Epi/0000755000175100001440000000000012144645505011013 5ustar hornikusersEpi/MD50000644000175100001440000002054712144645505011333 0ustar hornikuserse57db01e68aec041229e541be9c73483 *CHANGES 27d25dd5a245efd1e92684407952d3d5 *DESCRIPTION 5debf3866332c0f5d1e2823e40b4e01b *Examples/apc.fit-ex.R 8200991cba19d6262a7692ae67250855 *Examples/stat.table.R f7f6a1278104d4216f4b4143dcd50ba5 *NAMESPACE fac3c7f01ab0bd6930cf3cbea20e6bcc *R/Aplot.R 75d172080863bd6e3b2286a0c94b0d34 *R/Cplot.R 6a1c4f4cbbf509d1f3c40b9f0adb6399 *R/Icens.R d802fc697f55ab0ef5ccd45e51776e46 *R/Lexis.diagram.R c6b992622881e60fb82ee4b8c3357c9d *R/Lexis.lines.R 05c38381cc48ab25b681e8615ac31ea8 *R/Life.lines.R a25e4901b0899a6b00285713117e3f21 *R/N2Y.r e9f582b5dc17d07bf2df96de74441963 *R/Pplot.R 5f1dbd736cde0016307d0f2290ce2095 *R/ROC.R 0a4f88f26d8b509b92624b4cf494f64c *R/Relevel.R 28a0ec0c8584e22759b516ff69e5bd78 *R/Wald.R b970cebc8f39ace38524f80afb89d240 *R/apc.fit.R 16fb210cea20989377f0863dd8a200e9 *R/apc.frame.R e284c7e95305fa3b22ef5fa76287ef56 *R/apc.plot.R 8ce5a4c989947cb9d93becdecfde642c *R/as.Date.cal.yr.R e2346d299341512fe0f0c829b4ffdfe7 *R/boxes.MS.R 11d3966379eacdc164f2d50c4da8bb70 *R/cal.yr.R 6988e76eb64f004a8c5029c23f8603af *R/ccwc.R 58de307ab6ea80df72ce29037d392602 *R/ci.cum.R 994a4d18bfed7e1f829890f2a4c8b15d *R/ci.lin.R 6f80c7b2b2120068cd16c043fbc29db3 *R/ci.mat.R 886f87cbd08266fa281e2ed7b3b3c253 *R/ci.pd.R acab8b478be5a44a36561e65d70f2b78 *R/clear.R 89f2fe2a79bba0565efc02fd4aaeca9a *R/clogistic.R d365bc4739ebb104b0318c1c9ee226fd *R/contr.2nd.R bcd4142d3bf3e4517397387fe43fdf95 *R/contr.cum.R 8064804ee2b1cfa0cea2b44a58106b0a *R/contr.diff.R 8ffc3eabb90b6b9b710109015779d853 *R/contr.orth.R 85f1daf809e34f9efb1ac2b3b8ca3c46 *R/cutLexis.R fec0dc23d1a224dbe4fa55893bc28bf4 *R/detrend.R a86250cce524f9fa2215c0c0cac4c6e7 *R/effx.match.r 9b46438b1c6fdc926ac1a253a85096aa *R/effx.r 822e02862de39625e5ed9ef6f84bdf39 *R/expand.data.r 4d820fe91c42ef5fe52ad7527b94031e *R/factorize.R 67ce5a28408f42c7b65084195897b995 *R/fit.add.r 44eec3e5b106ee3f518beed49b4e0f9b *R/fit.baseline.R 8ffaebb81a92649b137ff8a4911841da *R/fit.mult.r 7c7059bf47c6421d6412a4bc53fc5950 *R/float.R c51d69b14d7a850df5eeae798b35b9aa *R/foreign.R da7b5d41fe7876ef6bab01839b613939 *R/ftrend.R a3676957e1ca1092c81b11e47f6070c6 *R/gen.exp.R 457350b73f6c4e4a499d0e867cca732d *R/lexis.R 9c575049aa6c3841e7e92f563a6fc450 *R/lls.R 79d6e0b02a2c4e98fbbfcd936b21d377 *R/mh.R 9e48e47769874a34f63a2e2d4e6ffffc *R/ncut.r 2a44a66ac4fe7eccab191f94957265e2 *R/pctab.R 086f8e63cdf69b882ec27e4db4a414dc *R/plotEst.R 57eecdd415b7d0f7dfad39825644add5 *R/plotevent.r c0229c2819d977a8c557a22dea1dd5fa *R/print.Icens.r cca51283f637927702fbe217367011eb *R/print.floated.R 98111ca3d269248b2797f89b257b7361 *R/projection.ip.r 0c2a2e493c190c4e74587b5127e9bef6 *R/rateplot.R d5f69f9d15c9c1ada802c0b1e8be60e9 *R/simLexis.R 0853a2ae446f6d87a688ee5a7a752559 *R/splitLexis.R 4a0a2bf0f8524678da0ebd7f8e9a3770 *R/stack.Lexis.R fb143d532001643d3f74fbd2e114e976 *R/stattable.R 889282ea37a5a9d9bf7155d790cd9036 *R/summary.Icens.r ce8c23fd028541b00472f792246e39de *R/summary.Lexis.r 88983ba8314a37910993d469a982d800 *R/twoby2.R 497daef89f1ea705cd2c755132bec69d *R/zzz.R b9d3112271b9545896c98ec6406f5f02 *data/B.dk.rda 666e336a1aefb9c4298abb83a81a3300 *data/DMconv.rda e200a06eee9305b2fa2c59af5982d62b *data/DMlate.rda e8f6f529b77cb3a860b9d53f5f65c3bb *data/DMrand.rda 8e3205b22bd87fbc39d97747634e71dc *data/M.dk.rda cd11e297d5ca257eafe8e307bf46e0db *data/N.dk.rda 7a458e4dee088bf6808e1e553532e590 *data/S.typh.rda cd3158a5a46d8cd16177ce523f1b0c84 *data/Y.dk.rda 5420c7c0ac8a7abd672203ae3f77b8fc *data/bdendo.rda 20661de22cca3c2724775faec39fe825 *data/bdendo11.rda ccc912355c96834cacc675ff5e8c0e55 *data/births.rda 2c17f06d2737d1dc3d2aaf1821013c9f *data/blcaIT.rda c902acbb18655da273e13654014be570 *data/brv.rda 27a20f2f644259b9d295a0486071f6c9 *data/diet.rda f9b5f0bcba4b20da2393194711e43d1b *data/ewrates.rda 8f51a96ef03eb3d5f8c723e58e3a8f29 *data/gmortDK.rda 2f3b8fc48d21966281153d98079cec92 *data/hivDK.rda 480bd25e6150c55fe17db41d6eb00007 *data/lep.rda b5911d05263d3e9efe5e4e99eaa6a76e *data/lungDK.rda cb139c31c1fb0421232caf88181ec5ac *data/mortDK.rda deb94384c7380312f9b33f75cf6d8559 *data/nickel.rda 4640a31484934cccc1d626104af1365f *data/occup.rda 1953ddd7d750051c5682fa08b11cb777 *data/thoro.rda e0f7d0bbeb4f050e41a55dd412548816 *inst/CITATION eaed3cf134149b62618f208d0bd941b3 *inst/doc/Follow-up.R 7c42730b5043b764cbf18f9de2ceb117 *inst/doc/Follow-up.pdf bc350349661120c39543661d3070c72e *inst/doc/Follow-up.rnw f8b0dcb25edd9b399f82625546e508e2 *inst/doc/index.html 51f461961fbff72bfc843ca72d6c9c74 *inst/doc/sim-Lexis.pdf 317bb6ebeaec5e7376b609d7e382c166 *man/B.dk.Rd 3abc5c20e62c874d70dcb2688ad2cce5 *man/DMconv.Rd bdbcc985e2ddb741eb0f443961b210be *man/DMlate.Rd 38f9ae52c47f70d01f46eb437fca0f16 *man/Icens.Rd 7142cdd5ef3e9f7db8b93c3b10ca70fe *man/Lexis.Rd c97dabafce248e4d47c5b18b6f04efe0 *man/Lexis.diagram.Rd 2e71ca58213788c8a358708e776e2112 *man/Lexis.lines.Rd b4b2ca144feacece204f86bc6640d51a *man/Life.lines.Rd daf66f950320e836b8ce1d2bd37cdc41 *man/M.dk.Rd 6ae7494a426801b9944c37190c09b3ee *man/N.dk.Rd f9faa39904b30f3c191c250c42f3f6e4 *man/N2Y.Rd 335b75739b8a25293690da804cd5e522 *man/ROC.Rd 5fa418e7a462df9892e7781ef5027412 *man/Relevel.Rd bb2162d557dfb7685edac64ac3213b6c *man/S.typh.Rd b4879df831de32e9e298b7b3d90389a9 *man/Y.dk.Rd 27b42ea21baf285623e92db516cea262 *man/apc.fit.Rd 2257527f7b6be99710f1e7bb224f37dc *man/apc.frame.Rd 1187accff354def32011c0b0320210e1 *man/apc.lines.Rd 667852f6eaf10ce74c0b168bc7bdfc87 *man/apc.plot.Rd 92b663829915395cdabf3e5d37cdd2b4 *man/bdendo.Rd 968ba8cef65153e9c9c521dd1541123e *man/bdendo11.Rd d74a4f6e66ce91c73cd2817bb690446a *man/births.Rd 8dc11840302a388e4f26892335d5d888 *man/blcaIT.Rd d98e1dabe8dc975d92a168efed70ab45 *man/boxes.MS.Rd 18d942d375c5d5f6899291bf9cd1fe11 *man/brv.Rd a1a09c9591d54235cc026e44ca4ddad8 *man/cal.yr.Rd effba2c17ade00f0afd10184a073d34c *man/ccwc.Rd 657a95270d70f0d4721f3ad4c147fe69 *man/ci.cum.Rd 6acd6195a4025e9226a123c8997d7855 *man/ci.lin.Rd e7477402aa4746d653a0c72b2239d185 *man/ci.pd.Rd 23f65e361e47229172d33f0a43609db6 *man/clogistic.Rd cf5e5a6e18e07b7bb8d70dc0417e6166 *man/contr.cum.Rd b6ece2eb3b57ea902b737e87db9d9fb3 *man/cutLexis.Rd a1ab8c14b721360ba0cb17da598bfa84 *man/detrend.Rd 386d0a4aa3515cf754ef458e1f32089c *man/diet.Rd 64dd6599bb830e98f4717b1a34ee12ab *man/effx.Rd 3c3cc3b1ecabece6b7709c1b147bab4e *man/effx.match.Rd 0dc62e726cdff6694774fab66595ee81 *man/ewrates.Rd eb0c50c4a2572fd514c475358165fa57 *man/expand.data.rd 344adb137962cfa8fc7c2cf2858de3a3 *man/fit.add.Rd 3b44fed4ae70541c965c4cfbed966a68 *man/fit.baseline.rd a318bd705eddc9d721e59c95a6932ef0 *man/fit.mult.Rd bca8b8c3452180e63d4d22885b04e3ce *man/float.Rd 2427ba9da4d9679d7f0cbe244c9413af *man/foreign.Lexis.Rd e5a57a203cb91e9680dedc9023779e59 *man/ftrend.Rd 769794163c21755cb041cb66ef171679 *man/gen.exp.Rd cbbc2a23f902d83ba2527b27b5ed3adb *man/gmortDK.Rd d9f1d31e109d6058a2160ca0aa49bf81 *man/hivDK.Rd 9c3b059921d728298ccff73298b4dd31 *man/lep.Rd c17abc408d69d11bb660d92788056f77 *man/lls.Rd 661ec298ffcd0f39cf55c5d033e04fd1 *man/lungDK.Rd 3c462c4ce7ca1ce4b8c6fef50b3c7623 *man/merge.Lexis.Rd 4c26c9edf5d64b0af3e63ad791b2a280 *man/merge.data.frame.Rd 34c530c36a3a1a7447ff8eea58f42084 *man/mh.Rd 2ecfec2d86e80b9bbcc2c3a253348edd *man/mortDK.Rd 0dbb7c541b3ebd70a1cd104dbf0df25d *man/ncut.Rd dec4748ef3ff7c520df1075ec8296b25 *man/nice.Rd 05bd25340716d0805cbc7eb433896206 *man/nickel.Rd febaa46e11a7458c23ed0513a594a8da *man/occup.Rd 86cac5433077a16960bca5d5865586a4 *man/pctab.Rd 50c0516a536004d7f4ce91ef1bbfd8c9 *man/plot.Lexis.Rd 547305223a275e5cfa64b7795825deea *man/plotEst.Rd b0047a7bab6a20b153485db9bd338394 *man/plotevent.rd 84f78d69f1b5691653cab655bd5bc77d *man/projection.ip.rd a04f5841de6a7a9cf9a21e5caa8e54a5 *man/rateplot.Rd 02d9bf272421dffdde01074d2947d2f6 *man/simLexis.Rd d397ebec12521fce49ee461de3dae858 *man/splitLexis.Rd c146b743be57cba543822ae2f613b08b *man/stack.Lexis.Rd eaad8ae22bd68a18750a94352f65f9c3 *man/start.Lexis.Rd 4f43436fc863747dad4fcdd566948039 *man/stattable.Rd 73cf4597fcb4a9d019bda47431b095be *man/stattable.funs.Rd 864cfa7d8bad6bcf53dae6f53df45df4 *man/subset.Lexis.Rd b89f3f488011bd32983b467915dd4813 *man/summary.Lexis.rd e3446824b09ea4ad8e8a0ddfc1987eef *man/thoro.Rd 6ea9cf64475187fa2f402275c40573a7 *man/time.band.Rd 2edb93539fa7b9f47a3083b624443f9d *man/time.scales.Rd 36a725c79599198c1303a0842b244cf1 *man/transform.Lexis.Rd 02fc311541fae16a5d3a580a04925050 *man/twoby2.Rd 3b649b94df7f0c0863bb4ef0a7129855 *src/chinv2.c c21af4e77e577fae093bb3dfc6cbe9a9 *src/cholesky2.c 33be867717f019d03821e58b662a94c4 *src/chsolve2.c ce9e73f4028463cf8b84a7783f282ac3 *src/clogit.c Epi/src/0000755000175100001440000000000012144476665011613 5ustar hornikusersEpi/src/clogit.c0000644000175100001440000002655412144476666013255 0ustar hornikusers#include #include #include /* Utility functions by Terry Therneau from the survival package These are specially adapted to work with information matrices that are not of full rank. */ int cholesky2(double **matrix, int m, double toler); void chsolve2(double **matrix, int m, double *y); void chinv2(double **matrix, int m); /* Efficient calculation of the conditional log likelihood, along with the score and information matrix, for a single stratum. Input parameters: X T x m matrix of covariate values y T-vector that indicates if an individual is a case (y[t]==1) or control (y[t]==0) T Number of individuals in the stratum m Number of covariates offset Vector of offsets for the linear predictor beta m-vector of log odds ratio parameters Output parameters: loglik The conditional log-likelihood (scalar) score The score function (m-vector) info The information matrix (m x m matrix) The contribution from this stratum will be *added* to the output parameters, so they must be correctly initialized before calling cloglik. */ static void cloglik_stratum(double const *X, int const *y, double const *offset, int T, int m, double const *beta, double *loglik, double *score, double *info) { double *f, *g, *h, *xt, *xmean; int i,j,k,t; int K = 0, Kp; int iscase = 1; double sign = 1; double lpmax; /* Calculate number of cases */ for (t = 0; t < T; ++t) { if (y[t] != 0 && y[t] != 1) { error("Invalid outcome in conditional log likelihood"); } K += y[t]; } if (K==0 || K==T) { return; /* Non-informative stratum */ } /* If there are more cases than controls then define cases to be those with y[t] == 0, and reverse the sign of the covariate values. */ if (2 * K > T ) { K = T - K; iscase = 0; sign = -1; } /* Calculate the maximum value of the linear predictor (lpmax) within the stratum. This is subtracted from the linear predictor when taking exponentials for numerical stability. Note that we must correct the log-likelihood for this, but not the score or information matrix. */ lpmax = sign * offset[0]; for (i = 0; i < m; ++i) { lpmax += sign * beta[i] * X[T*i]; } for (t = 1; t < T; ++t) { double lp = sign * offset[t]; for (i = 0; i < m; ++i) { lp += sign * beta[i] * X[t + T*i]; } if (lp > lpmax) { lpmax = lp; } } /* Calculate the mean value of the covariates within the stratum. This is used to improve the numerical stability of the score and information matrix. */ xmean = Calloc(m, double); for (i = 0; i < m; ++i) { xmean[i] = 0; for (t = 0; t < T; ++t) { xmean[i] += sign * X[t + T*i]; } xmean[i] /= T; } /* Contribution from cases */ for (t = 0; t < T; ++t) { if (y[t] == iscase) { loglik[0] += sign * offset[t]; for (i = 0; i < m; ++i) { loglik[0] += sign * X[t + i*T] * beta[i]; score[i] += sign * X[t + i*T] - xmean[i]; } loglik[0] -= lpmax; } } /* Allocate and initialize workspace for recursive calculations */ Kp = K + 1; f = Calloc(Kp, double); g = Calloc(m * Kp, double); h = Calloc(m * m * Kp, double); xt = Calloc(m, double); for (k = 0; k < Kp; ++k) { f[k] = 0; for (i = 0; i < m; ++i) { g[k+Kp*i] = 0; for (j = 0; j < m; ++j) { h[k + Kp*(i + m*j)] = 0; } } } f[0] = 1; /* Recursively calculate contributions over all possible case sets of size K. */ for (t = 0; t < T; ++t) { double Ct = offset[t]; for (i = 0; i < m; ++i) { xt[i] = sign * X[t + T*i] - xmean[i]; Ct += sign * beta[i] * X[t + T*i]; } Ct = exp(Ct - lpmax); for (k = imin2(K,t+1); k > 0; --k) { for (i = 0; i < m; ++i) { double const *gpi = g + Kp*i; for (j = 0; j < m; ++j) { double const *gpj = g + Kp*j; double *hp = h + Kp*(i + m*j); hp[k] += Ct * (hp[k-1] + xt[i] * gpj[k-1] + xt[j] * gpi[k-1] + xt[i] * xt[j] * f[k-1]); } } for (i = 0; i < m; ++i) { double *gp = g + Kp*i; gp[k] += Ct * (gp[k-1] + xt[i] * f[k-1]); } f[k] += Ct * f[k-1]; } } /* Add contributions from this stratum to the output parameters */ loglik[0] -= log(f[K]); for (i = 0; i < m; ++i) { double const *gpi = g + Kp*i; score[i] -= gpi[K] / f[K]; for (j = 0; j < m; ++j) { double const *gpj = g + Kp*j; double const *hp = h + Kp*(i + m*j); info[i + m*j] += hp[K]/f[K] - (gpi[K]/f[K]) * (gpj[K]/f[K]); } } Free(f); Free(g); Free(h); Free(xt); Free(xmean); } /* * Calculate the conditional log likelihood summed over all strata, * along with the score and information matrix. * * Input parameters: * * X - list of matrices of covariate values. One element of the list * corresponds to a single stratum * Y - list of vectors of outcomes, corresponding to X, * beta - vector of log odds ratio parameters * m - number of parameters * * Output parameters * * loglik - contains the conditional log-likelihood on exit (scalar) * score - contains the score function on exit (m - vector) * info - contains the information matrix on exit (m*m - vector) */ static void cloglik(SEXP X, SEXP y, SEXP offset, int m, double *beta, double *loglik, double *score, double *info) { int i; int M = m*m; /* Output parameters of cloglik_stratum must be initialized to zero */ loglik[0] = 0; for (i = 0; i < m; ++i) { score[i] = 0; } for (i = 0; i < M; ++i) { info[i] = 0; } for (i = 0; i < length(X); ++i) { SEXP Xi = VECTOR_ELT(X,i); SEXP yi = VECTOR_ELT(y,i); SEXP oi = VECTOR_ELT(offset, i); cloglik_stratum(REAL(Xi), INTEGER(yi), REAL(oi), nrows(Xi), m, beta, loglik, score, info); } } /* The chinv2 function only works on the lower triangle of the matrix. This wrapper function copies the lower to the upper triangle */ static void invert_info(double **imat, int m) { int i,j; chinv2(imat, m); for (i = 1; i < m; i++) { for (j = 0; j < i; j++) { imat[i][j] = imat[j][i]; } } } /* Find maximum likelihood estimate of conditional logistic regression model by Newton-Raphson. The algorithm is copied from coxph.fit from the survival package by Terry Therneau. The variable u is used to store both the score function and the step for the next iteration. Likewise info contains both the information matrix and its Cholesky decomposition. If flag > 0 then the arrays hold the score and variance-covariance matrix respectively. */ static void clogit_fit(SEXP X, SEXP y, SEXP offset, int m, double *beta, double *loglik, double *u, double *info, int *flag, int *maxiter, double const *eps, double const * tol_chol) { int i, iter = 0; Rboolean halving = FALSE; double *oldbeta = Calloc(m, double); double **imat = Calloc(m, double*); /* Set up ragged array representation of information matrix for use by cholesky2, chsolve2, and invert_info functions */ for (i = 0; i < m; ++i) { imat[i] = info + m*i; } /* Initial iteration */ cloglik(X, y, offset, m, beta, loglik, u, info); if (*maxiter > 0) { *flag = cholesky2(imat, m, *tol_chol); if (*flag > 0) { chsolve2(imat, m, u); for (i = 0; i < m; i++) { oldbeta[i] = beta[i]; beta[i] += u[i]; } } else { /* Bad information matrix. Don't go into the main loop */ *maxiter = 0; } } /* Main loop */ for (iter = 1; iter <= *maxiter; iter++) { double oldlik = *loglik; cloglik(X, y, offset, m, beta, loglik, u, info); if (fabs(1 - (oldlik / *loglik)) <= *eps && !halving) { /* Done */ break; } else if (iter == *maxiter) { /* Out of time */ *flag = 1000; break; } else if (*loglik < oldlik) { /* Not converging: halve step size */ halving = TRUE; for (i = 0; i < m; i++) { beta[i] = (beta[i] + oldbeta[i]) /2; } } else { /* Normal update */ halving = FALSE; oldlik = *loglik; *flag = cholesky2(imat, m, *tol_chol); if (*flag > 0) { chsolve2(imat, m, u); for (i = 0; i < m; i++) { oldbeta[i] = beta[i]; beta[i] += u[i]; } } else { break; /* Bad information matrix */ } } } *maxiter = iter; if (*flag > 0) { cholesky2(imat, m, *tol_chol); invert_info(imat, m); } Free(oldbeta); Free(imat); } /* R interface */ SEXP clogit(SEXP X, SEXP y, SEXP offset, SEXP init, SEXP maxiter, SEXP eps, SEXP tol_chol) { int i; int n = length(X); int m = length(init); int M = m*m; int flag = 0; int niter = INTEGER(maxiter)[0]; double loglik[2], *score, *info, *beta; SEXP ans, a, names, dims; if (!isNewList(X)) error("'X' must be a list"); if (!isNewList(y)) error("'y' must be a list"); if (!isNewList(offset)) error("'offset' must be a list"); if (length(X) != length(y)) error("length mismatch between X and y"); if (length(X) != length(offset)) error("length mismatch between X and offset"); for (i = 0; i < n; ++i) { int T = nrows(VECTOR_ELT(X,i)); int xcols = ncols(VECTOR_ELT(X,i)); int ylen = length(VECTOR_ELT(y,i)); int olen = length(VECTOR_ELT(offset, i)); if (xcols != m) { error("Element %d of X has %d columns; expected %d", i, xcols, m); } if (ylen != T) { error("Element %d of y has length %d; expected %d", i, ylen, T); } if (olen != T) { error("Element %d of offset has length %d; expected %d", i, ylen, T); } } beta = (double *) R_alloc(m, sizeof(double)); for (i = 0; i < m; ++i) { beta[i] = REAL(init)[i]; } score = (double *) R_alloc(m, sizeof(double)); info = (double *) R_alloc(M, sizeof(double)); /* Calculate initial loglikelihood */ cloglik(X, y, offset, m, beta, &loglik[0], score, info); /* Maximize the likelihood */ clogit_fit(X, y, offset, m, beta, &loglik[1], score, info, &flag, &niter, REAL(eps), REAL(tol_chol)); /* Construct return list */ PROTECT(ans = allocVector(VECSXP, 5)); PROTECT(names = allocVector(STRSXP, 5)); /* Estimates */ PROTECT(a = allocVector(REALSXP, m)); for (i = 0; i < m; ++i) { REAL(a)[i] = beta[i]; } SET_VECTOR_ELT(ans, 0, a); SET_STRING_ELT(names, 0, mkChar("coefficients")); UNPROTECT(1); /* Log likelihood */ PROTECT(a = allocVector(REALSXP, 2)); REAL(a)[0] = loglik[0]; REAL(a)[1] = loglik[1]; SET_VECTOR_ELT(ans, 1, a); SET_STRING_ELT(names, 1, mkChar("loglik")); UNPROTECT(1); /* Information matrix */ PROTECT(a = allocVector(REALSXP, M)); PROTECT(dims = allocVector(INTSXP, 2)); for (i = 0; i < M; ++i) { REAL(a)[i] = info[i]; } INTEGER(dims)[0] = m; INTEGER(dims)[1] = m; setAttrib(a, R_DimSymbol, dims); SET_VECTOR_ELT(ans, 2, a); SET_STRING_ELT(names, 2, mkChar("var")); UNPROTECT(2); /* Flag */ PROTECT(a = ScalarInteger(flag)); SET_VECTOR_ELT(ans, 3, a); SET_STRING_ELT(names, 3, mkChar("flag")); UNPROTECT(1); /* Number of iterations */ PROTECT(a = ScalarInteger(niter)); SET_VECTOR_ELT(ans, 4, a); SET_STRING_ELT(names, 4, mkChar("iter")); UNPROTECT(1); setAttrib(ans, R_NamesSymbol, names); UNPROTECT(2); return(ans); } Epi/src/chsolve2.c0000644000175100001440000000166512144476666013515 0ustar hornikusers/* $Id: chsolve2.c 11376 2009-12-14 22:53:57Z therneau $ ** ** Solve the equation Ab = y, where the cholesky decomposition of A and y ** are the inputs. ** ** Input **matrix, which contains the chol decomp of an n by n ** matrix in its lower triangle. ** y[n] contains the right hand side ** ** y is overwriten with b ** ** Terry Therneau * * Copied from the survival package by Terry Therneau, version 2.35-7 */ void chsolve2(double **matrix, int n, double *y) { register int i,j; register double temp; /* ** solve Fb =y */ for (i=0; i=0; i--) { if (matrix[i][i]==0) y[i] =0; else { temp = y[i]/matrix[i][i]; for (j= i+1; j eps) eps = matrix[i][i]; for (j=(i+1); j0) { matrix[i][i] = 1/matrix[i][i]; /*this line inverts D */ for (j= (i+1); j 0) + (icd \%in\% c(162,163)) ) ) str( nic ) nit <- transform( nic, cumex = exposure*(agein-age1st) ) str( nit ) ## It is still a Lexis object! summary( nic ) nix <- factorize.Lexis( nic, c("Alive","Lung","Dead")) niw <- factorize.Lexis( nix, c("Alive","Pulm","Mort")) niz <- factorize.Lexis( niw, states=list("Alive",c("Pulm","Mort")), coll=" \n& ") boxes( niw, boxpos=TRUE ) par( new=TRUE ) boxes( niz, boxpos=TRUE ) siw <- stack( niw ) str( siw ) } \keyword{manip} Epi/man/time.scales.Rd0000644000175100001440000000102312144476641014263 0ustar hornikusers\name{timeScales} \alias{timeScales} \title{The time scales of a Lexis object} \description{ Function to get the names of the time scales of a \code{Lexis} object. } \usage{ timeScales(x) } \arguments{ \item{x}{an object of class \code{Lexis}.} } \value{ A character vector containing the names of the variables in \code{x} that represent the time scales. Extracted from the \code{time.scales} attribute of the object. } \author{Martyn Plummer} \seealso{\code{\link{Lexis}}, \code{\link{splitLexis}}} \keyword{attribute} Epi/man/time.band.Rd0000644000175100001440000000450112144476641013721 0ustar hornikusers\name{timeBand} \alias{timeBand} \alias{breaks} \title{Extract time band data from a split Lexis object} \description{ The break points of a \code{Lexis} object (created by a call to \code{splitLexis}) divide the follow-up intervals into time bands along a given time scale. The \code{breaks} function returns the break points, for a given time scale, and the \code{timeBand} classifies each row (=follow-up interval) into one of the time bands. } \usage{ timeBand(lex, time.scale, type="integer") breaks(lex, time.scale) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{lex}{an object of class \code{Lexis}} \item{time.scale}{a character or integer vector of length 1 identifying the time scale of interest} \item{type}{a string that determines how the time bands are labelled. See Details below} } \details{ Time bands may be labelled in various ways according to the \code{type} argument. The permitted values of the \code{type} argument, and the corresponding return values are: \describe{ \item{"integer"}{a numeric vector with integer codes starting from 0.} \item{"factor"}{a factor (unordered) with labels "(left,right]"} \item{"left"}{the left-hand limit of the time band} \item{"middle"}{the midpoint of the time band} \item{"right"}{the right-hand limit of the time band} } } \value{ The \code{breaks} function returns a vector of break points for the \code{Lexis} object, or NULL if no break points have been defined by a call to \code{splitLexis}. The \code{timeBand} function returns a numeric vector or factor, depending on the value of the \code{type} argument. } \author{Martyn Plummer} \note{ A newly created \code{Lexis} object has no break points defined. In this case, \code{breaks} will return NULL, and \code{timeBand} will a vector of zeros. } \examples{ data(diet) diet <- cal.yr(diet) diet.lex <- Lexis(entry=list(period=doe), exit=list(period=dox, age=dox-dob), exit.status=chd, data=diet) diet.split <- splitLexis(diet.lex, breaks=seq(40,70,5), "age" ) age.left <- timeBand(diet.split, "age", "left") table(age.left) age.fact <- timeBand(diet.split, "age", "factor") table(age.fact) age.mid <- timeBand(diet.split, "age", "mid") table(age.mid) } \seealso{\code{\link{Lexis}}} \keyword{attribute} Epi/man/thoro.Rd0000644000175100001440000000401112144476641013207 0ustar hornikusers\name{thoro} \alias{thoro} \docType{data} \title{Thorotrast Study} \description{ The \code{thoro} data frame has 2470 rows and 14 columns. Each row represents one patient that have had cerebral angiography (X-ray of the brain) with an injected contrast medium, either Thorotrast or another one (the controls). } \format{ This data frame contains the following columns: \describe{ \item{\code{id}}{Identification of person.} \item{\code{sex}}{Sex, 1: male / 2: female.} \item{\code{birthdat}}{Date of birth, \code{Date} variable.} \item{\code{contrast}}{Group, 1: Thorotrast / 2: Control.} \item{\code{injecdat}}{Date of contrast injection, \code{Date} variable.} \item{\code{volume}}{Injected volume of Thorotrast in ml. Control patients have a 0 in this variable.} \item{\code{exitdat}}{Date of exit from the study, \code{Date} variable.} \item{\code{exitstat}}{Status at exit, 1: dead / 2: alive, censored at closing of study, 20 February 1992 / 3: censored alive at some earlier date.} \item{\code{cause}}{Cause of death. See causes in the helpfile for \code{\link{gmortDK}}.} \item{\code{liverdat}}{Date of liver cancer diagnosis, \code{Date} variable.} \item{\code{liver}}{Indicator of liver cancer diagnosis. Not all livercancers are histologically verified, hence \code{liver >= hepcc + chola + hmang}} \item{\code{hepcc}}{Hepatocellular carcinoma at \code{liverdat}.} \item{\code{chola}}{Cholangiocellular carcinoma at \code{liverdat}.} \item{\code{hmang}}{Haemangisarcoma carcinoma at \code{liverdat}.} } } \source{ M Andersson, M Vyberg, J Visfeldt, B Carstensen & HH Storm: Primary liver tumours among Danish patients exposed to Thorotrast. Radiation Research, 137, pp. 262--273, 1994. M Andersson, B Carstensen HH Storm: Mortality and cancer incidence after cerebral angiography. Radiation Research, 142, pp. 305--320, 1995. } \examples{ data(thoro) str(thoro) } \seealso{\code{\link{mortDK}}, \code{\link{gmortDK}}} \keyword{datasets} Epi/man/summary.Lexis.rd0000644000175100001440000000472712144476641014712 0ustar hornikusers\name{summary.Lexis} \alias{summary.Lexis} \alias{print.summary.Lexis} \title{ Summarize transitions and risk time from a Lexis object } \description{ A two-way table of records and transitions classified by states (\code{lex.Cst} and \code{lex.Xst}), as well the risk time in each state. } \usage{ \method{summary}{Lexis}( object, simplify=TRUE, scale=1, by=NULL, Rates=FALSE, ... ) \method{print}{summary.Lexis}( x, ..., digits=2 ) } \arguments{ \item{object}{A Lexis object.} \item{simplify}{Should rows with 0 follow-up time be dropped?} \item{scale}{Scaling factor for the rates. The calculated rates are multiplied by this number.} \item{by}{Character vector of name(s) of variable(s) in \code{object}. Used to give a separate summaries for subsets of \code{object}. If longer than than 1, the interaction between that variables is used to stratify the summary. It is also possible to supply a vector of length \code{nrow(object)}, and the distinct values of this will be used to stratify the summary.} \item{Rates}{Should a component with transition rates be returned (and printed) too?} \item{x}{A \code{summary.Lexis} object.} \item{digits}{How many digits should be used for printing?} \item{ ... }{Other parameters - ignored} } \value{ An object of class \code{summary.Lexis}, a list with two components, \code{Transitions} and \code{Rates}, each one a matrix with rows classified by states where persons spent time, and columns classified by states to which persons transit. The \code{Transitions} contains number of transitions and has 4 extra columns with number of records, total number of events, total risk time and number of person contributing attached. The \code{Rates} contains the transitions rates. If the argument \code{Rates} is FALSE (the default), then only the first component of the list is returned. } \author{Bendix Carstensen, \email{bxc@steno.dk}} \examples{ data( nickel ) # Lung cancer deaths and other deaths are coded 1 and 2 nic <- Lexis( data=nickel, entry=list(age=agein), exit=list(age=ageout,cal=ageout+dob,tfh=ageout-age1st), exit.status=factor( (icd > 0) + (icd \%in\% c(162,163)), labels=c("Alive","Other","Lung") ) ) str( nic ) head( nic ) summary( nic ) # More detailed summary, by exposure level summary( nic, by=nic$exposure>5, Rates=TRUE, scale=100 ) } \keyword{survival}Epi/man/subset.Lexis.Rd0000644000175100001440000000173112144476641014452 0ustar hornikusers\name{subset.Lexis} \alias{subset.Lexis} \alias{subset.stacked.Lexis} \title{Subsetting Lexis (and stacked.Lexis) objects} \description{ Return subsets of Lexis objects which meet conditions } \usage{ \method{subset}{Lexis}(x, ...) \method{subset}{stacked.Lexis}(x, ...) } \arguments{ \item{x}{an object of class \code{Lexis}} \item{\dots}{additional arguments to be passed to \code{subset.data.frame}. This will normally be some logical expression selecting a subset of the rows. For details see \code{\link{subset.data.frame}}.} } \details{ The subset method for \code{Lexis} objects works exactly as the method for data frames. The method for \code{stacked.Lexis} objects also shrinks the set of levels for \code{lex.Cst} and \code{lex.Xst} to those actually occurring in the data frame. } \value{ A \code{Lexis} object with selected rows and columns. } \author{Martyn Plummer} \seealso{\code{\link{Lexis}}, \code{\link{merge.Lexis}}} \keyword{manip} Epi/man/stattable.funs.Rd0000644000175100001440000000332412144476641015017 0ustar hornikusers\name{stattable.funs} \alias{count} \alias{percent} \alias{ratio} \title{Special functions for use in stat.table} \description{ These functions may be used as \code{contents} arguments to the function \code{stat.table}. They are defined internally in \code{stat.table} and have no independent existence. } \usage{ count(id) ratio(d,y,scale=1, na.rm=TRUE) percent(...) } \arguments{ \item{id}{numeric vector in which identical values identify the same individual.} \item{d, y}{numeric vectors of equal length (\code{d} for Deaths, \code{y} for person-Years)} \item{scale}{a scalar giving a value by which the ratio should be multiplied} \item{na.rm}{a logical value indicating whether \code{NA} values should be stripped before computation proceeds.} \item{...}{a list of variables taken from the \code{index} argument to \code{\link{stat.table}}} } \value{ When used as a \code{contents} argument to \code{stat.table}, these functions create the following tables: \item{\code{count}}{If given without argument (\code{count()}) it returns a contingency table of counts. If given an \code{id} argument it returns a table of the number of different values of \code{id} in each cell, i.e. how many persons contribute in each cell.} \item{\code{ratio}}{returns a table of values \code{scale * sum(d)/sum(y)}} \item{\code{percent}}{returns a table of percentages of the classifying variables. Variables that are in the \code{index} argument to \code{stat.table} but not in the call to \code{percent} are used to define strata, within which the percentages add up to 100.} } \author{Martyn Plummer} \seealso{\code{\link{stat.table}}} \keyword{iteration} \keyword{category} Epi/man/stattable.Rd0000644000175100001440000001135312144476641014046 0ustar hornikusers\name{stat.table} \alias{stat.table} \alias{print.stat.table} \title{Tables of summary statistics} \description{ \code{stat.table} creates tabular summaries of the data, using a limited set of functions. A list of index variables is used to cross-classify summary statistics. It does NOT work inside \code{with()}! } \usage{ stat.table(index, contents = count(), data, margins = FALSE) \method{print}{stat.table}(x, width=7, digits,...) } \arguments{ \item{index}{A factor, or list of factors, used for cross-classification. If the list is named, then the names will be used when printing the table. This feature can be used to give informative labels to the variables.} \item{contents}{A function call, or list of function calls. Only a limited set of functions may be called (See Details below). If the list is named, then the names will be used when printing the table.} \item{data}{an optional data frame containing the variables to be tabulated. If this is omitted, the variables will be searched for in the calling environment.} \item{margins}{a logical scalar or vector indicating which marginal tables are to be calculated. If a vector, it should be the same length as the \code{index} argument: values corresponding to \code{TRUE} will be retained in marginal tables.} \item{x}{an object of class \code{stat.table}.} \item{width}{a scalar giving the minimum column width when printing.} \item{digits}{a scalar, or named vector, giving the number of digits to print after the decimal point. If a named vector is used, the names should correspond to one of the permitted functions (See Details below) and all results obtained with that function will be printed with the same precision.} \item{...}{further arguments passed to other print methods.} } \details{ This function is similar to \code{tapply}, with some enhancements: multiple summaries of multiple variables may be mixed in the same table; marginal tables may be calculated; columns and rows may be given informative labels; pretty printing may be controlled by the associated print method. This function is not a replacement for \code{tapply} as it also has some limitations. The only functions that may be used in the \code{contents} argument are: \code{\link{count}}, \code{\link{mean}}, \code{\link{weighted.mean}}, \code{\link{sum}}, \code{\link{quantile}}, \code{\link{median}}, \code{\link{IQR}}, \code{\link{max}}, \code{\link{min}}, \code{\link{ratio}}, \code{\link{percent}}, and \code{\link{sd}}. The \code{count()} function, which is the default, simply creates a contingency table of counts. The other functions are applied to each cell created by combinations of the \code{index} variables. } \value{ An object of class \code{stat.table}, which is a multi-dimensional array. A print method is available to create formatted one-way and two-way tables. } \author{Martyn Plummer} \note{ The permitted functions in the contents list %are overloaded functions that are defined inside \code{stat.table}. They have the same interface as the functions callable from the command line, except for two differences. If there is an argument \code{na.rm} then its default value is always \code{TRUE}. A second difference is that the \code{quantile} function can only produce a single quantile in each call. } \seealso{\code{\link{table}}, \code{\link{tapply}}, \code{\link{mean}}, \code{\link{weighted.mean}}, \code{\link{sum}}, \code{\link{quantile}}, \code{\link{median}}, \code{\link{IQR}}, \code{\link{max}}, \code{\link{min}}, \code{\link{ratio}}, \code{\link{percent}}, \code{\link{count}}, \code{\link{sd}}.} \examples{ data(warpbreaks) # A one-way table stat.table(tension,list(count(),mean(breaks)),data=warpbreaks) # The same table with informative labels stat.table(index=list("Tension level"=tension),list(N=count(), "mean number of breaks"=mean(breaks)),data=warpbreaks) # A two-way table stat.table(index=list(tension,wool),mean(breaks),data=warpbreaks) # The same table with margins over tension, but not wool stat.table(index=list(tension,wool),mean(breaks),data=warpbreaks, margins=c(TRUE, FALSE)) # A table of column percentages stat.table(list(tension,wool), percent(tension), data=warpbreaks) # Cell percentages, with margins stat.table(list(tension,wool),percent(tension,wool), margin=TRUE, data=warpbreaks) # A table with multiple statistics # Note how each statistic has its own default precision a <- stat.table(index=list(wool,tension), contents=list(count(),mean(breaks),percent (wool)), data=warpbreaks) print(a) # Print the percentages rounded to the nearest integer print(a, digits=c(percent=0)) } \keyword{iteration} \keyword{category} Epi/man/start.Lexis.Rd0000644000175100001440000000257312144476641014307 0ustar hornikusers\name{start.Lexis} \alias{entry} \alias{exit} \alias{status} \alias{dur} \title{Time series methods for Lexis objects} \description{ Extract the entry time, exit time, status or duration of follow-up from a \code{Lexis} object. } \usage{ entry(x, time.scale = NULL, by.id=FALSE) exit(x, time.scale = NULL, by.id=FALSE) status(x, at="exit" , by.id=FALSE) dur(x, by.id=FALSE) } \arguments{ \item{x}{an object of class \code{Lexis}.} \item{time.scale}{a string or integer indicating the time scale. If omitted, all times scales are used.} \item{by.id}{Logical, if \code{TRUE}, only one record per unique value of \code{lex.id} is returned; either the first, the last or for \code{dur}, the sum of \code{lex.dur}. If \code{TRUE}, the returned object have the \code{lex.id} as (row)nmes attribute.} \item{at}{string indicating the time point(s) at which status is to be measured.} } \value{ The \code{entry} and \code{exit} functions return a vector of entry times and exit times, respectively, on the requested time scale. If multiple time scales are requested, then a matrix is returned. The \code{status} function returns a vector giving the status at entry or exit and \code{dur} returns a vector with the lengths of the follow-up intervals. } \author{Martyn Plummer} \seealso{\code{\link{Lexis}}} \keyword{survival} \keyword{ts} Epi/man/stack.Lexis.Rd0000644000175100001440000000541612144476641014256 0ustar hornikusers\name{stack.Lexis} \Rdversion{1.1} \alias{stack.Lexis} \alias{tmat} \alias{tmat.Lexis} \title{ Functions to facilitate analysis of multistate models. } \description{ \code{stack.Lexis} produces a stacked object suited for analysis of several transition intensities simultaneously. } \usage{ \method{stack}{Lexis}(x, ...) tmat( x, ... ) \method{tmat}{Lexis}(x, Y=FALSE, mode = "numeric", ...) } \arguments{ \item{x}{A \code{\link{Lexis}} object.} \item{Y}{Logical. Should the risk time be put in the diagonal? This is a facility which is used by \code{\link{boxes.Lexis}}.} \item{mode}{Should the matrix be returned as a numeric matrix with \code{NA}s at unused places or (\code{mode="logical"}) as a logical matrix with \code{FALSE} on the diagonal.} \item{\dots}{Not used.} } \value{ \code{tmat.Lexis} returns a square transition matrix, classified by the levels of \code{lex.Cst} and \code{lex.Xst}, for every transition occurring the entry is the number of transitions occurring and \code{NA} in all oter entries. If \code{Y=TRUE}, the diagonal will contain the risk time in each of the states. \code{stack.Lexis} returns a dataframe to be used for analysis of multistate data when all transitions are modelled together, for example if some parameters are required to be the same for different transitions. The dataframe has class \code{stacked.Lexis}, and inherits the attributes \code{time.scales} and \code{breaks} from the \code{Lexis} object, and so function \code{\link{timeBand}} applies to a \code{stacked.Lexis} object too. The dataframe has same variables as the original \code{Lexis} object, but with each record duplicated as many times as there are possible exits from the current state, \code{lex.Cst}. Two variables are added: \code{lex.Fail}, an indicator of wheter an event for the transition named in the factor \code{lex.Tr} has occurred or not. \code{lex.Tr} is a factor with levels made up of combinations of the levels of \code{lex.Cst} and \code{lex.Xst} that do occur together in \code{x}, joined by a "\code{->}".} \author{ Bendix Carstensen, \email{bxc@steno.dk}, \url{http://BendixCarstensen.com} } \examples{ data(DMlate) str(DMlate) dml <- Lexis( entry=list(Per=dodm, Age=dodm-dobth, DMdur=0 ), exit=list(Per=dox), exit.status=factor(!is.na(dodth),labels=c("DM","Dead")), data=DMlate ) dmi <- cutLexis( dml, cut=dml$doins, new.state="Ins", pre="DM" ) summary( dmi ) ls.dmi <- stack( dmi ) str( ls.dmi ) # Check that all the transitions and person-years got across. with( ls.dmi, rbind( table(lex.Fail,lex.Tr), tapply(lex.dur,lex.Tr,sum) ) ) } \seealso{ \code{\link{splitLexis}} \code{\link{cutLexis}} \code{\link{Lexis}} } \keyword{survival} Epi/man/splitLexis.Rd0000644000175100001440000000667012144476641014231 0ustar hornikusers\name{splitLexis} \alias{splitLexis} \title{Split follow-up time in a Lexis object} \description{ The \code{splitLexis} function divides each row of a \code{Lexis} object into disjoint follow-up intervals according to the supplied break points. } \usage{ splitLexis(lex, breaks, time.scale, tol=.Machine$double.eps^0.5) } \arguments{ \item{lex}{an object of class \code{Lexis}} \item{breaks}{a vector of break points} \item{time.scale}{the name or number of the time scale to be split} \item{tol}{numeric value >= 0. Intervals shorter than this value are dropped} } \value{ An object of class \code{Lexis} with multiple rows for each row of the argument \code{lex}. Each row of the new \code{Lexis} object contains the part of the follow-up interval that falls inside one of the time bands defined by the break points. The variables representing the various time scales, are appropriately updated in the new \code{Lexis} object. The entry and exit status variables are also updated according to the rule that the entry status is retained until the end of follow-up. All other variables are considered to represent variables that are constant in time, and so are replicated across all rows having the same id value. } \note{ The \code{splitLexis()} function divides follow-up time into intervals using breakpoints that are common to all rows of the \code{Lexis} object. To split a \code{Lexis} object by break points that are unique to each row, use the \code{cut.Lexis} function. } \author{Martyn Plummer} \examples{ # A small bogus cohort xcoh <- structure( list( id = c("A", "B", "C"), birth = c("14/07/1952", "01/04/1954", "10/06/1987"), entry = c("04/08/1965", "08/09/1972", "23/12/1991"), exit = c("27/06/1997", "23/05/1995", "24/07/1998"), fail = c(1, 0, 1) ), .Names = c("id", "birth", "entry", "exit", "fail"), row.names = c("1", "2", "3"), class = "data.frame" ) # Convert the character dates into numerical variables (fractional years) xcoh$bt <- cal.yr( xcoh$birth, format="\%d/\%m/\%Y" ) xcoh$en <- cal.yr( xcoh$entry, format="\%d/\%m/\%Y" ) xcoh$ex <- cal.yr( xcoh$exit , format="\%d/\%m/\%Y" ) # See how it looks xcoh # Define as Lexis object with timescales calendar time and age Lcoh <- Lexis( entry = list( per=en ), exit = list( per=ex, age=ex-bt ), exit.status = fail, data = xcoh ) # Default plot of follow-up plot( Lcoh ) # With a grid and deaths as endpoints plot( Lcoh, grid=0:10*10, col="black" ) points( Lcoh, pch=c(NA,16)[Lcoh$lex.Xst+1] ) # With a lot of bells and whistles: plot( Lcoh, grid=0:20*5, col="black", xaxs="i", yaxs="i", xlim=c(1960,2010), ylim=c(0,50), lwd=3, las=1 ) points( Lcoh, pch=c(NA,16)[Lcoh$lex.Xst+1], col="red", cex=1.5 ) # Split time along two time-axes ( x2 <- splitLexis( Lcoh, breaks = seq(1900,2000,5), time.scale="per") ) ( x2 <- splitLexis( x2, breaks = seq(0,80,5), time.scale="age" ) ) str( x2 ) # Tabulate the cases and the person-years summary( x2 ) tapply( status(x2,"exit")==1, list( timeBand(x2,"age","left"), timeBand(x2,"per","left") ), sum ) tapply( dur(x2), list( timeBand(x2,"age","left"), timeBand(x2,"per","left") ), sum ) } \seealso{\code{\link{timeBand}}, \code{\link{cutLexis}}, \code{\link{summary.Lexis}}} \keyword{manip} Epi/man/simLexis.Rd0000644000175100001440000002436112144476641013663 0ustar hornikusers\name{simLexis} \alias{simLexis} \alias{nState} \alias{pState} \alias{plot.pState} \title{Simulate a Lexis object representing follow-up in a multistate model.} \description{Based on a (pre-)\code{Lexis} object representing persosn at given states and tines, and full specification of transition intensities between states in the form of fitted Poisson models, this function simulates transition times and -types for persons and returns a \code{Lexis} object representing the simulted cohort.} \usage{ simLexis( Tr, init, time.pts = 0:50/2, N = 1, lex.id = 1:(N*nrow(init)), type = "glm-mult" ) nState( obj, at, from, time.scale = 1 ) pState( nSt, perm = 1:ncol(nSt) ) \method{plot}{pState}( x, col = rainbow(ncol(x)), border = "transparent", xlab = "Time", ylab = "Probability", ... ) } \arguments{ \item{Tr}{A named list of named lists. The names of the lists are names of the transient states in the model, and the names of the list elements are the names of the states reachable from this. See details.} \item{init}{A (pre-)\code{\link{Lexis}} object representing the initial state of the persons whose trajectories through the multiple states we want to simulate. Must have an attribute "time.since" --- see details. Duplicate values of \code{lex.id} is non-sensical and not accepted.} \item{time.pts}{Numerical vector of times since start. Cumulative rates for transitions are computed at these times after stater and entry state. Simulation is only done till time \code{max(time.pts)} after start, where persons are censored.} \item{N}{Numeric. How many persons should be simulated. \code{N} persons with covariate configuration of each row in \code{init} will be simulated.} \item{lex.id}{Vector of ids of the simulated persons. Useful when simulating in chunks.} \item{type}{Not implemented (yet); \code{simLexis} only works if elements of \code{Tr} are glm objects.} \item{obj}{A \code{Lexis} object.} \item{from}{The point on the time scale \code{time.scale} from which we start counting.} \item{time.scale}{The timescale to which \code{from} refer.} \item{at}{Time points (after \code{from}) where the number of persons in each state is to be computed.} \item{nSt}{A table obtained by \code{nState}.} \item{perm}{A permutation of columns used before cumulating row-wise and taking percentages.} \item{x}{An object of class \code{pState}, e.g. created by \code{pState}.} \item{col}{Colors for filling the areas between curves.} \item{border}{Colors for outline of the areas between curves.} \item{xlab}{Label on x-axis} \item{ylab}{Label on y-axis} \item{...}{Further arguments passed on to \code{plot}.} } \details{The simulation command \code{simLexis} is not defined as a method for \code{Lexis} objects, because the input is not really a \code{Lexis} object, the \code{Lexis}-like object is merely representing a prevalent population and a specification of which variables that are timescales. The variables \code{lex.dur} and \code{lex.Xst} are ignored (and overwritten) if present. The core input is the list \code{Tr} giving the transitions. The components of \code{Tr} represents the transition intensities between states. Currently only implemented for \code{type = "glm-mult"} which means that they are assumed to be \code{glm} objects, specifically Poisson models with \code{log(lex.dur)} as offset. Thus the transition from state \code{A} to \code{B}, say, is assumed modelled by a glm with Poisson family, log link and an offset \code{log(lex.dur)}. The resulting model object is assumed stored in \code{Tr$A$B}. Thus names of the elements of \code{Tr} are names of transient states, and the names of the elements of these are the names of states reachable from these. The \code{\link{Lexis}} object \code{init} must contain values of all variables used in any of the \code{glm} objects in \code{Tr}. Moreover the attributes \code{time.scales} and \code{time.since} must be present. The attribute \code{time.since} is a character vector of the same length as \code{time.scales} and the elements value \code{"A"} if the corresponding time scale is defined as "time since entry into state A", otherwise the value is \code{""}. If not present it will be set to a vector of \code{""}s, which is only OK if no time scales are defined as time since entry to a state. The function \code{\link{Lexis}} automatically generates an attribute \code{time.since}, and \code{\link{cutLexis}} updates it when new time scales are defined. Hence, the simplest way of defining a initial (pre-)Lexis object representing a current state of a (set of) persons to be followed through a multistate model is to take \code{NULL} rows of an existing Lexis object (normally the one used for estimation), and so ensuring that all relevant attributes and state levels are properly defined. See the example code. The prevalence function \code{nState} computes the distribution of individuals in different states at prespecified times. Only sensible for a simulated \code{Lexis} object. The function \code{pState} takes a matrix as output by \code{nState} and computes the row-wise cumulative probabilities across states, and leaves an object of class \code{pState}, suitable for plotting. } \value{\code{simLexis} returns a \code{\link{Lexis}} object representing the experience of a population starting as \code{init} followed through the states according to the transitions in \code{Tr}. The function \code{nState} returns a table of persons classified by states at each of the times in \code{at}. Note that this function can easily produce meaningless results, for example if applied to a \code{Lexis} object not created by simulation. If you apply it to a \code{Lexis} object generated by \code{simLexis}, you must make sure that you start (\code{from}) the point where you started the simulation on the correct timescale. The resulting object has class \code{"pState"} and inherits from \code{"matrix"}. } \author{Bendix Carstensen, \url{BendixCarstensen.com}.} \seealso{ \code{\link{Lexis}}, \code{\link{cutLexis}}, \code{\link{splitLexis}} } \examples{ data(DMlate) dml <- Lexis( entry = list(Per=dodm, Age=dodm-dobth, DMdur=0 ), exit = list(Per=dox), exit.status = factor(!is.na(dodth),labels=c("DM","Dead")), data = DMlate[runif(nrow(DMlate))<0.1,] ) # Split follow-up at insulin, introduce a new timescale, # and split non-precursor states dmi <- cutLexis( dml, cut = dml$doins, pre = "DM", new.state = "Ins", new.scale = "t.Ins", split.states = TRUE ) # Split the follow in 1-year intervals for modelling Si <- splitLexis( dmi, 0:30/2, "DMdur" ) # Define knots nk <- 4 ( ai.kn <- with( subset(Si,lex.Xst=="Ins"), quantile( Age+lex.dur, probs=(1:nk-0.5)/nk ) ) ) ( ad.kn <- with( subset(Si,lex.Xst=="Dead"), quantile( Age+lex.dur, probs=(1:nk-0.5)/nk ) ) ) ( di.kn <- with( subset(Si,lex.Xst=="Ins"), quantile( DMdur+lex.dur, probs=(1:nk-0.5)/nk ) ) ) ( dd.kn <- with( subset(Si,lex.Xst=="Dead"), quantile( DMdur+lex.dur, probs=(1:nk-0.5)/nk ) ) ) ( td.kn <- with( subset(Si,lex.Xst=="Dead(Ins)"), quantile( t.Ins+lex.dur, probs=(1:nk-0.5)/nk ) ) ) # Fit Poisson models to transition rates library( splines ) DM.Ins <- glm( (lex.Xst=="Ins") ~ ns( Age , knots=ai.kn[2:(nk-1)], Bo=ai.kn[c(1,nk)] ) + ns( DMdur, knots=di.kn[2:(nk-1)], Bo=di.kn[c(1,nk)] ) + I(Per-2000) + sex, family=poisson, offset=log(lex.dur), data = subset(Si,lex.Cst=="DM") ) DM.Dead <- glm( (lex.Xst=="Dead") ~ ns( Age , knots=ad.kn[2:(nk-1)], Bo=ad.kn[c(1,nk)] ) + ns( DMdur, knots=dd.kn[2:(nk-1)], Bo=dd.kn[c(1,nk)] ) + I(Per-2000) + sex, family=poisson, offset=log(lex.dur), data = subset(Si,lex.Cst=="DM") ) Ins.Dead <- glm( (lex.Xst=="Dead(Ins)") ~ ns( Age , knots=ad.kn[2:(nk-1)], Bo=ad.kn[c(1,nk)] ) + ns( DMdur, knots=dd.kn[2:(nk-1)], Bo=dd.kn[c(1,nk)] ) + ns( t.Ins, knots=td.kn[2:(nk-1)], Bo=td.kn[c(1,nk)] ) + I(Per-2000) + sex, family=poisson, offset=log(lex.dur), data = subset(Si,lex.Cst=="Ins") ) # Stuff the models into an object representing the transitions Tr <- list( "DM" = list( "Ins" = DM.Ins, "Dead" = DM.Dead ), "Ins" = list( "Dead(Ins)" = Ins.Dead ) ) lapply( Tr, names ) # Define an initial object - note the combination of "select=" and NULL # which ensures that the relevant attributes from the Lexis object 'Si' # are carried over to 'ini': ini <- subset(Si,select=1:9)[NULL,] ini[1:2,"lex.Cst"] <- "DM" ini[1:2,"Per"] <- 1995 ini[1:2,"Age"] <- 60 ini[1:2,"DMdur"] <- 5 ini[1:2,"sex"] <- c("M","F") str(ini) # Simulate 200 of each sex using the estimated model simL <- simLexis( Tr, ini, time.pts=seq(0,50,0.5), N=200 ) summary( simL, by="sex" ) # Give the number of persons in each state at a set of times nSt <- nState( subset(simL,sex=="M"), at=seq(0,15,0.2), from=1995, time.scale="Per" ) nSt # Show the cumulative prevalences in a different order than that of the # state-level ordering and plot them using all defaults pp <- pState( nSt, perm=c(1,2,4,3) ) head( pp ) plot( pp ) # A more useful set-up of the graph clr <- c("orange2","forestgreen") par( las=1 ) plot( pp, col=clr[c(2,1,1,2)] ) lines( as.numeric(rownames(pp)), pp[,2], lwd=2 ) mtext( "60 year old male, diagnosed 1995", side=3, line=2.5, adj=0 ) mtext( "Survival curve", side=3, line=1.5, adj=0 ) mtext( "DM, no insulin DM, Insulin", side=3, line=0.5, adj=0, col=clr[1] ) mtext( "DM, no insulin", side=3, line=0.5, adj=0, col=clr[2] ) axis( side=4 ) } \keyword{survival} Epi/man/rateplot.Rd0000644000175100001440000001723012144476641013715 0ustar hornikusers\name{rateplot} \alias{rateplot} \alias{Aplot} \alias{Pplot} \alias{Cplot} \title{ Functions to plot rates from a table classified by age and calendar time (period) } \description{ Produces plots of rates versus age, connected within period or cohort (\code{Aplot}), rates versus period connected within age-groups (\code{Pplot}) and rates and rates versus date of birth cohort (\code{Cplot}). \code{rateplot} is a wrapper for these, allowing to produce the four classical displays with a single call. } \usage{ rateplot( rates, which = c("ap","ac","pa","ca"), age = as.numeric( dimnames( rates )[[1]] ), per = as.numeric( dimnames( rates )[[2]] ), grid = FALSE, a.grid = grid, p.grid = grid, c.grid = grid, ygrid = grid, col.grid = gray( 0.9 ), a.lim = range( age, na.rm=TRUE ) + c(0,diff( range( age ) )/30), p.lim = range( per, na.rm=TRUE ) + c(0,diff( range( age ) )/30), c.lim = NULL, ylim = range( rates[rates>0], na.rm=TRUE ), at = NULL, labels = paste( at ), a.lab = "Age at diagnosis", p.lab = "Date of diagnosis", c.lab = "Date of birth", ylab = "Rates", type = "l", lwd = 2, lty = 1, log.ax = "y", las = 1, ann = FALSE, a.ann = ann, p.ann = ann, c.ann = ann, xannx = 1/20, cex.ann = 0.8, a.thin = seq( 1, length( age ), 2 ), p.thin = seq( 1, length( per ), 2 ), c.thin = seq( 2, length( age ) + length( per ) - 1, 2 ), col = par( "fg" ), a.col = col, p.col = col, c.col = col, ... ) Aplot( rates, age = as.numeric( dimnames( rates )[[1]] ), per = as.numeric( dimnames( rates )[[2]] ), grid = FALSE, a.grid = grid, ygrid = grid, col.grid = gray( 0.9 ), a.lim = range( age, na.rm=TRUE ), ylim = range( rates[rates>0], na.rm=TRUE ), at = NULL, labels = paste( at ), a.lab = names( dimnames( rates ) )[1], ylab = deparse( substitute( rates ) ), type = "l", lwd = 2, lty = 1, col = par( "fg" ), log.ax = "y", las = 1, c.col = col, p.col = col, c.ann = FALSE, p.ann = FALSE, xannx = 1/20, cex.ann = 0.8, c.thin = seq( 2, length( age ) + length( per ) - 1, 2 ), p.thin = seq( 1, length( per ), 2 ), p.lines = TRUE, c.lines = !p.lines, ... ) Pplot( rates, age = as.numeric( dimnames( rates )[[1]] ), per = as.numeric( dimnames( rates )[[2]] ), grid = FALSE, p.grid = grid, ygrid = grid, col.grid = gray( 0.9 ), p.lim = range( per, na.rm=TRUE ) + c(0,diff(range(per))/30), ylim = range( rates[rates>0], na.rm=TRUE ), p.lab = names( dimnames( rates ) )[2], ylab = deparse( substitute( rates ) ), at = NULL, labels = paste( at ), type = "l", lwd = 2, lty = 1, col = par( "fg" ), log.ax = "y", las = 1, ann = FALSE, cex.ann = 0.8, xannx = 1/20, a.thin = seq( 1, length( age ), 2 ), ... ) Cplot( rates, age = as.numeric( rownames( rates ) ), per = as.numeric( colnames( rates ) ), grid = FALSE, c.grid = grid, ygrid = grid, col.grid = gray( 0.9 ), c.lim = NULL, ylim = range( rates[rates>0], na.rm=TRUE ), at = NULL, labels = paste( at ), c.lab = names( dimnames( rates ) )[2], ylab = deparse( substitute( rates ) ), type = "l", lwd = 2, lty = 1, col = par( "fg" ), log.ax = "y", las = 1, xannx = 1/20, ann = FALSE, cex.ann = 0.8, a.thin = seq( 1, length( age ), 2 ), ... ) } \arguments{ \item{rates}{A two-dimensional table (or array) with rates to be plotted. It is assumed that the first dimension is age and the second is period.} \item{which}{A character vector with elements from \code{c("ap","ac","apc","pa","ca")}, indication which plots should be produced. One plot per element is produced. The first letter indicates the x-axis of the plot, the remaining which groups should be connected, i.e. \code{"pa"} will plot rates versus period and connect age-classes, and \code{"apc"} will plot rates versus age, and connect both periods and cohorts.} \item{age}{Numerical vector giving the means of the age-classes. Defaults to the rownames of \code{rates} as numeric.} \item{per}{Numerical vector giving the means of the periods. Defaults to the columnnames of \code{rates} as numeric.} \item{grid}{Logical indicating whether a background grid should be drawn.} \item{a.grid}{Logical indicating whether a background grid on the age-axis should be drawn. If numerical it indicates the age-coordinates of the grid.} \item{p.grid}{do. for the period.} \item{c.grid}{do. for the cohort.} \item{ygrid}{do. for the rate-dimension.} \item{col.grid}{The colour of the grid.} \item{a.lim}{Range for the age-axis.} \item{p.lim}{Range for the period-axis.} \item{c.lim}{Range for the cohort-axis.} \item{ylim}{Range for the y-axis (rates).} \item{at}{Position of labels on the y-axis (rates).} \item{labels}{Labels to put on the y-axis (rates).} \item{a.lab}{Text on the age-axis. Defaults to "Age".} \item{p.lab}{Text on the period-axis. Defaults to "Date of diagnosis".} \item{c.lab}{Text on the cohort-axis. Defaults to "Date of birth".} \item{ylab}{Text on the rate-axis. Defaults to the name of the rate-table.} \item{type}{How should the curves be plotted. Defaults to \code{"l"}.} \item{lwd}{Width of the lines. Defaults to 2.} \item{lty}{Which type of lines should be used. Defaults to 1, a solid line.} \item{log.ax}{Character with letters from \code{"apcyr"}, indicating which axes should be logarithmic. \code{"y"} and \code{"r"} both refer to the rate scale. Defaults to \code{"y"}.} \item{las}{see \code{par}.} \item{ann}{Should the curves be annotated?} \item{a.ann}{Logical indicating whether age-curves should be annotated.} \item{p.ann}{do. for period-curves.} \item{c.ann}{do. for cohort-curves.} \item{xannx}{The fraction that the x-axis is expanded when curves are annotated.} \item{cex.ann}{Expansion factor for characters annotating curves.} \item{a.thin}{Vector of integers indicating which of the age-classes should be labelled.} \item{p.thin}{do. for the periods.} \item{c.thin}{do. for the cohorts.} \item{col}{Colours for the curves.} \item{a.col}{Colours for the age-curves.} \item{p.col}{do. for the period-curves.} \item{c.col}{do. for the cohort-curves.} \item{p.lines}{Should rates from the same period be connected?} \item{c.lines}{Should rates from the same cohort be connected?} \item{...}{Additional arguments pssed on to \code{matlines} when plotting the curves.} } \details{ Zero values of the rates are ignored. They are neiter in the plot nor in the calculation of the axis ranges. } \value{ \code{NULL}. The function is used for its side-effect, the plot. } \author{ Bendix Carstensen, Steno Diabetes Center, \url{http://BendixCarstensen.com} } \seealso{ \code{\link{apc.frame}} } \examples{ data( blcaIT ) attach(blcaIT) # Table of rates: bl.rate <- tapply( D, list(age,period), sum ) / tapply( Y, list(age,period), sum ) bl.rate # The four classical plots: par( mfrow=c(2,2) ) rateplot( bl.rate*10^6 ) # The labels on the vertical axis could be nicer: rateplot( bl.rate*10^6, at=10^(-1:3), labels=c(0.1,1,10,100,1000) ) # More bells an whistles par( mfrow=c(1,3), mar=c(3,3,1,1), oma=c(0,3,0,0), mgp=c(3,1,0)/1.6 ) rateplot( bl.rate*10^6, ylab="", ann=TRUE, which=c("AC","PA","CA"), at=10^(-1:3), labels=c(0.1,1,10,100,1000), col=topo.colors(11), cex.ann=1.2 ) } \keyword{hplot} Epi/man/projection.ip.rd0000644000175100001440000000171712144476641014711 0ustar hornikusers\name{projection.ip} \alias{projection.ip} \title{ Projection of columns of a matrix. } \description{ Projects the columns of the matrix \code{M} on the space spanned by the columns of the matrix \code{X}, with respect to the inner product defined by \code{weight}: \code{=sum(x*w*y)}. } \usage{ projection.ip(X, M, orth = FALSE, weight = rep(1, nrow(X))) } \arguments{ \item{X}{ Matrix defining the space to project onto. } \item{M}{ Matrix of columns to be projected. Must have the same number of rows as \code{X}. } \item{orth}{ Should the projection be on the orthogonal complement to \code{span(X)}? } \item{weight}{ Weights defining the inner product. Numerical vector of length \code{nrow(X)}. } } \value{ A matrix of full rank with columns in \code{span(X)}. } \author{ Bendix Carstensen, Steno Diabetes Center, \url{http://BendixCarstensen.com}, with help from Peter Dalgaard. } \seealso{ \code{\link{detrend}} } \keyword{array} Epi/man/plotevent.rd0000644000175100001440000000216412144476641014143 0ustar hornikusers\name{plotevent} \alias{plotevent} \title{ Plot Equivalence Classes } \description{ For interval censored data, segments of times between last.well and first.ill are plotted for each conversion in the data. It also plots the equivalence classes. } \usage{ plotevent(last.well, first.ill, data) } \arguments{ \item{last.well}{ Time at which the individuals are last seen negative for the event } \item{first.ill}{ Time at which the individuals are first seen positive for the event } \item{data}{ Data with a transversal shape } } \details{ last.well and first.ill should be written as character in the function. } \value{ Graph } \references{ Carstensen B. Regression models for interval censored survival data: application to HIV infection in Danish homosexual men.Stat Med. 1996 Oct 30;15(20):2177-89. Lindsey JC, Ryan LM. Tutorial in biostatistics methods for interval-censored data.Stat Med. 1998 Jan 30;17(2):219-38. } \author{ Delphine Maucort-Boulch, Bendix Carstensen, Martyn Plummer } \seealso{ \code{\link{Icens}} } % \examples{ % } \keyword{ models } \keyword{ regression } \keyword{ survival } Epi/man/plotEst.Rd0000644000175100001440000001000012144476641013501 0ustar hornikusers\name{plotEst} \alias{plotEst} \alias{pointsEst} \alias{linesEst} \title{ Plot estimates with confidence limits (forest plot) } \description{ Plots parameter estimates with confidence intervals, annotated with parameter names. A dot is plotted at the estimate and a horizontal line extending from the lower to the upper limit is superimposed. } \usage{ plotEst( ests, y = dim(ests)[1]:1, txt = rownames(ests), txtpos = y, ylim = range(y)-c(0.5,0), xlab = "", xtic = nice(ests[!is.na(ests)], log = xlog), xlim = range( xtic ), xlog = FALSE, pch = 16, cex = 1, lwd = 2, col = "black", col.txt = "black", font.txt = 1, col.lines = col, col.points = col, vref = NULL, grid = FALSE, col.grid = gray(0.9), restore.par = TRUE, ... ) linesEst( ests, y = dim(ests)[1]:1, pch = 16, cex = 1, lwd = 2, col="black", col.lines=col, col.points=col, ... ) pointsEst( ests, y = dim(ests)[1]:1, pch = 16, cex = 1, lwd = 2, col="black", col.lines=col, col.points=col, ... ) } \arguments{ \item{ests}{Matrix with three columns: Estimate, lower limit, upper limit. If a model object is supplied, \code{\link{ci.lin}} is invoked for this object first.} \item{y}{Vertical position of the lines.} \item{txt}{Annotation of the estimates.} \item{txtpos}{Vertical position of the text. Defaults to \code{y}.} \item{ylim}{Extent of the vertical axis.} \item{xlab}{Annotation of the horizontal axis.} \item{xtic}{Location of tickmarks on the x-axis.} \item{xlim}{Extent of the x-axis.} \item{xlog}{Should the x-axis be logarithmic?} \item{pch}{What symbol should be used?} \item{cex}{Expansion of the symbol.} \item{col}{Colour of the points and lines.} \item{col.txt}{Colour of the text annotating the estimates.} \item{font.txt}{Font for the text annotating the estimates.} \item{col.lines}{Colour of the lines.} \item{col.points}{Colour of the symbol.} \item{lwd}{Thickness of the lines.} \item{vref}{Where should vertical reference line(s) be drawn?} \item{grid}{If TRUE, vertical gridlines are drawn at the tickmarks. If a numerical vector is given vertical lines are drawn at \code{grid}.} \item{col.grid}{Colour of the vertical gridlines} \item{restore.par}{Should the graphics parameters be restored? If set to \code{FALSE} the coordinate system will still be available for additional plotting, and \code{par("mai")} will still have the very large value set in order to make room for the labelling of the estimates.} \item{...}{Arguments passed on to \code{ci.lin} when a model object is supplied as \code{ests}.} } \details{ \code{plotEst} makes a news plot, whereas \code{linesEst} and \code{pointsEst} (identical functions) adds to an existing plot. If a model object of class \code{"glm"}, \code{"coxph"}, \code{"clogistic"} or \code{"gnlm"} is supplied the argument \code{xlog} defaults to \code{TRUE}, and exponentiated estimates are extracted by default. } \value{ NULL } \author{ Bendix Carstensen, \email{bxc@steno.dk}, \url{http://BendixCarstensen.com}} \seealso{ ci.lin } \examples{ # Bogus data and a linear model f <- factor( sample( letters[1:5], 100, replace=TRUE ) ) x <- rnorm( 100 ) y <- 5 + 2 * as.integer( f ) + 0.8 * x + rnorm(100) * 2 m1 <- lm( y ~ f ) # Produce some confidence intervals for contrast to first level ( cf <- ci.lin( m1, subset=-1 )[,-(2:4)] ) # Plots with increasing amounts of bells and whistles par( mfcol=c(3,2), mar=c(3,3,2,1) ) plotEst( cf ) plotEst( cf, grid=TRUE ) plotEst( cf, grid=TRUE, cex=2, lwd=3 ) plotEst( cf, grid=TRUE, cex=2, col.points="red", col.lines="green" ) plotEst( cf, grid=TRUE, cex=2, col.points="red", col.lines="green", xlog=TRUE, xtic=c(1:8), xlim=c(0.8,6) ) rownames( cf )[1] <- "Contrast to fa:\n\n fb" plotEst( cf, grid=TRUE, cex=2, col.points=rainbow(4), col.lines=rainbow(4), vref=1 ) } \keyword{hplot} \keyword{models} Epi/man/plot.Lexis.Rd0000644000175100001440000001160512144476641014124 0ustar hornikusers\name{plot.Lexis} \alias{plot.Lexis} \alias{points.Lexis} \alias{lines.Lexis} \alias{PY.ann} \alias{PY.ann.Lexis} \title{Lexis diagrams} \description{ The follow-up histories represented by a Lexis object can be plotted using one or two dimensions. The two dimensional plot is a Lexis diagram showing follow-up time simultaneously on two time scales. } \usage{ \method{plot}{Lexis}(x=Lexis( entry=list(Date=1900,Age=0), exit=list(Age=0) ), time.scale = NULL, type="l", breaks="lightgray", ...) \method{points}{Lexis}(x, time.scale = options()[["Lexis.time.scale"]] , ...) \method{lines}{Lexis}(x, time.scale = options()[["Lexis.time.scale"]], ...) \method{PY.ann}{Lexis}(x, time.scale = options()[["Lexis.time.scale"]], digits=1, ...) } \arguments{ \item{x}{An object of class \code{Lexis}. The default is a bogus \code{Lexis} object, so that \code{plot.Lexis} can be called without the first argument and still produce a(n empty) Lexis diagram. Unless arguments \code{xlim} and \code{ylim} are given in this case the diagram is looking pretty daft.} \item{time.scale}{A vector of length 1 or 2 giving the time scales to be plotted either by name or numerical order} \item{type}{Character indication what to draw: "n" nothing (just set up the diagram), "l" - liefelines, "p" - endpoints of follow-up, "b" - both lifelines and endpoints.} \item{breaks}{a string giving the colour of grid lines to be drawn when plotting a split Lexis object. Grid lines can be suppressed by supplying the value \code{NULL} to the \code{breaks} argument} \item{digits}{Numerical. How many digits after the demimal points should be when plotting the person-years.} \item{\dots}{Further graphical parameters to be passed to the plotting methods. Grids can be drawn (behind the life lines) using the following parameters in \code{plot}: \itemize{ \item \code{grid} If logical, a background grid is set up using the axis ticks. If a list, the first component is used as positions for the vertical lines and the last as positions for the horizontal. If a nunerical vector, grids on both axes are set up using the distance between the numbers. \item \code{col.grid="lightgray"} Color of the background grid. \item \code{lty.grid=2} Line type for the grid. \item \code{coh.grid=FALSE} Should a 45 degree grid be plotted?} } } \details{ The plot method for \code{Lexis} objects traces ``life lines'' from the start to the end of follow-up. The \code{points} method plots points at the end of the life lines. If \code{time.scale} is of length 1, the life lines are drawn horizontally, with the time scale on the X axis and the id value on the Y axis. If \code{time.scale} is of length 2, a Lexis diagram is produced, with diagonal life lines plotted against both time scales simultaneously. If \code{lex} has been split along one of the time axes by a call to \code{splitLexis}, then vertical or horizontal grid lines are plotted (on top of the life lines) at the break points. \code{PY.ann} writes the length of each (segment of) life line at the middle of the line. Not advisable to use with large cohorts. Another example is in the example file for \code{\link{occup}}. } \author{Martyn Plummer} \examples{ # A small bogus cohort xcoh <- structure( list( id = c("A", "B", "C"), birth = c("14/07/1952", "01/04/1957", "10/06/1987"), entry = c("04/08/1965", "08/09/1972", "23/12/1991"), exit = c("27/06/1997", "23/05/1995", "24/07/1998"), fail = c(1, 0, 1) ), .Names = c("id", "birth", "entry", "exit", "fail"), row.names = c("1", "2", "3"), class = "data.frame" ) # Convert the character dates into numerical variables (fractional years) xcoh$bt <- cal.yr( xcoh$birth, format="\%d/\%m/\%Y" ) xcoh$en <- cal.yr( xcoh$entry, format="\%d/\%m/\%Y" ) xcoh$ex <- cal.yr( xcoh$exit , format="\%d/\%m/\%Y" ) # See how it looks xcoh # Define as Lexis object with timescales calendar time and age Lcoh <- Lexis( entry = list( per=en ), exit = list( per=ex, age=ex-bt ), exit.status = fail, data = xcoh ) # Default plot of follow-up plot( Lcoh ) # Show follow-up time PY.ann( Lcoh ) # Show exit status plot( Lcoh, type="b" ) # Same but failures only plot( Lcoh, type="b", pch=c(NA,16)[Lcoh$fail+1] ) # With a grid and deaths as endpoints plot( Lcoh, grid=0:10*10, col="black" ) points( Lcoh, pch=c(NA,16)[Lcoh$lex.Xst+1] ) # With a lot of bells and whistles: plot( Lcoh, grid=0:20*5, col="black", xaxs="i", yaxs="i", xlim=c(1960,2010), ylim=c(0,50), lwd=3, las=1 ) points( Lcoh, pch=c(NA,16)[Lcoh$lex.Xst+1], col="red", cex=1.5 ) } \seealso{\code{\link{Lexis}}, \code{\link{splitLexis}}} \keyword{hplot} \keyword{aplot} Epi/man/pctab.Rd0000644000175100001440000000222412144476641013151 0ustar hornikusers\name{pctab} \alias{pctab} \title{Create percentages in a table} \description{ Computes percentages and a margin of totals along a given margin of a table. } \usage{ pctab(TT, margin = length(dim(TT)), dec=1) } \arguments{ \item{TT}{A table or array object} \item{margin}{Which margin should be the the total?} \item{dec}{How many decimals should be printed? If 0 or \code{FALSE} nothing is printed} } \value{ A table of percentages, where all dimensions except the one specified \code{margin} has two extra levels named "All" (where all entries are 100) and "N". The function prints the table with \code{dec} decimals. } \author{ Bendix Carstensen, Steno Diabetes Center, \url{http://BendixCarstensen.com}. } \seealso{ \code{\link{addmargins}} } \examples{ Aye <- sample( c("Yes","Si","Oui"), 177, replace=TRUE ) Bee <- sample( c("Hum","Buzz"), 177, replace=TRUE ) Sea <- sample( c("White","Black","Red","Dead"), 177, replace=TRUE ) A <- table( Aye, Bee, Sea ) A ftable( pctab( A ) ) ftable( pctab( addmargins( A, 1 ), 3 ) ) round( ftable( pctab( addmargins( A, 1 ), 3 ), row.vars=3 ), 1) } \keyword{ manip } \keyword{ methods } \keyword{ array } Epi/man/occup.Rd0000644000175100001440000000333112144476641013171 0ustar hornikusers\name{occup} \alias{occup} \docType{data} \title{ A small occupational cohort } \description{This is the data that is behind the illustrative Lexis diagram in Breslow & Day's book on case-control studies.} \usage{data(occup)} \format{ A data frame with 13 observations on the following 4 variables. \describe{ \item{\code{AoE}}{a numeric vector, Age at Entry} \item{\code{DoE}}{a numeric vector, Date of entry} \item{\code{DoX}}{a numeric vector, Date of eXit} \item{\code{Xst}}{eXit status \code{D}-event, \code{W}-withdrawal, \code{X}-censoring} } } \references{ Breslow & Day: Statistical Methods in Cancer Research, vol 1: The analysis of case-control studies, figure 2.2, p. 48.} \examples{ data(occup) lx <- Lexis( entry = list( per=DoE, age=AoE ), exit = list( per=DoX ), entry.status = "W", exit.status = Xst, data = occup ) plot( lx ) # Split follow-up in 5-year classes sx <- splitLexis( lx, seq(1940,1960,5), "per" ) sx <- splitLexis( sx, seq( 40, 60,5), "age" ) plot( sx ) # Plot with a bit more paraphernalia and a device to get # the years on the same physical scale on both axes ypi <- 2.5 # Years per inch x11( height=15/ypi+1, width=20/ypi+1 ) # add an inch in each direction for par( mai=c(3,3,1,1)/4, mgp=c(3,1,0)/1.6 ) # the margins set in inches by mai= plot(sx,las=1,col="black",lty.grid=1,lwd=2,type="l", xlim=c(1940,1960),ylim=c(40,55),xaxs="i",yaxs="i",yaxt="n", xlab="Calendar year", ylab="Age (years)") axis( side=2, at=seq(40,55,5), las=1 ) points(sx,pch=c(NA,16)[(sx$lex.Xst=="D")+1] ) box() # Annotation with the person-years PY.ann.Lexis( sx, cex=0.8 ) } \keyword{datasets} Epi/man/nickel.Rd0000644000175100001440000000233112144476641013324 0ustar hornikusers\name{nickel} \alias{nickel} \docType{data} \title{A Cohort of Nickel Smelters in South Wales} \description{ The \code{nickel} data frame has 679 rows and 7 columns. The data concern a cohort of nickel smelting workers in South Wales and are taken from Breslow and Day, Volume 2. For comparison purposes, England and Wales mortality rates (per 1,000,000 per annum) from lung cancer (ICDs 162 and 163), nasal cancer (ICD 160), and all causes, by age group and calendar period, are supplied in the dataset \code{\link{ewrates}}. } \format{ This data frame contains the following columns: \tabular{rl}{ \code{id}: \tab Subject identifier (numeric) \cr \code{icd}: \tab ICD cause of death if dead, 0 otherwise (numeric) \cr \code{exposure}: \tab Exposure index for workplace (numeric) \cr \code{dob}: \tab Date of birth (numeric) \cr \code{age1st}: \tab Age at first exposure (numeric) \cr \code{agein}: \tab Age at start of follow-up (numeric) \cr \code{ageout}: \tab Age at end of follow-up (numeric) \cr } } \source{ Breslow NE, and Day N, Statistical Methods in Cancer Research. Volume II: The Design and Analysis of Cohort Studies. IARC Scientific Publications, IARC:Lyon, 1987. } \examples{ data(nickel) str(nickel) } \keyword{datasets} Epi/man/nice.Rd0000644000175100001440000000142012144476641012773 0ustar hornikusers\name{nice} \alias{nice} \title{Nice breakpoints} \description{The function calls \code{\link{pretty}} for linear scale. For a log-scale nice are computed using a set of specified number in a decade. } \usage{ nice(x, log = F, lpos = c(1, 2, 5), ...) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{x}{Numerical vector to} \item{log}{Logical. Is the scale logartimic?} \item{lpos}{Numeric. Numbers between 1 and 10 giving the desired breakpoints in this interval.} \item{\dots}{Arguments passed on to \code{pretty} if \code{log}=FALSE} } \value{A vector of breakpoints.} \author{Bendix Carstensen, \email{bxc@steno.dk}, \url{http://BendixCarstensen.com}} \seealso{pretty} \examples{ nice( exp( rnorm( 100 ) ), log=TRUE ) } \keyword{manip} Epi/man/ncut.Rd0000644000175100001440000000304512144476641013033 0ustar hornikusers\name{ncut} \alias{ncut} \title{ Function to group a variable in intervals.} \description{ Cuts a continuous variable in intervals. As opposed to \code{cut} which returns a factor, \code{ncut} returns a numeric variable. } \usage{ ncut(x, breaks, type="left" ) } \arguments{ \item{x}{A numerical vector.} \item{breaks}{Vector of breakpoints. \code{NA} will results for values below \code{min(breaks)} if \code{type="left"}, for values above \code{max(breaks)} if \code{type="right"} and for values outside \code{range(breaks)} if \code{type="mid"}} \item{type}{Character: one of \code{c("left","right","mid")}, indicating whether the left, right or midpoint of the intervals defined in breaks is returned.} } \details{ The function uses the base function \code{findInterval}. } \value{ A numerical vector of the same length as \code{x}. } \author{ Bendix Carstensen, Steno Diabetes Center, \email{bxc@steno.dk}, \url{http://BendixCarstensen.com}, with essential input from Martyn Plummer, IARC. } \seealso{ \code{\link{cut}}, \code{\link{findInterval}} } \examples{ br <- c(-2,0,1,2.5) x <- c( rnorm( 10 ), br, -3, 3 ) cbind( x, l=ncut( x, breaks=br, type="l" ), m=ncut( x, breaks=br, type="m" ), r=ncut( x, breaks=br, type="r" ) )[order(x),] x <- rnorm( 200 ) plot( x, ncut( x, breaks=br, type="l" ), pch=16, col="blue", ylim=range(x) ) abline( 0, 1 ) abline( v=br ) points( x, ncut( x, breaks=br, type="r" ), pch=16, col="red" ) points( x, ncut( x, breaks=br, type="m" ), pch=16, col="green" ) } \keyword{manip} Epi/man/mortDK.Rd0000644000175100001440000000301212144476641013254 0ustar hornikusers\name{mortDK} \alias{mortDK} \docType{data} \title{Population mortality rates for Denmark in 1-year age-classes.