QkRk^a|%cN"|N4Ǻeʹ9\ppU}1OM: 'od.{Gũ󟗱pjaHxcvϝ$eCذ<{\]c~.Rw#W4(6a2E X{-k|G7i;&{;Luf^T󽙎/`,$U/&Tp1ZZ-{7EW4J rhׇ#0l`-O>$cz끝9=+r+8kG<K+tm%qb`7̹T- fq7OYf gT)T:"n(/V,m# ĊLhkmǿp #UCh= A͵!l=p5Ti^JOD{j:S7 dJ-vWGHrOooǂ׹.MdV+nxS(Pvcz3Ȭ3])p ^?d++;` 9}fw6M"_)2({ae/ly1qB9>mŖ"woV*eDńYȭI8tD,})Md|DOU ,nr9m~Z(D(up:S[6#k>&]&x 3oxb=d "mŵhX ,'E !{(S>oDIEČ:=(eQ!r!4*5"FntJN)$( vBrZԖx_[7 RNk8̡2L -؈JApj`C]GA敱ZWEd͹>a]t/l Q?h.0@򯗏H(k3-QeX̄o-I/5ӎ} $a=)5@Q5㖶!As2eÏ6%V8!ܦXolyA=+L QfǴ}IH ~DK]{lԕjS)y& Yί1yޅʑHB_CRgIef#UrB⢓>sgiSNoc[:VO o]O>3VR}"k@NkGLqj:lY &_2DfQC5˵ƈϳihST^ކ[iDpd\kcHLd|LC. lm^ch_Wџ;X +Jhv#<G778uA5 >ۄPnEZԆ/uk^>&K9[{lnˊHcvD'm\I'j:X,Ō+d+Yk~CU83C^fVVvq:=9XjDs7 zhu͚nW|ng2sPʿ\^UNA!!Q5;n|3Jvx=EfF72]Q ׶)(SQK/dDNFcUmMU+N[u"8J,|;¹*JR-ty, I"O!Q(TӀgg91.ÚaԶD$:^HI5;Lycg C ҍ6!l pD& %#ssm֨C5*rF*&_5NcJ~@011c`'nϫa$.lh]XX7M4':f}R:,Abt~_ Tڠ]%(;TRnC”^pM秪;*9 )ËW~]kdlSzC%}nQEbP<_HcijB"yp;ٺz]/t͔]XlE xpi:Є7A @,+JQu(i@t`nfG?{Ұe@cOܴT Q/|A=/niuOL1WkHʁ !I} 7BXfӇBUgtS-0ЃWAWfm1_n~ ZÎiYDI,KN'PS8A7;σs{hxB$*Բ:"+N*$N_V/Jʢ*+Y6Պzo.ĉNҤ*:U1~<ˁ%09VQB_tA-6I2vѷ3>i_Bgk0d5G!U}dX+sE*9 P>'7FMmՌH%iz dk}ԓx#nh*gYoK^j]:,SЮEr (ki9`xK( %Gd']{[FD|n+ꠌEKLD~m~4YZ}*@1*2zhnv|՚S30\Bʑ=e2GBoH4&_ӽ}Ê4du7s[Rɴq=M8g,WAoT; 6|ߜ\cXRͿ;A "l`S|1qNa*ي9g#a5P>Kx vft(NOڙds5$ +|tc,4¾q\G~~t!@iAe&`ki)UrUQsxȅ3-@4!a=Eﵝȏ@*'?'jhAPKJ .1[wU]Qzp]>r.V41O15۩-a&e>`9?z5ƿO ٳ-\9D8AߦOMKs7v{Ɖu'析'+3k#X+N.ئRR9#F^%P&x5x$JxNMy'* |߷GF^FPWz`Yab8\*mFa4m9 (qo 4BNт*#r fԎASDy7*a2HefߜuJ,o ƷpgGiF!YDHEuJʼ;KeƤ?e~ܺZ|RnM^E2/$1|m\62$UlZ Jy~0(wB gZ$]ei$*S!XvnpXL`<ijxs;ɩk)k1tSMч.Ǵ$骬+C* O\xDh:a]'[edD_ mʾWT{=%%%i#` lq-cCꃳ/'"j@ͽ T#E@Zt U(G|R 4ۄ&(f{uYo>fĐ2#Y..Աy<Ъ1Ή;!}N+h3iyGyjCrK*I@Ƞs7ZOs%~Ԑ#+ 偤gEoiQ~25`0:dma䅂=<οBW2㜋 ͆޷ne,RjAϏDӈ4LBdeLfr7Ϟ nc@yK ЕfFxLE"_=$gD)ðH7#L  (f 3, /M!( 5ܸQ [zեfV= _LrCTL漜ƺ9{2W1I'(hMc;_EpT7lr(_W5GibTWy,F8I|ڇKpkwG~-y-ߎWL[/m;B[t :>tS{w qN oTj(X뽌a`RR&(p5![l<- RF)QCmт% &"+rz\I%[1@FɍYCr[rubbCyG<қɾ//<6Ꚑă OflbA,G|0sWj@ً=2 W3"(bd'H G/{O`ִSR&7(F^Ev цBFuM`s'NEBG<y]ͥٳ̷k@T';HݷBt\goO$J6x6!9n.m?b= O5O׼Lb-FBn5ك8W-'=S\JJPsGb&ә D72xhUڷm t,e5CϤ)Qg [qLX)©yfOT*Q(+BJe*.F" moE*WLtB͐Ftv3a4<ȁ#p~sH`L28?- A2UzhG~(?S^Ī# *~Y 7eӢaH9o4 \1gv6tjzFʩPtԯM>FA&1k(^vhWX#1?jG2L,¶60s@[~M}_m|&|'mwpa̺־48 EUx1 -!@:3Vl'tLzt`@!|GWR&Vl>V[ɷъܢ)QSNIzO!!U;9D|98/W |Lf@vA_\+cFaWXpGsXwn)S`rG$_Vь'9r\yr^ge/3~,o=tJ= od-؛uyX{q9=F]vR;ttmd>w AzvрwM<+ UHN+z7&!&'``ʽT.7f#T"9]PZS}a%#=6ijđx) `Qk|"،Z7*BzHrs^nZq 8 )5~8qCJILmĂK]O[s5pr { 2ARj+71?pB~JIvawhg Sx;0]T=T,`g@^]Z`|蚃-&k0%QF4}\X$ 3o?((>wN3 c7bQN7u[xw(kSgAI4lxϡIIYd`+GZk^HMe03#Sl~D PQO8Xi5p &n$:Kq~$"bB]9c?ç7:#;Z?mcNN+뭸gf,3>جF0{!+7STl)O^-hTv^ftԷ"ݯV)yZ4^i*;Ӽ gQEg[hՖ`9KJpeEmw^z n#3 hP˅S[ d>Yvd Vr7Lp;<%ɋ>Suи8ka5ŒuB}4)g5҆dWIj UXm~7\xm{q>D"[`?h8`N:w,jtӲz;fFm=ڬY!ki@-"2 5p@YC\v4*҃X$y 16P=y_Lp)K?̨Yp\WllV} V/8=w`$/W 1ݡٱI6\|-OޚQQ>Dgq9VG iJ͕BC1$hlKv}p߭?B^B-4x$=W&Zf$|[\2wyNpwY}-W>ikU"e gsiT^v< 䗝Ѫn{|4RrՅf;(=#d̃R\tU\3)kU?t&K]`2c;oXþNl}}_G5,g5IikMӸaB*xhؐ;DJyRA%ד7Н̯J(g:r(؋C`_>|14(`l>lCZZ _yv[hR9 J;yzGg~~#bCLxK|-e􃁾cyRb*DU6HM MQAԼO~P ׾% 'žQJ=V;EU}~: Ocy˪ HXxHȮ`4@9 WH Nu`Ӄul ֫ya{q5ny@؂r$Gk,0.o|\aYz:5\x0'ҸnKr#~ EoWPeoQvXb|I-rl7VZwy²!W$T6k&"+ m%)f?f_5 d~q/]@fRՙf/:Snb+șeWSwFos-[z=F4"%sui/72|;%1*>s";d{)_JyYu~lqF'*Bdd_`2tϻ@=:W"#k2{1)îۇ$44 xM-!:v$a[!^Bt`Hq¡& K c>սgNuxutAnEB"ܽy%xp-Xlj#C |DbnN'45n@Bmlq;|zxAK߷@Ɋsoy-z=fcۑS"8@ #X(5JӦ6w -*JQqz.Zd.땎 Sy3~VVq\@ # rW1[*r~?M\-N&SsWʔ Wsl)OXx^ጳ(H@1yt-Gםi+9B"fiE_3dDp .wfgĿuLdsc>k vU:l2M&[d!ɦR~BGdm+ swGOO$C i6wI-n{R)oOo:h޵z͌ OX/IXJ񗗓-SuUүTMEN-Lk@Lny|uU~@Urv5CS=)YZzpϫbo7O =XZB"L;K9ǙQ5N.2Q) k.ٴCңp6IaT K#;/H:[@RQރZbxPY!z@/aG6Sp`~S1l|ȡE*Ö684V\^\o:$3H)F *ȹ=Uuw}4E"bDpn֊w5A|c`=.E[Ф@7XD?IwBƳ]k )H+ %YF8t}օήiLdrUٷ?B4o&Du}՟}*%k覟(,q)bu@4碿$BCF(^F3$@S%z \P٪unפMW{E`&nܑE7&»Gv>&vR1~HD,eo> YxZw+R309\~1$ZٸVYt& ibQnJ P*4:6`x]ŗƾAx^HU!C3{/.%ܽbIcãg&Vgp5>&*PBӶ@C`| f#x*i'YJ!YdM#j񔽅ƪJ_ܼ ZgzogJSTB ^`a;ww4J_kIAr2㦮D^ᚗSzF)!?E-ϗ*d{ 6s{z(*(ߴ\-YAWu{Zψ2 7bz$En#R? `'VJ&YśLn`C*?%|bٰEŴz5\#D L 3UIʲyc6ӫFK.r j3;NBƋK,,s%'_h0ծp" ^Wk*VPPѱ+qWbLܬ &?zgI2 F9V9%;~J9.m_n6eSNx!~_&pT+oD)cF lґUeQ>mR3T"䢋_Ety8ދl4D=.Mx^?6d=yKA-i"ryEd߉0j!bn! 0ʲ%y}y:l68.3V_Q{)4]J=FLp/j&fBX+w ]CrvkRyhlYqh 'x|Ѯ#UE,Tej*fo _F[Xg:,@VS nT'0Pyͳ1=rOrm&)5er:gh7]/oģ:?R>w0$ҭZFs3'5m!2i*ktFٶ#;nN_FlL?u?spe đ䓋ӌT(Ql+-"W5?J츬(SaɷbvL}sPJ:wˍ@i8H0AtK4/ͥ-EN`M/=1jKg¯F apYSǕuL U8ʓR Y Gx9d?/ n@,5++vDڳ8!V&&o oϯW ̢]%G#W@ɇNd/O^>ՐՒUeeOSa@eO!8w6;m;x658Ձ5˹%PBWW3|unyL/3BǪ-x+c)*R\9V`nufnI_\;Ck }cL @p bK<0~zpޢlW_BT-_у`nyi ʾ̏mGlMV>/* aJ2G;1EnX*5=Ol.f|ydA+m tMoP`F~T5xIWy4jmn6&F+3g3~Q{E[ Z'[{2DbUF3Z8aSͰ̭,.%qx Y*+7XZ$۠iaG+ d2O*Ub\b<:g~*3./O#-r5+S%Y):9]"7ppWen$D9i*A=' Oq_CX44boy&fŷ>; 7Yd+p?W-}f{*~H ; >4\Um@] RZ*bfilF$sS-iDSAb6wġ0&p9r1m)!GփXyIq]܎N{vz㷖ݬϙd{ i7?:p!GHI_u0dwg27(3*aR(;:r]\O3C+tO;av-}6ƒ4" 1N-IkҠ O.^Ax"Hxi#7,c U``e"*mҪ@z  h?rAn+Y&P0eu=_T4"`ԟ*w=pABف?-q_$ٴ[!Lʚ= lnQ1^r;U|wrh$S%^m,]h` tgh~K[7(L)kĚ8OQwRy)_TE&bqqF^)aK)FASgM]ԇI4f3)vJ6pI=4c` i<ct[ @`(yЊF݅6#'[}Kouq5ʮ֨!k8py,(dߠ3qamowŝKz =Ų&`jwQC1\/DO$4ۮ .\o<[qkUA8!2hL< ْ1ƾ%{. HUQ?EjadWNbt-ZR\׶ *gi>d 茼XR:.2`A 9d(`kS0~DR}:jp>5TЄ&mr1,rui1F ˆj 1Pޕ P󟴛77&J4 =kQHi^v<߱IuŌ(&OC9̪\IK>eC~ Jw3kR2N|.hKE(tՌ*G85@.IvC'*v43h%N"m/dR#8#ҝ;tujsHΩ4$XM]h&\ g{`,A!By*/ i΍u揾tG8'c+ ֳOLl%:2tc*hzrpp{%_:V!/5>ָ/~mAN;yݷ9[Fg{Á(j:1L{p U.G$d'=)x-FTq1;tIZ?b$C#)'LQYHCez~,tRgCDL\|!@iꁠ R(T@o>~HbDgN@&otƙц\sݳL_aRofӜy|6* %Ʒo|lR+_#E%A.l&;F2  m[BzQ1w{_v߀&eVg /]ZilKR]|Q~nA{q:9߻ {aWX @^A y*}?M[R10Q /IURuiِae6٫ N#Qɧ;tT@(AFѳH*'t%_9 jyhEMY}! kf-꼍#S6:WYMHVB5  7>>=A)12T[uN5RP hcx~Xg2`/  B݉mu Di9F#.UkmB*@0VyCBjؤq֒!ެ-Ү볻9aNC&jqvĸiKg^ȱ ]*Q! ־Cj{Z9Aۋcak X@ @p*" /mNe>8';|I[VFG[ۈ`P 6PJm\Zi< eF4OR OzcS}՚o{g t9 oknE_XȽ^ԒFZi]1ׁ< 䤼[ %Г |hs5O ѐAg:.:qҳ ީ]!gmyfɦU@=Z" *(BT&v<9 K/=yU7#BFRZz»qhY 8Yʸ,>W<ßڟhW q8Lu^83xj{`βJf:eI 19ǔNIwW)-7:6?j u'ū"hzh]K JW.RhnZX;nSCvGH7tԶ̔8P?IbSDni1"o|TGTZ ~ KOKc tg- oB;JևyCn_uԤ$,,~zHeޢR`lG .a_2L['J4Z&$~e-qe%ahw|'e7ڵc𛖖T舟n%(mK7[Hm= c .1<2'J˘짅E @ZpTIX$Gt{J-6!Z"$[цFgvxJRos 2Ѧ_E ̼5F7VtOxolRX;Gö_Nx\>n߲bȱ>ӦMծSd=D.Boqΐ o,ZsO`g@u6b_KJ/C;K3M&CYRx )H$ ȮZpJ }g6S`CajJ7 IP@"X4چ3`c"Q1/zwe#nJcgxsWh '0K 6:W+n'~挋ŕA"Зס+IːO ŔAE2y02S sM$~nك>gzs}}Gk`l02Hי)Jm{vq}U3SrABpD(]&z=76?POQfO&.p=5qIFB.fh:0`K.ϋ˚Yh#{QC,^*9cx6h[FX bX8t.k^cZa? hk#%[PGL\93Y3_[r Y#U*_=*C܎|>}Sxȋ _km;vmF[~z@v>P(/w0'W4aN1y/n>Ya/8i+ޯ^yH+B E*n;X:xӸsbf'V+ nD ŷ>9ndV֢cPYz)B ]iGN@⢘ӞkԾq8=*$޶ZJz;J Tk>go^HOfBȿpuZy;~jf])`oC|RETkH`7;iMayֆgӁ--E Qk7 Mv d䙩YlXV !i6M\i , VZaO\؍ iDVtKNj Z% Kwe]I}=Iuu˅z#yZO[݋kO [G7lnb KbwhN5Ya?YubY˴|j3)Z;h /{ y)w<|{J M ~oH:C<)9!n3겫$˫R*0 n3$Fpa,LkʞKmprn73JgH[|hWH3Ltv0.G~z_XW'GFyTЂE;P\i#[ y5GFB$ͪA/| Ы}QȰ+&AGxf޴>A3c /"_%-2HE% m$cYpP8ƗEG'FЎ9OuL+;.>ȓ. 7*~hŴekX+h|Rl@-Ap8z/t6p⦹GXtP/z᚜`h&_o&laFʽ#Xv3FG"GkAם.sFpzwaA91ph¨nf|q sWdjt^~-9m"(Q$;mCO0SY+Y] PRMԉs&r'6a>mnLFoHjc*#aLQQ'ѡrʂ2 '$#q\{ \\3SfmBEY29'x Z2薚yWx&bPwJ oھxKŕ)W8)f\_-a^z 5Łyl>'޻ ^| .b4z >(rE1ހ.x WJW=9MCA?@!R2Լ9d慂ҙ+%%%2ݣZ'3]Na W>yCJrE)lNzk~R]_~34WPƥ'4zGZm:Oob[4M>.b9ËА4,#'͵0B8GR t4RT+sȬ7~=T_B4HrS9x M8/[k-F#o >w [m~}y/qzi"5uN ͍? SA{Ii!i?Ptmxn.ϐf$^րU:rc 7@t?|e!(]S++p{K ߤo{$f5<_ണ<,8|O+M =.D]qoaMq+;1)ؖ-iPEhţw3{D^δsT: "%E_yیJ{0 9w7 o3z$bcV(些qbiI#wgq!4T·$fõ@|&N~ElDϜ^;@DJG0]бu<0h# S`gքW<zKcl(*C ;8l(Hׄ$zKr.]S(6y>!U=xn وݐw6N܍ɧs)T=K곑 6vL4_s ~FskaG#G)vv̭ŖY9ё)QBFvk7)|"HxhB@'^h2W6dR( b}yܶK8:Q<0̇䪉-)$dѧ< AS !!!ʓi MX89b.|kZ0˰]AUrr"`#.EkmBU"|qDl ,}kԥ e'ϔnxዤǻ-9ؾ!EŜNQ.QgIU*(TsH[N)uG'tœIQI˟蝋=83E5'GTu"r`=o#-8 Ưb0Uv*7[wxo `,t,já2jOc-FkkVv[Ң0%YEI(tu1.Ad%ann~2-.ƻɹGF : n]AHS9F]JɼflT~l-,ȭQjiDygToYНU *>3>fYY"Ə2ˣrt&9lRo$ӆ\3+K 9ˬ; /9yl l5 C5] >sRf9y\6m,vdugA6HO.axj -#=N6>^YQ$5lpV򌐅ydN&wf]IΏԭe(FG|t/'Yr;uXPW[L,oidSΗ\% zqWv sxcmFq8i?lbP'Dѕy<%tP qsp ԟ^$ % Y@xVPI]w\Bg|P֞ԗ_\㪧YsE(ZAh6nx{Pd:PDvK:N/C9a1H+ rF{kog*6-(ߖ_bc=Wp{k0sk~I?9et0SN={ "oNon#L#<9M62|ja/KV< .-ofn VnnmjQ2. TDG(rVvg]㲯<[Mdfk4 >'VwM-|uÿ|fvW=d52UOB0rM66' &h)A.\G5H/4t|ȯPy\rS7w__G4i0Wܤ~4=[ݳU@œRv jk+7X"uZ촖鈖B4Bߔ8f50vS/V a[; }[P& (OGFNKDrɉ0}>CkZG EąaIs+]zNH$$jbTMXq І䥄q+T.Ugqz *2ldfJSU` Pβ!yFO3oxm /VQJ7 &8=ۃ<|}xjŪGqXn%W-菾ˌpxarq{EDFXLuH sc/z`aVt1ZS|lUtl$:'mȏd om>ShF M}?9Z&0=\x eq>@W\(j.ˮns!Q) 0Mu[Qc4 wꓺGD 3>#X!$wG".<dy՘?pF Kؚ׉ԛv0d[l=V_rO~) Тaa<%OsAskXi0.kazBU41T >[LU4[7Qs0hwWM6v"_9 &vcAOs!hngX]& xdV$ġE>A[qy a[b$H襽Bh/ـAMK5h:)uN͚:5i\ g໒v.]Z璔3@,5HIf A ی90u,(۬/,j]\')!ύn?kw]Y쨛aƃuk$1}NQ|䝪@ZWR#*vȿ2zn֙/-Xh-(JiSfA Vt~7ZTMvz3{WXPPYt։ji &+ eLɥx^u1ڜ(Rkls>7s4c9\6!ߙ%} SB[&X}'B"e^1 FF#%ѓsII?I"2jeZ|H jj L@ͅDF?HdsM3L{'G~+s`SӪ2Cܱy(6b&.st]YXbq?n1(iqb.:#k_y5O =}$DDۢ;\4武)>4 ͱԕ=@OX 8x, geL"ޤ) Zwe׫sy:CQ htͫ r<*sɮ% k;2rOyfay=y>XFoc¸@} ԣb>B뿳dutswj`/O#)Mo d뚍SP-v*hdٺ@ayd+ͽF,l?h g+> V$-Barh.`Mڑ(R|?uh v)Ύ1 a940h*ĕxĸ'^q1Tw@'s=\2[vؑЀPnzdyKƘa#>oCfղ qQ6+I5s Y .b =7fegڠ3ί+~_[]Ѷӡ'v ^@!aHN WW!`0"/' Zäbiqn~ggSt%ߴQՕfkU Imtk/k ~!(Qv!R-bwhFxt0D~uCTf'|.H07(HlP(H:<Ӽ9c ZkT4rQRmҎDs|W8u-"⭯' |cFGח&BkKwVE~X[.i4kAr><ݶԥQv`Ƒ=N%6zu37PZm lG N@P\\j|,Sz'vرbRnm1pK5:}qxE$C3Z+"^O9)![#`Ua{5XW?pȊKr%{ lbh&kZ#_ p<' jcb,r:YeV)tHڠ3zߡ?ש<]*ҠꌯMl?8==g2ZLBj|zrOX7݁(9Y"XG|Չ"k;ͤlE-J(_ CU8"5I2k_> r}5jؖ={TAam,| "s7HH|ֳF@L}z>)^[gUÒeBB[`XAUwd㑠8D? lMGB;/@k >>xc |MIm"1ʐGgzBqh!^GUCr!75K 6#urڐ ?gHb~$R@+ex1#_%E۬/-,=cY,Nc}GC5h2LYrX= q+.W7y:f_5Kj\V~(p"}KAR{kA Eι(sD2 UC$W,V撲BͳwpŖ9A&??7B5;:3~_g SA wG B0|X+?]gUB~c hD1{ԦGieׇFQ3b-[l)hB&_1Hax}p#Q<(ڇ<YhPk:s aoy>Mdʷ#bPKfKܖؐ +"<=sER-nw% {ľziֱbB݌/_Xڽ 'Xbp,svĺY˛Ƥ"X.ZZDW GmH ?=k%cVpIA[q}*z$L(FѦܦEs|!n苪 iٱCT:\W$EI%F's\ey*eiZhw1DWN! *2}s} 2 ڌ2`C6BTuuI-KtxŕG]Nb7 RxYr /VWq3r(E5=*,N篎[Z_BD4K D݂]PNNMTĦ?*P% 0-.s(;-yS?OjMh=h5Wfeלw:2'9bѵCoL •porTy}omV㕦Ldcij:S|Gk"F,Dvt(cILӸ:XC&Yqgv}ft,<; c\#U ̕XBE7DSBϥYN-jmU ~*1ØD+@aYj(}r/WX qzlWГz80w{ n]?kK’PT;{,[k[ mf`& c#O=wr/b!?,WP;43'Ǣv)JP+̗ Z@l@}i5nf'OGzX 5\8"yA$޵ǛQ&@]yo>3k)ΒTߣ]\Ȋ'}2VP]Լj*.)3ߺ*B[vSKܘkcz*(8ymuɚ*  kKdZYx+W @'y(#UߑxHy)U~A'-KkuT7i&54/p/7w$` ag ΕX0O&w} #_>GN\n{*jl4wPAY7c"l[}c֠7}OaH⫹hJoNI"dnia&so\uBlWP!+2XT,eA2IaXc5Ols'n5!AW[(K#sիng>an5x?o{~ sSs [{wxugsi =\_f@ w7q"Ep( eD%~iWgPAc(tNWqK b|ԇA x"7P~1|ow˳$ A =l7?am 7<b](_fOvVdҒDZ Ƭr,/w<<ψMm)͂1S#rӊ! :B(BG 5>Qн\xt= [*LVyi:Ax8a/)O82DyU&zJ_مݼj%-<¯؏ϐ@3Tbf?Hn(ω/SmV9\PC1#3.ąl! E!bY\HoAeeRiNZ7%^^."_G].f.-CWFu|xGHL"x%<˝~j"8s-*{]Ty^J ?ʏS-[W朼)wJ HZNG'5%t"-IA"K)x Y4ER4ŹKe!Jwl홄SQќyVyQWWRLJU1*wOߝ*ӂzhZT+$W4&wkNIKSH̓==ïo[,;1t䈷kB홬>#ʁq$\ߝF!Vy]K".p8Q3vT:eb`42oÔ;.(=wQmv~6bˍӺ-+Y=*z㮻HYh!d>hKv`UL54x~upT=b&y_7%Ϻr1UtH%~@[8W%-n A/+yt_Ͼ'8R=wT]].$ɐ,.ýty!zBxS7J4(}ŋߣoӡM%'|EXtoW.]T>8-iֺב0!uÙ߯"oU=bؘ9ԞYLarr50诂4y1VLT)γ0P*\z8ȋJ -&}X|65WVJ"fߡvjQ5q1ʄccFhՆݟe >q;8"v =apVN&7]ݟcTNR 9<2-a_/ko?*㡻* ( 49).rƥӁuKsase禤[P̊0,pzO;X1źfB)9)%ylZYokF9L}ᢜ^ҧ<l^Q]($G y&{߁VhyV,XY)>n&ȗP+OB _9cvtVJ_(0Aʓ nЦ&=%uϧb[!nH5hbR Yh=u8&reh6 ILtp6D`?ZFCpG=] P!Q葌@AgwB]z=ie(j+xV”jnC# DM}0J2_<+P}UVPCN(P$d ܚ=Qc`&<_] ~-a57$:ؒLOJ9>a]gtAtڊ@8%Շ[ϵMьjRL^r[Gz^ ze _8x#+G`¦VNF%B{:B/}F5ϛu"^Cdꜭ˦3Lߑc+{'I=eGdڑ:"=j춂TMWx=.%x3ubtd)sGdlg'ҠаN s3B?i?B^_t#hJ-C)F=ܹ9#!Q/9A>XT^xy aŘT+<>|ySWSfN[vw a 贮Ь0xVVIo;ydk'ʗ&T*lj/d[NHJ<`+)Ua1: rT D<-Y{71-! ̠`^fw\nycО K)/âcy|HO\,_ o'^a?ohag6F3:"8X)TR g60͉eA_ d S$z&cGдA]=AwA ;'ag6zW.

ANOVA and Post-Hoc Contrasts: Reanalysis of Singmann and Klauer (2011)

Henrik Singmann

2017-05-25

Overview

This documents reanalysis a dataset from an Experiment performed by Singmann and Klauer (2011) using the ANOVA functionality of afex followed by post-hoc tests using package lsmeans (Lenth, 2015). After a brief description of the dataset and research question, the code and results are presented.

Description of Experiment and Data

Singmann and Klauer (2011) were interested in whether or not conditional reasoning can be explained by a single process or whether multiple processes are necessary to explain it. To provide evidence for multiple processes we aimed to establish a double dissociation of two variables: instruction type and problem type. Instruction type was manipulated between-subjects, one group of participants received deductive instructions (i.e., to treat the premises as given and only draw necessary conclusions) and a second group of participants received probabilistic instructions (i.e., to reason as in an everyday situation; we called this “inductive instruction” in the manuscript). Problem type consisted of two different orthogonally crossed variables that were manipulated within-subjects, validity of the problem (formally valid or formally invalid) and plausibility of the problem (inferences which were consisted with the background knowledge versus problems that were inconsistent with the background knowledge). The critical comparison across the two conditions was among problems which were valid and implausible with problems that were invalid and plausible. For example, the next problem was invalid and plausible:

If a person is wet, then the person fell into a swimming pool.
A person fell into a swimming pool.
How valid is the conclusion/How likely is it that the person is wet?

For those problems we predicted that under deductive instructions responses should be lower (as the conclusion does not necessarily follow from the premises) as under probabilistic instructions. For the valid but implausible problem, an example is presented next, we predicted the opposite pattern:

If a person is wet, then the person fell into a swimming pool.
A person is wet.
How valid is the conclusion/How likely is it that the person fell into a swimming pool?

Our study also included valid and plausible and invalid and implausible problems.

In contrast to the analysis reported in the manuscript, we initially do not separate the analysis into affirmation and denial problems, but first report an analysis on the full set of inferences, MP, MT, AC, and DA, where MP and MT are valid and AC and DA invalid. We report a reanalysis of our Experiment 1 only. Note that the factor plausibility is not present in the original manuscript, there it is a results of a combination of other factors.

Data and R Preperation

require(afex) # needed for ANOVA, lsmeans is loaded automatically.
require(multcomp) # for advanced control for multiple testing/Type 1 errors.
require(lattice) # for plots
lattice.options(default.theme = standard.theme(color = FALSE)) # black and white
lattice.options(default.args = list(as.table = TRUE)) # better ordering
data(sk2011.1)
str(sk2011.1)
## 'data.frame':    640 obs. of  9 variables:
##  $ id          : Factor w/ 40 levels "8","9","10","12",..: 3 3 3 3 3 3 3 3 3 3 ...
##  $ instruction : Factor w/ 2 levels "deductive","probabilistic": 2 2 2 2 2 2 2 2 2 2 ...
##  $ plausibility: Factor w/ 2 levels "plausible","implausible": 1 2 2 1 2 1 1 2 1 2 ...
##  $ inference   : Factor w/ 4 levels "MP","MT","AC",..: 4 2 1 3 4 2 1 3 4 2 ...
##  $ validity    : Factor w/ 2 levels "valid","invalid": 2 1 1 2 2 1 1 2 2 1 ...
##  $ what        : Factor w/ 2 levels "affirmation",..: 2 2 1 1 2 2 1 1 2 2 ...
##  $ type        : Factor w/ 2 levels "original","reversed": 2 2 2 2 1 1 1 1 2 2 ...
##  $ response    : int  100 60 94 70 100 99 98 49 82 50 ...
##  $ content     : Factor w/ 4 levels "C1","C2","C3",..: 1 1 1 1 2 2 2 2 3 3 ...

An important feature in the data is that each participant provided two responses for each cell of the design (the content is different for each of those, each participant saw all four contents). These two data points will be aggregated automatically by afex.

with(sk2011.1, table(inference, id, plausibility))
## , , plausibility = plausible
## 
##          id
## inference 8 9 10 12 13 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
##        MP 2 2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2
##        MT 2 2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2
##        AC 2 2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2
##        DA 2 2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2
##          id
## inference 37 38 39 40 41 42 43 44 46 47 48 49 50
##        MP  2  2  2  2  2  2  2  2  2  2  2  2  2
##        MT  2  2  2  2  2  2  2  2  2  2  2  2  2
##        AC  2  2  2  2  2  2  2  2  2  2  2  2  2
##        DA  2  2  2  2  2  2  2  2  2  2  2  2  2
## 
## , , plausibility = implausible
## 
##          id
## inference 8 9 10 12 13 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
##        MP 2 2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2
##        MT 2 2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2
##        AC 2 2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2
##        DA 2 2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2
##          id
## inference 37 38 39 40 41 42 43 44 46 47 48 49 50
##        MP  2  2  2  2  2  2  2  2  2  2  2  2  2
##        MT  2  2  2  2  2  2  2  2  2  2  2  2  2
##        AC  2  2  2  2  2  2  2  2  2  2  2  2  2
##        DA  2  2  2  2  2  2  2  2  2  2  2  2  2

ANOVA

To get the full ANOVA table for the model, we simply pass it to aov_ez (aov_car or aov4 would be alternatives producing the same results) using the design as described above. We save the returned object for further analysis.

a1 <- aov_ez("id", "response", sk2011.1, between = "instruction", 
       within = c("inference", "plausibility"))
## Warning: More than one observation per cell, aggregating the data using mean (i.e,
## fun_aggregate = mean)!
## Contrasts set to contr.sum for the following variables: instruction
a1 # the default print method prints a data.frame produced by nice 
## Anova Table (Type 3 tests)
## 
## Response: response
##                               Effect           df     MSE         F  ges p.value
## 1                        instruction        1, 38 2027.42      0.31 .003     .58
## 2                          inference 2.66, 101.12  959.12   5.81 **  .06    .002
## 3              instruction:inference 2.66, 101.12  959.12   6.00 **  .07    .001
## 4                       plausibility        1, 38  468.82 34.23 ***  .07  <.0001
## 5           instruction:plausibility        1, 38  468.82  10.67 **  .02    .002
## 6             inference:plausibility  2.29, 87.11  318.91    2.87 + .009     .06
## 7 instruction:inference:plausibility  2.29, 87.11  318.91    3.98 *  .01     .02
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
## 
## Sphericity correction method: GG

As mentioned before, the two responses per cell of the design and participants are aggregated for the analysis as indicated by the warning message. Furthermore, the degrees of freedom are Greenhouse-Geisser corrected per default for all effects involving inference, as inference is a within-subject factor with more than two levels (i.e., MP, MT, AC, & DA). In line with our expectations, the three-way interaction is significant.

The object printed per default for afex_aov objects (produced by nice) can also be printed nicely using knitr:

knitr::kable(nice(a1))
Effect df MSE F ges p.value
instruction 1, 38 2027.42 0.31 .003 .58
inference 2.66, 101.12 959.12 5.81 ** .06 .002
instruction:inference 2.66, 101.12 959.12 6.00 ** .07 .001
plausibility 1, 38 468.82 34.23 *** .07 <.0001
instruction:plausibility 1, 38 468.82 10.67 ** .02 .002
inference:plausibility 2.29, 87.11 318.91 2.87 + .009 .06
instruction:inference:plausibility 2.29, 87.11 318.91 3.98 * .01 .02

Alternatively, the anova method for afex_aov objects returns a data.frame of class anova that can be passed to, for example, xtable for nice formatting:

print(xtable::xtable(anova(a1), digits = c(rep(2, 5), 3, 4)), type = "html")
num Df den Df MSE F ges Pr(>F)
instruction 1.00 38.00 2027.42 0.31 0.003 0.5830
inference 2.66 101.12 959.12 5.81 0.063 0.0016
instruction:inference 2.66 101.12 959.12 6.00 0.065 0.0013
plausibility 1.00 38.00 468.82 34.23 0.068 0.0000
instruction:plausibility 1.00 38.00 468.82 10.67 0.022 0.0023
inference:plausibility 2.29 87.11 318.91 2.87 0.009 0.0551
instruction:inference:plausibility 2.29 87.11 318.91 3.98 0.013 0.0177

Post-Hoc Contrasts and Plotting

To further analyze the data we need to pass it to package lsmeans, a package that offers great functionality for both plotting and contrasts of all kind. A lot of information on lsmeans can be obtained in its vignette. lsmeans can work with afex_aov objects directly as afex comes with the necessary methods for the generic functions defined in lsmeans. lsmeans uses the ANOVA model estimated via base R’s aov function that is part of an afex_aov object.

Some First Contrasts

Main Effects Only

This object can now be passed to lsmeans, for example to obtain the marginal means of the four inferences:

m1 <- lsmeans(a1, ~ inference)
## NOTE: Results may be misleading due to involvement in interactions
m1
##  inference   lsmean       SE     df lower.CL upper.CL
##  MP        87.51250 3.783074 126.87 80.02641 94.99859
##  MT        76.68125 3.783074 126.87 69.19516 84.16734
##  AC        69.41250 3.783074 126.87 61.92641 76.89859
##  DA        82.95625 3.783074 126.87 75.47016 90.44234
## 
## Results are averaged over the levels of: instruction, plausibility 
## Confidence level used: 0.95

This object can now also be used to compare whether or not there are differences between the levels of the factor:

pairs(m1)
##  contrast  estimate       SE  df t.ratio p.value
##  MP - MT   10.83125 4.611854 114   2.349  0.0933
##  MP - AC   18.10000 4.611854 114   3.925  0.0008
##  MP - DA    4.55625 4.611854 114   0.988  0.7566
##  MT - AC    7.26875 4.611854 114   1.576  0.3963
##  MT - DA   -6.27500 4.611854 114  -1.361  0.5266
##  AC - DA  -13.54375 4.611854 114  -2.937  0.0206
## 
## Results are averaged over the levels of: instruction, plausibility 
## P value adjustment: tukey method for comparing a family of 4 estimates

To obtain more powerful p-value adjustments, we can furthermore pass it to multcomp (Bretz, Hothorn, & Westfall, 2011):

summary(as.glht(pairs(m1)), test=adjusted("free"))
## Note: df set to 114
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Linear Hypotheses:
##              Estimate Std. Error t value Pr(>|t|)    
## MP - MT == 0   10.831      4.612   2.349 0.068825 .  
## MP - AC == 0   18.100      4.612   3.925 0.000922 ***
## MP - DA == 0    4.556      4.612   0.988 0.325273    
## MT - AC == 0    7.269      4.612   1.576 0.281791    
## MT - DA == 0   -6.275      4.612  -1.361 0.296932    
## AC - DA == 0  -13.544      4.612  -2.937 0.017561 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- free method)

A Simple interaction

We could now also be interested in the marginal means of the inferences across the two instruction types. lsmeans offers two ways to do so. The first splits the contrasts across levels of the factor.

m2 <- lsmeans(a1, ~ inference|instruction)
## NOTE: Results may be misleading due to involvement in interactions
m2
## instruction = deductive:
##  inference  lsmean       SE     df lower.CL  upper.CL
##  MP        97.2875 5.350074 126.87 86.70057 107.87443
##  MT        70.4000 5.350074 126.87 59.81307  80.98693
##  AC        61.4875 5.350074 126.87 50.90057  72.07443
##  DA        81.8125 5.350074 126.87 71.22557  92.39943
## 
## instruction = probabilistic:
##  inference  lsmean       SE     df lower.CL  upper.CL
##  MP        77.7375 5.350074 126.87 67.15057  88.32443
##  MT        82.9625 5.350074 126.87 72.37557  93.54943
##  AC        77.3375 5.350074 126.87 66.75057  87.92443
##  DA        84.1000 5.350074 126.87 73.51307  94.68693
## 
## Results are averaged over the levels of: plausibility 
## Confidence level used: 0.95

Consequently test are also only performed within each level:

pairs(m2)
## instruction = deductive:
##  contrast estimate       SE  df t.ratio p.value
##  MP - MT   26.8875 6.522147 114   4.122  0.0004
##  MP - AC   35.8000 6.522147 114   5.489  <.0001
##  MP - DA   15.4750 6.522147 114   2.373  0.0882
##  MT - AC    8.9125 6.522147 114   1.366  0.5229
##  MT - DA  -11.4125 6.522147 114  -1.750  0.3031
##  AC - DA  -20.3250 6.522147 114  -3.116  0.0122
## 
## instruction = probabilistic:
##  contrast estimate       SE  df t.ratio p.value
##  MP - MT   -5.2250 6.522147 114  -0.801  0.8538
##  MP - AC    0.4000 6.522147 114   0.061  0.9999
##  MP - DA   -6.3625 6.522147 114  -0.976  0.7636
##  MT - AC    5.6250 6.522147 114   0.862  0.8241
##  MT - DA   -1.1375 6.522147 114  -0.174  0.9981
##  AC - DA   -6.7625 6.522147 114  -1.037  0.7282
## 
## Results are averaged over the levels of: plausibility 
## P value adjustment: tukey method for comparing a family of 4 estimates

The second version treats all factor combinations together, producing a considerably larger number of pairwise comparisons:

m3 <- lsmeans(a1, ~ inference:instruction)
## NOTE: Results may be misleading due to involvement in interactions
m3
##  inference instruction    lsmean       SE     df lower.CL  upper.CL
##  MP        deductive     97.2875 5.350074 126.87 86.70057 107.87443
##  MT        deductive     70.4000 5.350074 126.87 59.81307  80.98693
##  AC        deductive     61.4875 5.350074 126.87 50.90057  72.07443
##  DA        deductive     81.8125 5.350074 126.87 71.22557  92.39943
##  MP        probabilistic 77.7375 5.350074 126.87 67.15057  88.32443
##  MT        probabilistic 82.9625 5.350074 126.87 72.37557  93.54943
##  AC        probabilistic 77.3375 5.350074 126.87 66.75057  87.92443
##  DA        probabilistic 84.1000 5.350074 126.87 73.51307  94.68693
## 
## Results are averaged over the levels of: plausibility 
## Confidence level used: 0.95
pairs(m3)
##  contrast                            estimate       SE     df t.ratio p.value
##  MP,deductive - MT,deductive          26.8875 6.522147 114.00   4.122  0.0018
##  MP,deductive - AC,deductive          35.8000 6.522147 114.00   5.489  <.0001
##  MP,deductive - DA,deductive          15.4750 6.522147 114.00   2.373  0.2649
##  MP,deductive - MP,probabilistic      19.5500 7.566147 126.87   2.584  0.1716
##  MP,deductive - MT,probabilistic      14.3250 7.566147 126.87   1.893  0.5581
##  MP,deductive - AC,probabilistic      19.9500 7.566147 126.87   2.637  0.1527
##  MP,deductive - DA,probabilistic      13.1875 7.566147 126.87   1.743  0.6592
##  MT,deductive - AC,deductive           8.9125 6.522147 114.00   1.366  0.8704
##  MT,deductive - DA,deductive         -11.4125 6.522147 114.00  -1.750  0.6548
##  MT,deductive - MP,probabilistic      -7.3375 7.566147 126.87  -0.970  0.9779
##  MT,deductive - MT,probabilistic     -12.5625 7.566147 126.87  -1.660  0.7125
##  MT,deductive - AC,probabilistic      -6.9375 7.566147 126.87  -0.917  0.9839
##  MT,deductive - DA,probabilistic     -13.7000 7.566147 126.87  -1.811  0.6141
##  AC,deductive - DA,deductive         -20.3250 6.522147 114.00  -3.116  0.0462
##  AC,deductive - MP,probabilistic     -16.2500 7.566147 126.87  -2.148  0.3906
##  AC,deductive - MT,probabilistic     -21.4750 7.566147 126.87  -2.838  0.0948
##  AC,deductive - AC,probabilistic     -15.8500 7.566147 126.87  -2.095  0.4239
##  AC,deductive - DA,probabilistic     -22.6125 7.566147 126.87  -2.989  0.0644
##  DA,deductive - MP,probabilistic       4.0750 7.566147 126.87   0.539  0.9994
##  DA,deductive - MT,probabilistic      -1.1500 7.566147 126.87  -0.152  1.0000
##  DA,deductive - AC,probabilistic       4.4750 7.566147 126.87   0.591  0.9989
##  DA,deductive - DA,probabilistic      -2.2875 7.566147 126.87  -0.302  1.0000
##  MP,probabilistic - MT,probabilistic  -5.2250 6.522147 114.00  -0.801  0.9928
##  MP,probabilistic - AC,probabilistic   0.4000 6.522147 114.00   0.061  1.0000
##  MP,probabilistic - DA,probabilistic  -6.3625 6.522147 114.00  -0.976  0.9770
##  MT,probabilistic - AC,probabilistic   5.6250 6.522147 114.00   0.862  0.9887
##  MT,probabilistic - DA,probabilistic  -1.1375 6.522147 114.00  -0.174  1.0000
##  AC,probabilistic - DA,probabilistic  -6.7625 6.522147 114.00  -1.037  0.9677
## 
## Results are averaged over the levels of: plausibility 
## P value adjustment: tukey method for comparing a family of 8 estimates

Running Custom Contrasts

Objects returned from lsmeans can also be used to test specific contrasts. For this, we can simply create a list, where each element corresponds to one contrasts. A contrast is defined as a vector of constants on the reference grid (i.e., the object returned from lsmeans, here m3). For example, we might be interested in whether there is a difference between the valid and invalid inferences in each of the two conditions.

c1 <- list(
  v_i.ded = c(0.5, 0.5, -0.5, -0.5, 0, 0, 0, 0),
  v_i.prob = c(0, 0, 0, 0, 0.5, 0.5, -0.5, -0.5)
  )

contrast(m3, c1, adjust = "holm")
##  contrast estimate       SE  df t.ratio p.value
##  v_i.ded  12.19375 4.611854 114   2.644  0.0187
##  v_i.prob -0.36875 4.611854 114  -0.080  0.9364
## 
## Results are averaged over the levels of: plausibility 
## P value adjustment: holm method for 2 tests
summary(as.glht(contrast(m3, c1)), test =adjusted("free"))
## Note: df set to 114
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Linear Hypotheses:
##               Estimate Std. Error t value Pr(>|t|)  
## v_i.ded == 0   12.1937     4.6119   2.644   0.0186 *
## v_i.prob == 0  -0.3687     4.6119  -0.080   0.9364  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- free method)

The results can be interpreted as in line with expectations. Responses are larger for valid than invalid problems in the deductive, but not the probabilistic condition.

Plotting

Function lsmip from package lsmeans can be used for plotting the data directly from an afex_aov object. As said initially, we are interested in the three-way interaction of instruction with inference, plausibility, and instruction. A plot of this interaction could be the following:

lsmip(a1, instruction ~ inference|plausibility)

Replicate Analysis from Singmann and Klauer (2011)

As this plot is not very helpful, we now fit a new ANOVA model in which we separate the data in affirmation and denial inferences, as done in the original manuscript and plot the data then a second time.

a2 <- aov_ez("id", "response", sk2011.1, between = "instruction", 
       within = c("validity", "plausibility", "what"))
## Warning: More than one observation per cell, aggregating the data using mean (i.e,
## fun_aggregate = mean)!
## Contrasts set to contr.sum for the following variables: instruction
a2
## Anova Table (Type 3 tests)
## 
## Response: response
##                                    Effect    df     MSE         F    ges p.value
## 1                             instruction 1, 38 2027.42      0.31   .003     .58
## 2                                validity 1, 38  678.65    4.12 *    .01     .05
## 3                    instruction:validity 1, 38  678.65    4.65 *    .01     .04
## 4                            plausibility 1, 38  468.82 34.23 ***    .07  <.0001
## 5                instruction:plausibility 1, 38  468.82  10.67 **    .02    .002
## 6                                    what 1, 38  660.52      0.22  .0007     .64
## 7                        instruction:what 1, 38  660.52      2.60   .008     .11
## 8                   validity:plausibility 1, 38  371.87      0.14  .0002     .71
## 9       instruction:validity:plausibility 1, 38  371.87    4.78 *   .008     .04
## 10                          validity:what 1, 38 1213.14   9.80 **    .05    .003
## 11              instruction:validity:what 1, 38 1213.14   8.60 **    .05    .006
## 12                      plausibility:what 1, 38  204.54   9.97 **   .009    .003
## 13          instruction:plausibility:what 1, 38  204.54    5.23 *   .005     .03
## 14             validity:plausibility:what 1, 38  154.62      0.03 <.0001     .85
## 15 instruction:validity:plausibility:what 1, 38  154.62      0.42  .0003     .52
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1

Then we plot the data from this ANOVA.

lsmip(a2, ~instruction ~ plausibility+validity|what, 
      scales = list(x=list(
        at = 1:4,
        labels = c("pl:v", "im:v", "pl:i", "im:i")
        )))

We see the critical predicted cross-over interaction in the left of those two graphs. For valid but implausible problems (im:v) deductive responses are larger than probabilistic responses. The opposite is true for invalid but plausible problems (pl:i). We now tests these differences at each of the four x-axis ticks in each plot using custom contrasts (diff_1 to diff_4). Furthermore, we test for a validity effect and plausibility effect in both conditions.

(m4 <- lsmeans(a2, ~instruction+plausibility+validity|what))
## what = affirmation:
##  instruction   plausibility validity lsmean      SE     df lower.CL upper.CL
##  deductive     plausible    valid    99.475 6.01019 183.89  87.6172 111.3328
##  probabilistic plausible    valid    95.300 6.01019 183.89  83.4422 107.1578
##  deductive     implausible  valid    95.100 6.01019 183.89  83.2422 106.9578
##  probabilistic implausible  valid    60.175 6.01019 183.89  48.3172  72.0328
##  deductive     plausible    invalid  66.950 6.01019 183.89  55.0922  78.8078
##  probabilistic plausible    invalid  90.550 6.01019 183.89  78.6922 102.4078
##  deductive     implausible  invalid  56.025 6.01019 183.89  44.1672  67.8828
##  probabilistic implausible  invalid  64.125 6.01019 183.89  52.2672  75.9828
## 
## what = denial:
##  instruction   plausibility validity lsmean      SE     df lower.CL upper.CL
##  deductive     plausible    valid    70.550 6.01019 183.89  58.6922  82.4078
##  probabilistic plausible    valid    92.975 6.01019 183.89  81.1172 104.8328
##  deductive     implausible  valid    70.250 6.01019 183.89  58.3922  82.1078
##  probabilistic implausible  valid    72.950 6.01019 183.89  61.0922  84.8078
##  deductive     plausible    invalid  86.525 6.01019 183.89  74.6672  98.3828
##  probabilistic plausible    invalid  87.450 6.01019 183.89  75.5922  99.3078
##  deductive     implausible  invalid  77.100 6.01019 183.89  65.2422  88.9578
##  probabilistic implausible  invalid  80.750 6.01019 183.89  68.8922  92.6078
## 
## Confidence level used: 0.95
c2 <- list(
  diff_1 = c(1, -1, 0, 0, 0, 0, 0, 0),
  diff_2 = c(0, 0, 1, -1, 0, 0, 0, 0),
  diff_3 = c(0, 0, 0, 0,  1, -1, 0, 0),
  diff_4 = c(0, 0, 0, 0,  0, 0, 1, -1),
  val_ded  = c(0.5, 0, 0.5, 0, -0.5, 0, -0.5, 0),
  val_prob = c(0, 0.5, 0, 0.5, 0, -0.5, 0, -0.5),
  plau_ded   = c(0.5, 0, -0.5, 0, -0.5, 0, 0.5, 0),
  plau_prob  = c(0, 0.5, 0, -0.5, 0, 0.5, 0, -0.5)
  )
contrast(m4, c2, adjust = "holm")
## what = affirmation:
##  contrast  estimate       SE     df t.ratio p.value
##  diff_1      4.1750 8.499692 183.89   0.491  1.0000
##  diff_2     34.9250 8.499692 183.89   4.109  0.0004
##  diff_3    -23.6000 8.499692 183.89  -2.777  0.0303
##  diff_4     -8.1000 8.499692 183.89  -0.953  1.0000
##  val_ded    35.8000 6.877109  70.38   5.206  <.0001
##  val_prob    0.4000 6.877109  70.38   0.058  1.0000
##  plau_ded   -3.2750 3.627998  64.94  -0.903  1.0000
##  plau_prob  30.7750 4.102924  65.86   7.501  <.0001
## 
## what = denial:
##  contrast  estimate       SE     df t.ratio p.value
##  diff_1    -22.4250 8.499692 183.89  -2.638  0.0633
##  diff_2     -2.7000 8.499692 183.89  -0.318  1.0000
##  diff_3     -0.9250 8.499692 183.89  -0.109  1.0000
##  diff_4     -3.6500 8.499692 183.89  -0.429  1.0000
##  val_ded   -11.4125 6.877109  70.38  -1.659  0.6088
##  val_prob   -1.1375 6.877109  70.38  -0.165  1.0000
##  plau_ded   -4.5625 3.627998  64.94  -1.258  1.0000
##  plau_prob  13.3625 4.102924  65.86   3.257  0.0143
## 
## P value adjustment: holm method for 8 tests

As the resulting eight contrasts have different numbers of degrees-of-freedom, we can only pass them to multcomp in small batches. This gives us more powerful Type 1 error corrections but overall a reduced correction as we now control for three families of tests (i.e., overall Type 1 error probability of .15).

summary(as.glht(contrast(m4, c2[1:4])), test =adjusted("free"))
## Note: df set to 184
## $`what = affirmation`
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Linear Hypotheses:
##             Estimate Std. Error t value Pr(>|t|)    
## diff_1 == 0    4.175      8.500   0.491 0.623874    
## diff_2 == 0   34.925      8.500   4.109 0.000243 ***
## diff_3 == 0  -23.600      8.500  -2.777 0.017281 *  
## diff_4 == 0   -8.100      8.500  -0.953 0.564739    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- free method)
## 
## 
## $`what = denial`
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Linear Hypotheses:
##             Estimate Std. Error t value Pr(>|t|)  
## diff_1 == 0  -22.425      8.500  -2.638   0.0331 *
## diff_2 == 0   -2.700      8.500  -0.318   0.9554  
## diff_3 == 0   -0.925      8.500  -0.109   0.9554  
## diff_4 == 0   -3.650      8.500  -0.429   0.9554  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- free method)
summary(as.glht(contrast(m4, c2[5:6])), test =adjusted("free"))
## Note: df set to 70
## $`what = affirmation`
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Linear Hypotheses:
##               Estimate Std. Error t value Pr(>|t|)    
## val_ded == 0    35.800      6.877   5.206 3.69e-06 ***
## val_prob == 0    0.400      6.877   0.058    0.954    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- free method)
## 
## 
## $`what = denial`
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Linear Hypotheses:
##               Estimate Std. Error t value Pr(>|t|)
## val_ded == 0   -11.412      6.877  -1.659    0.192
## val_prob == 0   -1.137      6.877  -0.165    0.869
## (Adjusted p values reported -- free method)
summary(as.glht(contrast(m4, c2[7:8])), test =adjusted("free"))
## Note: df set to 65
## $`what = affirmation`
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Linear Hypotheses:
##                Estimate Std. Error t value Pr(>|t|)    
## plau_ded == 0    -3.275      3.628  -0.903     0.37    
## plau_prob == 0   30.775      4.103   7.501  4.5e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- free method)
## 
## 
## $`what = denial`
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Linear Hypotheses:
##                Estimate Std. Error t value Pr(>|t|)   
## plau_ded == 0    -4.562      3.628  -1.258  0.21304   
## plau_prob == 0   13.362      4.103   3.257  0.00358 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- free method)

The pattern for the affirmation problems is in line with the expectations: We find the predicted differences between the instruction types for valid and implausible (diff_2) and invalid and plausible (diff_3) and the predicted non-differences for the other two problems (diff_1 and diff_4). Furthermore, we find a validity effect in the deductive but not in the probabilistic condition. Likewise, we find a plausibility effect in the probabilistic but not in the deductive condition.

Some Cautionary Notes

  • While the df of the ANOVA tables are Greenhouse-Geisser corrected per default for within-subject factors with more than two levels, this is not the case for post-hoc tests or contrasts using lsmeans. The contrasts use uncorrected degrees of freedom that are Satterthwaite approximated. This most likely produces anti-conservative tests if compound symmetry/sphericity is violated.
  • For unbalanced samples, aov is usually not the correct choise. This is why the test of effects is based on car::Anova. However, for lsmeans we need to use aov models. However, lsmeans offers the option to weight the marginal means differently in case of different group sizes (i.e., unbalanced data). For example, it offers the option that each group is assumed to be of equal size (i.e., weights = "equal") or proportionally (i.e., weights = "proportional"). See help of lsmeans for more information.
  • Choosing the right correction for multiple testing can be difficult. In fact multcomp comes with an accompanying book (Bretz et al., 2011). If the degrees-of-freedom of all contrasts are identical using multcomp’s method free is more powerful than simply using the Bonferroni-Holm method. free is a generalization of the Bonferroni-Holm method that takes the correlations among the model parameters into account and uniformly more powerful.
  • For data sets with many within-subject factors, creating the aov object can take some time (i.e., compared to producing the ANOVA table which is usually very fast). Those objects are also comparatively large, often multiple MB. If speed is important and one is not interested in employing lsmeans one can set return = "nice" in the call to the ANOVA function to only receive the ANOVA table (this can also be done globally: afex_options(return_aov = "nice")).

References

  • Bretz, F., Hothorn, T., & Westfall, P. H. (2011). Multiple comparisons using R. Boca Raton, FL: CRC Press. https://CRAN.R-project.org/package=multcomp
  • Singmann, H., & Klauer, K. C. (2011). Deductive and inductive conditional inferences: Two modes of reasoning. Thinking & Reasoning, 17(3), 247-281. doi: 10.1080/13546783.2011.572718
  • Lenth, R. V. (2015). lsmeans: Least-Squares Means. R package version 2.16-4. https://CRAN.R-project.org/package=lsmeans
afex/inst/doc/afex_mixed_example.html0000644000176200001440000110073013111546473017440 0ustar liggesusers Mixed Model Reanalysis of RT data

Mixed Model Reanalysis of RT data

Henrik Singmann

2017-05-25

Overview

This documents reanalysis response time data from an Experiment performed by Freeman, Heathcote, Chalmers, and Hockley (2010) using the mixed model functionality of afex implemented in function mixed followed by post-hoc tests using package lsmeans (Lenth, 2015). After a brief description of the data set and research question, the code and results are presented.

Description of Experiment and Data

The data are lexical decision and word naming latencies for 300 words and 300 nonwords from 45 participants presented in Freeman et al. (2010). The 300 items in each stimulus condition were selected to form a balanced \(2 \times 2\) design with factors neighborhood density (low versus high) and frequency (low versus high). The task was a between subjects factor: 25 participants worked on the lexical decision task and 20 participants on the naming task. After excluding erroneous responses each participants responded to between 135 and 150 words and between 124 and 150 nonwords. We analyzed log RTs which showed an approximately normal picture.

Data and R Preperation

We start with loading some packages we will need throughout this example. For data manipulation we will be using the dplyr and tidyr packages from the tidyverse. A thorough introduction to these packages is beyond this example, but well worth it, and can be found in ‘R for Data Science’ by Wickham and Grolemund. For plotting we will be diverging from the tidyverse and use lattice instead. In my opinion lattice provides the best combination of expressive power and abstraction. Specifically, like in base graph, we can fully decide what gets plotted.

After loading the packages, we will load the data (which comes with afex), remove the errors, and take a look at the variables in the data.

require(afex) # needed for ANOVA, lsmeans is loaded automatically.
require(dplyr) # for working with data frames
require(tidyr) # for transforming data frames from wide to long and the other way round.
require(multcomp) # for advanced control for multiple testing/Type 1 errors.
require(lattice) # for plots
require(latticeExtra) # for combining lattice plots, etc.
lattice.options(default.theme = standard.theme(color = FALSE)) # black and white
lattice.options(default.args = list(as.table = TRUE)) # better ordering

data("fhch2010") # load 
fhch <- droplevels(fhch2010[ fhch2010$correct,]) # remove errors
str(fhch2010) # structure of the data
## 'data.frame':    13222 obs. of  10 variables:
##  $ id       : Factor w/ 45 levels "N1","N12","N13",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ task     : Factor w/ 2 levels "naming","lexdec": 1 1 1 1 1 1 1 1 1 1 ...
##  $ stimulus : Factor w/ 2 levels "word","nonword": 1 1 1 2 2 1 2 2 1 2 ...
##  $ density  : Factor w/ 2 levels "low","high": 2 1 1 2 1 2 1 1 1 1 ...
##  $ frequency: Factor w/ 2 levels "low","high": 1 2 2 2 2 2 1 2 1 2 ...
##  $ length   : Factor w/ 3 levels "4","5","6": 3 3 2 2 1 1 3 2 1 3 ...
##  $ item     : Factor w/ 600 levels "abide","acts",..: 363 121 202 525 580 135 42 368 227 141 ...
##  $ rt       : num  1.091 0.876 0.71 1.21 0.843 ...
##  $ log_rt   : num  0.0871 -0.1324 -0.3425 0.1906 -0.1708 ...
##  $ correct  : logi  TRUE TRUE TRUE TRUE TRUE TRUE ...

To make sure our expectations about the data match the data we use some dplyr magic to confirm the number of participants per condition and items per participant.

## are all participants in only one task?
fhch2010 %>% group_by(id) %>%
  summarise(task = n_distinct(task)) %>%
  as.data.frame() %>% 
  {.$task == 1} %>%
  all()
## [1] TRUE
## participants per condition:
fhch2010 %>% group_by(id) %>%
  summarise(task = first(task)) %>%
  ungroup() %>%
  group_by(task) %>%
  summarise(n = n())
## # A tibble: 2 x 2
##     task     n
##   <fctr> <int>
## 1 naming    20
## 2 lexdec    25
## number of different items per participant:
fhch2010 %>% group_by(id, stimulus) %>%
  summarise(items = n_distinct(item)) %>%
  ungroup() %>%
  group_by(stimulus) %>%
  summarise(min = min(items), 
            max = max(items), 
            mean = mean(items))
## # A tibble: 2 x 4
##   stimulus   min   max     mean
##     <fctr> <int> <int>    <dbl>
## 1     word   139   150 147.4667
## 2  nonword   134   150 146.3556

Before running the analysis we should make sure that our dependent variable looks roughly normal. To compare rt with log_rt within the same graph using lattice we first need to transform the data from the wide format (where both rt types occupy one column each) into the long format (in which the two rt types are combined into a single column with an additional indicator column). To do so we use tidyr::gather. Then we simply call the histogram function on the new data.frame and make a few adjustments to the defaults to obtain a nice looking output. The plot shows that log_rt looks clearly more normal than rt, although not perfectly so. An interesting exercise could be to rerun the analysis below using a transformation that provides an even better ‘normalization’.

fhch_long <- fhch %>% gather("rt_type", "rt", rt, log_rt)
histogram(~rt|rt_type, fhch_long, breaks = "Scott", type = "density",
          scale = list(x = list(relation = "free")))

Descriptive Analysis

The main factors in the experiment were the between-subjects factor task (naming vs. lexdec), and the within-subjects factors stimulus (word vs. nonword), density (low vs. high), and frequency (low vs. high). Before running an analysis it is a good idea to visually inspect the data to gather some expectations regarding the results. Should the statistical results dramatically disagree with the expectations this suggests some type of error along the way (e.g., model misspecification) or at least encourages a thorough check to make sure everything is correct. We first begin by plotting the data aggregated by-participant.

In each plot we plot the raw data in the background. To make the individual data points visible we add some jitter on the x-axis and choose pch and alpha values such that we see where more data points are (i.e., where plot overlaps it is darker). Then we add the mean as a x in a circle. Both of this is done in the same call to xyplot using a custom panel function. Finally, we combine this plot with a simple boxplot using bwplot.

agg_p <- fhch %>% group_by(id, task, stimulus, density, frequency) %>%
  summarise(mean = mean(log_rt)) %>%
  ungroup()

xyplot(mean ~ density:frequency|task+stimulus, agg_p, jitter.x = TRUE, pch = 20, alpha = 0.5, 
       panel = function(x, y, ...) {
         panel.xyplot(x, y, ...)
         tmp <- aggregate(y, by = list(x), mean)
         panel.points(tmp$x, tmp$y, pch = 13, cex =1.5)
       }) + 
bwplot(mean ~ density:frequency|task+stimulus, agg_p, pch="|", do.out = FALSE)

Now we plot the same data but aggregated across items:

agg_i <- fhch %>% group_by(item, task, stimulus, density, frequency) %>%
  summarise(mean = mean(log_rt)) %>%
  ungroup()

xyplot(mean ~ density:frequency|task+stimulus, agg_i, jitter.x = TRUE, pch = 20, alpha = 0.2, 
       panel = function(x, y, ...) {
         panel.xyplot(x, y, ...)
         tmp <- aggregate(y, by = list(x), mean)
         panel.points(tmp$x, tmp$y, pch = 13, cex =1.5)
       }) + 
bwplot(mean ~ density:frequency|task+stimulus, agg_i, pch="|", do.out = FALSE)

These two plots show a very similar pattern and suggest several things:

  • Responses to nonwords appear slower than responses to words, at least for the naming task.
  • lexdec responses appear to be slower than naming responses, particularly in the word condition.
  • In the nonword and naming condition we see a clear effect of frequency with slower responses to high than low frequency words.
  • In the word conditions the frequency pattern appears to be in the opposite direction to the pattern described in the previous point: faster responses to low frequency than to high frequency words.
  • density appears to have no effect, perhaps with the exception of the nonword lexdec condition.

Model Setup

To set up a mixed model it is important to identify which factors vary within which grouping factor generating random variability (i.e., grouping factors are sources of stochastic variability). The two grouping factors are participants (id) and items (item). The within-participant factors are stimulus, density, and frequency. The within-item factor is task. The ‘maximal model’ (Barr, Levy, Scheepers, and Tily, 2013) therefore is the model with by-participant random slopes for stimulus, density, and frequency and their interactions and by-item random slopes for task.

Occasionally, the maximal model does not converge successfully. In this case a good first approach for dealing with this problem is to remove the corelations among the random terms. In our example, there are two sets of correlations, one for each random effect grouping variable. Consequently, we can build four model that have the maximal structure in terms of random-slopes and only differ in which correlations among random terms are calculated:

  1. With all correlations.
  2. No correlation among by-item random effects (i.e., no correlation between random intercept and task random slope).
  3. No correlation among by-participant random effect terms (i.e., no correlation among random slopes themselves and between the random slopes and the random intercept).
  4. No correlation among either random grouping factor.

The next decision to be made is which method to use for obtaining \(p\)-values. The default method is KR (=Kenward-Roger) which provides the best control against anti-conservative results. However, KR needs quite a lot of RAM, especially with complicated random effect structures and large data sets. As in this case we have both, relatively large data (i.e., many levels on each random effect, especially the item random effect) and a complicated random effect structure, it seems a reasonable decision to choose another method. The second ‘best’ method (in terms of controlling for Type I errors) is the ‘Satterthwaite’ approximation, method='S'. It provides a similar control of Type I errors as the Kenward-Roger approximation and needs less RAM, however one downside is that it simply fails in some cases.

Results

Satterthwaite Results

The following code fits the four models using the Satterthwaite method. To suppress random effects we use the || notation. Note that it is necessary to set expand_re=TRUE when suppressing random effects among variables that are entered as factors and not as numerical variables (as done here). Also note that mixed automatically uses appropriate contrast codings if factors are included in interactions (contr.sum) in contrast to the R default (which is contr.treatment). To make sure the estimation does not end prematurely we set the allowed number of function evaluations to a very high value (using lmerControl).

m1s <- mixed(log_rt ~ task*stimulus*density*frequency + (stimulus*density*frequency|id)+
               (task|item), fhch, method = "S", 
             control = lmerControl(optCtrl = list(maxfun = 1e6)))
m2s <- mixed(log_rt ~ task*stimulus*density*frequency + (stimulus*density*frequency|id)+
               (task||item), fhch, method = "S", 
             control = lmerControl(optCtrl = list(maxfun = 1e6)), expand_re = TRUE)
m3s <- mixed(log_rt ~ task*stimulus*density*frequency + (stimulus*density*frequency||id)+
               (task|item), fhch, method = "S", 
             control = lmerControl(optCtrl = list(maxfun = 1e6)), expand_re = TRUE)
m4s <- mixed(log_rt ~ task*stimulus*density*frequency + (stimulus*density*frequency||id)+
               (task||item), fhch, method = "S", 
             control = lmerControl(optCtrl = list(maxfun = 1e6)), expand_re = TRUE)

As the estimation of these model may take some time, afex inlcudes the estimated models which can be loaded with the following code. Note that when using the print or anova method for mixed objects, the warnings emitted during estimation of the model by lmer will be printed again. So there is no downside of loading the already estimated models. We then inspect the four results.

load(system.file("extdata/", "freeman_models.rda", package = "afex"))
m1s
## Warning: lme4 reported (at least) the following warnings for 'full':
##   * unable to evaluate scaled gradient
##   * Model failed to converge: degenerate  Hessian with 1 negative eigenvalues
## Mixed Model Anova Table (Type 3 tests, S-method)
## 
## Model: log_rt ~ task * stimulus * density * frequency + (stimulus * 
## Model:     density * frequency | id) + (task | item)
## Data: fhch
##                             Effect    df      F p.value
## 1                             task 1, NA 128.72    <NA>
## 2                         stimulus 1, NA 117.02    <NA>
## 3                          density 1, NA   1.20    <NA>
## 4                        frequency 1, NA   1.30    <NA>
## 5                    task:stimulus 1, NA  63.74    <NA>
## 6                     task:density 1, NA  10.59    <NA>
## 7                 stimulus:density 1, NA   0.39    <NA>
## 8                   task:frequency 1, NA  55.81    <NA>
## 9               stimulus:frequency 1, NA  85.68    <NA>
## 10               density:frequency 1, NA   0.03    <NA>
## 11           task:stimulus:density 1, NA  12.87    <NA>
## 12         task:stimulus:frequency 1, NA 119.08    <NA>
## 13          task:density:frequency 1, NA   5.22    <NA>
## 14      stimulus:density:frequency 1, NA   2.45    <NA>
## 15 task:stimulus:density:frequency 1, NA  10.16    <NA>
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
m2s
## Warning: lme4 reported (at least) the following warnings for 'full':
##   * unable to evaluate scaled gradient
##   * Model failed to converge: degenerate  Hessian with 1 negative eigenvalues
## Mixed Model Anova Table (Type 3 tests, S-method)
## 
## Model: log_rt ~ task * stimulus * density * frequency + (stimulus * 
## Model:     density * frequency | id) + (task || item)
## Data: fhch
##                             Effect        df          F p.value
## 1                             task  1, 43.54  13.69 ***   .0006
## 2                         stimulus  1, 51.06 150.61 ***  <.0001
## 3                          density 1, 192.25       0.31     .58
## 4                        frequency  1, 72.78       0.52     .47
## 5                    task:stimulus  1, 52.03  71.20 ***  <.0001
## 6                     task:density 1, 201.56  15.92 ***  <.0001
## 7                 stimulus:density 1, 287.88       1.06     .30
## 8                   task:frequency  1, 76.76  80.05 ***  <.0001
## 9               stimulus:frequency 1, 177.48  55.45 ***  <.0001
## 10               density:frequency 1, 235.01       0.12     .73
## 11           task:stimulus:density 1, 300.16  14.21 ***   .0002
## 12         task:stimulus:frequency 1, 190.61 109.33 ***  <.0001
## 13          task:density:frequency 1, 248.09     5.46 *     .02
## 14      stimulus:density:frequency 1, 104.15     3.72 +     .06
## 15 task:stimulus:density:frequency 1, 111.32   10.07 **    .002
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
m3s
## Mixed Model Anova Table (Type 3 tests, S-method)
## 
## Model: log_rt ~ task * stimulus * density * frequency + (stimulus * 
## Model:     density * frequency || id) + (task | item)
## Data: fhch
##                             Effect        df          F p.value
## 1                             task  1, 43.52  13.68 ***   .0006
## 2                         stimulus  1, 50.57 151.33 ***  <.0001
## 3                          density 1, 584.49       0.36     .55
## 4                        frequency  1, 70.26       0.56     .46
## 5                    task:stimulus  1, 51.50  71.29 ***  <.0001
## 6                     task:density 1, 578.65  17.89 ***  <.0001
## 7                 stimulus:density 1, 584.50       1.19     .28
## 8                   task:frequency  1, 74.11  82.66 ***  <.0001
## 9               stimulus:frequency 1, 584.68  63.34 ***  <.0001
## 10               density:frequency 1, 584.54       0.11     .74
## 11           task:stimulus:density 1, 578.66  14.86 ***   .0001
## 12         task:stimulus:frequency 1, 578.82 124.10 ***  <.0001
## 13          task:density:frequency 1, 578.69     5.92 *     .02
## 14      stimulus:density:frequency  1, 88.40     4.16 *     .04
## 15 task:stimulus:density:frequency  1, 94.42   10.60 **    .002
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
m4s
## Mixed Model Anova Table (Type 3 tests, S-method)
## 
## Model: log_rt ~ task * stimulus * density * frequency + (stimulus * 
## Model:     density * frequency || id) + (task || item)
## Data: fhch
##                             Effect        df          F p.value
## 1                             task  1, 43.54  13.67 ***   .0006
## 2                         stimulus  1, 51.05 150.79 ***  <.0001
## 3                          density 1, 587.35       0.35     .55
## 4                        frequency  1, 71.90       0.53     .47
## 5                    task:stimulus  1, 52.02  71.50 ***  <.0001
## 6                     task:density 1, 582.30  17.50 ***  <.0001
## 7                 stimulus:density 1, 587.35       1.13     .29
## 8                   task:frequency  1, 75.90  81.49 ***  <.0001
## 9               stimulus:frequency 1, 587.51  62.27 ***  <.0001
## 10               density:frequency 1, 587.39       0.11     .74
## 11           task:stimulus:density 1, 582.31  14.61 ***   .0001
## 12         task:stimulus:frequency 1, 582.45 121.11 ***  <.0001
## 13          task:density:frequency 1, 582.34     5.84 *     .02
## 14      stimulus:density:frequency  1, 90.80     3.90 +     .05
## 15 task:stimulus:density:frequency  1, 97.08   10.52 **    .002
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1

Before looking at the results we can see that for models 1 and 2, lmer emmited a warning that the model failed to converge. These warnings do not necessarily mean that the results cannot be used. As we will see below, model 2 (m2s) produces essentially the same results as models 3 and 4 suggesting that this warning is indeed a false positive. However, the results also show that estimating the Satterthwaite approximation failed for m1s, we have no denominator degrees of freedom and no \(p\)-values. If this happens, we can only try another method or a reduced model.

Models 2 to 4 produce results and the results are extremely similar across models. A total of 9 or 10 effects reached significance. We found main effects for task and stimulus, two-way interactions of task:stimulus, task:density, task:frequency, and stimulus:frequency, three-way interactions of task:stimulus:density, task:stimulus:frequency, and task:density:frequency, a marginal three-way interaction (for two of three models) of stimulus:density:frequency, and the four-way interaction of task:stimulus:density:frequency. Additionally, all \(F\) and \(p\) values are very similar to each other across the three models.

The only difference in terms of significant versus non-significant effects between the three models is the three-way interaction of stimulus:density:frequency which is only significant for model 3 with \(F(1, 88.40) = 4.16\), \(p = .04\), and only reaches marginal significance for the other two models with \(p > .05\) and a very similar \(F\)-value.

LRT Results

It is instructive to compare those results with results obtained using the comparatively ‘worst’ method for obtaining \(p\)-value simplmeneted in afex, likelihood ratio tests. Likelihood ratio-tests should in principle deliver reasonable results for large data sets such as the current one, so we should expect not too many deviations. We again fit all four models, this time using method='LRT'.

m1lrt <- mixed(log_rt ~ task*stimulus*density*frequency + (stimulus*density*frequency|id)+
                 (task|item), fhch, method = "LRT", 
               control = lmerControl(optCtrl = list(maxfun = 1e6)))
m2lrt <- mixed(log_rt ~ task*stimulus*density*frequency + (stimulus*density*frequency|id)+
                 (task||item), fhch, method = "LRT", 
               control = lmerControl(optCtrl = list(maxfun = 1e6)), expand_re = TRUE)
m3lrt <- mixed(log_rt ~ task*stimulus*density*frequency + (stimulus*density*frequency||id)+
                 (task|item), fhch, method = "LRT", 
               control = lmerControl(optCtrl = list(maxfun = 1e6)), expand_re = TRUE)
m4lrt <- mixed(log_rt ~ task*stimulus*density*frequency + (stimulus*density*frequency||id)+
                 (task||item), fhch, method = "LRT", 
               control = lmerControl(optCtrl = list(maxfun = 1e6)), expand_re = TRUE)

Because the resulting mixed objects are of considerable size, we do not include the full objects, but only the resulting ANOVA tables and data.frames (nice_lrt is a list containing the result from calling nice on the objects, anova_lrt contains the result from calling anova).

Before considering the results, we again first consider the warnings emitted when fitting the models. Because methods 'LRT' and 'PB' fit one full_model and one restricted_model for each effect (i.e., term), there can be more warnings than for methods 'KR' and 'S' which only fit one model (the full_model). And this is exactly what happens. For m1lrt there are 11 convergence warnings, almost one per fitted model. However, none of those immediately invalidates the results. This is different for models 2 and 3 for both of which warnings indicate that nested model(s) provide better fit than full model. What this warning means is that the full_model does not provide a better fit than at least one of the restricted_model, which is mathematically impossible as the restricted_models are nested within the full model (i.e., they result from setting one or several parameters equal to 0, so the full_model can always provide an at least as good account as the restricted_models). Model 4 finally shows no warnings.

The following code produces a single output comparing models 1 and 4 next to each other. The results show basically the same pattern as obtained with the Satterthwaite approximation. Even the \(p\)-values are extremely similar to the \(p\)-values of the Satterthwaite models. The only ‘difference’ is that the stimulus:density:frequency three-way interaction is significant in each case now, although only barely so.

res_lrt <- cbind(nice_lrt[[1]], "  " = " ", 
                 nice_lrt[[4]][,-(1:2)])
colnames(res_lrt)[c(3,4,6,7)] <- paste0(
  rep(c("m1_", "m4_"), each =2), colnames(res_lrt)[c(3,4)])
res_lrt
##                             Effect df  m1_Chisq m1_p.value     m4_Chisq m4_p.value
## 1                             task  1 12.18 ***      .0005    12.43 ***      .0004
## 2                         stimulus  1 70.00 ***     <.0001    70.03 ***     <.0001
## 3                          density  1      0.01        .91         0.35        .55
## 4                        frequency  1      0.57        .45         0.54        .46
## 5                    task:stimulus  1 45.06 ***     <.0001    45.68 ***     <.0001
## 6                     task:density  1 15.50 ***     <.0001    17.43 ***     <.0001
## 7                 stimulus:density  1      0.82        .36         1.14        .29
## 8                   task:frequency  1 52.87 ***     <.0001    53.51 ***     <.0001
## 9               stimulus:frequency  1 45.44 ***     <.0001    50.45 ***     <.0001
## 10               density:frequency  1      0.11        .73         0.12        .73
## 11           task:stimulus:density  1 14.15 ***      .0002    14.59 ***      .0001
## 12         task:stimulus:frequency  1 73.40 ***     <.0001    77.83 ***     <.0001
## 13          task:density:frequency  1    5.59 *        .02       5.88 *        .02
## 14      stimulus:density:frequency  1    4.00 *        .05       3.92 *        .05
## 15 task:stimulus:density:frequency  1   9.91 **       .002     10.24 **       .001

We can also compare this with the results from model 3. Although the full_model cannot be the maximum-likelihood estimate (as it provides a worse than the density:frequency model), the difference seems to be minimal as it also shows exactly the same pattern as the other models.

nice_lrt[[2]]
## Mixed Model Anova Table (Type 3 tests, LRT-method)
## 
## Model: log_rt ~ task * stimulus * density * frequency + (stimulus * 
## Model:     density * frequency | id) + (task || item)
## Data: fhch
## Df full model: 55
##                             Effect df     Chisq p.value
## 1                             task  1 12.15 ***   .0005
## 2                         stimulus  1 70.00 ***  <.0001
## 3                          density  1      0.32     .57
## 4                        frequency  1      0.24     .63
## 5                    task:stimulus  1 45.55 ***  <.0001
## 6                     task:density  1 15.27 ***  <.0001
## 7                 stimulus:density  1      0.78     .38
## 8                   task:frequency  1 52.71 ***  <.0001
## 9               stimulus:frequency  1 45.54 ***  <.0001
## 10               density:frequency  1      0.00    >.99
## 11           task:stimulus:density  1 14.33 ***   .0002
## 12         task:stimulus:frequency  1 72.79 ***  <.0001
## 13          task:density:frequency  1    5.28 *     .02
## 14      stimulus:density:frequency  1    3.45 +     .06
## 15 task:stimulus:density:frequency  1   9.57 **    .002
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1

Summary of Results

Fortunately, the results from all models that actually produced results and converged without a critical warning (e.g., one critical warning is that a restricted_model provides a better fit than the full_model) agreed very strongly providing a high degree of confidence in the results. This might not be too surprising given the comparatively large number of total data points and the fact that each random effect grouping factor has a considerable number of levels (way above 20 for both participants and items). This also suggests that the convergence warnings are likely false positives; the models seem to have converged successfully to the maximum likelihood estimate, or at least to a value very near the maximum likelihood estimate. How further reducing the random effects structure (e.g., removing the random slopes for the highest interaction) affects the results is left as an exercise for the reader.

In terms of the significant findings, there are many that seem to be in line with the descriptive results described above. For example, the highly significant effect of task:stimulus:frequency with \(F(1, 190.61) = 109.33\), \(p < .0001\) (values from m2s), appears to be in line with the observation that the frequency effect appears to change its sign depending on the task:stimulus cell (with nonword and naming showing the opposite patterns than the other three conditions). Consequently, we start by investigating this interaction further below.

Follow-Up Analyses

Before investigating the significant interaction in detail it is a good idea to remind oneself what a significant interaction represents on a conceptual level; that one or multiple of the variables in the interaction moderate (i.e., affect) the effect of the other variable or variables. Consequently, there are several ways to investigate a significant interaction. Each of the involved variables can be seen as the moderating variables and each of the variables can be seen as the effect of interest. Which one of those possible interpretations is of interest in a given situation highly depends on the actual data and research question and multiple views can be ‘correct’ in a given situation.

In addition to this conceptual issue, there are also multiple technical ways to investigate a significant interaction. One approach not followed here is to split the data according to the moderating variables and compute the statistical model again for the splitted data sets with the effect variable(s) as remaining fixed effect. This approach, also called simple effects analysis, is, for example, recommended by Maxwell and Delaney (2004) as it does not assume variance homogeneity and is faithful to the data at each level. The approach taken here is to simply perform the test on the fitted full model. This approach assumes variance homogeneity (i.e., that the variances in all groups are homogeneous) and has the added benefit that it is computationally relatively simple. In addition, it can all be achieved using the framework provided by lsmeans (Lenth, 2015).

task:stimulus:frequency Interaction

Our interest in the beginning is on the effect of frequency by task:stimulus combination. So let us first look at the estimated marginal means os this effect. In lsmeans parlance these estimated means are called ‘least-square means’ because of historical reasons, but because of the lack of least-square estimation in mixed models we prefer the term estimated marginal means, or EMMs for short. Those can be obtained in the following way. To prevent lsmeans from calculating the df for the EMMs (which can be quite costly), we use asymptotic dfs (i.e., \(z\) values and tests). lsmeans requires to first specify the variable(s) one wants to treat as the effect variable(s) (here frequency) and then allows to specify condition variables.

lsm.options(lmer.df = "asymptotic") # also possible: 'satterthwaite', 'kenward-roger'
emm_i1 <- lsmeans(m2s, "frequency", by = c("stimulus", "task"))
## NOTE: Results may be misleading due to involvement in interactions
emm_i1
## stimulus = word, task = naming:
##  frequency       lsmean         SE df   asymp.LCL   asymp.UCL
##  low       -0.323260819 0.04154237 NA -0.40468237 -0.24183927
##  high      -0.381928410 0.04571233 NA -0.47152293 -0.29233389
## 
## stimulus = nonword, task = naming:
##  frequency       lsmean         SE df   asymp.LCL   asymp.UCL
##  low       -0.143143471 0.04584628 NA -0.23300052 -0.05328642
##  high       0.063627305 0.04965563 NA -0.03369594  0.16095054
## 
## stimulus = word, task = lexdec:
##  frequency       lsmean         SE df   asymp.LCL   asymp.UCL
##  low        0.023231980 0.03730914 NA -0.04989260  0.09635656
##  high      -0.039959811 0.04099368 NA -0.12030595  0.04038633
## 
## stimulus = nonword, task = lexdec:
##  frequency       lsmean         SE df   asymp.LCL   asymp.UCL
##  low        0.104057173 0.04115486 NA  0.02339514  0.18471921
##  high      -0.006455104 0.04451011 NA -0.09369331  0.08078310
## 
## Results are averaged over the levels of: density 
## Degrees-of-freedom method: asymptotic 
## Confidence level used: 0.95

The returned values are in line with our observation that the nonword and naming condition diverges from the other three. But is there actual evidence that the effect flips? We can test this using additional lsmeans functionality. Specifically, we first use the pairs function which provides us with a pairwise test of the effect of frequency in each task:stimulus combination. Then we need to combine the four tests within one object to obtain a familywise error rate correction which we do via contrast(..., by = NULL) (i.e., we revert the effect of the by statement from the earlier lsmeans call) and finally we select the holm method for controlling for family wise error rate (the Holm method is uniformly more powerful than the Bonferroni).

contrast(pairs(emm_i1), by = NULL, adjust = "holm")
##  contrast                            estimate         SE df z.ratio p.value
##  low - high,word,naming effect     0.05226737 0.01358051 NA   3.849  0.0001
##  low - high,nonword,naming effect -0.21317100 0.01446402 NA -14.738  <.0001
##  low - high,word,lexdec effect     0.05679157 0.01318314 NA   4.308  <.0001
##  low - high,nonword,lexdec effect  0.10411206 0.01392627 NA   7.476  <.0001
## 
## Results are averaged over the levels of: density 
## P value adjustment: holm method for 4 tests

We could also use a slightly more powerful method than the Holm method, method free from package multcomp, which takes the correlation of the model parameters into account:

summary(as.glht(contrast(pairs(emm_i1), by = NULL)), test = adjusted("holm"))
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Linear Hypotheses:
##                                       Estimate Std. Error z value Pr(>|z|)    
## low - high,word,naming effect == 0     0.05227    0.01358   3.849 0.000119 ***
## low - high,nonword,naming effect == 0 -0.21317    0.01446 -14.738  < 2e-16 ***
## low - high,word,lexdec effect == 0     0.05679    0.01318   4.308  3.3e-05 ***
## low - high,nonword,lexdec effect == 0  0.10411    0.01393   7.476  2.3e-13 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- holm method)

We see that the results are exactly as expected. In the nonword and naming condition we have a clear negative effect of frequency while in the other three conditions it is clearly positive. We could now also use the EMMs and retransform them onto the response scale (i.e., RTs) which we could use for plotting. Note that the \(p\)-values in this ouput are for the \(z\) test of whether or not a value is significantly above 0 on the log_rt-scale (i.e., above 1 second on the response scale). That seems not the most interesting test, but the output is interesting because of the EMMs and standard errors that could be used for printing.

emm_i1b <- summary(contrast(emm_i1, by = NULL))
emm_i1b[,c("estimate", "SE")] <- exp(emm_i1b[,c("estimate", "SE")])
emm_i1b
##  contrast                    estimate       SE df z.ratio p.value
##  low,word,naming effect     0.7903480 1.029560 NA  -8.076  <.0001
##  high,word,naming effect    0.7453141 1.033128 NA  -9.019  <.0001
##  low,nonword,naming effect  0.9463294 1.033081 NA  -1.695  0.1029
##  high,nonword,naming effect 1.1637019 1.035842 NA   4.305  <.0001
##  low,word,lexdec effect     1.1176306 1.029734 NA   3.796  0.0002
##  high,word,lexdec effect    1.0491907 1.032572 NA   1.498  0.1341
##  low,nonword,lexdec effect  1.2117142 1.032575 NA   5.991  <.0001
##  high,nonword,lexdec effect 1.0849390 1.034791 NA   2.384  0.0228
## 
## Results are averaged over the levels of: density 
## P value adjustment: fdr method for 8 tests

task:stimulus:density:frequency Interaction

As the last example, let us take a look at the significant four-way interaction of task:stimulus:density:frequency, \(F(1, 111.32) = 10.07\), \(p = .002\). Here we might be interested in a slightly more difficult question namely whether the density:frequency interaction varies across task:stimulus conditions. If we again look at the figures above, it appears that there is a difference between low:low and high:low in the nonword and lexdec condition, but not in the other conditions. We again first begin by obtaining the EMMs. However, the actual values are not interesting at the moment, we are basically only interested in the interaction for each task:stimulus condition. Therefore, we use the EMMs to create two consecutive contrasts, the first one for density and then for frequency using the fist contrast. Then we run a joint test conditional on the task:stimulus conditions.

emm_i2 <- lsmeans(m2s, c("density", "frequency"), by = c("stimulus", "task"))
con1 <- contrast(emm_i2, "trt.vs.ctrl1", by = c("frequency", "stimulus", "task")) # density
con2 <- contrast(con1, "trt.vs.ctrl1", by = c("contrast", "stimulus", "task")) 
test(con2, joint = TRUE, by = c("stimulus", "task"))
##  stimulus task   df1 df2      F p.value
##  word     naming   1  NA  0.105  0.7464
##  nonword  naming   1  NA  2.537  0.1112
##  word     lexdec   1  NA  1.790  0.1809
##  nonword  lexdec   1  NA 16.198  0.0001

This test indeed shows that the density:frequency interaction is only significant in the nonword and lexdec condition. Next, let’s see if we can unpack this interaction in a meaningful manner. For this we compare low:low and high:low in each of the four groups. And just for the sake of making the example more complex, we also compare low:high and high:high. This can simply be done by specifying a list of custom contrasts on the EMMs (or reference grid in lsmeans parlance) which can be passed again to the contrast function. The contrasts are a list where each element should sum to one (i.e., be a proper contrast) and be of length equal to the number of EMMs (although we have 16 EMMs in total, we only need to specify it for a length of four due to conditiong by c("stimulus", "task")). To control for the family wise error rate across all tests, we use contrast a second time on the result this time again specifying by = NULL to revert the effect of conditiong. Note that although we entered the variables into lsmeans in the same order as into our plot call above, the order of the four EMMs differs.

emm_i2
## stimulus = word, task = naming:
##  density frequency       lsmean         SE df   asymp.LCL   asymp.UCL
##  low     low       -0.313843596 0.04478638 NA -0.40162328 -0.22606391
##  high    low       -0.332678043 0.04081261 NA -0.41266929 -0.25268679
##  low     high      -0.377406551 0.04662971 NA -0.46879910 -0.28601400
##  high    high      -0.386450269 0.04721965 NA -0.47899907 -0.29390146
## 
## stimulus = nonword, task = naming:
##  density frequency       lsmean         SE df   asymp.LCL   asymp.UCL
##  low     low       -0.103989924 0.04996611 NA -0.20192171 -0.00605814
##  high    low       -0.182297019 0.04415685 NA -0.26884286 -0.09575118
##  low     high       0.078231630 0.05201926 NA -0.02372424  0.18018750
##  high    high       0.049022979 0.04947457 NA -0.04794540  0.14599136
## 
## stimulus = word, task = lexdec:
##  density frequency       lsmean         SE df   asymp.LCL   asymp.UCL
##  low     low        0.037141777 0.04035764 NA -0.04195775  0.11624130
##  high    low        0.009322184 0.03679361 NA -0.06279198  0.08143634
##  low     high      -0.045127696 0.04192675 NA -0.12730261  0.03704722
##  high    high      -0.034791927 0.04243206 NA -0.11795723  0.04837338
## 
## stimulus = nonword, task = lexdec:
##  density frequency       lsmean         SE df   asymp.LCL   asymp.UCL
##  low     low        0.044799574 0.04490982 NA -0.04322205  0.13282120
##  high    low        0.163314772 0.03986203 NA  0.08518664  0.24144291
##  low     high      -0.007277516 0.04669875 NA -0.09880539  0.08425036
##  high    high      -0.005632691 0.04446001 NA -0.09277271  0.08150732
## 
## Degrees-of-freedom method: asymptotic 
## Confidence level used: 0.95
# desired contrats:
des_c <- list(
  ll_hl = c(1, -1, 0, 0),
  lh_hh = c(0, 0, 1, -1)
  )
contrast(contrast(emm_i2, des_c), by = NULL, adjust = "holm")
##  contrast                        estimate         SE df z.ratio p.value
##  ll_hl,word,naming effect     0.014744733 0.01949044 NA   0.757  1.0000
##  lh_hh,word,naming effect     0.004954004 0.01990869 NA   0.249  1.0000
##  ll_hl,nonword,naming effect  0.074217381 0.02034362 NA   3.648  0.0018
##  lh_hh,nonword,naming effect  0.025118937 0.01977667 NA   1.270  1.0000
##  ll_hl,word,lexdec effect     0.023729879 0.01867913 NA   1.270  1.0000
##  lh_hh,word,lexdec effect    -0.014425482 0.01882784 NA  -0.766  1.0000
##  ll_hl,nonword,lexdec effect -0.122604912 0.01945809 NA  -6.301  <.0001
##  lh_hh,nonword,lexdec effect -0.005734539 0.01870550 NA  -0.307  1.0000
## 
## P value adjustment: holm method for 8 tests

In contrast to our expectation, the results show two significant effects and not only one. In line with our expectations, in the nonword and lexdec condition the EMM of low:high is smaller than the EMM for high:high, \(z = -6.30\), \(p < .0001\). However, in the nonword and naming condition we found the opposite pattern; the EMM of low:high is larger than the EMM for high:high, \(z = 3.65\), \(p = .002\). For all other effects \(|z| < 1.3\), \(p > .99\). In addition, there is no difference between low:high and high:high in any condition.