} \description{ The \code{mortDK} data frame has 1820 rows and 21 columns. } \format{ This data frame contains the following columns: \tabular{rl}{ \code{age}: \tab Age class, 0--89, 90:90+. \cr \code{per}: \tab Calendar period, 38: 1938--42, 43: 1943--47, ..., 88:1988-92. \cr \code{sex}: \tab Sex, 1: male, 2: female. \cr \code{risk}: \tab Number of person-years in the Danish population. \cr \code{dt}: \tab Number of deaths. \cr \code{rt}: \tab Overall mortality rate in cases per 1000 person-years, i.e. \code{rt=1000*dt/risk} \cr \tab Cause-specific mortality rates in cases per 1000 person-years: \cr \code{r1}: \tab Infections \cr \code{r2}: \tab Cancer. \cr \code{r3}: \tab Tumors, benign, unspecific nature. \cr \code{r4}: \tab Endocrine, metabolic. \cr \code{r5}: \tab Blood. \cr \code{r6}: \tab Nervous system, psychiatric. \cr \code{r7}: \tab Cerebrovascular. \cr \code{r8}: \tab Cardiac. \cr \code{r9}: \tab Respiratory diseases, excl. cancer. \cr \code{r10}: \tab Liver, excl. cancer. \cr \code{r11}: \tab Digestive, other. \cr \code{r12}: \tab Genitourinary. \cr \code{r13}: \tab Ill-defined symptoms. \cr \code{r14}: \tab All other, natural. \cr \code{r15}: \tab Violent. \cr } } \source{ Statistics Denmark, National board of health provided original data. Michael Andersson grouped the causes of death. } \examples{ data(mortDK) } \seealso{\code{\link{thoro}}, \code{\link{gmortDK}}} \keyword{datasets} Epi/man/mh.Rd0000644000175100001440000000677612144476641012504 0ustar hornikusers\name{mh} \alias{mh} \title{ Mantel-Haenszel analyses of cohort and case-control studies } \description{ This function carries out Mantel-Haenszel comparisons in tabulated data derived from both cohort and case-control studies. } \usage{ mh(cases, denom, compare=1, levels=c(1, 2), by=NULL, cohort=!is.integer(denom), confidence=0.9) } \arguments{ \item{cases}{ the table of case frequencies (a multiway array). } \item{denom}{ the denominator table. For cohort studies this should be a table of person-years observation, while for case-control studies it should be a table of control frequencies. } \item{compare}{ the dimension of the table which defines the comparison groups (can be referred to either by number or by name). The default is the first dimension of the table. } \item{levels}{ a vector identifying (either by number or by name) the two groups to be compared. The default is the first two levels of the selected dimension. } \item{by}{ the dimensions not to be collapsed in the Mantel-Haenszel computations. Thus, this argument defines the structure of the resulting tables of estimates and tests. } \item{cohort}{ an indicator whether the data derive from a cohort or a case-control study. If the denominator table is stored as an integer, a case-control study is assumed. } \item{confidence}{ the approximate coverage probability for the confidence intervals to be computed. }} \value{ A list giving tables of rate (odds) ratio estimates, their standard errors (on a log scale), lower and upper confidence limits, chi-squared tests (1 degree of freedom) and the corresponding p-values. The result list also includes numerator and denominator of the Mantel-Haenszel estimates (q, r), and score test statistics and score variance (u, v). } \section{Side Effects}{ None } \details{ Multiway tables of data are accepted and any two levels of any dimension can be chosen as defining the comparison groups. The rate (odds) ratio estimates and the associated significance tests may be collapsed over all the remaining dimensions of the table, or over selected dimensions only, so that tables of estimates and tests are computed. } \references{ Clayton, D. and Hills, M. : Statistical Models in Epidemiology, Oxford University Press (1993). } \seealso{ \code{\link{Lexis}} } \examples{ # If d and y are 3-way tables of cases and person-years # observation formed by tabulation by two confounders # (named "C1" and "C2") an exposure of interest ("E"), # the following command will calculate an overall # Mantel-Haenszel comparison of the first two exposure # groups. # # Generate some bogus data dnam <- list( E=c("low","medium","high"), C1=letters[1:2], C2=LETTERS[1:4] ) d <- array( sample( 2:80, 24), dimnames=dnam, dim=sapply( dnam, length ) ) y <- array( abs( rnorm( 24, 227, 50 ) ), dimnames=dnam, dim=sapply( dnam, length ) ) mh(d, y, compare="E") # # Or, if exposure levels named "low" and "high" are to be # compared and these are not the first two levels of E : # mh(d, y, compare="E", levels=c("low", "high")) # # If we wish to carry out an analysis which controls for C1, # but examines the results at each level of C2: # mh(d, y, compare="E", by="C2") # # It is also possible to look at rate ratios for every # combination of C1 and C2 : # mh(d, y, compare="E", by=c("C1", "C2")) # # If dimensions and levels of the table are unnamed, they must # be referred to by number. # } \keyword{htest} Epi/man/merge.data.frame.Rd0000644000175100001440000000124612144476641015163 0ustar hornikusers\name{merge.data.frame} \alias{merge.data.frame} \title{Merge data frame with a Lexis object} \description{ Merge two data frames, or a data frame with a \code{Lexis} object. } \usage{ \method{merge}{data.frame}(x, y, ...) } \arguments{ \item{x, y}{data frames, or objects to be coerced into one} \item{...}{optional arguments for the merge method} } \details{ This version of \code{merge.default} masks the one in the \code{base}. It ensures that, if either \code{x} or \code{y} is a \code{Lexis} object, then \code{merge.Lexis} is called. } \value{ A merged \code{Lexis} object or data frame. } \author{Martyn Plummer} \seealso{\code{\link{Lexis}}} \keyword{ts} Epi/man/merge.Lexis.Rd0000644000175100001440000000244612144476641014250 0ustar hornikusers\name{merge.Lexis} \alias{merge.Lexis} \title{Merge a Lexis object with a data frame} \description{ Merge additional variables from a data frame into a Lexis object. } \usage{ \method{merge}{Lexis}(x, y, id, by, ...) } \arguments{ \item{x}{an object of class \code{Lexis}} \item{y}{a data frame} \item{id}{the name of the variable in \code{y} to use for matching against the variable \code{lex.id} in \code{x}. } \item{by}{if matching is not done by id, a vector of variable names common to both \code{x} and \code{y}} \item{...}{optional arguments to be passed to \code{merge.data.frame}} } \details{ A \code{Lexis} object can be considered as an augmented data frame in which some variables are time-dependent variables representing follow-up. The \code{Lexis} function produces a minimal object containing only these time-dependent variables. Additional variables may be added to a \code{Lexis} object using the \code{merge} method. } \value{ A \code{Lexis} object with additional columns taken from the merged data frame. } \author{Martyn Plummer} \note{ The variable given as the \code{by.y} argument must not contain any duplicate values in the data frame \code{y}. } \seealso{\code{\link{merge.data.frame}}, \code{\link{subset.Lexis}}} \keyword{array} \keyword{manip} Epi/man/lungDK.Rd0000644000175100001440000000361412144476641013250 0ustar hornikusers\name{lungDK} \alias{lungDK} \docType{data} \title{Male lung cancer incidence in Denmark} \description{ Male lung cancer cases and population riks time in Denmark, for the period 1943--1992 in ages 40--89. } \usage{data(lungDK)} \format{ A data frame with 220 observations on the following 9 variables. \tabular{rl}{ \code{A5}: \tab Left end point of the age interval, a numeric vector. \cr \code{P5}: \tab Left enpoint of the period interval, a numeric vector. \cr \code{C5}: \tab Left enpoint of the birth cohort interval, a numeric vector. \cr \code{up}: \tab Indicator of upper trianges of each age by period rectangle in the Lexis diagram. (\code{up=(P5-A5-C5)/5}). \cr \code{Ax}: \tab The mean age of diagnois (at risk) in the triangle. \cr \code{Px}: \tab The mean date of diagnosis (at risk) in the triangle. \cr \code{Cx}: \tab The mean date of birth in the triangle, a numeric vector. \cr \code{D}: \tab Number of diagnosed cases of male lung cancer. \cr \code{Y}: \tab Risk time in the male population, person-years. \cr } } \details{ Cases and person-years are tabulated by age and date of diagnosis (period) as well as date of birth (cohort) in 5-year classes. Each observation in the dataframe correponds to a triangle in a Lexis diagram. Triangles are classified by age and date of diagnosis, period of diagnosis and date of birth, all in 5-year groupings. } \source{The Danish Cancer Registry and Statistics Denmark. } \references{ For a more thorough exposition of statistical inference in the Lexis diagram, see: B. Carstensen: Age-Period-Cohort models for the Lexis diagram. Statistics in Medicine, 26: 3018-3045, 2007. } \examples{ data( lungDK ) # Draw a Lexis diagram and show the number of cases in it. attach( lungDK ) Lexis.diagram( age=c(40,90), date=c(1943,1993), coh.grid=TRUE ) text( Px, Ax, paste( D ), cex=0.7 ) } \keyword{datasets} Epi/man/lls.Rd0000644000175100001440000000324012144476641012651 0ustar hornikusers\name{lls} \alias{lls} \alias{clear} \title{Functions to manage and explore the workspace } \description{These functions help you to find out what has gone wrong and to start afresh if needed. } \usage{ lls(pos = 1, pat = "", all=FALSE, print=TRUE ) clear() } \arguments{ \item{pos}{Numeric. What position in the search path do you want listed.} \item{pat}{Character. List only objects that have this string in their name.} \item{all}{Logical. Should invisible objects be printed too - see \code{\link{ls}} to which this argument is passed.} \item{print}{Logical. Should the result be printed?} } \details{\code{lls} is designed to give a quick overview of the name, mode, class and dimension of the object in your workspace. They may not always be what you think they are. \code{clear} clears all your objects from workspace, and all attached objects too --- it only leaves the loaded packages in the search path; thus allowing a fresh start without closing and restarting R. } \value{ \code{lls} returns a data frame with four character variables: code{name}, code{mode}, code{class} and code{size} and one row per object in the workspace (if \code{pos=1}). \code{size} is either the length or the dimension of the object. The data frame is by default printed with left-justified columns. } \author{\code{lls}: Unknown. Modified by Bendix Carstensen from a long forgotten snatch. \code{clear}: Michael Hills / David Clayton.} \examples{ x <- 1:10 y <- rbinom(10, 1, 0.5) m1 <- glm( y ~ x, family=binomial ) M <- matrix( 1:20, 4, 5 ) .M <- M lls() clear() lls() } \keyword{attributes}Epi/man/lep.Rd0000644000175100001440000000233012144476641012636 0ustar hornikusers\name{lep} \alias{lep} \docType{data} \title{An unmatched case-control study of leprosy incidence} \description{ The \code{lep} data frame has 1370 rows and 7 columns. This was an unmatched case-control study in which incident cases of leprosy in a region of N. Malawi were compared with population controls. } \format{ This data frame contains the following columns: \tabular{rl}{ \code{id}: \tab subject identifier: a numeric vector \cr \code{d}: \tab case/control status: a numeric vector (1=case, 0=control) \cr \code{age}: \tab a factor with levels \code{5-9} \code{10-14} \code{15-19} \code{20-24} \code{25-29} \code{30-44} \code{45+} \cr \code{sex}: \tab a factor with levels \code{male}, \code{female} \cr \code{bcg}: \tab presence of vaccine scar, a factor with levels \code{no} \code{yes} \cr \code{school}: \tab schooling, a factor with levels \code{none} \code{1-5yrs} \code{6-8yrs} \code{sec/tert} \cr \code{house}: \tab housing, a factor with levels \code{brick} \code{sunbrick} \code{wattle} \code{temp} \cr } } \source{ The study is described in more detail in Clayton and Hills, Statistical Models in Epidemiology, Oxford University Press, Oxford:1993. } \examples{ data(lep) } \keyword{datasets} Epi/man/hivDK.Rd0000644000175100001440000000260412144476641013067 0ustar hornikusers\name{ hivDK } \alias{ hivDK } \docType{ data } \title{ hivDK: seroconversion in a cohort of Danish men} \description{ Data from a survey of HIV-positivity of a cohort of Danish men followed by regular tests from 1983 to 1989. } \usage{ data(hivDK) } \format{ A data frame with 297 observations on the following 7 variables. \describe{ \item{\code{id}}{ID of the person} \item{\code{entry}}{Date of entry to the study. Date variable.} \item{\code{well}}{Date last seen seronegative. Date variable.} \item{\code{ill}}{Date first seen seroconverted. Date variable.} \item{\code{bth}}{Year of birth minus 1950.} \item{\code{pyr}}{Annual number of sexual partners.} \item{\code{us}}{Indicator of wheter the person has visited the USA.} } } \source{ Mads Melbye, Statens Seruminstitut. } \references{ Becker N.G. and Melbye M.: Use of a log-linear model to compute the empirical survival curve from interval-censored data, with application to data on tests for HIV-positivity, Australian Journal of Statistics, 33, 125--133, 1990. Melbye M., Biggar R.J., Ebbesen P., Sarngadharan M.G., Weiss S.H., Gallo R.C. and Blattner W.A.: Seroepidemiology of HTLV-III antibody in Danish homosexual men: prevalence, transmission and disease outcome. British Medical Journal, 289, 573--575, 1984. } \examples{ data(hivDK) str(hivDK) } \keyword{ datasets } Epi/man/gmortDK.Rd0000644000175100001440000000303112144476641013424 0ustar hornikusers\name{gmortDK} \alias{gmortDK} \docType{data} \title{Population mortality rates for Denmark in 5-years age groups.} \description{ The \code{gmortDK} data frame has 418 rows and 21 columns. } \format{ This data frame contains the following columns: \tabular{rl}{ \code{agr}: \tab Age group, 0:0--4, 5:5--9,..., 90:90+. \cr \code{per}: \tab Calendar period, 38: 1938--42, 43: 1943--47, ..., 88:1988-92. \cr \code{sex}: \tab Sex, 1: male, 2: female. \cr \code{risk}: \tab Number of person-years in the Danish population. \cr \code{dt}: \tab Number of deaths. \cr \code{rt}: \tab Overall mortality rate in cases per 1000 person-years, i.e. \code{rt=1000*dt/risk} \cr \tab Cause-specific mortality rates in cases per 1000 person-years: \cr \code{r1}: \tab Infections \cr \code{r2}: \tab Cancer. \cr \code{r3}: \tab Tumors, benign, unspecific nature. \cr \code{r4}: \tab Endocrine, metabolic. \cr \code{r5}: \tab Blood. \cr \code{r6}: \tab Nervous system, psychiatric. \cr \code{r7}: \tab Cerebrovascular. \cr \code{r8}: \tab Cardiac. \cr \code{r9}: \tab Respiratory diseases, excl. cancer. \cr \code{r10}: \tab Liver, excl. cancer. \cr \code{r11}: \tab Digestive, other. \cr \code{r12}: \tab Genitourinary. \cr \code{r13}: \tab Ill-defined symptoms. \cr \code{r14}: \tab All other, natural. \cr \code{r15}: \tab Violent. \cr } } \source{ Statistics Denmark, National board of health provided original data. Michael Andersson grouped the causes of death. } \examples{ data(gmortDK) } \seealso{\code{\link{thoro}}, \code{\link{mortDK}}} \keyword{datasets} Epi/man/gen.exp.Rd0000644000175100001440000001450012144476641013424 0ustar hornikusers\name{gen.exp} \alias{gen.exp} \title{ Generate covariates for drug-exposure follow-up from drug purchase records. } \description{ From records of drug purchase and possibly known treatment intensity, the time since first drug use and cumulative dose at prespecified times is computed. Optionally, lagged exposures are computed too, i.e. cumulative exposure a prespecified time ago. } \usage{ gen.exp(purchase, id = "id", dop = "dop", amt = "amt", dpt = "dpt", fu, doe = "doe", dox = "dox", breaks, use.dpt = ( dpt \%in\% names(purchase) ), lags = NULL, push.max = Inf, pred.win = Inf, lag.dec = 1 ) } \arguments{ \item{purchase}{Data frame with columns \code{id}-person id, \code{dop}-date of purchase, \code{amt}-amount purchased, and optionally \code{dpt}-defined daily dose, that is how much is assumed to be ingested per unit time. The time unit used here is assumed to be the same as that used in \code{dop}, so despite the name it is not necessarily measured per day.} \item{id}{Name of the id variable in the data frame.} \item{dop}{Name of the date of purchase variable in the data frame.} \item{amt}{Name of the amount purchased variable in the data frame.} \item{dpt}{Name of the dose-per-time variable in the data frame.} \item{fu}{Data frame with follow-up period for each person, the person id variable must have the same name as in the \code{purchase} data frame.} \item{doe}{Name of the date of entry variable.} \item{dox}{Name of the date of exit variable.} \item{use.dpt}{Logical, should we use information on dose per time.} \item{breaks}{Numerical vector of time points where the time since exposure and the cumulative dose are computed.} \item{lags}{Numerical vector of lag-times used in computing lagged cumulative doses.} \item{push.max}{How much can purchases maximally be pushed forward in time. See details.} \item{pred.win}{The length of the window used for constructing the average dose per time used to compute the duration of the last purchase} \item{lag.dec}{How many decimals to use in the construction of names for the lagged exposure variables} } \details{ Each purchase record is converted into a time-interval of exposure. If \code{use.dpt} is \code{TRUE} then the dose per time information is used to compute the exposure interval associated with each purchase. Exposure intervals are stacked, that is each interval is put after any previous. This means that the start of exposure to a given purchase can be pushed into the future. The parameter \code{push.max} indicates the maximally tolerated push. If this is reached by a person, the assumption is that some of the purchased drug is not counted in the exposure calculations. The \code{dpt} can either be a constant, basically translating the purchased amount into exposure time the same way for all persons, or it can be a vector with different treatment intensities for each purchase. In any case the cumulative dose is computed taking this into account. If \code{use.dpt} is \code{FALSE} then the exposure from one purchase is assumed to stretch over the time to the next purchase, so we are effectively assuming different rates of dose per time between any two adjacent purchases. Moreover, with this approach, periods of non-exposure does not exist. The intention of this function is to generate covariates for a particular drug for the entire follow-up of each person. The reason that the follow-up prior to drug purchase and post-exposure is included is that the covariates must be defined for these periods too, in order to be useful for analysis of disease outcomes. } \value{A data frame with one record per follow-up interval between \code{breaks}, with columns: \describe{ \item{\code{id}}{person id.} \item{\code{dof}}{date of follow up, i.e. start of interval. Apart from possibly the first interval for each person, this will assume values in the set of the values in \code{breaks}.} \item{\code{Y}}{the length of interval.} \item{\code{tfi}}{time from first initiation of drug.} \item{\code{tfc}}{time from latest cessation of drug.} \item{\code{cdur}}{cumulative time on the drug.} \item{\code{cdos}}{cumulative dose.} \item{\code{ldos}}{suffixed with one value per element in \code{lags}, the latter giving the cumulative doses \code{lags} before \code{dof}.} } } \author{Bendix Carstensen, \email{bxc@steno.dk}} \seealso{\code{\link{Lexis}}, \code{\link{splitLexis}}} \examples{ # Construct a simple data frame of purchases for 3 persons # The purchase units (in variable dose) correspond to n <- c( 10, 17, 8 ) dop <- c( 1995.2+cumsum(sample(1:4/10,n[1],replace=TRUE)), 1997.3+cumsum(sample(1:4/10,n[2],replace=TRUE)), 1997.3+cumsum(sample(1:4/10,n[3],replace=TRUE)) ) amt <- sample( 1:3/15, sum(n), replace=TRUE ) dpt <- sample( 15:20/25, sum(n), replace=TRUE ) dfr <- data.frame( id = rep(1:3,n), dop, amt = amt, dpt = dpt ) round( dfr, 3 ) # Construct a simple dataframe for follow-up periods for these 3 persons fu <- data.frame( id = 1:3, doe = c(1995,1997,1996)+1:3/4, dox = c(2001,2003,2002)+1:3/5 ) round( fu, 3 ) dpos <- gen.exp( dfr, fu = fu, breaks = seq(1990,2015,0.5), lags = 2:3/5 ) xpos <- gen.exp( dfr, fu = fu, use.dpt = FALSE, breaks = seq(1990,2015,0.5), lags = 2:3/5 ) cbind( xpos, dpos ) # How many relevant columns nvar <- ncol(xpos)-3 clrs <- rainbow(nvar) # Show how the variables relate to the follow-up time par( mfrow=c(3,1), mar=c(3,3,1,1), mgp=c(3,1,0)/1.6, bty="n" ) for( i in unique(xpos$id) ) matplot( xpos[xpos$id==i,"dof"], xpos[xpos$id==i,-(1:3)], xlim=range(xpos$dof), ylim=range(xpos[,-(1:3)]), type="l", lwd=2, lty=1, col=clrs, ylab="", xlab="Date of follow-up" ) ytxt <- par("usr")[3:4] ytxt <- ytxt[1] + (nvar:1)*diff(ytxt)/(nvar+2) xtxt <- rep( sum(par("usr")[1:2]*c(0.98,0.02)), nvar ) text( xtxt, ytxt, colnames(xpos)[-(1:3)], font=2, col=clrs, cex=1.5, adj=0 ) } \keyword{data manipulation} Epi/man/ftrend.Rd0000644000175100001440000000476612144476641013357 0ustar hornikusers\name{ftrend} \alias{ftrend} \title{Fit a floating trend to a factor in generalized linear model} \description{ Fits a "floating trend" model to the given factor in a glm in a generalized linear model by centering covariates. } \usage{ ftrend(object, ...) } \arguments{ \item{object}{fitted \code{lm} or \code{glm} object. The model must not have an intercept term} \item{...}{arguments to the \code{nlm} function} } \details{ \code{ftrend()} calculates "floating trend" estimates for factors in generalized linear models. This is an alternative to treatment contrasts suggested by Greenland et al. (1999). If a regression model is fitted with no intercept term, then contrasts are not used for the first factor in the model. Instead, there is one parameter for each level of this factor. However, the interpretation of these parameters, and their variance-covariance matrix, depends on the numerical coding used for the covariates. If an arbitrary constant is added to the covariate values, then the variance matrix is changed. The \code{ftrend()} function takes the fitted model and works out an optimal constant to add to the covariate values so that the covariance matrix is approximately diagonal. The parameter estimates can then be treated as approximately independent, thus simplifying their presentation. This is particularly useful for graphical display of dose-response relationships (hence the name). Greenland et al. (1999) originally suggested centring the covariates so that their weighted mean, using the fitted weights from the model, is zero. This heuristic criterion is improved upon by \code{ftrend()} which uses the same minimum information divergence criterion as used by Plummer (2003) for floating variance calculations. \code{ftrend()} calls \code{nlm()} to do the minimization and will pass optional arguments to control it. } \note{ The "floating trend" method is an alternative to the "floating absolute risk" method, which is implemented in the function \code{float()}. } \value{ A list with the following components \item{coef}{coefficients for model with adjusted covariates.} \item{vcov}{Variance-covariance matrix of adjusted coefficients.} } \references{ Greenland S, Michels KB, Robins JM, Poole C and Willet WC (1999) Presenting statistical uncertainty in trends and dose-response relations, \emph{American Journal of Epidemiology}, \bold{149}, 1077-1086. } \author{Martyn Plummer} \seealso{\code{\link{float}}} \keyword{regression} Epi/man/foreign.Lexis.Rd0000644000175100001440000000607212144476641014601 0ustar hornikusers\name{foreign.Lexis} \Rdversion{1.1} \alias{msdata} \alias{msdata.Lexis} \alias{etm} \alias{etm.Lexis} \title{Create a data structures suitable for use with packages mstate, etm. } \description{ The \code{mstate} package requires input in the form of a stacked dataset with specific variable names. This is provided by \code{msdata.Lexis}. The resulting dataframe contains the same information as the result of a call to \code{\link{stack.Lexis}}. The \code{etm} package requires input (almost) in the form of a \code{Lexis} object, but with specific column names etc. This is provided by \code{etm.Lexis}. } \usage{ msdata(obj, ...) \method{msdata}{Lexis}(obj, time.scale = timeScales(obj)[1], ... ) \method{etm}{Lexis}( obj, time.scale = timeScales(obj)[1], cens.name = "cens", s = 0, t = "last", covariance = TRUE, delta.na = TRUE, ... ) } \arguments{ \item{obj}{A \code{\link{Lexis}} object.} \item{time.scale}{Name or number of timescale in the \code{Lexis} object.} \item{cens.name}{Name of the code for censoring used by \code{etm}. It is only necessary to change this if one of the states in the \code{Lexis} object has name "\code{cens}".} \item{s}{Passed on to \code{etm}.} \item{t}{Passed on to \code{etm}.} \item{covariance}{Passed on to \code{etm}.} \item{delta.na}{Passed on to \code{etm}.} \item{\dots}{Further arguments.} } \value{ \code{msdata.Lexis} returns a dataframe with the \code{Lexis} specific variables stripped, and with the following added: \code{id}, \code{Tstart}, \code{Tstop}, \code{from}, \code{to}, \code{trans}, \code{status}, which are used in the \code{mstate} package. \code{etm.Lexis} transforms the \code{Lexis} object into a dataframe suitable for analysis by the function \code{etm} from the \code{etm} package, and actually calls this function, so returns an object of class \code{etm}. } \author{ Bendix Carstensen, \email{bxc@steno.dk}, \url{http://BendixCarstensen.com} } \examples{ data(DMlate) str(DMlate) dml <- Lexis( entry=list(Per=dodm,Age=dodm-dobth,DMdur=0), exit=list(Per=dox), exit.status=factor(!is.na(dodth),labels=c("DM","Dead")), data=DMlate[1:1000,] ) dmi <- cutLexis( dml, cut=dml$doins, new.state="Ins", pre="DM" ) summary( dmi ) # Use the interface to the mstate package if( require(mstate) ) { ms.dmi <- msdata.Lexis( dmi ) # Check that all the transitions and person-years got across. with( ms.dmi, rbind( table(status,trans), tapply(Tstop-Tstart,trans,sum) ) ) } # Use the etm package directly with a Lexis object if( require(etm) ) { dmi <- subset(dmi,lex.id<1000) etm.D <- etm.Lexis( dmi, time.scale=3 ) plot( etm.D, col=rainbow(5), lwd=2, lty=1, xlab="DM duration" ) } } \seealso{ \code{\link{stack.Lexis}}, \code{\link[mstate:msprep]{msdata}}, \code{\link[etm:etm]{etm}} } \keyword{survival} Epi/man/float.Rd0000644000175100001440000000726412144476641013176 0ustar hornikusers\name{float} \alias{float} \alias{print.floated} \title{Calculate floated variances} \description{ Given a fitted model object, the \code{float()} function calculates floating variances (a.k.a. quasi-variances) for a given factor in the model. } \usage{ float(object, factor, iter.max=50) } \arguments{ \item{object}{a fitted model object} \item{factor}{character string giving the name of the factor of interest. If this is not given, the first factor in the model is used.} \item{iter.max}{Maximum number of iterations for EM algorithm} } \details{ The \code{float()} function implements the "floating absolute risk" proposal of Easton, Peto and Babiker (1992). This is an alternative way of presenting parameter estimates for factors in regression models, which avoids some of the difficulties of treatment contrasts. It was originally designed for epidemiological studies of relative risk, but the idea is widely applicable. Treatment contrasts are not orthogonal. Consequently, the variances of treatment contrast estimates may be inflated by a poor choice of reference level, and the correlations between them may also be high. The \code{float()} function associates each level of the factor with a "floating" variance (or quasi-variance), including the reference level. Floating variances are not real variances, but they can be used to calculate the variance error of contrast by treating each level as independent. Plummer (2003) showed that floating variances can be derived from a covariance structure model applied to the variance-covariance matrix of the contrast estimates. This model can be fitted by minimizing the Kullback-Leibler information divergence between the true distribution of the parameter estimates and the simplified distribution given by the covariance structure model. Fitting is done using the EM algorithm. In order to check the goodness-of-fit of the floating variance model, the \code{float()} function compares the standard errors predicted by the model with the standard errors derived from the true variance-covariance matrix of the parameter contrasts. The maximum and minimum ratios between true and model-based standard errors are calculated over all possible contrasts. These should be within 5 percent, or the use of the floating variances may lead to invalid confidence intervals. } \value{ An object of class \code{floated}. This is a list with the following components \item{coef}{A vector of coefficients. These are the same as the treatment contrasts but the reference level is present with coefficient 0.} \item{var}{A vector of floating (or quasi-) variances} \item{limits}{The bounds on the accuracy of standard errors over all possible contrasts} } \note{ Menezes(1999) and Firth and Menezes (2004) take a slightly different approach to this problem, using a pseudo-likelihood approach to fit the quasi-variance model. Their work is implemented in the package qvcalc. } \references{ Easton DF, Peto J and Babiker GAG (1991) Floating absolute risk: An alternative to relative risk in survival and case control analysis avoiding an arbitrary reference group. \emph{Statistics in Medicine}, \bold{10}, 1025-1035. Firth D and Mezezes RX (2004) Quasi-variances. \emph{Biometrika} \bold{91}, 65-80. Menezes RX(1999) More useful standard errors for group and factor effects in generalized linear models. \emph{D.Phil. Thesis}, Department of Statistics, University of Oxford. Plummer M (2003) Improved estimates of floating absolute risk, \emph{Statistics in Medicine}, \bold{23}, 93-104. } \author{Martyn Plummer} \seealso{\code{\link{ftrend}}, \code{qvcalc}} \keyword{regression} Epi/man/fit.mult.Rd0000644000175100001440000000357312144476641013632 0ustar hornikusers\name{fit.mult} \alias{fit.mult} \title{ Fits a multiplicative relative risk model to interval censored data. } \description{ Utility function. The model fitted assumes a piecewise constant baseline rate in intervals specified by the argument \code{breaks}, and a multiplicative relative risk function. } \usage{ fit.mult( y, rates.frame, cov.frame, start ) } \arguments{ \item{y}{Binary vector of outcomes} \item{rates.frame}{Dataframe expanded from the original data by \code{\link{expand.data}}, cooresponding to covariates for the rate parameters.} \item{cov.frame}{ do., but covariates corresponding to the \code{formula} argument of \code{\link{Icens}}} \item{start}{Starting values for the rate parameters. If not supplied, then starting values are generated.} } \details{ The model is fitted by alternating between two generalized linear models where one estimates the underlying rates in the intervals, and the other estimates the log-relative risks. } \value{ A list with three components: \item{rates}{A glm object from a binomial model with log-link, estimating the baseline rates.} \item{cov}{A glm object from a binomial model with complementary log-log link, estimating the log-rate-ratios} \item{niter}{Nuber of iterations, a scalar} } \references{ B Carstensen: Regression models for interval censored survival data: application to HIV infection in Danish homosexual men. Statistics in Medicine, 15(20):2177-2189, 1996. CP Farrington: Interval censored survival data: a generalized linear modelling approach. Statistics in Medicine, 15(3):283-292, 1996. } \author{ Martyn Plummer, \email{plummer@iarc.fr}, Bendix Carstensen, \email{bxc@steno.dk} } \seealso{ \code{\link{Icens}} \code{\link{fit.add}} } \examples{ data( HIV.dk ) } \keyword{ models } \keyword{ regression } \keyword{ survival } Epi/man/fit.baseline.rd0000644000175100001440000000162012144476641014462 0ustar hornikusers\name{fit.baseline} \alias{fit.baseline} \title{ Fit a piecewise contsnt intesity model for interval censored data. } \description{ Utility function Fits a binomial model with logaritmic link, with \code{y} as outcome and covariates in \code{rates.frame} to estimate rates in the inttervals between \code{breaks}. } \usage{ fit.baseline( y, rates.frame, start ) } \arguments{ \item{y}{Binary vector of outcomes} \item{rates.frame}{Dataframe expanded from the original data by \code{\link{expand.data}}} \item{start}{Starting values for the rate parameters. If not supplied, then starting values are generated.} } \value{ A \code{\link{glm}} object, with binomial error and logaritmic link. } \author{ Martyn Plummer, \email{plummer@iarc.fr} } \seealso{ \code{\link{fit.add}} \code{\link{fit.mult}} } \keyword{ models } \keyword{ regression } \keyword{ survival } Epi/man/fit.add.Rd0000644000175100001440000000264212144476641013375 0ustar hornikusers\name{fit.add} \alias{fit.add} \title{ Fit an addive excess risk model to interval censored data. } \description{ Utility function. The model fitted assumes a piecewise constant intensity for the baseline, and that the covariates act additively on the rate scale. } \usage{ fit.add( y, rates.frame, cov.frame, start ) } \arguments{ \item{y}{Binary vector of outcomes} \item{rates.frame}{Dataframe expanded from the original data by \code{\link{expand.data}}, cooresponding to covariates for the rate parameters.} \item{cov.frame}{ do., but covariates corresponding to the \code{formula} argument of \code{\link{Icens}}} \item{start}{Starting values for the rate parameters. If not supplied, then starting values are generated.} } \value{ A list with one component: \item{rates}{A glm object from a binomial model with log-link function.} } \references{ B Carstensen: Regression models for interval censored survival data: application to HIV infection in Danish homosexual men. Statistics in Medicine, 15(20):2177-2189, 1996. CP Farrington: Interval censored survival data: a generalized linear modelling approach. Statistics in Medicine, 15(3):283-292, 1996. } \author{ Martyn Plummer, \email{plummer@iarc.fr} } \seealso{ \code{\link{Icens}} \code{\link{fit.mult}} } \examples{ data( HIV.dk ) } \keyword{ models } \keyword{ regression } \keyword{ survival } Epi/man/expand.data.rd0000644000175100001440000000333212144476641014310 0ustar hornikusers\name{expand.data} \alias{expand.data} \title{ Function to expand data for regression analysis of interval censored data. } \description{ This is a utility function. The original records with \code{first.well}, \code{last.well} and \code{first.ill} are expanded to multiple records; several for each interval where the person is known to be well and one where the person is known to fail. At the same time columns for the covariates needed to estimate rates and the response variable are generated. } \usage{ expand.data(fu, formula, breaks, data) } \arguments{ \item{fu}{A 3-column matrix with \code{first.well}, \code{last.well} and \code{first.ill} in each row.} \item{formula}{Model fromula, used to derive the model matrix.} \item{breaks}{Defines the intervals in which the baseline rate is assumed constant. All follow-up before the first and after the last break is discarded.} \item{data}{Datafrem in which \code{fu} and \code{formula} is interpreted.} } \value{ Returns a list with three components \item{rates.frame}{Dataframe of covariates for estimation of the baseline rates --- one per interval defined by \code{breaks}.} \item{cov.frame}{Dataframe for estimation of the covariate effects. A data-framed version of the designmatrix from \code{formula}.} \item{y}{Response vector.} } \references{ B Carstensen: Regression models for interval censored survival data: application to HIV infection in Danish homosexual men. Statistics in Medicine, 15(20):2177-2189, 1996. } \author{ Martyn Plummer, \email{plummer@iarc.fr} } \seealso{ \code{\link{Icens}} \code{\link{fit.mult}} \code{\link{fit.add}} } \keyword{ models } \keyword{ regression } \keyword{ survival } Epi/man/ewrates.Rd0000644000175100001440000000172212144476641013534 0ustar hornikusers\name{ewrates} \alias{ewrates} \docType{data} \title{Rates of lung and nasal cancer mortality, and total mortality.} \description{ England and Wales mortality rates from lung cancer, nasal cancer, and all causes 1936 - 1980. The 1936 rates are repeated as 1931 rates in order to accomodate follow up for the \code{\link{nickel}} study. } \usage{data(ewrates)} \format{ A data frame with 150 observations on the following 5 variables: \tabular{rl}{ \code{id}: \tab Subject identifier (numeric) \cr \code{year} \tab Calendar period, 1931: 1931--35, 1936: 1936--40, \ldots \cr \code{age} \tab Age class: 10: 10--14, 15:15--19, \ldots \cr \code{lung} \tab Lung cancer mortality rate per 1,000,000 py. \cr \code{nasal} \tab Nasal cancer mortality rate per 1,000,000 py. \cr \code{other} \tab All cause mortality rate per 1,000,000 py. } } \source{ From Breslow and Day, Vol II, Appendix IX. } \examples{ data(ewrates) str(ewrates) } \keyword{datasets} Epi/man/effx.match.Rd0000644000175100001440000000474412144476641014114 0ustar hornikusers\name{effx.match} \alias{effx.match} \title{Function to calculate effects for individually matched case-control studies} \description{ The function calculates the effects of an exposure on a response, possibly stratified by a stratifying variable, and/or controlled for one or more confounding variables. } \usage{ effx.match(response, exposure, match, strata=NULL, control=NULL, base=1, digits=3, alpha=0.05, data=NULL) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{response}{The \code{response} variable - must be numeric} \item{exposure}{The \code{exposure} variable can be numeric or a factor} \item{match}{The variable which identifies the matched sets} \item{strata}{The \code{strata} stratifying variable - must be a factor} \item{control}{ The \code{control} variable(s). These are passed as a list if there are more than one of them.} \item{base}{Baseline for the effects of a categorical exposure, default 1} \item{digits}{Number of significant digits for the effects, default 3} \item{alpha}{1 - confidence level} \item{data}{\code{data} refers to the data used to evaluate the function} } \details{Effects are calculated odds ratios. The function is a wrapper for clogit, from the survival package. The k-1 effects for a categorical exposure with k levels are relative to a baseline which, by default, is the first level. The effect of a metric (quantitative) exposure is calculated per unit of exposure. The exposure variable can be numeric or a factor, but if it is an ordered factor the order will be ignored. } \value{ % ~Describe the value returned % If it is a LIST, use \item{comp1 }{Effects of exposure} \item{comp2 }{Tests of significance} % ... } \references{ www.mhills.pwp.blueyonder.co.uk } \author{Michael Hills} %\note{ ~~further notes~~ } %\seealso{ ~~objects to See Also as \code{\link{~~fun~~}}, ~~~ } \examples{ library(Epi) library(survival) data(bdendo) # d is the case-control variable, set is the matching variable. # The variable est is a factor and refers to estrogen use (no,yes) # The variable hyp is a factor with 2 levels and refers to hypertension (no, yes) # effect of est on the odds of being a case effx.match(d,exposure=est,match=set,data=bdendo) # effect of est on the odds of being a case, stratified by hyp effx.match(d,exposure=est,match=set,strata=hyp,data=bdendo) # effect of est on the odds of being a case, controlled for hyp effx.match(d,exposure=est,match=set,control=hyp,data=bdendo) } \keyword{ models } \keyword{ regression } Epi/man/effx.Rd0000644000175100001440000000737412144476641013023 0ustar hornikusers\name{effx} \alias{effx} \title{Function to calculate effects} \description{ The function calculates the effects of an exposure on a response, possibly stratified by a stratifying variable, and/or controlled for one or more confounding variables. } \usage{ effx( response, type = "metric", fup = NULL, exposure, strata = NULL, control = NULL, weights = NULL, eff = NULL, alpha = 0.05, base = 1, digits = 3, data = NULL ) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{response}{The \code{response} variable - must be numeric or logical. If logical, \code{TRUE} is considered the outcome.} \item{type}{The type of response\code{type} - must be one of "metric", "binary", "failure", or "count"} \item{fup}{The \code{fup} variable contains the follow-up time for a failure response}. This must be numeric. \item{exposure}{The \code{exposure} variable can be numeric or a factor} \item{strata}{The \code{strata} stratifying variable - must be a factor} \item{control}{The \code{control} variable(s) (confounders) - these are passed as a list if there are more than one.} \item{weights}{Frequency weights for binary response only} \item{eff}{How should effects be measured. If \code{response} is binomial, the default is "OR" (odds-ratio) with "RR" (relative risk) as an option. If \code{response} is failure, the default is "RR" (rate-ratio) with "RD" (rate difference) as an option.} \item{base}{Baseline for the effects of a categorical exposure, either a number or a name of the level. Defaults to 1} \item{digits}{Number of significant digits for the effects, default 3} \item{alpha}{1 - confidence level} \item{data}{\code{data} refers to the data used to evaluate the function} } \details{The function is a wrapper for glm. Effects are calculated as differences in means for a metric response, odds ratios/relatiev risks for a binary response, and rate ratios/rate differences for a failure or count response. The k-1 effects for a categorical exposure with k levels are relative to a baseline which, by default, is the first level. The effect of a metric (quantitative) exposure is calculated per unit of exposure. The exposure variable can be numeric or a factor, but if it is an ordered factor the order will be ignored.} \value{ % ~Describe the value returned % If it is a LIST, use \item{comp1 }{Effects of exposure} \item{comp2 }{Tests of significance} % ... } \references{ www.mhills.pwp.blueyonder.co.uk } \author{Michael Hills} %\note{ ~~further notes~~ } %\seealso{ ~~objects to See Also as \code{\link{~~fun~~}}, ~~~ } \examples{ library(Epi) data(births) births$hyp <- factor(births$hyp,labels=c("normal","hyper")) births$sex <- factor(births$sex,labels=c("M","F")) # bweight is the birth weight of the baby in gms, and is a metric # response (the default) # effect of hypertension on birth weight effx(bweight,exposure=hyp,data=births) # effect of hypertension on birth weight stratified by sex effx(bweight,exposure=hyp,strata=sex,data=births) # effect of hypertension on birth weight controlled for sex effx(bweight,exposure=hyp,control=sex,data=births) # effect of gestation time on birth weight effx(bweight,exposure=gestwks,data=births) # effect of gestation time on birth weight stratified by sex effx(bweight,exposure=gestwks,strata=sex,data=births) # effect of gestation time on birth weight controlled for sex effx(bweight,exposure=gestwks,control=sex,data=births) # lowbw is a binary response coded 1 for low birth weight and 0 otherwise # effect of hypertension on low birth weight effx(lowbw,type="binary",exposure=hyp,data=births) effx(lowbw,type="binary",exposure=hyp,eff="RR",data=births) } \keyword{ models } \keyword{ regression } Epi/man/diet.Rd0000644000175100001440000000474512144476641013017 0ustar hornikusers\name{diet} \alias{diet} \docType{data} \title{Diet and heart data} \description{ The \code{diet} data frame has 337 rows and 14 columns. The data concern a subsample of subjects drawn from larger cohort studies of the incidence of coronary heart disease (CHD). These subjects had all completed a 7-day weighed dietary survey while taking part in validation studies of dietary questionnaire methods. Upon the closure of the MRC Social Medicine Unit, from where these studies were directed, it was found that 46 CHD events had occurred in this group, thus allowing a serendipitous study of the relationship between diet and the incidence of CHD. } \format{ This data frame contains the following columns: \tabular{rl}{ \code{id}: \tab subject identifier, a numeric vector. \cr \code{doe}: \tab date of entry into follow-up study, a \code{\link{Date}} variable. \cr \code{dox}: \tab date of exit from the follow-up study, a \code{\link{Date}} variable. \cr \code{dob}: \tab date of birth, a \code{\link{Date}} variable. \cr \code{y}: \tab - number of years at risk, a numeric vector. \cr \code{fail}: \tab status on exit, a numeric vector (codes 1, 3, 11, and 13 represent CHD events) \cr \code{job}: \tab occupation, a factor with levels \code{Driver} \code{Conductor} \code{Bank worker} \cr \code{month}: \tab month of dietary survey, a numeric vector \cr \code{energy}: \tab total energy intake (KCal per day/100), a numeric vector \cr \code{height}: \tab (cm), a numeric vector \cr \code{weight}: \tab (kg), a numeric vector \cr \code{fat}: \tab fat intake (g/day), a numeric vector \cr \code{fibre}: \tab dietary fibre intake (g/day), a numeric vector \cr \code{energy.grp}: \tab high daily energy intake, a factor with levels \code{<=2750 KCal} \code{>2750 KCal} \cr \code{chd}: \tab CHD event, a numeric vector (1=CHD event, 0=no event) \cr } } \source{ The data are described and used extensively by Clayton and Hills, Statistical Models in Epidemiology, Oxford University Press, Oxford:1993. They were rescued from destruction by David Clayton and reentered from paper printouts. } \examples{ data(diet) # Illustrate the follow-up in a Lexis diagram Lexis.diagram( age=c(30,75), date=c(1965,1990), entry.date=cal.yr(doe), exit.date=cal.yr(dox), birth.date=cal.yr(dob), fail=(fail>0), pch.fail=c(NA,16), col.fail=c(NA,"red"), cex.fail=1.0, data=diet ) } \keyword{datasets} Epi/man/detrend.Rd0000644000175100001440000000207012144476641013504 0ustar hornikusers\name{detrend} \alias{detrend} \title{ Projection of a model matrix on to the orthogonal complement of a trend. } \description{ The columns of the model matrix \code{M} is projected on the orthogonal complement to the matrix \code{(1,t)}. Orthogonality is defined w.r.t. an inner product defined by the weights \code{weight}. } \usage{ detrend( M, t, weight = rep(1, nrow(M)) ) } \arguments{ \item{M}{ A model matrix. } \item{t}{ The trend defining a subspace. A numerical vector of length \code{nrow(M)} } \item{weight}{ Weights defining the inner product of vectors \code{x} and \code{y} as \code{sum(x*w*y)}. A numerical vector of length \code{nrow(M)}, defaults to a vector of \code{1}s.} } \details{ The functions is intended to be used in parametrization of age-period-cohort models. } \value{ A full-rank matrix with columns orthogonal to \code{(1,t)}. } \author{ Bendix Carstensen, Steno Diabetes Center, \url{http://BendixCarstensen.com}, with help from Peter Dalgaard. } \seealso{ \code{\link{projection.ip}} } \keyword{array} Epi/man/cutLexis.Rd0000644000175100001440000001676412144476641013676 0ustar hornikusers\name{cutLexis} \alias{cutLexis} \alias{countLexis} \title{ Cut follow-up at a specified date for each person. } \description{ Follow-up intervals in a Lexis object are divided into two sub-intervals: one before and one after an intermediate event. The intermediate event may denote a change of state, in which case the entry and exit status variables in the split Lexis object are modified. } \usage{ cutLexis( data, cut, timescale = 1, new.state = nlevels(data$lex.Cst)+1, new.scale = FALSE, split.states = FALSE, progressive = FALSE, precursor.states = NULL, count = FALSE) countLexis( data, cut, timescale = 1 ) } \arguments{ \item{data}{A \code{Lexis} object.} \item{cut}{A numeric vector with the times of the intermediate event. If a time is missing (\code{NA}) then the event is assumed to occur at time \code{Inf}. \code{cut} can also be a dataframe, see details.} \item{timescale}{The timescale that \code{cut} refers to. Numeric or character.} \item{new.state}{The state to which a transition occur at time \code{cut}. It may be a single value, which is then applied to all rows of \code{data}, or a vector with a separate value for each row} \item{new.scale}{Name of the timescale defined as "time since entry to new.state". If \code{TRUE} a name for the new scale is constructed. See details.} \item{split.states}{Should states that are not precursor states be split according to whether the intermediate event has occurred.} \item{progressive}{a logical flag that determines the changes to exit status. See details.} \item{precursor.states}{an optional vector of states to be considered as "less severe" than \code{new.state}. See Details below} \item{count}{logical indicating whether the \code{countLexis} options should be used. Specifying \code{count=TRUE} amounts to calling \code{countLexis}, in which case the arguments \code{new.state}, \code{progressive} and \code{precursor.states} will be ignored. } } \value{ A \code{Lexis} object, for which each follow-up interval containing the cutpoint is split in two: one before and one after the cutpoint. An extra time-scale is added; the time since the event at \code{cut}. This is \code{NA} for any follow-up prior to the intermediate event. } \note{ The \code{cutLexis} function superficially resembles the \code{splitLexis} function. However, the \code{splitLexis} function splits on a vector of common cut-points for all rows of the Lexis object, whereas the \code{cutLexis} function splits on a single time point, which may be distinct for each row, modifies the status variables, adds a new timescale and updates the attribute "time.since". This attribute is a character vector of the same length as the "time.scales" attribute, whose value is '""' if the corresponding timescale is defined for any piece of follow-up, and if the corresponding time scale is defined by say \code{cutLexis(obj,new.state="A",new.scale=TRUE)}, it has the value "A". } \details{ The \code{cutLexis} function allows a number of different ways of specifying the cutpoints and of modifying the status variable. If the \code{cut} argument is a dataframe it must have columns \code{lex.id}, \code{cut} and \code{new.state}. The values of \code{lex.id} must be unique. In this case it is assumed that each row represents a cutpoint (on the timescale indicated in the argument \code{timescale}). This cutpoint will be applied to all records in \code{data} with the corresponding \code{lex.id}. This makes it possible to apply \code{cutLexis} to a split \code{Lexis} object. If a \code{new.state} argument is supplied, the status variable is only modified at the time of the cut point. However, it is often useful to modify the status variable after the cutpoint when an important event occurs. There are three distinct ways of doing this. If the \code{progressive=TRUE} argument is given, then a "progressive" model is assumed, in which the status can either remain the same or increase during follow-up, but never decrease. This assumes that the state variables \code{lex.Cst} and \code{lex.Xst} are either numeric or ordered factors. In this case, if \code{new.state=X}, then any exit status with a value less than \code{X} is replaced with \code{X}. The Lexis object must already be progressive, so that there are no rows for which the exit status is less than the entry status. If \code{lex.Cst} and \code{lex.Xst} are factors they must be ordered factors if \code{progressive=TRUE} is given. As an alternative to the \code{progressive} argument, an explicit vector of precursor states, that are considered less severe than the new state, may be given. If \code{new.state=X} and \code{precursor.states=c(Y,Z)} then any exit status of \code{Y} or \code{Z} in the second interval is replaced with \code{X} and all other values for the exit status are retained. The \code{countLexis} function is a variant of \code{cutLexis} when the cutpoint marks a recurrent event, and the status variable is used to count the number of events that have occurred. Times given in \code{cut} represent times of new events. Splitting with \code{countLexis} increases the status variable by 1. If the current status is \code{X} and the exit status is \code{Y} before cutting, then after cutting the entry status is \code{X}, \code{X+1} for the first and second intervals, respectively, and the exit status is \code{X+1}, \code{Y+1} respectively. Moreover the values of the status is increased by 1 for all intervals for all intervals after the cut for the person in question. Hence, a call to \code{countLexis} is needed for as many times as the person with most events. But also it is immaterial in what order the cutpoints are entered. } \author{Bendix Carstensen, Steno Diabetes Center, \email{bxc@steno.dk}, Martyn Plummer, IARC, \email{plummer@iarc.fr} } \seealso{ \code{\link{splitLexis}}, \code{\link{Lexis}}, \code{\link{summary.Lexis}}, \code{\link{boxes.Lexis}} } \examples{ # A small artificial example xx <- Lexis( entry=list(age=c(17,24,33,29),per=c(1920,1933,1930,1929)), duration=c(23,57,12,15), exit.status=c(1,2,1,2) ) xx cut <- c(33,47,29,50) cutLexis(xx, cut, new.state=3, precursor=1) cutLexis(xx, cut, new.state=3, precursor=2) cutLexis(xx, cut, new.state=3, precursor=1:2) # The same as the last example cutLexis(xx, cut, new.state=3) # The same example with a factor status variable yy <- Lexis(entry = list(age=c(17,24,33,29),per=c(1920,1933,1930,1929)), duration = c(23,57,12,15), entry.status = factor(rep("alpha",4), levels=c("alpha","beta","gamma")), exit.status = factor(c("alpha","beta","alpha","beta"), levels=c("alpha","beta","gamma"))) cutLexis(yy,c(33,47,29,50),precursor="alpha",new.state="gamma") cutLexis(yy,c(33,47,29,50),precursor=c("alpha","beta"),new.state="aleph") ## Using a dataframe as cut argument rl <- data.frame( lex.id=1:3, cut=c(19,53,26), timescale="age", new.state=3 ) rl cutLexis( xx, rl ) cutLexis( xx, rl, precursor=1 ) cutLexis( xx, rl, precursor=0:2 ) ## It is immaterial in what order splitting and cutting is done xs <- splitLexis( xx, breaks=seq(0,100,10), time.scale="age" ) xs xsC <- cutLexis(xs, rl, precursor=0 ) xC <- cutLexis( xx, rl, pre=0 ) xC xCs <- splitLexis( xC, breaks=seq(0,100,10), time.scale="age" ) xCs str(xCs) } \keyword{survival} Epi/man/contr.cum.Rd0000644000175100001440000000306212144476641013771 0ustar hornikusers\name{contr.cum} \alias{contr.cum} \alias{contr.2nd} \alias{contr.diff} \alias{contr.orth} \title{ Contrast matrices } \description{ Return a matrix of contrasts for factor coding. } \usage{ contr.cum(n) contr.diff(n) contr.2nd(n) contr.orth(n) } \arguments{ \item{n}{A vector of levels for a factor, or the number of levels.} } \details{ These functions are used for creating contrast matrices for use in fitting regression models. The columns of the resulting matrices contain contrasts which can be used for coding a factor with \code{n} levels. \code{contr.cum} gives a coding corresponding to successive differences between factor levels. \code{contr.diff} gives a coding that correspond to the cumulative sum of the value for each level. This is not meaningful in a model where the intercept is included, therefore \code{n} columns ia always returned. \code{contr.2nd} gives contrasts corresponding to 2nd order differences between factor levels. Returns a matrix with \code{n-2} columns. \code{contr.orth} gives a matrix with \code{n-2} columns, which are mutually orthogonal and orthogonal to the matrix \code{cbind(1,1:n)} } \value{ A matrix with \code{n} rows and \code{k} columns, with \code{k}=\code{n} for \code{contr.diff} \code{k}=\code{n-1} for \code{contr.cum} \code{k}=\code{n-2} for \code{contr.2nd} and \code{contr.orth}. } \author{Bendix Carstensen} \seealso{ \code{\link{contr.treatment}} } \examples{ contr.cum(6) contr.2nd(6) contr.diff(6) contr.orth(6) } \keyword{design} \keyword{models} Epi/man/clogistic.Rd0000644000175100001440000000633712144476641014051 0ustar hornikusers\name{clogistic} \alias{clogistic} \title{Conditional logistic regression} \description{ Estimates a logistic regression model by maximizing the conditional likelihood. The conditional likelihood calculations are exact, and scale efficiently to strata with large numbers of cases. } \usage{ clogistic(formula, strata, data, subset, na.action, init, model = TRUE, x = FALSE, y = TRUE, contrasts = NULL, iter.max=20, eps=1e-6, toler.chol = sqrt(.Machine$double.eps)) } \arguments{ \item{formula}{Model formula} \item{strata}{Factor describing membership of strata for conditioning} \item{data}{data frame containing the variables in the formula and strata arguments} \item{subset}{subset of records to use} \item{na.action}{missing value handling} \item{init}{initial values} \item{model}{ a logical value indicating whether \emph{model frame} should be included as a component of the returned value} \item{x,y}{ logical values indicating whether the response vector and model matrix used in the fitting process should be returned as components of the returned value. } \item{contrasts}{ an optional list. See the \code{contrasts.arg} of \code{model.matrix.default} } \item{iter.max}{maximum number of iterations} \item{eps}{ Convergence tolerence. Iteration continues until the relative change in the conditional log likelihood is less than \code{eps}. Must be positive. } \item{toler.chol}{ Tolerance used for detection of a singularity during a Cholesky decomposition of the variance martrix. This is used to detect redundant predictor variables. Must be less than \code{eps}. } } \value{ An object of class \code{"clogistic"}. This is a list containing the following components: \item{coefficients}{ the estimates of the log-odds ratio parameters. If the model is over-determined there will be missing values in the vector corresponding to the redundant columns in the model matrix. } \item{var}{ the variance matrix of the coefficients. Rows and columns corresponding to any missing coefficients are set to zero. } \item{loglik}{ a vector of length 2 containing the log-likelihood with the initial values and with the final values of the coefficients. } \item{iter}{ number of iterations used. } \item{n}{ number of observations used. Observations may be dropped either because they are missing, or because they belong to a homogenous stratum. For more details on which observations were used, see \code{informative} below. } \item{informative}{ if \code{model=TRUE}, a logical vector of length equal to the number of rows in the model frame. This indicates whether an observation is informative, in the sense that it makes a non-zero contribution to the log-likelihood. If \code{model=FALSE}, this is NULL. } The output will also contain the following, for documentation see the \code{glm} object: \code{terms}, \code{formula}, \code{call}, \code{contrasts}, \code{xlevels}, and, optionally, \code{x}, \code{y}, and/or \code{frame}. } \examples{ data(bdendo) clogistic(d ~ cest + dur, strata=set, data=bdendo) } \author{Martyn Plummer} \seealso{\code{\link{glm}}} \keyword{models} Epi/man/ci.pd.Rd0000644000175100001440000000476312144476641013067 0ustar hornikusers\name{ci.pd} \alias{ci.pd} \title{ Compute confidence limits for a difference of two independent proportions. } \description{ The usual formula for the c.i. of at difference of proportions is inaccurate. Newcombe has compared 11 methods and method 10 in his paper looks like a winner. It is implemented here. } \usage{ ci.pd(aa, bb=NULL, cc=NULL, dd=NULL, method = "Nc", alpha = 0.05, conf.level=0.95, digits = 3, print = TRUE, detail.labs = FALSE ) } \arguments{ \item{aa}{Numeric vector of successes in sample 1. Can also be a matrix or array (see details).} \item{bb}{Successes in sample 2.} \item{cc}{Failures in sample 1.} \item{dd}{Failures in sample 2.} \item{method}{Method to use for calculation of confidence interval, see "Details".} \item{alpha}{Significance level} \item{conf.level}{Confidence level} \item{print}{Should an account of the two by two table be printed.} \item{digits}{How many digits should the result be rounded to if printed.} \item{detail.labs}{Should the computing of probability differences be reported in the labels.} } \details{ Implements method 10 from Newcombe(1998) (method="Nc") or from Agresti & Caffo(2000) (method="AC"). \code{aa}, \code{bb}, \code{cc} and \code{dd} can be vectors. If \code{aa} is a matrix, the elements \code{[1:2,1:2]} are used, with successes \code{aa[,1:2]}. If \code{aa} is a three-way table or array, the elements \code{aa[1:2,1:2,]} are used. } \value{ A matrix with three columns: probability difference, lower and upper limit. The number of rows equals the length of the vectors \code{aa}, \code{bb}, \code{cc} and \code{dd} or, if \code{aa} is a 3-way matrix, \code{dim(aa)[3]}. } \references{ RG Newcombe: Interval estimation for the difference between independent proportions. Comparison of eleven methods. Statistics in Medicine, 17, pp. 873-890, 1998. A Agresti & B Caffo: Simple and effective confidence intervals for proportions and differences of proportions result from adding two successes and two failures. The American Statistician, 54(4), pp. 280-288, 2000. } \author{ Bendix Carstensen, Esa Laara. \url{http://BendixCarstensen.com} } \seealso{ \code{\link{twoby2}}, \code{\link{binom.test}} } \examples{ ( a <- matrix( sample( 10:40, 4 ), 2, 2 ) ) ci.pd( a ) twoby2( t(a) ) prop.test( t(a) ) ( A <- array( sample( 10:40, 20 ), dim=c(2,2,5) ) ) ci.pd( A ) ci.pd( A, detail.labs=TRUE, digits=3 ) } \keyword{distribution} \keyword{htest} Epi/man/ci.lin.Rd0000644000175100001440000001310712144476641013236 0ustar hornikusers\name{ci.lin} \alias{ci.lin} \alias{ci.mat} \alias{ci.exp} \alias{Wald} \title{ Compute linear functions of parameters with s.e. } \description{ For a given model object the function computes a linear function of the parameters and the corresponding standard errors, p-values and confidence intervals. } \usage{ ci.lin( obj, ctr.mat = NULL, subset = NULL, subint = NULL, diffs = FALSE, fnam = !diffs, vcov = FALSE, alpha = 0.05, df = Inf, Exp = FALSE, sample = FALSE ) ci.exp( ..., Exp = TRUE ) Wald( obj, H0=0, ... ) ci.mat( alpha = 0.05, df=Inf ) } \arguments{ \item{obj}{A model object (of class \code{lm}, \code{glm}, \code{coxph}, \code{survreg}, \code{lme}, \code{mer}, \code{nls}, \code{gnlm}, \code{MIresult} or \code{polr}). } \item{ctr.mat}{Contrast matrix to be multiplied to the parameter vector, i.e. the desired linear function of the parameters.} \item{subset}{The subset of the parameters to be used. If given as a character vector, the elements are in turn matched against the parameter names (using \code{grep}) to find the subset. Repeat parameters may result from using a character vector. This is considered a facility.} \item{subint}{SUBset selection like for \code{subset}, except that elements of a character vector given as argument will be used to select a number of subsets of parameters and only the INTersection of these is returned.} \item{diffs}{If TRUE, all differences between parameters in the subset are computed. \code{ctr.mat} is ignored. If \code{obj} inherits from \code{lm}, and \code{subset} is given as a string \code{subset} is used to search among the factors in the model and differences of all factor levels for the first match are shown. If \code{subset} does not match any of the factors in the model, all pairwise differences between parameters matching are returned.} \item{fnam}{Should the common part of the parameter names be included with the annotation of contrasts? Ignored if \code{diffs==T}. If a sting is supplied this will be prefixed to the labels.} \item{vcov}{Should the covariance matrix of the set of parameters be returned? If this is set, \code{Exp} is ignored. See details.} \item{alpha}{Significance level for the confidence intervals.} \item{df}{Integer. Number of degrees of freedom in the t-distribution used to compute the quantiles used to construct the confidence intervals.} \item{Exp}{If \code{TRUE} columns 5:6 are replaced with exp( columns 1,5,6 ).} \item{sample}{Logical or numerical. If \code{TRUE} or numerical a sample of size \code{as.numeric(sample)} of the linear parameter function as defined by \code{subset} and \code{ctr.mat} is returned.} \item{H0}{The null values for the selected/transformed parameters to be tested by a Wald test. Must have the same length as the selected parameter vector.} \item{\ldots}{Parameters passed on to \code{ci.lin}.} } \value{ \code{ci.lin} returns a matrix with number of rows and rownames as \code{ctr.mat}. The columns are Estimate, Std.Err, z, P, 2.5\% and 97.5\%. If \code{vcov=TRUE} a list with components \code{est}, the desired functional of the parameters and \code{vcov}, the variance covariance matrix of this, is returned but not printed. If \code{Exp==TRUE} the confidence intervals for the parameters are replaced with three columns: exp(estimate,c.i.). \code{ci.exp} returns only the exponentiated parameter estimates with confidence intervals. It is merely a wrapper for \code{ci.lin}, fishing out the last 3 columns from \code{ci.lin(...,Exp=TRUE)}. \code{Wald} computes a Wald test for a subset of (possibly linearly transformed) parameters. The selection of the subset of parameters is the same as for \code{ci.lin}. Using the \code{ctr.mat} argument makes it possible to do a Wald test for equality of parameters. \code{Wald} returns a named numerical vector of length 3, with names \code{Chisq}, \code{d.f.} and \code{P}. \code{ci.mat} returns a 2 by 3 matrix with rows \code{c(1,0,0)} and \code{c(0,-1,1)*1.96}, devised to post-multiply to a p by 2 matrix with columns of estimates and standard errors, so as to produce a p by 3 matrix of estimates and confidence limits. Used internally in \code{ci.lin} and \code{ci.cum}. The 1.96 is replaced by the appropriate quantile from the normal or t-distribution when arguments \code{alpha} and/or \code{df} are given. } \author{ Bendix Carstensen, \url{BendixCarstensen.com} & Michael Hills \url{http://www.mhills.pwp.blueyonder.co.uk/} } \seealso{ See also \code{\link{ci.cum}} } \examples{ # Bogus data: f <- factor( sample( letters[1:5], 200, replace=TRUE ) ) g <- factor( sample( letters[1:3], 200, replace=TRUE ) ) x <- rnorm( 200 ) y <- 7 + as.integer( f ) * 3 + 2 * x + 1.7 * rnorm( 200 ) # Fit a simple model: mm <- lm( y ~ x + f + g ) ci.lin( mm ) ci.lin( mm, subset=3:6, diff=TRUE, fnam=FALSE ) ci.lin( mm, subset=3:6, diff=TRUE, fnam=TRUE ) ci.lin( mm, subset="f", diff=TRUE, fnam="f levels:" ) print( ci.lin( mm, subset="g", diff=TRUE, fnam="gee!:", vcov=TRUE ) ) # Use character defined subset to get ALL contrasts: ci.lin( mm, subset="f", diff=TRUE ) # A Wald test of wheter the g-parameters are 0 Wald( mm, subset="g" ) # Wald test of whether the three first f-parameters are equal: ( CM <- rbind( c(1,-1,0,0), c(1,0,-1,0)) ) Wald( mm, subset="f", ctr.mat=CM ) # or alternatively ( CM <- rbind( c(1,-1,0,0), c(0,1,-1,0)) ) Wald( mm, subset="f", ctr.mat=CM ) } \keyword{models} \keyword{regression} Epi/man/ci.cum.Rd0000644000175100001440000000711212144476641013237 0ustar hornikusers\name{ci.cum} \alias{ci.cum} \title{ Compute cumulative sum of estimates. } \description{ Computes the cumulative sum of parameter functions and the standard error of it. Optionally the exponential is applied to the parameter functions before it is cumulated. } \usage{ ci.cum( obj, ctr.mat = NULL, subset = NULL, intl = 1, alpha = 0.05, Exp = TRUE, sample = FALSE ) } \arguments{ \item{obj}{A model object (of class \code{lm}, \code{glm}, \code{coxph}, \code{survreg}, \code{lme},\code{mer},\code{nls},\code{gnlm}, \code{MIresult} or \code{polr}). } \item{ctr.mat}{ Contrast matrix defining the parameter functions from the parameters of the model. } \item{subset}{ Subset of the parameters of the model to which \code{ctr.mat} should be applied. } \item{intl}{ Interval length for the cumulation. Either a constant or a numerical vector of length \code{nrow(ctr.mat)}. } \item{alpha}{ Significance level used when computing confidence limits. } \item{Exp}{ Should the parameter function be exponentiated before it is cumulated?} \item{sample}{Should a sample of the original parameters be used to compute a cumulative rate?} } \details{ The purpose of this function is to compute cumulative rate based on a model for the rates. If the model is a multiplicative model for the rates, the purpose of \code{ctr.mat} is to return a vector of rates or log-rates when applied to the coefficients of the model. If log-rates are returned from the model, the they should be exponentiated before cumulated, and the variances computed accordingly. Since log-linear models are the most common the \code{Exp} parameter defaults to TRUE. } \value{ A matrix with 4 columns: Estimate, lower and upper c.i. and standard error. If \code{sample} is TRUE, a sampled vector is reurned, if \code{sample} is numeric a matrix with \code{sample} columns is returned, each column a cumulative rate based on a random sample from the distribution of the parameter estimates. } \author{ Bendix Carstensen, \url{http://BendixCarstensen.com} } \seealso{ See also \code{\link{ci.lin}} } \examples{ # Packages required for this example library( splines ) library( survival ) data( lung ) par( mfrow=c(1,2) ) # Plot the Kaplan-meier-estimator plot( survfit( Surv( time, status==2 ) ~ 1, data=lung ) ) # Declare data as Lexis lungL <- Lexis( exit=list("tfd"=time), exit.status=(status==2)*1, data=lung ) summary( lungL ) # Cut the follow-up every 10 days sL <- splitLexis( lungL, "tfd", breaks=seq(0,1100,10) ) str( sL ) summary( sL ) # Fit a Poisson model with a natural spline for the effect of time. # Extract the variables needed D <- status(sL, "exit") Y <- dur(sL) tB <- timeBand( sL, "tfd", "left" ) MM <- ns( tB, knots=c(50,100,200,400,700), intercept=TRUE ) mp <- glm( D ~ MM - 1 + offset(log(Y)), family=poisson, eps=10^-8, maxit=25 ) # Contrast matrix to extract effects, i.e. matrix to multiply with the # coefficients to produce the log-rates: unique rows of MM, in time order. T.pt <- sort( unique( tB ) ) T.wh <- match( T.pt, tB ) Lambda <- ci.cum( mp, ctr.mat=MM[T.wh,], intl=diff(c(0,T.pt)) ) # Put the estimated survival function on top of the KM-estimator matlines( c(0,T.pt[-1]), exp(-Lambda[,1:3]), lwd=c(3,1,1), lty=1, col="Red" ) # Extract and plot the fitted intensity function lambda <- ci.lin( mp, ctr.mat=MM[T.wh,], Exp=TRUE ) matplot( T.pt, lambda[,5:7]*10^3, type="l", lwd=c(3,1,1), col="black", lty=1, log="y", ylim=c(0.2,20) ) } \keyword{models} \keyword{regression} Epi/man/ccwc.Rd0000644000175100001440000000413412144476641013001 0ustar hornikusers\name{ccwc} \alias{ccwc} \title{Generate a nested case-control study} \usage{ ccwc( entry=0, exit, fail, origin=0, controls=1, match=list(), include=list(), data=NULL, silent=FALSE ) } \arguments{ \item{entry}{ Time of entry to follow-up } \item{exit}{ Time of exit from follow-up } \item{fail}{ Status on exit (1=Fail, 0=Censored) } \item{origin}{ Origin of analysis time scale } \item{controls}{ The number of controls to be selected for each case } \item{match}{ List of categorical variables on which to match cases and controls } \item{include}{ List of other variables to be carried across into the case-control study } \item{data}{ Data frame in which to look for input variables } \item{silent}{ If FALSE, echos a . to the screen for each case-control set created; otherwise produces no output. } } \description{ Given the basic outcome variables for a cohort study: the time of entry to the cohort, the time of exit and the reason for exit ("failure" or "censoring"), this function computes risk sets and generates a matched case-control study in which each case is compared with a set of controls randomly sampled from the appropriate risk set. Other variables may be matched when selecting controls. } \value{ The case-control study, as a dataframe containing: \item{Set}{ case-control set number } \item{Map}{ row number of record in input dataframe } \item{Time}{ failure time of the case in this set } \item{Fail}{ failure status (1=case, 0=control) } These are followed by the matching variables, and finally by the variables in the \code{include} list } \references{ Clayton and Hills, Statistical Models in Epidemiology, Oxford University Press, Oxford:1993. } \author{ David Clayton } \seealso{ \code{\link{Lexis}} } \examples{ # # For the diet and heart dataset, create a nested case-control study # using the age scale and matching on job # data(diet) dietcc <- ccwc( doe, dox, chd, origin=dob, controls=2, data=diet, include=energy, match=job) } \keyword{datagen} Epi/man/cal.yr.Rd0000644000175100001440000000555112144476641013256 0ustar hornikusers\name{cal.yr} \alias{cal.yr} \alias{as.Date.cal.yr} \title{ Functions to convert character, factor and various date objects into a number, and vice versa. } \description{ Dates are converted to a numerical value, giving the calendar year as a fractional number. 1 January 1970 is converted to 1970.0, and other dates are converted by assuming that years are all 365.25 days long, so inaccuracies may arise, for example, 1 Jan 2000 is converted to 1999.999. Differences between converted values will be 1/365.25 of the difference between corresponding \code{\link{Date}} objects. } \usage{ cal.yr( x, format="\%Y-\%m-\%d", wh=NULL ) \method{as.Date}{cal.yr}( x, ... ) } \arguments{ \item{x}{A factor or character vector, representing a date in format \code{format}, or an object of class \code{\link{Date}}, \code{\link{POSIXlt}}, \code{\link{POSIXct}}, \code{\link{date}}, \code{dates} or \code{chron} (the latter two requires the \code{chron} package). If \code{x} is a data frame, all variables in the data-frame which are of one the classes mentioned are converted to class \code{cal.yr}. See arguemt \code{wh}, though.} \item{format}{Format of the date values if \code{x} is factor or character. If this argument is supplied and \code{x} is a datafame, all character variables are converted to class \code{cal.yr}. Factors in the dataframe will be ignored.} \item{wh}{Indices of the variables to convert if \code{x} is a data frame. Can be either a numerical or character vector.} \item{...}{Arguments passed on from other methods.} } \value{ \code{cal.yr} returns a numerical vector of the same length as \code{x}, of class \code{c("cal.yr","numeric")}. If \code{x} is a data frame a dataframe with some of the columns converted to class \code{"cal.yr"} is returned. \code{as.Date.cal.yr} returns a \code{\link{Date}} object. } \author{ Bendix Carstensen, Steno Diabetes Center \& Dept. of Biostatistics, University of Copenhagen, \email{bxc@steno.dk}, \url{http://BendixCarstensen.com} } \seealso{ \code{\link{DateTimeClasses}}, \code{\link{Date}} } \examples{ # Character vector of dates: birth <- c("14/07/1852","01/04/1954","10/06/1987","16/05/1990", "12/11/1980","01/01/1997","01/01/1998","01/01/1999") # Proper conversion to class "Date": birth.dat <- as.Date( birth, format="\%d/\%m/\%Y" ) # Converson of character to class "cal.yr" bt.yr <- cal.yr( birth, format="\%d/\%m/\%Y" ) # Back to class "Date": bt.dat <- as.Date( bt.yr ) # Numerical calculation of days since 1.1.1970: days <- Days <- (bt.yr-1970)*365.25 # Blunt assignment of class: class( Days ) <- "Date" # Then data.frame() to get readable output of results: data.frame( birth, birth.dat, bt.yr, bt.dat, days, Days, round(Days) ) } \keyword{manip} \keyword{chron} Epi/man/brv.Rd0000644000175100001440000000363212144476641012655 0ustar hornikusers\name{brv} \alias{brv} \docType{data} \title{Bereavement in an elderly cohort} \description{ The \code{brv} data frame has 399 rows and 11 columns. The data concern the possible effect of marital bereavement on subsequent mortality. They arose from a survey of the physical and mental health of a cohort of 75-year-olds in one large general practice. These data concern mortality up to 1 January, 1990 (although further follow-up has now taken place). Subjects included all lived with a living spouse when they entered the study. There are three distinct groups of such subjects: (1) those in which both members of the couple were over 75 and therefore included in the cohort, (2) those whose spouse was below 75 (and was not, therefore, part of the main cohort study), and (3) those living in larger households (that is, not just with their spouse). } \format{ This data frame contains the following columns: \describe{ \item{\code{id}}{subject identifier, a numeric vector} \item{\code{couple}}{couple identifier, a numeric vector} \item{\code{dob}}{date of birth, a date} \item{\code{doe}}{date of entry into follow-up study, a date} \item{\code{dox}}{date of exit from follow-up study, a date} \item{\code{dosp}}{date of death of spouse, a date (if the spouse was still alive at the end of follow-up,this was coded to January 1, 2000)} \item{\code{fail}}{status at end of follow-up, a numeric vector (0=alive,1=dead)} \item{\code{group}}{see Description, a numeric vector} \item{\code{disab}}{disability score, a numeric vector} \item{\code{health}}{perceived health status score, a numeric vector} \item{\code{sex}}{a factor with levels \code{Male} and \code{Female} } } } \source{ Jagger C, and Sutton CJ, Death after Marital Bereavement. Statistics in Medicine, 10:395-404, 1991. (Data supplied by Carol Jagger). } \examples{ data(brv) } \keyword{datasets} Epi/man/boxes.MS.Rd0000644000175100001440000003516712144476641013532 0ustar hornikusers\name{boxes.MS} \Rdversion{1.1} \alias{tbox} \alias{dbox} \alias{fillarr} \alias{boxarr} \alias{boxes} \alias{boxes.Lexis} \alias{boxes.matrix} \alias{boxes.MS} \title{ Draw boxes and arrows for illustration of multistate models. } \description{ Boxes can be drawn with text (\code{tbox}) or a cross (\code{dbox}), and arrows pointing between the boxes (\code{boxarr}) can be drawn automatically not overlapping the boxes. The \code{boxes} method for \code{\link{Lexis}} objects generates displays of states with person-years and transitions with events or rates. } \usage{ tbox( txt, x, y, wd, ht, font=2, lwd=2, col.txt=par("fg"), col.border=par("fg"), col.bg="transparent" ) dbox( x, y, wd, ht=wd, font=2, lwd=2, cwd=5, col.cross=par("fg"), col.border=par("fg"), col.bg="transparent" ) boxarr( b1, b2, offset=FALSE, pos=0.45, ... ) \method{boxes}{Lexis}( obj, boxpos = FALSE, wmult = 1.5, hmult = 1.5*wmult, cex = 1.5, show = inherits( obj, "Lexis" ), show.Y = show, scale.Y = 1, digits.Y = 1, show.D = show, scale.D = FALSE, digits.D = as.numeric(as.logical(scale.D)), show.R = is.numeric(scale.R), scale.R = scale.D, digits.R = as.numeric(as.logical(scale.R)), DR.sep = if( show.D ) c("\n(",")") else c("",""), eq.wd = TRUE, eq.ht = TRUE, wd, ht, subset = NULL, exclude = NULL, font = 2, lwd = 2, col.txt = par("fg"), col.border = col.txt, col.bg = "transparent", col.arr = par("fg"), lwd.arr = 2, font.arr = 2, pos.arr = 0.45, txt.arr = NULL, col.txt.arr = col.arr, offset.arr = 2, ... ) \method{boxes}{matrix}( obj, ... ) \method{boxes}{MS}( obj, sub.st, sub.tr, cex=1.5, ... ) fillarr( x1, y1, x2, y2, gap=2, fr=0.8, angle=17, lwd=2, length=par("pin")[1]/30, ... ) } \arguments{ \item{txt}{Text to be placed inside the box.