References

  • Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language, 68(3), 255-278. https://doi.org/10.1016/j.jml.2012.11.001
  • Bretz, F., Hothorn, T., & Westfall, P. H. (2011). Multiple comparisons using R. Boca Raton, FL: CRC Press. https://CRAN.R-project.org/package=multcomp
  • Freeman, E., Heathcote, A., Chalmers, K., & Hockley, W. (2010). Item effects in recognition memory for words. Journal of Memory and Language, 62(1), 1-18. https://doi.org/10.1016/j.jml.2009.09.004
  • Lenth, R. V. (2015). lsmeans: Least-Squares Means. R package version 2.16-4. https://CRAN.R-project.org/package=lsmeans
  • Maxwell, S. E., & Delaney, H. D. (2004). Designing experiments and analyzing data: a model-comparisons perspective. Mahwah, N.J.: Lawrence Erlbaum Associates.
afex/inst/doc/afex_mixed_example.Rmd0000644000176200001440000006772313111540031017213 0ustar liggesusers--- title: "Mixed Model Reanalysis of RT data" author: "Henrik Singmann" date: "`r Sys.Date()`" show_toc: true output: knitr:::html_vignette: toc: yes vignette: > %\VignetteIndexEntry{Mixed Model Example Analysis: Reanalysis of Freeman et al. (2010)} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r set-options, echo=FALSE, cache=FALSE} options(width = 90) ``` ## Overview This documents reanalysis response time data from an Experiment performed by Freeman, Heathcote, Chalmers, and Hockley (2010) using the mixed model functionality of __afex__ implemented in function `mixed` followed by post-hoc tests using package __lsmeans__ (Lenth, 2015). After a brief description of the data set and research question, the code and results are presented. ## Description of Experiment and Data The data are lexical decision and word naming latencies for 300 words and 300 nonwords from 45 participants presented in Freeman et al. (2010). The 300 items in each `stimulus` condition were selected to form a balanced $2 \times 2$ design with factors neighborhood `density` (low versus high) and `frequency` (low versus high). The `task` was a between subjects factor: 25 participants worked on the lexical decision task and 20 participants on the naming task. After excluding erroneous responses each participants responded to between 135 and 150 words and between 124 and 150 nonwords. We analyzed log RTs which showed an approximately normal picture. ## Data and R Preperation We start with loading some packages we will need throughout this example. For data manipulation we will be using the `dplyr` and `tidyr` packages from the [`tidyverse`](http://tidyverse.org/). A thorough introduction to these packages is beyond this example, but well worth it, and can be found in ['R for Data Science'](http://r4ds.had.co.nz/) by Wickham and Grolemund. For plotting we will be diverging from the `tidyverse` and use `lattice` instead. In my opinion `lattice` provides the best combination of expressive power and abstraction. Specifically, like in base graph, we can fully decide what gets plotted. After loading the packages, we will load the data (which comes with `afex`), remove the errors, and take a look at the variables in the data. ```{r message=FALSE, warning=FALSE} require(afex) # needed for ANOVA, lsmeans is loaded automatically. require(dplyr) # for working with data frames require(tidyr) # for transforming data frames from wide to long and the other way round. require(multcomp) # for advanced control for multiple testing/Type 1 errors. require(lattice) # for plots require(latticeExtra) # for combining lattice plots, etc. lattice.options(default.theme = standard.theme(color = FALSE)) # black and white lattice.options(default.args = list(as.table = TRUE)) # better ordering data("fhch2010") # load fhch <- droplevels(fhch2010[ fhch2010$correct,]) # remove errors str(fhch2010) # structure of the data ``` To make sure our expectations about the data match the data we use some `dplyr` magic to confirm the number of participants per condition and items per participant. ```{r} ## are all participants in only one task? fhch2010 %>% group_by(id) %>% summarise(task = n_distinct(task)) %>% as.data.frame() %>% {.$task == 1} %>% all() ## participants per condition: fhch2010 %>% group_by(id) %>% summarise(task = first(task)) %>% ungroup() %>% group_by(task) %>% summarise(n = n()) ## number of different items per participant: fhch2010 %>% group_by(id, stimulus) %>% summarise(items = n_distinct(item)) %>% ungroup() %>% group_by(stimulus) %>% summarise(min = min(items), max = max(items), mean = mean(items)) ``` Before running the analysis we should make sure that our dependent variable looks roughly normal. To compare `rt` with `log_rt` within the same graph using `lattice` we first need to transform the data from the wide format (where both rt types occupy one column each) into the long format (in which the two rt types are combined into a single column with an additional indicator column). To do so we use `tidyr::gather`. Then we simply call the `histogram` function on the new `data.frame` and make a few adjustments to the defaults to obtain a nice looking output. The plot shows that `log_rt` looks clearly more normal than `rt`, although not perfectly so. An interesting exercise could be to rerun the analysis below using a transformation that provides an even better 'normalization'. ```{r, fig.width=7, fig.height=4} fhch_long <- fhch %>% gather("rt_type", "rt", rt, log_rt) histogram(~rt|rt_type, fhch_long, breaks = "Scott", type = "density", scale = list(x = list(relation = "free"))) ``` ## Descriptive Analysis The main factors in the experiment were the between-subjects factor `task` (`naming` vs. `lexdec`), and the within-subjects factors `stimulus` (`word` vs. `nonword`), `density` (`low` vs. `high`), and `frequency` (`low` vs. `high`). Before running an analysis it is a good idea to visually inspect the data to gather some expectations regarding the results. Should the statistical results dramatically disagree with the expectations this suggests some type of error along the way (e.g., model misspecification) or at least encourages a thorough check to make sure everything is correct. We first begin by plotting the data aggregated by-participant. In each plot we plot the raw data in the background. To make the individual data points visible we add some `jitter` on the x-axis and choose `pch` and `alpha` values such that we see where more data points are (i.e., where plot overlaps it is darker). Then we add the mean as a x in a circle. Both of this is done in the same call to `xyplot` using a custom panel function. Finally, we combine this plot with a simple boxplot using `bwplot`. ```{r, fig.width=7, fig.height=6} agg_p <- fhch %>% group_by(id, task, stimulus, density, frequency) %>% summarise(mean = mean(log_rt)) %>% ungroup() xyplot(mean ~ density:frequency|task+stimulus, agg_p, jitter.x = TRUE, pch = 20, alpha = 0.5, panel = function(x, y, ...) { panel.xyplot(x, y, ...) tmp <- aggregate(y, by = list(x), mean) panel.points(tmp$x, tmp$y, pch = 13, cex =1.5) }) + bwplot(mean ~ density:frequency|task+stimulus, agg_p, pch="|", do.out = FALSE) ``` Now we plot the same data but aggregated across items: ```{r, fig.width=7, fig.height=6} agg_i <- fhch %>% group_by(item, task, stimulus, density, frequency) %>% summarise(mean = mean(log_rt)) %>% ungroup() xyplot(mean ~ density:frequency|task+stimulus, agg_i, jitter.x = TRUE, pch = 20, alpha = 0.2, panel = function(x, y, ...) { panel.xyplot(x, y, ...) tmp <- aggregate(y, by = list(x), mean) panel.points(tmp$x, tmp$y, pch = 13, cex =1.5) }) + bwplot(mean ~ density:frequency|task+stimulus, agg_i, pch="|", do.out = FALSE) ``` These two plots show a very similar pattern and suggest several things: * Responses to `nonwords` appear slower than responses to `words`, at least for the `naming` task. * `lexdec` responses appear to be slower than `naming` responses, particularly in the `word` condition. * In the `nonword` and `naming` condition we see a clear effect of `frequency` with slower responses to `high` than `low` `frequency` words. * In the `word` conditions the `frequency` pattern appears to be in the opposite direction to the pattern described in the previous point: faster responses to `low` `frequency` than to `high` `frequency` words. * `density` appears to have no effect, perhaps with the exception of the `nonword` `lexdec` condition. ## Model Setup To set up a mixed model it is important to identify which factors vary within which grouping factor generating random variability (i.e., grouping factors are sources of stochastic variability). The two grouping factors are participants (`id`) and items (`item`). The within-participant factors are `stimulus`, `density`, and `frequency`. The within-item factor is `task`. The 'maximal model' (Barr, Levy, Scheepers, and Tily, 2013) therefore is the model with by-participant random slopes for `stimulus`, `density`, and `frequency` and their interactions and by-item random slopes for `task`. Occasionally, the maximal model does not converge successfully. In this case a good first approach for dealing with this problem is to remove the corelations among the random terms. In our example, there are two sets of correlations, one for each random effect grouping variable. Consequently, we can build four model that have the maximal structure in terms of random-slopes and only differ in which correlations among random terms are calculated: 1. With all correlations. 2. No correlation among by-item random effects (i.e., no correlation between random intercept and `task` random slope). 3. No correlation among by-participant random effect terms (i.e., no correlation among random slopes themselves and between the random slopes and the random intercept). 4. No correlation among either random grouping factor. The next decision to be made is which method to use for obtaining $p$-values. The default method is `KR` (=Kenward-Roger) which provides the best control against anti-conservative results. However, `KR` needs quite a lot of RAM, especially with complicated random effect structures and large data sets. As in this case we have both, relatively large data (i.e., many levels on each random effect, especially the item random effect) and a complicated random effect structure, it seems a reasonable decision to choose another method. The second 'best' method (in terms of controlling for Type I errors) is the 'Satterthwaite' approximation, `method='S'`. It provides a similar control of Type I errors as the Kenward-Roger approximation and needs less RAM, however one downside is that it simply fails in some cases. ## Results ### Satterthwaite Results The following code fits the four models using the Satterthwaite method. To suppress random effects we use the `||` notation. Note that it is necessary to set `expand_re=TRUE` when suppressing random effects among variables that are entered as factors and not as numerical variables (as done here). Also note that `mixed` automatically uses appropriate contrast codings if factors are included in interactions (`contr.sum`) in contrast to the `R` default (which is `contr.treatment`). To make sure the estimation does not end prematurely we set the allowed number of function evaluations to a very high value (using `lmerControl`). ```{r, eval = FALSE} m1s <- mixed(log_rt ~ task*stimulus*density*frequency + (stimulus*density*frequency|id)+ (task|item), fhch, method = "S", control = lmerControl(optCtrl = list(maxfun = 1e6))) m2s <- mixed(log_rt ~ task*stimulus*density*frequency + (stimulus*density*frequency|id)+ (task||item), fhch, method = "S", control = lmerControl(optCtrl = list(maxfun = 1e6)), expand_re = TRUE) m3s <- mixed(log_rt ~ task*stimulus*density*frequency + (stimulus*density*frequency||id)+ (task|item), fhch, method = "S", control = lmerControl(optCtrl = list(maxfun = 1e6)), expand_re = TRUE) m4s <- mixed(log_rt ~ task*stimulus*density*frequency + (stimulus*density*frequency||id)+ (task||item), fhch, method = "S", control = lmerControl(optCtrl = list(maxfun = 1e6)), expand_re = TRUE) ``` As the estimation of these model may take some time, `afex` inlcudes the estimated models which can be loaded with the following code. Note that when using the `print` or `anova` method for `mixed` objects, the `warnings` emitted during estimation of the model by `lmer` will be printed again. So there is no downside of loading the already estimated models. We then inspect the four results. ```{r} load(system.file("extdata/", "freeman_models.rda", package = "afex")) m1s m2s m3s m4s ``` Before looking at the results we can see that for models 1 and 2, `lmer` emmited a warning that the model failed to converge. These warnings do not necessarily mean that the results cannot be used. As we will see below, model 2 (`m2s`) produces essentially the same results as models 3 and 4 suggesting that this warning is indeed a false positive. However, the results also show that estimating the Satterthwaite approximation failed for `m1s`, we have no denominator degrees of freedom and no $p$-values. If this happens, we can only try another method or a reduced model. Models 2 to 4 produce results and the results are extremely similar across models. A total of 9 or 10 effects reached significance. We found main effects for `task` and `stimulus`, two-way interactions of `task:stimulus`, `task:density`, `task:frequency`, and `stimulus:frequency`, three-way interactions of `task:stimulus:density`, `task:stimulus:frequency`, and `task:density:frequency`, a marginal three-way interaction (for two of three models) of `stimulus:density:frequency`, and the four-way interaction of `task:stimulus:density:frequency`. Additionally, all $F$ and $p$ values are very similar to each other across the three models. The only difference in terms of significant versus non-significant effects between the three models is the three-way interaction of `stimulus:density:frequency` which is only significant for model 3 with $F(1, 88.40) = 4.16$, $p = .04$, and only reaches marginal significance for the other two models with $p > .05$ and a very similar $F$-value. ### LRT Results It is instructive to compare those results with results obtained using the comparatively 'worst' method for obtaining $p$-value simplmeneted in `afex`, likelihood ratio tests. Likelihood ratio-tests should in principle deliver reasonable results for large data sets such as the current one, so we should expect not too many deviations. We again fit all four models, this time using `method='LRT'`. ```{r, eval = FALSE} m1lrt <- mixed(log_rt ~ task*stimulus*density*frequency + (stimulus*density*frequency|id)+ (task|item), fhch, method = "LRT", control = lmerControl(optCtrl = list(maxfun = 1e6))) m2lrt <- mixed(log_rt ~ task*stimulus*density*frequency + (stimulus*density*frequency|id)+ (task||item), fhch, method = "LRT", control = lmerControl(optCtrl = list(maxfun = 1e6)), expand_re = TRUE) m3lrt <- mixed(log_rt ~ task*stimulus*density*frequency + (stimulus*density*frequency||id)+ (task|item), fhch, method = "LRT", control = lmerControl(optCtrl = list(maxfun = 1e6)), expand_re = TRUE) m4lrt <- mixed(log_rt ~ task*stimulus*density*frequency + (stimulus*density*frequency||id)+ (task||item), fhch, method = "LRT", control = lmerControl(optCtrl = list(maxfun = 1e6)), expand_re = TRUE) ``` Because the resulting `mixed` objects are of considerable size, we do not include the full objects, but only the resulting ANOVA tables and `data.frames` (`nice_lrt` is a list containing the result from calling `nice` on the objects, `anova_lrt` contains the result from calling `anova`). Before considering the results, we again first consider the warnings emitted when fitting the models. Because methods `'LRT'` and `'PB'` fit one `full_model` and one `restricted_model` for each effect (i.e., term), there can be more warnings than for methods `'KR'` and `'S'` which only fit one model (the `full_model`). And this is exactly what happens. For `m1lrt` there are 11 convergence warnings, almost one per fitted model. However, none of those immediately invalidates the results. This is different for models 2 and 3 for both of which warnings indicate that `nested model(s) provide better fit than full model`. What this warning means is that the `full_model` does not provide a better fit than at least one of the `restricted_model`, which is mathematically impossible as the `restricted_models` are nested within the full model (i.e., they result from setting one or several parameters equal to 0, so the `full_model` can always provide an at least as good account as the `restricted_models`). Model 4 finally shows no warnings. The following code produces a single output comparing models 1 and 4 next to each other. The results show basically the same pattern as obtained with the Satterthwaite approximation. Even the $p$-values are extremely similar to the $p$-values of the Satterthwaite models. The only 'difference' is that the `stimulus:density:frequency` three-way interaction is significant in each case now, although only barely so. ```{r} res_lrt <- cbind(nice_lrt[[1]], " " = " ", nice_lrt[[4]][,-(1:2)]) colnames(res_lrt)[c(3,4,6,7)] <- paste0( rep(c("m1_", "m4_"), each =2), colnames(res_lrt)[c(3,4)]) res_lrt ``` We can also compare this with the results from model 3. Although the `full_model` cannot be the maximum-likelihood estimate (as it provides a worse than the `density:frequency` model), the difference seems to be minimal as it also shows exactly the same pattern as the other models. ```{r} nice_lrt[[2]] ``` ### Summary of Results Fortunately, the results from all models that actually produced results and converged without a critical warning (e.g., one critical warning is that a `restricted_model` provides a better fit than the `full_model`) agreed very strongly providing a high degree of confidence in the results. This might not be too surprising given the comparatively large number of total data points and the fact that each random effect grouping factor has a considerable number of levels (way above 20 for both participants and items). This also suggests that the convergence warnings are likely false positives; the models seem to have converged successfully to the maximum likelihood estimate, or at least to a value very near the maximum likelihood estimate. How further reducing the random effects structure (e.g., removing the random slopes for the highest interaction) affects the results is left as an exercise for the reader. In terms of the significant findings, there are many that seem to be in line with the descriptive results described above. For example, the highly significant effect of `task:stimulus:frequency` with $F(1, 190.61) = 109.33$, $p < .0001$ (values from `m2s`), appears to be in line with the observation that the frequency effect appears to change its sign depending on the `task:stimulus` cell (with `nonword` and `naming` showing the opposite patterns than the other three conditions). Consequently, we start by investigating this interaction further below. ## Follow-Up Analyses Before investigating the significant interaction in detail it is a good idea to remind oneself what a significant interaction represents on a conceptual level; that one or multiple of the variables in the interaction moderate (i.e., affect) the effect of the other variable or variables. Consequently, there are several ways to investigate a significant interaction. Each of the involved variables can be seen as the moderating variables and each of the variables can be seen as the effect of interest. Which one of those possible interpretations is of interest in a given situation highly depends on the actual data and research question and multiple views can be 'correct' in a given situation. In addition to this conceptual issue, there are also multiple technical ways to investigate a significant interaction. One approach not followed here is to split the data according to the moderating variables and compute the statistical model again for the splitted data sets with the effect variable(s) as remaining fixed effect. This approach, also called _simple effects_ analysis, is, for example, recommended by Maxwell and Delaney (2004) as it does not assume variance homogeneity and is faithful to the data at each level. The approach taken here is to simply perform the test on the fitted full model. This approach assumes variance homogeneity (i.e., that the variances in all groups are homogeneous) and has the added benefit that it is computationally relatively simple. In addition, it can all be achieved using the framework provided by `lsmeans` (Lenth, 2015). ### task:stimulus:frequency Interaction Our interest in the beginning is on the effect of `frequency` by `task:stimulus` combination. So let us first look at the estimated marginal means os this effect. In `lsmeans` parlance these estimated means are called 'least-square means' because of historical reasons, but because of the lack of least-square estimation in mixed models we prefer the term estimated marginal means, or EMMs for short. Those can be obtained in the following way. To prevent `lsmeans` from calculating the *df* for the EMMs (which can be quite costly), we use asymptotic *df*s (i.e., $z$ values and tests). `lsmeans` requires to first specify the variable(s) one wants to treat as the effect variable(s) (here `frequency`) and then allows to specify condition variables. ```{r} lsm.options(lmer.df = "asymptotic") # also possible: 'satterthwaite', 'kenward-roger' emm_i1 <- lsmeans(m2s, "frequency", by = c("stimulus", "task")) emm_i1 ``` The returned values are in line with our observation that the `nonword` and `naming` condition diverges from the other three. But is there actual evidence that the effect flips? We can test this using additional `lsmeans` functionality. Specifically, we first use the `pairs` function which provides us with a pairwise test of the effect of `frequency` in each `task:stimulus` combination. Then we need to combine the four tests within one object to obtain a familywise error rate correction which we do via `contrast(..., by = NULL)` (i.e., we revert the effect of the `by` statement from the earlier `lsmeans` call) and finally we select the `holm` method for controlling for family wise error rate (the Holm method is uniformly more powerful than the Bonferroni). ```{r} contrast(pairs(emm_i1), by = NULL, adjust = "holm") ``` We could also use a slightly more powerful method than the Holm method, method `free` from package `multcomp`, which takes the correlation of the model parameters into account: ```{r} summary(as.glht(contrast(pairs(emm_i1), by = NULL)), test = adjusted("holm")) ``` We see that the results are exactly as expected. In the `nonword` and `naming` condition we have a clear negative effect of frequency while in the other three conditions it is clearly positive. We could now also use the EMMs and retransform them onto the response scale (i.e., RTs) which we could use for plotting. Note that the $p$-values in this ouput are for the $z$ test of whether or not a value is significantly above 0 on the `log_rt`-scale (i.e., above 1 second on the response scale). That seems not the most interesting test, but the output is interesting because of the EMMs and standard errors that could be used for printing. ```{r} emm_i1b <- summary(contrast(emm_i1, by = NULL)) emm_i1b[,c("estimate", "SE")] <- exp(emm_i1b[,c("estimate", "SE")]) emm_i1b ``` ### task:stimulus:density:frequency Interaction As the last example, let us take a look at the significant four-way interaction of `task:stimulus:density:frequency`, $F(1, 111.32) = 10.07$, $p = .002$. Here we might be interested in a slightly more difficult question namely whether the `density:frequency` interaction varies across `task:stimulus` conditions. If we again look at the figures above, it appears that there is a difference between `low:low` and `high:low` in the `nonword` and `lexdec` condition, but not in the other conditions. We again first begin by obtaining the EMMs. However, the actual values are not interesting at the moment, we are basically only interested in the interaction for each `task:stimulus` condition. Therefore, we use the EMMs to create two consecutive contrasts, the first one for `density` and then for `frequency` using the fist contrast. Then we run a joint test conditional on the `task:stimulus` conditions. ```{r} emm_i2 <- lsmeans(m2s, c("density", "frequency"), by = c("stimulus", "task")) con1 <- contrast(emm_i2, "trt.vs.ctrl1", by = c("frequency", "stimulus", "task")) # density con2 <- contrast(con1, "trt.vs.ctrl1", by = c("contrast", "stimulus", "task")) test(con2, joint = TRUE, by = c("stimulus", "task")) ``` This test indeed shows that the `density:frequency` interaction is only significant in the `nonword` and `lexdec` condition. Next, let's see if we can unpack this interaction in a meaningful manner. For this we compare `low:low` and `high:low` in each of the four groups. And just for the sake of making the example more complex, we also compare `low:high` and `high:high`. This can simply be done by specifying a list of custom contrasts on the EMMs (or reference grid in `lsmeans` parlance) which can be passed again to the `contrast` function. The contrasts are a `list` where each element should sum to one (i.e., be a proper contrast) and be of length equal to the number of EMMs (although we have 16 EMMs in total, we only need to specify it for a length of four due to conditiong by `c("stimulus", "task")`). To control for the family wise error rate across all tests, we use `contrast` a second time on the result this time again specifying `by = NULL` to revert the effect of conditiong. Note that although we entered the variables into `lsmeans` in the same order as into our plot call above, the order of the four EMMs differs. ```{r} emm_i2 # desired contrats: des_c <- list( ll_hl = c(1, -1, 0, 0), lh_hh = c(0, 0, 1, -1) ) contrast(contrast(emm_i2, des_c), by = NULL, adjust = "holm") ``` In contrast to our expectation, the results show two significant effects and not only one. In line with our expectations, in the `nonword` and `lexdec` condition the EMM of `low:high` is smaller than the EMM for `high:high`, $z = -6.30$, $p < .0001$. However, in the `nonword` and `naming` condition we found the opposite pattern; the EMM of `low:high` is larger than the EMM for `high:high`, $z = 3.65$, $p = .002$. For all other effects $|z| < 1.3$, $p > .99$. In addition, there is no difference between `low:high` and `high:high` in any condition. ## References * Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: Keep it maximal. _Journal of Memory and Language_, 68(3), 255-278. https://doi.org/10.1016/j.jml.2012.11.001 * Bretz, F., Hothorn, T., & Westfall, P. H. (2011). _Multiple comparisons using R_. Boca Raton, FL: CRC Press. https://CRAN.R-project.org/package=multcomp * Freeman, E., Heathcote, A., Chalmers, K., & Hockley, W. (2010). Item effects in recognition memory for words. _Journal of Memory and Language_, 62(1), 1-18. https://doi.org/10.1016/j.jml.2009.09.004 * Lenth, R. V. (2015). _lsmeans: Least-Squares Means_. R package version 2.16-4. https://CRAN.R-project.org/package=lsmeans * Maxwell, S. E., & Delaney, H. D. (2004). _Designing experiments and analyzing data: a model-comparisons perspective_. Mahwah, N.J.: Lawrence Erlbaum Associates. ```{r, echo=FALSE, eval = FALSE} ### OLD STUFF BELOW. PLEASE IGNORE. load("freeman_models.rda") load("../freeman_models_all.rda") m1lrt$restricted_models <- list(NULL) m2lrt$restricted_models <- list(NULL) m3lrt$restricted_models <- list(NULL) m4lrt$restricted_models <- list(NULL) save(m1lrt, file = "freeman_models1.rda", compress = "xz") save(m1s, m2s, m3s, m4s, m1lrt, m2lrt, m3lrt, m4lrt, file = "freeman_models.rda", compress = "xz") anovas_lrt <- lapply(list(m1lrt, m2lrt, m3lrt, m4lrt), anova) nice_lrt <- lapply(list(m1lrt, m2lrt, m3lrt, m4lrt), nice) res_lrt <- cbind(nice_lrt[[1]], " " = " ", nice_lrt[[2]][,-(1:2)], " " = " ", nice_lrt[[3]][,-(1:2)], " " = " ", nice_lrt[[4]][,-(1:2)]) colnames(res_lrt)[c(3,4,6,7, 9,10, 12,13)] <- paste0( rep(c("m1_", "m2_", "m3_","m4_"), each =2), colnames(res_lrt)[c(3,4)]) ## warnings: m1s # fails and 1 warning m2s # 1 warning m3s # 0 warnings m4s # 0 warnings m1lrt # 11 warnings m2lrt # 1 nested model(s) provide better, 7 other warnings m3lrt # 7 nested models provide better fit, 9 other warnings m4lrt # 0 warnings cbind(nice_lrt[[1]]$Effect, do.call("cbind", lapply(nice_lrt, function(x) x[,3:4]))) save(m1s, m2s, m3s, m4s, anovas_lrt, nice_lrt,file = "freeman_models.rda", compress = "xz") save(m1s, m2s, m3s, m4s, m1lrt, m2lrt, m3lrt, m4lrt, file = "freeman_models2.rda", compress = "bzip2") tools::resaveRdaFiles("freeman_models1.rda") ``` afex/inst/doc/afex_anova_example.Rmd0000644000176200001440000003151013111546363017210 0ustar liggesusers--- title: "ANOVA and Post-Hoc Contrasts: Reanalysis of Singmann and Klauer (2011)" author: "Henrik Singmann" date: "`r Sys.Date()`" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{ANOVA and Post-Hoc Contrasts: Reanalysis of Singmann and Klauer (2011)} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r set-options, echo=FALSE, cache=FALSE} options(width = 90) ``` # Overview This documents reanalysis a dataset from an Experiment performed by Singmann and Klauer (2011) using the ANOVA functionality of __afex__ followed by post-hoc tests using package __lsmeans__ (Lenth, 2015). After a brief description of the dataset and research question, the code and results are presented. # Description of Experiment and Data Singmann and Klauer (2011) were interested in whether or not conditional reasoning can be explained by a single process or whether multiple processes are necessary to explain it. To provide evidence for multiple processes we aimed to establish a double dissociation of two variables: instruction type and problem type. Instruction type was manipulated between-subjects, one group of participants received deductive instructions (i.e., to treat the premises as given and only draw necessary conclusions) and a second group of participants received probabilistic instructions (i.e., to reason as in an everyday situation; we called this "inductive instruction" in the manuscript). Problem type consisted of two different orthogonally crossed variables that were manipulated within-subjects, validity of the problem (formally valid or formally invalid) and plausibility of the problem (inferences which were consisted with the background knowledge versus problems that were inconsistent with the background knowledge). The critical comparison across the two conditions was among problems which were valid and implausible with problems that were invalid and plausible. For example, the next problem was invalid and plausible: > If a person is wet, then the person fell into a swimming pool. > A person fell into a swimming pool. > How valid is the conclusion/How likely is it that the person is wet? For those problems we predicted that under deductive instructions responses should be lower (as the conclusion does not necessarily follow from the premises) as under probabilistic instructions. For the valid but implausible problem, an example is presented next, we predicted the opposite pattern: > If a person is wet, then the person fell into a swimming pool. > A person is wet. > How valid is the conclusion/How likely is it that the person fell into a swimming pool? Our study also included valid and plausible and invalid and implausible problems. In contrast to the analysis reported in the manuscript, we initially do not separate the analysis into affirmation and denial problems, but first report an analysis on the full set of inferences, MP, MT, AC, and DA, where MP and MT are valid and AC and DA invalid. We report a reanalysis of our Experiment 1 only. Note that the factor `plausibility` is not present in the original manuscript, there it is a results of a combination of other factors. # Data and R Preperation ```{r message=FALSE, warning=FALSE} require(afex) # needed for ANOVA, lsmeans is loaded automatically. require(multcomp) # for advanced control for multiple testing/Type 1 errors. require(lattice) # for plots lattice.options(default.theme = standard.theme(color = FALSE)) # black and white lattice.options(default.args = list(as.table = TRUE)) # better ordering ``` ```{r} data(sk2011.1) str(sk2011.1) ``` An important feature in the data is that each participant provided two responses for each cell of the design (the content is different for each of those, each participant saw all four contents). These two data points will be aggregated automatically by `afex`. ```{r} with(sk2011.1, table(inference, id, plausibility)) ``` # ANOVA To get the full ANOVA table for the model, we simply pass it to `aov_ez` (`aov_car` or `aov4` would be alternatives producing the same results) using the design as described above. We save the returned object for further analysis. ```{r} a1 <- aov_ez("id", "response", sk2011.1, between = "instruction", within = c("inference", "plausibility")) a1 # the default print method prints a data.frame produced by nice ``` As mentioned before, the two responses per cell of the design and participants are aggregated for the analysis as indicated by the warning message. Furthermore, the degrees of freedom are Greenhouse-Geisser corrected per default for all effects involving `inference`, as `inference` is a within-subject factor with more than two levels (i.e., MP, MT, AC, & DA). In line with our expectations, the three-way interaction is significant. The object printed per default for `afex_aov` objects (produced by `nice`) can also be printed nicely using `knitr`: ```{r, results='asis', } knitr::kable(nice(a1)) ``` Alternatively, the `anova` method for `afex_aov` objects returns a `data.frame` of class `anova` that can be passed to, for example, `xtable` for nice formatting: ```{r, results='asis'} print(xtable::xtable(anova(a1), digits = c(rep(2, 5), 3, 4)), type = "html") ``` # Post-Hoc Contrasts and Plotting To further analyze the data we need to pass it to package `lsmeans`, a package that offers great functionality for both plotting and contrasts of all kind. A lot of information on `lsmeans` can be obtained in [its vignette](https://CRAN.R-project.org/package=lsmeans/vignettes/using-lsmeans.pdf). `lsmeans` can work with `afex_aov` objects directly as __afex__ comes with the necessary methods for the generic functions defined in `lsmeans`. `lsmeans` uses the ANOVA model estimated via base R's `aov` function that is part of an `afex_aov` object. ## Some First Contrasts ### Main Effects Only This object can now be passed to `lsmeans`, for example to obtain the marginal means of the four inferences: ```{r} m1 <- lsmeans(a1, ~ inference) m1 ``` This object can now also be used to compare whether or not there are differences between the levels of the factor: ```{r} pairs(m1) ``` To obtain more powerful p-value adjustments, we can furthermore pass it to `multcomp` (Bretz, Hothorn, & Westfall, 2011): ```{r} summary(as.glht(pairs(m1)), test=adjusted("free")) ``` ### A Simple interaction We could now also be interested in the marginal means of the inferences across the two instruction types. `lsmeans` offers two ways to do so. The first splits the contrasts across levels of the factor. ```{r} m2 <- lsmeans(a1, ~ inference|instruction) m2 ``` Consequently test are also only performed within each level: ```{r} pairs(m2) ``` The second version treats all factor combinations together, producing a considerably larger number of pairwise comparisons: ```{r} m3 <- lsmeans(a1, ~ inference:instruction) m3 pairs(m3) ``` ### Running Custom Contrasts Objects returned from `lsmeans` can also be used to test specific contrasts. For this, we can simply create a list, where each element corresponds to one contrasts. A contrast is defined as a vector of constants on the reference grid (i.e., the object returned from `lsmeans`, here `m3`). For example, we might be interested in whether there is a difference between the valid and invalid inferences in each of the two conditions. ```{r} c1 <- list( v_i.ded = c(0.5, 0.5, -0.5, -0.5, 0, 0, 0, 0), v_i.prob = c(0, 0, 0, 0, 0.5, 0.5, -0.5, -0.5) ) contrast(m3, c1, adjust = "holm") summary(as.glht(contrast(m3, c1)), test =adjusted("free")) ``` The results can be interpreted as in line with expectations. Responses are larger for valid than invalid problems in the deductive, but not the probabilistic condition. ## Plotting Function `lsmip` from package `lsmeans` can be used for plotting the data directly from an `afex_aov` object. As said initially, we are interested in the three-way interaction of instruction with inference, plausibility, and instruction. A plot of this interaction could be the following: ```{r fig.width=7.5, fig.height=4} lsmip(a1, instruction ~ inference|plausibility) ``` # Replicate Analysis from Singmann and Klauer (2011) As this plot is not very helpful, we now fit a new ANOVA model in which we separate the data in affirmation and denial inferences, as done in the original manuscript and plot the data then a second time. ```{r} a2 <- aov_ez("id", "response", sk2011.1, between = "instruction", within = c("validity", "plausibility", "what")) a2 ``` Then we plot the data from this ANOVA. ```{r fig.width=7.5, fig.height=4} lsmip(a2, ~instruction ~ plausibility+validity|what, scales = list(x=list( at = 1:4, labels = c("pl:v", "im:v", "pl:i", "im:i") ))) ``` We see the critical predicted cross-over interaction in the left of those two graphs. For valid but implausible problems (`im:v`) deductive responses are larger than probabilistic responses. The opposite is true for invalid but plausible problems (`pl:i`). We now tests these differences at each of the four x-axis ticks in each plot using custom contrasts (`diff_1` to `diff_4`). Furthermore, we test for a validity effect and plausibility effect in both conditions. ```{r} (m4 <- lsmeans(a2, ~instruction+plausibility+validity|what)) c2 <- list( diff_1 = c(1, -1, 0, 0, 0, 0, 0, 0), diff_2 = c(0, 0, 1, -1, 0, 0, 0, 0), diff_3 = c(0, 0, 0, 0, 1, -1, 0, 0), diff_4 = c(0, 0, 0, 0, 0, 0, 1, -1), val_ded = c(0.5, 0, 0.5, 0, -0.5, 0, -0.5, 0), val_prob = c(0, 0.5, 0, 0.5, 0, -0.5, 0, -0.5), plau_ded = c(0.5, 0, -0.5, 0, -0.5, 0, 0.5, 0), plau_prob = c(0, 0.5, 0, -0.5, 0, 0.5, 0, -0.5) ) contrast(m4, c2, adjust = "holm") ``` As the resulting eight contrasts have different numbers of degrees-of-freedom, we can only pass them to `multcomp` in small batches. This gives us more powerful Type 1 error corrections but overall a reduced correction as we now control for three families of tests (i.e., overall Type 1 error probability of .15). ```{r} summary(as.glht(contrast(m4, c2[1:4])), test =adjusted("free")) summary(as.glht(contrast(m4, c2[5:6])), test =adjusted("free")) summary(as.glht(contrast(m4, c2[7:8])), test =adjusted("free")) ``` The pattern for the affirmation problems is in line with the expectations: We find the predicted differences between the instruction types for valid and implausible (`diff_2`) and invalid and plausible (`diff_3`) and the predicted non-differences for the other two problems (`diff_1` and `diff_4`). Furthermore, we find a validity effect in the deductive but not in the probabilistic condition. Likewise, we find a plausibility effect in the probabilistic but not in the deductive condition. # Some Cautionary Notes * While the df of the ANOVA tables are Greenhouse-Geisser corrected per default for within-subject factors with more than two levels, this is not the case for post-hoc tests or contrasts using `lsmeans`. The contrasts use uncorrected degrees of freedom that are Satterthwaite approximated. This most likely produces anti-conservative tests if compound symmetry/sphericity is violated. * For unbalanced samples, `aov` is usually not the correct choise. This is why the test of effects is based on `car::Anova`. However, for `lsmeans` we need to use `aov` models. However, `lsmeans` offers the option to weight the marginal means differently in case of different group sizes (i.e., unbalanced data). For example, it offers the option that each group is assumed to be of equal size (i.e., `weights = "equal"`) or proportionally (i.e., `weights = "proportional"`). See help of `lsmeans` for more information. * Choosing the right correction for multiple testing can be difficult. In fact `multcomp` comes with an accompanying book (Bretz et al., 2011). If the degrees-of-freedom of all contrasts are identical using `multcomp`'s method `free` is more powerful than simply using the Bonferroni-Holm method. `free` is a generalization of the Bonferroni-Holm method that takes the correlations among the model parameters into account and uniformly more powerful. * For data sets with many within-subject factors, creating the `aov` object can take some time (i.e., compared to producing the ANOVA table which is usually very fast). Those objects are also comparatively large, often multiple MB. If speed is important and one is not interested in employing `lsmeans` one can set `return = "nice"` in the call to the ANOVA function to only receive the ANOVA table (this can also be done globally: `afex_options(return_aov = "nice")`). # References * Bretz, F., Hothorn, T., & Westfall, P. H. (2011). _Multiple comparisons using R_. Boca Raton, FL: CRC Press. https://CRAN.R-project.org/package=multcomp * Singmann, H., & Klauer, K. C. (2011). Deductive and inductive conditional inferences: Two modes of reasoning. _Thinking & Reasoning_, 17(3), 247-281. doi: 10.1080/13546783.2011.572718 * Lenth, R. V. (2015). _lsmeans: Least-Squares Means_. R package version 2.16-4. https://CRAN.R-project.org/package=lsmeans afex/tests/0000755000176200001440000000000012612773227012350 5ustar liggesusersafex/tests/testthat.R0000644000176200001440000000006412612773227014333 0ustar liggesuserslibrary(testthat) library(afex) test_check("afex") afex/tests/testthat/0000755000176200001440000000000013111654014014173 5ustar liggesusersafex/tests/testthat/lmm_old_object.rda0000644000176200001440000066111212642221125017644 0ustar liggesusers]EټKZ$ :( llBeL$bY&iMg> xg3+Y13S̙BwW KUWWտUիוzތb A PPE% пZ WT(O$M$TV\R/SoA#J\r{J~K;iϾni;}Aa^)rw}&%0_u?|x*zۧ$[7i;sS|Cm7PW<WKYs@:@uF8iQ=J۫IT%?QE^jJCX |e qxȳ"Oc >, wE+IvI . */@1mT=YXi_,ΐxCR8(Z(=M?iyBEDLw4lb@z" E)]Э.Gl.x$FH渄*gi|i,Cs#R5G(tZlf* YscD4]jԿtɹJ UQNN'[[:;[**oJd8_(d$E#K-ۤDk4W PYV-JF,53|KB8TjjLVM{n*%:)ScgVj3#ֶ$ DeuI c8Y6OVOK1.`RcHU0J4TUUP /7xD)&E[M՝KAw w5W=䆲8!$5W& p?s'#>8"D xA_i h;'@a⁡*eq;B᰻I ɠpx< (Wh.qݑ(Dÿ=Nj^n{{xYU*j r@APL $@`$pG$ @Hv' WrZ0ȝ;)FqみiBXH/&UU%gZRWqK_Hd&!ר֣Ӷ%&GTJR e"ZK)9.2|ˣMǃ-,$]G B⳥\*{!"6C3EEZ3:u 3ePK*Id,WU@9$1 FR@,쯍_v eyL{rBިfmV>T}н)99LVXn 3  AZ)5:V]i*@]m$De%iQ8I-RDP煚 -QÐ^"-V.ː.ƾȍ3 _£tMKEhR)K]] IS˩^gΠRbn((-KUB^ Q.@?"ɍF@F jT=1gUK U JpXb& "c &ZA"gTr|4V Xo\g-_S4E}&Jtp(fifr9j](3j`' h7ۥ@9$-)=.Tn-rE%9[J\U1FL}EFdaF[X$yYflng3A~wLj EB[.#M&dH kq2c2F/8`|rsS} ت,C[9kp|jb ׶VޔUF#qIcLt'Ion?x݁h;>`0o*Fyz3իuc:L0)֛ZگcC5l3= '6OK%m}GZx,])UZ8FSelYIcA: rk^(y"@P4GӨ8J~G ņt,˭-kñM?7344zeoZ+vQu,֒=U7,z}Q(/J.' 3RJזHۣ1+$F'KY(<{_y p2 j )Q$/T w(qAi bP>ų\MjG&@~m,5 ax( 8Lm7'K l' h8'~eRFB+og~r#DgW;[+Zyg+-OKw"HrYy*H F**p'F+.RX=9 @3}#TH%Qj!E@2EiA#7ʱX m(]TwY -?"3aVc@-קAݗNc!߳- H&jT1z %&8;0=,% O( XAϥOq$hM?)9,;E_lzܪu S- q 6H`nwx+xv3Adc#]8IMķl=Q **vuBۇImat`/P3eCPiqiAB\zvZ/UwϤNfl:d+?80SӴp:jߠX%1UA KLDs. McNI3Yʤ&U& ӗ}YVʆ%3d,-'s}[{ uXSڭT^AbrbɌfX2J:@.mj|pYlSd`:ÜhHwLVKpm]e4)zM ?m;1ݍPn.>cu轼B_ұjwZ Yh}%-;;DtV:q!|o С+Р[&ujyVQcw% ukp\ۆF5#`Z]Ɣ98ꖟ=.Ԍ_@T/WC^,^MO"V6Ǐr$%ƏF 5 1X^1PƙT^EcV?TF% pĽ"t䷣!Ptu5t0lP@5ע:Buu\ TZNGh{G#KI'RaVÉQ EP-:)cB!_ ͺхhRXvF \ zs` V#Km*ؠ݀~jkgT?1r+vu, 4[Cz~ylF(V~/-. fDϏ'0{ NM(OÉny ;b6ǢmrC]@M ƘZ14uj j/=>&HGzs:@f6OM:KӅ4ҋ]vNi}mS˩\75d$HX"i!h_@jLFv/TRYƥl -&W9;zɠmt2\T&q8Q50WvS9r5sG+딒7VZ5ƥtVt5WaR+c!`5~#OY{wf/EԗM,3+%j~'"t`k!L+l\|iү9Pg6%Z)u0-֔U3i!0Jz}B1fQx@;~'N_MgL:\>$l Q0,=Cuw0̣igƨ-/ %b+kTvtb1MKH3>FDpѧq踃A(_cXvCq1]Qm!ne5L:)yɧ|b|g 7mNUSa\j7V#=q3e=/S4ۨlU*8(ng)3E}0ZfhĸzbDv3-3m͏zc!!gxuY*Wʱ!ԗ4:He8_宲3y$]ĥX­dK Q혪| ,̖M/{("(0[ 1puͰZΠLRN^UQ/ APRf/)yi=RNY0oqM+THPWLGcAP"#?ʆ|:U 3&"u`L vEEL{/WށWu;{ōcVSI %N>ݥ4"R@n;D# (KœMȾSխFv}>wAÃ'whNM)UJMy>`U6czsO(%m\dpC @*{wv3U#4,NxQt≨`ă/heY1DMY̠Sa]ǝv.I344p\B0!xU}Zq͗R$wAޭkwVmn󊲚l}okv/Îqb.0ږݴ2hZC۪  GKY2uT'XTRd!Ggi`RGFJХk<CMWGu&%{ z'_UX)Aoꚜ.'(\WĦjqo++B&Մe@@ŜT{F & UUuj(Q#Z x IbԜte8?@.cNU/6])3g)˦d(Ee?]$ MxAɉ0Ws#h'Q G׊Wk>S&Ve8R2 BUF )^9Py͸bINJR氞t~M¯,EڛTQnh͐5ZNt@j~ ay5c 1&WS~DίQԔ%&Ϩ5NYp?04莍I&'4Zk 4DRb6Yގ> ~Xׅz8՘0L{ %VU~<E'!M3$iǓM| be}gV{%qt Bu}ֈSnjw4,nrd]X OWv{b:h1 ՛@=UEDO Vpۆ;)9:٦AU@RgR#k,6:ְ 44#AŁ@]ҥ\]eևDjWvVxRB- (eEc r"-FL=3J05wPc74viUo;L%Q~ј6E-"uѝ^`.oQ)1p^Ќ۝ rP@"_P~P: %N ѽsA7#b[hӛ=)Uٶ p( Z;h˚░  `^FޠD,ԔLv٤cĞ.Q|pnz`:}Wͪve5tJh K|z.§M,|C4RNhЉ۩ViKF[I,k+c_ +n׏3Zb(KKەEFoh @QT> J7Y\KP7_nsaW,rT,JSp̺ ~BޏbQ0Ne`E*d  #it\7骪vY+=[=4axEZ%xCsndǕN!hF%N̆dbxOâwZ/gT6.0F!;@WΥztz.` W2Ƹ %k{be|V%4:͞532V)p͈9P/&K}@g- Wc5~fc?=yHU;\GAӨ tKE KP|n_܊ QhPuIYGkKo;ڹUNOigM*z5Dtc[5qji4Pr&ĸQ[S%MOqDB9I!ȹ8q=h(NĢIPw,]U,jAJuU@1ٝ ռN}B_ ěeWZi&!TPiNzQ?CQ<ٖa;UWn#-%UF:.0b)z3O1&*vpܤ"0cX͉P$tРmE[հ! LJ >lemӱF,~P];4 +$%d:}FLtMzJ5B/:U4}+daU]OKRNXf? -Gb%LŚ :c#Pe|~9Z|7D?^Fme=Iva }Iчr80%/M #?Ғ@BA\ڽ^=UY $1Jj EzR0uD43 ɥ5ƈ1]'t#Ű>yu*$%i`I D[v)-VbgokW*kR;e:=NRnPg~/sq( %|S&%Lz"s sG{._`<4" g:naKJd/{%+DzBꗙ+o_Q"7t$_ns]BeNz@50#}EhJr4M~+5\pEվ]u)[B}[!{uqaQs4E}ٺ񣹭Uokty=]KHQVҩ$5J%#I3iڥA=i^S{u #NϽ#ytYw0ݼn޼n! y7+yֳK+o;$V씻* Jk:?+>o.ˮw1AK y-J"S%/e6W\xku5cź|l)Ӑ@HDм?`MhximiR_HU9Twv9tPHnm6rl/!Ub'RO9gmI)5޽$V O]F+ܡf89DsR -=n9rÏ荍p|곜zO7-jV_8A{ȘUU%7KN7;@T3>]M>ഖO*WF 2?:j ƪ,Ts,~ KT>4ԭL\M gb"|/N8òv3A$V(LzQGq|eƪ@ʼn(>9$50lkV̐ɼ e+y}@j{YVUF`ұU֚yd"ʝW*}\0 m6w?ii^_-Lv C;rq6w[_; tAn3Oc@]MEWoRrC%+*Я8"ivd^z@h`FX(ָZ\lr•J(R2R(ۗAT ݙP9jx`fBJܧ$,p6j/UJuL嗪/mLG+[je /}l=$DZmUd8疁>l%_C寍@瑛 [z ؽk z-GfYzn?iLMWL 9QҦ,cy3j2>4'/*aK\2R(gIQ*uϫBY JJgXT1`gרaX$ [F y>A4bZl&@-oV5Eop/ƁtHP &PZ/$0_12|,˜x}rcjHP(~7leNz@kaFzU;zK!bqlwiI[Kl{ŧ)QߍSifϥ>sDi҇MjA D8Y8{<{S):v@y9:^pſm,dŌd{8'[4I0B!SPdKhJFm:YֈJAKfIL}p1i[.zb5{}i EјR&TJ1cQz' B`[MXu6IGLת&iIBqB4.;fsI7BEOxn CJ=.dKAQ ]1`҃3 dɵGw/KKR[`t}źej?|*])MqAnL8*N`k0oǒs lLbfu^ d!Me d-{FIW>)%JI\ǫ" !5)oMJ{=n:&9]:blK׌rtL7f 'WmnK ".-X$٦`<C@Z9/6,d;(@HU> KgjT$M" íM$x8R$K`G?&_I϶т-/=ǚmyug^mK_}n~7|PUeϖo+M^nˇ-ku3|VJ9lSg-|]7Ζ~tn'=Җ9{[>jǵ]m ɹ?ϰpG }_?テ-Y#l_:myxҖ-j/ǖo/my^.-쇖bˇ|g[>5ߟt4[ӹj͖t-wtv|=7~nˇ mG>gԹ]?ﳟ~:ݖ]6cˇ:|c<$e^ss';^1_/;}0lcl"ǣl"gl"8XMDN#si8U K$˩T+-IA-UL{EWۨMmW If=^gvW*ХY{%T+Z*rwsWlts9sƢqem$C~.PĿ҆ÐYx?B돟C]q}z#uו:xzAWO}˭7K,=}:z M:Miy#<=>z\t_PYy :?BE_.v匸›StonoGyí߷kN)?R^oVkpN뽠 3 Յs*?\C}3kzcx(].=;'{Fs1vt0ʠ4 1Ts8`:+#G0P8'cI˟RCqlR /0T>Jv:c(2x7jazJ\Zy9xs.J&M%bv!]a;pi<ƺǖc]LX|32:ͱFM¦br;:Z(,Zr5ta{.]q*ȐdÄ awLA~dqTG0a F}0?r&yQ<%_`<=w8hVCVC5l+EQcu Ҷ e%-ŋB_}w*S_ wy^ ԯѫ.:cbci,~;Ƕ2F_|7C'3z|}~uzW:383u>~+ݸ ?ow.ְڥC{e:S*ĽN9|H}R}]\cйrǗOpq͑!Wt+v‘Dzp곷ސ=rO}͟/zԋ\x..~26pҷ.} g͏G[Cj.t6_pkpW?2Ԧ˃_* 7f7&w!}.nW;ܹ]^$zֽkt?ӮrԆOhǷ?FSM/Gw9ޯ;ܩۂGx Mm{~yk7~x۹|%Kwj:.txK9opLTL5@^N>5Vnr͆ԏ}rOrs9'D݂~J8gWbaPï0T_2.^WYk-s2׬Z߉pҒR_4ЏnCk~V|L9K|;e)WM+OUjp}Un]pIv}\pwd*3;Oy??qS;+xEN_;q]ȿ5z>?n=xmo+_΁Ꮳ,0>;W.tU~>{<"/Ľ*rSE{FO{Np S/Z{/3!}s^T|\=wo<ͦ ޯ9jٯ|B]eλ~[|2wuLZ}w`.{ӑW3B=%|w?Cӕfz|<O˥q'>}YMߨJtB72R_ ڑjMkjWnPs=]xۏ8qU7+-S٥w3FQLcb5Z{'0'0&M]𷘺pi/)Hl,.9s9b$ 2?ko奝4,vR)qoaQ+*Jq_d<N3^a7`8%F #/Z(~|U _0|UWl3ZMZZŌgeCbTf: FKX]CA7ʠ+hKaYs0ܰ*28LjnJ6$8 .=-mwHD,|hK$PA5O9s9!.`iTܑIpKé N<18itjl5 uLvމv^žP`vǓmKINZxU^e]ypپ0m@K~-P cjBl6)*EVXBrts4֖ uIڟ>\]^p U tخ=' jV}1A?I0"R ,x26Poi79#~`͗[a6|l8Mf}Bhm!ɞ 1*1H"UMNy񢗙B2#ы4HD{2aeUXqy U n; hd=O12ʣzl4pQTdAYPYTUdAYЀ,h`4( ̜SF9jÃQрhz2vUc]5Zs`Q"4йNJơZ-5ª%MH6`f"eXݩaCv 1R% ^,MEܚ !Px]Uo e qdA6bADpSsM>r p0cb*P0Di/ ̀<4CwNF$} -J4w02,[f8![/3f[%y}W]~^ S%=;ʻ~v SθI}8jˣa_[zc{|=VJqoR|uI3ߓz֛*>x૿:~ s;|?93so/-| P>Էi {?sd|nQyPZY;C7r牾+w>[[㩧[q-;?uz?|-?]#}ۈs_7掝ue[dq-Fʊ%՝ǗbQ95HC-m~|\T7nV_Cnڤ W UG<9"ȁ #mZIqi>6>cbXtY{6t*2 ]'CP!֏E:jT|&#Á;T2W t9f &]w .tuQsH.D mF8B^uݟrIG`9 ޯf[a$.Ck/'8Ijn;P ^DnR'vŻՂE+)I󪽤K1z o jG%,OJ:H$)Ō,i'bq>gۚ+λx'}fE+dΫp! "}E >Z_ -1,"E=&jP 71]j{fQ#.%zUPd;D ] C)̐LSt-hJL5Q|P@- C$}C`#%7#q=5'p3@àdvz˃`Kt*yS*=.Id 覝.R 5K9s9H< WB+fFf"&VA}QoéM`$WrE*V b,RC\MQc:+%-U)Kg7 j!WE%ɖ( K~p#=sknW>N.o`)KHVe0r˷1H4I)-R'zf*F/IuS31v1lebW^S㛱?\;ه53iG97oY^;w|GSO͕-wS,8?z%;g/|G>{Ƿh!WLP' =cXu'5c^gj z2iyBEaw{T3Z'@=r) vMPO6)09ho?śjt8J<.``YyލR:$Wpfr1$X_@YD~|8bF|V8]߮fkA*>bBC4v&4LPβ< (aG@;-3]4Ю0X@8@Mh 8LɀjZ@u5j4ހ/ 84 t  @+v86\@h> 8=|9@G: рpܱW5fk2 !s#[@TNF\ RWB\5ЉI':|tL@g菀t]B@П]π.@+ +] *@WZ@O@п]@7 ̀nt+@w ݀t/t?=!@JG=q@k=I@k=i@zsu^K^ Wu@7m@z@z>eF@ 瀾?@_J{Si;C鼒l{y%ȑ/!W=v5`11D!b cC"11j0F ƨ5c`Q1j0F ` ` ` ` ` ƨcbZQ1j1F-ƨca:Q10FƨucazQ11F=ƨcczQ10Fh c4`р10Fhc4bFш11F#hzd&N8kCYG@UjVMЪ Z5A&hU4M$h"A HD&4VCjZ A!h54A4A4A4A4AZVKj Z-A%hZVKZA#hu:VGZA'hzVO Z=A'h5@ZAk h 5FH Z#Ak$h5FFtHtHtHtHtHtHtHtHtHtHtHtHtHtHtHtHtHtHtHtHtHtHtHtHtHtHtHtHtHtHtHtHtHtHtHtHtHtHtHtHttUs9sC\Y%s3q:\,z:7 ?Zqz;|. 8qd ܕ̛"tN)1% ' hLzX3$,~N(Wt%O25.4-clqާ(F+_ R% %'Z=gOO?>e$"!XV;)H<~wDp'鳄qL366zJe(SDƽP>d}*]HlYNq9CСqW6G7(B;cԝP]sUH?Tኔ3ՍY0ڞo:>?9>JN)ky]>e+#<6Fm:r|ȩCو,\*-0ȹs@+ cUk ]U}RkZ|PQoЇȲyR3d+ѕ*]u:Rj0]踧-VbyA&A3n?^VDN%U HQgA梸:.3ɔivU_F&kgagL}&G AQW\PzoAf?{!M*ςކQA[oi01L:7|s9@qoP|sg/@6ps9o|N|ɧk>]&gA|O>]çktM3I$$>g'IR|&Iq$g疞Is9sIҋfP $d^NတM/S0֨{`{-^MBʭߵjp&ƻY~8ssU~rOy6k.uֱR(4I FbOdZ*i?It2Ǚq&7ɁX,;e7 ƥ2t}M."_<m5GԆV*'[ 6:GvaH<K0KҤdZ"V9Sa{) X̿A To麢{PRRa"g3&8i5":}6>N*VΊϮiso|6\O y,I,>yB/eߗ2KSdG?f6꒑^ڤMߵJf3{ѷ+gXo'rN)KK Km4ghO%y0|8ANn0fGغ~V]0&7w`,02/X `R-Ԫ!;4ty~U9HZXWG7J7`[[wL}9 ~٧M+ /ް ۡ@ysQEHk ?uVmV !E ʉoE;q5n5HP 7Q$ MNHߨqׯ eB毩)_^\2],xW2b),,](X5m2 0i3;ͫDHzT8NPoM\zdzSzG^,뵥\"JA0u.Y,-6)}K<IN*Gx=XFzգ឵rmGJ1EbBӬioCR5FM՞5k?mq,r[Y "ՄuZLy^~!'=CVR@Xm-CsRjUaݦOZv [)Xڔ\T앋'Lӹ7R*|N$|ު*w}O/H+Їx$巌J n5OW#/#5|* V96>E=6i[\&5ԭ%ZU:#RQ4 $'t O'3NHu< ص9Vgq FNN5 ON0F^Ԟt$XJoEp˥ 'Fڀ$ee O( A *WbMq$M4@'b+k2{Cɦ$R1!F :P $ J6dYPh}T.IJ=Fd7Hq$;*[TcyN ?OGc_V<̟?O>j&:z1e!o\Z:R\^OHxEZJeU#Rt2A!RVA:t Hj0t)$WJxfC(vl<-Ҕ5zE]]AeKYP! |\K % P|6) .W \T% L3d2Zx{T^ qfN3 f3)V[qr-0Pj^Xbc1 0BOjE|i,,K~8"-Vڒ{n=ȵсc`XtHG%)u g<+R`gnw`n)  Ů*a] ]P $]MatWss?â97.Eӎsyo{wK4;JՠNPq/kPyh{C80;gxoz:M4T6K˹nt_[)hamtC/ m0Bm"smjAGЦ QiA4/kp~a(:p%1SL1 v1r/f6QN//)MR]r3jJdM+y}S^~eۊWi2 N1w2#WD+ V2h eH²] AI^!+15^}8`ݑ(Dÿ=Nj^n{{$lUnne7ʋ%"T֩*+ȔulX #)FWqみ$/h'ܱ$^MK,~hNtlN? !šCuC϶ `LGkBG LVt̵.jʡ%V2*d/7 Z7cEoNvm..0tK@l+lQ5nK\'ąlsH7ؕoWX=ZK `,X d~e:4I55=CU ڽPy"YjZ&EP;_&ƒk V5e*mr=%ʫӈ N"uS|2dk!;Tv]lѸKJ--"QKn0.5 a(PL9E`!kv* = غcԴ-:K>+&*:)>& z %`Rȝ"}ē )y w& _3!w2lz.<{UYEc"RǘoVB:=dQN&ya+`o0k=^3>ww#F[qSrfVl:nbw&TUT] ]ꭖNJ>U&Mˇ5PFBoԒUá>xu=F/3,ڮxHUVԾ 9Ӝ  %Ugj^1j6=aț{n+$f}T϶Zg@lʍ}Tf5SQWsh0L)< vTA ZìN!-3f&b茬Gu W~f1h\|/OHxɼBJѕQT(f}NZHOfD!h^(m}`ttI/qz\w?T#b^5O@<8e1j|rSu7Ӳ&->`Xg0pץWj߶d(e@@s?G=s[ [6yO չ bVY}&d({vep/0t]*Pc]S . |Im!$ tlLm5fK^8\+bMʨ+pDAM(kGWs9s9n}9gįη,i9wur\qe\9q\q9.7};q;gC$(5~H0i9@=Ow۟ d tizA䞢IS1ɗw\(8}J6/!cRP)Gp9s91}9gįη,i9wur\qe\9q\q9.7};q;g]dd@GS'S{<6wywh$',n@t_ z˙` T[e~Izc c r}b1(xZSemRlnL 0pQMh ҏ'BZ=KOmZԯuߥT!M1B2aDWĻiIuG$6Ob,'5Oq%ݤ9k* E#rDY@ ᕐZs>VrRUʲn{B*^ߧv"нiXfS"} TJ0jNkԜ>@wwnQh;*'x(UPAR YhY67NW AG0cOU҂@ r|MT$yq66ŭQ~E@g(&C.!I U"nR-ֺe}GԞ7JvŻ붼hY]wT[^}~-X8I_AW~cmO{Ӊ>p-q^-u\i]Xt-ێU|o|o)Y|-|o僻U][Ӳo^l󎻠kMd_9ۖiѬ[m?<^tNF[>ժ}7ϖ8?Ə'mˇ_a-6-W}?[ʮC^Yw5m>[>sNz[>7>|矄-Ʌ4Q[q-Wі+rʎi݄}Zid. `8ac9jcʠ* &-RzqlsZ/&e䂛!5]]ҥY{ T+Z*rwsWlt:G9s9 m}j 4؋2]& קˇ!]?>F+u(1&f=>&?ʗ[oYzt.uz9Fxz|}>辠rt닾\q7fC6\ߎ :ϡ[wo>S.߬>+uf{A3f T~&f>yPN]zvU OZ2 EB?Z)݃졆vt0ʠ4 1TS9l0 QcR"݉Vɍ|ۣp el;&H)O"-P;"x[!0G]tt}U~* ;1>J ލ+ĥdls9xWR5i,ƪ0>_Bv2pi<ƺǖc]LX| Di5@H uj[xXլ0g[)54V͡UFx0=O.Yd w[2p7Ix51:Y`]hJMc YD矑,;6"{f=3Ԩ0!g3L`//L}0f'_aʫ?՗iZuەS|g_9=b'_󵟥6(z=꧗c޿:_s8G'3C?_!G>;郆7WL<~3N:gv_mr7#|vھWo3|2﷗T~ը5Gƥqr#{sOoHԥ+]z ?mN86?_n~3oNEשZ̽2Hi]9.ofAO?O9Omn35r1pi؟?rA/~nROۼ_YS/8u]O毫=u?tbSǴSw{Q:?k_G}{ĽK!Rrڄ{n8_=\tRϫɾO(˱3;3eG,g|wŧT+;?6Y tﯿr!]`EY~z*娕 _︾i3$J>7NqȢ9L`P쟠_٫{1cqfՐZO;{n_wk;]w/z}6XrĽ{ :EJ4sK37jVעԆo<| })Ӊ/|Ӂ3unxʕtCc;WTF/v*~wɣ/+ !CWqIW|^c_]7SMާCꗕi],OZ^{'0o1uBӚ_RX]s9s-rH`e$$͉yi' ˥T $|x-, uEEIs5|d;* } &)lBN*KJ8_W8/_"U-̪wVcw1Y*1Ðzi>%0eF>Iw KkH1F[t9vkG~\100 7,ƽ p A',ŜFzm‡DҩXTy9s96YN"{4>S4yc6qv(پk,ꈙ f=0(l})@^`vǓmh;4'2V*^G}fWޠ:~" `UaA R.X(%W+h-+Aկ ?}|,-Gٝ\U]3S$K=F(&R.hD |w 74 }syqo%ם4gn74lc+SONC8oP`_u?|x*zۧ$[7i;sS|Cm7P)$|y?8ongkM@M=lF vP@^N2+'8A"H]`r5%!gWNI昿M6Ks4%#\M,q2칮Q?/(mu]`0/@˹MVpOe^SrLl\t_P9?~*ʤI T͏MydOrw W@4UœmJ/ ޝK0zol4hLmz;Xyb#V[qy\Gf; hh=Gc?1)-Sq6 ( *΂J,, *ς*~YP,h@40 UfN)Jd`T#5AZCzh@F̫z2vUc]5Zs4Eh@(iHs]7)Cx`֘,5 x ?+?qnU5oCTlZ>̍BIH0.m>]n#r'XV+{Ƞ ܉fDZ]B)԰w&r:y9 b?sKgkPo Q472 nq- gQ%둑JRi HVCk7( M.UGa_΁!;Ngg0O|ԇl='̑{?RSrG)~S 0 WGYtk˝'Vln]zo59lԻvkm#:}aWwܘ;v֕N^P*Xq88o1PVd</ԍ` h uPK)/UjM*@:{֐Zl ^)!k)K'IƥI Yo?@bYx|},A\ţ3pz9|P+&ПʋίN>Qߊru|cNeOa`!sе3TxJJ#OS\gɗjjI_v@a,UMppSAU>m^[&p*d/.\L1(dR#Y&OYI%M :eN.ˤ, FW({K/H(C+hѭj-ݷ7D}lǤYr͐*QC)QcR"݉V--&RvGCZI-RD:CqlBLS0VS@T>Jo:p8)jJEA){lL1)HGQQjOJ`Y:;[:u(Ht(iN\:_R6ZJIGA$ضCkA;>ABiV h;Ay_Bh8/="h'@ h@n@+ 14x@ h"Ih2j@"@Qjh h_@SyM退%@:t( 8_gh.4@ -t8 hqh #h@:q`O 8i_PPNthBP;U)@} P hCl%d@:P' @g:  @t.@ŀ@t) _]o]J@W*@uz@7Mnt [v@w]t{h5=A@zP PG= 1@Z @OZ )@Ozг<"^2W 5@/7 -@ozл6z>!},(_(((cKK@_ h >jP?y-ŷ -2 (Ne@q-oNe9{h~MSvV9s9i5oX2ߖX09?@^~˹ISH7)qQh9AT|=aTC>{g!=䳇=ⳇ|PೇC䳇*N>{8䳇s9s_|  xEYﺭ 6)e o:c({-^MBq88r3x,l5*.:@AY8Z9+8baeeϱ霬)3 g>g>zp=5Y&集K3 > ye~_ /YNO=e~qX8\{$Ezi6}t *m >,Z)@{7pkm!>ӴEM܆ҖI1)8ck~ٗU͡Rp,qw \@6nn b1K^ݗnVt5,-9j{w}]a'/-쮖 o;|iͷt?}tAO6_*PﵨYoY[*Ȃ ,8 *ɂJ,< ȂeAY,hP{=-(?ԾP}GT>H^(0J@m'(dC ==vF.܀FhW@ hw@{h< 4$@U4P5 5}h#O}_/}%}2lӃוzz`l>U'V|[ql !_ڄ8s9Ǖf4#Lw[ϒg\MJ]z+tMfxp<1*M6̘>Z_&_fR8d$ۤX(`Aٟ ' EHH FҝMk=Tu&ҮOtށ5[Z5i"-, í"*J_rJisJT Mw\np*,.%ےNT E 8#R{?9}8Y,Xͮ qIuθa74x>GM{yԴu5_;c+Ro \U_x*my6_Rolɗ&/K#_Hbq#tMR|ilf^5 GkFǗ& kiI¶{qOpSjE"2$?aUKgۚIyYeph* U>( ERy'XV@ԃ}*lߴ0 nr KUC}pXf\P sޒŪ-\K9mhqG"Z*K9h)ך4HոY&-w"p"Ix\ r'.&AChyu>4&~QC܅Iۦ1̌Mx^( pTܧ6Z30l]Al6Y3h]M0jk?@kajN$|-}-#+-$ 0JA̐YJa`}tu$dA~=LWuD͗o#4z+ttZ]kENJOWsͲq}!I}6#Yl0t 2)P-ԋy8>DŜ׾m͗&O{gsO˚[4. CZ(0 # x]:%Ն- B4G <@i:^ l%RpQ {pa6z2i)'UVOi?gUʟW *_U^/|uĬe 8p½`UpQ>|rUrqJy|IZEimrz s9s;~¬uV Z dm0NhMVqդK^U$XJ_dϧ2_I+9ݖ+|j¯l{뤛oȖW7僾񲍇cG}orWsQe֤߱#htB{[G CƂ~;i˷aG˞OZQ|=f%:͞?[;_jˇ>[p⫶|O~9`+FMS腶|c:=^[>ewor/]^+[x[ _>#~킶|Ta we+^Z>{<[>Kl˅}-n絯#|3\E-Wl"78Xr}Zid. 'x-H:S6VąZEe-Rzq7oX0n|kQzt%Kf5Rj0]M]8s9|[Ƣqe k|Ln`_iaH,<ϡG>J?JoYt=Ɔ曆gvw^&_=./ܬGA/rFi@Yfз ׷#os]۵ 7zJݵY8^q |9 }1{^}Q26Z'BwR<PT. :]Ota3GiQ[~M5ov>}6>_¹o Ƽ7+4vuqoccK.huq&cM MtfiQ0ZU s&kRC~h*\atˆ;UAp% w s;e_o{7xjjZĽ/uِmĜ?^!ݚcP+VL:ǧ89TYϕWJcO{w 2 .,v;bSg%޻ۓOD_w-x?uKwtO]WoMoLaSۨwOVU ?s;~y뿗}/ߣ]ߖѢn恾 GoxɿvCogYhR_9JCOwvP;bt};e/0`c>:SoOjmޟm0|뾢sϻ_ȿ0|Ю'}ɯ"\U~O|!æ6JF_е"m { M| /ktX_~ò1}lo|ύ:ֻ>kHmet_Sw谵o=/>vNw{~ :y𮻲󧟫DnOkNX3`=btz k+6~tj. wWxi{z'~W{/o'9Ř?y𐏗tu./TɢO/;Zx= _௾14WO5gzɗO}=܀;I'qq?i^H|mrR<ۮx7O2o&{-W,ys|EG|2ԛg|ÂNSO0.Sli~[ {7j^+S8Ou5zѐ g~RVo\.?!rGBEc}._Sh*;ؿw[>:~n} ;wtޏan__nn{񛋻 x.o2ږ+|—VywդgEޟ߯m}W|rMvzڐ1]E7z- ~>岫 VJXskd#~+Zހ_M9R.O4A֪rkݴ]歛X- w*s}ETyNV;]_V1vpn~EU`[L]Pci$6zzys9o\1X~kE9m'moNK; ~kE=p[+T4Wj[yO2`݇݀`-a¾jU-|UU-_ղͬjp7ijQ>P~3B 3? PiC\SF8ogtxԻnG ےwkG~N>iaa1U#dp=a"4\>k \>\%N (ʠȋ's94tR?k 4ʠ#Nk3tQG1AanHoUK) ;lsGI?!R:LS+Kypپ0aׄ%<[ΣJN`\dد .#*>l_FGt3<nWG׆B3VVr;0q S~HAŠmC<wQQZUo)i%(wlԼ }_?P?j`BN%&mZ'U1OLCȨ7s߳7TTJ8Yg/!v/415 /h?E} ~_O}w(5өnY=ozUMw|:G>]INesάx`Y꽫Ϛl͕_cw^ׂbʹypqW_eSvJoZǡ@ȗmGߞG1N/=1%[1DBσHPb0_sEkoNwow~/wO GR j_ /TQC?L`@ {"0Av eQv 7рX@{h< 4$@U4P5 P ٨Z@u5j4ހ/|t@t`@:ͳ4ah:8Бt4c 8@~@'z4I%'jt<h) `U P' /&[ D@':)N 4@:Й@g: <@Ѕ.t1?П] /.W@?@WU 5蟀t ntV@@t^@Z ~@zC@z zГz Ӏ,=@h= @z @oz ۀ. >}#@FA[ 瀾?@_J@S`QFv'wo@.uou@qoP|t @ChMNr9s9ދ! &3k鳨UɴtIz L)! eIy̡҄r\WMDbIøB RgӤ,C>{g!=!=䳇=]|"'=T|PqCg'=s9[hPn/zm $dVNတM/mP|kC^Gk)jRnÙǙSf1fqPqeF=TS~Ц1RZJI3iĞ4Tb~&WS2wm"]_24 eVߍxk㹾uRrh.{WK&vs垧mJ|cQ_-LHLpɳ??~vTayY Yٕ; g.g.gHdUOiφ!Ϻe~_4I4\[eg Y,R}"vz,&C}-KSP%oT؟a/J1pڻ)m%]/)gÆ a Lz3/XIFKs$m i=GYJM"EyU ͢IS1͏ri.|u/"d뚪p_sgzP\Yԟ VδqC;M gۣϳeWVƷ WX4^{F]AAvz'Թ>N'&߹]5Rå˝Ubm)sf.h0\CNZVue-RbzfIef*V8%5Fd%TZҪx(w9Ø=п'%l3s9s9׷MsyoKz|[s-q\_;q;gyܹAT|EzB%RATeAYPITeAYPE/  ȂfA2'ضCkA;>ABiV h;A, h#4 ΀v4@ X@8@M'&ɀnGT P=@>44@tOt  @ hـ 0@B@Ph1#-t$ @:[&@{Nh (x@' jh) /( h@ЉNt2S*(c:t?:9\@:.t % R@tЕt5U@t- nt# )7 t' @j@zЃ0.@zcS g=y@/ZE@e@zk^_@oz[wm}C@'6g>W'6>=]I?7 | @6| [ul'ȆN>p Mhs9s9z\oF1tWye,ydݥkbMT*0 jgsdjΌLN%jua;(ʽAIHM&9pbP$h$imaٴ6pCU`2)Oǃ4\^#X3U*0¢0*TE*ĭ69 H ntAE6pPe/2 RbAk-XdIP$n;"uIIӇzoؗUw]ލ2_0Z[#=ՃNo7\t'sӕ6U/\J76sK@N/$1j {g&)4635IK~5wX$ZaINv ׽')IZvR󟰪3mMA¤ؼ_WebK@n JWNuP*n" EIR,ML  >oZIN79Vv>L,DWE3AAn.(9obY.]6\#G -A åhkMM tjdk~,Ԗ;TwTIea<UiNX4׼:RQk l!BxŤYmScf&w/PeTSutfn6.RQ 6&E~55j05] >BOƒxr[i~mbf,E xtO\?JQC>fvŷ?PőxgU:5"MRG\CƹHOfD8w `>duR6Pir~Gż[k~yqbNk6K oe-~M[|uh!-c`s.]mjZmۖ !WLhr4/n)8kte 2s=#vŬLMP^`G w*8)Vvyb>MѦK^C)SXM_8×t.Pb(㾇L=נgl!2[z,YzӐ\a=>DI1[ VJhyli IĢa$ -CCE25K(XY?,˽<6+tTx¬X 8,C>:%[gMt6ޚk9*^ -[.67%\KcB-xtqG"& TP5s?$Wp<)n:OcKKga͞Ee;UWA;Uo`͏HI|^lS{f9NVd\f|mriieauNkӼm}۲GUl1_Env}pE7}Tne6F "7߇قvp7mtIG+U ԛp눫"vM(Q -~a]FW.rehiٸ.WU``04]ɫ;V;&*;YmlVx;VxWMbiqXa&R&/ l•Spa8EW><:k!o-q3S3^Ӌ:cwC.p=_>{ۖ9ߓ[>u_/z~ƿm}118#o);;oȖӭ|-:b]|x3.~D[8paK~ iwꌏ|03W=-Z*=:h[>lg|{l.uθ/HagNrGW\rTA-)i[>`g|imtm8;Ns{Hncy-Zk 4X"XNX/jH x`a G%ѕ,]uPHx(wy71:w%F&A8s9E6>5E~.PĿ҆ÐYx?B돟C]q}z#uו:xzAWO}˭7K,=}:z M:Miy#<=>z\t_PYy :?BE_.v匸›StonoGyí߷kN)?R^oVkpN뽠 3 Յs*?\C}3kzcx(].=;'{FXG~utlaDݕ`a舎RX$.Z|ۣp el;&H)O"-P;"x[!0G]ttu;GNgL)w,56vgk;}.l}ۅs hyeonWi<ƺǖc]LX!D:IaNm Lp+f1ʡ9TܹOFمw> YnK&x¨51:Y`]hJMc YD矑,;6"{f=3Ԩ0!g3L`f.ߥv8е˱_[wWŗ-M?w5SĿ^Ԏ}?qiϵ_g_=Б*cۏycze8V':EO'qg/;Su7w?9}Uq7~~iY]5k*+&Ss\QE 'l`!5vv,|b; (J "  63&Kkߛ씷ٷ~9pyc,3&cwtbUm{=mt|~keKU6IsbyHnNob/O]&_|K#WLer^ft}׈ =ӏv"m取\3i_st=wVˢ9Sp0SKO'#/v@9qP8 ]~yJJ#3%+G#גQW}9~?Οқ6>'lÙȿwdCm +Ɠ>Be߬%tmñn>/G۴b'{&'.l${{F76{`~~GUl1867Z3w_9Ϟ>;~OAe ~zQq NlL2Sns]Lo?)xN$|v3{f`o>g ,Y_cz#'e^Y#n]0e`~/Ks;>Oܿbd1-3NYH5:5xeHr7C-,˃?Ùl91xߥX#tD`rL,7T^b8W6Ǝ)%XG-_1=e"-c& $< Cfޓ#,]P֗RkTRI%TRYMCNN"ks"NiI(XMkb|J~n0ѫj@, sz_*}W_sP^WWR`,5ƗHJv*%S.lZTTѽA_fK<^ڴZEނ|$Ό^6qu3MS!z!\@#7Ma*$O!T1<5JxZtj "ѽr]BMDv9/z8vCMڄS62Ie^ΈQ5iCMڄ[wM9lUݿJ*J*LG>TRIeTVnE%Ij=)/奼R̫5=奼R^[yH)$ B9LaF rXÆvp7cWve.3vYˊ]6c`19Xbs,`19LÄ9LÄ9LÄ9LÄ9LÄ9̘Ì9̘Ì9̘Ì9̘Ì9̘Ì9,Â9,Â9,Â9,Â9,Â9Ê9Ê9Ê9Ê9Ê9lÆ9lÆ9lÆ9lÆ9lÆ9Î9Î9Î9Î9Î9Á9Á9Á9Á9Á8w',dDf8mi'N–Eز[a"lY-e,–EزKX6%l,ac KXf"l&f"l&f"l&f"l&f"l&f&lff&lff&lff&lff&lff!lf!lf!lf!lf!lf%lVf%lVf%lVf%lVf%lVf#l6f#l6f#l6f#l6f#l6f'lvf'lvf'lvf'lvf'lv l l l l lDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDK^հӕwV΢W Ya>([)c]>wV_K⇚ y+2ǁ8`q %Ɓ8āqQhāq "Δɜ]TfJ \@P~;*yHc$Op嗸œv.3iTWcvn]l?;1Mѓ#̻}p{»eZl߭o,aB_N&8Xmd;_|y0 }엉QE/Xz:rp?>}2< |≲ilY"%Q iDc9u{L^QL`(▫Xs߆˜w^뙻Տyћo4<|W9O;-g{ @QE_wϋloPr~ΐD0&K|(R$ 9c?!'ϓW!S+ğp(g0F #H)9Q S7Ǣ;)C{(cw+ܣ" ރЯlnH*Ԍt# V)hWQ&]1n;S-v/~ cWQ'ĮXaa*JlWQEė)KdvKb= :YNR))o\'$NRO1 ",$\v+I.!Rϳ$%J?miםs)s:l^nS&Mj= D|cq+oWם.t{]~hNFOН\ B$0*:Uk@ȴi_Q]Op<+]wګ'35#g\SjgU1T5ѵ#GL#$oTKxOr&#:cT3F|ނAF8PB?PB4x+-Y&e@[y#=[K p+ p1; L`vp '78}}0b.\p%*~<p `0ZuaH(7n̒#9&0 0dx}🨚l 6;wp~S<x0 ?cO<x Ys/^x U kox`&]{>|0 Slgs_,|X_,,,,| X =*jZ:?~  ;&fV6vN.n=0Ǵ`?t[QF/2PsgzE_S0u :यSN:यSN:r)v~h, /TRI%TR8SSEZzN^]ai)(TbapYuÔ0ʡjDgv덊$k|-W yj{Ľ\O0۬qqm~\#D3+* &) i KiBJR YTIlBbK+rIbӥ~*K_)S.s]9;(-C[$BK=VV|aB9[:u#qU/{AUg~s=$oׇ;1|Zhu^I1PqJ{G<5bҼGwqJ&]_])ryW޿Wwsjiqh?naywM]j6Dy<řuřENj1ߪ=k^*MYM%#1y=. ~VHv2~{BCc`RjZ.gAҐ!SH;5uU6ixCVz$<n+ҡ1n/Kv2ނtF_wt 2g6ph7T?Z>)=83bXi~QkmYxlMh1ϥwueMњY/VC|װJ7p_nKEi{CxbyE*VF9 MTٔxK#I"Wf\ZVKCd[﬉UôMt Vah9["-]>:,w`C4UЅg[g_dU8XÑ1ؔz̟dCCK/Lrts溳>cv<!1k\W l{k}bNf} f=ܔq]Q:H21l?m/3渡x ]~cQn;hba΁BolQwd:«>36a~oy5W{TouϼϜ>t=m9o9{)C׈>Mv}=?>Vwsuy}BC@ْ=ݹPPIq@JHiq =4 @884M+Zp;j=Aϧh8ZZ2; z9p.5 7v.ttt\ \ c1 @O@/,㉹ ?\ p5`` `7?p-`:a_ pf-%c`:&0 % KSnpp7< x0iL<x$)Ӏg<x"%ˀWf^x&-ۀw3!#ǀYOf>| %`+B@PXX  ` `)``9`[ͥ~ 3z llllll   p >>U:AIO1t3vtYtigI'vt9k36[MQI%TRI%O | ܕoak])(T\s@i&Cgz7dYyRP:%djdE!ǝ_ZE]qjfBqIj䒘>h|NpGK Vܲ6͊jɌC(Vr>[ӶPײw]BDW~[\a|׭5l?OݼxHjP>Cįߛ.|xG {|jTѴ稝o| fw}"~_Q%f^HhK#19.J?Ckd??.Piywb -]xk7?9#R>4z e6j:&zEXM#kҥC1%nY'oCm0ɇKnX*DƻfPw$n'a%kaZ7$E/)-Ŝߛi-`dg1 B |%qG~ѽPyY2C) o&W);\ K~_èmz].U\Y(3&m&*QϓU_6J"BTFM()DJ J}B(%++!,fҴTjfMEG8N5Dy׺mj#tyI[ݽvvF$=>hB#(4 5qtRdja}(0i CkH͘quyic^2TUNKVʿ3S>&TPʍ[p+^TOՍt^'v2dASyAİm' gAbY r9X!,ʅ/%]^-(W)&R=Ǖ&%6?T& EZ ݊#,Z2Q. Q~+ʕNߋQjQZQ|Q.=-^'YU*~n1VH!';2,AmJgPQx-j_J*J*LC܈:F,~oQ`mV>nGƼJ?2WB|^zٟz{ d, ?mJf^[/%^mBqm *e%'t%5AvnE^<Еo s \& ;s孻|epNR>{"o}RHfJ"Tb:؉{pb},†w.:[- /Ri{t&hk~0El_%M-< 16:Or)F&w~n7$:R6Hn )Pp޼5t?M D=we`mE}D`SY1Ls > /XxߢLr]=)YIAyStWY}f/ojviѹ'ds/,k! ޴Vb7'N|D|7MN}|Nm PyD_=('XȘCo;$ H2QZL08!^ Q xfu|򟗸郾5!ZS:I Iͨ8Ӳŧ-?d?`A}w}(uQW7/r\>I<8Q?8ŚF稆9uHٲMjCg5>8S(iQ7qW]LemET5>$y_|7 F9B~Ff.2Q.d74׏/xwCR,N=WGz>bװz=4ɞonl}_\~?un~k3p  `!(p1u.61ݣ1MoypE談ȨRĐ¢ LkL>JAnI~~&ҍn sT"| 0EX2S)cH!EP_4ų-9_4Bsx(Y x!d(V X2+$Gr?WZ@\T M$\/CG?IRG-ޤD$T^e-f?^2J􆨊. q mxֱ>kZi⠫wtN8wjtw]CS;ejC1t?8]T]NջWBݾ {PqIi=xݟOAyh*-І,1 h~WŋueM0X%ZZ*,2GhZ ս~VT1wȞH͕+vbHɒmL2ﱈzvs|qH;[Ǎn^<8sδse6}~lg5-- Ɍ=Mf wgV&=-}Xf۶pz|Sw'k.upo s_Xd࿕n!nݰ/|0p-r.rQgqۂ@|䣁`7 -OY /A>_ _5i̇N翳mɓ?|gpZW7GSv>>6h:й#J^Ւ;_VV; {O$?gtb2|E\6pq#>O^ OQY|s5J>.܆B0j4B=ir"^I*,@Nxdiw+ܣ" ðln@ҸG|5FBmkL5M<滄+Eė^8l #7M,=41ξ|ϭ|آ`IZ!g3k0N_8N6IӐXt8v~^z?IW^y%tg=C((o[g$ڕ\(|~^ejm3ؗP$ $[zyVu=BJgE#84~{KZMX1}+¯(V//ƹLھƄdPf$/(MN%+a5 S`Y \,渽A%\*OD: n=WDBWa%;uⷀ~GT2:+9Y~[abT!V.BPQ_'IwZk\aHHGj5Ti*|)|m *Fc=rh|ksV"nnNbs94_F?ܬ̋Qyxf~R'ezuJ*J* hZKy)/奼&WkzZKy)/奼>孝6DD?Kyk}P޺[IKy7zP޺[Q&Wk{JmR޺īU&u7o}ӓV1>T#5Drٰˎ],`19Xbs,0a0a0a0a0a0c30c30c30c30c3` ` ` ` ` b+b+b+b+b+aaaaac;c;c;c;c;p`p`p`p`p`Hޝ8%NqBV8 [a"lY-e,–Eز[a"l,ac KX6%l,ac  YYYYYY Y Y Y Y  9999]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]‚. 5bTJ Z 9CirgFXX@?A?Sus=<HQ *,~zTWcvn쀮noB<1|-S7&Ԥx6 ~JqAZJ/в 1X!}헆|C'L~UZJ*J*uSI%JzУ*~SYT'Ht&}PÛvR^[xm6ިoMOR^[ΟփmR2==ZۋWh%^2ۼmQx뛞*xުSVEO3jvmwesڠ>:}cnc#wͷ}/ j=>WsO_խ5z|SFn=^k>͊ZG!;!5JxZtJ~gPR|r8>/>9]j}^|h* |yM} =j}.j}ZCNj}OpR{ZT,zU^Jej5f?b5Q+~PyIP{`Vg9~~Zﵑ;_|_ ӞDW-K]?/'Wj0P-`-$j0П*JR~H _2˙P ɂGE / q{+Z"7ρͯy妍܉KmXwew~?eONgp w] x_ z~\|V8'05|| o ϨY$ފYά&oe;]Vg[̿GM7ם轅"QE_wϋl#Vs-~/n#FjNZ$tZbFS+EYDzZH(-"/t<{;1?].4š·gHBD 3K }2beק?"|b%b0'-?8_u4O6>҇vXxRշ"&#jh@S%E9DD}AAjto[ b(F 3ɝ9E1QBbxl.fS> #$a<6ˏҊѤJ*J*fKz#PN%T+A8Oe[TRY#R^Ky)/ϼZzP^Ky)/奼>)o-eD&$ZQ^[xm6ިoMOR^[ΟփmR2==ZۋWh%^2ۼmQx뛞*x)/ ~ӌ~ӌ4 77͐~Lpo NM3Ii&8i.z%fY3r}h$U OEֽHݶ]LzpW;M>nW#N.;5وcl)^WaN:eo7zr: Ha/)\CROwg _``.)ح̙ ˽}YVr̍pTLg"$STsv-ߖ\.mA1eSڬJb8Ƽ)LQfXw"m) \K iLh~߄߄߄}&78fе)Xt|hI'Nd^0ާ~ԏ huɈ2#PgT3Hyz| !GeR^ky^_:?#WOyJ8G2UKO:oE/N-Uځj}#>9<r^ΈRDAJ&E^/IWkjCQ!edZC^Fٹ<?3XK+y> \3QIvcyη򤰼 {Kb8Ce12/ gDIcbe:&I_NվTRI%TR8(R^Ky)/MR^Ky)/孹}[;yKm2==n^%u7o}ӓVouTLAyO2$奼uWLAy6o}o7')/ ^F; hE3J3b'Ψ;~gTp :QdI; ф} Jj!ЏяձE4\'n ax<\O*,pI;uct5v3 |A?}7%|TeY>i3[&1C}p I5K]p?zmf$쓶Af-@Zs%n'uB@3m򞒘^1&ϔ"5W O2ڡ:.Nh߀LeցBb.:|kQ 4bJ+Qi!WLXDH%4 |:Q:[VqnϽ3{;}=MܒyCW+;>kf>Uw9!=??{pQ?wgzNWׁ[tue Y /1>_ W_X{rȏP5^Liy^WOy\2ZIfWƥ^TW(tycr y (Mt;N)/KZKAy6o}o7')/ DOAy6oF^Ek+eIKyVm6ިoMOR^[ o)PZVj5;xI Nj5^pRZuj|b=̇Zj/vͼ]lKuX|YMo Kx+\ZNx^R+aܯ[OBj=Z%g:|c7:0{>`¬@1SۋҝKf~0魇l7çS02î[^DŽ%/s'vf~Ei߹?~|58;;V,^>@{oP _v^Nln Mn./eԬ_zq=h8aw7w;{ɤ6wq⌻2K}9mPysǾ1ױ;~˾y mk'J Wցl=)#/5uz|fEǣD%<-Jx:S%3y?j}^9ZWZ.>/Hj}>4>zb}0KS*J*J*kG>TRIeTVnE%Ij=)/奼R̫5=奼R^[yJSHVyۅ\P{AG!''8=I Nj}Op*XK*i}/%IJ^ Pf?<]=0+oa?t]-ʝ/vB`/iO斥ٮEޗݏ_5`kQ jaTPOST{Dj/MwLdB 鸽[-MObnrFD6 ,ײՍ;pM Cv3톻bw}+ʎfu?n{p>>7g,^vof,gVܷ2zc-_#vu USG YBb訢/n{;_[Y y F #X'-^ZAi-HL•Eˇ,"=VY$ZiPh:=ǝ.OP3†Q^Ю](Œ;Syb$%u ,ݾH"4ZF mg!)d%.?9X`gzL_+cq;X6~%<Sܥb?H}rIOzlVfos nc&\81nWZPl}>?p:x4I_YVS:I }L(k~0El_%M-< 16:OrLRJ_ tk|L/U^zaI M= ,nQKс7eB.G"NVI vUsDj*\U.oS2 }.(z. Mۊ> b(||6_EKozR.2 9鮞.~_Ԥ \ӢsOv9_YւKa~s*C Qbۉd;3sS_+=atTW)(.A";#ɨ=DoutLhG>d~⿁ww{B=s?cY%nǦuo y֔NRsR3*Q5TC}|G|?C_2QTZ((lɂYA$ ]ʲN[{˛ {_\NE-=kݮ9gG^qˌ|geҵ>W-< רTJelti9?mxc=xS C9 F '5Ծ%h2>;H OmP!eL ݓno+ፌ5Sw繽 LGdߋt բ\|CNtۓ7wащn2pduECE#qd7]$ŧ?텪pwn|'\0՘NwoQa)kT㓅c%IB#1 j>_%"a7qv˟r'70! :C2$$qDq"*VU& D фi^=jтtLII2UCN 4"DKX0$"Cƨ8Y:)JUR$԰> h !5@+31::Z-+D 2'L1Ѯ£FyU Bn\Ė#/نT^,2mIDI391!D3]uT\Xk%Mb0,-2*a4qersܹ|_Oa0Iav,9TDWH%&sUT<3DJrي'[oT a0-rT rª9?;S޻\649Ҹ o։85.XFNW4t"fM~Q³YyF~`.u\fYJk*&1$YN xЩ,TRI%TRIe$21=b$4ًqx,^ F?#'GXjP|ptZ&鵖gQzUծ32~[#/_-]Q/Y7!E(ꋑItEW_F>aã]Z_֞sxZ=#=/ʧ,S kojCnW~JW^%/d.,CcOq{QP,l52l\A$Ɇ#%6_-cFΧu ^Sg n(B/qzl#OaM0y&]7[k]DNޥdv,]a!ʃUEn-wDcQX/9cQ9VV|k@4 {hZOUVv]#}Ƭ_w=Dy ^@O61n؝ K KJJp"ixvT,4uk`/^?p ۃe=;Z~u˂3W=* |SWRm⁽'[B\YÏzeo]z$vȫG0mϔN& cg~z =}r6$;{3;|V#CۈsZV} q^3D{Ps~hr, ]?w?iG^,e OBg8(f,K/Ô1A|EtGvuw&X;y`ݎ ZqL94Ù ߍQxXᐁ7T`oo0{v'~ ¹3uϿ^0=` ݴL<$[L_,{6#tCҜ)yW<>x[{ޜ 3e}5~|uMG'"11?#.CrmݓrδYx5Ceܑ _fX3q]֬S_MN>sX|;n4o/?eQVn )Gq49.}cr@[;ǼpU}Ns^8vBh^вԩWeȿ,Ѭ3\ߟ4;ը{ԔV^f#2c*Z|ݸ8o\FyҸ_|wW /{,}{YNgz܌,}ԙwݼ pH(/$?rܼw8_:LًX5HrZ$ڴ ;Ow3܁aß:>UU:uyo'Ck|x3wᢦ9m|F_ nOr[߶6[2i=Xd`5_/$]o,y<ԙs@s`Y-#N vzSr{S,߶O}#{7#)oXp|gɈp\1΋\{00 zOVtCcZ_K`wQI%TRIe} qAh]ybFZ&r $>|X.ѕwwX nٮJQTbG f$*-xBa~jGw]-Kw0tWKd$UX7]^U^aGWK%i`#P:FpŒEO(vtsj9s0 #, ¼_P cRg~ HXQ`MZEܴ>Tk+C"+ߴK$zU%Ap9J*j :u4t?YkN9pJNBy2lJ^noF%M&zU EdN] Kw˓S7J EF)CNŷ$uEg788܌"GB񕒔BxC1[P RT@qegtV_NeCMƄS12e^ΈQ5CMƄ[wM$Cr =)C_ϐDQg.gSIID0BQ>9Iue%?ǺC)OJH/kjr#)MwxIyT׃8kq %Ɓ8āqQhāq MydFraB3rXÊ6#A]Yb e.4) 7mK>\?ݘۀP~D7ҩiQMExn:WSGJ||r70aO>| <.? #Grw{ Ї$yhъ*p#%ArbTJӾ$NQ*-W r\~WfUவ+8b5 M*:@8@{/XT1wȞH͕+v7 .w8J(m&LȊ''ӝ-qq3;(p{og`{>?鳖[roidƞ&3po/8v+/\t׮u֏Ҙ߹9}x獁=&72l~i'lΤvlڄ;xS8v.mZ8uoy)pC e4߫ݹ_ fW Y /A>_ ~cW88s=d.jqrS6vcgyW9_#|Ec<^mܑ#G^f=i7Y @ ,9?gt"lq%>x_T^(|f3ws%#Vqߡz9p.߁phhw,v;X/ttt\ \ l; >~}1.\pj?l0p-`:P0p~y`$`FMF\Iq~_ n @cŀU2?ſ?01mw( p/>< x(`< x 4^x 2 x 6L>|1`ـ9| X |XX XXX{UՀ5u?~XwM̀-m0'``/`/~-O鶢>6_[sgl! ؅9Xbs,`19Xb0a0a0a0a0a30c30c30c30c30c ` ` ` ` `+b+b+b+b+baaaaa;c;c;c;c;cp`p`p`p`p ݉38Y48-i%Nqډe,–Eز[a"lY-e,6%l,ac KX6 YYYYYY Y Y Y Y  99999%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,t;?4FW *J*~% RPt%743%ČºH)\a~C ȵ\;LIx8·Q\yQt1"=CzHW!]=51{EW!CW.zHW Nz(8फRI%TRIe͒Uzn#~Y[۪:b["R{=Oes½~wBZ@RZjB6U[&\tJWJ\WNJP%I5?Ò|5uˣ_;"T$e3(Jo"|VX><}1-׈BFSHʌјʽW*{O*^#.{~g~D]kB}=RNC޿޿Ľ|HNP*N7N,8F%}x1om[[\Gy3*uMO-34?cUz"T>VJFb>.{\d>Ѫ-6 } ڦ;ojxJm`Ums3,iMed~bZ?Z*__ᑖHiih>UdXߥ$[E#,,Ud50N2ah6VϦDVo7XTN"6ȼu2XZ"nMmfbՄFx FKi6-Tiea ݅s%QNdeUiMZ%j&-$YNW¿uCbS;wPI%TRI%TRI}ʩx%=QGu?ZYzJ*z$R^Ky)/奼WkzZKy)/奼>孝6DD?Kyk}P޺[IKy7zP޺[Q&Wk{JmR޺īU&u7o}ӓV)>pA[~fTRI%TRIe]GJ*W҃UqTʪխ>IG/奼R^[yR^Ky)o}S[h>(Mt;H6jM/ۼmQx뛞*x?ۼe{zx&)/KZe[yx7=Iy)oU?0CО. 9X0!9,aErؑ!:Yݱ+ X2a,e.vٱ s,`19Xbs&a&a&a&a&afafafafafaaaaaaVaVaVaVaVa6a6a6a6a6avavavavava@IYݻgqi"N3qZJ6'a"lY-e,–Eز[a"lY%l,ac KX6%l,a36a36a36a36a36a363a363a363a363a363a6 a6 a6 a6 a6 a6+a6+a6+a6+a6+a6a6a6a6a6a6;a6;a6;a6;a6;as6as6as6as6as6KXKXKXKXKXKXKXKXKXKXKXKXKXKXKXKXKXKXKXKXKXKXKXKXKXKXKXKXKXKXKXKXKXKXKXKXKXKXKXKXKX%X/]jBۛ.wn] AJ)BPX3r}h$U OEЕ iH ~;7K'DB7WR!g #Q=#9I&h7`l&.Usq6˃ c~%K+p{{9 < |1HyݹE9s8kS |.,'0 %ug}"py=Pn>cn󻋍l?A)@jt_W?Bdϯ,`u{x&|N'Q:H21l?m/3渡x ]~cQn;hba΁BolQwd:« MiZ P5d8niuKt^yhCtds5e/ns +:o~!iVp޸m 8vEcnٜCku#|&tH38Iq@JHiq =4 @884M+ooA #j~Pyif`a h hh 8`tp!3 "@W@7@&b@w@; `XV `8=zzz8?\pJU \ 0p`$`FMF`Œ?LG nX!P G(LLLLLpN]0!z7< x0iL<x$)Ӏg<x"%ˀWf^x&-ۀw3!#ǀYOf>| %`+B@PXX  ` `)``9`[Jw?VV~ `=WF``3` `+``;``'``7O^>_Lҙ M:}Egl6ͦ٢f N:-8l6盧Y gv4TJ*'h>QYJ7z&uPr &ݐfIq*CelQGGZ0u&a9!i"haIVљ9\WI0S׿0)*uYi w ݌,JvI¥8Sk%oiyf Mfi2VbA'I'$ GVUDP ҈E#$+bRS1Tvϒow@P,/qA֌B<&] Is_2VEyR|6|\4@ᦉ2Om;8j}7H6yVlQuCR/ḆIRmR)[B&/P_Iܑ_t/TjV(P ÛUJ"Bf8h(#(+>D^@bxzVA7ʌIIJci$~͡ҹղQS*o$~w+QR†@R7JJ9l%K4-ZEzQo5AG 8i^jȭ)]^Vhw=Ѽ/I`"iC3 Ag,Ykj#hX L4G9A_3f;>.#m]^Xx ksզBg쒕̔ rcV) FN7||4x0,˃iZŤ8wzx++(;=sUT|vzgv $,0Ô*aԟ˝)7hmҰvuU%QQe-7(lT|7?Qe7UuS&.;Fd6sM.̸7WɿmssQT̙MZUn&!LylQe],k6M)ߨ݃7tۣY5]Qe<Uxpfn;ʆ6-l,廊̠GmiQ[5O&E-RU6[>Q%oQe2u9<r^ΈRDAJ&E^/IWkjCQ!edZC^Fٹ<XPGٞ\;'ҡdE++H^"TT)g4 v3+ߎq8{Q%{B~G$3KХEFD)q}%>v{=GEXSܔbAzЃG5 > eʪEH"m*%G[dc4V(HƟ%X 9Zo,=<%JWuT~]KC^sٓW]`žE9xߪ{W޸lx gsvw?U=g{Cz랽;'j6?KcceyksG+lk|N>oYʕod9NSO=7 .ipi +_1 >/3N`81M^ צsȸb;:Gܞz|F`f/u<=s}Ҷ6>hzQƙL8yr.z ʵG5+InUR8px'z\xow[J|{0r?1}xT9:G~ΤMX عԷ_M i1KwT콾`ޟVۚv=퓺4x[`y(o .ٳː`xErGxY6SHR8~F-^FL"ؾM4ZX`3: y@hn1r$Y./KΝ}bU/N﹜`[Gx+bl6.EF7]vtZ99mgeM? i>6j`ݺᔖ.s_|eH;I,KqPvTRI%TRYMCNN"ks"NiI(XMkb|J~v0ѫj@, sz_*}W_sP^WWR`,5ƗHJv*%S.lZTTѽA_fK<^ڴZEނ|>X* 7N &fǡɹsc]>7C{ < I^G,97>=va{bd,3BY Kng_m۷;.\#S˂_%G%W>qrXo<1 8s+DEOW ***NQߕuac}A~Ve:)«R*t*݌ ,k|]::{'%uo*tT>/ЙuoqA-PD Qh2jH3A )PD!]DI!?l(C_ϐDQg.gC\fj0B}U~亲E^&8ǺC)OJH/kjr#)MwTNRq< @JHiq =4 @884M@F@,`Äf 9laG]Yb e.2m@3{'G(w=aok4O+wynMAU(?"鈛OԴxy<7rq $''1}tgpp?z(~}TywZ&0H"k 7Yb4-w!L%dq! : $&8VTKWpP74UtFh5pV_xg8b=J+Qi!W6t%ov>])qPM?sOO;[SfnwP.;qe6}~lg---,Ɍ=Mf _,%J7#pW^]1s'r/+zMnd>YN؜IMش w{!p]۴6pSᆇN]8ˊiܿW%s+#,<=\-0_|8/ǮJqq'\L{NM\*}mƂϮr S_GH=vy᛽۸#G{doXr~ΐD@%K|xHr$ 9<c_v'0r+p^)q kr|] G4B=ir"^I*,@Nxdiw+ܣ" (6)r<4_ɶWm`;Re,jUr0h.Iz؋S<^O_3{&c_2ru΁)(TSZו!#+>U('\!Ӹԋ .oJ.W=$Tt!9Og @ ɹnEnr[)C Mx6E9ڪ=XFI껱Qҗchcyb^;Pp3Mvۅ MĄ!`I zNw(;yQ8#JL9t2oƏ|SW;MTRI%TRYe@zP^Ky)/奼7qZzP^Ky)/奼>)o-eD&$ZQ^[xm6ިoMOR^[ΟփmR2==ZۋWh%^2ۼmQx뛞*x޸SHUDV^S ؅9Xbs,`19Xb0a0a0a0a0a30c30c30c30c30c ` ` ` ` `+b+b+b+b+baaaaa;c;c;c;c;cp`p`p`p`p ݉38Y48-i%Nqډe,–Eز[a"lY-e,6%l,ac KX6 YYYYYY Y Y Y Y  99999%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,PF!9Ҭ3fviVh$U OEԆ95IMd!І9C 2 \~gҨN]L:߄xb0b~zMIÄb)L9PrP, +Bi.q[z&^y0`üZ[vj#=P(L$D~ %z7^X[ ¼tLul\F5߮)}-W1S-+hQ.(Z(@(O(ߑY//>!sJؠ7Kn}i', ږraN;[}r[sNnɃo.ͻ6(>wb]|Njn}8!Ob,_q9v^6ɓN$ol|IIGj@Dw_Q]Op<+ԕ 91WOdgJ$G,* $$Ϊ3bW{kD׎P1Վ䒘j1r3Ht U ߷|ԿP{GT?P43g0>K-g_<=œ8Ѡ -<#"ƅN΀.]Y`🐲pz.p'/F_eW\? \ 00 0p=q pf-zi⿢ #9&0 US(=D?dSnpp7< x0iL<x$)Ӏg<x"%ˀWf^x&-ۀw3!#ǀYOf>| %`+B@PXX  ` `)``9`[Jw?VV~ `=WFo66vv2W w3^> ZmE}DmtW2@_`+I_I_䬅 CДYuV*J*2qb~% RPt%743%ČºH)\a~C ȵ\;LIx8·Q\yQt1"=CzHW!]=51{EW!CW.zHW Nz(8फRI%TRIe͒Uzn$So)s|*Wp["R{=aY*]* Fr-2QfV?TMS -@jV+RĖV6ĦKTϗĿR\r_wPZ*H!!W{ĭ~72Är*]^:R9 Z{HhO_wL5bкT-&2c4r+yk8åyw+|Mh9 8RNC޿޿Ľ|HNP*N7N,8F%}x1om[[\Gy3*uMO-34?cUz"T>JFb>.{\d孝6DD?Kyk}P޺[IKy7zP޺[Q&Wk{JmR޺īU&u7o}ӓV;Ks|} 4 9X0!9,aErؑ!:Yݱ+ X2a,e.vٱ s,`19Xbs&a&a&a&a&afafafafafaaaaaaVaVaVaVaVa6a6a6a6a6avavavavava@IYݻgqi"N3qZJ6'a"lY-e,–Eز[a"lY%l,ac KX6%l,a36a36a36a36a36a363a363a363a363a363a6 a6 a6 a6 a6 a6+a6+a6+a6+a6+a6a6a6a6a6a6;a6;a6;a6;a6;as6as6as6as6as6KXKXKXKXKXKXKXKXKXKXKXKXKXKXKXKXKXKXKXKXKXKXKXKXKXKXKXKXKXKXKXKXKXKXKXKXKXKXKXKXKX%Ђ S*Nخn7ufx*+򹳢GAwsb Y=B)Ɯ(v+w4N۱AO"i>Mk?Yڴwםs&nڗgz&sss~1\lϘ[5bc+n m/!5ג/r/^)Y=+:oה+p0=*Y9CF5"?ѓ6ǺEy7tOo, zM,q9Xs-wn,VGxUTO/?}fh5lv?~9yv+s14;9獻JzE'_9O\0?'m!I%ƛp%wk4|/GݺB!$ǁ8@zhƁFqqhV|ނAF8PB?PB4d--Aϝh=œ8phh8pB@'@g@EnLŀ,< x(`< x 4^x 2 x 6L>|1`v}  9`.``>  @``1k7%eo+XX XX Xg/_~    `?|&}zt:oN^b6v l:M'؂N` N:;6r l~/i>*J*Iy>aTs uPr &ݐfIq*CelQGGZ0u&a9!i"haIVљ9\WI0S׿0)*uYi w ݌,JvI¥8SHP2͖1!c718-`mes pwn|'DNIoQ!U)jt+8cA|ɤ[}IyPlas&D^@bxzVA7ʌIIJci$~͡ҹղQS*o$~w+QR†@R7JJ9l%K4-ZEzQo5AG 8i^jȭ)]^Vhw=Ѽ/I`"iC3 Ag,Ykj#hX L4G9A_3f;>.#m]^Xx ksզBg쒕̔ rcV) FJ!j)\Pmh'T o]̏)3y{(3b-ы_yޅu,\}/sR~D}cו!sW}>PF+ɬt3,bB˛6CCe!9OgmM.*{Q帽 hj#.=Mty wI|zBνr4U;^0K} }fx{e<x=x"/}$TmQ4a-~ߣhA:&Ӥ(Y PBJJ^A}oPD_tK,Z)a J::H%qEQ*z&%[>Ux(W9O^لjf{Niy͆֒&] ww0#@+TPsIR̹**R;<3FXaJE0Pz&rVT.?RwӾG͛lŝ7UwD_#QeY::8l7,./3FkXTٰ-o-<Ɍ*36|v{S[EM7?uo:lǜpYJg؎Uh;7f6*[ow{=G >}fyߨ]W_rE0{Dg\`߲*U|yϬrUXzϹ,riT٦#[U6lp MooC[ˤ<ֲ ?JurF&ݯ<_vZ2y9F|r~y>(Z}12򃮗翕Lۋ^3ZNUˇ?Hy?Bjއ{ceܓs\d zR4?-z39im)m݌Vgoayh+txW.>cAw~߼G+aC!d2w wc $?y56#gMu|,͋^Gܞsrd.78lڢ9 /K9̇F'yWv;`3:Ge)u|M ,w?]2qv i܊G>x;;s6/@ҩtۺ 7s;ɛf;[?F\63/2f̟rt'/kXQp/n4˘WZ9=ο4\;O⭮X._V+f5a쿫ּfۺbYuM @ɜYp蟷A?ͪ}Hr?͜>at{ښ_ɾ6eCy܉?HY}rӛ7hncivuft՚wVsI=۵w|ag!;8/w[\ iDSGn9=| ѵ?ǝXwd/9,r"m>/ݡh!uW,?i@ $2f ;^]$K]L~b2,ݯ2eIp}~j 3q{/v"+wۓsk/;eA<N`_۴YeW7<׆;#ucwqb0X/ ܾ`9 z0jtm;m,pJXB,g#w'>,(·V$ĸ"mpKv_WR>M6#)Tl! UtWpD?jј_Zͮ?&#Z B +? e^j,I1ef,}BI@еQÂ;u$ej&$}5޺kF;J*J*Hz#PN%T+A8Oe[TRY#NRFLAyOoہvJy)o]՚^[yx7=Iy)oU&:Z[yK5Djm/Z_)MR^[xDnַF}ozRު@Z6B!ߜ!##Y" 9aA+rؐÎd=+;vea]&2ce.;vas,`19XbsÄ9LÄ9LÄ9LÄ9LÄ9LÌ9̘Ì9̘Ì9̘Ì9̘Ì9̘Â9,Â9,Â9,Â9,Â9,Ê9Ê9Ê9Ê9Ê9Æ9lÆ9lÆ9lÆ9lÆ9lÎ9Î9Î9Î9Î9Á9Á9Á9Á9Á9#){w"N8Mi&N qZFv$lY-e,–Eز[a"lY-%l,ac KX6%l&f"l&f"l&f"l&f"l&f"lff&lff&lff&lff&lff&lf!lf!lf!lf!lf!lVf%lVf%lVf%lVf%lVf%l6f#l6f#l6f#l6f#l6f#lvf'lvf'lvf'lvf'lvf'l l l l lFt Kt Kt Kt Kt Kt Kt Kt Kt Kt Kt Kt Kt Kt Kt Kt Kt Kt Kt Kt Kt Kt Kt Kt Kt Kt Kt Kt Kt Kt Kt Kt Kt Kt Kt Kt Kt Kt Kt Kt Kt D륊^ ;]Yw{΢W Ya>([Hc]>wVX ^m!k9C,FU8 q 9ā8@804@84dTO͙r+_E~o@U 57\W`;jz#I<_O*,pI;u3jf&]b!M`= [(?;m&$&<[k,\<󰩇$A*N=(VKYiZVkڣ"K>ލ,/$܏D OxlwZ[ld/)vB@3m򞒘^1&ϔ"5WO2nĐIT[M\M-EPȨ~w>WtL5p\F*؊C6^B*mD\2q!qм &L?^@ΖcOTrE`{Qs{y`z}3|#05xΗ(/ny}6ʼsv2G^}w=\nYNgnmBݯ<4{~=7uc?.ܱ ^wڈ߱汇v_ x_,?$g*P|5p=}k̵NI_wnʷ}IN*ߺyO%ׯ/בtNk}GcEBZa6aTr~ΐD0-K|(R$ 9Xc?(i'ϓW!S+,)g:('n3#n39 娰9u㱟,:4LN񺇒_q=.0p r= HOB?C$<-HC# Ut ׭hT]ۄD$ /GXX$k4*gQ|)Kd*ZdE:I2rJtkp:I?Fx*$rAL_b"}H1`OJMH`;Rt|S6tjߔI)CBWPs.?4''Xv|.d!~P%I~5 il#R-xBWZ91WOdgK-G,* $$Ϊ3bbu}i0kkG(jGrI헌񖣟TL|A3HtZg烌p;j=Aϧh8~_Dh: s\e6F@;@{@%::.ttd.tdX Jl; >~}1.\pj?l0p-`:P0p~y`$`FMF\Iq~  n @cŀU2O OLa~L6pv;wJw p?< 1t'O< x,9/^ x*`57o x0.=>| )`6`3瀹y/_,eEŀV|``5` `-`GO~ll``3` `+``;``'``7#-8%0Vԧ8@Kk/}u:@_I_I_@Z?4MZ_kJ*J*'.FpQYYK7P l1-JW~C3SB8 .n2UWY9@\;ܑȵnQJ#|EeW:LWz#]=tCzX\t2t0被t9फ Nz(8!TRI%T,YE ~ߺm@"1{6B;?ǧr /%!^-q/K&q5<Fv Q)ǿT?̶=H)=;2bxih"B׮6Dw,bO'4?P.v6_YVefV&ƋUjk䯲 |QGGSzWY~ *=44{*RQݞDP*XaaJq•C z6%zx3҈r{F/Wkb0m]5&4«gpX0ZzpHuiyn|ϧN' [k.0ĝ+r*-Ik*)T[6YmY$qw`nW1O3ezu6SI%TRI%TRI}ʩx%=QGu?ZYzJ*z$R[h>(Mt;N)/KZKAy6o}o7')/ DOAy6oF^Ek+eIKyVm6ިoMOR^[ /)LOYJ*J*Kuo|tU\PF%E"B{-6-IRn({VH" 8pP7ޑ7wɥIzo}O{窙dD%;QG}3YL6'He'}0cÛ~2^۔x6m6hnMO2^[.ރ6mJ2=6zW铌6%^2mڼmxd.xY_sC\kC:,atءNaC|ˌ\" @.#qG<8x#qqqqqqXqXqXqXqXqXqXqXqXqXq q q q q qqqqqq8q8q8q8q8q8q8q8q8q8rag>viN vZӆvt`'fl-c|̖1[>fllX X+`#w#O?l _l `;vO{87Y[E+}c B6[f ي-dN-;Bd VT dI&dc'z +x0鉫ƳtJ>٣&GIdy7lmeR]X:JMcrh3Ȕ@<|mP(D<U ~oF+<%^_W y6)8E\ "I LmPHמP4S+NNE qߋП(ڡcoC{z~POBOPӿ IfID(Y$<]#A"~@CW@?B>O45Ai|X=E7,4"[${fݾ1,u(:Pэ8GM8(nXnu/D0qh(M WKڤI9WVqH[2N};Uq6J(T ( a6PD=GXU㟯z9mȗ;1~)ލ}ZM1=6TjeD4!5NS"B{DT[Ehݰ$+%6+%h&'#xpy-RhZ?R`3Y3tFTD^2Xɜ|GN] c6;b_ _w薹6SU4NNOvZ"J*FC*>!Ѝ(S ևdZT-GLڒyirP-ԋvq<MW4܆2䉾†{q<#> i–!(4*-)T>Tobj#hќ& \4G&a9x9ߗ!Ov&>Bb}tB]Z~39W "Z ]Wz)`[!=$v +"б yJ96\CX?rALd>+)a \"c( ^MVF A;K!V%pQ] ?X'*?媪ܪ#? ET*E~Z_(r"*r"TzEnPbE.~ն1t%ӨV#7t͡#o}rRsVސefYNpr"U"Y⼾yU$L2$L&OC٘.,qh|{6k,jOVZnގeN,]>.cuNv]ֲ]VFݶ/mRoˏlq۾\Ax J$s:rP`noSn[ɋ|+,+5A, Voţi t`O>qj!Z)'6vГ{* QҮ &͜JiX-{1#|KZ]D(7)h?PbXzZlB (ZjgDv)eAځ䴁Ͱ젉,;Kc3 |AY BSA4W$Lh=~0bae=0K  8̄NQgQi_rW1eIp)1e+ϡmSv;e>~Sv ){T<ޘ[W}ҴfSvץŔd}dgk)mYgĜ$}ཫ 1''z?1OQM_v%'-xfN$Ym,č{ ugjY5mm;bV"pgIxY-_L2$L2y$61E.HpL*^ N?'V|)]ϻPί uCzhk9Jƺ^t8}I#r(|=bStZQt=k|4?]sj/<0=]N .JZjG_z9_uaXCo?PiLPZ{E^hO*oZ7ZKUJ8~]VLE,5#_KĐ L>NbC~_@Z4PBWl|Bx39U~AQ^g*+w#a~]ר6[ vd.މ﵏P>/2"m\dY_nw5yXc_5YcxLfcM¶Dj:1`PVcU[n%0?sb"mQO$ܣ|A4VIQ[ #!UWܱ4 owU:k'5tW)8*`yOEyOMg$X3jQ3T{ /mS#V:t\Cw-5Q'=,oZGI{5L )}1T3I,`;v!b,Yu-^Gxw%5sSɹ 1AΗ*T~jyCo:Uм*M8זl6>çK0grKs1h+΅[ͧ?$qsŃfX.xa~E~n.rwNY²i*]ЁA?m|hksmOkGݿ+΅R;=ibkӚe)Ng#v=&7'wg6ɲ*U^^SI|׍J׶v+noro+X-DŽSp?6UA:?We0km>~K'zw+WQ"gҵrה]Nmu#5? %пaImMϷvoG(v߀0ܵl}J$)]Q>r}^Fx[OFjn3U<0q=_'K]dw1$L2ds$UoIud̓:&s$~kE[+D8wWw nY j#ւa[Cxreƾj!*GcZخeZ8jd4U ъr*ԨGQK<(ZGlƢp{{ ]5,h^'IXQֽ(A-I'T#_ol3nچ?jr2_ܴj$@|?dI&d$N=MOE6ډSdN2ʼn\L4ql-?7:ݯi@, wl_C+/B/oa(5S+<mꊘtץqދ8G8kœ_F*qOFIIǼXT/(QK$|نjpQ7:apSY@鸛gό,K$g®eUi~@1<i|yAl`v ܄3372Q̍:/ ܨQafnmfnw8ObI&dI&d29MU3$Jv.gne}-&lNRx/e6g^=/e2+~.&*jh$/:x0C:a;t8 >C|ˌ\" @.#qG<8x#qqqqqqXqXqXqXqXqXqXqXqXqXq q q q q qqqqqq8q8q8q8q8q8q8q8q8q8rag>viN vZӆvt`'fl-c|̖1[>fll &u&سBKG  kr1,MkyGZH PEچ**<م')5chMwE^b*Ua* V݉ ۽,MJ{Pia)wd3ZTE^kE>u>Osw =9sck(nkU#ud~t9bzvhc̩ѷZ}'Bc]>tŝQ۵zkwkU><1Z7zs' {BJ)s]E!zSH7?S.Xb vg|a@zosϹ^Cݮ:groYG^W-^SPh˳_wh얱P~jIP؁J G' 8]LʉBx#Ē>ס "-.,TQNz6B}:®%)áDR4LE~J*h8O cOj|r6 R {j4{᦭_Gpd+zJ _F8IzzXtl-BDxRl-*"FEqE_ш[*-#ڎY(Am*Z0^Q{&?'M3+""$'˒;+qROG)L#?Px.w,VԲSj' 3)11b'=AНL"O(zP>!ϊS͝TdW* VB䡴> IWmL`u&WG<*.Hx[gm?^.٭#WG\C$o%;؊[1b+Fb$_x_lX_b9mq}h%#'?@ w"@geW8@y*h-tz/@.y<@4OnN~g p@`@A`ŝ0| \p 6`HQp 8`D.J</ŕ%b^)W4 `*Ur0@sY\ 0`up#M7p+\nNyw 0{<< O< )x9^x^xW^x 7X6;`1,`)@ `G|S+V|9j/X%z _| ~`f_ `ovט`7>23lc_Er@]eS@{N)N!;N!:_[ũxY^&dI&d2yCoHKEƓAÈ]a($G2%Lsў5 nKìܾaD",'rofO90Nd%==dOC==lŃ.==CŞɞNPv==!L2$L6,YGO9 u#q{VaW() h\__oPt#ܟ{1vsc EǡF>S W\L&,*a)~shPJ*u*9S)ѦFfdim3[Id6ӈ?SsC5oK֡F_t߯D'n.S- tDy"k׽!U5gq3p r Q煷ܦZ&әƵ~NG=JyW'Xյh+&e]X[q_$x_ڿPvsꧪyh\}M-kC4TyL_j/O|kQ wC-ʻ!Jyce wG,g僿P/U=Ɖq߿5N1p#wapn%;^.U5eC%:Ө3%S.5y^%ߚ(}`m|jH2_":8 x䝚4ؤ Y Dx;4Ssmǹ)'.Ŧ>tUe.oe}.o ?Z>I]dN VG&ݏ2471C#> og84F[b.cu*%^RWGՖ엟z߶*UTJ˄Q' A iv&SVUfULS vG9.T7ٔxJOWCFiڿD;bp'%iF6MxmD6ψd A%@@9񔧅6J("+jeȖ[Nc!Y*h[2IL+~Z$L2$L2dr$;fI&`G]d[L2ٜ#2^x/mμz{0^x/e͙WeC;^~gI&dI&d)Iv4#T$L&*8ɺd9IG/e2^ۜy`2^x3-UџH3 2 b_Af_ANdɾ,;We' d_A+Ȋap٫gilbSAϾ>v=@(R5~/x/_tx'G^>GeW|W dW<ϾͪpJ#S'!Sq2E~eL[!`TP\/ho rS @p9rn .>1G*wB׮ً}.6!=:d\^1E=dO^{"7P]ݗH#$c/`+ǿu;qCF R+˵ t=ùKPQaL) 5%2@VN-@*NmjT> {9 w` _3-@;N^БN +ILz p @o38  pf `p8p69\n'<\0B p1F ~;GLpW\ pIϻ,q7~&x\ PP ~ `*{$*L?4`5p@%7p 06`]a>=p?x!x1x`SO<,s"2+:omwx`b>X!R@2>`9+V s_X Ko6|=?3&l`+6`'.? ~1\rKG9\lٙ-;eg8ٲdβ-;N p}E[W|L2$L2䱓p=xܕUX0<+&a#jwؓ:0WKͬRg!`G#SUy`%sGdc8U5wUDی<}8~=kߡ[3NmVix:"¯:=j]*Q uC7vDLZ'jR1kK CR/=>qsh 'ӯw6]mrʐ' s5'G$8. [v8tӨLxPSjEs(pIS|_f 3u5PNiyGXs 7O,̇5=^qx=>(,]JYyPv`6]=yK6:*ip)9N?qE49#AJVVqS`uXXɨ+\xGdo\@A2S!\]8xwlXL)+w|RЎk?8}_W7W]3H_uMw R H/dDU+\xy륀PՉTdIĹE 3xjp4 `ť LQ e=߳KNfV78aҲB$i_4s:=wɂGԾJTŻlչ%e Tv8U}+aa!fTZ,.店 +_LO +@G1)׌2iEl|D0](Iׅ:ϡa~=4%c]/]N:>aLVZsPOz h~4/ ^%ay`z(I]b3zO*=L1$=rDƇ~ wZϡε%ЪT<ߴoNիc~BJ A7 ) Ev!Ki(#&j+at ԸIGo\%tZXbiYZ^NwU2XRCe_e_mB_Fi-ȁ|h ԡ–yU@+ 1^5$/r#oiuTk Fπ5%*WıX7F7B{^~*"A>W~.ߌSy"/ԗE[  XqxǍv KP⾣x(f"~A8fF6̻pӉMMQLК mT&UlE!>] {Ef$kͬͅRYܷA?K8N;8WǙܵ?g<;뀯XZʎ{lq='w=o#g\=yL'’^sYhZ~io;lw6]{qnIkBMCGϺ/L#CEY3ie&IyBb۹ry kP,W?|tq%tuϼeuxK_v_P%-7hKuۯۮq6&i GpA\^IBa* NWRF_'5?t0..L)@쩅^5Rek4ԗ0>voPN9,O<Km8%LR4ڗ0](3V]x&+x +eqh$xIhdR 4#źĽHknN)Ƌ >#GWy ӄS{j$&_+*0k7e5¯KO0&3l;8֛oEIuzF嚧à1yDSɞǨX2O{oN‡z9/b$ͣ: +2_}G4ƇbMׯ9h(t3Mv?Hc1/mڼmxd.x]>mڼ:e{lx'/mJze۴y|67=xo]bs0QYP \Aȅ8x#qG<8x#30#30#30#30#30#     +"+"+"+"+"!!!!!;#;#;#;#;#p p p p p 'p"'p"'p"'p"'pBfl-lAMS#jm$9sFR4OhZ٭%yR i\'0K̒F8$^>fI^5d2ަī7di6Fsmnz2޺MviV>_JNd)>omn$eu򦽘$%yfIc䑓Y̒de'$/;%yٴ-gc>̢>0$&3,Gmme[â|&EyXY-ʫEiQ^%i(`8UGIZoQ>IF Eh)Y'lĦMov -jvwGcg\vHChkY{2+\Lzk[htGY§?yqQܜ'tHgy'vH珅a!)g*qZ͛7|<%ѣwu-Csx -zJ }wX_jq߮C?~E(/5Yg5™E1gկ,ҫլ-ҧw'*L2$L2$ [ij&d2QvQ߿L֭o$I==~/e2̫7?e2^ۜyUTsHx-]"1|YcY䓝"dd'';U,)^ȗfm/Y)xL4 S ̒|=FMf9w_|]z]uң#>Y49[}ܳtc9NՃQo5`VA#1 ݪ[&vD]x\4jj gI7ceGD^^szJߘBiTQTQR[ZV($bfVuJfVS>fV& VK'‰H+|B-oiF&K483,׻I&dI&dɆ-ѴP5L2d;&Vַb$2^xos՛ރ2^x/e w6NJNLx oAeWo~>omn$eu=o)}0cë>xoS+}0ަ͍IxW"CAj852žFƾFkd}LvN52٩5,+_#¢^+@Ir#m;JFrh^i4J|Y\F#FP\Ng3t[KE17~c_JxaW&'Lɔ3uWET#^XՇ ]|qa>S̫%ٖ|^.Q3e1(*r@BcBׄ}H_&r5@KQ;+;+;+ȕdM<! ȯ 1AB pat LY47ܮ1U=!LwE`KYHwClJ1#]G֏:~d}]TY?5+Yխd=zG#K?֏ IuXZ״)E3,餔/}_ Si=}9E感L*^ N?'V|)]ϻPί uCzhk9Jƺ^t8}I#r(|=bStZQt=k|4?]sj/<0=]N .JZjG_z9_uaXCo?PiLPZ{E^hO*oZ7ZKUJ892ҥ+X ~x)N.q݂\ zј+dz"Tْy3U6;`DG<'fS9.ܥ)>IF0 g-q n1q{-m;%(nQj}t±h9D:/ ɦ`Qu6 _NGw8}ޗdI&dɐN`2^xox`2^xog'}0cÛ~lxoc՛_۴y|67=xo]&|z۴y+ud/z_%O2^۔xdi6Fsmnz2޺?oJ.MM}|97e'dߔ㛲}|Sv6oBI*߬k&+LfV/Rnn\n\T+Mrh=S}yRO1g_~hS_^CMyɟ5$ͷ͞3Sfi2L/V:H3kyĒb[uA:R%VVx]}GGtTL:y5M7?f=6 JD[ ,{rR-'Wh)%o7QzYH~xax}m\LNŶ ?˲&PqYŦϵ>s>71VljU{J K`%sѢ.Bߋkg@b}X#7$yvhk_uε|^zN:?UONqeެ,C/~+)r󴥡^o޼-ݩG~.9*Ch+.p;`| :}KĻ̵ _vx\%B˕|H93xoekJ,z]XgOCcgOY:xWLzum}EF%CaJ+)5N$8" #i~fQ5aCZV0 NR ɒNR/nXD R͡`PGմ#g8tW /8^IE@ ~a H T1ÆAp9=EJbO-3 'Ki5xq &#Brx=RKJ G<L2K %$,ɇ,ɇ3K%yt0_fII&dI&d$;fI&`G]d[L2ٜ#6NJNLx o~xoS՛_۴y|67=xo]&|z۴y+ud/z_%O2^۔xdi6Fsmnz2޺Uy^́YW\̒<$1K,NfI^v2KY̒lږ䳱fQ^ILfdʶaQ>^f E,բ(YOC򪣤N-_($#̢|,`g6}nb7;n_x#\E3t`x];$!,˽\Xzmf{M &-4W:,ʇ{tkӟn j nrǓO[Z6 =sm^Kp-[su_R.?{Mao%]] G:$_\G\;B38-|v>v;ܺ!Ϲ,1|,NfOv2|Y䓝*ZZK,qH<`@)fIO>n#&?g};/u׋MT.ֺXQlőLF,zYmY鱜q\V(C@ U0nUحJUizw" jً}XC~õR(j]`PGSRXYiR)+#NB#[)h+niV @9rrߣ!*$vJ i{] )>eO v1sM'&@kIAJ>v;'/z\xy륀PՉTdߞs`# 2:"gzIYPհRV\ڠ^ e=߳܋;#fV78rxß]TQR[ZV(h-x|e<wq`T%FsA~IW疔aw&2)NT~&i4ǔg:L桽.!=MךYM.6(Soԧt3}j+݈nu MYjl7[){5Ո~;|C3|%V u+VZݭ@#Etys OύVsn̵4ՠť7.[wv[itAʢj:X~_Dž 5JwTR=J}P( {Jpf9#TN[ĴR ߦ7ofeХcX݈bFR[5⊮?1(w+dLQ s r qd\~^QP暁`sL1(Wl]8e,"Z(sQ/#zuWĒJzJYDlxE1f;z<观s nab~R݈u DeEEg`?8~zةNœK7<1 Dc(EK妯}wPKJ%k|F EJiEdߗU46Kǽ:e݈\zs#KL)rϥd:r+"jGL}t?Sfzo)[=U)[f|צY\b{n){륿M04l|e%1eNA}OL?4!ceĔn+_1e%+l?̯㘲ݺg)_~S';e4y1I:馬/iLW,Mbuʬ%YzƔ~N}kb^MLQlywSvcʓ&c GSvem1eQ׾Sif=k)MgPhELoӧ=So5c.;1e'jѹk2uFxyL١ؾWz,K^%͏PG:iN$7wT}W'Yr:_ߙٵ5c_sspaOs^)oU|7͵СCJ9y7_~%J.*Jm/=mF;}_yCUzwrCs\nv٩п>:ģC??~*(]\op B CXy׹5w|\~NH~OWoA/|Яmێ8 ȃ,lBr;:z1:wĶjSE;t՟!?T?zפGN\5գUOx]>yR??}DzJ1Uڝ^v-NgXHqn+پ{RMΏ[O ܲNk3_}5b!˄pz3󪬹s_%r}A]7.AZ~U=Ж_xjJ <];'\{Ǝ&WK/_xwUf&,Z%g߾uemz,rOeˠU/7{6tDھ>vkubtmfB=<^8`O I9O$>|D$8m[VdtE9lZ`P \eZQخEgyٮji6Z83Mr"\ 5' k$s~FMGONf㋛Q2SբH'L2$L֓ԩgF;q̉S8q#iS&7ݞ_ߍXL4 }a;!_B ԗSb TʊL\N6uE_+zvx" Q1N+L_F*qOFIIǼXT/(QH'.._aA)E>Mކ/7e#ó*U)TyeXJ䪾˩3~LƄD310S$3^f2F _隌I$z2Ć!C_H.d\p$Gp)~BPV707 E`HwI%ei5mtGJQE9\(/ ғ_Kyq" 75%2@VN-@*Nm@Nȁ| B :'܃\#,eE.%@LK<%_OO`[(%^K/bVmXwӼ,.G6`IG4?vB.M+jJUo'racǗ]mP~rtэP,^EopH?{A_ ?$t/ߪEXH*@O;nthX\Å>@?RРVkBOГ[ lCrfZMNК =V&UlE!a<+Z0#حv{[| }{څ+\;$ܵ?g<;뀯XZʎ{lq=')7't'9ler?B^2{OS|ca;͠i{܍sNZ:ͽGoZ:z-w|ufꥷ:(ʚy/L+c6EH:]˳VXbxC.y{ Gg.kwd[w.j3}Gv|:xWm׸<'@N6dQ8vQቼEqWSH+'F0 Xť%*o.UFV FڎP<<®%Iápy%W /8^IE@&~~a t *טzaà{apRS k4"> ߺ/z#0^'6hrUh4$+Ҟ9òTqaNegN6Fk&beDD{%Û6vIBP% J:/ sJ>jC2ynwPW(* SApy F.`w @P(7?l3|L_8$*Nu`tWT5>!(~Z&{g5|^ȕ\"W+ EQZES䗊\ \edQWUiT}M[ӯSoLNn֒bS y}_P*zMz]/ M.+W4Y0Uߪ R F, Ihc2D#ruJ$7wpR][dI&d9Jy6li2wɞ-lHlInQ[g([֩[lh:ruDE1F$:KxJ|oׯr8EgɓUQ'?&o=*#NDmȍeT)ļ{ JfS2LwɳMp==pKF:=d-u=k]gW{Ћ7jX?T<._}b/*v_gL~%=ՆN'_S;QGX1vMRmaRp8븢=T{hp?l&aFP<%2qA?2yL>@<=AX@=ٕJ7Hm0 . AUXX 3V|`-:/l ko?6W~;~ ?v[n-҄O77Jb7Aȅ8x#qG<8x#30#30#30#30#30#     +"+"+"+"+"!!!!!;#;#;#;#;#p p p p p 'p"'p"'p"'p"'pBfl-lUfl>1_ՀHxq|^5Bߧ#~E7 =p~_?= tDy"k׽!U5gq3p r Q煷ܦZ&әƵ~NG=JyW'Xյh+&e]X[q_$x_ڿPvsꧪyh\}M-kC4TyL_j/O|kQ wC-ʻ!Jyce wG,g僿P/UoX=Ɖq߿5N1p#wapn%;^.hhe=J,|.љF(Qx]uQ+*DkVFtAyPeڦl92 a;.ZW@}bOyS6 |_Ŋo\YhD|I[Xr=_,uWśq)~8[vQ\ 0 N  &o;+Q IF*i+85+p*^KUgzeRԵVZ׌s= C%ې/ wT:ƻ/CNX) WVq.#|ja8V<Qm1~}f(%vTJ*_39Y+;Bs1(5!fi)B?fVYg0mpکe9#2GJ.-5y@qX}nh#;YIԋdwu)Db4o݈ڍ"}"r'jR M%h冡Zt]9x4;^i? e} 9͓#~yG|}Ҩ=MJFe3'MLmDW-DK84GPO"46S7<1UH՛N_KS+o&='TQA[rj8QQO70l⓵ >_CljCWDnf5M gSʱQ"%OϥGF);I&dI&dHv4#T$L&*8ɺd9IG/e2^ۜy`2^xog'}0cÛ~lxoc՛_۴y|67=xo]&|z۴y+ud/z_%O2^۔xdi6Fsmnz2޺v^v9;fJa;{a%ꦴm E@+\+Æ,STAMdDN,?N[C 0:i(لPaI&dI&lbMU3$Jv.gne}-&lNRx/e6g^=/e2^pod&$[1^x6m6hnMO2^[.ރ6mJ2=6zW铌6%^2mڼmxd.xM9lɇ:a+tؠp*c~r#\f leG.r!qG<8x#qÌ8̈Ì8̈Ì8̈Ì8̈Ì8̈Â8,Â8,Â8,Â8,Â8,Ê8Ê8Ê8Ê8Ê8Æ8lÆ8lÆ8lÆ8lÆ8lÎ8Î8Î8Î8Î8Á8Á8Á8Á8Á8É8É8É8É8É8#%?/;N3vZӊ6c;1[>fl-c|̖1[>fl+!/EXRk^(FCK SJ;<2PʩjGĽq XF {h56lW&2j@uR?b <9EG^Dk2]GE4SD)ꐃ5 7n;նԸ"sD-GI;yJfזJyѥKTxt@4Kx~IGB.I)]RO¥5a4EHU2ӄ15a&a 3zG*ӂٜL*":2SCN ŵBjIDz,dX\ m!Rc Hg O:UJZ4qؿh,r)BGdFȞQ2G9Ÿ~MvU~jԛ\$_rj8?4L%Bih:'Z7\)بr `BԊ'URb4&mN >DդU n &B%묡EĽ%,+oX!-(aSxv\6gmcuM23 ^)[grE1e?YcǔmuP|LyvϹ/bSvz;g2gȏScbʶǽX1e {Sc߮=l2˘k/O)7~]ژ }ڌXHLUcJ[_,j9'lBQ3cR}ĔISfu{ʓeƔZĔ%i).'ǔ+^{bʓFlY2C7);v=SoXLyAJt ޶2໮s?SOlc._?̏)SEbqC=SңSŔW/);zd6ǔWdf<˜R1\Ĕr=KySh&N$s &NF9ezz4/č{F{*](Iׅ:ϡa~=4%c]/]N:>aLVZ1)T:(5f{C>. 9EjGIX.'JnX kS|AS I#u:0Qtx񡷟]Vssxz=GI"~/OoiF7A|XŪ_%Cɮh >o)URaP+O##AғGI\lX:"B |T^&Bc łO{^_[d B TW(n=P]Tw F[KApfk];)w}V =_:8"_ױpw5yXc_5Ycx dcM¶Dj:1`PVcU[n%0?sb"mQO$ܣ|A4VI)P.xBad1d*;6WʣUGwD*G_%?XS,冀( {F-{Jy/mjJk55V1GQH=|/U {"/"Ɵv&iSű`;z8AéfŽd!,cxEq~pUJj.ʧsbك/Qs)U*|0JJu~%ϫzyUEG7yks,9 B^e?S3즵>lŸP,{cfw]!x:휗}7v'^j%m'Om1BufC?~ÍyP;B{*D^}?u-GsmFz{hd%H~yWG%7.uЖ[Ё?v'e_ɭ`"-gs.}ŵ/M]_ C{>Ӳ]s~P՜k<|8?T<{:nIwt'hs:7UڳVo,wvf{A7ެr̼xf_ehM]L~ :r%oZk_w[Yܿ߁O֝uHY-UYŋl =mJξ't2*yt?obvUnjq <yֿ\<[)iP"g~4?kzw_qzU/u}U>|9u()ƇNJ+ZxxDžu szkP\8˰J׎gz*wz_y#O I9O$>|D$8m[VdtE9lZ`P \eZQخEgyٮji6Z83Mr"\ 5h'N9q'Nr}3mJ#۳і@뻑_4 }a;!_B ԗSb TʊL\N6uE_+zvx" Q10'hx\QR1ox5K+JM./iȥIó*U, ҆꒖q^?cfϙYr(fHsdf0Dak6]D)┤÷7 alfHah/ҷ Ye?܎\0̐"Mc Hz X9=jeRGjceiYzM[;ݑRTQ;p'/ĥ<8@zH +d' ehZ'6 Oy F>ta tXvp@sC|ˌ\"M [N+u{PK_:-*yY\nš*h~{\VԔ^OǎCF}bvO"~]7`8sf=FX/+U_oբ ,O$`'7Yr:4,zBF\BRhthPO8iiR#}Fܥ`46Ak7BەI7E*=Blsh|@(9Hzk.lf%/F3Hg;Ǟvs I.w~$m:૮ֻイ+ۆo`g{\Ig~ :Gθn{hkOÅ%:ЪקL'ߘwNi3hmZwܪքssћևu+_r}zmGGf ŵM_ίxs)k,,֠Xly#ЅnKyYZY쾆K~ZÌtѡ`q~5>o7P6Y,pxx"oRT4y! KzUY(뀷ԃBSأ\( HQ gGմ#i8t.J0'+/@`AS:ltݑ# bS {jdFćv;kˀPx2F Z%L*4s H8[Ji.}ޠR?/ W+ՔYzL9!z|-T{BZ/+L'W=8 uAvR,P+a6 "b1E ފ!nVV٥:Jލn7ynk.OݐpPr ¸y=| #vOEp ?g;e0u^)S/vtw3fL2$L6G)2^x/M2^x/mqVrd{lx/m zKx6oso47'/ dOx6oN^EoIx^6m6hnMO2^[*o܋9dhX"nvLˎ\B<8x#qG<qqqqqqXqXqXqXqXqXqXqXqXqX q q q q qqqqqqq8q8q8q8q8q8q8q8q8q8!GJ~^vc'f`;miNvb|̖1[>fl-c|̖xc6l4{gLc*ٗ<'#֔tQop\!Fʒ %HՖXYufOGtƹa̍\:a.bü^{vn#='Wh)%1,sCI6dkB$0OMMAZ5: 0X#EyeQ~bQ>[(bQT(_e\76Kz˾_oʴ,˿Ȅ3 WJqCGևCΧ 擬#S*2P)ryrH&Q~\P(  ǩ[L( 0+0hG5V9"t"SΏWd';%۷X""(Mn(%vS3v9rߘGN OQFpN5[aR+ۆڐL[!`TP\1BIns[ʏv+Q|q;6H9 ny^Ow0Bi2Fqw%`}}BQLj{"W*r"?S\/FkN_*r"7(r"G]WW*Q5oFo蚣zLZNgv2;8[ SIYP>/h*+ ˦ =Ai!pLR jQj5Lj0U[Y_aY 2-\b xJ]zxrzO_w?P(x7&?o*$_y%V!$L2$L&OʳQgKw]gKru5["5[[ge VuP,p֑#2UEdIt@<=ax>s\@Ev RdC.@ܥ+nl.0`hqk,\w xr)\ .&] p`8!0[&x\ PP .LgM+LY\ 0`up#M7p+\nNyw 0{<< O< )x9^x^xW^x 7X6;`1,`)@ `G|S+V|9j/X%z _| ~`f_ `ovp`7fB/M(+9pwV{7C)v-t1^̨njzI.fԋNfKv2^1^Q/qjWv2&dI&lR=~.qn҇o*OVD{—>SۨmKS,q/R%=KKVw?k 晹6I oMkM3k'P,ZwCS,2Y4k^߰@G31zqkb?GJw$\АZ5%zX6\3Z}9Q,>%RWUFwF$%骃15M2d 0v\ɵ łlAB6;u߸Јo-F n1zsYP.ԋ7S04tea$(&N?=M)nV %w$[SVqPp-j@VONUe5ݽhCS aHG|/k! z$J!_VЩuwc_V1=6R@J,*+ ]iGԊp­}y(#b-b$,G1JJ?PJ,Tw+fr>Ww*b%QjCRPq/~ͬRg!`G#SUy`%sGdcяP]k3Zj*XU27FvjJө~PRWZhV'E D-,OԲjA0#kK CR/=>qsh 'ӯw6]mrʐ' s5'G$8.Q{$Ag O:՛ڈ6Z4,͑qؿh,/4E(h%loȓxbX7bV~LzN;HVBpoa 1'k!}؜Ն8kkΘc5D?3J( P+8K1S8&dI&l2S=/e2^ƛ<^=/e2^pod&$[1^x6m6hnMO2^[.ރ6mJ2=6zW铌6%^2mڼmxd.xז -9G<)&[_o2olSP(Tz}^_ _AP!Qߜ$Mu d:)+ jo,?N[TC 0:vfx; +dF L2$L֣ zx/e&Wo~zx/e6}8y+9}2=66^%`M7osӓo˧`MRLx Ur$eMWLx6oso47'/ ^WDWD)Ly*:x0C:a;t8é8yȕ\fl-l9bړ#>Pў-B0nś#G`͊HxH!ZL oU3F>MG[io'dϚB;. YE)#p*}7[(?r(rj*tICR:Rɫ I/b#y tVMwU %ݝDJg(~T#E8o {#=S46ϫQzZ5:hQTFq%>l̩%TlVE>Rx^w#\ɑ>_#Fs^.)|E*NFx~Ob>!z|-QX#٥Uj&oW5:_@vR,WP J` ~Vi;H2{>3 #AJVV )'j;]L*_g&͆]&5 0MyJ%VB_(z+f o,RNcil̲:b`?8~zةNœAӦ<1̄ 5aCq;h>@Uet'N/)%U`a aG9y;\OЃc qy'b"vZR*OaՒ"[|2݋ɉV~Ew^D}cܥ"``Nb~@Nv;rXͦЎ(yvD wI5,UM-RW!`G#SUy` sGRXs5a5f4&Z}8r(;=$ThR4!kovmq{qDZuN̮-F6 =Kvht]RhK_k)hd cjL @fTG 9.UDtdk)D˓XȰ$*Cƨ*t2M%hN#. Z)JY7ISvfGZ=+dLr8'M?IIԨ7HVp#~iR JJ'ҦtN)o@RʱQ"7T%O<hhp)LƝm|Iz vMlc+YCŋ{+XVnB"Z$,Q\'\ngw߈)SƻS.c1e?D cL0g_c'~E1e盫(ƞS;"-ily;Ŕ-7nPL"v5<[kȍ)sgKs;Ŕm6?k%>}cJĖZRxNL/\Sveѵ}w[.y聕c]4nc߇cKygKc˜ǵ[eLnȒ?VzgLٶe{߈-_Obϋ)OvykL R_)[U_L^ywLwnb[gǔ>x`fOiLiw1Sv<)kkSv}oMKbٗ_μ9llg][vXu[c{34}lO^;=u~L)㨘Rǁ1\ǒx#ڼ mj.ɜ8exfNjު q dyϞh-kZlMu*Nc!{yy2t}OI&dI&Lf4e .sIiĐt~T9"Պ;yJus(_ t?GXK;iCX.寕V~t>G y N+4ʟg~ސApNZQ߉t%V;Cw|ZT+_rCk]/G>L9k|0}*>՟i\+~QR @[Mk|Fzt0_>V~W o+*C+zJ-pեr*Ȉ%ldp"$vd4PBWl|Bx39U~A9GqTdW* G]ŻRP+E,܅`NJ]zn:zϗNȗu,fsu|c^c=.Xju|mX(%Xj躰-NL?+}ju՘CՖ[ 54LH;Bq[T|# (*n*iGu3Mi` "Pt 7D/厍Uxh]<ѮJyƑW{j-{j=#QRK`|iҡz'x kq Ua|:`y{Ԣ=(oO"KUaH鋈񧲝Iڔ%`q`;vxPB?\c+o͹$ۃ>yNo^Ws72^2{:@:ڿ/YM6Cڱ6ם~Ϟ4vi[xCַ__v-@gP7ߺE?"TZL.>p,?D'L(. 0~\ϗR4Y]L2$L2"UEHn-SR2A-}Z0lsBO ]-D(~lW բlW v4]-ja9Z~UUUU=*z2eT-X{z<mB'~<.{H'6i|hKȯtOk0yK[X)1*JMeE CbsD/ŕ^P=N;<{~MHe4<.i()7%9v O]\l5wkJs8\ 4\@䩸Tkᙰ\*'^?hb* sq^S4x135LMxL?3S 9E235`fjyx#N_9L2$L2$L&Gij&d2QvQ߿L֭o$I==~od&6%^%`M7osӓo˧`MRLx Ur$eMWLx6oso47'/ ^Wײ2dWE~-yχ:a+tؠpBYyȕ\fl-l3|+bD<. HNP.ޣL<|+n4MYMLdtnrݲpTD@p M,ʮl({/D;A!]O.9 Hft%#OiӖҁp:G!tPm ُ.IT&k!FDxs2jhIۢpE)t ϻ C(V8HQa?@v]Q/,?_A5&dmV],v~J({C)'i(p_uBĔd}e(B{O+O >STsTO@yWJ<ƘjiWZ'6SP=:ˮ'QISz&K톚7eRm4Re5s]WGKr->OT%%(¨wA]Pɂ^S)z?.7xeUk*W02J!y')Tah(c#1cP zd`*FD*i8Ye#{E4qk(j88."%]&{ǙT uAw+|'y-E6&qfa]ݞTxx+#<2't{N#ݾh}~hyGiҙhr K + 79,P9 5P@6@*UB{UT&P-@u99񁜀@@.@@n@@5jj@Pc&@̀j ?@h.؊j #P' tPO 07P _@!Bt@-@ BC 0/ (h P} @W@0@#F $4hx @&M4ht@3f4h|@ -Zhr@+VEZhz @6mhv@;vh~@:tq@1@@'N:tzt"%@W]t(&P-D@w!#@I@O=z%+ׄt@} Ԟ??COXYݷl٣Cxq/^xq/:^ ^ Z z:c9\oJީɿtM˓U i G{Qot\`HO+m?m3yggva"=0 5S_r(w,Ψ?wȫl;*N"~EF~odyBᮄRki*\#8D(Xp1P3"FBl7Q6QeQ'N]ƯTj?(nad~ۢ"UyЈH`_P`Ɋ Pq䥝+ho,C籀)LD$m0ɭŲ?Q{|e8mj~DSc#vIyX>(b)o-R9%,4HDH5@)jeZ!v6$ی.3y\9Ҷrm+YұShfUKQ&;V%Y^ =4WW' zq֜ 2q:&\ٺRA%/*&]<Dr̹F 2RڴKN=JvkJ&+8Q?˹EoH_?r>dIIeR{_f 6QgICyR8CNgghƼ4dzj|'xI'x?'99;:<%!<ϦdzA<^ijA<^ij?t6/~\9c9"kR)"k.=:$7IM4$7ItI$iI$i˄9c9IoY3Go%)4G()_8+ROC > _a',Y/p窜OV=ĵӎs,,Pp}G9idqh@ȥ 8E)PIb$vGIl67N9+\ $RҸ2TrU_w?NXLxN](> }bN~?s_^MCEM{N;oېޟ?}LUnu,=CPR,ee{dt潀^)f~@]1䕳WY?PNۜb4Z1~Z1z/rQP늘b/_ y,f~o@~ob\W]R?Rjբe'&9~r9379~}+uyE/ryltQE}N^rRsWnn:pt+t9$mMC.ywӔ ˙yhxhJ\tB(E˭a=Ŏ+T`*<űEJBE_ GZNҧXd-+&(ԟ~P [1JvЕ:q#9A4}:ntBe rQEdF9= JOkaz/4Vi0uŽFw uT_30šEXZ߾(N (J}딞? QY6~G 'n|%*iyIdL]Œ 7-%{̋r/P}&GGj{{.M+ͽH<ş-_ݥaM*'ANt FQ JrX]0)7xP#&s1/.>~.v s%QbB5^MWq5_$Ÿ?qn\UU_T?1ǸoUqnp5;q1| }DoR@#H],om(yZg-K)_8(?(4yT_b.IsoJsCd)m%9QŢ] Ϩїs̛E6'dc9c9}Ĥb98~unaU=Jb?WLKܒUbܿ WJ7okĸgtT=0ߍ+Vq?ꋪ'&TM>0ߍf'1.?!CP(G:Nt@@ pnt]9:0!G&gBNLH reBnL3|` >g0 3|Épb0 'Épb0 'Épb0 0C` !`0 pf0 gÙpf0 gÙpf0 Åpa0\ Åpa0\ Åpe0\ WÕpe0\ WÕpe0\ 7Ípc0 7Ípc0 7Ípg0 wÝpg0 wÝpg0i uG6lЉ ؠ3talЍ h,#Ȣ9h,#Ȣ9h,#g,Eh|ϢY4>g,Ģ9hN,Ģ9hN,Ģ X4&`,EhM X4̢9h,3̢9h,3̢9h., ¢h., ¢h., ʢh,+ʢh,+ʢhn,Ƣhn,Ƣhn,΢h,;΢h,;΢>kK-ᳶ>kK-ᳶ>kK-ᳶ>kK-ᳶ>kK-ᳶ>kK-ᳶ>kK-ᳶ>kK-ᳶ>kK-ᳶ>kK-ᳶDiˢlBwcWNPιfB#"?axdMu^)FgU.UBR7B"]-K[Ŝ%=irB8k%C`lcl > X 6bTI]N6+ *=(Nn#dycto|UO}0SRIMEr$qUYxQ.ƔT>s$Y~&JOQ7wqCνS9af˷|^"RR9q#de'gpL,9N&J4p]|:ܢ+fq =rR$iFdM!,.\N38j TIk&Z0'Oo+&EyTB mvACh]7Ё& ɳ}Jo?o/{>O՚<lKȗP4:wE]! ‡̬(QXC>1")r$QkAfVɇ:zyK?V@ɏs9մsBQ֬YpeEy%҉_“ Sr%;9 |fҨM4+QɏpPC愪US\MN(SXJ@(JQr3&z;-Q[IJZ%֥DrW"֧ع(Z+6B9!cKX%!67:"U[* bL%SQdl83TG)\Kt-jK#kR B~S`8Fp˥%$dJKQVɘ *BҮo#b6E\M QIGƗ!GO:lyoWAWuŎ%xL)yl$/9kZ)Y-9DbY>((C U|"aHŷ($Y˸o%$ۂ&o61)y8Ŝ $pTT0Stw>9sSfIߺs*'K48u{Corq.{ F*r.˼_95/Qtj+ոv4r/C6Z(7ת~)Pn62 q ,W 9ByCC'ʭm,ӫqBofT;Bag-'-w><4B闔&j/[ V6tyP^]5^jufK9{ WhyPnL5^fE Ӭui֪qkkZ(X>$By9jj\{zl On\(7mvQԭPnuN5^j\*r UT :NKqljHQ<'wzgE??P`/w>$c| %uc,6]䆡\j̙sν:UX3UZ1s1lj<M~]D?3u3WO(7.˧'|*/7)ywy9.^yrtz+O>ㅕW>Vre#,]eɧC\*wD7'/y\rש*?%MYe啿NWU{_XzWv`d AAAAÄ>jPO?|*W%!ߣ#-"ad(4&І&< }B)c# C"Ƞ@P0"W4PC({MCY[]D+v|M2S4ȏ${xq9qSr +r}Y/Rt}uKO?O+wBJWd[K5(ކN}Ԥc6nۮɨؘT\OȦ3e1stsO,9e7boOޘ/G^B~<8}d/c%79%hCd7s vWSזLXL 'vM.y;ԘMyU/|T|#i*[/t& O>I<&ç2g4ooDy7i64't7|0#w>*Ack'Lÿ~e9ipMH9niL)ՐL/#u/1F6;kي6 e>3<][DZt|zt|ѶSc^̋'OYə%>>?^Od`frwPUNC'kο{>&t[nb^LzXc_2OXtqToJ{^T|*2|ۭcc6jwZSLHucdQt|QGs95ɵ#)M*C"vLǼUplSH2ݦy꫞t|t:9^FפYc>>w`t}b$d2O. <%ԇ|V~I/4Lli<.MhN&6sT%Iߟ9/MĤJR,OIזINn[,ugu} RffzJ~Sji(])cGof}61%/sy,)$IQܣjI]-此iN~mbz1P O=3n"'NǓ7$%tI~c)DIt|zEC])NO1\^p|+)橤4'M*7zsᩒP:M&K-fgi<,>拤޽drL]oTA|.~I,g_= s1sE.u rd +[I%'i$[>)F+-EJ? n~:y=04aS O :0ʞgp#óZgxV?3`ɂL-NleUhBy (vɀPFL-^;WyCRRA<}Us&sHN܋Iɻ# k8i菭*%Yh6#hv޻~@ $O1s1E`\N"XǩfI:N:qʣ(n&"~鶮Gw,RXuJK +?7&"*&,&b`/+CL:% /J>PT~cFmM^JBjRԵXܼb DJ/] å9Ң⪸jъ†;&yuXq7E0Cr-VM.N!uTKG$jkc@NT?)g0 3|Épb0 'Épb0 'Épb0 0C` !`0 pf0 gÙpf0 gÙpf0 Åpa0\ Åpa0\ Åpe0\ WÕpe0\ WÕpe0\ 7Ípc0 7Ípc0 7Ípg0 wÝpg0 wÝpg0i uG6lЉ ؠ3talЍ h,#Ȣ9h,#Ȣ9h,#g,Eh|ϢY4>g,Ģ9hN,Ģ9hN,Ģ X4&`,EhM X4̢9h,3̢9h,3̢9h., ¢h., ¢h., ʢh,+ʢh,+ʢhn,Ƣhn,Ƣhn,΢h,;΢h,;΢>kK-ᳶ>kK-ᳶ>kK-ᳶ>kK-ᳶ>kK-ᳶ>kK-ᳶ>kK-ᳶ>kK-ᳶ>kK-ᳶ>kK-ᳶDiʢJh^G֔EE!H|1tFOԑJ_A bf1H] )AA ba1Ȩdㄆn GDH/ svcG_ikEq} AQBُJ!!!հsiSsCI#KF\mqf6GݜQ d ~{. >(ܑؑԑ\Ɋ#@R-.:;4&!@=fWr5YCfBc,ߖK97HYV]_"o8]/TA3@,6UIϣk D 2/fR,3׈M1$J2Q>,̌^bu0̉10ue厣\w~@>~:ʜ)4^6\89j_ۘo*KZ2\}?ᇘψ&QO&_1clb$%*1ZHB(_zTN7z'`;\3s)]݌SQМzrv tziQdoC+fC,1(sB_ⲫ$uȞ DDP`/sFWSGl,F*&2:’ܑ4tKiKB@8:6G$*B؁vDŽG#"PA5ZmQ8 GS~ PH.m-С=bm/ŇXFUg5#NzK\.k#X0R*i^~xu$|' ZfHk3ǖ+9 #euvJYro""#l $ 0걉H;Gڔ-vS$GlKiN ~wI+j!lVv7JwVQhI0U;'_2~I/*d 2~XOrkO4 yK*Gu䮻DyiLlnU-T ?d5@!z qEaC}*M~aˆCm/VN5RV?(VHUxoX mBmDA `?`JvWEH {~?}ܞNIh<8kpn)jwi/1UYc9cyqt@ogڑ$%-IQ$osK%i\(vڀl$jAI׎TO3kGJroW<Ղj\sdg%߬5ŷ\e 9Ϯr(w"Vv]QuRH~[|qW5uVj Svɣ(>&"WxL?3<-fjq^աcargهAT[^kP|OL|kI]c`_Z[S>{aGu6gh:o%R\`KD?OUqI7u40E ,5^xB~Wp ()ah!c#1GP zd`*FD*٦)zs2n-w_E{8S[w8J5HNpE$Î$ά ۓJs`e_ni@-/:(Mc  SB:{fAH7B!BYUdT 2P ߙ-P5@5j T.# m8 C6 P}@ Cj zxPs@-ZD!j =tB#@݀ 7P _@!BI@-h(?` 0( (h P} @W@0@#F $4hx @&M4ht@3f4h|@ -Zhr@+VEZhz @6mhv@;vh~@:tq@1@@'N:ty @.]tu8@@7n%t}@=Jzs@/^JzCHg z?R{*hB s?5gvseMGYx,/% Yt/% A /% $A@rMSt$1s1?J?*"S5'Fj~$颹2MV~?`o\Dp{`zk.ŠJEsQYQܑW%dF):U-E|$]9|/UFpP+D]!!b͟g*E  C#oljVoSˆNȍ_ՒP:Ȏ~E)"A666#e߾K;AiVР YPIcS>#Y6MI`4[)eJ-]qhF$ ?$ VrI]Q ]<""Wʚ*rODny[mD-Hv.Wi۸öGT@Yb4*RZťLYZ䒬f/՜W+_UU58c4@ad`߈e.Bl[)a oa@j[.r=<"Wr\#u)JmإRJR5%(xjq6H\A7]9JrO2)Z i罯}E3QƏ3դ<)'33b^?_Wi5 <[ D~<OD-O-g -/ -/ :[?s15)u _tAu ~]_5u ^wwo$&Io$:$IM4$IM4]s1ߋ7Ib^D7 #xN}!M /p‡0щ,Um8asU' iǹK(lQqy4 D^RSR|Q$s ;]$6Ü.Wjji\* *\IAqWK'p%X<.~Z>1'9/eHJ ='읷mHϟZ*[7:U!Gfi()bz^=k:s^@~3W~{YjWWPR,(UemNTaJ~ezz-=͗g(f~o(I_uE_|1/S'/tqeD+H7^@ו_{nTA6!eJW~ԃ<4<4% pU: 0b^"%毄QreMb,ȖhO?GqYm|- k%;JjΑ sYgpdP7:!̲K}9("j~{rAe5d\B^K4:AahJ]kHS_+xl/sC:A$ uHU&CZٓ(jrOr²ї4 'BI-Gd9v,ǒk-d9EK4[Q#Pot$p.hHY,+3:M+NlnLH^#;z :HЈ"X o_Uj'UZ>ĉuJUEф,kEq7JW䴼Nw${FQrR.aMτZ=LJElq(>~#Rwr&^$oϖ`/0& F \:ZrڄFfԿ(%e9t ,.v} q Tk\eo['͸譸荸mM- ͷy.g,Eh|ϢY4'͉EsbќX4'͉EsbќX4'͉EhM X4&`,Eh͙EsfќY4g͙EsfќY4g͙Esf\X4ͅEsa\X4ͅEsa\X4͕Ese\Y4W͕Ese\Y4W͕EseX47͍EscX47͍EscX47͝EsgY4w͝EsgY4w͝Ecm %|֖Y[gm %|֖Y[gm %|֖Y[gm %|֖Y[gm %|֖Y[gm %|֖Y[gm %|֖Y[gm %|֖Y[gm %|֖Y[gm %|֖Y[gm lIޥkK?^ƯK;W 7 =k 5eW/H7-GXV)~BG/K?IY`uG~^~^+K|y }y?/Aǩ*C-->TzQܲ|*W"a \V.h 2di=\N)YW~"ILΕ`av{r\/o=pE$QBčTA8T2䰿'=-(mt!p* swrq =rR$iFdM!,.\N38j TIkf=reڤ(JHa-š4x@HԖVoXߡ} fCOIOY>A zwE@KI7!hY6N)sήyPxtEA-ArrϗzXxзv{|;PiYriЅB ZB#EaA!$ kҗ B7J_N)wmȹ3_jg3NgqYH< #l=i4+lוquxվx͙x8GkxrK˜XVm0:f<Z (&|ƻ#]^#$J7>@"+c^ KɴUFhDP"[ݙ xbJڕ07L2kՋl MKiT8| ħDJ /w.?.4l-{L&(KRͣ!s/dI]OyMP;?,*rts/2-_֔ }wRJ[8~mFHyP-b71:ZfbVUs͢wRdRfB@~^<\`PV.9A{5ubϳ guz{A:+z6On cr\Dz0v.ySJս#mL|&[چGʨb֖ _h_nU!5$1' [E9g/րjՠz7CPwt|҆@U qج-PlOL^{пtɽ6C^i~lY#{S _)sEbʲgs~;iQAU К &9.!(Mj)'ɏsNݿzcKmN ı-A~oj]YOyxxaz' <ѣ@7FB}.u] mݷejtDt/8P 1J}5 A^߸+QwWqA6u: {wXnpͻad,AՐ/wl voYǠ|G'^'ݿ6<;H/ }gU~ؕi6\ .d*߿q7ka<75E>7]|([lH;q~F(}dʇ#[B,95Hʳߩ谲VӴ-_f>sn zÈbh!6;\oC;|P}Rd1eܺ гjd< iվນ,n8^ vmW{mEhRTҥP6u>LԞ-L Ѱp1(Կ`O5D!PһgU@\뚂< !}Ϋ@NM3/zbhչA_:z?/*/w$x#cm)qSJhǏ}pY_^.z:Wr]&Q37h&1I984d\7k؉&=Zm$kR~Ĕ;쎠_tݝBՁL;az3t,>m^ۡ> .>vrMKУ͖OuPa Em%NP}76TLYWoTVL~XN(A&T8;ә~%_O@;_ a69ZQ~]C;Mo<Cxd>sL3U;5s=7)إS~[A:vh F5IE+&w(]|W ~ 5OͶM!CW葵SX/^Y,u~4C-Kr>psCo_{%$4;YIA_fB7ܱʻ;0=o'וF;k>x8_xѼQ/iGAo_AVC ^9i3=F wrg~v0vK{Aުfr>M=u ^w[S2v ksSx7M=NLG,~ coӪ~zc_VƶC|ǾK,B}' rOpл*vzapՆ`-:ڭvs Oo꽂3x!Ōoz@Wj_lou8p[ 2VЃԴ{B{+[&='Bp S&`!6ya` ~ڋN&Z7\bA710]IwMc7_2FL6o)&|H|F;mmxZ-HB ;pNd<F^WY^}06=>Xzc zzBv1AuGi(}B ?09m(G3>} Q˧j=c}g1e6A.Fb㫧\m{t|-"NU R߳>+ rrer7Y}s>7V,e.C W~&Z@4 K~|ì'Z$֢[.m4~ OªZ31yo>G]{&aWBgKmy-J"J[7<䟛dcgm# oG4wL%-f3OܢQj/26-|S YAիdtw1bJ/ΈhNiSl}Œ{Խ Sէ:T":-9]nzouωKp@zl\a'q9(o`m7 -^>Y?vsїf~Bݽvp}og!`rzשd'߾Ggm@~U#s!=v uc;ߐ"tH$zzn8C+۵]FF]u;o5/$ʞ>RMÖ秖oB_ؓTv@]meϮШj!d&b#]iK(]o~/?2m םU$/[ ʋ胞˺p&vL5gA5eAz6|&O0gW;f}J,3Zm,Xw|˿sޝp;Ӕƃ˟<;\yk&Ē&?-uRh\sF9gCL7,v_iYՠmgQmJwY;)w⿀>yi0͆ v<|'dC\vljR /tva0Θ n f~}Axum*VH I0HYwyp^g8S#$.R:by;>c6ԯbH3M)"7Ǟ(71ݻA`gs}^y?5ad{ub{6sIGWyY>K/oz1 I]v!'w(~'&n޴/rv*+i=9k^GA;EO$_+k#NԶ@{6fs荞k6MzUXxgp];S>tl '5wt;9$\8WegWd[ A?A==_J/9,;Jͻͷ ҡ5Zn zZס-vn440 mb/ى`g658Ky3> "`mk01tۣOh UBo7'8U ~0(w/Ҵr26=vְ/Nһ/C,]>7@QD.SFe =ԤM銹|z1T ʮ~wou1*7#P> zK͵7~=y΃=*?|7kd7Tz~pl+')/3'T;*O|j z%z>_yUu2Au˔-'՘vn>@}=s}9U(6ø\󘽕zC}wC^3h0{;h}4h\(Q׵`.M˾6W&?ぽ/;gψVbh!-سg|2FOsqCMrSEMaoMֶ͡/ȵʄ)O]+7ISgC tԂG`yjYz }֌&'B{nUsgo m{ y>N z1~wh~?s _@yºB;_mrĕZ?nG5g48mԇ;Ni_sK|O-׬V-b/7r37}KMJ`+z{Jmxpap}zKBKh冺<ۯ^ |C8hmeOܜ::ֱdj륢 ̈)G ê:H|^}0vص#'?8͈nw.ߥr͠?Of 3-`x+\R}1`Z+x ܇>)B^i]CU^1ҡByh +;~Γ@{|jpUk_=q 5`;c//_C>Fw 5[!5% ;@?3;H?@7Gnv:ؿG\Ǯs5S.|^ ~\aPq Wo5Y jGO2vHmd4.YQKvX6q؆N5OI1 ZAJ;6vpVwVv`sݦg{4qIwgg.;Yg}Y~1u.`/uܲ˷~<|_9m`|q;JgR.H xy!gجq`gL Mq{|n>ɜwkAyZnAϡd*s&.{DUŔŰ=YL?g {@viuL4ḱ[oPAKs:u>w^U%:EӎЯe=Gʱ?z?6CbTF`|=t-pqФ;[S@شL yW!о<&6~P^]֨ynfg\{]4@[~Ac(hWyA *8x:Z^?<uIFmͅ_WAVjW}7}Dޯ&{ ]bԷݡ+*]A]~b[I71v'v2tMo:[U!z[]Ÿp8z둹C xdp=Q)ynĜq22ec%zti#ʥCl7Хd~x\dV'rO߂>m=5pQf:objl< v4/F$ o9L/S ł.9MӞЫk\9=dZ7or-}n{&Ok ςjw΁|mJvz:ȃU5^51\nnp=w1]Cv x Sg0 NS'u]WӃ! ni{ֳO`鯘R\5;T#jaRo,4h5וdFٟ<А{  \FB=qX'^H#p /XYF> \\MT6A&iU4kH2ofYw8~ .=b[&ȯOI3A=D\: [ .-?{&Ct^_zb2v}NsJXi&+y]7 =ϙXk@}TrhZk.%b\jv[, ׿y\cPbmX)@?F7{zx4\4'j|pZ^ v=~¨ڷO_roki.9{+ԓz H׫6Д박r QӾSbK{1zqu;Lykث3Κ0EĬ+עzq#-sXֳ0\mLW{UqƊǗLz֦HS\qPO3Bf|_,u:"&?doh<c_&_|]A, v3o//oH *9C֟у(E+Ьw0t%l$loҳhcZq"ۢܠ~7K~ۗ Sx&צ8޽`×M6<͂q|y'\ԥ {_>o=g.DA-wC(ahu%'-w];~-b%ZﴗU`p3d,h;Y0DoZ)CUjC9-Vwsu04-~z\:hJ }?yWH`gN~mn C+u2`.PzS*ԻGsgT=m[ ȥoG{piQg[4G:vzKhJe6۽z=u315/mB} ]צAkC?jx342IsU=,6L;t{Oc8n?3C̛'ǡW1{Z?~^ #`վ!];-wα7[<oV)G"w9r{ VUߩ8,볆VQ_ְ)f*ůzi%(6nm\׃~5tC4EauߗF?coW+]ɌK{ʵ#ۍPe1dV'@Bւ_UP]VȞNӪ v*ѽcuT._/6tA^˛3a^GP?y?F2GIЮ.l<,d.{l6J T?OڡWgYBkԃ!t髣ྫྷO6};t3cVm#2WjEП䲡o.ml9>m|Jhw7%G.mA߾;U=xHQ&$&7;M{z7z; eҁK=?LNꋡZVe(b/]#];ml}^@[=n^qg%&/w[ M|ޢ聶u Gi ~`wՖMoc*ܺ3ALj?:쓆elome;1ihuBu-إoc|t_M? ^㷡; ?4>~F鵏rN<{Vs$@m7mE6,cZ_:|9hC۠G )"fݐM cUK jAx`nd[ZUײGJ?Z+G&?Z5>m(Dj_[B=^ٸ$OvdghjϮ ӗWCڂ]L ^]7h2W?N1jqCEah*IVEGâ}SG`|jOaPj>OOCzˀ==VfP=M[@zƏ=_hà})zv ߚ2/x{WP}8E<q #+=Q'?6߼ ="o=OmkMvqe=@ *z(5vP1S>5~ڬ;n<K76Ϙ5 [!|rv*bxj{J IA隆ܬU'Ƚl,@nTaf) 0N20Aen.Nkѥ9h^z\S}'kz\'/OYܢ͗锶j ,84nkww0L1ڷ`>1xel]\QQ гw/KA= YK2Ӵ _}TЇ5F8;ĔڒM7K{_kvzKi1ʗSWx6CN4r34f=)*];{ɇ;}jA@Y ~,s> Ⱥ~A4 n#CRM({_J藰*ME"hg7 [釦~㒭=fFC_:l3a@f9> z}sg7܈c9)>?` :E=@Duz}Ztg7]1ܗdjG\u|ڰ 䇗G5o'&W>=p|ʠ[:61ډN /.,!{_gkE#?A9ެgȬOYYh I_\R$<403M͎^6蓬ԪVQ~\z=ó_4wjUV7ٱ䣥}Y32pP?I=^~6h<{ 7ЯGF=m!}p$+@O[y^ϭ'Yvy=>|J1)طY-|@>;>Ci[kJi~ٞu6ԀOvt}/p9~3 G3r(GFf6qza(#hKS_Oso񖹭jNb2ξGK=|-(_MA=k O"u+7ߍk?lVm!α H(w߲nP]ׂ6MQ{}l}~}yBShrWhOrc3[@SJ+ϬWCŔY\ৌ<\vth5|uU7G?V߇+_ƣ' Dzq?¸'7N0Wol=s}|4-i6kf^֚5_%xWGʺ7b2^lRU⽫moiOzMۍv~~Hh_=رrwW߽MxU?h 7]}[O~ZzȽo:mAV~kֿ7Aytb!0˫><]Lj86kCfɕl={u#65Xaӈ, .P էYszՐ^ϵCNpm*1C}|`ŏ0me,>YjD}odf9n﹀ Wy]hKU߾E *~YS+ѫ٥05r )4Y<=ײرSSYC=@n_>ҩ,R'=5UdIy4{yg:M@ÑӻTieCS$/Նq7n7i&;_@S),9MvHx[HOj﯁3v.ձxXx[/pKM!kٷ-ؓZw\>xԝ'&s5@}!;ӑ;vSM)=^W+5G\WR[8Mџ cYnX>5{=-2@/~*ҮR&Sgn%&cڔ؇첏7Cee{}zg9O>z8] 俦˦I'>:+[m /)#&?-[:9+B6|Z2_B]}~ Xc3o{VZX ˼_Okh&/5 y;-+/o= 5H蹷Nٜ#`ߚgB}6<%w@4ݫʯ G-P20.>hZUЧMr^B~*M8घnD{(rAϗn9 C~hiV[_; hY\㔜;϶iD[=SyB!HhO+A9?X]{{fAU؁gۿ?? 9R)sǦ|A`jMhO=0z_s3|6ۯɬy/G}X=3&95# BSi;ohО>ٗT>3nڕUx蓱>B**o_?h']7E붯<וovdAKn?AncV`g2 vXy*4anMǣ)}' AP{>LpvE"Oo%$nq޲FB>l!} =ZBGGN1p_ vF';[N}:xoh/GQ~+g!u}j))y=Ryj=fz/AEﭱ{є[1>_Li u^g{wg]JvדZnh۴L_S˥~\߹Ћoᕌךvu̍+A2Pe6,[㎫aU]OR4B}F=l$r_+YWѧ6ans@m4s;scڇĠfTFSF8Au70A3{,-ӥ/'}ACЏr/{6𼕹?nݺO) ; w 0LwEB"uá(whʄI w}u&׹o8Ykh :6 flD{̊4ր*m;5Yxc!`l?&5ݶ g?ݧHP)Ԧ׬DS&'pj7m-tg4>zr DQvч7fBc1HG_3F 4 `;h/^gZr'ٗpa}u+|@3S۬3Ω-!Vgj/^jP)ȥʀڵ%ļ8< V3^2OЗ-[kN4dlKȿw̱~b)Ͷ: Aw_\dgݻס{ppWmEgR]u&仇^T1e:u19e~2uepSu׶ DÓ*vw0JQ{Mw"K U ܸ{ nW>O-[bl-vZroGmy|r~z d L7pN.9 j'b;M@<S@}OmlBcA}k BˌC_0dpRG͍A7S/% zJRR@U|>|6pWa>_?p$= ziUxTpȧ7A?j00|JwC߈p>qܣ ]5n?):i.&ji}YAK4Ĕ"Ge[@90s;9!h^.lǣ/^ 5V&m79דʞMf`]!ov@~ $ԛ/16[bشzr4ܭ8aeDjP? 86,K_~p7!TmO7+T_ 4<~090Y6S&:~r^=:ڭ]o9bEaf!&h=b{v7J(۽cFBQ^L>1r9AU+r|,]BmC1UeTD{X2+n=ZĩkB}C_{"1e7bfA^x s,bB^ЯZ^nj \hSzC|>ן|F"M=;yUw嚕ۚSI ?_:wcgk?5! _ͪ7zob;oY3; Lw|x3D_.B?ljb/CXw:^QVT{䀻:{.h&{̓:vSn]֠3;MD=V1YkUfvFN{{=,4l/91=SϷD/;l5U }`7j/&d.f9G@ xKc^g}n^4my0l7Xul^=ho;42\>pyC0LgYp]2܎F/ qfMSfcqMKowԡUn/m\UĔ嵲-?B+wV Dл" BUiK/ðj&*Yepab2})]Ēgnv+36蹩kmR!S=kY}hZ۪Z/ψ)f@dGwLW_ CRP?:{nL=w ݥP>&C+'UHOn_wݹn.,>Bn3]&;jCM =oE냽7lxϷ;:}+ɕ}NRI_WYB|SffA9NM ]4dؓ35cF׻.5߷فkeپ 3ZNzS>A>w֝CXI8 r3_>%G SF_᧥$h?Z Fz`h ~6]{edæT Χb4Hu:d>l?fEiK?]] =.Zǝd~^X1sʴXJ$C s;ZZaد|;b2[X*k.N@k}@ו,j. FQ6S- f>f5hc|l$a|}D-6V>I[ǥJY׸LD{PcPlNCvpʆ^NxU ~\&nпiL0\{C `|Z14z}6ȷZJ%>W tUJg\2 䖝a6|J/WmWw LNw5t#LkVaƨʗ{y;>q*o٠W75<:nvЮΜ\z}uJSˮn*&?0, +^hM޶V+9IM#4vJ w~Zz]w:u _i&R7<[*+C]F; غ=m !݊ܪs2_w]{<&x߽ hj;7e܄H|Jj=„`l[K-^y?~vf%/cy2}l -BDvy*h̀5RAW7I=hس*=WVKfa77Ǘ[b ʴJ/&sn syR>V[?K6 b@4=0z Uvڈ)%/G|N6ԉ^ rR'5}nk6 3&w,RBT_O4:;q)ͲYu!{B~ZFt4Hr3Xj=E>7WiםCuἧ-/Y8)m{ӦP}xζᛚ`wM]-l=t{OQfuj C+8f1 ?5AOʫߟ·7ELY>/y&![$FOG+^b 7Mef~r-w8\ ғI}B;,e.s\4U'.'̩vsz4ٲUugPmhza*{)!OF9K|?Q[`=Gϸ~閭=]=ӲS?B|o-Bg002sq18 /\ DZ ݢN{2ZMs?BjޓmHow'iz"R`bG??{!&O o1C]/Rw>Xl='үk=[s!#wS.^9V[kZQJAOGR5כT1^y|tP?fַv__zI0.} {(zND~nR:H@oSm9XdǺN\MPU{h9 #/{L)ɠgz4 vr', -Ӊ+~n46;4ψ$VS= s~ D& v7 ݷ;qϭ>̃L.}oޮT4_q @?/] %fe&FCx N1ONvҵ./w^\+n EsG`ܛ9i]B(JUOlvuTcϩbyl1w udِruځ|2&ZO? QֵI1IA-=*įm"҆|9 ]'1CgOӳ%B }-FL~2<< A 2iVYfw)ޘN8Yu6F#4϶Vu;dTmhŝC3j<7t }n|e]>*@[Mн h h_nkX?l}qZwd_}oWa.4.u}C2voh [fYs?iGC  ~7o}{1x % )[^>`+Ϛ]ԗ.!l;}sJmDhWҒ/کvK{i: sVz&=ЊԊz΋VBjjPUG'ml}Vz*~]׶*[ڠEVTJ@~=s@/|ot rQjq+`1>=$*=-B Wm&{o^FE`˃ۜ-;mdwd?oPe4߯)evYB,w+W=:fVv`O>o oN zR'p;Zs&ߚ5"w+EؓA[ r}qܡ`Ǘk?\ibyc4O%~s>|;oEf 4>i0s' B[D+㊓@zvzvF A+ [nGןîu~ڧ@9!~U;횃}T(yˠkA/c05G ] [9|`\SڣicC< zac^k-7~ہK2ހ]gzK>?v/ؑAuw%BN<ڿV6z:,XM3mKwZ#g[ ~\ε{W~oѸՋn=Ih(?i }y fΝ} /W&ZL=]?cP5㺹g/m5pOJ(1HBjf`'-v\ BZ0nS5ϦS?xmԮy3jM+sabʨ] ˕ެ}qzb2 /+`?/RvS/=h[]Xz:xijлvATw(ᑨ#ou=@>z8/& (lB'<#t{P.>&пg "̒on _ԵgTu`ܨ7]7}eS{L _^nk=61 +~Z+=sh]z"_YSϟ w:!GLK|@L:jZ =7r up _xlliWL-p~iЧĽK]^4lŶZhZ ^0|yU;-g;C`nBb2fPU ~=6w2o-}qLHrOV츕ܨ90^0iX')|7htKT=?>Q(DtKi:F@ߟ4G+tݴmu>j+={z &?7$B)VW?ێ>7Z7 {\!&s^߅cnhDWrk!]߯~.Ѫ͡y 2߈ړ {ANۃՃ/ #OdMx͗&/MW|tVz<~C/^vY<}ow8}5}m So,oe SV/ ?;|~m3 $ԁq}G*G@BeũLԦ3ZxE(w^_;?q57ǣ僖>#&{]ZLzbPcߠܫ4V|^{&K_Lu6r˭5v [fF7oraޭ5֜ AZ->GZ768^Gf>C47}G(xv!u 9K*"JXJ74l}o`:}`{ȥDE 4h#VK!h Qd*?K;ɻPvOHǭTO_d$Qůr*+Wv|.<OF.^YғO]^U>eY(oO_>yBƕ!翴z)ijWU`SoGtrC^6r>TSr+gy|cʮSU 9.+_B|SU~Jp雲!7+ <%I%}5&Ո:ߝ)/,4Rd"4iK.V @|"D3 v(ʓ"=RԖ^|/lz@T8#MfLK2XyXc&YL3ۇ1XA]QsB_'y` ѝuDP`/sFWSrtnȢ]ѡ<~6S}%t~B2qDE;0Hؑu:5"› QEOO:0f)?]?fZq2sMK$ot*my7ЁFYFa+ +3z<#i'ύ)ӌ#H݈]aӦU &rOa0Q8I!BSLջ6&zTH͑5AO#L9"0M'~Kq]͟zVѷpVv'''[=8Cd׶V+GcUkcyb`_*+{=iT#oTQ ^15g+"Ri!4oiw k]|Paj\M+;*K'n5MwRw+Tx7n [77_6rxjb\0ߍf'1.%?UwU%}` 8ŸwkƿIqXP JL]CLȍ 1|` >g0 3|`81N `81N `81N 0C` !`0 0 3`83 3`83 3`0. `0. `0 +`2 +`2 +`1n `1n `1 ;`3 ;`3 ; :Atf.lЕ A͑EsdY4G͑EsdY4G͑Esd,Eh|ϢY4>g,EsbќX4'͉EsbќX4'͉EsbќX4&`,EhM X4&`ќY4g͙EsfќY4g͙EsfќY4gͅEsa\X4ͅEsa\X4ͅEsa\Y4W͕Ese\Y4W͕Ese\Y4W͍EscX47͍EscX47͍EscY4w͝EsgY4w͝EsgY4֖Y[gm %|֖Y[gm %|֖Y[gm %|֖Y[gm %|֖Y[gm %|֖Y[gm %|֖Y[gm %|֖Y[gm %|֖Y[gm %|֖Y[gm %|֖].J(-:Վy~1av2_ 'xdv_v?OBC|#EACױaoSΩM͞4Nv.el d7" j 9vSRA,䤅WVy{UrY/T5&<"F?is zWe[R `6`˻ynT-dZI![f+-9~ m@"i[}_>}oGa[yѦ,r%l7Fd[ɶy'jĖj$waVLfo;J#0ḐgZKyYz2OPe.oƤ|*MϏ~M_O~?wf}j)=?Pv]nWw!m5ҲkTfjYyQC|p6p2UE'%[D}>:ɌH+kl5_wQ}A7䎿ulCb%SH1ؖGm5µ5V#JWTJ>h42N+䕜+^I^|탾$Pr^>_x%yɁ9c9cw1cyq9>3_cs[c/qUn>0@U=ŸoU5>0ߍf'1.%?UwU%}` 8ŸwkƿIq/Q x%yY$W'JL$/ A4WJ߽{jKb%1-@ke;勺ﰢ K] nV/WWJ~?o| -bW W+s};-WOxeȷ| :ĤOF|-1t 16iw=},[Q>۲k=y&P EjTl̕8H&]se!yڀJ[NƬ\p=u-V#ċcrOL?!sx#o̚Z|-V)O/Pc^ vdYQ~Fi-D|!36q%,se\m%qߊrf(2F"lEyiӒM 并ZQ~R+E_T9c9cw1cyq9>3_cs[c/qUnb\q1jzb\q1KS^G$!"^A"4W|Ҡ4eQ?"VJz^ (#+ITʻF Z#sCŚzɚ|rrGbGRGB/`m"ܦl>ՓŚZmO],ۯ,TW* ZX C3qńj-i=(iq1jz%}`ܿ_75Nb\3pK:K\UEUqq&\UyI _ \+t,Hndx72F& ndtF& ȤA4w#F+*ȤL幌=WvBvGrQvx\wWKm]q%QE[Z2pa_Szޛ9O׉S+>t/%R(`o,vS<%tQ}grDi|I֖ O(/NWcJW14wm Hz|HD"7uB]9foY۬0fm-%ר8O*/b1I7D̓4.YG_ZyDY"c;g,jgaB2BZj,Z鿆SֿZKو /_֎~ U25<\8AU_ߋ{eAzHXy ӏqqD\Y*鷣!y3u3WO(7.˧'|*/7)ywy9.^yrtz+O>ㅕW>Vre#,]eɧC\*wD7'/y\rש*?%MYe啿NWU{_XzWv^nn6gJ_ZP5 E_Ù,H33_nn_A7>@"YG&IgVus(:6@:LAx;=s k5Uf@ʀd(@qenoQ\[(Эsuy*E*CEi i"BB K\ШY(JLɜ)!S:ss|x^{3|ֻA?57Yl|O|mYl`b:F#ղZVjY-ڔl/_V~Y/_V~YeǍ~7k~o;/~|߿WIV~?wM?j/?j4c-_V~_~_߿NeOo7Y?I~z[Oo~y/oY?-7e旷/#L 8~6YS@ѲoSGeܴ=]6h Y>Bsl!ggG3(]/J1cB_2k_?%{ҒaZVqw}aW9_$mv3-"c|cZ@c:7'OEZ) # c|_~BE2X?/9 ??9̟A/>5SJ|E?XEǎ1ʭMK HՑ`N>p=ַd /ۓPR?mjS* 2ȴRMKS k3?}VrMe:o6wJmKɂځ>R>s9ʶT^ +{IqfOm"OK>4/'|؟칕g2گْ/[_cu/3 PFb̸)'*̥\5JƂSDM>^#vWPɁ 5$x*d'"Ӳ tu=`P\V8{z `u^^kv\Lu/Kcײ|o~Ӯ?YO ķD77_Fps޸[߶y:/y4i)w9}{sz@N[.87Oq}9linKtr4oI%`7`U<5kN[~;ğ<.M/GnpgOUk[1:{;\7bԿ/5ߑ"?z|8߷jnGZ>_ 'R\o<#7y0rO5?o:w͊9[/UJbLxfI<Yղ*z-gUYUI**ɳZVjY-eղeܯFVjY۲^ߎ?qղڿRYoK?/V7vv=b7jp/D~/bˏMXm?w5W~Y'ΓX俾cUgU'X俽eUUI[V%/oY俼eU]IUQX%1Y%1Y%1YqlmVZPQ^֏W?XQ;*XQ^(Q_Qw*bȪ(ɪ(?}f?}?dEg>PLj(jSZ'YS+RJsz{R &nvL 7S#*O>~RyEhDMXIdɫ]S\_VppG­v^߫D1V)?d7ardO#S|6KinE}c|cqyɝ;f sq4=jVk-w+Lj';j&q';MMm*WQHn?RQD׊_+[քP<\Q^mE_b͟|5+VE{&qO'?+q7*JOaUA5&05&2tzzuWj)F3B^?şVٲ~֟o}hտBQ?|?H V%TR?_&ZXfC0U T-$j/U w u?Ȍ_U t.YϟR;_uȼd_P)/o|_vأMqzm)N6K̬K=.Xnÿ}좵SJ:/%{6pAdyGOQ_JᴏRc?UIm^撔z4")(hM|s42sEY~o-e^!S-}?PAo6o^*?F©W&~9k¹\<\Pm_bdg|߮sbr"߾{46XOu_׷cdm'b'oۿs&NIB&Q} jcdw\1 /)yίU#p6AG G%w$%(9Ua k?B9̫ ^fT|8 bWk&!(޺@M;9Z8:s|ps-JJO(^T4@8UmcaxRܰaS,yj_/ A+v&(E:E4Y.ui ym A ̜:`ŽY](4uAZ6xNPRCQc!G Уؙ49_fВڋ_ޝi_\ǥ;aW['MI:"m5A j| ]?]`A ^=hAv=GP{$iJ,.c.M6zP v r@~j4?ͧ6֜ { E?\&d`UYFM4A?ܢP:|>afȳ[&Ĉ([ >i^ du[~Ҡ<4=OQ2 &LN_vԾsh}2e{S˗]VΣ1뤏aU 4}i%=x31WGN+=dtحDRV95i݇Pbgء@p엸UwvnM6EY}x3Il$A6-2N$X}q4/+tʧ]XFj:B+?>ksMfCe߇]*v SN ׾w}Tg^6MEhX^ bԑ!|гX]qyd)֢Gz=vcI ]?q MVNvl"#lI|OO56Ƹ¥E=,xpA :c}ae6 J(GP|6Zn(d>` *$ӽ _s..Keb Y 1`;|_[j;A&4bbȁ{b ߳IX#)U`~:[v&k6F8~{z<mebp%$\_|j p|"GG;|sͰF(Ϯ Qb6ޓ0B]u?lc gkM~t/c>!`: ~gY{8 eGL)=6 y>y?.^?*znSnDS= u&B?  ߞڣSOCL pyϥ% 7/e 'Y#!v)q ,))Yie5/(EpfY`a7CZehq࿠u!AM:QQ(w^Tm;` ޭ`(xZ?`%At]JN̓y~~jk];)ơzyUv`:LaQ -d7@XfXuAwv,fg$ _6uB.}) i_mz|qgGf 63wwQ8NZ8*09J2uYv݉4ȝa_v"vrxS\=,;hhKSJj&e4yw;AfXAy0.ca.gO@e=|sls71ŶN!π͏Tw̙?vȷD`W8χL`/N6[O:CQl8a~Qk-Tv|y'lu|gɄ+WKSY#W΀8kܥymI[ {>?";{*psz=2kXRJ?k~iY;~?pOk6o&A& yvѦ1o_2} 딜}?|{:Mfnyw?x3%-3FzDC<6> vl]W4U.L=~xP#;"븜So$I"/[Ϟ9ZwKn/dȔdı|{܄\6SK,njr]l#Ls9J˻q2aG6B>bɐY:OƑ;{z?8d|a/7rQz_7FylKA-×ߖqgzM{kJ.2+z_Rߔ |,7<tob$GBysA)5^r/LE{IQ*J+!OkՎ ̈́ʩ~oꌦu'}?8O)8?#~ȕT\5vՍ<g4r2|-+]7S10룩 ޝB8~y%Gr8q=O`0kEA'ma5_f|0y>K/F} Mn/;Q7ڽ,$)аQdƂ=u|iyf⡍ct $ߧ<|9'ґ7aKe{=Vm*V9 =mSin =[nw6wXa?>R wBS6|HjGu|Cb7-j׷ 2(Cej$7^1W0~YER`.ܥgDClBZ= ݼWq9[>ASM~WsLӔ'I}cgC'ry ^w zSMI8Ι?|36ms \Jfk#/fWP7_V|G"p.cguZ~!o41n"KeO襉bp_s&_&qX\(7aOM+r;]<NվC'ga :4;  ܑp~qa.|G< s-;G' ,-]t20 xzk% ?xgr?,im.>{%/w@oBsgz+G{(s gϟOSgCGXto{ߒ1-Q%f~+qn\_({2|Zl 2S귌ܶɒ? 8pafA%gFl7e{Ow>_s? z+vf(يil?k8؉RpKDk y7 r>i59XKkbcttM`p5=zkF].CuCFm#4@ :85`/?5 Ƅ<٬{1 b`L$tB2]{[;=o`׽Th=(1<-A>~7Vxл8hD}STs Q Y3OޝjgaOO^cESDM=Kcva=F@|щWD;8n1Ě&Ziw&9m衐  k+5qbm8꣤oO#~Sو#!Hz(GɶeO2%F%+ "KbK_q|||ۈߕ9,14x lW/a!V/!K&^j͚>cza:Sy^=d|̓6:o 8Ga,pf6xӢOT,Fp$ƈ uK9̧} z{P3MPj $q9G'#88U2!?BpۜOKnM1z)u8Ѡ.MC_n v5Բ`by*ET\<\4B!p28!5F,Z#`_j4Y9J \7&El4%x_h$J{{$^=]KPOH!_M|饜td`u2Af‡ Y_V5816jNA6,l43H~~xp R߽o\e‡fחg"W*:;y\͵,UU:bcV wljq=Fغo6W?5ރq|4{ $8#>dH- Bޞih]}}fkGaS/0ס'teLE<BSR~&vdBMMYfB W\:4s >Cu>LnLF[|Êes݈fE U]x?q+sO ?RC6ēZ4%H3ʡAI+!$paB0ĴQ'njAIOG|g!s]mނEu WffZc~Y~>shTؗ̀K_|mO,K=3sK=;+}[,x1i`ioO'﹖{|3r/px:}[ȱB^ng k<,߱0Tճ8z%)l_!-(j/!~vES:+vL'{ Ld.Cl}˹rD["1~q>a"q(F}XZwIZ2۩͛@q8ZiA:+d5 ~(L>;ʹI'W ,Xk CW&C͠k2pA"{`e,VrЖ&  QV|Ks;eq^y7!-|j6Я}cfUFJk uxʵ֦)s z6tX3ђM9wg2^/IJ1iDAi@Hp\g'/|>7<+h/s"~?srVN, iYAcD%ͦhnͪ]`"e$aco{5ۂ^r-yxZ![/B3Z߃;e7e/t>Y =q,H?Db\jD0֜dr16RA*-Ԉ^~Ͽ$Z[XsqKy7jϵ;zo!gHRۆo?2M <FnLZ5;7d]xts>\HEUL!7I#R ~!W}FرuH²Űᩣ#IHC/Ν#țǴuׂ˝fWՂJYښ2? ::k*MݝIv䙲.b\S i&#=2KI:=jD|AvWzȡܴe]ydBȩ`~װ'}6Jag-q'E1px8< 8qOmiS0, a\a1H` ȮSHS<.̄LhSVN^` f #Vo=?a.o-qSBbgl$c*!G+8qsf٤K: ']ϸ2մ3Y-i:XYcfc Wh Yg|ξ{}8Oxkܓ"rݒ2rAqd[H\_4OWn97T~N#Gw;5-OdeZe^e Mϙc:2ř8竟c>UϞFOB\u[YP%i<r s9adWMhNC)\Z8OCGLNWc%Yy:Mq{ fgwI Q] }p^o\yD YR~-OlO|#x,o2qC S 'Z6舴s;KpZ~ɹ=1p\ÜtC}ǥ]\g~jkKL?PVONﲲ] rE\ao= _Ĵ*\@g3ʞ-d.w\kbḷ3W Yp\}}:oa?ZJ*p4@^m0wzk+Bqh_5lˣ~}9}OhEoԡ] mP|e}YհܾK m WC7 ;8x8_A//$jŦ<zqQ~3^ƕ3<*Vrl̶~Y~9fy^N۰$ksɲE}ج1_=E3 eT?X9dUũopx}6s#[Pp-M#q]8c_ln?Bu%U&0n5+m0Q| nٕr 1vWMl#}7pN3*I|'l[19pϙ}|L īw72qdo'Q,7k\Mvψ\_ MF~!v]Vک'<+wv"40h:wdi~U̦,romt`{#]xAg7Y)^.=#VC|s|Fߜ"Dуfۦ) J-rhh'ص5f]!%;쑯?_bx[qW璢݊/Cxg$e`Sƹ)㼩vB|v7 7/bM<(Z2`5O 5~uJYy9WvH8VzYx[OzҾ4Yv\&(lĻYMAT^{<[;Yny̧Ж&G^jJ7xgE+ S8^}f.%3JƂ"aq)Rk\>civE!. eٽ6ы#.s\~Y$&xy{u2ÞO><uے L uE^d ahNm^WCZ'!/ZqzQ?y\=bܜ<-{y`dSʆMeވ 7r0ѕ"٦/i~ć: W b|~&#)-gۙr9?I9]- }7>F~NNwAđA~GR.FPz'625i9~ri WV h Rt^#WD0+\ mi2< ZFbXuś4y|0GYR^DKp%,:37IQ5U={'No?zcd V'%,޲b~}=?._7m>V lWFyw{1 ^_|e椅N8c} soK8ߞ\ /=biM_yy|(nWk=qc(䉼k /B ?UzUg3ueN[=v(|E!BebMjTkg̣e0t4xv q$k5Ug]={@83!AॵW ajT1arj$Ulr[f]T=AqfۛJn wr76{Vw[kŰL>[.XNucfo=ܠNJ"Lîn.eכ rli} _% my8sm^}\n1SդlES } NevpsRK{$}Mk뉆ӔDSi=:"<Z9[UUj!?GO,Y(/Ƈ?CPqe\3M=A^[aYAfL MC:^p^H:_LPJ -n4:)D]Xn<$̷;͜Y\`W}< ~l{ߪé[Ԯ]dE||#SNN#3s'?\[2?|gNL[krA xQ 轪*݊OQ-c0 ܟvmՇ>:|7L ? "FZ#sMAotOB=g˓7#ztsA8طDI A.n]o"1!<:]1.EL1oW}IP'2_.~ɍF ,W2׵\Q&Iݴ}-w_<;%o^cEF ؀醽ƕ㡟F\uyGq<T !ϦVm~ښc<;.m45[Y.n=/mKWR&ȧqj“3aWwHU֩C֍ S!sOEgw8O&^=}&8Aoݛ: ߉ooISBeöUПBZG*~5cA <Ӌ8zo_}4$x*"y~) rᷲCjyyl1!%uǥ4|s5Fޯ^+<╌Ia}{nHedvd9^,ߔ#,C{|??a ̇;WU xN®& 24'6G yܧ*/}1鑨G>=~8 ?(v'xbJ ^ݫ.I:P Gm 򲙰箆Ak(n6\ u9#>{fyuEQȧoȁ}I}K1~'׃8",kA|/0 >yRU;.eWmANu >C|8_*;nףN,(D| ٳrRɐ+ߗ |3W9CSW)93-脼o^TC^{j%W(]}x ޡyV臝l!?f~X9.ᖚ8-W6#_|[Y~ >"3@|~Rď+ {L<.xwoЖD:? >tlrR9a#g0M 5{} (St Cj!61O2x}Hm'mCGN]*:G؄0n?hV^9*I-Vh;VEb{Y9y,lYsY~c򋎬תO]#xe ^N熭< {iX8 \ G1FI3}{%xЏ=#8Bo1owzOKνYhJ]`ebv)KU ޠڐCk\ff]JG2˪z>^ x}P.XIpE7*ث먐Wܛ'`g&Hyy#o" ״4( gWIx'ʢW_dY{Ic߶#?{|pwxnҰO]2Bu:WYqz"/{"!4Y=e|h^{h[ڷݼ Yȭro YwpxwZikd ߶~oL'È௸|'a<^c;*w(3;]۹uۃ&q@7?Wt`lYO.O p*GmvQ'{s|kzM*TuYDNgRlښ؂Dxʕ F![fys7"=ql7:cܱyC>Z(qAcpɪ<\%o\e1oҠJqU\p[kM>1GgRQ*mO?Jx]xqJ dVsnOSq/NK[93ɦ91I/@(ͳ^[&Y{ܛlR6r2Ӆz/qxϦ4O~jΘr[I.W'*di6xJ[odm=He] JMHқd~"iݴ5iE Sj򂓹==w+Xh|VL ՇC?gKQRѲ/ 1I`7OIR#(u`'Վb <=iaŰ3 ӔXΘ+ KєE~4@wjLk PN(Մ^RMghTl Iڟ੧qMϚ.LS6{͝JYdaWq)n }W[ԏg뮦))~\."0ka)~ (74Y9?劗︲Tc㮲c.lR>yt}DE_[`9mn䖝&O'\ES iL`W6K&T'%17W i{1}åcu٦XgSE?vO)Y#3i &+Uo&EPv_K,(^S}Y,u7#vuTTya5̗}AR[{I |ĔTČ`6)i7{62Ogi\ q+R`{Mo]ȿۥgvM^\] `OJ&Öb[W]pi3Ӑ^s$D`~Gm0ȄO~t>rXIi< ӯٙA qNU˙ӌVO Z:NY~ٔ<_ɛ6^L{/4 O*6*C>xsTJ| ҢY 7vДJ&ijh-?lQk&ԉ= l\(Ip#5{:\\oImKc1~]HwΌK٥AO#^=̩({Ux3#`ыv\{i +|(臗 }u9C׍gG[6>]&>ͽ}zz{I|8?nKES˝QؾdI0 ޅy?Uq?4~nɣckˎS_/ }7 -NG:q$NIۜ>cWG_ >HEz֟3tF=`O5^~lS}k ~J;zpO^ ;I \zNүWx x:-nLJ*5΃TfNy迾Fo$cYll%[3\޵XC4:JH2$b),;qտ:6-|A<,^3{S65 ig X垖sO=SԐe7ɀ|V#K deoeܶ8Wxh/Sݤ1e h 2`2.¼j45nt@ !ֳ0v7] 3P(HWHnŞDxaI>eVUkGm$ |}߾rm ?P>R1,"*Kk Cj]aw#mmS&cwS )*ԷwZ |^b6\0G' v58vڋ-{Gϼcj8nM*bM~=/~[E3'.%/f7IZ?zs`ݺ2o#?:>wY?9ܮ{ظW Jq=[38d[rb4đ'N8rF3Oj{];v#"cs2G<ۚx-qڽ}Yp.ΐĖJ \*?`o F|b{xZ霂8x~_]!Mn$zS 7 sc| #ߪ0| BEFW[־RE?VN;b <&kvbTu㧳qU\܋JnF֪q4|qDȻQ_DWu6dz ԡn5H}4%^ A~8}'svHYS[8xx3<luh ѿ&-nh7z<*y6y8EQC58>䵎;7^|OmKmM{mڑ]|g[hjȝbiݏ%!3‡f0SO|ȱ6E~ыhJ̚=+ g!"I-L0G+wmM49,5c>Qz-%˶ßH}$B4vBUa<QG!־]4\Q<.n5Vsz_ w'}Tq,_o 0p/gy)wԁY[0wt%M>8Tjhþ *S)|kiru_gO.Nn㳑" ;; iہ/oNVnh9"s{ YyF[tP- K%*jY;gyUĈ u|%y9$UpC,͝$.~7(AUY"|T~v7#]5!GS]'y^ic9;?Nyݩ;0O"B x9l*G^"1㤕i"뤊3+/y 6, pPNsb?eXΞjUv<띀_Ĭ-?NFitC$\:xtl?eZ ZӆOޛ1dQg!ss e2˳\$)0̆QO& ?dWJnn[;1"ElSN.n~8yM|c*zZofZEeW醶bdjfKLU;mμ33O_"Mx*#^L/l:=r/ed\ȉY9TRs52RT? @\<ݹuZjKu{_eIq൦wSgܢ~"=aP٩cq2pްƼ:yd.졏8W`~mmU͢U (zw^RKͲ0'!~/\yO~RΊĎ 2A(^JABf1ipȅYΰ`asߗ$1IĖT?Kn>!"?V.1@4{?MfzpJKcv_]"ߗѩ'U]2[!Y12P`*U8)#/+4qpQEaxtpA[>V}Y3'pílsRɎR==eC̑Gi{Cf k/L\gЗC_Js]ҳ_1a[5)_+B/D\eK_sDͽ_qZv|IV/b`^ ZBA飮_)}aW-pTK4?/d⥏quO5l.U4BqU9&K.! />~qpq8䣴bW}rch2neJ7_!9"3z"!> xJ:U/Xެ{Q$VD~%z`?(#P) R.RQ+cg\4 |@^u]1ЎFrO7-FS" t4kίUOU7_,>YF!rc ]5 Ppӎc_\fYœlɈ [w2ۡgGדdoWktdXxC˔"7ˆ#f{C#/$SȖj*3#7ϱņ8}q~BiAM^GXϪ^].8(w6HRW7'E3c ވf=s_>Uw4|Iה}\/Hei'νihj2krDӏ c2/D20_ UUߊ<-]} 33ީ>ݕ}ܣS8y]rQz7rhٕ'4ٹ2LuTZv tk˶~Ժyig%ԉ0m wIKL){ q+ţq6/>u SOzڃx1KpfYoqcDdχ21>٭:j̲#]˶AS7+3Mw;=ynjoC<:R|X 1YYM'ndCw~4{{M86cs2,+qzfUQ/ i:& dHywd͓emJwFn?Sveoއ|A=oI4EE8 -ţ !N틞y5MvfۉN 낽Wۻ0z1R)-B¿0[Symx2)bG~voxt? 4ٗ;:~+|0PoFwws'{r8yzf+6kTJ"~[>[9^v4 kޏ]}ӽ`lŮ~q; ~9㚃A9M6^o  .f%HڶW/W< X~c+7Ӽj*a;}ZpƷ%Mxێ8(LDh/4 ^4 w5Ss7_Ofmgo*+ d|Ltc1Gg1U2+@UeAتȵo}1j/Ec1Nz0x$~[n$ZQA/0ssnxxi,}ܫ M5)!%l) CrոnxaoxSCFؿ<6־A_Q.Hfr/"cow|_ZC8_XnED7Wv t{5>Z_U t=31OHe~wdrF\n.ܖ@ aש#afex/tests/testthat/afex_aov_16_1.rda0000644000176200001440000043576513071743410017231 0ustar liggesusers\MpElV0I9 lų@1 QZba y|{;wnv6nBbbbZ{ئZk=a~xoB%_;P/ּV|-6[f'8Rg.ʭ+]3:*H̒/^G]Vp#_>v 8|li|g)G؟@ \W8;ŪjYIE@di>t e~ sOJX03g<6끔.j ڻfX8V=j㰙V6HkUKJ|ia([Q^ZoӞVvL-P]K+s3[3+3'u&s oA~Z']J?Ͳ58zc;Qfc`jlo<3j gS-xz3iEV7Vl-|ixcӵo06}w&ֶf-\֫l7v/_9oZ;/ mnQn(v5ZMieEjQs_݇XgG_(|at'_7yM-7Z)r~>=`&?$-X oh ?}2W^Sgu˄^-7oڊ6^oVئp_MJpfc[﯑O-k _ϖOPPH.Ih.`H z͍MmmN=?yk)oő[}X[b;|[/ͯ%mbtdƫo9Xۚ¿r;w@_~b,Qܥ<_c_9;vݰi1NYm`fe߂ߗPVcs3$$OT7XelY4*' 7=G }?~Fߡ^[n?2~qd/U4dD%Mh&H×oulyu^M *$t7FC=AD_13?:nn; } AZi } }~p2aTiSa:?nז^xp}-M7oULp9ǝ-Lo6^e<wyxԶGZ/$xkϙ'o~dTu8+fV~ڻ?YwE⺩֜xV1R9U|&3S ii`i|-ǻu/;{f/_5cLΠ ,kS}{OՎWq(vp ܇"CP}(>qE܇"C$/ilyӒIuQf(X=*3o=.+G]JN1S4|38*|msķ>S>n&ό+v St{dlގ?1*RzoUCdu3w[0ԦxފK>/#΂72rq#z5C<l6g _*ܖ3V&9E9f>gds`1ߥ}I$]0s'{<5d'׭j#R}ruleL?z-WlƭC$nzhxqfy囆wp`DJ~wa$͋gm?Iom΃o;e0:cY|tûs, 0%+.ʈy_9E|Z]3#T} 8(>i&KXX^-~౫|V/@g~:9'o iдN9Y:-=B/ߨI_GZt2*SOx*E7[tOq#u -kk"~?⡏؈7Չ׶K~+W|i?9[{Uց/N=(OB#>\q\V+}9}7.} ? = G,/=svݾ/ 80zs肳vK]9b̲t֢utރ/ox0 U@E+y2:7s@^nct.WץS(ӫ2s`D0:͖/;$nGy'ΘTӹ5j{eйw_I^sUة'V󮥂/9I}8̩|VyO=.{qʸe܇2CP}>Tp*܇ CP}>TqU܇*CP}>& ח:1lں)1s"Na;~w2_q/{T/Ȣ?vAE)דc|w(qqs|yˍl{AׯtgT<-/cFG_||G{O .~G3ckQtFwK]68RϟW` U͟|o%~Ge{NzK`~k{|UACs?!qs:Us;y!ȿEpkFAD شL.eO̠(8v)(Տ뭆vay7;҄|Hôip/ / ޓ4zy}:-7; '+-,߃'k7N=9z]9Hqʹ{b (vs ]p^̪(z Fz9X.|o@|p"Q9!Yߐg}n}vz0SJb?/H5}~ Fx^' ϭl?|E13ZZDly6~s=l?t;_g{ٶbFb7nr=f'ߏc'3yry3JmͯO)h+岤Ix`0  &$<0`LIx`j5܇C P}>pj-'_mZ3w`o|/ Hhwkk0~Jô6Oat$, [U MO(M+qza2SaP|Fu͗産rp¯"ߥ]ŝ}[g$}lYά_iZXi)\'N{h C9sm\w=c|٥p,2eٳYY+Nk71 t84{83"D>_\;_V[Q//7hHf˥o ^4?Y5Fz^q`{#_eSӟ:{;lyw㓯c fT]˗:{_Oy;Uۿce&^wroW7WWj|Z`E\^}Q}LLJ^DrYF|-(j}F\Ϗ[$i60 tjMHXnt(7zS{sX;8eMi:M)Ў^_>כ F ԛL~g@Z^W>Lx~ 6;-ScsTY.4Ne9 fyxj N m)9o*LqqY韆.✀B*-K}ۢ{f'nfֶG쟎Ma܅ E)D1%Bwj v ՙ{w\OZ)R(Q_a{g{{P>tI$f!-O*s"E_Y[l{NkxӬD *@Ky| *RH"ӢcTPC7Y6 dX՜hOлf ߓwI>t$՝”koMl?QlJD(HR^pʑ[F"6Ǽl"(y I7m-2NYNm"E[r`qƅ GX} yMeNbMڹ'IcK+VK/)R?OtIx\CDžߋ 8FMP8oHq#_U 4ĀD#۝p0ݾh=_ zqFG\n/M4Ӧ=%ik#wl&IJUpI'sܲM"Eϛ w?_`.b8V|I +Wz$R?֜"B.lSXovay[i OSl ng|; ;?8޳DO84M4PwCFʝnLCt)q>|k8;x RPzbPwj~yޢ.?W5٠בv !z|lɝgDCgPDCWvަNh+a=X@ĸ+ҦB=:r"xs~$ھr9&G#R`u^DC֞XNҳDCW|`I邒f0=svnDy}]%Iݣ no4Kmx'itbN9x l?Si_&ϲ,V@or{D7/ҝhQٜDvfghy)D]ٗB4d;헑 onC^ӉN<|"hXcGW}'$^7kW":-%y{E'!:ށ,7s( 9a=tIauW/m֨D}c_!2a }lQN:g XQP"C4pDֆW8/shBۆdkV]?nHm O4;.q̙-G 'AgN$Jg"}-E;̔OLhš$0_/x]8]`|mEg{Ϊi/WWؒ~Q=z b4o׵Y9'QHo^DG p ;"-hvy ^?|)OhKԡdIw զc~QC$]RiZkSSw,)0C8C PC ¸IUqS90+i_}fqdx|]Ÿ/;Mz:ŏ&e[aA>QdkuJw__ Q?l\5ŒF4ًޫ]` %_,Z犵>7GO"baaN5-='{g <΁(zΉJ?s_/ϋA˟;xܤXűgJ!fSIzv>X_Q0z/ Os[L\>/?8J )3hwlT#;0#? \UK_#J0ݏlLjnD22@cȱv$ECsO'7YH?gf_~' Gst=La;|7_xà :n p8d>(3t"z.K YՊWdX2"=|~D}G!hYrdߒtzA?N`C7s ^ԚIdԧ0DѠe|L6kǾӧk '[HTE;ܟ?t~2;(=ΧxU Hh??t ݇]o|C/qhb֏lECAuǙ=Xu{OӔr~ه-)"ugJ$QoyKwؑ-1(Q%'zMDnsY/Yoo=]l^'" uku!ٳ'DklKŁV]Iҵƹukogu9f`>?w8w0h>ES^'(z;|݇~6ǟ鐕rm׬Rbň!D݇=RIYǴ)_D(ƌDt8F9aL%7L'ø.Kwܒ[gOzd߭7+c2Ψ%{D\ug I׮)nz~vV4''h>PBx/ǃ(.'pkz8݇S|AyX?ˡ1_r=BM5Q `J]TSJL#{n9 Ϥ.%?+z)YaN*U\6Ƙ`(psUCGin k#4xTrC~\E֪(lD"څs$ F/=%:M"fPC9(1l/>g}8z4Ƒ_(ޡyWF{iZ? WaI(g7-z6Et=ټ;NXu$!kSFŻB6m̕?ZΠ&٬df+M̋HGï9كcPO^=qaI?E#J7} [|xVfDz>ӽrNIҵn~Y?Du^#(nr ?(cYCP84:n yG/qusA)P,tLvio1ǎ+guKFԽt{Z5SlJD=*QJ6nހQD$\zݦ^D{hȗ<DfHg]=I}^n#=G5r?:~Q^ݖ$]eۤ@aȿ̾N\Aq OLq1q/Ax2OFqIPC͠o`Ces|R-/޵:{㲒JcGg3Be{D]҉-$[#~ࠪ*Q75Mg/Ⱥ ^URLct[&?XIԳ d6W'W&xOd B$SJMFm5Qq٬rHt':ᭈTF3'pnſBC ?4NC5נr'Q3Pܮ<t>\oLuFm= L>$Қё1; 6\#z,~}V ?Df9׽<9\9Q7v 5o<$1pd Itk<ߗ!:r ٻAM^4$'fpވ0c'j .#-:읂gkU~y3H #4ZX}`4rF|Ax%;tFsܹ2Pts|aDaZM"z$fLDn{ f%z,o]u:(f1QW -˺IJKn1KϖmV$QwGZȺ>͉ICLrڝd74=\lY;`V9nr'~Ockz)D;'ޫ}do82w# Hҵ-ZNTiӹW (E.G088UYxs_|:8;h<=p=Q(.Ai|ތӠ*]ZqvvC&< zdi DnWc}9&fvo;Q u;u}')QInk%Z&;DHҌM6n{}7jz b`g81=| GqPUx);h8":Om~ǘs_>U08ܮooNY_dbZ=_Fڡr d/:pѣo.&|XD]ש1*UmINtZ;~ڧ(%Q>i뷷!`N}d˵Ƹ՜!.A̰*Y'Uzn0!]ƆDDm_{NdfMU$zDYRm"w)EKuT^xI˫r"DUzGv{ڑ[tnEln2>v)Vd :9E|=KԽcyԃdyⓢ,${rX1Jy_>Mc#f .x[c ,/"k9Eq0t/UhU~{(8t\?LQ\Cp's8ޡ}bS8i(/APCYAx?>428i_A 'Rd'#FYAF(E8.Q(va 8q"g=|TN2yIh4]L*_+ԼdwNALJ}ݰhaV҇D\bphFg$܈tw 0"9ozO;youmSpvfo rS{S,- >wܓ* ˪ضDb"(K4PBӉW:k:шmǶDO|hzEMI_}qƽ2ڹk@ve^tDdi`Bd6$є#vϳ@A}@%t"ԓN w(ޡ\9ǡ4޻)#Z/  x{S/BX^Qy1sjXpOD}W$.ڧCԯꐡjic|&p"K$ ;=G':DZ'6DϟMY2ćWDƟk|~h~;(ChA H׉&UnhR*sEgnPD4۳T>f6hVSJۀ6D75Z2+*i M[_Ot{/ڥ}^zDwK`оsQd&{DR?HKhA[~m4kk&gJP4ތ1¦008p:2I:`TZhf*Yi_ D%Mo;c9/YM/r>Mh^g$٨/gsoJYKX/AYX a~!z/,(]ué@ayLlTgll]a}bTZb n$IW](-}In2hYO޿ ڽ{EfDvHT1gȳgD'УҝefiEt%rESDb/0Zf=2}ѝujiug8MTͼj:YJ":]ĻO/JΉzFkU3D|dQy N. %j}]yqnϫ򞂅I.R9WHkqh.4k,umc2|4w Cap^\RT4 r|`мWM睃7 _u*؟W.O %vHlM''Z9YkӴ$?D|m GKv(^D/VnaދDf[5'Q%:Hl5DUu7 j]BTcvS֗eDoI<RGtJriDH$~13ѹ3ov}GCT`խaK< Cq7.ܒ9t..;yѼh kL;A=Y`dXΰ|x9M{isnl0 =,J[]A\[Uh3Dy~ɪ "jASDkJtݑ׽5ZfIд b7rϛJ\l˥DˍnH_1 ':&fʈgrbZ&b)DSDTQ^=QsҔYD ۹Q_͆mi$:M\q8e35?qfAӉlkљvΨO}o; K^|0|=0̶ɮ@9| O'"Ŷ5X {Y扁 JoŀŒod/~FGED\*ʗg.3Rb?ٗS@tA.DtkCsbHVAVȽWɨz吤+>w#{$A -`^蘇:37Dt'N>D'|/6iKTA׽fqQȘp)xeW+I@ͭ_\x蔭3w':Upd]Ͻ{@˿-5h6zô+ףVoX^)z=Q҅o ϶";2 vQc;@tRH+Ɏw}J6݆]A8u *2;.]sߞV)T wԏF׊.qxoA#ٛ7v%_f'IW(0ɐ,ɋ$(צ%"1w;ʡϯ[ITU󚑓7"j蚗܁ڊ-":YlfQuVȖ=bE^t}Zq`}Z^Vj`@a{i)X nόM3l9y3]hSG ȂEYؗl'R(}"6JDYxCw!YW>b(LMDžf4̨jZ Ht6U:`e#dא[AtagudHiLtxǓ]{-+tŸ;S]Nt$(+ƐlyUx'4>_̹/ o|~5.ŕaiJ=r(ԠTzѓݬ;-$*EO&I:gv&Ϙo 3=E4g̮jRGR/,"޵yM}f(2")<<$ z Qek'#DƋﺟet x4h튠EDk4{N4=܇D2hU=![;vuDL5ƴFWΡRD՞?a?x+@_Ճj\˥δa|"5%SHlmf͞=2#Ia@c3eiKu"I3+75|h4Hdp߱(^mlQF<]m ٫VݳIY&ށDi,nV)W摭#]Nqv "},Aߔ15=L;ȑ$~s?~frIP8u`RGEw$IޕYI4?׹Cq$Ϸ5FƮHcK˿ݿLrD÷~R^fG?sl:+IM{ѓ=Wk[XK$}߉K͈lb}X?Ox(OL$iʧ]?5K`{$p{&Y~^׌J4cBY}n'ZRK4zɗlSVUXF#™6$AdNԝDQ;1fE|[9)ErQ.g~(*[˙?(>E{9/rQRGQ\TO+g"rQ*g\ErQ_]rQ|EV97g⣨\T.*\ErQ9EQT.*3srQ|wʙ[(>E}K(>Ero\E~97Z.rQ? /(*˙Q+GQ+gE\E?^rQ|}97/*ϖ⣨\Tc97/*g⣨EQTP(*o*gE](*73s_hhǶa6ъMCb'h4c\JA`:wr*̏[ Mހ ^g=?͆rGS$N6Jo7ńo//\^(a PNZo#,ԼԂ[M-j"/54I~nO[$[-;7izVaO\,Ş^04b\ Kfbw(>pXzi4jۋe赦 Ӿu^O%?X&r3;؏]QXy/lQ=RɹDZ-rUl쮁M\}{$}>_!A«n CqBPT>9?`踞Mk%ˮ>\ ~ ]P@3b Ķ;)l%|"g;G/g̯Ddn6s#m݀5H<[yEI$mC4Zx{m`:]" PxF h; "a:"&\?;<2BNjqPGhp9cy/Ml?xo^! Ldԟ볕l}_j!,wAq+Z(B>^3}eN;5L-YUdXvދb!鄮g9n͋c{L[lQݏb4 F2%GeӘΟ1rZT!0 V_{bI}]9UBeba[6wjxؐ^BҧoWf+qŗc6l5y1SjZ6y+^f-"g kH%6DL ].b{=4-NusH לMn\pr%,cV${ibBlAG0 {oǞo_ܻU1hѐ:gqh5ڈ$ʮ@/Z퉂 f i 1A`^p=+63/eĨl_ g`bB ΏN}Opq=?o]8wt4"A<+^ž[2Ha6T94Þ Ikfcl"" V iMx;nT$4? {n;z=xR16F&huMVǗOCjzF-#Qzߟ':Z>Mz5gSm*bSo;/ [0׽Ha=~HP Hvvmz`.$'_.kHugIgvcg@ ^nDqN}-n"s|eSwH-EӐ? 8>fJ갦#8h ׫g̀q*ӓlYS0ܨ$vǓԓFz_YײϜZBM39|v:ngQ,ԫ)Nx?{ sd5VnvMޟ E|L}H#V~X>tӜ s@i.`3H[ƾwFҌɎ{#ca }p]"fVM8EXzU^"i0I`( 9H6xR:b)úhS灤iW#nD~מ:[>uɞ Xf+txHYv'٬uyj絳"Wݢo'LqB~|`V',dVcRHT̊Dzib"iZB($5oθIӽGm#iGw_@ 8ZGϊup?u{H$]2;=J[>{ ] J>F;۴JI8|qkTo2ID|`%$pK7J, ,Gw ۸tGI,>ip " k*a﬙䊍 >'|MvanڮuE6Nu9;7kZ;72r6m&Fz3$g}p' "鸐Uacn~6\?g\%b#&NN}QŞҫuחGjUl< duGO2Kz#)?Dہ"-^#/|$j0Ha2SIWLN8qE ,* AӹG{g IWh^PxEsk !A=OnqkCb.yI!a$.Fžz 'Bj~Y+5l$-Hм|a[$-; kFLm@lE!/~heNKN8>%V90`$3vx$J'+?*_wն(x}<\+2UjǎM`Jq4xDvH0Ubo+qI!VIRy?т7'*Xa<<_BaX| ՈՍMSOXriVx-u5]sC l3lZ̦yug.hIY+(xl ˏ}9}u4f$H0E[D HA^H0ԗV q*+Wt=L{qYpn 5>b,$Y|2덴=H0ī>KYdOFgo9%IFT3 %/OXIx3d#~_Kx<=^gD8nŰjxv|=lW.¸k ڰ<ʕMY(l가'/ -([5}Ҭp\;BVv-1Ik=pytRzcGl5z;otc(~ppN\7rXgnlV$YްIqXnإ|dkԄ"eȌ 7<ƴ9`Mm(ؼ*m\:VM}t)/niQW~l#\ڱEo;ot|/N?,E=[[ *cY鲝]N7 $acYwhyRJ*HZ&wj1(Kllz z6~||)'26 d'ywM3FlE X3t<[Nո4?p^el ʺ V' Q kE7As~ \.['``;ql6ͮ-&&Y3}nEa6v&L:c{;vnvƲ[tO`qeijC{ƽ; guVWWl;3s; 5?=5V㡘ӎȬWF϶j`F>~cT`}?*FJ>X=bUuqWj)ǎVMhvvSǀ7؉]N~qI;d|⦌,"J[ =o$]1>qZT g塆uGkWA 8WQB Qy(ʏ',>O ҂W-^9z?H(<amu|N]Sd萾4~GKaH:9YOpg;S*?=&$%n녤wLN$P"-IbTRcTzԽ&ulZ.F?>lPI°RݲOE?HpwO$8:< >k=|],ڏ21 aI$g=o_ g]tγ6dcӻܿ ,Wv,nί?F q:tvIp$8:ne IlV8lRyn;4K΂0v-t\qwq(i'<}aI =9zt ]A:/^ 99V$ I6n=ƖRشAVd [Q(WJ~t 6{i'aݓ|.Pڹ%Qt˗꫑XFX61GM#7t  Ak}$}U&3Vg$1"y`$Gt2uMmBhI jb]'i R\IGE:w߆A|hEwSF=F=VH:v2t$8#3p/H(Jg]_s~a?yx?# |/ݓO 糴jß~>(ƺoNյ?T* ÷:k(<̳c;6^e%%620lUYQHzÓaS5lrJ26HѶH(JhA w(>9_r<#tR00giMgz2"AL"iH:N%rKh;Va Idh~)ֆ%İ#_͋OF+JV@ b ^>Ӳ*tĞiQؒyG wg.bF}ze՛cw\ys܇+H:o{橣uI>HApSi>M}BA`36[(r-j,z>s<= ;u_IU~z)9o[ d\Z<׬|H:iL}>]0qޔgk#.myc^?'s^Y1}ܪznQZ\I_]bj)~h3?n ER̳bPŴG4_X H \+@zZ!gpC.>׽>>'^Dey R98|'?|8 DNÐ6æ,9cބ Y#6(n 8Z -bƖe,J ͱcloCt_WӺĦoH:p[yݱ.Hp~ͪIq*t\T>J7JSf1R Aqj7tb}N=+KFc>8|n񛦺sLy[u\zJuZKCVGo-FtO9vhY$Sq3$A ,=}H5so{C؃gd_T :v9`!Nպp*E߽jR"Tv=_c_ejˬTЛ)M ]=cGoS|js}+˺Q};y>-[{wâOomNt1ū,ye+Ct;36D~n`A yOQ5 I.5-Z $jc"y׌ V7}Rd슥%G.5',$6A }6@2^е"[zomHbX7YHLБcqHvXvZ~W@'c{_.ц갨I3lB,e#Zҳ~nwH' Q >8WK])7q++JҊrZLneƧWHQ6 CgdxY@$6GѪȵ^gjN_E'AiʔbMS62d-bOp{xǾ 9ӱ|յ>=j<^fHc56o\ኵ11yY^IUVU?6Oi 6N`di/u$eڪ[]kG/4ì[8/tR4$|љ#yJ~uƚjŝQ8]A9k5﵁f'D_ү$wzP$o"(-J]}Yy Bj<^lOP;U J[;:WT V`⓼~k'([ᆲ}(`d=4qPt<)w嬏깳at}c~HWlgH;5*lƘ  ^l@@}L1}Lڊ ݳI99=q B_>ݧ66eOuܕR3 ɯ{9Qs/ر*J]/IG@?I&:nW$u)|zkP8.ӺJ^}xzؙ`/Y)?QZ'G[ͩ+PG0dN=JU0~Ң)K ^O\3f`=@ϵ5O7ucSZGĥcO(@- lի l^Ń bₓe-*,6= r4>|v=[$X򯫑tzU 6Ggl~Ak$](d1oF_Ң(oK3DQEjGQZ4(-J4۞_J(-JvmM(-Jҿ7öN(-JҿfaJ(-JhaawEQ?l{_hlNJ {UPt_ݻlO[0}wo0̿}ao XM(;((|_>"_pg=tuzhc/LByYb(zh;(^ }8 X߆IhmiP}يmwe(_i%GC2l>\\Jw74G C!PwC;SS;Qw 8aԨOiBV}'\LѻםOaN}tD LץAѸrҥ өY@i/GNjn'gwnd4,ԑA k{ҷlٳ' JRsl;6>:aSwPњ G@H@e- sʖC@K{k ]YmxPO>b'}E3Pg`P1m;A/]fuZ$8vN/6ӞZ?z:؎CõU:D(kKtY)tϕrȝ&GyWlޠC>[}N ڢ7\NXZTrВ.u"8?fIt֩˅+ALjUGn|\l? P,Nޞqϰu#߱sM>{ҙykϬgTZ)Ux@Zj_|>z/!ulѡ/q_s}z/[xƚ} llLen8yֱcX]a/5&ہq& (X? B䄶cC4WX ?Oſ/ƈ 8R\ ?^Z~ik߭cRͶ69?\/;q>A9oB1jKG~.7_}  NsGܫa/fS[yVѹ/*vr.$iXӹ}'9+}3M?z[D_{jm!!{|\s'{hL3é;zkfyUS˟Fԡz}1pӋ&%N8'cB=Ec\:8g[V ??Y r/*-~op{Iv?dH]s@4 x̨{aH7v ea{Q|*ׁF k\gBDo?&取gJ¿im^dk(&/_+##z#:Nu6L;ij!'ۃnc=ٲ$],XgfXv)C1O|+Q /pXq|䔣|\Mě?x^c m3~ %Z/S9p3\~6P.xCy =Ms|Lb8g)"3NHKޒJW=O:ͻzeA5:z6u?ug&j.Xmk6Q|`<׽t3}pDuz@^`{w&ԦrRpԈSA΁I@=U_Ӊm߶vQKewD@涺GRHyσ>VLYtoV.{D_0I:A ~jt a $V ? ^jk OtVKs]6<^*﫯ЫP8Yc/Ztk"G:BY k cfԩXYxH6z˳z7j)kP{4JMgfc}"͚ic9 'Sag|v=lP|>1=6V-VǦ,a۵gQwtg{N!0~w3m`?]n rOa^n`JPF:s _kA(]SIgp":]l0O~[{pt{Q ]9>w~pʶyOWF?{{~8ry5,J Z}h$⊜w}Y߼OgRkhtsokĿ?d*8ԕ,kq%Wک?*T :2"}:n˪w2FU+sf; nl~>ntέ"輾kyRv?t:%Q]T@v݁B$Ep\ʮ@ڳ;Jk4kb_(#5YQoæL(lT]sچ]gYysnϛjF,RW!ybB :nFy|4(`C~g~q5OEi> ( `TzX]WIa:s'(>`.J'>9_nkNo̲vS@#@Zu :tw3 AelirXHb5xwN6DUbM3YUaʰ} @cr+G P}Rn45y_` Py?cw(=i\|WoecoL~OgKGBg=b0'xc^ΠaxuT{I:!N]PRr1z?bÑE.Y]<^`R踀#c a;;XTX/H7oDZ8v{(E}=hڼXͷdo ߨ͝|>6>T;#_8`w}uHsw7C6vxۤV/bzDEMmxA Pp^Ad3'?2Ec6iɫF{n]bvM1uiz={9_?q=VC9Ա2na!y5Wȓaۡ6aFl9o_V8~#v|s{a˅8V_UeV-[[!i*{'Rt Ӝ-k8V8kӅlG"Xq =[[lAw3ffggyhtHi'v2n^0UW=m16خMe \Es2kN74Saz)\ey=8 *-ՠBSkXXoiNRrG_-=tnjQ37")\!Gyٓxڨ:YmGIVc6eY 1u5ug^kq7֝}惂VIjS/3zVz a@B;lYbnnS)]W~:O1Sudohllz <g Mk L:֧Ӭ`v?ZP|D #hYLH*¡ø_QnVly[qެlxݔdGvbgk*=Gy wUyם""ۧ7=wƯxU~yA_|mwl#+5˕M,vL:c5F^Oyg@1|olK{-nF^7[{^: *;mi xi6NFG&]8?[uҬo^oG"*yohrη;h~) | WaՂvsۧ*u 9YpY4nCB '[xQ|;] ]%o|>.r|):.A9p;x|j+L 3 6)ݗӕ҇)ZR{ںYN?9Φ/z.R}H3tqCSÙ7gҧ}aH:_[uļ5>ʅ>]]瘹oi {{+Ϸ|)O.އ oIƮ+n SO N+ ǀÌl@RlӖtқ{M}jgYr9ɇKϥV5T=FWy45ET;sQ0S<^0sx ʉ푇8 VfL >.:#Pt8 ;'xH[~wև9p?߶t]%Ө==8^s@9ד"A?u18V0CxX`x&szP—+&3#ED}$IbbȒaf4ibZ|Q꓋ 8pL أeu6脹!q@ec"O9|Y:Z>|?zŵ 6d}.g9FHC 5 =C?^ѳ#8xޙ7{w}GTqiF-G >/#a߹>7ǩϧC vCxm`:??h=t U(st g̵룲VtCz͗tCEfl ]'=~F:,@kaalCRץ5{@yo'%s {ËWNRnM_&}^GG"*wSEBQ`U4~?V@]q;Gt 4C1څ{0wQnTC'vbW$] Z~`:c[OԂ  l_z?a{ OH-ۿ5Wϯ3I˞~g ΁S%[npmYwEįo _iD_w_MrL?b_靝+}6.Fj]p.k91,Ooݬѳg{L~;Iԁ7:xM =82ߺ0xjZq /b² ԑgWm~B׶b?cY?]Px{E\Clj~iz :_]N%ηU+C +,Lx7A-X@WdܤveK ea=|&1klu'H]nd֎.hb:sru_ӧnu[x$&S:c>vNv|ڻZ5+S@ v=wKѾ?3.B7z>Xn]83y'ĬǼ|X|<'ȳṰMc얣RӇwy`Y"^hUEdݎ}>=6N7!]}b/oVBit0i=jxگVuLy֯++^8h+'>g==jGVt;x WzKG)t>sX̻a5:\")O K.9Yt@nPPcieib!;PEk~B,KUP:Av>RW )]~gdhӥ^SK3 |RG]iģf'ZJ\pt\ױ^p.rQW{$*.CLşwڤJyq~mϴۯxzz)uMGs͢}{v8 聂~#Y\m}_+<]Q[Xvٟ:(W6T TjˌxK˯͙槆s!^e8o}WCxG$4vcD^m{¿ ̌>r9y-ҷ0[Η2ju0B4o5# $)S2+҄WPv¯6[V-x9}G٘WYC oVPb.|qp0]-p\a>ࢧw=+'x({-su /)"sNlmܓNSTۼGl?LwO|:ڥtu*NghvvټWtDY cBpJMqȥt՞1ыyق3uit+niR%޼DCE:|~Kǡdn?~]@Y?9VWN>z1,mF*}KnYOɰ,M{~j!|z'UpN@ _M3kʦXD o [622^?ن kN˽7@Z*_Z=-p d+M.4k.{RF4_<@OEG9U@Qp˰֠x{ PhcɑtťңWȝ.ii r'/>= mbKEsK?mv0nlF+]]+2O;d :YP7!k ]L$btۮUw{KDŽo*"]Dr9k,G #`pO+.qH@T߈o^\h EqGC30}=uDtC`~,+5|8Yw$(Yn2j zBjp{#ox7֤~C~Lr=uGWOPuHSl{TFP‡+.җl |ѿZs Mt֓%2>t v^-:OT?QƏs~x4{QF(?ÿӮ n?ˉ/ ǿO=/W3?]?ܯl"!>W 'r|]]x?5bU՗F%2遌cytuY>CzuMF|mBgas]*ӕX% 0NXXYw3|7vQ ϐv 8rQo (Pq=WB=?(>\s/Aڏ",/^ }!Ӡ*o]mX~lg:5G\-D')oh$Ȏ:BHo\ԼQč.rCPQQn!(nE* [AP!8h*"=N\W{|·O4OR$Mu/j53ۺK v\{4OaKd0EPlx<K&~|Aer^YFo,ueAyi_I.S qnpV79CƸNl2퓣 Õ-".8>C6y{2ZrOȦ%>n 27VYw#E~n W'~1(1#{C߸hv" Wѐ wkѧ֐L/ĽӮ%f$.C\>tq')2veelb +IoD6F] +miM\v`#LbJy]r1X=g\wmǐQ8zZqzԮsd+(Gz@qiBMcO>%rnSتSq -'TK[/{Ol;w; Q1PƋG;LD3j#zNh5zN@~r2!sqq^H6RSdD χ/m-J]I=+DIew2s=?A\Ѫ+zY!⳪\lr^q@%ASs3o\ˍAY=#cQQ/i+'zw?l} m;/qL޸~aϋ9_4=`Ij߮\c9>T:7b]Iϝ1iC z5{X!V#d5? fU9qW}zخrv{ϐtbi!o[aUI-܉H'go&{'# y%k!Ґ퉎jj^䙔˷n&M9TD^$ճzVuQ<|Ne|ǝ>/z^)^ 9bɨ[ ѐ [l#Z+4<ծ$#I>ؼ K_ ~ ޾X˄83_2dnճO֏(`{bRܞqQh2ƓSO}*̣1цpC0hR@&n/?Q,G^;p^W!b9Zblh ÉF&S<7<rJ{ wxi̭w =\(ݢ&tႩR\lP%o>sOm܈9䍧j߃vdnճO_ݻx(ɏ]V,j0̑l^Mqw[藯vY|}mVs9W}J߫۬O>+_Y7vs= \/Ht`~6s܃|҃5\e|ׄF1l⒤Qgdɴշw$Jm5>ooy/9a]qczV?=W[Ԥ?)4_ZYkߤ-9q!RHj$͓ sfZrNIvponL_VYG4l8曯ܽa;__v11퇽GxUOv{_6Rzv[i&pbe>F#9$`</ 0L\Fr9 0? $B>1<#Ef&g?g@hUYT>gk=݃;Ho?B6Wǘz\۱ocunxXjsGF~Ĩ|k^4);} ׮{{d/y=aB/\9A槯o*yΠOU?GrLצ]1zR~L27-pBF7åNȮ'mO )0t*,.s:N\f97y|%zo?H$6^T%]o1]Iz%왢,Ǎ`RtkJQ(3\tL];Eӽkn؀ImdʿdǏLz9mE ˫{ lu,Ź~F_q^: }w\ߖpJkÓj_~#6+q=mic+<]܍j1;up鈒֭VY? "o>|&=WrO',mNzɓ5swrN.77'Ws4;N)ɏNeE?LzwD.~bW7GuSHmv e¸Fg}܃׍sS8 n~7e|rQ'Ց]xr׹Ɓw2F;31ܨ1mSnN%LnϜ s2`iڄiQ+j#}N[w2J( w:р;pG h&JhO=UўD{ZhPA6T dCPA6T dCPA6T UdCPE6T UdCPE6T UdCPC6Ԑ 5dC PC6Ԑ 5dC PC6Ԑ udCPG6ԑ udCPG6ԑ udC@64 dC@64 dC@64 MdCD64 MdCD64 MdCB6 -dC B6 -dC B6 mdCF6 mdCF6 mdCڐTVR*vUD]5ѮhWC)튬)))))))))) oO+.VNV.`*[KeѮhWU&Ujv5EZ]XJWVo_޾F}zZUgW]zvUUgW]zvUUgW]zvUUgW]zvUUgW]zvVpG[[9Y[X)bƶ4xjGk4xt#Ůn*[EƫxuTn*RZ4^Kkx-UjTmRZ6^Kkx-UZTkjRZ5^KƫxuZQo:-J5#"Z EfJ1 b4h6jӠ<* #1 JҠӠ* ʬҠ* ʬҠ̪ ʬڠ̪ ʬڠ̪ ʬڠ̪ ʬڠ̪ ʬڠj ʬ֠j ʬ֠j ʬ֠j J֠j J.^N1L6Nי{@=Sj|O=%LL)+@ @33333333333333333333I}nazCjkt:x;.d!oVJ'M˂5&M^ޱLDeQ$^D噧31%&*}[K&%*7ۿMT.GT._koDuƒÉTfDҞaîi=6i`riɊwg57U&*LN oU*dsĦ!+J]һmʑ]/ڞ\!*5.F6&*զK lET4o,hQzRiD%iDMGu\aݖ}p;FD1ҭC2 .}$\8cA'r2ݼaDekvjDe7] *>(<|6Q)隿Q$sdLܾei윻}ݦc!-x#lٟF˹v2D%Ggp٨iě(wKJc->͈fe_ 8  {:]$1%~': hmNx Gc@76Ȋs36O#|UF%*5^~ns\Nw?;p+cQěTCkVpmK4q%-j"e7;ĞI܎e,mć=b_!޷[D &5ˉ7oE7F\~x-_cnS׿L՝o7>|XE|xg٦E]jrY^ΰCdE x\p?orx3I3zhRWkf?N[Divzˑ㈪y*R&'UEiLQ- wyi,q?b[ǯS̀č0mG|DJےC8hS rK B2(҂ |VWCqh\9zȯ t. +uKev '= ނ /} P EA$a aP7c ( iQUAPuAMA-#AG+Ez }A010V  0Qa L)`,SD tA!3a lA[2u @ "AKAAlVRAeP 8 Br N vJV AX+UsMYa lm!u |K<a - W[|}3@^ `A/u|f9Ww-IZ{m0d$8h87?˝^N+VCv $]ϿR:0+zY bmvu'Z^JFNVؙ)݄qT3GA (Q˕ ~Q$\Em,/ F>YgDKuo^vvVLӃ L6n _bCkje;֘!)yRj42Iym-Id"I+LiU[,Aijăbib^yhCÚX9-ܮRu-]6moO#ȡ^MEn^MPW][U_o4^4 r0i%VVnF>FwvqZab`G z}ZPDץ^_22ynQ#W˸-JX?{Y=W՝ȎJMgG+ [s;g:^ ^IJ'f\̾I:}HqmCZMW.mAZYpvgx[]޾j#bx*;N1*#al_bQ4egC|J+;fgx%̧"Ev.M&==}Nv9lJ+'g+˿RuAmAMn/v.Ϊjxzf O|jEަ-4PUŖF<{qug t<7)rhHпʋ++?hEa"ۗGco.埿YG/n0|䣺?wMx|x7 ۍ>6ħ9Gōߦ9M dB/ JF_ Wq,)Pj f~7?P[B7 Sף%GX?~<#JtmM;5EG(n%=}73&emnR7z;}k5 #Q0M5?EMEk aѲnLg2p Q).PҋJBG8:حļ+j4ؕT;KEKk߰ld>e7FS+g8V8Άbx뵴 8Zig[ł9-V_f/?v5HxڙQ:`.wa>ׁNG) Qzw FA}p<{!D1׮.40jT7#-h=vǩLtuAa<5Z\Ou^~kaAɷBܤ A:X}[\0_xu<ʡOxz1K|(aDx{v)mPohZe.(07OߎʟHRhZ!S%4 ~ޘtzH3K(7Gˍ7R &{FTco,ID8.4Qx~iy׌yҘPM:ѷ"3 G.H7و)91xj9u}+ e@ۥ}&q2`9FXQx#$g)*~g:]fy˲>V1z~dv)H+bb#}ًّ>z|ڤ4jCz{䤑-IƻR2g>yٝ76NgVTH3ja:Ga< ]:QjB{0JyjvyÁ=t>|yִl@&s8! `> 8Y>=mP6Wz-9a392N9T!MFݰn0$ez'A|xwky<Q럹~ӸJ|m9Մ0,-#=(,9EX?ç:'̡~&IpEezn1Ѳ*h:f|zgg|$O>ʯR /uBMnj6ݟ- G?`Ȫ 43|pv?k'<\SdU|bh:fFf'?M8&Kcso#8pYkNͿ98ñ?{.9I8想Y8㮚~~GlzH@0U4жJMƷKhsuD&M7,U'A,~gϰ؛vTuyaD"E=FT U~T!M>`}X-Cp)[~5?6l`5_O1ލ&<3gT/J\? o#֊?>hF&E} N& O(d.PGr뽌] c`qPO폟jX8XY[ZZ٣Z8Y9Z[ I,wv+`)Ac[hp \ .ȅl撓{ްɐ ZK_17 Ï oRМ#dVК0B[Fh2О:0BGF #2BWFAz0BOFA0B_Fa#(0@FP0`%oȯ0? ~gWK$>+? 7z}3&,Yy>fEݱ Qw*#v{7讫AzctnFh= )A:mvRx C'hH_M yp`#=<#L՛&sC5pv3{peSbF솇3w&A؝t3uEgJ̭Au# i0^K1ۇƁn|x}rNǻ}Xo8LļlpC%^Mެ./FA~K?)اv*ĉkxv'tIOFMe=#/ ystpij`ʔ mVuK.t1_d~.\{t4\ >hyͭV/D_ @/T hWQ_NO7*|'́s*Xla = U~~o-`4){П~S T5 ՟WJ=ou {@ގßb|b/XJ,s^a ~.] wҳjm˫&E@wb ~Woc ~..PO'A@wpWwiѥُ;p}k}k}k((/6ϾM}kȌom-$=﵀®~G1¶Q`yA/7M6 ȟ"?`~m-CKC"Oc\c_{.'.|B6l]ll퇃=`+E9 _e+;(d= TЗ~_lz:dʿxs #$+PO1) Az+P4(  d^ 68 ;`1 00OL7a2;Ļd_7|Jjԭ7waG]&\?1WZnkQOe9%A״G72޵ʄb/“1#w Xl:]s?ͮ4xr]歵_.wҴNFf]ߣtYr&!&cH.+\ 4'T?F-y~oĥݨ}SS{.)g#a$7 የg8>~ OORx+NL3g5N~t w{sLO}p]Q鷍7jDѷ~vy1oTH͡I=xkݣIJsQkϽ)즲#lxm[?O˕7v/EYj_v^%+GӨY5'#dtu55IyBS7ʩ'tKɍ#u75jgRrVchv?Ɵ ګxjӐV$|9`)éf&>ylsf jG.m)tՕ۫)m/ nPY: őNϑd#jVM3#n+>'sMk3'םW~eFuȮ ם#O.UOijGԌټcYΦk3sNs[T>!j͜ﵪp}idA*rV{'z\J"ju)sU6F$k-YּBQ뮱^nׁu2Im~REY06,n'ݽZ&D^'Gg '|ɼCs"%E;K:>7}T[9dl{^ɲI}d+"7'N<20h+Af_zMpm{dd?2ݪ-n KݍO>aĜ̹D]sȜ{U>o/93u%v[?fSm?9UtR?{nEkDNSn mp .`[ W$8Ww+ l ۽v+WvI'nb%I1FSX)EI WCi\3v{T:j`lxSdZkZopټ!U](=rh:Φd}BBuHi+ю!\on(շpRzz JXB'j^"GW=ijhjhjhjh6j|h#Ȇ6lh#Ȇ6lhCJJ]eѮhWU&Ujv5EZ]5e5e5e5e5e5e5e5e5e5e57JC}zzvrw(-ϭ6TVxB>z말LiHץkM[v ,70):V5d٨n&K(̓PoZr}Zߺ=nX 1mB< j @.NAISj: 8-^ x0a ^4(qz^a_??0=Oսb$)@Y[&u^8$^1 0zZ3g`oL߁dq<|2 8m㾠8SA-L@N`^,j3:> ns!x7 1{@ Law1zr2dful첲C5 B)Od|@fScSy@jYowE{ RR+H[J~J2F):y(;5zD]>=xY}) %<<܏31B{(a9<4)v){yJuʃ{%<5! /ڕ?̺(uZt{U+P}U TQ S BΊN-:;8@Fz{@G,Hg !" 9j</ ہt >ص@@@[`>lQ@o`y\:GOh`iF&.˪`SإE k]l][t]1]xhB) C؞aכwud׊Ak8]m0/Xh: r@W '1&墮5F0&1`FWY+- }؝Θ7B< 81tY@]{/"Οkfʃ>}l 6h֋Z[Z6 ]'wy7(QsAwo#[ai)Vdɒ%'䀍'jQ'I[Ź6^2x!Xo;5ǒ%K6Bǯ~cN-g_΋$β6c|:b>W&CK,YnD%}bjt#tńX+=rRK[rs\Z'?%K,i1^7_?}*nD$B>D޿eMHުt ˴|Xd&A _K˼OiDt_z<тO2uu*Kr&#j~Le_ƒ%K+JW43$?ڃ^aq2~D=r@<eb2JKX/(ڀ#y0~X,;L:dK,Y2ɇ?~pثgm xa JSrGcdc|kX&ohc#y掖Gai^:I%Kh}"{>)}ZYXn8R-$0c-*˸ oejW睰L;zH, l-#ygbӛ4CBK,Y&rVG})vcq=OrwSpd<[c~?DѮ>ZXuxO6 gX&tљS;Z4˹vYdɒ忏ߧv! Hǯ| G/|CVEDtIˣ 2&XVJi;n:I9ӊ\`߹O"UHgK,?y/:.k kA!y_|"OWW?˨]-n2@_^OTd͹MTiK>t=XF<Y,#>~|&Q<*$Pb~=#WF}?er"2hW_O,2˰9痎FF<4udՃx>p\CF};/Rcih,#g6&C8-vl:ˉyqaXȌnb84 ?>1[X7waa!>xn|\Y|ٖ>cje[$sR06 >Szt%brby eɈX>)0?gJ)&{:c*[ր=;<ҳw<߹G|d4cUX̐#qrp|/K8ޫ=hG8 |:N?—}S3ƙ-#G2e`7 ڴk3_,u}9pGt@P 9WW8 2xxU rUrbXjď8_=Ϭ6o+cyPtCxnkaf3'xdD޵X깎sd Kyh~_ 7g@8_̋׍?-Ɱn>3:7:J𜊣o%aw#-,Mgg|Sޱs f~n,cKhe9.?wCH wR`y`~Q:YhMUK{5ԥ;Eu:gn2Xcu>Fky2){ښnͫp$s*RN-uY7ёvth~|~90?BWaWkpU8޷C$pB_G okf$lB" u4l.>^>1(œ?0JRj9# Ϭ`e_sXd-~[sg>%xX @8x\ hSO콑^-K0 xΩS9/#;ӽOXJ,M?x7)=K7Ax>vi=, w{UgD˓9˰ tTR3ϳab3uˮ?whH,{l.[Nus p$˗}ˑm{$ma{23lA|-e^C?Czp ws2woOaAQQQXl79fM$۹Ww埱aέCO<۴KaAdztJ=:EՊ}AxnԐk/즊e,5!s+,:0y'=>,w K-~3, ~WLqh8nDža#w܍\+v]fLx_ڥJ0^ҽsTIx>y8, dS$Чx) 9g"jWa;Mm@}xƍۼy4~;,\飼tQO<-o,d͹]YKS,4u'= n<dRsGsT6{ѕ~+ ϐ~ >CB>*c5~ |E9 @8 '~Λ寢2I kt]醸{5,xHcޥs=0Kna,w$n[{N[ϊ{U^X/ߢmx&n~K;ozӴ]~kxN7yFnaxH2|j>/^sChry;8>gCw+q`{~x继t$vVK++MDctn5 KܓvvXߓ$v^R;/ b:+dzu6;zZ}J'Rsc#LyW8av#p> oOU00ԞcƋ syo! ~c d4oƘT"E%@s&~1rWo-GXz4F+w ^垮EoK3gZ,ꜬhK9c彤W_<7M6n]'`c&mEPeobyYUlghAq=X_A?}A@ wxul'}=@}cR k,w֢k0Uۿbx^[#3[K}vh6#^|Kg^fߜXzK+rӽ+Ʊs!M[+ሧI/[xu}8sjsb<ǿgyXv0~*OKZ]>m~]o^G|X޿b=8bjWAg<"YF:Ba9qca;7apG7ƒEl߮o?:}{P[gXJ<KOui}L>7O ,vV[|vGl)Ea%Rd=Nwd{<禶sWtKVőӅKo\)}bG>r_{sGm3O{L3to2TÑ,sXHܒ}w%?+@\5| 89c}Qb:1p2 $%~ =X`ET3dxi{pi,z\[Fh>,wJ&|Xo=[,wuy^hIv~ >vp}A81 r 진 s.lw?F0@8 9o~$gBՖ[mqӐkW]Rf/w5r87]ҁJXpnn|._)Xs!֡vsM)g[T&=˽cmHҫMČEIx)i+<;׵ųvy,̕ jwω{w ty_$]w!nR%s$W?I{p> |_4[`{· o_v\y=!J7P5ފݾ}6,ܠeI,=4-r\ٱrgӳտ<q7ҳiK_xI T׾];m X鷾lb<:w,,Nvn<'?(FXzחݍsOxDó 6 ύi~g>˃. OB팶\dyB͑wX Yu~pJmp_>2c4Zg2x ?;g AP~!ۑat ?42(nug}`*IfU6h1<?27ӏ|ߪdmXHp˝#f錋w34Mm,w5VE`{[a9#<-nj,ww<{tO7:[˗xz9[6{w:ϛ 6bi^[ߨxjVgz;wiKoG]s2YxlaOgɿ,?ldcOKj&l2t;XFm_mGɽ+dQrͭ|?Z3 Lls֞Ux.=vIIݵ,L3TCa ==.2$QhZB VNő7_ٰ!~6~نqXLmqAdfő8M_iyPM ,clc'nepUΗrx^_=7˄[\ebT.rԑ+9c0<]zv&#Zϳ2xc2E<#LϳMVx+8TÒ_"EԔ2^MeXfV緍eOU2 iΤ`eGkq#=<;w@S(O J4ig)gx~ / 0@Ϧkς@>Htat8ގ#YdXF\{tkkl&`YT᳏PVX*7Z3zxH:`9n>K`973`9Y4];m`%,Gk:zc7^_KQ:-rLaihm]L jׇNr_^b9)q߰4\?l7ZLrn׈ܪXyǯ: v4ވBW)?L}S8w~G*8> wa{-QfRMO_I<%~ 1?f }A >EGF&|\{bi2s!x>=:W,;tnA2_G;~p^4w?`# { KMou|d,l~Is, k> Y4>oԧ,ǝ0)=u,+9[zb9^k׸ʏx~xa~w=|M@ %~}T _K1MOp\p;fxbbD; w smmBMgxn[)ڂѪ}rОN[͙9"˅#O]a.,ގwy$у8%ڟ#8y{*mbL,v(džWN}/槎y`9kͰT25# KHCo-^>r $KKPhz'm@5eRoƌ $-in,;Nx˿]7.=N |<"'C)@_*E=Qo_w3x:N3bgw,yྵ ˱j&.skOX+vB;</Kkq rڡJ:,g-ԛSd~3,5ZѳIg]/rNzsynʵ@,^v5!p$KTϹb.ԩ~8EeVSAwTKu?/oK`-d\ЖXjt,GTuK=3,z1BÞG㿮|nhp w3MBN@eHв Я闹gE-JgL%p|f&R`@ wţ}AN@<]<gax~cy KnM3M3|K>+UmNrG?K/y&J2r yXTWq>&FssXNp>G·,MX;xxxb23,Wm3pg%aynIHXf}QV>?]PVK