} \item{x}{x-coordinate of center of box.} \item{y}{y-coordinate of center of box.} \item{wd}{width of boxes in percentage of the plot width.} \item{ht}{height of boxes in percentage of the plot height.} \item{font}{Font for the text. Defaults to 2 (=bold).} \item{lwd}{Line width of the boxborders.} \item{col.txt}{Color for the text in boxes.} \item{col.border}{Color of the box border.} \item{col.bg}{Background color for the interior of the box.} \item{\dots}{Arguments to be passed on to the call of other functions.} \item{cwd}{Width of the lines in the cross.} \item{col.cross}{Color of the cross.} \item{b1}{Coordinates of the "from" box. A vector with 4 components, \code{x}, \code{y}, \code{w}, \code{h}.} \item{b2}{Coordinates of the "to" box; like \code{b1}.} \item{offset}{Logical. Should the arrow be offset a bit to the left.} \item{pos}{Numerical between 0 and 1, determines the position of the point on the arrow which is returned.} \item{obj}{A \code{\link{Lexis}} object or a transition matrix; that is a square matrix indexed by state in both dimensions, and the \eqn{(i,j)}th entry different from \code{NA} if a transition \eqn{i} to \eqn{j} can occur. If \code{show.D=TRUE}, the arrows between states are annotated by these numbers. If \code{show.Y=TRUE}, the boxes representing states are annotated by the numbers in the diagonal of \code{obj}. For \code{boxes.matrix} \code{obj} is a matrix and for \code{boxes.MS}, \code{obj} is an \code{MS.boxes} object (see below).} \item{boxpos}{If \code{TRUE} the boxes are positioned equidistantly on a circle, if \code{FALSE} (the default) you are queried to click on the screen for the positions. This argument can also be a named list with elements \code{x} and \code{y}, both numerical vectors, giving the centers of the boxes.} \item{wmult}{Multiplier for the width of the box relative to the width of the text in the box.} \item{hmult}{Multiplier for the height of the box relative to the height of the text in the box.} \item{cex}{Character expansion for text in the box.} \item{show}{Should person-years and transitions be put in the plot. Ignored if \code{obj} is not a \code{Lexis} object.} \item{show.Y}{If logical: Should person-years be put in the boxes. If numeric: Numbers to put in boxes.} \item{scale.Y}{What scale should be used for annotation of person-years.} \item{digits.Y}{How many digits after the decimal point should be used for the person-years.} \item{show.D}{Should no. transitions be put alongside the arrows. Ignored if \code{obj} is not a \code{Lexis} object.} \item{scale.D}{Synonumous with \code{scale.R}, retained for compatability.} \item{digits.D}{Synonumous with \code{digits.R}, retained for compatability.} \item{show.R}{Should the transition rates be shown on the arrows?} \item{scale.R}{If this a scalar, rates instead of no. transitions are printed at the arrows, scaled by \code{scale.R}.} \item{digits.R}{How many digits after the decimal point should be used for the rates.} \item{DR.sep}{Character vector of length 2. If rates are shown, the first element is inserted before and the second after the rate.} \item{eq.wd}{Should boxes all have the same width?} \item{eq.ht}{Should boxes all have the same height?} \item{subset}{Draw only boxes and arrows for a subset of the states. Can be given either as a numerical vector or character vector state names.} \item{exclude}{Exclude states from the plot. The complementary of \code{subset}. Ignored if \code{subset} is given.} \item{col.arr}{Color of the arrows between boxes. A vector of character strings, the arrows are referred to as the row-wise sequence of non-NA elements of the transition matrix. Thus the first ones refer to the transitions out of state 1, in order of states.} \item{lwd.arr}{Line withs of the arrows.} \item{font.arr}{Font of the text annotation the arrows.} \item{pos.arr}{Numerical between 0 and 1, determines the position on the arrows where the text is written.} \item{txt.arr}{Text put on the arrows.} \item{col.txt.arr}{Colors for text on the arrows.} \item{offset.arr}{The amount offset between arrows representing two-way transitions, that is where there are arrows both ways between two boxes.} \item{sub.st}{Subset of the states to be drawn.} \item{sub.tr}{Subset of the transitions to be drawn.} \item{x1}{x-coordinate of the starting point.} \item{y1}{y-coordinate of the starting point.} \item{x2}{x-coordinate of the end point.} \item{y2}{y-coordinate of the end point.} \item{gap}{Length of the gap between the box and the ends of the arrows.} \item{fr}{Length of the arrow as the fraction of the distance between the boxes. Ignored unless given explicitly, in which case any value given for \code{gap} is ignored.} \item{angle}{What angle should the arrow-head have?} \item{length}{Length of the arrow head in inches. Defaults to 1/30 of the physical width of the plot.} } \details{ These functions are designed to facilitate the drawing of multistate models, mainly by automatic calculation of the arrows between boxes. \code{tbox} draws a box with centered text, and returns a vector of location, height and width of the box. This is used when drawing arrows between boxes. \code{dbox} draws a box with a cross, symbolizing a death state. \code{boxarr} draws an arrow between two boxes, making sure it does not intersect the boxes. Only straight lines are drawn. \code{boxes.Lexis} takes as input a Lexis object sets up an empty plot area (with axes 0 to 100 in both directions) and if \code{boxpos=FALSE} (the default) prompts you to click on the locations for the state boxes, and then draws arrows implied by the actual transitions in the \code{Lexis} object. The default is to annotate the transitions with the number of transitions. A transition matrix can also be supplied, in which case the row/column names are used as state names, diagnonal elements taken as person-years, and off-diagnonal elements as number of transitions. This also works for \code{boxes.matrix}. Optionally returns the R-code reproducing the plot in a file, which can be useful if you want to produce exactly the same plot with differing arrow colors etc. \code{boxarr} draws an arrow between two boxes, on the line connecting the two box centers. The \code{offset} argument is used to offset the arrow a bit to the left (as seen in the direction of the arrow) on order to accommodate arrows both ways between boxes. \code{boxarr} returns a named list with elements \code{x}, \code{y} and \code{d}, where the two former give the location of a point on the arrow used for printing (see argument \code{pos}) and the latter is a unit vector in the direction of the arrow, which is used by \code{boxes.Lexis} to position the annotation of arrows with the number of transitions. \code{boxes.MS} re-draws what \code{boxes.Lexis} has done based on the object of class \code{MS} produced by \code{boxes.Lexis}. The point being that the \code{MS} object is easily modifiable, and thus it is a machinery to make variations of the plot with different color annotations etc. \code{fill.arr} is just a utility drawing nicer arrows than the default \code{\link{arrows}} command, basically by using filled arrow-heads; called by \code{boxarr}. } \value{The functions \code{tbox} and \code{dbox} return the location and dimension of the boxes, \code{c(x,y,w,h)}, which are designed to be used as input to the \code{boxarr} function. The \code{boxarr} function returns the coordinates (as a named list with names \code{x} and \code{y}) of a point on the arrow, designated to be used for annotation of the arrow. The function \code{boxes.Lexis} returns an \code{MS} object, a list with five elements: 1) \code{Boxes} - a dataframe with one row per box and columns \code{xx}, \code{yy}, \code{wd}, \code{ht}, \code{font}, \code{lwd}, \code{col.txt}, \code{col.border} and \code{col.bg}, 2) an object \code{State.names} with names of states (possibly an expression, hence not possible to include as a column in \code{Boxes}), 3) a matrix \code{Tmat}, the transition matrix, 4) a data frame, \code{Arrows} with one row per transition and columns: \code{lwd.arr}, \code{col.arr}, \code{pos.arr}, \code{col.txt.arr}, \code{font.arr} and \code{offset.arr} and 5) an object \code{Arrowtext} with names of states (possibly an expression, hence not possible to include as a column in \code{Arrows}) An \code{MS} object is used as input to \code{boxes.MS}, the primary use is to modify selected entries in the \code{MS} object first, e.g. colors, or supply subsetting arguments in order to produce displays that have the same structure, but with different colors etc. } \author{Bendix Carstensen} \examples{ par( mar=c(0,0,0,0), cex=1.5 ) plot( NA, bty="n", xlim=0:1*100, ylim=0:1*100, xaxt="n", yaxt="n", xlab="", ylab="" ) bw <- tbox( "Well" , 10, 60, 22, 10, col.txt="blue" ) bo <- tbox( "other Ca", 45, 80, 22, 10, col.txt="gray" ) bc <- tbox( "Ca" , 45, 60, 22, 10, col.txt="red" ) bd <- tbox( "DM" , 45, 40, 22, 10, col.txt="blue" ) bcd <- tbox( "Ca + DM" , 80, 60, 22, 10, col.txt="gray" ) bdc <- tbox( "DM + Ca" , 80, 40, 22, 10, col.txt="red" ) boxarr( bw, bo , col=gray(0.7), lwd=3 ) # Note the argument adj= can takes values outside (0,1) text( boxarr( bw, bc , col="blue", lwd=3 ), expression( lambda[Well] ), col="blue", adj=c(1,-0.2), cex=0.8 ) boxarr( bw, bd , col=gray(0.7) , lwd=3 ) boxarr( bc, bcd, col=gray(0.7) , lwd=3 ) text( boxarr( bd, bdc, col="blue", lwd=3 ), expression( lambda[DM] ), col="blue", adj=c(1.1,-0.2), cex=0.8 ) # Set up a transition matrix allowing recovery tm <- rbind( c(NA,1,1), c(1,NA,1), c(NA,NA,NA) ) rownames(tm) <- colnames(tm) <- c("Cancer","Recurrence","Dead") tm boxes.matrix( tm, boxpos=TRUE ) # Illustrate texting of arrows boxes.Lexis( tm, boxpos=TRUE, txt.arr=c("en","to","tre","fire") ) zz <- boxes( tm, boxpos=TRUE, txt.arr=c(expression(lambda[C]), expression(mu[C]), "recovery", expression(mu[R]) ) ) # Change color of a box zz$Boxes[3,c("col.bg","col.border")] <- "green" boxes( zz ) # Set up a Lexis object data(DMlate) str(DMlate) dml <- Lexis( entry=list(Per=dodm, Age=dodm-dobth, DMdur=0 ), exit=list(Per=dox), exit.status=factor(!is.na(dodth),labels=c("DM","Dead")), data=DMlate[1:1000,] ) # Split follow-up at Insulin dmi <- cutLexis( dml, cut=dml$doins, new.state="Ins", pre="DM" ) summary( dmi ) boxes( dmi, boxpos=TRUE ) # Set up a bogus recovery date jut to illustrate two-way transitions dmi$dorec <- dmi$doins + runif(nrow(dmi),0.5,10) dmi$dorec[dmi$dorec>dmi$dox] <- NA dmR <- cutLexis( dmi, cut=dmi$dorec, new.state="DM", pre="Ins" ) summary( dmR ) boxes( dmR, boxpos=TRUE ) boxes( dmR, boxpos=TRUE, show.D=FALSE ) boxes( dmR, boxpos=TRUE, show.D=FALSE, show.Y=FALSE ) boxes( dmR, boxpos=TRUE, scale.R=1000 ) MSobj <- boxes( dmR, boxpos=TRUE, scale.R=1000, show.D=FALSE ) MSobj <- boxes( dmR, boxpos=TRUE, scale.R=1000, DR.sep=c(" (",")") ) class( MSobj ) boxes( MSobj ) MSobj$Boxes[1,c("col.txt","col.border")] <- "red" MSobj$Arrows[1:2,"col.arr"] <- "red" boxes( MSobj ) } \seealso{ \code{\link{tmat.Lexis}} } \keyword{survival} \keyword{hplot} \keyword{iplot} Epi/man/blcaIT.Rd0000644000175100001440000000127612144476641013224 0ustar hornikusers\name{blcaIT} \alias{blcaIT} \docType{data} \title{Bladder cancer mortality in Italian males} \description{ Number of deaths from bladder cancer and person-years in the Italian male population 1955--1979, in ages 25--79. } % \usage{data(blcaIT)} \format{ A data frame with 55 observations on the following 4 variables: \tabular{rl}{ \code{age}: \tab Age at death. Left endpoint of age class \cr \code{period}: \tab Period of death. Left endpoint of period \cr \code{D}: \tab Number of deaths \cr \code{Y}: \tab Number of person-years. } } % \source{ % Reference to a source... % } % \references{ % Reference to a publication... % } \examples{ data(blcaIT) } \keyword{datasets} Epi/man/births.Rd0000644000175100001440000000171712144476641013361 0ustar hornikusers\name{births} \alias{births} \docType{data} \title{Births in a London Hospital} \description{ Data from 500 singleton births in a London Hospital } \usage{data(births)} \format{ A data frame with 500 observations on the following 8 variables. \tabular{rl}{ \code{id}: \tab Identity number for mother and baby. \cr \code{bweight}: \tab Birth weight of baby. \cr \code{lowbw}: \tab Indicator for birth weight less than 2500 g. \cr \code{gestwks}: \tab Gestation period. \cr \code{preterm}: \tab Indicator for gestation period less than 37 weeks. \cr \code{matage}: \tab Maternal age. \cr \code{hyp}: \tab Indicator for maternal hypertension. \cr \code{sex}: \tab Sex of baby: 1:Male, 2:Female. \cr } } \source{ Anonymous } \references{ Michael Hills and Bianca De Stavola (2002). A Short Introduction to Stata 8 for Biostatistics, Timberlake Consultants Ltd \url{http://www.timberlake.co.uk} } \examples{ data(births) } \keyword{datasets} Epi/man/bdendo11.Rd0000644000175100001440000000100312144476641013447 0ustar hornikusers\name{bdendo11} \alias{bdendo11} \docType{data} \title{A 1:1 subset of the endometrial cancer case-control study} \description{ The \code{bdendo11} data frame has 126 rows and 13 columns. This is a subset of the dataset \code{\link{bdendo}} in which each case was matched with a single control. } \source{ Breslow NE, and Day N, Statistical Methods in Cancer Research. Volume I: The Analysis of Case-Control Studies. IARC Scientific Publications, IARC:Lyon, 1980. } \examples{ data(bdendo11) } \keyword{datasets} Epi/man/bdendo.Rd0000644000175100001440000000410712144476641013315 0ustar hornikusers\name{bdendo} \alias{bdendo} \docType{data} \title{A case-control study of endometrial cancer} \description{ The \code{bdendo} data frame has 315 rows and 13 columns. These data concern a study in which each case of endometrial cancer was matched with 4 controls. Matching was by date of birth (within one year), marital status, and residence. } \format{ This data frame contains the following columns: \tabular{rl}{ \code{set}: \tab Case-control set: a numeric vector \cr \code{d}: \tab Case or control: a numeric vector (1=case, 0=control) \cr \code{gall}: \tab Gall bladder disease: a factor with levels \code{No} \code{Yes}. \cr \code{hyp}: \tab Hypertension: a factor with levels \code{No} \code{Yes}. \cr \code{ob}: \tab Obesity: a factor with levels \code{No} \code{Yes}. \cr \code{est}: \tab A factor with levels \code{No} \code{Yes}. \cr \code{dur}: \tab Duration of conjugated oestrogen therapy: an ordered factor with levels \code{0} < \code{1} < \code{2} < \code{3} < \code{4}. \cr \code{non}: \tab Use of non oestrogen drugs: a factor with levels \code{No} \code{Yes}. \cr \code{duration}: \tab Months of oestrogen therapy: a numeric vector. \cr \code{age}: \tab A numeric vector. \cr \code{cest}: \tab Conjugated oestrogen dose: an ordered factor with levels \code{0} < \code{1} < \code{2} < \code{3}. \cr \code{agegrp}: \tab A factor with levels \code{55-59} \code{60-64} \code{65-69} \code{70-74} \code{75-79} \code{80-84} \cr \code{age3}: \tab a factor with levels \code{<64} \code{65-74} \code{75+} \cr } } \source{ Breslow NE, and Day N, Statistical Methods in Cancer Research. Volume I: The Analysis of Case-Control Studies. IARC Scientific Publications, IARC:Lyon, 1980. } \examples{ data(bdendo) } \keyword{datasets} Epi/man/apc.plot.Rd0000644000175100001440000000311612144476641013601 0ustar hornikusers\name{apc.plot} \alias{apc.plot} \title{Plot the estimates from a fitted Age-Period-Cohort model} \description{ This function plots the estimates created by \code{\link{apc.fit}} in a single graph. It just calls \code{\link{apc.frame}} after computing some sensible values of the parameters, and subsequently plots the estimates using \code{\link{apc.lines}}. } \usage{ apc.plot(obj, r.txt = "Rate", ...) } \arguments{ \item{obj}{ An object of class \code{apc}. } \item{r.txt}{ The text to put on the vertical rate axis. } \item{\dots}{ Additional arguments passed on to \code{\link{apc.lines}}. } } \value{ A numerical vector of length two, with names \code{c("cp.offset","RR.fac")}. The first is the offset for the cohort period-axis, the second the multiplication factor for the rate-ratio scale. Therefore, if you want to plot at \code{(x,y)} in the right panel, use \code{(x-res["cp.offset"],y/res["RR.fac"])} \code{=(x-res[1],y/res[2])}. This vector should be supplied for the parameter \code{frame.par} to \code{\link{apc.lines}} if more sets of estimates is plotted in the same graph. } \author{ Bendix Carstensen, Steno Diabetes Center, \url{http://BendixCarstensen.com} } \seealso{ \code{\link{apc.lines}} ,\code{\link{apc.frame}}, \code{\link{apc.fit}} } \examples{ data( lungDK ) attach( lungDK ) apc1 <- apc.fit( A=Ax, P=Px, D=D, Y=Y/10^5 ) fp <- apc.plot( apc1 ) apc.lines( apc1, frame.par=fp, drift=1.01, col="red" ) for( i in 1:11 ) apc.lines( apc1, frame.par=fp, drift=1+(i-6)/100, col=rainbow(12)[i] ) } \keyword{hplot} Epi/man/apc.lines.Rd0000644000175100001440000001054412144476641013740 0ustar hornikusers\name{apc.lines} \alias{apc.lines} \alias{pc.points} \alias{pc.lines} \alias{pc.matpoints} \alias{pc.matlines} \alias{cp.points} \alias{cp.lines} \alias{cp.matpoints} \alias{cp.matlines} \title{ Plot APC-estimates (and other things) in an APC-frame. } \description{ When an APC-frame has been produced by \code{\link{apc.frame}}, this function draws a set of estimates from an APC-fit in the frame. An optional drift parameter can be added to the period parameters and subtracted from the cohort and age parameters. } \usage{ apc.lines( A, P, C, scale = c("log","ln","rates","inc","RR"), frame.par = options()[["apc.frame.par"]], drift = 0, c0 = median( C[,1] ), a0 = median( A[,1] ), p0 = c0 + a0, ci = rep( FALSE, 3 ), lwd = c(3,1,1), lty = 1, col = "black", type = "l", knots = FALSE, ... ) pc.points( x, y, ... ) pc.lines( x, y, ... ) pc.matpoints( x, y, ... ) pc.matlines( x, y, ... ) cp.points( x, y, ... ) cp.lines( x, y, ... ) cp.matpoints( x, y, ... ) cp.matlines( x, y, ... ) } \arguments{ \item{A}{Age effects. A 4-column matrix with columns age, age-specific rates, lower and upper c.i. If A is of class \code{apc} (see \code{\link{apc.fit}}, \code{P}, \code{C}, \code{c0}, \code{a0} and \code{p0} are ignored, and the estimates from there plotted.} \item{P}{Period effects. Rate-ratios. Same form as for the age-effects.} \item{C}{Cohort effects. Rate-ratios. Same form as for the age-effects.} \item{scale}{Are effects given on a log-scale? Character variable, one of \code{"log"}, \code{"ln"}, \code{"rates"}, \code{"inc"}, \code{"RR"}. If \code{"log"} or \code{"ln"} it is assumed that effects are log(rates) and log(RRs) otherwise the actual effects are assumed given in \code{A}, \code{P} and \code{C}. If \code{A} is of class \code{apc}, it is assumed to be \code{"rates"}.} \item{frame.par}{2-element vector with the cohort-period offset and RR multiplicator. This will typically be the result from the call of \code{\link{apc.frame}}. See this for details.} \item{drift}{The drift parameter to be added to the period effect. If \code{scale="log"} this is assumed to be on the log-scale, otherwise it is assumed to be a multiplicative factor per unit of the first columns of \code{A}, \code{P} and \code{C} } \item{c0}{The cohort where the drift is assumed to be 0; the subtracted drift effect is \code{drift*(C[,1]-c0)}.} \item{a0}{The age where the drift is assumed to be 0.} \item{p0}{The period where the drift is assumed to be 0.} \item{ci}{Should confidence interval be drawn. Logical or character. If character, any occurrence of \code{"a"} or \code{"A"} produces confidence intervals for the age-effect. Similarly for period and cohort.} \item{lwd}{Line widths for estimates, lower and upper confidence limits.} \item{lty}{Linetypes for the three effects.} \item{col}{Colours for the three effects.} \item{type}{What type of lines / points should be used.} \item{knots}{Should knots from the model be shown?} \item{...}{Further parameters to be transmitted to \code{points} \code{lines}, \code{matpoints} or \code{matlines} used for plotting the three sets of curves.} \item{x}{vector of \code{x}-coordinates.} \item{y}{vector of \code{y}-coordinates.} } \details{ The drawing of three effects in an APC-frame is a rather trivial task, and the main purpose of the utility is to provide a function that easily adds the functionality of adding a drift so that several sets of lines can be easily produced in the same frame. Since the Age-part of the frame is referred to by its real coordinates plotting in the calendar time part requires translation and scaling to put things correctly there, that is done by the functions \code{pc.points} etc. The functions \code{cp.points} etc. are just synonyms for these, in recognition of the fact that you can never remember whether it is "pc" pr "cp". } \value{ \code{APC.lines} returns (invisibly) a list of three matrices with the effects plotted. The functions \code{cp.points} etc. return nothing. } \author{ Bendix Carstensen, Steno Diabetes Center, \url{http://BendixCarstensen.com} } \seealso{ \code{\link{apc.frame}}, \code{\link{apc.fit}}, \code{\link{apc.plot}} } \keyword{hplot} Epi/man/apc.frame.Rd0000644000175100001440000001135012144476641013714 0ustar hornikusers\name{apc.frame} \alias{apc.frame} \title{ Produce an empty frame for display of parameter-estimates from Age-Period-Cohort-models. } \description{ A plot is generated where both the age-scale and the cohort/period scale is on the x-axis. The left vertical axis will be a logarithmic rate scale referring to age-effects and the right a logarithmic rate-ratio scale of the same relative extent as the left referring to the cohort and period effects (rate ratios). Only an empty plot frame is generated. Curves or points must be added with \code{points}, \code{lines} or the special utility function \code{\link{apc.lines}}. } \usage{ apc.frame( a.lab, cp.lab, r.lab, rr.lab = r.lab / rr.ref, rr.ref = r.lab[length(r.lab)/2], a.tic = a.lab, cp.tic = cp.lab, r.tic = r.lab, rr.tic = r.tic / rr.ref, tic.fac = 1.3, a.txt = "Age", cp.txt = "Calendar time", r.txt = "Rate per 100,000 person-years", rr.txt = "Rate ratio", ref.line = TRUE, gap = diff(range(c(a.lab, a.tic)))/3, col.grid = gray(0.85), sides = c(1,2,4) ) } \arguments{ \item{a.lab}{Numerical vector of labels for the age-axis.} \item{cp.lab}{Numerical vector of labels for the cohort-period axis.} \item{r.lab}{Numerical vector of labels for the rate-axis (left vertical)} \item{rr.lab}{Numerical vector of labels for the RR-axis (right vertical)} \item{rr.ref}{At what level of the rate scale is the RR=1 to be.} \item{a.tic}{Location of additional tick marks on the age-scale} \item{cp.tic}{Location of additional tick marks on the cohort-period-scale} \item{r.tic}{Location of additional tick marks on the rate-scale} \item{rr.tic}{Location of additional tick marks on the RR-axis.} \item{tic.fac}{Factor with which to diminish intermediate tick marks} \item{a.txt}{Text for the age-axis (left part of horizontal axis).} \item{cp.txt}{Text for the cohort/period axis (right part of horizontal axis).} \item{r.txt}{Text for the rate axis (left vertical axis).} \item{rr.txt}{Text for the rate-ratio axis (right vertical axis)} \item{ref.line}{Logical. Should a reference line at RR=1 be drawn at the calendar time part of the plot?} \item{gap}{Gap between the age-scale and the cohort-period scale} \item{col.grid}{Colour of the grid put in the plot.} \item{sides}{Numerical vector indicating on which sides axes should be drawn and annotated. This option is aimed for multi-panel displays where axes only are put on the outer plots.} } \details{ The function produces an empty plot frame for display of results from an age-period-cohort model, with age-specific rates in the left side of the frame and cohort and period rate-ratio parameters in the right side of the frame. There is a gap of \code{gap} between the age-axis and the calendar time axis, vertical grid lines at \code{c(a.lab,a.tic,cp.lab,cp.tic)}, and horizontal grid lines at \code{c(r.lab,r.tic)}. The function returns a numerical vector of length 2, with names \code{c("cp.offset","RR.fac")}. The y-axis for the plot will be a rate scale for the age-effects, and the x-axis will be the age-scale. The cohort and period effects are plotted by subtracting the first element (named \code{"cp.offset"}) of the returned result form the cohort/period, and multiplying the rate-ratios by the second element of the returned result (named \code{"RR.fac"}). } \value{ A numerical vector of length two, with names \code{c("cp.offset","RR.fac")}. The first is the offset for the cohort period-axis, the second the multiplication factor for the rate-ratio scale. Side-effect: A plot with axes and grid lines but no points or curves. Moreover, the option \code{apc.frame.par} is given the value \code{c("cp.offset","RR.fac")}, which is recognized by \code{\link{apc.plot}} and \code{\link{apc.lines}}. } \references{ B. Carstensen: Age-Period-Cohort models for the Lexis diagram. Statistics in Medicine, 26: 3018-3045, 2007. } \author{ Bendix Carstensen, Steno Diabetes Center, \url{http://BendixCarstensen.com} } \examples{ par( mar=c(4,4,1,4) ) res <- apc.frame( a.lab=seq(30,90,20), cp.lab=seq(1880,2000,30), r.lab=c(1,2,5,10,20,50), a.tic=seq(30,90,10), cp.tic=seq(1880,2000,10), r.tic=c(1:10,1:5*10), gap=27 ) res # What are the axes actually? par(c("usr","xlog","ylog")) # How to plot in the age-part: a point at (50,10) points( 50, 10, pch=16, cex=2, col="blue" ) # How to plot in the cohort-period-part: a point at (1960,0.3) points( 1960-res[1], 0.3*res[2], pch=16, cex=2, col="red" ) } \seealso{ \code{\link{apc.lines},\link{apc.fit}} } \keyword{hplot} Epi/man/apc.fit.Rd0000644000175100001440000002230312144476641013404 0ustar hornikusers\name{apc.fit} \alias{apc.fit} \title{ Fit an Age-Period-Cohort model to tabular data. } \description{ Fits the classical five models to tabulated rate data (cases, person-years) classified by two of age, period, cohort: Age, Age-drift, Age-Period, Age-Cohort and Age-period. There are no assumptions about the age, period or cohort classes being of the same length, or that tabulation should be only by two of the variables. Only requires that mean age and period for each tabulation unit is given. } \usage{ apc.fit( data, A, P, D, Y, ref.c, ref.p, dist = c("poisson","binomial"), model = c("ns","bs","ls","factor"), dr.extr = c("weighted","Holford"), parm = c("ACP","APC","AdCP","AdPC","Ad-P-C","Ad-C-P","AC-P","AP-C"), npar = c( A=5, P=5, C=5 ), scale = 1, alpha = 0.05, print.AOV = TRUE ) } \arguments{ \item{data}{Data frame with (at least) variables, \code{A} (age), \code{P} (period), \code{D} (cases, deaths) and \code{Y} (person-years). Cohort (date of birth) is computed as \code{P-A}. If thsi argument is given the arguments \code{A}, \code{P}, \code{D} and \code{Y} are ignored.} \item{A}{Age; numerical vector with mean age at diagnosis for each unit.} \item{P}{Period; numerical vector with mean date of diagnosis for each unit.} \item{D}{Cases, deaths; numerical vector.} \item{Y}{Person-years; numerical vector. Also used as denominator for binomial data, see the \code{dist} argument.} \item{ref.c}{Reference cohort, numerical. Defaults to median date of birth among cases. If used with \code{parm="AdCP"} or \code{parm="AdPC"}, the resdiual cohort effects will be 1 at \code{ref.c}} \item{ref.p}{Reference period, numerical. Defaults to median date of diagnosis among cases.} \item{dist}{Distribution (or more precisely: Likelihood) used for modelling. if a binomial model us ised, \code{Y} is assuemd to be the denominator; \code{"binomial"} gives a binomial model with logit link.} \item{model}{Type of model fitted: \itemize{ \item \code{ns} fits a model with natural splines for each of the terms, with \code{npar} parameters for the terms. \item \code{bs} fits a model with B-splines for each of the terms, with \code{npar} parameters for the terms. \item \code{ls} fits a model with linear splines. \item \code{factor} fits a factor model with one parameter per value of \code{A}, \code{P} and \code{C}. \code{npar} is ignored in this case. } } \item{dr.extr}{Character. How the drift parameter should be extracted from the age-period-cohort model. \code{"weighted"} (default) lets the weighted average (by marginal no. cases, \code{D}) of the estimated period and cohort effects have 0 slope. \code{"Holford"} uses the naive average over all values for the estimated effects, disregarding the no. cases.} \item{parm}{Character. Indicates the parametrization of the effects. The first four refer to the ML-fit of the Age-Period-Cohort model, the last four give Age-effects from a smaller model and residuals relative to this. If one of the latter is chosen, the argument \code{dr.extr} is ignored. Possible values for \code{parm} are: \itemize{ \item \code{"ACP"}: ML-estimates. Age-effects as rates for the reference cohort. Cohort effects as RR relative to the reference cohort. Period effects constrained to be 0 on average with 0 slope. \item \code{"APC"}: ML-estimates. Age-effects as rates for the reference period. Period effects as RR relative to the reference period. Cohort effects constrained to be 0 on average with 0 slope. \item \code{"AdCP"}: ML-estimates. Age-effects as rates for the reference cohort. Cohort and period effects constrained to be 0 on average with 0 slope. These effects do not multiply to the fitted rates, the drift is missing and needs to be included to produce the fitted values. \item \code{"AdPC"}: ML-estimates. Age-effects as rates for the reference period. Cohort and period effects constrained to be 0 on average with 0 slope. These effects do not multiply to the fitted rates, the drift is missing and needs to be included to produce the fitted values. \item \code{"Ad-C-P"}: Age effects are rates for the reference cohort in the Age-drift model (cohort drift). Cohort effects are from the model with cohort alone, using log(fitted values) from the Age-drift model as offset. Period effects are from the model with period alone using log(fitted values) from the cohort model as offset. \item \code{"Ad-P-C"}: Age effects are rates for the reference period in the Age-drift model (period drift). Period effects are from the model with period alone, using log(fitted values) from the Age-drift model as offset. Cohort effects are from the model with cohort alone using log(fitted values) from the period model as offset. \item \code{"AC-P"}: Age effects are rates for the reference cohort in the Age-Cohort model, cohort effects are RR relative to the reference cohort. Period effects are from the model with period alone, using log(fitted values) from the Age-Cohort model as offset. \item \code{"AP-C"}: Age effects are rates for the reference period in the Age-Period model, period effects are RR relative to the reference period. Cohort effects are from the model with cohort alone, using log(fitted values) from the Age-Period model as offset. } } \item{npar}{The number of parameters to use for each of the terms in the model. It can be a list of three numerical vectors, in which case these taken as the knots for the age, period and cohort effect, the first and last element in each vector are used as the boundary knots.} \item{alpha}{The significance level. Estimates are given with (1-\code{alpha}) confidence limits.} \item{scale}{numeric(1), factor multiplied to the rate estimates before output.} \item{print.AOV}{Should the analysis of deviance table for the models be printed?} } \value{ An object of class "apc" (recognized by \code{\link{apc.lines}} and \code{\link{apc.plot}}) --- a list with components: \item{Age}{Matrix with 4 colums: \code{A.pt} with the ages (equals \code{unique(A)}) and three columns giving the estimated rates with c.i.s.} \item{Per}{Matrix with 4 colums: \code{P.pt} with the dates of diagnosis (equals \code{unique(P)}) and three columns giving the estimated RRs with c.i.s.} \item{Coh}{Matrix with 4 colums: \code{C.pt} with the dates of birth (equals \code{unique(P-A)}) and three columns giving the estimated RRs with c.i.s.} \item{Drift}{A 3 column matrix with drift-estimates and c.i.s: The first row is the ML-estimate of the drift (as defined by \code{drift}), the second row is the estimate from the Age-drift model. For the sequential parametrizations, only the latter is given.} \item{Ref}{Numerical vector of length 2 with reference period and cohort. If ref.p or ref.c was not supplied the corresponding element is NA.} \item{AOV}{Analysis of deviance table comparing the five classical models.} \item{Type}{Character string explaining the model and the parametrization.} \item{Knots}{If \code{model} is one of \code{"ns"} or \code{"bs"}, a list with three components: \code{Age}, \code{Per}, \code{Coh}, each one a vector of knots. The max and the min are the boundary knots.} } \references{ The considerations behind the parametrizations used in this function are given in details in a preprint from Department of Biostatistics in Copenhagen: "Demography and epidemiology: Age-Period-Cohort models in the computer age", \url{http://biostat.ku.dk/reports/2006/ResearchReport06-1.pdf/}, later published as: B. Carstensen: Age-period-cohort models for the Lexis diagram. Statistics in Medicine, 10; 26(15):3018-45, 2007. } \author{ Bendix Carstensen, \url{http://BendixCarstensen.com} } \seealso{ \code{\link{apc.frame}}, \code{\link{apc.lines}}, \code{\link{apc.plot}}. } \examples{ library( Epi ) data(lungDK) # Taylor a dataframe that meets the requirements exd <- lungDK[,c("Ax","Px","D","Y")] names(exd)[1:2] <- c("A","P") # Two different ways of parametrizing the APC-model, ML ex.H <- apc.fit( exd, npar=7, model="ns", dr.extr="Holford", parm="ACP", scale=10^5 ) ex.W <- apc.fit( exd, npar=7, model="ns", dr.extr="weighted", parm="ACP", scale=10^5 ) # Sequential fit, first AC, then P given AC. ex.S <- apc.fit( exd, npar=7, model="ns", parm="AC-P", scale=10^5 ) # Show the estimated drifts ex.H[["Drift"]] ex.W[["Drift"]] ex.S[["Drift"]] # Plot the effects fp <- apc.plot( ex.H ) apc.lines( ex.W, frame.par=fp, col="red" ) apc.lines( ex.S, frame.par=fp, col="blue" ) } \keyword{models} \keyword{regression}Epi/man/Y.dk.Rd0000644000175100001440000000315712144476641012673 0ustar hornikusers\name{Y.dk} \alias{Y.dk} \docType{data} \title{Population risk time in Denmark} \description{ Risk time (person-years) in the Danish population, classified by sex, age, period and date of birth in 1-year classes. This corresponds to triangles in a Lexis diagram. } \usage{data(Y.dk)} \format{ A data frame with 13860 observations on the following 6 variables. \describe{ \item{\code{sex}}{Sex. 1:males, 2:females} \item{\code{A}}{One-year age class} \item{\code{P}}{Period} \item{\code{C}}{Birth cohort} \item{\code{Y}}{Person-years} \item{\code{upper}}{Indicator of upper triangle in the Lexis diagram} } } \details{ The risk time is computed from the population size figures in \code{\link{N.dk}}, using the formulae devised in B. Carstensen: "Demography and epidemiology: Age-Period-Cohort models in the computer age", \url{http://biostat.ku.dk/reports/2006/ResearchReport06-1.pdf/}, later published as: B. Carstensen: Age-period-cohort models for the Lexis diagram. Statistics in Medicine, 10; 26(15):3018-45, 2007. } \source{ \url{http://www.statistikbanken.dk/statbank5a/SelectTable/omrade0.asp?SubjectCode=02&PLanguage=1&ShowNews=OFF} } \examples{ data(Y.dk) str(Y.dk) # Compute mean age, period for the triangles attach( Y.dk ) age <- A + (1+upper)/3 per <- P + (2-upper)/3 # Plot a Lexis diagram library( Epi ) Lexis.diagram( age=c(0,10), date=c(1990,2000), coh.grid=TRUE, int=1 ) box() # Print the person-years for males there text( per[sex==1], age[sex==1], formatC( Y[sex==1]/1000, format="f", digits=1 ) ) } \keyword{datasets} Epi/man/S.typh.Rd0000644000175100001440000000421612144476641013250 0ustar hornikusers\name{S.typh} \alias{S.typh} \docType{data} \title{Salmonella Typhimurium outbreak 1996 in Denmark.} \description{ Matched case-control study of food poisoning. } \format{ A data frame with 136 observations on the following 15 variables: \tabular{rl}{ \code{id}: \tab Person identification \cr \code{set}: \tab Matched set indicator \cr \code{case}: \tab Case-control status (1:case, 0:control \cr \code{age}: \tab Age of individual \cr \code{sex}: \tab Sex of individual (1:male, 2:female) \cr \code{abroad}: \tab Within the last two weeks visited abroad (1:yes, 0:no) \cr \code{beef}: \tab Within the last two weeks eaten beef \cr \code{pork}: \tab Within the last two weeks eaten pork \cr \code{veal}: \tab Within the last two weeks eaten veal \cr \code{poultry}: \tab Within the last two weeks eaten poultry \cr \code{liverp}: \tab Within the last two weeks eaten liverpaste \cr \code{veg}: \tab Within the last two weeks eaten vegetables \cr \code{fruit}: \tab Within the last two weeks eaten fruit \cr \code{egg}: \tab Within the last two weeks eaten eggs \cr \code{plant7}: \tab Within the last two weeks eaten meat from plant no. 7 \cr } } \details{ In the fall of 1996 an unusually large number of Salmonella Typhimurium cases were recorded in Fyn county in Denmark. The Danish Zoonosis Centre set up a matched case-control study to find the sources. Cases and two age-, sex- and residency-matched controls were telephone interviewed about their food intake during the last two weeks. The participants were asked at which retailer(s) they had purchased meat. Retailers were independently of this linked to meat processing plants, and thus participants were linked to meat processing plants. This way persons could be linked to (amongst other) plant no 7.} \source{ Tine Hald. } \references{ Molbak K and Hald T: Salmonella Typhimurium outbreak in late summer 1996. A Case-control study. (In Danish: Salmonella typhimurium udbrud paa Fyn sensommeren 1996. En case-kontrol undersogelse.) Ugeskrift for Laeger., 159(36):5372-7, 1997. } \examples{ data(S.typh) } \keyword{datasets} Epi/man/Relevel.Rd0000644000175100001440000000236312144476641013462 0ustar hornikusers\name{Relevel} \alias{Relevel} \alias{Relevel.factor} \title{Reorder and combine levels of a factor} \description{ The levels of a factor are re-ordered so that the levels specified by \code{ref} is first and the others are moved down. This is useful for \code{contr.treatment} contrasts which take the first level as the reference. Levels may also be combined. } \usage{ \method{Relevel}{factor}( x, ref, first = TRUE, collapse="+", \dots ) } \arguments{ \item{x}{An unordered factor} \item{ref}{The names or numbers of levels to be the first. If \code{ref} is a list, factor levels mentioned in each list element are combined. If the list is named the names are used as new factor levels.} \item{first}{Should the levels mentioned in ref come before those not?} \item{collapse}{String used when collapsing factor levels.} \item{\dots}{Arguments passed on to other methods.} } \value{ An unordered factor, where levels of \code{x} have been reordered and/or collapsed. } \seealso{\code{\link{Relevel.Lexis}}} \examples{ ff <- factor( sample( letters[1:5], 100, replace=TRUE ) ) table( ff, Relevel( ff, list( AB=1:2, "Dee"=4, c(3,5) ) ) ) table( ff, rr=Relevel( ff, list( 5:4, Z=c("c","a") ), coll="-und-", first=FALSE ) ) } \keyword{manip} Epi/man/ROC.Rd0000644000175100001440000000747712144476641012522 0ustar hornikusers\name{ROC} \alias{ROC} %- Also NEED an `\alias' for EACH other topic documented here. \title{Function to compute and draw ROC-curves.} \description{ Computes sensitivity, specificity and positive and negative predictive values for a test based on dichotomizing along the variable \code{test}, for prediction of \code{stat}. Plots curves of these and a ROC-curve. } \usage{ ROC( test = NULL, stat = NULL, form = NULL, plot = c("sp", "ROC"), PS = is.null(test), PV = TRUE, MX = TRUE, MI = TRUE, AUC = TRUE, grid = seq(0,100,10), col.grid = gray( 0.9 ), cuts = NULL, lwd = 2, data = parent.frame(), ... ) } \arguments{ \item{test}{ Numerical variable used for prediction. } \item{stat}{ Logical variable of true status. } \item{form}{ Formula used in a logistic regression. If this is given, \code{test} and \code{stat} are ignored. If not given then both \code{test} and \code{stat} must be supplied. } \item{plot}{ Character variable. If "sp", the a plot of sensitivity, specificity and predictive values against test is produced, if "ROC" a ROC-curve is plotted. Both may be given.} \item{PS}{logical, if TRUE the x-axis in the plot "ps"-plot is the the predicted probability for \code{stat}==TRUE, otherwise it is the scale of \code{test} if this is given otherwise the scale of the linear predictor from the logistic regression.} \item{PV}{Should sensitivity, specificity and predictive values at the optimal cutpoint be given on the ROC plot? } \item{MX}{Should the ``optimal cutpoint'' (i.e. where sens+spec is maximal) be indicated on the ROC curve?} \item{MI}{Should model summary from the logistic regression model be printed in the plot?} \item{AUC}{Should the area under the curve (AUC) be printed in the ROC plot?} \item{grid}{Numeric or logical. If FALSE no background grid is drawn. Otherwise a grid is drawn on both axes at \code{grid} percent.} \item{col.grid}{Colour of the grid lines drawn.} \item{cuts}{Points on the test-scale to be annotated on the ROC-curve. } \item{lwd}{Thickness of the curves} \item{data}{Data frame in which to interpret the variables.} \item{\dots}{Additional arguments for the plotting of the ROC-curve. Passed on to \code{plot}} } \details{ As an alternative to a \code{test} and a \code{status} variable, a model formula may given, in which case the the linear predictor is the test variable and the response is taken as the true status variable. The test used to derive sensitivity, specificity, PV+ and PV- as a function of \eqn{x} is \code{test}\eqn{\geq x}{>=x} as a predictor of \code{stat}=TRUE. } \value{ A list with two components: \item{res}{dataframe with variables \code{sens}, \code{spec}, \code{pvp}, \code{pvn} and name of the test variable. The latter is the unique values of test or linear predictor from the logistic regression in ascending order with -Inf prepended. Since the sensitivity is defined as \eqn{P(test>x)|status=TRUE}, the first row has \code{sens} equal to 1 and \code{spec} equal to 0, corresponding to drawing the ROC curve from the upper right to the lower left corner.} \item{lr}{glm object with the logistic regression result used for construction of the ROC curve} 0, 1 or 2 plots are produced according to the setting of \code{plot}. } \author{Bendix Carstensen, Steno Diabetes Center \& University of Copenhagen, \url{http://BendixCarstensen.com} } \examples{ x <- rnorm( 100 ) z <- rnorm( 100 ) w <- rnorm( 100 ) tigol <- function( x ) 1 - ( 1 + exp( x ) )^(-1) y <- rbinom( 100, 1, tigol( 0.3 + 3*x + 5*z + 7*w ) ) ROC( form = y ~ x + z, plot="ROC" ) } \keyword{manip} \keyword{htest} %\keyword{ROC-curves} %\keyword{sensitivity} %\keyword{specificity} %\keyword{predictive values} Epi/man/N2Y.Rd0000644000175100001440000000427412144476641012477 0ustar hornikusers\name{N2Y} \alias{N2Y} \title{ Create risk time (Person-Years) in Lexis triangles from population data. } \description{ Data on population size at equidistant dates and age-classes are used to estimate person-time at risk in Lexis-triangles, i.e. classes classified by age, period AND cohort. } \usage{ N2Y( A, P, N, data = NULL, return.dfr = TRUE) } \arguments{ \item{A}{Name of the age-variable, which should be numeric, corresponding to the left endpoints of the age intervals.} \item{P}{Name of the period-variable, which should be numeric, corresponding to the date of population count.} \item{N}{The population size at date \code{P} in age class \code{A}.} \item{data}{A data frame in which arguments are interpreted.} \item{return.dfr}{Logical. Should the results be returned as a data frame (default \code{TRUE}) or as a table.} } \details{The calculation of the risk time from the population figures is done as described in: B. Carstensen: Age-Period-Cohort models for the Lexis diagram. Statistics in Medicine, 26: 3018-3045, 2007. } \value{A data frame with variables \code{A}, \code{P} and \code{Y}, representing the mean age and period in the Lexis triangles and the person-time in them. If \code{res.dfr=FALSE} a three-way table classified by the left end point of the age-classes and the periods and a factor \code{wh} taking the values \code{up} and \code{lo} corresponding to upper (early cohort) and lower (late cohort) Lexis triangles. } \references{ B. Carstensen: Age-Period-Cohort models for the Lexis diagram. Statistics in Medicine, 26: 3018-3045, 2007. } \author{ Bendix Carstensen, \url{BendixCarstensen.com} } \seealso{ \code{\link{splitLexis}}, \code{\link{apc.fit}} } \examples{ # Danish population at 1 Jan each year by sex and age data( N.dk ) # An illustrative subset ( Nx <- subset( N.dk, sex==1 & A<5 & P<1975 ) ) # Show the data in tabular form xtabs( N ~ A + P, data=Nx ) # Lexis triangles as data frame Nt <- N2Y( data=Nx, return.dfr=TRUE ) xtabs( Y ~ round(A,2) + round(P,2), data=Nt ) # Lexis triangles as a 3-dim array ftable( N2Y( data=Nx, return.dfr=FALSE ) ) } \keyword{Data} Epi/man/N.dk.Rd0000644000175100001440000000141512144476641012653 0ustar hornikusers\name{N.dk} \alias{N.dk} \docType{data} \title{Population size in Denmark} \description{ The population size at 1st January in ages 0-99. } \usage{data(N.dk)} \format{ A data frame with 7200 observations on the following 4 variables. \describe{ \item{\code{sex}}{Sex, 1:males, 2:females} \item{\code{A}}{Age. 0:0, 1:1, ..., 98:98, 99:99+} \item{\code{P}}{Year} \item{\code{N}}{Number of persons alive at 1st January year \code{P}} } } \source{ \url{http://www.statistikbanken.dk/statbank5a/SelectTable/omrade0.asp?SubjectCode=02&PLanguage=1&ShowNews=OFF} } \examples{ data(N.dk) str(N.dk) with(N.dk,addmargins(tapply(N,list(P,sex),sum),2)) with(subset(N.dk,P==max(P)),addmargins(tapply(N,list(A,sex),sum))) } \keyword{datasets} Epi/man/M.dk.Rd0000644000175100001440000000315112144476641012651 0ustar hornikusers\name{M.dk} \alias{M.dk} \docType{data} \title{Mortality in Denmark 1974 ff.} \description{ Mortality in one-year classes of age (0-98,99+) and period (1974 ff.) in Denmark. } \usage{data(M.dk)} \format{ A data frame with 6400 observations on the following 6 variables. \describe{ \item{\code{A}}{Age-class, 0-98, 99:99+} \item{\code{sex}}{Sex. 1:males, 2:females} \item{\code{P}}{Period (year) of death} \item{\code{D}}{Number of deaths} \item{\code{Y}}{Number of person-years} \item{\code{rate}}{Mortality rate per 1000 person-years} } } \details{ Deaths in ages over 100 are in the class labelled 99. Risk time is computed by tabulation of the risk time in \code{\link{Y.dk}}, except for the class 99+ where the average of the population size in ages 99+ at the first and last date of the year is used.} \source{ \url{http://www.statistikbanken.dk/statbank5a/SelectTable/omrade0.asp?SubjectCode=02&PLanguage=1&ShowNews=OFF} } \examples{ data(M.dk) str(M.dk) zz <- xtabs( rate ~ sex+A+P, data=M.dk ) zz[zz==0] <- NA # 0s makes log-scale plots crash par(mfrow=c(1,2), mar=c(0,0,0,0), oma=c(3,3,1,1), mgp=c(3,1,0)/1.6 ) for( i in 1:2 ) { matplot( dimnames(zz)[[2]], zz[i,,], lty=1, lwd=1, col=rev(heat.colors(37)), log="y", type="l", ylim=range(zz,na.rm=TRUE), ylab="", xlab="", yaxt="n" ) text( 0, max(zz,na.rm=TRUE), c("M","F")[i], font=2, adj=0:1, cex=2, col="gray" ) if( i==1 ) axis( side=2, las=1 ) } mtext( side=1, "Age", line=2, outer=TRUE ) mtext( side=2, "Mortality rate", line=2, outer=TRUE ) } \keyword{datasets} Epi/man/Life.lines.Rd0000644000175100001440000000404012144476641014046 0ustar hornikusers\name{Life.lines} \alias{Life.lines} \title{ Compute dates/ages for life lines in a Lexis diagram } \description{ Fills out the missing information for follow up of persons in a Lexis diagram if sufficient information is given. } \usage{ Life.lines( entry.date = NA, exit.date = NA, birth.date = NA, entry.age = NA, exit.age = NA, risk.time = NA ) } \arguments{ \item{entry.date, exit.date,birth.date, entry.age, exit.age, risk.time}{Vectors defining lifelines to be plotted in the diagram. At least three must be given to produce a result. Not all subsets of three will suffice, the given subset has to define life lines. If insufficient data is given, nothing is returned and a warning is given.} } \value{ Data frame with variables \code{entry.date}, \code{entry.age}, \code{exit.date}, \code{exit.age}, \code{risk.time}, \code{birth.date}, with all entries computed for each person. If any of \code{entry.date}, \code{exit.date} or \code{birth.date} are of class \code{Date} or if any of \code{entry.age}, \code{exit.age} or \code{risk.time} are of class \code{difftime} the date variables will be of class \code{Date} and the other three of class \code{difftime}. } \examples{ ( Life.lines( entry.age = c(3,30,45), risk.time = c(25,5,14), birth.date = c(1970,1931,1925.7) ) ) # Draw a Lexis diagram Lexis.diagram() # Compute entry and exit age and date. ( LL <- Life.lines( entry.age = c(3,30,45), risk.time = c(25,5,14), birth.date = c(1970,1931,1925.7) ) ) segments( LL[,1], LL[,2], LL[,3], LL[,4] ) # Plot the life lines. # Compute entry and exit age and date, supplying a date variable bd <- ( c(1970,1931,1925.7) - 1970 ) * 365.25 class( bd ) <- "Date" ( Life.lines( entry.age = c(3,30,45), risk.time = c(25,5,14), birth.date = bd ) ) } \seealso{ \code{\link{Lexis.diagram}}, \code{\link{Lexis.lines}} } \keyword{ manip } \keyword{ dplot } Epi/man/Lexis.lines.Rd0000644000175100001440000000447712144476641014271 0ustar hornikusers\name{Lexis.lines} \alias{Lexis.lines} \title{Draw life lines in a Lexis diagram.} \description{ Add life lines to a Lexis diagram. } \usage{ Lexis.lines( entry.date = NA, exit.date = NA, birth.date = NA, entry.age = NA, exit.age = NA, risk.time = NA, col.life = "black", lwd.life = 2, fail = NA, cex.fail = 1, pch.fail = c(NA, 16), col.fail = col.life, data = NULL ) } \arguments{ \item{entry.date, entry.age, exit.date, exit.age, risk.time, birth.date}{Numerical vectors defining lifelines to be plotted in the diagram. At least three must be given to produce lines. Not all subsets of three will suffice, the given subset has to define life lines. If insufficient data is given, no life lines are produced.} \item{col.life}{Colour of the life lines.} \item{lwd.life}{Width of the life lines.} \item{fail}{Logical of event status at exit for the persons whose life lines are plotted.} \item{cex.fail}{The size of the status marks at the end of life lines.} \item{pch.fail}{The status marks at the end of the life lines.} \item{col.fail}{Colour of the marks for censorings and failures respectively.} \item{data}{Data frame in which to interpret values.} } \value{ If sufficient information on lifelines is given, a data frame with one row per person and columns with entry ages and dates, birth date, risk time and status filled in. Side effect: Life lines are added to an existing Lexis diagram. Lexis.lines adds life lines to an existing plot. } \author{ Bendix Carstensen, Steno Diabetes Center, \url{http://BendixCarstensen.com} } \examples{ Lexis.diagram( entry.age = c(3,30,45), risk.time = c(25,5,14), birth.date = c(1970,1931,1925.7), fail = c(TRUE,TRUE,FALSE) ) Lexis.lines( entry.age = sample( 0:50, 100, replace=TRUE ), risk.time = sample( 5:40, 100, r=TRUE), birth.date = sample( 1910:1980, 100, r=TRUE ), fail = sample(0:1,100,r=TRUE), cex.fail = 0.5, lwd.life = 1 ) } \keyword{ hplot } \keyword{ dplot } \seealso{ \code{\link{Lexis.diagram}}, \code{\link{Life.lines}} } Epi/man/Lexis.diagram.Rd0000644000175100001440000001160212144476641014547 0ustar hornikusers\name{Lexis.diagram} \alias{Lexis.diagram} \title{Plot a Lexis diagram} \description{ Draws a Lexis diagram, optionally with life lines from a cohort, and with lifelines of a cohort if supplied. Intended for presentation purposes. } \usage{ Lexis.diagram( age = c( 0, 60), alab = "Age", date = c( 1940, 2000 ), dlab = "Calendar time", int = 5, lab.int = 2*int, col.life = "black", lwd.life = 2, age.grid = TRUE, date.grid = TRUE, coh.grid = FALSE, col.grid = gray(0.7), lwd.grid = 1, las = 1, entry.date = NA, entry.age = NA, exit.date = NA, exit.age = NA, risk.time = NA, birth.date = NA, fail = NA, cex.fail = 1.1, pch.fail = c(NA,16), col.fail = rep( col.life, 2 ), data = NULL, ... ) } \arguments{ \item{age}{Numerical vector of length 2, giving the age-range for the diagram} \item{alab}{Label on the age-axis.} \item{date}{Numerical vector of length 2, giving the calendar time-range for the diagram} \item{dlab}{label on the calendar time axis.} \item{int}{The interval between grid lines in the diagram. If a vector of length two is given, the first value will be used for spacing of age-grid and the second for spacing of the date grid.} \item{lab.int}{The interval between labelling of the grids.} \item{col.life}{Colour of the life lines.} \item{lwd.life}{Width of the life lines.} \item{age.grid}{Should grid lines be drawn for age?} \item{date.grid}{Should grid lines be drawn for date?} \item{coh.grid}{Should grid lines be drawn for birth cohorts (diagonals)?} \item{col.grid}{Colour of the grid lines.} \item{lwd.grid}{Width of the grid lines.} \item{las}{How are the axis labels plotted?} \item{entry.date, entry.age, exit.date, exit.age, risk.time, birth.date}{Numerical vectors defining lifelines to be plotted in the diagram. At least three must be given to produce lines. Not all subsets of three will suffice, the given subset has to define life lines. If insufficient data is given, no life lines are produced.} \item{fail}{Logical of event status at exit for the persons whose life lines are plotted.} \item{pch.fail}{Symbols at the end of the life lines for censorings (\code{fail==0}) and failures (\code{fail != 0}).} \item{cex.fail}{Expansion of the status marks at the end of life lines.} \item{col.fail}{Character vector of length 2 giving the colour of the failure marks for censorings and failures respectively.} \item{data}{Dataframe in which to interpret the arguments.} \item{...}{Arguments to be passed on to the initial call to plot.} } \value{ If sufficient information on lifelines is given, a data frame with one row per person and columns with entry ages and dates, birth date, risk time and status filled in. Side effect: a plot of a Lexis diagram is produced with the life lines in it is produced. This will be the main reason for using the function. If the primary aim is to illustrate follow-up of a cohort, then it is better to represent the follow-up in a \code{\link{Lexis}} object, and use the generic \code{\link{plot.Lexis}} function. } \details{ The default unit for supplied variables are (calendar) years. If any of the variables \code{entry.date}, \code{exit.date} or \code{birth.date} are of class "\code{Date}" or if any of the variables \code{entry.age}, \code{exit.age} or \code{risk.time} are of class "\code{difftime}", they will be converted to calendar years, and plotted correctly in the diagram. The returned dataframe will then have colums of classes "\code{Date}" and "\code{difftime}". } \author{ Bendix Carstensen, \url{http://BendixCarstensen.com} } \examples{ Lexis.diagram( entry.age = c(3,30,45), risk.time = c(25,5,14), birth.date = c(1970,1931,1925.7), fail = c(TRUE,TRUE,FALSE) ) LL <- Lexis.diagram( entry.age = sample( 0:50, 17, replace=TRUE ), risk.time = sample( 5:40, 17, r=TRUE), birth.date = sample( 1910:1980, 17, r=TRUE ), fail = sample( 0:1, 17, r=TRUE ), cex.fail = 1.1, lwd.life = 2 ) # Identify the persons' entry and exits text( LL$exit.date, LL$exit.age, paste(1:nrow(LL)), col="red", font=2, adj=c(0,1) ) text( LL$entry.date, LL$entry.age, paste(1:nrow(LL)), col="blue", font=2, adj=c(1,0) ) data( nickel ) attach( nickel ) LL <- Lexis.diagram( age=c(10,100), date=c(1900,1990), entry.age=age1st, exit.age=ageout, birth.date=dob, fail=(icd \%in\% c(162,163)), lwd.life=1, cex.fail=0.8, col.fail=c("green","red") ) abline( v=1934, col="blue" ) nickel[1:10,] LL[1:10,] } \keyword{hplot} \keyword{dplot} \seealso{ \code{\link{Life.lines}}, \code{\link{Lexis.lines}} } Epi/man/Lexis.Rd0000644000175100001440000001541512144476641013152 0ustar hornikusers\name{Lexis} \alias{Lexis} \title{Create a Lexis object} \description{ Create an object of class \code{Lexis} to represent follow-up in multiple states on multiple time scales. } \usage{ Lexis(entry, exit, duration, entry.status = 0, exit.status = 0, id, data, merge=TRUE, states, tol=.Machine$double.eps^0.5 ) } \arguments{ \item{entry}{a named list of entry times. Each element of the list is a numeric variable representing the entry time on the named time scale. All time scales must have the same units (e.g. years). The names of the timescales must be different from any column name in \code{data}.} \item{exit}{a named list of exit times.} \item{duration}{a numeric vector giving the duration of follow-up.} \item{entry.status}{a vector or a factor giving the status at entry} \item{exit.status}{a vector or factor giving status at exit. Any change in status during follow-up is assumed to take place exactly at the exit time.} \item{id}{a vector giving a unique identity value for each row of the Lexis object.} \item{data}{an optional data frame, list, or environment containing the variables. If not found in \code{data}, the variables are taken from the environment from which \code{Lexis} was called.} \item{merge}{a logical flag. If \code{TRUE} then the \code{data} argument will be coerced to a data frame and then merged with the resulting \code{Lexis} object.} \item{states}{A vector of labels for the states. If given, the state variables \code{lex.Cst} and \code{lex.Xst} are returned as factors with identical levels attributes.} \item{tol}{Numerical tolerance for follow-up time. Rows with duration less than this value are automatically dropped.} } \details{ The analysis of long-term population-based follow-up studies typically requires multiple time scales to be taken into account, such as age, calender time, or time since an event. A \code{Lexis} object is a data frame with additional attributes that allows these multiple time dimensions of follow-up to be managed. Separate variables for current end exit state allows representation of multistate data. Lexis objects are named after the German demographer Wilhelm Lexis (1837-1914), who is credited with the invention of the "Lexis diagram" for representing population dynamics simultaneously by several timescales. The \code{Lexis} function can create a minimal \code{Lexis} object with only those variables required to define the follow-up history in each row. Additional variables can be merged into the \code{Lexis} object using the \code{merge} method for \code{Lexis} objects. The latter is the default. There are also \code{merge}, \code{subset} and \code{transform} methods for \code{Lexis} objects. They work as the corresponding methods for data-frames but ensures that the result is a \code{Lexis} object. } \note{ Only two of the three arguments \code{entry}, \code{exit} and \code{duration} need to be given. If the third parameter is missing, it is imputed. \code{entry}, \code{exit} must be numeric, using \code{\link{Date}} variables will cause some of the utilites to crash. Transformation by \code{\link{cal.yr}} is recommended. If only either \code{exit} or \code{duration} are supplied it is assumed that \code{entry} is 0. This is only meaningful (and therefore checked) if there is only one timescale. If any of \code{entry.status} or \code{exit.status} are of mode character, they will both be converted to factors. If \code{entry.status} is not given, then its class is automatically set to that of \code{exit.status}. If \code{exit.status} is factor, the value of \code{entry.status} is set to the first level. This may be highly undesirable, and therefore noted. For example, if \code{exit.status} is character the first level will be the first in the alphabetical ordering; slightly unfortunate if values are \code{c("Well","Diseased")}. If \code{exit.status} is logical, the value of \code{entry.status} set to \code{FALSE}. If \code{exit.status} is numeric, the value of \code{entry.status} set to 0. If \code{entry.status} or \code{exit.status} are factors or character, the corresponding state variables in the returned \code{Lexis} object, \code{lex.Cst} and \code{lex.Xst} will be (unordered) factors with identical set of levels, namely the union of the levels of \code{entry.status} and \code{exit.status}. } \value{ An object of class \code{Lexis}. This is represented as a data frame with a column for each time scale, and additional columns with the following names: \item{lex.id}{Identification of the inidvidual (record in \code{data}, that is).} \item{lex.dur}{Duration of follow-up.} \item{lex.Cst}{Entry status (Current state), i.e. the state in which the follow up takes place.} \item{lex.Xst}{Exit status (eXit state), i.e. that state taken up after \code{dur} in \code{lex.Cst}.} If \code{merge=TRUE} (the default) then the \code{Lexis} object will also contain all variables from the \code{data} argument. } \author{Martyn Plummer} \examples{ # A small bogus cohort xcoh <- structure( list( id = c("A", "B", "C"), birth = c("14/07/1952", "01/04/1954", "10/06/1987"), entry = c("04/08/1965", "08/09/1972", "23/12/1991"), exit = c("27/06/1997", "23/05/1995", "24/07/1998"), fail = c(1, 0, 1) ), .Names = c("id", "birth", "entry", "exit", "fail"), row.names = c("1", "2", "3"), class = "data.frame" ) # Convert the character dates into numerical variables (fractional years) xcoh <- cal.yr( xcoh, format="\%d/\%m/\%Y", wh=2:4 ) # See how it looks xcoh # Define as Lexis object with timescales calendar time and age Lcoh <- Lexis( entry = list( per=entry ), exit = list( per=exit, age=exit-birth ), exit.status = fail, data = xcoh ) Lcoh # Using character states may have undesired effects: xcoh$Fail <- c("Dead","Well","Dead") Lexis( entry = list( per=entry ), exit = list( per=exit, age=exit-birth ), exit.status = Fail, data = xcoh ) # unless you order the levels correctly ( xcoh$Fail <- factor( xcoh$Fail, levels=c("Well","Dead") ) ) Lexis( entry = list( per=entry ), exit = list( per=exit, age=exit-birth ), exit.status = Fail, data = xcoh ) } \seealso{ \code{\link{plot.Lexis}}, \code{\link{splitLexis}}, \code{\link{cutLexis}}, \code{\link{merge.Lexis}}, \code{\link{subset.Lexis}}, \code{\link{transform.Lexis}}, \code{\link{summary.Lexis}}, \code{\link{timeScales}}, \code{\link{timeBand}}, \code{\link{entry}}, \code{\link{exit}}, \code{\link{dur}} } \keyword{survival} Epi/man/Icens.Rd0000644000175100001440000000672412144476641013132 0ustar hornikusers\name{Icens} \alias{Icens} \alias{print.Icens} \title{ Fits a regression model to interval censored data. } \description{ The models fitted assumes a piecewise constant baseline rate in intervals specified by the argument \code{breaks}, and for the covariates either a multiplicative relative risk function (default) or an additive excess risk function. } \usage{ Icens( first.well, last.well, first.ill, formula, model.type=c("MRR","AER"), breaks, boot=FALSE, alpha=0.05, keep.sample=FALSE, data ) } \arguments{ \item{first.well}{Time of entry to the study, i.e. the time first seen without event. Numerical vector.} \item{last.well}{Time last seen without event. Numerical vector.} \item{first.ill}{Time first seen with event. Numerical vector.} \item{formula}{Model formula for the log relative risk.} \item{model.type}{Which model should be fitted.} \item{breaks}{Breakpoints between intervals in which the underlying timescale is assumed constant. Any observation outside the range of \code{breaks} is discarded.} \item{boot}{Should bootstrap be performed to produce confidence intervals for parameters. If a number is given this will be the number of bootsrap samples. The default is 1000.} \item{alpha}{1 minus the confidence level.} \item{keep.sample}{Should the bootstrap sample of the parameter values be returned?} \item{data}{Data frame in which the times and formula are interpreted.} } \details{ The model is fitted by calling either \code{\link{fit.mult}} or \code{\link{fit.add}}. } \value{ An object of class \code{"Icens"}: a list with three components: \item{rates}{A glm object from a binomial model with log-link, estimating the baseline rates, and the excess risk if \code{"AER"} is specfied.} \item{cov}{A glm object from a binomial model with complementary log-log link, estimating the log-rate-ratios. Only if \code{"MRR"} is specfied.} \item{niter}{Nuber of iterations, a scalar} \item{boot.ci}{If \code{boot=TRUE}, a 3-column matrix with estimates and 1-\code{alpha} confidence intervals for the parameters in the model.} \item{sample}{A matrix of the parameterestimates from the bootstrapping. Rows refer to parameters, columns to bootstrap samples.} } \references{ B Carstensen: Regression models for interval censored survival data: application to HIV infection in Danish homosexual men. Statistics in Medicine, 15(20):2177-2189, 1996. CP Farrington: Interval censored survival data: a generalized linear modelling approach. Statistics in Medicine, 15(3):283-292, 1996. } \author{ Martyn Plummer, \email{plummer@iarc.fr}, Bendix Carstensen, \email{bxc@steno.dk} } \seealso{ \code{\link{fit.add}} \code{\link{fit.mult}} } \examples{ data( hivDK ) # Convert the dates to fractional years so that rates are # expressed in cases per year for( i in 2:4 ) hivDK[,i] <- cal.yr( hivDK[,i] ) m.RR <- Icens( entry, well, ill, model="MRR", formula=~pyr+us, breaks=seq(1980,1990,5), data=hivDK) # Currently the MRR model returns a list with 2 glm objects. round( ci.lin( m.RR$rates ), 4 ) round( ci.lin( m.RR$cov, Exp=TRUE ), 4 ) # There is actually a print method: print( m.RR ) m.ER <- Icens( entry, well, ill, model="AER", formula=~pyr+us, breaks=seq(1980,1990,5), data=hivDK) # There is actually a print method: print( m.ER ) } \keyword{ models } \keyword{ regression } \keyword{ survival } Epi/man/DMlate.Rd0000644000175100001440000000362512144476641013234 0ustar hornikusers\name{DMlate} \Rdversion{1.1} \alias{DMlate} \alias{DMrand} \docType{data} \title{ The Danish National Diabetes Register. } \description{ These two datasets each contain a random sample of 10,000 persons from the Danish National Diabetes Register. \code{DMrand} is a random sample from the register, whereas \code{DMlate} is a random sample among those with date of diagnosis after 1.1.1995. } \usage{data(DMrand) data(DMlate)} \format{ A data frame with 10000 observations on the following 7 variables. \describe{ \item{\code{sex}}{Sex, a factor with levels \code{M} \code{F}} \item{\code{dobth}}{Date of birth} \item{\code{dodm}}{Date of inclusion in the register} \item{\code{dodth}}{Date of death} \item{\code{dooad}}{Date of 2nd prescription of OAD} \item{\code{doins}}{Date of 2nd insulin prescription} \item{\code{dox}}{Date of exit from follow-up.} } } \details{All dates are given in fractions of years, so 1997.00 corresponds to 1 January 1997 and 1997.997 to 31 December 1997. } \source{ Danish National Board of Health. } \references{ B Carstensen, JK Kristensen, P Ottosen and K Borch-Johnsen: The Danish National Diabetes Register: Trends in incidence, prevalence and mortality, Diabetologia, 51, pp 2187--2196, 2008. In partucular see the appendix at the end of the paper. } \examples{ data(DMlate) str(DMlate) dml <- Lexis( entry=list(Per=dodm, Age=dodm-dobth, DMdur=0 ), exit=list(Per=dox), exit.status=factor(!is.na(dodth),labels=c("DM","Dead")), data=DMlate ) # Split follow-up at insulin, introduce a new timescale, # and split non-precursor states system.time( dmi <- cutLexis( dml, cut = dml$doins, pre = "DM", new.state = "Ins", new.scale = "t.Ins", split.states = TRUE ) ) summary( dmi ) } \keyword{datasets} Epi/man/DMconv.Rd0000644000175100001440000000217612144476641013254 0ustar hornikusers\name{DMconv} \alias{DMconv} \docType{data} \title{Conversion to diabetes} \description{ Data from a randomized intervention study ("Addition") where persons with prediabetic conditions are followed up for conversion to diabetes (DM). Conversion dates are interval censored. Original data are not published yet, so id-numbers have been changed and all dates have been randomly perturbed. } \usage{data(DMconv)} \format{ A data frame with 1519 observations on the following 6 variables. \describe{ \item{\code{id}}{Person identifier} \item{\code{doe}}{Date of entry, i.e. first visit.} \item{\code{dlw}}{Date last seen well, i.e. last visit without DM.} \item{\code{dfi}}{Date first seen ill, i.e. first visit with DM.} \item{\code{gtol}}{Glucose tolerance. Factor with levels: 1="IFG" (impaired fasting glucose), 2="IGT" (impaired glucose tolerance).} \item{\code{grp}}{Randomization. Factor with levels: 1="Intervention", 2="Control".} } } \source{ Signe Saetre Rasmussen, Steno Diabetes Center. The Addition Study. } \examples{ data(DMconv) str(DMconv) head(DMconv) } \keyword{datasets} Epi/man/B.dk.Rd0000644000175100001440000000421112144476641012634 0ustar hornikusers\name{B.dk} \alias{B.dk} \docType{data} \title{Births in Denmark by year and month of birth and sex} \description{ The number of live births as entered from printed publications from Statistics Denmark. } \usage{data(B.dk)} \format{ A data frame with 1248 observations on the following 4 variables. \describe{ \item{\code{year}}{Year of birth} \item{\code{month}}{Month of birth} \item{\code{m}}{Number of male births} \item{\code{f}}{Number of female births} } } \details{ Division of births by month and sex is only avaialble for the years 1957--69 and 2002ff. For the remaining period, the total no. births in each month is divided between the sexes so that the fraction of boys is equal to the overall fraction for the years where the sex information is available. There is a break in the series at 1920, when Sonderjylland was joined to Denmark. } \source{ Statistiske Undersogelser nr. 19: Befolkningsudvikling og sundhedsforhold 1901-60, Copenhagen 1966. Befolkningens bevaegelser 1957. Befolkningens bevaegelser 1958. ... Befolkningens bevaegelser 2003. Befolkningens bevaegelser 2004. Vital Statistics 2005. Vital Statistics 2006. } \examples{ data( B.dk ) str( B.dk ) attach( B.dk ) # Plot the no of births and the M/F-ratio par( las=1, mar=c(4,4,2,4) ) matplot( year+(month-0.5)/12, cbind( m, f ), bty="n", col=c("blue","red"), lty=1, lwd=1, type="l", ylim=c(0,5000), xlab="Date of birth", ylab="" ) usr <- par()$usr mtext( "Monthly no. births in Denmark", side=3, adj=0, at=usr[1], line=1/1.6 ) text( usr[1:2] \%*\% cbind(c(19,1),c(19,1))/20, usr[3:4] \%*\% cbind(c(1,19),c(2,18))/20, c("Boys","Girls"), col=c("blue","red"), adj=0 ) lines( year+(month-0.5)/12, (m/(m+f)-0.5)*30000, lwd=1 ) axis( side=4, at=(seq(0.505,0.525,0.005)-0.5)*30000, labels=c("","","","",""), tcl=-0.3 ) axis( side=4, at=(50:53/100-0.5)*30000, labels=50:53, tcl=-0.5 ) axis( side=4, at=(0.54-0.5)*30000, labels="\% boys", tick=FALSE, mgp=c(3,0.1,0) ) abline( v=1920, col=gray(0.8) ) } \keyword{datasets} Epi/inst/0000755000175100001440000000000012144476641011773 5ustar hornikusersEpi/inst/doc/0000755000175100001440000000000012144476665012546 5ustar hornikusersEpi/inst/doc/sim-Lexis.pdf0000644000175100001440000100720212144476641015107 0ustar hornikusers%PDF-1.5 %ÐÔÅØ 1 0 obj << /S /GoTo /D (section.1) >> endobj 4 0 obj (Introduction) endobj 5 0 obj << /S /GoTo /D (section.2) >> endobj 8 0 obj (Simulation setup for Poisson models based on Lexis objects) endobj 9 0 obj << /S /GoTo /D (subsection.2.1) >> endobj 12 0 obj (Simulation of transition times \204 theory) endobj 13 0 obj << /S /GoTo /D (subsection.2.2) >> endobj 16 0 obj (Simulation of transition times \204 implementation) endobj 17 0 obj << /S /GoTo /D (section.3) >> endobj 20 0 obj (Putting it all together in a function) endobj 21 0 obj << /S /GoTo /D (subsection.3.1) >> endobj 24 0 obj (Components of simLexis) endobj 25 0 obj << /S /GoTo /D (section.4) >> endobj 28 0 obj (Functions for deriving statistics from simulated Lexis objects) endobj 29 0 obj << /S /GoTo /D (section.5) >> endobj 32 0 obj (How it actually works) endobj 33 0 obj << /S /GoTo /D [34 0 R /Fit] >> endobj 38 0 obj << /Length 778 /Filter /FlateDecode >> stream xÚUKoÛ0 ¾ûWè4Ø@­ˆ’lI; }¤À°Ëºl—a‡6qÚ Íc‰»¥ÿ~$%5µØã`™¡ÅäÇG”¸J\êïÓQ16Vh+w FSa\­2¢EñZŒ&âkùiVA9¯ ”(]÷xÌ–x,ªÚ¸¦œ-ªo£÷¢pÒˆZ齋Æh§ÑŽm6xô×tàÓEã9ŠK¡œt„¾!µ-’ÏþŽ­—Ö†Õ<æpyõ°Cì9ÜŽ°ÆäŒ?m©P˜”×Vä7ˆõ­ø]yuY\ŒŠï M ;+½iDc•l[#Æó‚ô¶uÒV@˜¹ÕZòh[MÜ6`dPßT·Ü9>g1>vG1±€q †-ìƒÔ‚ V£àd0©Bwız‹Ç€žSÊzÇ„øÙ’ "cM´ôùÛ& rÌe@ÞÈøbE6)¢˜Ïq26Hƒ-£0»\¸ºÉфڗOXÝ”Úæ`èæÐê–€[¥‘[©Ua¢%_<ô‰b+ê½›ÃÊë²»IÞ“ûõ©O’KT(Àƒ] ­åqÔ_*$0/³DÂ"Ú‚Dv‘€ M“ªÐz‰QÔ[3UòŒé£0y©ï&ꯩ1V`lNñ4f¬`‡ã9“—â-Mp¢Þ»øoÜ@ÖB™š¨ÁÇ¥¹¶X£Ð ­MÜO×¹cØ€ƒ¢VÝe´œ•è¡kƒÜ}Ìýº¢ƒzuK$Ñw&25š ruH] õ6±¼‘yŸl_©T#½µ´=4Ž]˜ÓŽËœ¦ƒbú-Gy}4#ñjBà2öÙtMÎ¥tSÕ¨éú¸q"b¼Ž•fÃuâù2“š ¦}J5}>ÏNæ9 û<: p‹„Ø 7ö‡…yƒ¸r)¬nÅÖ}ÂÉþøûrJoÃÜÏ–›DâõnO§´Æ›“hðy‘4?*í8Öç™és##^ÄÕ8«H™Ý9·Ýâ¥6Q‡áSÇni½ËQ0ÂR¦bÝ¿²(qþg%绕HÉÇß_„Çoü£ø|Æ®Þ endstream endobj 34 0 obj << /Type /Page /Contents 38 0 R /Resources 37 0 R /MediaBox [0 0 595.276 841.89] /Parent 46 0 R /Annots [ 35 0 R 36 0 R ] >> endobj 35 0 obj << /Type /Annot /Border[0 0 0]/H/I/C[0 1 1] /Rect [312.964 492.906 543.547 508.039] /Subtype/Link/A<> >> endobj 36 0 obj << /Type /Annot /Border[0 0 0]/H/I/C[0 1 1] /Rect [262.221 65.901 430.127 94.044] /Subtype/Link/A<> >> endobj 39 0 obj << /D [34 0 R /XYZ 73.835 785.063 null] >> endobj 40 0 obj << /D [34 0 R /XYZ 74.835 747.213 null] >> endobj 37 0 obj << /Font << /F54 41 0 R /F22 42 0 R /F61 43 0 R /F8 44 0 R /F34 45 0 R >> /ProcSet [ /PDF /Text ] >> endobj 57 0 obj << /Length 676 /Filter /FlateDecode >> stream xÚÅVKoÛ0 ¾çWè(ìêaIÖuÅÒmè¡Xs+vHój6'.bg]ýø‘¢œØn²aØÐ)õ‘üHŠlÅ»‰¸¾›Œ.Æ&gÒeJÂ:Y2—g…6Ìi“)ãØdÎîøe"yµM´ä ì´«“/“O# 8‚íVŒ6Ÿ¯" Ì¼1 K•Í”õ„%“Ô Ë?ÐqW%©|¾Ÿ5k2…Э“ì½0põ´ÅhB² ÈÂ-BmÐľ„Ý EôT;Ãk …ûG,+t…ö7‰V¼BuT««àm8ÙD_e8 ²ûiT\ÌIÐÑ¿Fñ´”s^Ý'©Uü+ÊgM¸8ˆÖ9cÏ{1VªK/¤ÎËR™gyn[$Ïà\K!¿¡oUð=lú„Dgø½ÄÕRRP'‹¨×#”›*DR“ìçñþŠ+DyèÿÒÜû×ZŠsgÏdá,/zÒÓõè6}ºÕ[ÑÝŠ£­Å†ÚÌ7¶9š&Cš7cÚÿéá[’¶ÕÞiwMí~ƒÜ’¶+ê´uC+Æ_–´oƒUèû‡Å.êÅVÒÏ%"mÏ=E²ðŸ"ùOªzYQþ °˜¥nkJ3,ÑèÅØÊžQdÖy0Àñ%Z#Þõ¾âÛÓ cè¡•™ð‡ë¯Û™ÿ}æK6¤Kýu­.Ó:ï[NÅ6N¼5‚܆|ÅI°Œ]ÇȰÃBúŽ_T˜4zšiÛãu»™ÕÇÜU¡§êO˜Hû²½“æD!h!2—»6“ÝÙ´ûâˆåî\‚Ϭy1—l.U ÒœÄ©LoúœâìC ÆñÓËîœ5ûi|»Êg?¡j òÛ© ÿMTÎ¥ûm]+-2+ –m¡A4ù³i÷ÞûÉèOrþ endstream endobj 56 0 obj << /Type /Page /Contents 57 0 R /Resources 55 0 R /MediaBox [0 0 595.276 841.89] /Parent 46 0 R /Annots [ 47 0 R 48 0 R 49 0 R 50 0 R 51 0 R 52 0 R 53 0 R 54 0 R ] >> endobj 47 0 obj << /Type /Annot /Subtype /Link /Border[0 0 0]/H/I/C[1 0 0] /Rect [73.838 707.992 167.353 718.233] /A << /S /GoTo /D (section.1) >> >> endobj 48 0 obj << /Type /Annot /Subtype /Link /Border[0 0 0]/H/I/C[1 0 0] /Rect [73.838 679.523 444.1 692.084] /A << /S /GoTo /D (section.2) >> >> endobj 49 0 obj << /Type /Annot /Subtype /Link /Border[0 0 0]/H/I/C[1 0 0] /Rect [91.394 665.077 325.299 677.62] /A << /S /GoTo /D (subsection.2.1) >> >> endobj 50 0 obj << /Type /Annot /Subtype /Link /Border[0 0 0]/H/I/C[1 0 0] /Rect [91.394 650.631 372.044 663.174] /A << /S /GoTo /D (subsection.2.2) >> >> endobj 51 0 obj << /Type /Annot /Subtype /Link /Border[0 0 0]/H/I/C[1 0 0] /Rect [73.838 624.481 303.258 637.042] /A << /S /GoTo /D (section.3) >> >> endobj 52 0 obj << /Type /Annot /Subtype /Link /Border[0 0 0]/H/I/C[1 0 0] /Rect [91.394 610.036 251.226 622.578] /A << /S /GoTo /D (subsection.3.1) >> >> endobj 53 0 obj << /Type /Annot /Subtype /Link /Border[0 0 0]/H/I/C[1 0 0] /Rect [73.838 583.886 453.449 596.446] /A << /S /GoTo /D (section.4) >> >> endobj 54 0 obj << /Type /Annot /Subtype /Link /Border[0 0 0]/H/I/C[1 0 0] /Rect [73.838 557.736 222.561 570.296] /A << /S /GoTo /D (section.5) >> >> endobj 58 0 obj << /D [56 0 R /XYZ 73.835 785.063 null] >> endobj 59 0 obj << /D [56 0 R /XYZ 74.835 757.175 null] >> endobj 55 0 obj << /Font << /F54 41 0 R /F22 42 0 R /F61 43 0 R >> /ProcSet [ /PDF /Text ] >> endobj 62 0 obj << /Length 2206 /Filter /FlateDecode >> stream xÚµYmoÛÈþ®_A8 ˆ6ä._Ä .pmìÂ×Ë5½¨(Š\p%ZV-Y®^âäßwgvfw–¤»u>"—»;3ÏÌ<3K¥É2I“¿ þ4¼¼Ð:É2U…N¦×I^¤*7UR•…ªìÈ"y?ÌF¦?½¼¨£‰µªòÜî‚3.ïFz2<Œ²áÎ^ÛÑXWÃ…½;Úkn¯Ã ‡³áÛªÈåVU¡Ê"ã½PÚà|:øÏÆÒ$Kª\MLauÊ”1e2ß ÞH“…}÷S’ª,yÀy›$/+Ue•½_'ï¤ÒNY)Ù_I[šBé¢bÉã,Óùð5Vm²ÆÞ.Žs0o%ŒˆK“±.•.k·×ôfÛko—ërxoogöº·Ø”Ãf£Å°ù„CÙpM¯W¸½_"a£Æ=nhÖ|dñ½ÓPô³ÛóÊI¯îÍž7à©£)|ƒ³àöÚÉ[Ó×$?Ød—mÉÛ0дôEÜ@ÈpßHðw‚›ÙM´ ŠY®ò¼t(n(šJŒ¦fy¸a³› zG&!‚+!fK¶ñ„ƒÐžw{?[“~[Pö`n¼…‚½E]È‘^a¯­ìg¡°sˆÚÏgÌ¢}åŽN*o¯ßÒ,çè!fqൕóªÐ@ƒÏ÷"úJ8ð[Z¤Ì ÒkäMпÈìsc:éÆVïÉestèGt(ì¸'mo:‘W8·}#ƒMÄÉ2É­µÔh$L ••æ3kU]XY“ºà9MÄŸŸ¥ëa|ËþéêlÛ}w‚[îxÙVÊ)-*EA¾pήâH½†5»à_ÁH;¯ p Á32Rz¢Éù€giªÒÒÄQÜ‹ÈÆçü:†©Ÿ.9Ul¨·ìŽêM ª<„doî‚™=‹l‚ÓG&ÍQ¡Ì…’c#ÌÔªNsg¡¦jónµ=<®ƒU4 Qw8Þ»ïˆ*¾…òV{bd^¶ E V¯÷nÁÕŒæaºW¯ìíÏ0üÉm>ѵJsm+š Ølâô…é°Rÿ ÛÎû¾¸û¥¢^Œ&š¢®ÏO Ôìœ@¢µ¦r˜.ìŠô‰ó!òÛkUØ 6¢fA¬®®„šÑ OÞD8—¢Z›]‡((üb'kø-mÒ1ö¯ãânu‹›‰ÂÊô&›ö Aut½ˆ •u(É'”ÂÇ%m¸ öÛ¨(Œ ìZ©8cø}\Rkй§awÿ¥"î˜]pøôˆñ¿? ‡¶Ûƒ¥ýŽŸ£Á×Ë]Ü û<ð¡ÀÙ$W¼;¶ïxQã8YÆ6*~Å),v~Š7‚y³=§2“ jj£ÊPZ™ßNg“«Òޤg+Ç๞(]Çô'®NãRv&ãÕÔñsãïe¦óyì6M˜¨á@DÙÆm•€¼-lŽþ·¯»Ü޳ÂÏ!ÙW}‚µ¶ÇI¯é}LÌ˸[߆v‹3ûȧ¡È»½Ä9÷4ÍL~ì3¿0­taÏ»¹é–' má%ºŒ|º ô†Å¼šz#±Ç :·aVûs=„÷',§¾–B“o_¿‘¹Ö`gßã®Z«¬òŸ^ág+Ïþ· ßýÕõë<±V©KìHŒ1ö¡°xÚ>sBgý?Z‹l&sî]‰Êì€ÃFêfS½X¹GVó4µ½¾ŽöÜû\v—,Ñ—ô{Mc„ïè¿XXK”U5UÀÔÊémÒBKKa)4˜ZÕêº~uê|ä³KG|­‘²!¦ º×ÞΟ²aJ3à~L÷)ÝÃX)ŒhÃò¶EŒ×âáûÊI½Œ½&´lý@÷9=o¢Ã¯{oH…—ô.ì!0Bù+šyh)­VêÎפä\0aƒÊöXøžùàDB ýÙ^¿Óïßìõ3]?Úkj/©3ˆ}Ñíð§•ZûšdÞqsJ Ý —irœ&Ò¼êÈYÿ²×Ûo"ó¦‹7„Å/¤Ë”ðø•t|f<ÚâAì?Hs{IïÏð÷„9E¿9SZÿæ[B+c’èà9ŸK¶8 ß½r„C÷bö-Ý/E=&¢¢§¡¾]—YŠu$Ö=ï)"—‚ZïIãéÓžÃ}sœžžYB$«±bo(q´}Qe-TzÝŠÅŽ+QÞ#tCyq’‰€PÄ~™*ɳ¡5K ªß‰”1à˜‚)&8ÜŒ¯Á&FÆ(àÏ8 ³uÒú&â[Ñzóbò#€õ÷ÐÚúÐt@ô×5YcÑ;@E-ìSxìdú¾ DMÃk¢†uÜÊâÿ/÷v6¡ÓîÈËXévªrïubÕ©ºø)œ¡»§Iþýb@*«¨mصbð×>äYZ’p¡F[qlVa蚘§ !}¥UëN*Êv¥‘ÂßÇmß'Ú™Úš âáã+¾zÀ®…º0ߎ2ÿ5káÕwãwøÕý^Ðï«h“,zê̾0¨oÕçœïC01°Ì›¯B¦»3±ƒÜR‰¥,È ü†2¤®h¨tì×^hž®í©C_Q¶šiR¦;Tt‡ê“COUö+Ðþ‚ý¾zÊíS´âëZH“«o Møwô¹1yV(³^å[¼ÐV\ž²ÒÎçŠ5;{±/ˆu×îñØ^ø–˜+"·¼¡ rÃ{ë3ãÿJÅâ­8¬žQÜ…ÔŘ`×E—Õ7m,Æ$G½ˆK³üç,`EÝÇ‹ÿ¡DŸOÿA6^l endstream endobj 61 0 obj << /Type /Page /Contents 62 0 R /Resources 60 0 R /MediaBox [0 0 595.276 841.89] /Parent 46 0 R >> endobj 63 0 obj << /D [61 0 R /XYZ 73.835 785.063 null] >> endobj 2 0 obj << /D [61 0 R /XYZ 74.835 747.213 null] >> endobj 6 0 obj << /D [61 0 R /XYZ 74.835 630.9 null] >> endobj 60 0 obj << /Font << /F22 42 0 R /F92 64 0 R /F54 41 0 R /F93 65 0 R /F61 43 0 R /F94 66 0 R /F96 67 0 R >> /ProcSet [ /PDF /Text ] >> endobj 71 0 obj << /Length 1549 /Filter /FlateDecode >> stream xÚÅXÛrÛ6}×W°ª¤©E¼ÓÓx¦»Ó$M[[vÆõƒlʶ&º8¦;_`q@,)Е&éô¹X,Î^°‹eà~žÉŸ4—?Qè½÷‚6éM/ðî$ù§Þ÷ãÞÑY{BøE’„ÞøÖËb?/K?“„Ò»„ëñ룳"ä|qPøE\H1ij†ù`3ƒ¹k9fÃQ&.ºÖ;÷>ô„‚æ »¥ð£(õn½Ë«À+åÜk XxOÄ·ðâ4ó3!5ñæÞEï÷^°“®¤c‘zn¦\Å(ñÃ$Óø”Ð~Ì  Nåøf8Ê£<¢çg‚¯ç^W½W ý$üû KÁVʱÂrÉ"äß¡2‚;R¿4üWq&’->ÛÚðo@SûÞ‚~ƒ¹0æW ½µ;¦ ê«ï9z ò çlã+¥/‡Ñ«¥†6…ˆ4HwšHìæ¥’Ñ'@ã^3JÂHoåðÄ;Éò«c9Nå8ÖìSXi C~zÑ ´äd¼kiIDªðºÖ¯ÚQôØ´‘nk7ÒëjÍ  UÜÇ/ÛëD¯ÿZÿ]HÊ‹çus3³ƒz~’c,¬˜Á@8ŒÀ%ù³ÁblhBlƒ¸™¡ô·Þ'k%`r…EÆÓ}VÓ`+­gfYõ¦x€&S€Ùà½júª$ÿþX+^ŦĶ}èî—iÔ%DÌôë·¤(=ýÔ‚·XôÌòmØ1·®·‹éõÕ6ãË;<–öM—"”›9†ï·‘ö“AÆâÒ¶·ü™©óE·mÆ{[S'>wû,ŠÇèÒ¾Nx€¢é¹PBµ¹·™…Eâ§2Ó70™‚¦ ªœŠ³Ž#P§hÿ--]ú†ÀŸÊeâ,’AZÀhœ/&A#udk’âcªÈö¹™mW(¾×‹'̯3–VŒ~LÂÔAØ4À˜8I!×ôËÑ ØB+©ý`ƒŠ°6kºƒTß x4ê8 yç,‹šËJY+¡yT9þXWP­peKô9KFïÝEÃHâ×´Êi2i‹8v-@…ƒº©$rdz/()(Rˆ"˜b9rÜ䤯#GÄ–ƒ½NE1ˆHšæ—(’L?'àÍñ샧pÊrD;ó"½†AV`§¢4Íê}öÀV0㡵9äåàõñŸ9e8p^Ôç„ð9¬Á¤Q§•Ûèɲ’ŒƒÐcÐ ©-žÔÐh#h2MŠÚÚJ¦êjL[%<ÝÚ¼÷ÌÓՃĬ!¸"á§a®5?á*{Ešáš½i¤×ÆE}6Ü/q5Qh¯Èvk™ZýR˜…†yÀš…Eã&#û©V ¹„m¯lIâç®(úwrÜaŽÓMZ-Ùݪ7u—8;?g÷[ŽÕfû˜Øþj°9Âùgáª[Ƭn‚tbé³Âõܲ†¹]³¶ŒkËÛ¶ÖªcÙïhé\kWÆl{~Ö°4•nÏ'MÝy3ÜwU¶€yÝ9uÜ“¡åº’öqZÍæ¼=ôÑ%?¶¢¹X»–øMÈ®€[g¡¶të,Ôô޳ðòmoO]Œwu7¶›<ʺžwuÍš© Õðcv3ë6ÂZÖñᮢoiìEK·þéøzðYÒ·½ü_ì²,»ì²OkÕ÷}ìÂy~v¸™¢–ÿÖãè,l|bUM|„sêð¢0T÷Ì`sý¥µn;Ð*)>Ó0NKÍ£Ï6{ÔhÕóÍ„·`ZQ‚$QO÷†qf²t´çMA™Ú×ÚËù—œ[é…ëû:Ó»é×T©L'–L÷U"R²µ â¨êteÏb,oV‰6Út©¾?óv}-ßÙHÄj1 kËRmX[EpËzRZOÙ×°C½tb¥Ž¸¨o5Øîœ&2þ£jêí'=·©mÁk–qãG¥ÔôÑl±²^>âØ´‰–§¥?ãçÍÏøòŒˆØ|Æ?…fš·¢ðE˜ÖCc=Okû¨³É(–k²XÀ)©^Y+Ni©Ö:±"“à2{Ü:ëúÿtÜûû«Oæ endstream endobj 70 0 obj << /Type /Page /Contents 71 0 R /Resources 69 0 R /MediaBox [0 0 595.276 841.89] /Parent 46 0 R >> endobj 72 0 obj << /D [70 0 R /XYZ 73.835 785.063 null] >> endobj 69 0 obj << /Font << /F54 41 0 R /F92 64 0 R /F96 67 0 R /F94 66 0 R /F22 42 0 R /F98 73 0 R >> /ProcSet [ /PDF /Text ] >> endobj 77 0 obj << /Length 1340 /Filter /FlateDecode >> stream xÚWKsÛ6¾ëWp|’¦! àËÓæq’É£×ÖL§ãä K´£Æ‘‰œß}eºÍä \,v±¾Ý%utéèõäÅ|rú*I"cT™¦I4¿]*S¸(ÏR•ƒd]O“ÙÇùÛÓWå@±T¹s`…4®ffº†±™%Åô+Lîa,`´(­alg±MÒiSµð€;Üâúžç³$'eÜÔ4Á¶ Y‰ay³J4¸˜MoÐWƒòkײë=ʼ=VF£7³8µÓª%–(¾Ô…ñY“©RwZÔ™¼œO¾L Ètd¢Ü©Â¦€”QÖfÑr3¹þ¨£¬½´2Ñô6‘Ër•›æ÷ÑÕäωôMÄ–>G~öŽo¤t€n™%žÃ{±©JÒœóH,,cãƒN5¯¬è.8ðg,:ŵ,!ˆŠ‚gÙÆRä'¼ìžý ˜§KïÈÉòðßó7b¾‘g²‹pz$ŽI¨£8qÊÙ’ÃýkVà¹èþk¹ü{¾ã-1XwàuÏ”Œ™"Zø§YgÄ?"h•ÈV‚Ãm,b°¯èÔ`¹í7í…ÖÍ:@´&É3!¹˜¯‘Ï!ãºg3¸pðt'™@§ <˜û;¡ÃåëItM¾‡pçˆ5ˆ p0Í„¹‘d|{n„ïå¹Ï•ÿ!Shh'sÜô›\Ž7Ò =ˆF@¡†ª„óbdN´A`0“õË,†¹³Óï}?à# }ôäïnÄäBôÙs)îŒì×MÚb£dû^ÆÑ)µ¨¤r"ÿlGžNù©ä¦y;Ê’ºKÏô4,—ÇéÕrzù„©8aœ¤„X^ð`/$_¶¶Òë‰huçÕ¨¨Ëɺ#å²À¤Wû),ùét‰öQïáç ´]s»á,´›®ˆH Ö!š’V·5´÷ZÉüé:á…ŠìÁEåÐcØhÊF_ ¨·u€ÓOÙ…Kh·£uí‰6)eé€åhh4b«ÙÉ;nå/kÁ?ªk„†÷¼?"LŠmG U‘û!„[aCºâ¬zÍŠŠ4µo¹ãú–ðŒ€Ê-ÿ® Æ”Ø ŸÒÍ™ÔáŸ,°ütÜ2©’=¸?Qr‘äg’ÿ8?•ª´÷s¿ R>ÕN†uâ¸n>ïOøU|n‚:õ}pª ºGu@R¼ã¨¬€›vDb6ÑZÑW§ãà5H‚£I2et2 iNšÄ†±åW⤦PAÅ”\lÒ<|Y¡@Ïåž„눨+àá[W£]N¢*×â{ÕÁ:/aþMô¶ÝK)­£ÃË€#ŸYtü&ç-]tÙÇê!,œBâÃG¥P ©…ó\äØà2‘9>ƒï™Žziìr“Â3#Ê[yÝÒ6–[‘;rÁˆ;éz…ŒT:ã}Ö@[/e­¤1BäàÚÈ‘PÖˆ¿¢ë÷¶%ÓfYÞù6²Íˆž•aĨ‡û½N!ö•üç¢ïý–´gä¼W]ÆÑ9G`÷Ç/Åuþ$ò"Áy+IÅr.Ñc”NÖØ+ßBÚÝ ëZ‰* ¢*»@2 ÓŸÿáəĨLCºÃ瑦ϣ/Ud®÷3Zð›Dpúfc¢ó>–ÂÏ%V‰½á¸·<ò![dJ'ðkTbMŸúëðÅ[Úµ9“\H2‰ÿüûsIÉS½&¶ð]~ÛfÝ®káÊoP\µ‡Šþ·,lÚE[Q'¦=+™|«ØÈ]ÕÛ4M1È*°wdû«Âj­Y|ñ7ÝØØ­ŒÜÒ¿›Nm3 endstream endobj 76 0 obj << /Type /Page /Contents 77 0 R /Resources 75 0 R /MediaBox [0 0 595.276 841.89] /Parent 46 0 R /Annots [ 68 0 R ] >> endobj 74 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (C:/stat/R/BxC/Examples/graph/Lexis-sim-tr.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 80 0 R /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F3 81 0 R>> /ExtGState << >>/ColorSpace << /sRGB 82 0 R >>>> /Length 999 /Filter /FlateDecode >> stream xœí˜;Ý6…{ýŠ)m`As8|Mk'bÀœ½]6…áG±ð5`oá¿r(Þ½”)šJ™¸¸Ú•Žøñ©s(!¼„{ø²¼YÏþüí9¼¸]´ÒZÃõñöÅ *§áÛò×ß áý‚ð*ýîÌ7Àë…¼ †ƒBˆQ9‚”ðõÜ.ÏO+þÝCÿðîóòì%¥öœ>B*» åPΣÉG²Z‘…Óžüòú)œî—_OÂöZqJ'¡¶î&F§\E”Ö»AãÐ:’ÿõ¥u¿~8Ð<§8B¸´.ÞP *V€ >+ñW@HŠȰò¾ŒÞ‡·ï7üß{Ã.ÿaT&\èwy îžÖJØ—;)Wr†rŠU´ð)Õ’žÏÎK«çSª~ZngpJêâÄy³¿vökœY÷Œnž€[WoxÖþ,/ÝÊ­£_óòƒÞú—Fš[7¿æå.½5ó!/Y5ëuÝè2r4#·ÛøºÍ/6îÒsûhãò~~©û/©û¹þç àÍò¹ÒÆ» endstream endobj 80 0 obj << /CreationDate (D:20130223105516) /ModDate (D:20130223105516) /Title (R Graphics Output) /Producer (R 2.15.2) /Creator (R) >> endobj 81 0 obj << /Type /Font /Subtype /Type1 /Name /F3 /BaseFont /Helvetica-Bold /Encoding 83 0 R >> endobj 82 0 obj [/ICCBased 84 0 R] endobj 83 0 obj << /Type /Encoding /BaseEncoding /WinAnsiEncoding /Differences [ 45/minus] >> endobj 84 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 68 0 obj << /Type /Annot /Subtype /Link /Border[0 0 0]/H/I/C[1 0 0] /Rect [414.008 707.502 421.847 720.045] /A << /S /GoTo /D (figure.caption.2) >> >> endobj 78 0 obj << /D [76 0 R /XYZ 73.835 785.063 null] >> endobj 79 0 obj << /D [76 0 R /XYZ 74.835 472.725 null] >> endobj 75 0 obj << /Font << /F22 42 0 R /F92 64 0 R /F54 41 0 R /F94 66 0 R /F96 67 0 R /F93 65 0 R >> /XObject << /Im1 74 0 R >> /ProcSet [ /PDF /Text ] >> endobj 87 0 obj << /Length 1228 /Filter /FlateDecode >> stream xÚíkoÛ6ð»…¬€ŒV I‘”T¬¶µ)ÖvÆz@4Kɲ8v;HìÇ£x¢$;iQìÑ} MÝ÷äÝÑä<¡ÉóÉw³Éá‘ c¤’’'³³¤¤ÌeR(I ¨“ãTLOf/*Žé­H%*ÍÆÒ\My™ÞLYºÔk«×Å4˹‚kf“g³Éû Ó‡i•Œä¹JW“ãšÔ÷"¡„%·–î*ª +ô~™¼žü2¡ K§ËÄï^:Í*‘h!WX±\. 'õ7ÓLò<ƒlf]ëõ–Jê0¯­Ä,}ä>Z%˜ÖŒ¥^D¯ ÀVz-~àŽh^Ìí¾ÖÀÌmþfYØvïöø¶|µ)µ¶ÓVR|§JFºS½nÖ«XÕ 3K­À,åzX·y‹k“R;‚¨Rÿä\›¾zi ´ yNNЯ@¡9²åÆj¤Ä»JI˜•¢uÃŽ|kgvFEai~škçŠUþ­^çÁM-ü©^?Ÿ›pŽÉ‚µ®'=_|,SÄgLôïÕÖ’ øÔ¨_îVÿM‡GK¶AdXS#ÙBÂù-ÒÄãkpŽ9K+ÙÃí:»çÖ#ø‹ŽÚÙ¸çeW}Ïã67q‡¢ëL߀ —m„Eö'fâhàðOñ«^¯ìº—(Ž{ˆÆÏÁ½Ó{SÌæ…À¢Ñ·„oáY„çžGø<Âç^Dxáe„—^Exá‹¿'ò2J1)£KÊ_Eø*àM$3‹jIb¢b}*Ö§â}*Þ§ÊûTyŸJô©‚ FÞ¨¼ûLû¼ f¾gìößÛ»fHN‰(U¸e¬h/àÖe§Ñ½Õ'ª,íÛU–>RYpOÑ/,Øbù~]º ÈÝôÀïúØ~\(äÆq„w5ä+T .BIÍ™½ïeæ ìwþäðˆwšU#°Òr@Û73%«Y¹õÖt¨Ù+{[ó–2*ØW9ø\ùžÖ6·§¦¬B0XôÚŠh·—ÀÇ€¶›ö¾Âsº½³-Î0Ý4n¶¾ö-´ayñ–pÄ»ûÜQ­ÏÜÿ܆ß#÷aÃ.ÃA7G´ ÌSÝúL! {Ú*}Ý›ápbû§û{çìã›P£I¡‚-™àwkƒ­ûð¶µÆ±C¼°lÍÔ5À?ÛØš¢Á¨^N»­ôʾJq /v4ß¡©žƒP^¶U7±pvÆ=E}Ü6 a4ÙÝ >5:Dº<œf•ÈYúÄðQ²E>k:ãÇïážvªwð¹Fz> :áý—s¡:¶ò¶$ÑÈí>y„a’(Åly©üë×­²,}O§)†Å\З=zÛ˜ø+±k8ÌÌA¡M–µÕWvZ ÇQµä– â•  „r$ªà†¼î+úμŸ]xþÌ•úŸ“+OQSRÿŸ/Ÿ–/ÆïòoË…Z\fòÇeˆtßßVò¥DMw$>ÍX ñ=>‡Ëʶ1þÈ|‘#ùRIµe¨þoæ Ý›.æ®l‰ßtÎí!ºŽÁS¼™]ðn¾‹©Ÿâ±ð>ž;«Bý¥U…e¤yûÙlòõs endstream endobj 86 0 obj << /Type /Page /Contents 87 0 R /Resources 85 0 R /MediaBox [0 0 595.276 841.89] /Parent 46 0 R >> endobj 88 0 obj << /D [86 0 R /XYZ 73.835 785.063 null] >> endobj 85 0 obj << /Font << /F54 41 0 R /F92 64 0 R /F94 66 0 R /F96 67 0 R /F22 42 0 R >> /ProcSet [ /PDF /Text ] >> endobj 91 0 obj << /Length 1971 /Filter /FlateDecode >> stream xÚíkoÛ6ð»…V`€F²(ê¹-Ú­úD·zØ€¶KI¼Ø–k9K³¡ûíããH%:v’vņ EQÇ»ã½x<x!û±§ì=„Þ {þ8x0ŒE‘GHP$IäM޽(,’Ç^–&AÆF*ïõ0½<?*,À"Èâ˜a¯Fd8cm1Šòá9ëÌY+YÛðцµåȧQ2lë {á+9pÌ¿¯eÿå(Ê0ŸÔ¶hÚB`ñÙçŠõj ÐòéðˆÓjùx%¡˜õŒ½Wø$0Gz4ò:ü½žrÅ'±¾$Æë£$ ŠP¯0á0ƒ‡“Á»”"ñ²8ÈiÂ$EJSoº¼~zûöÄ â]¸…§Y‘ŒõçÞ«ÁOr…FØ[3Ð ÍÙPoè©Ô[‘2i” m0m‘ÔËhDI&Y&likk k_3¦¤RÖÏãéø¼ÏDáùc+'žOØZS°”À Þr@ËÇb&ùˆ Î8XH¬§°aSC˜–‰§Ë,D„"!âÉU§$ì’>fŒ„z>å^ ×tORy&¡ìq“©€æ™´Q>üëú²{6Ç!OY3s[°þ#avÒ”7 ‚h?: çŸß©ß` ?„v‡µ®¶ÕcÁ™œÂ†@C÷@è0´µwwä1%ÃwÀd (6À•âÈEÐ!v×Á{ׂ´˜º‚×Iãаϙü°ž Ém]‰YÇXƒ(%g[À~>Öq0eíÂ0Ègw0Sp>ž— È%B‡£%L1“EÎ•Š§K‘&<— -ñvwfdQÎßä ^4|¸Ñø‚GüZö§e?Þ§2ÞÏå¨r'˜ ^¹ÕhŒ¿—ÂgÈxe¢ßJdKÛÔ€üTmYò³ÆM·­å.‘k»,˜‰èMb®6œÀ¼˜dK$f; ‰Ô¤ÒlN6oBBià©äK;Ô\Fõ’ s£Ú§ wΨø$â8•Ž„$k!`XŠ‹œ›j ¹}»7y%b¤=>>å"<…\Þ5çÿä«" (w-­¿+dŠÉĈ`äÇ”¢ŒÃÄ&!‰"xœtNå"¤#*ôqUJA–‚Í…L($öJËAÊ‘›Î.neˆbKùX@X\*ar–`³•’¯í Þgнƒ¾•ê‰ísã2[³0Ær–žÝ~¯7™mvKv{…]`—E„qfÛå¶%ÐXJݴDZϡ+¶×Òé’Y}ÐSŒ-¿½‚Žˆ^"Q5¡j $K¤¦ º4Æ 6¤I·õ F×Ú ¤ñòGÔýR•ˆ°íZ¹ŠbáH!‡çe/Ávµëlí}³›%Ü3³´­Oqr s)ìác”¹(åŒaÚØ|ðcÄ‹ýp¹H·0ÿ%WÇð>ïÐ|¡Ã þŒs£í+~¡Ž ·Ë$xv™i*S .a!ö~eRO)"Hž*±2Ñ=4ÌýÂÚ3hx˜}ÔÙcÒ å}uGÆ+é€É#6rð¨üÐ z€µ„4°«Ìëq¸ME‰AWÆ43¢9Îê—È<æÆzoƸÎJMò‰øŠvñõÕ~¼Ý’îy£Ó‹r¯µ}6Q²à,êä`¶JkLâŽÈOíCÀ i58é­nDýƉ¸u~ ïüÛ[難õ{¨}—’?ìúÔawFš ¢ê^ƵŽE™ÝÐ1êÜÊý·žÝ>|”:?î?ï»»ös1caíø Þ}+ øTÇ /ãS¸îY_e ’B ±¤SF1Dîn©QœÒÂA[IÆQlØÆCµ›ñxl|ã%2@ŽÓ!j½¹-’ö¶²KNs*œªìi.Ñ0¯ö‡ha øåq§´t¨PÍ#ÀRÛQ$ÜV(™+-ï¹Eëû+j\Ï{V¸#_ÞbÉ>‰·tëpŸÆcªyLAóìãyLõÅcþŸƒþgòš=ª×ŸßŸ¢(¡ä_ó§ëñà*Éïàaóŧÿ>½=ëÝqì(Âÿ:ʉ«î.­ÃÔçUy¨œöËîu{EdžÖÔëtÖUJÓ€òª ·UÏIÊRâ —.g¨æ)õ¯KŠÖ§cù<‘Œipë:¸5µUQïU«LM°‘DÄ¢Õ]‰®#Ës@ “ºU÷ì”W¢æØˆ;oUöšÛò^£Û8ûVcép‡‚³¤Üâr\§jß³Cɽ[®Å²U—'¨T«œ¸†±_+ªâjãä×°V›ëù‚v ‹ôx=Jë —Á0è¶« u™·šþ2N@8Ó©‚_ðiÇý”¹‹RÅ{ë:Å\%´:Ú ‹ }'ЕÏ92­K³T#òÿ«¯­i·RfÖÉõ•”ЀúÂ@âî¹3£;µsz‡ÅüéTô`ߪºŸfìø¥õØJ‘dXê¦Bs´)m¬íØÎÅðqõ;Öû4M35Ñ]ؾQš"Fì#ŠOIL]ˆ;© ãl׆˜Fìáà}ï5_'ÄX÷H[¯HIï꤄Tc…ÒÃéÄNì,Ïêßž »ûùp2øŠw, endstream endobj 90 0 obj << /Type /Page /Contents 91 0 R /Resources 89 0 R /MediaBox [0 0 595.276 841.89] /Parent 93 0 R >> endobj 92 0 obj << /D [90 0 R /XYZ 73.835 785.063 null] >> endobj 89 0 obj << /Font << /F22 42 0 R /F92 64 0 R /F54 41 0 R /F96 67 0 R /F94 66 0 R /F61 43 0 R /F93 65 0 R >> /ProcSet [ /PDF /Text ] >> endobj 96 0 obj << /Length 2085 /Filter /FlateDecode >> stream xÚÕYYoã6~÷¯‚k±"êVº-°m7E÷Zl ,°›ÅV7‡³–“´@|‡3ÃK¢/’èƒ,š¤æüf8$£à<ˆ‚ŸG?ö³4"¬²,ŽÏ‚" Ë$ Š< 蘟ÆùääøÍþaÛóÒ¨ «´28çz—㻉_Á³†g1™&qæëb£×Ç£/#G0,E˜$y0»}:‰‚9Œ½ ¢P8ï:Hó",Dí«àÃè·QÄZÀhXBw˜—ð“ÄÁeÐëzKºVybçqn«šdaœ¤Ç.ˆø<菱@f*@‚œ ñ <'“i'ãhþÏ <-<;˜Ø/i4ðÔðÌqŒéÅRœÄ03¶cØ%ü9Ê¢ŽÐ%Km¤ýÃØñŸ¥ Á‹ÄéøB9ª•ŽËÁO’ úPºí]§GgR‚¶!`äÂ&\EaQi\ÃÄõ=ü ÂZÛ®HYÆ‘P_ZÜ”^~‰Ë2U_K¨]û¨Ç1 +Vó–0﬚ŒÿhfkWÏz­°+`Þ†n®|é¿+ö j·Ð` lų’@@?‹$E¤íÐÿ5KÀ_>! i˜¦9I,çkó€oˆÓE 0¸3ùh)Ýù 9Çð‚v£ÛË ¨¨`ÖØDÑ ­Y—†çnR” Df3©íjÎÃrô\Ž‚ªKÃ×–èÛ{Ï’"/Æý9›~)Ž%ò˳É4/) pî-lä¼v©D'Ó4‰9pÐì–"J]Cj%AnÌ•¡KZ™ŒŒÍÑ6m׿ӿs$RˆçÕlö+šµRÈkî'YÖñÅáRrÑ£«…í³vÈÔeZËùøA <“4/xîÊEvè &Å]-¦”Pæž=_ˆF®MqòŸðþÈkí Ø4 Á:*`Y”=ÙÔ&¸ì2XGÊD}h¸I‹ß¡}Üò°:=(€Ï}ô!“°‚ôèܨCÿaáºù”:hôša~Þ0z¤#ϼӇ#X)B?Aè3ŽxxH¤š,NUZ¸î|§  /D?½ŠH´Õwlª†¦ë@¡v9®5ÈE¤ã š—˜Êš[3€éh&¿¿¤Ne!ËÈéºÀ}¦"­a™ÿv?ÒÚD¶bI¢V“žËM¦d³ÔYÏՃ׵ÖK3fª‚"O]’-c\ÅcJ±Ðé½|ª4 a™Vå{c—$¥érEú³¦m-þVÄ1› Ó^‘:dDÙYó-vSÞÁ¦§"$ ®Œ€<ƒJYþâuÏ“®'e<^šT]–[Ck™K…m\¦”@s³ô×—Ö¤Ú$횈™E½Öé0£À&GSœÞ0á¿è¿ WEÂî…Û\«B‘\w—ÐL%Zÿ<Ù*Ê0‹K•yŽ|ÉišBYCuäsÁ%fà 楢69»°î9ù§c¸7*Õ«¶wŒâ¶ùÂÓ 3ËjÓe«Áb#~Ý-;¨¾[ùK]=“³o ¦Ö´k•-`Ž)I2ÎŽUn®âΊ»xZY\•IP$mf0ôøàlÜ]ªõVntRk£CÛY•£dßÓnâˆ^/Ô”š±o³•-½¯ZöÜ©Îéd1®Ð>°b{Öð¿g<õ;ÞçÀS™ŒÜþÁó;<ïøÙÃíÐ6r ½}:`:{¸+2ìqÕæ¹s;éég(ós˜™èÞÑ@1ùQ<,‹*JT‡{RîPºUªµÒüL;?¡ýßfÑm±‡ÚîÏ£jáíã—íΨ:T@=…'IÃB1ñ§.:w2°GA .ño@ؽfBFKìNVÞa“U¼ÃÝaƒ0Úw“š¶-e™$R‰eO¸’¶T°,ŠJN‹£*ãäAŸÚmÒæ¼d¸Kó€ËDV œöÅüqüßÈpèàe»U=)è,øµD” 'ÃS ÀeÅÖf£µò#ê/à  žòÂd.»Ôì¹µs©IgÖQ›Ê/0‰MSÛvÖÒªGBÓuÆ~«¨ëÞÚY«c“SkÕj‘°„FƱ‹Ž]?ÒF…×ôkæ-6ÔZLÔ d„ Sºá¼fJDnµ®íörÃ&™¡œ=BÑ“^Äe±a­ÚÌL›(r¬m¬!vKnâ_ nW\LýÁ¦êߥɬò$fŸš©KïÞ*ž[_©6¼dÙE„{+Ac!?Ê+:gSa÷ÿPò+Xšë¸ÌÁ#¥{êwv§pâž-Ò`ÿdÚ{®«×{]X·¢t,ŒÅv37v¿±Ž$ûW±ÄPÔ½·ñÞÆÃ®3‡îË9[Yûz¿>ýà p_ endstream endobj 95 0 obj << /Type /Page /Contents 96 0 R /Resources 94 0 R /MediaBox [0 0 595.276 841.89] /Parent 93 0 R >> endobj 97 0 obj << /D [95 0 R /XYZ 73.835 785.063 null] >> endobj 94 0 obj << /Font << /F54 41 0 R /F92 64 0 R /F96 67 0 R /F22 42 0 R /F61 43 0 R /F94 66 0 R >> /ProcSet [ /PDF /Text ] >> endobj 100 0 obj << /Length 2346 /Filter /FlateDecode >> stream xÚ½Y[oÛ6~÷¯°»‹U‘")©Xt[³­ëŠͰiÛI³úV˹ôß—CòP&ë`˜ú €)ò;·ïœÃÙuVd?~8==¥4#$o8§ÙÙUF‹&'5Ë*ÁóJ¾™gçc:¹8{õô´ 6yŘÜE¯x7!ãù¬&´ßÊÁR>­|öêíF>ëÉ´¤|Ü-öò‡Z±5/®ÔüÎŒßNh¥«º}¶Ò»Låô\Žp@§&ÅøRÕ©÷s³z_½Vïì~f±Úôr2ååøŸÅLÔSZ>ΰ|%yS8 +µfôòlôiDä»"#YÅòºäRS$/K‘ÍV£ó‹"›Ë¹WY‘“ì^¯[eLTyE*9^fïFŒŠ´ök‘ó²Éª’ç”Wæä7¥Ô{ÿ^©haÆ[ }gÄ6"ÎöFn%Ó­'½n³‡îÔ[Xy£5.7R­iýËo•Tµ;²ó‹¥…åß…‚¶tVP(:{ÚuõÝ„óq»ì o½+c-A°â¦r\IkM ËãFsKkÿüG}´²¶þ6T:“†&Äzo\M¦eÑ›$4»s Z-TçÞL[?]¬Œ*í OËA¤¯ÔÄyÝ™6q3¡9­»ìÙdÊÊr|ö+¿ï‘h40ôúždÝ-|çÜĘÃí­u”Ȧ(ØŒ…cæ¢´Ê bí%ŒkM 1iE^P'­ñ+ËF­ÊT'òP")fܳ³à¬“j8É ôÉÆÏÎÔg›ÎÓBÏ@¼ÊiI-–µFq²ªT¼Cú”Çh Ck•*‰\ù Ü߯£Ö­–Oka–o®T伄¨ÿ“:g’Ç`].}‰6Šu 9ê3Jç­¢ð8É‚‚Ñã§Qš“Ê9¸¶ÓB­Ë¦ŒË)Z…>ÑêT`èËÓÎu@^ÈñÖÑ8íZû½§Ÿ5l±÷îÚú¡Ý`Ó-6¿ÿàBJ’ñ‡è‰1î›î¬?úonBdÀïZ)&aš\iž%|`Õ`¸J)¯µÖC£¼/H©²¯ÁêMÎ0PÄÞU„–c>VмªjkMe–åê¸!%oà‡–«rÀ ¸Fhd¨Dί¹ô»«O÷] BÉrAÍu€’ë/w×YûcfG¿É$Ý0Yî4‚ Ã]2ñ7\q—¬(äšïå^Ô„É ÂDAùNÙÝLq9,”[füyõ 0ç½ù¹tDªµ¯^YñAUöЖúya몟ê¬ÃÔR³ˆžº÷«\¦@3³Q®K3‚bšà‘3¬Â"R9äšÍJ+"5R÷eY ôÒúrÎB‹ ¾ôˆW°‰jhQ”tÈ¡gn.-”ǧ"¹úV}êø#½ÛÖìÔW‘Ê:Ïý~LãÛÃí– ÷ÂÅ:Çû‚@{ó“hÿ¶µg?8䡔ɌlÎükR{Fº•Bî_ɘƒÕ„™nmë&Z9EˆxvíŠ|úª,ëíœ:— \a®•žÐøÑ#ê ¨[™MQ· ù~»^/p'%gî\¾Š–‘©ºÇFüIxp»Ç%$V'æ5müYåê0›<Ò![ïøë½’O[z½ÃÜãAŠDê ±á†MwTm×þŒ¬#mhbâ1U6jSæ(zEFœñ#âšy¨±™ FD»®A´éÙcd™Qæ»PóÜxjG|f³™»Bóš^ù`ÊwOµdü\>øõ1>XRÔøFÙ¡±?wæ7)<´í¹–Æ ¹€±Í«WðôQ˜”BýÏ'éNïÁ,Ï ½/é8§OüÈÍnÂByƒšú¡Ó…#gyEŽ·¹"'u•¨Ùúq`3ôG$DìŽ$ô¨ß,Ä8,Á¯É»Ô®-\—†›aU‘×M¤Óànw[SðgQ{t' ŒÚªÝ&…KVî-]°Ýf Mo¼ûÀiñTŽÿô܈8#ÖÛœ¸ë £¢Ï>‰ûî­Ÿnçã÷ÁJ ÅÝÅ8­E½n‡wíÊÿ˜Ùy׿“1}µÎºÈ‚+%á/:#Ì®Çáõİñwž.çnçó£îé¯5—&/hóM£qØ~Oênëô„T/õ¶>ˆCm½VJ@“rè†q­}¦1ùëWt¶vN€«ë÷™R ¼Øá›O­&p T+F/>¸l6¾¢Ù'— e£i›w1Ž‹¥RPWLâ2ú뭫"œ…cÑܙ̃ŠÞÖD·¸þ·©kOu…Øø[ŸÇv¿æ³XﻎfôÔ윣Vsë3A=ÑεÄnïéñµ{3°ÁsX¶ —]iªæ€ëѤµß» s›~ØÅüƒñmØùn+„“¾FÒš˜éÔŠËC\óø û†>(8¤Óä*¨rQË?%•¾tðJ;•@NEe$4“îž[êo}'nÕ¢¯ò}é¨{á·î2A/}å\ ü$‡¿ƒ8·~Õ6úÕ×±sz_õ§ý?¢Ó‡Ó›ÖTiEƶ p;TÀ ÁW(ö1bãË$õYÑðñùî|ŠÇF frL3G”é ¯Ô\Ä/HA`Mc¢Lå˜(,biL ab€‰‰©„E"I L0UCbb°¨Ncª¦05Cbâp 1ÃEŸ ðsu1î86°Ñ46аQ„mPŸ¯6–ÆÆ6†° êû5Â&ÒØÂ&¶Ac AØê4¶a«¶fXnuwã4…C…Âo MãEðÊ¡áQ…¥á1!x|hx¥Ç"Òð‚'¼jhxÌc©Óðj¯Fð n°”éÐ(QhÔ(4ʯÂãixÁ£Þà¡Qyx, !x Á<4jO¤á O xƒ‡FãáÕix5‚W#xÿoh~õë²K‡C¡Ñ Ð`C‡õYƒ¥Cƒ¡ÐhPh°¡Cƒú¬ÁÒ¡ÁPh4(4ØÐ¡A}Ö`éÐ`(4lèР>k°th0 6tÖ >kðthp@Ä·ÕúD>TtÐ^kO¿NkÇoíé×ií¿ˆ©ßÚÓ¯ÓÚŸþ‡;¬—g£¦ìª{ endstream endobj 99 0 obj << /Type /Page /Contents 100 0 R /Resources 98 0 R /MediaBox [0 0 595.276 841.89] /Parent 93 0 R >> endobj 101 0 obj << /D [99 0 R /XYZ 73.835 785.063 null] >> endobj 98 0 obj << /Font << /F22 42 0 R /F92 64 0 R /F54 41 0 R /F61 43 0 R /F94 66 0 R /F96 67 0 R >> /ProcSet [ /PDF /Text ] >> endobj 104 0 obj << /Length 2345 /Filter /FlateDecode >> stream xÚÝZÝoãÆ×_A´} ‘Ó÷{4š4’  »O¾{`dÚ,[WQ>'@ÿøîÇ,w–Z*º6J>ÐZ‘ÙßÌÎçÊMÕ£íeìΪǪ™ÞúaÑT÷öö·‹¯®o/¥¨(%­”¬º¾«´ †ËJ+I´½q[ÝÔæâýõ÷o/[†éDÓ’V´–§yº`¦~¹ õÆ^{{­/–œÉÒ}ËlñÍõ⟠ê U4‰¤„sU­ž7ï›êÖ>ûÞ¦Õ«§{ª„ÒDS«Iµ©®_4'éêulUeá*¦°Š\&uÀÏ,4b/~±¤RÓZYøTp{)÷¸ì#Ú]˰fжµ¶ŸM+ë¿Ù{Wñú¯vý#ÐüÙ®Ã3Z â.U,zË™PÅrLˆÌ<&ƒ0ÀÔþ¦˜hŽI‚@êqÁ#O¦ÂÚË¢þÙí¥66!l aãçĦ61M la“çÄf65M!l a;k ´›™Çf6ƒ°µçÄŽž°á1…;w8@¼E,lCð‚ÇÏ aóð‚'4 …†8wh°T5Ä|h- ñ{„T 92G¡ QþVÑ1NÊo/Y6þZäL¡E@þÕ‹oýÈ»¶Ë;·Tõ«›~ûq­ëÎ>{v7v¿ Ÿìý½ú[?"ÓzŽï°öoÑú> âvCH¨„ë8‡;²Û@–¦ŠP3’9CÀå†ò'ºÄœ ’f|Ç»u:æ»/J¢$'ÌDíîí§Ê“c à­É6žÜ&ƒ:ÙCïXÁ‹]øøx!ízìûpón»+)cÇbC¬7[§³j ð¹wûŸçÝ—]I)¡HKiT*­‹j¬ò&{P¯ø#r€dhÿµ´åa±úÂuò÷Ìßë"ý ¹ïÙl€…³¹ýNw@âÈû\,çõww9¨.÷_íXl“÷—M(üæmAÇlC]t/Áf™¹½õ·qëq9 ÑG>Œ§EÑAöêĤ/€t og 袱̇Äe3nŽu/9³>0ìv‰òh>úFÊ š ̡˅uÒ®Oq?ª2ŒÉò­Ð ³JûlÕ GôB{4m°†ÍTŒÇkóTŠ*Æ笕¶ïÊ}Ì;AŸû\lEø“ÀÇ*®~pG{í-S6ùk*C”ºòe¨!7ÒúÆ^oìõˆY—V~†Ò“r@xþ>¼ê Ä2ÖšBå  ×`ˆ$w -_GËNoÃ2Ø!\/iÜ#´«îëqŒïi…’ûeg´‰¿:°Á-Ùåî@ÌÝ¥£ðÆÔÎk°õ íÿTØH÷¦„ó³Ðœ´ã2™Q×p9Þ¿d×€ù.ì!ôˆ—| ›³½$]³H5kiÊú )DmàD ioÀ‚Ç9=—Wà„÷#YÕ«éª@q5¿÷ÑA;àžl6ñŠÈgì”N;•ŸÉ3K`l¥`-Ñ”¢Â|à KA­òß¡©”öÍ\‚ë‹Od‰•£ð:Ø α›dãXFaD»xLJÇŸú‘QŽç0{Òq m'-óS¾§NPTjn§¤i¨¦þ0'œùÍŽ‹ÖÀ‹ÃºI£Õ””#íÙxpD4Ÿ-2ËQ8tGö©hY0üQƒ‹yÑÑÀiÞ¦£ ÒÞÄWÔ8“-k­§G›u3ƒö\Ã÷æ¤ÁDHW±bK/[× ¼–J¶hˆ–"Vbä«_¯Ø«-nºuÞ¹NZ î;º}è=¼±MíQ£[½0„®¬_­}B¢"d¡(é“Z¸í]6q·Žâu %÷ƒÏ¿žd€Žçy$ʆ;Ÿl”yŒ‚M:Ý}Ú—Nû]Ö^͵ ¥ý~Ú¡®øã88¥i«eï¿õNö¨'n®ïVŽûCA½q°aûœÔïR-ñÛAKþ”·™qšÕ®+5±ûØ4<Ç9·ÔõnîT— ˜¸ÅîyÂí. ,§X€„p?Û[¨`v*æ->³°N)õÕú邳úeÓMk\N‹z=ýyHø€fTÕï%þWºÿÐow¾ƒ)D¥‹zFhü5û yqŠƒaâgÝ~vRHó"„ 0ܧ¯wóN»‹Mžô‡} ð°i»4>p•åňiÇ$ó®aÈD¥I«ê¨1Ì5úD·<æßÒàN4ç¢zS© M‡(' d%vðÈä%_-©Êì ôé‚ùœ¦,×´ÁxÌ\mǽ’£<£æt> endobj 105 0 obj << /D [103 0 R /XYZ 73.835 785.063 null] >> endobj 10 0 obj << /D [103 0 R /XYZ 74.835 199.4 null] >> endobj 107 0 obj << /D [103 0 R /XYZ 74.835 125.97 null] >> endobj 108 0 obj << /D [103 0 R /XYZ 74.835 100.221 null] >> endobj 111 0 obj << /D [103 0 R /XYZ 74.835 79.409 null] >> endobj 102 0 obj << /Font << /F54 41 0 R /F92 64 0 R /F96 67 0 R /F22 42 0 R /F61 43 0 R /F94 66 0 R /F36 106 0 R /F34 45 0 R /F42 109 0 R /F39 110 0 R >> /ProcSet [ /PDF /Text ] >> endobj 114 0 obj << /Length 2520 /Filter /FlateDecode >> stream xÚÅZKo¹¾ëWô!‡à¡ùl’»q€ bÙäÀ rÐú0’FXš‘ça{ýñ)’Åîbgº-8ØCkØÝ||õúXÅoîÞüõìÏg¯ßIÙÁ¼1²¹¸m¤6ÌÓØ~áÉMs9“çbÆà’çsoýì=4àz:—n¶‡Æ#\ ¸vøb½:Ÿ+ifkh߆f_mB·üÙb¿]ì ößu‹Ùr›þ–~òãg\n™»­ˆ0pÑ­'üpñóëwF¢yθµ y”ʇ>go/Î> xÆÑXÍœ ² ¦TÛ\?]~àÍ ¼û¹áL4_b¿§F·–YfzlÞŸý댣>ùq½ îaˆj¬2L› ü ´×ð+"š‘mïÈÒTVl™“n|E\!芧¸B}÷ë¹B®#§75†mF'¶§9Xx$á’5Ëõ*$°áÝ:icÛ›·9›|ŒâÃ/ÛÎçZ©Ùe,°ÀƒåàçC´õ¢nÓAkF®àýjD*„Ô³÷OçJÎöÝaK¶°­„VÏvëo>@·xÿŀ磊ñÙsô©§df#«Tb |~‘Oâÿsî:-oï;ívŠÝ.«çÑôi—ü4å¿WäcšÅuÐ0†JïÑ#¦'HðoÒV8ô ôÊ~—]¡c Ã؈nIÂlŸCmÉ—îÛB{ÔíW}T<“‘¿va“‡§ƒºY×µ 0MÔT¦²ÍêàKF:e«è°’ÛÊLv}-’NÈúã'ŸMnýýìõ;Hf¡îoe‹Žy«Ìgê:Ÿ©¢}nRóМ§fÎD¯ð#Ø]&îw±Gwô ùø(îúŠ_áò¡Ä¼DêÖí g¢•@4‘i˜ƒ½Ÿ…d&DíÇæàQ”¶%ÒÊ DØ ¥ƒ½ ·:À°ªŸýŸ-ì†Á¾‹ ¦Â))h vH“e3ÝÈt…Ê Pkx®pÆ9>—iÇ!„aȶӒ{5Ö0 ñ E˜³)-Q¤#F#ÅÕ#%k•î¤b G² ×yû _CH o“´a‰šìŠíéìê€EÅÀ7rÚiÚp]R×k‡mìòEÅ€ÌqÏv†'® ´Quä•h× `˜Mm$ùmÇ’=yÈ¢†…“ùt…E+0rªãÉnèÇ"E²¨"[›$ù†¬¸heNN²/5ÃÔ#Å"PWò =ІïrQZN+{•€ÂÍUæu,ÿ†eïÁ@QòÞ`={‰ß®çõ>ÏÇ'ÏXテë'¸þWø"ú®}¹,ûæ59{"•3¾~NÇ Šç]ß“ˆµÓŸÎ»ã´tòÒ º!ÿ˜ôÿ5VäÏ\¹äÏçqùëöŒððg Þ[œj38[ G Ñü0qù~]¢’dµ‡hSVÏ6üz8y6ûCgF–Ií=^—¤êãÑ—ÆÌ6æØo/ÎþD”¼ endstream endobj 113 0 obj << /Type /Page /Contents 114 0 R /Resources 112 0 R /MediaBox [0 0 595.276 841.89] /Parent 93 0 R >> endobj 115 0 obj << /D [113 0 R /XYZ 73.835 785.063 null] >> endobj 116 0 obj << /D [113 0 R /XYZ 74.835 747.213 null] >> endobj 118 0 obj << /D [113 0 R /XYZ 74.835 713.594 null] >> endobj 119 0 obj << /D [113 0 R /XYZ 74.835 677.85 null] >> endobj 120 0 obj << /D [113 0 R /XYZ 74.835 654.288 null] >> endobj 121 0 obj << /D [113 0 R /XYZ 74.835 634.811 null] >> endobj 122 0 obj << /D [113 0 R /XYZ 74.835 616.003 null] >> endobj 14 0 obj << /D [113 0 R /XYZ 74.835 515.863 null] >> endobj 112 0 obj << /Font << /F22 42 0 R /F54 41 0 R /F36 106 0 R /F37 117 0 R /F39 110 0 R /F42 109 0 R /F34 45 0 R /F94 66 0 R /F96 67 0 R >> /ProcSet [ /PDF /Text ] >> endobj 125 0 obj << /Length 1700 /Filter /FlateDecode >> stream xÚÝXëoÛ6ÿî¿BúAÆbV¤(É*š{4ÛÚaÀV(åƒcˉÑ$öl¹I1ìß‘<’G=l-:`Ñ|Ü÷àyÄ£þ>À×ôÞ’è¾?¾› žŸg2✕Y&¢É"*$§YTä+``]Ä|Èãdx9yóü¼t­LJVÊHéuwC1Žw°øZ m9¥"ëbƒ×“Á_#÷l9KÓ<šÝ ..“hso¢„ñèA¯»‹d^°‚Ð¿Þ ~ð=§ƒ_l KY>†©€E­¡·ƒ2à(¹È)iÆDV˜³]€Ø ‡K8Ržñ¯Ðÿv8ÊD§ÐÍ 1hš„¦Æ ý[Ô Ô%,ð–„wRÉ 96l_·4oÀ?“,13w8soGÍ\¤$>5 gÐ]¡Ôâ)4µ¹B²¸y†ôpó¡w†í0ËKÃRÿ¢ç?N! m4¹@© Õ€ƒZÄÁLrÑÒ–Ä( × ÅF†ÄÄ“‰…tÝ ŸŸ‹ÀC¿œ) ?¹qŠÏÈ}7‹ëTƽù½V:š EPî£fæfÆ`cõÊ LÍg±C¥Ìjä²BZê÷ ê¼Æ!Õ7”Q¤2Wëj½ØPÝÆ¢—>,Qß7^Vµ¬š#c-AÈ ƒK}˜¸GCCrËD±øK&en@›¢Õ®Ô¶k‡rNQN!hî†ÖZ8½,TÏW¶æÉ5(âjçÎc4½÷ k¹­~Ô¸m< p…à.)^!¡±Òc[$¨7¬¼ò‰l«bí…S¡f$Ó4þi¥yPFRy™N 3ì®,Žª}"k¦Îž4ú#Y°,)CòŸTOëžÍÐXLšµÄªrwÐà*˜R+9 —Ú‘qƳÒûtwfmk«ÑOÀdœŽÜ^ð;Åp»Dsœv¡CØÜ‡ÓÛö”ÈU— ‡§[º{°ÿt¨þÖ¼›^ÁoW ûH¶=ë¹ÃL:ÿÙ… -ºï᳌qµ±& - `Þ2ekÂÜÉÜ-L>æ¼E{އÛºg ”SRŠ0<Æ¢2ö;´?ÐY\1óÞ»Š‰ ´@Ž6ÒtÙ±ó#«¬—äò%Dõ†5~ÝŠ¬7èËTs¼E®-m\رÐ~į]}FŒ¹9‡’,Iôx6lkéû°®mÁt lüs°þJáâÌÌžw>…¢Éݵ¹ú¼ý’#î=j<[ô‹+‡0)â=>3ôˆn—õÊæ­Ò¾ãNø¼’`–’CÝ @ÚRy_$9 úýR§f–U.è>å2µ„zNÉq7'Má7†<0)³øä2Õ|‘g—¯¦SñuJŽùßèTø{œãn‰ý±Èê´ï¡¥4¼~ö…ˆ+E›Å.ÉÕ}ѽ­t©rå””!º ðõµ#íÊ›m¾ÞŒãþ‰¡¦ï!Ȳ«Ë$óÏ ÷•Âhæë÷cÓt¤dÂU`Ùa‚·iåAs¼›˜-ÉÛß{‚Wç1yµó$¼8ö§Ò[2³ÜïFô÷³=nºRÓ‹{<¬çÚùŸER¡#¦Ù=FÏ“ø€-ú¼®yõŠÐ“3ŒÄ ¿a34•mÙœâÕS<ùð“©îkç£oI+?¾Ö/îa³êx³Ëƒ4Å ä%¥ûYT§k/>/qxÔúl:àIõg(©÷™™÷‘“á¾LÜúb÷º÷$õ:iùÍžœ”‚u8S{Ek8³‰¹Gmû‡¯PþëVMCéÐúû©«Ip; Ü”äÌ›^v¡ØŽÍ ±+;CÄhô´(ž4ƒM£=,È`ÜÅö‰8ôÅËðûz2øF92 endstream endobj 124 0 obj << /Type /Page /Contents 125 0 R /Resources 123 0 R /MediaBox [0 0 595.276 841.89] /Parent 93 0 R >> endobj 126 0 obj << /D [124 0 R /XYZ 73.835 785.063 null] >> endobj 123 0 obj << /Font << /F54 41 0 R /F92 64 0 R /F96 67 0 R /F94 66 0 R /F22 42 0 R /F61 43 0 R >> /ProcSet [ /PDF /Text ] >> endobj 129 0 obj << /Length 2219 /Filter /FlateDecode >> stream xÚÕÛr7ôÝ_±¥Pì/+í=S2Ct -C‹gÚ™4޽N\b;díþ¾G:G·½ÙIÓ>lVÖJGç~SïÜ ¼Ÿz?ŽzO9÷óó8æÞhæ…<öÃ,óÒ$öS˜™z'ýpp:zýô8wæ~…E®x·°þšž9xµ©7ÈÞ<Vå OvêÜ0öyœ"Š/ˆ)‚9%=…|cöÃðšúD¤‹%ñó˜Ø25«§lMož<×ô{AÐÄÚÃÁ0b9ësܾ‚©3:À7S³ÁQÚÏqê†]:cÚu©1€éÉ=Øë³„té!‚¸´(ò ‘pˆ/¥Ek:›á4—pÊ ï((òXAP6’n„Äa臠ÚSö .ÚÏ¥Z‹S:Oˆ äxÄ—ðýWÚq— Z XÄ5±ôgb`Ù ñ-ŒŸã'¶C® íÉzŠ$–“:Lhz…$‰O[>Åa仡÷¥Ñú0T¬ãz¢Üù—bL¬Tß|zßv²¯ÔD:"Þ0¾aU¢Žéí"Éo! £=¬Kë3Zží§›ÕSþüßÉ;Ü¡ØCãDUô,ü+ˆ…'ø^Õø©À£ü§OxMÛý=@("ü‹Ð§¢ó0þ}ðÔèP‘ †è±C,D¹þxNÇ ®$6öûÆJT‰DJ‚i‰’s–›¯øä‡Úâ»]ZÕÈ£Ûín‡Áݶ‚­‡,²lÞ Mv0á ËÅ2é”ÈiË­HðÅ©|+0ÆÖØ>'®5Ø'øü~P;¶}¢ÔñŒß’9êUÍVeÈWc¡Få‘Ì!)qÜx&”Bä “±I(Ë+²U+1Uù'&Wr‹Ì¢0…ÂT¦OÊöpòLœñ7¨tëC=Và…w, ¥-NH0Å'€ŸZÙ1®›‰…Tà9¡²8¬q¡T6åÍ µYeˆJȨ!qLcVš 6fSc{â§€³BSÀ@i¹ÿd¬‰íSLïÜ%û›Ÿ†HZ_"A€k%š‚d%³Û;[œV&Z:Ãy>.QÂHž'×¹ºÅŸ ¿…Ë03ÆaÿïB– ¦RY›!!Tª8¡tís1¹ligä´•òm—3 d°,ó³ˆï$cE~ä®”jäÈ|}Ÿ!(ƒÒ9ÑAIÍ·R£‡ÚÝ ËšüÄ®FJwåבqª2Œ6ø':ù[³áÂD™e„›åô5áVØ´ì ¸*%E€3«r[;¤´N]|ceõØ!—<²zt+žïà_;©¬bÕ›¾ÅMʺ¶>ì$I'G*ŸëZ*¾ŸÖÿßÄûE ï»p~§¶ÿîè±VmÉGR±¹U S(²û+BòÂM¦J+ÇÝX ÝtÙ_•¦%ñf}ÿ†Ó˜}-«©x¹ÙXZ±^q:gÆ?髪™>OšÚGÕÊîïUȨí·ö¬¨Šo?$þå¡wÑ3´þƒ†ß·Ôj-^ÁIV¿Û }U<žìơə¢¥¿3]Ë»¢µ¤^…HÌK*Æ”k!š¶ô9ÇÚ înýe·Ô#Í.£ÀmZõ„*9¹aC²Â\…”S±Ÿå&¥ýÎum‹ý(ÛržÑSGESxdŽ$ÊNï.ýR˜~K°O¨[gpGò°3²ßÆtsìþ°«4",ìîæEÝ¢[\±¤>gðÆ Ê „ÊÔíÐ1õßm¤EK˜¢îMMq”ºW?©sõsAé‡Ú°Tàõg›%ÞøèÌ£©]’Û=€k·þ½¶ëK¨$·žªW†^ç ןo,MÅú³¤*nµûjÊ-ácU'­*¬æÂjá€u+ÈVí‹ä,ðjXt³¶½Ðy¹°ëÓ†&€äΕbS©ŠmÓŠp¸ÓP‹f±%ºT–·U²£Q6É+Œü„óÖºúÐÑ=¡¶±Ÿ&!9ôƒ 6×z¾»ð”2Ç.o­âOý„±û@O² •]N×§VìÛÆ¦VI^nߦ¬6näšÉJœs3ˆ#÷òÍl‰û«YcOåJ*ÈŠòçÆ¼¾®±grS­ËÌ?¯tzZTõFÞFaˆöhµF.ôU§Æ”Ä/`˜ݡҴ ð·Ê 6Êþ6®¹W޲@­Ïk½‚ 9÷£,»±%’ ãÔgA¾§!vkÖ=EÍ„.y˜KSË#¦ÚÀ­¦ÖЯ›×jEÔË–îÙ –g*óh;s®ÝvÑ´RY©¹ …ÕCvZ­*m ÇØ%>JÙÆæFƒä¢YBÖzi‹¬Þ4„ fšÕ{îàãX…ä•âÑðÜq2†ÝñœŠ/!nê [ŒíR B QÔ ¦ä?&æ;}ä®ÐÄ`&÷çüñÂ’RvM,…*J;Í­:õÆöîþ†Ô*#W©ÇÖ¥Sˈilû[GÏ]ÇjBƼšþœ×8?¯Kª0ªocß»ÓFaåâ ÝO"WCÑîÏ#Aî³<´“Ä[6áQº*ù^X×ÚjU¹k¥_©J¿*y¨kôX¢šŒÔ‡ÂXýëN§UÔ£ ¡ ÎÝÿ¸R1}áEtŒ´,(-B- À6j\΋åºIpq™œ¥åÚ$Ã@ÝA³ÅÏ[ãx5wjÀ Hô?…Í$‚n7àÆ¡² 5n-‚l¹kŠ}†.C¸ŠÉF7!M@i–Š{¹ŽïW£Þ?1Íe endstream endobj 128 0 obj << /Type /Page /Contents 129 0 R /Resources 127 0 R /MediaBox [0 0 595.276 841.89] /Parent 133 0 R >> endobj 130 0 obj << /D [128 0 R /XYZ 73.835 785.063 null] >> endobj 18 0 obj << /D [128 0 R /XYZ 74.835 282.345 null] >> endobj 131 0 obj << /D [128 0 R /XYZ 74.835 213.581 null] >> endobj 132 0 obj << /D [128 0 R /XYZ 74.835 160.748 null] >> endobj 127 0 obj << /Font << /F22 42 0 R /F92 64 0 R /F54 41 0 R /F96 67 0 R /F94 66 0 R /F61 43 0 R /F93 65 0 R >> /ProcSet [ /PDF /Text ] >> endobj 136 0 obj << /Length 2961 /Filter /FlateDecode >> stream xÚ­Z[o¹~÷¯²û`3äÜ ´@[$EvÓEÛÕCÇãÑXV"i¼šQœýñ%ÉCGNº~4^Îõ;*YlÉâoY]¼~›g ÎYçb±º_”«Ò|Q9+åƒõâæ’_ñKqu»úéõÛZбYR³:«åR0n%ªË“¼“ŸQ~¶WËTä±çr±‹7«‹ß.¸œœ,¸Û–³4-íþâæ6Y¬å»Ÿ ã‹'·_dEÉJ^ÊëÝâ׋^$”áQÇ“LN,Óœ‰¼Ôöró{ETt<ÈO§o;E[·W_E®z=hò{œÑÉGM{%J9O¿ˆ¬6túÝØ”kØ…ŠËæèö ¶?¨µåÀádyX¥AéEÞ«¹áª-¥‚IKΪDµ½H/cYeUûô€ü ÿrÂb™V5_,ÕØ,ÇÕä Åg£X¶Vãè=8i´ Ü£$—êI{‚ÉðèC’'ò.Ü J±'µôU/uÓQòÙ‚«G”ˆ¥Ê¨ÙjG6wjD\ÜáîjÚ…«–wºt*ÿ` ’DÊ¢f©@ÇyW¥ÇJéàH’|åéåÇ®…÷0wëì²mvèSÊ2×Z‰÷”(½XjÉhqÇ”]0^•Ö ¹‡Øš¢`…Èè’ÿúQ~½=¢Š÷J?®ðNĶ+KV¤–*ÔtŒí¶U.‘!E#+#7òëæ•ÚZÝÙ­Õ“Û[õîïVšy£ßF Q‚W!‰k!?mQÆ;}.üˆ ”ÞN­èÿQ³6.œŽ 3Ö_Þ[Éê{íÝ£ÞH$üòO3C%`Ã^ù‡ø©aÎá‹FÑÃ3po‹ÕU…j•r•C}«çzå?˜ïŽÈyc¸þ¬Ø¨ý™ÃÞ#Î0`×jHIÆÝg ¾(¸ÑãF)nS¸2ÎXôœ ûšªG[A¢Ê QÛ Žú'QxýQ>>iü×J;!š F#Ž;è<æÒ7Y]>p¯æ+é¶Ä¦8xÓð€£ç<„øòˆ¯åÏãÑÀÆÖ¬€o6J;{†&w§ø¸>àà§µQ¦2?Â6ˆð“sY°\X…hƒYŠ:cI%äEÊÊ#Ç;tƒÔ¯‰ ¨ËXËÍð[h¿=ôT’a#m÷xì0àe“ átø? 52 £ô¸ø£ÅãX€>!)AhÕÆHZ=ø29á”@'},ZJø3rkCCˆ±·EU|ª-ÖT\«-"¼W|Q 1³N3çàÃÍ ¥ŒdÂb×N!ÏeNÚ{Ê”%¼òó.äÐ9@×9ì"!Cêi™¥B+eëÒ±³†ÀôR?ù÷:„Ãܵ1`mWѪ›3//ül)b¶f« :ê"zMëš%Å÷¨•ϨdŸ¥)+*îø‰×„62øßµ¡6™¦@•_K³(±T‘§KS5Nb8ç"»ü+ðü(ÄE¤ SHò—i™!ÜX¸5yž°DÚ ²¥¼U>ò¢Â¬0–fÞRKnJ(êÌ÷Õ¨wFÔPÔ¬âå÷’KCÏí,©ñ–¨§%KDþb>Ü8óžÆ¥@eOëÿð §tîUàG[ŒøšuYœ—˜6“ô«ì+ƒ ;Ið¶ó%å\ɨ|kDÎ~%®ÛÎÖ®F$GBÞTÁ[ŸuÌ7Ï@¡W(ôÇiÖ8p\±8f”•CcÂþÚ&®Db‘>÷³mµâ^3b­Æ^G·þ|•çV¤ Z‹tC,3a îÁ8RÛý ¤³À À§…¹úùâõÛ:[Ô¬.D©3¯YVcêü'‰·"µ»w€L ÞPÀ¼Ö^ìÜ#Úðá%BÀŠšbö$BÒÆT/U– òK:å§ÅäÐ^ø´§œå2bí7ØÀ»udäêüìõ;['bïÏÂE¢"4ƒ?SvÖ0퉹NøeC‹×°Ü}óèÎ4¤M½×;cç(_®¾”Íænï£;HiFÒÊTýÚ¿dÍK{#išØx€¶O*\7NkZß,"8h„z–QI å ±  âzn]ÔüÓø|•”ÕŒA‡ËR¨àùùFLxJxØF Á57'#Úöîó ÝîAã‚=ÇøICŪ¤~þôB0aG]O»µö܈À*¦ä˜.<ÒóOðL¶Fc¸êc IaИ%G‰‡3-.³•ð ‡—ÉÖÏ7¿óŠ¥uúû›ß$ý;zûµ×ªÆs:¥#Q2I2ÿ¡Fö Ætî"5TX&ÎTøBÚuY}k?g™ñŠå<¨Œc¥þ̹Î$ÛhbGÚ[S ul„Mðc¾£„d=l탺ºÎ:jK kkƒ›O¨+Nαbå–K (tE ÍIà Å|©3áC$³¢çKí86±˜éßòôE[?Dà@ÏÐ?SçoQÆw4S›xi–³ÜáÕ7–áË,)˜¨‚ÃvO1A¯j®•›Ý8ÿ†3¶û-þÉL¹ëH›Ÿ‹Þi6È|ä…é:D˦R^ñ²é‘üâLļö<û`<{Oá¯mv4—iÑÏMr°1(©MæíÜòvOÊÑ¥2ê‰94Q™CV¿ÓƒÉi¡Úž¢-7ïÜGÎ:zÿ1‘ó¼SY˺NˆZ´'‡-'×Zƒ¥¸ÆWBî‹••³®°ÑÕ¦“Ø-wö)á>%¦œø¤¿”"0ÖÌ6b[}Ñ“’y®S‚¨zÂDÔÓ«kÛÐû%š»¨{ê w] Z<6M›Šc6JéBCc—(Ò£Ÿ«<¢ åBƒ9düóE’÷7˜~ªÎ}Zúò߸\ÂhÉ;£Ý“$ààWŠX{7A^1[7 Ögp-¦¢J¦Lî@Év®Õ*3+ËsQc.i›Í.L·4É% ñyPm=X<نٳˆîRC0ûùsR‡²Äµ =³ý)ø¼d—Z™Ü#äÇãóv­eÈ@å)vnLrL ÿͦ²â"hYÏUl_Ï?·j;SN;ÅA¯64úÑdC¿³2øz˜ájý—n]xg‚‘3l×Y¡Ž°÷òƒþyo)ƒ\U=B“V—;ï-?±A=íÝ•Ž}´ ²™¨”žÉ\¦P囬» ï£OÉóøÌ6!}µßÕk´ÍPoÓƒ2(%Ô°¿›9™\ÿ³v~³®+\SÕ-øþÁíÚ¸&`¬…6íœXòŸ“·­cÑìÏ ñšöë¬í)M|1¹îþ”És}¾Öe8³½>R|·Áþ;íÍêâ„V‰W endstream endobj 135 0 obj << /Type /Page /Contents 136 0 R /Resources 134 0 R /MediaBox [0 0 595.276 841.89] /Parent 133 0 R >> endobj 137 0 obj << /D [135 0 R /XYZ 73.835 785.063 null] >> endobj 22 0 obj << /D [135 0 R /XYZ 74.835 540.675 null] >> endobj 134 0 obj << /Font << /F54 41 0 R /F92 64 0 R /F22 42 0 R /F93 65 0 R /F61 43 0 R /F94 66 0 R /F96 67 0 R >> /ProcSet [ /PDF /Text ] >> endobj 140 0 obj << /Length 2123 /Filter /FlateDecode >> stream xÚÕZYsÛ6~ׯ`ÎTš‘—¨4I§uí´i›iwêDz›uT”L&ÿ½¸vAP¢rMú@‰ÅîâÛKôƒ>Ëâ'ÍÄO¯ƒ¾ÛôK«\Šæg­NZÃ0àœ “$ NfA” Y–ÄÁ MØ@´L‚³vÔám&.Þé ÃöáRÜÏŵêô´-Ÿâš.:aÖÞˆ»¢Ó‹ä‹YçüäùÃã”ã x?cÑ0ó+Ú…èŸKb¿NÅϽ|*Êa‚ 4,B¤±ÅE¿Hvk´þmq)dÀƒA̲(¼sEi0ž·ÎÎûÁD¼{.DçÁê7âtÀ\è$¸^¶þhõiMiKp>dÃ4L%SC¡#žƒ(aa2(Y“ ÈAASPÜJ\ ˜$ŒÚOÊ¿¾hy$®D\òþ¡¸BquË×Ê¿ßEËh.(;q{Ó¬Õ¿j–·#è9µ½G´×èο4bRv)§T·3•Pz02žeA ¥¦`·@âK’׈™¦\("½4diœ^RyA4Ä+Úø HÜ•s .ó¦lZ!…fB£…Y"þ@Ü)«.ªé)~Š•"ˆR–Ä‘W zL®$7«2]¯ÍÊ”ÿz]¿+“„,ìÇ”ðFIÈA<¬¤Ñr ’H}ôíË‘а@iH©¾ê'¼œ3NÙ0s„y«^õ½µ®Ð L\¬]X©æ ƨlšjFÆ|Tó hJº,›_ø¸“}$!Xß.áÔŒä†;Õƒ *¼Ôo?-]œdô"hÇq­|ȼ_‰ë ô\|›žK0ÊriP½¡+ÂÆšKÝ^j û¦»¯ªsW7F£‡Ï8v† äa^ñ(†^%JÑÂgg‘ÀƒŠø;ÙG…Ü‘“œk]ŒFàÆ 3õb½ è-?—¢«ç•Z«´¨ÚRÂceêž·¼}†\ÌÊjC¼ÙWI¬òñÜgï@¢ªÁÔÈCÍå…Ç¿ÑiP( µN¡Lbâ&ƒá¯)Fnh,Ö(Y›£&A¬dIGúÃdgúùü=@<·Î­Íû(½^“ÇÐõÞf3¸ÖðêÂIcŠfž:0`HÎkÒËQ'’Óe¥F¾.ø;_‚XÀJr èïó÷ÛâÓ®X ßÔ5c¤¡ÆM_ª.^­ºÀªï»Di!tÿ1´¿Ï"x“„ÏÂfÅ8!á[!æ}ŒÒ5Jëoq}/®?]?Ãÿ30ÿ$Õ0e¼ï$¡ßì!ë7{aQ»ÂWï™rê[çÈգ݂Ç1¿1›ÃI× Í[é`G2çT ´[™Z§=ófTaFZj» cDAEÖv‡µ±.dDÓO¼ëd>cÄÆ<Œš&àù‘^nã9ºW7¶ “´ÙeÝT¢·º_U hk^\ëCWÍ,Jk•ÑäM¿p²É‚L}bìŽÐyB¡3ž×tbk,.ôt~ðÚ7¯im 'lÖW¼1!7 ­E“7”–E¤µ pÉs¸®x®5xÜì_¹»+Áz®€ÀB¤@orìýN½I*uˆPK·)¸²rj›«!t˜Ç¦8ÝNfïìâzöK70Ù„,*AÆ’îîL3ÙðÝV}ÓdkÉjM\:u›=ÑöÀ:|Tìx C¦Ö,-§xwYVô][;U×®™7(wq}¹MRÃòÚºÏ)RÙ…‰O/ @oÕ]¢ðËL`Ó½]CšíÄtǬs°8Ôk3£ù¼gW² üE<ÕÛ­¾­Wϗ餰°]çùÿàœvŸöja‡–ªn–vM㣂ý݇ý#€mŒv†kšáè>¥³9›9'ŽowFÇcêL™"öÃ6õz!} =E =¢x/9²öД `ÿ¼‚m?!õáê;™7ö9Úc¡Ñ+:1Õ"–h‰œ*ÿE“3óNfQ“\z0Õ(ˆ/L««9"1®äúãŠoö×ÁˆvùYSéqVÞxWõ¹-bÃtP-»ÓOPnn+ëýÝ14÷xJZE°åÝÂ8¢:ûDŸÄzé6v×îXžv¿Ðù¬RGÂ%I½O¼Þ¢}#ƒƒ™ý‚&{FYkh`õ¹q©œëzj'; VSì>ƒ2ù9\¨À=¦¡‹ÚÐî¸Ö+áŒk/l uÊâÒ_òÄ€ºšÖÙ|ÿr¬“Œìªo ð2ù§ºZZsÄƒÏ ±gf¯´Ü–#¯P‘›96S+½vñ÷lÛÓOÞ ÷|çk|Œ²£[TrÑqÏýZú¨Þc®ÐÇ )¸°#hÏÕ‡3yFŸêqôȤpÈ ¨îäÊ$꘎òƒ*ë…”1dLlˆžI{ŒRù8»ÑëX9ðQ9”%,VΖ}©aÌ’Lwí–ÜÜÙ2n8A6êÊÃÔÏ^A“Õ–×2XÆC=­‚—òÇ6\zX•)8׃ Vªæ–ã¡Å,=TÓ‹²˜eCYY'Öa–£n;Iy:ge¯þ,–š¦¬äùäë'æ(V¹+óˆÄSÆåY(ëh õR XVO)ÖL½y‚òËÍ,ëå‚QrP(Wö"ZÉúÀѲ)®älr›*ðÁVEޣ≜Ë.¼M {<ŠYk…§Há# +1ìÂÔ%­ÙºT:YCdP d¬Ó‹£¨´:ˆ}Q°Ð+µ¨B;ÓÐÞi<ã„~9MW%mϪGQÄÂ0"°VU"\ÝÞhsTQyÃ}£­ ¤²$•nN¨ïN+Û8'ýtÒúP·÷¸ endstream endobj 139 0 obj << /Type /Page /Contents 140 0 R /Resources 138 0 R /MediaBox [0 0 595.276 841.89] /Parent 133 0 R >> endobj 141 0 obj << /D [139 0 R /XYZ 73.835 785.063 null] >> endobj 138 0 obj << /Font << /F22 42 0 R /F61 43 0 R /F54 41 0 R /F96 67 0 R >> /ProcSet [ /PDF /Text ] >> endobj 144 0 obj << /Length 2349 /Filter /FlateDecode >> stream xÚÕZ[oÛ6~÷¯ÐÒ>8˜ÍŠºZE[`ÒÝZ`K†Hó Ør¬ÕŽ]KIœ]þû(ò<¤(9nZ {P"Ó¼œûå£}ïÊó½ߟ ž½Ž#R’Åqàͽ4"“0öÒ$&)˜yçCzL‡ÑñÅÙ›g¯³ÏüŒdQƶâóVÇÁdxÃ&/ÙS³§<‡Aìg› NΟ”-ö=ª¥$ oºœ_øÞŒ}÷Æó õîø¼•%)IiÊÞ—Þéà—9 'aL‚8$nŽÇA2,¶‚0õ‰«5ûsÍžçœ6ê Â>zòí'¶yŒá$Hší}oL3’Nb±ó«ãq„öņ³Øl¥Ÿ ÆVìyÏ”³ÍÉ„1D’ ûìÌÖ?<1ÈÃçl×``ª„L‡’©~ì úšO3öŒÄÇ&”°†ÏØëV¬ñ{0YsÆøvmØâba KÀvþr >kNѶÒ<òõŠN8i†ø*ÄÐÈ]óÍŸüõ’½Þ‹×F6 $«zÛfí\¼V@CÛJzšWí)5H„µ„;Ô ýºGï`ÍþWðH î5'rZlTZ 3 sO«  ½î¦„°€áÛƒ7å&©1,c ¹…ð)rT¶-"‰*]XÔÌÁ¶¦>j˜ŠL¨ê1<$ ½!ÿ˜ëÅ…fÙÍT!+­\VÚÍv­xSçåÊùc Äuè5÷e¾æ{›F,v¤Š&H®µLÑ‘×H§ÿr´{â½’°6ôÿ 9ü~ê'QÜì™/à¿O“·mºµ­nô½¶‹ó\’poT­W°H¢çÍýŸÊÛk)…\kÇêQT7}­¬Ht±À»úm EB}ú¶+|n`Z••*"ÍK.$³KhŽÇ!õ[ÉÑ" [þ)ùa¥ý¬ùÍE3ûÌÑOšá\üCøZïB¾Ò€L"ÚB¾Þw Á$ÃÈH%¶—ÊžIBà‡C[A²ª„+ ÒÐU XÂT`€%œ#¦§é4ˆqÝj!%ÄÎPøp«àæò>%45Ȧ^uô¦·:DÅ$MÉ5º9¶#«õŠ2Bc%«‡ÃYD²0ø#yüq…~tCP±“]‚CÌÿ'gƒ…Mw¾ endstream endobj 143 0 obj << /Type /Page /Contents 144 0 R /Resources 142 0 R /MediaBox [0 0 595.276 841.89] /Parent 133 0 R >> endobj 145 0 obj << /D [143 0 R /XYZ 73.835 785.063 null] >> endobj 142 0 obj << /Font << /F54 41 0 R /F92 64 0 R /F22 42 0 R /F94 66 0 R /F96 67 0 R /F61 43 0 R /F93 65 0 R >> /ProcSet [ /PDF /Text ] >> endobj 148 0 obj << /Length 2223 /Filter /FlateDecode >> stream xÚÕYmoÛ6þî_¡e-`£1+ê]EW`šam±·f@,YNÔúm–'ößÇ—#y¤h;ͺû [¢¨ãÝsÇã=d\aðÃà»ÓÁÓ“( (%ešFÁé4 EIÊy–’œµL‚³a2:?}õô¤´:–$Ob&Eô8ÑðzD‡ vÕöÓ²k ÝhGÙpÊŸ×ò~ÂnþÈûÝ@Þ÷’¿O‡—Q±kÓ pS#ik>ºƒ„ù(*„3þ9—ÑL@ù+%)a- ýPæ¤t>{ã”D´TŸpS.Fã4¾o„½ðMj “$¦T}CY·”w¼<ü9àíaÀNH§ pJâ8 êùàì< &ìÝ« $4ØŠ~ó Ér’ÓœÝÏ‚·ƒ_!8‘½%k&YÁ~â(øôš^KW—s[™EWNË Ks©â”©¨ÝÈAw<ùG˜†Ìê(ˆóÞÇòQ¹¯… y#µ[H„&5.P¦Úª7TgL‘üèð¸B”ÅÝFÝ€ë¹wo&]؉è9»Û‰û ©ô Q!Çý²#o>Þ•ÜyÞ§Ãó“Ñœ"P$Zâö€9hMÂsìÉo!è+Yg´w×pöyÏ ÿùXOúãøÜ<Ñ y‘+‹«º›ç Îý*€>$‘îòI’ö î ÆQx†l]ÀœVéðÛšGê LS’±úã@+g` ÿ•‰Õ#Ç(¯ë¹èš_*kô‡þœ!„¥öC7}2å{;©ì˜ûAðÆgËûŸ£0RTeŠbw™xÖ_ì+hSÏ£ô%´s±/=P•½Ë͘^QFÊ"–zB¹ÂÙÐR–rì®Ycæ¦àHKù?­ Kå*„Jè$V\1Ç`‰ä½ZT> ¾Ö¢Ä¡" ‹̳âŒ1 T1 Eu ŽÑ¡*2ÂJ•2Ê5®ñELò"R’ø¨S±î¯¬ÅÖ¸9ÉBÍïšQ«úÊ'–Z”šÖ‰~+ñ.e|rý“PÈZG¼¯ä4ˆÊXÀ$$I2)E—0MS¼pYò[ɺt!£qÇÃÁQ*ÅM¤y:üÆQ.:ÏMªî\éTt›¨ø¨äóvÄÄÀ7טn¸ÎŒÃQ`íLQ%Џ#j¾ÞúNc¦¹ú âœBUÊšIåPLwf;AÏGydC_);3nV57ÏŠ ÿ\‚hµe ñ4¹Tk§ÂΚÇÝð¸t×ß"$cþ’ûÔÝëØ¡0䜧 ’4‘f½)§Šgèª[\AÂ4 §”ûm8;L™8"qJ?u“ó•cÃ-³/tÿÝ›%|khÓnUvÑ®“A]Z£HÄ m†8èV¬_é °ï2Ùiz¿²øº‰‡$î¦A+Ì•]•éô ÿv÷ˆüÈ^|ì­Ô}帜šÛ èO ¼œ9e×oìú]¬‡{£b+pw•škz*'ssH© âŽh4EÔsÞâV$XEµ `ƒÙ£Ú ¨mŽã–ðê#\P‰Áß±¬J³œ¥ÒØÞ³£Jª£„IY±dHÃòb4ÎØ<û¡›ÎWs~\F‹²R~÷³Zø¡¸Ä…¸¬XXùxÃT Û?â2–‰’Jú7"ÆZuX– ÅY•<žëÕýâ¾²H «0 R[Ã#Ìq+u;œ¼ð‡>ÓËDЬQâª. ÏÌ) ›îØë-uˆ£2ÿB­¹"*T–Ýiƒ4lÛÖæ~c /‘u»µ„›]fµ@ýÙÍ…¢,šÌM•ý>.£aö×ÈùÆT¼rBpòÆröJ±õ¨[‘šh¢CÞ…¯k6=í8 ïœqlKð[\Ï6}WTë>«fýãßm«·ëijôJS rËX1Èžùe«6’€‚Y­Òefè¾wÜ•N什ëj%«‘ʼnæŠão ±Œ)Ú†¨…O;±[ãî>H߀“;#ÓÒ i%ߊåËCôiž’(¶({;—rY3®ñeºŒ23tjÔå«oƒBúoíKÚK­3MÑ~ÖF‹J];+ÛC;í,s’FzOI”ÿr ñm%$-,»„û’´ yQôw!fÿ kÚ·K'Þæ‚s*&Ó•|O‡žÙU/½ãÓôØ›¬¦j7‘·Ö5:=«\mï—²;!‰C’ÆÞØÛøð§‰Ü¸º÷vÊ8I"RD…wWeµvïû òÏKXy eÉXz° ½J³ÈL²¤ý#S鮬 ¡adwÝuHcS8boU­Ÿ×ËÓÁ?ÀŸ1£ endstream endobj 147 0 obj << /Type /Page /Contents 148 0 R /Resources 146 0 R /MediaBox [0 0 595.276 841.89] /Parent 133 0 R >> endobj 149 0 obj << /D [147 0 R /XYZ 73.835 785.063 null] >> endobj 26 0 obj << /D [147 0 R /XYZ 74.835 289.671 null] >> endobj 146 0 obj << /Font << /F22 42 0 R /F92 64 0 R /F94 66 0 R /F54 41 0 R /F96 67 0 R /F61 43 0 R /F93 65 0 R >> /ProcSet [ /PDF /Text ] >> endobj 152 0 obj << /Length 1807 /Filter /FlateDecode >> stream xÚÕYYsÛ6~ׯ`ݤ#MMšà)¥QÚ‰;M¦3íXqõ ËTÌXWDÚ–&Óÿ^X  ¨æhûKƱØãÛ+ßñ½aJÿ$Cú' œ{Ç×§Þö|çþ¹÷ã¤wqG!Þ(Žg²pÒȆ±“&±—Ò‰[çºO¤Ÿ ¦“7—£ïü‘7ŠF”Û·Ãþݼ¤£¤#¸a›æ)±ÞëIïCTì9D^K¼0Lœùªw=õ[ºö†2Mœ'¶oåDIꥄJã,«Þï=¿“¼LÎQâPv“ Áb†±Ä)çÿcÅ=îzcÂWü®è(è˜Ü8û/éW—}M¿n™D¤ÿ9wtdðýž¯–žSÌ`®€=3ÐP5ÿ§ûôcCÇ ïé8?í8Q„!\˜ ]›4„"ÎàÃå ‚ ì)`ÿŽý¯_°ƒÕ':Öp‘¡N`°ËHÿvnaTÂäîo@èA6«´'>«À,aT'§6ìà†5ÐÈA„5Ó›.t«ÕÉ[ؽ€ÁxüÕœóÃ-Ú·ì[‰Û=èUˆtË—2˜â®™H÷Àî%ÒÁ;öNò E$ØrEH‹¶…pèlÇéZÆ ½†]<ðÉ5, uÛ`ÎA¢ª£ãabs¹I'|ù ÑރȷÒ¬Ûöý´Ê#ûþÐöwÓ\¡ˆÃƒ›Î™jcò0ÇþÅøÀ†ØÔ#pºÒŸµYíwÜÍ¢¶‡Ví„jp< m¤ÿ Àr§^¥7qµk–ÒS»bOú.ûö=ÿX Ó«ƒ]Öú¯õÑ!f T–‘îá_._K,¨OkÍ$}añ9ØàNdÍSYmT6-°“× ×'r›Ù;Ø·”*Ò²  ×HE¶õsƒsOîpä§ìšññk,`ûŽ 5 iñ’vG®'BqEŽ2bHŒ©WÊI”ž(g‰·‹Dé«PÙŸ¶ÎÎeη˜öY ëo'…^Àî% X\°ÒV&ó5ò7ÈÚ7ðïÝÙÉufÆúî˸Îgé¿áyÏZÓ/#ü¡æy;¸NtñýŸ9 >mÁî0¿{yÛ¬yÓR®> ¼¤•†Âb¥9Ü U(¨dØ0ƒ(„6jfÑÒG‡,)«d»ôŸ*%H?Áy¥Ö¬¦~«¬Ú,{Þ)eùaܨ¼NÑi-Y€§•8iÿ2M¾D<‚À;TV®kUÅ~]séÏ©-ªê3xà7ü+֙푋Ë@éwP¾‚Ä#ÀÖ/kÞÞÀA;Ûñ¹rÃ?·(<—rj' ¿²áRX:—9# ’þfÁL£L.#éi>¯>]deÖoÏ啹$&ü-[ð† ç–“«Ö™§­€Þƒ4[ãfÔÌÁþ÷X-È$yQsEm…½¬ —&™…„… ˜,j@!Ý€WBPá)£MHÿô®îèš©¶nÖBÚ˜2)È%8UKLwL×uðYóþXB0^Âhè ƒXôÇ*=\I#ò*ÂÂÄ&uCíC#%Éš_÷Žøö¶êfE¨›å†ÃØKè”KFÔo ŸõJVÑM‡Ä8ïÖDÓ:hÔÈ!ÝAkix•¾–qÌX#~Î%‹Ê cíÙ>GÕ<0•ãq壩Vû6eãgl@5D…Œ.ËTЉÂêõ d?ªc”,­ §'¥¾ÔóAid¥Ô°(¼T»H¬ªpÁÚ ­\ÏQÐ(p{ q¡)I‡Z(g Ü•!âîiîŽ{Üþ°ªöž™&w"ìe2LBÄ›U&( =Í´,UІ==)+'—EGùà5TÝñˆMdkÕ9"W…°ÿ>c‘²èÐ|k$“Ù”._8ºÜö T"â¥IØtîVlóXr3TÈÝ4EŸÜºì¥@h: aN¹üF{`f²ä«eö²&DÏG‘FgüøF9]jÜÐ;«ii¾sh%óò¤¶²áP_ÁŽz€ O E.M¬q¶%µ”Go¶…Ú Ê245ç(àgÅ\–ņ‡§Žô²yÉë éMý†1H&=Å[í/ _ªwßáqÀÕ%PS*þÑæ¡e‡ÚÍ€ñŽ¿lõz@ÿ±dÛ,;€DÊ˜Ö n£Ä C3xsT° ž}ô‹“ÊÅ$Ø÷âÊ\Åñþè6ƒúUÇä‡ô9þõ`Þju)“^pCIZ"Ù« çþ(þÊødpsÆ©‘*è>ª?3}MÿÑ sL•šù irk(sèOÕsTj3-Þðõ艜 dŒ5^HŸËÆi3‡r¶µrí¾™*Pcjÿo§úçëIïo‚ß”D endstream endobj 151 0 obj << /Type /Page /Contents 152 0 R /Resources 150 0 R /MediaBox [0 0 595.276 841.89] /Parent 133 0 R >> endobj 153 0 obj << /D [151 0 R /XYZ 73.835 785.063 null] >> endobj 150 0 obj << /Font << /F54 41 0 R /F92 64 0 R /F96 67 0 R /F22 42 0 R /F61 43 0 R /F94 66 0 R >> /ProcSet [ /PDF /Text ] >> endobj 156 0 obj << /Length 1632 /Filter /FlateDecode >> stream xÚíWmoÛ6þî_¡`£CŠ’( Ë€ k»uÝk<`@ÛŽ-'^c»µÜºý÷»;¥“-'é2`oý@["÷þÜttéèÑà«ñàäa’Dƨ2Ë’h­½Û~GwÖÁÁ•$ĨJ[³ó/.=¾Ï=CÔeTþµzË1ZÂzÉÚóÙ<°Zz.Ûæ^æY\ñø%3¹h/¯çÞÚÜt²,)UéLˆkÆ¢ä'ü *‹^'¥¥2Yn}ʶû 9ô^¯ÙŒjwÉúl‘Y¡€û6ŠMªÒ4÷L–lÛ† Ú äÉ…w³˜úS2p#\U!AµiU¿fg'âíj?Š”kœN»:dý­PïO±ŸŠ/‡Cö¡=ÜVŒ³Ö:]t³f¿Ç`ÙûÖ¯TþúËl_±*3™ëC’îÄ8wXœ³»Àè«B"ÃéÑÄT 4© ,9aX}3Ê2?å2çýýãšÄÍÅÝpsÖ‹™¾¨Ü;‹;šPm†–F3<•´Ç2ÙåDtï=cÉ…ŽÚú3mÒ0ýzO¾àWŒÖ–?ÙæÁµ{!ˆQ„>ëîWßzÎ%MRÖwsþо"öŸ^3·Ÿ°nŠ¿2W|v"x—`ÕìîscÕÏš8¨û¨£¨ß6OyõÕ–F©2µ¦é-1±,„ÌVa9xßïÑJæ§W¨°kaçik£áä\‰tÍܲVÿ“†¤Mʾ§;Ïv&S9|”w<À :}U@—ÊõìçGè‹zúþ"ehðzÁ¤š²M‰5Ù› Oiæ˜7äD" FhV"÷$Žo*¾]2‰'•¬ßÚk°2ûç`åš/xy_¼`Ü“¿ /9÷·Æ†ñãÓ»Éô”IJq,ðRðMÅÜ ìß”L’°°‚ÉÍ_—Ùÿ©·ôÍ ÿMÌèႲzв_ÓÅv?V "iÚ ŒiˆH®…„æw'ÞuꈾuÖ{&xÌ Ü˜åÿÆ®`>dúM™žAaºñïë¹){»îçGèt‡ Ræ¼5Ýñ*˜­¥¶@6Ñ2A’6Wø» åfE)ù¹l©Ä4eùßqœÜž{»ÿƃ?–±® endstream endobj 155 0 obj << /Type /Page /Contents 156 0 R /Resources 154 0 R /MediaBox [0 0 595.276 841.89] /Parent 158 0 R >> endobj 157 0 obj << /D [155 0 R /XYZ 73.835 785.063 null] >> endobj 30 0 obj << /D [155 0 R /XYZ 74.835 747.213 null] >> endobj 154 0 obj << /Font << /F22 42 0 R /F92 64 0 R /F54 41 0 R /F61 43 0 R /F94 66 0 R /F96 67 0 R >> /ProcSet [ /PDF /Text ] >> endobj 161 0 obj << /Length 1999 /Filter /FlateDecode >> stream xÚíZÝoÛ6÷_!`#±"’úìšíÖ ýD‡zX,n¬8^ì8µœº}Ùß>òx•¤õœbX”ÐÒñxw¼ûÝ¥(˜Qðkïɨwp”Äca‘$<Yæ" ²4 3yc÷Ù€õóÁÉèùÁQÁ)ma’Ð-<ï_Kâ¹¼Öò𠆂'¾û’Yïé¨÷¡Çää(`vY ‘§‹ÞñILä³çA²`t‹ N³0c™σ·½ßzjÂÍé"0£Z»"¤)O©r" y’i© .úFI¤GJ‰¼By]ÈëRß~$‡C=Ü€Z—syÙ¹•ü¥4}//5.‘ (Xÿ-NÜGc¨ÇŸp©w8E‘âõ@^¿ ÝÅBVÏ@2=EÞbHÃ}eai„!“ÆKq÷Ã"¬ÿ…#‹5Je$rM6ÛóÈ>AŽ+X¦^áÏ%±Æ¡_ ù¹^€eY?Bn‰Õã &1›Ä¼#åOÆ俇¹ô0ÍåÁ¥O´n½Pž‘Ïà’ gô×0Ë3ë÷œÈôÃ`ÈSVô…gžûi}Þ¢W›34KÒ-2&`8E‘hšÆ 3C²¯Is” ÑdF˜ IþÏ[¦ÉR$È%#d1¬@Í{pÄNÆ%V$…Ö਎ ˆý7ž¨{UµÔñ¤QA9ÇP>ž 7ÍÁMäÃoi‡Ê‘ÆÆû ] ™¢,+Ö ,PÁ‘‡¹ô s\à½Yÿn…ùJ|&¢ÿWyº¶­riNgʪ¬§›Fvªé¸møŒ™M¯~Ôi¬•®23WlŽõ<ÓLW(èòL?ž'[c\ƒ€Z:ãqÇØËÏ#€+M~7¥¢IÓ>ÕKجæ3´Â” tm@A·:~•›I×±€{nÖ§.ó×{‡"M33Ñ:ÑzL¤D·K  ãF‘Iû–O¹¬0=²ßYç/©:(×;H_ü¯—Êu6Ú©6ê° C†¸«üSzA  R©e5CDvƒ’ÄQ/ N–ĵ/µB]s*€€kLfëëï¯J7To­p0Œ…ôó:vŽRæ¼S`I˜§õ;@çÚ‘¥!SGºš¬±p¾ FIêB"Q66§v"æ À*z‹(ýšœ¶ÑñÒ‚Æ{°…N>r§7°³åeoF”ºY» ü1Èkûj¤µþÓRŽŠ‹Ü£Ž­&KcCµÉ ¾ª…_U ½fvÄò)òþ¨=º~¬MK2Ãf&ÝHzNÖ0<'™ pöã IP Ht0õTkŸõë§«™»qà>#¶ 5!®iö¡²"*‘¸Ëì¢ÏãÑHJòjiv)åíJƒÝk;oÊÆž oT®±l:÷&jOÐ=Ü.)Y§i&¦/¨«*rÈ_ Ázʼ *,«šùµ¼~—×K¼ö¡Jî>W§Î}LØrœûÀSÞÍȉÖIK?Ë¡»þšUiQé_ÙMìÛ­Nûƒn=‹ú=Òv«Ù^¼kµÔ¼SÚb_Ëë_m[}h³ä_ôvÈ ŒapD;„»È²õËLÉ=–ˆ'¢G…-‰Û~¯ /ëÍÃÿáBGÃ]—`þÎûØ‚÷ñ;÷±Ý ìZMjK†%'óùµÖV{Ÿ~3+ïI %€4q*kÝ5Í#D$e¹e,ÉÔ3Ï~rœÌïG†£;½Ím¯ÙN4ÊÂXÉG‘íƒ0û—cÀl™²0ëTå'=¸6OwïXVëz]’ '7½¾µPÆL+@?šR¸òÕ‰€¢gAÕ0E…Ù¶ÂðT1U3郊$ “4sK ª1­!Mö7í0µiÃlNg_NM•Imç’´ŠOSÝ*t:­µlÖ¨bÝeЗéæ`ʳÙҺ蚛¯I¨\jK¦µ®U•1uMèéݽ†i¾g¯|ê¯`ãÕJ˦zK·Æý×5"oÎëf^;ø¬ÓX O_ù ËÊõ…-*<ƒ«ê#Í8$k/è—<þvÚ°2ä/½Å}jyÖ:|¹gÎ4«îÛlA I»jÎc º°é4Â4ÊÉØ|"Ãé© ,ò%ÎùçN>’Mjš2L±ˆ­×D‡½³@’ ï™:Ñ ’„·œMËñsœÐ~ä €~¦”ÂG@ú~A>;Òß}¹ÚOG½dxžÏ endstream endobj 160 0 obj << /Type /Page /Contents 161 0 R /Resources 159 0 R /MediaBox [0 0 595.276 841.89] /Parent 158 0 R >> endobj 162 0 obj << /D [160 0 R /XYZ 73.835 785.063 null] >> endobj 159 0 obj << /Font << /F54 41 0 R /F92 64 0 R /F94 66 0 R /F96 67 0 R /F22 42 0 R /F61 43 0 R >> /ProcSet [ /PDF /Text ] >> endobj 166 0 obj << /Length 1683 /Filter /FlateDecode >> stream xÚíXKsÛ6¾ëWp:=PS‹!ÈLÓC'qۤ鴉oIŠ,ŚؖcÓuóï ì.€% ÇR›C=@å¾ûuQW­u?¦u?J‹z¼ôbVÜòO³OfŽ¥,„¨º¦‘ÅɦP]SÕVÖ4•u+§Å›²™¿;yþè¸v•ÕÊqŠŸwsÙ–wó…’¦ÜÎEÙûiS.W½{¸ucéÆ9ϸy7—¶Ü]»…nÜ Fs!BêJv6ˆŽ®ót³g'³O3ám+DauժƩ,*¥L±º˜½yW§nï¹³Xw@wQhc++<·óâõìY}³Dò>aöØiçŒÎHã5º¨¦’Eµ˜/©œ…èŠ Þ%×àQ¾­›:Qm‰âW7Žpù=>qãp—(×nüÏ@âxpNÐx?ûœ†P.8U§(öß:þ/=W¿!ý+7NH{oÅ%)„‘Çÿ[ ¤©D-‹…p112qÙÁî"·}LBvà…h¬(Ÿ‚FŽLÛò—(<ð”œâu:Í-‘£{Q ßß+¢^‘Ìkz @šgnþ'Ñ]’Á´ï¾"ûo ¯a©g!]3N¿Óó5‘O]æ|¡õÐ%ÜüÎÍ•-Êñåa¡Dâ’tS?Œz¾ÐV4¥K4%´re-Ê:çÑ9|6ð:\[C¬=¿ŠžM–¥ W›E ˜Öd‚%†N_YwI9AÌ,*ט} ðˆxº†ÜÓÂønŽWFá×±ZÁ‘#WKb‹¾Í¹ú^+LÆ ÏJ„àvÃD ‡Ð ÍøOݾ ”á¥êkøø¿RÃåÿk8š/(eê”I‚¢ÜbÖ„¥Ž’dŸ:V”LÒCB5ÄRÒž¢„˜t×q¨W0£%F¼Ž±tH$#ÛbEð‡»„+Z΂ć+*²õ›qs(¬nx‚27g-0C ÇfƒÜÁ Kt2•{¸;öî1.‹uÝ8| ¯Å¢xO¶zpµì!#‰ùéYz¼ô }â&ï½î”»€Çv$»JÑîí.‘ rå!Ü.xÚ~IÅD— ú)R­ úBÙ$5cmÝT.½•*Û Y[–ô>S…WùšŒÙìhÞÛŒ ‰¢3ôbU 2‚KHS0|Kþõ¾] y®³º”ãÀØT²n¼nxôí0ª²­´ðá†×±žÃeéS\÷ZоÈÃlf”ûû4ÀãhÍnlÞô£†øxIm:~³K©ÔGï8_»”­UKN7hêÍ6¤aÌÛîS_ ê–Žë-=ƒçtÊVP79t>‚æ>î­sý”&N=åT©ã3úNæLüYym_cÂûÇïÝt1ÞavNPÿ-eZ€ö}juÓKÁðð„Ý ^Ò?´DOš×¸U­ŠÊ%±5‰t´ÑZEÇZ6l™†µ‹²Ý´"ù+–Âkfï²ü¶óï=¢©Œ+Û…rÛŠrä–¹åš]>a@‘5Kå+öêi.‚ÌF`šfjtaÓ™™{¤ü"Zå¯tjù<)ßP¨Óü»ïW-*kÔðR9­8))wÓ]<”ð¸÷™à“7âëÇÕÄ4N)ƒ’bˆ+\hð!tvOÐy9`!žš-(+iîùÓ%é0Þ:ñniâh0ÙÓo±/o3ä]ãå*ÞK;âÝ2½õ¾¼ÛÄ;Á¨ˆÐ$%" Eæ!†Ýj én‡Q2Þšnû0ïIHMºÕ$1аLýv_,²M´$ÂZÁ<$Ó¢Eê{O1f(¦žÞ€y®*¬‡(Fì+†Å[Aº¢GÍÄXŠIcö@΂ 3»œA¯Jß-Gøgu›…(ˆEÜ*ÁDÐ_¯a±Ñ©yù³eµÎ"ç%®`ó¶ ëðíÆ˜6BàËÑsúàŠ>0²}¼,‚zhÁùTGz,›Q/ö¼"~»~!/eºô¦+è cuõ Œâ=í(½ C@%«Ôu:IÿšþUü¨À!Æ8—Iݳ\òõ>ÏÖð™;×á ¡öÝè‹ýñ _R¦Ä‡ôG1¸°Ç>ÀÌÖêä÷k§5ƒMñºg‹ŽøË퉻.çeidTh㘪ÐFís*ˆ›s=ñ MN°„ŸÌþkª endstream endobj 165 0 obj << /Type /Page /Contents 166 0 R /Resources 164 0 R /MediaBox [0 0 595.276 841.89] /Parent 158 0 R >> endobj 167 0 obj << /D [165 0 R /XYZ 73.835 785.063 null] >> endobj 164 0 obj << /Font << /F22 42 0 R /F92 64 0 R /F54 41 0 R /F94 66 0 R /F96 67 0 R /F61 43 0 R >> /ProcSet [ /PDF /Text ] >> endobj 171 0 obj << /Length 857 /Filter /FlateDecode >> stream xÚÍVÝOÛ0Ï_añ”JÔµ8hLÚÄ:1´Dߺ>dmÚ2Ò ã¿ß}ŽSZP'¶iNœûòý~wIN0Á³.I—H±&ž‹.Áf þ|½¾Ž™”<×Z±Á”¥1Ï"ÍÒDó6 UG†¢3|éõsÕ¶EÎó8‡PÆnÑQY¸ã Ö=¬ëN7RzŸ‚ŸÁ] 1=&ý±’GQÂÆ‹`8lº/´dÆnÁâ$å©4¬bWÁe ~ ¯dö¼æv–ƒ¾C®½ÆT[†G®PD/‚™ Ò¼+¨?¦û´e‹úšXšµdŽ#{„l`B~‰Úé¿‚\}ïU$Åà§°äv¾ëµ^F tÇ2†÷$ÉpHÏD"èòÙ]9h2”\Eõ_¶xó :°œ,°ad¹vã³Z€G2/Zæµ7s°)Qºos2l!yuEá'ÄQtÊQ‰üÜ)öCb¾½æñ‰ ߟ+ÿ»pEóB5¹Mˆ‘‚úν­5™‘7‚Íi‰¦ª¦ò°·À·‹uJü`y´7+(Â2ˆ£+ê,ó¥òÐPÑ´pÛ¤|3>ùïðÁúê±å3[—TÝú [YWêtÇóüEó·²!aãàÊ៉¿CÞÿņ:˜‚X¸Þù`î¿0­¸;Ìgn:“JòD$,‡éL˜éì.àYÇ£ÞïŒÂ9‘ w¾Pìl³Úek³&]¸ë#›yl{^’iÊ…ÈX*¹Š¤…Ü'D3÷fÓÔ¤NhRÚ´„_½›SÏÊi±©îÁ^‹°*žVÜÇy¸šZÙý¼´A¹•Œ»*Ö.ŒùšŸ'§ÃU3ÿ”û’€ôÓ4sî0i°¾ó½ìï©Æ/\Ä‹b endstream endobj 170 0 obj << /Type /Page /Contents 171 0 R /Resources 169 0 R /MediaBox [0 0 595.276 841.89] /Parent 158 0 R >> endobj 163 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (C:/stat/R/BxC/Examples/graph/Lexis-sim-pstate0.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 174 0 R /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 175 0 R>> /ExtGState << >>/ColorSpace << /sRGB 176 0 R >>>> /Length 2978 /Filter /FlateDecode >> stream xœ¥šM¯&7…÷÷WôtÚv·Û½MH‘@„‰EÄ‚ AšÑ $Ä¿çÔ‡]~O_n¸b13:¯ÛÝv¹\õTiÒòõ’–OË?ž¾ÁŸ/~úão¿\¾z÷´­Û¶-óßï¾ú=~=å_OßþyÙ–¿>¥åküùô”äåwO-­íZβîûòyÙ·´žÕåóòކMÕºfMù\6†]NãÉÓ¸ÉÏ©­WŒ»œÆë¾Ö3ÆMÆxÁ.JŒ»œÆºn5ÆMÆøÃvÇîcüË÷nÜï~zÁ¸?}÷ÃÓ¿É8‰÷ÃÞW°¿L×¶û²Ã,yyÿyùEº®úËåý§§_¿×—¿>;¥]Vò0½½aúq­×<=cÕÿûô¼k-Óó¦i-4}Ãôë\·ü8ý ¦+{^OšþÓ•ÖÖýqz¦ƒY·}8©ræõªê44Œ+³OÊFS)k‰a—Óø…›rĸÉÏGYSŒ»Œñ’Šxzw9ÛrÇx¬~¶Íd_MvÚí–kÚÔ6øñ%˾:;åC„MÑ«^ŸÞöõJ>ýE¯zuzÞ÷µõé/zÕ«Ó˶‹sÙô½êõéÆüB¯/{ÕcdzÓã)>?Ì}~z§YáÿŽ]9áž0ußëûŸ¿Ãf“..]ð“KçÿáÇ¿øË‡Ïÿùïþ,t™ï×6_—\¼¿_þ´üÛH/o£§¿ûðϧ¿ÇëðTËZä&±çù á;5œW]SÄSxW©Iy®%#© Hl–˘DÖuljÛzÉÃVW°?Ø´‰Dl•(…]_iÛÖt.¥à•M5< ë*ymYõµ, 6éó¸Ð +ËÉÞžpJb>™®4e\x<3¸ÒuÙNs˜„#`”-Kˆ]ÍîçZužš/è¼Iõ±6ÜlÊÖƒmín©ë9ô:g˜¤ªq€'4ì©ß‡Ë'Ä©ŠŒ¤Ïòg‚†‘ôy#ƒ\³ï/jâZóõ´,ñ8ËgNÕU^¤9Fçü‡Üë¦qZLîy–ï!ú¯'Ö‡m¥¤úX3Ö{ë~2ì+q´ì¶ÞŒÌ»c}ö=T+™ä|™ý3ì{`}¹Úþs†§`}y3CþUžOrL¢O à9õùX>œSŸ¿×µ`?ø¬Ú;‹Û`?r~›êc=°q[}_Ý$úf9OÓJF²­SçÃÐ ‡¼?ì‹€—qÞf³‰¡Å,I÷ ûb£ çTÕšùäòÚúáÛ½‹‹®r0 ?Ÿrñ)èM–!Ú%??wPKH«Û®z4‘cÔó-0 6.aýÔqM­ˆ[‰nâX©Á,ú~$ÌœU«¿ËÅÁF¶Õtq¤`}⦫\”tVóÏÇÙåùÃ×cd(nxŠ?Ø#~¿ ²]Æ~Š®öÅÆþQ*ç.MÜ:ë÷°ä§TõØ¡±‘û‘H¢Ï‹!°¼v“ó(0$RBBüÙõ{—^ô„PÓjÄÿTýû”üñú¶!íc!u-CÚRCêN†´†T;„T3 9ãö0òv!õˆ†´ ©<¤Hu!Í{Bªs…œŠ„áš!Õs»tÇ©~?¤]‹zk†´KRïÜv%CN¥Í¸ÐCÚ}©á`H‹!5˜ i±&¤†¢!-R…Ô@6ä\08¤EÉDCjŒíÒCpHÐCZ©ñ}H ÿ!§2r$š[†´ÔR3SHM\CZ^ ©ioHËŠ!5i9¿#åi9¤&ì!-Ÿ‡Ô¸Ri Kc…¡$º2ÊjªÖ;Ÿ ¥ðÒ•‘ÍPŠ=]=ÒäÔJ„]÷_…¶þ O%9¿à©K~ ž: œ§$Ä”±™‚W\OÒÄS¸6y6*à…#‡‹\£+ \χ§¡ÒÇSö>ßyj¯–:O'Î#Î^bØžÂ5Ê®Þ5<§”æüeŽUðóÞÂïJÙ-Ÿ»[ð†Â£{moØûÍ©•ÿJø¼ÄÁ¶Å•(9[¾öSòfÖò U°­Râ¾ðGšxJ"ç–â¶ ?nÓe.0ÛYã® OÖ-BFšŸ=R_gáú2ÅáÍ<…¡ ¾hGD) ¿Ê§§ÀÆ7ÎSÈl%G>UGë<žp~2žjzLÁSm³ýwžB7>sž/¨tž:w_¯óÔ©‰6xJø`Ê ®­|ä‰CxWùÀóŠ|ƾoiGøWßçYI—U#i ë~<§eI¸%R^–â£DF>n%fÞ/1ãȧb&å O·y?ì<=gÔ'Ê£ž¬ÅÌgŠ\žáïö}Kõ¹4ó7'\«72>sN!|½+/f_ÊKF!â‡¾ß Ex»M<%¼­þèˆ#n”U ›ý ;?I‰«þÀ|Åüuã3æ7æ;æ?æCæÇ_2Ÿ2¿2ß2ÿ23?3_33ŸßøøžùŸê®nõ×\ŸpýÂõ ×?·úˆê'®¯¸þâúŒë7®ï¸þãúëG®/¹þäúôV¿>Ö·\ÿÞêc®Ÿ¹¾æú›ës®ß¹¾çúÿÖ þ÷¸ÿÀý î_pƒûÜáþ ÷Wný—Çþ µo¨¹C­j QÛˆšJÔr¢†õý>xg/M›ñ¯ob³s™Ù¬^ËÌfÊSÍvÉ`3ÍÁfmf³K>0±YµX?Ø !¥Lgqdg7?+q™ù,áË×Þbý\'_€KíÛä+8,ÝYg3¹Âgøš²Ûä‹Ânu*„ÝtwÍÊáìèlVг³Yéïw6+ýýÍšû®³–mãÎfùðý9›!v(ët6ËÝ7Í$×Mu˜„ìsêu‰ï·)– öóX#!½¤ˆErwÚ«JJÎ:Ë4äoë„ ËT–­™Ïz¬,[µ\ï±TRDžz]±ºNl&w»\«%…Øû<–_E=Ö_ÍØ¦çÄŠk›rÌôÀfÈ5jïÎfWñõ9›áŸ<³̾O¹,#·i-ÐÙ ¹ÏØÍÙ ¯Uèl&¹rêVävXéÒÙ¬³wg³æßïl&±rêu »žS¯+Ÿ—ÝŸÎfÐÆ&ÎfâfÆjÆf`…fìalvöõ8›ÁŒ×ÔÖ5r6ƒVìl†@âldl†˜¥÷¯³Y½œ%Í$àèzœÍòêÌfXF9—;«1ËÝXYY‘Y’Y“YôƪIJ̺ÌÂÌÊÌÒÌÚÌâÌêÌòÌú·Z€j®%¨ÖàZäV«p-õ×B\+q-u«µ¨ãZk9®õ¸äZ‘kI®5¹åZ•kY®uoµðc­Ìµô­ÖæZœku®å¹Öç^÷ ¸—pë5P/‚{ÜËà^÷B¸W½îµp/†{5·^Îc¯‡ZAÔ(¢65™¨E *j_@½ÀfÒ!ÛnlÆ¿¾Âfþ.ÿp—¾¬!mÑ]ú–†´ wéæÒŒÕe·eh³uh;‹¡ý¬BÛYígÚ|ah÷•ÐæKC»¯…6_Ú}5´ùrhóõ¡ý.„¶»2´ß¥Ðv׆ö»ÚîêÐ~—CÛ]ïºÇ‚Ð+B_óÿÇlÚØlhg³ÐÆfC;›…66ÚÙ,´±ÙÐÎf¡Í†v6 ­±|ÒëC[.˜´æŠÐ–K&­¹&´å¢Ik®ÚsÙ¤5×…¶\8iÍ•“Ö\Úrí¤5‡¶\=iÍå¡-×OZY ´±Â¤•%BkLZYdÒÊ*¡e&­¬ÚXhÒÊJ¡¥&­¬54ÿ?f5f¹ë1 2+2K2k2‹ÞX•X–Y—Y˜Y™YšY›YœYYžYÿV P­ÀµÕ\‹Üj®e¸ÖáZˆk%®¥nµÕb\«q-ǵׂ\+r-ɵ&×¢\«r-˵î­~¬•¹–¾ÕÚ\‹s­Îµ<×úÜ à^÷n½êEp¯‚{Üëà^÷J¸—½îÅp¯æÖËyìõP+ˆEÔF¢&µ ¨AEí«Ÿc³ožþâž×h endstream endobj 174 0 obj << /CreationDate (D:20130223105723) /ModDate (D:20130223105723) /Title (R Graphics Output) /Producer (R 2.15.2) /Creator (R) >> endobj 175 0 obj << /Type /Font /Subtype /Type1 /Name /F2 /BaseFont /Helvetica /Encoding 177 0 R >> endobj 176 0 obj [/ICCBased 178 0 R] endobj 177 0 obj << /Type /Encoding /BaseEncoding /WinAnsiEncoding /Differences [ 45/minus] >> endobj 178 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 172 0 obj << /D [170 0 R /XYZ 73.835 785.063 null] >> endobj 173 0 obj << /D [170 0 R /XYZ 74.835 472.725 null] >> endobj 169 0 obj << /Font << /F54 41 0 R /F92 64 0 R /F94 66 0 R /F22 42 0 R /F93 65 0 R /F61 43 0 R >> /XObject << /Im2 163 0 R >> /ProcSet [ /PDF /Text ] >> endobj 181 0 obj << /Length 492 /Filter /FlateDecode >> stream xÚmSMsÛ ½ó+8¢™ óÔ[;­Ûæ–‰oiÔVeMd)‘ü1ý÷Ý”:iöñxûvA‚¶TÐoäó†¬ÖJQ)ym­¢›ßT×– o¨w–{@vôžÙâas³Zׯˆ5÷FƒJd| U±KQjåXWHvÄ¥ea{„à#Àèóø“6/…òlœx„1§$Ö\'‘ÊpUû%žDùº!ÏD.¨¤ÞðJ[°,¹ÖŽnäþAÐìÝPÁ%½DÞç¹—¨ÖÓ;rKDnÃ2/zuÅtE) ³F½gÂkoŒ‹„«eÜZŽe`õã é—ôoÿS.³ty¥ýÎ%ä‚”Ð\š*Õ¾†Ú±³mnèÔ¥qŽiX̤¯E¬ãÒÊ¥uŸÅÉWí5Ü»PžðzF¼<Œîðö~š÷2xÍ5ÏÇÛ©°À~Úƒ¯J°Ë¾‰Úô5ÈYÁši‡9ÍöaU±qHH7̧¾ËA˜â´Ý¹y!¥yŒûah3% ;´HKi4¯|… nŒ]J‹Ùñ™%R±!;29蟻 ¶¹ T>¯³ÅÍã¾É(†Žú¢„©Oè|šÎÝ9äè§°b…B>>¾XÈBŠAþˆ2Á!› )üÕ‡íc¬Sä]*Oñøg¼}Ôogøsþuí½ endstream endobj 180 0 obj << /Type /Page /Contents 181 0 R /Resources 179 0 R /MediaBox [0 0 595.276 841.89] /Parent 158 0 R >> endobj 168 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (C:/stat/R/BxC/Examples/graph/Lexis-sim-pstatex.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 184 0 R /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 185 0 R>> /ExtGState << >>/ColorSpace << /sRGB 186 0 R >>>> /Length 3263 /Filter /FlateDecode >> stream xœí›I¯·…÷÷WôRìv“ìqkg@ 8ˆ£dax¡)Œ+ ‘bþ÷95Å{ú9Ö“³  …†sÙìæP¬úªîí4|=¤á‡áŸ—oñç‹÷ýã—ÃWO.Ó8MÓÐÿýä«?ãÓmþ}ùîûa^\Òð5þüpIrÁðÍeOã~ [çyx=ÌS·ÕåuxBͦÖuÌÖšò6.{kvÙµ£%wí&£=§}<¢Ýe×¾ÎãºE»Éh/˜E‰v—]û²ŽÓí&£ýfºmöÑþå/îó÷÷,îûço._ü!c'îþ޹Þ`™^÷q™‡Ë’‡»×ãtëãáî‡Ëïïôæÿ½wJ³Œä¦ûþ€îË1}÷ŒQx÷<-ãZn»çt_ÒX¨ûü€îÇ6Nù¶û–®Ìyܨû–®ìû8ßvOmé°¬ÓÜŒÆTÙòx¬j4ÔŒ#3wÊZS)c‰f—]û“²D»ÉhÏKS´»Œö’ŠXzmwÙµÛp[{Œþvf“k×cLE—MØV휲ŽÂz?Ħ¬76稽bRÚ;Ï»LÙz?À¢¬w™vq§Öûå½áVëÆûíéÖ']«¬;t»×›¾×Ë¿Ùk儳·aåÉ`ï^½~yß\»>Ÿw·J:¸t,c:´ÿ_Þ½}öôÙ«ë«ý\oƒýàýÀæã#÷îåð·áM? Ü|™—Áþ¯ÓˆÀÇÍ¿ønÂe-ãš 'ñ:× 6*íØ¯U¬üzÁU¸WY“ rKF8{˜ -,–Þ:‰\Ç;¶Lã!Øê‚ùaMw‘ðªâŸ0ë2Mð6”‚[îªçqøJ÷¬ú Jz=ŽòŽ‘ådwOØ%Y>l™Ž4eu\=RCt™63˜„ÃU”)‹s½ÚºoãªísóÇ%©^Ƨ“²ñ`Zs†Yêx–Åì{Ë Ü ±žú|ÄìqèõXÙ-Ac‘ôzc‚¼fŸ?n´/ðh»gÏ≳L+%Õ˘1>¬·Î'c}Ń–ÙÆ›sgŒ¯`}ÕÊ$K×?c}Œ/¯6ÿœa)_že™¡±¾«\Ÿd›Doâºsªý1<8§Ú^Ç‚ù౺ÞYÌó‘ý›T/ã‚ùˆÙêýVØ‹çM†u­ˆ$ÓÚ´?̧â÷Çúî˜öÛÖcÛe¡eY’Î닉&ìÿ²ªÖ˜'‡×ÆC˜èY¬Xô*“ðñ&ûQàŸržd¢Ñ.`?äãkE4ñÙÓ¬zç-Û¨û[°0˜xÚÕ족˜hÚ‹˜•hu™iDzèý*sV­ö.M˜Ö®íð#ã{4½ÊAIÛjöY`8³\¿øxŒ Å 7±‡‚õÅÁH›Ÿ¯²Â^08†¢ãÅúbâI⟬wÙf9hbÖYŸ‡˜ÏªÛ‰Ì˜x½^óÁm'Ù‚…\1>øŸYŸwèAOp5ûþ?­þ| ~yH½[“ö°:–&m¨!u&MÚDCê:„Ôej²í¶ÈMÚ„Ô-jÒv0¤np“¶ÿ!Õ<š4ë ©Æ²Kši†TË­Ò ;¤Ú}“v,Bê©iÒUH=sMÚ‘ Ù%5í@7iç=¤ºƒ&Í[„TgÒ¤ùšêŠš4ORY“}*ÖÜ`“æ%Cª ©>¶JwÁ!ÕC7i<¤ú÷&Íý‡ìÈ žÚ œ§ÄÅ”6™‚[ORÇS86yjkTÀ KŽ,rŒŽXà²x<¬<•¦Øž2×þÎSójñ òxb[bïŇÍ)L£Ìj]ÍrJٿ̰ >ž÷°»Rf‹çn–¼¡ðèV[Àv3jå¿6/~pŸâH”œ-^û‰)y²ÕòU0­Râ¼ðGêxJ<ç”â´ ?NÝa.X¶m³.<¹Ná –Yã³{ áËe G"\_:?#¼™;7”Áû^Jܯòiå)ð…ñó"[Éá…OÕÐ*O'œŸŒ§vݦà©}²ùWž‚7>sž/¨}TžÚf¯óÔ¦6xJø ‹ ¦­|äCxWùÀãŠ<ÆžoaGøWïçQI‡µFÐÖùxLËpK„¼,ÉG‰ˆ(|¼—˜y>d[<•eR¾ðp›çÅöÓ£qF~¢<êÁZ–yKË3ìÝžo¡>—ÝìÍI —Åò …ŒÇlG_ÏÊK†Â׋ò’Qˆ˜Á¢÷7HÞÞ;žÞV{tÄ3ʪ€„¿mý ;?IŠ«öÀ|Åüuâ3æ7æ;æ?æCæÇ_2Ÿ2¿2ß2ÿ23?3_33ŸŸøøžùŸòÎNù真pþÂù ç?§üˆò'ί8ÿâüŒó7Îï8ÿãüóGÎ/9ÿäüô”¿Þæ·œÿžòcΟ9¿æü›ósÎß9¿çüÿT ú׸þÀõ ®_p}ƒë\áú ×WNõ—Ûú •o¨¸C¥* QÙˆŠJTr¢‚Õýž}8omCÏ[ë1ô¼¥ŒTyk6DÞÒˆ¼µ÷¼uÈ:ÞZÍ7Þ‚›(Ýú.ÙyÌ×_̠ߟYkºomæÏo-ã*_ºÿ>vã•êßqþ©óÿX¦ÞBüÐõ®¼uŸóþÉ=oaÙç.>eÄ+åûÊ[ˆgÆcÎ[¸­ÚCå-‰]"ï‹¥#•·öbë]yk÷çWÞÿ×Õ¯„G·®~•·ÃÎOå-hã ç-13ã/ã-ÄÿÝxÂxk«ãqÞÂ2]YGøÕøÆy Zí±ò‰óŽñüž¿Ê[ëá|è¼%GÇã¼7¶ö¼…a”m8óóىߘï˜ÿ˜™™/OüI|ÊüÊ|ËüË|ÌüÌ|ÍüÍ|Îü~â{âÎ(àüâ”p~Âù ç7œÿp~tÊŸ(¿âü‹ó3Îß8¿ãüóCÎ9¿äü“óSÎ_OùímþËùñ)æüšóoÎÏ9çüžó®œêT_àú×'¸~Áõ ®p}„ë'\_áúË©>s[¿¡ò¨4D…#*+QщJRP'Þºÿ+Èû¿yü6ó{ùƒ«ôa5iƒ®Ò§Ô¤M¸J_Ž&m±ª¬kÚÖ:´íEÓ¾W¡m/›ö½m¶Ð´ÛJh³¥¦ÝÖB›-6í¶Úl9´ÙzÓ~BÛYiÚÏRh;kMûY mgµi?Ë¡í¬W]}Ahó¡þ×ÍB›5ílÚØ¬ig³ÐÆfM;›…66kÚÙ,´±YÓÎf¡Õ—wZ}}h‹ÖXÚbI§5Ö„¶XÔiUM{,ë´ÆºÐ ;­±²ÓKC[¬í´ÆâЫ;­±<´ÅúN+ „6Vè´²DhcN+‹tZY%´±L§•uB uZY)´±T§•µšæß–0«1ËXYY‘Y’Y“YôĪIJ̺ÌÂÌÊÌÒÌÚÌâÌêÌòÌú§\€rÎ%(×à\䔫p.ùçBœ+q.uʵ(ã\s9Îõ8ä\‘sIÎ59å\•sYÎuO¹ðm®Ì¹ô)׿\œsuÎå9×çZ× ¸–pª5P-‚k\ËàZ×B¸Vµ®µp-†k5§ZÎm­‡JAT(¢2™¨E**_ý:›Ý÷Ãç,ÆØ~ÿõéûÉOßOv>äÓ÷“Ÿ¾Ÿüø~òô“^ó~sJþÛçïa5~<`ª^>}7¼½¾^?½¾|<à©>^¼zú7oß¿|1¤ã˜?Ü}ýa?tv7‹YÍþ '?¾{<|ãxôÓ«ŸðDÜÿéuxŸÚg/û‡ÜÿÓ{´|si¿ïþÝ7Ÿ oÞ¯Þ¼ÿñúêÍ0 òÁŸLu?gþ…ÿ¦‡ÕÛÿ¦wsî=¥û±þ邽û±X´·· ü‚îuƒzE}ß ^/Tƒ¬oøÝ+u\õ¿¢{éàväqÅÍke׳ĉ~Á{ìëµûG¾àÝ?ö…ïþ±o$Ôî÷¾’ðíå?!Ì­ø endstream endobj 184 0 obj << /CreationDate (D:20130223105723) /ModDate (D:20130223105723) /Title (R Graphics Output) /Producer (R 2.15.2) /Creator (R) >> endobj 185 0 obj << /Type /Font /Subtype /Type1 /Name /F2 /BaseFont /Helvetica /Encoding 187 0 R >> endobj 186 0 obj [/ICCBased 188 0 R] endobj 187 0 obj << /Type /Encoding /BaseEncoding /WinAnsiEncoding /Differences [ 45/minus] >> endobj 188 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 182 0 obj << /D [180 0 R /XYZ 73.835 785.063 null] >> endobj 183 0 obj << /D [180 0 R /XYZ 74.835 651.41 null] >> endobj 179 0 obj << /Font << /F22 42 0 R /F92 64 0 R /F54 41 0 R /F93 65 0 R /F61 43 0 R >> /XObject << /Im3 168 0 R >> /ProcSet [ /PDF /Text ] >> endobj 189 0 obj [361.7 429.7 553.2 317.1 939.8 644.7 513.5 534.8 474.4 479.5 491.3 383.7 615.2] endobj 190 0 obj [777.8 277.8 777.8 500 777.8 500 777.8 777.8 777.8 777.8 777.8 777.8 777.8 1000 500 500 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 1000 1000 777.8 777.8 1000 1000 500 500 1000 1000 1000 777.8 1000 1000 611.1 611.1 1000 1000 1000 777.8 275 1000 666.7 666.7 888.9 888.9 0 0 555.6 555.6 666.7 500 722.2 722.2 777.8 777.8 611.1 798.5 656.8 526.5 771.4 527.8 718.7 594.9 844.5 544.5 677.8 761.9 689.7 1200.9 820.5 796.1 695.6 816.7 847.5 605.6 544.6 625.8 612.8 987.8 713.3 668.3 724.7 666.7 666.7 666.7 666.7 666.7 611.1 611.1 444.4 444.4 444.4 444.4 500 500] endobj 191 0 obj [458.3 458.3 416.7 416.7 472.2 472.2 472.2 472.2 583.3 583.3 472.2 472.2 333.3 555.6 577.8 577.8 597.2 597.2 736.1 736.1 527.8 527.8 583.3 583.3 583.3 583.3 750 750 750 750 1044.4 1044.4 791.7 791.7 583.3 583.3 638.9 638.9 638.9 638.9 805.6 805.6 805.6 805.6 1277.8 1277.8 811.1 811.1 875 875 666.7 666.7 666.7 666.7 666.7 666.7 888.9 888.9 888.9 888.9 888.9 888.9 888.9 666.7 875 875 875 875 611.1 611.1 833.3 1111.1 472.2 555.6 1111.1 1511.1 1111.1 1511.1 1111.1 1511.1 1055.6] endobj 192 0 obj [571.2 589.1 483.8 427.7 555.4 505 556.5 425.2 527.8 579.5 613.4 636.6 609.7 458.2 577.1 808.9 505 354.2 641.4 979.2 979.2 979.2 979.2 272 272 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 272 272 761.6 489.6 761.6 489.6 516.9 734 743.9 700.5 813 724.8 633.8 772.4 811.3 431.9 541.2 833 666.2 947.3 784.1 748.3 631.1 775.5 745.3 602.2 573.9 665 570.8 924.4 812.6 568.1 670.2 380.8 380.8 380.8 979.2 979.2 410.9 514 416.3 421.4 508.8 453.8 482.6 468.9 563.7 334 405.1 509.3 291.7 856.5 584.5 470.7 491.4 434.1 441.3 461.2 353.6 557.3] endobj 193 0 obj [741.7 712.5 851.4 813.9 405.5 566.7 843 683.3 988.9 813.9 844.4 741.7 844.4 800 611.1 786.1 813.9 813.9 1105.5 813.9 813.9 669.4 319.4 552.8 319.4 552.8 319.4 319.4 613.3 580 591.1 624.4 557.8 535.6 641.1 613.3 302.2 424.4 635.6 513.3 746.7 613.3 635.6 557.8] endobj 194 0 obj [525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525] endobj 195 0 obj [525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525] endobj 196 0 obj [400 400 500 750 300 350 300 500 500 500 500 500 500 500 500 500 500 500 300 300 300 750 500 500 750 726.9 688.4 700 738.4 663.4 638.4 756.7 726.9 376.9 513.4 751.9 613.4 876.9 726.9 750 663.4 750 713.4 550 700 726.9 726.9 976.9 726.9 726.9 600 300 500 300 500 300 300 500 450 450 500 450 300 450 500 300 300 450 250 800 550 500 500 450 412.5 400 325 525 450 650 450 475] endobj 197 0 obj [639 768.3 734 353.2 503 761.2 611.8 897.2 734 761.6 666.2 761.6 720.6 544 707.2 734 734 1006 734 734 598.4 272 489.6 272 489.6 272 272 489.6 544 435.2 544 435.2 299.2 489.6 544 272 299.2 516.8 272 816 544 489.6 544 516.8 380.8 386.2 380.8 544 516.8 707.2 516.8 516.8] endobj 198 0 obj [531.3 531.3 531.3 531.3 531.3 531.3 531.3 531.3 531.3 295.1 295.1 295.1 826.4 501.7 501.7 826.4 795.8 752.1 767.4 811.1 722.6 693.1 833.5 795.8 382.6 545.5 825.4 663.6 972.9 795.8 826.4 722.6 826.4 781.6 590.3 767.4 795.8 795.8 1091 795.8 795.8 649.3 295.1 531.3 295.1 531.3 295.1 295.1 531.3 590.3 472.2 590.3 472.2 324.7 531.3 590.3 295.1 324.7 560.8 295.1 885.4 590.3 531.3 590.3 560.8 414.1] endobj 199 0 obj [777.8 277.8 388.9 388.9 500 777.8 277.8 333.3 277.8 500 500 500 500 500 500 500 500 500 500 500 277.8 277.8 277.8 777.8 472.2 472.2 777.8 750 708.3 722.2 763.9 680.6 652.8 784.7 750 361.1 513.9 777.8 625 916.7 750 777.8 680.6 777.8 736.1 555.6 722.2 750 750 1027.8 750 750 611.1 277.8 500 277.8 500 277.8 277.8 500 555.6 444.4 555.6 444.4 305.6 500 555.6 277.8 305.6 527.8 277.8 833.3 555.6 500 555.6 527.8 391.7 394.4 388.9 555.6 527.8 722.2 527.8 527.8] endobj 200 0 obj [514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6] endobj 201 0 obj [679.6 652.8 734 707.2 761.6 707.2 761.6 707.2 571.2 544 544 816 816 272 299.2 489.6 489.6 489.6 489.6 489.6 734 435.2 489.6 707.2 761.6 489.6 883.8 992.6 761.6 272 272 489.6 816 489.6 816 761.6 272 380.8 380.8 489.6 761.6 272 326.4 272 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 272 272 272 761.6 462.4 462.4 761.6 734 693.4 707.2 747.8 666.2 639 768.3 734 353.2 503 761.2 611.8 897.2 734 761.6 666.2 761.6 720.6 544 707.2 734 734 1006 734 734 598.4 272 489.6 272 489.6 272 272 489.6 544 435.2 544 435.2 299.2 489.6 544 272 299.2 516.8 272 816 544 489.6 544 516.8 380.8 386.2 380.8 544 516.8 707.2 516.8 516.8 435.2 489.6 979.2] endobj 202 0 obj [312.5 562.5 562.5 562.5 562.5 562.5 562.5 562.5 562.5 562.5 562.5 562.5 312.5 312.5 342.6 875 531.2 531.2 875 849.5 799.8 812.5 862.3 738.4 707.2 884.3 879.6 419 581 880.8 675.9 1067.1 879.6 844.9 768.5 844.9 839.1 625 782.4 864.6 849.5 1162 849.5 849.5 687.5 312.5 581 312.5 562.5 312.5 312.5 546.9 625 500 625 513.3 343.7 562.5 625 312.5 343.7 593.7 312.5 937.5 625 562.5 625 593.7 459.5 443.8 437.5 625 593.7 812.5 593.7 593.7 500 562.5 1125] endobj 203 0 obj << /Length1 2041 /Length2 13352 /Length3 0 /Length 14581 /Filter /FlateDecode >> stream xÚµT%j6œkòdÏζíš8¹&k‡É¶5ÙžlÛ¶kÒdÛ¶¾Þsæ}ÿ­ï[{­ö¾n_7žH åi ­ôbV–ö´Œt \a!5F&3,)©’©½9ð?rXR ­©•%×o¶@=ûw™ˆžý»¡Œ•%@ÒÁÀÈ `dãbdçb`010pþÇÐÊ– ¢çhj¡HZYí`I…­¬]lMMìßóüç'€Â€ÀÈÉÉNó§;@Ðhkj g ѳ7Z¼g4Ð3(Z˜í]þ+‰½½5=½““ž…•­1% ÀÉÔÞ ´Ú: PÈêYÿ¦FK P21µûK¡hedï¤g ¼ ÌM €–vï.–†@[À{v€¢„4à‹5Ðò/cé¿ h7ÀHÇøO¸¿½ÿdjù§³ž•…µž¥‹©¥1ÀÈÔø"&MgïlOг4üÃPÏÜÎêÝ_ÏQÏÔ\OÿÝàÏÒõb‚ò½w†ó³3°5µ¶·£³35ÿƒ#ýaÞÛ,ji(lea´´·ƒý£>S[ Á{ß]èÿ®™¥•“¥Û‘©¥¡Ñ4 ¬é•-Mm€"Û¼‹`ÿ•í¬ ìlœ  èl`BÿG%kàŸJÆ?Äï<ܬ­¬Fï4€¦FÀ÷/X7;=G ÀÞÖèáö»â¿,##ÀÐÔÀ 46µ„ý7ú»hô~Ÿ¿­©3@ƒá}ý |þù¥õ¾a†V–æ.ÿšÿ9bze9ieê¿)ÿ£²r¸Ñ²2h™XŒŒÌœvV€ÇÇù§ÿaÿ§TNÏôïêþ(aidàü‹Ä{÷þCÄñïÍ øûl(ÿAÖê}ŸŠ×_“•Áàýãÿóüéòÿ·ûDù¿®ÿÿV$æ`nþ§žâ/ƒÿ^ÏÂÔÜåo‹÷}v°¿ «÷ ±ü_SUà_-denø¿: {½÷ ´46ÿ§¦vb¦Î@C9S{“¿–è?Sxnnj ”³²3ýãÁÐ220üîýæ ÌÞ»÷Yý©¾ŸÔ§µ4°2üãö˜XÙz¶¶z.° ï ÆÄÊ pc|?RC óŸ»  §³´²w¼“óYÙÂþ1Q6v½ð¢?;€^ì_Ä ÿü/bÐKü‹ØôÒÿ Žw?¹Ñ»¥â?ˆó=ƒÞ¿ˆ@¯ÿ/âÐüƒþàOoødÐÿïôèÿjý?L,ï" C=;“ߜދ6ú×é½#SÇߢü¡¶r°ýÍáÝÄø7øó÷p¬zÓßà{ß~ƒïÜÌ~ƒïä̃ïì,þ…Œïì,ÿ-äÝÕò}Ä¿éßéZýYÞ­þKý^¹õ¿ê÷B¬ßÏÇê·~1¾—þ1Æ÷ÒíþÍ÷:«àÝÜîýíù×á=æ¿Ý}¿Uz{[ào½{'`ïdõ›Ã;‡ßà;}Çßà;§ß†õîý[2¦÷ð.ÿÒywuÚþû¿ÜÀÁÖöýñÿó zßþÿà?ÿÓÎ@Ø…_VÜþߪý[ï+qhwÆy§IwT“(iÝlÛ¡ã)+~ø®ÙÞ Æu#/o‰RÜ,~zq;jª…jŽ•oyrÖ‰V˜Üiÿ‰Ñ?‘{$XÓ‡ÿVI`×ýÅÆ]ÅÇ ¼ ´C’4ÓÆQ.õÞ©Wܹ¦¯xi4ð׎ün›Üsñm¸r˜¦OÁ i–~Ú,”=-> ʹ3ÒÌÍí4JÆÄÛ'ÉhjXãpæ<7õu¦ˆ‡YוR%&»Nllu,|ð”ÑI27¡ýIÌ9·ÂüHÉÀÐ|#|í_ |mHz6,U„ <Å##X:>ÂÅH[“‘ò›¤BCæŠíX(™5ìS/Œ:9°vòí{/®¡e3?lýøûÍìO䘂’{bÌ üo(ø¡Ú÷ƒöæØæ±³ûû8=§ÈkcÞ¼¢ç™ô³ì5ºÜôœNÚÁØï/<&&Ä-aÒ5®•¾žð)ýÁ"Öf4!Ìà†Ò=IWì/Gy3ãÅ- Ÿ“ú6Zµ&ÙáŠøÖ#›~dàÇ¿¨Í³û ¶>g£´ãà?oX¬œŒHùÆ%Ùe 1"õB̤˜]©wÔ—&¤Â?Z*êkå_Í^Q¨§—›œMŽÓd|]p'‡Ï5^;Y4õîÀ°BÈ0Æ}R¢øçiÀgm§ï2Hå%@b‘3Æ´fÕØœÎ`ºÑŸW’tlså3øoËb¥ìô²ýZÂ5W6d Š!„P”Å.¡2ëóùk'Sõ­)UA ¡îg/¤ºz*¾…»¦•PU”ϯ„¦E ,H §erÜáÎ üm&6ƒ&ö‹‘4|ª-Äü/ˆøVŸ/½ož0‹+c'©eH àÜ þÃä‹»Ÿ|»Œªüžéó TýD’^° 9@ý†ú)4‘ ý›ÇQ³!z¦:RžI¬ÏQc á/_qÖ„)xÙÕ/=Š~,GiQ¹°T 5’‡?à@YÔѶS­mu®³ä£‘,Ä©ˆ¨ÓV$t•'Ϩ.J%X×UÀŸf7Ögy*9ÜåÿúrTÈ]Jøàƒç©—JÆÎ’ë·v°<ÕÑMÃÛL=R¬"†i°ËÜÇ\9‚=ÀaÖgr¬yeÞ‚¾'h µ¦—²SçÛp+Û9€0ÓÁužU ‘L2–aÈõÓÔýWò·á'¦mÝQVÛréÈ+®¬íšÜÁÇõ²ö1ÏõWƒL”9Ý…ëÁ¨„Fœ:|r‡0b¹E·e|ó»I¨ñõIÐ;0,±­ø®@0ejI¬Èl³Øð<|4Ÿ=˵KA•ù*Œ§1‚ØVÅ_÷ñ©—œŽ®òODŒqlÊ©ƒZìGA[Eä®'S ¿³5ãFÇ=pæ;òšˆvê¨Qô»DÊÞ'ASpâìa²þâÉ^Uc)†laE%Œ<‡WN…ª%¼(io@ÖœŸÑRËBÃjN ¨-O}^0§jœÅåúŠWGˇg=Ä~ß(ÝüT;0¯ž> ìY3`~ópS‚Òb˜Ì˜;ÆEïó0&¤A€m[öÏB”§>‡ædVq´Çˇ›ÿ:/¯«ßD`!äþêbC½±[r0%Yï%x õa×ñî½íÏÙÅ~êørÈ”,•F¿¨¿X«é|·÷°&hD*¨“ð˜d ¯:%µ}ºxb‘Ds2ÑïðúüÀl*êáï[§”gqìz¯€~O‚?ý ®!šÉâ†Ðkíª@¯úp€Hû¡Å§POGr·.ÖÂ$¶htIÞÚè½§a“ÚPC—öK˜ÁO9ûÿ¸¬xg‰Fpòƒ-5K ÉjßTSn/q9P@ŠJ¬U4¸ÂBgˆV²-nN<'(çJÝ0ò¼È$(!ª:4²—ÏYö¤({Õz+ÒœDP²ð]‘©.¶sÀ¾ ›“› ’ïj¹£Gê(’ˆpÞÌUˆ»à\ⱑT?õu#¡OYxA¬¢åCnß–'q¸—ÎGª@-üô:MÓsBôÉ1ÓÃ6#I’©€Q[æw*ÅPDÛ`Sq6'½PÌ ‹ê@GdWuy\méÙ=ÙC›”[Â%*ö!é/­ã¼ú^cž§Ï:+’^„}%øyX/ò á”à]í jO<¤ud潋ۉØÓ¥Ú§áÀOïöZ.·W8\¾BÝ./£rÝ3u) ºéDñð˜³vã¥Hâ±Ñrö?$·h˜½ªS¦VìzÒD0[Ö§Þ‚cóº•ê½G ª K˜Ž£ýH}ž]D4ej?*r~ž?—oM³5º/Ð~Öde Š'ÞZpD×ø:QK‰¾‡!µ­˜§WëiÙ”\&ƒ£öDÃA–î‡ÐoHòš¸§mO¯Šâ3ï2ÑáÕÑ‹UsUÊÒ(/åF¹À; *ÒjÈ×b…<\TOµ^ˆÇ1õ§" ÈÅH¿éGº—Þ[C±uH…#J’SYsÕGÌÏP4˜ºóxó9¡$Å”ž—2ú„´Rî³¹ ©UŽª ­¾µÙze„]:À+”4¹„)™™cð5“¯W>™†_åœô¥£|èxr¨‚ít F3¯5¼Ùf©;ht-2¶ ŠÅ¸W’„Òà‚,uÇyØ ãW –½•A§jF¨”…4=;•6º2›¡/à‡Ë³BÕÑ#Ì\FØ:´×ºqõÕlÃL…,]S O¶eÉ=Ú?Ây,LÀ˜Isò<²’Gh]zÕªwÊX‚FÌÍÕçÛVðÊEéù!KÇ’Ó‚ãöÁN ,]¾c÷ÈSÅÞ#OYÌŠ´ì$Ôæ‹œÊüEžI›Úá½ê½,vßî$óE)ªBÄN2iD·¹ö±ËÏ úÓO›Òj{Ã5S¹ vt¹¬ÝÚTÄÓ%’W;©ß¢IØå ÞÍÆ_ÆnΕÕTâ"Ñç´‰ ĤL@c Ó¸r¡ò;¹dEýY þ@êäe™£œÄJÔÆy¦ü è·!1Òo…rµ°Œ§-®úLCåUªÞ«2ÔR þMýF4DËôÌž9½ÜO· ìÙôì]e¼#V´{ ¤Þ!»ë– x’Bõx–» ol‚ Ý&h bœ•J¿àÝ¢(²É’ÎIÖ¢¼¸F®M:pîÞn"eÞ¾uîAfÀÏã“F‰aªø¿-~ßtlð…â×UäZ?â’Z+ôÖ!Ý{mr¦–€„eެð|½Ó°L¬/»X‹8‚A›^oßøåÇqHòØAL„ùÉ‹2k†‡a´j䟕–1WŽRä[ /ç„+ZÇYp3A"Ûâ¿È“ýRøöè›d‹šø‹Œ-Îü¡hEíqÚ¬ô3Ñ>á1•u*!¨²`pôÄ0< ?3Jç–3{Â1nÇ›áUï÷-âAÔ§¸¡ø!‡<ÌPýìFúØ5ñŽšebÀg¹;Í"M]ý­Y’[[ÞvÊ1þ(ú|œ;ΞT+T!eäãörºLÖ¢-,¡ú- @rM§– !ê¾óGFãÝ‚£R›$³xÞ„Àã0Z€:ck`xEëÊg³ò”m1=ðfEG©Óƒz§½)âÔ7°î‘³@dR»á5ÏTMpàCðý´EÄÙ",×Î¥Ss.ÿ$êò²[@æÎ–xƯtj®þ,óÒÇ>;½]Žý…vñæ)•£–kÉ­YËíGy£ <ºM§´ü§7ZÜ´WGPâŠ$zîðwVðsõfägN©È/‰.> b‡Iþ«Ö=µLhM±½T«µ˜BÂ|.ü)_t†@![YQž¹6ã«ôE÷2U´üë§TÎôiüˆ‚¤¬Ä õ£ôpš±ßF3VXĵGKÍb(ÜözƸ–aa’ë^Wµh’ óú8ñ#>³üèUÏ£&CwvÔ(ãÙ^!ý:uv©éýŠÕ˜iûø4zö….¦ U“£¶¯M¤µ—bÌØÏÆÈyy«¡dÙ2óK…ƒÌ"fƒ&ºáš¶†|kÜw¦M‚¸:í§Áè°Vb:“Éf7²©3¡÷Ÿ,u³çÐg)™Râ—’c¶IˆOØ&Ý^Ï`žKö6Ëë5Åo”Uñá:¼ÍOaI!5ŒkgO¾±yæ¡ÃÍ /ÅÄh›™ WŸ¹ 5/“â½~¢üIjY¯:+öã =š r²K™×Ú̞畺MÛIÑâ'S‰ì’ü á¥T*g¿â>­§â½ÊëO¦  ö,ê© * 3Z;Á>*Ó Ñ‹_žb}¼ËoZ)AL_›`/IiÁ$•û35Œ*•ÔØgèép ‚0B}`”!¾ÓÜ™°ŸqÈd³Lâ}pÝçäÚ­Ùøöjaëx“*wAŒÀ“ £ïí|Ù²¥s×’?"ÝÓØ›çRXëWy=ÁŠ4© @ïft$/|áQb8Ü 38wë9¿e[s@XÎÒò’1uÓf$—cÕpâÝ!3M­MN“„xʦC¿¤êf2?6t6D<™r8úm¯FÑcêõD2ÈnÒ.0d¶~;dã×7Ì…«5ž®©Òn6‚š S&$”¡\®²Š’Ò+.xß´Ó{ãbðë@£úñ(§”~zþ”RD”c€Œô…’”Ãð¤àóäÜ$ëÉ[uìÚÔ~#‚ñƒl§l RcÝÃå5—òÕ“Ež¯." g„ÜüåŸlìÈ¿çÍÂVÃîóù6ãˆðõªNöú¥ë[öæüÂ6´…vý•·Ü¦pPû,±K—ËÝš› ²3·+'y jõɘl›FXê¦ ¸³- Kšµo2–¢Fðp… âøÊeµ_+8ºSîe0 sÞÒ¤C¸pµzs…‹û0eù½%ÑCÎöÈçénÍ:Ýxä»ùwHèõ³·H j}7,[ !¨ü¶.S²8ÑÐ8B>-Ë"9è(¥¦0ÖÃ";¥‚æÊj“8H¸ß<øS¿ýb(ª#‚ã‚2ÄT„>/+éf+WvºùB$:÷ä…ÿóüòˆW,²‡§ÿS&Ò¤Q€3ÈÇ­¸äu77ßðžëÕOtþXð'#äõêj»ÆtôH <[¼¢ô·ö¥TgJŽ”3]/Ao³C‡eÓ³oi$?§¦öÀÌùêŸ÷Ê6 ¶r;!©éÍ…2'=ÑÀ]îhw3áÚe!¨¢£ª´ØFþD=Æ ã÷êV¡1ôÕ$áÎ/µÇSRè$E“áè9öjü)a÷Õ-X¤–˜îÞOÄM¯Hów‰e²ápùؘ”(|¹uì¼Þ4Áí²ŽðGLPÆ_†ˆˆÏÃÏz¢¢ˆË,Dù<‡C¥ìÞì¤óÍÉ{ÞfôLõfÁäeNàú<£Bñ(·îÜ_7£áÊ;Ì;ÅÜæ‹iÐoìæq¢’Óðù™áå¨ÛØTêbc¡ ‡VžÒ ²a/º_*cïWk0 ¹Ý7Žîìº]ëÔà…¼/·yZ«F'ÅMÒ²héV@Ô²Z)B:ûÊÒ¼(d£ó›Ù™+öx¨óI˧5žpîC÷Yç«NXLÄ-Ã\î#?[ÙV³æX>?TæÍ˜Ù^xJøƒˆFäY\Ï\¤8–WèÓtk¤8ûúl " hHZ·Å“Ælè$üÄ<Â¥›'È.é©F­³›Ô®@,¾-¨Òk¯"²jˆÐ^Køáƒ÷&•Ãä’ëµþ6f¥oR%îQ‰í×É“üjÙÊŒzÒ«IlcËAe52“±ïlQó_Ú÷®×gTÇ™ª´±î£@]Å+Nž¦²™Sã%//.Fm:ŠoD |Otƺ·8Blâ{°/ƒGBñσ†j§Quh7Mj¢ U?Nvª(-:ûææòE¨l/P¦V…þ>1b<5Q8Ì3ÉÏêà¯+›²¤«òPÚNãX+~¡=n©d¢ea\Ùf¼¤àÜ‹<¡Âª ÷¼xØ ÏÙÅÔ #©"S3ç<@ä©k—E]#nšùq¡ÆÓâÄ V!‡6Ï«a˶åsÕ‘]Âbðâ³zÁNi1„Ök—f6a=º å( Ç=ÕHã3z±ùr ó’ϰÆZk?b=ªàÌïëKAK;ádæU›UxÒIÅÌ|ç~Žh7ˆø¬ò*¢Qm‹€7»šF&¡sÓy‚FŠHÍ‚Ž,[ùªçÿäÎqÒw¾j=Âð#|öïV¥·ˆïîèÇM]oe´?Ã@ÆtÔ‚e•™=§Öf»›Ÿ¸3Iïk'¬Uô’X—VjÌÇô}drñ¥5A….ž© «ø®¥_îhËݶÁ|]µÙì…Û|ðeûG]“rëÏ#æ  ê/øLp…×aþÉs×”G©ZhOÁv ¡¬I H”Òúæ>)2ÚæèÞc1=zÛퟠrz=èw—Ô0¡‡œ̷艄‚Ë= á(âêíwã/û´U-Š÷õvHËÏ´*šhiµdÑ~ÕG!¨rZ÷hYHg’½”Öž€äMzêæhg°+“§ [‰ûxÞ=˜x13ŽlLŸ“)¸#sw½íºO~º(pøÔkƒæ­^F"(ëS0åŠm+‚uDz½ð¦®¦µšç›õ‰D-“4A&Ô(P“>+¦ŒªF!Â+ÏÁ¨ÙCË$ÄË_‹S¬µSäçU]8eº…Õ¥SO½}æøh©Š&F»6€^Ñ ˜Æúµžï™÷æ¡GÁlšõu"Ë,ðË/¥$-üʆÒ*Ë–„Ì|8ÓÙWìªd_»CíûSp:(ŽÛåmì·fìeŒÿÞfè6ØûÄFHb]øDFâì Ú÷4ÿ#Áo²YòÆnc¢ÓŸ‰Ì½®´0Î-Ý«»ü]a’dˆá̉RcG¿@-¿"·Åi-*‹‚eиëD)/Tk ÷€—Æ Õ^¦é¼ÀðKÖš3¢ÊEæö5ú“¥ ÞGvp=›‘Ê[`ú›Gy¢ñ\LŸvºyìI‹¶s ¦Iôèš}¬z¾kó™Ì ö@pÙ‚ óßû ‘=m ²ÛÐ*Öþ¸ âÍk¼—¸Ô1°L =Ñ>ÀÈ^”¬h‹ù jpß½mÔ±:´¢ÂÕ'µ%Z¿æ%¯h/ò\ÂXWÞð™Ý”–"^.²Ä/ áÞk6œžµÎŠÜmº˜RÞæDO¥OÓ#}Ì v_ÚOôOô¹¨î½Ç q´/T…Åùýüó-µ–„Á.bg;‡2!Jl0óêòéM šZqFŸ†ä<„u:Í»L)&ˆä\wÙ†|x†D–¬“Ï^ F”é¾g}ã"„WµbD«”EàØËÄecIç¾eBІ¨GâõÇž ÌSÛÌi7zö¢\\‹”°Œ¤iOƒâFý;k¢$r^¿ø–ßGuŸ¯¥ˆrªÓê¸\²,·&jå÷6¨æ¨¡9²Ö\|© 4–ƒsðØs#^®±ôTÎEJðÑlÛô"7a…Ô½5¢tµvEÃéÚ€¤vû/>š×dUUÌX¹ì'c\ç['!z?Q ê¤3…ÎãC%ôˆi^1Uo-£X¡Hªhz>økZ¢¢BŸ„¿ŠFu»îwé©)ŽãÚŒ?.»½úQÕÁÆê ÿ¢ùì ?·ÝÌÊ­®kàs/6?ýóL‡}óLjd”\¿U²œ¶… w¹—ND¦ê–öëO†Y†£0ÌâÐ5 K ¡ ¦ šá<ðæcݤ1w•_X´û`O餌ëWa(!3àô¢`o'…Cjg»qÌðõ»~6ô¥W^œ¨RîÂöA¯šÅ0EqCæIÑÊ9YÃŒåQÀ{ƒY¢{ '.÷`”F"oh) ŸZ°e3I¥G.´Ô‰Í©…kÛÇèÄ ›œÌ7—ñH>Šƒ9‘—­»J‘ÙáûB‘iº®Z¦»m³N,)vFçá…†w¸ç\õZ(sî& &°R8dÎàÕÓß:ýqµNà«ÆÐÆxr®*¦ bàŸëYlRŸƒ˜.+Ÿ: IöKJV<§•K[ uEŠphObuI6ÛûpF·QG!nÚwQ½ÒKiþ†Ôfúq‚M¿”L,¿s‰"+çàÌz¶¤t Âÿa R×ÓÆ\eŒi¹TÔdvhïXÉ«o¤Þš_S^QŠþ6wWïX£<P’‚ÕkŒqø›Û®ßÂRG"ØZ>䕤éjøRwཿÅ3Z–¿GñQßþN Öæ‡²jN¥§½¢‘™Â{·Ò&m·õkåÕ¨yÝÓ›U(#aP›2¹r0‹>×Dsêë"òÙmEŸOu‘_÷R¬+Ê|g#-r‘.ø¹¹ðqnî7ò„/_™A×p¹$/©xÚü·„²è¬#4¹¤iŸ™ŠT!º×ûIÙ(F4¥•R-Œ²–áæ%ùPfé6@ÈÂé[< Üuh¡#ã.jëC¤ûRÎ4'B´Ó¿³“~¸r’"ÙÑs!ÞOF=h]1ªÉiWõvuô[Q|š—ÃK-ÝÎCgOæpîp?{bxëQ8€xèÛÍß l*!x‹œÛ;Ï’n´4Dj5§Ê ˆŠî¥ŠòÏ% R yA6{÷g ðÂtÎÀ|.°–oå™ûé\æá³“ªÝÆ‘gï=8måïú"z̉½ŸXìõQßCSª§í»JvúA)<‘dï‘Éð *Dß·X+F‹ò5Ógšç”¸ã|·-HoEÄ U4ŒJÌet…Ÿ&ÎßWlÙ9Š!øƒ>U*Ðd)è–§g®ûZt Ê DFG«h¶qõ^OV–ãŸ# úÖ0X˜W!Ó°¯[0Îtz à°üÈc—‚Ïßb¸'#E ECƒñpüDbˆ,7¸h”cá–…ËëSí¦ ‚Ó¿Q ÐAk‡ô±°ì>†§4Ìòó·‘¼>·åÏù"0bãgã;d¢[ŸÛí@dÛš9ž'äC²-¶GµC-vr#Âàu+mB„ ¬Ãf³øéÈ §ï,âŒæïªi•e߇}þ\öA#|£®-”þ¾u¶‡ÇL£ÞópǶ©ýËŸXÇ Ôvg"5cß¶¶9Hí&à £]+vps`„XX깎3†ÆÿLœÁ†UGÝn)Av••NÓ“¥Û¶8+¸>%xxW50—R! #g‰˜:–1×ÖC¦äJþIÀœs·—Kô æÓ“Ó!c5Ò€þ9Sƒ­ý\…’³ú|ÚCÚ¨døW™{:k\6 [*¶xÛÄ}µA€X9ÍLœßD-Ù­AïJ¤æG©`´´Ö1+# ™KGïµÒˆðÅ] }ï°RP±˜ªîTïúŸLUçåƒLEåÒe†ÔœÌªcÝÇAWC:ž„{ß1ñäKní ×$?W5­Ñ0¸Åè°Ql‘रÝe#erJ«üx~âÃ…Šê|ž)eD™nè”ïf¯òþ!ÌfXn=Ó%ÿì…y»•ª2%‹ðêøÅ.x=¢A°­Ðð 'êë%W}«lÐ…F*¢ÂÀ‡qð4ŽZXªµãéÇÑô~¬×§;ÜS^ÊÎLÈÍCßj] NçŽj:£u™ž}ÌPÐ tÉ ™ŠÇâ€iÿàGïdïoŒR¹;Ç3¦žÐì¸é²£ßvÕjV-˜<ŽÇè:s¸"ͪ†G_ MfúR$su—¹Dóú‚­TG·¨ggÓˆsÎå³Ò õ‰úÕŠ•B³~Àþ©ßñ%,êñ2{%ú…èôZ9ñ*®ÂÿÍ»¿Ä!†jY¸„A„F§ýî% h)¨7æ.¿9.䨄Bùò<+U(žCGuP&æ–z.>ÚTo,–ó‡ÃáeÞ}@"‰n¨6!ËqHW–QÿY]%„ÅËqœ“Ô‘*ë#À€œæÚhêq´ÄßÞ ¶=`Žˆy;‡É¦ïŸÂÌÎÈ4:¼BQÎ ÏN¢66"Ö”ü|,OäÐÑÈþ*¦0½3W¾gÇ*ö«£Óú-«2Wè×ßÄÞ¹—;Ú´Ò^騠 ç/þx&¶:JÔæbŒúîÛsDr- èU4Õ¢f3 Õ›’äÓÈÝFãÉû%Û[20Òׯ­æŽÄ+B"žŠ%Ák°Y@‹ëL£ª_1ë1èNO²ü6raë¿â¹`vŒý7Õ”·@Ä(¨a–øý™nPK­[âýE$˜”¤¤ ä@ƒ_ø³/cÈGŽiQ»mŒJ©6ÀDQÌàfþ:ãÆ@s:ù.:µnÏ4A˜þƹÂGé¶d©³-æ·ê—VAg>Ê–‰:ãn2BAëµâ´>ª F_ÓO;]Ƥ¶‚’*:•ʾÉO h’åƒ:7îßç_ÒJµ(=2‰¦;ô@À(ô¹Ø\1xÑ ‘ªˆ €]<…;´¢œr>N©¦onŒŠ8#*ocQÈ©+c™_í¨7çR`¶êц<—ä0Ð2ü+–°-;]›Þd-K¡SVï~¶TÇ‹S"ëÞ\ϘøÆ5b zì0¿@ö&´™ÞCÀ» Ü+§Gs¤áŒÛ‰ ¾2ÞÒðhgªðu ¬±êøó|áÙ[N8¹pó0;ñ–ÁL&Þ Ù››•¥%MçóÆÝ´SSêTnµ?e:Z™* ‘A¨×V@6¯¤Î=¬LSö¡œÙfÍ «dk‡ª²pÝÍK¨¶[ÑËz²N½oe@äz ¬¶x¨ôÞQWï,~Rq_+ÿ¼7E‚ðàK/>&Ùá Ýÿ1ýŠ9u‚ƒl?fnfÜM•ï>‰Iwܪ؋_³<¦9ÃáP:µš ô»rY›éÐíÞíÑXÃ6Ûow½×W›“ƒÅ½è#‘±xõ´½¯"¼µ£hî’IÌܳÞJD\—`6¿xÈðÎ8<Ÿh€XîÿŒ²PÍRy$rn‚Ø.Ò<ð°&fÈwé7usÓDLT Í”€‚c•WåGÍOZ~iò“_DÞ† êzƒ¦œ›îØïB¡^†6uΛ̥ž´Üàv_ú’³Œô¸†®|ÞÀ¥^VÈpXXéàñ8 µthè£fñÄkØô¯îñÇ,óùÊÐÍfÛuìÅÑ2»ï¾¤½„æÍ4E䩇2&r_í¬”ß¤Lý‰m ƒ¬h{UÉW h‰wcF ×Èœj˜GüòØL£ÜÆ*(×%m7Î&Þ¬¾¦û¸4@_"U'Lœð¢¨ïY™CQ¶û?WÚX¢=M?P«¥¡wÑ»8²¾uàvÁ¨´gᆚÝ"« ÒhWr­.9†í¡”– J=(¯ò0*w›fU„è[¿1˜o¢^¦åJ…sùtrRhÖ6Z]ѧòÜ…±P‡8 ØN\cs™c"Ê«ïÇ{sd?ÊØWݪl5dg(bŠ^PÑÁe Ýn.©ï˜L ¬ëýá¾…cÈøƒ ›a’ÃLËe“ß´‚°fó•ÎÙW4Y-oa|}uK1.J™Ù<6ON·3ají‹ ýúF ¦Ë`Ä„7­êÊ÷˜¦dœ¨nVãèxA}‚øþò`š²«ìõ_Bú©ØòÛ5¼$RÖ£0¬÷îgÂL—9±;µs „^xW'„šrëš#t•ïö Š®„¥Kª$‘>L~ÅK·óa:‡¡,(È1PÊËÍÀ1 €³R®÷ÌI&Å3gˆŽèªÈ¿§§ —½^L`¼Ú$åŠÐvî Ð)ÞÂXoöµ#ªjA·ŠY§ý0q{ërF@ÝÅ„_G—+|¿´âjá¯éYsÕ[8#ÊÆŠb-þÌvÛ+kÎu°ÎÜ86í?ÒUZ´÷ˆDU©ÔK´Šž\!ô 'FrNNÞ|DŸÎ†6Sƒi›Sî‚Æ&²µ+Ó–G›”wÅy¡0‰|/Keë ñ]{-Ì©e<}ÄeolWª¢e3ÇÛ [µz2fˆ[m†U#¬m¾DX—:–(,§˜w­£ÒŇ@]º·eža•B‰[Äð•,¯¶Ÿ¦Ü ‘™°¹³òþþ"¿#,£¨Ôcÿéâ´d0ψós¯ÁðÅò-ˆFîïhë‹+;ŒC,…hõÅÕD¡ùÁ“2®<:KdLÂ`B“o¤'a¾s\4‹q¹_…\¥xé@î/dgV5¾_ n&H3V1VC•Sèw\qò¸íÖ~"µNmÂ.ÑÆÕ¹Kn+h"«è ­1áÅwD¬ÀR+Æd—|‡}IeZÆQ¡Ã‰®¯VWh>¢ýfŒ£ç‘?ì¯ÐÉSɦ³!”¤¢^£X¬~)‹[2Ð WMü¸ÝVµtwœ}IçSâ-‡¡Û6—t%iõìó Ôß .Å;Ã¥ÐTöL8Nhü\Õ‘ í¯r›Wù„ÓNPW@Î /‹!Ù3áÁEšVF—F@ŽÙz·“M¦¡¤ÚÍ Xãz\="GÛ×É$I9«]Ë›Õí —CIJ]±ž¢GW €¯þ‘0ƒJ²å\(Ou›J !•PcâCër ‚¤7Î6{ä$¾áÈC¸%BŸ®Ô`^wLI@·§EÈ~­kútJ¡;òÂëØš,"‘õÔƒU˜“¶L.:õ‘¦¸ôLãbSBnCÖÙQãƒnmªŽNbð+øAžs0Õ‘mëˆ æ£p¹‰§ÈÙ®6ú‚aI ý iÅqI1϶uÌ–þd)¶¾V 7-$Òb~^5¡Ä…êLP´[ÛÜ6ñ(.¶’í÷/7_°r%œ.y(]–1¥Þd?ÛÊùðÚ皥[ž]©ªlË€“ÞJ§xV! s*ØT&ÇHµ­?ÜfÚo’G¡8˜«¸æêýLÝÝá/HÍTN랪Ú:®ñÕ߈1Mn&"rrÀÌíØˆým g3† £¨Äwµ$ƒ¼&šžK.­‡´äÕ#ñ›Ûâ½7(®§ÏAr±ü)1¥z~½y T÷hÐ(TEõ† aÙb‡ð‹8+Wrzõ#5àªæŒ“Èì‡sGq8J6z¸paå³9.t‰«GÆ”*­æ‹3òLÝEj` ß *¦H‰S¬ßc¨ëT„ï!{½Â€¥XÔâ'N-á©AçC1ÛW ÃÉŠÏÐ{„ça™7Â…ô^l¿^àÍ>-¤‘Ѓ´EæÉÜôCM¼ ³ ‹Ýž`C<|'Ù~Íøé~|XñŒ·b˜XŸ¸ÍP¨“[¨"BFËØ#ƒÜ¬`àŒìq'Vˆ;нŽü`~úªQé’Çg29g)|¦sJrE”0ò]N@mpu‰‰žª&½¥â 5+,½f_adþy—&ÅiœÃúñ†ÞȆgµ¸,¯™§¥ÅÆ7IŒEOwvã–¬S<¤Â–I^mmF'ìÆFeát=§L—H„9á“ ™Ü×GÝ+,׸¤*mÆŠ]Ë:Œ©âÆ]Æ µàW*+Ü»H­‡¨Y÷F(©¬*2ÿëÜq„ '*‘2!Æ´§ö}R Š’8<¸õ Yñ_^æzD¯9ŸÅ•0#¾âºV›jOHŽVˆ™g}Q¥×d^ø ‰‚ѪÈÛ4×óÑ.‹v|i€kkV4Kd‹G ÏGjýÜ«HˆG™Gæò‰K7A‡Œª½Ý*9ŸVâ ûXÞª O¿7>ÿÜžØÀÞ­gÙv7Qª GÇ·QÏoÏQ)¼ìk-’ öäì{Z¡9i%<º`‚ÙГn%ÄZm}Vr%Ãô‡Óx@Šù ˆd„Ñ{æâЕCª”@yN¥q»C‰+š0‰æ(U4® O„K#wSí2¬–%ºý],á‹8DŒ™ÿ“͹Óñ÷’Ä}¨QA(¾'s!WËÔV|§`޹ߪ¾î—üìXÐd dˆÂžÖ8…«:\Õ„$ñµiö“FÐ?쇰¿e¸ÖÖô> *¡l2aÆÐµS@\v’Ò¼nùÖì )™ëŽq–e|¨§ ]=úë‡t›àS/GÍ}W8>$¤léqñ0#ú`ï â}Gg0—m@œãZËà:óì+—Ã2¬·¿ìÇHv‘žê:M8òsÍ=EÆi µÁTáø©ú#-È6Ôẑ=šgmBe~d„vÀ„;È1§§¯à {g—×jÉž™)ÓZŸäù’C$”þxïÄnº» «—ÿõ%}ž’!òÍ¥Àz~`#[°!’îi ¬nøy8vR1åwð°N)ˉáû1#rfô)ïÞó>o$,ܕçñùHÌÜÆø‹hòi Ï*ˆ/oý¨t:›è::LYô2ƒQÕÜ0¾…8’$ß{6ŸBHwní\J’Éœ‹ÖJQ—ĸˆÌÃ!ŒQIã"T6œÓg¸#”r¨ÝÚxÚ°"9Ôz6ÅF2"hñ#süõÄÆAX©UYÚdñëU¢G(L9Õú$[FŸ ò—¨Ð²…M´Û2kÖ»|ƒ3æx¥o‚Å !S¬×52IÐ’‰_5c Ã/›12×·™¯ÀD|?J3¾Ù·’æWzs§SÚƒ•’a6ÛÖ@!Œ’ŸÑkõ{ Þ ¾hécd—É3´†.Òh½˜n@jEÐj2>ùu[0—Q!y‘>ÆÛ Ðõ]n´­o÷l#*MëôfͨÖ;(*àÜ̘Îz:–@{±(y%6 UhÙ»_ÁúÇéZmQ­ÆÍ4|_ÓœÕð(,€yXññ¬Q×LCÀd®‡²2D¨º ÇàŠ€1]Y-n$gZ 1nI¾¿±L?fâZdÂÎò'óIÖ&¯ûü¡¦ÏjSsa‚:Ö]¥!× ^Ew¾¼sñP`öÌñ—¹¼5Ë(a£†¼ôƒv—Ç‘]8ÂÌF#w³œO³v¶ÈzÔ«Ù•†P»»<ÜêG]ã²Øy×Wµ ~ýKŸaéûîC¼ÊaÅʽ=# ¶ 4ì°ÕSš•ú%kÈ·)7¢úÜ5ÛØZéubu •_ùƒˆ39‘XÌPj,ƒ|´¥m±ÓMÏ…À &„r’ ˜˜«[-LŒëÞZwh¨Û>î\“3+ðI䜧ær†}Œ2³±õ嬱Û~caµE½ÞšœY/¡5#Ѥõ’°,õïˆHZ96›ú†ì¾r ¯ãޤävãÏÕWô5Ô¦ jû¢ö’šq[ž¹•«tÌv–Ú©h„°52~”+t↺ËüýŠAât1†iSaƤ”dÊó•rb‡*ˆÄüÑâ¹Àèpë妜?fd-ÎÎhº`õ§Ÿ‚ÆsìÁ­¥ˆØ2«Î#¢Vuö2ŽÊxÂáü•¹a¦C6ЩÁŽM’ É›²Åø\e1/E`¨‘ NÜ`o‡Õƒ )4ã(Àî;0¬ÙhÝ­­Ÿ²@oÊ”).ã3‘÷; Ò²¨Dæ;¢g›«– 6€÷|7ðˆXlò¬ùŸoáêÕ§©ÝJ«=>´0¯U ˜K”)zå5bªSè°íÉ& .ì\êä°¿13æ¿Õ5%{e%µˆM 9ªC¹;ÉÞ©¦Õlz œa>ð?G8µ†o(¿$-“®oœ†Œ+9› ™ß=OC$"yÈ]“ñÚIJ©C5‰žq₸l¨×û‚«Ü`!Ô’·ë’B±.©p߸Y¦D3ù¤°8eÁje={¼ßN óگ㫷ý²Úªg¢¨³¥é;±0©$$à–LÔ5ÆÆØE[H@ô‹òu$ûær¨&O~ÙÐ@\ÂÑ ÏKÚZ¹nÖj0Qm©¶k¯eÉÔQ ¥=Ò1¾ü,Õö“¬É7Óˆ‘l†¡ª1Ñ:a¶¼ÖcBôvW—¨IôOÒ¡} µ»÷ù'híõ˜m5›ªÛ0ëœr c¯¨ Xsü¦ÓòZÄ—h<‡Ï_ã"y2Ì'i‹ m¾Q©@¡EGØ´¯?"ÛÛÏì€Â/éuDFº9˸Nsâ‰aµ¦±—ánŸfƃ©‘êüšð˜1Ï ðǹ뽉ÒjŽëÇÞªWøIK.ªYÃæa3ÜpÈ„ïU n@Û@¬\ÓÍ;‰åŠ×ë8éŒz}bá;ò Å1z{%¥ÍyŸœª>$é$ÜýáÒ·´‚Nh ¦¢d\õ"Bû*üö™¾cž>5JŽSt µT´—¤7j®5ð;ÄF‰‡Ç$·é¾b¨¥cDÉ0> endobj 205 0 obj << /Length1 1447 /Length2 6452 /Length3 0 /Length 7422 /Filter /FlateDecode >> stream xÚt4ÛíÛ¿QjÖ¦Ú"”Ö–Ø«ö.j¢D"1"¶Úª¨U«µiÕV£µ·ÚÔÞ³JUk¯¾iŸõ{~ÿÿ9ï{rÎ7÷u]ŸkÞ×çæb×3P„¢majhF$”(ë(*ƒ€ PD&ãâ2B`°¿ d\&0W7%ýeWƒÓ©€18¤ÐrG@"¸4HBRÑ®Ò0è´Ð(˜—2ÚÙË·ÇàýupCx )) þßîE'˜+FtÀ{˜.#Œ¢!Æë_!¸eí1gi!!A°“› Ú.ÇÃð@`ì07˜+üj  v‚ýÕ› ÀÈáö‡Åm‡ñ»Â8¡Üp>î((Ì€K0ÔÔ‹vÔîW#Pwg!cÂŦ©ò'§"ûG‡ab@I Q 0æ€yBì…~¥0òr†ý6‚~©q]øù8£v¸F`~;îÌÇ Œ…0®î0?Ÿÿ4ü["P°…Á(²¢ãÔ0»?dÜ ¸"<@Ü‚À_¿¿OV¸%ƒ¢QH¯à¿oYÈDEÝÄX…ﯞÿ¶*)¡=> Q€€°JH$p¿Çù{uÿ[«FüYÝÔDÙ¡¿2üê7¾¿:Áþ¹ÜR‡ðïºhÜNÃÜÿPÀ(„à> ÿ3~»üÿöÿW”ÿÿ]’š;ùÀý'âÿ€H¯?!¸¥vÇࢃÆÑõßPSØ´ÖAîNÿmÕÄ€qDQDÁ‘Ïᦆð„Aõˆý›ô×UàÂ#(˜Ú ñëကÀÿ²á¨qÄ=.n¸ ûÃvÃñóûnÉ0Óþ]‚* ‚†þ¢¤°˜8ìê ö"ÃíN펻P˜çï… ¢Ðœ ×®ÀíJöë–Å¥Bª¿T¿%P „øG „œ‹ÿJ qwuÅUõ{Upý%ÿ~`0O„lê"âPÒp\®xÓC`m@–h7åØLX` ï ¦CuÄz)Þ0=mú~¡ÚT;Hí‘C“®’ËqÆüÄŸÕJ¶*/ÑC6µM8›mì§Ÿ‡øc >G·8>QÕâe›&)±Jç»vàé±DR7“ÊCá†\T¾w+Ú&<îпQ“Ð mÐml.“¦ÍxKÊd{ÙóÞ¶ÛhMlÿúÝÌe§˜à•(ˈdÝ÷eOÈâ=ʨ»z»giÚYZ"µ°Akß8Ã04ª2Ý·TD¯–™Ìæ\;ÏÌÇ~yAëc«N§ðÚQÈO·æ ãðš,˜tŸI[¶Ë󄪦îäíÃRz«®ÄGñ¼Š®ØêׯÏór%Ѫj}ëݰU{°±áõ‚¿–î sª8ê!ùfÍCZ]s‘"›)Ä[ÚL”¿—±fêJ$êân³.¡ŒÐ^±ø9çZ)B|“ç¨MrKÜͲ°!z«]AàÕÂë?>ûó´0’xƒ±χ*óÞܘqPk\ªQó8d´’þ©­jMý¼g]¦+{½¿ ¶:"ËÍiâ=+Ö"ß{š*ëchÝí?¾=ýLRs^hù´tùsÄñÔÝ‘b× áÞÌJµ I¿Ñ3¤–â]¡_¤úXþÕšÉ^6ÿG*kùDŸãÙ^û™oìbŒ4©‚û |]‘›Z)·&:¿¶~f_\YX˜ÿ®‘ÒO豇8oknüjMG1Èl.ª b´/ˆ™] X+彬¢Ü­ã¶-;’|‘áÍ<ëì¥óüKúó}w÷ò$ïê¾0ûsËîU;ÿ“Äë+¦kúpCuõÝÎ"îo³Ôß¾ú>°w¾Ð†‹ôƒÌÍ¢Ÿ¤,eÒ‡¡T„‰× `µQňÛaæqûk•,’'‘ê’{þ—/Õ÷jë[ëDåÖAïß•ˆ. AÌ1Q/gA™iМ#[~ ©ÃhsþØîtâðúdؼ²W@8פY®©n…ðUýƒK/åª!¶:XëHˆ4Õ“S²Kq;ŒD&­‰¾4¬H’ª—Za02/e¢[Px±6îMÍaTeåŒ1³æ[ks\½—Ü´É—á–9?gÚ•48§Y¦³Ë`jöÞàýf~C¯ŒDôæcÿègSQÛÅÓÕ…ëÃçÖ—cMôzõÇøB6Õݾۛtû¬G¥Øäs¼Ÿ¢µ$0Qã[&¬¬öÙ’w}?µÃNÂ9UoD]“µïËZ¾|Õ H½Åì™(O›íì¡Ãj% «OÉ5Û'SNXÆŠæÝLA™'-{áïjÜÐðâ>–‘×™¿‘‹¸>) /yùS­ä¼Ž8,iÌaïÞzÍØûM]ÜÕÏÖd öΩñrN‡+‡Ué§hZ¢<©ÞC›ð›Öm‰²$#¯Ì–vv$RY‰› Ššü„´†D³»u’Ô Ø(-Å¥VÚ¯SòŒ±ÆÚÁãùÏ£7>©n” BÇhà,Î9çÁÉénJ°UƒØgÓñâæÈ=ëâÈ;oâíw¨ÖCmJ#ÊB_¾¨ìê©—·ñM ”^,ôEÛ_O§T¡”= ýíd±UkWþŬLdk‰£)»­ ÍQƒnâUíú½2RŽÌ‡øŸÙóD2ƒFû¦­¬wÈúH6{jŽ_LÐèRì9o‡ðŠcg€fS{nØ+ƒG[Ö£°ì™ê¯Âãú^‘ßW,|ÀWb“Ç" uÞ½KKN…¨áv0 *æå<ˆcºÇV…Q¸ÑŸq•³¡ôZž«ý–|œ3Yñ1`¯î;¡ö+Ø¿ŸõLlËYv-+JV Æê¼.C{¸ZÎý 2w¦šå[,ý™œdÅ1†nÚçË•ÒÝÙæ!fã¢ÔÚ?ÕµÚtVÿT÷£¼ÆÉu÷vëÑPçþ¤ÏL6gEõµŸÞ“Ù¡÷R-}÷—eš¦ñÙÞ€é7T–ÓD¦(M¼ÏæVnmN? ×%¡üàÏ:üx=9û¥ö“qnéórÈLñ€8ÒU˜v–>È(åÂ&Ùä–@½¯zx¥4ÀMk‚Ô§È.ž3)L„Ô¹)¿**Qm ’&àA(jï\mtŽà´Î¼¥,p]=Õ¥šAél‡h¬´-Ä1ãN±lK»%H÷“\®–õn”ÀEìÒ@äÅ´ÄÄ@FÞÒóÇÖ™À{wö`ÖæQÐŒùûOž®Dþx«£›"»yySÐ:¼IVfXÓ4®#rðþ[ç;t¹ÔÂÃi°ò>f™ÍEqŸ§'íS­mCüŒºmIè?ÝÍ¿<× —Ûæ×ßß,? ó°îþØ%‚\*0ä±¢—¦Ëf-,ª–¯qä§êÝ|"CótªÊý¹Å…Pî¡ZdÑ+|ªI3­ÌnÑy×>¾ÖóCGÒŸÞo¶ø\ó%Ö[Ê'Ù=PG“TÃ8]òI¼uºå©.¬N˜#“fZfhw eWfŽmZI}æ~šgcÙº[V©ÉÿT$dÂpòÇ„qL^k›¯ÑÚIÓãœ^ÇMÃó/¶tÁêrxM=àGíÎT£LÌĶUŸ{ú$ï1P\¢Â˜àMwj©Ž·bÞ’{ÝôgAô?`k£~užb‘FÃe–›ZÌ}pŸƒåιU[ÞžÛhÿ3zxÜgÑ÷m:„yªÙèµOK­«’ ŠfV*o/W…m œ~>QlX9çl(Ö¶h¹(TÉÊ*ãkf¥Iö {ì>>8:ÝAOÈþ‘‘uŒ.¼°€hÁvj•A=ÀA‡÷(êg*åÚdy±p‰ª:!\½j‡¡ßõ${P|AŽÓš°¿J7Z†WV¥¯öt ¤3IHø“+Àq*[´áE«þزF…\²††f?ÐLÁ>4mCLÕh­Â’¦ Ú~@Mý@.ÆÉÇÓÖaÝ`šéM7œPorÎ?àM íït±¥ëŠ<̉5ôT}1€¯»¡ÛÍçÃÑâ sbù!ÿd´A+tô>Øí…Gz„MSØ¥Œ¢Ê}½}-zmÃoÝ¥!¨Â^Ë:ƒNêZ-Ðü[Eégì&%@gîxÍPŒLIÓå$æîZò†+h|œ‹Ñ½Ã·­”nÓ½©È¿ŸK§¤ïÙÍN˜¿‹ÉL«{–#×ÄQøp”‚¦ïïYÔÈËÛ$îo¯’l¯fLf©qNpoÐUr,m–¼¬~rO·G¥`(g@ þ}Õ8q¢êîD·Ð—Þd¡'¿TFÝx¶²Q§…U·÷°;^Œ Ã[505ù‚ë•ê˜TZ|¡âœÊ-ºàW .kjº³c–);ðÂ╤ӹª“£ðN!Äc…XW¡Àðø…‚íÛª'gå;/žä› ¾|ˆá'Sè1ÊXщ7ðøDsëš[#Q&Ì~¢¶¼ÖQ®™CóäåŒÆª`jNöÒê#Íc¾`·pÃA’ q¿Ž¯ó¡“Ýž%×Ì"W®1ð•|±Àª¶{ L©ðp!?PÐo­Æå±=}¤¬9Ç·^Œ÷³vÏúAÈg¤q~Þ˜2ÂÊ4ì HP/[9k㘟ãê†þG±7¨Ží£U…ÃÚNå6¹wÀ듯H{^†[n䯽¼ðË;WµIE°Øñ v;ÅoL,ckTRI¡{¼'6•¾Ï×[à“ §ã‹põäÆÚÞ^ŸR‰ïFK2A< ‹á;®ÇÓP¶§èæÏäbÛl¼ñÙnØ÷ÅN;º±[.dNèø™ùÁtlRUôIÐüO_âvíbö`ò,¬¤E Ú¢‡ÂíëïÚ Œâc>›ìsÄÄÈpÉ»D2Ý<]#ûLÄ}¾Vµ´(Ù¨YuѤ¶®¤Û§€LÄSŽ’MÇGÕ €=§a4=äFZ14-íoÔøýŠ×Œ]†Ú§ú.¿•ÍWꯈE¨‹C¬”è&bS½_·)½Ë°•*gÛKt=ª¶¬È–:«Ó.ì×;{IRq¢tÁõnİ¨ßøÒ>Ý7öó#î‘E¨VŽ4á ‹Â b îDwÌB\]H¦Y˜peb\¸ÏDCô |òé¤UŽÛ}Ê€–I›^¸*ý¢1àì D$˜%6ðÝ ¬]ÚO¤Ð¡sPà#ÝpžkéÓohd#³ÚC?v¯s8j·¹}\¶8 ggÕÌ¥¢7£Væûq^•'ÿ¾¤C^/ÈÐG; ¬„ÄѸ‘(–ÑF­ymŸ(HiãrÍJUP»0¼“CV´ š>Ÿ_ݽ÷ö^À·øÎÉq0_;k£•;ñ«;RtûM}²äûAâSã’€âH*¢Ð«Ï…ïQYî-õ3ØÏHX~™ÙôÞ(ûâ\—ì!iر‡Q4°¦ÌûQ Lf®ïtš_©UZ==X¨P%‰¯Äù2Ôæ­¢o·¬UÒB‘7M“{#uËjO,`T µÝô5…—F³Ñ†d}¤<^ÌvËÐÅŸælÒÆÒ6Hzä&m˜•ñï`³“^_D+µïå²[OÅb\‰›‹“mñí ±Eï?ÌoŒeôa<÷ÅO€F-MÃ÷âü¬“¹ï!Vä"y²Iã(ºÔ¥ú¬ }BÕŽß’}ò$~˺%®æµEØ™}êSýš²”ãKM1ï9•I=8gǧ娡è…QûVóÍP»±"¿AfØÉãÖ]#3HàCzlé`VÖ´ ¿ãg%˜.¢úëç%~ïvÉÛàïˆtN ʯ1毴…w4LÂÛ¢#š6ÛÎCåŸ÷âëÇ–‘žß}½Ÿ3¥r•‘)/ýŠÖ¨c¡yi²œgÎÙU12Ÿ<ðí†%ág´_ȉK8Ç´ß–‘±ŒØº·\KG2DPmZ+dû: áN,½_QùwÁ9š»*IúŒ€Ø£Gk;<@šÉ„ M†äòô[ü¥¶¨L%Žeú:ÏÍñ&Ú›ï"l{n<Ôx‹78gþLÂòýYêõÞ’P]µ³ì¢¦IzÝ_|ÜÃCë}àqTé‚=ôh›0»Sç—krž SéÄ9‰œ‡£&ì!Éïõ\Ä¥lÛ-¡Ìü6ó÷ªf\†©r/Ò™»»d›¸©O:A,rG7‘ Y–ÑOÀ—ÜU6’ûfö”„ÇH¬ŸòRUŸOq\Ã1eÃ@†øìáæÓB_Ù¨Á¤¡6ÍËrñ¡;ŠÉcŽ_œF'”õ ¤ÙÍ¿‘æäDJ}/A¢,ÕfÃÍ‹ëG6-ã¢Aë#gãä?Lr¤Êîþ‘Æ;,‡–˜(až•±ÁØqß à°º&ËÉû¶1´Ýl‡Ìb#dq; nÛˆÿ¡†ýÃÄ¡ g<ÍŸù(Ù®¹ž– Œe˜­4‚š#÷IsÇÛFD"ïvåñíÂáÊtˆ~ $öSÁ弌Ìéw²ÐÛMöÈ\ Ànëâ™°jÜDtwn5ÙKtÌåÞ ž™|3º¹$¬AýJ÷ñ¹œïbþÁbG%Þ 'šÖ?¬tÐÍSÏê±|î g´Ì·ºý½F¿~3AËêѾÕöõ‘Cõô=ñ×ÕVNïelÄ­Dr —î.Œdá‹÷‹M¤i:wõ¡ÎïrJÓÌÓ‘Ø:±½ii$ný0±½^àA5äO.Íò:©óÝDôö$ác5L„l}GãâQÇXÊ‘_ǰ‡Ç{ëD"¯}ÈqgÎsÏ^%oWKªzêå9pOÁš€-fØß2¶²4(ãü$cÇ åÍJ$}éš^Œ«£B)†@’Ú¢~@) …_W½B5=o¬xñ&h¬À©¤ ýfÚ—š™c6éÓÛÄ…ü½7à,ÀQW8ðŒ¾…™ÀVØiò†ZJÂ"Æ_ÔYÄ$‹œr3ØYrJßñí2'9#ùènf ¦ÍŸ}ìUÇS”*wä3§¥ö-WS·²Fb•‡H»õ:ÇŸ˜äÃþÈ€XAÇý5c•Ùîüã›Ûc¹ÉÑ*ØRq"S²šÂÖdÒêVlFý×èI¨Ô)Í-ÿ¨ƒÉ÷¨0ŹŸž}â:ë¥Ã)L^q ¥pÇŽïbßOö€Êyàþ5·ï“J8ÚŸry|px-uÐìª2¼EÄÈÚc0ä'ælúöžÙä®ñ˜i—ì[ r~AögÄh²Û’ÔQ%Óœ=·˜aYMÛX’¸M++RGèã}JsjHœZWÌ7¸lCù®•ð¢#9¦­ “ac$Šº‹qt6£äϯ¶ ež—$fw>8ëñ&ͧFf𛩬Ä;Þôí-´°¹X°:`’üà^¤õ^~Æ’ü¯dëîšú”d—1>/Za8ÿú¢Ñ‡m¡0––©ñR'P{¶°8çÄwÛ?-ªaW"E`:ƒ]¢¾\ãï§/”çAÖˆµ³vs:øuQ¤ÖÌœN³â×2i~ÕÌ'Qwg9ç S¡tA^X ¾0ÔPà bŽ8ü›Û-ó•<ÝîAš*FýVƒ~$%íÑkWSûí|_šd™ºq±Ê«ØMÏ"iíMšØR‰s’éáÍ3û>{s)ìn¼Öé2fkWqrçè¬!~jðgkêí«zA~ÅÌâÑw’_qW´à]>MÒZ®"çu]ÃÃïŸÉlÐqÝïeõº‚—‰Y_Ç’R.o¦0z’]ÑèÝ,ÈŒàRç™5V òoOå¿©§¢¸ÿeÆ„±?URŒ#¡ãA“º£ó“ô+GH¾,b7u¾RÒUjJÖw±uOF ½·ºØÄN„ÍZ^1ÓÛªì$£ðÞe|ÉQ°Ÿ–¦dè¡7õ“¤æÞö+·ífËŽÎ ßtð?N«êó&RZŒ¶»çØ ¤—LNHÃm¶¹õ¼´7¼ä„£V®ÍDÍ;qa5.FÊK§„œ1wªÇ©Ò"?øûl8ˆÏŒŠ}u+éba~,ì$Ÿ9%½+JUl‚l ÉÔAég:ûx!&ñzõùÐ ºf`åÐ÷z¥³g×5Wv ŽºJùö³öÞו[‡Ât§{|†²î{Ks¹Pó:šÔ´4Ã'œ¬«V«Jô<×vaÑñ #ÿ´ŸCÉj¥Íóx{O*«0?.æßb$6'Ó.ÓÓ‹{¶z|ÂözÍJK=º¹y¯‹½¿˜™™T¶eÐ=­6q¼—…> endobj 207 0 obj << /Length1 1455 /Length2 6217 /Length3 0 /Length 7201 /Filter /FlateDecode >> stream xÚwTÓ}Û?¤t(1@:Gw§ÒÂØŒØ`ŒÝ "¥‚ „"%  (H7Ò¡¤Ô;½½Ÿç¹Ÿÿÿœ÷=;gû}¯ësÅçŠïÍÐDP‚p„j"à(A ˆ,@MOÃ(%æä4…¡Ü¡ˉ9Í¡Ho.û5$„ÂÈÔA( PÜõqÅ@IY ”¬ˆ@TDDæo ) Pù =!À]êMÌ©†ð @œ]P˜8?xÀ¼ ŒŒ”Àos€Š ƒà=ÊꉹL`ð<ò.(”§¬°°ŸŸŸÈÃ[tVäøÁP.c¨7é …~Qèƒ< ¨ sL]`Þ)LN(? ÀÜa`(Ücâ‡@‘Lt€‰Ž.ÀÀ ÿ ¬û@ð§8 ð_îþXÿrƒÿ6ÁO<w8ÁÜ¡M]!”?J‚C~AîÞŒ=Ès9b¿S4UŒ Ã?ü¼ÁH˜'Ê[Èæþ‹£ð/7˜2kÀ!j(åMü+?u ÆÔ=@øOsÝà?8úï“ qúEâã)l‡yù@uÔÿ`0"âËœ¡(€„ˆŒ¨”¤$ê€úƒ]„0 ð„þV‰1‚ÑžO€†4æÅü£½A¾P é Fÿ§âŸ'b QG¨3 Nüoï1Ôé¯3¦ÿH˜?ÀF3~@€È¯Ï¿žì0AÀÝþ ÿÝbaMUmmþ?”ÿ¥TUEøЂ¢âAQIP\B %% þ§£•àoú¿¥† ØŸôþÃ¥Ü ù‹¦|3ñý3<ö†ðÏúÌ@C<ÿž[ 0æ øÞ‚ß&ÿ¿áÿååÿÿÎHÓÇÝý·žç/Àÿ£yÀÜþ 0íƒÂ,‡³"ðÿ†Z@ÿÚh=(æãñßZ³$*pg÷æ­ ó‡B a(°Ë_sôw0îÝap¨!ÂöëÎEDþK‡Y;°æ^ñÆtë· ŠÙª†Ô€ƒ_ë'*! !‘ bLó1' ˆÙSÔÿ÷x„…àÆ€¡ pB ‰õT 쉹àîP'”#Ìù—ò·øGþ»ÿ©ÆXxûxxü¾'QPÔoÍ?rû 1–¨ßsƒIøïóïû õ‡‚‰§Æ`¹(×—Q­§µ*·ýW¾p®Zäð ¢§m>?É 3ykžD, U2?tQÌ.kð)O³^¢·šcß<4j9º°`<¼ÚB<9D×û¹xK¥¾‡™ˆIÐTy-èÒ+È<Ü ·»ã.çS/irÃ"êS¿wZþõ=å3ŸbÆWÖj$ï‘\”&›%Ù†—Žr:æ1° ™oðQíûß=:þBUðùšõî~âàíd±´õ¢hÊÙXà\¥©¨÷[Æ;ŒÖ ̸GTŸ†¹ÐªëYwé'Ðe%óÏFÙRœ<¯µ”lŽMÃQn>O¸%è H Àï6BÕªT3·U"dŸÌ7öµäŸ}÷+غ}T©¦¹GÈ„ÃekeŠæð­$óøh%Ðz£²PHÊ!fÓSýX*I¬'N–ËG¿ÐNu…è.”’¤xðÊ÷¼‹‡êkŽÔ],rMa|7k^5œçná+ñI•Xúøú=~G–T:sêÌ5žXiv±Kï^e¡RÒ³¸0ZϲüÒ7f˜ç/÷ŒÓ™G©\¼ˆMxR@Y¨E˜Y½¶³âôó®xÔ–ôäÚ7CSï°è4ôôë+öÜÊoøé›~}+¿öÆ^Ñ·®Þmé`a‘zܵt»E䆗B3¶Ñ#¤UÏOŽ›gèµùhðt_¾Ï³³'G;â±$oqi`9KATFçfõE0CçWØ7±¤üœý‚[‡vx'ãgUQÀ«ðºÞyg”*™Ã„ΈmNÂ#xÖj*篮aMµ(]ÜkÇRûm»l¸¹ÀèÏj¦È6W›QZí—£õæÑz鮎Ò%¡“!¨#kÕÕÇ<§ë°¥§'‚­á6†DZża§ xöÄ{É‹ÆÃíkÜý¬®*Šä¶šã‡uO´£_ÔÜÉ.ºƒÄ'm¸=%$\çï: -–KAx4³»¤¨xk­í¦Ì‰þð_Áéï¾Ïy/LMŸ©ó1·èè4y1Õ~-›qôŸP<9fö!nK«æÚÜRp·cÙ~4Œ}õª!v³Xãabl¦tÇ&Uå~ÖçËc²¸>›l᛫ÆrïŒ7’å2ÈÙ{%yz^Ôß»­¤Æ6 (çìÂÛ>FªjÞ#’½`{+¡L¿¶“ÇCÍ*?—œ{;ˆ?†7x̰÷c,(׋:K–—øbcY‡ÜåeÓz÷ªæ1Tç\0Τ9Š4оòíSºÌçà›,.R}Þµeçk«t0—hMõ9¾_ŸCg·šÛVfÖïÃyw´a5®gê+ü7›m°ªm<žÑúøŒØN%Eßk’TZûØ(==ë¿Îý"¥?ÃÛ#ˆ:â-¾_¡¡Ãs6]Ïææ`¤íõ–©S™MûVÇísè§³$H µqÑê«à¯j=Å}ø%=•,U8gN«—ôg¾áU¦»Î¦ªÎS÷ÞDÐ[T’DS´‹Ý›sþVóÙ_Ÿ|U¼}|¦ß6‘yJUùœõÄ« 8i"ôq¼ˆ?µUä}|¨üÒI©]Ó'ßüêqBë“Ý’§HskXÏÚ,Ì]¬nr_¡«ØDCgf[×¹·ô‘’ÌêR“ŸºÛG2L¿^¾±Q{EW@ÿöÅ­¥-î·ÊqŒÀ^Ú%±F4ù¾Þ½¹´0ûãsû©wZ 9Ó\Gìþ„ë2UôJq!d|µ@ôîqVõŠâ9@ÊøËøÁ{•RIKx9©i7†'é;M)äÞ×®oWñÛˆ§©þàÃbÊì¸á%"'õ´óǶPÂ19iášË,ž?°Ñ]Ý9«8Þ¿ÏNº0ä5ÿÔR¨* ±¶c6=OS¥Ê)(‘š‡ÿ¬‘$b,8c™Р Úø3‚¿¿…³æ‡=¹*Ùà)^’˜óhÚ{’2.¼ºº.÷©Ýçd髉žpðÚ ؃ü°7xÖŽ'µAóUï[‡D-÷&ƒ“|¿†Èm¿yë-Eç†ÒwÚ%tF@VýD¶U9iåé…G²aŸ+¹6SyÔ#ED^í—í;¹©1ÒØ„TgÍú3&Íq+øÇtZ„jA !ö&/M ¢½¬ô‹=KN~VoPÜf¾Y ˽£»Èðå'gz&#z,`.G‹ñ‚]–¸zh3{Õ½—wÓ† >î Í_²T_ÊúžóŒâ²ÏR빓¿œ§c§>™Ó[QÎ]”õ`pïX]+Ö„àÑ‘0OìÛåcQ„’ò×ßNkC÷ÙÕ7:œÇò4‹tˆQ:4ú=ç›L»dõó—rkŠ:[­õkÏzW›Øžª™ÀÖ'»sNC}Îô î >²±§YÌfûsEû¶ |ºN9ümñNÊK¹|'¿V&\Y_Ö¸’諾´‹,¡Ù x ;²ë>'’@Ç%½¿ÃŽE-w{cÂê®"Åá) x€¾xYgU ¿ô«2ÊÜDÀ·Fr¶ç«PÈãNÐ2'Í”âðÈ×^ÓPµŽoY£nìψ±Ò,#^*ó›M¤ŒKÆ­Èßæï¿áä¯Þ»ÿ!«1ŽšaAëEIrÈÆfÇT?¶óû6Ÿ”«¦RžŸÉíjW¨p~~O<ÿyWC¥[¡¸nPö£žÁ(¨w„ßÜòƒÍòsG9fÐ_sCú€¤L¶uB­]qKk\dPKÿg%ºD”ïæz‘ßä R”·wˆ™5že\xEp×À·N·‡²S9 ôEb„ Àî ÇÐ5öÄðû³Øþ!1h¬=6¢Ï?È[c!R„PŽ}ªNoní5-†ä÷wÕrŽTÇÙ’ªÂîñésî‡l1“W íG¸§òòL+Hœˆ;·ANÆiûÞý|9Mœ@P˜ß! &á`MyÝ|ˆr·Ø £k}c!ˆ)V{ž_¯¤¬Oÿ ½Ø·³†ër» W'{–ÃÖ°·Pÿ~êÆk$õ‚|Š17f‰ ê~ºó™†@´@þ²>+Ú7ó8"l >Ug%z˜ìÅâmRÒªó4Cm§®æÙZíÂÉôqw+2Í,m“Ð]ZÓû·Þ2ÊfjÑX-^F½ù®U¸ƒ¶°Æ2Ú¬¼k"²d/£Œ2î§mü) éx]ÇmÖ˘ةé¯ñÕÅ3%yÎH•ÙaK¹–Æ Œµ1ûcÓÜkah þ"̶þÈ”îMs½~#Ñ ôò”1sÏGi[ƒ?Wˆ–>>ÍŒM¾½B¯Û0šT%“6FWg$²œÂB, \ÄžQg1;äîØJZ\@ådÌ(×/Íhž¤Dkªg+gfß¹ª›Ú³Mâj‡˜Švf.z‡$Øý<ÂWtÚÑêJôØ9ƒ4\®ÆÏà´H½ëb­ŽEе oÎz#²Ï¾³ÖBêó,"ðÀÛpºÌ‰×yW96GËà^àQ&qØÊÚÛf"“¢ûûG#鬯cNiÛMW]¶¹Õ×…0ìZvßfÙådW÷lŒŒ¿¬ÊL2¹aAÚcÎüÞföÛ}ƒùQ3~•b¶]Öq@rô!Óß*UJE<«U ʾØÌÚýáתâãó^mÚ£n'õæzëÃ>diýð¬êÆã²Šö{¤ž'uÌSØt8uá ¿­=™§µô«Žî¢æ*?°»½Æ­íÉ‹·¯ôp8nŸMŒ~©ëìj¢Ú¬z¬`g%EÅ÷$eit`³0šý…ì9*?vÆ^„èɰ¼ý¿Å×bøÐÐΔ‚ód1ÁqA,ªbCõ?ÞM(é±2ÐØÅÀÿ4šîFô™íI΀jØ<'.¼·ß@mlüòE{B)­gƒª(Ó,óFçÆ'¦›ë+Ïi…*ÝBûtV/‚ÅåÇ7ZèWfT7ßœYoÙvà¨Ò²TDK¸Dä!›bn2j<{E ¹OÝãWÞ•€3k|å(’#<%e`WêÙ$¶s°¯£{a ` ”6dÁ¶Ý<ôËyÂÎ)Ã)ó”’þG.$ÊD2t”Ñ2Y)8&‰9_÷ƒUÙÝÏ÷”gýë䬀-´ÙË[CЗŒ;šÂ•æ„Qfvm©[J]®¤Õ#޳D‰×܉ Üy4­¤´(.Ôíˆ× õAMÈo`½´+“¯{™N㨌þô¡X…[È$Žìƒ“bâí±î³ÞBÉlá¹oÝ=ÔÚÕP•¥âX¼¾ÃA Y×ÝUâ)’’·’7™¬VÞÝ7öeF6l(á7Ð럎›è OŸûßÏ3TÙ»^©\;Í¿—ÇŠïƒJ7¹~à`¹¨eìÀbšé,¶­Ý)¾”7Á= ½gLæP>î–Çÿªbžqiž‚Ò5h©Yj±Ø¢­oHàEŸFy×yˆ@|$tgcñúŒ=éŽþ¹»{Ó“B?ðq‡Xµ6ÇÔ¾u„tòLZùÓúd(h]Ít!üq|2Z?–¼ ñ0*¬sbéöÖ:ÐtâÝ4¶]z§X ‰WÀ{9ÈØbv3󯺳5yñ½K:F™OžO©qeí(5Mh; ÀÎÐ%…^|¨bHýÉ+¬{o iEí¼û²V/¥Á¸ï«p"9Õf'ñ¡½å‡ÉÁ•–ö-¤·Ê‚§”šÿã-+BE¯€ÅwK­VIÈ^ÜI»5E:YÇ]9”ìÉ*uìõˆŒ£ƒŸOL›O‹>ììÙÇFw¹ÞO\æ¶Ãh ¬ŸÉ¬\*™¥d”‡–¦µ‹Êi"AKåx¥ÁiÂöd¹‚‹Cê܈—lL+F܉ýuºƒÇÊ9¤/&…ØÌü‡¾‡Ü„»*˜) –¨{­ÕÝ{¾Î•ï#³qŽ7à•;¨./»h¬I¤\Òulk=¸¯\ásNûÛULÄËáUWu¾Ã%ݧo[í4åÄÍXOËŽ%w»?Hi?¾~Ÿ¤ gû(Œ¼0KzŽ3ö|Wœ·ÇÅàUº¡äÝEóZzèÕ8éPü¨AØò<þ•7¨–A„}O¥b«²±ïŠ|´Ô”îž‚«ª3á)²@:ox®Öê[2@&Ñ%±Giì2•ŸÅö3ŠLLc…÷-)Ú ‰¢mæ'¸˜êh6Øëf»~Av–mÓÏ,ž7clt©—ÏïÚÂåÑ-m"JˆM¹úƺ$Œ0mÈl¼Ê¨NX˾-5Nm}¤fuL€½š\ÖüÉ s±\V€íUú¥M´Ú¾i­ð.Nlñäuƒ˜Ãvþ Y’ìCŠÆÆ‚”²,u9;¬òi‹Ò>¨ÇC*ªlæ .*««c5‹L7Ÿ‡Ç9´G Õu´É3"dúb3mÑ»QUû×­.œ¾2GÜ(:Â93U𒆣žL®ÈŸš×ž=£%3£Ò‰«[ÙMÇ[šÍŸ5 Âs¾4*Ö°hR×x8,áÏ!dJ ¤0‰šK¨¬“=¿3̉äÛ¨²ÈÍÏ=Æ›¯6sìxbk§QæëMÔ­¤ë†xYœbP]ÔI­ÖÊkûå EJ‹IϾÇdõU“X”à)Àô‚\ \eÎ1ùZ^³Àõæü©,¹–Ã…pç‘0Øy¯ºÛftKŒW”8yã’îg‰J ïÄ·[#uN 7…œSh¿Ù[„gäéï!—óy(¾?¬ç‚¨žk<°È*ä} Dô{*×?ºbä-ÿB@RÜ"šƒ·ÇõÕ<6†» c¹5Ó?–_j6›§ñö"›ù,ýæÏ ¬'»¤ÃÆÝuÒãïFÔ`þ Ê!q ZãoÅŠh7ò;Êß[> ¸›ñBÌÕ…·ÙŸH•~8¨u«É‰žxžh€’ïlzçñ­-­úçC¾$=ªäbøX!õûªuŠC#åƒkµËñ¨öDRl޾>Rg7máB·Q5_ՠϬ¦‹ÄøRþâüÊIðRÑÀŽYõnœ9uÜP4‡À&ÇÒ=Ü«(›ñ“óÉçÜZ¦ïÑÚßvПã8kÈñˆ)E2×·.MË^Ùíõ¦óúIÊ»ŽG> endobj 209 0 obj << /Length1 1530 /Length2 8216 /Length3 0 /Length 9243 /Filter /FlateDecode >> stream xÚ·PÜ6 (H(KIÇÒ-ÝÝ- ,ì»À.Ý-" Hwƒ„” Ý%H‡4HI7’‡¾ïû«ÿæûfgvï9ç9çÞçžçÜ™e ÑÐf—´‚[€åà0$;ƒK ­ªªäpqñppqqc30è@‘öàüØ z`gþ„´3„¼÷É€÷@U8  äbò€üÂ@a..7—Ð?@¸³0@ä µ¨r”à00›Aîèá µ ï÷ùg `²d…„Øþ¤$ÀÎPK   BBÀ÷;Z‚ìÚpK(éñ_%˜D!H¤£0'§››ÈÁw¶gf¸A‘€vv[~S¨ÀSãÀfè@ ˆ¿Úpk¤È ¸wØC-Á0Ä}Š Ì ì ¸ß ­¨PwÃþ«ü`ü}9 ð_åþÎþ] û“ ²´„;8‚`P˜ Àj¨Ë©p Ý‘lÌê7d€ßçƒ\AP{Å=àÏÑA9IMèžáßü–ÎPG$‚µÿÍ‘ów™ûk–…YIÃÀ0$û÷ùd Î`Ëû{÷àü»¹v0¸ÌëË ³²þMÃÊÅ‘Sur+Êü¹waÿÛgFø¸xù`'ØÝÂù{GðŸ ð·ûžƒ—#Ü`}Oìµßÿ`{!@®`ÒÙìãõŸÿ¶°@€Ô °Û@aØÿ®~ï[ÿeß÷ßê0溗Àõûó¯•é½Â¬à0{Ãÿ´˜SZKVSV’õoÊÿ JIÁÝ^ì<@;7ÈÅ͸_øüwÝÀ?ìÿx5@пOÇõ0kø}¿XÜ_ß?L\ÿ–Óßsà øï-Ôà÷‚˜þ­.>.Ëû/àÿóüIùÿÿï*ÿWýÿï‰ä\ìíÿÄ™þüâ ¨½Ç߈{A» ï‡C~?"°ÿ…êƒÿšhU°ÔÅᣊHÐýHÂlî…ÎäåàâýËEÈAÝÁVP¤%ä/1ýÓû=ì¡0°ýýðÜgqqýOì~ö,íîÄ}Ïþ ÷ƒˆüÓÞß6ø~Ôþû²0K¸Õï™äæã€œAØ÷’¸·ø^Àûáµ»ÿÑ<€“GÞ§î9û¬áÎØ¿-ÈàÔþíúcñ 8ïÇÜô/KÀi÷/“à´9XXýâ^šœŽÿ2ùï{ò~'ò?ÌûŠ.Ìÿbbéâì|OõïiþcÿyjÀ`w°%öÌÜR$ض*¸é¢B’Ü}}Hý 逛}(Ï Ù-;öê{¬vzÚ¬r±ÜLPÎ̶UMÊé"cñÛ‰×Z5õ'ÞŸìÔr›6Ôï¦î~¢N¼÷:§ zZ‡’­Ÿ E%\èÜ¢A׆õÒʦ[›á©7cUçô{·ÏŠä”BšÔZÚ*ŠÒTˆ(„ôvW´õ}:ë|§$Œ™+ÑA«oMÂÕRh•E[.±cÝÊñ–{ûûæñ»(Û#”\×éC‘ø²"}2¼Êõæspo2 ]wR¼,ä ¥‰´U³i´H°û¤sâêHLnèئ…CÞcܿfÿ¸m¤‘)ÎRZtìç; ©a›ôÑÒˆC? & f­nó|ÉÐÏÅ é_§è¸ž·ÕxFöÖh©óë2é=šÔJšVã>ÞΕ¡,¿›µÍeŽ@›|vÝ÷Ѷ€,#@pm½c«ç”Ë$á“[åôP84ÞÂ;ºY€y<„Êb…f5dƒ”'Él¿>Yï^´±I¼äžåÇ Öÿgá :ÄöP0¡œ#Ø#ù™ÿâèË ÏI*‰züQéØíù c…fBž³š~‹<(a‡tCqƒ~$)¢£—6=” ¨‚ù–ì¶höur… Zñ#£'±«›«ä™×-7ñM/fáVµâ®“%%b¤ÓjÂ{t‡"K7Ï^?šž·š‰NV¹XéÈÄÂPvÄr“_%ÝÕ™Àl(J¡<”Ý—Ç ï'+c—Ï8ÆâZÞ?9Á^p{àW%²T‡í¹ÖëI¦Ux,‘(e4ê\ËXI‡ýxžA(Ž7c3LbcÇi‡©Ö§ a¼Æ5¨ï˜„¤(}ä¿®5êvÇÊoQwÐAÑ]qä7ø%cи”ý C­©d¤°yX™¦¢ Õª(¢#I{I¨úÆéN2´jˆ'ì=!±Ìæ´p r#ó÷P#àˆÏ%TXdñKxˈ±*c¨ 12ãZõV3ÒâF@ŠújrûmssÍá­†—G9‡|] ‘ü+âg:ï¾럸»ÓyûtÛ¶L‹ƒ]€Ø¹u©;Ѽ–uºy©'Õxïé\ºVZÇ®š±„p6÷Y2¿EZoÍ`tœ–}Ónȱ3æ;q©»"©k~›ôy»Æ”-H>KƒTýµíôä|LVWºX¤j¥˜€8ÉåÕPUhñûEæw©ûÏ6Î}M šj/r‚7Õצåx·Kê 0.–ÐÐajñ%ç&µEÚÞKÐܺBÉvûª€M௣žW¡»µ®@…µjã÷TXÖ]ÍnÎP%ÃB°”m,ÄÈ)‹²y2'žVÞ6ëqÙ(>úDÇùáSž§ÏÍ3èMºIò£§ú{*Ok”vqC|õÛ¹a#d`êCü ¹Ç¼ÚUø°LöÂ5U±, úfmGà Mî«æ\3ö³®´ºÜQ·–o-‚ð8΄}O˜ÙU­:œ¯~¼Ãn·);~0eöX»ž'CèA¬r=ÎJôvœÏ‚Æ—i²„…ÌÞ§Q~F8œþ#/“-†¡¥øúI}”‚9ú×-[¶„$¸YBFÛE Ïh¸øíhÍsSd8ÕAC甦DeÓköJs{Ô\áUz‹‚ŸŸ°©¼Q5ŒÛ5…gÉ›9W9qô%I{+ù¢‹‚;3Ê…yÕäÌ:e § 'cPR³µ¨IÝ<*ÓÈ‚}ÿ‰·tÄÜ55ÚN=Ñl›vÍÑ=“efk;g2„7Êy|™‹ôcI–E\©›¤âg¬-Yˆ VÚúløÛfš›·]3˜”øPk™~õxôZÚ~¼—? Š<Ò”Ðj·w±@UF{2"€'Öðå‘ר—çk8³š˜gC¦Q¯¥í±i§|Êr”'·S©¡LÉÆ“~‰aô‹ºÉ¡êJ¤g8ST8ý.»¿Ü‘žpÓó€ŽlÃ9Jõ§‡eÈTYq+áåùÅØ˜–GÖZYñ¢JäüørÅ«jŽ®®¾á½${Bïú‹—û‘²Oã>ëY\ðº{QV kÿ¬ä^úJ ÆôéLAœ-šÚ/GÜ@9:­Îú¯Ê\ý¤›–’û§k D YO(ò QÃR_ñYý·¦¡÷¨©¡HoGàG"… ¯>‘ºâl9Õ7þ`6·ëƒ £—îW…6]0©ŒWâÅ£áƒ4± ˜8"·ãžÃÇ˽_D`ðʇUÒšA!‘n‰ùOÚ*Èý¾»}ÉW g3Z#éh]G"¡\bÄ0aƒ‘ÍZ Så ‡ò±åÙðƒQ™«™õJ÷\Øðôæ¾£IM p‹ël…ib]ɳò·øò8bÊÞ±¬¿Ï=2éÝCw¦Í›tàzîäQËþÄòá<8xŒÓá  ‰«@séÚî’’×ê§&jý–Oò‰Xg·ÔÙÿÖvôà¬{Øð›×®Ñlʦ'Fu€0ã< ௷ÏfýË@t/.Idé Ìm_t,QåD½Ô2ü‚—zÇŸ>°IWuôs‹íˆS_åëó±e<‚3¡MáØâ­Žãƒú¯ƒìøC“'Q±ôΛW•+_“’Šçtw{F¡Ë¯™œ{"÷3Uo"g6òê éWOßJk-ýš).E`"L_$÷+±îÞ™(ÔsܦõŽ`á ¬n¶š3'ßi[”"Ï~ýNnÁo–p[ñÛٯϠ óKì"Y¯µ­éE ë&{*îS%™Äc‡Æ±Y®ýYa®>{ÞÍ6UgUI„Ë;sÑ'f‹)­?VõÇFÎi)PÌK¼6ö¯55ýä®ÇZô§m6ô NЂð‘<•æàò­[Û¤>÷øS#1ìj°WªeÚbQN¡ç͹–ZM.ÄüY ª7yì"÷ãó*ayŧ*nêä$nmu!©Žúc™ÁæÕ„¡‘Á‚Îx8v>ÌÙÕŠOíÅo#òÉß¡ÿ šIx™QâÊWRO«ìþú•áJPH×m¦\Žïâ¹ít̺Ù!žññ: „ÊúÊm2ÇŽNÏ«a¹_q­è¾’†A¹‰Tba£oKj›ÆC‚›Çy^U”,§vo¿âs»$ˆ—öü2Uê·!Lít+7;j¸ÅBOýö×¼ÍmmH>L¹B‘<~×T¿ÜK|–Y@GA3P“ÈJû~ÍßÞ"ðq#÷ê€ÏlŸ&uAZw¬«ôzm,ù4Ò…ÓÍb]@%õû¢í0KÀ [ÿL S®§$Õ`|“Ñlöi·{7ˆŒqJæx³NÅr­¨>@ßqɧϬU²áÛxÀÕaFJu©–xÖ¹CÕlÙ6NÌRYgí1ñA*?/¸Srk]ð¤1m‚m\+ÄŸtƦk61ouäÌ=&ÃõÃßÍ_á(±ú{øã’‰Êùý¾•3¶ÐRoß*û:ÿ®‡¬ñ’w@Ìû/„ÚÁî ¾FòÁ&Ì&â[Þ´1ÑïÑÕŸ?‡¸ÓÜŽ–½q÷}ù‹VCþ™z:Ь·‡ç;婌ë4Í=úÄ(íée¯‚Ýãn¡ÐøÅËá…âüŠuYçÌw[¶Ws;ZáRõÌRtÓ³#í¸ð©×bf¿–(Ó@@œƒ§òiI¥xšŒû¸ o”ð¡…VÅÚ$\‹dúÝ­).ñÅ‘œd?ùE¿èê „g;è²Ï 2=µ¿“˜ " Íx’Ñ®ZmHÞ“;ÖLùp²G±qãì8#R»œj'ÎØIpÕîERƒ Û9Æ%Ô"-( êÇ4Ï„'9mÍÓˆf(i=Å‹|}‹ƒCa³-h9kÛL«ìM|µ‹>)-h’P¡ /L,¯éð®àN•sz3ænZ£¬cÔë›?1+;ÜRô/üZ´ûµržèdËó’„xVôØaÌÑQÆ¿G‰¢áíèx–aÒ œV®®]ìã9Xi.ÆiÙÃέþ Þ!Šæ¾3£Ïþ-l‡Ž¡¢Ty« Œ´¼«ð”Ñõ@G«OÊË«¥PÃñ;æ7U‰»Nœ+Ý–#ÑCלŸ=®ö‘o£2v=§><âxÁNÅš4ÇðtBžÊœµ7G’ƒB r„땆-Ó©¼×Ť <‰R<æ,ï9s+8Hi|a2ËŸzÕCìó:BHA.:c"/{ú6Ì`K·ÛðÁqÓàu I´pûå ZeYhÙNÅ·ÓGZ‹ lT¼„¶HUV%‹%òæ‘e›I9zí5k{—Dô‘âO‡ɸ“-()Óþ¯ßXú >Cq;>y¸ÑV%\šÏ0ÙÌN%«¹­;òD«i•€]Ãäüv©s¤ ñã㤌È÷ñãhh¥KñçI”_ìçtAÁt4ÖÍ'x‘Ë(?¿í5=œ;(Ä6Æ “  ´ÇKÊdj‹¶à”ß¹Kv %‘øòीu[ìø“螣x|”;V‚ô¬òåg)±(a3²¯ÁŸQ½p]¼)TZæÇœ›3z«Y&'g— kû¶çØ jTמ”Õ·Pû“•ú°°Z€eæý¹¾‡WÑí¹N”Þ‘ñy5ˆjÍè› ‘¯5c¤‚õÐN ܨP}ˆ¦uo;jÁ©|² Vã¿hê…›‡õI%ìB*¿ù1ï&m0­øRzÐŽ¯çO“¥z÷ Z:ró‹Ùô?µ¬éÇ¡E~–[mćØÓ Àñ½Qk;£ò‚×4Ì*‹‚"f LX¥³`n=´>¢ìþ3$P?¶íâõh$yz­˜%çåsÛ²-wÇ›}ö7ô[UÙçZ•¶R¼ÊM%¿æ…ºe挊ú—$®ÈZ>ÄŸ©¸â›>/àã‰M0»Ûhf,ßéïÆo*Žн–Ìß’B¿ç®‹±À®iЧuò#²Èoó]0ñÔþÆæ.UôAÿðJ¾³®OFâ-©þn®h9Û¼> Ù2|£Mä›lEô.ås%ªoÂW)ë‚Ã3è'º´pøn6@X7P£g”h·ó_Ñ´â%¡“ý9m\Ï.MUüݰõÅ9YnÓÂD Ç*wl2ÊË­ôjƒ½DçÖüÄÉ 5O7ogUƒó V~Ä´É^žsY³ôþ ‚¸ú¡3‘Êû©—Ð6F^a” 8^æ]%8<¼ +Ý©YÊw2Zᶺ ÁÿôŒé]str%ÒI¶¿•.¯ŠÒ1´‡¥úQOèµst–¢õ™k,XgØX%@¤·€V0FÇ:=Õ\CkœµÛc•Iu'Ol4Í>W•ÜôÉD;½r1zLm  %’“±:û43‘ølÎ. sæìŠ+Dn‡ÓÃŒYÊß(7¡¦~›ÊR˜vbË~¢#âžÑÅ[®³ÄµÞjÓ¶ïòIýíæ€M“ÛšÅ9ÁMò‹9ÇB+´½‰(" 3оéŠÐÌôW(¡ß_¾åQŒÔ½ÆÜsŒð z¶wK5WëýO†§† ~+èB~R1ŒzB=‹P«sïwDø1?gkEÇd³ (3ýgl5¿±ŠŒíˆº[Ë‹-ÄѸiA¬„D£ãÈaiÝYlŒŠ ?y'(Å™~/ùÅ@û.XÚ¯Kø "» I7þjò8h^o£ŠoçÄÕk÷¨÷ÓÑQeΩâu:Ö%ñz¿£¨ï;XiñWˆôÞˆääý]V w^›ÊiI?9pZ`¢ªXñoߥ’éÕ§±æxj9–cÜÊÌ6]½0â€%À;+'q…üÖʺx­ííVLYÉÅjÚìX¡ÒjnJÛ¸_©ûË?¹ñˆLg¾X°Ûøkt˜J“\Z ÐaEÆ}ˆÝ^Öst¼«-Ñ6™aSI”1Ða‡Â;p|V=È£k”j“m§÷pšp]¨ Òð¸¶P4ÆÛ)'½Š^jòÐñÉï/m—âÑ/å|][ZŸ¯Â—ÉÄÍì»Ò<úéæñöüöÙmh»H÷¬f¾¸e³ôö/¹÷§`D{]@Ø’"¥ç%¥„ë¯#8w&;)¾#egæuG A\B¥†¸:Œí±}¶_0@%-´?Õ¦£g¬ßÓ;Ò(ÓCÁ¡ß½qŒhUPn;±«Ù3pñµ›"Œ§ú̧¤à$¢H¿àÛH›Äʧi•8­{é¿Xê'SÿI’î»ù†)Çø"•€üËÔv‘µ¾rý¤^¤ŸàM%´]1ÖAÑä=iÛå@téQþZ_Ÿ×ˆ¼ó%ög&ΗjÊš¿¥‚Æ•%+¾ðu½Å¼úãeKlêG೯A•Uê?Tø¨Jšø£tP71¸û—µß lãpÊøÉÝzµi¹GzŠÞ2‡•ÝœíÔ>¤õËqd×wÛÍœax¸Œ‡zv Ã[CÞýå ª}Á6hApHB·èÇ0*eGõ쎢/ÊnWä›VíÐ 1»$šµò¹¼•UQ˜/á“x‰¬‰|óð:R.RdWÞ—±·øGc€W»êU0‡Séƒ {éÔ•)2 »¬ÖPº1ªî.Mý!zÉê&%âI§¼§¥†x†‘ú|u±Ù?