nXZiCNLX6?V6 zC\{gV}=j7p} =^H 1:J ,۬3Vu5=Ij"'s҉Xf!*3D2{o’ٌGZ#Xf=p$2Gį[%BţT,)Cy~DL X2ۯY#A;`yu %C܂HfѩXMt:# kL&Dz۴Y8cKYŞ&X+_ng*S+O,'1F޷ ǿg WR#y3DJpq[c[)Mq$ʤ21ߐ  3:_2}Z=R5{=aRt KgKbs*Rk]0|`ę=Z]7c܆#vk7n1X\um{ s‘LPiΧww߬` ywqOw-4Ync^8<|WwX]sGr Ա1Xnm5iev8ѺktzJ8 l3"^VXn,]V;x#O]i'x<*G2y/!UX%P7&l#H[x+>;7sv#xH^X&Jh3A6đWcytǑfH&/,OtÅq$NyFK2z^{fq7COV`Y=gZOdWԟ<ճg#gߢadnzۇY=gJOb?ҳճzVw_lYY=/WYY=_/OYY=_lWYY=~UGV_lߦg#g==Wd߫~zg#gYGVy=ӳճOObYYS>{d/Y=Y=o~}V{Y?_lz?zgN=YIObg#7_l?M9-?Ѳ-s>/e E _q )7+˓8.qOf0hfe] c:^'n Mq߽ܸ1zqxGq­Uf2dz;i.By&s<$bS3H"wFc.KЩ 17Ţc&}#{hquOEY0ڲl }yW*_2M{@<3^)y)X"~7 ļN!t:1󥐕/;#BsWC@R4Kh34>WfY3@f H$dsB?X"^>£y<AAI7x.úh9[Aoh^7h_ {#sz o4?g7s|)!鿜&DmNG!??2En_w ^g݂Zf"-٘!"™_7u$y޼<{DMz|Xf-Sl{:ӫ4ĔԶ9 3jBLM8a+յs3wwB ny'ļw4"8et\6ar/3G̽qz㉐dBEQ$Nl$auĩg9  aA D?}tM,$ϸRDѧӏτ$30q$<[I*=$"o݃ےDd !*|!$C sKCI8qY7?ƽnS Gp\I3n= xr7#>~E8@G)lq=c/vP/ Yr1q=3/AV@q27觘7! _GʴVH ^Ctm^?H2݉œZ#FOr8bO"{k~(͞ ģwk("捡J|BU[{ <$v?1q͢kq!8"S]+NM,$+E<;skF4qj۽ !ɘ{Ϭx7dž\)tGL]= @s&3 ϧS#f--;_9>c[ VA,Yu@S)SmA6Dmy)[J鯈G;t6C1ˢvYx%௖+ h5yNr <&O3@p?'2/4A?㹁q- -s7KW) GlCqs3sv } h?]EgĨkDǂ6]Txz!*w.&OW2 uJEL0Kp<~}ѽވ  0Xז6u Ę${ c5[Tpq#>$nvlgIr;|qSH2|q!#>i"fc?VW@L9Ƴ o Iq|[9$q>ëM;"^:ݷHr ɼmzIDߛռ9bNnCu$׬$ryt9uLp:5DB@o4׍lR Iif?bBB1Z_c̐bH3wB3-KUL~* d-@AO+h&@4h.kηɵdoP>O?^7qq 7~v#OfGђjAVmrUxu@Txk._Uf"4S( JDTtc"52WH;- %6<=IP?@ź]@K!IjQMZ HAU [(z IsOl)+\ Is>I:5I:o}[ )7P ROi"5Su jŮaKzAԌw;IP+ WKk}I"d)>Bo[4 I_əu9,IҪQپ9+5$)u4hH=p{嵐$Eu.9bp3$ &CȽd4xc@Z('eh@)y xAK=nHA4{G@|R< tFc%_3].t2Ɵ.NF7Zv\ƅ<_7CGIׁeX >x(S3dHV,~$cwJ[ixH26jʭ.CifE! L aiiG$ΖԖ4GLH*X 1:Ƥbb S7,E^:h2 G,5L1Zw޼;|u$p&~$$ud\BA;csG~xf>biH@9"FG3+$qATjMĘi{;w%Ę>q$>5yI$~c4S($T+9cH"  M /Hr MT 7~(͓@ь+P&,7Kە^tGpA. ?C ;5D~=ЯTOn߽qe8Zh: pUMBl-@0#ȨxY'Dea6!x9ި,Yy& %ՐDu="4`,uAkeO5g6$Q~GY$=8പ~2CwOIvon>$9rNQƗ[ 4NwurM6$ @Bcus"GIs{r{UO!>1ݒ8/ G{ IjlUN($1ig!I2IeWHBf]nCn $4^H*Z2MKZծ$ -_LBզl-5%PB$zҍq=d4~p 0Ci@MoZ<iqX0@ ߯ͅq2_ _KѲ8n%-s*05{7 T/'>x߽ =.%.}䁨Ofh8ڗ 4ffj":j:!No1:>}b #-2>v}߹ T)Dq@?xWS68ђ'@%:'o"j4Io=;rpku}csHPߴc‡UO-ѡ<)Dc7:C=}q*?$';2H}O 11DhHR۔sZ@c>F^q;T0o[az$1M IQ +#f+$Ϟp~H7M<_0nDn@n<]AzW_~ >ڋq%k6L?zr-C߂DS| |bm0B~bA9'Cf~H3,bnH9fg=GWI܈#:[[1 Qc/B%O_]%vi ݾZS`$YԼ׋"OBš G'7Yl3$2%Y*Hb#W+-Iek|3$P1&搄f >gڶҍq=gn=4NXDGZ3:ބΑ;_ F+TA 8sۋl u,' Q4Kڻ R7Z򱎣h>#Ehy챾(iDMZ"B ˶;n8nU%hߑ*EۚA: C>VGD^NN˾nc}67fLtyIhCyQ=%L>[t}5tQMGW0rqfBӝ_'y.Qyˈc^Fa1xcAo*6ݕC p"t; ,"bv([%ߎԴMn땕7nwp>!` q|ĉQ^?$/LRIZk[ IEuH:,3$I} AM{˴O$9Ԇ!ݲE Ubҧ}B{KcЎbn|wQ&F8q {8}8@~煂"Q4I1+۾b^}9zt} |8߶t9bjU`ϭ!ɴf+:LY6bܹ7Jo!fjOҤ_NFj] ƸY|_p_=ޟݘ~70>D,? hHy{ٓH>|gEVvԤ-}eN"}/Rf_D2A)QO4oxxI={#`s 1zG &CWT؂3sKM'"w{sR֖V͇$B6| btgNYwhފÜ H"Z Op?qV'sGI' @zN3 @8Ƚܦ;]强!k e4:9WGn?~eV$rnZkdsĔa8.Q"P/۩xܚJn둕/n𽙿zc>t~spCzԏ#RP@hBfrkBq3$4\)u; ?H}I$qA?pH2֫/ZIW EH9q&@%vE!hs 9vv$rz͏8r"b`/#D<|0]}{اd1SA^3s4ܽA%] & I\h3Xէ>EPFF12~H2ċnAk=ZOK$'n*wh)>GGB1CVw Iu6ߌvfH3Ksw.0~dAU3p^MEzt^ǐ%'|^y(붖s3ifK`{ ]S1Dij 0@jHHOaثès/^soߒ-ϣa/AG03D-,uVa3OX",94q7$mRt}]E{>EF@lW˸X# )r1]IzOj Iǎ^6bڲIJUg\m'-$qfB8ad\LwYjn&#Z~H~ID}h b@̓ dϋ䞆#&4bƨ)o%Z-$ti3, [qtubd=;ƞ$o%b̰q&I $3"{8mhrH"sb..~;!D]{wϙI_y<^p!+_g({ IX;ŽW& <6/3G|3yrtLCWg}6ş]KY֟k_Ig[\k]CÔ@9H܉O[l,ȱɝWEeni;}!mWT#P6qO Fe1dSҕ % nם!F<[e+Iz0)$fIHB-Lw 5=Γ1Csf XiBki{6b8fS~饐|%ҵ\݆ ɟ٩RkH3 #+?y,96O.>i3΂=9S[pTyuuʟUՃrcHi:߭dŢz˸r~nRi3#i;veC661Uą\|cےS\;!*={w+ g9Iȿۿx̛ Q|  +!?m;o|夁a>kw+\9$k&zdeV+mh7ڟ8p.سyۭF&sMC;ةR]Grt>~Sb'sjʤQn.Or!->Wgʭ]0Iw݆MZ;]Rwޏ't(q ߴ6_6Xڼ򩎺?<^R$7m{5!*lHC%Cr [PqQ/^k_-xqklHC۝ JޛJ#uO=3DTs5.ܥ 0?(Qs$ͧ >U{ޟ,h{zC)oO[q; $D10GeeV;eM*8c0Agc@:8HHUZlLvkr] +*#O; H2dZ@!ӛ͕$Z,st*$Q(1\>$I w< 1\teކ$?.WIm#^}Eڟ~bMbW MWCLIѵӆ$"]}V$ώu{nbDY ݽHxSsHcAt:hɥeGHb[ewdI"wsRF1bGGL\1Ei]ʿRFD<}?t 4_1{0^a:<`,{hλr8${nIJ^ n@)Ňǖ!}A FWml yCnv1;L]VbHu WExpd7ĜS#&qB$}d kDZ{;vdd7=]A!/խO Hf-*$qA:_$IkB'ÿ~" I$Z 1IFjy!$q6IxW,o$QK4DϾ@^~ W?|:$̿ gCҢw n ^1+,3ۏ#|A)$?zI R?j(b潇-6@Y!/W"fw 8Lb:kKH+@\9򯾞XK2zdaڋ&xt*:p;ĐVӜxsvau8젩5$Y9KwC%\v 1?ywTČ&.}?(gbZ&7S ɴ쫖:DqA˵e\*@+^NhXf4wID0^!@@AAKsS;^ߊT=ggHx%CQ̟H> x4!]۴]Ioυ$b,zbeV/p<c *y Ie͚Bۼ/ړIN[x˫o!K|$}=EnGbRVuC9{*HVWLgI߲ޕ1نxS!L64oI_|~ +8Vz@ $1 ā#B$oVA']ނrQYI$<}H+ajUu ^X? YAh\ʬʬOdeVfLYʬc#+2+dGVfeV]eg#+2+j7?2+?%SYy~$YjGe?2+߬<GVfeVLfd?2+2ܨ߬/6Z :#UoH+pRO8}0:\軛|^@f p0@jPſd߉bn`ݭęO-QnNnQ冿'*CݸLڀ9պk9j95;Q4ݐY6g;*OB}:8}B\?)mU"kKrGk"c4G0QeDڛ(/zv8?!R6]E9~EsogF%m_gv'MDndL=JKw|5 A%Ĺ۱8}rUy#d~ם{!J h !򞤾\"Md5Y=z@{go#җTС;qf]ԵD"s[heKl^^/ {횽ܸn1rWYLH"%ArYTar9k鞜=Dz|dU'7ɰ_\q~K;}Y)0;dá3LOj1-\@Ħ4Y8aYy-r4dڌϛ-H'?86th2#wIˉ &*ȔpQg&r^D?sDM sa9{7q5lϣGz43 ׉G]!όfxͭM/ wy/!%3ᴃFѠ](V~Ԏ l ~w /SFbG\cė}C3Z@}/Ҍ#v}(OFˣt~rq=_\@|X aڅ%7q;:ĿO"E8x AX͉֓}qoݽRHw+5%o2+դ$muCڞ$ [+fXSdN'אg>>?1rӇD+oAwa`C tHQJ0{1wz񣧺dnװ38ySɓ=gvOK /oy1?wߤDs+;xt<͉@ve4`gYpm 7h.@7'Mu95Q4|s9bj/@(q~ f4daw8߁-sLi9.Mgڑ$/-zME?'i=s㯠[y4Mm}vB?? "e CdK)-d+-6d+**I YZHi2ӊJ%ٗd}ӝsvx^=yΙ{,3$<;l#N%oqYn0A~tx#O)s%CX;aaVwa8-;܁ =~#zPk]3+'[*6Vs?-NIyyLn"Ό Q#:_#J"#|ws* v 4/~V8W&>|Ip<%7sw{NA6'^.1ZdJvun2mf(},1R,raZuVgޡwc09C-Tv &}˰w' $G t]~;LUl)vzVJ SRv-oKbXaޣddܰN:DVNny󫄯ⷖDTbo`YK&KbEkG?͘%v<5 tvIbVn2$2M(9l{7Vzֽo~+7yAuj"J{yt׃jQ^bIM wޅ-Ht@{o;;Zvm K^n^I}InD|˩\Ljw VP_ a, 댕5{BJ273#pW.̚:Gx_y?pL;ɳUݤ 6ztX?ۿ]Op+ø9oG6\/GOf=gQs+Ӟմޔ; .^4{Yt~ ^ ګ戚ئK Dg>]B y>=Ss.۫8vtb~x/?G3mnNs;hG;iG-O*~^L߅ 0ΟЋÁ}yG(|1̃p |!fڭQǑ4$܋}Wͽ:˷śȞtbI_#6*-%Jl?^;?Kd-ORs~;E-H9,lف8>?bDAG'D[-J=Bo? %ތz#;M3VFxwr"\$R?}PP/Ü_<0Lӽ_'8tOвzXW-FbG\{4 ;;gVq|ŷ5.ÃE_sVVܽ&92[@N_q mۋ_<zntnq㈒ o 4u+ฒK7/˃`|۸; 8OWT}@ÚK:'JЎ!,領镠<,W=)&vz{c㎐` Ng9Z4fQhwKS􏐿zÃ=t9 ?E??a#H}205{;^ԑ&8ܛRx>K_@wqm Agݏn 7 ;7~7 ,'Bq7]I$LbX_:\CO岂KG1G('=͝\ՂfıJѦ7N=̹L56r1XI7{m}Y=8ʏXۏp$b M\:n+b5NjziDBzw}Ox-k}(J>:f_]MQ<1۟؏:of}lS{ohuJZt5ŦlJT %/ŴG%CMX{( W ¯]g7<,7z@eyрLʣe0o+Lvژys ,z9OQ =k?6/ b~2\ o?p ,.|IgǹxFS8. ǏcX\򁙇EbDށ&)f(T7Kٲm''O3sSުЊ(pd1ġQ:O8ſ;l}mPٙό%D$Og[D>qZP>LS"νy&rxQxn%loǗVRUAzN!eı7[%2t*M#΍U X:B~Q<~NY<-QDTx=Xdo"_3GE0x^0ik -ra?3<$&ƌBsD a@ g;'[|?gA?c1*I0= Ȳ '$q]a#aFNyI Xkd+.òeǏNQ 6lMu1^,(iZݧh,M^>ߦ\-ilӉ#m{L&o+(t^D$MJh~ ;gEuh}+G=|1' .M.{TK-ŎKnPqt9&+76oK\շI#D9g[$ð;2r& :ۇĎ wo5Mz12h2F_m1|+=3"p/8wyv/0if|AQ"k^ snXXg֫reh%ߛ(0 LM\*+ZrZʵӼ$/{4rZh.њ(SQP2ش88Pj\^4fYVp  xރA$AFKzvn}`y"}NQD… #-ܹ6LpYtíXI{+.^(cVCNζV8[ò&U^]ֈN|bϋMz _!翅zB?]`A==p8?Ἳkd`z:#|r|-v Ay^DZ£!+5IK KݿIjo|,VjX"I;0xvʳ˰ĚUg:F}?4@1Su+pnwc?9YDd%.lx(`"9b0<,7[7fCr p]336%N=%pt[ڥ g'\k*3=doۜ|ƞ8C[^eY{eLܻj̎܀szgI9GO7l칓 \X?=_  ^IǮpD,5rpeqaJOD{d3?"w`H7d#e`I+ g`D}݈CS6~Mae*fb,f>;U?(]e.{Tg"lkKcy_]mN\lUG.DIw/|n^ỐXN;`}2W\so#nwSZ9s# w.[n͋ 9.Gԗdpw~xjc!{9s7?,m?-wmᾣxL[K+\gr{v݉ܣ֝d_ܕF<>D9ػ&7tඒ!ܱ{83eKUSK 6ukjnu ܊~|kw(L;9JLgyƳxx&'!8G|_Ya4ql5 :? uQxL|rKWߤ8hFo,k4%bE &!rT/ة5ȷK[A:`Wf%12'Ȉd%6ӜƂSIH 2ycIz^bs`"uG0/r^u1;q8Yj,r鑦  -6qjim2uúU9.V8]p/SP87TMm]] 7+oםVO?7Dg m?^fN/:~d|Y`DQ\;c1EPIXUJzlv=u?w sCp@ͱFL­5Ǎ9^q5 Vqg*r e/z?7HT-ܷa9܀W rqVƎ=/[/>u|A< A9bɡy ؍ecHN2Yc5NDj&5vM>/\ak{X8(k{_SA/\󊈔,jz KY|9ӉTuLJdzlc=`k3 o2yn%a9ph"qɛz,7^=jc~OL0ǣZ77yn}ͻ]e=u_|ȍoQl͜0"4>E)ykɑ}=Yb"spZVfqݝq6Nc^sG6;cBOSl}9;r箭5K9]|xt@o|{v&cp3ҋ:$~&zCSNkRȹ;{/wmA>R$/qu} w<|orn-9xc}hkC'2wւOSm5D }b0Hh~e|1̓E&ҋR<ǔ y~(@gOm0?x<gyp<1~.^?$|O,{~ g t=?gyeŃrEhmVlޭD8sAeD~GtD籩O]:aXү+F7m'}"] .g?^fIcVۭ鈕 km>Di LQ/3/`"gd%;D|03pe7ETazsDs1`ay/ AQd>*{^6ԗ `ȉ̸5Y%lɏNzf]]'eb7,8KvYN ^2+@;"}d ,}w1\x?`![L*$NJט wb/V3uŮyau[l4 fn0)N=`"Y}-&= 8k~pcCf"~;̎gwQ|&~ s4S(a2=%LxC0Vzl'WXlC6E?3kւc攖1rcd6>WlR%3UݫN{v= ;`roOH&qnB!^~{캓[6["=AZ#xDzY_{o < n|wב >G8z3ޣx?+]2$֧[agy _"ө gDQtץ_Oīm=KYE^4,%/KVf?}xkW̢n-S4E{DR|´1ﲈܣ't'. krǃE&ҋ"7#I~nW;z~H5#y ȏWżL~v1Ndy4ĈA]{aW6pϙ8vlZ R7J .agrx;Dk[!Ob72L[r&@sb;kFTbevT"{Ezƴ7X(x&}*^8L]^YV97fIbXw] uF}e5~E9cU^?,!̥Z.yxwV6':qɛcM7HbQrO;e`"HGfzSטpn*wN9Z-^]n+6zty&}'c[0_]N?d!/{>YyDz^#wi0P@<>eNfL3hŒ'62P8\o ̏m5 7&|V|Mt# v]\uAn5DŨkÍ}&O*|<vLg\a,7^<=w;yv.%p'eܒkT㱉w}J\c.Ž{};H2q1̇ip\}E8pzV;N =|+v~΋ݮNz:;_q5zͽWk)s 5#=V+jh׃E&ҋ"g_7tRmr|@nK&np ގ;u:ݱg\?źUw oZ҃G yXŵ}Ulj~ /G$A:0?=~f҃5|_+ ?S?ae%SV;v1m#nfQnqHJ/k^G*Kʼ%;8I pw/$v>N wNDlFˋ>&Z*||@-gtEτdo^6Qc[ إCd>Xƻ0Ҥ([&14 qB,7^<=/Vuw |޳ls<>OYf;wQUi;rݓ㮟<)1o^\zRzh,̊VEm&JzMZip": .ڿiw| /չM&+}<$+ 0}!&E 3~8xr攓DW׈K/\Ȧ_^\=]D Lbm|g 67=Þ%fm&Ϯ{pó\ˋzg%qϋOK} /j;9:xiהGxت}tKsrMSL#q7Y슁*>q׹{Zc9wk,ј_$`py/a3>w0ălİ{sN˸Ɏw"H 7^wy\|ZLmgCXk;1p۩pC.ڍAE/]|I\o_V*'kyZB/ו޹5wŏWjJFT.P~0U}#vΝQT|k‘N+HAwgew=r3|<ذC/~pYf}\8tpM< EX{I="H/9ฮsG+q7kims2r S*_k:7M0?}unD7Hջ&۹~K/Ľ L|T8}:&q]}R՞1&=^oXn_\ktWLZGUv=Q轡KnTd;_c?xrW|㋻7:wxZxsgy(".Ml{Px{P^uoVNn.J.n?5#^IDvVL&.iMIfߍ~;_`GGm ^i^^<TJ4~’X-kNwU5_U~,1-kVypXe@KWb_ U&//U.^uj&cJX2e{XrQ!Wt W4{d8t V9unX[3 ZP*ǘS~ֵDlSI|V |[rXsXςpKX慸&XT!-JfJC*U6-1GPxEJY23T{7bID 5xw֬O醽m|UmhUjlu몰7$f {¢}ث4#؇M%w\~IҔ-%q_ceWwş䃽|y<]~jػr/}޶Y=w*?vWW/^z{y٤CA_&r|WaXj~a8V5!ϼJF{rkA勘G02m V".nr؛V_U.:ث'6o=j/\:CY>RA+z<U."\1!U^G,md?h<,u)1xl/Ll~IJjz"E 釒6~ᓥ%)DI1PҕnQҝD^%})}%)Qd%)D`JPR;b(%ʔP-!*%jSA&%ZСd%p)N^%)A%d%)1d %c)G1%)@DJL(DdJP2iR2̤ (MJR2sJ,(O%%VVPRÖ;JR{J(}%ΔԾ}WJj;Pe,d%+)YEI>PNI[<(YGzJ6PMxREIPMVJ|(FI"vPK%Ԯ}ClvSR/0JvQRگe־/{7j%1_Gkw%aF~ kbrp[nNqUXZmZ-u^ ̧8qussv/P#0ڟ]$X'u2ǷnuP H7D|bZ)|O酲0櫰f5JFЈQ$ %$઴Ei Pms\g_UY*NξZC|mj"8u}Ƌ5FE"p\ n^ 1AIX:;9¦t ;GW7%nvNnnreg5TI&?P6~W ycg&SWY'Lº]j٢DUB?R9bR;/AP71:uq-'%tڎTN࿴++Gwk࿻m_A9D>2KKi/UmNKၭ][̷sudo X:)'v'r;K]\Zr3c2oaca2o զoJ\_7ihiZ©\ͭk)=הD%X"i4gI dI+fIȰ-Kڱ=KdYҁ%Y҉%Y҅%]Yҍ%r,Β,ybIoaI_cKDQXjKM_[ߜDQф0D~@]!?{WXߝ߯z!?ݭE0j,. ͍cy4v|G u~QsD 6s`+jYSScͭ,,l\,Z2fnJT % &:-tWӺT'@4bG#W4|;[,qo/ I@ߺt6wo$φnoMZ3M頨-Z ; Zi1[ǡi_<?z:<6xg[#uTaUfmoɩoW8v}8uPj9n}#+iL@>edS#\vQTm|NDϟ}1uڃSyu`"H B |3`: Nj@{<4<[#-A wž='o 4Yfk߀:Жc9lps:Re,j%,++%<%8q藙r藘ă#xI |9 |)2DJ(9NI %i$S-%)@gJ)wU1bTŨQ/F_T/fHhJ(~6Č)ܩ %TĨQ'FOU?1~b)'~b+('~b$`J(EI$%)ɦ$ӔBJ))%e\ %)AI9%P/F_U1b5࿂8UqTũS/N_8u}ũ+N]_qSW|%)~M)I 3'>P5_J uWRB]cqwJ~ z#{apc ^`7P-m{pc ^Ha7->{0[ nҳD4"f?D$aqη}+}c4O##¨4V?.~L/_~Q~n_-fDh,|qϖ{X}o>y/}?y(|=XNtuʡi>N\ެ!s2`#҂Cb hYx ouMꔉ-3AWu#֦FO51 mBp;!a9`ek5 (5lNZN9 qwoVZY'+]-fPqZr#༈FE?A/8N߆ǭZg32g2j] GY 9 Zwb|6~.~&b7Jb)OJQrJ(ɦ$ӔSR@I%Ŕ\˔\:%7()ܣ!%(yJ3J^RRI]=bTŨQ/F_U1ʵrbό JS2eJ(n 1=֮~V(7.Q£:?bΏu~Ĩ#F1QGl%)D'%[(d%)K u~(ΏX<%;J u~Ē)9F JR)IU1bTŨQ/F_8UqTũS/N_8UqTũS/N_\~ĩC| %!>~ĩ4qkJlj(YH%xkm[-vTU]YfQZffkdDB}&NVL <`PC7p t( _c1OMUI>[ߟA˺4zXzOx(ԻY/M<8ֵܑnPJ+m#ʥi7Tγ̬k nN5B?q l{os#StO#r}>"AOH;jP$?w_5E ٺ'΃mBmAz{ xX~cZ{n=,q[Ncn+74m?}J_?[`8l*1TM}֒nD~?;bl#{IcѺ4"ߤlgglD^HFO#ҷil]cgil6^co@Dx_Fjww?~M*c]&PX{+O4:}_ϞWb<`ENm)>6^fӏ {=m)>6NE"LB+vKZ*̎G ;ʧKΏ|{~֧W->?{75x׻Nk,9?ԙ[OR ]^%~v i8uol_m =6tnP窡{g@;s9{zDx,6n[R7oՒe7ҊSug$YקԭE hAWǩy%"H/ҋQz_1^ӁZ۞kmgWaz'+'r,/]S롩/F]7p|{?oԵ7|S[}8uޛ|C8u|>'qqԘе.HN"Ue%_7 FΩaeE;tڦ8Tb|08Z({I[+][5 `}V]i5(WA"q́l8*Y,Xbƒkۉjiiac|spRӿv+|%-O݃9\Tb_6p(.nK\Ogi):^(fX/; gkWN5ڂoX7tA.uVn TJJJTT[֝0ΝФP_8s%-]ݔBgg-)Z^[nrvxbzV1̚?BwFs :V Tvh3GoDdffff染{~6_mO??Ǐ-`n$44^_]~?~`m"];E/}L'wo߿g-VHD"S!8?bQNi,-l.^>5i{Ϟǿz=iߍE˓E˓9 ݃ɢu*ϣ%G#9I.<^&=z\0R߬5{ZN?({9^~Dwsr<,?^ZvSZI{`Ne浿6fF/E/rf! 5eau<w%n4wrzA*4ҹNҤa}%R yEwO^WM!~z<]z_l3duf Zeuq_U͑)INH⷇J4pmGIs ֿO3H|,٧p}Y?twQ,bpݖ\&o[^.Ǵ\8, ^BWoi7쏇{Q7?ljGސ&;]R- xvf Nj~IudSGk m_\zMyz/>=gYna.Sv j,1yEIHE;őf>0췼5{NG?Vi=^Yp ;73Tjim7^k邳;y_؉x\Gr6¥#zi~]۟')x]]+';M%ۛ즷]^W:l*T-GždFV`GyM^ Q3]w"_n#unDugY*4LY::e/- Nž˜ҡH7 Qe=ޏ6s|`_]]okT_ږ%kc_v,wkc:`_j& )*mTmu6IS01ڬ 95N euMۍ=/ RAr[2׏n0iCCAW.| PW=ƆcC`lh064 Ɔ&cCdlh264 MƆ&cCblh16Z -ƆcCblh+ #~MΪv;΢-H I3:sX%"ռڶ>ZN/eo'*yq6)ޟ x x $prP.@P7 oJ0χas_gp1i6:xL@x,gxFF#`svYzYmaYɰl˲+ CkGgAŷG徢 Qi㙳)WS~9+]`/h&\oFxsqga<zD,xYXdzӛ \Vy0"E>12Í~:[^{Eۏhu:iaM\&gDl ;_󣺖"ٚޱGЏZO̮]ZO5ޖl^!+y=]{yR|'/nڝ <~:^- p%O.{*:޶|R"{ބ ){O!|>#[ x}^;e+#Ϣ˥6&;CrwQ^< ճv$i:֞8ů97'{ o*^ hњ߁o!זaCA"`J$4UIZ f鵁^:+=L7k0@A:Mgx\[xeWdWe ^Sy]Y6&IveXn=c„0a~L˰zZgX`oLߎ`u<|2, 8>8@=-L0޳^l؋^-{Fg2[œG4&M`^< 'A\;vysYu9,gXav3Mxl#zqW :88QGG'uq>ONdqoq21s [j ? yAzuiv 4jg*{1ٍ"^w>oZ7BO0Ed7GidЧC 䟟R_` [.h. 悪*h. 悪*h. 'jkjkjkjkjkjkjkjkjkkkkkkkkkkkkkkkkkkkkkBs0I ' *qޭ] ︥Fk<< *iSe]E?9W ,:}k^y!nS醟'M:HNӶB*8z(+9bhm>ri[2q6RkH &??%*>WԛϟTYщ~ؿ~<=3G $wt@; l>uCZ_¶ @6/ۃtI >ص@A@[`>ta /9z |» KvizV[G ]gD3NבlKeaכ$w!zk:!ܥ'Gk:]낗ЎGǩkl*< 8a5,Z]`kBKƛʲY]i9t|TipzÉ Oz9kO}HOsS(qD}>@P(t-8RYZ; 0/kmigUߠW>o[7Iۻ^Q%6h {p N"( 9`IFEڬ>診Vm$^70)cx"(6B~}vY^FXɧ&c-MCvux$d|QDEj>o얲 #XHK~D2OeQ$n(Crvn}"(4/^*^w ~;8lSDpĻػ.gTn{trM@"(MA#_Cy.Ռ݃[p;s/8ɴ6ExH+5 E⦋m!M$>+,8}EDEG?d*_ <=V\h;.ؿC2wc'=C2ujsHĞREfQ($ o*FDEM>C!8{!/,5JB2aU HVxh1mV_A2eMSa(:hmi~UIK% EQ?oX?O_w9B<K b/L5J>׿)A2vن[JmL}SY$n578{JH$$epJj."suV}vCa=O}rb=rx2! f|;H #qx/x$\9ٮ_ŐL;g(IۊO,O(>B<>` IA: k?>HyEXzrE:1$i|X5ɃGFwB2Xu0Oh.G<@2A;(f=VErz|."(G8$ܮqg~lϱ*!^w됌s}˨H+!"A v\V6D2)# y(P=?߆?8[UH,,JpMs{===޴oYHle]o$)?;xE2nˣqWϑ<0%ĭESNDҤС gEQg5@|qоÿx=8_?Q =jvxEbl;[#e<}ANc!auX0Ley!kç vQ"2+,Z#rZxai?e`y 2ءYsN]/Uh37y脌᚝ DyGڟGrg.^Q#3Q=~ K~M,X qh'yaAn,ۊdpa7ž 1T>ɰ{#kNyUb<*Ϻӽ6"1,y4o̻0c,$w/[vYHF5ۜ =3%oe>=hݖ("oYa.k'2q6nO e?B ?:< A;?fQz<`gk$G m/m/؞7 &^ҧ1+p4=382_Qx#?vj7s/[3 MHde ɹHfYyxW =dhKwD 6 _qҊ:H}T4Uk'Hġ_fJuE3$w7&vs6Qfa;Q$ʍmAR}Da!"WіG0K0p|lW y1ٰcE<}M#?mQVs*6d`t~m$f%qg#;҃mH:7%'̚%\D3qSD*a?!>ՠ(sU'4/~ҡBoq9-![3j{Y3򩽃Bgju{Elϝ Jg f>`g8 lqc/o9J1,RCW^H<5O &UHC3ns$1`Lvl!ޢxɰX;3z 鿗@͚"]} JedC\eyJcQ(tDRڋI@\8C=hh72ob#vK1{[ ĐܩH ;n{d7 4&dqRH͚6}+>nC2X݋0i W@n#&>JЂL4xۂ.c6_yx:$[[ OM*ڠH[dXx ]6UɌcg/w,'q%,߿ Qz;fl7T%\Uh`GKm=5 I>iGJɝ#{(7v0H`R@Msݏ쾢W ;E2;9t!CLo݋f@ EK Q,C8Sf`*^??sA*ؠPwH;HyzQfLH8+晏xYHvOs4F6 0h.zDʋOZ[Lft9Ͽt/>xП1zp wȯ3AyW8|q:>|ۮ$"I_oJyxvIM̹sP#9Cr'g]uhKʹc.dwf7yq޺Huz8SMՐ V̓OѼi5$C.fֱZ *N4g;"Qz$rN{? Y~ _`:hCq8. a~n^S+c=hi5$}zK[QI.]|xYh$ ;!/+.z4;[f阚HLQng! Zdhr]8ɠÕ tGf}hzjG%4?jkuz~M?yQVG/$C߬ꬻ /j"Ql+dLuY;,N  1$/G ,֗_f<>'C?WǁzX*:?8.k.]]nyI]3?>ܱʽHv`ϝ MVEJlЬvTs9ҽ{yp$BsFE>}z"^9ќj1.=&=мnɠ\E3{p#4Kǐ 빸 (嫞ň!i?"5fta6B?Ϡ48_0?NdGM,A]ɪ\zo+c& |dǫfuQHn?yG/h#LقDׂz>f‰b$de,*w,HyfRh.uD2]ĭQsМ}Ig4m]ܬz.LH4+c& ݡ&w와杼cKlA(3C BR&P:fF7y?07f<; ԓB0$Hy89;ָ2p'~mb{r>Hn-_G%h#?WHnZ9#q{iHJx/͉.̵C/^mz"4JGU` ˳W#S;\)4S]K X'B:yɟ71aHF.6y{HJl$:LTVHo2^I%'6:J@?_a 8oOU0=z/3^I:8M؞cC|-0_ay{A7cLĶ\z>\3LS>}T%;9 sѮfLhkuVjN;"0Go4nZGF o.eM D3:4lz ;F"Y,m67ɀ{ˍSAxVUhZuE͘➯ T|\Wt>o"QU:6H(<_%H'|{<  B2OA{+s1s/y2olc{a~<bS*HlsVGgcei$tf᷎g"飳U͋m@r[tֻXژgǯ{wvi$~:df؉yPوHwJ_)vF6Yl0$w6Kꬅ1}4ގkd@;r4.qS&#qߪf(['uw I՜,<2C#1*_A?u$?`;ES-c)l|?;)dyO |j)+ $%~ =X`E$'B|7|'z2X=IDa蚴sHniZv~4}ǺnE[Eop@=>s!Z`43F.;0jMڭ5Gsxɒu'm>jqh군_}C_N/SCfHOxk]yfU`q'hV"4EfbyQ=7\˃42o*CA~Q$*-ռT[=fݾ_E~ >ʠ~ >vqc.?%+Ϲ KiFhxtɄɚئ荒2tTzW ^"w#c&Hn+ DsTH~2[f8l3IN׾h枎Hnk}>=CsEѼ]Z*5#IEҷU̴E^W}wߜsk 9{jfUN5Shh۳c;:fF9ZМh.~zi4i&Dyڞ>6"$_I_eFO8-|,N>Ma @~p03Wa; ?^?9W(Vz^.yS]r+czo0۴ΒmǰE $=ڎ f+ܬiT4fHzsy2[ii{LD3؁p!>MP wy}Er/5A3^`"nש|9ޡ 8 OcJb+ybg$}gKoǠzm4)c_5Boư`4מ7z d6ZfџZHw-y41:ݪP$*lARbDU' ixn%Ou\ϱ"1Ͽyk4}z6u#o3~?+lÍ JM!B/6*Xuƿ#śku遯м}x7HzM=m^h5ʛ"%mK\5[$NfdH:HnmV]Qʰ{w@TnGhkl$?p`I4w%j7٣ӧhx>M$wxe%XEWvv}yݫ"է h~ӯR$$t́ee2\bR4bOC"?d+DyG+_ъp@!7=0qtb姉hFj?# k-_ڏd3bע=8 o!cp dV>i< ⡿;̲ Yx l]e/x~FB{.V*s>A,Pv}n: NVX|B2xN FHn2_ɰAI!k)HܑUɌI?qFh H^J~xdA盐mW<]'4+|MB2/~UQĒeҽdr GH2{P\jrc["_<, =>":4K$$Oդɥ,MǦ O}HRwۇ-ԝJ/ﺦ"t&g\+oa3$=o81+͸a/{o![cz#\<|egsJhV0m$S@|2 lo&z'L!1~@>Q =k.a ,^c"-"sQYF _ u>$Ceedn"߇}B`ݗ oF*$r JjO㺡yuÀ4$V_^dr"iڰՕhq&/z=Mt{~]g#6wc"1+ƗE>h>p E"ȝH%eHf!ίSi_Zd&薏+͓N i Ekuטn<;w@S(O@ @e&4π3$w{q4CA>Q2tWRA؄8~8~zxl\8[47 ?CsGϩvHr4<<:JF%7rZC4]Eb9٦CS7fygoSś9G4=! EDCqL+W4on]Ź"V4`$]پArC1K'=Br'c9eS$oLBR7Ȣ=ܫӇ^LERO|G)3$1&N$+Yr_6c $GHXlwwPl̿pׁ}A?^ zI3K#Zۑ2C8?k:LA1h4m:Hp㚡]8Pv&N z>AmVHU- yVeHNl24_sn"9> 42o,w^TbUv͇f WdYtIfjH$+).߭W8H =?4 d>Br$՚#9^mk˖hGn8踣ݶDEv"i,eA'4?Crnoŷh}֜,B3rc=-$Mv1nK vAGC/44kY 9Q͂ho]Dxk4|G="VTl,4;ƴDgn:e j.ŗ&I Vئ!v+US)Hzb¹"$=P$cF2#7w>dB1mtN 'mK6<)rj'۴?mKmJkH?ܿE,4Hi8yy 馪Qj%3ArÌGǑ ];07?$Y'>\A2:uAY4{nლqHSk:C~(Hm=n늙?O4|dKK*cJIM(ܥ-?G2SsC럸jWiHj м8_;EUmP8S&mWG#G[]f ($.e/cVG˔]=X"Si47k|-GfX 7U2.NHm=ܘu%%`FϛRÚ۽> EtWM<3Ȼ=Q$N%A$S/kuEHx`-P$R*T- @2-,É- (op~+q{Aw90$y^Wld򯗋\Q$6*#8~E,nJ^oѾR5|C[ǷC?"ӓپHszEדپHk"(ҋ߯'}ՋH/דپHgEQ֓پHgEQГپHԋH_ғپHҋHoԓپHo?mx3: :0>X b 8/ %5n?z O`-LX!\@b6~`ٛw s2^(fxhr؞r-f׼xqt*Un0{ґ =^dQMeDxyő:,(e%-^3S_02|}ڒa E V S0cY]w.u9K %y j}0yf>nҭ;} %p֐D鳔m 1+n8A4\/ĦIk #wn'$q1ɉn;XqsyMzfx(pӍ!29 wztiSĎ`ݟ0ϐ5eefI t\ϑ xƜ/sۀ/YA?I09p,hDPdPC( t8SA_Ӽ ҃㯙ag~9(o4 #D; /oݸacBIc'nf4@Ty|Nޖ0mݕyv0Lo~#)'lf{uY_|0i܇ uNY/0,ljeIHwfxa`XdMlκm+==حan[4U3 ?y\99[,m7(2}aSH"*wAb)3u\$BIrWݻ),~9d7H"i܊Hf^[ JDH89 Yu=Xn2{474n<WLhN3 = x@Q A@R2@GI,a=c//vv#8^oA3ci>Kmޠbn8"93kzegV>@;زS6ʣޕbV7+ z$Ȃmčw[;)ma;uEt$$5WxA]*0I0^u͝RH"ZRݓ&%l{Gj-8~>c+vWeڣ8]δ0[I+2Q'18{}%/fe!8]-ތaUɞ{fY0ys^axjfpON 1c7E0U;KzBR~uȝӶ II51z#^E_gL <0hiiAb%; R~ psI{Pіp(y  Dv#CA8G:̵g^|$xn}\Fs!ou B _ژ_{Igsv~tlw >`|G,ߨ;T $V29U!:Y)\dxbꁹ}WIY3!3 G}ukR t_<$o;$O1]4Utyh4$F.:dwIHv!1r٩ z.VAbcݳT|סqTMcbHW N Ĉɭ}$ɂCS 1bxWBDG:ZAb mkAz?- #FpMi7ygxun&Yp6w`xԥA{ZOطop|V4Ӿp߫7^ I$88=3% $5e@9#?=ǎ+-)0V;"{DwH걶_prGn~} V>.y@Ǐ.z<>$l$$qG!b#!=X- 7n5 /a$hrnp* =19It{8QgLK$?Y_4n2Gە-t#pAq7;5dj_On'Y"_qE_mA t8Aӗ Epɲ0#[Ϲ N 5.veb3dZs1.$J|TYl+d/X׉Ur0gLnΦ$QwNsEMLa6+^{}'~rշajOV] $FGߺ+y$ֹCYyC*ş >)IJ%B꽍\zaVSHPw$6jxvꝐDGoب/hI:8$f|o/! M*6ߊƏDHB#83$uUN}S=+AbZ/Zԫe-j@b} HBI} C$Hbhɷ =X- 78_[B3ý57G3%M5G'4AH?#ƕA$-\ D~!q_M)zƳ tqtA?8B\`:/Dc fٚ%3T^]{-S}ILc[N`0swf'6{Б$n Yoh1a / I!4 n+Tsf:tym3HShФCR~wcet*?Cᗣ:C|v,/$//$}Nǁȃ_İ]gJCb#^8P;z)HLEo)f7{ׅTc?aNذ I(;OSHLWio!~o |p53Ʊ5< -kH: zו'twq nqtUgeo9AofvAB#qŇZ靸6f#c}UR1jmJ4PnFָg ǫn_9ԭ92d8{"G=+ryoPIs! _|Ƙ#5H.w齆a~GaUyK2Kxd^$JTL@rWCba(Лz~{(Qn&QBH8rݬ:Áޭ<(ZP$6șg䩻w vӔ3'jVC" '[@bׇ$zy-s~7f|c)'EtNwsZ#td:Gh~) eִUA e\9 9n,' ;I%m=8:9ȃO$t>#inP^2q i(׊ѳ1;,ve[g.]f4c/C<̙癹s̙[$s)H%-#<5䣝]OL\%N&8`3L Lq8Xכ T=0JELO׬|XLxfY6aJ_}kղ=30l~-t' ~AA|^[D Hڞ0-ݡ40+®Sǜvv|0mWς0"9ɘ0{k#wYo J ϽV1RA6ūrGB8;_L$x_ qH?*[\L1E0Z+R~׋G]m_ܚgNQACL?qVF¸})^ޘpύtB q@2S8LZ0fp(#<{K6GLuN葨b6Ju!ˍggӉ ;)h\' \$F/]SL| wG<؇^ c|T|Lwzo S'7h:,o+|D!& =,0uͣN`SwlM1hIݘ055jZ_cƕ(p㛷wL)b[wli  .=+l?D:;שYaڜ+ѫ_kt\KhglG;8sԫX[R9tn+.hš;4{:)C-ܾb OzاW*=g5uM[S[#UDs!Gϧ?q&m&'ê&5C/1iˢ77iIM|c@ /nԨJ8g'N68LzIRUWLjEÇMI˜q]=_b qZq=I #8ޣ@LlkAhkLxq9pGJ GYMM|~2ܔBL|a7LjԎĤ-Ycr0|{*Ǻ%D'YbibK^s#{+ڳqxԠ"M;ڧʪvɟ]Q7NM4~ǣvLnڭpΧ:3mA}#vDMWn>|1m^IGߢv/x,)јEPڭ ^5й\텄 mnzD8lɲ] | قSּxb|Z_,ńx{b40aw?x߽I[7hrN …}ms2ة&mc;aRr BhmRN8} . vyp"*[Lc3NلIM0cËaҘ=z,"Fc]Y"/+e¿;%唗t̐sV;ݴцG387SPm}'Y8G6_vUo‡J/W5,&zyb}TP\i0zL->롔g FNm~8J د9\/ftt¾y-~Mݳk&vv_/`SZnF8-;o1ؘJh_,oK>@8Yfm.Σ&`vS&y%Ty?)N!I{k!49z\3{ 1i+;ǔaR?9~n(&mFp1/&5wķݾ`}.iw&Eя-]䱮G,NGD'GjĹ /ϖuc>9ȧᛃmQy&䏉 F;9TVfi/M)iP;c8h uk*')Ё*vE"zhGZKYw0ѕi'No(cRó6o(}#w\-BˮnG g?uc Lڢoh&WCLJe°m1i#aոcպsZ4J>19.FS֝ä{51B8#եW'&t1L'r%L6&NP:_!X̒фu1An0(ރ7C+0qm+vb(x _lm5wsBm`]f)J(%0~gEcWjwGקDLtxCшybK:eEva %1Ai'քL͹ 2*",xUyB# k_.[)@wHe|im1ṍ_ .SȹC혡s[%$U"+o1J&LfrL譽rKL֑:hLy]U"”V 8yY-ߧ / bmc [_~ '{ SYI;rpń+'?~M.k}+揮?,g2nHL4b:"* #}oE,4_L|sWgahY Ô+_~8X|&\٤h=(FJ`NDToQ9ji+g$S  P 7|R4!aa#S ^J6ޛ0Ƹ0kٰƝ;PrMTݨ)‚V,ń:=X,[ܪ!& ]I&ɍ0vwƽb@y <(_?f_AqVY> ڸ$0=%3^Y"2{HKX{%N(Q?HGC5H< 3VI7޺(K2%w:"uyGگ!#{/ar7/{x71baVύNe*b'F~pbL~n)sߤaJ%}&<Խsi )haIti\C1Ac+0aVYNaqZgWĄe-f%pX:ma,9&8{VL&%@){x=c`D$+Masz6a|6{1AǷƄYRvWa/oO1u#̴]/Bx&b!&8Q[G~J怰xm;a‚Sn# mM&09ÇA|Nq&L Il Wt%LV6.IwuGP^0A G>S0a ڿm'Lk/YPg,& =zlBxp0ATw-1!z/{&谣]1I"K/2ho>6ʰg&~Y} 1` ;c.oOƄ!_gm Z rKfOV y5IqI8 #|6&hm@BXZP>%&L {cIaw76˖„g7Nz}Ǿ$)#bQG1@bTD\_y ?_|z?\neIiD]FF|+-D =#/gA~wdHF# _w8=V'о[-Tm T"Qoñ!ʼnEgzfr aڌX10*kqܠ| ƈqAo#\GWGmp/X\1}Z;pҽ˧IٵIKw/ibT.Fhqo=(Xxbo:\t;Pz)R/1HX{}aV.[κ GgTVZ=~_\͎a % /2AvN,ܯK3+sXܼ>vG`>-;^Z2@W dA/A]p;X_d0>1#S* N2|`T1sQE̅H1,|#{}qvٹ䇈˖JuīYRDTJFS<b#[.C?uEaT/. G;FŠ}lEʼnb;K}&?UaXC's.ck|7}'b qBO>Hi?D߇o_#wSCw_>>1?숋灂TٙV{u#G3^g~i1u'pfeOA,{Cm "q/1]p6%9+7[oEȅÎ a^Y0s |UB`yQu9ɭȌon9l2kۢBxrF`C.3Ё7.͝ "so-OM󳃴@brc2"ڞ1FЫo ׎) ݢ(-)\0!Nm ᧞Jiky,Ï3LA}Aʅ=H˜ap)>HΔCsb0D`Ѹ,?%Dƿ")_bJ-<1sF>HsΟ ?GlʿV.@Ly;KEzQ=3GzdlǸ<_~}5'i*wFѣM_s)䷱Hqd'I{i4ݹr@0rft+*̅6~5 2A]&H /wvm?QCdbOXtYc4~+J_n)tuϡuk ةpEýτVI߯1/]ce JЂ}VYG g#<|ä%g@1 3 IV41otx /0i1. fѦˬ3mMSV,k{eh:PL[rgUsEn/x#2-},a,sG߀ؙaBt^ct^ã0| C`p3p=vdj@edȌS0te:2ڙ>l5 sBTsLD1NyxF;N2n̤3o]" D'LROx ΜGdȗ/j7v2SSS#,d> q[|A1zʇOQ?,Bo5tsW%LY< U'm|xvT:p pؿ/׹AC7"i10Wqt Ѽ2;x6]bkrչbp^:w oa\}w`r<݊ʍ0=[ MNV#^_N#]/7ֶ?1/u.|D=7j~ xx/@ [[W&LX3;_i>ڨ h,#EvM v<"sK!c|@7%zLJ Cm1giJٻ? ΋  97T$;1Sz\FƐ{՛bإV<[%I]Ś_ ߫x\S'6"y*>'~!g{J,W:|?W {I _!ӣ ,y>f4m]3p &Ea 1xze(r wXa΄!ܸoawl xw&.}^h9M%G}3{zNE5=@K 6iNLWn] 3n' }Ԝ翵WF%{6ykFK&6p&}"W$z ZL4?M2?.χS|.k\JT>_;m0:S `Ȗ$C`\cQ|c7 y5͑_l NHk(͗6yn7 mhl-~wFl3oi ,l˖6 'KGnI\jAA1z~*iGs&&=Y?S~Co;1}*"9KL6\׭bL~'fEYh&Ob}cF^ƫz=8b-yvSz\&=W2_pԒ֌|Y^$a͸ c&98qC;9xoUT$1YG 9tw;X93* px\Ws@7^?q+_<iu@lUA΂QyWŒɧG~wy)~_P h%L~[XKzmU!J)J1NI5@uM \\/vMF#f߁9X ZX/$?X{L3nJ/5UFп޻.WOh:kyV=ӽ{cKO߯/{}@Hdz޳yd-n]ۃ";~ʒs̃jC{2犸J D#WX3Fl) `/ȏEQt=hz??zg:O[1(P 4җ2h|35GNʥ+pGb!Bo&2^y)3FfYF2T9z|do9*w  y,@3G_RK Z$f͌_)DhWx3(J}/-8!RB٥jEe,еPd tv)\I(+&%.cl O&G۩雅5vKHL`#O:6ܠv*;Cꋇgtn'cR:o?Ro\M+6zO}=g+/ZF08y #꿽[ֽgٵ2{!~$X Vq{Xdzr)F71mD5Bu8<)FsK>Ke-EUK:л#y"z9H2_8 E Ft`~Zcȋ3d'uSyn1j#1s+E&D0N0wTX|Kt֟YE〿|g8FE!_x}fL=,z"?8(dڍGS6d/t859xH]_iikew+>6#M;H}7hYg瓧>n&M|0:l= cOݔCu{T )k۟ڏ5l~/7ïr׫f [vP>B&s Y4qMP.Ow*dn[p{Xdz "Dz[2q|)H-|ɞU:r˧ N|{><6\b=-aGX`;)g-;Nu=S\??2G e#?(Yg&06fRR ,?*z6,TڬV!4߼I^pѧ ΎnM~#zL|d >D9u}as qkvc%g37ÒVH^Xt<ӤŌ=?L /y.x|,S/8b 4 ֟:mix֣kR0]x0^' mf4m͘ 3rNIc$?'G"S<ͼ0HmAƁX<.f<1ҖH^"&l eqsC!|H?;?&-{ғu'|T}Jqy_8!2hϞXo`{h ۆ5CDi/DYGwY d iΙ.7ZF61.1WWׂEOPweкl9S$KH&_cfn2va(z_/jp4d`?P!ӗ0},uHX67f ̰g`-8s'\l9u FaN/9MZZnK**w~܎<A{xrV\_k5鯈gPkG\Oa{@@x~o=yAh0 rAV1SxbC.ڧnXˮyG`xȊ {^lMYG ? Mc8s)f v&]ic$_<r}6ho2^.yg5>E/z==2Kܖ1TLtZ:m+o/y{~9^:.gξR8zSζڵqAn2:-w\dWdl엮J޷^ ~΃ .*YZ0AjOm4qfgGYT3>o}a)s4+O~rhhD>C2N拓P~28J0I ڢ3RuVkwxP1* U^1Ӷxz$kW`Ϛq%g`fW`TYr.m; g,xjAͿ\}溿Gce'j*A{zxqT=|ҁ1vp O+c$z{?̎L;)vm讥{͎VER^.wF5AyT맗K8oQ2S<׮£vn޷c5}ڷ%:9=KQ+˶X_J4^zr^]5t̃kjRU{t>g9KGISZnDڜ,Gy7֡]szk⵩u VTA)͛fSWSS\.Wl s|U,mSq7rR=[]J*Оi}Cʋ[^ОM?|Mqfxi(p |]li^þg}~>(QA_@׶Rl5^M>ZmE[u*glS%Q }p:,i@K{c^OkxQ^3 yȁ Tk}N 3x^NlzJ2&s{ChH C>Ev%/=nnѴ;ݮhsBnOkak9>LLnz/?9ы7T4$?:` QY۴޴Ɂ^')O Ww LPܐnRRÉq,QgƧCu*\gw,MoD2Dq\;NwNܠ ;4i7#]6CKzZۊ)'uzi2׋>teL~!9;LW{Pk*ě?K<:ѯ*ӎKw>k!9]JPG7G!K)Y-iT؞Ô?Gl-c,xEz^їhM0z>@>E{z__<}Y[g؇ZdV Ay,62`~%zV@3Goi<G %ԚIJ@?i(k?ґ dWb<KaN{dYaʳ+>iKf4;}Ҥt$L7|O0;DVǥz ;ȁb!gIΫt%CLkpIyu\X 4xv-ƍ)X2\P?%7v!Ev%CO ,@D'O'3q͑^gчe_Pg1~z}yn?q=uR@zoC }@L]kDr{!˨)3ڀY0ꨅpXp1w['2,9mvo[nOӁEs so9f)ӽ%,97nm]a0W:"u)̟1ᎎM^e7,괪[9l*c$zw֓،Fz<2Grs":P\&.X8y=Nu?!^|8, ?DG($G邺%c>J?ΐ@ >>_`+p.xP(!}A|ה;W¯D,A_Œ6j hew?Ot$j1c.py6ٻ~ ‡s%E砗%)U]4ai/|h So>ROGЉy4&{х q:#dzb>}:l/W2s\k]!y/n'"=y.!"H.$H}XnXpEO|^0\lxt7L(Y1H>R(KG7l\h:/͜k dCO#pm}a!04=Wz38TִNWְ";HY__o'QY{$O=|/#8%껏&~I㋓HEf}rYg}=\X>ٸ) ci3xJӹ# -\~ IBKZ^g6t3 <"~0LPx[ ^3q½PX'Ri{pѭwAFp_?<A?k(]uq~q:J/ Qy/+_,&3z\ƈsQ0Sjs2u$_/ѷy=. Gq %4W]23F5p"8кQ-ABߥ;ԉ+]E2><A%wq{NVXuz}zdTW<ָh"Ax(cƀ+L ȴlNM=ky ˆxԶܤcpQ ͜_8^hUZH: gق~u/%eD/y d͒$<~Zz2!ʲ1[(` {PNY0qhȖνE#z v ͜oނ nx d< O=liw("$ ;?mc$z^Gz}ƱWN :kXYA9r•;zt)xL/HtZQy.'?d?ecO\YRMp^o7_~^\`ˀmցns67sx),jQ]1 ƛ\ 7|A zޯ_<A%߯$c\6[5D]2~g) ]v6Sy^|Lɸ%z!wʴeC$,LсC[+tvl:hWޔؖW9~([:FЦxoq2M}[~]D^v (L;>:uuB\%/]Рm=;cYslût\ ؐެa/X{ykW]J5[ל*]37+t g;{NL+sqHDt|w~A@}LƉπgKr4m36@fx'e 8] N)]\ I]yu>t?X3}b_ <A%OOpa9O!=Uftac,h?!ϓ·*W\Gg=ƁJ?Pdp9&@U^ :?L\\i7X:*fĂՃaM&%ޫMjqĸҝ =0tXd^?=qO-gOٽn1`tڱӂeN^w kXЕ+y޿Zfdޏ GA|h}6Ggk_+] =b2ODzBʣJtmA;Mfw+GG xEv%zӓy2&8.tӴ•">=K/Je#ڣӅQ)\?&#ۨEuaTdCۖqݱ}Ԉvl`)jԱ_(4kv 1AqSz拲s?Q$~I<YLL~^G 4WiO=mMH3Ҹ,qOx~`<A%OO%]z?xiF/QryzZEӧrڟB=aӮb%ż}P׻4)]?=|Z`<9dU%q>Gs뱮:BYimƃ=/76pk;]y`d7jRȜ4&?՝#F#Y<ؿD?x:ُ@4$1&JWmnO{G+K' I?cfgj#hgO'iOۛtt62vWEyfMKHvvk LS[4:u(aw bvn3_DL:.^sn$P:*?gp >sFUz:/K8C 􄵗M:=WGL3С=Ƹn@o8j>16Sv4=#Ӟz׼-JXćCWDr_eSzQz}/OV*>ny%/S1Im\>.ޡ~=cW彋6rڽws-W9eg%:g9W߶ZлO~ŏ]y:jcO;s|"Rk]WOIaS}S# P>PӶ_HD֡?F<ݣo4FKԗ)~^ Jj{o/n7:H4ǛӍ9Ԏ*gm|N8lKZW.p|v?eOoN:4"u7ͬfS/{JN,K6ƹOy3:~2w]Xt'OFziq r]#Ԗ{F[Q :#R ::BzS×2SB_ vGڐ2dά#t- ?7팸iHO2gjӘTO]s}2z~/00 9|&VUAtN!5|4&>@)UrJȑ:9 GHi#rDljĆFljĆFljĆ:NlĆ:NlĆ:NlhĆAlhĆAlhĆ&IlhĆ&IlhĆ&IlhZĆElhZĆElhZĆ6MlhĆ6MlhĆ6Ml:ĆCl:ĆCl:Ć.KlĆ.KlĆ.mHTVUWjTjVjUjWTV[SZmMښj5jkTV[SZmMښZ5jkjԪU[SVmMښZ5jkԫW[S^mMښz5jk4iT[ӨQmMښF5jk4iT[ӬYmMښf5jk4iV[ӬYmMI4Ufbe粳V>T>T>Ԩ>Ԭ>Ԫ>Ԯ>ԩ>ĎM8VqVXƱFcZ5k8aW]vjUaW]vjUaW]vkUaW]vkUaW]vk%s asqqQNխڲ3;Yd5N֪;Y:ܮJoVS;]5뮥ZݵTjuRZ]Kk^w-뮥zݵTuRZ]KkQw-5ꮥFݵԨuRh]Qwu4NJN5tDZ)R4khJѮS+?j{SjyVC;j|VZ-j^gZ>Y|Vz-k^gZ>kY|֨F-5jyQCZjPSö1ln}vZJ)տR{J)f;7[z}KR~Ծb[k!ﵐZH{-R^ ԿBk!ﵐZH{-R^ 4Bk!ﵐZH{-F^#h|4u4hn)ss7RyͣǮQ W^3qs+G7 l۸eo(4$egMƔ%T zy[L G^i5._?;i4}(yvAY^Wy"=5}(X%4`(k&Wsx9aP1Zpy]PpJPf0`P6Ga([ԅ?.(\ըpP6=Aٔ992x[R@DoTAi񉻅~ֳٿ^ș "A7UlJ @/2]A@VƠLcLq{V2*2U!Ilڣznl!ZBN[{kP6 llA@Suɚisڂ&ދ9f:hӞd\<I{doveR>ULʭrʮ^7ky|0=5Sz3 Δ|<(n뗙e **[9ݾ AYC`v5x1yoz ?oNHci@37!m-RodWG3 ?qpb+W1a Tt[>(/8kW08P cՊ!¨"‘GMՅQC5QKje0F=aq0W}DfApa!h(#q018V xa F8Q' 0NFa4)8U ta4XC,a-sq0FsaFKaFkaƪw?0.Eh/jGatƪ\U;݅q0.e¸\WJa!Uq0FOa¸A7 c~^q0nFoa&UEFa)XpU~s0VG >a_ˬ/ +.OTwՀC5tvp_'%nHvs_.dpQ j%TiUi7Fd'NYZ{ވ}UvAFOVQPY[áF9...ʌj`]Y(׮Uo?X1|UE 5[ kF"FcV[l wU_EιZ|. ?iQSi=^^Uy'5Du'V[ PW[y~iVkP_mzrBb߲u]?//ƚ߲7?O~XuRܿ`7ٳg_X)_kkk_S>EGuwW7<Ы*PpZIc2 UU߸ uk`O5oTZ]]3N?VYէ _}!ǩy K;M?@ jg~ѥz~鳯57a^?]R}2Ҥ +Cbbt*rxvbWWy$89/Gn!SS֊;qO@J>k]j }B_^ //4ߎ:=ʋjުm6@\>Ţ6%tPZUNn/qxy|D(= fg'}R>ۚ'd$1߈ӟG~|R"^&an˪b"n+QE6ac%:O}(Odo_U|҇_ FEQX.ua`Q Aq5zDroxΈvx2`]TolJ"So'@d#iQL⪗1 ;ww*&?9#^0|  }QsGV2 fـ>\1{\R!(-gOt;PVۨ D4QS`y7(Ӊ)Ӄѓ?tcr۟?/Ejs\^m,:-UW6edg~T]Em+V_xd?- <'(A' 4++>hx4/;jUF>C;3t@y /hnXQ@xyOW5c z8iv~LlL:7GݕLb.v9UUZm4DE}MnCFj1z֔yڷyZxPsPO{%PzJ!J L^uۃsI`4 Z` ʇ_`-rGR!gàOc._xQn:)5@=]So_ pIj@g#3,?sG=|Q΄$rUFCFZ%c<g/>~щ;*ɏwz#/Q>R{Q:ͭshȊZո  a݇)G)k`Ȇ ̪ =\.JG~ g7ܐw^Q*Ye59btkH55zeLeRx볹JC^?WOE,?'{[+})/*; 8?N'"ӷ~yWcɗpych彫"VnUO=*.rC_>*02#pIzɯ0i k|I;3bbdu$"|?]N}v#yhwzv!y>mkl>vz}->?گO6]\NgKVE?k>yڡ*q;\$sXgl9Y~=NPr'X+RÄh!4t`6,S9嘱-%cDA8-?9tpp\|Xgl9Y~}r=ݕ_~V5z#؏~},0[})P1~lՎZW9K88(2+_jr~mmF6zƿX"ECjHD_ewo&zҕ}/#b6?X}AyYk`V_Tr]y|GNu;DϤ5+TEv:c\<}Go"nq\rsr=sX~rLx"nG\.=SoXBM3ׇ %)<ퟁ@\iGx9zc}Τ\/M9rfϏӉ4s&맣>gg_c?rĆXyD@+J'1uCPkY}kwrT*h5uXE^c1|}xW}:5}h,TQ֪ӿCA_yk"XU?VU$c/Q$c\dLKcz\gK7߽ w7VFYd?5ҫ}!Ӱ?isTƁž|h,6VD<@vnn6փXػ ,\k T`\X_Se¶$e,뺐.v璓zYǯb隻} =b#Vl̊؄X)+6c؂[<+b֬؆۲b;Vlϊ ؁;b'VTdά؅b7VTb؃{b/V͊}X/+*G33>v~QdOwy_-ozI},W;{wҨ4+8Lw7`cM3@G`{IiiQ+]PQ~8OGc 4?{gOovq)+?>?F__y\;st/~id~|qzt~?{_7hsj;d+]?Ҿn?i||}c?'y?g?&b_,:7@O }[% zdmd^B6%k;씊 NdHv2dm'J1ck;bO;:KE'd񘻩Eվ,,9K]qǵ2Lu+kakl^U"}Zz@i>Eqe98 afex/tests/testthat/test-lsmeans-interface.R0000644000176200001440000000225013067717713020712 0ustar liggesusers context("interplay with lsmeans") test_that("ANOVA functions work with lsmeans", { data(sk2011.1) a1 <- aov_ez("id", "response", sk2011.1, between = "instruction", within = c("inference", "plausibility"), fun_aggregate = mean) expect_is(lsmeans(a1, ~ inference), "lsmobj") a2 <- aov_ez("id", "response", sk2011.1, between = "instruction", within = c("inference"), fun_aggregate = mean) expect_is(lsmeans(a2, ~ inference), "lsmobj") a3 <- aov_ez("id", "response", sk2011.1, within = c("inference"), fun_aggregate = mean) expect_is(lsmeans(a3, ~ inference), "lsmobj") a4 <- aov_ez("id", "response", sk2011.1, between = "instruction", fun_aggregate = mean) expect_is(lsmeans(a4, ~ instruction), "lsmobj") }) test_that("mixed works with lsmeans", { data(sk2011.1) m1 <- mixed(response ~ instruction*inference*plausibility +(1|id), sk2011.1, progress = FALSE) expect_is(lsmeans(m1, ~ inference), "lsmobj") m2 <- mixed(response ~ inference +(inference|id), sk2011.1, progress = FALSE) expect_is(lsmeans(m2, ~ inference), "lsmobj") m3 <- mixed(response ~ instruction +(inference|id), sk2011.1, progress = FALSE) expect_is(lsmeans(m3, ~ instruction), "lsmobj") }) afex/tests/testthat/test-mixed-structure.R0000644000176200001440000003750213111507500020443 0ustar liggesusers context("Mixed: structural tests") # note: all calls with type 2 are wrapped in suppressWarnings()! test_that("mixed: Maxell & Delaney (2004), Table 16.4, p. 842: Type 2", { data(md_16.4) md_16.4b <- md_16.4 md_16.4b$cog <- scale(md_16.4b$cog, scale=FALSE) contrasts(md_16.4b$cond) <- "contr.sum" mixed4_2 <- mixed(induct ~ cond*cog + (cog|room:cond), md_16.4b, type = 2, progress=FALSE, method = "nested-KR") lmer4_full <- lmer(induct ~ cond*cog + (cog|room:cond), md_16.4b) lmer4_small <- lmer(induct ~ cond+cog + (cog|room:cond), md_16.4b) expect_that(fixef(mixed4_2$full_model[[2]]), equals(fixef(lmer4_full))) expect_that(fixef(mixed4_2$full_model[[1]]), is_equivalent_to(fixef(lmer4_small))) }) test_that("mixed: Maxell & Delaney (2004), Table 16.4, p. 842: Type 3", { data(md_16.4) md_16.4b <- md_16.4 md_16.4b$cog <- scale(md_16.4b$cog, scale=FALSE) contrasts(md_16.4b$cond) <- "contr.sum" mixed4_2 <- mixed(induct ~ cond*cog + (cog|room:cond), md_16.4b, type = 3, progress=FALSE, method = "nested-KR") lmer4_full <- lmer(induct ~ cond*cog + (cog|room:cond), md_16.4b) lmer4_small <- lmer(induct ~ cond+cog + (cog|room:cond), md_16.4b) expect_that(fixef(mixed4_2$full_model), equals(fixef(lmer4_full))) expect_that(mixed4_2$full_model, is_equivalent_to(lmer4_full)) expect_that(fixef(mixed4_2$restricted_models$`cond:cog`), is_equivalent_to(fixef(lmer4_small))) }) test_that("mixed, obk.long: type 2 and LRTs", { data(obk.long, package = "afex") contrasts(obk.long$treatment) <- "contr.sum" contrasts(obk.long$phase) <- "contr.sum" t2 <- mixed(value ~ treatment*phase +(1|id), data = obk.long, method = "LRT", type = 2, progress=FALSE) expect_output(print(t2), "treatment") a2.f <- lmer(value ~ treatment*phase +(1|id), data = obk.long, REML=FALSE) a2.h <- lmer(value ~ treatment+phase +(1|id), data = obk.long, REML=FALSE) a2.t <- lmer(value ~ treatment +(1|id), data = obk.long, REML=FALSE) a2.p <- lmer(value ~ phase +(1|id), data = obk.long, REML=FALSE) extract_anova <- function(anova) unlist(anova)[c("Df1", "Chisq2", "Chi Df2", "Pr(>Chisq)2" )] expect_that( unlist(t2$anova_table[3,]) , is_equivalent_to( extract_anova(anova(a2.h, a2.f)) )) expect_that( unlist(t2$anova_table[2,]) , is_equivalent_to( extract_anova(anova(a2.t, a2.h)) )) expect_that( unlist(t2$anova_table[1,]) , is_equivalent_to( extract_anova(anova(a2.p, a2.h)) )) }) test_that("mixed, mlmRev: type 3 and 2 LRTs for GLMMs", { skip_if_not_installed("mlmRev") if (require("mlmRev")) { suppressWarnings(gm1 <- mixed(use ~ age*urban + (1 | district), family = binomial, data = Contraception, method = "LRT", progress=FALSE)) suppressWarnings(gm2 <- mixed(use ~ age*urban + (1 | district), family = binomial, data = Contraception, method = "LRT", type = 2, progress=FALSE)) expect_that(gm1, is_a("mixed")) expect_that(gm1, is_a("mixed")) } }) test_that("mixed, obk.long: LMM with method = PB", { expect_that(mixed(value ~ treatment+phase*hour +(1|id), data = obk.long, method = "PB", args_test = list(nsim = 10), progress=FALSE), is_a("mixed")) }) test_that("mixed, obk.long: multicore loads lme4 and produces the same results", { #if (packageVersion("testthat") >= "0.9") { if (FALSE) { # that never seems to run... testthat::skip_on_cran() testthat::skip_on_travis() data(obk.long, package = "afex") require(parallel) cl <- makeCluster(rep("localhost", 2)) # make cluster # 1. Obtain fits with multicore: m_mc1 <- mixed(value ~ treatment +(phase|id), data = obk.long, method = "LRT", cl = cl, control = lmerControl(optCtrl=list(maxfun = 100000)), progress=FALSE) cl_search <- clusterEvalQ(cl, search()) stopCluster(cl) m_mc2 <- mixed(value ~ treatment +(phase|id), data = obk.long, method = "LRT", control = lmerControl(optCtrl=list(maxfun = 100000)), progress=FALSE) expect_that(all(vapply(cl_search, function(x) any(grepl("^package:lme4$", x)), NA)), is_true()) expect_that(m_mc1, equals(m_mc2, check.attributes = FALSE)) } }) test_that("print(mixed) works: only 1 or 2 fixed effects with all methods", { data(obk.long, package = "afex") expect_that(print(mixed(value ~ treatment+(1|id), data = obk.long)), is_a("data.frame")) expect_that(print(mixed(value ~ treatment+phase+(1|id), data = obk.long)), is_a("data.frame")) expect_that(print(mixed(value ~ treatment+(1|id), data = obk.long, method = "LRT")), is_a("data.frame")) expect_that(print(mixed(value ~ treatment+phase+(1|id), data = obk.long, method = "LRT")), is_a("data.frame")) skip_if_not_installed("mlmRev") require("mlmRev") # for the data, see ?Contraception expect_that(print(mixed(use ~ urban + (1 | district), method = "PB", family = binomial, data = Contraception, args_test=list(nsim=2))), is_a("data.frame")) expect_that(print(mixed(use ~ urban + livch + (1 | district), method = "PB", family = binomial, data = Contraception, args_test=list(nsim=2))), is_a("data.frame")) }) # test_that("mixed, Maxell & Delaney (2004), Table 16.4, p. 842: bobyqa not fitting well", { # data(md_16.4) # # F-values and p-values are relatively off: # expect_that(mixed(induct ~ cond*cog + (cog|room:cond), md_16.4, control=lmerControl(optimizer="bobyqa")), gives_warning("better fit")) # expect_that(mixed(induct ~ cond*cog + (cog|room:cond), md_16.4, type=2, control=lmerControl(optimizer="bobyqa")), gives_warning("better fit")) # }) test_that("mixed: set.data.arg", { data(obk.long, package = "afex") suppressWarnings(m1 <- mixed(value ~ treatment*phase +(1|id), obk.long, method = "LRT", progress=FALSE)) suppressWarnings(m2 <- mixed(value ~ treatment*phase +(1|id), obk.long, method = "LRT", progress=FALSE, set.data.arg = FALSE)) expect_that(m1$full_model@call[["data"]], is_identical_to(as.name("obk.long"))) expect_that(m2$full_model@call[["data"]], is_identical_to(as.name("data"))) }) test_that("mixed: anova with multiple mixed objexts", { data("sk2011.2") data("ks2013.3") sk2_aff <- droplevels(sk2011.2[sk2011.2$what == "affirmation",]) sk_m1 <- mixed(response ~ instruction+(1|id), sk2_aff, method = "LRT", progress = FALSE) sk_m2 <- mixed(response ~ instruction+(1|id)+(1|content), sk2_aff, method = "LRT", progress = FALSE) sk_m3 <- lmer(response ~ instruction+(1|id)+(validity|content), sk2_aff, REML = FALSE) sk_m4 <- lmer(response ~ instruction+(1|id)+(validity|content), sk2_aff, REML = TRUE) t <- anova(sk_m1, sk_m2, sk_m3) xx <- anova(sk_m1$full_model, sk_m2$full_model, sk_m3, model.names = c("sk_m1", "sk_m2", "sk_m3")) expect_identical(rownames(xx), rownames(t)) expect_identical(rownames(xx), c("sk_m1", "sk_m2", "sk_m3")) expect_is(t, c("anova", "data.frame")) expect_is(anova(sk_m1, object = sk_m2, sk_m3), c("anova", "data.frame")) expect_is(anova(sk_m1, object = sk_m2, sk_m3, ks2013.3), c("anova", "data.frame")) expect_warning(anova(sk_m1, object = sk_m2, sk_m3, sk_m4), "some models fit with REML = TRUE, some not") }) context("Mixed: Expand random effects") test_that("mixed: expand_re argument, return = 'merMod'", { data("ks2013.3") m2 <- mixed(response ~ validity + (believability||id), ks2013.3, expand_re = TRUE, method = "LRT", progress=FALSE) m3 <- mixed(response ~ validity + (believability|id), ks2013.3, method = "LRT", progress=FALSE) expect_identical(length(unlist(summary(m2)$varcor)), nrow(summary(m3)$varcor$id)) expect_true(all.equal(unlist(summary(m2)$varcor), diag(summary(m3)$varcor$id), tolerance = 0.03, check.attributes = FALSE)) l2 <- mixed(response ~ validity + (believability||id), ks2013.3, expand_re = TRUE, return = "merMod") expect_is(l2, "merMod") expect_equivalent(m2$full_model, l2) l3 <- lmer_alt(response ~ validity + (believability||id), ks2013.3) l4 <- lmer_alt(response ~ validity + (believability||id), ks2013.3, control = lmerControl(optimizer = "Nelder_Mead")) expect_equivalent(l2, l3) expect_equal(l3, l4, check.attributes = FALSE) l5 <- lmer_alt(response ~ validity + (believability||id), ks2013.3, control = lmerControl(optimizer = "Nelder_Mead"), check_contrasts = TRUE) expect_equal(l2, l5, check.attributes = FALSE ) expect_identical(names(coef(l2)$id), names(coef(l5)$id)) # parameter names need to be identical (same contrasts) expect_false(all(names(coef(l2)$id) == names(coef(l3)$id))) # parameter names need to be different (different contrasts) l7 <- lmer_alt(response ~ validity + (1|id) + (0+validity*condition||content), ks2013.3, control = lmerControl(optCtrl = list(maxfun=1e6))) expect_is(l7, "merMod") expect_error(lmer_alt(response ~ validity + (0|id) + (0+validity*condition||content), ks2013.3), "Invalid random effects term") expect_is(lmer_alt(response ~ validity + (validity||id) + (validity|content), ks2013.3), "merMod") }) test_that("mixed: expand_re argument (longer)", { if (packageVersion("testthat") >= "0.9") { testthat::skip_on_cran() testthat::skip_on_travis() data("ks2013.3") m4 <- mixed(response ~ validity + (believability*validity||id) + (validity*condition|content), ks2013.3, expand_re = TRUE, method = "LRT", control = lmerControl(optCtrl = list(maxfun=1e6)), progress=FALSE) m5 <- suppressWarnings(mixed(response ~ validity + (believability*validity|id) + (validity*condition||content), ks2013.3, method = "LRT", control = lmerControl(optCtrl = list(maxfun=1e6)), expand_re = TRUE, progress=FALSE)) expect_identical(length(unlist(summary(m4)$varcor[-7])), nrow(summary(m5)$varcor$id)) expect_identical(length(unlist(summary(m5)$varcor[-1])), nrow(summary(m4)$varcor$content)) expect_equal(attr(summary(m5)$varcor, "sc"), attr(summary(m4)$varcor, "sc"), tolerance = 0.02) } }) test_that("mixed: return=data, expand_re argument, and allFit", { #if (packageVersion("testthat") >= "0.9") { #testthat::skip_on_cran() #testthat::skip_on_travis() testthat::skip_if_not_installed("optimx") require(optimx) data("ks2013.3") ks2013.3_tmp <- ks2013.3 m6 <- mixed(response ~ validity + (believability*validity||id), ks2013.3_tmp, expand_re = TRUE, method = "LRT", control = lmerControl(optCtrl = list(maxfun=1e6)), progress=FALSE, return = "merMod") m6_all_1 <- all_fit(m6, verbose = FALSE, data = ks2013.3_tmp) expect_output(print(m6_all_1$`bobyqa.`), "object 're1.believability1' not found") ks2013.3_tmp <- mixed(response ~ validity + (believability*validity||id), ks2013.3_tmp, expand_re = TRUE, method = "LRT", control = lmerControl(optCtrl = list(maxfun=1e6)), progress=FALSE, return = "data") m6_all_2 <- suppressWarnings(all_fit(m6, verbose = FALSE, data = ks2013.3_tmp)) expect_is(m6_all_2$`bobyqa.`, "merMod") expect_is(m6_all_2$`Nelder_Mead.`, "merMod") expect_is(m6_all_2$`nmkbw.`, "merMod") expect_is(m6_all_2$optimx.nlminb, "merMod") expect_is(m6_all_2$`optimx.L-BFGS-B`, "merMod") expect_is(m6_all_2$nloptwrap.NLOPT_LN_NELDERMEAD, "merMod") }) test_that("mixed: return=data works", { data("ks2013.3") ks2013.3_tmp <- ks2013.3 ks2013.3_tmp <- mixed(response ~ validity + (believability*validity||id), ks2013.3_tmp, expand_re = TRUE, method = "LRT", control = lmerControl(optCtrl = list(maxfun=1e6)), progress=FALSE, return = "data") expect_is(ks2013.3_tmp, "data.frame") if (packageVersion("testthat") >= "0.11.0.9000") expect_gt(ncol(ks2013.3_tmp), ncol(ks2013.3)) expect_output(print(colnames(ks2013.3_tmp)), "re1.believability1_by_validity1") }) test_that("mixed with all available methods", { data("sk2011.2") # see example("mixed") testthat::skip_on_travis() sk2_aff <- droplevels(sk2011.2[sk2011.2$what == "affirmation",]) for (i in c(2, 3)) { sk2_aff_kr <- mixed(response ~ instruction*type+(inference*type||id), sk2_aff, expand_re = TRUE, all_fit = FALSE, method = "KR", progress=FALSE, type = i) sk2_aff_s <- mixed(response ~ instruction*type+(inference*type||id), sk2_aff, expand_re = TRUE, all_fit = FALSE, method = "S", progress=FALSE, type = i) sk2_aff_nkr <- mixed(response ~ instruction*type+(inference*type||id), sk2_aff, progress = FALSE, type = i, expand_re = TRUE, all_fit = FALSE, method = "nested-KR") sk2_aff_lrt <- mixed(response ~ instruction*type+(inference*type||id), sk2_aff, progress = FALSE, type = i, expand_re = TRUE, all_fit = FALSE, method = "LRT") sk2_aff_pb <- mixed(response ~ instruction*type+(inference||id), sk2_aff, progress = FALSE, type = i, args_test = list(nsim = 10), expand_re = TRUE, all_fit = FALSE, method = "PB") expect_is(sk2_aff_kr, "mixed") expect_is(sk2_aff_s, "mixed") expect_is(sk2_aff_nkr, "mixed") expect_is(sk2_aff_lrt, "mixed") expect_is(sk2_aff_pb, "mixed") expect_is(anova(sk2_aff_kr), "anova") expect_is(anova(sk2_aff_s), "anova") expect_is(anova(sk2_aff_nkr), "anova") expect_is(anova(sk2_aff_lrt), "anova") expect_is(anova(sk2_aff_pb), "anova") expect_output(print(sk2_aff_kr), "Effect") expect_output(print(sk2_aff_kr), "F") expect_output(print(sk2_aff_s), "Effect") expect_output(print(sk2_aff_s), "F") expect_output(print(sk2_aff_nkr), "Effect") expect_output(print(sk2_aff_nkr), "F") expect_output(print(sk2_aff_lrt), "Effect") expect_output(print(sk2_aff_lrt), "Chisq") expect_output(print(sk2_aff_pb), "Effect") expect_output(print(sk2_aff_pb), "Chisq") } }) test_that("mixed all_fit = TRUE works with old methods", { data("sk2011.2") # see example("mixed") sk2_aff <- droplevels(sk2011.2[sk2011.2$what == "affirmation",]) sk2_aff_b <- mixed(response ~ instruction+(inference*type||id), sk2_aff, expand_re = TRUE, all_fit = TRUE, method = "nested-KR") sk2_aff_b2 <- mixed(response ~ instruction*type+(inference||id), sk2_aff, type = 2, expand_re = TRUE, all_fit = TRUE, method = "nested-KR") expect_is(sk2_aff_b, "mixed") expect_length(attr(sk2_aff_b, "all_fit_selected"), 2) expect_length(attr(sk2_aff_b, "all_fit_logLik"), 2) expect_is(sk2_aff_b2, "mixed") expect_length(attr(sk2_aff_b2, "all_fit_selected"), 5) expect_length(attr(sk2_aff_b2, "all_fit_logLik"), 5) }) test_that("mixed all_fit = TRUE works with new (KR) methods", { data("sk2011.2") # see example("mixed") sk2_aff <- droplevels(sk2011.2[sk2011.2$what == "affirmation",]) sk2_aff_b <- mixed(response ~ instruction+(inference*type||id), sk2_aff, expand_re = TRUE, all_fit = TRUE, method = "KR") sk2_aff_b2 <- mixed(response ~ instruction*type+(inference||id), sk2_aff, type = 2, expand_re = TRUE, all_fit = TRUE, method = "KR") expect_is(sk2_aff_b, "mixed") expect_named(attr(sk2_aff_b, "all_fit_selected"), "full_model") expect_false(is.null(attr(sk2_aff_b, "all_fit_logLik"))) expect_is(sk2_aff_b2, "mixed") expect_named(attr(sk2_aff_b2, "all_fit_selected"), "full_model") expect_false(is.null(attr(sk2_aff_b2, "all_fit_logLik"))) }) test_that("anova_table attributes", { data(obk.long) symbol_test <- mixed(value ~ treatment * phase + (1|id), obk.long, sig_symbols = c("", "a", "aa", "aaa"), return = "nice") expect_output(print(symbol_test), "aaa") symbol_test <- mixed(value ~ treatment * phase + (1|id), obk.long, sig_symbols = c("", "a", "aa", "aaa")) expect_output(print(symbol_test), "aaa") expect_output(print(nice(symbol_test, sig_symbols = c("", "b", "bb", "bbb"))), "bbb") new_symbols <- c(" ", " b", " bb", " bbb") symbol_test <- anova(symbol_test, sig_symbols = c(" ", " b", " bb", " bbb")) expect_identical(attr(symbol_test, "sig_symbols"), new_symbols) expect_output(print(nice(symbol_test)), "bbb") # Test support for old afex objects old_afex_object <- default_options <- mixed(value ~ treatment * phase + (1|id), obk.long) attr(old_afex_object$anova_table, "sig_symbols") <- NULL expect_that(nice(old_afex_object), is_identical_to(nice(default_options))) }) afex/tests/testthat/test-compare_2_vectors.R0000644000176200001440000000043512642234726020725 0ustar liggesusers context("compare.2.vectors: known bugs") test_that("exactly equal mean does not fail", { x <- c(0.309, 0.222, 0.293, 0.238, 0.33, 0.215) y <- c(0.313, 0.213, 0.306, 0.253, 0.294, 0.228) out <- suppressWarnings(compare.2.vectors(x, y, paired = TRUE)) expect_is(out,"list") }) afex/tests/testthat/test-aov_car-structural.R0000644000176200001440000001371613073233062021126 0ustar liggesusers context("ANOVAs: structural tests") test_that("dv is numeric", { data(obk.long) expect_that(aov_car(treatment ~ gender + Error(id/phase*hour), data = obk.long, observed = "gender"), throws_error("dv needs to be numeric.")) }) test_that("non Type 3 sums give warning", { data(obk.long) expect_that(aov_4(value ~ treatment * gender + (phase*hour|id), data = obk.long, observed = "gender", check.contrasts = FALSE), gives_warning("contrasts")) }) test_that("return='aov' works", { data(obk.long) data(md_12.1) # purely within expect_that(aov_ez("id", "rt", md_12.1, within = c("angle", "noise"), return = "aov"), is_a(c( "aovlist", "listof" ))) expect_that(aov_car(value ~ Error(id/phase*hour), data = obk.long, return = "aov"), is_a(c( "aovlist", "listof" ))) #purely between expect_that(suppressWarnings(aov_car(value ~ treatment * gender + Error(id), data = obk.long, return = "aov")), is_a(c( "aov"))) expect_that(suppressWarnings(aov_car(value~treatment * gender + Error(id/phase*hour), data = obk.long, return = "aov")), is_a(c( "aovlist", "listof" ))) # terms within Error() are within parentheses: test <- summary(aov_car(value ~ Error(id/phase*hour), data = obk.long, return = "aov")) positive <- summary(aov(value ~ phase*hour+Error(id/(phase*hour)), data = obk.long)) negative <- summary(aov(value ~ phase*hour+Error(id/phase*hour), data = obk.long)) expect_equal(test, positive) expect_false(isTRUE(all.equal(test, negative, check.attributes = FALSE))) orig1 <- aov_car(value ~ Error(id/phase*hour), data = obk.long) obk.long$id <- as.numeric(obk.long$id) obk.long$phase <- as.numeric(obk.long$phase) obk.long$hour <- as.numeric(obk.long$hour) positive2 <- summary(aov_car(value ~ Error(id/phase*hour), data = obk.long, return = "aov")) expect_equal(test, positive2) positive3 <- aov_car(value ~ Error(id/phase*hour), data = obk.long) expect_equal(summary(orig1), summary(positive3)) expect_equal(summary(orig1$Anova, multivariate = FALSE), summary(positive3$Anova, multivariate = FALSE)) expect_equal(summary(orig1$aov), summary(positive3$aov)) }) test_that("anova_table attributes", { data(md_12.1) no_attr <- aov_ez("id", "rt", md_12.1, within = c("angle", "noise"), anova_table = list(correction = "none")) expect_that(attr(no_attr$anova_table, "correction"), equals("none")) expect_that(attr(no_attr$anova_table, "p_adjust_method"), equals("none")) expect_output(print(attr(no_attr$anova_table, "observed")), "character\\(0\\)") all_attr <- suppressWarnings(aov_ez("id", "rt", md_12.1, within = c("angle", "noise"), observed = "angle", anova_table=list(correction = "HF", p_adjust_method = "bonferroni"))) expect_that(attr(all_attr$anova_table, "correction"), equals("HF")) expect_that(attr(all_attr$anova_table, "p_adjust_method"), equals("bonferroni")) expect_that(attr(all_attr$anova_table, "observed"), equals("angle")) expect_output(print(all_attr), "bonferroni") expect_output(print(all_attr), "HF") expect_false(isTRUE(all.equal(nice(no_attr), suppressWarnings(nice(all_attr)), check.attributes = FALSE))) added_attr <- suppressWarnings(nice(no_attr, correction = "HF", p_adjust_method = "bonferroni", observed = "angle")) expect_that(suppressWarnings(nice(all_attr)), is_identical_to(added_attr)) expect_that(nice(all_attr$anova_table), is_identical_to(added_attr)) reset_attr <- nice(no_attr, correction = "none", p.adjust = "none", observed = NULL) expect_that(nice(no_attr), is_identical_to(reset_attr)) expect_that(nice(no_attr$anova_table), is_identical_to(reset_attr)) intercept_test <- aov_ez("id", "rt", md_12.1, within = c("angle", "noise"), anova_table = list(intercept = TRUE)) expect_output(print(intercept_test), "(Intercept)") mse_test <- aov_ez("id", "rt", md_12.1, within = c("angle", "noise"), anova_table = list(MSE = FALSE)) expect_null(mse_test$anova_table$MSE) expect_output(print(nice(mse_test, MSE = TRUE)), "MSE") symbol_test <- aov_ez("id", "rt", md_12.1, within = c("angle", "noise"), anova_table = list(sig_symbols = c(" ", " a", " aa", " aaa")), return = "nice") expect_output(print(symbol_test), "aaa") symbol_test <- aov_ez("id", "rt", md_12.1, within = c("angle", "noise"), anova_table = list(sig_symbols = c(" ", " a", " aa", " aaa"))) expect_output(print(symbol_test), "aaa") new_symbols <- c(" ", " b", " bb", " bbb") symbol_test <- anova(symbol_test, sig_symbols = c(" ", " b", " bb", " bbb")) expect_identical(attr(symbol_test, "sig_symbols"), new_symbols) expect_output(print(nice(symbol_test)), "bbb") # Test support for old afex objects old_afex_object <- default_options <- aov_ez("id", "rt", md_12.1, within = c("angle", "noise")) attr(old_afex_object$anova_table, "observed") <- NULL attr(old_afex_object$anova_table, "correction") <- NULL attr(old_afex_object$anova_table, "p.adjust.method") <- NULL expect_that(nice(old_afex_object), is_identical_to(nice(default_options))) # Test if sphericity correction is set to "none" in the absence of within-subject factors or if within-subject factors have only two levels data(obk.long) between_anova <- suppressWarnings(aov_car(value ~ treatment * gender + Error(id), data = obk.long)) expect_that(attr(between_anova$anova_table, "correction"), equals("none")) obk.long <- droplevels(obk.long[obk.long$phase %in% c("post","pre"),]) two_level_anova <- suppressWarnings(aov_ez("id", "value", obk.long, between = c("treatment"), within = c("phase"))) expect_that(attr(two_level_anova$anova_table, "correction"), equals("none")) more_levels_anova <- aov_ez("id", "value", obk.long, between = c("treatment"), within = c("phase", "hour")) expect_that(attr(more_levels_anova$anova_table, "correction"), equals("GG")) obk.long <- droplevels(obk.long[obk.long$hour %in% c("1","2"),]) two_levels_anova <- aov_ez("id", "value", obk.long, between = c("treatment"), within = c("phase", "hour")) expect_that(attr(two_levels_anova$anova_table, "correction"), equals("none")) }) afex/tests/testthat/test-aov_car-bugs.R0000644000176200001440000002663313111507500017652 0ustar liggesusers context("ANOVAs: known bugs") test_that("regex works correctly in aov_car when also having within factors outside the Error term", { data(obk.long) expect_is(aov_car(value ~ treatment * gender*phase*hour + Error(id/phase*hour), data = obk.long), "afex_aov") }) test_that("another label bug (May 2014)", { data("sk2011.1") levels(sk2011.1$inference) <- c("A+:D-", "A+:D+", "A-:D+", "A- : D-") expect_is(aov_ez("id", "response", sk2011.1, between = "instruction", within = c("type", "inference"), return = "Anova", fun_aggregate = mean), "Anova.mlm") }) test_that("orig label bug", { data(obk.long) obk2 <- obk.long levels(obk2$phase) <- c("fup test", "post-hans", "pre tenetious") expect_is(aov_car(value ~ treatment * gender + age + Error(id/phase*hour), data = obk2, factorize=FALSE, return = "Anova"), "Anova.mlm") }) test_that("ANCOVA check bug (reported by Gang Chen), January 2013", { dat <- read.table(header=TRUE, text = "ID Group Gender ROI Value Propdd00 GAS0 MAD0 CPD0 2016 AE M 05_06 1.581 0.543 1.908 0.439999999999998 -0.5335 2016 AE M 07_08 1.521 0.543 1.908 0.439999999999998 -0.5335 2016 AE M 09_10 1.623 0.543 1.908 0.439999999999998 -0.5335 2016 AE M 03_04 1.569 0.543 1.908 0.439999999999998 -0.5335 2016 AE M 11_12 1.719 0.543 1.908 0.439999999999998 -0.5335 2016 AE M 01_02 1.509 0.543 1.908 0.439999999999998 -0.5335 2031 HC F 09_10 1.739 -0.014 0.0480000000000018 -2.347 1.9665 2031 HC F 01_02 1.763 -0.014 0.0480000000000018 -2.347 1.9665 2031 HC F 03_04 1.8 -0.014 0.0480000000000018 -2.347 1.9665 2031 HC F 11_12 1.793 -0.014 0.0480000000000018 -2.347 1.9665 2031 HC F 05_06 1.765 -0.014 0.0480000000000018 -2.347 1.9665 2031 HC F 07_08 1.654 -0.014 0.0480000000000018 -2.347 1.9665 2063 AE F 11_12 1.742 -0.027 2.348 -8.88 -0.0335000000000001 2063 AE F 01_02 1.634 -0.027 2.348 -8.88 -0.0335000000000001 2063 AE F 03_04 1.638 -0.027 2.348 -8.88 -0.0335000000000001 2063 AE F 07_08 1.604 -0.027 2.348 -8.88 -0.0335000000000001 2063 AE F 09_10 1.654 -0.027 2.348 -8.88 -0.0335000000000001 2063 AE F 05_06 1.625 -0.027 2.348 -8.88 -0.0335000000000001 2042 HC M 05_06 1.649 -0.014 2.058 -3.497 -0.8635 2042 HC M 07_08 1.565 -0.014 2.058 -3.497 -0.8635 2042 HC M 09_10 1.765 -0.014 2.058 -3.497 -0.8635 2042 HC M 03_04 1.677 -0.014 2.058 -3.497 -0.8635 2042 HC M 11_12 1.706 -0.014 2.058 -3.497 -0.8635 2042 HC M 01_02 1.618 -0.014 2.058 -3.497 -0.8635 2071 AE M 05_06 1.712 -0.317 -0.802 6.74 1.9665 2071 AE M 07_08 1.64 -0.317 -0.802 6.74 1.9665 2071 AE M 09_10 1.791 -0.317 -0.802 6.74 1.9665 2071 AE M 03_04 1.725 -0.317 -0.802 6.74 1.9665 2071 AE M 11_12 1.782 -0.317 -0.802 6.74 1.9665 2071 AE M 01_02 1.712 -0.317 -0.802 6.74 1.9665 2134 HC M 05_06 1.672 -0.014 0.347999999999999 -5.807 -2.5335 2134 HC M 07_08 1.657 -0.014 0.347999999999999 -5.807 -2.5335 2134 HC M 09_10 1.791 -0.014 0.347999999999999 -5.807 -2.5335 2134 HC M 03_04 1.633 -0.014 0.347999999999999 -5.807 -2.5335 2134 HC M 11_12 1.859 -0.014 0.347999999999999 -5.807 -2.5335 2134 HC M 01_02 1.653 -0.014 0.347999999999999 -5.807 -2.5335 2009 AE F 09_10 1.672 -0.027 1.058 3.36 11.1365 2009 AE F 03_04 1.723 -0.027 1.058 3.36 11.1365 2009 AE F 05_06 1.676 -0.027 1.058 3.36 11.1365 2009 AE F 07_08 1.622 -0.027 1.058 3.36 11.1365 2009 AE F 01_02 1.633 -0.027 1.058 3.36 11.1365 2009 AE F 11_12 1.853 -0.027 1.058 3.36 11.1365 2132 HC M 05_06 1.758 -0.014 -1.082 -2.857 -0.0335000000000001 2132 HC M 07_08 1.623 -0.014 -1.082 -2.857 -0.0335000000000001 2132 HC M 09_10 1.843 -0.014 -1.082 -2.857 -0.0335000000000001 2132 HC M 03_04 1.773 -0.014 -1.082 -2.857 -0.0335000000000001 2132 HC M 11_12 1.806 -0.014 -1.082 -2.857 -0.0335000000000001 2132 HC M 01_02 1.708 -0.014 -1.082 -2.857 -0.0335000000000001 2127 HC F 11_12 1.824 -0.014 0.628 6.223 -0.5335 2127 HC F 09_10 1.871 -0.014 0.628 6.223 -0.5335 2127 HC F 01_02 1.687 -0.014 0.628 6.223 -0.5335 2127 HC F 03_04 1.699 -0.014 0.628 6.223 -0.5335 2127 HC F 07_08 1.646 -0.014 0.628 6.223 -0.5335 2127 HC F 05_06 1.738 -0.014 0.628 6.223 -0.5335 2081 AE M 09_10 1.807 -0.027 -2.082 2.43 -1.5335 2081 AE M 11_12 1.917 -0.027 -2.082 2.43 -1.5335 2081 AE M 03_04 1.767 -0.027 -2.082 2.43 -1.5335 2081 AE M 05_06 1.776 -0.027 -2.082 2.43 -1.5335 2081 AE M 07_08 1.733 -0.027 -2.082 2.43 -1.5335 2081 AE M 01_02 1.775 -0.027 -2.082 2.43 -1.5335 2086 AE F 11_12 1.768 -0.457 -1.082 -1.76 6.9665 2086 AE F 09_10 1.769 -0.457 -1.082 -1.76 6.9665 2086 AE F 01_02 1.752 -0.457 -1.082 -1.76 6.9665 2086 AE F 03_04 1.769 -0.457 -1.082 -1.76 6.9665 2086 AE F 05_06 1.751 -0.457 -1.082 -1.76 6.9665 2086 AE F 07_08 1.728 -0.457 -1.082 -1.76 6.9665 2033 HC M 05_06 1.804 0.126 2.768 7.083 -2.2035 2033 HC M 07_08 1.784 0.126 2.768 7.083 -2.2035 2033 HC M 09_10 1.948 0.126 2.768 7.083 -2.2035 2033 HC M 03_04 1.821 0.126 2.768 7.083 -2.2035 2033 HC M 11_12 2.143 0.126 2.768 7.083 -2.2035 2033 HC M 01_02 1.824 0.126 2.768 7.083 -2.2035 2007 AE M 07_08 1.554 -0.027 0.488 -6.05 -0.5335 2007 AE M 05_06 1.643 -0.027 0.488 -6.05 -0.5335 2007 AE M 09_10 1.674 -0.027 0.488 -6.05 -0.5335 2007 AE M 03_04 1.593 -0.027 0.488 -6.05 -0.5335 2007 AE M 11_12 1.726 -0.027 0.488 -6.05 -0.5335 2007 AE M 01_02 1.517 -0.027 0.488 -6.05 -0.5335 6062 HC M 05_06 1.911 -0.014 -3.802 4.093 -3.5335 6062 HC M 07_08 1.887 -0.014 -3.802 4.093 -3.5335 6062 HC M 09_10 1.951 -0.014 -3.802 4.093 -3.5335 6062 HC M 03_04 1.798 -0.014 -3.802 4.093 -3.5335 6062 HC M 11_12 1.953 -0.014 -3.802 4.093 -3.5335 6062 HC M 01_02 1.772 -0.014 -3.802 4.093 -3.5335 2072 AE M 05_06 1.667 0.253 1.908 0.289999999999999 -1.0335 2072 AE M 07_08 1.587 0.253 1.908 0.289999999999999 -1.0335 2072 AE M 09_10 1.739 0.253 1.908 0.289999999999999 -1.0335 2072 AE M 03_04 1.638 0.253 1.908 0.289999999999999 -1.0335 2072 AE M 11_12 1.784 0.253 1.908 0.289999999999999 -1.0335 2072 AE M 01_02 1.662 0.253 1.908 0.289999999999999 -1.0335 2008 HC F 05_06 1.623 -0.014 -1.372 -2.317 2.1365 2008 HC F 07_08 1.6 -0.014 -1.372 -2.317 2.1365 2008 HC F 09_10 1.688 -0.014 -1.372 -2.317 2.1365 2008 HC F 03_04 1.624 -0.014 -1.372 -2.317 2.1365 2008 HC F 11_12 1.772 -0.014 -1.372 -2.317 2.1365 2008 HC F 01_02 1.656 -0.014 -1.372 -2.317 2.1365 2070 AE F 05_06 1.657 0.113 -1.372 -0.140000000000001 -5.5335 2070 AE F 07_08 1.579 0.113 -1.372 -0.140000000000001 -5.5335 2070 AE F 09_10 1.75 0.113 -1.372 -0.140000000000001 -5.5335 2070 AE F 03_04 1.808 0.113 -1.372 -0.140000000000001 -5.5335 2070 AE F 11_12 1.777 0.113 -1.372 -0.140000000000001 -5.5335 2070 AE F 01_02 1.702 0.113 -1.372 -0.140000000000001 -5.5335 2064 AE F 11_12 1.781 -0.027 -5.512 3.57 -3.5335 2064 AE F 09_10 1.724 -0.027 -5.512 3.57 -3.5335 2064 AE F 01_02 1.631 -0.027 -5.512 3.57 -3.5335 2064 AE F 03_04 1.607 -0.027 -5.512 3.57 -3.5335 2064 AE F 05_06 1.577 -0.027 -5.512 3.57 -3.5335 2064 AE F 07_08 1.546 -0.027 -5.512 3.57 -3.5335 2039 HC M 09_10 1.879 -0.014 2.628 -1.867 -5.5335 2039 HC M 11_12 1.918 -0.014 2.628 -1.867 -5.5335 2039 HC M 03_04 1.794 -0.014 2.628 -1.867 -5.5335 2039 HC M 05_06 1.787 -0.014 2.628 -1.867 -5.5335 2039 HC M 07_08 1.687 -0.014 2.628 -1.867 -5.5335 2039 HC M 01_02 1.774 -0.014 2.628 -1.867 -5.5335 2117 HC F 09_10 1.712 -0.014 0.917999999999999 1.293 3.7965 2117 HC F 11_12 1.75 -0.014 0.917999999999999 1.293 3.7965 2117 HC F 03_04 1.717 -0.014 0.917999999999999 1.293 3.7965 2117 HC F 07_08 1.587 -0.014 0.917999999999999 1.293 3.7965 2117 HC F 05_06 1.667 -0.014 0.917999999999999 1.293 3.7965 2117 HC F 01_02 1.663 -0.014 0.917999999999999 1.293 3.7965 ") dat$ID <- as.factor(dat$ID) fm <- aov_car(Value ~ Propdd00 + Group + Gender + GAS0 + MAD0 + CPD0 + Error(ID/ROI), data=dat, factorize=FALSE, return = "Anova") fm0 <- aov_car(Value ~ MAD0 + CPD0 + Error(ID/ROI), data=dat, factorize=FALSE, return='afex_aov') expect_is(fm, "Anova.mlm") expect_is(fm0, "afex_aov") }) test_that("ANOVA: ids in multiple between.subjects conditions", { species<- c("a","b","c","c","b","c","b","b","a","b","c","c","a","a","b","b","a","a","b","c") habitat<- c("x","x","x","y","y","y","x","x","y","z","y","y","z","z","x","x","y","y","z","z") mvt.rate<-c(6,5,7,8,9,4,3,5,6,9,3,6,6,7,8,9,5,6,7,8) ind<-as.factor(c(1,2,3,4,1,2,3,4,1,2,3,4,1,2,3,4,1,2,3,4)) data1<-data.frame(species, habitat, mvt.rate, ind) # should give an error expect_error(aov_ez("ind", "mvt.rate", data1, within = "habitat", between = "species"), "Following ids are in more than one between subjects condition:") }) test_that("empty factors are not causing aov.cat to choke", { data(sleepstudy) #Example data in lme4 sleepstudy$Days<-factor(sleepstudy$Days) #Works with all factors expect_is(aov_ez("Subject","Reaction",sleepstudy, within="Days", return = "Anova"), "Anova.mlm") #If you remove a factor it fails... expect_is(aov_ez("Subject","Reaction",sleepstudy[sleepstudy$Days!=9,], within="Days", return = "Anova"), "Anova.mlm") }) test_that("factors have more than one level", { data(obk.long) expect_error(aov_car(value ~ treatment+ Error(id/phase), data = obk.long[ obk.long$treatment == "control",]), "one level only.") expect_error(aov_car(value ~ treatment+ Error(id/phase), data = obk.long[ obk.long$phase == "pre",]), "one level only.") }) test_that("variable names longer", { data(obk.long) obk.long$gender2 <- obk.long$treatment orig <- aov_car(value ~ treatment * gender + age + Error(id/phase*hour), data = obk.long, factorize=FALSE, observed = "gender") v1 <- aov_car(value ~ gender2 * gender + age + Error(id/phase*hour), data = obk.long, factorize=FALSE, observed = "gender") v2 <- aov_car(value ~ gender2 * gender + age + Error(id/phase*hour), data = obk.long, factorize=FALSE, observed = "gender2") expect_equivalent(orig$anova_table, v1$anova_table) expect_identical(nice(orig)[,-1], nice(v1)[,-1]) expect_identical(nice(orig)[,c("df", "MSE", "F", "p.value")], nice(v2)[,c("df", "MSE", "F", "p.value")]) expect_equivalent(orig$anova_table[,c("num Df", "den Df", "MSE", "F", "Pr(>F)")], v2$anova_table[c("num Df", "den Df", "MSE", "F", "Pr(>F)")]) }) test_that("works with dplyr data.frames (see https://github.com/singmann/afex/issues/6):", { if (getRversion() >= "3.1.2") { require(dplyr) data(md_12.1) md2 <- tbl_df(md_12.1) expect_is(aov_ez("id", "rt", md2, within = c("angle", "noise"), anova_table=list(correction = "none", es = "none")), "afex_aov") } }) test_that("return='nice' works", { data(md_12.1) expect_is(aov_ez("id", "rt", md_12.1, within = c("angle", "noise"), return = "nice"), "data.frame") }) test_that("aov_car works with column names containing spaces: https://github.com/singmann/afex/issues/22", { data <- list("dependent" = rnorm(100), "RM Factor 1" = factor(rep(c("Level 1", "Level 2"), 50)), "subject" = factor(rep(1:50, each = 2))) attr(data, 'row.names') <- seq_len(length(data[[1]])) attr(data, 'class') <- 'data.frame' expect_is(aov_car(dependent ~ `RM Factor 1` + Error(subject/(`RM Factor 1`)), data), "afex_aov") expect_is(aov_4(dependent ~ `RM Factor 1` + (`RM Factor 1`|subject), data), "afex_aov") expect_is(aov_ez("subject", "dependent", data, within = "RM Factor 1"), "afex_aov") }) test_that("aov_ez works with multiple covariates", { skip_if_not_installed("psych") require(psych) data(msq) msq2 <- msq[!is.na(msq$Extraversion),] msq2 <- droplevels(msq2[msq2$ID != "18",]) msq2$TOD <- msq2$TOD-mean(msq2$TOD) msq2$MSQ_Time <- msq2$MSQ_Time-mean(msq2$MSQ_Time) msq2$condition <- msq2$condition-mean(msq2$condition) # that is somewhat stupid expect_is(aov_ez(data=msq2, dv="Extraversion", id = "ID", between = "condition", covariate=c("TOD", "MSQ_Time"), factorize=FALSE, fun_aggregate = mean), "afex_aov") })afex/tests/testthat/test-mixed-mw.R0000644000176200001440000000543113061013265017026 0ustar liggesusers context("Mixed LMMs: replicating Maxwell & Delaney (2004)") test_that("mixed: Maxell & Delaney (2004), Table 16.3, p. 837", { ### replicate results from Table 16.3 (Maxwell & Delaney, 2004, p. 837) data(md_16.1) # original results need treatment contrasts: mixed1_orig <- mixed(severity ~ sex + (1|id), md_16.1, check_contrasts=FALSE, progress=FALSE) expect_that(fixef(mixed1_orig$full_model), is_equivalent_to(c(60, -14))) expect_that(round(anova(mixed1_orig)[1,"F"],2), equals(9.97)) expect_that(round(anova(mixed1_orig)[1,"Pr(>F)"],2), equals(0.03)) }) test_that("mixed: Maxell & Delaney (2004), Table 16.6, p. 845", { data(md_16.4) skip_if_not_installed("Matrix") md_16.4b <- within(md_16.4, cond <- C(cond, contr.treatment, base = 2)) mixed2_orig <- mixed(induct ~ cond + (1|room:cond), md_16.4b, check_contrasts=FALSE, progress=FALSE) expect_that(round(fixef(mixed2_orig$full_model), 4), is_equivalent_to(c(35.6261, -8.1485))) expect_that(round(sqrt(Matrix::diag(vcov(mixed2_orig$full_model))), 3), equals(c(3.229, 4.548))) expect_that(round(mixed2_orig[[1]]$F, 1), equals(3.2)) }) test_that("mixed: Maxell & Delaney (2004), Table 16.7, p. 851 (uses simple F!)", { data(md_16.4) skip_if_not_installed("Matrix") md_16.4b <- within(md_16.4, cond <- C(cond, contr.treatment, base = 2)) ### replicate results from Table 16.7 (Maxwell & Delaney, 2004, p. 851) # F-values (almost) hold, p-values (especially for skill) are off # however, parameters are perfectly recovered when using the original contrasts: mixed3_orig <- mixed(induct ~ cond + skill + (1|room:cond), md_16.4b, check_contrasts=FALSE, progress=FALSE) expect_that(round(fixef(mixed3_orig$full_model), 2), is_equivalent_to(c(20.25, -7.57, 2.31))) expect_that(round(sqrt(Matrix::diag(vcov(mixed3_orig$full_model))), 2), equals(c(5.82, 2.72, 0.81))) expect_that(round(mixed3_orig[[1]]$F), equals(c(8, 8))) #mixed3_F_simple <- mixed(induct ~ cond + skill + (1|room:cond), md_16.4b, check_contrasts=FALSE, progress=FALSE, method = "F") #expect_that(round(fixef(mixed3_F_simple$full_model), 2), is_equivalent_to(c(20.25, -7.57, 2.31))) #expect_that(round(sqrt(diag(vcov(mixed3_F_simple$full_model))), 2), equals(c(5.82, 2.72, 0.81))) #expect_that(round(mixed3_F_simple[[1]]$F, 1), equals(c(7.8, 8.2))) }) test_that("mixed: Maxell & Delaney (2004), Table 16.10, p. 862 (does not replicate the table!)", { data(md_16.4) md_16.4b <- within(md_16.4, cond <- C(cond, contr.treatment, base = 2)) #note: the values in this test should not replicate the table... md_16.4b$cog <- scale(md_16.4b$cog, scale=FALSE) mixed4 <- mixed(induct ~ cond*cog + (cog|room:cond), md_16.4b, progress=FALSE, check_contrasts=FALSE) expect_that(round(fixef(mixed4$full_model), 2), is_equivalent_to(c(36.1, -9.07, 0.64, 0.03))) }) afex/tests/testthat/test-lmerTest-support.R0000644000176200001440000000204213060231206020577 0ustar liggesusers context("interplay with lmerTest") test_that("mixed allows both lme4 and lmerText calls and exports lmerTest::lmer", { aop <- afex_options() data(sk2011.1) m1 <- mixed(response ~ instruction*inference*plausibility +(1|id), sk2011.1, progress = FALSE, return = "merMod") m1b <- lmer(response ~ instruction*inference*plausibility +(1|id), sk2011.1) expect_true(inherits(m1, "merModLmerTest")) expect_is(m1, "merMod") expect_true(inherits(m1b, "merModLmerTest")) afex_options(lmer_function = "lme4") m2 <- mixed(response ~ instruction*inference*plausibility +(1|id), sk2011.1, progress = FALSE, return = "merMod") expect_false(inherits(m2, "merModLmerTest")) expect_is(m2, "merMod") afex_options(aop) expect_true("Pr(>F)" %in% colnames(lmerTest::anova(m1))) expect_false("Pr(>F)" %in% colnames(anova(m1))) expect_true("Pr(>F)" %in% colnames(lmerTest::anova(m1b))) expect_false("Pr(>F)" %in% colnames(anova(m1b))) expect_false("Pr(>F)" %in% colnames(anova(m2))) expect_false("Pr(>F)" %in% colnames(lmerTest::anova(m2))) }) afex/tests/testthat/test-aov_car-basic.R0000644000176200001440000002003613071744203017772 0ustar liggesusers context("ANOVAs: replicating published results") test_that("purely within ANOVA, return='univ': Maxell & Delaney (2004), Table 12.5 and 12.6, p. 578", { ### replicate results from Table 12.6 data(md_12.1) # valus from table: f <- c(40.72, 33.77, 45.31) ss_num <- c(289920, 285660, 105120) ss_error <- c(64080, 76140, 20880) num_df <- c(2, 1, 2) den_df <- c(18, 9, 18) md_ez_r <- aov_ez("id", "rt", md_12.1, within = c("angle", "noise")) md_car_r <- aov_car(rt ~ 1 + Error(id/angle*noise), md_12.1) md_aov_4_r <- aov_4(rt ~ 1 + (angle*noise|id), md_12.1) expect_that(md_ez_r, is_equivalent_to(md_car_r)) expect_that(md_ez_r, is_equivalent_to(md_aov_4_r)) expect_that(round(md_ez_r$anova_table[,"F"], 2), is_equivalent_to(f)) expect_that(suppressWarnings(summary(md_ez_r$Anova)$univariate.tests[,"SS"][-1]), is_equivalent_to(ss_num)) expect_that(suppressWarnings(summary(md_ez_r$Anova)$univariate.tests[,"Error SS"])[-1], is_equivalent_to(ss_error)) expect_that(anova(md_ez_r, correction = "none")[,"num Df"], is_equivalent_to(num_df)) expect_that(anova(md_ez_r, correction = "none")[,"den Df"], is_equivalent_to(den_df)) }) test_that("Analysis of Singmann & Klauer (2011, Exp. 1)", { data(sk2011.1, package = "afex") out1 <- aov_ez("id", "response", sk2011.1[ sk2011.1$what == "affirmation",], within = c("inference", "type"), between = "instruction", anova_table=(es = "pes"), fun_aggregate = mean, return = "afex_aov") df_num <- rep(1, 7) df_den <- rep(38, 7) MSE <- c(1072.42, 1007.21, 1007.21, 187.9, 187.9, 498.48, 498.48) F <- c(0.13, 13.01, 12.44, 0.06, 3.09, 29.62, 10.73) pes <- c(0, 0.26, 0.25, 0, 0.08, 0.44, 0.22) p <- c(0.72, 0.0009, 0.001, 0.81, 0.09, 0.001, 0.002) expect_that(out1$anova_table[["num Df"]], is_equivalent_to(df_num)) expect_that(out1$anova_table[["den Df"]], is_equivalent_to(df_den)) expect_that(out1$anova_table[["MSE"]], equals(MSE, tolerance = 0.001)) expect_that(out1$anova_table[["F"]], equals(F, tolerance = 0.001)) expect_that(out1$anova_table[["pes"]], equals(pes, tolerance = 0.02)) expect_that(out1$anova_table[["Pr(>F)"]], equals(p, tolerance = 0.01)) }) test_that("Data from O'Brien & Kaiser replicates their paper (p. 328, Table 8, column 'average'", { data(obk.long, package = "afex") out1 <- aov_car(value ~ treatment * gender + Error(id/(phase*hour)), data = obk.long, observed = "gender", return = "afex_aov", anova_table = list(correction = "none")) expect_that(unname(unlist(out1[["anova_table"]]["treatment", c("num Df", "den Df", "F")])), equals(c(2, 10, 3.94), tolerance = 0.001)) expect_that(unname(unlist(out1[["anova_table"]]["gender", c("num Df", "den Df", "F")])), equals(c(1, 10, 3.66), tolerance = 0.001)) expect_that(round(unname(unlist(out1[["anova_table"]]["treatment:gender", c("num Df", "den Df", "F")])), 2), equals(c(2, 10, 2.86), tolerance = 0.001)) ## check against own results: anova_tab <- structure(list(`num Df` = c(2, 1, 2, 2, 4, 2, 4, 4, 8, 4, 8, 8, 16, 8, 16), `den Df` = c(10, 10, 10, 20, 20, 20, 20, 40, 40, 40, 40, 80, 80, 80, 80), MSE = c(22.8055555555555, 22.8055555555555, 22.8055555555555, 4.01388888888889, 4.01388888888889, 4.01388888888889, 4.01388888888889, 1.5625, 1.5625, 1.5625, 1.5625, 1.20208333333333, 1.20208333333333, 1.20208333333333, 1.20208333333333), F = c(3.940494501098, 3.65912050065102, 2.85547267441343, 16.1329196993199, 4.85098375975551, 0.282782484190432, 0.636602429722426, 16.6856704980843, 0.0933333333333336, 0.450268199233716, 0.620437956204379, 1.17990398215104, 0.345292160558641, 0.931293452060798, 0.735935938468544), ges = c(0.198248507309966, 0.114806410630587, 0.179183259116394, 0.151232705544895, 0.0967823866181358, 0.00312317714869712, 0.0140618480455475, 0.12547183572154, 0.00160250371109459, 0.0038716854273722, 0.010669821220833, 0.0153706689696344, 0.00905399063368842, 0.012321395080303, 0.0194734697889242), `Pr(>F)` = c(0.0547069269265198, 0.0848002538616402, 0.104469234023772, 6.73163655770545e-05, 0.00672273209545241, 0.756647338927411, 0.642369488905348, 4.02664339633774e-08, 0.999244623719389, 0.771559070589063, 0.755484449904079, 0.32158661418337, 0.990124565656718, 0.495611922963992, 0.749561639456282)), .Names = c("num Df", "den Df", "MSE", "F", "ges", "Pr(>F)"), heading = c("Anova Table (Type 3 tests)\n", "Response: value"), row.names = c("treatment", "gender", "treatment:gender", "phase", "treatment:phase", "gender:phase", "treatment:gender:phase", "hour", "treatment:hour", "gender:hour", "treatment:gender:hour", "phase:hour", "treatment:phase:hour", "gender:phase:hour", "treatment:gender:phase:hour" ), class = c("data.frame")) expect_equal(out1[["anova_table"]], anova_tab, check.attributes = FALSE) }) test_that("Data from O'Brien & Kaiser adjusted for familywise error rate (p. 328, Table 8, column 'average'", { data(obk.long, package = "afex") out1 <- aov_car(value ~ treatment * gender + Error(id/(phase*hour)), data = obk.long, observed = "gender", return = "afex_aov", anova_table = list(correction = "none", p_adjust_method = "bonferroni")) expect_that(unname(unlist(out1[["anova_table"]]["treatment", c("num Df", "den Df", "F")])), equals(c(2, 10, 3.94), tolerance = 0.001)) expect_that(unname(unlist(out1[["anova_table"]]["gender", c("num Df", "den Df", "F")])), equals(c(1, 10, 3.66), tolerance = 0.001)) expect_that(round(unname(unlist(out1[["anova_table"]]["treatment:gender", c("num Df", "den Df", "F")])), 2), equals(c(2, 10, 2.86), tolerance = 0.001)) ## check against own results: anova_tab <- structure(list(`num Df` = c(2, 1, 2, 2, 4, 2, 4, 4, 8, 4, 8, 8, 16, 8, 16), `den Df` = c(10, 10, 10, 20, 20, 20, 20, 40, 40, 40, 40, 80, 80, 80, 80), MSE = c(22.8055555555555, 22.8055555555555, 22.8055555555555, 4.01388888888889, 4.01388888888889, 4.01388888888889, 4.01388888888889, 1.5625, 1.5625, 1.5625, 1.5625, 1.20208333333333, 1.20208333333333, 1.20208333333333, 1.20208333333333), F = c(3.940494501098, 3.65912050065102, 2.85547267441343, 16.1329196993199, 4.85098375975551, 0.282782484190432, 0.636602429722426, 16.6856704980843, 0.0933333333333336, 0.450268199233716, 0.620437956204379, 1.17990398215104, 0.345292160558641, 0.931293452060798, 0.735935938468544), ges = c(0.198248507309966, 0.114806410630587, 0.179183259116394, 0.151232705544895, 0.0967823866181358, 0.00312317714869712, 0.0140618480455475, 0.12547183572154, 0.00160250371109459, 0.0038716854273722, 0.010669821220833, 0.0153706689696344, 0.00905399063368842, 0.012321395080303, 0.0194734697889242), `Pr(>F)` = c(0.0547069269265198, 0.0848002538616402, 0.104469234023772, 6.73163655770545e-05, 0.00672273209545241, 0.756647338927411, 0.642369488905348, 4.02664339633774e-08, 0.999244623719389, 0.771559070589063, 0.755484449904079, 0.32158661418337, 0.990124565656718, 0.495611922963992, 0.749561639456282)), .Names = c("num Df", "den Df", "MSE", "F", "ges", "Pr(>F)"), heading = c("Anova Table (Type 3 tests)\n", "Response: value"), row.names = c("treatment", "gender", "treatment:gender", "phase", "treatment:phase", "gender:phase", "treatment:gender:phase", "hour", "treatment:hour", "gender:hour", "treatment:gender:hour", "phase:hour", "treatment:phase:hour", "gender:phase:hour", "treatment:gender:phase:hour" ), class = c("data.frame")) anova_tab$`Pr(>F)` <- p.adjust(anova_tab$`Pr(>F)`, method = "bonferroni") expect_equal(out1[["anova_table"]], anova_tab, check.attributes = FALSE) }) test_that("afex_aov printing", { data(sk2011.1, package = "afex") out_new <- aov_ez("id", "response", sk2011.1[ sk2011.1$what == "affirmation",], within = c("inference", "type"), between = "instruction", anova_table=(es = "pes"), fun_aggregate = mean, return = "afex_aov") expect_output(print(out_new), "Signif. codes") expect_output(print(anova(out_new)), "Signif. codes") expect_output(print(nice(out_new)), "Anova") load("afex_aov_16_1.rda") expect_output(print(out1), "Anova") expect_output(print(anova(out1)), "Signif. codes") expect_output(print(nice(out1)), "Anova") }) afex/tests/testthat/test-afex_aov.R0000644000176200001440000000532013055557465017106 0ustar liggesusers context("ANOVAs: check that afex_aov return value works") test_that("split-plot produces an afex_aov object without error", { data(obk.long, package = "afex") split_plot1 <- aov_car(value ~ treatment * gender + Error(id/(phase*hour)), data = obk.long, observed = "gender", return = "afex_aov") split_plot2 <- aov_4(value ~ treatment * gender + (phase*hour|id), data = obk.long, observed = "gender", return = "afex_aov") split_plot3 <- aov_ez("id", "value", obk.long, between = c("treatment", "gender"), within = c("phase", "hour"), observed = "gender", return = "afex_aov") expect_that(split_plot1, is_equivalent_to(split_plot2)) expect_that(split_plot1, is_equivalent_to(split_plot3)) expect_that(split_plot1, is_a("afex_aov")) ## is same with numeric factor: obk.long$hour <- as.numeric(as.character(obk.long$hour)) split_plot4 <- aov_car(value ~ treatment * gender + Error(id/phase*hour), data = obk.long,observed = c("gender"), return = "afex_aov") expect_that(split_plot1, is_equivalent_to(split_plot4)) }) test_that("purely-between produces afex_aov objects without error", { data(obk.long, package = "afex") out1 <- aov_car(value ~ treatment * gender + Error(id), data = obk.long, observed = "gender", return = "afex_aov", fun_aggregate = mean) out2 <- aov_4(value ~ treatment * gender + (1|id), data = obk.long, observed = "gender", return = "afex_aov", fun_aggregate = mean) out3 <- aov_ez("id", "value", obk.long, between = c("treatment", "gender"), observed = "gender", return = "afex_aov", fun_aggregate = mean) expect_that(out1, is_equivalent_to(out2)) expect_that(out1, is_equivalent_to(out3)) expect_that(out1, is_a("afex_aov")) }) test_that("purely-within produces afex_aov objects without error", { data(obk.long, package = "afex") out1 <- aov_car(value ~ Error(id/(phase*hour)), data = obk.long, return = "afex_aov") out2 <- aov_4(value ~ 1 + (phase*hour|id), data = obk.long, return = "afex_aov") out3 <- aov_ez("id", "value", obk.long, within = c("phase", "hour"), return = "afex_aov") expect_that(out1, is_equivalent_to(out2)) expect_that(out1, is_equivalent_to(out3)) expect_that(out1, is_a("afex_aov")) }) test_that("afex_aov object contains the right things", { data(obk.long, package = "afex") out1 <- aov_car(value ~ treatment * gender + Error(id/(phase*hour)), data = obk.long, observed = "gender", return = "afex_aov") expect_that(out1[["anova_table"]], is_a(c("anova", "data.frame"))) expect_that(out1[["aov"]], is_a(c("aovlist", "listof"))) expect_that(out1[["Anova"]], is_a(c("Anova.mlm"))) expect_that(out1[["lm"]], is_a(c("mlm", "lm"))) expect_that(out1[["data"]], is_a(c("list"))) expect_that(attr(out1, "dv"), is_a(c("character"))) }) afex/tests/testthat/mixed_with_dot.rda0000644000176200001440000147151013055625310017707 0ustar liggesusers}پvW|. EJ+Fw:[A'% 4H}BG D RH! =Wﻣ]Iw>f;;yl jP($E e'¡)G*7}+fX̎^r))2'r ̬Gn6+[Qw/uv._9\Ee拕jy/t^f',ןf/wols.۟/nrq\|u?Wl_X1kjRtϭ\/*Cb%8N?.>7(焟ҳ(^9_=/; ep#K¹Cre|kSs$\%YDWbAB,x{U ,vyn޴|_`Ֆl1j\eR8<+&|۔+ٖGSJ7d0+@%We1Ty~\~jv[*!`Uֳb*]5LAպ.h @(&],ʹb_.wīd<[ŭ \MbD9eTr|hwJp wT ΡJ.^0CeBX:Aـxs}HAmB!1mK8DT|qm`x7sb</,l?-#>7׵k~|k> 7ijCCGuu GBDUspnΏoT9[,@*+%H̹|bŵ*l5^:kƻMU5 ylaD*d|tVԖ*,v9Jv3TL&)"r:9lRz\VYB&rG$zBrqTܦ\1WV-JfdҗBپ!gfPXN X+7 J*ep{yc#=v'A 7ʠRU䦂F%xyE)^nyKP~YHۜ-nIcOXWz|.Z Hpf;.vF]1d'{#5Vp(V;1Uk~6WT0E QIG4-I\nKHÅ SEd|Ov;ś"\|͇+U\&('IjO'ǽ#MREg>g iW^y|lcf\4Y X}9f~{dՔ!-{5'^АkLJ+0 !`n(W"うMݽsԹaz-WaV6B7Rpl_O$/0rDևʹl5;S)1&󡪟T˙kT* !4:v:Xgoe&>n%gu9(B՚~+}Sjx|M)NzpWetf`o_h>D5J}¿[k{@G[+I43^>lyVc#k?VYX,^x=MsoѺ7f{'YJ >a%7/MJ1dU+Xfd+]p%_.s=cU,iZDBknYݜe?YF{ -.w}-Cry[#S&%=y-0 Wr*ڝMf_<]tIXġ&SҖF1"1:gh}29WPYvo&4yK߼p[MN\3 u_4L*^SUZYQܚX FZ=[~P޸ƙF5ԤwOsǴoOiMAQKm hoAƳ2u\WO!_e.*{7d Z!EM6 zu>|+˗4 Q.]'OuF^BVINrCCso)6\HFD2I+}R+z;2.}MewȗE](Άf_uj%򚑐U2o m]օخ4VrճGX&.z'o@4QdEP9`ϲP!wg{%nd}O [jžurGӒO)С[ |04XA+W2P1; EWψH9, Fj4mT2B>AOiL(:0,ԧagK xTw5T'\\ք6?퀓{=>hjy2rB6ʸí*#-O$ ֍$mLBa{՗ۆH5/FF=m@tQ՗|$~eUv#ko\K\1)P#~-鬏'}$K_ ^dK>LLDWS] #SWhwro6VF} 7;s7!qNRR\ޖ>Ò6ȕ4QF;LZuyH+r5ns7mfE)B:Sw>=[*5cwc cZQ"!>z:ۉ;2$߬h g|3AO ߟϵ$@JP!ohg܍;yVK~(˒Q@ƙH뎾:;.͞K0oWح ؋uj?>w5qORB7B8NlV[7lG}6l od;+|:X!#%,+~XjTZ7t&Cڍi9Q,&oOi!>`vk5b9Y$O+oFZ .mf!|kkt$G*h%?8TT@!Oж޹Ζ)䭭;̰hg:%Vl投Q~|Pl<6܍#@6mZp[ϵVᶬQp>;qni)4fnt 8!פox ~bBB-hL5.뻢F r}RZnu I3ӺFKZxgj͸n\hS1*Ln '^f! Y(aK%t?H6I.S N N= "d!C jֈ*Q:}xd ʕhYsl:#s9RB]&ߕr.YjK3q8_\|.+;9klL V1 JtaضA7U G8Z>N382 dyQg|}b.ܙg^1:.5;֫UR]}D.A|͢ߔVX'T;z5"V`6؃(9|Yza9T^͙sbkwR?&79'<> ڰљĦD% 何4 Μ2> |7q~+\5Ǹ/khH{GcBStύfu![K!}m@ bܕ}>$bkl9+?e/Ze 9nA/iL4GGA`MN{~grgCT}xCޖidɸ{ %FYC/i6Jyoo Xhh VX^bn?ȅmͤ~ʋ 1G#>I Wrݭ^8yz4TSۧ-ǫ}N/yAQZf3Ė=eTX)~O JWФp`A|R=- fiЮd,pTQMlQ۹&=eW:Y]\_ؗ/XMN7:Cr5{BNxx|Ҷ|* ηhV\_ͨw{ 9Ol@ ]2[u 5WlMŽ|HɊ_ZbɁu}eb}*RBpٻe"4GNC)N_+pVix}f/{.Ԋmgr4Y)?|A$վPMk(s#\ENS&%D[gy'|N[N_xOoA $_ B?a;m'՛5|kzU]wj{g}0s {AWβicѠV7Rm)X(4->t?}n` r8MَMݜ)+hu4yّ66N=e96oKg&Efߋ} GPj8\uBJVɤwKqOJ2ͻ}$yˇ1a9}lW7e^;\.shy9e8o~zx.(j>]i {e*I֘Kl@_;L@yP!~ ?пȹs8hͷ޿i I 6zT*z."R$8)s7hY4%1?ꃀX<Ë8Uǘ"~smCݦ`E;1.{'JZ e+UgJWZ92z{BW*C4ti&zt>PS*-e %͞e=)Cw&T}r;eeʻ=Q+kŃNqkzC:Δ*?i z /L?!Ґ(yu(5kH"ߌn2 rV*v-g#v9Yfh_aݽn?wD5fL>1 X2纵Q!cUrlvk`[9 &|zhɽIH2soau$hMLɜ 2.&3)g1 {xdT.d'd !B>Ǜ&tOOZAf i"iEd۟rdP(P ԡ7&qA'W !Sѓ[Bib"dĄd{LVV'0P!-BZ&@Z(Ǥ+<QRKI""DdDe~#&r㴵=\ShJii@pL =Mh<x\$PfdJt [UgҊ@!)/5E;'Sg/6Ƽ->H$Z5~/E B%ѧ0oUiXxL 6)= Oۼ5i|Ag9d%.[Xɶ{)t)˭lcu#<ӒVE:vo484lW1\3% ̋pkc6olwLbaGz`*>rTe^gsr_^m\ѐWw ԛm}fěQrJnu=:A٣HטRuL{:>RWͺB~]M}[bC*kX}dX8t%ӟ15scۘqcΞ0 ]b+3喘Sg.*iI׮?y~wJ#&{Ԍ`cyn ;<{|jE&@݃&0A{z 0&: &-Wj$"8/|u?WUBCA-E`1e F1M.8o48-i-ZG&AtUmr@ŪL>v㱪BpL=EB|G S}g7N+&x*EȋcҗFIJ.[<ɅM!* *1 {4J'1I!+1P-.rɾM嗯xI3v)bs,_䨯dN+/˾\~ٷt f_* g_G #݄&p a= gjl=J3*: $is%?C*͞ҕhNDeߍh6uR9T_L[6gRt 7Ӗ.$(B_Um2ԶM~ة2/׋/8#Q:h|[8%XF T I{ 虹gJUmmKWhл>&P<"kdlj{ wϱLBgN"ۙ,ɟQCÛbQi=_/wWa&xK[hImW8j@QIOGm?='&rxbvs!)6ʟ?مI!$!$ ~c =EH<"2xpU&x*DȉcҔF) .hIwE-*z"pO\h+ދ)^{b]-ecb *D/낊M/тE8˳ʈLK7oL"BG<;#^+D8ID)ӽ(vm͖+,QŮl^ہsxƤb~$9Kp[T?)6$-nnzi{2->M#qvrqgcqDCrغL=q+Vf ]6Dڷ%XYIM'GQ}#:C>c|?)v9/m!BまM,) YjN>M$%rz iOrD/_ HzH<J)|#^)GU pi'粀@))Z}^ο|fi8Kۤ5-2\o9{ ꘸-r:\.YR+\:gϗs[e` G̷؆^ǂ К9GÎ=&N9@ :4GS m)b*gv,T9_]b w)Z͖7媻IU3xyk8bS iiWrd>bc2 `Cm um 2F^-ֶ͵P NINz qV;0K;F8('y@|HZ &{/S1.ݷ@5gq6;\:*.cDfɥꕭ}*YEY/ri`*äh\V΋NTݑmo}h ՛ډ#WYm )ʗ^rXhycl=/(tJ]z5h +q}IoklKܑ.g {h͌шcxyԌokFEΡs8kw@Xbo[Bι<`)wh:{T>uC]_ݶ|Eg4x{CNeocoKcQ-,79[f_LDP*uBhAjx Y%+ܷ2Ir.gpUc[&je­xyJW47"NWqOy7؉Yv&zpAZ<&U>K ડ! M=~KGf|n=퍅{M{Rl .W`48k$ޠ5Oq7'ۜ;ǸB d~rZ 8qoEIxw?] iP"d6ly 眕%ҠSh&k<9ݨ׶rijv}\׶aš`=hi`bqy)gf⦕žQcąg[d}|HZE D;Iҵ`1+X hKmp^eQ4{vŻY\G#s;M?UnG=~-ϛݫ5/<;>3o\໎}1{/\7k)x1G|]h6:wwGkgs:W>'Of;?\wMWOj×qu))3O=ⴹu^`\e;+NNsoZ6o޿^w͗z~ϗg>;`~sSf̏Ko4>9e|\;N3#>tfwx?$sݜ\k7uGa}󨕗[΍"='5{q{O/zckoٳ_Uk~ᓧ~g9Suf\_k?4Ksn?hwǝ[9ysݭO>EsٳJ~锒m/vէA^>d^so4{;m̋z.]ԻwQEz.]ԻwQEz.]ԻwQEz.]ԻwQEz[:9I*[xԡPkbDFR*kTK2HjZ]Ǧ\lhq]7)ABu<puo&LsKp-gp5"atr9̎tL/| _/| _/| _/| _/|CLGfO/o~oAlZkV|W2>ұv>IC<}{=Z?q3vuG,g;k}qėӀtha?\8->vm7]yn9x?{V:މbKߜ[!?<5sh i{$} Loxԁ߬eY΅g>wd^~ҹڅ!Azŧqn0]oV|y~/~Npn? yg&Яs­y ]}K78>+ޚq‰ '|ᵦ7ߟw;qɥyz㌅[vu||Y])pت}oWp|{A/X;w=ϝq|mwzϳv Ƈ=\8>q'K÷7og^#D/!/\~x[ߐɎvspl뤃c%y:]qMn}:YzB!쾌sgAˋ?h=m5+oگ1]c=kz|:mwonybfz8Y\d>7k;wr|v;MOC}6_e:ѳˇٟ;h|?쾠x[y'VӵNz;+oПwX8^'XY|gYͷ]>B|:zc ؟o^wP+NabxX͹6r֤ܜܜ+ڵ`qDxKᲂwyrc.VMǵCmܗb cCmXPOB"׉JuQcJgݿ2+~v|M L4-s޵α!ǽ\5~GD}_O$/bu0r"v;e"Q)g޹\|~gQ뮣2szi~Tz͏̹`C3gҾI{LG^`.Ygͥ3~L(ׯ֙ߙ}gr#z?Z3Y8/l?{zsW)j?;gϷ}m.zx*\Zus3)|c/sѺOi&{W:S{\|t빵gk<q獵Nϱ뽶DOzΰ?3_s>3_[uz9->Gjgkgkgkgk櫗j'}k^CjێW̤] 7^v5ykgkgkgk'Ug^[w`)'ܷӔ?kfM}{- 䏻5 5yc/ṋ)g_Z+k[|5?Yf[={ A6Sߝz7 Wߏ}Gvp}a]~"EO׌M/a|7yM}-xӛ vO_pßoaיִ.ұɅ7赭Zm}7O>{?g.yݑY7=mvҷ/:sԷ-?zCc ;5U-;?]^}_ey=mRswwqSY;kMO8Gjǝ}CTySks[#Jvs* }7-}}p|U] joc~?Oh]o:|?kS|>=õi}O8}Oq|W-a 6߻zgsڙvnοw|g}͝ۿrLf8o8|cv}?WI6ߙ{mOpl{m׽r֏Yv3ZW^'wmGc֖\V~/Y\9굷^COm?Wg->~UnN'zyWtPC'pyKO8ސr{]/^0s꽶۾׎=?ͳzM֯ {E. y}wpO_?{;kqqg- }7Ot}w{;kߏp}1W|W?u;WGLM{{<{נ󵥭A|oo믫z# y7~-qݯ3*tX_tlt}=k'zg㸆}={m}7N=w_u}3~w{/2ͮo5y&nwm?8ʚ߽tⅦ۞;?~y~>{y# wg<|ʟm~ВN\Y rߍ~Yw{f{-jw8^}@zֵ~5k/^W~{?87d.qz@*{yy6;;gfgn|_z9p١Пwwsiޯkپkckoy}gs|ɵAwڼWoLXhf~imc}|=?™=5NE;NXpe_}Џzj{egk 96yܼyS}׭/ZC ޏ [S<;7?ԟo5?=Xγ{m3_+βqqor}r}3_wfv~4SrӜqܜ7>P5ߟ={A5k'xk'|c"~ߗ7ykj{[zAg/֖Z8nwVxU ;w~~~|;_|.ߗG<.hoy?_NDg{i]׼)u^EOI_7.L:eΰiC׺6 loq.}w6_|m]g8o?]/[vwgX)wnf6{>μ͙yX}g6nױyZw$g~#շڬ?%?} 8GYflM(?^u8j?,| _/| _/| _/| _/|N(jFEQW>)WuQhEj*r(kfҗ-zX;6cx)v 6ʾZ|sN|V|ԆWj_1_ d3eA]W_ }vv)ѥ$~ݧܴpF{Wɻ:tU.w"Н Bu{I ZR`45'k(0\O6fۖo\쾕xV~'T["A@{`0:/w/| _/| _/| _/| _GܥR-lsBcsTP.,{FH5{Ab6ox \EKszr:\.V͹,g `4lb/_Gl>JC+ <`B -BV4*`Mbʼ=P*v"Xs/(v% 4.!|U}옘o/!7;B^R~))2'r,aV43mW{.vd6ܵїhkF|*}lJڑ Q8!Ŏ 7Bnj['^ |Q7lf{E{āXC]a+j3$}䘆Hs~p8l^˷dX5/9is YgaCN|=#DSL!YYqC?ɟudp9m 5L2 *fu/^'ܫ}f\jĄuڐ,z'9y?\w|PޙVo"=Ϭ[9ɳuͪ:>1vq$u1}g: $}2>̻ m3 ܀xPLJ?/d'{:N#Mi]ZCl$u~pp-Zu37u̺Ul.,rS\ɱ9䗥 N 5i!Nsl 5gvlPnw oFvJ򾒤rg8CNާk{iڗ\^Kꋦ1Af׻۸kگ] v.\'Toi~\|A?ǹwY5 >KlL*ENBVWgre,Hج,Oe ieuwf7!Ľ!Okwc:z|ϥ/T+2taU+Iuy{)_kw.zRv .夾9Z 'nZ9~V+pLXߦ9V\ϒp ,85!o]R 'q_y'Vu!Co7̐N='1=7VyD}dV{_M찰|xf 7)+5ֹ)NYn/Lhq8' #Vx5?yB~OY6zچ6PDW- [#!w09e{ DbCbu%A ;˻vscquO3{9kHZ$'?tʝjn33w/za}M_qw0qn?6P_BN6#M'ЉO{L+lĭ ]A{%R~-ٔ\ ik Qсl_T՗yfp)g!'3ٳ Bg3G;*dvYǃ[g4pɐ=[m4f'[KR |k֚!Z Y!{zrexg=vtȞ]ؐ=cn=a ٳnzȞfY I"""""""""""""""";֜I%썴;Pف@g)vf;Ȱ ݣ{G{tt(#=rm յ6T׆P]kCum յ64׆\kCsmh ͵64Fҵtm$]IFҵtm$]IFҵtm ݵ6t׆]kCwm ݵrm\)FJkg&"ϻuI\y"fy}Ykn$o 55 R'D23OTH ٍB8EZ*?Ȳ$Y%k}Wܗ