Óž xñGs¶DR3”R3¥¦òÌgDKfª r﹉+6ªwTUáDnû§í>!VÝ|æ~`N7W7{¬LÔˆ“Úʲ:“¼@L§ Û 3ù¼ïW‚«ƒšÁ:L—ƒÒt^ü¬v’åþ<ÉŽ©?OCÝ\ºÿE– ×Ûƒ\︩ZáÈn…e™y¿ïRï5†Û#sn‰çÍK ÓðãJÊXûê’ÄOô43å(M³×&f[íçwvE| Åù›ãX,gÓãûÒ#ÄJ¥×â>D½Éâ¾"7‘Ý[hÁiü°c%ðNvØêq ? 5, aã$!OÔ¢þ¶Ó5tk6tV£«×ãš­nCd¾ƒß>ÎÉN¨³÷àZ É~ï µS!a¸Øoá8Ô3á<®;Zç; ô®t*Õ‰|7´JÞô¸µl[ìDøü„ô­§¦Ó®BܶßgÝž}c± nv¡€—¦¸Ý¯µK•Éu#štÝg8<•?"*»J7´E.üÒ—Øøëžêk|÷Ât¨‹Ò^’êzãÌ%󡌇¹ÐÆqëèkv¬xéÚåPG广ß>pó²%A"ƒm”ÐP#ðš¦kEèÙ t{—$ qŽÀnkŠªQÇ•ùº¹”uÉT>¾u’lPt}ÆÏkLqùfK˹¶6Ã}úÑÏ%‚|’ƒvK?˜¸שË”.i^+Ö×(É ä$6Æßá†OÍ+òÛÅú |üO/'lê·K]òsx®.–?|u£“LËûôDUû¸­-–A%exÖÔô}ˆil{÷и ž€W±mºús¬ËK8ËHÔ:Rf¼ d÷”X)<ó3¹·Y“‰.ЧýÙn(R—iKæI¬ò`9ÈtúÒØ&Øbèaoüʮç3ÚëÁ5» ¹}.öUÛî=Mõ¨jbÓ¼öÎVJÚ7o_Ìõá æÆðÌ®ú“Eî€yŸêE.Èy)Ç«ç°m^mx¿vW†þ¹’¹¤n1ŸNøÅ33÷(‡-º ñ5›Ë#D”5Ëôö6ÓZ/Ó¡Fh·¿»ÿpPÒç2yu”HpÈ¡Ç~Ê«¶E*Õ]ׯQCI;‘³£Áº/à¨æÜ8åÚÓÇY‹&ÉBm1µR(ÑÚ%ª¢ÎÞ‹,@Ÿ j‹-ôp³€Þ)6Üý›“˜®bå‘wâ>…ŸÓv¢fåÚ’Çcݾi ;—¼Øb§l¶ÜÏÜyØRx•êÂÍFÃ) µ_lt)ÅR÷ #5Ç«Èç)ö9Mòed2’2.F3± aéÚr^–¿äB¿Üc¸7$Û»5_”N§ô̧pØ•}I4#j 9e­~ÏÈÃH¡IVËŒ!íØ™ºFdù¢N‘¥½M¢¶þxil>°¢üÔ´Bå»S0÷²< ýä­:¬4{ËMíÁtƒ‹a1q݆‘óŒ©YFu´â`Öä§;ÁÚ[÷ú­ÐzH¹Lùeu©×ówo¨ó§Ä¿sbƃTX{ªfœ»ª_\êO ÅšGÊÿ±ôqÊÈmìË’c54 {¥gD½vV<þ1 1ߢeî¾µ´zn1,;a Õ{;~2f·M>övüêÈÿuVw/NC2‚Ün£*K2 kQ†<×É»l±Œ Ý\Êã6’ýò“k²¹à9ŠO½Ž®5 whYáç¶Jù½»t"Ú+#µìÿ%Ýžµ[þ¢ù^»ü³!"š—¯ce».#¦½ÁÉ—à4^7Q›ÞMi šî®>—ÏZá¥T ×ðæÀþ¬Ý™é?“Ö}¢3Žø—Ê|œÕm<ç}†öôz$jØÄèº=I“þV>wº®n›"õg‰é­MÊÜ/ ëÇß; P­šV(AßîI6=—¯#SÅ… à2i¹õÅ„$ó8kîO?FxÖ“d~öóQ ­%ð‘á'³G‹-Y†­M Ë»ÀîF]bë}£*fÅ$§z²9w„ÚO‚€UúŠ{ò¼„êWåâKQED m²ÿ‰ ô endstream endobj 210 0 obj << /Type /FontDescriptor /FontName /CREQEA+CMMI12 /Flags 4 /FontBBox [-31 -250 1026 750] /Ascent 694 /CapHeight 683 /Descent -194 /ItalicAngle -14 /StemV 65 /XHeight 431 /CharSet (/S/comma/k/lambda/p/slash/t/u) /FontFile 209 0 R >> endobj 211 0 obj << /Length1 1453 /Length2 6790 /Length3 0 /Length 7772 /Filter /FlateDecode >> stream xÚtT”kÛ.‚H‰„JˆàÀÐ9C—tww 0ÀÀ0ÌÐÒ]RÒ%- ¨ % Ý%ÒÒJ#ÿ¨{ûßß9k³f­wÞ;Ÿûzîëz™èµt¹¤m‘ÖP$Íæ‰dÕÕ•… 7ÄKÈĤCá¹ ™  n(!ú¿dÝ 4Æ'AcòÔ‘€Š;æ€EÁB¢ €ù;é& ƒxÀlêÜ$Š"d’Eºx»ÁìИcþ~°Ú°À""Bœ¿ËÒÎP7˜ P‡  Î˜m p€.ÒE{ÿ««¸í"ÊÃãééÉ qFq#Ýì%Ø8ž0´@Š‚ºy@m¿4 ÎÐ?ȸ ™z0Ô¿.Òí qƒ08ÌŠ@a*ܶP7æp€®²@ÓŠø“¬ö'ð×ÝÀÜàÿ´û«úW#âw1ÄÆéìAxÃö; ÐTPãF{¡9„í¯D…ÄÔC< 08Ä“ð{r@AZÁü ÊÆ æ‚Fq£`ð_y~µÁܲ<ÂVéì E Q„¿æ“ƒ¹Am0×îÍóg³N¤'Â÷/ưµûÂÖÝ…Gsu‡*Ëý•‚qþ㳇¢ a!>a>Ôõ²qàùÕ^ÏÛú;þåÆ ðóuAºì0  ~0;(æÐñ€ÐnîP?ßÿø·Ela6h€5Ô† ü§;Æ µûcc–ïó˜‚0Ü@¿~ÿy3ÇÐˉ€{ÿ“þ{¿<²:Fº*Úÿ'&#ƒôørñò¸x@0 a^üþÝæ?ð7øß^-ì¯á@ÿtTFØ!˜.¿A`nïo ñ‚õ/Ͱþ}„Cf(€õî›@6˜øÿ[¿KþoÄÿÕåÿÅýÿHÁÿfýÿ?ÂgÜû¯ —ÝÑ]¨#1ê@üwª!ô–Õ¡¶0wçÿŽ*£!}H#ì1çósƒøÿøa(˜ÔV †¶qøÃ¤¿w9C@µ(دO¦ ú¯Fv6N˜Ï ³±?! £Aôïåþ²¡•ý{y„ Òö—y77ˆ7!†Kà ÆèÖêõ›ðn)`0ûìn„¿Ö  x`¿|™‚Çÿe xœþ1ÁÓý·ù¯!lÜÝÜ0Sþæf¿íß(Ô jCøi i#êXÚ|Z#Mãɵ6$Ž»—~jÄË5Thî’³\JÒ}‘5«Z¦ð©¬`áØª!ãzš½0}ä»Z÷¨Þ›ÿ˜ë‘†ý#ë„©ëãÏ|O2L‘¼ÁÊ3L•¡-qëÂÒ¢!m#´µïÒe"yÂRûaæ™'ó½R!•°f–¶šÒ,5Ї"ß–uÐo­{ôÖ¾S±ä,;LJ¬ÄšE¥id0¨Š·œ&yV“.~ìë™#ë¤m Rñ^Ûg G“É‹õ<”ãÇ«6˜Ë¿s™Sâ±Aîk­xW–BW=^‡Š°G6?ùí•Ù%ÏÈ1+Êáá6ÉûüŒ¯EÈÀ´3>Žá´œ †ûh_[ñyÀ–·Ó}c”'ŸpûVáDm#M¬YÀ'¥‡þýÒº1ŽéU6&\܆¹Ð©»yäìž6 ¢“·Šà4q¯ì®ÂÃô–0Q}À‰ðcí Aµ´Co+:χ¥·âI¸hÜ•Öɤ=rÚãÜãtc—aáy‚Z¥ñ bÞ_‰ø^FN5µB-Ê,?Í2%ÍZ!<[ê[­èßu{ïG%Ý=‘G¨;•²mi]}­—¥­æ` Ý ‹ÏäñãO1²û &¹*>4͸q‘"€ÅÓa/6¢P‘,»A̸FÂGM´XdTß/?c×Ôó½ËKO{ÃÓÚjõJ–,O軜¡/pv3áøÌ·l’RªE+¥Ú„g`“­*,ç ,R¶}ñ#?×Åg%7Cm/SáE€ùäjzs³³)ñåqÞÆÙd½ù‡äÀÑq´å¡ƒÕ´2xGåxõjðSY1»x§Kޝ‡äÉm³‡MŠ­iæ§››Yrjô ‘~1ðçžð egÕìô}þ†"€m ,{ÍÜYžlñO+KÞ‹Q¶Æÿùã–%‘ çÓÇbs1HÎÊêYŽ –—H¬5¦2‡¼’mØ ÀÛL#ñ…î² ø3P†MHh'Aÿ1Ù»…½¤{˸⤷Z¢™õÖRÙØÎ@,–SÊ•£9»áú˜Jèêz¶CÕÝÔ*¢Yû|žŒ¤ ´çEwP)ëë[_ï0=) üž=úúùdÓ5q¦&)Cõ7OÏZÊóŸ/Ìð-gkä›—hvíC»I´È6}Úh×¶Fw cŸMŽèÎ$?p€O‡ÃÁÿ†÷ >WUWËü¼ª¡/Bê×¶æ }¸iòí×èã¤o>È{2>ìñT$ JvÓõ¸¾Û[ÁÔµãIwG6Ü1Œpóx­ëYÖúÃx6DZçÅ( xI Mi*om™ý×Ñt\½õV)|u_Ó&ë]U°†aöÕ{Zšs‹iôÝ@¹Ú^ÆÏ‡bK±œœWa•[ 2ÆÚ|é·üÚ´…ZP:€¦þ'ü´Î·1tÕ‘…§_‚Sr÷‚ë,‡bð)> ­‹jÔƒLœÑ¶È»Qñ^Zßv­nÉ©9§³¾«¸×¤ªîúLس÷Kš¤,‡e éì{¸¾úIÍñ™!ä\ßÌc+懗ƒÛÕh¢ôÛ@›c¡[ê:”·oL“Œ€Ùl]³O œâÓÁtRSÆ:dJŒ>YæÕ¦æ6¾8‹å¼ì5¼ÎnnôRò‚XòŸKÕäMdH8–£”¶0Kt¡ ½lÔô:hãøÅ™³wÛ)N뤾ǽ(.윢Ϋ''­ÀxÓÔ¢þ„ÍJåWŒ—[ÄÃ%ÁÛþT¶äI=_ÿÔû(ïŠiä9½¯]™«ç}?õîPÁKü»2žƒ°gów¶»j˜ó‘ýê52 y,O,Ê /¥§–TL<’SblnözªœãŒ*è]‰ù'‹1“™'²¨ßò™sÒe¼qö&Z¥`l¡ï¸j½ ä ¦å¨•|sD\ÝÃÇ|½Êµ/ÿÞèÇ´ùªÀ£=Ó§QJõ %Ö¸Õt€÷}Ž¥ 6à*UÕΩ6£jË7!Í¢¡õßàg: üüåšôá¢éõ…bå(©Æ%ïÖýè $‘`å„ ™¯´‚‡À•‹Š É‚3KøñlµYX»}…éׯþw‚–êš–•pØüvtÇC¦vv&h¼Ùó»Õâíº½#=Ÿ°YvÁ—ŒfÎzWkës¸ýÚy|˜&LÁ©ª(GKÈ(µ=äÇÆ Þ?\ì6ΑêßéÀþê÷ƒIälüJŸ tHÝýeáZ݆àÃrgSè{°ÅUõíi² Ûò‡ÆTOXBž…”‹_~7&Ë¡'Õ,—æb¼Y›ÀÒ;ÛNªiFQzÖ"£,{s58 æ‰g¬ðR~æx[îQ¡ŽÔ+)n™¿Ò›E±‚ù!AÁ¼}z¡š¥]?i‚©ˆÍד 4>J¯2+O ðê€.fˆâfç¥JÛðúer¨¦¿É&YgQÚçλˆ|4L2rPꊮPãÞYfÒ³qóˆê1•ÍPÖ jŒ®ïc™2š±¬bIµ8”ˆÁNuDî:¯æV¯Î}VúM*Õ{ì5sÕtO¯Òß$£?ôY|Å›¹s°Ã Fb§é#¼……V¬» l¹¦„W «“$s‡Äñ³¶{bb^É?wIûx(ðŸJþÆÔºîæÅ=Ó"RÌ1¯T~]ú­xÖWº‹ŸúÄ'Ž-Ç&R®pd}‡Ãa+YŠ…äšNÇUFô>òf0vEL1\ã9=m¤‘™J9mRמt¼ÓqÝMåÈý4õ<ëX*+%ÑO{ÿçGç…G"“r“yý/÷«V ˆãà¸ù­ô/g׌uë®Â8E«Á±ëË©@°'#·`½²W&΀õ£ÀÑ~¹Þ™ÑЗ›·X®µ)v¾…ÛàO±ëY:ð~AoÕÌBk˜ž8*…2x'B?8F KˆO¸ûÎô^œÇgEˆÇ™Ý)VåßèêU>¼wÃÀ,I¿×ß¿Ü(šòú@˜¾ý˜/®³°í¤² FDÖ©Ã_#ðCO«öƒý¹ÝÒñrÑ[2T€\›r õØ ð}QÊYÙ§¾q“|Ô¤,¡íýÀ·g^ã9ÔGVZžq‡ˆ5>ãð'pºMê]í³¦Ù9D2ôÙãhlwf2É¥0b©µ¨ZÕ«¦ fÔ︥øV…~>[§í$nýváÊÅ’î,Ë.n¬Ùc×?äÞtï-PàAk[ü­Èn€Yãb®/T±îÔ [jsNRîâÀÀ¿à5²Úµp7•ŸÕ·ð|\;õ|mDÊ£åc £ ýD%¥n°0ò|,…©žWòÅqœkj Û_Ô!ùyÆxðn#¿j³ÜW÷ÀÏ´Ëx)ØÔºÑÆ‹¤‹$¾ÓÙaÃL­‡^‰æ!‰ìâÉP}YW©®XæÍYî „aaȃC 3Ê ˆE“MÙM½ëgîuì¡c×Ȇ. -@© m^ÌË¢^ÄYJ;7^ç Á4S[ZûŒJ>-&£™}ñ­acùMMƃv×›o‚réB¨ãM‘;ƒ7 ¾'ÞåX^†ªÅ”ÆÈÓë2냶ÅÖø ítdJŸ@í÷ý€BÁë+פý‘ìÃÒŠ¥ü`·ç§›×Ä;ƒY­F>‡(‹‘²T>fíÎ?rœr¬y mJ"$G˜ä¤QEŠ• éb|Ù÷—~ àX°;öd)mŸéGƒñ°t]<é¤5žØuVº ™IöeR4 ÔØC%f/ùõͳl)ï\‚oŽÅeí—²1ž§ÕuÑRnšxä)ȼS»£˜&ìÁ[Þ „~þÈ?šý]äÔV£WŠ/ÓLÄŸQ=¥§vB°Ï$º³J1–I5S02a„#òƒŒË<Þ—ÙòlüÀZÈχ9¼Èon÷à^ïÖ¸øËÛ· Û䘹ÌïÖÜÈ{•¨Ù•®#xØòlø{Ú– 2\¬ )’ú”‰œrƒŸ§©ËÔçÐÅÒ6­nY÷ã*ïÚ'È{­§H6ˆ_¸DÀì×Ðt'޹tÖ ¤¶”¹´r‹³åXó ‚½Î݇Յe*…5ÁÈoÑ7{“œ‡Ãé1-1â.{xA*†Ro«°˜ºÒæç³°÷ÜõÂWçÆãip„Âæn—ËóôÔG¿YûQÅïˆX‹ÔnEw¾ŸÑT¸” ’iéKß`0ú´•ùfà"rŽGÆâ¬'>6Eê‚=FB¹§Ô¾0¿Q˜ Â_©o²kŸrãœZµÅ¢[Š;˜cxº½çúþ”#u)I„(,%ïÛs&—D–®[}Hà“$û P™s±œô4Ö»TV¾ÿçÊ—ü™¯ò±ê ÔI&}ÉáÆ%ëmÊDºÄò¬=ÊüdH˜ÖJ,“üÖD%…Öã7óñNµa/žÅëᩜ©“³§X|òÙ¶>#¯ “g+ÓI¹ÝJŸ&x³Ë³á /lùàMæ_*Ù{ATo‹óf­²Õc “ýˆ×yˆÝ>e"/«=x‡ô'îº63å} ÙÏ —HÍØ†#c©\%êë ëÄ€‹ÉHEÓ“=ÆÑ 35¾üÔ{C糓X‘„vEØ<$‚dšÇÇÞɉ£Q!z+"éOâ.Ì5§p?Z%;Vn~ª“rDFdÞa±-ÖÈXùô5¶þ¥ \V%Ó;+Gea¾TÐìƒÈÑ®Æ_N Ï'×~®OîJKWöãžbÆ3*ºækâ¹gÒ,y»º?J.]ÇÉRn;z¬¶‡°=¥¨#çß­9¸3~g$¦™šúdò!¬«•nåN³žŒ‹lr—°œ©ÓÃf³ÐÅå¢ Cxú]qEšh¼‘¿?"{ã{õ ‘1Qœ.ôµOÇÄñ>_ó)ªÖ%p伋ñöîoØ Ž’$%7 Ï%¬8ØÎ¡AÚA™v>•Ð:,p£ú|¤ÜÃäMµ}&uë%‚«¼¦¨ªsY—ÿէކ ߯¡©¸"ã}S*Êš»¡Eò/¿Àbs6ÍȨÙÉe¼¢°e§Fž_°úw·?N$þñìC·‘YIÏ”÷¢öPƒÀæ·2Ë+fŽ(]•) @ÆÐêD£Û÷£Öu÷iêèü§ ÄYI+/òٲɻ“Áœ2%B»$Š¡¯4'å>’ÈÖ†œZ†úÍê4ÃzJ©c¥Né)¢ì%ëõÑRÚ’)!¯µä©äu̪cÎ_nægrWsŠjB«eë¨ÎÂŽÔ´µŸåŒy©§=—ó˜1ߌmÊ>>¯+._R)c«·œœc8søL6}3´¸Û÷<åDuP¯´ìÁã40+â-7îÖ. ¨;mŸÈ‚ëü5ðÃcì„a»CÃe`'ÅÝøMt·#³Ú ( ß' \÷Pe™IÜ/?v¨®ƒGâ̲­¤+ð>êJ:¾QZNåн-×(jΡT¤×%@y¯#Æî~¢™A¼¨YŸ}åPÏ^ÕËe@²òX-ÚðC=RîƒÉ!êZ‚c¢—‚®SnæJxî\à‹_ |)v'X—Sj/ߌ»ýØ(wa¾gKtsXŒ<2£ahÁHà“&f+ùxcÓÍH†$3¿[Ë=ƒˆ·sñíù£®—¹kËUùz¯ñ;Ìp—lªkJ‡èK ÓÉÜî6jqUù°øE¯ûýÚÉ8êV–Y58ªÂ™˜LâEb ²SF¢ TÍYœ0íF[ÜÞ€81YõQU{ß É VÜóÂîgþ8hEÞ•£ËuI—˜GìÇr„÷,ïÏÞ¥‰¯G„èzéÈ(÷0ayëJš½6fŽ‚QŽvá¡ÏE_+ôFk¾õ}ïÞŽÉàíÕ&jž\œÈ0ôµW{D~#¶{}A`$»ÜÏ]ösê©€ƒêáN—5™Øx»jP±…÷ÎîΫ±˜íׄ³G¹V¶b, DÊG<í\Q·Yž¾S° ýž)ÄÔ_ÑLÒrçK²ne’3~"W‘:Ë ÏõF‹aâhu²DÞœé ‚yhRª2‹ËÓï ß’\„2hT¡þkš›Õ –Ï7"ÌK°~ƒ²ì¸SÂõ+°­´XYHp‹Í '£Ûƒß‹Þæ #t¢æMŸm}Qû 5¸AuÒ¡¢$–"ç¨ãæeGˆOmØ=›aˆã´–Ž+Ô÷&B$¦«ôey½v «ñÙµ‚ãäêådíS‚0€gÔÞ«"¥P8k1` .*­T!'¬|24ÚkÜï*Èš2;nÊÍÌ Ðm2q7¦VQ5lÒ6øg™!¡Ã{Ížß­ÈP½ð?†¼J»¯3î›®+eìõ-ÿe]껞VÉwË+ó}Û| ˆF#û²ÃEH{Ž·!YÝåçGYIÂÇZLàïµ¼˜«Ä•Å¢^koø_/³«Š¿4zª*”§ì­èïç¯xgßhÁÎŽ¬ sDCéqÌÜÑY"É4.-–ú“Ïxöø’òj:cDž)™G±ùäz¹;IÉ—ÍOÎÐŒñ…0Ñ«8ËMw]Í[Übø´TÒ†tÊ[Hê¼Ó>Tvþ>I¶ýÙrN÷Ó”N)ö4m- eÄxÌ ^4<“®"a⃕pDbîR‰é±ó=™%“¢/IÕgØfŒÕQ¦vûWå>8Q‹ycÑIF)±’&éë¤Õ›µÔ4!OÚ):[‘ãm•–(à˜F¸YÕ¼“ˆr*üœÀÐå7¤ø¦n°º»Ëi㬄ʼnϤI¡3O žÙ«”acïDþ¤^1¾Ó1Ѥ§’)Ä}\±0’yÃÕ¯¤ó¦¢Uu1ãU» §þN’2séÏà\_k&—×9œ™ÚýiB…x5 0àv Ž+ÿ}´,‰ö¢¡Qٻ鼥v²8ç2ýÏÛçʦÖ#ÓºÕùŒìSv”úƒŠðÍsïo/cÉP½Š ‰ ˆ/ÕV'ÕšÞwyårE5ÒϦėݨí>ÕU¢ } úŸ-á—Ë•¨¾æ¨3A÷bi‰Oähô=¶¤©å„è ¤Ù¼›¶º¬*"rŒò÷Ö8¥—¹`ïÄÞ=™Q»~1¢¬_$Mb1¦5ühÄz}[¿VkÎTD:#?¸?[KÍx¡aý}šà endstream endobj 212 0 obj << /Type /FontDescriptor /FontName /CRXSJQ+CMMI8 /Flags 4 /FontBBox [-24 -250 1110 750] /Ascent 694 /CapHeight 683 /Descent -194 /ItalicAngle -14 /StemV 78 /XHeight 431 /CharSet (/i/j/k/u) /FontFile 211 0 R >> endobj 213 0 obj << /Length1 1720 /Length2 12454 /Length3 0 /Length 13551 /Filter /FlateDecode >> stream xÚ÷P\ÛÚŠâ‚»5îîîîîN ±Æ!¸÷@ðà. Áƒkpww 4ÈeËÙgŸÿ½ª{««V¯ñéŸÌªEC¡®Å"aíd ”uCX8XÙR*šìvv.VvvNmÄø·…Fèêr þË@Êhy•I[@^íTœÀEw€ƒWƒOÀÉÎ.ðC'WA€´…È Â PtÝPh¤œœ½]A¶v×4ÿyÐ[18ø˜ÿtH8]AV`€ŠÄèøšÑÊ ådB¼ÿ'½°â,ÈÆæééÉjáèÆêäj+ÊÀ ðAìš@7 «Ðða€ª…#ð/f¬(4m;Û_r-'ˆ§…+ð*pYÁn¯î`k +à59@KA æ ÿe¬ü—3àïÚ8X9þ ÷·÷@à?-¬¬œ-ÀÞ °-Àä¨É*³B¼ Ì °õ†nN¯þ  ËWƒ?On•ÐX¼ü›ž›•+ÈâÆêrøƒ"Ûa^«,¶–rrt‚!n(œOä ´z-»7Û_µ;y‚}ÿ6 °µÍ$¬ÝÙtÀ w ‚ôß&¯"”ÿÊl;;;ŸèzYÙ±ý^ÛÛø§’ãñ+_g'g€Í+  ?Èøú‡âëfá@\Ýþ¾ÿVü/BáàXƒ¬ K -Œòßè¯b Í_øµù® /€ûëìqØÿøýófò:^ÖN`ïÿšÿÙ_6 %muu¦¿ÿ£“”tòø²p³X8yØ ßë‹ÿÿ†ù§ÿ!ÿ§TÝô÷áþQlãø‹ÃkñþÃÃãï± ÿ{eÿ›AÕéu–úÿ޾1;»Õëƒãÿóüéòÿoîÿˆòÿ6úÿ÷@²îªéÿÔÿÿ¨-AÞ¼Ž²;äu-Tœ^—üMõ€­² Ðäîøµ ‹×õÛ:üSF›,È h­‚XÙý5CÿéÂkx¨îäúã²°¼6ìÿè^ÎÊþõBq{íÕŸ*àë>ýoJ°•“õ‹ÇÉà °puµðFymý+âør¼n¨5ÐëÏѰ±‚ ¯.€Wzþ'W”?:ÊË `“üCôâ°IýñؤÿAü<6À«¥Å?ˆëÕÒÂÑùu,þXøllVÿ nîWôºÆÿõúƒ/›õ¿ € ø/È `³ùä°Ùþ ¾†³û|=è_ð5µãáë–°ÿ_9ý ¾&rþ|ìú/øÙí_ðµ`ÁWæÿ…œ¯‘½ÿ„ÿÓ%+wW××ëëÏ=zmáðŸw%è´BYœs² }WÚvW+Aìɲ;&2M³«—ÎÀâ»èÚîþð1•¡&+xÝõF"u¨ce[†þZ|‰üÉ÷¸ù+bDK²Fëo¿G³DÍÉÝV”… ¼þñÂc‰/}¤È$,Úâ{~O.~ºAö°ÍЊ4y.îüoÕ?cßyöÊy}é+_ ŸÛÕØ«áUB},Ÿb‰Õ‰1*™¡É·Ìž% D€°"1b{¡Ï\ßLc县+&2¡øŸÄrùnpÆÝÏú¬VjsºuRÂ^cLÒúJ¤)âÏû–­ô/x5 ‘ç¢1\aÁ`=à̬iFƒ{ê’, L}yÌ Ø6uùþþê²:4ÜÏrþ±ån¨qx»Ë_¯D¬OŒÄÖ“ƒQÆÎ(jeY0“ô#|9d¦S¨€ƒÁ¼ä‘Êÿo&ì|!ù@ıUÈÎnÈß=Bò“'Ïï"οªá\õûÆ æ¼ƒ'–IÈK¯ê‹eÇÇóóBB;.ó¬púüL™®ùkñtBõÀ†™r¶ó*¢¢Nš¿ÿ&œMÆÁ^懔ñ"Üzèxöµñ~!kmÈî|-/t½ê0©¡¡¶6SlˆÐ\ìŠ/íÕl$Þ(õû¿—º07Ç,é•düNj Mˆ7£¹ÉßUÉãë÷')(xÐ'¼¯òªúÉiÿo²¹ç÷Vd4Æë.gÆ--{ÜjÜF™f· -ŸkϾÔ<âöïYE±¯“V\ª(Þ«ä°WŽÄ{øò®¤Ìßõ`\s]†>QrŠÜ¦dkO(±®( 1t1ãË +ùZDJJÊå´£‘z/Ó¿R¢ ïáTcŸÖýXÍ« NMíðû𡲉%è“àx8:}7@„D¨42OËIc›bYãq«8B˜Áìîô^¥’³—ÀgÍ=)#/b†—ñS+c1Z_7ZÅä‹@ÇXéºXoR žÁñÛMãsÛ\H­XÙvÜxï¯ß`ícÏöä½6êZ¨'!A0ìž°6åð™v¿áÎ`wþ+Ýâ”ÞÒÄnmçgö %À3!î'62hqÊÙ2‡¨[ … ×GB¾h6— Å›õÒ(Ï«ykÂ!á^UžýÆYbœÕˆ»@kÓÒ3…É )+ü© $"°#‘©_Eí£Ì  {¿S!ÄÄçl\èéEˆe°%‡bºÊ#S=ºrŒ‹E’k¶Òœ&×p»y~HO&ñÆ¡{ò'‡ù ¿;ë•;ÓÏíEʇ+Q¡s柡¯“4(N­5ëy^°ƒìénÁ˜sƒ„Xz²^ã?g>®lŸc¼t½¯–0'³)M¨|Þ|,qö¸ìBË& O̸Yè+eu•ø@ n2ª’âxè…”[‹SÝ–òCMØ«FÌD+ÕBçM tÍ$;É>Ð# .Ĩ^EC mlY?Wvÿ>…NªÂx\gl‹î/ÎOÝîÃÅ.‡uë,n‹G“’1Ó=ül·Ñ>ÔKƒ«‘<&[ä¤ÞÞ»5‰@]žÐN9ÉÅÕv«.0/pbë&Mg¾]E†v⺤w/¨šRt2è6}=ÒH.Ž`ò&Ë”To5Œ–“Û«ÌÁuz†Sï »Þs5¬ÿDMÀò¥`—R­8{xT¯‡QËd•­ØÜ»M¥~?ïÇÄ'”ªUR_%Ù†õåsSûL˵nðÑ{¼Ss嚤e‹B|èæ>ßÇH,­3åõ•–½ÏÜÉ¿8Ò©°]%^~º¥ât÷_]‚ ×a3ZEÊn‡Ý®Ï2q,Å}½çP‘(¤¤È£}ñ­Xõ ¿œ‘í±ãƒQ7,ÃlÝÔÓ­©Y&ojÆf2i•…;à°šÐ°ßø5¿ÏüÊðÀ:Ô›öÉflÀÇ»Ô#„|Ó¬^Ò§z8"7ü§˜ÇLÌÑUÛõ|D>´E?ál¡#JÚr­ç"" Òß®,²¸·–Éû‹°\˜Œª{'ɹÃÊddò´l öûƒÆ(Ù”à7«ë?ËdÖ-Œ"ƒmîÔ½¸åÃòpýŽõ¿ -Ë‘Íá``SrIþâY¼zܻ۔7¦œ®0B¸ãHË8µâQ½(wåäSl•|ºjpcƒýõÍ–þW™®ó[ˆ¨Qõÿh²œ[_S ¹&µ€ /m䃣w5¨0Êcèð]÷^i´r¯¦¤)©¦¤…CDZ׳¼yƒlÁz•’¸õ½ŸË8gQˆØq­Uè Ä¥¿ÙÞ†mô-æSø¯™§ü<–¦Õ# ,ß™ÓÐo¦F_/ÙG(Vµ! β.\ˆ/€q+\Ó0Ì~€W‚º‘о«=nC$TáY”ÑÀiÑÅàÍÖðLÍ–mq’ÞçàõÇ Åš“ÕNœ–*IF¬ó{¿u­×$6¡ˆ¦8th8'†U|˜fè ÿ–}ßPtÉ+„¨EH÷Æ´ùZp§X÷NüÇ«âKˆ =»Ü°ÐX  L\Ù@н6]óy†PŽp‚ 1xaÇ=â ,Å‘¬ß à%úˆâ’8ßë2U$¶=áÃ!¥ÅÔIR ÎÑóž 8£Å9ŠÊU¡˜¦²4šê@1Ý@DÖÒØestVåQâƒÖ{Fù1ô,/¬YDɧUm6O×p»Çêøwôõî÷ü*EÀÑLRüH3H=9‚º§˜V@š1Ø-Î%T¢9°*’©i:!û)"¹8¢`B¨…Àq  ºšnÁ´{;b¤®lWnÀ²ü^ËõÙÛ‚ ¢n W6;!D&KbW6‰o…&Θ´º>IO„r—•(ŠšÝÒ8$-ÿ.â3ƶ®+n°×JÊk·èÒÄ\MMþ¸ýÇê%‡^!Ú´*áý¥Oµ—À›ÉYŸLóÆF±ÏÛ VPâZò´iÂ/ðmI?á€`(~ì lÙ`ãmݺr®¾+‹* oï¶mÁ‹i&œ+Нsø´`Ëq•ç¹›l6þ\ëi™Ç?ж)åÊÒ0«öélTÜ&gÈõõtžüo› zbMQgæiÞPÈ?‹V“A#7»ÿ-tQ?v¸¥Øä‘ÿ¶>Èd… …z±}™NÊN,ˆ'C8T‹à‰´õôGm×…xrA6ò'‹Ê¯,8VQá‡NzÐ_Uè/ã\¡K¨–Íç'À¾ï–͹ü`æ_O«wŸø¦|F©I?s¶80E Z°;V³‡5Ïnü™¹í|÷ð¦ŠßÝ{…Úõ2mõ*ÕÅÆßÊ¥‡‰§Ëû=ÅÓªÉlöñ]çÉ[æ*èï<†= üeÞwµ°Þeúj3 ZÐ!©¬î÷g— <ÑJ÷ƒ^9ÁÈÍ‹^Ÿœ°LyCcšxS…N(2´ ŸmS‚’±Þ4ªÚ[M߸Dªõ7ÄÚq“îðX¦¹BoIAÛóòâ+ A6ã!OöMš¬Ç™×OtެXt£ZÛÝÒ­#‹Þä|ÉxŸß\ÏI}©êsyv2…eàŠqH*}}#»dM†¨Y» H–€`¾9f)O`ÆaØj±(/j±Û0š)qAÒÚ'PJ" ÅìÕV*³Ð§Þñ´Jþ¦b´ãMì2Rà §@ŸöÒöƒG¹¤\¡ÓªÁßÏŽ¬“:ÑGz [g¼;Á³Õ –©ý©ÒPpìl¿w¼°/‹£ã²Á!`ØI<mî~'CäWyBŽ;·yðõS¿é/ñO¶ïÉßæçùXŃhQF5cQæSßGdr º=‰ºàO,Ȉßäûì.•-Bñ±üß ×î‰ÿ.ˆÚõï ðBß;Óû˜± Žp‹Kg3¾õ}[ã fXæs:Œ-Ú´ÏJîÌ¢+]çôêý›Û¢¤¤ >цþ« ypBLKi•塯t¸¦0'äI¥oà×½Ûnqào{ý_I6eY“°[/ãO¿™°‹õeNJÒ0Y6):'z(—µøÞv.Õ ‘ÀŸ½[F#¥Z”8P|ÃT±ÙÑÜŠ„µ„%r¦š¿KÍëQ¯E¤m€ùj™ Zùã ÷XÉÏ}±L¨qº›“ÛžûY|k]9å9f¦}<7ÜJ¹ç S¶¦2—¯=pC7Ðv1}è•÷÷†d•>¡Òeñ7\·@¬O™¹* â¢ï„õìÌwTÚ"E_æ?½¼ßnœêJ+Îú}liÑG÷Ÿ,‘rÄï×”<@µ!x‚I/HJQ÷‚¢œnSº™¦KÔÎk|+{û`¼Oôtk:“ KJ‹*”Üéw¤ 6î F“wŸá}Ñè{šH§ËÖà´ò¢jŠ#çº"×,g‰yºLÓQLDdÎW{ù™EꪻÔMèeRÛŒÐ&ʰu–ÛÕ`è}ËãôÃh?BVƒY•¶”Te\§ªÑ¥p)?3úk‚¼SL[ðT|Aö _õQK¿k•½N¸’¡ÕnCo!¨Û¦YVºÑ.~™uá‹6 ƒ©ü$ YØÓÿ‰5ÒPµIwB úWÍ-ªj¬&<°Á§{ææœ«mÊåÛäôùÙ`“Ç<_ö½Y¦WWl¬NŽ_4~RÃ@D¨œ8ºÎ¯ª1yFèþÊè£à®Ùo˜!ÑÙbFv¼écJß\¤3.%Ÿþ‹!÷Ù,ؑŰkõõÒa™„H~ôàG¢¬O†ês[쨸.3‚Ö見škVp#í]P‹²ÚÜœÐXšÅ“P”`åøâ·)«ü4&"`öÊv†—>n~aÁþ½Ê³_µ°£ŠmÊgÛJº%¸ÎâçεP9{E猾X7.$?*f¯|Á#«"¹Ä³:Y"|¼G÷CøùþŽc²?Sbßõ9 ·ºs²ú™pDÑ£›Y‰ÜùòkØxªîZBBJúc¦FèW£•5a.}A¸à¥e1+¦š:äSÕÖI-ð»®/бå9”=s½Y_l´ÛVwL-Ëôú–éë©1ž•w ¸Q1ÉÛa¦8ª®U=>EÂEá´ø®…$¬¤ˆÍÙ"ƒüQXÞ y}Œ8\¢2žÊQo™ÍPýKÀº³¥H!Ñï@P&¥¶–]ÃÙžl~«ü~zVk?ÜË0ÁEhXíê÷Q¬F’3>=ÌòÊfó©Öñ ÈÐÑ;µh99°xú)ˆ[çŽ 9^áEÞƒíæ;º›Î ee¡i‚xãZçA“Äó£T`åñ“sñ¨ÆLëG¸Y…Éï§WDE¯°—À:Ó5ßäcŠÁMqG1"ˆ†$·ê•£®òIˆ‹ƒ¤ –qFN^ |)Xê¬pšªVð—°Šdï iþ¶ÞÈ­Þþ:üÌEÂ-tz¾å€=±1%²Ô·ÎRóî¶)Ÿ—ÞR†¼~-7DÝÄ<ÿ@æÓ“©eRú†Žá¿oÐß–áõAüîäÇ»ÛÊ)D9òå”RŸM²¿*o—eŠ‘é6xPÞóŽøÂM°ÃüñštÜr=¿ÉKÀF>-2⢣Rʇ—þEËáæÕFlÃFßûÜÇ7ñ  !oÂbý­IOÛ‰ü;) ÿÃáîõ"‘ì“gD4…lÜÄ/¹J<ÊÖ@”´zW[éý™/CÂ8j“ï+•Þ)ïW¹b£ƒ:© ¶Vµ}ñΈ³ªæ"‘ÄP¥ûÖÝÏG©!•4+´îñ~?[ল#ß“:ÓÕßiǼ|·+¨žØQnè„ÃÆÐ± ©µ‘zÏpÐõU|/•k™×Ê6›¯C›¡ß¶¯êR®í¥·£p}ûIñ0×0,õ(ÐQþ±ÁR$Ÿ‡fjë@5(Žðœ˜­­ƒÌõ¨äš08@‚ _a Û0“l¼½7ŽÁ—Òýéì¡Mly+1wnm ͕¾ XŸb£ ”öÎ+÷ó•¿ËéZ7§]‘mo~ÛèylWýº»’‹ =J\Ì•…–dAŠÊFR"UŽßË”@3z’§Hû"‚«ßùu¯–¨ñ{á¾^Ô:O^ätДIP“!g/ÂUŒ@±Ž ÁqšÈ#i€QnÅPó‡,BG?lE4Ö™Ž9Ì{RÛ3aöeqWÃ>:FmR¢áatÒÌÏ» ú3Gý« ’Z‚I•¬©õ$È{0Û×rÃú×óOEU•÷u×?U žé1–â¸~&õ\÷$˜ ‰µg9EÛz…ÂǪ­´eýÊQ°Té«r5Ê+­[rÝêÀIlö%ë÷Ö¼ZœK3c´5ó½ò‡ãÌfcý,=ŒB¹Z!ÚÞ)¨ŽCsjç쳜&Vû ¼ˆ„âñÏd}{eÛX«Õ‹‹²p0!?C¥"“ºž€€çâÕebãDäróØ½º÷½žÙ;åÚe‹_HÌwNqäRŒZâÞÍK*ý¦üÄÕ)‘‰ˆo2 ëÖ)gÂÀû“±‚³ÝC¡·g˜ÑD XI€¦(W€‡kç1•¶Õ„¥IïC½R(qû‹m~p|¥JW»Þ¯[.ÇtãˆwŽ¡…‰H¹/YÚž†嘫¦jÏrÎ[“L%pUé"ËýŸ 8‘y÷]ìœhƒÝ*M+…„/û*h³¾gø< õ¨.tüÜDVè—ÖÅl†žÂöÜÍtëœpcJu*¹·6Äð i'vìoÛ‘——ßWÈu«|—ã ^hÅSKO°¤Ýöõ³Üq-g"´›4öe1Ÿçy ‡XÙ‚W…§a8fø>ó!ØŽÄy}ëÓ”Ë$ÓPÚtèlÈÆ€,ñ(NDxÈ4³¹5¹1ËÛØÑ‚¸P+»H ñr­Bjr~]œ ›™@w$ÍæÇ²zÃÂßû¾,$7;ûÕ:âžûÌgŸ¼”ŒÍ½$‹®oc…#ûKj Q¬#6‹ÓR þÚTô6p#‚¬tºu³@ü²C¢ßœ§¸ØÖì²õ‚F`aÒËrü+f)AœËŸg߸ö7ÐúXЉ³1¦õáycÀ`ÁŸSàŒœ¼;-Öñ;Ú¿³5u( òrЕ­¨Îp^cøT:Ä}†öÊé7æ…—”š‘wG,ÕÇf9Ì)y‰úU©¹XóQ­YƒKëðíé&mEsžĘ̀Œ÷Àƒò]-”„ ˜5ÊQ0ä6i¾»pxÂzGTýX,ÛP{¢:6Êxc_ÆÊ>€‹8üg©çCL¯ ÝL­ø·¬ÂT‰5…hw~â•MO¼kqÎâ1U¯‰øáÑ\ŽaÑb†Vãèíµåä°HBlr^E_Š*œž(Dæw=_&íÒãû«ýF)oVЮJy{â &eV”ÆÛîïç¨Ôœ¬:þZäóÚûÈêèïÓqµiúË1*îEa7È-—‡8Z*rVð ‹íw˜$¡TI$gáSsÆå®¯®ÜÀ‡T\_´bG"î‡Å^ß¼nŸ¸§ŠŒ@ÀSEghÛz÷g˜ #Sƒ·Ûd}³ÌU˃£ˆUÆiH*>ÛÝ: ‹5ÃòáŸÛûæAÜ4-ªe§ÊK òå)‰W-#DI}Јo~8CË×õDaçUµRÊö*Ž5nª½¬ÄsªÃv8MWµP¨"4—Ë`^Ïy½)Sf}‰ §búØ+T:î<§ÿN”‰½àm$j§–êK2¡[­›ÂÄQ8M6¯…#·KDI¢œ!¥;”ITʶWz$FDЂ d»H ?.}ëˆÉÂÏ€{x<Ï‚¶ÂF¼kt®þ)‰ç²¦¶¤5oñÛQ?¯b&µôËž:ª}—ôàP—+Íë<ån9*êq¶k÷ÂëMLÓ.VÞ¹ø‰½-âmšCCÔÝ¡”;Éf¯,“R1œÓf›]–Ú¼ÇñÍf¢Iÿ5‰þ¢Ÿs-¡Ü {ø]qÖ|;[Š’Åû¸3¯Yˆ\è¥2 gu¸W/ß>¹8g\\ãPJÚ˜mrØÈ™=•¡,ìqJIÅôÖ}vŠ¥`s²¯öGlF¥Y¾‰rÿXv\&áŒZ,X–¡šž¾½è÷-Qåzדº  ¦ÂV%²ãÌxRþuCÔçw¤âu“k"Oí”–Ôdï™ä‡!’´KˇªíJ{m1›¾EËú:¹©·7ËÎ|^í7¾;Gµ&:Šwø‰Œß¹U¬TÜR„åS*Rƒ0s`°í/¿ãa÷G&ý„æW•§œÉ J¢1k€¦¨DZD•O:êdž:f0|µÛ4ËPø Ÿw Æ’êJ ;á™o#UTb*|é7SÃM©?|*Š˜kÐ –6S>nºóÂÓ¢8¼”;`&‰m .Æõ¶MKC2Þ6?~¿o ìT›£òÕCüºâO„ø8ïÕüœéëG< †Ìò øÊ›³g{¸§ºçeÙšø¿›–¥·KªRõÂÖçÝu–0Ûå‰cUâV7d_i#éàÅ>ÕÊ6%2 DÀY‹)1’EåòÃw &î5ÊxÖÒzGÌëHÍ¢o¼çdŠ»îØ§ð,³í\[#«¨jþø¤Ópb«ÓñÇy>'Ц?Çy/ fòî×¢p§‹Y–Ö -Ô$¢i¢ZÓʵ [Í)ÖöHû”÷²Óm}ŒkaÄ7ìd|pù4’|þæÉ¨˜:qú†ìŽh?gV¾ ¡‚`Dƒ<`ÖÊãCãÙâ釀(P rö-NÖÌ{Cy 1ôñtd¹q:Ï…ÇÕõ÷'œ"‹«÷26Ðæ×2|ÚÑkoOe©OO*Æ>:ˆ¶ÝåBG ‰…æÛ„DÜý Zˆ'ż®n=¨¢ÖC“œÞ‡Á†¥ÿq{b˜Û.*Qù– ½Ó7/ ¹ï>Üô³¶F%3CÒ)"žrx©Ÿ©ÜkáÝ&’``Ÿé´ åV§äg».„âa°ö”޲ïÍŸÞ+b3²ú°ÛÁñ{«¼=É•;çr)]VòM±¥W+‚iûwJXvÛ£L‹5(á ŒÑM¸Ý±769CžòÝÓM5Ö(µE%y!Á]C„4½çÙ¯Z½¨âë[‚"!Qvrá½%h3’v,Ò3¾UV¾œ†'nVßο#þŸÌÂe!í—›àY¦½Ql õr4Y•)ÇÊU)7à 0sïµæiH.…«ÜÏUå‰ÃMU|PõY{ò»|W2š¢@::l¶áés´›ãjšlœ–ž§ÐksRÕ\´¸…k¢×F`ÀÊæ‘Ø-;§YÂ¥›dùô¬C–a¸ò]¢“²œIÝiZÏ€™g7(¢`‰ë"ëB·NˆžBó5¢$¢‘ºÓø‘ù|M€¥g+-.H³Ò#ù|ù8Rþ\iI*âp‹c­Œ= »M§ulûÛÆspkv'¢¯-Ý»ž%ÞþF_g•§¹f2ü¢KUf>XFvÀT£~ß®NÓíö0!T¶¨^`¯¬.ãt8æwÊGçz“mˆÃñÌ3[Þ3™ÒXpLHùhDƒ>2,ØÇ'j³å–cË{dûrϤTu5›÷ý¼÷ Žxp§3ôì"ÿ¹Q¹_s›]ZddÃhªzŠYÀ !›Sl$ɨlj îX.wG/ÍÙCRgt+”Â1õ‡ ÿz3U?ò0ÇÚò?-l:³ƒd©^äÁúÏp^\ÀÌ„é²{N}¨`šàªj,ò±ó±-ÙX`:IÃ$ßðrŒ'Í—T¹pTñ˜Z=´Ê %í Ð Íça_¦¨M5âråɤÀ‘µä©0¯§Í»–eMå“€HÙ§Â7üï«¢*¦fAPð🭸%?a'ù§ÈRhv¶Èó!\ho0¯ú?Û’tqÄèsZ‚¿¦ýÆKŽÄ*è‘?»¹ïW»&aC‰®3 ñ«§¯€È},‰H.Ògÿ^Ç»åŠzºGÂàr1Ū1_Ê•bLvw9­é ±É%‡Ò ô8ĺu¼“QQ*„î¥èéÖmîN•×L$fP¡ÎÍJí¸ˆ%Ó©Ñ¡Á˜~h{ÞÞØŒ’Nìq»7üZXMuètÙÏšTçU%Z¯NB?ª¨µ Äúÿ~®‡þ;­j„zJ4¯éÅ»uƒÈŽE¬!"/<ñQ­Y«ôØt²K§5ÞÝÓTJaZʵ»ÆQhP¢R NÆoª»ûd3öø¦¶U?nÇì=f%GçS:u2›t¶°z ‡QÆçãOÌÆo&Ñ–û ä•eöÏá´õ—Ft™)‡9)n–&BúAH¢±4°©ëû6&ý&W8ü;à|¾@ }P©>±g$³ö“ ü±PáÔ^Ñœì%[˜ƒÙ¢ôS°ÂÖwûÇ[_N»«f[ÅÁ4STS5±—ñͼHæÐXqS½ub†¶DBë̈jû/jÌn?UÅ]…CT?¸>TÔ%‚ñÇ1ƒp©.,¶7<¹S›1S]+ vº²Ñ3›ùügù_~^\ßä] ®†4ØQŽtRú¬_бãBël¶]ãë$ܰ»[Ê“#š Þ©½hµt9£`Q±¨ J—wŒ£}LÏ1æm"ö/]dÊí·ýá‡[°±¼Ä¦H³vËþ¹4ì“ÜÞ^Î2~[©û‡ã¬~QòN—<¢¢•[Í£:(Aœ±jÍùñoó©8”ÊguçKŸ,á¿?ºdJÓá1zi¡Þ¯x*ìy¨´F¨ ” :Рúòd\„æýõÈÑVaP9,b¦7f\ü9Êžð\äÅ?GøFžäM}PqÇÖ­W2®Mìdó¬-“Ùæ‹Þ{AõyxÑë_¨‰‡æ"t÷w+_2AÄá0bßDhÁv§”†BT0À’ÄÝÒíͽö~õd‡}6˜0 ¶J:•2Ép-I§¢+‡ýZY 4D‰?søÖÓWgSŸÄ²dä‹—L˜uÕ Ä‰ºÈvB¼å^,öýF 'Ùß±vUÅìoI ëCƒÃüå=Çš.wéøDjäE*‚¨õ»ŒÒšò=¶Ðèx¬+··Co6L Œ@¬#i¤äîµ~d¡’=_ñ·ÊQrÈ~G.»­å­¤ãsDZLM-··"V<^.icq5&W«PAo£¥Yò'>°“>ÙøŸø’7W[ÌwÌ"“¬¼ånB¨ HË÷㲬BFy“^ûÉ–Ò"o9§„ÅŸâûÁ2Ò•cóñ šj‚ûèš ÔIË1 V•†…±™ÜŸ›¬¦lFC* '4dN,ÕT÷nöGa‰†Ká7)áDÞÊyóY2î¤ 2%dŒÍxê…@÷%™Ã=›Ñj•¯v‡!ü±#¤*šr+ ã¼¢B’'›@¹#7I¤tL‰„`ƒ×ì–Æ_„úN1UµjqFV-b¹€¡'Ôï…,j_›˜…2{dÚXej«**Ì6©°Jm×_z\K XË„ðùDG¡˜xºS ‹óÇŒçëéG}=d!MA'G»#>xº3­Dh²ÿ¸þVã´¸®YÕøÙŠbvòá¼÷†$Þ$7äbœfcgšï©×‰qóÑòk^„.Ïq¾·,¬]m”!¿Î6}Û ›Á|¸Â£œ+P¼w”p•OD¼…ôãR_^ÚìDJìÊBÞ¶]¶zǤ@sYÊÍ€¥Ýï…%Œ”pòìÀ:úœ˜”ac˜²»o;Èôa-_gY«D‘Í÷,{Žap€˜»*ãTî¡ËÕWa&gô9ÓLIùZæ&onå“(‚ë•IföL3ò’®×¤f\¼¨mˆÚ0W€ ¹Ú­ç¥Nà…'%ÛÉ‚@®¤5—ÐÕ Vò>¨z±[K¶Ë-ÏGTb[#±çWs“ÅVw{|; g±-" í%±bât×OtyíDc£V ªœ ³j8C#bäøób6ñ›-K)Ò¤k¦©åÈZ˜UÖ·‰ëy#™LÊÆ7Œê6X34ls*ç`Õ\XŠ·n-öpƒ.ïêÌ{¼Ååâjµ…wä¦ãO¡¨¿•š«!^¤õ±:¢aK> endobj 215 0 obj << /Length1 2504 /Length2 17896 /Length3 0 /Length 19340 /Filter /FlateDecode >> stream xÚŒötœëû ÇiìÆÉĶm4¶LlÛ¶mÛjИ 4¶š4Icëdã·»÷ÿûÖ:gÍZ3ïuãºù<ï)(Ó ™ØÅílé˜è¹"²JLÌFFzFFfX22 gkàßbX25 £“…-÷¿ D†Îï2QCçw;Y;[€”‹5€‰ÀÄÎÍÄÁÍÈ`fdäúŸ¡#7@ÔÐÕ K²³:Á’‰ØÙ{8Z˜™;¿‡ùß#€Ò˜ ÀÄÅÅAû§;@Èèhalh 5t6Ú¼G46´(Û[=þCAÉkîìlÏÍÀàææFohãDoçhÆOE p³p6(€Ž®@Àä m€UFKP1·púK®lgêìfè¼ ¬-Œ¶Nï.¶&@GÀ{p€ò'€¼=Ðö/c™¿ h÷ÀDÏôÝßÞYØþélhllgcohëaak0µ°äÅeèÝi†¶&Z;Ù½ûºZX½ü™¹!@\H`ø^àßå9;ZØ;;Ñ;YXÿQ"Ã4ï]³5±³±Ú:;Áþ‘Ÿ¨…#Ðø½í MÖÊÖÎÍÖëo`jakbúG&.ö ª¶.ÀO¢›¼‹`ËÌ€Î6FFF.VÐt76gøƒ^ÅÃø§’éñ{>^övöÓ÷"€>¦À÷X/'CW ÀÙÑèãõoÅ,ÀÄÂØ`4³°…ýÍþ.šþ…߇ïháÐf|ß=&㟞tß×ËÄÎÖÚã·ùŸóePÖTR¥ù«âtÂÂvî/:V3€‹“ÀÁÆðù/Ë?õÿ¯ö?¥ †çÆø›ð“­©€ë¯Þ{÷¿2\ÿÞ Ê¿O à¿äìÞW ü½ù:ŒlŒÆï_LÿŸ÷ÿO—ÿkÿËÿÛæÿß„Ä]¬­ÿTSþ©ÿÿQÚXX{ümð¾É.Îï§BÖîýlØþ_Suà_'Yhbáb󵟜 ßO‡­™õ?m´p·pš(X8›ÿµBÿ›Â;½µ…-PÁÎÉâ»@ÇÄÈøtïçÍØêý>qzŸÕŸ*àûqúoH1[c;“?Î3;ÀÐÑÑЖñ}½˜ÙØ^LïÔèþçfèmíœß]ïåùLíaÿ˜(;€AèÑ_ˆÀ üqD~#NƒèoÄ`ûq0Ä#&ƒÄoÄ `üX Ÿ~£÷x2ÿ w•Œ¡‘‰áoý{²¿Ñ{r¿Ñ{òÿ Î÷ ~£w*å߈À ò½W¬ú½g ö½ÇSÿq½£ß¹p½G7úÞk4r44¶¾¿JLËYþ‘ÿµùÿ(ÞÓ5þ±½“ÛY¿OýVÖ?$66¿þ± &ÿ‚ï!¿Þþ'ó;ÐÆÄÐÉü÷˜þðqpy?V¿iÞçaú¾˜þ þ¡´ø„åèú¯¨èí\ÿE÷nbö/øžÃïð¬ï½6÷°7ÚþËâ]fñ/ø^‡å¿à{Ï­þßûôïÜß›hó¯Üßô›™íÝÕöýÐüKÿ^œÝïdÞíþ£~/Æþ·úÌþýiûŸy²2ý-ýï4Yß³¶¿½ìþ5Ÿ÷¿ ¿çýNîàbç 41²þãûíü⿤LL蝹–é½SN¿Ë{Oß hcñßµaûÃèúï3½çö›ôýÊep6wþk†ï…:»ÙýËá½q.ÿ‚ï=wý|ëö¯y÷vÿ|§÷ø|¯Úów—Þ™<Ž…úϵeìâøÞSç?_,ïwÚÿðŸÿ€@w 1ìò‚1O°ecp×}½®ÝþßÙ¾z:ײc·Ë#"t U]và¦ã­PÊX?òÚ®åà á‹×ñçfè°Ž$ÅÎ'ïgý¥™ýNØ¥o‡§‹…š†ðaðèT¼_¼Õ¬À?ƒöH‘å;¸p"*¢Ý» J¸7 U®N„.ì+Ô±KÃ=WÎÒŨFë”Í“å|Ç"†r¦Ãÿ@zîŽ4s;‡š7ýF(•@ësÃR⥵ÅûðÝs½Z…Ù©›[ üub†ÜKø0U sÑ«¼dÓq"íûÇîÉm›d&ëCJÏ}9¥{Ç£K=r²inJl,pôOQÑ›’‰6eD‰P¬9çkR›îŸ.9>9ÑÊ'Z¼É[s4±)Áqí÷=æ5yBSb4jP‡)™c¤4Ú°…áƒæ5‘#†í›<Ç`n茯¯£·´s!ˆáîöß1Ënt 8ZW![sý4!å9îz´Km~~mœe7Üs0édbƒ­šBÖÒÈwXß‘’' Gƒõ±)ßå–ë3.$N IJvfþg–¸}ÝÆýc8ª¬ºÃÎ!7Øû𡟻蕪•oBu5ùœÙ(Å0’Ðq±m`aÛ“.%¾ms‹n †mK…ǾR†^©×ô_M~¹:Ó-¢c䥯4SF‚—³NFÓÊ•—9›+ˆeÃÕãj@å.“î †ôþ%üæ5X ó¯\£ÝÄÎ}rèÃäï¶dÔKs?NmTz¥Ð8:õ; ‰è²À†ãÁöÐS¸qn‡Ø-ûÈÿÖ°´fÿƒ€)@Y­Ô'n„»´w£ÒðÊ„Ñ|pÑËÏ×ê;³ÛéD^êc(FˆÛ°/x`êèìC.—D ¹´ïôéÕ</‹ò BˆIO˜ÔȦ uÔMnÈ.¯S¾SÀ•žœ¨kQkt.r6½Ä`³²m—»ÖÙ¯âÄžsYOô9ÊQI²×„T¡«¼cmÑ¿\_æÌýIx™>‘Èëï;­wŽŠß™¹Ôìž~4Ú²\¥q† ½KJ,8BȳQ¨¢r§xÜ#gf÷2°7]0GŠÀ¼›~F†Ž±€x1»À—­šÖ锃®¾B¼ hPË,ŸÅtŸÍÒþ2Ƶ·(—†ïË@:JãXëPL'ÿ˜Å 6¨58O•öZLƒa£8HÆÅ¾½ô‰ªÐsŸB4l†˜Pƒ±èb¼=óæç´Éº®ðQ*ú,‚ÀH¢Y™¡Gë™PiãŒÞ^[¥TÜ ×ÇL6ú#‹š è/RîuðÜ}EkÓgš>J?¦ÍFö¹|ë¾9Y«>bxUêR„9 < P›nÞ{Ç¿¡,»–èî„ì„G±µÊòõ<ž®DÉßòlìJåF7 åQåN¥W…iÂ@uV£gâ«F ð½@zœÅ`±Ý`Ø'Ÿ·+å©Þµ_¢‘0vu”£ÅR¤ÒmeU4r¢¥Ì8zr§ž("Ý&Z3#TÇ’ôWÁ«âQêS9UÝò? ².‘]®ža6C“?\¥GQäHÂzlu›Nò£ø ^"òa3?UÍCoÇ*+·âFЧÚV®7™ú a9F¯·´xkÙ;+q~€ \µøÍx²v³ðq¬ÜzÞo;‰}Ö<“R†yy³å[^<¡Ö–«êuæŽu—‚7•ÚH;¢ÍyÇbU>**y—!ìê×R±NéÁúøE‰±~Ë8Þ^J…1ìƒÍ¹ãiÂiq–Ÿîp 0ÃüGÓ™Óp^š Ñ#žËÈàßÒ9Xáß@0~²R&âuÑóþLäΚSØWÏîÒ¸§¸Njø„6 DM H,° ˆâs§êµÆµÌåÅS“f½°_rÜqyÞf‚äÇé™#eY ^(ëOÄîŠXëéAMø¬´Ò9p vÌlß6`:_K¡óÛ¼#Ýd#“ŒÑ¹60(÷ry­8;¡ëxR*9F$’ŠÚXÓ”V$±:Ù¾ÔÌùC-ì«¶`,ÒŠãyOR¯Eƒ£UGîÛG bÉ)ÃÓ&"¯D‹ÇÛ"õóþ~gCƯÒ=mU¿ýáÈÑ%¤^SPÖ6²ÍeJÝ€LI‘ÿÚM‚Å ßÿ•§ Τª}ÍzÜfç3ó |’êöÕK/ûNºÈBÎ¦Ê …ÒuôŽå,HžÝ¾l¥­Ìk Èy·ük ÄÁ`й¼¹Ø} Œ1ÖöØæ*)XÄ`aø¨‰QÒ*MÃïõ’0B ~fŒ?)&c_ñnð@¥=¹zóž²CÏK,ï :Ç8h„FóoÅÙ¬!«§$иvM?àðajæµ®ª“^©õ%d/Aùšª›Ô‡L“ù¸Õ`p­ÏŽqE‘Š}üeÍÀŠZ¾•²¶B7w‰Mi‰N»R¬æDHŠˆÅ‰H-Tøs­hRëµrTÌ©Yn&Ú¦Ùø[å=ýê?|XøÜe6¿bOùgÜÔ÷Úýã‰Ïž¶éˆ=á¡V"åõ¦êtË)/AìvÐÔéö4ô·f–ÖZùŽæÎ¸qS,ÜÌ%ÎËËä¸âDn¼·„gˆ§õâô²sˆ^XÛ<™BŒ¶F‰µ®ƒhšrS4RiûuhCìäù¤'YOñ¼p¨?Iì‘î¦ëÁmq‚®-ëéUöRà@n°É«PÂ8÷çó<†r$ì¹z'æ‰õ0kü•‹ÑÜüµˆô†¾¸‰.š6Ìþk³°yËŽaeÅe0ª•{;¡Àɸ—^ígÙïF¹¸WËm"Gr–X”,3‡{`¨äž?@òlBÔ­šœåžÙB}‘гÇu©\;$j‚fµ4€“hDZÿ¨v1Z©çœÊêcÎLØ” w”¬ùTB+ßÍN±U‚½=b]ØDšü*'ÿk…ÄÝf\^%÷ƒÚ>]'e‘TK›ÖM˜îr"Ý:ÏÅ5ÁEúVÿŠ x¶Óiº¸$Q™f6}ÇeÉý£³À²:Çeȇf“u dIQî€j“Ÿ=©½îùóB/ÆÇCéãÓ…Ïš&ë”ÁÔܹ÷v1&á……B² FÁÑ¡t¶Å aGuΉº$-%ÃÖfäcsÀò´¤ÃT#6´jy1¶x„UóGìuk×®N\}*Їyì R{‘¬Ìác|dš ÊvÙX˜ï]+ OjQ‰òöã#ÎÆ"ßów³býk9Ùª5…(‡(ŽÙ¤2á¨àqêÐ’çøÆmÄìcc· P #uê~RP}Õg]Æÿâ#­YPGÓb²À¯g¼¡Å>ŒÊ(¦5ìL;ú‚ކMUmq ôÈ6ÕÌå±Ù¢”âZp ³½R §¹oÙv ö‰=‰*¼ñwäIÑ?ݬžèµÛ.÷ÂiVòcÜZ‘lÕº ôÙl7¿M& ¼l;·ä|Ä_í%ÒgtÍ š86z•<›À'îÒ&Í ^êÒ,µ&tGЬ"y~¾±Eñ‚8bT:Q­í‘¾ˆÆ£%ÿ°r„KX¯ƒ3\¿¶÷­IF¸¾j•Dj¯´å¼÷êuà¢ß“c€2¥"…Š’ Í¡%#JlX”rmzð‰©O`ÞÒy€bŒ“›2úS®DAÞ 4Èx {ävX:oMAc…ã-à>Û=wÉ2à+_x³_]'WϾçÀ§/D¥Ã­Ž(@ ¹ 9{¡ˆTV(U']#³P‚:îÑw Õ+µöh†K©¸w¿1¹?Œ$_Žî$@©õ¦\‹‰å´#c!.ܣˬ¦dpp4ÒŒ,“BÔÕȺnBÿÄÿùÑ»)„Üi0z ¾–]ƒhÐŒÄÖd:L;É e/8À–2Ød96ÍnÞŽð®L?ä$ÙŽq—w½³,¼o¡ Œ Ì]6þSl÷u6©‰¨ÊO­äøÙËÁ¶­À$ oyúb\nFÊ`NCÂОñÛ ™£ÍD-™Ìfç`Å ÏèìåÈ[«“FÐÆŽé„Ÿ/WÔq˜ý„ˆ7m5 '.˜Z@;YCl¤ñûäEè>Ê Ulóqaš±ñªë¹ONPBº4¾­äŠùÔ÷­8sb"ûÈå]/|ŠNNLè©Ê,!ì! ˆÇÛ€ô'ÖõmGïêMXSAcµQ²à…)íwd1üÈ8rÁÏkúÌk#óV/7èhäÇÃ`pG<À ŽÅDÈ’O©÷ÑÝŒŠ¦}  ·0‘O„Ø›gY¹@"åoæØ$ño<1 ñ¶þ,Ü7–ñawT¾V)™˲BQe«Jü"x›²z>º¡&2Â.í”né£Cä€ïRÔHgó_”c½ÑE܇ízJ,ä¢ý¥åÓ£ÑÓïLë÷Ö‚˜7ê‹û- 8f CÉð ÑÜ#g&YK8¢N9¿¶û7„²Yù~ç~íÎu³'®â±¼¨‚x¬™2PVÒiÕ„@l Ÿu“ÛÂ|iH°Ú÷@«òÝp‘$9¢äDœ–ãh¸"m2|Â$€3ã9Lb”5ÅñZJ|gÁ‡IŠ Rv“´µ÷m`<…~<¾ö¸Ù34-ò/Ïb»¥WBÎFÝ„ÜHƒ4žVõ–¿,§ù¬ŠOÚì8÷_‹kÿÒüƒÍ`"¥ˆvk›aþ\Ï‘‡M‡k|é‰_1[nQBË:¨zó.;Á,-ÔžÏ+tNi4ƒq^r’Ÿòk³‹z÷\‰§w–ÊDó®Ú'ÙÝ:SêÍ¢`ö~ è ãµ+z¼iÙJl“®tnµÔû²HKqáW©Lj…¥ða{…R¦!ùØ9ÇøJ¥`Ð^{’$ͬæp”! ù¸fC¾]°œ_èb†tO¢ ÞSúœda=G|TɆR“MËV¨i48³Ÿ/0ðŒöz¥ÈÊw‡8àÉL„ýŠÉû‹×y1‘K.s¹obÓú“$~þºSÎß™©~bgóÖ¯˜Ijª²‚:f±¾§BF;£m0Æ‰ÚØìFpÉׯÊÔµ\„s}|-8KÅ^K0N%hb¼,8߂þ­Š¹5%PQ¦ª‰£±Ø¾¡í£‰à*%ݾ7sm›{’÷¢4FZ·;Ϧˬ¶µŸv\ä„%‘(N@›Îc1‡ÔÔ+1¢‰4Øç™W ~>N÷“9™§”«>\L§ÝŒ½{NËéáƒPw.ט?êFŠ$<ÂuŠ1E.¥@ò©È7{md#Èp!vó'z 3u „zú¾M\rØ‹TçÉ”¡–H f¼¹E¹ÉRò}(²ycç Š­qUØ¡B“¨{ÞÝWÀ"Cj4Õ%‹“wð‹û¼¿‹emÚ%d½S€Ê?¶²ÝBèÓ*®?ÝÖ¸ûYq¥ŽNþ£œ ’äajÑ¿>3zቦ“t,žùÀB?£B8ÇÓâÌOWähDטæÐ?`&º#¸’:hü¡¥v_—ñsWè]Á¢Îäè+”Ý0áêUì•M‡lm‰Šv×TÑò‚aðÅcìÊ—å¶)>š|ú#gý–YZ ÿÒ~ª•«oe¹ŽÔs(Û¬ê!ö‹¤ùpxª^øtÑ­å3¸W€¼èP‡•üŒBXCù o‡Ý“tÈ‚í)–#ð¹ÒíŸ WÞ³²JmtѸ[uð<ì²ÞCyf¾—þwš—JíëKJ»®å7¨ù3œ k1¤·¤¶ö¾…`ÿh?ûk“•& kô8Q BôÂ\ ¸ÏF̲`À„ýjàââý¦…Òª†;çg¡Ã41[eÔ%Œ¨|4±¹m¤€¬~ðŒþ \Ëég.&¬3…¤2ǺÖåk]ïÁÆ Ï-uÙHå|õñIàW¶¸ ë8A³VYY¯ƒ1€ó1´‡1ƒßï …ŠÄs–¬šŒtnv]?­ßŒµÁ(¢n ^倊6Ìÿ¼z²ºwJ-4çoÍ4IÈ3Œ©P¨§ôµ$S¨ mãG‚m‘P·N‘ ˜ËÈ Ûk9(½…XO¨ ï‹4w¹!ï& %EŽŒ™'{Œå2ÖQ€'– $Þ€Ú©|x¹i Ý>ëíCO™Eñ À‹ÎK£!NÚóÇmG_iªTÛ‘ŒÌH¼YÁn‰a’XÉ»“tÜÑDê:Riœœ­uЧ°WކªêijÌwà† çârCé*ÍyyŠ4€‡uxÈw(/ÐÐl©</`†­²­˜…²ø÷Éñ‚ô×±•9þô¥ü¢TœÖ-I´ÛÖʆáÍF»Y€ì-ûÕŠïPƒžx–½JÂþ5¤ÌPºßæ« ˜ø/\ mÍÖ¯L æ]Çr•qÐRv ´ÚÞ7øÞ‚ú£|F{›NœzÕ Ž™Êñ5ªˆ¸’(À&2Êf˜„;´3 ŧ/²| ¶êõVD´ Õ¿”Î(¡¨S§`Ç¥z|ðŒ¦Œ‘ƒPÀ²|9³_nñßÂÎMµ;_ÞšÌÞF úýƒ†[¦—›q¤/ÑAèân¢o/ÍšÔ¡ñ82dò7öë ?Äû3SëŽò>?`«‚™Ð‹§’KÜ[ÿ}¢½—_þDR9v€fO¯ºˆ[Ý>s¡Ÿ¨N,Vhpßä}³G\æQ&Ë•ÞU0u t¾1¨Ë¹‹È¤vù„Â-\¨H{õ+²wº€m±V/E*U%îÆø!MxQa±èâ^MmÍç»ßíhÑ~{C86³ÄD\KUÝ{ù%ôŠž©yÊŠrö¼Ôˆ¥ŸN!u¿-ߨ`ø EXq­”déE§Öéo0N5€©lΠ‘Ô»2¶Ì|iïM?È⼉l2AÎc”šGÇÍb©¸£¸€ØjèºÂ¦?Ëwq¤S¦€¹7¯T ûÓÞ¥yˆŠt!4:_Fì Ôh¦£É¤çŠË³üŽÝ§¢ 7aRããôf‘wà—ì@Ÿ³¶«OUôk­óÃfŸðå/3^?LÙ"¶Î ö¯L»"d÷›0œMßÜr»1g_Þ©Ö³q+˜Èƾ`÷£Ôê ýHÑ _]™L³,ü"S#=›f&Ì< W] ˆcD©–ý¬!hÚs(׈Fu¥3Ê1õ¥Np[zÀÝR¬öks‚UõÒi¼yMnÒ,û2Ql­EL˜Œ€—òI]ù¢Ë6)ÃyK<¿£ƒC_cç霡­õ•ì¼IýR`^˜Ü@Ù¶ÿøëœ†²Ö>›xç›ÍtÜVƒžÝN*ürGê勪!âºIDß•ÊEdJ¼‡”Ýlq¿±"Û˜Œ•ê’¹xwÞf¬‘i_søà T³:ñé?ã¸ÜïËþšù’“@°W·•z¾¹V·ÿ}ÄÖ Þûï$Øx.,Mtƒ ©áx¶|;ô«€ö¬ÚƳ!rˆGp%¹§¾S  ;ÇñKa &£’¼¼g¾g‡S+ZÙŽÚòœ@ C]O¯Œu4H³ëÑ&Úi\ë›s­æ}ÊÖâs9'©2ød\)&¶¥(®Ú^Û×#F“Ë`E6*l°O— †}”†,ÞõÜ—ÌÅpÓ/äyÃ~æ›ëoU.šÕî\ŽHg&‘ꄤêO$ÅʵœXn•bŽZg=oôFŒ'›Užár ôŽ J§×ˆÅ»9Fá?ìZ@ =ˆ® ç™6Ù\Œ®ÌÔq¬ðá¹ÛZý%m©¦aÄÜðLi¢Ì52_²U7»(RïÐÆÒŽáQ½Ø!ñ£=âkqøÕ÷BÎ!ýàÛœ90ØÃ\•w ™Ó;Ûæ†2? tÉä/![žà8`Ý'ìÀžçþ ¡Þc jN¾À Rà¶ëh»D =RcÖÌã-Æœö‰ø£I=Z;±Áþ/³ÕB3¨ÖdÁ zg:{É(!m~BûD.‡¨Z’|Œ–ÅìO£þ s’ZüuT÷Q_Æ/-¢ô Ë=:Oºˆt<ÂyζNd±mðhúx|j[¦ùQÈwý… ¹vµïpé9è‚ÙAÈ nú7lš œÔ¬U÷Œ¡õ.RO,ÿë± ® {‚dKX(2ų×+ ¨Ä?о6­Š@Ÿ¢Î©u5|lÕGÙíQ=–|~ v¸µq(¿-¾’?„I„³SÊC jɦ‰0iç¸xɨÅ>‚šw¨¼ˆnx¨µ~‰7Qœ:X`´¹9ê!ô *]F–'œ ×ß!Lîo¾ztó¿‘Ã``Õ6mÊ:¤Äý†ýÌîpI†`ð16ýû@¢³^ø„|¢ö>“¡®ˆ¼†Ùкx|¤9A–dOòþ®Zã)Çu ÉpÙ=úÚ>}g¬…Ó(HÅIŠ!È¢+Äìþa¯×º¦ ®$*(<3çÁ¯Ã`ʪù`{ƒS3vùrìŠjŠhmü‰ˆÆËН ÐO:ª––ˆ9¡!fÌ?6‰{ ?|¸æPRjZ™ «j²{ÄÛÞô¢‰ÊA€Í˜G#ï 0…£`BW*‘˜­Ë¿#U„Á\œ¥`qYÇ“þ1Çôbpjz‚ÞÐQš­‰;†*“ÆÉvèâyTLTœVõ;‘K«c]º"DQ‚ºbeü µ‰ËÊyºY¥‘B´#¤(x£JÓbÙ0(~Å?¯oÁÖõsˆÌ d™Åéu&ݯa ŸË4óƒ+')—·P—åKœ=°Q 9å9ý9X˜ vƒý¶D™)#4´”Øe)£;ü¤¬Êç·˜rœûèp¯ðÛÐòý`èd±j3Þ 6Ó©} e*ƒ¢omšÒõz¾~¢t’ßôL+ƒ–û¶èV§±'“R”XPjl}ÏY•˜\ëð’\Ä8R!äq)ÌËÍÞx(]xAh£ÄŒŠûibÁ†YÂqì•öŠ©ó.9f~1ý¨³ÂGîÙ¬NËÅMFN_BTýòXº'Þ^~'&$_"¾#¬±Z_TŠ }þC¹|p"‰ é΄JÈ¿ 4ëM#°¼ó§€^tÔÆ¢ ×Üáhû[»² Áî7ÉïTâ…5•B÷ô6¯µÏsØ}MœÎi3ø;Œ'GæQFK â‹Ò ÂV+Sóç ‚@öÅNßY÷>©9æ×’›Áx“¯Ä<Ü|³¾…»PjÐHž{Ôà¹¸Š—l$ D&‚¶‘Ê÷i­´MºE‚½A.uÓÑr€a uŸ{uÛ茊ˆ-î¦pã˪Q”Ü“k.D3 ^â9•ò¨¯anÜ&®×ãr–³žæ½1Hi·®N™ 8ê¬3˜÷0(׋q®i,•\T¸Yþ—Ì_°~Lœ×ôÉ3ÝžlENä<Æ+V\‘ÍS‹QwO™ü—ßj«WyMçc'ô…‘ÀʆãÊ+ÈdÕª™.{idfǹÙúÒÑ¡ZeŠ–<<é{¹o;;ôj×—u‘%µšà?oi‡9†ã÷¹% c<]ÑxŸ®xÎ"x"pÑØ.ÜVJmܲëgeyVH¦\‰Ÿß>+EvêPXg³Â\3$¢^# ;¥[ïaxÿIÐ~ïo­.^†‘t²XÃ>î]K¦Q‡·FUt»½œqxU)Ƚ__Ñ L¡¶»©¤HÙÇ­ç#¢‰³²Î?U;j­G"ù÷˶™±±)K¯¨'AÙÞåçîÄdiÕàæúäožÎpýâK>`ÚÖ‘²^ ÂÈ÷Cj¿}Êö'€ÄO,d¯ÈC„P쫇ÔèY ¿sg¸_<²H¼†M_99¢Ÿ)yPwEK‘B‚9”ìW{çæ¸Ý#C”#^G)ž¸Úµµ>Ò| O Z¿frx{„=q åC²ªHWlwGÕqÞ¡j>‹çiB 6ê«T¼OÖ>žÛ,®íbß °·+}Ž ¨xIv®@},™ÈÅc¾‘ð@µuŠÅ¥-Šöºo(jëøX(äLRV,åJKNºJ–|-{¢¦¨Œ¾êfPÄšˆc£‰Ö] ¦'Árh{Q–ߦŒMr-ûÜEÚkFS@ت»` 8ÝUÂå—dÄibÞÕÞa;ö:-…3Üv¼B´:£¢=ÜíM©5¯2"Az¹•¨r²9™qÞ»kz«\_ì„]ô+ÃZ· BÝc¦‘FLiÍ]ÐȲ“Dø/Ïe`hk¸æÃúõb™‡ïÓŠ'N-7ÄX|_¹~<ž,Zæk½Â^˜ß#î‰ìX”»7„Hü+&ÏöÄã„óyöà@Vüž¿ÞÄæª’ %à2Ë@±Ì±$N[c]÷0âÛè{n©QûK@¼ž•Èœ¨-“2…y«¯Uói·úüëD¤.NÁºu=×·òZŒ.ÜVõRüv—ãâ:¨àL zÝsë5«ñuïÆyPð-@ä ú8kÙhSHšd‡ñaÇs‚þIÔÍVö»ôD»±Šîÿoð‘[^…œqœÙ Ϥ—L´Û<#LdÎI#l+gŸ‹Ù”‹é 7¯½éÂ~Zj,WwZÒ!ϱµYD¼ÒeTÂÕ™äχØpãP0ò32¤™îe?îErǯnLqm•ÎÎt²8f>Õ~Á2é-6”‚ôgØ ñÌðF]²Ï„õ’³@äáæØ…wƒ!â<µÏí°´26ä^ôª øI¢«nLGå•YûøÝ4rI©»Ãî÷‚ù}íhVÓö?ÐïШU ”!š¡êr(ìÖu¾ˆh¿Z"ørõ±ê‚ˆ³Óý¤ÿ!…ùÔÈNY¦ãp ¦‹2Cº¹ ŠNm ›U'?µ¢…iÍëô¬VʦåðÚnuÅOaÜL‘W÷aÛŽÔtÕ–ÐÍ…£ÁV~€'x1G0wu‹ôRø²ŸIÇ €ÚslÃÆÇʵÆlBž$öêyP5þñûÒ/)ã ‚ŸÎWZÅý˜½Tî\ÝX¬ôûœa(¾Ô„9E›º'“×.V¢ÆåŸÜ±‰×¡Çh§:oðÈ\ªÑßú¾Ž6šGip}£”Y‰eTX—–°®Äeݤ-/(kÌiÍjåQo’õë¯n>ŒyiIj5üü-¯æõZ†IÀÛxPphó#”…û0&Ÿ¸ÀSCŸªà,–?nf:BÞrøWªµG½ *Ôtœï`h%âÉ"çÁ~„PΕ|Šƒþέ4|ãòá¦S%*¨]9ÜŒ/ µ Á CàŒŠæ Pã0F}F¨¡hŠMÖ2÷ 6Ç»cÕ—“þŠ#á0ÁªŽi(Zèû>טBÿ,#|ôSj‘êcSFFí•ßèTÜ0ñ4l|þ•áttlªÁ+Êgï:omö§,‹n¨ê*qYpìË^]H”§ ð„\F=õÌÙߘÉùqУí>2~Õ½Ñ6O%•\'‘´ßP“¨OÕn.¦‰’ œˆSÚ¶ [èônùrëwöU«Ì‚á6¨‘nPˆHR즚µ­7rnýaCVæÔq@]ÔRq*Õ¥‰xñÙ\îŒ/¡d\qÀûNà[ä—cs •(~Ìð 5nˆAJeâ•<ó®OT[ë‡z©®MD\ŽÛ'éþöjà©/ŒAhÓ!Óq;âÔjœ$Š9•-Wm¤BÔ´™È€1~žúRÇÑò(mf‚“qaš]òãêv[‚³/{6Ó ÷«æ3Þ¯B>¢ … øÙºÏÿ:t½Íg‡=­dh‘$7±M¡ÑÉx†³Õàdx7½¶iöíüÖqíJm²‹tby_2œJ±P¼c ®!Ÿ^j~GðK†¨ÆÛçÂÀã5 ÈdQW´Ûôr~˜-/<ù*GÔJš—Ü[ ½?l«õì ƒŸËØlЬ M óX˱úɮÑcóÞé' ö’ë-WYí*ó6ûëL°ÍNc…mH’ËçŽçж ¤ô……é½!Îk¼E. Yk§"çÖˆ¤)Ôö̦Í´þ#ºêÚ¶+K e!³9šºzÒ¡Žç…34H½¢Qf¶uJVÅ2™p].„mŸQy‘‰‹ñÞf@ÀÚ>ƒ­î£²'w%<Ùûúb0ܱz£>ЕH@Ð-4l»*§h»- ¿ÎV±–Ý2ÂÛì§óN9~juP‘i%Îè¼³À™Â— åäæÍøšâÇæ(T>üd©nÀ^ù•ý§ÿ¢]yÆÆgþÈz’iîšQ½édý²x¿qò}æžcNàL{;‚¨\÷$ÇdŒÌ†¯ÅTS÷àsXV©³ŽÌ¸œËžè®S#†u¦%Æbv”!Ô!H28õíÏïy¥§ì„q¤Â]ÝîÍ &?qt‹;X$°“£ëŽì¼ ò‹`n°ÛÆ«eÖü5þ³ ëAN³n‡mNí.ä¿ô§W×$öTÙ¢é¿%mÒ¥jRùV‡­é r“n"†,"Rl/"Ø%ܾ6 ð§Öé<ÿ²6,G¶a¯sÄÏvGôý($^‘Æ¡ÖÌ›q¥š,n„ßnWŽ`Ê|bß\¼ ~uéÚ¬‰K÷Ù§+UkšÇI"sæp¡ÊÕ?óI²ÙßQ}¾"1ã“Hµä§e…/0ŒIM»'wS3°æòÎ| kÈÁÍgn³»…:±B9—žµx5 Ö¼ôfÜ*]V!…‡°éü¶Ÿ_&½nÄvú£‚8`Rw½«‰èšIËü^&uò5GïA¼YëW[{âïÃ9ÒåÓÚ¼â¦z[&¾ŠrnÄœ䣦»Åýp¨Bdœþ©À¡Šó‚%9ql¶HcA,™Ï«@Öh¡¥P‹Òm’NÇ®WBRþž¦î«é@0ÄäðA?»šsäHˆT)N×@+íQÕ(ï7FŒÇ=.c#þëÊæ‘Un¯i0ŸÁH°+aë¬h­qT1ÑýêG?g] bml°I¸ÇíDZˆ¥âbˆ¸ê‚ÅXÉâ'¿›´9³àM=Q l¨ÌDÔ¾óB5…#7‚‡“àw´\/€ŸÄö c”Ùݧj‹sƒ5`QmnÈú— êÎØÌâÕÐmàÞ‰~Jr?`±X»Æï7ic_FÁ`ÜôZ^ïac^b׿S®á-²8d,¶}®¨u:`N…¿S ¦KÃA'œ—*9ôét‰s=ÄÃh ÚIÉãG£ötjoNè¼e;9G =q£Ò(®±xKªû(x̬š“*ïéhŒâä«åõ>( ÷¢ðÄÐ#QYxÇŒ¤Ò„¡µ0hãjï kˇ¯<}úâ1aø˜äñ ™mÕß_sIª/¨^B¯B>gb /Ù§çB<°béh…f{Rk#¸À?ÝöÉÓÿ5£~¸X«ÝFåâÈÞcRZP8îüe¯·R—{ '›¥\‰ ]<87.í)ÐÛž³-wüôÆïwÍJ4°´¬øåzÅP}D…S}mæKŠ­ƒ j:û‰çDèö ¯{‘©qæüçŸ(¤,x̩ݫŸiiàcK]†ƒ —?ã0–êÚ 0'í%àõV>ò @ïÄ\ŸàC³ŽÂ) n5-=Ê­ø˜iͳç‘g3+—=a&Ñåt¥°$í¦ëÑ« ü$£Œc¹J<5Naq'…TlŸHè œhÒÏjµ(@¥júÙJ06<ÌÈ°Úø^$TÝë¦Ü¸ñ¸U'àNsÍ?`͘ڪ®ZÁŽjª«/B¿±GdµE4lS?Ÿ:ò}×â Z[ž†+å‰o øAÕºpbÖšØHGÝÔf[!~1X±p̾¶’ªm½Ö}A)üÍÀ2Z{ä>žƒG€ðà{<%hu±$ßkn]÷—ÔÖ%l¯¨„ͨÆå‹Ù³L¶ÂjAän´Ù©Ì%˜í‰×Èf§•o÷ÁQj¾à~–Ž¡tž_ˆwâŸôä-r ?qê} v˜ ]Ê«k<Š'¡¯Ll‘ùÔe˜ ÷•Fû•êgCž šSøŒ?¢À†0¶­«Ðž—×.Èu[î]¿>¼¾`çn£0‘]6»«Ç­.‡Å0é³ó.ûPšxŠ®<~¹ž·íÈgîî[ì¹½xÈý\H³ ”Þ²üy‘0ÇŒšÂLÓKKæ èÛ+mµ—˜Ò@'àlèWŸ„dE…Õ4%‡;±Ý¶öö:>³{ìxȲls´# ÿþ9÷q%ֹț«q+ŸX]¬ûH zK*uAN\רŽVæ,Kâf²/§QK•(¢?ƒ¡¶ÃÓ"ñQ…ƒé‘uú´ö¾HóÖÆvbº–\‡¤˜¾qåg®Ä‚Íõ¨ÈÖžIÚÆârlvKiSˆ|bÅjfJD…BÐE&•BÖ;\ôN·A«»‚ªéã¸ô€Ä«ìîBÔìd„³"y}v]¾Ø£[ï0Ró¨¾oý¹7™ÝŒ<æq+,ÊV¡£½ OyrL…5ÑôÚ³d·âdCLrcvŒ8"^‹”…ç¤OîF_UI9XÑÚñ‚œþ±d¢Y¬œ€6½â³ /F+iÂRÔtÌÓ}5£b+»†Î¥­ÙNF¼ãõ4äGo½Â莸_`e£ ¸‰…VLô³žêGœ¹T¢&kOÐýWçŠ+¬>r]&rwƒ vþ²0ú†>IbãtBeîž±Dc*ôd}/W¬î®Îuyóϰíðâº2QÇ¡¨s`)›Š›Â´`øœe¤·™hchšÌ3ˆ‹è|‡Kn™ÛˆJa¬ÛÇ"\ÇÊ‘Ý@&Œ4P-AmòÓ±¼zÜ‘õL@±Ôº„¶m¹-é.àž•ú·:zz§9«Wf\;v~Ä­å˜ËÊ~yñËd“Š+¥ÛëÃ[;µ˜¸úžÂT¦`¬‘·ãq ²Ž;V|W—ÀuF:Ô·_c´þÌÀÚwæí•– »ã¬Á‚ÎŒÆc}†‚k¤‘LäÀ°É0ÆS&ûÊ&ÑŽm :`~ê•ßQ.ªg+"weî2 ’ôŒð¦Wx¸;¥`4TkJ¯Ì¸/FÄEpFåJq7÷UüN¿‘߇îœurň-FâOSy›)±R2ÈÍÌ×rÄ$rÍôlûPŸñJÅ]#5Wo¾úqóñTü&ÒW´œ÷vøŒSo„x ænå €é'rd¶æfÃP“½È`Ätc {R$)±%Ù?ç5u'Š3 ‰¬—)Û/’Çâ*1ÝÙ»F3õ8¤òMhÍÜWI«ùÜ4Øt`Êu k9vê¢þ3pËóæX`÷î´Ê<`Cõ¾âÙÔEàp–øS¯­¨sitV¿`À—Gû"[;z:ÿ7 1§t`$íî<9ô§'_`æñ¹ì}coçv*ËÕ0êS© ¸ÿ$–XöEϤnÖ7P’8L†ð‡Ì4Ì-ìÜÁð«G; ƒ¥ËÈ‚¨xDCvè 8´Oc6òÏW°p9ñýƒô—yøVš–|FÜ"Í=Á‹‚dAë8&©Ýé³yjVðóÑER!ƒc½XK|ì•iˆ˜RFÞ_Ù”ÒiY!º¨:쬺vW2¾GûtêîÑ jŒŽw;P©¿8£J®³À½°æ]ÏŸ Àïd°Žç25]Uz*ÔAF¬y…˜mŠŒ7Òö[g]³œ8ÒÆË¤Ã³–iãf‘3Þºc,óÔImË SiïË™WèIÈåÂâËŠ«º–j+ ñ;CY³>*u…±ôñ²9$CHe©¹±"­¢¡F#Ìϯ‡íË4² ÿ"¿ ¡}vñ€˜¼í¡¹¬#Çlþ…¾{d Éy!üÕ ½× ðÌLP0vSBöä\ÒPdSž{eomBòùKü"¤ }ŸU-ÏùÏî«ÉñzÁ‘ú™æR4gê_)ÛøáE äÙ#ÃÞ¢[‡Ñ¥5B.÷–­H$Žo…QÙ~7## ‡f퉺¯à:ÒBÔ·sXÈÊ &exOÓDæ—ܹÁ»è7‚é—\’m(¬Ã_¼­«ºý—óBsEíÓ•d¦¼•ô;#•&Uj»BÓ9õ¿üʃ“o’K&¥§â¤ ŠùøêiX9þìômߤ|{5¡˜…¥xÎÚ æÁ ßxoÐ9ïùiÙúC¿¾!O¿];Q~ñç`ºòüJ;ÔâE<›æCÐÄ™þ›mqµ ïÀ†:Þvö;áa}œµ2£NçÚH–lý„$\ß<Ò•I_—ϬL€aBÊÏÛ-ìªA3/ÈBbYfPù® >½ùntC_ò:åUš¹ßbúéö©!¦vâ8е֋4!£Øχn|ßÊÕ ²Ëo•Ù5fž(87jÝqñÙõ›fgEÛüšyæ¦7Í]®"I—~Ö²Œ!HOV̲ÚCçªH⺈A «Ó'=ˆÝÍA’}…Ô²–Âõ4ú*2Ä_~ˆTmŽƒ§#÷÷ù>W ßÓz£”¸¬³û¿ÖÚÄ÷€ìã}'ø&¹5?ç$÷ýŽêÉ$@çŽ) —]´Êo öíÞsõkC?q-øêüÀãIöW «eg-[Ù\k{E}(¤YT9>IläžäªýÚXwgq0œÓ>êCx–Ô…ÍÒÈ»¢¶–a:‰³‘æ;óø™2Ò6+R~P­NWþyúkkO£€k!ZçÄÜ쟱$žºâø ÙOY–T›ºZIcoóøº­ºí4Úë‚ã´h™ó³:£&.¼€Òàs')Ĥ¨nóm]¬„÷j«|Íú׳բÅ)rÂíHó®ïÕàÌ%ÒI4A'Ù’á%Av#ÈÀ¾”Ÿ¢·h˜HY=fß-ÔÕ7êTƒâZ)ä_tbyÑ_Z¥œ#°Y4¿†N|ƒÄÂj¨çŽ ó·‰¹iI´ÁÄ{s¯~&‹Ü“2K žÍþI¥¬è³ÿŠ…q³ê--ùeðG 7[øàXšï2¶˜Å#5>圦 ùSò õõÓ"àS–ü@Ôêtyøkň:"áòYÄ)ËšG¬~Ê´ö@‚‘·§9|ä§âq°Ø– .¸•¥à‰ÝHk= Ê7þµåkÝ[Zlð€>*+€ Y΄"ëછ\¶ì‰¸Ë%8M2߀ˆ÷i?/)Ù¸ž\#Šü>©)àj)Ùi¯¶Å'Ó%)KÔ†ŒT~+“ý³Äâû­Ðs¦:øÕ *öÒŒ(gt£¿ ÅÖ¡Oà#©BRuG}>8$€ÑÖ&ÇÏhfñj} ‡ëÿ6†Â¶…\6ü îØwg?J;“ÔI6ñ£æð,s'ËVáh77:š›÷GFlõ¢´ü0î”úCC‹ªc¾GU5m²pl‰_cÀ¾q@w$ $‹~™Ñ·CDÚTxߊðl ”N§éljÞt` Îm háV·at£ëëøÍà†¯¥ÿNDf—á?fìzd³v·B¯Ã¢>¤5ä$Ñæ 7ï.¾žR¥RO¡ˆ ½5nä¯g¼83 ü¼Š8•µ†U2CÁ±B]TLÜHp &Bî²xbw¨äMD™Óõ/+г(È© ï8ÐÄü$Ýb`=c>93V‰Y  b:±dú«32âîëbq¨Jø›$ûr7kF÷ái9ëç½¹üd­±¶8φ£!’n¦i#¹³ gÈ´¼ä®÷ž'§ÌkφLØ©2þ‰{¸Liî(½P3‚7£ú5€Òñ ´G?¶Ba”›Ãì@Í­AýÇ‘*È3oåD.¬Ë¾—þÏl†é¢"†)ðã6ùc]…Å 3 €ÐØTVE’4%ÕrNó\#ƒ±Â43pÇVÙ3V°*Ôzì[Œ‘¢wI^îD™0t ŽE‹üãCûDù[÷âŠ÷ÕªSk£l±JœgmרFVU|cÊ)l%¥h1¡ᔉ†Bÿà°3› là†%Ì*H¬ÞôÉTùð ‘š,ƒ´Ç1Ó¶O·ìã>#S€ªÀ¸EŸÀÜŠÙö•wÅÓÀ+[)ÖeblM¤h8ÅäLˆž×¥­] Ã:Ί–q”ìÐ>x˹¶:6øymºæß+¹}=jK,ïîp'áÌd´çqS†gŸúÆ«ÝëÿEvæ†èê¨F¦¸cãéDLõéÿ<)žq}iÄ*={–Õì]Ô¡1aÃb•J†jŠž¤ß´F“Áد—©•Ýá"ONªWuØ]ð§Ùå#Üí«_O ä×_qçš«¥òFˆã£Ž‘òÕ™Ê;ó¯k»´‹5µ.®DƒÖC+GØäþœ¬æÃ]æ’]ñíë!xj« ¦a íqAvdúŠz¡9=S9X˜ W'íÎkÙ Ý~ÅžeÆ=­íPH…÷¹ mÉÈ%,#Ók'?w”ÇSegìûQ­X– l°"ÝÜ¢4£Â'²Ò;Ñi¯¹ÊpÙ€ubÇ<ü34¡[…‘‹ÖŸñR‘ÚÑâdžRC#@Ð\‚k)¥Ù Nµ@5ôãgÈÈ´,¿ýe¤L<à¾B ÞðN:ù^'†`Y ·õÞ@Ä’ñcQCÒ¥t|é’œöÑÿytæÿã7—Q„`Œc‰—¹3òÜÊZÇòg:ç»xWð³W)Ú:Þ—l ½ÍmkFâŽûéLÊ—¾ÛcÚÐ÷ÅŸ¥#ô§Ç—>ÄÇÕ>åªYâ\†¡AÕO0 ÈÏå¶Åd Œ—r&ÏÚïªËe~a¿¶¼©®?tRss¦™îå97d| Ü)XùÏ«Px*su€ “~b§ºÚð{ˆŠðKGOmVÁŒÑIËÌË*ÿeSœ÷“KÐÓRŒúÙ‹²Ö~éhtC6}yÜ·’c ̼Ýy-Ò‘4v€çÛkù„±'ñqZÓ$Lý:¡vZvZ^µ6 :×®$¥;rëEn\ %qõSØéö tyL8e–Gï-_Iy {˜®PL¤; —qœt·»½–¾mê8b2SÍÒÇšÏE×±ˆ… />°êþް6yÆÖe¦£ŽJdiÛåÞÝß3%Ó w˜N…*:úF[ Úih"øª$Ñéa_«OséùŽZ±„ì¹ab;6a?ï¨ê“5a.ë­ ¥î`?è^2p~, 0g<´ç§d˜ Lµvf‹ºhÝ–&~ÓIc„m»±‚»dbÒU·’TÝ)Íez²¼Õ‘Ì)ŠÌòË× U ÎgÑ9NóN” À"“X"*Éíçnc8#ÄñKðVÿÞÛzú›yǤ™õ͇$\g_Ñ´O©£˜6 81Í!ëCYoÏK¨0_7­òIäÕÙ‡m°pÁF´õ0‘UÅÁõ©é•sp»±Üjì]8é'{š½a`/ ãÚô¬Óúß¼CU.ÜÆDŽÁ º|õ³d–f&:Êì7=ü¦2Ú¿¿]å+W*¤Fï7?)HBWô®}̨|‡†“]A©'¼}4AeÄSÆ"6k®&lL͆œ^De±ÙëÑþs¹¿¯\õûE~¬ä˜n©Èak<ïYp¸ës·]7]?÷$=¥ endstream endobj 216 0 obj << /Type /FontDescriptor /FontName /PLBYRU+CMR12 /Flags 4 /FontBBox [-34 -251 988 750] /Ascent 694 /CapHeight 683 /Descent -194 /ItalicAngle 0 /StemV 65 /XHeight 431 /CharSet (/A/B/C/D/E/F/G/H/I/L/Lambda/M/N/O/P/S/T/U/V/W/a/b/bracketleft/bracketright/c/colon/comma/d/e/eight/emdash/equal/f/ff/fi/five/four/g/h/hyphen/i/j/k/l/m/n/nine/o/one/p/parenleft/parenright/period/q/quotedblleft/quotedblright/r/s/semicolon/seven/t/three/two/u/v/w/x/y/z/zero) /FontFile 215 0 R >> endobj 217 0 obj << /Length1 1443 /Length2 6586 /Length3 0 /Length 7557 /Filter /FlateDecode >> stream xÚtT”m×.]J‡¤ Ý1HˆtwФ 00ÌÀÌÐ-Ò%Òˆ€4‚ÀK‡HK·tH ˆ4Rÿè[ÿ÷³Ö9kÖzæÞ½¯{_ûæ`Ñ3·ƒÛ€Uà0”PPX  ¨mð ,ü@PXX„ˆƒÃ‚‚‚ÿÔq˜€H&õ¿ìŠ0…Ö)Ph7m8  á€âR@ )aa€ˆ°°äߎp„@ ä±h 4à00’ˆCîê€88¢ÐUþ>¸my@II þßáy0b ‚´A(G° º¢- 0„ÛBÀ(ïÿHÁýÈ…r•òôô¹ á‡Ç<üOÊ`F‚`;À/¸ ø70A"€‘#ù§Únò!À´ ±Ãèw˜@תkt]Á°?µþtàüu5  ðŸtEÿJýÙÚÂ]\A0oÌ`‚º*Z‚(/?³ûå‚"áèxÙ ~7¨Èë@h|¡CÚ" ®(¤ ý…PèWô%+Ãìá..` Iô«?%l‹¾uo¡ßcu†Á=a¾ží!0;û_ìÜ]…Œa7w°ºÒ_hÑ¿:0 &,,,! €Ý`/[G¡_ɼ]Á¿¿Õèþý}]á®{4°?ÄŒþ#òE‚<ÀÂìïû¿ ÿ);ˆ- `v€ÀˆþÍŽVƒíÿ”Ñ“G@¼æÂhâ¿~ÿœ,ÑܲƒÃ Þÿºÿ®šª‚¢ž.ßoÀÿ˜à^_â1aPXB >øÿg–ðÿý·Vù«7á3ªÃìáÉ?! ïîoq‚û¯uáüg8šÇ`÷¿´·¶E€ÿßäÿòãü¯,ÿÚÿw?*îPèo+÷/óÿa¹@ ÞÙÑ,vG¡7BŽÞ Ø»>ÿ¹ÄÚ`;ˆ»Ë[ÕQ ôfÈàÿ\"©ñÛéAP¶Žèï ÓC!0° ùõÌ€ÂÂÿeCïš­3ú)A¢'õÛF¯Ò–T†ÙÂí~휈˜8„@€¼‰ÐƒGKb_ z9íÀ^¿y „ÁQèž?ÀŽ ú5Ï_5…ì~é~‹¢’!ôÛõ Š„ÿˆèé ¡àÐ} ¡<á¿åÿhÌÖ@/ëoâ »þ[þý2€Á^`[¢™)¸­ô §ªÍç•ò žëC2ãëORy|g-î?Ið“y*2Ÿ/!Nå“û>‘ÍUæ>‘›e¾öýÖPƒÞ˜¤ßtéwe`0ºÞDôe„¦{8ÿ›|u!£€‘܆ߵ›ŸI°3vf›GŽ›ûC½\ÊsÏNU¯ê®’¹°©uý qÍ;W%c1ÆÑÁ…om²&iYñPL¼^¤'§ão†o™5øˆüwc¼ó5[‰½˜ôY(3A~¤c§3£eÂ>¡åôUØz­qoÚ·èÝb e’¦epÅåºÅí³®cpŽØ>´âä–⦣¦RŠ^jTKt)dIÄÍ:˜×XòR?”h°Aòë&Bnu¡U$ÖG£Õ©-HqéäOz)AY)5õåþ( ¯þê‘:Ÿbdï~.µÄ;$º”™ß (©eN£ÞÌR[E@¥Õ¥¸½ô„ôú._Ýj¥1ö Æž«s!mšò¦SðüôÚ°]“itlu©ëß—Ëžœ|P¨4éþÚÁÊcä˜P0l¥HNê…õš–Ûà«w2ÿG$ŸÚR”ôWŒO¼÷d7«e¶°†pèÄ4I?ä²9š%PÅ£Œ1ëHþ˜dÓc·LlÙe/¯?h<Ž‡ÐƒÈÀ§¯9u‹+!*“+y ŒõïnNj齯\~DM_ÖÇFü°¾J-Ú‰!‹Ã7iXð&t3léhöÅj‹eù#W{¼§Ø«" Ò~WèËœ—Oa@÷|W;óýþ=¨s;. Ô`wÍã0(J4ÚÚ+”¢yËú>;=ž‰ù÷K¼$5³ëì3ÍŠK„…çÉÛæÄ@wŽ}ëªtb«;Ø2yk [TÉY½aŠaö-©ÓsumÕ›W#õ±±†HQrÇý=Â5W´Ëû>ykIJ£¡©Ü”§`ÿŠ)Zåa Yå ÐÖš»2äGí³[L6§Â¬¡#•nFº˜–ZxA­DTòç£excÚƒI'ڱɡðRæ7^Z­Qcî}÷-Cš¬GGg7‰1©$GûJäÆëî§3DõÁÏ1»³ÕÙÌsçŸò«…ER¼kíRŸ},’>s—ç[ÎUcñû{mïjº|¢¼¢ÅÛ ]’BiðMOUL"_**ëzi„ý$rRq)xáÈCgÚׂý–qr$<êamHSÔìök߯îøÄQ¡¶y¼ëÒEý`ÙY›õ¥ ¨IÙßÙ¹\~ç¨y.£Ó7yûUÉ?ZM®lŽßVR<Ä2ºœ³«r¢eÙ6inL]W "Í<&ÌøÁ&ca8²ÂDfX {OºTóñ.ž(¸"mçË3¹âJ àx€O´l+ÎݘðoUéÖŠÔO—¤wÒ˜8Ï?°½[í{hš1ÈçÊ)zê”F½FW{ªkÕ üðÎÈÕ#F)Ô*%žª³Ÿ9:}ŽøØ‹=õ=>{èñšWbÝÛ ‰ö ™U: ¡øc†õOm†p€èò’°å-qJÞ iZ¨bÁbÿ<3åN;¡] nw£5òVÌ]©Ìê'—ì×%Âk'°Íù~ûÏ“BÜ»•ÍÜ”÷Z.Æ“fô•Ýí9¼>mq»°`b*Üá¶A¸=u£sÇ´*Ucrè™éÄ Íw•ÈIÊ-—ú 3£/Om‡Ù¼69ù4ùGðw}gn?ê‘OÖg†yB½ýgAI&½\ðYVc‘X–²ÝBg&G1}Ù¸£·%<‘ÉœoÙ÷™ ©Èƒ&úù—{æœ -©9?wUÜFx{wxçúLÓycã %ÐðCC{W”)¾nfŒ„\Ør=Ëv8ç0(S½ï5«f§Òq.æmW:á”(jÎèié=Éô[SQG°þ]h»µ„Ü+r3FãÎâV¡wò¶¼#”Åòí¢LÒ:ã¾5xÌ¢·{o¯pÄNÊÖ>jU´ÏȰ˜ˆ ÞiÍòG`j®\2Ѽs{¾f˜†ÍËeðS&›$Hªµ¥‚ií¬k"@»O4Cv®’ óc5–Iš×ìMSÌ‹ÅöœH2Ux4øŒH9vZ‰_ž}0|”:q±³GŠMGÝ*é§Žt’õ Éy)æœ •áˆ:z!Žgü.4¥Õì]² ÃåU$#Eû1ôhpa#>ï§Ùêä¼]k”FV)µ[OZ;¾ÆqöÛWÎî½ ÞUl|%•Å@µ]-Ð7›ÏZ±€Wëié?BNÖ»ï<±a®´äÑ!Ÿv²‡áÇõ»:“­£ÊÓ¤‡,âç£OJíðû¾¬ª’¹ÆÖ U1ò^©ÑW©Kb¾‰I²ý”K#h1ûldý’ x< tJ‘…ñàªæòOw ó'S¯SB‘7šž«¨ß©-Ç©1†>KÄ8M÷ÈlMþV¼.Ã1.ÚðÆÔ ‹‹(÷ÖV¸€±´º;{{°Š}˜Sò!š*œgà¥ï;[Âx¡ïGÌ9UÔØûq¼®Ñ€Öö3çxóŒFNÎ]Q—!â#ó/Í“zý†,™2)ÅÖ–ˆ$5j{cî÷žLN —“L~}ãp¸F×nMÄè [ióÝnÖ—¯Ã…a7¨:$©«½Ž¶ÄW&¾¨$9J€v™dÝÖ­5‹Jq‡ô[|5ÊÊŒ|ÔVS¿üºC§Av™HûMïÝ=âm®ÊÏÖµéFœ8.Š®+Lç%bµiÖStêÄä·‚îò:ý÷>ʼn¾EÉ]m½sOÏÝxöti‚¦·é³üíJÐ,¯Óm¥ìcÜ{ÕïùÃüe.UX_• wêÅ%'_I¨…Ñ˧LÒ¶€GË}¿Ž¼Ï‰‘5ï×ÉãwÕ;5JZ„½¹cï-­~Ó²Ôž,›Ëš6§0>5®ä=RuWkWû1‘ò—¨mÁT»ß6½ÉKÜu™Ÿ›•Tµƒ^Ô6šû"WûXÍ‘—VëûVOÎpŒåM$Þ{逩Ùö•5ì…Ä0 D ï:e,öÔLÀä°TH'ÒÕ9©íü“ùКUX_£Nw–!`Ö™ü$}ã Õ£iºÈ!ÄeAé€2·Q!\²:šÄŲÓqÝémø¸S””ù ÈøÊ¬Î8Ã@“L ¾ÄK’ŸGÁÃלWæ‹°ô¶Ñ¾ù¼çï‘0;ô¡èɬÙζ´}]ðeÊ) $FÖŸ“ŠÌÆ4?µÞm¢õà6¥W‚ËõPÜÅ¥™ødò±Dnµâ:Ÿ”fÂÄNDÒ‡•‹…;‡ êPãÇ)v"ÆàtpÑ«?vç†׺æB€Þ«Õ÷×ñJ©^{¶(Bq÷6JÊ>d¸UÚõís€8Ë]MQÉ’Éßwä>5gl2cÍ®sw½d¬µŠNgTf©¾æ¨ÿÀ}×^Ã'bà«Õý;5\ÉÕUXuÄ€‘Á¸0ЋfšžÜý§$Safõo¯ÍCÆGBí:%Ç…¾ú½=7n1²¦ Yà¤g·Î(£ •¦]úP©N«®xõlÝŠ`­ª-¨P9;ãU?âçMˆ©¸÷å”t†múéø´Ôˆ3ÞIq6¸·¢ëûí‰f˳’Ê~÷O±¸³£l¡ÓL÷Ÿž eTLv3€ Êäÿü(¾ôÎÊuvfôU¨Ó—ð°Ì—4…\¼`ÇuÒÁûŽTEÒ1ŽxÚïàÝ_Êl+âH‡O»¼~r3@>ÒFzÞ©§¾Ð¨w_MþB|zßhÿ„ ^¦³QÜ `’–z“Ï^…}`Θh¿6´7µûú§œ9rÊ#ðLÔY£é@N轡nÉ0쩆«K/ýú¾/ðm5.CÌ«?np3×y±q_j\iîÏ$úáp·æÂZ=)§ê½¢}œXNÖ­-ªeä‹‚Oc˯lÌ46&ÓHð²r²` e•QœÇp²ÿðU½Ø/ˆ“}m!{ÓQÂ-Íéç¦MBÛˆþ±#Ûâ4›ÄÐ@9D ~à¼%xý²sT'›!†Sî&Ù˜az´ä 8¯ÿ¤æõʰÞÑá(š”ÚdÛÌŒÀHKöØÝãHÌVÌÖ–}V&Þ“›"l*nî졎Ëì´gûéÜäxM%cN¯+F¦yûÒ‹–Ô)²â ¨lP—ˆp',Û”'n­g¨ Ysuó#7»•ñ¼§žû§dé55óÔÀî>¹’µgþc0>çÎÂÝqÍ â¾+d#’ûS¹<¹È¦´PɱÎ/ôí6H$æãP*§ãªn5ÞY£˜Ñëng(pÂ{¥"5P½oOChîüÝ÷YÈ“þ«éÆubqçpÔ=šm{Ô« ÞÃï~T‰|Ø>:Á­s|2 Ú4ägžöÇøgÅ.Wn£ř–JågÓÕ5¢¸â|ä¡UìŽÒß]ØÊõëï‹1ÛÙ Ó»?à+ažR´ .91'šð¶)tZJo֮佼_Ù8êßµܼsäË{ÿ¦–_תOl›Xºà£øR÷D§zBtš‹@·—ÜÖøÜç8ä˜y›Fsa´cœâŒÍëT¾<ÈF`SF.__ôyé,ŒÜÝ9ëMôûƒè}'h3Õ«WJÈôYcgøGÌ4Ìó#È®J÷!ÄÆ*’zÿaacÜg޽ Ñkí6û¨'î[g˜3¦¶¼‰ZjÉ>özïotÚI7Î6Ô;=£ÿ™±BÖà®QðUñ° ^ÜåàÙ¡j÷“Ò"Ž¥¶­ò¬ù渙P?ä–šNZöòåz§M¾ºnoåÈÏg°“³°¼=ô;™„¯ÐÔ‹;#ŒÉIø°Ìy½GSíÐÜòã(VíS+‘MÏp‰ yiõű™ÚôX`Õ"ÿéÎ9™]ИÖëaN Ù„~Ô]íµëLA¼òÔ\@;ÔÞxo5mE= ƒÇ7“g«­Ü¼º¼eKFìñšÅçwÂz1ro#–DDûX¿«°å/jf–kÝ*ó*l»3Î{ÞÉ]°åï«täóˆÍ¾É‹ã†ïþ’–˜hN²÷åv›A [lÊ‘!²>6”oÿØ©„£¥»weêrz«á¶þF£2+¸-¾êy%i{ðÉç3ºuü3µÝ”÷ÁÏæñÈ ý’O¸@Ô,æ§SfœA‚ š’!¢¾ƒ\ʯîA×N –.$ïŠ;|Š„’rúï ¨heˆ!€þ¦[YM²ÒÃj=KLzº¼Ê¢Öãƒ8ÁúÞ”‚€`>` fÈÁgÿÅàéÁ! ÃT¨¦²\ÙgŽ{x]ùú¬øk‹G{&JGÅeQ±Ôac Þ{,/¥…i ž 3×%ïp_HVͯ^Ù²¾–Ž‹{-dŽÙuô˜Í ¾jk™¥ûø#žŒOémi­Óyè,ˆ@k²ŠðÇW•8eµ± ‹(Ã-ÉØ‹Ä~ª†•߇ÖãÝ/¿Šƒ º®÷Uß+´Âêâ>ijDd]é2]F§ƒ¯p³ƒÆƒ¾u˜È: ļ_È.¤yätÖ›ÝÈqÕìó}tñN[“»/åš=FÝu°MàÖdüÌ{Hd™àíM§Ü`J:$:çæ\{¨òÎAÜì ü[{ÛS¾Íà¸H•Ž.T¨O§PsPà…¥6´CòÁ'Κ;V±wK©bn½/;9ëË,ˆÞ†×xðåy˜îP6~sWù‰­þ>‡d/àÍ1½CHZ"R朕Ûu]¿¹ð4‡Õ@ÿãv¡¡Ð+b €shß÷Ò\õy«¥'ó`2y ó›ÔF1å«"®»W>±*.)?Ó,Ë#æ]Œ:|‡Ÿ;¦;Í"R¹»ïWP\{d¢t?Òß—zë<’KK—!§;h×» ˜È½[ºõá Tz5êl¡zá¦Øû¬úØ[].=2–Åþ N+ì¸PY1Î+Ÿi{vI5Ül§©¤cšÃ\±(.Ü$ÊÖÄ)žtR-*¹ô~`üædp™â«©ê{]ã[à “Éâl®tN•h¶ãá9“èã–vÎX‡gU˜þÙ´dp€ì8» ×Éf%ædVÍ”5Þ½üj nŽÙnE‘K׿ÚjXãˆÒ•½¤îzUê¥H¹?I“GØë_ßY§y×ù`'øecç÷è|œê4ÝêNª‚—D…!bà +¥‹øÛTÞá7ž¡R=Ç÷±j+ž´¤È² Tá}Ñü'WàeZ&ˆx «ÁÕô×a÷þå–ÕÎfÉ£°Àt—ؾ€ˆ=‹qK*ÚÈïÕ/jþiu#{7™þjÁµWý+Õ|C! ¥Z‹«ÜêoX#HúŸZ\(wôä|Ôo"¦GAÇt1Ó‹•ó`˜Vn…Åæ\OC"´SrŠò;µA/¤‘hφ¥Ý·th1´0ÆÝáy²Á-[=H wöÓÄØÉÌo$«4¦¼(ÆïïÛuqåëŸÆÞ€¹ kàò¥âŠ#ÃÄÂø±' ÛW†ERZØc!Ö3‹ëbYqßtK‰”‚à‘rƒ®.KµÍ#×|o7s¨n™s¦°λ©g©ÉŒâ 'sí~¸-f“ÑËnùPËžŠÛR4Õó‚)wÀ¦µl]í7‰Á¨6â‹aÁ­–X˼u”£áj¾·fÓ¨ît&¦-l׌jÀú†Âic¯jud’¬ÅÀˆMa™b9éwùªüÙrÁ/bûÏ¥ò®ƒ|Ž—Mo õBlÀÇ€ª”l!ç×"5þNñÒ‹fÃ+ÛÖY%ü¼¹Ÿ5ƒHbj‰I|T.»4ÅŠ@ ”þõ·iî2…LÅSɦG8á'ÔÂH®OžßT_ùU¹÷>.ÚÁdëjÌ ª*$6j»J+%-©%'†—å—¶C§vî¿ç¢‰7,oÂ:«ÈK,굟#j5ÀzKd´Ã\þ¡ÐÙ²@[Ž¢ãÜ8|ÄR…ðUÕ×ÃôÍú£¼ÔFð.Ã!³—½pùýü÷ä)AêƒÆ­Íç—ß}A©c@™â½Žô¦›å6¶ÆùÍqÒIO‚ø<«¦"~‰éÝo¨ÍïŸT›ÛAJpí$RS“5*eÉO˜0B”óŽw ïtb¡jî=,{s2‚zT»¨Ž°o› ˜—ÛƒWZß#7)™ß$…ÿÁƹlÚÊ­g¶Gõú9Ø«G=à]W»ÌsolöŽÏšÅvoB/ÎZ÷Øè>uBkåÔïæ§B˜Lµ§IÇ}E=#½÷Ýor÷I,Ûã†XÓÊ×é¤É 9q~ñìRˆN¦¨‰ÇØ…á],GŒæg_Zãs¹ÝH°‚­¶X YgŸT/E,æéijƒöʵ Í8Úäu:ßú¤8³|g+„Ô…5AÎæbKýãŽ|ñ:HZ#oÈŸgî]ºaÞ…3ÔÙ~CV½'Τߙ“ÐŒ`ð5 ÚS𕸵Ö&ÐF³nšœ8®y§9òXJc¦Ô{üBKJ³¶dæÏs)¾\GVÜ÷§ jHÝaÐà?üÉ)»F endstream endobj 218 0 obj << /Type /FontDescriptor /FontName /HGBCPO+CMR8 /Flags 4 /FontBBox [-36 -250 1070 750] /Ascent 694 /CapHeight 683 /Descent -194 /ItalicAngle 0 /StemV 76 /XHeight 431 /CharSet (/d/one/r/three/two) /FontFile 217 0 R >> endobj 219 0 obj << /Length1 1824 /Length2 12601 /Length3 0 /Length 13741 /Filter /FlateDecode >> stream xÚ÷PÊÒÇ ÁÝ=°wwwwºÀww .ÁàÜÝ58w‡@p þräÞsîó}Uï[[Ågæß3ÝS%™Š:£¨™ HÊÎÖ™‘•‰… ®¨®ÀÊ`aagbaaC¤¤Ô;[ƒþcG¤Ô9:ílùþ!î:¿Ù$€ÎoŠv¶9k+;€•‹•›…ÀÆÂÂûŸ@;G>€ÐlPdÈÙÙ‚œ)Åíì=ÁŸ,œßÖùÏO)-€•——›áÏáQ#Øh P:[€lÞV4ZÔíLÁ gÿ™‚FÀÂÙÙž™ÙÍÍ hãÄdçøIˆ–àv¶¨œ@Ž® 3À)”€6 ¿ScB¤hX€þr¨Û™;»A€7ƒ5Ødëô6ÄÅÖ äx[ .«P¶Ùþ¬ðWàïͰ2±þwº¿Gÿ1ØöÏÁ@SS;{ ­ØöÀl (K)09»;3€¶f­ìÞÆ]`k É[ÀŸÒ)QUð-ÿós2uÛ;;19­ÿÈ‘ùiÞ¶YÒÖLÜÎÆdëì„ø‡> °#Èômß=˜ÿ>\+[;7[¯ÿ9ØÖÌü4Ì\ì™5mÁ. Y‰¿cÞLˆÿØ>œœ,,,ܼ¼änjÁüÇö ?¬˜ßrðñ²·³˜¿¥ò›ƒÞ¾½œ€® €³£ ÈÇëߎÿ%DVV€ØÔ`ú¶Eügö73Èü/~;G°;@å­üX,|þûËà­ÂÌìl­=þ ÿ󈙵Õ%Åt¥éÿNù¿N11;w€#'€‘“ÀÊÊÂàædøüï<ÿÝÿdÿ§Uþ[Ë?3ÊÚšÛxÿJâm÷þ“ˆëß•AówÛÐþw%»·zhþ)}NÓ·?¬ÿŸ›àÏ!ÿÿjÿYþ_Ëÿÿ*’r±¶þÓOóWÀÿh¶öø;â­ž]œßzCÑî­Clÿo¨6识V™]lþ¯WÖøÖ#¢¶ŸÞ꜑—‰ƒë/3ØI ì2S;›ZüUJÿ9‹·%¬Á¶ ;'ð×€‘•…åÿøÞ:ÏÔêíjqz;±?] ·Æúße%mMíÌþè@¶·Ó::=YÞÊŒ“àÅúÖªf ÷?+ÀÌdkçü6ð–¢ÀÜÎñsåf0Kýaú‹ØÌ2ÿ;€Yöâ0+ü—xÞÆ©üCo‘êÿ%^n3ðâ0›üC¼fÓÿÒ3›ý YÌ á›óáÛ*Ÿþ…f‹!'€ü/|“kù/|Ódõ/|eý/|Se󲾩²ý¾©²û¾©²ÿ¾Épü¾Épú¾Épþ¾Épù¾Épý¾ÉpûÙÞd¸ÿ ßdxü‰ÿS¦.ŽŽowäŸúVÿá?/dÈdЏ4ogÊlYÜþ»Z”Èqo‚eð2â^{W’Àõ@5P\àþŠ=?rQ´ûÇ~äý&æ1[Ék“•.‹•á†wZ$îR};Œ¹Éƒ÷¦àñ“‚ Û¾|W×Gcv[³O¸gÍjÃn×"³´x {s™GÒTÍ•wgpÔ'LÈPÑ‘pø<<ìÈPÁ¢™•b5¢³?:e)œ.E&~%¼—:ºOeãÜ\.c€o¥ýü‰b/ùS(õ°—‹PÞx 0K¹Û+‰ÿGxÝ@câ4¦.Ь¦ˤàgÖÞÜÎźôÎ;ÌQ›ð¹ÈÔ8û ¯;+¥“³³xÏëeqî ³ÙÛmK0Í­rú Ïö‰Q,¦Än0:¦î»Î2‹n–GxÊÌ\È¡°%ìݺËáÈ“:(ƒœ¬,ç ·0è)õ@*F¢oºõVøiþƉ¶ã'†è~ÄýtæU`ãÍ‘¹Eª¬ç~–pÚþÄ»Œž× AÅp!:«_'d‚â@òH­pyR>÷)Åwysïké}/þâ2qjsVïæPì¯W¥»ˆ¿žÏ…rÎ:O)ì„YǧH‘zV~ÏÚ\ô¤r‘¹„=‚§ùuË¥´×²–œg4ë‚!ìïùlš¸ò›Âë£yK¥<ª¡HQ÷#8užBµ)$)R€ã™ r1/;íÎtHìóU³ kWݲ(¬]ŽRc x†Lø¿LMâ ñ›¢·Ü€ ÈÅ­b~Ï‘õÙ\@4'…k¶ÙƒY]ˆfЦ¢u9È1"K‘3Ðwô%X펆]vÏð¾ü„À3¡´ª ˜Ô¡^Où æ".QìŒ ¥'ì–r°[iäù=¹rEõé !´ÙÌSѧy÷¶ DÓ ®Þ ÖyvŒ¤/1åKåêœö–¤L—V\²ªéq²é MŸX;ƒ”è3‹š4’ R“¶»” ³µ}ì]³Tç¡ÊÁb³b'Ò¦îä:Æ~¿ë(”­õAº£2’0ì[dj²¤Ð ãWIL6=ãJà$uGÒ«}(e1ÃM Î8”M$Ugþg9‚‡D5Ëodg3®Ì÷®ýDüB?U"ù=?_¿Ïk¬»§'9QêÖæaAš&ê£Ú8„eˆ˜D7G«³Ixñ®ÍÒ3²â±#ôê…Æ'%‡£b/^Š;ø äÓÔ;êé_ ÍxéåÀšñèL´Bï+I3ÁO:ë#(;ûly‚»Ñsã|Ÿ·Ü&<1'3ŸF8H¾’—‘®\˘z½—~ V•)žÉyŸÑ² ëo =EÉö”›£Ÿ!è'#ÉäZ6¸»ýÔ­T„_ƒÕn|-!<¶™’§¨ý$O ú¡¥¾´]"ëYXÿ¨ 7?[~ÇŠNÕêO@šÓ; É×à³h¢ßjÒ{HòD—êð^sjiA¦s(\JyhOÚfO~\¦’o’ :W·9ÜÍ èA”»6¶Å×0¥H½,iúU×iLÐ娅þ(ßù¾¡²^?˜w§Ì×÷чø®ŠGúÉŸU2(ù섆›¼ §Kl'®©„• \æŒÁù+1k¾ã6ÇéÄ-ü8”¸?ž³÷X›ÅÎ_DŠ»bš$hhw¥2œ^ZÅu?Â=á^µ‰]BºL¾hmš}ߟ©WuŸÝ‘+ý媣9ž­8Ö_Kƒ< ;ö†|~´ØÉò=¤ê²¡˜\«MšÏæúŒX¥H8×¹UíÎheÛîÓ½×™1†±Í5”‚ET#óŽß—€¾éø+wSÕ–4ê†Ý`7^Üd>.3ÁÄX »n©FzðžMc»»mil`¸UÓÐhóÜmåø7ëÜþ@ãfh·Zˆ–hl#©NØW dŠ(Ú¨Rx!L¤^~šÈù¦PÆÐßÈdóÀ–+éZF®I_‰A h¼”ï\ 6Éuv’(µ_1å8Øpy…L6¨¸†´MÈ#šeð4S±IVZT mÅjñ÷·²}ª”/mCÁ{2I¾ã{Öõ!®éì^¯±òh{ò±ÂC‚˜¨§Íà›!sÍ>1Ö檧ËÒv¬o4¢f–£4ºÛÍÑŒ]# Ý7×êBª +?nÔîv$z”ò¡£GØÉGmk–VÃ9mÆ–¯³8TÅ$¿ e* /;fVâ:P”ªMn©¸ Ÿúg'˪{™ êgS*òàßE@Í:Ì9´Cʈ±>@Á‡"*(R~C;Âg¦òó pOàçª c6›ÏÔaðPPp–±S¨á¦q{(Y,רf¿gV ˜,¡JzÐøMÅ4“–ô£9ûÛçŽ`øfDZÝߨU©(ž¦[ ~{€•2m©§½ÅE˜¶ÀèP,—_¢£ÑP£S&ÓY„Ç5cØ{Å%&¹ÊóIH±Sr:ô—[Ê‘\ÍxÛ©9MM†©_³ïqQq&[Ĵܘ³¨áÀwÀÙ¾8|ă–ʵFÁVP…Õ“‘ô©Knr Ö•’mÆcŒ0 ÑŸ.´‰ds¦÷äD9¾ RäIŽ~Wš“éG¿‚2X+3§˜åÙA hËñÚâ·ôë´î'0 •öéåé#÷øºæð ää`t_Hå°ØKK_ÏìQJ!T®»Ž#ô#/V:l‘fTWõ)ÌV¬y‚EOHŠ~·&¯ì°ŸÝcï¸Ü0ÙFÜmÚ5kŠeÎî|á Áó4~¸åDcDWI{lìà¤}Ø(G^‡w% Gâ¾-æ€EÉ ¶Xñ æ ±`Š·’á…ÿy¹< GàT›ÖÍŒˆ'Ÿê‰‘¹ó݈,žÎþ‚Ô6¸dO¥Ï‡ò>ˆ¹‡z“(k@dwÓ]ç”îQÍ]Ü&Ä2ÐùÒmì ê-ÿh¨qr;‚HÀ$Á*ªt:ÜZN§Ü÷‡+ØV'qvÓ=wõ¡®:.¯˜Ñ´z-èÙ(!w0"U¨"¤ÎŠ鳄?£ñÐ Ã(ç‡õ)ÖÏDL¶³I.z^…¼*(WeRÈ ŒÚs5Òf=èš%(„™‹rz«²œcÑÓ.k#¨çÛ÷:Æl[ÂrºÞT|ŠÙD´˜¾‚†«-àôûJ|Ý÷)t¸ÕÝÂî h…øËÛ|,®Á3±•Zl <ãI,¯I”˜?<ÍÝi¾qxÝT]&¸ìç˜z‘úòà¡Û°&ãŽwÃÑgmÂd„+hÊì&¸bY–ùe¹`$·ø.¶+§UoÀ6ƒÕ¦çÆ ³teo6±d­k ‹¬9¯FÊc›ëöB*1tÖÓpà§]Ú@Ëö†ªE ÄætvT”Z§ØÁSÖí**ét\˜Íßö°rrBï-M\mñÍÖ½ý+lpë³.¼¯?7XÐjVP±î4]³“ ±Å…A„0ÊvLiòMBj »X÷´½\~GW넵í+ÿæä‡Ž"†¨eÿ…_ÛUV7¹ç ÖŒŒéËkœ£T4ÃÑí§ÈóãJÃ…š]!Ëm‚Ù¯iÏ$Lº"D[—YpÛÜXbÉy.?åì­'øñ¯ON® ð•Ž> ²š»ò…X+O´ «—Føš1©:| ¸®ïV<ùÇ>¾Ç¨É œ.ÕvÕл7g&󘿈ÆÙ!n–ë“ÔÀl›Àp£.Ãã"ürˆÚ¦C7éÅ÷MÝKß©G¶"SR¶+´7¥í p‘9˜ö.nÆ\ŒÎ;ÜÔ²k ÍÒ|öÖ›8«v`"œ'ùwtédp¯çôÈy½ÀóàâRiSG¾o…Øè%¹¸•1EÒð@zm¬všÐÑ~É¿<¤ŽÇ%RAäÇnT¦À1ÿP'>¾º5Ê™ ´ì’ŒÀ£DsýäA:ÁA´2M-•´Yè^¬ÞPDƬÐÀÕë!sš£JׯöáßÁÌp?ŠP;” y´ô@Á%ŸC½abhÝp„#|®—±ŽÓWšìÛÿB„Û™!ÝÇj¶ʾ1)1ûþíÓýè¤ë ¾d7bp•Nu•˶ 2ÚÚÊ»!.û%³˜Á¬AþOÌhn&žéYõSAGMЏ4t.*ð-ùðWPmmgü†ÖÚÃ+qi|uF(±=Ö&ñ rˆbµGÚç|³L¾dß|•Ý–€þJZI¨½‡)ÛGéf²9Sñ¡ÅgF®GºÃõ#•³ (©ªö9BØ4Y„[‹‹ír6Œ~À÷H|PÆ O{±Çˆ|´£àŠà¶€Grך« ¤op8» e¼0Â!)>šÛ€ùé:Çí«˜]Íë$lbb¯–ÃÇŸ5 wï~®8@œÏQôtz¾Ûià9ƒ…w¿§C╬“•<(LYYQ>FÝUqˆÔ4¼î¦‹<Þð2汜‘:Ÿg/QTëBˆ÷2)"ËM“Œ“Í:eÒkT?ŽÙØÀ´x”²µrÇw‰–LvE–Y¬¥hÇ%ÅY³Šs`§_BMBíìÞÞó$×n7¸û£-8ô³˜=4›6Ýòû½°az ,§s±Ë’šÀT:¥ ©@k#¼†Þ““lñÐPž!9@ý(… †ºÉ!ÌNn7|¯%œ/ˆ°6„DKJç:‘|ØÂþIlø¨2# \«Ë;û¡ðrû&·Š–+#JüCÞšô0uï-­ÑòÐp =|5×(ŸAa\Ýõ€zŒû;“÷´uy?àUK.ƒŒqĨϖçKœãžê#«„A³ÊQ‹Ó§PHëd·85:((]«¼GWO³ìH1§5[#)âøGÒ­R'va]R'¿ÑíºÞÎ4 )­Kf½_q¨ÛëW¹óÛ'o‡¢RPy6¹O‡ sŒÍâÆäÅÅl°˜eþ ädîTZñ½o©0ŸUMÊ NzR!Ûå„ ºœÌ¤æ§ºeq•€Gã—øÍ]¦¡›õY­Ï>€ºcïèzêOX€¨==”°n‰&2‡Û zqreHe#Aè1¤RcPÂðA3Ôös,ýîÜÃ?·ý%ÓÕµ&~€rܬºL²†œÇãËe§jß…ílƒL¦ ¯œ)ªöëݹ’Ÿˆ â~àäŽ0]sÚ%obñ3J#ÝÒK¡$ ïÚ8RSGo% s^eÍÌÁІ1þG¢k±–-Žþ]•.q4Wý"Vxë„“ïù'dèríÒ»R*‹ÓOºýÍÖ”ú½jͱúéÈl9åà³*í4é; r›k¤ƒ»|‹ØóôVó´_&LqÎhS¹B{¨þÔˆŽ˜"ÁéM×Ä÷FxýÞMçþÒ{9SòZÙ_Q%…Bú¨ñꦶuzøb UÚõ>ac~Øú‘]¡®y˜¤ŸüÓ|ã|“™6;æ?ǧgjBÝ˯/T­«6å]º|mQßÜOUîpѬrÉ Š\ÓLU î{„êϽ¬W+<ûo ÆÅ‘6˜»§Nü§‘òOˆé¦€¡qžñuCÄöÒfߌCgz—Œo%³Ÿz\Q‰K‡bQ#Áç9j(ve•ÙÕ£÷οÇaÓ`G?ÈQs*¼7ô{ôgœÇÜê·Û ÝV̬hýÌ¥³äc?O˜OK”¼dÁlJÑ`X{ȳèrm«êËÂç-)EZy¼5vå}FŶ±2Áyx¥æ4$§Ukp(›`èšîÜR;ïdÂäðå1<¯ÒФ¯³Ï›!…„R‹à£`yTŸ¼êNðF¶ßåhIBÁ„šÛ\%*†«×_U?DÌ À¤"9ï}?Ž «YR£hŠÌ¿Ñ—¢(-ö€ÑƒGænU¤D™¹ò#µ¶¦~hä®bÀ»CgËa$³õ»!èHN¨hJ(‹e¢ÑˆF2ÐbøÍ\½óÂÀå=›nfx}²€|òÈÒCæš èÄI™¶¢­äÎZ«Z«2ÚŸ÷ä‡Téãü|'Æëœnh¾uód²…Àú’xá‚yí"»¿è1ý´ª¦”PÁp¾õŒs¼:ÒÚϾTÃqp×R'kE¦Ã^ ã€ûò1ÑM|™ƒÅåJÙ´WgÓ*]µ»£µv|–§¡îP\Ë®mέþÛe€†ÇÛð5̇•“°or9¿ ϳI’Ðdïà”ñcgߨ>oFEÒùÙòWÓt"çÚö0äד¼DæéŠ}ØÃuûEDÌ®ÒCÞÒýQº!Ì3Yî'|‹§[ÕøM"ÎÑI“K5æ9€2 ø²µ¦¯(¾áÕü(d”r,ºs½ÉéDßì7)YT Xïx°Øöí$¢„’E,­DÃÜÏ[0ú05‡UÞçºya]& £²K) {Ÿû®^²Ê·lÂ…(w/I:{¥hìÒ›Ž·R´ú÷ò:!pާ®× ‹G©ÃiÊ¡¿4]áCý¢èÓÃN-_ÛïAôŒe4( ¢øÉñUöqŠªxA狉†'½@|™5Öq5—9ºž©ÖÛÀuÚ/€àªe»è+ÿ7C~¤À7 S>Éõ•zYÙ>9FÍðN6ëdßS{:“w¹–ÑÛe±Ï©ØLs­8Í,v¹ O»‡×ƒ‡a/ë£5„¦J|eALB¿ÇЛA/œY"JÕv~?ˆÜ!féR'ÝäÚ™^I 6X±¨2Š1âšnÝOß-®ùt^ˆ“Ñ0:¯¢¡IjdQ.Âæï%ïFÏOY [e?™õ4|ÈR3KPÌÙjV«íHFú¸ïÕŽ–¨[eªôª:ÓÜTNƒ ~~¥Qsc&­ ×U[Út 1)%")²T"]¥Ý±]Fa~ƒní$®»!P]Hóá»m޳EV°õ§$K¨èiJ1ãÖŠ«Q÷¾¨_Këe¦ö šCµÏ£zÊi~/u®«hïØ"i|×Mè‹‘š´6q.Ëí^ÜPW»rzb¶^l¼Vr™§=hxinñ ÎêW_g4­Ã&gGL¡¸:Ë Ô•³’fGã×@Äw§­ÜæXp™Gh=ù 1Þ!¡ùÓãë-¼p_Ôw¨íŸ³.®|2¦üF!µnúUß¿;„u“ϪÃÑÙkù9Xè~E̳ QÐù5 +V½@mç4­=ÑH)îŽ ¹Ž°«sØœaÖ£Ô\‹oîqùÈÛS†o^Ô]pÒž Þæ±çúA#—‘5PAwÍE§ª>àÉÝ´±Îi¾üÊÙ§kðÀa Í¡^e|U;sôPî‰jáp;ßýáwÎ)‡[Á¦@wÆBÕ+è•6çý·ãBÏš¸W®¨š•‹“GùÎÚ,Ã~Tõ¢Û:~~}:Å8+d¤+GI¬êÑénc\af±²7ÔîƒcÇhD%ëX*Ñ\vB¢q™¦:¡qmëaU,¨¶pPé«'…wS¿§7ç…‹ qøÀ_=¼tL ÄTƒ”ù‹0"km2i“9Ïcµ®Æérò(L§ï¥ÙE ß^‡7zëëÊ„Ap˜œþýäãÑõ<ÎØÙË]ï´å/©â¿ëyo•‡ééžÍðº–{ïBH=‡Ñ¥U^H{Ð×^ðg‰mjPPû¾ø<Éýœž&¶¹üÕH4Þ Êeù„”c,6æË’‰³bÛòzMÏd:!¹áü|/ÿs¢îâŠ1¶‰éÎÞû'}6( d’³ßYôTU-ø_ÔYbèÂÑ’r~2ÛaO˜àÚÎn!„A)úePtTp±S|…ŠªÝk}ý|ŸmB«µq"Ór"ÀúUXzÀs”æÆ¼€Œý‰ækª”.ˆŒ|oKLeǘĩ°oI\,Š2~yK'廆߾‘µ}-2‘,FiFÂ*ñT1Óa/Yô³ÿyæµ YðŒ…pá¹zŠîS£×"1=*Ž«oCòû…[¥ÛÊ™Èz#v¢œóÎW¡‰úÇfsÚê{òìÇsšúÓC]Íq5'uèÈÛ¨b¥M+‰€¡»þÝ’mÚºãN :N¯[NmR$kòáíBjáêT¿üq½ž{FRL;T~(ZR¼XåËÎ÷‚hL³Î±‡vùÑï™nNò¦V«4+c™r¦*äwU '½OƒtopqbdÓêdÓ« ·¦ƒ<í§úƒç;‡ÛçE6lTðÓføßGBÍË :0˜+O&Ã}–¯ ]ð,Xœ)d¦øv˜Å­É˜¶gšCŒÎ‘HÓwOJ³æÝÏhî99Ü`§w~xçt²§²Þ儨ÃÇQ){æ­?Åá|-|õzîîxyi.Jˆ@ûì–ÇK@q/är’†:©¨³ü<(wì¾)aõ0µÇ’zGº±eæ™#-8Áű•e’à¹rG¯1Úàr\Ø¥ýã6hT‡àØÍ0,[Ûºà«HöÊ¡îÅÆ6üÄUDö:*Ò) ÓîjŒv65Ä£ïÚm©Û 6UTiËìwŽ·bâ6Ï~=Ç|Ç$z<—®½Üç³¥V€ø44Z¼è~ÉK—/‡Zû•‡‹êmÁojZ+¥YGñô•™aÕÙŠ T/ŠpùÀþÚ½«»åçÆ_Mý]Oî]±Kx)þ)t¬ qõeÉý_óV¾( :§)8šoHíh~ÍÀƒàÅ2’¨lá>8ÝiZʺ*O¤:òéØFEm(”iE•cK[oÀÅ{é&¸]HÌl-Ê(Ó/H}ò‰–!’رèøÐ$z•9 ‰0ÖËÛ¶!ZfçÅM´IM>aª÷±ÃÆŸIjb;E=^C'Q¾Ñ6Ø9;þÓ‰Û0a0$‹Iœ·ÐMÛÅ÷Êõ{¬¡âstÇ]ä! dk–,²²"ï½=P3±]Æ·œ€nÜM}Ÿ\é™Lê/ÅI Áó¶Îgn°'ñý謹&ã/–ë{NWL?ÃÌîÔÜýàºQ«[vœn«é}ôÆëO«’1Ç´®ã0û._†K…ÛnK¤Üc2]-ÄÄhʼn*àö§± Øê`êtrqc5Àã­ÆÔ7lÛ=ܱIÖnû:›è0W‹5ÜÛo]˜”;6°&×ê´*a«ž‡ûr¡ ø,ŠS±øïÜ~IÀ¢ãù#˳‹d6™èyêXnIZÁ'YIµhÉ>yd\vAŒ Ûâ eðP;U囜w•«™yå'rØ úr‰¡¸ƒ²_§âÇÙ¬îL[fYíJóԘџâkÐxF7å>~–eŸfVÇ|øn—¸—ø»ø;,d¹Ò> ÓÊøNŽª{GH› Îìr Ma[ý‘Õ;Û~½þL÷j™ïùóDÚðQòõ€×pÎ>?°ˆþ³yßWß<ŒX‹º¶jZ†EæÙÛ^u]šƒ…‚]ÿ‚wXÔ¨xBp•îl6ˆU@»‡$§üášv’"§ú6»]+4>þK<ﳺ«jç`oä+iN¯+Ñ{k¬Óì.«´Qæ˜ v˨uI°p­_’˜¾±u¯œ9\ä–òÏò9K¢›Š¯Žv£ò •Kû¬³[|b(6EË>m T®|£éB-¾ÖÍOeôz1 Úß$PlqèÖÐK»½eeµ .$ >´áw5p|#tÚñ¿òÛÝ‹š}a‚v?F&-L辫>&Š<Á‘‰÷œýê§e9¶ -³·N@š2ÙŠŠpìæÕ2(xÞ‘YQíñÀ¨(õhñå Ú%WDlˆ2÷·ùOG \¸I4•7ưŽU]~xÁCUcl¶U‡e 9«êå´F ï»X:tY®;㤠!P:&óË Kã'{ËKe|­–Çä³Ýs‚èR æ~ ³Çœ3eÍž_ÒŒü‡ÄÈר”jˆ…æé‚†ìSÕê­ì;˜¸§Ø#§ŸSóܺyÒä1ÎrrÁ¯"á  òÁ_FáoXfKН<‡¶·*ñð|õ\Æú *ˆ«óŠnBè‰×TÀtïs¶¯ðl‘æ!æËkbäyzMžÚK ð! 8³²l š±§‘[±ÊCÒ_’_Š‘ÝóWK‚veÌú9å`^œ=HcíJèܘm²íqxv‹žéÓÅ‘|÷ƒG,É•>SÈ£ùùa…1~>¾›†ÄH³8Å”šKæ7*9 ?úÞv¨—åóNŽÓ¾Ù.MOã´þuˆÏ™×%òפ‡Jr’6»å0¹W uñöE±À'ÐÇ`¦N".ŽÖšR4•E ;6ÓeŽÊ«1ø<ý™ø »À§BÖßèç¾Kà‘6ónÆhLQÞ†2É Iy¯NJáwdQݯ ³Â¡8i;~XùPÑ¿þ”™g\jaO“Î7zx§ Õ7¿(€DÅ4×$‰çÉUDÇçõ¥uŒœéüÌžYÿb %»ÆhÇðÚX®1 £qIx.áÌåQ‡ëSl÷Sè¥Ý\TøhwÝg’VËP3CÓ]»‰m™ã¡–ôà|¸;wæ6ZHbM#ýã÷{éÏ\ÂÀtuÍéÔ¬Z‹õŽÄÇ< A?ÅTÁ•t÷Ž·ÿ‹w°:a¸Dq¸+÷š9Ç÷ð©óÒßÓ8\‹L/+éœWºÉÔs¿Ò(ƒ–îv 25J´Pû°ýhÏîô½3-5Æ?€ÒË¢Q ‰s}zÐBàÞN4v-Èˇ¦Drˆ72°£C1'oÀ”¹ß(9 ¦ñàöRjBGµÕ™MÆë¥¦ª@šÉø7¾§µ7á@®tØzh á¾[©A³13x¬}{è©q¦f&½È_ R·Fï»#RéÂò}CYæã¡» Ú¼Qouïbá}¸9M´uÒ¤W09ÊQªkÛ2—|êö;Óäñwj°ŸÝ"ê Ãóí†u{i·Æ~‚¾JdœS$£ˆ¶?Ý~qðm•jJ†ªÀØøvÀO|Wõ+·s ƯÑxx" ýØÊ!žDÎ(ó4B]Kÿº6IÁQ î˲DÆ3r@ð¼žC¼w\«Õþêb>µB~ΞTñù¿ß9ß42ìÃyÓ6!ƒ®&ÑÕ„¡âãǘ“+3úôý°Óɬ°”€5PéôVmV¸¹ÿÝ·³Q“òp&œ~K»;|½aã¤YÑ»w«h8[¾”°t _<}ÂÔ´º„Aý›Äh!Ó…¦'Ûjy¹/Šàõ€¾N!; ‚¶Ò®+ÖwöYYèéâ­ MÎé,>Zb¶ß'&Å[“Ëyi€÷IØTªWBUK‚´+œ¦ÀDã²F1¼ÃÙVÌð*G¯Ë£Yò#M%^¤ÉBK2Ȳõ+Ôð ˆiþz¿Ì¿§XWg;q®ålhÒRˆ&ª6¸§¤ÙÒMF?å°5ŽÃpÖúÀUý Ç2Þ~¥eF_Û/úx=6Òj–£šòl˜±ºª’#4xk/ZùC M¸[˜µÝô‹ÿ×ÓXD—íª„Å>ÔÐ) (¶; ç®bÉŒ®Cøü'ÒµÙ;… ùÄõô¼ÕíÓÖ"®Ü¬ÌÍCØdîXÙ]5)÷Þk'öÇ­·Á§´øU lä‘ú®êTÔ> y9nsÆæ¤E°3|8ÆHz:u¤¸ÍÚТy÷ì`àãËþ"ÿ3pSá`$òWÏM‹T^>qáçÝRÓþ¯œ"•=Ÿ.5+ J8t¬TÞpzAva’ßqª èE_PÏ2ÕÍõpL¶Ìë©"é=cÎ{?¸ä¡Z™@(:Æ)޼:£:ª‡x¾þÃ'%Š(UCšÑ_ZòO≻H€«OÀú½ì + ™ýÌ€ ëlXø˜?´QqsW;Ôqú› \ºòJCê½@­›Á÷Óõ°z„„nи;û‚°Òê Ë­´$}½hVT¨—›U VØ’§C%òR¹?-Sýõ¸Ö ªÙÛãh Wfi7Üìü¸D3>º>ëæ5ÎÊ|¤W³¿Žœ¿ÈMÝ“ûP£!EODû&uE̱¿#=¹f9îè+ñŒ®b«½díšòÆÿ"ÌÏÃáÀîä'`Ã'Ô¶šs5o²Íí̇B2B•ŽÈÃ8i7˜Ù `GìÚšð‚òò¡:?g÷ÿ.³œqÍ<>um Vb ã¤ýe²ë,ÃGÃüekàHEòZqôbk0)† Ž…5 å=ôÇ+Er=½ÝàëÈÇ‚ÕP^°l8?/ëþ6“˜é/ÙØ+6Óu/ñ#Ï6²G>û®K„´€w%d}Ú¶\NŸÈÛºÐ]`Ì—Žr÷7r ëB iôïšõ ])ì¡üEžÃÇÈõž5Zª†,ÒTéÕŠ_08Ù;›¾_ÞÐÕ†˜É«M7j*mi~Æ®Û<$áuh*I ÷$VÀÑUûKPÕ˜™wʇ?$oùŒdú>PUoGa|7A}E ‹×˜Í }Ï7ŽâžYXŽÓ‹\ª’GK÷}?Ý•’¡:¢4lÛ“&ç4AM—9¾ñpýf1£"ø€pRe# æ öD99§®&Ìkü5Úö‰ÈF™B6—â·Ò‹ÌŒÎ•ZåôÕÜ*âõ$ƒíge·BçÊ9ËKZºòc{áÚmïz×ä°Iˆz~ ñÇz$àkêÒË}°<çtSF¸JYÁ­9ô(D­s’Á„™Zª­¯Æ­ËgÏm¤>Â}ôËG˜³k­K›v™4@›Uß=İfÉýÄ-:£Y#HO/7jùèM-¨êÔ¶LhhÕÄë&£¹´…ñÈÛrð¬£ÚÂÌûcB~§ñ3þíwc–ïè=&{ߥŽ"èì-䥱ˆð –©©ì È‘  ®¨õ|ú§ÄOÂZBÞ/kz +ú÷2^Ò¹cÎáõ[˜Ëøg²h4ÚõX!M… xA4Á3ÆY9¬ Òõ¼;*¬¸2ƒ³õûÅŠN_ÐÙö*H5F“ž4m_Y®‚‘!½ÁÒ-Èqêò(¬¥è¾ï‰½¿=£Tv,…ò¥Iâ{LgRE_= ¨*q‡T‚føWÕDÊ"c§èW ÃßÎzžtú|d=Q¤¦Fèà0{KÙô×d‡€IbJW„Å®<Å-ïñ@ÜlÓ0æPk×ë¨0qvÝÛL÷²~4•u6³±Å¸)¥Ó«“ÞÿM¥®Î endstream endobj 220 0 obj << /Type /FontDescriptor /FontName /WSEBYG+CMSL12 /Flags 4 /FontBBox [-56 -251 1102 750] /Ascent 694 /CapHeight 683 /Descent -194 /ItalicAngle -9 /StemV 72 /XHeight 431 /CharSet (/F/H/I/L/P/S/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/r/s/t/u/v/w/x/y) /FontFile 219 0 R >> endobj 221 0 obj << /Length1 2633 /Length2 17151 /Length3 0 /Length 18672 /Filter /FlateDecode >> stream xÚŒ·eT\ÙÖŠ  îîîî.îîîÜ î× !¸î®Á^u÷½Üï½oÔTÍåsíµö9+ªÐ ™ØÄílé˜è¹"r*²ªªLŒFFzFFfrrU gkÐo ¹:ÈÑÉÂΖûGÐ,:ƒMåìlÒ.Ö&;77##€™‘‘뿆vŽÜQ «… @Ž mg rB ±³÷p´03wgúïO¥1€‰‹‹ƒöow€ ÈÑÂh :›ƒlÀÖ;c ³Çÿ„ ä5wv¶çf`pss£Ú8ÑÛ9šñSÑÜ,œÍÊ '£+Èðm€<Ðô/9zr€ª¹…Ó?*;Sg7 #X[ƒlÀN.¶& G8?@EJ `²ýÇXöZÀÚ`¢gú7ܼÿ daû·3ÐØØÎÆhëaak0µ°ÄeéÝi@[“¿ ÖNv` +ÐÂh6ø»x @\H süC'cG {g'z' ë¿X2üÜh1[;­³Â_õ‰Z8‚ŒÁ÷`ø÷ˆ­líÜl½~cS [Ó¿¨˜¸Ø3¨ÙZ8¸€¤Dÿc!ü–™œlŒŒŒœàƒ9@îÆæ %Qõ°ý­dúK æáãeog0SùX˜‚À_^N@WÀÙÑäãõ§âÀÄÂØ`2³°Eø,™þƒÁSàháÐa!€ñ¯Ï¿¿ôÀsfbgkíñÛüïƒf–P×Цù—ô¿jaa;w€3#€Ž™…ÀÎÄ`çbøüo [ð_úKÿ)ï€R¶¦v®X€Û÷_&®ÿÊÿlà3ÈÛÇ ü½ºŒlŒÆà?Lÿ¿wáo—ÿ¯ø+Êÿ-ø¿5‰»X[ÿmAù_“ÿ—ÐÆÂÚã?6àÁvq/‰œxUlÿ¯©èŸÝ–™X¸Øü_­”3¼,B¶fà§ã¢geÿGlá$ná2Q´p66ÿ{xþ{à Ö¶ E;'‹¿. Óå_x­À—ŒøÐþVÀ ö¿YÅlíLþÚDf6vÐÑèÀ5f66€xeM@îO9€ÞÖÎì3ô˜Ú9"üu´ìl¡¿Dÿ vƒðoÄ`ù8Á#øqÄþEŒñ߈À ù±¤~#pÙßœAî7gÿq‚c*þFà˜Ê¿8¦ÊoÄ `PýÀŒÔ~#pLÍ8ð_ÄÖmìÁSý×½õ_)3¸D “±øT¬M@ÿÊY™ÿƒ‡ÃÂÉêw@p£?\Áu9AÖ Sç?Älÿÿ³ÿ:3ý#¶9ÿ=Ë¿òÿãnºñ¿ˆ œÛØÎ<9ÿ–Èú—ÄÆæ7Å¿FŠá7705;kk ãà*~³è’²ÿ¥wp¯è¿QÀõGÊhóGpwLG[˜Z¸þö/µËŸiÁ&f¿“€õf=`Aš€é˜ÿ&n¢¹‡½9Èö °Ìâ.Þò>m«? ¸_¿I°ƒcý×fýÖƒ»û#ð Ëð;8–-x#7œÚÖÅÆè¯;Ñì’À·?ƒÝï¢Á1íþðbbµÿ­ç°?¦mÿçüY™þ#ýßÓg—VðãøSö¿ev¿Ï˜ÜX{k—?ˆ_f~‡wÕÁÅÎdbdý‡ XúGë™Àì~G`+ÀÏ«S€+q²:™ÿá.äwYà ŸÁÙÜôÇ€™:»ÙýáŽáòŽëÜ7·?ìíþ‡÷ø] ØÕäøOìÿ¹]Á]tþû9¾9ÿ‹ÿ~gÜAÆ svÆ<Á–uÁíw5Bxnt;ã,=ìj7¯.D¬1Ö[ôPßå±­ÊðXó®9“³EGÌù¿è@ËAC†~‹áp³âî ‡C‚%{L_Ï+Ïô žr✱7>;õóˆG¿äqÅ9¿ÈºJ¨¦ÁöÞ¾ƒ,aEAÕ[…ý9*®§ ’Ö¾Jܰ3C¢Œ–a©ˆÒ]M“÷ÒÚˆMÇ·ï«:Ð gçz…‘ÙüfB%œë~ái•qpwŽu1?˜wÈvB~£-ŠÌ¥Ø»¤-º]…Nð%%ãsäPúð5àò=©XT|îdŒ¹íZ*FAÏÞÿÇ u0÷Ršå[S·€£"sÉÓXÏ޲£!öiIʳÏèS]S£†¤;0Ÿå£x?„æI‘…‰ÌkDþ0; jm>ƹyµŽßg×7hÀy«õ4›4༎‚0è¯*­^±‡v¢E|ã­ Ú=m(Ô)À?ñ¦™ Ìٗ٘ÃðWÕálgjº'mQ,Ìr÷N¹êiÿê®ÜýâZÿCn’‰&¾LÓóx²ÁÐõ‹^ PÎËW2¾T!½‰yÈ=œ™|‡óii*PU1 *¦Å~xãf*ÓÑÉRß´$¤O«v7Äk¹Ð(¥G; ÿDãÔJÝû)“%ŠÆó:º¸&+ϨšA©œ†ã?5ñÊgÑnbÒÜÖŽèI?xSÄŸ,A‰WCŸåýøP ŒÒHýnwê=²Ç¡ª7qM¥»njQGuq#þR¸wÃ*j7 Ê"7îDo„Ûv$šãý•°´ˆ±ÆT¹ˆG¼íÄŽ‘€¾?ÛšêúÙÖ®T^Ýâ´°›W”î0ÂæH$†‚Mý@sçòÄõ«,E”û/Rz‡v|ɨÆßÔ®ô¦géqȱUèMf¬dÉÒ:;3XQ_Î8ˆ +F¨Â¯‹CéÐwÖ=ÍÞ»°°µ“˜±âÚó$¨%à9öøßÔ]úí¤~-ñ‚fÃ~û¥ùø ‚A¢/™[[›BõAIODŽ%× 6+µF!3‹ÃÞ"ïS¹ÓÅ^î›H1½‹Ý6sÓ†6XPRjÕCJçWg1í8H¯H$½çˆ)YJ‘ ¨‰xð…½ën‚¹ÐNBá2–eÒ¸"ÑÏ/Á…»a"=Ô}'€Š "¤ì´_í<¾XÔìÃázY»ëoØHSXþš^⎓žEFW°ÈJ?2©u{Dï)D;‹•å÷©ÿaÞÕXs?î^]]-ö=¡«ªÎ·Ý³ò˜u)Åüó5Ê‚E3"ÅçÒÍsiqÖãºu¤£T¥k´lyáfîÌŸî„“„/;ž¬°Ï·\rÂùúèü¼C°ëc#ž")Ï4z7¬lÙîœ:'Õß+Voüaj.¿Ÿz[Ûwâ‡'`{È.¥øvgx¢%w¸Š¢¼Œ[ŠQ3ŒÔÝ/§Ã‹?éèRèì;è7}¢dB'7*~3M©=!qTB¿Îð4(¾YN£–"f´3äÞ…;ÿاŒ¦ä!R)¹ã–¼F€•W®ªs` ÑŽj¯jmëFøÙ“¾"'_JP F²®Óàk©s#.k­D³QûÓfì‹È»J®ÄÃ#Vú“’ªÓ}ãB¡n2®ÉÏÊñ®‘ñ+bÝ&ðƒŠèAí>4·£˜O³ó û7Æ, Bpùú¼?Ø 1G’ãêÚ¦+…ŠSìi°~bûªhL‰}ñ™ð7K6bló€~©Ú׋¢jA«ä"üÃ`!B×ùR/GàÀY #ÁüKÀ—§y‘Êi›ÂéûQˆïµŒžg…“6)‘“Ý:µOª…ôu-_¹1 ŠöcÜ2ï%;‰Ää²8¢[.sÈÎfû…­wéS»gišY;aÆ>¾ÿõÚáÚÆüm–¡‰ÔhäIøkÎJ!¼åÇA3²ì<–žXªwÒaá¨wZ†ØS«ªâˆ>óuúıÁî4j¾H»=9fQáà v?E½«û³ò= r5-ÆN5Ôæm[ÁZF¿ðÙ'[1$âЋ:Iûu÷n)6ºb#½En¾êB{½e£ØyèE4O9#]›÷¬(†áµA˲ ŒÎ@‘V•™aZ²©êLó°Œ/tÉЧŸcUµøøõݮڱ„è@xeà¼?{ÙÀÍ}Ø0¹¦<©éM‡¦ø’?-SÇ­qÑmZÀ¯zØr™“Z†4§^Df·¡pQÌÜoI|ß„öÑ›&Êý>@ìräGwU$Â7Ìzé’ük®€ÊÆÂÙÅÆ^Çs%½]ÍFÏIϬ<Èy… ì4¢>ꜱάìØK~’¤5IQ¾/Ì]ûF\j´óbÄß*`•Ïõñ¹–÷Þ7·ÏR û];µIäzë0®=Ѥ0„:ñÕF,Šm4½ËCÕD+õ!ÌO4]‰¨‡ÊŠ< ψÖ`Ïd™Ö/É;‘ëÑ•ÁØŽ‡Ä`£Ðêa«àì'”£vÁþà§gi €ºÄ[…Ýxw&èÝz†f¸6ÌÓdˆÛ,Ì?nrÁ sõãL5¬ÑçY7îø¹üN#Þ¶ñäˆh( M¢ôZ)íª‘Úá1ß¿>Ê!PŸ^¹É3»ÌàÜZï‹\³rlG7°³´­§âLkÒ9ÿiÙuKäS&É «´™ÙðÕšùºOŽÆ–tÎA!Ê–ûž&]J¸f“„0ŸéJ]ámÌà™_q{^¨†¶œÛ?ÈMÜ/˜½i¡ %Ž»©6Û>H.ò»—í©!~c¥oôÖf#Ó1´àz&°¦ÇD\{3å…õ>[r¶+Yåñl„*æØw‚.ûÁÆÏ&¨mû…&AÒ€u¬¢z ŽÖ|oÄ] øá5JÇ\ß@ר¢°+¥U<éjïÓöÐÖOhÒpÄÈ‹ŽeÛŠéFeÊÌ×LÍ+iË9#¦æB Ä›á1s°p h°ÄC¥1ší ï•#ß]D˜Ló‰T¤ ³F$M³h÷ ñ´Ì!’h.å&vÊrû$E›p4~Ò³­J~Õš>`§R£[ƒ¾èdHiÖîB“§.P8–¶V}Í÷æÛËûp½ôÆC/F7%έ‘ˆH½uAÀ™UšOÜåÄ—ñ ·¹,£yu£Œ2¨`Ø׊C'“²’Õ»q r<   eX’µQ¿ƒ®_]¤øa[Æ£IZÄLVC!ð­©á §jô†cïF¡jøˆ—«ÓSó}f$D¿VH†%áFa$oÑó”ú80¬-{¢Æ8Iº’¼•E²Ï£´×rc 2^ð®Rïš´sœ¯³ÔÓ¼ ¿Õxe*þŽº-æ I꾇Q° 3hT ?¸"–~ëòv¾‹ÂéK˜¼HÌOêZ·v%Ÿù¾ÑZ·êH¡púòA‰¨Hð"ÿ#ëñ`ßk}º«í / nŠ ½@ÉHŒV †>”ÅÛ>‹–uK@µò!´~dˆõèo(zÚkEàú‹£Ìw€Ú y^²¯ûsâØ Ú¢ÊO\™7I6ÈÊéY™äØn±ŠQè­éx8²mžS HÃHÜ/ÎñKÎOéÝîR;ˆIœ‰ƒþÅþñˆ*X—Ané0í.Ûµ‡Ã!¹¥¶–·¥Ör½ŽÉ§i–Œ!dCs&¼ˆ‹;³ÅDÄ?9AE"Úeå½Ñ¶+gò¢.í½cÚdctÍ—Lüø ùÐ0 Kjó@dn‹'$èŽûXT8ÿÒ­ßu‘(k~§©Ùü&ÇÓk´ýxTPR¥“9:>v­nözÎÿ¶­Y†O»¿Ññše°(L#GmöXûúÑVõˆ4GÞ—ÍG§¿åÜ~u¢÷NÈK 4ßœX ÊÛ{ØøBfY ɯÕR†v€ýÁüÇ9 äcá«îH?öúÅùD©?{÷VT†È¦“IÈw‰RÏ“*ñÒÆžµ/ ƒæ= ¬QL:[MGòSÏ˘Õ;Ö}N<æcT¸ýwŒËÖK$_/1ÂèÞÏÀà…ÇB²<¢s[n¥Ÿa´,ãOv †„¹ê.âó¦s_R"PMÆü†k7hoºÍB™YDXúEú¾µc§aÎù©/IÎÖ„Ü6­lÂpc,Þ~u–^ãÈÀ¿ ýW(—ìø%<Žß™Åuj˜Wõ%k¦Áúe\¤l_$ä#u'€Ôµjä`+õM½·ˆož2Žer¥^YÃÐVcgÑåùH¤Ë5ÉÑÑâ/åz¹X©)ÒÏ5žjóµd-ÐAQìËúޝrlJ‹ d«Òñù‰ÇO›Ëö%¨˜9';,Ê„µ.è€åž?ñ vQ·r½t©5Ϲ.Ãiú0ÝI„~èfÍ{ŒaÚT¿RÏ‘èåu«3¿¡µñã±=©eDë9Éøáq80 p_ëëóLföÐ1Å>é¾ñ`WÀpêL8^_öÒuø53žà(B§]ëšÃ¹ržHƒ'wå*sg#p)dí’^¾–PAXÛãè@)§Ô 1xØæËá†Ùtžúù6ŒšN*V^«!!Ý ¦Òßf‡tÅàb §õµšögPèüäÚ´‚Ä(_º)Ìü8Lø º WK}o¡ ³öFrds—VôNÝî GÊ}>Ä`f3KÇIÈ$‘pdL=ºâv·3ðD¯¢½[Î1A³1yÔýpp_£rImHdþÂñ‚™wnJ½Ç\‰ë—• *8Õ°5L‹Å#R/Ú»0˜.b®…yø7°•Ùün^"˜Í 8goJ÷uÆL\þÚú•tê³u¬¦Ë´äO¸8ªEÂÃÈw‘×ǷΤ˜CLLøÓ•{Æu¯ðÒ±˜Ö4F@RöüL½æ´¿¶~ÍÈ <2=e¨Q õH“ÉË—øw\!z?ãî)/Ûÿ\l€–×ÏÚ\s0âÊã@Á"lµEÄdl2$2":Å{µcî¡XÁs®œG<µîV¨é^1 ëæTµ…mÂPt5F<’Ôå8Ú Å{ìÍY?¢Æ9—éK7YŸ}_8Óf§ º{¿Ó¬J77Ú…-‡p¿êe[-ЙÈøL×1îe.$ÅW=’Ï#'ù‹\‡‹Žßú\šÀuZ²ñsM‘€ÐÄ.Œâ€Æ¬#œwý¹©…“Ùš"ò¼¹ˆ+;^#4ÏwAKÉDžŸ­›)c•ëÕ(qÁ>ÜÙ7‰ „‘`n5*à³SñØÇW[,–§MÚ/­lM'ò­yÒ0SóÄ-åG‰k‡¸¶5“S¿Ävæî 1ê„:ŽðÄ?‚DãÎ[RW—à—á«%òZÓÁ `”;–<ñÐ'„¢—¯µx×.?xª^ñYIdü׸* ¨*3*¿,î{†‹j¶¬ Hœ'²m½æËªqd ‘šã!†çh#Çì8a`>#¥‘Љ%ÒX KÝಕ ~#è?/6pnßbÑÒòäºqƒÜÁ–*‚JÖ-—í$$ð‡DiÌÊ€ ›»¥3!4¯]37ŽŠô^ÏvRâµãúÔ?èYæÕWw#Þ©Y«&‹»ÍÄÙ}À–¬Û©9èö\íãÌaJ‰HJ% “­zéÑ%Žãpt–j>ß8ÇN:qÚIžlÆ̤2޲¼ÿµë‘ [8ö³#åÕ¥C=ï…a89×Û¸¬vò£d¨µàÇõmŸÂy}ÒÉ@\/PŽ][Y¤{︕žkÒÁ~匲j"ø!»ùv]Þìl²›iq¨æí/¸õÊcµvéønPýiÛâQ¾.,ž½¼/·YóXšPn#ŸT «ŠQUŠBT»%ªý?xâ¡ÕÝ+b«a‰Y4{t4:»#’w«Â¸¼8Ås}ú–ãV8È‘˜Ùô‡"\û6e ÔFsÀo—AJ»c|Ùøn¿” ý×¾Ðíu½ÇŽ€ët6ähôuç¤zþxLÊÆŽ†eòP •Ä ‚€Ä s]ˆºÃ°ZªöjQ}Ÿ‘ÐjšNÜ,õN"DINÑ®óÙtGàãÛâä»{qY= ¿*&E=¢‡‹¹QdKò «·-€ŠZ ,>F5¾\ÒOÛBU­Í×jÄŽ)äÙ’pw4´>Vм~9;3yŠ&–ö×1¶–¥ØÄÉ´°«N{aç}…´X§ý5F69«­Î½9ûpÈŽŽë¹—1lëYåJG‚WcÆ“2[%éçùAm ÝY1røMÊh¾)sv ro¥:®Ž¯¯E¾¶ÏßИaÝ9ʯŽ8« £ ù‚Æ‚» s&Í-G%¦Ö#Eq=Ã;…9:‰r‘Ä…ªª`óG\® n‹ˆwylÝÖ5ŸWÜ’Åe¡(éL”n˜i³ãf¶òM¹±­DaÊ­wpvU®‚ø³5ðšR-GÐ0MyìúYF–+¡þ´$+‰ÅT“µåUã¡×.hpAK¿Á=VîOüŒwa _ˆÁÆöa@Ès¨èÛÛ§wü³+È—*Ûœ Pg4,õJ ¬c8fFµ^Pq*sç´BNýêo‘ËDn+/& ¡åï—Dw¹j·âËøò‹_žìmØ¿$eŽ©=œéF ¶T·Gg~b=òHZä¶™à!‹õulßB*´›¨?êdúÀSª,hÑ.Á æRË~lö=xBCJ)TÒâÅØ°ü£§‹OÕWÝ— ©>™d#Ú{ÿô&–››k›îdÉ_´M¶~^²|}ã…軼˜jrmÛxÑb9§4L¹‘žDT¾i¬%•Š¢Ñž= w¸°¬nÀ9;"! q‰\ÂkÜ–X¯=Q¯fººNRi «‘qŒžžÙV奜.·R>€Á´6›À ÅëÔfÎû ¸ð”\Ó{>C\Dþ‘s[v#/‡êM}OÙ"ó'ÆÈ1xŒ¹ ÄÇnL‰)z’Í<µ{²l$¯¾ XM“ùÁÐÍÜw{ê%œFbO³Cn,kè“ñEbEù½b9PÕðä¸M<ÕçÂ7Ý#Ã…ü*}½¥¯_­²Fè¼sB|ðdúš9ÞÞ ‹°M­Úå ëÕµÊ {—®xþ yGc¨ž ÔRlÐ6‚‹ w×hƒ>—Ó_-,/Ÿr˜!dÉ Þüzåéø4ô`M´ÅdC“íì_2a›çCa¼±Áøá(\tª%õšÈc¬ü+Î*\äç .d.è”óéN»¤J´¥<»¶Ž¶œŽ«UõR’–AG _sÞÜœ‰Ã&þ/”×´•Q³ BxañƒÓN劧‰\YÀRùû !c>'â‚;Èz1ö0GüýdRtS"ìbךHƒ‘¿¿{ÌׯY¾9E2&^óå'™ñ(›'BGkS÷AA¶~‹¤5K½dYj³¦üõƒž™ûL{OCY™ì#j) E¤Sû„(E«WµÕ")½5É.§á¤™¢tî–š·¥g“ ýJ÷µB(3¿÷ ®wõO¥¼#}ã^xñ³H)Ý-ä…†¦Jè9¹9†Üõ¶Ù¨®Žû‹ã-­Î«\ÆjªÔÇ¢´˜r"¯?-*â07H¾Ç ›/Ê"‡« g|±Ì–kÿ8µcà3¦²`õJ1çÃ4C5B'R<úsî& ÿûn†Ùs‚ÆDlyóûµµ¬Â•¶æ6¤ÄÇG±Z*öes6Aÿ±Ær¨ò¬KÈ/@J%A¶´ÃÈ%h ¡Ùþên ÁUÌ¥é Æ»qs^¥;¸wõbﻂ,‡IØårgÔ½ !^ŒJÔÁ½%ñ€\û/WAg~z, 5[¤ž ²J7tÙoiXȸÈÏAË…0KÑëï>™Ÿ'<¨5µx¦»v¡P/³TÔ*l;“ fÁñi“ …“¼šÙ”¨«5íCDGNå “¿ÛÛ+_éÝ顤·4Iy¹—ÑŒ«cù±²Bc\=æâfãÿ9¯ OšLkúÑlxVó'̬r‰ßÏÍ^ß­‚´ œ]¯ !·•¡N_褳 ‹ÝôÓ˜‹Ñ>´Nö¼õ‰D)oÄ~],éø2o_o|Þpú=UÏKlZˆ‰ Wÿ«¯§‡KjH/÷|…~òÕ÷·Ãþó0zj»ÂäÇÄgÍXÕ½;ïåß{W¶¥:j£¾¹¹£0€ëzéÏ W™Uä 0Z‰¦˜3öŠŒd¸Ð&®éLø&—mÆÝ·uǿǻëÙÜZa6Ô!µ§Êž#ˆÁšƒúI)Ì"o¤ˆgÎ@”¥ò4ÄøRÕ©žÂ+8)0a1E ¹La´‡WdhþvÉDZa<²òÛ!ª­E„‚•¸`‹¢Ü¯‹iÚKL¯…ŸÖ¶DÊßÛ5S\| ‰-¸Ü½<±« öõø²Ûx'X5+Ã7¿¶núÁ˜féê¬D»ákjLú¾Ç#úÅ>1 û ÀLñ´RLE_™ëó®Osv[£ߟ®=jÑÒ“eé8«ñ`‡Ûð)óD8Ÿ[ëGtÀÎg’úFLjX›\wŽCŽ ÀæŠEíd\jØVEC º´È ~›è¦î]¹)ÖCÛ 9ý—'V”Ómëû2yx©OæQæý tÅ—IUô¸Ý«\„áÜ? C@©bYX_õµ÷ùÎ{áÞè%¦—^Ê0¬e„„ˆÌ¼•ì|"ί XŸJõ#>Ć?ëR–ÁYÇú5Ž|U#‘¯V2´ì„=â/0XHî‡>c@›ÐD›­7æzßÀUmïÞ^ é>Ô'8ðœºj´ÌÑl:µ›²ŽÛñFú@<ð¼#ƒ…Œ÷Û|$(Á€T^¿SÉ6Z° ”uÝ“qYÎÛ|·Á¬?§®kÇß«o%¤{p÷Sæ‚¶²>Vêç)Úgy»Ò#ÿÝËèzEÞòsíÁѨ†'?ÆÔ¢¡ˆDY¯@àáv»!è|åˆ]Ëém µZÆ×{SÒ/£L¨\hø#·ø+Ni?³zìΧàvbL°ˆ}=úãS—ó¥˜ ÃG&†Ò¶ÞtŽY¡Ù?/`2Ù8ÑsöóÕwòO‹0|‡F„¬ì»Àaã¯5/ÌšH^ç,Ò~Ã7Q< M'Ì %OSë‚}S ™Ú'Œ{ùàH©5´qÞ˺5B1÷ReÉ÷h\°¶ …Ð7{›zìNŒ² @r•ùZ„r¼®¨‚gD‡I:Ë.dõ Ý˳•ºfð]Dû,RwŸ°Z“$¿ÖÄùƨ°Zï’©‚µ^ݶC]çÏ”‰•¹ÏWWì„—ãÃH‡ “™À=ùªJɦ”ç»pÂ\öƒÑ0 øEÕZí•Ñ)gSH[™»8­¸ç<"‹]/ƒÂbÕæÖ ñî—ðŠç·?a)mücy¸?ïºÉÙÑuÉ«`R°ü¡ !U'z£Ü~›½9 Aiñ¾Q`Ôglý—¶\{**ã} ÿ-©ë'!æ÷¾ÓÈÓ@uÕŸ=½ÂÓò¸á‹XÇ8-«·xFžõ(¯U6¾Jl¿-ñSÝë*•™:Á¤,^ØSª{KºûË­==Ÿ¢ÖC}Õ;qÑu¶ã¿{ªÝ·ïƒ?dA¯|Ñ‹úþun1èãsx­äRY½;îÐsýñ>ù“ykäå·—Ú/1qSnf–1C=\"Ètv ìû0#" *Óû[4ò m+õ|œ66‘S,ø[ÕC!D¯u‰!¹=Òâb²¢Áó æ²˜<<½ÉÛ‹×kp¢î~ãÃh:ùCÈu9cÈxTã3¯,ÂH[Ìyñ†gð„ÓVüðê2wU4œ>OÜûõŠæ¨20¸4@8T LšÌxJ¨#üè Wažkϧb‘ç£t‹nšçˆÑX¼sLŽ[ŸH¦ bÔd„ûpi™ÆÆnuØOö¦;7Wâ}%ž°>í»´c+ô|2œ§.;õŽ}~¶rCà†ãyùÈõÑâô”±Ål©ž›ÉQ=š© Ó¿ð2úɢɫ>júLݣİ»CJ¾ÙcÓ¥‘dVÅú´BËäGO¹®ös¶çª´&/³^ó¶ÒFÂÀ¤äZˆ[¡_ÉF‹µa½f­™H22@^²8±V‚öó¼=oiV˜Ã†¢OO«òÙ-Ù D!4¡˜™¢]»:nZJ>þ_P (gÓ øä:qÊ÷‘~ñ< ‡²¢#áDm·´‰ÿÈÔïù^ø¼*®$žâÎA¤Ò½½\‹Loü.{û§pŒ…¬‰ì%ç(.ùÛbîv×WÅ1]kÿ‚w%”ûþÙo~º@Ò‹Æà¬fÞ³›Ÿ–û݈vª¡ê¹_Ð^·S«„¾‘N,œ>Ðw+Ü¢°óر*rîý¼Á¢³V œ.ùÈ>¼™ƒÛ sà>Ýè—¿U¾—81~mÊF"3£è ©¿^û ¼îæ„y%ÐT³Ry’~,~Ã<Šf@Z­a‰«¿î‚à Bt$â!ã;ÕÓïë0ßI3‡5|ÜŒeöM Û½·¶àGŒ(3\O›¬¤K©”¡ñûDD¦9Éðc߇²ñˆŒ¯Ã…Ø®ÿŸ}Sת>ôð×vCN¦~[E„Bó-£$2dL,COåã?'à qêûßÇ~¢oý17ª»½ o"3=O*—d?%,AôõA-É·»Õµë )ûMì©\‘Öµ¹*“×›0‘ÏS¸l1;3°æUÈ~穈~’Ó+ykñÎ8Ö›¾9eßàSæö“åc6¼ŒsKïë/æO”ÓÎ1i"órWMƒ¦R5o¸ER‹Ñe>Êá”)}`Ã)k‹: ÚÖÆ¨¹‹µ(àd>ñ1b¢BLÁ±RªÐž2LRÞžp²OÄaéæÊ½kƒ›ZФ-JmPÃ`šÊHkQ%éè'`xš§{4—“Ä+"êmŠÞx2…¨Bevu…~íëŠ3o‚ Ù³Äaè•ÈB¢ ÍüÜ([øEì‚èº~J-òÇfc[øzAOjthñnù?$Õõ®Ö÷›eK·½L$ÍÉ@½§HÞñ¯*°»gd+æÅÆ#QXæ‰XDoå†ÌeýÉÈË-½€ˆ¨zÕeê²k/Ž×6ëÏ€‹ô4ßK¶yØ~¢óG(ǬÎȳXÆ µãûð`Ðg3B`UÁõ¯ø<4Dò‚}ÿ7ƒz‚yüÛœãÒï¼mÑBíJϽq>jk3,NfñDBE½®Ç'’ÖΞU#û'HŲ ¹5=1“Â]Šquo£”;ð;nƒuCXÃ.‚ž(¾¾+‹6ÙN˜÷šJÕôÉg°0³ŒíÃÈÑAp[š&ÔØÈ}ƒª7xþ>Xúª#ƒ#f]õk?´7)û°"I÷:§³‹S‡ZrqûJv7´V±Uq¶·QP]hN?Ɉx6<ž©»M8â †~ƒZŽ®ò*¡„šUŠe÷à‘çÛÕF¸uW$F…­ZMK¥SO‰†ô"Ê2, 5)Ư*Ǻ/†T´ÓjN¶‡I`\Ø.âKÞÀ¾Ýa™­Òh”¿$.£ïx%+ÍZÙ2TbRJ(ŽÐŽ÷Ôã`z\ï=+o~]¿¥]´h ù¥J¬g ÏÕw_ó€ÕÓ’I?¨ŒÞÓ©`52ÆNßq‡z w{ó@Éç‹]ío=V´æÜÄôT@oÚ§I×{ÿMèÒHCmÑ+=LüÜ×vWÆa<ª¾÷Z€7 ´09µâíÍ-y„V yšVË5 j©–ŒZ.éZÖHÆ_Å‚D˜™^ÌŠ£««×¡ýÛVûÑ—Çk Fð³2YÈz?&Ä4y”1¡Åã¦&U°Ëh|ßóúüT¹G•§m·úG´H¶.óåÈlÞƒÀT$öû,¦ŽÆ—ì†,‹’XÍNž„u½ˆÎÈhÜy´oÕJB‰wßC ᜱOÁ‚eâ6’ðJ”Nú¥29Ÿ™•¡´=è!Û]æLÜý6"ÏÞ*4Fb8¹S-N¨QéUŠd]®ÄGÐ&Ô¬»\ug’x] ø¥ï˜ÌóŠô¹j2ßÑÍ/w¯ÀˆPĶþ ÏŠ"Hz@8x¼ô1©IÉkWWܤ†‰T‚¢£ßEsÔáI€ÿN“E"-¹PmjIËÔò'ƒÅÕ²'Ï=Êž{î<çYÁu]µ >Š“à´’é/™]Vtýïð“ë.euxë¹U ëº{hƒAšû[6ñ›Ó~ÁK'?ù=Ȫ‹ ‰r¡v»ù˜aPû°‚wýFÍ,“y|®…Ž2›$ºýƒ°WÛ’ªäªéÝÎ$ú…¬-9‰vóáœuëžg¢ÈPWZï’Tó<õaþ)ðˆþouwó&°>9â)ú¦¢M#§ï»Ÿ{²þÄ6A?¼‘f‹¨âûà„÷øÑšDªq?¹$!»$!K"7ªÍfHèy¦Ýá[ÜæJÔT2éõYîks{%`g¸Û-¸ï5œ‡mO*=7°Ž]°~Å7`O··ì3ǃӰCö‡²áÕ&\™)NÓrNؤ•j¥TÖÕkç¦\­;¸1|+RSäÃÆæþ¼‰f ÃX>DùJeèŒÂʸvÃ×W"’ 2«†Ý/±ÖG]ÿÙ¹õz–Ë›Ÿšùs`RF&T²_´tþ²í!=€I†­ü¦'÷å80—öýtÂí3ž e‘Q“5š.~®B&9]þ}e+çIþœ››ŒÎçœ_j=€Ë x cÅíâ»MtÇN½Ði›>ž]>Ç+¼à·Ÿz„’ÑÕ^Ëv©1W sŽ”‰¶Ñ¢gF³s ’0D´²ª•ÈúB^¶IAL=½ #Ž+x¨6Í->Uœæfcã_qÄŽ¿ì0L¹tqc_hìÙI‚u,WhˆçÁÎh7¶¶,ˆHâÁa,e—a(W+}¦ó›œ‰¤äÛ±r3í‰Jt`„'sŽyÊåYuBàAfç;0~¹=ȨydÒú$tØWÛ"zfF$P±¥6O=Ò^î7$&>hRu;k‘Uñ޵K76•ûê˜ø1Õl~µÈ{8æn¸d¢õã±ìËhM§WŸ¢$Ä»‡Q,Òk|lN.WÝ9M2B\êS[ÉÃ"W¥cºÚf¨,™âßâmAò:þít§±•Áð<ùܶ[ùŒ¦$š˜žK¦J=aP›PÔk«ÓtÎxð‡CA`1ÕA Üê2ýÏ©‘$©ôþбÁ»µ²¼á4ìq¶dÇ!äu I`È$Þ&b/Ûáëå[\1S¶\mÞל~ñR:q?„ök¢ü¥}šÄJ†³êGó¨oOd%ûÓ  ÃV‹"dcÂÛ‡êNîÇ@ƒ¤çj{Óo :¯ô,—8¢{èfÊõú™Ê(I†#œá%¦¦`ÖÀbeLÁÂ,³=’wLÛT˜AJÚÊ™T˜DT_ÇCK‘µeÄJÒi3{Ç#lGè3üÚÉ5j+k¾šOß~áº_Η´m2”ZùW[}˼$žîߨ5[6ãÎH3µQ2Lyó Eg9„'¿ýueÔ*ôáu¸pØ=H½¿c“ B|0[¢ÉRÔÐü’ÐPøëýQQ‚Á¦Æõ´gÏêtìŠQd²QÇÈ7Ë$—È?Î ©"ã?; ¹ QÙתYÐNÎð‘xíô¨dõs­Ý!7-\ }YÜ|nošzûs¯'>Èpg’ .èÙFÿ›tC‰²ÊÿuMŽr¬äÔˆk ê 5âÈfh÷ŠÜ·–^ŽjÞÆMh#ž¾¨QH-=WûtÊç‘)R²d…~7³Öé› GuÄí5¹‰ø|jÌqñR+­Þ·_am­jI=Õ@EÛÈÉV|ß/®,.ˆ*–o©Rù¯¥I°p“¹–Å弚¢ÚÜ‘c@Òdè9ç*»Ëˆ‚/9Ä|·×}‚ ÒªIû 7o/:ý¬Ó ØªDrn¸U†k¹Ù…J£9&3êÖ®D»ÑæqcȤz!ëËCéJñwܦâ@å¥#%7#ã˜à0ê‰ç¦Ù±/³VïïÕ«2øª žY3Õ®ÒŒô_ |ŒáNƒf𭋬ÈðÚ*²·|ƒ 3o´¾–ïÔ—ë>t4§¤„EÍyùùëÍm7Ø—ÒÈPÅv0B勊ÑÁh£Ø°¹ŽÊ‡þR0šÝÔ½â#ì •Tõ¨xÇ®œ™3åÂv2©½8ÈsÁº„,ÍžÄU<[Ô¾nìo¿’LÏÒ Ëí ”Œt>Öþ༹é÷)ùÙ®¾þ縡= ^ÕÒaüüý8Åbh3*ñp‹@Ád¼½ò‹ ÿbØš²ðÙµGekH›vëWÛéã]i5_Âp¾›·Ÿ }ò±´C6f^rÖóö!`­Âƒ¡='õe¬›o§>‘Ó=@>ž 0®erGÝDIcÔäH ¢ëîßò‚(Õ×(©\³ÓxÚE& –kœ­¯ìH$9ç„*姃è|ÁàÈöûP‹þµÉÊÝ6×Jù‘ óçv¢&:HX¡¹uÁPn/Yº,ZìÁ€x€Ã •±Fsxìdgè÷5ñ3W=¢©Ã³,»Œ@Ü嬣 ÀóµF”cƵ aývjÚ¾Z‰’%ìs{ªN:-ý`Ž!ZOa¥‚`tì¼Íx Œ7¨ÜÍF±²}˜ä¯²žâü1Í#´ÙU•"¤ »|—·fgìõáån±e…7 Pºc!*E޳YGÆ,1Ê~lSŠæšSŸ¤WGƒ­ ää‰[#â™ûÉS¡ç{`a.ÉqËÃ×—7pž›ß’"§üŒ ©Í¸†Ôq{<מ œ8Ëa”ߠׄ]gľ÷¥˜rxYO‹aÝL'_Å·øö$“3¼ Ü PÝiÒI(fBÁù^ëìác¾f7†¤d‚/—#@_÷2bšéûÞd9‰…+9bdõ,uµ%†äî¢pž¦B¯U(w{„ÏÓ¹<7ÿÒ¨˜¹ÉÍAY`gÃQöùÛõnúý|tÃ1Õ°ùÁ7˃)‰±ÓÄK.TuEc÷`7 ¡çq|ÙB³ÌE‘Q‹e·l>²vMG·PBÚîç-å‡Û>»^š‘|eAÙØ!Ðg²í…­–ƒ2>§ö\òùŒ¯Î¨ÖÇr$QÃÅgEÒwÒÑÙŒ ÎKÏæ]w&h˜ï3«Pá½£`˜u0É–¨ç\&ŽöЇ~hIdÔ°­Q!b•‡þõ„æZO“P°*T´Y«7Üa…µ$o1 PVI¦¹õ¢«øAìzj?僃äG fë±>PŽ ›ZuEuuìT1iAsK=åE‰8 ®»;÷Sé ïD\L,µgÃp}6·0!$µ4Û,Œu£1ÇÑe̾´yZ•†Ô¹Ëù¤wËÜÆ'r?mµÿKéaò9¦±üJœ‹OOs ÁùÆ¡¤UeqÁù€¡ÝzU¢Þrõ‹Ú˶ƒ%LÜú¶ü\ ®¼–a·Mé&"zœÓóTÚÍ)P[+ $*¤¯>ŸyôÚ¡5»é¥—Ëp bíEÊ7œ!§ëÍ·ý Š j:NE íœ7?"±÷õÅŒ^Ææš—¦Í–äÆÜJÀÓ¬î?¾˜ûéá£.(/yp1%Œ'¿–•#¹äæ¶Á?åÕú’=íXè¦Köû5¿WÑ< “m·%…›~?óË­–Ì¥ ‘ÃÿTSÕ¥„Z‚ZÙÿX%G£Öò@X&±µçÝ|¯¶‚}_¡Ý"±ÖG¸5ëÕ)¼ÒWvÉà †ž' ª.vƒ8ÚA„¬Ã€h´©_Î ü“,N‰ŽÅÊ‹[Öä«í¯Ã7ëû“'Se\3÷‹!éÌÇ{'ðq·œiš8¦Ø¡ü lÚzUØ4IˆùtªF3'Ëf-^Û5c®Ù'pIÅ °%Ú½o»z5ñ«dÂ?[“~ËùÙA¶?d'á *—»dh'eAÝ„K»0CJ+Py#?[Ãr§aVâé¬@m'œ©¾ž"ÔÇÔ«ä|}­~À=Áº[þü6üõbØtÇ^´Ý‰,FY0í£–—¡·SXãø*.L‘sÙ÷Ê©JcH­÷­…žó'͉/ÉŸò‡+iäß úZæã„}&dùâûQv±…ô™ÞÄà²ãJú«¾ˆ°e”ËŽ³å)®+…‘g9”£:+ÑZ;·kÇ“/Nø ùühbîÁs+‰Êû´Íލ"D4ÀKºJºµ"qÚŒ0A È€g ×Ù¶2‹›˜–÷l$Ñ™a>觫Ń<ÑJ;"*?çjà(¦ïN,šI£m†vñdX…Mï h>îj÷zÅ#+3Ñeºž3K" 2;|_­ ‰†ÿŒPSÝ<Þ^­YÜü y‰6¯N¾)w®Q9¬÷ªí6“€éoÓ@f½šÎË„ÇL®TcÙ”/Õ2ÆàógPRšnýY¡áL²r up¯G€­¦‚yÊ$—¿îÞÔÛb:Q"¼&ô„…Èð,°Ý^uîvú½Õ’DÞvèûë7åÒ‚_5œ³ÿŸðøα$£ÚOìz6;ºÚ݆˜ i(ÏÈî†ZcöŸ?*!äí0J»‚£~üXݦ-¬™ÉÈI¹9pd¶WÌlò®þ{–Üò‹¨­âý8£˜¹Le|¼¼ë´ÑkûÜ*Ží‡Œú’B¢ŸÝ©»dì©[EvBû?ˆ='È^¦³·¨6uš Q÷WƒÖG'paN]اb8‚; [,UÛ¼@Þ9;½Tår\´Ô-g³êÝm9ŠN6m ô– ·(øV`?Eï ­v¸çIŒ „ÃµÌ ËÛ<]Ìé)£ÁÃáÊ~ q‹î…9$q[K‡¿B ‡¶ßºÏ¶•ì6Õ–ïø–0Ëó·{ú¾'·"Acýýˆ?ùc0ÔIÀàñŽÌ¶èÆì €((ðÓwëЦ¡"ƒÏ5d4×}?¨2ÊÛ)çïÀ¨gù’;^éÀ"3ªël|s² ²JsŸ¥¥ÈéíÀ¶`ƒÓZ«?!@)†³Ž5t´Æ‹%»s-à z/§a°*xa|Pýwü¾Fž_šÎ °$‡l?'ÌW¹…ƒÂdR[Ke­ 8Q^=Òšü° jGîoô÷›¡RRSúóR#ìÛòU`hÒÍF¦}GÙ:¶ø¦'mAIa0Š#Ç¢ý*&n™mÛ €MúiËUŒþ•fø²rqgÇ{z/U¶ãæ÷ÔãDÝê˜Q³7‡Jôü/y9jL¨¦P(ÒcØÍ#’Ù›¡‚KYÿ– šg~{×{˜´;=ôè5 lçõX[[>C‘*yMšÈYÕ}uxM`\uø;zåϰWQ¶XìßêbäQß‚¿tS{:*æ‘—pÃOö9a>ïÜ÷¨L»ä€cз½Òc%Í’OdúšxHþ]e+¯Æbn¢˜<‰\;S§ª³îÿVô¦+Ö4Xœ©8Îú\úû³” ŒîRÖé,ô¬ÌøËd¶þòY€5ž¢d(kL’X~ž~ŒËÐ&Óø5-Ô…\Ý̬¾-à.K;¨™ïV{qÅçX&õé•¡“Á|ˆ1“`obì?(&1çÒ‰óe5°ëNRƒ~2Ô~„ôCHzõýIT(ˆËââ"™ïÛ›ó8‚¡ÌW®U’K Ûx?)Î T G¥@ É™"üh×´wTÎå§CI’ˆ0Kÿo®§³Ï;€B‹†bØܲÍû-eTʱ«V¨Y-Ü ¤Ïd¦÷ey}´Ö§j =h¿EÆmßm™fuÛ¶àæìžÞ5œ°"W¨¶é—­VH²«Pæ²Õ•CÌyèg%5L[è¶4ƒÒ–Ò}k½Ù•-¥íIôW«’ºW•GïÞµ v€uÌFW¬\-²ªFl×èúe øvº½¶kº°ƒÈOh“áææƒÒT[vC»ÂB@K¿‹Œ/‚Ú!Ü[ÒerÀYBbÿ¸_Pî=íÜàÿµê60¯‚ÖÈ›äv,Ýþ„¡h îÆÔ]AÓc âÚp ãr¡;Õ«Rr«"ÈT,8ЈÃêXÌʰØ:$t&™6–4±ôU¬”ˆÌÿ°/ùÈlð¯uf‚û·À ·¥¶ ¶CÅ-oySIØ6‘7;•‘Éìº>ˆL–¬É7k¶ìKó6™êåfFЇþH(®ÙÔŽ¾ý”Ìbp7òDX¤ðf9ñئ(±áSd=Lðž6_WezsÊ|€ch‹FÞ´–¯Q¯ÚO„CÆ)ÙÐø}ªô»úïmaΖÈTê‚Ái :I'æ5ÛëœHþü3»f! ñx'w¼¢ÎÐM»ïL’ U½Ø—¸$öw«5óo“ÑV{+íË9@ ®O„Åm‚t| s,‰ƒîbW˜¸0†Ðh]>Ã/^™†¡4µL”!?%h>”á‰ëOcLI:©!#ìç!Yoûñ÷+W)WEY ®§G°ä¥4U™xúܦfóAó»þ£(¸l¸4ñ{%™ÒÂjúñ@›Gæ ¹"îY®vŠcÜ#§Ž½¾€ÂÂÄ"ÉOáÈŒ=Á5y†äMçîIa¬“Y§ßYƒª)nÃŒùñ:ªWÂ-uéÅÀ>“I ±R²"ˆOÝ’äË7㦨 o–Ñ¢]ý"~Q´SЙ6†zØ÷wxýiêÚÃC<>ÜY¤…4õU_¾M˜Fæî9RÄY1.ÜUM–×`ª‘j× à;€5Å"‹1sñ ÞÓîþìé燳$(ía¨Þ&mô&PåÐgsðL6ö+Æïp$ý“ЇAGMp´öˆNuƚƑ„c!ñ®‘™lð—¨6 éo¹îsÊ:û1š‡Á”έæ>ºþ&µ FoÞÏÞ•™·åÝð'1¿º>lv‚ s¯?CÇÛ endstream endobj 222 0 obj << /Type /FontDescriptor /FontName /DBGVWZ+CMSLTT10 /Flags 4 /FontBBox [-20 -233 617 696] /Ascent 611 /CapHeight 611 /Descent -222 /ItalicAngle -9 /StemV 69 /XHeight 431 /CharSet (/A/B/C/D/E/F/H/I/L/M/N/P/R/S/T/U/X/a/ampersand/asciitilde/asterisk/b/braceleft/braceright/bracketleft/bracketright/c/colon/comma/d/dollar/e/eight/equal/exclam/f/five/four/g/greater/h/hyphen/i/j/k/l/less/m/n/nine/numbersign/o/one/p/parenleft/parenright/percent/period/plus/q/quotedbl/r/s/six/slash/t/three/two/u/v/w/x/y/zero) /FontFile 221 0 R >> endobj 223 0 obj << /Length1 1493 /Length2 6658 /Length3 0 /Length 7661 /Filter /FlateDecode >> stream xÚxTÔÝÖ>Ò )Ò5 ÝÝÝHwI 3À Ò)]ÒÒ €t+) -­ %%€H|£¯ï½÷½ÿÿZß·f­™ßyö³÷>ÏÙ{Ÿ™5Ì ºÜòö0; Šàæçá“(j˜ñóøøyøøp™™ Áèo—ÙäàÿÁPôÙ"˜’-IÔ‚A=!~A¿ˆ¿¨@€Oüo"ÌC dë¶hñà 8.³"ÌÍ×ìè„@æùûÀdð‹‹‹rývÈ»‚<À@[(@ËárEfÚB0 „ðýG6)'ÂM‚—×ÛÛ›ÇÖÎóp”açxƒN}äá²ü’ жuý‘ÆƒË 0tÃÿ2ÀÞ¶ €€ (éâ µyÙêš7ô/²æ_.ÀŸÃðóðÿ+Üï_ÀÐßζ@ ÌÕÍê †:À@GE“áƒàØBím!pÒßÖË ±µC~oÝ "¯°E*ü£ô»!à@'Þ_ }Ý@¿¿a¤†@7˜À)v!?pýá¶^ ÂÃèÿŸ†®pùùö` `rCqÿ ƒþZ#ëïöXð!ÛÀ÷ëõ¯'Kd‡ÙàßÓ—˜WÁDKÕÌœóä`>nq·¸€ŸŸ_ ** ügœÀß꣺¶à?»ûˆêP@ü/ÈÓû[ˆ×ŸÎ`û36ì€fІ!û`ûwû?áæ"ßøÿÏCðÛåÿ×û¿¢ü¯íÿß;Rñ„@~ÛÙþ"ü?v[W0Ä÷ÙÏžälhÁýoª è¯ÖÙƒ=]ÿÛªŽ°EΈ<ÔÙçÜüB<|Bá`¸ Ød¯ Fþ꥿‹ÌCAº08ø×½ƒôâãû/rô€.È»Ž,Ùo9YÿÌ« Âì €°ÀÖÃÃÖÙÈ•0ÀŸ9«ö Ÿß-àåÂHRc Àæû«°BB^¤ÌÛÞbC-ÒúÛÀÏ'àµó°‚ ÄÀ‚à¿êû7ŽÜ/’ùk\ÿ…!!W0ÔþøÇ®žHæïöBJú{ýû|@@Ü…YP2ÜùMxÇe­<µ7÷æ(æÊjWL’Y´0‚eî…¿“&V¶ê”»‚ý+Š‘çºó‘“³Ô—c>OÞå†,g¨ P”û×ޏ ‡~œ¾sÑÙèÇEŸÇ¬&ëÑÚX [°¦šÌ^Gˆön½þZ|Óß2߸Jω2¨ñòù]{¨Ï̘VÃfOˆxXdzªß >'\(tÄQþð]·HÈþüù}î@ÿsÁ“"Þ‘W‘$”ý3ä¤ R’&ç>n†£°(Ÿ+V¤'1R–¸F²,£Ùˆ.ÿœ.hOôltÔV ¹¯óôC“g=LxV:¿gù„Æz#Çð/>EKJŒWís&æ{”óáÌÃAHA/:³¾kéNkVV~a¦‰ºØ‡õ4LÐêëÅ¥M|v2¿€eº4DlðËK]ÛˆƒÉâµT:€„Š™DWM›ÁyÕsäÏ÷—ýà*SúTèÙvËûŽáž¨#Ó-éTH’igö^ßnr³ºðùGbceDƬۚ=1?q:H¿ ]·½KUÒ\N|~‚1ÑX°ÐxÎPs %SÇL"B>xšˆ€Äå ‚öõbµÈ‡Ò¡-ÒébÁ|O—&Žî)é}K$ª[¿¯×óÃ*ÉÎãˆWÛJ£ ËÜɦL›õ1B( Ü´—t½­`6r$:»\ pkdMRþôICüÏ„ï[g‡¦òõÑæ˜´î© uë—h;Íh2ßN|ëídMßòQk¼:G?"±V•d /T5% ·)~ 1²°Õì8kÁöèùàÐtößâBRh#ÄÍj»QûÐíg¥»‚à!ë|„¸àú+­`qt¼hã %üïbðm'Cf¡<(NM¸YE²¢= ¦g-±ÄõWªnGç½4ŸIÚêhxú/ÐJBUÄ~zé ~úÂkª#òÞWÖ]wðtoËÒÄZ)T«3ÚLh¥ì4²…¸È,qæC‘©®ò‘æÀºµ@ëýW­0µt\~rŸ)ʇC»¬Ýž”í0üËó+mzZýlå´“Òý¬ÖÄiÔ³Ÿ,ië™z•;²'AšÄ¨úNü¯éTòíŽK_rFAð/-¥%K=lØá4^3°0N‡qŠ\­½}úúÀ ˆ, c9šñà•U~õWËJ×È ¢à²pJ¡©õûqo¦ßüÜ¢ø®O|k˜6‘Ìêþpœ9è)Çö¨Áñ¡Œdú¾Ñ‹\ÿ€õïßõm7UÊ!hé]§b>èÕÔXÅSˆ5ùòžWk’õ ‹ÆË·øŠmÃÃŒaõÏ—¼Úò¿¥ÈöÔ§ÑK¦åÖI|’á X/«êzÂXõ£)=›|RÃK_1}¾=WOÉ —’`ZΚ+l$—°ÓåY¼dK^ýR× µ²>Ë{!›¤Ô^}HÍÏ… x!æó3‰.v(ä›Á°‘®z½ƒ¿ÆXÅ(œ*ï`Ô¬¦£pŸ÷›×»Äq‹ÂÖŸót-šÌ:…r{Yja‘©¤–uY¿Y òJžá`j`t2*Ó’=«ß“]Mu㘠õ"˜#—^Ò凮«¦Êk§[ ¦ÇnÖ‹9´E¨|õJ£ÂZuØÃð«ùD§¿N1Dà„«â_¥èû½$9=uØñš°"Vrút&µQ䟕µ¦>²;xõv`!.àÀªx껼Vk=øzúµœ%N,µJ%êÎFùõžFôµ‹Ž4ùþm•ܬ ¥ü„ë³.LùÙ2ùWÔY¢Øîh‹ ˜ß.®šÇæ·§ŸÀÚC­æ˜šYâ6OO,‰Å é‰ÍðV–ððw¼IkkVìÙ †›}Á¶ø§¨«Õ õ«d!Œ…’‰ÛéמV(1¸òÂ'Y" ÒÄKE^Ð¥,ÃuìWY‰u㌓$–¼˜£ÜAþÑ“CrÓœÏh²Á÷n*€¶cnС¥õ†é/3þ•øÚ¡(‡NÌð•;Gù”Ö¹Uíb²ÐÍjãűÁ°nÛŠl˳mÙ.<Ôý;D!$5Ó‰H$ùN'ګǺ SçC½x’À MwŸAÏíç]õE«‡ÈEÇ;É’zóŒíî ¯y:q<_â²Fµ_7I*¥¡¹u@ª3å>î„Ä‘~¸eõç;?UEYFæÐÐço†íºŒQ‘ø‘}Ým¦¯Í­wÙ‡:”Ío—سV÷nvSs·6á½@á¥î0'F-tSÇÍ"Çs‰¨1¿¦ê+Ò${¶9m‡=\@­ŽÍÑT+ùئñéì´)Ÿ=ó;–{>çÜÐÌ7½´½¤ ç.‰µÖ‡¸n¹z,¾Ƙ7Ô¬g¹ãuçƒò¡bB{ÙÏu¦¤è$lafa}.Ú&fo÷U楶ë3v\ê—z±Vô÷ÙgÆ­晉øPå¯o¾¹†·£Äî@\Ã`Óï¿UQêm¶‘¾ /ôÍ# HM\ô¢pÈù4©¸€®/M¹˜ðñÍZŠÖÀÞï«sZ²=Ä|Úµ(;rAW±aÇKû`‹QU$¯ôþVA¾e#¡ÚùÛ†ª^cYp÷ƒ1~§[býÝ%2öwξ†Ùñ!½Æ®ƒ_Ÿ¯Rº—}pT¦L>M>œÛ–}OÜ£}Ó0Zq9ˆ·ñ´-¹?3£ F˱ÿ\긖áo©X)Ãt‹¦‚ãçÈ0ÍñÖ†2áû‘[ûgÈþhÉè+؉Xb¿†·žãçx·\~+‚PžÙØè¼±ž½:*¦ Sz¤ü14ÅÍ­F…£ªü{Ýr¦×¡‡Î´ýTz¿˜x ÍA<Œ£†ú›©Ä÷®-™ÁŽl ŽÑeMZÔÑxÒ^ñÛgINZÒv¾(ö‰EùÇÞZ ŽÝSÔ%ã&V¿óÓò´‹ì8Ѓóñûõ3†iĽYIKšc+÷Ov¬”Àå7¥Gp©¼O-= Ç—¢®rP2aþ6ßs˜4ŠÝu× ¼¸ž ¾‹ËFþžéÖ ÐíÅ܆g‹—Ñ%nl¦ràÒr:ºÉsÕr½“p®&V Íù>ƒ—r˜QÓø|ž†(ˆg‡W¥œšz¨u„¯(¡Ÿ»Ú‹ÊÃHã Âs¢¢ì&Ð ~Ú˜uu;9xk«­[˹³>Ú•Ÿ ,[Ó#ÝéV 3>{Êt$®\ÔF–ä,ûÌRPµçïQcM(,xQ¢rà8Ý]/”§µ½‘óM¾¼êÁj§û›ñ£Bú•·Ë“BX±tQÅIü¯u(>âTŸrÍôˆœ­w`мð(.³HþüÎËæ ^GcÝÏxò³î Ÿ U¦»êð’ÝqžÀÂÖ±ûÒšËÉ?w©Œf¥k벓C¥)^½s` ¿GÏ1ÒYɃɻåÙ£/ÖÆ&·°ð,ÛØÒ)׫͢îú<ÿóKS†÷®é ãa¹1Éã”±¢ÚöežØGò™d )ßË\mO|Û4¬Ý’òÎ~žÒCT„vCI_4Dà Q‹‹¼ºe;¹Ö%aP“AÑ×;³Œh#Uh<&fVâ K9‡Uí`2ë5P…p⚥y(@je¬¿øùEÝ$Õ~탻݅JÎ4 Á«à&©Â§¾¬®ßàRYF;!ân Ö]¨ez‹ß7XKµsTW12ePûËGß:[6<€ž šÊ<.ô“]PÚ–Ö¾Œ¸×iŧ÷w'·3c“a\ãØ~Ö54êRî+x [‹½Dù>Q[ïÁOTò^k½´,Æë¤N"ݳᯜB:\ÒûÌ;dr5‹˜‡‰Ôxuˉ ‘{îçÂäâÂd)´WCŠ~th)¼ª!jWD7É;9ý)˜wþÜ¢Wó"UïkV ºÝj9)¯Û齯Ó4†©î]*“bèÖ·3òÄ)ÝÐ=½XwE® þ,~’R3Ýù˜!®'ë`Ñãd {¹/Y9ÈnÜMƒ ïAORÔ3q.'¼Ø²®”ìù#ãg­5ûé«kE—¾ØÖkl˜ý+©‰Ê:ôèryùXà+>­g[ UœÕ3Ï•W-“‹Ž:4ñz/™®˜ÞH?¤ú:—+»k/'d'²¬¤Ê Ø¡™AaæÐ T£é¥ÊÚ)É—T´¹š‰1äáÖIYËÿÐù¦@…˜Š¨;§E¤ï«²^¬)>ÉhscGÅ~Žy›kMŸM\Ä^7ÃÖz•SÒx_K« ·±>ß}À‹¥©føBqeSP¥IÓ^ïm¨ëéŸLïh¯½ÔÍÆÉ÷ª¢ÐèÙó:•ïF—ºŒíc‘‘œUSf] QY¾*¶ôsl°=5u¶fƒ¤£ –ø»lfêÜIq›×ß$mfH·¾ÊO`«I4¼~±j¦FkÇŸÚ¸Ö®6èßâ6¨oe6™MIÀ…û‚I¥üc†šÒ‰1•¬Û –ïäóÖ‡ºËÌ*Òí¡=ƒ Q˜ç ç…ªóºNõOµ,ZÐÕ‡­w£ƒ± Éü–§p¶p¤¦3Òâ®CîÙ!¿••ùg³vܬ~f² ÔÇÁ$ ÅZ zRL¼¦-àâPd{ ó|,*˜D´Ûp⵺Û}¤±d⟫5½,(;—_¡ubùC„Rò!±}RQ&†éš$F¸} NL™)I"¤lƒaq4€ç~3œìÚ¹‘åÆë°éIÓØÛû7) ocƒ=‚µ2¾Ò5‘ë!vŠh]O­ð;ýÔòu…Ö¦ËþÒôëÓ{OÎ.æ †h4CP÷ uSYDBÔsOU?I G¡ÅÓÉx:ÉfOvÆzÉ«Oé=^#G×ߟÖËv?kçMQa1â©å“ÙÂD=ãü¤¡7ÎGÉ8<]5)½r ßYÞó=¶\«døà}-¢ó™'ðY~0bo$H˜ø¨Èxm¤¢ž³š¸¤¹úÕÛkZÑØz#xhöëÙŠß­Íá¾T,Â8EákUÇ5#Ì>"áL‰QÏãXj»c±Ÿ¦V­Ü˜Ë¾‹_Xƒ©åµ¹ÂæLŽ( [_àA÷s,Ç,ûõP?˜PDèÌ'SE»ðĽLxu„£oÑE>‘ Ó–r~ôû–5t«¯ƒÿÉ<Á[É@z£ˆ'ZAyÀY6‰yPbìyDä:‰y–F´czEÿvqOÅ!‰\\®au`†Õöœ‘y@#ÀFO#ðKÑûõO¥ÈÜÔ‚ÀS–à›>1qž›Ù²ö-;*/ gr7§,Þpi4 DüÌ´UWfêx†£®²%!ÛƒH›OÂ40Ò8 (ºZ”|©Ò• q1¹r))ªèD1­a {s@[J–KHÚ#eTöfN{ILf?#$Š’ÁËzDMuœ1‰`5M·'çT­;ÒÞÀÄβóï·<‰smÍ㢼?pL”ß>—@ZbOåEùÌ 5Ó,ãü–ÞæFr¶“ťܧ›'ª" £ïsÖ%_;yŘóÎ1U!6/n¬A÷ áLRÁJ/Q§"UðG7‡Â}Áú0Oh;SóŠúÁî]µ&èÖæ#.}&ÓÛ›Ð@nqR=Þ¾’M­zPp¾ìü»Á¡Ý©ÚÆ{tDßœ6Ð,cK펺qnvÚw«¬w¤&/G38щ¾!hz*k-Æsë¢)ÞVèÈ3k%«‡.ïà#Jç½0Ã"gžPµòÚ­Oöžh«ó ßqº¨o ˜ˆË8dV4ˆ&.ûšÎQMUwm…Ε‘¥½Œe _Ï’fq ‡,H§5c PÌÖ³ÏÄE]HWnS1a©¥ˆ¾ 6'.¥å¼œ‡=Öå=Û^¸£¾Ç4$«™6œ; &²0t{Éàª×4M,ù(ï«äóÔ{m\ˆë.Ï ¾Þ>9”aýÂÝ}ñ¥ÓÜ'!$hµ¾y·™Wx—0(Íì¤,£øv>ÝPtv3[Íã¹àƒ±©Dx‰ƒ“éˆpѠ߉¬÷Œ÷Ø]Å©„Hì„<|ºì~¨JÏ¥*§wf©^i’U÷¼!ŸQvT}ÒÛú^,v“]îÈ•N˦µb‘ÅÇxå¡é¬øy§>¦ÑùL7;Ï50Þ8þ2P"‚).µ£ó˜ÁªáóEiT°þ¢éxª²4Öô™“Àk"›ƒ+{ä¥â¡Â·øÃ­SO y oFˆœ+.Ùù*‹qE×»§¬cý³Ãu-’•|cÚØñ1¹T6gøí¾DIv1\ùʘ_¢¸Wz«òÇ\ÊÊ“û‹"Á@ãýiâ\×ËŒ¡Îî¤ÉèÊ\È6çñ—î—aÙ‹ ò'”¯S± oQq}¨÷ñ@‹‘nUƒ3ðfœžÄ’Эñ×E@áæôå)Þò!yOÆ¡½×Ä`½ž¤f¨ó6œä³qð^ì§OM+é;wúÂrЉõ˜•vL LâQVh–ždòWPàŽò–ÍJ¬1cæRhËP\Fë4a8zvÒ,@F©Àыھb‹íyaس³Z¬YN•‘lµÊ|Êî²ÄññÞz4ŠÝY×›»n—×¾+ºÝfÐj¥gA‘t}ÆjG+ü¢Æj„²»4ŽÀƒô½V!Ë•—Ù&âfõn¨˜¢p{Š:©Ê':BR;\¨‹BŸëÛßµž–S¼ |D3Ëi\tLx-Àû~š4Og@žž¡~ÿ”ƒÔ o'æ|œÙ*Àò,‘œ–ö ªÈýzøQÜMSÍx¾]X(—ÜûŽ»’â…/Ü9Ô*†q{bµtœå`‡:4€U匿¼y7d‘≵(=ö ƒ•c Æ¨ÍO¯Ž‚ŸJ+Ž÷^<á€&ð)j²Vܘ8å'4Äxî9·o»ð<ÖnÔ !‰E÷ 7jsë§wã*§­9é5c$ÍÉbn¯©´> YyÄ÷çhÍž'ïÍn8æ ®‹Â{· ³ ”äý˜î6§£ .½+=G„Ì›=¼wàï.H ¸°^²,Ýç±ë¯¿ $YÏŸóL<(˜(v>Nß#DÑq¯ ¤#r시¢r+Çj* •a>é>­uý¬R- 7!õâ QÀÑh{»âZn÷áMÜxüLm+ä©@¹üå íÚ¾]zÝÿ1øÝ3 endstream endobj 224 0 obj << /Type /FontDescriptor /FontName /BWMGYZ+CMSY10 /Flags 4 /FontBBox [-29 -960 1116 775] /Ascent 750 /CapHeight 683 /Descent -194 /ItalicAngle -14 /StemV 40 /XHeight 431 /CharSet (/arrowdblboth/braceleft/braceright/element/minus) /FontFile 223 0 R >> endobj 225 0 obj << /Length1 1896 /Length2 12117 /Length3 0 /Length 13297 /Filter /FlateDecode >> stream xÚ÷PÜÛò ã$H`ap îîîÜ`Ìàîîw \ÁÝÝ]îî<ŽÜ{Îý_Õ{5U3¿Õ½ºw¯½»÷ÌP’*«1ˆ˜AL€’°# #3/@LA]†…ÀÌÌÆÈÌÌŠLI©r´þÇŽLù hï‚€yÿų;¾ÚÄ_‰ 0@ÖÉÀÂ`áäeáâef°23óü‡±çˆ;ƒÌ ŒYè€L)±u³YX:¾®óŸG)-€…‡‡‹þÏp€ˆ Ðdj (;Zm^W45¶¨ALA@G·ÿIAÃoéèhËËÄäââÂhlãÀ±·¤¥¸€-ª@ ½3Ð ð‡d€¢± ðoiŒÈ”uKÃ_5ˆ¹£‹±=ðj°™Á¯!N`3 =àuu€šŒ<@Éþ‹,ÿð÷æXYþ›îïè?À›šBllÁn °Àd (IÊ3:º:ÒŒÁf­ ¯ñÆÎÆ kc“WŸ¥$ETƯ ÿÖç`j²ut`tYÿ¡‘é4¯Û,6ƒØØÁŽÈÔ'²š¾î»Ó߇k†¸€=þƒÌA`3ó?d˜9Ù2i€AvN@ñ¿9¯&äl@G3337+hºšZ2ý±€º›-ðO'ËæW ^¶[€ù«  Èøúìá`ì 8Ú;½<þíø_„ÌÂ0™:L€ 0ò?Ù_Í@ó¿ðëùÛƒ\ºÌ¯íÇ`þãõß'ý×3ƒ€­Ýþ¡ÿyÄL*Òê:*ÿ–ü_§¨(ÄàÁÀÆ ``å`°°0³¸8˜^ÿ›ç¿;ðõZ•AWÇüOF°9Àó—ˆ×Ýûç¿;ƒæï±¡üï Š×~hþi=ffÓ×7–ÿÏCðgÈÿ¿Þÿ#Ëÿkûÿߊ$¬­ÿôÓüEøÿñÛ€¬Ýþf¼ö³“ãël(@^'ü©šÀ¿Zhr²ù¿^Gã×[¼ö9 ;#3û_vƒ$Èh¦ r4µü«—þs¯kXƒÀ@eˆè{ç5Š™ùÿø^GÏÔêõnqx=²?]À×Éúßu%À¦³?F•ƒ`looì†ÌüÚg¬–×Y5ºþÙâ&F0Äñ5ðªÑ `±Gþã`99L"˜þBÜ&ñÿ"®W¤ø_ÄÍ `Rþñ˜´ÿ‹x¸LÆÿ ×8“Ð+Óô¿ˆý½Žõ?ì?T3™ý ²˜€ÿ‚¬&óA6“Å¿àk:ËÁW5 Áײ¬þ_ë²þ|-ÌæÈòZø_ðµ È?e¿r_/ù¹_˲ýÇýkûzÏ‚­æŽÿXYþ¶þ5 ÿ5s¾š_ò/Ñ,¯:ìÿ_u8ü ¾F8þ ¾Êrú|•åü/øZªË?õµ·Ö~åºíÿö?dêdÿZ©ãŸÿÚeÿÁ^ì@ +ÐyqbÊø¹&°å¶J„Ð…á÷+;Zßyø%’æ–¾óŽŠ¿ÿÝ[^Ä‚HÇÌvÄÝÖë·—+-\f+ƒuÏÔ^Üźxs“MzÏ ,ûy'Öm¹öv#6°™îÉÕ—KáiZÞǬyßÅ{Kæ‹¿­4÷ÇÈ䳸[Ý€ec±_c9m´•¶—ü,SwXÔnñ5S¹: ¤ûé§P¥rsU–© ¿öèýè 褗~*r–¤·Þ0)6® ͯYÌÄðvž‰¼8­ž4ØìѼIÞ ÛçnÿŽmš‹{-~¤ÆI R) sÆÝ®›ä̵@kŸ*ê!ÍOó݉HÓåM‚Ÿm‹Z†W·¦Ïù.e—/¹±Ži•"†˜'S®6%d™â—Zš”xç·k9¶·Ä÷&·N]ºõP ñ{øŠÇ´0iáBžlžLUFœo{z{V©p2Þë;V/iÀ¢)¡J™‘/ŸÂ”Òmƒ'7q±+id¿—‚+Ms¹Ì“Zྔg® >,Ò…ÊLÌÉè혒n,¤l ²®)ÿÙ Ém«èbÂ׿G&b¡3W˜¸&nvé=û]˜Â•±³ôWÉ0(è(/<5¡g à/-ˆ›M“ý jEêTNnˆoÁÚzlv€újàç<²C¸‚:§*6\µoºß²~W²UHEz´f¶"iF¼o‰* ½s°$SL?„ ÜÂ!Ñ<®¾³ª#!—Q¹ æÉZ4#,>Ϊuݰý†?¨*ÛŸ(Û„­„õ__?|M³s€¤¡€ãk,'>o[_ô.JQÀ“Ü|qûm‡üÖ'þ'|YrÈ9-†Îþc…F‰? Æ7­|‚F)þycÁÊÄ–Ð&¹=ÈM‹`·+Mõ÷ê]“mÞ6Êùv£j¾¡S!õç ¡‰™äÃêïâÆq,”ÙìqT†)ZŽÁªL³$X½x‹"•Þø .*†â2‹•§ý§èð¾†Ez§3B݆• ±¥mH9¾­Öö—nóƒúÐD,|,úqøÉï&ƒ,Ç r†ò;²ß®¤.«Å4í<ÀÔ‘ £|$$6Ý4z óû}ôV¢ ‡røÓÿÖ}2Áö1þZ÷ÖµõUPÖj§ê7¥¡ô7©s4ÊMöàõº äKñH•ÏEÚËÓ,Ýùiûr¡CEÒ:1½#éD.Jyâp©›‹œ˜˜©bñ¤Üúûõô¦ïE»ˆ2 B1ÇSYÍmŸ;ï„øüêdÊðrD¤¾}ù¥­Ü.'‡3X´øÒؽ+zî`¸å;©ÉÓ.R)Î*#±~ø¤y-§˜]MÇ¡tô÷[Œ‡RÚØÍqEýÙM>@­Öd)EvQÊá&苸þFÉçÁ(À¶Xé¥/¸wßP®B½¹~Êgäõû5çâ ò‰ÃÛÄöú4=ñÑw042¹l‰;ö²JeÓ¦ÒÏÆÁ”Ã>ŬoñEv~œÀ»úá%%2ó´Lº&Œ¶Dj„M]dœÍ”ŸÏŠä'@ï‘,½ï´É¹†Œ'8g®NS”«ÄC[Ç)Pð»~Ÿ@¢år½ÿ÷LüJòö•ùïqÃ'Šß.ûƸñ-¬ÏÕ vuÆüGÍ0sj\[àv|‘¢u.>œb죢t~Df[¤ÕIS°PKÂQ’ò;·úÚ Ã@jÆ ŽÇ²Ù‚ˆye³ ¬õMöpê¼ßT½ßòíªR#i‚Ę}¸u¶ˆ÷Í{ôêDn™[i_-Dðæ1ÚÏ™· <|S÷vûù L¸«9;+Y£½êæ3 eÌx=¿¢÷O˜À\ð8´ù'Ppòà3ªVùï1Àz] ëßø‹sç™î4dèÙpPÓˆþÝÇã:xo»ÍúSgÆæ˜».£*ÌØÀOoØ öe´ì–=®zË™ûÌ7ÈŠú]zo‰¬ú»”£AÑwx|2kSïQ}Ý…·?.ã«Ö7ˆl–Ïmµ’g'”Œhb°ü<ÄôŠ`oÁ‹¯BGú¦†oÙÔ>¶hI ëɾ«ërQ4¸ X`§÷í¥îÁá*•Ð…^{ìjLî Wë'ÁÄù¼¾DõÔÅ;Zfdû­E‹ÝùZ䀓¶Ç×°:ë7ôª(•MÍ'«šeÙ¢4ìpžFw+GT®H¸ùK(ðÛ0&ÅN8Ô?Mì)ÔgÙ¸*—gÞéEUÈ0ËZ ®Ñ¦©ÌTéÆê“UÃ< .|y‹¶„ P$@D2¾Ù›¸³<œpU{òAãðÁ–äqìÊoì­Sß0J“UǬG x=tW–Ú×ÒÒPä¥HkñH÷ü®Ö±%{^¯ˆ)ä3!û¾m}uGî(kÛUö# SŽÇô슇UAÕæÔjöýEI±mÙ‹Ïûà§Õ,eJT!±‰‘kœ¢7<«>"Ÿ.mݳ/~JauËøRêh™VÈ"”Û»ö½;~°ÐVüúho^gêB°å\Þ Z"„$úõ•ãdÁØàGiv„íÔýAÝ»|q(ô'I*™™‘s×Qbà}å¡)Î(góùWP)Ç$\@Â)ÿMjWT®³Ø»Ê+ê´¤3$¬àޤ½AÉÒ¹¯mÏ[îÍ}ºKª¥?Ñ–Ùáõƒ>T#®ÐîJå&Ž fíD}Ó–!•½)0ó¾×ÌÓŸíM¶ËwE|&Û  uös^\êžhq’¼‘RäcÀ˜±‘óMÑ8L[{åJKÕCX¶†äÝ÷gznª}t5÷ßt  ²åòŽÌÃbçDbH*¾mí Ó(È­F´A®}¹ªÄ£Æ?ÄÖ\¤š¾0J ÑôGéÿ‡r~1ŒgUfCµ¾íÛ º)œã;6ž>J5§9KÀÄŽ¢m ôÑÑ~Šj†iËÜ«&IFYsÂcHÞhƒkÁ ö”¶\Óç‰+^­”žâQ[ù ö:³L{ô¥ÝäðŠ…,0›+Ò]Ë1Œ!bÑó !`ÚüëõcØ.˜.Ró‹ûÁ«y³SsÅ/ÇsÝ7õz7a†$έv™¡o—äª.z$0býéû¿ìNîIÌ~ž>ÜÓyÓ–êŸèÄTAñÄתÇõ–,,ñ}ÍÏÙHóúù„“«ö•±köä_´ æÉë?,õ^^Œ#Oè…Ûû`q»³OÁššC±ðc³‹×âcWwRñv5OÄÎ, Ï©w'u˜£Bô쨳c'4c´¿TÖx’wª}ýÀ–.u9Z±ªWæ¶þm0?Œâ¯Ö\÷˜ ¿ÙyZò#f»†áÓæ0)6ÖˆêÏÁ€@ *‹¥§VàÕÜr×5´Hä}%׸ૠœÌC²ž*lÉ÷¡¼ô~î»ÈKÜ·™ëåñèéNiìÔŽí~€Í ;YòƒÅÕŒDÌÄÆH}6MÁKgÆÏ¾ò·Üa¶^¨¡5ãCݵ­´döûߦކî'Õ ß}b“ƒ·äI$Ë8¤( ÿúÅ8Ú&³¨•ñÄk0ˆçÃý¦vuþÞrÒ8Œw Hôñ><áŠîãYÛO_?-<ÕÀa"4¤sÿÈ¢!6IÉ"ÅÝg[?1Zº»CÕOE5ÈŸmȵB®keˆÝyبøÆœ ÔÃ0§@¶Píæq>ò±’-˜¶h× ¦ãQW*ò`8dö[`ŽÎMæ’ëû ô+þ³ag 4To·ÄíRFÐBJN¢#Ŧéé}ìþcù¥¸Dtßúæ¬ë\[ )*JøãZm—¤êíÊ,Ï·?jÙÊPåu_ŽJ¶Êë%‚^Í•OM@wØ@|…ÜÙzõ_ØÓk:ü¼¹ƒèK¿Rì¨9ž |Sû,¹`ˆ?a+õkÛ}|ÍÞß«BôÒ¡øãm?=š›ÑùÛ¦BB3T˜ ßíš“g!8n‹)†úEØ û¶uvÙŸ/n Æiïw93v>Q‹Š[³˜Yÿp¥ƒr¯¨sл³åu`vŒ‰ÁýU ÷\)mjR¶pù.‰~8ΧM7Ù®^h|µ6Nb*ë;“á ŽâN½Y|¡„)YDÆžGqÓO'6(YðÉäInÔ%G$t—Õ§«#ù|>]ïT3x2[Âq¹o…r‰Ÿ1ÑÃRÒ¿8]‰˜Èræ—_Ô ;Ÿ¼wdX{£3¯¬wº¢Ú£ü±«…¡JÀ&w¸6SLò‚ˆëÝJÜ`'š9_^—ßI@#ÁKäOu¬T?tõ4~»ÍøðI+^XÉtnÙ('÷UlŸ¡(B9ãcV„RŒ…ê38–áÌ$ÎaŸ–þã Ç®†Í’u ¸PŒ6ÌÇzƒ¾§’ê}™|xv&Š’4Lî©|j4’¼F'µ¬5§#¯e“~GK¸ˆ ¬±j£î¤?÷p{ËŠ¢ÇI¿Š_NÑ;¤.ª¨1fÈ̲»B¦WÑFO¤Ë–‰ø,9æòÙ –ÒaZ-GÓÀÂ{šIÔe_„"Î_bˆØ1=’ð¡Hç²²ñþs(F‰"ÝEE€Ä1æ¬éAÑZK¢]v¬6Тóe5#¹{v¹ÆÉü£3y\ÿbèö¢˜åf4v¬ù$ιï7®j¿²_I\`?§ ½œã¢Áˆh_Êá#È¥£°£ôëþ˜Ó“½ôÔÓ\•uaCü™Jùcy«xS»ÿd öƒjæ¦õa}²i £«(ü…Ž<èq7̪õNI å(¤ƒ®-½…´'uÏyHÒô\‹¹^ì³ÍJÛšÿÀbä^ÑsAÛß÷^ð.Á\èmê/`†žöÓþM ËñB)yÃÉô$’Ëá/_tAô9F?N¦‘SÅZƒÕ7ÕvS·ý+ªé Å¡ |I”òhmoD>[›ÃÏáËÌ‘ŹÙOå©°±]Œt“ä³_FŸ%#cœ¦7…÷õØ—_Êm”i‘´v¢®«ÖWsÛ}š}¼F ±Ø-!–’øh<ñbúZÔ¡¶¾ìžà çH%¼Æ¢\är\áÃ5˜à-è›ýD²îZßa–ì¬ÝÅÍÓsܤ >G3´Z:c²Èwt¨Ï¬Æ 8ÏJ¿ªiDåÉÛP z ,U&f«áшÎ8(wl²üΖPà-¥jòã·c’b­ŽH†Ô€/þ‘^Ž»?¼¨çüýä³ÚATR™Â€µ‚VÃÀ.®"{ÕDž3¼ÿóëw,õ»)y%ÚÚt±ÃžqhqÚB>,Y×ÌÕLµ*$Cò¾!üù]7˼÷]gœÚbÂ%•Ï$qÑÇŸ£«ñôyœ²gjݵ¬°gÏáÒóKšoÝ›dl5w¸ÞÁMØò4±ª$¦®–Ô@Ç*obÕ$±æCç£ÃµˆŒ¸ØŽæ)~=M›¹"”ˆ\‹q›¹]˜?ó$þµ½|na—˜o£©1\ÐèL‡jÎÉ(/‡@£Æ!¤Ñ¸Zw¨ÃD×Ýäâê{î2Y½Ǥ/¸H؆ƒ¦¸™¹_9v žÛðÞÃBùx‰ì\KCŸo9žÔÚöÅÎ}vßñN<6qMò­Õ‰ã³ÊÛsRœA"•Qktš–!öøß‚k¼–~«Îåv÷72k}„ât\šß–·8üÜ‹¤ò–ΊÎì^~#éiq9ÛäÙÀ&Ñ*Ze£CUIï\ícpaÀðÞ«ë]6HÂa‚pÃÞÍöm„´¿|KÐC(ˆ,¨¤¨“ŠŒ\dÌ]–J¶Ë ¼ÑY^œ5#…û»±¼ÛÿhÉi$Ð?ýyÔ†—ín)V;IŽÃÍÒ¼Ö¢`Ôr¹àFYÝuÙ”ºED.Ö3Yª¶“{ Þ“©ìCs‡±\y”U§ &!• Ãdà;éñ™Dœ•ÏÖ¿®>¨Ûýù³È y¬kQßþ®gù):¹QX/uµÓVfh®ˆÄ)¼Tj Q…ý·[ eÐzÎØ¨ûÌç|Ðï‰ùÐLZQ뮣 a.ÑÛ¢LËn(Ñ^ó¾_zÛû_¸ñ’¥ÔгØâ:3ʇc"}î×¾›iÑ×y² Pi3÷³àXSe)·Ê¡,Ï•©xØÌS?†˜ÞÂùWâÿ¤tr °Ç{Ç9ÞD^uAŠ“ë?«áŒÌ¸Ç ѬD|6Z#afפý©0ÙRµœÑÜlµ:baÏæŠo½ùqsß}h‡ëÐ[¿±Bnì¶x_:Z`Gª¶q‘÷/§Ò†™aþÍÝ}âB׫ô¼2ÕÞ‹H/Ðô±c¥ÍiÈOãÝÆâ~^8«¥s¦7¿™y¾´R…Œ~ÛŠZÊŒ"¥ƒAÿ[gíï}Òed0£$ þ–rþµw\6±˜ØýªA“p¡Ÿió­®»É'›ÝgXø–Ë sìFIxòˆù/·àÓ_Ãq±íe™”_jñ6 uFŸ"¤t~ˆ$VÂð¬ÁHoÖ»¦™èF‘TÏZoQå9gÛP:È¡_2ïy¨›Áln:Ú1§¨{ã>j´9ñ…}ñä%!g¶þ56â!…½Ø’Úý‹¿Š|¢Qw)³l)t}Ä@®ßCJ÷ä*Í‹Îl¤?bµÎPöÎÆöª={XÆÝ]ŸŒæ…ÊS}zX/¥’¢Ø¨Ø–öj^…Ù5:•YiLùn%–Ê—)¦pذ¨žîÉ€K½…[•]&–Âß22f·E»ÿ…ïÆ+œQJ[P>‘…/9«aWÅËüב…„•‘ú;+Êȶº¸Œ°Ò˜XY}½é®I昺BcÉ¹Îæ§˜°Ï_‰Êââ[©¬ÝÜSüFL°¨\v¤fõC+~µÙ®;°ƒ¿R°¤$ôm¿ù]ÝUtóôY¥¥’–Š|÷Cæ:’ÝKàu(m{z—Iõ&ñKàM=‰÷ñ.t ÏÁÞa}ÚvU…B€%‘w“짦ÕWëA¹[#û¢&_=£ðFŠ5ê⌧F =¡Ó;‹Ülyïò©†O®Ç.áß]z[Э@æyÜè®6ø4±1]ÙÈ‚­™ÈÅ ¾ï–­7×Õ /¹-L=Ô ü”üYö†Qh7”B“t2'•MçlUbUFÓû|gWåùô¾§6£Y’/à$ªg<7~è)Ø‚ÊZøærE:§‘9Í Æÿ!Oõ<É¥m”'ÔÔ@¤ Û˜«þé.‹º}Ü‚§äs„¬¡°r`‡ƒÌæÖk‘y6ÃåAÅ9Ÿ˜Œ“ªü^§Ç&G}ˆ‚ -£ƒ‰ðÈÐèj0ÙËÿ­m÷#çÏOpožÂøm.Æ‘žE5è G>åP­gRNÖx^L/%I]°üø“™o|Ï}.x‡¯ïÍ*YàG2Ñ8"€ñáGtü Ñ𯇔$GL#–ÉQo#«KÍïÎy¥f©á?(Å“!¢´ñÑzº”¬¡¶% ík¤©Ø´Èˆ\¼c¬iù«'"?Zï!…/écËÇeÞ.óé46²gÞè)l—¦®Ih÷"‰"©1!¡ñ¶Éê©Ø(7¿ð:E„ˆ¶¢ F.áq?ømÈpJ’ï-¯øµ*JÛ §¯ÜáŸñœdYîpœ>ÿž„“ÙÜTJsJ"‡·Š[g}U±3—u¯{ÛªÔDng<“~f0.d€DY²®§Ónu´U°0> ©A¥HWMtCí9¯Y ”UogÕ±2 fB2‰îíÖ¿ØÅëÍ>…þæS»³µßccCS-¬]νvß)â>dÁA¡{>€±ÛL3mf ½¹Ë’ f}N_Þ;r |ýï¬NPÿý„ ‹Ê-…É~:nVö6R•3,ÔÍÎ[­©ùK±`0æºÂ„0)xýâÓ©4LBL³‘„ÓckË?J¤½éòñ³| šïèÈ ÖT®¡ß5‹Ýiobxýòª6?J=\ß{¶iþy¥œa:ª[»àVes u~×h¢Éà 1¹•ö¦ða¢ C蕯¨m€0Ü::÷,í{J×/]’ßs=FüoˆÓw°¼©6$2צ˜˜ˆ×WÕxìv5ÖìÝ+-°ÓZ%cŠ/ûþóFjãµ±pqýÞÄyáF1Û½§…ÏâÂ͈XȰ*´rW™ê†ö$ïI$‘ê|Å¡G§Z|Q{àüh¢Ú»Ê|Md)CGl¯Xîó TCxSÔ<ó—¨à9‡øC¾4³gEíˆL˜­Þ ,ä˜ÛTÉ(ðz‚› Ô‰œ¨²ž‘w˜à5cZÖKSÅíöH{“¼¡Æ‘åW¦`8èl¸ùެÏjŸ„Ï·½BhöAåü–ü"bÖ¯•Í·‰W^ñ”º ^ ¼6 ,ù-ˆ~°,ís_à“,‹*æÂ v‰_úʨÌqsczÂÊR¼Úp»žýÐ×5ö5ñ„1|-ʧwSþÝáöÎ2¶p(ç?{/Áà‘¥M)èNý!A瓬Óh»m¿‡uoLÇÞ1$~܇Ž`ƒ$¾ª¾DŒ’·KƒhR½.qû£Ì´Ø0ák" æX¥N—iGóý-öªK_ÉÀMÜö8xÙ$yØäúÌxîÇð"2è# Z‚ãw€9·Ï|T ¡s) ±µ!æ¹_C<“å˜b!fÎ0faüçW_8ÖPvÂ٭ͺÇúØ*] ¨\¯O'£+¥u Žï†õî¹™MI齚IñÀÑü §ååF\»Ðk¾·NؽLÁŠdÓëa"~,ï¿{²@ü=|½ApÙc{3Øqš"s(13ßo,8}û‚š€žè}ðÓ!Ÿ:ÞˆSûM¯tÃ`áCĸŸè¤©ºŒ¹ìÔ¦‹‚1bT'¾ƒÉ³¨š„P•5{d³Í-Ñ’®ÝU²nÐð©ªDO…ýEªÒr (5ã<ôœÐôÁ:¾9µ9b~æŽÙ]úýx´ÿ·Ë“7¤ŽnÖ q%JÛížÁ;0ÈäÙoæÔo”¡¶#€4ðEö†ý¥>-oÅZCé AÏ„ºÊûnÌJüåži°„ÕæÝImEéQ™›åáž¶r" >›R2‹/c5áð¶ºÙ˜äFyþŸ§Š–Ö=[ FL‚lk0hª¸ÏÕÄ1Œô¯Âƒ1j9ÅY££ ‰M€ /&BD‘þ-bbïŠæŸ¡²‡h?Q¾øì‘ýè`fæø¢CüPµðñÆ#_r8 ݈šÅP‘+ÖotaQxÙÁð t÷ɬÍ]ˆîûÖ—#6ž£­îx’cÿÖÒÍ#%˜Ó¶ "„;ÒD>`#–¨Ýé6 ¹/ãqÚàÖ“åÊÈ> °5³ú{¯¹niyêˆt:µRØ ®ÅµWƒ+ôIífËh³hI>¸Wlô>Fs"½þ.͇ “œ½ÕA!ó,ÇûÁu)%-{~de>RVðr³`¸/Ð+SC”¼®¦wÒ]Òð¡P eú§i#±'V½.J7²º8›ö•ŶÆjÆt·f.Ón„bætsRÒæ¥EãzŒËÖ¢âêÛVžzjtab¾UžvI•}§7Ê&hÕCI+Êš¡n& ŒåRš2§¸HÁn)\ÄM¹ÏÚŒ¡•™éé·øëèƒ1Õ:ßh6“ø 'ÑççY©G}L r×Ob¾þª€ø£”ž9w¹kÅ€?7¸7ÄÛÙŸëÇR£âÒ§—ß#MnÅmàæcÝMBÊ~4Ç4…N¯ÂLÂ,"’9ZÎÜøR|dU·_´êÁf¿K4ÛÒ½·Íž¢~)æRK TÍm:pÊ-Õ ÒËUÖ¥ÞÐÒi‹ X½•ˆ;÷Ã÷;—L;äüÈ?/͵o£Å‰x<0J‘ü«-R °´¬üD«5ÉùÔòšÐÍ;æQøfoC°Lþn^§ˆè UMCÌð£ ã\ðµÓÍ€™üf‘Ù\iáNzÊ0+ý¬ —¬vlo‘Jžºô ï‘òR!õ˜»zÓS_À–ßêT€F×¶¦Ë\´É¬BK‚Ä;Þâ3Óc4ŒUvŒ¿ïŒpèÖGù÷é«­T¤F´qê’!Z— ‘]žª1xúI~_«.E `õÓ æ z†UiÕw0”N:e®õ+ zC‚ýv4 èîšǵN[’N-¶X"ŠªËa¦Ïl·EUÚ³Û±È ß„îû î=†¡¿¢Haæ:¥½úǘΧxµÙÏ5¢´AíkÎÙä˜)ÈOð…œd'á0 R™–GsËf˜ˆFw«Ï&1ƒ[gw»”Ÿd`N&¢'´¦ qÜ䈾/§Ÿ,\ªí¦WÎÆ…/§({GÉ2éÊ`Ÿ°¢~nîawD *{^mxpÁ€q†[ÒËÃèÚµp)Ð/1&KST¢kÄ0[M`wæ8žß•Û V°:«¢TD¬k¤ÝoÛ©›Ó˜7ÌÕ*é–¸ûöâÔœª/¥3"¼Ñ7GŒ ž ½aŠ k}lÿdM\æ ã9¤ºq¬ góˆ¢W£åE[»Â†ðáÓ”sªŠMüdÒ1‰7œÞ©S bèàsúô›c¥‰ÓZoßOÅ™wUXcäL 1%9/Âx ±ÐÂEÊ=Ù›ùÚ¿ºnªb÷Ð1­¹FZx¿Ð#Hi^4‡B© ;ž×$}wÙ‰©l’ª¡Gìkݦ-›~ÜÄ}ß5§_tH:¤øÞÃOöé:Í%Ê›ãCÖÓÓ›­çõuÑøÊsÒ½¶¢’Tüñ¹ÓšBªR6Çšù#ZÙ÷~^JžS‚õ°nÖ —䃢ÏOÇÖòqš&oBÉuÕ.)o–É›E[÷¨ ¾—îÞÁøHÒ,"Ï;ÜÆ9Zwñ³cc ©Ž@ØM·D™Ä0‘ß¾ôD;©G 3 ŽïÀÆoôRÞ£G“Ñ ¾'6úɬÈfƒÆÉ{ð~hÝ{èí3¤èçñÖ1àVR;|R(qûX%{*™Ž~¡ÓPYɇ"8_&ýy³°Ù©ët¸R[õÀTÙÌ\õöK¤ltr Ä5ììkrA¯XᇨV„vç¢S–9ÛIõ{…f+¸ã8»W |ÿá E!æ§:SÊ(:–œtª ñUøÃrþwlýr=ºW'þ·K‹˜Û]ü\ÒМã)X/-1<ØoFn¬­LN™œÑOàý~«vB‡ÔZÿ Ø2»]”‘]‹ÊLO˜€Š«îèÅÎ@þN²^²Õ#œý¬ Ÿ´ÁôFÕ­5xÍL«€­ à~¿È¯÷«?>c9µ ò™•²n„SHâ'y’´ÎÔ‹¬i}êS“F‰®é 4[¾Ñîï¼"Y– †ãƒ½¦÷}L\Iv)G2æü!o¾ÁÞ`fý“ˆ·|i׆:c¤W;æ3}±»œùÈÀ$‰Ô9 ñ¸ë4¯ÊI ¬oîb¥R'8—ñ‡Ei„Š¡WXÂ7¬ÅvO{x€Ä%Ÿì‡šÆ@3’K~zšNk¹üöÙÀaÜÑ;áÚs&«{„ªÎîÎéëcgÇU}‡Àæð!F}Í2ƒC®ZMdú>':Íý´ý^;+}Ó~D*XÅØT!aü ™VôFy´¥ ß·Yºjd¿Ô!™ë"¹?ÛÔkär—|Û(ûËsðå[²ÿÇ'Î8 ¤éË7ómN™ûF˜ KøhDv°št„$ƒ³ÄQ,øUJ‰z¹¥¨˜`Y(ˆCdnýgºÜÐ{½ˆ÷ % ²fd¼˜¢v"£lƒRjnbºüäK^f±ÃËYŸBbv÷2ÆšB›í|º;Š›<ÖÄî˜Ðpx£„îý­?bš±;LŽªá°i5}9”q¹ôÌŽŠXÝìå .û}Ћúª#íÔm©—4üÍÓô+ ÷Q˜×~-éÏ£ô`¢.~¥Ý—{çQ¤,^>ÎIôæl23½;ßµ…þB‡ü^bqHŸœLÉìÝðÁÒT *´nÚZSØÃbä÷÷æh–g…ŽdmMç]µ¬Ÿ–¾K9Ö$<Ù<ÏY%ã62™ꌳ¸`ΖòžUG‰»¥=ܨ´œ’ïÈ%Η"b×+š¨Wô€ú®T'ÒÚQãwïÓFÖ¦ˆ+â´¯–Kkˆ×ŒÌFr}ŒhEWÑ­àJè[þ·¯m¢›É™ÌeÍ/£yb¥qh~ùÔº[ê„Ïnœh*™¨ÅNšì/¬¬)ÒNã~?>OŽ:^Ž‘Ò¿G`KŒâ€á|ZÒ±Ü)&€?ƒ=ÌÄÛtî:ÆØ(…UëÃ÷3Ôj/s$rl›®Ã½©î3+Üé«ñ.Q8hê’û<¼>n¸ýRÿ±§ÿЙÔÏÃŒ­©V™6F„ÕŠÚ×n&KÌBŽÆ_G•Ó‡_å’èPUˆö»róš,oðÚó>YMï#ÑH’ÝŒ]Ùé4ùw¢v³·š®†è‘Úšœ‚æ“ÔW“Æ‹ËDxTdÊO+óBŒ4>lpÙXÃŒ+}Èm iÏàâ¡m†vzvVý_“Óͱ>¥J"ôŠS‡T…¾k©Èž’Í⣷ȟ!ñx¢;ò|•y©€†=²·k¾šG¨õv!Ê¿wõ4 >z‰§ôîËyERKW>äÑË1uT²S4c'hj»ÙÌi †Ý­t~TÆð—ŇÛÂå}cèd•M#o„­ž)þÙèM6Ëô’9žË±\^TUh#›ñW§¾u€Ùõ…ô»‡Ëš‘ºb%Wä¸ -’ŸN”F­v[iz@¢jŽhÎÆÆ/7ª“a=Àë4u4¸ÿþ* WËb0ë˜ö<º¯À;Ø R¹V=†jð’%â¨rPèËî!…Á¤œøpˆÿ O—è'>“ÿ6Ï í€K`Ó8¦ÏYûÄÑBÃþÉ”d´¹Ùv=ëj¿1´BE›¹Lƒ¨5ãð±UXPtp(Ž$ñ÷ìŠ)³Ž þË“n¡ïƒ±GB`Þ˜ûñÖHóÄãÆ‰•iÏä3öÛWŒ_2¤£‚ça\x§![3Y kÛÒ™ò#8™Ç›»$$=9ÃL/Õmpknó;P ŒkpMÕÑÁ šoVC[z3:«à**Iô$ñ½#·pÏ„ÓaâVãÙ6ó»‚7•ã O¯Úˆ¥Í4èì>ˆÔ ñ3b»ÀÎ:¬—/®ÃÌ·•±_M#9wÁ‘¿uѳü5x+DáJ]‡Öý™‚Q«ÿ%ίû.­ÂâônùD‘+L>ïYï„ÚÔ]”Û®”‡¹j0¯p#ßÜ£9xȉŽAMùjGN\jóëÏÓ¹Ks ¸§FñsÏéy—i—Ÿ1¨¸ÂmW#{6Á¦eè~©™FäåíåTyÛ€Àjá(xaCüãÊG©j˜Ax8˜9iF6KØt>UÂ÷ X[± 1»*Â’%ªr­aÈŒIî])ý•å3T^ig<ïëïõy„ ­†y(<­ Ü9‹µ:¥HoôÅ]ÜÜt’|JVš¯]9ð/ø˜î=s•SÉ$xÔǾö‰ÈF&O+3‹Äšxz-Yç&Bs¾™íüD#?5mˆbõ’‰ãâJuü. c¡S Q$K–‰«šë ç+\N$Þ6ßW]djÄ*®øllΙÜK{™=¤-ÄŠ:e¾9Èiù:lÚƒ…*h„¯÷ðÅ.“çåÇ­1‰¤úï°áÐa£#I[—pã3€UŒèUûMuÕY¿•_šèÊ‚fÚè´S3ë‘äçZºRÙ­`·IzaßnìE>˜ 1ˆÖkJáM£ ÏI•t§‹Ð/DÑu»PøÇ!Ûìâê1 uÔ] 麔ÂlQ<45óíùÂo྿šh|³Kvœ‡¡j!ý»Óëü endstream endobj 226 0 obj << /Type /FontDescriptor /FontName /QUHTZQ+CMTI12 /Flags 4 /FontBBox [-36 -251 1103 750] /Ascent 694 /CapHeight 683 /Descent -194 /ItalicAngle -14 /StemV 63 /XHeight 431 /CharSet (/A/D/N/P/Y/a/b/c/comma/d/e/f/g/h/i/k/l/m/n/o/one/p/parenleft/parenright/period/r/s/t/u/v/w/y/zero) /FontFile 225 0 R >> endobj 227 0 obj << /Length1 2802 /Length2 19961 /Length3 0 /Length 21550 /Filter /FlateDecode >> stream xÚŒ·PÚ-Š48!Ø@pîîwwww—à.Á‚;Á%¸,Xp'¸ë›œ{îIÎý¿ê½¢ fu÷îÕº÷@N¢ ü^ÈdÙ:½g¢gäˆÈª¨01Yè™ÉÉU,œ¬ÿ•#’«-@¶ÜXˆ8 À2QC'°¡,È ål `b0±s3qp32˜¹þkràˆºX˜déR [ #"¹ÈÎÝÁÂÌÜ Ìóß*cjÝ_ÇB6@ cC[€¬¡“9ÐÌhlh P[Üÿ傊×ÜÉÉŽ›ÁÕÕ•ÞÐÆ‘ä`ÆOMpµp2(.@À¯”r†6À¿S£G$¨˜[8þG¡ 2ur5tÀk c ­#øˆ³­ Ðf(KÊä퀶ÿ1–ùàïâ˜è™þq÷÷é_Ž,lÿ:lhl ²±3´u·°5˜ZXòâ2ôNnNtC[“_††ÖŽ ðyCC kC#°Á_¡Ä…†à ÿÎÏÑØÁÂÎÉ‘ÞÑÂúWŽ ¿Ü€Ë,fk"²±Ú:9"þŠOÔÂh ®»;Ãß͵²¹Úzþ™ZØš˜þJÃÄÙŽAÕÖÂÞ()ú· X„ø[ft°122r²0€ö ›±9Ã/w;à_J¦_bpÞžv ;€)8  ·…)üÑÓÑÐprpz{þ©ø7Bdb˜X;Œ€f¶ˆ¿½ƒÅ@Óÿ`pÿ,ÜÚŒàñc0þúùç“.xÂL@¶Öî¿Íÿj1ƒ´Œº†œ*íß)ÿ£¹<ß³Þ3³°ØX8ì\ìï{ù'ÿÿæþ—TÁÐâïØþð'ik pý'píþ›†ËßsAõ÷ÒPþÍ O3@õ{øuÙÁ¿˜þŸWà¯#ÿ“ÿËËÿuøÿ7"qgkë¿ôTÿ1øÿè m,¬Ýÿ¶O³³x3dAàý°ý_SuàÖYhbáló¿ZI'Cð†ÙšYÿSH Gq 7 ‰‚…“±ù_óß6€½[[Ø@Ž¿îÀ{&FÆÿÑWÎØ |§8‚›õ— Þ¨3ŠÙƒL~­3;ÀÐÁÁБ<_ÌllO&ðŽšÝþm½-È |ÎÎ` r@üÕRv6ƒÐ/Ñ;€Aø7â0ˆüFœÑ߈ À öâ`0ˆÿFL‰ßˆÀðá7b0HþF¬©ßÌ.óÙe#0»Üof—ÿq‚Ù~#0ŸÒoæSþÀ|*¿8wÕß̧þù4~#0Ÿæ?ˆ liøb[ÚØwâ×u÷_)+8 CGðY8Zý>65úÀ&F†ÆVŽÖ†ŽæÿH™˜Á9­¦NˆÙþÿg£þqÂô±Ðé_ö\,ÿÈÿç8ã8"c5xúþ œõ—ÄÆæw‚¿Æ’áwf,à.™€¬­ þ°Güílü)û/½½3x½ÿñŽ<–Ö†6xÄô·°…©…Ën©AÎÒ‚MÌ~“€õf¿ÞdàŸ&àt~—\Dsw;s í`™Å¼åÜk«? ¸^¿“`Æú×vþÖƒ«ûGFàË™á7Ø—-x«Lmëlcôë>5û#$ð³Áú4Ø'èSLLàDí~«Ávà·Ýö_ýgeú[úïð¨‚ßð?LÙÿ’Y€þ˜^paí¬ÿH üý‡Áþwâ¿3Ðñ¯{ë߬¿„ ' ‰Ñ}æú[øï8˜˜ÀÆ´‰ \‰ßllàCŽ@‹O&Û/ Ë½c;q?žÿ„ Î œÜoZðÄàdîüc¨ÀÕsrýqìÃù÷¶€9ÿúžäh rø³à9pù‚výcWÁNÝþ€`V÷? ¸}¿c{ò:ü'‚]íÆÎàþ9ýõú‚ïýÿ⿾bn@cÄ…91OemPÛmµ¾ëûíq¾iòmõTê÷ž íÎ÷¨ðIÔU™«×BIC=hË›bTW‚‹ÄOž‡Íõð¡- Š­^úñJSÛ­ˆß'qú' …êúÞ«îx=Ù{©ù[A7CvJ‘çÚ;s¢*äcÞºöJ¸Õõ•.†Ìm+îT±K#=–~{­¥ã_ 7gŒµçÊ„ýx;ºÇâg”#©šÑíþ¥–;ft Åt.ïóòAdÂöÁYÑC‰©Ùy§]ޯű<¥ççØÙÚTײgåe`%§èËÙÈþFóÄx׎7Ñx…Ÿðl h:º%þ'¦L`wʱVQÒá eR\E*¤¼ç”xjøWÃõ õAÿ‡Û ¶•Ì¡™AÚ\µùa•áO3ŒqˆCß°è© "æ(¸ R¼­®Þì>(×½QRÊ()Ñ«b{âzw)ôsV`@ølwy€ú@ðc-w1•:åt(ijpŸD)2Þ{‡£*y!I³8š~0¯ƒ„鬲 Kv)Ð|ÇËÄH3œÏZ4×î?œð£OéAÔS%ULSÂÙ¤Ý"IS¾–Þ˜F¡äÏAÏ[S£ã–ÝóŒPf‘`VBd×ÉYx:«‡£Mé·´wå+ŽCoožúöF?çüÁ:À°´ÄutA®RÕn¬Ø ¢âr#]–«nKKÊ웑+ÉF òh›c¯ÿ°Ê·Dˆ Ñ.h£€!nu{]_‹þ<×Öƒ—½‚Ï0ðQ”Û=kæzp=È**±’e¶ÂÖ[ùèícÏcn¾æ`¬\Ïmú§ú]ϯ(KˆìÂVQ©ø`Ê4™šw®ËÂsU;§ÊKŽäïaUÉ (Ž<ƒ¨ÞH÷qÓ‹YŒIsåwº}è{é²!ö8Ãê¦ÏF¶›»Ðò‘ÞKw™]l²aÍFi4b´bO—üáš ŸP½ÇÙ·Ž 'g{£Õ+q oïes`„¾h¶ëÿþüð~5I=•À^T¦¯½-Æsù§A-V ‰k"¾×|Š„Ô‹CSæÞÊ-² ðˆ´ï²ãœÑk1±ýZh£a1¯x9V=«dì~ ½Q£&ÇÄXß³^f :JS<ŠØz³ò7i½8 V{¶:àv«j½p‰•æÌÍHT®;dzr-ò¯€ðì;Æ Ö}öQÝ6’c•ƒ½2M¹ˆç˺4Îè…ÝL%ŒÄé]Õy‚Ó@t]¸…Â2VVÒ žð\¦¯ÌÌé ­÷½Ê(Úðý¾½A•4¤ù4CvNØéòn¹‘ÿˆCõÈxßwìk#|eV¨í¹×“iãLQé»Eê?úËžáK^Ô–‘?§Ê9ÃÑr½,¾få@t—xM5Õ󼺊RâÒÓAZá1¼ ’ïÑOô*7Öz&ð.Ø lÒò"^é¸[4ütKÞÆ7ˆÛå'ÇN‚|‚×ì >9Μà ßW)2®·†Á\ˆæR}?ª ÅжÓíAZ„¶7úÞ;Þõ±ä,DŠÓob6Á#o÷G‡Lˆ@ß=Tî#7‘t$OåÕ}žú ù¨FbÐ Ù÷Pn\£!.»Ízq=“táq¢9)%*Hví÷*4?YI2£§Ü5! (ež¨ ‘*^Uý–Å,Sz×oï§BjJE #¼IyÖ(¦ø¨ÔÑ+6pˆ¤[Â,ãwÒ Áƒ|&`NÍI1ŠÍ lˆfxœ@‚ÛÂÖpê„Ö$ËÛ ­ÁéÑδJÆN†Ýäýà¯Î»Êd¹m±ÁÁ¾ûDÖÁZ„¬®¯ì~–Ù¦sÏSqVÜ5s¯œóy6ˆÕ”Pm*Œ1Ò'tVÅ0ý F2yÀ‰ |w1, 7ÆÓê§ ‹‹Ñ>ÔpÖŒ£Ùùœô¸—Ô" M—H:(‘•à½i$œ31>ø8Ïéµ¼$1‘ýcåD‡§å2¢mÿ:œ1sØj•±Æ8V.‰÷ö:zsò6ŽÓ;¢¯k8äÍS7IfAÊ@môàD°7`xÕœ:å^ôÚòý}ð« Þ#ù v—+ç‚8A£@„È> ·zãþ‡% ‡®]TÉ£8ŒX¼ØÅf}~ôWþ(LÊÊ&°—o¶5ÉŽƒ ¨ z*®¦zßÌsÃFàw&¡ë"Ý*aèNŠKVªX¹fXšeH0yEOÅØ½qR–I@5 •B^`gßYzÉã[ί·ïáF·è©÷qÌX×!cƒTÙÒÐ|•7ø£ÜéC‚ʲÈÓÄ< IžgÒ~Ã_—óŽ ËýK“pHÆÅϓϴ«±œŒ ~ÛçMsH~G‰Šq_zïd☓!)çaÜØš^üÀ&á3æû½çK6pÀI8cRF€±©käèAÙ9Ƚ=a¨.T_šÆÏú†ñ ªˆÍy•OŠHåü¾"áC6$g‰æzŽíÌÉ ÏÇš÷þ¯Ûnï_e;½|óVx<Ûìǵ€‡«eìþ†ó–ÈQ+5‚ç³-ßħ¼È¹c4oJVë¤ÉÄmÁ»ªN}yÉÕf¼Œ Ï8=÷÷&coÜPLñóÚG‰ï18¤V§æÎnƒæ§»nꕳ>oRæ¼Å÷ðÄk>4j(œ6¶R0zåÓïñ‘1¯¦çëmјþ¦ätIŠJà—H¥R²iºB¢€’#†Ü=aˆ‚£  ±T8ÎGYWÕ›Ì#֔t™kE¡š«Í4Àﺚ´Ñö—²ñ4MY>-ø]Ë-¼?ÜýUwD&CR4?…àçˆê¶Œ¬Ú8g…Œ³?xËïã‰Ñ«5h¡Ï6û¤£ë³D¨å×ãåÂÕã³*í“ÆâÔN6œ®£¢¢|…H¥Ä¨wStb7{©kQÝL~AÜ ç0‘ÿúig8È^=2Ä0þ¯j¹7›Û—Þ…ˆ†T–wŽ(Õ}~Ã’KNR6µŸ-Ú|våõ{„ˆ»-"£ìnº*3y[JNì¡ÇÁÒŠJÜ·b3!”<„ÏÁL8€ÐÍÌa_J¼ C­~€õ.AÉtù5ÇiÞ¸‘ŸÊ7ÁdREüDW»qË ì„Ys ¦›:Ê«’IØz½"û×¼T'¾÷Ýl]HA@N4ý8Ãq=$|b}“Zë2RO" öj}5ù%œüWq¦pÉ»9¥æ«f in­yÕrS?û§U™ÎÍDޱý˰ÞÙ!zkJÂKkÜõ…ÑuLߥž()ŒÃ+XYðÞ¨«@n'Ä¡¬„9ˇ}TèO·½Vñ¤ÑaTA#"^ÜΕËE®€eLL±Ã{ùù,sZŸ¨Q_ƒ²øãN4ÑPn›ßÐáu>aVïΤ£4¥;qץР«ê %“ ˆÝ+jªDÛḑ`õâX¶¤ÏIøœ>3icé—¾Ä#VQ%sЫ›ùÁ«B9¡§º&´ ðîj°¾³øôv„°¾x{·º«µÿu©õ.êU-þ]Ú&`ð¦ä]K›Ý˜'„10E8é¿Ñú™âÃd¢ל¬×W‡ZŒ ‰;rîÐs)‡çFÞTefz=½õu>Un ûpz~Ò?fðp»×4ï5ƒEGHo¿$’a ˜6q¥,¦¯z£7ÔÙí…í²ÎÁ '’°œGOR-6_™C rÉ9¡ã~ æ hu¶0ÞqÛ’òsE4ÖòjìÆ‚%Ôž"²ˆ˜ž"}#½x¨]ëèçyËâ%ï!¾®Éz­ÿ]™àÃpªÔzqö>µÏ yf±‘v'º¼À׳>ì%×ÐÕæ± ¶O¤ÙêÛ^~<³•’ìÇÑP‰P”:&{Òw—ŽÞÌQxžŠBÔ®o¥œà5Öb°-Xœ£”0X T2ìÙ⼈|ï?òî3?tqà yû礽-”ј‘gß}`@£„2à&ž˜9k‡ªï¬/!jÄ>ã4‹’„$»’ Kz•5p÷–8(ÊÄ 6þ¸ ûã"9ý…c]‰„Sx¸=Ærˆ~ tE4Ó0ëæ‚(ݤ,0ƨÅ[JØv.«— ƒZŸ;IDáÕ31J£èù ¬5ùÑ" v¬ñÚH4»D»›1rñד1íýÔ©Ž—K6"+;¢ Kª4EÍθœc,÷òˆ”Z­\¬É¼*,nŽííNÛÝ ¦@›îÃêÒ\<Îv3úOa g¬±%£ÀÏF7©-ej”U†n§ØDÈ=4ëc8y­>‘²Û""—ùᕉWŒßHÒñ3Æ•E*w øz¾¹#?hÏ<Ìèñ’¼/b"«f“Iü!‹Ž.ùžÿg6Qò‚)Ôä]&†×1Ešd,tð»ÀDŸYÌj£1M«0:$mIö²¸º­Iˆ¬÷„’¦sš‘tS@…Kú®±€¾™¬›¨´‚µEP’SøÍ47Úwõ§DÿÌã÷†Ã±0º´ÜòÔM3«!](1NÌ&èÔœï†ar vpůwÇ7ö™™- KîF¨´{7½xDŠV!t Ø7g5®P‚Ô¿ÐAµ‰DF@@Èã\‡+…k”ìHé W­™ÏØŸícr"“ð ÑŸO àwÒôvÊÈÞ”œìfu&ÉJã¥z¤3$wl§Tƒ@_ð]gÍÏY>vÏF{Å+uØ  Ÿ–QÞ~½©|?’œSÓé…_Òµ˜S1ŒŒÖÖ_ÕjÐ?² !¨üôœÈVPUB)ÇéúZ6ŒžVŒÛ% 1b˜4úËtéÉgßõÃ"7ž Mäƒ:䛚ñ~`ôùÉÉgR#Ç5 {~ºÞ·Z¶Ã„_K2Xvz¢€“£T…5fýßAEØm>²#¥»¦—œ†çåò{تJè )ncËR–¢SfD¹ Ü,""q<òhÃ.¤¼¾8ƒuB\|3¡†§ß zbÝßËŽ´F4^SxËìØ:gù¾)d]ÊQÓ]£¥Ï×6:(!sº.‹c: oôš˜î6žz¬òÜ*ãåÍp9ºYþ²Š3ê1wÊ{4q–<8ùi‚kÔîÇ›ÒL£§Æ´áT2÷ýÉÒ¹<µ#€®zò›ž¹o3üŸV6¡³Ñ¯|‰ „?6©Ój‰ õgDÈg(ûû!2ÖíûÍÆâ¶ŒÏuµÀm+Õ°'ݼ÷æx5Ó³ð¾;ƒ÷‹¤He¬'Ó`sˆPDêªV_Ý|%žƒ|<•Ä+¤·¶©ì›ÄXm±ù\›l«Fè¢Or7µÄD”®2=((Ûtµ–¤Iûê.uî²ãF¦.Íwt³!à+CѦÛ$´LƒöbS$|VèrûRO!‰ñ&=íå° Ö‚êõHJîžw€¶7 ìàžfJ·>oWÒÚ¥Ò]áráÑ$jZ›:À ½ÅcÊu‹gʸ+¹j_Y™óÃ3+u6K³\ŠÕ Û±ù”’Ì6Ã)ý)t‡ƒ:ˆzÕ†"RF}TqeS†#º¢ÎìÚ¯É?dþ"~,¾‘”>¬«íņ&–ñD³øºWvø:€›ƒ êÊò­MF*4r)IeL'K³V/>¯¶àx« æ8<ïÐ6nE/ͱeˆ;G/EÖó+—XB_ÖÔ(çÔŠð¦ï¢ú»Ã:uÇ%–Þ=hþ;>ºrBOS>'1ƒâ­]V/SS£,ö}aäÓŒžÀŽ÷çè Û>¢ŠâxM¹ÍÙ& jmÕò$à”tdž]oÑ’h ‰ß'ÚŽw=ÅÒIinÅ„Ãx¨’¸—“‘£Ñö¤2E¾ —Àß“B,Dšì¦U="i^ KáÉU.ê “~2v“Æ8—ÑayS©|ØåÐÃivˆ3Å“k¯2uZ•!7} &é/…«|äW¶ï`ðáä¹Ôx…+Òô²Ýò ¼Bú[E„*s #Ç a‚SM–ü\A–Q}ée‹I`_„ ¥×]cgû© /[ˆ(šg^ØþSEÊ¢/|bsUBY?sÂñƒz5/$ïû·é™tý"Ÿz—e½f[îäW*5–a³:ü}ãö³$ú¾ÃÑ//{ÅܱØë.ìUÞo†ªbB÷Ó`@n-¸\ÞY$‹Y- @&Îfïy¬„ÿTYM\ØÜÜ`{iò‹ÃLx-—£6ÊŠ_ do|Ø]` ±œ³©L™Hò}ŸÖXöÀ­œÌ}õ³éuÓžFUë`¥:Ms’´ Ò%…XÒ uä"[µçÕÔdœË\t øç£ dû&L¢4dŽ’ñaŒçnÙÂk&ÞÆBÌáõ¥ &X”([w›ß³lÝ‹’Î%ߤ© 1žG¾ŽÖ8ÝÝ}®G€MÞÁ’X¹SÖ¸­ð+¼y¥Eþ2'çÌ6áÅG™'ôÀ_þ™2Méå Ö³bÃðç`ûMÙåœu%ŸÍÕ·t8TÒkÚÚ—‰ÜÚ“·šûMú¹(í8ÒÑEã²áÆ Eƒæ>ݸr3Žå$zNer»™P§¯9WèàÅߤxe—­Í/óÎ-,8:19T‹ÊaM9 ˜þäΈËðAÔXÚp<œ™%·›œÁ“áx–ÀÐJñëÈ[~eËClº%4ñ¶Ç‘*#»8â¸Ù²±ºmdhÖÔq†&’2ò§‘ð³–úƹá(»l¡4Çò–5íl,î€<á¢Wìu£œ qõX†¼ò¼™™\ëÑÐê»[ƒXÒæuÄZB¹^î©/7œÁä—ã˜[ ù.›>¹)VlЙo* #š…µ®];-GÉЊB+è-ÎN1¼´>Êe¡öXP·Cž•Źo¾Õ+Tx|rTðt¯Åg.£©ÜÆìÿ,åÑëpwåS>ɼ1Öø aéùJà är4ä"á3ˆ‹=æa¯Oóp¶ ¯g+#híÐn¯“ˆØëùjðnÍpN‰±þÓØõ™öyJp6ÉÚm\0QÝ~š¸÷â%0c5.•@c‡ÖoVVûå.™þÆûØí´âªAN…[y‡UZ¹? óò4?ë!·U©ÉT3»m‹ /`ä–Gö•L2œÊ­ËÈè“ä»+æ Ø3G¾T)(´cf¤³{¯NÂ} âŠYü½ÁbÊ4 .þû9ÙºéZE·†¦éÖ=Ö@e—«g KB ²e¬t3¶Óáñ˜N„vwðë+±èäÄ´-ÕïN?dnj¥¯kÆ Õ+/%rë:IT`ðAÇ6°.x""(äáÆôóå»ß´Ù|ŒvFîz ¯ÊqÖ=1ÀÃŽøäÅ-À±–$§—‘= ‰QzBEÑïÙ0æ¸U†ì³ÅgÛ‡”S ñ"œ†z%•€.qñ¬€no$\K†’ W¥þåT„@•[,¿ZÝú󼄉úSêz•y:é"=Í %Æ”.”2Éí gö8½ÉRü‰„@ûÔx­M¬¡O"”g56V{ÆußÛNòÃÍ0Ú@ÅGVŽÈSš›±›£ùOÆ@{½Ùx‰£까i\yN´F“Nì•ðÜ^úKžiõkÁºþ±Xþe¸9¬6α5l)¿Ti‡€önåõÂÞ¥wõC\‡bä<‚¤Ú¯~óRïWé¦UóbgëKšâ~ô\B¬ fšG52´ÙJó&&nœÛ£‡É‘[ö~‘Zâi

½ùùˆÐÿ{W~:â¨k#ϯp2;íVQJ.>þÌŸÿDœ‘kÄI¤~™>o ;)Eò×Ë3íS„ú¤•[‚­F?ª‘-o*’|±§=Ž}oV~¨½§\všäÛ÷îIÄuþ1Žì\éµc¥˜bÍm¡ ÷Šäv½"Œq×I\öE¼JzmñÕž_ì¼3¤¡,êäCËÅd|ç`í°jgÖÅBÍ:m ” äÏáR_|-š¥ ^6³6O(êðÛwãbÚ!ç;K1%>VËëíg±nrnñâù'Ó  ›ÉÓ»ý`ý ™p§Ú‡Ý‹:ŃÖ@¦a=ÔJ²x|¼|Šƒð$#ß× ^K™±–®_jòI,ÈPy)FJ–ëzíĽQç³É^eòÑ[;[sàcÏFOê$7rV÷Aätl¬Œ9WlâðË>Áwq8ÒΦP-°ÍŸÊvá/½%õ ŠÅr–2¦õŸbM—L% eo“´U¼%yˆ3~˜Ð¯Ï”î?L·Á+„ìþèMp˜Äÿ:9°7³ˆ “gŨr«-4tL5èºÑ«ó=L”J盦k1jÁ1rUf.*bÔRë•snLw×·¹ð3´šàŒl¼ˆëˆ£þ[ÃOBY¨rž»ðŠOBFM´+P he·b?µ8°^vzöŽ+–R¼Û¬|µ|âÖ¥²œ)’ ½›K륌ô“1bøP§¨ÒÂp÷‡­Šz+¤½ dzÇô¬±ðÞoúc®Sç–:Ñ;7•_3Yh=`VÖ›÷‘WAF‡÷~ì>µ¶ÆD©gT‡•©1ŠC˜µ°jžð°J5®”×Lo˜ MÞÚŠº%1e±þ¬ ܲ×~EÖ9óÚ†)¹%_]†‡VW…<‰añroL•U?öAEreÑ&åˆ-ù±N:°oßFuòÝ]Õùã+è÷b×GÎO †”‚ìXûð?†!ý¢q«àº}´‘zôÃ+ÉSàw°y ¿j.~Z9ÚJˆà¸Ý›o€~è£Ê´(¶–Ên繋lôy|yJðÝÝ%:ùhçp³žY¹5D÷Sç.?<©3Ñj+¤C¼ôÐygK<-¶¦J†IþÜÍ7zñõy3µ‘çå²õ¼*Ém‘Ô(¼8£ÔO7A¹-Å·–(µú¶}’V ðE>ˆƒPÕµ-hÄ$žN*Bµˆ%3t«á† 0oˆ*ß‹ýÙ)zìqtûw©¼í¤´ª”}¶¯ÉVû@—èŸ3nïÛZ0&‰±» ‡×¯iL¨ÂE"•¶S¥L¼stô œƒdIRÝú®Ï-ýy *Xçz-“KËvæ·µÅrz«Y é®ZZÏ2»j’{qZ§tfíØ;íktùB p*—–Ò Ø, ƒ€h–§’/X¾¯»ä<PÀŒrDàU|‚©ŸžÜF¨u.ùXÑÿl†aïIÑoŢܨ aj“nÍ7;^Og´^\p@CP0ÄxE`e‘EgÃ-‘Ød­£À œx¨Ã²ðÅÈû*öq©µ/óSõ²‡§’‘‹öªåŽG;@ÖºXËìĪà\E¤O¦9'Íð¤?Ḛ́w J†F^| EõÙÛ©¡1@†$6š“™?MÌüÆu¢Tô–*;>µ¢¾“Qs(%k*,d¢wšÈ)F`Üî³?ÀÀ¾77uqÂñ ©æfi|¯þ«¤Ä+aÁ½½§iþc #¥d*–´¹J “Úò\»ã¨Øs†Nñ¨ôi îåA-÷ÌFí.@’X"×¶•¦ùã„€PÀ‡fÃÈ«¨ü0»åæüm{{£…îPwùìÝœðb-'¾ò‚œ›— >×£÷oZ—@ 6Yé©i;pQÄ|;üÅB"þE׺ÐKZaÊÍÞI𔲆„ØBÕ9³8Üi:å¯jbfôÏ„ÞûjûÆ™—ÞäÙá64éiK1ÄÁk-M$&…¾=ASE‡(û܋ْåÆ9d@K[~yS¥°&ßtSØÂ­©Új›íÕq5*ß«z Á±•Yεæ\˜ã¼:—Aµ\U¢ºï¤Nuìvç6„»z¢sõ뉫í>ªSêƒ2ŸE+g¸j_/l/áð9&ÓŸÝ)–­v¸bÕhR*y,µ5ÛÕŠŸÎÅG˜ôjfsñ ¸|¿î¹µ|ôPOî§¾]ù%ɃlšÓ¿˜dáËp›ïVŸRÚý†f Ü^&ú¤-®Ò¤È$HQž†ž`€kñ£®D,îèõ%>Ê ë[<éÅþ }|zn!ÝO/ #ÞMšŠ×Å¡1Šo•5(¯J_}•Yj šñeâB G“²ˆéyíIâ_v9¾ÙóâÍšíb¨ˆ‡0›*À’)ßÜgg8˜€mÖëŽnÓðU­}Kkºÿ¼ôÍb%ûGz·\W¿¢Ý'…¶è&–û´²*µá,_s˜súPžã˜{Ò³AÄBˆu‹lH[Ö莎Æ)"Ç1÷$º§Pù®œ”–ÙËr¬´‘¾1åì|(í­gù¹Þò”ëIÍ­ ÜþÎP[/§‡+6Tc ó§s"îd³Ôò4ÈLÎ*Ú/5BmúT¸ßRIûaÙØ¨Â|Øß@Âs0^–GãËÇ7¨E|îz¥êøE–7LP8L`ÔÿN—°¢SfrhÈŠë«(.©âµèeþgVѲü廇 £1›ïüêCZ]±ìÆûŒ¯t‚‘¾#À}ð“|£7ì+­Â[ÈÜêÀóU¶›ÒMë§£é=’Í0BÖùDÆ[0ÕæòΤ]—•U­EËso­“L™[zF¤¡Ä¢ä, ÁÀè°2B4-Ôs²RïmÙP˜<ÛªÖu†ë öÉ`ñærT›BmµPªœz %C‹ÙBŸA'§õåÉѪ¢“ö#i°‚Oš 2µúÓI‰ÄôÜ"Å}cO/²Çg¸9U×é€×eAm’\rÏØÊtäÑN Âã„$õëŠBóŒoÏeFFFÞmkë£dazŽø~Îi€m›ß¸[ñrü‘ÇÉ$½'…`3ÏR“Õ«ÅÅWèðÞJ†úzí€ÕTjñWA¥Uáþ¡¥DØý ´­ð,Ød—Ûq1¿x†L¯58Aê\ð5íðjnL‹àù„_õLsq÷£ZS¶±öÀ”-(“ÍsØÕ˼FFY|xÝüeõ¸"Öƒž”=Ì[±éìå*ÙîÒ¢Ÿíý¹µl!òÝM‹ýCkËÙ î È!ùJ)èûX™Ô@CDÞ½<(ŒWl•L–‰ŠžŒ}GÓ”òóæI÷= IW–ö=c{]€4»´‡'‰ÏfòhÍÓŠ±×LPà·°ì–0¯g]B·x!Ž:ÜðÕ§NÄÆªÈ¹üH0² V¥Æ,SÚ’Ï쉘¹“ Õœˆ¯ ¸Tû]Z˜nÈ[Æî”úyGÝ SÔ™±ådÐx“ ³ñT>Ûé]|¨4”lnÖÉ–ä2üÚØ‘¹ŸDÊÜÄÁn~2a—wT짆$»GN,²ý¥oÅ· :´izµzzyŠ,ªý1gûãRH¢™äìˆ>ˆúH|nŒ%Á¹JŽR’(þ`'·÷()¨R·ü]¤#÷¦G DmÏîF¹Öi­´.Z]eªçǧ8—±WîºT*ƒÓØ;#7üRð’χæòùqÂñ‚S©ÅÛ·‰k#´À2v5¦àÙò³˜){‹~JYäD¤g¦îµÜyñcíJBöÇNbJAƒq H·s÷"J ^àñI›é}„ÎøègYgZd N?ëÏï’ö~6C}ˆóÎÜð ä×b3´Ò!½ýá.©kÚ–+Ò­Ñ=Ê€ûæ˜Zißï"Èâûš°çî«‘&Šå_Ñ’’,xûoQHuÚÂO9š«ŸÐÍ)&y´ð†[N‹£ŸÓˆáL;œ/¼š‹ž;$pc«ÆÃwß¾·~áxýó!^ôA {|Ú]¬‰h@–³¡ÓÉ»š÷}D ‘/õf!ÔÚl+úB)ÂXéžèS-Ú{r©šx.µŸáÔhÝWc§cNøÓ§L?㦙Mhiñ¯bÚp3pœñÑ•*Ç]®Z›B¼µ¥èÔJAoÑNÕžŒ–¤k¦µ—I|‚ßð<ûÅI•ÄSíWSxµ~R®‘óí(˜ç†ñF½))½Ó/“ }ÐNkÃØOÊñáꧬi ¾ä¦/DùŽàììÁ7Y†þÏFÌñðä.«#ô¡hiëzýû]êZ;Îî´¶¯cVÕ|›txû z7»;ÑåñèÓH„A©m¸Õëç(½u¯p0ÑÛ“çF[õÊ+Z†'äz3€*©õ¹aǹîB½J(´M”p˜HAV¬ªêMÝ19T ã;œ e Ù&ÁOæj~««¼˜¼ á€Ù>í“¥‚" ÆmË"„’8ÅG©âµÓ¹´·Îô{‹°³uET[júÞ‰ªØÌYOéþû5òßf –¦\™™œ}k½m6ñ¨J›í#Âï…¼ØÇq³¶®DøŸ–õÝŽlÒ•°Éç ˆ¶ßtµÆÍ«¯Åì<­ÓzÓ/JJðw)KŽÝ†Ï¾xŽ(|)GÞÈ{8Ê` Щ G˜nîš°-_ÃänÅý!‚e¹µ&_ljÀPì¢ö)Im£%Ölú*±öR»í˜­pÑó1õùgÝB°ªZBªSìVå:Utø†×Í-±f ·ÆÖhp |&óIñs4J «2ÓÍï4yaÈ0½†<¶~ò£T±z÷2²”;Gœ¡òàFg±Á§Ü8Õ¨1u^™&M®‚ñÄ¢êœNBëAöwßú­\m<Ï'v˜ûË‹s7éROêøÃIXWŽ?rkÒæ?½î»N9Y%ð2Ç.O|CÛ²lßG•bníì:œ‚)‚.QIY?3S·fñtxÆ”€½È‡5‰úc‹ÛMêr—YFí;¹y–?È0”'|—GÐͧ“Ï›9ÂIº°õRwGúƒT#JááœYSØÇÒ @†^âW—Dµï,Fo»»ÍÎ ‰uãv°<̘Ã.;F!PŸ§«c~pzT¼ÌAöÆ,—§ë¯șO‘%d:TÒ©oët “êK±ã¢6„ªmÌò nzØMÂúÛ[·ë¾ÜøIV…ÂŠŠ’&BµÝŠe^Bb…Çú0gÊ0,®Ï¢”À媨ˆ7â½§¸È†‰æ*| ýf8Ò!ˆùP?V‡RõÙ ¿mb˜ ’ìri—ûì‰Ë ²>]ªe1Ç_¡…bÃ˹¹ØWÌ¢(Ê!âz²/{kcÃV@bSkþ¾U0öõŒAùPœ ¤Hp˜¯Šõ{Äð|÷ÒiµK4¸ú}ÙÓ×ͺ„ÑaßÐpTÞkÆ-ÍÝ’9™½¼ý@òéßÖë.éÂ!á2áËÍ8†¢–2zFÌ$Árz(kÅQ›-•ŠÙ|"Ù¾E¬”Mû¹ŒK9ÛŽ9¢Ú÷*¯Æ¢NßyQO¤¨úõg1ÛÍ'ï™ó>£f›мšÑ¨#<[é?ZÕÔàßó¹H€^Å>]F'yJ*T3ÉêFŒÞ £„§2Üí'×» ΓóŒ))lg’îѽÛÝ=BàÆÀ$þÄ¿.í–NaèÊ¥X˜Üþþ^†ýÕ5oËPdº®Ì>F4 è>íÊã šc³V6©vdb4/Ï ß“d¶ Åõ×»ºZ—¥š|(r¡~TròÍxºåç˜9òÆØKY÷µ»1͇oË~ÏLüU¨éŠ¼Ý¹«ö†A›ðªÈÅ'»Ð–i>ÍcÝCc’íº÷Šì ¶½ÖS­¦ÈñSîx¾kjkz¨IS‘y‹Æ—õDq‹(ÔúÕg›9Á(è5’tL"úÕ‚Žž-&ëыñÛÌ­šŒMå·¢þ²‡cR™úM¯°ý Y1i3ú¶}'¬(ŸPO^$k1±øYÓO {³v徯VµŠ™á¦u¢ŠF³Ùꥅ7Ï>@¾Þ›Ÿ8ë¶qa×Í_6xLBö¦ñ àGƒ‘;êM¢7>ë87£ê( zÇÀ—S Ù«Rõ l\–e™ÑÐU`³äî"çÿ#4$µ_$—½øM£ “åôD ×§óå'µv érkÓÙOZnFšý‰ >üÛ¹¢Ü£nÈK&œ×{å …ŒéH?©ã㱬ß6ææ ¸C}öM1 é´©f†`»rìŽBŽÇröº_Ó{œXôi¿à‹ûSÊãØ¹Üål•'W£=´çòy+¸el˜{*© ÉÊDW©‹`oà¥ê¶Ë©Ú%¡+Ûók†ÐųըífSôÌOöà-i ¹æºŒpŽÇ¢!œÚRÏWJu”£>'[›C‰Õ\2MÂñÙbÆì¾üï’Z˜F‚ŠëäE:+ga´]c¹ „`J-®FW1@¼!nÚ_2î¶×ØžÃ%áÑâwŠ\û熵žÆ£žY …?ˆ[µÑƺº6M1z%Ššht’NÅKöð<fÉáVU\º¼ÐŒøj•0Á…£d8Q½¦!åןEˆ‡Ïxºn‡$ò­<^ú!9ÙzÜÇÉιB>|ìâÛHb‚ ‹ë­ýñK¿sya¿‹ö-½ER‡ÄRî=yk¾|Röy‡à¶®›‹JnÊH¾y+Ô8Œæwý½é ò¬û)4êÊe4KõzÚg»ðÌìâ– rÛ•Çm-/ˆÍ6ŠSª¨éàh‘«Ý÷‰:O‘-Œ.㧤Y¹Jzµ«”zÚõãò𳉠ÝF¹û{ªGøz߈øœüqøq)Êå³¼žI#$õhÒô~FãU2fñùŽî5né›Å©¯>8§ ßýšü…$*?ÈØ‹&¦äçv€xVKåÔ7´ÜN†{qï°dÓŠ‰– ^€ %è•‹¼C/¾*¶Ãveü»î _ƒ,û‘7z™Ù­ø‰Vo¡Ï:€üw™õ*þsrFÕ2·ŒV;Nd_ó¦ß(;GæîÒ£´ø!UûUCP ŒÌ˜!ÕKã(,SôÍ*C³ûu¿šfuœ•â3öÁ|$Ž‚2xÅaGÕzÒDí;KkÆ> *§”}å…¼JœêŠGlÛ'NÁËɇçVJû…‚H4_ŒZóqÒ{"@}¨ŠŠïKßR­¨.'‹_P=tnºE˜ØùeÄù>*ܺÌ1ÿ¼ü§§aÝÈ”ýÙ€Œ ¯ƒM¿W~H'AÆ;žBYÃW‰ô•íJªkFçXɉlRtƒCÆïÑ€îëO44ö´.ùødí¶”“ARØo”_mõNInAÐ6à‚Xni[Ëéé<ÓÔ¡²<.G¨Kq7Ÿ ¥¡4Vc›£ï$²‹Œ_Gfñäyݾki`ÖŸäÑ·¹³¢¡Ræ_Ù­ÕúÆÑe¼d=gÃÍ2&÷¬ô*œÖ£0Ú"Ì^å ï1jlSTöáÛ¼a!øh=¥Wðw—z?£®›Ží9šLˆùõœËámk‹Îƒ™'´‚cjÞÄ‘¿r¨:bEùÔ&¡Óö¤‹øîÌÀ'9€’Ü ‡¥s"rpÅ'T¨U\üòã{ÇàF6,Ë;û•RÊöŠÇ׈ÛNÉ8‹Ì™¬J:b^J°—HGžHrâ 9!þáùB(D:n5ÎÑoC§¦¡òÜâ¹ Xh°µLó_©WÚùéØ÷ ùÊ1réK½ìEÉ^¦/æQŠ;g‘ >>hX@²õ¼]+4™{ï=û‰02<€±w(£š/±0W€Qðy€Ù¬ß‡òA“\U½IÖ M:UÈM OöûÙ.-²ŒÝu4&¡ aZ÷çÖƒ^L7ÒÒérÐKª^A5ìõŒ@±NOeàü;¾8¥· ¡aù¨ú˜që7«©Dés1œªš¶rhò&§§=©*£«¡oÂ¥-š’qd†sÇÞƒŽZ6Dz”#ÎðžJ›([Œ¾Ïøwâ5 ø¾îzíA] ?ÆÔLòRãõ&s_b^d×§ š·Õ[µž£„§ã/¡ŽIsë<Æç…Ÿ‰RÇ#:FO’gáÖ:¸i­s´(&CÉ›Ò{>ß踙ÀÊÁ 4=KtCÖ|ÁæIª\€‚N²z éL7ÁŸ6ÕU~ŒÞgm¼ý)7šÃp mÚMh'–eølt­KêoM[Vnx Ómößà÷Úó’O†w‹écXËñðî2ìwŒ2†˜pϪjì±ú¸mHº‰Ù.:@ëØÕP"|«9ÔÝ.BU3>jÒ {äà‚v=¨=ªuâX —P”·4dÈZ TÐר×êcgŸs$5$§—@“ûLÖÚ¯!ËöÍãª*€Ö¿»­CBUÎ*!K…×~§ÝÓ'l¤ýŽ<R2oìéËlŠ>ØúR ûê;™2ÇïâaÙµ¢¯–ã7‰Ú“ŽXR]¥5ÎÕµ…Œ¶í³8sW%à)§êõ™ †ŸzÚFîö4Á×”7R½ö7Á$šz?€CÍdÚ …C1Ñ¢ Jk®ÚȬʊkÄccr§fñ‚R÷.‰Íõë?;øú®¾Ñq Kúø×È-lü¬é%Bóï{18Kï*% ¥ÆDSºê ‹ƒT›T¼—nñb´ô)k6%è“"šoaig=7H´RXô†-(¢¯"qNZü9ùŠoB”pb´5wQ/~Ùß•Dü[9F²»Ü;~¥e~8I^ËG`¾­ˆp$«•?Vœ.RbØHªåбáÔ®Îwç–¬7Ön,°&³šË~"¡nÙ“o2)_”<åÒjØ`ó+ÀÌê'òå4Ï\´èèÌy"Ú³g hIpHn[c¥zi6Ĉiqùý¤s}D­ Û£KÚ×°ÔŸÒþo‘ò‡Ê\ -½ê×§H$¥ÅvZx`ú¶ž ”³‘ !ÂŽŠ¶•¾;Ô¶·*‡Q\m,{Õ#zŠÛä ÞÑh‰ÉÂÊ‘ÇUJÉ[/‰S¡£(‘Ò‹™­ÞsEÏ{ßè{apV57"‹/7äDÇÆ3ìÙô×*8ÀSXÓ0?šK¦ªÚ¯OÇcTûà°€Ü%,SJvû âé.¾;ÆŠlˆ”‡Sà[ 'KÏ—ÕvS4é©õxi}{ ”8¬œ a«l~7eñƒŠúsÒÊ]D[a½®yNcùGÖg”“ÉñšÖ^;Úæ!ÒÀjÅÕ>‘F' dìRº'Vxfij_êÒ#”ÀóÕ˜f{¹i,ö¯— lŠ£¡S*5ù#¶íã¬ôÑg `Š€ Üºµ,ªÏ>ˆoá«°[ kï=qÈ.âõ,Z%ãÃu÷ ­˘ æù3:Ǫ…i$Ѹ¯2+üÎ ÕN@ßÒMïwSüd/1 ©Í™`/Oñ| æ“W^W·Maýæ¿ÖžÊt]ãÜw?mM·ÚnÝR½æà£ëIGà¿e·êrª§ÞQN‘`{P‡m¦ êÆXhd#v®³ä|0´$ÈûµÏÐgä°"̈J©#MÄèU= ºß¶ks8ugç…GÞàÀ†[óFÄM}ÿŸ§eÿܪØ`& ±qÌs/5Ü$æ*ûÅ .£álóð†'îa)q`³TP` [nõÊ4 ïÚ±Z^®¢åasÐ-ƒrâB®÷dg(UP#äñrÄHcÏN;pÈHœ ÉîIë&/ôÆ$S µ3Á&_L@ä7&‡ÞÀ pèÑ-÷ÿFz>:ÐÞ[„ûû }¼P/"&¹þô‡gȦZ+OoˆWºV€‡\D)/½ìU®0?yŽcP ä:!ÇØç]±VŠ#{žÇÛy©— Imºæ[¯™ìÑ ¥þ½W|ºßÈÕô—®¨æ†AR¦Á¿2ÒXdbF¥oú‡ÊxÕ<±áE}˜­zÚÐ’,ê&†’müt;…!Òoò»7樉ý ‘²AžL·ñÄP›gƒœzæZ‘™’mêì©X«{4D)©eˆúß’¬¦‘Í¡ö¹kÓ¬A£ÙIpϘ~à†-<{œjn1“÷~ÞÕNPê  ØÆDX|ñf³×iEH¤• ÔQK°úí¶ò}·5 ü Â&Ôp+Í«˜$MÎb«33ƒ%1ãÏS8äº#¯ ¹ãG KC3ˆ•o®Æ/S#P±{JµÎÈò °{t%´ë_ÿZ>y•Y¾uüþÞµû,ç0¡AK»î/¬ùE¢÷$±ÝS Ìñ¼ …†Ýç@ÖXÅgEš‹ZÇX=Þá]檪ã̦Gg~ð­/»ò6”߯ÙƒOÍb_ì^]&Y—ü“—aS[…©sÆýV|,i‹*Ù]&…ìýÆ_ñ•C h2ŒÖfƒ·ÎÖV-Û‡ŸÞÀÕ’{lf´T=(Ï4ºBñºe‰;˜0¾IøÑñed ·†ûöÊŽ¬7è´Yxãô‡DŸ8 Ù£g ˜ôE$×ʧ馧;JqDzqCÜ¥Ú#Ïìspj`þøU±T5]-[‚oÅY¿Z¦hðIñ ääÓpý³tž.)aVùlš*n* ’½Ä×Öû-PIÔn GP|¹ùѰã@­ï(ŽŒ"‘_®Ò¾½hÁ&{Îz‘0]\ãYP‹6UëJ±¶Ÿe÷‚[è'œašÑE }âÇ¿¤Ù«pSÄ¥ÊP"÷7àû—‰ÎÔÔ¦þ.HWK^pM6vÖf/hp#éê~ðhÑØaÆ—‹t?°‹äWf´\9Üäͳ4ÓíßÉ—÷tðŠá}M ÷¬6èÁˆ»¯wÁj(מCؼÅRï0€Älõýs­¹5˜!òZöZOÇ’fZ0A?lDÕ›·:w¼ÐPÇUÂt'ø2Kÿµ(ÂM,ÓBñi‚—4›}ߨ@;ñ¬'–Þµ¡ã|ít'j|^›ñÖ”Èÿßù.ÊA;ù×ÈÁÝý4ݸ‘ɷ̘÷:˜À›é“ô¦ ·¶æ …˜Ä:1ÝI|xS$W9Õ^€4üÿÿωÒÃÝZã 5MÁãÜí ÛN¹¬䙄Œö¥pb~x¹û6ƒQŽ=s¥ß½ÿÿ¸'bi÷"ç9“hHZ~P-^¢dâ¾Gx_6¯d]²o‹jïæ—¤h.Yt©â¤hç)á¬AÁC‹{Ïö4èãhª;E©ÁJ5{T00!@)íí†9ŒN˜¸ƒz[Må-ký²ºŒ#¤v‰©3¢…µ9>f‰d”ê…é`(QÞwwJƒJ T µP¦hjK_Ý’à>2”¸Ü|n±ny}aajH;\m|Ú}XÞ'FÚ·jf׿t>ÅJô›DÊ´°³3éþüx̹éPD›ïn0 T«$@9[žFÇxÞMð²–w“^$ýÔÏsŠëqaf9ßšÖ½ª”rë=Fµ“$R£´¨þj®WO³²ZåáÒhÝ$¾‘å~ Õ¡Ÿ¤/蔋ALRfÅaH^N‡ Çijò‚¨EOk…¼×ÉCvåGq±ø9¾@Ñòýú¨ü»¾yG€åÙ¹íX¤…Åh¬gKº‚ö—ú{Ã{cбüšyx”ˆ ›¤’Ó˜lÉãÐ[3*¦ø¦è|ƒ¾BM—Œû‡4‰ºHDØ®ÉaÕ%ŦùöhÔpÔÜI¿]~Õ"€}LPÐU×ÕTÄw^uétA(娶A4ã²€¾3†î(m¡ç0&A¹½¹âóÁ6H:çP—þÉxˈNƒá‘MIG-)l³DÆi‹Îëhóä2gH¤FS%gŠýÿ·>ú¯Â„¸üÂù÷£”óD”¶ÜƇb‰‡kÚ[¿¯¢°QúÔžý»,tšÏºíu±ïY·Í‡ÁQŒt4v™;Æ0ŸT~5Í“ÀT†&eá…“Ž%X¦zÉbœ TjÁ>ü$rËý –“]vmžæþAޏôñ’ßy‚ÕÏ4lÿ_ý‘M߉,'rOR¦]šÈHxóçY¼ê:ó¦æzÞÐ.%h8Zz¥³†¡¯Od@Ê·ˆ{·+öûó2èwºæuÕs‘[™(”ž¾‚~{WU0€ËÒÅÜÍÔh¯}¿wå}.\óJN<»‹¸´š¯·ÂTIuxÜhžR’ ÇíˆN0ã>ÙŠõ%ëîG¹*ÞD"b,w˜UíoÙ:W%—,(輞B + .‚îöLJ¤]öRânc ²Y. ðíL$†1r^¥£{.ßoÐ]ñ q7úëó‚áí ÇR¡…*Ä5GO‰.tn!î»*¢]ÎÚÕ–<íØ2Î61v*¿‰v‹@¨÷ì—¯?ááƒ3/qS)‚)L¢—?ƒ¨0€{¦Õî‚ðçü~…ø]üNãi%ç’•Ù1¬ù¢=ÕfÄj‚ùzÂÖï…â»nó‡¢;ÞØŽzK“ ‡•}K°âßäfl‘ò(ƒMæ;•²£Íßý-ö¥KE¯ìÓ7¤@f…!f@ùÙC̹ð’hýþ`G¨ 4ÅÌ æ«ÃƒyË‹DFÔËUâu”·”1ïXÍiwÇW!ã[ýH²DÉÅ`d´9BlG\¢í*H­ÙÞš’ŸðìŸí%ˆÆf{fêÄFÿßE¾qÕ Y•-–hÚ•J~x•Õ ÎøëUÛ—ôò¡dCluÁ|‡Q8F¯®;3îçÒÜz­¢¯£ÉuUÚT è§à€0 Ê~W+t_Ì"xã¶5žYÊB|:U[¡ÙQûŒÚ-÷Z&ü.¥™^zùàÞ•røäY#ßW:Ú“³©y”v+]_†"ƒÄûÇÛìáOÂX=M½@h/•^û02šdoâ~Hg™N &$3·il˜=k9_,£úu,P\PÛnÀÄÂËãº+GŽþZd…÷Šs7~Šm²¶Ç=´‚±.ë0UÔ‹çÿùp轃w^¿=&£`(Ü&?)NyŸrЖäøGï©Oi™¿A[2¦8Þ/­/ëå*æÜ)Ö(xmgÒ endstream endobj 228 0 obj << /Type /FontDescriptor /FontName /KLWXNU+CMTT10 /Flags 4 /FontBBox [-4 -233 537 696] /Ascent 611 /CapHeight 611 /Descent -222 /ItalicAngle 0 /StemV 69 /XHeight 431 /CharSet (/A/B/C/D/E/F/G/H/I/J/L/M/N/O/P/R/S/T/U/W/X/Y/a/ampersand/asterisk/b/backslash/braceleft/braceright/bracketleft/bracketright/c/colon/comma/d/dollar/e/eight/equal/exclam/f/five/four/g/greater/h/hyphen/i/j/k/l/less/m/n/nine/numbersign/o/one/p/parenleft/parenright/percent/period/plus/q/question/quotedbl/quoteright/r/s/semicolon/seven/six/slash/t/three/two/u/underscore/v/w/x/y/z/zero) /FontFile 227 0 R >> endobj 229 0 obj << /Length1 2176 /Length2 8124 /Length3 0 /Length 9401 /Filter /FlateDecode >> stream xÚ·Tl6 ÒÝ,ÒÝÝÒ±, ,±Ä.% J(Ý% Ý*!Ò]Ò )"ßêø¼ÿÎ÷νf®{f®¹gî=0ÓëpÉٹق•Ý p.>n^q€‚–¡!?€—W€›——‹™ÙwÿcÇb~ö„AÜ â0<Á@8¦„#ˆZnP€º— €OÀ',Î'"ÎË àçåû‡èæ)PzCìZÜu7(†Å¬àæîç qp„#òüóÀbð‰‰‰pþ>s{B@@(@ w»"2‚€.7 ÷ûO6IG8Ü]œ‡ÇÇLJè ãvótfçø@àŽ}0 ìé ¶ü’ к‚ÿ–ÆÅ 0t„Àþr¸ÙÃ}€ž`Âà¡0Ä/¨Ø€È0PÓ踃¡‘5ÿ"pþn€›ïßpŸþý}¹¹º¡~¨Àâè(krÃ}ᜠÔîèsCœz!.@[áwé@€²œˆPø·>Èâ‡qà .¿4òü ƒh³ÔNÁÍÕ …ð~Õ§ñƒ}÷ãùûr¡n>Pÿ=jgÿK†—;âáVSü›ƒ0aÝÙÀp€//¯¨€ìû‚y~%0ôsÿvòý2#4ú»»¹ì2À{0â–? è À=½Àþ:þ‹°øøv` v€@±î¢#Ì`û¿0âþ=!¾s^ÄøñxýüûÉ1avnP¿;úï+æ‘{döHIïáß’ÿuÊË»ùü¹ø\ü‚!~A€°˜ ð¿QþÕÿößV] äïÚxïâ©AíÝbI@ôîÞÏÛßKÃøom7Ä4ƒlwÃoÁ+Ä Büâû^ßGþÿ&ÿW”ÿëðÿoEÊ^..¿ýlþ?~ +ÄÅïobš½àˆÍÐrCìô©Æà¿ÖY lñrý_¯ˆØ9¨ƒË¿„À”!¾`;]äø{bþ¹Dt¬ëƒüzo\|¼¼ÿãC¬Èñ¦À—õÛFlÔ3*AAnv¿V_Hôôúañ"æ‹_HàχØQ;°ïïÑðpCÝàˆ#„º@€½›'Ö¯+ðÈÿ2ý…D< wHÀ£x‡Ä„VØ]„6˜ æøø. buxà>n¸'¼þ€I>wA÷ý ÿ³h /O„øï·±…ÿàß_x`°/„5?ã’ˆpªhÿ^-Gíõ5Â/ˆÛwòüÃxS‰Ò{[/LAòò›@Aôœ\÷ÔçèËU¢}þ’Û&g2^g«•€´hq²ùúv4{Û Î€1"©«}˜¦ÿg®.3¨Ù×fý>§²“ìäœÇ[Ó™»*’,Í•Ž_ï³6pã܉¾O!**€s/¢C.³£R¾FnrªS v";òå%òîeZï ¿ÐzßÂNdÈZõÞ®»ÆiæžtêÎ;a* ›1À$óæ;%Šëx¶°ÓöˆP6[Øn|‘ •½áIÓ~‘—CD¨gó—ÚMÕѲrþ ™SCý‘ó„-nüMyŒÊÖuOþFŒx]¶vIS.¥¨± y‡Êáó"FS˜l®š¿I×1+íÈ̬Ñ»@ _(±óýi]¤ ñøô0¿-*fíäj.à*Ï]6K]¥®qã#þ7ÄkrvÂØýq-÷z™mÂwÍÖ4•×þ+Ý “‹üüOy÷¥PypÀb—”5æ¡èÉÀ‘ªã#c-ù¼JŸ„¯[õÈçݪ|RªSó·%Žk·o“¸*oˆŸu§gù&,O–zZ/5?µ*Ÿdn®Àmyü)é¥Þý1zw®Ä)ÕÝûˆþ´‹gª¦E}ï” 3ê+ ½&aãUÖzu†Iuä(Å"¦Gd²ãc3§"â‹:¯Ê{:ãùq»Ž$}«„n¼<.O%ìq9,ªleSY?¦Ìü—®f”cÒàÓE†¿öüö$Â>=Â;d•o°,¶ƒ/nvΚÑR<‰7Z!ÁÜîÔ:ùÜpsZüÈóìÓ–Æ •fŽ˜y¨W u9&KœgSˆæ‹ÐÓzo‰›µÂæ@àÃP¨O¨¡Rþø!;Oö¢ê–Y¥zeÊŸ‘»Êv¶Ä9œ©ù‹U¾})gWê„ÚX,烶W¹T6%I+/£tRx.ûÜ{×sC-èú·äz“‚¿¦P%vfµÙ³¬ˆk Öô~þÒ!ŸªÜ¤ð~ï]sŠ>Œä&¬»UŠã»]æÏÏ~˜$=kWVß›¯sŸ¿HÖ( V¸‡Îêç¼Rëô{±Ó!W\^Ë:|æ÷Ñø•:C-l¹ê°‘2GVøÝ#Lq+ 0G̼”¡|â¨qš,ó6YQJ3t%FR0q€Ù4/C¦†Ë;cû4cFß9=èÂçËÙiÍÑë¡v•!o1•à.еE½Pò Ix’RÍý¢³\…,# ù!–›c ¿—Ç|]aѬ†'FÙ^Ó[´Ô’ñH¸g™.ƒìHºk¹/(ÚGª8&2ÏÍ+ØKJ'•‡ÐFÔYX«G¥r¢w¶†ö^@]eªÄê[Ÿ;h•w$ JÅGI¶/4HˆgŒ?¾ÌJ¼´'-JdÌ| Õûvi0W—”··‰Ñæpü)fD¸eP´( Ê8º úäGòžbÜá{ýýRz•|U,ç lŠÏ[Ø"ÍqÙ®é„=õº!Ð,¹¨¤Ýѵà·R½ŽŽ»ä>¡© % :éÛØ\#By{gä *×ð¾]‰=ùò¢ìH°@rŸlð¸×Vñ Prb¯]üÅó‡d^¸U¨f@T.Ç·äñ8‰ìE–Ÿ­kb™ƒÂTíÔ -G.C èm[ë ýpBV‘›ºÌ‰—ßaÇ„™R¢ÜòÝHáo–ªt’×Ð0o­»'L]OÖ-í£¿ÙL`üº¡'µšwKßøSë<½ñ˜ŒÕQÛïÇgxdŹÙe[<¯ kÖ K/ù#z›½ãBírÂéU &xì,½zè2Òñ¡ô¹@CŸÉi6ƒ~V­”ßÅoŸ‰ÂCÖ2>ý„lt¿<=, ²!'åï$uÓü©ûáuÞ[ÜÕ0šQ{tíQ]eT÷Za˜³…CÍÞ­,¿é¨ÙC¯ÈfÊâĘ±èƒ«€d•"}=5%ùàû¡ÑGfg0M­‚‡|÷[õÛ $Û7Rf‡€$ê²ñzúåÎ\Œs×¹h “[ñ“Öl‘hW”Û{­™½%/ðt’`¯ŒA%‚Ï{€lÆaX¶ìÂo‘b[̰|ýsìQ_icQjx Ú|ó‡ÖwÊ­z-'/†ÖR>‰ñ‘Æ¡(EËì‘Üüî_´ýLÓš¾%±Ì–DË$ùASÐ|kè7´X xŤ‘}BÊ%)–AÂ>6û¬Ò”nòPÍ޳Ê9êfõì¦f\™öàØ ,GÊâjÕ¸ä¢ÂÈþª$˜Ë,Æè$­žé5fߘ‘F>$\ëÁ/÷ìªB:Íìx¢Â­F«<"3—˶>ÇÄ=†vàŽÂ¡~ziõ"=éd¿ÙxF÷H¸ *Qv‘ÒÍeÈd+kê>Up4@Ÿ:hï÷}>[d6ó˜œæÄp¾ÁzKe0m"Ì Ú(3µîR¹Û4„2™ö.óG[P¶ž(!É«`ÑάXæ“Ö"ÎŒ«€kÙF.ÔBHYçöîL½út­×P÷´#ž¼ÇsîL‡V’ÔÜ*óìz¿ú[—ôîÙâ<@¡ññåÿa‰vùÅ3ÿÑ«M5Cƒdé\,Rk ^wä1 ¤Bð3[;oý1'"‰J uÞ‡Wi>õø¸ôV(@¹lËr…)¸ï )ÄŠ¯£9ež…ÆÉ„ ¨ È[îˆÇ÷ê0ןïÀsfv(MÔÞ<@ÑävyÏÐX¨ŽZCQEà<˜\Ì`w›5¤÷tÀC¥f¡lõª-:í}•·"èHñðž+T£•™Ø-yž¥z”rÇ9šc'æ»°Šµð·—g¡ÊG3ý?K0p&âªÄYEx§õV„æ¾t~:²ÓígÀ8³Ë'f©=¥Ú6ýšÃÙTϘòþ]c8Ž˜¶­¼ø “Ÿ: TR¬P²ø•Ëç7u-±\kã”’×SO·‡›Ñí™Ð[»m~Ús°'¿O‰¼q%'úâ—LõMûS‚ÛT¾X8‹ì’æaØ€ýð­°Ÿâç5AxÐÑËüd³|šÇ&Bs–w¶" 5ç‚\CBµVû‡r\Cb=ÉÆr<þÑŒ«»!) -ê]KÛý4 Ú ëwƒ‹¢¥±l„PÎ…Æ_ÔFàyÝTâ£WhbÑ~' MU!º’QMcqÙcm¸ …ZŽw}7bÓA&± Ûè’Ëa7|p ªÆ›;±toâSÞ÷óšôÄr|,m‹þN<˜U€‰Cϯ®k®VzoçУû_=Î)„®×œ/ëK¹üèv›pƒ‰Ñ ê84!Á×®:n{ô^mš÷K0$绹ðä}³’=ñ½ŒÈíÔub’~Øu.p´Ù^.A…¡'JŸ@ ,1¢E\?5î#ïƒø£A¹H_dÜŽ’yãÒ’{s>ã‹3"1õç¢oš{¦÷©jž©'-¶Ê«;`”=ÏK¡m‹“Ã&èøsg_÷yŽmù®Î@=ÙÍ9ŽmTÙŽ}öK;Îð¸ùÏÕfU¦EÂ×ÕºbÆðÓSÿ¹\žBƒÚþ¾O¨oˆ­ËÔ– ñv„Ï,6/°Bp5,sMc!N °§(ñЕDon—™ÑßÅ8ßñJòªmsM4Lj¢w‹C¦*Qä… ›¼­KnqO‰sCtŽ+É¡¯býâPÕSÍNŠ=Ó~`þ«Ì—ìmݘè@ Õ~Á¸3lÔ£dŽû‡˜I<úZèÒ«}îÓ„{ïù}LÜêŽÂ/0±&Œ˜³ºvò¥–Z[‰ëeèøffûÂí.¹Þ³ž]Óï÷.ÕËÙIV]¶(¼&ùĤUê¶ÆšŠÍxµe”fcíkÄôîÇq=õss›Ñ-µ= NhòQŸ8M*mÎ@¯vÏ>m"|½–¸nƒˆå•°tYʓ֊Z¯¡÷•‹Þhe”JQFžÒT›æ§?%÷šŒÃgOK_?«öÕ¹È\¡cΟ3÷ÕclZ™TXCS$â¶Rð6*kÊ»z†14ª6E”Yøyá°•Ú]µÿ”%+±Õ¥l[¹)¶ UiPNES¼èt5‚}V&šcöUÐó¤²û<°¤Ä ÑÔHûÆ=¦ÅÊ@h…wdþ”9ï«Ö·`õj2=cä /?3CŒp*ùsGêX‘Žý8ÝàâÅø"qÖ\¯¸üåK¤aÏq¬ºMÎNèøÄ,WŽqÞƒ@¤^óœõš‡¹q^^Óøp:¹Xí·:”TÇD½öÚ'x{ÚÃîÑnìbhM‡Wgu&õܘ÷MÒX¢3Þûvf15²ƒÒXkêuäLÏë…*-ueŽä¦ÿ ýi1õÄØ/£=S\ojÖš¢¸nºH²½l;ÿóª³à omØ.ftkTòhƒSæ\ Yò9´–•k#9>Ð+y¸Å$4‘3SGè£TÊ[Ô-Çà™ZoxÄI‚b§Þr¿I§s\ôÌO:ú2/¤½Ä-Ô(>bíêPÐS~z ® [`¸¦¸·¢¸(UyŒ·üÂý¯Ï̯lÌ]ÑUÏDÓ H—&Ú{°û`M~¸+,Y"DNñö—S¦ÂÇÓ{I!Þ5Êåã¬iô¹Xïãy°Œ-iü3 ÝÏá'¿&?49±âÌÆÊãT–6vEKIy-ò2gÇø 2ñóH“ŠÚÆvÙ¹ÔZ>"éxRÒ?zá7S”ëľz?OÎC•ÌäÝïr/ª1w{Ò®%*‰Pãµóèga»B÷tÃl'Â[7¡µw°xßÃ`ÿ‰@1=mþ¦d·Rð±j"Ê=ÌF¹«ž7ÏÚvÌÖ‚ûW¿|ñyHjžÿ¦èÜG¢É4Ĩz™M¦Œ} Ùÿ0/²½L–ÊdöÜFËÀ>üvl)µuùåÍ+ÁóñÉ-''3Ìk>l¢š“;Æð_î$Ŭ¹—¢ÀwMÀ3ëîª%+Ž’õR¦çÍÚ¶*@8ÂõAŠd%û[›£¶§-RÒ ¯ÄÕó&«æ4Ìè‹Q™Iz×VηGsÆéÐÓD Å”¿NôŠõíðÔc³Ö§)¾£9øaº¸AÚƒfÃHEœ[Ê´Ä0&ë]Ý\úô ÒXFÚIy²‚»\p<öü6ªÄ7^yXf~p®Œ‡ætêp[\oéíÔc!¥†r¹³ð±öiتãªG¿F“DH«=fÃA[3‘46SçePf«Æ7“Œ M°ýYµÓÒ©]ß_kÁb^ÆœfÑke¸ø÷ôðНÕÓB^î71Imêk²ø6Å"}ë4Óä™÷¨,?%f=âÄZvâŒT[ª å¾f7µÄbÇéÁ}Ï€ø«¾:…RhèIqý¶O§ƒh«nµßyŽà&N³r¦H.]xxãýò¼éÔŽº®6ET”v ƒàCšîû½Ý>Ô•è¸QtðjpºšnܯƂ`úyùx+ñ/R´ò3«VúÏŸ¿ô†W¾%z– r>˜YJ•ô_»QUÏúü€Rù}Õí´ À3ÙxXuïáNýÚK~ºfav4÷ªû)qò·aؾâÂRƒ÷nÑ]ií³ Tl˜æŸÑ›mÈšp’ì½f8wÏz¦%¾Ö"B/3í½yKX·SUÐ&b\v2°Vþ4¹u‹CàsàV7=¼.A…˜ü Bõà‘¡œ ݳ·ÔN7ÑÅtêáÓÓìZ ͧfv^VךÂeG\äÙ\–ÙÍQ¤ær',ï“/_±RÓ‰µ%ðº¿ZÚÙ—·d&[hÄ·’è\p/J¾g‚Qª.YŒeøK“ Ó MÛ#¥ŒŸÝ˜Hû²á}¡‰Ô~Cr™Ë4’m]š[ßÕÇÄç¨ó>XåZ²Ú&߉U¿&€1¼¾ª)Õúv1H-M]­*ÊÝÔÞ ùÙH«’ÎÁ“˜A±EÖY_“JØ.")Ó¶ŠäÊF8ˆçã÷b !µ@º¸‡wïg‡W•“üĬ$;j¡£¬©•›ÛÄpŸÎÁÇ–—>õcçm·í‹ígRè?¶6lNÔ˜ngÎõÏ öþ×;³h2¨Å•ǯOa#Êu)þgò¥ãðw›ë|ÅÐ(ÛzbåÒ›…ÌÁç&ø znqdÃZO—kúšëÌÐÃ¥§…ÑØ˜N=ËÇ&!ë£Iœ•c,8úc>«¨ÂBªìzÃÖKOL‚§-DÆ\[›úŽ=@Ñ?Ý%mòžð­¶Ã7:—óÇÙ¥Ž £Â‡f.rσÎ,Ëïò¼€­ÃçlÊ—ZÐñb>«¢£ÇFvUÊ]!#e£ðÒ¾<^|‡æÙ”´„LÛ>Ë&9îÓ®ÚÂTâ”c¶¼@eøAKúaô|l\–˜– «@Î=y‚þ#{3^nÊ©ë¾ý»ÃöئË9<òƒ ƒC¤­d(•3G'éÎG¶mG¡¾ AæÑ‘æAúëÚ8[ç«m ºÒ¤è*š7¯uƒ$Éít;LV•È(²ÐA´„*±{Úz€[ ÀN/YÛˆ¸|6Ìç]HÑ÷¢"†Å aáGò$a¨ýŽqW’¶Úüßhy«…7vüÖ¥‚g¦î«$r_£yéŠëU)e?—o%ô¿Tû>м#¤Ò¶§hÏÁ›üÁ ó¹n›D£_P‹ƒ¢o6fòÑbü.eûwô v4/Ö«ö@ìƒô®gbÓ]6ÓXØŒûM¥ÎWÚ æ²¯ÂkI·¦)<âkHÄ¥#,2}³áÙ>=wÿ‰ð}â®ãñ®Ï?ˆ†zg‘å ·¤¨úÐ&zÌ F«¾uJ5²Ú¶R¡.ºïšít6!-Õô][ïÉk{õ«`zŸô*¢}ÌáèpF‚˜eㄚ [•F]Y ¬„p kÂëÛfñbÔ"§¥ÒpàdB!ó`óîøðÝšÇ&õÏM«ÒÜÏÆy£ö¿‘¥¼²b>G›7x<¶·€U d¬À¢H7\ŠT—F$ ·Ëj>ˆüÐØ¿s#¢ñŠ¯Â»‡,dËîØÕ-†¢Ð»õ=©?[K©¬·“öÈnfÙQ¡ Q+È}ê?úÿºq¡“òA6!U^ÆÄFÒOóĺ$Ð;);ëš~z»Ô€!Ö[9þ¼ý,ÆÝÖ˜é“6L+ÓˆÍTÜsŠ|zTÖt7¾þ„Þ×ñ©™”·«¦[3“/]¦J¦š• ÎZ·;v¯ E&OÑSŽ N…ú bÔõ\·;¢ Âùá÷¬è;é÷6îZÚM´Ä´²U¯ë[±F ^ZnÔFÞ—ñR0q‡~°• ¾>ƒÈãK©QìŒôöù. ú&¾YRŽd“öÏë» ãÄí,ø ˜h¸Ï²¢·…†_?Hò÷´@\ìÈ#éëɼ¼ÂDB¶ônF/ª:`?ÒÍAZÇŠÖ2Ý„yô±ŠW­–ñ±•áÇÜ•ê‘^=K>‹§ÕÜêâžS#E¦ön:QàÍŠ5 °Ó–“Ž,Àö“‘‰÷|•íKêÍwåÈ`â#Ê+Äð2Ïhv©îAÃÉØ™ ºŸÓ‘Ý÷Ò]3±§5ŽG.BËeóÊaLfÐôõ¹¿³yu„ÇÄîË3v㉠ÒÇEogCäw(T DVÒÎ늬C›ê·æØU¥g¿¾¹`%yû…3NáhÊe/ýÉõ¿æ†ã Kî"=\J¶¨i”“u¦¤€*­%Ì<á²`ÈÝ>[Á«û9ºÒï¢e,Ä>úqm›WÀÇ\ÿâ«ÃB‰Þ«’r4_+æµV¹çª;ηPåô ¾Ãa‹´‰a+/Δìƒuñ-˜ˆÎ ±oÓ?iJF>z¡uÂÁ’Õ7µzë\ò3Z¼YNkl¯DV[ûÞYÛ}¸¯.<½Ü ——Ô¢Ûú¢àh‚*ª ²ê´3Â檒ŽOBaXe¼·‚Jæ²Ñ܉¿?–,û&Jû&þYàUÈú…Íeµ~· r®kþ…¬¸zÕô™Ùà•Ö#ŒPf¬!ße{Ôþ¼|2ÖD¬ÀBªZôl]¿šÃ6Uã8}S—k›­<Õg‘±«áryð$ÌåÈ zFùáagoÍÑÆR%FÜ£¹]UŠac­Ë+ š Ž²ù·‡DéT²ËŽ«P“dHq®êuÞ º-3¹—4Š–ûÈíF¥HlD™¢×¡ -¼GZšR”‹®ÞÇ7Ö†5X|”°Ù.)ìÔî Ôv@‰ðkœò}t%f3LA›ÏX3Hå€$<¡ñ¡£få¡tCe«v€’ãñä†ìyoà#Š͆‚=)Nò3±æïëyVœîÒ©Ý$ïÑ_SoÎnJœ˜ÉîN¾¨€˜<[ŒéŸùÖ‰÷s»åCܰ«Ô5Ñ·ß㇭HµÓ¢1Êž¢È§`§dõÔ@î5)Ng=t}ù":Åõç(´pe[…È3ó=z‰«nýs oÅð#\°¨iþÌRá>‘‚þ¶¡ï³Ðsö$ yå@.­pp¤\yáuµ‰QýϾ*¾WV·Såëƒ~À¼ÐB+‰ÖôVÔ$†OïišmùÑ”µÿ樢·9ÿÅÔõÒ}=2šv¿q3L]ÄnoøM­¯%åðy&”qRÝuåØõ"LPÙ…²éëøÃbµ–äf¹ë½7©l#ýŒEŸÔ^;‚¯ªi‘ÌñÍiŒŒý×€"1³£-Ãö ÷ì7íl%_7„šì¾)¥Z{i?ãáÏê×±6÷‘7¸"¿úÞÁŠi3USù˜´ÉénH4ÆLï;‰7%ÛÁï¹ýæ‚.üJ¬ÿýÄdC_ eÉVÄmÓKùT"«—ö¶í/ëÓûæÉS׃ðM\º¸ÄÜêrœXW.ž­úl¼Ð2u{‹GJÉË2è—Ü¿ÍÅ‹}Ī‘‘º–C#¼_]z) 2ÄüKM®"ƒ·³Eà¼F¿€òR"ëÈ!‰XÊÐÛ"~ãj†ê#ZK£@ÈÞdN‹þãÂóÑ0-Šà9¢4ìVtBÔq³Ò‹Ö(×…Çò9Îé¨Ïޝ—Ng'Ü¿k±TL¦O$SiVºÆ¨ðø õbü˜âbxÃŒ¾Œ=ÃDT%Téà ìB¾†I2L°±¼DñÚÈ!Óˆ†L&[t˜é&úg(ég]nÅoJäœ,¯¨,Ržèы΃uº©qªzLËt_Pê.%…xoø$µí(ñ0ß½¶Åy#f¦¼ÎÊÝß–‡ºsm‡Æwhþ\¬¦F-{ê_> endobj 41 0 obj << /Type /Font /Subtype /Type1 /BaseFont /UPDMLU+CMBX12 /FontDescriptor 204 0 R /FirstChar 46 /LastChar 124 /Widths 202 0 R >> endobj 73 0 obj << /Type /Font /Subtype /Type1 /BaseFont /VDGVUD+CMCSC10 /FontDescriptor 206 0 R /FirstChar 69 /LastChar 112 /Widths 193 0 R >> endobj 109 0 obj << /Type /Font /Subtype /Type1 /BaseFont /FABHSH+CMEX10 /FontDescriptor 208 0 R /FirstChar 0 /LastChar 80 /Widths 191 0 R >> endobj 106 0 obj << /Type /Font /Subtype /Type1 /BaseFont /CREQEA+CMMI12 /FontDescriptor 210 0 R /FirstChar 21 /LastChar 117 /Widths 192 0 R >> endobj 117 0 obj << /Type /Font /Subtype /Type1 /BaseFont /CRXSJQ+CMMI8 /FontDescriptor 212 0 R /FirstChar 105 /LastChar 117 /Widths 189 0 R >> endobj 44 0 obj << /Type /Font /Subtype /Type1 /BaseFont /EAKTPP+CMR10 /FontDescriptor 214 0 R /FirstChar 38 /LastChar 121 /Widths 199 0 R >> endobj 42 0 obj << /Type /Font /Subtype /Type1 /BaseFont /PLBYRU+CMR12 /FontDescriptor 216 0 R /FirstChar 3 /LastChar 124 /Widths 201 0 R >> endobj 45 0 obj << /Type /Font /Subtype /Type1 /BaseFont /HGBCPO+CMR8 /FontDescriptor 218 0 R /FirstChar 49 /LastChar 114 /Widths 198 0 R >> endobj 64 0 obj << /Type /Font /Subtype /Type1 /BaseFont /WSEBYG+CMSL12 /FontDescriptor 220 0 R /FirstChar 70 /LastChar 121 /Widths 197 0 R >> endobj 66 0 obj << /Type /Font /Subtype /Type1 /BaseFont /DBGVWZ+CMSLTT10 /FontDescriptor 222 0 R /FirstChar 33 /LastChar 126 /Widths 195 0 R >> endobj 110 0 obj << /Type /Font /Subtype /Type1 /BaseFont /BWMGYZ+CMSY10 /FontDescriptor 224 0 R /FirstChar 0 /LastChar 103 /Widths 190 0 R >> endobj 65 0 obj << /Type /Font /Subtype /Type1 /BaseFont /QUHTZQ+CMTI12 /FontDescriptor 226 0 R /FirstChar 40 /LastChar 121 /Widths 196 0 R >> endobj 67 0 obj << /Type /Font /Subtype /Type1 /BaseFont /KLWXNU+CMTT10 /FontDescriptor 228 0 R /FirstChar 33 /LastChar 125 /Widths 194 0 R >> endobj 43 0 obj << /Type /Font /Subtype /Type1 /BaseFont /AVZVEQ+CMTT12 /FontDescriptor 230 0 R /FirstChar 34 /LastChar 120 /Widths 200 0 R >> endobj 46 0 obj << /Type /Pages /Count 6 /Parent 231 0 R /Kids [34 0 R 56 0 R 61 0 R 70 0 R 76 0 R 86 0 R] >> endobj 93 0 obj << /Type /Pages /Count 6 /Parent 231 0 R /Kids [90 0 R 95 0 R 99 0 R 103 0 R 113 0 R 124 0 R] >> endobj 133 0 obj << /Type /Pages /Count 6 /Parent 231 0 R /Kids [128 0 R 135 0 R 139 0 R 143 0 R 147 0 R 151 0 R] >> endobj 158 0 obj << /Type /Pages /Count 5 /Parent 231 0 R /Kids [155 0 R 160 0 R 165 0 R 170 0 R 180 0 R] >> endobj 231 0 obj << /Type /Pages /Count 23 /Kids [46 0 R 93 0 R 133 0 R 158 0 R] >> endobj 232 0 obj << /Type /Outlines /First 3 0 R /Last 31 0 R /Count 5 >> endobj 31 0 obj << /Title 32 0 R /A 29 0 R /Parent 232 0 R /Prev 27 0 R >> endobj 27 0 obj << /Title 28 0 R /A 25 0 R /Parent 232 0 R /Prev 19 0 R /Next 31 0 R >> endobj 23 0 obj << /Title 24 0 R /A 21 0 R /Parent 19 0 R >> endobj 19 0 obj << /Title 20 0 R /A 17 0 R /Parent 232 0 R /Prev 7 0 R /Next 27 0 R /First 23 0 R /Last 23 0 R /Count -1 >> endobj 15 0 obj << /Title 16 0 R /A 13 0 R /Parent 7 0 R /Prev 11 0 R >> endobj 11 0 obj << /Title 12 0 R /A 9 0 R /Parent 7 0 R /Next 15 0 R >> endobj 7 0 obj << /Title 8 0 R /A 5 0 R /Parent 232 0 R /Prev 3 0 R /Next 19 0 R /First 11 0 R /Last 15 0 R /Count -2 >> endobj 3 0 obj << /Title 4 0 R /A 1 0 R /Parent 232 0 R /Next 7 0 R >> endobj 233 0 obj << /Names [(Doc-Start) 40 0 R (Item.1) 107 0 R (Item.10) 131 0 R (Item.11) 132 0 R (Item.2) 108 0 R (Item.3) 111 0 R] /Limits [(Doc-Start) (Item.3)] >> endobj 234 0 obj << /Names [(Item.4) 116 0 R (Item.5) 118 0 R (Item.6) 119 0 R (Item.7) 120 0 R (Item.8) 121 0 R (Item.9) 122 0 R] /Limits [(Item.4) (Item.9)] >> endobj 235 0 obj << /Names [(figure.caption.2) 79 0 R (figure.caption.3) 173 0 R (figure.caption.4) 183 0 R (page.1) 63 0 R (page.10) 126 0 R (page.11) 130 0 R] /Limits [(figure.caption.2) (page.11)] >> endobj 236 0 obj << /Names [(page.12) 137 0 R (page.13) 141 0 R (page.14) 145 0 R (page.15) 149 0 R (page.16) 153 0 R (page.17) 157 0 R] /Limits [(page.12) (page.17)] >> endobj 237 0 obj << /Names [(page.18) 162 0 R (page.19) 167 0 R (page.2) 72 0 R (page.20) 172 0 R (page.21) 182 0 R (page.3) 78 0 R] /Limits [(page.18) (page.3)] >> endobj 238 0 obj << /Names [(page.4) 88 0 R (page.5) 92 0 R (page.6) 97 0 R (page.7) 101 0 R (page.8) 105 0 R (page.9) 115 0 R] /Limits [(page.4) (page.9)] >> endobj 239 0 obj << /Names [(page.i) 39 0 R (page.ii) 58 0 R (section*.1) 59 0 R (section.1) 2 0 R (section.2) 6 0 R (section.3) 18 0 R] /Limits [(page.i) (section.3)] >> endobj 240 0 obj << /Names [(section.4) 26 0 R (section.5) 30 0 R (subsection.2.1) 10 0 R (subsection.2.2) 14 0 R (subsection.3.1) 22 0 R] /Limits [(section.4) (subsection.3.1)] >> endobj 241 0 obj << /Kids [233 0 R 234 0 R 235 0 R 236 0 R 237 0 R 238 0 R] /Limits [(Doc-Start) (page.9)] >> endobj 242 0 obj << /Kids [239 0 R 240 0 R] /Limits [(page.i) (subsection.3.1)] >> endobj 243 0 obj << /Kids [241 0 R 242 0 R] /Limits [(Doc-Start) (subsection.3.1)] >> endobj 244 0 obj << /Dests 243 0 R >> endobj 245 0 obj << /Type /Catalog /Pages 231 0 R /Outlines 232 0 R /Names 244 0 R /PageMode/UseOutlines/PageLabels<>2<>]>> /OpenAction 33 0 R >> endobj 246 0 obj << /Author()/Title()/Subject()/Creator(LaTeX with hyperref package)/Producer(pdfTeX-1.40.13)/Keywords() /CreationDate (D:20130223105728+01'00') /ModDate (D:20130223105728+01'00') /Trapped /False /PTEX.Fullbanner (This is MiKTeX-pdfTeX 2.9.4535 (1.40.13)) >> endobj xref 0 247 0000000000 65535 f 0000000015 00000 n 0000007304 00000 n 0000258546 00000 n 0000000060 00000 n 0000000090 00000 n 0000007362 00000 n 0000258425 00000 n 0000000135 00000 n 0000000211 00000 n 0000027674 00000 n 0000258353 00000 n 0000000261 00000 n 0000000322 00000 n 0000031240 00000 n 0000258280 00000 n 0000000373 00000 n 0000000442 00000 n 0000036042 00000 n 0000258156 00000 n 0000000488 00000 n 0000000544 00000 n 0000039589 00000 n 0000258095 00000 n 0000000595 00000 n 0000000636 00000 n 0000047520 00000 n 0000258007 00000 n 0000000682 00000 n 0000000763 00000 n 0000051815 00000 n 0000257932 00000 n 0000000809 00000 n 0000000849 00000 n 0000001755 00000 n 0000001896 00000 n 0000002074 00000 n 0000002364 00000 n 0000000897 00000 n 0000002246 00000 n 0000002305 00000 n 0000255324 00000 n 0000256183 00000 n 0000257182 00000 n 0000256041 00000 n 0000256324 00000 n 0000257325 00000 n 0000003420 00000 n 0000003570 00000 n 0000003718 00000 n 0000003872 00000 n 0000004027 00000 n 0000004177 00000 n 0000004332 00000 n 0000004482 00000 n 0000004750 00000 n 0000003237 00000 n 0000002481 00000 n 0000004632 00000 n 0000004691 00000 n 0000007418 00000 n 0000007130 00000 n 0000004844 00000 n 0000007245 00000 n 0000256465 00000 n 0000256896 00000 n 0000256608 00000 n 0000257039 00000 n 0000015467 00000 n 0000009363 00000 n 0000009189 00000 n 0000007560 00000 n 0000009304 00000 n 0000255467 00000 n 0000011047 00000 n 0000015743 00000 n 0000010913 00000 n 0000009493 00000 n 0000015625 00000 n 0000015684 00000 n 0000012394 00000 n 0000012538 00000 n 0000012641 00000 n 0000012676 00000 n 0000012770 00000 n 0000017382 00000 n 0000017208 00000 n 0000015900 00000 n 0000017323 00000 n 0000019725 00000 n 0000019551 00000 n 0000017500 00000 n 0000019666 00000 n 0000257435 00000 n 0000022206 00000 n 0000022032 00000 n 0000019867 00000 n 0000022147 00000 n 0000024939 00000 n 0000024763 00000 n 0000022336 00000 n 0000024879 00000 n 0000027913 00000 n 0000027495 00000 n 0000025069 00000 n 0000027613 00000 n 0000255753 00000 n 0000027732 00000 n 0000027792 00000 n 0000255611 00000 n 0000256753 00000 n 0000027853 00000 n 0000031300 00000 n 0000030696 00000 n 0000028095 00000 n 0000030814 00000 n 0000030875 00000 n 0000255897 00000 n 0000030936 00000 n 0000030997 00000 n 0000031057 00000 n 0000031118 00000 n 0000031179 00000 n 0000033431 00000 n 0000033252 00000 n 0000031471 00000 n 0000033370 00000 n 0000036224 00000 n 0000035862 00000 n 0000033562 00000 n 0000035981 00000 n 0000036102 00000 n 0000036163 00000 n 0000257548 00000 n 0000039649 00000 n 0000039409 00000 n 0000036367 00000 n 0000039528 00000 n 0000042176 00000 n 0000041996 00000 n 0000039792 00000 n 0000042115 00000 n 0000044893 00000 n 0000044713 00000 n 0000042283 00000 n 0000044832 00000 n 0000047580 00000 n 0000047340 00000 n 0000045036 00000 n 0000047459 00000 n 0000049791 00000 n 0000049611 00000 n 0000047723 00000 n 0000049730 00000 n 0000051875 00000 n 0000051635 00000 n 0000049922 00000 n 0000051754 00000 n 0000257665 00000 n 0000054266 00000 n 0000054086 00000 n 0000052006 00000 n 0000054205 00000 n 0000057529 00000 n 0000056341 00000 n 0000056161 00000 n 0000054397 00000 n 0000056280 00000 n 0000064913 00000 n 0000064062 00000 n 0000057410 00000 n 0000056472 00000 n 0000063940 00000 n 0000064001 00000 n 0000060865 00000 n 0000061010 00000 n 0000061110 00000 n 0000061147 00000 n 0000061242 00000 n 0000071730 00000 n 0000064794 00000 n 0000064221 00000 n 0000071609 00000 n 0000071670 00000 n 0000068534 00000 n 0000068679 00000 n 0000068779 00000 n 0000068816 00000 n 0000068911 00000 n 0000071877 00000 n 0000071974 00000 n 0000072576 00000 n 0000073073 00000 n 0000073650 00000 n 0000073928 00000 n 0000074319 00000 n 0000074714 00000 n 0000075103 00000 n 0000075389 00000 n 0000075803 00000 n 0000076277 00000 n 0000076818 00000 n 0000077488 00000 n 0000077952 00000 n 0000092654 00000 n 0000092999 00000 n 0000100541 00000 n 0000100762 00000 n 0000108083 00000 n 0000108340 00000 n 0000117703 00000 n 0000117952 00000 n 0000125844 00000 n 0000126071 00000 n 0000139743 00000 n 0000140018 00000 n 0000159479 00000 n 0000159966 00000 n 0000167643 00000 n 0000167877 00000 n 0000181739 00000 n 0000182018 00000 n 0000200811 00000 n 0000201354 00000 n 0000209135 00000 n 0000209403 00000 n 0000222821 00000 n 0000223138 00000 n 0000244809 00000 n 0000245406 00000 n 0000254927 00000 n 0000257774 00000 n 0000257858 00000 n 0000258617 00000 n 0000258786 00000 n 0000258948 00000 n 0000259151 00000 n 0000259321 00000 n 0000259486 00000 n 0000259645 00000 n 0000259816 00000 n 0000259997 00000 n 0000260107 00000 n 0000260190 00000 n 0000260276 00000 n 0000260314 00000 n 0000260481 00000 n trailer << /Size 247 /Root 245 0 R /Info 246 0 R /ID [<0B28C1386E9E5C5ECD9ECDBC519A6813> <0B28C1386E9E5C5ECD9ECDBC519A6813>] >> startxref 260756 %%EOF Epi/inst/doc/index.html0000644000175100001440000000054312144476641014537 0ustar hornikusers Vignettes for the Epi package

Vignettes for the Epi package

Epi/inst/doc/Follow-up.rnw0000644000175100001440000003626312144476641015166 0ustar hornikusers\SweaveOpts{results=verbatim,keep.source=TRUE,include=FALSE} %\VignetteIndexEntry{Follow-up data with the Epi package} \documentclass[a4paper,twoside,12pt]{article} \usepackage[english]{babel} \usepackage{booktabs,rotating,graphicx,amsmath,verbatim,fancyhdr,Sweave} \usepackage[colorlinks,linkcolor=red,urlcolor=blue]{hyperref} \newcommand{\R}{\textsf{\bf R}} \renewcommand{\topfraction}{0.95} \renewcommand{\bottomfraction}{0.95} \renewcommand{\textfraction}{0.1} \renewcommand{\floatpagefraction}{0.9} \DeclareGraphicsExtensions{.pdf,.jpg} \setcounter{secnumdepth}{1} \setcounter{tocdepth}{1} \oddsidemargin 1mm \evensidemargin 1mm \textwidth 160mm \textheight 230mm \topmargin -5mm \headheight 8mm \headsep 5mm \footskip 15mm \begin{document} \raggedleft \pagestyle{empty} \vspace*{0.1\textheight} \Huge {\bf Follow-up data with the\\ \texttt{Epi} package} \noindent\rule[-1ex]{\textwidth}{5pt}\\[2.5ex] \Large Spring 2009. \vfill \normalsize \begin{tabular}{rl} Michael Hills & Retired \\ & Highgate, London \\[1em] Martyn Plummer & International Agency for Research on Cancer, Lyon\\ & \texttt{plummer@iarc.fr} \\[1em] Bendix Carstensen & Steno Diabetes Center, Gentofte, Denmark\\ & \small \& Department of Biostatistics, University of Copenhagen\\ & \normalsize \texttt{bxc@steno.dk} \\ & \url{www.pubhealth.ku.dk/~bxc} \end{tabular} \normalsize \newpage \raggedright \parindent 3ex \parskip 0ex \tableofcontents \cleardoublepage \setcounter{page}{1} \pagestyle{fancy} \renewcommand{\sectionmark}[1]{\markboth{\thesection #1}{\thesection \ #1}} \fancyhead[OL]{\sl Follow-up data with the \texttt{Epi} package.} \fancyhead[ER]{\sl \rightmark} \fancyhead[EL,OR]{\bf \thepage} \fancyfoot{} \renewcommand{\headrulewidth}{0.1pt} <>= library(Epi) @ \section{Follow-up data in the \texttt{Epi} package} In the \texttt{Epi}-package, follow-up data is represented by adding some extra variables to a dataframe. Such a dataframe is called a \texttt{Lexis} object. The tools for handling follow-up data then use the structure of this for special plots, tabulations etc. Follow-up data basically consists of a time of entry, a time of exit and an indication of the status at exit (normally either ``alive'' or ``dead''). Implicitly is also assumed a status \emph{during} the follow-up (usually ``alive''). \begin{figure}[htbp] \centering \setlength{\unitlength}{1pt} \begin{picture}(210,70)(0,75) %\scriptsize \thicklines \put( 0,80){\makebox(0,0)[r]{Age-scale}} \put( 50,80){\line(1,0){150}} \put( 50,80){\line(0,1){5}} \put(100,80){\line(0,1){5}} \put(150,80){\line(0,1){5}} \put(200,80){\line(0,1){5}} \put( 50,77){\makebox(0,0)[t]{35}} \put(100,77){\makebox(0,0)[t]{40}} \put(150,77){\makebox(0,0)[t]{45}} \put(200,77){\makebox(0,0)[t]{50}} \put( 0,115){\makebox(0,0)[r]{Follow-up}} \put( 80,105){\makebox(0,0)[r]{\small Two}} \put( 90,105){\line(1,0){87}} \put( 90,100){\line(0,1){10}} \put(100,100){\line(0,1){10}} \put(150,100){\line(0,1){10}} \put(180,105){\circle{6}} \put( 95,110){\makebox(0,0)[b]{1}} \put(125,110){\makebox(0,0)[b]{5}} \put(165,110){\makebox(0,0)[b]{3}} \put( 50,130){\makebox(0,0)[r]{\small One}} \put( 60,130){\line(1,0){70}} \put( 60,125){\line(0,1){10}} \put(100,125){\line(0,1){10}} \put(130,130){\circle*{6}} \put( 80,135){\makebox(0,0)[b]{4}} \put(115,135){\makebox(0,0)[b]{3}} \end{picture} \caption{\it Follow-up of two persons} \label{fig:fu2} \end{figure} \section{Timescales} A timescale is a variable that varies deterministically \emph{within} each person during follow-up, \textit{e.g.}: \begin{itemize} \item Age \item Calendar time \item Time since treatment \item Time since relapse \end{itemize} All timescales advance at the same pace, so the time followed is the same on all timescales. Therefore, it suffices to use only the entry point on each of the time scale, for example: \begin{itemize} \item Age at entry. \item Date of entry. \item Time since treatment (\emph{at} treatment this is 0). \item Time since relapse (\emph{at} relapse this is 0).. \end{itemize} In the \texttt{Epi} package, follow-up in a cohort is represented in a \texttt{Lexis} object. A \texttt{Lexis} object is a dataframe with a bit of extra structure representing the follow-up. For the \texttt{nickel} data we would construct a \texttt{Lexis} object by: <<>>= data( nickel ) nicL <- Lexis( entry = list( per=agein+dob, age=agein, tfh=agein-age1st ), exit = list( age=ageout ), exit.status = ( icd %in% c(162,163) )*1, data = nickel ) @ The \texttt{entry} argument is a \emph{named} list with the entry points on each of the timescales we want to use. It defines the names of the timescales and the entry points. The \texttt{exit} argument gives the exit time on \emph{one} of the timescales, so the name of the element in this list must match one of the neames of the \texttt{entry} list. This is sufficient, because the follow-up time on all time scales is the same, in this case \texttt{ageout - agein}. Now take a look at the result: <<>>= str( nickel ) str( nicL ) head( nicL ) @ The \texttt{Lexis} object \texttt{nicL} has a variable for each timescale which is the entry point on this timescale. The follow-up time is in the variable \texttt{lex.dur} (\textbf{dur}ation). There is a \texttt{summary} function for \texttt{Lexis} objects that list the numer of transitions and records as well as the total follow-up time: <<>>= summary( nicL ) @ We defined the exit status to be death from lung cancer (ICD7 162,163), i.e. this variable is 1 if follow-up ended with a death from this cause. If follow-up ended alive or by death from another cause, the exit status is coded 0, i.e. as a censoring. Note that the exit status is in the variable \texttt{lex.Xst} (e\textbf{X}it \textbf{st}atus. The variable \texttt{lex.Cst} is the state where the follow-up takes place (\textbf{C}urrent \textbf{st}atus), in this case 0 (alive). It is possible to get a visualization of the follow-up along the timescales chosen by using the \texttt{plot} method for \texttt{Lexis} objects. \texttt{nicL} is an object of \emph{class} \texttt{Lexis}, so using the function \texttt{plot()} on it means that \R\ will look for the function \texttt{plot.Lexis} and use this function. <>= plot( nicL ) @ The function allows a lot of control over the output, and a \texttt{points.Lexis} function allows plotting of the endpoints of follow-up: <>= par( mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 ) plot( nicL, 1:2, lwd=1, col=c("blue","red")[(nicL$exp>0)+1], grid=TRUE, lty.grid=1, col.grid=gray(0.7), xlim=1900+c(0,90), xaxs="i", ylim= 10+c(0,90), yaxs="i", las=1 ) points( nicL, 1:2, pch=c(NA,3)[nicL$lex.Xst+1], col="lightgray", lwd=3, cex=1.5 ) points( nicL, 1:2, pch=c(NA,3)[nicL$lex.Xst+1], col=c("blue","red")[(nicL$exp>0)+1], lwd=1, cex=1.5 ) @ The results of these two plotting commands are in figure \ref{fig:Lexis-diagram}. \begin{figure}[tb] \centering \label{fig:Lexis-diagram} \includegraphics[width=0.39\textwidth]{Follow-up-nicL1} \includegraphics[width=0.59\textwidth]{Follow-up-nicL2} \caption{\it Lexis diagram of the \texttt{nickel} dataset, left panel the default version, the right one with bells and whistles. The red lines are for persons with exposure$>0$, so it is pretty evident that the oldest ones are the exposed part of the cohort.} \end{figure} \section{Splitting the follow-up time along a timescale} The follow-up time in a cohort can be subdivided by for example current age. This is achieved by the \texttt{splitLexis} (note that it is \emph{not} called \texttt{split.Lexis}). This requires that the timescale and the breakpoints on this timescale are supplied. Try: <<>>= nicS1 <- splitLexis( nicL, "age", breaks=seq(0,100,10) ) summary( nicL ) summary( nicS1 ) @ So we see that the number of events and the amount of follow-up is the same in the two datasets; only the number of records differ. To see how records are split for each individual, it is useful to list the results for a few individuals: <<>>= round( subset( nicS1, id %in% 8:10 ), 2 ) @ The resulting object, \texttt{nicS1}, is again a \texttt{Lexis} object, and so follow-up may be split further along another timescale. Try this and list the results for individuals 8, 9 and 10 again: <<>>= nicS2 <- splitLexis( nicS1, "tfh", breaks=c(0,1,5,10,20,30,100) ) round( subset( nicS2, id %in% 8:10 ), 2 ) @ If we want to model the effect of these timescales we will for each interval use either the value of the left endpoint in each interval or the middle. There is a function \texttt{timeBand} which returns these. Try: <<>>= timeBand( nicS2, "age", "middle" )[1:20] # For nice printing and column labelling use the data.frame() function: data.frame( nicS2[,c("id","lex.id","per","age","tfh","lex.dur")], mid.age=timeBand( nicS2, "age", "middle" ), mid.tfh=timeBand( nicS2, "tfh", "middle" ) )[1:20,] @ Note that these are the midpoints of the intervals defined by \texttt{breaks=}, \emph{not} the midpoints of the actual follow-up intervals. This is because the variable to be used in modelling must be independent of the consoring and mortality pattern --- it should only depend on the chosen grouping of the timescale. \section{Splitting time at a specific date} If we have a recording of the date of a specific event as for example recovery or relapse, we may classify follow-up time as being before of after this intermediate event. This is achieved with the function \texttt{cutLexis}, which takes three arguments: the time point, the timescale, and the value of the (new) state following the date. Now we define the age for the nickel vorkers where the cumulative exposure exceeds 50 exposure years: <<>>= subset( nicL, id %in% 8:10 ) agehi <- nicL$age1st + 50 / nicL$exposure nicC <- cutLexis( data=nicL, cut=agehi, timescale="age", new.state=2, precursor.states=0 ) subset( nicC, id %in% 8:10 ) @ (The \texttt{precursor.states=} argument is explained below). Note that individual 6 has had his follow-up split at age 25 where 50 exposure-years were attained. This could also have been achieved in the split dataset \texttt{nicS2} instead of \texttt{nicL}, try: <<>>= subset( nicS2, id %in% 8:10 ) agehi <- nicS2$age1st + 50 / nicS2$exposure nicS2C <- cutLexis( data=nicS2, cut=agehi, timescale="age", new.state=2, precursor.states=0 ) subset( nicS2C, id %in% 8:10 ) @ Note that follow-up subsequent to the event is classified as being in state 2, but that the final transition to state 1 (death from lung cancer) is preserved. This is the point of the \texttt{precursor.states=} argument. It names the states (in this case 0, ``Alive'') that will be over-witten by \texttt{new.state} (in this case state 2, ``High exposure''). Clearly, state 1 (``Dead'') should not be updated even if it is after the time where the persons moves to state 2. In other words, only state 0 is a precursor to state 2, state 1 is always subsequent to state 2. Note if the intermediate event is to be used as a time-dependent variable in a Cox-model, then \texttt{lex.Cst} should be used as the time-dependent variable, and \texttt{lex.Xst==1} as the event. \section{Competing risks --- multiple types of events} If we want to consider death from lung cancer and death from other causes as separate events we can code these as for example 1 and 2. <<>>= data( nickel ) nicL <- Lexis( entry = list( per=agein+dob, age=agein, tfh=agein-age1st ), exit = list( age=ageout ), exit.status = ( icd > 0 ) + ( icd %in% c(162,163) ), data = nickel ) summary( nicL ) subset( nicL, id %in% 8:10 ) @ If we want to label the states, we can enter the names of these in the \texttt{states} parameter, try for example: <<>>= nicL <- Lexis( entry = list( per=agein+dob, age=agein, tfh=agein-age1st ), exit = list( age=ageout ), exit.status = ( icd > 0 ) + ( icd %in% c(162,163) ), data = nickel, states = c("Alive","D.oth","D.lung") ) summary( nicL ) @ Note that the \texttt{Lexis} function automatically assumes that all persons enter in the first level (given in the \texttt{states=} argument) When we cut at a date as in this case, the date where cumulative exposure exceeds 50 exposure-years, we get the follow-up \emph{after} the date classified as being in the new state if the exit (\texttt{lex.Xst}) was to a state we defined as one of the \texttt{precursor.states}: <<>>= nicL$agehi <- nicL$age1st + 50 / nicL$exposure nicC <- cutLexis( data = nicL, cut = nicL$agehi, timescale = "age", new.state = "HiExp", precursor.states = "Alive" ) subset( nicC, id %in% 8:10 ) summary( nicC, scale=1000 ) @ Note that the persons-years is the same, but that the number of events has changed. This is because events are now defined as any transition from alive, including the transitions to \texttt{HiExp}. Also note that (so far) it is necessary to specify the variable with the cutpoints in full, using only \texttt{cut=agehi} would give an error. \subsection{Subdivision of existing states} It may be of interest to subdivide the states following the intermediate event according to wheter the event has occurred or not. That is done by the argument \texttt{split.states=TRUE}. Moreover, it will also often be of interest to introduce a new timescale indicating the time since intermediate event. This can be done by the argument \texttt{new.scale=TRUE}, alternatively \texttt{new.scale="tfevent"}, as illustrated here: <<>>= nicC <- cutLexis( data = nicL, cut = nicL$agehi, timescale = "age", new.state = "Hi", split.states=TRUE, new.scale=TRUE, precursor.states = "Alive" ) subset( nicC, id %in% 8:10 ) summary( nicC, scale=1000 ) @ \section{Multiple events of the same type (recurrent events)} Sometimes more events of the same type are recorded for each person and one would then like to count these and put follow-up time in states accordingly. Essentially, each set of cutpoints represents progressions from one state to the next. Therefore the states should be numbered, and the numbering of states subsequently occupied be increased accordingly. This is a behaviour different from the one outlined above, and it is achieved by the argument \texttt{count=TRUE} to \texttt{cutLexis}. When \texttt{count} is set to \texttt{TRUE}, the value of the arguments \texttt{new.state} and \texttt{precursor.states} are ignored. Actually, when using the argument \texttt{count=TRUE}, the function \texttt{countLexis} is called, so an alternative is to use this directly. \end{document} Epi/inst/doc/Follow-up.pdf0000644000175100001440000066230112144476665015135 0ustar hornikusers%PDF-1.5 %ÐÔÅØ 1 0 obj << /S /GoTo /D (section.1) >> endobj 4 0 obj (Follow-up data in the Epi package) endobj 5 0 obj << /S /GoTo /D (section.2) >> endobj 8 0 obj (Timescales) endobj 9 0 obj << /S /GoTo /D (section.3) >> endobj 12 0 obj (Splitting the follow-up time along a timescale) endobj 13 0 obj << /S /GoTo /D (section.4) >> endobj 16 0 obj (Splitting time at a specific date) endobj 17 0 obj << /S /GoTo /D (section.5) >> endobj 20 0 obj (Competing risks \204 multiple types of events) endobj 21 0 obj << /S /GoTo /D (section.6) >> endobj 24 0 obj (Multiple events of the same type \(recurrent events\)) endobj 25 0 obj << /S /GoTo /D [26 0 R /Fit] >> endobj 29 0 obj << /Length 679 /Filter /FlateDecode >> stream xÚmTKsÓ0¾ûWèÄÈ3µ¢§eÝJŸÀÀ ”pb88‰ó˜¦qH\Ú\øí쮤6épdI«ï±+K²“ì¶i¼£㘶Â7^±ñœiãD«­ªlÓ¥ŽD§Osá=ûU„P© endstream endobj 26 0 obj << /Type /Page /Contents 29 0 R /Resources 28 0 R /MediaBox [0 0 595.276 841.89] /Parent 37 0 R /Annots [ 27 0 R ] >> endobj 27 0 obj << /Type /Annot /Border[0 0 0]/H/I/C[0 1 1] /Rect [248.048 94.248 397.519 110.686] /Subtype/Link/A<> >> endobj 30 0 obj << /D [26 0 R /XYZ 73.835 785.063 null] >> endobj 31 0 obj << /D [26 0 R /XYZ 74.835 747.213 null] >> endobj 28 0 obj << /Font << /F35 32 0 R /F40 33 0 R /F42 34 0 R /F15 35 0 R /F51 36 0 R >> /ProcSet [ /PDF /Text ] >> endobj 46 0 obj << /Length 471 /Filter /FlateDecode >> stream xÚSËNë0Ý÷+¼t ?âx ¢HHl.Ù‹*¤¥"¥Q“‚®t?þÎx’¾"›xÏœsf¬ÄJ(q7SÃz]Î®æÆ ð™gE¹ÞfþñÆeÚyQ¾Š'y“€Ü~$dQÍQ—¼”÷3@%v+ÁÁŸ»²àœ&@%Rg:ŒIT.çI0r‹hMCà„ø…Aºo“Ôx'_¸ë´±rñÿïßjª{5·ê´Ø"Ó^c±Xä/´kN> endobj 38 0 obj << /Type /Annot /Subtype /Link /Border[0 0 0]/H/I/C[1 0 0] /Rect [73.838 705.338 292.355 718.233] /A << /S /GoTo /D (section.1) >> >> endobj 39 0 obj << /Type /Annot /Subtype /Link /Border[0 0 0]/H/I/C[1 0 0] /Rect [73.838 681.842 156.76 692.084] /A << /S /GoTo /D (section.2) >> >> endobj 40 0 obj << /Type /Annot /Subtype /Link /Border[0 0 0]/H/I/C[1 0 0] /Rect [73.838 653.373 361.586 665.934] /A << /S /GoTo /D (section.3) >> >> endobj 41 0 obj << /Type /Annot /Subtype /Link /Border[0 0 0]/H/I/C[1 0 0] /Rect [73.838 627.223 278.929 639.784] /A << /S /GoTo /D (section.4) >> >> endobj 42 0 obj << /Type /Annot /Subtype /Link /Border[0 0 0]/H/I/C[1 0 0] /Rect [73.838 601.073 352.345 613.634] /A << /S /GoTo /D (section.5) >> >> endobj 43 0 obj << /Type /Annot /Subtype /Link /Border[0 0 0]/H/I/C[1 0 0] /Rect [73.838 574.254 397.906 588.202] /A << /S /GoTo /D (section.6) >> >> endobj 47 0 obj << /D [45 0 R /XYZ 73.835 785.063 null] >> endobj 48 0 obj << /D [45 0 R /XYZ 74.835 757.175 null] >> endobj 44 0 obj << /Font << /F35 32 0 R /F40 33 0 R >> /ProcSet [ /PDF /Text ] >> endobj 51 0 obj << /Length 1940 /Filter /FlateDecode >> stream xÚÍYKsÛ6¾ëWpz¢fBo’¹¹mÒI¦3Nt‹s %ÊV#‹®(ÅÉ¿ïbñ HÁvì8Ó$€]|ûü š]f4ûcöëböòMÉ3ÆH­Ï묔¤*+µ"ðÃb•}ÈßÌ+žws–oÝ«›ó2¿-`t„×ͼ\å+6ófŸo706ÏWöÙYÞÎ?.ÞTKe¼$ŒU J|Û²|ãæŽ4äœèšù©7(‘åK£Ó§¹Rysi¤»Ž/­KB™òk™™3{½˜ý;3ûÑŒ ÇgD-¯g>Òl¿½Ë(aÙ-λΤDIãmö~ö÷ŒÆˆ¡%áLÉQ¡W¥—\0Æ%@[‹¼C\»¹àêÑÀYœƒÏÀYÊ|³³ß#ŒCIc9ÜŒÖÃÍ€Â0QBé EO0@O ÄòÒíÏFà\Q ` I¥„]þv—4¯QmX*$)%Ki6Á*"E0O‘°-j÷Š\WŒ|²2ðy‡”'iü±7Cï¢fwôíÎ,6SÛ•{a¾øjÇFæÊ½Ì;£ƒÝ§7Qq§Æçö‹3ÚÞ‹Õùg¯÷Þ­o.œÊí ÐO€ÃÆ“à_¬ÔYÁ$‘R[@Vƒy[ïÝÓµu÷B ‘¿w1‰ˆ]yý§ñéÍGà,›(Ô= MʬœV„Õ¥·×Ÿf¾A`Ó§Œ N 9÷“ rs8fþO»4j¹,®8*0òÙÇ©¸îO_¹#휉¶S3£L½$d.„šKN*V߉õØ¿¿›õ}¤g¤vïÀZŽÞÕì£ýz¼t“:œÊû<~»Ü8u¶öû›pØÝÈs!žqᎷõGpûw»Aˆñ½Ãa70E$Øf„ÀÓÒþ…Ú‰#WúêÜ+hbÏŒÀ¥ÝÚG@@|3ޝ¸!f÷¸7èú"òwýÐò/îçƒ[dÝ'ün‹]ûË žè?#ðÔàÞë´w> endobj 2 0 obj << /D [50 0 R /XYZ 74.835 747.213 null] >> endobj 56 0 obj << /D [50 0 R /XYZ 263.655 537.273 null] >> endobj 6 0 obj << /D [50 0 R /XYZ 74.835 483.382 null] >> endobj 49 0 obj << /Font << /F72 52 0 R /F74 53 0 R /F35 32 0 R /F40 33 0 R /F15 35 0 R /F73 54 0 R /F51 36 0 R /F5 55 0 R /F69 57 0 R >> /ProcSet [ /PDF /Text ] >> endobj 60 0 obj << /Length 1712 /Filter /FlateDecode >> stream xÚíYÝoÛ6÷_!+f·1KФ(ËV´ÃŠbÀ0? hûàØNb$±34í¿;ÞQ"eÙu»`ØC‰äñîÇû–$³«Lf¿ö~÷ž¿Ö6SJTÖæÙø2sF”0ã +L̲wƒ|øaüæùkFtº,…1%°aš‘Îí`¼ªÁ\óÍt·[ÿˆû{¯Æ½¿{ èe¦)Jh]dÓ»Þ»2›ÁÚ›L •=xº»ÌX-¬Ñð|›ýÙû£'càÎt×VäÖªŸ‡#›ëÁ P š-ßßK+ie #„<…ë±zÌ~ ˆy#eà¬6áï|KS?Áãˆß2¯OLµI¤âÊ’ñ¬áúLÓçt»öl“}÷Ì÷œóY®xnÁ<ŸÁ…ç]Áu×Yr†‚Îðl8RÖ©*ápˆãqˆð®ë#F­yUŸ®Ñôa9e%]¢Ìí‰ê:v8TÏîd@Rµ ¨ˆ„ïÚù¹^'xËŒ†O"=¡©i€O**àÊ=ªf¬‰D%°Ÿ2ÁQ ¦AC'áTÉHs?ÁÒŠÌËË våç<Õ|╞»ÀzåcÉ“µ¤lÔ~jõËÈÄëlï$_§Nà & :ÉŠîÞiçb82Z~£ Àyô˜ù{© {iÖ¶dǺ‹H¾ù$–5û—ÊæÓŒëý¾i$jÊÅÎù‰ŒÝá$£@èõˆ*é“ 2üHæ!P*9 çQb ˵Šhм¦ÃÍÔé²2á «å¼ |ž e6±qö‘l±62ήëÁfEkmóÐBÛ-`~ËÌ÷tµà¸ˆöPˆ“Sc·Ñòév Þ!·]2ÁoŠ+!Æ–Áàùò CÏë#mÑve;¥E®¿)ÛE§ÁÒBÞÛhÁË®í`³ó…@aM˜."ebð>,æ˜Ô'áR5zÌáN”€&ip.Wlö[_'Áu°†#û&*cMÓÚ„ö¢Ä’9?hŸlÏ›:µœ5‰™f‡h·÷ÙM·q*#¬KÊË•oBŽí›2ÍÚ¢‰»Ôxe!d^^l¯ßWhƒ‡æ“œ˜Ge*éRŠBª}_^Q»a-†<¼§‘uPÝŽm„ë/89˜®*'ë&ê<¿ªö®Í¾ªdö?v)½ª®¬¾ñjÜ4®½qç]ÌáÍÀ˜ZÁy×­Å 0‚äQ8`Y‘5W\ ü€’’’`GS'¬†>\Ô>ù‚,U80”M õí\`}’¥F±è0˺Md†n•4ªh„ ›¤eù^ð–\CUÒ£àžStuy7˜ð$ YvGÀ\-‘zËZµ–~hqÅ5@l¼…Ï¥± 5évIClrÙlÏ#ð¢ë}Š‘û"x¿âžzç¼ë¬*ÛR¢ 6gÑ,–GÅÛˆ ^_ÒèŒ^¤kÔ[¨ N,W0fÉ*Z/½Ò¢õg_M)œ‰‰^ ¼»\ .ÇþªÂ7 -‚E@ChhhOѸnœó‹"Hœ–•5êPP kØÁ“  Z{ Ò9Ñ„±Å á¾JCÑûÝA U:„'k&Š)§¨X“¬Tl!B`Æj'à¤(ðó$Mžœ…ß¶³ošýZÙ÷%æk_ü6uiíH«¦‚¤ùå´üw ßžvrÓR¸Üå¦r‘W6.ºËY+(T¶<×\JLý9¥«š¨&~ä–sFœ\4/7\¡Ác+)€²ÓuïéãÎñ\Sµr/:§æB£*þD¯×ã°nF’툤#pÒ€¦ÀMbº.ƒq@GæNL1[úÂtI$¸&Ùùü¦8¿¹4„÷’¡‡Sž˜bný«¢à/mP«ü쑬çè°*.[¡æ#åš4ì'\4‘‹¦xœÒ4è^òËÐt2©šimì ù:X KE·¶LõذÔ:Ååb±¬Kˆ (ØcâÏc¡@øÑ~ï.û½Ã|ä³øÞa~ï0£Ã´ÿ›³­¡CÂ^h»nþ<=£…~ýf~Yø/Bõ»nŸ(œ=.^¯~¿þáÔgnõ/”~ÄÞçþ#¡óVž²Ü>ÿà8'µLùCÈšUŽØû´T?ÓoƒrÁ͸ÿ*“ªFùFxþYq?x*þÞ &ÃýÕ¸÷‚ÇFð endstream endobj 59 0 obj << /Type /Page /Contents 60 0 R /Resources 58 0 R /MediaBox [0 0 595.276 841.89] /Parent 37 0 R >> endobj 58 0 obj << /Font << /F35 32 0 R /F72 52 0 R /F74 53 0 R /F15 35 0 R /F40 33 0 R /F73 54 0 R /F77 61 0 R >> /ProcSet [ /PDF /Text ] >> endobj 64 0 obj << /Length 2316 /Filter /FlateDecode >> stream xÚ­YK“·¾ï¯àÁ²j‰à9˜Ñ!ËRJ.•+Q˜Š«l(îÐbÄå¬9\­_t£ñ‚»,Åî1F¿ûkÏ~ñÙßn¾]Ýüå­•3!XgŒœ­¶3«Y«ÌÌ6†¹«»ÙOó·‹V·…˜ïé3,¤?-ÝÓ£û<,–Jšù{\Ÿàÿþ´sÏðý“ÿîż_ü²úÞªóS…´LˆÖ …'¾A¶b¾#ÚBB)YÓ‰@ú€'Šùdú¼0f¾þNa~«S%ßÚYÆ… {ÐܼYÝüvüøL$õSª™mîo~ú…ÏîÜ»ïgœ‰ÙÒÝÏ´QÌhåž÷³Þüã†çÕsŸ—XWBKŒJ².8±kQe ¯¤¤Ì Œ:¸k Ò¬m’CtŽ…Å–VÑ ,ÔC¡^‰•+#"Ók«öu!¥  ŠŒp̹†H?—ÔmÐ……8äéØ˜)S7: mÒ¶c~Á‡Ÿ~.AáX|kxylj‰±)A®u h˜·º—W>—lEHaUÍŒ,‚‘[›J˜Ç*p½È|‹!…R ¢j¼Ä« 8–ÈÁQqÁàûÐÅwc«Ò¬‘2CB¹„4jþŸ~sª1wˆMu] G<³I©ä-[¦­ ´Ÿ€}‰›ù„§„ö É× Q÷ž€Ípôx¹¨6аéèGdm}"@·›ìÚ%)ǯýaáêˉÄùÓ;0ï^ ¾ák\|EB1Â)£/DÂáq£º²$Ld]5™«“JÍW¥$Û‡‹‚Ÿß”)¶Ë¤+9{‹Gs£ÇƒÅ«Ñd\ÐÅù Â;çXs½n0RiàÊì¡i^ðÝà±ÊIr¦UŒf÷´C“Œ>„ÏThxÅ%S¶+óÕgʱb&ˆ¼ŠÊÆM%qîBH 6¾_ǰxQáí#‰· ^Ê¢]{¬Ü(Ö¸ ëOÈܳ_û¦ Kû¬qi"æ1¶@ZòÛD~$¦ åæZÔô'¹'¸óî‘°ÖM®…{Ð1›XÞe›ÉGOý½ÏrÚ¥ü…¯Ã‰$Ûgæ¾>“^Õ¦=¨½.¥µ.漑ØÜÓ'ÈWÎ|ÓüЄ#ñ8e†A¬ª8³r‚zV¨*¥Äùë·Àx@©=Ìâ4… éCOè˜õæ Xé@_ùö!ÔgßѤ÷iGÜö÷‡cÔ« \£PyÖ©e‚j*ƒÍïû~_I×M4¢)7IxàJ¢’PË Fîƒ/Ú]›ýÏbRT÷¯©ôÔ¥~ÞòÛF²Þ=–±;ø-±ÅäÇ`¾R¿Úfî‚ï{âs@ŒK›õ<ÖS®B¾sß_Gsœ4—·4•JèmjŽ,ëK§¬‰Ž5¨û\?™v%‘ÎØÖû\ë²3KÍþ@5!³õôm=5[zµ±†û²fò bx¤ˆ ¿ûzÑÖ¡¶~rÒ?–û)üD¤«ÂgJéKÞ1¸>„U[møxëãÑÀÅOèE<æv0 Q(R_‘sT· 5bDåw1XC§v@ËI#øhO}–Pë$ôT§"Ç‚N—2ÊRÕÅ®¾„>kXÈ‘Æès,”nήÃB‘‰‡:fú±ÆKp–°Ø.XòqM`NxY"« “~=ló2ÞN\œ,öúE‹‰\Íz»/"9€þ)Ú;=¬'Y8~ƦcˆÇâs ÓJÙ1ÝD÷º¦Ÿó3sÑ#…ßÑç ¾0xµöÿq*ÔùÛót¸PÇ>佇ÊÑMÜI±<©z$¯%ú»ÓÙF3, ˜œ´¬UâÅÏ©¨ü_‚øùù…ÿNÆ…8·m¯ s¤˜Yë­@ÐÚ˜m‹s¨—hì¡ÿc'ðÃcn1“bdÜ•-òãÑd„q¨O¨ü¡ýp)dÊ1ýÞÛW¾ ®-œ©ÎþIC «þ¢zÅÃn:Šø 3qð8ÅÑÆã~Uüò׸L'oöëq¬ö…–Ù¶½Ö1%äHÑ]uô§ôƒŠjæQ‘O—¦Íš) ³¶9 Êä4˜L ²“9Õ´,™2˜Ðþúpiú¬Tµ¶c<†é‡jAS¬KÓ8b¿lÜÇ >'Üù}½„+w´ç†bxÏ:¸q•ZÛ¼Bô@­´Nvs¤Ú†qn®ó/ÕØKê)†Õ‡X×|»¼r@=¿ƒÌæàl³¡d“Ýu3õÜ/’Ogõy3Ä;·#‰¾D®ŒúvS÷uúiÀÿ4‰Ï·%”¾{æHqå ^þð RŠ‚à¾©µ¬e²/Ý ‘ß“ÝÄïë³v4†IL–î]²Š1Ôû[õ•K͘´ÃåéÌâ*á%º€ˆ¿ó‡ÿoV7ÿ'W& endstream endobj 63 0 obj << /Type /Page /Contents 64 0 R /Resources 62 0 R /MediaBox [0 0 595.276 841.89] /Parent 37 0 R >> endobj 65 0 obj << /D [63 0 R /XYZ 73.835 785.063 null] >> endobj 62 0 obj << /Font << /F72 52 0 R /F74 53 0 R /F35 32 0 R /F40 33 0 R /F15 35 0 R /F73 54 0 R >> /ProcSet [ /PDF /Text ] >> endobj 71 0 obj << /Length 1545 /Filter /FlateDecode >> stream xÚíX_Û6 ϧ0‚=8h£“dùß°ذvXQ h/\ûà‹Ä¨çlçz÷íGQ”-'¾ö¶§=ìA±"‘4ù#E‘æÞÖãÞo³_V³«·Aè ÁÒ0”ÞjãÅŠ%°G!‹a!÷n|µø¼zwõþ:tRpÉÄ M°X2ô¯Â?¨`”0ºŽ&[C£—v0 ý7ò75ÑëQ/dì…Éò„’z-c?0e–Þ‘›™­u ?ë¬BF0böf5»› Pš{b0U° ˆ¼õ~vó™{9ì½ó8ÞW¤Û{* X¨˜WÞõìÃŒzöÙË‹™’ÒSqÊ"hyw3¦xªB$p¦¸eÙháê÷½ð~­Aþ‡~K$œÅqj9@l/l˜>!Lž [Ê0a’ÃÄÑ#@LE€ C Vƽo Ô- í™ü ¸ð%̤ð\!Y"ï!÷‹‡².‘úy™m›E(ül ’ûõÆlt»ÂK¸+LÀ<ÂJ;2k_е:&”P’E¼g˳.k‹î%¼*ˆýªØtæ¥G­\v(ªAT*/6Ù©"¢û¢·´e} þžL¯—Û]§ŒyÌR@o)S*2o®¶_Ëngf·ˆ¼UKA}ȉlW¶]U´ Þ ¤¿Ú;bVhN"¬ÊCa™”hÏTcÎÚfT¯í¹Åî×퉘C©\ ƒˆ3™öçüµ¡GŒø¡%á“ñÀ’°€0´JF²£')x4vvÝ£Á4ˆÆaÅ}™Í šw»¬ŸfRWyÑÒbmPÒn&Ç´==¶ð0aÑX›3ž5rìjmÇ0¹Ø|¶ ä`‚`"QÂe(L“:iŸxÈÍêÞY}E1Ž»R¬ä†§pž@bþöB¶”‰Ÿb™ùÀ|EË FdáŽö´c‚ÉÚÓî`†{Dߊ L&mÐ’æ× ?']3Ö$ºº4cã–¶N”ædÒœà+Hê|0ñfp®áÄñ@¸½ƒó‚TûŒ/™€ä„Eň{C²­M+aü ãÍØt Û#>ÅúO‘ÛµŒÄ’±œXb7T\#±Î¾w4II'DÖãW¼tHÆù@:égKçô‚ù÷ }¼Ðf)¸ŠQ£¬Éãw5é}“9$âÙ¢v*žŽ$ü›ƒq$ªÝeôÿãg'8Ñ=Ö•Ú: þ"­ºgƵŠExqçŽS¶¤f7ó§z0Žm«â+'…ÿÃþ_ÍÏÉÞÏpéy-¡qHYb/Ë•Ó)4¶¢?‘Õ]kª¼œu£°£w¶…ídúAOQÛzˆn¬Ž1êM"÷žòLF{9:®ï;šÂÈ2¬8ýÄ…ÒBN=ìº0…w³¥²üão3ï¥ÈQ¹àÝh` ÝŠÅLŠPÙº!e"}‹%„Tþõ±Z«ƒV> endobj 67 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (C:/Users/BXC/AppData/Local/Temp/RtmpIJ48fH/Rbuildccc72337571/Epi/inst/doc/Follow-up-nicL1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 76 0 R /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 77 0 R>> /ExtGState << >>/ColorSpace << /sRGB 78 0 R >>>> /Length 7109 /Filter /FlateDecode >> stream xœ¥\KÏ,GRÝß_ÑKXГïÇvF€4Hƒ-±@³@ƒA²øF0^ð÷‰s"3«"ºld±ðõíÛÕUùˆ8qâDdÅ×ï_ñõãë¿¿ýAþûÍOÿô÷¿}ýî»oáBxÝÿüîwÿ(ÿÚëë¾ýË_áõoßâë÷òßß".xý÷ó;ÍWÏïR^_¯œÇ;´õñ?_ßùï×ÇÖÞi}?Æ;Åë{ýx}ŸZ~Ç|¾_¯ïÍÏó¯ïûýšßŸ~z˜ßOúó·ßü]’Åøþß_1½×ú‡~žó=Ë«ôwM¯ï¿^g ýúþÇoû=oþË¿Ž½¼G7?o¿âç©ÌwŸæçãWü<§òîñöó$“Þ?áÝÊ+–ú.IVN?æÞqråÜ÷ºÂëãõ}JáËù~}¼}?ë;õë{ýx}¿¸¿¿=ÿ>½Ûœþæ6U1†Ü^Qö\Ló{Þš_üu‹l¿~Þ™_þµØk üõóÆüâ¯s“ÙÝX¿1Ë¢¿eùGí¹§÷lòy¯¢ù¸/þŽþýÿv”â»gñÍwW3ú¯þò+æšË»ê:ËÎâçÿú?ìŸËø^÷1'q7±Õõ¿¿üðúçןïÕZ~Ýÿü¿jêØ[ÅG10ù].ù=íl]ÐÛ»à‚(Þ"ŸrÂÆÞ.˜å`¨³Äße˜Èa2“,‹V›½øž ™È‚D1™q½ß¡Åw«¸  æTYöùí~ü{á`7r‡ÔߣÜ!Þ2aVì¡ |ÄwÒ;D¹YÂîÔw?@+¾3Ÿ¢¹bÈCxßQæã;g³éRô‚ònÓL´¯QÈÃfÔQÄǕȓ›^Æ;÷û#ÄàæäD67ÎüÑ,v.Êv† J2t_‰X-w˜Û–jÚ+±.#wˆõ=°ØíºYK±W®”ŒV†Ÿ²ìŽƒü"&ÞA¦#6[hb÷Gd<k- Ùu(æù÷6¸™³ýŒÉL³ì°™°BQÐ3 wÁ`\L²P ²ÖdZÁÿ°›IÌ¢£ƒ#Ôu±×„;Ú1$l¯Þ¡Êº`ÏÌ`R¼®2†fí! Ø%ºVæ|a±.v`ѱõeùbKcð™f3âÝâ4d¸2Ï$ 6­kôwç3d£¤Ü.Èb\kñË$ !û_Ÿ7C†+k˜äŽ#º•ªÊAü7#Ô%gµ 6—$ ažr]¬n!ê\6'+’FY¹ßAüº_(´Àµâ ¼ØîÖñÞØ°pN³[°óÁ픥¯•VÛÍ:DÁ1D<‚cxÞNˆh8öÐ%”l^(4ýÜùù~AÓum+t˜1 ¿£Ñb,±qÁ-€œÍ,êY¹´ïæ Eç­EãNÁ‚ÛeˆaÃyÔ1›GÈ3u!»xœ·"nÜ'Âë:bZpx/øÐâm·G²&y­“Øl…AUÞC@À‚åd¬ÎfÓš¦X\•€ ×AÅ…r©Œ6ÉŽŒñ¸ÛâX+I¸¼ RâÃä2iqX-“c@„$VpŸû Ã{Üc³,½ÿÊ bGÆÑì…lId”¨ÝŒÜ›Ÿq‹©nÑÌ4ÃÀ£± y† (X@…¨4Á0 Dç»™ƒ¬•n1èì`.NŒ 6Ý^Hœœ¼© ´Ñ‚yW(FlÊ“®™‹[(ú –£ÓOø¡- JìÃÞAö?Õ•hÉ6fYÐjF~Xo›•&‡rŸÅ pœX5¨=û¦˜(´ðŽŸ)>ً⋺¹™Ú$}ƒ„U÷ႚ¬pæ:ˆ­Iœ€{´g°ï6)¾j#¯ÄêF£ÄMY!È\~È…ª‘ºÈ|4{™&ø¯Xy7K}¨XæÃAQÍ#ÄfS¾­4‰B(X¸~ÐUïc†É É^ÓAÔ#–<Ñw-À •G„Æh‘ŒßÈ•6‹u§Á°j,.Š7(͇ÅOaÂâ2Z`2‡úhÔ‘[1½¦–t òH·q±Ê4 ¾k)L™ rd¢‘4ª›–ƒÂ¦)ëcrüã” B»`¾ý‡ÒŠeÕñÉÝoð‡Ø»¹,ˆRŸLý¤â×4K])Œ@O’ÿåˆRü¤„•a7++L¦JPÏÈ=¥UÒ8Á€cfq€¶1â¦öA'÷v#ýALK[*º ¦ÇÍä"Çj™œpý¨F;`{ ¯óép{Ò¬êpl’Ž.( eWRhUeè|ÍÂy«IÄõÔ³ÄÄI!´ØtòÀ$²fÍĪÚ¬~Q¸YÂC¢É¢CZù˜”-3±´ØV’„uÍ.õö}bÅ@Ì—Uï\OòÈÎy& fŸœ÷„ÄÇ•Ä[»¼—IÂä4›V¶òÔjmubwdÀé±þüZæœÿÃbôä8Q†Åê¬HŠi‹¹‚™Ù¨w’XBdämíÑ(e ¸ƒ˜”](Yë¡®.HÄôµÔY³ÿIúm¡¶èjcqÈså››&ϤxÙ}‚‚wÛÐ,f­Q«etñ 2yR{ñ†ühbeÍt(g +l°·m•Ài³¤ÑyÛ}cÈ1¬X•ŸÅ’21ÝH#{R‹+/ì:{Á_:ZRÜÔâR˜ôMš”g¹°úÃ-jÔ¬ø (—CréÅvÿ¥ÿ’NØÈÛ× SúTƒ8УÆ}·Õï`>1}Ý ¤‚•Êúý•NHñÅÏÌ=©çiný´Â’Ba• •ƒ©îtø!Þac–d€Ì`Ý (I’V^ÑŸLØÓnB†™ VD¯Ê›û‚{¹R\US ¬› ¤ûuÒ$ª“oJÏÙ…˜šlˆ{z¦Ý²‚c’%YÉì°ÁS¨038†2’F€z…†Òm49ÌJXmVì¥X°ÏKÌ´ h›Ÿ\‰\¢º(8dQq´-Ï“1i.ʪ1H™EÓãËž¦ 0{¤% ¡/d3Ö†±Þœ¿C¶ü¢Ç!æ‰ÉëWc¥'4ðb“¬=‰ó„éìé@=”ª©¢åa0+eÎN9¼Ð!‚wE³÷ µÈB–ˆël¶Ù klî¯I²NØ•=¨M ˳rˆo '–å™2|÷‚ðlgÁ Ü %{êˆûIº3#š„ÀiUœ±Šðm\ Œ 7'»ÈLdòlLLKîÚ (¼ÜÒ¬ÃOÓåJì…õ›“dÊ ½ß>âÌbV†¼‘\´ˆCúì½ã ëñÓÉ•´)ÐÙ,à‚*$V8¼ðƒ™ ¢JmO›uV€8§æ¢…,`ÛÕ‹Ñ8™n(*ÈE!&ÐäåᙸWÊØÈ‘ D¡^Àe¬*¼û”ZIµ,CSíÁŽqïÕ¤C±€b7;áÆ_\Ÿ©iœõÌãÛ‰‘sx|ìcÌɱղ8õ~„ Õ´Ãó2«=¤¢ «…_ \òSÄÐô3Œ9*m.ÜÈØˆä¤Ê‰&[û£ëV¦ŒêneÁ bŠÂ2Dt‹Ãή6RÔp²àMªL 3èÇ|wRÓ'°F j‘*X…Kgdzg¡)§hZ‘>ÌAì%‡Çu€‹"S NÔëÊ!§fv6EÂR’#8)/Î-É•–•žƒ¦„<`†ÏÚÓ.#Áñ¥¨ø\ëW¤Ôg4{1ç‘XE± ñÎ^&w‘ª™}†Y #$Þ,¤¸KUVÏ¢–ÁГˠ%§¤ù± šDÑ“zTKg¯Y G€QÏì”åØHU•ÉZ$?@-\XÒ¶]iý ]V’|–WÆ}ÉEÕ#Átº¸¦M^'ëB±Ü‚cì)‹RƒŒ;æôù¸ Ð43svWuœZeêr1ݧÐU ef ¿%‚;fF²zXä´Á$-Ú/££Ø5îW\:QƒšÍA䫵–Õ„^ÔÛ2ÉâÊ_°zqÆòMÍhC°‹u¨kV¨nL›tW Z”ÆWsú¤{­fÆ"€-•»I K§{ƒÂtn[ñ¾ÕUq§à‡õˆ~u®€ÑW»‰çãΉÔmÜD.N»V”Ĭ”z¯µÐ†ÑŒQS›)7m^‰+Ö>YFºø½JܳE—iÙGå‹¶$÷U®-é ©:Ñ< Ò¸—H™3{ˆ(Z@!L䤆ÑW‚¤„RlìáD ÁZˆâÆÖÁ¡kä ”PSÜ(´M,- 弈Qzý"¬R5vƒu ¹½ç²Äý¬ªìÃÖѳèüLÃ¦šµ ŽÔB;è+æ °X}#Éá“(J›[(ÔÒ ­ì ¨VA§B_~“:I5Z)Ź* dbZÙC!"ì[‹ÛQK96§û_zû `r6Ç‘L¶ÆEþarh§±’úŽ­Z(£¤d¹ýP6‡À‡y‚™…8mAЄ¾ ‹ÍšãººAºvË<Ö`´Þ¹§%·Ps® HÞ½ 6w« ¨X©V„¹IQ‹[§ƒå`uÚ‡b2û‹³f.9—Á:÷ïñFåã35Gé!Ðh«×hUZTx© ÷1ì"pŽÚ#âêDÈ™cëç O&•¶ä86hÚÀQ›Ô¯uÀhÊi´e)ÍA÷¢ ·ÛG—‡CÖ Ù×&ºF=ÈwÈ.\÷ÄaÞ“$¤ù¸šó"÷• PÊ'¸£ôP¶,·ÝÛ+ƒØ7˜“KÇ‹5>|½h1®¯à¶[+¥Ž*¡x¹Ãbä–R³î4kÛ¡qJ*ï§î1Å Í8)¥#TÏlXŽ˜’)óv_{hcíFc)yB,ÎÿUUÓ&dR¶µé˜ÆÐ†<{‡¶:Q¢67Œìjö5î:pÕbTsµ‡«þIg^lîp˜–ÄǦTÙfª)¥d©¹Ù†›+KÑÐ’Jïþ=à_t‘¾X}°r Œ®i5»y–£Ý0ÈÅVEÝ ‰Ïa6>šÄN[!;³@ÅÂsòjÕu‰ÓD}¯0q¶‘Ù²ð¥±'jês‘¦jhEŠnÜWPI‹öÚP׊^WC2(G;ÇØ: ШQmE­¤ÝO3”‚øè QI+Äd±›é»aònmÄv÷´k 7®Ö¶&É»F—½CÿÙT î+ÿì8ÆæÅ:¤"®·±,ÉIpжDF+Ä^ÛIqHØ|%HyÎÐ4'4K½o‘Qí¾º^× c* =¾l±Ö}%Ü;°Qû åáDà ^Gæèd½ð½úܤ1Ô1Úý¯;j\ê͹jI IƒÐ!ÔUî™ëf‘T;‹¹H)°¥+¹M6è¬Â?"{^ ¢¶¹çèƒN_QY®…IYvoÁBN Ôæç§ç†ì>ÃŒ Ï{ÖòbÃç[®•õ€Í-þgRÔ½mMá9¬náü±w–"¶Æn[ðÞpÞ“nws¬½Gj0-Û”ôTv¯šoú;EÕ’(¤ÚT QaEo΢9ƒi]%(\è$i¬T»v"{š·çÊt’DÂ`4 8³Ù /a,òJÔq]㤃™EÉw^Í‘+\åÂjù rìÂR5¨ÌAB ž´îL m ,Óº¾c ^[,ôxb›å‹'¡TEºšÍîOƒb›¢<ú²é¦ÍMB8L r©ƒih2×}sÓîU‰ãƒÊi4ÕjžÐ}CïÙ ,‡öÛ Ï’´ÆšÙÃɺ=÷‘h«^Š®cçòlñŽ”èwNvÛFŸôHŽN^Ç®‹Ç:ŒlKAÝ>á.Šô8ð3zr× ¦»Ä|N%ͨE-óºbÒ¼4möx|ôóîÆgÉ7A`°–,†­Âj/\õRÏa5±”ƒk"ëdzÙÚ “®Ï±Bù7¦éÚ/›Z$û'*}`ŸP]MÅ3/nÐØÙ›5™²yµªÿƒ½Olñ²ZpÔ¬ÛTTóZéÅzK5ˆIBÕçjQz§ÛØkCŸ[û³Eã•(²G#ReæE¥;óˆ™Öé­95Å ®¤¾ñE¥n,½º1n ×°œÝnÅÅV†ÒÀG)yÅ™z&Û­¸¸bÔ‚yòQášvS餌k)ÒX»´g]CfÓRþSÕÌÞwÃxh‹¯wÙí× ºj‡ºÞs‹×êR>n§¼Qñ[Ç9]¨NÖ7lÌœ§ohÏà°¾¹ØÆóóúÐEv¹^e®”ôðâ#eFœ£2ÁàR´4û@Fø¡>èvëß~ŽVlòP»Î<µ¿î²,=§²}[ªY|²êUñf¦×ïÉe¦¸,B@–G#žõf”, TD Bzø}µ7UªEùÙý“­„ŒæÛÇîw‰ZѶ5€oÝ(P°¶¹`Ø Œx¡X[.Õ÷ì®@4ÅO*ÅÍUÛKì´cU=?ÎX›Ùí­z {ý³²)ëy÷€W-pÅgµ8ª&ƒOš-—ËÚöãÄâíZ•DZ°6%îë¸oÌzÖ6&8bôœË`Ÿ%´`[Ñ>¤ºA±#‰sFæLÛkâîÝD±°¨}ÓŒIÐY˜>剫lŸ†Vr†ë%»:MÇNh­˜Üº¾s€#'Ë,A$f•Ý‚#‡bû—ò¦Æÿ“´eQ J¼™Q°x5ê@1‚‹g)ËÔž;ú4‹µŽ±‰ç} »¡6ñ.iácáve9Á'Õ‡aö#¦ES÷¿xõÔ†·PÜf]Ť¤]¿¾¦®ý±_Úè¥m ÎìOo!8{4m2wJâô Œ;TtºŸµâ¦¯..,>3çèÞç~iÓßF4K^ù[êccÖ›}qm™Ú0˸ÏCdVŽJ Rlu)*/øHÔÝhÎ>ŽV‘ÓóÏ5„Xdpƒ¨¤;Ôö¸Öšq®×H< ëzà×@jÖ$ ¿LzJ%[$>g'*»éKÛ‡37Ú÷°ÄGT¼µúѯ–v %ÎÒTÊ]_$òÅä)ˆØ‡DÑ´8j‹(h¥í‚÷jxzVo{°éÿ9œ4áôíºyZf”í9ípƒTá–Äl>ØVf78U+Õ˜Š´œ4]íP“³¥U¢1¹²Þt»ùÜ!«s;mN{5£©ŠªÕóAXM5©­™ðÂbQaøÃ)¬íUÖîÅ W¶GÚ÷qo¨Ø‰T*Ú{\lT»ŒrRn@ÖÏ$ÖZ€(öQXÝË*Â"Ð~ˆ q¥ƒèë É5'_¯Ú3\õì¤Ï®ýŠ^_ÐpU$Éç¬íå[2-skÇI7)ìpõ´enÚ$IäˆÚIõÜžTè¥Ô’mèM+xOöŠò(ºm 8/Úà1mD¿òQkº·7¢Ödg1×;MP /ô“öØÆ]+*6»n¶¸: EЬÀ6»W£Œ<Äò!@θzò.ϲ”«šÕô´®W ZØ&ǾHí¹Þ-?mÚîž½U—}Ö…ípÓùÅÙí1´ù(84ÏyŸ÷ëàNûßš´µO´zFz•/ŠžÿìêŠþ•¯?àéÝ«›u¶^µƤ,›š £¼ ½™XùB¡³´*bèYžEï©GQ¦ÎŒÍ¢ Eð%”Ý­òÙ)†–‚¾ &j{’£ƒ§(_µR4]¼8aOÖºë>kR5o–£¢7¸ºÍzëò‹¾R”êŽyD 4åä+(|q²…ÅzÇ:ƒQ»ß¯˜ØÚQ;½òÇÿ­‚Rí¨ÛªÝ™f×Éèßö‘Ãj_ŠìJX¯ú³fõ%7Ai’«˜#jý3“ /¶ö"fÒ¶ÔKe¾æ£eru7Ä66£g>ùv•ºÏc[g¹"'ãÙ§ò~ý õæàΤ¸O%Sç ¬ûJAVEÚê±:æMͧ“ü:¤¶D1¼Ô¤±ÅÚD+ë°JÕƒhSüëÄ–(NV—JñD_oâ¹N6fŸÛ›#Á7ŠœtqP½XÊõS3È5ñrGÕvd4­¤¦lýB Úßæœç>ñÄT”’îso‚öXòµÖªëbµ| ‰s<—š'µ jûÏ,gP'ÆXí4 }ÍÖH¾P3Ö¹]s0oÛœtÎúª¼`F‘¹nÑôäШA®cƒ<‘«6e3$ÒDÒÅ´ÊG²k^«½ùתµ´*V£«fÕýq¸ýv—ªLkß{8VWT¾˜ýªë,,ó'°i•·Ûy–ª“²æ`uá{ 'e_ãhûÔÎÐ|³?ŠÅS-‡±IÐíÝps·`±-º¬ƒb¥ÑA HÙ v½£B›bðݪiU0wõ :ò-í]LÙÒæ³ÙÐ@ÐPža)JßÍz–­~õj#uFRù9[Ô7à¦Oü˜úö9n×岚yX‚uci¡;ÇÝŽªÛ'¯ÛŸ“h±,~´&Œ¬(9UÏF-éù%9‰oSJÑ¿ÿîàÏ(úªŸhËvh$P¾š©-f=PþÄ#ÛíQIH Ô³ãÊg½*Q=j„Ô½êÓ«þ™üzÒ'¬×® uèþðÄÜçÃ[ÙÝIwø¹:8µlׇ@N®¨…"TTLÝ+wŠ‚AÜ}k³ÐX" ê]¶«pj‚ÃȸôîdÃ~eZ lÍMØ7ŸYãQñ¤9è1¼P Õvy\BPãnê+±ću—¥>³Ü›r±øÃsKš*= ÓŠ¢¡qŸS›ú²R÷–¾ý. À÷Öe=<øÄÊ#Ïå²ûx<-èÇ ¢le;&¾u‰DêàûmË:âQø •`»K2›jQÅ-õ%F¥Õ¿ðì:}­d²tDzÎùn=—ÎÙê?|û_Õ[i endstream endobj 76 0 obj << /CreationDate (D:20130514200848) /ModDate (D:20130514200848) /Title (R Graphics Output) /Producer (R 3.0.0) /Creator (R) >> endobj 77 0 obj << /Type /Font /Subtype /Type1 /Name /F2 /BaseFont /Helvetica /Encoding 79 0 R >> endobj 78 0 obj [/ICCBased 80 0 R] endobj 79 0 obj << /Type /Encoding /BaseEncoding /WinAnsiEncoding /Differences [ 45/minus] >> endobj 80 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 68 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (C:/Users/BXC/AppData/Local/Temp/RtmpIJ48fH/Rbuildccc72337571/Epi/inst/doc/Follow-up-nicL2.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 81 0 R /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 82 0 R>> /ExtGState << >>/ColorSpace << /sRGB 83 0 R >>>> /Length 11534 /Filter /FlateDecode >> stream xœí}ÉŽ%Krݾ¾"—Ô‚IŸ‡- I û\\TK@£/!±ú}ú±É=<3nz²R@ªQ‹Wõ¢îánnã±cþåo_üË^þÏ¿ÿýÕŸþþ¿þõËßüî‡{uν¬þîoþûø×š_þïü§÷ò?~ø—¿ÿýá‡Ç^þÛ_ƒ{á?/±ü3_þñåwÛËüw¤÷àUÊkš/Ëå|=¸þZæër¹¼ÞÃk[^çËùúåvìîæëý›<ü¿üé‡ÿÓ¿üë¿ú/a¬ÔoÿsÜÛ«¼Àðu语¼„ðZÚËo—¿ðݹÿôòÛ~üçßèËŸÚûøê®Ÿùx/¯áúñô‰‡Ú_Óõãåe|ðúñfço Û¡Ûž|ÅîM©Ð—y?øj¾êKÃ?ëËr9_ÙË®Òër9_1A˜ôu¹\d’oG__îî`é¶½¹×ÔéÑ?³küY_âkájÏèÃ!•ׯþÌŽñ‡cÿÄnŸ¶ôêÛX¥±vüaï¶Ý–SöCVRt€]Êú^Wÿ—ÏþñÇïH!ýü± þµÆ—¤¢ù¿ÿoï=éò‰¿\¾h 4¿#ø¡Õ+Þ1Žã¸µü«ïw4ÕØ¬ñ¹±áyŽçƄǔ_C;Xça’ª§uöðBnx²í¬…H²ØHbÆ#_× ï(tÏã;ü0þÂrr:†o˜h¯È[Àµr°F¥@†äeŒÍÆFVwÝㆧÐÛj€z =r~"¶|èÇTqcë7·Êú-ÀZ±|çü䞃+xßpº±¼:’פ€.«ØðMЋËð”áúÛc‹h'ÆKxªÔ&ë;Æîñ;†@ñ cT¿íû]2ÉIóã…îi ÆQªä‚‡ë}@gÐ;†÷]‚¿v¹Ó&gl®¡(ã”Æçëûk/‹õÀá?З~|¿èõ±ž´œ¿®®é=Ï'vè¯Òô×XÑDŸst0ÏÄËI÷ã;=븎‘ï9Ø•$hb؆xtÒF*8úfnÏ™FÇ ¶ßUhôubÆ)ΊxH⦇í^´k‡vò›lLùJ$X¡ô]ÿŽçt$=ð<Ö+íÖ¹VµùYŸç@[8Yg˜HG#ùëS ÿ"ŠÎ­ð :ü#›ë"­ÃÖ„ën;1ne\GçõIμ‰èÉ.E˜â‚X«_Á¬ÕëžÄ zŽÇX£¡vÝ£ÒŠ]ƒîi°ëëέÐ"IO‡z9ïºgœR¶Qèᤌån'Ï =·®óp¦r½¯±ÈWøÈž.”ód;Ò3J±Ÿbò®&¬mѵµ(yŒ6¡X³ù$ÍÁuÙNÒ8„-é8έˉdgk$GCOö¢ž¬‘i›±¶Ðû5ª¶Ù½=(ä¡(°˜íäŽ\–¤žH üŸK4œ¡˜V{·Ÿ¬@ÿzx³ièïqFÓ‰oo+0¶9:ÒÈíªÕÍž¹d:ríêÉÅξ"f¬âP”Û™Ÿ©]$ú¡î±ì««cHÌÙ7ÙÐ3?œàÊÑ¥{?žÂ[Ûøî^Ó5 ~P§¼Â<ËМG»9V «›E/îj·„޲#ˆÙ4Òá™ÿ=š|íÑjt’3³üÀs½1µ¶ƒ£B²¨í©fÉcÄÄéõqcWoÚÝS¼>Bă#ðéÌþp",Vz’îw£ÎÙÄáóU¬W9[Ër><[œôñpGž­ÙèálsÇêäÒär¨ÅœÉëé'ç5 ‹Ã<…¯y‹²Ücì>!¹MÚoc jS×li'‚xÚ‰=–ÓHmH<<éá–k®mèÊLïÛš*9ñÄ{1;8¼š(Ô¨G1MFÒ+JþºžôâÔKÌpBu›ÆAÝã`v<༹«§i–~xô•£tY;̓7:Ò´Ã|¹¸F¹ÄVª1áf²Qí$?85\F‹gآİ?8Ô%tÈØöMfÌu&žX¹žÍyêÞ†wÒ¯­êéEF%qLyha8Êë7ÏSO" Ë7Œ-@ ;ž2•ýŽø¬ DŽªpó8:â囵J›šN4ΜÂYˆ„ðQÛ‰ï›IFÇ#’÷æ²ËÓN­\N²Gv¦9S†È¼ŸäV}fO9 õ<6–ë,[’D›#p‡®žÎsýE‘Û%Xç7›>íñ8ÿÈ€ x=ƒ>‡å¤'ò-êɘÏY¼Q†ÝÈØƒ] ’GB¹qzá&O9¬4䟸úÿÃK'ßn/|Û¨ögYõ}½ÔJ/9³Ö™åˆ‹ŒîuUÏâž{gù$+²äBŽŽ;jY=É¢=* ˜d§±óyÛW'~dÑÕÞìxïìýRZ¼‘µ-ïgHŒ=\8ÑB&—(z;² 'O…óÚµyËßäƒYê …ádKOîŠë†ª…‡§×ù|Eaå†R‚J¯×u'ªjæaqX{w"‹cÇ8Wÿ,pÎü@Ç`×r#ÙOù…¦Y°<ÍÅ*a/‡¸zmSW$J`"†øTĈtTh¤¿ãVåër~†{ÙΗMç™!1°.C¬·¨7¥u$Dý0Ÿ2ó]ÃÕ»j“q¿™OJ‚±‡- WïË{Ä…|ÿC ‘\Û2®! )9„ºFWAòA3¦7µ¨Ì'6â¸Òjõšß.yãü¦ãêe°¼áö,ö+íÌ–šýGÞ=Pþ,mOh¾y%K‚<؉0]Ð)E W޲½z®ŸØáv”“ʰzÊ,] 0æ¨õ$c´û†ŽÒë°öíÆ¯ë‘êg®ª¶ø /Zàÿq¡vzwâ­–ÀÕ1èÔ„û|æE©{ób˕垳IÌž['oÄ{0UG5óTùÄêŠ_:TN§ïž(e‰ù\ÍÏÑ“@£žÔol¾ËŽ«Ö1âzÖ†CÓ·Š’zÃÂ"“Žäà›ŠËT¢Ì6¼¯r´F¦«Õɽê•)7‘}Ó쀑–;òëLöÇÿPí8銘ûrË}B†û‰±¨.RŽu9:k¥0²ñ©xŠG™4Û‡!øÅSàO¼¥¡K¸ž<„4WÒ 'ñüÔÈ™L%Œ—¿VŽ,³2´2+CŸdVPFf{·¹Q¸œärguƒÂ)t¿›¥N+ªkc‰ÃM-kÄ™C¥-†’J!ôä}D¾'(Ÿ‰ú^©ÐùŠG:T×¹yöÊ^OËë´ªS¹vêOj†Ç€º}³䃓e#é?Ò´W_Éú‹ã­=ó¹:Ê…8˜ Γ{ÇNô¦ÕH)MìBëÏ+цٲ½§¨SÉ3ó;leÈýMd¶EFõ¦•{‚"Á®„ƒìæôÀÓ’È÷[‘œãêz>J49î ©ÀÉc4H?‰ˆ‡ lI"²ÈµÂ|SMtTÆ¢¼æI ÅH$HÇ#øç«|%’T®SVÉBl^iC àA%täè†ß2.CÖ36tÛ‰|Á‡ú`¤Æèígë¬;?|k®œF:Ñ™mû >h¾Ç0à„­Ò9 ç#¹„–\Û« Ð;‰žþMn‚QX‘Ê+ð¶ïèYñ\+LáÈW#HýöÜqÚâØ™ºUj£æ€yÇiz¹»_)ü@yäÏÝNr2n>r&ðä¤Ã©JIü`àc×{þÀ_/0å,½Ò!'Ÿ² Œ ŸÁð&o+0Dª^Q7ocôHYñ¬G•ZŸÄWú8 6þŸˆ;9…œpõŒªàBQÂäQO¼t¯µ}¸ŽªÙíÈ{l3râbåQå(z=Ñ”uÇÇóIôl9ß(ÓÆ ·£¨îâÉL+ñAn© ¦«ÒºÄð&ÿ9+92Èm¹?/˜AÅU&ĕ©&‡gØ]ˆEºAgŒ_AÍ6§7>±—x0q\žü™—2{÷H‚Њæ£ü:0\ù œùêåì÷AIÎ4þJ[Õ£qîh8i-Ëv7¨¯ ØYÏêac)€ßÆùÝp‚䘵’Ιœ¾åˆ–ܲg{ÔöˆÑL ŒÖ~R;žëêÉܰr=ÝÒ6ñPÇf#L;A}Îz?ÚR—·¶ÊJÎ¥ÊþúPéGºÎ*žB>x'ù ÜQ`T8äÄmå°?b¢õȼ‘ »‰oFüîdkß G¸â7¤e.d_cQÍ{J¾Ñ–lè¦@‡™{òÌ«zCJ&{C¾qÏS?Ã.ç"±;ÔMdTꆢ‰3‰ü #| \EöªqV`“³Ù̉Vx«YžÈS'%ޝ:0 ªŠú~x¡é¤ÓÎÎM¦Ž,¤<7 4D]ú­Ì ±íwïE%¸j¨P§-2QQKÆy}ª’ÍŠláPTˆH6i„¦å:©$‚¯ö}ß’öå!#<άdF–¸‡e¾Rñ y:wd?¢ô<¶;ѽA¶h;vvèäÜŽr’@cqD•!Î(Q>í¯{+IÔ^»ObñvîDY?…í-Ž+÷õ¬Ùtq¦Š9ìÕ™—‘PÔä3­6õ–Ý7»ãè!óäo2×Ãm¬ŽÖȪ=ivÏjT¢€tY͵wã—JPV$»òIÅ"±Hm/ðNü‰—Þªhpx¼™>·#…ÒħÛëÒóì˜ù!Ibµ˜¹ûdǸϚ ÖµýY×@ªœßD"¥ðY+'ý0kMJ\óüT-I‘Hê±oVZs)pvf¯`_…y¡S2ˆ²Õ[¶7KW÷ø#1º$ë©{ú{³jÀì¨ÃßÔÝ=×èJՊŇ~2ëŠ@åUÊõõ«gÇJߢ,Û5$¤#¨´÷ï¹vÎÖÝ÷Õeòu'Ùž[+ÔQ d~¯ú™¬3ÕPóûÒÃk¿R„õÛïyW66JÇ9T2÷…›^Hô0~ûÕà$9÷€s|dK'*ÒóʸÃJZ‘nJ «YH6Jz‰©“;šhÇžÜr–¼Î(Ã{¦e¸®Qò]r8g.]ާV5×ÝŽØ<&w†'+Z؉O<»ò+çušæÇss%q—LÚ½‚!M»OÑ˶p]=]E4ʲ?˜µoÿŠr1ÍsEýdùÐkS6Ÿ@ÍpŒ·úóì‡e*ÌÔÏ:²g¶!pf¾ï×¹ªý°aËÿQû܃ûL#åEN¢!Äuü9¨rF:nÙIDAr98Ý>Z´z¦s ×ak=ÃSÀ”$‰ Jälèýt«Ë‡£õðp/>¤÷ éØZaQ‘íuÛù‰8G¾‹1:G,cµ¥ÂKà5Hù¦ã“êçØ¸’aؤN´ê7dŒ ù ïôѲm`Ž…Jßó¬¾Pê›pe<™§ÛQ‘Án¸àƒi¦ÿiö‚Ø\ºÈ>r À…Ç›g¥BìØfûbXúP"E{GÈÖ‰.£òôÍfÝCQ&½ ûoã£\ Äñƒu>ÁÚ{—Jü¸ŽHF\ýgëeKQf ѯ{1nëæPÏï‰,™WŸ¸ëö4ó¦ºÊ0—ˆ•3ÙÍ^!ÊZp½„ÁZe÷þ9Á w³EwÉ„©-¡RJ`·K•Ógd`}ƒ©¬%çs'VþÃ|.ã\QkYÙQ/JÝ®yç¸×‡ÉqL™Mµœ°%”"½v•ë{€S±%ÙÙÌð|ˆí*—ˆßèY#-TÅFµplóiÍáÌ?kD¾TOæªl*ûIF›Ô M' #¹Ô£¬üÆöo–­M¦\ŒëÏ«Z¥3©ó\†‘s'ù6ÅbP‡Z\sÆÏ÷Õ«¡p”dtgUŠ~'=Nv­©¢†ÌÈ\ÓV®¥&FTcHMœ<b.Žã]ÒZÍ ²ÒEØ¥È]A[edÚÕN½!Éa~M2 ©èßök·qK̈ßöÊ•u¾2‹!tùIö{éU§B]ú]c‰'Ìäî.?×X*·3'ž™Y)«ÓY´™ÿ¹»7ùÞ.{ôĈ-yÄ’ÔvCÒ´»e DË@0³÷kØtP³>1“(?ª"ó->Ö•ÉUðì™ —”±?â&0"ç/dkß® óÞcÍκn…Ï#*gC;Û+س.,÷Û.~“/ÆøtÆviòœ™W HÖ÷÷˜ÜàFÕÝ£œ˜ÝQ#* ¬êÖ»\«z±¤R(¸<¨”/Ì‘N)äôRKƒ•`k\(yHõ¿£:ž"ö¹ààåxÙ™n• (•SIýQ$ºµ›ZàJ™LÉ\kl[2¿x#‰«OÐ× hdÔi8ë©U;i²".âQ.]#×T™Ñ°Zßžó"ÜeÚ’Žzÿ—\zä(Úï\ׄµ&P\¾£>YËîÍjÕQ_ñÍgf4r›6,ªõQ 4! 6Ÿ¡Ü²ž»²eìÕïKÔ‚´Ä4¦Mœ0{o ¾}>ó(gôf >ÂîYŽIiæ,'Q–ž×È%'JÂ~ýÏ 1HØy&1ˇyâ ÔÆÙX6à£?óšæa2n‚%}+ؘÁ«u‘Uñ…¤Ã½dõ¡Œƒ­J-DãŽtvG$Ï þﱜKïucÔš?cl0‹Ÿˆ„ŒêÈ[æ¡ 7RŸç“>óÉî Î|Ëz¤ (Ëýs„ó‚ÙBT‘T|õcfM“+ÔÓ[Ó\[fƳ➳Wkž£[>•àí±ûç¸PókÝcÛ‘&vDÅ Óºä3þ€Y_¯Œ¦zÃl¤Ö K±E=o=.Äöç%n']¶Ù¨ÆóIqŒAîþ·rA×¢V…Г>sóõ"¥r„\ÊIî©qÇéYèµ»61ª;Bar,I~‘p€î¬¾)–uüqœ÷ªÂ^ݵGăÂbsΪ"€-¬ŽzYtq+œlÞúl½äþ½pWFÃ(>]¤ëÙ ”IHñ¬×„:=p©ŽX¶7-¤?%3G,YêmU;{¨a­«áMý=kÜ‹¼cÑ¢Ó¨O%øâþ–R‰Š#ô u‚+ÞÏzx,/ž MsUNx:SÖÅØ8OZÎ<š¤øÉš¹s¶žu(pïÛ“š”ŠîÀƒjb-ºLé¨;y¬x[ƒ!íÙ¤9 Ǽ·#ÎKëÿj…#ç¾çÈ,›„äy¥çVC2Ÿlj™Û–¿2crl•{Èú!R{ñGzOñ^;\BMgÝ ògÛBuÜjgí¹×'™ dΈ˴›·¸G<­Ú,“èÛlR:³ä,²Tîz¤&z:ìªdY¬Q»Óµ³¬ê7WªAöÖMµ ÃH°¶gÙmÇ~È#‘!«‡œ6³ ‚*;T >š§9a8UÜÇ£ŒO¤º(×Ó‘uvýzNB‘è5xÖa¯£L~ÆÌÝß69à¼0¾ ê¨;žnú™0¹¨*Å«çUª nBàyC‡ü$úÛdî9cõÔZ[‹°J sÝòÉïüò8¼ƒît¯G¨Š…ÝÛi§ØÑ΃Å'.:t,Õ-ßÁ©Î+zE¥•&#Dî&Ýz€©ms”Ñy£½¼îšcU¦®¥˜”1E™o:ÙÓQPN‹eUI,ò’8 UÖ¼ðXÔ«dòTu2ø~NIy.Å®síÝËÉC¹ñS3ñ‚p&¼ñ²Ìb4"i—pn]ž•ý’Ú7#»üDö¹'§wâ} Âýés›°nLîˆtiÏÒZnqBЫáêY$Ï‘8V…ûÍò›H޳ïDðQÛi RÅuÒ«_v–“± E'7óißñ>;áfhûµ¡‚òn$¨ÿˆ5tÙôßL¦´¬'•ðGÝÃÔ"jØfj 9BœyÉps ²A'Ø'´TÂâN¼£ìÓœhÁ]¯%ݲ•0á¥?uòàm3ü»Tí}uÍj®înëœ ™2kˆD:üEg™Š|‡u¶©N;EW“ÆÒ!ÚŠæÕkú  ¾†uΩN>u2SË&¡VŨJ1Jf„r´ŸË:3T§ˆfa_³©¢M³1È — á‰¥Ã2±Qg8†ªýà2ÓѰ²´ÍaÅ@2g™Þhó£f¡ø:šåÀ¿Ðôä*ÝNÜL¾Lr´ÙŽ^§Rðu1¬´5îg;²æÍaõhÓ£jB¾ŽIqV¡—)†öuj ÍÔÝ—ël\p“z×9‚‚F#k?ç ê¤ÁØgÞ×lÔøW2ý OâãÊ&tœÌg³ú’°âÉ5Ì^´}Á¹å.ÞDC³ëÅfÙ)«\³™ Hc89s &-ëŒ0¦ Na+Ê•÷`‘+wž±é9Ù[¹®A÷%adV£L3µÉ߯g¬xQf0Éu2æè(ýjÌL÷ Bž”V¦:å® ‰×Ô¸ì¬c‹rÓM¹äXã‚5xrËÛ\”™ˆrÝ­Ó|¯¼rª»¢b0yæ”y.tY¹NÞd½r|«³cà!?4tư¦Õ"¹öÁúÓPajÊgö ³)œüfÂxF]Ìùe2 ygZÛQ!IÁXÆ`‘'C˜r†¥"<ìÊ!V­òÒ¹£+ªœ:¬ aÂDNC¬ÌU÷ÌyPEŸ&B’/¬?Æd³^ù:Ëäy! [σÔº'{ñù8éE“kˆ‰úÉì÷0Ÿë1Š ŒßÇœø…r]‚iK”‹2÷°+~eò1nŸ óÍù:×|d»/Ü>*kмQãúQöïé4(PžÈm¢FÎ3»´2ägŽçx_¯K°x?PÈ)¬3l0—v²Ð(/MT^yjÊœÁËù1fáÝÇŠ-¬0ÂS’Öñ…7¦˜–J” Ž^1ŸWÎeiY¤PYaªyÒsÁÌà¼ÀªMFåx1å|1Å/I¹S$~q.aW6h¿TÖüÊÒÎìÝÌ„Á'ª‡•ø2âì ïŠOG¢Ó–8;Qžj³™uaÆÙÊÂ0ãì"h Ñ–¤®ëÚq®=èÊȬ×Í4.íCÕžp~"¾Ù#®]ã^¹¿åz’Úl™ç”‚ÆÈT_ºÈµ¯< [õ™7ÍåýDÕNå±ÓžËÚËŒ4áÚÛ\=g.víæ3×òÚ¬=Â-I½P{†mveTƒvò>”Dtéìµ^ß Y'¹Æ¸ÛTzv䈹ºöðjWoË­I—o5}˜g‹»l9såêÚuk}¸Q¸•å:¡bœö˜r „“={Nµ µ49QÚ•j™ ÕµÿóAÿ¶Ùª¢A{mµcÔz°4IYîC¡fo¨v‹ãt=*W(4² 0k'Ûlävf¿§u€_Æ×ãiÕs¬Œ4ÒO)‰¾ömZ'gÐì9_G›¸f!œzˆÖÎNíõlV+ k$}lRWA]QÞéÊõ×Ùå©}ŸâóëµvÒãu–n¢‘gK×¥öa†ªþºôeÃÅ^Iû0Åçwk_¦vjú&šN;7mú:QrGízäË}í‚´¾HÁÄèuµ0íB|ÞžÁìJÔ>Åa"Kx™}‹ÁM FÚ8Á…ÃSBL´öR¢F4]: »f¿(`*ÚYÈñK k§¡ö¦.»/׳3PN{Œ )ko u :©Êu3+†h>wÓñ©„­œÝuÖo'§R¯q(ä¼ð`sé¬{¨)Z:í¬÷N‘æræÄZFñIŸÔƒÝΰöMi'UÔŠ„\ωZ”>ÈÚ353γ‡J³Ö!OöÏynõ ÐËçµC„s¥¬#ÖCâu2!_×™-nÂ(’4Þ'“¸tŒh ‚iŽ£¤§¤›š¹_“{HØVº¸ö”X—IÒZ4_³/¡ršªö<0¢®ÇkwE´Îˆ'¹†Ó¡üÿ‘‘ƒÜƒÀ' õÛÙ“ ] .‰×§] Ù¬XêIs•ØñL‰Ù/ g{é((f_Z+Š”ÐÒa'r^±ôQ™¤[ßgÖš9÷·ÍòA¶²Ìüº »æ×Et=€Æô]1ÜÈ‘­X0݆òÖl \OÞ rç5ÑÌ{‹ÜÅÄw+⛓×C€sòZmT(Нf ’̕٨¢Ù/ŽÅäº .0°NÐÌ’Š+ºYñÎ¥K”$×Íf Rɬ+FŽã¨WÌœ¡è¬7š¯Q„ë¶·ØmÆ©qF å·¦H6—„•T‘mÙNƒžù" ÏÍZPb†s¢-åº{ór¸/¸±cÑêŠ#3d™S $lr†ß¢X¬i¦ŠýÂzÉ\²ÌM.ʰZæ›Òõ^±Tü+¡®Ø*C[%fÆÕëºXÇÞgLoõ<×pVмªê'+«Í¼6׎çÄØOÔp&îI‘P1INZ‘QYñHÉ`6#¡>Eo"£+²LBRì”õ“¿Œ¢æŸ%é)ùMÐIïïÆŸféfý¿ÉtÓ=ù ßô ßôßô¾<~êé®›÷ç±Pw½?º¹ç_¸©_¸©ÿpS7çâ ÐT7çâ 0Vwöðç‘Wwöð{à±î:V¾¥uƒõÿØ­{󈮻ýþyœ×Ïüóè¯{ý˜°›çþ¤ØÍsüØŒ~ªì湿 Öìf¿¿vóÜ¿piß—v#ÿ_€V»ó#¾†íNÏdÛÎüx·›µû.(¸÷}¢/ÀÆÝÅ¢ß1w#3_€£»Ëü<ºî&øM0w7ûýH¼;_ð>oÅçÝŸ?Ú»ó;–ïÎ6}„ßMÌù ÷÷Õ¸¿û|ÉÏ¢ïòµ¿0‚_¼‹/9xc;¿Ox'w?2¼Ë¹ÿù`oöû ‰÷k÷pŠw2óMЋ·6ë¦ñ¦ñÿ%¦ñ.¯úHÇ›8÷çñw~÷Ï£"ïüî_XɯÆJÞåwAy³‡ßWy—Ïüy´åÝsÿÂ`®Ì»Øõ2sEfÞÕH~¯y³þF(οûñï© „ endstream endobj 81 0 obj << /CreationDate (D:20130514200848) /ModDate (D:20130514200848) /Title (R Graphics Output) /Producer (R 3.0.0) /Creator (R) >> endobj 82 0 obj << /Type /Font /Subtype /Type1 /Name /F2 /BaseFont /Helvetica /Encoding 84 0 R >> endobj 83 0 obj [/ICCBased 85 0 R] endobj 84 0 obj << /Type /Encoding /BaseEncoding /WinAnsiEncoding /Differences [ 45/minus] >> endobj 85 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 66 0 obj << /Type /Annot /Subtype /Link /Border[0 0 0]/H/I/C[1 0 0] /Rect [367.981 256.363 375.819 268.905] /A << /S /GoTo /D (section.2) >> >> endobj 72 0 obj << /D [70 0 R /XYZ 73.835 785.063 null] >> endobj 73 0 obj << /D [70 0 R /XYZ 128.658 469.65 null] >> endobj 10 0 obj << /D [70 0 R /XYZ 74.835 240.145 null] >> endobj 69 0 obj << /Font << /F35 32 0 R /F72 52 0 R /F15 35 0 R /F73 54 0 R /F80 74 0 R /F24 75 0 R /F74 53 0 R /F40 33 0 R >> /XObject << /Im1 67 0 R /Im2 68 0 R >> /ProcSet [ /PDF /Text ] >> endobj 88 0 obj << /Length 1609 /Filter /FlateDecode >> stream xÚíYKÛ6¾ûWÈÀšåS¾-6ŠÚćiÎZÞu³ko-;›üûr”(™Þl›h$ó1~üf8äÈ2»ÎdöÃä»ù䋥Δµs:›¯²ÒŠÊ¸¬,œðóeö:1­t¾ªü–ŸíT—ùÃÌ—þ¹ŸÎŒvùÒ{xQýaíËP¿¡:UÞLßÌô³ÚxV¥K¡TåA጗¨Våk– ÔZµ ¢÷8£Ê¯Ó»©sùâf4Ô/%Z—B*Æ:™\Î'L@ŸÌT¿|%Œ)²«»Éë72[ú¾3)Tö€rw™uF8k|ù6{5ùe"cF­L1jœÐ® ”ª|”ÞMgÊYKüU¹ò¿Ò¯äeƒkò\ïükÙú×—ÜuùÖ·av[ßì”É_Ý öêûÖwÈwZå?C}Ç‚Û ÷dªÖØl¦¬°ÖFIŠõbš”*_4þ)½I]]å”k_‘•¡Î²[‡ÊˆÚÊ¿„dƒÊ¼(}­NyÁ,ÀÐ…pÚŒoýÔÚ âFØVòÑ?¿I'IjƒNC̽š"ÐìM84䩨Ñç oZÖ³_wD!À•‘~g®Š~ä{g©îØÜZºâ_eîb`n-Á¦†*Á¤h_­§dW‰ o@îmîŸjhsr4r§mΆx…tR}Ý@¹ÈÛ¦áXrðǔÛLýâÉY|á­ç¼P¬°"±æ=t7(ÜR3:X!š‹ç]Ü!0òDGZYå ú£0Y…Éu?Ñu»`׿úçH­oŠò99´ä2¯¶Á¥}Õ¯~Ãð>~wàUÍ4ì–aEt¬qC*ƒŽ'ÈÝœ°Þ´£S‘eÍvUqkTßá¶ =Á³øÖ°õyP{Ï Z³Cø¶m%ÔÞtÇà 5¬;Ó˜÷k®˜8PvŠt¬sÝ#8 ±ÀÆÅQížW ´{n¿é±"ìÊ@pß^pSó@e@ç£5ðo·ŒÛ8f-Ä=#J7 ±»s“®>´ÔoYqÃé±à‹4BAÃâs–éçÔT!Î.¸t»®ã©ëo>€ òÜÚu~ß ïP¼S_“m°«YÝPäë‡Ãè‚@{ËKÿß·ä8¢ký•­ë%ÿ/\F½à´[ä”]ñ-·È0™=¤i~-ÇèšÃ°xPûLH! —ÏZ:}tÁT×|A£Ô€ÑZòñ.ùªh°cý>Þ[å÷Fݘ°I**)ºF$¡G#»™$ ì Ý…%VÑ‘ Øax V|‘±„]uØwU°Í¸ë›p›^$€›p䈂Î˹eèîîâB[Ù·é¸-¸  ˜„^÷—EG4 tAG}¢8Ý€|”õ®Íþw‰(v’ÝEFîRÖì.î$ð"Ü&€— àv9G­Øšgå¼dèÅ¢‹ ÎgFÑ%†î‚§—ÇÐq†ca˜ooÏÀw­N®N€®GáïT\©‚«':Jà:`/ˆ„»í·(Â''¢K€oðOùy ¿è.á.êorž:‹ðø„COE§ %ß|uíµbÿÉ£ ·à îèôq†‚Eà—BéécçjÍyÔÚHmçE:H£`‰ý]€8ádîT; uçP[FjU=u:ôtÜFn:PœCmýùjÇyñøÓD”¢'á>}Ýçi>ss&ÿ½¹Úã5:ukVR”U>†áí¯î*…?kt_Î.Ž’YŒ‹înOérjZW‹²®ƒ¢ŸÂ={Ý&gµ¢ð°pb]<Ï co·OMÆéC’?>9æt—óña^‰K'jc†°:pBÚ¥Òœ//n9£Šl³ØpÛXxÏ3á€ö*ä¡ðáÙÊ—wÇi{l‚ˆƒ. IŽ>7ì8‘i;/ê5­¶”ðôŸ!É4y8­z³ÔÉï)*yõ¹Ï'òV=È[Çy'g‹_ûâ¬Ï]‡ÖTäy²EL=)—}Æ VÌç³¾ëm÷e‚xyÇz¿aM¨ŸŽï‹N)]È.ºü—Ê:*›Ñ˜ óáAf<¦õL™½þ?³?Gfoþ™}÷gGø½œOþƒi endstream endobj 87 0 obj << /Type /Page /Contents 88 0 R /Resources 86 0 R /MediaBox [0 0 595.276 841.89] /Parent 90 0 R >> endobj 89 0 obj << /D [87 0 R /XYZ 73.835 785.063 null] >> endobj 86 0 obj << /Font << /F72 52 0 R /F74 53 0 R /F35 32 0 R /F40 33 0 R /F15 35 0 R >> /ProcSet [ /PDF /Text ] >> endobj 93 0 obj << /Length 1506 /Filter /FlateDecode >> stream xÚÅYKo#7 ¾ûW ÜË]+£÷ÌÝÛ¢{+6·l©q;Im§iÿ}EŠiÆÞÆèA™¢¨I‰JU<UñëèóÍèêZê‚sÖh-Š›ea«Åͬ#Ì‹ÛÒLîn¾^]»Ÿ Ÿà3¢vbGN¦RèòÛ„—/®­]{tm¿§Î“kžH+×ðÓ”Ëgâ‡ö<¶|sé+Jj'€ŒMœtø¹÷~¨Ã½sf÷kœè”}¹ý9âtUð¨*gRšb¶ÝÞUÅÜ}-*Æ‹7äÛJK¦•týuñmôû¨J­§ªœõ¤fB[oîVW[U+øj.KÞ8štÍ0êà€*µëV@«°!M¸®têÉTTÚ8~^2‹Ä©Ôf÷­áË+gÄÚ¯¤a’Lç¢lhuSwWwÆq:M¹bJéˆ[gpÃÒ<`4·b¸Bšì邸‘‘"ïÛDÜfwßÞ&co™³7`æâ¸-áÖ=?QÎØ[G?iiMßÞ|wÀ¨½w•àFa W†Üõnœ©º~‚´&Ò²~}VQä\ws ·Ž>1ä'-ÍÁäZ š2ÌA‡½NýB{ì¼Å~bÑÛüh¸ Ñ}à*Üf€«p48hÈêË\GÜœp›®Mbk\öqë˜ö7®`4’Œ-c×ÁØ 2¶Ýz2?ž½ë•œ@ó•Íå@Ë è6u‹P§´æHHÖáÈá—­@÷-=–¡LgÜšÿ h^3%U9ÜF°*Ü7ö~öýÜ:üÝ'!Àmç¹@Ú´#.9x%¥ ‘9XÁ 612úM‡Ô@¾S—«/#Ö\F¬MÄö£þÁŠŒÇÛü8|¾›XÝ9¢Þ-Eÿ%ÄòDl?«ôsz»eIgàKˆ•—«þ»Ø«kÞ)ËÜ*Â2U“cü¶ôÅÎÛÄÍ^´}‹©è ˆûX =ûúh㻎8‡D´ÎVc‹ï—‹™Oc@€|µŒ²u· ¹±*ãånŠ2WuE@-8_•ùBgcá·¥e]÷~ü+?øõp·îÏ_­©îCH¢»€kÍoÛ×,³M^Úš’1éóÜWÔÿ\“†Ë½g[@Ñ9÷õ)Yè±gvJûÈ}¾jÏÛìÞlh¡95ÄÅÜ™%ey³"Ûȼ»P/{“¿R)> U²+ ÑÛºe¬l¤«_Cm¼¸ÍŸA1Ïù蔦u ý¶¢•R È=K˜v‡^'¯WoR{Æ\ûHïª nYCE÷'mBöžxÙ*@&ü^Á8ŸZ˜_1 ?ø¡1Mz !ãîPv[ YÜÆo19øpûâå]Îö†q—þ}´“ qî¿E(ºñ«n1¨ã½ˆ,}ë8Útï×Ä {_“•|ö'˜ I™Í›¦JëÎþä?ט¼0_ôwkáI/äJᵩ÷ò,qçñçŒd†,°¡»šZÓ–ÿA{¹NÞ´˜ƒ"„$^á眄ìéË0•z”÷‰S¢rï(8qI€žHÃ6X‰ö1—Ñ>ýÀ¢ƒž‹.îioœ¸ù˜†Ç‰»ÿM‹åx^’ä”Ò£Ê÷zub­y’BÆÁ„W0%c£Ÿ'SSónȲŽ_ƒÿÿiã,5R³½«‡ûq–§òà‡¡\ª£4/> endobj 94 0 obj << /D [92 0 R /XYZ 73.835 785.063 null] >> endobj 91 0 obj << /Font << /F35 32 0 R /F72 52 0 R /F40 33 0 R /F15 35 0 R /F74 53 0 R >> /ProcSet [ /PDF /Text ] >> endobj 97 0 obj << /Length 2115 /Filter /FlateDecode >> stream xÚÅYÝoÛ6÷_! + c +R¤(kV´ÃŠ¡ÀÐ< hûØN4‰3ÛY`üx_eS¶»a؃mŠ"ï~÷Á»ã¹*.‹ªøyòÓéäÙo ­Uçœ)N/ oU[»Â7N…§óâCùfÚšr9Õå5–Sãˇ“0ºŸ»éIm\9ó |ÑóÃUÃógz¦¡.ÓO§oW›rÕÆ+­Û 9¾F²º¼âµ„ƨ¦Ó²ô9êr˜¾L+Ï.‹¢­A”tkçU¥ìõ°fòútòÇèU…îÅת®›bv3ùð©*æáÝÛ¢RºxÀu7…uµr¶ãëâýä·I•jÔV9ÖNç‰s;=ÑÎêÒÝT­-ÍôÄéºÔ]€^‡UáËÀ ¡7¶ 8Ù„¯ÖÒ,¬p0[µ¼¾ „+Ó––{¦¦d¨8àF>€>ÑVYëXwrƒßÒW1°ª¢¯¬ÙVóƆÁXÁ$ n,ãqãÀ¦ál\˜Y|…ø:†¢AG–^:æO<㋺¬8‚fà¶gÔ@„Q£Â"®Í(>½ŸuŒ¯óÈ_6 @UQ‡ŒÞ(D"4Œ¯Ïð„¯9 Ÿa|âõ–þ¬ø˜%ÑEÀNÁŠ–z6±ÃÕŽñiň½¡µ;ú3£øjÆ×Š»Ï"ÆW5 ¾¡§iÆg+¼«‰#â³Gá³ð5ŒV½þ²ö5è †áw–ñáɇSøŸÉ\M+öá³ZŽj3ÄgÅ’ÂsÏùpÑÿºi&Ž;Í|9ýŸ¼þ:…Œ¶ðw><ãë$*y>¢þ,óAûÆYð¿nGš#Ú7œö>‰h|¯“óá|oľ•œk"¦cíÛ‰ÏUÇØ7΂" £Ö;é†0%X›±Ü–æÇˆ6ÑA´;‡)ÄÚ$Dû>{£ÕI€kBÕÕh‚ûJ®Í‚«§Ï\çl¶ª©5.hðÝ Ë+|ì«-|¼ÁbJc‘êµ0³ä™ÛiÐÆfMT—ÙÝý:˜.b¡ÅåàšVíÅÇJ[\Æs"z;IàaeTë4M'åØ9ˆ°9¿ U]¾È©ÉÖi ÷”KÄzPr)]{Yq»ÜäÈ­¬eä :-Nê¶Q¦3Cÿ7J Úšm¸`&½áäÅÁ²:«{Ûë^MOl]—§ŸÊºßÆv9G¨‹Ù^ç]$štÅ”ÎΙG²~)&E’4O4ç)ÜL|¸¡Ýâ'"ó;Ë¥øiôž­¿É0“õH„Œ°ˆÏ¬'²B˜È{ólÉ4Ö0X ˆ >"ìßdή§¦¤kM°Ô#­¸‹Ok xK/þê5²!Îk²¼géç=Ö[žzÌ)oWÚdßÖíŠd€È Ë.ÙºËûx¿È>®³ /¾Á3ïKoY^™psà8VwáŽÖxÈÌÚØòýÝ5êiÝKoË R.ÞÅøæ-^"ÃÏšB`5»‚Ø2£•sÑøb,†óÛ0€_X¦pˆÂiPÒŸÉ$ß\1Œ¢—¬Ø³¶¼t\OóÄxŠÂ#âÁØŒpe²0gôvApRG>ëOòaÂéÅW`uÆLŽ)¡—pBôVèXdãU"ä5ýC/yšs½ ’d‘3ŠæHc&û×kåâ1ÔÚÔ’ˆ6ð¥>y £Õ–gòìÅr˜å¢n/âáš% ƒ»ô†’G»¡Õ††€š ffÔ[² Î5GÈÐ÷,>ØÈRâêvÕpÔL-y 6ܵ_Aà#Wëlí”v]ŸD •€eäHóñ¯‡úE[¤È%'™›$='õí‹*4•Ë«að4ÓC o[å[3¬òÆBÕÓl|Ï&Ákb±·*úXa‘ˆ¥Îžd§û8¿Ùr¨L¦ß ,û¢ †ÚB;eÍV]òŽÎX r>Ý?¨È’ZRª’Ë-ˆ«¬^nSÇ Oà Ý3ä—jØIˆu;Œgä%œî% ¯§!½¸wŠõý0`œ-ä ¯Ù/2Jr|Û’Mã4‘½TBÁu3ýJÈ0µÒ-—ê/Ã}ÀÔhw vÎÌ‚m‡ž‚+z=†J~ ÓTUâðIâOh ®Ϲ«ÂtÐ×2Ñkc;¼GÜQ¼ sMí› Š@pɹf¼_ç¼û]r®%¨W Ö†ga9ÎþÞWk‘ÎW¾E]ÍiuüÑyÌV‡aMÜâ±!RóÙ´ùú@ >éIƒ[UÞK?#Xßu-:‰ë|¼šKcAú¼Öj WÆLèw‡ hPs•Z•ºVË8U. #`ŸG¨UjsŒVq›eºïžF­Vðºf]c“BI#©£–ÀªŽ—ô¸¡ê¯à µä`ÄÀ_p}5¼§›ÃþÖJ×x»/eÆúfÖK—'Y3@‚ZS^Z û|§•Öv/ÂŒµs\ôiǬ}x±¤Ùç(­°í´P'¶Zúm­ïO—¶5þÑ`{iÑeµvG¢h¨8ŠF3ŧ Ó|ýž³Gt…$$…å?ÐëÃç³q:íîäòľÒǧ-ݽܥõjñ,zqŠÅsè3Dšóϰ¢Ç²FJôÅ– ¤’ã¥ÃJ‹xÎb+‚æ€Äw[d¾C™^ZÐiÌÈe…ÆbFEµ§å46=–»¨MEXñV©ïÇH­™ÜV±É·åãWÿA>ntÕ}{>–´û?%cªÙ08ŠÃ਩[åäÓÄ,ÿîÿƒgåO JÌžó†I~÷geCY9þ#+¿¯O'³Ç” endstream endobj 96 0 obj << /Type /Page /Contents 97 0 R /Resources 95 0 R /MediaBox [0 0 595.276 841.89] /Parent 90 0 R >> endobj 98 0 obj << /D [96 0 R /XYZ 73.835 785.063 null] >> endobj 14 0 obj << /D [96 0 R /XYZ 74.835 472.709 null] >> endobj 95 0 obj << /Font << /F72 52 0 R /F74 53 0 R /F35 32 0 R /F40 33 0 R /F15 35 0 R /F73 54 0 R >> /ProcSet [ /PDF /Text ] >> endobj 101 0 obj << /Length 1707 /Filter /FlateDecode >> stream xÚÅYKo7¾ëW,‚ÑhÍ÷rƒ&‡I (PćIŠ$?%r%5Nþ}8>´âÆEãÚ‡õ®ÈáÌÇáÇ™!-š‹F4¿M~=›œ¾Ò¶‘²í­UÍÙyÓ™Ö‡–ÎÙ¶ ËæíÔŸ¼?{}ú*ü,ä”W­ö*¨As2ÓÊNßœÈéuxÖá¹ Ï~ÏŸÂsA2±écxVÐä¦ó=uÍéµ»>™…ÖÕ‚%ß iÂkAÂËð9ßãà€kòòlò÷D¢‘½lµvÍâãäí{Ñ,CßëF´²¹A¹±ºµF‡ïuófòçD”1¢æm[e;š­ ø„µSÙ°µáQðáNfVš !§ØÞñ‡³Ð¡I¤;þô‚[a8´ ÐØá3Ó¶÷SïßÂk0-…òÓžJ0úŒ”ð ó˜IÓc «»«‰X5H„'x›Pi–Э;4ÝM%´‚6ëp@€u g(Yª .•S/¢ž±8D+h0(2.NØuÙ¡ t:&'“Ð4ë€Ë0 8Ƭs –1ý!p äæŸ_ 3ƒwÀÿÐj Äú‡Ú ¥è&üùEAÿ¬f¼/s‚É{WÍäN˜§i™Eè8^ ÓÅuÃFvœëÙº{S[™Dwôx`Å¡Ñ>Ѥ˜î6ѽÜ]\¹7ˆ®v{‰6’]¤£b—D>˜hW—„vq›!,‰«[Ý2%=«îÎÉMô?YÆù!ÖlÚ’ñÓWò ,ʵÎõ„å@?Ÿ]Æ€7ŒOÊ·Ö›‡!øn~ àÔ6<; Øì"!‰ûÿzV …oµ“Q# Ø^0I1f: ñ‡#öj¸¼úRÿy÷WK’ý@Qº7 â&Ì\83ZOÿØ4J—¬¤°º–¬÷3¿— l¾&9G/½+¾—´»¤vm–ù€f—¬ äÞ¾5σ€ÎØÊ5H(ÈOEŠ£¶yñyÁ™-Æ%j¾Á%ÜÆ>ßì8p¸`Wn5û ÖWó¸’¤òæ$°rEëLööhûÈéäYÕyÒ ÕtcÎ=˜ð¯‰.ø›ü,}F µíÉëøÀÉRt­­hè²\ÁT\æì¿ $•ò<(Þ­ö5òËζÆ%öÃį jx£jÌÖ¦u*•,ÑS;¬%æìŠ`xs^3eÃÌ]wdé÷š!ežŒ¢Oò¤a¿>årÊ”#fÊ÷­Ô:|èÖ;®¼ž‡È¡4:–ëoÛ¯7Æ”øÄ®Ã¹s²{B]´KðóqÁÇÔ‘ë)Ç)Ö…»²ækßm8:yK†ômÙ fÒkdg`‡íDN}ü€Ÿ#0*f  €¨Ÿ;Âó:^p2…»N­ÑêaëÕ’ßàþNiƒÜÆhÌs)é,¹˜ÞL9_¤*ÄÄ Â$Sªàr2 ­˜4ú•Ê5èigI=¬™b®ñœ4€X+õµ­Çi¥Š+‚æ2H®Ä bRÃ2Œ5Õ­ "Ü]`µ¬˜‚ÛXŽˆa½C+ÌF «;Äjcòçêå°º¬G~uU¿êQ¿bã~«ÍX;Æjoãk½˵¢g¬G~•T{Ö±Þ~)üêG°b]¨,ï"›*½²’瀈{ I{XûïaµÅjs@¤ƒ“ÊõªLy"Gç¼ ×ðæ‰ˆU±b=CĦ†¸«"65Äè]±èá›ÈÄ+Pñh æª¨ìŸàc)… €ä W#»ÿ¾Ð\à¾N®•i[ºáï1U;V7¸¥Y ÿveôâ®ÒÿÒâûåÙä‚c·Ž endstream endobj 100 0 obj << /Type /Page /Contents 101 0 R /Resources 99 0 R /MediaBox [0 0 595.276 841.89] /Parent 90 0 R >> endobj 102 0 obj << /D [100 0 R /XYZ 73.835 785.063 null] >> endobj 99 0 obj << /Font << /F35 32 0 R /F72 52 0 R /F40 33 0 R /F15 35 0 R /F74 53 0 R >> /ProcSet [ /PDF /Text ] >> endobj 105 0 obj << /Length 1974 /Filter /FlateDecode >> stream xÚÅYKoÛF¾ëW=Q@Äì“C­›´É¡@Q$9È ‘EG”ãèïÎc¤¨$mÜø`ñ±»3ß|3;3^Šì}&²ßf¿œÏž¾¨T&eÑX«²óˬ2E­mV•¶pçëìMþb^«¼›Ë|ËÝ\UùÝÂÝݺ¿›ùB+›¯Ýíò?ô|·q÷ð|EÏt+óvþîü•ÓjR­RU…”µ…Ÿ£X™oxî¡REÙH?õ5Ê|˜>Ì­Í—ïAKAK)éÒ¦*„´~msfÏÏgg Od2š/ ­Ëlu={óNdk7ö*…ÌîpÞuf¬.¬Ñî~›ý5ûs&RFØ&lam“UÚÊV¤hl?»ŸhZ;ŠD­ó›Ö=ìç 7M Uh ?—ħ•&‘niapŸaà¬G/¸oÃÛ×î¯ç·›5_D¾G¹ÀlËo÷Þm™ƒéÂÂd i c,٢ݰ4îG¡&7$EºW ÂX¡à¦¤xQF¸Ÿž;LÒ0këoR¨G`@40E;M¶©P#_qVMò-€q"”’¼ìœC˜Ëf}3è.