n^|p֦z+%,~[ nv܅ଷz!#8@H p $8@H p $8@H p $8@H p $8@H p $8@Hiadu^AFVY!@HiEp p $8@H p $8@H p $8@H p $8@H p $8@H p $8@H p $8@H p ^8҈p [ 82@Ȁp d 8m 8ZȀp d 82@Ȁp d 82@Ȁp d 82@Ȁp d 82@NXE3guΐ82@Ȁp d 82@Ȁp d 82@Ȁp d 82@Ȁp d 82@Ȁp d 82@Ȁp d 87[8 82@Ȁp dl5p '78 82@Ȁ崚pXmPJ)p8PO8P @ee8P ښD(p8P @(p8P @(p8P @(p8P @(p8P @(p8P @(p8P @(p8P @(p8P @(p8P @(p8P @;=Ypp8P @(Zu0bw¬O8É0 laApaAW€0 8€0 8€0 8€0 8€0 8€0 8€0 8€0 8€0 8XpaApaApF쀃0 8€0 8€0 8€0 l}paApaApaApaApaAg€֌€0 8€0 o٫vѧwNM`uYwm鵥?[C>ZxS沯_Z[᧗xy k:s*f_v>ZK]sWk ɏ|'ғYǑڢtVך}닎ͼif05sWwG,Oξs]v"-|ݡuk?8}f:޽ԮԚڜ÷_}'q.}?|ºߘK6VߚGekw>K%Ӝ"zxɍ'~+7߾tRj'o~oF>?e/|_i뾯ϹHB*eD4s<\q""e 'Tϊիcr2Xo̺Wփ9Y_G>YGQKZ[QoQ%?On1val4RTd\u3p%.v.pehe'SV^͎XǍZu+}pO y?"UKX%X = }0j#]4 sZ ?. qMå`KS\ͪͺYwx<+a%7s64eʊfݡP[eyc-+ vm l-bʉl(g_z>YߦLrC?-ćJw˹Mbx1חTXjK7Qx42?o_-8sMHf_%12neY ,k>͚biM3k^˚ϲ汬4k.K il>-\sy|5>sy<5|5 66gͧ(...............>]k0dg:\r ř%^YNpofpoVpow K;ܻe.w+]] = }>C> #> pw-OwO >>n-pw}wVpw}Npw!1)=sp=~~Ap;p=Qp{?{ܟ_ Sipπ{?ܿs_mm_K /_K /%_K /+%_K /%_K /%_K /%_K /%_K /%_K /%_K /%_K /%_K /%_K /%_K /%_K /%_K / 2/e 2_/e 2_/e 2_/e 2_/e 2_/e 2_/e 2_/e 2_/e 2_/e 2_/e 2_/e 2_/e 2_/e 2_/e 2_/e ̅^W _+W _+W _+W _+W _+W _+W _+W _+W _+W _+W _+W _+W _+W _+W _+W _C餎A: H1;X}'̐x/~$ { @v_{Aǎ\)Fʵrm\)Fڵvm]iFڵvm]iFڵvm õa6 ׆0\kpm õqmd\FƵqmd\FƵqmd %p!&PC xa xh!ZKZKZKZKZKZSњT5hMEk*ZSњ45 ihMCkZК4$ZK$ZK$ZK$ZK$ZK5hMGk:Zњt5h-Rh-Rh-Rh-Rh-Rh-h-h-h-h-h@kZ3К f5h@kZˠ Zˠ Zˠ Zˠ Zˠ5DE-QQKTDE-QQKTDE-QQKTDE-QQKTDE-QQKTDE-QQKTDE-QQKTDE-QQKTDE-QQKTDE-QQKTDE-QQKTDE-QQKTDE-QQKTDE-QQKTDE-QQKTDE-QQKTDE-QQKTDE-QQKTDE-QQKTDE-QQKTDE-QQKTDE-QQKTDE-QQKTDE-QQKTDE-QQKT DC-PK4 DC-PK4 DC-PK4 DC-PK4 DC-PK4 DC-PK4 DC-PK4 DC-PK4 DC-PK4 DC-PK4 DC-PK4 DC-PK4 DC-PK4 DC-PK4 DC-PK4 DC-PK4 DC-PK4 DC-PK4 DC-PK4 DC-PK4 DC-PK4 DC-PK4 DC-PK4 DC-PK4 DC-PK4Ԓ$jI$ZD-I$QK%IԒ$jI$ZD-I$QK%IԒ$jI$ZD-I$QK%IԒ$jI$ZD-I$QK%IԒ$jI$ZD-I$QK%IԒ$jI$ZD-I$QK%IԒ$jI$ZD-I$QK%IԒ$jI$ZD-I$QK%IԒ$jI$ZD-I$QK%IԒ$jI$ZD-I$QK%IԒ$jI$ZD-I$QK%IԒ$jI$ZD-I$QK%IԒ$jI$ZD-QKtDG-QKtDG-QKtDG-QKtDG-QKtDG-QKtDG-QKtDG-QKtDG-QKtDG-QKtDG-QKtDG-QKtDG-QKtDG-QKtDG-QKtDG-QKtDG-QKtDG-QKtDG-QKtDG-QKtDG-QKtDG-QKtDG-QKtDG-QKtDG-QKtDG-IPKR%)ԒjI $ZB-IPKR%)ԒjI $ZB-IPKR%)ԒjI $ZB-IPKR%)ԒjI $ZB-IPKR%)ԒjI $ZB-IPKR%)ԒjI $ZB-IPKR%)ԒjI $ZB-IPKR%)ԒjI $ZB-IPKR%)ԒjI $ZB-IPKR%)ԒjI $ZB-IPKR%)ԒjI $ZB-IPKR%)ԒjI $ZB-IPKR%)Ԓ4jI$ZF-IQKҨ%iԒ4jI$ZF-IQKҨ%iԒ4jI$ZF-IQKҨ%iԒ4jI$ZF-IQKҨ%iԒ4jI$ZF-IQKҨ%iԒ4jI$ZF-IQKҨ%iԒ4jI$ZF-IQKҨ%iԒ4jI$ZF-IQKҨ%iԒ4jI$ZF-IQKҨ%iԒ4jI$ZF-IQKҨ%iԒ4jI$ZF-IQKҨ%iԒ4jI$ZF-IQKҨ%iԒ4jI$ZF-1PK @-1PK @-1PK @-1PK @-1PK @-1PK @-1PK @-1PK @-1PK @-1PK @-1PK @-1PK @-1PK @-1PK @-1PK @-1PK @-1PK @-1PK @-1PK @-1PK @-1PK @-1PK @-1PK @-1PK @-1PK @-ɠdPK2%Ԓ jI$ZA-ɠdPK2%Ԓ jI$ZA-ɠdPK2%Ԓ jI$ZA-ɠdPK2%Ԓ jI$ZA-ɠdPK2%Ԓ jI$ZA-ɠdPK2%Ԓ jI$ZA-ɠdPK2%Ԓ jI$ZA-ɠdPK2%Ԓ jI$ZA-ɠdPK2%Ԓ jI$ZA-ɠdPK2%Ԓ jI$ZA-ɠdPK2%Ԓ jI$ZA-ɠdPK2%Ԓ jI$ZA-ɠdPK2%WK‰X rc'ɱNS8M rL& vnM b7A&*****$vnMIb7I&$$vĮNĮNĮNĮNĮNnM)b7E즈"vSnMib7M즉4&vnMib7MĮAĮAĮAĮAĮAf !v3nb7Cf]W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W[nk M"/| _/| _/| _/| _/~}!%$>Ӳj9=(lCݫE=ƻK^{tUvj}F<,'bθ}!ҠiIIn1x#>/>$'..............[ݚ1)9eL ᅦ~H|/ᅦ߁!w{H|/ᅦ߁OO8g֯9[RmG#t{ؑȻ;ۇ#Ȼ}(>n5wP|~(>ۇ#Ȼ}(>^?ywGCwP|>yG١Ȼ}(>nۇ#CwP|>yGCȻs(>nۇ#{P|9yGCwP|~(>.>n#Ȼ}L슏;ǯ̏K?ްނv/| _/| _/| _/| _G^o y~|!|1_g rղ(@v1+wso +rM+V׿j<7ϞA/X_ϩn] M#,r;ǭ>GH 9;ӹܻ9}¯Ioy2ㅋ>1/&"'$蹀7sehZri)XH5W*$`{QF,J4(x1ORϾu~z==}nbl[ Rs>:\o֭t_=e9rϾ'~7lF˝X2K Rʡ6/R3-ߕ2y8LNo'4$ծ$CXZѲΪb1<:bxԿ}hvƏƏ5fӅqC9)uրÍ2}wbCy1$ I0ki| iI[Ht.mmb 7VɕWSʚtaZsλF^|{ G{w<2-Wrt,t&Vm9+zS(>DMOƜ͓+ˆ6+`xU@q?!o X+hp*/0. =;5e] 3 @w\n ;\.aip/G=Bemcs<IOoo:q0 ;3 >"i:C6TM˻eX\ ͫn ?Su|UY11 >kIH"ll3D`Ch|E`&"N8_~-7UVj|A] noGkwۧ_"xgHus Xqx0Wze4ӿl.E=m9V*̞czfKw1YUdƶ튪WR谦XISs۫r1[bA&eENKtV4zB#ڎMBR x:]ox6;5Wړ Aφ^QZiR* R$N;/cPT`}0hNʵ?Wִ}[j ~:;?Q;pΫ?֢o?=`k3n\ڒJ,ӗZqOq~5W|SNɬHwmGK :k例Ef4ߚ9;#kg_v9f~}ifMy t 3[^mj|jxm/|{t]m߸}ѿUA>>{Wao%?}voM#o5;L%n[9OD?w.Dmޚ O#S]3/| zawVğv;q羿g\sT䑣}gLܻy ~<kǽٷ]nu|N3}=y Ψ^!| _/| _/| _/| _/| oy]Otz_]'Ɵ>1D'EO?/}b.QOtz_]'Ɵ>1D'EO?/}b.QOtO߸^a'ΧĞ8/| _/| _/| _/| _G ''ڟ>1D'EO?/}b.QOtz_]'Ɵ>1D'EO?/}b.QOtz_]'Ɵ(?xO|>ph K v$فR  vqB(%#=JGip\kCum յ6T׆P]kCumh ͵64׆\kCsmh ͵tm$]IFҵtm$]IFҵtm$]kCwm ݵ6t׆]kCwm\)Fʵrm\)Fʵrm\)Fڵvm]iFڵvm]iFڵvm õa6 ׆0\kpm õqmd\FƵqmd\FƵqmd %p!&PC xa xh!ZKZKZKZKZKZSњT5h͕EuIWrR !*1vlYlnY~2a'>w +%?_W=cӣ 񝋾5);m|eo5/uw'>}fw;f?|3woE_;}涳s5ƎT̡~_8r3מri:u%7FoO;/n7Kq}\Voo̭欕G fē_9h=4. cg^{o5/Zfu9ܞOż Ts3wow~4/?oe^gϞc7,䦻Ƽ{75C慷^S涞ߴWsk+ v {?^g^󵵕yK̘I2%ϼ) mkmn?d;_m{ͭ~5{bV~#)-}J?/۟~sgռ/uy/|˼WߐSzi;= _?`eyos{p/Q9]_w 9؊ u봯r? ܾw0W;\lps hpZJxpІ,jR p'; v(q-7g_܁ CppG; 1悛8p-\. .nEEEEEEEEEEEEEEEE'wޭ9ySS,M\bNLqʇqNVV{;嵏SfrcGwC(Liz!W,)' v dpK- p+Tp;V[ n 3u[ \/uփ; Gw׀;{-55.n&p YspV Κ&m vp;]Bp{NpofpoVpow K;ܻe.w+]] = }ହ 0(8kcqpIpip׃g}}}ܗ}W}}7}܍nw3.[ {nw;; .p?#p?p?3pwܽ~>pw?ܯo=~0G= 1p{'pO3+{ = pς{BS7dԗ_K /%_K /_K /%_K /88_K /%_K /-gmggmggmggmg_Ki /%_K /%_K_K /%_K /%:p /%_K /%__K /%_K /_K /%_K /%t%8_K /%_K /%_K /%_K /%_K /%_K /%_K /%_K /%_K /%_K /%_K /%_K /%_K /%_Kine 2_/e 2_/e?/, 2_/e 2_/e 2_/e 2_/e uk;CkAk;@k>p/e 2_/e 2_/e 2_/e 2_/e 2_/e 2_/e 2_/e 2_/e 2_/e 2_/e 2_/e 2_/e 2_/e 2_/e 2_/e 2_/e 2_/e 2_/e 2_/e 2_/e 2_/e 2_/e 2_/e 2_/e X]~W _+W _+W z~W _+W _+W _+W _I[H+W _+W _+W _+W _+W _+_+W _+W _+W _+W _+W _+W _+W _+W _+W _+W _+W _+W _+W _+W _+W _+W _+W _+W _+Wʈ=K'Naaaaaaaaaa*Ep0? 0? 50? 0? 0? 0? 0? 0? 0? 0? 0? 0? 0? 0? Xs9?qr%x}XofHlE^?[Cb+WV_% Wp\~{+^ Wpὂ\v{%%pӺnZMi]7Ku ܴ.%pӺnZMi]7Ku ܴ.%pӺnZMi]7Ku ܴ.%pӺnZMi]7Ku ܴ.%pӺnZMi]7Ku ܴ.`&pn 0f7L 3`&pn 0f7L 3`&PKTDE-QQKTDE-QQKTDE-QQKTDE-QQKTDE-QQKTDE-QQKTD%5@-QQKTDE-QQKTDE-QQKTDE-QQKTDE-QQKTDE-QQKTDE-QQKGء}CP|~(>_u)[u)W[u)Su!ZC-PK4 DC-PK4 DC-PK4 $ZD-I$QK%IԒ$jI$ZD-I$QK%IԒ$jI$ZD-I$QK%IԒ$jI$ZD-I$QK%IԒ$jI$ZD-I$QK%IԒ$jI$ZD-I$QK%IԒ$jI$ZD-I$QK%IԒ$jI$ZD-I$QK%IԒ$jI$ZD-I$QK%IԒ$jI$ZD-I$QK%IԒ$jI$ZD-I$QK%IԒ$jI$ZD-I$QK%IԒ$jI$ZD-I$QKtDG-QKtyvuC&>5y0:0WupoB&TpgB7&Tp_B%TpWB7%CZB-IPKR%)ԒjI $ZB-IPKR%)ԒjI $ZB-IPKR%)ԒjI $ZB-IPKR%)ԒjI $ZB-IPKR%)ԒjI $ZB-IPKR%)ԒjI $ZB-IPKR%)ԒjI $ZB-IPKҨ%iԒ4jI$ZF-IQKҨ%iԒ4jI$ZF-IQKҨ%iԒ4jI$ZF-IQKҨ%iԒ4jI$ZF-IOuQKҨ%iԒ4jI$ZF-IQKҨ%iԒ4jI$ZF-IQKҨ%iԒ4jI$ZF-IQKć!Z2sSxCњsć̜C * * {*;*+5@-1PK @-1PK2%Ԓ jI$ZA-ɠdPK2%Ԓ jI$ZA-ɠdPK2%Ԓ jI$ZA-ɠdPK2%Ԓ jI$ZA-ɠdPK2%Ԓ jI$ZA-ɠdPK2%Ԓ jI$ZA-ɠdPK2%Ԓ jI$ZA-ɠdPK2%Ԓ jI$ZA-ɠdPK2%Ԓ jI$ZA-ɠdPK2%Ԓ jI$ZA-ɠdPK2%Ԓ jI$ZA-ɠdPK2%Ԓ jI$ZA-ɠdPK2%Ԓ jI9999999999/Ɏ]Hߎt]v$;&v'ɷ#//ڼˢ θ|θ/zL4G :Q?>b}^]\aؾ6+ߟK|qb_5_*$/6n.WI;,+y}Fx? N /t0 I"]ܢh&tlRǮɧc#X*  .p0KڐDF5BDTrus,f!oKK ^6\fCZ97幁bL)cCJ5[(ijbn[|k0U;; [ٽ쾙,Ku$~nkǧtkYVoy GޔX3.+gZ L hXɸ4\RQ)u(l)TG;9e8 IrMsƏdƉJqhˡz[bq3nX/ޟ|:"=74^H}fuoUVgVtu!/Vsrej\ d쨢﹝C}Mt=5U:4^骶[yQn'wǮdzQ.}Z_C0z:7UR=OgXê~~,|ִZ;W9Y&txWMop3 P=C iع{jFv 4w'{6Ib\xw^m᭥@wr@ǥ2_o~[y?ޣ~49Mセ=)/*mVqEӇS5a9\1N=Ѵ^vw~S$MUuqh ^n]piLC2Ƨ*3na}zb47mx\_iphlKQLRFh~Cw-Tw Z8N|8bgC|\ΏUZx>@Ұq_uo1dգ,7![}NI\u\XKCp5k?5W-Kl/\**ﰖ&.7톘| ޯ c+mݢWHKۊDu~ =׿ 70URCEdp̞~'vφP`AlYk<9p-jäQEgr_Hߦ(X#W*n͕7}x_9_o$k`/UDQl}z!K+ez:zSy~ U\_Rɖw` RF𬢖9a}HBb0=(C,gԝgVj>bUUNtږolI\9Wg ʹkoo]/vy[N-ǩ85uSړXVV*j[A^I:r߭\Gy)z7 DB@)Esۇ@)'cY=D0 WʕK_8WK\tkJq1C?W+@WgWx|gf$!5νSj8tH:R#P 9.ݿT|On6W{ޘWJ>%II  |Y*G@Of50'zoعO7Vrn'MjW'\ sz"VuU罌ċj6rmfs][Q,thB>F)` _SeZ\!ҳOnVk,H̱YM@U`g@70KkS!7Z,Ն@*| _t+^p ڟ|Th[UC>14|q+ԅ8kز(l. f7 mVYါX%W]n=@=p(Py6dNZh}y(Yپr*V/#0(Z">rGfhQa%^գpMx:A&HڧYӤ&uukvޜsoဘ~/b< ~kdȮD-s^-À?&F҃$ݴ;;@4Q~=>>ҰI#ǿ.{@rr}cC\[7vCډ# bϻ;S'4M.1ԕ{m-޵# bC;Ӝ]©oylpXc\6Kﭻ[ 7ݱc y.㻘ǐǛNݶ齭wÍ2}OL~_9x¹?}h8;VO5ַ{қ,MϜx6y_y>ӟIZXeP}K $޻ꯇKk 84>!Ϊ߫qg2}Bwx(AkC,i|ٚrQWKq7;sų\ܙYRÚub 帝oi~HS_; 䜫Zo5WyYb9 S Γffy3LzOJ7F:YibM YZݚ-ž܂;z8 (5,v4T)F^s&Zŧ# q5\\'\9;6UdEhk@њuua|fvR k @߇S,>iՓTR|_+ ʄ4W:㟮HʘNRWq=Y&SO뻙lã­]˲d\aK = Bb-*dlVY7\.[ag}%Y*W[jT}|n~}*W!ןV-Gsׁ%J Q*:$@Y%yw[7Wh?[*wV7gO{#b|Gi8W 2Tښ+y^:f-: Uto&C5įx }2.k;w_$ߚXIq5[W&~qemHLumHO!ղOąq539סCxdˡuݜBhc氻'K7|"g5pYql8l]~1ڎ{CD+U yJӚ8XU&\keQ>0IpW8Ѭ[;ŮQܭӯ{:޳?4F;7~#Hn /#tV͊S֗LrPhUBwP}h}s[錍3kqӿDpڛ+ITcnWc|tW2(wi0ΊTMyKsLaY%-hf&O## )enVNeihz5W/6(ිy_~lLjpRax)7p[car3}ٳ!?ʩ9Y*ievq\=]yz*vM"g*4>6/Gߤhh}:xtW9}+WkgvmVP'_d2䊰ًpb_J$h,?&3لȹ}l4{t$xP0Q4bv4 s\}f@xyJ/?s AwewQ.\Fm<\T^zt@Q߰hX-n~o#a//zoi`.斫ثض1}NعB,V bX17sƈPYpi̱4o\>[KgGge~h.Vپ7[sB~"QfS~kȚ|Ru~2Z'B}-I϶ֹ;Hg Ywػ&ՎGM .fC1>"oבWGQJ\ۨm޴yع<鼛|Ng@b #tXje}g77BwRd V9;{]nhҺ:;--5zfIЁ-ZT{z֯υ>mX1Jt={EzeY2hg^kW{Ӄ]m=]T7gޕv+{h*-$trw0􆹾ٳ06ޜs +$";ȹϐcX}s5ɜC2].UKC>Kݱ~h a.k7EZ>~R]_W9/kc3_ec㳽Qxًݲ7皛hjjMYd٧K DD/'8!E3hfl4(ڍ)iپ&9f$bkF1Z䤘7SIIbY$>wwq/0uf22c1x}=tndXs[fXpbz^+=k4lNTh@-rn@*+ĠdLV[J_1Өh-W,~~_8-y F|s1Co(NG]j3ٛByAݓS`? 23nжNBxbl4Bh#@9lW z M)Otv s _LO#`{FB !>}3,hNl~V}]ޢO^*'pߧvgZw_(,ׂEyH*b6]E,os^aR0泙!:K6?'0"k/| _/| _/| _/| _ڇ;kp~AVv/پ3 !{컵Px[W >Y[R$۝eho7)ݗdoC;!Ib?VٍFfBx~ )G.D= hhO~ 6ij2UqMOe=+V0D~#ttEɦ[LPSk ?d]X:$@ǴcJׂŬ@. *iT?r.=[g[͞?{=}eY|l 9环2 WsguݟsC;_z\sKnM;_6~m_dy~waޠM]3I{n1f}S~sݷ5?ۯ4mx:93{XawwbG}4{S.|Nݏu}O٣\< nrCϽWkgW.ywl̿UuM>uoX{l̵?Еfܯޣ̞nY4?=S{vߜ:s5{bOv7QEz.]ԻwQEz.]ԻwQEz.]ԻwQEz.]ԻwQcw\'5:)wvԡPkbDFR*k{ERؔ Fqj\n֬,4rWc)F'ǝ#HwDc(| _/| _/| _/| _/|N~ȳŶ 5p>( ;oy_p*vzJYgY:v.=5g8i'zO ;>z7n2\zӛ - kXynks~]t~u~gse5m9ggw3//v?cvޚ7U{U;ϏmXuvJw_"7 ?} g!?߆tipϵ||-o~;u`7kospױtvau{^eCon/_okA<˹_?~>ޚv̟gt/otO;Ϸg|X/?bZ>?sΐ_CXq;NNypϯH'w^YɅg4pkk2}a>ßojWR:>>?ʣ}p>Iux=a>\x:;fNoA|d}l|3(Aڐ_C Nz8} zγr\krp|^6p8csx9c1g~o1~ js>ߞ~P?y ֎]sk??o8>?vv³aO~MۙWg|* ?kH? >V7w3ǻ,:x$hoW~[߼EP{?/gY/mO[۱aLyU4dU0gƷg[%='uq__ջ ''uffۿ? kӏ9j-O],|ׅX z0;\7=X3+,2~}O?p>v#{G>ZrC<+;о+{U_;GvdE7CA܁?, >r;XWqK0ߗ~`o_M/Տ!>wqsⷾ[;ˮ'} ]~]s_䮏9;+M>s ?.y]~z(Οyk_]N7(&ćn ҇n{O'^G {Ys^_0硁co4T|/}<^?k.w+_tHէ;1/zO}}_[ki0wc ~Cy̹fӦ >m [M{_ܵqZ||S?xv{c_,8%l)2x e{vo7]qUV/3߈o7eAY~43pV`G~f=m42-ވo7eǝMhC-3{-4xїu>y߇j8{ټU o/k̺ſ)udC-3onȤw߹qKpޓn?j5//o,վw9v/ן_v+ol,;\fo|+3U_81NqC/kPV|"-|=bv_{{wo—wݙ}k;`^3ߝ91}y3 +q+\t`ۡ}|c`說z߸1C?aӇ;hv#߽֯F8'<Xc|m[n?'k?wN[7j Oh{oZ~3ouk˖41xO}r?P/~yq#7`?{*S~jye<)_xV|vW:ֿ|f>pᓿzsOVu؍m|=q7a.WFp?g=o7v?SO9~wA'&7fsχfc>s/~@]yx_~ xq#m'N]`}{^}G_yChv7[-_|Sp?}mo1ZRKYo8 voݿ'QOՇOqݤ|1~={K'~x>iw/}j>no}~}\v U~DZڽu\]}KR:,l{wtצ u>߷_טem[w;̤G7ھF_tpq]p⃾ܠww=U'GqmR>o޿777$^۽g|`ʹ7'|دzh/1+f_x[٩{jpZ?7+OdvooߧuϷ޿OƂs1}ݿџuٽ?oK?rEf|ko_^~G!JqEG~)p#77d7&|o*v{MzơnI귉۽yz=/}񍍃.9b^=}Ona'is&)ͿxDX}ѽK{CΏ=DLݿ7ʧ,mٿ[ϮO^It-d]OzpMPu~=6~>_ŷvt<$Ӟǵq'+?]8ظgrK n?o6;2{i#MҿOusƓ}φQ?W|oO6ߖ^]ݿ7lJ{cISK|{$8-!gVI}}Ǿƶ?N\՘o};<'C>388ң5DisK%q4k|$:vo߭O};i&:o55Nwq]|{ŦƬ{`eNg?mzO];kU F_|cZs'|/=}_XT[r7f^$|o6{$=TM/ۜ&|pLԿ+MҿuO뎋~gcn6ϊuqΫvozWݵ緿 nKq'G~Ʊ1ߕΚ󿅫hl\u5'Laqju?Px?PhΚ)>MwCQ5qqqqqqqqqqqqqqqqq+Ѥݧe\ldc/yQ?EѾ+T\]Wީ28xĨjg>]50UjקԲʉԦng~Uj3*6fnr*U؝m{mvP×;:2Z{:J˴{}'yo рnT:}h_w3?A@g.=}!8888888888888888xL2U{RٍcR< rTT;2M*فIR16o{8V?2)=czq|}'Q_`>1TY[_2Q:d+i0X'\C"ʏ L$t?KcְZuz9qlώC|m+c>q=cb/Jqύ7-ߓ[aXo3Wu$q~\R`ύ'-@8(ߚL{ROu8Y}N李t|mgwivLfcΈX\l CL{+;d|,~³jc;ed{-Aϙl0".ܸKW1{3\?[^o&{ IjWVzL{swkKl~SFp3+%ete0G/pLą9~+8>,>w**VuplMK,mfuBmSu<3u;,JdvuPV}jzUd#Lfl8U]jy\vein½ ҵ N^Joev[8jѩ>&{.aWώ[oW/aus\|,o z]K;]Y{m cǗk`rq8 ݏS6Uq,:_a)2s3m5|]k2hm-۹&Os77.3 2oA&Of='CƌYٸY^>fvԱ+q~7m;yT=:c:ŕqFu{r{0[WxWMնSi=.P6=77C?6'Uay{FJ?2q`> }:]4ΙUv?ϊxsvP<>WmS{*ˋwzZ`y˱)-έؐ8\aqO͐64 qWa3Wg|qV%3ԧx֓Vpg=ڴ8Q}ґWӊ8fU>[կ{qqqqqqqqqqqqqqqqq`_ǯ_ZI%LTV G%\TWZԗJILRV$%)?I%6Ć0fbLl 3a&6ĆذVbJlX +a%6ĆذVbNl؉ ;a'6ĆذvbNl؉ '$6ĆpNbIl8 '$6ĆpnbMl 7&6Ć^bKlx /%6Ć^bOl ?'6Ć~bOlrb('6ʉrb('6ʉrblR_%K4)iQҦCI%}JY+Y+Y+Y+Y+5d$k&Y3ɚI f$mJ:dz)Lhd&%ɚK\5d%kYȚG<5yd#kYȚO|5d'k>YɚO|V&keV&keV&keV&keV&kb[,bEl-"Xb[,bEl-"Xb[,bEl-"Xb[,be5d"kYȚE,f5Yd"kYɚMlf5d&k6YɚM5X%iEZbX%iEZbX%iEZbX%iEZbX%iEZbX%iEZbX%!8!8[bClq-!8[bClq-!8[bClq-!8[bClq-!8[bClq-!8[bClq-!8[bClq-!8[bClq-!8[yyyyyyyyyyyyyyyyyyyyy]y]y]y]y]y]%-qIK\%-qIK\%-qIK\%-qIK\%-qIK\%-qIK\#x['[|bOl->'[|bOl->'[|bOl->'z^z^z^z^z^z^z^z^z^z^z^z^z^z^z^z^z^z^z^z^z^z^z^z^z^z^'-IK|'-IK|'-IK|'-IK|'-IK|'-IK|O(%tA:LXPFmvXei}fvMfdvMfdvMfdvMfdvMfdv-fbv-fbv-fbv-fbv-fbvmffvmffvmffvmffvmffvfavfavfavfavfav]fev]fev]fev]fev]fev=fcv=fcv=fcv=fcv=fcv}fgv9|fgv}fgv}fgv}f얙2[fvn-3ef.je&K[,m.K{,4d3L;;,>KS>M;d3L;d3L;d3L;d3L;d3L;d3L;d3L;b,;b,;b,;b,;b,;b,;b,;b,;b,;,6N8b,6N8b,6N8b,6N8b,6N8b,6N8b,6N^YL,W+bze1^YL,W+bze1^YL,W+bze1^YL;asJx}|:wx09wx09wx09wx09wx09wx09wx09wx09wx09wx09wx09wx09wx09wx09wx09wx09wy '8lq '8lq '8lq .'lq .'lq .'lq .'L\W.+ez2r^L\W.+ez2r^L\W.+ez2r^L\Wx1y.?1ywx1ywx1ywx1ywx1ywx1ywx1ywx1yw>x3w>x3w>x3w>x3w>x3w>x3w>x3w>x3w>x3w>x3lq >'lq >'lq >'lq >'lq >'lq >'lqgz3^L|W>+gz3^L|W>+}W>+gz3^W&n2&n2&n2&n2&n2&n2&n2&n2&n2&n2&n2&n2&n2&n2&n2&n2&n2&n2&}wef얙2[fvn-34N0dsM?7dsM?7dsM?7dsM?7dsM?7dsM?7dsM?7dsM?7dsϑfv^^^^^^lMd2B$1,2^L=bF&;{r27_pH&[G"{+g=/}B3w˙3ѷL-o gd\?I~3{L d D37xDF8&};[ћd-uzK˞=-{ZiӲeO˞=-{ZiӲea]$ɺ; '.ɤ.Rt^=?>2IW# cpZgܞ,sDm Gpx=xbH5$fbmlviݢŸiiq3fh={r{ܾO}Trq\msyרLPٶofWձzO~`%:ٚ޽5JA}JPu*3 _N*AwJ!s'G_j7/gFĠK^(Xd,[@rTzfik d/-I){j9R-^x.G٣ˑ娂jVuT цCr!G=jdfgUr%3*ruIBRehh%BJ3Jr33jrų3Ҭ\]\.W\V$U%Ϋk!G!\p1 &n# 00a#&"\p9+05р 8Ѐ 8Ѐ 8Ѐ 8Ѐ 8Ѐ 8Ѐ 8Ѐ 8Ѐ 8Ѐ 8Ѐ 8Ѐ 8Ѐ 8Ѐ 8Ѐ 8Ѐ 8Ѐ 8Ѐ 8Ѐ 8Ѐ 8Ѐ 8Ѐ 8Ѐ 8qј1~ɑtVF4@4@')hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhA+tG{8Ѐmk$:pKt@t@t@t@]\u :p:p:p:p:p:p:p:p:p:p:p:p:p:p:p:p:p%ur%T.Wt@t@t@t@t@t@t@t@t@t@t@t@t@t@t@t@t@t@t@t@t@t@#Ÿ4p:p:p]+D6( @8Įp@8p @8p @8p @8p @8p OK@8p @8p @8p @8p @8p @8p @8p @I@8p @pPR80 p`p`p`Wp`p`p`p`p`p`p`p`p`p`p`p`p`p`p`p`p`FIN@T!=!80808080c(A-@       9^ A8Y Y d,pA8Y d,pA8Y d,pA8Y d,pA8Y d,pA8Y d,pA8Y d,pA8Y d,pA8Y d,pA8Y d,pA8Y d,pA8Y d,pA8Y d,pDxWFA8Y d,pA8Y d,pAvkt[rA89 9 䀃prA89 䀃prA89 䀃prA89 䀃prA89 䀃prA89 䀃prA89 䀃prA89 䀃prA89 䀃prA89 䀃prA89 䀃prA89 䀃prA*Ax1_ 9 䀃prA89 䀃prA89 䀃pr[[0v_G=Ƃ|7~w`oWԻ; U/[(^sY<淗 8{e`ځ3>k{}eiec⭣̻_Ӎݬ`÷_ozɌ 3G<4Nʅza xo\½us>3Oӿv*o'/|E ֡_zCnhFy#>XB5fKXW߳'n_Xi?)'spex{xBp ^O~M'?{_^=*}=8Ӌ O{/4lA1zg%_8VWszu(ۑnG\li Gn)7<4dS8;}xE@N?_SivUʩ*,|;r4<%ɶ$4*nGv(qeTTnW&5\'֍.(][3%O^֓z"QU=Z):^vIOUL / Ԇ?1?^ޫbC#q!нcд=TU!Qϳ<?02cy ѶmW3_s^)q0U-s2Y6mrTm"Vs$ދx6ɡMhߣ*mQ(qZkmpmV]Z]1>TjkQlUVUGIvױea-ݡmkE~7VWMjW#59)UUcqX[[W΀X&{?Eq|Xy;Rr\D/ME%c:_W|)2Eձ#gSvOQ7e뜵q:_y['jvW4fkf)&y[ҷ24P&[ʯ|Lҿ|L}zILشiӲeO˞=-{ZiӲeO˞=-{Zv٥O~"{}J^R!jW kUFx u#܀Z! oDx"-oExށNw!܈n &!7#|CFGnA>IO!܊pF w"|sw!4F<A_B2}_A*_C: < o"| AxC>?B1OB)?C9#"< _"<+_#CxO"<?" O#ᯙȋL&oA'_5_5_        n@5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5?WC^p{~ / _/ _/ _/ _/ _/ _/ _/ _/ _/ _/ _/ _/ _/ _/ _/{~OP4r>=3{Pa*}{PtF*C t|ЩTb#Y[O֓dYl=Y[O֓d9l=Y [O֓dl=Y[O֓dk=YZO֓dk=YZO֓dk=YZO֓dk=YZO֓dyk=YZO֓k-hYkAZ ZZКւg-h9kAY ZZZւc-hkAX ZZւ_-hjAW ZZՂr[-hjAV ZZКՂbW-hjQɚMlf5d&k6YsȚC59d!kYsȚC\5d%k.YsɚK\5yd#kYȚG<5yd'k>YɚO|5d'k>Y+2Y+2Y+2Y+2Y+5$-1IKL$-1IKL$-1IKL$-1IKL$-1IKL$-1IKL$-1IKL$-1IKL$-1IKL$-1IKL$-1IKL$-1IKL$-1IKL$-1IKL$-1IKL$-1IKL$-1IKL$-1IKL$-1IKL$-1IKL$-1IKL$-1IKL$-1IKL$-1IKL$-1IKL"-HK,"-HK,"-HK,"-HK,"-HK,"-HK,"-HK,"-HK,"-HK,"-HK,"-HK,"-HK,"-HK,"-HK,"-HK,"-HK,"-HK,"-HK,"-HK,"-HK,"-HK,"-HK,"-HK,"-HK,"-HK,&-IKl&-IKl&-IKl&-IKl&-IKl&-IKl&-IKl&-IKl&-IKl&-IKl&-IKl&-IKl&-IKl&-IKl&-IKl&-IKl&-IKl&-IKl&-IKl&-IKl&-IKl&-IKl&-IKl&-IKl&-IKl!-qHK!-qHK!-qHK!-qHK!-qHK!-qHK!-qHK!-qHK!-qHK!-qHK!-qHK!-qHK!-qHK!-qHK!-qHK!-qHK!-qHK!-qHK!-qHK!-qHK!-qHK!-qHK!-qHK!-qHK!-qHK%-qIK\%-qIK\%-qIK\%-qIK\%-qIK\%-qIK\%-qIK\%-qIK\%-qIK\%-qIK\%-qIK\%-qIK\%-qIK\%-qIK\%-qIK\%-qIK\%-qIK\%-qIK\%-qIK\%-qIK\%-qIK\%-qIK\%-qIK\%-qIK\%-qIK\#-HK<#-HK<#-HK<#-HK<#-HK<#-HK<#-HK<#-HK<#-HK<#-HK<#-HK<#-HK<#-HK<#-HK<#-HK<#-HK<#-HK<#-HK<#-HK<#-HK<#-HK<#-HK<#-HK<#-HK<#-HK<'-IK|'-IK|'-IK|'-IK|'-IK|'-IK|'-IK|'-IK|'-IK|'-IK|'-IK|'-IK|'-IK|'-IK|'-IK|'-IK|'-IK|'-IK|'-IK|'-IK|'-IK|'-IK|'-IK|'-IK|'-IK|Ғ2iILZR&-)IKʤ%eҒ2iILZR&-)IKʤ%eҒ2iILZR&-)IKʤ%eҒ2iILZR&-)IKʤ%eҒ2iILZR&-)IKʤ%eҒ2iILZR&-)IKʤ%eҒ2iILZR&-)IKʤ%eҒ2iILZR&-)IKʤ%eҒ2iILZR&-)IKʤ%eҒ2iILZR&-)IKʤ%eҒ2iILZR&-)IKʤ%eҒ2iILZR&-)IKʤ%eҒ2iILZRN(%b"%6YbivYci[bvKn-1%f얘[bvMfdvMfdvMfdvMfdvMfdv-fbv-fbv-fbv-fbv-fbvmffvmffvmffvmffvmffvfavfavfavfavfav]fev]fev]fev]fev]fev=fcv=fcv=fcv=fcv=fcv}fgv}fgv}fgv}fgv}fgvn-3ef얙2[fv.ӫӫӫӫӫӫӫӫӫӫӫӫӫӫӫӫӫӫӫӫӫӫӫӫӫӫӫӫӫӫӫӫӫӫ+96|6-atqqqqqqqqqqqqqqqqqo;ܢp߾N-6e:S{7 ߘji΋V ryoyyzgSUҾUG\i;vЧZ=ҲeO˞=-{ZiӲeO˞=-{ZReOhϤ oɤ ..о5. tv?]=. gtL@;.ОIh3@{VvVv&]= t*.О.Nt(.%ڣd@{$kq2]=L t(.%ڣd@{LhQ2]=J GtvLhWt(.%ڣd@{LhQ2]=J Gt0.'ڣd@{Lha2]=N Gt(.%d@{@{NhQ:]=J3q:]LK4N4N4N4N4N4N4N4N4N4N4N4N4N4N4N4N4NmǙQG&k=kpmV]Z]1>Tj=hg:(:l=0T[1VX:^ZuPJޱ|U. -_\];I']\E~~}YUrNs=GZڪ5&)Ϟc,eWpϱ?8y{%w?='=n瘿/=sGc~y}dnKlߣOJ|}d$qvcb/FcFŎ>Sc_5+K%My{M9k;T_jkUy]NRwo}S\Io%.;oꠙt<,n^av߶ܿgrEFcM@ǻk+ kuO Fw~+S֬Qk91Lg߿寠SPYJ?|Sۧ:|)EEΟ~EWAgprfW+P7?<1T瓻p7}Tm&15Oj qrl+6ϓgN{_9pEw7nig|{Lgk.;s9/;ϴ{2?ȫybʅ/82ݺKn?r+F_{ˣqPqS?'|~`qԃKf|?K;`򣴇ߺohf||U̸1sΓ@ㄯ\IM<Ǟ_o,[_7=4k׾~\Ox@`7lw91#5/^}PcVdu={o?8x@~E!8888888888888888xGpOst88888888888888888E<Gn'| ;TT K%lpTU O%|( ԗJILRV$%)?I%6Ć0fbLl 3a&6ĆذVbJlX +a%6ĆذVbNl؉ ;a'6ĆذvbNl؉ '$6ĆpNbIl8 '$6ĆpnbMl 7&6Ć^bKlx /%6Ć^bOl ?'6Ć~bOlrb('6ʉrb('6ʉrblR_%K4)iQҦCI%}JY+Y+Y+Y+Y+5d$k&Y3ɚI f$mJ:dz)Lhd&%ɚK\5d%kYȚG<5yd#kYȚO|5d'k>YɚO|V&keV&keV&keV&keV&kb[,bEl-"Xb[,bEl-"Xb[,bEl-"Xb[,be5d"kYȚE,f5Yd"kYɚMlf5d&k6YɚM5X%iEZbX%iEZbX%iEZbX%iEZbX%iEZbX%iEZbX%!8!8[bClq-!8[bClq-!8[bClq-!8[bClq-!8[bClq-!8[bClq-!8[bClq-!8[bClq-!8[yyyyyyyyyyyyyyyyyyyyy]y]y]y]y]y]%-qIK\%-qIK\%-qIK\%-qIK\%-qIK\%-qIK\#x['[|bOl->'[|bOl->'[|bOl->'z^z^z^z^z^z^z^z^z^z^z^z^z^z^z^z^z^z^z^z^z^z^z^z^z^z^'-IK|'-IK|'-IK|'-IK|'-IK|'-IK|O(%tA:LXPFmvXei}fvMfdvMfdvMfdvMfdvMfdv-fbv-fbv-fbv-fbv-fbvmffvmffvmffvmffvmffvfavfavfavfavfav]fev]fev]fev]fev]fev=fcv=fcv=fcv=fcv=fcv}fgv9|fgv}fgv}fgv}f얙2[fvn-3ef.je&K[,m.K{,4d3L;;,>KS>M;d3L;d3L;d3L;d3L;d3L;d3L;d3L;b,;b,;b,;b,;b,;b,;b,;b,;b,;,6N8b,6N8b,6N8b,6N8b,6N8b,6N8b,6N^YL,W+bze1^YL,W+bze1^YL,W+bze1^YL;asJx}|:wx09wx09wx09wx09wx09wx09wx09wx09wx09wx09wx09wx09wx09wx09wx09wx09wy '8lq '8lq '8lq .'lq .'lq .'lq .'L\W.+ez2r^L\W.+ez2r^L\W.+ez2r^L\Wx1y.?1ywx1ywx1ywx1ywx1ywx1ywx1ywx1yw>x3w>x3w>x3w>x3w>x3w>x3w>x3w>x3w>x3w>x3lq >'lq >'lq >'lq >'lq >'lq >'lqgz3^L|W>+gz3^L|W>+}W>+gz3^W&n2&n2&n2&n2&n2&n2&n2&n2&n2&n2&n2&n2&n2&n2&n2&n2&n2&n2&}wef얙2[fvn-34N0dsM?7dsM?7dsM?7dsM?7dsM?7dsM?7dsM?7dsM?7dsϑfv^^^^^^WK>;Tm:86<|4”oWuŁxul6\/ 7lWs^-.Z?2X_9ns hgon'U36KN6Yv|`bě~?}>:D~cHp~Yg̓r 6ߴ Ko^`C}j>lɻ+w;Gǎzo? &<7p>_<>v;G>=iz/sƶM2]eΚ$}C/.}Gvo/}'eμ5زlGG\/\՛xk|Cfݞe'viWVo{y>tn T;ceop+^=?hl ߰5?y~eO>m#~vY``û}ϼr'^\og$ -'U/nvGq8kc돗QqRFU}-eYFu|aBE p‰'!p Re",GXpJV!p&‹B8sC8"T HwBa-:5.FDB>8~ H7#L l@؈ a3¥!\ +Bx K^r^JkEW!5!\pk^z7 Mf moGx;ޅp#»ރ^އ~ ܌ABo!|#EcG'>p+m#|3w E] >{E"—pWp?? |wm <]!|C!'!a!GC/G¯~[!<{'BgLg" hkkkkkkk{"Z       Oɯo/ɏe4_5_yIBkkkkkkkk+       B_5_5_5_5_5_5_5_E5_5_5_5_5_5_5_       _5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_5_Q:::::::/tnˏʏʏɏɏ!::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::h/ # _/ _/ _Ϗ/ _/ _/ _/ _“f@/ _/ _/ _/ _/ _/ _/ _/ _/ _/ _/ _/ _/ _/ _/ _/ _/ _/ _/ _/ _/ _/ _/ _/ _/ _bktohT'7777C77777777777777777$!oooooooooooooooooooooooooooor|-r>vyg&wJ?~;~4]vAMk4]ФvAsMi4]ЄvAMg4]dvAsE>WOSp%\>WOSp%\>WOSp%\>WOSp%\>WOSp%\>WOSp%\>WOSp%\>WOSp%\>WOSp%\>WOSp%\>+YJ賒%d>+YJ賒%d>+YJ賒%d>+YJ賒%d>+Y"-1IKL$-1IKL$-1IKL$-1IKL$-1IKL$-1IKL$-1IKL-@Zb%&iIZb%&iIZb%&iIZb%&iIZb%&iIZb%&iIZbK)dB,Q2]J!JK)t)8R` o` /` _ d"-HK,"-HK,"-HK,&-IKl&-IKl&-IKl&-IKl&-IKl&-IKl&-IKl&-IKl&-IKl&-IKl&-IKl&-IKl&-IKl&-IKl&-IKl&-IKl&-IKl&-IKl&-IKl&-IKl&-IKl&-IKl&-IKl&-IKl&-IKl!-qHK$]F%ZhM$k5qI%]Jz)I=/ ܟ ؟o d%-qIK\%-qIK\%-qIK\%-qIK\%-qIK\%-qIK\%-qIK\%-qIK\%-qIK\%-qIK\%-qIK\%-qIK\%-qIK\%-qIK\%-qIK\#-HK<#-HK<#-HK<#-HK<#-HK<#-HK<#-HK<#-X%iGZ⑖x%iGZ⑖x%iGZ⑖x%iGZ⑖x%iGZ⑖x%iGZ⑖x%iI%>%>%>%>%>%>%>%>%tEFfv4tE0Ȩ dE/<ȗR88888888888888888xq4L; [,\=yKu[2ᙙuk>5u~wpyXf5}W%C!#ڣ,c:8۳u_~xb:V$GTV&ֆj뎟 OPu|@=ɟ^[c /K~~ yձMY5/]IU2);g"rJ$IұRUwX1VXXȻk#N|*N3U+R瓒9P2a3v )2>KRKƖ!K&*Zq:n|D_qfqmxLc߷lNК$o_Nh'Hy;̄{ڙuOcv׆ǫc-wn WC5+Ў yU:oݡKLry,[MW߻qy?c)nZ!N<8'NJ3ڙ,V'gm .]7yzilu}DwF3wP8=J]VV.!TZDZo|4U5u_W1E|ħ,mm em@pwkӱgd+C[F4SjFT;qj_Sy-} LG;7H)js,=O:RT3w3u߻u$s~^Ur& x=Pt moD8=l%л8M#4zgɲB埪{ٶ+[qFie[jmr&ilL'Ȩ Dq c }Pa%&wh4;]e39@n3 ٹ:41l4P<_Qdh @9v/_sQ$)l9XNx6Txn?ӄf]S;cb  M }6-;r;!gkEm lݭ݊ehgeutZGTvAL[yѾC6xkU 888P Ն+b}2V/,эebǏYL FdU;Uffܭ6\UkVWj~!V%g6U'=:}4C0F7^@{4q|_'/#q|G#4-0~Nq^-7qDS!ACy4jP+>cX88888888888888888x1~3Շɬo*|k Y)vytv9_]|;.gɾ fzߙ52׍ WcၑbujxvdX|eDfnwgՙ "ODߡ:ӞɔI 3Tjs:WG_3f%L 6&ѱzMW k>GӄRWfnЇ1ً6MVtUucK?Z*-fYf m#jG' .W.W]ZU :6WC ܠ uXacelP kv#cFoựIU quMgF=8mmiiSTz4<qi~T=n"W>o9?>>={דol)vA UUE*0IG-]eP믪6[VDv^15/imm~矯NY;18;42Pvn:%[٠s@eһv2TϪ n| lN~Ve,Lω\)U#jPo_gKǖRbm[uNᦓI;Tyv zfڡ΢-{!#uxu ڮ8ǎzK&̡ڦjjfLrbUTdIVWjqq{.^[E*Ƶj\ "j9*Z EIaQYs>LU1qqkt th͏ U$;5e`mrͅak%x6* U\&/7X[T*;p|JYf7͒ݼb?)ll/z+ikmܞh77V@& >96}t#?vsu.JvL8烓lw\-c؋m."& vy9K4?f ߺu[}ǝfm]8ֹ2uً퓿l&SOn+A?7ޮzl&޴~OnFcEUىH^8ΟO[؉oMl:>jNvq;\[L;&dL3~1g?,.r_cLݕn2KZ!7N_Aa@qJf ޶*屲}W+8wUspn-kMe;bn_YC:/%Sz C&ddvs2öQ랏UڋsO]lfGz!׏ZVa ޶SG5#>S\[aD^'/=/in u?Љ}Tm;> jCqs3czR\gdhܡ# vcYxHw;'̗;g2cWRw}V5]s|ĄjjSY^۽ƸηsP?Ѧy=%.˔}V1ܪ~U7qCZiӲeO˞=-{ZiӲeO˞=- r>·[NO E,lG6PS6Yi;ՆՆ3rw4jC81+9^{e"p@&rԿLp;"9D8*9z6B_&rTYv&rNˉ%d͏+D{騕QVÒ3S>3cQN(f"Gљș.'zo&r9I't=-{ZiӲeO˞=-{ZiӲeO.9h%0UR [%pUS _%ER_*%)3IYINRNr$0fbLl 3a&6Ć0fbJlX +a%6ĆذVbJlX ;a'6ĆذvbNl؉ ;a'6ĆpNbIl8 '$6ĆpnbMl^M6iD"ldkQy!ORaުLޔނ[t|2?÷VD&Ԇ `o6oNzPۏ},kTOlڷuxX.> VTdjO Uj- is}Tmc˶E; Q{die#?I[{d/;d(%/}x).gKS}x5ٯʾM}U?d 3ыC3$X9Vqb&ziONn",DDhBLRX+'OKɗ3|Q''Ifdh2Zuj!\ ?A.8#ma}uq 䗯6#\p[@{&֘ppppppppppppppppppppppp#99䐣 9Аc 9#hh6OR8Ѐ 8Ѐ 8Ѐ 8Ѐ 8Ѐ 8Ѐ 8Ѐ 8Ѐ 8Ѐ 8Ѐ 8Ѐ 8Ѐ 8Ѐ 8Ѐ 8Ѐ 8Ѐ 8Ѐ 8Ѐ 8Ѐ 8Ѐ 8Ѐ 8Ѐ 8Ѐ 8Ѐ 8Ѐ 8Ѐ 8Ӏ 8Ѐ 8Ѐ/E3h[.E8Ё8Ё8Ё8Ё8w<}Hu@>t@t@t@:p:p:p:p:p:p:p:p:p:p:pzIH_B8Ё8Ё8Ё8Ё8Ё8Ё8Ё8Ё8Ё8Ё8Ё8Ё8Ё8Ё8Ё8Ё8Ё8Ё8Ё8Ё8Ё8Ё8Yh}x8W`8Ё8Ё8Ё8Ё8'?#< eW ! #E8p kW8 p @[8p @8p @8p @8p @8p @~E~8p @ȗ$NBp @8p @8p @8p @8p @O"<@8p @[အp p`1p`p`p`Wp`p`p`p`p`p`p`p`p`p`p`p`p`p`p`p`p`p`{     y r\ !rp`p`p`P43~[!<r5f,pAA8Y d,pA8Y d,pA8Y d,pA8Y d,pA8Y d,p%?Zd,pA8Y d,pA8Y d,p](фd,pA8Y d,pA8Y d,pA8Y d,po5!CA8Y d/G¯,pA8Y d,pA8Y d,p %o rA89 #䀃prA89 䀃prA89 䀃prA89 䀃prA89 䀃prA8͒ErA89 䀃prA89 䀃prA8-BrA89 䀃prA89 䀃prA89 䀃prA89 䀃prUy7£!89 䀃prA89 䀃prA89 䀃p恃

?hW#{XA]oӣ~3F\xv7iL?|eV5n zngAv_}7_NfFw+?/{>Y N|5w4O=W?yzkE_|-}a5xec%w7 _wNf>GW`w_7_?2㑿ۘV`=?]Xw̾Wߌp9P@S^t-js:{Y4||ݴ jU#UwUmAZX(Xy8VOX'keGَ| >jeK5ںJghDI] Q Ia?k*ͮ9U%$_mThxH%KmUI&ӓcU4٨_PFㄥ˖2=?n pDQj^Hkl%Xtg/T^ҫeZiɾ=W/^=X:X[?"!|4X+/wr)gAqp릖8{mM.W83fʹM\~u@KQ^?2T:06DZ\|l]__e'+rpqCu^ƪ( o\__u\xgIl@#C1iZ^zL~1H8>bOZWW.ђgT-uuSÀ#모ѱMJ꺱j>kdHyuxLCxeDdl^ڋ[\.xY3^IQ*chE>c׌*Ůbtz q"QqLf=Z +W\͉+*pMpq+ vKO:ءf/mi*eԈchő5J5---钧Ƒꨟ"MGV\]"P n6FQ23Wf/b4K(jLccH/R 3>8:~0ZA G uTLK(l\1DhtuCf*Q(3Kx[C#-޳2T,t:.Y%c:ݽRo!\RşLPkrTz dM2ht#ŢR _xq*[\Js_G@P]^L'pO#EYɡ= ._I}He+-~6?2814\Wr*NLDIb) _SZܤ[R=Pҵc8f![ĹQ.b? :P믄irTm Q9e%b\6PWz*&ӐG.3%cVxUVM <I>CxeC,RLG0Rf Фx( 2بxQ*Ûz=yE|PaܛhćXJ ǰ(J!vEڝ"6X (LGeɌFRkp46AZQt.d2*:& e]Tq)V{סƒa@ WjT;ŕ!(Kx 9[F j4 L)jo *WM/iLk $U)9uk&9 #8 VK6U$<=u(Z#J59h5\E%)U`bCLaluM9# 9x}5nc֨ Y% nW6igT,=} "<kݡW3_9v O,4Teu PGȆI̚&A~8 qdl&GOJnb~B[vZ4Nŷl>TEl11|ldԖ""RDx5Xvxj^ ;9:QRUUXׇ7ղ `BEFJ"qsowv?n oTa&JĝjMKߋU5D;N}Ϧ㑹*D~hν>&n< , ?1ĔFCͣ:nSD$Y<b_KS"RXQvgRQȻ$M+"H7%ka#ǸW)T*ݳ=q Ns&!DEdBW}B֖jmzgv=gwm^c4im,l @;=#eVq|}NajؽX[k!>_=.=wR"Zc2(^\eK|uhRTچ#Gc8Kr oaGjGQI@f/C,HWL|רZmMK I+Z'BL[Z,A卞6DIecw) V/6 ݠ<%ϔCR5wMoX-Et<ɓƣ!Jש'r@< Ŵ]Q[BCk.E d<_ם| c"~s1܋WyľV/cWMVJmxCM4mN}ߪ4#CPHHSfF42c"(PULX\JU3djAΒW[1$ ,>o9x75N&iަ9UW^kֹDs\$ͰR=/u ]s:xbwlpx$5^N4j^WS*uN(T >:glEE1`]m:n,}Mx薶:~*@xW|-GR/9- 9$OC2WDS v0BU L`0a{ġN>U9;NƩ[qBfYQBLL܆ҮywL܌OtmknRqEB AQƘ4iL˽=CdmΖrm+O Ø%[ffc P]Qn)[kc|'; ;ZbCl.5Fqp2{P]M=acQw /kvQI7J<55DEfO-vqo]5@?VŸ߻FZ'iU7zi;d=jG6![phUo!L$~˟{L2\z2/%7ߎQ9]TJg*,~Áߞt rV`lT=zu&a*}p챰26S\Zݰxzja~tq1+Ys'㎛?HB2<'ݵ#l|snef*$sR<10S|1x-=25i TRppܬ =g枢-W6(غrk9==|CRɕ(ɣz ʼn@66$GUGa?gmx7V pw4w T/rT\[z#>Ěz4Lu%WrY*'UKT 3 rH V-3&5t1BɞlPVlhj4X돞VOg-^GE=[3qt~{RF;ys;> q>Te]ɓTK@ďCӺ.ߋ]rP{[i2/k~ry'Iu"?KXrLΧbkr!G=FCnMA_^[>يjhBO ŤgTWVG RLd^u;$:XN3u燝SwX)~$Jѕ<ZݫƩgH<_#ZgYi"" =:A5$K^[FR.dEoFI+37bY7Afd"~7;dy-ŮPCӈǖrբǥjyZX784Իvqm`d"ƓX4Ykbt֫Lȧٻ ^9Q5O+~|M@ahI%tr7UEz[&43'FV‰H1 X5sZ1*jmM=`{Lj= />v'5̮J2_H~w>l=G8*llLE|pp,ι&1'~ޢ3bȡkӾbIʫuz*B N]~hrBV8O ԟ<"ӆD*_w%ƷCcp1ݐg˻K}%\6{׏ n$ ϐO}GfkaipnI+2a12 iltdl<"L3j,5NVT 'I&{{vac07/?iB h"/d.BjX<)0V,PIUc{Wh?aS::T-z" m k(,,28u!z,]8OJ1.L6K%T"O:e?nxI4 ɡohég,]ec[K9 ŕр)z bR8Ol <^PWޞDN-T{4%nYk'Zos?'hә&!lF@KBOxOoM);L;vV˒NO+z:8oHȶ.K{5c%|#b-,IN_Ϸj/E0䓦[3]k0;.D+K9 1wE%Fu0Ub?B/8(P8}q;_Qϝ4hyǽIS;YAڽݼ vxٹ䟖zqzL"uz{cDlFU 5/*i#{"1 ׷l:qgC }jN_1YYɃ “:T4R6WDLnЇ 5{bX>e !+ 1ҺkDu [WB'T;{8z<<9RI .#'OOTN|Js}"%K%rʦ&"]pdj?y~hV7wb{MzSG6^bo8BWzv(KOju=E2pZmEbk )Ue&pfX*6Vyew1,{9Mu04$of7Zk.,6˕>_= ȃ=n"z %6'TIJY,g^EN*Z3VX3N[<=#cϡ3kLt+>2ߔazЊTozQ%\ɣj{J `%ّWsTjY8/. heckf%CڜR_oξ^dŮ>a/o/kxEt'*SF*Y\%'ltV1#+M8_|[]&]2g~uR-9o Aqn&h85M Sj 9mƣA`RAqaOr_W5nY~yu2n+|+%S#V6MXԫ&HHlo 4=_yTu92jfNGzpQ]98L2@TBKPX/=SkuQϬ ף1"0<]amhd62QxV\!h_;aNs{çwe+QfV66Cʚl:r6;%f4*܏GN9]N^[c5dQ8\ Vg&@Nd,_+eX12Yd YY>2\TO Ѐ%'l@*ϲ\&%ϛ]+۶J%sw~_T@4fT;>&pBLX; 2V)M ֢84-^h³9ᭈdXcb}dpBE0o{8qêں9G S7@Q貺˱gew˛]3}+CHƝDsqIX7qW"zqo#l->1E TU]aXIumR+F˽[`z xtjɽs@ލC%ck*C;́> JL͏w/>wۂP:lIZ 1׻/" o\fsGЫ'o^N<v1GM 7TŗNX$dզKDQ|ݒcp^ts唖A987/8dSX?Y0::yB6*BN_k{>q};+vȟNW(nQ:F2@}#koy4:XuQAp2VNK {ޕ'FrP5 _^O7Ch5ḢO %m5\1B}Ŗ(Wiz; jC`E[ #_c.i!Q /,ܩ&ӧO] ttL#{ *]iޤ %tr?mdZ/STTf 47 tb8(ze[ufQ4iFd$ *sY;&ʘٛsM ͰL-/YLT~ܤn|J"3EZ٤rLwGzC)Oo<7]Lr{<*|Iw|7}8PK0OEt丬隔b9 q]@_l>rxbpK>Nn~*܍R(8#<6fz/9$K Gw{5Uk;CUSpz7ؾ"]bk  o7yjդ(a풃ijs|&^,k%~9E1eVN#֫Ivww]G>{Oƃ:sMƽ8.:`b u\rq]3rӣaLKrYlIE5øxz)(]6K>? =WGNQQ89lP?~dN VL' WWnⷎ5#'AdgJ&ߕIJkQVTSQz׆r w[CՔdgȤii>9P#NAgOKIFa~x=4<%CϏ%6ĥN t%L矯]G7.p06;XYJ`PyzyMS跟?iw_4F}CM.M;8(u.~s'*bZ7 d{qf1)zxtˊ#zo3C~ D.0(#u#iʇ\mM|GZ) ȡl]:U6e4@9ul)LO6=6*j"eD2cNr20MKTWx(n#+ny,7LAt^i\5zd]x:{S-$94#kSS=zht5u?^.;:=̂")\gUx}\k[pr%ٕfHndWYH$GWdzꊜrt"Yj-֢>IM%|:^xqѮi' CGk?$ϸ껼6Н $ #:75~3Ss{fZWPRE;l_5E&HU)jyI=vLz!cғtMV=3fVZ=aM&eїB4)\έCV3Uu_TدMmx+r#4k`$A iC>ly*7UG[hGFWue;w񭳼 κ]:<ש[xY|؏0 o="Pw폟ՇbvGtoș?w_4S{% 7iȮ_sP ۺс =Dh60b|dZ׷G9EtOObSs"$L7+(-;=X{;z`Xj-Fg;d@I]i9l{.u"|S HlՇv_yVژF݄C?̮#i[̠VA,,eɶ"K133333333ͺ7*ywoyrȢ,8uOߎyۇȋk~Ʀ u.{+cE-I?#/Gb/k~it]Slz#",\~i:>r&N;mX{ uoμXg.\1e]ovן}أlbv]7]!OoRjzᒩȷ}+Wom6]j} T_7&\j FͲv}%c}3ښ7kmLbbJK4m $mAo­\y_[Wk}.54@6X4~QoNSf+ ~oNq)]}g㋳LIc\.b.d}=8ESĊe Wmn2Pjܦbyg.nn-X:o}?nq4ovյ%bwݑv6_akk)vgI-?"6s}HE["Eܫ {4 S X@mlkqrwBb_vss]~pY=}~TZ'®Z-xf5D/2յkז>ĸujg9EtvhuK=xݒa\/s J>i>)ۯW(^//X/lnYV+{667Ԧ-ro<7nnvONK׮]vmYē|ꈦPxZ^7|f:Ktʹw%6u6}}UQM₲Ms]WXՈI?SҜX4yJÔYX717kisrUWCwu; wxB6Đ)qŒ c[t`8EoΝ{{lU[g+mn?l+W} E-VǾ4SLXHٍ}lsq85j˚}5v:[R/$:bd9oo?;Fgl 5+?[vYZ^A2? RJBĿ4,L{ 4bQ7פH/o_{Ya _@YD|O/2F?֌jF%[Wnr)`9GKu#Zk\ݎǺւu#֍w/K-{ I̱EzrNaU엷eό'U~{AFZث:rm0[@RLJwnA=EO $g*o<~6rcϦ%Ζ w{_9Ԍ^kU/b{q,csc:۪_⣺v p?X8UR7I_yc_ر6'2OE_bl/5[y?Pۿ>/pA]?(]Rݏ?k.pGjXȥ@sw~Hsyw>ퟬtbkia +erI?UuWxC4>6[{Dmj7%1.]4Dl!zl"f>>Zb@L_c4#k M|5 nuugO!]vI-~fGVr=5I?`Rں`|u^w_ڛmkG_Xkvl8cof!5>؟Y4^ˍyh~x^ƾ}Weftߝ+Gq_zM[εGV/l1yg_Ss3vCx7Ը^{u jfSKˣ}Joǥ'#Κ| Uɉ/[Tfp?96KqOGƿ\/*z+FWū7XS3![J7ŏ-ZE7?~l9̆bٲpG&㱷[|ƷQ4t-\^c]]c)vejm׸yĎK>r[bg^\Fo/ha"p콝kVRt;׬Z~L2?#3YE2^)+{4[f;-[/jp? ѽ&E{fwfǩ[;)")$i֜μSCklkk:AGc_屃\[B|%썭J|RӬ_<ᅃ7,j/u@_6>Nƿ-a7טub뼱7~6- y;Hōz9dϞkfM2}5 e#ԛ Y8%qz|7s{Mߛ} ׻N֒ߗ[64w:U)1b?^Eprb ۷_,LqsC5_7q]uN5ߜn'(Ko/Dۑs(zχbgɷ6~n^*t(A=FuhϿl AtԾ{~eW ~2WWO%;O|}'^}Ϳr,-'Ŝ؟Zs-s>aE9Mㆯ6c_u 5ץZ~>3c!)oϔgWkO#+`J_^h{j;-#"7B8\ga~9`SM[7p#t_8I8vArg5WX4> !bC.4lŪ+֭3c[S| eͺ +W.?fdP)C_Wl6Sڜm݈n秞Lo|}K񲹦Rrֹ5(zY~5nǽ?濏s{ _sOS͞ڎ JXy)ԇot0*ڲc_5A ULb)c^_uњBS6)wKzSFf_Sb F/ɣ/j 9ÿ{&c.Q3x<x_Q}cGng-n zKlj^n,kwY+v U8p 5-qv]hl`vO3/i)ro$ƒOMmׯ])sp.K7/ZEeuQv[bw8Ѻt uݵo8^z7-k^7o ["k]깿ߚoumuO+Gŗ;Џٱw#Pҵ+WZZ3Yv?=dYD Ev?Xy\͈Rrؒ'%cEX^aQ7RW5e1#A׮khu-ׄ>a+1s#mD{~nVYX~4qFO9oO;Ϣž^/Go{2=vt/Z'KZ3h;Q:,hάwmnOro#`g KW)&ko!w]W $cCH= ;.;lصfp+腫/jsv1P%]kvjclQfSyY5T?N+֜kAm:ǽ!fk$M'եӬyj?I2RЬ&inM6/)oC6K|ޝs˅_45溯mn^XڥGΝݗ=iU=kj܅LYΛt^b!T.!OiZkmU@+yêe]-I+֍]!'ٍb޸_r/uW`ۿPjk-uYYZRCؚLj㎑-ѥrY-nu?oMhY?fɌ]M]#S}P*}Ъ)ΆıUÿzXŹc|[m A|2۶ЧO؂IO(w7ES J|)xPVw_>Ýׂ1;agl |x >`>`\{p/h1/l_6_ ~%/cX[?<|1\DdJ4nOL%~* j'?| v[&~!Z-o v ~Gu'~'Đۿ|=_`+|# |S(+où xw/wn1K+-;IໃޢGǚC?|O ;ܝןߧE|?|?>xD _ ~ -wAϫ/تc͎!o=){ ap w~D Gl}<~T? kJ  cZ?` ?~q-σ^5K3D;x1xd[{ীw@ূB1xfO?E?`[>|kJ /؊'n?~N CZ[%`ogRVI/So~ !><&~yǧU! zo/ovqR/E4_!:Gr]/p?⻃-/f_~E9Ë ~g;(];W_B?*_%~ﰖ}cp 9@$;sc a)ǃ? i%Ay.<+|Z]F|˳NˉVJkUBϵ&kub7߇Pm^u~9Սb7?U<^"fFBw;À|NjEx,꿻6=bz.Oj/&ajBG_\K '~#{M+9zBI=I ~O'3D{C>'G>/@<ߋHҿL;P ϤFل׉?x!xYG[!k$EZxo!KYտP}O B##W*gĿ| ? xmg4rlk&Zo ;#}Oqt}lGZj~" 0 Z_R-~7x#A|ń; {vlQ?y}%!׺ P։jo.ͯrk 7B-?%BO%/ބ3Kg236@pu˃?\ϊZWz@3gB i]n5~!9@=OS%Fėg{4xt?ں1{yj-?u'z.r랆^@|9P|g!>n5~Gw߁Pǯs^w1@|wj_=a/{HKbkwn=P7?2[P(C'Gn Pןz?pj kF? wx?'6|[ Ɵ@|&_F$^O&@zFqٴ!tKY+9m ~[O'קŎ?PwI?;-?k_ gPl1Z?ylkWkhY2j/keF_A%;#i۳Nĸ|}Z-+%k4ZėЍ+v,Ol5)A3(5/WQm 8O'֏ßH{I@_?R^S/C'߭/0ZS$u#.vg_ S7~g =YzQ~=Q5Fu}H;q;5tej]*v/#Hؕ7tE^_I|'@u"6B3Gˎiѭb_wmbz;2]t=^E|mHQC<>=^Ry?Lty}zJmO$}$ X<#%@=tY7 9+Xby% /'n^{B#|>Nk$o7H31ny}zW}Kk_ woHz!񝁃)'b?PhDޡ~[/j; `9A'+u}QC"؉l;q{xB]y&kėMCOmQ{[?> эSKpׯQO"Mơ6c_D56BG| ߟ0Hﯷs~iT oEʄ>L  m ƟI|5o gG5|^?1vK;G]͇? MbC o_ίU»/SFO#ٕt_+Bկk_ns(/Cw#PMėj ӻG^Ө}>8JB͏}e*B@| A»wn;ǩ@[m?PP3k XB;RB^M|P7Lj߱bzՄ_C(v25Nk' jN'Hw6ߍP1>݈?ƿ;ƿȟc$twgKM#MGd,dms U/u^wC"j 6''|x=/mn4x#'jDBo%_6?PO#!vk;I?Pw}Wpm&pwϖ?8_6m} !?Bc!1؟ߒ!~ u~ @>_<+RBͿ~2sˀ_}-ϗzu[@]^o?2_0~nK%뺠q qtẫg4߉\B_6s[)mҐmei ƗgܶsZϗ~Ћ?ߦ뽫W^CI$Ih~RxW On!>B#O%bI1jN2Zcb_Fy\^oO9ηPlO!s΀Pt; ?&w$gb5w_JϹz;w_(v1j/k_ \Oseo _powg+*O+mBͿk"Zk9$7q o;P{Y w/y_Tpnߡ{zW a&xeCSbLO狧03gŞPsbz< b/_IjBb_CMkC_'P/n!oF5[7;Rwއ/B' Pc{j"c{Rľ# c|2O@?pď&>iO?g3/`}C}/i1wc|w> ]aO3Ib:I@}F֟DgwZϧIgbXg^g_@O6~㶨?蟻;eEPgrVL,?ﯹ^bˉrUjZXg5~ZOz>L9ZBߚog_K|~ѿw }F$N?P Ʉx>I*6~~zC 6ھeN  !ֿ^zߛ2 ϭ߉&=o`/P1Cb#B?Bl# r#{IjGG5Eď1;y >O[b5 S뿙b/$%/WsĶPw(wK\ P7%b ^#}{BW@| O%^/2Ə%ȏ;GW g>^ >H;S7xń:f5!ė+(b_I;kÉS!v :~GF5QF| 5##{BȯN-Ɵ3_(y~-v.9@ίsn3\'vՄno8_C/ PϏ; ,.zBͿŮ7Z%7;^*v9 5?.kˉ W]?B͟#}8 uh_o1ېwH%t~f5yG>5?y(C#드'P(קG33IOgSrM4i3~{F9}C#>XL{Bφ^H|)P?w%W r^B|u7o F ?%]kw I"y/B'pχb?PGz>z?qHpBmď~ cXB/ď?񒇉? 5O|oC+B;6ķ1'= !>w$kYRs>?I O#^UIb%ezI|.>_OX-#D&eG5~Q~F/D>+kqRI@?qm$3B$ZTa }*!wR%iK%ßLSK|6P7ITgm ^oxBߟMr9 O9z߉l +߲$uP[A^w%HIz_M+{^ P?-7XߒDvR;7_m1>?  .Pύ^$H篤Qbc/!*iC_ W%Pc5x⫁&MPkb^O"[,D5NTb3F5#Bi~|w'oE|O.{ҶbsF.B5W"?_TbKO.m0)Y@zIZ&\"v%:>}a5eėk)bWߞP_!W_lW]ƿZ-C!#~.ۻkOo7h𪿑&7Pۈ ͝bw?PwECw%_5C ~p߃b?P! 9N{u|{5cߚPq|?aԟنP.L_L _ ܑE_NKz/'5ʯuc [Di'ҿG΄ڿCj~Dzn !?MZO"ZO}_ _azC>~+=Y@>~'$C'>~P׏EkP#%B%=PWA|#wv%|+bݑԣ~NE0σwiGpJ_%WsJOΉk\urvr b^?Mȏd9%¿-GI^oK|o;B_ivKvF~%}|ߒ]N?P =_%˜I ֯S^י"B̥doz]?PC{ XGjzG5~G^oH3cP ~C^%_K>$Y5y~;$K1u\W8+ EOh-?nTS|u-7Z~:Z)@_t#kAA^oG|:\N!!ۋ`5<⋀:n~ B?1ߎPHl%e u@-+wkˉ';߇]柜yW _K3Pۿa6?PEMON5~OWF^F~N#> 5t`_xt?|, ':xwGŸIzwzI|Pχn|;BW;@|ljb'?ńZe)ė4zfB|y3[bg32ZYy?[\ u7QB_JJ^j#gP?J3x9>H_vBH;)Ez.Wt~ocx>{~|"g'"RqCS!GCw?&4^):ßYyH2k/?EtJ77Tb=#w#g!"Cq2_r!Z1F~ !x#?C]|Ctw"rEB"Bw"PbDWE5jRbF.BG_;nc~3=?Kz7ʏ )>b7z/e:w `5{P(v0= 5?k '\~#Lk# F;ᄚD5F 'ZI:~?4jN'~POp;m Į5?G<jsŮ4<ƍb¿Pƿ]2BK#2}ˈoGB;Z優?`?ˉXP!vE@qb/z_w 5=bz/5@_q%)_Ou^?@|# _S+_S6Q|/Ϻ)O?P(ߧ} 53Fyc!q+b_˯Wž15⫀54> ;B7ľ2Mkqo&};7R<2S>3Zw_1 u?ky? !w_7ȯ;b?Ÿ ^H|>χ~K u|~}_[w -B''~ .zLM6ﴞ ?X[bSD5~[|Z7PO-ƟL&}'9J'ZOL ŗ6B-_R+ R`O~6UK"(WjJSw|7:Y"]b$|qs^boTYS;z{K 5Ej=e~ėɨ_9K$S;_ϏRev3旬 ߕ.??w^ ~Ɨg$D~FxOL;uCxt&.78/1S?Pװ1Elc0>0^J] ӁuLc,?me54k 5t'3#T~>oE@~ : VΥ%#!ϩۋ3x?~;wvOPl1=501=;!uK#QK u@}woކ^F|=$; :6G57~/~ߛD/H/\w$tz7'ο4x ;j">x z][#χsؑ%9Z?"pB=?#O95vtC?lj)X~/vO P(v2'E5W4~.65 xT3Ά'P?Ybz-l{js΃?Ш?K~:.&?.!~2Hr+ ^wjW*'ď$uďz ^˿u|n$xBja~!G,*B߻4n 5=b_C7B3ʯ!^Cw͍b˄CѵOuWy?Ms?W;K—F瓗O+bMW>6Z׈.&5@~xC߆^I|-Kj~_Gſu?~. ]'7jy83#s#?X N]:OMF;s 5}+CG|PǍb?_ a5j~z ݨ7i_C;.m0M@}>u"5K!/Mΰi H|O /$_BizB|B_tZ&5~F^g?H1?7BJ_(V 4BY#z_Lt_vZj|95z_FrVOp??䬟Vg5~%;j|9 !WZu^P$}!gZVg5O%s?ŗ = }=#{ߗ/BX_"@ZR ~0o;?FOo9m#/ 6BBͯQz?(xnn}O|OIgIW(v'_˟bSoO9%BH7BL^";p4lC1Gl{C"~,Ɨ4m[j~l#~{jxB_S@㷐xͣ)4KĖ?PK#Z2g˞3sueI;kqGe/I[_= _E|*Yv5pMB6z+jb_K.BPe=f֓~O ?{po_i圝/H+?P^0AھC?xhO;\'<#S~)v4v؉^4jcĎ"B͟c#8?w1I_  x-\Nk=FYD{&/5Y?J~}PW:rC/$AB/cv ^?DԾ QW] Dk<? #OߑPc jO>gzQ ⿢D5q?~{w[k(3 u|eO2_I w)DC"BwW?*BNEH;DB˚фȏnGE`t9L9=ʫ>I6|~CBjE_}FH+D?P?t/{MzӀ ~Lo5~3 ~IgF3XXC.:_L1B;_ \ٲwP/{iHCB{+)6k^w-ބ?}"/g  6:?F5 };8B?wO#gjȞ>k?ClՄ?3#퀍 %}+;߿oM|govw#6Bn3ƇwFhC"$=U/~6 &cbŸD G[ wW3Zu}vFl-ń:>RX3@z~K Մ?rfKk݈\j6G5F~b+< ߨ~o4w(?;t#gO[kO*gcO'8 ? B*8Ox#:AtCH|>GO;BBͯ#|q\A|L$%& ֏s΃Ps#<](bߕP_8_&v5zC(b?P_?8 v 5z[Q[nGB[^N f7wBw^C(b8 B$H_>R'ŞB_ ^Aث?D_kW,C-#oF5[k?NA{zA~I;i?/?17ߙ燿;7b}د^G[ߋz#񹄪Ũet?;F|!*!rKjBzŸ'INg 1ZK~22z߇r>9ʀ~|E5~JQekF_ #27u0Rl~;-c4=?Ψ_=.ceL 召5珬3 ?^ !L`@?S#Q>=9.>Gƭݳ`HRl--i@|6b ߖ>dʘkK̀>?'>+E]R,$>"%#kqN^_B|9g؎ gY^h{'j_BWah !3v["kv7Zb C^o$>+o6#\A9 >#{_^bz-oˁ?v}@kc!?ڀo|q W:I}#>9`&bG0wkˑb'zQgb!}N@_^ 6v~:>N;N;k_ ˯SN2?_ ی΁.߳#}|>9C@#X!ɤW^;ok{ Xg3.]&v=.~?WbW?8*kj ƿa a^+v=#.B7AMԾ}e-w$ N[#$ ޟw ~|!~B@+<OY'S/ 3s({k$~k\ʿ=e5#@(>OQd蟡hϒ~W^w_\_ _\(2;w绗2ZįyE5WzkzF֐-jmֿC1;'|x[cc|bŸbz-C3|'O q^b?ѾDkoO.koOwb?Џz9g~9.O{>B>󥻿5O4?cgV5?qM>9䟻_LCJSO>Cz>Ȕ\ R@l5bUb Ư&>H?Y#V ~@߿"(?Fo@OKhC3̗9䀾Owg̮u%XB4`,pz6'e@<ߵrme~qEg!OW?u_D˜P/ug]Y(s8:kW[]Y#sWKz>s[#k]/ZQ>3MҝܐNh.v3)}À^Ɇ^7Yk7?C@o?N{;>B`_:. {utϩb?n? ~ P%vへ?ksϏs·r@??kܖ.Ϗ #"K.E@E5FV/'!`}p9Ј# }x&'w;6OP~ %M|P/7~u@?~F5}F=H ?d&6}SkbO_ 37{kO_ЏSb_Џbz }gZ~&"ϟ>24#⫀} ~$B?%' K_ TžH@_o"['Q~r@?F5OF&+ߔ>o/_wMϷYmk+DCZ_dee_ 5K֌zC3/S|i`V cg,Yc !)oYw%MVwȒ~*W@_"k"{GRȿJP+$BKG_Aǯ4g4kv!}?#?K;ϯػ:?-ħusuVK~wNr%u! HsVWw ՏQ>=H 8ʗ\00%gFz߇XgWŲzߟcz׷Ć?+>?fə?kkA`|1?F1?' K;̦gҬōWl zw?S ߟ o~;PdC" >;kC F?Lbz=H ^Gg@_Gg1F|}^?OEUjg!L ?~>#b_9W+~犝u-k'P\]C@_ Ů0"] >.kK{ _i/"?p4Я׊=n5uď z;O vF -[H?)[6ǒ^yrX|p'S3)Y}-!~6pbÿ0o}zQB- ׿a#F-"q%>w+O) ^?MX?s5x|+~e'z e}*  ߟ! 4&` ק~7}{Qb?z!è}ޯb?z }*crgb_?.?_}. ~|@~)+OחG^&7Ƈ?ϔ?#x{r@?? ~*p0~*%5eУ|b~oK|0Cz?&[֨ Kz>t<3g7?r$Y8;Yb &^Qg\so_ٲdWzG|瀾~rή +/Ew 3[2C=lSK ^%WQ֗ߙWP W*c|q[푿;̥wg2c o$XA];_PlɵQ^w" lw0C_E\ A|>?e{{o@]{%pكϯ'{F@I? AF~1>F?0op#~̏_b~^=| KO0"E@+G8+4ėlW4+zs oU@ֵL;;#Bg5doE|w׾Ŷo@~9 d7Zo'=Cύk?7,/$~p}%όGz }. ~'[S,mm4Z uww?~󇵆^BJwjW*BW"~-ou@3g55({7w Mb ^o&ڀ=@z>u~({o7Kl_w /}i;GԾ?Ę?ԘAd>ÀGOhc ^C"??o{O;\`x"_ibg_b/zE*bg_Pϊkol'v/v ؟ƿ(we ~!1T+Įl@\)v"~p2b?%kn6Z_'v[{}^`ԾmvmOI\bj=b4{Ş4>we@?~=n5įAw?=IԾ'Ğm?) ^O_}1Ɨ翈X {fO+ߝ^(zwVBx?%3H 9ī^OC0+?Aoi|x_} PG}c5Wb_ϏEl57ėV{`Ob_g `/_~w@E5Fr79 7G0#~@@NYڿE1nr/RKz-2`m9˩}@߾Ư .WW'|- C9ŸP9O `&x;gu|P'K,k:_ @52+]g5{J8)`L/YrU0'k]N7/Ϫ9 Ϗ򬛳kUcWFY€^zq9g_ ?v# 9~n~},vw'gǀ>_ !~ ZK_'v}k7_7 }@7E57O@߿G5FyK4{_];LBr@$S}Ԁ1={R>T ث^(O5H_l{Gbz$) ^OS@?c߉/^ ;p0b/?$Ͽh|YL+ T _ϹwzryxKsCM| ~?.ǻbzbϿ>0x(??t_}60;- V{_2G;.~/u|%s~5oO6? 1?ܣJ<Ϳ z}CK}x^T|dObpOL/y!lj On&Y@z_n@1Wr2ks/ 3׵!UG1a)E/ 'k^n1j-7x?:J]sUWPRk2|ˍ3_A+s=ϭO_7|o|~f)}~'>5orev? N/mm?7/}k1.FGikF9η&w#H?z dszߋx煔ܾ/ 'B/"~/ wHb#/W#wLCG_lG+c wtCg׿cPrE5x;RL~&G5}t?-Rm 1r[e5ėi~ko3l<>BJ_ n}e.7݁R$B!~9oh@~W!|}Ul%@:wؾ^# ^l#5lkķmw@"Q>8ηO@=E|߀迾_ܣϿޏA@p(bGz-@%{!wp^B^Q ?ڟhG!wŸqbgßg|?=l.b'_Зؙ^w2z)bzQ>=9η1ĻMs;swq>صw>}\ v@?p2C`5ſXRkzQ>󗑾[lwؕ+IlעwϷ7>ȽQ#Co"O7~7 y@?}`5W}@v ƿz{w狹wǀ^4Z=wW~{Ğ3~SC 1!'P{Ic[xDIC%~J@1'ǩ~O3?C;-/Yc|Yӈoz@%#YӉ׌:ۡ[o0ƻ8;# g X |S/b>kω!^Q?.OUO|KBX?~ K ݀(b; >@]?]&=B ~pboQv^k'y"ﴞ:?Oy:"?;P%2Ok QL uD5~1;_@<_hrҗP'|'&?*XyW9k3f?yg=j@y?-3H|6P%}^׉R`˱%B|=O%ozPdsE u퓵$?nZ7k *`~s0oK &?yC"Q~ #3? ; Cz+6| =;k&OΪy/_ ƟD|o&M}@8k<9+  = ǀ|9+hwM) 7uk+ }k#:'gSo9}"fΥ&vok;ؽ/ =z1Kki@A#?d <Ğ߁~Iϗ/\~`$x/ 0;!ߗ>2eskU | ?.&}~oO{@F2Occ}~| ^_T^"P?_u/Oľ?+~2Z7g>|+=.B7HOhhC/n^?/mӏ-/]ڿk|zh /l`NTtsE5~Q>o/g+)8f˜J@?ħb+k!ZCˉzS|9W_ǯc5~@z/_zoo~M^# H3I~=Zkz~'_ꚯ6F5~Q>OgPJ=ׯG^iLP 5_;`~PFŸL9ok5H3y?珁??6 @?z?~|E5x+Ħ_,C_MS@?"Q~'gQ:gߙ[ȯ &}˳FM'ϸ;gu)>@}w-$/rC[D|)'2Ko_jW_A|*~YzŐׇbO8hOwFl-#_K|a@`ԏo_&,w'.h/;3B">cԏR ~$(?\;t>9XhC!>3g;,B'>;e/.P??_X/ קN5Zė~2/׏#$|>JK6ӑ;%GĮ?-oħ];}F~_@"K](v_ ],v)}/kK~qg__eꕿD.v> !?*8)}F|*0v; N|xؽGaC%W?B0{sdQc|X8x}WO~`O  ?L?O?^?_ڝ %sZyYN @=;J|M@|ҿA|c@}~C|~|ޕitoj/ ge?U1sszs~_oI__57O6o3;L?:0[zY@OlYWR%>XBMK=B0ʧ{m~[gwHbj OY*})z_*@: ~ ^g_ @ zcO8߾d/?۵OΪg헺z_A|0ƯR܀Uz_mOq|\P~zB|}V^~|_K3׭;YA7۝T E g^׋| (__9^#XA 2?@l !7`p^!#H!6k%6k1F|3Կ-v!.!NJm@?ljj5ķv>A$wb^dO_;n3:w{ ׾΁ obz@ob\Kwe@=߻?_B+B⫀<>]׀>z݁'W7oUZZGs ^w-Џ" TF#?F<;?}ث^E|6Pg?w y@l5W+i|#:o? {0B{NGs@Ğ7quw}$p4)gz3F<؀> %F1*[α蟏D|y@TSx>?7#ZOQľ\Ɇ^A|9Koz5&owi߉~~@|]~}uDK>~@G5F|8߾5~a+cq[ɔCz>-=0 4 =^Uk,3?Ws/W#k\+?_P0v@ڟ ,XXz_ׯ&`wUa%=UD~+5b 㷋kZ|߁Q}Ks1]5F~MONu&~f@_.ΥZV-Bn2}0wHgEßϿħs} 7(BL|>¡b/Y8Ll;C_Prp }YpkCGp4C| ퟅo<=Nfz?>@? M@"Q>}ikǢ@=nK'oGh''(hc1K/Ií;_ ~iȏeЯC|pz {zz⋁U:SA=o#5@݈ pwݼZsWo/SEb'/ >}3xG1-gʵ@/kAbz0v a8D0k=0|7.ϟd:}YYx'?Lj>O)?Oko$So,vϩb{8M=z$eF~1wg«Ůo.{kk˟n>ϯ4)b7%ث^L|W`[ngX|bz]Wp;`|w6>?w{k?8^}zQpFc|F8Ȁg량k?9Ϗ^4xտH)}dҿJkj@͘SI>06֟];> Ԁ>?'^Q_؇gzw}H|Pϯn|?1/ Z`gw 35Fa _Sv @|wb?7Ed!?? ~I 19 m)?%ՏO|2ڿ$4oQc|> /ϑ'>?i|z3q^ ʄb~H쀚EH+g٢ ,"٢C/ P"YTd/"}Y@}~+VQMY_B޿*3]Q9zkruZߊDSW%?5~Q>F[*Cz~+:ß"9M1Z~=E@z~+5_秳I^7HoE֢7Yho[EP"+zߍ..U/\Q_oQOⵞCr&,^C|_tu|X4@h{\@?!92xՏ"Ā~~6k"Qzx#'~1Cz-.6R =;kWh7[ CۢĶK@_*Ez ]|[$g vb ƟK|~ۋ-7wEn·tޭ];-6Z|@l~!Ȩ?ߋ W+kShw[Ԁ6Z M;;G5.F|f#X|~ o ܞڿIlwz-w{&eߏ֏~cYHCO >OGh5ߏ8Ŏ7K9x̟C_):E*v}F|7wN'>gY@_bzmYė~g c@߿D5F_@k _H|:Nb?-ڿ}].P??u}M^9@~>sW_W`5Uķ _-v-{M^_kO?9n3wx|#ܭb_mg+} %P2CC>]b_zzF+z~A;Q{@=yXiC?B|O`X^?N^Q?|q#X,C}ϋ b/ +O eO m)[b<_kw_W}w ('?GFLO1r@?9C i|忥-dxKŸ/ħutbß}kC\`9b_ЏϟzQ>+~ kqXkDW'dXƪ88kt=C˚Yzeߋ\ocBΟ|#Y_^U| g|hUxl7%_iSq{wM^'>NXW}SoC&Oc}w)n]l`KOCt}MW%Ÿ`5N:C ^7}#>+>_^Z3ţ?䀾O ]T`XgRVrs/^ b9?-Or*~@_"ZݕPl1%}01@޻Dl }F52|po_ ![ Pw7˹C b9/o8_~Q^o Hb~&+Cnz*`{r|/{F5^}0ƻq_7x- }~?0!;TpX^É?OA LN?+,?쀾}'z>a*OO wص^E|:P_7> 60;;#vyb'}^@}~.ب_>ſ_BJW8ZMh 7 :Po7>7e5gEVW 6zN~ N~pw o: wk{ѿwc~fo?"{T^,`>bO_z$E@sX3«*Wݳs<@Qe_}L|S@ǀ^k׈ E9}{}C|.{bx@_4ھ?8 }o5GOΠ} ̀>'b_z)L gy^aO;ηoN@{m;L§<߈_зwnKVo GdCsZ܄kcoC%m7>ڷ{@O1iܝL{9>/0۞ėb<C:^R ?\Ԉo5~;ⳁ6_W{c Ư#Hϗ%>B~٫J>',L|c@?]PoJ糃G%4{X/s~A$?P+ñ;J@#?ZJh~>R5;䅋'ϏWt/%4| .Pxno[/xn%. Ā>/%>)`wg_ˡŮ?3^%Z܄0<`~BWl55ߵb#}a@?'(o2WDo~q~|J'Hb϶_I|y@?w=b_Џ=bOz-^{RW@~ ~_~aP^?lǨ}3OQ O-7?=/Luugz-e3 ӿ | ww+ ̀|F^Il6Twރۀh5{o\Awz;WPcWQ^lϨ}k@܏Ş"~kCwз;c%GʏD~~w_ [^ݘͿWj|l1_ z9@=&Eyէp9C:ߔ\/Āy'|Q*sz_!u,ݛ9~Stp,S5׿ _J+|֏JjKL^k/OiX-}kZJ;Pħ7= \Cy) :P2zzg3]ĺPϗ]#Q?u\i_sÅM|.>.C|2_ҡ_ uTZ 7 B$*!>x W: eKHg> `=C$ؙgcJ d%u~*4 ~ 1 [yoD=nbjIPkwןbK%b+ o)t؎I0w{r][uYtK|'g5^B|9Pqcjkc?5j|g~W_?NvHǕn [6o݈rob Iz;}~6iߓe=Q?q[O0 CON439P k\;kÉ ӻK??9e(Q>1cDϩ SR^a&4不~.=SK3,Ⳁqعַs.4Zs/ < ^瓾$_/E2`%"KP.kKϷ/>_/gƿ(+3%o e!NKh~_+v=9@^k/׏1&KYWpw_0V;{J|w ח۩~%c?a|O? Cbz0c^?F|^@~=.Z* o0wO=g o?cQ?G|}>s߯%_w_!+b3okzQ>}~8߾^{ֿc_/70H@ ^_U)ieB81v&xz;O { TQg3)B6$7?֧߉VQ5_o%X ޡ_N%?jS twXH/|炿Cz~/Z]Iu 84eRײ3]&{uY+!>+eזHPwYQ>=;=@|WVM|Pjj/ ]֎Z~-O6/ 2Y+ccυ ~LIJH|*P_׆Nw">ʖE}d/b5~7⋁XO+M0'FY0_z߇xTb:=n5@~|G5| g#өGF@_1z-13@33?ȿBh30?/0Vu}lJC"> .?>km/Ķ<߹z=Z|@lGC_NHl =_K|8߾}Fq[?+_wHϖ j@ Z@?kbwϖ#>HϖI@_= o#T6_l_OԾ>^ħ7=o  -#Ÿ~ħ~l; vH|~@>;H`W/ seۢ|J|1P׾Ďw}c5Wַ#Ŏ.Y6gKNj'><-;A CO$K@_+Nk@>9BO![@?ݨ_7 Wv=X?cs9 <]os G#ke?>΋kBe/@7]m5%O_*v93,B/'~f@ʨ 5"iGlt̛;]Po>~B?mbw_{>.vA|I@)v.җb(_ ׾{Po}=l51ϏY2ga?B;c»u[Il,w=!@_pדbz-) O= M@ˆ^?K|>sb/_#|>lWѿwI{C-n}|SC">'ػ'B%>/ۨ_+O'?_ pGb_Я_?!}' ?>kωE }}_'kԯ鿣 DIPz-a}~k߉27<?"孌AEB|˳Wy*x]W}:MdٕYz*/$>+@y }G~%\ Kz_A|)PWUz_mO:.>9G7~a}=x}VM|hqr5xt^.*#O ;y)n@=#Z^~\ֲ~|/˚PS@^4BK4k_G?-oɆ^%>Hry+N@z?(WBQ>B 噱|kO4k;nnZbŸ o6bz-[ 4ۉmU@?r.k퉯X>>b7z?vz@l }bzF\/[ z~)_K}FrCnމٙA+V?"/A^۷}[ (hr~+UlkubP_#z&~I/\~O Ϗ?5?3p$>"~z@_}IߏoF@??Q~ w?m)?; b¿S ?E'vx/FP|ρ_ױeԾSKB_ʀ#Zį g?x W~)u.k?O|~׀>/ ~m@_Kƿo]@?.3w鯤>_eoI-zu71ߔ`#n s=x.7w؟{ax~[?{̀~}qOzg~٭/~ K{Wz5(}#P|w+S%B5ƟP~%_wHϏŸ [FG||ME2uHh5~25u|*R µ!u~Uz-?:`0VUd9_V^g؇XTh G5~#)~X)%z_J8/kaEz_ED /g יu~UF5~{cg_O5+*Ͽa^?oP?v/kZEKؿbXC{_^O^^F|%qE~oC|z/Q Ӏs"|Jơ* _3Z + ^H_h|_*&_O|9P͟ bD?k(~O&}{/{U;7܎wHv?%ħsh|e.W̆?7o߬6@Jlm-km/Sm_Nls6o/Mb_Ͼb'z2<"@+|;bW@??ލk;`ooHW@/PbX@>~?70⿢><1'wXd|G~0W2zgϯ_ɯb_+^;%؟?I_ Ң|;+~R zr*[%z߆: _ntc@͏Dk$|操3B;]Z{/ងfTJNUf *%*K E|_~RJiSeķ K]+UWPן/0ʧ7m~KѿwOƴ ,[I^WǗln@oG|^@3Gz*_˟z⋁z>yR)\U@]*5Z~@d.Tv1/"3z>uuF|Wv'G@~^ /]"^ &~h@_>N+IĆz_'gRbD^?Ԩl c8 G(/H헳z8WPj)?^Lm瀾&D5Dw Sa_4WwXWn Yz-165}m׎[p_Bŗsv+Egplww*%*?-_v!>7>2oU^뷚B U*~UkuėwvgʍW+ߌ=^Tp~/sJ@߿ ̡?D0s;4B;| }>WyQ;RC"رW?&B5;ڗh`|PBϩ<]L!vgYbз?(WK;^@|!B ^_LD0xY/?D(G[ߵbß 8[h~_ b7_Џ|Co":o& ƿvz! ƿF/un狻"nEl-i ?ASIV> |w QGT>.O?ǭO= T^?M^Qɤ /?5_U(kH?-Ͽ5Gߠϛ ;_3k?'~6p[>>??}?8_\Hط^F~|?U%Kz~;@|µ;w+6}?D_!~. kw'kjZ?xwϿuu~U5wi~)F8nٴo 9`# 8<!Y \ JŚ /#XE]U u@ͯ*9KW5z_I|M@͟**٪:kjVV_K}~7g}>|q[/M;Lu}T~>~^w%>??TɞR?Tuk=z_ЏoM|P?ܕ^6O|z@|]@??_D7Xl(1ھw o5Zb A|w`)g T^&_@gԯ酫~@~~YjkIdF|5 }40P~ 뷕߆a@}>ppc^lOC?.?w[SzU;z)Yj~㷘i=̨4/\jgP?uB_+v"ZoW?x W }Yjk>u 뿑kM;k;~Oz^F'be~?Ow߁bßϿĎ4`ⳁwa;4B3ʧU]>?:b`9hc^?J` ;ko6Q(v2=)BO6ʧ+)?y7,s?7/D? Ʉ].?.kˈ/Kn|/Ҁ~k+/Q\/c@_n7F⛀~;qs^bOǿ>m?"0 A' ,뿇4o#zQ~)U= 9ǓW*w3!}?}C/.bz@?xYU+b?z*5|ڀ>{ })"[{}މkw E-!D5}>zcS(b_?5__E5O ϟf̟g;w? ѷ5OⳀ>%|+Kjdi('UW_:$j Օ^O!_P:-BӉovg9gG5~C)~X!z_H/c]]Ā>?J#z~wDxC}ݍ:KX~Z\h5~@?{rV7xoDK0{ m aU;d?J|0ɥ:gY@}{_Pjɩꁆ^ߛ€z?PG/[(Wa5?\n"XM?Xl(5}c?g0CxS4>V?bz- Y@c_8 O|!W֊IƟD|%gղWO}@_ً2:u3f#Ϗz?([Qz63=#w͗tφ?5b+O g!@?ՋŖ_ЗDlgC[J|)or1B`gj_C@Sw|7*]#SO oWӁ럵b&s&C_O|~@ohH€1;;&OYb?}XI]_^A|5P?t۞b{_Џ^{3/C_;7;}P^L|^QnB{GqQbz-hGQ#v? DD{Y^L>)b?%S#43|lc|q)!~:˝/0/t@rXx%}w/k.'$_U%׽?}sY5@=_]#vz~sV&C#n^FF|o2c@*{.|9!v;ibz-N wM@|wC^C|>b_"~|>?dGп%T?.$'^5I⋀ܿO= PǭOl53)bsz<zKFx_E a& jySC">'ػ{'B%>/ۨ}?/ׇ>"?>k_ '? /N@>_~-%w b::jzoI!l˶d'$aˠˆ\z%zw^Rz{3;#i-C/7[gf? 0_ib=?A`4Ɵ=/1 )(OSJb3pGȕ|\l)82g/0S? QA"H\ O/2?[c\DA= ~?`e_&}~9U0&1~lQ>XKw)jE7A%Z_̨yJVK4Va2F_zyJ4(_Ǩ|=%ڦY~Q֪6oBDg0 aA&fDq'ЁQFvyJCmZ~|mB&13xi\a F]K(x$'ΨkAVa vOۅZF?gi_FJ~8a)(UŌھp O_#%?\ z_ƨ:yJzP:4u7 QC_Ũ&72ЅM?tB8fu Q$#e O|P> b|Q3jg)>!/F8֯A0 ᤁ'B~-֟ #~%?E^|<'`t.wA0SO,DZ+“0~'BxA"!</dyJ_H+^_ɨkxku>K~ρ<_H;x.~|#χB2jy OH NB6Ƈu?&*F>.jFݿ_èIZD_TSh}Z-.9oeYyJs0j3O(_|/C"c|_|I~}Ӡ?Rۂ3 <_ȯf?6د+iJ~W?g%2SD?Eھ~3 _x(trDO~<ջQcᏂgu ߈b1S*0"Q)~-|rn/fc_3zF]3o<+N%_+<>od[1!gTl3 +y W9 sWl1SO XKXɾV/X O/r vbCvb"od<"#|ƨ|;Q>ˬ|!y*_!V~._/C.ʧp_ΨW O[%׈5 ZF]C<$ obkq 0-f ~يOwuタ|kdF]T{D@gV7TB]bg M"-~B?Uw)?Qй vD;J@W%~W8S; /ޏ"G=_(>O>W+lW+u^+)b{Ԋ?{p O; 9Z? y<3+np$+)H ~0_H T a/E\b !!F]<4/nC%D_OA8>R{3 1Ae=0~ֿ^5S}߈xh~`^F_)[h!1F<\p'[4?^qҐBQCZN_u_P?W<ޠ_R.TD/վwCx/E\&/4SO|q?+W<k= S_H;O _˨3w}9Q߳)U7_(g_+Gm_+SFAt;ſoo@+~j?oC.?O{>;LwYNl |%`DW}?QBA>/`>`IB~!?4/_Q_HOe_p1jh?)O4AF+ہӿcޕA+V|0~"ͯ<|_LD?K?Q! OI j/C*_ȨW) ~)bHnŷ0Q~`%j߆]oeyJ[QN_?C# g_c,Bo>m-dj7 /`s/DFy~%֟_"+VFݾ|Q/g4>he#'u_1~*"wվyAHo+uyJAl'c| n9S|qH`Ō O1bӾb?  qe<ߡ?⠯C tF9ifa|FZ`g p(?ȄbrFjyJ!_`af/E?j_Z<g!ZuB]C+ r/@区}W8S!CV/Zl߿!P Ј36@h1SHP'!}ɷ`]OWb?q(-yJ?&yt>A;8/faAҏ ĥ!V` O ĕ"}u_˨o(% ~%+)?Qeb ~6"OT]a_ O2S;!N_]/bpA-4a/Ưd{<א_B Eo-]-F]k \񍌺B8d|n0yJCakA Y'oCQU0~5nN7S]_è' ƯE\' A?"EG!܌S) KʨۯBoc a O RF]~`eZ)[ _&!Q4 W'!܎v c '?vHwb5}NIyJNCA}]˨ Z?0H)8~yD>OpOA3Cπb<#gBx6/d,/4S"F]@x/f\yJy/_/re_ +0~&8z9)W~|+!0ZunU5SBFk K^C$zl#oJ?-?Qϛ!| OEi~[?k{2y;wb?Q?j? GE_Ō:/AAe/A맯@0<5C|tju{lN=#_K! 2! g#[ T ~?1x_hɫBx +)3/B~?K~pA#EՌ-_S1/ "UA7 UӐ_AuG3Z?)? QP>?ߊH;5q?_Ǩ ? OCCcez[!4S?Qcevèw<]sCTqU?Jv ~"鏲- ?@2SW ~Kc|=#?9S߀_:oFl{- uoe_09 O (?d(_T$ƨǗڄ|)GVR8~ยy?f?nufǨ{]/9 ? TO/RQK O{!nW`&F];SDZߪ!/cA/gz`B#Fo+u O{1 ۅ~FaBBbANQ@w2j |QQO1}A!? ϨMg|OgA|(ߏJF] ՈO <Fi|ڷ2AW9O<c+LTۇxչ׉erCWQ/`_ OBDZ(^]!Fu~E*0Ʒ0mrÆUGQ#/q0퀰 O_(wT1] OD/վ!le}/q7'o(D$QEU}Bunb<)'C1aT} O_!tW/]ȨoZSyJUH&~-c k?ZWNAFZW+"Rt1Q|o|3b\-_èV_Umށu O{/CV݂Q=(}އ71A>F2}H7#}G1QG|5gO y.^~`RSC^\?~1Q | O^Sg/bF> OѐWM(gTU iF_ OC{ 7}#P{`]4S|%?Y}?ٌ>~ OPsiV?Ō~ OP?qNq`"E ~O/=/B=u? _(ٌ O?,4R uA~|!_߿Z__>b)Go! c%\6(8Ku_Wl j<ɫ<ڼCiWiO7bd%ʹ?qJ/2Ss7O+վ3~/ %rW0~\(*FJ? Ta|%"P_b<"OCU]]1/|F]_"Dj>+1~9je O|QZ_Hee<_+*DZ+niA tA*C 㣌Moc@͂@1VO:~R>f?qBqZ?h?"Ћ %.W71Ϩw>SF1~&aAʷY~n g3Z 6A/ҿ /˷QvC2j_̨nݫ9q(a,Dl8]:F 9V0YQFퟏ QGuZyw0ZA<@qn1ȯKJ ~⥢Co'?, !<Ռھ$k5TC?MZFO 3!3;=[]Z#nF?0X?¨^d@GiL bLq+_^,/|)ʨe0:Wq>Oq9߀+7Cx+B[@?SK]1(na F]@AwC} _(1<~d>hIBQ Q5O>&_Ǩ Q> 'a)G|F툫E0~ ~hAku/aŌ?~W q p+unīEZSw ֟_?u-AO Z\}Bokc|Qo@~A_u0{Ÿ CO2j[3$;!ͨQwD'Q,oqs0~QfbOG*CxocgvFp` _a].P#+ƋO`$P݈Ox)}jFOOE|H/Okb=:J?")]T/d$f B^Ĩg_1 ~_/f/0_,槒jOhVy#2L_a%[PSiL5_(p?5? qKϿk`.W2Sj?j5?F#yJ^f0A"5CkQ :M!迧3j.?.ZA' _0?ʝ#˙?I8k~ּFixNOo!Wښ@OG}) ~"R}?ھ q׏ 1,DAF?*~B+u o0QikEĨ 3jy0Q 7 ~-|Q/QF]:S36F]WGEgε/aq7"nkk}9#_u}߁ϥgH) g*m5 &1^N? O|b(cw;SG?8$f=?̨֤3S=?(P~1ȃB]j)~?Qe1jA|b@qw19!qoo=zxBw@v}ST; +G(Nϋu/"RnQ-\<= “ .Cx%EO`0SD_U2jj/C1ek_ͨ終axk\7\PZ_`|QMD-foYZ->f{g# ;0~>N>d!'wc> O[KiGBx?W1{<~C?fBcW2j Q' Wze!OU| g0~ OCAOE%>u}A"c_e_̨K [,xj Y_H *FU1S|5bHZ!Q>:Saȓ~O?5@ք725x?ֿ>Hߊƒ?Q?y*߃H/վAe[yJwH7JO߇)?'pq|&z~cW? <!ђ|j 0#|R_BCxku `|bB8aFݿs1[vF:uMy#}@A\B_HWsBIjL0)&埆<ͯIxw++!5~"=0~~&"\Zy^e?_i^KByJE1K!W0}ƨ[߁H_!1}aRH%Aeza?xu&χHau1O q̷PkO":aaBAuł<'ca࿈| C xc:f0 o!kf .jaSO#?S \1{12ԩ1~ o{<"a [WHהl-[ߚ~0f7bXR5S0j\6$򕌴oFG "8]Gg"P T߁ ux[ Ow~!"`_K~v_*u~ 6ec!J} Oo|wCy/Y9S ~6PB=?·(!T <[{ lK4A }C O_%Q!\su] O_+yZ|