¼ˆ2"Ìô0ÛÍwv4h/¡1Œ¹‚Q>f3Ù0i2š`6š…˜u0&Dh,cvPPêCa¶'0ñ\žâYŸä¹aÌåÃ`–n‚أ㙆² NFkx¾ Ä×i̯bgIÁ“+[Dj-­D¬âÖúÖ¦à½g+Æê‰j@nÅóõáˆBøxÂÍmÿ3V±6_Âj …ð^$o#VÃ~°r* Ìz·"¸´ "VÓìªdBŠØL!®&›)ÄÈF~ÍÒŒúÞH ˜"¬å×¢Öø¨Õ¼ACÔê€UÓ6@˜Y6¸Ô#¬*ñA¼-)»" u27°]˜Ê©Œ>БÌm©Ü nØÉ|¦ýö©j¢n ;åß[ž€Ýx²¤ý†ÒQlŠT¤9 ­¾¶ÁV°CõHÙF§Ø>]=êÿm}öÛ_, Ólû擹ÖßÛ5ŒÆ4CìÐwœw¨-ùÜ’IkTlò ýÚ ¦vÜ_¨óšRv^bí;§Â·^I°o¾ Í€ÛU•§PP%ÇUõ+]Ô£ê7?X¿=înÃ~îT0’Pwå7DZ˜”¯V õ®õ½yE¥Aú"WkÓéÎãÑt7¤›{‚GÓ-SÝõTT!o{xœ·× ‘©¥ß7.Ö”ÇÏ ðKõCŒb=êVž€àÍí…èOðWÊî£êW¬_ÿýO_ÈÁÙ‰ƒ£u¡*Cpþ€òthálG‡³%U6x']r`Tçw‹pZ¤òî/àJÝG.uí&¢ÐŽfèà_C ý‡=-VÌ8ƒÒðvµe0}oß LÒ-Ÿ´¸ Ë8×ÕgUúú Å5r9† X®—|˜Å Ôšvjô)Ç^cŸ2°/ÙòIÙžŸá}ïÑàÚ!$“:šÙ¼²–^@Kê¬y+¬@cÞåðî„w×ô°eøÁp›¯¼âU»Gꬤ@o‰'Cx&ÔãœOà„v!´0ZççWŒ·?Zé`I@~·¸ÒâaãåxÆäðhm”¢xyuË{´/8ÎL==›Šr)êB—þ€æïß3I×I€S_2bïBœ4mktV2‡=Â-ž“&¤¡OzÓ]ô)!ò·R›Ÿ·<—¼ðÓ\’TöÚaŽ|*»±ÆÑO-&?Qܺa¿íáÐ7œìˆäæÝO9©ªŠª¬<¥@T{ö,ayˆî:Ã6…ʯü÷T §w*áνý}à 8o>ùĨì}¥¬ÏŸmýîÚ3¥÷ó]ƒ;ó(i”ns˺,š²g0”8\¿zɰ§†-Q2ÝݲÚuŒÀ.:Ú;×Ü£Ö1a„•-…Î.nVÞ{›(.¡–_¢Yû$Æ86~p¼]ÑÄ@ÂdhÃ^ÝE=×¾p¼dSuS¹ô(*¿Ew1©í ý»c7=û¯Û§Ž2mÄ."Kœè–£ü8ÊC1j»èËq”¨y ¢d{pM9`¢!Kø¹ÇÁ)‚BÉß¼åŠón¡ÙI:A¨´…Qj˜w“^`?#_'YžceÍ;8UB2Ö„Qa¼'‘䎡[|E­ _9wþ9Õù ¿'ë<À æ{`+¡ÝòÃÌŸaCfYPPûØn£³Y»©$Z×EiB]Šß~Î|i›ÊŸÆ%ògÅb”8Ž) ü¬ÛJ哨–NØï²&|E«‡ÄF^{žAe—Sl”¶ÐfPÚ§mÆäûð%±*”ûß ñ°´…1.™sO '»ÒµggÀò5tºN(Rµƒîª2d<àüÀê+›ÿM—ë¹Vùí§ßø« .Üû{æW™¼»¤«CëÆZMY¤?Ñ»+‡½&˜/y{Þ¡á¾bL¦ƒU—ö£ë$…~w“IÎßÅ€\sfZIĈ£ü<Îä(’¢·Ow?%Ù?ï9|"EŽ]ß'ä´^ï÷ïäŠñ¦¥0¶ I˜]†PÒ÷Yß/Þ sŠ> endobj 106 0 obj << /D [104 0 R /XYZ 73.835 785.063 null] >> endobj 18 0 obj << /D [104 0 R /XYZ 74.835 158.888 null] >> endobj 103 0 obj << /Font << /F72 52 0 R /F74 53 0 R /F35 32 0 R /F40 33 0 R /F15 35 0 R >> /ProcSet [ /PDF /Text ] >> endobj 109 0 obj << /Length 1785 /Filter /FlateDecode >> stream xÚíYkGø]¿B±6sîšB›Æ¥Á”†Ò<ÈÒú ²”Zë8þø~×+­ÓÇ’‡ÕÎ~3óÍw#5¾«ñ£ïÏGÏO­k]4Þ›ñùå¸rE ªôE€åøíDOõDMß¿y~  l­ÑMá*¨hŸÎ¬ñ“W›[Øða:3夅Qw?kx®xþ†Ú¾Ç„•“øu;5õäÀ+Ü'ë>ÈwËk:\ó9 6¹äaû—´küíè  }ôú|ô÷H­j¬—º°¶/nGoß©ñæÞŒU¡Ç´îvì¼-¼³0^ý:R¹à*7$8ë ã+–È·Ó™7v²"æÂ¾ÿR^ñÌZx\ÀóžxD^i i$ΛiW8ç{8óg ú†3ž ®OAÖ½S[QÒƒÚøÌà—üZe{ºÞ¾‚÷¼^®”ü äõqÏI‡’yx6i_馇áÆã:Ò»ž\Á0ÛëÈ]’ôásêFU=av×1æP<÷&–4;$èI‘¬ëž]*#/‘¬eÉŸbG*#€FϾ°ïi&ا Z¶Y´%<†¸Iß–—èÇK¼ï49KÿÝi¶"¢[yæÑ9åYïóS§r§‡c ÊRó1爑®·AQø³Y‹ª^mVAhu}®ÏÉ&pv64}Šˆ7DõL+ˆk íß¡|ùmþ›Èc‹ï–ñ\ž} ãÑûeÆkGÛ$&÷e²QB-o­&¿ÇßnÌ® gwÈUŒÅUòn`µç±FK¸õMM–QÁÓÀ·ª]´C\²O¯JÚZñÖF²R/ÏE¹fv àBÓî9m_ùh£Ñ ;@MÒÐ’)ZŒ³…Ò;ÄQ\½ƒtæK‰"ø£ãÐF:Z…˜^Hˆ½¿c‘®Bd(^![@q9AÿÌÂ]ÀóIÈÍ’WÇ7².cZ„´m¶|žO&˜È]̉~Q×Ö zãÈÿé\'Ê.Ö#™n1VVk”c©Š„V•Ä“`5JL@‹Õ81Ñš7zYë´FË1þK¤z1¹ve²^VWHj£©†¬³‘ê…ÔF(ðl0Dª"µ|ŒT ŽB´š¾úRU8mEÖ:8’Qäwì{9©&úbÜ ø¨Ë‘`+‘àž-ÕT\¯ó˜vÅɵc2dWâø)=îÛ[Ù·7TD] ¯$"!×äJ$vË–xuC@‘ ¢h °dÜ1Û©9þ0"J}Ù±M0s_%ÛñÑvH}Å%Bë I3”ÀÊœÛpl£v>? ÔUò.޵hÚ%nÉd‰*MZ¥h¥ý‘üöUØnò05×ãÇ 8)¶i¶£\FCŒ5ó‹Ø ¬Ò‚ëPÑ{ŒX)Õ·Û“Ý3Üdøa`³¢ã宵 ¢ÜµeXl |Z½M[ÄûÈ"·õUáº2f¢º =Æ®ôdr©åç¡@ ú„PÍlS ­gpY‘ŽÍ &„ÍSN:`‹mÒ‹¡¤ˆŠ´…®õ×&âkñµ‰8ÔDì¢ó]UûfOR힤2.žÀó`Å“>ʆ'¾láõù•¨e-Ú²/‰)üŸº£|™Äɲ¤ÄEØ…RÙN~ ™%e½ÑB¤Í½QènRcÔ¥–)6F[²‘¬1jcO£­ Í#S˜ºésD ÜðaÈ’—ª˜k"7^&´Tmy·ƒ•äîÔ"i.!©ìÁÒ 2g§»ÈM ¬íëñç g³™Õ)²©÷@ƒÙ±²…U19ž…ãf01ZI]†Å—AQ‹på·‘” ‡ÎcŒðmæ{d«s1ˆ•$HÜ€ØÞç5@ÎN—Ю¤"Ït[Éš\ËÕ$Lí” šCV}h£]h“¥tÕv6ýxByšo)WœÊ%f\ÅXa*ɰýÅ×BãáæP‰‚d¨L)‹FÇ2…¢ÃU2’bœ®`Ý1î?®yu( c‰¸$…ãyxókÉ:‰·»ót'<ÀóMš%ÕoÛ“]¡Ðä²£ ôpŠ-,"‹Ùó¼K ¨ÃJéƒgrËL¶•!¢éEÛJͲ &ŒÙí¨K8Šsö™OZÈŒNöÅyÕvƒ\_n2oØ š‡Ù=áíÝÝ+_(o£Ö/;΀q˜­Ã²CrŠ&’Þ½;´Ë ò¨=i vþ´rZ‹Ú–¬±¶hêT‘zˆ¬ª¿ ÿôpµY ]oÀ—êªPu`|è6eÈ•°Qˆp†ŽêËø-Ra¤q–s+Ò\Kt¦öþ90ŒV…µUÞ£ÜÑýá}~ÝwËÄã ö/:†Jƒñ/“ð~}>úšÇR endstream endobj 108 0 obj << /Type /Page /Contents 109 0 R /Resources 107 0 R /MediaBox [0 0 595.276 841.89] /Parent 90 0 R >> endobj 110 0 obj << /D [108 0 R /XYZ 73.835 785.063 null] >> endobj 107 0 obj << /Font << /F35 32 0 R /F72 52 0 R /F74 53 0 R /F40 33 0 R /F15 35 0 R /F73 54 0 R >> /ProcSet [ /PDF /Text ] >> endobj 113 0 obj << /Length 2167 /Filter /FlateDecode >> stream xÚíY[·~ׯŒP‹&9ä\Œ¦@ZÛmŒ$h(äaVí YI®¤õÆÿ><7^´£‹¾öA‡Còܾó’ÒÓÛ©žþmò—åäÕ»ÆNQ÷vºÜL§ÚÊO›Ú«ðb¹žþ8{7oíì07³{þæ¶™=.Bë!|>Ì•õ³uhögø¢çÇmhÃó=SÓ̆ùÏË÷AªË¥Û(cÚ J|‹ËšÙ–ÇZ«êÎÈÐ(ÑÌV Ó/sïgý-HQ45˜’Oí´²]#sMh`ÜäíròŸ ¬©§&¹À¨ªª§«ÝäÇŸõtÞ½Ÿje¦8n7u¾RÞU¡}?ýaòω.¼êƼZye}CÒÿ<_x[Íöh'`fß„ÏØ ´‚}¶¥¡ ÍÅçÍÓNþGúñ¡GSóÕõu`þ¯¯>Jô‚• ã”sþª%}¢ñŠW9³$‘²e ?iϪ­Ùt}9®íËB›š´ ¶íš.“øÜãþ¾¾vSUf´ãI'^°ç  ‘/.D¼ø½å÷<ð1|TŒdòÊÓåÿÎ ½Íb÷œ˜ª®tdQ«,È'üñªxè»Tá+¶Ôø-Å×!¶fLŽì†e ,'A¢„˜…Ýе¦æ<F~A]mh¾æ\Ð¥"¯Þ9çgHuçºé"ÐPílb–á8_X_wL*üpÞ­ySÍîÇ  Vó^ph{:s/¬½ÿÎÒÓ¸ìX±¦Ññìæöó2&%eäB,ÈÝëÀxÍÖ1àˆ.|*x¡lø‚FM/¡Ù(¡kx"™¶‚Ñ0Zî5¬nÓ„/Æï‡ÂÜóÆšÎPt[I!A[·$HÉ’8gŒ òGâƒëu w“ô‡i™þžÍQØåYSÝ€þæ^˜½ºCÙ(?(l Ç ÄÔ™¬àЦ[I†t´¤azE+ô˜õïZáÄ p:|ŒË£àuÕ°hŒ¬ækœ@>ÿ ó0éâ‚äð+—kˆB0Á.1¼êoLj´ZDw¬bFhš ¹Z,k Ñã- H°¤5`DEÎ@¯GVcŃܖB1øïoss*€;ýÂ*d‹a[Æ2röpÃõ±xrj¢‘¸‰]ò¡‡T`BXkšjÈ•—à©¶–È»ôÓT1FÑËlªk$öØÉ^®;vO ¯;F¬©%ªÁ0†`?—f8YÊëR.‚Fqšù˜fyò5ÛVm9y¾wnžÍô‰(Ñ•0Âa9Æœ(Qå¹SK®£ŽF€JÙ‘×" \ÉÛ÷- íJµ2N,pï$€¤º¥'µ ïR­h^ñ×cg]Ö¬‹‚ºãOÏÅüÓçÕ§{ʼ”Ñ”¹Ï”SѪ"­– –ÛŸXä¾{®‚¯Ñç•'W:~‰;L¤±×ï`áI÷ Ì}àÍK˜¼·ΩŒ¿IŒ‚ùNTó=¬²’ÝÅé5£jÜGpÍþ­@q0g Ï¿ÐÊhên 8õƒì³âò€±Ê¶]I¹© œf ÙÛFÒ·\Céo4"(³ò]CŒ\sæ¹TpñÙ9p 3ZÂà(G%÷CšÛLSsgÃ9‹ yˆ&ˆïVtÄ{Ì­ËÑ#Züß1ùWû¦Cœ’°^ ‹&JBR²<·áÆ,áÈÀâ9¢Q¹)“ Wõïp0ð‘÷.nš/ŽÀá±,†ï!!‹Oó¼¡[qºMÍ‹EN½C^’›T”r™ý¸{FT7¢64løˆZáèsÒEìãG<ƒKß^êæIq$„Ë»xü+ô¢ÈªgcNózôñ ÃFáEÎOø  ?iãX­ JéËpÕOÉËÇÌ’“Üf0qáüÍ‘©a—ÖK' à‹XÞÉÙduÏ&­³ËíehGö^Q£§êˆŽi•Ã+7V™®–Ë> endobj 114 0 obj << /D [112 0 R /XYZ 73.835 785.063 null] >> endobj 115 0 obj << /D [112 0 R /XYZ 74.835 261.069 null] >> endobj 111 0 obj << /Font << /F72 52 0 R /F74 53 0 R /F35 32 0 R /F40 33 0 R /F15 35 0 R >> /ProcSet [ /PDF /Text ] >> endobj 119 0 obj << /Length 2166 /Filter /FlateDecode >> stream xÚ­YYÇ~ß_A0ÀEÄÑô5‡­Uà yƒ°ý@‘Ã%a.¹&‡+ëß§Îéæ°)²f9Ó]]çWÕÕ½åäaRNþzóõýÍË7.LŒ)Úìä~5©}ÑÀH]…¢†å䇩¹5S{ûÓý·/ßÀPBkSXÓ+¢«ngΆé?N@¿…§‡gÏ“|w8_M»ç[ÛL»þE’#ïáuů8ºŽ ŽsxŒß=®ü@ŒgÈG,C c‡þ,P…ƒ~‰$ß ¿žÆ‰#¼ÁbƒÞÜÝßürcÀ¢rb¢/Lá\5Y<ÞüðS9YÂÜ·“²0“÷D÷8ñÁÁ;xßN¾¿ù÷M™º·ö9÷ºPØP³ßþr;«  Ž!µÞÃSc؇sùCƒuÓ/ùç3ù›xß_ þ vf|á}XW¶©‰•†a#ìò"xìKxîáy Ïà¹#$7§åBXle.¿<Õ¯ôsUU“nYŒÌ4~È|/ï×õ»åUbé³P}ÆÓè±"_ñôQd¿YÈ!p æoDËo¢WphɯŸ R~ÎC ¼~fRy®ÈË7¾LXó¾Ì,(g+‡ÞéöPµÓùC>ú¥ÊÌh@©Årpß,Ï!ùUÜ·OÀó+N|ÃŽÙ2„évþº¡Gz'£ÈHm…Áþ.h ;S R÷z4¾ëA8:¢…ÇáDaá¾T<‰¯u!e…_,Å:¤ÆµèÐÊð¨©Åº §Ë@̘I‹š@ .®lúifJ¨¯qáÕ¯5ÆâEŠS{"n@$ñ –Øer-ˆûL4 ¥&†±“T¢ñ Š*u†µà$ÚzúOÂ2-E©¶ ›„Q·ìÏR!Qé×Hºç:Ê#AÌhÅixe2¡úM3¼šþÆÇø4>ȧ]}n‰§ˆ çÀcä¾² ðl"\ÙPuÏbâ‡yeVu@F)Áeý‘–ô/鋸JBo× .TŠ”/ÅÍ¥èŒïÅ08Bq¥Ž=4@ ™RиVƒ…—@ll`Eº¢®„]ØŸ[Iyˆ%a¯Õê a_î©v±¸P˜¡j2\°rÒ—(¶pÄõ'­4ŠÒÖÎìœ6if{cì0ŒE£Bßø2:ÚØ­øôãy4ÖÆw¥z¿æ‚€¼2ÀÀ4«‚KãÖ(«"Äpk¦µªE¨ ª™ì­tÂMk2±‘io%ßQG“©•¨cÏÕiZM¥¢:†ÀŠutÊyšè”ʪU›k ¿šþœC”…YÑ5c5 QA˜­¬.?ÓnÈÓF‚Y—ÒqžµOåùÆ8Úµå™KÇðá÷ìÜ×ú3Àâ7÷ì‘VØùÝî¨íþÙï$¿¸šÚ÷Ôî\͵7ÈxOFb†Vµã!•s¨>²¿åÊ/x-Ù¢ wÙ0¥ãmå²”QÑy«Ü°dsyêN[±uýìc Û´çéAVén@•ÈQ:’ ×qªešø-vCu99ÙNÂÕT÷R¿–g¹‰‹‹Å{TÉt'i„})«5;j+¼)*ýhAç&'è{ŒÂ£9)šœû‰q­ôybYD½Œ 3",´ ×@™Ä}¿aŸ'8©ŸmS4­ýdœ†OÃé[áü™í$9t¢Spü‹[\ ÙKëœH•9’µÝœãΨ>bSÉ4PŒÎ¢÷‘€4 ·O(ÏYX1©:à‰º†“qðXß»¶6vY1‡å-“Ÿô€\< ;‹dg†rí§ûÿöëŽ_0FóǸ®Çer.vÃ(&*­§äDL¬ÑJÛ¥· (gp”çãB“Ô>sv_0T…­Ú諽†X¯èCûɹîϽHî ƒIø³T(ž’º%S­xÞ»9Õ/@äš„_Mæ¼ãC¾+bEÐ{\½—-i;œ‹FpŒ†ÚÿL^ˆïù•Jêéì2#DÇîR«'Ñ OŒÜʳGñ?; \„󾆴›hðq8vw18sTk±W‡ê©÷AÄ|¸m,dÉÌ;7½;ã•Ë&ÙoÂ—ÈøíØõÑëŒÅIŽé¬ý  _ï9…¸f8^àL§pñÓhU”‚Hd«¤´ebÏ^êSPJþ;=˜ó] 9é~­e°[Òc þQ8ržZ‹9‡¤Ç»ôÖŒÜÀ½¼¼‹`ï–Ü"¬ÄÈåC®°ˆp`WI´è42\àˆ_g·.¿ˆÖ1JŒ©(a¡×DO"©Ë™§*,È$zì²éH ãêð$Ó† Ó³£ýp­\{Tßшhµ¦¨MÏŠ­x[ƒd*ûÇÒ¸ iʯ£Ù@Œ°¨¬ûmbPÃ8'ÙBê`Õɇ{£EäÜ.IQq~z­:‚®iGèån$õaÃCÒɫݙ†;ÀŽZ·zïkc¯wtñx—Û¯ªP8_ëÒ^™±ÐÌ6U*á„´ßé%Øæ˜cîÛ„A/IêÿJ™ÏHñ¶®ÊÙ‘aî|QÓ„8AÛ±‹ºjƒZ¯«ér–of3’à0¢{_dÁö|‹7[MÔó…ÛÙº€.ïwÆ[ÊÙEÌ+è\Ët=\ ÷*plNh []Ñb-t³:ž.þŸ@-Àa¸‰>/Àc¹`24U*øÐÅœzØ¥MÐ2¸ükµþ Õøý¨s@Âã¨Öö‰÷­7Eéš?–mÆ}Z¶ñ]p‚$Óªr h9]´B÷IEÌ&Km‹Æ7y5¾ÓÍ4Ÿ—ô¶¹ÈœrºH›¸ãQœIÕùN~õÿYT‘wº÷ò?´a+SÖÃÆ_r€„¢;'˜¢otàŽµ¿Ø‚†ÿ/éïÝýÍÿÅìÉ endstream endobj 118 0 obj << /Type /Page /Contents 119 0 R /Resources 117 0 R /MediaBox [0 0 595.276 841.89] /Parent 116 0 R >> endobj 120 0 obj << /D [118 0 R /XYZ 73.835 785.063 null] >> endobj 22 0 obj << /D [118 0 R /XYZ 74.835 297.681 null] >> endobj 117 0 obj << /Font << /F35 32 0 R /F72 52 0 R /F74 53 0 R /F40 33 0 R /F15 35 0 R >> /ProcSet [ /PDF /Text ] >> endobj 121 0 obj [761.6] endobj 122 0 obj [525 525 525 525 525 525 525 525 525 525 525 525] endobj 124 0 obj [514.5] endobj 125 0 obj [489.5] endobj 126 0 obj [600 700 800 900 1000 1100 1200 1300 1400 1500 0 100 200 300 400 500 600] endobj 127 0 obj [300 350 300 500 500 500 500 500 500 500 500 500 500 500 300 300 300 750 500 500 750 726.9 688.4 700 738.4 663.4 638.4 756.7 726.9 376.9 513.4 751.9 613.4 876.9 726.9 750 663.4 750 713.4 550 700 726.9 726.9 976.9 726.9 726.9 600 300 500 300 500 300 300 500 450 450 500 450 300 450 500 300 300 450 250 800 550 500 500 450 412.5 400 325 525 450 650 450 475] endobj 128 0 obj [525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525] endobj 129 0 obj [544 544 816 816 272 299.2 489.6 489.6 489.6 489.6 489.6 792.7 435.2 489.6 707.2 761.6 489.6 883.8 992.6 761.6 272 272 489.6 816 489.6 816 761.6 272 380.8 380.8 489.6 761.6 272 326.4 272 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 272 272 272 761.6 462.4 462.4 761.6 734 693.4 707.2 747.8 666.2 639 768.3 734 353.2 503 761.2 611.8 897.2 734 761.6 666.2 761.6 720.6 544 707.2 734 734 1006 734 734 598.4 272 489.6 272 489.6 272 272 489.6 544 435.2 544 435.2 299.2 489.6 544 272 299.2 516.8 272 816 544 489.6 544 516.8 380.8 386.2 380.8 544 516.8 707.2 516.8 516.8 435.2 489.6 979.2] endobj 130 0 obj [777.8 277.8 388.9 388.9 500 777.8 277.8 333.3 277.8 500 500 500 500 500 500 500 500 500 500 500 277.8 277.8 277.8 777.8 472.2 472.2 777.8 750 708.3 722.2 763.9 680.6 652.8 784.7 750 361.1 513.9 777.8 625 916.7 750 777.8 680.6 777.8 736.1 555.6 722.2 750 750 1027.8 750 750 611.1 277.8 500 277.8 500 277.8 277.8 500 555.6 444.4 555.6 444.4 305.6 500 555.6 277.8 305.6 527.8 277.8 833.3 555.6 500 555.6 527.8 391.7 394.4 388.9 555.6 527.8 722.2 527.8 527.8] endobj 131 0 obj [571.2 544 544 816 816 272 299.2 489.6 489.6 489.6 489.6 489.6 734 435.2 489.6 707.2 761.6 489.6 883.8 992.6 761.6 272 272 489.6 816 489.6 816 761.6 272 380.8 380.8 489.6 761.6 272 326.4 272 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 272 272 272 761.6 462.4 462.4 761.6 734 693.4 707.2 747.8 666.2 639 768.3 734 353.2 503 761.2 611.8 897.2 734 761.6 666.2 761.6 720.6 544 707.2 734 734 1006 734 734 598.4 272 489.6 272 489.6 272 272 489.6 544 435.2 544 435.2 299.2 489.6 544 272 299.2 516.8 272 816 544 489.6 544 516.8 380.8 386.2 380.8 544 516.8 707.2 516.8 516.8 435.2 489.6 979.2] endobj 132 0 obj [249.6 458.6 458.6 458.6 458.6 458.6 458.6 458.6 458.6 458.6 458.6 458.6 249.6 249.6 249.6 719.8 432.5 432.5 719.8 693.3 654.3 667.6 706.6 628.2 602.1 726.3 693.3 327.6 471.5 719.4 576 850 693.3 719.8 628.2 719.8 680.5 510.9 667.6 693.3 693.3 954.5 693.3 693.3 563.1 249.6 458.6 249.6 458.6 249.6 249.6 458.6 510.9 406.4 510.9 406.4 275.8 458.6 510.9 249.6 275.8 484.7 249.6 772.1 510.9 458.6 510.9 484.7 354.1] endobj 133 0 obj [514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6 514.6] endobj 134 0 obj [625 625 937.5 937.5 312.5 343.7 562.5 562.5 562.5 562.5 562.5 849.5 500 574.1 812.5 875 562.5 1018.5 1143.5 875 312.5 342.6 581 937.5 562.5 937.5 875 312.5 437.5 437.5 562.5 875 312.5 375 312.5 562.5 562.5 562.5 562.5 562.5 562.5 562.5 562.5 562.5 562.5 562.5 312.5 312.5 342.6 875 531.2 531.2 875 849.5 799.8 812.5 862.3 738.4 707.2 884.3 879.6 419 581 880.8 675.9 1067.1 879.6 844.9 768.5 844.9 839.1 625 782.4 864.6 849.5 1162 849.5 849.5 687.5 312.5 581 312.5 562.5 312.5 312.5 546.9 625 500 625 513.3 343.7 562.5 625 312.5 343.7 593.7 312.5 937.5 625 562.5 625 593.7 459.5 443.8 437.5 625 593.7 812.5 593.7 593.7 500 562.5 1125] endobj 135 0 obj << /Length1 2086 /Length2 13937 /Length3 0 /Length 15193 /Filter /FlateDecode >> stream xÚ÷PÚÒ ãn!¸înA‚»»û0¸»»CÜÝÝÝ-¸K.!¸;<ι’s¿ÿ¯z¯¨‚Y-«÷êݽ E!;c¸­3 #3@DNX“…ÀÌÌÆÈÌÌŠ@A¡jál úBäèdagËóG‘ó»MÔÈù=PÎÎ íb `a°pò°pñ03X™™¹ÿhçÈ5rµ0È1¤ílAN"vöŽfæÎïuþó@ ¤°pssÑÿ²9ZlrFÎæ ›÷Š@#k€ŠÐäìñ?Ô|æÎÎö' £…½³£“…õ_™þ¢yo³˜­‰ˆ ÈÖÙ á¯ó‰Z8‚€ï}÷`ú÷åZÙÚ¹Ùzý™ZØš˜þ%ÃÄÅžIÍÖÂÁ$%úï˜w›ÈÀÁÌÌÌÅÉ 9@î@s¦¿ ¨z؃þv²üe~×àãeog0}—ò±0½ÿ@ðr2rœ]@>^ÿtü/B`a˜XÆ 3 [„?ìïfé¿ðûý;Z¸t˜ßÇÀü××?é½O˜‰­µÇŸð¿¯˜IXVKCH„îß’ÿë¶sx1p°X9X,,lÜ.f€Ïÿòü·ÿQÿ·UÑÈâß§cþÃ(ekjàþ—ˆ÷îýGˆë¿'ƒúßkCøß òvïó Pÿ]ffàû7–ÿÏKðwÊÿ¿Ùÿ‹åÿuüÿï‰Ä]¬­ÿöSÿ+àÿÇodcaíñïˆ÷yvq~ß 9»÷ ±ý¿¡ -´°µÉÿõI9½oˆ­™õÛhá$ná2Q´pšÿkˆþs ïäÖ¶ E;'‹¿ 3óÿñ½ïÐêýQqz¿«¿] ÷•úß’b¶@;“¿v•ƒ`äèhäÀü>`¬/–÷%5¹ÿ=Û&F[;ç÷À»8€©#Â_7ÊÉ`ùËô7âb0‰ÿAï>¹ÿ¢O¬&å?ˆ À¤ò±˜Tÿ O&Íÿ"îw£?èÝgüq˜€ÿEég2ùd0þ ßå1ý«õÿ `}/ ²11r2ÿGÒû1MÿòŽ,þp°ý]ÿAú—ßÎÅñùï!fÿ€ï%þ°³s¼#{ó÷·òOÄ»Íâð]®Õ?à»^ëÀwÁ6 Ë»à?Tï©¶ï·þÿ{ìþTO¶û÷ûéíÿ¸ßÉìß_y[kéŸ&±³üÛêø¿½cyöÙ,ï*œþœä/rý‡LŽ÷p§÷‡êOÂûuü¡{_l&gsGÐ?:û~g7»$¼«sù|oŒë?à»6·\Û{ö?б¾Ó{ü‘ôžê rü÷ÿlÐÅñ]©óßïÕûªüÿýk rV퀼Á–uÁ÷5Bøn {“Ÿç(ö4Rh¼V;]Q`iª37o…GûÐÖvĨoW‰_¼ŽZ`ÃÚ”ÚŸ¼Ÿ â•göÚ–§±†¦ Ž„ê á T÷½_¼Õ¬ [Á»¥)r\>¡(æ}¼wp¯,û1º¸§´_Í)ƒø\6ËðE-Z7 xž"×8s‡Æ™ŽýÜuþæv={êX:žÁçø [¡—ö&kÌÂçÏ UV§\r\mBÈôñJ/á_IÒØK^%E±Ò¡QE¦„ú‹Íü¨Fìµ$Ý+|ecS[c8‡"e¨;3¡±@¥m áÑCk•ì.ôœz®âÙƒ|'¥®ƒ,ϨÊù Ç !+çEÖ°Ôþ¯ÖDÁ7Ô0]¿Â~%-q.ãæ rûÎR5|}óŒ_f5ÎuÖéõ2rG>é‚຿𙚒°…ËÒ¹VÕ:áW#%3úÎbN’Í cx’¥12T…þfÅŽ_úeBÆr¼vCºÛå­_>ë$°ªÏ·ÿ ˆ±¹ä ºç¼lR¦š‰I³ä‘îµ…“yŠ$cUÉ«Ñùv4˜)lŒ.0^!h\ÇU]bdT‘G…×fv]|§HÈ3Ù0S:ŽxhR-lòÕ{Fªlú4DRß-\µª| D&*zÆ’YΦ‘ßÁ8>}Õ-͈ŹT5OÈ—¢Š+7zLÚÈìˆC[!8Œ™•„´D–Î߬mÙ{kž7ÚH—¢öêVýv±ƒðÜ@·Û?½­»¥!Ï(RH­>«{&¿¿OÓÙ×Âöz^HàÒÚÍ©·T.T±ù® ±+ÆÃTÅ£dk±ÛxóÃD¿!· ¡}ÌЭâöH\¼‹ã"ìgóÒ˜…ÀÙÑɕܶ^Åù(ýbœæbèžžy„]†’IO5Ú‰Dl¾·;’…nØAž{J< £°íÄ(‹[Œßf0îmeXù®8ÉexÔiè|Ú|‘œËi2?æÓêÁçè<Ÿ?Htæ2ƒÓôø9jU$Dò,UcŒóÀ±„‘Ks¹¤Ô^ ÷r4ÞZÓ•õ3¸ µµÓ m¼ØvÁaµq£Rº6¡ò`¡¾¶©ß~ï Ýæà2ë⾘Ê"¥;B-/B%v( ¼ù­þœ8‰I¯ìA‡ä¦þNµºOÜkZ„üÌTÔHM~Á-ùôýQyˆZµ$¸mòcÔÀÊlwÚ3¹ýùÇ’iRµ+îúheÀg.íKŸÒŒµ8=º#OPŽ:¬Nêwx<›F†.ÚžMö" ò•oê¢Ú ÕI½U©ó«2IöÕH§y-M¹¾ª.w…ç‹ Gõ,˜ñ$¾Fé”\ìAÐчk³Ýƒ°ôŸÛèÆÊÔűûlƒl5c¸ÃŸ¬Í  O`¬Û1„láâ6ŒÒö›oå{†‘ç»yÎs‹uRÉ'²Mx¦-€˜‹©–/"Or¬»†ãŽU²±W<ù8»õ#›•]¾›¯Àô%9Cø’͈$¦ÜüŠ¿«}àÄ Jo+ù¡—÷S>&6¥ÀîÁ±'t~òA¨ÁÑIãœ@?àZ}ÀEâã§—ô­Ò/Wã¯öý€¾îKÅ$‘Í€aL75“Ìzßg“f±ÿ0™ÉæX›Xz|=ȯ]~:¾.03ñi[QÜæW ™ HTñz&­$œ³ ?þÛw‘ëgs±Mê!¸PùûXjn¼âlŽE¾¼uMö2èvŽ$±çHš"é05bDÒ·1å]ÍhºËózš¹8mID UéÏ+Ö´-óãøó‘u·”Nâ‹'vE¡ßÜÌ»ý$Ø,Ä|‚uP mŽ=ï•1ïÉ çž!uÄrؽ>† Ø{*3i<¢0À·”HAï7&ؘ'”L/©:ZütÒ›‹á3E˜]Ôòî;)Ëö~Ð ÍÀ»1ұד¯ò϶¤|&« ÊÐj@tˆET;CŒ2Hw~F4&œÌË¿Ò6‰=/5KŠ«‹Šàw—?)Í[·ß‰u‚,Êl•õ_Q(4ç¿Êž³ûr=w”S’‰×¶*Í{.M§kƒ0IL ûĉó½Ï ÷cÌ¢M7)Œ<ÀPt¶W§óðËœÓÍKÈ÷y½ÊÕ'}UL¤pn–6ÒÛIh)ùØTfˆîº’…$ òKq‚ŠíCÁàŽ/Ù?ƒ´¡z„Yºç$˜Ò߯Rl¤2õÓΜpZ•pŸÛ uN7£fpì-r›ºPW>4Om%|}Ù…fùßÊi·$?h¹F]d:&?ûMøž>ü”† ”àã¸(„FTEòt*n8ñq‘5L’[ö/ë"åÊ’éšC„<½;h¿Ü ýùÉCåuyWàãjHCÔÇ(J@À–»²Ÿ(Cžˆ‹‘ÿ >µ@ÏæW—–4ûÓ©?S»}sNù-"¡°O¹ÉX [ÎzDðì!ª+×ðA…[rù\éKÇB¦£éµD±þ³.GX"ÙΊ+¦NˆÖT æ–Ì®J¡>Aƒ¯mkj¥žæý'Ê|.#ä!ò×䟉ˆúÎLèËSÝ~Ý8ÅpWì-J2^4+Ÿ'ÀB4D;LøÛíð@¿WµÓíWñ,‚@¨‚Š_eߌc½+nÉì¡I9»e¾ È+jŽmx£ek‡gï|ÞNh(°e—eLXQVlo¨åçÔâª@oŽ~ÙÑ—.HÊå­ѪVÖXümT›u’'sHëÜ3 ßhºŸ\jz\è0¬LnvÙ[ˆ4LÆNœÙÄ8ίí÷m<{Ý”]B¼Âê+µ×AÿÏ\jãëºHºyÙ/q ° €Y›ýzçD‡>™çù8dÐ蔞5¤R‡ù‹ÞȹÄüöbfÜñµ•¢áRœ ÷Ù ­0»p=Š2OÎgùGÉ[¶¨Õˆ¹áÝlGþ Þ;‹V!|ƒ®ÓL;qƒ™T Õ|ú|Ô=±­aÞ£ëæ kZâÔ¯»äd'Èœ3^¯gpÏåÛUMºâ®7jÇ„ˆÝþÖ§îÐ:f óh'!–œ¾…è"ˆó˜k¤_¿ê[Y‹Ôy ¶­Q¼ÓLSØ6i,ˆg(0aÈ¡¥zTúbÌø^i;tž”®[Hå…e‹Œ©¦Óº• ê=•$Ñ\[dƒƒ;³k§'©ƒÍëÙìE¨Ïů*<%øWÝtИY¼¶"\R0@H« åè˜Ö¨jrÍ31â…ð¢àÔ Âéï̹Î>Éå±Oý&€÷üÅͳ3^¿eùjãèz“®xC†Ìÿ5ÎØßý²}Ç஽hL¶¿e Ñ£<´,!¨æzŠuFYÉËôHIä§Üä{ÜÈÒ­ïòŽcý!I5${ûKöLÜM{´©b¾]ó‰·Ü>} Ê)§Ó /óå‰Ñ³Q¦ˆ™´ßã–õ*>³¯'Òažˆ3N¡‘ M»‘[‹–Øð%ëõ¾žé²^Bº`ʳæä4Q<žò*Ò²?=,õ³¾ %l" ¢™Uö–цÂ|Td†Ž „‘VÄò¥æ÷åÞ¦ì/\wíÝÖ#… ‚î¢é Óä8Àÿl)?h$¶\WJñ…z{цeÍÌUàÀŸ³ž+@ò6ëˆäõªQþú¥×2o[°¤c¥ËøçÛ^Aëpç\ñKËýú½› Ê3¯+7%:íHé¯y-t­[‚ˆg;6¶ô–r¶b¦RH6ˆ%Ê„ÕjP• Z(ÕŸúÒîåC°Kòß2eÐ"yðõ „Iʱåü¥1#Ϩ–„o­z¼øGú’öÈ™Œóv(€Ê ¡[¶$P´A;—i¹ÜŸ"‰×äQ] T3§±4!SžÒBƒ äõ)‹]¤¼o‚éÞ™KIyÁãL°U`Ï+Ëû8«ÔÜnHÅ–žü§Ï/>‹Çöó ç Î膸3c€}ØyAL½Ñöò üÒ½NÌŒƒtòil˜ªI¾¡wÂÀˆÂÌÙ·Ý/Îxç—ŒÆ|ù‘ZŽgè%øm^ÔwùÌм[z)À4èÔþš¿éù r ¸“ÚMÇd-œ3ã‹érǰŸƒØ%¡ùQØî;ýñ0$;ZÀ¯OÞÄ\—œ·¨Â™@U¹‡CîS¯è±_Ë´l¶“–W„h;â}¨—Q©®%o3¹m!šÉ÷lª‰ 1¤$*û„=$£9¢Û5‘Øà,‹&((ÏߟÄÄPÖØI»‹øt~Vø@sùsQ,·¥ø[1±J5YEPU»Aó '¢ßzójmÇ#Vu[÷ˆ{-—ÑcÞfìr#|¤¢ç²>"È×vp¬1ÄŠÀÁ‰ª9¥GáÄ]õ¾TÃýU§Ã:\êuß2¾·ïumPOù>ÜÖ™:=Ô7)kb;!q” 2$ŒÌ·4…qh¦ç7 óW\‰01Ö3¶irn{š|ˆÞ£ÈÝ÷¹-çën8¬díßy¼Ç¦;8×s—Ø%j ç­/|¥‚ÁÄb m®ç/Ò\+#ªéûtÒÜ˶FдB›S6 d±›{¨‰ÙÆx …¸Db}5é öSº”É$v…Ôœõ"E×M»Hà™ý·i\6 x^ïbצÔà•;jÍœÕÉGÖd7Q\ÍàšÁ]Žà©iRšO„sÆ-+t\=nÎkL²Öê¯âÜÇ£xJTŸ<,äsf'Ë_^ Òz)nO¢ÿe2¦{ÕÍi÷%å¤z~¹çW+žXß'0‰´Ù(¦ Å‚þ\š:9HhQà°‡&èTœíÒB%O7ÒLgˆä¾"„1$ Û>9È;þPr2õˆBÍÚ<·9¸]½Èññv>ãUâJ¹ë…®4ªÂ“Å—ç®—ðýLg4Ùi”Ëô¸ÚNÝ€ð†Ð ù}îÍ‘»Ì¼ejdŸp;ß¶s–QÆ—omÌ=eÛÅÃHžìB ˆýiÚö²z2˜Ã}„-›¯f¬‡ ×3®ruäíÜ∸®ÝnóŒÃo;TØÍhlµAë˜>bËv ¦S dE,¹ŽN]º¦9J×ÃxŠpBNŠâHG¥‘5¶H“Ó×±ÆlñŸøÒo´‹ÕE “?àôÿCvÔíÁz‡‰T8¢Ê‘ú[“Š«ó~âå ¾ºMÙ/£=Šª3½êV=ùŒÅ³¦8d n{³~=ÙÊ—Š†°ÂYùF7,3¢¼¯w%±¹ãú&;´ßÊŽ™¹úh}ý…ðìݤQòY|Öj hwC‘8ñE0a4 Ô¡*GdœšL®iÝ›þv¨K22cÜ·]ñ.€Pöµ<¶øD]ÞÒ¢˜žæíý-ÆÖM™0ð¬CßHR0œç.5ÖÕtr}³ÌPDÿƒT¥gK/ç¼Z6Ífyi‰|c·ƒUV¹mþ™ØüÑë%KèÁÁ#³r¦¨ËF ÷s4"‘&”áò1 ~茋ýwøÖO0D¥réµ]¯n×ÁSŽ9Ûp~‰ì¯u1¤Þó½1î÷ÛkX¢¼;ÔG¼JU?F›T¥X—bZ80ŒÁÝZÄÕœ;AqóNýOÄÜÏi¶õÏ+J(}…õV‘ÄHÖ•¥­ÐWä–ÇH÷o—X25 á»Ö©ð°²QyÒçdÂj\Ò:±Ø“¯LHCŠÎ¥Ù‰ƒ‘'fÁZhí“ueZXÔ©K]±¤ „õ’‚ßYïˆdËèå=ëUŠ·”™÷Â-¾¡ °•´à+£qc @Ïácj$¬ßâ9F]V^¨G£íÍ_ªÔ6Ñ6³ßJysñ/É—a潫éÑPiǽ6¢Ó®&1¼%÷$xqï±æòñ$Œù‰Ô¥@_|Š˜k1&´M22MÚ]_‚`#~U~®r=°×ÐòŽ<á4gÅ©àôéU‰qÇþ2¨J²Hñ»[(<\á'Âôjž?Tòp†¯-|wŸX]°Ñf‚‚­~µ¾kj3%ð¾²ßjf“Z³¡úC1§µ‚Æñ}¨^ßÀQƒ ÒÁÒI»âÞŠklä2¨¶BîÐÞSÆ—PǪÝoÀ¹;å,])½°ƒÿ>¨t‚%z¶Ý æe\¿ßêö[ÏF—hGQë}I§aåÖo|ÏZI³’Oi;7².-¥âÐ,öYÎ3W×Çy•fdg/&{·oT”MJytEÕ%ô‡Ù¶Çâ ­´Ò”|Ù™vÎ_çƒ." aóè ü.bÄů&ú×±O¤“UŬéy†|ñ~ŒTêRæÃ$§j¢È¯ó²ßÔhò±|—[ìÅiÇŽAH¡ÛúÓ?ÝK?´ócg¯‹}þ.–«ÄŠê[öí'r­…ÓŇH‰B²Ý|óƒÒ(GäøÒÕ]‰ÜT(ð·ãëÖÇðïyŽfVö³>¼Z%¡v‚Еa¦!åª oO6²ø<äyåíÆV;í—š?å¢ÞãrÐYOä^éñiÁ´ˆ%pdWcµ~3:H¿?2Ö–]ìû õ–ºw\¥“AB©(=ÙüÑþwŒsµÔy-„ób²²x¼¹¸«ÜP­K<¡žvˆ«ÇÎ¥­f2íNŸ/¸EÚÝò²íÄg¶|Ê«?C…Wþõöóôwásò&¯½X½}Luú›¢ ¼àM=ûmÓíTÕjIÒ·ì³OÄÖ‰‹ñ(øîðMyõøwì4e*ÌPºÛ<ì*°s£Îrì!m±ºŠm©Sz“GJL¬{k½2çäG”§B–q/¯.-]8ÅH/¶Ü=y$ñ_¸ãìüÌyè•lîÉ>˜¾ŽÝó!&z¨›Â Äâ¸IÃ^Œ„…ö÷b«:½—Ó¥ÁäXgÇDÜ óƉjˆ9 ?—§=T´žË‰šÓô;Eë—³ôV¡iŽ,©I­ "—8Q“KR€vJÄhÈm™ô5û½oÓ+ :BçN›é»&®¾œTŸ¤oÄ„N<‰„¬ª’R ²WÓs±ùrÅw=õ¬2g8ú²£B 2{7“þÚøâÏ <Å|øÅçlñ2ï|~¸¦ ¢Vuœ)‡Te¦&J¿? 0ê¯^çÖ”õ­¹¢åhrT‰¨[gd[!aLݱ+Kï>F—ä{ ¿ˆ^¥Ö‰uøÐ ãPœ{X7²­v‘kõ·§ÍIûËõn¾BK÷})¸9¨ “Ü,'£ºñÀ÷§á]2± Ã £ö`'ñĬ¨áô9|ež9Í› €á"~Cö\è[µÛvê¯çœ;´OÜúð&ñ–êÍ9.²YÍéÚLhÛ=XX?êÏ‘áW¢:ȰÎɈŽ=bÃzjýÃ’¹ˆÉaÕr¦Êp›Sêܘڱ~ñ”6m³ºƒÍ£toí¤~B½O;­qHMgTTØ—älÅPÖ(;ƒóáZ‰~‡ˆ•ááÔ€ä(Ï%Q¯è_´>ë, ÃÿÐ%*îÏ·—‰ûJÍ»04 ̪å¯alO^›xý¢3漘ØwñQ2F*uÙ†R ³öõ¡ÄU1$‹Õ,»ØìÈÔ±~*ƒù·XÃÂ:qŸ–RÛügË4*c`ÍL&²X\¥Ø¯(g®ê[0€äL¢ù‚Lvto;êÞ”]vÀvF~eã4Nnzüþ‡1UpD¯+¢ò°|Hœ|–xÏŠ ÷‡7Ó5Ex?ü®¹çn!Ô'_óÝF~c%-ÖòŸw|û®¼ž›šå¯'g‰]›ÂVé¥gáazWìhÉœ\M¸ˆûá»qosFÑî-^o΀7Q|d_ æ× ÒªiÉAôж‘z "ï0õ²Ë•žÐdOºq bÉv®[×<\F)–|zQ{sþùþ ¾}%îcí±ÕÛØ!š©ÂWãpn Rðňc°I~å¢Õ'p.'RÒfmÉŸ!ÊìË¢!‰.‡N™F!AAÐ`Dœ(V¨¼?¯g3M;Ue¥Ù›ÐrëŸj§N©±‡M˜Gî‹V»Î˜ïÕUXž€‚ð²l,àÛzáf˜xúJ3U~]õ½àI –ø3­š] u ¹° QR67.½•²;U6küW´HxsPS®'d‰‰ fÆ}|T˜\DÝ¥UQ?Oþà ¦|¥ï'L…)š§2Úª&-Ý”…®íd96GÙ »H¸ï— Z©„ØYwúì ºá׆±ªw¸‚B¨/•­ä¨~ÉÛD|p9»mt}[£ûCy¿¸ÑR0fé[ù^P9†%×Zh1;n‰—Êê¢Â³¨qܪ«íÿHC•¹\b;$³\HžR'âwuJ˜kò‡^eN Ǻ’Å”w^ Yz.„ÂôŒ¯ÃU·—„j´Œê³.wl™€0F’rÖß!Ÿÿ%›Å¸‰¬g3±Ž§¼J ÑÕ£·B18piþ;EjœÅg•ª½c T£´ÎðV+ÿͤ³¯Ó²¸ZÁÓ9+àfÏÒ ЪFFR¢¶Çùµ-¶HÊ4éÑÖ¦*ŒÄ_Xýìù5³^èÖ|Äh"sµw×Ë14‘g¿§ W"Ô¸+íù My 7’S÷¢·lÌÇlÒgXeFÆL¨>‹°×ŒBö24%~‘Ûîµ ‹;ØGfϯ°7Ãgÿ@Ï^Ç"o ¬ª ÛtJ²THZ‰àødØgµDxN&LÉö~# F'Ôb² $®&Çš`<×°ÌÔT<¹ÓJN;'÷ãœ9 ¶RF¿Àm$k"F“&üNƒ>©!XÌ,% ÉáyŒ³©H$T!áŒI'ƸÅ:IŒÑN¶î§Ç<‘ѓҭÞxI$=UÏá;Àó åJ)˜) Z™ ‹Œ&ð`À©úš“.ìK»€Õà"·¿A çH0ß‹è>zæJU Œ_(ª$5}YrÅ:ö4Ô‚mƒ§6#mŒÉ°—-;(.†Žn«û d„dò’–@Ë}¶j¥*¨!ó"9H³ß_Çô•êeÌK‘sä5ïÀ1=êŸo ÄT˺˜R N\ÒŸ"89ϱhˆ%ž²är;Ëîh?[Üöàâ¤U–Ï­J]Ùz¹á}ÊØþl°†6*ÏŽ¼aì‹kË̓ұKVè‹w—ö‚—I Q*öÄêÁž>N LC˜Si40 ¶_qmõ¦àC¹o±ÞpïºÑéÍgLµ¬LÁ±´Ë˜y˜}tGø‘x‘ôYBµ¬.gqà<êfÂäZ ±UƒDïyä¾61ýÈàÎöà!I6¼¨Óÿ@²›}1À5GÕIn"•v€.o³b,XwD~K%ùe‡ß ý~—#Ë‰göÒò—nCCL±¸g*ÒeÒùý—²Yz-Ól¸ žù†‹ƒ·×5Rs£k/«°Æ7ºÆ[ã6„^«fF µÀ†&ýGÈN¢(l86"ŸØ ;Ežˆ°\vrwŽð#—egîy¢0…g9ÀNKŒyîgTÊožØM*ïÒÞUúÆÍ„é‡c/¸™î(jE6 ¢Î ÊR¶¿ •òc€t{†QnžòøŒxza³Èz9õ"C8{Ó†$²I¶gBCÕL-Ë=ÙïÂ}ßû&ãÕ¦%:7FŸé²†4ÆÛ™«Ï £ ›¿ÉB«¥×_•5³ð8“ ƒ§[O½ÒsÜÖ‘öô_¡Ì&fvðn5ë~Ò­ØçfM8$¬e0ņ‘ :)ð6< {¨8dLç¯KWm–Šm·m°»å(-£LwÛ®“¸»O/]N÷·‰Š •¤Ä®r,Y…V"vŸÙÒ¨ÖNVZñƒ;™ôšˆ\~K¦ç’·efÅ,WzSdŽqÍ7_t…œfE§Ò±GrÔ!rÆSÛxìêˆçZòœ#­€ß‡)³¢*Џ¦ñ ûÈKÍÒ#o…¤OP.«¦é¦mJ"­‘üÝ!ÚËëøÖi>^ & GÛüÌ@£F?ŸÝŽÔBÅ©$„Ñ^ý Ò9±#¿ôÚ:"&yÖ#DÜ›š¿‹(aøKÉõ´IeƒHs…CßIHÔ¾,Õml³¼=[ÎFXú—°ú£Ä…qJ¤Ð«ýVZšÕ•¢UèþO’ÆcÃçì—0"¹C’3'‡?½ÈíAÿ°Eub«Dª"N´þI\(ìÓÌa©kÚEÒýON»pM`ùu÷³]₸a±BCzZEþå…+%óÁíW_œ3œB¦rëéPà†ï•Ð8:1øíÄEtIÁXÆáwÁ pz0ÇÐÀü$3lÙùÛó Õ£¯ ¿&®ÉÞ#/\CYfü›6²“Î ÄÔy%ÉZÒ QÓ¤l~ÍE$Ç#÷&Ënrò=ÿQäYõôôå¼®d´âˆ¾,ïšÉÝPahK[ëO0öî³þØPa_•™BäX¢v£XÝžªÑ3p\Õzå'ÞŽŽúŽr™o1–w“WëÚ“‹82ÂÆIÆ{³ª/dÚ˜iweV·\L,ˆ6CÀ‚9¸RéýÕH6 v?à`qˇbVÊLO ŽžH0ד{å;W©yú>à“”»ªhÍYî^‚U#¸,A“ƒæ oÝ–7AMJ—M¤ªI´;ƒ[þD‰¾ÐìPLÕ|»è‚©#p/îQ\ßuß`GM›ðÁq:ipË{“Ë¥µ +%ü’Áã  °ˆë9Ñ÷rod™Ž(®YàÛÏbL~Ówëãtua¶´<€£IO-9N¹)" I²¬½B¿^–€7Ï—²OÏ2Øž—i qï–÷üÝd ŸWÖ•ŒtEìc!0„êŠ €g?£à•$܃ä >´â…fJp +“bˆFzák¤ÉÞXfwcç?=ðÁжžD:Ïàh¤ð./—È|NòÆ’(*”Îaƒ§áoº?*¸ùÜŦÞ%Â]N€-@5lwÒ‡xô  8ˆvç˜e¨D¦âÈ+¤µøRí±uÚ_¹Ù1Yc¶¬á€ú8ËÇè¯ 3X+¯àÓ’Ðü=± /±”!°ø›J49Ù¼®òXÃUÁõ[û©®Þ·9Ì73ÈËf7bu–pe|<éJž¸<§IUNã¯_c¾~$aéW`Øñ>/Ó‰oðEêë0xlBß Œ‡!]=X\WŒ€I ñÐqªXrt²×}â%X‚ŸÒÑŠ+bNTïÓeƒ°éìÓg5ÿîÊU¾+n]øb—Ó"¤Q2Xå3Ã÷Iðå×—Ýóé`¿vº¦—ŸcĨ÷d¦_ï¬ùÇ–#"5 äÜ÷Áý‚Ôq[ç7è–‘mŽ?b^%®1!Ê"²n P²Ô`GÓM!ôÓÆªqŠÈÑø žL•žûùkÖ÷0¢‘˜U*(‰H1š`„ÂW!ª0±«Q±,u)OoH§x0‚Ç¢#€ãdaîqëãå#/ÛC§T;CRUQ·1Ð ŸÞZÌàå¢ÜlÍÅ!ÄgcÔHµÎÀW}äÄëÆCÃð² ;¬ñÌš9…OÖM(ó2¤úu1} ¼Yâ@:ª+wã=õßã_"†&HßúX¨n]uwÜX¯É&$´“(ãªg/ÂIãožANL“–1!WÖî5²îÔ^¨ÝMOgð%\~•†hdÚ*úDsö<îo†Ôo·Íæw_XgÈåÉ¢lïvÙ[¬‹ŽƒÏn›ÎNš¨ý.8X¬l¶a'‡Ž “Ù arŸH°æ}ïû›¯©S¢x`ZÂJNô9ÔßMFt N}1÷º–¹ÒCá ë,ñ'?bõ”Ç|¢Â¸#w´ÓÕ¢×Þœº”_„o½¦=óAp,¸Yô¯ùÑ B•µ<ÒLÀr¹5!¹§“ó=Ûݽ ¤µ$MW0³@7Þg©¯ˆà„5a?ddþi ãÛ$¤@>ä&ü#4Úr1žØgR±-¬®×ߎô¨´ËG¡ÞRqØ1RÕòT (.º´9ô·iô„îúð}0y‹ @üºœÓ+(ËòŠxª¾»Ô·5” |‚Bи׳¾Uíe¥U¨ÝÏyW@ôlçxò¦²&8óYN„¨Âù :ÚH5„°ô'íÑMbcPôöÒ±T%Ÿ*ú¡Ö×ÕG|#Óûë—5}·pŠ#ÕÍŸDÝCÏtŽÝséªË¦¬pn(Ì„0±[)¸Ú!COXâ{W™ã6¾Œj¿|ìÊY}* ž~à!¦yr_ByÇ¥Î×Ù“×aüð’=Ü¿¸Æáœ‡½pâ‹td+Ö°‡4ÞM—`?Ž <ðÔÑhù¢8- vAÇÿÂUY{{p9ÑGwDbæÈC š}Í7Á“?Œ¾(óUAŠžU±=—kuß$É!D¶¢¦ïà4=Hd’¾¤Æ+‹Ô±lz‘ƒoÀü”êßHf]–Ö)Ü2Ö.C¢dïŠüs€u»Ï:7‰g°róñ# $ºÆlÌŠîõ’fNþeu›Lbñì^ä9J„S™âT§8VºaƒGD æòAŠ‚ ÷ëÙ’Ñ$•ݪüˆ«é”ánBø´°@ý¨àÉÝà–AI¥£¸y7Îãñä”òðÙßMZä+¯ýù€g³]YÜl†Ë“qQ!p‹¨s'M{¥…éÑu]ÁéeýU‰Kõ¡Nx8»ÑO}°Kòâ½/ìKp+54iÊaZùÖ¸¬âÍ7*@¬í‚…i¶ Ǻ&²e?”}ö?‚ÑÏtgD¯‚È)!¹ášñ zã&U‡ë©Ï “qŽhÒâÇÆÂyíKFvhím²9-´ûÚÑBòÊïÖÕÆ¤/”Û.§j68ë>õím3«ãeÎæx[ T"YT<Ý®t!I:«kpYxŒ¡ÛÚ¥Q–´Û¼½Å”V(¶ö2ç÷£)™=(D7pÖúÿôF¥xtºœØl¬ åÉÈ”q w~ð“a»=¦Çæ=LË–ê]¦lë9{„(iìϪ*o;;³ÁQ´>‰4·ºŠAbÍâBæÓtVüüLÐ`êU»F;¥1 ?ñÓ´TËÍ‘ üV‚FŸšÜ$ªER‰uþl”­rÒR­-‰fÙc‹î'V›öö¼õ@54½q:¾éݽàg+-Šg%ÒgYpgZžØ™©ÅÝZAºën'EEÕDj({ZMáVíÑÇ,Js“½ÖëåÆë[Ôcá•YÂyÁ&[õ?7ÈFB“¸çT¡b¯-^Þ¾UEVŒ[ +æfDñ‘"rùdÛA姦?éµ»³·FÍÀcíö„ò”»r´ß¶AØý„­ÌßïX£Ï²ÍôYšïCº½m§^ƒëidûˆìL[³ä B™eר]ÅÎâ·g›³7BHj–ÆhcøöÐÈ']ŸÉV3‘QÓzÒDz‚fömœ•óLuêð2mfBR'àŒå>ŸEqüÿ!öÆ endstream endobj 136 0 obj << /Type /FontDescriptor /FontName /BLYWAC+CMBX12 /Flags 4 /FontBBox [-53 -251 1139 750] /Ascent 694 /CapHeight 686 /Descent -194 /ItalicAngle 0 /StemV 109 /XHeight 444 /CharSet (/C/F/M/R/S/T/X/a/b/c/d/e/eight/emdash/f/fi/five/four/g/h/hyphen/i/k/l/m/n/nine/o/one/p/parenleft/parenright/r/s/seven/six/t/three/two/u/v/w/x/y/zero) /FontFile 135 0 R >> endobj 137 0 obj << /Length1 1478 /Length2 2341 /Length3 0 /Length 3276 /Filter /FlateDecode >> stream xÚT 8T{ÇH5h¡P\b²Y¬J¶ëØ[(eÌœ‡™3Ì 3’(7kJºháF¨‰rJÜHYB¹éòEÊR7Û-ò¢å~ßó|ß3Ïsæ¼ïû{·ÿÿ÷;˜Înºæ ®HáÂ]"Ž`XRmÝ݉€@ÐÇzh ưÁ¯4fÈãC\Øä;ˆ%¤ ŸM€ ©\° bD}€hdB46!=´äòL+Z0Ĩ8ÀŽ ƒ|4Æ’ƒX¾¤Ñâ+ I׈$’1v>0ç€<ˆNƒ*Mà rŽtpãÒ!PòC Ím¾A€ / q4Çå±Lµ°€ø® äƒ `niÀ‘Æwá1€»/Äÿqã2B¢ƒ0É ‚ @Ún¶€S;|`…Óˆ8â×r Ùs… x>™F§s948‚Ybƒ€Å' ° fÌil>ɧÓ 6ÍÌÏN(æ. YqaA>ø8>Äž[?W9g2̰är8 ,à£ç泂x 9øüâýúÃ\!úÕdB0ƒ9·#(¿†ƒ@[«âBó±@`H ŒI€"º/~®…{H8$ι‘-ÂB¸Y ƒ˜ ò‡åÓ‚A@À ÃB¿üh¡‰D€Ñ€È‚`ô·êˆd~± ð °—€0æ~_ß¼’1¸0;ä|þ–ñÖîn¶dÅ¿F-,¸" 骫§¯‘#’öc™¯°¸ü¼×™- ÷]=[˜ÉH_v@oqàjh.G ø±ƒ#a4h~À>‚!Ž<ˆÿ· æSþûçªüoüs$J›=Ð\@ü€ÆØ! „ÒADT."øŸÐÝàQSAÄùgÔV@Cdb³ªë pƒ/~ˆOD ÃÐ}癳xH 6ƒÎ\>4÷éA’„ÄñÑý‘Ï ¹³ùˆhëǶd˜ÎẻPÏРñx´4ᙞ¡!BD­ P4Oqƒ¹$@V ˜\zîfI$OŸsÍ[D„€xð;ÓÀCß™ÆÞÿ;s €g3Bâáyó‡ éA<"ãy.!ã/Úóß ttG;—¾õg¿âŸ+¦ŠÌ•…º¯›ôkŒvNÌm0@'°Å{qÕŽJþ¹Ê™ã[’Ó­œùšîEQQâQ‰Êäc¡?É¢·TNþ˜œ„Mìúa\É6G™wË4¿'Ô¬?u\)õ eH­ÍèÆü Œ©e£œ[wmøOSžýNRʪùYËÚµH ¾u²av1‘zRÇŠàw4:UÚîniËßvžÒ¥Ã“ò•rÞOÛ·5 e¿óQöÈ56¹ÓxWï£o¥½Ùñ*lN\†FÿlNýd‡*é°šÚò7*ërX1!CÔŠ!j_ÿŽnYùЖwžÑ3:Ÿ&©~´òÃÞ}ú¹TXéhÕ§íËxÛìmƒÒôθ¹ŒçØCÏd dŽIϘ‰Cœ°véÎÃØ³¸ò—UHÊRr]¤ðºóå+ä6Vn1È0Þ-S£…m*IÊ‹~«·¬<ºÐEÙ“yé|®HdÚÄ øýÞäELð¨OëÉ7Þ¾Gµ¹1+ÒoÖkÈÒØ¤^Z»”íŠÉwU¯kë+ÑÓ»YÓ—%¼AGc~WÉg<²&YG.~ýÖœ¾ˆ·ž-ZÍž™IìkËš-*Ë48WÖøÆãö8R¯Þxîö®{*–g¹ÃË\wÓö6’‘-·õS¿bß…û¹r#I&`ôÝvÝèrN ^Ö^(¥0Ƨ„•:¹·ב¬HsÒ®4úµ²,É6{P{Ÿnƒësý¼¢çŽri&,ÆÝ­ø][ižŸ«Œr3WušÉ:ÍOºˆ¯ ס֡Žu¿¦DÔ¤%?Í„MùÀµ‚ó¿Ô¿Ö¾pÏÆyED5Idî%ç]—/_ë·_0ýÒ¥aÕ})ÚŒòÿëÔˆaç ®V _"QXùŠˆ™—«”†ËÝ;ή>ÜÐ?¦æx6’V™¹vÏÒÂæ”.œî½ãÓä¾5v&oè¢ôÒÁ¦”~‘¯äµlGÙw5§J…¬li5¯Û”öŠ£Çö(9Ö÷¨^·RÌý¢þ~ªøðÃ0ó£4/¼¶0E¯úRþ–ÌÐÂÖ«IÿY*w÷}°ä«ÔÖÖ8õЬZéÐÓ¯ÜàÝY,™qøMˆ–˜ÂDÓ9VGl\òh²'ž|ß1Ý\Žº±4oêˆøƒ ± ô$Œã¢›ûýY“—>MÑw£êF{›1å2Žý2ù‡¼.×Wt~b½/…Sd—Ô;ˆ](1µ’T>7n)VÚïvYt^pÅXý‘R@Œ8>|3µyÜ}½fS¿vp’“£Á±­NíäY|Múø#XÇ»—3ñI¸3DfÐÎlîК߻òg§è3ò‚ήÒ¸ë·j—­ë¥UÏ:¤‘ÉWŸ¤KÊ8IÞ¸S±eu¢#eŒ#uÈLÛøAÞPJ`j yÔ6( TÝó0.ƪs+ÍÕóÖÓû«éþl®ªÌçÛqF5[b¬ÓëG&{£?[z'{q06жõ‹%—)pt›ÄÊâ.|ìºæ²Ôƒg«B‚–¬ß¼\0`ïõ–ò³OÃàã¦ÒkÓ?Ýr¢Ò'üùp”!áœù\îþ{{uMû£«wäÎ+Õ…³G. #ý”VŒy´¸úåÔ«ÿí <@øD·mnŽz~ˆ¶%>éÒöäÞëŸÙ˘SÍ™æÎûGJlWŠ:ÈÕ¦Šôx±;Êé¨QÔ:¼$-ð¢Åþ{n=ª;°Þ`ª¶[°bæäG-jǬlºOpVi·v·á…07¹f¶XÖúôDäU7÷>ÿ¯He²º¶›wžjÈ cØ­?¿°95|hwâÉô<#MèRæ“êMÅcë÷Ê¿¶´zz—!Ï´?;Ûer°Ì0^ŽuÂŒkʱ§œxØ®¸©¦mÇoYivlš/°ó¦Ÿœßn›ê`þÄö¤DGåÜFÉcrp+®ø¸7¾ÚÉSìD›¢J󌴠ª¯êºË[‡V: ·%þ­oB‘òÈÌh¾b«æž–¿oõӇݻnDiˆG-TßÝž~õò!Mð$^@çnud¥{Üw¼MÎøój–ËZ£×ÌiÒ¾>ýìå¾Á²3Ö%{Ÿ_´ Võ˜tÏœÊÁdåOmOKôñ|0ºSj"~³g{È++{¯Û=kqù¹5 Ý ­f!Q를:d=¬Jírźú;éz£L¬@,Êz fÄ’ð›š01æqU‘üŽYdgÍTѸS|Ti†‹A uÒ4ŠÕ;r_GÙñf© ·æÈ9…ýž½Îšy+®º÷¢V¯P,uˆœM¡²rG¢É6¯K·‰Æ]Ÿ¬žÔýÐ5™“¿ôÏ{«5ÿ Ÿkµ”ñ?¨ìŠâýì:&lÕÆª'œ£ëûÌ»A=Åñ\¿N6f‹ZYhpScu÷þóõ·#^m`@¡ÉÕ•úÌ–…›(–ýˆÌ.©&©L×óqiK|{3ˆdWp,&Ъ$­ÞW©ÙX%àæx½­Fá¯èµEÔ©8‘(4th·2xleûƒí«|¬»Á›­56¸¶žyðV/Eêìò[åÇg}Ã÷½èñ<#Yÿ¸§˜¢]5ÉÕúuÜŠ\48—šh¿¾ä½H&d0)ÔŠ*\¶¹;]Š/fÆòóN½´=ÙyËŒ/*QϽÂd®NPgê®:eì+T—5KJµÔÿœmSkeç)¬{­)ű0GõúmCm9é¸vLlG6U möë:/K€`04®MÞ•:IÂzÆáOÍzè­lìjý©™Æyx'º¥ô>°ò}hÉ'¶‹A”žÂ©kÁN/ g"½'|~6´²Øv´»Î5ûqÉ5ÞÑ/Å.˜£p£B•–Ø¢U+(¿ù>}Ú?­_±˜‡'Åý1‘ó/ëp·Ž¢šãYQk—G:¸ä¤gýVdø É=ûý I#©;mƒ×pÛ»ì·Ý„è)Mó{ɱ =Ÿ¶·ô¾s¾oÿÞÚQ°Ñ7¯¡'r5{Êr=w…ü$³¬(Ïú‚õî瘣ÆÂ½!A¡¡¡ç®7/Î8]*Å2 +ØAO{#Л\ï®nñµI<×LËÓºácû¡™¦c¯—}P(AÕÎd&ýÁã›2õWyQ}&J#è¢j(âNÏHåIUg"¨˜M¡ÿ![ù endstream endobj 138 0 obj << /Type /FontDescriptor /FontName /GTYSIE+CMITT10 /Flags 4 /FontBBox [11 -233 669 696] /Ascent 611 /CapHeight 611 /Descent -222 /ItalicAngle -14 /StemV 69 /XHeight 431 /CharSet (/c/e/i/k/l/n) /FontFile 137 0 R >> endobj 139 0 obj << /Length1 1421 /Length2 5943 /Length3 0 /Length 6900 /Filter /FlateDecode >> stream xÚuTlû7SZ¥a”ÒltwH· éc aƒm4H—Hƒt#!%<Ò¢ !Ò݈„ðŸñ¼Ïÿy¿ïœï;;g»¯¾×õ»î±3ëðÊÛ ¬a*($–Ì’*ji©€ $`g7D``ëìah …”ø_Šh‹Ó)A°8G-¨îâ Á"`Q (‰ÿíˆBK• ® P…„aìŠ('4n‡ÅÕùûä€rÁââ¢<¿ÂòŽ04 Aµ X;˜#®"â4@A0¬Ç¿RpHÙa±Nüünnn|G  —áäº!°v@}†v…ÙBjCa ñ؆vÌoƒÊëAÀ8… Cbp!.Hˆ«4PÓê8Á¿5;ðÿ4æÿ'ݟ蟉È_Á(åèAz p -ÂÔQÑäúcy€¤ÍOGˆ…‹‡¸BkœÃ¯«C€*òz@á|(á„Åða?1òÿLƒk³2ÒFåèCb1€Ÿ÷SB aP\ß=øÿ ÷ å†ôú[²E ml°qqâ7B"œ]`jJ|p*À?:8 ‰‰ ЉaÎ@˜;ÔŽÿgC'Ø/#ø§‡ÁÇË å´ÅÁ€ù la¸€â bÑ.0¯ÿmø·ƒ6(h ƒ#€²ãÔ0Ûß2nþh„;Ð „£úùùÏÉÇ0ÒÁã÷_#æ7Ô15Õ|ÄýòŒ (w ¯ È+ ‚A"@QÜÁçßyþÓ¿ÑÿÒêBnú'£Ò…Ëó®}#qýC Ž?{à üw mŽÐ0 Ç?ü7 ƒ ¸/ðÿ÷ü ù¿‘ÿg–ÿ'ÿÿûF*.¿ì¿þ;ÄáàñÇGh,n9´P¸Aþ·«1ì÷FkÁl.ŽÿmUÃBpK"„ãˆÎ â ýÖ#0*w˜. µûM¦¿§«á€@ÂtQÄχý— ·{Ð'¸Çƒ›Ùoƒ[Dì¯ñþ”a¸Uû÷=”‘P”ÍÏBÐhˆG œ$ ôã–׿þ‹ó@~>$ ‹ â0ûmQhÀÏA‹ùá?_8\pÀ¿’C]Ðh\õ_¬ÀUþ[þµý0˜; AA%ƒì«‚¿WÈÓ¹ñ.õI]ßIþn"ÀÛ—gIˆíP´úkž6¡Q¬2þ¬biߢ­àü=cfôÀk±šé‡Ð7^&•U8“õ‹‘Ëoø_⼎éYFHßâe'*0J¢;ðt"ÈZ‰dmàì¤Þ÷«ÚÇâÜîÝ.RUnÔnn­(JÓ¼K/þps^[gÝm¸$|H}?sÞ1:pá¹yx’öK ©æ@¬[9Ù\WO÷ù{†wþê®K»l!XreÉnz%¡å§rHÎ3 ]7^RxY«R*Þ5ÐÊfÖ§t+æÄ×íP›Ÿ³Þ0±O ·‹lP“6å¼\É·Cù% ·Š%e~a …?󲑚VÑ÷k® í¤:¿>׳èp³µ¿#ÕÛ®´hß÷éGyƒûä×PS^>ã,Øeö{ .7(èæq*8IÊ=£#o?¹9XÂ18'ÉÖúWE;Ýê" ±©zGo ²íùżºZøBáð¤+ 7Z’s~&ÑW"Ú€¿ŸO5¿íÍoY+mG”‘v“pCö}y}_ÔÙKvKÁcevqŸfq°ŸØvnñÎÍà*Ï~lÒÓæþöÞ(³ï)bõ†GòaB¶åËþ”uy½ƒ4=Ô™û“fÒl¡BÊDšõ÷Öφá)ÃKAA÷DEîܓٿ¨9UâxIä+ÆðÈfµ›'ÛøÏEÐAxŸ±÷û‹y ú0[<•K”Σ…cjuäGÇÐ"åöYÇÜóJ1†•Îî%Z΀„oj¢ÖÄJê׃bÔû—ɶ¢ÕÚÜÀØ âƒFÁö’ø¨&51ƒ~žˆÉå,SL3y2•²áŠÖiC‡º^tʺkøê®îÊ„]B`‡C~Rÿ.¾Ñô¸Ø·›LÜÕ­žV‘ì= ~»ž%ú¶³){ý·Y"È`Þà}#އ7†õ“Ç ì¯ç*1”_NØçrF\¾}ÖýÚ¾€‡6Ã_lq©m­ó ’Ë!ç“[å˜|XØ7Ô,4°Z@¸ß‡ÏeuͦŽU¥Î|wv°Ô1‡§‹ž „“ÿoí¨ÕÇsU,½œ/È#å¶ßÌ€l…ç0£\y›”‰bìúTà>^/1­mܬ Iœ'¦YV[%`ëÏãˆhëbI¡(ªà¼ ½(šK©0¿V|ÃÐôÕAìÂê]æYóyBã½ ”M­Œëp‰\‰4͘¶Dûë®äìùí°cS6ãÑ)šßçÛ2IÄ 4ý{‰ÜTh6 ¿Ö½dØUÞV% ë¡-ãžRÍØ'Ím¦Ý® ' L¢ÅåÞ¯*“{`ÛL:)® •*.Ò#½uXÂo:~~¸Ú“Z¥tkBþ‡}ÆiÏ!#ñ^îQjÁ”xãX‹ÿDþ“½†G»eÜW ªeИÈ÷¶ÓSSUÞâÄÀJ;.vùÉ:«ðV;g™©ê Uêܳ Ÿ÷ö7ûh‰|NK0´©Žë“þÜgà ¨X&IÁt]+Pɸ9„Ê ”!Œ‡¦†?áB¨Ý,ü@×lÔk씌¥/½á·¤?àvÉ-býv§¾£bÏ·÷CF¯Y)ïöZ i»þ¦ÏÌ-6EmɳÆ}ÕçΗò!U}‚¡q”TJ[„…ƒvçJßHvuý÷„ðB$$g>„7÷›iÝq¡Âfœi]èEúÒŸ‹*0¯?ojªÙ½Ðõò¨¢ãS}[sWÕŠê¶á‹OÅÆîî¬Þ~CöÍc200 ÷mêF´ô­Q^EêV'ªëp2]?­mSÛLN"[`E™šÖw†Å[t5è:qó¶E‡Ý¾ ZPï…¦ŒÂe»Â™’<}ÊäIÃË5»|®zC„N˜ýØðTLÖûtm˜dÕ|1U²/žU_UHqÜ ç‹ÔíÛËÇO-(kOä­êì.Ž©­—°×í|Ÿ½v)§PPrl^[dÐn×Õ …L.=(Y· ø±×i²¹\ëJ~°Xm¸g— Gf]ÖlæôÕ3°O=ÑFð ?!‹ìy<¬Œ·z0)“VÞ:áqÒ 3pË}•TôÎã 6óêü葞ÎÊÃõM’`Ÿ+=pRçùrß[§Ï?SCqò|­P[Èð:%z$' ÃTê¯äš‚|Ãô±ò,æúHÌJ:Fí>×ô ò‰üTíW¦r¦LÓ;òèÑ0ÑÁû‡<Þˆ¾‹Å¡€.à p–-ÄêZÊvõ“{àŽór,ßÖc¦ µÈv£ä³å`²zŽX“@3Sç|ïM‰‚®Øº²ô·÷½ ‚ #âÕ4¾sê¸Ç‡ÁE¤S]ˆxVrOÇý6õôArórÖ†t)õËÁG^%œÓy¡ªáø»eÊ;v ‘Š9eé³-ž Ñ̹Võœ¯Aã®,FQ7×Eç.¬ÉøŽ$žpòjÙ´¡OW^ÞÁ ÷¯ŒXÞ×.å)QzPiž qß}†ÜÏçº&œi>K„ÍÞfÖˆ;¢ J_ÉËä‰ao.ÞE¼Ñ çŒþqÁ“-'k’S2pí6ý\ü| “ùŽ6œq§¾}DO®²1Œ·Òü±~®Ärð›uÁ·7€]Fo|]³wz´»Mü üÄÆò4]•ÂÑEAíåBÚ*–íÊÆ(¿`¢4–‹QÃFyŒ‘Û~_ž³R}¨©1pîŒæY}ÒÝ9\Öf¹¸q¤Di}®‘'œ9Ã6˜œ-¥®ÒÈÙe]iζ³Ôe£ž71Ÿ¯\¼'d 7AØ*õè$\¯eñ1Ì“ýVPtÅ䆞œþ;k|k·úEɤë?Üð¼ârg‘xBð¨Ï‚"*LÑ¡À2âS–+ª1¼þ˜‘b6ì›Ê6c”¢£NsD<ÂHÜã²ùûìI5ÞñoË~T£Â Cº[†MU–±‘˜›š‰éäºa«Ÿ• ¥N'B®Rüºªfïôt”ìy/í-6×BÂ74|¶¹âƒ–Ü‹²j¸{&äGÈÒçóðÆÇ âí¯iÿp" PaÕo¯û¤ê¡Y…Èo.>¸ ™ðD`w’t¡Æj·ëFûâðíú>Úuµ¼¦¸ûà»W·äÛTÙ*ZÏü`"8¾âšËûõ÷ ªú=Lw[Fó©ßPn–¢ý.ìvŽ:>?õÚ4ˆÂ[õ$ˆbò—¸?EZp\6^bïDçMò=2‡NŽÞˆ•LüQ{×+Y.í]„Ï_Å>‚ì°O·Ç{ýÊ ¬÷N¨•Y ‹Ùßk›Ùc4͉”Õô,õR$ýã*kEÔÞ·5ž=~™<ÕQb‹cráʰzÉǃsdæG⫱Åkmû;lŸzyÉû䆢bÙЫ;§•óŸ’“‹§öwŒ6»ös¯Ï8БۙZç‘ãËyo ÙŸ+êÏþ/.Åb,Ôî¥ô¨so^Zø?¨ã»HëzÅ%PÝdÛ7ù˜n£uF.;ì…Ê»ïå0@môèÇ_N0§, HÙkqml†Àö€ÃÑ#BàP])iß±ap´=!u;­¶j¡µä1./Kݲ|]Ì`ûºª'†2rRÿý”\˜™_­…Å÷‡\!EŸˆÛ®m±„<#œ–ØS dÔë»pk6"5•TüR¡i3E9…žçÇúÚ5¹voà{ÓÅÎÜ<¾¢šW|¨é¦CGíÖú68õ»“ñ`fÐãjÊÈ 14ñŸyµ‹dÎ{#òé^\_¹;žøÂn"F”¯Ý§“VÙñé*>»^`ðû‹xB•œ§3Çöc1K–»dÚTûKÀFÛS·»‘xôëlBºÐíŠ35÷ù4‚»vç‘ê\HÀõuy‹» ¦ÁA«Š’¹´ÂŽõ¸(a·ŠEÏ#¥¾ËLÎ*ָؘžÿ˜‚_Ú×ç#5*Ôè6-Œ«a]TG™…þ¬ôÌk’¸Yâý|íD_/‡œî[n3çãO+ Ö•Z]oc‰¥úð»Y/‰j¦~±ÿ,ÌåßëÖ3^Ñë)ÏØ›ÐhÚ§œ}ØáÞ¡½¿È¨´¿úVºXTçoì4ëSLfÙ"_?:些ñ²º€F_&™h ƒÝ`l‚¶QqU¾µõøòJ!?/¨‹P~mIì… ¼K"Ü>¾ÅÎfþ~")o¡ÿÈ=*†$ñ%ßÌŸ-qð|»{ƒà„ƒÁÿÕŠÜ Ÿíê^à]ÙtäS6›õö‰û@iä^oW#Ü`xN×ÛHØHu!”6(õU7ºúæ;vîÌeÏÜŸÊþ`ÑU½­“ާìíáùB£_!ã,ñšÞ[R”ÁØœWÁæ~‡xÈ=òâ¹ðBµ·YÇœ—kºö§“;úá uœ ¬côýïHP#aÒ–?fÒ÷ `âÒÕ倴äR2½ûÛ$ÓÏÔÉ…6µÚd¸õkÚW=î¶ô'ä2»X~Úo"’ጠñ³xÇ{9®8\Ê}¹K’œñN«ú]gî`W ˆáêp§ZÃòÑ~F¤A9ãF¼™/‡ØÂ“{ÉõJ<Ç'ë´@ÿ@„ B†ðq&*ÙymŠíU4{IË!YdØY 1=|] :aßN«ìJ²Ú¼>¬(fžXaT-L*¯ió®H—Rq~6”x†îã-Ô[ß²,Û]Só+\Á/ÚüT9u÷`Í›ð„‚¹]tÓqð)¦­Ld‹OÇN¨­ív†ÃA xL£ºv¦[pg¾©˜¸µ [ýJ¦Mêz¨ûƸ1ïhè+{E©ÆZAMy Qá Ä}×Cýn/¯wx…ºN_ Gµä‚Ÿ´Ÿ5ïIíºæ|Û¹êqº}•±é9òêß=^FîäIvÒ/ª"ά­IÖà<ˆÊx°4tŽU3Î8„1à JmŸ¿¼óÈ­`çeýÇÁ"©§T>aâz:©qsUåÃç¡&kF®ì7~ŸÅPGK¼›fèÕ®, )Û¨=LÔ½¡?³\ÁÃ(DiÕâV·ž¥kÚퟃ«ÀÙ m\’”®÷¿ÙåK!nÆ{9æÖð êƒÏíXâàêrk•ê~i>ûp/£¤ÞºQÿ-Q¢Æ ^]óã‹Ùöþ*ÌÊèýa%ɯCû/!•.Å+èa¼¼Ç¬A¬Ì¶Md‘sxßF‹¶¯Nî‹Ì>& •£ p NÃaamÚ9Ÿ¼}“öé¯L-÷!øŠ¬¨mkìЊytç^9Þ%;7EzVùÜí—±x¡ãÊa°¿ð½H\€B/Môìó¯ÞËèªæNž˜+¬í^Ÿä1©ÑZ¼UV×ÌäG[>àÃÅm Sšò} ¯bÝrýRzI+¼çÕ@!¥?nlÙG·ØD {xí°Àßçî˜ðy[-,UX9Ñf¨âsx@Ógc¹'!‰•N£¾œ›ÉËóOqW°Ë†S~J5·5º9Ôä³½lÜ¢Å;Ù¢¾öÒ«ÜBþS^ˆ[f΀”_IÒ¼2ô*ùxÅù˜ÜâN°`l¢åår8ƒbîÒx3ÁlUmП5L>Má:»Á4ïƒH“nýƒ•È"ßÕQ`àR‡søeªä•ñî©jûÛn%¹ç4Æ—$¹Råa†t%þÓÄO ¶/‰FßúbÄ‚Bmf%Œt;în¶Ÿ«YTÈR:‹²³Äwn2W%\~¶ý~L›Û8ý%€oA 6Ov-½Úd+ Ý’Ÿô:…àÊ#]±³ÃÕóû»jZAyáóŽ+WÙ©ZâWÈY<”.¬l¿\p{¬1¼Ésa®ÍºX¾r$ÝlâSr¬nólnÄ+Ù«ÕY¦³î³^Éò+»…¿Ù£9f9Ã%ÐÓÙ‡ß}D¤?‘­3—š‘ŒµY“%¼ÃðÌöL“ÔÜS0šA³–EýÕdxÆqðPP/8ºR0Éš¹Ûì|Ìär+3k3> a›ú£^Œõk'w^®Î̧ümj™ký$m„²ô &LÙýz^ÅKÿ€:MOŠjg¼íž¾$ÅÎù¾£=—²Æ¿sà ÛL-;yÅL’u-$Q®¡¸þä©Y/Ò(…øNg6[ å[æ®÷›½ÒæGüÝØˆæMþý·VV¹ÒT½_ä°ÕWiK Qlìþ¥^¾rJâÚtòõ g†Æ‹þ`’9ÊÙ\—“°˜ØéÝ’8±ÿ8*@{ž²€;&%¡ÑõäSÓ©Â{ºDi¥JÌôQ): AÒè_"îœiŸ>:ê‘ÿ†±ç,±‰âT¿ÀC‰dM›9•Ø‹è'õŸg²ÕY©·wÍŸ/â{ÏœôqÕ|(Ë–.„MŸØ´…&®*keð¤äQ1Rsúo‰Ûxº-8 M\%„gÏéøÄm¹º~Ú¹úˆ_ç Qõ»«SÂÒ4!vJP*êt’Stšèxõ¼/´tML²f6ßÙt^Àæ2˜üÍ¡wÍÞÁ©dW$íöZºª^[ß‘Öë‡âaèè,5ÛKK×X˜ág3MÉ®ž,b1†¶/1ˆC½Åk¯XpÿpdvžáÕWrò?DbÞ·wà=¸ù.ºU1Žø³øXŒlµ %,&Ù8!÷éz¹VÐÚÁ¹ó¹Vü­V¤4Ó7žôÙ>Ñ!RAe|+2µ­<¾VÙí½–«Â§ÞtdKóóÂÙp‰ ôúëùÛ+­=~Ýÿƒ´‹‡ endstream endobj 140 0 obj << /Type /FontDescriptor /FontName /TOZZLY+CMMI12 /Flags 4 /FontBBox [-31 -250 1026 750] /Ascent 694 /CapHeight 683 /Descent -194 /ItalicAngle -14 /StemV 65 /XHeight 431 /CharSet (/greater) /FontFile 139 0 R >> endobj 141 0 obj << /Length1 1748 /Length2 12856 /Length3 0 /Length 13967 /Filter /FlateDecode >> stream xÚ÷p$ÚÚ ǶŽmÛ¶ít4±11'œ‰‰‰3±mÛN&šX7gŸ}¾ÿ¯º·ºª{=/žw½ZUMA¢¬Æ bî` ”t°we`adæˆ)¨²0˜™Ù™™Yá((Ô­]m‹á(4Î.Öö¼ÿ2sš¸~ÈÄM\?ìì²n¶6 '/ /33€•™™ç?†μqwks€#@ÖÁèG!æàèålmiåúæ?Gµ €…‡‡‹þOw€ˆÐÙÚÌÄ `âj´ûˆhfb Ps0³ºzý5¿•««#/“‡‡£‰ £ƒ³¥ =ÀÃÚÕ   t:»Í$ P4±þ•#@ÝÊÚå/¹šƒ…«‡‰3ð!°µ6Ú»|x¸Ù›Áj2ò%G ý_ÆòÐþ® €…‘庿½ÿ ²¶ÿÓÙÄÌÌÁÎÑÄÞËÚÞ`am (IÊ3ºzºÒLìÍÿ04±uqøð7q7±¶51ý0øóæ&I€ÉG‚§çbælíèêÂèbmûGŠLÐ|TYÂÞ\ÌÁÎhïê÷ÇýÄ­fe÷bú«³Ÿì<ì}þÖöæ$aîæÈ¤aoíä”ÿÛäC÷_™%ÐÀÁÌÌÌÅÃ:€žfVLЫ{9ÿT²ü!þÈÀ×ÇÑÁ`ñ‘Ð×Úøñçãbâ¸:»}}þ­ø_ÇÂ0·6s˜-­íáþËþ!Zü…?šïlí Ðcþ˜=óŸNãeî`oëõ_ó?ûˤ*©¡«!G÷WÆÿèDE<> ìÌVfËCÆõqðý_š ðŸäÿ”*›Xÿ}¹1ÊØ[8xþÊá£xÿÉÃýï± þ{ehÿAÑác–êÿ޾>3³ÙÇËÿçøÓåÿßÜÿÁòÿ6úÿ÷B’n¶¶ª©ÿÔÿÿ¨Mì¬m½þ6øe7×µPpøXûÿkªük•€æÖnvÿW+ãjò±"ö–¶ÿ”ÑÚEÒÚh®líjfõ× ý§ ô¶Öö@eë?ÃGÃþîcáÌ>}<(.½úSüاÿ )aoæ`þÇâ±rpLœM¼à>Zÿ8>,jôüs´LŒö®.€ô|Îpt”“À$ú‡è/Ä`û/â0‰ÿƒ¸xLJÿ nv“ú€IãÄóÁbòbû`1±sü™?ƒl>ØÌþAìloˆÝ½X>V€ ø/È `²ød0Yþ ~ø[ý ~\Çú_ð#–ÝáÇÊ0Ùÿ ~røüäø/øÁìü/øÁìò/øQ=×ÁTÝÿ?âzü²~òúþOÍÜœ?ž¶?w죽ÿÁ¾£@ 'Ð nyÁÁŒ/Ħ6¤í¡F߃aB`–b_+•†ÁgÙ¹Ýí :‰¦:3hÓùN$i¸emW‚úVx…øÕç´¥:üg‚Jëóç£oªÓû­pKSX“§"uý„° êŸ_>k~o픥øî䯤œ‡þàÑ'åY×_¶:¶°¯rPÍ)ÿR6ã­Xe…ñˆ5£ÚZ5ʾ©÷‡ûØrËÞ÷$@þú^ÂÒ& #gR%ÌêV£(t×lŸ€„G¢ëmwšÝ6)+<3uï€9D«Ó€ænŸçz§õᑆû°”ŸÃM#»Ý¾ZÅBýB–,´Vz‘k«¼„)e®ã`]Z@ ú÷$îH“P~Ÿ +Ñ'<–ff]nÈ^Ð1‚_ß?_ÅúV6\*vlÍ¡.Úz ¿s*¾›v¦\^àZ±Ig†QçfHtÉ݈£Rá«6Ì—1]nUb1Š—zËÇïp,] ’²ËHõî/V GêyÙ<òä3þÒ¬ÔhýÊ‘¯B²wÅ0~Ô8$ÚÇsg~´sW^.jˆyì ùxYé!:»­Î’û¥C5 §ËE)MJ$ ¬è~w¾Ö”ì\]ÔÄ®)YK]àiw¼«èѾLFœ‚ªpY¡_î˜?üó²Á’xa/nM€0Ö—Û¦ÖÚv¥j„L”õXŠÌƒUp2£öá&Í«7δ–f_g97–c¶çt 1Hët¬zi×ÊÚéYß;/¢…7?3" ýM§‹ýŸ?Ø•ØÝIô2Œîe~æÕ\ÔU¿`˜Eá1o–_+È>*äè0WŒÅ¹ûpnâ$.è?ôÀœsœ†ÓIÙpîÁ³Ôgtä×äpN†iºé±¥Fä|L"ÄtE¥²ÛሽV©‘"å¨ÂzY•˜g5Sª8e”ÉÉmŸŸ*š°·ôºpNç€ãÃQƒx0¸rc‹”¬–‰¦ÕÞá÷²c¸iôn~ ¬}8ÞnñißÃç8iÓ[i‹û{˧ßy:'J6…úòå±ÌhpF'ï·õ/-s\+)…Jwc'û~?ÛC©Ÿz´'´‘7WÔkÎ(˜XQº[˜.Ôbõ$>âv"‘7Ÿ©ÚÅw8õÛcÑdŠþñû霄9¾['×Áû‘üüqê~0€¢¯²szÓc{c›ÕÀ¡¬wPeô*$c5Šìv”+j÷K ›· f)Ù¦tÈ‹ó>¨ke@(‰X‚#oÏ¡víAYÊp:[S-åýPÂs‚#0D¿G=öÚ&ób¥øT¿à³§„@Je—w7›·Ã„´n(ê¢"U8;±ënÒš«Ä)¨´[3¥`^N…¤}2N?…îËMØL`²¸íͲm§P–`Íå%Ò¡Q•g:à/ÃúÅ^&–-’¿yŸeËWå3ÚOMösIÒ^*ž& $$„ÛGuÉ!µ»O›zÏHëÌTäÍ_¼úÂlŠêæÁ·vD¯=…£w΀òï? ÛïM\³‰a„•XNs™²@$¯ˆÙ¼ˆÈÒvͧ¤úu_×õÀí*ÞzOFKúCÁ¢Ù–=–“öÈ V!–4Eã´D |5i¾B¬© ­ZãÒç^n_¨¢a5c¶·JÆ ‚—µ+g1µËCLx>@áéMhkF bÞüVù^¨®ü~ëüý8Bïø¶‚ììo•ðÔœà†uõ5$Ú˜ÎÖæ¨r¿ðÕHØ›“ OzSÙÄ}ÚWcÓ¨&gc@·œ…ˆ¶lo0­:NnÐÔ1 ŒÏg½l 6°R… ëHS“o)·m‡ ΋ñZï»gËκ+‹ˆ[eY‚£È$£{¾Ú«©G"Àµ´à—"ÇŠ@|¬v¾Ÿ4„Èo¯œŽËQ¿ÀÃMgG ÎpC¢j|í( Çh­%Yªá~ûò8€šHÁ¶ }ú‹ñ·ãݯÝeÒ§A¾Kzïáúi 8‡ÖêÍïžàCÌ©.A¨ C¸hZ,’ž“¿æŽR6–ovßb<5½nVP§³H ȼýpRŠݯ»³þ¥Ý-õ—0:‹ò|!Ç´oÖ«cyês-3&»/á™ú¤>%Wú}–/¿ëd.Á6Pò‰ ~)Zñ&²”ok»Ðü­¢çù4¾åe“¶-’ (7i·=½ Ü¥«ˆ‡¿A*QLÂ8Tó8Ïj«}¸S%aB²ÐA¹½og5ØŸ¼ìk;é4[Û½2Ï"Ï™nŒ O8(•ñn%â™óŠÖ#¯bbáÙËìí`b±0”E0B¦!¡Öz(%+»Z©­7üù«Öz­ÇzèÀ™é{þ>©RQúȸV/­$šÁ:S‘±WY´Ê؈áD}•¤|IÚ²5ku¬«˜#CEÀ¹Q¾‚qpA˜…zâO9®¸j:Õ´…3=çÂŒ—!Û~ôs' oÛ%„¨û%på§ßp’ yg7oÑ—³rÁ]óÈÒÑTµ ‚ º*ÂÈ2Ë[®ù{ïÉ™]z%4\}”/ß­&ì³~àëPÍ­šô4ª÷^Qi;ûÏm¦1ÙÙ'ËÊçbÁÃP' ÃÕ~J‡«lP$ô‘“lØ\½4ü”aºÑcâ‡un,_o³jR ‘ ÚÒïóæ¾s!¿¹öó =á7K*¹?º³Èû/—$Œž›k{ÝMpÚ´VÒû—ÛK‡ SaŸo^ ð0$bbÄQ>Øf0ŒZþºgDÌØöð[¦Ž¡–.Ê©æä ÓúwÕs”òüŽhÍȶèŸ[ü2깞‡û’é,&½½J܃‰·jE½«FÂsÂ~³ ¹ÏµÁ@Ü´Ý.†÷jƒšä“pãÎØÁ%¯†ãXz,“@ÃÁÚ:ˆ.W$À'g¹“0?5EJ&!¬o>ý*•Ø4Ñ‹²xPödýŽùùZ륞oUŠhE”Mô7ÇòÍËÁö´>él¹ÔKòDÚ¹‡âO™£ +—l«èëMƒ ø¯ÈFKêߥž˜*ôH®‚zU;Üã R.ýͼĪä<œ”Ov^U4Ö ¸‘îÃÇ6=wZ%Qò}ª¢†„ª¢&¶§žuFßu²xk9Š«!6~­b\DB£Ç¶V"7àû—<3Ù„nõ/ç’øn'þ:§Ô"*Û[PÑn!‡’Þ,>Ds•)¨lƒõšg\Ö!¸^²Ç,wNF1ú}f¿ØƒØ¡ô²ë*¢É hŸ•"i´ehºj‰ßà—5ÇcLT3u^"'¾qÉ ìkì^#®þÖ '˜xdÛ©âø- ¯<Ï–¦+¬1뱡ðš)†Z — Á°å–wÏBö‡ð †gy]°5³ÔßÄOÌU'°ØÒÁÄOêT-—Ù(|Ùü_ðí—öÜ]måÅX´ûãx)pNßûœf …ö¢¦¼YÄÔèºò•Yzýˆ€Ã`j¬ãðlå²É +#!I¶ÔW³ ä0D?Ã*ûLvŽŠr\ Z¯ÀÈÏ4½«K&‘ÒÉ•[º-³Õìn1¾ý}‡½¿K 04Ó$£É:Ig' $s 20s:û%³9¸rGf…ÕÍgDÏ¢Ëc2øjP,÷²›ÙŸ¨VHcz*aòVe: ûA~jÎo^&e©Òù)>"ˆˆÒil¬¨PaŽ€øõÍij<¸‡Ìo‚ðY½ÁMÃâÒ6áy(».˜Î˜AžkÉpŒ=‚+S ÕÕ¹“ŸRªVlûø(“«ÉøWÒk®_i,¦÷$½3Œ››„òveÌ@„Õ¤)“ùß!ÛâAÝíA¸Ñ³$ƒôw5”±õߘTŠxyµíò^ÍÒad›‘ä{^B&™N*¼-|Ùf²ðeÛLÎ8-Ü%•*MF­<¤²Pp™†ž#ÖÖÒxõ}¹khjÖékˆ1„˜[¤°$‘R’~‡%6zlŒâ; ¯¸öÿ¶#Ûìž‹Th°FG¾ ]†¼J%f%ȑƢ†óJØz>ZÓ}%œP‰“›nRQÀ€‘&âovlë Z¯@}å ÒTL¶j¼8e¯ãc³jÌöÙÌ°Êø'•Œí÷Wÿ­$ûõ/¹·³Ê=#g>‰yPÕ©Ž&G†ðKV§JŸÀ³š~eì:>Ýj³ÃÀb˜e ¹'´Þ]”^ûh1üú©Y•ñ4ãöÕ*`ÐŽj\m·G¼ulÙÖë…‡++AçvA¬®²ßî¸Á°±ZÊÃH*ú¡a™¥èÙ•)zþm+flçn‹ýË–Jû£gqA_G(º‹2K+r§’~Pá …Gã%Ù)¹;>Žr¨ÁÓVˆ=g§ ‘6 ‘ MTk·Š€žõ½Þëö鋳4g”cBñÛ;Þ¸˜s"hÕBðu@‚ˆ+*Â)CÙWz šŸ&eÃ?­v&yôæŠÝÞaÔqxäâqCPûÔåJM´É÷<,‡•‚õvÀ<£ðƒó½ d¨“ßÛlP8ä‹ËdºÌ|?[u‘óßAטìùêѪC×þZ¡Ë;qqØ7YПÉÒyÝ`ë¿ ìÂ5v{Ãû QqFŒ¹°qTŸ>`¸Â‰ÿ‹)ÛkúÙØä2­h1R¯z"Åx¦cL";¿Ç¯òÌ„!×ûÀúZÞ$Í×f¤æpXø9?rß·ßßùàB«:mß>Ü%6•ٞɩÚVH·Ôû&*i-J°ùûœØ‘A~šr(ÿüBÎX`\_BÑcœœ÷k½sØ¥Lè§ûh뀡þËÚxÌ…W•‘íES‹PºÕ¶ŽlRؘåb Ø6ïéËËq“½Ø¯nõ’ß§Óø{ѵŸ¼Ö›Ë*¦ÀžhÛÀ†,ïÞÙ…´Y z¾²—H§çe,^§vO9Éj3S5Îoüî ã㧸Ïh nÒ¤í¿fƒý,©á"=öSågbu}Uèüýè²_ðü‰GFûw¼E~iæ4øÎûäë3úr‘¶ÄYq2ÊãÉ6I×T/)­ìªR׊Q5 Áä…Í*"!å̲ȑ,]ùADgK+ Ú šÀm²bî>9§{­žºê²Uœ*ù”wö‰â_‡B “Twg÷½þ’ØæšRò ôt‡X.˜Ro[†LÍ¥Nõ½Ãw VÑýȺDÞ!⥮Âl÷@´ôŒœ#…%aA~-+ã=…¶Á÷żáw¿màÖ¹¦¸ìü生?µ‘}§‹Åœ#‡°Ô‡D†Žà-p^ÁRóã•}ù #IgÛäîfÉ&¾©oB’¼Ò?Ä{½7œK'ćçKƒíú|¢ ×ï B”v›ã|WéJ¥ÊRa2åó$kŽ%f»!Vã-³1E=_¥hv•ýÍ$8’«ôþ+“ÐYs#°×Ó ¦ªMfç"§»Á À6ëœÃ¡Eï0wJ’…^‘²„ ݺ4Rÿ‡¢J·ÌµôÜøï)â.!uÞsá%É ìCÅwxh5íîuæü4­V[Z Píì-’âMVq«ŒKuê`4†jÓ D¡ö¾¯ôðºŠÍ˜Sb ¿«ïáuàcT! Þ=sw—lm3úpK®çoo:ÛÆqØ’~FžÝ1ÁàÙŸ£¨´ãÃC¤„‘5P8eàõ‰ÓB×î_x‡5žÁ†ç‹xhe˜}±fôI}–0a.Ø4V¼®†Ýö$3-ÀÇ– Bo•7KFh$¾Fp#½hf>yÐT]Z¢GŽb:Íñn™Û¶T¯aFXA; Âf¶¹8 2´ÇÃÉKqÅí’V~V™ ;({Úè^{»| òÍ¯WC,ä °(›·k+îa»ˆ[¸TƒgíÀý¶ WgÞ´”ð"›©¿V‡ETIpev¶‚ðòˆüjԵÆez CäÐù-³ªkºê wLÖ½‡^Žø3(ìu}èd’æÆ×¯™p©/*!õzküÝÚ¼A+«Bftw[?`Ï[×DÕ8x‚»ë@cʲI{ú2ë,ÔÛÖ÷ MKµúa V©kiÉÑPG4˜‘Ñ »¡†Š$Ε½:Þ…ü…a”ØÎ)|"æ2bøÆL¾p 6PNoýQÛkä±×ÈL9v<Úñ@9ÜÅu­Bµ}å¨ñ*‘2)ªà>¬¾µ'캩™1‰ Ö¥)ie®nìj¢s=­a†ZÉa4 …o‹éC¢_vrÈÑ@ ®X)øUZvüÀ­ ·‰vÇÎjüóÉV}Ì‹=¦CA¬Ÿ¬Oˆ`xœÆ5|ì½G}9Õ n”vϱ¿4¨ÚTÔU UõŠ#ï• ^µ”8ËͶ+ñ„ISŽD ñª°åà«ÖÄšø(\ׯB[™ ÔèšµLõðêD?EÄ‘Ùi­2é*×ùojÑ› à=Xgª«YUÛ^,`Iúc·A¦f¶@¼à\…„Ö¬wŒ£5\pi¡–U´Ï´N–»ŸØ(EIIÙ §ž[³k<0ÁÆÉ¼K»3Ýu »0i¬‘Vôâ~nÚè:jy{ ¨8}u,W™kM˜—Mð›]¼A_±ј­Fi”‚Ž.²oŽ=‰€Ö%¸W®w–އ^"\2u-×sðä—áJìDSf„xQ…R4›‚¼—%²qMöµô‚mõòÕà¦/äÿI¥åS8š£Ñ(LBr[tƒ²LÌ[A" þø·Üyý6 Ë"¤%QC'׈Œâ{¨3ЖæùEøálÔæ¾b Í[¦X!×DJ;A r#ãG¯°Ô `}gæõäUz;9ÊZ~Òþ!ÀÜÞ°à¬Ý$ *i‘݃ÂðŽ@.È)}åH˜”çiÜðí†rײéìvsGÉÞ°O¾úœÇÁª€Ÿ²=ì€!$¢_ªéqä>‹’ã kƒv•È©…¾—:Ü«èº~_T\P OÀ¾=á´†þI“¾­Ë”G5R2ŸëDm+« ¾[™Ïw?1I_²•Bö¹kàºM¹À®@®;„Á½¯ÜJŠÝ²O ’î•[»p¦<0ô»ÏU~Òî§$ÃèŸh9û(%H+Ë«®ŒF=ïV`ˆ"'ÅwÝ¥AuâMk‰eç•ïpðd‚++iÂå1‡¾ó³ïãtÌbÌ^©:sop :÷ù´t¥mä(ªœ)ò_(ÌçÝ ,ãŠ+ ýòII¡ÌoR\Ìbùf^WP°|±Û¼Áí"ÏÕuМ*ºKÖ„Uçª%9™Ö¹Jʤ`»s¨kI[ÔÎ(÷¡ÎrÙìÔÃß ûbz0•"‘¥)ݶ4~ Ò¹›®+àQ‰ÎÈÑ[W‡¤@Î2·/¨Qlt>|¢Ô̱~×¸Ñ VÇ«¡µß—¼óÖ(yØváN|XÅ”çã?Ý”5MJÒEKŽõè<Éx…×±ãìѧ¼ƒNêºÞ.nsâ0Ï Œ9i(”pa¥Ö©ÙÞ½À[m‚i{]zû|{…ˆH3˜76k  ;wÂq?]àî“/ãI¾:°†G‘HÆNý–ªÀ"m €K®u¦±?œ«æÇPšö+Ç•³‘ßǯt:FG¶î"sµ4«és„žW4ˆ Á)94ïy;I ® X£„rÛŠûüë'ÄLV„¡#Uíƒzô{‡U~ÕÔž|C:ІUp…˜͹w½ðAÛ*§™eW§:Í€!xåµTÛ{_gÁæî«ìqŽnhÒI€õKƒ©@.!ØÌΑb8PªÎþ[–º,Û‹œóסAXér}ð†¹ý݃I®Äžô‹§6¡Õo9 3ˆÎTµùAÚ$[¥ÖÉ6ž9y7¾Nç=¬V…–}¹mã—1ݵ›nrN¼Ÿàb£oLÔDó¶â¿‘e~ŸáiAŽ÷h_‚†rþ|yÛ§&¨ïÇßßüÃvÙz4qÚºY—µê€,š§Hƒg ?Yà…Ð_/§|¸åK".˜ÆgtYDƹl–ÔGBË ~æUagÝ~*ZuB¼‘dÂŒ ‡ÀÚà ;m³`ž)‚œbQ…ƤZØ«°Ý[©íÛÅ×ÂÊŠÇ]·¿@Þ¨QVebÙ~Å÷Þö~5jÏt8/¼ˆ²ô KÇF®©°d¬gÉ_©ð‘¾Bç×,¾mµeŽ 2ªË|ÞYTJfpj¡2§”ÿršÑ¢ï¤©…òŽ+UÃGÙ—/ÒylLî˜u‘ÝÌøi +ükÑdQÿAé.Úz•ûò²$TpJzHô¡ó™½_5ì #¯êBúè™mí­!º¦º$ilÀ@Ë"ö&L¾Ï:\>ÂDîN†‚D¿o“O.¦ùpÓ}xðM^ ÿǨ¨ìíéPe2# ’¶¹Hy#÷üÎÚ£onÞ÷èéëç‰p”Ù!EïìϯµuèR¨móüò|V‘šè%™ã“5ÊMûov$]-†yR¸|Ò;Oë“lOJˆ–¨mÆi¸‹ÁO`¸Î˜zaó|N2Hà1ð…!o~Ö§buâØ'Ó6Ƥ–Æ#Õx¯³Äî46Yx.‡`_ÏEÊ'ƒoGFùs–õÅïU¾×œço6 Qs’õâÒ¨ïû”½3Àgk‚<ø4ÇaÊS¡æSh [•”{DŠ—³šç »ê¬ÔF¢f~§«ž÷Š–îü¤.Ó=*íÁPÕýM®8¿À·®2}VÚb ZJg%ûÝš)~F"AJæØ/²À¥nñæÜè’°Öö&?ÅÓ*MÈsEªîl‹¤uÕ3¦ kÙv³w¨˜™oáAJ DNÛï°¿Ät¹Ìµ­AÓÙ'XÄò£¥êíTŨ‚%~“}ìvžrô­ÔøÝÊG–‰N!0-̵FiÝlôU)ö‹ýÅ^q¾z†8²Â‘OæW”¥æÍÏ/c‡Tt¥Þå$º‡óÙˆ@ije©Ÿ·¢ûÚ‘«fícò…Mæ½Þ-ómgŒ¯›®b™çc3³4‰9$‚PTŒ»‹1­)Ô¨’¥¦±øµÉ·êæ¼§Ág߸ožº9rGJ(C߆…©ØM6e–HCt©Ð`­Z^?jÃGn¢.‹ 3›¦9PwÍuñªîâAš ¢ó äU<펿´¦™ñ[:>ØÍ DZ¸.áèÖa.ÐR5•úݧ›rfþt0C1s7ÃiCwon­0eF@Â¥™ÚñÕ—e•V^pI¤\Ä‹ª ¨™>Çæƒ4X y#GÙ ã#ºTáÓ98à‘ó¿óF: Á®)Û¿ ª×Üâ&À§ÚW ˜ælBÄZ˜óðqª¤ú,¹kVGÕÕ‘¨|2AS‹¹Ý·U¹ð† ¤k$g\¯ui™cýRá#’I71}­Dê#²K1§Ä6Üßz°—£ÑÑæ&ꈿz´/êc*I *?[wÊ‚ž[ßžyhZ/J6©A_`¿³šÁ¡™´:C†”è~3™qlÕ$eŠÖ0–ŠÈ`µÉ(Š<2²ï¤ó Ñ”z‘“L‰Tù©¬8> µžÅ#\é †Ë' ê™6y¨)NIoÄí×!ŽçÌNðšØ})ßü^/·®øÚ¥è¤AÇV_ÉÔÄßmP»þÀ£7«§Óƒ¢ûF˜Êý­/çg…#iÜÁAXëÍѱg²(>¦¿575ÝìªÐÛ^G~b·-öƒOws§ÞJ”»×cR:¯î[¾R+0mès{&äðo×ß¶ÎÜ«K‹¬SÄåJíæ2K§C'cßÃÉ*9Q¼²¾R§ïL‡pCûlƒ‘gãìm žÒvÂ]„ðÒÈY®v#ÂåsÐýVâ¯æŽ>½·¤;öž!¿öÙv5í¶Ìû “ÅBPcòd$J~u†]f}#zeæ “l|¶«ÀX‚0ÙÌ][€{Ï™ ýÔg% fC¼ž}iÎYTUˆ)ÀÎ[øl) hY=ÂNuð«OÉÅïÊFÒqÂW©=uˆµúWí»ÿ¥û”ù›'§‡·ÖÝ·AÓ¦—ˆ”ñô&L ž£òÉ÷ïzº†’96=¡(†ˆ©å{<݉ºN\xUÍhA£•¥þ9HŸá’³<É#k(iè©kCÃ@—×Ô%¹E9äCƒ–ž®‰«eëY YhG/FtÁ…—DæqØÛœE.®LÆañwU@=¸ô¨7,ƶÇ÷ù.;+ý,¦•4JVLñ”9¯éÉòVzªÔ^ZQZ~Ñ0" `MáJF<_1YcûñÈ•]Í ç%ÄþÌØÍX x9i¦ùÞþk;ª¡ýFBðúݱݽÇî mö‰8ˆåú„0žËhµ¶´—†€_Ô°AÇ{zçÖ­©P_¬z©h×™qäLåá –€—}y;[ÇéHcÃÙû÷“Ò‚vèH‘³( øIû(ì3Mg ‘(Í”±n´æ.m’dí`/¥3Zƒ%Âk‚5‡¬˜Kå!o"ÖWÒ ýjìÝ<€G°\PY¥c¥`ê½ ÁkõóÎÇÌr‹•bµŠWl*›#K½îË·Å“_qœ;Yj<6ô²©¹-˜k«šäûŒƒaž“vuys4à¤lrœPÇ2¡Ÿ-ÒJMp0©à­"¡ùjß¶@¥ˆ²,œQjFl&“ü¢e7Fºí&Ï]#ýO¡:¿dkÞÒ@)R‹\/_”5ÓvŽÄÈöI%épÁúÐÔŽÁœ¨pŽþj|¦G=5l‰† WÎq|è"6T–²Í 8æõðOHhȯ롈l|¸[ÚÐ~NY¹Îßk©Mf¥—ÝJÃ]Ñ œ xðqwT“#uQ0Je€ ItúOHRåì,¨ Éul±ì¶|îîb#yIËÿ„Ô•Ë7ïMÔ%¬¿,ÅÊär¨ŽP#¨N¶Ï§¢â~G™Ý)%x|SžDà{ýÔ›$‚áAî°'­&aãÊ ¿[> vø‹ï3¹S ·Ön‚ÆÈý­‹H¹¹ô “ÚCokpÑô jÔªf2ÕgÜÏÁ?<Ï5§ÉÏH)SIt¾„ñ¡²M\Ïï'O ”E”%è·—#A•”‹ùâØC›ŒÞ. ÉÖ…¤E³¹È8™-èÄa=™0µª4î”—à3s°ÄiNq2œÕ€¹–¼ýâ¢îa¸LR4“J>ou7!†%>…tŸ¼+ñÔF–ƒiè¹$D¦ðµuœgšûCma²Ã‘•«'ì½MrBâo¿r`ËÓ¯zý›ùü¨“ëÀzjK­|“LíÛ›:éCzWyzœq3ßå‚fz@à‘¡#üæÝž }…ðJÚ§7º@™é] hSaÄQoç4\œQ••³\\¬"fôtêo‚yoo!кYGqêc¶„:ºó™l8¤ù…µªƒ‰ÚÙª²q«Ê—븭Hå!öÕ~nrÇ›~¥£€ØŠÏ)Ü‚Nv±yäÒÐ?õðÄ/tA_­|HA’ÛÊŠ/l2}ìÖŒäBï½,ÝÜÊ‹3nFš~‚Å´‡Jˆ£Áí5(¶gƒú¿€vŒ® •¸ÑïF±Œ † à¥ÆCrïlêeNw¥1òü"¦kmM/>zᡞédÐ).&8áùB투øƒ› Ké2Jv £îBì4Öæ1”iˆw"ï£Û-â.ºÞ_ßÓ⊌I‚ð‘7Ð¥ÕÇr4(]æ*ídŸOa™¹G®DXcÌS‚Û æaÑ ¬¼ûÅê|Mùö·±®Å2m¢’y{Š/ 4‚ <>V¶MÆÊ_Pcj HPŽã7ê³õ–Ñ„€³'ØÆ‡® tîÈÃo·rN,Ùë˜V•Ð0Á7?ˆÒZÌí ©Çûœk;éñib9ÒƒBµÃ • ÚX‰™F_Œiʺ¹…¸ p½ÁÜߢµ¿|º“çò<·‚ÙPÐþ|"“þ«ñ¸Ü{™ø$gF஼£©XŒ¾Ÿ .Øq]¿ÌiBéž-»ð^c-E"œ¦8"Úo_Î\½ç< FúGŒË72ÌOºèT%Ò@¼È;VIÇ=>1xÕ¾¼ÚÌêM¼ÇY¹‰éCì]4-¼6_G^="],v¨xÑŸ*DŠôýß&žâ4Nf-÷v3C³ZmÜ_eŒ¶P*kãemOßadwIC‰ A`¿¸ žîsZ5Á`ªEþ²åñ§9c³DW‰dÇ瀞%×­”ø ßD¸%±gl}?])îá mÜÔà‰ºÉÒÖaøØÊÖ‰ƒÃÖMÃù¦ºµ7$¬¯;7][á1êµisw7‰7ƽÀ*Œ>bH/×¢è½rMÚµ:F…‡æ¡D6Ÿ¶±·µÑxž:I ¬>EkD;ˆÚkÑw«<{ù-5ƒ£WdR¼ êŠlµOPB¸•Yfuœ¥ Bt·…Çã^x›ÒYä{”m¤¸ùúŠ%&u÷\[$9éMúiÍØ ’¥Ô‚H⳩.ˆyÈÌLº¢g E7êÖo¡qýôÕ 2¿È•úꀿR£¸×ŽDx«†d!uóøh7ÓSã¨Q®ø15NóKÁ«B‹Iñ(>²ÙbOAŸ¾?]$ˆ†_árßvKç¡é£¾Eï(I­Ù¤J\{i^"AÙ47ÝOKÎÖa˜™Rµ+91 ½—¦‹d­ì2Õqˆ2„€­øûYº÷ ú±®ÍÄÜvîÑÊ$ˆØÚ{7bjkÞ_¤Ü.‘ …½k”üÆIe–ñpsn¡ìGæWT;D‡øîŸ´\åÔž>—aÔH8˜ÑÞEÂ0òX÷µ€Ñ­m»DTí3œH©‹V¹zq¾_;"Ÿ ûÃÖê;~‘å)¾omar r«Ïò©®!ÈØÙ®¡ÕFÔ®çBÀ]C¯Ï—b7šPE—i JC´Z>‡b]©gÄ­¤s¤Œ™WЮ9îÔrý²ðúŠòàæ½'õ,™yoËd;’ZÑm¥^üÆŒÇ5ãTï_`-Ÿºè¾·dÛ¦ CÁÁ^lQæäžxOûNOò˜ô1|ŸÄÊ¿"W¦Ž"w–­Ë‹efòA$Xäþ6™>5 s7L0rý#©5M¶ö7{]r¤j@Æ[SäI­*bûƒ…s¼«åð³;*wb@}l½iYvWÅd10|¶}`L$x ”® ÅLc†GÞž#»"7”¤$íÒïDQÇ“úJ–ÖökÝ \ Ò:Çôdï»Gv Ûÿ§t,6 endstream endobj 142 0 obj << /Type /FontDescriptor /FontName /RFUZUK+CMR10 /Flags 4 /FontBBox [-40 -250 1009 750] /Ascent 694 /CapHeight 683 /Descent -194 /ItalicAngle 0 /StemV 69 /XHeight 431 /CharSet (/B/C/D/O/T/U/a/ampersand/c/comma/e/f/g/h/i/m/n/o/p/r/s/t/v/w/y) /FontFile 141 0 R >> endobj 143 0 obj << /Length1 2423 /Length2 17778 /Length3 0 /Length 19187 /Filter /FlateDecode >> stream xÚŒõPÛÒŠâw·Epw îîNpîîîÜÝ-¸»[ hpwBp÷Ë–s’ó¿WuoQŒ–Ñst÷œ±‚2 ±­!PÌÖÆ‰Ž‰ž‘ ,«ÄÄ `dd¡gdd†%#S1w²þk†%S:8šÛÚpÿ ì4pz·‰8½ÇÉÚÚ¤œ­L,&vn&nFF3##×m¸".æÆYz€”­ ЖLØÖÎÝÁÜÔÌé½ÌþPQ˜¸¸8hÿNZÌ l²Nf@ë÷ŠFVe[#s “ûÿPPò˜99Ùq30¸ººÒX;ÒÛ:˜òQÑ\ÍÌJ@G ƒ Ðð—`€œ5ðeô°d3sÇìʶ&N®@À»ÁÊÜhãøžálc t¼(KÊäí€6ÿËü@ ø·7&z¦ÿÒý›ý‘¹ÍßÉFF¶Öv6îæ6¦s+ @^L†ÞÉ͉``cüW •£í{¾‹¹•á{Àß'7ˆ * Þþ+ÏÑÈÁÜÎÉ‘ÞÑÜê/‰ ѼwYÔÆXØÖÚhãäû×ùDÌ€Fïmwgøg²–6¶®6žÿsc“¿D;Û1¨Ú˜Û;%Eþ y7Áþ¶™lŒŒŒ\¬ =èfdÆð½Š»ðo'Ó_æwÞžv¶v“w@osàûXOG ÀÉÁèíù§ã,ÀØÜÈ `45·ýÍþnšüƒß‡ï`îÐf|ß=&ã_?ÿýOç}½Œmm¬Ü‡ÿ=_-Qišÿ×'$dëð¤caÐ1³1¸89lŒïÿeù¯þÿhÿÛª``þïÙJژظþ‘ðÞ»ÿÈpùw+(ÿ½1T€ÿ­ gû¾Ê@åïÍÿÌÈÆhôþ‹éÿóþÿòÿoíÿbùÛüÿ{ 1g+«¿Ý”ûÿÜÖæVîÿ¼o²³Óû­µ}¿6ÿ7TøÏM–›;[ÿ_¯¤“Áûí´1µúoÍÅÌÝ€Æ æNFfÿ¬Ð¦ðNoenT°u4ÿë­Ð112þßû}3²|Oßgõ· ø~þ·¤¨‘­ñ_÷Ž™`àà`àËø¾^ÌllO¦÷ j tû{³ ô6¶Nï)€wyÞ[Ø¿&ÊÎ`üËôb0ýFá߈À òqDÿ‹8 b¿€Aü7b0HüF,Éß轞Ìoô^Oö7z¯'÷_Äù^Aá7zçTúÞ9•#VƒÊoôΩþ_ÄõŽ ~£÷ †¿Ñ»"£ÿ"¶wŸ‘­ÕûXþcaeýËbmý;ÿ¯y1ÿßu3¼kûgYþÀüN´66p4û#é]ŠÉoøNaòdý šÿÁðŽC6–¿ Ë5ÿòÛ:;üAÿbú|'ü]œõ}øfîvf@›?"Þmd|Wañ|o åð½KVÀ÷Zÿ¡å½=¿™ÙÞSmÞwúÿ»XÛ߇yO¶ý÷»»ßîw2»÷ï—ÐäwKY™þµ:üO§YßOm÷þ¸Øþ1÷¯7ƒýïi¿“Û;Û: ­þ‡ñýñü¯ãI™þšÆ­ezï”ãoyïÇwZ›ÿïÒ°ýtù£Álï$Žïïýoš÷³þ.òþB28™9ÿ˜é»p'WÛ?Þéü|ŸËðý®,Ì{öŘßéÝÿ€ï]ðøÝµw& Ã?¥þç•1rvxï±Óßß÷'è?øïO=è4‚]š·5údQÔq_#ˆçJ·÷w–lO=•ŠÎsÉ¡Óù:‰ª:3`ÃáV0i´yuG”òF`™èÅó¸µ:´-A±ýÉëY/Niz¯vq sh²ðX°~ŸNE`ßëÅÞKÍß¼´[Š,×Þ™Q!íÞu@Ü­~°|e‹Àù–«7š$)3=·•¥QnXO§nïŽ*£ú°}Ðö>lðçz¹jù›`õ×\ÎL”B è/1Í`¡[ΘâS[Ü"먡[Ra1¯”!ùWê_û®&º®Ît èyèËM•…àå¬Ñ´²åceÎfóbØðt¹úÑ_¹K¤Û¨!½NÅ`‚Þ<ûÃË¡~åó¢´8ÙOö`X|Œº)nÇÉuŠƒ¯ýG'¾GÁáæ8ð£ŸpܵFnœZ vòÁ0ùÞjWí™ü•Õj@½¿ s÷¬—\3š ,xúúòXCý`v=ÏI~ Á6eòH9}ÄÇã0ó‹ò™<¹š£âaQžÆF6ê™Ç’!´§Ž¼é&à Þáq¥`Êuô¿Ò•q)hŠÊFΤhP¶épÓ:;-ŒÇô˜Íx¢ÏRŽL½&¢ YámŽ:uyQ˜5ó#áa’$‘×Ûs\+l»3u®éß9Á4Ü´X¡q‚ ¹KˆÏ;BȱV¨ r£xÜùBÎÌî©og2o†Žu7ùŒ mñbzA [1ù¹]ºò ñ‚°–_-½tËm&Cxj„gg^<& ß›†t”±Úǯ˜JŽ™Á 6 50G•òZHƒn­8@ÆÅ¾µ(É•oÀ¹G!’ 6ý‘Hƒ±àb¬%ýæç¤ñšŽÐQ2ú ÿp¼i‰{Ó™`qÝ´îns¹>Ô—.Ìt6ú#ó$šÀ¨.)H·jxîÞ‚ýÕÉ3Mo¥ƒIÓá=.Ÿê©#§#+ÕG ârŠPþ'~j¢{¯Ø·Ó”ù¢×â½CÝíð(6–>‡À“åˆÁù[¾þõ©ì¨zÁªìï©¡Ú0Pí•èéªáý¼/îgÑØl7v‰ç-J9ªw-—häÃŒm¥h±Ét›euœhIÓN’o‚nÔã¤[Ä«¦DJàØ~Ê øŸ”zÕ@NT7ý~ñ[GË.UN3›¢É®Ð£« p$`?6¹N&øRñ·‚ ØÈMV3DçÐݶÌÈ.»‘úTi„+דH}…°-ŽßS\¸¹ä•?×O¦Zøf4Qµ‘ˆ8Zj5绕À>c–Ω ü´Ñ8•KH¤µé¢z¾mÕ¡àEF¥6Ü‚h}Þ¶P‘E€ŠÊKÞa{P‰y-ÓGP0^Ÿé㻄ëå©Í>Ð=–"”ò…ÃBòÚ+Ôo$•9÷¥Þ=ü¹„ þ-U€ƒNà ã'+e<~=/è)`‚H?{ƌ®rf‡Æ-ÉeBÃ;¤Ž?rE|žE„€;%@·éKcÞlN,5y+ë…ݢö[ôóœ0÷‹®R†¥À…²ÞxÌ‘°•®.Ô¸÷r=—@ÛôðmF ¶ýµ:·Ù+ÂU6Â!ÁkCƒr7›Ç’³ºúSR9ǰCBA3kŠÒ²v;[××Y?¨ù=ÕFŒZ1|¯ êÕÀ¨ p´Ê¢=»pDì@9eø)mbò¯h±ø{ƒ¤¾^?î¬ÉÀøT:'-k¶>98×h ÈÚD4;W×'ãÇERä$¸vg1%ð{ýÔg\Õ²j5f 3ÛÊüŸ ºuuãÜþ*<I†;¨©rC¡t5Œk1’c;ÏD [nã-óú…ä<[þµ‘a\ÿN ð`6g6fc”µ%¦¡B 1H>r|„´BÓàGŒ`œ¯)#¦¤b"ÎÏú'¨”'/žvè9ñ¥]§h{(¾­Ñ/v’X_Éj( 5®]’Æö9¼™¸@­*«¥—«ü@‰Ø‹P>$'ë$ô"Ó¤?nÖZÅ]ë±c\Q$ãO±¬ê[R«À7QV•éd÷#±³)-Òi÷RŠ~ý%(EÌâÈ ¤Ìÿ¹Z0©õZ>"êØ 7eÝ`4U~AO¿òÀÚ6{™É§ØJÞŠ—<ìVµw<Þêa“ŠØb)\Zcb¯N·”ôÈnn MjGCkja¥•ë@hæ„÷å;? 7s‘ÓÒÅ’;9žX±+Ï­=ÑâIM»½ì,¢'vÙÖ§tAF›GÃø*~—4M¹ï4R)C;Õhƒì乤¿2žbyàÜQ’Ø!ÝMÖ€Ûà^[ÔЫì&ÁÜ„b’W „rîÍåxÔf‰Û†qõŒÏ}ÔÅúúà§„\ˆæê¥E¬;ˆÔå*j°`R;s:Úlný–ÍÊŠÇ`X%÷ö‹7í\z¥e¯åâò¨Ö¿BÞlRJp8-½¾ƒO·•Ë%g6ÖšBÒÚ©e¶ŠÛXŽä,%  Qfoß@É-·Ÿ8øÙ˜¸S 41Ã7,½‘ú"Ê¿{—k?K¹jPÄÍr±7Þ´æQíb8¤\×)™ÕÛŒ ·.!æ0 ñU²ˆV¾šb³gkÅ*¿ž($6è-DNþ'ö2‰›̘¼Jöµ=ºvÊfb©Æf­.w ˜ÎRbj…Uú&¿² x¶“pIº/ "2 lzK{G_íMJªJM'ªÈ"Ý•Æ?»“{Ürç_ŒŽSÇÚ&óòŸ5×(ƒ¨¹³ïm£õÃòóe ƒ¢Bèl ãBª âuH‹Â‡¬LÉGg¥)_‘“ ٌѦ©åEaØbjUUÌqÖ¬\º¹Úñô¨@æpÆIí„3Ò‡Ž iÆ)[dc`~t,+<©EÆËÛå ; ë·ýÈÝf̈¨ó«âd«Ô¤¤8Šc’J‡£‚Ç­FKœå³áµ‹‰Ù2°GÉø\ýð“‚ê›ëA—·´f^5M£ñ<Ÿ®ÑºZ$û*£¨ÖíÈ :U¥ù-8Ð OTÿu6‡Í¥ÏœSˆí•z((ÅmÓ¦S€¨Wô LDá¯-HŠ.y³òK·Åf©ÇN³œã>/ß’d³Ê•¿×®«ám"¡ÿeË©1 “`¥‡X Ð1;`ìPçYôl ¿C›0#p©C³Ø×!¼‚äÑzcƒâ qĨôKµª[ú" Ÿ–ü‡ÿòQÍgÜ¡¯±«»SùL2B5“¨$R»u ç=W¯ý-vXXŒtïÁR¨(qÒZ2" ’®Mö%™Jñùç,œú)F9¹(£$³Åór–¡¡@ÆÙ#†!pBSxiòêÊn÷™nÙ‹þßxÃ|«Û¹º÷<ú%»ˆ!ЇšP€ârÝrv‚áɬPªŽ:†ŸLã@ £éd¸¢î0*—«ÆíÐ “? qïL1¹= '^ŽìêÇA©õ$]‹Š‚åøó7!c#Îߣà ¯¤ §qpÔÑé/‘BT•uÙ€þIðÓ«>˜Üq ê;|»ñ€)‰ñd¨v‚+Ên¿ eñRLŠíœ-Ñ]‰^ð¯D[fÄžµör°°Züa„^$0ÂP7ÙXÉn]ØÎë¯Ú¤Æ"*?µæ‘àgú-š7̽äéD¹\ •ÁÚ… =b·æÓGˆÓ™MÏÁ çŸÑÙK‘7W& ¡R‰Z/WâÔq™}?nØhä_05‚¶³ÛÄùKôÊ ÓaÊ –mñra™²ñž¨ëºMŒSBºù7 ¼-g‹úÖô.;qb!{Ëå\ÏKƈŒ%Ƨ†wW¤uûÇb‚­Cú}ÔñmCïì‰[UAc±V2ç)îs`1Àd>$&4ÙŽ>„lPÎ$WÇðTÛ©‚ZÑ{C(GÜ(idHIS7‚õGØcJXdËqã¬Çc€o›‡RkÛ©.¹^*ií¿ôÈB¦ÖóÆ%"á‡WÀÛiñ£ƒz>óIƵî÷±8OÌŒÿ 悯6 —>_¤G†þL¡™;s­‘ƒM6ïµÊEÙ9ˆ¸nâÀ´Õä§ØácÓLa WDÝ;aÐŽëÄÇÖNð“Wr–`=óí‰LÂy€aü¶ Y]ïGc!çJ×Ô‘ArÀq)j¤³¹.åhF/ôCa·!Ûî"s¹(?i9Ô¨côÔ;“êݵ‡@æõšÂ>óy‡<ŽiÈ2ü|4·ˆé Ö"ŽÈÎoÍ'A~µ¡#ùl–>?¸_;³D\í>V|²¸¨„xü ó]_Yés“&b-ýŒ«Ü&Ö‹pmœåž;Z…Ϻ³É%'â¤G=ÀiƒA‹ÎôÓa£¬ ®çbü“ LBt ²«„·H-ã ôãñµûÍ®Ia _i¦ ¿èm ½rŽ"èäž ¤Ñ¤ª—üe)M«*iƒÃ4ïRhxlžMìKÛþxRíæÃܹ®Ã'6~\®±Ås$>ÅL¹q-sèÀÊ»Ì8Ó”;^ÏY=¤‘4Æ9‰ >Êo Îê³E^*ã ;j’²;Õ&ÔAì}ÐãFU˺<)™Jl.t®UÔ{²H‹_®’™Ôò‹áÍCùwó¤„L‚sq²Ž ”ŠÁ Í=w%HXÍà(ƒAsñL}:`9»èæc~wN  ÜSzÿÊÀ~ßÇTÉ„R“MÉ RøZ f7–§ïåùJ‘‘æ~†A“û ‹ç”Çi!žK.}©w|ÃJR‚ wÍ1«Ÿ÷̈T3¾=uë[È$õ½¼Œ:z¡¦»LF;­y Ú‘ÚÈôF`ÑÇÚÒÄ¥T˜sml-(KÅNKà‹.JàøxIP®9‡]ssSR€¢LE=G]¡]B3¦±À•’Nï›ÿ²¶u°?É/·‚FZ×}~[úËŒæÕ’ÛÎrBH¿@ëÏc°ÕÔË1¢ˆ5Øç€éíW ¾ÞŽ÷îYé'”+Þ\Lá'Œ=»ŽK©aPwÎáû×X5ŽÃâîaŸ ±„/¥@r©üÉ7z¬eÃÉð vrÇ»¡Ó?Cv÷N_rØ WæÈ” I µ2ÞÜ¢Üd(ù<X¿± Œù 㢰M…&^ý¼³§€M†Tg¢CöEÞÉß÷KëÞ¶•I‡ %ôv*ßè|NðV#‘w“@˜ÞdsÝÎdÙ•::ùA)$ÉÃ÷¿šô¨ù'š<,ÒÑXæ}s½´2¡,ˆ3}|á£a#šC?ÿ騶 HêÀ±‡Æª=Y<ÆÖŽ»¼…Ï#¯P¶CD+W1WÖmj°e´E*ÚWPKóAgƒ1Ë]KÍßyiréœôgh)üŠû¨–¯¦J²¨gQ¶XÕƒíHsáðU= 袚J§„Âñ®9Q!¸ö˹iù°úòã^ö;áÆ©yë[ßYŽpÁgûÛH·~2\yÍÈ*=6ÓéGámV×}bß—}ôÌé7õ¹ô»Ó8—k×Z]RÚv,½AÍù›â¦Y‰"ýrMhné¢ñ‹òµ»6^®×°Bÿ"¢áL„žŸ-×JhÈ, üаN \X¸ß0WZÑpãl$ØFqu«$ÿi~°´¬ÐÝÆó‡â[ˆµ¸2òÞ3çòNBAÐR䨀è9²Ç.£Ï ðÅ)?®Ãn—?¼Ü4†lý‚íéEOšAñ†ÀÊI¡ù˜°ë‡×‚¾ÜX®¶-‘³ŒÓÍ$¾œs'á±­‰Ôq¤R71S1 êK×o§UÑ+\_—kÏ ÎÅå4‚ÒQšõô®mãw—oSž§ß§ÙT!ÑÖÿ¸ð‡²ŒË´dÌàÛ#ÇÔ­[;ÄQò˜æ5A ?J¦º7µ\K p 5R0æ©Þ)Ò‰¡%FêÏsù±g½'EWKÍSUË \6ÒÆ+;Îå­A ½¢Ä²õ(ÈL#h|üqÛDŒFô&^ûŒ)ïû¬–œ\€ÁNß‘6FTê¹ôÛL$=¥ôÖ#Æ, tH k»ûRŒuȬ˜)¡§ÚšD-‰70•túÏ(QIá‰qqÄE%t^e7Jj²ì0Ƥ(Ñw®U@Üœ¶¯Ñ'”dôúô·—N= °úØ#¾aÙ‡· _l˜öÌH6Ó+@¥¬M?›ë]ôuù°×¥l×>Wygj¹á{DK7£ˆ¬´7µ‚¹^®J‰>{ÎæÑÂI–‹üï—— ¾?2®óéý•Ó¡hF°È‘:#â>LëôdªoäçË­Ù-aôŸ2Æ›|é°ú²fÓ> +* ß`}(ìÀ}QsE€²7÷K‚·`$î}{™{ŸdEê/UßÙR 9òr¥4@ªÄjFÔ7ÎãÏGØâˆËkûìc´ ×.²îäÉ|#qÉ}µ¡<ŸóŠ†ßœš…>c¿6J‹ìŽ4ÇË ô|£s†è|@x µ S¢æ¨5íÔE“„¿¸ ­R‘B2•sxN¼5 b˜~!ë °‡!6`FóV›Y*9ãÙ;̺\ØÊZÈJhЉâÂÇÕç\Û²i\ú•q{͉ jª'oÐöù~ê…vÒZÄ-°dŒ;-%£à"÷áþ *ó´—{ŠÜ#-<,Ç!’$¿@¼•”i®¿:<â–ÉÕ¥é°ÙNýævÁuý¤|+Ù`$ξ(ÑL‡;Í窂÷Q%Bù>: n’IoÞcì±”…: qþ*™Øy–R‡ôÚ¿í ¶Ø¬§ä`ApnË3§¡Êy×\A¢šr®*½9òhÏ*wèY‹÷Šämô;øšŒmÿøJÃ"-8$R¯ŠW`´³µÀEK±’îkÓð‹øtHªZh‡ËŠœe¢¶TÜ=H)±ïÖSé &@)ÏCÀvz߸îP±MØæÙ¨oUkãJš6t”Faƒ:˜ï¸ÜŸé—ÔI_y>Sü Ä-—Î ÏÞND_YÞ„9Q}/v_‡'·h„m ìòˆg™´Ü;<ÃÕsjùÞ¾ŠïȲ&CÅ”Æ\Ÿß>*±|ãƒm)¸}d·ÏD.†æï¬|‹—âyª«ÕûQümÕ=lTPý × Š"žùv"£ÅÓÆÜòšœ!ñ) î§‚½ô“Ó’ƒã„ªXçОp | ÑË ˜0·¤éºæö’‚*ØônhgyÁJØýW v5ÍuOšðœÞ¯uáZܬ°oac³3k‚±×Üþ }פÕúÆ]Îx.¥w<< ôó¾WXAÇü°¨1¸âF¾F4wFbñ3×H“ÝnóÄ “úwo¡Ê½‡‘e<É‹-!"xxgíAåì´² @Ü×Ì£…œ·v uÌqWš)¼ØP­Á܃kÜŸQFzlÑÈ#àBD¦ÂÊi]ò6¢Æ¤6ü‡­0œÚÌÄ¢ÊÙ ø|AšõŽÕ¿ T褚`”kÙ„šâ% ¨ÇG•;]‡-}¤s\° ‡¹¥¹V˜,cã™ÍØØ$4}N(Ê®hpÀ&‰4Ç¥Ë5\‡íž(m-öÒ¯f±ô+{J¿„’yng¾y’E`91|‰:!j4–Wd¨ïXP6 ä»À(úi—%e 2.:öæî¨-qfiR ÁIh.Ü —/TZ/Ëv­RP¦s4üÈ—¦IÜ/¨yÕ×ÁgóäwuÎÄðèk3ñ©Ó‡lY÷)úÍ—ãŽIA†¤oM¤› f£ jÅ "§lÿ²±$͘Ä=M —»— ŽI/Jbp#‡dªY2Ò+o~±òz´ï㙵ù憥€ÿóðO8×&z¯yl>_ˆ&²’M}<¢ÖüaïÒžKý ÌíÕ´\ü N9¤\<›úÓú²Ã0×ZO§qûÑó%â¹M&˜Õ¥ê"¨S iœŒù껂63³eßfxª"Ø/aèè‚ø'ë›—" jqQ”¿ùfÊì©§0U®.æÄO_šý2’Q3â¢/äß$rz5ú##\1È~efÞ÷ÕÝüø)ØÈWæÊ™!µ8Åk¤Úî¥2÷ª%êÂB†±¼¯ãÅ |A–b/ê¦Z÷íÓŸÿLöšW”º³sÖ•à Þ¤%º4¯¯¿àÚÆ7c‘ä{ܼXó‹h<ÂÔ‰ª´´j"d$p¶7ì , ^û~73¼§èÈN4_%×Bh‡ ›ýÜòÌ*å/,7z-ݬ×Y³ê¯öyÇxå]Õžf6¾7¡Ä&0A¼¢Þ†hE¾—Á#&B‡Jˆƒ=»dñjݸ~P.¬ý §üh¸*Ÿû!x«Ü¾T©´Ö˜z·ÒÅWðO= #`ίN¨‚Wƒ§»]ýK$Ϧ­HJÞQNNñþÊ«O!•oâqÈŒb×9N[mHÒíÚP=~ ûVèq`b‘ç´Üψ凼{ëÁ­sê&ÉN$A%Þ+•ô⸠ù¦Ãý}/­79*W£›“ý× ¿mÁBS×åj·ÿã´ÀóN×Ï ©Xi…£<1÷tâ¸Â}£’ŸAšö5Õy@ j`““yF.ë8È5ë*Óå~Ñ–M— 29”PÂ%ó¯+u+w'–‚®1##²Ì±ùâ|’ÂŒÚPŸè¬°k‹,ž¨Žù¤ Õ«%³%¡£šø!>³IçÛS*wcÇ£ÜJ¯Í©SW:,ˆÑÊ-;lh³çCùiÄõñÊ+D»ó½ç-†ß‹y`üFFå1¢È¤dé†=ø3_zA³Ú\;;¹õøçSa•꨷¤~’h9êdxgÔω›»`‡˜9 Ϩb`Ay]D]=䣗!kÓ “úä‚-W!~M¿+È‚iêÆ%ýä!™€mLeꋌØ:¾Ž¨jòY tTátBu…«Î‹ßA8HšHxå§nrDÍ·í >¨4ÿØ;eµ³¸:Ìæ"¦'Æ4þBqßšá"Ò£•]{D'ï1B‡ÏÊ7C·–zùØXŸÈš%ò~L&Ðx÷ä]¾®_.ÂÙKHÔ2=…¿)DA¾H´æ:Uþ|XÂF0½mÐyfbb®Y½)—É7sW¬üžn m~ ½ogñ|>²±Ð~F÷Ìk5¶ÚøâQ8SõÓ8&w„x¯·ìà–kNxâcs*â£yzÉéIеF’$œýÒQâ=3ïgê“Á4m}q½/®%ˆŠªëùfÿOJ¨Ì±ìöËGÓ=g=ÿn± SÙF þÎVÎ~Ü+ÔA`Î ;­–µ0ROÒ?R¸V©9A¡PçÖÈUó>±•Îq{N!_¶þê.3wl啺g/¹:xùâxb+¦ Gª†òb¹F¼ßbz‚Hy ¦üq»ƒIqVÞÁÌлNG®`? zEx Îa‡“µ^–c¹ŠÍkäÁ“TphÙÄ4¶ÅQøj€–qÊÛ!gN–“e4ÝéQbíð“›Vÿ24¶‘׳7¸ÎÚI…éóCWuÂUƒU䀥Zõz'cÁ2¬ &ì@þ‚nêú z™@ ˆ,µ×©ÙÞ'(y¶ Â[;³±ÛîòÑã•7ž:žúoãywš$çÖTwî{°Ùì²Ì§ ãÏK#ÅÊ éUOßU&uÞæ nXS-”õqA!®—Ë'…\c4î¬Mën™7tO¦›"κ?^¢VÝ!7èË”­wÍÍšbƒ¡z UaìalB#J½4XV|[¶F"2³.,~n?”6A6ä9̽_=½š.Zà•q4?â­iŠXÕBØpÙÕsðÁw#9?8o¦ëÑØ%•L¡³˜l-Ûm£²|™€vg”5[> ûqå}‘çÇØXÆJÂöeŠ’¯#nƒ§!eGDDì|[™¸…AY}&3 ŠÎø«0p³\ÎÞ‹ÕÜAô—N!#í,âÍÜSå6©YL¤ Ö¸ìòK¶&^^¶x1CQöªñäÄ•[`|OØŽÌÁ¯åZÐV×— Çñžý¥ƒ›ú“4t¾i×" ˜wéÄõ+mSÌôF˜憼ÌHù¬ÉIƒ]î6§ÕiO¹¥Çe? ¬{iåçÌéÈú}ÜA¬,¯§ÇÍ—£³ºƒe‰¼Ÿ7¹l¨2_>¨4}â-™ãÜÕ±}X ^g{¶0¡·Áe[3I-/l±Jý¤§ƒïlìJ˜(ô#ÕDVrs*¦Â£ìbºë©øOeJÿ>2GèS¸º>ˆd½†u´‹ôÚ妒¾Y½~]…|ÏvÌO|I­>‡½…º’kŒ›ý4gû†ã±}ä8]y9 ^P)ë]”ЭdΦ.Êò L1?r;Ú­ÒÂTöa ¡qÖ =Ë9¡ŠÈj¿O«ÇN–E$ ƒBŽ(ß[ý‚‘T´@56v)ùAðÆ¡da(#žxNæj©šLÖúuN š¿Ð]/êW_¯•< >ÅþHˆ³ø“cd]BìÊfц7'FPÇz}éz¼&kÏöÇÕ5í.Ø ¥!n-Í9“½9ÊG³ž9K¦.ÙdŒ'‡Ùäj³y–鮥‡Û5¦£)jíÏ¢±Ïò lýdÉíòÔf$ ~ö¶a}öÐ=ñÊ^§ƒ(§1ûf8­ Y-W§o9•ØÅìŒ’Š®EK’Žï‘äÀË¡÷õ誮®lÕb¨ÚНÖë¹Ê¬€š*$®-¢U›ðyÖÓ] uÊåšõÞþ>Âä§G—öJƒ€B?ÜØD¬y=Í€Ñ}®Na‰ÒÂÏšša:ž†ÞÖYÏ¿Ž.Ã9)Иuž}tRyô{â8Ä¡a•w»ºÙ}2"5YÏ8£O¾,ï˜Îã´`ªm—‘v)”ÒÎM!× &VoëåVõàMïeÁP½Öê£^¢e,±.¸›ßÍ_°rßçL‹}ý$Š¡fpNž‹½©Â¨G„/rjê–hºôЩ¾Ÿzµ°”½ËØa+c!­¤nÓ½úUB+kö§tÁ¯•Rà¨2ïô"|ÎnìbvÝU™OâàÞUuÞùë©;÷ú¤Ì›‘ŽÛ:µÉ'©VÊ ÌuRó“…ê†íbx¨â`Ëh¶2Njxf%̹ù m­\P×$»¾1å#5—H¯H[_x~"ݸZ¿‡ ¥Ór Wà³ßt;¹ÛtD'ìa¾¾¡ŒÔ}ÍèeÂÄúQ—…NÙÚF‡eV ÀWòá‘!+k‰0!mo&Úx«™ªNq[Á¬#šä°÷=3ŒuÍ‹Çùl^Jýp_WvÝkßj»œQ›©Ù.^¬Kø1ðÉIô®ŒÝΩ%¬$Цxfö§c[#ÿK$Ž" ójáP›QPëÛþ4£’ï0±« ¼c@¢-e¢qAò¾iMÃßv›äõÆx…]WŸÐ%êÛ–è‡Utó±‰0å)’ºHRüÚ­;³¢ 0²¨ ¡z4›oMn† ã¤3ľ\}ÞœŽ’e -·½QÖÝ#š üÄ¥ &8²ÛtQúGv‰ÉØÒ ®¾TÁ=z|•ñUQZ&‚x:ÇY§aÄTw–>åÄÇ ýî½BÖƒ…¢|Æ k'Ù ×äêÏ:ëܦN<}gèOžË;k¬ ©™ób݈ڂÓ_{æAí?f ÌåBbx+ºn97Ïh¶}p7K啼 ó{\xœœ-ÔAe}üpp#T;ƒÁ•¸Ü[CÚ“˜žEÆ5Ì/IQ=ÁÓ® ÒhlTã¿ÌÍáQ™€¤U-ÛÖ_Âs÷ûn†¾Dçö»®þSuj/nϪÁ•lPćÂî9îkýï¿Þ®‹iV«c&i»4]Ì_f‡8u0:]é6œ¨úöŠ h;'&?6~åWq÷ü‚ 6¯Uý^o9æéÅ‘}íI-ØÇ…îŸõH¹}ª­¿.±äuÅRÇ]À(®íu —"õ<»ØàtM”%•©Í¶ Hÿ*ç­}ß]9pþA@ ñ¹•_@ž¥&•µÅ]Ò[xoP!DxVë™×®{ 5å~+²‰y>ˇ›¤>К.CÛF!_»E ªWo èñsw‚_>y©¸bû ·yNS8üAðb½^¬ÿ+á˜sf Ík{YB­H^í²tTý-(mé¡ÿДþ'úîÃØfáv…z¹KDUɨ«ðhÏ–ËrêÛÅËšÏ9ÞtHäîÚ°!4 ìsu» _Uz ,ydréŽõY!¨­°mÓ´0„‹O¤0I}ê.„5y)‚j¼!=¼Îi. ÕòìÛp‚¸Àxì^²?›š@.“·* ùû=m7úƒÔõVd•Ñ ,bt±”Í?y‚by*Ô› #E‰¤ŠJÃâ/³•ÐŒþ•k†àwÏþCxuI¾lÿHû‰ì0%ÿŽT. ŠH;žT‚!Ka×ñ¦\Çn tE2UÝV ýt—jX×J‘ãµp_ç#]‰iÔ‰òçæno 0bÓ¢ÝT;¬x}¨»(;ÂÀK£iî ü†”˜¡®Lþ<’u²SŒw%&¾¹èÂè¦í’ÀlH›ìšç`Ù_]dÜ…FVJëûµ‚¸4.l¥„³íN§ìŽ0¶k›ßIïƒT74Ñ€iWàšZè~7ï‡D'¬îÀÃMa!/ÊüŽúu9¶AŠ-¥ Øã`îEò{ÄlÄø”d=¦±š½Ô0¢›fº[­9'å1z¦‹µTêÉÃA‚&*šF×dîè·¹ô²Í§FE½¨Rlo(Z}>~'‰‚:­Äe¨+ºá°*|ðÖ€6c¤Æ*M#ñz¢§Ç_ænG§µûL1¤yý®¾»Ziëî¨7ÚN= ë>Ç©™øXp'‰â­¿Ó«v d5|ñ+\Þªø¢“cÉQ9}ýMÆË ÷Õ¯WúÉQ(­gÓ ã;Ô”Ìp0¨î§6*Õù™èÅ}Z"Ïx©³K3iWVA1˜öÕç°S¬/ê釕}Z‘éÖgê‘A¤µðt®étšú:Ý*·24AõÍ¢ùÞÂ{Gþ2mè‰ £/ìM¿g=Äà^  ëØ1ÚÆ­·çögÝÈí™/³±wÖQ`õSùûf–@1jÌIÙK»âÚR¹Úc)…ôæ’0ÁÅYíYÛL¦rAJv ºC•Ö üÆ+¶õ@{­*¬L¦/ã ÇʨØïÎ7ÉàíÙÀ‹Z.[j‚\’wËó`waX'/RŒ•» çÕÈ»õT¬¾¬p8:…é\—®Hwaų!Çè6F#W5¨8&òûÌü*áîå›Z¡Û«G:n"ªOÑ–äÒãìñ G”ôTðìTÃÙKή´Ò$ ·ÐÓ—…AÌÄ,ò†a’™­·~¯À¹’ å%jü¹ú‰O°n»e©Ìq0¼‚Šò cä–WòFÌqnTzrÝ, <ÄEë%­·=ÇL×α.ŠfIM¸‚Û[*ÑHá¨ûo1­Û ÅçjñuÜf^ æöü¦ß÷ƒ ¡‡T5XaGƒ#ô—íâ,µ  ¨ç=¹t¢c›}—JAn¨¿J¥ÜÞ &«€&Fv¯Þœ·?fCË›n0â›Â¢@IÊñeG„h_¬ÜëÇ@Ì-›¥‡9–‰QnÓ÷r—eÌQ+øã×&øƒ¾ñv‡ÙCû!¯=Ax¿š$ÀƒõÆPf&žÏê»PÉв7a v!xqFö zt ÊEÑÿ$á‚ßIKœ+ýšãÕ¨…¤8YŒ„¬4zÈOÂA½Žð¸â˜5¢yÒööeö èJ£¦üÁð»zZŸ§È¸Møi&§ÌÊÏ1ŠcHˆÖnœ]Ao<¡5Jx"ÕŒo/~SûaËЖFTñÑ6Ô°ÒÚ×7QQF2>äV#%2?ëΑ|™äïè-9›¢"‘ôã ŸZ¡„ÞšÈÉàŽŸ¤a·¢UΙ·eJ #Ë`¾É{SÔIXÔiÒišbƒn£f³6|öÎÕ1ìvööx'SÁæZµ¾ƒŽÈëñ)Æø©­BÃVJ¨Øsn\ç}3ÂSÙñdI`4LæË?¥jQËÔ‡;@ùkçºÊ.þ’RSQ0Ue—v¦«±½UšÆîŠh”: «xoÏsÆ BÝJ1ˆIq¶„¾ƒÞB06ßÇe˜2KE¬ºGÚ€¯Ûˆ¶b–·¿Ce­Wßy/^£¨?”²…øÍ%†ÐñKS7K¥|Ò…Œ„^½àü½\Õœº©•äYP be ™ÒVŸ`VOZû!+E¨M#â.,¯ÐÉÜBwÔÀIŽž“N¬­•<Ԩן„ÇZ?ÎåÖ,½L˜¼<’‹$Gˆ®)z`Àæ–jyòÕëÍãSÁUÁL¦˜a?ãNh£2¹ÄÝèuÍQžòð&m¡•?Ï6YÎA“yÏÿ"ÌKl~hR6æ¿X  8ÇIJÕ›Iû¶ž¼ñkš¾1eh_mõ²]س¾J­ìS‹mJ^ÝãDN½òD_f.å¯p޾;°4Ã%¾ÌÙïdƒS¤ÀËÕÌPnžü/x¬F_;CZb0æ†bÇQ=Z^¸B¯ËU\ÎÀÙ oÀÇuÅVaÏÉHÉö{Bá„Ë-˜¡†½‚·Zï¯ìS4ø¶ù4üdÑ·…üú³¢s»åÆàVµçì|v4ñ£A©„´g²Jи–J‰< Sß P Ïlä´ê·êá§öÜpÄÕãAëØsø]A!ØÐJ—ŽS{;¼onøÒcÔ³hر¿Õ¸õD{¿J©\ 'Çû–Ïg¸y¨ŸÁƒM‹øŸóåýZç]ü" H:j0~l€‚_o_wáMð×t=¦Æ'®t,ªˆ»Õ¬°¤6Èû’´iH½0 ýã odLKþŸJ µöÄ Û†²Æ]­CÍ@‚ _ð]¹Ç¿Ðn¶ uÓ<µ{Ï]gõ6b%âÙÆùæÀêËÕø¶X¬rd(…äÇôЬñÁuÜv6ÆÆf±<É!p˜í¬ËFÎÇ|k.õM}ŸÉ\¼”Ù´„y¬ò°œHƒ‹Óù¹I_^¹åÛ+ýniÙq~|ŠÂ€ÛøêVn0N¹ª2¹ 0êv…É8M$5PLƒ¥ä™n²v¿ËFº¡Ûñ,gJ_ ¯ Ög´†Öë“…a¨ç ·^ÇV;Å‚+óã$ú³22WÑ)Uû›Ï‰!@f¨R!‚Í ¸}ŽCGÜ”qæh4RÂm¶|çY''U å Âé¤óê r÷eò¨/(6-lÆßMD#²2:.s`ÓË­C‰ƒ@øðÔÑ;å‹$#T ‡ ΰ÷¦ YÏ!S+JÕþžRóÖç{:-¾t©6,†ŽÕqÅ<øÿ÷_öá*¾8ˆ¶b”h¹ÐP¼Ä·Qa y…{«‹ sôẠ¢§dÙmNgqy“Ý Ê(†Ý§ ¥>O—6{t Î4¤ù—¥„ØV¼Í¸­¹êH„I2ì§š¼’SA7_P¥7@@öfÿÀxÁÕS„¯dÂÙLìçIvÖ\[ð>£6Ü„ ZquгYýjy’BàV™O…ÓKuP3…ÀŸ¡$bœm/,ÄÛÈC‹k†>Êäé¼3´fk†DÀ7ÛVÍÆHïg+ sùCì)§£Ìž¤e(æ§üägŒzs&À ã£›a* †ÝÌa5з 1¬!càJi¢xBÖjó,ò¿ïWäàÀ¥¢PÑ+ã½k|•¦ùÏ8=N6!#1²ÞÆ­gÕ\i îÃܘ£š~·iåÖõFämçìð¯¢eä0BÂŽ‘(»¸Ò¿hÌ×ÿ£¸#ƒñ5X*z¶$÷±ªÁŒ[-¥7ô¾Vâk}ŠâÂWd6¦ÃÀ«D/ø@ÑdPìiòäÚZP›D´¥×­õO>þù2‘g 5b.¼ß¯MñðÛ³†›tT¼÷ K\Æ3dûS?úúÉv‡£“0’ç¢uêñ(;õGlÄ(ò˯ ºí+dðU¬ÓµAÊ”œošGUzÿ9ÅIcF É8">c|=gÙ‡©àª;> WŒ¹CPÅd©ø ŒuélR-…íX6n›9tYyIöù•ù\•\(-Ç£ @ZÜ齜‡WÞ²;ó ×ÐË›‹-Xï…ëDýïLd ‹:Ðê&ᯠh»®äü=ÝÃÊàV l'Ÿ÷u½&}ŽŠqêTÚÝ&·9Y!äcªÌdR”v£Y‡–ž¶¸‡kÈ Æá©ì³\üiÍÀÔ¬üµëFÀ¸’a@bkºN4Š—„³ pBëx |OHxSäã,{;!Þ8@¨Ÿõ4,UA¥TÀ}­ó9jx¹V@ØÆ–PQMÏ¥aIÍШ«9GÕ9c¼ÁŸ1êÿEÔ¼ú}v÷&t_úMM¼plòëÛ ¡TÇ÷âV@Xão™<ô-Ka”ýý4î©BG2$€Ám·Qß`¶„é ý`Œ•ËJuI{Î#xÜHš#:‚àfB œn÷/l?ŒIx¡˜ï%FâzDø€†Ø#}¾ Ôí išV»U:Œ*»²`káæåŒ>=²w ½´DiÏ 3î Œx¾ s0­2‚n‚.Š€Ro]˜›ý=A³·ÔkxUëNŒdiŒÀW ®{>t% È«I®e÷þ³PšcÝnƒçéé\!q*®‡zl1ðvUª9ùĶ!JƒñÅ\Ï!üé›Á‘bØ L;öÇÉ PÊ6™ÝO4þí 1­ß)~Fô'Ãhzs*ϤcFÛêfºá¥Ý£(Å2T µlÎÚ‘˜@ÄÄY=¹qàÌ>Y]"·w»dX›Û@ÑE¨O_\.†^°T­ðEÞ¼.ן„NDÿ£ß_ºn ñêµ :;ص£í'a’&µ<εj{V؇½ƒµï›¿æÄR´d‡¸2PøaÈ7y ?ÈÈ´‚!~öÆŽ ˳êe­•‚&êZÒÏâ«Ç“òg'çöf) Näs’‘Y¥ùE{÷GQùßÏè/}J`3$¥«u°xÄíoªVH‰%»7]ÊgûðóÀ¼èÅ_8Ÿ˜V{Š> ‚øzÎ ¶D5…bWÝnGÙÝGÉû•1×€ÉYŒzuA-ïUuŒ‡ê;¦¯NZì"6•Ý` Í4 Þ­ÝYðe¼ŸFKê&™ßuä,$Ï>9¯'|ÁžÜ˜«TW;ëÎàü' 4~½iÈ•Z¶íèl¢íB<ÕöCdÉxô|$ßê‡æ{ÊÊ÷ýo_ßœµÙÌ d˜iÁ§Û–åm…7‹}”4Ëzv*‚X¿ªYM6Êsê‘ß(,ñmÄ)ýÚxš0ÄËFõÁüØû…»•+±þ½Ùè×ysD©g€¬¶ÔQñ­7%OÒ'Ö‹é¹±ØvéÀ2â;¸¨7I¾Ô5ÌY´Ä¼'Fî7¬XÑò­1eæ´|Czò\¹  ©q^ÜŽ¼æõ5Œr1)h}Yƒ#Ÿ2[g—Ê.9ÀóëQÑ"iÉMÎ3yÅê2H%^úƒGÑTg$ÿ_w ½,i«{­fAGó[Ïɸ6 K*åG Ö¶lT?YÔž«U¤un§áMpšdÞÁ¤Œ¼£ì²2µH™ p…¤G¯WÈI(ÄKÓVûWz,$ [Õ|£íoGœî»¹%WXuFj]sX`Ît5âÒ¤Bç|€rC½{Œr™©ÖlÁ/eŠx˜{xUÙÜJÈDѱ#ý® £ºŠV§9¡?Îñ™t­"9f¼‰›qÂZüYl˜ÎÄ®©®¦;¦ÆrÐ63eW/rªã ‹†8‚übJåK¿zz.õŽeLàìAÐ'ùÀ0ÒíwGin`¹&߀wïŒ4FA‹Üv/9¡^ÇDcv“7OéÐäY^ TR±DÞÙQ@¢1šž7\?ýfÌkôrŒýá:_ÀFŒu¡ !$„dýŸzØ“£YÏ•» endstream endobj 144 0 obj << /Type /FontDescriptor /FontName /ZPPELK+CMR12 /Flags 4 /FontBBox [-34 -251 988 750] /Ascent 694 /CapHeight 683 /Descent -194 /ItalicAngle 0 /StemV 65 /XHeight 431 /CharSet (/A/B/C/D/E/F/G/H/I/L/M/N/P/R/S/T/W/a/b/c/colon/comma/d/e/eight/emdash/f/ff/ffi/fi/five/four/g/h/hyphen/i/j/k/l/m/n/nine/o/one/p/parenleft/parenright/period/q/quotedblleft/quotedblright/r/s/semicolon/seven/six/t/three/two/u/v/w/x/y/z/zero) /FontFile 143 0 R >> endobj 145 0 obj << /Length1 1528 /Length2 7731 /Length3 0 /Length 8748 /Filter /FlateDecode >> stream xÚvT”]×6Ò‚‚„t % C ÒÒ)9 00ÌÐÝ]‚tƒ”´Ò  ÒH‡t*Ý|èSïóþÿZß·îµæ¾÷Þ×Þç\g_û¬a QÕ`7G˜Adp'v.  @RY‹òpÜX šP'äO7ƒ6ÄÁŠ€ þ@Òbêtï“2uºÇ)#àg€‹Àõ\‹_p ¿€A€”© Ô ÌP@À!ŽX ’;w¨¥•Óý2}˜ÀÌ.ˆŸíw:@Üâ›ÂʦNVÛûÁ¦0€ …8¹ÿ«Ó +'';ANNWWWS[G„ƒ¥3ÀêdP‡8B\ æ€_„*¦¶?˜q`14­ Žø5N®¦À½CàŽ÷Îpsˆà~q€†¼à¥þXéàϳpqpý]îÏì_… ðßɦ`0ÂÖÎî…[, 0ौ‡“›Ànþ h sDÜ盺˜Ba¦f÷€ß;7Ȉ«Lï þIÏìµsräp„Â~QäüUæþ”¥áæ’[[ÜÉë×þ¤ ðý±»sþÑY8Âîù§a…›[ü"aîlÇ©‡Ú;Cä¥þ„Ü»°þñYBœ|@ Ä€Ø n`+Î_å5Ýí ¿ƒ\¿Ü÷ ¼=ív‹{o¨äþ…åéhê898C¼=ÿ3ðo ‹‹ `;Ì –P8Ö?ÕïÝ‹?ìûæ;@ÝÀ{íq€¿ž¿¿ ïåeŽ€ÃÜÿÿî/§Ž–’žš6ëŒÿŽIH Üžì<<vn> ÄËàç¼ÿ]åoþqÿíU5…þ¹7à?åáè ÷g÷ —?UÁôçÄ0þ½‚ â^ÊÓ?Êä‚ï¸þÏúÿòÿ“ý¯*ÿ›òÿ{C2Î0Øï0Óïøÿ6µ…ÂÜÿÜ+ÙÙé~*”÷³ÿo¨äIV†˜Cmÿ;*ïdz?âpKØßÇu”ºAÌU¡N`«?$ôWîËàpˆ*Âúë®°sÿ»Ÿ7°Íý}âxß«ß!Èý8ý{Ii8aþkî¸ùžLLݱ€÷òâæãxrݨ9Äí·²œp„Ó} àžž7Àá€õ«£<N_®ßðÞ´ü“À ýÇä8á›|ü÷Öý&ÿ#Î à´ûÛä}~oÝwaþ^§Ã?îë9¹"þÉpz@þpü‹&ØÙÁá~ü ñþ þ²ß5ˆŒ53‰ YWµ\Tˆ“»²¯ 1¬ë¤0³{Î8´:_á`$2ÈXt8Oìí|2·*Ít*6K}ë¹ÝXƒÚ¯Ö|íuc«>²ÞŒ5ý•¨{8[¼º‹ò!»¦Ø†×­½—¶¿ JムoípTs .\?˺Uw•|™\WÛøð\û¦d”ýµVÔ+ÿÂq†³Ì Zt'vJLü7ÜñÓ³1üìá;j…XV,ï×<žúKÜÑ—óešÜŽí¤ô¤ú$”(§ø#Ï<%¾')Oy½‹|ÒÀÑÏ{«i¸Ž5­@Ãd´î÷ÉÓzH±Cjçl)â™$¤µãÜÏóÀC¦E²3rC'XOÖ­C¸ÉV‘ЋÇF~¢öÑëbÂyWa¤0jæ÷xضÐýÔ!™‹IP[?«ä7›³›Æt~GÛe®tW¸Ã'Z =<=œ­EÕ1ÑDÙÙÜ·Oò·áΧwl$‹˜Dcµ4“⿱ xq5)£©¼r=¬]P¤,‡¼L·65â®/Ûš>Œ¢Ñ¬Ð]N>÷¶´±eÊáï<&Š=õ,¿å÷ »¹QÞ½$Lê|¶ª3±uÊëÿýŒÅmÅj´e‘7´–RÞ5Éîq_Ü‹,)É=mâï.i_FÞßÊSqÜß ¾Î‡iU*Ë|ªc»YÜúÒ¤ÓxȦY=AmöÓd£OÓüù“ù…¼:IìsÉäMÞO¶ Šv¨øs¿ÖlKÓ¡Yõ=Úø¶²~™Ì¾cËÕ¸deÆâH]n¤¡”¯8¤-wŽFkö6ÓûÂU7…Pl-+?´dtïͺIkĤ&œ´{çÒ[¾³hTO㤯˜¾#4²éufp#*ü‘ZŒ:†èåW¼+{Þj½ç$ÌEn¹Ø°Ü¤jUÝy†pŽlðñ?Šö(6¤.G™Ÿ€Ç¾êƾ-ˆõŒí9Äv™aé} "Äÿrƒï#Ö€ ~’j8h¨@¶HÒÝZ#üëíá´+ô`ŠJîqái7‘JG¨é©´¹Å~hdD®#Iæ„Ô&Á“avOw£Dµ&„U[ \j?×7²8Ò¾K[¿gby‘ ¶Í==•ñ0–w}Û7má'v½±äç[~Ãð"9FçƒL«aˆ|ÅðIùås¼‘È!GWšá9ü—, å¾QZäÊ ‚¨Ó÷]Ë"Ì…IpCoó‘˜p‰Ùj2èÏVx6OÂ$œµPB”“3…¸J†÷Óµ`ßâ\£üÍøžɦ ÃeÆŠÆ3<☦hyRB†«F¯?‡‹ØäFkU{ Ÿäç Œc¾Ì;{xìÓ`L·’â¬d fû¶ ì¼1¡ Äã~'¤z#UÏ“~(æå$ŒF6JñÕÉЦCK,+‹ß‚ÇÔ&ΰ4µÁMnI%»þí¶¤—¹ÌKlìcMFÃÊú½Q`Rÿìl-H}’àÑŠñTGd섬xëÙnl^Aosb‘k¡ŽžfçBwàªßžÍ‘×øU+ ÛÈí4W×ʯÔÌÃP€g•¶K¾ÀoÍöÒm,´þt.EÓ9¬a¶Mñ“šZ¢7ã±®¼VRŒqÑc¿¸ÉÄŽâÛîÑ&Dó™ÝÜ0¹ò–¿KÂ5¼d®{bG'4Լި}<ªl–x×Ù=èKz™o|ŸUpT‘|åÞ‡N¡Gçê”|“³reß_y½ÙE ^bœoÑ~úâ·Î’Û¨“Tì— ÑL-Å®ž ’ýÚ<§9¸Ÿ¼fsÎ?õiœ=çÝÏv”Ÿµ/-Ò%˜+Q´F$-¤8ªËë=V¾ÈŽ¿Û Nøþ°–@¢ò³˜Ny£ŠVéj0ƒP_Äñl\0+PX𹄅Y5yÆ ÏRVÃ2©1t|ùŵ%C/Ž(¦¦3îÎr a¤#qC¯¹Ò•P|L•®_µ"|$­­vç}R›2Fß,ÙÛõÉL¨ž˜¨t¿™©G-óÇcÝáòÏù}ä#ÞíˆÄÙ5¬œÜH%14â„¢ÒêPçXb!´f§_PO€×vòk/u)[¹8_\´ºÕ­ãêÞI¦e7(ï…ê*­Ò¶‹§Ìç pÊ@zê0”]ùŒõFìóZ©/Áâ…ÁÖfMê#ÍÃ&o“Ki‡¼ IÞPãÅE¸å·k0Îp»gïL=‹ü Ÿå^wj±Fó;R+Ô˜ÜÝ­9dÚW¨”ÿ4$ï­Ô®aÐV~e¥˜¶ø=¾ˆ—Ié3å^ÂVyd2A6Ga-1?0–l­=Ö4Z‘¿fsëëPá÷ýôM;Åíî|C›àIÿ‡yÜJk„ ªxX]Sm*õ(@´wøÅ¥:ÐÛ`ž?},‡Â÷Ãò«ÆWHáçÄcWžÍ·ËZËܲ¨c¾ý=ò›Ô/íOõgÊçL‚±/„pFÒ`d©üϹ•…uˆŸ)úÒ{}bdoœ)ÙAÊP¯D8 à=<€ÒXÛ¡±®Õä@mzQ™ÕF¦¶5 ì< Sþ$ÿ•¯Ä QËv‡{­èÜ%Šó2Ö@79"äGª¼‹Z|*>{®Qí&G;sK¼ð+KÕŒü²„úCwæÚ'ÄëX…‰´Y~døÿ-’6ü0ëó(6ô­ÜC‰ eHðÚ±ܺ/¾ž,ÜåŽå…¤÷’”uéýÀ‹$$7͘.KÄÙ;4²Z.©¥àgÝßá?0Q+Èô†ù™í04;Mr‹½xð´\núpëž‹ih°ÄTtJ@"a©_|w)—`u€õPï8{ʃ•l$ºXÕ)þÚhp¬˜”Äå›V¨ª~ÀîqòåOlwŽõä'ãdÚydè K\…X(þ¹3 ËTÙ:±vaøž@;,ó z±4ÚhA–®—1À Ù¢øú€Î•L5r›¥Ò­ÝlL?XÓ™ž»hæRQÿL›rÉ !© ûê¬ÑyHÁ(;9Š}²¨hö£×°RYÚÌAI!úvßœ"ô'´¦ZµÑ|¬¸Q¾ºÍÒãv‹áˆ“4ð€T(H¾Us,÷Ü€S2öÜÿ¥(=M:‚ öC;ª½'ÛÏù,X¶{%‘ÔW—°&úæö\ îÑÈõ§³úfîB4@$wù/:s¸ê ¯q»ÇùžDžŸML¶­p'Š ÜÌâ?¯ÎL_;-BÆóŸ6g>«&MJÐò)m×3Ÿ#U‘K¨÷{èò8ÅE„i¸\‹!Ÿ•"¡c½Ó ëc¿@¤Ôöu¸—l]¶öaÄpO±ÌÜ­ŠèÖ—^F°(¥1JÁ„ËãK°«¦Ð ‡õ nXÔ’E–ˆz/ðiýwxdz´©å Ŧ\«FL¿ÞŸõ >4áIwSÜnô»æúz»Ú¹²Ôq“ôXª™òmaÔÅÕå üã¸r8:HùóØFÚ^ùÃÉÏÏv̈Ö!ßu+ŠÜA—tF¾Û†£“W•I+BŒ« ßJ–>e³`Bòe”˜[ˆÆCdê¿Nr¦›äw¼qRü”ÇŠÒ“|ÙÍ,³Ë,ˆFu”%6ñÄ­"(‘!¥·ËÕfr³ ÷iñ"~Bahõ}yú ¦xÈç‰d,õ§¹i>= Ö˜IfåöʦÓMPÐ,Îw449Âdž‘d²/µx­ÍË[ªÍz¥(Ö_©.C;êKyV“Uë’{Trø“Ï‘¹-KKºÊÕ«ø*aöIdMÔŸO£öƒD'ƧƗ‘=£ËT+?1çlCŸ=œN þê¼õþ1±hVØE×íá u8tá-uÁ—ïÂ& ؈)û µ¼ROD$ÊŸìjHº.C£·¾[ÐÚcºÿô[“Bû”{nm’cHI„£ë¦Y‡5Ð|»é@}p§/=#êcRf|àšá‰Å5vbúNï] ³*´Ì‡o+Qé ½WÇ%ÏõJ’»ðâIOkLÎÄ‹~¼ôKô¦ð^Ëåò$?p-¢~ëŽp¯¼ç´ÕÙÔ,Uí@È™Ì]+YDÕÀ!¥R ~¦ŒÇ+4‡OT2ŠFÐ%Ek—T|ù3ISF֚˼xÑ­»üýÔ«›_Ó¹ÏÂL§(¼Zx×åQ¸û-bç±jGBßøù‡yYÉ·Ÿ‰`y üjl0 ²vè V¸j?1Þ¦©ÚÛ”+BÇ=šyÎVÚÕ”ŽÐ̧¤Y¢e¯TÑæâܾ!ja¢Õò j¢•‘%#en3½´ÅikQnË?8f£;™ˆPR_â|WŠeË1_»t5‰m÷)=ÆmqÅ­Tãµ­+îõnÑê3_¶‰'Vµµˆ„Ï"îõ5†úP%<¶¥'uÅpmÅ•;VNûw¡Þ¨Ùà?ò)%÷ÞlˆGg׋õŸ)¸œ²n¤Ú«Gé'Ü£5<8»×è]»’¥_—Dê-ãÀd‘º·/rS“}V¬^ÓFnÆU}Ô~¯h0¡¥%tZ¢úœëájc^©ËæR_=ou›­³"ÜÊÓòä4ÀL>×d?G’¶GÄ/wõ"[$3 Ÿ|uPã츄±ˆhè ÐYC™¦Æ3O³©<Ä´49±v,ݲZ#gPz©æô“T]û,å¼¶•"3É™Â]•÷•z‚2]ƒÏ Ý®HLäí—»yÅŸôÉš¢ÓŒ¾œ´`›,B©$fcÏû«üTšTEÝq‹1ôö=ÒºGѯٲ˜Í„LÇOII¢ªÚàý¶‘„‘Mõ,½w?V·è°lH©Nç¬bÑÌnR?Úhls¤¯yÈ#Ýq '5™:xÔå›à$QÝ>[ú<–b.¹ÿy±È¸3¡›•¢Zø\½öÖ¸%{éIÕqWĤ¼Ìì}à˜wv¼Y&$FÞñvCd×¹¬ð@ ÅÞ¯3©*I4¯â²˜™sr !H¢ò FÌ– /ìy…§èv”3}ÌävþáŽÕäñÊ;k5&÷¥ÁZÍ‘LßäD£s'oÝ Q¿Òïó]rC¾!ʤqZÅl`fàZkv—ÔÓîðÅÒœ4Ÿ§KR^øC{×ݤLjìÕ\-Šì’ZeJ¾5\–Ð1)¼cDñþÚ)¼'AEcrsȼ›×fqçÿ’aûÎ%ü×:¼¦ .øò#«`Ìvv¯¼Ù˜'h,Ü_2ýÃŽûz¤(u·ÎHýC? =Á¨<èv¾œõ°öë.ª¦ª£«\˜L(5k§¶àÍ ;ZCBÇ[!½Ì/Èœg&BUaéõ&¶ËE.Âä¦v©kg_ ¥±«¡•B*²7Mo%èuw#ßøl¡Ña)›h‰ïGÊp\ÌG=㋆ХÓDÌI£Wžüì^™1$¾ ìC“€_ÕHÙ'¬l£ß(甌«í(˜=J{o¤™>Vû蓵ÅÑWÈ‚ýia+#מÀ)·>– ^RÅ~6>˜•9Ú·Ià–sM,×FƆVÞIÁœ_Ç´•m ¦ã/_ôQܶ†³Úôš{\*ÎÎä"ʲßîòö³‰ªÓ!Ÿ€ÖÁ‚Ä1QH¥ènöÄ•‹/®——méBÕåÕ°•ù‰ØBÉèüL0Ž­)‰÷,ìmr±`TH!((v»Î3u5R¼]ÃV§z#ÙÏ6òÖAÚef=ŒîЉbÖê0'ã³f;Ló‰‚n](µ•R!Ü'ùŠW"ìо§˜5ÅÝ&Ï‚´g–%`×'ëƒ=ÚÓ}'{ÕævçCìS…y÷Á­q=¶Ôю⽨駒1ñˆpáíñǬ™9pµïÜUÑ:¯qéíÖа­šºóâéö gZãüiq¹O`Êã ¡†3roèaÝöR« ØÝY’„ôå–çFÏó^K‘\JQ×Û)æ'¿g„×h5!Ô*eŠ0^bìî5àG¾²²|°’rsP¥ñØÓß°9ayßÔS'~B­$F^JÇ1´ƒiºÕ”›¦)|ð5çX2Åì&K”™Bew|§L»{‹¢¡@`Ord› S‘’!F72ûS?ØC•P¼5${½Û°®êi€jØ‹:â lÑÞyVmï±ë¼e¥kÆE?·5˜¢zm„516ÊpòBݰЂFNl×Qaøã äç³Ôm¨¼ß~Æ;ç\J;ŸÊPMOÎ>¥V ù‰µ²;WŠÒLÔÔ™å{w¢4àôm”ó%Ñ×=|¤»´ n÷"-^Ìy€€~º}—àï¿•‰4¨DfþæÜ|,i‡M+HÁ÷Ïer϶d¤¦#°—’L*U¨W8bî$ÛSçÎôCŠ$)>ß‘õ°M †šè.ʲ«÷û) žX¡ìMr ßõb7ñmÃÌ£\IB• ŒkÝŠ‹s†vþ°(4š×ƒþô?Dèô«®‚òËÄ+@Þ© Š7ØÛ<¬Úš@›Žø³iw²`7Œ¶IÞ8édgTdñ/`3ú]5¿ïÃoŸhUL%8% lë1—HtÒâ>:&!T½££]ï¤Md[D EÅ»±´Š5¹›pÙ R‘b7Õ%EâÛm%µ˜äè„@Âì=‚f}þÑ[' áME%+éÕ Úþ©P&þK…©¹à¹Od»Q È±mâ”þŒ¢d Ôt¼õs+ðâFâÛGO¼&PDD7Z϶‹Ý&{_[B’ŸÖr‚}õáÂíFZsçrYϨ>YIý™òÇBûÞÒ‹äÇ·¬yÙŒCwƒe× ]UlÇù‹Ã’ªœ]½ØEop›xóöˆ5Öµ)•„³{>M?jö# ÅGÑà'c­3 ë<Ë|´¿ücÕ~¿¹ÅŸë!›¹j0gç—¨L–²ê@z%¨R“¨àã;.`Úàyˉ÷öŒu½æ0j´ý‹GÖdï¸%»­œÙ\ßëx¨ÊÎyz‡F&:‹³Ö?íkÉLoJ%¥j‰ñém+Ol_:œÓpøn­ÏAIx ÆËåÿݱû)»MtÇ­¦x 4MߌL¤–ê+Ûa¨Ôr&KkWa,XýéY½ÈÍ;8±ƒƒI¢rÔš>ªî,îÜŹ™>îÒ²ÀNåX¦‚ĵ`шãÝîóh7]J_­T>©h]ª/Èí-ãg_‹®8¡½½seÿ:+¼ C¢müZ•9xÒ#®ž¶q#Í<ç°ÿ¡ªž^Ìm¯ñX,zÖ¸Px>YÚ5ùz´“Yóýê-hÐùÄ•{4oâ*î ÝüùÚb:“¯Xn2·XµûkvsÕw^ -yKïQÛÏZ3èÇæ’­˜ù÷¼üÞc(×J¼©¹æ¿3ó•Õþp!¬.?‹•q$ž‡Çtb6‚š ÎèzÿêŠìŽ_ç“]¼“pØÛ~"bÔ§… @T†nβž F.D¥Uúâ<‡ÕFuˆZ­1~ºîZ­~ð-ËIõÝ+»[orâÌú‰B Œ™.FΞ/2)L¶€Ì§‹TÅ|h€ItâiÝ-O‹NåXð'¤O~ÌŽðº):š–q5~©®I’2G‡|],ì#ŠÂŸC¯vWxMxÎã_zyƒ%áêçõùÍÕógЊIo/áGO>™-I<‘•œ_›ð«v)øŽ[»0t:ûGGñr½A¼£løÌ„aÎ,쉄 AŒ¬ì²%Œ¾‚}‡B¶Á9 -$ñ¨^Ó×À2e¼¯Dö,ÌNûÎÅ•lG«»CÁTðÑ£/DvšX#b÷™­j›)Äóñr¹*|Ý7†®ü£¦ÍT1à£5ï]Wç_‡Ÿ¸¦bwœ7ÒÍ<è⪅…G˼uèö4e~àQ¾Ø2Ñ3šò–­¶,Êîlø2$Õö£Ós'òD’vÛYü1+wÚq O›ˆ®ŒµâÁzg×2q2é{fÉÁÕ,ßÈ„wàèsñbû‡}h:`TÎö.ê¦6ZƒZ¾b¹¿;²Ç-!Òq1ö^~Ž=E«uX¤CÀ…Øœ(ÛT¿Il´ yÕt!ŽÜØ„}ŽÁ{È[š†á«ÅQŠħž±=À—Ù””À}êU¹q+Švûž¾ª)æ([vÎ×r¤úm΀AÍ57>ª*z*ÏÔÿ©gl™P4zlÒˆYêÂ¥T@XXnÄxÝÁ+\<ÿq$Ÿ3pæME£š€Ür P¯w}æv¨™òNLð`3ÛJé ëúfˆA#òËÜ] ,ÖžVê«.&OÙ¾ì$Ó¥÷ÞwÏD9kyjxjtVíŸJyK§WŒÌkÒ)žu±o†I°8ë½MFæEg³5Ê“AãÃdîª?¤kP±A/‡ˆ`qª¶]ȇ3jz‹õªYoº$Ru£Ô‰åwÀáÅ8¡·ËGÀŒš„ tš‹ŠBkB®—l\j•¹®o¢¬z•}~ÞQÃùL¯Õtì±cå›n5»_¨à7fòÚóós%ùò©„êBéêå$Qºß8”)ÔêRÃØÃ?ÓÃWÎ.KŠ…M„ÊMJÑ–tc#-›*ºkή7éœ>›öù ¤o6 ¿=²i µŸÒÛß ‘¸Ìúªæõ<Ä"ìÕP[Á+ufnBXô|¨LZ»Í¦e›P C@†êýo€›IÎï<…Üt”íâ‡Ç?åkAÕ!E*„4MIã5 cjþŽÂh&…´Ú ˆ2leñ}¶M­ó#Eê™týÏ[jpb8…‹˜ VTWgF×̾J/ú6y‚‰lÿï î¨4—V§;uåܰÀA~Çâ[T¹>+Fáv‡?­ù>òf —˜ Ñ;b9µXžu5mdˆ¾ 8fBX{èx?˜*ŒmsHÙ{Âûl€Üe‰ó1Ó"'ýS7Ò`ªX±gÁCâ«-üÛ¸knãÝXfðéú¬Os´!³Æ­WÒ €ï‹é% endstream endobj 146 0 obj << /Type /FontDescriptor /FontName /WULYQV+CMR17 /Flags 4 /FontBBox [-33 -250 945 749] /Ascent 694 /CapHeight 683 /Descent -195 /ItalicAngle 0 /StemV 53 /XHeight 430 /CharSet (/S/g/i/n/nine/p/period/r/two/zero) /FontFile 145 0 R >> endobj 147 0 obj << /Length1 1968 /Length2 13162 /Length3 0 /Length 14381 /Filter /FlateDecode >> stream xÚöPÚÒ ãîÁwÜÝÝ%è î!hpw  ¸w'h 4¸»;<ŽÜ{Îýþ¿ê½¢ fu¯–µw÷¨ÉU5˜ÅÌLÁÒö®Ì@6~€„’†"ÀÆÆÁÂÆÆŽBM­ qµÿÇŽB­ vv8Øóÿ‹!á ¹¾Ú$A®¯D%{€¼›-ÈróyøÙØìll|ÿ!:8ó$Aîs€ @ÞÁì‚B-áàèå ±´r}­óŸ:3z‡éÏp€˜Øb²(\­Àv¯Í@¶ 3ØÕëRÐ Z¹º:ò³²zxx°€ì\Xœ-…é™W+€:Øìì6ü!  ²ÿ-… iqùË¡á`áêr^ ¶3°½Ëkˆ›½9ØðZ !§PqÛÿEVü‹Àøûp@àÓýýG"ˆýŸÁ 33;G½ÄÞ`±T¤Y\=]™ {ó?ˆ [‡×x;b 2}%üÙ: -¦½*ü[Ÿ‹™3ÄÑÕ…Åbû‡FÖ?Ò¼³”½¹„ƒØÞÕåþ$!Î`³×s÷býûrmì<ì}þƒ, öæÈ0wsdÕ²‡8¹å$ÿ漚Pþ±Y‚]\lll<||°ìifÅúGM/GðŸNàæW ~>ŽŽ‹W`?ˆøõŠ È puvûùüÛñ¿˜CÌ\¦`Kˆ=Ê?Ù_Í`‹¿ðëý;C<úl¯ã°ýñóßO†¯fî`oëõýÏ+fÕ’R•RV`ü[òââžf.n3;²±x¸Ø~ÿ›ç¿'ðõZUA¿»cû'£œ½…€ï/¯§÷!îOÝßkCøß ʯó Ðý3þl\lf¯¿€ÿŸ—àÏÿ³ÿG–ÿ×ñÿ¿I»ÙÚþé§û‹ðÿãÙAl½þf¼Î³›ëën(9¼nˆýÿ¥ê€ÿZh%°9ÄÍîÿzå\A¯;"foù:çÌ|,œÜ™!.ÒO°¹*ÄÕÌê¯QúÏ]¼–°…؃U\ <;f Ûÿñ½nž™ÍëÓâòzcºÀ¯‹õ¿e¥ìÍÌÿØ@ö×Û9;ƒ¼PØ^ÇŒ‹ à|]Us°çŸ`e±wp} ¼JôX88£üq¯Ü<V‰?L"6«ô?èÕ§ô_ÄË`ÕøqX5ÿ‹ø^™ €Õì¿èU¬æÿ‚@+øÈþšlgr±ú…Àjñ/Ê+‚ürqüÝÿIÁõ‡ßÁÍù_ñ¯ËÁ×ÿdçäzE^ŽV¯¯Þ?ŒWä_ðUŽÍ¿ /€Õö_ðUžÝ?ø*ï_©^7ŸÕá_ðµ9Çj¿r_Ÿc{[°…ë?VàßÖ¿6æ¿fîWóëž8üëð€¯Rþ%øÚ·Ë?ñêty}Rþq¿fø'ßë ²ºZ9ƒÿur¯í¸zü»ÛWánÿ‚¯ÂÝÿ_…{üëZ^óyý ÿg"ÍÜœ_¥¸þùr¼ŽëðŸ_`°'Ø e~ÖÁL غ6¸í¶ZŒØƒykœ}à<âIgSê­ûŽZ „àÝGAäœX×ÏíÈ»Uœö’—F]|6£ßôH~üùú6x Ó &ßI¡ûE7öm…ÎÎ÷&öæ–ø'MêC—¢ÓôLNg[3Y{2‚4M•7V'ˆ´ ‡,h0ãÑ‘ˆ„¼¼h0ÁíbYí•â5bÓ?;ä¨\ÎEÇßIïÝ¥÷°s­,|e‚†¬¥ïï£;*\fí §íöp)˜L¦©7{¤âè/Û‚?Ò™ºŒj6©«Ç²(&~0okjãÎÃú~²BÑ!:@ûbf’³ÓÛ•ZŽÃÕ·Z¼eÄý<7³ÓÑä€ë±Ì-”îQùãÌœÀþ‘Y<¦Äa :¾ñ»2Þ›^¶Wx;úÔLÈ®ˆ5ÂÍoa¶ÝáG p&%ù×Üž¢ Ç´é ª^‚-×"Ϩ³WF¨ôíû0ÜØbÛw?².³™¯ö,¬ºÕ|¼·³EÒ·Ça3»_*„”Â…lŽÉ…$@”5ÐÚá`‹äž2ªï x¾—2Ûð>Å_%h-€¾M¡¸Ÿ/J7QŽžNœ…sOÚ©DÙǨ‘ú6žt¸Éä#󈺅"Ž ëJé/嬹Nè~ …p¼ã·kä.h ¯cŽNâ+•öª†!ÃØŽàÒ} Õ¡’T$¢JIfQ0¿Íù]pÙœj—Üæ¯fÃÒ©ºfS\>¡ÅF÷xžœ 0Ãk¾{‹ë§( õêðØ–À#.wG9ñ"y²sHхœÑ¦´ô2"—µv»™unÙj”J¨È'Y©…€åF¿Kxps’´šKÝ §•L4/3læ^Ôã)ínfMãN¡[OÏKNAºû«ùyì»UF>]Q±tlKy´r‰p‡4žSù8Î<±®ìl0™$+¿RãåwR ËÇ-á|Ï•ó[ý…1`A†ø-Øn ~éW4K4 ½ÛN®1ɧTyCgÿ·K]Ñ ž™¾ç–ȼãÊKŠJÉmŸ 4êi -áÏâ’ÄOXл?]St)?½Ã£T©¨>ž"‚3Ÿzüb9ëÙz†b’ÉÝSa œåÀNNˆ)o¨˜/×àr´n c9·á–Sˈ“ËøÕh ìRfÌúÒ¨™ò6 0Q±c¿IÍ4]ÛËÉÑ9Msªl%>-~(cæI©kòá¶^ŠIÅÖ¬7r/+ϱF®.G§8v‘Ìb‡lèÕ=¦ IÖp&»Ø†Q7Ö’äŠC¯ÑBUsx’'*¼OR‡².« ?™rg½s/ì#ÞWð»|—ß4PwÇHz¨Ü¥Ãˆúƒ¸—feg)b˳Î.ñÙ·6ÄÈ $à@îÑON ÇÀ.*"™;—pòC/ «w*Ò78CòÑÿ’‹`Ϋ;Þ·­,Â4Aäj€¬âпæ éÂÊ‹óZó÷Æ™Èzæ$ýLù•páþ•¥ÇwþH¨ê«Ò‰¼ï =šÁºðcô¨\w¹Ö ²A 2ˆ\¾y…§ëƒ†ªÈKðœú•¿5”×:KÊ$íɹÃÂÞ]8—„Ös4}+ÛŸuá' °@,š–€·d¹=ýRüßüVPL ZL{vI߃ÒœÞiMÎÿÒ€ï —VÜ’±ÛR“­äŸ`ËÓk ÷ð@&¾ã©mö7"Jý¢€õ5ùÇ‹žË¨Û^3ã^ëÝ·Êzƒ`¾¯žø¾ø~$wˆU¼2@© ”“C:ʯxâq%À·á²'L®ŸI€ñd…½™ŽØÖ¸ð©ËБ³­#×+gËÛÃ7®é#-Nâ#o”x—¬!ï; ú£° ’òŠÚÎxK§ŠÊ5¡.£C½`èIÉÌ Æ6Ê$Ýë߆2*©¥¨Ïœ ¸Ã§° ´’ß÷ï1ZY’w#(6 æÌYO¬ Ï=ý¥ˆ¶Ö~6E+Vçî‹ßûÛ‹PÂ~™¤Ø¸ÅõѧÁÆåÊaœ¬÷Ù­E7²jz”Ç£Î=¶|Iƒæ’2q‰›¯®G¡å »[svÞ6Ýj¿ùØAÛtàȳªH~ÉÜiðàX–¦x³ rz“dQV1ˆ[¬b£z£õá¬ÆÂ z8£­ gr q"˜L[˜ã´S´·ÈG,ŒÿŒ¦=Ó;Íõ¼qÇ`Ê ‹Ž—™Hªµ\5>ö¢¯‰#ùÕ?—Œôò.eƒöXÑvÞ‰,Ò*_†Ø 5u÷ºiž8¢——Ô?Wo––ÏhæV*fw=ŸW²gI­ü]CnÆMGã{UË3<&w‚MˆŸ¹š!c/Q\."ÖŠóž÷¦à› C¤jº²rŽsŽC/Z¿€CQCa»Üt7Úð„ãꨮÌxˆay›$¾N²ª™¢“3SÏ~ðý¢Ô§&FþBÃÐO);ãqˆÂ8ž:zG>S§7¶Í&S?ð7ᜟ0쇿–®É›¼{L}²}3ÙFn÷™6èÃiÉ— …ÒŸèt–ÖzösP‘å*HÎïay,$ð:ð‹Þ%måÂo=Ôfs|!Ã_4K2r¸|£:”QZÅ}7Ì3îYµŠ[B¶@9hk–s×—¥_u—Óž'“pÑ^‰Ï^œŠ m€M™Ž{E9;Rìbý€Ruþ­”R«CVÀîþ„R—­D4Ó±Ví)hcßæ×µÕ‘9нÎ5˜ú†¸±šÏfé2y)*ºÊ:(ÖðÐyÜ—Ì•ë Vsܱ*RM”0>&ßkÞÒ°L¥'ÿ,DË) Ûá FjB¡·Óûå»$ÅÛx-à¨ûq‘B¶5í¸§ø Ž}(:ôÛ‘Øû‡h¬{ŒèÔ‰ 6‘1­Ž É îò²d¸Î©¹í Íå Hî&‚õ´ÜÆF£´Ï9(wøxÍâÚ¬Ù´H?‘ÚÀ Nï à¤slÑqÕôe¥üêR݃õ¤åšÄ™# é ~ÙE²»2zs¡œ+ñ&‰DÖæf}`@šA¨•18‹FÉön§´æú¬ ؈|èpŒm'²ï`–öë’ç uû»çò"çæbwIç²9ÊÈ\NmQËì!WþvCîC› ¬tZ#Ë|[]Õ«8]±ì ;$ýrÛ’²üÑp»ŸãäwÃíŠÅ>âfÕ¡IKlðKÖôFw·ÉýÝ &3:¤JÆke/=ìãJ9Úo$w¢pT>‘ë"Nôì`«EŸ`NR+–xY>¤ï‘ç Ó d.õbYñ”“ÝQò7>b+‘Å?rP[æßF𣿠bí¦]%ÎîÝ\õÔçÅ;">¨{JØ…Xºž»cŽ&`\C Œ‰™¤´!‹~œx»„a—¸œÛáƒøý>¡… ÝE‚CÑ+ÑlËSccpлޛÔg~$ý£6\\”°'…&T ZwQ•ìI2€Ùdp‘‰i„kÁËöøÍ~ûÉ7#Ÿb~Œ» t&ví©:Y“¬>\Í< òÔY9£“Í×Ü&±ãN[c˜§ëwº&ìk"òz¾4üJ9Äô8þBFKÍœŒþ»JB^½w©™ øÕ+]"ž¿0‹ÖùÙV܃§b+´?²ÿâuK†b{I¦öÂùémá9@WÆésUužè¶kæõP©£¬aãhIªSnÐ*ËðÍ_£À×ÍñÉ#ü?yÂìš9 ¦æÎ.°Oh—®Š.&÷[’ùó`ÙSðǺGs(äq˜ ³º(#.؆dì#ËÏÁæ"t¦áµÈ!aôÛgíº¯ ³J¦“J–;—ß7å×H{­s_["G`Àe?Zn¢Ó*Z·}«š“DijÆÂãÀ@¯u‰8~ \¯¢‘ÉÀ‡_½u¼G—~gmênOhþÛ7 ÂŽ ¿>ûÌ÷2Ì䛽fQµ! p£ñ’ƒ\È8ˆ=8¾ØøT³Ânû¤ÿø.´&š›mwëóùw,õûÞÒÙ²O.1qXèâ˜ÚŽ :îrz)Ý;™öää´¨ 3À8géh¦½kËÈÓƒJ# ì"­Î…V¡œ—ô'R=QâµólÄuž7â)íùnû»ò޶ã„—‡‡È‚0„Êý{(@ wþ[eСNQõ·aþ&l@š.¿â¾;좷ÀhXØvMnàRwMý; Vr¯Ù³h¼ ’&ù^)MœÖqlª¡¯x|ä[§˜}\£~|ïäÌFd 5u›b[cúV?7¹“YÏBàjÜðÙÈôH»‡zNm‘yº_ÿÖïF®ªÍŸ8ȧÉíº™<¿s»å}ž‘xññi´Hh#ßµ@­ô^_Ëš¡jz¡>ˆ5T»Œëêýx.8?¢ŠÇ'VEÀmP¡" 1£¨“›Ÿ‹äM‘Û 7I‡‘У¹÷yQñPlLÁ“ó%­Vzg¿ÃV”°žpªú5ñõ»É]fh2tpý6p2=÷"ÔwåC¬½Ðñ)g0®X˜ZVœ‰žêemã ”'z·ˆñ;’¡dzæ+ œËÑaÓóÛøÓ2Ë»‘ Cà"¡TJpnu•Ûº)æò"ì '7žã¼yL·Pö€€%+¦‡©wFvýdÐ^£>ƒ›*RsÒE Lk뉀‘­ÎÐb\:1zl·­i|¢<Šxí^„Î)ÿ4‹?y™¿ŠÇ<(@Y;£‡s7uýýÀÃTW!œxÒÔðåpW¸A¤J¶!5Mµâ6g»–+›HKqRà—‡Ü•Æ?‘Hº%ÃUÞ„§?;âGD>8P òMFä±BBõÔž© düætrFÏ|fŒGZ¼75º¿ï>Åï­˜_Ìê&®âà.•ƒÂÇž´Š6oö—ß:A‚NP  #ëë1uwÐ$p…ˆl~Ï€9&(ùM^òx¨8i›°¨r€9²ªê©e>pÙÅy°âcÂk="}?ËQ¢Š ¤у’øîcú…í’ŨYý0jgßìUÊÞlÄ Ûh ž7Ý]`³•¦’fç"üxe6 upxýžôÒã {¤q§›nÕ®«_a»á“þ7¶÷?òp™¿&7 B>Òè–‚'m ¾õæH„~ç!Ñ—s¿­•ébû;ÑÜEƒ©Ý^RZÂ'ûŽ+>ýª’Á½ýpàAÌÖF‹¢B÷ ‹üÆc¼¿[Ôð!`I_ZWˆè$ó}Þ8yÒœãAjÁ§Oj0¿ªœg+ËÒáÑàÇ9¦ìÙÌ<8ÄKë¾Ésh*¡%¥T´ua‰Iv¯ˆ`ÂDdµx|²Ôa¢kàçŠÈÒšÄ`ê¦!ð}8¹#KBÈ>ç7uËJ³Ì ×è9Áy9‹YÍ »IóÝ;ÙnzÔÑþàmÊf» ;È;üZVЏcˆ´lu,S8ï/'zt‚ùYŠ s•K”“Ò<8fôN[$ 4[Ýok™œÁ}¨x¿†»Obô :%¨R«Ç7MQtþ÷*¯Šž;3J‚"Yfˆ¶çšÞxap¨„©š{„ß°¨/®î²ß+ÆÖô}]þO$µ’ó lS~ ‡¡QT}2½KCøä›'Ì#‚Ã‡Ó h5ÍâbíP^ô?k®0›VKÎN~T%ßä‚:ŸÈ¢ ¹fs‘D¼eƒûª©—¦Þë˜ÀØptv?vF"*DÑù1˜¸0c¬vÅT‹&»¯d×"<]²2`T/³Øï«„˜dŽ!¿X|½Yêi^VŸówxmÇ.v ó5…œ©{Nþ#â-éak»*êøó±á<›ew[8“ìØýÔ¹â°Æ¬1Egð¿©^ÑØI9e@ ªÖ–0Aý0G-uD>xæo;¶OíÆbd;;—¥ÃwКÔH—Ñòy]C¸Ôìã;q]ÍbpƒÉ T²ÄÔ`O•?ԉʢlNlˆ04…`žóE¡?¡70Ì?IÑñ-¡6¶å˧Fg-Ô¯£®™ÚùYñmTàøR¼y3F`SµSSÐÝà É6ñð£ïŽÂ#\¹NéM)“)Õñ¡©7Ãö•VKjýVµÖhýÊÈy•àaó*Yt™*J»KÔ›'«ØÓŒ‹ô#S–³8WÌÉ<á-ŒZgÑàŒÆK’;c(‚>߯ә­ÜI…íœÏRÂ!½´u“ëºÝü1Ъmú_ÞœšàQ¬ýÌ©ÐÐÚM6HÙ·X9]eeFȉù)À¹Ìå–X÷|”@Ó²dWÞ©ÇßUæy¬zƒi“çJYˆúÅ=ÝLÕð®[¸þÔÇv©BÑ»ïÊ0m,wÃA“/ž2>üV†/¯2ÿƒ¬nH<y4M¼j‘ÐhVtJà1¦”ÒÀý‘ ùö–Âú#¾Êþ{wfƒf®®ÔÀ*´ÝÙ¬Ófè³wE‰`æ ª7a+ü»Kd§øÖ!¼ÞÅ8;aSÑJ$u¢²<µ¶&Á-~ÀéFªMp¸zÍzèíCä8c§C?w—Øâµ<2rVóPÉà~Š»\8‰½Ôä~ºJy7+iyö–Ð!BV·gƒlRÒ|±´=„ò¹}­ø &Fúó] Á™ÆíºÎ&IŽDB(²CCVá8ŸÃ:º}Ož£,D|uòÇQë" T€¬té9ȱ­h¹z}.Eíà ŽÝ‡Â ˆ×ˆø²1Þõq=°Mê4jA"ñÊÏÕt)$=G ‰©´tHs j¶rvIµ„8Ф?IQqY¹A“&Œ©ÆÙå£Iƒøg»Ç(PÖî3©=³ŸßRŸÿbíZy\•ÔÌY¢ÛìV5¹$ç¦îφ¸ñ«¹nŽÏ ÅùwÙÕY“¿B eÙc$Ü{Nfè´÷ÏðÑÒÈ&°žUœ¿$9ÂhßÂ{R©ÃAЫyÚÝw¯dw«i‰Ö¬Oß{¦"†eÏMwm¢ƒV]¦‡ øæ3#h)ŒD„åû®Ö"»Îà$Y!Ò…aIÃÇÈk—YK°Íèì„)OG7sMñþŠ>˜$ä:B,èdi÷½€ÅE¤òQhw¯OòÑÎrÛ±©ýúÄ—oIà#’C?}4Ê ZÉÌÄ$Y¦P3šã¥Û;$X r@c¸Xòü0f‰yÕ³Út¿ëk§¥w³‹µ7éj£óÈ—rW¾'a,@œÁ\x¬ØþO˜¶‚«ð,*Î ¼.þf¥Z³£ m¬íÈ”S9;¾î;MÖ^læIÏM ßs11uÙAWž™€½œ ‹|?EB” þ[’vå×× uî +ræÍÎk³+ˆÐ@§[¦…ïl¾Ó¾Q[¨hbµªCqòÉmù¾%vû “ ¯Î\¬¸›aк/…š1õñïÏwAXá˜F ½›nÞòòÍ\È.'Ð:ÛòekFß ¾9~˜¹“D}ºÙõÇŸÊ[ôÐæ 6™Ù9Õ¸lɨÅ1F‰×ÔjÞa!RhGJ-h,QB Ó¿+@Kíá—umD[“0z’.vHÄnTƦýËž%ýîTäÞÞß72Lm°aÒŠ´”¿DMÑ:Pz9W†@w‰í“wø,Ù³Ôl ¿¨Å¤}6‘£K™ÒæjŽÉT{^]:.ev††_¥ï,…¹4…u“ñ äUÀçÕ 4Oƒ‚-º•ç0ýšŠ1«3n2È?y\+Wï^ãßàGŠê¸ÉŽ  ¼•o+Îã8}’4ƒ©KðÜÉ öED&°z†/Ì´ï¾Zx­•k=ûíÇ dDKdúF»·úeǶúL­jÔóýzø±¢¶~ÕêZfÝ«ÌØ0¾Øø5©˜amÇ„ì²4IäödÈ!Ž”±x4ÖWÆS±Zú‘tjX£ ÚU…½>`Ug#bꈀLô-<5«˜+‹Å[õ¬ÉýÒ06ÁÝú¦Æ÷Íï2ŠÉe½îbkÅïÑ9ŽíÇ­×êƒoñ®s TpÈ,Y›sÓO+íÏ+¶+Ld¾¦ Èã/}å <ê†ûÊ2kE(Ôú[nØ??ØvtñP¢ÊíŽ48aŸµ,;ƒÌ˵çáž Ä "=÷EÈÄ àÏX´ºñ8ºº¬9ý²òØ,vÏ ‡ïH—ûå½,e{£2ñeç ÁJ<*}/âzœçÄÊÒ}Îé±›ªÇ-Ê'z„åÓoÇWÅoêP$Tq·ÔGés&b-Äò&[ë,MþüçGìÐÎfî4YH»r½ÑÐ9¡ÍJâÙñ] &ÒVO?$âJY¤'ç–G_@U\šy·Æeƒ\ âqnM”{êgxSƒCÔiS›°]³ÙÅÄâ'v(ò7XÏ‚ ÒíAqªn­LƒJ³åIùH[ùïIšZ©aKj¾<¡BɆKIÚuÌÅy¢-%« ÃrÁÚb|¼d€1—o['ÃRþ¬A8bq:KøIŸÚr}I»´P*Ä4,†H踫õmvî…‡¾þ^öÄ]öT@ T[[p¿N}üSúÔƒƒì鱂¨b_¹Ã9uõØ®#îÕÇêgðû×p®BîB<¡¤’‘ùªäÂóÿs¾ÿ”AËñ’e¸ó¶‚­Ù–ˆ¥z$”n¾?jŽÃôç®4Ô÷žˆ 5­y¸&@¾QÈé: ‹FÒ1ET¤.¢w\jDÍ|'ƒ‹au䌶¸ÛðË ;gð=_!-Y+ábË’rdw5ð‡ÿéV¬*JBcÞÞc‡Ÿ%Ãl>¯Ï’1sÕŠÏ3ä—þYÄž¿Üáåa’Æ!k–£ ƒ´iî,X`Ï4õ”FD¢pf"9«Óˆ•c5b(…ÊçÅAV6oö™Ôý[Ý̢ÖÓÏCa/ ª!ð®ÅHËHß,Õv ;Ùâ[j‘„€ô7û¨ðïå$>M}2CÔ©o´ŸÑõðiǧçtÀñ@@§>«¦×6%Ù™‚{¾2òˆ™Ðñ1ãT~c,»¤¡Çÿ`b0‘÷ O×ó 0ÂÐÉÿ8ò5z°ZîzÁ^súîZ93éÖ“p ÔJñ·Dw š8ïZ– ÅÝ”¨Èo`Dš!œ58ÞXóúÙª@Òÿ‹®Ï—«Â‡—kYºcƒ6 !Y÷èüÛè‹*ÈÔWÄÍz+˜ÅÚgtÉ®|ÒÆŸ÷‹¥w÷³˜&vôI?¨žZô'‘»²w¿7ïKzxî‚%Cvµèΰ¦eãz0ü²®ü/#YJ“Ë;lE­ª5¶ÚÃ|N[uû>G§Û{Õ%vJ‹ÎðŽÜØHT?q{] ý ˜RöÍ×5<‘l`i>c„à°šè#Bá2¥îªœØˆó·ÌÐW)V Ô£ïÜ><8`-kͱµÝŠ9â%s%rLìèé£û,juakqýÉ}l¦ñ'>KBQG?»É d£¿=á‘ &1ý|zmð¸7BL‡/òeÈ!ØPEQ Icþ-¨Çú!å- •°—8ÿÛtX”d—ý\·>¾‡¿ÁÚ ؇Ž+ákÒæîhe©Q×tïëòh5IdïD`ÈFÀPø²€ÊQ!t‡èl}‹êT,_xq/R»åµ÷7ý‰…ïëxÎ&/ õ€í½+ù>„o—Öñw‹\õx¶7À^.‰ÕS\¹mnuKÁæƒ7Olyu æ“[Àê»DÛÃo×í ‹ «ì'V6Jyý1E eæ£Ïš ff- µï· ¸¿F?áPÓÁïÍ^Ð+ñŹ€ÑÂdgÏCFúʪ>;){¿‰ê.˜Üb/h'¸~8¹­¢f -Êæþ†$ßaC}¬¤Ó9àJb޾&ND²ŸCU#ÊhG¤^àxëÇmB3é2£&$[°\mœun9W–’Ì¬Ž»œ\%“+q(¦ØÉ¦"¸úÒ=“ËI ³)rþ1e 6ÀoJDñ·å=cKŽÃR ‹¿‘ÊQÿP•¶;¦Òl"Úw“„<yÍ?n jÕ1b1E—a.BDû«•¨ۈà YÓ£9ª0…ù‘E‹¸…K¿tÃKŸÄ²B6ÅIe泤Î"g6Ò=nÌÞa¬ð¬¾k«DZñC¡¬œ¾:&9g‰ g¶yµÖGrƒ5‚󡳞+Ò&z,l¹¬Z‚`ÊeŠÚKi¿ «ƒ+ªÇ¦Ð@U¼ö½bdõdñÌ›bÎ4Úvàdn€óS˜©¡Ö°î î§rñ|ó*Âá¬iI¨ýÌ¢LKØÆOSèçƒD˵ÜÅ©EW˜2¢ qmA˜Â¿¨×˜ìåEÍ\XÍL¹0²?WŠÆöô}>Á·8LidDÞRگà ^ô$²gE²ÈÛÞÃᔽN¢Ιþ²Û¿f=³ÔW—Ý0ÍCÏHL Õ#5¤PŒìéá]öÇigÅ£0ä?ºEŠŒ²„a|ú¾²Á´} –<°c½ÚùÅ…œ*¿dÂýG¼‰ú°cú¢µýoS}ŸxÝýäž­Îö<¹}eÎôé5Ú˜ð»_#GÅnk?­Z‡{Õb6—”ü¡X÷Eí~s5ÊòÀ_ú)ÿlDÝë¦ÒìEÖ åï8¦w/8q11±iaïNÏ’Píí);øe@Ú³ƒXe…¸´Mcñ°ùËWäù„ÉÓÓ¯}¿IÕ±yeùÎêî·žÁ0]õ°6¤{Yø·DVmr£P³8‘vl?,ÆÝƒ&|ëÂÒŽ2H >uÿ˜¬X—s>!˜ñV!é¼x­rÎg;™ñøŠ÷„ìÜSõºkÒˆ!læ(ÅNà7ÉúªõþÖÁÙõÜó÷â+åm)Þ·k£¹Tôycýý¿or³˜\ðýïI»í{4Ù=ò(ëÔ1@® ›?'‰¸JÖ…©ãÈ÷×öŽWcŒ o™_°LÈŽ–tô²Ý†ˆÞzvyl}ßøvƒÅáñˆ²µãqÃpv®VNEBeU›vpPõ\ãʧ;1ÀñbÈ8!ØšRº›‰cÛiÜè1éN4”žgu)DX#‡æ8 ~QPœ!7T'3]¨£‘wþ™jAU^ëó~ò{v>WGàC Fâ¬?oyV's¼¥»X×À= ×ïN£ qº9v,(˜¬eãÄɨÝÐâh~Ŗ-GîÇÓ{í±tó=s/o”0èmÃ,¸—àC¬í\èž}+ǯ“"¾Ø¾ˆ3Çk™åEN§ÆXo8¢Û ,äà’âRdº[Ɉ³>UºÇŽßxùîm®¿ #y5«ÓDÎ Å\¼ýE©û£½dTÇŠr±Ï˜`ÝÊU_¤Õ¨õ‹¦äÞW«ôM+c?ÙdÜ4…Ò³¸xÑâ ýÏ:1K n&¢i¾Ûñï´kÝ ¥žëÔéB\.:ÂLßN´÷±ø c¶ÛRº&¾“ØÇ‡µAN»–q±ìs´Ÿær⇾Î2@jH¥[?­‘< ëöœ½åP£¡ùváG&é¾:_x8†š½à6Ï4-z¶£:ª>^¹¢ 2›O´4¥{ íüØX0±ÒËe,k©ÅçÛD=Ü«:3Q ãutk‹ét+†<¦ž&6ÆÍ‡”U³å¿p+õDÛ‚ËÙa›|ÞÐË ÕTÅöEßf儹fÄl0c¿8há8®#¢±á!i²ìú ½„~GUP'í’‹}Fý=¡–*}´i¹#åx{"î$6)‚T!èOVBO wþ.‘ 5Y£QJÕ}©å%¢½ÎÍ%"›ƒôúí¹xv¢i.–ý ¥[ ´7{KÄñÒƒìÛKC«œixàò/TvNJýLz6ŶÅa;ëó¯~3M÷üÓ#ëOa) ½dwùŸ6­L:NŸÃ_]€Ô¡Ê¸ « z íÚ;¥Ç_˜™ }ÇþZëq°l{u Øu õ¥äÙ.`]„Ô¾d×ÔîR@äÑ;uí”íûxÑýœn¥9L™H_3åÇܨéÙĺõùµP£íz6ã#ê*ñ©¹ò~^wRñëˆÀ½µœŽ“MñÃ2'9=kgÇ¥ù°iæü(¿#ÄNöÈãèÖê˜|䎫Xi>õЬDKa«ß@üÁz¸½ÃÇ-œr…SÈ›˜õ|{KZ=!ªìí›þ̓ãŠ*ëCŠzó2/ÆAÚóåw*;çºuÂ> µl?í¨“ÎƒŽ*©-G­ü‰¯ˆƒ~zéodò"ã1Î9aà A|1äSÐÍI15b„‘«ýÜkö˜¾W‡"+!ËÆ¨e×ìF™Àáù€ˆš˜ý‘Ë ægÉ E•ilˆ„ì ÿf Q¹©m!ziÐ}Õ·²¾² `›P?;ƒÂvPcà>ʧÏÌ þ {­·÷>Ç?±tݧ¤PÕƒ_²H±ôeúìÚŽÍwwƒo‚Ê'ÈŰ½¼N¤I¾À=òÏ—‰:Ö4ré ¤­vJµ4Hõc²–Ò;ñÙ}ˆYÀà ,ÈBª·F87n>¡œ×?8|Ákè€0›?”M|*z“eQÚâ)»å+‡µ `ÿB7b~ëd‚pŸ+&Ø Vĺ{ë‹9žÍX4÷hˆùÒ½³´"NÃéEÙ0ÍPëX- ³Ä Œì®%œ6¯èL(6)¹øå.(W+­Ù1ˆyøOå‘ëÇõÆæ¥ïHó)à Éw2®LàǼðz¼r"h—@™¡b å‰;ñ ëÊß[–u“ v» î,g+e%•/;‹„*Þl¨1½e3g”ù½ž Äìe:d3€oóf^ðé™2[{)7ɤ‡Äá³q†–™£;’¹ìO»oùÒ5=lØíÞæêˆäâ³k[ãN¤G²0~K®%ã2*ü_,_úÞ4yñ̯ȰàyFæ¢1ZMé§ß×Ç-}S6-þ~~Æ¥tuE™À®Ð¯Ï2¹·Z%+({d3·/µ·è‡Ë›ð~J­Ä« 廞ñfì•1ð­ ­‹/£fþ³¾íô.úxŒít?ðã÷¤ÇX?•eÚpO£Té¾ë“{z^ûÆ—Q¤*P¨>4aOêäðoVÉ´€gžC+ÖÏbïJôýô+šTÎirLQ¨8ªô'½#ƒ„~õ³]q„*‡©¿G+!}1ù^ —’áŠ]Ë+ǧTÂpW˜—°¨ §vÙ¶¯wŸ×’Ýþô› Ð3=ú {onR"ú¡SCÌ©#Jê.Šùnä$ùµºghúÌe‡$"ÝJúÀÓÄ»®B‹n±8ÜykZ~ª‡‰^hÛÉ}>Ûwïý6<߈h˜o¹° ‹ÝÑ&8sNИ՘jËBO“︴.¾™%²ïk·2ýŽS^Ðxnùlí±½ˆ«ý¸3œV-²Ôi|ÍŸKÚ÷4b">e Õ”xt0Cªš>—2SkÀ9„d"Ë»iE@³‹\ýN¼†ÐMYÅoµEϯËX<˜dKÅÉÔ1S’›#¬¢,²Êð¸m¼,mžWåNDù]µ%Qv'Œ8¸ÙÐJkN¢óžÄ©>A,±³áe*q¹Ñ³¼ µúD\n+Uù‘¸E÷*ÙüAH‘]©]ã±Hý˜Äq”Ù´”¨®À/ÁTz…ݧë_WåSWä(>œÓ›µèGÅðMfÖÌ®'óx™ÑÕ0qIæí!õ®?¹Ú¨:¼„F&V÷õiÎØöú<Ír :1ì¸Â‹(v¿@‹¬íþP@kÄäJ%^¾ÓzÇ$œ¢vÓt™^—¾cšèǃÆQEåÎ.ê¥äN™ÃŠ3ú”C-*7 Ïê8EZ)=¿V*|QHZjØÂm¡"ÇvÁ›¢þæºxkÈ [xÿ¸ûP´<â¤i(A'~ú ËÁƒœkÊBƒÖýc…AC¡¹²ºD5¬íœc,Ûnô „EßÞi÷4ñ*é¥zržÆŒE«^<ª¿‚Ÿ¦ÌôT÷yn¢ã`‘Óc-­Ì=…ù=K#²åó_.9÷Uñöo™lf i…:ÇI@ÍßÎ}+K´ÌÉŸ¸ƒMcdñk{H°¡ø•Þ›¤OÌ7D_$¶±Æ]w3/&†ò§TáLûzM’ËFq%_(bäãÉÚÀ¨—e¦/ò0NQ¿Úøår‘Þ™Ÿ°·……ßûEÔïrÎO«n›”)'nfwì7ùøÑ&¦ÎXË¢£Ð Ê&ô]lVâ¦>CÑ­ÈF•z!7Çå9#ƒDÔúb°½®lÏëöïŠx7<íPªx íÔjKÊÏÄ/ôâ¼ žôÆBà®pÛ?oKâJý”FûPØr_ŽyƒÌMäëmÇ…>}S îøà¨£ævxÌ_ýîþäÑ‚!5ÙÊŸnȸ˜ÐñSÖ±R­R¬6‹?žMy9ݬn·—Sžl_KýùRq;T[⊞Å!V+ðÉÅËAÅ'‰gÝŠ£9fŒ;Ëj#‡y„Op¯B+ì²!ë†XAìS±ÙNöaPù€£Uˆ×U®ƒ¸hm‰'eѧb‹ä¯¹"œ1Ééæh¤Ú"çÇD6 ƒðL… óÚŒJùo·9Êd¾D—hE·æÃÕÆ§ÅVž¨.¼«Õª­˜ÅD;[ZtÚ²9I³Ú:ý×öÉ[W‚0¾3ýöL·žÕ¤sN¬¨*ìúë{rÜH×As1 _!ä—4¾b4ͤ‰k·µX:¨¸Ã9)ì3OÇõ{â¯Õ>½ƒ„ÚN}Kw¦}‘[N]½Sý¤“."{/ĬINtÜ}ðízïî5RZ/V&÷dn±^wóæTspŒš†7spÅÍC'åí 7,1kÜõ¸YNãYO7—Ø&%æ*ÅwÀKgØÊ£ ·÷Œé%þ>‚ï8}$rJÍÀÛK2·ëÅ<žf/£m~Ó!Îçe€cÄdHxïBÝ:»›ëî[ù½âÜþDÕ= k_Ͳv̵ǯªzh±h5¥À‡¬œ{I»A $¾X˱Gƒî7N>×KÉÉÍá´òm1ÛüTÂ÷y £ø“{ðg endstream endobj 148 0 obj << /Type /FontDescriptor /FontName /UEPENK+CMSL12 /Flags 4 /FontBBox [-56 -251 1102 750] /Ascent 694 /CapHeight 683 /Descent -194 /ItalicAngle -9 /StemV 72 /XHeight 431 /CharSet (/C/F/M/S/T/a/c/d/e/emdash/f/fi/five/four/g/h/hyphen/i/k/l/m/n/o/p/parenleft/parenright/period/r/s/six/t/three/two/u/v/w/y) /FontFile 147 0 R >> endobj 149 0 obj << /Length1 2465 /Length2 15718 /Length3 0 /Length 17167 /Filter /FlateDecode >> stream xÚŒ¶sXæk6œ]3irÝÙ¶m»Éº³mÛvM¶mLMœlMš¬É˜ðÞûÁžý¼ß÷Ç{tÕ¹®µÎåëú‘+©Ò ›Ú%ìí\虘x¢òªrjjÌL&&V&&rr5KàŸr  “³¥½Ï?tD€F. ™˜‘ HUÞÞ ãj`f0sð0sò01X˜˜¸ÿ«hïÄ3r³4È3dìí€Îä¢öžN–æ. Oÿý@eB `æææ¤û—9@Øèdibd7r±Ú‚<šÙTíM,.žÿCAÅgáââÀÃÈèîîÎ`dëÌ`ïd.@Mp·t±¨Nn@SÀ_iŒl'Ç€@P³°tþ÷‘ª½™‹»‘ØXšíœAF®v¦@'È?@UZ è´û·²Ü¿èÿ)€™ùoºÿXÿEdi÷/c#{[#;OK;s€™¥  (!ÇàâáB0²3ýKÑÈÆÙdoäfdicd RøWðF ae€(ÇÿdèlâdéàâÌàlióW–ŒÑ€ -ng*jok ´sqFø+>1K'  ¨òžŒ·ØÚÎÞÝÎû6³´35û+SWFu;KGW ´Ø´@"„?2s  €‰‰‰ ÔX #èabÁø—5Oà¿™ÿƒòðõv°w˜RúZšA¼Ü€'W ¯÷?þ!03L-M\Æ@sK;„?ì 1Ðìß4N–&Ð2˜þúùû?=М™ÚÛÙxþQÿW£5´¤45DiÿNúïc{€7= €ž…•ÀÁÌ ààæøþ/Ñß%øoúÿ’*Yþ'¼JÛ™Ù¸ÿ¨|ÿÍÄí?ãAõŸí¡ü¯{ÐXT¶@—‰Éô‹ùÿyþeòÿ·±ü?lÁÿ“„«Í¿4¨þ«òÿÑ0²µ´ñüh°]]@K"oZ»ÿ[UøïÝ–šZºÚþß§Ò.F e¶3 <=7ǿŖÎ–@S%K‹ ÏÛò`ciT²w¶üëÐ3ÿ·)Ÿ6ÐÄtÉ8ƒšö¯# hÁþ׫¸‰½é_›ÈÂÎ0rr2òD` ;;À›´²¦@M9€‘ÁÎÞdeè 0³wBø«µìFá¿DÿFF‘?ˆÀ(úqÅþ n£øßˆ“ À(ñ±¥þ §ÜbQøq4Uþ V£êÄ`Tûƒ@qªÿA ­¿7(N£¿ˆÓÈÔDKgë?* ã?ˆ„œŒL¬ ÷ÁÌåœõoù¿ç÷ïP¶&#v™‰½ ¨eûdûKbkû'Š¿zÉhú7dÁÔÞÆÆÈé (€HAÀÿqÊñ×¹£+h7þ˜€r3ûc ×ÌÒ øsÄüHÛü¯W øO¯ P-þ*«…§ƒÐî ™å? ¨ºÖÿ€ äÿDÄÊÒæ¯ùüs*•íº§ÿp³ƒ¸ì@sý§. _v®¶ÆÝ,æÿˆt‡2Úÿ‰Äiÿ+ffPfŽA>@Ýÿ4“ù?Òÿm%+( èQû‡*Ç¿d–öƪ¤ƒë?}0:þ¡•ÑÑÕÞhjüþ0ƒ¤ÿ¨53(»? ì! Û?JÍRw½;Åælcälñ Ph]¤Œ.NÀŒ (wwû€8\ÿAírûUÒý=Œÿ€ zÏ?Ñ€L½€NÿæþŸKÇÄÕ TW—½ é¿ø_ß@ ÐauÉÞ„7Ī1¤û±^Ï~ŠuCýþÝ•ˆ !Ö|â«¶u[ÁWj®˜Ò„…@­¤<$xXžx,§»5·H,z(„T$îCŸÒ/8ª™+¦AÜÄìô/Ç¢žÃR—ÄU÷ŸÉD'ÑTÃì1ý µað«Šjà–¨¹?=](JÙø)óÀ,ŒõŠ1Y…§#ÊôµÎ>QÊh#¶ž= ×ô .. ‰ ³û/„I"¸4þ2Æû\ÁÉÓ;ÙÇòlÑ#+Ô ÞOW•OyxCW2ö°*™äGJÆïÄ©ü©+ àú5¥TLbé|’¥óN:VQÏÁ]`z&„g )à ÞÌ=ð´ÄBê"Î+³ât,€c^Šêò Ú\ŸåÜwCÒ}¨/ Ñ|ŸÂ ¤ÉÂEW4£¦Í¥B…;ÚÎpîßm÷%8õ šqà?¿,¦Œ¸l£ Œ¨ÉhT¢žé¡ Åæ etŠðÏ}hg¨²&Ždw–0üÄ%Ôt¸º™;Œ=¿Dú6/îÛ¡=ö^)üʳJ Ñ$½VðàiÊt’ÂdEC×tó5òø£Vp:—áÔ4“^ÅÓ"ê}l檻ãÖ)é'ÊÄóuð‰:ÈË‚éOÕpÈ(- ØÐ°sèÈž'j>ÄõÕºéÃÍD=Áô4%Ä-”øë>Íû¹?  Œ)ñ àÎ EºO`&b80ÐoEdD Ü&L4ç*E=íf–pŒñØ·ÔVÑ.÷¤ ׿EÜ}¹£uÇv'¢0m›FÚz7f 5ns”Pžj¥õNìùS?šô«ß1êÍ/Œ2àc«2˜.Ø8È‘eôöf±¡0½]rVMPGÜ•†Ñ£ío{™£»²²_v“˜³á:ð&©'á9 ˜Ü7Þøï§×”yC²cÃ×¶½€1J~KåÑÖ¦T{VÖ•gAÉ÷†ÉI/RÌÎát°,H¨tž€£êD±nÆ%¤–g@Ñ{hRù¬?OaµåQ‹ö —ö{AAôÓm¯{PXGĹl(hy° €º§ï ŸX¸ùN‹à’Ž™¡vÊ1d pK=œåðb^L”*7mÔÄîqk$À Šœ™(5ªî ŠJ²›-ÃŽd|«é íß$L‡´ÎÑ a¼^ê€Ìë¥Ð¢"½!s1MÊ#½) –ñeˆ™ª—­Vçeï7 =Ýø9‚­o•ìp¥1ΤNüŒàºf=¶ß-¢Qœt&çM7—í^>|@¿iljVcŠ á¦£9%“Q2r¸ àO_+„Æp&×¢ƒ1;N8½W¹ž½/ŵo êc¸:´ÞQÁ̓õŠ`ÉšßÌöä„—hÚë­Þ={®—åyÝת÷þ¿¡˜œ‘n¾^øØ8ôâG$a{*­§ù dy¡¦ö¸‰¡¼M˜XIÑ0N4>mdÂI¼èèQê9ê·&P1£‘—¾Nˆ¥5œˆ’¸ )£ÝeyŽ”ÞodPŽK3ÙòÀ^Q´Àª *{ŠVKí»§n‘0bTªé›€u4MT3‰1 Š 'üâÅP•W(-$ ¥?ÛØkÐUîÒ‚ËÖ ÙÃâLÔý²,÷&ú¡š;ùä”ἬæâȤXx€Œ{ö‹J¢[Tâ¦xÏ€)ܨZ`p÷§/EmÝ(ó|ã~F»LŽ“V¡8-O/ß|>9³D‘ãêÚe*‡IPj²%°w)™Pbbß‚}!|ÆÍ‘‹œ<ÀòÂñKœÚgiÿo['ö¬¡:`ÞY8è—o;¸ùÏ;¦wTçõC™p¯”µ…3ز<ê‘×f%j'í¡7yéHK%dö‘Š×¥,-pæàÄO­¨>´ÑOâ7Ó5Qý˜M2e…wÜÕ‘LÅ‹k-CNWÊzZ-^³^9à+Š3ØDßhò&{srãnHR¶¤ÄøkYúŽŒ¹ÕéVĉwú«`T®ôñ¹7Ž’ÐÛº©GKý¯‰;%ó}t˜¶^hÓÜù"WOÄwZ?|ÔB-˜ ,L6ÛŒl‚ȉ:&]ÉŒÑäÈf×/-8—ÒW@ÙM…Æb£Ðéa«’à%U~샙``m¦„¸Áû³óáRȧãÕpkœ·Õ·MD`>ÓôšQçvúR-¼Ñ÷U7þìµôM#ѹóâ„h(I¢ü^-㦙Þé¹2¼ñS°)³z—wqƒÑ¥£É¹~óÌž~ägý§žª iïJ†۞hB6ɨ›Œ¹ùøí–ŶožæžLÞ1A1¯ê4ëÓ`«.l[€iR¸ï|µ®ÈOÌ…_ñ‡Þ í¸~N“›z\²øÐAJž Pïv~’Zð¨8TGìgchñÑf'Ó1´ä~%´aÀDÜ‚žóÆBÏ•ZìKUAyB¼œ Ž=ó›¡Ï½C°õ· îüy‚B›$eÀ6YÕ9ÒHg±‚7á!nôé=ZÇBß@בҸª¸/­C"åv/áçØ4[ª ¬$1òšSÅÏ*¥Lã –» ÞÓܪö\Zx6¢¼Õ‚¨ÅMTæ0Fl«‡*%»´E»Ïs+ÊZ&ò.ˆéù‚‰æx,œ¬œš¬‰Læûã‡egÈב¦óüâU™"l‘)óSÚߌ`NxŸ-ÀRWioägö+ò¿I"еâh>:/3°ÿ$ êú<ÌA­N¿ù0Ó˘֦݇ª@S¤x&c£†~ÇÝÿ†¡GÁh2öf|_æBÐ…ˆ4Ôl*ûƒ6§ò“ÄÉÙ~øOn«@!¥>Ýhã,j(Ž–­Ò°Ù”œT\ƒO»nò á8’+éMBÂ…=62ñuÌ" Ñ>§ZWÄr²’Ù›Jb¼|è‘y—É­P*¹+$èò‰a<*–ôî±èÒohð#Ï™.°xåm@¿ï:YÎâQK« :ÏËû;ðçïÓ¢²U¨ìïS“ç1æïWðuȺPüÚÃ݈®ïXGKÂ5óÔÏ´ï~ÛÁ¨’æ)øÑ úê”â·_9ü˜z¶Àú \iK.æ ÊÅ>ïÔ’Y5€ |n¯@=Æþd1}E ‹Äþ»øÝZ0ÊŸ£im%Yzzyèp3PuŒl>•„ü€(Mé*¥/còUû›<Å0ÜVÑ벘î\Íï–¹glS³!À¸&®Ó¿à証µrbz,åÝ4êt&ÞüÎÛÂ0/.mŒaKû{ðÎÓ'm)Ä1hžuÿJ擽EÄ ˜ £¸Íó©½åc-4Û¼M‰V‰†ö3ÑôHÝj&ÎvÒýC%ü+Tñ¬³›M*š†všû8k®¯D£\ïÀHN÷ˆÖVø¨¶+ÅËÍ–·xë,¶R?KâÆ\·÷ýTâÒÚ…À;”Ï®Îí9—moº×!b—œí±¨’¶ú 7(¼Š–ñÀ>îå{ëÒh]q;Þ„+Ñ~Ãt?!u^&ÐÍYñœÄ´­{§Y"Ñ+8Ð`¦v à±yÑÈŠ5q‘ Àápb€5ã8½75˜9.*¢aŠ'èB{r(b8÷&m¯Ž{ë:þZ˜Jr¥×npËã:B¹J¦Å“¿‡p“}´¼¶qͬÜJª"lh‰ur¤’Wî=üäÏãÚu™[†§¡—ŽSø\Ž”i U`µOºip=2Øñ^Gƒ¿¸œA/¶2»5¯(ù?Sje *âÍ”»½)žoÐPÈE{'9ª­ïsÌ1NãÁgÚS!ØhvkÏyè,#‘HTTšÒÏÞ€™A?%gö¼b‚Aòè§ño-*e ¡Q…«gÇæ>õºiMžKenµ›;Ô°já[˜–k§¤ÞtáªP}ÄÜ«+pÐ0Õ¹ÇîÞ¢˜m«8—YÐåGºŽ“¦®mƒ`Óf&Íå6VëMFj.ŽZ‰È8òcTÏÝÙƒ )æ33þ|5Åà”î-^&ó–ÖóAÚA€yÈ‚î×Þ¯Á×Qæ—,uáA2…²€ž[DŸWÜC• ‡åµf£Ê¦EÛ;N&\„Ý’n#QqYÛ,ɬÈ^‰!mÀ¤GØo¬%7®SÞë™Þ±ÇIÛ3Ô Å"ôõƼR4•8ÚÍ¥‡m9ÓÑSˆ\ å»l¯~o\‹óC_iÈ´µØ‡o„ò¼ëåZ¯Ò›*|úBß3åm!,Í_7QÈ+/õ‹\‡›^ÀæJ†Àm^ªåK}‰ ð#ؔ҈梬OžÚkk= ‹+$eÔU[ wn¢fXßêgeSöæ¬ÜïÆ‘ˆ«Vp.~)¡LK?¢¿8—NR¼Ûa±¾ìÒÕvô²·ž+tÈ@Í­·Wž&oàÚÕÏÎýß_zÇÚbb—·Þë=\rˆíé¹[z›Ä¶YT©v"x×1a:¯°S–y]Õ¦Ô]ôœ$‡ÛÙ¥ŠáŸ³à $÷Qnäîéz/ñ³{O@eŒ 䩼Q~:匨)Žv,æžb 8…Ì›µ°ú.9·%†ëÑ+ÂÙK”$!\SS8áz ñPB¼¿Ækç¾­Åôºéž*!AEoª|ÏB—¿°WhÊăm-&Ui³³t¢–t,«‰×šn5êe¶á5ýú’¼ûöLÿÉŒ4ΙÞòIà:Æ_É_/ÁŠáL·Yu@0æð*äÎä&혙&u³Û$ÕršYgh™ÙõžX*™°›•#Ì[‹Il‚} —‹ýäunD5)+y‹W"üd2;.€:âõzòu”²,H+VUêfK`<ºFîUm <¿ÚˆŒ|ôšÃ\WãJ I¾ç …?·(Û «mà×<ù1ã¿]OAcÐ@å/¼•«PÞ.Н ‰z×bk7×2 3çkªgë³(y¨O—ÏæŸNçô?mŠáP½ÝþÄf­ÙâÚnS¡*5kÏ-óƲfàH†ž=cÀßK~yƒEÐoÒ­ö#‡&H0“!åXÒ×¹2?è²§( fìd'+ÿÀrПŽÁ)OÍ|´'.Žog÷BÅ_õŒX#Ïx©ßÇMâùÝ,ô“¦ž im:Bß>+;±c/ÊISø~Äå#Ñ&u»Ä§î[e×}g^<óª™ ×]aåroWÕA}V!0é’Ö&ÔëoŽþ‰:½çŸ!Õ|} Fæ"弿®»Ä£í«Èø]'×{Áú‚Ï,»óüŽÉW¦KbqDœ8mx­ì,š­ïnù·†áŸ"¶~S–…Ûò¸–}Yƒβ΢ЇÛ.ö’–v¥‡í3˜ð¬Ù–ÅØÅ´¬:¾÷”tTðFL>®#B~¸ƒ¦w¬^X5ÊüŸ‰Ü/;KÑâÅÞþKñ-ϲ“:?CëÄrVú9Ò#sŽ7¾¡ì]þ³]8TÁÆp®¸d˜,ô¦2ÁoMß`!7Óï6^eD ÑHoŽ •«?Ô‹*hxa{l=‘V_\ëM½ž"š0NjGoÍž£ë¬”gZ:tg®Õ¡æpG¹vlÚ=3EŒÅœžŸ¹Ë1Úï}²R¦ým“Œà¬î¤¦Ç8—I±¸ð}>«„;X ‘6?ÖR2N&ièìÇù÷µWIë \’Çoœ2¦˜Ì¿~¤ÂšN­,fŠóB†!‰8ع#ßîšilFq˜ñß„ìõL'/ŠxÊ⟅¿ÙbÑn^„"«ÏÙíº‘Í.qT÷6¯–ý 1€ÅD?Ûä›4È›Ã\À…ih•h—™‘l!jΛáø=ò2Kâ™~ÒÉ–¯s6ÆU…ù¥[ÊîùìÇ'-pöÒ2:¶_Þ cLE2r .oé›M&½éi¨ !+àȤûbøiÔèÔ‹v5ý ö—Ê“Yœ…mV¿ë¨Fo•‹?¹–†[îA´¶(ü“×üµ{rõ"çUQ~þX¬L…DèÖ. R=9T ÜwݺÑabýã%z‘-iƒãÛ¶¥H‹³¿fËM*©?ø°Ü69É©*ùÂRfÞ\n‡®ÉXûчýÏ`£¯Ä³¡ðŽ]’ûÜåÄ¥ ¤Tš#Idİ¡¢r“Ã2ü=ëäù³Å‘§Š(iïê$_£ÖjaàuÖaö>ñÛÓá:˜Þ·,ð„5fuºÓM8Þø2ÏSn3T®½“é NÓVÃw:P8ò"(ÃÝÍz^®duA¡ux Y¯YUÃ[¤xyóBzÑ8 ùKÜI%lùŒCøÌ[×vÔô %Ó‡A;’—pC]>´p1­~ØÚq­á»Â#@ÁŠô€'nVž×Âb³ÂØMƒq[«äünw媘…<¯ ׉Ð'˜Ð#<2œÍi t0ë6-qʸ;ŸèLžû—›}ƒ/êæ×xInp óÖi®&°mSÙù¨‚ûìÎÝf¦dí­ÕÏ 2Ï*:XL`'ö a9¹_x…¾CJz>qsÜ7`×úŸ`)$\•2ŽØcx±?&b²Sv¾ÊD61zç&ðæ;¢Û Ëiݺ棌s£´¿þ`ø¢käD–+Êø¯&½³øÝÙ@­7ŠÐ­­£JAzždüQ–¶´öPhÀWCKŠòêû«Šô'z:Œ ÑÕL†·E\›ôÕ{Çâc"5íy‰÷(N±ÙÔßíNö b¹a†g¶«fØ=¿{8¾§_<8n!ó0÷Ûê‹Sœ¨&Ý’Ÿ.x\€£xµý Þ+ÞFsÎw¼oíòãNŒ/ôˆ .1à©јһ‹¿Çeœä· ã¹x,œ_OÚÎìËô«ÛÛ”bŽfã"´‡Ø)Ñ a+Áìcf„}qGù}pl•ü‰n§Ëµ¼ñ€^Ö{ÅTñë¾ìÕaÑñêMŽü¤¸> ˆÌ£Á=zÊ!m—v~[¿cœ‘¡#R‚Ù™=Åk‘éþ„þòVÁSÿsJŠù{¨žØ¯¶$¸Á)}*زêXçìÜçô¸¿“z,ÄÂŒ(Óg"¿é1Ã_r$‡9Fõ¹‰6cúÛ˜ÇňÕXž ZËÛlx$õ üJÊ müv%ü3§ ƒN[N†ð‘-L¢ EBš[¬Ù¾nCé³ßÊECÞÄjÄ0ÁçO¦ù¯—Ô=@¥ï˜ªÇ-†¥2MËÉ’:ª,{%Bèú+̯r'ÛŽ‘…úœ±™¥â½8§”‚ïïß:WÓ„l8?ýO5׿¿J:IQÃyúJ‚ÝIë#«ˆlw6$–sÃ&m+ÛÔŽA#1TN»ú²{ƒšcZêj]x£T{ãBÚjf]š÷!f€ãƒY‰. \T]²ÿxqè…üEšâ¼.”§ZH>4Þo“øâôÙ ÓÄf)k6»È{èȬëÕÄr,•uàeˆXâ!N}Ù ‚–ä·Õ½YO~ÛPx¿{ è—;Ô<^»\?­[ººSL ¹çš‰YÁÃþLaĶæ„Âv1®:Y¤é—d ůOí ©è2vµWž-;S€­þž”áÏ=qå®÷æF¦Áð•3kpIÍC[$‘œû©!3‡£î8·¨¢¶ûGMVœ÷—à}õéÅê}³Q«ÂÑ##•¼lØÌzý¸ÚT¸À~ùî+s;Æí¼$¬$B™²vOE̺ÊÒ5¡äh*‡pvWÛ{ðía•’‹íV‰PSº)Q4‚ ›+ö¦¥2W%°Ùí)T|ý ÑIçIùžÇ¥ÞWØiÝlè½äs¡Ï3&‡­®?