qAqwa_T?FE< ǧBxA+==?Qp1/_(Ϊ;MBZ??yO \$ӽ yT̙oqOB~z-{WH#~տg .ת T7 ~6"ُZ 0~17 ~ ^E0[2!v/g`w]P1ǨwԿ1>H?Q~5S|@3u‡1~lAA G | 2jQyJc_ƨ?a(2!IQ区?eh?q~KqV \>GY+?/jF_C_(/a|/BA׊ 1N+m*uZQ)o_/o]¨}, CCKG(eU1~:n|yoo ~0MjHj+^_1{lO-ͨ?_~- 1q~yblYV-d_`_Ue ~!#*W1~ryJ?h_go?]_a={UyJ^SiIɂj`. O7 ~.f_Ȩ7 O7 ~1"6QOAo3O(.}%*re|xuVJFݾ0Y ODZsU1~:yJ!1WUڕ1Xu1~:W1S ~8 ˫vblF]NCw&!WGēb}7毷GzWU X_@ +Wu#yb}*x*Wa,D_W} O\DZ_9bZ?!bХ׫n F?_R QϰBO@8͌0Y%fQ˿Pw Q !?1?*2j< ac' 㛔>$sf<as QHGտ0OA$PG5StDZ`BFݿ</B5o_X'_/Si($_.}taAWH lbi0 O?q(?=گ! OWC˩g`&Of/0+eCX<\1S ">5,:} aH??of3{)7 ~5:[ 3 =yJm?)x;wbfF~pi#귅Q}߆˧ֶMŨf ~߇Z1QQ_3S?&oqC7>OCA:OB4fʯNyC^!1u; ~TkЎK5)v_HjՂ2Z51l\U+|_X/ʷ^ | ~ l(nTM!E/Ռ:m_Ur_ʨ#RwaNF? T]th}k+1:F=q4]Ϩ*߀xhkQuB<*y5R)F]T !a_73o2~PO|GB?-SC'yVbA2`! B._h+$(4C8u!mlBnp/D/j~p m_H?V)f)d5OO_èwC$>OҬO|'Cx 7"WOBxAࣈ|x!܃uπ<< nLu?A!4uEq|u'Dp3W3j<kE0hU:>yJ_"}4 a| N? O >&?$~ O488KqDc''/c;˿eOB9z3_W "䟉_?} aD*Zy*QΟYQd _덂1j7 Q[Qm~BT"\aCQ{ }>5SWs\?Q!A!.‡1~1NC>k?,%}>c:S:O@_Ĩ HQ9C`rFK^-(~P%_F?_-<72*c|)oD* w !=y^,lgCu'?~aD-yM?3O?uP~) dW /p4?Q`TD[3= O֐XQFڇxh?'ߋ+1ޏH# A N?V F?g_bg"Àa*lFJ?솰 O{?qHt LQ}c_HV꽘ƗpjPC>bI#%Q,G韆ID/)O ~"_ϧ |0j4/)~!?,cbFs?o_///cދ߈񕌺_F]o@Ocx(G~j}K3g6bF]@A" 3<CR?~,귐QCJ ~?^[gn_B5W2/2SD9 0~N~)?Q_[ͨ? o?Q;:CA!JGvd_?*귐Q7C?E/b2O5S3 ~ O0U\a15^\H3n_2>_H0 O1 n#osAү4B5Sa<]U5|3)jiylOQ|<i}|!?'_߀+k`o?o3UW{#+-S(&,_<׋gqy5G7#OOIoV~n61~"TĐ w: %>n0SW e"}#.:.5S >(ga| Ưb$׼AҿD MM l0COkfL-m}c}w@ O|;%}wA؃uv;S{qh}-};SWE׊ʨӿΠ[ h?NQM xYiXgY oCmcE!7SG-Ba a O ~..?[0~yJCbK8ۑ{Vp'Q ֏;?"KK @͝5Q3ߚbFz{6#ywV=1ދ(y^e?_~DF g1W) ~6.})ayJJq9}߃{x/l_c<4?T7߈u)7 ~:Nso:}0SoL"}o9:}G) ~.nyZ? Oːg>b}8 Ⴢ_Ȩ#>u} !|/d韆9< _Ĩ>Ku}A!>2F #_QϗdU_y1oa|7)owEu3j!Cއ< 㽈)_Ϩ%_c|yJׂ'7i<3??Q!1SLF߿,F?4lF|_D0j \#?*?{??_~oO[/f~HGQ˟Z*ks ~9bׯlk|Ռ->}V\}J~*{G$n]n^Da-- ,Q}xd-pmNĨ7aA|.uC0~_ɨ7n(J!VԿQbS?{un|#"=ߨ~#̨& T͂oa6oee<͐෋Eu_D4_F>;MBiً<_OL\L6vU4Xj͍`LTcqVk K] X;6yΝ[ws?'s?'u;7ށM۱uC~.&oߕۮڵyyjjL;Cvݹq>}A(/ʬt;vH{ʾ{m޽k~}]:*]WؑWաf#|ʮvʌS=멡Mtzjo%VfE(۷f(}{n޾qY*gM^ 5H,$ nmP m';|';|';|ϝϚ:Hh=-p B ޾;riehᚖ>lFG: qז4وʴc&ϿR?XD{R ۵uqlOYd8;M}Gb7<:Zeґ'(.TExbgc2S1}WǿJW9'qN5& gF/u܁+=gz{\eryNt&\o:a~T(Os9)vA &ߌ*tͨ7,MpWFM`Fߎn04T[&bQRHE7grvdqŬƣL:1L@k]܆oc{0OnEMq6Q`х'7ctYSIښdc}ʵ?VG э(F^p&@UF6sIҚzjo,稁wssNx٧.=>wj;=ܰ)deIE:5f"l9(9GKs[QڃE\hGX o=/xmَj,ļvzeqjq;|]qh6uV8n\-5nU%IK~('3,9T #]jxVV8&|  _4vzQc뭓/j읟Ԧxz$>[E<<-t@c& bDiL;#&8Og,F!h޹=bs?7D{''Xוƒ02 4$Ǚr5̗js՜gL8k}1Wu$i<,*Wk%^RHaD[ qqqs~gqVWPF~< lm+ʮOgsGeL^Lӭ9W|`]E'Fw6mg-.dSq`~6(8sf\o1`ذꁯjN#{tNe[e{HY }.3k9y 7UDŽ<6.훎bf;Le8{N^q)06f|gtؔ/%g [M?/Zqf?7Rz~o\D9[獇E؈y6b]zmA<_a}~ETc8<ׁ稻-z(u~ے ,b%ˏh[2!st<,yr:+Ԅc=J+Fqp(&/ǚXY槍&z6|? 忛5Vqde>26c~i[G}i,&\'g8-c1 <'/K}sֽ#7sg1M()+[1Қ8mVEOGѶ9teIdrMZIyytD?z:­sp<f3  8&۝[Jgs?2Fo+9I*nXkڣfwnyS#~,j3A޲:{ |qɹ8; 9n\^u=`unjX(3O''q>\~>OO>=IT[c4;Me-CC@׍9"GR'P;}S`߸)q r\_ܭܭܭ;79Tg3㹉3rSܡܡ<,wLn"eLl|V( MZsrvrv̛c6.j~t<[6&¨ ܹq1N8o4Av'vq0RÏX'Mɾd>PK}g)zsh5cBϮϷDb7`&j{ԩw4snsl߽l4sd4=P.9UnQa-n}{n޾q˲5ΓvQ,b%[z윚 2+r?s1y`D'o{e|e<*8'Ρ3Pgisԕ9/*|Ukϱkm;nyKgԣBեy(8>81V2<_x*G;|.'[ pBqwH0rT&y5{(}rU+ͣGNcQɑ#8:1=?AM#TmfQݞ2%U*ԀSJ%sZ 7cIvtG?2c΁#ڨH7JH/xH8VmBEj"ghY1=r'ecEZl#O蝢njлqזT>2Mw&>Oh qSoT[J5a184F[9}(={BPՕ%*.[b Le`b XghC{6!U~TEsv&t'td8H$CRYUp_aЩF+=ۛ<  D_ĩZڝ84<f}gO"FSYSpPpD?a% v%nTT>=C"S='AN@ @ӫz?t41du &j.Krpg* VA 餼;NlG=c݉Ρ440dTD* ֖<8)Zj'yٲ`]n?GUphԐRj#pi_Lw7sR5de4gL6X*r;$WW29:LcpUHvUKZZ:]u@1V}`_P`ORrE`rC^*=\:B ȜT,&hpOWP5 s/3aa+gwq;{{T;TDZ:,jFX)DZЖ E˲PxAhqnOt'o=?+}½KVyg*ڕLXn.SwֵL䊽`䖋i?D1Pj*&rJSXnUmrZrFy5ZN3I*;LR}dxЛA$\ԋf;Ro7#];BVrKt0`nBkH yS8Ȱs[Ī*slpzei~Xj.bfm>D=[UΜà[R[\t)#TR1UQ gPa}*f蒌UZzEɨ>帽5*^fg[j&'uia^ʊ-cB]zX)dQ5g}2.cԜ1a-HUefXHiJDn"K{UMfBN7$ @ŦrhH{yVEB!Ri㠒gȞ. r  gz$uw$,!hMt 6Ͷ5 9kETTSa5֔FY-,5l)ғ*RycszqVNBO6؆w {^5C8_T#kbD1zk@ސU@k# Eeu?|2sڝϘxӎ2q67~nG,O ᨓka5!IG5k[ SjB[U2L&ä{ 1gAKu&i9sa}htE.cՒM5JxJ-N qj ^5|1x e7}K6*ҥ4RF~>98bэHKK|mڒ8JCMj ZIbw k%gтn]X}+7kgaV=`LN YIit[ ps:ފhol}Q⤊ [W joHNsi({qSx|壒ګg [ivʺӗ1轆:ᨠf#J$Ԯy6 ߃uP;q7jANfa1*'wl9jyxٻjC`AUEđꫴ՝-= }#{'okB*C}A98& N&/޻uu( 9h Nޒ@G7lq71 r>eS / M{.y[,7*ŝ0ʠN@WV7PgM EDkC^5hRM)v)(h-U HKuY[݉[NMe[^P>J@Zvx[5,i7/=Y^ qNARh[P]gfYRϘi7p>U&ӅS禊:u*8f6 uC0 heg-2{>iZLxԛћ0; -sz]?}& M''& tm}̾>dDf# ]"0ЃI}0\him =|Ѿ[g%GlNMU j8*oBFa&'r Y7yp)sCz_n7[Uu uLiJ 2 cjɭu]h$Ͳ&ÖUN}B[wLCamΣ)jlFXhsKk|HPoϩ۷VnNZ%Ζ衇W"s#[;n'"t@m09:&U''l-萝j,TWwB6Zk\&v"|a[(caR5ԘjuS#k` J+d-μS@OӞC7W3NK@ :#8o߀QfU!uVɔ)) JJ_ժ*YbPX )Lj 97C9zA̭!SNO۴w{/wǠOSxhM>7dL[]/Д:Ŷa'373`tf p*47e1zz_YKj2 ϳ͓j%=W䎲A}#)XMvjၺök,-~'jݣ5P~0^Z{% ܕR*/ >۱1OXՄi մA%5LR<\o`e;hnBwiGN:ؒOYa}eNʊ-X'~]~5qqTstQa+MglwN0^eN)ܱ3FAa!G9Ji/-"zK7YZ3gn(Si>k>a'ܬ6hڶJՙB텠kR'[P5SR{^]S` :EpQvڪź}>zRˬ`QkıJV1u41hٌUT1'a2I5St' h5mQB[XK ?srM1SQͮolwѡtI)ǶT{cgL=dPκ&à>HJQ&v}ꑌft}f' Ad`Xp =grs/ -ͭhlu$JnXڿ?}t8ݓ#& z­SnGgMN9>ی7p2k}W7[OlZ;2l߅Ru[c9TeAoASȼ:T{x0u֑W]6 Fa"xU_: Gn(0h_F vXq[n9)Y C2j a~S;T;ypG +tJlu]L`[Z#a:ִ[[ZۛoujijrW1ޤ%*v>h0ޓ>yi4ΣPh]i sVԹFqع ^%j}˿mT*i\9?I;B~U%h|us@䑰*,475Ef`pa: Ѩ ȸ-5jfj̚5O;=EkY{NݧbMY@Z[ڭ~Ui=W'GBѬleL20ߗNvi!}b5pKuzVkb<lbqk 8nf1Pzk6`V1YA}ud:b$`;OM7V+G{}uʩ Zk7y:cOIuղ"bmvIn##3δqЁ1Mv&Z;:[[VE⭭mіX[K~>4}fv8 1VlO2jh'e!YoUt( n"ʔ$=j|z"v+|yx  ÉƴC3pkSք鋳HmSd݀U+3`#ɡ[an|(K^E;r<*">vesDyǕKZ쬽Ά}(GL=TҜ2gf,!;UuIxV-PV*7WZˇsRm:IV%I;{r~{6[&T,yO8n :kyǔnv` sAu[$دީA;N?pV,#-*][J˩IJjcVN$YPjCs:ǺPuN3: CɚVg CM )V>Cys:ƾP5Nq%v]2tJ(}9#NC:|;JYY,CW l܃9'\N.3=d=e0wL_pHOOTԱV?qc+aV:IJДRnP[0Yԓ3-$)P}*笜ܖ%)bIw ;BV,Drf|}==S'ƼtP 뚜Tbt`EauNkΖ;%M4 U*ݮ+:j-ѹ2z=iZ0짂NܜG䮩9g ?J):r+q8}hl+fEz8S-&YCq> :=gX +Sɉt7ԍ/RpeUfqVI3x tyZ^Hum='kP=bZU0{K5)Σ<rT:C$U':zBۊ/ nZW!wܣ4ھ:o7)[{F"rRsvT+՛-ız)~ w;gȷ2,ut*eա Cu!q]yFQй=\g,$3oT-r|'GV]Q#}Eg b{ⲥ eTSdYT Deʝy`j[t;ސɛ^qḫ)sw8#T"&G=WTpW8;G-PdQ.Sc'PmysUpdd69aۋs:Nqgc9ƳeV_٢N 9ܩμ^wwxNry, 3<J9\XdQ:m'z|UN6q̦]+GgPUOQl#GKWoGf^$;.Ggc,zݫ^3A-q15qxzOn3v%OTHI!,]법7{"v׮3^,sƇ2U߬Q?w+:Oug?\?{*M8aQܳ܎cKNYotbm:oM6U@WrKehJÂ*[psSKi|C7"*~;;pN'RYmnMxpNE"xԋ|kJ18[uad:NԳe/0|;Z.Ln8Ms쥼OŒKm%O2-Aݞ)tC ) >w O-v r4qĸ'IkzC.nCh{DOIF|T]7O4.=>>VS3BuqijlL>?ZlQV"Bq#˰Qp11mD%?/xBaGYb:}() R ΂.YըllR!k2[ܮ!_;/ L0 *y,0WoIXLqMd%ٱIӛTZA"_T>Gvs5w:%{89s;x2lԜ//d^AuW#2ΤAwu du;.[.-,\*$^\}fGܑ_ھ}{o0s>3-T}ޜ17[GcΜS6vN_!s)+Ac|TRڪ`Ƃ觞SWYԲh} hHet$թR̸[K6- ,QU}z+J:o2%絠ҪT8$kGVʩ(xZ-a.HMs}[gFN-Z,}fuJ }e;D'*Ry?>87\P5 ^j09帆IC{>5j9QܢW줭/FF^OqqVt`E.κAQTΆޚ1S|їmfg V y1鿡F?И  P+2ڗ&JV۲\W37HvK6<%|aqcȗp4٭_tO6SSV?sgW݄_s1;<_jW48]&Pkv4МA 9r'/(ͬ`oكʬq~ĹMXܮ+m²=3i^.Mw y{Ak(׬ńপ,Bku% /D&񊹡;- 5ht>v?(Q濩q)ɝឞuΰLy&z39o_#})i-#ߡ+l抖`ſצK h,F74l֡ފYtzGBbW7eˬpM֋|;z [31f}`5.C޻;i>B6"CSߨvR%kzyc+]$5 [9<8ξ=#ɡ&7{ΠZ:I}v(JO'S> mt}TЗsLԑ8qo#('-Rfb6vT:{!%G2'[CVB9o"uNXLP&,] kĨ*c'u,ٓ:e&m &E$8f8!6vK(jdB><ȎԱCS{v:Ntn ]sf`^CPpW7p* QriA>orlKvDmlzZ J]sk^(+ZXn< U62q)ds Yuk7o:w(#1{+9hjgnY9 g.|vRc E./F>/tz9ji/0()b+_襰E}ePf/8{aE`IENzyl6E1~[*-*{a 6a;3Czt }@hmЈm!':p<9x?LY+6:6{=U[RRsg91eshx֪uv/֩Lh=x1Z{]oסp mNԝ j_Ү@F,P|':nN 9[NEn] ȗِw_E߽kcɮoD)]Tt'5==skѫ9QrpV:M9N`>VY@i"%Wٗj>I:թcPDS>{Ih[OO uAΝAOu%CCCG}AXrU\hGjJfH=}HHhўMuA 9PP7u4Tzfu[G=hOfVH߄-}*ߴrз7,U+߁㉞9jީ|=鋛v|¤y}RkͤO5ȩ<ϒ}#iWv`[!V#0kwR(Y!Q=#r4s&dvyyIr^ߝ7w}x)(n?ltnLDюr%wL!L>iy'MzXYӥU]!\9n%\H1NIoLoKQ0 WXw4I2sjOV8?L9FseOtS2>eY؄ksf2wF\ŕS+ŘblTCUTRokU*f߭An=p"DYWPmU>3W9Z1 _6T% zG}ND6HT5Dz˟v> msmW{[\Еwжp3N/O"{o+eE9IS;Xic& E6DlnC߆R^X`gvE=\E{?㩵증gSֲ-gŮeN亜zN@BElL$˷L说R guabku95p̀'7Ir,d7Irolm]̆>&9£ed4^kThػ߱OnAH9г"]pyy7|6SLƝs:y RL圈9vPz(#QGCak_%US誑͍~o h*}K>~tk?JSl*~S<ؤq$ziBNyUdlS~ɉ 3WHlx/S·sV#(jSϬ\],UAu[U0144yr2t4RڬuvB;}~eP!ǯo dz/\:NeJ ه8C='өz}ՉT3i7B7V YVP0Hz;sbuǚ>ܨq$n/ ¿tr .R'՟ԨgoI,{3<؈Rߖ80sp{Vp,b{wBqvZEsju0w,)\=з[kW9Nt|w=]4*):EŶk3>\=m䭏r룰rN(mouVZ~x)e_`2Ho%F˴+}PxrƳ HN9}A$po[x [PKޏ;?l57A0_VQ O%Ғ\B~kҠtu$eAwlJ0ϩ(v@E^VJ rY\9X`1Xh_KIX,T >S썾<;.miDZb ~-\p} 24&OCR:ITJV;*]͙|].g+w~Ιʖßg|S qq1֩p|O2z( BʚCuM9lTJpJE(!QK(L|!/z<F?usǽ}C'ˑb;|o7͂].V;g7 Soi7;9{(}ʻIw |RmrliƳ8#Z#,}#fOGsƩQe*;/sC:t>Ë8"TI9VױmGJ7 2 ќ[@Y^WnNw/>7>ӽ+[#C-֗[dw`-lѯOOd$Z'tZ+܌Y!C"|3 ugD![$ӄ*AYTw]NUue8IE :ϙˬS}UVl,~ZTw;wȗb {$Yll蝰#ըd;'e#ˑ7y6s2bbcviExzuMu;dpxΣj4 kݾJdu-yN~w`\rrNmʮZIS*|6捎ߊ8^{COuV,NN$:б yұg t*lݎGTjjc9Ŧ]U4n.ich-xe7q \s ;"0gHo#QMċ 4zu sqݺWWFd_z%hp;+u#YPY{ssˑޮyd_q{qA-G56:_g'.e1eя۪&~0,g,~kLxq̦79K|)N-"a墳r}ʈr+8s8-}yGC,J.k(su l F7=y78/}.2d_{mBvmG}!(D+s|i,F+ũ0 ݏBm*,j7֝mueF*z' \ވ!^C? oNTgéMvwXM\ﭢmᵲov}mך-(N2q}+G\+M"k7bH߷uhnӅqյ!בSpٗ҇wEvɊ>9XU_׭zI?61otSetwQ2d7=hOΑo9ȇ;PUaҸy7HY&rNGҀ&Q6b:+N;\}&;m>_/ǰ]ԧKuk]c;*Vޫ\< ¶i_, Ct_s>wL{i2NNuW=Gi]LkNP?FY#K#בz;lOኬz9[7*[W2.f*W?b% >bk]_\"ǔ߳ۉtLl=qh!,Xȏq:Ƨ=N4ُ~gIIIIIIIIIIIIIIIIIh?_G˼TnZ6fUүm_mWLj׿:<":#<":#<":#<:#<:#hyYɺO}ud'>YɺO캫; K?y=oh0/D\L5XAvwsE'LI{Vo714@c) e~*1}03>>< 3l9_+_}]coT0>_gfT<ޖ:Sݲ\P77 %{Gw'aθ*^}}8{Uv &S?ŽZYJb7B {frt[YtyP 22i6FdjTVU^\z=@|>z=@|>z=@|>z=@|>z=@|>z=@|>z=@|>z=@|>z=@|>z=@|>z=@|>z=@|Bxo!z=@|>z=@|>w^A~?z=A~?z=A~?z=A~?z=A~?z=A~?z=A~?z=A~?z=A~?z=A~?z=A~?z=A~?z=AZeC5@@~?z=A~?z=A~?z?c/ ЃA z==@ЃA z=@ЃA z=@ЃA z=@ЃA z=@ЃA z=@ЃA z=@ЃA z=@ЃA z=@ЃA z=@ЃA z=@ЃA z=@? +ЃA z=@ЃA z=@ЃA z=@Ѓ{{.=====================================================================================eڕJI늊6ͽڼ87X&m}ULםd'>YɺO}ud'>YɺO}uuyzkV[~5f?)ȚOvuΙ_7\TקU?'?<7q >68k˫77o67'}dӫ;+^]yO_EU0t2_S7~O|KnCx W=XXyzW.5ў ;Kng馿eA}OɛN_}oo=_?!Ow>?|&I|ssMmھqV-nppo:TY@u]j ͗Z\=1e=BdZPt+="=[ _{͘SߪUj;w}{SEU'TM}__|[_QlU<1b_9ۨ sJyꨌJKOǻG&ryZܺRPS#JAtor+)?Ɵ²̲‚MR<0EH)>Uzb(:gI'`ĖQTZVTR#5ўtؑR,]rAӅXQ_PT;; ˋK̒~%^tV:5l~:G+]trayU^SQAaYѼ86k@^8//_VRT2/(mu\yYvΫWTR^Q6wZEќ^ﮘ]gڜ⹳K{i Cט!Wm|?ePw>1+*k*UU[.ĆSKHHWwzт‚>EVg痖"V< 1n|t`+^ӹa9~3}yyyyyyyyyyyyyyyyynC~hCM~?u~?4n&?䇺PC~hCM~?u~?4n&?䇺PC?Tz$"s%BHӪ#MHF$n#ۈmD6qѸhF4n#ۈmD6qv܆amqv܆amqv܆ې|5W jj_Urkan-̭0Z[ skan-̭ܚܚܚClj _*)6__V|Z[pkn-­E֢Z[rkQn-ʭE(֢ܚͭܚͭܚͭܚͭܚͭZ*ʭrkZ*ʭrkZ*br\-&Wbr\-&Wbr\-&Wbr\-&Wbr\-&Wbr\-&Wbr\-&Wipkfpk&frk&frk&frk&frk&frk)Z ­pk)Z ­pk)Z fqkfqk<<<<<<<<<<<<<<<<<<<<<<<<<DjMZ}Ut*]5}[.=w ¯BwVYY9NN:5GUibo#/.v[L%A*xMesJ my3?jްkbgoQg5wM]V]jrZvnՇJ̀'\g)R8­A!D}*6p, ~l3*s*j4 ߖc0mrx꧀bUՑ;LM< %R+HG:Rg.Hݐz"EJFrñEJE4iW%")RsH Gꀔ+Rw$6H^H ! RFi`PA݃u={PA݃u=߻|P*k7{~={~Y u^~qQHؿlP )HA R )HA |6wBEecN& )H^ )H_A R^6 niٜ93έ(pڜ=B1Q$EiHd}Yeմ/$/7l4wo&>He}z 5%.{%uwl9RLo]OF9n^}C* ؆|^SٚΕ]7vt g]?^ί_&ϫ{dtr!Aon0b.y`gp>_#ثcy8#^={AΟKu|vKSmzɷb 1[˹O.4%,"cyeuKfFy_=V87կ!%>t_jru{6_m0@ߧanㄿo ~?\ܼ9wq9[4N鶪ɾFBkjN_Zg -<&ێkjҊorʅS6i '6O&4K'66qۯWvP"osS#{uKڂڦarʹ2vBu_ 8?6igx/{k]op51gG|j$)mAfWx]3Xr呶 '}8񗿍=)ΝIzAEk>+0lSmr|Rݯ$/#T%\ŋDf&l1@wnE*?x|sX8wn1nPcd߷Mh|N\Me6rqn]?k Zg=o/O3]q^<=Lx|$) {b;8 JDw}G292v1z߾FxLV$9HȤ #d҃L #S S}s3?,aw~X]쇥 q/[BKc!WTR^Q澽lN²’iBU)*8_?3_84^tNIج"v{tb;~_?v\q#"M BH- Ej'{$#؄^'H] H=be~H5R,!6ibpM՗D;~~7 I¡BKBlpRha(v'Ӑ҅ؤ;)&c 5BlBqbt04ropoBp' )B -D4i&R HWӹ~Tt" X9+E4iIH'#t*iH#*nPG"8Dp @"8Dp @"8Dp @"8Dp @"8Dp @"8Dp @"8Dp @"8Dp @"8Dp @"8Dp @"8Dp @"8Dp @"8Dp @"8Dp @"8Dp @H?! 8X} T@8$p  H@8$p  H@8$p  H@8$p  H@8$p  H@8$p  H@8$p  H@8$p iӑ$p  H@8$p  H@8$p  H@8$p  H@8$p i_  H@8$p  H@8C}H@8$pvPUsa@v #@28 dp @28 dp @28 dp @28 dp @28 dp @28 dp @28 dp @28 dp @28/ dp @28 dp @28 dp @28 dp @28 dp @28F[H@28 dp @v^͍(ؠ(@; 8P+p(@ 8Pp(@ 8Pp(@ 8Pp(@ 8Pp(@ 8PpC7p(@ 8Pp(@ 8Pp(@ 8Pp(@ 8Pp(@ 8Pp(@ 8PpŽ%}vl\|%WH{p(@ 8Pp(қ+*8P TlT Tp@*8P Tp@*8P Tp@*8P Tp@*8P Tp@*8P Tp@*8P Tp@*8P Tp@*8P Tp@*8P Tp@*8P Tp@*8P Tp@*8P Tp>Ci78P Tp@*8P Tp@*8PZ͝ h@8аC84p h@84p h@84p h@84p h@84p h@84p h@84p h@84p h@84p h@84p h@84p h@84p)vH;4p h@84p h@84p h@tp@N@:8tp@:8tp@:8tp@:8tp@:8tp@:8tp@:8tp@:8tp@:8tp@:8tp@:8tp@GH#} @:8tp@:8tp@:8tp@AAAAB B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B tPtS݂>g>wA-v\Y?zsJ'w&AJ8slrɟƒ$ZӲsM J &SQX]o(\QXNOx{_bUY ݲܟM+,N]Dl!Վl4mfYٰC*Rie -PáUpAi~I?pI +&~fzȺŕ2hE jfG%qe[Vom|p ٿ_p88lTMQ)wVƮaeB2wU>eV}l ~n)T}lk浓_ 'x$x놰n -5\9BsKwfܲ&k Mod"96esK/>{iyA42Ͻ{-[r>~[?0?Ԥľ@=P}Xs-y_ǑL[J0u={PA݃u={PA݃ޏswauS>wP_BG},/%/ {CD#?Ct'IB짆fNN7\ FP؄;QN?t'ƛ N*gOOy;q`PA݃u={PA݃u=߻lhW@%'xD].z?KLNş?,>X8|p`烅 mqF܆amqF܆amqF܆amqf܆amqf܆ammmmmmmmmmmXqV܆amXqV܆amXqVF$n#ۈ3Xn$VGU}v+/%ݲ>*hB,E@\3ͼZȻ}$k%*ɶ[=S+ fÛ>lVe7t6^2wvaYѴHpm?t<\Kc?C[!oAeBJO?,qFszKe_ wqZ}zNH {G;C>:YΨ;+3~7]"4tz:k\ˠX͢vĎuv+{*c;_3,֬u_<=+o΄,ZA 3sw?өÂSkN8~J*{ۜ:B|c؋[ǎ\Ŷq䦍 1>Y03 79۴a:[ܪ~}_1vvZ?JqA/A {2ܿW[^~_P xGyrA<+{T[UJUU[nx({DU?(TM}7W*f5[^Ѹ0ܬ,ʨt}ŭ+E8u<DF*0N%Cمeec$)xva@R|Đ:uԓN'A-?}yIu={PA݃u={PAuw|\+T6OٱCK%Kj~!6=ZŜ2!Fz:pDtNIy}fW-8WRo#8DQA{pɰUY%j/w/l'/`wmƺ v\" 1Vg_/rw{/w{3o*ްZūջ8 y|__C]uNݲ6vߞZQX6G>lV X[̝]XV4ǰ޹@W`֚&\_Zn%\7 {ſEh];*{fV#^S#G ~MG wGn/NGn$h*h0: wGn8^y؛ 7-bo tIv{˹vI iHBMBMr؛ݷNboSv߸x4뾱}sB[_*"MG4YHH "HHs!GZtH tH 1&*؃?"8Dp @"8Dp @"8Dp @"8Dp @"8Dp @"8Dp U2wH܁;s_t-A"8AdDp @"8Dp @"8Dp @"8Dp @"8Dp @"8Dp @"8Dp @"8Dp  8X 8` $p  H@8}(1H@8$p  H@8$p  H@8$p  H@8$p  H@A;B8$p  H@8$p  H@8MH@8$p  H@8$p  H@8$p  H@8$p  H@8$p  H@8C}H@8$pvnW + d56P dp c߆@28 dp @28 dp @28 dp @28 dp @28 dp @F28 dp @28 dp @28 dp @28 dp @28 dp @28 dp @28 dp @28F[H@28 dp @((ؠp(@; 8Pp(@ 8Pp(@ 8Pp(@ 8Pp(@ 8Pvo@r?S(@ 8Ppŝ 8Pp(@ 8Pp(@ 8Pp(@ 8Pp(@ 8P8Pp(@ظNK (@ 8Pp(@ 8PbelH@*6@*8P Tp@*8P Tp@*8P Tp@*8P Tp@*8P Tp@*8P Tp@*8P Tp@*8P Tp@*8P Tp@*8P Tp@*8P Tp@*8P Tp@*8P ]H!} @*8P Tp@*8P Tp@},4p hء h@84p h@84p h@84p h@84p h@84p h@84p h@84p h@84p h@84p h@84p h@84p h@8V~Fi;H@84p h@84p h@84pU>@:8tpctp@:8tp@:8tp@:8tp@:8tp@:8tp@:8tp@:8tp@:8tp@:8tp@:8tp@:8tp#>Aچtp@:8tp@:8tp@:8tpWƦB B B B !p!p!p!p!p!p!p!p!p!p!p!p!p!p!p!p!p!p!p!p!p!p!p!p!p!p!p!p!p!p!p!p!p!p!p!p!p!p!p!p!p!p!p:^y~nA~E~e J)|zw5$'VI.Bome샨k']7{PA݃u={PA݃u]nZp7n\KpzP6O2AYzǔTM+,q'zݛ0n,}#,~uY?Nm>~N݊I*'ós0/t49&SOpX?xkӚ4i/׻ ;/t-4J vaR7tf9tϔ5N~Nag-;|x9۫G.VL;"~|ms6ܢǙ7oղգ63r+Nۇa8CCQ﨧j.m1׷\0<ՕɺlΜXqp~+yo#Y5yi>}L70£֟[mu;X]G~yէ36~K~>[.ao~K^.g/Qؠg[f/o3zKЦҌ~w}?;KfM':sW|dtKf2mvc'^=;SKZ;و~93z1sut9z L3`㲧lMglqی}ӡʺzT+i|/+V斗*%;Ԃ2^i޺\P8ڣh:UVRS( ܛ*?Zmx%RJfm3-/̉F]VWKGPGeTZz>]?2֕":IW {s{^)HFJC9SO:1C?X&lҲ għĎb .Gj,oЌB]X^^_`\l+>o!f>8]좓 ˫Ҝb ˊűN_y~~Aow^򊲹*ЦtsWb ۾iW,la:(Aiޥow ش3kJn׏iw餮抄j{tjsf݂ԦRW,G= $OW7`AN$cv=8axI~ɜy~o*x% G~I峌 ]SW/GII=~-I&/%zZ1>?"jqa mVQX*:hAaL?R> L$$e*5y Gw?VK;k}}ѩ&?c+hRmICCr]%u=0LrGa$FW 8덇OOrIKjI2\uT%e}fV,\O%ťe nF]8VugV]4{Oٜ =qeW;h̊Whjc*xx륉ljųN % +/PWt)(j=م3X #> \x}{ģBn]uU^ة{jܛx~uq׫>ܹfדAo_RBU;34ŻuޕV=LLwF Mɕ׭^P'zSj's=[C[93ki IO2޶|Fa TibTIy<4baȏmShܴU]%&D苪=7t럢ieͧkJOU{qbI80_&~?u+\_}c.2@x@A$HH'0TvJ ࡉB9CsaMH_X£"bQmvf%GOD5I II#/JoD:S2P8-C%@W  hSMvhf_گV ĿgWc 7nƉ͒Ms~o.[o㺮갟Z]XZVXVɯjU U r7ڏ4x3jW^P8=nqТ#L#W.-ԜF]-!M-[yykr\COރo'>y(R 6OozzVJXv_fcnxeϭlvCYvA ׽b,AO>el}ʻ ^le,mTXr.K9yWYf튟>2}cል,g0s]37=v>Ye* >ቯ.{pYQ+#XO,g;)YQUlq3|U,\}=3;ͩ+a4K;vjY ~f-󷱜2iX ]6ZG|{XݛO<ʲ[]䲬pNx"z.sZ^, fcO}葁,|Nb:~':չ}q>ehOvg{u `),q_z=Z3bH]c܅'+gBCOa9,iK%,kٟ=se,q[@W^ϲWl,a/=u[,6ݿm|棆,}ԉgqmLkr?鱓~0gSȆ^ze5g9]ԥboKNۓMX#C9,KOѮXgX~gv0Swz˛w,}t' b1Y=m?|Yfɹ-~rڜF:O{Yt󟿑޺ŏoyMv dݳLat,}0ѧp+Yc=Yi{ʴXOwk|,oO}9d%˭y4|`T ? ˞7ϛ2GJWeϽe eٝBŎ7:xc?{zk,kV~J;d=7>)f|˙γ3܅6etY֗,4Y%k#,׆s+,wZOW,{³gԌevnnc>;-zb{x<,_,R̲n.K;~=뙟eYβ_玻!$7[n;j2̜ܺlGǕf qmK? =|{_ZaݱOe9'[Ϙz,e^`TGi8cFW_yew_7eCM,7={dӼc#Xw۾vIk{Y-yKgګ?A5~e?|轿s-2vffu,iZ7g9}+xbZO1~ϙ׳ܷYN+_`Y\+Yֈ{#e yJ Zt/?Cs\P猺4aY ٚel2˾J+,E1KaY;\9u ~<7oI=?ҡkn4}E,{(s]o&c3s__7|r{ջ_3XΉcyo *.2=Ҿ&uC,kҭ3͔/XNI>g?tssUmusg7ϛyr}`KQS/o`|LnbYC78XF>ϼ[e){e欫s󵷲 .tق,+iϟ=Ӄer2Z|+xRcY :#Ys=Vr{$}S4f]RMHc,4=S)dxzĦ,oie_]lެS6ڊq膽cUYF&u8eW[r_Oxe\cuT7܍+&YȔ,۵wc9]s[=]ˎS|òHrYk/l\wi=k_6%Β~};9QӥYhgEg\zg_~XN/Y5[Zr^8e*Kn>kǰU`.Yٽ2I,W\7XދWefyMߨye,GP2_}ztY쟮z]+جge/ܧs sͤE~?b:}O+N{nf˝x΋O&d]Zr/>Kfͯ\˜[YoodY]N)Qw$;eY ꍃY^ye?/8yyWпlәogk؇؄ 6,oK7 ݾu*L>Z6a ϫ,k/ɧ=M(x䴭i쨧 Ygw X)]/쨙u3myrY gYrgv; nfͧ^۽|$<\&֞3r(;bX̞/xxqǛ޹0eyw/OjXĦ宓=r#֝3}'2>uf8{gީo*uE;W̊3fc'Uv/?_q>fN_l7{}bhgk&Wiòw/q_v^9/yƯ`yx˾wcw wAuz~5λga|v{E{mnz;g<erRs*58-}%ie߽퓧?(M<\WrsO^o8 }"rvm2i;XfYbx"}=eO0g}PgΝpɻ_giyYGG}1mM=y_y+fO\27_uØw;]rI 3wdch[[w۴k*1'yYy-[b\s}G>{b6ϲWk҆?bM,󭖛ڼeoj_O֖e=9i_4`S=w+X=m'?}KisӜTK=NGԢm$1f]^`ckc沬i,3 hܟ5fY}ökYf3o;e|ڥoKa,3'> ˎ~,8Wc7zoyԳ\_XG"ڵfY?xY|laYN/7#KNβo,c#Ic-gYt| XV#o<,^~UG^e6=m`}KoMɑIܸ|e_˦na7DK{1_ڬwWIKG'8 G;~:qQqKhXccw(;R={ظmuח^ٴֱ.ٽa-֣i[&qZs/kK毶.{5QW%e>g~٬W\Yڷe]*ɛvt~mTpLg˯}-чXƒec'2>KkS$s3/t7;g-죚]}"y[2ϙpw%-v̍Gu],{Rzβ;eo^e'hjX[﮸5^ W-dY&μ;ڳFn?~˾ݗen,;pA#߻ l̲_:n#XȼKn2v/"LfY˯UwY^?#b>r ,s[Oci[; leʯ1;-҃'>Ͳg{g3CkXPgo\b+njp,sZs%ɷa-Q]GNxӿ9,v6~{SHں|Y^~ ׌O-|vMas9C͆3X1w/eߋOgm|;hWdKsv=u&o7sm˸ zr_0{fǿ 楾k럺!2&|޽Y6e~kcy5ŽkXX-Ʋ;mFo,3<򑋞d)ҢܙoZzʇ,kp^\̺c_qiqw'}xҁh4}br{<òǟV]_rpB[NX,ksWer3Al҅߾˭Lc?re}'aYQL:>Cgo:Qnރ-GҫnA)ygVuÿHܿfb/+^gRoFn;u)c&'yyyyyyyyyyyyyyyyyB;{::N,qj>gš~{盰cj_uX_jdּ1A-zO_X|y?sd/{]ZOC^vN<Տ8 |y688;z߯>zVB=RD=3?b|xa Ogy}xyϷqxK[X??ڿnlVK6Ej9/>^GSHw%,V}'//|~{"7V?omz>LίgmQ[%ԸW6 ]OB|KS%~NcK/OԻ '^"g~y Z?^~<\b6N 7|6WYq}mD;1ofq9^^~?n?',^>MCu0&!+)\Pr~U[8ogDӼ?.>^zg?'V/TX.qSxO_۸xWyogr}~qÏY}~;qܼx۞S"\b~'ڍC^O/^~aju<{<$_xwI7Lh~~W?'r+KJq;;_߃E%EEE'fV(!ߵS.#NÄ{4=$ZVX1ej|"Zf>'^+3W{8W=K{isk\ʇsi}zjL[c2?`廩>Cm3Ժ76O=Cmy["PK#a-ګjt# NV3kz Ck 8[5zNyj86&@4{nyE¤iEӋ ?46`P 5xM~Xkp>zO\oz{O\ow_( ?C?Q5iz;O\oz{Nǐc~bOzrBKKKKKKKKKKKKKKKKKŽfg-ͫfurOS{Ϳ|J½Kq]L~N{s`؄tԄx?U>#Q[tِYlO9T֯|cwuqgű 3Y ol-eC|QXs?d#Ofîwe}? =>:4> va#V~}c*Ko+^a Wbӵ̺y_V/w3d?eQ7~>qSذW5:{"3_hp臮=YЊ&l7\toa]AX$gȆtbőXSvu> Eg[5Lo  mgoo6y{wcVa'?ɪCRΨ業?{mU6١.1;iN;K6-zɲu9icƒsq3gT4o*K58s#6:v37='}r1x&N O|uĿw9g4xm^eVN淝gp7/_w'ss{;B~f-97ש׾71;#֜nVt[C&FIImf44ʼniQw09oO]y~YX|cOtCq7SN]oz]Nֶvt/;sƛ=7^t i3p`NC gSJ${,iK%I t+{Rg܆K^Έcۙ'^x~mF;ڨm4uN{v[7;='"y36 m蘭pΣ]u1[[lpF3kMo||oaa,3Y9u\x Έϸl6vGc--s g| =Ѷ==W:wkEXoWA{gm}[^=%MYYM]8y+T >#-nzpǞ1zZʆ?l7s г]tяӘ`{nf\^ u#7n蛭|oDz-^a{;V?MOÓYjw&q/67~if4^߳}uk?'_Na)?_df)y̾O_[ ^OV,uU/6^~Y_8g:q8pJ/eҶ?uݗ,e3_|Ĭ_J5n2׳2ܙun_|̖^_}Kl+}VOïo^-nfO}ssi̼ed~קt2OKs~逸tX[nqGc~w2/?Gs^I^h;/MZrnvdNf 8a3x;*{6z >Nfɹ-~{ߝAm[g^l>Z8]F>1AGϒ޿0kSN__8Nc=띌i78k}_$|gm[7ڱu)jj3N'}foh Yr#mo0g#bӳt:,jѵ gitNja;ۘ3`g~|!/,ӱw9^lĮSR~zx-Rg;KMvCkBrI=K{w97Q드=T~)~)]C<9)?tk[埒\!}~#KMnYYMzD;)e6tAWؾmoȺܴÞdް _}tu{0)EZ:륩[7d4qcZ]O(K=?o͌Uwh?KSYJ2;E/}ywd>JL@_]|6f_Fvlx?:E[+eCk9z%_)eћ% ^a2r*6pǿr/c_A/9# boÓз }ƅXN>z6߾Roޞ~sz ^> >w1s["}b﬩od[]~~#r{ǕγK[La?]\& +ԣ;%?}ך$f/632^}mEݍlNz p~φm3f}+Ecs㷍IU8Yn~dYd}9=gd ]jZ{I/:wgpftQəq9z/Yi:NFS5\?Uw,pXw=N'eCn蹚 Ǿsg\wú\xҮsJOg:Uz{Z~xjNV'zJw}>{[?7J:Ӌu/Mrl_xWߍdwlJg 7~ђ~ъ֫_%5'u6mc2iϻym9o`Z+l/.r<|l? ˮ?9F_]tD+ftD;Z'"vy-co{6||9jYJ7|rnYÓ_8ÒhL;;vۖ|9qMlH=aK~} \vVc7u{x {E?As6:Z{#~WGG~ͷo߶vG랴ɾ#m~v3~z9ÿxEG2c61}ܳz2N߷uXdfP3'܎:؛szuW$ZT8/# :ԕO=~jmiڃ[,p:^bp.jij_NFTΞ ]|׊b}~ң/e}_w#+Ww6poKO(,{~O:_?q;:eo!:9|~gydzOu2Xkt2Z|+xRc}V%᭸ߧUqՖ'dw۰w̹ѶmO5={ 8:;e_.썫>1|\˷Z2{K?NڜEx`᏾ȋw[l=F;0񽯿W0kʛo8,灥 vv6'wg^?XY<=quYߢWi |\F;|Nqy_g.PMnw|~|=-rf6l)wfM+^BvDW/[ VgCw_n-dM8~ .&Rv5c7̻dl McɒK~6 oyu]cֲA)M]5 6]e B'4%_񿜻u Y׼=N'v\~*v>q}Gm[ɿ$gٹ5[[B[x#>/ Ұxq*[7_o#?]ݾ! IYc޹oj5?{53~!z+Yϼ~xަz6ӛ^=ݚ'n?iK!^/|n~{C˳ߋ@=+_8z /!eY9 ݵlJI1;ION+Ϲo_ɧo朄q].ҸŬjgPAaB\esڮKGgS9Pd5~ymt7gPGߋ%Unj38}w굥sZtE H;3ºy-F?\tD1ZS_WmѺal{5ˋaԯݴzx+7ySУoyecِWXw}\=i/em k?̩?YIYl8^lpV&]2'뷐sNtZ24g_qR^=.{L|}\Wy{[rvsmyNUWʶ#ѯY'Onsc~j˜7nCnvXWM[IzU ?΀~ۯF z^}.adz˝Ţw|Zd4zmNJ9w3r(9dw.LsYŏk̬wSR|5?Sߝ̥:z:+̊3f;egJNawgKktӴ5m;?dmJiB=-^2^"so;k"?r^$9l}{)n+ƿSھ'>sC7|MN늣}Q~v.SF]t[~oO0Os瞷1K{_ĺRNm|i3OeְO!k-kvF=ehW~}rrXֱ?4κc7|'FpcyDzȲnP+yeS[وi[_)/GN>~w7b#[X΢Yl؈ع.|$l_elt֬'ѷ>v<|ۊ`3^;g]ƽZhNn!v>HFK{c\QNȆzOrV6y6s`dߚɉKXʗwoQ_,{˒ؐvYwB?ؒ{a?nW&8ڽٸ#߱x+; l5kӢg!ǯr59/gص ٠sSbOOfmϻ3|Fd\٬asQ7 he mEN~{pv zOz,tRn,V]55|>}rpOYE,zmAN9oλ}w~gv.9=?Ƨ ,zG x3X§])Fg wwxN#^<-c37r=]ߡKJwtmǷtƮomӮߝZeb~wƾ1}b^;'mh#drO8wi3Q>_G=֞8ܹ3T]=a3.Ms R3~F_8Iy.W8ckc:Dz lrۻ0ghuRgnP!Q]þퟶ.9}/擼Q%w_;۝zի97zN}g x7򱏔:#>_?; ygC]voޜvg=aƬՐ7~q̗˛Lvݾ7}x͂c&/:S4J8N;&,p|loΐzR_ΘyȦ,)O۾d'27yV;mlxxNekmH| FV@֋-؎^sdw˛' 3,Ȝlfo9߼zC)玻`3CJ~/\dMuU3Ôo>ӊ˾b<NéNzKv.6t۶z;wgCI 8? kWؑWVw}?~wOdYjθz-^{Lqs/kw'k^i}:1l̘A7;vwP ;fkI;~6}ȷU~wNTen}'M87[/q_c' s̔ 󻓜|\tȐ8iݓvlj.eFNƉ_yi3:f:ݧ{J: 6l{i/O)|fw~Љ4+fi~w:w}U}w:Ujuo~ pp~{nZ=%N252ǾĻo}iꕭ#-^r/쓹,p㬕ѥwl:)K熧oL`6Movg>[_q:/qK:pږnlקnyצkk@wlu{ v__"ۚ|ΘXr}׾ߘ/kG/N>n͇SXr;WcC>;|7ΐg]`r2:կo9TҭՊ,d_c{X>sˑz=K}{GgT( z|d2{YښE3:mu|XS+?a!k}KλR ײy!޼Y;9YwouYxzT~l5y53.lcƎn7ůXwLڵUV״|JNr0:a7hK%|6]u}_/dؘ̜YhBa3'Ŝ3Y^Mb/+ ?*Y^˜V8kxoa|՚+wێ\:=~gK~{Su;;yzv|5|N7>}Bf,>s]NFm~1?'O\ |'y騵N)K)~-~j' +>nݠϬU0/_;޻"NƄһ7~w2ϹkSRcw۟^ޔ:7iS~?o^Œ#zjݨSsw]iR#]k`ʹi{|y,>Ou|On$U4Nũj_aV6z>9<>kw/1yM6n+XrN7J뀇# N'ݯ }8&1I(<P=ф_=?2vs뚃<ȃ<ȃ<ȃ<ȃ<ȃ<ȃ<ȃ<ȃ<ȃ<ȃ<ȃ<ȃ<ȃ<ȃ<ȃ<ȃjwi+*)(Kb@Ғ93W^?Exaҋ9ICCr&u=0L(,(Q+nWU:0$rII=NM**NSRQXR;p\PY~4}nqqɭ*j\IĤ$KLuuoaWA[xrT-z՝g^UPPKrC|YFidm5K,7ˍw4;[C32M>wQw[K :z;6Go#y{y7r|~!H7UǍ) kk5+ǻn%τ~P_LW^3~w>C};|a] H^}F u?@dzc9.;.uK-vNL&tl-J?ДX~{[6+S_5#6d]r~~]tQBL +K^;W_o> uC'm~f^xquk3ȹܺ$q^y{}P}r<V8H3ɶkirԦMoi} M㓼c <!M畝,Ts}﫣HȻg~x9=i\3m ݰPWCν{O?MA=K޾@[$\MhL5GmmQ.aIzG蕥~lOʇsgb}ox||1xr-w?yP][ýrz8Jx㛫 &ñ伓otu㶇=#mBEshb/X޷䵏[_e~w[q]#MJO>#y{yqK|T #@M:Mzڇ/p>=/pxke'q?ms u㡐9wWzIBu1ݯ[6n 1dzsw^Y ߏޱ6?'"z;vΏݔ1OUp9uxl q31+?Yວ㏉/$>%q~Ol'19Z?uuW/H?SN8&[#׿>!7!N!LA݃u={PA݃u={P㺻ܝxR>sg MsNAa{׼BCQ曞* U7U4-ttoDM:74bm #؄wg.Blr˝,&L!69XNr_d AbD;!~iN7bUw!6ޜ$&ں HG r >BlͽE͝s'U/ A݃u={PA݃u={PI^1鯤+W '5#fRkV|-_Z܆amqF܆amqF܆amqf܆amqf܆amqfFJFJFJFJFJFJFJFJFJFJ܆amXqV܆amXqV܆amD6"qKp=H0AG&%HȤ #d 韘c4,>a4,>a4,>)5,>)5,>)5,>)5,>)5,>)5,U8ɦ&6EBz݃syuϫ?8@X_ Zq5%w؝,؄HR67bA^.fU1^sǻǮ' &}ȶ[Vã* fj|烮?i{ǟYB_CWZ$Vx:^|:Y!G|ٟ?V7sqEqm57JMȚ oZۥB[-!O'U}]BooBo,!PT}Cp b.~J>R=^d{giHBBYB29ByH#v& q>}d! #@Tt,b$t$9HH'"A|.{E=y 4ٱғv{ȟ0UΨ9˼c:jMpؑ;Oa5"t_w6֫rR|LJ,_~6'vĆ_U!k7QZ.N_I-0󫶏m4,?tvDѷ>i/O=6/f) ˺= -+t;κW.)r~fMF[N֫NNjjɢU_C;#rˆcz]W__>嗯`ġ[2}U,e'-y}yP&szaܧ/iORn4YEt&k?6?{Ԩa>SoFf5zxdmæ8v߲;!MϪ7bo378߿p~'D- uY=yT:z1mtHxո+7|q1sg>=.M~6}xUac}-Oe,Lh t4?e'J}W*{Dz.Y^4cv~|OVBկJb-bW4b^{Կxb|[L&s s(+ PKGPGeTZz>]=l֕":W C0On;7TtU݀/ܲc:"?9~7U9}nQP8=nqТ#\PU~']X1sNW $XѦnџҌ܉ݜ7+=I mC}zc}-ۥc զɵsSr43JϨ?)~ɦDΞ4h+ʊ}_ >j pNɭ>#INlE%EEE'fV `HKecB-_V8=a !EzHbnYIyR¤ٖ')r gWI% N(X6yü}qkR\LJHJJAa1Ś㏄8γyN9w!;Jw'cgʡ2;^yyzy/o卽7^xy[/oI^;yyg/Gzy/a/7^z#岗+^{y/7f^~^~^~wn^{xyO/彽E/\rxy=/ 7üýw#w^{zy//^喗G})QQe@QLHG%jWgҠLQ֥l@و e3-)PlGYHٙ eW)S(mJҧ )QJPj:IYe}ʆ)R6lEٚ=eʎ(QIًe_~E.GPF)S&1+щՙ4(Su)P6,lBٌeK6m)QRvBٕ;eo(-Jҡ)CAC(R*NiR֡GY!ecʦ)[QlOف#e'n=({RCٗeKQ@D}L{u&) e]( (P6lAْ e[v)PvNٛ?JҦt(}ʐrʡ FSu(Q֧lH٘)esV)SvHىeʞ(PGYDRzeD9r0e"sr.Qý:e.eFM(QlIن-e;BΔ](RvMٟrEiS:>eH9rPJR)M:(S6lLٔ9e+֔);PvDٍeO^}(R,t)=ʀ2H92 W53/0;0~Jd~U= 2?U 3?E Q= 3]?- 3]? 3]? 3]? 3]? 3]_W?kBgwkguKgs+gqMtL-tL-W_W_W_W_W_W_W_W_W_W_W_W_W_W_W_W_L1.V=3]?M 3]?= 3]?- 3]? 3]? 3]? 3]? 3]? 3]? 3]?ӽ 3]?ӭ 3]?ӝ 3]?Ӎ 3]?} 3]?m UW_UW_UW_UW_UW_UW_UW_UW_UW_UW_UW_UW_UW_UW_UW_UW?e 3X_g{g[g;ggg~g|gzgx{gv'juKgs+gq goMtL-_ 5_ 5_ 5_ 5_ 5_ 5_ 5_ 5_ 5_ 5_ 5_ 5_ 5_ 5_ 5_L1tLW1&V32?5 3?% 3? 3? 3ݿ? 3ݾ? 3ݽ? 3ݼ? 3ݻ?ӵkB[WqKgs+gq gogu_u_u_u_u_u_u_u_u_u_u_u_u_u_u_u?e 3?U 3Xf{g[g;ggg~WDM/tLW/tL/tL.tL.tLW.tL=5ݷ?u 3ݶ?YY$'? IO$'? IO$'? IO$'? IO$'? IO$'? IO$'? IO$'?e 3?U 3?E Uog[g;ggg~g|MtLW/tL/tL.tL.tLW.tL.tL׭n[o  7 7 7 7 7 7 7 7 7 7 7 7 7 73]?] 3]?M 3]?= Ut L0tLW0tL0tL/tL/tꛨn^]n]\n\[n[o &sM7M7M7M7M7M78M7M7M7M7M7M7M7MtLw1tL71tL0t na_3]? dgg~g|gzMtL/tL.tL.tLW.tL.tL-?)O S?)O S?)O S?)O S?)O S?)O S?)O S?)ONUydȍm\tyA:@͉@͙恚iq؞귳;Evgog?Ws5\ ?Wr5\ W#r5\ W#r5\0W#s5\0W#s5\0W#Ոr5\(W#Ոr5\(W#Ոr5l **Em^txE}^ x1Efq5Y\jW,fq5\j6Wlfs5\jWsp59\jWs\r5\j.Ws\q5y\jWW|s5\jW Zp\-jW ZBr\-j!W ZBqE\-jWZ"q5v.%6f]bKlv.%6f]bKlv.%6f]bKlv.%6f]bKlv.%6f]bKlv.%6f]bKlv.%6f]bKlv.%6f]bKlv.%6f]bKlv.%6f]bKlv.%6f]bKlv.%6f]bKlv.%6f8]Kv.q%a8]Kv.q%a8]Kv.q%a8]Kv.q%a8]Kv.q%a8]Kv.q%a8]Kv.q%a8]Kv.q%a8]Kv.q%a8]Kv.q%a8]Kv.q%a8]Kv.q%a8]Kv.q%.e]K\v.q%.e]K\v.q%.e]K\v.q%.e]K\v.q%.e]K\v.q%.e]K\v.q%.e]K\v.q%.e]K\v.q%.e]K\v.q%.e]K\v.q%.e]K\v.q%.e]K\v.q%.ex]Kg]K|v.%>g]K|v.%>g]K|v.%>g]K|v.%>g]K|v.%>g]K|v.%>g]K|v.%>g]K|v.%>g]K|v.%>g]K|v.%>g]K|v.%>g]K|v.%>g쒀]KvI. %$`쒀]KvI. %$`쒀]KvI. %$`쒀]KvI. %$`쒀]KvI. %$`쒀]KvI. %$`쒀]KvI. %$`쒀]KvI. %$`쒀]KvI. %$`쒀]KvI. %$`쒀]KvI. %$`쒀]KvI. %$`쒀]KvI. %!$d쒐]KBvI. %!$d쒐]KBvI. %!$d쒐]KBvI. %!$d쒐]KBvI. %!$d쒐]KBvI. %!$d쒐]KBvI. %!$d쒐]KBvI. %!$d쒐]KBvI. %!$d쒐]KBvI. %!$d쒐]KBvI. %!$d쒐]KBvI. %!$d쒐]KBvI. %!$dD쒈]K"vI.%$bD쒈]K"vI.%$bD쒈]K"vI.%$bD쒈]K"vI.%$bD쒈]K"vI.%$bD쒈]K"vI.%$bD쒈]K"vI.%$bD쒈]K"vI.%$bD쒈]K"vI.%$bD쒈]K"vI.%$bD쒈]K"vI.%$bD쒈]K"vI.%$bD쒈]KKt('eKZeGZveOZ@Ze%յTגZR]KkIu-%յTזR][kKum-յTז:R]GHu#uTב:R]GJu]+uTוR]WJu]'TדzR]OIu='TחR]_Ku}/TחR@Hun T7R@JuCn( T7RPJuCn$ՍT7FRHIu#n$Օ|eI$_Y,W+K%ʒ|eI$_Y,W+K%ʒ|eI$_Y,W+K%ʒ|eI$_Y,W+K%ʒ|eI$_U6;OVN^Y"s38383838383838383838383838383838383?3kw2۫|Byg:6N{8j%57h\}FĆglk챙[}k#Y_OoL(Vm'LW5ڂkmF̊Yϭ1rʽ,Q5g~e-8yU\PXs&7.7Hͤ洜̲V^_hI[Q%do+ohvl~:6nu7$=_^πֺf]eCƔM)SlMٞeGN({PEه/e?"Jң (#ʁ){uOp$AKـeef-([RlKَ3eʮ){S@iQڔORB9R(uJe= )S6lNي5e{);QvAٓeʾ((]J2(RL$bW#5ܫ3IiP(R6lDY@لe ʖm(R,Lم+ewޔ)PZ6CS(PT(5JҤCY>eCƔM)SlMٞeGN({PEه/e?"Jң (#ʁ)ߕD LR)ʺ (QP6lFق%eʶ( );SvJٝ7eMP! !C)JR4)P֣Oِ1eS攭([S@ّe7=){QKُҥ(ʈr `D"w>*Qý:e.eFM(QlIن-e;BΔ](RvMٟrEiS:>eH9rPJR)M:(S6lLٔ9e+֔);PvDٍeO^}(R,t)=ʀ2H92]Np$AKـeef-([RlKَ3eʮ){S@iQڔORB9R(uJe= )S6lNي5e{);QvAٓeʾ((]J2(RL$bWc5ܫ3IiP(R6lDY@لe ʖm(R,Lم+ewޔ)PZ6CS(PT(5JҤCY>eCƔM)SlMٞeGN({PEه/e?"Jң (#ʁ)ߕvՙ4(Su)P6,lBٌeK6m)QRvBٕ;eo(-Jҡ)CAC(R*NiR֡GY!ecʦ)[QlOف#e'n=({RCٗeKQ@DoȽ8oOԜTzSļ>b܌ض"5îĬ'1K̊KlBzNkT7o0&`L(((ǘ1 c']0vcO0fc1cB*0ٴ C0aq$QGcq<Ɖ1N8 t318| 1.ƸcWb\q-J0n¸cwb܍Ƹ0X80bx`Tv0x 0>0 0~)}V4P_W_ W_W_W_W_W_W_W_W_W_W_W_W_W_W_W_W_W_W_W_W_W_W_W_W_W_W_W_W_W_W_@??*F' UWRUW_UW_UW_UW_UW_UW_UW_UW_UW_UW_UW_UW_UW_UW_UW_UW_UW_UW_UW_UW_UW_UW_UW_UW_UW_UW_UW_UW_UW_ 5kுkுkுkுkுkுkுkுkுkுkுkுkுkுkுkுkுkுkுkுkுkுkுkுkுkுkுkுkுkுkுkm :௃:௃:௃:௃:௃:௃:௃:௃:௃:௃:௃:௃:௃:௃:௃:௃:௃:௃:௃:௃:௃:௃:௃:௃:௃:௃:௃:௃:௃:௃:௃$'? IO$'? IO$'? IO$'? IO$'? IO$'? IO$'? IO$'? IO$'? IO$'? IO$'? IO$'? IO$'? IO$'? IO$'? IO$'? IOg 7 7 7 7 7 7 7 7 7UooooooooooooooooooooooƆ&o &o &o &o &o &o &o &o &o &o &o &o &o &o &o &o &o &o &o &o &o &o &o &o &o &o &o &o &o &o &o &on? R?)O S?)O S?)O S?)O S?)O S?)O S?)O S?)O S?)O S?)O S?)O S?)O S?)O S_Sr}9/rci)]^毸+`g삛] ~v!.مT(dܒ[rsK^n-0ajعvajعvajعNj8Nj8Njnjnj^jx^jx^j~12wܵ#3{#s`d=Qo~j~jAFjAFjaFjaFjaFjDQFjDQFjDUTċ/ڼˋ/bȋ\jW,fq5Y\jWlfs5\j6Wp59\jWsp5\j.Ws\r5\jWWp\-jW Zp\-j!W ZBr\-jWZ"qE\-j]bKlv.%6f]bKlv.%6f]bKlv.%6f]bKlv.%6f]bKlv.%6f]bKlv.%6f]bKlv.%6f]bKlv.%6f]bKlv.%6f]bKlv.%6f]bKlv.%6f]bKlv.%6f]bKlv.q%a8]Kv.q%a8]Kv.q%a8]Kv.q%a8]Kv.q%a8]Kv.q%a8]Kv.q%a8]Kv.q%a8]Kv.q%a8]Kv.q%a8]Kv.q%a8]Kv.q%a8]Kv.q%a8]K\v.q%.e]K\v.q%.e]K\v.q%.e]K\v.q%.e]K\v.q%.e]K\v.q%.e]K\v.q%.e]K\v.q%.e]K\v.q%.e]K\v.q%.e]K\v.q%.e]K\v.q%.e]K\v.%cx]Kg]K|v.%>g]K|v.%>g]K|v.%>g]K|v.%>g]K|v.%>g]K|v.%>g]K|v.%>g]K|v.%>g]K|v.%>g]K|v.%>g]K|v.%>g]K|v. %$`쒀]KvI. %$`쒀]KvI. %$`쒀]KvI. %$`쒀]KvI. %$`쒀]KvI. %$`쒀]KvI. %$`쒀]KvI. %$`쒀]KvI. %$`쒀]KvI. %$`쒀]KvI. %$`쒀]KvI. %$`쒀]KvI. %$`쒐]KBvI. %!$d쒐]KBvI. %!$d쒐]KBvI. %!$d쒐]KBvI. %!$d쒐]KBvI. %!$d쒐]KBvI. %!$d쒐]KBvI. %!$d쒐]KBvI. %!$d쒐]KBvI. %!$d쒐]KBvI. %!$d쒐]KBvI. %!$d쒐]KBvI. %!$d쒐]KBvI.%$bD쒈]K"vI.%$bD쒈]K"vI.%$bD쒈]K"vI.%$bD쒈]K"vI.%$bD쒈]K"vI.%$bD쒈]K"vI.%$bD쒈]K"vI.%$bD쒈]K"vI.%$bD쒈]K"vI.%$bD쒈]K"vI.%$bD쒈]K"vI.%$bD쒈]K"vI.%$bD9VQN&˖lKˎJ˞KˁJR]KkIu-%յTגZR]KkIum-յTזR][kKum-uTב:R]GHu#uTוR]WJu]+uTוR]OIu='TדzR]OIu}/TחR]_Ku}/ T7R@Hun T7RPJuCn( T7RHIu#n$ՍT7FRH+ʒ|eI$_Y,W+K%ʒ|eI$_Y,W+K%ʒ|eI$_Y,W+K%ʒ|eI$_Y,W+K%ʒ|eImow۝꿽ZۜgqgqgqgqgqgqgqgqgqgqgqgqgqgqgqgqgqgfeWuj(tl:39qz9Kjnи 쵉 ˜9sg._X1kbE3GU̪%27X{}kVߺX|/'J-gjr3iyl9]6i MK-eo Rs]kͿlww@#=GzvK$j{`{^zjɗmy+/uXnK[xg7^zsXs{識,0"-ZWZmi=7r٦s?܇?qS65Lk{:Klc_-CA~|*wMs-?F-?-stQk~_[}s{{o-_~{>|Ϸ}w<߷䟻o|~Y/++ܖXnnmq{k]Xs:ۻ\ݶM%< a98Ӷ>[Z_m}]벖|-<ǿxZʏ+os#9Tf]!}okT}}A75W_oY-fV̚xnՈ93T5fq匪9+Dn܄ׇt|ђӶfdo+?ESp9ʿF޼nf)=E^ =uYZ'J'aS.}h@#1Ho) ʘ?leL忠2*co nyiK8ha(c/?w\ӻ?nD3ڦD%8W*ZMEG|;t-knk_׵翵{߰k_8a0bԒ=snx7y؍\<zI]r/_9anc.vw&؄I#Y5jz-!fy |g~Bcx]lvURV0 6%8x3Yj4,V,*TU,>wA&E46-tmlx3<95MUQ5rEjϼ7zV̒n&W$idiy|6\w _澫Vot# yi#ӭ^pA-_?sr]]D߰heNf1w{z}i?E6U}:qOE󽟜ӭٓkzD>=ΛwJWu0nܵy脩ipbͺH63m{WO_g/Koףϼ8{u7Ӷw\4KQ7j7ݲѩ7=Ktpxׇ(es|3w`O&,ݹ΂aOm}Mt1;{u9J=슮A>;yZCE=i"?/t__ZUbŇ_UI7yfOs=uJNxNWiku[jAztXyMNK{}OX3g=/* ".֛'pAɡ߳!g|q}{ &Nqgqgqgqgqgqgqgqgqins[mc&o?mr[mc&o?mr[mc&o?mr[mc&o?mr[m՗79(\'`Y vv./gB]hArKVn-9%7R[ sKvajعvajعvj8Nj8Nj8njnjnjx^jx^jx~j~j~jAFjAFjaFjaFjaFjDQFjDQFjDUTċ/ڼˋ/bȋ\jW,fq5Y\jWlfs5\-νNjm^ y14ŋ6/r5\j>Wp\-jW Zp\-j!W ZBr\-jWZ"qE\-j<[-gólqx8<[-gólqx8<[-gólqx8<[-gcs5\jWsp59\jWs\r5\j.Wsg]K|v.%>g]K|v.%>g]K|v. x<[-ϖgK%l x<[-ϖgK%l x<[-ϖgK%l x<[-ϖgK%l x<[-ϖgK%l x<[-!ϖgKȳ%l y<[B-!ϖgKȳ%l y<[B-!ϖgKȳ%l y<[B-!ϖgKȳ%l y<[B 7Oސ?yC 7Oސ?yC 7Oސ?yC 7Oސ?yC 7Oސ?yC 7Oސ?yC 7d쒐]KBvI. %!$d쒐]KBvI. %!$d쒐]KBvI. %!$d9VQn`97_-iY}nT/Ҳ'-r -ҲTזR][kKum-յTזR]GHu#uTב:R]GHu]+uTוR]WJu]+TדzR]OIu='TחR]_Ku}/TחR@Hun T7R@HuCn(Օ]( T7RPJu#n$ՍT7FRHIu#nuy_m%-Ҳ#-Ҳ'-r -ҲTW%ʒ|eI$_Y,W+K%ʒ|eI$_Y,W+K%ʒ|eI$_Y,W+K-;[w4l_'-r -2?O[w4liҼygKΖ-;[w4liҼygKΖ-;[w4liҼygKΖ-;[w4liҼygKΑ#;Gw4i9ҼsyHΑ#;Gw4i9ҼsyHΑ#;Gw4i9ҼsyHΑ#;Gw4i9ҼsyHΑ#;GwH H H H H H H H H H H H H +G#ʑ|Hr$_9W+G#ʑ|Hr$_9W+G#ʑ|Hr$_9W+G';Ow4o(3w=%i^Kze KLi7K:?SW|8ln>1Q5Ew3;zGy]%$cX{vKv::|wgk{ؗ+w87ŢeW;rzzWQqK'?n7b{hs֥_/V8Ē[iz8wqOq)/PqZvyXس}?s~z}ou|bC _厗)9qpɗ.3.*7g|b3q™~hŢRw\*]p8u>`qЪ/!ܓOXl?tNb;EͻlN}UtnS3>Zfe^_^|/,Y]݋(/x⨶⬂'Nkt.*xmMqUwN}SXk]{ԞZOFLR)ʺ (QP6lFق%eʶ( );SvJٝ7eMP! !C)JR4)P֣Oِ1eS攭([S@ّe7=){QKُҥ(ʈr `D"w.5ܫ3IiP(R6lDY@لe ʖm(R,Lم+ewޔ)PZ6CS(PT(5JҤCY>eCƔM)SlMٞeGN({PEه/e?"Jң (#ʁ){uOp$AKـeef-([RlKَ3eʮ){S@iQڔORB9R(uJe= )S6lNي5e{);QvAٓeʾ((]J2(RL$bW#5ܫ3IiP(R6lDY@لe ʖm(R,Lم+ewޔ)PZ6CS(PT(5JҤCY>eCƔM)SlMٞeGN({PEه/e?"Jң (#ʁ)ߕD LR)ʺ (QP6lFق%eʶ( );SvJٝ7eMP! !C)JR4)P֣Oِ1eS攭([S@ّe7=){QKُҥ(ʈr `D"w>*Qý:e.eFM(QlIن-e;BΔ](RvMٟrEiS:>eH9rPJR)M:(S6lLٔ9e+֔);PvDٍeO^}(R,t)=ʀ2H92]Np$AKـeef-([RlKَ3eʮ){S@iQڔORB9R(uJe= )S6lNي5e{);QvAٓeʾ((]J2(RL$bWc5ܫ3IiP(R6lDY@لe ʖm(R,Lم+ewޔ)PZ6CS(PT(5JҤCY>eCƔM)SlMٞeGN({PEه/e?"Jң (#ʁ)ߕvՙ4(Su)P6,lBٌeK6m)QRvBٕ;eo(-Jҡ)CAC(R*NiR֡GY!ecʦ)[QlOف#e'n=({RCٗeKQ@DoȽ8oOԜTzSļ>b܌ض"5îĬ'1K̊KlBzNkTh,8 01J11bL c0c&,{cŨUa,Xq!08(18D`q:ƙgcq>ƅc\r+1Ƹc% 7a܂ v;1Hc܇C`xc Sk1a<0; ko`{`| g_`| w?`>z(ீ +ீJ+ீ +ீ +ீ +ீR9f}Q꫏K_}$ +ீ +ீ +ீ +ீ +ீ +ீ +ீ +ீ +ீ +ீ +ீ +ீ +ீ +ீ +ீ +ீ +ீ +ீ +ீ +ீ +ீ +ீ +ீ +ீ +jTW_UWUUW_UW_UW_UW_t_}#c *ூ *ூ *ூ *ூ *ூ *ூ *ூ *ூ *ூ *ூ *ூ *ூ *ூ *ூ *ூ *ூ *ூ *ூ *ூ *ூ *ூ *ூ *ூ *ூ ꆚ? 5_ 5_ 5_ 5_ 5_ 5_ 5akுkுkுkுkுkுZe1_ 5_ 5_ 5_ 5_ 5_ 5_ 5_ 5_ 5_ 5_ 5_ 5_ 5_ 5_ 5_ 5_ 5_mC~gX_u_u_u_u_u_/# _u_u_u_u_u_ߣO.0_u:௃:௃:௃:௃:௃:௃:௃:௃:௃:௃:௃:௃:௃:௃:௃:௃:௃:oO$'? IO$'? IO$'? IO$'? IO$'? IO$'? IOIO$'? IO$'? IO$'? IO$'? IO$'? IO$'? IO$'? IO$'? IO$'?f 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 5_wM7M7M7M7M7M7M7M7M7M7M7M7M7M7M7M7M7M7M7M7M7M7M7M7M7M7M7M7M7M7M7M7Pu?)O ?)O S?)O S?)O S?)O S?)O S?)O S?)O S?)O S?)O S?)O S?)O S?)O S?)O SoGP ?A'h|4>tGN },;`qXw},;`qXw},;`qXw},;`qXw},;`qXw=L,abq{X&0=L,abq{X&0=L,v.%6f]bKlv.%6f]bKlv.%6f]bKlv.%ԙ]bKlv.%6f]bKlv.%6f]bKlv.%6f]bK⾝Ÿog͢ŋqΚŸogf1Io'r]#k|u5>ں[XXj]Kv.q%a8]Kv.q%.e]K\v.q%.e]K\v.q%.e]K\v.q%.e]K\v.q%.e]K\v.q%.e]K\v.q%.e]K\v.q%.e]K\v.q%.e]K\v.q%.e]K\v.q%.e]K\v.q%.e]K\v.q%.ex]Kg]K|v.%>g]K|v.%>g]K|v.%>g]K|v.%>g]K|v.%>g]K|v.%>g]K|v.%$`쒀]KvI. %$`쒀]KvI. %$`쒀]KvI. %$`쒀]KvI u[g쒀]KvI. %$`쒀]KvI. %$`쒀]KvI. %$`쒸}vŽiŀC^jq/zZjq/zZj^Ѹƍt4qhDG:Xj쒐]KBvI. %!$dD쒈]K"vI.%$bD쒈]K"vI.%$bD쒈]K"vI.%$bD쒈]K"vI.%$bD쒈]K"vI.%$bD쒈]K"vI.%$bD쒈]K"vI.%$bD쒈]K"vI.%$bD쒈]K"vI.%$bD쒈]K"vI.%$bD쒈]K"vI.%$bD쒈]K"vI.%$bD쒈]K"m`6HjX$ ,ImER"m`6HjX$ ,ImER"m`6Pj_fI,}%/eԾ̒ڗYR2Kj_fI,}%/eԾ̒ڗYR2Kj_fI,}%/eԾ̒ڗYR2Kj_fI,}%/eԾ̒ڗYR2Kj_fI,}%/eԾ̒ڗYR2Kj_fI,}%/eԾ̒ڗYR2Kj_fI,}%/eԾ̒ڗYR2Kj_fI,}%/eԾ̒ڗYR2Kj_fI,}%/eԾ̒ڗYR2Kj_fI,}%/eԾ̒ڗYR2Kj_fI,}%/eԾ̒ڗYR2Kj_fI,}%/eԾ̒ڗYR2Kj_fI,}%/eԾ̒ڗYR2Kj_fI,}%/eԾ̒ڗYR2Kj_fI,}%/eVo3dR||>>||>>||>>||>>||>>||>>||>>||>>||>>kw279q^-Sg^#'NZ8gI WA6xy7&u=[S'UHV?Jxu#GQ>ݷ!F# =f1Z`h6m1aFg.]1atFo>}1aQaaU1#1c00p#1Fa] dzkx}Bްacs"οWf誟Ike՝(^X1sT-+X;b 徬'һ(U kJ-*]Q5z{7}N/51U1뷾;j{Owo7rQs VV_+ *y9К*?J/!>?nsǖ)+ґ}>{kMk6Yd̶l$O[~_mV_zm@uhFn^zY6|7YZi6_yjYwG]zw6nNϴ{TGWPwWT}~a --=[Jb:K,6I{7n ˮDed7Ia%|f2FCŕ~çC[fvo.vozo[=ˮ͇X;6-<[zؼ&T5 l^jqD"{'pkU^tM[OὛ-sVn lu-l$Vg1M6~YN ?D/ ?yϽ+f[ [77^TcmM%MoP]-Ч7&Xe4ٞ:V_.b E0}z~cBuyװdOiłVlTmO3'5Sn3w 3? ߫pfEUys*WVS.Z0}ᢊ‘ϭXEW5a"7~ 4+sԖVf5`N圪9YZQ]U)A,Nnqe:OiMZfi)S@yu7(ߤ|Qg)|m;( :vj=Z5{᧬UU8jvNtt2983838383838383838ĉ/`os;3,w[!ٿН~aԝ~j\Osy2s;<adY.O\U:6.7]GT= O qWN[pz +fͪQp*}ifio7t~ˇYjj- SٿϜ5ǣkf&;G=>nVN#fs;=;J/xo~d9 a=`fwo_}ݟ]#՗ aURlL9#5:kso.̱͙^#Uf_P{!߽nfs ;gޜ3WV-?7.gV,_OIt\_pV~ӳ7K?}a%fQZU?Lܺa Pdߦշ LjWs,?r&9u 8Iኌf-Ƚ1j]g܁W-ȞQ+=qgрXiyAژ;bтZ>k?ˬ~f,3~/O~U+K|W>ѯa,oS7-sf[y7~̓MÝYǏ__ Y9G{EO5[~ńyX0&*__sʡp+)>ݯX V_>]uhEgl$|zƯӖ>vQeԦsy^f-o&x̯A ̭Z u"Ѝ._EH]-]ӿ _hRflrH-gR|w*jd3Qz/I:G^vؐԂ{t}0!J:6MO>ńGń=^W*1q>iVxr¢^cE#_[ImgbBkO~|K(ݿūwY:gϿD8Wr'uQ6ĹEm&gIU'7kEŔ>?%+En/7>ALXV-&yiQ1~yҽ` 7Oeo#DE{dki .HscNn7{>=7>},JfЕmE|S|D_QyܤgvNi^xȐֈ;vqCѱ_qmK'Mo1xQz|R=u>%}[[VF5YxEi=HV|϶ee~+J޹I^a"&%v ~(>DN }?f!3q$ȳ9T;D_z1tG#ZO.8D㿴`/s6p1ybʑL>]4_k$ʗܪ6>xm5<,&>Sϼp(޷ή?(ʺ+OSZL?;_y󲖢1k.~nbJO|wRՇZz]L-嬻h+J`}oV'ɧ{|e{~VOn>s1g]7?wh(-~gڿ(v/ggx(>o:~%?O|)ie-z3D [y:?9o(XA}r_Qnw-J=OV]ٺ݀*oOSv%d 0Q]rF?|(v;RLiZk.ʧ~)J(n/'&}!JkqF?&8[DəE /sr/Y~K| Q*v^(Ff²wԓEi;.cJۦ8_|n1.8kQ~ʷ1yK~9.7'&^|7?صY;_6\q/o^ġkn]Ϻ(tSe郋ڈBwޱ]f=}9a3&2\f,o(&^Ó(|NgYL5څk˺^7cDI䗯%N~萗V_tbӝ(;oG*J{Ə^ղqnQF J /M-g-e:x_ o7뉒ڳ8 JxW(;|Gmw(nߢOы~C1WVU|Nu7N}hQ2mE~c1i{bj(c5>cYcTV'ַzQbNM-~U؞u+eMS^r+_ܭbgD٣{V-J&~Fg;*{g^+Ż[Ko=N1=rҹ=,J|>)=RG7wcbrl6QRe]_)u?(gg{b㻈k_9]1?>EYY}b7fv;(j#zK(&[h,ǽ$_Um犒oZ21go=ۑNSEYNQ];\ϵy뎺N?)8<(=9|lc>}Nn[c9˧5(J}{z6yEWQ˿+/oԗ6NS݅sƯ'/JЋDºwT{HLRbq[M;߿]Ie6=ZQܰ9.vM4y^b||+Ŕ^o6y+SF>>gOB1Ԋ; ~S^X4鄱Dc5'>7D7/lϦ"1 <8%1WVt[Qw]ߔ{فC/{ñݫDٻ;? <ޙG\Kp%lͿ 9DL,{W|!g^c/F?+s(.ۉ)|LaxaTy tRDI]/Ƣl}.{HLy}{8F?rt,>7*1]|^\Ĕ}sx}e4q柊Ƀ}t Е׌{*Q4+Jvs/SkҢߥ_/ZW*Q"J9&'e޾?ş4\tObJlkف}^p([§D^w{d|>X2w/l]b7vh|x3'?(>.8?pŸ>z޼ń>.׊KOh7 }7dҡĄN)|q~=ŸW\RGl?`œ=#&X1iLD]ֵ/b(Yn<:'_1uMP>yËsv&ƏoWQ|+ Ӆnk0;,&;}Rl/]p_ޞ=O)J5{)b½g)NޫD Dq ɏ-]2 1;汢{c9m1􆫆 RLco7'ZsDIesoZ= obbI.O/IL8hᰮZnw! DɍwnBo J<|.'YU=wڧ,J~.|xu̺L>p+&>KG CP_߸v<*ty]<~=v8&|^LJoʽY/]r:_lEɲޥn') ;>z^3.ySyTL|aK&hbwѾ˲D۳[?|/c{hY{x+{ |߹oebBo[&]sb!&:vWy bBц=nQzPK.jح7]^;ky(Go>nQχF(aW|aPuφޏ~)]})>v}3oMQ8(Jڬ;Imu䅻yDOO?.ŗT>~l}#Eɪnް/)ю?!&bS/+J JJMQrʀ}~xR]]wR^d>bƒ+{?w1}(ݽG'J\ 0'7^zfFF1g|=zn{@Ln{S'58]^κ}xOW#&^\/RL7Y>1{}۱R1`C9~|c\#&xљx׳oQִܝؠ6]V t9%>uѣĔY#_=.lQ:a({/@Q6cUqmxYQ'?}(9+Ztɝ'~';?ۿ-27o?TH~ّR|L,Y/L3imUl֟l=_{NYFSG%t>zY%&Gw},Y?Oef땥7=}_6aٖ/~oa+gk_fyݯ߁.,9>vvT$tʾ7ylz\}?ޯ$=![`۳mz>7nl\_F]>01kU^;Fn:囿&坯mͶmo-Kog;.^ͯt.<^Yϛ&{^YsOw=>mOj[.{p{.ɿyhv.ݵ՟+yۡ_j{ڶokۮ>dz7[2;(;JĖ_G{U$},f9!yg3 ^Mɿ-&!{%tڌۯ|uj{f/_ϵ+=jyYϮy>fut7lf9o~-͏z(,Ixz].^)yϿ>{yfҲM}f}/0}}=>K[Ͽ]Y~ֶ{/[Bݾ>^n em!eq}٦g?7y3|u?op'7nq~O+瑿.})>m?] m7x{$|'J$6~]}-λ_e}smzϱ6C睭a>¼۹-}eWm/M~{>l(Gl3{@v]q(]қͿ]vn٦Ϟr??ߣ/׶]qm;??Kk߯}oovdgwvftyY-eo>^6g??x$6}i#_WbNn,|mZ?Wh{~3zrm7}Uxv{+{AD/]OWf?ۥ5'rts*T͙>wҊ⪅JH[juBuq.r?`BJKjEU+ +TU,>p9X[bʊӫTU8gVaeŌE/< ţL¼ɷJ#);vZfv䲚susi9J^Uh%<8ѿBgymlvVń1Ԧ/Cj~1ԦcU [2_eMZnnS17w|ش`N$ MeN}KhzrYn[z4=pEU{V.ZP1cά937aq[[~ /w/~ u;o*ѹKeo?|<߾ϷVE_6ok_Cl5+$|w<.w-]|d92d9D|O)>ŧS|O)>ŧS|O)>ŧS|O)>ŧS|O73fsK^?QoɃX]MSRq2I7">*Sǜz=ޖ~yoSwwTbп ˾+=| "̝gAs~L].z|_H;B;c~IQ8r v:Rp1rf/\xbĬ*-#߾S1ͽ{|s^7vKUqº+Q%}/+_?O{}wX=])#YNwr kíݖ~@lQ M_q}Bov8t1r 5Lɣ{\W^ էU}N9Zx/~s_mCtыC1kg;1Ղ>kpï~k]k>7!OM;MO~חڇC <>yŝgܧL!~꽾ޗGvb𜣎yrW|߁+~Jw>rp?I/ KrT9{GOO?5-Z{ o.o~|)ׄb?LqbT;-1n8L/=RxnkjI%-߳k^s=ӥ#v|QNb qV=={%==w_=^WC'}Iw///JO>k zMHZfȹ?~PSߞ|KRt}rw|~jշOʓ5:{x]u:;=?(Ha뚞AODص';߶xpҵk:{-䭴I;t3gQt=k~Sa݄^>!҃~/:´臱|nzҥO{o;~zHn[i8KU\=V%DX=kǞ>7=hV4 ]-^=.qүN ';-=^}u@ #5;ݫeS 㼞K]}zzbsW!}7^C[ {"\z~>|ң_Z_QN_zy&v & {CX|{{ݥ"1n:oBw?o1& #_ogo7oz`a'x\]7gT õv[9I6mc*/y?N ]vh%o{}ftG3oϳ8%KuoX"YygߎήSb҇WP޻sǩOօ9 SzǾ<]|r4yz?Ϛ_qjwܒ|ku`hzbzNӦ.[V^5x>5v6SNO|⣧ytwv~5C'V^\bxsWKic;z?#nf eߝT~h%==R=]r{kzJ=wCo;nӫJzsӛ}垞tUxȣzG҃}wFe{z痴Z}Ϗw9O|vxߕ7ENoqQU#+f/O<9 GZolzMsJuۧ8Uc˯ip ;KgBazZ9`̅_K_Y*=?*ݵI^ =yNMM޾+qҢN Vߜn?=_i/B_1Vk#6l|&n~a}7Mf^'ݓ.}ʆ=oH޳;Lɽn(Oڿ(vH[#GN\w`1/HeҨΪ\!`UrIE?`A}3Ek(9yx1̷cwuDıԉ 1qmPtygAS/Ĉn(9䁢h`{bzSt.]t!_ʪw/!uy#ň?j&zu#Wt1lsEl%~N֓=tZcĈ:Uw1v{nZx#S^]'{O|wѧGj^oIBxߌxp[CA'_ݩ gD,]ӄ}&~oǝbD)Fuc+7q~|DqSGysrr1xn(J4^ _.nvYu?{IO޲캱Vױ]%'L9gz+&=.8봺'].+0=yKIi#pO`f|%=iwt)=Qg~fsOv f=},{^OS3^N:1='ϚxʇǶy;-퇺˻i'|pdް]LEW{s"ҵՍHo>JTY9t{iOғ:̻XuުӃ}+ taEWa`Dz/>Z~NR.O|[/ ӓNNGÿqGmYҊƩvOFeǿngܹ:=hKV O}{:n a}.Y0}3cW+JEsuWxJ/^\~a>w҅}AGk{rO:׽4wF3sOxӪXŢчm'riZQ?X`^>a^l tgEx̚i?go~w/W"] >ͽy ᝶S.>cL5ŀn8q*1޽Rvs~.^uV7y$~K7y |aB>wQ{ 7w9MYn{(|'i%zѰBav̢V+?q*]t7,_R;WLj}ׄxMbpj(½C^ u!K`l?{{QhuE<2`ۅӾuYte׏]nOѥaO_ ]a׏z]-<>lܙE^&1?h1Çx@^vW__&p\ة=rט/sJ25}/hil4|Y"k}3^+V5M5Cݡ Ѫpiw>%,=,W`w}jQw'Mms_4{똨۟=j EQu;|s+N;7qkUWŢ+vutnOtdBt]wS\qܿVnmv4't\;aO;ޗwO{sQ5kX ٥Mn-ZuО/WXp~|{?/_:] l,M5o8sŮ钢߶L%:K~YY=]2tݘ.}Z}[bpNr]w<DjfŐ~뢶ɶ'gz fsމ_ߙ.4rOg=ugsO|a E{CH^'mH>]Y>쫾?%r 1/{ev/N1i/]^x=Wxq !.;uowqE[̼[=49Đ׻>Y(=_Yyo?qD+?"F<|Q u³S'?'z\RNxJ cЂk_>:=isMK7FxKagv\b=ns.n1W"7٢#w'z]Q~q~~m[ !zlp9i3(=ΰMݳ>6>;ooe٦%esVh5[t+|k_=]_޼sӓY 餤GNc̍#: gS፭.ƞ/~zLK;-KrO_j㞞t5޺*-jm%;9gyM*a/{6sftzЁϷ;dOS?K7[UׄvC<͒=CRןWk^9X 3{=MՉ?ӻ5c7vN{׎~vc_Ϊ>9;M>t߇Λ;*+1|;}嵋yڜk:߽ۗvW~a<~7,~Ǘ0ؙaǟ])Oy=Nv:?пq[t엞wk Zꔅ޽^y kp˗>tžh`FGun]K#n&?rי8i/y~clw6xˋgt'~-i|8tſxYK7uOs~Kwcmtֽ3~կx#~_tV<|^沫} ܡ}tu 9':3w;_iIO9o|魝3ɫ:/~ORtzg9/;Z1/_Ϲs,3Ox֋/J'<)s{^`;?\MoteGO=;'O,:婝Oy1f鞶g_6Ywwʫ7Gu'ɏ=/7o}WUV-qw_՝N9/#o}N']/>{?~ʯY?]}iu7lz3_4or_ӝ7eΏ{ؗv罹3qu&?.2?:Y/yg=?f+GwN nr>^In:o̎3mw;x[}Mwvk_>Oqʿ2o|3?{c?qO2Xs//&|U'5ܗw'N~A;zugε{KuxM}ܻg|ץ+}Ws5ӓ\=qk5iQͽ{ޞ>,ŗğ}wwW?_/{YWM?7qiw^U=kK'uo.6gWIù|oqo'sâ']qS}ۢY:SG?R\wg>Ϊ۽,`Owsk^Pۍ'?Άg||ogz 'ݳnso\/wMqOޝ{~R^wΘKotaϸcc?p3ٿ n7{[lzV%AwI_l̎z>I?/?3~(M!\w?v:{sg=;KO}ŝ箹sic~S?;:뗟w}sG?]sSuNz{ە>wo]|⇡_K$[]ŝ)\9Нv7;+~+`g󿸶i;ǿ5Ei3nz ^)fO2z]'|/_3s?zgNԿ/>?Y+g|ƣ^۟3c6n/ğv}cS7;O=j+;O}K_u6Ek{N,y=+~3Ͻ{ʘWΝԪw+nG~G=7ԫƸo^xum6~Nsi=W{_3~ٯV e}56ȕ10k޲rޤ{vw}WY1^{fܻ]uyZ=N랻|Gwpdcwe|?>m:]g{.X>+Oo-suWq}u7k-݁x>8=7?N{<}+tI/G737k/~фufĉ_fgt>1m{woe}M59wXOx܏84s8)8Oy? >aՄfa}dQG7njjjjjjjjjIPC}(9:碪W z.j(qC͡8T)]a7mW @?` mZup侶Kmۥ~߶Kv=biPV[珰#Z57;p_0/Wa3ح}cԼz;x?7tuAgm1?r\u0xs'ԗr`tǻ09P&;:x<9Cqzŕ{v_` 9 HE;jjjjjjjja|TC}TʽvϮJ-~0?(Ts5\k~sݵc+'sn1T_vS=>=6+mϭCi8?O~^ {Ce{mo3'w|upx5*Y5euS^|t~>ߺaձyJb,mT)FOlU7n>Ȩj\5\6LJ?6ŢѰ)ry?rqrې4_u_(z*~z15 H(u>FkC胼F=oX#S=wwQ5ySTP=^W߮ΛeUVld\_&շ+S~-u^9jnΕN{1Xm4T'c{qhzG]] F{תqloȾUM0OScտK/^u)׷7ޏ?RwAH絑j~n_:cqcRinлU.'cF/{W؅؅^CIW}f8WmkoTEL{s~lW{X}mY@ڶXy|ڮz/(c7:_ qړVlJK ~ޠU13^lPSMu<\9f;I<_Tqmo_Ǩ;VOy#WX_McZY"]HKuec|n"vy`:~:Cy>]b{h*yZS]UW?^hCBګ>@J\#{bcz sVW^ FF~zhٶʉsQŔ?w]{]:pϯǙk$sӪ֫\s zs~`9qlw~C0xNOs~>?crwiv}ov}ov}ov}h{$MQܱg{78`l~q~qI%#7wl|]Ɓ8Վ#r8"ӎ#r8"׎#r8"GЎ#rjǑ8oql`mh64 FE ͢ԆfQjC(Y,Jm(ؤv jCr{7ٵG-X:2ڱoo^1?R~M_L??4gpQ>xso6̭jjِ w/',n_Z?E?qq:a꽌}O=}%Qozcxʒ]wܵ}M [&;{z7V&v]GB^#G |_㇕҃uxf_1ΰ%ۛ5zmﶪ߭տߪbM0{F>߷M7;Fw_wo`Ž5X9tR; 'wgֿ`8cI'cq*icq&Ygcq.F0xb<a<bGa<1`<R 8q10`\q%Va<cNFm'UWcTUŸZ0q=1nIcsb3&Dy`"L䁉<0&Dy`"L䁉<0&Dy`"L䁉<0&Dy`"L䁉<0&Dy`"L䁉<0&Dy`"L䁉<0&Dy`"L䁉<0&DsmU2y`"L䁉<0&Dy`"L䁉<0&Dy`"L䁉<0&Dy`"L䁉<0&Dy`"L䁉<0&Dy`"L䁉<0&Dy`"L䁉<0&Dy`"aey`"}L<BX y`!,䁅<ۿքBX y`!,䁅<BX y`!,䁅<BX y`!,䁅<BX y`!,䁅<BX y`!,䁅<BX y`!,䁅<BX y`!,䁅<BX y`!,䁅<BX y`!,䁅<BX y`!,䁅<BX y`!,䁅<BX y`!,䁅<BX y`!,䁅<~b܋<BX yP]vu y`K^y`#l䁍<6<6Fy`#l䁍<6Fy`#l䁍<6Fy`#l䁍<6Fy`#l䁍<6Fy`#l䁍<6Fy`#l䁍<6Fy`#l䁍<6Fy`#l䁍<6Fy`#l䁍<6Fy`#l䁍<6Fy`#l䁍<6Fy`#l䁍<6F%Ư06Fy`#l䁍<v;}__ W?*yT? S<YGy"\"\䁋Gy#|䁏<>Gy#|䁏<>Gy#|䁏<>Gy#|䁏<>Gy#|䁏<>Gy#|䁏<>Gy#|䁏<>Gy#|䁏<>Gy#|䁏<>Gy#|䁏<>Gy#|䁏<>Gy#oa|;@y#|䁏<>Gy#|䁏<>Gy#|䁏<>Gy A< @ @ȃy A< @ȃy A< @ȃy A< @ȃy A< @ȃy A< @ȃy A< @ȃy A< @ȃy A< @ȃy A< @ȃy A< @ȃy Ap1͛lZeצC-̄ n=C}u!?YdY#ov}ov}ov}ov}ogǷߎްqDGpqDGqDGqDQ8Cd>ȟMO6g"oU/ܘE%v]>t՞~+uUUy|ݗ>>;^[`}i?ywϘfOƿvݯݝwYqOwʍ_ϟ8~?uCwo]5Nz{KS.ڍkW>Utf=Wb^wxyĠ[w}Kٝ󭟼eS2ʁ>{߻v; _3e{+~UOβ􄻯lWP]^r}tg>nr] nwf>+ϻ{>4Gz%ϸgtRU/:yQOsщ&]^\/pV/޺Y7WyM'y?zݧ?ub+NtOy~s/mw]qƛ~-mtn^s}'/~Oۜ~^wi#d]%wŋng{9gwOzwwGٛ% ׿l$!;yO-D?={޴t;_Sxp/Gug,ۛr+ojջ۴WQHV@6{3V^<'Whzj^ܷzOzX%.48:eh}tN=9vi_Dw6oK7}Y%cTʊEAoö_KTNeC{6 xoqhO`qAfab'&}0L&ƁGl>~Cv ?jغgm[ڸgWWE Kw m>xJ]QO4-:NtDɢSE%:KtNJ.=^trh$f*5kEMQ[EG+:^ti3Dg-:Wylj.]$zѥDET4-EW5{G"F{'':AtdѩE%:[t|cE/Xt P4E3Btѵ-DLj/:It43E+zJ]QO4-:NtDɢSE%:KtNJ.=^trh$f*5kEMQ[EG+:^ti3Dg-:Wylj.]$zѥDET4-EW5dϽRW DG :QtTG-:Gt@t豢 D],\th(Ƣh!JtZQSuD}QcDNJ$:Et љG=Ftq E Dt2AD4EKѕE ~r?sDѢD'N,:UtQDg/zE.]!Fh&Z]#VEQ_tѱE'N&:CtѢsE'zBE'.]*LtP4MEsRtjQhO5+uE=@t8 E'N.z,٢sDD+@xŢEWh,D׈5EmQG%:FtxISD)z\cD'Pt KD.MDS\])Z0ZG 84,}`K Dh0#4 "KK/1ugʏϼaco=wwwwb}=wa{2]1ݼ7]qS17Ox&Ƴ1<`܌BcUx-0ހ&` b =Ƈ0m4g1>E w`|]6w1q7Ə0~S{0~+`܋{?gUeX&;{ꏊ0Mu;w^G0u^0u^/u^mF:z:x &o &o &o &o &o &o &o &o &o &o &o &o &o &o &o &:ձ*^2u(^g2u$^'2u ^1u^1u^g1u^'1u^0u ^0u^g0u^'0u^/u^/u^g/u^'/u - - - - - - - - - - - - - - - -u.^2:U^2u&^G2u"^2u^1u^1u^G1u^1u^0u ^0u^G0uh;:~:|:zm3 mmmmmmmmmmmmmmmm׹ {ש eigLz׉ {y {i {Y {I {9 {) { { ,l__^wwwwwwwwwwwwwwwu.^2u*^2:UdDd<c4c,b$bK~0u ^0u^g0u^'0u^/u^/u^gK~G/u^/wwT. . . . . . . . . . . . . . .s:S:3WɪK^'2u ^1u^1u^g1u^'1u^簥Fc:C:#:::}:{:ym6==============={ױ {ס {ב NdՏd<c4c,b$baK~0u^g0u^'0u^/u^/u^g/u^'/u}V5 >>>>>-_c>>>>>>>>:c:C:#:Ձqy {pG:::s:SR! { { { { { {NUk9r5|ub1 {/hT4_nѦs9kbdM51&Fțy#obM71&FțyhbMQ41&F(EhbMQ61&F(elbMQ1ppӐӈӘӄӔӌӜӂSF -dBF -dBF -d"F-b"F-b"F-fbF-fbF-fFK-aFK-aFK-eRFK-eRFK-e2F-c2F-c2F-grF-grF-g F+` F+` F+dJF+dJF+^K"zID/%$D^K"zID/%$D^K"zID/%$D^K"zID/%$D^K"zID/%$D^K"zID/%$D^K"zID/%$D^K"zID/%$D^K"zID/%$D^K"zID/%$D^K"zID/%$D^K"zID/%$D^K"zID/%1$^KbzIL/%1$^KbzIL/%1$^KbzIL/%1$^KbzIL/%1$^KbzIL/%1$^KbzIL/%1$^KbzIL/%1$^KbzIL/%1$^KbzIL/%1$^KbzIL/%1$^KbzIL/%1$^KbzIL/%1$^KzIB/I% $$^KzIB/I% $$^KzIB/I% $$^KzIB/I% $$^KzIB/I% $$^KzIB/I% $$^KzIB/I% $$^KzIB/I% $$^KzIB/I% $$^KzIB/I% $$^KzIB/I% $$^KzIB/I% $$^KzIB/I%)$^KRzIJ/I%)$^KRzIJ/I%)$^KRzIJ/I%)$^KRzIJ/I%)$^KRzIJ/I%)$^KRzIJ/I%)$^KRzIJ/I%)$^KRzIJ/I%)$^KRzIJ/I%)$^KRzIJ/I%)$^KRzIJ/I%)$^KRzIJ/I%)$^K2zIF/%$d^K2zIF/%$d^K2zIF/%$d^K2zIF/%$d^K2zIF/%$d^K2zIF/%$d^K2zIF/%$d^K2zIF/%$d^K2zIF/%$d^K2zIF/%$d^K2zIF/%$d^K2zIF/%$d^K2zIF/%9$^KrzIN/%9$^KrzIN/%9$^KrzIN/%9$^KrzIN/%9$^KrzIN/%9$^KrzIN/%9$^KrzIN/%9$^KrzIN/%9$^KrzIN/%9$^KrzIN/%9$^KrzIN/%9$^KrzIN/%9$^RK zIA/)%^RK zIA/)%^RK zIA/)%^RK zIA/)%^RK zIA/)%^RK zIA/)%^RK zIA/)%^RK zIA/)%^RK zIA/)%^RK zIA/)%^RK zIA/)%^RK zIA/)%^RK zIA/)%%^RKJzII/)%%^RKJzII/)%%^RKJzII/)%%^RKJzII/)%%^RKJzII/)%%^RKJzII/)%%^RKJzII/)%%^RKJzII/)%%^RKJzII/)%%^RKJzII/)%%^RKJzII/)%%^RKJzII/)%%'l̤jy扚jy慚[[[[[[[[[*T~* _ʯBWPU*T~* _ʯBWPU*T~* _ʯBWPU*T~* _ʯBWPU*T~*>~۝/TS՝1zZmV[mV[mV[mV[mV[mV[mV[mV[mV[mV[mV[mV[mV[mV[mV[mV[mV[mݼUݿm8mM Sg+6iϮ7T=AoՏUاMWU(=Ct&g̪o/[[T6zNrr`dOI~W{kVzhqD'N*:](YE=VtE E#X4-DW]+jڢ/:JtXDN!:ShѹLj=Nt"D.]&:(h)Rta܏TϽRW DG :QtTG-:Gt@t豢 D],\th(Ƣh!JtZQSuD}QcDNJ$:Et љG=Ftq E Dt2AD4EKѕE ^}^+EljN(:YttѣDg#: :_XNj.].B4DcL]%Ft)j:(1cENjN":MtLѣE#:O8хDO]"Tth"梥Jբr?RhWzhqD'N*:](YE=VtE E#X4-DW]+jڢ/:JtXDN!:ShѹLj=Nt"D.]&:(h)Rta܏T>J]QO4-:NtDɢSE%:KtNJ.=^trh$f*5kEMQ[EG+:^ti3Dg-:Wylj.]$zѥDET4-EW5$ϽRW DG :QtTG-:Gt@t豢 D],\th(Ƣh!JtZQSuD}QcDNJ$:Et љG=Ftq E Dt2AD4EKѕE ~r?sDѢD'N,:UtQDg/zE.]!Fh&Z]#VEQ_tѱE'N&:CtѢsE'zBE'.]*LtP4MEsRtjQhO1+uE=@t8 E'N.z,٢sDD+@xŢEWh,D׈5EmQG%:FtxISD)z\cD'Pt KD.MDS\])Z0ZG*S>J]QO4-:NtDɢSE%:KtNJ.=^trh$f*5kEMQ[EG+:^ti3Dg-:Wylj.]$zѥDET4-EW5Ƚ,gy:;?Kb󱲯Ta;CΑ} "aT DVhXQQ308c#`<"1q ƥal؂q%0a ck0O6]qƓ0nx*0x6s01^bb` x0ބaVwa}F#ø ,1_cT .1Ə1~q/0~{1~G L7M7s"o &o &o &o &o &o &o &o &o &o &o &o &o &o &o &o &o &o &o &o &o &o &o &o &o &o &o &o &o &o'[^#[ - - - - - - - - - - - - - - - - - - - - - - - - - - - - -mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm1qwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww_ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .{{{{{{{{{{`{{{{{{{{{{{{{{{{{{{{{{q}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}???????????????????????????۩j-sA4"O=+.3'Q=IROzՓ6E,nfI3KYfV4&FĈQ#jbDM51&FĈq#nbM71&FĈq#nb$M41&FHI#ib$M61&FHi#mbM61&FȚY#kblh<6`C64`C64`COgym:N笉51&FȚY#obM71&Fțy#obMQ41&F(EhbMQ41&F(elbMQ61&FYǰANCN#NcNNSN3NsN N-dBF -dBF -d"F-b"F-b"F-fbF-fbF-fFK-aFK-aFK-eRFK-eRFK-e2F-c2F-c2F-grF-grF-g F+` F+` F+dJF+dJF+d4zID/%$D^K"zID/%$D^K"zID/%$D^K"zID/%$D^K"zID/%$D^K"zID/%$D^K"zID/%$D^K"zID/%$D^K"zID/%$D^K"zID/%$D^K"zID/%$D^K"zID/%$D^K"zID/%$^KbzIL/%1$^KbzIL/%1$^KbzIL/%1$^KbzIL/%1$^KbzIL/%1$^KbzIL/%1$^KbzIL/%1$^KbzIL/%1$^KbzIL/%1$^KbzIL/%1$^KbzIL/%1$^KbzIL/%1$^KbzIB/I% $$^KzIB/I% $$^KzIB/I% $$^KzIB/I% $$^KzIB/I% $$^KzIB/I% $$^KzIB/I% $$^KzIB/I% $$^KzIB/I% $$^KzIB/I% $$^KzIB/I% $$^KzIB/I% $$^KzIB/I% $^KRzIJ/I%)$^KRzIJ/I%)$^KRzIJ/I%)$^KRzIJ/I%)$^KRzIJ/I%)$^KRzIJ/I%)$^KRzIJ/I%)$^KRzIJ/I%)$^KRzIJ/I%)$^KRzIJ/I%)$^KRzIJ/I%)$^KRzIJ/I%)$^KRzIF/%$d^K2zIF/%$d^K2zIF/%$d^K2zIF/%$d^K2zIF/%$d^K2zIF/%$d^K2zIF/%$d^K2zIF/%$d^K2zIF/%$d^K2zIF/%$d^K2zIF/%$d^K2zIF/%$d^K2zIF/%$^KrzIN/%9$^KrzIN/%9$^KrzIN/%9$^KrzIN/%9$^KrzIN/%9$^KrzIN/%9$^KrzIN/%9$^KrzIN/%9$^KrzIN/%9$^KrzIN/%9$^KrzIN/%9$^KrzIN/%9$^KrzIA/)%^RK zIA/)%^RK zIA/)%^RK zIA/)%^RK zIA/)%^RK zIA/)%^RK zIA/)%^RK zIA/)%^RK zIA/)%^RK zIA/)%^RK zIA/)%^RK zIA/)%^RK zIA/)%^RKJzII/)%%^RKJzII/)%%^RKJzII/)%%^RKJzII/)%%^RKJzII/)%%^RKJzII/)%%^RKJzII/)%%^RKJzII/)%%^RKJzII/)%%^RKJzII/)%%^RKJzII/)%%^RKJzII/)%%^RKKp1jy汚'jy湚j*n*n*n*n*nF*nF*nF*nF*nF*n*n*n*n*n*n&*n&*n&*n&*n&*n*n*n*n*n*nf*nf*nf*nf*nf*n*n*n*n*n*n*n*n*n*n*n*n*n*n*n*PU*T~* _ʯBWPU*T~* _ʯBWPU*T~* _ʯBWPU*T~* _ʯBWPUmowPNWw_9kV[mV[mV[mV[mV[mV[mV[mV[mV[mV[mV[mV[mV[mV[mV[mV[mV[mս aw|ņ7ٵ' Q>j3L?k[lݴmCoh47o ">k㮡'G|Smۼ 7vЖ\sIC[Rmj~MϹp5Oe{}DV>UV|:r9#w‹@_kŞ;W۟wp{?1־toVoĆ׸÷}w_~j_ũwm/K{\t?3񪯙~K_cy%^'ȁOu?u~Uϻ_`k {'w;V?Mh|xh~雇lڻmω[wl޺S|֝;-cr9i'x?UU(-ךLug,_#ϟ?b֛6ef9 gձ<=BI8y=c$MN3?_P/w.{lkha i pZgI_#Lǽyë>| :-'t&|[^ޙšOL97Ӭgt>o㾗|ǝ駽n}3' <3룓7~ꯍpJ9P^O2OwW=]靅~=w?'wgٌ~zu6W]rvw~(G}/9[:3} }B7].3wnSr=M\guW=gt3:#UwH].RuTE"UwH].RuTE"UwH].RuTE"UwH].RuUŪbUwX].VuUŪbUwX].VuUŪbUwX].VuUŪbUwX].VuUŪbUwNuBbuX]':!V NuBbuX]':!V NuBbuX]':!V NuB*V~+_ʯbWXU*V~+_ʯbWXU*V~+_ʯbWXU*V~KUݥPoy|T].UuKUݥRUwT].UuKUݥRUwT].UuKUݥRUwT].UuKUݥRUwT].UuKUݥRUwT].UuKUݥRUwT].UuKUݥRUwT].UuKUݥRUwT]N]':!U NHuBRuT]':!U NHuB2uL]'d:!S NuB2uL]'d:!S~)ʔ_eʯ2WLU*S~)ʔ_eʯ2WLU*S~)ʔ_eʯ2WLU*S~)UrUwyUrUw\].WuUrUw\].WuUrUw\].WuUrUw\]PuW+T UwB]PuW+T UwB]PuW+T UwB]PuW+T UwB]PuW+T UwB] uPB]':P N(uB uPB]':P N(uB uPB]':P N(uB uP(*_ʯ WBUP~U(*_ʯ WBUP~U(BUP~U(*_ʯ U#~HGj\xk^9'=w8 uO7y_dSj}S/uou.;_uo\{^u?=[_Z} 5q/'ꥧqtpKλ,:{޻sk_Wڹq3o^՛W-x1K:{>q_6΍cSu?.]~_ggΊ^ԹC?z՚vyn~BkvvnMӟwosW9HiKnyo'︣sK^/< O5SVWl)yқ/3s†OY3u]lEꭃ^#|3^< o {:OxWO]FowsG_2s;޸hs:{эwt=[덝 oG;7|v_=}}ǟ΋7hK}O{y}tL=g>6{43΋>^tտpp:J]QO4-:NtDɢSE%:KtNJ.=^trh$f*5kEMQ[EG+:^ti3Dg-:Wylj.]$zѥDET4-EW5ʽcWzhqD'N*:](YE=VtE E#X4-DW]+jڢ/:JtXDN!:ShѹLj=Nt"D.]&:(h)Rta+=7+uE=@t8 E'N.z,٢sDD+@xŢEWh,D׈5EmQG%:FtxISD)z\cD'Pt KD.MDS\])Z0ZG*>J]QO4-:NtDɢSE%:KtNJ.=^trh$f*5kEMQ[EG+:^ti3Dg-:Wylj.]$zѥDET4-EW5}^+EljN(:YttѣDg#: :_XNj.].B4DcL]%Ft)j:(1cENjN":MtLѣE#:O8хDO]"Tth"梥Jբr?RdWzhqD'N*:](YE=VtE E#X4-DW]+jڢ/:JtXDN!:ShѹLj=Nt"D.]&:(h)Rta܏T'}h :ZtщEN=Jtl9E] zb+DCH4D UkD׊#ꋎ#:Vt$)Dg=Zt1D](H%KE&h.Z]-j-#)F{'':AtdѩE%:[t|cE/Xt P4E3Btѵ-DLj/:It43E+zOggWa>Vu0*lg9Op0[$̖ AaBj5*?: 0؈q>ǸbGc\q)e1`\8m՗_ c5a\qƓ0nx*0x6s01^bb` x0ބaVwa}F#ø ,1_cT .1Ə1~q/0~{1~G L7M7s"o &o &o &o9: 䫯$0M7M7M7M7M7M7M7M7M7M7M7M7M7M7M7M7M7M7M7M7M7M7M7M7~[ -k|[o[o[o[oVT} }՗c[o[o[o[o[o[o[o[o[o[o[o[o[o[o[o[o[o[o[o[o[o[o[o[o}ӟ 6o 6o 6o 6o 6o 6o 6Yio 6o 6o 6o 6o 6o 6ot8o 6o 6o 6o 6o 6o 6o 6o 6o 6o 6o 6o 6o 6o 6o 6o 6o 6o?>掉;;;;;`;;;;;si';_5=qwwwwwwwwwwwwwwwww. . . . . . . . . . . . . ?]w]w]w]w]w]w]w]w]w]w]w]w]w]w]w]w]w]w߽nx{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{}w}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}߿~??????????????????????????r>'k9Nk)r?8YmfގFo_p` l~o76Wf_l`{ l~o56 dK-B dK-B dK-B dK-B dK-B dK-B dK-B dK-B dK-B dK-B^$d{EB ^$d{EB ^$d{EB ^$d{EB ^$D^K"zID/%$D^K"zID/%$D^K"zID/%$D^^K"zID/%$D^K"zID/%$D^K"zID/%$D^ҶԬmK4mٟ-5{ӶLPKM~/C]6 7"t߃nk1e4zIL/%1$^KbzIL/%1$$^KzIB/I% $$^KzIB/I% $$^KzIB/I% $$^KzIB/I% $$^KzIB/I% $$^KzIB/I% $$^KzIB/I% $$^KzIB/I% $$^KzIB/I% $$^KzIB/I% $$^KzIB/I% $$^KzIB/I% $$^KRzIJ/I%)$͋)͋ehmb2ZۼX )9vd4/fl}fMl|SFd^K2zIF/%$d^K2zIF/%$d^K2zIF/%$d^K2zIF/%$d^K2zIF/%$d^K2zIF/%$d^K2zIF/%$d^KrzIN/%9$^KrzIN/%9$^KrzIN/%9$^KrzIN/%9$\5B^KrzIN/%9$^KrzIN/%9$^KrzIN/%9$M|=eML3NsN Nm/SFk˔ю66lrcǍ76;lpc62^RK zIA/)%%^RKJzII/)%%^RKJzII/)%%^RKJzII/)%%^RKJzII/)%%^RKJzII/)%%^RKJzII/)%%^RKJzII/)%%^RKJzII/)%%^RKJzII/)%%^RKJzII/)%%^RKJzII/)%%^RKJzII/)%%RuTUGAoPuTUGAoPuTUGAoPuTUGAoPuTTgPu UgPu UgPu UgPu UgPu UgPu UgPu UgPu UgPu UgPu UgPu UgPu UgPu UgPu UgPu UgPu UgPu UgPu UgPu UgPu UgPu UgPu UgPu UgPu UgPu UgPu UgPu UgPu UgPu UgPu UgPu UgPu UgPu UgPu UgPu UgPu UgPu UgPu UgPu UgPu UgPu UgPu UgPu UgPu UgPu UgPu UgPu UgPu UgPu UgPu UgPu UgPu UgPu UgPu UgPu UgPu UgPu UgPu UgmPC+w#nov{nov{nov{nov{nov{nov{nov{nov{noq}7oۆD0qFmbٛz]I^h?}Ne0g|-|Z? 'lW11U~t1`ǘ 'aL=ct0f` 1 c61b11c>Ʊ 08c!"0c,X c9 A#ˆ1#1 c%*k0b`8cI'cqjguz{u}kӚhL_jԷϚ0Ym{Mc][/?;yh˦u;8elݹ o>ʝw7zM Ör|Oyozsqj%gYǁ5 Fl)wҜ}<*o`㮡';۶%#0?RiUv M= vʡ=G<ۍ?~<khٽT9ih~;vٴmC\iޡ[wΡPyQDg6wߐ?sߺ_=TM_bI,I%;S6qX]g= z&mC;seU { lto*~Tů;̿Pie79H?>$wfF7G8@aWB4ZTF|q3tЮawnЮJl'~xhUF^ {ﮨYuO?sJ6 /HV}apz6Ov.v._Ƚ 'v7wm%OܽFcI.%!ל?eöMw7NisTnݵs{}wyMk u't0q[wlݳuӶmCPb~c@72nҲ_~KۢD*oE?:D<5iv:v#dL !~򘳣^[nV[mV[mV[mV[mV[mV[mV[mV[mV|W Z7N/;^|_`]|ߤCr/gl.>  kz_02~wCL.bǁk?k}|<չ_l.<;6mصil|-;w 3t|ηҬ?Y_=W ')#كYzHl?3|a[޷e;/{՛;Pz>7ljڬ1[VQ~_܄Iw{k"Kz + >Wڴy+?mhv {[jg_3rΫpçtoy /u/߹cϮcyhk?!q5p5͂k7ځ*7>`;78 v핚m)]iPAL5?dyx?3]o,:guU}]öK^g|oպ)>Os?[oxKԇx۶󊳶>ƲyC5 Wn}u)n 4/7zEk{mQ[G]Oٲw۶wnF=ݴc5!޼iϦ[vm>ܭ7wXlGݴ~cU+IͻX9khU;wx@Upۗ}QKEg=, nغzZ6*y5܁^L֡^ps;<ݳmC#=ưWܿ1w=7۷^7ԯ/k*BsY_м]k'ez{rv)WsNf~msXy瀜@;2#_]^:pAr`Ojh :al^@31}rz;>dZ>uO_ϧ7'6Og67Ss3=:i_{i1su.Lo6_`xoz|E] $:> |}W4)?m _87E(s?$7a_mM|9D惌Gsr5\FzlvFb5s7qrې4_u_(z*~z15  w(u>FkҶ#}9kyq`NTKBǫLj9dr*ZkLS`>לVHe*^U Er{(Jdx y犮Rﯮ[}qzr`xA^kxE#÷S;F;]ڨe)*FAo[2Ѫ~+6 2W*+G-ѹ {>jD}_}l5͹Whktz(y"Zվ_54UXc4U=VDWޟA}}~|x#}Xt^V;ö jSp/n0AgM*zuLR}~\Pz:}՘ }bVp:Zs1 {\:nhjZW@oVsDF]cc{ ]')^}\}(Qm2_"΁)]afjۊcMj:}XƣYj߬^`~1akO>_[Ѳ*/U{ڏ6:F|xz݋ 7s꺩+^_#l')^ڟ_*NvۻQ rL5]]+Kd^wNu,yzύYDn?TUb{(K r[e0Wqk ^waȱ]^{}=T/8O%w9z߫m/{r_{Ѳm5s}瞣ދ)ڻu;l_3HFUW߹z xڭsLBXu?.2/3`2>89}~xZ g{=S>>i:_>C~<{{{{8oQ/߽w{?6j?5߁߰E#GguٓsBl9Fm_^q_ܪW` #1 EY 8FZD_V'U,X}8c/oӫ-6 /ԗE"]ZZ[{{{{[4ZWKXOzד$'y=)IYf8f5%,mfY3˛Y̚Q#jbDM51&FĈQ#jbM71&FĈq#nbM41&FHI#ib$M41&FHi#mbM61&FHY#kbdM,>vypn9vm9vo9vcT;qx돣dkC`Y0,Jmh64RE ͢ԆfQjCi܏Ŧ1n/_̷߯Vyo˗9oܪb/ w"߿ k5|{`ϯzlcEwԏ^s}#|Gߞ]-ߪ;+x;nڵax[jo]f>_l?Q6׫POUk}6~w&pr;J p_!ӽ},DvB \ @Xd% \^_RQTT+ ȡ_Mw{;{y[5}Umt$_htEiS-8-FWҫ<*ⳣ^INj镧5 $B+ATI{U*ҫC^!B8̯+U*ZUONjOӏGρؙǏxYG@<[[[ kv L<&m)lT]0riag΄vaR&z?:8tp@:8tp@:8tp@:8tp@:8tp@:8tp@:8tp@:8tp $:8tp@:8tp@:8tp@:8tp@:8tp@:8tp@:8tp f@:8߀ 0p780 p`0}MҀoG80 p`80 p`80 p`80 p`80 p`80 p`(Q0p`80 p`80 p`80 p`80 p`X,680 p`80 p`U?a^80ok} Lp` Lp`@R\yl9NXO:G/|qqT]Ϲ;\[=d-njwv-r ;1y[s'i;S?5n-Ǯզ?sB6O.D5}?^ur۫S~1|Hݶ<$˼-S^q1`K7kwkN_gr}ճ/*7۰yn(OTp۸wS98Q˶NM{u҅'pyy7,o][S^w^nxnKg9 o\Y-_qw(7_u fG[uӿ>4'S>{F;|luCm5_1ՃOt%)=?qb|i7?S{pw-dj[yWev_~dr㗢oz_u57| W=]qw99}Il4c)MsAjmáHӫC۫lW:gvVZJ׏-nkI{Q?<6%Una['qjKV Śh[&#lkG?HwK_:$=B`|ћ8jE; ~Q}!mjuHuhpZ0B孲tYwړ7tXW"öYOKȺltㅕR+i-r3oEKgG[")Vuӏ%蜱uxL6)?D$_Oqcn+nЮM2nOO?P KWܛ|f1[l\fpR*vW iIq:T~juEvvnq_G-lma"ER}5Eی)1ޝX~^7sCA;\z"VvTZV[ii^gwzJvT<"dG߅ `gjY 2(egȖm;lV-6ae̢?/ܹ;y>}oL5\l,;׶Ua#ap1Ĺ C}5Ca TZ"`~T14p4/3J:VK%;jK]juYvTnu3'tQgGi5H {b5b*wګV1n%^8S\ wjWvTAG2hYNHG|ަA38oap뻬__<;rzۧٱtFc/&8sXY9Ϊt-bA7Y؈u_M|w| MEU 77\ќȚp^F\/:G*b@K( Xos2[_\W\Vo]qyY|u3[c}[zS\rlw-;G,+e&?[.WVˎ7! X9fjHq>wYGQgh/G;Yc TÁs6mc7_v|cK>3!md(^|vRɐowGH3kijl'qGY:^kbݲ5bdfVr̎?-,ݟ-:\^mchXE:eVD#A0^3Yo3KG~+'K~EQ\~m8NK_se}7+]&k۴7Nenog=;oDoTvr?K};?aGh4/ʾ![Ʊu3?W \?sϖk"םX>]p-/op4>/wF1x|Lau"ol< d[U.Iv{6e+`uS;g^WGee~KZ߶Ш=e\;IK,>3kͪ[e9HdO˶1LmZeTl+l} N.Fm;ŏ<̏ܶ!)Q^b٨nNNjeܒqܽ2bZ߶ tZkb=kMgzZ {h4Cv7vɬ |<$@檫wK3eŶ剖l<}Fg &d;+ɘ{$;=+C;u2vs*l[Ҏ(^; w|V#5r9ZxGsq#}Ĺ8>Gsq#}$$>GHrI#}$GS)єh}4>rMGa&Ml>e6R6lD٘ e[[[[[țO|7'oy0d)RmS6l~f~.dK)K"E-"oy[Lb-&o1y[L򖐷%-!o yK[B򖐷&Dޚ[yk"oM䭉5&Fj H-% ZRK@j H-% ZRK@j H-% ZRK@j H-% >yɛO- oy [@FH[#yk$o䭑5FHBQ, (K%ŒbI@$XP, (K%ŒbI@$XP, (K%ŒbI@$XP, (ZIlBRKHj I-!%$ZBRKHj I-!%$ZBRKHj I-!%$ZBRKHj I-!%$ZBRKHj I-!%$ZBRKHj I-!%$ZBRKHj I-!%$ZBRKHj I-!%$ZBRKHj I-!%dj77777777777777777777777777XQ,(DK"%ŒbID$XQ,(DK"%ŒbID$XQ,(DK"%ŒbID$XQ,I-1%&ĤZbRKLjI-1%&ĤZbRKLjI-1%&ĤZbRKLjI-1%&ĤZbRKLjI-1%&ĤZbRKLjI-1%&$ԒZRKBjIH- %!$ԒZRKBjIH- %!$ԒZRKBjIH- %!$ԒZRKBjIH- %77777777777777777777777777XP,I($K% ŒbIB$XP,I($K% ŒbIB$XP,I($K% ŒbIB$X*M|/<>7|,<3>3>3>3>3>0000062o#62o#62!2!2!2!2!2111111313131313 0\w 0 0 0 61Mo61Mo6_,|#ˇ,| 3,^X*xUbUūW%J,^X*xUbUūW%J,^X*xUbUūW%J,^Lw>ӝtG|#Y>ay:Og|;g|;g|;g|;g|;g|;g|;g .` .` .` .` .` .` .` .` .`㄀6N8!`㄀6N8!`㄀6N8!`㄀6N8!`㄀6N8!`㄀6N8!`㄀B.d K| B.d B.d B.d B.d B.d B.d B.d B.d B.d B.d B.d B.d B.d B.d B.d B.d B뎍B6N8!dㄐB6N8!dㄐB6N8!dㄐ"6N8!bㄈ"6N8!bㄈ"6N8!bㄈ"6NXXXXXXXXXXXXXXXXXXXXXXXXXXb.t1]t3Lw1]t3Lw1]t3Lw1]t3Lw1]t3Lw1]t3Lw1]t3Lw1]t0%Lw ]t0%Lw ]t0%Lw ]t0%Lw ]t0%Lw ]t0%Lw ]t0%Lw ]t0%Lw ]t0%Lw ]t0%Lw ] '$lqB '$lqB '$lqB '$lqB '$lqB '$lqB '$,^%,^%,^%,^%,^%,^%,^%,^%,^%,^%,^%,^%,^%,^%,^%,^%,^ūūūūūūū}6s͟lg>?}6s͟lg>?}6s͟lg>?}6s͟lg>?}6s͟lg>?}6s͟lg>?}6s͟lg>?}6s͟lg>?}6s͟lg>?I\wMo61Mo614N}6s͟lg>?}6s͟lg>?}6s͟lg>?}6s͟lg>?}6V<^&J<;gyg8g%9/gfo@ϰ>sXAK+,(R<;[kc>7- gK]]]]]]]]]]]]]]]}.x7`iGwĮ ԃK44v>ݝ- vj<3H3HHHsHsHHl$ڪ?60FS |Rjj>)55OJM'6iØlqt ҵliGW%IζOػa{,U:Ӳ} 3486G߯NSL7Ӽei6hRp}ˡ߈!Z_32^?CKf|o|l`qzj1W}]Cݿ# jj}fĺulVFtwI v/_ҒjzME ' v,ot-U -yv;j";ݯ`Wf)۝0?z|^ߟ;hܜ]e/mkkF61NKm5ƯvZܮZz=nwksNW^ YI;qP^+æM;6 vPaaGf ;6 v l6lXqa`' {l>DI0DdX+[[[ kv l ݫ&m)lT`B{aVN;>YΆGK͂@:8tp@:8tp@:8tp@:8tp@:8tp@:8tp@:8tp@:8~ @:8tp@:8tp@:8tp@:8tp@:8tp@:8tp@:8tp@7a[a@zo6M 80 p`ct8bc'2 p`80 p`80 p`80 p`80 p`80 p`80 p`80 p`80 p`80 p`80 p`80 p`80 p`xOka80 p i{p`_Lp`&80 Lp`qM&80 Lp`&80 Lp`&80 Lp`&80 Lp`&80 Lp`&80 Lp`&80 Lp`&80 Lp`&80 Lp`&80 Lp`&80 Lp`&80 Lp`&80 Lp`{+0p`&80 Lp`k4 X X p` X8,p` X8,p` X8,p` X8,p` X8,p` XHp` X58,p` X8,p` X8,p` X8,p` X88,p` X8q<؋0p` X8,p` X/f6868 lp`68 lp`68 lp`68 lp`68 lp`68 lp`68 lp`68 lp`68 lp`68 lp`68 lp`68 lp`68 lp`až68 lp`68 lp`ؽ4?8pp+p88pp88pp88pp88pp88pp88pp88pp88pp88pp88pp88pp88p*yؓ= 8pp88pp88pp7.8p \p+]p.8p \p.8p \p.8p \p.8p \p.8p \p.8p \p.8p \p.8p \p.8p \p.8p \p.8p \p={ .8p \p.8p \p.8p \p.x8y.>v/9#N+-3/Ӈd]R?3=Qm"^N志'p{/ry߼;ֲ0D{¼O]cu̺|\kraMCht?Z-KMٶzקܼˊT\5Jo~ǽ7 ˍ??+eâ7x{{brv T'\7<vQ6c-@9̓HRi6)32LQG˺˒,?䠳2`u-VSF3f"?p4ޭ6:P=.dq~/dGB9zP~l1f[K+(r :'/=S[F?.lG۲6Y ^=^uدgq~zVWE,V|O7"FoQgKk[VZ: SX,T*Kuש= }֕mmgVc2jR%.[+mxaԊrZ[ֱHnhUyE :g,m6y ۖvE'73񧧫NhwLMh:!bG/\d%Rқ:2꾔{kVƍ6YY?YV~_0x򨮥 MсxT*UJURT*UJURT*UJURT*UJURT*UPiMut]׿juWnu]M_Iuv_7麮&]}ݤUt]׿juWnu]M_Iuv_7麮&]}ݤUt]J?<#]XΞi叴So[j-C2rQ#}D(>Gsq#}Ĺ8>GHrI#}$$>GHrMGS)єh}4>rM&,MDe}mlHو1eʒy+y+y+y+y+7'o>yɛO`96R6,6lB\Ȗ(SE-"oy[D"-&o1y[Lb%-!o yK[B򖐷%-!oM䭉5&Dޚ[yk"oMZRK@j H-% ZRK@j H-% ZRK@j H-% ZRK@j |7- oy [@- o䭑5FH[#yk$o䭑-$o!yXP, (K%ŒbI@$XP, (K%ŒbI@$XP, (K%ŒbI@$XP, I-!%$ضZBRKHj I-!%$ZBRKHj I-!%$ZBRKHj I-!%$ZBRKHj I-!%$ZBRKHj I-!%$ZBRKHj I-!%$ZBRKHj I-!%$ZBRKHj I-!%$ZBRKB=oH=oH=oH=oH=oH=oH=oH=oH=oH=oH=oH=oH=oH=oH=oH=oH=oH=oH=oH=oH=oD=oD=oD=oD=oD=oD$XQ,(DK"%ŒbID$XQ,(DK"%ŒbID$XQ,(DK"%ŒbID$XZbRKLjI-1%&ĤZbRKLjI-1%&ĤZbRKLjI-1%&ĤZbRKLjI-1%&ĤZbRKLjI-1%&ĤZbRKLjIH- %!$ԒZRKBjIH- %!$ԒZRKBjIH- %!$ԒZRKBjIH- %!$ԒZRKB=oB=oB=oB=oB=oB=oB=oB=oB=oB=oB=oB=oB=oB=oB=oB=oB=oB=oB=oB=oB=oB=oB=oB=oB=oB=oB$XP,I($K% ŒbIB$XP,I($K% ŒbIB$XP,I($K% ŒbIB$cU\/"_by}.od#Y>ayg~}g~}g~}g~}g~}7`~7`~7`~7`~7`~淑md~F淑md~F淑md~C7d~C7d~C7d~C7d~C7d~#7b~#7b~#7b~#7b~#7b~c7f~c7f~c7f~c7f~c7f~7a~7a~7a~7a~淉mb~&淉mb~&淉m"4W+%Y>`FY>bg~Y*xUbUūW%J,^X*xUbUūW%J,^X*xUbUūW%J,^X|;Ώ!G,|t>ӝt3Lw>ӝt3Lw>ӝt3Lw>ӝt3Lw>ӝt3Lw>ӝt3Lw>ӝt3Lw>ӝt0Lw]t0Lw]t0Lw]t0Lw]t0Lw]t0Lw]t0Lw]t0Lw]t0Lw] 'lqB 'lqB 'lqB 'lqB 'lqB 'lqB ',^,^,^,^,^,^,^,^,^,^,^,^,^,^,^,^,^,^,^,^,^,^,^,^,^,^Lw!]t1',O2݅Lw!]t2݅Lw!]t2݅Lw!]t2݅Lw!]t2݅Lw!]t2݅Lw!]t2݅Lw!]t2݅Lw!]t2݅Lw!]t2݅Lw!]t2݅Lw!]t2݅Lw!]t2݅Lw!]t2݅Lw!]t2݅Lw!]t2݅Lw!]t2݅Lw!'lqB !'lqB !'lqB !'DlqB 'DlqB 'DlqB 'Dlxxxxxxxxxxxxxxxxxxxxxxxxxx3Lw1]?}6s͟lg>?}6s͟lg>?}6s͟lg>?}6s͟lg>?}6s͟lg>?}6s͟lg>?}6s͟lg>?}6s͟lg>?}6s͟&淉mb~&淉mb~is͟lg>?}6s͟lg>?}6s͟lg>?}6s͟lg>?}6s͟lyūW%J,^X*xUB v?ҹ{lц%bMZ|}K;;'v-o׆{*W\yzP o{ᬆ=jeiV:P'byu-5&]䤞Yzs:+]˖vtUmkV C^={77ˋcR{7rfN5;]޵{9m}hF0h3r>u}~4LLf&z 5V ;hY3ol[va;v l/ؾI0FX kMk`i5tydb lS8av5&vC 6>K a,.UvUvUvUvUvUvUvUvUvUvUvUvUvUvUvUb>@9֜MGQrQTo: [t/KA^}ץTUUUUUUUUUUUUUUU?Zi? :[AI eʔ)SL2em=\L2e>3 $_l8zY%K-hY"QYݙxuraLiru[;e'k̬g86[QY?;?[^oMuh^@=~u­Z:A0^3Yo3KG~ۉ}-'K~EQa4.PBChal=by#KgnWLeLi}od 2/{v2މt7ߨ~>;(4v~Ž7ʾ![Ʊu3?W \?sϖk"םX>]p-/op4>/wF1x|Lau"ol< d[U.Iv{6e+`uS;g^WGee~KZ߶Ш=e\; vHw~f-ٺYuځ(xLz1P4(vIe_5m7;[.]ٶg:SKcX7]p X{e dzKٱgmyg,??;ɀliv2ɱMklvmEoaIeevַ-y oe(^sfa9Ƀŋ>n\<΋PxlF.t{q?9'Uxm2~hYƎ=l8jzyZ_>]]l;;[.^O&gfLS>md=!:9G-|iGUlNE;>+foO3?5]SwOe?5]SwOm! '?hNzZJ43֊-2}Ʋ|Jײ]+Nѝ)N|HYRYbU\0ݯ6IVMtv}zc ؖZzebk6mai4/~!QKgv {q"l_$fpX#,YXKgvb&Q+aJ`3jUՃtp^5:TK flt -3tvf8WNj錪$~!~ fŌIZzdfJ+EŰ6{aLݖ–N@ ՖN;v&}` 7 @:8tp@:8tp@:8tp@:8tp@:8tp@:8tp@:8tp@:8tp@:8tp@:8tp@:8tp@:8tp@:8tp@:8tp@:8tpoބ o8ޛMC*p`80 p`80 p`80 p`80 p`80 p`80 p`80 p`80q0p`80 p`80 p`80 p`80 p`X, 80 p`80 p`U?a^80je}&80 Lp`@\I1 Lp`&80 Lp`&80 Lp`&80 Lp`&80 Lp`&80 Lp`&80 Lp`&80 Lp`S\A&80 Lp`&80 Lp`&80 Lp`&80 Lp`&80 Lp`| 2W`&80 Lp`fgz6X8%Fa8ĸX8,p` X8,p` X8,p` X8,p` X8,p` Xہ X8,p` X8,p` X8,p` X8,p` X8,p` X8,p` X7zEJ8,p` X8,p`K Z{4p`B68 lp`68 lp`68 lp`68 lp`68 lp`68 lp`68 lp`68 lp`68 lp`68 lp`68 lp`68 lp`68 ga lp`68 lp`68 lr 88p8pp88pp88pp88pp88pp88pp88pp88pp88pp88pp88pp88pp8o(I`O88pp88pp88pӛM.8p.8p \p.8p \p.8p \p.8p \p.8p \p.8p \p.8p \p.8p \p.8p \p.8p \p.8p \p.8p ܿ={\p.8p \p.8p \p.8p \pfo857ѽK3vb6 ɂŕXlk"WˇzX^]׿*#2~v{V ^#e5-~Gӯ׿F˴keAʜs]oߪoU?eGz7-ƽ̶7/2Ͳzیe^Jr6mc)_}np+n/Y{l_u?R~ʏdo8ȷxLO܋WS)[vwYfu?_.b_5XyTS)/qdw?M]]]]]]]]]]]]]]]}=.1ҐVZ}UE`U߶gjZ~aH-x{Igy{!pGmbrKLZ﫥 &(& $PTbVL[Z:).TE~"ebRUޖ.UvUvUvUvUvUvUvUvUvUvUvUvUvUvUvU6iԜmˇt]|D.Хt\|<.Υ7'i&````````܇s~}?>܇sA#} >GrA#}4>sGc1јh}4>sa#}0>Gsa#}D(>`<[֡FYFF9FFyFR6m[?Ϋ=} eqqk0D)_i]bMkZ:!R L쿗8FZdͲkcOVobZI#r[vueD]l.l_%?M'7F{~O'ocy{mAUH}d<6łۮoȫUeMx7^:8tpoh@xCS/z8P/ԋ7z^ԋ74 p^ou 1HӲ?N|ǃ7SnVeWeWeWeWeWeWeWeWeWeWeWeWeWeWeWe_ˮNsnmu e#Le#,e#le#e#\e#bmEtPϣ>onr'~ͪ}{W.>||[_ഃ6ک<ϼucuqZrT=i?Vm> v} c˱vz* ?zዻ{z?ܴOoT/!n9fkyNyVꞻ>qlO;gQqn>vͥ6ytn'[Qǖ{?^򣏌yC?tu%_mr⶷|]b'X|·^sfwoq򡷟3_Ucԯ?xm?et|#/Ny'xO>߃|m#Wzl[սZ/S>+' }߶/.?#_8q}Ozd9iGor ~tUnMϼU/U S`-j˳7GN8qO)]{Dl,?m|o,oħsV ݫdZ;/V.ݱYOgD4:u)YskEg Zuh[avgHd[:x,oVNj[ޒUZ۴VxAi ;jw9`_T Gʌ^_&Ϩ]fSe݋eIwUYM M)u3dH8l rVkG^Mw^x/fGD9zP~l1v[K+(r :'/=S[Fe(lG۲6a`^wwYGQgh#F;Yc TÁs6mc7_v|cK>3!md(^|vRɐowGHU6g׈gN'2?geD{?U}#3r쟕`vn~Geny5թ zm;E{*) 'jl e-~1%^?N^>Y*+fwXhqZ+,IV^y2u0Yߦ%qB.u{6x;˼8yx'~sX ;Bq(l&Zs։|^\G7Tra<[6ׯӊ\wbvq&lߩŠ#2} 1ՉmOز/muWL&ٹL؎O>NKy]]-i}jF܋?@q$-}6Ϭ%[7N;rQ>.ɰ쫦fgYݼ+ۖ^gji氺+~k/x});L-/l]g >-N09i͖Rh-l;ɻ,<ےVvE=ge㨹]~i}Rb wYvly33[&)bٶ َGee2Ecݜ c# E6BHb~7H#dOH|1W1? )ob=Ix/rµi&dzDVٗ82Se43'9rwx:juȹ!T*UJURT*UJURT*UJURT*UJURTC}{N@58Z|>GrQ#}Ĺ8>Gsq#}Ĺ8>GHrI#}$$>GS)єh}4>rMGSI0K&QDYe)R6lLلDJDJDJDJDJ'o>yɛO|擷<~? )˶)P6?3?%%oy[D"-&o1y[Lb-&o yK[B򖐷%-!o yK[yk"oM䭉5&Dޚ[y#ZRK@j H-% ZRK@j H-% ZRK@j H-% Z'oy [@- oy [#yk$o䭑5FH[#yk$o!y [H(K%ŒbI@$XP, (K%ŒbI@$XP, (K%ŒbI@$XP, (KBRKHj I-$m~f!%$ZBRKHj I-!%$ZBRKHj I-!%$ZBRKHj I-!%$ZBRKHj I-!%$ZBRKHj I-!%$ZBRKHj I-!%$ZBRKHj I-!%$ZBRKHj I-!%$2PRRRRRRRRRRRRRRRRRRRRQQQQQQ,(DK"%ŒbID$XQ,(DK"%ŒbID$XQ,(DK"%ŒbID$XQ,(ĤZbRKLjI-1%&ĤZbRKLjI-1%&ĤZbRKLjI-1%&ĤZbRKLjI-1%&ĤZbRKLjI-1%&ĤZRKBjIH- %!$ԒZRKBjIH- %!$ԒZRKBjIH- %!$ԒZRKBjIH- %!$ԒPϛPϛPϛPϛPϛPϛPϛPϛPϛPϛPϛPϛPϛPϛPϛPϛPϛPϛPϛPϛPϛPϛPϛPϛPϛPϛP,I($K% ŒbIB$XP,I($K% ŒbIB$XP,I($K% ŒbIB$XP,IXb&rA>׋ȗXmKFY>dcOX_____ ߀ ߀ ߀ ߀ ߀md~F淑md~F淑md~ߐ ߐ ߐ ߐ ߐ ߈߈߈߈߈ߘߘߘߘߘ߄M_M߄M߄M߄mb~&淉mb~&淉mb~/Պ|}XCX>f_J,^X*xUbUūW%J,^X*xUbUūW%J,^X*xUbUūW%|;g#},ӝt3Lw>ӝt3Lw>ӝt3Lw>ӝt3Lw>ӝt3Lw>ӝt3Lw>ӝt3Lw]t0Lw]t0Lw]t0Lw]t0Lw]t0Lw]t0Lw]t0Lw]t0Lw]tqB 'lqB 'lqB 'lqB 'lqB 'lqB 'lqB WWWWWWWWWWWWWWWWWWWWWWWWWW!]t2݅%} yLw!]t2݅Lw!]t2݅Lw!]t2݅Lw!]t2݅Lw!]t2݅Lw!]t2݅Lw!]t2݅Lw!]t2݅Lw!]t2݅Lw!]t2݅Lw!]t2݅Lw!]t2݅Lw!]t2݅Lw!]t2݅Lw!]t2݅Lw!]t2݅Lw!]u !'lqB !'lqB !'lqB 'DlqB 'DlqB 'DlqB 'D,^E,^E,^E,^E,^E,^E,^E,^E,^E,^E,^E,^E,^E,^E,^E,^E,^E,^E,^E,^E,^E,^E,^E,^E,^E,^Lw1]tG|{:Ϙ.fb.fb.fb.fb.fb.fb.fb.fK.aK.aK.aK.aK.aK.aK.aK.aK.aK.a㄄6NH8!a㄄6NH8!a㄄6NH8!a㄄6NH8!a㄄6NH8!a㄄6NH8!a㄄yUUUUUUUBg>?}6s͟lg>?}6s͟lg>?}6s͟lg>?}6s͟lg>?}6s͟lg>?}6s͟lg>?}6s͟lg>?}6s͟lg>?}6s͟lg$&淉mb~&淉mb~_'lg>?}6s͟lg>?}6s͟lg>?}6s͟lg>?}6s͟lg>?GeUūW%J,^3e4SHVky{rlM=$ͽ.rwga˂ZGe# e#Le#,e#le#e#\e#)55OJM'RSIM0&C>t-[Uɾo>nǟ颭5˹tlL' "T,4o$rٿuڻ岍4y+3l߳zr7"oDW LWo.[,,[>X=mܧaU-+{WbȂZ'r[vue+]¥˗4 x+m (dmKDߎȎ}sc%:*qAJkv' 菞=euN339x97'gcyNjk[ښ%|muM4|m[htmk-ů`;j鵰4^]kc>&ӕB-fku3t3qN\;ʰ)aSaM;vp#aGfŽ͂ ;vl.x< w;v D; `[Cv[ [;&.riag΄vaR&z?:8tp@:8tp@:8tp@:8tp@:8tp@:8tp@:8tp@:8tp $:8tp@:8tp@:8tp@:8tp@:8tp@:8tp@:8tp@:8Mo8ޛMӃC80 p`0$ p`80 p`80 p`80 p`80 p`80 p`80 p`80 p`80 p`80 p`80 p`80 p`80 p`80^u80 p`q@mv:5 Lp`@\5 Lp`&80 Lp`&80 Lp`&80 Lp`&80 Lp`&80 Lp`&80 Lp`&80 Lp`&80 Lp`&80 Lp`&80 Lp`&80 Lp`&80 Lp`/^ &80 Lp`}o6/G_,%88ĸX8,p` X8,p` X8,p` X8,p` X8,p` X'X} 8,p` X8,p` X8,p` X8,p` X8,8,p` X8t\g={"l% X8,p` X8%Ƌٴ>8 lp`c lp`68 lp`68 lp`68 lp`68 lp`68 lp`68 lp`68 lp`68 lp`68 lp`68 lp`68 lp`68 lp`~wس`68 lp`68 lp`vo6p8 88pp88pp88pp88pp88pp88pp88pp88pp88pp88pp88pp88pG$o`Op88pp88pp8ͦ \pJ.8p \p.8p \p.8p \p.8p \p.8p \p.8p \p.8p \p.8p \p.8p \p.8p \p.8p \p_a=.8p \p.8p \p.8p \p.8p{860sAeYH?o,|?otCֿ^Ȕ[^:ͪKv}mp%+wSەvX7-C߸ibU;-߼˿R=`mgp?+'[\{쏝]m䢫0ƫ6潿Wꥶ{!ᡋ<<z/(vu=B+>v-խ?Se/ꀲ;`zo]YN>~rF5ܯ9>n]{"z!ߺk+\Ǥ}g̿܃.,U?x}Us;ie oxOO:˃mAgyˌa{x9kL{oTȾתï7˯?\t7/;򎯵,>^.Op7]g>'_Zu/<]VO0SX?F;n+x?Wu)AS+/VcnES)7')+Gq/rϊ'rpw}ye͟&\\fYݣߏޞîز|]|3 x +?cJ_mM78^,Oc+_ߨNٴ%bS`Bj˳V6.Mgҵ q[>2_|]~e*/{#r][̛w$c-i.cuR+: ]]ʍvkxZGլgLfk4)ʮE-QMk*qX;jwN _T GL,g.Ų$˻*9̦4X]˦U:d2.w #TO;nnfK1kt쬴[֒Jpl4J¶KO>Ԗlϧ5ѶMF<"gϦW/xFUՆs6(-_Ӎ(y[&"|֡iԮ? eujO>HAu%8l[{ۙZԹtJgi9^X)b/"7Vtvu,bU^7pQK[GFޠsJQxV1ii.4΋is?Hwr5Y.~/UH g1ξy]rj^ W>S˟mB؞@PVæyYtSd 2$Spgv~@mu6v1Zu #2z%K&/m,)gȴt,=En^]v]ltدĖA~׃دA>I {5ق%jhkCf1ٱEs0`Y8>tfZrJ:MʼnT +CƊFv{T_40$sbNYtFʢv@S*OCYws3t|zyꩋ?y:_>sΓ_0GR]wl'BIE|ҨJKw;n{z4Pvtd[6C4XC )b׆قg7Z{9kFJ-rl~N {6Ίq'2qҎEZ k{5CU=Y+(8} )<{l `TQ\_VG˒eݝUT˯ٜ-a}w…]|ujg}vE\/}7YlA:1/+,i 7Ci* .iʂM ŦmK;un{{VlM<]L[|OsPvڵ7;jVAG"b#N<bTV=b@'Gkjgm֫oI?wO˳|\VeUו<[oZ\?@ ,kXKo-iދЭvcj8Q6>f ʖAaT\fwdMɖSlmQ[SGG֯<Ħ)?ͻ~đaŒYʚ'eÉu"]٭gjMS>DBsJUQpDA5&V(b 0 C4#]k1 XM?b-n sJ8nU IMAT>娓[YGTwt($1<i|yF8ڭoru^M7BK?o2OyM9Cw8/f:eD[UYYBtjKm!6cjv &Hˮl4%gZYز|Imm-X*gn|w47z!^ؖtk6uC}o%/ىҫJ=l~;ov?JozF2huï?]!Mnz3S8sS_ytEKyjx /5u1v2:7)X:d6ۥ[2d9t|m[}tǎ?=d:[K:ÿ2 oz2ݨW?&C&;`t~|3L7}텩w!W /w[|t:tCO}gtܶwl!-8t/_}it퇗6C]!m;nwo2[O3dK7ҽɐw /fҴ/2MqtҸiMޱi4Ny* :X3M7kq/ /PD7İ~F,\ -[3.*,)XĶ Y~t/ :wAʴ *UJURj}F4;FtZ5|q,X>fxy;@[]pOS]ry ,hrUyo5z\WCa@xHw.7] ˋ<W_<_^ҁK+|ߪy)P,Cn?w(a#|j-G> ߋp9oWؾ| p iV~@3poxHEn*oq?y7T=Y\la%mgV݃erUY~S NZl7uw;+;;W= ˖[(;n,tT:[:5-l,tut՝:07/6dY:Au.,?䝙Rww;;g>jί[\m^"p&d35wo՚c:sE>m 7"O[G:;yZuƜQo#,=:ˇuf14wv=@6;}yWwɕem '͖>\u{` èc3X&99<]|w]u w5<߽W|ssaa5,^Q!DNkx;;:e`/_,E?9SGY,M}G}G}G}GpfVyj\&g<[&gN*eXyW>aϝx0l݅O.qU:3Wg~W{w|Aes>g{?ws\{NyB_4g{?)Ra75corC+'o@~/g>< V/n_/zzsw^lcw^~ ]r~˵?'lywYyR#=R\^5ҟ˴畩zl7?uAOQ繏_ ~z*t/7V﻽/sg^P6x/ʗ/k(k4{/ўӴj~^,;ι=aٳ9M .s1 y]>9yJo'\^<_.헭Xғf'|CHQgFY͏6^mRh/|swsz7[\=ogG7Mn~u㞽1]zYYPvpG/NnQw߬Lxf+=;'2m~Nևz:Ǘ~m/uOj~aʧ޳\^(9y~Wr&[]Jv=/?_7wx_tIU3zϩ71]Z;rv~9ZH.7vZ+󭖍Z=<*Wt'|ݠl;;.[.[>ɴy=XU6_m9 -OWPj],7Vs8j>3r7r}n,sl~yRVr ]x^ؑ_ }8A.]rUK]*UJUR4$m< ){ zqR'-88){>|UyU]]V8Q Z,9f2񻏡& ކBlVlϨ_ɖ__ |կZ4-& <6f>UuCQOt1;F(][G{Xmz὏ sޱ^۲k<1o ^FjW*UJURTˇN{ 6t^86N8*&ﳊw]=(ݾozЪ~u&{yeUuuy˒ K6tR֦A_[Auׯ"FBl#ۋ_~eʴ.n:o5.\پ|IKi_tX*zիիΫo^^6'[o hZLSRg:zwGiR-"ԯS>֗D}7i\2zSO}ϫ\=_^RاTߏzSOau=oRT*UJUҵgJU5MG}ގϺU:nT#)gmWU~_WU~GoWU~_W~G.`kL\VʇFdƗ@fe&HfDfIy<<(y.s?>܇s~}?>GrA#} >Gh}4>sGc1јh}4>Gsa#}0>GrQ#}D(>GrQ#}Ĺ8>Gsq#}Ĺ$>GHrI#}$$>rMGS)єh}4>rM҇Y4% (Hِec&%o%V"o%V"o%V"o%V"o%V"o>yɛO|7'o>y[@- oy [@H[#yk$o䭑5FH[HB-$o!y [HBE-"oy[D"-&o1y[Lb-&o yK[B򖐷%-!o yK[yk"oM䭉5&Dޚ[yXS,)K|%>bOħXS,)K|%>bOħXS,)K|%>bOħXS,)K|%>bOħXS,)K|%>bOħX#c=;[w/,wz-["O˩%ZjbR;Wnj50s Z50w [6z l5 6Zx l51o_ov`iGwĮ;w;ֿkYز{i?O!߮}ٱ}b{Kwg'ݰ`}{7?4}Hmi|oH'ϟYoneQQv{3MN>ԭ .]Ժu [Vo0CݿKS+eW_Vۻ/1 7=dID,u 31,jymXj9+0\ѷ|luWhfM]9@S|z5Ҫ>]D ^6K}UVԿ*__DgYgLQ[YHgɝA.^_!ߖ/o~YL._1=\ >h~Z$nl~czޜWy,K1n~g=?}v|94ϔ_l6 g{Om/e'>wM\\y"]tbO74νoe=5Զ[g|(jHwצl=,}RK.7mۃ>]>wzsVbWɴ#l+_;-oVk=sBYKZK%/#Yt2ng[^_VNE-Qٛnc_֞!+|fC#eCf3hY|YbY]c̦~e*uh2} ?R+H7e.Ƚ[m]D|O˥'9T^{A=zreN= 5xc~<{4~{(gM'Ka;e~6[FKa*6ﰊmr`mbΚ7wFq6km#^W&*Y֘*@˃dynD/9c{鉾_VfvVZ,@s{+cHѲaR2ν:+*ΖnжyF} Ƥ"@NJv%'s=kSLiuJ.uuXWosY:iuR]V=.^/Jm>jHu:c$ 痴#%yId/96'>Kx&∶ l[x` a`;1wlO^a&MǠ&W"X K`M`&; +æMa ;v(0#`b@|$(LѰYc`as`Žy`6v"$X L" #9ml1 ^)%v:4m)lTF0`+`b ,dg; ~ٰs`΃샰> ؅>8`] Ӱ.}9a.}E/}v%+`*j5]:a߄} vFطa߁}v{nma?Ua?Oaw v/g~v?/a 7`0?{'؟a= +1'`O{ 4ߵt9`/j~ԴdOߙ^u;̩)BNfiVNf"nwbh#W^T*UJUR-;6U pemT뢩3د ]LsZ~%rf*r ,n:[ڻtpXQ9@VI:nþꡦZSWCuP]=TWdN]=TW5uSWCUWӬzf4YuP*UJU+}j]]i#mnaZ[eIk[pE&b(oYw,cY>,+xٲ#,;*g&W>-t]Zl9e}h/P8CuP#9~[`]݃S|ƶ?/_ô{^l 돰ncwh}}wCw;?_{}z<@9 bcj#ݿGOm@ۘՙ6c PaZɶ9 cV>}9kV1@_ò?e~eY#Nc?eb58}rNs|?vx~wݽykxO>9~a*8?ʸp˧HqSm^K1|Gwcv=O5}96qsz%Lϱs-W|:}~~q~êcΡx_j>6/5c 55q|XrUQ拢.ESo]Іݴt}y^9M[Snv{ZdY{>wisrmKc՞R<ҘYnYCaVͶ[txCC|cע i쩪|x_}9QNlfxjcUǤ=V鐃4ech;YiFٯy('-4oQ{꒖ʳAYlSV]-ZZ+bۄ,?`Xw?(^ ˺q]_TJURT*UIӳR*U隦>og]*}{uTґ*ʯ*#p7܏*ʯdu~`,P瞉7[*UJURTcozVT*]T}_ooJU:~ֶ~_WU~_w$Q~_WU~ߑwl{%--ȵz z 2e[Ӭz rUoAN-iV9;Sނ=<]{'ݰ`}a i~XGwsAeY }wg]Zeiwte[*o=[Ž zcW#yŇ*l.őWWz>4}¶+T.,jXmhK;+,F?{h?˅WZ/gϾ2yhfKZgכF+TW,]Z:Z:.-n]Ҋ].trFzM]{})?37|ȕ_/pgݨ|؝j_X>r37jzgox.W#j_C|lyesڧq/iGK.<%_s l,lS-\Kܖ`#6mak 3lخ` 7lDؾI ݎa!,Ű?l2]0¬fX6v l* ݓv0lء`ÎM̀ ; 6v4lxxq0a`' {l>DI0a{/̪i?amN-ċ–NHݰ`+`Kg΄va΅;a} a} q'`Đbا`}v 쳰>v /.} v˰+a_]?WaWî} v-:a߀]&[`7¾ 컰`߃}v3حn!X ǰ~ vn={a? }a~ װa=-waG#? Q_a={7Sa{y Z,4}rCSoij9ϩig5մsUiVM;Y5,jYf߁[j+4JURT*i|5uu9r-\F5cR7k2gxOS1LWUƌmF-!j,Y>o|;qXWR[lUz]xMhLrT+p_[K+u}??P\K^W{' '۵utu,YQYpZ˒~bxv_m[_'o/☞W.O4?- 7n~W|jeNTO 6c/ڔxcW%dW7G]vN_3uZÒJǢB+'5%~ҰgL5j(%Noi?{}zk?~ky}HVY i6uocM;ap:+*TNtv,Io$h_5>Jt6^[ˋEM`d95ґn&Z!Κ77|~,^W˝+⧚r6TN366Jl哴UMߓl)n &ź[Dm j,DG:(,z!N_sDm7fg|;ƛgg*WozZd O;X~<fSgU^go_iq%d-Mr=u;M5]{>N\q4@}+[8YZ%tdUɖSlāPG9[~C6׏220G&?I:hw+JLh+U`W0vSg0S q 41x`$ 98& NAիFLl"Lc 3mz5#uBYe.J˪\gbVܒ~n=(/~]!AZ9[ύ}X0wA*S7jhnkYvfe*dzeN 8EZ,]f,k>gYzo>?һ,-KRla<ߧvvY._re9]7Gki5m j'grߕ}JURT*]{)>X`=8j˞VWƼUU.]漣k]zYvݠ?ïl~ovl3:WYlUh䀾|wuYډ-hYѺA>.p8O4zs?%<>׏@^\H~l5E&vXˉ5bn+Ex'/=S[7~6m:0CU=[iGT>2Mb2.limWJWW[KG-;Y>peujG>v/>0\pmmgVaK;;.uZl;MN%[XyVNky+Z:;)V .μsa5{~{;2i9GID' Q?5Yܧul}.,]ujg}vED+;+~lYϘN!b,܉IމY~YbgIJײˬ>;]NXY!`Wy'>rλE$ucP7JTi|=J{ZH$1<imS8ڭoro4]˷_r[l ^[Wu`W6jj3__x|w4/< Q9@VHdj}3?g ~eo nRzetC}u!MX?hts4dw9ȧLtSO7d:ft n|s/pَCc8fӋ.p.Ccof2}Ϳjܗ~ɐu?E!qG!-VG;duq?u\OĐiZxiZҸiAj+8m6N⑶yתH\q@`ooeˆ Z,bۄ,?;u}JURT#1hv/d ۍ`61CΣq^.ߪvx M`@ktϳ} :@+G~0DsaZX^8yZ^Z!#/VK]jgWr8GQ CEW+,n9P^\?>˩\?}˽VH/q[@(r3Py7u7[}ryYzR7@-~S NZl7uw;+;;jO|6,[*nܻQlnXжyVw,PdkSt|aۃ\bgY:y7~[g.ww;;q_̺c+[\mN6ֿ=mcNccZssWgUVqyϋ~n⾧^mE˿\û~I{ofIy=.ߪo.KMpM)OݡgZVV||_^xQ {)Wg=gI: Ϳ/3$Ӟ7~}IwU~뛟CI{ol(E;9i[/~_%ܪ+V\?0OwA_~s&wYYi3s%ç^zm]>_[5{ڽ?t=/76fٕe^i*o}ui~koښ<<7Zd|v{ 7/nu5O_I<9l+|2FO1Gz^;}ӻk~=ۮ\]եb?y <_Ci7.MEf;AG<ӈ}>~IOM_^cKv};(|XJҌe`?! _]ާb; ?'y>U)M*^[r/=R)_RU$_X)eyÙh6.`SgW6l|K6?%yԗ z{L2$LvF)'֊lxԺZ8lзVqA $8%V\9A>M)l!ē W lWp?j_cZ:ͮL&R8U~ܫ z* b[(#<𣆵wPUxV>i #. \1C{"%1V>4mv[GfѦmR"BUi4i9dI&d6: J4tR>nN9p*B'r?FxW" kPچ,; I+w}8zqrG\8|u48&:* UX߱téAa/7i6@Klh98@x/3YTq uX=Ri+ < %>CߝӌJ߱#q  CGs%1$]z1x]澣;ߟ bu_artKc/Ż{WU톥5#S>}WLyLp7zc^z c̹1^L`}Q4ɑW؂ΏIqD*Np{Q|0 =?nˢfTwa)\u@_yՕ~'>s;IW;%d FXk&N'&U@~U=( *qfIHt׸W#ҬEJڐf>4wQxzQW/: IcD< $:̋4(cIcǍ(QIB41~aV1Pif{!Nb48kf)V2if{QfJyą%iN3rV'|sK٬Lcb'X'/'biSM*6 p:A #>D\^^lϯ@[pbu6viGWQլxrWz5*fFUpe3!KrqTԟYvmwQ;gvHvT֞ o ~j2;،Qb3Jm:?_\^8(R@@ON~C;{qKE#!Chb_aN@?@c(@ `P0@hp@9   1c#F0 p<`4F_ 'N8pg&LLL@#γ8p @H'#9n&` #B@ ?h\=0J{zi`. јlO,,,\ p)/ Xp%*ՀkK\p#7n[n]p^}<xC+<xIS<x4^X x 2k /-ۀwl!#ǀO>|%`#``3` +NS?6v7ovpxy_ܧ8@ rsw&Xvf|'.p'< O8xpppppp p p p p pxpxpxpxpxpx px px px px pppppp p p p p pT QA8*G pT (>:˩NuC^Q:)[9e+l唭SrVN)[9e+l>}VQ—jFSʌɽi|>Fs: 1nL5rlϤ0M4}cQ;5L7gxhӸCr4P8tN ZQzCR:^[\祙RMeJ:g,ũs6_xEZRp>Hן$qfڮdRw:GIگl,R'7Wj[&t۸Mr]&kfMJTF ]0IlSh2YR*'SVh'?>!*Rqa"I8 N Mz~f 3RiR9zEjƑu2Z`n.V wxfahK#z&UgMX[4S F"&봺U.bݜb*>lITpmuU%ɳN;e]ֻ dI&dI&̎dG>bL2dhl]zI&;zd2^x/ejzVx/e>m9k27n^e`7:ogӓog`wE^j[Yv$^2ؼmx;d5x L l&63L2$L2$Lcf&d2SvֿLlk$IZ=/e2k5=e2^xswOŜ5ll?x}0ގIx[7z0ގͻآx b-Ix;Uvl6lMO2^6;P俿_*Iʉ'.qC\^O8xp'< O8x".".".".".&n&n&n&n&n!!!!!%^%^%^%^%^#>#>#>#>#>'~'~'~'~'~QA8*G pT QA8*0|p,N:]NuzG~l唭SrVN)[9e+l唭񔍧ll>l>l>l>l~l~l~l~l~lUP VA*([elt<+V <.*+ņ ū$Z.Z烳U0+5g8M4(W'4t!-hdN=ܵ)$ŕupY6Ab(8ɞ/e!ΟG!U-P7EGhr}P 1x}XQ.}8'bPw 1bZ)B܅Nv{xh1(vaM„K?~p+?&l%/ L R[}_n~s%J&aRwk`9kJi2;l /g P2@q(]2@ -tԷ{N>p?pGizzr^  8 p8 8p$('j(` p4`8?; x^T 80Qĝ8pd)SNL80 00p`*l4t9s\q 7~ޫh?uL,@G {~F\<| XX.\ 2倿\ p5Ren?M;Vmw,pp߀a #G<xi3g+M/V^ x*57o x 6`-:>|1|   5modԧ.ogrl6l6fl6[qlfe'FN6p6KxI&dI&wR=^c8⪙<^hTdzW3]#P JM1_[kҸEкZ14сUbu&z|*T7ƺh.emٲ6P{)tQ*\}AyoEZ>hlH8HQ.)4닪RvtZ*qŭ[+༚Zma{7b.{ґ~Msi("F'ʵ-+lD55ΠNi5~t;U=6T4nH CGs%1$]z1x]澣;ߟ bu_aN؜H'8Zk*lP RiT܈t,EfTg_dvcfFg89qvWnWi)-C_86X;*5ild@'eOUD{]=Ay,QL ^]cTI v Յ`Mh8s.%'+T~Lq{VG^;|_ʯ+E~ȍܤ͊\|A*r"W*rh[ak{1Зi1V߰B.n\.UgSd,뿐P%W0}?MENQO%MuvUL2$L2d$F6j)zdz%=ZeFNKy{}Z;z*aLnFer29zy?6i[qнp9[/kY/h\At[>(OuI{Q<䁭1gwnVgk`]U}#b([{i/ؔdcN@sfO1 5LzAO@;v13?~A쩔VT;$C ^ #&Kyߑ+*_i|MRZWMkXҢ`U,F"`VYg\rA rj+ĿG\6@e %c5phj΃9'Zъu;pD 2Byx\}jA MCbP l7{3vUx;sA}uuD$ 22;:WssYdthX'&0n,ﮐnCeAߘ jj'6"]h5^)˶tіr՞^sc2d.N҆fVvV\r)u u7rԕwJ;&v=&k!hvEiuQ.6Sej}3<-dT{I=?ESjJ{$L`RJGs@+w_舩"Q6GG[酛OF?ѮOq#}FMV%@M".I<vyMRL&K9p -R\Na#q&0bX( æs}ɤPQ/Tv(Kv'v[uQR&krOʯN*{o&aM>T8x1}k;O]zmI/[}gᬹ7&ː'&{~N*Ϛt9p#ʶ*Y#Jʞ{w%&eӞ~#>&۪~y)<|5\ŵW<9#դTZmMʚlvӹuUg9ʃ[86*g:n:"[fsLߒIeT*7fbToX]q<ٿjV]>c(_Wc^U]BGAg|#L2$L2侓fD/wYP"^|N‹t0LKH}z|ĥkЇ>:OToovޟdϧ>\$|9uf隥OO"]g>@/gv`ZߘOϯχs4/N'q~I}{KzjکYfgG~9ЗSwO?S|}]|Y{YmN*{aV>Y-?޸f?~td%+_%#BY#kqS ӵqS %p%,N6M/hc."Y|:+ΰ8Shn3T+H$B uvn"c~O;,L٦}5g'z}wt%w$cڞXԴX3NJl*'K&4u-]bHZyZլ2Mx?sh3 o}.󝵍s<*VCbU*~Z7)4o E8'=7Y; H#2 ;45T_ڦpC2!i{8;Ia~H#GdAttۙMY v`;@ǭ$SVhgW ?*]F5}W^Xe_=Zt?^? NU:)%O̞YIxNxv-~eS,3r'{귂ȵ:?Zry?W_rrO_J6NЎQ^tբ8Ծ.ֵX@ko!K r=F:w Rx>IyrNʧP)d}9:?!˕H]z_,2?$ywn=i1~>|q`8~~Iz?U?y%?D쁳l\dg*_O?)@wI1m}-'wIyA_J9rVڵj}7*_&ѱؿY`/|8`P,KἋ=V,ϤrbB!O>@ͱR}/2T_~o1=RX*dW n$ؕv7q;I>qMy,c/}sǾ,Mt! *PT4U^PcG޽]>ʉ'.qC\^O8xp'< O8x".".".".".&n&n&n&n&n!!!!!%^%^%^%^%^#>#>#>#>#>'~'~'~'~'~QA8*G pT QA8*0|p,N:]NuzG~l唭SrVN)[9e+l唭񔍧ll>l>l>l>l~l~l~l~l~lUP VA*([eltT{u'eOri8)̣껷Ry =g#~k#ʉ 8kq- ni*EI\k48oO"eqY_a/,e’|T/,qqM~K`Yu8X+[i>2{,L챐=ca{#66P7*J\$K8N.$旗E RzC Z`O]]+j_S5q*>M(Hd6Ԡ ȯ I%d&VG$46HBSŢ,ԲP4D3GԹoI{xÎZ&~YN#Ѥ ,N}yE{;iq={ ~tTPm֤k P( 1εLl|^TgƇRqal|lC m6y)5l6X-vrAur:qL6դR مWY',8*\q!zAJ9$DFq>gZΉ7 miBX 874S.XlGFCaqX'QhNPN#`xqP̳ʣ ӨYfvF+0ucjēҫ mW53گ{- ؗ#$$Κ3un[YMFڑ#Q]T1ev"6Cft7qܿp{\?pQ܇dsw#!CJJ_aN@?@dU(CCe xcF`xh'N 8p*4@&L  8 Fg 8p>@~IG3I"FrL,@G@-~иz@`6FQ2>0hL'E?.\e,\pj5k7n w X.? p/><!ÀG<x$)ӀgVV</^x Uk5omZ;uw6|c'O>| `+kp\w^bi<PBM;^C. { cPd'{ EvPd'{ 9k(_CACӷ=F6[}I&dI&̞:TgV\5s8.Ŵ^IZg@^7|'Ѻa`mtrdP9v.keF"TG6 eW:rl0EgzV![=dl0]lrlPrCzlPvCVe'[=lI&dI&sK!G޺][%4˷R 'Ě.*C^roPWWR77EX\yr+xxӕk&&<'a)~~Po(%ҦIb ېnbNg*j?2}@>TI7U?cǷ}wH6|ᴜF׽:ۧ.V3s6*gyBr۾rT[7r]Uf4L K{<5JyOߍwcuEі3+4L}S){d|XdN 04{#4.Ϻa~_0I4^{5FyAyn0[MVgK1_b6}le}\w>.}ݢ)69 x۵2bɴ!35FLߨk,M~ INWu2 .Z{P1܁Ep\7u  F?(ѡ2*{SSy3)ZŴN7z՗UUj2qVփ+Tऺ>Dgu2 ny[tgRlPY]pz_ LֻFwE}Äsx3$Å[FmYS{4#Xp=$ޔ+K~ZǾ$ȱ/ $Ⱦ$Ⱦ$Ⱦ$Ⱦ$z_˱bblMb&e'(l9D1vÉbi>&dI&drIu>'/b\S*d2.yz(OU&U{uØZ1!%*Xu;!c6 U )G*FTd]h('R+nrw\ԊnCۋ;8CT_fږfmK}yP]$qu\`MU=6HPHMZ.ɽR>9})oȶOI?)ͩbiOQ dY#͌B}qsڷT?U/B/n#[D-plvFU0j9f/O$.T۸. |~Fca)0Tga -#kT=$O7$L",{ZfS0d|7Vts⴩NJW)T$_7un4G[1l'oЌHϵrmphF*=w 8ݠ_x7iNp}]X>4EM Jc %/v'R<6(iTpRyFm,r5;]SϨG\%Zդ.YحxZRrw q>wxѝs Jy;oT1Q f2kRNao|xO}I/B8?)U ")zߠԍmP4gT~m!\VfBEJ4!O7Hedu7ҥSI-j^[|b#pS_;\º{)=,.y2 B]:Fbѥ3 li"99A>beg~.a#k]^X:xW 2ksm3vF7ԏ qc@tk nfWjU]pt_T_), '3ܠz||hp 1|& a1Le!&c]a9(ԗci-ZnRF1*LΤBP&@$>Ţd}x=n{P֪ȋ|G+R}/QYk^/(UEnQJEmS8L}M|<{]5&#-FVRu Ur sʡ}mjI&dI&̞Cx>+n.Iqo"Ҝ 5kp`3ubV,yx.lTb #t>)F!fA/Hc:=cGsҮB}gϘ?;ȑ=̾j/~c! ^vb4M]WyݓYSWMkXgU!:Zxu:ZUfճq9/ߏ^7IAro-kpUl)Wi57-2$mmgeA lE{_.Rq#F]yCibgۨi⹶1fiMvɭS";ou0E^Ȫ&4hv>G'тlLfIMڳL4*7YJb/${%Tq?R{~*2n\ecxTqԿ^)HdW9"oh4˯nUO^AD+Rhw^$dj wxҒ\!%1Qi(.6H\`c0 z(BcYysrj~x́ogysNƩs󧯮rK9|l̓G w\ .7q׺}.9j˞\z}.\`mϻlr#śo6NȄ-)TFNګR$ym/)FUϵq8Yfյ="u5U%-ty$t LL2$L2%]Hx"]L9$R.q>N;/]t2ן6 8_NYf#uי٤7"I|>uR^?p|vjY>D7_No>ԝÓ_G_o֞sxV=^xVτ7}1_u8]>YzW ohtZT}_=tjdC \zzI8 qSGK|a1HV;Άz ex3,p0 U;J1 sP+nnBGytq,'KJoilɻó9yk`5{`DŽoqy5~]!IX9ց1:59̱֩ MtfkKCןk>VV5qFӭ*54 1曨rKip$|gmc$꜁,XduߩV nwJ" oB'*&It s:0 ;4M#C ;Ǘf:,Ð aH0NR&8Gd#w*i0]>G/v&iS4ű`;68q+| ɔDUAp2x<@=Q?Ptc)fЀ]zFy| Wj0W~9mhl[Ol{⋯?rw]qxॗNx_xĿ'qDs3n^ȟ(:V`؞;f\&`SM<{E5*W&[OuoQ`)ޣF.$uzz&nأѡbk^ٯL sK_և\mՏXyM x p/8z3/ȒץNyĢM> 贈Ӧ8ҿTrv]g,\[aϚn6(Mǎ,yϰX}rnuoj2?W~c?yԶe?+9o*rӏ~_>zKKtG>$޶fRXI pk޾_G)ؔx}J쁁]#7|N?SB[>Tǝ3;I],_{"T_S{ׯ |uٞכ__m&,|aQ'.?w voO x?oa y,c~PSI]tcTÜ/n ؿ;{FE05]eq|r"ȍJ~VW9oʓ>7Ho,p7eLZO! OxpO'w} r; u`)yVsJ:R~J98ܬR-_e ge OF^ٰ ,]p֗R_2Xj]L2$L2cf&Go5caڶ~bI&dI&d2;53$Jv5gue[-&R^B-69-(;\vxÇ~ˇW9q".7qyK\> O8xp'< O8\E8\E8\E8\E8\E8܄M8܄M8܄M8܄M8܄M8F;qbZ};V+̥6ipޞdE)PP^\%mErּ lW* U"{;;HQ/s4 ca>v>bKJos uchҞQ4͕ɲㄞm~oJ:ˊ.o=-w%t\ZJcoQw淧,ݧz(*QlԽv78]oMkk?zw |~I< ܨg=6t~omtf`L /y\`DPJQW-9<߹[Xk1w=ek&vͷQޅg==c~.64#gmsЕvRy5Ucqɯ8&wc$2GjPW$K2̓Vs#Y$!ҩbYjYzE#kܷMPt=cl/³bC)D>X!Wꄶ qͼ͚A S; :y9Q8&NjR)B+٬dF|. %KQB"8F 3C-4!,V[m`Tq6#ΰ8S(4'gY'VH0<߸A(fZQiԬas;y1FD]ՄĚW΄lőS]RkgMڙ:fv^vőR.In o ~dj2; !b3Dm:C?_\^8(R@@ON~CVVzqٻȚ d-/0'?r`A!a2рrpy<  1c#F0 p<`4F_ 'N8pg&LLL@#γ8p @H$#9n&` #B@ ?h\=0J(M @a4&[" .\ 2倿\ p5Ren?M;Vmw,pp߀a #G<xi3g+M/V^ x*57o x 6`-:>|1|   5mo8y;/4(o!&ܝe`{±Q(";(ulhh#L2$LvFɑu"dejq]qi8TL13nNuÂʡrrp]6ˆE*m, u.[=a(lCzVa.f![=bl;dNz(;!L2$LlCu,nKh$.oN 5UK5\T|)+Ƚ^ޠrrnn8NW~+LP]My O{S4-Vt)7HiQJM6$!W%v$JUS~enƷ}.Cod!鯏oDm~76i9{?uOU]g*eomT&~3Q>S7ӷ}a%|n:5K8iyk8g 34\-gYgVWi }Sޱɨar3iFi\u}!`ij{5|5ܒa~- LO0-?b2zm**V}\ES Amr[Ikeh=iCHgk QuY; 6AX 5&7Q:Ke4 ]x䝚ԴM1٤SgC3l)fl8z2wDU],qGHY Ջ'4AU˕Cxn[wF( f֜5[ nÅnI 7ef֤KUZk/}.*t"g"hfYa\ 3L dVe',;fɬ0bYy1\^[&[>Y9p{s~@ŠsRÕbCtrі`Vw/`n ('2%:TcV%z`jr2oy >ec\if&dI&drIu>'/b\S*d2.yz(OU&U{uØZ1%%*hu;%c6 V )G*Td]h('R+nrw\ԊnCۋ;8CT_fږfmK}yP]$qu\`MU=6HPHMC/ג<_ڙҞ.lOIS؜ n B֜5b,7;}+NS-6"oH kgT&_lhLB5߽ R W *n4( CuQqy>4F@CT}SJ$r˲75;n= C8Ngyc`Eӡ8'N8$iBuIySF#8i8|v K$\+6父 mtsS uq4  סͩԇ׼1Aixnd_߆`=JnR*( Enf0wy+$YӺ%+Rk^JN."NG/s{.A #}@ާ>(L39ilS9Gqh._ڕXg9GRWMx 5Cxˎ_̒qG~xvy^wkbxj"^b83 ѹ“H$Ѫ2͌KQ5(|yz&B{ɅjC D.eT%Csq?q V47ށ#:PyB,U;Y+о>qC7?^bO-fs&ޚ_nRŸ~h{-ޖ\P_]ICG՜\14s?7m>'K+䢛Фnn7ₚډbtͶ:$Z~EVʶ++t\XhLȘ˻ٮi7t}!W\{H]ču}oڶ$7j%vOe!{#poL D 1%U^6ij(3єnbda*ȒETR)QJ6:bȸ%wpEQ)QVzq ~kSc\刼u_j,Fc[k4(ځ(z%\ vwp+LPs[+$;<>&*>eF L`@sQD9룿s2)I*YyԻr?Yuiֱ/ްLkdaw_trR٣t׼<25ٵO*tn9@5{?}_ݻ=oIeUy/5Ǥ[p+T0/$|CRyhؚ5YJt&=7>mҤ k߯'bMr5)I\e,I:n:"[fsLؒIeT*M7&bTo\a<ٿjV]>c(_Wc^U]BGAg|#L2$L2侓fD/wYP"^|N‹t0LKH}z|ĥkЇ>:OToovޟdϧ>\$|9uf隥OO"]g>@/gv`ZߘOϯχs4/N'q~I}{KzjکYfgG~9ЗSwO?S|}]|Y{YmN*{aV>Y-?޸f?~td%+_%#BY#iqS }ҵqS %p%,N6M/hc."Y|:+ΰ8Shn3T+H$B uuvn"c~O;,+L}5g'z}tv$cڞXԴX3NJl*F$K&4u-]bHZyZլ2Mx?sh3 o}.󝵍s *VCbU*~Z7)4o E8'=7Y; H#2 ;45T_ڦpC2!i{8;Ia~H#GdAttۙMY v`;@ǭ!$SVhgW ?]F5z^=8p|}l1qy3>ΟG7.}:}o.lJ*޿.o2O7ڽ,uޘc˺cuK|2~6b{u_UzᦅUK/oy>'BoN— E]O_v˲)O^ޠX[QKc[zzH@KD;.[ 7a}zzTr|߆ͱ<O W?5q?|"/~Ӧ! |^C?@v/y*>Q o_WiŶuӆwo8H.^kΝB%3Ӛb-|o^Y?Ml ( 6iaB,>m%:gg5%=?tñ |!{'G@*}ނe'Ӌ#aҵpxG/Io` ߔ/ly+x?N)Mۏl2/bh2_]4g3GdtNHjycOQcz-8<ª0Dēw9'yRse ge OF^ٰ ,]p֗R_2Xj]L2$L2bL2dhl]zI&;zd2^x/ejzVx/e3e9+;\vxÇ~o'rE\n|'.p'< O8xpppppp p p p p pxpxpxpxpxpx px px px px pppppp p p p p pT QA8*G pT (>:˩NuC^Q:)[9e+l唭SrVN)[9e+lϏUt.f U}G8Ѧ~ݼԭzI }7%}a]9|pp;*uT2Ұ~r;Q]?U~w76@;`z[r-XPTP\1e}_v?9z#r/OߋC7T?դ A4b9n/OIU0,kEfMdZi^أJ`*Q%U:ޓݫ2#ViϨTJNqB϶pq%lӻWOV_^4t\+co`2_Wu-mO:y偽n{V,$KB?ߞ].4>n{lO۶oλoK. lx%T6Kə~X`_$:nI;cRYr~JD#Vn[j!p'x\/,Vd35* K @ @a4&[" .\ 2倿\ p5Ren?M;Vmw,pp߀a #G<xi3g+M/V^ x*57o x 6`-:>|1|   5m< [w^2i<PB-;^.:{cS)d'{Bv)d'{9_@Cӷ=F6[}I&dI&̞)TgV\5s8.Ŵ^IZg@^7|'Ѻa`mtrdP9v.keF"TG6 eW:rl0EgzV![=dl0]lrlPrCzlPvCVe'[=lI&dI&sK!G޺][%4˷R 'Ě.*C^roPWWR77EX\yr+xxӕk&&<'a)~~Po(%ҦIb ېnbNg*j?2}@>TI7U?cǷ}wH6|ᴜF׽:ۧ.V3s6*gyBr۾rT[7r]Uf4L K{<5JyOߍwcuEі3+4L}S){d|XdN 04{#4.Ϻa~_0I4^{5FyAyn0[MVgK1_b6}l5}\w>.}ݢ)69 x۵2jɴ!35FLߨk,M~ INWu2 .Z{X,M#e)T/ND9\&Ȳj5,ƛg-oݻd{iJk?'[sFjl)w+kL=Yv3s]&kfMJTF ]0I?ClJ8QiEx/U,14Q!x!ȪRqaIøݗ xNz~f 3RiR9zEjUu2Z`zg.V wxfahK#z&UgMS4S F"&j,ITpmuU%X <} Vj%L2$L2$ّGI&Tq?+Zo1dgVl_x/e3ZMx/evf^ (w&ٞ-&dI&d&ѱX3L2d;Zh&[Wb$2^xog浚Ճ2^x/̼{PH3 2 b_Af_ANdɾ,;We' d_A+Ȋapk`mlPgaޡa>P1܁EpCѰ֊uԢ="aYXn=*/]ǿ][ Vh#4ǗgB"bŀK p9ீ%+W\  7n w X.? p/><!ÀG<x$)ӀgVV</^x Uk5omZ;uw6|c'O>| `+k|IɨOW=\JRO9ش3qig6̦ٴdβM;N6팜l;36zVk|L2$L2侓 <Ù,wW=N^hTdzW3]#P JM19A-|W%4||l~lH8R$u꒔>.u4 [hn;jjE!E9Q~Ms("F'ʵ-+lD55ΠNi5|ax* &V׾5R3BQi : |[б7V*ܧ7'߲٥ї̧)dtEfT_dvcfFg89kqvnh-C_86X;*5iМld@'e.. ~޺Fca)0Tgawq^T k.P<cߔ0jj͎}O}PNYX:XMZPMUv1ۦPݫr`|qԹNhN(mijh<6C36S"?ʵ9Bݫa0wwLG#9ItE XKCSkޘ4Pbwѝs Jy;oT1Q f2kRNao|xO}I/B8Kxj0wT}'*~ZJoS7jAҨQ]W7sZ!e#W.U~h^)qC ]nFJ9nK:-Z bIG#(lv\m?UmuSͫ{+Y)]LeAυt ujKg(pEGs@s?}\F ֺt*dL'hgo({ƀ;-ͮ'ժ:ۻ~O둿jA RX`N6gA~ gw)bpLbJ%BLeǤ(WS5r`Q.N/%}= [x>L ^=cTI v Յ`Mh8s.%'+T~Lq{VG^;|_ʯ+E~ȍܤ͊\|A*r"W*rhak{1Зi1V߰Bn\.UgSd,뿐P%W0}1ʵkcI&dI&'P6bO Ooֻ&'i/6rZۯRy%W er7]/Si KۦkuzYzAAyKRܫj4'l98gu0\>.X k\ vhn@97޺K{$קtH}`G6o}QHfr ض'v2}ܾKP3rdϤ4ӯj%|+<4ᔴ&U;Ǚ`Uν,F"`VYf\rAKz $ -vhQSy8Us8Z`z@A^9\4qbG2'I17-lP$ %!_C^ Έ)}>Ypªu˰E M%݈.XLN?)H]AĘj\ NgAM̱ qUs1V=+‰$W2!sqf9xtIU0,kE9z>@Ec3.,9F9=dNˆ 0?vs >ϏUt.XȩS":BUQ% @)I-b\Y~x\vD"^ ŏkK/P1iwc9;MY̠EQjTZ0@"(\R_J(\M{#-RiM:@_iUZ"GϞY{qZdqy߷ vJmE&i&rRe :;_߸ƕ_tMBH%v~48_]RXSSV+#,FV+b쏇.Q*<" HXpdH#D#=NDk?Nv9l :Kt@|PỳdA~PXx9 v<$?&//Օm0t%ơZs9 3ID'ZϠ%TFFbEyZvU@[TV GQB&U)i*hJGKDn;"[ t'n1{GH'@nNl OS G.6Ȇ#ly/E>>R?NuzN'ݯ>pyopk>|?=>z^)Ҭ8['E_/K7kfCIatVC_Nݹ>T(4(rȑYXkA҈9i{H^y=Dxmӿ[s;IW;xsl|DTMO憉٠ߠ ȯ %ƍU"~G0Y$!ҩUޏ( P iCs7]qOu؁WuiM4F3/,NμHÉ=4v8/8* {^U&=".s]v}Ofţ[+d|M{v'OF{{21a^si_[k.5"k.5 Zd}~L6o}M9rPpv?qKU~`7pY$EI‹,0G=sG\/Ο7"q|=#&ssq)G-1*<*:]>e,i%q?9_jYǾ 2;lda eUxv-]+#= "[ WWWc_o+8l lhl_9ˊ}^ޅž u*<*|_?ZA( Rl@r'%G~(OQ5Am#+b5aO_I( (T]P!`V9 8ihi\%J|YsRŶOV nˤ^8EҬn#F4t1/sǢjv)B_0}U֑TbHJ(SYItf*"9^Iu|f5JHJ| Vi"m_f tQLQjl+q'=S럥ugsاz?[۸ Nx5Z~x(NCא6rYopӬ$/:tx{^j IhHPd7!TT *s4SmPREjo!Tg+F9,G~iڨKI%#n?GuS?)f>]ۇSYgƓf#[z9|-5qJZ[o3$]B%gH"n$9BFTPIB"m~tAL2$L2=(2^x/2^xog5ďRwϨϨϨJ.U>*;gTe'dQ3|F03*Dj;۔My^y'E[(~ΛOpHloMF k5n|w@:w"ws)[=cϙ> >S%ÓYLzj2|%u[LC9 ?Ix;}a1u pfC?f0<:}1Lb1I&dI&d-ѱX3L2d;Zh&[WbɎ vzfCq1:Ǭc'!;u ɬcNfCv2c[(`V^bCuס D+m |.Xp LJ˕Kf%BRJF;oJeMӪV2[})eV2aĬdtJfV22{,d챰=夕\K%4$tV2boQw淧,ݧz(*QlԽv78]oMkk?zw |~I< ܨg=6t~omtf`L ϙYuղJe/ Yv.Qsٓ[(\kb|J ޟЌٶo9@WJ{V2nmݲ}XWW*V26,&=5dV2ԺcYɸݴY1+9Y`V.L™ m 3+Ǭ\3 S[[Zo0$L2$L2o%;:kfI&3`Gkmdʶ[L2ٙ#2^x/̼Vӳz0^x/eMB\} GfcV%Ȭ >YETV >mA=rv&o|ssJ!IJb=Y)|++gDzn[),V պ]Z)4~-&rd?zMx$= 17M)k%z-žFIYj**hOUN~r닼ጬ\?K _4ΨkʔJC< l{`&s*jEhW7Ԕ4;v[a[k}ozDV3ppy%>'&bWO~I:ҝSM,5X}9I&dI&dܖGI&Tq?+Zo1dgVl_x/e3ZMx/e2gw1gMf`7 2k5lcvFglz2vc.(}0}kXm9k2ގkUf`7:ogӓAWB1>*\\91Wdsc}UvN1W>ZxecYz1h47 POϚHHnN0]=5@e/WȢQEULhR'[4y3T5Hn`K< KrJdʙQY,*ٓCQ[l>~|&JJگd?_+K}1;N$֨[QV N߆4_ULܠH"SpJ߶ȉƒ#s(aK#v#vf/ kgCcu6d#2Ua'h,nWlꎶn頳v݁`l'bǸdBzB&r˂F }F66Wp.ni:l:d6G%m#J? =Fƾn='Xkٵ6yQؠ8#x?hW2c~OI}z}t:^N&_}>&˩7K,=}:y::}9|z~}>8SY}q:翷Nۋ^3VoN5ˇ?8H}?fއ=POĻGk8Z/Οyq8H66Gq&}3ގ;p dI&dI&mɎ}ĚdL%;G[3ٺLv&ive2^x;32^xog匿Ⱦ¾¾±o'dT*}SEvoMl"Tɞk#>Vad"*23 w0 [u1lL ~eh84oPgaޱC|;\̨| z)Ya6~^xy[6wSq֕XaՕ;*vTеe1ea|x:q9p}u `I&dI&d}Kvt#$Lf*8֕md#H(YP\:1ɬcNfCv2Yǐ:1Jף|xY`Cס:PJ|{wݍS䊕>dQo%%a!g%}h%òiU+i+L^\bV2:A%3+=XrJ _Vtyi.Jw%t\Zs:+߷;@lӊ}{`[Sv={W}(6z^esBZͮ7nl5A5=u>r {}Sn޳|m}`:I:_30&w̬djYY ²,\;~({-.[s5k]ԌDe%cz{\mhF`lی7+mf%C=+n>d++S\V2zpz+j]ұdnڬv\0+&ʅ6ʅax\ cV.͙թ\hdI&dI&ܷ53$Jv5gue[-&Lx/evf^Y=/e2kJ!tBsυ]#1+YydVYyʣdVe'(; <+^)[y} f#bHfꃙ@>H.[.}vݢ.Sn'N$:}b_ѣǭjUYẺ212TJbV 3{Ta*Q=U~zrZUUkdWtloAZ)1eR;ϛ[t{cs7&-XI7=m?\i||؞.m=tĝwߦ\Jl#336ϱxI+t^/vƤx+93+=| B8xSM| =Oj,yƢft[*+W Έ]l9b7NEWkiP莎jP1֞>t򕊕3i"=7rz+j.?s҉tr =F <ɮ]RBv ̻Wz}5S|0rᚅU릗aH.:MJ:ZEh?wc1oV9m~#uS{TJuh<8 jg ]+4J\pg^,'IdBxH)xL6ChmTXc6!4yqt} 8Y?²1I cSI&qJ΅!N$&\&˝9{RDG //UcE.]!Yk׎1ZBٺo\T бjլEf"~[$Q6@"(\R_J(\M{#-RiM:@_iUZ"GϞY{qZdqy߷ vJmE&i&rRe :;_߸ƕ_tMBH%v~48_]RXSSV+#,FV+bOQ=2 (as it call some function from GPL >=2 packages). o removed bug that mixed() object with type=2 could not be printed. o removed bug that model names for anova.mixed with multiple models were incorrect. o all_fit() now uses a data argument correctly and passes it update(). This again allows to use it for data with suppressed correlations. all_fit(... verbose = TRUE) now correctly signals if a fit failed. ************************* ** afex VERSION 0.16-x ** ************************* Changes in afex Version 0.16-x Released April 2016 Significant User Visible Changes and New Features o added "correction" and "observed" attributes to the anova_table slot of afex_aov objects, which is used per default by nice(). This ensures that nice(object) and object always return the same data.frame. Also added "nice_table" class to data.frame returned by nice which print the value of the slots for information. Both contributed by Frederik Aust (who was also promoted to author). o added return="data" for mixed. This allows to obtain the data set used for fitting a model. Can be useful in combination with expand.re=TRUE and allFit() or for obtaining predictions. See ?allFit for a simple example. Bugfixes o increased required version of R (>= 3.1.0) and the following packages to ensure afex runs with older versions of R: lme4 (>= 1.1-8), pbkrtest (>= 0.4-1), and Matrix (>= 1.1.1). ************************* ** afex VERSION 0.15-x ** ************************* Changes in afex Version 0.15-x Released October 2015 Significant User Visible Changes and New Features o added p.adjust.method argument for ANOVA functions (anova and nice methods). Can be used to control for multiple comparisons in exploratory ANOVAs (see Cramer, et al., 2015; PB&R). Functionality contributed by Frederik Aust (https://github.com/singmann/afex/pull/3). Bugfixes o ANOVA functions work with dplyr data.frames now (data is transformed via as.data.frame). See: https://github.com/singmann/afex/issues/6 o formulas for mixed can now be of a maximum length of 500 characters (was 60 chars previously): https://github.com/singmann/afex/issues/5 o aov_car et al. did not work with within-subject factors that were also included outside the Error term. This was caused by the use of regular expressions not appropriate for the new stringi backend of stringr. Thanks to Tom Wenseleers for reporting this bug. ************************* ** afex VERSION 0.14-x ** ************************* Changes in afex Version 0.14-x Released August 2015 Significant User Visible Changes and New Features o new default return argument for ANOVA functions, afex_aov, an S3 object containing the following: (1) ANOVA table of class "anova" (2) ANOVA fitted with base R's aov (can be passed to lsmeans for post-hoc tests) (3) output from car::Anova (for tests of effects), ANOVA table (1) is based on this model (4) lm object passed to car::Anova (5) data used for estimating (2) and (4) o added support for lsmeans: objects of class afex_aov can be passed to lsmeans directly. afex now depends on lsmeans. o added afex_options() functionality for setting options globally. o added expand_re argument to mixed which, if TRUE, correctly interprets the || notation in random effects with factors (i.e., suppresses estimation of correlation among random effects). lmer_alt is a wrapper for mixed which uses expand_re = TRUE, returns an object of class merMod (i.e., does not calculate p-values), and otherwise behaves like g/lmer (i.e., does not enforce certain contrasts) o added three new data sets (Singmann & Klauer, 2011; Klauer & Singmann, 2013) and a vignette showing how to calculate contrasts after ANOVA. o ANOVA functions renamed to aov_car, aov_ez, and aov_4. Old functions are now deprecated. o first element in mixed object renamed to anova_table. o nice.anova renamed to nice. nice() can be called for afex_aov and mixed objects and returns a nicely formatted (numbers converted to characters) results table (which is also the default print method for both objects). o anova() can be called for afex_aov and mixed objects and returns the numeric anova table (i.e., the first element of each object). There also exists print methods for those data.frames. o summary method for mixed objects now calls summary.merMod on full model. o afex does not depend on car package anymore, it is only imported. o afex is now hosted on github: https://github.com/singmann/afex Bugfixes o ANOVA: for "aov"-objects, contrasts are only set for factors. o compare.2.vector failed when the two means were exactly equal (due to an issue with median_test). This only throws a warning now. o compare.2.vector documentation updated for coin 1-1.0. ************************* ** afex VERSION 0.13-x ** ************************* Changes in afex Version 0.13-x Released January 2015 Significant User Visible Changes and New Features o added ems() function for deriving the expected values of the mean squares for factorial designs (contributed by Jake Westfall). Bugfixes o aov.car et al. stop with error message if a factor has only one level. o aov.car transforms id variable to factor which ensures that return = "aov" provides equivalent results. o changed regex for detecting "observed" variables to work with the new version of stringr which uses stringi. ************************* ** afex VERSION 0.12-x ** ************************* Changes in afex Version 0.12-x Released November 2014 Significant User Visible Changes and New Features o ANOVA functions give informative error if some parameters are not estimable (most likely due to structural missings, i.e. empty cells). Bugfixes o mixed(..., method = "PB") does not fail anymore when only having a single fixed effect (thanks to Kiyoshi Sasaki for reporting it). o aov.car() failed when a within-subject factor had empty levels. Unused factor levels are now dropped. This bug was probably introduced in Rev 126 as part of an attempt to solve a bug. (thanks to Will Bowditch for reporting it). ************************* ** afex VERSION 0.11-x ** ************************* Changes in afex Version 0.11-x Released October 2014 Significant User Visible Changes and New Features o added allFit() function (written by Ben Bolker). o mixed() gives warning if nested model provides worse fit (logLik) than full model (when fitted with ML). o print, summary, and anova method for mixed objects are now identical. o description of returned object from mixed() extended (Thanks to Ben Bolker, see http://stackoverflow.com/a/25612960/289572) o added return = "aov" to aov.car which returns the ANOVA fitted with aov (with correct Error strata) so that it can be passed to lsmeans for post-hoc tests or plotting (lsmip). Bugfixes o all required functions are now correctly imported avoiding CRAN warnings and better functioning. o data argument to lmer calls in mixed set correctly. Note that still contrasts added to the data in mixed may prohibit use of predict.merMod() or similar functions. It is recommended to set the contrasts globally to "contr.sum", e.g., via set_sum_contrasts(), for correct functioning (disable via set.data.arg argument for mixed). ************************ ** afex VERSION 0.10-x ** ************************ Changes in afex Version 0.10-x Released August 2014 Significant User Visible Changes and New Features o afex does not change the global contrasts anymore when loading the package (due to popular demand). o new functions to globally set contrasts: set_sum_contrasts & set_treatment_contrasts (and some more wrappers). o Added more mixed model examples from Maxwell & Delaney, Chapter 15 ("Multilevel Models for within subjects designs"), see ?mixed and ?md_15.1. Thanks to Ulf Mertens. Bugfixes o removed bug when factor levels of within-subject factors contained "+" or "-" and were not converted correctly. Added tests for known bugs in aov.car. ************************ ** afex VERSION 0.9-x ** ************************ Changes in afex Version 0.9-x Released April 2014 Significant User Visible Changes and New Features o added function aov4: another wrapper of car::Anova for ANOVA models specified via lme4::lmer syntax. o added return="marginal" to aov.car which returns the marginal means of all effects (i.e., grand mean and mean of main effects and interactions). Is also returned if return="full". o testing the intercept in mixed models in now only optional. The default is that the new argument test.intercept = FALSE. o removed return="lme4" from aov.car. o added argument intercept to nice.anova (default FALSE) which allows to selective display the intercept in an ANOVA table. o added method = "F" to mixed() which only returns the F-value but no ddf (and hence no p-value). Experimental, not documented. o renamed colname "stat" to "F" when method = "KR" (mixed). o added tests (currently mainly for mixed()) via pkg testthat, see tests/testthat. Bugfixes o increased requirement of R version and lme4 version. o print.mixed should now propagate all warnings from lme4 (i.e., also the new convergence warnings). o lme4 is now loaded at worker nodes for mixed (default, turn of via check.contrasts) ************************ ** afex VERSION 0.8-x ** ************************ Changes in afex Version 0.8-x Released February 2014 Significant User Visible Changes and New Features o removed renaming of within subject factor levels to names with length 1 (which was introduced in 0.6). o helper function round_ps which nicely rounds p-values is now exported. o warning about numerical non-centered variables in mixed is now a message only. o added examples data sets from Maxwell & Delaney (2004) for within-subjects ANOVA and mixed models. o reshape2 is now again in depends but coin only imported. Bugfixes o the default effect size (ges: generalized eta-squared) was calculated wrong (the error term for the intercept was not included). Sorry. This is now corrected (with new examples). o removed bug that aov.car didn't work when running some ANCOVAs (thanks to Gang Chen for reporting this). ************************ ** afex VERSION 0.7-x ** ************************ Changes in afex Version 0.7-x Released December 2013 Significant User Visible Changes and New Features o nicer output of print.mixed Bugfixes o mixed() correctly converts all non-formula arguments to formula correctly to a formula (gave error if formula was a different object and not-available on cluster nodes). Prints message if formula is converted to a formula. o Using multicore for fitting the models prodcued erroneous results (did not use correct contrasts at nodes). Now the current contrasts are also set at the nodes. o mixed() sets REML = FALSE if method = "LRT" and no family argument is present (i.e., for LMMs) as LRTs for models fitted with REML are not recommended. o on the cluster nodes now only the lme4 namespace is loaded (instead of using library) to avoid a CRAN note. ************************ ** afex VERSION 0.6-x ** ************************ Changes in afex Version 0.6-x Released September 2013 Significant User Visible Changes and New Features o added LRT tests to mixed() which should replicate the recommended test by Barr et al. (2013, JML). o multicore estimation of (g)lmer models now available through package parallel (argument cl) for mixed(). o added experimental "lme4" return method for aov.car and ez.glm (which fits the data using lmer). o reshape2 and stringr are not any more loaded when loading afex (are now only imported via Imports) Bugfixes o Type 2 tests of mixed() were implemented incorrectly (i.e., they did not give what they should have given according to the description in the help file). o aov.car() and ez.glm() now convert factor levels of within subjects factors to be of length one so that long levels do not lead to problems when constructing the call to lm. Thanks to Isaac Schwabacher for noticing this, see also: https://bugs.r-project.org/bugzilla3/show_bug.cgi?id=15377 o mixed should now work with missing values as it construes a new data object if the model.matrix from which the different versions are fitted has nrow different to nrow(data) (with warning). Thanks to Daniel Bunker for reporting this. o mixed should work with the newest version of lme4 (>= 1.0.4) and the newst version of pbkrtest (>= 0.3-5.1), but not with older versions (due to CRAN policy to disallow :::). ************************ ** afex VERSION 0.5-x ** ************************ Changes in afex Version 0.5-x Released May 2013 Significant User Visible Changes and New Features o added argument factorize (default: TRUE) to aov.car and ez.glm: all variables are now factorized per default. (now it is necessary to set factorize=FALSE for ANCOVAs!) o added argument per.parameter to mixed() which allows to specify variables for which each parameter is tested (not only the overall effect). Can be useful to test for ordered factors. (only implemented for "Type 3" tests) o added more informative startup message (thanks to Robert Volcic and Lars Konieczny) o mixed, ez.glm and aov.car now check for correct contrasts and set factors to contr.sum if other contrasts are found (can be tunred off via check.contrasts argument). Resetting the default contrast to contr.treatment should therefore not interfere with afex. (this is not intensly tested, so please report anything) o mixed checks numeric variables if they are centered on 0 (and gives warning if not). Bugfixes o checks if observed variable is in the data and throws an error if not (nice.anova) ************************ ** afex VERSION 0.4-x ** ************************ Changes in afex Version 0.4-x Released February 2013 Significant User Visible Changes and New Features o added generalized and partial eta-squared effect sizes to nice.anova (this also included adding observed arguments to aov.car, ez.glm, nice.anova) o added new return arguments to aov.car and ez.glm (nice, lm, data). o changed default return value of aov.car and ez.glm to "nice" which now returns a nice ANOVA table (nice.anova) o mixed has method = "PB" for obtaining parametric bootstrapped p-values (e.g., for GLMMs) o added alternative argument to compare.2.vectors. o aov.car (and ez.glm) now give a warning if observations are missing on within-subject factors. (As before, cases with missing values are simply excluded from the analysis) o had to disable saving of the previous contrasts and resetting those after detaching afex due to CRAN policies (no assignment in global environment). Bugfixes o Bug when running mixed() inside a function and handing the data.frame over as an argument fixed (thanks, again, to Florent Duyme). See bugs/eval.scoping.bug.R o nice.anova did not work with a model with only one within-subjects factor. ************************ ** afex VERSION 0.3-x ** ************************ Changes in afex Version 0.3-x Released August/September 2012 Significant User Visible Changes and New Features o added function compare.2.vectors(). o Name of function univariate() changed to univ(), as a function with this name is part of package multcomp. This may leed to problems. Thanks to Florent Duyme for spotting this. o added return argument to aov.car() and ez.glm(). o added rather dubious Type 2 tests to mixed(). o aov.car checks if each id is only present in one cell of the between subjects design. Bugfixes o aov.car now uses do.call when calling lm() to avoid local variables in the call to lm() which could led to problems when working with the lm model. o mixed() now passes ... (further arguments to lmer) correctly. (Now mixed uses match.call and eval on the call instead of invoking lmer directly.) o corrected bug that was introduced by pbkrtest v3.2 when invoking the print method to an object of class mixed (again thanks to Florent Duyme for spotting this). o removed bug when factor levels of within-subject factors were non-legal names (solution uses make.names). afex/data/0000755000176200001440000000000013055500353012105 5ustar liggesusersafex/data/sk2011.2.rda0000644000176200001440000000460712612772357013702 0ustar liggesusersBZh91AY&SY(wߠ@ {Hϫj0y<|54dM44`<yLPh j R!ʩ@<Lj '=S)S!M4I$PTdڧ P4bP TЏSOP@he4g3Q62=&d 6Y{u=bܐh-#r&9S]zuVӪ>zm&EJJjB$` nq^/s4ٚ05[ak3QVEfi"JQA`c uJEZW@hJERFEZCeՑ$e xr$FTVYII3G7w)CjmR.:5}^)Ǖjݐyd%!t~3/[Cϻxrw}_Wz޾"2 s09=J֋^Kxnc.LMrst|vUN44nBu!tŇWUߛL/PԾ̬G)]fi[َ)E^HcIt7T&SWv 55PC%-r˩h{ @ц6$ ǎ"+`j8剏#pIfU(5 6YKQC߬r .LSZTƫTDӸ/^jh nYA0+yj%=象TMeNw ^ }Wi}tY\ T3츦n%ғoWH*WԼE 1EPH qFm!ڶPӌtأΨ&rʳGTR7hw?^i1H7Fǖv  =1鶀EpF'U|;Z2(p]fApO<&& "^{g(Epa%t*b !! Fk D BCUMpvQaŹg ^=:DIeՅxEPr|B1#PQ(sն"䴰DaSկzZBBs=SfsYPQk[6o"ɓrմîb W󲳶c(k[VהWnBI% ̏N7 :`^< P\=d:`Tf-#P! *=aR7ykF7Ypo]1x S  =훏!fJH>8%Ǻqb ArM"-Q{1~h <0ff>|$I$I$I$I$I$I%79ku+]a g%>IZ1` `0(*´B3E XI!4QKA$J_bȅBZ-Q!j[MD TZ$9nHZxhFb[%5bn 7hқW{1\%>٨ֵ4jZ4PmAm|q fEs 0` $C$I $H3I$0kZPkZAÂB|:!,yeb-[%2YH}VN|!U Km-DU'G듛}שۗ~aAdRDBH[lZKb["bLRbɅ# e7Vdb[@m(&t$ @N 0ImWËvQ("YhCejUh b hDdXYDN 0li]:il7w^"BN44)뿅"4ip!L A5 C^Iַ$cVG87}f_WLSNh4xpTB ),U62BE7  F)„@@afex/data/sk2011.1.rda0000644000176200001440000000242112612772357013671 0ustar liggesusersBZh91AY&SY@s'./{ߠ@<uycC@&iy2=C@h4L4@C?R&iCOP4F=*SMTS`&h #0L@pi@ M@bDSyO(CL驠ix `UDBSEð(R2 AQK34QA bD2ʁ2ґ"p`eR)i hR&* !T"XbGX ̤ @hB!$JiEdj(&(" HF` df!& hÂAHB*,X!DbjQ XIA4 \( 6ҔjZfmR J* L*VNHiEIJʆHIYc $bV'nB|YL*\w*sYgK$Nf44@1+Я^v@8`jӞ V dEq9sP,DL7m{&UD3<RS3|6knApA0_CO _fc%33Sɨey:,+ LUkYQGH`*9ʊTށfd󢈘-G$Q fBSB1nLyR˙kvB]m~(23{)֢ft &%cbvTf Tpʫ;@Л |yTMZgib"këmki^24®,dʒEStTQױ]C[QNY" v,(0W旽>E|PxXDձ4P,,) zT^UTD@~nfͯkmj+B~ (E|R"(ȈdL2B¸AT5  &ZW{bz(>fZdL@H/]ѐ P &ak$Lp Mp6jdPC^ /2DM o+ɓ=;P?4\D" „— R(@ \͚-+dĊLH$DFd03V/+I'F-J,PD_1T]81XJaak{PWb(IfDE0o͏X$(Ƨ~UM(@l}ڔnd1=2zx JH sDafex/data/fhch2010.rda0000644000176200001440000020611413055500353014014 0ustar liggesusers7zXZi"6!Xh{])TW"nRʟbl$SJ !5?;cn45ӣ =́Y?)Q3wؔ_m6ϐ}'[ߣQ/'Ctz+腧lB8H@br| ikRUbk>t!㻹¨.z*Y[ :6K_a@!CH+#JEV/m7d6?,eLNm.d8T; :5Ir(.YYbH}Al-5L)V= ^c~*C?~qd%< Qcb5s2g CIcu0a}p88< 2ƜVRr#h^>釴.r~~{ׯR0/x*8}V*:F'v7ogmr anNĕ~J>\Xb|6:*.}_|R*')V!;lp|K3WpbZ|UC ]HhSʙLT̴K/'%w ې^}&.`q`dF,W5$i4[V"g˅P:~l5٠ r𘤀GQRI\PmakOsc/؇8)-F#) !u/1*8L1Zv|"3PEM5~[ՠu: O0b&?. I3b16ଟhceJѷqh5IKHP[mfK3Ӗ6ѽgs6.>s"UupuB :&o ̜{1XT56 KCHsQaair7-L+jb쩞/ɕ Z:tOù^{RCʕ@yTsuN*Sl*;{:]EV狛vb/=:,k:/ؽϐ@Y>ʝMy+T-S#?=31*̓:oKip )Olxd4}QXm$^=cfO[8 gt9Nw^bӗ>a6exU)b#x e{4#'`ސL9 6# 3S7/-72fqIHXcjOuVK%(#|HCOl.]GC\SC:EO. |8=,ց+sCD",8n+rn7ec~ݰGP#}ՠfL\͡+x}!䰱k{&##wƖb|7YXߍSI2oDRD[ 3DBvFlʄSi~Mz]Tgݚ.;u%1;)AMcm39 IÊR4؁okt!; $qHfV 'C^}/1x%Vu5Ư1ARt"\~}I(Y\qԙ([r<ȍ\guzQ(˚+ l*W{̞БIs$J9Z9 VLcY6H5 û}S+Fu kfLIS' V9wniR-Kq)F+'7Qz"O|7'6!3ar>3)ub X6I5%e0YLCI4lb^%rL[9l*O#R-|Ă˳hofAEي7sEW *Ef43 YB4 ؁Fz⅛)S}d뙘}ۖ{-Hs\ ce&ՔδO20>=N4zq/(XwJ|XA ~VU^XnÊTo9ʡ?VM#SSlKuN(l6#j@a 2q`B^7Q٤@|LFm/Bfkqs'uIA2zRWel Q tzћa/!,-D[ۄ j IDr`l?dyF<#;K h9SfV2y9I %gO]q6$];ݟFJ"ٻ* e":{&YPjƧ_]qj6˓uyb=Q$~/댨"0ppv S_jxazY#BG h#cA!m\ŠR{m0cM p_Ly[}(Wp%\S:. t8VI CF}^cZ ++p߅C[xR `IŖcZxg<0f])61VR !k{AV`ͣ )e$ARAVyf˭\yt4g%̠8E!T_jJ%fRe2cvN ocǨv:('^ -NZozĺQ.6X||[݅3%I?2E^t!9wKNnF=̾aZ寸,d )WClx j _NPb r4r*w0|0mN83bgY&Cs2;(ZŀZAً<?ٞ$k֜"5?6x%?gE?T%U#AEE^k82m~8'9~6dYB[cd|q|fߛ<qđ $2pLӑkF] oSC[ 7tTu6Wwq8 g{.&sL;UZP1qH6Lboe#́C $ywzH@m<0)XSZDyμMx1 MY4T> zp<]J6w?5i@ȴv#&Fސ!n{umjrnh#S+\FfhByl}ܱx粏}e7y(Zn­gO11ܥ5oBw NT+<&9^;QVr^zh˪ZHnoG`EDj@MzƨDeٵ;cYdk ՖG2Mڒ9q O6F0IL%!{x?\2Dd:5"9 D3no˜ƅ^亄sbθBH~' Qэ/D&jϰ=5p~ѺvύhknLhl~v\ Wr)- P/0 :% uJ?Im7L$}JbͲGgA2 (weWCq5΀+Ez{P]V}m%[GIi/ =f̭2i"nv6^Xfu-@=N-u'rI*JWSAc>YdD(+=is j _` eUw97+ђ;%lľu2q9&s95 |+Mپp;zL92Nihgź3ܒZZR1j4@&LdB:sJEzCU{=GpYl+ ȕlEfӗNvc7=9[hT+#*8#_U]FxvPڥ0sR[We>_D}[hD^.r2*uЍ{lēt93ĺyRÒ;[TΆyDdB.dfHK}Cc|gh7SdX3 EnKV=& N M5v9%}:^ @*0I_GdpYt!'aY͂}^)Nc,"o DdMEx YLמ iĐ đ52r1z[98ꌻP>S]gY <"j̣ x$$;%`*ҚHATw97+rwURhQ 6sQJȪ*X<z 7Zi>C3L|@zRHU-{><K/vX.0^MG竜v8jߧ#zBP~6 Y|& qYUq 0XSaq5bDɇ,WwU| 2s{y`8=صZС@sanl|.Jf9X +oУ#R$Q076[BlBݥ6ZlH|)%4_1FHdAV20fE,!n\!"T7P4nonaIZgvlCâ-/4cG7I~Y H|;72%B/ Q-{( Gz߽8e `],tn01|U%Fp$\N.FP7Z0y}4V#P@] ᙿ ^r,(^]%e*%j{#]^  Uwp؊C(c.#'\ ߄S<B Dp~μ?qt30;`PSp[ KqpfP)Sp&k*zt{]o*@/9ꡢݱ1C}=j{lW׼wqj:>ҕeXlM9Ww+Fv/h{9qǕnM2GQ"dPUB?yݎgC"W*jB'|TUYWn w2(eD;ت[9'&VwxecTb<bF^}6@VfťO3Y>&"+]G,7bi^CrO2˯hv'lH"Bv O)"8l.Eۭ pt!؈Qj]C~f_54pW6X Oibpo& "$'Y!O]uXxaa#"FΌsgaT0x pːb pxEzr Abk, cH4TOUQp}`V 7 jDLDk e-6߈__{ΰm9,h*ۚ2nʋuTNM wR3 2-#iق3%ᮆE`4y9^ q0';2n - d6hc T>P"9Rw*E%>G$[h^E|Hrn:iaۘq;+-9>P@g9KM Y$<PB`3W>Ctm~J})Ug y:LQr>k Ha:C2sLp0#O\0*%DFZ{`~E/cK`mnϑ(UݕO5/ڥqfmaQy/u}TZDrmoo3GAAd!>fUK%- 5Yc6Ϲj\Ic=|yx e"C^:cF*R%;#%MnR:͢N$ ѧ'{U~(efi3@ X; zjsU Ü'hȍaƛ%6/JjIAT$s{F"VseNzCGͪ gZ~>5|L|^;ʝ;I9:z'˃v\=j|eCy~)A851;M.Ϊ}v2&\Y1ϲ;V@ /{ 2!1ޝ=T~ t>0*aMa=`g%AB5 {҄G"Q*@RJY ߓF>| n,Jͯq%̓U+|zR7x;tp2; Y428#7 ,7tԺko8 ʭ|@cn0C=8ksv2V ThZ6X${M5N@ .]z52%u`RNwzQ8h w1Bg!! trҥtu1uKqC\n;ޖHR.<=Ά|'yY}ƒP, ٝ[ўxwk4c `s)Gʘmpkq^F>7r}վ3KULAUL)i9Gd|j͹hKL9ߟêcݟ%ik$ 'L.rZlb% X<9%\Oo*>\*h!5R*=wХ7"7]帾 ѫrʷ= M%Nzska?Ja\2i[/][%q5EW=WA4}KsRs\QubUI@t3;o6mJQbqB=3 +UQQ3tcMo^*VtnJp8o67gH~(xK0IrvF*xogO*<(dX5@|2Uf(Bo%A{_ےC`/J6z"Ӥ0u6u+Yꡎ /%VE o!y3lRU~NHg 7ZTOƹYr,*l}gQθMA N"c ,;5AlK3$F1cR5r,v1;X5S=70kun+&:Z%(rr` Li˗ e`ֵV4Q^TCZb^G`ێR>i"wyRߥơ "0$o z}rtv}'DJ1& '۵͋FIu 8nðLpdMV+ܳB#F6TMо"k+w?vch "JQrGНWnۯδߏ@|%S@@yf7ըwszkc#f rQ=ik 7H S G2RځX = 3OaA 'w[yp z%5xƻ %ņrAn ~|…2 ߪYLbNxU_ m `'ՋJ5leW#_Y6EW0 xi6LVfeeD`)Vx~vȧ.N.- 9\^0,6">O8K|L0c\s:H|,q"bt#({8 ~0pZkהQ0x;D~36n[{kjm0`]xMaC3w(ϣr:%fGem 9I/XQa1Μ6ۆm Ml `Իذo_=z}ӺFpZDLIIg/xX#ЂLº;%ގyYꇊhbʑ " q]/q#\bΟbR9]IdsQC$N<>l\f n?koP}W.J5?ǵ\ᅃ ;x2'gÕǷ):;Jn2` -Ћ'x۷b۵"vzSi)mWuŕZd`ojʇ#ȝ ?4*Ւ5:_b&ͪ p0;9i?"6C e!s#Zv b ƜutGv;XnlC.oH M6\'mrN0Tv0WftZ?hM,U(omyjtYY('z%:G?RL?\7v<,(4` (WeA-pKx/"Mǯw>??h=|OH?+=W*%y$GA]v3#(LUTԀgD5A*&+Nh0A sȬkxW 8^[P˺Bj3ɖ%wH;l $ܥ16J /_gwtbx}V0EAw@CRX hΩ /]|,m`F`u< CK@/~>Bw]zKOݵbu̾=ŶAR^aCa;ϋe?{:]utX[7N"@Ɩ4?,o͑a1 T3Q~-KqJ jL~ڶ4BD=`O GI`U$:7I<,Rؾ.zPHLJ9ߣtiX@X,.8 ˻G19˜'Ą[oht]+uL<+7q8X5HH)%vaR0DGq*hZAؑۮ-i[O6\^GiFwu;ud& fid;m, Po([Q}phCHBw 7 6 mR*V !?B h{3QUN\8B!(qR]Ёwxl@J *f˰~5٩)!0sY{yGM~*<4D̫X*i*ɊF#; 4YTV'/4h"8#S`J{"u7τ\T 4`%_廦q^? 64x٣8YK}A{9mX Rc`ј!.|e~,LZ[np@YzС9E^xN!Ōy*7ټ*{Gr`Hc55\oM=d)Ʌ 22bE(joq |&om eE~VIF=y%xոf9$êӋg4:"g 2Qhԍ ڞHaم6ke䒑@p-!"Ib0LPxլf F"2 Kr  =NBi,uzs+N[n[m&:jR(>qRc7Y>Y"<[s`槕mճ.3deebE v<92r bގ:Tב4~~ڛ3rSrNN?+F@~U#f>(+Vs(bd)E j p"j $Q;[ʰ:sR3%~C WEx;[M0#Ptac$ǻV_mR3D~Ic2gbwnUc@TjJٜ%S|8uuݔ[c^殥 cD}O"1slΑhlb3_GI9b*+ς ΚU[=M]ɦ4鋕psm& !ŜHM#ԀʺL5ԘęE`{@ cz^F(`YK0Oa^LModR Njp!3-wu!*:ɢO _dg GJтI[` RH6);$B>H7pE B+ӼYxY驾 J䬮+}SxjmDF&y U6 F(8E;n_SyvE=ܶ W&t12E<]A1,J,ݳt_T]X81{L̚ ҇ZS:\kuyK'.t Zx[p縂Đw7A#q t GX'[;W38C1mnS^orH.%T7FQ */\e b}@*IF!M9A9D}#j sé'j"FJYkYb?SB'Ǵm̩HfI€Z4 73<'^%oD9[bHӡ\覆ҳh ϕva ol>F˻Ԭ;Ѕ31s gO5÷ lUKh,h@yկdJ*zL;u}XPho  oJv@m:7okMEICft0>N 3&84H0 CNZn/>%:~#V(ϛv'_0#Fp2:sDFZ/7tIZ+V(j?hM2a`#XvΓ\0 קmΚYXxUzµ9W9UM -xx+J0s uA Q?61l̚%4h0Mn䈍4ɊdB ;JHЁcǜ1R*ZY.V ӡТJC+r1!ޞ M=u ei! Z7G%H%pJa&dw+j兝}PO|+IrDɹ:긖$ڟ+ɕ5$FcaJ+߶.r&bCN=gJ,c(f+"7*<~;į?#<;T 0d$_K-U&f8̕/u"jC7\=+}rbXT5% o^om@}wpk&ez~LPG|r* 8Ǎ8 ( !G`~I3 "ѽ/\2(}ӣe}n߃Z,+z<4J6!<^7{Vڮ"6x >M=A>qA1ž,|u[^Q5?}C!Azbu>Zp7MXlFM;">3L6 %g+5ihLH*(hJzrLo3|@"T|h Ů%,&zЃ8ȁ6fҾ4V]voSh+hk(nd{$H/@JQnj2heşvQIȣ%s@Thd֡H0tG6Я2AКɇv_ ?Gg!B[.)`Q$ě>gMh/u7X>hc˂#|-L E1U~z53|Ĩ"# ^^m0Sd@-քm^ޓB8약pdDJ̉<1t'J>;s40ߍ2Ki̚h~)Q=0omRQk c9?E^%b ,Qq&oJQm8F`S[z |xZ)O‡VH31q1EE" Xs9)+ (J"Oz!}&B6,is> aQhgr8Zhސg٤ET '!-sPDB6%]iHQ8 ]wJg$@bv/e/@YŧXO#&G0rVeH?O2\ZGK:?h+#1*e<0Sυ}@6q$G Mgq^y%$bDNC%+8JMq*>Mw wFNN5N~ g~4(r$vOtv;RK]%L+l,  i Q^s߳f9+1`ތ_dwQWI|>JX-j3M f=tZ3{#2~`Эbb976F #0Yg|%aoda/ b“V75S" 1܅0 (rX$1F0΋=pQ[\Gf5U3>1$,5Kh #?=MxXozcP nHbz_:j۞DL}ZXZzcb1^]Z-}}9qFT_"G8 `ekuÜۇvT,QT2p`{8=|8 싗ިH /5"U !oIp yh-b(&[y=zRH:dHEVƿ  *e}>Z*_7?Tk=zw%cI݌nSל+ η6]cV\kSf7JQ@tj\| %=D}ȯs##q9=jxYl8}{#n)̻ީ \!Ӫ;"=n;QxlLn=KQw~`-_&=s]WE:Qai|OӤRye}- Z=OUK~Q\Gby.%N=fw<20^Wq[_-dZP80@ C,S6yh) bkCHE϶4:Oғ bA։F_p*_k)arɍR8%GTʆ{Ϛ,{wO!_r:SKqD@MO(^*Գ֩]d(*ׅ0%FOkW2!$Pq/禬>93 ̊u]kA,Sa c9(9yR nPkn%̽zfaX2n& 0z&҃Ũ5ft6$K(}A>l .ޓi}m-#Aig_#s2KXiШDUWU37)CgL%q?Kl,,XUiK;KpלA[V6JL Gm|@i@ :ΰy8D;:. ߍxNWô5̈́'K_[kwG}':>WD v>AS>@izߨ{ k6QFtʨճF lQIhw@MR Z%p;1YE-ܙb4l\F2sZ>qɣ(n,W~z Cx#J95zsk0xy}P]|s4yuJQ5j1"M0=훫62% |TP˫TfX1% E"ѶwcG Tkn Ƀp;+6+SQ>Sr aTJ tekaj8h$. wN_MʕeЇ{>g~C.E4[v=+"g"";i+)M `1`Ba)ޫ%bIJEȲ5 Q ^N+NDylLE #wK?$ #⑛gYd硩еI佹)bMͬqT&{Z$ z8N+YRLBY68AJL)͎R>\wrNy3+n1Kn_{!_--Q2Kj~t56p. *m5=Fd7*G|w%U-'E )'}h$- ӅeS{aS*"U 7 ֗.OLFPc!Wsj* :u- X0EL/<PBڠ1E8zUy  >֦ե@ڴXMج+϶ JQ78\iYDHǐNE}k3xn= ^ש(J#aI^$I峎7p*jO+nJ2(Qݒ/tdr?ZFaPV)Z12FZ!³$Z@_VPP8f50e{O݉C+\"h\a:A PA/}![-`J*꿬T0C1҇BTԘ@ULaC<:%$yPu`P #P[*-]LK5cc" 뢪w5[B:Qo9R3{ +wg19Xt{<@gnrƻjEUBKwGWFuRkL"b[>; T7jJ&e&߭V0NP-xB1$6jYk`Z#ݷHхf&-ե xG  澹#Cቒ'u=[0h;NX 0Y+d1 0*Mu\}ʅAyFD-H>vPI; 嬀m3}$aӕGxk"TU@hRCJBP}8Wlt$d0}A0[ }m0l{ˊc`ev wXVr,jc0PX `R99zDH<oɩ[ìƭpXY)rnob6 aӌZj@`$s5 c 0}`Fߞ*c_UBA:~4ucRinC!1,i5LHޠ{3aZ܊ʩjw @G"DKRUJJW)vQk~ۢ!fUWaxs*O 7Vl7tog~6fDxϬյ`ÑJ֠al!.S(O"Ax6ҥ6݁l.ꞨNgdO8tS5r6mNJpVԗF>;TiycEd{ىR$RuU~oeuoWY&=َXxgm+$8{ &d"4&p<)<)VM5\B,/ck$t3uSLՅ;m?#^9[8%RWi׮e"~)J}4^A[ӗ}cy1'<\zvXtd68G'-K 0/h25n`@$eq@ DZ(j1 ws.ɚŏR;f$.lx.6$8ˈ=9kU}k2-GiwtJRώIh_%p t^GSBU4RQ|Gq}-yJ9VmW3NgfLc)k~zr;ɊUcMm=C5iF{{jlpXY  ̬-&ݕՔP" Ɩe-T7챎6-"]S|x4Mxr)b ' !7Lf ÕY6/葄 (OPp2]NypJ70ʆ~_N6sCܘ0b ~}ǦX/ip1p$ړ݋9$9/)H) 5JQҮRxܨZ|,AV ƥ)9W|\ruxԎ.[>c  SmbT~V$r㏋l&&mPC3 u7BV<` 2kAN|oKy?hheU JInDog[beh́i$/s oCXT$P 睾k(1սoK^ɡG!@ BO +}2Q_x1x)b '/]!x ݠ`"pL }*Swn̘L4ce, B1l^vc;9v?mh!y(-YMB~hnO|G!:Ӷ^2E6?Ti~x,}הIJ}IkĠ!7مۧV> ߫u^8D+:-%f_m5W2/קM$./Bw* n (3 e MC^)Bj;'a^Ic#w]'?PQ|1STMa/L7 !쇿?!Toi7*bԼ3TD7!pC[}? Kc.q-wHn\Gqr =y+ Q{Z 9Z5E9AaB>,iITæ1٥}?ql=)[4$mwd<-:̼;CgnkvC 3hLQk@|OĎ<I=U{ɒ=)7C65&<[ -ܕeOG˟X/6BG,ҁRo~lY+^m|]|c[QƋq.hǨKZ=e,M%(Bp8m6 2DU6H(xl`-wN;Uohԕ~ZM0#58t?3 Hb  +ohYwϰY#9$@18I΃"r"Waizۇ VՒ=CqR}(ƺYqu'5|="9INo 組ؿ>!3+#Qa+VT^~*Xu5NJ~adW' ;Th4Zʸ%E~07DK߲N+?,&JFj,*JrDT.ZpW"wתa_!~<$Vϲfl|CgnmA[+u@@=?XJ{j4ctAo^ztFJm&k BEr ,ɒ>%i4|/{Q{@Y_NҡZZNi{F3fk SvJU2bC7V[,>ʕrRߝ~t0_%Q$)dF;Bj"oL5:Mso~}d&ENDYְqg#$EH;u( RcOl+@7 GypВ+GQbY!-80 >7g@ۖH zϋrrl9Յ+35Gn8K+S3c6dmbG>d+Of(@ݗ]8c@u%>PSrz~L𩖝+GC4;0LGsW9R(zCep5Cz#W:l7rCn)ĸ]"jN/7P Ϥ+.woa>?}KE頣 ,QLmNoM?\hy[!rTC5(fxYٗ?⛋LF`7@$tg4@A{n~"i\D/NΙᇉ~+qssW5JL|!ᩗW|j=ʒkHtX=JICy5wp(ϯ4g>8![ 6fp:j)('8k9OTMb.Bd,svsދi7濧g=CzAYsN75d`Q}r3{,Yg m2iO[T[;{K`@T Z+~yoe;{-߹'KaL.ˌS4LFߨMk`p"TEDc?`Flx1NjZZX #!MCsʨ F,p8xh&֦}|*?r7#*'P#28WhiWCkҥ'=>Ņ A1{#gsjGO^! ^:TVW&0 V(amQ6%"}*L7ϗYKSi6$$z[B.B7@nݔu\:£}L|,SYJ&ZQdPҞ~;B _VO >*~zn0{ep (Tq?LdL`pm6B ?BrGAM4g~%/|U;ަQQ^'*N)c&|U0&i@6oVM[YJq|T@`>?MܑEզ%Lq/:Hw0M6%d*q b|x>VԥȰeIɐ_N悎)&6>0nJTW teT͠(s#[9.C3 vYJmP\#T TL׉v7]Mm6r~^tL6;+׳oA=\Vq676hpJZ "};Ņ^y1I࿘тyZf.R7pLh:IS`)?R\kPww!'`Ͼ=]cEi}h`~BQEl"~n]3܉{6;}&|BAU( Ue@p95V:up dfV!>}x۹QB{G4.q3ZRGl~_V'gVl\`؇ߺJWƀMW_% uqƾz7wwɫD S<%H&,̔)gϕ) V B{l/#-*PUO4E3v'z'z E0Y1Z;R:3-6o;՛-R@9ϑVo M qJR27f_>8S ]RtWfV`^6pz" mwd7$BMsMV!+0o-ʹ2;Ļͤq4W{K(i_gVGlө' MqGrʁ'YKopiZ[ym"ub汼)K"Z+}+M୾Ѿh{'Vl$(@YgԾc2ڡ5ƍ-+RȆ}Ƥ;;!tu}*edsZ/n/.$^3Kb>^Y u]>Jk ! KD29#=Y"C msl+ ܡh d (vjh~}@LU"A4ԪZa揂_ą;L{̹- {S wAF=؂2eЏN߿"*Ѿ1]1)ߌUh`$בs"]aDA cww頕ùoK;lCDkSqinrSD e*^J)l2sU5Rڈ:_31Vmjl|#Mr[$ Iu+(9*zyQ7qГQ X`(u`$Ήl,8@XOH5{DV3mC|<¨UYA 5P>c6QvClX¨ifgh 7UFdv|ܿhrBQU]Xi$(VF.t &r@=$Ae8UoԚ7ThzETtÐ HXc͗[/FMgǜc>  h{ǨP6ixZT? tQKoarM)/Jׇ8[da8 Me-L\6-ԅs>?moa2=|Vn_ddq24KAqw5npB`w&E`8ro!"ye,[kG?). 1>7 lv[cH;H q8fBx+4|g0/}F^}ZVՅBB?|͗{E | Qq5 < /p4H}T9L(q~NP̄i 5SW;8RJ0CdM(*:D=nԘ,T밀'TŘ#$ IHIMwp#kc$=1-Q1D^h8ۭs-E &'QPrxu8_Uiu!o0&!(Ֆx8ퟻ>I3PYCٞ{BLoakI;;{@ל}+|6._4Mt`lM#F4se"UTY ]w Cxj˝1e85*J7D\ v{e ixB%n?{׸:&N"rͣy()LS By̺T*{Q^t5lDAc{h %Q@F\3QLCr3O0 ML>n8wrü"Jڬ 9uVOlЃEc_*+:{NisE*V,(g#,Lj͡Ǟ+cѰ)@bȎJ3L .Z){8F)\j6w2@)4}"DKQ],/e'B@,7,8%5ai9ߌ'gZwK#V!މ|EuV _<69Re?$JFW[58nA[ƕ#XPTMEr!Ғ (,v7JʽbL ?_+7izjG\˫P\mH.@\ND1f7-v\:#TtZ+%Ө/%/aCE: g9&],ui|k%+6w5[ü2 M hM}Dpz('4brP+aҢ2sF莸-|IZ,Xd) Q_#1eulUa |9;q\E{wHp&/C&oaj0?7\ӈ"&`2]ŮϮ JT@pP}qy,{ "kQ~#_#7,!c׵q+n Ar#nʰ#Uy-T8W (}rn ڮSDQR=.8Tuj8]PɺA\4%|)t8늾id.KēKL5ZJkI ֐|)[P~Xg[G9ꩩ"_@g@3@^ܙN%0\4x,BxGNު-EoS%K׺UKw^jwepM ORmߔ4H7,{SF_2튞{ k7٢7|jWO~ Fo|tߪ>qwE :`?X6.!p`\JeE>Dλ8k' vV?͍عAA zJsm"I'uR}0EQ${-h*0v8ˬG\0s3BSH++"kt.,o\~eWФ뗶|*JY--ՠH!~iԕ:+% ngYJ|`ؤq' JMh`=@^;i=mq7s|a*r6i),gܸ֬W4F&cG_YCszݝ@wm\?NYuߞy Lt>^w ;xIuXb"`t-W%<:^ؽ6;d>8}O,ҫb}f%zuO׏q_ PvR 功mq.䳡=J[qjb맼qW_>O:!_<%1 BKY$v%`3@rF v#!8kX[ѕsN{ |O ƒ&5@."QrVV~I\:!c}*()낽J!KZAȡ6pQ9[8{2OqQ@z4\qM=IG3%y8=]DVHRV6}*@Y+3a)KMw tDЕTMtO\L/^,O3tܵ$vcgP m\:xjEc'M2=jKƽaN儕tYr&C?q\Hj|1g' *4d'qFN]xobR9.#rM€f 06^(soMʊr9im>Aڙq/xQB }hr0C(%E8-Wetinz{ lOɠ)/umebu4lގ.[ᰘ%rr^_< se]9!.zD񺁻*A^;ʵW/5Ǻ+N0. i3t4Y̓ܣ6Y6S)L^\-=ChD{6Vǣb=l0ͦs)o|rni* 6Wu'.,b照8)<"R|>eBhM0=yV~9_3h_, 8S؏0YOR"#וصPg θ]&RʌF{6I15"D\[ O:u$ Wuײj襑Z zVQ8PuOgߡutʕ|dE v^:̯}{u"?xyٛdo8M+W0%& y)#ْ0o9p5yRPKUi{hkh.Ve$%'UH{(EZL[ 9c: OJVC5DmObܟ ԂɁ;!PUy9ZX<8t*D~BƘ@UA=[=Zhﻒ!9Vh3gz}́gNVD$!9XJ1mAlbvմV}*Hm,Ϥ@K?%sbpbs^Oo{քZG2URcUuXM[k%'90jJ$e<('_Vۀ=&+qI jDs <~%cMy!@vwFN5jy(%YzlƖԡL3 N_Aud x7z&C@[53h,sDԀ?6`[YI (E+(ZjԷU.'{V<ͯ HR1,p{&F1ʄ ܕl'Ra1P4&f:3bq[C1ޥ.^|dw]ɼ(;~lN;=l?XmXL݃n#޺-xwHQw vሹ_O=q.p`~]-R]fb s$˷n,"wi+/_ET-v.![6=t&v G{VwKT QN9yL^_M,UVB7#53M83_H' / 35"]xX>^#Hy?X`.Mswy6ZՐ.Uߋ6p"M'e][?%KjȁTvR+qxM}[yZ6Sx_r=.Irɯ'"aҴB85oiܶ*@-؎h=ȑ FN. ) ᬘgT|U6qy*&Z\pf]xona0o3\n(O#hDLI==ԉ>7JH9܉t!9Nu))(*֕l]!iqla{f%JAeee?ғf?͐] xT{PBs KˮL=Ow34"˔*?3lL`G 1&\ O;|һqR\-&IW z--7g^c_~vܗ}MH:Ŏ+ k:SLfr#MPv-Xʃ*II{:y>}_p$Sk:E(dCHC>}]^l) qw"?cwU-b&O0ͬB\/Jr_kVw`dcvCdj/]ગH(ȘD5qǒXiE>@:TB3$ystM+gZ x7> tIeŖ1j~MTwY0"c?7FʡƧ%IQ.WW/;vZ"(M "5W$nF3K-V( pܰ8 o]¾j۳=_@˽ {_)fc9pq`Wi&+{ .(>b&.:oQhuAXc;  CvK|O@,I <;.)َ]/#w_̎F̳/ː.)&?ZUU`aߐޫN"`tuQ<%[BgAhKwJ7nE<@lecwGJd`L9G0Ww?(]7&vs;U_oĕL1NӠ 9-ʽAT:%M&>ZBx׾+J]/2;l3Vf82tC/wvw`O$?XlFHGr|s]"\VySv.t |^~ӈ h#oo@Hk osC&Tׅ WQO[4Pm8׸ThZ խ.fJ|]pS"Kc#;T!D~ i(J] 3<:MʩB wϓ?J&͏tT;1Es`nִ-lRLb!L_)%hɦlX;c^髰|x{d^$$<\CH=\J B: OFpG]E[UV;;>t I/y-_}Ziicwjw],R ;mga[F+BFEϩHHcbH*WrWWމ֟^vl\@bS̲cn5b.N&oyJ8{](s0M*\s#!/S`اQۏ_$H;(sp mh`PFo/bFIӨ8haLMl!qAS6+ɹ"a(rZ4I mԚRgJP0ɝ) 0{:WZrSz(|AZ*_zC\sŸQ[!l񬋎/󫿾\" (]%/iYg.ѽ(q|YZ&s &Q0F`MݙzjT $fBCԳ {z *+?XzmŰeRW<ĶY~N;GK=x"3Ofc3{%I'(_qvp.-̈́ցMW7ow˓YQy1iwA}/(ɁwjoKT3MX Ȓ _iL2T+k?(f_ Xq\rt[2Fk`yW$uFDž;;c~ARa$; 2`JzW/6abQFq&`꺏QJ,6'XoCŷ|ؑcI( a+'^eT uX#V ʩ#sw0 ?'SbBB亵EGD)cxȭ1MzgmӯiZh@W>)bg[1Uz̒#&6^8 Dt %՝N-A-5>kB1M^%Tjlr!a~[;M@#MRY@Y N&'#SgVr aPS^kܪ (|_"8Q)zUߝ Qi3/'ׯcbmqv_B|&c?jz$eB|t 6BRs:ئs*Ok`"+<0ⱱc N (j&8Y܅R0px#5n(I`Z`c8 oav/X5IOt},чuԕH1a7xm=5b_*_nrTHlS>}NZ1 =/?f۝?C@6M*f1@ST䎋Qb[!\hEQ8IUWbK. Ykt?B,՗, ۧ69|Q *:55=ӈُ?RtޑWy}#^Ka~^`ǡ8pD,Y8f=Ny3#ua5$K:HyR&p28$M9qiZoc)xRf-p}8J!/ /JHtet5LUkivP&Ы]ISm# A~1l¿vL~+]{ 1*8sw;;-zEWr宠AҺaHHb~oYZXF)辠ښ5 'a;s{[Z޾#d C<]Ⱃ5Swx=PiAGDf\ RVxBŔN$Ws\@v+FB kF2'A2Ng5g -)Ӽs.&L;@\qhL ڴ(Sfq(:S04?%Ͽ2)0A">%!ǞJSe04 jVڐa:Zrefai’(ELKmʸ*T"`մqz7/q|A^ :wCX=ܲzS+! xjeg,|DN\.UH3Z=TD)ZP;h&9K6?#(shsxSmVfMoFp8gKR %4e\ tk6 vVFG,&[%03U=Ϸkvwi T@ڶq#;]srhuGzs:~hBȔ-g95 dW6/u(wގ”A +@}aw'G Y~QWM_Q` 4c,L|Vuv/+92*whi e`6wяS^"$ݔAuyw__FږcL,(\<AZC8g~(IGC2.hX ] +Q_3)[F ?w^̕iTG3*5~Y,4Cs .ۄc1A#wFɽtvkحg@{+ $amJ~b|/]4x k}>7I@/g E5Ipn][%67QTQA)P (jo\ZJ~ T:H.둴#1b2L͂xW\E<@4?z Ӓ2 1vZ9M\䑛I r+XϝS.O}0L 4z"#hÜ[S|B_U?ط|^2mh{^ Q3GMռ †<z/HYڈdBGCE- *EYyqF#R b̠#U;U?&6qgP<*+2f;][x6az(4" v靊/UK&Ę^Sz#֍2O"&Oiפ tt$SM܇B$1?=RQcPOL<"@U:(J,fSyͅYeuh\=@ȝ5M# 9PV6_!|{w%{yll.'liQm{Oߗ$*wO9g)cCqs@c#ۇ/Luc9DnWZqy)9M ƧoaK1M,Z9,Y%+5 9R,D3XG>ftV95apAexq}zf/JZhbxzKeB}糆~WDY>P\ Ydx]AꮡF^=Ks7$LSSߊ&-jL7j'}ق;1[oq4{ƺ. ! h-dM :Q8f"m4 T?fc VBrgllc|gR&4v20N|p'7d\cCpLX58(4:#ZdeiSVDƱȜAntd⪊ JBuap_+(etn͏1D\>3XuI5hvBVRKꇼ[*SaUHF\"bj 9_y"7{^F9 0|*%srݵ )nd(!1˙x ǦR2V QF(b(JkPNkQQZu#R? DN(=O(VR0\$X}`=S| qEE_ƑAT߾axR#-0?j`+}=mRt OXxXZR802dW2Tni-9_vu ,*ՍZ蚱0q#S|Zڏ-.4Mǖt>5*.dk>(m_B y )(,M_!>.9'xpՅ]vRvnPH| \=I[@#Ss9 0Qxj(?pŢ~'!zhnZVL掬o\ }P3NJaak\;W81{v 9X"}>H PY$ *16~Hˋ Q@lȣ;W&6 KSQa.YƩN]Rᴑ&Xwv8swìz84t2Jnt()%0Qh]P ]jKXG c ?;) '{5*ٱuxQZu~6xdʭP0DԩS3lxuՃ]ocbV [3OBuo+J7ћb\d. o (Bw ZGo '6;`~#L,ⱦ!k-@^4uJ<<Y#z "DPp[Z|#P7C~ nkֱv"5hM$3ش+p9'$ Z|ҢOwmJ}r$EAcYP>FÄ~͗+\$}t'Ż)s̈́Jo/hZ>`!DYJ3p{륓,$h AFn`}BINf^QƓz@.\VK$ʥ .cy UAf]⒑eTBqh32Ń1-r?> dЕ;+za SbP4@ԔMA7Ƽߨؾ(ew_!ؙ7xNҟt`xJuc|}<^T|8Qxq_!!2ܵ, D+ {ќ~ȨêE0B+1 [|HN4|WQa-B=v{Qx/H`Hu=1ocڊ#Y{,~!i@n+brD9raxA ᐚD9- 6]ýtXBPyh4}'^PRp;5,q&6ЀN^Oy i;@CZk.TʙŊgu,3BUyQ' =· l[*0>VGKŖEL.¶,U6YL_aǟ/сmhn 4`* DN4*…{jM48#' .\y)/F~ pI2y:OF8`D.Ev ZNrR2~C-ĝ/,XMqT[e!@6V C Uޞ/Jd{GK.JLr,oGK ;epQf-j҈v,Nx\bzJh?^D SLFf4s:=t"J yd +rok m/9F1Hid_T!5\~pfG3|CűywkںZ/L70v\ī$nzo zH~X <WWU]Orc,tuYD#6U*\5e*VXܟG_f 4%=_tBgl8B*{ܩw^Y۳B(Ƈ['{M>Wjl*?^jJr!1aT g]T L4 G߭S UPݦ ^G߆9fG"3HbѨ p񹼋 }Ўx9!r&ўH?PSv8s̼VpL -gG'^)5$rZBӉ]Qn;eyf~6 ӥ"za:fN%q%Fa$ R&8҃ENegn@Nh~kTmyx}{E#q,s_'έ{f :CKZz❅$fCkyhTb/37j%r7?8a?/RF\m7sbپo4e M[[e])B*=nqX|ngm2".6gKiEpnSK*n~K7h,\ا͕6Zm#Ұ8w h}>-ea[cV ş.D<\=[PP5;P⣄Ls=#`C]c1D<3;\{ @J#vő)GJQi}Xu9q)<nz+ rza\LkKx&.I66gy[6e7: Oݟ>V"rU\Zވlerh~ety`FLo'$uݬ0r4>ä_EGkB<MIϔײY &;KJK (;-D)S>tU l_[zEjȅMwϻ/4X6szQ5& ,j7Oxj=h> @mrts4\:ڎ˥7]D{vه8LʜX&&λ\ C)nt@Gi̍4r<L9}3l%s|5Lݣ]m OИD/hn#~[uG\xa`F`:@I9>iy[-GէbAQJuslgx/ 'Ĵmkoȍ =ڂkZvVx,_N|Kr"J%7ӱhQA8y܁f # `Ж7o۞ӧ)ޫ.k4Mt݀TzA8CzD`cnk.;^Z=gs1 VE:46Z۬"Jq&g PR@:hЇOARjd+99@rzÃLrEDeR̙4fm`u,N|CTαk:L)]ܨEoV`ȜަpdCi?1!Y}(M!e_Q֮uEQDM `xn(4q_(t}y %SCei?-ҡ`Zk d+D0mD {-kN颗e)$}^bwZvFB@4CCRHZ/SuވPfuJEj+G̵<o ǿ_k P&RAvZT8 #wn>/0.m+տMu}CP ]Dz>&+U‡i Hncb5W_> N,=?/Zg0CoII?]#G+,a*d-FRCO -@I yGuPx3ɗf u`b0\_/n ˿A@|y׎.ob{-6)m|7y0ڽod֏+p4Sj'd3XF4)k1OUw3`NS!誽BQ\iyi_]R3w@ӭy=ζkC lj&}}PxtmC /3bz:e6M~ #JaϔH?Ã% %[vˊ@gW/m ~C'Ǝ4S7gx2S;sjOJ7H9Sbk̺/L=6+ tMIITl*9D&7h3=6SWڢ3_Nkp R#7} Ԙ25q ֯`֗.$ $?<*!qDQ,a.qi~WB!g0#!NFftHU$t`^9rH aJ++W?h ,EQ8<6`C(BuP_~3p@ȯpf)-Y[d{k 8@]Kvi>EYGc[F^w$:W)V"f(l23\fTe gX& uF}dj-H|uo %l ڍ⯯{&&>LW=gGo\VIU"da֌l9p ynS # $cPh yb4ȟU4prnv3~GPSUpUN瓯h |6I-bn(J\hk!ɪȎ9/.q!?u+lnd:3z_F=bQU0چI%Pp[(h23UѦG (ɠ yY_-1(Q4Jӟ1E)youw?]|GLGOv7氤ֶI/80}G/\F4H\U#zEOHd/(/Aq;#ADc|j!Vv7ؚy, S)(O},OƸw,dOG. iSL`8DCbY@_A&4"_ׯ>v52o=o%_ 8LHe^nX\ ,sGiԫn"s l Bppt+NE!O(')hbur6ƀ$ swCUx,=G#xg#k8#٫O{ wfQK_a샯l$)G %C$ Ő WDǬlֿJE/U.Cl2Бa:B#tdpgJAp>Ѡv9}rL@z!Ehhz&bNN6Cyo!b:yjHMy\ } U%igrørp:*=٢@t Ԣ0S_w5'4a^ x- 3Hfz^zZk<@j;VcD2Rpfi"4/l"GDž|2v=-]]IV80 /sx+[Ϭ%kNʺCDp//Z@Tkn+hazV`DzF6OJ9=P?kg-X1bFPv03oSk/iJ/VS%Rޥ J/1 H>.Z&mg5k}=ts>j]y84Z 4q],m8Fcn◵G~(NySDo|n[ xOa^GhQHY(ƒMD0Z Ex Cٞ0aUdd)6|Hpca9un:ҫ; S\_ u5(4xU{[ 8VBڃ;[[Ocl:x>| DoYty3 I*.dT-8w\ԵycnC"%'tOW7<'/ E?eO}@l㗒[IVLf&8 ?Iy@Ԑs"F fao~iqFyP2ؠXxdM\@mαj 4A4+:,WF_Z\SRhh*w<}|[]5RA%n9u<y&<Ϧ:L NsD1`vI@%<$lz]Gfv5U3%D{YC5NSS?̚ꡅ10)8 ʢ]_FMp+tɚ5>*S);b9u= i܆Gvn嚱l1\;  2L~qdrp`bd]IwzNࣼY#%xN=YÛb;ȝ |/,OX޼A\Tblu9G6$){Lz@Pc! 3G 7 >zV̮& <716,{ 2H"%.~:YnunYQ+ CҬݻpx^Hǵ,XL;FnbЏIh ixs8͐?YC$~ Y%I 5z5_UyQuHCqoQ\mzYPͬe FI :cynJO +\. p=:Kv~ߴnUb#&q<vLZO' тWPj^==[S2cRz6Be{ό)C9\=M,XB]E1wJ#)8,GR6kHrg r ]D-U-0[;2MI.rNM*9~Κݒrr. |M9~dycĄ H%JƉd?gʵ'pwf չ(gGԫ\ׯ(6ɥŚXPC~Cl> ?WI mH!0/ eFf^~CKtFo~PkrdxnuJ'W4/_ٙFsz~xxRFz߽B0m#-0ۦ3 y{zÐh@n$Q3nߩcj+o{>** ,{-n,ze;톾_2͵k<#^{9dĚnxGGRa/.v n$6կ컻ԒCq -PjκQw;4CA!x;^'i@R]̻ !A H˘zXS[p]Umb1Ki@_7KSh{D -d3 P y ߑ#Ρx_yA a!E> ATp}qH׊ŠD6֙WFAH,T#!>yH sr#Yj/kp1L*?o`!Cֿti33LJc+hgG '&YxtFN"@WIP&=qAZ5U6bV&mi2oWQii.⣐1OV%\pށ6) 4Wlػ.ƴ` Rwܕ06 u2Ղ|&<ԽقoC".aqck}s垪 3kkK tu5(4/~V]Gy}1%x9Ŭj:;\RSg LNEwQcKΥ4%Z4AҪ(QX߀$-j-+sNcuVXh/ח $R*JIV5O;{hb)/O1 xlTMDRr'QycCڀɗU6M)Q.&9l9wI-+hH23Q]g|t DQdfhƾmv7;}o ,iyn_5hmoMw`Z@<h50oɺ`gښi4h)~d/Uh`xژ۞':ۈeqICFVo)j4ql8}XҥXEwlk<;sEj2_۪l/\a xp@Ol(=fٜAG1VD9ATY6G=1Ǻ!CHdμi(,JVwXwڧ@ iO*?.`Hϟl@մ'w wwce/V"R@gnD-mjB9=V 'lyp03Q'U.2UIH Т1>g^S[^nQZ1wy2NsM4 &iP&Q@Pwmo%ofveѶ7+lR9q%dJ_0S>]ERF/L5+<dP[]7Q!!ݕ.kU.djfo' x+gG;nc O*j7X){o7%#@Pxp7}8XK 4#-) )9Z辱)=2I*UV6PY`KABek63i]dhO yl:YlWB-rJW!B3b{2/zt,t$Q{,^4+|LJ }ӵ0q/f乒J&_lLH`Q)dM g똱' djEoA|OR?ZiZ΀bw*Ӓ?!u;g=ԁI߫֩5ڿ(IW`_W4:{4|_E @MAdJuDj~Ѡp5yFPb M'?p[a套ԁA՟H-m}OF2eH3^MbrV!Fo aTDKl0^y"slǞ/ys#v7 _q]qL3{=;˺SISΣTPx6q_}V7'K+!EFhSVEZ U*Ϥsyi*T-JǐM4Bu =0iӝu"aŒ&ݝ{ TNMm,-g|P~qrEȹf.6> A rz y'aHnY  'b@DJog]œІ፡2GZwFց J\2->B"a!&QLZA ԒLg4OAӃ_`ܰ2d O|,t'نw3[S*gztA}1a˺ ވPQ]1ȑ&?#$/"bFth5n.>A} bIQ#%qf2;y[]HQu:|xjn tKG e4> Bx 4 ú4KD0}2|vl%oݯcBS Nq0Jw&CC׭ )Ö퓺6=v~}[XWm>or()6n=T!"Ǔ%?iK9$m]Fx,z=݀oF&>ԩ~.GO)u| TЪָe/9؟k|SZPVc@߃~8q(ԨVZDX֊ev]S)ijKqi*_*| F(JKf?[Zxu'=eI. zsQm9N^ 3S =tUUL(59TôYHMÕ"у-&&9ڝ3syj-(m ;JX~"ezL hj"xk szLtZ J%yҗB iskx|Yt hxPWT*^z›l[~>J6F~h7m?}i W.| [)X+`5 E;"{ڟ Fa;?T&fbJ^5/Pjmqkz跁PIcd] nPlCU-4ԗkcH4C'R߅u,o?Wl&p-5=Hv Eέ>@H|fł[̘^+x mJX:"!xFs @97o~^So ,``<^\(f;Ip+˜2 b/ [TOݫc'9yO SfKDT]\GN5KLAbDcפAu _\1Ӹ Êk΍->Z 'OvTF<_~y^xb3gLЧ_T*]G4K $J@Np.595lq{ KL)7@,=By XxcC[O Vq1I;>p>'qfy =X>JwW)^ aD/ NwU#МlS3̓!?03$t_ <+{27o"֐P_-69x*X`bDVˌGqb;їC\&k;Sevh9sIS ǝ`fC:в>A5|7HC\eV&gH]Ci{q#n@Ă7j}9'$GRzu -U &槫`8`Y H=kNG=. *)YKZ_W`l/p/%#y^ɑKٰ氠"q:-6 xXeu;s=={ i-?u?Lm DvsgAwh>j%jK e)f۠Ef]V: *X&DR9@o>B~}f7S9r<+Q2+#Žn ޸U}oeWª=ƚýĆ p7| GZLIU8J+. 4lG,ëhM8>n1L OǮ{RZc4m?^ϛ|k Mk\yڹ!aj!۫%Q톆N#}Dy-"!pIR^S=e\ JÊZ#mBRJv>@1󀩹ޝ=Cr+ Ļ9,Ed*?xm;!$i?K64*We+~1/&x2 y!/LП߭H|6HKi 1j ,Xۍ|H ` C_ <{h" ՃzTᡭ}KLqPmswW!O] XMr{Qyl<*M#7BkRhFeyj C5neE zGr>rۏ ST`TI%F̓ 0pK2P,ܻZp郫spvVo2[rql *:|#z2>qdK*å1Rg(79o@)sR!Y~7櫐OdǃԀ?`Q]Hi po,hl5B$ 0\WQz%ެÿjr9$*7HgIpEs(+o?T1%S*z1TS8Gڝ.z=hݦjSK&ݑH,ϬX?' KRv-b(]~-S[FjHVdIF$-;"a^3-9zjzo沙fnc?x8cQz@U.N74X9+c쪥r|?(d8>t3.&VQ3tNzKdΗXP ӉqExKE}[D:rXHe۾Hc0GtːC_|{)WHA\dE_:kЈҺ=wgghTߪX X@}Zآ0ϕ=Y'> \z/6sF$ mG*C7) ~^ 6f/toJv"R$~n(4t(":K˜)eŚri 34H~|wk=eX:^MeeL D?Tʭe":qB8&s7:n{Jŋ*c~ȓFL?IXEi4sg SN٧Ba:=}Og1{r^00ͽn+j6 Qo|,e@D"B+ۥ9h'AW`!@z{ ]JY}Z,m D3>vLȸ<< XA2 ?ՈnD8<].~@ x]F5OBqL;"zΏjӢ%0CDm[np ӋƅT+h0k;QfIaϫk˃Dڝk{_ M _S[{Owg<-Yu/c۝:bjWLVqg> Vѷ[f"SQS*W_as!CGe ~P=2H3\1ف_"j*Cc:%Ph7/GĖ3:=EP)oOZt'H34w'hz1H\UTpFJ`J^ aHthHZ_0?A℥ %_)Tk;3:} R.Q=NkJbʇMA{=bȇ]o,qY#fr=TUCعmk*LP|*ɻahX%_6VZǓ^$F)Vaᛥ+4J9_Q@ګӝokp3$i # (g_.%eRcʫS}ӣp ,]թ#\XrJ|},eiI"4 4Qc9$y`kwV|{ԱLj&1U)2=Y\? xctlzd-vx"즞.1ߢAM:󘎣 stCTHGC2/D'`O)jɚriFL&>:ٚ~O<d%c-{] $A//0DO8^}(w68~~}ѯA[aM͹jy/Km#v}#_z»boVƂ6hګG_et)泩iҭsՇٸ!vfT !fXT&Y]u8>,cXŨ7GтS]a4Gvdl%#xˋs78t'"w g&~;ɹobpLpk %X4kG oYD bC+D`alwvf-t y6r+]l<޵;I>W'n{ ~ב$= 4qD]wwU"IP\mg>ȃ H8*e݁,\d-?&o[hbݳe|>bU`5X8vϬf1VG&BT+d~*; Xۂ{/x''vdJf 9ispDQ8,?%2 (LI'eYAQ*'vz5ؕsP,|H)~Oh5}i.™J8PTA=]|k.'Vw"\fUd@zb{W]eWxAEtTƃtkZ2Nۈp[?XSyWO5n'K1SzhWZ~IݜidSP>_^p@U}]nK =p vh׺\9NKҀR>$br|MY0'^~Ë>0 YZafex/data/md_15.1.rda0000644000176200001440000000071412612772357013660 0ustar liggesusersUN@4ţGOM֓|֖n&MJ)+|@\`c4jDo盝ٙnG>c S1jXUȲ.^`Lm&6c5ac@NLAY\|0oG>y//,YH<78NA Hc O-yF;8<öd9s0K[fG] mJBhEABP% j2v+m{oZقDAECrI%hșI):XW w`/kɵnaB:y:Sk欟Sqݻ Iɬ:m}($3s?)]BZv{ɥ"\7I6mcN@4.X{S]\1ksxC K.CO9CZ<*kWeafex/data/ks2013.3.rda0000644000176200001440000000747012612772357013706 0ustar liggesusers7zXZi"6!X͈])TW"nRʟ ,bA5;=+ӧ{]\g~⌻Xt_0%M&P뗂 3Aa]bUOKFW.񴅩5k"$Q,;HHisӉf-ý{3B Ms=RtҨHUe68uډ'վ %()!Ƭ^D I3cW G])S;j>%iJ;]Y ԭD\aj} ܼO kS5/RۋnE (n@y{6~{V5 6z<iOėa? g^u-pjMhK.T?s %@@gXN ez7)(XS2\00"~o.z *FR(n=*O/҆|N1:y9L(2% $45Z$fpL !. iK$oMֿ&A9zm`Ъ74\V!r,!oORȹ+{l!/kct Ӯ?Ԙ@mr{.BOxoǤ 8cDWt"k,_T@@ L`R!l j@: Xd"#h#?oHG&AH&ڞO!u>} paDQ:%pyÍ^{eh`;3h+\4!"cXVү8 G}3+W{y_`p$eMm>gtδ_ 7u?p\#I}4&MG&CX&tO_?RAAօHSE ]y7 B8.kTO>b+rUㆿ|FYIvE}EmrJ }Ewse$7U 6nhpF* EB}`yQ 1v()sMK}Iaw>CAR E5J`2= /ÊLc_ȈӵQoU~o7B%NjS|w&Lk@WTs3$( W3`OCAIVHxusB] n5M Bf^V%J]Vd3_}W):VԮLdGϱSRH5A>_xKrf%ʄP* A\){޿!k)ٯK*}-3lN1GB`R#mkg{8~P,([AJ%V]dyI)ok☧܅p}#4^[Z9Ujg~t̤Ml)G%dob+=t}Y5X!9QR ܊gj ?l(d\s8Ҋ^ ³ DCpMM#?jAIq@,X5PkG5i ٴ#U۫ sAXY8nb)Xڹq2 jc dԱz1˳p1cŮVbq,ۏ0VӒ}ӻ˩TLPb&ky7 tC䂆o$!ý#14/7ϙ/&(}V5G, h՜;0MR)c/=2. BT\AS9(ؼtO1{t]tQtzy4!6#ڿ<X"/IvT#?lhdh$)d-̂ꃑId{K:ucOV Gc=BǠ-BS2@G[#-J`ˣd3ed)?_mNs9tݹOrwhOFeAD*Kgr#:=---Q cė(`s"wZ9I>eO 7/0o"#U~: '}.P4- CCA|S^1yET hٰ^>$F޺gYI~=ƛk~Mn{$CQPy=+)q̨24!0׽l ˼ANxIt#6sSlFKb*Giy3# RdM>0 YZafex/data/obk.long.rda0000644000176200001440000000132612612772357014325 0ustar liggesusersYn@yC"B,#>UBذ$NpvʶF>e]7L_b7:bK'̝w{⯟!M)RȋG!g2]'y(9  +J (+)DO`mu^t+ ܥ5"&qD SoI#>FMZj(VDZ:)4uowCϗ?Uy< /{c&+݌Vz Csi@$o &صac +[A[g_װd~׃sQ =4>ʟMꈈt_r]0v+1c-.WU{̧t!m2v8Nt';v..P0_8<`7Շc;^sKS{_%>]T\\ \ǣiOZi)ס<ڹ[ʥ8(vz>ppE?vO4Q>~ڗN }ދT%;tt&(a` 4J/1)\؁j+IUϏƵf&Q١E,&nX;#%afex/data/md_16.4.rda0000644000176200001440000000063612612772357013667 0ustar liggesusersBZh91AY&SYLb7@@y-A51f$` #@1j4oT44D%OTfi &@h#И0LQG4DRllx@ꋯܫF(Kus!2HCtEQnn{3]}]W:ލhX`,q,`՝e{m=7pԦ.AhC7II=~ ) J9]!!wX#Ґ`I#H@B`@f4G[hhK'*eТ/%"ŭ~(hUTDR$"L?9}H\%! vh6c_m*7 H$c%^O*l~e;?ܑN$6<afex/data/md_16.1.rda0000644000176200001440000000045712612772357013665 0ustar liggesusersK0ߒnsQۮ"lvЃ =&`˧fɰY|K_WyJgxs._ȈcSI0bԧWƨRo2P.[dAA\1b29,*iBֲ[;Dܚteo_ WjY)?Kv;y枽I6VKcc'. V֪;x9@Kinx~ޟb9F*"۔^q><2~.u.B"LiVZJ+Z7Gafex/data/md_12.1.rda0000644000176200001440000000054412612772357013656 0ustar liggesusersSNP̥MLHWM\p튝M( u' ~'%Ź)ƄI93s!{o 0Hm$b6`2yҘM ʹyҔZee3V_@s~Azn4>Li{etWᶝ<Ŕ@IuBQw{&YB>㣮/G6?d*ïafex/R/0000755000176200001440000000000013111507500011367 5ustar liggesusersafex/R/md_16.4-data.R0000644000176200001440000000473412612772711013516 0ustar liggesusers#' Data 16.4 from Maxwell & Delaney #' #' Data from a hypothetical inductive reasoning study. #' #' #' Description from pp. 841: #' #' Suppose an educational psychologist has developed an intervention to teach inductive reasoning skills to school children. She decides to test the efficacy of her intervention by conducting a randomized design. Three classrooms of students are randomly assigned to the treatment condition, and 3 other classrooms are assigned to the control. #' #' Table 16.4 shows hypothetical data collected from 29 children who participated in the study assessing the effectiveness of the intervention to increase inductive reasoning skills. We want to call your attention to several aspects of the data. First, the 15 children with condition values of 0 received the control, whereas the 14 children with condition values of 1 received the treatment. Second, 4 of the children in the control condition were students in control Classroom 1, 6 of them were students in control Classroom 2, and 5 were students in control Classroom 3. Along similar lines, 3 of the children in the treatment condition were students in treatment Classroom 1, 5 were students in treatment Classroom 2, and 6 were students in treatment Classroom 3. It is essential to understand that there are a total of six classrooms here; we have coded classroom from 1 to 3 for control as well as treatment, because we will indicate to PROC MIXED that classroom is nested under treatment. Third, scores on the dependent variable appear in the rightmost column under the variable label "induct." #' #' Note that it would make a lot more sense to change the labeling of room from 1 to 3 nested within cond to 1 to 6. However, I keep this in line with the original. The random effects term in the call to mixed is therefore a little bit uncommon.#' #' #' @docType data #' @keywords dataset #' @name md_16.4 #' @usage md_16.4 #' @format A data.frame with 24 rows and 3 variables. #' @source Maxwell, S. E., & Delaney, H. D. (2004). Designing experiments and analyzing data: a model-comparisons perspective. Mahwah, N.J.: Lawrence Erlbaum Associates. p. 574 #' #' @encoding UTF-8 #' #' @examples #' # data for next examples (Maxwell & Delaney, Table 16.4) #' data(md_16.4) #' str(md_16.4) #' #' ### replicate results from Table 16.6 (Maxwell & Delaney, 2004, p. 845) #' # p-values (almost) hold: #' (mixed2 <- mixed(induct ~ cond + (1|room:cond), md_16.4)) #' # (1|room:cond) is needed because room is nested within cond. #' #' NULL afex/R/ems.R0000644000176200001440000001171513055500353012311 0ustar liggesusers#' Expected values of mean squares for factorial designs #' #' Implements the Cornfield-Tukey algorithm for deriving the expected values of the mean squares for factorial designs. #' #' @param design A \code{formula} object specifying the factors in the design (except residual error, which is always implicitly included). The left hand side of the \code{~} is the symbol that will be used to denote the number of replications per lowest-level factor combination (I usually use "r" or "n"). The right hand side should include all fixed and random factors separated by \code{*}. Factor names should be single letters. #' @param nested A \code{character} vector, where each element is of the form \code{"A/B"}, indicating that the levels of factor B are nested under the levels of factor A. #' @param random A \code{character} string indicating, without spaces or any separating characters, which of the factors specified in the design are random. #' #' @return The returned value is a formatted table where the rows represent the mean squares, the columns represent the variance components that comprise the various mean squares, and the entries in each cell represent the terms that are multiplied and summed to form the expectation of the mean square for that row. Each term is either the lower-case version of one of the experimental factors, which indicates the number of levels for that factor, or a "1", which means the variance component for that column is contributes to the mean square but is not multiplied by anything else. #' #' @note Names for factors or parameters should only be of length 1 as they are simply concatenated in the returned table. #' #' @author Jake Westfall #' #' @seealso A detailed description with explanation of the example can be found \href{http://www.talkstats.com/showthread.php/18603-Share-your-functions-amp-code?p=82050&viewfull=1\#post82050}{elsewhere} (note that the \code{design} argument of the function described at the link behaves slightly different). #' #' Example applications of this function can be found here: \url{http://stats.stackexchange.com/a/122662/442}. #' #' #' @example examples/examples.ems.R #' @export ems <- function(design, nested=NULL, random=""){ # modify design formula based on nested factors specified if(!is.null(nested)){ terms <- attr(terms(design), "term.labels") # for each nested, get indices of all terms not involving their interaction keeps <- lapply(strsplit(nested, "/"), function(x){ which(apply(sapply(x, grepl, terms), 1, function(x) !all(x))) }) terms <- terms[Reduce(intersect, keeps)] formula <- paste(c(as.character(design)[2:1], paste(terms, collapse="+")), collapse="") design <- eval(parse(text=formula)) } # build two-way table mat <- t(attr(terms(design), "factors")) terms <- tolower(as.character(attr(terms(design), "variables"))[-1]) # resolve fixed/random dummies if (!is.null(random)){ random <- unlist(strsplit(random,split="")) mat[,which(colnames(mat) %in% random)][mat[, which(colnames(mat) %in% random)]==1] <- "" mat[,which(!colnames(mat) %in% random)][mat[, which(!colnames(mat) %in% random)]==1] <- "fix" } # insert 1 in nested rows subs <- strsplit(rownames(mat), split=":") if(!is.null(nested)){ nested <- strsplit(nested, split="/") for(term in nested){ rows <- unlist(lapply(subs, function(x) term[2] %in% x)) cols <- colnames(mat)==term[1] mat[rows,cols] <- "1" } } mat <- rbind(mat, e=rep("1", ncol(mat))) # insert numbers of levels for remaining cells for(row in seq(nrow(mat))){ mat[row,][mat[row,]=="0"] <- tolower(colnames(mat)[mat[row,]=="0"]) } # construct EMS table ems <- matrix(nrow=nrow(mat), ncol=nrow(mat), dimnames=list(Effect=rownames(mat), VarianceComponent=rev(rownames(mat)))) # add nesting information to subscripts if (!is.null(nested)){ subs <- lapply(subs, function(x){ new <- x for (nest in seq(length(nested))){ if (nested[[nest]][2] %in% x) new <- c(new, nested[[nest]][1]) } return(new) }) } subs[["e"]] <- colnames(mat)[-1] names(subs) <- rownames(mat) # rename #-of-reps variable to 'e' invisibly colnames(mat)[1] <- "e" # fill in EMS table for(effect in rownames(ems)){ for(varcomp in colnames(ems)){ effectVec <- unlist(strsplit(effect, ":")) ans <- mat[varcomp,-1*which(colnames(mat) %in% effectVec)] if ("fix" %in% ans) ans <- "" if (all(ans=="1")) ans <- "1" if (("1" %in% ans | "2" %in% ans) & !all(ans=="1")){ ans <- ans[!ans %in% c("1","2")] } varcompVec <- unlist(strsplit(varcomp, ":")) if (!all(effectVec %in% subs[[varcomp]])) ans <- "" if (effect=="e" & varcomp=="e") ans <- "1" ems[effect,varcomp] <- paste(ans, collapse="") } } attr(ems, "terms") <- terms return(noquote(ems)) } afex/R/round_ps.R0000644000176200001440000000137212612772711013363 0ustar liggesusers#' Helper function which rounds p-values #' #' p-values are rounded in a sane way: .99 - .01 to two digits, < .01 to three digits, < .001 to four digits. #' #' @usage round_ps(x) #' #' @param x a numeric vector #' #' @return A character vector with the same length of x. #' #' @author Henrik Singmann #' #' @encoding UTF-8 #' #' @export round_ps #' @examples #' round_ps(runif(10)) #' #' round_ps(runif(10, 0, .01)) #' #' round_ps(runif(10, 0, .001)) #' #' round_ps(0.0000000099) #' round_ps <- function(x) { substr(as.character(ifelse(x < 0.0001, " <.0001", ifelse(x < 0.001, formatC(x, digits = 4, format = "f"), ifelse(x < 0.01, formatC(x, digits = 3, format = "f"), ifelse(round(x, 2) == 1, " >.99", formatC(x, digits = 2, format = "f")))))), 2, 7) } afex/R/utils.R0000644000176200001440000000353513073233062012666 0ustar liggesusers escape_vars <- function(names) { if (length(names) == 0) return(names) names <- vapply(names, function(name) { if (make.names(name) != name) { name <- gsub('\\', '\\\\', name, fixed=TRUE) name <- gsub('`', '\\`', name, fixed=TRUE) name <- paste0('`', name, '`') } name }, FUN.VALUE='', USE.NAMES=FALSE) names } # decompose functions from jmvcore decomposeTerm <- function(term) { chars <- strsplit(term, '')[[1]] components <- character() componentChars <- character() inQuote <- FALSE i <- 1 n <- length(chars) while (i <= n) { char <- chars[i] if (char == '`') { inQuote <- ! inQuote } else if (char == '\\') { i <- i + 1 char <- chars[i] componentChars <- c(componentChars, char) } else if (char == ':' && inQuote == FALSE) { component <- paste0(componentChars, collapse='') components <- c(components, component) componentChars <- character() } else { componentChars <- c(componentChars, char) } i <- i + 1 } component <- paste0(componentChars, collapse='') components <- c(components, component) components } print_legend <- function(x) { sig_symbols <- as.character(attr(x, "sig_symbols")) if(length(sig_symbols) > 0 & !all(sig_symbols == rep("", 4))) { sleg <- attr(stats::symnum(0, cutpoints = c(0, 0.001, 0.01, 0.05, 0.1, 1), symbols = rev(c(" " , stringr::str_trim(sig_symbols)))), "legend") width <- getOption("width") if(width < nchar(sleg)) { sleg <- strwrap(sleg, width = width - 2, prefix = " ") } cat("---\nSignif. codes: ", sleg, sep = "", fill = getOption("width") + 4 + max(nchar(sleg, "bytes") - nchar(sleg))) } } afex/R/aov_car.R0000644000176200001440000010137113111507500013127 0ustar liggesusers#' Convenient ANOVA estimation for factorial designs #' #' These functions allow convenient specification of any type of ANOVAs (i.e., purely within-subjects ANOVAs, purely between-subjects ANOVAs, and mixed between-within or split-plot ANOVAs) for data in the \strong{long} format (i.e., one observation per row). If the data has more than one observation per individual and cell of the design (e.g., multiple responses per condition), the data will by automatically aggregated. The default settings reproduce results from commercial statistical packages such as SPSS or SAS. \code{aov_ez} is called specifying the factors as character vectors, \code{aov_car} is called using a formula similar to \code{\link{aov}} specifying an error strata for the within-subject factor(s), and \code{aov_4} is called with a \pkg{lme4}-like formula (all ANOVA functions return identical results). The returned object contains the ANOVA also fitted via base R's \code{\link{aov}} which can be passed to e.g., \pkg{lsmeans} for further analysis (e.g., follow-up tests, contrasts, plotting, etc.). These functions employ \code{\link[car]{Anova}} (from the \pkg{car} package) to provide test of effects avoiding the somewhat unhandy format of \code{car::Anova}. #' #' @usage #' aov_ez(id, dv, data, between = NULL, within = NULL, covariate = NULL, #' observed = NULL, fun_aggregate = NULL, type = afex_options("type"), #' factorize = afex_options("factorize"), #' check_contrasts = afex_options("check_contrasts"), #' return = afex_options("return_aov"), #' anova_table = list(), ..., print.formula = FALSE) #' #' aov_car(formula, data, fun_aggregate = NULL, type = afex_options("type"), #' factorize = afex_options("factorize"), #' check_contrasts = afex_options("check_contrasts"), #' return = afex_options("return_aov"), observed = NULL, #' anova_table = list(), ...) #' #' aov_4(formula, data, observed = NULL, fun_aggregate = NULL, type = afex_options("type"), #' factorize = afex_options("factorize"), #' check_contrasts = afex_options("check_contrasts"), #' return = afex_options("return_aov"), #' anova_table = list(), ..., print.formula = FALSE) #' #' #' @param id \code{character} vector (of length 1) indicating the subject identifier column in \code{data}. #' @param dv \code{character} vector (of length 1) indicating the column containing the \strong{dependent variable} in \code{data}. #' @param between \code{character} vector indicating the \strong{between}-subject(s) factor(s)/column(s) in \code{data}. Default is \code{NULL} indicating no between-subjects factors. #' @param within \code{character} vector indicating the \strong{within}-subject(s)(or repeated-measures) factor(s)/column(s) in \code{data}. Default is \code{NULL} indicating no within-subjects factors. #' @param covariate \code{character} vector indicating the between-subject(s) covariate(s) (i.e., column(s)) in \code{data}. Default is \code{NULL} indicating no covariates. #' @param observed \code{character} vector indicating which of the variables are observed (i.e, measured) as compared to experimentally manipulated. The default effect size reported (generalized eta-squared) requires correct specification of the obsered (in contrast to manipulated) variables. #' @param formula A formula specifying the ANOVA model similar to \code{\link{aov}} (for \code{aov_car} or similar to \code{lme4:lmer} for \code{aov_4}). Should include an error term (i.e., \code{Error(id/...)} for \code{aov_car} or \code{(...|id)} for \code{aov_4}). Note that the within-subject factors do not need to be outside the Error term (this contrasts with \code{aov}). See Details. #' @param data A \code{data.frame} containing the data. Mandatory. #' @param fun_aggregate The function for aggregating the data before running the ANOVA if there is more than one observation per individual and cell of the design. The default \code{NULL} issues a warning if aggregation is necessary and uses \code{\link{mean}}. Pass \code{mean} directly to avoid the warning. #' @param type The type of sums of squares for the ANOVA. The default is given by \code{afex_options("type")}, which is \strong{initially set to 3}. Passed to \code{\link[car]{Anova}}. Possible values are \code{"II"}, \code{"III"}, \code{2}, or \code{3}. #' @param factorize logical. Should between subject factors be factorized (with note) before running the analysis. he default is given by \code{afex_options("factorize")}, which is initially \code{TRUE}. If one wants to run an ANCOVA, needs to be set to \code{FALSE} (in which case centering on 0 is checked on numeric variables). #' @param check_contrasts \code{logical}. Should contrasts for between-subject factors be checked and (if necessary) changed to be \code{"contr.sum"}. See details. The default is given by \code{afex_options("check_contrasts")}, which is initially \code{TRUE}. #' @param print.formula \code{aov_ez} and \code{aov_4} are wrapper for \code{aov_car}. This boolean argument indicates whether the formula in the call to \code{car.aov} should be printed. #' @param return What should be returned? The default is given by \code{afex_options("return_aov")}, which is initially \code{"afex_aov"}, returning an S3 object of class \code{afex_aov} for which various \link[=afex_aov-methods]{methods} exist (see there and below for more details). To avoid the (potentially costly) computation via \code{aov} set \code{return} to \code{"nice"} in which case only the nice ANOVA table is returned (produced by \code{\link{nice}}, this was the previous default return value). Other values are currently still supported for backward compatibility. # Possible values are \code{c("Anova", "lm", "data", "nice", "full", "all", "univariate", "marginal", "aov")} (possibly abbreviated). #' @param anova_table \code{list} of further arguments passed to function producing the ANOVA table. Arguments such as \code{es} (effect size) or \code{correction} are passed to either \code{anova.afex_aov} or \code{nice}. Note that those settings can also be changed once an object of class \code{afex_aov} is created by invoking the \code{anova} method directly. #' @param ... Further arguments passed to \code{fun_aggregate}. #' #' @return \code{aov_car}, \code{aov_4}, and \code{aov_ez} are wrappers for \code{\link[car]{Anova}} and \code{\link{aov}}, the return value is dependent on the \code{return} argument. Per default, an S3 object of class \code{"afex_aov"} is returned containing the following slots: #' #' \describe{ #' \item{\code{"anova_table"}}{An ANOVA table of class \code{c("anova", "data.frame")}.} #' \item{\code{"aov"}}{\code{aov} object returned from \code{\link{aov}} (should not be used to evaluate significance of effects, but can be passed to \code{lsmeans} for post-hoc tests).} #' \item{\code{"Anova"}}{object returned from \code{\link[car]{Anova}}, an object of class \code{"Anova.mlm"} (if within-subjects factors are present) or of class \code{c("anova", "data.frame")}.} #' \item{\code{"lm"}}{the object fitted with \code{lm} and passed to \code{Anova} (i.e., an object of class \code{"lm"} or \code{"mlm"}). Also returned if \code{return = "lm"}.} #' \item{\code{"data"}}{a list containing: (1) \code{long} (the possibly aggregated data in long format used for \code{aov}), \code{wide} (the data used to fit the \code{lm} object), and \code{idata} (if within-subject factors are present, the \code{idata} argument passed to \code{car::Anova}). Also returned if \code{return = "data"}.} #' } #' In addition, the object has the following attributes: \code{"dv"}, \code{"id"}, \code{"within"}, \code{"between"}, and \code{"type"}. #' #' The \link[=afex_aov-methods]{print} method for \code{afex_aov} objects (invisibly) returns (and prints) the same as if \code{return} is \code{"nice"}: a nice ANOVA table (produced by \code{\link{nice}}) with the following columns: \code{Effect}, \code{df}, \code{MSE} (mean-squared errors), \code{F} (potentially with significant symbols), \code{ges} (generalized eta-squared), \code{p}. #' #' @details #' #' \subsection{Details of ANOVA Specification}{ #' \code{aov_ez} will concatenate all between-subject factors using \code{*} (i.e., producing all main effects and interactions) and all covariates by \code{+} (i.e., adding only the main effects to the existing between-subject factors). The within-subject factors do fully interact with all between-subject factors and covariates. This is essentially identical to the behavior of SPSS's \code{glm} function. #' #' The \code{formula}s for \code{aov_car} or \code{aov_4} must contain a single \code{Error} term specifying the \code{ID} column and potential within-subject factors (you can use \code{\link{mixed}} for running mixed-effects models with multiple error terms). Factors outside the \code{Error} term are treated as between-subject factors (the within-subject factors specified in the \code{Error} term are ignored outside the \code{Error} term; in other words, it is not necessary to specify them outside the \code{Error} term, see Examples).\cr #' Suppressing the intercept (i.e, via \code{0 +} or \code{- 1}) is ignored. Specific specifications of effects (e.g., excluding terms with \code{-} or using \code{^}) could be okay but is not tested. Using the \code{\link{I}} or \code{\link{poly}} function within the formula is not tested and not supported! #' #' To run an ANCOVA you need to set \code{factorize = FALSE} and make sure that all variables have the correct type (i.e., factors are factors and numeric variables are numeric and centered). #' #' Note that the default behavior is to include calculation of the effect size generalized eta-squared for which \strong{all non-manipluated (i.e., observed)} variables need to be specified via the \code{observed} argument to obtain correct results. When changing the effect size to \code{"pes"} (partial eta-squared) or \code{"none"} via \code{anova_table} this becomes unnecessary. #' #' If \code{check_contrasts = TRUE}, contrasts will be set to \code{"contr.sum"} for all between-subject factors if default contrasts are not equal to \code{"contr.sum"} or \code{attrib(factor, "contrasts") != "contr.sum"}. (within-subject factors are hard-coded \code{"contr.sum"}.) #' } #' #' \subsection{Statistical Issues}{ #' \strong{Type 3 sums of squares are default in \pkg{afex}.} While some authors argue that so-called type 3 sums of squares are dangerous and/or problematic (most notably Venables, 2000), they are the default in many commercial statistical application such as SPSS or SAS. Furthermore, statisticians with an applied perspective recommend type 3 tests (e.g., Maxwell and Delaney, 2004). Consequently, they are the default for the ANOVA functions described here. For some more discussion on this issue see \href{http://stats.stackexchange.com/q/6208/442}{here}. #' #' Note that lower order effects (e.g., main effects) in type 3 ANOVAs are only meaningful with \href{http://www.ats.ucla.edu/stat/mult_pkg/faq/general/effect.htm}{effects coding}. That is, contrasts should be set to \code{\link{contr.sum}} to obtain meaningful results. This is imposed automatically for the functions discussed here as long as \code{check_contrasts} is \code{TRUE} (the default). I nevertheless recommend to set the contrasts globally to \code{contr.sum} via running \code{\link{set_sum_contrasts}}. For a discussion of the other (non-recommended) coding schemes see \href{http://www.ats.ucla.edu/stat/r/library/contrast_coding.htm}{here}. #' } #' #' \subsection{Follow-Up Contrasts and Post-Hoc Tests}{ #' The S3 object returned per default can be directly passed to \code{lsmeans::lsmeans} for further analysis. This allows to test any type of contrasts that might be of interest independent of whether or not this contrast involves between-subject variables, within-subject variables, or a combination thereof. The general procedure to run those contrasts is the following (see Examples for a full example): #' #' \enumerate{ #' \item Estimate an \code{afex_aov} object with the function returned here. For example: \code{x <- aov_car(dv ~ a*b + (id/c), d)} #' \item Obtain a \code{\link[lsmeans]{ref.grid}} object by running \code{\link[lsmeans]{lsmeans}} on the \code{afex_aov} object from step 1 using the factors involved in the contrast. For example: \code{r <- lsmeans(x, ~a:c)} #' \item Create a list containing the desired contrasts on the reference grid object from step 2. For example: \code{con1 <- list(a_x = c(-1, 1, 0, 0, 0, 0), b_x = c(0, 0, -0.5, -0.5, 0, 1))} #' \item Test the contrast on the reference grid using \code{\link[lsmeans]{contrast}}. For example: \code{contrast(r, con1)} #' \item To control for multiple testing p-value adjustments can be specified. For example the Bonferroni-Holm correction: \code{contrast(r, con1, adjust = "holm")} #' } #' #' Note that \pkg{lsmeans} allows for a variety of advanced settings and simplifiations, for example: all pairwise comparison of a single factor using one command (e.g., \code{lsmeans(x, "a", contr = "pairwise")}) or advanced control for multiple testing by passing objects to \pkg{multcomp}. A comprehensive overview of the functionality is provided in the accompanying vignettes (see \href{https://CRAN.R-project.org/package=lsmeans}{here}). #' #' A caveat regarding the use of \pkg{lsmeans} concerns the assumption of sphericity for ANOVAs including within-subjects/repeated-measures factors (with more than two levels). While the ANOVA tables per default report results using the Greenhousse-Geisser correction, no such correction is available when using \pkg{lsmeans}. This may result in anti-conservative tests. #' #' \pkg{lsmeans} is loaded/attached automatically when loading \pkg{afex} via \code{library} or \code{require}. #' } #' #' \subsection{Methods for \code{afex_aov} Objects}{ #' A full overview over the methods provided for \code{afex_aov} objects is provided in the corresponding help page: \code{\link{afex_aov-methods}}. The probably most important ones for end-users are \code{summary} and \code{anova}. #' #' The \code{summary} method returns, for ANOVAs containing within-subject (repeated-measures) factors with more than two levels, the complete univariate analysis: Results without df-correction, the Greenhouse-Geisser corrected results, the Hyunh-Feldt corrected results, and the results of the Mauchly test for sphericity. #' #' The \code{anova} method returns a \code{data.frame} of class \code{"anova"} containing the ANOVA table in numeric form (i.e., the one in slot \code{anova_table} of a \code{afex_aov}). This method has arguments such as \code{correction} and \code{es} and can be used to obtain an ANOVA table with different correction than the one initially specified. #' } #' #' @author Henrik Singmann #' #' The design of these functions was influenced by \code{\link[ez]{ezANOVA}} from package \pkg{ez}. #' #' @note Calculation of ANOVA models via \code{aov} (which is done per default) can be comparatively slow and produce comparatively large objects for ANOVAs with many within-subjects factors or levels. To avoid this calculation set the return argument to \code{"nice"}. This can also be done globally via \code{afex_options(return_aov = "nice")}. \code{return = "nice"} also produces the default output of previous versions of afex (versions 0.13 and earlier). #' #' The id variable and variables entered as within-subjects (i.e., repeated-measures) factors are silently converted to factors. Levels of within-subject factors are converted to valid variable names using \code{\link{make.names}(...,unique=TRUE)}. Unused factor levels are silently dropped on all variables. #' #' Contrasts attached to a factor as an attribute are probably not preserved and not supported. #' #' The workhorse is \code{aov_car}. \code{aov_4} and \code{aov_ez} only construe and pass an appropriate formula to \code{aov_car}. Use \code{print.formula = TRUE} to view this formula. #' #' In contrast to \code{\link{aov}} \code{aov_car} assumes that all factors to the right of \code{/} in the \code{Error} term are belonging together. Consequently, \code{Error(id/(a*b))} and \code{Error(id/a*b)} are identical (which is not true for \code{\link{aov}}). #' #' @seealso Various methods for objects of class \code{afex_aov} are available: \code{\link{afex_aov-methods}} #' #' \code{\link{nice}} creates the nice ANOVA tables which is by default printed. See also there for a slightly longer discussion of the available effect sizes. #' #' \code{\link{mixed}} provides a (formula) interface for obtaining p-values for mixed-models via \pkg{lme4}. #' #' @references Cramer, A. O. J., van Ravenzwaaij, D., Matzke, D., Steingroever, H., Wetzels, R., Grasman, R. P. P. P., ... Wagenmakers, E.-J. (2015). Hidden multiplicity in exploratory multiway ANOVA: Prevalence and remedies. \emph{Psychonomic Bulletin & Review}, 1-8. doi:\href{http://doi.org/10.3758/s13423-015-0913-5}{10.3758/s13423-015-0913-5} #' #' Maxwell, S. E., & Delaney, H. D. (2004). \emph{Designing Experiments and Analyzing Data: A Model-Comparisons Perspective}. Mahwah, N.J.: Lawrence Erlbaum Associates. #' #' Venables, W.N. (2000). \emph{Exegeses on linear models}. Paper presented to the S-Plus User's Conference, Washington DC, 8-9 October 1998, Washington, DC. Available from: \url{http://www.stats.ox.ac.uk/pub/MASS3/Exegeses.pdf} #' #' @name aov_car #' @aliases aov_ez aov_car aov_4 #' @export aov_ez aov_car aov_4 #' @importFrom car Anova #' @importFrom stringr str_c str_detect str_replace_all str_extract #' @importFrom reshape2 dcast #' @importFrom lme4 findbars nobars #' @importFrom stats terms as.formula xtabs contrasts<- coef #' #' @example examples/examples.aov_car.R #' #' #' @encoding UTF-8 #' aov_car <- function(formula, data, fun_aggregate = NULL, type = afex_options("type"), factorize = afex_options("factorize"), check_contrasts = afex_options("check_contrasts"), return = afex_options("return_aov"), observed = NULL, anova_table = list(), ...) { return <- match.arg(return, c("Anova", "lm", "data", "nice", "afex_aov", "univariate", "marginal", "aov")) dots <- list(...) ### deprercate old argument names: if("check.contrasts" %in% names(dots)) { warn_deprecated_arg("check.contrasts", "check_contrasts") check_contrasts <- dots$check.contrasts dots <- dots[names(dots) != "check.contrasts"] } if("fun.aggregate" %in% names(dots)) { warn_deprecated_arg("fun.aggregate", "fun_aggregate") fun_aggregate <- dots$fun.aggregate dots <- dots[names(dots) != "fun.aggregate"] } # stuff copied from aov: Terms <- terms(formula, "Error", data = data) indError <- attr(Terms, "specials")$Error if (length(indError) > 1L) stop(sprintf(ngettext(length(indError), "there are %d Error terms: only 1 is allowed", "there are %d Error terms: only 1 is allowed"), length(indError)), domain = NA) # from here, code by Henrik Singmann: vars <- all.vars(formula) dv <- vars[1] # transform to data.frame if necessary (e.g., when using dplyr) data <- as.data.frame(data) #check if dv is numeric: if (!is.numeric(data[,dv])) stop("dv needs to be numeric.") vars <- vars[-1] parts <- attr(terms(formula, "Error", data = data), "term.labels") error.term <- parts[str_detect(parts, "^Error\\(")] id <- all.vars(parse(text = error.term))[1] within <- all.vars(parse(text = error.term))[-1] between <- vars[!(vars %in% c(id, within))] dv.escaped <- escape_vars(dv) id.escaped <- escape_vars(id) within.escaped <- escape_vars(within) between.escaped <- escape_vars(between) effect.parts <- parts[!str_detect(parts, "^Error\\(")] if (length(within) > 0) { effect.parts.no.within <- character() for (term in effect.parts) { components <- decomposeTerm(term) if ( ! any(within %in% components)) effect.parts.no.within <- c(effect.parts.no.within, term) } } else { effect.parts.no.within <- effect.parts } data <- droplevels(data) #remove empty levels. # make id and within variables to factors: if (!(is.factor(data[,id]))) data[,id] <- factor(data[,id]) # factorize if necessary if (factorize) { if (any(!vapply(data[, between, drop = FALSE], is.factor, TRUE))) { to.factor <- between[!vapply(data[,between, drop = FALSE], is.factor, TRUE)] message(str_c("Converting to factor: ", str_c(to.factor, collapse = ", "))) for (tmp.c in to.factor) { data[,tmp.c] <- factor(data[,tmp.c]) } } } else { # check if numeric variables are centered. c.ns <- between[vapply(data[, between, drop = FALSE], is.numeric, TRUE)] if (length(c.ns) > 0) { non.null <- c.ns[!abs(vapply(data[, c.ns, drop = FALSE], mean, 0)) < .Machine$double.eps ^ 0.5] if (length(non.null) > 0) warning(str_c("Numerical variables NOT centered on 0 (i.e., likely bogus results): ", str_c(non.null, collapse = ", ")), call. = FALSE) } } for (i in c(between, within)) { if (is.factor(data[,i]) && length(unique(data[,i])) == 1) stop(paste0("Factor \"", i, "\" consists of one level only. Remove factor from model?")) } # make formulas rh2 <- if (length(between.escaped) > 0) str_c(effect.parts.no.within, collapse = "+") else "1" lh1 <- str_c(id, if (length(between.escaped) > 0) str_c(between.escaped, collapse = "+") else NULL, sep = "+") rh1 <- str_c(within.escaped, collapse = "+") rh3 <- str_c(within.escaped, collapse = "*") # converting all within subject factors to factors and adding a leading charcter (x) if starting with a digit. for (within.factor in within) { if (is.factor(data[,within.factor])) levels(data[,within.factor]) <- make.names(levels(data[,within.factor]), unique = TRUE) else data[,within.factor] <- factor(as.character(data[,within.factor]), levels = unique(as.character(data[,within.factor])), labels = make.names(unique(as.character(data[,within.factor])), unique=TRUE)) } # Check if each id is in only one between subjects cell. between.factors <- between[vapply(data[, between, drop = FALSE], is.factor, TRUE)] if (length(between.factors) > 0) { split.data <- split(data, lapply(between.factors, function(x) data[,x])) ids.per.condition <- lapply(split.data, function(x) unique(as.character(x[,id]))) ids.in.more.condition <- unique(unlist(lapply(seq_along(ids.per.condition), function(x) unique(unlist(lapply(ids.per.condition[-x], function(y, z = ids.per.condition[[x]]) intersect(z, y))))))) if (length(ids.in.more.condition) > 0) stop(str_c("Following ids are in more than one between subjects condition:\n", str_c(ids.in.more.condition, collapse = ", "))) } # Is fun_aggregate NULL and aggregation necessary? if (is.null(fun_aggregate)) { if (any(xtabs(as.formula(str_c("~", id.escaped, if (length(within) > 0) "+", rh1)), data = data) > 1)) { warning("More than one observation per cell, aggregating the data using mean (i.e, fun_aggregate = mean)!", call. = FALSE) fun_aggregate <- mean } } # if return = "lme4" return the (aggregated) data fitted with lmer! # if (return == "lme4") { # warning("lme4 return is experimental!\nAlso: Missing values and contrasts not checked for return = 'lme4'!") # n.dat <- dcast(data, formula = as.formula(str_c(lh1, if (length(within) > 0) paste0("+", rh1) else "", "~ .", sep = "")), fun.aggregate = fun.aggregate, ..., value.var = dv) # colnames(n.dat)[length(colnames(n.dat))] <- "value" # f.within.new <- str_replace_all(rh1, pattern="\\+", replacement="*") # return(lmer(as.formula(str_c("value~", rh2, if (length(within) > 0) paste0("*", f.within.new) else "", "+ (1", if (length(within) > 0) paste0("+", f.within.new) else "", "|", id, ")" , sep = "")), data = n.dat)) # } # prepare the data: tmp.dat <- do.call(dcast, args = c(data = list(data), formula = as.formula(str_c(lh1, if (length(within) > 0) rh1 else ".", sep = "~")), fun.aggregate = fun_aggregate, dots, value.var = dv)) # check for missing values: if (any(is.na(tmp.dat))) { missing.values <- apply(tmp.dat, 1, function(x) any(is.na(x))) warning(str_c("Missing values for following ID(s):\n", str_c(tmp.dat[missing.values,1], collapse = ", "), "\nRemoving those cases from the analysis."), call. = FALSE) } # if (length(between) > 0) { # n_data_points <- xtabs(as.formula(paste("~", paste(between, collapse = "+"))), data = tmp.dat) # if (any(n_data_points == 0)) warning("Some cells of the fully crossed between-subjects design are empty. A full model might not be estimable.") # } # marginals: (disabled in April 2015) dat.ret <- do.call(dcast, args = c(data = list(data), formula = as.formula(str_c(str_c(lh1, if (length(within) > 0) rh1 else NULL, sep = "+"), "~.")), fun.aggregate = fun_aggregate, dots, value.var = dv)) colnames(dat.ret)[length(colnames(dat.ret))] <- dv # full.formula <- as.formula(str_c(dv, " ~ ", str_c(c(between.factors, within), collapse = "*"))) # all.terms <- attr(terms(full.formula), "term.labels") # marginals.out <- lapply(all.terms, function(x) aggregate(as.formula(str_c(dv, " ~ ", x)), dat.ret, mean)) # names(marginals.out) <- all.terms # grand.mean <- data.frame(mean(dat.ret[,dv])) # colnames(grand.mean) <- dv # marginals.out <- c(grand_mean = list(grand.mean), marginals.out) # if (return == "marginal") { # return(marginals.out) # } if (length(between) > 0) { if (check_contrasts) { resetted <- NULL for (i in between) { if (is.factor(tmp.dat[,i])) { if (is.null(attr(tmp.dat[,i], "contrasts")) & (options("contrasts")[[1]][1] != "contr.sum")) { contrasts(tmp.dat[,i]) <- "contr.sum" resetted <- c(resetted, i) } else if (!is.null(attr(tmp.dat[,i], "contrasts")) && attr(tmp.dat[,i], "contrasts") != "contr.sum") { contrasts(tmp.dat[,i]) <- "contr.sum" resetted <- c(resetted, i) } } } if (!is.null(resetted)) message(str_c("Contrasts set to contr.sum for the following variables: ", str_c(resetted, collapse=", "))) } else { non_sum_contrast <- c() for (i in between) { if (is.factor(tmp.dat[,i])) { if (is.null(attr(tmp.dat[,i], "contrasts")) & (options("contrasts")[[1]][1] != "contr.sum")) { non_sum_contrast <- c(non_sum_contrast, between) } else if (!is.null(attr(tmp.dat[,i], "contrasts")) && attr(tmp.dat[,i], "contrasts") != "contr.sum") { non_sum_contrast <- c(non_sum_contrast, between) } } } if((type == 3 | type == "III") && (length(non_sum_contrast)>0)) warning(str_c("Calculating Type 3 sums with contrasts != 'contr.sum' for: ", paste0(non_sum_contrast, collapse=", "), "\n Results likely bogus or not interpretable!\n You probably want check_contrasts = TRUE or options(contrasts=c('contr.sum','contr.poly'))"), call. = FALSE) } } if (return %in% c("aov", "afex_aov")) include.aov <- TRUE else include.aov <- FALSE if(include.aov){ if (check_contrasts) { factor_vars <- vapply(dat.ret[,c(within, between), drop = FALSE], is.factor, NA) contrasts <- as.list(rep("contr.sum", sum(factor_vars))) names(contrasts) <- c(within, between)[factor_vars] } #return(aov(formula(paste(dv, "~", paste(c(between, within), collapse = "*"), if (length(within) > 0) paste0("+Error(", id, "/(",paste(within, collapse="*"), "))") else NULL)), data=dat.ret, contrasts = contrasts)) aov <- aov(formula(paste(dv.escaped, "~", paste(c(between.escaped, within.escaped), collapse = "*"), if (length(within) > 0) paste0("+Error(", id.escaped, "/(",paste(within.escaped, collapse="*"), "))") else NULL)), data=dat.ret, contrasts = contrasts) } if(return == "aov") return(aov) data.l <- list(long = dat.ret, wide = tmp.dat) if (return == "data") return(tmp.dat) # branching based on type of ANOVA if (length(within) > 0) { # if within-subject factors are present: # make idata argument if (length(within) > 1) { within.levels <- lapply(lapply(data[,within], levels), factor) idata <- rev(expand.grid(rev(within.levels))) } else { idata <- data.frame(levels(data[,within])) colnames(idata) <- within } # print(as.formula(str_c("cbind(",str_c(colnames(tmp.dat[-(seq_along(c(id, between)))]), collapse = ", "), ") ~ ", rh2))) # browser() tmp.lm <- do.call("lm", list(formula = as.formula(str_c("cbind(",str_c(colnames(tmp.dat[-(seq_along(c(id, between)))]), collapse = ", "), ") ~ ", rh2)), data = tmp.dat)) # browser() if (any(is.na(coef(tmp.lm)))) stop("Some parameters are not estimable, most likely due to empty cells of the design (i.e., structural missings). Check your data.") if (return == "lm") return(tmp.lm) Anova.out <- Anova(tmp.lm, idata = idata, idesign = as.formula(str_c("~", rh3)), type = type) data.l <- c(data.l, idata = list(idata)) } else { # if NO within-subjetc factors are present (i.e., purley between ANOVA): colnames(tmp.dat)[ncol(tmp.dat)] <- "dv" tmp.lm <- do.call("lm", list(formula = as.formula(str_c("dv ~ ", rh2)), data = tmp.dat)) if (return == "lm") return(tmp.lm) Anova.out <- Anova(tmp.lm, type = type) } if (return == "afex_aov") { afex_aov <- list( anova_table = NULL, aov = aov, Anova = Anova.out, lm = tmp.lm, data = data.l ) class(afex_aov) <- "afex_aov" attr(afex_aov, "dv") <- dv attr(afex_aov, "id") <- id attr(afex_aov, "within") <- within attr(afex_aov, "between") <- between attr(afex_aov, "type") <- type afex_aov$anova_table <- do.call("anova", args = c(object = list(afex_aov), observed = list(observed), anova_table)) return(afex_aov) } if (return == "Anova") return(Anova.out) else if (return == "univariate") { #if (class(Anova.out) == "Anova.mlm") return(summary(Anova.out, multivariate = FALSE)) if (inherits(Anova.out, "Anova.mlm")) return(summary(Anova.out, multivariate = FALSE)) else return(Anova.out) } else if (return == "nice") { afex_aov <- list( anova_table = NULL, Anova = Anova.out ) class(afex_aov) <- "afex_aov" attr(afex_aov, "dv") <- dv attr(afex_aov, "id") <- id attr(afex_aov, "within") <- within attr(afex_aov, "between") <- between attr(afex_aov, "type") <- type afex_aov$anova_table <- do.call("anova", args = c(object = list(afex_aov), observed = list(observed), anova_table)) #afex_aov$anova_table <- do.call("anova", args = c(object = list(afex_aov), observed = list(observed), args.return)) return(do.call("nice", args = c(object = list(afex_aov), observed = list(observed), anova_table))) } } aov_4 <- function(formula, data, observed = NULL, fun_aggregate = NULL, type = afex_options("type"), factorize = afex_options("factorize"), check_contrasts = afex_options("check_contrasts"), return = afex_options("return_aov"), anova_table = list(), ..., print.formula = FALSE) { #browser() barterms <- findbars(formula) if (length(barterms) > 1) stop("aov_4 only allows one random effect term") within <- all.vars(barterms[[1]][[2]]) id <- all.vars(barterms[[1]][[3]]) id <- escape_vars(id) within <- escape_vars(within) error <- str_c(" + Error(", id, if (length(within) > 0) "/(" else "", str_c(within, collapse = " * "), if (length(within) > 0) ")" else "", ")") lh <- as.character(nobars(formula)) if (length(lh) == 1) { dv <- lh rh <- "1" } else { dv <- lh[2] rh <- lh[3] } formula <- str_c(dv, " ~ ", rh, error) if (print.formula) message(str_c("Formula send to aov_car: ", formula)) aov_car(formula = as.formula(formula), data = data, fun_aggregate = fun_aggregate, type = type, return = return, factorize = factorize, check_contrasts = check_contrasts, observed = observed, anova_table = anova_table, ...) } aov_ez <- function(id, dv, data, between = NULL, within = NULL, covariate = NULL, observed = NULL, fun_aggregate = NULL, type = afex_options("type"), factorize = afex_options("factorize"), check_contrasts = afex_options("check_contrasts"), return = afex_options("return_aov"), anova_table = list(), ..., print.formula = FALSE) { if (is.null(between) & is.null(within)) stop("Either between or within need to be non-NULL!") if (!is.null(covariate)) { covariate <- escape_vars(covariate) covariate <- str_c(covariate, collapse = "+") } #browser() id <- escape_vars(id) dv <- escape_vars(dv) between <- escape_vars(between) within <- escape_vars(within) rh <- if (!is.null(between) || !is.null(covariate)) str_c(if (!is.null(between)) str_c(between, collapse = " * ") else NULL, covariate, sep = " + ") else "1" error <- str_c(" + Error(", id, if (!is.null(within)) "/(" else "", str_c(within, collapse = " * "), if (length(within) > 0) ")" else "", ")") formula <- str_c(dv, " ~ ", rh, error) if (print.formula) message(str_c("Formula send to aov_car: ", formula)) aov_car(formula = as.formula(formula), data = data, fun_aggregate = fun_aggregate, type = type, return = return, factorize = factorize, check_contrasts = check_contrasts, observed = observed, anova_table = anova_table, ...) } afex/R/helpers.R0000644000176200001440000000733313071473343013176 0ustar liggesusers#' Set/get global afex options #' #' Global afex options are used, for example, by \code{\link{aov_car}} (et al.) and \code{\link{mixed}}. But can be changed in each functions directly using an argument (which has precedence over the global options). #' #' @param ... One of four: (1) nothing, then returns all options as a list; (2) a name of an option element, then returns its' value; (3) a name-value pair which sets the corresponding option to the new value (and returns nothing), (4) a list with option-value pairs which sets all the corresponding arguments. The example show all possible cases. #' #' @details The following arguments are currently set: #' \itemize{ #' \item \code{check_contrasts} should contrasts be checked and changed to sum-to-zero contrasts? Default is \code{TRUE}. #' \item \code{type} type of sums-of-squares to be used for testing effects, default is 3 which reports Type 3 tests. #' \item \code{method_mixed}: Method used to obtain p-values in \code{\link{mixed}}, default is \code{"KR"} (which will change to \code{"LRT"} soon). (\code{mixed()} only) #' \item \code{return_aov}: Return value of the ANOVA functions (see \code{\link{aov_car}}), default is \code{"nice"}. #' \item \code{es_aov}: Effect size reported for ANOVAs (see \code{\link{aov_car}}), default is \code{"ges"} (generalized eta-squared). #' \item \code{correction_aov}: Correction used for within-subjects factors with more than two levels for ANOVAs (see \code{\link{aov_car}} or \code{\link{nice}}), default is \code{"GG"} (Greenhouse-Geisser correction). (ANOVA functions only) #' \item \code{factorize}: Should between subject factors be factorized (with note) before running the analysis? Default is \code{TRUE}. (ANOVA functions only) #' \item \code{sig_symbols}: Default significant symbols used for ANOVA and \code{mixed} printing. Default is\code{c(" +", " *", " **", " ***")}. #' \item \code{lmer_function}: Which \code{lmer} function should \code{mixed} or \code{lmer_alt} use. The default is \code{"lmerTest"} which uses \code{\link[lmerTest]{lmer}}, \code{"lme4"} is also possible which uses \code{\link[lme4]{lmer}}. There should be no difference between the two. The latter could be minimally faster, but does not allow to use \code{lmerTest::anova()}. #' } #' #' @note All options are saved in the global R \code{\link{options}} with prefix \code{afex.} #' #' @return depends on input, see above. #' #' @example examples/examples.helpers.R #' #' @export # afex_options <- function(...) # { # dots <- list(...) # if (length(dots) == 0) return(ls.str(envir = .afexEnv)) # else { # if (!is.null(names(dots))) { # if (length(dots) > 1) stop("afex_options can only return a single element.") # for (i in seq_along(dots)) { # assign(names(dots)[i], dots[[i]], envir = .afexEnv) # } # } else return(get(dots[[1]], envir = .afexEnv)) # } # } afex_options <- function(...) { dots <- list(...) #browser() if (length(dots) == 0) { # branch to get all afex options op <- options() afex_op <- op[str_detect(names(op), "^afex.")] names(afex_op) <- str_replace(names(afex_op), "^afex.", "") return(afex_op) } else if (is.list(dots[[1]])) { # set several afex options as a list: newop <- dots[[1]] names(newop) <- str_c("afex.", names(newop)) options(newop) } else if (!is.null(names(dots))) { newop <- dots names(newop) <- str_c("afex.", names(newop)) options(newop) } else if (is.null(names(dots))) { # get a single afex options if (length(dots) > 1) stop("afex_options() can only return the value of a single option.", call. = FALSE) return(getOption(str_c("afex.", unlist(dots)))) } else { warning("Unsopported command to afex_options(), nothing done.", call. = FALSE) } } afex/R/sk2011.2-data.R0000644000176200001440000000565112612772711013526 0ustar liggesusers#' Data from Singmann & Klauer (2011, Experiment 2) #' #' Singmann and Klauer (2011) were interested in whether or not conditional reasoning can be explained by a single process or whether multiple processes are necessary to explain it. To provide evidence for multiple processes we aimed to establish a double dissociation of two variables: instruction type and problem type. Instruction type was manipulated between-subjects, one group of participants received deductive instructions (i.e., to treat the premises as given and only draw necessary conclusions) and a second group of participants received probabilistic instructions (i.e., to reason as in an everyday situation; we called this "inductive instruction" in the manuscript). Problem type consisted of two different orthogonally crossed variables that were manipulated within-subjects, validity of the problem (formally valid or formally invalid) and type of the problem. Problem type consistent of three levels: prological problems (i.e., problems in which background knowledge suggested to accept valid but reject invalid conclusions), neutral problems (i.e., in which background knowledge suggested to reject all problems), and counterlogical problems (i.e., problems in which background knowledge suggested to reject valid but accept invalid conclusions). #' #' This data set contains 63 participants in contrast to the originally reported 56 participants. The additional participants were not included in the original studies as they did not meet the inclusion criteria (i.e., no students, prior education in logic, or participated in a similar experiment). The IDs of those additional participants are: 7, 8, 9, 12, 17, 24, 30. The excluded participant reported in the paper has ID 16. #' #' content has the following levels (C = content/conditional):\cr #' 1 = Wenn eine Person in ein Schwimmbecken gefallen ist, dann ist sie nass.\cr #' 2 = Wenn ein Hund Flöhe hat, dann kratzt er sich hin und wieder.\cr #' 3 = Wenn eine Seifenblase mit einer Nadel gestochen wurde, dann platzt sie.\cr #' 4 = Wenn ein Mädchen Geschlechtsverkehr vollzogen hat, dann ist es schwanger.\cr #' 5 = Wenn eine Pflanze ausreichend gegossen wird, dann bleibt sie grün.\cr #' 6 = Wenn sich eine Person die Zähne putzt, dann bekommt sie KEIN Karies.\cr #' 7 = Wenn eine Person viel Cola trinkt, dann nimmt sie an Gewicht zu.\cr #' 8 = Wenn eine Person die Klimaanlage angeschaltet hat, dann fröstelt sie.\cr #' 9 = Wenn eine Person viel lernt, dann wird sie in der Klausur eine gute Note erhalten. #' #' @docType data #' @keywords dataset #' @name sk2011.2 #' @usage sk2011.2 #' @format A data.frame with 2268 rows and 9 variables. #' @source Singmann, H., & Klauer, K. C. (2011). Deductive and inductive conditional inferences: Two modes of reasoning. Thinking & Reasoning, 17(3), 247-281. doi:10.1080/13546783.2011.572718 #' #' @encoding UTF-8 #' #' @example examples/examples.sk2011.2.R NULL afex/R/afex-package.R0000644000176200001440000000260713111541054014035 0ustar liggesusers#' Analysis of Factorial Experiments. #' #' \tabular{ll}{ #' Package: \tab afex\cr #' Type: \tab Package\cr #' Version: \tab 0.18-0\cr #' Date: \tab 2017-05-25\cr #' Depends: \tab R (>= 3.1.0), lme4 (>= 1.1-8), lsmeans (>= 2.17)\cr #' Encoding: \tab UTF-8\cr #' License: \tab GPL (>=2)\cr #' URL: \tab http://afex.singmann.science/, https://github.com/singmann/afex\cr #' } #' #' Convenience functions for analyzing factorial experiments using ANOVA or mixed models. #' aov_ez(), aov_car(), and aov_4() allow specification of between, within (i.e., #' repeated-measures), or mixed between-within (i.e., split-plot) ANOVAs for data in long format (i.e., #' one observation per row), aggregating multiple observations per individual and cell of the #' design. mixed() fits mixed models using lme4::lmer() and computes p-values for all fixed #' effects using either Kenward-Roger or Satterthwaite approximation for degrees of freedom #' (LMM only), parametric bootstrap (LMMs and GLMMs), or likelihood ratio tests (LMMs and #' GLMMs). afex uses type 3 sums of squares as default (imitating commercial statistical software). #' #' @aliases afex-package #' @name afex-package #' @docType package #' @title The afex Package #' @author Henrik Singmann, Ben Bolker, Jake Westfall, Frederik Aust, with contributions from Søren Højsgaard, John Fox, Michael A. Lawrence, Ulf Mertens, Jonathan Love #' @keywords package NULL afex/R/set_contrasts.R0000644000176200001440000000266112642221125014416 0ustar liggesusers#' Set global contrasts #' #' These functions are simple wrappers to set contrasts globally via \code{options(contrasts = ...)}. #' #' @usage set_sum_contrasts() #' #' set_deviation_contrasts() #' #' set_effects_contrasts() #' #' set_default_contrasts() #' #' set_treatment_contrasts() #' #' #' @details \code{set_deviation_contrasts} and \code{set_effects_contrasts} are wrappers for \code{set_sum_contrasts}. Likewise, \code{set_default_contrasts} is a wrapper to \code{set_treatment_contrasts()}. #' #' @return nothing. These functions are called for their side effects to change the global options. #' #' @name set_sum_contrasts #' @aliases set_sum_contrasts set_deviation_contrasts set_effects_contrasts set_treatment_contrasts set_default_contrasts #' @export set_sum_contrasts set_deviation_contrasts set_effects_contrasts set_treatment_contrasts set_default_contrasts set_sum_contrasts <- function() { message("setting contr.sum globally: options(contrasts=c('contr.sum', 'contr.poly'))") options(contrasts=c('contr.sum', 'contr.poly')) } set_deviation_contrasts <- function() { set_sum_contrasts() } set_effects_contrasts <- function() { set_sum_contrasts() } set_treatment_contrasts <- function() { message("setting contr.treatment globally: options(contrasts=c('contr.treatment', 'contr.poly'))") options(contrasts=c('contr.treatment', 'contr.poly')) } set_default_contrasts <- function() { set_treatment_contrasts() } afex/R/ks2013.3-data.R0000644000176200001440000000643212612772711013527 0ustar liggesusers#' Data from Klauer & Singmann (2013, Experiment 3) #' #' Klauer and Singmann (2013) attempted to replicate an hypothesis of Morsanyi and Handley (2012) according to which individuals have an intuitive sense of logicality. Specifically, Morsanyi and Handley apparently provided evidence that the logical status of syllogisms (i.e., valid or invalid) affects participants liking ratings of the conclusion of syllogisms. Conclusions from valid syllogisms (e.g., Some snakes are poisonous. No poisonous animals are obbs. Some snakes are not obbs.) received higher liking ratings than conclusions from invalid syllogisms (e.g., No ice creams are vons. Some vons are hot. Some ice creams are not hot.). It is important to noted that in the experiments participants were simply shown the premises and conclusion in succession, they were not asked whether or not the conclusion follows or to generate their own conclusion. Their task was simply to judge how much they liked the "final" statement (i.e., the conclusion). #' #' In their Experiment 3 Klauer and Singmann (2013) tested the idea that this finding was a consequence of the materials used and not an effect intuitive logic. More specifically, they observed that in the original study by Morsanyi and Handley (2012) a specific content always appeared with the same logical status. For example, the "ice-cream" content only ever appeared as an invalid syllogism as in the example above but never in a valid syllogism. In other words, content was perfectly confounded with logical status in the original study. To test this they compared a condition in which the logical status was confounded with the content (the "fixed" condition) with a condition in which the contents were randomly assigned to a logical status across participants (the "random" condition). For example, the ice-cream content was, across participants, equally like to appear in the invalid form as given above or in the following valid form: No hot things are vons. Some vons are ice creams. Conclusion Some ice creams are not hot. #' #' The data.frame contains the raw responses of all 60 participants (30 per condition) reported in Klauer & Singmann (2013). Each participants provided 24 responses, 12 to valid and 12 to invalid syllogisms. Furthermore, 8 syllogisms had a believable conclusion (e.g., Some ice creams are not hot.), 8 had an abstract conclusion (e.g., Some snakes are not obbs.), and 8 had an unbelievable conclusion (e.g., Some animals are not monkeys.). The number of the contents corresponds to the numbering given in Morsanyi and Handley (2012, p. 616). #' #' #' @docType data #' @keywords dataset #' @name ks2013.3 #' @usage ks2013.3 #' @format A data.frame with 1440 rows and 6 variables. #' @source Klauer, K. C., & Singmann, H. (2013). Does logic feel good? Testing for intuitive detection of logicality in syllogistic reasoning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39(4), 1265-1273. http://doi.org/10.1037/a0030530 #' #' Morsanyi, K., & Handley, S. J. (2012). Logic feels so good-I like it! Evidence for intuitive detection of logicality in syllogistic reasoning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38(3), 596-616. http://doi.org/10.1037/a0026099 #' #' #' #' #' @encoding UTF-8 #' #' @example examples/examples.ks2013.3.R NULL afex/R/md_16.1-data.R0000644000176200001440000000350612612772711013507 0ustar liggesusers#' Data 16.1 / 10.9 from Maxwell & Delaney #' #' Hypothetical Reaction Time Data for 2 x 3 Perceptual Experiment: Example data for chapter 12 of Maaxwell and Delaney (2004, Table 12.1, p. 574) in long format. Has two within.subjects factors: angle and noise. #' #' Description from pp. 829: #' #' As brief background, the goal of the study here is to examine the extent to which female and male clinical psychology graduate student trainees may assign different severity ratings to clients at initial intake. Three female and 3 male graduate students are randomly selected to participate and each is randomly assigned four clients with whom to do an intake interview, after which each clinical trainee assigns a severity rating to each client, producing the data shown in Table 16.1. #' #' Note that I changed the labeling of the id slightly, so that they are now labeled from 1 to 6. Furthermore, I changed the contrasts of sex to \code{contr.treatment} to replicate the exact results of Table 16.3 (p. 837). #' #' @docType data #' @keywords dataset #' @name md_16.1 #' @usage md_16.1 #' @format A data.frame with 24 rows and 3 variables. #' @source Maxwell, S. E., & Delaney, H. D. (2004). Designing experiments and analyzing data: a model-comparisons perspective. Mahwah, N.J.: Lawrence Erlbaum Associates. p. 574 #' #' @examples #' ### replicate results from Table 16.3 (Maxwell & Delaney, 2004, p. 837) #' data(md_16.1) #' #' # original results need treatment contrasts: #' (mixed1_orig <- mixed(severity ~ sex + (1|id), md_16.1, check.contrasts=FALSE)) #' summary(mixed1_orig$full.model) #' #' # p-values stay the same with afex default contrasts (contr.sum), #' # but estimates and t-values for the fixed effects parameters change. #' (mixed1 <- mixed(severity ~ sex + (1|id), md_16.1)) #' summary(mixed1$full.model) #' #' @encoding UTF-8 #' NULL afex/R/obk.long-data.R0000644000176200001440000000553312612772711014155 0ustar liggesusers#' O'Brien Kaiser's Repeated-Measures Dataset with Covariate #' #' This is the long version of the \code{OBrienKaiser} dataset from the \pkg{car} pakage adding a random covariate \code{age}. Originally the dataset ist taken from O'Brien and Kaiser (1985). The description from \code{\link[car]{OBrienKaiser}} says: "These contrived repeated-measures data are taken from O'Brien and Kaiser (1985). The data are from an imaginary study in which 16 female and male subjects, who are divided into three treatments, are measured at a pretest, postest, and a follow-up session; during each session, they are measured at five occasions at intervals of one hour. The design, therefore, has two between-subject and two within-subject factors." #' #' @docType data #' @keywords dataset #' @name obk.long #' @usage obk.long #' @format A data frame with 240 rows and 7 variables. #' @source O'Brien, R. G., & Kaiser, M. K. (1985). MANOVA method for analyzing repeated measures designs: An extensive primer. \emph{Psychological Bulletin}, 97, 316-333. doi:10.1037/0033-2909.97.2.316 #' #' @encoding UTF-8 #' #' @examples #' # The dataset is constructed as follows: #' data("OBrienKaiser", package = "car") #' set.seed(1) #' OBrienKaiser2 <- within(OBrienKaiser, { #' id <- factor(1:nrow(OBrienKaiser)) #' age <- scale(sample(18:35, nrow(OBrienKaiser), replace = TRUE), scale = FALSE)}) #' attributes(OBrienKaiser2$age) <- NULL # needed or resahpe2::melt throws an error. #' OBrienKaiser2$age <- as.numeric(OBrienKaiser2$age) #' obk.long <- reshape2::melt(OBrienKaiser2, id.vars = c("id", "treatment", "gender", "age")) #' obk.long[,c("phase", "hour")] <- lapply(as.data.frame(do.call(rbind, #' strsplit(as.character(obk.long$variable), "\\."),)), factor) #' obk.long <- obk.long[,c("id", "treatment", "gender", "age", "phase", "hour", "value")] #' obk.long <- obk.long[order(obk.long$id),] #' rownames(obk.long) <- NULL #' str(obk.long) #' ## 'data.frame': 240 obs. of 7 variables: #' ## $ id : Factor w/ 16 levels "1","2","3","4",..: 1 1 1 1 1 1 1 1 1 1 ... #' ## $ treatment: Factor w/ 3 levels "control","A",..: 1 1 1 1 1 1 1 1 1 1 ... #' ## $ gender : Factor w/ 2 levels "F","M": 2 2 2 2 2 2 2 2 2 2 ... #' ## $ age : num -4.75 -4.75 -4.75 -4.75 -4.75 -4.75 -4.75 -4.75 -4.75 -4.75 ... #' ## $ phase : Factor w/ 3 levels "fup","post","pre": 3 3 3 3 3 2 2 2 2 2 ... #' ## $ hour : Factor w/ 5 levels "1","2","3","4",..: 1 2 3 4 5 1 2 3 4 5 ... #' ## $ value : num 1 2 4 2 1 3 2 5 3 2 ... #' head(obk.long) #' ## id treatment gender age phase hour value #' ## 1 1 control M -4.75 pre 1 1 #' ## 2 1 control M -4.75 pre 2 2 #' ## 3 1 control M -4.75 pre 3 4 #' ## 4 1 control M -4.75 pre 4 2 #' ## 5 1 control M -4.75 pre 5 1 #' ## 6 1 control M -4.75 post 1 3 NULL afex/R/compare.2.vectors.R0000644000176200001440000001535212612772711015007 0ustar liggesusers#' Compare two vectors using various tests. #' #' Compares two vectors \code{x} and \code{y} using t-test, Welch-test (also known as Satterthwaite), Wilcoxon-test, and a permutation test implemented in \pkg{coin}. #' #' @usage compare.2.vectors(x, y, paired = FALSE, na.rm = FALSE, #' tests = c("parametric", "nonparametric"), coin = TRUE, #' alternative = "two.sided", #' perm.distribution = approximate(100000), #' wilcox.exact = NULL, wilcox.correct = TRUE) #' #' @param x a (non-empty) numeric vector of data values. #' @param y a (non-empty) numeric vector of data values. #' @param paired a logical whether the data is paired. Default is \code{FALSE}. #' @param na.rm logical. Should \code{NA} be removed? Default is \code{FALSE}. #' @param tests Which tests to report, parametric or nonparamteric? The default \code{c("parametric", "nonparametric")} reports both. See details. (Arguments may be abbreviated). #' @param alternative a character, the alternative hypothesis must be one of \code{"two.sided"} (default), \code{"greater"} or \code{"less"}. You can specify just the initial letter, will be passed to all functions. #' @param coin logical or character. Should (permutation) tests from the \pkg{coin} package be reported? Default is \code{TRUE} corresponding to all implemented tests. \code{FALSE} calculates no tests from \pkg{coin}. A character vector may include any of the following (potentially abbreviated) implemented tests (see also Details): \code{c("permutation", "Wilcoxon", "median")} #' @param perm.distribution \code{distribution} argument to \pkg{coin}, see \code{\link[coin]{NullDistribution}} or , \code{\link[coin]{IndependenceTest}}. Defaults to \code{approximate(100000)} indicating an approximation of the excat conditional distribution with 100.000 Monte Carlo samples. One can use \code{"exact"} for small samples and if \code{paired = FALSE}. #' @param wilcox.exact \code{exact} argument to \code{\link{wilcox.test}}. #' @param wilcox.correct \code{correct} argument to \code{\link{wilcox.test}}. #' #' @details The \code{parametric} tests (currently) only contain the \emph{t}-test and Welch/Statterwaithe/Smith/unequal variance \emph{t}-test implemented in \code{\link{t.test}}. The latter one is only displayed if \code{paired = FALSE}. #' #' The \code{nonparametric} tests (currently) contain the Wilcoxon test implemented in \code{\link{wilcox.test}} (\code{stats::Wilcoxon}) and (if \code{coin = TRUE}) the following tests implemented in \pkg{coin}: #' #' \itemize{ #' \item a \code{permutation} test \code{\link{oneway_test}} (the only test in this selction not using a rank transformation), #' \item the \code{Wilcoxon} test \code{\link{wilcox_test}} (\code{coin::Wilcoxon}), and #' \item the \code{median} test \code{median_test}. #' } #' Note that the two implementations of the Wilcoxon test probably differ. This is due to differences in the calculation of the Null distributions. #' #' @return a list with up to two elements (i.e., \code{paramteric} and/or \code{nonparamteric}) each containing a \code{data.frame} with the following columns: \code{test}, \code{test.statistic}, \code{test.value}, \code{test.df}, \code{p}. #' #' @export compare.2.vectors #' @importFrom coin oneway_test wilcox_test median_test approximate statistic pvalue #' @importFrom stats t.test wilcox.test #' @example examples/examples.compare.R #' #' @encoding UTF-8 #' compare.2.vectors <- function(x, y, paired = FALSE, na.rm = FALSE, tests = c("parametric", "nonparametric"), coin = TRUE, alternative = "two.sided", perm.distribution = approximate(100000), wilcox.exact = NULL, wilcox.correct = TRUE) { #browser() tests <- match.arg(tests, c("parametric", "nonparametric"), several.ok = TRUE) if (na.rm) { x <- x[!is.na(x)] y <- y[!is.na(y)] } else if (any(is.na(x), is.na(y))) stop("NAs in data, use na.rm = TRUE.") out <- list() if (paired) if (!length(x) == length(y)) stop("length(x) needs to be equal to length(y) when paired is TRUE!") if ("parametric" %in% tests) { res.t <- t.test(x, y, paired = paired, var.equal = TRUE, alternative = alternative) parametric <- data.frame(test = "t", test.statistic = "t", test.value = res.t[["statistic"]], test.df = res.t[["parameter"]], p = res.t[["p.value"]], stringsAsFactors = FALSE) if (!paired) { res.welch <- t.test(x, y, paired = paired, var.equal = FALSE, alternative = alternative) parametric <- rbind(parametric, data.frame(test = "Welch", test.statistic = "t", test.value = res.welch[["statistic"]], test.df = res.welch[["parameter"]], p = res.welch[["p.value"]], stringsAsFactors = FALSE)) } rownames(parametric) <- NULL out <- c(out, list(parametric = parametric)) } if ("nonparametric" %in% tests) { implemented.tests <- c("permutation", "Wilcoxon", "median") res.wilcox <- wilcox.test(x, y, paired = paired, exact = wilcox.exact, correct = wilcox.correct, alternative = alternative) nonparametric <- data.frame(test = "stats::Wilcoxon", test.statistic = if (paired) "V" else "W", test.value = res.wilcox[["statistic"]], test.df = NA, p = res.wilcox[["p.value"]], stringsAsFactors = FALSE) if (!(coin == FALSE)) { dv <- c(x, y) iv <- factor(rep(c("A", "B"), c(length(x), length(y)))) if (paired) { id <- factor(rep(1:length(x), 2)) formula.coin <- as.formula(dv ~ iv | id) } else formula.coin <- as.formula(dv ~ iv) if (isTRUE(coin)) coin <- implemented.tests else coin <- match.arg(coin, implemented.tests, several.ok = TRUE) tryCatch(if ("permutation" %in% coin) { res.perm <- oneway_test(formula.coin, distribution=perm.distribution, alternative = alternative) nonparametric <- rbind(nonparametric, data.frame(test = "permutation", test.statistic = "Z", test.value = statistic(res.perm), test.df = NA, p = pvalue(res.perm)[1], stringsAsFactors = FALSE)) }, error = function(e) warning(paste("coin::permutation test failed:", e))) tryCatch(if ("Wilcoxon" %in% coin) { res.coin.wilcox <- wilcox_test(formula.coin, distribution=perm.distribution, alternative = alternative) nonparametric <- rbind(nonparametric, data.frame(test = "coin::Wilcoxon", test.statistic = "Z", test.value = statistic(res.coin.wilcox), test.df = NA, p = pvalue(res.coin.wilcox)[1], stringsAsFactors = FALSE)) }, error = function(e) warning(paste("coin::Wilcoxon test failed:", e))) tryCatch(if ("median" %in% coin) { res.median <- median_test(formula.coin, distribution=perm.distribution, alternative = alternative) nonparametric <- rbind(nonparametric, data.frame(test = "median", test.statistic = "Z", test.value = statistic(res.median), test.df = NA, p = pvalue(res.median)[1], stringsAsFactors = FALSE)) }, error = function(e) warning(paste("coin::median test failed:", e))) } rownames(nonparametric) <- NULL out <- c(out, nonparametric = list(nonparametric)) } out } afex/R/sk2011.1-data.R0000644000176200001440000000564313055557535013535 0ustar liggesusers#' Data from Singmann & Klauer (2011, Experiment 1) #' #' Singmann and Klauer (2011) were interested in whether or not conditional reasoning can be explained by a single process or whether multiple processes are necessary to explain it. To provide evidence for multiple processes we aimed to establish a double dissociation of two variables: instruction type and problem type. Instruction type was manipulated between-subjects, one group of participants received deductive instructions (i.e., to treat the premises as given and only draw necessary conclusions) and a second group of participants received probabilistic instructions (i.e., to reason as in an everyday situation; we called this "inductive instruction" in the manuscript). Problem type consisted of two different orthogonally crossed variables that were manipulated within-subjects, validity of the problem (formally valid or formally invalid) and plausibility of the problem (inferences which were consisted with the background knowledge versus problems that were inconsistent with the background knowledge). The critical comparison across the two conditions was among problems which were valid and implausible with problems that were invalid and plausible. For example, the next problem was invalid and plausible: #' #' If a person is wet, then the person fell into a swimming pool. \cr #' A person fell into a swimming pool. \cr #' How valid is the conclusion/How likely is it that the person is wet? #' #' For those problems we predicted that under deductive instructions responses should be lower (as the conclusion does not necessarily follow from the premises) as under probabilistic instructions. For the valid but implausible problem, an example is presented next, we predicted the opposite pattern: #' #' If a person is wet, then the person fell into a swimming pool. \cr #' A person is wet. \cr #' How valid is the conclusion/How likely is it that the person fell into a swimming pool? #' #' Our study also included valid and plausible and invalid and implausible problems. #' #' Note that the factor `plausibility` is not present in the original manuscript, there it is a results of a combination of other factors. #' #' #' @docType data #' @keywords dataset #' @name sk2011.1 #' @usage sk2011.1 #' @format A data.frame with 640 rows and 9 variables. #' @source Singmann, H., & Klauer, K. C. (2011). Deductive and inductive conditional inferences: Two modes of reasoning. Thinking & Reasoning, 17(3), 247-281. doi:10.1080/13546783.2011.572718 #' #' @encoding UTF-8 #' #' @examples #' data(sk2011.1) #' #' # Table 1 (p. 264): #' aov_ez("id", "response", sk2011.1[ sk2011.1$what == "affirmation",], #' within = c("inference", "type"), between = "instruction", #' anova_table=(es = "pes")) #' aov_ez("id", "response", sk2011.1[ sk2011.1$what == "denial",], #' within = c("inference", "type"), between = "instruction", #' anova_table=(es = "pes")) #' #' NULL afex/R/md_15.1-data.R0000644000176200001440000000635512612772711013513 0ustar liggesusers#' Data 15.1 / 11.5 from Maxwell & Delaney #' #' Hypothetical IQ Data from 12 children at 4 time points: Example data for chapter 11/15 of Maxwell and Delaney (2004, Table 15.1, p. 766) in long format. Has two one within-subjects factor: time. #' #' Description from pp. 534: #' #' The data show that 12 subjects have been observed in each of 4 conditions. To make the example easier to discuss, let's suppose that the 12 subjects are children who have been observed at 30, 36, 42, and 48 months of age. In each case, the dependent variable is the child's age-normed general cognitive score on the McCarthy Scales of Children's Abilities. Although the test is normed so that the mean score is independent of age for the general population, our 12 children may come from a population in which cognitive abilities are either growing more rapidly or less rapidly than average. Indeed, this is the hypothesis our data allow us to address. In other words, although the sample means suggest that the children's cognitive abilities are growing, a significance test is needed if we want to rule out sampling error as a likely explanation for the observed differences. #' #' To replicate the results in chapter 15 several different contrasts need to be applied, see Examples. #' #' \code{time} is time in months (centered at 0) and \code{timecat} is the same as a categorical variable. #' #' @docType data #' @keywords dataset #' @name md_15.1 #' @usage md_15.1 #' @format A data.frame with 48 rows and 4 variables. #' @source Maxwell, S. E., & Delaney, H. D. (2004). Designing experiments and analyzing data: a model-comparisons perspective. Mahwah, N.J.: Lawrence Erlbaum Associates. p. 766 #' @author R code for examples written by Ulf Mertens and Henrik Singmann #' #' @examples #' ### replicate results from Table 15.2 to 15.6 (Maxwell & Delaney, 2004, pp. 774) #' data(md_15.1) #' #' ### ANOVA results (Table 15.2) #' aov_4(iq ~ timecat + (timecat|id),data=md_15.1, anova_table=list(correction = "none")) #' #' ### Table 15.3 (random intercept only) #' # we need to set the base level on the last level: #' contrasts(md_15.1$timecat) <- contr.treatment(4, base = 4) #' # "Type 3 Tests of Fixed Effects" #' (t15.3 <- mixed(iq ~ timecat + (1|id),data=md_15.1, check.contrasts=FALSE)) #' # "Solution for Fixed Effects" and "Covariance Parameter Estimates" #' summary(t15.3$full.model) #' #' ### make Figure 15.2 #' plot(NULL, NULL, ylim = c(80, 140), xlim = c(30, 48), ylab = "iq", xlab = "time") #' plyr::d_ply(md_15.1, plyr::.(id), function(x) lines(as.numeric(as.character(x$timecat)), x$iq)) #' #' ### Table 15.4, page 789 #' # random intercept plus slope #' (t15.4 <- mixed(iq ~ timecat + (1+time|id),data=md_15.1, check.contrasts=FALSE)) #' summary(t15.4$full.model) #' #' ### Table 15.5, page 795 #' # set up polynomial contrasts for timecat #' contrasts(md_15.1$timecat) <- contr.poly #' # fit all parameters separately #' (t15.5 <- mixed(iq ~ timecat + (1+time|id), data=md_15.1, check.contrasts=FALSE, #' per.parameter="timecat")) #' # quadratic trend is considerably off, conclusions stay the same. #' #' #' ### Table 15.6, page 797 #' # growth curve model #' (t15.6 <- mixed(iq ~ time + (1+time|id),data=md_15.1)) #' summary(t15.6$full.model) #' #' @encoding UTF-8 #' NULL afex/R/mixed.R0000644000176200001440000013562513073276162012652 0ustar liggesusers#' p-values for fixed effects of mixed-model via lme4::lmer() #' #' Calculates p-values for all fixed effects in a mixed model. The default method \code{"KR"} (= Kenward-Roger) as well as \code{method="S"} (Satterthwaite) support LMMs and fit the model with \code{\link[lme4]{lmer}}) and then pass it to either \code{\link[lmerTest]{anova.merModLmerTest}} (or \code{\link[car]{Anova}}). The other methods (\code{"LRT"} = likelihood-ratio tests and \code{"PB"} = parametric bootstrap) support both LMMs and GLMMs (i.e., with \code{family} argument) and fit a full model and restricted models in which the parameters corresponding to the effect (i.e., model term) are withhold (i.e., fixed to 0) and tests statistics are based on comparing the full model with the restricted models. The default is tests based on Type 3 sums of squares. \code{print}, \code{summary}, and \code{anova} methods for the returned object of class \code{"mixed"} are available (the last two return the same data.frame). \code{lmer_alt} is simply a wrapper for mixed that only returns the \code{"merMod"} object and correctly uses the \code{||} notation to remove correlation among factors, but otherwise behaves like \code{g/lmer} (as for \code{mixed}, it calls \code{glmer} as soon as a \code{family} argument is present). #' #' #' @param formula a formula describing the full mixed-model to be fitted. As this formula is passed to \code{lmer}, it needs at least one random term. #' @param data \code{data.frame} containing the data. Should have all the variables present in \code{fixed}, \code{random}, and \code{dv} as columns. #' @param type type of test on which effects are based. Default is to use type 3 tests, taken from \code{\link{afex_options}}. #' @param method character vector indicating which methods for obtaining p-values should be used: \code{"KR"} corresponds to the Kenward-Roger approximation for degrees of freedom (only LMMs), \code{"S"} corresponds to the Satterthwaite approximation for degrees of freedom (via \code{\link{lmerTest}}, only LMMs), \code{"PB"} calculates p-values based on parametric bootstrap, \code{"LRT"} calculates p-values via the likelihood ratio tests implemented in the \code{anova} method for \code{merMod} objects (only recommended for models with many [i.e., > 50] levels for the random factors). The default (currently \code{"KR"}) is taken from \code{\link{afex_options}}. For historical compatibility \code{"nested-KR"} is also supported which was the default KR-method in previous versions. #' @param per_parameter \code{character} vector specifying for which variable tests should be run for each parameter (instead for the overall effect). Can be useful e.g., for testing ordered factors. Uses \code{\link{grep}} for selecting parameters among the fixed effects so regular expressions (\code{\link{regex}}) are possible. See Examples. #' @param args_test \code{list} of arguments passed to the function calculating the p-values. See Details. #' @param test_intercept logical. Whether or not the intercept should also be fitted and tested for significance. Default is \code{FALSE}. Only relevant if \code{type = 3}. #' @param check_contrasts \code{logical}. Should contrasts be checked and (if necessary) changed to \code{"contr.sum"}? See Details. The default (\code{"TRUE"}) is taken from \code{\link{afex_options}}. #' @param expand_re logical. Should random effects terms be expanded (i.e., factors transformed into numerical variables) before fitting with \code{(g)lmer}? Allows to use "||" notation with factors. #' @param all_fit logical. Should \code{\link{all_fit}} be used to fit each model with each available optimization algorithm and the results that provided the best fit in each case be used? Warning: This can dramatically increase the optimization time. Adds two new attributes to the returned object designating which algorithm was selected and the log-likelihoods for each algorithm. Note that only warnings from the initial fit are emitted during fitting. The warnings of the chosen models are emitted when printing the returned object. #' @param set_data_arg \code{logical}. Should the data argument in the slot \code{call} of the \code{merMod} object returned from \code{lmer} be set to the passed data argument? Otherwise the name will be \code{data}. Helpful if fitted objects are used afterwards (e.g., using \pkg{lsmeans}). Default is \code{TRUE}. #' @param progress if \code{TRUE}, shows progress with a text progress bar and other status messages during fitting. #' @param cl A vector identifying a cluster; used for distributing the estimation of the different models using several cores (if seveal models are calculated). See examples. If \code{ckeck.contrasts}, mixed sets the current contrasts (\code{getOption("contrasts")}) at the nodes. Note this does \emph{not} distribute calculation of p-values (e.g., when using \code{method = "PB"}) across the cluster. Use \code{args_test} for this. #' @param return the default is to return an object of class \code{"mixed"}. \code{return = "merMod"} will skip the calculation of all submodels and p-values and simply return the full model fitted with lmer. Can be useful in combination with \code{expand_re = TRUE} which allows to use "||" with factors. \code{return = "data"} will not fit any models but just return the data that would have been used for fitting the model (note that the data is also part of the returned object). #' @param sig_symbols Character. What should be the symbols designating significance? When entering an vector with \code{length(sig.symbol) < 4} only those elements of the default (\code{c(" +", " *", " **", " ***")}) will be replaced. \code{sig_symbols = ""} will display the stars but not the \code{+}, \code{sig_symbols = rep("", 4)} will display no symbols. The default is given by \code{afex_options("sig_symbols")}. #' @param ... further arguments (such as \code{weights}/\code{family}) passed to \code{\link{lmer}}/\code{\link{glmer}}, such as \code{control}. #' #' #' @return An object of class \code{"mixed"} (i.e., a list) with the following elements: #' #' \enumerate{ #' \item \code{anova_table} a data.frame containing the statistics returned from \code{\link[pbkrtest]{KRmodcomp}}. The \code{stat} column in this data.frame gives the value of the test statistic, an F-value for \code{method = "KR"} and a chi-square value for the other two methods. #' \item \code{full_model} the \code{"lmerMod"} object returned from fitting the full mixed model. #' \item \code{restricted_models} a list of \code{"lmerMod"} objects from fitting the restricted models (i.e., each model lacks the corresponding effect) #' \item \code{tests} a list of objects returned by the function for obtaining the p-values. #' \item \code{data} The data used for fitting (i.e., after excluding missing rows and applying expand_re if requested). #' } #' #' It also has the following attributes, \code{"type"} and \code{"method"}. And the attributes \code{"all_fit_selected"} and \code{"all_fit_logLik"} if \code{all_fit=TRUE}. #' #' Two similar methods exist for objects of class \code{"mixed"}: \code{print} and \code{anova}. They print a nice version of the \code{anova_table} element of the returned object (which is also invisibly returned). This methods omit some columns and nicely round the other columns. The following columns are always printed: #' \enumerate{ #' \item \code{Effect} name of effect #' \item \code{p.value} estimated p-value for the effect #' } #' #' For LMMs with \code{method="KR"} or \code{method="S"} the following further columns are returned (note: the Kenward-Roger correction does two separate things: (1) it computes an effective number for the denominator df; (2) it scales the statistic by a calculated amount, see also \url{http://stackoverflow.com/a/25612960/289572}): #' \enumerate{ #' \item \code{F} computed F statistic #' \item \code{ndf} numerator degrees of freedom (number of parameters used for the effect) #' \item \code{ddf} denominator degrees of freedom (effective residual degrees of freedom for testing the effect), computed from the Kenward-Roger correction using \code{pbkrtest::KRmodcomp} #' \item \code{F.scaling} scaling of F-statistic computing from Kenward-Roger approximation (only printed if \code{method="nested-KR"}) #' } #' #' For models with \code{method="LRT"} the following further columns are returned: #' \enumerate{ #' \item \code{df.large} degrees of freedom (i.e., estimated paramaters) for full model (i.e., model containing the corresponding effect) #' \item \code{df.small} degrees of freedom (i.e., estimated paramaters) for restricted model (i.e., model without the corresponding effect) #' \item \code{chisq} 2 times the difference in likelihood (obtained with \code{logLik}) between full and restricted model #' \item \code{df} difference in degrees of freedom between full and restricted model (p-value is based on these df). #' } #' #' For models with \code{method="PB"} the following further column is returned: #' \enumerate{ #' \item \code{stat} 2 times the difference in likelihood (obtained with \code{logLik}) between full and restricted model (i.e., a chi-square value). #' } #' #' Note that \code{anova} can also be called with additional mixed and/or \code{merMod} objects. In this casethe full models are passed on to \code{anova.merMod} (with \code{refit=FALSE}, which differs from the default of \code{anova.merMod}) which produces the known LRT tables. #' #' The \code{summary} method for objects of class \code{mixed} simply calls \code{\link{summary.merMod}} on the full model. #' #' If \code{return = "merMod"}, an object of class \code{"merMod"}, as returned from \code{g/lmer}, is returned. #' #' @details For an introduction to mixed-modeling for experimental designs see Barr, Levy, Scheepers, & Tily (2013; I highly recommend reading this paper if you use this function), arguments for using the Kenward-Roger approximation for obtaining p-values are given by Judd, Westfall, and Kenny (2012). Further introductions to mixed-modeling for experimental designs are given by Baayen and colleagues (Baayen, 2008; Baayen, Davidson & Bates, 2008; Baayen & Milin, 2010). Specific recommendations on which random effects structure to specify for confirmatory tests can be found in Barr and colleagues (2013) and Barr (2013), but also see Bates et al. (2015). #' #'\subsection{p-value Calculations}{ #' #' When \code{method = "KR"} (the default, implemented via \code{\link[pbkrtest]{KRmodcomp}}), the Kenward-Roger approximation for degrees-of-freedom is calculated using \code{\link[lmerTest]{anova.merModLmerTest}} (if \code{test_intercept=FALSE}) or \code{\link[car]{Anova}} (if \code{test_intercept=TRUE}), which is only applicable to linear-mixed models (LMMs). The test statistic in the output is an F-value (\code{F}). A similar method that requires less RAM is \code{method = "S"} which calculates the Satterthwaite approximation for degrees-of-freedom via \code{\link[lmerTest]{anova.merModLmerTest}} and is also only applicable to LMMs. \code{method = "KR"} or \code{method = "S"} provide the best control for Type 1 errors for LMMs (Luke, 2017). #' #' \code{method = "PB"} calculates p-values using parametric bootstrap using \code{\link[pbkrtest]{PBmodcomp}}. This can be used for linear and also generalized linear mixed models (GLMMs) by specifying a \code{\link[stats]{family}} argument to \code{mixed}. Note that you should specify further arguments to \code{PBmodcomp} via \code{args_test}, especially \code{nsim} (the number of simulations to form the reference distribution) or \code{cl} (for using multiple cores). For other arguments see \code{\link[pbkrtest]{PBmodcomp}}. Note that \code{REML} (argument to \code{[g]lmer}) will be set to \code{FALSE} if method is \code{PB}. #' #' \code{method = "LRT"} calculates p-values via likelihood ratio tests implemented in the \code{anova} method for \code{"merMod"} objects. This is the method recommended by Barr et al. (2013; which did not test the other methods implemented here). Using likelihood ratio tests is only recommended for models with many levels for the random effects (> 50), but can be pretty helpful in case the other methods fail (due to memory and/or time limitations). The \href{http://glmm.wikidot.com/faq}{lme4 faq} also recommends the other methods over likelihood ratio tests. #' } #' #' \subsection{Implementation Details}{ #' #' For methods \code{"KR"} and \code{"S"} type 3 and 2 tests are implemented as in \code{\link[car]{Anova}}. #' #' For all other methods, type 3 tests are obtained by comparing a model in which only the tested effect is excluded with the full model (containing all effects). For method \code{"nested-KR"} (which was the default in previous versions) this corresponds to the (type 3) Wald tests given by \code{car::Anova} for \code{"lmerMod"} models. The submodels in which the tested effect is excluded are obtained by manually creating a model matrix which is then fitted in \code{"lme4"}. This is done to avoid R's "feature" to not allow this behavior. #' #' Type 2 tests are truly sequential. They are obtained by comparing a model in which the tested effect and all higher oder effect (e.g., all three-way interactions for testing a two-way interaction) are excluded with a model in which only effects up to the order of the tested effect are present and all higher order effects absent. In other words, there are multiple full models, one for each order of effects. Consequently, the results for lower order effects are identical of whether or not higher order effects are part of the model or not. This latter feature is not consistent with classical ANOVA type 2 tests but a consequence of the sequential tests (and \href{https://stat.ethz.ch/pipermail/r-sig-mixed-models/2012q3/018992.html}{I didn't find a better way} of implementing the Type 2 tests). This \strong{does not} correspond to the (type 2) Wald test reported by \code{car::Anova}. #' #' If \code{check_contrasts = TRUE}, contrasts will be set to \code{"contr.sum"} for all factors in the formula if default contrasts are not equal to \code{"contr.sum"} or \code{attrib(factor, "contrasts") != "contr.sum"}. Furthermore, the current contrasts (obtained via \code{getOption("contrasts")}) will be set at the cluster nodes if \code{cl} is not \code{NULL}. #' } #' #' \subsection{Expand Random Effects}{ #' \code{expand_re = TRUE} allows to expand the random effects structure before passing it to \code{lmer}. This allows to disable estimation of correlation among random effects for random effects term containing factors using the \code{||} notation which may aid in achieving model convergence (see Bates et al., 2015). This is achieved by first creating a model matrix for each random effects term individually, rename and append the so created columns to the data that will be fitted, replace the actual random effects term with the so created variables (concatenated with +), and then fit the model. The variables are renamed by prepending all variables with rei (where i is the number of the random effects term) and replacing ":" with "_by_". #' #' \code{lmer_alt} is simply a wrapper for \code{mixed} that is intended to behave like \code{lmer} (or \code{glmer} if a \code{family} argument is present), but also allows to use \code{||} with factors correctly (by always using \code{expand_re = TRUE}). This means that \code{lmer_alt} per default does not enforce a specific contrast on factors and only returns the \code{"merMod"} object without calculating any additional models or p-values (this is achieved by setting \code{return = "merMod"}). Note that it most likely differs from \code{g/lmer} in how it handles missing values so it is recommended to only pass data without missing values to it! #' #' One consequence of using \code{expand_re = TRUE} is that the data that is fitted will not be the same as the passed data.frame which can lead to problems with e.g., the \code{predict} method. However, the actual data uzsed for fitting is also returned as part of the \code{mixed} object so can be used from there. #' } #' #' @note When \code{method = "KR"}, obtaining p-values is known to crash due too insufficient memory or other computational limitations (especially with complex random effects structures). In these cases, the other methods should be used. The RAM demand is a problem especially on 32 bit Windows which only supports up to 2 or 3GB RAM (see \href{https://CRAN.R-project.org/bin/windows/base/rw-FAQ.html}{R Windows FAQ}). Then it is probably a good idea to use methods "S", "LRT", or "PB". #' #' \code{"mixed"} will throw a message if numerical variables are not centered on 0, as main effects (of other variables then the numeric one) can be hard to interpret if numerical variables appear in interactions. See Dalal & Zickar (2012). #' #' Per default \code{mixed} uses \code{\link[lmerTest]{lmer}}, this can be changed to \code{\link[lme4]{lmer}} by calling: \code{afex_options(lmer_function = "lme4")} #' #' Formulas longer than 500 characters will most likely fail due to the use of \code{\link{deparse}}. #' #' Please report bugs or unexpected behavior by opening a guthub issue: \url{https://github.com/singmann/afex/issues} #' #' @author Henrik Singmann with contributions from \href{http://stackoverflow.com/q/11335923/289572}{Ben Bolker and Joshua Wiley}. #' #' @seealso \code{\link{aov_ez}} and \code{\link{aov_car}} for convenience functions to analyze experimental deisgns with classical ANOVA or ANCOVA wrapping \code{\link[car]{Anova}}. #' #' see the following for the data sets from Maxwell and Delaney (2004) used and more examples: \code{\link{md_15.1}}, \code{\link{md_16.1}}, and \code{\link{md_16.4}}. #' #' @references Baayen, R. H. (2008). \emph{Analyzing linguistic data: a practical introduction to statistics using R}. Cambridge, UK; New York: Cambridge University Press. #' #' Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. \emph{Journal of Memory and Language}, 59(4), 390-412. doi:10.1016/j.jml.2007.12.005 #' #' Baayen, R. H., & Milin, P. (2010). Analyzing Reaction Times. \emph{International Journal of Psychological Research}, 3(2), 12-28. #' #' Barr, D. J. (2013). Random effects structure for testing interactions in linear mixed-effects models. \emph{Frontiers in Quantitative Psychology and Measurement}, 328. doi:10.3389/fpsyg.2013.00328 #' #' Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: Keep it maximal. \emph{Journal of Memory and Language}, 68(3), 255-278. doi:10.1016/j.jml.2012.11.001 #' #' Bates, D., Kliegl, R., Vasishth, S., & Baayen, H. (2015). \emph{Parsimonious Mixed Models}. arXiv:1506.04967 [stat]. Retrieved from \url{http://arxiv.org/abs/1506.04967} #' #' Dalal, D. K., & Zickar, M. J. (2012). Some Common Myths About Centering Predictor Variables in Moderated Multiple Regression and Polynomial Regression. \emph{Organizational Research Methods}, 15(3), 339-362. doi:10.1177/1094428111430540 #' #' Judd, C. M., Westfall, J., & Kenny, D. A. (2012). Treating stimuli as a random factor in social psychology: A new and comprehensive solution to a pervasive but largely ignored problem. \emph{Journal of Personality and Social Psychology}, 103(1), 54-69. doi:10.1037/a0028347 #' #' Luke, S. (2017). Evaluating significance in linear mixed-effects models in R. \emph{Behavior Research Methods}. \url{https://doi.org/10.3758/s13428-016-0809-y} #' #' Maxwell, S. E., & Delaney, H. D. (2004). \emph{Designing experiments and analyzing data: a model-comparisons perspective.} Mahwah, N.J.: Lawrence Erlbaum Associates. #' #' ## @import pbkrtest #' @importFrom lme4 glmer nobars getME isREML #' @importFrom stringr str_replace #' @importFrom parallel clusterCall clusterExport clusterEvalQ clusterApplyLB #' @importFrom stats logLik terms as.formula contrasts<- model.matrix model.frame anova #' @importFrom methods is #' @encoding UTF-8 #' #' @example examples/examples.mixed.R #' #' @export mixed <- function(formula, data, type = afex_options("type"), method = afex_options("method_mixed"), per_parameter = NULL, args_test = list(), test_intercept = FALSE, check_contrasts = afex_options("check_contrasts"), expand_re = FALSE, all_fit = FALSE, set_data_arg = TRUE, progress = TRUE, cl = NULL, return = "mixed", sig_symbols = afex_options("sig_symbols"), ...) { dots <- list(...) ### deprercate old argument names: if("per.parameter" %in% names(dots)) { warn_deprecated_arg("per.parameter", "per_parameter") per_parameter <- dots$per.parameter } if("args.test" %in% names(dots)) { warn_deprecated_arg("args.test", "args_test") args_test <- dots$args.test } if("test.intercept" %in% names(dots)) { warn_deprecated_arg("test.intercept", "test_intercept") test_intercept <- dots$test.intercept } if("check.contrasts" %in% names(dots)) { warn_deprecated_arg("check.contrasts", "check_contrasts") check_contrasts <- dots$check.contrasts } if("set.data.arg" %in% names(dots)) { warn_deprecated_arg("set.data.arg", "set_data_arg") set_data_arg <- dots$set.data.arg } if("sig.symbols" %in% names(dots)) { #(!missing(sig.symbols)) { warn_deprecated_arg("sig.symbols", "sig_symbols") sig_symbols <- dots$sig.symbols } ## real function begins: if (check_contrasts) { #browser() vars.to.check <- all.vars(formula) resetted <- NULL for (i in vars.to.check) { if (is.factor(data[,i])) { if (is.null(attr(data[,i], "contrasts")) & (options("contrasts")[[1]][1] != "contr.sum")) { contrasts(data[,i]) <- "contr.sum" resetted <- c(resetted, i) } else if (!is.null(attr(data[,i], "contrasts")) && attr(data[,i], "contrasts") != "contr.sum") { contrasts(data[,i]) <- "contr.sum" resetted <- c(resetted, i) } } } if (!is.null(resetted)) message(str_c("Contrasts set to contr.sum for the following variables: ", str_c(resetted, collapse=", "))) } #warning(str_c("Calculating Type 3 sums with contrasts = ", options("contrasts")[[1]][1], ".\n Use options(contrasts=c('contr.sum','contr.poly')) instead")) # browser() method <- match.arg(method, c("KR", "S", "PB", "LRT", "nested-KR", "F"), several.ok=FALSE) #################### ### Part I: prepare fitting (i.e., obtain model info, check model, ...) #################### mc <- match.call() #browser() formula.f <- as.formula(formula) #if (class(formula) != "formula") message("Formula (the first argument) converted to formula.") if (!inherits(formula, "formula")) message("Formula (the first argument) converted to formula.") dv <- as.character(formula.f)[[2]] all.terms <- attr(terms(formula.f), "term.labels") effect.order <- attr(terms(formula.f), "order") effect.order <- effect.order[!grepl("\\|", all.terms)] max.effect.order <- max(effect.order) random <- str_c(str_c("(", all.terms[grepl("\\|", all.terms)], ")"), collapse = " + ") rh2 <- nobars(formula.f) rh2[[2]] <- NULL m.matrix <- model.matrix(rh2, data = data) fixed.effects <- attr(terms(rh2, data = data), "term.labels") mapping <- attr(m.matrix, "assign") fixed.vars <- all.vars(rh2) # check for missing values in variables used: if (nrow(m.matrix) != nrow(data)) { data <- model.frame(as.formula(str_c(vars.to.check[1], "~", str_c(vars.to.check[-1], collapse = "+"))), data = data) m.matrix <- model.matrix(rh2, data = data) warning(str_c("Due to missing values, reduced number of observations to ", nrow(data))) if(set_data_arg) { warning("Due to missing values, set_data_arg set to FALSE.") set_data_arg <- FALSE } } # check if numerical variables are centered c.ns <- fixed.vars[vapply(data[, fixed.vars, drop = FALSE], is.numeric, TRUE)] if (length(c.ns) > 0) { non.null <- c.ns[!abs(vapply(data[, c.ns, drop = FALSE], mean, 0)) < .Machine$double.eps ^ 0.5] if (length(non.null) > 0) message(str_c("Numerical variables NOT centered on 0 (i.e., interpretation of all main effects might be difficult if in interactions): ", str_c(non.null, collapse = ", "))) } if (expand_re) { random_parts <- str_c(all.terms[grepl("\\|", all.terms)]) which_random_double_bars <- str_detect(random_parts, "\\|\\|") random_units <- str_replace(random_parts, "^.+\\|\\s+", "") tmp_random <- lapply(str_replace(random_parts, "\\|.+$", ""), function(x) as.formula(str_c("~", x))) tmp_model.matrix <- vector("list", length(random_parts)) re_contains_intercept <- rep(FALSE, length(random_parts)) new_random <- vector("character", length(random_parts)) for (i in seq_along(random_parts)) { tmp_model.matrix[[i]] <- model.matrix(tmp_random[[i]], data = data) if (ncol(tmp_model.matrix[[i]]) == 0) stop("Invalid random effects term, e.g., (0|id)") if (colnames(tmp_model.matrix[[i]])[1] == "(Intercept)") { tmp_model.matrix[[i]] <- tmp_model.matrix[[i]][,-1, drop = FALSE] re_contains_intercept[i] <- TRUE } if (ncol(tmp_model.matrix[[i]]) > 0) { colnames(tmp_model.matrix[[i]]) <- str_c("re", i, ".", str_replace_all(colnames(tmp_model.matrix[[i]]), ":", "_by_")) new_random[i] <- str_c("(", as.numeric(re_contains_intercept[i]), "+", str_c(colnames(tmp_model.matrix[[i]]), collapse = "+"), if (which_random_double_bars[i]) "||" else "|", random_units[i], ")") } else { new_random[i] <- str_c("(", as.numeric(re_contains_intercept[i]), if (which_random_double_bars[i]) "||" else "|", random_units[i], ")") } } data <- cbind(data, as.data.frame(do.call(cbind, tmp_model.matrix))) random <- str_c(new_random, collapse = "+") } if (return == "data") return(data) #################### ### Part II: obtain the lmer fits #################### ## Part IIa: prepare formulas mf <- mc[!names(mc) %in% c("type", "method", "args.test", "args_test", "progress", "check.contrasts", "check_contrasts", "per.parameter", "per_parameter", "cl", "test.intercept", "test_intercept","expand_re", "return", "all_fit", "sig_symbols", "sig.symbols")] mf[["formula"]] <-as.formula(str_c(dv,deparse(rh2, width.cutoff = 500L),"+",random)) #formula.f if ("family" %in% names(mf)) { mf[[1]] <- as.name("glmer") use_reml <- FALSE } else { if (afex_options("lmer_function") == "lmerTest") mf[[1]] <- quote(lmerTest::lmer) else if (afex_options("lmer_function") == "lme4") mf[[1]] <- quote(lme4::lmer) else stop("value of afex_options('lmer_function') not supported.") use_reml <- TRUE } mf[["data"]] <- as.name("data") if ((method[1] %in% c("PB", "LRT")) & !("family" %in% names(mf))) if ((!"REML" %in% names(mf)) || mf[["REML"]]) { message("REML argument to lmer() set to FALSE for method = 'PB' or 'LRT'") mf[["REML"]] <- FALSE use_reml <- FALSE } #browser() if (return == "merMod") { out <- eval(mf) return(out) } if ("family" %in% names(mf)) { if (!(method[1] %in% c("LRT", "PB"))) stop("GLMMs can only be estimated with 'LRT' or 'PB'.") } if (method[1] %in% c("KR", "S")) { ## do not calculate nested models for these methods if (progress) cat(str_c("Fitting one lmer() model. ")) full_model <- eval(mf) if (all_fit) { all_fits <- suppressWarnings(all_fit(full_model, data = data, verbose = FALSE)) all_fits <- c(default = full_model, all_fits) tmp_ll <- vapply(all_fits,function(x) tryCatch(logLik(x), error = function(e) NA), 0) full_model <- all_fits[[which.max(tmp_ll)]] full_model@optinfo$logLik_other <- tmp_ll } fits <- NULL tests <- NULL anova_tab_addition <- NULL if (progress) cat(str_c("[DONE]\nCalculating p-values. ")) if (method[1] == "KR") { #lmerTest_method <- if(method[1] == "KR") "Kenward-Roger" else "Satterthwaite" if (test_intercept) { anova_out <- car::Anova(full_model, type = type, test.statistic = "F") anova_table <- as.data.frame(anova_out) anova_table <- anova_table[, c("Df", "Df.res", "F", "Pr(>F)")] colnames(anova_table) <- c("num Df", "den Df", "F", "Pr(>F)") } else { anova_out <- lmerTest::anova(full_model, ddf = "Kenward-Roger", type = type) anova_table <- as.data.frame(anova_out) anova_table <- anova_table[, c("NumDF", "DenDF", "F.value", "Pr(>F)")] colnames(anova_table) <- c("num Df", "den Df", "F", "Pr(>F)") } } else if (method[1] == "S") { if (test_intercept) warning("Cannot test intercept with Satterthwaite approximation.") anova_out <- lmerTest::anova(full_model, ddf = "Satterthwaite", type = type) anova_table <- as.data.frame(anova_out) if (!("Pr(>F)" %in% colnames(anova_table))) { colnames(anova_table)[c(1,4)] <- c("NumDF", "F.value") anova_table$DenDF <- NA_real_ anova_table$`Pr(>F)` <- NA_real_ } anova_table <- anova_table[, c("NumDF", "DenDF", "F.value", "Pr(>F)")] colnames(anova_table) <- c("num Df", "den Df", "F", "Pr(>F)") } if (progress) cat(str_c("[DONE]\n")) if(set_data_arg) full_model@call[["data"]] <- mc[["data"]] } else { ## do calculate nested models for the methods below ## prepare (g)lmer formulas: if (type == 3 | type == "III") { if (attr(terms(rh2, data = data), "intercept") == 1) fixed.effects <- c("(Intercept)", fixed.effects) # The next part alters the mapping of parameters to effects/variables if # per_parameter is not NULL (this does the complete magic). if (!is.null(per_parameter)) { fixed.to.change <- c() for (parameter in per_parameter) { fixed.to.change <- c(fixed.to.change, grep(parameter, fixed.effects)) } fixed.to.change <- fixed.effects[sort(unique(fixed.to.change))] if ("(Intercept)" %in% fixed.to.change) fixed.to.change <- fixed.to.change[-1] fixed.all <- dimnames(m.matrix)[[2]] #tf2 <- fixed.to.change[2] for (tf2 in fixed.to.change) { tf <- which(fixed.effects == tf2) fixed.lower <- fixed.effects[seq_len(tf-1)] fixed.upper <- if (tf < length(fixed.effects)) fixed.effects[(tf+1):length(fixed.effects)] else NULL fixed.effects <- c(fixed.lower, fixed.all[which(mapping == (tf-1))], fixed.upper) map.to.replace <- which(mapping == (tf-1)) map.lower <- mapping[seq_len(map.to.replace[1]-1)] map.upper <- if (max(map.to.replace) < length(mapping)) mapping[(map.to.replace[length(map.to.replace)]+1):length(mapping)] else NULL mapping <- c(map.lower, seq_along(map.to.replace) + map.lower[length(map.lower)], map.upper + length(map.to.replace)-1) } } # make formulas formulas <- vector("list", length(fixed.effects) + 1) formulas[[1]] <- mf[["formula"]] for (i in seq_along(fixed.effects)) { tmp.columns <- str_c(deparse(-which(mapping == (i-1))), collapse = "") formulas[[i+1]] <- as.formula(str_c(dv, "~ 0 + m.matrix[,", tmp.columns, "] +", random)) } names(formulas) <- c("full_model", fixed.effects) if (!test_intercept && fixed.effects[1] == "(Intercept)") { fixed.effects <- fixed.effects[-1] formulas[["(Intercept)"]] <- NULL } } else if (type == 2 | type == "II") { #warning("Implementation of Type 2 method not unproblematic.\n Check documentation or use car::Anova (Wald tests).") if (!is.null(per_parameter)) stop("per_parameter argument only implemented for Type 3 tests.") full_model.formulas <- vector("list", max.effect.order) submodel.formulas <- vector("list", length(fixed.effects)) full_model.formulas[[length(full_model.formulas)]] <- mf[["formula"]] for (c in seq_len(max.effect.order)) { if (c == max.effect.order) next tmp.columns <- str_c(deparse(-which(mapping %in% which(effect.order > c))), collapse = "") full_model.formulas[[c]] <- as.formula(str_c(dv, "~ 0 + m.matrix[,", tmp.columns, "] +", random)) } for (c in seq_along(fixed.effects)) { order.c <- effect.order[c] tmp.columns <- str_c(deparse(-which(mapping == (c) | mapping %in% if (order.c == max.effect.order) -1 else which(effect.order > order.c))), collapse = "") submodel.formulas[[c]] <- as.formula(str_c(dv, "~ 0 + m.matrix[,", tmp.columns, "] +", random)) } formulas <- c(full_model.formulas, submodel.formulas) } else stop('Only type 3 and type 2 tests implemented.') ## Part IIb: fit models # single core if (is.null(cl)) { if (progress) cat(str_c("Fitting ", length(formulas), " (g)lmer() models:\n[")) fits <- vector("list", length(formulas)) if (all_fit) all_fits <- vector("list", length(formulas)) for (i in seq_along(formulas)) { mf[["formula"]] <- formulas[[i]] fits[[i]] <- eval(mf) if (all_fit) { all_fits[[i]] <- suppressWarnings(all_fit(fits[[i]], data = data, verbose = FALSE)) all_fits[[i]] <- c(default = fits[[i]], all_fits[[i]]) tmp_ll <- vapply(all_fits[[i]],function(x) tryCatch(logLik(x), error = function(e) NA), 0) fits[[i]] <- all_fits[[i]][[which.max(tmp_ll)]] fits[[i]]@optinfo$logLik_other <- tmp_ll } if (progress) cat(".") } if (progress) cat("]\n") } else { # multicore eval.cl <- function(formula, m.call, progress, all_fit, data) { m.call[[2]] <- formula res <- eval(m.call) if (all_fit) { all_fits <- suppressWarnings(all_fit(res, data = data, verbose = FALSE)) all_fits <- c(default = res, all_fits) tmp_ll <- vapply(all_fits,function(x) tryCatch(logLik(x), error = function(e) NA), 0) res <- all_fits[[which.max(tmp_ll)]] res@optinfo$logLik_other <- tmp_ll } if (progress) cat(".") return(res) } if (progress) cat(paste0("Fitting ", length(formulas), " (g)lmer() models.\n")) #junk <- clusterEvalQ(cl = cl, library("lme4", character.only = TRUE)) junk <- clusterCall(cl = cl, "require", package = "afex", character.only = TRUE) #junk <- clusterEvalQ(cl = cl, loadNamespace("lme4")) if (check_contrasts) { curr.contrasts <- getOption("contrasts") clusterExport(cl = cl, "curr.contrasts", envir = sys.nframe()) junk <- clusterEvalQ(cl = cl, options(contrasts=curr.contrasts)) } if (progress) junk <- clusterEvalQ(cl = cl, cat("[")) fits <- clusterApplyLB(cl = cl, x = formulas, eval.cl, m.call = mf, progress = progress, all_fit=all_fit, data = data) if (progress) junk <- clusterEvalQ(cl = cl, cat("]")) } #################### ### Part IIb: likelihood checks and refitting (refitting is DISABLED for the time being!) #################### check_likelihood <- function(fits) { if (type == 3 | type == "III") { logLik_full <- as.numeric(logLik(fits[[1]])) logLik_restricted <- as.numeric(vapply(fits[2:length(fits)], logLik, 0)) if(any(logLik_restricted > logLik_full)) return(fixed.effects[logLik_restricted > logLik_full]) } else if (type == 2 | type == "II") { logLik_full <- as.numeric(vapply(fits[1:max.effect.order],logLik, 0)) logLik_restricted <- as.numeric(vapply(fits[(max.effect.order+1):length(fits)], logLik, 0)) warn_logLik <- c() for (c in seq_along(fixed.effects)) { order.c <- effect.order[c] if(logLik_restricted[[c]] > logLik_full[[order.c]]) warn_logLik <- c(warn_logLik, fixed.effects[c]) } if(length(warn_logLik)>0) return(warn_logLik) } return(TRUE) } # check for smaller likelihood of nested model and refit if test fails: if (FALSE) { if(!isTRUE(check_likelihood(fits))) { if (progress) cat("refitting...") refits <- lapply(fits, all_fit, verbose=FALSE, data = data) browser() str(fits[[1]], 2) fits[[1]]@call #sapply(all_fit(fits[[1]], data=md_16.4b), function(y) try(logLik(y))) sapply(refits, function(x) sapply(x, function(y) tryCatch(as.numeric(logLik(y)), error = function(e) as.numeric(NA)))) fits <- lapply(refits, function(x) { tmp_llk <- vapply(x, function(y) tryCatch(logLik(y), error = function(e) as.numeric(NA)), 0) x[[which.min(tmp_llk)]] }) } } # check again and warn if(!isREML(fits[[1]]) & !isTRUE(check_likelihood(fits))) { warning(paste("Following nested model(s) provide better fit than full model:", paste(check_likelihood(fits), collapse = ", "), "\n Results cannot be trusted. Try all_fit=TRUE!")) } if(set_data_arg){ for (i in seq_along(fits)) { fits[[i]]@call[["data"]] <- mc[["data"]] } } ## prepare for p-values: if (type == 3 | type == "III") { full_model <- fits[[1]] fits <- fits[-1] } else if (type == 2 | type == "II") { full_model <- fits[1:max.effect.order] fits <- fits[(max.effect.order+1):length(fits)] } names(fits) <- fixed.effects #################### ### Part III: obtain p-values #################### ## obtain p-values: #browser() if (method[1] == "nested-KR") { if (progress) cat(str_c("Obtaining ", length(fixed.effects), " p-values:\n[")) tests <- vector("list", length(fixed.effects)) for (c in seq_along(fixed.effects)) { if (type == 3 | type == "III") tests[[c]] <- pbkrtest::KRmodcomp(full_model, fits[[c]]) else if (type == 2 | type == "II") { order.c <- effect.order[c] tests[[c]] <- pbkrtest::KRmodcomp(full_model[[order.c]], fits[[c]]) } if (progress) cat(".") } if (progress) cat("]\n") names(tests) <- fixed.effects #df.out <- data.frame(Effect = fixed.effects, stringsAsFactors = FALSE) anova_table <- data.frame(t(vapply(tests, function(x) unlist(x[["test"]][1,]), unlist(tests[[1]][["test"]][1,])))) #FtestU <- vapply(tests, function(x) unlist(x[["test"]][2,]), unlist(tests[[1]][["test"]][2,])) #row.names(FtestU) <- str_c(row.names(FtestU), ".U") #anova_table <- cbind(anova_table, t(FtestU)) rownames(anova_table) <- fixed.effects colnames(anova_table) <- c("F", "num Df", "den Df", "F.scaling", "Pr(>F)") anova_table <- anova_table[, c("num Df", "den Df", "F.scaling", "F", "Pr(>F)")] anova_tab_addition <- NULL } else if (method[1] == "PB") { if (progress) cat(str_c("Obtaining ", length(fixed.effects), " p-values:\n[")) tests <- vector("list", length(fixed.effects)) for (c in seq_along(fixed.effects)) { if (type == 3 | type == "III") tests[[c]] <- do.call(pbkrtest::PBmodcomp, args = c(largeModel = full_model, smallModel = fits[[c]], args_test)) else if (type == 2 | type == "II") { order.c <- effect.order[c] tests[[c]] <- do.call(pbkrtest::PBmodcomp, args = c(largeModel = full_model[[order.c]], smallModel = fits[[c]], args_test)) } if (progress) cat(".") } if (progress) cat("]\n") names(tests) <- fixed.effects #browser() #df.out<- data.frame(Effect = fixed.effects, stringsAsFactors = FALSE) anova_table <- data.frame(t(vapply(tests, function(x) unlist(x[["test"]][2,]), unlist(tests[[1]][["test"]][2,])))) anova_table <- anova_table[,-2] LRT <- vapply(tests, function(x) unlist(x[["test"]][1,]), unlist(tests[[1]][["test"]][1,])) row.names(LRT) <- str_c(row.names(LRT), ".LRT") anova_table <- cbind(anova_table, t(LRT)) rownames(anova_table) <- fixed.effects anova_table <- anova_table[, c("stat", "df.LRT", "p.value.LRT", "p.value")] colnames(anova_table) <- c("Chisq", "Chi Df", "Pr(>Chisq)", "Pr(>PB)") anova_tab_addition <- NULL } else if (method[1] == "LRT") { tests <- vector("list", length(fixed.effects)) for (c in seq_along(fixed.effects)) { if (type == 3 | type == "III") tests[[c]] <- anova(full_model, fits[[c]]) else if (type == 2 | type == "II") { order.c <- effect.order[c] tmpModel <- full_model[[order.c]] tests[[c]] <- anova(tmpModel, fits[[c]]) } } names(tests) <- fixed.effects df.large <- vapply(tests, function(x) x[["Df"]][2], 0) df.small <- vapply(tests, function(x) x[["Df"]][1], 0) chisq <- vapply(tests, function(x) x[["Chisq"]][2], 0) df <- vapply(tests, function(x) x[["Chi Df"]][2], 0) p.value <- vapply(tests, function(x) x[["Pr(>Chisq)"]][2], 0) anova_table <- data.frame(Df = df.small, Chisq = chisq, "Chi Df" = df, "Pr(>Chisq)"=p.value, stringsAsFactors = FALSE, check.names = FALSE) rownames(anova_table) <- fixed.effects if (type == 3 | type == "III") anova_tab_addition <- paste0("Df full model: ", df.large[1]) else anova_tab_addition <- paste0("Df full model(s): ", df.large) # # attr(anova_table, "heading") <- c(paste0("Mixed Model Anova Table (Type ", type , " tests)\n"), paste0("Response: ", dv) #title <- "Analysis of Variance Table\n" #topnote <- paste("Model ", format(1L:nmodels), ": ", variables, # sep = "", collapse = "\n") } else stop('Only methods "KR", "PB", "LRT", or "nested-KR" currently implemented.') } #################### ### Part IV: prepare output #################### class(anova_table) <- c("anova", "data.frame") attr(anova_table, "heading") <- c( paste0("Mixed Model Anova Table (Type ", type , " tests, ", method, "-method)\n"), paste0("Model: ", deparse(formula.f)), paste0("Data: " ,mc[["data"]]), anova_tab_addition ) attr(anova_table, "sig_symbols") <- sig_symbols list.out <- list( anova_table = anova_table, full_model = full_model, restricted_models = fits, tests = tests, data = data) #, type = type, method = method[[1]] class(list.out) <- "mixed" attr(list.out, "type") <- type attr(list.out, "method") <- method if (all_fit) { attr(list.out, "all_fit_selected") <- rapply(c(full_model = list.out$full_model, list.out$restricted_models), function(x) x@optinfo$optimizer, how = "unlist") attr(list.out, "all_fit_logLik") <- as.data.frame(rapply(c(full_model = list.out$full_model, list.out$restricted_models), function(x) x@optinfo$logLik_other, how = "replace")) } list.out } get_mixed_warnings <- function(x) { full_model_name <- names(x)[[2]] ntry <- function(x) tryCatch(x, error = function(e) NULL) if (is.list(x$full)) { warnings1 <- c(full = lapply(x[[2]], function(y) y@optinfo$warnings), lapply(x[[3]], function(y) y@optinfo$warnings)) warnings2 <- c(full = lapply(x[[2]], function(y) ntry(y@optinfo$conv$lme4$messages)), lapply(x[[3]], function(y) ntry(y@optinfo$conv$lme4$messages))) } else { warnings1 <- c(full = list(x[[full_model_name]]@optinfo$warnings), lapply(x[[3]], function(y) y@optinfo$warnings)) warnings2 <- c(full = list(ntry(x[[full_model_name]]@optinfo$conv$lme4$messages)), lapply(x[[3]], function(y) ntry(y@optinfo$conv$lme4$messages))) } warnings <- mapply(function(x, y) c(unlist(x), y), warnings1, warnings2, SIMPLIFY=FALSE) warn <- vapply(warnings, function(y) !length(y)==0, NA) for (i in names(warn)[warn]) warning("lme4 reported (at least) the following warnings for '", i, "':\n * ", paste(warnings[[i]], collapse = "\n * "), call. = FALSE) } check_likelihood <- function(object) { full_model_name <- names(object)[[2]] restricted_models_name <- names(object)[[3]] if (is.null(attr(object, "type"))) { attr(object, "type") <- object$type } if (attr(object, "type") == 3 | attr(object, "type") == "III") { logLik_full <- as.numeric(logLik(object[[full_model_name]])) logLik_restricted <- as.numeric(vapply(object[[restricted_models_name]], logLik, 0)) if(any(logLik_restricted > logLik_full)) return(rownames(object$anova_table)[logLik_restricted > logLik_full]) } else if (attr(object, "type") == 2 | attr(object, "type") == "II") { NULL # logLik_full <- as.numeric(vapply(fits[1:max.effect.order],logLik, 0)) # logLik_restricted <- as.numeric(vapply(fits[(max.effect.order+1):length(fits)], logLik, 0)) # warn_logLik <- c() # for (c in seq_along(fixed.effects)) { # order.c <- effect.order[c] # if(logLik_restricted[[c]] > logLik_full[[order.c]]) warn_logLik <- c(warn_logLik, fixed.effects[c]) # } # if(length(warn_logLik)>0) return(warn_logLik) } return(TRUE) } #' @rdname mixed #' @export lmer_alt <- function(formula, data, check_contrasts = FALSE, ...) { mc <- match.call() #assign(all.vars(mc[["data"]]), data) mc[[1]] <- as.name("mixed") mc[["return"]] <- "merMod" mc[["expand_re"]] <- TRUE mc[["progress"]] <- FALSE mc[["check_contrasts"]] <- check_contrasts #browser() eval(mc) } #' @method print mixed #' @export print.mixed <- function(x, ...) { full_model_name <- names(x)[[2]] try(if(!isREML(x[[full_model_name]]) && !isTRUE(check_likelihood(x))) warning(paste("Following nested model(s) provide better fit than full model:", paste(check_likelihood(x), collapse = ", "), "\n Results cannot be trusted. Try all_fit=TRUE!"), call. = FALSE), silent = TRUE) get_mixed_warnings(x) tmp <- nice.mixed(x, ...) print(tmp) invisible(tmp) } #anova.mixed <- #' @method summary mixed #' @export summary.mixed <- function(object, ...) { if ("full_model" %in% names(object)) summary(object = if (length(object[["full_model"]]) == 1) object[["full_model"]] else object[["full_model"]][[length(object[["full_model"]])]], ...) else if("full.model" %in% names(object)) summary(object = if (length(object[["full.model"]]) == 1) object[["full.model"]] else object[["full.model"]][[length(object[["full.model"]])]], ...) } #' @method anova mixed #' @export anova.mixed <- function(object, ..., sig_symbols = attr(object$anova_table, "sig_symbols"), refit = FALSE) { mCall <- match.call(expand.dots = TRUE) full_model_name <- names(object)[[2]] dots <- list(...) modp <- (as.logical(vapply(dots, is, NA, "merMod")) | as.logical(vapply(dots, is, NA, "lm")) | as.logical(vapply(dots, is, NA, "mixed")) ) if (any(modp)) { model.names <- c(deparse(mCall[["object"]]), vapply(which(modp), function(x) deparse(mCall[[x+2]]), "")) for (i in which(as.logical(vapply(dots, is, NA, "mixed")))) dots[[i]] <- dots[[i]][[full_model_name]] anova_table <- do.call(anova, args = c(object = object[[full_model_name]], dots, model.names = list(model.names), refit = refit)) } else { try(if(!isREML(object[[full_model_name]]) && !isTRUE(check_likelihood(object))) warning(paste("Following nested model(s) provide better fit than full model:", paste(check_likelihood(object), collapse = ", "), "\n Results cannot be trusted. Try all_fit=TRUE!"), call. = FALSE), silent=TRUE) get_mixed_warnings(object) anova_table <- object$anova_table } attr(anova_table, "sig_symbols") <- if(!is.null(sig_symbols)) sig_symbols else afex_options("sig_symbols") anova_table } ## support for lsmeans for mixed objects: #' @importFrom lsmeans recover.data lsm.basis #' @method recover.data mixed #' @export recover.data.mixed <- function(object, ...) { full_model_name <- names(object)[[2]] recover.data(object[[full_model_name]], ...) } #' @method lsm.basis mixed #' @export lsm.basis.mixed <- function(object, trms, xlev, grid, ...) { full_model_name <- names(object)[[2]] lsm.basis(object[[full_model_name]], trms, xlev, grid, ...) } afex/R/nice.R0000644000176200001440000003420013073233062012435 0ustar liggesusers#' Make nice ANOVA table for printing. #' #' This generic function produces a nice ANOVA table for printin for objects of class. \code{nice_anova} takes an object from \code{\link[car]{Anova}} possible created by the convenience functions \code{\link{aov_ez}} or \code{\link{aov_car}}. When within-subject factors are present, either sphericity corrected or uncorrected degrees of freedom can be reported. #' #' #' @param object,x An object of class \code{"afex_aov"} (see \code{\link{aov_car}}) or of class \code{"mixed"} (see \code{\link{mixed}}) as returned from the \pkg{afex} functions. Alternatively, an object of class \code{"Anova.mlm"} or \code{"anova"} as returned from \code{\link[car]{Anova}}. #' @param es Effect Size to be reported. The default is given by \code{afex_options("es_aov")}, which is initially set to \code{"ges"} (i.e., reporting generalized eta-squared, see details). Also supported is partial eta-squared (\code{"pes"}) or \code{"none"}. #' @param observed character vector referring to the observed (i.e., non manipulated) variables/effects in the design. Important for calculation of generalized eta-squared (ignored if \code{es} is not \code{"ges"}), see details. #' @param correction Character. Which sphericity correction of the degrees of freedom should be reported for the within-subject factors. The default is given by \code{afex_options("correction_aov")}, which is initially set to \code{"GG"} corresponding to the Greenhouse-Geisser correction. Possible values are \code{"GG"}, \code{"HF"} (i.e., Hyunh-Feldt correction), and \code{"none"} (i.e., no correction). #' @param p_adjust_method \code{character} indicating if p-values for individual effects should be adjusted for multiple comparisons (see \link[stats]{p.adjust} and details). The default \code{NULL} corresponds to no adjustment. #' @param sig_symbols Character. What should be the symbols designating significance? When entering an vector with \code{length(sig.symbol) < 4} only those elements of the default (\code{c(" +", " *", " **", " ***")}) will be replaced. \code{sig_symbols = ""} will display the stars but not the \code{+}, \code{sig_symbols = rep("", 4)} will display no symbols. The default is given by \code{afex_options("sig_symbols")}. #' @param MSE logical. Should the column containing the Mean Sqaured Error (MSE) be displayed? Default is \code{TRUE}. #' @param intercept logical. Should intercept (if present) be included in the ANOVA table? Default is \code{FALSE} which hides the intercept. #' @param sig.symbols deprecated argument, only for backwards compatibility, use \code{"sig_symbols"} instead. #' @param ... currently ignored. #' #' @return A \code{data.frame} of class \code{nice_table} with the ANOVA table consisting of characters. The columns that are always present are: \code{Effect}, \code{df} (degrees of freedom), \code{F}, and \code{p}. #' #' \code{ges} contains the generalized eta-squared effect size measure (Bakeman, 2005), \code{pes} contains partial eta-squared (if requested). #' #' @details The returned \code{data.frame} is print-ready when adding to a document with proper methods. Either directly via \pkg{knitr} or similar approaches such as via packages \pkg{ascii} or \pkg{xtable} (nowadays \pkg{knitr} is probably the best approach, see \href{http://yihui.name/knitr/}{here}). \pkg{ascii} provides conversion to \href{http://www.methods.co.nz/asciidoc/}{AsciiDoc} and \href{http://orgmode.org/}{org-mode} (see \code{\link[ascii]{ascii}} and \code{\link[ascii]{print-ascii}}). \pkg{xtable} converts a \code{data.frame} into LaTeX code with many possible options (e.g., allowing for \code{"longtable"} or \code{"sidewaystable"}), see \code{\link[xtable]{xtable}} and \code{\link[xtable]{print.xtable}}. See Examples. #' #' Conversion functions to other formats (such as HTML, ODF, or Word) can be found at the \href{https://CRAN.R-project.org/view=ReproducibleResearch}{Reproducible Research Task View}. #' #' The default reports generalized eta squared (Olejnik & Algina, 2003), the "recommended effect size for repeated measured designs" (Bakeman, 2005). Note that it is important that all measured variables (as opposed to experimentally manipulated variables), such as e.g., age, gender, weight, ..., must be declared via \code{observed} to obtain the correct effect size estimate. Partial eta squared (\code{"pes"}) does not require this. #' #' Exploratory ANOVA, for which no detailed hypotheses have been specified a priori, harbor a multiple comparison problem (Cramer et al., 2015). To avoid an inflation of familywise Type I error rate, results need to be corrected for multiple comparisons using \code{p_adjust_method}. #' \code{p_adjust_method} defaults to the method specified in the call to \code{\link{aov_car}} in \code{anova_table}. If no method was specified and \code{p_adjust_method = NULL} p-values are not adjusted. #' #' @seealso \code{\link{aov_ez}} and \code{\link{aov_car}} are the convenience functions to create the object appropriate for \code{nice_anova}. #' #' @author The code for calculating generalized eta-squared was written by Mike Lawrence.\cr Everything else was written by Henrik Singmann. #' #' @references Bakeman, R. (2005). Recommended effect size statistics for repeated measures designs. \emph{Behavior Research Methods}, 37(3), 379-384. doi:10.3758/BF03192707 #' #' Cramer, A. O. J., van Ravenzwaaij, D., Matzke, D., Steingroever, H., Wetzels, R., Grasman, R. P. P. P., ... Wagenmakers, E.-J. (2015). Hidden multiplicity in exploratory multiway ANOVA: Prevalence and remedies. \emph{Psychonomic Bulletin & Review}, 1-8. doi:\href{http://doi.org/10.3758/s13423-015-0913-5}{10.3758/s13423-015-0913-5} #' #' Olejnik, S., & Algina, J. (2003). Generalized Eta and Omega Squared Statistics: Measures of Effect Size for Some Common Research Designs. \emph{Psychological Methods}, 8(4), 434-447. doi:10.1037/1082-989X.8.4.434 #' #' @name nice #' @importFrom stats anova #' @encoding UTF-8 #' #' @example examples/examples.nice.R #' #' @export nice nice <- function(object, ...) UseMethod("nice", object) #' @rdname nice #' @method nice afex_aov #' @export nice.afex_aov <- function(object, es = attr(object$anova_table, "es"), observed = attr(object$anova_table, "observed"), correction = attr(object$anova_table, "correction"), MSE = NULL, intercept = NULL, p_adjust_method = attr(object$anova_table, "p_adjust_method"), sig_symbols = attr(object$anova_table, "sig_symbols"), ...) { # if(is.null(es)) { # Defaults to afex_options("es") because of default set in anova.afex_aov # es <- c("pes", "ges")[c("pes", "ges") %in% colnames(object$anova_table)] # } dots <- list(...) if(is.null(MSE)) { # Defaults to TRUE because of default set in anova.afex_aov MSE <- "MSE" %in% colnames(object$anova_table) } if(is.null(intercept)) { # Defaults to FALSE because of default set in anova.afex_aov intercept <- "(Intercept)" %in% rownames(object$anova_table) } if("sig.symbols" %in% names(dots)) { #(!missing(sig.symbols)) { warn_deprecated_arg("sig.symbols", "sig_symbols") sig_symbols <- dots$sig.symbols } if("p.adjust.method" %in% names(dots)) { #(!missing(sig.symbols)) { warn_deprecated_arg("p.adjust.method", "p_adjust_method") p_adjust_method <- dots$p.adjust.method } anova_table <- as.data.frame(anova(object, es = es, observed = observed, correction = correction, MSE = MSE, intercept = intercept, p_adjust_method = p_adjust_method)) nice.anova(anova_table, MSE = MSE, intercept = intercept, sig_symbols = sig_symbols) } #' @rdname nice #' @method nice anova #' @export nice.anova <- function(object, MSE = NULL, intercept = NULL, sig_symbols = attr(object, "sig_symbols"), sig.symbols, ...) { dots <- list(...) if(is.null(MSE)) { # Defaults to TRUE because of default set in anova.afex_aov MSE <- "MSE" %in% colnames(object) } if(is.null(intercept)) { # Defaults to FALSE because of default set in anova.afex_aov intercept <- "(Intercept)" %in% rownames(object) } if("sig.symbols" %in% names(dots)) { #(!missing(sig.symbols)) { warn_deprecated_arg("sig.symbols", "sig_symbols") sig_symbols <- dots$sig.symbols } if(is.null(sig_symbols)) { sig_symbols <- afex_options("sig_symbols") } # internal functions: is.wholenumber <- function(x, tol = .Machine$double.eps^0.5) abs(x - round(x)) < tol make.fs <- function(anova, symbols) { ifelse(anova[["Pr(>F)"]] < 0.001, str_c(formatC(anova[["F"]], digits = 2, format = "f"), symbols[4]), ifelse(anova[["Pr(>F)"]] < 0.01, str_c(formatC(anova[["F"]], digits = 2, format = "f"), symbols[3]), ifelse(anova[["Pr(>F)"]] < 0.05, str_c(formatC(anova[["F"]], digits = 2, format = "f"), symbols[2]), ifelse(anova[["Pr(>F)"]] < 0.1, str_c(formatC(anova[["F"]], digits = 2, format = "f"), symbols[1]), formatC(anova[["F"]], digits = 2, format = "f"))))) } anova_table <- object anova_table[,"df"] <- paste(ifelse(is.wholenumber(anova_table[,"num Df"]), anova_table[,"num Df"], formatC(anova_table[,"num Df"], digits = 2, format = "f")), ifelse(is.wholenumber(anova_table[,"den Df"]),anova_table[,"den Df"], formatC(anova_table[,"den Df"], digits = 2, format = "f")), sep = ", ") symbols.use <- c(" +", " *", " **", " ***") symbols.use[seq_along(sig_symbols)] <- sig_symbols df.out <- data.frame(Effect = row.names(anova_table), df = anova_table[,"df"], stringsAsFactors = FALSE) if (MSE) df.out <- cbind(df.out, data.frame(MSE = formatC(anova_table[,"MSE"], digits = 2, format = "f"), stringsAsFactors = FALSE)) df.out <- cbind(df.out, data.frame(F = make.fs(anova_table, symbols.use), stringsAsFactors = FALSE)) if (!is.null(anova_table$ges)) df.out$ges <- round_ps(anova_table$ges) if (!is.null(anova_table$pes)) df.out$pes <- round_ps(anova_table$pes) df.out$p.value <- round_ps(anova_table[,"Pr(>F)"]) if (!intercept) if (df.out[1,1] == "(Intercept)") df.out <- df.out[-1,, drop = FALSE] rownames(df.out) <- NULL attr(df.out, "heading") <- attr(object, "heading") attr(df.out, "p_adjust_method") <- attr(object, "p_adjust_method") attr(df.out, "correction") <- attr(object, "correction") attr(df.out, "observed") <- attr(object, "observed") attr(df.out, "es") <- attr(object, "es") attr(df.out, "sig_symbols") <- symbols.use class(df.out) <- c("nice_table", class(df.out)) df.out } make.stat <- function(anova, stat, symbols) { out <- ifelse(anova[[paste0("Pr(>", stat,")")]] < 0.001, str_c(formatC(anova[[stat]], digits = 2, format = "f"), symbols[4]), ifelse(anova[[paste0("Pr(>", stat,")")]] < 0.01, str_c(formatC(anova[[stat]], digits = 2, format = "f"), symbols[3]), ifelse(anova[[paste0("Pr(>", stat,")")]] < 0.05, str_c(formatC(anova[[stat]], digits = 2, format = "f"), symbols[2]), ifelse(anova[[paste0("Pr(>", stat,")")]] < 0.1, str_c(formatC(anova[[stat]], digits = 2, format = "f"), symbols[1]), formatC(anova[[stat]], digits = 2, format = "f"))))) out[is.na(anova[[paste0("Pr(>", stat,")")]])] <- formatC(anova[[stat]][is.na(anova[[paste0("Pr(>", stat,")")]])], digits = 2, format = "f") out } is.wholenumber <- function(x, tol = .Machine$double.eps^0.5) abs(x - round(x)) < tol #' @rdname nice #' @method nice mixed #' @export nice.mixed <- function(object, sig_symbols = attr(object$anova_table, "sig_symbols"), ...) { anova_table <- object$anova_table dots <- list(...) if("sig.symbols" %in% names(dots)) { #(!missing(sig.symbols)) { warn_deprecated_arg("sig.symbols", "sig_symbols") sig_symbols <- dots$sig.symbols } if(is.null("sig_symbols")) sig_symbols <- afex_options("sig_symbols") symbols.use <- c(" +", " *", " **", " ***") symbols.use[seq_along(sig_symbols)] <- sig_symbols if (is.null(attr(object, "method"))) { df.out <- object[[1]] warning("mixed object was created with old version of afex, table not nicely formatted.") } else if (attr(object, "method") %in% c("KR", "S", "nested-KR") ) { anova_table[,"df"] <- paste(ifelse(is.wholenumber(anova_table[,"num Df"]), round(anova_table[,"num Df"]), formatC(anova_table[,"num Df"], digits = 2, format = "f")), ifelse(is.wholenumber(anova_table[,"den Df"]), round(anova_table[,"den Df"]), formatC(anova_table[,"den Df"], digits = 2, format = "f")), sep = ", ") if ("F.scaling" %in% anova_table) { df.out <- data.frame( Effect = row.names(anova_table), df = anova_table[,"df"], "F.scaling" = formatC(anova_table[,"F.scaling"], digits = 2, format = "f"), stringsAsFactors = FALSE, check.names = FALSE) } else { df.out <- data.frame( Effect = row.names(anova_table), df = anova_table[,"df"], stringsAsFactors = FALSE, check.names = FALSE) } df.out <- cbind(df.out, data.frame(F = make.stat(anova_table, stat = "F", symbols.use), stringsAsFactors = FALSE)) df.out$p.value <- round_ps(anova_table[,"Pr(>F)"]) } else if (attr(object, "method") == "PB") { anova_table[,"Pr(>Chisq)"] <- anova_table[,"Pr(>PB)"] df.out <- data.frame(Effect = row.names(anova_table), df = anova_table[,"Chi Df"], Chisq = make.stat(anova_table, stat = "Chisq", symbols.use), p.value = round_ps(anova_table[,"Pr(>Chisq)"]), stringsAsFactors = FALSE, check.names = FALSE) } else if (attr(object, "method") == "LRT") { df.out <- data.frame(Effect = row.names(anova_table), df = anova_table[,"Chi Df"], Chisq = make.stat(anova_table, stat = "Chisq", symbols.use), p.value = round_ps(anova_table[,"Pr(>Chisq)"]), stringsAsFactors = FALSE, check.names = FALSE) } else stop("method of mixed object not supported.") rownames(df.out) <- NULL attr(df.out, "heading") <- attr(anova_table, "heading") attr(df.out, "sig_symbols") <- symbols.use class(df.out) <- c("nice_table", class(df.out)) df.out } #' @rdname nice #' @method print nice_table #' @export print.nice_table <- function(x, ...) { if(!is.null(heading <- attr(x, "heading"))) { cat(heading, sep = "\n") } print.data.frame(x) if(!is.null(attr(x, "sig_symbols"))) print_legend(x) if(!is.null(correction_method <- attr(x, "correction")) && correction_method != "none") { cat("\nSphericity correction method:", correction_method, "\n") } invisible(x) } afex/R/md_12.1-data.R0000644000176200001440000000515712612772711013507 0ustar liggesusers#' Data 12.1 from Maxwell & Delaney #' #' Hypothetical Reaction Time Data for 2 x 3 Perceptual Experiment: Example data for chapter 12 of Maaxwell and Delaney (2004, Table 12.1, p. 574) in long format. Has two within.subjects factors: angle and noise. #' #' Description from pp. 573: #' #' Suppose that a perceptual psychologist studying the visual system was interested in determining the #' extent to which interfering visual stimuli slow the ability to recognize letters. Subjects are #' brought into a laboratory and seated in front of a tachistoscope. Subjects are told that they will #' see either the letter T or the letter I displayed on the screen. In some trials, the letter appears #' by itself, but in other trials, the target letter is embedded in a group of other letters. This #' variation in the display constitutes the first factor, which is referred to as noise. The noise #' factor has two levels?absent and present. The other factor varied by the experimenter is where in #' the display the target letter appears. This factor, which is called angle, has three levels. The #' target letter is either shown at the center of the screen (i.e., 0° off-center, where the subject #' has been instructed to fixate), 4° off-center or 8° off-center (in each case, the deviation from the #' center varies randomly between left and right). Table 12.1 presents hypothetical data for 10 #' subjects. As usual, the sample size is kept small to make the calculations easier to follow. The #' dependent measure is reaction time (latency), measured in milliseconds (ms), required by a subject #' to identify the correct target letter. Notice that each subject has six scores, one for each #' combination of the 2 x 3 design. In an actual perceptual experiment, each of these six scores would #' itself be the mean score for that subject across a number of trials in the particular condition. #' Although "trials" could be used as a third within-subjects factor in such a situation, more #' typically trials are simply averaged over to obtain a more stable measure of the individual's #' performance in each condition. #' #' @docType data #' @keywords dataset #' @name md_12.1 #' @usage md_12.1 #' @format A data.frame with 60 rows and 4 variables. #' @source Maxwell, S. E., & Delaney, H. D. (2004). Designing experiments and analyzing data: a model-comparisons perspective. Mahwah, N.J.: Lawrence Erlbaum Associates. p. 574 #' #' @encoding UTF-8 #' #' @examples #' data(md_12.1) #' #' # Table 12.5 (p. 578): #' aov_ez("id", "rt", md_12.1, within = c("angle", "noise"), #' args.return=list(correction = "none", es = "none")) #' #' NULL afex/R/deprecated.R0000644000176200001440000000206012704737012013622 0ustar liggesusers#' Deprecated functions #' #' These functions have been renamed and deprecated in \pkg{afex}: #' \code{aov.car()} (use \code{\link{aov_car}()}), #' \code{ez.glm()} (use \code{\link{aov_ez}()}), #' \code{aov4()} (use \code{\link{aov_4}()}). #' @rdname deprecated #' @keywords internal #' @aliases afex-deprecated #' @param ... arguments passed from the old functions of the style #' \code{foo.bar()} to the new functions \code{foo_bar()} #' @export aov.car <- function(...) { .Deprecated("aov_car", "afex", "aov.car was renamed to aov_car and is now deprecated.") aov_car(...) } #' @rdname deprecated #' @export ez.glm <- function(...) { .Deprecated("aov_ez", "afex", "ez.glm was renamed to aov_ez and is now deprecated.") aov_ez(...) } #' @rdname deprecated #' @export aov4 <- function(...) { .Deprecated("aov_4", "afex", "aov4 was renamed to aov_4 and is now deprecated.") aov_4(...) } warn_deprecated_arg <- function(name, instead) { warning(gettextf("'%s' is deprecated; use '%s' instead", name, instead), call.=FALSE, domain=NA) } afex/R/allFit.R0000644000176200001440000001202113055776111012736 0ustar liggesusers#' Refit \code{lmer} model using multiple optimizers #' #' Attempt to re-fit a [g]lmer model with a range of optimizers. #' The default is to use all known optimizers for R that satisfy the #' requirements (do not require explicit gradients, allow #' box constraints), in four categories; (i) built-in #' (\code{minqa::bobyqa}, \code{lme4::Nelder_Mead}), (ii) wrapped via optimx #' (most of optimx's optimizers that allow box constraints require #' an explicit gradient function to be specified; the two provided #' here are really base R functions that can be accessed via optimx, #' (iii) wrapped via nloptr, (iv) \code{dfoptim::nmkb}. #' #' @param m a fitted model with \code{lmer} #' @param meth_tab a matrix (or data.frame) with columns #' - method the name of a specific optimization method to pass to the optimizer #' (leave blank for built-in optimizers) #' - optimizer the \code{optimizer} function to use #' @param verbose print progress messages? #' @param maxfun number of iterations to allow for the optimization rountine. #' @param ... further arguments passed to \code{\link{update.merMod}} such as \code{data}. #' @param fn needed for \code{dfoptim::nmkb} #' @param par needed for \code{dfoptim::nmkb} #' @param lower needed for \code{dfoptim::nmkb} #' @param upper needed for \code{dfoptim::nmkb} #' @param control needed for \code{dfoptim::nmkb} #' #' @details Needs packages \pkg{nloptr}, \pkg{optimx}, and \code{dfoptim} to try out all optimizers. \pkg{optimx} needs to be loaded explicitly using \code{library} or \code{require} (see examples). #' #' \code{nmkbw} is a simple wrapper function for fitting models with the corresponding optimizer. It needs to be exported for \code{lme4}, but should not be called directly by the user. #' #' @note code taken from \url{https://github.com/lme4/lme4/blob/master/inst/utils/allFit.R} #' #' @return a list of fitted \code{merMod} objects #' @seealso slice, slice2D in the bbmle package #' @author Ben Bolker, minor changes by Henrik Singmann #' @export #' @importFrom lme4 isGLMM lmerControl glmerControl #' @importFrom stats setNames update optim #' #' @example examples/examples.allFit.R #' all_fit <- function(m, meth_tab = cbind( optimizer=rep(c("bobyqa","Nelder_Mead", "optimx", "nloptwrap", "nmkbw"), c( 1, 1, 2, 2, 1)), method= c("", "", "nlminb","L-BFGS-B","NLOPT_LN_NELDERMEAD", "NLOPT_LN_BOBYQA", "") ), verbose=TRUE,maxfun=1e6, ...) { stopifnot(length(dm <- dim(meth_tab)) == 2, dm[1] >= 1, dm[2] >= 2, is.character(optimizer <- meth_tab[,"optimizer"]), is.character(method <- meth_tab[,"method"])) fit.names <- paste(optimizer, method, sep=".") res <- setNames(as.list(fit.names), fit.names) dots <- list(...) for (i in seq_along(fit.names)) { if (verbose) cat(fit.names[i],": ") ctrl <- list(optimizer=optimizer[i]) ctrl$optCtrl <- switch(optimizer[i], optimx = list(method = method[i]), nloptWrap = list(algorithm= method[i]), list(maxfun=maxfun)) ctrl <- do.call(if(isGLMM(m)) glmerControl else lmerControl, ctrl) if ("data" %in% names(dots)) { tt <- system.time(rr <- tryCatch(update(m, control = ctrl, data = dots$data, ...), error = function(e) e)) } else { tt <- system.time(rr <- tryCatch(update(m, control = ctrl, ...), error = function(e) e)) } attr(rr, "optCtrl") <- ctrl$optCtrl # contains crucial info here attr(rr, "time") <- tt # store timing info res[[i]] <- rr if (verbose) { if (inherits(rr, "merMod")) cat("[OK]\n") else cat("[ERROR]\n") } } ## res } #' @rdname all_fit #' @export nmkbw <- function(fn,par,lower,upper,control) { if (length(par)==1) { res <- optim(fn=fn,par=par,lower=lower,upper=100*par, method="Brent") } else { if (!is.null(control$maxfun)) { control$maxfeval <- control$maxfun control$maxfun <- NULL } res <- dfoptim::nmkb(fn=fn,par=par,lower=lower,upper=upper,control=control) } res$fval <- res$value res } # #' @export # summary.allfit <- function(object, ...) { # which.OK <- !sapply(object,is,"error") # msgs <- lapply(object[which.OK],function(x) x@optinfo$conv$lme4$messages) # fixef <- t(sapply(object[which.OK],fixef)) # llik <- sapply(object[which.OK],logLik) # times <- t(sapply(object[which.OK],attr,"time")) # feval <- sapply(object[which.OK],function(x) x@optinfo$feval) # sdcor <- t(sapply(object[which.OK],function(x) { # aa <- as.data.frame(VarCorr(x)) # setNames(aa[,"sdcor"],c(lme4:::tnames(object[which.OK][[1]]), # if (isLMM(object[[1]])) "sigma" else NULL)) # })) # namedList(which.OK,msgs,fixef,llik,sdcor,times,feval) # } # # #' @export # print.summary.allfit <- function(object,...) { # if (!which.OK==seq(length(object))) { # cat("some optimizers failed: ", # paste(names(object)[!which.OK],collapse=","),"\n") # } # }afex/R/reexport.R0000644000176200001440000000010313073236302013362 0ustar liggesusers### lme4 #' @importFrom lmerTest lmer #' @export lmerTest::lmer afex/R/methods.afex_aov.R0000644000176200001440000002343213073233062014756 0ustar liggesusers#' Methods for afex_aov objects #' #' Methods defined for objects returned from the ANOVA functions \code{\link{aov_car}} et al. of class \code{afex_aov} containing both the ANOVA fitted via \code{car::Anova} and base R's \code{aov}. #' #' @param object,x object of class \code{afex_aov} as returned from \code{\link{aov_car}} and related functions. #' @param p_adjust_method \code{character} indicating if p-values for individual effects should be adjusted for multiple comparisons (see \link[stats]{p.adjust} and details). #' @param ... further arguments passed through, see description of return value for details. #' @param trms,xlev,grid same as for \code{\link{lsm.basis}}. #' #' @return #' \describe{ #' \item{\code{anova}}{Returns an ANOVA table of class \code{c("anova", "data.frame")}. Information such as effect size (\code{es}) or df-correction are calculated each time this method is called.} #' \item{\code{summary}}{For ANOVAs containing within-subject factors it returns the full output of the within-subject tests: the uncorrected results, results containing Greenhousse-Geisser and Hyunh-Feldt correction, and the results of the Mauchly test of sphericity (all achieved via \code{summary.Anova.mlm}). For other ANOVAs, the \code{anova} table is simply returned.} #' \item{\code{print}}{Prints (and invisibly returns) the ANOVA table as constructed from \code{\link{nice}} (i.e., as strings rounded nicely). Arguments in \code{...} are passed to \code{nice} allowing to pass arguments such as \code{es} and \code{correction}.} #' \item{\code{recover.data} and \code{lsm.basis}}{Provide the backbone for using \code{\link{lsmeans}} and related functions from \pkg{lsmeans} directly on \code{afex_aov} objects by returning a \code{\link{ref.grid}} object. Should not be called directly but through the functionality provided by \pkg{lsmeans}.} #' #' } #' #' @details #' Exploratory ANOVA, for which no detailed hypotheses have been specified a priori, harbor a multiple comparison problem (Cramer et al., 2015). To avoid an inflation of familywise Type I error rate, results need to be corrected for multiple comparisons using \code{p_adjust_method}. #' \code{p_adjust_method} defaults to the method specified in the call to \code{\link{aov_car}} in \code{anova_table}. If no method was specified and \code{p_adjust_method = NULL} p-values are not adjusted. #' #' @references #' Cramer, A. O. J., van Ravenzwaaij, D., Matzke, D., Steingroever, H., Wetzels, R., Grasman, R. P. P. P., ... Wagenmakers, E.-J. (2015). Hidden multiplicity in exploratory multiway ANOVA: Prevalence and remedies. \emph{Psychonomic Bulletin & Review}, 1-8. doi:\href{http://doi.org/10.3758/s13423-015-0913-5}{10.3758/s13423-015-0913-5} #' #' @name afex_aov-methods #' @importFrom stats p.adjust NULL #### methods for afex_aov #' @rdname afex_aov-methods #' @inheritParams nice #' @method anova afex_aov #' @export anova.afex_aov <- function(object, es = afex_options("es_aov"), observed = NULL, correction = afex_options("correction_aov"), MSE = TRUE, intercept = FALSE, p_adjust_method = NULL, sig_symbols = attr(object$anova_table, "sig_symbols"), ...) { # internal functions: # check arguments dots <- list(...) if("p.adjust.method" %in% names(dots)) { #(!missing(sig.symbols)) { warn_deprecated_arg("p.adjust.method", "p_adjust_method") p_adjust_method <- dots$p.adjust.method } es <- match.arg(es, c("none", "ges", "pes"), several.ok = TRUE) correction <- match.arg(correction, c("GG", "HF", "none")) #if (class(object$Anova)[1] == "Anova.mlm") { if (inherits(object$Anova, "Anova.mlm")) { tmp <- suppressWarnings(summary(object$Anova, multivariate = FALSE)) t.out <- tmp[["univariate.tests"]] #browser() #t.out <- cbind(t.out, orig_den_df = t.out[, "den Df"]) if (correction[1] == "GG") { tmp[["pval.adjustments"]] <- tmp[["pval.adjustments"]][!is.na(tmp[["pval.adjustments"]][,"GG eps"]),, drop = FALSE] t.out[row.names(tmp[["pval.adjustments"]]), "num Df"] <- t.out[row.names(tmp[["pval.adjustments"]]), "num Df"] * tmp[["pval.adjustments"]][,"GG eps"] t.out[row.names(tmp[["pval.adjustments"]]), "den Df"] <- t.out[row.names(tmp[["pval.adjustments"]]), "den Df"] * tmp[["pval.adjustments"]][,"GG eps"] t.out[row.names(tmp[["pval.adjustments"]]), "Pr(>F)"] <- tmp[["pval.adjustments"]][,"Pr(>F[GG])"] } else { if (correction[1] == "HF") { if (any(tmp[["pval.adjustments"]][,"HF eps"] > 1)) warning("HF eps > 1 treated as 1", call. = FALSE) tmp[["pval.adjustments"]] <- tmp[["pval.adjustments"]][!is.na(tmp[["pval.adjustments"]][,"HF eps"]),, drop = FALSE] t.out[row.names(tmp[["pval.adjustments"]]), "num Df"] <- t.out[row.names(tmp[["pval.adjustments"]]), "num Df"] * pmin(1, tmp[["pval.adjustments"]][,"HF eps"]) t.out[row.names(tmp[["pval.adjustments"]]), "den Df"] <- t.out[row.names(tmp[["pval.adjustments"]]), "den Df"] * pmin(1, tmp[["pval.adjustments"]][,"HF eps"]) t.out[row.names(tmp[["pval.adjustments"]]), "Pr(>F)"] <- tmp[["pval.adjustments"]][,"Pr(>F[HF])"] } else { if (correction[1] == "none") { TRUE } else stop("None supported argument to correction.") } } tmp.df <- t.out tmp2 <- as.data.frame(unclass(tmp.df)) #} else if (class(object$Anova)[1] == "anova") { } else if (inherits(object$Anova, "anova")) { #browser() tmp.df <- cbind(object$Anova[-nrow(object$Anova),], data.frame("Error SS" = object$Anova[nrow(object$Anova), "Sum Sq"], "den Df" = object$Anova[nrow(object$Anova), "Df"], check.names = FALSE)) colnames(tmp.df)[1:3] <- c("SS", "num Df", "F") #tmp.df$orig_den_df <- tmp.df[, "den Df"] tmp2 <- as.data.frame(tmp.df) } else stop("Non-supported object passed. Slot 'Anova' needs to be of class 'Anova.mlm' or 'anova'.") tmp2[,"MSE"] <- tmp2[,"Error SS"]/tmp2[,"den Df"] # calculate es es_df <- data.frame(row.names = rownames(tmp2)) if ("pes" %in% es) { es_df$pes <- tmp2$SS/(tmp2$SS + tmp2[,"Error SS"]) } if ("ges" %in% es) { # This code is basically a copy from ezANOVA by Mike Lawrence! if(!is.null(observed) & length(observed) > 0){ obs <- rep(FALSE,nrow(tmp2)) for(i in observed){ if (!any(str_detect(rownames(tmp2),str_c("\\b",i,"\\b")))) stop(str_c("Observed variable not in data: ", i)) obs <- obs | str_detect(rownames(tmp2),str_c("\\b",i,"\\b")) } obs_SSn1 <- sum(tmp2$SS*obs) obs_SSn2 <- tmp2$SS*obs } else { obs_SSn1 <- 0 obs_SSn2 <- 0 } es_df$ges <- tmp2$SS/(tmp2$SS+sum(unique(tmp2[,"Error SS"]))+obs_SSn1-obs_SSn2) } anova_table <- cbind(tmp2[,c("num Df", "den Df", "MSE", "F")], es_df, "Pr(>F)" = tmp2[,c("Pr(>F)")]) #browser() if (!MSE) anova_table$MSE <- NULL if (!intercept) if (row.names(anova_table)[1] == "(Intercept)") anova_table <- anova_table[-1,, drop = FALSE] # Correct for multiple comparisons if(is.null(p_adjust_method)) p_adjust_method <- ifelse(is.null(attr(object$anova_table, "p_adjust_method")), "none", attr(object$anova_table, "p_adjust_method")) anova_table[,"Pr(>F)"] <- p.adjust(anova_table[,"Pr(>F)"], method = p_adjust_method) class(anova_table) <- c("anova", "data.frame") p_adj_heading <- if(p_adjust_method != "none") paste0(", ", p_adjust_method, "-adjusted") else NULL attr(anova_table, "heading") <- c(paste0("Anova Table (Type ", attr(object, "type"), " tests", p_adj_heading, ")\n"), paste("Response:", attr(object, "dv"))) attr(anova_table, "p_adjust_method") <- p_adjust_method attr(anova_table, "es") <- es attr(anova_table, "correction") <- if(length(attr(object, "within")) > 0 && any(vapply(object$data$long[, attr(object, "within"), drop = FALSE], nlevels, 0) > 2)) correction else "none" attr(anova_table, "observed") <- if(!is.null(observed) & length(observed) > 0) observed else character(0) attr(anova_table, "sig_symbols") <- if(!is.null(sig_symbols)) sig_symbols else afex_options("sig_symbols") anova_table } #' @rdname afex_aov-methods #' @method print afex_aov #' @importFrom stats symnum #' @export print.afex_aov <- function(x, ...) { out <- nice(x$anova_table, ...) print(out) invisible(out) } #' @rdname afex_aov-methods #' @method summary afex_aov #' @export summary.afex_aov <- function(object, ...) { if (inherits(object$Anova, "Anova.mlm")) { #if (class(object$Anova)[1] == "Anova.mlm") { if(attr(object$anova_table, "p_adjust_method") != "none") message("Note, results are NOT adjusted for multiple comparisons as requested\n(p_adjust_method = '", attr(object$anova_table, "p_adjust_method"), "')\nbecause the desired method of sphericity correction is unknown.\nFor adjusted p-values print the object (to see object$anova_table), or call\none of anova.afex_aov() or nice().") return(summary(object$Anova, multivariate = FALSE)) #} else if (class(object$Anova)[1] == "anova") { } else if (inherits(object$Anova, "anova")) { return(object$anova_table) } else stop("Non-supported object passed. Slot 'Anova' needs to be of class 'Anova.mlm' or 'anova'.") } #-------------------------------------------------------------- ### afex package - mixed objects ### # just need to provide an 'lsmeans' method here #' @rdname afex_aov-methods #' @importFrom lsmeans recover.data lsm.basis #' @method recover.data afex_aov #' @export recover.data.afex_aov = function(object, ...) { #do.call(do.call(":::", args = list(pkg = "lsmeans", name = "recover.data.aovlist")), args = list(object = object$aov, data = object$data$long, list(...))) recover.data(object = object$aov, ...) } #' @rdname afex_aov-methods #' @method lsm.basis afex_aov #' @export lsm.basis.afex_aov = function(object, trms, xlev, grid, ...) { #do.call(do.call(":::", args = list(pkg = "lsmeans", name = "lsm.basis.aovlist")), args = list(object = object$aov, trms = trms, xlev = xlev, grid = grid)) lsm.basis(object$aov, trms, xlev, grid, ...) } afex/R/fhch2010-data.R0000644000176200001440000000561713055500353013653 0ustar liggesusers#' Data from Freeman, Heathcote, Chalmers, & Hockley (2010) #' #' Lexical decision and word naming latencies for 300 words and 300 nonwords presented in Freeman, Heathcote, Chalmers, and Hockley (2010). The study had one between-subjects factors, \code{"task"} with two levels (\code{"naming"} or \code{"lexdec"}), and four within-subjects factors: \code{"stimulus"} type with two levels (\code{"word"} or \code{"nonword"}), word \code{"density"} and word \code{"frequency"} each with two levels (\code{"low"} and \code{"high"}) and stimulus \code{"length"} with three levels (4, 5, and 6). #' #' In the lexical-decision condition (N = 25), subjects indicated whether each item was a word or a nonword, by pressing either the left (labeled word) or right (labeled nonword) outermost button on a 6-button response pad. The next study item appeared immediately after the lexical decision response was given. In the naming condition (N = 20), subjects were asked to name each item aloud, and items remained on screen for 3 s. Naming time was recorded by a voice key. #' #' Items consisted of 300 words, 75 in each set making up a factorial combination of high and low density and frequency, and 300 nonwords, with equal numbers of 4, 5, and 6 letter items in each set. #' #' #' @docType data #' @keywords dataset #' @name fhch2010 #' @usage fhch2010 #' @format A \code{data.frame} with 13,222 obs. of 9 variables: #' \describe{ #' \item{id}{participant id, \code{factor}} #' \item{task}{\code{factor} with two levels indicating which task was performed: \code{"naming"} or \code{"lexdec"}} #' \item{stimulus}{\code{factor} indicating whether the shown stimulus was a \code{"word"} or \code{"nonword"}} #' \item{density}{\code{factor} indicating the neighborhood density of presented items with two levels: \code{"low"} and \code{"high"}. Density is defined as the number of words that differ from a base word by one letter or phoneme.} #' \item{frequency}{\code{factor} indicating the word frequency of presented items with two levels: \code{"low"} (i.e., words that occur less often in natural language) and \code{"high"} (i.e., words that occur more often in natural language).} #' \item{length}{\code{factor} with 3 levels (4, 5, or 6) indicating the number of characters of presented stimuli.} #' \item{item}{\code{factor} with 600 levels: 300 words and 300 nonwords} #' \item{rt}{response time in seconds} #' \item{log_rt}{natural logarithm of response time in seconds} #' \item{correct}{boolean indicating whether or not the response in the lexical decision task was correct or incorrect (incorrect responses of the naming task are not part of the data).} #' } #' @source Freeman, E., Heathcote, A., Chalmers, K., & Hockley, W. (2010). Item effects in recognition memory for words. Journal of Memory and Language, 62(1), 1-18. http://doi.org/10.1016/j.jml.2009.09.004 #' #' @encoding UTF-8 #' #' @example examples/examples.fhch2010.R NULL afex/R/zzz.R0000644000176200001440000000414013073236720012360 0ustar liggesusers ## set default options for afex_options: .onLoad <- function(libname, pkgname) { op <- options() op.afex <- list( afex.type = 3, afex.check_contrasts = TRUE, afex.method_mixed = "KR", afex.return_aov = "afex_aov", afex.es_aov = "ges", afex.correction_aov = "GG", afex.factorize = TRUE, afex.lmer_function = "lmerTest", afex.sig_symbols = c(" +", " *", " **", " ***") ) toset <- !(names(op.afex) %in% names(op)) if(any(toset)) options(op.afex[toset]) invisible() } .onAttach <- function(libname, pkgname) { #assign(".oldContrasts", options("contrasts"), envir = .GlobalEnv) packageStartupMessage("************\nWelcome to afex. For support visit: http://afex.singmann.science/") packageStartupMessage("- Functions for ANOVAs: aov_car(), aov_ez(), and aov_4()\n- Methods for calculating p-values with mixed(): 'KR', 'S', 'LRT', and 'PB'\n- 'afex_aov' and 'mixed' objects can be passed to lsmeans() for follow-up tests\n- Get and set global package options with: afex_options()\n- Set orthogonal sum-to-zero contrasts globally: set_sum_contrasts()\n- For example analyses see: browseVignettes(\"afex\")\n************") #if (options("contrasts")[[1]][1] != "contr.sum") { #packageStartupMessage("Setting contrasts to effects coding: options(contrasts=c('contr.sum', 'contr.poly'))\nThis affects all functions using contrasts (e.g., lmer, lm, aov, ...).\nTo reset default settings run: options(contrasts=c('contr.treatment', 'contr.poly')) (all afex functions should be unaffected by this)\n") # \nPrevious contrasts saved in '.oldContrasts'. #options(contrasts=c('contr.sum', 'contr.poly')) #} else packageStartupMessage("Contrasts already set to effects coding: options(contrasts=c('contr.sum', '...'))\n") #packageStartupMessage("afex loads the required packages (e.g., lme4, car, pbkrtest) in an order that should not lead to problems.\nLoading any of the packages (specifically lme4) beforehand can lead to problems (especially with older versions of either).\nLoading nlme in addition to afex (before or after loading it), may especially lead to problems.\n************") } afex/vignettes/0000755000176200001440000000000013111546473013212 5ustar liggesusersafex/vignettes/afex_mixed_example.Rmd0000644000176200001440000006772313111540031017501 0ustar liggesusers--- title: "Mixed Model Reanalysis of RT data" author: "Henrik Singmann" date: "`r Sys.Date()`" show_toc: true output: knitr:::html_vignette: toc: yes vignette: > %\VignetteIndexEntry{Mixed Model Example Analysis: Reanalysis of Freeman et al. (2010)} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r set-options, echo=FALSE, cache=FALSE} options(width = 90) ``` ## Overview This documents reanalysis response time data from an Experiment performed by Freeman, Heathcote, Chalmers, and Hockley (2010) using the mixed model functionality of __afex__ implemented in function `mixed` followed by post-hoc tests using package __lsmeans__ (Lenth, 2015). After a brief description of the data set and research question, the code and results are presented. ## Description of Experiment and Data The data are lexical decision and word naming latencies for 300 words and 300 nonwords from 45 participants presented in Freeman et al. (2010). The 300 items in each `stimulus` condition were selected to form a balanced $2 \times 2$ design with factors neighborhood `density` (low versus high) and `frequency` (low versus high). The `task` was a between subjects factor: 25 participants worked on the lexical decision task and 20 participants on the naming task. After excluding erroneous responses each participants responded to between 135 and 150 words and between 124 and 150 nonwords. We analyzed log RTs which showed an approximately normal picture. ## Data and R Preperation We start with loading some packages we will need throughout this example. For data manipulation we will be using the `dplyr` and `tidyr` packages from the [`tidyverse`](http://tidyverse.org/). A thorough introduction to these packages is beyond this example, but well worth it, and can be found in ['R for Data Science'](http://r4ds.had.co.nz/) by Wickham and Grolemund. For plotting we will be diverging from the `tidyverse` and use `lattice` instead. In my opinion `lattice` provides the best combination of expressive power and abstraction. Specifically, like in base graph, we can fully decide what gets plotted. After loading the packages, we will load the data (which comes with `afex`), remove the errors, and take a look at the variables in the data. ```{r message=FALSE, warning=FALSE} require(afex) # needed for ANOVA, lsmeans is loaded automatically. require(dplyr) # for working with data frames require(tidyr) # for transforming data frames from wide to long and the other way round. require(multcomp) # for advanced control for multiple testing/Type 1 errors. require(lattice) # for plots require(latticeExtra) # for combining lattice plots, etc. lattice.options(default.theme = standard.theme(color = FALSE)) # black and white lattice.options(default.args = list(as.table = TRUE)) # better ordering data("fhch2010") # load fhch <- droplevels(fhch2010[ fhch2010$correct,]) # remove errors str(fhch2010) # structure of the data ``` To make sure our expectations about the data match the data we use some `dplyr` magic to confirm the number of participants per condition and items per participant. ```{r} ## are all participants in only one task? fhch2010 %>% group_by(id) %>% summarise(task = n_distinct(task)) %>% as.data.frame() %>% {.$task == 1} %>% all() ## participants per condition: fhch2010 %>% group_by(id) %>% summarise(task = first(task)) %>% ungroup() %>% group_by(task) %>% summarise(n = n()) ## number of different items per participant: fhch2010 %>% group_by(id, stimulus) %>% summarise(items = n_distinct(item)) %>% ungroup() %>% group_by(stimulus) %>% summarise(min = min(items), max = max(items), mean = mean(items)) ``` Before running the analysis we should make sure that our dependent variable looks roughly normal. To compare `rt` with `log_rt` within the same graph using `lattice` we first need to transform the data from the wide format (where both rt types occupy one column each) into the long format (in which the two rt types are combined into a single column with an additional indicator column). To do so we use `tidyr::gather`. Then we simply call the `histogram` function on the new `data.frame` and make a few adjustments to the defaults to obtain a nice looking output. The plot shows that `log_rt` looks clearly more normal than `rt`, although not perfectly so. An interesting exercise could be to rerun the analysis below using a transformation that provides an even better 'normalization'. ```{r, fig.width=7, fig.height=4} fhch_long <- fhch %>% gather("rt_type", "rt", rt, log_rt) histogram(~rt|rt_type, fhch_long, breaks = "Scott", type = "density", scale = list(x = list(relation = "free"))) ``` ## Descriptive Analysis The main factors in the experiment were the between-subjects factor `task` (`naming` vs. `lexdec`), and the within-subjects factors `stimulus` (`word` vs. `nonword`), `density` (`low` vs. `high`), and `frequency` (`low` vs. `high`). Before running an analysis it is a good idea to visually inspect the data to gather some expectations regarding the results. Should the statistical results dramatically disagree with the expectations this suggests some type of error along the way (e.g., model misspecification) or at least encourages a thorough check to make sure everything is correct. We first begin by plotting the data aggregated by-participant. In each plot we plot the raw data in the background. To make the individual data points visible we add some `jitter` on the x-axis and choose `pch` and `alpha` values such that we see where more data points are (i.e., where plot overlaps it is darker). Then we add the mean as a x in a circle. Both of this is done in the same call to `xyplot` using a custom panel function. Finally, we combine this plot with a simple boxplot using `bwplot`. ```{r, fig.width=7, fig.height=6} agg_p <- fhch %>% group_by(id, task, stimulus, density, frequency) %>% summarise(mean = mean(log_rt)) %>% ungroup() xyplot(mean ~ density:frequency|task+stimulus, agg_p, jitter.x = TRUE, pch = 20, alpha = 0.5, panel = function(x, y, ...) { panel.xyplot(x, y, ...) tmp <- aggregate(y, by = list(x), mean) panel.points(tmp$x, tmp$y, pch = 13, cex =1.5) }) + bwplot(mean ~ density:frequency|task+stimulus, agg_p, pch="|", do.out = FALSE) ``` Now we plot the same data but aggregated across items: ```{r, fig.width=7, fig.height=6} agg_i <- fhch %>% group_by(item, task, stimulus, density, frequency) %>% summarise(mean = mean(log_rt)) %>% ungroup() xyplot(mean ~ density:frequency|task+stimulus, agg_i, jitter.x = TRUE, pch = 20, alpha = 0.2, panel = function(x, y, ...) { panel.xyplot(x, y, ...) tmp <- aggregate(y, by = list(x), mean) panel.points(tmp$x, tmp$y, pch = 13, cex =1.5) }) + bwplot(mean ~ density:frequency|task+stimulus, agg_i, pch="|", do.out = FALSE) ``` These two plots show a very similar pattern and suggest several things: * Responses to `nonwords` appear slower than responses to `words`, at least for the `naming` task. * `lexdec` responses appear to be slower than `naming` responses, particularly in the `word` condition. * In the `nonword` and `naming` condition we see a clear effect of `frequency` with slower responses to `high` than `low` `frequency` words. * In the `word` conditions the `frequency` pattern appears to be in the opposite direction to the pattern described in the previous point: faster responses to `low` `frequency` than to `high` `frequency` words. * `density` appears to have no effect, perhaps with the exception of the `nonword` `lexdec` condition. ## Model Setup To set up a mixed model it is important to identify which factors vary within which grouping factor generating random variability (i.e., grouping factors are sources of stochastic variability). The two grouping factors are participants (`id`) and items (`item`). The within-participant factors are `stimulus`, `density`, and `frequency`. The within-item factor is `task`. The 'maximal model' (Barr, Levy, Scheepers, and Tily, 2013) therefore is the model with by-participant random slopes for `stimulus`, `density`, and `frequency` and their interactions and by-item random slopes for `task`. Occasionally, the maximal model does not converge successfully. In this case a good first approach for dealing with this problem is to remove the corelations among the random terms. In our example, there are two sets of correlations, one for each random effect grouping variable. Consequently, we can build four model that have the maximal structure in terms of random-slopes and only differ in which correlations among random terms are calculated: 1. With all correlations. 2. No correlation among by-item random effects (i.e., no correlation between random intercept and `task` random slope). 3. No correlation among by-participant random effect terms (i.e., no correlation among random slopes themselves and between the random slopes and the random intercept). 4. No correlation among either random grouping factor. The next decision to be made is which method to use for obtaining $p$-values. The default method is `KR` (=Kenward-Roger) which provides the best control against anti-conservative results. However, `KR` needs quite a lot of RAM, especially with complicated random effect structures and large data sets. As in this case we have both, relatively large data (i.e., many levels on each random effect, especially the item random effect) and a complicated random effect structure, it seems a reasonable decision to choose another method. The second 'best' method (in terms of controlling for Type I errors) is the 'Satterthwaite' approximation, `method='S'`. It provides a similar control of Type I errors as the Kenward-Roger approximation and needs less RAM, however one downside is that it simply fails in some cases. ## Results ### Satterthwaite Results The following code fits the four models using the Satterthwaite method. To suppress random effects we use the `||` notation. Note that it is necessary to set `expand_re=TRUE` when suppressing random effects among variables that are entered as factors and not as numerical variables (as done here). Also note that `mixed` automatically uses appropriate contrast codings if factors are included in interactions (`contr.sum`) in contrast to the `R` default (which is `contr.treatment`). To make sure the estimation does not end prematurely we set the allowed number of function evaluations to a very high value (using `lmerControl`). ```{r, eval = FALSE} m1s <- mixed(log_rt ~ task*stimulus*density*frequency + (stimulus*density*frequency|id)+ (task|item), fhch, method = "S", control = lmerControl(optCtrl = list(maxfun = 1e6))) m2s <- mixed(log_rt ~ task*stimulus*density*frequency + (stimulus*density*frequency|id)+ (task||item), fhch, method = "S", control = lmerControl(optCtrl = list(maxfun = 1e6)), expand_re = TRUE) m3s <- mixed(log_rt ~ task*stimulus*density*frequency + (stimulus*density*frequency||id)+ (task|item), fhch, method = "S", control = lmerControl(optCtrl = list(maxfun = 1e6)), expand_re = TRUE) m4s <- mixed(log_rt ~ task*stimulus*density*frequency + (stimulus*density*frequency||id)+ (task||item), fhch, method = "S", control = lmerControl(optCtrl = list(maxfun = 1e6)), expand_re = TRUE) ``` As the estimation of these model may take some time, `afex` inlcudes the estimated models which can be loaded with the following code. Note that when using the `print` or `anova` method for `mixed` objects, the `warnings` emitted during estimation of the model by `lmer` will be printed again. So there is no downside of loading the already estimated models. We then inspect the four results. ```{r} load(system.file("extdata/", "freeman_models.rda", package = "afex")) m1s m2s m3s m4s ``` Before looking at the results we can see that for models 1 and 2, `lmer` emmited a warning that the model failed to converge. These warnings do not necessarily mean that the results cannot be used. As we will see below, model 2 (`m2s`) produces essentially the same results as models 3 and 4 suggesting that this warning is indeed a false positive. However, the results also show that estimating the Satterthwaite approximation failed for `m1s`, we have no denominator degrees of freedom and no $p$-values. If this happens, we can only try another method or a reduced model. Models 2 to 4 produce results and the results are extremely similar across models. A total of 9 or 10 effects reached significance. We found main effects for `task` and `stimulus`, two-way interactions of `task:stimulus`, `task:density`, `task:frequency`, and `stimulus:frequency`, three-way interactions of `task:stimulus:density`, `task:stimulus:frequency`, and `task:density:frequency`, a marginal three-way interaction (for two of three models) of `stimulus:density:frequency`, and the four-way interaction of `task:stimulus:density:frequency`. Additionally, all $F$ and $p$ values are very similar to each other across the three models. The only difference in terms of significant versus non-significant effects between the three models is the three-way interaction of `stimulus:density:frequency` which is only significant for model 3 with $F(1, 88.40) = 4.16$, $p = .04$, and only reaches marginal significance for the other two models with $p > .05$ and a very similar $F$-value. ### LRT Results It is instructive to compare those results with results obtained using the comparatively 'worst' method for obtaining $p$-value simplmeneted in `afex`, likelihood ratio tests. Likelihood ratio-tests should in principle deliver reasonable results for large data sets such as the current one, so we should expect not too many deviations. We again fit all four models, this time using `method='LRT'`. ```{r, eval = FALSE} m1lrt <- mixed(log_rt ~ task*stimulus*density*frequency + (stimulus*density*frequency|id)+ (task|item), fhch, method = "LRT", control = lmerControl(optCtrl = list(maxfun = 1e6))) m2lrt <- mixed(log_rt ~ task*stimulus*density*frequency + (stimulus*density*frequency|id)+ (task||item), fhch, method = "LRT", control = lmerControl(optCtrl = list(maxfun = 1e6)), expand_re = TRUE) m3lrt <- mixed(log_rt ~ task*stimulus*density*frequency + (stimulus*density*frequency||id)+ (task|item), fhch, method = "LRT", control = lmerControl(optCtrl = list(maxfun = 1e6)), expand_re = TRUE) m4lrt <- mixed(log_rt ~ task*stimulus*density*frequency + (stimulus*density*frequency||id)+ (task||item), fhch, method = "LRT", control = lmerControl(optCtrl = list(maxfun = 1e6)), expand_re = TRUE) ``` Because the resulting `mixed` objects are of considerable size, we do not include the full objects, but only the resulting ANOVA tables and `data.frames` (`nice_lrt` is a list containing the result from calling `nice` on the objects, `anova_lrt` contains the result from calling `anova`). Before considering the results, we again first consider the warnings emitted when fitting the models. Because methods `'LRT'` and `'PB'` fit one `full_model` and one `restricted_model` for each effect (i.e., term), there can be more warnings than for methods `'KR'` and `'S'` which only fit one model (the `full_model`). And this is exactly what happens. For `m1lrt` there are 11 convergence warnings, almost one per fitted model. However, none of those immediately invalidates the results. This is different for models 2 and 3 for both of which warnings indicate that `nested model(s) provide better fit than full model`. What this warning means is that the `full_model` does not provide a better fit than at least one of the `restricted_model`, which is mathematically impossible as the `restricted_models` are nested within the full model (i.e., they result from setting one or several parameters equal to 0, so the `full_model` can always provide an at least as good account as the `restricted_models`). Model 4 finally shows no warnings. The following code produces a single output comparing models 1 and 4 next to each other. The results show basically the same pattern as obtained with the Satterthwaite approximation. Even the $p$-values are extremely similar to the $p$-values of the Satterthwaite models. The only 'difference' is that the `stimulus:density:frequency` three-way interaction is significant in each case now, although only barely so. ```{r} res_lrt <- cbind(nice_lrt[[1]], " " = " ", nice_lrt[[4]][,-(1:2)]) colnames(res_lrt)[c(3,4,6,7)] <- paste0( rep(c("m1_", "m4_"), each =2), colnames(res_lrt)[c(3,4)]) res_lrt ``` We can also compare this with the results from model 3. Although the `full_model` cannot be the maximum-likelihood estimate (as it provides a worse than the `density:frequency` model), the difference seems to be minimal as it also shows exactly the same pattern as the other models. ```{r} nice_lrt[[2]] ``` ### Summary of Results Fortunately, the results from all models that actually produced results and converged without a critical warning (e.g., one critical warning is that a `restricted_model` provides a better fit than the `full_model`) agreed very strongly providing a high degree of confidence in the results. This might not be too surprising given the comparatively large number of total data points and the fact that each random effect grouping factor has a considerable number of levels (way above 20 for both participants and items). This also suggests that the convergence warnings are likely false positives; the models seem to have converged successfully to the maximum likelihood estimate, or at least to a value very near the maximum likelihood estimate. How further reducing the random effects structure (e.g., removing the random slopes for the highest interaction) affects the results is left as an exercise for the reader. In terms of the significant findings, there are many that seem to be in line with the descriptive results described above. For example, the highly significant effect of `task:stimulus:frequency` with $F(1, 190.61) = 109.33$, $p < .0001$ (values from `m2s`), appears to be in line with the observation that the frequency effect appears to change its sign depending on the `task:stimulus` cell (with `nonword` and `naming` showing the opposite patterns than the other three conditions). Consequently, we start by investigating this interaction further below. ## Follow-Up Analyses Before investigating the significant interaction in detail it is a good idea to remind oneself what a significant interaction represents on a conceptual level; that one or multiple of the variables in the interaction moderate (i.e., affect) the effect of the other variable or variables. Consequently, there are several ways to investigate a significant interaction. Each of the involved variables can be seen as the moderating variables and each of the variables can be seen as the effect of interest. Which one of those possible interpretations is of interest in a given situation highly depends on the actual data and research question and multiple views can be 'correct' in a given situation. In addition to this conceptual issue, there are also multiple technical ways to investigate a significant interaction. One approach not followed here is to split the data according to the moderating variables and compute the statistical model again for the splitted data sets with the effect variable(s) as remaining fixed effect. This approach, also called _simple effects_ analysis, is, for example, recommended by Maxwell and Delaney (2004) as it does not assume variance homogeneity and is faithful to the data at each level. The approach taken here is to simply perform the test on the fitted full model. This approach assumes variance homogeneity (i.e., that the variances in all groups are homogeneous) and has the added benefit that it is computationally relatively simple. In addition, it can all be achieved using the framework provided by `lsmeans` (Lenth, 2015). ### task:stimulus:frequency Interaction Our interest in the beginning is on the effect of `frequency` by `task:stimulus` combination. So let us first look at the estimated marginal means os this effect. In `lsmeans` parlance these estimated means are called 'least-square means' because of historical reasons, but because of the lack of least-square estimation in mixed models we prefer the term estimated marginal means, or EMMs for short. Those can be obtained in the following way. To prevent `lsmeans` from calculating the *df* for the EMMs (which can be quite costly), we use asymptotic *df*s (i.e., $z$ values and tests). `lsmeans` requires to first specify the variable(s) one wants to treat as the effect variable(s) (here `frequency`) and then allows to specify condition variables. ```{r} lsm.options(lmer.df = "asymptotic") # also possible: 'satterthwaite', 'kenward-roger' emm_i1 <- lsmeans(m2s, "frequency", by = c("stimulus", "task")) emm_i1 ``` The returned values are in line with our observation that the `nonword` and `naming` condition diverges from the other three. But is there actual evidence that the effect flips? We can test this using additional `lsmeans` functionality. Specifically, we first use the `pairs` function which provides us with a pairwise test of the effect of `frequency` in each `task:stimulus` combination. Then we need to combine the four tests within one object to obtain a familywise error rate correction which we do via `contrast(..., by = NULL)` (i.e., we revert the effect of the `by` statement from the earlier `lsmeans` call) and finally we select the `holm` method for controlling for family wise error rate (the Holm method is uniformly more powerful than the Bonferroni). ```{r} contrast(pairs(emm_i1), by = NULL, adjust = "holm") ``` We could also use a slightly more powerful method than the Holm method, method `free` from package `multcomp`, which takes the correlation of the model parameters into account: ```{r} summary(as.glht(contrast(pairs(emm_i1), by = NULL)), test = adjusted("holm")) ``` We see that the results are exactly as expected. In the `nonword` and `naming` condition we have a clear negative effect of frequency while in the other three conditions it is clearly positive. We could now also use the EMMs and retransform them onto the response scale (i.e., RTs) which we could use for plotting. Note that the $p$-values in this ouput are for the $z$ test of whether or not a value is significantly above 0 on the `log_rt`-scale (i.e., above 1 second on the response scale). That seems not the most interesting test, but the output is interesting because of the EMMs and standard errors that could be used for printing. ```{r} emm_i1b <- summary(contrast(emm_i1, by = NULL)) emm_i1b[,c("estimate", "SE")] <- exp(emm_i1b[,c("estimate", "SE")]) emm_i1b ``` ### task:stimulus:density:frequency Interaction As the last example, let us take a look at the significant four-way interaction of `task:stimulus:density:frequency`, $F(1, 111.32) = 10.07$, $p = .002$. Here we might be interested in a slightly more difficult question namely whether the `density:frequency` interaction varies across `task:stimulus` conditions. If we again look at the figures above, it appears that there is a difference between `low:low` and `high:low` in the `nonword` and `lexdec` condition, but not in the other conditions. We again first begin by obtaining the EMMs. However, the actual values are not interesting at the moment, we are basically only interested in the interaction for each `task:stimulus` condition. Therefore, we use the EMMs to create two consecutive contrasts, the first one for `density` and then for `frequency` using the fist contrast. Then we run a joint test conditional on the `task:stimulus` conditions. ```{r} emm_i2 <- lsmeans(m2s, c("density", "frequency"), by = c("stimulus", "task")) con1 <- contrast(emm_i2, "trt.vs.ctrl1", by = c("frequency", "stimulus", "task")) # density con2 <- contrast(con1, "trt.vs.ctrl1", by = c("contrast", "stimulus", "task")) test(con2, joint = TRUE, by = c("stimulus", "task")) ``` This test indeed shows that the `density:frequency` interaction is only significant in the `nonword` and `lexdec` condition. Next, let's see if we can unpack this interaction in a meaningful manner. For this we compare `low:low` and `high:low` in each of the four groups. And just for the sake of making the example more complex, we also compare `low:high` and `high:high`. This can simply be done by specifying a list of custom contrasts on the EMMs (or reference grid in `lsmeans` parlance) which can be passed again to the `contrast` function. The contrasts are a `list` where each element should sum to one (i.e., be a proper contrast) and be of length equal to the number of EMMs (although we have 16 EMMs in total, we only need to specify it for a length of four due to conditiong by `c("stimulus", "task")`). To control for the family wise error rate across all tests, we use `contrast` a second time on the result this time again specifying `by = NULL` to revert the effect of conditiong. Note that although we entered the variables into `lsmeans` in the same order as into our plot call above, the order of the four EMMs differs. ```{r} emm_i2 # desired contrats: des_c <- list( ll_hl = c(1, -1, 0, 0), lh_hh = c(0, 0, 1, -1) ) contrast(contrast(emm_i2, des_c), by = NULL, adjust = "holm") ``` In contrast to our expectation, the results show two significant effects and not only one. In line with our expectations, in the `nonword` and `lexdec` condition the EMM of `low:high` is smaller than the EMM for `high:high`, $z = -6.30$, $p < .0001$. However, in the `nonword` and `naming` condition we found the opposite pattern; the EMM of `low:high` is larger than the EMM for `high:high`, $z = 3.65$, $p = .002$. For all other effects $|z| < 1.3$, $p > .99$. In addition, there is no difference between `low:high` and `high:high` in any condition. ## References * Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: Keep it maximal. _Journal of Memory and Language_, 68(3), 255-278. https://doi.org/10.1016/j.jml.2012.11.001 * Bretz, F., Hothorn, T., & Westfall, P. H. (2011). _Multiple comparisons using R_. Boca Raton, FL: CRC Press. https://CRAN.R-project.org/package=multcomp * Freeman, E., Heathcote, A., Chalmers, K., & Hockley, W. (2010). Item effects in recognition memory for words. _Journal of Memory and Language_, 62(1), 1-18. https://doi.org/10.1016/j.jml.2009.09.004 * Lenth, R. V. (2015). _lsmeans: Least-Squares Means_. R package version 2.16-4. https://CRAN.R-project.org/package=lsmeans * Maxwell, S. E., & Delaney, H. D. (2004). _Designing experiments and analyzing data: a model-comparisons perspective_. Mahwah, N.J.: Lawrence Erlbaum Associates. ```{r, echo=FALSE, eval = FALSE} ### OLD STUFF BELOW. PLEASE IGNORE. load("freeman_models.rda") load("../freeman_models_all.rda") m1lrt$restricted_models <- list(NULL) m2lrt$restricted_models <- list(NULL) m3lrt$restricted_models <- list(NULL) m4lrt$restricted_models <- list(NULL) save(m1lrt, file = "freeman_models1.rda", compress = "xz") save(m1s, m2s, m3s, m4s, m1lrt, m2lrt, m3lrt, m4lrt, file = "freeman_models.rda", compress = "xz") anovas_lrt <- lapply(list(m1lrt, m2lrt, m3lrt, m4lrt), anova) nice_lrt <- lapply(list(m1lrt, m2lrt, m3lrt, m4lrt), nice) res_lrt <- cbind(nice_lrt[[1]], " " = " ", nice_lrt[[2]][,-(1:2)], " " = " ", nice_lrt[[3]][,-(1:2)], " " = " ", nice_lrt[[4]][,-(1:2)]) colnames(res_lrt)[c(3,4,6,7, 9,10, 12,13)] <- paste0( rep(c("m1_", "m2_", "m3_","m4_"), each =2), colnames(res_lrt)[c(3,4)]) ## warnings: m1s # fails and 1 warning m2s # 1 warning m3s # 0 warnings m4s # 0 warnings m1lrt # 11 warnings m2lrt # 1 nested model(s) provide better, 7 other warnings m3lrt # 7 nested models provide better fit, 9 other warnings m4lrt # 0 warnings cbind(nice_lrt[[1]]$Effect, do.call("cbind", lapply(nice_lrt, function(x) x[,3:4]))) save(m1s, m2s, m3s, m4s, anovas_lrt, nice_lrt,file = "freeman_models.rda", compress = "xz") save(m1s, m2s, m3s, m4s, m1lrt, m2lrt, m3lrt, m4lrt, file = "freeman_models2.rda", compress = "bzip2") tools::resaveRdaFiles("freeman_models1.rda") ``` afex/vignettes/afex_anova_example.Rmd0000644000176200001440000003151013111546363017476 0ustar liggesusers--- title: "ANOVA and Post-Hoc Contrasts: Reanalysis of Singmann and Klauer (2011)" author: "Henrik Singmann" date: "`r Sys.Date()`" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{ANOVA and Post-Hoc Contrasts: Reanalysis of Singmann and Klauer (2011)} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r set-options, echo=FALSE, cache=FALSE} options(width = 90) ``` # Overview This documents reanalysis a dataset from an Experiment performed by Singmann and Klauer (2011) using the ANOVA functionality of __afex__ followed by post-hoc tests using package __lsmeans__ (Lenth, 2015). After a brief description of the dataset and research question, the code and results are presented. # Description of Experiment and Data Singmann and Klauer (2011) were interested in whether or not conditional reasoning can be explained by a single process or whether multiple processes are necessary to explain it. To provide evidence for multiple processes we aimed to establish a double dissociation of two variables: instruction type and problem type. Instruction type was manipulated between-subjects, one group of participants received deductive instructions (i.e., to treat the premises as given and only draw necessary conclusions) and a second group of participants received probabilistic instructions (i.e., to reason as in an everyday situation; we called this "inductive instruction" in the manuscript). Problem type consisted of two different orthogonally crossed variables that were manipulated within-subjects, validity of the problem (formally valid or formally invalid) and plausibility of the problem (inferences which were consisted with the background knowledge versus problems that were inconsistent with the background knowledge). The critical comparison across the two conditions was among problems which were valid and implausible with problems that were invalid and plausible. For example, the next problem was invalid and plausible: > If a person is wet, then the person fell into a swimming pool. > A person fell into a swimming pool. > How valid is the conclusion/How likely is it that the person is wet? For those problems we predicted that under deductive instructions responses should be lower (as the conclusion does not necessarily follow from the premises) as under probabilistic instructions. For the valid but implausible problem, an example is presented next, we predicted the opposite pattern: > If a person is wet, then the person fell into a swimming pool. > A person is wet. > How valid is the conclusion/How likely is it that the person fell into a swimming pool? Our study also included valid and plausible and invalid and implausible problems. In contrast to the analysis reported in the manuscript, we initially do not separate the analysis into affirmation and denial problems, but first report an analysis on the full set of inferences, MP, MT, AC, and DA, where MP and MT are valid and AC and DA invalid. We report a reanalysis of our Experiment 1 only. Note that the factor `plausibility` is not present in the original manuscript, there it is a results of a combination of other factors. # Data and R Preperation ```{r message=FALSE, warning=FALSE} require(afex) # needed for ANOVA, lsmeans is loaded automatically. require(multcomp) # for advanced control for multiple testing/Type 1 errors. require(lattice) # for plots lattice.options(default.theme = standard.theme(color = FALSE)) # black and white lattice.options(default.args = list(as.table = TRUE)) # better ordering ``` ```{r} data(sk2011.1) str(sk2011.1) ``` An important feature in the data is that each participant provided two responses for each cell of the design (the content is different for each of those, each participant saw all four contents). These two data points will be aggregated automatically by `afex`. ```{r} with(sk2011.1, table(inference, id, plausibility)) ``` # ANOVA To get the full ANOVA table for the model, we simply pass it to `aov_ez` (`aov_car` or `aov4` would be alternatives producing the same results) using the design as described above. We save the returned object for further analysis. ```{r} a1 <- aov_ez("id", "response", sk2011.1, between = "instruction", within = c("inference", "plausibility")) a1 # the default print method prints a data.frame produced by nice ``` As mentioned before, the two responses per cell of the design and participants are aggregated for the analysis as indicated by the warning message. Furthermore, the degrees of freedom are Greenhouse-Geisser corrected per default for all effects involving `inference`, as `inference` is a within-subject factor with more than two levels (i.e., MP, MT, AC, & DA). In line with our expectations, the three-way interaction is significant. The object printed per default for `afex_aov` objects (produced by `nice`) can also be printed nicely using `knitr`: ```{r, results='asis', } knitr::kable(nice(a1)) ``` Alternatively, the `anova` method for `afex_aov` objects returns a `data.frame` of class `anova` that can be passed to, for example, `xtable` for nice formatting: ```{r, results='asis'} print(xtable::xtable(anova(a1), digits = c(rep(2, 5), 3, 4)), type = "html") ``` # Post-Hoc Contrasts and Plotting To further analyze the data we need to pass it to package `lsmeans`, a package that offers great functionality for both plotting and contrasts of all kind. A lot of information on `lsmeans` can be obtained in [its vignette](https://CRAN.R-project.org/package=lsmeans/vignettes/using-lsmeans.pdf). `lsmeans` can work with `afex_aov` objects directly as __afex__ comes with the necessary methods for the generic functions defined in `lsmeans`. `lsmeans` uses the ANOVA model estimated via base R's `aov` function that is part of an `afex_aov` object. ## Some First Contrasts ### Main Effects Only This object can now be passed to `lsmeans`, for example to obtain the marginal means of the four inferences: ```{r} m1 <- lsmeans(a1, ~ inference) m1 ``` This object can now also be used to compare whether or not there are differences between the levels of the factor: ```{r} pairs(m1) ``` To obtain more powerful p-value adjustments, we can furthermore pass it to `multcomp` (Bretz, Hothorn, & Westfall, 2011): ```{r} summary(as.glht(pairs(m1)), test=adjusted("free")) ``` ### A Simple interaction We could now also be interested in the marginal means of the inferences across the two instruction types. `lsmeans` offers two ways to do so. The first splits the contrasts across levels of the factor. ```{r} m2 <- lsmeans(a1, ~ inference|instruction) m2 ``` Consequently test are also only performed within each level: ```{r} pairs(m2) ``` The second version treats all factor combinations together, producing a considerably larger number of pairwise comparisons: ```{r} m3 <- lsmeans(a1, ~ inference:instruction) m3 pairs(m3) ``` ### Running Custom Contrasts Objects returned from `lsmeans` can also be used to test specific contrasts. For this, we can simply create a list, where each element corresponds to one contrasts. A contrast is defined as a vector of constants on the reference grid (i.e., the object returned from `lsmeans`, here `m3`). For example, we might be interested in whether there is a difference between the valid and invalid inferences in each of the two conditions. ```{r} c1 <- list( v_i.ded = c(0.5, 0.5, -0.5, -0.5, 0, 0, 0, 0), v_i.prob = c(0, 0, 0, 0, 0.5, 0.5, -0.5, -0.5) ) contrast(m3, c1, adjust = "holm") summary(as.glht(contrast(m3, c1)), test =adjusted("free")) ``` The results can be interpreted as in line with expectations. Responses are larger for valid than invalid problems in the deductive, but not the probabilistic condition. ## Plotting Function `lsmip` from package `lsmeans` can be used for plotting the data directly from an `afex_aov` object. As said initially, we are interested in the three-way interaction of instruction with inference, plausibility, and instruction. A plot of this interaction could be the following: ```{r fig.width=7.5, fig.height=4} lsmip(a1, instruction ~ inference|plausibility) ``` # Replicate Analysis from Singmann and Klauer (2011) As this plot is not very helpful, we now fit a new ANOVA model in which we separate the data in affirmation and denial inferences, as done in the original manuscript and plot the data then a second time. ```{r} a2 <- aov_ez("id", "response", sk2011.1, between = "instruction", within = c("validity", "plausibility", "what")) a2 ``` Then we plot the data from this ANOVA. ```{r fig.width=7.5, fig.height=4} lsmip(a2, ~instruction ~ plausibility+validity|what, scales = list(x=list( at = 1:4, labels = c("pl:v", "im:v", "pl:i", "im:i") ))) ``` We see the critical predicted cross-over interaction in the left of those two graphs. For valid but implausible problems (`im:v`) deductive responses are larger than probabilistic responses. The opposite is true for invalid but plausible problems (`pl:i`). We now tests these differences at each of the four x-axis ticks in each plot using custom contrasts (`diff_1` to `diff_4`). Furthermore, we test for a validity effect and plausibility effect in both conditions. ```{r} (m4 <- lsmeans(a2, ~instruction+plausibility+validity|what)) c2 <- list( diff_1 = c(1, -1, 0, 0, 0, 0, 0, 0), diff_2 = c(0, 0, 1, -1, 0, 0, 0, 0), diff_3 = c(0, 0, 0, 0, 1, -1, 0, 0), diff_4 = c(0, 0, 0, 0, 0, 0, 1, -1), val_ded = c(0.5, 0, 0.5, 0, -0.5, 0, -0.5, 0), val_prob = c(0, 0.5, 0, 0.5, 0, -0.5, 0, -0.5), plau_ded = c(0.5, 0, -0.5, 0, -0.5, 0, 0.5, 0), plau_prob = c(0, 0.5, 0, -0.5, 0, 0.5, 0, -0.5) ) contrast(m4, c2, adjust = "holm") ``` As the resulting eight contrasts have different numbers of degrees-of-freedom, we can only pass them to `multcomp` in small batches. This gives us more powerful Type 1 error corrections but overall a reduced correction as we now control for three families of tests (i.e., overall Type 1 error probability of .15). ```{r} summary(as.glht(contrast(m4, c2[1:4])), test =adjusted("free")) summary(as.glht(contrast(m4, c2[5:6])), test =adjusted("free")) summary(as.glht(contrast(m4, c2[7:8])), test =adjusted("free")) ``` The pattern for the affirmation problems is in line with the expectations: We find the predicted differences between the instruction types for valid and implausible (`diff_2`) and invalid and plausible (`diff_3`) and the predicted non-differences for the other two problems (`diff_1` and `diff_4`). Furthermore, we find a validity effect in the deductive but not in the probabilistic condition. Likewise, we find a plausibility effect in the probabilistic but not in the deductive condition. # Some Cautionary Notes * While the df of the ANOVA tables are Greenhouse-Geisser corrected per default for within-subject factors with more than two levels, this is not the case for post-hoc tests or contrasts using `lsmeans`. The contrasts use uncorrected degrees of freedom that are Satterthwaite approximated. This most likely produces anti-conservative tests if compound symmetry/sphericity is violated. * For unbalanced samples, `aov` is usually not the correct choise. This is why the test of effects is based on `car::Anova`. However, for `lsmeans` we need to use `aov` models. However, `lsmeans` offers the option to weight the marginal means differently in case of different group sizes (i.e., unbalanced data). For example, it offers the option that each group is assumed to be of equal size (i.e., `weights = "equal"`) or proportionally (i.e., `weights = "proportional"`). See help of `lsmeans` for more information. * Choosing the right correction for multiple testing can be difficult. In fact `multcomp` comes with an accompanying book (Bretz et al., 2011). If the degrees-of-freedom of all contrasts are identical using `multcomp`'s method `free` is more powerful than simply using the Bonferroni-Holm method. `free` is a generalization of the Bonferroni-Holm method that takes the correlations among the model parameters into account and uniformly more powerful. * For data sets with many within-subject factors, creating the `aov` object can take some time (i.e., compared to producing the ANOVA table which is usually very fast). Those objects are also comparatively large, often multiple MB. If speed is important and one is not interested in employing `lsmeans` one can set `return = "nice"` in the call to the ANOVA function to only receive the ANOVA table (this can also be done globally: `afex_options(return_aov = "nice")`). # References * Bretz, F., Hothorn, T., & Westfall, P. H. (2011). _Multiple comparisons using R_. Boca Raton, FL: CRC Press. https://CRAN.R-project.org/package=multcomp * Singmann, H., & Klauer, K. C. (2011). Deductive and inductive conditional inferences: Two modes of reasoning. _Thinking & Reasoning_, 17(3), 247-281. doi: 10.1080/13546783.2011.572718 * Lenth, R. V. (2015). _lsmeans: Least-Squares Means_. R package version 2.16-4. https://CRAN.R-project.org/package=lsmeans afex/MD50000644000176200001440000001061213111654014011501 0ustar liggesusers4dac96c8d034f2982ec13d28e6c9ae4c *DESCRIPTION 32295febc87ab83d6d66d85eac4704be *NAMESPACE 5971b17face7b0e17dfef8b46b035fc2 *NEWS cbc4f6d019211ab390dd1858cc0c3959 *R/afex-package.R 947dedaba56c05ab180719090af8fa92 *R/allFit.R 43ae2f9ed2b9f28b9d79dc9dd7672c00 *R/aov_car.R 03bb0e49814a31c17b98561e308c652a *R/compare.2.vectors.R 04a846d7acac46667c3dc75a42d309c7 *R/deprecated.R 5717e1652a751ede3aef4bcf047bde1a *R/ems.R 385102cc3471ed67f058a74a59d805c6 *R/fhch2010-data.R 7a2308acd20264427ab7833cd7c1220a *R/helpers.R f35751ee0dfdeb49847da1c0e2ba6658 *R/ks2013.3-data.R d9a78c053bf03e0cf991c45584216bea *R/md_12.1-data.R 37d9937eb76fd7c19d4cca73e39832b3 *R/md_15.1-data.R 51eacd95f1dc5216b88df8e71eed8738 *R/md_16.1-data.R e727b7435149abb02c94bff9ce930edd *R/md_16.4-data.R a4511e5ba2b6f102fdae326a94874264 *R/methods.afex_aov.R d023a977bb8afedf8522aabcaf7fe7cd *R/mixed.R bf242b136725ff58c46103cc890ea6f8 *R/nice.R 6957d204d984fc4bc9fd8d9a171af7bc *R/obk.long-data.R 58824769016059c58c28d6045fa2d8e9 *R/reexport.R f03bbeccea307b186df307433c31e455 *R/round_ps.R c81f47ce71a4c47fc01bfd145e338e13 *R/set_contrasts.R c0c8b5b94356040c010a7b4b94620d83 *R/sk2011.1-data.R 9fe8b5e4ad58e9350525f1a88f300e37 *R/sk2011.2-data.R 49c64d957463eea7853c907b76dfac4d *R/utils.R 419b9a524d98c6ec018408fb05f7160f *R/zzz.R 1538351c119500a2f10bdb4cb574d543 *build/vignette.rds 67d99926047ef78d0e5dd54b89ae9eb7 *data/fhch2010.rda dc520acd438387964b4561483968f18e *data/ks2013.3.rda 4df2c0c2a5a52ff004bd015e90f8e328 *data/md_12.1.rda 5722056139ad1750e737931076c518d2 *data/md_15.1.rda c5cbc6a44d15c506cf4a913a1e453e86 *data/md_16.1.rda dbe295d0e59a0fd4cf4b73965ddfd16b *data/md_16.4.rda 387538b02807392eef5f8de5b6f55cd7 *data/obk.long.rda 87a9f9f971f46d20fb440385652b3771 *data/sk2011.1.rda 30d68b1cca41bab8e71a24b7b48489be *data/sk2011.2.rda 112c2cb192dd26c87680a4b8968d9601 *inst/doc/afex_anova_example.R 54602ea701d0f8e21e9a66babcb235c8 *inst/doc/afex_anova_example.Rmd 46f504da768bf2a9c494b22b10ce50ed *inst/doc/afex_anova_example.html dc329e8b015d4bb3f84f557373ca3777 *inst/doc/afex_mixed_example.R cd6a0f1df3de042eecc3917a97414026 *inst/doc/afex_mixed_example.Rmd 0b9bb292aae13c4fd332629bb3ddcfc6 *inst/doc/afex_mixed_example.html a06958c98c7491366f1b6712bd29a112 *inst/extdata/freeman_models.rda 2c0e3e16bc6345c325a4db80733e8e9b *man/afex-package.Rd 6ebe988c2b4ba8c66a4fbf8946b3c687 *man/afex_aov-methods.Rd 53a1ba42db9ff7215d675a9d6b13619c *man/afex_options.Rd ef6a5eabe15546ddccff53c78039639c *man/all_fit.Rd 57b68209ab123edb68965a94b6abb334 *man/aov_car.Rd 068b89d4e57d0d01c37171225ee727d6 *man/compare.2.vectors.Rd f32ef57dccf93bd7344db3d298f1467e *man/deprecated.Rd 3cd5db0fc787d0cd7c0a64545cedc82f *man/ems.Rd 4feb264156992972df7cefaca9bad1a6 *man/fhch2010.Rd ee371be73f7dabf99c22f9134d5e4fdc *man/ks2013.3.Rd 61eefe965081cac5c787a57c93d585a0 *man/md_12.1.Rd 8f4eb8301c600bbc0f783bf2f4bc1de5 *man/md_15.1.Rd 3ab1136bf1b2c773b52be8fb2dd8c609 *man/md_16.1.Rd ddf582b843028a66b7a1a8212f69ae90 *man/md_16.4.Rd 52591d86ef753eae41b732f72e892f6f *man/mixed.Rd 3cad3699288fa5d380588408dc15c0f5 *man/nice.Rd 3ccf236c7b1571fd53238098a0dd5dbb *man/obk.long.Rd d96189cd838f18944251d1f86ffa2024 *man/reexports.Rd 00cc93b3341126748ab03752455f0647 *man/round_ps.Rd 19b5f2bbbd29b4717c09a0b8393579f2 *man/set_sum_contrasts.Rd d22e930f399907fbba3d98446e6b12f1 *man/sk2011.1.Rd 51d8347b1fe3257a5d27f51d47d11d97 *man/sk2011.2.Rd 2d343f0d270a71a9cf1a10b3c6bf200b *tests/testthat.R f85b110afca888b2a29075ea44b239e4 *tests/testthat/afex_aov_16_1.rda 8e1d7042dd7d30ae9eb8734f0080e5bd *tests/testthat/lmm_old_object.rda 6c14ea76e8082da1001761f83c2cdd64 *tests/testthat/mixed_with_dot.rda 1ab1195b961b8185fb1fbb1e8d6aae22 *tests/testthat/test-afex_aov.R 11c52b568cf39079d8c4f3fa40cd8fe6 *tests/testthat/test-aov_car-basic.R 8a238b9ad6137b0c1182427743d3a8b0 *tests/testthat/test-aov_car-bugs.R cbedb373166d88c609aa901543a4ac93 *tests/testthat/test-aov_car-structural.R abd3af78e5b91665be7b3e386f86e724 *tests/testthat/test-compare_2_vectors.R 2de6143e2a8b475fce5e1608ce78371b *tests/testthat/test-lmerTest-support.R a54003037e3bf12ecaaca845872721b2 *tests/testthat/test-lsmeans-interface.R df190937b6d29ecda95f77fe4ff9b771 *tests/testthat/test-mixed-bugs.R 6176d7628bd203c8294ee5fcc7477084 *tests/testthat/test-mixed-mw.R 881d580c2da15a6998133b2d5485f0e3 *tests/testthat/test-mixed-structure.R 54602ea701d0f8e21e9a66babcb235c8 *vignettes/afex_anova_example.Rmd cd6a0f1df3de042eecc3917a97414026 *vignettes/afex_mixed_example.Rmd afex/build/0000755000176200001440000000000013111546473012301 5ustar liggesusersafex/build/vignette.rds0000644000176200001440000000046613111546473014646 0ustar liggesusersuPMO1-Bbbkrpmč A LYݤ7~9kwCo{rD> m{+<${_B9 s\_2f= 3.1.0), lme4 (>= 1.1-8), lsmeans (>= 2.17) Suggests: xtable, parallel, plyr, optimx, nloptr, knitr, rmarkdown, lattice, latticeExtra, multcomp, testthat, mlmRev, dplyr, tidyr, dfoptim, Matrix, psych Imports: stringr, coin, pbkrtest (>= 0.4-1), lmerTest, car, reshape2, stats, methods Description: Convenience functions for analyzing factorial experiments using ANOVA or mixed models. aov_ez(), aov_car(), and aov_4() allow specification of between, within (i.e., repeated-measures), or mixed between-within (i.e., split-plot) ANOVAs for data in long format (i.e., one observation per row), aggregating multiple observations per individual and cell of the design. mixed() fits mixed models using lme4::lmer() and computes p-values for all fixed effects using either Kenward-Roger or Satterthwaite approximation for degrees of freedom (LMM only), parametric bootstrap (LMMs and GLMMs), or likelihood ratio tests (LMMs and GLMMs). afex uses type 3 sums of squares as default (imitating commercial statistical software). URL: http://afex.singmann.science/, https://github.com/singmann/afex BugReports: https://github.com/singmann/afex/issues License: GPL (>= 2) Encoding: UTF-8 VignetteBuilder: knitr Authors@R: c(person(given="Henrik", family="Singmann", role=c("aut", "cre"), email="singmann+afex@gmail.com"), person(given="Ben", family="Bolker", role=c("aut")), person(given="Jake", family="Westfall", role=c("aut")), person(given="Frederik", family="Aust", role=c("aut")), person(given="Søren", family="Højsgaard", role=c("ctb")), person(given="John", family="Fox", role=c("ctb")), person(given="Michael A.", family="Lawrence", role=c("ctb")), person(given="Ulf", family="Mertens", role=c("ctb")), person(given="Jonathan", family="Love", role=c("ctb")) ) Version: 0.18-0 Date: 2017-05-25 RoxygenNote: 6.0.1 NeedsCompilation: no Packaged: 2017-05-25 12:25:31 UTC; henrik Author: Henrik Singmann [aut, cre], Ben Bolker [aut], Jake Westfall [aut], Frederik Aust [aut], Søren Højsgaard [ctb], John Fox [ctb], Michael A. Lawrence [ctb], Ulf Mertens [ctb], Jonathan Love [ctb] Maintainer: Henrik Singmann Repository: CRAN Date/Publication: 2017-05-25 22:17:48 UTC afex/man/0000755000176200001440000000000013067717665011772 5ustar liggesusersafex/man/deprecated.Rd0000644000176200001440000000115513055750375014353 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/deprecated.R \name{aov.car} \alias{aov.car} \alias{afex-deprecated} \alias{ez.glm} \alias{aov4} \title{Deprecated functions} \usage{ aov.car(...) ez.glm(...) aov4(...) } \arguments{ \item{...}{arguments passed from the old functions of the style \code{foo.bar()} to the new functions \code{foo_bar()}} } \description{ These functions have been renamed and deprecated in \pkg{afex}: \code{aov.car()} (use \code{\link{aov_car}()}), \code{ez.glm()} (use \code{\link{aov_ez}()}), \code{aov4()} (use \code{\link{aov_4}()}). } \keyword{internal} afex/man/mixed.Rd0000644000176200001440000007100013073276377013362 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/mixed.R \encoding{UTF-8} \name{mixed} \alias{mixed} \alias{lmer_alt} \title{p-values for fixed effects of mixed-model via lme4::lmer()} \usage{ mixed(formula, data, type = afex_options("type"), method = afex_options("method_mixed"), per_parameter = NULL, args_test = list(), test_intercept = FALSE, check_contrasts = afex_options("check_contrasts"), expand_re = FALSE, all_fit = FALSE, set_data_arg = TRUE, progress = TRUE, cl = NULL, return = "mixed", sig_symbols = afex_options("sig_symbols"), ...) lmer_alt(formula, data, check_contrasts = FALSE, ...) } \arguments{ \item{formula}{a formula describing the full mixed-model to be fitted. As this formula is passed to \code{lmer}, it needs at least one random term.} \item{data}{\code{data.frame} containing the data. Should have all the variables present in \code{fixed}, \code{random}, and \code{dv} as columns.} \item{type}{type of test on which effects are based. Default is to use type 3 tests, taken from \code{\link{afex_options}}.} \item{method}{character vector indicating which methods for obtaining p-values should be used: \code{"KR"} corresponds to the Kenward-Roger approximation for degrees of freedom (only LMMs), \code{"S"} corresponds to the Satterthwaite approximation for degrees of freedom (via \code{\link{lmerTest}}, only LMMs), \code{"PB"} calculates p-values based on parametric bootstrap, \code{"LRT"} calculates p-values via the likelihood ratio tests implemented in the \code{anova} method for \code{merMod} objects (only recommended for models with many [i.e., > 50] levels for the random factors). The default (currently \code{"KR"}) is taken from \code{\link{afex_options}}. For historical compatibility \code{"nested-KR"} is also supported which was the default KR-method in previous versions.} \item{per_parameter}{\code{character} vector specifying for which variable tests should be run for each parameter (instead for the overall effect). Can be useful e.g., for testing ordered factors. Uses \code{\link{grep}} for selecting parameters among the fixed effects so regular expressions (\code{\link{regex}}) are possible. See Examples.} \item{args_test}{\code{list} of arguments passed to the function calculating the p-values. See Details.} \item{test_intercept}{logical. Whether or not the intercept should also be fitted and tested for significance. Default is \code{FALSE}. Only relevant if \code{type = 3}.} \item{check_contrasts}{\code{logical}. Should contrasts be checked and (if necessary) changed to \code{"contr.sum"}? See Details. The default (\code{"TRUE"}) is taken from \code{\link{afex_options}}.} \item{expand_re}{logical. Should random effects terms be expanded (i.e., factors transformed into numerical variables) before fitting with \code{(g)lmer}? Allows to use "||" notation with factors.} \item{all_fit}{logical. Should \code{\link{all_fit}} be used to fit each model with each available optimization algorithm and the results that provided the best fit in each case be used? Warning: This can dramatically increase the optimization time. Adds two new attributes to the returned object designating which algorithm was selected and the log-likelihoods for each algorithm. Note that only warnings from the initial fit are emitted during fitting. The warnings of the chosen models are emitted when printing the returned object.} \item{set_data_arg}{\code{logical}. Should the data argument in the slot \code{call} of the \code{merMod} object returned from \code{lmer} be set to the passed data argument? Otherwise the name will be \code{data}. Helpful if fitted objects are used afterwards (e.g., using \pkg{lsmeans}). Default is \code{TRUE}.} \item{progress}{if \code{TRUE}, shows progress with a text progress bar and other status messages during fitting.} \item{cl}{A vector identifying a cluster; used for distributing the estimation of the different models using several cores (if seveal models are calculated). See examples. If \code{ckeck.contrasts}, mixed sets the current contrasts (\code{getOption("contrasts")}) at the nodes. Note this does \emph{not} distribute calculation of p-values (e.g., when using \code{method = "PB"}) across the cluster. Use \code{args_test} for this.} \item{return}{the default is to return an object of class \code{"mixed"}. \code{return = "merMod"} will skip the calculation of all submodels and p-values and simply return the full model fitted with lmer. Can be useful in combination with \code{expand_re = TRUE} which allows to use "||" with factors. \code{return = "data"} will not fit any models but just return the data that would have been used for fitting the model (note that the data is also part of the returned object).} \item{sig_symbols}{Character. What should be the symbols designating significance? When entering an vector with \code{length(sig.symbol) < 4} only those elements of the default (\code{c(" +", " *", " **", " ***")}) will be replaced. \code{sig_symbols = ""} will display the stars but not the \code{+}, \code{sig_symbols = rep("", 4)} will display no symbols. The default is given by \code{afex_options("sig_symbols")}.} \item{...}{further arguments (such as \code{weights}/\code{family}) passed to \code{\link{lmer}}/\code{\link{glmer}}, such as \code{control}.} } \value{ An object of class \code{"mixed"} (i.e., a list) with the following elements: \enumerate{ \item \code{anova_table} a data.frame containing the statistics returned from \code{\link[pbkrtest]{KRmodcomp}}. The \code{stat} column in this data.frame gives the value of the test statistic, an F-value for \code{method = "KR"} and a chi-square value for the other two methods. \item \code{full_model} the \code{"lmerMod"} object returned from fitting the full mixed model. \item \code{restricted_models} a list of \code{"lmerMod"} objects from fitting the restricted models (i.e., each model lacks the corresponding effect) \item \code{tests} a list of objects returned by the function for obtaining the p-values. \item \code{data} The data used for fitting (i.e., after excluding missing rows and applying expand_re if requested). } It also has the following attributes, \code{"type"} and \code{"method"}. And the attributes \code{"all_fit_selected"} and \code{"all_fit_logLik"} if \code{all_fit=TRUE}. Two similar methods exist for objects of class \code{"mixed"}: \code{print} and \code{anova}. They print a nice version of the \code{anova_table} element of the returned object (which is also invisibly returned). This methods omit some columns and nicely round the other columns. The following columns are always printed: \enumerate{ \item \code{Effect} name of effect \item \code{p.value} estimated p-value for the effect } For LMMs with \code{method="KR"} or \code{method="S"} the following further columns are returned (note: the Kenward-Roger correction does two separate things: (1) it computes an effective number for the denominator df; (2) it scales the statistic by a calculated amount, see also \url{http://stackoverflow.com/a/25612960/289572}): \enumerate{ \item \code{F} computed F statistic \item \code{ndf} numerator degrees of freedom (number of parameters used for the effect) \item \code{ddf} denominator degrees of freedom (effective residual degrees of freedom for testing the effect), computed from the Kenward-Roger correction using \code{pbkrtest::KRmodcomp} \item \code{F.scaling} scaling of F-statistic computing from Kenward-Roger approximation (only printed if \code{method="nested-KR"}) } For models with \code{method="LRT"} the following further columns are returned: \enumerate{ \item \code{df.large} degrees of freedom (i.e., estimated paramaters) for full model (i.e., model containing the corresponding effect) \item \code{df.small} degrees of freedom (i.e., estimated paramaters) for restricted model (i.e., model without the corresponding effect) \item \code{chisq} 2 times the difference in likelihood (obtained with \code{logLik}) between full and restricted model \item \code{df} difference in degrees of freedom between full and restricted model (p-value is based on these df). } For models with \code{method="PB"} the following further column is returned: \enumerate{ \item \code{stat} 2 times the difference in likelihood (obtained with \code{logLik}) between full and restricted model (i.e., a chi-square value). } Note that \code{anova} can also be called with additional mixed and/or \code{merMod} objects. In this casethe full models are passed on to \code{anova.merMod} (with \code{refit=FALSE}, which differs from the default of \code{anova.merMod}) which produces the known LRT tables. The \code{summary} method for objects of class \code{mixed} simply calls \code{\link{summary.merMod}} on the full model. If \code{return = "merMod"}, an object of class \code{"merMod"}, as returned from \code{g/lmer}, is returned. } \description{ Calculates p-values for all fixed effects in a mixed model. The default method \code{"KR"} (= Kenward-Roger) as well as \code{method="S"} (Satterthwaite) support LMMs and fit the model with \code{\link[lme4]{lmer}}) and then pass it to either \code{\link[lmerTest]{anova.merModLmerTest}} (or \code{\link[car]{Anova}}). The other methods (\code{"LRT"} = likelihood-ratio tests and \code{"PB"} = parametric bootstrap) support both LMMs and GLMMs (i.e., with \code{family} argument) and fit a full model and restricted models in which the parameters corresponding to the effect (i.e., model term) are withhold (i.e., fixed to 0) and tests statistics are based on comparing the full model with the restricted models. The default is tests based on Type 3 sums of squares. \code{print}, \code{summary}, and \code{anova} methods for the returned object of class \code{"mixed"} are available (the last two return the same data.frame). \code{lmer_alt} is simply a wrapper for mixed that only returns the \code{"merMod"} object and correctly uses the \code{||} notation to remove correlation among factors, but otherwise behaves like \code{g/lmer} (as for \code{mixed}, it calls \code{glmer} as soon as a \code{family} argument is present). } \details{ For an introduction to mixed-modeling for experimental designs see Barr, Levy, Scheepers, & Tily (2013; I highly recommend reading this paper if you use this function), arguments for using the Kenward-Roger approximation for obtaining p-values are given by Judd, Westfall, and Kenny (2012). Further introductions to mixed-modeling for experimental designs are given by Baayen and colleagues (Baayen, 2008; Baayen, Davidson & Bates, 2008; Baayen & Milin, 2010). Specific recommendations on which random effects structure to specify for confirmatory tests can be found in Barr and colleagues (2013) and Barr (2013), but also see Bates et al. (2015). \subsection{p-value Calculations}{ When \code{method = "KR"} (the default, implemented via \code{\link[pbkrtest]{KRmodcomp}}), the Kenward-Roger approximation for degrees-of-freedom is calculated using \code{\link[lmerTest]{anova.merModLmerTest}} (if \code{test_intercept=FALSE}) or \code{\link[car]{Anova}} (if \code{test_intercept=TRUE}), which is only applicable to linear-mixed models (LMMs). The test statistic in the output is an F-value (\code{F}). A similar method that requires less RAM is \code{method = "S"} which calculates the Satterthwaite approximation for degrees-of-freedom via \code{\link[lmerTest]{anova.merModLmerTest}} and is also only applicable to LMMs. \code{method = "KR"} or \code{method = "S"} provide the best control for Type 1 errors for LMMs (Luke, 2017). \code{method = "PB"} calculates p-values using parametric bootstrap using \code{\link[pbkrtest]{PBmodcomp}}. This can be used for linear and also generalized linear mixed models (GLMMs) by specifying a \code{\link[stats]{family}} argument to \code{mixed}. Note that you should specify further arguments to \code{PBmodcomp} via \code{args_test}, especially \code{nsim} (the number of simulations to form the reference distribution) or \code{cl} (for using multiple cores). For other arguments see \code{\link[pbkrtest]{PBmodcomp}}. Note that \code{REML} (argument to \code{[g]lmer}) will be set to \code{FALSE} if method is \code{PB}. \code{method = "LRT"} calculates p-values via likelihood ratio tests implemented in the \code{anova} method for \code{"merMod"} objects. This is the method recommended by Barr et al. (2013; which did not test the other methods implemented here). Using likelihood ratio tests is only recommended for models with many levels for the random effects (> 50), but can be pretty helpful in case the other methods fail (due to memory and/or time limitations). The \href{http://glmm.wikidot.com/faq}{lme4 faq} also recommends the other methods over likelihood ratio tests. } \subsection{Implementation Details}{ For methods \code{"KR"} and \code{"S"} type 3 and 2 tests are implemented as in \code{\link[car]{Anova}}. For all other methods, type 3 tests are obtained by comparing a model in which only the tested effect is excluded with the full model (containing all effects). For method \code{"nested-KR"} (which was the default in previous versions) this corresponds to the (type 3) Wald tests given by \code{car::Anova} for \code{"lmerMod"} models. The submodels in which the tested effect is excluded are obtained by manually creating a model matrix which is then fitted in \code{"lme4"}. This is done to avoid R's "feature" to not allow this behavior. Type 2 tests are truly sequential. They are obtained by comparing a model in which the tested effect and all higher oder effect (e.g., all three-way interactions for testing a two-way interaction) are excluded with a model in which only effects up to the order of the tested effect are present and all higher order effects absent. In other words, there are multiple full models, one for each order of effects. Consequently, the results for lower order effects are identical of whether or not higher order effects are part of the model or not. This latter feature is not consistent with classical ANOVA type 2 tests but a consequence of the sequential tests (and \href{https://stat.ethz.ch/pipermail/r-sig-mixed-models/2012q3/018992.html}{I didn't find a better way} of implementing the Type 2 tests). This \strong{does not} correspond to the (type 2) Wald test reported by \code{car::Anova}. If \code{check_contrasts = TRUE}, contrasts will be set to \code{"contr.sum"} for all factors in the formula if default contrasts are not equal to \code{"contr.sum"} or \code{attrib(factor, "contrasts") != "contr.sum"}. Furthermore, the current contrasts (obtained via \code{getOption("contrasts")}) will be set at the cluster nodes if \code{cl} is not \code{NULL}. } \subsection{Expand Random Effects}{ \code{expand_re = TRUE} allows to expand the random effects structure before passing it to \code{lmer}. This allows to disable estimation of correlation among random effects for random effects term containing factors using the \code{||} notation which may aid in achieving model convergence (see Bates et al., 2015). This is achieved by first creating a model matrix for each random effects term individually, rename and append the so created columns to the data that will be fitted, replace the actual random effects term with the so created variables (concatenated with +), and then fit the model. The variables are renamed by prepending all variables with rei (where i is the number of the random effects term) and replacing ":" with "_by_". \code{lmer_alt} is simply a wrapper for \code{mixed} that is intended to behave like \code{lmer} (or \code{glmer} if a \code{family} argument is present), but also allows to use \code{||} with factors correctly (by always using \code{expand_re = TRUE}). This means that \code{lmer_alt} per default does not enforce a specific contrast on factors and only returns the \code{"merMod"} object without calculating any additional models or p-values (this is achieved by setting \code{return = "merMod"}). Note that it most likely differs from \code{g/lmer} in how it handles missing values so it is recommended to only pass data without missing values to it! One consequence of using \code{expand_re = TRUE} is that the data that is fitted will not be the same as the passed data.frame which can lead to problems with e.g., the \code{predict} method. However, the actual data uzsed for fitting is also returned as part of the \code{mixed} object so can be used from there. } } \note{ When \code{method = "KR"}, obtaining p-values is known to crash due too insufficient memory or other computational limitations (especially with complex random effects structures). In these cases, the other methods should be used. The RAM demand is a problem especially on 32 bit Windows which only supports up to 2 or 3GB RAM (see \href{https://CRAN.R-project.org/bin/windows/base/rw-FAQ.html}{R Windows FAQ}). Then it is probably a good idea to use methods "S", "LRT", or "PB". \code{"mixed"} will throw a message if numerical variables are not centered on 0, as main effects (of other variables then the numeric one) can be hard to interpret if numerical variables appear in interactions. See Dalal & Zickar (2012). Per default \code{mixed} uses \code{\link[lmerTest]{lmer}}, this can be changed to \code{\link[lme4]{lmer}} by calling: \code{afex_options(lmer_function = "lme4")} Formulas longer than 500 characters will most likely fail due to the use of \code{\link{deparse}}. Please report bugs or unexpected behavior by opening a guthub issue: \url{https://github.com/singmann/afex/issues} } \examples{ ########################### ## Full Analysis Example ## ########################### \dontrun{ ### split-plot experiment (Singmann & Klauer, 2011, Exp. 2) ## between-factor: instruction ## within-factor: inference & type ## hypothesis: three-way interaction data("sk2011.2") # use only affirmation problems (S&K also splitted the data like this) sk2_aff <- droplevels(sk2011.2[sk2011.2$what == "affirmation",]) # set up model with maximal by-participant random slopes sk_m1 <- mixed(response ~ instruction*inference*type+(inference*type|id), sk2_aff) sk_m1 # prints ANOVA table with nicely rounded numbers (i.e., as characters) nice(sk_m1) # returns the same but without printing potential warnings anova(sk_m1) # returns and prints numeric ANOVA table (i.e., not-rounded) summary(sk_m1) # lmer summary of full model # same model but using Satterthwaite approximation of df # very similar results but faster sk_m1b <- mixed(response ~ instruction*inference*type+(inference*type|id), sk2_aff, method="S") nice(sk_m1b) # identical results as: lmerTest::anova(sk_m1$full_model) # suppressing correlation among random slopes: # very similar results, but significantly faster and often less convergence warnings. sk_m2 <- mixed(response ~ instruction*inference*type+(inference*type||id), sk2_aff, expand_re = TRUE) sk_m2 ## mixed objects can be passed to lsmeans directly: # recreates basically Figure 4 (S&K, 2011, upper panel) # only the 4th and 6th x-axis position are flipped lsmip(sk_m1, instruction~type+inference) # set up reference grid for custom contrasts: # this can be made faster via: lsm.options(lmer.df = "Kenward-Roger") # set df for lsmeans to KR # lsm.options(lmer.df = "Satterthwaite") # the default # lsm.options(lmer.df = "asymptotic") # the fastest, no df (rg1 <- lsmeans(sk_m1, c("instruction", "type", "inference"))) # set up contrasts on reference grid: contr_sk2 <- list( ded_validity_effect = c(rep(0, 4), 1, rep(0, 5), -1, 0), ind_validity_effect = c(rep(0, 5), 1, rep(0, 5), -1), counter_MP = c(rep(0, 4), 1, -1, rep(0, 6)), counter_AC = c(rep(0, 10), 1, -1) ) # test the main double dissociation (see S&K, p. 268) contrast(rg1, contr_sk2, adjust = "holm") # only plausibility effect is not significant here. } ################################################### ## Replicating Maxwell & Delaney (2004) Examples ## ################################################### ### replicate results from Table 15.4 (Maxwell & Delaney, 2004, p. 789) data(md_15.1) # random intercept plus random slope (t15.4a <- mixed(iq ~ timecat + (1+time|id),data=md_15.1)) # to also replicate exact parameters use treatment.contrasts and the last level as base level: contrasts(md_15.1$timecat) <- contr.treatment(4, base = 4) (t15.4b <- mixed(iq ~ timecat + (1+time|id),data=md_15.1, check_contrasts=FALSE)) summary(t15.4a) # gives "wrong" parameters extimates summary(t15.4b) # identical parameters estimates # for more examples from chapter 15 see ?md_15.1 ### replicate results from Table 16.3 (Maxwell & Delaney, 2004, p. 837) data(md_16.1) # original results need treatment contrasts: (mixed1_orig <- mixed(severity ~ sex + (1|id), md_16.1, check_contrasts=FALSE)) summary(mixed1_orig$full_model) # p-value stays the same with afex default contrasts (contr.sum), # but estimates and t-values for the fixed effects parameters change. (mixed1 <- mixed(severity ~ sex + (1|id), md_16.1)) summary(mixed1$full_model) # data for next examples (Maxwell & Delaney, Table 16.4) data(md_16.4) str(md_16.4) ### replicate results from Table 16.6 (Maxwell & Delaney, 2004, p. 845) # Note that (1|room:cond) is needed because room is nested within cond. # p-value (almost) holds. (mixed2 <- mixed(induct ~ cond + (1|room:cond), md_16.4)) # (differences are dut to the use of Kenward-Roger approximation here, # whereas M&W's p-values are based on uncorrected df.) # again, to obtain identical parameter and t-values, use treatment contrasts: summary(mixed2) # not identical # prepare new data.frame with contrasts: md_16.4b <- within(md_16.4, cond <- C(cond, contr.treatment, base = 2)) str(md_16.4b) # p-value stays identical: (mixed2_orig <- mixed(induct ~ cond + (1|room:cond), md_16.4b, check_contrasts=FALSE)) summary(mixed2_orig$full_model) # replicates parameters ### replicate results from Table 16.7 (Maxwell & Delaney, 2004, p. 851) # F-values (almost) hold, p-values (especially for skill) are off (mixed3 <- mixed(induct ~ cond + skill + (1|room:cond), md_16.4)) # however, parameters are perfectly recovered when using the original contrasts: mixed3_orig <- mixed(induct ~ cond + skill + (1|room:cond), md_16.4b, check_contrasts=FALSE) summary(mixed3_orig) ### replicate results from Table 16.10 (Maxwell & Delaney, 2004, p. 862) # for this we need to center cog: md_16.4b$cog <- scale(md_16.4b$cog, scale=FALSE) # F-values and p-values are relatively off: (mixed4 <- mixed(induct ~ cond*cog + (cog|room:cond), md_16.4b)) # contrast has a relatively important influence on cog (mixed4_orig <- mixed(induct ~ cond*cog + (cog|room:cond), md_16.4b, check_contrasts=FALSE)) # parameters are again almost perfectly recovered: summary(mixed4_orig) #################### ## Other Examples ## #################### \dontrun{ # use the obk.long data (not reasonable, no random slopes) data(obk.long) mixed(value ~ treatment * phase + (1|id), obk.long) # Examples for using the per.parammeter argument: data(obk.long, package = "afex") obk.long$hour <- ordered(obk.long$hour) # tests only the main effect parameters of hour individually per parameter. mixed(value ~ treatment*phase*hour +(1|id), per_parameter = "^hour$", data = obk.long) # tests all parameters including hour individually mixed(value ~ treatment*phase*hour +(1|id), per_parameter = "hour", data = obk.long) # tests all parameters individually mixed(value ~ treatment*phase*hour +(1|id), per_parameter = ".", data = obk.long) # example data from package languageR: # Lexical decision latencies elicited from 21 subjects for 79 English concrete nouns, # with variables linked to subject or word. data(lexdec, package = "languageR") # using the simplest model m1 <- mixed(RT ~ Correct + Trial + PrevType * meanWeight + Frequency + NativeLanguage * Length + (1|Subject) + (1|Word), data = lexdec) m1 # Mixed Model Anova Table (Type 3 tests, KR-method) # # Model: RT ~ Correct + Trial + PrevType * meanWeight + Frequency + NativeLanguage * # Model: Length + (1 | Subject) + (1 | Word) # Data: lexdec # Effect df F p.value # 1 Correct 1, 1627.73 8.15 ** .004 # 2 Trial 1, 1592.43 7.57 ** .006 # 3 PrevType 1, 1605.39 0.17 .68 # 4 meanWeight 1, 75.39 14.85 *** .0002 # 5 Frequency 1, 76.08 56.53 *** <.0001 # 6 NativeLanguage 1, 27.11 0.70 .41 # 7 Length 1, 75.83 8.70 ** .004 # 8 PrevType:meanWeight 1, 1601.18 6.18 * .01 # 9 NativeLanguage:Length 1, 1555.49 14.24 *** .0002 # --- # Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘+’ 0.1 ‘ ’ 1 # Fitting a GLMM using parametric bootstrap: require("mlmRev") # for the data, see ?Contraception gm1 <- mixed(use ~ age + I(age^2) + urban + livch + (1 | district), method = "PB", family = binomial, data = Contraception, args_test = list(nsim = 10)) ## note that nsim = 10 is way too low for all real examples! ####################### ### Using Multicore ### ####################### require(parallel) (nc <- detectCores()) # number of cores cl <- makeCluster(rep("localhost", nc)) # make cluster # to keep track of what the function is doindg redirect output to outfile: # cl <- makeCluster(rep("localhost", nc), outfile = "cl.log.txt") ## There are two ways to use multicore: # 1. Obtain fits with multicore: mixed(value ~ treatment*phase*hour +(1|id), data = obk.long, method = "LRT", cl = cl) # 2. Obtain PB samples via multicore: mixed(use ~ age + I(age^2) + urban + livch + (1 | district), family = binomial, method = "PB", data = Contraception, args_test = list(nsim = 10, cl = cl)) ## Both ways can be combined: mixed(use ~ age + I(age^2) + urban + livch + (1 | district), family = binomial, method = "PB", data = Contraception, args_test = list(nsim = 10, cl = cl), cl = cl) #### use all_fit = TRUE and expand_re = TRUE: data("sk2011.2") sk2_aff <- droplevels(sk2011.2[sk2011.2$what == "affirmation",]) require(optimx) # uses two more algorithms sk2_aff_b <- mixed(response ~ instruction*type+(inference*type||id), sk2_aff, expand_re = TRUE, all_fit = TRUE) attr(sk2_aff_b, "all_fit_selected") attr(sk2_aff_b, "all_fit_logLik") # considerably faster with multicore: clusterEvalQ(cl, library(optimx)) # need to load optimx in cluster sk2_aff_b2 <- mixed(response ~ instruction*type+(inference*type||id), sk2_aff, expand_re = TRUE, all_fit = TRUE, cl=cl) attr(sk2_aff_b2, "all_fit_selected") attr(sk2_aff_b2, "all_fit_logLik") stopCluster(cl) } } \references{ Baayen, R. H. (2008). \emph{Analyzing linguistic data: a practical introduction to statistics using R}. Cambridge, UK; New York: Cambridge University Press. Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. \emph{Journal of Memory and Language}, 59(4), 390-412. doi:10.1016/j.jml.2007.12.005 Baayen, R. H., & Milin, P. (2010). Analyzing Reaction Times. \emph{International Journal of Psychological Research}, 3(2), 12-28. Barr, D. J. (2013). Random effects structure for testing interactions in linear mixed-effects models. \emph{Frontiers in Quantitative Psychology and Measurement}, 328. doi:10.3389/fpsyg.2013.00328 Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: Keep it maximal. \emph{Journal of Memory and Language}, 68(3), 255-278. doi:10.1016/j.jml.2012.11.001 Bates, D., Kliegl, R., Vasishth, S., & Baayen, H. (2015). \emph{Parsimonious Mixed Models}. arXiv:1506.04967 [stat]. Retrieved from \url{http://arxiv.org/abs/1506.04967} Dalal, D. K., & Zickar, M. J. (2012). Some Common Myths About Centering Predictor Variables in Moderated Multiple Regression and Polynomial Regression. \emph{Organizational Research Methods}, 15(3), 339-362. doi:10.1177/1094428111430540 Judd, C. M., Westfall, J., & Kenny, D. A. (2012). Treating stimuli as a random factor in social psychology: A new and comprehensive solution to a pervasive but largely ignored problem. \emph{Journal of Personality and Social Psychology}, 103(1), 54-69. doi:10.1037/a0028347 Luke, S. (2017). Evaluating significance in linear mixed-effects models in R. \emph{Behavior Research Methods}. \url{https://doi.org/10.3758/s13428-016-0809-y} Maxwell, S. E., & Delaney, H. D. (2004). \emph{Designing experiments and analyzing data: a model-comparisons perspective.} Mahwah, N.J.: Lawrence Erlbaum Associates. } \seealso{ \code{\link{aov_ez}} and \code{\link{aov_car}} for convenience functions to analyze experimental deisgns with classical ANOVA or ANCOVA wrapping \code{\link[car]{Anova}}. see the following for the data sets from Maxwell and Delaney (2004) used and more examples: \code{\link{md_15.1}}, \code{\link{md_16.1}}, and \code{\link{md_16.4}}. } \author{ Henrik Singmann with contributions from \href{http://stackoverflow.com/q/11335923/289572}{Ben Bolker and Joshua Wiley}. } afex/man/ems.Rd0000644000176200001440000000533413055750375013042 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/ems.R \name{ems} \alias{ems} \title{Expected values of mean squares for factorial designs Implements the Cornfield-Tukey algorithm for deriving the expected values of the mean squares for factorial designs.} \usage{ ems(design, nested = NULL, random = "") } \arguments{ \item{design}{A \code{formula} object specifying the factors in the design (except residual error, which is always implicitly included). The left hand side of the \code{~} is the symbol that will be used to denote the number of replications per lowest-level factor combination (I usually use "r" or "n"). The right hand side should include all fixed and random factors separated by \code{*}. Factor names should be single letters.} \item{nested}{A \code{character} vector, where each element is of the form \code{"A/B"}, indicating that the levels of factor B are nested under the levels of factor A.} \item{random}{A \code{character} string indicating, without spaces or any separating characters, which of the factors specified in the design are random.} } \value{ The returned value is a formatted table where the rows represent the mean squares, the columns represent the variance components that comprise the various mean squares, and the entries in each cell represent the terms that are multiplied and summed to form the expectation of the mean square for that row. Each term is either the lower-case version of one of the experimental factors, which indicates the number of levels for that factor, or a "1", which means the variance component for that column is contributes to the mean square but is not multiplied by anything else. } \description{ Expected values of mean squares for factorial designs Implements the Cornfield-Tukey algorithm for deriving the expected values of the mean squares for factorial designs. } \note{ Names for factors or parameters should only be of length 1 as they are simply concatenated in the returned table. } \examples{ # 2x2 mixed anova # A varies between-subjects, B varies within-subjects ems(r ~ A*B*S, nested="A/S", random="S") # Clark (1973) example # random Subjects, random Words, fixed Treatments ems(r ~ S*W*T, nested="T/W", random="SW") # EMSs for Clark design if Words are fixed ems(r ~ S*W*T, nested="T/W", random="S") } \seealso{ A detailed description with explanation of the example can be found \href{http://www.talkstats.com/showthread.php/18603-Share-your-functions-amp-code?p=82050&viewfull=1\#post82050}{elsewhere} (note that the \code{design} argument of the function described at the link behaves slightly different). Example applications of this function can be found here: \url{http://stats.stackexchange.com/a/122662/442}. } \author{ Jake Westfall } afex/man/sk2011.1.Rd0000644000176200001440000000570513055750375013340 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/sk2011.1-data.R \docType{data} \encoding{UTF-8} \name{sk2011.1} \alias{sk2011.1} \title{Data from Singmann & Klauer (2011, Experiment 1)} \format{A data.frame with 640 rows and 9 variables.} \source{ Singmann, H., & Klauer, K. C. (2011). Deductive and inductive conditional inferences: Two modes of reasoning. Thinking & Reasoning, 17(3), 247-281. doi:10.1080/13546783.2011.572718 } \usage{ sk2011.1 } \description{ Singmann and Klauer (2011) were interested in whether or not conditional reasoning can be explained by a single process or whether multiple processes are necessary to explain it. To provide evidence for multiple processes we aimed to establish a double dissociation of two variables: instruction type and problem type. Instruction type was manipulated between-subjects, one group of participants received deductive instructions (i.e., to treat the premises as given and only draw necessary conclusions) and a second group of participants received probabilistic instructions (i.e., to reason as in an everyday situation; we called this "inductive instruction" in the manuscript). Problem type consisted of two different orthogonally crossed variables that were manipulated within-subjects, validity of the problem (formally valid or formally invalid) and plausibility of the problem (inferences which were consisted with the background knowledge versus problems that were inconsistent with the background knowledge). The critical comparison across the two conditions was among problems which were valid and implausible with problems that were invalid and plausible. For example, the next problem was invalid and plausible: } \details{ If a person is wet, then the person fell into a swimming pool. \cr A person fell into a swimming pool. \cr How valid is the conclusion/How likely is it that the person is wet? For those problems we predicted that under deductive instructions responses should be lower (as the conclusion does not necessarily follow from the premises) as under probabilistic instructions. For the valid but implausible problem, an example is presented next, we predicted the opposite pattern: If a person is wet, then the person fell into a swimming pool. \cr A person is wet. \cr How valid is the conclusion/How likely is it that the person fell into a swimming pool? Our study also included valid and plausible and invalid and implausible problems. Note that the factor `plausibility` is not present in the original manuscript, there it is a results of a combination of other factors. } \examples{ data(sk2011.1) # Table 1 (p. 264): aov_ez("id", "response", sk2011.1[ sk2011.1$what == "affirmation",], within = c("inference", "type"), between = "instruction", anova_table=(es = "pes")) aov_ez("id", "response", sk2011.1[ sk2011.1$what == "denial",], within = c("inference", "type"), between = "instruction", anova_table=(es = "pes")) } \keyword{dataset} afex/man/afex-package.Rd0000644000176200001440000000265513111507576014571 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/afex-package.R \docType{package} \name{afex-package} \alias{afex-package} \title{The afex Package} \description{ Analysis of Factorial Experiments. } \details{ \tabular{ll}{ Package: \tab afex\cr Type: \tab Package\cr Version: \tab 0.18-0\cr Date: \tab 2017-05-25\cr Depends: \tab R (>= 3.1.0), lme4 (>= 1.1-8), lsmeans (>= 2.17)\cr Encoding: \tab UTF-8\cr License: \tab GPL (>=2)\cr URL: \tab http://afex.singmann.science/, https://github.com/singmann/afex\cr } Convenience functions for analyzing factorial experiments using ANOVA or mixed models. aov_ez(), aov_car(), and aov_4() allow specification of between, within (i.e., repeated-measures), or mixed between-within (i.e., split-plot) ANOVAs for data in long format (i.e., one observation per row), aggregating multiple observations per individual and cell of the design. mixed() fits mixed models using lme4::lmer() and computes p-values for all fixed effects using either Kenward-Roger or Satterthwaite approximation for degrees of freedom (LMM only), parametric bootstrap (LMMs and GLMMs), or likelihood ratio tests (LMMs and GLMMs). afex uses type 3 sums of squares as default (imitating commercial statistical software). } \author{ Henrik Singmann, Ben Bolker, Jake Westfall, Frederik Aust, with contributions from Søren Højsgaard, John Fox, Michael A. Lawrence, Ulf Mertens, Jonathan Love } \keyword{package} afex/man/sk2011.2.Rd0000644000176200001440000001060213055750375013331 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/sk2011.2-data.R \docType{data} \encoding{UTF-8} \name{sk2011.2} \alias{sk2011.2} \title{Data from Singmann & Klauer (2011, Experiment 2)} \format{A data.frame with 2268 rows and 9 variables.} \source{ Singmann, H., & Klauer, K. C. (2011). Deductive and inductive conditional inferences: Two modes of reasoning. Thinking & Reasoning, 17(3), 247-281. doi:10.1080/13546783.2011.572718 } \usage{ sk2011.2 } \description{ Singmann and Klauer (2011) were interested in whether or not conditional reasoning can be explained by a single process or whether multiple processes are necessary to explain it. To provide evidence for multiple processes we aimed to establish a double dissociation of two variables: instruction type and problem type. Instruction type was manipulated between-subjects, one group of participants received deductive instructions (i.e., to treat the premises as given and only draw necessary conclusions) and a second group of participants received probabilistic instructions (i.e., to reason as in an everyday situation; we called this "inductive instruction" in the manuscript). Problem type consisted of two different orthogonally crossed variables that were manipulated within-subjects, validity of the problem (formally valid or formally invalid) and type of the problem. Problem type consistent of three levels: prological problems (i.e., problems in which background knowledge suggested to accept valid but reject invalid conclusions), neutral problems (i.e., in which background knowledge suggested to reject all problems), and counterlogical problems (i.e., problems in which background knowledge suggested to reject valid but accept invalid conclusions). } \details{ This data set contains 63 participants in contrast to the originally reported 56 participants. The additional participants were not included in the original studies as they did not meet the inclusion criteria (i.e., no students, prior education in logic, or participated in a similar experiment). The IDs of those additional participants are: 7, 8, 9, 12, 17, 24, 30. The excluded participant reported in the paper has ID 16. content has the following levels (C = content/conditional):\cr 1 = Wenn eine Person in ein Schwimmbecken gefallen ist, dann ist sie nass.\cr 2 = Wenn ein Hund Flöhe hat, dann kratzt er sich hin und wieder.\cr 3 = Wenn eine Seifenblase mit einer Nadel gestochen wurde, dann platzt sie.\cr 4 = Wenn ein Mädchen Geschlechtsverkehr vollzogen hat, dann ist es schwanger.\cr 5 = Wenn eine Pflanze ausreichend gegossen wird, dann bleibt sie grün.\cr 6 = Wenn sich eine Person die Zähne putzt, dann bekommt sie KEIN Karies.\cr 7 = Wenn eine Person viel Cola trinkt, dann nimmt sie an Gewicht zu.\cr 8 = Wenn eine Person die Klimaanlage angeschaltet hat, dann fröstelt sie.\cr 9 = Wenn eine Person viel lernt, dann wird sie in der Klausur eine gute Note erhalten. } \examples{ data("sk2011.2") ## remove excluded participants: sk2_final <- droplevels(sk2011.2[!(sk2011.2$id \%in\% c(7, 8, 9, 12, 16, 17, 24, 30)),]) str(sk2_final) ## Table 2 (inference = problem): aov_ez("id", "response", sk2_final[sk2_final$what == "affirmation",], between = "instruction", within = c("inference", "type"), anova_table=list(es = "pes")) aov_ez("id", "response", sk2_final[sk2_final$what == "denial",], between = "instruction", within = c("inference", "type"), anova_table=list(es = "pes")) # Recreate Figure 4 (corrected version): sk2_aff <- droplevels(sk2_final[sk2_final$what == "affirmation",]) sk2_aff$type2 <- factor(sk2_aff$inference:sk2_aff$type, levels = c("MP:prological", "MP:neutral", "MP:counterlogical", "AC:counterlogical", "AC:neutral", "AC:prological")) a1_b <- aov_ez("id", "response", sk2_aff, between = "instruction", within = c("type2")) sk2_den <- droplevels(sk2_final[sk2_final$what == "denial",]) sk2_den$type2 <- factor(sk2_den$inference:sk2_den$type, levels = c("MT:prological", "MT:neutral", "MT:counterlogical", "DA:counterlogical", "DA:neutral","DA:prological")) a2_b <- aov_ez("id", "response", sk2_den, between = "instruction", within = c("type2")) lsmip(a1_b,instruction~type2, ylim = c(0, 100)) lsmip(a2_b,instruction~type2, ylim = c(0, 100)) } \keyword{dataset} afex/man/md_16.1.Rd0000644000176200001440000000357413055750375013327 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/md_16.1-data.R \docType{data} \encoding{UTF-8} \name{md_16.1} \alias{md_16.1} \title{Data 16.1 / 10.9 from Maxwell & Delaney} \format{A data.frame with 24 rows and 3 variables.} \source{ Maxwell, S. E., & Delaney, H. D. (2004). Designing experiments and analyzing data: a model-comparisons perspective. Mahwah, N.J.: Lawrence Erlbaum Associates. p. 574 } \usage{ md_16.1 } \description{ Hypothetical Reaction Time Data for 2 x 3 Perceptual Experiment: Example data for chapter 12 of Maaxwell and Delaney (2004, Table 12.1, p. 574) in long format. Has two within.subjects factors: angle and noise. } \details{ Description from pp. 829: As brief background, the goal of the study here is to examine the extent to which female and male clinical psychology graduate student trainees may assign different severity ratings to clients at initial intake. Three female and 3 male graduate students are randomly selected to participate and each is randomly assigned four clients with whom to do an intake interview, after which each clinical trainee assigns a severity rating to each client, producing the data shown in Table 16.1. Note that I changed the labeling of the id slightly, so that they are now labeled from 1 to 6. Furthermore, I changed the contrasts of sex to \code{contr.treatment} to replicate the exact results of Table 16.3 (p. 837). } \examples{ ### replicate results from Table 16.3 (Maxwell & Delaney, 2004, p. 837) data(md_16.1) # original results need treatment contrasts: (mixed1_orig <- mixed(severity ~ sex + (1|id), md_16.1, check.contrasts=FALSE)) summary(mixed1_orig$full.model) # p-values stay the same with afex default contrasts (contr.sum), # but estimates and t-values for the fixed effects parameters change. (mixed1 <- mixed(severity ~ sex + (1|id), md_16.1)) summary(mixed1$full.model) } \keyword{dataset} afex/man/round_ps.Rd0000644000176200001440000000107313055750375014103 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/round_ps.R \encoding{UTF-8} \name{round_ps} \alias{round_ps} \title{Helper function which rounds p-values} \usage{ round_ps(x) } \arguments{ \item{x}{a numeric vector} } \value{ A character vector with the same length of x. } \description{ p-values are rounded in a sane way: .99 - .01 to two digits, < .01 to three digits, < .001 to four digits. } \examples{ round_ps(runif(10)) round_ps(runif(10, 0, .01)) round_ps(runif(10, 0, .001)) round_ps(0.0000000099) } \author{ Henrik Singmann } afex/man/compare.2.vectors.Rd0000644000176200001440000001040413055750375015522 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/compare.2.vectors.R \encoding{UTF-8} \name{compare.2.vectors} \alias{compare.2.vectors} \title{Compare two vectors using various tests.} \usage{ compare.2.vectors(x, y, paired = FALSE, na.rm = FALSE, tests = c("parametric", "nonparametric"), coin = TRUE, alternative = "two.sided", perm.distribution = approximate(100000), wilcox.exact = NULL, wilcox.correct = TRUE) } \arguments{ \item{x}{a (non-empty) numeric vector of data values.} \item{y}{a (non-empty) numeric vector of data values.} \item{paired}{a logical whether the data is paired. Default is \code{FALSE}.} \item{na.rm}{logical. Should \code{NA} be removed? Default is \code{FALSE}.} \item{tests}{Which tests to report, parametric or nonparamteric? The default \code{c("parametric", "nonparametric")} reports both. See details. (Arguments may be abbreviated).} \item{coin}{logical or character. Should (permutation) tests from the \pkg{coin} package be reported? Default is \code{TRUE} corresponding to all implemented tests. \code{FALSE} calculates no tests from \pkg{coin}. A character vector may include any of the following (potentially abbreviated) implemented tests (see also Details): \code{c("permutation", "Wilcoxon", "median")}} \item{alternative}{a character, the alternative hypothesis must be one of \code{"two.sided"} (default), \code{"greater"} or \code{"less"}. You can specify just the initial letter, will be passed to all functions.} \item{perm.distribution}{\code{distribution} argument to \pkg{coin}, see \code{\link[coin]{NullDistribution}} or , \code{\link[coin]{IndependenceTest}}. Defaults to \code{approximate(100000)} indicating an approximation of the excat conditional distribution with 100.000 Monte Carlo samples. One can use \code{"exact"} for small samples and if \code{paired = FALSE}.} \item{wilcox.exact}{\code{exact} argument to \code{\link{wilcox.test}}.} \item{wilcox.correct}{\code{correct} argument to \code{\link{wilcox.test}}.} } \value{ a list with up to two elements (i.e., \code{paramteric} and/or \code{nonparamteric}) each containing a \code{data.frame} with the following columns: \code{test}, \code{test.statistic}, \code{test.value}, \code{test.df}, \code{p}. } \description{ Compares two vectors \code{x} and \code{y} using t-test, Welch-test (also known as Satterthwaite), Wilcoxon-test, and a permutation test implemented in \pkg{coin}. } \details{ The \code{parametric} tests (currently) only contain the \emph{t}-test and Welch/Statterwaithe/Smith/unequal variance \emph{t}-test implemented in \code{\link{t.test}}. The latter one is only displayed if \code{paired = FALSE}. The \code{nonparametric} tests (currently) contain the Wilcoxon test implemented in \code{\link{wilcox.test}} (\code{stats::Wilcoxon}) and (if \code{coin = TRUE}) the following tests implemented in \pkg{coin}: \itemize{ \item a \code{permutation} test \code{\link{oneway_test}} (the only test in this selction not using a rank transformation), \item the \code{Wilcoxon} test \code{\link{wilcox_test}} (\code{coin::Wilcoxon}), and \item the \code{median} test \code{median_test}. } Note that the two implementations of the Wilcoxon test probably differ. This is due to differences in the calculation of the Null distributions. } \examples{ with(sleep, compare.2.vectors(extra[group == 1], extra[group == 2])) # gives: ## $parametric ## test test.statistic test.value test.df p ## 1 t t -1.861 18.00 0.07919 ## 2 Welch t -1.861 17.78 0.07939 ## ## $nonparametric ## test test.statistic test.value test.df p ## 1 stats::Wilcoxon W 25.500 NA 0.06933 ## 2 permutation Z -1.751 NA 0.08154 ## 3 coin::Wilcoxon Z -1.854 NA 0.06487 ## 4 median Z -1.744 NA 0.17867 # compare with: with(sleep, compare.2.vectors(extra[group == 1], extra[group == 2], alternative = "less")) with(sleep, compare.2.vectors(extra[group == 1], extra[group == 2], alternative = "greater")) # doesn't make much sense as the data is not paired, but whatever: with(sleep, compare.2.vectors(extra[group == 1], extra[group == 2], paired = TRUE)) # from ?t.test: compare.2.vectors(1:10,y=c(7:20, 200)) } afex/man/afex_aov-methods.Rd0000644000176200001440000001162313073235514015476 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/methods.afex_aov.R \name{afex_aov-methods} \alias{afex_aov-methods} \alias{anova.afex_aov} \alias{print.afex_aov} \alias{summary.afex_aov} \alias{recover.data.afex_aov} \alias{lsm.basis.afex_aov} \title{Methods for afex_aov objects} \usage{ \method{anova}{afex_aov}(object, es = afex_options("es_aov"), observed = NULL, correction = afex_options("correction_aov"), MSE = TRUE, intercept = FALSE, p_adjust_method = NULL, sig_symbols = attr(object$anova_table, "sig_symbols"), ...) \method{print}{afex_aov}(x, ...) \method{summary}{afex_aov}(object, ...) \method{recover.data}{afex_aov}(object, ...) \method{lsm.basis}{afex_aov}(object, trms, xlev, grid, ...) } \arguments{ \item{object, x}{object of class \code{afex_aov} as returned from \code{\link{aov_car}} and related functions.} \item{es}{Effect Size to be reported. The default is given by \code{afex_options("es_aov")}, which is initially set to \code{"ges"} (i.e., reporting generalized eta-squared, see details). Also supported is partial eta-squared (\code{"pes"}) or \code{"none"}.} \item{observed}{character vector referring to the observed (i.e., non manipulated) variables/effects in the design. Important for calculation of generalized eta-squared (ignored if \code{es} is not \code{"ges"}), see details.} \item{correction}{Character. Which sphericity correction of the degrees of freedom should be reported for the within-subject factors. The default is given by \code{afex_options("correction_aov")}, which is initially set to \code{"GG"} corresponding to the Greenhouse-Geisser correction. Possible values are \code{"GG"}, \code{"HF"} (i.e., Hyunh-Feldt correction), and \code{"none"} (i.e., no correction).} \item{MSE}{logical. Should the column containing the Mean Sqaured Error (MSE) be displayed? Default is \code{TRUE}.} \item{intercept}{logical. Should intercept (if present) be included in the ANOVA table? Default is \code{FALSE} which hides the intercept.} \item{p_adjust_method}{\code{character} indicating if p-values for individual effects should be adjusted for multiple comparisons (see \link[stats]{p.adjust} and details).} \item{sig_symbols}{Character. What should be the symbols designating significance? When entering an vector with \code{length(sig.symbol) < 4} only those elements of the default (\code{c(" +", " *", " **", " ***")}) will be replaced. \code{sig_symbols = ""} will display the stars but not the \code{+}, \code{sig_symbols = rep("", 4)} will display no symbols. The default is given by \code{afex_options("sig_symbols")}.} \item{...}{further arguments passed through, see description of return value for details.} \item{trms, xlev, grid}{same as for \code{\link{lsm.basis}}.} } \value{ \describe{ \item{\code{anova}}{Returns an ANOVA table of class \code{c("anova", "data.frame")}. Information such as effect size (\code{es}) or df-correction are calculated each time this method is called.} \item{\code{summary}}{For ANOVAs containing within-subject factors it returns the full output of the within-subject tests: the uncorrected results, results containing Greenhousse-Geisser and Hyunh-Feldt correction, and the results of the Mauchly test of sphericity (all achieved via \code{summary.Anova.mlm}). For other ANOVAs, the \code{anova} table is simply returned.} \item{\code{print}}{Prints (and invisibly returns) the ANOVA table as constructed from \code{\link{nice}} (i.e., as strings rounded nicely). Arguments in \code{...} are passed to \code{nice} allowing to pass arguments such as \code{es} and \code{correction}.} \item{\code{recover.data} and \code{lsm.basis}}{Provide the backbone for using \code{\link{lsmeans}} and related functions from \pkg{lsmeans} directly on \code{afex_aov} objects by returning a \code{\link{ref.grid}} object. Should not be called directly but through the functionality provided by \pkg{lsmeans}.} } } \description{ Methods defined for objects returned from the ANOVA functions \code{\link{aov_car}} et al. of class \code{afex_aov} containing both the ANOVA fitted via \code{car::Anova} and base R's \code{aov}. } \details{ Exploratory ANOVA, for which no detailed hypotheses have been specified a priori, harbor a multiple comparison problem (Cramer et al., 2015). To avoid an inflation of familywise Type I error rate, results need to be corrected for multiple comparisons using \code{p_adjust_method}. \code{p_adjust_method} defaults to the method specified in the call to \code{\link{aov_car}} in \code{anova_table}. If no method was specified and \code{p_adjust_method = NULL} p-values are not adjusted. } \references{ Cramer, A. O. J., van Ravenzwaaij, D., Matzke, D., Steingroever, H., Wetzels, R., Grasman, R. P. P. P., ... Wagenmakers, E.-J. (2015). Hidden multiplicity in exploratory multiway ANOVA: Prevalence and remedies. \emph{Psychonomic Bulletin & Review}, 1-8. doi:\href{http://doi.org/10.3758/s13423-015-0913-5}{10.3758/s13423-015-0913-5} } afex/man/nice.Rd0000644000176200001440000001740113073235514013163 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/nice.R \encoding{UTF-8} \name{nice} \alias{nice} \alias{nice.afex_aov} \alias{nice.anova} \alias{nice.mixed} \alias{print.nice_table} \title{Make nice ANOVA table for printing.} \usage{ nice(object, ...) \method{nice}{afex_aov}(object, es = attr(object$anova_table, "es"), observed = attr(object$anova_table, "observed"), correction = attr(object$anova_table, "correction"), MSE = NULL, intercept = NULL, p_adjust_method = attr(object$anova_table, "p_adjust_method"), sig_symbols = attr(object$anova_table, "sig_symbols"), ...) \method{nice}{anova}(object, MSE = NULL, intercept = NULL, sig_symbols = attr(object, "sig_symbols"), sig.symbols, ...) \method{nice}{mixed}(object, sig_symbols = attr(object$anova_table, "sig_symbols"), ...) \method{print}{nice_table}(x, ...) } \arguments{ \item{object, x}{An object of class \code{"afex_aov"} (see \code{\link{aov_car}}) or of class \code{"mixed"} (see \code{\link{mixed}}) as returned from the \pkg{afex} functions. Alternatively, an object of class \code{"Anova.mlm"} or \code{"anova"} as returned from \code{\link[car]{Anova}}.} \item{...}{currently ignored.} \item{es}{Effect Size to be reported. The default is given by \code{afex_options("es_aov")}, which is initially set to \code{"ges"} (i.e., reporting generalized eta-squared, see details). Also supported is partial eta-squared (\code{"pes"}) or \code{"none"}.} \item{observed}{character vector referring to the observed (i.e., non manipulated) variables/effects in the design. Important for calculation of generalized eta-squared (ignored if \code{es} is not \code{"ges"}), see details.} \item{correction}{Character. Which sphericity correction of the degrees of freedom should be reported for the within-subject factors. The default is given by \code{afex_options("correction_aov")}, which is initially set to \code{"GG"} corresponding to the Greenhouse-Geisser correction. Possible values are \code{"GG"}, \code{"HF"} (i.e., Hyunh-Feldt correction), and \code{"none"} (i.e., no correction).} \item{MSE}{logical. Should the column containing the Mean Sqaured Error (MSE) be displayed? Default is \code{TRUE}.} \item{intercept}{logical. Should intercept (if present) be included in the ANOVA table? Default is \code{FALSE} which hides the intercept.} \item{p_adjust_method}{\code{character} indicating if p-values for individual effects should be adjusted for multiple comparisons (see \link[stats]{p.adjust} and details). The default \code{NULL} corresponds to no adjustment.} \item{sig_symbols}{Character. What should be the symbols designating significance? When entering an vector with \code{length(sig.symbol) < 4} only those elements of the default (\code{c(" +", " *", " **", " ***")}) will be replaced. \code{sig_symbols = ""} will display the stars but not the \code{+}, \code{sig_symbols = rep("", 4)} will display no symbols. The default is given by \code{afex_options("sig_symbols")}.} \item{sig.symbols}{deprecated argument, only for backwards compatibility, use \code{"sig_symbols"} instead.} } \value{ A \code{data.frame} of class \code{nice_table} with the ANOVA table consisting of characters. The columns that are always present are: \code{Effect}, \code{df} (degrees of freedom), \code{F}, and \code{p}. \code{ges} contains the generalized eta-squared effect size measure (Bakeman, 2005), \code{pes} contains partial eta-squared (if requested). } \description{ This generic function produces a nice ANOVA table for printin for objects of class. \code{nice_anova} takes an object from \code{\link[car]{Anova}} possible created by the convenience functions \code{\link{aov_ez}} or \code{\link{aov_car}}. When within-subject factors are present, either sphericity corrected or uncorrected degrees of freedom can be reported. } \details{ The returned \code{data.frame} is print-ready when adding to a document with proper methods. Either directly via \pkg{knitr} or similar approaches such as via packages \pkg{ascii} or \pkg{xtable} (nowadays \pkg{knitr} is probably the best approach, see \href{http://yihui.name/knitr/}{here}). \pkg{ascii} provides conversion to \href{http://www.methods.co.nz/asciidoc/}{AsciiDoc} and \href{http://orgmode.org/}{org-mode} (see \code{\link[ascii]{ascii}} and \code{\link[ascii]{print-ascii}}). \pkg{xtable} converts a \code{data.frame} into LaTeX code with many possible options (e.g., allowing for \code{"longtable"} or \code{"sidewaystable"}), see \code{\link[xtable]{xtable}} and \code{\link[xtable]{print.xtable}}. See Examples. Conversion functions to other formats (such as HTML, ODF, or Word) can be found at the \href{https://CRAN.R-project.org/view=ReproducibleResearch}{Reproducible Research Task View}. The default reports generalized eta squared (Olejnik & Algina, 2003), the "recommended effect size for repeated measured designs" (Bakeman, 2005). Note that it is important that all measured variables (as opposed to experimentally manipulated variables), such as e.g., age, gender, weight, ..., must be declared via \code{observed} to obtain the correct effect size estimate. Partial eta squared (\code{"pes"}) does not require this. Exploratory ANOVA, for which no detailed hypotheses have been specified a priori, harbor a multiple comparison problem (Cramer et al., 2015). To avoid an inflation of familywise Type I error rate, results need to be corrected for multiple comparisons using \code{p_adjust_method}. \code{p_adjust_method} defaults to the method specified in the call to \code{\link{aov_car}} in \code{anova_table}. If no method was specified and \code{p_adjust_method = NULL} p-values are not adjusted. } \examples{ ## example from Olejnik & Algina (2003) # "Repeated Measures Design" (pp. 439): data(md_12.1) # create object of class afex_aov: rmd <- aov_ez("id", "rt", md_12.1, within = c("angle", "noise")) rmd nice(rmd) str(nice(rmd)) # use different es: nice(rmd, es = "pes") # noise: .82 nice(rmd, es = "ges") # noise: .39 # same data other approach: rmd2 <- aov_ez("id", "rt", md_12.1, within = c("angle", "noise"), anova_table=list(correction = "none", es = "none")) nice(rmd2) nice(rmd2, correction = "GG") nice(rmd2, correction = "GG", es = "ges") # exampel using obk.long (see ?obk.long), a long version of the OBrienKaiser dataset from car. data(obk.long) # create object of class afex_aov: tmp.aov <- aov_car(value ~ treatment * gender + Error(id/phase*hour), data = obk.long) nice(tmp.aov, observed = "gender") nice(tmp.aov, observed = "gender", sig_symbols = rep("", 4)) \dontrun{ # use package ascii or xtable for formatting of tables ready for printing. full <- nice(tmp.aov, observed = "gender") require(ascii) print(ascii(full, include.rownames = FALSE, caption = "ANOVA 1"), type = "org") require(xtable) print.xtable(xtable(full, caption = "ANOVA 2"), include.rownames = FALSE) } } \references{ Bakeman, R. (2005). Recommended effect size statistics for repeated measures designs. \emph{Behavior Research Methods}, 37(3), 379-384. doi:10.3758/BF03192707 Cramer, A. O. J., van Ravenzwaaij, D., Matzke, D., Steingroever, H., Wetzels, R., Grasman, R. P. P. P., ... Wagenmakers, E.-J. (2015). Hidden multiplicity in exploratory multiway ANOVA: Prevalence and remedies. \emph{Psychonomic Bulletin & Review}, 1-8. doi:\href{http://doi.org/10.3758/s13423-015-0913-5}{10.3758/s13423-015-0913-5} Olejnik, S., & Algina, J. (2003). Generalized Eta and Omega Squared Statistics: Measures of Effect Size for Some Common Research Designs. \emph{Psychological Methods}, 8(4), 434-447. doi:10.1037/1082-989X.8.4.434 } \seealso{ \code{\link{aov_ez}} and \code{\link{aov_car}} are the convenience functions to create the object appropriate for \code{nice_anova}. } \author{ The code for calculating generalized eta-squared was written by Mike Lawrence.\cr Everything else was written by Henrik Singmann. } afex/man/fhch2010.Rd0000644000176200001440000000662713061021625013461 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/fhch2010-data.R \docType{data} \encoding{UTF-8} \name{fhch2010} \alias{fhch2010} \title{Data from Freeman, Heathcote, Chalmers, & Hockley (2010)} \format{A \code{data.frame} with 13,222 obs. of 9 variables: \describe{ \item{id}{participant id, \code{factor}} \item{task}{\code{factor} with two levels indicating which task was performed: \code{"naming"} or \code{"lexdec"}} \item{stimulus}{\code{factor} indicating whether the shown stimulus was a \code{"word"} or \code{"nonword"}} \item{density}{\code{factor} indicating the neighborhood density of presented items with two levels: \code{"low"} and \code{"high"}. Density is defined as the number of words that differ from a base word by one letter or phoneme.} \item{frequency}{\code{factor} indicating the word frequency of presented items with two levels: \code{"low"} (i.e., words that occur less often in natural language) and \code{"high"} (i.e., words that occur more often in natural language).} \item{length}{\code{factor} with 3 levels (4, 5, or 6) indicating the number of characters of presented stimuli.} \item{item}{\code{factor} with 600 levels: 300 words and 300 nonwords} \item{rt}{response time in seconds} \item{log_rt}{natural logarithm of response time in seconds} \item{correct}{boolean indicating whether or not the response in the lexical decision task was correct or incorrect (incorrect responses of the naming task are not part of the data).} }} \source{ Freeman, E., Heathcote, A., Chalmers, K., & Hockley, W. (2010). Item effects in recognition memory for words. Journal of Memory and Language, 62(1), 1-18. http://doi.org/10.1016/j.jml.2009.09.004 } \usage{ fhch2010 } \description{ Lexical decision and word naming latencies for 300 words and 300 nonwords presented in Freeman, Heathcote, Chalmers, and Hockley (2010). The study had one between-subjects factors, \code{"task"} with two levels (\code{"naming"} or \code{"lexdec"}), and four within-subjects factors: \code{"stimulus"} type with two levels (\code{"word"} or \code{"nonword"}), word \code{"density"} and word \code{"frequency"} each with two levels (\code{"low"} and \code{"high"}) and stimulus \code{"length"} with three levels (4, 5, and 6). } \details{ In the lexical-decision condition (N = 25), subjects indicated whether each item was a word or a nonword, by pressing either the left (labeled word) or right (labeled nonword) outermost button on a 6-button response pad. The next study item appeared immediately after the lexical decision response was given. In the naming condition (N = 20), subjects were asked to name each item aloud, and items remained on screen for 3 s. Naming time was recorded by a voice key. Items consisted of 300 words, 75 in each set making up a factorial combination of high and low density and frequency, and 300 nonwords, with equal numbers of 4, 5, and 6 letter items in each set. } \examples{ data("fhch2010") str(fhch2010) a1 <- aov_ez("id", "log_rt", fhch2010, between = "task", within = c("density", "frequency", "length", "stimulus")) nice(a1) lsmip(a1, frequency~length|task+stimulus) lsmip(a1, frequency~density|task+stimulus) \dontrun{ a2 <- aov_ez("id", "rt", fhch2010, between = "task", within = c("density", "frequency", "length", "stimulus")) nice(a2) lsmip(a2, frequency~length|task+stimulus) lsmip(a2, frequency~density|task+stimulus) } } \keyword{dataset} afex/man/ks2013.3.Rd0000644000176200001440000000735513055750375013347 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/ks2013.3-data.R \docType{data} \encoding{UTF-8} \name{ks2013.3} \alias{ks2013.3} \title{Data from Klauer & Singmann (2013, Experiment 3)} \format{A data.frame with 1440 rows and 6 variables.} \source{ Klauer, K. C., & Singmann, H. (2013). Does logic feel good? Testing for intuitive detection of logicality in syllogistic reasoning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39(4), 1265-1273. http://doi.org/10.1037/a0030530 Morsanyi, K., & Handley, S. J. (2012). Logic feels so good-I like it! Evidence for intuitive detection of logicality in syllogistic reasoning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38(3), 596-616. http://doi.org/10.1037/a0026099 } \usage{ ks2013.3 } \description{ Klauer and Singmann (2013) attempted to replicate an hypothesis of Morsanyi and Handley (2012) according to which individuals have an intuitive sense of logicality. Specifically, Morsanyi and Handley apparently provided evidence that the logical status of syllogisms (i.e., valid or invalid) affects participants liking ratings of the conclusion of syllogisms. Conclusions from valid syllogisms (e.g., Some snakes are poisonous. No poisonous animals are obbs. Some snakes are not obbs.) received higher liking ratings than conclusions from invalid syllogisms (e.g., No ice creams are vons. Some vons are hot. Some ice creams are not hot.). It is important to noted that in the experiments participants were simply shown the premises and conclusion in succession, they were not asked whether or not the conclusion follows or to generate their own conclusion. Their task was simply to judge how much they liked the "final" statement (i.e., the conclusion). } \details{ In their Experiment 3 Klauer and Singmann (2013) tested the idea that this finding was a consequence of the materials used and not an effect intuitive logic. More specifically, they observed that in the original study by Morsanyi and Handley (2012) a specific content always appeared with the same logical status. For example, the "ice-cream" content only ever appeared as an invalid syllogism as in the example above but never in a valid syllogism. In other words, content was perfectly confounded with logical status in the original study. To test this they compared a condition in which the logical status was confounded with the content (the "fixed" condition) with a condition in which the contents were randomly assigned to a logical status across participants (the "random" condition). For example, the ice-cream content was, across participants, equally like to appear in the invalid form as given above or in the following valid form: No hot things are vons. Some vons are ice creams. Conclusion Some ice creams are not hot. The data.frame contains the raw responses of all 60 participants (30 per condition) reported in Klauer & Singmann (2013). Each participants provided 24 responses, 12 to valid and 12 to invalid syllogisms. Furthermore, 8 syllogisms had a believable conclusion (e.g., Some ice creams are not hot.), 8 had an abstract conclusion (e.g., Some snakes are not obbs.), and 8 had an unbelievable conclusion (e.g., Some animals are not monkeys.). The number of the contents corresponds to the numbering given in Morsanyi and Handley (2012, p. 616). } \examples{ data("ks2013.3") # replicate results reported in Klauer & Singmann (2013, p. 1270) aov_ez("id", "response", ks2013.3, between = "condition", within = c("believability", "validity")) aov_ez("id", "response", subset(ks2013.3, condition == "fixed"), within = c("believability", "validity")) aov_ez("id", "response", subset(ks2013.3, condition == "random"), within = c("believability", "validity")) } \keyword{dataset} afex/man/all_fit.Rd0000644000176200001440000000665013056223642013663 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/allFit.R \name{all_fit} \alias{all_fit} \alias{nmkbw} \title{Refit \code{lmer} model using multiple optimizers} \usage{ all_fit(m, meth_tab = cbind(optimizer = rep(c("bobyqa", "Nelder_Mead", "optimx", "nloptwrap", "nmkbw"), c(1, 1, 2, 2, 1)), method = c("", "", "nlminb", "L-BFGS-B", "NLOPT_LN_NELDERMEAD", "NLOPT_LN_BOBYQA", "")), verbose = TRUE, maxfun = 1e+06, ...) nmkbw(fn, par, lower, upper, control) } \arguments{ \item{m}{a fitted model with \code{lmer}} \item{meth_tab}{a matrix (or data.frame) with columns - method the name of a specific optimization method to pass to the optimizer (leave blank for built-in optimizers) - optimizer the \code{optimizer} function to use} \item{verbose}{print progress messages?} \item{maxfun}{number of iterations to allow for the optimization rountine.} \item{...}{further arguments passed to \code{\link{update.merMod}} such as \code{data}.} \item{fn}{needed for \code{dfoptim::nmkb}} \item{par}{needed for \code{dfoptim::nmkb}} \item{lower}{needed for \code{dfoptim::nmkb}} \item{upper}{needed for \code{dfoptim::nmkb}} \item{control}{needed for \code{dfoptim::nmkb}} } \value{ a list of fitted \code{merMod} objects } \description{ Attempt to re-fit a [g]lmer model with a range of optimizers. The default is to use all known optimizers for R that satisfy the requirements (do not require explicit gradients, allow box constraints), in four categories; (i) built-in (\code{minqa::bobyqa}, \code{lme4::Nelder_Mead}), (ii) wrapped via optimx (most of optimx's optimizers that allow box constraints require an explicit gradient function to be specified; the two provided here are really base R functions that can be accessed via optimx, (iii) wrapped via nloptr, (iv) \code{dfoptim::nmkb}. } \details{ Needs packages \pkg{nloptr}, \pkg{optimx}, and \code{dfoptim} to try out all optimizers. \pkg{optimx} needs to be loaded explicitly using \code{library} or \code{require} (see examples). \code{nmkbw} is a simple wrapper function for fitting models with the corresponding optimizer. It needs to be exported for \code{lme4}, but should not be called directly by the user. } \note{ code taken from \url{https://github.com/lme4/lme4/blob/master/inst/utils/allFit.R} } \examples{ \dontrun{ # basic usage require(optimx) gm1 <- glmer(cbind(incidence, size - incidence) ~ period + (1 | herd), data = cbpp, family = binomial) gm_all <- all_fit(gm1) t(sapply(gm_all,fixef)) ## extract fixed effects sapply(gm_all,logLik) ## log-likelihoods sapply(gm_all,getME,"theta") ## theta parameters !sapply(gm_all,inherits,"try-error") ## was fit OK? ## for GLMMs: require("mlmRev") # for data gm1 <- mixed(use ~ age*urban + (1 | district), family = binomial, data = Contraception, method = "LRT") gm_all <- all_fit(gm1$full_model) sapply(gm_all,logLik) ## use allFit in combination with expand.re = TRUE data("sk2011.2") # see example("mixed") sk2_aff <- droplevels(sk2011.2[sk2011.2$what == "affirmation",]) sk_m2 <- mixed(response ~ instruction*inference*type+(inference*type||id), sk2_aff, expand_re = TRUE) sk_m2 sk_m2_allFit <- all_fit(sk_m2$full_model) sk_m2_allFit # all fits fail sk_m2_allFit <- all_fit(sk_m2$full_model, data = sk_m2$data) # works t(sapply(sk_m2_allFit,fixef)) sapply(sk_m2_allFit,logLik) } } \seealso{ slice, slice2D in the bbmle package } \author{ Ben Bolker, minor changes by Henrik Singmann } afex/man/reexports.Rd0000644000176200001440000000061313060223542014267 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/reexport.R \docType{import} \name{reexports} \alias{reexports} \alias{lmer} \title{Objects exported from other packages} \keyword{internal} \description{ These objects are imported from other packages. Follow the links below to see their documentation. \describe{ \item{lmerTest}{\code{\link[lmerTest]{lmer}}} }} afex/man/obk.long.Rd0000644000176200001440000000554413055750375013772 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/obk.long-data.R \docType{data} \encoding{UTF-8} \name{obk.long} \alias{obk.long} \title{O'Brien Kaiser's Repeated-Measures Dataset with Covariate} \format{A data frame with 240 rows and 7 variables.} \source{ O'Brien, R. G., & Kaiser, M. K. (1985). MANOVA method for analyzing repeated measures designs: An extensive primer. \emph{Psychological Bulletin}, 97, 316-333. doi:10.1037/0033-2909.97.2.316 } \usage{ obk.long } \description{ This is the long version of the \code{OBrienKaiser} dataset from the \pkg{car} pakage adding a random covariate \code{age}. Originally the dataset ist taken from O'Brien and Kaiser (1985). The description from \code{\link[car]{OBrienKaiser}} says: "These contrived repeated-measures data are taken from O'Brien and Kaiser (1985). The data are from an imaginary study in which 16 female and male subjects, who are divided into three treatments, are measured at a pretest, postest, and a follow-up session; during each session, they are measured at five occasions at intervals of one hour. The design, therefore, has two between-subject and two within-subject factors." } \examples{ # The dataset is constructed as follows: data("OBrienKaiser", package = "car") set.seed(1) OBrienKaiser2 <- within(OBrienKaiser, { id <- factor(1:nrow(OBrienKaiser)) age <- scale(sample(18:35, nrow(OBrienKaiser), replace = TRUE), scale = FALSE)}) attributes(OBrienKaiser2$age) <- NULL # needed or resahpe2::melt throws an error. OBrienKaiser2$age <- as.numeric(OBrienKaiser2$age) obk.long <- reshape2::melt(OBrienKaiser2, id.vars = c("id", "treatment", "gender", "age")) obk.long[,c("phase", "hour")] <- lapply(as.data.frame(do.call(rbind, strsplit(as.character(obk.long$variable), "\\\\."),)), factor) obk.long <- obk.long[,c("id", "treatment", "gender", "age", "phase", "hour", "value")] obk.long <- obk.long[order(obk.long$id),] rownames(obk.long) <- NULL str(obk.long) ## 'data.frame': 240 obs. of 7 variables: ## $ id : Factor w/ 16 levels "1","2","3","4",..: 1 1 1 1 1 1 1 1 1 1 ... ## $ treatment: Factor w/ 3 levels "control","A",..: 1 1 1 1 1 1 1 1 1 1 ... ## $ gender : Factor w/ 2 levels "F","M": 2 2 2 2 2 2 2 2 2 2 ... ## $ age : num -4.75 -4.75 -4.75 -4.75 -4.75 -4.75 -4.75 -4.75 -4.75 -4.75 ... ## $ phase : Factor w/ 3 levels "fup","post","pre": 3 3 3 3 3 2 2 2 2 2 ... ## $ hour : Factor w/ 5 levels "1","2","3","4",..: 1 2 3 4 5 1 2 3 4 5 ... ## $ value : num 1 2 4 2 1 3 2 5 3 2 ... head(obk.long) ## id treatment gender age phase hour value ## 1 1 control M -4.75 pre 1 1 ## 2 1 control M -4.75 pre 2 2 ## 3 1 control M -4.75 pre 3 4 ## 4 1 control M -4.75 pre 4 2 ## 5 1 control M -4.75 pre 5 1 ## 6 1 control M -4.75 post 1 3 } \keyword{dataset} afex/man/aov_car.Rd0000644000176200001440000006141713073235514013665 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/aov_car.R \encoding{UTF-8} \name{aov_car} \alias{aov_car} \alias{aov_ez} \alias{aov_4} \title{Convenient ANOVA estimation for factorial designs} \usage{ aov_ez(id, dv, data, between = NULL, within = NULL, covariate = NULL, observed = NULL, fun_aggregate = NULL, type = afex_options("type"), factorize = afex_options("factorize"), check_contrasts = afex_options("check_contrasts"), return = afex_options("return_aov"), anova_table = list(), ..., print.formula = FALSE) aov_car(formula, data, fun_aggregate = NULL, type = afex_options("type"), factorize = afex_options("factorize"), check_contrasts = afex_options("check_contrasts"), return = afex_options("return_aov"), observed = NULL, anova_table = list(), ...) aov_4(formula, data, observed = NULL, fun_aggregate = NULL, type = afex_options("type"), factorize = afex_options("factorize"), check_contrasts = afex_options("check_contrasts"), return = afex_options("return_aov"), anova_table = list(), ..., print.formula = FALSE) } \arguments{ \item{formula}{A formula specifying the ANOVA model similar to \code{\link{aov}} (for \code{aov_car} or similar to \code{lme4:lmer} for \code{aov_4}). Should include an error term (i.e., \code{Error(id/...)} for \code{aov_car} or \code{(...|id)} for \code{aov_4}). Note that the within-subject factors do not need to be outside the Error term (this contrasts with \code{aov}). See Details.} \item{data}{A \code{data.frame} containing the data. Mandatory.} \item{fun_aggregate}{The function for aggregating the data before running the ANOVA if there is more than one observation per individual and cell of the design. The default \code{NULL} issues a warning if aggregation is necessary and uses \code{\link{mean}}. Pass \code{mean} directly to avoid the warning.} \item{type}{The type of sums of squares for the ANOVA. The default is given by \code{afex_options("type")}, which is \strong{initially set to 3}. Passed to \code{\link[car]{Anova}}. Possible values are \code{"II"}, \code{"III"}, \code{2}, or \code{3}.} \item{factorize}{logical. Should between subject factors be factorized (with note) before running the analysis. he default is given by \code{afex_options("factorize")}, which is initially \code{TRUE}. If one wants to run an ANCOVA, needs to be set to \code{FALSE} (in which case centering on 0 is checked on numeric variables).} \item{check_contrasts}{\code{logical}. Should contrasts for between-subject factors be checked and (if necessary) changed to be \code{"contr.sum"}. See details. The default is given by \code{afex_options("check_contrasts")}, which is initially \code{TRUE}.} \item{return}{What should be returned? The default is given by \code{afex_options("return_aov")}, which is initially \code{"afex_aov"}, returning an S3 object of class \code{afex_aov} for which various \link[=afex_aov-methods]{methods} exist (see there and below for more details). To avoid the (potentially costly) computation via \code{aov} set \code{return} to \code{"nice"} in which case only the nice ANOVA table is returned (produced by \code{\link{nice}}, this was the previous default return value). Other values are currently still supported for backward compatibility.} \item{observed}{\code{character} vector indicating which of the variables are observed (i.e, measured) as compared to experimentally manipulated. The default effect size reported (generalized eta-squared) requires correct specification of the obsered (in contrast to manipulated) variables.} \item{anova_table}{\code{list} of further arguments passed to function producing the ANOVA table. Arguments such as \code{es} (effect size) or \code{correction} are passed to either \code{anova.afex_aov} or \code{nice}. Note that those settings can also be changed once an object of class \code{afex_aov} is created by invoking the \code{anova} method directly.} \item{...}{Further arguments passed to \code{fun_aggregate}.} \item{id}{\code{character} vector (of length 1) indicating the subject identifier column in \code{data}.} \item{dv}{\code{character} vector (of length 1) indicating the column containing the \strong{dependent variable} in \code{data}.} \item{between}{\code{character} vector indicating the \strong{between}-subject(s) factor(s)/column(s) in \code{data}. Default is \code{NULL} indicating no between-subjects factors.} \item{within}{\code{character} vector indicating the \strong{within}-subject(s)(or repeated-measures) factor(s)/column(s) in \code{data}. Default is \code{NULL} indicating no within-subjects factors.} \item{covariate}{\code{character} vector indicating the between-subject(s) covariate(s) (i.e., column(s)) in \code{data}. Default is \code{NULL} indicating no covariates.} \item{print.formula}{\code{aov_ez} and \code{aov_4} are wrapper for \code{aov_car}. This boolean argument indicates whether the formula in the call to \code{car.aov} should be printed.} } \value{ \code{aov_car}, \code{aov_4}, and \code{aov_ez} are wrappers for \code{\link[car]{Anova}} and \code{\link{aov}}, the return value is dependent on the \code{return} argument. Per default, an S3 object of class \code{"afex_aov"} is returned containing the following slots: \describe{ \item{\code{"anova_table"}}{An ANOVA table of class \code{c("anova", "data.frame")}.} \item{\code{"aov"}}{\code{aov} object returned from \code{\link{aov}} (should not be used to evaluate significance of effects, but can be passed to \code{lsmeans} for post-hoc tests).} \item{\code{"Anova"}}{object returned from \code{\link[car]{Anova}}, an object of class \code{"Anova.mlm"} (if within-subjects factors are present) or of class \code{c("anova", "data.frame")}.} \item{\code{"lm"}}{the object fitted with \code{lm} and passed to \code{Anova} (i.e., an object of class \code{"lm"} or \code{"mlm"}). Also returned if \code{return = "lm"}.} \item{\code{"data"}}{a list containing: (1) \code{long} (the possibly aggregated data in long format used for \code{aov}), \code{wide} (the data used to fit the \code{lm} object), and \code{idata} (if within-subject factors are present, the \code{idata} argument passed to \code{car::Anova}). Also returned if \code{return = "data"}.} } In addition, the object has the following attributes: \code{"dv"}, \code{"id"}, \code{"within"}, \code{"between"}, and \code{"type"}. The \link[=afex_aov-methods]{print} method for \code{afex_aov} objects (invisibly) returns (and prints) the same as if \code{return} is \code{"nice"}: a nice ANOVA table (produced by \code{\link{nice}}) with the following columns: \code{Effect}, \code{df}, \code{MSE} (mean-squared errors), \code{F} (potentially with significant symbols), \code{ges} (generalized eta-squared), \code{p}. } \description{ These functions allow convenient specification of any type of ANOVAs (i.e., purely within-subjects ANOVAs, purely between-subjects ANOVAs, and mixed between-within or split-plot ANOVAs) for data in the \strong{long} format (i.e., one observation per row). If the data has more than one observation per individual and cell of the design (e.g., multiple responses per condition), the data will by automatically aggregated. The default settings reproduce results from commercial statistical packages such as SPSS or SAS. \code{aov_ez} is called specifying the factors as character vectors, \code{aov_car} is called using a formula similar to \code{\link{aov}} specifying an error strata for the within-subject factor(s), and \code{aov_4} is called with a \pkg{lme4}-like formula (all ANOVA functions return identical results). The returned object contains the ANOVA also fitted via base R's \code{\link{aov}} which can be passed to e.g., \pkg{lsmeans} for further analysis (e.g., follow-up tests, contrasts, plotting, etc.). These functions employ \code{\link[car]{Anova}} (from the \pkg{car} package) to provide test of effects avoiding the somewhat unhandy format of \code{car::Anova}. } \details{ \subsection{Details of ANOVA Specification}{ \code{aov_ez} will concatenate all between-subject factors using \code{*} (i.e., producing all main effects and interactions) and all covariates by \code{+} (i.e., adding only the main effects to the existing between-subject factors). The within-subject factors do fully interact with all between-subject factors and covariates. This is essentially identical to the behavior of SPSS's \code{glm} function. The \code{formula}s for \code{aov_car} or \code{aov_4} must contain a single \code{Error} term specifying the \code{ID} column and potential within-subject factors (you can use \code{\link{mixed}} for running mixed-effects models with multiple error terms). Factors outside the \code{Error} term are treated as between-subject factors (the within-subject factors specified in the \code{Error} term are ignored outside the \code{Error} term; in other words, it is not necessary to specify them outside the \code{Error} term, see Examples).\cr Suppressing the intercept (i.e, via \code{0 +} or \code{- 1}) is ignored. Specific specifications of effects (e.g., excluding terms with \code{-} or using \code{^}) could be okay but is not tested. Using the \code{\link{I}} or \code{\link{poly}} function within the formula is not tested and not supported! To run an ANCOVA you need to set \code{factorize = FALSE} and make sure that all variables have the correct type (i.e., factors are factors and numeric variables are numeric and centered). Note that the default behavior is to include calculation of the effect size generalized eta-squared for which \strong{all non-manipluated (i.e., observed)} variables need to be specified via the \code{observed} argument to obtain correct results. When changing the effect size to \code{"pes"} (partial eta-squared) or \code{"none"} via \code{anova_table} this becomes unnecessary. If \code{check_contrasts = TRUE}, contrasts will be set to \code{"contr.sum"} for all between-subject factors if default contrasts are not equal to \code{"contr.sum"} or \code{attrib(factor, "contrasts") != "contr.sum"}. (within-subject factors are hard-coded \code{"contr.sum"}.) } \subsection{Statistical Issues}{ \strong{Type 3 sums of squares are default in \pkg{afex}.} While some authors argue that so-called type 3 sums of squares are dangerous and/or problematic (most notably Venables, 2000), they are the default in many commercial statistical application such as SPSS or SAS. Furthermore, statisticians with an applied perspective recommend type 3 tests (e.g., Maxwell and Delaney, 2004). Consequently, they are the default for the ANOVA functions described here. For some more discussion on this issue see \href{http://stats.stackexchange.com/q/6208/442}{here}. Note that lower order effects (e.g., main effects) in type 3 ANOVAs are only meaningful with \href{http://www.ats.ucla.edu/stat/mult_pkg/faq/general/effect.htm}{effects coding}. That is, contrasts should be set to \code{\link{contr.sum}} to obtain meaningful results. This is imposed automatically for the functions discussed here as long as \code{check_contrasts} is \code{TRUE} (the default). I nevertheless recommend to set the contrasts globally to \code{contr.sum} via running \code{\link{set_sum_contrasts}}. For a discussion of the other (non-recommended) coding schemes see \href{http://www.ats.ucla.edu/stat/r/library/contrast_coding.htm}{here}. } \subsection{Follow-Up Contrasts and Post-Hoc Tests}{ The S3 object returned per default can be directly passed to \code{lsmeans::lsmeans} for further analysis. This allows to test any type of contrasts that might be of interest independent of whether or not this contrast involves between-subject variables, within-subject variables, or a combination thereof. The general procedure to run those contrasts is the following (see Examples for a full example): \enumerate{ \item Estimate an \code{afex_aov} object with the function returned here. For example: \code{x <- aov_car(dv ~ a*b + (id/c), d)} \item Obtain a \code{\link[lsmeans]{ref.grid}} object by running \code{\link[lsmeans]{lsmeans}} on the \code{afex_aov} object from step 1 using the factors involved in the contrast. For example: \code{r <- lsmeans(x, ~a:c)} \item Create a list containing the desired contrasts on the reference grid object from step 2. For example: \code{con1 <- list(a_x = c(-1, 1, 0, 0, 0, 0), b_x = c(0, 0, -0.5, -0.5, 0, 1))} \item Test the contrast on the reference grid using \code{\link[lsmeans]{contrast}}. For example: \code{contrast(r, con1)} \item To control for multiple testing p-value adjustments can be specified. For example the Bonferroni-Holm correction: \code{contrast(r, con1, adjust = "holm")} } Note that \pkg{lsmeans} allows for a variety of advanced settings and simplifiations, for example: all pairwise comparison of a single factor using one command (e.g., \code{lsmeans(x, "a", contr = "pairwise")}) or advanced control for multiple testing by passing objects to \pkg{multcomp}. A comprehensive overview of the functionality is provided in the accompanying vignettes (see \href{https://CRAN.R-project.org/package=lsmeans}{here}). A caveat regarding the use of \pkg{lsmeans} concerns the assumption of sphericity for ANOVAs including within-subjects/repeated-measures factors (with more than two levels). While the ANOVA tables per default report results using the Greenhousse-Geisser correction, no such correction is available when using \pkg{lsmeans}. This may result in anti-conservative tests. \pkg{lsmeans} is loaded/attached automatically when loading \pkg{afex} via \code{library} or \code{require}. } \subsection{Methods for \code{afex_aov} Objects}{ A full overview over the methods provided for \code{afex_aov} objects is provided in the corresponding help page: \code{\link{afex_aov-methods}}. The probably most important ones for end-users are \code{summary} and \code{anova}. The \code{summary} method returns, for ANOVAs containing within-subject (repeated-measures) factors with more than two levels, the complete univariate analysis: Results without df-correction, the Greenhouse-Geisser corrected results, the Hyunh-Feldt corrected results, and the results of the Mauchly test for sphericity. The \code{anova} method returns a \code{data.frame} of class \code{"anova"} containing the ANOVA table in numeric form (i.e., the one in slot \code{anova_table} of a \code{afex_aov}). This method has arguments such as \code{correction} and \code{es} and can be used to obtain an ANOVA table with different correction than the one initially specified. } } \note{ Calculation of ANOVA models via \code{aov} (which is done per default) can be comparatively slow and produce comparatively large objects for ANOVAs with many within-subjects factors or levels. To avoid this calculation set the return argument to \code{"nice"}. This can also be done globally via \code{afex_options(return_aov = "nice")}. \code{return = "nice"} also produces the default output of previous versions of afex (versions 0.13 and earlier). The id variable and variables entered as within-subjects (i.e., repeated-measures) factors are silently converted to factors. Levels of within-subject factors are converted to valid variable names using \code{\link{make.names}(...,unique=TRUE)}. Unused factor levels are silently dropped on all variables. Contrasts attached to a factor as an attribute are probably not preserved and not supported. The workhorse is \code{aov_car}. \code{aov_4} and \code{aov_ez} only construe and pass an appropriate formula to \code{aov_car}. Use \code{print.formula = TRUE} to view this formula. In contrast to \code{\link{aov}} \code{aov_car} assumes that all factors to the right of \code{/} in the \code{Error} term are belonging together. Consequently, \code{Error(id/(a*b))} and \code{Error(id/a*b)} are identical (which is not true for \code{\link{aov}}). } \examples{ ########################## ## 1: Specifying ANOVAs ## ########################## # Example using a purely within-subjects design # (Maxwell & Delaney, 2004, Chapter 12, Table 12.5, p. 578): data(md_12.1) aov_ez("id", "rt", md_12.1, within = c("angle", "noise"), anova_table=list(correction = "none", es = "none")) # Default output aov_ez("id", "rt", md_12.1, within = c("angle", "noise")) # examples using obk.long (see ?obk.long), a long version of the OBrienKaiser dataset (car package). # Data is a split-plot or mixed design: contains both within- and between-subjects factors. data(obk.long, package = "afex") # estimate mixed ANOVA on the full design: aov_car(value ~ treatment * gender + Error(id/(phase*hour)), data = obk.long, observed = "gender") aov_4(value ~ treatment * gender + (phase*hour|id), data = obk.long, observed = "gender") aov_ez("id", "value", obk.long, between = c("treatment", "gender"), within = c("phase", "hour"), observed = "gender") # the three calls return the same ANOVA table: # Anova Table (Type 3 tests) # # Response: value # Effect df MSE F ges p.value # 1 treatment 2, 10 22.81 3.94 + .20 .05 # 2 gender 1, 10 22.81 3.66 + .11 .08 # 3 treatment:gender 2, 10 22.81 2.86 .18 .10 # 4 phase 1.60, 15.99 5.02 16.13 *** .15 .0003 # 5 treatment:phase 3.20, 15.99 5.02 4.85 * .10 .01 # 6 gender:phase 1.60, 15.99 5.02 0.28 .003 .71 # 7 treatment:gender:phase 3.20, 15.99 5.02 0.64 .01 .61 # 8 hour 1.84, 18.41 3.39 16.69 *** .13 <.0001 # 9 treatment:hour 3.68, 18.41 3.39 0.09 .002 .98 # 10 gender:hour 1.84, 18.41 3.39 0.45 .004 .63 # 11 treatment:gender:hour 3.68, 18.41 3.39 0.62 .01 .64 # 12 phase:hour 3.60, 35.96 2.67 1.18 .02 .33 # 13 treatment:phase:hour 7.19, 35.96 2.67 0.35 .009 .93 # 14 gender:phase:hour 3.60, 35.96 2.67 0.93 .01 .45 # 15 treatment:gender:phase:hour 7.19, 35.96 2.67 0.74 .02 .65 # # Sphericity correction method: GG # --- # Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘+’ 0.1 ‘ ’ 1 # "numeric" variables are per default converted to factors (as long as factorize = TRUE): obk.long$hour2 <- as.numeric(as.character(obk.long$hour)) # gives same results as calls before aov_car(value ~ treatment * gender + Error(id/phase*hour2), data = obk.long, observed = c("gender")) # ANCOVA: adding a covariate (necessary to set factorize = FALSE) aov_car(value ~ treatment * gender + age + Error(id/(phase*hour)), data = obk.long, observed = c("gender", "age"), factorize = FALSE) aov_4(value ~ treatment * gender + age + (phase*hour|id), data = obk.long, observed = c("gender", "age"), factorize = FALSE) aov_ez("id", "value", obk.long, between = c("treatment", "gender"), within = c("phase", "hour"), covariate = "age", observed = c("gender", "age"), factorize = FALSE) # aggregating over one within-subjects factor (phase), with warning: aov_car(value ~ treatment * gender + Error(id/hour), data = obk.long, observed = "gender") aov_ez("id", "value", obk.long, c("treatment", "gender"), "hour", observed = "gender") # aggregating over both within-subjects factors (again with warning), # only between-subjects factors: aov_car(value ~ treatment * gender + Error(id), data = obk.long, observed = c("gender")) aov_4(value ~ treatment * gender + (1|id), data = obk.long, observed = c("gender")) aov_ez("id", "value", obk.long, between = c("treatment", "gender"), observed = "gender") # only within-subject factors (ignoring between-subjects factors) aov_car(value ~ Error(id/(phase*hour)), data = obk.long) aov_4(value ~ (phase*hour|id), data = obk.long) aov_ez("id", "value", obk.long, within = c("phase", "hour")) ### changing defaults of ANOVA table: # no df-correction & partial eta-squared: aov_car(value ~ treatment * gender + Error(id/(phase*hour)), data = obk.long, anova_table = list(correction = "none", es = "pes")) # no df-correction and no MSE aov_car(value ~ treatment * gender + Error(id/(phase*hour)), data = obk.long,observed = "gender", anova_table = list(correction = "none", MSE = FALSE)) # add p-value adjustment for all effects (see Cramer et al., 2015, PB&R) aov_ez("id", "value", obk.long, between = "treatment", within = c("phase", "hour"), anova_table = list(p_adjust_method = "holm")) ########################### ## 2: Follow-up Analysis ## ########################### # use data as above data(obk.long, package = "afex") # 1. obtain afex_aov object: a1 <- aov_ez("id", "value", obk.long, between = c("treatment", "gender"), within = c("phase", "hour"), observed = "gender") # 1b. plot data: lsmip(a1, gender ~ hour | treatment+phase) # 2. obtain reference grid object: r1 <- lsmeans(a1, ~treatment +phase) r1 # 3. create list of contrasts on the reference grid: c1 <- list( A_B_pre = c(0, -1, 1, rep(0, 6)), # A versus B for pretest A_B_comb = c(0, 0, 0, 0, -0.5, 0.5, 0, -0.5, 0.5), # A vs. B for post and follow-up combined effect_post = c(0, 0, 0, -1, 0.5, 0.5, 0, 0, 0), # control versus A&B post effect_fup = c(0, 0, 0, 0, 0, 0, -1, 0.5, 0.5), # control versus A&B follow-up effect_comb = c(0, 0, 0, -0.5, 0.25, 0.25, -0.5, 0.25, 0.25) # control versus A&B combined ) # 4. test contrasts on reference grid: contrast(r1, c1) # same as before, but using Bonferroni-Holm correction for multiple testing: contrast(r1, c1, adjust = "holm") # 2. (alternative): all pairwise comparisons of treatment: lsmeans(a1, "treatment", contr = "pairwise") ####################### ## 3: Other examples ## ####################### data(obk.long, package = "afex") # replicating ?Anova using aov_car: obk_anova <- aov_car(value ~ treatment * gender + Error(id/(phase*hour)), data = obk.long, type = 2) # in contrast to aov you do not need the within-subject factors outside Error() str(obk_anova, 1, give.attr = FALSE) # List of 5 # $ anova_table:Classes ‘anova’ and 'data.frame': 15 obs. of 6 variables: # $ aov :List of 5 # $ Anova :List of 14 # $ lm :List of 13 # $ data :List of 3 obk_anova$Anova ## Type II Repeated Measures MANOVA Tests: Pillai test statistic ## Df test stat approx F num Df den Df Pr(>F) ## (Intercept) 1 0.970 318 1 10 0.0000000065 *** ## treatment 2 0.481 5 2 10 0.03769 * ## gender 1 0.204 3 1 10 0.14097 ## treatment:gender 2 0.364 3 2 10 0.10447 ## phase 1 0.851 26 2 9 0.00019 *** ## treatment:phase 2 0.685 3 4 20 0.06674 . ## gender:phase 1 0.043 0 2 9 0.82000 ## treatment:gender:phase 2 0.311 1 4 20 0.47215 ## hour 1 0.935 25 4 7 0.00030 *** ## treatment:hour 2 0.301 0 8 16 0.92952 ## gender:hour 1 0.293 1 4 7 0.60237 ## treatment:gender:hour 2 0.570 1 8 16 0.61319 ## phase:hour 1 0.550 0 8 3 0.83245 ## treatment:phase:hour 2 0.664 0 16 8 0.99144 ## gender:phase:hour 1 0.695 1 8 3 0.62021 ## treatment:gender:phase:hour 2 0.793 0 16 8 0.97237 ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 } \references{ Cramer, A. O. J., van Ravenzwaaij, D., Matzke, D., Steingroever, H., Wetzels, R., Grasman, R. P. P. P., ... Wagenmakers, E.-J. (2015). Hidden multiplicity in exploratory multiway ANOVA: Prevalence and remedies. \emph{Psychonomic Bulletin & Review}, 1-8. doi:\href{http://doi.org/10.3758/s13423-015-0913-5}{10.3758/s13423-015-0913-5} Maxwell, S. E., & Delaney, H. D. (2004). \emph{Designing Experiments and Analyzing Data: A Model-Comparisons Perspective}. Mahwah, N.J.: Lawrence Erlbaum Associates. Venables, W.N. (2000). \emph{Exegeses on linear models}. Paper presented to the S-Plus User's Conference, Washington DC, 8-9 October 1998, Washington, DC. Available from: \url{http://www.stats.ox.ac.uk/pub/MASS3/Exegeses.pdf} } \seealso{ Various methods for objects of class \code{afex_aov} are available: \code{\link{afex_aov-methods}} \code{\link{nice}} creates the nice ANOVA tables which is by default printed. See also there for a slightly longer discussion of the available effect sizes. \code{\link{mixed}} provides a (formula) interface for obtaining p-values for mixed-models via \pkg{lme4}. } \author{ Henrik Singmann The design of these functions was influenced by \code{\link[ez]{ezANOVA}} from package \pkg{ez}. } afex/man/md_16.4.Rd0000644000176200001440000000501613055750375013323 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/md_16.4-data.R \docType{data} \encoding{UTF-8} \name{md_16.4} \alias{md_16.4} \title{Data 16.4 from Maxwell & Delaney} \format{A data.frame with 24 rows and 3 variables.} \source{ Maxwell, S. E., & Delaney, H. D. (2004). Designing experiments and analyzing data: a model-comparisons perspective. Mahwah, N.J.: Lawrence Erlbaum Associates. p. 574 } \usage{ md_16.4 } \description{ Data from a hypothetical inductive reasoning study. } \details{ Description from pp. 841: Suppose an educational psychologist has developed an intervention to teach inductive reasoning skills to school children. She decides to test the efficacy of her intervention by conducting a randomized design. Three classrooms of students are randomly assigned to the treatment condition, and 3 other classrooms are assigned to the control. Table 16.4 shows hypothetical data collected from 29 children who participated in the study assessing the effectiveness of the intervention to increase inductive reasoning skills. We want to call your attention to several aspects of the data. First, the 15 children with condition values of 0 received the control, whereas the 14 children with condition values of 1 received the treatment. Second, 4 of the children in the control condition were students in control Classroom 1, 6 of them were students in control Classroom 2, and 5 were students in control Classroom 3. Along similar lines, 3 of the children in the treatment condition were students in treatment Classroom 1, 5 were students in treatment Classroom 2, and 6 were students in treatment Classroom 3. It is essential to understand that there are a total of six classrooms here; we have coded classroom from 1 to 3 for control as well as treatment, because we will indicate to PROC MIXED that classroom is nested under treatment. Third, scores on the dependent variable appear in the rightmost column under the variable label "induct." Note that it would make a lot more sense to change the labeling of room from 1 to 3 nested within cond to 1 to 6. However, I keep this in line with the original. The random effects term in the call to mixed is therefore a little bit uncommon.#' } \examples{ # data for next examples (Maxwell & Delaney, Table 16.4) data(md_16.4) str(md_16.4) ### replicate results from Table 16.6 (Maxwell & Delaney, 2004, p. 845) # p-values (almost) hold: (mixed2 <- mixed(induct ~ cond + (1|room:cond), md_16.4)) # (1|room:cond) is needed because room is nested within cond. } \keyword{dataset} afex/man/set_sum_contrasts.Rd0000644000176200001440000000152613055750375016034 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/set_contrasts.R \name{set_sum_contrasts} \alias{set_sum_contrasts} \alias{set_deviation_contrasts} \alias{set_effects_contrasts} \alias{set_treatment_contrasts} \alias{set_default_contrasts} \title{Set global contrasts} \usage{ set_sum_contrasts() set_deviation_contrasts() set_effects_contrasts() set_default_contrasts() set_treatment_contrasts() } \value{ nothing. These functions are called for their side effects to change the global options. } \description{ These functions are simple wrappers to set contrasts globally via \code{options(contrasts = ...)}. } \details{ \code{set_deviation_contrasts} and \code{set_effects_contrasts} are wrappers for \code{set_sum_contrasts}. Likewise, \code{set_default_contrasts} is a wrapper to \code{set_treatment_contrasts()}. } afex/man/md_12.1.Rd0000644000176200001440000000520513055750375013314 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/md_12.1-data.R \docType{data} \encoding{UTF-8} \name{md_12.1} \alias{md_12.1} \title{Data 12.1 from Maxwell & Delaney} \format{A data.frame with 60 rows and 4 variables.} \source{ Maxwell, S. E., & Delaney, H. D. (2004). Designing experiments and analyzing data: a model-comparisons perspective. Mahwah, N.J.: Lawrence Erlbaum Associates. p. 574 } \usage{ md_12.1 } \description{ Hypothetical Reaction Time Data for 2 x 3 Perceptual Experiment: Example data for chapter 12 of Maaxwell and Delaney (2004, Table 12.1, p. 574) in long format. Has two within.subjects factors: angle and noise. } \details{ Description from pp. 573: Suppose that a perceptual psychologist studying the visual system was interested in determining the extent to which interfering visual stimuli slow the ability to recognize letters. Subjects are brought into a laboratory and seated in front of a tachistoscope. Subjects are told that they will see either the letter T or the letter I displayed on the screen. In some trials, the letter appears by itself, but in other trials, the target letter is embedded in a group of other letters. This variation in the display constitutes the first factor, which is referred to as noise. The noise factor has two levels?absent and present. The other factor varied by the experimenter is where in the display the target letter appears. This factor, which is called angle, has three levels. The target letter is either shown at the center of the screen (i.e., 0° off-center, where the subject has been instructed to fixate), 4° off-center or 8° off-center (in each case, the deviation from the center varies randomly between left and right). Table 12.1 presents hypothetical data for 10 subjects. As usual, the sample size is kept small to make the calculations easier to follow. The dependent measure is reaction time (latency), measured in milliseconds (ms), required by a subject to identify the correct target letter. Notice that each subject has six scores, one for each combination of the 2 x 3 design. In an actual perceptual experiment, each of these six scores would itself be the mean score for that subject across a number of trials in the particular condition. Although "trials" could be used as a third within-subjects factor in such a situation, more typically trials are simply averaged over to obtain a more stable measure of the individual's performance in each condition. } \examples{ data(md_12.1) # Table 12.5 (p. 578): aov_ez("id", "rt", md_12.1, within = c("angle", "noise"), args.return=list(correction = "none", es = "none")) } \keyword{dataset} afex/man/md_15.1.Rd0000644000176200001440000000632413055750375013322 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/md_15.1-data.R \docType{data} \encoding{UTF-8} \name{md_15.1} \alias{md_15.1} \title{Data 15.1 / 11.5 from Maxwell & Delaney} \format{A data.frame with 48 rows and 4 variables.} \source{ Maxwell, S. E., & Delaney, H. D. (2004). Designing experiments and analyzing data: a model-comparisons perspective. Mahwah, N.J.: Lawrence Erlbaum Associates. p. 766 } \usage{ md_15.1 } \description{ Hypothetical IQ Data from 12 children at 4 time points: Example data for chapter 11/15 of Maxwell and Delaney (2004, Table 15.1, p. 766) in long format. Has two one within-subjects factor: time. } \details{ Description from pp. 534: The data show that 12 subjects have been observed in each of 4 conditions. To make the example easier to discuss, let's suppose that the 12 subjects are children who have been observed at 30, 36, 42, and 48 months of age. In each case, the dependent variable is the child's age-normed general cognitive score on the McCarthy Scales of Children's Abilities. Although the test is normed so that the mean score is independent of age for the general population, our 12 children may come from a population in which cognitive abilities are either growing more rapidly or less rapidly than average. Indeed, this is the hypothesis our data allow us to address. In other words, although the sample means suggest that the children's cognitive abilities are growing, a significance test is needed if we want to rule out sampling error as a likely explanation for the observed differences. To replicate the results in chapter 15 several different contrasts need to be applied, see Examples. \code{time} is time in months (centered at 0) and \code{timecat} is the same as a categorical variable. } \examples{ ### replicate results from Table 15.2 to 15.6 (Maxwell & Delaney, 2004, pp. 774) data(md_15.1) ### ANOVA results (Table 15.2) aov_4(iq ~ timecat + (timecat|id),data=md_15.1, anova_table=list(correction = "none")) ### Table 15.3 (random intercept only) # we need to set the base level on the last level: contrasts(md_15.1$timecat) <- contr.treatment(4, base = 4) # "Type 3 Tests of Fixed Effects" (t15.3 <- mixed(iq ~ timecat + (1|id),data=md_15.1, check.contrasts=FALSE)) # "Solution for Fixed Effects" and "Covariance Parameter Estimates" summary(t15.3$full.model) ### make Figure 15.2 plot(NULL, NULL, ylim = c(80, 140), xlim = c(30, 48), ylab = "iq", xlab = "time") plyr::d_ply(md_15.1, plyr::.(id), function(x) lines(as.numeric(as.character(x$timecat)), x$iq)) ### Table 15.4, page 789 # random intercept plus slope (t15.4 <- mixed(iq ~ timecat + (1+time|id),data=md_15.1, check.contrasts=FALSE)) summary(t15.4$full.model) ### Table 15.5, page 795 # set up polynomial contrasts for timecat contrasts(md_15.1$timecat) <- contr.poly # fit all parameters separately (t15.5 <- mixed(iq ~ timecat + (1+time|id), data=md_15.1, check.contrasts=FALSE, per.parameter="timecat")) # quadratic trend is considerably off, conclusions stay the same. ### Table 15.6, page 797 # growth curve model (t15.6 <- mixed(iq ~ time + (1+time|id),data=md_15.1)) summary(t15.6$full.model) } \author{ R code for examples written by Ulf Mertens and Henrik Singmann } \keyword{dataset} afex/man/afex_options.Rd0000644000176200001440000000561613071473525014754 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/helpers.R \name{afex_options} \alias{afex_options} \title{Set/get global afex options} \usage{ afex_options(...) } \arguments{ \item{...}{One of four: (1) nothing, then returns all options as a list; (2) a name of an option element, then returns its' value; (3) a name-value pair which sets the corresponding option to the new value (and returns nothing), (4) a list with option-value pairs which sets all the corresponding arguments. The example show all possible cases.} } \value{ depends on input, see above. } \description{ Global afex options are used, for example, by \code{\link{aov_car}} (et al.) and \code{\link{mixed}}. But can be changed in each functions directly using an argument (which has precedence over the global options). } \details{ The following arguments are currently set: \itemize{ \item \code{check_contrasts} should contrasts be checked and changed to sum-to-zero contrasts? Default is \code{TRUE}. \item \code{type} type of sums-of-squares to be used for testing effects, default is 3 which reports Type 3 tests. \item \code{method_mixed}: Method used to obtain p-values in \code{\link{mixed}}, default is \code{"KR"} (which will change to \code{"LRT"} soon). (\code{mixed()} only) \item \code{return_aov}: Return value of the ANOVA functions (see \code{\link{aov_car}}), default is \code{"nice"}. \item \code{es_aov}: Effect size reported for ANOVAs (see \code{\link{aov_car}}), default is \code{"ges"} (generalized eta-squared). \item \code{correction_aov}: Correction used for within-subjects factors with more than two levels for ANOVAs (see \code{\link{aov_car}} or \code{\link{nice}}), default is \code{"GG"} (Greenhouse-Geisser correction). (ANOVA functions only) \item \code{factorize}: Should between subject factors be factorized (with note) before running the analysis? Default is \code{TRUE}. (ANOVA functions only) \item \code{sig_symbols}: Default significant symbols used for ANOVA and \code{mixed} printing. Default is\code{c(" +", " *", " **", " ***")}. \item \code{lmer_function}: Which \code{lmer} function should \code{mixed} or \code{lmer_alt} use. The default is \code{"lmerTest"} which uses \code{\link[lmerTest]{lmer}}, \code{"lme4"} is also possible which uses \code{\link[lme4]{lmer}}. There should be no difference between the two. The latter could be minimally faster, but does not allow to use \code{lmerTest::anova()}. } } \note{ All options are saved in the global R \code{\link{options}} with prefix \code{afex.} } \examples{ afex_options() # see all options afex_options("return_aov") #get single option aop <- afex_options() # save current options \dontrun{ # change options afex_options(return_aov = "nice") afex_options("return_aov") #get single option afex_options(return_aov = "nice", method_mixed = "LRT") afex_options("method_mixed") #get single option # do something } afex_options(aop) # reset options }

1,ϫՠ!WmW[TO#gŎ&V]{wl$֪*' ̡cU #dYxacdkgѠPԀ@=$SX)MJ-B3G@!M≛[iv|MʸLc%n)BfkVh2r92*j`Q6QnyAz6C gz]i*XV0<_g e^%ݘ!]& BG!{c}[SD & euϡ <`o BHG+#r-Q gXGimK?aa mBUBRL]A¹)1eƀUfAF%R䨵's1ӥdׄ吮Z|ʥJf 8˦Q)`*٘uwݯfGz`&6Vb! w 53S;2[kFrN(NbMGV(Fx?.E$NX Y20m`̽JtTy$z9A'wb;y`m{{mMڒ޺'E@yCh=|ؙyK~~g@ZŗMUDPƥی$wO_YZ0F e Q#H WPW<0 Gl>´@*^]G? Gûn/x#9 S;>Eac- #sLє GWjRƔWGǘ%\vV4O g S%r({|os&F;b۹&! 9}"R[Ob$LwJh<%R9FTok: jx6kC Np')h~}Y?O+v~$^ ;=ZRePdp}l˭Ӆ}bgr<#5N\UϪ iTK^׌6KDXEH c}ՉwȂ*Ό9E @Pf-ԐC3švJ\D^uFƳ@ղ;2\xۉ8P{?rQhe$Vi#N EdEZJruw̱X*Ш8\ 4igN5̵f'8X"&HЏwg_M'wKW)9ʤae}S0]kbYt7s|OtkO=c 2s ph7LTxDO's1 :OZQ yaA"ŷѹBRNh_OF:*)n^N&GClӝ^XusΩ-=X=Wr FIe$HfF򶔩 C~ \75!dIߞ_DtHF0<3E,^CEr%k(ЖXqquIb#Xk7 _6R7o5쒸dC1RQ2p))gc/n ɻMvxqZE_ԫP/E8)l|k^;Z"`nm3X~e:_J38`PK&J꧕RuؚYR]#+>Q2rl$>oQ?qRÀEԄsCzꆩJ-S" (quyF:j^[ϕkQ?GSxB/G^gq'$+O#Ֆ/;o<^[$Bi&P=?4*ZH5#ɊC#%$5y<69CU1͝x\~Y_ vۅhWf-U 3',3*tEuЄŚlLӨ:t_Kd BVۛ6dFVLr`BH+yròc]z95Ew#`D'<*^hdL,+^wzNz= 4R Hkfd?9{ xC *l $ kwe yaFGK=<ZpJ<(q^Pmyx(# 7ԅ be=6 a :9M;!<j,e(-Y2דAf=vH =q-6`T[Wދ=\x+w? j`WmWa3l WegMdxχUZh ~ۙ˥oPڿI|ΎcTKT\3ӳ#նdKwjmA+ωx%*;BTz4ײ%͌PUA@ E6{ہh: 4G7< 74c~Uk՞\;M7\m]p`0hk#nyAPP5Uu%vy9uٵ<ׂRh| y߆25*( V%Y$y o)|^| 8Ͽݗ92jjA% "ҩ[IOY ɮzϛvZ +khc5Lio?,,*EhjFŎls*?䋘ai$EI]d57*I#P"99>T ǹ$vm<*8=S;U݁: 8eV.Gue;E9kk=b?st0SH,Ш&M~Lҧ!6ۦLd9c/aPLB!ԩʸMN7"# 1[M4h˒X@jevN:zkDl"\m1َP3uC*D4)],U4EExJf9 N:n)QΫ vLǭʉ _rm/E;&gVGzFpOʧv4>m|Ъek*R -,s&$2Ǭy+0J=xC.^ q#ltθJ f"+x\F+C:{1?} fxt)Ěi ~GP+dZK럗_RE3}MlAFZ'g@pu=? WSҶ?2#B &nҺS,îx [LVB. 4]A1T1hXՠV%vh0woCDLx>fDz( jn KP8 R~+kIK%U|$*}$}Fe DMNq6]V'mOu@MZM6>S#"y5k:f/9ʤua/vD^r_Jh)i.`9h(S&/v3K*[ 6gM9ڀXqd9,8λY=*PpF"),TՋplˇ,C*M/%4gA.(.O)e)G޲DF.Ί-Z 7+:R E[a !U Xz5N{w1w },lW31۳j;N.$c.%(Lgat9K@+=gܔq~plQh~)KtiA@XBLu .? #65jcR/dBt%4Q+cw_?#%;y*{{02T/iFO8q,:2 [Ɵia̕H#/3+Tf!M%g:JLq>tIbo[P"%`Di@Qv 6 )0߶:W4UE>JwNR9jP )'<;xJ F5PĎܪFBC I?.N 돬 ŁILyRD͇GFlrْI&mn{scҞϽ^^%ǼC:pW7; oOWS9,0M`/ Go`1x.6?uۖIV>@84gr+Ma1ԞU)-y,h3k@s zk\0/>DڅLe(xƋHogoj(;qAcvQd! yTlO[OtO ~7`繋gce{D.PA[fn/op؁p*uPv$>5IpȱL Ș-R,o6Ik %nnzv59d;tBmuUm/g oi/vy:ȾDK^iڤQ^f-jވ|q%B؜3=a_F2 5pT?"5<"w.=+ΒKMH.?6v& VLd GxIMą$~GˊKwK/èˢ{c7Kw) ʡ[ykh^aD퐎jϫp Qtׁz>I d'W(1O~5j>ZcgO\l.?[^mXFy`TϘ6mep-yP;a_?6:Q8̊dGc0IC@p5ذB;ˍ:Z!!t=ccz{mAT +]@'p-2"6B\DyɎ%N斌 I=|VixQvq}Z:U1~c₃TIf/f /cYC\vxcVyIUIg.x[a>M3IvoF0+}/._iٰ.̓p ro!a@s oW|HG)q'ϓ9Fbwz͍HuUc>ߥ_Uіɇ" r}S6]azˆLpF<:^Pa8bBߧі}_yc+`+*0i薕wUEP]NeHAcwR1ky;<``I: Dl&Cƅn3tфjjK ܏/`v:G@m@lSxDYw 9&#©Ԑ'L.ȓƞ]~=m}o꥔ Ѹ&eDAaŻ7MIyg0[hr hrxK|gg2=Lhb%N)Y0az ^!: wܲ^C۹ԥMGp_I7nL͇'wф@ ~S얭]-iBO,=Q9lʍB|S\; N40qh(g%)2a^;!=9ga|PCD)eTfⅉߝ͡#êU|Ѽ&۬7T ?mjFXWrΦ2R^!&EecLnfzcHXrAO WXqMhTNκq&[.<ahU‘iռ m'=#Je+g:3.unOy^q&q[.V63'd"FVƊ o-O袩6I ~t(+gnq6F\m;|jN?|EpyQMk4Rǧp7ػԼLBϳa-I䍓4)j謁PKәUI6tN1 $)֤Ȃ+0,$<-, CoxY3^ m^A;s{$zu FLp^& 5 eSҝL ' )tV2;U&R5C_CumO1oo[&M\“c'bN N~\ق^-؝ts3/VA N&]E?KVr7W[wrӬHyKsXmtsob~+ѡ`Cտ>vˬ1z`jNQLCUޛ7lpXJF>p=VGyTPFc|\{͐ݲGs7MEUz-1z4fE(~n?`t wꐗtXmraU"ɭ ѡ 5, a?N؎EM\\"ZbjU~D&|2 >.͑bԛ<} {÷S1v(], w$*C^ܹ@E1f+8h!JڅO`r7%"<~VL_[HVc2eM&oy ict*n|f>5a%pZ1rN[TrtU+5N+H4C]cc)L5z u b5xU+m <ϊ h<.Cw}Y0$?ÁQcN3͗h l OZS"#<İ`&%!p[|]RnRaAQJd,q2=DVpt;685iLNy7>T5.e=k[U'irq+W6䃒7{pcE }"oMDGz#)D$8^',{~c]^3zƖ7}l[ :a&s{ XSSYgI< = U^Լ'01%*yԧнBVx< C=fj. zDV!m i:Sa2ƂuNrs-gǵ=C1qJ÷52H(S N FbX6kSdH*옗 Aeg<)<ґDogДn]UsmI6S0MmD5+8 /{)RN26/EXKώ2;+(7vzh:?#r DRy W+_,laBs>ք`Z&-u+Vas~ L6W5x"l7^5V*cͧH--@P1aDc0kc$u!YPͤ$]y"~uËyV7a2<*] $QaM4քk!}>? u}fѻnDo[92i2aFP~+L:Gx4}?YI;[GT cr>iu9GX@)+k(9N TOGWv\;m:^B,o䜴 b#rՓ~æ*wbP]l7=OXʩQ>]wG [l@eX%HemĔCC6(NIq)@L{RGlGsHnYOьC (3}h!.^ʍ, 7'ld,;T0Iz|S y0ߨ]!5Fɼ&,M =Nl&B^2"o% MS[|LZ1К@Xhtb7%+ej|Iҥ+̐;&FJ떱!i>z`goXhޭKxHz5>NZOCĵNSbq±Ra#, 4~X6VK&b&VBI<Ëɭ߹v-, /Zoؓ`bcR߮WR].Fo dGYпtw*]boϴ-g}IPo߈Y`{<عG/T$(!'k X,dRZ|Kl}Yl5nuHyr=CᯱMa|tM& !M_F@dY҅_+tѣeCwM̢ŀn%Na)ov*U`JIDp":i~d"+=$#./Qx(\..5Ⰾq*ee_[amKpyFmD0jf 3uB.\ ن 1p&#} Lj7EPeR P> OrBnP&8S̅ 9keW3<ތ2% fҁОA  @㷸 ƥ—}D>_KS[6P) pOɳx|mPJ+O^?+fh$Nq0:c^sg$IL)#RxSwQ0:d̏{plȫQQ@Ty/{dm M}ħ ~vJʁ9VtωL%<}NxSr)Xf"_h:ȴ[|N|ī3} n{_..ЛQ bk:tHp;6Xo[Ƥw{ܸ䯴n-[}wC!2YFӍ%H7 vӈbp wt/iZlt[rܡӍpUXNq֥&QpMwqY0]嵹_Yw?7k;=3bv2 _oQ}2~ŧmU{~hmb)]4MTqG'i`~ A@hr)4Ru!z>vI%]=!d喩UG RM)phLR!A|۩0cuYmX}>= S$u}l/$ W`uN\1HVh^B,g%Q u-t)c]R<˻*Iq/*)6u 4AYl.B{4(s])#}ʯl jJ+ycTLB5#Y$zS3lX.'1GުBbs%zb̹)Ԧ~ Ab)_WOH̰[i x(toYmt .IM1tJς=v;b?6£7VyY!4 ,x"PRSVg[N9l44c☹?<%Βpݶ|'ʯ혝…^Q50^LI Y:?/l!vy*v<`A4F|w皞[TD"Ԑx=nAlPpkw36 O Q&QC*\b >URA= M0RkoR|TUWij]"(4k~hйa72Ћ+ x&¡WJ"C\t8ZF&z0Ko>p#s tb́T 3=lu֢iuzM,QdXamMdDNH߱DIҥ@/1ZGE\MO)|᪮1Vb;Ѭ6DVVw֕z֚ļO6)J惦G$'3Mނİ]21X0F=pX8߽]P2fNR&krw 1.XtX4UĮ XaE۩ա؆7fcMF=FĮ56x3s8G95~0—wYmqF'7un.ՊԟLr> O ~h2ޓr:Щ_v;os"!诲xoI7QD<0mmro ͝ d'2S K1( mi΅9kq{=Q|f<:,L2RW#y1S!/$-EC'{@GB^ȔZ m? vakc#ON_)LO:Huk>hx i%OA 1|A?3uk4ף'o5ވ*J_UWزQPEEczRoV*$2T6) KcP" jBRٴ#f~OdK)uE?G">S}־/;VH. ob-Bz3K"dWbl*]kwI abTuH#b%7ưA$YXj8ISX%5XM\RK* rA͗6Y<@.hvZ|G8}ljҍدh%W f^HRC{CyByr% dݤu nD@eaQw$#1Gv* wƬDk\D.sm1AjF1k050 ?sD>6mSH$=:iKrEP?HW!7u]yv7[q 3@)e쫲ţQ)LZ0E94čI⡹#e$,Ʒ'ܣ*~z > l%pJHȷW)$cy[c-nc)bTTJN)M; ِrھ;Cg/갺hž`nj#ҫ1W_Zᚐ/'!3 {D_A+J}xMm Ǟƶ׃~T ̅6Vwh: %# 0> ,?kUoڇ Iq=zH0*z侰<5' ԥZvpOzg vC"ve*aF RcXkHFǻI iVs@ɎAo4&Anm'>*%r䰱k #OPͯ ,!-ź:Sm@⁧|n¹1W?4lT8empR*[%a7Vf- T?/|'-["Zs~SF*Һ Yc"x"EEJ7xVySq{^^`L"'1u輵"I}M.%J u̞9TS!%go?5c1P*/2fL;@mzvL&%__ϡmx1j ˎnV_ƣswã#Ot\oЫQN-mu64G蘭*^MU@GfxHV,xYnu3z?s&xdq59gkPG"0rJ@W_"HˁM;ʕ^mi|W;9܂"+w x&DsBbjǏ&nD!^բa\[n߀ߣ2 Z~ư%{WaLI]x`,ph@6,T1_ _lsIC}Bt2 nRe1ftYdj  kNoOh9)&̘KfeH~cȋ|8uoZ' aܩym&nhf۟i0* >'߲DΨM1}$?iNԞ|wxZ-X{+6=R62@_ڍ';pT乜=pr>%sK TcL}rVRd~ ;Cj)9ͬC>2%x#zrLq8#P7o9o1|7k$FV1I*}3]48=c`d3<ƶqÂb[ό_Q=}OFpG {JҐ bi #:NHSg"vg#6ZXb+ @LxB?_ c[jp1SԘ_'zMi6\$VJܭ)4KVWp_rԸ?T+ }}LcL45^e( e'{Ԏ-,7tOi^wu0ko/V7I>mj<2Zbʢ'?#>ޢ|*= $'mv`81^exG%K HE0ĚR[7]0|n(y8 9@3w3.a*u6 Oې ڝ |T?$ڂ#;`u.~v(лObu+J)ȤqAѸ**~z@y.1Vkx8f˘Ln;*.~.Q(>=:N{9J0q6+ <K2s)CfvQn5q] *i]eI;s߮ jhN!Ӡ,;`d yf9#GG[ԊcR0 t`)t~Dw]-X>79JI)qC7p.S [&a 71nxA gB /qI#Nnn4Iٰ@IrNtDڼKֈN~~, ;P#]}\*ʿڊ( ѡ0Nj<gQK )Ub9-mQN1$1x޹O< tհH xỉFjFc@adQW,[Miv< @쾻h QՌP9۶Hz1Oa˩kP=b *1v>̿O?J4bJKS9#*9G"S 51a0iGDiTh2$(h"z\|zk`GX{-?5+kCȹ+(z3$r7&yz/?t)3y۟Wo 6}y!h`8F%M}ɚH-,-Kk[p͏0&]O tNl'שC x܇{=$^d^jXm%UךhGް|g܎ox]+(QCtc7UoebX.nD$~. ׹ݾu{9(gZS 2HRx}c%m6j% 4ݯR5Nzhډ崄\jgoE" O@ 86v1 %M?=\m)}1Vݼp>y֑s7O<I܌@(!>X]$Gx0R &P &$oBD@/h#'h ՕW\,RxcP2.ԯ d40;V+s(]Z#>"a'I{_JgX ?z/^5Tĭ}\uʋA!e[]84Z\1JvZ!H=Vy]nTٙO[v1k a$U>j+EdON3dB mVP y=7OS$: fz~@2rX{%CQ (Al3G&(uw1@>C<9g\RԴ8ss*_{ *NU Ƭ jH*r:kDj, h:c}DJBnڎVYewj#ZQah{bd~ݹnOO53D?tdӏ-yoQa\*V]SRa:|.%񙬞ЪQ<&d7p-=; eJX^QI tD>}i%gҖSe$szQX(:մ>P0# r?/=MK?m#ZXeA.ߌ!W) nxfo^==^\*"v-LW*l9.=}0> ]|oRP l4"xv`7qA]yUߧsP޴4Xp8-jM<|!>]_3 D|+``2p 1Ȳ /ސrn^Nݦqiq_6 SdL,%Q7$yS~33-kanXUոEZ&1&{f0TQGo/~#:@|yU3u2$ b8{G 䟮 Х[( -TlBd$k7Nŀ -]SC6[5i vJ]lw,bkhh!N*UٽAWr4܋}rD }tcf+=Mũ^˛1DF*sz* I/| Y7OlmYJ;$,{k@p֑#K_iIef嫅ihSPuMl"&1Ŧo\>lVG;>>7[p|-FV~ܡ+{gv3 /`ю=įؙu۽ki10w7;.d3kLlvQYFW6 l[giQRdeT497VOeJd#}hI ߀tezjIècxEіpV c- )!א4ȹkP+9dfO?zZ^~vS_Q Fc 4lދaRމSm;ŦQls", "IpBjg@VxFQMǘrB=yMu+_pasdk- "mQP?قV!o0'ܸ~c qB)hG lv RAC p],߀vd G6|ݢ%j~[V{0EՓk$nHSՓM" HZ 1/Fn 9ip'FId\ĜlaUujH1Hah\rkIIDہѺ =I|H4^B^8}0 US3b^3JE~ތrzq%Sy9i4uc&T7(N6]۟3Y5&ӲC%O+28V:O c9V^fWwӨay/iEX#a|[rW <0CRp9?ͳ,ϡ.t1VA ZF@Kh-\$#eXޒWMH5D=$H>`:S:=I#X"ҿ!\{M=/N"15.AYFs[XZv;8 *燮 0uDVF- 6Uɠ]  LWffU`NZb,?(`&nR$]vUU`^'ibmei:6$V qV:r"njg"N#e殛qǥ `hsfoºO4jd{[(|W6dh{fĈ{2>9Awf݌uTE-h`aA;Ma8\g )(ۓ|LuvXyIY9t{nC !LF@:~ZteQ"k0.l)HՅU#}+l›6I}ԲHx"<>%a(q_uU *7+xKr?[̺3Ž X4Gn125_֝%|#l@ߓ釆\ol1!~QُF'.^ -EOI!=23xG)>Z87X bs: z5zJa^G4jx46S]BۈkPk䦍ZrD4ʡb0: 2q|\]< l_dMq98-4t]REEUӶ~!ԕXsV>n&p3٣H 6!> IlnakdOM:L;K_Fbs/m*V$RWʌezu2+'e^\ `~R e ͫ29$駮ؙf1UVs 3v&m TOf;,sx?{AcEye<>,COݒ6uA9/?Kspbz& q6 0ރ g)P%UÁۗ hDSf[m4Bt@aŬ'iB: _#H_-A2PߖDy P9D A&_Yw tmBTҎ\-SiPrDkEqgToVuiՅ £DW -QuVrmvAO'u*zx\г-=e'pjNEeo4I jrQ󫙤W\ˀ\zJ.< 6sX4Orqs*gX%Qi#;y=&_ 63Gˠ)X{$[&9BAǃPVm?#v( OAQ{YUޮ @It_};rYM"m]&tY[X7`Vk=rRLrP F JhىE% i ͒`pΜfгƦy, 7\Hy+YFq-YӼA*O"hji ebx2P0$l0Xo(LA Znw`O6%ȹ-5f>*nΰ`X5q4/xs|%d~UJT9WPepd8p%B?\^=pg/=[}p'؈-iHSfVf}>]msīb_ncjxZ@2&NBm fj ʪüLa6HCA+ SNH*TiZrih4sg,}=r`ƽ|?J8^65nԡEʱRf[}td͇@>Q7IsݧpZ+3J;XOWaz޻ ~ !G_F\1my$UAULWhm~d"q>@!A`p`)|L.`/8^w B<-|Tv=o8bӱ6K!(dJ,L2־d0Hחi5#5~~)۫)g;=[GYe9Mk0} `cV࿏0aﭐs瞖*s9.i/Z+Qz&X;('(ZR6ݺ;@- uEpOuM;/"!czh(֣);s2mWPL86ޙrTKDrKAc=)S"5XGVX4_lXv)4u[a$eYEG;9lt $+mi*hY@>9ZcKGyo6O8Gš*Cbݠη,fʉs[.?5Q9&ỈJz E\F. `˕n5^-(tCUIl|2, Qy{/(^$ִFru~/'Q?&3@T^Ym(q]uhLof"0X{h8oh*lܺK91`nMHG&vx`NOhes 3#Kap;Vݿ?h|/BKS~c׿=Չ^? ^< Q:'gқ^ԷtEH^Lo%VZC-ŗ.} |]l7V<63|OK%2̬dGLQe1hkꦅH]>2 ٬CK%?QAFYٷx$*͝t?Or eJ2g.j-5&:^=.C o].jI [xR!>R ?YB5ȼ̳=ɻnK,2$v{8H]Rů8/YيQG# <>d* (`O^j7Nmv4(Fo磊VQl5RG3ҚYu ЖS{|sؽcEW49,"̮u=y=ZrLL9 I`( !qjbT/ka|i/ d7z}Ij  J~CP?;;:K VOV0afVuawjNi9Vקb=b{ҙ`s>N@?w[tŴƖ:k`AUo`IC*A|gdc̺1OD:xVbWolK6dv J+=) {j'jMH-yYtGg>Bn/ q~l 7_/Q'Uj9ƬôPȽr;9t8mDXI B{<9:-Ŧu.|@s;Kצ23`%5ޛ맟qbB%ײ%`UOw| q>_bd(֑g-?ը^_YtL$ 1 )„3<TTe+|bpAu/cТZbza"Tw^Kߔ xQttM MxM57HGqJ3u4pڈ0raeVd>$}I$8ҀZzShVBSt'D4-E望ԒVᕯ=p1XXٔNzZI3@ s} '@-6isUa 5tx*! t% B<<)cȲFr*%oR-C= q V5[L({8? Ȉd@=^!NMD tuO&=^xbs5Gg?dwn8W";۪92FIp6J;1"+~?L̫mhӛ^l_vy_ HOcJlCZ֭%ꐘdv3Ā1.3LEF,8R rݚ߇*vR$"4r(kୖI ZNv fNUBy*dM7IW[0h${[~0xhƅ6AOi*Wf**QQo@x<])Ʒ.ԊZ_xSF3t*?66u Hr,lhp!t'4Z;?F߽ðXְ66=zezȅRZABb)Bӹ4F[ :MY\c :*F!B3C!KV_ͳY XSw@ PԴczśS.a!{ӍHIdHڜ]I!٩,\n)فmN;*+ n6m婬Q>!^v:6 l`m (k̃ i>9~[7iBNոf:% o}eI=zNG^{HA+z8ި>!sί FHOv]cw<-+]}J i[z*ɋn0hkĀbUL'h4vB35\Hޠ^wgC O7} sٙibSa|eb Ne9\ŭOs'K@," x^xkI,Wogl#eO0r6/ .O 0p+@&6E:pЈʴt쮺,ͱ3v\xM:ʑv`ă@5͟Pwų./=H2#3ᖾ,rb atInBFu)?C@rWc'-'bT}mz;9Z'6 ]T(PZk<$Mz?ܼE QFPj+7YYNQPuэ&EJdzߠ*J\)>2gy]IZm( ^"ViXVgm#zѩPdfFA]PAe]򛰣շ:`-p65w8~jQHYF:mB|QWRƝEDM2P= Ehi8vBL陽 M!Oo/][Tεon#j BPҖ0lInToSK ez:jсŭ֡\ՙ{) xL*҂hf#f.:^,ؕ:Ajzޭ`qDrq"vL 8-+妭dKuМؔ?4O4jVi?.X3*d_r@N@k$Z!Wrtd8)NvA!Z0?-]x*~&,i sMdUv9J|}cqd !o^(Y @B$A$?]xnQjvyr4cv8<{*(uX ŖufL"TYfolw94-ôjKQ MK R3j96߽b0Ibl e1yb_,'X.ī+zsi1%Ofp|``jA@0c[it2 |;s&aYE5l4)c~)&0r4>BKʭ$}xBo= *{Yw@pδ((zR ƫGZ8hi?5Q>||97d!8I;?B_yMkr.I: &}G琺CvIV55n=`$6޳z@|I_TKf6_E; AlJ*W00JyhLĸWbeC Owjh@@ r4>GIlƁZj$9\Hbz=GcK5h5Mj`OGxoU䕥xBy ?xtF!AhGsܧ }ա6[UIX(g٬ruu>Z ёB]a 5w66u(#c1! 84}…:Yq\rޣ }Q/f6Q6kz^8#Ayokz?AhÊIAPOGh2?:) j"qUzT:M&A(B˾_ kmgNMMҩи *X&ŜO-~4/ߋ FH0\|q)%rę;S}ܲ nq@j~A\+ < P?B,6xKzsQeG9Uj厢67-,GRSr}R^uXhL 6@%a? @|tԚe,: &%7Vʆ=omG,.ӄ4iFs/839?LGU1@f/&<yJu A?dQ@)S W 80=Ibcq?8n{`^>X\ۍ BH ;d={دz)Ӄ أ8F $_ k7@ N(pI?IEş=ТML0f7bAotD2dԙ qrWGdaL{S6dvܲ2zS* )/^1ё]%.FԳx +.ΡyW 0Gt@&FU 5Frko+mlm 4b#谮>2z>B:8l2I3,T,ȸ53S nȠn!3(.&P#U8{C S:.~3 T01(N۶?녜V[O9j~y%.PŵTAAEve'l鍙::)ζVitg= ᜝x I*8/s ˖YWj~pPJ!OJ@0k jʍJ~luazH_5 d3,jB&,iSɴ'27 ]<JcY"c,#kМ;C7]iؚ ~xq }aY#"`F$_-Sh_+&7p CnS[(/.d}gSkr7^_oHyRSʉ-w2!QN]yw` q5<܁~[Sk0D3"NcMsh0Vp;|i&\ⶩR";p@*NՄ>&DGtPcO<3n^PBa8⿯,lFX"$PvZfǏ"x1(!^ >hQ:طȭ!iәR9Su~Џ6 BxVcQ& jm{W~#SM^GЬ4mk O K~ѳn?%`z.Nl6G5d $ $ *V]Vs CpG! !Zek"[F^]<7p-}DVppX d]AX̗w(|M ݹ^g٪i=FE\wjx8uMZb-bhYMrY,IFpOc PhHpL!%焩Nldr~)Aȗ0 C{'Mv;ɛy qOyoqBeE<ʪ 18)4<&O_O_BLȹ3vPd[ʱ\_=fus>x!q9 Xf$fez T'd]:@CeOƪ"&[CYxY>-HL|a8ě"0ĩ;n0jDV8`ǪN"m)X@CNbrJg@8% s#w48 Mc{gF  ުJ<DwLdwriԬTb Du)=WtهYY/siCouS'ggeD;ؾص!cq*J}٬Bz==ln '=`MTo|!(Th tk=zے HT u:S ͟OHėf&T 3 Q ߶n#㖓PEOP2?lq<|㑽q}֘Sō&[ρxZyv޻Yoз |]7.;CcD}'A-61 jq%Ʃd\ɫzy[wsi3ExRS:< Li8{LE!IЭ oc~0*N\8WO 0;Mnr8Dסi;Q}7qx,yU1s3{H53%6ѥlyLLX-F"P.mmj!עR:9!/Utn"/wS>YEXUѫ=M·hh GEl&^ >fxi X 2Բh8u@XizW^9oջa ]Kv.uXd'@]!hul c|iS͈9+Qz" &4l!2Qފl:;UkЫESvnUw)6ԅAtg jj)|∥׋^h"FҼd 3 4V{ v4.Nb/\g6s#3.BX;U\,Phyţt5n!i|kѳo%iC$L-._/=#.$螨Zy?7S O+f7YB`Kt'2d-Dm h h'M )u sklCQmѾ>0̾R^fuNHH~@FY𚍸@Q+F%|"Oc2t~DE#>jE<=@*{Kҏ!VZ)wA ȊdD "v-w͹5q>Qa+" rBKL%r=n8^x,#olۇ(^PQkbIr/_u99ZmՓpi|]ÀS7Z3Po>ዜ@q팾-RSz?P͕*=tJIn-dhW6M`>;[kou&bR?z;szZxT.wa@IgChbb]=6]:')%S3* ~:NȍYIeQMP#繝IoCZϤH /vjCgDzHEB>7AA9zFPq;6e5퇄/VײUVrZe/Bah8oĦ(ybNoRѯ}A~5=aGVq0CN(/I+H#6|u-(Q$k-XCjn{i+q0 ZC'{;+,9_gE{""#_-<*i-@;\-|iL$Obf)eMi~ .aΜ:9t QЎ \l?XofM?Ent4KW MAkEyS.w /)1'HX^Ti![DA|pb<{SV9; ,;m* ci+܎ 閺?47`A@CW,L7֛vh`T>~|Pby9 9vZ0}S,ʏ!Є9f$"@83'WBXH$kh;oDeX8 =`%x(wJ6.)X;krmij Z@&qi JI)9'!] MI0rPw3H$!GT` l $_w|ѲJ#W V\ q3F~KVwI{X銭t{ &[ ý4}N F![";9R tК݋J⟎Up^-qKOz4a2TL'l=(U}C ʃ&VK7Sv$qoۥ:EaG?w&E']LIR.v%A3Kd&[=q丯66XZ0M'x0fU _{ɟHL!Cۨ2>YZx2B#(ݣ2@w6R}&AEFˀ{0 ?dWFbpL-*#i!f@Mb?7?#oP EB,J=!qf-!|c97\LF ?eiͺ=4`̛l3Gl?#4kW"4ȍW9& HKhEm,Ê)X|^ؚg^F "p iЫt_λ[NͤO,ޡQzty)Ωj̡бܟִ}rȜkEIcVSխwUKyܿ䅁f}"{ّY7T"?z)m'6K d A.@ wgEm7]Ԏ%M^L^y#KOM: ΣwE>9*-!㷷jg/`Ԁ/^ggLk}賂%Ҧv?| V{qShAG*^Q$L+S.)p03KHfGqYL !6*fSRᘠPf,2PIrFzc ɌDA^*LJN8cd,`sa'*ѰRdv9 yBS,,M d0;3;U[Jd0T;3^ ˮ֖ KfX [J#$-K GK.a淚0r0"0#2@,ίzḏ(zNATA'Y $D@>5nח3Sjw 9))m' 'E|1SpyHZ&Çܛy B" F,٤}I>@E:ԩ~}T5@%`8LB[!8B7`Iw{cF?߬Ej%C0UfSzs|(]꛷B2LTlOq'&ߦ/ 0yu*`*u0a#rT{^6wtǪ{'tLڄg[Ve1).8ٷhnZ>z/5fiVa64X Y;+y*zJ :1oJ(k0_ bD:<݁i&| JJq8cZٌfXW ;gU (m C7 SIf̶ՄqQi^(uMZBv:~t ք+?+hҌ';LA{G[pDKb(625Ylm#)WsژzNBYNa^,9[.u@^ڛ<:ta4<c6X'4RWCb$<o%[yTҔK LqԸ;O(0Hqm;Jz!/ 4Q<"B!a0R{*=U{%"- :1E.ӳ!pM3o/!]SRj6j͒G@"hE# -[$w4n> ]U9JL\\yh$ŇɼO 5jQoʠDGr96} Bb1N$夸$Q'䃯Lm2ojhp؆ҝ %q Б.K&R% A]37$}j2kuak_}bM"I;Wӗ/|(23R&>?Jo>A'l͹lcdp:sG,W!Էы+Bڨ-Ogn +uНѠ)*M6g{6ykc Af>$5HɋSXvYC=ץid(PZt݋\R8!:je. {N$]'KG/gƤ:%N. ?ۓbaWD8,8*]RbC$L)Y8 BgƒAZbaS=Zުn{|(EFxN~eOh*-f01H B4l$!?s H6FF3|x& vqbG1j0?Yu[dZ+-?L6^wRSq)qo!B*Đ{wڵ'hIRF' @T0klVyl8G^j ޝ7ˎe!7aSTJ%!RѠ+u(- X=vAI~]@O%}h+kGatxF7/gPJRa?=Qwy jኼ Yg4$\۸3;дآtYZ pdʔ9*ͦ5ҔÕUϴ&z#Btߔcbu8O8.V& =.x2[1qߦM(R4KXoC9!o.MP[_I眜Hܧq~ǫV3nD齻I`hWö* :ǙnvmLA;K'tpvk ->Ui/ f)d_1MaMa8 qMz%WSB 02v_1 {wkob.F*/3CaP}d`_CuY‘ O ?,BBAB]!ZY؊5V.*|LzXԏK$MO8u'ӆ{S(Kc$;{ ’*jnvh)UP3qDX>7iOާѢޥa[l"~jx$[+(JAW'v:&aw߅Թ- Jpܻ;n1\xqrb~l2?$@fF,," + pPE0*nzyC,SAVge>1,Qcez ,s5 C GXZgK\2>ۻ_nh?BeկI9DqA$KFa7_ؐ>|wFװ4g~Ԫ7Y%h޵8 Jj\B?UjLXAJz.ECNɧVe:Q urF2ңjJG$c^>@tuGrDU6e$ɒ+uаЙnȺρN 1pOݦT2bBO0OJ Ժ)؍wGzb"Px"5y8j6.ITqzYAAT(Dqz,ZVY@sS*]1IB@fc-W/{=jL mY+j'5jG*b<0FF󊠢 >AWd`|tHk6N*;K&0lч"&=gꚤ H?A`2~qJE0fdnx%4ޘsVk fk[Ng7??ߴ\S˨b/4;dҵՌA/<ͻvun#Ѧl !f*4ęem^nc117+BWO-:Y0<(x\Fz+Z  }>|E6#,6#og=i~ΎweE&Gpݾ NbQohaxBmd\褏X$J?cuRdTJ'd4B\ǰt~^yZ̟;.Yop&jZIw\g1M}^oaxiD]ssU uED_\ dd7w} #q'ܸpo37ͩ@ӳ1 VzXJt+yS>tWbz`9-_oU\8=.D >E>w.xLp~ i ±B'ݎ2jg~@֗/ҝ*u}NݘoOڏF]И8*8S >wa# ]5 HE> $zد?4>4g`B| ,!q!K%{ĀV˜ч8dd QECV 'Qh-C`)Qw߻ ]9 .3`- b"0{ivA%f|übxmOz`\y&,GZg3`TbG&@ݿ53ZvS0$$Ewa_]!N*_1j4s ^,C]l;*!7ʰiU:@fU/]8yb1g(~_$xhw҈ϥ?F =]fHnB* YUUff+*3+ 癈7fLqv\dA+TRZV-gtX$R%Q+ve6I90͖6HJ;Y¹šBW:G(|bGE] m6A~Y׌ ]f-MnX>=87{>)n'!wgbݗT*F~( }{P)iF>D1g)&d9UHmqVm#6_ؤ< ΠQC{$[ %kF"$_:3%vg_XY ]>kЊHRImMD)TY|tSOJ@yPnZC~kE=|=] _uGC4yUC.H%Y.a~Z`l_]q=Y. h!wk=#k tRxUhNk@#YipEa0l5:0U $ B͇bz'EW^PeyP19$,rcM?&^kj DQn8uN}kg⧠ֿ׉$Z^t8JݦSXFǘ3$?={r]p+zfvPҳ7Sw7< {ss { Pxx?Ƨ\lX =Sfg{(7;jtOxԐ? ysN 3_ 0r7GLP ؉L~Zͭ=$L߳kOb86IGc%[pͺvxa cjac3 vܭܑNGL`#Na6k~6/ [,)B)p"F#|sF@Ł9u_j-1Lo$bAsx-69lv.bKpĉHt@\Xg2I4v sPwuPtB:(AAj:aA4L1F ]kw vh ׯ[V/e_ކߩhʬ7GJHƨԍj|uY,; 2]:38<~%,!6_L}REfmGy-CF)4If1$&1gky"/Lc*SI0+@6M[tw\ ہ0>i2-kRj/Nk=eӈ3_A!6}?ǣ*ѩUw9I5U:!泩 \eev9-֭>~mJ}sӀ2TdaV_BR+sFjڰFHa/7PM ּ5WTc?;rF9{sܗ7-ȩFspŖ k[)z[oM ,6Pm^5]HB%T<< hgg -9'2wE&'P+?!@"u!VlO O?5&B^=CzMWU%J5_'^)9{oޛ([R0%qU׈{G{Fým \GFgPN. T={U`vUQP~|E7&㤈? giKG džO˕ ֮R((SևpV6@m i}u&Mw[Deї,x^G:IMuQg&iө Fy8ezJn*kd?O-5IK FB!Y ^ [e|‹ ҳ@IgpsR [O$Ns&8xziЅz8z y8q-ˤ5/M_WiFWj/sa(bȯH(.Rтñ*`\yx;A>*yKeÇeYygb)5w:ag# kDŽi Y?ѹD5ˡ=qbY-Ar)lłJ.}O_P$p 4SnIH(dI26$;>f(\l-;(~t1({0[92Z*^>]|\>He( 'qH \,P QَUie? wLWto(Eۼ.Cm_7RPx:OqKRv a(T{#*{lKrN7UGXPaJU%*` %B(<+"1ZP @40akPf` bFF`֚M;>jЩ NC@*xDÕm_V6wyjծEXini݄ HTjuar%f|瑃Zƀ_-oO ;X wB>Cgo}W(g>.Aj zfIB|TN>5[YPhC; bͬ Az~趷 @ϐ)lKWq+ Fchj' aXͯy5!oE*$犙M/`ŽUCv<{JR`XA_~߰ aFW-kfkTd5x"`a:y8\wR֭_3e˿jʤ{0ƅ$oȓIX.,Pz+/ZZAT FsL܍䗾3Bj+yQOlꅗYӁx,w{!R]y7a(h֦)0keء&4l>+06k)9Sw5r+)4 u )UoayR%:'|5~as!޶›F-sM*СK[#Gmr *s7З~#n}n.^^76* E7TQA='m%P0U oml< 0eOZ2hs:(9d 74> RThJ]6Ȯ\%f|":]>%slHxJ^y 6GxʣYAC)aR-,w~ɗf9F|klq4ԗFr|a #+(O h$X¥E)L"0uJUz]&}dG-$v [vs|Ho^ ~{BLgbAUg ՐdhfmQz< iNפ-)8 c<R%5)˦wJkp![XL/%j̭ŁOPvVﭬЧضkq]0g(o#ĵ^(#eyDJ~OgX%d?#^\As5!9)1M_!dF*MyJ6F/-׻!N4K}XFlw*J&+<#ZE i>m1D ;5J˓}d}44ƼV&ݰ)HYk3}dJ!Nsf2fod|#jr%6ju8҄Ac$%I_Vz8D" 5uթڿʖbܓ O  }A_FΡp#औ,+1(MS>Q52rOP#l,mb12OFkx4;"4C+% [O'%^H;%NxDB\0|O;C>CYeaVVO'rr=Tr[W|}QG gtQE:sޅ5NT84?INCy6Bh:){.5g&F0eD{vY8¯(`๤0;n?ls]G1²8k&Q`Qo,t41w6drI &qO5Y71K*/(/ Di_ )| Ӡ Su3LR BH:oDO<0̦Zqn4  qD@Srg|1Y۽#vzSXZ Z)ҧnV\bm؅?Χ)269_3 W S `Rʸ%WyOO.U7e2 > f'Ɉ<${nz 2[5*(/! QcW3 Fa%AIAB׈9vm_6PI){(lo<: pܖ'CБ[&N?G;d$2:P,u]up\LQ+ImOgTݘeOk.&EBesRo̭D"iWW[πRf@_:VS x ɗu1x%%mB5ih13 t~xAc6Tg靃}{lMZ,JVYJm;6lBu1Axy'Vc'֔/.V<5Hgzas~ܻD?v-\E\04xVd~_5n^0=^Xͨt֤_pӁ8^.+y.X"[OO =%/ɍaFg,30ˎ%Fx"iN=ڶ7A_+"6jN̾<uڦGҝ*O7]J3']C"PB㏐8C[F-Qq8>wR,#*lTY]o6J[jLژH=ä5s\LpBRmPXtRs:D7uƮV?'H3mq a.RuUm{@'aħN[ ƿsL)O70LP1le=W6HK.|tEPr}MSxdQ NJ. ho R\0G P-vw%Bӡp=M7|`$Ʀ$<o @ oQ:[ge~6ڃ*њմsY%6rD9~P%G=ܰ gu2M(3'O i&}]1O1pON* pHR5 <7Iv+asj{Sa@H$K };l|ZoE^f}@R7C\>0CWRd,t _-u6ɟy1MPoL K,YIu|0.1\ƶtuo, ڕ`P?`XgB*/oH[vLe<ƸO)*ɇ.~1!vZ4fnƫY)ɷ.u)bퟗMhnJx8^&4KEz'~M㕐'fy]6!nB'+( G&LdBqz@_ PlOFQCQa h7mm0w ^4LƀCN&5DX2ս_]g c7p™"lnLs`g)ezX}pgWL5o 8ޚz5k E^Aҹпbn+^)çE7``yHeXStptamartYY/(rY^16IW!i ByL$7rɖ2(;YnU`D͏GcTґFx~2ypfE )!URAc)H̊3p،wӹk<Ï WOjpNf0u1c1Rv~ڛU"7M-qOЌT?_fUnZun @{Kox"ZfIJTdF7W^4tiu_LU4 !nRνY_R@RE5ژ֏my oFX wl WHXդ9lxʽ1"G讑>u  LJ1ڪܮsyVA R7j{McxW&/u5ӈS7QX>PG"\ #>w vz j6*BZ9p<"Xf$'|BLLgOYM)H[>F: 6+o%#L_H!_@/[xaJcdR0tU5Jwn⼟A0~FsDdJ :4m9F+gD: mj3n1-ADiÄwTЏS`ՅO7z,IФz*z 2 /v)=NefdUdњsy#4~[ŷ}N5 ;jNS  2n&_t.shG>~:64eazBRTV@k81:SXUq̬|Ra UB9.%nmܛUPmg[6P,Ғ$޸u `*7<'B\&3sd1 9sunGqzlٽK홧](+H%E! 6S-8<@[=-o.w^?~8J ` ([xW d1d5XHSCm#p˝y_χSzH/^0̩ DJQ{ݪA'1/%>"f%M: oB1#%RZ̜b obl6D{XdEg3|tzHlҌK=+֑A.ʡ4Y /? BgKd֦VNiArv:Ik].z)#L::4t_u:<37t_X|&q.:5y(&oNG|@Lr~_j\:(mr=[Ems>,DLXiK+$kksb M?]z.U!EX^ɓ2(D)~pn k`?$F>y-Jܚtc)oD92ݵT6$l6^Ż;.Gc48eʭF%QLZVAc:э\v>s:/^I szX,vIiOܾ٭r-ܶm`6.< ׋5aí)R6⺼0NBS)jFQBk廱ddH2q|E00p**?<0ߕ}2ms"OMOqQ "YDLU:H_KgGtTA=_[x3봻il-(Sk A`Z9^,=)pk6lrOcN9%UbЉ86d:{tr#RzBW"B#}@[k6"DmiC0=[lM׻t ]ExӜBĜ 1'K8O{*f}*8꼜72H c ,(rYaZFPfB!$}g v̵jńZ+%>P6FB!(M,}7 8Qͯ^'ugR8þ1} f 3 ^f+j-?v(ui9lD`S_:5R5hlֽk^&?V|cz6nR{=4vOOHi{Iܕk؎ɐڒ0X4ugS{0dETm 2/;C-*YatcBW@?Q CI+Dv g=gJ-l:q/yuX1Fް 7[}1л~JSNQM0&#2(K/~PoĔ2tB|`T͌9+p&3|i-ô{wDV[zP (Ecg|z YpfaT`ע<|nSub⬛WK\z@I":/Ư|S- Xn.;]|j*1YrV@z%ZWp9;'(P}zmcn`,썄 aTw a1МxK)*[*W+5,Z{s["u|73]_djyHw6/G2f0epvo}H?bˎk, xmݟ@^Dlx4!X :+VV &_l3B;E n U.KS bG=7>94k83͐C N`1ܹQj=n!؛ǭTx[ lVKbG<3>MSez-^Z]Nv #Tc?.#b?~epPdtwu"sK_ l}'}L'5eA"^~`W24U!@bȚ/EP,ވ`\C{yil"^۱N@qeULEaz[*K2v9KC۫V$Wԗ (BAyF^ x$h/I|`S?*'7Y <5- EfC[Jmw16Qw *Y?-]6Z E 5h3=!eF,t2/հ*U)3A\O*uV) :ZؖF"$؋i)SZ*:͹ތN8QFyt=;V+o~: 79w:rzNK&j8nP1*2[.RP4[r1Nf|MҶ[IE$,+@>MΔ;pyj,EaoϋcǕbnrߜ4 ,ȝb7V ՠxmIbU;#90>I:1! `뷸)\ =" BwU.{6--SźN{tv418"zAaq͋J&;cn.F,doDxk]vG/~]!*LGj4K`i`5\_XrmNs4*8^0Bbv DNE`/#`+֋oȧzL˒⺉2Q&la^18%',3_22a8$0Ǝge 9,OD}7C})[Zս_KL'(ixF 1x1fiuXטdj,Z\>I[Fr"rNpt_UGr$OE3k:)sX-*4 O3hd9d[xQ6ĨsyY |a;Xv* 3_Qv[@3bTOżՕ!~R8u͌I\V4]Uͪ9l$oA(#9Um c1م;yN,,)#CHk3$Fg8ivP&>/wx`ۘSALlc%N:z- 9)_MRafJh=sJ9.Br5/#Ú= .Dr8ABI7N+ A&I[0[3"qj}ޔGn|lZU, X7* @ΊrkwSG#HsلDs!r`nQa1*Ě}(~$ClG5 ϔ`P'JɉӲXlC_ђ.`|,5dmt)$p}G&[wT-d#插9D2?-;dm%"UL q lR0(#<ܗa(*%ޓ fDzLKp2 8TC}9)il'z}fZCdtN<>Xg&Y15wYc0.{L|JO8=@Uf@DP3nT"mC ٨?/ 2'Vd5H3%&AKbHϜ'5ѳ]l \[ X])'ܠBYq!~NHcϕ!P;,ƨ,EߕNn=7~nCY_oD*{|/(ʖe[8q78@v[TLx N{"?z͌e_(ELLA ^_zrG ~1Ϝ ٚ4Er&Wl`A |'It@5CQc2d bn_vt/9PrVTGࡍv :a]ai#.,_/._1ENf-m!=e jň1>uTu6QpF糈5B$F c PVgL>y!ڋ對UDF@=\@F)/Qt\q,/tܕ}c=KVYsWԦJ1%]+Cj=ŏn,SO[Aa A&ͫwۻs{Zx_Ѻ?e9v^] l\}jԊz w_kJtz4H^n3pۉպk{t2ejg~**U: r!_N.B`4ڣ:dP +Ǹ; Hw5VX7I~@ LN`Γ)ZUH "-Yn ŐVbrʔߜXflPlJ ѭΦk±E.g^s:iTE+cjFs9!n,8S*t<}Z&K"n]7^,6y`,% v '`[M>ہ2hX5\a579 y6zRdIJI=n)HflؗyJ D FBur2Ζ͌8YCNOspL Vk`<ٵ`H0r,RB Ҧs&5wcdٺqU}N|L $IԠM>NH;BW y:kؽ}+K %%9 T#X#z{s1.^ʾqDiSdts(,>OS*~h􈚢'4cWFA+HJ3!&%[Ƚ9;$yƙX ra&WL-~6pv+]sZIMJkAc?VlJ}HfPv:"A@= θ}9~s8j0г. {Qic E>KpPT9մbePK\r췑|[؊?Dqž702b :#/Ч3ZyU#YW5LAƄ'C'a4\2A8U$ 0cBa~(1Q}"ʄ9%ҸTzHSHM8PY!tϧy5ӝ&gF%5̒#76-*+;[ҳ3|8`pqu 2m9aItu4Y TX?97. ,9<*q_#eu$}2l=vI&&JfSf$rRjߒ@%nM0CtEYbZDx`VY܁+߱av;1'j5"hG D˽ =5cK I o ރ8q4`S$tQсҭe| LdwBWcy^׳ |]xׯIge\DQBY^2nCM$x ݘ¹0%?~9%8M"w 0قr!hYZB* PsG„wm4NuEt)&g]w[F4:tތgm<-XQuv'ac@fWi=5SЛk`GH?ˉ!|q8vۺvFZQ W"ބ}n/}[GX M]Ee6%<|)I ^\tN thn9E6 NQq3k u"N6zӾ?fu@if.*Ma^T~|+Q1`.;z:}=bK[/@eG!x~J`<3KnP^蘷̠w׿gO8l ud0b-;6+& fYc#k{n#W^ >Fp[BNbIJH,e:ZVGi ݐDZ{׹Vdvi3k=hY [WR#Jsw2l):N^&!eAcJfDZRfU k]GppdJsHto!.# 11 g(!J_ƌ_=rx3lk@+PĞCU\4u. ym ܨ fOD"'nÝI,'TKieG# *n7PaɍRwv:"kRe4֫W+&Iˀ{MKBk(vKrYp;䓰iiVž&!ž:Hq)BKbm\Jdo O~>_<_/@O<&#jJtr ` ƴKͅz1XV>Z$rU9TiKn on]3^wqz(0T-e^/,+%$&tk~f.48D}&֕%֍EƳyg7+n̻׺<ȍLЪLVwpפFpI0,1?vèװXER<<-3r*-M>]W tyBԳ$9Msp<[ahvF LR?mn%7~9L9juHJy&qbX5+1K2'%_mnyujDl))#?, a8xܶpmRiO0(A{r".hC tډ^$vI,axM2g{ID~Q\N%UjQ݇E3a)fXW]:/aļźY&rA3,z,7y5&o VP alx~!"P\C3Kfw7÷7s~X!>WWDCsjlM8z" t`+.B3{+cw>o0zUW.ain9V6"G\e~P{ 8dUާRSIoH$gAht mؑ!E4$gl lN]*Sv K)͛i37K2dmDx"/ O1| 'Ki%p_/<g9qEj󠣻O?8æF!. 5k KTElhF.@pá9 `ֵɻIV,NJ>*w(jd'w$Mdd,Oơi>xB=^*]'!SA"lu9Ad:+NI~5vmT#TgZD4+_o5U F;XW) n$Z)VO=`2b\t9tiuԎhs 3APg3Oo¡o(J ? ^d|~V@u3rCCxAloߠ74~BcC/zdIDR 5`=O&ܰZo)f *4$b+j\Vzq?+9NaB^TRVp?Q1CշbH5V*^Ρso݁@Tߤ:{4m_]Ѵʺ%}blZ؄upI\D;R|d_4D[A|7X-s > g&'X9V5f߮̚jRӓ Xe۽eeUh≂C3Qu |Gc4M.yJѹ[n4Lr:! %*p;t6z~Io&aUܬcZutĔ]Y~0Crܟ[3蘻=;ElHh_jAv(0ۺ:5K }U[)Τ\-[r]5Iy6]6&g?7ʜs#*cΩ#6TzvHu14w#wX6jaBֻ&aYG= D9|R:6snEڴ^a$Ij6d3m숏Lrhdjt} hX!ueoie`,Czk{Cz0zK`K1yVNu(G1X%[X"c>"9 *.@ȧ[}#:Y 1F|ڬ9;[5RSͿq-29= 8&2YaY_ \6<oO%L&k/&U_x'B2& x)B)qٱ)Vl{1I 11Dy3q_)ckҩ *06v;&'CO© =YR V/l.uM-fQW#}ӋtygTqvǰ9`HڇByscke8p+i|Y"&dYMu,k.Q]O@fGgVH*ym$D )/9[Hz}.C\Iի&N|E 5 ackedw;^)$ V1w^-jM<~J`ꩠ1BG;9|OSo'9: ݃l˧&S]!ݝ2^-EHK'jW -tv\.2KvA\sCNnu# _V,mq8 5ߌ_!Aq=9?q+&% U7#:I*F`O2e>JS5H/\IdM&7 <`0X#9q-Qu5qω?{w!Rם`Ն XKw9Uf)YҤ~^-Yeʦ r*Ҕΰ״g`߲[kiY8`$t IP֥@ǥyOP>=m P >C/0Lr 62=F-hu3+n!c+Pb3dRR:t tV2 4^pacwl FN'i9'9-}AD_q)=H0=l}7][tG qi;mKpߵ?;e[Xi`5man+/TRmp@@)EPcL oq7 Cpk?pg+s`0KJ?F7zcaoͬeuWG4$:1 d=Nr!;mra/OZ<: Qs%YCba1cEt9؎ &<c;+gS_P!qV; Y\vG=8i0{tO|H{[^ٗxZ GN+ߨ;ucTUJmT;&;itƅӒ"3,Fm<䣼t]33 fM,1vt궐h\Pc#>b@7-ϧ]w.]a +Loaj=wo3VҦ9ami*gËB=0p Mw*SX uͦ!I To= eH/V=A Pچ$ Ҵ-Fxp[1M9HlvR$)s}*p9Wv )s 4 Wp[׆d1P5(7oƛufx#Q*<:da¹ܻ\̷*)#vI. #]ݩ)* /JloUt<( (njyѝ͐ntەf%bhJKZ8q<#c'iV܁19= );T!-`} V{ v(5-`\DbȍEUYxpul&I;H~L R^?-cEc]sX8%G?GˎC>5  xn%'{7Ho$y a"AVB‰w-%HD]}b+]:cL_<$;L\n2o:?mP9@[]mvvQ ຘLN߂ G(0D4- ۧc8w sMp#?Yw!7LW(\~o)~e#Pz%QT$ 8ί)"ʭ^$#Bb8.$"UWj !`΁|ٞ1_S@k Ux%0$7Rzgf zu1B9"vRﳟwf)ŸӲĹKQep~c꟨ aҳLI8I&w'dHVS‡Ɖ,MB69DURJU}S`c"ვzEH(+P(cG)+ra='hc=a]o"3$ΰa_@QJN㓆 D ϐ/]3vh}.eXvKsl /dA U MXlM. n02hjba#r/ƨz 4S q+ơ-//]o]UJ%cSkR?-s_b]if{MpHT5XbH`]EMoch}|osniN%7#?Pˀs9ݥh OUZ2R`>x܇9E#L˵P)rȡ61SA9xSrSkPu]W 9q[$@;gS0>j%#􅵨0fвO[^m< ΰC6:0|}9~qjG3 }p #Qi~1m-"=*3 axfe/0JzuҊn[% RB\I"O +H-9`X.xJQS*!Ufv2ߔY* ~on\\0M\]IU6E{ivi\vh=^mtT\PLwMQl?@W)#UfBXe<F/iTɸV #m?Y-S_2̗ܺDWhY-Mx] =RߺL\l?z PjtȀRR =#p" j{RbZĉr囨`.jNqNJG:ŋfI-h_sm=Wfbc;ˡ79PRa/لIuznfTqθ';YµkCHٖΈ>qDugj~_ye3;4mD{p֮z 9,ذqg=/n,%3znrgEw%Q$m@)'FJ41~&=vj&f2Es`P6h+ զFZH,N12N8"{Z| F)*'[ 15|$)ؐmR=X '7ϷJQ."PwsmӲW5+쮙^(k@3n`x(&Yt5fGGgE~Q{Hr2f/q5K 3EmlR/R4$>޶!/bviv{JY,jlt Ěd#[e9M 2AtEt\{862DA ߣKɸ\ӫ9}J3Tc{hs|5s;:m ɥZs_H<(˹0cg3aJxԺܙTRQCGlz(ed]06"k9 zpfSPpH]{ @E$cksp%GPV2U1aZ$ҾY j_tmub8'R;N$a5Os{7G&.)kq8HM"ǃq'·\_rr*7_, 4ΦU; J̗\)Q'sYTZXc{.SuEQU}͊?ZLHkK{Vq`9XZd|McVO|oNzb5wwiCD](EJ<A-rk-[6`GG ,TVZ>𖬨QYAe}UZKa ?"zJ9tahp |r='kfҥ_ި 3/:vUJ:@ߨۇMDzjM/|Te񏓾r{ Mq p[}"*`XkLv+P{Fk37m{=eXYO콧6obCJK%'3l)BEo1b0WxZsqVS93ՙ˺:j_fDe\|C?F4!,d E#{@Iqmզ{l7- Z<F1~Iu=!V_Ö:+%Ǜ}WLlG٬Eژ_ӏNd $jsJA9̒%0OcN0"~W%m];.ƈ(]IP\IGQ1@u)KkB9r| 'F4N.G 4^Ps9骎 0T4h0Fd'at] rgg$mL_"d;0+P?3^lWɀں$?'/̽souUEKfC` ϋi9fMm,gb2RHZ$~ZĉExܞ@UgP!.F:c=X&F[-{7^Ro!Q0R*oƒ"+ ۧzDbܳdeRoe cb"-۔" "q=wOU:B^5yCN u:;[껈ymƸ6bNdGȁZ4 !^Q%T-[CjaBk=,i=讼I Ga@: Vz^Ua" %涧oʧՀ#^Λ+UsRQ]^ N9>WcL:V2b7/tJ ne/op4mQ*͍0^lu'#ڙD4㿬dRp6 .]A!Tɝ_ dy[Aa!iFĞOwI)m$<5jpEEi>Xy~M*ET-: 9v4&*ehr{)qFޙkO$_Nu&D&ˤ]L>2ՙYNm7Y墝Z}A0%Rܹ|4:bBA\TTo'OЇ@fw$=sYgv4Kt\7 ip7_ M?VOffgW};%`8nġ l+4@Setθ!2Bte2M7^]QP\,/II1\<8-(:[ x'ZK:ELKt>Z{W^5#&}>@ya&_]wܡ-"&[OX38>Aޤ%9 >`ԣvĖbȪ0jXo֥kEc^ytpfܭJz iA:XnU>10XYu;yI6b 7-PH}zku'ZEJ;w9|~j,W&X1Xý(Pl!,2Ts"rUlgp\-;CRLVKb\ O~B1mAe%ZTT7 nbHSdny6mi[`x~1cQx ޛ['Ѳ13FeSeVmdÞzceX w5WoG~݆A8o+0h#%ۮj4m&ryLIɢ }",ݦu'D0j{2N*Ҁ*ܯyAs2N ]Yg.! ~(ϙEP*[g>i~t+z jc3r.Mdj7/P;X0EWw1>Ƌ4XRʷݚ>c*҂<;F@߾Y#Uz68㞤YlC_좈w#ԕ!#Z}DCe,"F?$5b[GrBjRxݺ1t.+b泩*9uc8[#I(Ԑ)i@2rTa4grey&q&wÜ9EX! ń.Y!Z?g@oe#=zt6%gLqso. Hj>s7nO*UBz ׮nx~PAH,VUndM(d()qXV!)]q(X;㘀&3Z:N$dO2nW66jucL'ʠ8t2 tuwa%Wpʘo \W"]Fp4I"vv?).(RXF'O9l< ~hgM/H'U-j8/pe ܗs^Jc6?™M=TedSV 9#2AY]:ː30x$d_jd#bg{EU.ūCb#ySlw%C]FcD{&TԻ3=TUl,tކ)_w o5^sʩ32auퟛ`P(Kg.ixF Ue2 g/0sd@1zD~1V o^a?VV0$Nt<JԪ`9zힲ]8gh k=<t~;+bK] S>q/۾)̑N8ewlxw" BD2o*YUJ& G na7 ·{Oƍ*ϕ!W7&A5}㰽4) 2qĝ so#n!")޾=\pbˍsV'DB/MLuäg lbAZK<3[F=Ѥqly,E4E3iW n^1)Hr!1+˒߽5aǼ+zr [R*i8BE#ɧ:*tTE إ#UH8uڀᇹ޽Æ=Ք:(GYoviSU5"@^Y;^e1bҰ.p;C X&vLfbcF5.o--# -yH[qrݥMwGW"9q_Djm3!fPk`g^R:5JR+c|Hjbl&%^($Vnp1#S X3Kc=$ZPf"Nlv0a#~LPUk- e69aRW]{^jm{POɪS$wBZb@45w14vN5EA*nczXbB-&qta3][m*4#sṾr_|[Y/k=a'0cv,I±qX^ti27QHuK\#_qE%:%oY@ w W/UVmEiWhdr /*)*1ȴ4ъQq(0,o <.DfYݝ=u^PX1&7 T'^h1(._f҃r M_V"/y|ܗ񧚣n[a"79ǽƬ)V1>,u&FZjܡ Ҥb]^lI) 4C&8+,WAݞN CPp)i ig&/+W무Nm;B+jZ>YC^',5';h~c|O\ VQ1% LͷEe0=4C-/j.g1f' Hs"훉YLsdLfR;Z?`prV2ǚis2rD p%>"eZab=4}Ю* ,ZJ3qTjc$4.=+"{m@-u _MBM=TeV{z@N^n'p@/0<9vdҷ}\)9]d7*X{T? í͎0҉OV no--d=6h8JShA6nx,tL,q8:?tgFO8IH&"X[[mYF=&!D-!n[Gb{ 8<6 '|9|G OxkJĞn>N\֯3%ҴAa/=k+wk|O*|5I{n7MQiK52 k8Of_ 0h/d;[CEِm=7v QYuDaU!EE礹cH{;ӕ#d~Z`O-)-uGѧZ\+\>^r9ڌeE!֨q;~g4^ yk`YjMFrށH>C;3ba ~ x6d㺜)}L N3_UxJޑv-Oܭx0n'"RhuLynU$<scke`6*!P_cf[橚X`Vf1[K!posL\]/ xJi]VHӀ$/e;+Pί4ؽQSJ_HyzߠeqDNbaCjuS&q~TI׫Xe5T13C/-_~%V]k;S̃j7n㢇,;Ꮷo6f noFy6?IAi{O0}F[c.9Ϝ?;"1A b`#|ˊ\ev.^?ďէɆ`:i*=4*k c@q'zb$Tg(=p1VjQx5ւQu7OB)(t-ׅ?hǭha?qCSdsg\ Tfm.tB('SCj$rۻW8 z9@6Q^įZIKK\֔jTJ?ޑqܵ代J6 4ޗ# 7A'w?ka4 UUtQ1NMy/5;柅B< A;M!b:[ 5Tk*Py],MdKNh[JnͱNՐa16aSyGA2$ƝdY{T|v֚)ܕʯ ʍ]f|&/ۚ]+?8PGW PF/ܻM ^V5 H" &8[6TwnƁtxD){3fډP7~VJw8si>̒v閦ٴaIaH킾R/BMc8/S, JCKx8*=zT:›&2]؂cբ0>ثIgw.]Paӱ\)vxň9ᜃbEA&|DY¡H{ߖ_dT3msfn+ ER/ ML)㮔) gʶrnFCU|vK߳i! 1;U@dX!h.t}G tlMHxขo:8*]ju]j,ŽlT>;@̮69n,\882]RR[` lٱR3>LڅoM|= 6a2,|=-{KR6-q8OKLbqvMO+xXz @5_=pDN"~$9MQH*Le d`LO_u6p2 ixdDL>MV֤ʑJB*u4D2N:R@;^E +㲴|Woj~}wRn!_Hnt0iqWKHclpWe8!{lٱ`C 9˜2 g /;x֒d>UDCEJ-lCࢀd&<>I%$2um`]'IcV ZVeffpW82풔;&|X&gZ~ msȅbP=:9!1촳kHo=Ibl?!Rb~:]<'9!E6oRgi)Vd15gl*/30tWIE}?DžȌj,rt8%(ѳ9o5~wZv!]9>O/  mXoR̨Kj:-7֫ 9]> L17^t`k2}KSwPjf`JπV(AYAh':UMW7 ؞C@0$,} Xp, /pP0@+@^=.Fy,Af{kƃ_H=R\Zŵl[/K—X(Ug(gHM[EEd=' JdapAmLr|>xT,yȺCg02&77*[U0U /xCٟ=,~.H~Ⱥk)Jav/(XH~2˚sO7՛:oSPA :SF# l^/ Nm 5-< .|B>D{z^Ca~]Ɓh[r-Y>#(BIi͑vU3'x Z^9[aꥎ~?='op6SK*n`(<р&^$5 ]L*ƒ;[- -gA m-X(&N.'["6B(TkW_pR. rFP;H謇 AO>$gG;gsYDf5 mF^Ü`ΕŎ `.ȕkDc7a txsm*:J6:⫴~Pա57 ֬L?݇`)f~yvbcJӦo5K:D4͍@ W/{wɚbJ]C̮uw3UT~YH\5\oJGt:Qf(%# +j -Wp4#$1-- sI>it̓&_ݻ:>rŖ %ڶɿ#_>ʣ-"4^Q,AZ&] Jя7flIqM9]X.4 {F4yÿ)+$c=3X^]XAY*:BO16l az乶Mp#Y_^cv]6jy@(s'cf$%b|(@:jQQ}ǢTGfGǝp$r8N0 2 L aQNy|ohJw܄u/)8E  lsۻ1rFEPtETIM%j1yTiO5BQm4J;C{W%"|>FVpj[pSLC=^*3E+*bgyI?NMbl!E <vI5L-ا n ؕ5EZ@K.T+Zie”2#_9K"92: 0P;\۷m4D'($Hۦ?\#'BK8=!+[Օ6/m~3j|EK#ҬnKٙV) ]-HJ9܍aJ=Rzkf=Y۽xeV9o?q>g:h寲EQ Pb./ʆp]<߳SԂ"W8!Դ'IObI^<&W4R vېwNi_#fu!SaֲVU'P' (PY2K­XCV]]'S찥oX'F_WnP JJYraKBʳ)0#dA^+)A2TSqbD;Ch**Tai?p֞,Lůށ I3`<켞/݅$fh)MTc J?`sWI :hKifT=`ĸ{wRWʦCiS4K|:M v@9mCa2WuE;PJls%57![SI٣ 3HkPHp@8"]6 hH7%7nQ ML+DO Pٺ#~e?"u$G!FFG8^`>_-)ۯz1HQLP"3r7ΑX<D>u U'AgmNf$@O#)D32kq9!6&.4 Wu<e<#cq¹QϏNFSD ~킍d ?R 0{EH@"n`*ߚοz/Ԃ=l:k!v_VOr 0 X]ϿO$m1Bm(mlab%E{71}/v6.Q渎_Tl0cmzߎ\>l6On-oWGܞfԛSl Uw1f$K9|jˬn/~QR9EOE Kn[ӡ~D3۱hiTnOr+uZ~fdC2Bfں`PWYX!Ij^i XsE-irot$ᱽDt{B*9J/ !{ 1땣hP/# !{Nw6ҼMz±zm6Oc~5$=!p\M\8tiGr99? ' !|)ev99C]fll qZ%Yn:er2&n}O $'71(!X)kZyd, 6Z0evqt_w0cВ{ *=e /~m-}9)*M|!vɡpR!@Ca!E<o%5֡{k1/GGK޺y POKS̙XZ_kK/$: V/h[ 3K$fC'kx;2p|j ܲXPVa7:TAՐپw/ ʸ/,ߺ&"c#;mKx:)t!ؓ~hKB}lHzGil=cx BCRjwTJmtG=&wʘ0T3#_AlF0SXk(Rh >}OXD# nj%hQNo "ɽXS68qI{IV}Ewz֞4v3y>ibw+ff^$Otd&^d0X tPRׇjsIJdu0? 83s:֪t9Z?-Ta .rAJ: hMŠo*c+KB/OF:H.,Ox Tr 싒310?tF>7L f>Di;"VH39l0ROP'9[T8բy o[x lPߢ]r-!W B$]`h X=wBW_B'9}ƹlʖ}o\wl.pBV^ !o׮Ttz6pv:]m*5/(h̃x\,8$UgUI T}h7=T-pN_F/%bVsJ~jq2, :f|TD + xr攘>CE|}ro5lubBҬZ1INĢ!])X-C(H!o9½gvc>E9 Y SfC2D0[aDMVD7,8BIlu4vx|d$eD]۞/TUo0f.4#L:ek-MWg] p.rZuL}  % .cP1sb1K;-# P²kĽxN$wJ{CD{D"yj` ҧIeQ(/d?kYM(+ӾT&b#M[YoH9w/LR T9*LNM7f4 Fd.FXNzDŽe]X8SoX bNcy:w_՚d\sX32멈DC(lC=P]7=˹QvQWϛϜʯr(FG2[ZWC,XƱYf)-"iB` @vc"{:aB!fvd At Zx%h=Yh5!tgtR2CQdQe $hJ=yI߇Kv]#7I|>E[yUC Yr F&>gbe͸}8X]\Z琲' T`OØ^Q>z _~O3bRmgTޗ^tj'{*^U5,UTacJwa ֊8+3X7cF?I'N̽HF|9_"vީ%. .)69Wƿ!"YE` /PYVAz`QQ\ۯ e%lb j0zɵuorv@c50LO,ڧ߶]j967rRmw~ Еf.s0rBrcKV9sJ-rh.EC(tgЯ]?PHd;BPY.qNkJSj ^)5{*Ieːb.JaTŢ?ւIuRqg佉GHtXw{oyw},Q/.A?<3_t>sߡA8p\TQZͲ-T3Է t;ߏ3UWvߣ2pޟI,H ~}.q c]G q$z\3ޯs)&q| nZ_+Y[^aIReׁؾ_UiPi HoAxyW48&"hb Qď;qp+.]L52]Tr>Yԭ޼#Rf 78&H(уh &ɡ#@ٸY] {?(vXn.%oB(wjLxfD'.*}I̖ UfAw" y]4G޻?vcu] +j]yQ}ldqD攥HQ#4t/kA'k@kaKT"ANjKhz}؈i6K)OXLYƜ;ͻ/8aO׾}5؊2"m3z3A{phvW.kXNI>!^?SUTK2gT4"}$x LeLHWYxR~q$!k=d ڜab`~ $UˇPx n IPq;2xnJ=5`% O.akoWtlx-:P1[h~z& vYw TEjկ2B6l\@rZBOxȫ`' c|'}+!E/g>FI3YNE !O#)n}`-@J3g_ BSZ,qmQO&ؕڨ,BJ!,龉X>{HѬ<8jAB5tpЩHWҎBJ2YݮM31É=feQ"#GaѹLHC&dijܫLLi[I$|nUf,w02`[)P>#K4n 9pZ>u\ࡈO# {0ub6X欯; M +{ˀ^4ڐ:ebcjjeQBACjgLՑrOwOV[ +1sǐs\LxFBAPQW&>fO.'7&,E7#Zq;&nןA9%đb|tP"|xi#=(yp@;^0ҘRp C_wWm&qt!٨dk)=GF'A'>I2sTM_yBj,+MUi%Lvf XAݢ-hѧz!F""wOUwmoJH}9JAH`ki$2&XBx /F޾rn `Vոd.3/sg{ӄG豘j_;'s 2(@"8"4|o]E J;=wd?|!si6aIWptzska,]7g[+i*S^Q(խł]oy%K4:q-=z܌q,Tn^(G*!j|alﯠ&$]g g^SA zoqچVq".DC+Og-QWVΤƮۢh,&8/d2rX/%w!ل KCcPKNbWQuD}"Z (9khorS<հ5t In-~ÇXfjuƀ%{/J0%lz?Ws%IܨFtWӣN.O{2W#E$X%b`zOjM)YƉOyEkwyfHHk\nXi_`J:|u#Ԥ A9(_MsVbQ6:|ˈt8n|(H6ޗ\m E+χ[ゥBp+7MH>e?Bk,eE` lƔ}u>݉=@hdGDTᢖY7P-J`̘$ 9%WWrkxBT%}an*#uc!n7xlœS`}Df$峴`<,ɷ_dH*/qCF%\5!ϋU(y$7I?N*4/8{?cb s5ro˅6&Qc@d(o p龜* `z~YNuX%;=h Wa#XY?A@3|njէ);L8u.߂lHz/Ǻ@gB#/j1^tH0@!hk8coe!DfHg i #{jN;RÍ$_&AIOTGYߵ}N}M.aD~5qP=?doMrkEӘgD2ʬ'ɜVh9ħ%L4kb,G++|ۜfg2]Wѥ!IjuN%a\vTlٯaU!+fܪf*˃rNe)aC ;+ǚ_/sE5{ÉD(ۭ^ 8= U0 , =yR#0|33vRJ>r/!C\IH]{ N$*,&օ@HT2E"zRͨ wqd+\<;)uWBi!pr9!,sl1 ftaB7uro:ߵ]V5v[ FJNjHg`ꂅ""csLPhsUV`sSJ`;-XmI*"Ȳy/yTA#)њZ:}yOtl,ӿVtV~ޘOࣼ%FKĐK& hm~NXğ@]bKc }s  hfRNK4ruq:(|&swM!B86CrM^5'6 wV%g9Zqm]GӁW g#Z{J$`>WRk}G˹B1!cπ$H3vD':dU1*f5@LkRԶcRo8Th5\&eUk+c#wZL,2Ôz+zGE/x? jF)UIn!X* G뵈H} ͒0_]_^,,c~x 2wEg;Τ@)ȟ{f\~XtB۹4Gd+JaA?wxЉ7 iA j j50VU{ӂ#%W*B>g"Iv枎=|WO=:\ѰWCh,l"y. ‘ԔyLd٪ yU 4AKti7q;rAj؞\DasP$xٖM}&]{Pp\ !6B>LP e-[47mS#rH" sij 01r\G՝f<#֞i"/drYeVyB];=挂wQʒC,~$119P|p\;jd ;T8C;B(!GТfhR3QKMJpiUZW 빁ƷpBk5j/,MiCE, 3mk\ lpo>*`p!/dOM,?ϺijˏpJ.܎陓elG%_w=kuyO}U/܌m@'|(u. ЂM2o'P(qX-܍RHK '."5GU!Ym!K 7#^' mqʵ[{r)-oFg~FxWdTW');{ BZ/T%?e2[8( KMZX+N*BPs| *~S)DQĥ}1،^Dܴw$+3{:sofcx!䲒q9U)rbw(~af=ʉ5 CT4=c?FSS TEjIN jǢv5`WZL}oo ru:T5I>ua6 nBZ W^?kʥ 0]edhU"2 FA4sE#YlD04gz#20Bn93kA<ʌKn`Z-E{jV~ۜĐ g)-Iz U]دW;C7Qx{g.ɇK]sf`7~[v\P|K3[vQO`g:Mipn/TBmMSkPieoR`и7 j)4ZhꋮߋEܓd3i="lXx NTJƕR#4eR|@9oBĜ&QZ¦ ̅&]F ԷüF[N&ކ2POLEajb>3[{ќWfm/4qC=hv=\82` kFp0`R#cqvܐ Etk@ෆgc X X_XꯪR!4_3+%Cw+]6eljeyX05d>oY Ŵ ȴBŠ oJu'0fqqS9K˿ǹ $U)5)Xk,`qt?ʡW_ |)$&U/=}Y.Z_[@б{>?u!>=.@ 5KZ5{3 G)8[evcGvOh+nmB/LY<){ǺΑn1Qq8-`pI AP?3VXJOv?0~}ȔPi+ZBUu֗lʀX>Ok2e3y&wȗ" n6Bgf#tnv6J9:|;H+]j}?7cc >46܈pf b5>l7f \uwi˴b0z\(VF=0bn6}ĠQ0u0[0aƭZo6ez C=tᄅyU5>n Np#cGYeawk TI f`heM//y2zuh'30q0{)[w?e,SIz1ہ 9+66}l6z|&Kxf߹Oۙ2*PEoUHtņQכkM&v9IH(i{d1/,%u5 S`#'S!nV,l @fʖwQ)n2(f~,Xxr;ꕥIh_^M!΂{"^Iہ\KCpbv(0%ĂMqrC{>"QSVHs(uWY;4t{ @HsnN^A9הicUJBx2 p +45ŵ]'b (d bqͫWekkfd6H jJ„pnTPt8m`dL=JeuUsw4Ys:]`/;Hog-Dev{^‰>Im9QATf;jwӝk߻o4.To!`xcTL9D3T[{XirqտwYqh<$@#0(U'8w[,n\XQ^i7KeP2ZtDq8p V8s >gXiZev0~Pb8gT7~~ Jpay!ĨХIjmtԂ)9 'moutWҵtK@|Drs$ PL!N_GqwPxEGsI[:fA,lM]L~3ك5̩KIUKG2۶M$) Ϧ_vEX(WT0=fqQ[WSOTԍ?"8SN[ %/rP?M1?ska>vy )3ojm0pץ4J)Яz98(IFd_}5 t9.ooܲh?0pNn6Ѝ5iY$S]Ndj3 ~o˲"XkӂIGͱiX:Kɑsb{mS*p.NSR$Y% U?A{;.xd>KvawIJͿC 2ØT74& ]}X'VuA'>;4_!t)p Y`'imR B0;s{J*Θ-ѵKy*=8! v;n{1 VM2$kV`$ŋ?qoM]wUdB.I v8OZT 2$O#)+)J/X,~-'.H&.k(26p"bx/09Q)Cvbb"x.: EE qyoH*gxH`{ۃ`nwzIU/nژZ#UAΏw[=4 0M RW8YТKu 4sL `@bf! c_msRnF˨cR/\? TJĦ:;2G촮ThjĖ6sqU OOZjDD6{!@B޵NGVQSoH_{ND!X:v?NJ179{pG"& BzBIƼy]cXcPLʺ6~ W%[.PSM! 5\8?}ğ8Oh&; `T'A%رչ}v^ M@tHPԿI()в;D y#w֭>_ "g~F.ǎp^opU=y?bz+7DF6KtSHpNH-ܒJ?MCW(WaPg@{QVPchɫ='hrK\)ʥ_J+|*f~d e1>[NaaGRV7_9s tdg_+Pc⯁, *9: tҝl31jvGO痌5$]fXiH+H@;sJ1bq)Q/PvCΎo AΖwOe[ dJ9sFS!S2NP'-> 8@%gκCq0&Ĵ\yZ.7?0H:HD\YR+ &kdǼ$rC`8%;#_ O2ҘM9ћDR,Eے?D[2g82SMߤgTKh֥GzJ.s؝eC& jnw#Cu٘޵'́ȤZɬfs&N UrBbX$Z)lIgJ8!"'1j;XzP=t9ɇ֧B:nY,bwN&5H8n+g+"Ge&!PQ]B'ώ7qκ7%%"(5>#;:c @%,RM@VDh}0Ƃg-ܦױ,& yncJIafu*^ `=ABşm~Kw,b0[N 6k{z#`o%.ֱg="~ۛt? {暪]ؙnʿj⮲;P2>񚃁71z|syJyX5BLjF$^mGD~z@;t+p7PgHξug)HY "D]X+49̱K2$ 𹧄(l3%pH|kkcܟ֍^Xǻd='Eo:h aߒ<$1:^ӋC4`pt%]ںܳ8L&"}eMpO-`QDar,tϚvwnJ P1#i~t>aRʁU O| G?Qƍ፟P%r]B:t= }HۧAS{dͬ {%EI,lpWo7MsI^z p3@MkQ:]ȶZNu8URx7~ǓyuI ܫG>?x%i%RF`!Dfo]=_d)XՌܮw$fi4+j$H9ׄ/3US ~E9"+@iQnۑKx~;{4@_0=P5;%Id;qt) ӿC)|^dѩ(͌dXXE]PH˜%"3YvbA䅲n8dJ]臂_+H6;bV4jˆ! ZH3FKfF-r٥d79H=3Y wY e8>^uJ8eԜGMF2+ʧTDŽ#P_g4awr%tׁD_T'L@QΏh7^L]v4≺7P8q À^V/`PT=uAU2njQV(NK6`j_zvl&Mv>-O; Mq@(1G;7# Xn*.zH傩`5홿~R"!TB)N6A~^ܷٓ(n=f[J컮u 3L5ԛU^&[ N35?N-Q( gcnٕ#?f>=!s(Zw?9if̶Xu7Y4 *6*Zm>SnUs=^,\XV)̀ե̐9VgTݙp(c'x !ci,/lW5[#l[/iaTSg}9,"L}(24p>At)t߯҇崑nDn~'^s .p}i ,6F]Y% o2r?;#d[7? B?nJ ȒfI;4*/Zj6z2jdÕŨ铁+$? @ï3tbHًu(Iy#gb%Jڹr>tqp6oG74 4<Pb|3 iS'O$nk 1FioW\ ~`(j._X2j !u #lvj,jkE͋rOD)ʂk .TN{wMzaԫݐUs]pRrQ?Qi\5 T+wQ0W߁}flq*MAC_' v? ;03N__.•E .dB)3@ʴZkf"KvSQQ>)հoR4sOCU:2ekr<0/d iYg LF@Fa$!H 7`=xde}{.SUX%nfy)ʼnxQ5Yթiu<Ąa!f&.`e]矌{Ԁ}L(ɴ 4qJb6c:]2Pm  #(o$xKCUEƬD-n3Q\Bq e ɹ U|ba5UR,'V`VF BъVP-7}Ow[y(͎dfOؒ@k^ wjvOAQ#;^cK\J0UsYr[g;N:D W`?zdHaj$;Oy{VK8!NT{X6pP "shD|.dccڷ/}vZESw#f[=w\= aC;zx@6ReXδYu-M%xH򨭓Om# 0 Ğ mgRt̔% %;:TE 6ύcnC6ImTU1M /N̖ؠ8%\K X7 |OoҋIh\XU] Ĺ&s?YܞFō / qo^\hYB>C N)q|h|/",;3H(}/Q|n?7CΎoqΰy[ ] ,"JQ8Od)SS VUBm5bFN "CׇY&K,u(Ft3R0=5.u()|;g!?yAx{ BJxL% ge:0}]+#B_fia#}= uK%J.}3Bfw$b#A< iUX얫8jcjx4&J~9 Vy<У.(2\BŸqRYp~|HCCekJ``Tۊ׾ɟrhd#WPojE_ZrCqBrUcH.դ0$Yo!t"8l<Ud>Hoju7gp9M8͟\0r`GDC(4r*FV>}"}xOtb@ !zw,^(ڠ֞|~fOP Pܼc: "m5_ZXVgHp8 J'*VX8 CJBkХxɁ^bk" -v3^Kpp([YB$Zl_O7ŬQwOW:] B r6Kd<(^ݪuz= ׋@[jIf@xq9gdQOolh]Ec_4d NEaG|12Fl~~.!N}7s>Z@  +-;ԠIi[;Y/rŸxJZ8'&5Л8Vz7"/4wV=\ ?lh#w⭃3֥nO! u9bBԽ.V֠<ۚ]>R!쉬wK*Jd~}pߧ EPzs ^ n(,^&3|)<ľI3MuvR(؅gGqXHaX BVOm I{T)?fZ_=!?J6Ίi^\-)L鏾5MO)KhorULaz,H3:ը-a z+i%1Ƿ^#͡5c P= 3tvO[=#gOډcwmJCJ9@p;SdkROoH׃lƬT+mU%| WZ)_\q ݒ'-U5`EFo5oOwV7NCWHB߭2[ß,v%[lԥj|)2x P,`Z]UJehjY\ތM dgmeH#o㬥IH䠻p0lm-plIsPX+&^mT 6s:: ^뇄^cd}'FTxm࿿G~5S6dA#og-wêJX?Ƙ#uf?yoRɞ5Nƾ;)'&wο!sLn1&ë~;CA]YqK \Z̕L4>vE{2@Zr GaH|:Hj*Ēzj'k0f:P-kK☨.Ub}70gfIa{ ol 7!ύi:ITO9+)mrو]ȅ" ms/_Vя7QkFӑ:jЬ hQlt))R 'QS@c "3&̯t Tw>:WU#fhq(>M==I@qbgް/H%lh(8VI4ߢUOC'!Wȭ7^߭+ } 4Q_OP%vP}ub, ,x%SV8 5w9Oc,aϑ_\]`.A;_4{j7l1;iIC.?@QSnʴUDRU;+j,hڂbi 3м@"nN0!ʞ:#Z_3|~ooLv(ZA4|ILY--쎄lbCrgtӵu=({Y"VZEFьcހW5XU̻oAD*>9F-!TuZK9Vܲ5f(c+g@L)l9gf5̶Q @ɻb)@/ ]uegs)k}z\>옸?1v hs{;1Nu]g/-% h?4C??$8>b~R\ni }5LAE~ {3L?AX& [VWӼ=?pej:UzJB+s#j+eŭ.`J9ݲSVRO'kodiˆ kSéwbI&ef5ѱd7_,GG8- ` 7Uz\r/޴PmDru?ҥJ}Cۇz=vb<XqJcuq )6lh+E}d6D9+Mu,^y?F"{0)}ݱC6(5$OđLͦ-6E"[~U]Z`J!uc}T$TZs\*TnX@>L@}qML"^r:+sL7ڙuPou*F3jݲ|NY@I*a5ŹYN VQijEڣ!5^ޡ8v]c!ȴ%l`8~2|1 ]G-';H{zS(S(su08T.vC t,h&aψ83_plDa'qO`0Y=ontr&լ* wP[ceƞ1wAaT|V_ߣ]qfʾ2yu5'-I#Y}1$ DaIXL4IvR9§;PL( S Sˁ08qy0 åń*b'ںmL_*+BcZs^Y~ ݪt GI@wx=.Fkz4lFWT}QeD{)VMq^뮰Jv,|]f=_d|AV"nRhԱйH %s$8_&\Y$) .\Զc )$q)|]D wIg =\R1XɧV4t^6<3gPA7FVjWl4+ES:z}JZȐ[$&YWrz`ZyZէ„P=J'eisj.M@IHEUckR!*Hy{flwpk ̔N& D5- x_OAP}LhN:'`]Rr{TIPnc֓m$c8U;yj>7nB͊#^tdNS_[Y,y{ 6 m3~>/v z. <{; |Lc:fĨ@Ts7 vqIS}~NV6y-Lv}K/Bi TaWax. H%n9dOAbl364oʙ Dt[ǟWO`[aOPA)"40 3$Q}`fǐRKgd&K90V/4+-jTͿLb0[ޓP{ߑE9cO98oɡ4ʼx# jk)DGugb]>[^Ig1/|opc,J=7р~t}t5l>:$oj]@?3&hkc0Ju`Dn3"ׂ-+B.t-eDh4Vc{uxCyoE&Y)_KTDbNВܽf/$BSmm)O!˻\Ԉ:'?-zXe]`zi.i<0DUC%]?سps[+iiʀ / ;" [ +sc/&x*c19.tRĴ3,v6d_^`ޅNfKg*Xk1D0tW~1TAW}xJ~j< yN"Z2V3m>\>}KKVI '&0cTbgOo /WG̀LD=[9$xt= \;%%V֗)k"+5P:2t~iEB[I&QcEs`v K( ɻ/\/o5;4mBdA5hJaI%-H$L)._J|'6$=YS/(c8eNa<0Oq|l,!);0kf&X>Qˈ'^pQ!xN/Jm^6b YdK,  '[o*U{Ut:Qm;U Wq^ rLݧc;/s֓6//$wJ$`Nh/뇷B|?PZV Ӣ{W#xb m|{KH8s!RCX*G 1Wa\j/u!(81?_6?x꯽t*.ɝcPg9B+V#_ ;R۱B-8{@>o@d79,3ʹ[ﶤ= 4.*z:mZ7&V$g~xi?r EOF4.|Ӈ [@L1e Ӗ7YlӤگ TBo ԃ9evuwyzO **s9Z[>&Lcl&_O&7ka=񼈙RUy._wNC!a.F妨cYl杂V]Ia3.] TR"љNTho0mN]n]-v_0~7_e'PPUċHu|^]ΡsGʇsBj if^_iCH3˕g K|,Qrx ZQ~xbgjXI&m8Ő>ΰ5̯\/|n/}q[j6Xsa'jtVe\vx>{POI޸% Q$fkZ4Z)bBU0\ eorZg F`r.wRizW' WeCf Itftd8M.t z|pf &A zkwGzVPS,A} W,qqW1TsN v'?YP LL0m"5}R?'@ЛQ˝9n"Rϓ)M)c_S[*%J ͤH7;4aRػZ%PP tpG&:fV^5uЃ;iw0B+#BcZA4Up|Y.D:2 %84Z xm\@MD/V$?(]T5)Px攌;?T'k!k\|}z-Q\ΑvkS-o j Yeq=?d-`S39NiWb\-$g3I }q{'< sn97d`!c*ey8 &]f(B"8#(ZmY$o)ߧaHZߘn~q r"^"᱐WvJ[Y$i'=P~.FS $b`H@nQ0<7Ţ$D×Gp䂠+h#Ac~6w"2Ϲ/Q?>1tcBsY}G7 7~9#!6Pw!\1TlZl'80#<4a]&סm?g]ѧelhn n~.ڴ~ \BTEPU"`G= 7]XUSz2ڃ`<[T>w|"G IGZP&d4Z# ( 0-5bEjsm|/emF"߉/(L i34d85^?OO%U@ߕ iE)(V`StWsc&v98FIvDYKTF\c2nԙc P7$rP*ESF.)ī{F3#\a~'e67IzeW1ڊi-$.. vŐ QylaԡE]3.ltP眀&׀$K*l)ّ,n"( q^ 3Ǻ!CdCeT6ō5U1{Uh QEPijL×D:%M754֕HSA$E [؉芲Eg@u?+ѿ59lPg3M<(5$}sީpe7؆hLDɂGEIlqs4=nT&0]WZ(yסaC6t>0ZN:=BTk5da{9d?b nlx 1hnR%D,B޵9a;]`y(:_hI#d 8oyu4i-ْYeX~].y֟XUּ*w>FU /akx b4N uXd.@ ʜZy6vRFeq=:[Zgsb3APzt ) i|1`_Pɢy, B;k}+ ݠWr|Rh ~nź%FC+?O ;Fu$/6T[ cXM'wb3JnVԠ-ޭë-Ȃm-0ܵ qi~>N04tI{*S;s3^] s9tIjb--@=z &qc!>R=E0u1% w!RTBur 3VDtiYbu9)k-1Z !lU'K ׊Vߞ)׸AK3dbLG1!ȥC^;$̴̿p!}wXi҅)mW86]f_moe=%!nߐ{?"ي*IWDxC%K''ټlBY$6Ɛ=(? fвqOKҕpFUdw2)M|; ~kLl@=k4;~ !ԢmhS`[ 骊3m3Z""Wo~r``[7x |&s@I9|a"^kFh=;}!ݙ-˿ttyl2\ěoDz9ZPa =rRB/C8&̪~gEp?+ Hq<BII`TgNy[}0UT+TK`r|3q[oKA`??oxME9ow%aV( t ͍-dKEH*`Y\~Q).GYo#L}-i\Tś)(a,"=^S7}f巼0}[X*[> XTow%1t+M]%q⇂CEʾ`(t[e(w2;Q4{syq?BB2Do"s85+ӧLz.v;z\V~8r+eOg eDÚKd~Isd($Fط/.jZ3+s(4|pÒu3\*Ag6pF+O7"Jv!)k-f*\s}hfۧByKpiH&gw JcB@miZΊ;oqb@3wȾFt f-H5lTU h;veޡXDXrU[!/ܚE H|W3ӂ ª&= ђ(;GMpZeg,e-&-{=iޟBxMPl&p}iI@5GU[iy- ~ȽT|W2+fķF{͈ \NTq&̅Kך]: r2\QRP2t;߮ tUb`/.Us1L"΀kcZTgz Qs}񑠑Kd7%LbcYr7|\/2\<Z#>XKyWG $92RSL͆uKD_Bd4dd\0t`xAn㟓>~_ͺC=S.A;*が<52XB=#- JPzgjXGs~T}AcGŞp*Ȍ fB2E7N,}#rcw}*P=7׋0pN_$8k 9Buk 6YI-cA䫷<|R'|#BhHtSo/zyH:P lQ-"/V8$Զ\ E;g)(e*}zLn#/x'?SWG%"; Yۭ-6.<ҜlY7V%&ZغA[@;f]Sl<[ro9:ptHd/s+?VuɿTf-ayoR !u{ʤ2Ieqo"u*zV%-sOQ_x'H-i =sl9;9(` Bfy'K=ɠZ;N\&QYg6Kkx} H-atE/K^ԝ;\c C"U?dLI*T<GZQgۮ&j$V9CloW=QI%u˟@gZ3k=ڛ=>T t nΖJWW:$Dߊގ0^ ͏ aT6l&ml߂{1v4hLS pw螁-HcPA&n Im QT_k!PnI &%fMe78a_HW麎 'OVV H]{/zY8'ywQfQO%vLT4RZiRZM5 KuW8g/E% ̒_Jr*bۨBypI=(-PW 癸;hY8|%RD$ϛrkٛݨy¬)۠E)@`ф(ft4n]*"ʼ-H#IX7:xxvs"7+9.X|!,(zCͤ*&bzR&{r8' ;g}D;o϶KXY*5`V.zOT=r&XC ]oC'C޷4kt⣼v[ӹfo8'|Nwh1-,V|vSu![}v6x$^"#>I߫_ƣ9$6@oU.`9FtM$HCe H}l@IYQwZ|fZS1pٱ㣋wZ2BLPGhmg f`4|Ui^q#`3W{<cs'1Uq jg؊t|ƟDLc ia mMn`ÄߋhӥxB{or+UKZawh< J;%4k;_YBXos%iB[<6-+yaqA +2)=mUL~9^5p"[aLijT'[X>" l`}.ZAeB,]jdE9rAvv( VJ֘5ۨh瓡=l~$ @oNݼSsnDBvmzµ q&SH򻻚ebV*?ٙ%-Swqܾt7ɖ9J҅},GЖPz >m-.~ơ_)?3 -47g%pBaJQ-zF'j0\|Vr(I{灂Rƾj~nb?dq{N"0 sr3 VTj[F1N67mSH˻bձI Ww DsQ?.E[g l?F<6^e6bD/0REV aVPiiQ1 K{YoBnBu-rpه{ȱ+L(V_e_ZޜEB 4 T䵑z+ bp[zqvaQ݋lL@q_ mxEuZ҄2S QLM'U0ru0\x"f򋰚ƪ@d|@VǢp$Hۍn>/̪{|[Fzʸ'wMr | 9z]ٷ˹jf^DR=/*<>={lUr6"K=dPXnd]`PeH]-Y/`%Y=t{2'V;._GrԒy;K7Kgĩr g#&0;8LFj'9 B!At w OEӸm gwHh0Inc#+ PiKI{GS'\St_A$@&}j&qyC\+TY8)@;4Beڲpb*[vu6i;/ Vݒ,H@ʵ)ةibwIFH! VY#~v<[@)cgve =%yT1gJA1dK!F;^n rqN/(jn{7;Dgsw,5QފaW߲<͡o"n]u.gXUH5kQ :x!vg 텰<HgRfWǯXSCdOX-~Oc)ʚ!w^ذK`Ό}Ԛ7pĨzM/%cɽ:!]fRvÄlS3..r&>j:rr)(*,+g ɗ (QRP볅Y4bӂr/O#γy[:&*U89DNGdlfvLD~RX9g8˽(v .6'tŃlpV6iu6M靺sB-uY_> kDr㋉;M9YFC׶^&6f2Tkd3,!(5kܾ`x=d:-eb׿@E@c4(z[. 8=K8+t.hT>m_9}nP_50Cx]c< ~c$X垳\\Z¡I9 r5.MlCBވ K[Fsi]Jy2э)DX[m- 㮋'pCMï#wD[@{Xg>++ӆf-aU՜y{. Bu5G5 :дϊfG6:kI{&euȼSdxX(g%Ӗ !*IE@^ )^*\x" (L@'H[Z3VVv=@gxb /kimDOnߪe<7a?`Lu9`tsn^Ih.\$ X՟*ov8:() ωm6 }LL3vv\$E3 <=< WZ w#hu;md76]Rys7{W\{3Z w 5:0}3.{vWeɢٞEJ RN2[y.'faMRQسdDZ4C2]W[/w2˱6,fmN};`PJwzgtRuF7e@ټC߭7^tr^ #7jvRl+r?+CJ5af=Pro$:XPDӺֶjy1{¾bQ ii> \'!e73$Xu v_h.UUu"µNgW|~k c 8u!71OA.{mQT BrEr+l/7*5D^3~š j vb^up7Cf@èB&:&a-پ脔#)7 +Qb*{o]nU0¶OJyj0_@啍meцyV:t2-zR{W'R?~jj՞kD[a ![j@j0!+ϒ gFU3C h NL0.1 vyͫjkX<]܏ dQzuOtsm#1It܉Tp7h{4QZ@n@9V2T[eyxԸ-5s64hulJ?z^LwypJ+nFY=oY̕ ˌ\&/[(H: /iNP<ǵ7j5id 9 D-8$ ZJ65BmDJQ7KِѪ1-tW4x|>s op?Ԏo 1wqN$>F99B$}tGCƢ Sg%q%6EŲs2[w?\*d!]zT8I NV^dufsXG&k;`6h :r.%')&|B~mr>,P5ӣSNKiq*I]rW"∳,m;#0 ]&G'"w'bo =[ 3?gB72\t7׉SIh5-Yf9]qzK./_-P <'տw\0k]X \*G0豭ӌU< Åk,6~P`b׆0Kgip1ctShL1Y/tM5܌p~QZ* L"_w1Zo/T,NGV.iq4W@h\4 &}m~3@{Njaѧ :*(i,(m 3Qlo".9G6W[f#&Ւ iQh),t9MAo ~LZ=S0"$&%B ^Y c ~f.9m;qG<=-AgLҐrMj|ٟ_ބ :&InX0[qŷƮBήU2L4.sQ@aUpIٜDvRlKAɭz,0 Oaơdps6ɸ$jUw0llcJ-h|G&xnJ c2{D7V#cnDz=fWtX!Q.pWxvJ`bxk{~K04ߵ iyni;hv3R$y ?(~*'C `tb):j B J5QTpD7-&5Ň F@kR LDWn j" N:Qyy&箫w)%5[?Լ9k9iuRhFX8I/4N^.lJh/q3!# J Gf."7!LFpSAed {y̑`V }ByA%"0.7x,$݃K}m($\_ӂi2PS#Pn^:ե92s(j1Ӧ%]vkʁBRs^D6 `v3ṂM j0p0y %Q3|j Dmqr)Ѿj PwUoW9' :NW1<E?ޞ/1._|cِDpݼ>ٸ-Ž\]hgѕ RIOw:wi=o8DTc70rʪY^#MK:P-}`ݍ'mYOJH?ep޻1Z=3,3t삧hc{sBDicNTO7)S/⮂S\ĊAdMyI0{2U΀ܾ2 uxxPG;Vf-cʈ#xXQϻm[`EfZ`q.ZTl,DXxw~4+>kW1!:[wսL rM+($-{M]<ޏmRB8k -6+O>O8ּ|*MEKv,(m+D".7d"qd)tH#]Zl=)mzZN4vC'yA7 {Xا2g3摅翇JXزR`aYj';TlBϰX+@aDV\V2lA>2?AiJ%S*śsU2_DEokGLwݽLѐc1{%"4=g梃Oꑏ *'w߼E+vo!^JYkɹX:Oɯkiz/w&>W9̯k: Js*x4%ޕ| mkF  h+1V0 0%B2q!c.uҔ3[I_Q_xYHD2vOΔ=o#oe\λg;/OQ!E G8ilZ[soMQy;_^PagSL'KiQ5Iqd'0xͿwBkЖ!7<߿6Ju󯁥 VK9Tʲd:p4Ovg]j9zal'Ϭs$"Z3&gZ2yw/qj.!FDqt *t;Ì]}ZI[{C)!:L1h2|)z޷l^J1Dhg rcyt{oc%So[sM@̲.Ĕ|Dz5fx&ztઋ@1V%=UhBF[hT<; ی"AOX?Giڋ%~6ptjaqu.lh@P•X\Ԭ԰ʂe$), p>p?dtz3Iѓ*!*~$4͖Ivք;R{-)D#X{.8:mf=}ʺh):g-T:`>T e^=#(qίY -ޡ%rA$^uNoaH~yHͽw,Ur"7\; dxP*Z_$oOktʴYTQbMssJya"v[/{pςaqEʩEq7  v!TE+o)jN{׍}ږOF@2YΆ9*{ԏ>͔+3ڃ +ăI=ȴ?ۖ$wn[9yR.K31f'} ,=&z&B6c}Xx$J6";gW0gn/g7yF[HڟIKie`9 X'\aǃҖ}ޘaUԓ+{Mg~_tY\naYpwg,K3D)1.gόT}k<4u~QA Y;ջƗE#dZDd[v jpw} Upׇ3|PA'U[D)Gv_!ImdV{ȰM-0x >rߥ97tKTI岘_ +k%o n[|lQDl5oZTt_j7ovǛk M18c8IZyWGŠ?+FO78spElthp҅H .Sqn4S˅fEF;pl9AId\dJV=_Cl͔i'GJB$abYRF,wnO Xn0'wd|>lЊ |Nq6 s_wU^!wl=uL`r2NYsP:HH?"!XMD1$4Spb ;UqJBRZ:AX z_;DLvӆZꔭ,C8s):[G9Y5(3S q|:#1DwJ˨2,i6G> 83|`rO%ЉwNT&S垫7omy]M]5 AF?5[E\խ~/6fФADDa)-L+:w -~(ϊ"g0sf}䌃x(fN 90ҩ $<옱+͇ԡX&1t ZvZ9;1<- 4:. rVUD}m9OF'lTg0<X/Jz/Oro,5_hs6 CC4W$Epԓr..._t*](-wgbltf=Q5יLv 'Ҹl~*${hpYD-Q/RVtw v)A8 l@O'FM _ۊ,KW|7[^͚,φzSYQ8г @6OXu# ]Ȍ{twj8RIMnFx4V, hzoV3.3yLP6y+ꅬ (L7i ׇDIכ|P}Js\,c ~Dq𥢕\K&+X7>,5XZ7h!ӮuE]0m؀2qx^~L-vu]7J\>rv+4kxoþHC 8W9堇u[`&~ƞZ=ߨ-z(2b&džBzaJaŋ.9pl83h1{dX vz&%֟LJkA;1 DX!DLoeJ)6Э4m RoXV KA--84э g+?xS'=Θ}D(Pi\1z-xJqYlSȦ:z_X~3]Wm)іMi+7j]DRy!Es) E>"E}Iy gHO:#e>3*U5įpIctGxc0+qhycC` xN^(Q.䎻:3Jv`y0@RB4[Dwz\rܕՍ˖Te(F6lXdڑ2'oTh:L)5x'q{b ZuՙS ^~Wrsk&aU _r3>KgFX;`$蕐DD1 CoR@zwwޭEAY}>(/,$Q5;wD4*^KȄw:R^XBSoЪWoR5Ԑ ZٟkLA}<ЪoK, V:EmjO%fSc(ʃOY7¡ ݘ\2sHlhk/:e%AJAx_ò^hY\wSjdַ! wg2V)|642yBCZ_,?HX@cwȈZZ(=99Y`x (8pХ]R&D<$1(U(KNʙߺ]E`325=&Ӣj[ ?˖ήVS5rLÑaߑuH rM.flc~\i#ptrŌ❎졆IP+Suo3'\C]xU=qS$ /q>ՠZbgyezL`QͲ#T˱Y&b=i\Ngko" _~5K?jlvPm>s1EJ- &]8,QI%͚P̜ dyu$EԥrncwK^?'G' k7xƇMfg`Oksc\5ChoZ*8 σϽbhiud;\@*3%ɧ2z[ 3`/M>s,$q]99#C؄k34g̘4@aGK+ښuGo$b&FmCKgS@k &F,k$DU`gHy/{@&gR#eRÊöBDl×%ӯ|A Vē;h#Ν,cCr q4 ^eY? }nD@=fr5Q ˋ'G4Ua8Y}O{` ;!?zjYwF4P8mQjyY݋P>u_l ̙퇤oHsq,:3d{6^I =>eUO,6?W76;9:iv$/ͱֽd*Ɂ*~aL`^ߔ}m߁tqZpf5_Kdm{~cѪE+7A: }6L;<Uf`N\qR5L5pt>8ъ!ُ!/8S-M e!G0 ` ;x)"me6NMU̪)h3o_`OqLbp0EJ;A4_ViSA;˿M슅-Atޠ ,)6n" C΃>*Yy߹F^7ݲ 5iUaDI'd2W=X:ո#@ ~Eg:x; ==7>+O4)%"(v.Soڧ'mIDп`"o<Է/:2pRse%.x! dkYK8e` H+Z9j#"J_j nbH[쭡u7b%,#jM2T4L*:X;bwEÆg@\F1e2w'!0$~K*9zuF*?"= ȾkBY%)&GP 8&J\0 M n"9ݜC& `goG/i'fGAq7yT&]Vx4qvEۡD#l-`~y_Tpr 6MǻUX4f ŧ_*~*tŘz,3:ҔH`up{ p\/q7؆*7ÈA6E޸LߛoW ĭ<_aPRLѴ1f9H)7<dž X߽H #yf"t?exڅ)0un[go[Q\;+Cj]K6n@9a+ׁ_ؓZַ~'~-KIfTH@?s{=c;=$Q9MzIo͆鹙2]`Dzg~oAqDȤӣێ?%v#ۛ %= Ko,mQ˦mV.QI0c3e%OVJz'K-vۮioD=Gexpӂ$H~NZ[9~9Eqs z`ıw 8C8z(of_%ߊ5+ 0);0GMg !LrafqbB_$ @Jk%"M;\t"kB%K|)51sWq/BuV΍/<4+kh 0]tZ޴x`g& ]N;=$X~~tF$\%n#EeB\śm']AS۞_W2;# .i J2q hUQ ?q^@-m\X̯FY[i|7]*bŭv:>hWݫ/1K!LIqa8R5)%=,@Q򟾵ݼa8,XCԭЁeæŻ9.ztj5>w8P%^7ZW *`Ìʪ ϊgBgߨ;Σ:7J0i'%Z넑If߭5 :mv_*V0=PN+O'-f/tƅ3I|lB։h=[_2H jܻμ016P^1^_E_?Syޘu!x &v@&G&R)O-(PV}/lLNW5|@=o78C؊+ ep|^˦~Z? <سS/Ӆ<y#)I-K.`  ikp0pX̵2-?KG` (#{ȭh<6F"C%=z"U9W1?X`pD1ĕr/M_ vYNMr@WU[a  ^H$GzQ=rAnr*]gv>Y;ˣ]Jꋉׯy-eip䑐t`]H8wfC.b, =$r]^$aG=2aɶ {"v52kMF._eeߧ̗ny$g~-?7_pgGPhY\eo U.}tP!;X`B7֬L%v|ZȘ`  6"iR ĐpO!`on.`0/9#Iv?r9Yc7՜}6;ntbh"] zeCDwLXąfhQU>~CyH_npl&aah63\ov3zzE-Rx:y9fyŸ:ʡ prrh&D&vQͳQ,|Y7;00;\Nn%J*:zSHXyK SSZ_GG4Uc,Rh5,ۀӳL ZVѼ kw̥ &! eY#K-%# >0F^ ja8b/ծrDIUmQ]6WJ;@d"n|R,M@M7.]z| 9_&S۔:,YK>mq/vZ e~ǬmAGrߤZQla'bjKc]Rmւ4 JKD,[dw0 aMzqd5]Lյ0;i8~cfA&yO67 ^EdM 8f0hB_-ihfbM,)4Ҙ u,6G**?Z4FZu^ʲ\^p 5܏]GslA4KOL54`'@5pj9vP_0_\,^.uagAED =;0C]Z2"m[5,X6tYG-Y&ԄahV}>җ0Wh4(7r]TvXl`t.m^Ddz~r2j[EuU)[\z# Z?й5~X;Vn'Fܘ铩~wqu>drby遆6m=^EV&sAȻrs,iy+Q`P=%.BP&k/^pclt(lR編|lEC{@׬>"8)MTNn(tqtC 7KpML V2.ocۅ̓?Ag8QdgpQV puHz4+HT;u3F{jʠo]S(?KjdkE*q $ȫMp%F`̩SY\``xZRt*SSY["04NoJ ]A&)S,/-Qh*FZF i3V:ޚf?N .T`׼+OKhDɊ.Scɵfgv\==TXBS)אyp A+,j@OR^?ŮK1bT$8WBj \4&1v(cq*] J'k؜p&KRM-@(gȳWh\G[hH]_ )7e,j6K/%SԻVbr?$p 1(Zlպ< 5CgDC,аu.h{E}37pSv.<ajcI!ė,2#dNw4K1 uC~m֙qRj7Ep|H]9Y)tNC0ᇷsrvIP]br3EXwr+uk74F X` p3c@R i\ˮvbyPi y`?QȮ / \< 0}]go:EMo.:WݭEȈd]}دnS^u h]oP jT¡4MKfBqxY (F|0.Ve%S61opMG ё`α'\YfRXvY[ڭR+tcLTr=*;X&r*5z i5^1]UN/2s",Qxʷ5Du+ 1bs!iM֋{A24*Ovns¸4ذ/'hԣAX1㋩n1/g#D= )BvY[ڭR+t[ BS=)dB`sS|11np#_(˅ѕ~*'uMدՐ%S61opMG ё`α'\YfRXvY[ڭR+t[ BS=)d ;*lߵ;Ľ._>KfBqxY (Aebfg)<3!O\vLd{6,imDtM7'@֬nz>SbvY[ڭR+t[ BS=)d ;*lߵ;Ľ._>KfBqxY (F|0.Ve%S61opMG ё`α' (mgsS|11np}R1D*ؠs>"S-3d!t~qFq#mW4O|11np#_(˅ѕ~*'uMدՐ%S61opMG ё`α'\YfRXvY[ڭR+t[ BS=)d ;*lߵ;Ľ._>KfBqxY (F|0.Ve%S61opMG ё`α'\YfRXvY[ڭR+t64%0?,sa]2&@悍gDV=\[1)9,u8xY (FyJsS|11np#_(˅ѕ~*'uMدՐ%S61opMG ё`α'\YfRXvY[ڭR+t[ BS=)d ;*lߵ;Ľ._>KfBqxY (F|0.Ve%S61opMG ёpbNhp, +&_Rd;J8R+t[ BS=)d ;*lߵ;Ľ._>KfBqxY (F|0.Ve%S61opMG ё0sS|11np#_(˅ѕ~*'uMدՐ%S61opMG ё`α'\YfRXvY[ڭ%7_kz;[ BS=)d ;*lߵ;Ľ._>KfBqxY (F|0.Ve%S61opMG ё`α'\YfRXvY[ڭR+t[ BS=)d ;*lߵ;Ľ._>KfBqxY (F|0.VcpWsS|11npr'hx mJ'#j^0;)r]641:^>rb`^Kxڸ2-5@~8X]~Wʌ+UF?QϽRE)gJkTIvj6] "/κ@lI|dI,s rt b%6̦^׆:qNĖ˾kV8rw=|g;Vv'8eތT=Ma t~$bۧ9_Cp 3 K~Uiժ`KIS"al_nE5)f Cs.N1}32+kAX5pxMrlWX.@++i _Ar0H-o֯x&fʄklօP]cf?J$ wѐ5Ɛ&5D"&]2L HʃIf7Qr \(@(#v}y"]=czNy' 6w frf QADz'=UnhR-HM[b+U]O7JmeXY^U\*2=g/4b{yCMT^I?z3ț}b b#LSʴ*|U<Qe9ɽ Wgq7l !6@RXcb} )&=-$ut{!:oaܢYqCf`MoQQ{X.a1mgBc冡S3W# YFIz' 96+Ea.Lb],#>;?vP{uÏPȗ3ҙq=JE/ѰJ8 B;=C҉wѤţϧ$zMfB~~?*R&$Q@YZafex/inst/doc/0000755000176200001440000000000013111527415012717 5ustar liggesusersafex/inst/doc/afex_anova_example.R0000644000176200001440000000744213111546465016701 0ustar liggesusers## ----set-options, echo=FALSE, cache=FALSE----------------------------------------------- options(width = 90) ## ----message=FALSE, warning=FALSE------------------------------------------------------- require(afex) # needed for ANOVA, lsmeans is loaded automatically. require(multcomp) # for advanced control for multiple testing/Type 1 errors. require(lattice) # for plots lattice.options(default.theme = standard.theme(color = FALSE)) # black and white lattice.options(default.args = list(as.table = TRUE)) # better ordering ## --------------------------------------------------------------------------------------- data(sk2011.1) str(sk2011.1) ## --------------------------------------------------------------------------------------- with(sk2011.1, table(inference, id, plausibility)) ## --------------------------------------------------------------------------------------- a1 <- aov_ez("id", "response", sk2011.1, between = "instruction", within = c("inference", "plausibility")) a1 # the default print method prints a data.frame produced by nice ## ---- results='asis'-------------------------------------------------------------------- knitr::kable(nice(a1)) ## ---- results='asis'-------------------------------------------------------------------- print(xtable::xtable(anova(a1), digits = c(rep(2, 5), 3, 4)), type = "html") ## --------------------------------------------------------------------------------------- m1 <- lsmeans(a1, ~ inference) m1 ## --------------------------------------------------------------------------------------- pairs(m1) ## --------------------------------------------------------------------------------------- summary(as.glht(pairs(m1)), test=adjusted("free")) ## --------------------------------------------------------------------------------------- m2 <- lsmeans(a1, ~ inference|instruction) m2 ## --------------------------------------------------------------------------------------- pairs(m2) ## --------------------------------------------------------------------------------------- m3 <- lsmeans(a1, ~ inference:instruction) m3 pairs(m3) ## --------------------------------------------------------------------------------------- c1 <- list( v_i.ded = c(0.5, 0.5, -0.5, -0.5, 0, 0, 0, 0), v_i.prob = c(0, 0, 0, 0, 0.5, 0.5, -0.5, -0.5) ) contrast(m3, c1, adjust = "holm") summary(as.glht(contrast(m3, c1)), test =adjusted("free")) ## ----fig.width=7.5, fig.height=4-------------------------------------------------------- lsmip(a1, instruction ~ inference|plausibility) ## --------------------------------------------------------------------------------------- a2 <- aov_ez("id", "response", sk2011.1, between = "instruction", within = c("validity", "plausibility", "what")) a2 ## ----fig.width=7.5, fig.height=4-------------------------------------------------------- lsmip(a2, ~instruction ~ plausibility+validity|what, scales = list(x=list( at = 1:4, labels = c("pl:v", "im:v", "pl:i", "im:i") ))) ## --------------------------------------------------------------------------------------- (m4 <- lsmeans(a2, ~instruction+plausibility+validity|what)) c2 <- list( diff_1 = c(1, -1, 0, 0, 0, 0, 0, 0), diff_2 = c(0, 0, 1, -1, 0, 0, 0, 0), diff_3 = c(0, 0, 0, 0, 1, -1, 0, 0), diff_4 = c(0, 0, 0, 0, 0, 0, 1, -1), val_ded = c(0.5, 0, 0.5, 0, -0.5, 0, -0.5, 0), val_prob = c(0, 0.5, 0, 0.5, 0, -0.5, 0, -0.5), plau_ded = c(0.5, 0, -0.5, 0, -0.5, 0, 0.5, 0), plau_prob = c(0, 0.5, 0, -0.5, 0, 0.5, 0, -0.5) ) contrast(m4, c2, adjust = "holm") ## --------------------------------------------------------------------------------------- summary(as.glht(contrast(m4, c2[1:4])), test =adjusted("free")) summary(as.glht(contrast(m4, c2[5:6])), test =adjusted("free")) summary(as.glht(contrast(m4, c2[7:8])), test =adjusted("free")) afex/inst/doc/afex_mixed_example.R0000644000176200001440000002065013111546473016676 0ustar liggesusers## ----set-options, echo=FALSE, cache=FALSE----------------------------------------------- options(width = 90) ## ----message=FALSE, warning=FALSE------------------------------------------------------- require(afex) # needed for ANOVA, lsmeans is loaded automatically. require(dplyr) # for working with data frames require(tidyr) # for transforming data frames from wide to long and the other way round. require(multcomp) # for advanced control for multiple testing/Type 1 errors. require(lattice) # for plots require(latticeExtra) # for combining lattice plots, etc. lattice.options(default.theme = standard.theme(color = FALSE)) # black and white lattice.options(default.args = list(as.table = TRUE)) # better ordering data("fhch2010") # load fhch <- droplevels(fhch2010[ fhch2010$correct,]) # remove errors str(fhch2010) # structure of the data ## --------------------------------------------------------------------------------------- ## are all participants in only one task? fhch2010 %>% group_by(id) %>% summarise(task = n_distinct(task)) %>% as.data.frame() %>% {.$task == 1} %>% all() ## participants per condition: fhch2010 %>% group_by(id) %>% summarise(task = first(task)) %>% ungroup() %>% group_by(task) %>% summarise(n = n()) ## number of different items per participant: fhch2010 %>% group_by(id, stimulus) %>% summarise(items = n_distinct(item)) %>% ungroup() %>% group_by(stimulus) %>% summarise(min = min(items), max = max(items), mean = mean(items)) ## ---- fig.width=7, fig.height=4--------------------------------------------------------- fhch_long <- fhch %>% gather("rt_type", "rt", rt, log_rt) histogram(~rt|rt_type, fhch_long, breaks = "Scott", type = "density", scale = list(x = list(relation = "free"))) ## ---- fig.width=7, fig.height=6--------------------------------------------------------- agg_p <- fhch %>% group_by(id, task, stimulus, density, frequency) %>% summarise(mean = mean(log_rt)) %>% ungroup() xyplot(mean ~ density:frequency|task+stimulus, agg_p, jitter.x = TRUE, pch = 20, alpha = 0.5, panel = function(x, y, ...) { panel.xyplot(x, y, ...) tmp <- aggregate(y, by = list(x), mean) panel.points(tmp$x, tmp$y, pch = 13, cex =1.5) }) + bwplot(mean ~ density:frequency|task+stimulus, agg_p, pch="|", do.out = FALSE) ## ---- fig.width=7, fig.height=6--------------------------------------------------------- agg_i <- fhch %>% group_by(item, task, stimulus, density, frequency) %>% summarise(mean = mean(log_rt)) %>% ungroup() xyplot(mean ~ density:frequency|task+stimulus, agg_i, jitter.x = TRUE, pch = 20, alpha = 0.2, panel = function(x, y, ...) { panel.xyplot(x, y, ...) tmp <- aggregate(y, by = list(x), mean) panel.points(tmp$x, tmp$y, pch = 13, cex =1.5) }) + bwplot(mean ~ density:frequency|task+stimulus, agg_i, pch="|", do.out = FALSE) ## ---- eval = FALSE---------------------------------------------------------------------- # # m1s <- mixed(log_rt ~ task*stimulus*density*frequency + (stimulus*density*frequency|id)+ # (task|item), fhch, method = "S", # control = lmerControl(optCtrl = list(maxfun = 1e6))) # m2s <- mixed(log_rt ~ task*stimulus*density*frequency + (stimulus*density*frequency|id)+ # (task||item), fhch, method = "S", # control = lmerControl(optCtrl = list(maxfun = 1e6)), expand_re = TRUE) # m3s <- mixed(log_rt ~ task*stimulus*density*frequency + (stimulus*density*frequency||id)+ # (task|item), fhch, method = "S", # control = lmerControl(optCtrl = list(maxfun = 1e6)), expand_re = TRUE) # m4s <- mixed(log_rt ~ task*stimulus*density*frequency + (stimulus*density*frequency||id)+ # (task||item), fhch, method = "S", # control = lmerControl(optCtrl = list(maxfun = 1e6)), expand_re = TRUE) ## --------------------------------------------------------------------------------------- load(system.file("extdata/", "freeman_models.rda", package = "afex")) m1s m2s m3s m4s ## ---- eval = FALSE---------------------------------------------------------------------- # m1lrt <- mixed(log_rt ~ task*stimulus*density*frequency + (stimulus*density*frequency|id)+ # (task|item), fhch, method = "LRT", # control = lmerControl(optCtrl = list(maxfun = 1e6))) # m2lrt <- mixed(log_rt ~ task*stimulus*density*frequency + (stimulus*density*frequency|id)+ # (task||item), fhch, method = "LRT", # control = lmerControl(optCtrl = list(maxfun = 1e6)), expand_re = TRUE) # m3lrt <- mixed(log_rt ~ task*stimulus*density*frequency + (stimulus*density*frequency||id)+ # (task|item), fhch, method = "LRT", # control = lmerControl(optCtrl = list(maxfun = 1e6)), expand_re = TRUE) # m4lrt <- mixed(log_rt ~ task*stimulus*density*frequency + (stimulus*density*frequency||id)+ # (task||item), fhch, method = "LRT", # control = lmerControl(optCtrl = list(maxfun = 1e6)), expand_re = TRUE) ## --------------------------------------------------------------------------------------- res_lrt <- cbind(nice_lrt[[1]], " " = " ", nice_lrt[[4]][,-(1:2)]) colnames(res_lrt)[c(3,4,6,7)] <- paste0( rep(c("m1_", "m4_"), each =2), colnames(res_lrt)[c(3,4)]) res_lrt ## --------------------------------------------------------------------------------------- nice_lrt[[2]] ## --------------------------------------------------------------------------------------- lsm.options(lmer.df = "asymptotic") # also possible: 'satterthwaite', 'kenward-roger' emm_i1 <- lsmeans(m2s, "frequency", by = c("stimulus", "task")) emm_i1 ## --------------------------------------------------------------------------------------- contrast(pairs(emm_i1), by = NULL, adjust = "holm") ## --------------------------------------------------------------------------------------- summary(as.glht(contrast(pairs(emm_i1), by = NULL)), test = adjusted("holm")) ## --------------------------------------------------------------------------------------- emm_i1b <- summary(contrast(emm_i1, by = NULL)) emm_i1b[,c("estimate", "SE")] <- exp(emm_i1b[,c("estimate", "SE")]) emm_i1b ## --------------------------------------------------------------------------------------- emm_i2 <- lsmeans(m2s, c("density", "frequency"), by = c("stimulus", "task")) con1 <- contrast(emm_i2, "trt.vs.ctrl1", by = c("frequency", "stimulus", "task")) # density con2 <- contrast(con1, "trt.vs.ctrl1", by = c("contrast", "stimulus", "task")) test(con2, joint = TRUE, by = c("stimulus", "task")) ## --------------------------------------------------------------------------------------- emm_i2 # desired contrats: des_c <- list( ll_hl = c(1, -1, 0, 0), lh_hh = c(0, 0, 1, -1) ) contrast(contrast(emm_i2, des_c), by = NULL, adjust = "holm") ## ---- echo=FALSE, eval = FALSE---------------------------------------------------------- # ### OLD STUFF BELOW. PLEASE IGNORE. # load("freeman_models.rda") # load("../freeman_models_all.rda") # m1lrt$restricted_models <- list(NULL) # m2lrt$restricted_models <- list(NULL) # m3lrt$restricted_models <- list(NULL) # m4lrt$restricted_models <- list(NULL) # # save(m1lrt, file = "freeman_models1.rda", compress = "xz") # save(m1s, m2s, m3s, m4s, m1lrt, m2lrt, m3lrt, m4lrt, file = "freeman_models.rda", compress = "xz") # # anovas_lrt <- lapply(list(m1lrt, m2lrt, m3lrt, m4lrt), anova) # nice_lrt <- lapply(list(m1lrt, m2lrt, m3lrt, m4lrt), nice) # # res_lrt <- cbind(nice_lrt[[1]], " " = " ", # nice_lrt[[2]][,-(1:2)], " " = " ", # nice_lrt[[3]][,-(1:2)], " " = " ", # nice_lrt[[4]][,-(1:2)]) # colnames(res_lrt)[c(3,4,6,7, 9,10, 12,13)] <- paste0( # rep(c("m1_", "m2_", "m3_","m4_"), each =2), colnames(res_lrt)[c(3,4)]) # # ## warnings: # m1s # fails and 1 warning # m2s # 1 warning # m3s # 0 warnings # m4s # 0 warnings # # m1lrt # 11 warnings # m2lrt # 1 nested model(s) provide better, 7 other warnings # m3lrt # 7 nested models provide better fit, 9 other warnings # m4lrt # 0 warnings # # cbind(nice_lrt[[1]]$Effect, do.call("cbind", lapply(nice_lrt, function(x) x[,3:4]))) # # save(m1s, m2s, m3s, m4s, anovas_lrt, nice_lrt,file = "freeman_models.rda", compress = "xz") # save(m1s, m2s, m3s, m4s, m1lrt, m2lrt, m3lrt, m4lrt, file = "freeman_models2.rda", compress = "bzip2") # tools::resaveRdaFiles("freeman_models1.rda") # afex/inst/doc/afex_anova_example.html0000644000176200001440000026507613111546466017456 0ustar liggesusers ANOVA and Post-Hoc Contrasts: Reanalysis of Singmann and Klauer (2011)