ä§>~ÕA«Ñ Žl=Aþ<;ç’[•å¤mrx6|hì¸cž‚ã–$¦›h¦ãí&6ÞJ…å wŽ«]×Ltû´™¸j`<0$~15£!zó#“ûô>ÕI£jüC:¿gÏÅójÇNäV ·â{±YœWYÆJ~”mZ‡šŠÇ»KåcPì1T®ZÝ1òÀ™igÆúË5žÕQHü2§U(2”P›&Ö±¢ ýö+•ŸƒÆ[­p]½{ÌòÚ÷ÅAM­QÒ—y×E˜aA5¦R B¿GHÁƒ#Tãg]ži0^.$saO¦ô–FÆë‡¡ y,RÙ˜Í 5Ÿ ¢ÏÎfÓå–­ìߘðB\W ¥p¬#Té¹Ü(v䥣1‰²œ3¥nªó[HÅåŠf§Ñ–«’óSYR‘HpÌ×ÂR(+Ü@B)®–ˆñ®õÄ@j. ¶¥(ðgmãÒ‡Gƒ½I’þÉ<¡)€aVxzŸ¨©z꧉2˜Pªi+ê#™@ä7ÙT§éþ©³ËEÓ½>ÍìBX 1{âö*ÏËú=¬ Œékþz;·£ó.¥íø 5áć¯mWp) $àQØ1ü |ÒÒïºG\¦,˜´º­ÚXQàÓ:ËeŠz!1½Ó¦.vÊ—‹³Y`±³|°ÓÇ+ÙÅ(vÄ6¥ž—§6mö*ûñßšèzõ·¬gJ0‡ÎÞ¡E}äÇŸYjRß>aD|/´îÛú ¾¨ûÃy[^¼± ¨ü”2ÂÏDýY¢„q§mïµ¶?‚ÿƒu5”E®Êi÷Ã$^šcÊó#‘˜Lkhæ$8Wy9åËš90cqØFÐGîbhj¾Í§/Ÿm„: À&²uz픪ҽæz¼íìÕ\8LKºÍrÖÝ*û~óôðƒ¾ž`½g´]sæÎ\5Û”–§áäBòµßÛï$ÔûN_x _£èF:v«]87‰Dße‘MAµ—è^ãiŒÍ„oxÈB‰SoQÎ6­ˆ<³ß¼':ÌGmózÖƒ,%ƒ»ý.5 †cPN»ìÊüíEİXMM£kEåñ)G߯î„!—#!Uö‚Ò²K¬¸;­h4b 0ª8……z˜y…ã–îéš}sî’ z_áL,°|Ž˜’󓱸ǡm?BÃûþîb-íÇë è­äUzkû “g~ÂŽû°…T¢ÇBð_Þ¬—ج÷¿dU¹8?Ô—m}Ö¿’ŸyÙeÝÞÛø~Å'ù첬gÓÏÏ—©$”¾T5óŠæü¢•®„ü¨b'…|¼¸°â‡:«U²D:’Œ€,ÛÔã. y®m¿‰9@$K¸(‘·œ:èíÔw]&í@Ìá¥y€I+`ùe¤øi7Ïú—zÈ3p7n\øõð>2eh•PI!¤ç÷!.wŸø‹:› ®Œ6ÿCFä´£B[NÞe<浪oñ…gAaä@¬…¯Rmßáý/ºìð–ªÞNóú´1¼>×îÔóÞ„ÌÚJÑÞô™RfÆFjÇnf£ X:1:GV1‰Ä² Ï—_2,„=f\SúBI 7õÛKøöùÊ‹Þi±n^.˜e˜¯éHj8G‚ã#†”nZû]ãK°ñ£Þ)umãò¹˜.Û†1vò7f?q¬c™ÜLÅ`ó÷“NóÚB@«¦0¿a‚¦.ÌÇâz;±7 xû¡½H¬\ÍÈ YìzĨHr}}-O^üÃÆZ§qÑ0÷­kR*³/^ˆc‚àÍ‚°0õlüË5ï»V¹¼CáqòCVd§N%þsƒV%ï=ÁÖ&{s‰zFÙºÆS”óGUW{}^¼ ì¨;}ý_ʱÔå|—·W*x71}Å~µÑ¶Òñ_01«(?#ûÕl[]sÚ§ˆm(¨-úË,H []K=·ƒ·™è[% ÷x¯*£8+ NÐ5iÑ;>J á·Þ6²ú<ö« s5u÷/g‚oòE²%Ë6 b(ã¥?¡,Á,x ípqjõj†d,Ý‹õôu~rÍë9Á¤Çâ./˜jÌmìoN`¬F§ 3 sº¥äÎQÚ ¬ÔNwó̳ ¸K ߆BÎÿL1ÿa¤Ú/<ÙÛ´¶ëú»t³èSí©Ë &f‚z Lýš´¡\æìC¨·ªÄ¸ö¹ô—Kµ˜u¦’—IÍ>~mÏ&¹tš’¡…™ôN¾„‹ÂŽHpÿ†[|ôÂA%ó¬¶oåDø±³‡?ò‰à¢Dß¼ð;æ¼þ‚!~Uå36UD©ðýU¬r•#øvýâŸ{çHr?ÊJ••ï;äÎÅŠú:X†‘9u÷Œ¼I ö1ËütÇ s¹2qü”9…8„‚­±æ¼3ß›b«‰š™ËÃ.gÂhЮ+4Ì—³ v"‚Q6ôÊéM¸=0@u¶èJ"Ó¸”Û·q,&­¾‚ø¾°¼Õ;6¿¢p®{¥2‘D´¿^’Bn3›]¦G²»¯x3¼kbs›!†bx=Æ–T=´Þ8„²`´ÀÙΛv¡œ²—RT~¦@ú-gÌ,ÒØ}4ù-a}ú¥®¿Á>D€€ø‡™°jsl4}½å0;pHWæ´…WÆÊmºÂ¿½Ï[s0dnòýRSp9¿|@)üš¥¥ý£OBåMÄ›²áZÍñt"â6›Zà'Ž&øâ‹oif^1B°S|GÓ[?9]Ïoì…Òõ½‰a ±(ulŒÎ¼Ò~¾‘{ñ`N-FBfÀ”øàa“Wò½×Gœ¸M/Í"‘pÇ ›<¿êò²®WÝ]×df¸Ÿ6ˆ‰7h•án~f>êJу52~†T¬Æ n§sY¾Æ=Ógž¯jP6©o!Íàç}({°ô²´ëŸ@e\îI1Oû‰Ô4\>Ï’PwoÔlPr-¬v|‹º*æÅçä gÊEÁvrc)hš.29û–¢VÏi~ëyœÁTK¦èêç,¬Þ)÷Üî7F`2T¨íå\^nú1”᪠ÎÝRÞ7¶åX–£Þû/ýÕ› ­ÇƒVgg9(ÃuÉZlÁWÎiiŠ"éú¦’¥jÈ9£ý‹À4·³†K#myF†£R.Õàôï߃oÝmô=­Rvø;ìtøxׇrFkýÓu+Û‘¢/å³»R\¨³ª ^‰k~çÓ—eÞtFE´Ä§½¿yÝ™‰“Z¬ïN®Sƒmáù8åÓŠÈ¿án:‹®CXNà š$R; uò¸S€{J¢0”yÔ½.3PJ(!Jjã–žûzc!([1“Ïh‰Õý•‘·0HíÙ´!À)‘r­è ý2tÛgª~|”o¡uÎÀ¥úMÐ¥Þä›Ì¸¨’æâöCÄs=i±\ºÏìò0n~^'o¤I_]áð bÞ0Ã1Ûšßtä>‹-µ&d'éPš¦_­är]Ñû” €íê7!ÁîTF8ƒAHèu²DŽƒo`ÀRöHÖ.{ìa:†à›@ôʲÉOºAÊR†Ï—Æ-‚\ÌádéK%M³þ_MïxØXg©%EÆæ;€óš“rÉ0Ú±J˜fPØ­«y¦v–±S?nÓàfdžL3Rr é‰^ïôÃ.+_˜ÂR˜üõ"ý¸L: ˆKÀµÈ³ ›ßûñ’›!úd”“•wèOà'¾J'Y|9Œ…(œ š‹T[9?]47¼u`àámU€Þ î)ïåˆQ  uqeð™C¡”¹êB_ñÁ»klù´¢ªõ+Ň³«èê¦ÿê’ɳ³hÙuòVðª“jvh«‚ §P_ê)°PÈ&%þ‹›æ4>41âäá«Ó¦äØ×¨¶xÛ‡‚[ÂrO«ø íX±“4ª/`Ô‘Tw{ß^YÌ ‚!år£§~R7Æt1jbt gèòãÂQðÛÜÞïY\Ù‹·Â C†ÝMûidÈdÎÞ/º:Âb—œk£¦Œn`•–)GóN›Þ}iwlr¯&~}-°¿ÅÎ+‹z$DÒ«í£]ïv&Žü-ñ”l@jø «»dŸ*ûº0_8ØP³¹¿QXüVD-(–P&*Ú"ó‰Aö³1†½4rŽÜ:xá42:ãh`*Üßr-&)‰G¬/g ä€ôfWLò:îÕ¨£ð³ wÃZøgÀ{:‚ºÝ—¼€JMvöáLxü5ψ—¶lZß«Q9Ç‚ÎKE5ÑÞ_вäz´.~L²Õ®Ö·ÆÓ™ù÷øåƒ®‚b_ɸ·fE/U^VÈÕeŸ„?©Úîï;w|0€Ô‡‰'‚‹—GkBX' ïDGÊ¡²O1áÜ¿Á™Þtfpxÿš³ ›úú‰|Á(&Ð_‘F2Æ™pœ<¢stÖùþ}s¶¬íÒ¨ï%)¡ ŸX(uƒƒî}ÃìƒUÉ>)„—SîWJ¹…âûEšÉ)¸j`Úk=Œ¢¥„Çí9éµ{‘®×j‘ɳèÛ ù)e|ÆŠ£³„FwÙ'A¹ÂHŸU‹¦îÔŒpÍoŠ'Ÿ…㟃œq’eMâú”©ØESïÖw.“}ùƪÖùýX ÿž»Uq§_¼[Rë;ÒNIjt³¨y¶;AÐLܻ͇˜UªèŸ¶$ý@j˜ÄÈÅPz)ÀŒáÇv7¬4ˆ¹L‹;cÆâtñ‹¬q‡ˆÒ/°º%ëͰɴ”$,H–ñÁ!sr_úh\ùβ Ó­ôb‘ÍP~ŽŸsvªòÚ?òÍñþnÈð¤Ì±©gûÀÙ{¾¨Çen1ýeÙÓƒî~WVÿ(†®á»¨2QeÓf‚PDcá”h´e‡â¨ÓÍÉ ¦Óܾ}OÃEJ${ñ‹À=D^P1¸”Øȭðå'Ö6m>¦c轩GÄùò‚­!B]rûn,ºç$ŒXúOÔ}«eD¢À²ä“Ó‰ÀKÐB€¿éùÔ/4ÒT9>z¿•¼V6>ϙ‰HÝŸCw§_£©G’*:—±w+Ù—ygSÑâÕ>3Mh5ñxã‚%p´%ö·¤'êò·ô¾ØÈ¸Ý'ÊŸªÝó-h.FHáçgÁ6 ÄL(y;eß@üÒ'Ú~=Þå¿vp×d|]5)vŽÐXÜ‹9fú5]Or“#ƒmõ9:‚óë¶‚'‚çJ9é&&/0´ õðuI§=´Hkþ*iìªÂpÇJ Oû•3¿nð¥xÅbeø”Ñî|¿’<9evUáw-”pt¾ê¨ýÏfi§–*ÊðÊH–yû‘8Ä'e×_t0ÚÄ åî|â‰Ä«A{ÀN¦šÕ`ØOs<ªSòO—Z‰ú£ö/PàÔ¦ˆ|[ï1%ÈÇèµ'ç8ßc³ÎñŽÝ½Ñ\aU¾I.nèy¢VýÂç×\F ÛQ¨yªó¹Mï„O¡¦X2Ò1¯S£×EÝWãé7"+´®ØWâ/Gç¦&Œíè´*šâô|Â’–ÛR~ù¶Rzk­BGßkÏà ¤JÊõ ÎÔò7¦o¯iŒ6WЫ-ZÛïuñ³`x˰x}3dy°\¿4G>.Ô0§#…zÐÅoÖl¢âˆ–×Ì«–?K m¬ÏñÝ™÷u Ò÷e»"Ïä{œ7žÜ"®°ì´.-‰™¨nÁ$‡ãb©;1z8k%ç¥×íêî}ù÷ –õtÙ«/™ñ}d½¡L?‚2 †ú}ñk^ýÂēDŽêýëS§¿&eÕ¦.àL4ßmò45Bˆü.¡ øþ+›Ì¾4épóg–œ:pH|bº€äP+z67Üú¦ŽÎpá)ãçñÇ ü¥ýë)kc2ºY©9³Üè œê,2’p…[­¬ÐÉ6nüI€µ-ê wxJÏy£Þ!£sK~_2Ñ{‹q>zx§yæ¶jdQ•Ûñ,ôÎÜâbÙ︒kMãò€ó«“;J^ôŒfÎk¯»ÐûZúL~n¥D`oÑÉ¥h‡³es£»—@ÎÜ©-TC¹ÂdáW\?-Ž-(e|IÊŒÔøÈ2Ï ‡ "êâq'ٌû¬sOú= dmޝµßl'¶ÍQêM·î®.‚ÎñÐ,÷ù;ñC§h¹x?Æ:~Å›×î>x˜ïhÂþ]éŸÍû¥?Cf>GÕ›"?Û§ß¡šRç4˜~\ÿ™ÄqyƒÏE:Ôá3y-Ã| ‚ڼ˺—¹Ö‹#c¸xÉKàø­@å «Æ^roîò‘ZWÊíµyýÛÝ&S•æfU‡(”ya[_0õ4Du‘÷£<6^C^¹Œ2_4?%ÜeÉy_-ç`È.ŠØÜGAz.KY].»)IÕ)!®XóŸfj¥køí)ž«àîJœk" m1J¼¿-ÔN¥:¬Tx—ãÙh°É[ê¿Kúæ/Z7—(»ÛF‹`%²áß-{ù•òm!q†Ôn‡¨ËÕ`G ‘W²cÉÌèllf{ ºý®Ä±öœuœR¿THN˜H×h:t˜°ql¬|ý€ïÛBYJ.é áHò εëeæ-oºfHê±àGôL_vÃè7¶¢_qÚùöPÚ"OßÎÝ6°ø­# «8‡¤, I±ÄP®öøy¼±×JNãÜФiÆÙMZ6CÌâ©!‡;D".ù?^¹E 4¥7Y.ËvM 'ÈÒõt¥ì ø«ýÈ¢¾ÕôéœþÞCóÞ.p@ "uè&òÁ*œœî%<)ã|Çâu¥)¶wxju)ý&Í) 5%hIJ›? Q×¥—8B6‚Äl1£˜#àû^yñÚ7TÚ–ù]IúJT‹ÒÊÍ]¨k¨ †âaø<Älp_FkE—*íw.¤¥ïoŒnˆˆÁzJ¬ø:eïÙ0üˆÎ &¥$>»ò_ðeLø G—¢UŒ‡XÎ` §½»…ÒUÖ]üq™ƒ"dõ™gçö½Ç]¶í7†«=<‘í`–¤`o.ÑF‘™‚ßRæ?Ä1Ͼ¹fìsù)µ‘€›å$K³ý2$xÛî9÷'ä)mÑÓ!›lo{F)™mv=ßlœ*ä%=@1ÛóFó0°f÷ÿÔL7k2ôä}URøÔÞ\Ö7‡¿‡j±Zq£2)#¾2àB¬ª·”,+)tÎþa{Á„X’ Þ­ã—*áþ+44D ˜•‡ô5::D蚀•Ú¦o9±ž€ó¥F••]ãç꤭›NÌ«³{\L…„ß hý&H¾ñ?2pœ NóE+¾‰½‰ë|(›z¯g¿yRscV‘h¤G:ëß÷îÀ¨°uþ©=à* B„ð7¢ª~À4Tãf”ˆ õ(úY•º5æÅ@žâÙi½å^rOÎ`j«¡a~vDyëfv5S•þŒ"[™rPÐÛ7R‹±¡RôÌãà˿ϯå.äÑš½ï|À²Ïð`¤9-ÖQεþaá@¦fíN$´ƒ½7i·gh]°6â価‚ ü€¼¼¨5€¶(èäXrx]ú¹o I€­(p€ZÞzIÓ]‹03'ðóëK£F³š2Ä~'Õü}  ù1`3Ķæ;FK„ðIbÅGÂç܉ÿV©þÏÀJeúƒ°)A’Ûª¦-)ï€0DÓ šùÉú¤l¼ÕZ~ßœX©Þ§4°a¡q)èN,­ÑdŒ™›n‚Ž%+ áoÞ4H89aõ¯Þû¶[T/™)(\S95 Ž ßVôCì!js4«2å¦*.©øV™Ö7°¹˜Hô¥GYë¿ÂÉt¯ä½Ge0Ó*0E¿;!­•úP¢L°®†n( ÜpbÅ‚/›°–Æ¢&¤þ ö &‡G€ÃÔü²›ï­`«Ç#›úëË›cæÞ¢‡·4$»ão,h'õåóCR9„ Æ5ý X>M-)Êè¬Sÿ HQ-×ì^×9º« × ”&–µ«&Þõã| ÇW{ø›‘o¢àñdÙŒ¦žîS¡nšûü¦—oÐÁIŒÞ‚›rÓìÆ}Œ£,“g™&ËŸò%¡_ endstream endobj 150 0 obj << /Type /FontDescriptor /FontName /VXHWVC+CMSLTT10 /Flags 4 /FontBBox [-20 -233 617 696] /Ascent 611 /CapHeight 611 /Descent -222 /ItalicAngle -9 /StemV 69 /XHeight 431 /CharSet (/A/B/C/D/E/F/H/L/N/R/S/T/U/X/a/asterisk/b/bracketleft/bracketright/c/colon/comma/d/dollar/e/eight/equal/f/five/g/greater/h/hyphen/i/k/l/less/m/n/nine/numbersign/o/one/p/parenleft/parenright/percent/period/plus/q/quotedbl/r/s/seven/six/slash/t/three/two/u/v/w/x/y/zero) /FontFile 149 0 R >> endobj 151 0 obj << /Length1 1809 /Length2 11154 /Length3 0 /Length 12292 /Filter /FlateDecode >> stream xÚµP\Û-  \‚7îîîî. N5îîNp ‚»k€àîÜÁÝÇîɽÿW½W]µ{és®1צ QVc1%Á¶N ,ŒÌ¼1uV33#33+…:ÈÉøBèàÛòþf!æ4rz•‰9½*€m²ÎÖ6 '/ /33€•™™çC°/@ÜÈd P`È‚mŽb`;w¹…Ókž^Ô&4.ú?Ý"6@‰‘-@ÁÈÉhóšÑÄÈ 6Üÿ+5¿…““/“««+£‘##ØÁ\†à r²¨.@SÀ-l€·Æˆ@P·9þ¥P›9¹9¯k ÐÖñÕÅÙÖèxÍP“‘(Ùmÿ2–ÿË€ð÷p,Œ,ÿ ÷·÷@¶:™˜€mìŒlÝA¶æ35 $)ÏèäæD0²5ýÃÐÈÚüêoäb²62~5ø³t#€¤ˆ ÀèµÃ¿ûs4qÙ992:‚¬ÿè‘é0¯c–°5ÛØmþ¨Oä4y»;Ó߇ke vµõü™lMÍþhÃÔÙŽIÃdï ”ÿÛæU„ð¯Ìèà`ffæfåí@7 ¦?¨»ÛÿT²ü!~íÁÛÓl0{mè 2¾þ!x:¹NÎ@oÏßÿXX¦ '€1Ðd‹ðoôW1Ðì/üzþ 7ÀæWú±˜ÿøýçMï•a¦`[k÷ÍÿQ\¶ùS;ލñ7©ªÆ2Ê'øš¶ºúlË| °“f㦋ÚK9‹¿ý¸l$¶9–ÓASÉawÉÏ2u‡NåžP3•««@rx‘a~ ñUn®Ê6-³ñç¦ã½?}­ôRS"giF{Ð “bóšÐüšõ÷™XÞî3‘çÕ“F›ê·)[á‡Üõ˜&¹Ø×âÇjœ4¡•’PgÜ>9sÍßuN}#ÉO÷Û‹LÿÀ› 3Û½ £nMŸ³ƒ"mŸ/¹¾f•*—'S®6%d‘êö59éÎßbì`‰ïmnºtû‘œ&{ÄŠç´0IáBžl0ù¡–TUJœow rwÿ|ád‚/z=),)z/Iàœ ¾J™=/µ¿Â”ÒM£9<ža‰IÔ€—3¬õ@k¹Ì“ZС”W® î<ø •™Ø“Q"ØÒ^,ølTÒõž)PÀÙ ñm»è\â—ÖG&B¡37¨ønvé‡}¨Â•±³Œ7Ép_Èho5¡gsশEãÍ–ñá•"U'·>Ø/ïøÝ¸ì@õÕ Ë<Òè¼:Dç*6lµâÅY;•lúRQžíŸÛáµ"ß·E†Ý9Z*fAnckýª¾³ª#&“Q¹ áÉZ4Å/ù•Uë¶nWŒ;¨ƒ$Ûš$Û‚©„þ_Ó0|M½÷^CËÏHN|Þ®¡#ZNÀ‹Ìlq¹K~[“ÿ W– |Nƒª{xÅØA®Q@Z¬/Š×,ÅÀ?#¯ï`,X™ØÚ"s@¹kãMc÷¤«bp¯^ѶØåa"žï6«æ‹á;RY® M¬È¤U׋ÃMijPd³ÇS “·ý²UeÊœ%FïÃY©ôÁõP2””™¯œ¢Àø}<ê5¨lŒûÚŸã×nípé>?(¡IÀÂÇ¢›‚1Ò¨`1«Ÿ3”ß…—¼’¶¬Û²÷UG&„GˆH‡Oh²%d µó>f²K¡«Îô ð«qDû)XVõA¨5àÉŒSÈE@Aùv¥ jâx,à{¸­1"oòÖéWñŸ·Ü¹ ˆâ;ìúÌìp¹øìöÅ£[ù2DAzåÑu|Ùº"»SòWwelj<Ñg>àµûYÛŸòÓJ÷AÜÍ‘šUbÉš8¿¾Ë(ãFCØ›ôÏ|™~0¨omןµ±ÕŠ#J¸3ª…ŠðÖ˜ÕV !;./æåÔ7‚Ã;0r†®I8Œ#€~çÓ1¤¯Ñ—:d·ö[$AY«½ª éb©sâw[ì!?êÖñ.Å£T,‹t–§Yzò+ÒåÂ‡Š¤u bû`G2\•¾æ‰C§m-q¢¡¥‰%pGê6˜Ó›¼Yì!ȯ ÅþšÊjí°ì¾âó¯“)ÃÉ‘*þ´©£Ü)'‡5X´øÒÜ»/zîh°í7©ÅÓ)Z)Î*#ñãèIëZN1»š– $Bá€\‚øµ¹—솴ÑKöR­ÅB‚ôâ+‡g°-^äuq8Ÿ'£oøb¥·žHBlÐÁ}c¹éV ôú)Ÿ‘×sÎÕæä…Šß?Ëön ÓGHsz‚Îïp0,*¥l‰;î²Jq˪Ò߯Ñ”Ë>Á¬`þIv fϧòá%5*‘í´Lº&œ¦Tj„M]dœÍ„ŸÏŠxðñ‘4£ÿ´Å ¡†”'$gºZK”«ÔSG×9H°^¯_ Éb¹! þ3n%YçÊ|}üð‰bñå€À7®¹Uó¹šþ¾îXÀ¨)ZN[ôž|ŒîÑ)ê!b÷AxÑi&[óô:ér*Ih ~—v?›a(p͸“‚þ¯±l¶`B^™Ålƒk½Eã¬:Ÿ·Eï·ýzªÔˆ[Àx±¦D·.æ ~yÞÝms+«…°><†#C‡9óVcAGoëwŸ† ÷´f'ò¡§htV=CY²PÄŽ7ð+úl@åÚŽCZá™i‚BRŸ‘´Ë?ùŒé5|@ų&ª?æw)ÉgºOÔ¡gÃBÊH$ôþ×ÀAî5H››kdîaT¸Œ®0e³}zË®(» m¿ìyÕWÎÜo¶NZ4àÚwK`5×£“ ¾ˆ¹¸“Àá“Y›ºxäç!¼Kt´Œ¢ÚÐ\ ²U>·ÝN–X:¢…þ ídãÍ;’½ '¡ Þ2\ +×¢¥slÑ‚ê'ûþ׋¢Á½@ÁûÅ/uŽWiøæˆô:cWcrOØÚxçózæ`ÕSWŸ8H™A]q›6»µÈONšo~Õqè;«¢”65šW5˲Eé˜<ÍVNH\QÐó—¶ÈáLŠtÎXTÆäê³ì°\•ŒË3£+d˜e-×hÒUgª>Äé‘V¿ùþ€´ð ùݬB‘X ñøV_ÒÞòhHâUí ‘ÆÑƒñãØ•ÿ²sÿ0b‹U׬g)´í(Jؾâ*sl G@‘·"^r­ù#í3F­S[öüÇ"¦PK|öC»†pª®*ìQÖŽ«ìG,b¦]ÏéÙO«‚ª­©Õìû‹`⻲ß÷!O«YÊHBb#×X©oyV}»E4/í<²/6¥Ð{eü(tµM*d~–;ºõcüz0×Qüòè`Vg⊷í“RÞ(Z*/ú¥–’Òi²`ÁV¿ékv¤ÝÔýÏ:Œ|q”'IJ™™‘s·QBà}:Å‘ Ö(këa3ø+Ç$t`â)ÿMZOt®³FåUzò%RÙ|.jg<ñ æ!ºßÒ©Î?XN‡òIe‰>ÞG$^ÑÒý4íØðóׯQ &y§ U4Ä&)Y¤¸ÿlç/FÃB{w¤ªYTƒ`iC¦z]+CèÁÃFÉ7梈§Ž68²#Z@²ŸÇv¤ãc%]0éü®Ó ˜CU©ÈƒêøyÀmt¶h2_S®2ø-z‚¥Aw,$D_¯ÄíR4jðBjN’yÓôô!æÀ/ù¥øc8¿†Ö¬ë\; )J ˜_µ:®ÉÕ»•Y^ÈMµleHò_7F%ÛåÇõ€Á¯âʧ ˆÇ› \…ÜÙõMÌé5]~ÞÜA"úRÆ/ä{jgN§Åj–’ ¸v›»ãkÞ¢7à Å&ähúwîú†ç ´l[ ‰­@PaL¯[Nž¹hиšÒ'a›wˆ˜·í³Ë||ñÛPÎ;åÌ ˜¸m*öl­bB¤ÕŽÊ}¢.ÁgË?€Ù±Æú÷WA>s_iÒ’³uËwÉôÃñ¾bÜi+a„ÆWkã%¦²ê™ u÷L %LH#3ø¤™ÂP“Ú)àáËÊ%Y¢¡„§f|r¾1–åÌ/¿¨v9yïİöNkVÙà|Ey@Ñ´§ªŠÇ.w´6SBü‡íÓNØh/š“ 5_^—ßG-ÁK@y Ô0tõ4~·Ëø © ¬d2·l˜“[L×o [Žçô˜©k®úlÇpfïxHCO7蹯a³äO•j[(Fîk½Nÿ­’ò}™|DögD xi¨ÜSg˜´xyn*YkN'^‹½®¶Á7FªÍ&p¸‡;ÛV=OâùUüsŠ0à{( ƘÁ3Ë Ÿ½‹žP¿E¹n‹Ï’¡-Ÿ­ +¥×r4> ,¼§žDZöƒ] à܃Ìý&Ù s.ûxqÑ,›0‡h˜$Ò[THc~@Ÿ­µ ø¾ÏŽÞZÔf¾¬Fg$óÈ.×8™t!‹X Û]³ØŠÁŒ3[Ç»ôï`«è+û—Æ pÚÐË9-êˆö§<² Q »¾~9s~ržzš«’¢*lL8Sɤ${,oÿæÜéÈ?Yƒù Z§µe}ßbR ûè& s¡+$zÜ·j¿SÒF<é¢èHoÃHÝ3|>"my®EûQâ»ËJÓžÿÀbèQñí‚f ÿ½à]¢™rÒ&0UGçŒéð&Èõ×ÂW²Æ“éIx×£?¾˜‚˜sÔ¬Ïþ`8Nk GV¿4»­_LNÈŒaJ£•Gkû"óÙ:ïxŽÖXf޽ÉÏíI7”§ÂÇöQ3ŒSˆÀt³ŸFŸ%£b]¦·„?²/¿”+Ú(ÓÀkïE_WáýXÍíômõõ5@g·[Hâ¾ãIÓÓ¦ ³óc÷Âû>¼p_Êk$ÊE&Ç1\ƒf» ys˜Dú“»Öïû0KvÖ~è ¬gŽâÖé9vrŸ“é»ZZ#Ò¨_KV#¬g¥ÍjXQy²¤&$OØeKQõB¶˜ÌŸåN-õl‰>RªÆMD܆\ŒÉ"°µ:)|#®8½÷@DÑ·ó÷“Ïj?£sà˾R)h7~ßÇVd¯šÈs x~ýÆRaLÉ+ÑÔfˆ}‡ô‡¥)àñÄç“A—yÏ\ÍT«‚3%ï#ž1*¸qXæ}îºãÕ/)%øx& ‹è6FWèó8eÏÔzk=Yßœ=GH£Î/i!{´ÈØií3:sa@OØñ´°ª$¥­–Ö@Æ)o¡×$³æCæ¢@·é‹ŒýtuÍSürš>s…/5¸ë>s»0æE¸¹»|nnŸ”o£¥1\Ðì˜B‹dÆÉ(/‹¥÷Ž-R0X¬qµãX‡öWv‹‹«ÿ¹Çjõj¾à"q’üfæ~å—{0æÜºÏ:"Ý廀Z¼„Xú|‹ñäöŽOö³‡N§hÐâqIk’ÈV'NÏ*Èç$Xƒ*?E­Q¨Û†Øv×x-üW]Êíï»odÖúñ»Äi¹´Š—·9ü=Фò–ÎKÎì_và?js¹ØäÙ¼I¦Q´ÊF¨’>Ä»:DåB…á½WÿxÙ( E€f»QÀýæn¶=ìg'r2IXàÀ ¾l‚ ’¢nNB‘wYé>¤-à­îòℬ) ôFÜúòþÀ£q§¡ÀÀL ¨ /ÛÝRœN² ª»…Y­yÁ¨ÅrÁ²JÀê² U›±tœWŠTm7÷÷/¦~R¢Ö.B¹òh«nTb^—HßoÒÓ’Xœ•Ï. ®!¸×ãÙRd,έ¨Šïpß«ü…Ì0¼ªÚyûsX®ˆÄ)ŒTZ A–-"ûŽ{Eðœ±QoöË|ÐÎÄ|ØgQëžã a.ÑÛ¢ÏDî‘`Ñ>c³þÍæ»‡Ÿ¸qR¤ÔP²Øâ»3ˇc£ü¯×êMµéë<ñÙ…)5JKX°¬)³”Ûå—çÊT¥ç•©Î>8zº6Ô•ç! ŒõÅ;½¼V —H4~S³|i¥Lr½ŽµÔE Gýdú~é²ï¤P£Ä ¶T2(þ5 .›84Ì®ÕÇàITè0:­éHÃ;þ òÕ:ÙZ»«Îìa=þ1êJ/õéá©•ä%†%þ$oh®æU™ÝbÒ˜•&l)0Vâ(ý˜b¡ ‡ ŠhŸô¹ÔÛ¸UÙeòhÈ,¢b÷±Ût^øn¼#¥tå“àXpb2Ñ÷U¼Í6šKXªcXQìEÕ°ÕÐÆg†¯“ÅÒ“ù8ÝÈ5É[Wh$9×Ýúnù… ,>¡ÒÚÝ#ÕÄÒuO oV/¬b³Ãî‡#»­Ks±9«~zAbÿîÛêöè¢ÓØ'K•¶JJ²}¢Ï?àí_‚®Ãh:3zŒ«·_‚nˆ}~íCñ<á5¤ïVU(Zr·Èj¶U_áýΕØ95þâ3RÒ¬Qo45jà™Ñ XüÉ À”÷)ŸjÔ”pûåQïÚ׆b2ËãF1ï r³Á¥ŽëŽíÉFlÿŒ P¢à‡±l½õC½IhxÉ}aê¡A`Cr£ì-£Ð~¹ÉdN›î٪ĪŒ–Ïù:Ö¾Êóéý·ÚÌVp¾€³èG£ïÐãG^‚mH¬…o/W¤3xàø—Ó¡òTÏ“];Fy¬A:ošsÕ5O¡³¨:ÇÍyJ-;؀Ĥհ…øßÀ?ã±ØÜû̳¢Îf¸< ¢9ça2‚R°Ò”ßëvðØä¨‘3½ËìbÂ?60¼Lñ@¶ë}„åÜЄ~ûÎos1ˆò*ªAa8ða}§2ˆÞáÕbüÆœc±ˆ ÿô4] Ãøe–~Õñùt.¶û|:Oèç:DGݵ=ãÄà*:æýF À5}Ç{þŲëíöÉŽa¥×o&q‘áŠ]²3Áþ!ÙTÝvq9½Õ Ùüý™™ÅÒaÓЛR;|°_ëèù7ªo*:¾ˆøw8ýר{Fƒ’…Ò·æŽ;ñYøÕ3½!Ÿtè?%²”ŽÕ†JÓ[eTUii¦CI¡Už=WcÆéî?À^*_¡?$!5Ñ{4½ÁÜöiM¨a”™Ž7Íä=gÑæ†û¶ÃäQ]TGÉ£QÎaZšÇ<áh08I!‰D~¢z˲ؗ·þ2³lÒØÄÂÝ ëiÎXkŽ i›§ÀH¨2~ˆÇ¯À¹ªjB½€­«_–ø>ôê@ç­QójÊ0^©¿ÚU¦n öiV\š¯ä;†ˆN޵ìo+—+ºI-)fÔÉ& J{_÷óJ"EعYcQ¯Í©»Ødó¸|Ï]r‘nŸÉ&K’aåüà䷇à ^Ô²¶Ê*¥‚Û"%‚ýëÎïÓ®Z°0Ætmàç°(gž½úË#ЉÓÒ]– ¾ÍE€gÃcÈ¿U‘@}ÚG•\Ê ¿——¡q"Èv9x™Éîç¹ôâ{‘ÞoŽkû˜ÁÓˆÇÖëP{41Xf6|H9¾²5†{=%éV*…m©æCدÂË´c‘FUÉ\.ŠM.Úê.Åb™ÊËpˆ<´‡uþ¨>.ðb¸…&W«fiSÙ!·ÿIA!þ6á(u§¥Ÿ‹«vêÛÚ ~â–IJÒ³P‰Œ:vÀ5ß-[û·Y²¼-;×…ûs«¹=»m÷ çQʦ1¶vd-{Y(Íà(±ÉÀ’HtW$¼*ÒsýxCšæ:õý=gtž©u¬îO«­c€’H‹`6í¨ZÜà*Ø×ý2Q@S5eÚå‹&Uaù&wb…o¤›,~´ž ÔrÑtâ¥ó=ë–vºuuÚ„0g”Ï~Íñ†cŸU·~ªTÕ¦ÅHŒ±¡7|¹ï=šH C뿤Ú=@ˆÓU{ë1W‚aæ’[Í/õ‚;ñ¹¯mmkIÓЋýB$É3žêËÌŽ’#÷•iˆè0hr±hX9ÐÈ>mT¾¤kÁÉt?Ÿ‡ÄÿKLš•1ÅY;™çzÕ¨Îz Y¥e+¹d ÕO²ý­ÒûñýÛm£O®Ñ7Ø ]ôoi²ª#ɶ'ƒ×ycÏ6ŒW0 C^2dŸæZD÷êc“qävZFäQl=÷ã)!1‡ùû¸SñúE Ëj“¹Oé ‡8Fš kÄZmà³®dIXà Œk¸R0Cã.r>y`›j7Ñ7¿\JJV½Y3 ÜxÉ„±oäÇíoòLif ¡­z›Ô2/ôXÅȘ`^3ÆUïªã„pïó±§Á·åŽf ånO}ïx’N5Öý±•U‘!ìOgòó^K–øí²š°ª—ÕØýåóQ’ƒŽÈ .‘î£òåZv+jÌ ÷,AüƒìF•ë¨ç¸™(+«¥$¯ª¶`­Ò(û3¸HýQo‡k\y蘡8ìûêäÊh6OB¾ý‚¹ø,wJ"HUy×Ýæ†bÉðdžì ‘ ϪAk —þ’ìgÑl²T"&+_ߨsKϦ<¤ bx­¨äƒÉþ5ÏæOÅ >*ðîÌå75üžÀç;ù|ÉIÅŒ’_Ä`óœ9½ÁVóòýVCí~#3ŠúŽn¬m·]€!ÎHQJîÇ“"¶LVŠ9Š;hÃÖ¼Ä#ï~^¤œ¤ r¶hæÔGÜi"÷;_ó(ؙ̓8Býƒ«Š:N;n}éq½÷“ä“FLÄ |/m_ôšýœ©q|#› à…²a4gÙZÎÀ“±{ÊMކ¨w ªï¶´õÊ4pêZªÏ/Ñðtú€ÄÝË#»÷P¸x쨰eí»ä¹kA’'öY¶aoÛ[VúßafØt5ûS0¼mzëqš íØw)&ìÜÁ+Ž„ Í ¯U+]‹ð¶7À«ëFì#6lúË5X¾:jèóš,ÊXÖÊÈ"¦ÖÜ»|^9„lÛhxmŸX+õ/CÖ8ã ÿ¦pâyòqGîoP±âì^KHŒýß)”›ãÜ ¾ãš4Õ( Ül4»¼¨¹q(çV½£D¿3^âfn°Uiq¥ã–íºžÿìîMŽŸ'éo•} :†¢hµîÞÚ+Á9•ÍT8/’¼'¶ivå{A–GºTëþ-Ð@áÝM>?A€/q¦ì W’ßshe½†v8Ð1ÔÅ@îÓ¶þí#v&bë‡ÑoŸØªñt±»™!„ﺌhŸ5seQI`iºcu5× ³ ,û#hg‰NTd&"[¯U…?ôœ¥õ쇙ëÌž¯L …P±y±¸•?Û“R*æÛ:£ÕwCÅWkZ7VÀ•ušp•…Íé¹cŽ'Mx¯˜±N©³ ª‹sEÆÙkË2 ,Œ€Œ|Ú>«WÊJéíF™]¼Í”-çê‡q™Zz”½;ŠRyQ„ªvŸ*×só MÍ1™þøD{¦'7·€KŠø°÷Ô¶×¶;ºšÍ5´ƒ¾Ý}ñ ÏøÛ^L¾Ó÷æ&2d´ÔÅ%¥‡¥}êQ×OÇ”©¬±8 ~µì…¦‹N¦|N!î¶Þ쌂fNúõ%‹÷-5•xj_ñÒîáKšôZÏâ¡UèTGòy@>ÞŸêÂLn¯‚ ±¶«­£Ô$Ey"–ܱRÑÒzý¡Hè¶n&vXÑ>î,‡†ù|aö*e‚ ò‹Õ\krÓZé6=¶¾äRŒ4}d/Ü#4»b‰Ó=½NìðJV’À^ì-‘ ª©­èW߰ɧ×ðm~QŠÙɉ \Tã$ò‡. ‹ý~Õ}æxcØÇš_>ÖÈéßøU§AðÄ嘪üç{|OöÛEÍú£T C#AÇWË ¢úQùÕ¾-!ÃeÐré8ÔÈ€ 6Ò§ËÓˆ#x:ÄwY ;O²v9žŠÙv^–Èèâžýy3·WÙÆ­´Ÿ7ȇDŒ) µ2ñ3Ô[s|]A"žžª4c(½·¹é¨-‡1Ašäl ÜÑg]uØM‡-ì¼¥ ¡Î³fã¸$³y¤û¾rT*œ×0wUž?iˆ– òŠC°l¬]]ÖÁÅŸoÚx*EÔàUe”-¦­„¡¶êýF¹y>饦b5lÅ/úÀZ+™Üö³ ÁãÄà +.Žgd¨¿áçìTÈä%œ\îGwo™Öå®úÈï%›oÓ)¡èƒÌCÓrrB!(…3…ŠØÅ3ù6Ò-«ÅÏã½Èb eús¥«:Î( 1êà‚BòŠî#u+2 ú:±|Eµ)àüï“•Š š\:hŠˆ!uTN\ëÓTn£&)”!`ð_xDúßâá w/´mùr7:‡º(31jCÿ`R?o3‚¤˜†ŸÆÞuN( ì—1,üøµø„µ¼^DÙr8É¥À%†Ñšìvíå†üS7ê±8B"íl”ï ps–î},Ù½uY7ñÔ{<ϱsh”S¸_d œNnh=òøÏyù¥·¢›ŽžÛüÇ3>K¤Š„YuA§µ?„Vš)Ö-Pp‘•õåg,2»ò`.”™»újÏ´äÁdƒ›6ùÐH_Ž3šáËÇœ­qŸÄݸüƘ¯P­Î5LpôÓ 9süU'ù„K:d R©aq¤•¬$ϱ‰yxNûqr!Oï½×â=Ë ¬vøöºõù4v‚áï>Åy½Q³Õ×l8Ðp²h"b7Â?ÒÜõÈKNí¼çv#¢ƒXnïÁv!¤ZB¨\!+÷ ¨I䛣‹+@uNªÀëð¼‡à¾“Oæ“%7«]M£óå{Ř„¯„¤Õt=JÌ7Ô fÉ‹dk–Ò¸JÈÊ÷öø†ŠQn±Å(žÚì=X0,*æ_'™ŽLðû•S}É<…W$ÚEYžÕÕ?b޳ãk2çBŒmº]‹Â­O'¤“3ðПӽ1ßbæ×÷Ç]ØÚð™Š÷§`œ<+HK‰óÙ·`ùhi>jS†–?D~êw.ú`LM;c«†é÷–ÿð™lî+®ÿÕáh:OCwïOüPT(oIœ u/­1½ •‘}F‚ §à”áOÍ'q9ÑdPÇÇœôμÄdX·W,ï‚ÒÂàm–*}FÕ ƒkƒQ™AޤüQî눺C£0+«ÖuzˆÄ÷¢}[Y³ó6æÆ?ùz¶Å­o"Ažò÷×›0ëè´*YwB£žÉª@8SÙÁûÙ,»­þ˜KâÇ„Ž|D4B%Öx™ƒÖõjѳNJúÂ-}69ðÓ¥?xο|Îä ¾DGcn)jVs‚*þJ/¢á[uȘ>Š}Ѷ9¿¢Y#‘µ§•9)ûõé»ÔSZÌ Lb˜·ôôÁ§He>Ž…Ù“«çRD«î‘O”Ù|Û)´¢…ÖxØêzµö,›~"Rþa:Fʸ­/£þšÓ”ß\ß«¤)œüàZT Ho{³”f¢(-9¾ÝürâML?'‘¿]Å0Eˆ¦¹MH¸bºËÒ}¬…†j7¬!‰•¤-Z…ƒ{¼™J¯qÛ³‹" a—ŒX3d„,m÷µ úM©ªº WÔ¦¤öþÝ@î›,uDÁI*6–HÚÏØ{ ìim´Ó£éhˆ4e‹E×1«U¥8¿¸ónåÏä¬I&EOÛ”@¨Šu ùümž=íʪDæ¥SFØÖÂQÙûn+Èhß—2—Bm ß­cÓô…3^¶$üÒ›ÑÌŸÛ%Ôñ y] ~ÿî(å‡K~©ÒÿÌ>œ{6Å—±BØ–òéÀ÷Ç%³ŸÅ½Ã¶O]‹­'1¨q!n87oÏF̧§¥ H(¬SœF0ÈR|k¯›”5t㈾.¡F‹~§îÀ–5ÀéfK¼Øžs—¾*[OïD‡ 7U»cV€¸‡åMšûDßÔ¤¹€meÖ(…2–jƒÌôÛ¾Þ#h¸Æ_~ò¡^ ä“ ÇRòÓR¤¤‚ÎÍ9å¬ü¾ÑÑÒÁµs¬cŒÎF辸v-á÷›Y'ßgNùŒlQ5ÉkÇ V Í3w“aœmK‰„Ñ”Ë\Ë"}ùf‚zÙQ"?ºß>|JCx?tӤ倈¾ⱜ¦}.Å}šÂ¥f9ÛY¡ŒuG³øƒÝ›Ä§ß­*…Cÿ‰•Ü}P&´ãâÁÂúºEeOoœÑ3p°å½‘EëïõBBYÊŸ[£u›ø æž®ÖÉÕJq ¹\UvòÍr}[•Bˆ;ñFÿçw^Ã¥Á#DMÔ¾y9ZG& ˆâž\\†mZEL¾v;JÖbË5l?Ëû•b..HpEo# q²àV¢aÛ泉)ÊÉbª°t‘¼²,<^žvJ"ëÆ· ¨+ b$ªXìg ¸8h‡ƒ¢ò³ánÕ˜&¦5áfØ$"B‚Q©¯ÍÄ$À ´êaªÂ÷AÒ±égEY5fJ Õt!>è¡ ‡¢-[Àò×J"Ýèùòà¶æI·Íƒ¹fœ‡'.¶¡¦ÄìrÊP­ß1¢$wW\Æ0'~ÕÏJ§ë7L᱙̬þôöˆŸo´ëeóò—œzåÈ—–¦Õº“¶¹óèEù4Œyt‹ƒ\4*š’ÖŸH½Û"õÑñAÃ]S©»êáº2 L?iH­s>´È’¬G‰n _ ê`MÔ×÷-c ³ð$Þ« LQDzä#|¿ˆ{Ì4³Ü_Þ5˜ë»Í†ÕÌ`1?zßV’ÕÊÑqK暘Ü8AÁÞM݆ñÉ#ó¥ÂÚVº²ìô¨¨0Oo½ƒM’¼2† u@➣­ œË¨±Kê¶´T ¼h­#ôu66É_‚×q¼á©°ÁØmã´ŷ»—Rb{­KÀÏH¢ÜŒ‹¾¶‹wÚïêŽëÉ熯¨ŽePe„…Zà–åAaÆü§4×§$Áuphh°Ü£ÐQøMê‚X‚ôŠd‹Õöi:„‹úùvG*íÜ‹cˆÓ ‚¥Š8ôÜ2ðƒ#TÛwvØ"ýF ñ!U#ãqíIä­f—iÎßU²É]SdNªIµŠl"¨ÇWŽ›Ìñ/û±‰ó&r~Ÿ9±eV¼§>¿í ‡Uqõ0šr&ߢæœõÏ4™†Q§lë :1A$ÐôMCùè8ô7Ø[ì;DátÃVÄB‡ïe}áÁ.šÕµÛÑ HÇ=--è—ï,®¾»nrWWœÊ„ÓxëÃÌÇ’´ƒí'Ùcµæµí~È/á|ü£dÚ´K€ !ß+ w8êPSÏÑ€ÃÈ)åý4`ú´ endstream endobj 152 0 obj << /Type /FontDescriptor /FontName /MWVBXV+CMTI12 /Flags 4 /FontBBox [-36 -251 1103 750] /Ascent 694 /CapHeight 683 /Descent -194 /ItalicAngle -14 /StemV 63 /XHeight 431 /CharSet (/F/L/T/a/b/c/comma/d/e/f/g/h/hyphen/i/l/m/n/o/p/period/r/s/t/u/v/w/x/y) /FontFile 151 0 R >> endobj 153 0 obj << /Length1 2416 /Length2 10203 /Length3 0 /Length 11591 /Filter /FlateDecode >> stream xÚ¶Tü6L§4Ò1@ºF#ÝÝ]ÒFlÀFwH*)"R" R’Ò©4Ò) ðÎ'Ôçÿ}ç¼ïáØu÷uÇo03èèsËÚCmAJPœ›(×40àã<@ ?3³î úWŽÃlò„¡±?,ä=A6p„LÁŽ0Ô„Bj^®>Ÿ°Ÿˆàþkõ(Øxƒíš<5(Ãa–‡ºûy‚àˆ<ÿ~°Ù±ø>áúË ëòÛÙ@š6p'"£+@jÁýþ‚M wãåõññá±qƒñ@=¥Ø¹>`¸@yzƒì?)´lÜ@ÿPãÁa8a+ô¡pO!pÛ 0„‹Ää @dè«j´ÝA¿5þ6àüÓ߯pÿxÿ †üålcgus·ø!ް+ ­¤Á÷…sl ö? m\aP„¿· ØÕÆaðWé6%Y]€ ‚á?ü`vž`w8ŒvýÉ‘÷gD›!öòP77ÃùYŸØd‡è»ï?Ãu@} ÿ"0ÄÞá' {/w^CØÃ ¤ªð B„ó[æ‚„€@ ¨€äùÚ9ñþL`àçúKÉ÷SŒààu8 h€‚À Äœ˜7÷ôü©ø/Âáã؃íà[#‚ó;:B rø#æï ö˜ëÇþüùõébÃì¡W¿ßæ˜WV[IAS™óÊ¿”rrP_@7€›_@ Ä/~(úo”_üÿåþ—TÇüOmÀßñT!PÀÿ) z÷/ ïö‚ퟣaü7ƒ±Í Ûïå· í¿øþŸOà/—ÿ¿Íÿåÿºüÿ[‘’—«ë_z¶¿ þ?z7°«ß?ˆmö‚#.CЏÈÿšƒþ>gM=ØËíµªpÄ…ÈB]5 Sû‚ìuÀp;§¿6æß1 ¢»‚! ( üó½póÿ£Cœœ âM!†õ— „¸¨ÿfT„ØAíž¿0ÀÆÓÓÆˆØ/~!!@âFíA¾­6€—…#\vA¨'ÎÏ‘ !¶é§èo$ à•ûD¼ò¿‘(€Wá7zàUü…D€^¥ßˆÀ«ò xU#DßSëEDÑùQô~#DýßHÀkð!8þFˆ˜&¿ÐC›_ˆ‘ÞfFtÜÕôK.ÈÿSŒ:æò›""‰ üw$D\Û߈h:]⸞Nâ)¿!‰íÈÊñL^8ž *;ó²Zjв,ŸdnªÀkö_L;C­ƒw ÆocC.tƒ¹$;zÎÚyîÍSÕ4«íž¶Å¢2h5\ç|©~aRE=J±€íîäïaæ\D’kQ'ïU‰¢=^°–°ãDÚg±Jòö_‰;àqXT3ÚÊd°n<Ÿ¾—ªf’} Î§ƒ /ö<}éé:cS ¿üp›@Ìì‚õEsÉ$þ¸Ý )öV›æÉæÛg%Fžç‹^XÓT¹Íü‚¨ËÙ°Y<C5ÃÎê½Å|.l ²á ƒø„èã Œ°ó¾\PùÎ2£X¯Dy½£doK’Ë•Q°P%îëÑ÷üüZí‘ÇÇeïÝ3NnåuƉû•W1ÚÏy¯úÜ{¿ä…YÐØíM 9|N•2Ô–óÎeELC¨°¦wsÿ½\†R£|÷nW>ós=éðŽIŽoöÙ¼K¼Ká ¬í9}og7÷%j‡ª^¹‡Íèå>SmóOÜ~/[RQËúñÜoÐø™c-l¹jѦ2WF¸k‰ ¦°‘F˜e8f^z!Ÿ~â¤~–.ݬ ©¶…úDB0e€Ù4?Kº†ÛûÅÖÙ‹i=—¬àKŸý󳚣â¡Våaï‡ÒÊ!íŸtÃÈ+H¤iŠ5˜‰¢3Ü…,#É¡ÖÇìüRùÚ+"ÃãY N _zMmÐQK$!âíg{¸±#é|ÎK¤h©â˜È¾0¯`]:©d<Œ>¢ÆÂZ=*™¿½1¼;Ÿq“®zXßç¨Yþ>]8è@2)F¢ùxþ­¸Ø‹qÿ«œ”+‡ûE)LÙ4š½KCy:÷½LÖãQô‘š”Áñ¢€*ãøWÕ'ßÓwºõ¾–2(¨à¸L8âRlnàŠ4&¼|å–EÔS¯  Ä‘©AÚýÒ)Ùëä´CÞ¿ˆ®Œž6ä¬gm}ƒlöN˾ªüŒzýðñ~?Xɉpž“lè¸×VaßFbì U²ïù]"?Â2L#0&ãô-òx‚x";VÑ#ÿØ/Aú‚Xdævá*öª)˜(sŒûêºç¿s},&}°kÜW+"l ó 2<ž«3¶ß™: ú–СÂp¤ì]WLüý¥7t䥚Û“L%c›kÇ4 j¤ó;œ'Ö=óó0_ö•T\ÖiÓÔ›ù1 h®Me”UẎTº§¥TGòéš#Uü»Ž®?ºaË•Ø'¬‡ÏÝݤ¢¾Ð7mŸù¸d¯K§£N'‰|óiñË,ÔÖÌö¾f¼ZË…7«ŒLÎÇ›T)U‡‰”.íR‰¼çsœk{A±Ö‹–ÀIâÑGq`!•Ì®[ŘYø!>k›O«;@!ÁÉ¡û?rœXàg§'¥/¬û‹·T/jt‡H‘ p®„B¯ÝÖIÞŦ¢³ ~iºÂ'è8µÉ*$E7 RÚI™)V?€<{lJGWhYž>ˆå3ÅFOŸ'Ÿ´Æ¶mÈÏ eÅ„|eBî#]´õÿ°[—ZeM8ª–ù¨/Šrÿq‘Š={åÛ}«´îáû„Æ®ñ4âA/ãë<˜$ö?WšÓ©–Ó51¨cÌÐ$¶u)ët <›¸NÔ²`µ¢³P[§½æ03ÝÅ|Ïu~Mª©À ¹øûÆ:pU’‡gŸÔ‚ÛÐ!ÒYU]~;vûЉ>Dyr”¤gÄè#ú)ð¾åäê–ÎŒ™Nºeu wçÛj‡v¶r|ºlŒnFªz7Å`—.ëì(Wúsߤ3ÊŽ ÇÜ­2ð¹¾TÈ@´ÛÕD}ß2JT¢óhõ²§ºûqäFa;”ŒàôÕÕÜú¤–õ´ê^,–RmhüÊÝ,q`µT|3!¸jF±™y’¬›A³z½+"©r–ìò.ZTÔ^%åø¡”ð¦Ÿ`>`ú£Ã {©ÖÓ3-ÂÜâ™àñI_ª›äÚ‹ÐÏ õœ ßü´å¢Ñf<º˜KÙJ°9ÕÄu¥¯_2UØÌ°¼Ær}¾Æ´ÌÐFO¹p¾M½cXΦ##úö„}–V#ZÞ ±èÂÿ’"Z;ìÌ‘•êåÔcÓ³îø¤•kD’/Ù|åÌ«…)E¾=HÙf€ðʾVQ7†©»oWºÔßG0ûÌc÷~œÀÎÇý Ÿ«÷sׅÔa‡‘8XX쾋}ºÏEö²¶/œk4ò/I^ï:¿Ö"gç0û”X†oISªðÉèYtäbþ±ò£#’i~}Í⌰­½oGI˜²×{¬më[ÇZΈ41Ú 22©ùÕÆ†ãqåy.s:I<ˆã6Çz«¡¼<Ïu!Ð~Ãñ‰ýänöG'ó™Isý`E  ·@ õënq+Ùy­P{‰ØRFFçÀÛµ¯bb]ìÃIƒÕ†š6Ê\|µìpbäÓ:–žAëX¶P«vÏÓçbJBvC4¢«ÇéŠñǤٴñÑÛ*}fpÿÝâ–fµk•œ†Y[/ 1&hSè²Â…é´ Î_EL©EÛœ<ú g¡ãhB2>$Ðð=èåþ¶vÔHqC! ¯Ÿ¼[°Ž&òÕîKéÒÛ{ú·••öŽÌãa•!Ïçwðöbä6ÑŽ.Ù•LRÚ3nUJêî±Ö/G¼§aÓfȯ£©f_~ÿQ×8:oUòTŒŽ ° %ÉÕiSý¾UKwèjû¥O(ÔçhÒÔ{‘òÙñ]’­ß»J©ÐPUyo›ÊiÁ±‡ØhŒ±ÓoùûŒªê¡õ5ŸFm˃89šHÖÉfð$ÝÓü>;y¶ÐÁ5eÐUfÓ»U=¢ÇT°{2Ò?ǶJΩ–kp=„-œŠ™OÏuBšŽfé .•'¬¥EAŠ„¬èú —ÇÅ™æ„ÀuƒC±cüND“}& Ñ—_ Þ¡=9:¦³€ß³WÏ]%Î-²'¯‡ìžË²Ðëá852­HÂQ6R©Êñ;Þâ¿ÐÚí½™nž:ë^V@Ûœ9d»•×öÙÍßb‡WÛñªt2JãÖ™JÇpmÙ¢V‰ÝI|óPXº2Iô ¶U’3îx•Mè¼N»KDÒCº‘ª6_Õ9M€~ɲ–´v…–tÂrMóŽË™© 0Rš"2“ÁŸ£Ï ¤`"zöu¼¢ò,]„£‘Öæœñ{’[ÀYqMq±HGÏqœ,èø³¦W¹WQöªC¸ÄÕ¬ u܈ޓ¤Ãã ÉËnÚ¼‹…è ôè{LMþÚ5óÅ!’È]Ï™ÙêRç8+pÞ7èḛ…¾›s†wG Õ5£“_„íæ¥¿1ÂÒõõ¬"qç q¼·™f{skí^ ¿9üØñSWñ€²|<Æ?Æ4ö·éh[µGk“ÈJ€G"éÔÚç-жÆçá‹í%/ nôÓåÊÚÂ'üƒ‚«G3YªjGú¢»˜‚®3Ë‹-|¿â}“óÝ¿ÿ•€Õ%ôÐòEw0!Ç8úZŸr=•Ñ¿UOßßë±`Ïô`½æÞW}\R]ðDBå ¾ UIÖg2?`lr±*1ÔO0‹¸C¯L1ÔÊ<¼.­#:ÉŠ¯â½{{:±¨J-”Åï3Jƒ¸úmˆU…q¬gÕñKÕÓ,Ú\ŸÐê©¡}%ý¿ %IVMˆâŠÊ±a21×ÁåÛ)ÕN¸òæ'TÛrZ@j9Šv9­2…á‚Ñq}—‹jAeîggä“_NM-/͵fUÏÉŽ™V•¶°ŽŠÒß;ŸH“ï¡àè‘­ØÖûîá~ 2Sަ”+á˜=IgÏ…é‚è$Ôà?vezÏOnZǦ7ê¡ÛÍàH½•½‚é}…ÒËôݘGå&|—ÌrVÕ}Zc»¾ïW¼sÝC¾f¢ëÖ’D^T÷Êž©cE¿hUžoSSu{EØ4Z‚áB@Æ?>¬ß„V£n™ÔF°1u2,Ä|ïZI ³0çU(ÑÞ9Óñx¿µ4(}*oºØµ¡EòŠ³ç‰‹¬Ñ[lΦKòC»8òVžØ¦RÞ—Óa¡³îNN, wôáyQÉ"Ø:€#¹ ÷étLç@ räH¦núˆ@Ù"ÀòÚ|¶kQ.äqá EDž 3(N©F[hrÈ Œ£CšûÍÔ8ïË>Ù{ª¨‰Ÿu[ •Ëx°áíÈþÆè6±.¬ˆA¦ ÖéÄ ¡ô­-‹¨TÔnìîÁ1¥‹z,PtPw†«Žyä+ša½ÓaŸÄýB›„öE¸ú6Õæë\ä¶±CŽ¡õè„âÛ&Å>ðØ‘&šØrCzeè#ЇÀã7ì¯) ê„ ‡Ùr[³y<¬,T˜q•X´ªËÐ\àg#O'IÑM{À«ÒʬVUÙ(ÝV-¹ènì¾ã9ØŽF©%uo$Ðdé87$ë£NÇ\HèJªìò:³H†°÷nVø³Kƒô±|(àSWMB™©¹ß]{ÑQ1¤Jh©]8HôŸW¡ª÷ÌÉy¦"™y›÷šÏhz4Û9øt¾\dfL–¬Øë3blç¼hys⓸¢FÇ4ãïŠù©6 ›·÷N oj`µ™Øîh¬›;üÍéëÒsÁ%¥Kú˜œ¼:r‡ßËG,K}X¤’%¯lfÞµt0š.ï1Í’•ý‘!üMyY}ºE›•–ñrÇ|ðîôí|Ïi ÎY«é»t´§èÙh4éw…ªpú '²¤õãÅrBüögGo*ñ¢¢kú®oLÔ÷GñvNÖò;\ô¸Ìç×_\$=Ý·§Ÿë¿3G[ZÿžýiH U¬äãr§¼™¤Ô¬ªÁšÖ²¯9dû†i”<ïïñbÞYÈ}døºjg¥µÎÄ…ÁŽÂAœ„°mˆÔ`íE†ý9Ö›«ãÀš]<;p'y¹ò|¶}äjÖ³÷iÂ:¹ŒÜÒB—±Ÿ¸-¬ãF?r>‰k¿®ýa„üŽñd”£ßÖ:ÝÇHå®H¡Ä´Ç¹bîxŽïw¯Ô:F%F«l…[&Õ’£çk uLö‡E¤B§¶í…’d½ø· ¤¸\iç^¨‹´jBÆÖáp=pÿÁQ™ŸÃ¥Ìºß}Ø–B)!Lz¤•k-9Æz›ZæÌ—ƒxm“™—«Éòà„ÊÄ1ö ¢û3Pkõ`EU!¨åª¯zídä¤MÑËÍ™@ÙgÉèq[\f©~ž÷Îä²-5L´äõ¬„-ý¹úÀå]¢æó9‹üú+E !kæ"ûÀ À%ÿH+6в»ô Sߺ]çq££µë[ ?HüúÆìTã^šÃÔX.ÚÒ4¿Þgn…÷·o8~ì÷«ÃTö2K5ûôvMùz®²WÕij6êÒôÂ]\8äÔUçÁGHê W¶‰ÝÌßCyï•ÞmŠö›SÂoÕ+'êõì üÓ¶B”> ß ùhÓºÒ›½ —·¯Êe¹êªkæîx"ÌåVy[Ï7“á‚ è¼Sâg šÏŽ1HÉüÒæ™]¢ÉP°”¼>t§Oä<ž™™·Ù½`ˆ\ÉYiv k%{šÖ ƒ6Dk¦! jrD½.%Ù¡år;øõö)èB‘úÎáQÏìè ‹s?‚Ü=£¶d?ÛñlØ·ð·qª¿?R;þ-6Я› 6A"›uŸköi¿Ë!™ÎîÓΕשúö~U·—ó[=­Ñû5xìË:(qÎLÈ ‚˜[Õv"üD* Š2‚"„°K­-®éׯ#­iX™‘å¶fŸ"a—Vïcû<ü»sËq¤,hKïðR´ç}ÉMéŒ|ØêoJÛ$`Vû’ÃNhÅÎ_ÆÛÐyC—Ÿ }Ã Ž¹!q+; ~()…y"íQK+éŽiP£CRT}šs7ë̲’†)³Ï¥©w?‘+9—â]ä·ˆX._ú¤å« •PŠï_A”Ø£vç.ê'ÂÂÏøÏyêzÁ¾&Yaæl& &CªBUX¦ãÄÏÛ3ùížÎ}Ë$ÄÖh›³lÊ<´ÄË¡K` ¤âyë9è¼^È&˜ß»à°Ìv(ïoIL‡Á©;P~”Ÿ¨¦|98ÀåÐ<€Óè1½À²å͸&G|”–éšÝö›½6·K€Œ¶E…µÀ¶رpøHŠ{ŸÍÒé+ GÌóÆ…´Þ E“˜ÔÝ M™[Ì-.ÞúS#Üòd2“Zì‹«7Ü*Îo¬i‰Ûï6êõ(Jw‰>¿}|>U²gÔ iA<Õ²P©åÓ@‹åN¼ÖU~Àug¦{ÀºøRÙNsßòüuùóÆ9e¨X>™d“pº‡€ª»UÛP¸¨pÊ“³YÀ÷#£ýÌíø}#ñ/:ë• –µÓŸõêìÙÏöW2VÜãq³ìaãâ‘›Èlac§|ßPzR³ÉÉ×-]oÂ&1_NÕª2Ô%ÑÒ ¶Å)*†¬¼s±ž !“ùøqƒð³¶“Ø“ Ü.v6mÓï;$M˜O;—WƒEöÈÅùgìN˜7ÔM±¼‰Î·´î¢C޽ŠÛ$1ÓðÈ'[Og¶”xpæÌo1ŒP¦ü îðc½6ªÈžÕð<Ô_C.:*±Â Ö‘Z–@`e’V—ÿbNÊÿˆNñša£‘ Q£a›;Ì  ^2}jÅh6J|Å{×,ãªS€Qðœå.üݲ‰qÏaC€cê7…4¤vfâ¶1BªÇµ+pzÌ[þuµçÆqÃjXR^ž,\Úœ;Áfd/}?¨\k(ÑGÂý9ƒ6(—ñ®Þ‰¬U=Cµ°Ö)æáŠô¤¢¯|ãZ×–ÂÑTMɇVîUÉC e3ã4?ô=Á‰q‚V)÷ŽßÚܳSna_p6­½§.cY^ðO´ð‹ò¸n)a®â4Y¸7‘×êÑ©µzé÷¾›h\Xx×éïz Þ„:gw”0»q¿Wa}@”ÏRÍãÒÛôjÖ'P¶*ÇDÁªY6œñQ>©a›÷úËÆ‹«‚T-Lè½Òž€]ì&Î CLFWÒÓwaRÍŽv6 ‰"K…ýv{§ìøëÞeï´Xb?ƒYÃFZW²Ÿï$?¬¿÷RüSsuH‚]¼ê71²ù¡'/¹?ôö F|Â8ë"aœ¯î÷E½ü>\ˬEùLYuÓ¯Í=ÏêÁÓ÷Ìæ‡íÜð4³ù'`ã3%«~ Y¤¤ l_2ü=‘±€ð;ä3£GŽêî3¦íè™òöæø¨bå_}p„¿w´n?úÔkYcMŒ^¡ÏØ৘"Æ~]1À÷Å=Ï—²Ü³&ljW´oN!h£X‡À”9AÃ;N‚íöAG~´  ÝØ†7È8Jê•¡Ö]0Æ€,Y”s6"pñâý,…:NÞ›.|QÖÙØzb#þ0³‰æúÌß{“×ü,ƒhýKá$h5뫟_(°+¸b‡áRÐ/„g˜œjEK2+Ã9Ëey‰"²„>#_õžYeïŲë6c÷ ö7f…ÍVr<2ÆPÅG×öðmq¼ÓµËs~™Ç„'7Ç©rô;Ÿþú‘ëtd¶&…‹ç›ë`rE/5$nn‘«öªIÁ‚ò¯Ä¥H϶ ˆ™D¹(E³P <š"-âg¦^€ÀÚ SæôìaRÈKÃ3‘{:ѽQ®GÍíÏT.³.áÂN´1Œ[7ãLÊ”b¶èWfüM £©ï?È2ä|1$ £^Bñ(ÊN³aÛûõàµIÈû€ô„2õ¤G1 ǯ*sB9 ÂñT ·§å·Gí­¾jØÀ¸¶hñ¤yÕkmó­©ùõe(aïÑ6V€•¥i}{^ 2Ë-Xò|ïOk²»–Ò7O{$Úý’pñ5Äq…rlàM2ͽ¯¦ÄB­~–Âi¶ÆÄžÙ?2]h!ª²|Ò7Îa6ö@?„’RØk'F½Ñ÷cJ# ôÎx 3Ç3ýÓ ©Ò³U©"»åfÎâ§Èdº*,(2¦9Ô“Ž­ÞKFns´>%^î~PG­ËS"ßÓí…Î`çôƒã¯¯ê#ºU× +ÞOG k`FU·Š# ߬H'$ï×µŒ“´†¸2@KøÅÜ’\ûf*üsìa'V}ÈK’É•Ððxfqãóã³2/ËÉîìQã[!ÎI €èœª½E =~Bò ¨b™ÃëX„€I”J{"]dãïÇÇö÷+Ñ}L{¹ÕX%Þì‘=\ë+©wmÜs dÕ )êƒè×4Üê6¨=¦¬Ùš¹ù¯öá½c]Q™Ò“â'7æ#[Ó8Š]©ž¯Wyw¸&‹¥¶Ë^툠RÁT[Ó:Û«(ÆŒH’BUã&%Ïð>¦+©1ê/ùøf‹â‡ïÍw´¢šÑCÉçêJMHÅK±Yã»ló!ÁÞh fÛçWšØ1qš{:*ß\U}Q€•óÛ¬Aª¹\=·ØûÑ ÖoÇ„Ÿùè%ã;DÞEð‡Á^;8òôJ`°Ôg7L3Õ›Öwá[*¿a(|ãh¦>®l^àøf•‡R€uRh½‡X¨•×isv[ú>®ÅœC£¢{’HôÕ²O$†Y2õ©¬úÈ—V­B¨ëFµ|óõïÑñOž²ªyº. q?<.¦ªŽŠIã8iÑÊ–…ÁŸöÓksYm>N_x³Ìì>n­¶×½°éäÇ(f–»Æ«Š™E ø†)rÚ SòýÆÒÈ%m9yMýJ¥óó8äñºäQ2H°3Ù+{Þœ£)l¦a¶s5Ò¶lÊòᄈfõ7Qíú)?®/ès¤–ÚÊJ‘¾ñ9ÊäF¬¶@Ú̵zµÒ sì+$í V¬ÎÜoiMø,†ê*o–Î~ˆÆÜ¸Úíöe®¦*¼–£3‹=\1Ê,ãDš’†U‹\]ª¼É™b'o«ÃY¦nâàXñ©à¥Ô_R [k”’˜4ìm×á~zàÌiÝ Ê»LQ¡÷é\_¼¥¯K*d}9tf\Ñ*Xm­±ä6c ¥Ÿvc(٨ƷŒ¹t·Šâ¸é@͘<*kž\×;¾Ð'·Ì€SXeŒÜ~¼Bϲñ±VîŽ(ógN®l¨›pß&éIÝ—z•eê._ŠÎÖ{ï·õˆ ‰K´­QI¥a?.!ÊKÎU0q¯Jq3Ÿøçy1~žµ$#°gáÄÖö•VÐ|!ŸÀÄ®©~«¼ÎóZÞ½e+ ”Co1å ¹:¯«ò|®vÐn`i¶Æøš„uF³±<€a¶Bµ½(Cß͈¦š·©¡·ì*¡¬Õ¯7?)Å1@Y~xÄÕ;[!úÊ7›Ú@tΩµBùé ç >›KÐS2=\ž¦׬ûJÂ:kÅ ™ŒÞ¸-?DˆÝ¦ú qޤ‚qgØ~÷@ã,ƒXxR>„ƒ¹ú ÊEýžXñ”hÆî²àX»i›ŽµO¿ç*²rÓÇÎP.*¤÷Ò¯ NŸµI4ñ߆è{ß×Aq°;Ýjæp’#||?äS:µ gºnBq ÛÛðaÑoþå% AúñàïøMqK<’ aS›œõH÷йÂ"mjˆ†ä¢ÌªÐ Ý€Oœ ¿Wäì]•—Jr$­/ó|¾5L6‰Ôydgd.”åá_véq…%«JÀÇÁZ[j‹*.ÁËJÜ-‹{Üu²#Þ O¶QzŸsú}ÝtÌ ¿»3Z‹#Uu^ñ§îR#wë>)¼üLÞ”@±1NDtýû¤“ú"’¼á4Fõg)hfœ ?¸·ë‘ °+ðÌŸ–%âlGëÔ⺔-£˜qëyîu ‹Œ ÖÑ»âÿ(¾Ý+ýÐàmÒiBüg~QÎBE¸N«xxŽc¦—¦¨¸+PÌTÀƒ#slì[à‡;´öŒ+9w¨4ÿi°ùBŸù@r¿Ö-Ù®XfTŸ ÷3úÃü ÃxT{LîbõâX@£S£-f ÿ}?aƒóKôŠÖÔJBQ?í!"š“&’„²„ õ~%·îíÐHÅzqçLiÊûO?ôô~;†âmeòæ%šg©¼7Õ~L|»‚‰×aÂBêÙ©ÖLr¶¸Ò* ÅêŒJ“#1ñн§¥J°@cpš‰Ø^Tp)LákÊ ƒÏäž]Å&,gx>sl Ï60e[¿éŠÜT¿ô)x=MÁRã¾âªÖ/–é¹Õ»+ò½n'YÒt‘ |Ö²T8¬°KîæûX’yéÔŽÎeRäÊ3IÁ`E¦juì8qX©H§=¡Cwuåûþ =wÓKéèbo½wù”ŽDÊϸA÷t*Ø[-f]pÈ ä}.­x˜„›ä±­°— ÝUðçß¶,˰ºfY WIi šhâ©ú:zæ}¬˜gkŒKñÎ}ÐÅ1@´9ìVŒ·þp¼Ÿ;•Ë}ªc`OzŸ=]LéEgàdQ”:ÖGÌðŒ9‘;|Ä*Û©­ŸŠÄTó»Û _ê›ßkÌÙ¸%̇/»”¤¡L¢ÇÜŽU!銷a¿ìœšÒÞ| ¦œnPSBí«}/­Ó¸ü"·®1¾H¹ÝVÝíUíéd~=eYÍwŽ‹}òK$ÑA%î•ô\ÿ{pGšu Êî…´t§<Üú ª³!GÜ’ò7®DCî.°ûè„W3Z¬ý“sB`}Õcã2 òÓiâ˜G)ãgªH_“鲞`8˜‰µï Û’¾‡¢VëÊž¨¦}š¢HxODåcÅ®SÕ&?ù”©äÚ+7†åµ½EJi}Â3–D€£AubùFIp1åÞcô3ú‘Í‘;*œô¥ :kµ`ž‘èÁ GÂ97¡gkoÔ¾´v©œ±cN2ê\œŸ–… y‘©FT¨·ûq «ßm™ hI¯ç—)h¼m¡Wì{=O6‰Š®“çy˜õÜ0Fu¾#눜T«EŒdq;s–ÖŸŸU(‡D&Dè:êùæ«ûA0i ¥u‹ æ#äø‰œÀWwDºn ýþ¸‘"¾.nsp®èOÛï6´æFýyõ8.‚“÷8ó³ŠÔ Ãܲ#ªÜç>´*‡a©t–^ùZtêÃDÂØ~"½p³&ÚÓ6n¹ªšv̾žI§2 aþ9™5/kš~vn³óÌ™4)Ã7vd…×o8–µZÍ_Wxqy™$óM÷x¨DBãF^æEwÃì?ÙîÐ|góD°—šiÖX Uz¾Ä[8é¹öò©~¦v\Ú:¹ŽNáH«ç´ÅýœMœH‹ìÞÕâÛ¼ÑçA¹–χ ðG;µÜQë0‘÷ ÿ]¾ endstream endobj 154 0 obj << /Type /FontDescriptor /FontName /AOFDMG+CMTT12 /Flags 4 /FontBBox [-1 -234 524 695] /Ascent 611 /CapHeight 611 /Descent -222 /ItalicAngle 0 /StemV 65 /XHeight 431 /CharSet (/A/B/C/D/E/F/H/I/L/N/P/R/S/T/U/X/a/asciitilde/asterisk/at/b/bracketleft/bracketright/c/colon/comma/d/dollar/e/eight/equal/f/five/four/g/h/hyphen/i/k/l/m/n/nine/o/one/p/parenleft/parenright/period/quotedbl/r/s/seven/six/slash/t/three/two/u/v/w/x/y/zero) /FontFile 153 0 R >> endobj 155 0 obj << /Length1 1384 /Length2 1126 /Length3 0 /Length 1972 /Filter /FlateDecode >> stream xÚSkTSWaPµR•* p\ ’0‘òŠ€‰‚…ËÍ ¹croH.!ˆ±¼|¢U`èP+*´(jéB¢D+2 J…¶S¥cE_ªVpnòpæGWÖ:¹ç;ßÞgûìÏe®x¥»¿”L„’ Ü¹l„„¡‘ÂàÕ\ ˆ'A<..«pJÇŸ1\¢¡Zƒ“+P QŠÆ‚PŠ&‹H„¥(×pó¹^|âó–Hªù ÕâR bƒ0’€†K ©JSãIrŠF?s\/–)ø+¡ÇPˆPJ•ôª+I ‡TÚ„L_9E©øNjj*Ujؤ:éon,ŠSr 5P­…R`”V J8N›áVÉqÍðáJRF¥¢jh@cÐÐa)„ª]X*á*H “…Ãiಹ£éF¢‰pÂŒb©T¡DN$®€ \ dS:ŠPBj$¢ IÇ£ZW ‰4ÁT> þ¥UŽhÔ`j\EiØ\aÔÉ1¦¡[LHI¥”†a¬/WCŒî}gÜC¯#ÈT"}<"à ©Ì(Gš¢âDxr áÑc K‚à!\®Ï"O“ÔarŽñ¢Ui*h:äaZ‹>]Eª€Œ–õ¸ ÒŒt ª…€R§@}úøƒ‰;— ¤8FD˜„Œ±ì4 eÃ{zÔ¸Hz¹1þF¿ÖÒÓ&% EÚÝôÜqpld°há8Ù£„€RÒÝéCÀðêx,ú‰ùF;ñ¶ &TŒâ#UŽËJÈHà5,†îâ[AÚ‘IaŽXÉ L¼aIÏ8Ì1KÄ!<£îŸ6†)äÿùÁ˜åOYâݪ) …‰Ã#ýU⊴º ®y—°[<€THß= ¥PÚ/þD’b´‰¸F€ë TŒS˜|x”L8¤216˜ÀH©ÑR¼ÅU«Ñ4Bϋҹ´÷¤PgUÀa$E‡U ¥2RÍ0> —j\ixázz5".ÃRÔjÚ_¦W¥+y»7™BÄím$¶$çï§sν¨ôwHu¿ß´˜èÓ‡ÌëÓþôÏBìŽÏ :å´®+-­$ù‚¯£ó{m¯¾ÖÖVž™õ)¾W×Ù{§Ðöú½¿ô j‘ƒeN»âí{÷iÖ&[{»Ýu'\½kìõçvºû·#ü`ÃÑò¸óµ¹e®Ù³ó½¿Ûˆv"’3ç£=njϺµëC¿T-B/´‰oÜ”Y"%-~¡=ËÔ=É¿äæÿ¶u˜s-(Ó1¬”ÕÈËŸîa,¿oe]/ât4ø†Ö˜Ë»ûý˜òŸ/¿ÅììE 75ůÛÀ% ·zc#Úu!梘ÿÆ.cà#2ª- ÏYF¿Ñ%ŠoM“Ùìîñ—É¥¢ÚÂy?—®[â_\[t¹Ó™8XVo¸ý`ß ›úØÈ?±-ß_@0–o}xÚi[–óÇÖ—ºÙšÆçg+½­¼ø]ÉÛù”#˜\Zá†Ûü>¸kûn’qã‡I ba¨°ÿÀPõ¡ÅSþ!éÎðmÒѪ¼Ýª8£Ú•YízŠiV-îž4u/Øwlà™ß£&â{èåÜѶ´BÒ¤¿"žU¹cÞüú!™Ѳe¿£6×Y63áè ˜o©s¶²9À*rì>&ºøoÛºù‹âcwþñ˜¹ý\¸~ý¡î¤x‚Àê¿ Ìž|g;ókFo{0çzV¶#vC˜Óo1s\“Y%Gk¶-›zñdmîÀ‡²‹Æ™ì7«ùæŽÐHïþûN†HïT³Ïn¦uÈŒ„<ÕVìê?3ä?3Áðªå^Üuó®Ú6Ãaú Ó™Ã±‹`Än 8‘l·íÖÍAwú•ã–—ã*v„G`LõkU‘°¤u‰0l¨uõžªJÁ犧z<÷#×é¾K ?Ö]½¸Øõë%X”2앃dÐl}x^ÝÂÕ™ñ/k Ý}®ô-¸;e{˜ã‚– i"àuë½çݧƒúl@︵È즅0¸ òÅÌâ¾ìGy[Vmq}ý*ë¤Ùo×I ž|à“˜OXß>2ªÜÓú>XþÞ†dÖŒ¤)ä´ìk‡º*_.öÍHrøâãã›bâ­fìoîc7âîwUÓ/‰üÀÉûÙ“'{[¹6?ö©Øž‰‰ 7q±Xø\â´:nOɯ5.5Üþ—a^Ûló½vßIVyÛz»â3øg¶ ´+ú­ïÜs쓚÷ú~â¾æb¨*ŒÅH?Ÿß9íP‘íÙÌ# í…O=ƒçBNø¸ÞT±¯øYTüÇ" ­íörÝÒc5»¼ðSƒç›ö=Ü9t%¼¨~—{cȯ±›{Í<2% {–•æ£/§æªæ¦^­e?ô°l>ÿ)rã–ͲŒŸ_eu?PÞ {âu9ž¬¿|Só7‰¼ ùgCÎIê';YͲ°ï˜ò¨vãÉþ_râªsá³9KŽG•­ˆméMp8Þž¿ù›’˜ººf÷xå“Ö™]µù_×Úcÿež$t-¹áø´åÂ{²ß¹…µý XxíT„¡qJSž8ê¿*ƒã endstream endobj 156 0 obj << /Type /FontDescriptor /FontName /PEZREM+LCIRCLEW10 /Flags 4 /FontBBox [-2000 -2000 2080 2080] /Ascent 0 /CapHeight 0 /Descent 0 /ItalicAngle 0 /StemV 80 /XHeight 0 /CharSet (/a101/a117) /FontFile 155 0 R >> endobj 157 0 obj << /Length1 721 /Length2 5243 /Length3 0 /Length 5832 /Filter /FlateDecode >> stream xÚmrPZÐ5ÖâP*P¬+·¢Å‚»-RBB‚§HâRJqw(N‘âîZ¤Å] Å]úñÞûÞûæŸùçÎÜ9»{vîÙs—™^…DƒÝía¼œ¼\<¢ym5^>?3³Œ#Ì G!eÍÑ0Q€> ÐÙxù÷^f€ ÊÞÝne°ZÿNôæP¸Ü ‡B \àÖ€×...R.NÎ\ŽÎ\÷M:0m XÂ0€Œ†¦¡’º€UA] CÂÍMgnP…[ÀN0 Àå@ü,PH(ü/MN\ @ºÀÑ÷Â,Qv59°´¼†: 'à –˜#¡UÅûv$ÚIôž ³p´ûk:ú?„0ÿAþCÿUÝþA\¼¼(Ü €À¬àHî¿|SBZ¢‚ÿ¤¡Îöÿ–î9Ýë°Þ{@a–÷lgBÝÜ`•AÙÙ;£aŽ5æˆh£ìÌ‘ÿ²Ìíà÷ÿ/ïJhó{¤‘V÷Îñü“‚;ÉÃÝ`PM8úÞjKsĽEçõaÿü‹ w¶û§vïÇýBQH„ûÿ>y?Æßrƒõõµ@Êìÿ-Àße9¤ GZtÐ÷^š;BÿKü]Ö4‡ÿ³=ÿŠùw›¼ÿ«™£án€7<\­Ï_ç_dò,åæÉÉ+ü ÀÉÏÇ฿DøÞý?r-œaHô߆ßÏòoü÷"Á`n0 ‚é)”…X€M|͇Bo¹ìÑ¢ì£ÃouÙ§x1 5ï¿!ƒwZCÍÖö¨ŽÀT®D´#~ñ¥ÝE¥£jó(ÑÆÀ`8}°ÉÕE.c‘•wéü•VæeE°éo=J; uœýCtâÌô{M¶Aä´Re‡|q2Þð·õm-Dÿ?A*MX'ÝÁVØKZfý†H^,Oceø/í3SšYgúÙ¯¿b­YœøÆy tdWïz¨Ñg}³.VbC}DJ/aàóÄÑUý˜Ö²R¨ä­çÛÆ+}Õ®‹P[y—W6œƒõJQ G8£[œa°àÑm¡š0 ]V˜ëüøo¹Iã™Y¢k‹ˆ»‚û¾ 6}|ö–nèzÈ#òõMØ ‡H}øôÀì óóëjó]AtŒLé¤KHd_ò,ÅÛò~çáRÉ?‡ö¤ÐÓÀæ«â&³gf¼ N,1Ëö Gbtòw×ãÖÛk#–Òñk´¯¾uã°C´•WKíU*1OšhÍh.Ô;/v~F§plï`í¾JÔ¤0 rþÄ€£8;.ê,¶íˆÀ½ÐW4»™ \vu÷ÞŽ8‹˜ª”}l0æìrû|–Ý5ôUÍ—|>yΓúä«—S©j\Ò]W(Þâ/ë‚hïÇ@x”* (bA,n ô‡Ò£·‰ñJc·oN<îJ]Poc<°~˜­³*öRûÙ­ëúvh.ö­/–ùBy@'±õZLæ™ÉäÞŠo1¯ªá­Œgãìf/**n̶Á‡ƒ¼}ÜBåçâ4Ò}$œ±Ä>…¶Œ:VWR´õÜÉØ´Ÿ™º´@$ºïtÿl=ßàÒmƒ‰0±Òe°]󌭉Nt) ŸoÚ&•éÖÆ´©Å|æÅnÍ!´3i—4m]¡ ©°|)x¢‹µ¯ZBµ°fŠF?aovðœ1ìà ùPÿñH?/°×B3˜<÷S^Œ56Ñt.Ù;.›°zÍlþäÊñ1 Yš?6?NÌäGYöÃBâžý4èçd»ü&d‰Â"k Û¬ÖÁ”XÆkH© Šó]S©FÝå¿Òh6cœˆo)ºç³ˆjš&‰%ú[÷SPïÆn2^h9>«‡g˜•Ë&<˜<îpÞë w¼£ ®2æØ7¯Ë›dÈQJŠq6øè 7­¶JE梕HòÌo:?¦ÓŒcÅÏU|Ÿ®ª5ÔD•w´¯7'Ç£úϨS)÷Ä\Ì E1ÒwZºhR8¥m`׺òVfø7]ͬA"{’^hs[„ëû²A ?‚î7«ý®´À7”z›Ä uÏÈ+Ÿ´ŠÜÕ9Ïîy³m*]~7c|Ùa$ö\¨3¢–îDªQvì31!5¤åÂ!û^QyêJÃÂL~s{EýÀuþÂíÎ,òzÎM~²Òï$ãël¯TäÈügÏ›#ºwEï8ó’ˆNã|1²‡ù©V·ÚÌó&>=7Ïo¢p¯›܉»Ö(òÊŽ´T/(Á ¹ÇQv Óâ•l(yòâ .Ewùrß9_º©¿gR.U£2.Š’û#óõO«t¡7)s—ø¾ÞZC…ƒÂË©/óA3óS¥¯Â¯PþÔ¶L¤Ä/Ø!Æ°Ë ‡TÙþÈÍô/Tóž¬Æ¡-ôrÈ[§½€!+Ô‡e¢6“ÇÕ>oæ”;VBM¬èåé)ßîiÞáñi‘]»f2ÓÀt;}"•ðì4´Ú–ŸÕ¦eîy£)ëXÀÎ’õÁëõ`úlßî+É·¦¿wùç§Ny¸³ů¥\¥žéí©6ßÙ+êò¼7ð q ³5m}¼:é·µw\x‚(gÍ”òuº¾2’ø0F+ o} IØ3Þ(±XâmDY•büˆD&#CLý=â6Áàš×1`u—Nü6?N½A[m¯÷ºïԺإ§¬âD‰†‘-W.]%#¯,¨n{ý@ðvà¨ðÝ£fñþŸ¬øµôïh:öÒÅI¥^ň¢€Zƒ’è\E.Y•;¼¾qA§zèÜ‘CfDØlK×*©á†ì™ðŒ_‹‘¤¥”ëç.Tæ_|'YøiWþœñ0š<«cd‘l’ËïêôTìå™ùƒrœñ-­ ;q—PÏ%ˆ®ÐÓ =’dÙpûf¥†e‡K»;JÌ©‰ä<Â|p7':ý‘BjUõݶÌ^…/ãI$–GÒ6˜ƒ ©Œ¯»LÖ¤?Xa›¬H†”†ü®?O¨å_ç“îúÓë_rHù1*©ÉïÍ1) ¦Nû°y~ÐŽ9à“Gr`nYðÏʨ(~7ýÓoÀ³ìg/¦qÝ.§Ì”0ð‹åð˜„C1†õwžI²qýÑÁW§Ç-×:ƒ¶|Óc‰ŸgÈÈd­Øy› XŸ`ÊÅ}­ÈJE wfpì``Øe“ég“¿tºB@Jg'ø®ì*ëÜDC‰Ô­TNG©—ni7¼>ºy”=}0Ëtxù3sL|t½Ú7#°k•e0ü¥Ë½`¬ü è.Á1Ñ`A›â8hAR$¢£1o'=œZ3ªdT„«Ðì)?µ0ñ©}r÷UcøžÌ %¤sÔåjãõ>·wV"-8¯<>ÿéjPY,õVÉÆ!›}zj.>CbàÂN‰ ¯—˜“¢/ïÙ\ÍcÞ,´ò IÂä2&îiŒOíö\¤-²b ê @œÍU¯üôãÐ:§u+ó—ÿÑ?ÒÆ>ù8ÔW6ÀÇôÑ1Y€ÙNE¬CHC'óÁâà‘VŸ©¶PÝ×r¦È–î”Bgqò_Ý$cÜÍÝFeãìœOî1®4ã‚Q@ëTèUÏÞÒ0ÌÓ}í0Õ¾Oî}¦î•~/¤sù•ÜNÊ5)zJ ûc-I”6cx£?ÂekÂÄÓû+\ŒXyÿ`‚<‡Ï¤>'q¬«$æÕ„Í™ðîÌH÷Ö–ÈÜ¡ïii¨(òÙ3?tOPƒìé¶!†cëÆ®†óªB“ÏùGUê–Q~ð?_ÞDðOAf–ˆkí¬öò»Kò+$¢µYW×À7‘D°§Û6uwNr4qÎͽÌD4u2A]ijÓOŒvóWmš#“@@ªý¬{P/^ IÜÃé®p¬Ôs7¯4À`ì!môdX0òlÓ©iq–Xô[å9mµ©Ûé‹‹=¶ªjáVz¦õC8ì:ïƒÒãîe(óDO1k²|1‡k®‡Ë sRÝÏh<ºœ•»4Õ`4·)7ÂLûhÚäÒHdùR/wRƒš‘+uKÃ6 C•âcõ· ¹fk‰ñ‰À4äe‡ÅÌÜÖ¨ƒ$)R0arØ¥s{ìm+A=ŸQÐïrb{ŸÑ+V?%iýëè5ì+pð}÷ߟ¼æ°bF(2ÄI Õ/_<¢YóÜ÷÷7i ÌN0Ûnëö-3Úïm}áÿÎõV§¤t8(É·Ž®gNefs^¼u€:§ùÇkªLÙçÊ,òÛÚ»ÊÆ^LÙ$LÕÞ/'Gò”`Ü2&õ|„ln=B=µü"“ ©²2?Èõæ,¸M^qS4—}ß¼ÑgW8ÊêÂDß— •TÖy’>t¨ ÒõTŽ{ý“Ó0Jü(@SdòÌ’4á¼¢„k±}µ­ì`®d-Ì?̉ÃO§3XÓPg{eh/ðè·ê»í •¤ÚÓSyº¯-Ç”Tî2Ь!ýùïª@SJ=î³1 ©WŬIxŠ.þɾžÕÜ©·ï‰“Å'%7ú’¹Ù7à\¿ØðEj»2i\->Ö]É o³ý>ha´´ŸHÂÕÄLú58÷¡6ºòuÏ‹bœoƒú>4 ¦³ÓSŽ‚ÎDH¸ï¼ü>ôð%õò­j–-Y Ž ƒ®|ÙÎuQ8'-ØHmšw‹jlÒJI·Õ¡¸\xp<ŠUZúÌÁù’âØl,Œš:Ñ s  µg“Ãÿ4µVð!ÓÎäç„dn˜ú{uw×eÿsüÎëGf»-,@OåYòlYQ{Q-æÁ ¥ro (qZ•™¢ƒ¬ŸXè\¿f¢ü9ha•u›Á£gLÉâÜ$¸ÁÔ ?2*ª*ÿê jܾòˆ˜úøvá…uÀ)áɲšg £·åGI=’"y2Yò#ze…0ì©'!þ…ð^jOåP¢q%1g0Q+` Ý(³ú^«ìÿI »Ù=”Isòʺ BSUDðÖáó–µ kñ­Íã<âÖäÖ|SµéÏc›syßœl#ÐlsJ剮Y \üKiÕƒ«ç ïRÃ侘¹È$E«³U.‹1x££ÝŒm—FÎæ[ALþó唸BèׂCÀyä0aƇZïFó%]‚?¤³<èmCA‹â/L½O5ˆ?‹¥0_–Ÿ$t9`@0)Œ¸ÖCo•ù¡9.¾[œÄ–úÓ±§’|•­òüxs=6ìžt-cÏÕ¸]]!*̤^ö`Å´R+6oòG>f>û44èrã`púeMüYŸÅŒ‰AÎH¼òå9,}÷Ðù-Õá:‚QkƤh÷yîà¹6Aî‹E¯+»Ú†>ÚËP¨&Èׂ Î,6H_8Y­Q^÷Ó/êLÌn¨1ëqb>Ǫij×3#˜«ä¨s¥¦,QPëÈ–)mò‡þd´‹:a3T¸P¾ÉT}ÒÞk%ã™÷UﻥåÁð4?ů:7´ª36WÄ€qŒ­ÔR)vV¯i~Π|²“|T_“Tæ!nAkÈ}¾'`¯Æ'²Wñ& “°/’Ä™ïOŠ€i{Oüdc7±<å·× 'G­¨¿ÉWÍÄs) *fnÈk Ÿ2\šÍëáQœXÊNÄó í‰z«ÁW÷ÞâÜmZÀKX•î”åLG>Å“ô«ÝžcR¨´áëÓi+.|wµeÏÛo‘} Œ‘Ë뵸ÙT|²ðþÓnÍâ|‹@f:ƒºKÐ>ËkÌì±Å& ÅéA¸ö~½ýå^f£}sm¸æ¸V) _„©1‹L/SMw=¼)cH—¨O:IùÝ­Į̂\¶›Ž¼ƒ-å CyAnþ7¿ EüWÇA |§é/œlíŸûTÚ LŸa×)v·§Q§Hµ¯ öÅIúý¶ƒ1ž endstream endobj 158 0 obj << /Type /FontDescriptor /FontName /TWWQBJ+SFRM1200 /Flags 4 /FontBBox [-185 -320 1420 942] /Ascent 0 /CapHeight 0 /Descent 0 /ItalicAngle 0 /StemV 50 /XHeight 430 /CharSet (/bullet) /FontFile 157 0 R >> endobj 159 0 obj << /Length1 725 /Length2 16462 /Length3 0 /Length 16990 /Filter /FlateDecode >> stream xÚl{spfÏÚm<±3qòƶmÛ¶õÆN&¶­‰5±mÛ¶mNœû;çÜï»uªníž~žÕÕ«W¯ª®î½7‘¸=ÐEÕÓÁŒ‰Ž‰ž‘ "®ªÊÄÌÈ`¤g%#q23r±²Š¹˜q4ÌL*f&fÀ?&X2€ˆ½ƒ§“•…¥ €Ò„êßI€º­‘©••@ÝÞÖÞÍÊÄÀëææ&èæìJïäÊOÿO'33€‹¥ÀÜÊÖ ¢ ¨%%/ ”WH˜ÍœŒlŠ®Æ¶V&Y+3 ³ÀÜÞ `ûŸÀÄhjõ/NÎôÿ&t3srù‡˜¹“½@NLUH\A^ & *0šd%ÿétqæþmfââò¯ÙÑ\þ7²5úßÈø£ÿ­:yü'¢‡eb˜Z™¸ŒÍ,¬€° ÿÒM hn`ÿOÚÔÕáJÿrþ‡€ò ©¦fæÿ ]mmåìÌ”"öv®.fN9{S3' à_Ú»;Yý“ù¨‘•­çÿüR.Fÿˆ!´øG>Æÿ¤¬œÅ­<ÌL­\þÑÛÅÉÕì?i ³ÿ¬œ™©•«Ýº›ý£É?«jj´õü¿#þ3•Ç ¥ $§%Aó¿&øwY hboj´¨¸ü£§‘“éÿ&þ]V4²úƒþ‡Ëÿ8 ÀôÿÚrF.NVFúY„ñ_ÏÿDzÿ%,lïáMÇÌÈ  cag0±°28™¹|ÿ‹®‰«““Ðåߢÿ3—ÿiÿÛLfff&°kËö&<ÁÖiÍ¡e¿Ä gË!if§ Õh–™@W¦ºotP¬-M ¯pîUqòÜáñgŒùv/w¤î›ˆâÌà'&£‰Âõ–q^ŠIÊ-~Uo½)å¿Ö…ë_C¨cÛ™ÈCÜDܹd¬¯*RO²fåœWK;–ò¡H0EþiïƒDÞŽ_]xJPéQ fjÁ›íÓT!ÏZ†\ ¼ì­…åíÂßaX”8†içí?µ£œTbÜⱿĻÖëC&ÓÂÒ^–•6y,T$霴Upo")Ë"ÿ¾Ó¸Tw³E‚ûøY&Ê OfÀkq­O¯pÈ/L3:«³[ͪ}¨ßÜ1ÇMíÓM’n·¤˜?¬d`ÅÌ‹l¥Ö# k5;#sädÏš{ûä~5žóEÈ­²hñ¯Ÿµ³³™®l+õ"Q=qsPDÉÊ9ôç‰â^Êêóh£"ן®#rKîó–Ì:™Ù€ß«‹hiaÈ#¹v„Ñípq瑌™ZVTP«„lñÍÊ<ýÎ ”ýváÈ;7”fä_R( vrçð‰f\€|‹unt[Sê̤áë*opÄD? ÊåaŒqTÖá÷Òþu\ttÔÄÁ±±óº²ªd\BeTkñ\º éõ—JÙÌRì".ÀÅrҼꘙ…8®3Sž҃¹ JJc{›±ŸˆûAJ¦«S•àúª#~/ŠTöÉ!ô²MuþF¿ÉE..±€5ღ62BÔǽtk2ß+Î RcR+ù4tÆ™ Ë}šârO[æ}¢ò‚>™¦ôNŽ&/ÕÛ-Nöz™‰S|Ç÷åèÒÆ×XÒ³r'…|(ÌL,Ø)½ñ+ܪ­QŸj‚P o9rpBEvNH ›g·îÔð…dÚâ#û‘ºÔf®F,súé½¼Hý}ì³ÃØRM{ËîÈî-£³ÜA2»QÇ[ˆý¼˜×¤ÎÌmݬ—ó3~§i"HÀRÕ@6¨ß0Æžj ž£.}j¾UºªªÏ8xr£:²ÉàƒÝ=É­úèNB:’޵èiM¹ÁàúòÕü3©‚7ÖûiR¶ô½C:׃áÖ‰GÖ×&Ü«Œþ¼á‚ú:Gó0ä…:ä1üþ ζÊï+Ƀ+@¥ÞS¨ÅV²&Ù”wk7§ÍOíê'تfäÝyíFz’øÚ;·(]4¤{`ï$" "œ6¡ S5‘ø.lõ^2CAXGíœi têW2ç®!:ž±¢òee ÿé’„zDäwU2>§ ®¤ß*·È ±Æ÷ÑÍG‰Õàé÷K]âxÏËÌéÌ*Ät«$}ω2Æp"}sÆæg¹‘ȃpÜ´­/=«Ò ¢ß]]ÕÇ%’Œw`9fÅ‹ZW'?Ѷùl­v.ÚÎ$š[²ËuG|aë|þv…ˆ6RÆCþuäZE¨‰é0óèœÜ¾^Ïdɸo¼®u/ÿµo$µ'?¤. fAS¨ÍýZ…­ƒNìôÇ®G_’Õí«.ÐíˆÝöK í4£‰ AÛp¡SW®N±¸>¨îAbíûL³NpÏB©Æï‡4·#z£RrŽJ™IŒ$Üj¿[FïÒÉä@‡ÍÝ­[ãÿÈ<õkŸh1¹6Æ<žÖP$¨û ~ƒÈz¯Ø'›·ÇÑé–"ð8pßE1vI[zPŒkBƒÉ¢•ç÷¤YØkÞtlº­­~_Í@:$õ›¡ÿõÖÕ"4žÂ^BøÞúˆ¾"ëÏ%´<É1Tûäõ'dù·Ó—è4ßÙ ï;Þ"ìN:Öƒ;Ub_þåøèÅÃJ6­®lo˜ÄÜ+`1NÚ;qv)Dg,¼ 7ä+äß{=øúÞs/i<<å…þ[9Y×$$Ä;¬Ä^>ÆZ“ öã¾æ£‚ËÂVìáp ¯,bíÎicvQLJ)V5/¥­^‚Jˆ¶I ?•l Þekgé‰ô¹"»M,z¸Â-s'æ8½Š14‹\ÛÝ}_dí;‡K€nÜ–|жÎG ·b[ÇߟeÌ>%ìGñˆˆjR•Ç…h¯©ð¿Žù0hf£ëî›Òb 1òG²K¿J qš e¢™?‰q♿šž­ÿäiÊ ÎR柪’ÿšY|ØT] º3r鿝8£¦-H± þa³Ö~Pòw™eåñÜ’ÃC æ/Ÿ ¥u¨õ—œ¢½è,—Žät¾í¢Ìxö¾·x&)™QSl³`·(ëx†³;ÇP¸—JSŽ\nþ6ìòp¦'@$—*¡ž‹ŠƒÓëé¨He'Á¾ Ø¥!½C²™®ðt£Ûn´$¾ÑÌæ¶ïÞÌlR›sñEþ%F|éE|ôx¼r¾*##sUÁWlK =¸I╊v9f‚Y½O­#Ä€ÒY„üì? áàVRžƒ$¡›uæéóMì¤u¬ L-J žx”é\6|-©Òr\ø+%ôoù›¢HD\ü(0~;gj«$›Õᤠþšñ™X¥ûÖUÍ[]¹ 7RrÑlj1n%8Õ¡xµòÞ,‰’æm7(^˜«‘憗âKO^‡³¼xÖá²3@k`4¾Þ9¼gž‚¶>td3a].ëB ‰Cþ€m+"*âP<ów •ÛacGIN ~+'§<Ò,U¥/}ÉnÒ®ŽnnBÕ|¥¡•¦yd”[ …+TÐÜRIô\v Mü½Vys<Õ}Ê' wÑl çW¼¹:Ë~¿ßú ÆŒJЧ 3Ž7yøfÕì¥jæb?3ÙžÄv?ß™ÿµbÌK*û|ö•RºBs²Ñ‰«Õ7ÀXÃ&ÀCO)Òz˜)(SÛÁO}šŸ”ú$ô·˜§…0˜)Ïy÷°0 ¼þÎÜá†þ)Íç,ꇌdÀ·$“â¤Ó®ÔAZ-˧ Bz-$žM …Ž®ž”+”³UsÎúôÿ>æTÛ¯}ý›”þ¼º÷5;¥Ÿ4à‹,¨›¥»åÛ“…| Ò>L;FUJÄÒ×"ÈËŸ¤Rž/†CJ"Ã$O7§¡dì)=±4ŽTrb‚iiØÒ˜s]““¦žEÊ=à/3(øì.‡ë­ЮÝ/‘ì÷GYrò¿°Èí„4ß¿Wõ «¨Mœ—È_"Á×å•ĽY^ºçŽÛ¥bx„ÜÒ¦ÿ8GéÄJ¤­ñ¿+$Ì­Òp›xÿ2H`7tÜÌõZaÂŽ©ÜójV²ÐlTUÌs©«lÃ) §­r÷öãrî]«’SbÞõ¯×ïC â%½Êç9æäÔÄÓ°,Μˆî'KJÓlp7!ŠB¬¤§M¯È7Må›;·pñUýÌö8Y¹ÐZQRõ…8?áï1̓ø0£¨ Áä{ftÖ¸SY5Ä&t' ¥Ú¾L®ê~3¸ƒxf2D•4&,ÜȲ–î‘Jñö@”r„ˆÞCÄÎqf½­/¶™£šF™âyâûS@ô4ç 4¿ ­_`è´–³ILmcË}üi›áä‘f¤&²ã­Ÿâú‹tsO¤“ ôáqVZ?Ë˨¹^êOPBG%s·jk<¹ŸªpráE/ÄŒ­jâ„I¶¢^שÜ=ÔÜ#£Y_Y-Æ Ì¬ÈLpë–€¼ìŸkrúÐŽÉ$´ÃÑb×»†ë6áÝLÓ.ø¢ö´)\º'ôÂ>ŠJúu¯r–Æà©N V_u—D®q õ/fc†•rÊ?åΥἠ°{´‡²"Ižx ž±UVx°iže  £õ?æÆO[ËåISé»ð¢qäŒPÌí°£8„ؽÐl« [5RîRæÓ1Jõ ܱ®ç˜2gÿ2 ”NJÀ¨Œz{Î ÿ4_K9¢jÙAh£.­dKÕ‡*tšô)Ë•ÊøÈ1ÔÞçG®6f÷9ríŽÏ—ü<ÞZhãK67ÕšR«ªaE"›‰ó £·sy³p½nÏa‰÷²ˆÕQ »hÄc•AËzʃ߿ m¾LØÙK¾Ù§½Ú%lφtBòÞ'SeÇá À~Õó>ÈCaH·°«.V­ÒŠ6_[Dv "€\‰»±Truæ[5wü‰‡¿|_4ÅmÞ1AT™‡«˜wùMFÅDÇ/•!$ƒÇäßJšÊ4ȼÀ h‡~á³j"àðb@¶¼6£´9¦çÎ<Ø@w¾“¾Ë›ßrcŵV˜¼v„Ò¨6…ð©f&žž4 ü¼J¬žMbÀB‚UUŒ?Ù0ŽÛ‘!"ù´:ãTHœÓ}Og"êGS8‡Á¦Z#Xá±/D+ˆÌ¬;–tL¶ÀßÍÛBZ1¤šn&š~ tÊÖɾ­©|á nllv½ _Óºjƒ/uF:!K: üÑwȃiávP ˜$ ŠÑ «'YEÝ»µ ÙxDÿÁIÕ§‰C™¿È}t°D¹¥¥…(~3>Ô}žŠS<|÷LÞã³TªBU!J„ƒÍNêÔÏB™ÖdI>-˜CÓ» ê6D{™(@ô´ s+("f,¾F£ƒVQò`çùldùnB U÷©üTQí=¸Åy›hî#¨•£ èDO­±­íÙ •ç´uË—=Nü/ù¨ÙMÌŠ71“£ƒrhË@º­Ê2–ÎBÂLªpÉ:g•<Óˬɘm†ZÁ¡Ý€­ÈW1ôÜÚtx‰Òö;\û̺Ãâ3&4ø)Ô“ì·ëÔù@ý4~ªØ#-D«•0·bKx†CP ¹Qî‚éaú†aŨðLOÅgAh­K²cPNÀµ±Úà4I‚ï׿% äpžjgƒ­†5R¯5%{Ø+šÊ÷ôÎÀUH¸Bi¤ùÕh»,Š3ÞæK¬€óL šÌÊ™ˆÊ~å+ï!¾ý Xrî?l-ÀŽðW1ÙGVE8És.­š÷4(L»«4šTdùK¯šß@VSE§ÄŠK_Üsvžþ™Î+¡KŒ›è¾–5VÕìÒ/#ô]{£ ‚ïkÜö;Ç#t¿K^GvÉØ‰2Å âÑÛÚ¢›ŸÕŠéV;û­F%Tߦÿ¾ˆÕ]lê °¿u¦§÷_Û†$,ÜC2Ui›§z»&d·¹•‰¬•o{¯ØA¤Å>FVß‚ªµÙ"‘ çù+ ¤ Çq;ë:!²•)RÒa‹J\9WÅuÏÛ:¸ÁŠªò5NÒJŒ°óºc‡bQÞ€fAbdJ0›fQ5¸­þr#¯ ä=¥ª¦ÉR;ö8ÜíÞJ‚#3ó5‡Uêe¨•4—>âp?Æàk¢Ÿ’ìÓ9Ø!u<½Œ( ´T¼•Ð Ó†¾®º¾â™QL Š¶FÛqÂâš”ÿø¥¹1Íb'{”hÔ~ãlï cׯaM&•¬Uz¢U}ðàŸ"úD…-õé]¾O2#ð$MÕeÌ^Š&U(qWÇÁ¡Ë1L„FÄxý“›wZ ‰ë˜ÎW»¿Æím¥¾ðö×fE3ˆ[þZ¾¡û›:àTÙ Å$þä…"€Sn©—̶êg‡H°ÆæŸ_Œ\dåCÎ,-—P ÈÈ“ø‡"¡bŽÜ<ß4Õ ¸?" `ºËd˜Ÿí+¿‚@c›Ð:¢ƒ¿Eyúˆ¥~û/ÍŠRÒ­; ì[µÎIÓwãftQî,CuTÏÍruwBcum¶,@ïªQ@’+_~Q5 oH¦*‰ Zw¦< úåQÆS k¹Lnv„Øâ éóY ŠK•ÐÜ‚æ0îÀW…cäc$€Û¦}ZtÐ|´g^«[ü˜oÞ)p%yFjÂ%Ì3@JÕõjb®qìÕår¬[µ9Ä›º²2ËqÚ…+ÉZPyLe^+8à„´½äÄüc7qø¬ 2eŽM²âùƒ)5¡„ä®Â2îů½Hd wcUÆ´v‚Ê 3 ¤!×yJŽ´GÈá{J ÂüÛÐÛ=¢’Î~t Òqm?Y–cöØŒ1²@~ Ë@!3:V¨úâ®:|_¼oï"8Þ`…Ýu|Ý ÅÝðL/Q¾Ù@…ì×d©2ü¨æ+-«®öÒ##ë­rïá{7‡ö*‚ Å:"£ÃÑ·›”q­ ŸkË“µêðÓÍ»z¹öfÊn»)ñFŽ_[hõõ‡j9%–^âØ•IcFE–úðsö¤{¿NG“ÀÓ³òD ÷•­½Š_OÊü ·¾âlr9Óœ@D©\ˆ"?.<ÛLËdÒøªŒÝ)[e 1¿§iXˆèáPáTš2àD—vX—…&² Ú7óÞÁD€}ö–šWå£)£‡¡ cœ Ú]˜t1%ýcD©‰ì—•t!*ûˆž©ZczQegIM³êÛÇ-"«Û&-ö[±pz[”~ß–üy £’ZŒ0Õõê-Ùbà¯õ-ÒÚ‡k‡¦ÒFÅŒk0:'TŸP•‡µÃþ1d‚&è7–s„IÊ@2r¦‘®INHV­Ž &ˆE>xå¢ DsA1åŒ1˜€`&MS‹æ›]Ñh§°dãl¨ êÅpçÖõ9I¦¿6Óß¶ß¼!?¿d­ÛŠBikx¯³õøÃ¹ãü!7<2R£Ô•^v=24Ž—;=ÑPž—hí¿‰ ¸ /ºNƒÒ*À½¤>u—¿êG[†Ú-ÎuÌ{C!n½H¶5„îÇþ´©%2!o3}>H¬eç/¹@@e‹5[›?­³¬\³ C³ú™k”õPZß¡[å‚t5°ï‡’üKX)roY$âdŸÔõ—ÙyåsDÉùÇ–Œ|ç›&òêkè“Lލ¡Ž—„žI<ɼ^Ø7þ:dk}ÞJµäÕé9é-yö¶œ·ó³î»ÖE\-aöéiÉ)ÞîÅ{fdÌÐ1% òi|ÑÞæV$øå8Åúñ€¬°v *ó¿ ëdºUWv'¸fü¸Rg“c®§‹ Σ£‚¯GÐvC˽GïµÀz¬[¾O'Aþu.…± dˆ<'Z¹Dñ¤ÃÒªóªvöÍsEÕdO¯–ƒåó~ÌEÏØÝ-^:òz7ãP^OEžÆøD;|qTS^«qj¤K{—lv¥«•ó*!X…3ukÊ(N9£}‚’œ,'Úˆ»*Õ±­–DðFQ>ÃTìôæSŸZSlÏæöÿ›9sè$È#›§L¬‹},Zoð´ç#8Ó[§–5¹kß:q½ŸãÅ× y¯¢¢­~cª¹öÅò'׿s—¢–WM~ä™#t¿m ¼ ‰ø¯‚#¦ùSe’.ÜÖA=iðS6¸˜PM$µÆ–õ!²Ê“IZL0s°è·É¼©ô ³€b8kc;°°ùw©T”k¾ÎR÷J™_‚Ú] H‰»Ü £¼ª_B¢ȨS÷?b݉1ÿ¨ßÓ¾üêqQòÏ,ùãá&/¦pW×,¦:Úá™ Åø·ÃNp¬IÝvóŽû!02Jᇡ<éítÈÏjò›4’Úö€•¨C‰Ò-JÓýðÑ\¡Ä£:Îñ{Ñ8ït‚KÎé¯ÎH¨VÖÄždÑŸÁíUÍO^…¢Pq!|`vÒpU2‹ˆx;Ǹ³u“|F»–CånöVO¼>K£}Ž0zw—èPµ¤.„ÉcÓi˜ Á»ƒ/“²n÷ÖâQæ6kn$^¦ NúÒ‹,8λcð\ò"4ƒ›aêø\)óÍûGm;j€IÙ.ÿVLï¼ ðÔŒèëv#þ›¾¿_4µÛ޶úó… ï~ÅŸÅ*{£~[¥c:¥_Y&Q¡w:Çú›W‰H,y¯œ3ž"¦æ¦M7ûŽ1Ðy<+ A¾\áéTúh…7¿øÇ‡ý~¢ì|ÔñjIk¶'è#†L/Tó´Ç°õ–g8¬ þÙÛ àùò¥GrîÛ÷PãJ¿¤1¸žþHiJ#OðH­ñ´Õü€÷û=ÃȤÛ|v;¨ž£Ç^UgY:‡‘_¯Á"ºÙ¯¥pîêí†Gá˜C‰!ÑŠ·`B9Š.UÞYLcQY•Á?®'@œo&ì]Ny-?8ÏÎ~ûó„X‚í³ü·ô{­ æ¬e€njÕKIզȌ¡ù—™õZ *R–-1·Åê™iWâ&UCîÜõGVO":ñBP§‹4TÓŸ4“ÄÀö—W§ÉŸ×j‹f³¼l ›ŽiˆéÏŵƒÛ-œ›kRfsxóZ•)ä4cÖX3#¨'—grÔ7¦]ý¿á˜K ÅÕA$‘uÆD¯õލ!µ ³:Ϋrã݃òöº¦á‹¡©½Ìm A’>«Â”»ù!ã#t??PpÂÐéÿhIÑ,a©<ÇŸxpx¶ß¾7€<‚i[ÈäÇ4vxòÁ£êĹö×%þuWEŸõТ¨|‹B•Mè5&¬Ô†wu4kT@äß[¦d»£þk±Ä•ŠhJŽTÙOE}1*¿ËqÑ¿-^>|z<| å_¬p'㦇üx½ö)M¸¹d£vz÷›Z±õÍ``ïêÚ*©Žfæt¡¼Q\0–åÇǾ ø*Rþæ¦þæ®BÂhÀ4¯-ÄoØã)P|Á6nœ{ì‹åˆ />ii—Œ‡T¿ŸOžrc P(ÒSý™ǶG{»—Áz^L˜dì\wq•®Wß•@ * ’,ÕL©pŠæï­d*ºC§LæYæ¦ðµ§J—¶ÌÏòBᬠî"Á|ðÓ7/ë(©øòɵ…m€±ŠXȼÁåWÜž@†\IâOíÏÇüd¼» Y>sÕ~»Ë²³"¤¹~66TN…[×…™Ã—‹hñûúTõà`*«Nâq’‹a<+†9ËZ¬cü©ù¤Ï#g¬F|–%ûzc1ö›¾¨Ë²€‡yP«*§Ï’/¿ÖÆ)ÏŒh*Ö×ÑïÐ\y¸‘üÝkô|kWô`(ÎÆ%I¯ ?1·ËÄ|€Ujï3jš;0mkge$P¿gÊÉ:Ép]BôvÙž½#r–ÙÓ÷Á‹U‡ú$Z¥uÿV…õ#¼£iÉ3½Í˜ßVé­ḯ[^{¾Û¢Ñ«‚L_û:×~g€žGwH1‹-«¦]SÝ­ò²í·&ôæô·¤½x6ï^|PÖP¼‡,5MC›eë¼·–ºAý™ð  ûÒ[Ê6Yé+ýø¦Ê›ÜÙáó“ˆFÆÂ=´ç Ø/0Óå`D@ZSÊ<^ƒO†8¯ù× ÅÍt0ÔŸí„ \µÓ¾s^ ¨ô²{£J5°«AƒZ RL‰>s4‰Üœ—µó¥¸?¥žÐÉdÏä¯À³¡iã©]Ño;‘FöooY‡Ž‚ö`÷…­qƒJ|9x(åòTò–Í×åë]â`§9ÀÐZo;Ev7ä$‹U®‘v÷—ð#žl(¤Â©ˆƒ°e:¦)ƒ’!¹ó !êŸø¦rÆG 2`ÅC»zB¶ïÃÄö¼Cª¾ß5ÅÏ&ä%¥øÐc›Åýõ¸™i_'©Æ¶'Ó¤"œ#ëuçtgÈÒßÙǘÕô0¤¬ÅÜœ…\ò7l+›¢BÓ¬†7ke1'M‹àµÐ.¨‘%ny»Ü]Wyƒ;û®3ž´EaÌn2‰B€×:Ùa…­AßÑ•*ª Oökl±dåˆ{dä£&ÖîÂÇGÏÈšHw™-z!^{Ò…±¥UwOC"øQ&…-=„µ¯î5[«<ÃkasYø{NVÃì¿!'õ”yVÁÀt0þÀ³Ãe'>pÑrOzTYV©ô‡$Ÿ)-­Wݲ›ª¯`Wo©+:r‚9{|wêÛÖ¦Õ8cdÔ \® Î’ÆPâ{Õ–ÎX–9#.襱Ð<ñ|/ƒè+JÈv“¾—Üý£wYÙˆ*7#\+Jˤÿ½­qn¼ÇÿêÆ&—Vï%õ`mTL1<É ²Ö…ÿ¡âqCŠ©ó÷ftI’OžŸüKQð_#gBS/z¾WK¥×Bºt£l|¼‰þá®Ôdóq‹÷áÇoqhâž®º~u;™¯ÇÃòÁ/žáŒGä‚‹5k¯˜pbÍ™Ðq¤ÕÈ¡Õc|ƒhà)%랉„ð®¯\§XØˆŽ 7ìW\V€¤K$Iæ’6x®ÚœZ'9mX]Ï ¤(¾IzCTÂ’È·ÅüÁ=¶L³ˆ I.™æåbÜ¢0¢ÉC±^1¨Ññ,úp’$Ž<ô&k<o£AÎeA¡$º"‚lÅóx9JN®ƒ)ñ…§S{úxáª?=åúM66ðò›”R2úΆD+ÿÏ)€£²ÈUvÎXrõúô×9§ã™†’}/Y˜¸oÞ4"‚m ä÷`Ñê)RaþÐתHå/G?QÆ?îÄàÓNסÕ}>Á×"Rn›,AøBœ Ó*7R$éüûî”Ç‚m © È5“¿;¨‹ZT" ]¸OÉæepý¥Ýù©ÀqÊ8txéϤãµàC[~hÖ§ÑHcÚÞXɲó",)Ü]ù˜¥úâ°/ØùD&.\6÷ì¼1où´@ë ž{·¨lnRð…þÉ!ÇÌà;Ø·.èâÜJfT’5zZ $³k·H#Ïþ|>±O„ €Ú‡—HÒ“Š§f ?ÿï£Æ°‰îO* Û÷™3ÅìGD¾˜Ý8Ÿ1ÉòÀGÕQQž_¬«)Z·ÌvP(³]´JlŒ‹1Z Ù?Øÿ8©ï¹ÂÜ::|ásÎóÞ†|åž»”Hn?nMì‰íBpþž¬j—² eFuωâ-Ðý-çs=U.Ù m…¿{õ4+»ÿ4XüZþ%;ËÕ!á%"ñ›»±Æ{ŠìS½ÿbž¿z½‰Ç-©z1Ý“ÑúÊ®&Àå®~å­‰*áê Óû²¶{Éoîù¹P=^tw…Ð_´ã”ß™J:ˆÓõõhÙß&C7;Ù_¤IÜ¢\ó‚'ùJù`.á cü>|HÎ(œûXŠÐôº¹ènh#DÝ=ÂQn®M¥'å\¤q2ýË ª·±œÐF±XM|~XªÎÛO…œtVI"£kÓt!1ì Í&Úë˜F¦$ü§bD„¡yˆíѺy&úB±¤hýð×)è¯úÝ턽N‹¤NÑíø$5耯otã§ HÐ~·®àÒlѬõÂM‡XU`Z^˼¸gmª@_{ ùw~Ò*†+ƒºªT8—B2¥ºƒI<JíÑÉÔ§‹M*x|1Ïâ·’BÁIžTÈ{Mo<­|q|XQ†tH"(qƒ,–®J#u7f~¢>}¡?ÔÉt™‰?Wý¦¿M*Ño+$~—1]ëÜ+3E(ÂÄÉñL×ݨª<ó|§ûdÛCAÕcWÚƒ½A'øVÒ”„­íåQ¼ð%¶Ïôò·°Î§,õ~zz Ž?ì¿¥jke R ýp.Ùñ; 9I®ý“õ |o¯->¶X¥(“ücl…òk :ŠÚN³†Öø;E‘ñÃ`½f*þ †]Ù›,ûsºø{&Uà‰òÀ .c«è_Îô<$ž)&þ÷§MÆÈj‰X­bxx'*Ïs@‘OBT/EЊç4Ô…'˜Œ¤&K/$¯T8á)¢Žò•{:•k¼­ì859~ÇÄÕÐZ^Ÿ0‰g:ÉØ\˜ÈvxjˆúÄu‘wשTQÛËd7%€žíC&ë#%<*ÉÀy¤ÐÿA ±¾^°.ïL}³rõÜ¥ð=ÇÂ\°lþ2ë±á°ID&ÍU ¢ƒ¸b¡fÒc)]‹,R [èlVçøÐÞ ÎVdZ†–¦—9cA }¿úðheß'¡ƒ¢¬€¯4„ŠM"^؇¿«x'ø¦s•#£àÌô&Ê“f#ÞH3H.±±Ë>êTY<޼ç_q3e~ÄÓ%ºa>›)DýóF¬õ;* (¦Ýv[ñ<¼ë©‹ _¿&½RD¬}7ƒåÊd¾*¦;`Ìí»÷VANŽõºEahBm£„Òöš;¥3ºäÀE3d½±zǺPV!ÙB×mкËqVí0爎 –%Ɉ£’!ÇﺂjpF!Ð׎"Z¨› Ž|ô‡ÂË<€_DX(ÏÆBž35–eèªÖÿôµJN'н8Cƒ0º„a‡º-U|ⱘòKô— lNؙˑͯù\Ï^qUž:½¾Ãèbk‡cê±ðšfègÖ­_üÎbx©Î;öq—ù”ê‘gø²!YÙrgLǹK Vª,n°(Y­ê¾÷´˜io¨en¬îÈJ®7®½.* úeBÅ(;¿ ¼ãzH½ñ§G„ÉŽ*ß»DzÊ û;Žéîv|ßYdYú¢wÖ¯{ dì$‘Fª“ ÕSú}[èdùºá¾›*êËyêŽÙ[y–GiÝÂÿú©%Žy•J¨]á²Õm¿‘iÜ!ÀK4µÚlL%dN¦ÊFÈ­¡µò`7ܾŸÝWOšéG{qYºôZôšVl'ˬtrªmßq±_üü 2ÿl¼K?M$Ðm´Ë8Çó»¹w™ rÊXYɽááoš±ˆÄ‰XB@KÓz«ª}¸¸ëSùf,ÊåtvRå”Ì4<êóæ›ÌŸôÞ±xÚ àvwáº8ÅF›\ LRâUB iÕ1´íRËŠ_Íòk°„nm#Ð#¯ PLh5Q°NZjku¨-×dÜÈÿuãfÿ[bÅù 6|ŒéðU·ø ôº’uõA¾=û‰Î4 +”p­ åxŠ]P.Ík%UªPW£ÞÂW«Ù}º¹_¦½¤£]ˆŸ.wBŽÀËK€ x‰yÊj«‚n³ãˆºùź–ăΠ ±BDìh³³ bž)Ìff°4¤˜ª^ŸYIGxÊøÌÙ.ìÀ"Ü“¸:æ¤Òæçû@þVÿüî€ÛBEõnÐZÚ6S•vUÌ‘¥5ç{sé?¯¶Cèmf³»Å½UÿàB7½³á¹kÓm7'Þª) E•|ÿp mà;I¿ æâÐüÖÉéö¦ž o>vxÁÏ ls%&EŠîºo½0!ðãüº`øâ@ü²Ïj9݆Ò˜è š™*Š ÆÑ\yè¨C©í­„<íH,±YÏÑÌ«º„ÙÞT´Öƒ´“Þ{«ÆÙ`»Úï¾^Äô÷ìÕô­ä–HU¬_ŽÄD,’521ÈÒ98硱«˜ÌPÿ«·G ^$¢B,4.- ·ÖÂB­w'­67Êþ— ¾pw"ÛG´µ¿P 8Ïõç fééxëšî@—y+gÀäÇ[ónø]l¸Nóe<ÒÁWU³ \ ÂÁN—<ô±< ê})…ÉÏÍUÄzµèغ°ñúso*g|Á¦ƒàI`Z™0eÍšíë²ÂúsНé½#Y4À,­‚\¥«ëý8S-¡µ%ù¿ #ýŠñDF‘GrÊšº œ2%[N¬8绎;nì‹Ê¹Åœ»•ÁgÏÝš›?bP‰ãL“½Ð~ö›œQ‹‰= ¹K^ík’OÒó7€c. èVÃâ´øÓ(~nô‹öãJëìisZ  }9ŠgCw/ÁÃø•‹ê† 6œðû6é?”•¾®5¨ ¨CÓ6x}×ÖÞõyJA}i™Þ¯Sf_ cõ'd³Xòƒ.µ[\:äˆöR%Ý„[eñu·*‹ƒû?<ÿºoi|þcƒgØyÃGXPs›+^ë* ±,°m”M:ŠÅy"ª“DÓRš*7vÜÏÚy°C„lT ,nÙêv?Êêsù %_TÃB~âUÛ§èAØT#øÂ–wL„“ÆÖ›BÞãý“0x¹ˆ¿ UÛ.ʉn]^ÕÁ-QPOd—ž×žDs©u-ò¦V»ýÅ«"PÃÁ‡G…tÔÜÌc?Æ)b …Ÿ(bHI}¯i äÛ•` v LFÆ“0^;&ûàëâÂßZѸŸ•¼l)K; årÌ{<ùŽ>‡¯.ýè¨ãßeÄ$ìûõC}Ù)ÍÖpˆHÙØjA¨AC,TÏ;eœª¡ñö‘Äæ"HgNãkaP…ÑØLþ{!œ¹GùÕô2ÑÏÅ‚¸ŸkÛ)ä®o:âã¿ï‚i\(rÜ3T^>©Ç¾~~)RËl·¤$]ëøÉ©hd0ØEG¥\mu0¹ƒ{ÝÖ‚ÁNì3ÔÊS>p¸]‚õ{nƒi_ç¾)…D7JcÍŒWÔÌ¥K—ÛTq Ú=q²!ò¨D쎷Z®­Ùi{S°’E×[5‡ûÌ Áü¯  (ºû–·cJ{ÿN æu~§Ë ` igç¯á,zySú¬GE+Ó)ù?ÿR)´-0Ïz/þ d ƒ‚ùhøóß·£b` …øT; ‹“W{›¬š0ÌŠ¾_ù/ä?;S7FG©õ7FQÅ9ìeËX©^3‚ïkñD6š(Uy/núXrÎA[±`24Ò„ôÙ¯9„,ƒ(ÑËI¯ü8æ&-;¨@"d%WU`ø™’ƒi.¦Õ…ÑœN“8‘†bh©”l`½ð•ú«£cÝ3Ó¥qî @U -Òæ?² Ÿa«¨•å²VÕ»$>ÐC9›@øäê ¸nÜgu™÷üœÌ±Þ…hÉ,õxaT@³, ›ë”F5<îøÏk[¿ßa¶$›¿Qµ`º#¼÷IRéÚÐfm²,X.µþe¯[+N˜Ž…Ù·Uîn‚ù‡›Žœx[,,¹Ïo¹åÏIŒ•å•PÈDGJhïU,‰5-õNNH©=® f3ÌZ]æÐϼGPpéÂÁ´ŒlÖHu¾ A Ç%(!¦-ÿúœ$’ïóˆÅßbpG»P~ÛY‹ôg¤MòÖªsšƒäó‡žÄ ©RMÕü§÷ºƒný‘µö^bkfá]Nä×Ï}°Å5Fé"\WWR>-êïÙtß‘Ou;A–K3c’²ã%ŽËïDƒ¬_tE8#(—–ݦØ,ʘH­©„¶#ù®_ dZKë%¨·io\HU¡Xï¶© ¶ÊqFþîhgâZ1Ô¶šÓÓ‚ñ.žÿlÖùWHŠ’‚ÿý²m޽T#ÞVÆ%€fˆ}–Šɇ Ó?ÂYrï.Sjïs¡b”‡·«[i-/÷WÎîž™‘äXÜ…&ß…cÆí‘¾rR‘ñÏÌ¢Öõ=_G²-¹£{ ‰”:W¢èï¢ëâFµ ɶދ0r¥ó$HJ 3Üá­;Fv ±ø ù¹uØf6|oÝÎL܃àu]n[=Ö4 ÌøÉƒ‹V¡v›C”ÌÇí.êM‡¾ÞÌåØú²réMZwP³·×aA JЪœô @Úñ°|¾Ú«I¬è‹«`çPš`ª?ʼ3eòJ“ñϾØìM•s"ùúÄ‹¶š'bÙ3 œ'ö6GíåÂÝÚ®F&[ƒ°$I””•šÛ½É¢´˜°0_li‡/U'îGÆ›S±'ÂÐ!fIÍËà–2¼«È²T»Ÿ·eIRÕ¶¾n˜~'jžÜOÇ Ú[³kŠ~ÇÚWJ˜ú°Oµìcä6Ã>/ÒýLœp¦¸æ†¬{°X6•:éÈ´_´§_#jÓŸ•ÃÍwE¹­Ÿádµ¥Ýßë"¨ zJLë†OªÌ Ôk¹çmœ¥Ñ‰&'’ó‰E}µ†o–ãGÐ,ÄZ —uaQY]M`eù]=÷o›Ü5ßßÂÙ³Á³˜S¬þO£\þE’Ñkš W}ÞcëÊÁ0b7ÿÄ4J·ª4S²@€QŒØÈ]ú8ç,ŠMŒF-ŽHÂþ/®â¦wl:ü3‚þŒ©øF“bBã^¤}1eJísÊ+ÍFE~KkOfô™ûz~èϦ„ž ›Š*À:̉{Ë3Kû¿Gã¶dB@óö®ïss±p€yå¹ðÜ9 ñˆ& 4»P§q¡gÖu»ØtH`çHÿ ‚²‚Ÿ»dg?ïöM- Ô ÖÏ¡uH|P&£©”—èsÁÙÄJÚŒgtNAŸh}>¿)$¥ÚS~t²«¿+ú9DÀèìñªÖÓð0ÆŒÕ%Üa‹Ý-f&ð ]ÃìÁ(³¶N,‚WµTµ§m[Ç ‰¢&ë÷pŠý‹÷}·¾ÅäÙªú+@Mí Óx`ðl1RÉÓ> endobj 123 0 obj << /Type /Encoding /Differences [39/quotesingle 136/bullet] >> endobj 32 0 obj << /Type /Font /Subtype /Type1 /BaseFont /BLYWAC+CMBX12 /FontDescriptor 136 0 R /FirstChar 12 /LastChar 124 /Widths 134 0 R >> endobj 74 0 obj << /Type /Font /Subtype /Type1 /BaseFont /GTYSIE+CMITT10 /FontDescriptor 138 0 R /FirstChar 99 /LastChar 110 /Widths 122 0 R >> endobj 75 0 obj << /Type /Font /Subtype /Type1 /BaseFont /TOZZLY+CMMI12 /FontDescriptor 140 0 R /FirstChar 62 /LastChar 62 /Widths 121 0 R >> endobj 36 0 obj << /Type /Font /Subtype /Type1 /BaseFont /RFUZUK+CMR10 /FontDescriptor 142 0 R /FirstChar 38 /LastChar 121 /Widths 130 0 R >> endobj 35 0 obj << /Type /Font /Subtype /Type1 /BaseFont /ZPPELK+CMR12 /FontDescriptor 144 0 R /FirstChar 11 /LastChar 124 /Widths 131 0 R >> endobj 34 0 obj << /Type /Font /Subtype /Type1 /BaseFont /WULYQV+CMR17 /FontDescriptor 146 0 R /FirstChar 46 /LastChar 114 /Widths 132 0 R >> endobj 52 0 obj << /Type /Font /Subtype /Type1 /BaseFont /UEPENK+CMSL12 /FontDescriptor 148 0 R /FirstChar 12 /LastChar 124 /Widths 129 0 R >> endobj 53 0 obj << /Type /Font /Subtype /Type1 /BaseFont /VXHWVC+CMSLTT10 /FontDescriptor 150 0 R /FirstChar 34 /LastChar 121 /Widths 128 0 R >> endobj 54 0 obj << /Type /Font /Subtype /Type1 /BaseFont /MWVBXV+CMTI12 /FontDescriptor 152 0 R /FirstChar 44 /LastChar 121 /Widths 127 0 R >> endobj 33 0 obj << /Type /Font /Subtype /Type1 /BaseFont /AOFDMG+CMTT12 /FontDescriptor 154 0 R /FirstChar 34 /LastChar 126 /Widths 133 0 R >> endobj 55 0 obj << /Type /Font /Subtype /Type1 /BaseFont /PEZREM+LCIRCLEW10 /FontDescriptor 156 0 R /FirstChar 101 /LastChar 117 /Widths 126 0 R >> endobj 57 0 obj << /Type /Font /Subtype /Type1 /BaseFont /TWWQBJ+SFRM1200 /FontDescriptor 158 0 R /FirstChar 136 /LastChar 136 /Widths 125 0 R /Encoding 123 0 R >> endobj 61 0 obj << /Type /Font /Subtype /Type1 /BaseFont /YOQMYG+SFTT1200 /FontDescriptor 160 0 R /FirstChar 39 /LastChar 39 /Widths 124 0 R /Encoding 123 0 R >> endobj 37 0 obj << /Type /Pages /Count 6 /Parent 161 0 R /Kids [26 0 R 45 0 R 50 0 R 59 0 R 63 0 R 70 0 R] >> endobj 90 0 obj << /Type /Pages /Count 6 /Parent 161 0 R /Kids [87 0 R 92 0 R 96 0 R 100 0 R 104 0 R 108 0 R] >> endobj 116 0 obj << /Type /Pages /Count 2 /Parent 161 0 R /Kids [112 0 R 118 0 R] >> endobj 161 0 obj << /Type /Pages /Count 14 /Kids [37 0 R 90 0 R 116 0 R] >> endobj 162 0 obj << /Type /Outlines /First 3 0 R /Last 23 0 R /Count 6 >> endobj 23 0 obj << /Title 24 0 R /A 21 0 R /Parent 162 0 R /Prev 19 0 R >> endobj 19 0 obj << /Title 20 0 R /A 17 0 R /Parent 162 0 R /Prev 15 0 R /Next 23 0 R >> endobj 15 0 obj << /Title 16 0 R /A 13 0 R /Parent 162 0 R /Prev 11 0 R /Next 19 0 R >> endobj 11 0 obj << /Title 12 0 R /A 9 0 R /Parent 162 0 R /Prev 7 0 R /Next 15 0 R >> endobj 7 0 obj << /Title 8 0 R /A 5 0 R /Parent 162 0 R /Prev 3 0 R /Next 11 0 R >> endobj 3 0 obj << /Title 4 0 R /A 1 0 R /Parent 162 0 R /Next 7 0 R >> endobj 163 0 obj << /Names [(Doc-Start) 31 0 R (figure.1) 56 0 R (figure.2) 73 0 R (page.1) 30 0 R (page.10) 110 0 R (page.11) 114 0 R] /Limits [(Doc-Start) (page.11)] >> endobj 164 0 obj << /Names [(page.12) 120 0 R (page.2) 47 0 R (page.3) 65 0 R (page.4) 72 0 R (page.5) 89 0 R (page.6) 94 0 R] /Limits [(page.12) (page.6)] >> endobj 165 0 obj << /Names [(page.7) 98 0 R (page.8) 102 0 R (page.9) 106 0 R (section*.1) 48 0 R (section*.2) 115 0 R (section.1) 2 0 R] /Limits [(page.7) (section.1)] >> endobj 166 0 obj << /Names [(section.2) 6 0 R (section.3) 10 0 R (section.4) 14 0 R (section.5) 18 0 R (section.6) 22 0 R] /Limits [(section.2) (section.6)] >> endobj 167 0 obj << /Kids [163 0 R 164 0 R 165 0 R 166 0 R] /Limits [(Doc-Start) (section.6)] >> endobj 168 0 obj << /Dests 167 0 R >> endobj 169 0 obj << /Type /Catalog /Pages 161 0 R /Outlines 162 0 R /Names 168 0 R /PageMode/UseOutlines/PageLabels<>2<>]>> /OpenAction 25 0 R >> endobj 170 0 obj << /Author()/Title()/Subject()/Creator(LaTeX with hyperref package)/Producer(pdfTeX-1.40.13)/Keywords() /CreationDate (D:20130514200852+02'00') /ModDate (D:20130514200852+02'00') /Trapped /False /PTEX.Fullbanner (This is MiKTeX-pdfTeX 2.9.4535 (1.40.13)) >> endobj xref 0 171 0000000000 65535 f 0000000015 00000 n 0000005921 00000 n 0000217509 00000 n 0000000060 00000 n 0000000111 00000 n 0000006039 00000 n 0000217425 00000 n 0000000156 00000 n 0000000184 00000 n 0000038611 00000 n 0000217339 00000 n 0000000229 00000 n 0000000294 00000 n 0000045091 00000 n 0000217251 00000 n 0000000340 00000 n 0000000392 00000 n 0000049598 00000 n 0000217163 00000 n 0000000438 00000 n 0000000502 00000 n 0000056988 00000 n 0000217088 00000 n 0000000548 00000 n 0000000620 00000 n 0000001427 00000 n 0000001561 00000 n 0000001849 00000 n 0000000668 00000 n 0000001731 00000 n 0000001790 00000 n 0000214727 00000 n 0000216013 00000 n 0000215440 00000 n 0000215298 00000 n 0000215156 00000 n 0000216630 00000 n 0000002687 00000 n 0000002837 00000 n 0000002986 00000 n 0000003136 00000 n 0000003286 00000 n 0000003436 00000 n 0000003704 00000 n 0000002518 00000 n 0000001967 00000 n 0000003586 00000 n 0000003645 00000 n 0000006097 00000 n 0000005806 00000 n 0000003786 00000 n 0000215582 00000 n 0000215725 00000 n 0000215870 00000 n 0000216156 00000 n 0000005979 00000 n 0000216304 00000 n 0000008169 00000 n 0000008054 00000 n 0000006262 00000 n 0000216468 00000 n 0000010881 00000 n 0000010707 00000 n 0000008311 00000 n 0000010822 00000 n 0000038342 00000 n 0000012770 00000 n 0000023343 00000 n 0000038670 00000 n 0000012636 00000 n 0000011011 00000 n 0000038493 00000 n 0000038552 00000 n 0000214870 00000 n 0000215014 00000 n 0000020276 00000 n 0000020419 00000 n 0000020517 00000 n 0000020552 00000 n 0000020646 00000 n 0000035275 00000 n 0000035418 00000 n 0000035516 00000 n 0000035551 00000 n 0000035645 00000 n 0000040726 00000 n 0000040552 00000 n 0000038863 00000 n 0000040667 00000 n 0000216740 00000 n 0000042604 00000 n 0000042430 00000 n 0000040844 00000 n 0000042545 00000 n 0000045150 00000 n 0000044917 00000 n 0000042722 00000 n 0000045032 00000 n 0000047246 00000 n 0000047068 00000 n 0000045280 00000 n 0000047185 00000 n 0000049658 00000 n 0000049419 00000 n 0000047364 00000 n 0000049537 00000 n 0000051822 00000 n 0000051643 00000 n 0000049777 00000 n 0000051761 00000 n 0000054442 00000 n 0000054201 00000 n 0000051953 00000 n 0000054320 00000 n 0000054381 00000 n 0000216853 00000 n 0000057048 00000 n 0000056808 00000 n 0000054561 00000 n 0000056927 00000 n 0000057167 00000 n 0000057192 00000 n 0000214647 00000 n 0000057259 00000 n 0000057284 00000 n 0000057309 00000 n 0000057400 00000 n 0000057773 00000 n 0000058144 00000 n 0000058764 00000 n 0000059238 00000 n 0000059862 00000 n 0000060291 00000 n 0000060868 00000 n 0000061520 00000 n 0000076834 00000 n 0000077201 00000 n 0000080597 00000 n 0000080828 00000 n 0000087848 00000 n 0000088076 00000 n 0000102164 00000 n 0000102443 00000 n 0000121751 00000 n 0000122204 00000 n 0000131072 00000 n 0000131321 00000 n 0000145823 00000 n 0000146163 00000 n 0000163451 00000 n 0000163938 00000 n 0000176351 00000 n 0000176641 00000 n 0000188353 00000 n 0000188820 00000 n 0000190912 00000 n 0000191139 00000 n 0000197090 00000 n 0000197311 00000 n 0000214421 00000 n 0000216938 00000 n 0000217014 00000 n 0000217580 00000 n 0000217751 00000 n 0000217910 00000 n 0000218082 00000 n 0000218242 00000 n 0000218339 00000 n 0000218377 00000 n 0000218544 00000 n trailer << /Size 171 /Root 169 0 R /Info 170 0 R /ID [ ] >> startxref 218819 %%EOF Epi/inst/doc/Follow-up.R0000644000175100001440000001275012144476665014562 0ustar hornikusers### R code from vignette source 'Follow-up.rnw' ################################################### ### code chunk number 1: Follow-up.rnw:65-66 ################################################### library(Epi) ################################################### ### code chunk number 2: Follow-up.rnw:143-150 ################################################### data( nickel ) nicL <- Lexis( entry = list( per=agein+dob, age=agein, tfh=agein-age1st ), exit = list( age=ageout ), exit.status = ( icd %in% c(162,163) )*1, data = nickel ) ################################################### ### code chunk number 3: Follow-up.rnw:160-163 ################################################### str( nickel ) str( nicL ) head( nicL ) ################################################### ### code chunk number 4: Follow-up.rnw:172-173 ################################################### summary( nicL ) ################################################### ### code chunk number 5: nicL1 ################################################### plot( nicL ) ################################################### ### code chunk number 6: nicL2 ################################################### par( mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 ) plot( nicL, 1:2, lwd=1, col=c("blue","red")[(nicL$exp>0)+1], grid=TRUE, lty.grid=1, col.grid=gray(0.7), xlim=1900+c(0,90), xaxs="i", ylim= 10+c(0,90), yaxs="i", las=1 ) points( nicL, 1:2, pch=c(NA,3)[nicL$lex.Xst+1], col="lightgray", lwd=3, cex=1.5 ) points( nicL, 1:2, pch=c(NA,3)[nicL$lex.Xst+1], col=c("blue","red")[(nicL$exp>0)+1], lwd=1, cex=1.5 ) ################################################### ### code chunk number 7: Follow-up.rnw:226-229 ################################################### nicS1 <- splitLexis( nicL, "age", breaks=seq(0,100,10) ) summary( nicL ) summary( nicS1 ) ################################################### ### code chunk number 8: Follow-up.rnw:236-237 ################################################### round( subset( nicS1, id %in% 8:10 ), 2 ) ################################################### ### code chunk number 9: Follow-up.rnw:242-244 ################################################### nicS2 <- splitLexis( nicS1, "tfh", breaks=c(0,1,5,10,20,30,100) ) round( subset( nicS2, id %in% 8:10 ), 2 ) ################################################### ### code chunk number 10: Follow-up.rnw:250-255 ################################################### timeBand( nicS2, "age", "middle" )[1:20] # For nice printing and column labelling use the data.frame() function: data.frame( nicS2[,c("id","lex.id","per","age","tfh","lex.dur")], mid.age=timeBand( nicS2, "age", "middle" ), mid.tfh=timeBand( nicS2, "tfh", "middle" ) )[1:20,] ################################################### ### code chunk number 11: Follow-up.rnw:273-278 ################################################### subset( nicL, id %in% 8:10 ) agehi <- nicL$age1st + 50 / nicL$exposure nicC <- cutLexis( data=nicL, cut=agehi, timescale="age", new.state=2, precursor.states=0 ) subset( nicC, id %in% 8:10 ) ################################################### ### code chunk number 12: Follow-up.rnw:284-289 ################################################### subset( nicS2, id %in% 8:10 ) agehi <- nicS2$age1st + 50 / nicS2$exposure nicS2C <- cutLexis( data=nicS2, cut=agehi, timescale="age", new.state=2, precursor.states=0 ) subset( nicS2C, id %in% 8:10 ) ################################################### ### code chunk number 13: Follow-up.rnw:309-318 ################################################### data( nickel ) nicL <- Lexis( entry = list( per=agein+dob, age=agein, tfh=agein-age1st ), exit = list( age=ageout ), exit.status = ( icd > 0 ) + ( icd %in% c(162,163) ), data = nickel ) summary( nicL ) subset( nicL, id %in% 8:10 ) ################################################### ### code chunk number 14: Follow-up.rnw:322-330 ################################################### nicL <- Lexis( entry = list( per=agein+dob, age=agein, tfh=agein-age1st ), exit = list( age=ageout ), exit.status = ( icd > 0 ) + ( icd %in% c(162,163) ), data = nickel, states = c("Alive","D.oth","D.lung") ) summary( nicL ) ################################################### ### code chunk number 15: Follow-up.rnw:342-350 ################################################### nicL$agehi <- nicL$age1st + 50 / nicL$exposure nicC <- cutLexis( data = nicL, cut = nicL$agehi, timescale = "age", new.state = "HiExp", precursor.states = "Alive" ) subset( nicC, id %in% 8:10 ) summary( nicC, scale=1000 ) ################################################### ### code chunk number 16: Follow-up.rnw:368-376 ################################################### nicC <- cutLexis( data = nicL, cut = nicL$agehi, timescale = "age", new.state = "Hi", split.states=TRUE, new.scale=TRUE, precursor.states = "Alive" ) subset( nicC, id %in% 8:10 ) summary( nicC, scale=1000 ) Epi/inst/CITATION0000644000175100001440000000465512144476641013142 0ustar hornikuserscitHeader("To cite Epi in publications use:") ## R >= 2.8.0 passes package metadata to citation(). if(!exists("meta") || is.null(meta)) meta <- packageDescription("Epi") year <- sub("-.*", "", meta$Date) note <- sprintf("R package version %s", meta$Version) citEntry(entry = "Manual", title = "{Epi}: A Package for Statistical Analysis in Epidemiology", author = personList(as.person("Bendix Carstensen"), as.person("Martyn Plummer"), as.person("Esa Laara"), as.person("Michael Hills")), year = year, note = note, url = "http://CRAN.R-project.org/package=Epi", textVersion = paste("Bendix Carstensen, Martyn Plummer, Esa Laara, Michael Hills", sprintf("(%s).", year), "Epi: A Package for Statistical Analysis in Epidemiology.", paste(note, ".", sep = ""), "URL http://CRAN.R-project.org/package=Epi") ) citEntry(entry = "Article", title = "{Lexis}: An {R} Class for Epidemiological Studies with Long-Term Follow-Up", author = personList(as.person("Martyn Plummer"), as.person("Bendix Carstensen")), journal = "Journal of Statistical Software", year = "2011", volume = "38", number = "5", pages = "1--12", url = "http://www.jstatsoft.org/v38/i05/", textVersion = paste("Martyn Plummer, Bendix Carstensen (2011).", "Lexis: An R Class for Epidemiological Studies with Long-Term Follow-Up.", "Journal of Statistical Software, 38(5), 1-12.", "URL http://www.jstatsoft.org/v38/i05/."), header = "If you use Lexis objects/diagrams, please also cite:" ) citEntry(entry = "Article", title = "Using {Lexis} Objects for Multi-State Models in {R}", author = personList(as.person("Bendix Carstensen"), as.person("Martyn Plummer")), journal = "Journal of Statistical Software", year = "2011", volume = "38", number = "6", pages = "1--18", url = "http://www.jstatsoft.org/v38/i06/", textVersion = paste("Bendix Carstensen, Martyn Plummer (2011).", "Using Lexis Objects for Multi-State Models in R.", "Journal of Statistical Software, 38(6), 1-18.", "URL http://www.jstatsoft.org/v38/i06/."), header = "For use of Lexis objects in multi-state models, please also cite:" ) Epi/data/0000755000175100001440000000000012144476641011727 5ustar hornikusersEpi/data/thoro.rda0000644000175100001440000005152412144476641013561 0ustar hornikusersý7zXZi"Þ6!ÏXÌäªlS])TW"änRÊŸãXa“ÆqÅjnçj-&édV^ꥨšÌ k¢ù˜7}} Š•åöqrŠRsæ‹æãÊ‚Ú#}ÆÇ+˜±’”¸,[J7µ¼5°¶€)2X:Ô ˜Û£`rR#¢~¥LíO­T¯A˜áZ‚- "pæ-Ÿ!}ñaùÈb±O̲ùí<¹ß*’+ZèŽ`o¸1¬Ú³Ï.Ú¥%µ­«´¤ž–½²x%¾g/¼Š€/ý •Öd×$f#™ê)Aæ[0Kÿ*â9—µëYØ}¹3´“ÓOs° ’‹0êÜ„ÓÀ+î¡w)Ñ$6"Ç'vIˆ¬©\‘Ö0¦#Åm1äÉ„¦“J‚å‰ÕÎ&(ð8›Â§Õæè `A£m¡w iÿàpŠÐœ˜Üo$#Ô1ó&Äßó3jÂØXAré'v¥E ‡Ñ[E5ÍÌ.<MT…ârä›E\>ÍÕˆ…O·'KØ\,ð˦Jë°‡@¯ÐÅJnæWÌô6R±§†sÂyþʳص” H€{°{ÿóú§bFižl!ºND‹Z\ç@Hk&\ª÷è¶ÐåAg Dè?KH:qqž© ï»:s¼QѤžÏxGÜ`3Š QÉù= ñ°¢8ƒKøç+ËéqÆ+švHœc\s4Ì1¢§ýÄYzzÚù9ðˆ–Zîéwëè5° PTû0$ l„³u·×1ëñVåŸÆq(ÖÊ(¿±,¯ œx |p‚eKpÆ\Á‘çJ© =¡ÿsð— TËÐG!Ë,C®MÙFSJ§gñ¦“þ=¶«§ùÍÈ‹þ^/´:Ģê¼:Hó¶š &üoÃ?ïÜÙ(L°4T$jØŸ5v¿¿9Õ™_LõšDð|=Ç;J«Ðæu8št“d® vPã,Çcòœaƒ¢°÷ó@æ¨ÓQ½ƒuë>˜ÔDÛoÞjâ>Ã[æ³ôMøð5O×€t8\3þB_Ó2ÀM£“Kך¥Ž«›²{¯YMòpáS5楖U^)–ïiWy‰U¼Ð8}™0nÙfMã Þ€söŠFGŸÜŸbrš‹x^Søó¬\¾²çÝ‚'uÀYSC1fÎ4nÜ “ijw[›ÖGBÿ¦1»¼7„T*êÚTR\w"Ûü÷ñw ¦óP2Nkb¶÷¶¤Óù_y®‘/–¢“E&' T­‘èŠÙ{V£û‹ZÑýöƒ½XX2h‘ÊóÃb&ôÓ+¾cãë€i3Ü)hx«NÚ:Ï,\1Sö–ÆŽÅ–ZÔ$`T5ãMÁs!jË6ü±7oÊ©Î9aj¯:î¿N¢ö+}”ÿ*-þ¶î´[©ßqÔÇuI0™Ø–Ò¡Iëß³ù§ºRž œ¸’±¹iÁØŸÁ>³\kfÆY”D5k½^ §Ð þG¡¿¨o *Ã6(®-Å»—‡J;ºUd´OÅE¸çÇqî1æ“#‘ “Á]ZÆs{Ñ»$.eSŽçäÕVÝM·>c¥ÍÞi}'WŽ°Ïšê°Ó¸68±z¤ÕÌrŠ}ï»kNuB’ÖÃÃaÀ~† õeÞHH(þÞ»¾r G?{ÐQ3ÂU1FÛËöXV¿ëJ_61Š$ÛåA¨_äåRȈ…4©ÃXȉS2›có}«iß™‹‡Åd}$Ê54Ü+ Ï“¨!cÇ’«Ú~ª"i6•£vQ}$Ã3—|Ej£SÚ'r)ïWLBï4Äø¨¼ÍÓ²ø”ÌþP=ì,%®ú)Î<àk¸Ýé D>ZÎÔMö¿ì1hÿ¬µ w‚ß_ DäÚ®sw‰ß564ƒ•³iPOäþ;ÒÞj ¬’ϦÃåû]eà dåMZÞoά‹T_€Œx4õUŒ{( 2À0@4¿y>š–CÂT9ããH‡07¿b¯D/øA'tiJªù°Ù¼ cŒ3¦ó3;û@^ÿ,£ä° ¬yˆÕVÈ^ñ<Œ¶Ý”#=Ãû­^$ÆHeÊ©Æ[ `ÿV—:]I+¹4—’ŽýŒëG¯X#ð]¨«T§Q}RPtŸ0[X-ÝIÆ«z†™„!w!{ãw$2ˆÅÃn„Fœ`KıéÞÔ4I‚i|p€ƒÜÒÝÖP#‰®Q=˜Jl4 ’+Ä4ÌÈ]å©~Ð XAUvzó?–‹ŠgÎ÷N{y¡Üg½ní—BœÖXÍ3~±Ñ(ù¼ ŠkûŸ“ÙܨÂûg-»f¼}èfmÑÄ1ö :êÐÜ-E൉zÉÈÞ`KëR,uÂ<Õ´3=Gm•¯Wû» ¾9tMóYd£Z`‰×RÙÔˆJüTØs?’ˆÍöËýgñn¥³‡{djlÃoׂÕ9¥¾Â$Þ¿rú°€V~UØù,šßìaüoû‚,Lw’uù5dò¶ŸqMô °JkiIÕ[¾œkO¼·_\ïÀ2IÉUKÃ5ì=6­MßÓJLª?éNœšD%P×ùöþ˜æš$©aÚcGûFï:šY†ëŸA_uÍËŸèYÀ#fCŒ´'ÒÈú#$&+ßMæÓŸÅØoÒ!:7¾¦É ¿ö$ð~/)–¥ãþÅ µë ¹ù¿Rõš¹VsÇà°èq‚¦p.µ ª&Æ6V‰m”4±Ä÷Šm×v+±äçq—6e;´7 Œ0ÍWuZu¼‰kyÀ'b/e*h;ŽÆ£‰Àøu¡b¼qxŸí°ƒ£“LiF0&‘ƒ¦2;%DskNFâ!Ûï‰M.d‡usGR§0»Ï‹µHè¾HÍwÜè>Þ œ\½éÒÃUB¥¥ÿJ4rœO“‰ãý䥘Ç“H·P¶—M}Þ¬`Mxó˜péol\ Ўר‘<´$ÃÔ|‘…¬ìÃ|á¼BpHø8>˜žµ‹JÒ•0¡r“‰,vñPž­§hGòƒªõ\§ÂcB+¿»A ÖãÎÍ+ŒpRÄgÎølßè¨â"’Ç.tŽÖŸH•¨xäçÉŒåRçV• hA <2/ ¸óø ,¿U”‘-݃¿¤&s!(¨ÿ¡™|Ó“yó¡ÅG¸qÕO¢SÖrÜ.ÓÆøY^¦:щÿÅBVß¼ÄÀHМ4ã_Ø)òf  ]¿›óßæ4ßñ^är–ÿÌ]uD³ÓäûBÖô¦§¶€r¢ÄÆk-ËìùÃLì­$ïV²Mض]Í…y¢êµƒk“rVOyÌÆ«ÐFì0Îi¼{sN„Ϭ„x¢É…ˆÖCv€9/¦m!"1jnµ)ŠIäÊ•>¨X¯îŠËoù Ÿ”ÈfPNtê®mÔtc>ZçÆÛñ¬Ïð ãq|ÖxûHø•«#K²øÅÑÜ”nÏHyØ«:u‘8-²*B_^ ¼ËšÒl`5Ç•EŽnT]Ÿ§¨M¦œ¯`O;v£˜²"8ó6QOÈýÒqÞ% Ö¶Å€Ô}IÉÿžÛÜK•øW@Rá)Ζ»lRÇ2à´B¦pÔýÁ”¨_2:øF¤"~GAãj†À:rÕÁôÙ5×. Oç ‚Y@`h|n3¼1oîIKRû*xÚïÃI×£c˜FúL‚B®HÂ"~m€Ð¬l’ÞX(ubf~±0\‡¢«,ß*ÖO2ðw “°Áç£PÿÇ&õD©ÒM=a„0ÑÛb@ç¶â m/7_½"¢çÿôçû7ƒgãCe¬&!ÙÉùK>M_ßZ»Vši«\:èýuÔĽ–a¤E;U¹º±pí2:k•4ê<*›¿’Áx‡;D>òõ’ʼnJD‡/¸¹žÞ)­"”TŒì`^ÆùUQdp¿¨t3ȇARžw>­$7ÀwaÐÃܣ]Ø9嶺¶ä©:BD°Ê?ò,üoÀ¨Iôoµ¼›-1s4‰"ÖéUì òîì`vןâÝÐdN ­ïíè'è±O›¦—†ÍÓ°K¨yˆÈÇ(æ£-ÔŠû¹1¶š_‚™¬ÉiBvTŸW¨ñ@ ­Ò™êœ#žøg€Bô¹•V'À;® ÑÄóôý¼Îû€†KÐt¬mƒLk£´X³Ÿ^ß庱$=€´uú“`txÁÒ]ÀI×ÖaùÕ-Ù¾S¢É’·V6ùvþ¿œ€ t¢Ä'Qß¼–G†çLՒ瀞“ÅA@o~©:¹z£j¸“*(Ì—ï´ÿÅÒ‰öŠáÒ×JJS~þW#ma¨ŸÆu1¬õ‰¬u>4ÐöânAîÈà„…$ä}Øß´šp}ZëW›6„ÑB¾'.¨ž¨š´Ó=·­~B!± ½vþÉщ0„øG}0~^Úº‡›SÔgVŽ=¢ÅâËøŒ½ãG7ã6U2¹|Ü+4º<÷MáÅxÚ  ;ä¨7Žëø·LÙˆf ª…¡ Öé6ê ÇÂöyq: %Ìû¾*–oÈKu]½·4C¿ŽUø÷eCÅd͆Ž>É®kI0FB ##¼Êõøª,¦RÈ3äoñ±Â:ˆÆ™}S´¿ˆ¤ìë4¯™ðCå  Ex›w¸‘5JäYgÑ/@¨îJ1Y>ðWwÝ7åu©–LÁBu^šˆZ+œÚ°V3‚á&|}ë'ÑÑÄÝá5¥O9°¢ƒD#Õ":œB=üÚIRüƒ«éØé¦åêY*Ÿ±¦×èIXïq8M=×óºˆx¿tIqÛQæðÇ‹)‡¥¥ÃHâÄçÙú®ýTÊ„:­C¸ª€Ã£ÿ¥ë4•ê3ïÊ^csI÷'neÀB& (Hâã0ýeì<8£NážRøsÐXhÁ„7aË×V·®Zë’ˆ—ÔLê œb«ˆ•4Šg‚¡#°Ç Šk™FàxÔ½mûˆ‡ö!O]ø'¿ ɦ'ŒÿÎÃ['°×»Aþ+Ë¥>ÐÚúu¡œBjáëÑÇùCökÛ¨Ö|râT ÇN-ófôI í¨ÀkUß»äCLø¯AÛAKÒ£WÛrLrrp4š¹±~`!)›2Ê8¹Y}äùÒÙœmdåá&$Õ¼Á•–² ,í7<Ô´om±ŠÅ9Ÿ‚+$:¾ã]«tG×iÚîÂjTHq!6ƒsG#¼ãØvüìÏ'"P(µd®ÓaµÑÒLÓúd6`f ¸uEW;ßTDÂÐí²[Vªö,/ÈEM4®)o‹@IS,(ÒõvvX:Õä ZëÚñc'kç_Ò$Dª^“*çl&Áº|1Þ•Ì]°¤æào.e˜ì§7Š}DäãÒ…·åÙ”O𘆠ièä«)ûÎ4–ºxÎèNoIš*¥†ÄØW3b_™×<‹Ç7P®¡Àw^¡™›B“{HQFÀ-¯j\XþüKG šuZ0¤ïÁRózcéóF&)ºreÀã7žƒ†¶;žBwH,RT3D`ʲ%ÕrºwA^jЇ–‰¬^eQ´]+p¼ÞSG¿‚"´ˆJòW/0 BÊЈf.¾'á½UÁ.Õýrñ54Uj®7P†‚#"Ðz÷³aå ˜@O‹Eʆa¼oâx 4I~-Ò‹‰#Áo5Ûý  3„@æœu0Ø–‘ƒE”üÓgæÈÛæø«—£lšÝäKSn0›ak÷H!¶§m–‘üÉU™DM¼°¦ôc~àWäú_S?*oeA@æ[™4Yèüù.™o7Õ!S±5[#Yžs¿¨Â·ró-È÷~Ž×…¾\Ÿ kYѲ‚ >^ÁXžÍ¥H¨ceºð‰åödzjÿвò•ÅGïój— ×à ¾Iqë¢E€òÎ÷ÑÿÄñ–à¬ç±îžµžóô³4´93Ž=뺳s+˜Q#ÊÈFqY¬¢X?4E~J}#1F>ñÞ ùVW¶ÀÞ OÞ‰ÿÓl‹×Ù˜i¢;YeZ÷Ò–Šgv'i³Â0˜ä«aê[D ’%>/$%ÝÙÉ`5~ØW·`«GqLDüÄœge Ðåí³†CÄPP¿ON’Â=HÂT-â•M{YÙTŒ02 Š’ß-ì¿£=üf)†L|dZ<Æ ìy_)³–·¬í'ªC ûÿ4iE¤LX©Z:Á«½l2{{-LJ6‰B"£)œ™R´€Ð†[&ÍW¯Í ÀK°I +Éd¾w¦_©‚¸»›í«4†£îÀ[ÝlR<ÌMì|[@.³½d1ì ÊZUÈ…âWÞ^Sã#™ú^ö¨þA•IN¹³ ½DŽÐQ$U¡Ú¦ÿâºs@Gà‰Ý!’ýþÊøÃôDï†Â{ªýøàb–GþBUÚ¢pî¿@]x(û“'Î? Òá„ᘭ¯6F‡ÛxÁ¨²"àvá7G¬Ë½ò+E -öUQ¼½ Sµ¿Ï±£ÉiŒ]S§M$€c®,ïÂÂ'y£iù•5|gjµ¬Úí@=R„fe² ÕÉg¨ÐÁnkˆ_ÿ«Ð¬ª˜‡¤CœP¥å°zʾ,º™Äâ+®©g¦FJ·”@ùYBA¥‰Æ¹Å9+ot9 ga w¤õýÆ O#i€»§ôÌ/WXd“ë}*Œ%ã˜5/¤­0Ðè»=v_[2øI ‚`G7=éÂ:ô,²òáÒŸðס~­8UûY 0<Jg•{· uÑF _¢õæV*ñ¦ë¢#q‰—Ž6Ë_ÌDEÛØì8éHcf%ç¶8¢à©Ó`ë/ŸM γI*Pb‚ŸGbkØ—ûð¥«/Í$¸ÿ$ŽQà@P >, ª“g9'ZbˆÄÐE=Ík£]Ý‚ÏjµŒÔX:­Ë!Sq0©0wü 3Ë^ú.TS”L&)™ŸþÒÅJ±5êæ§ ¶øAöŽ/.¥ùý"VTÉAù´îWX¿ä ±çª7á'ã³×­kÌÏmŠL!Ëp?srÈl*»ûôft‹Ý䈔mÇ>D§èG VŽ HÄè•9‡Ìgi¼.;PôöøDXG+õÓ¥ äßiÉ'î3#ôl(Åœ6ÙÈáïÕÊ«ÖyȆ¥{%Ïäò÷aNø¤¹ý®±óßB[Í'+Yp1šh÷‘M H °¯“^S÷Ò®3](ט÷NÎé>Oñ&ÍVJŽ‚ÓlÀèòé,¡¨Ø0?˃å“Ë7…ñœòɳõ‡šéÚóë¾H_U[%Rîþ2íW2TI¶;F ºb ‰úÑéØâ@tµuMÙ/]—z¶·‹ÙMý6PûÌ9¸N¤ ÉBoûéÂôSV ~‹B4Ë‹ÖlªþÂÒò=@öÞ®©‹á¢YÊR§ƒ|Ù8t\Æ3"Ñ>šÆù3ó—C8LAï^:ô¯ùq¾Ü;RäÜÚ]Û:¾á¢:Ø:Ïž]ÖÖsÓdÙ³Á†43ÇMýððFnÕð[Že€í¬&X…õY˜óê= O&8³ÜBkaÜI×R…:å)`ÐöN]0š^£5Óà”pn #A½÷wÚÐXä)`½Ó–~C ¬ûŒBF¡äM“ÄþÍP©—< ¾®¹¢Ó´¯ì>ãZ²ÿš€™Ýf×ûuúë,ž×ðǹ(Ð\´€éù'2:`S¯ßÝ\h­X0ô}\ß"by€òÇQÌÈ<©¬‘ '·Ñ.´4/ 'k8yANº¥(6S¼QgóB•l„p‘¥ oÉ´_•wà·EßiÝ‚£^EªÔBZ!yš!ˤ'æo«¦iryýû™D(β¶AÂŒêIëóVKÃKZÂQÔ„µXÞ:j—Cwâ6Ðs¨KŠhGçÓÞ¹B^…Lî¾8Fl­¤îpö\£ÝÁyô¦*`ÿ—W7¶¹,aÞ• T&î=†«K‚8ú“"äÙ iþÏc¾t•aÄ9› Máó"È€/Yx¨Àú§`n¡c;u«l•ƒâ‘Éæ,¥\È=mü«cEšŽñsæm.J}5îE<óVäWý-µåÒš?Û¢¸‹I—[%ÑelÙHè¢*RØ %P …*'DC…ùîv_5OŠoŽ®ðƒc|B˜nÁ·ô)ÎpG ¶å‹¶¬í`-ô›T×ÎuÑäèSn3@•¢½öü¾êCž·tó~šÒHóðvà;±ô¬3†wPÁs§Ó—Æ€Í|Ú98}a¿Sá¤÷ôÐJ¨F§×$­gåjÃJñTÊ$©9Ëé°o-±¼WhŠqÞ"E´¼Rõòh3»rÖ •¨Ekb›·æ ÖhNMônÛkyï|%,o ´¡¦.÷3 4¶ŒüGs_ÌO?Aþöë‡Ç’B$Є<Ë•é[оéÐK4ë D-©{Û)þ<ôÒª“¿MôóÆˆ¾¡Æn¢!ñEof\,Xe/‰¬h¥s½ç„ÛŸ»¥*ÎÔf¿¥.ÜÁ¢Á*Gƒ€µ G@½<ÒÇY)D®~äžådÙ8|€^–JlY³u)VH`¶üй,j9%"F6ï­OÙ¸WíÕïÌ5ïˆü„Χ½ò qžqS…½}Wµ*`°Û‹Ê#Ɖ´Þ ¾3T7”9É<ё핉†±ºP)Å1ÆÍ Úö/üéù)³ úÕÆl›ýòQñ58T/T`†ÙÏ¢Uµæ˜p‚m5 ¦1¥\E„ê. ’›jCù©G+ßõ>SIßtp¹6Ôýðqf{€YX$=ðñh4‰þùµÖ×SòÅ5CzÍe°œ SÚÅ7ºð1Žÿ¼ê=þ#pËÿ¿a†ñ£†€Ù±Oiö™Ïù 5¢c¾Þ0íHœh°SŽEÝßW¦1Å´è·ÄÏ—²ÿihg//z6³DÁ“¹Â¹™õ )æfô—’"ˆ&U舡v2¸ÿ."×÷â$3õw³•/ÐÉC,tw‹—´A³X7Ðmãô=¿Ž£ ?òÞÛñåÉcéípÕ–ô-v/í×l‡%û˸LÈAÕžÅɦ& t¯>e8éïºÛ‰µ¢Žï’äêhð½Ì4°øÒMÒ= Ž$v»²X®M—|@Î7N|+ç‹\ëu×-û –ΧmN´rc vWåÐ gQ´íò=^ïͨ–jùLü”_É«À›×²‚v:'’,0ó·*wÝÚuö0çŠ&ÄAγüÆæÍyàLÅ ãO6ܦZÖM­…üäœºØæóz&d«¬1RPà«G‚p 0ܧ¤6÷pÓ-Rn…KÔè(tez?|ß*I/Æ‘ý<#ŠÐJ‡Â`õÌJôpTÉ{÷&?Èš¢µ_™?¦êÝ–ŽK&pÃèmáw¦Ê„_“”dpp7iª8ÙBm»+讋ÛW€_|åÇ"¤B ZÚöó$bC.Z?/Šªˆç¡ Ù°ñÙv@Ár;Æ0t;ÅùÚwh«Q²¸FkN6怛*ê2¦IÕag¢‰_Ñ"5~|Áê‘i‚½ÌÎ]Òä4SÙvxTÚušå·Êˆ/¾Ò²e?ÍìÍœ/ë€Ú¤Ö¢±åû˜Ñ²š·/kVB‡yp1vQks}þXpù‡%îí-•¯ê‹…©ðü>RÖ›ý5¨û’Ãu„Ðì–ê`òPZË+B¨aÎÛãBW ªDÝl™1ÿ#p#lLM¢dCuÜÞŠ³pSb®Ú»à}Ï ¨«f|‡ûG˜}:Œ½qÖO#RP9ò4ð®Òí‡é“öF¹¢ª–îóýØzM2u¹é–]ŸëzÔ.ãýo_?AbܶÞ,ãvÒaÀ³üÖU@ek–4¨E¨ â"ƃԉr…Ð#KÀÁ]}®†{27l_ Hî kÎÂǧ&VbùÉó!ajÖuG+Ç´Ö–³¬Ô›­ê‰þ}q®N¡MÀ!ñ<®ZÂvùm3³ôr÷Øn3YéÞŸ¸×%[¾’¶<ý|à†5 &øx%‡4JÃùeZ!/º ¯ñÈ ¦ÚXøtèEob4#Jn›ó¦hÒUD 8'­“…È”hò§åÄRÚÿƒW+V;5²¤|Q˜¥k éMM§yãtÈW¤ZÙ„òEªŠmÌ §—å°r iTdœ× Á~ |{b£–JKj˜Òú¼$ÉŒ0À±‰ÞaÜ`¨0Ô3ÄX²Žðq‘õ‚Vú waåìrŒfº-…4–v™tppn3¯ »=ÖjBoA;6á²à7ÿ©ä>U®!²9^¯…gØòv5 HÍkƒøtØ8Xo¬l¥KNÿJÿH‘½ÙDï»üSœ‡7d±p €Léi°/ò ²çJ–ìÅR6 Ù.ç;&Pú÷uqWÜÂ䬇 ÙüôóÍ,ÒpllçPƒõÊ¢°?€šÚÒ ;L¯°Ìva1”ô#òê}AÎ,Q¶­’À:¥) ÆéAcÒ@”kçä@;|HÛ¥žGÓ`>íšSŠ6„ØèD€ð%lsM"„ l€¸Úü+o1\O!zTÝg¯í5Yœ8W|ÿƒ’HB¦¾<}[/UsògÿYæ#üŒtÿ­wõ¦^I4«ntßmª³×w,±ƒ*+ñ´¥ ù\m¨0£F-b4‰Gf h©ƒq!ëMÑT#âÿ—÷¬÷À´$)o¥„ÚGy ÍC7…`ë¸3Zá6AŽš6f;W‘>6†s˜¶Fã\ýý·õÜa©Ç@ŘNh ¢;–|pÙ±v¥Y}ÊÇX¬‰’£PÐÿeP…º‡“qÒ˅⺞Õ#]¶‘_ñÖƒÀV¾U|E Œ&F0¸°³{HÚx>âÚA¤[Í2ô*¼ï=Kص›+rº Žsh4'Šà¡3RÕÝesýnGAü¨› $ëûQ‘¿÷Ôƒ¼Ãv/a|ÝS·OÎ%y`ˆÓpä=_ÑÕš±Ž¼„Ô½¥R#ØEƒ´YTQ¬ëF€žqþ±n³ÇmHÞk<«FS×n`ž15ôæ·þC‘e®@‚iŒñ¶nÉD/Þôœ´ÛÏSu*ØÀ r4Ó.0Í-!œû'=ˆOŸŠ—C¼lG”ˆ í©†ªˆ‹/`Àuµ¸‘téè Tëµÿ_”RûœM»i1çü°Nf­Ñ}O†ãù‚6%‡¨—+µ/{Ñ…i} “ݸ¡,=qκbx½¥‚´úrÚÌìÖ”hÇQD¨D:œÒ‚– MÌxé . i²íhElNZyv)ÕAá^lK\3qÅ+残6Í,ê¬.fÆÀ_ íÐZˆïOs&Þi¶™Î3lsî­Úó6׌å}?”o¸HôºGˆùØ¥á^ý •­©9iïLÏ£øS]h°´b  œñˆ¸7ÞrRkÚŽ6aN¦°C!vRÆbc>I†ì¡:OmÓw6M¾0¤· $H»|â-ö¯ÔyuXÅŸ7Rü·ÞXœ_ž“Lôˆ6ÙÊ]'z‰–‹ñ ¶Â<®ÞáßÙ¼0;€¹¨Ù%9¢Ñˆ4 ‚!h €ë»h(¶)¿âãKd§l8†5Ã-vžP¯ÙApâæÅjY¢VD_Àø¬}ÒöZz²âÕêž)©bYÊo¯Dèóe‚ÜÒgYú'½þ̼‡Æq•Up½um)dGxÿØVÎQn×'Òi$¤XšlÎÁ”:P }v’“ŸR-MËè‹€Z4dLŸªJ:³Çª²ÿÙ¹#¡'Ú ^ZøÁêè®ié‰Å‚œvëÜþ ÈßëJêBœéŠaž=Šï FK/DlÈ÷·ž šÀîM±¼²ZtmmAkW„GÑ'„Ë«½´jùÀqZˆ ‡ iÊFÄy‡-öЊ_WÓÂ-JÊÄÿ˜Ìó‘ ÈåµÛ•ûí<>@‚›Ú)5-ù3#E¥éL´éS§LÎÖ®,Ú¯‰ÎRŸy¡QáÞ œ«À¯û‹ºÂÊô6nDú҉ز§@CÝR>ÉßòÉ3ÿÝ$„3#†ˆ:Q©°<’¹æÁŸ§ø8LüRútŽœ¢Æœ;6•ÄÞý»ÜÕ(ž<»‹É‰W/B+€ù‰d9)_R\nG}ËSí x:¬+‚™>ô­³ÁàÑôµöèÞ²·ß›þ%ñB’ïJ •Ôí<‚åèhʺ¶Γ ãù³$›R9o‹I<¸’&8š?RjÄ•TÚÚý#~RRÐú:g“ÊöÎ)®î8™M´\Ô{~(ÇW£$Y™ºïɧˆc&0ZQä½™аÉÛ‹C.(o>qüùÑü1BsúY}ù¥Ý!÷½Í­ðyÐôâP}jyZºN^dñ篞DãþÛŽÛP|á’KK¤Z~à±1«M0ŠÈ‚µâFÙ¼ÒèÄ“MQ43ýM™Ãø]"ò TíÝ™½ž†Ìh§w“ÅžÿsÆ‚éL‹'¸ýÏÂKÖÜé²·îü!'Çè1ÕäR¼ÀôÕ4Ç­wçL¤Ê7ÖÄ!H,Éõ`Úé.¦¶*‰©jþÜèp@äøµEg‹-öEÜÁíãï£JЋÉûj‘iü¸gúÇiíø(äå\”R ¶:˜†gM è¾k¿â F*ÌÊrˆ¼…÷–¯ß´`‘îÀƒß|Ygðý4fÈd\fFME $1z4‡ÖV›jx&8m³C§ÒŠÛl²E!ì¾×-©ÙØd€TYÝâü_8‚}% ø7áÞÐ{\>0š{‡­Kö:35\ˆ˜Å˜Âs•ø¸­õH d•‡½¨d:{­k¤N £<÷ë{êÉGO¡®mVÇÓÙ#åßæÿ{çòC~a sx À+Sï¥ÍSe¤]v¤YEÐ`½&ÉS¢—D6=eŽ‹ÃŽ ôŠ–9ثʜ_Ö¦Sß¹ð¸Ç\ÃKk¿*k×U›e#+ —Õ#esÚžu156*®›Ð¤Y-c’|›l‹¯J.OKæ¦œêø „[ÇåÌjå^ÓãÓÀã¼RýyOsý²¼žMïÝSùØ5ð” äò'6cW˜7šû:´tÒHØÛ'Ç«6V6š°9Õõª()—﫳ëßk ðb¿,v?¯'÷HH(2i«×Ý=oÁ˜Kw+jlîßùm}xd tôœÎÑ ˜_Ú¶a )æ°[œm•1”Š]\zD“§­¼‡ Hu¤æ–kçÒz,T¾Fñ—æÞ#ï5þûZO òz(pϾOìŸ]ð Öµ²=/öH[ŽÈ œÞS_$%“¶µîüqï]M]©C²Þ®q™ås… Ä£ª ÇÇwºaâžÔ Ÿh8‘Р€ÿd™×ßw¨ˆ.ÌN¦I㺸—É;ÞÕZÓÅ7aà Ïwy퇻\Ú¿)§Çå`u=ÈKÓ Ï•ÚX~ÞÓéÍv¥¼¥¸kGHîÚ22èf|ö»¤0^b•i©»õ¨S’T%î¿ãïšò:ì³Ó¥1ø*û&öZS–<^Ï­’ïb.ÇÜTï•Éh©¼eÁ¯Ð×"9i7ÕÁ“|1×Ñï}í)y ¤º+pÕ½Ôlˆ fNÞ^Á}"1ú1€v¨¹ÔÆ!dgÅCÔ$‘¡= cL!²GqÀŽ´n§ €ž;*Ý\”zè´fö2ÏXöŽ 2¤¶„ñžWìÌÖ=X<·B”á’Š¸ŒåK»ðN…ãþ,, Î¥!v!|Ö»^ƒš¸_Ì‚üË\‚¢*ž°÷>3%êɿއµÌ Ï6$̼ïÒ(Cƒñ|Óôu BÊ!„ÜŒî z¼Ö” ˜•1ú,‰á^Š':_|×RÌáÕ9#¨rc¼#3Eà%Ýë°IòL²²l…wªj™üŒ•‘³‚irÈXÕëËÙšj“0©Â|Éà9ÁŸÏíý­Nùò| šøùº…fßæ O[E‚N_ÒúÿϹ›b!U±÷ÁÓò Ou1ŠÈ“YÜŒ•¥'év€²yZ¢q ©fäýuuF–¡ âD£ÁSѳZe{®®eWÏ ®;êÂFÒdèè/8\l¨‹¾ÅsRî«sçóû©Î¢Y@”ÀÕ=3Eø‹M#f[Y õj¹Pý—„†XT-šìñûý8òÆi”0‘È«¡Ì „s“1¤o4\~‡@Áe©Yöò¼æQ¥˜ÔËg®:4>¸.ÑtÄ)H×ùË+n Ú™ü…Ç@@1R$У2g²›0«û9b Âit›¢ýNQ¨,œtñý(òÓU¿š±I”@@Ðxº3z) ˜à™uP*Œ”Œc¼»Pó?‹¡`¶·R¯çGS¿7sµ¿¯Ò_]ñªV°`æ½_óð…ˆ÷/f¿­MpSQ|•=±™DQôor)­.Ù%*2 4ÓK:Ÿw{›ðÝ«@AÔÊÇ' 0ž®¨0QÕb~σ·t$‚PĦež0äáÁ¨6Y-˜¥•wðU÷a=(†©¡ðeó$|«— Æòœ“xXÔÁf°ÄAÏ+é™:_´èïjÖqsZ¡*X¿e@$IïR)¬(!Ï4*î× &]¦¶£m„Ûg©˜R-»66žJ0¹Yy‹Q൮h"©ŸLʘ(¼:ÊA^yu{=¤ÃJWÞVáŸñH€åµ520¦e4fùAkKÿS‘û(Zè£ç гäÅrõ`¹ÍÅ$v^á´¤£(€.Fø8Š=î;Ææst*ÖZŽfB‡Äöðv\9%Þ mÎgû5³h­ÿ %óC÷ij%lUZŒ0Ã>ùo—Ä!ŠŠt,¤ß°ÄüKB]ù‘U£ÇL0(þV,Is“g½ÕÁKÀš¨móø]øH¬÷Vé˜YÀ% f\<$'æ-G `®W¦÷ÜJл²ƒ/QýA­P%S·£yš }_yqM–Fì0 Ø¹Š€LúÒUg£øÝF¹œ%aQÐÃ&á®Y.ð2>°«¨Gì¼u÷+ãu éþ2ô)Z†ñ1}¢#%j†®´ãÈ^Æœ3…r°Ë5uÖUn8HâùøŠ¦‚LBTE„€úQ³U¸(u°iòàü1‰Îù?–N¾Ÿ™ÚÌúoˆdqlÿWÎ=h`®ƒÎ|fã¤Æ?§Ð„C}îZÕ…cÓLʉ8ò€çÏ\"3ˆ]¸òÌ«’þ¥å®›²”½Æ +ƘiBÃq³wí¦q<x,qî‹\´ZFúBHÒæî VwÑÉb`"*ç‡Qý]RJÆ4 ÿ~qmV\‹Ía§loTÏ`u¡‡KjúÚ$®ù#UB8©µÞàK}pm¦³M_¦PÙ~DNwyþ‚÷]ùÁ#×€ÿ)Ǥ3M-6¿*ÛÜŽ«µÌy’þØáüºçJ­õ]ÎÃN!äfp4Û–lÇ…zƒOv¥åŠìКº=Žgvl)/öãhhÞ–¿8R˜ñ›˜š! ã‘9ÎÏwëùáN>ŒørcÆ;§ôÀ…Å+¿î¥Š™P÷«Ô¯†Þ^öÙO,¢ìLƒ‡OŒ5°ÖoÀý÷òR"¬„YO„%žvg1*1Ý)=¬[s³2ú_D«(.%qí‚Ô¦Å.*åÜ®ê^y@»‰AÖnĉ…cFb zÔíJm¯Ÿ¦Ú¼ì×x*ÑŠÔpQ^J¯DÐtmWµVd©a=ÎkÂRœ¼Ø ##§Aå(jÛ7'Ñ¿N½Fr]tô£˜<× nÉ`=ÒBÄqhå~Þà“8˜_uG#>ËåT¹¼e"1ίÞ`ÿ£ÙLg!c[Ûñßv(„öl[ÏOÀ•1+Ò $|Lþpðb®zcÜ`1Í‚ç÷n‹áU…‹€ÇýòŸL_«d¸0•9ÕòG[„G !¸¡i&!ܲºd»†Q9ƒÛg]ãµÁB _:n‡câqlh•ü b¬½x|p n&{˜ö"£½°Óma9ÅY!G|,ˆöjƒè3V$z<©ãF—ñþÀ…ª_Þb·Ÿ4š«¥Üà;å’):~±•5¶èÍ ïr¢«­5üác¸*Z~àíZíÈë¹jëk6…¡tXô|³DϪCÙ°¦†Úú& ®µÛPFÏñ H ‘AóMÕúÀç¤B\¡!^\7ÕîÄU@ ¨VV€¦íÞ¶µ\‰ùewƒp’TÞ+õl4³–Ñ=Ê´:"iàÍ8u⨮$'$¸‡)wîøyÐRK’€Š§GŒ‡ëêä!¦bªª¤?ËÞO£`³»r‹=—a­­â a¡xW aAÈ`ÉÜ'{bÀKÎÙ‘ÄVüÅxâP¸c4¬ùúp Û÷!Õô˜”cCV‡NjØ5GÅÇ67ä6ϼßBÁĺ ±êQI(‚NãöûuW=LGcjeF˜ÆQ“d·Ÿ˜—Ψßë£?‡Ü¤@ò…§2†JKÈäß[èŽ/6VLÿhüPŒA8Ç}: óÂÿÃòo6´Û˜A®üØp‰s‡O‹ix÷`ˆëÎè’fßàuþŸå€S ˆ´ú_Aq „ Hª¥¯§\€ëúr„Ÿ"ÀDˆÜ¥(R¦AÀƒ{ÇÇ­ÚòÝé_@ܾC¥Ù”Ìvju<6@º¶­?Öú¬ÈñPŒvL+¸Qä… &=?j¸g? ö]ÿ\éZ+q·LgÒŸÓ Oø©ƒwXkø3h*òÍ-^¯¨ g` r†È±´ÄÍW?µ«•ÖìA“Þ6—e(l»ƒä~íÕ eÎz°áÇCÚÅ :jK[H¸éòKý?võ%¿"Þ/}Ñb‰Äyé'œÑa\U(oGNaÈÎW‘N›ÚHUôÏHNÛ ƶöSíõڄ⺚±g gÓOˆMdC)KïÖ:ôû/;R°ß®{jb ´K¶§ÅOiwøùáͼ]yw‰cÚ9ÜÜ0n §Dùt­Ç­–N©N–SÿuëÚFgwÈ8NÿrðJ5?û¥qŒÈ! ,’cê-kvîÛ†WÝq”zÛæ50ˆ‡Š+G[Ïï£bÏO}GãÝ|¡‡¸ž.÷jW$x¦6ÆvœcT'in›\ 7_ÏÞnùÖ`|Ç" `Ó«0€þ*`χ Ä jt¿O¿ Ít¡Ôâ2AvK8ª¨“€$¬°›.l2Ýxµ×8eãN2-š^¨;015WÇÛ%Qœ9)DªÞte–5¥Fgðîž>¶#sŸ0ÁQV’Ê}ÎDùÿ Oœã sJG?#‚ñÁkÃ$%K÷7&̗݉/…þ~Zis Dvµ"#jÓK‘†\™0^^ɘÁž&æÀ2dS«.19Öÿ-£èßÎbÂfuàaIùL­çz¯¸mŒRšcùûóù’žæ~oÈ? ÎS•¶˜þyÜ@¾·d6WYÉÙËqˆõRÁMY¹Bæ£9DÆ"h,ĸF@k P3ª0<É™‚„¾+å©eËÉxëHçÔÛÍÎ05³ ®Kyï1[Ý0S`}Å4/°?¯6aÁ.Uõ®xiù“ [Äv…a7Uß<|*Q*ðCŸú’¸CoªÓ*ÃÚxüž’G´[è~g¶\ [}Âh¥Ü\PTà]œå'¦76£³eº{Vɽ«†:©¨ÀK ¤Ìˆ¨ Ø/Dƒù[mýæ¤Û< .“ñg[†d1(;/+eA”ż‘F€GÊ ŠÎ FÖè¥Dsb]úR?Ý*• ²Â>}ÑÌ+|µ–Ÿ2]Ì»uðŠÜÃ?&€ÏŸª‡2óbPŒ‰±­‘®TÔpd«ê‡áGL5š¥œý_$ÓHó[‡Þqºá¼µu¶~4¡sܬt|5%£Åp¤Nšd ’ÏRÍß+·ˆ÷ù(`Ç{}Tð?}Z.МÖÈ0 ö…uœ¸JøMSÕl‘šsó^Hé§¾ NNu¾ ®ø«€× 6êöŽ|$æ÷¢Çe>ÿ송ë‹ùkñWæ$Î…`ÑÐi­_%;kÖÄ›W66ì ×ø ù ¿§¡ ž42ð ¦í!}}qx’Ø*o¼âU kè@€;ÇC=Ñê´€µ+èË 5Œë“[ºáëÈ'+?o—aó*R¶Í´qõ›ÐÝ&\u1(Z2¹Œl‹B±ZEÎ*í’i§VKÜ´ejf‚»PÀeGlñž…¡0ýì4Uõ•FCÏ×µ¤Ó–Åa0!Å1÷K}ÌÍà_WÖyûÌ×rÄWÙ3ù×óó+)˜ Õf(®SîXD)vŽÊ¢&†KÎ=Š…mŠ~¤¸­0Í €~Ó`š¶VÕVõvÃá.Lî…£LxVGýÿ¨W¿ìñ;Æ$1C©=‘ ¥+5#û}½Íòº“ªñÞtqÉ*VH³7þÏ}”0üÆQ Àß~µ‹á1ï¦²Ž¯,÷Ý}y=ê¹ïRr«,Óº*ÕWJ¶ìkÔ$H÷½”o"¾È"JÊ:ôøfÑ‘‰âfž·é9£¹«)‘Sx{Gà>¶©ï™ÚXÞʪØKËø¥„¾EO™ñÑ õÍŒ¢´(H^”úyôÓÀl¡èdƃr$Ôä“:ÏØÐûô•>òÿà“¶•¬.Q3†K~Å‘‘ ã.mÈä–ŸBÈGŒs1 ´ÑöQüÇ0eU »!¾¤¼– ª¶o×a`¬ ,•Çæ8}±(<›R•Êÿíä$@z2º = "íñ‘„l!ÏÍp/cŽdè4ƒ…–Rô!ÿJ1Š„"tA«,‘÷Ì䜌~ꩳ¿j¹5]sií…D¼ã Vg?UR28Ò•SÝ%%“QÎ- €äö¢mþ6…à-k]«–Ýo­î2½ pˆšñ³ºoØXúO¶œrÊUÌ[gê*LŠe†îã Wãì—j cCý¾‘#Ù?§Á—Ot6cNσy!ƒJjrÊÊÜX’‡”,Ÿð ñé›ú»â €h†~圫ïÁål3œõ5i/‡uZ‘/iS¬Þü·iÏ·¬@ }Sé}Ü/ íBÊLãT|PP<²y`£GÀi„Üysj‰æí䦑‹+sOŸIë ?ŠÒé&>ëÒTy¦'Š–gðÚׯ¸F,Í=I¸EsÁJæØÍš资Ywð»Ó³LèÑc¼÷·úçA ƒhx*Ý}¤Ùëñ´ÌøÍÆå"äHÄb}m3¡sªµa×67~D§!‹"}gcä±Þæ?¬]꺸Œé¹ð ˆ`U¢½¦ÝàûÁÒM1%·W³+‘œdÌʧ'#¾Sx×BËW*‘h9í#œŒÌV)DbsÊ©ô´åFý‚ËI2Ü‘½¿oô=+T^FÕ5¼å<±æ|:bÈÔ*%Äga÷”:Ô•;MXt°¯©;zOø$kû…0V^‰+û`š±Œ ÂjrŠ\KNÕòâ„Øá¡µ}ÁàãyññGs«j\ãQ€-•ös/ïs_Ã-Bï@ÉëDÂãp :a¾@xå!,Â+ w[ÕH©'‘-Ÿ˜Ä4¬¨Å Àbÿ½Óv JåÞ¾`š­žV˽sÊ~ç‚ËÖP€Â{Ä@¨Ï½^¢w¸ Omút%ÿZŒ*h¦ +,úWý‡R>äëḯ;­Ç_,Ûb|?¼²BÝB#ã,¹Týž”zæt“/‡®"5cÕ$l Ù…Úbìûþ¨Ã'¬:D†@ƒ#“E‚há‰Úa6«Â£ž‚mî÷¶yhd¤ž±qÑø'xõôvÞŒŒ—7ŸÂzuäZ”°bn:Žr`zW¢'µäè'¤ÔZ…Û@Šž¾—ö[Hýý»A}vÏ—|E .HÈ5|¤$;LÆ÷©÷U ™+ø†´ÒsŸ…¾À߈G‹ëZ¬¿]a±N[ø½¬$¡ÐÙ¦×#²Ku`j“¬.úÁôXÕïT)uòؤgÿê”nÃj`Õ˜‘ËM?¡| ÊrD<Мc&)äz{ mkµq ¦#ú¼)=g1%ðí¢ðMæŒ"@¥êåGjqEF×»vÀŠë4øF—©^}£Ââó‘KQ-ƒîm¿ã:FS;ÏÙú¸ˆÖÑ+E+ó^’ž”/^3<_³ð7gUêoZ]|ó|]-ßNÜG'¦¢I5—âèÑ\¢ÞØÊX"脑Δ¿Ö&Ì3*C¾å1f«¦º¶ÛJ î­}è³¢´Ðû„ÔObDÊ§Š¦£úH°R…c¤â²Èsr½g°I=9Ù)FQÆÛ¤“*„N@XtöÍÃ=Ü5c(ôr˜?,¾*‘ï8TÁ(ßc`å'RE»Ð`AZ·û+Kâ†úhëuÊc<™Ç¿tHLF‘Ò‰ÆeÂÖmûÏ* ¥"­:² ý†‰#‰‰efqôn•ÕØ÷ÙvލÞ7E¯D#iðY«&YÍgGΤµ§*rîpXŠUÍZUeˆùÀþŠ´ÜÚ†öº¯ý°E;—v%5+Á#o¡^¶”ݼ|¶zž¯+rˆì‹ë;‘§K íÂß$õ–#HVFŸrì¡Í‚:öšìZÑ‚'ñ öCdb\"RUñÇ£˜†Þ×líFE7‹ ób  ¨t# ›«Fd‹j—%Ó @C °s´s\±}Ä(eÝx¤ÃÒ9¥œ¯À”ÊŸȲâÑŠ½Ç£'›ßP»×–Ž9˜«êtÎOø0|<«ZK†—„«:¸ú Яò””².…mEÝýÖÉ b}0cn ©M•ï̃£ˆYÌÏY‰khSÙ,áêrê)‹bu^٩ݧqËä’Œ2êŽl²ßךM›‰Nøžó·×(æ! Ò‘/V@í…¤» `ò ¢Ê÷&ýõ,ƒ@­‹²wÂéÚ²E¡;PwgÄ¢8ú›t°ÍFKô:'gûˆE»»†d)Â+ï,Àâüß;L€iŒY¨ŒñG­r”JÜ ˆƒÆ"‰³ýzóÚ÷½ÉÇ.{:)XÈR—+Åp‡©ýª*%x­‚ÒÊjÇvŒ8CF»P#É÷« >™!(5´E…u°nÚVëµrP^Ô×Û¸³h¹Ýþ¡Mß’Þ+ȪÔiÅ>‡mèýIšÕÚüB#‹ò¿ÀcŒu¶üïvæ˜dǦï=5Îv^S¤B–½—l Ÿ"P,ö¿’FDPjWXx'õ£I z°ÒIÎU °¼{ê\%àÜÅ4àï×Ӝ܋C~:"³+Yãe?O]ŒÕ˜ï¿c{µcØo9iä z#lVOu-éià!®Ùï(Ï=ÈR@8 ºŒ¢B˜(¬8>¨VDä#Ù‰Z„‰5~ë0tt -G²±$ x÷¿Æ†È<,Æ©¥@9ȇ˜©F€F@±ËÃæV®w_þüÝßúJBe¡=­h&\0ükòìëJéúÈ¡FÑ 3JjÑèØ?aýv©EOIÝù­ª=½Oh¸‰[µFÄ}÷âàL[rxK×eðì}š›V²“ÿ¦ŸHƒøØ‚tLaŠãÇÑÌ–ûà5ôpKsÍßjØÚ@%&4!8Ȫ‘IÛµSjx¼èAúªúbxûC_èRNSÌ*æsíú \Ñ¡(ƒ(š¡õÂÿð\—ã¡o”ñG&ˆÞÌø^0ÎZ°V#OqokZô´ ³cx`ªªÌœ÷Òá‹BöÊóúM4M…éd/IóßB(3ì“ÅÔA#ñ” ®ï›WH$)Ò;br÷ßmo>c+^μ6(XjÜ­Š[uV¼>פlŒ­¿«õ}¸6ùiJH4¹¸dð[wmU0«ÀÐ#„T N¢s ©]^þ¶e$Uâ?hòA* ô•9¯=¯èµ &íù_öët„` ÛiY=¤Ó|Œ\ƒ#?K‡2¾› ê±-.›¦GöP Sha P”±©x¨a‡“Hz–‹YŽ÷ç©™…¯;È䬢J<4–…®¾mc}þÀmYo¹mH jŒŒ^ÂAnóÞ2×}0jvÖ©Ó7ÿã»ûKq_ʳ’¡9Æ$^4 ”!Ȩ¸|ÌWû¨8utçèœÚ\‚çÄ¢ÞŠ‹ž™/% zJÎã·ºg°¾"?|5ësŒe *ø õÆæ©Ž³Ãê¹ÙãÓT™šØ„ê\È<Õû›‰ôïJðHCë]4}üÝC²„w”Oö|:9@‹ÿ4·ôýÓ s?oGÌ7ñ¯ ©²¨*GFðz²ú‘ =uns:mxõÂÿ㇠ÜVT„Rá+Oeëó¸ßdë9S&Î=j5¸EúòXâ¶)CB*ã4€<¹Ÿœl±| =Q$×FEÅy‘ViUŠ«á¾³Á#ÑÆÀ˜¦B—*^šcÔ܇ ƒç‚ÅýY{ Ïfn휇ðZÙ©®¾U-†zT)ÄÇ1Q'¥²Ìùl.òú£ÊZ® PPÅIJÂ;ê.` ÝtñØ sïz»9Õ¿r½w®e“–ôǺkõyÖ¾èý>ÇÛÊHS­7HBÈ“R ø&òý?;èÖ¸¹ájq(uÝ—L\ÙâFè€1‰nÄì…¼¹ ÏxPÝÖÌ8bÆÝý˜~Â`ÌãõYÛY‚1ÕÕ18.šžî"7¦Vü»ú¤ÌYòZ"'ò:ϯ¼XMÚX™FN»*ÆûºC_=©Vi d ˜ôd3ÛK H®wx&S‹t|³óÒËc4.êªKu󛯆2¯õ`nO!»ÐÉ‚éý ØEjvœYi…ÄØO†Ã®—ÛAüg|#4+bÒJ!à 0?Ôýúd´ðÝgü<Í¡Œ\X ¤~™s$Ô‹ ÒÜ/’J|¥Fadz# P¡Ávþ¸¸x¢=»ÃÜÄöÉHU4!t¬;W ¨ ØªÆjU@Hœ×G­Zq’^+ýġÿ2žøÕ•'jíh«Ñ)~L‚8µ¿°CŒ¨Mj\>hUz$ˆÊ")ÞoO@Ö[8ü´«·£‰dµµVÍeÛ@…ÔÙó+œ³y}Þ°$~r³FÎPRuò+•SB®MKócÈw*ÃÉë/hó„:k„„Âù›—öXÅ'^Í_å_‰ílo£§YžËæP¸×3ŽÌ>Ps‹s4¬Étdq#+poñÁ1}z±•½•p¶-ÂÄ優­ž§©áÄØ©pp±ûЬ™!¯¶Fq/‹mEÓ‰)¯¦íÔHÛ>0 ‹YZEpi/data/occup.rda0000644000175100001440000000045412144476640013532 0ustar hornikusers‹]‘ÏJÃ@Æ'»Uh "ø=è DØúç&"¸]br16%‰¤b>‚ö| }ï³îL¬30ûûvfv¿°¹4ö0¶1(P{¸j”…K„9ÄÜ)Óôa |§`”œ¯ÀGr§´ïëI ¡ý ÍA>7‘ýPïýÚ«Po/ˆ–8'Þ½c¬ÿúS"Ÿ»!.‰…àRøMEŸ}žÉçåÈö?1¾’vAý'âŒø–ûHÚWÚ׿çð]GÞƒk¢Oµ•‘Hêÿ~Ôn‘-²¢FµO¾×,¬üÃiáj>×ß–»´)+T9>s÷¨¨Ë K³--K[7á"Ý «øÖ5nœWx­°Våã˜íü©.]×}‡ï‚ÍüQÖ7ÀEpi/data/nickel.rda0000644000175100001440000002750012144476640013667 0ustar hornikusersý7zXZi"Þ6!ÏXÌà²/])TW"änRÊŸãXa“ÆqÅjnçj-&éŒâýAÊŸÇkd¦Z)ÝD ‚R±‰¦6•JÈ3.Î.bò‰…Œòdæºoµ¢î­Y ±~e2(8ßAST³´}Ó=¹.#M‹bªYPNÔ‘LÅ+'ÁwÁ¤Ü«F¥îOA¤Ø,õåîèâ¿ÿHkø²ýz0[³àyÔÉ-yPíGYÎK‰’½lq³KoóªîwîU_Ga©^Ž~„W¥Pö¸yƒ¬©L3? Â]CÐû½ü?ª²l°z+nf™2!¥gÂáÜ8§‘°¡ENÓéh›†»éÔ¾[6Ê„rGàúç´1Ü•®¯Æ  £(dˆ¾úÛm~¯„ú pÔóã‘Ì„¿¡Ì ·NÏSšß¶åLÖŸ¸Ù@ »ü8›»%¦”W"F5“§¿Ú]7nQœÌyÜée3ãØX¦Fþ¦á«Å¹^ ôBZ€¦±MDßµ=´ƒÕƒdê×à'‰‹C]Ï`g8r!í– iIÓlq%«¡ dù½À^š´è%Ñ4~è÷L¼Ÿ¼N_+'í³™\ÈwŒž $t Læ'É*¾ÛOljcmjƒqß•¶Û2{¦ka+‹óÀ†}‘¹¼ø;i<{Wú’Dä§Ùÿ¢Ñ¶×¦ã.7jðHÖù”o·1È'aóföùáÚÎ…ú˜Ãµ4'ßzÚ}îkW¸ôúÕ§Ùne¾v‘PCõâ=n “Ûö5qTEÐ9»°ÞìÝÖ÷¨tÚ¼U zàOûœ,îOL&ýëf¨EàXŽx-©”(ý h+Üø óqoòÿ}f?QÓ! 9N'$8¿èBœ¶ÂÔ­FG—Óüå„+gÊ—Ÿ¨xQï€|G¤ ÊÌv?ó´¨9t>@hEþSó;±Ï¢)®ö£“e¿^Æ&jr>ãú‘Î$à Æÿ6¸ªźØÖSi%«ÂN@l*ß-\Pz¢ -‡ôËÀÚy+šX+!*E¢X”$xkÙ©¬ÂüßÔÈ9Rp>þ·ìHÅX¿-kk×úòáälúëB¼¿ö^“]ãdçrÑÆlÂÚUkyµ„ZÌVK>Z|p»_5jmåK_çJO¢eJû–h&¤f†:pÒï`´¡(n8 Ñ×_2]øî¸Öuâ$ÕÒÃêœpvÿž+¹êÀY AÖ¬š|á€*<З:Ñç,¤[ù—¥á»PÞä¹ú °\›’òŽšúÀÃTRùå‡hï€ ª å}®öš‘£ŠY”Þ߀ܱÇÈÃø)°c1!Â(Bãrœº³{ú¢ò\Ü©ë¹B|a½Ðl“‡œúy3޸ĺ)¢˜JÅ·úºR—Ńºw2!ϸªaì+õïqs(qø"¡}\Ëo@ Š^eâ˸®î!—ˬݣÀ·BPø¸jÈ …´Yõo‘Á$EÐÍÏŒ¡¶5=ö=Ôמ5œ/#œ"3+Îf~Á>¿Tï"Û釳H~´šL%SWùïF !zUñÂiCãfªH¿Y–ŽÃäîëÞŽ™Åì, iQb#–q¸SöýÔ€qÒ€>œ3Q5†€ëCg®¨#5gÿ¬ ¨Éa1=¢e’lÅm¤Þº¥-—@I¡ÅYŽÎ$Î&õ¿¡C9=T™(GÓrÁ{¨‚µ¢Èæ]©%1h1\¤-»acEó…±™\$uC‚§žj=3¤½IÈ="Jù€/É&¥ñ¹Y.3 ¤]a •)ÿÎêJt 9²Ú²¸c5‚œTÙý·­`£L½(EÂvçó^ϼ55:BxEob3sÏ6WV´Ÿ|<}Æt§Ðõ€""iùºd61Gmæ£to÷rë3Ü[Oe  ·¢28™rj$=ÝkAz†DNlCóT¶ãni<'ž„\¤‘,×{þâª9µ^PjÑ&¼Úm&v~ ¶r’„m4|Þ\½tÇ¿Å󰕸˜¤æLÕ^/Âô-O¬-Câú$èü£F44t~¡Xt'=Ò)û‰ÿ!‹Òܺ$Dм߸c§Væ ºësxåN÷¦’j}ͬ$T=SZ2+7Adà¾_¬.Ý^oo ¸]`Æ'ÛPò4®‡%¸Tâ)þ¨\ì‘ÔÍs>$6g¢€)C£m„©y`ž$6÷²†ÃÇáöóþÒ¢í6û®{bÚ^¦õ0 ׿‘,Œ]ñõyM€ó.~ö‰‹ÛØt­£„á·&á"©@i(ü¼ºåt1­±–Ef^ïÃKbQ"êÄ1:»è¨+Pc°û–ÖþÓ²…uÌ–·X"ü-%mh©U=¹ô:ý`—‰ÊÉ×dð ‰_U8sJHôÁÞ8Þ.no·„¤’ùæ#1À N$IxÚ0 Ü&Ç©G½=£F׋œ *á§$™EZ£ ©ì£ßñÞŒ Ö׎8$ÿ°ž%¢ÍÜΫX¥áéXÀ±°ûïEÝþ9! 1XSÙë9EøMèû¹º­vAƒ]Älø%TßÐj¼»þ¿?Ý FŽ#ÂÉÓ½âú9O»[Zú_0íSÊukž#W|Ýcv—MÊ‚ò 3ŸDY¸¢‡î|rÆxššAºF€åälUŸƒ‘“†HuÃÌâ½ ºC#`ÒìÜä†v›ÌŸþÑáÝÆ&Ȭ§ Ýë§?=vn“ãböû†$/醼œÃž’ª¸ð«¿ÃXóÈHÒq^_€èõ„²°úS)’·ëíÿ­7ødÿ¨V‡·‚žX¯€ÿlà‰iÇ‘vâÒÏÕÂà穃Ú12Að*µxûó¼ þk5Õ ˜÷ï@Ïž@A[rÔ·h S:%ˆú´DXT:æÉÞœ°Ò Ž:Þ뇀uÕµ–áà¿‘%º¿ÕD«¾é6Xfúr¤Ìuù·‘9™B§{Ð0V3_D¹ó'k¥U§VÅ ´þ@“‘â?¶××çIô`"å±÷»=Ïb²€°ø Ãû BÊÓ•Mÿ¹gû<…‰$‡’æ­/‹"½¼[÷Ê‹)TOß‘G•5â*±Û3ð{C›É@Tš°'î¬ë"vº5š7øºé-N™}©A¼“Í{ó\'¹´Ñâ“€9âÅV½ú™4x\1‚ø½ìïäÞ viƒ©¾‰yÈúó€kª½0úø–pÖ|/¦Àe {À…ßèrÜóËÂiÂ_é*ïù$u¨æ°=2wξ뫃÷Që‹\Å 'í[õ’.vW/Ž(Ž x=hkÜ5-e/†¨§Ø-û‡€EQZ…_ ÄÌó‚™!ìV»Â©]xJ0„œ‡ `@ÎgHZE4#»FIÏ«×x³‡Tigfˆƒ´£5=ËÂu4ª;A3CFÉÏV^ŸiðâÓF“m±XIh>fÞªHO¨‰ŽÜåÖmÀŽ[öô[§Àžõ¿Yß•ýà‰0åpªá멵10æazžæ •¶ÔU—”—ØÈ¹€0Ò€Û⿉°øQ‡Dð“s‘ŒrÒŸRZØ„ÿuЧdpD–G (+ÚyXÈrŒJ ;9SÜB Ù¸ÕI–„i5J·tû0ãöÍ`H$\JóLbÙº`,›iPõõoç—-þ?=ŒQAŽj‘õšãÃ&K]lâš$rZ—Úw.}ý¸¼ßs[y—4cwJÉÜ|ã)pæA”ô)˜„¦6^æÈ4ÝÞþ¢Yæ“ÍÐØÁ·ÍÈqO› e‰ã}wìÜAT›õÇïÆ­Ç -»¶o Ÿ1kâ9ÿÌ>·’—@À ¤BµÈŠê€Fª"Å€#’ð"u\YtÀ2]|0È( *´¿4uÇ›g±-Yb}Ü€Õé´ØÃiÞFDÜŠrÍçGþë‹Ç P·û§÷†xê3|;¾U¨™ÞLVˆ»]eNõ³‘<Ñ­~SRt;ˆ¸6’_SæÃœŒè$dÑà©Éä~íKЛ雉ò‹XÍ}½ÜÃûeöÀ-1s–>)xåÕjNÇjåII,-sb¼'ô^eÞ÷¯$j2!íèú° 9,í)ˆªþ&Vð^Õ#B태óežTSÜÀa¶¶ ÿP*â.vZªµ!á§ß–6‹©oߘßÅB¯ç& $+Œ3ÜW¦"DC¨â-_M*áŒ*1í â°0ÚÓËìÞˆŒ:; F$¿{-JÜÐ!C1ž‚éÈ‚JÂ0å _/·F~zlŠšZ•™j—ñ½/Wˆ½ï¿Ìäok£Ï°w8‰é§sŠónZsš¤#Óø(|xR·F®kÿ¥‹¹´@˜à(åP¸‡¡(6R4±ˆéàkÊÆ ‰æ<Ä:n4x3f°o5íL é ÎhôÞ‘Õ&ÅŠWAÎþóEÞüá3yþß¶ëR…ã2DŒÔê1®Õš x B£p8¢.ØG 8‹¨»ºÛŒ¯ÄMBÊða ÏFe=­h7%;•Æ(¹þÎ.»=wð™À2¡Ü»_¨“žBšÓ³œ SXmÆì•"äuË>ÝÊ3ž+'sSÞV½)e2Ÿ’?p:Ž_VU¸Á¹p´®\Ñ¿KgØ4-ßõ²ôš¥îã4ƒ;SØNfxâuwƒ5Mj wýätÏ¥º¾1®ë)fW‘L5)»]>ŽŒAÐÝ$ÞGlB+{”„Öº:Î@K¹²§RרВ`äÿ»¡¾¶t£•Ó'f­pN ßðüáªmæÔýûe%Þì]„̉ÿóøù“‡jV×£G–Rç£'† "Î(ØÒ_ðÖ 5Én8ªlÐ0.?*?c‡Ç0“{AÊ2»(YXõ[+§úèPlZ,Ÿ< @6wq5;3Áìsùâ*ÒçÛu³–u´GÔ5ÿ@ƒŒK¥›>¼œñmHK‘“ˆ‡Ü#&§püò.AgšÊÇuXhz× ¶’Þ~r`÷8˜)Ó[£:úÿ:3—P¢×› ’ì¶ë€pmF[Í赉¦ËÊo¹ê -åÊi§Ù©žh`ðøK.ïPyyðƒž¯QeW­R"mm)–ô¾Cðø7ª!”ìâ/Õ‡·Qy½ƒxò4½íN“²JÑÁ‘Ô{Õ„W¾ŽäœÖµ'¸AVzéCºVÖÜù™Yµg_ëz¯íœ¢!##—=ˆ~mH݃õ^ˆ–Éòð;Ž¥·Ù³g1ÍO*‹@«f2é'ptjv^ã¹ÌìÂÄ"&zÍeI*€¦fnÎØŸàór µ÷Ó•P­ôh'ûü‡w%‚ œJµÉHò$*ŒBr,Åjg¨8¥L\ƒ‚éQ!(5¶~UÖY¨ôi½l»ìH@£PLL·¼ýJ"Ö`‘2y§Mµ71ží™NÄ”cW£›µ'wÃús§rNw+'b¶áÐ%]®¡ýYëF€öeR_Ê0Š"„ âZ"ñ^€Ê%• `öÆQÙàYK5ôâOÖëê¥(Ôñêü#Êåû®™¦J‘ÄlŒV{C¸Èã:ñÂn+-‡YÅ}¯i¼½Q¦‰skÉõaFoAÉЛ"]jâ'ÿ47hp_QŠ2Iœv'¯b‚À#­Kú ýNôµ\PQ%ø›§{´R’¼nÃ}òŒÖ ÍooË´Å8i|Lî! !®Y,}>î¶[ êIç¼{-E‘‰piס˜¶=n!Þ6C6ßlž2aSÐÈ8e“Sƒb1-«S‰­u’n²"!oI0…¼y¦¸»K‡d”ÒGóáFfàµ.6FNïõÍÑÅvà ò¤‰Œ¯1à‘À;[}ÝõÐ~ ÿq‰K~›6ƒÑAe9=b@­ÿ{“bŒ\ÌŠT´sž QèßIþ¹ äý[ ¾‹«ûžA]?¶2èk©tþ­(¨hü<6tƒŸš§>7´Ù¶¦ƒÿ0SDg'pë>Cý’>†NK&òäã]©²¶ëÇ{¶}ÛOn’,ªl\æ#ûEâ¬)u5[ uHÌÜ1$—“È¢ÖF‚^½Í— φ–XÝZ-N7ቘ¾èV $®Õü&XÔÝ *i´6Wd. }UuÛd¹ÀwƒêÂF/÷–¦Ãgä„(—ÁÔZ) ¨EÃÚósýÆ à’ºZW¢Nòï†îÕa—Ê£¿‚å‘Bj0Zåð´p®s&%u‹ãÁ“ìš ÛÍæ3×ìRsŹØó©Õl>‹‚w]01¦–ªLŸˆÖ‘öóRíèo*G˜ÆÇÝ›âÉÓĸgþ!g:°|Ç.ßêÃçuYTÄœyÒÄ7ã×r¢¢S/žÜ`˜ ›GÀÖÒØõ:ZPD;!>pvõõý;†T‹{5ìI§ÑÇŽÏÚø{Àçè——š˜œÅÂK±²·™[´Õ›”§ÎéÛÏ«•=wÊpqqߟJï8ñ% §þ}Z zzoÞ«Zò×ÅtIö«ƒBž²>çnÒ•A¦þ3Ý Ñà “JKÝ’¨òT– 0æa’ЃøCÝ/dà=«…„E…® „ŸP_1Ó‡¢SòPi‹}Šm› ï²DE5¸ Èħлlî"‘¹ëP—-„S¾nd'EŠÖ`óZ—×tHSeMÈ€“z¢lø'úÖ-÷&í¼ÁòE&û‡>¬7žxJ¬°Eód¬Vè9§­?¾®òiY$ÌZ|'üÏ´‘–ì¤3 ô¢¤á¼­D3WónLEÇ8Ò®ð:éÑ®¿;;q1õ!¯ü5¹FHöCtö‘çååî(иqp’Å3îJa/òÑ/ÊP(2gѯíŒ!@FÉýÏÍ»œ‡gOȶ³åK²$ŒdA¢Ê8×0aü#ʧdeÓ©æ¬Ú)U³õ5{®BÉ…6]Ñ~‚æº` °ª3û1IVRöV?séDœ”Þ_ÿ-Ñ~]ï}¿É1撩ЂuÛkn”*cƒ¦Ÿ÷G>„¢¨|lãªbÅ4»Ÿ+džpªGP ÐâÚ»=-ö¡¬Šß]·ÐE»ÛòDÌZàöe™\c“ŠŠ»Û¸ð)» Ú³°œM´vÅp®¦†t’,7Ü¢d¢P…Ʊ-E¯åSÛÑ!e|ØÇ&Ò—»#‹÷|›¦EOÓšzvÿâdö–*gú`ù3Á·s«›®ΛóÔ¦Xlyìµ¥³TE‹ˆÀ©èk+ü®¨VÖ]ßu&ƒ2HÛ²Ò ÄÍšÔõeA{‚”mŒÒ¤ý`²Rà zr5lÐUnÁ™îuË#s¬sû˜\R?yFn¸+eÿ H4”OåÄ[©Ø î? à,ØïHQDŽd¯ÌH¨ÝtÜ`‡ÔŠ ·Uš*Fè¹ÈdêÃà] MsÞý*€ŽD°åúÜK_‹³±#‰|ÿÛ ÂÒuxº}@«ægw¬~† dК “ÿÅÿÔ1ìÖï&î“¢²jHåü¨{ îgèçÝ.Ïó½uþ[CƱ;ý+ñØ;Ñí—IcÄ맺Ýä¨ÇP§ÇñÞ»Kµsg Õ#ÖEÖ×*D£TPô_—þË”ôüUŽ'Ã1V³Ü¸¨~aŽ'¼†Ü\á%j†–=)‚ø¼KcT à cÙŒïv™©nM¶9´¸ æâiè)œ†ÎOÙ_ŒÕžr®¹ª¬§ØÍK‹½’LNZ I$ŸÔu“Æ_Šéý\~Ûmú\'h7Á—¤6û¢Ä¦žØé`ä)PÜ;µ‹ø÷—áÎQVrø ó?D8x/ñ›•ÂÎnJê9®6­ÌÚvNÁ˜Ïý!"|{0¾¬Šp’”’ø€Ù ½ÍÃA¹eŽÃÊž¨“¥ï WJØY˜Ÿ¾¼O‡=— á*µ3Èè®Y,ìQ%õj¾nWö±~‚`¨-Ód„ r},ï,)ñWp(V’ÕÑz[ Ý3rôô“¯"¾#ÌžþijZA‰«ø 9=ó1­Û—pÈAýûT !)EŸ¢]Ÿ yµ¡EÑô4â—®¸nb ¼ ó ß½„T¨Ïõ>#iæ ~šT¿ÚÚÓS*Û)hziKѳòÉ´\Ô1KæpFÀÞ¨U±‚6¦€ÜÀÑŒÿœú)hÐ³Ü CîäÞ¨¬.îZÎT})ËKžÕ³H_â­–zãsšåƒ‹fdt¶¹w¡Àµf?"F,öù§%Ë ¸½3¼H—ÊY†Â*] ÀÌ*å® ñÜí¹¥×™iÓÓû †gMí]Ò£÷ñõç¾zÔ®' K¤ïº@Ñ>TÑæììIXÇëöI¤÷Z´A•ÕÎtN¶¿ÖÆ<ò&)«~ò1-æ#á `ÆIP$J:@K™cQU^kÄÚŠª'·ÇmØ ÎÎ' HR ½ìy¤Ìžl9ùn õ¾+®1ܼz Ü?CÓÃ})[Ïþ ~p‘üRÍ›N@×…¿cB2b;  ?'ƒSTs¬º±Ç !ÿ»#¸î´PMµ¢ÐæCºÆù׃˜¾I²û¸öü +;üÒyØŽ²ºÀ0” …`5 i‰ø·ð’Iq¿qýÊ.g:ƒ-4á³@‰7½òç×i ëL D9iv8pÐ)Š`Ý"`nóQÉÜb2ÊdɸóZ áÑ ¨¶8iØL¸òRÆÝ½ wkŽ! qÇÁ€%ý¶µÑ”ÜÄ'`§ÆñšÄ^öL1˜Àôõ ÃJ”s‚B罫¤T€U¼mD&SãEô¤L" ñS<ž5v¿~^ ·‰W€øaäâpÔkîó¾1%^µ®“†ÓJ’ªcÏ¥èÀÚ¡?À¸ójY‰.VàždɉïT"^<ûtˆNÉS¸ñß9ll޳– r7°Ð99F¢_–^n Ø ¡åCDv…làè9ø¥LF!„4J«5¨Ç÷„ö×.%ÇüºãT pX÷Ó­0(àxÌ×r}ü³ÿßÂ*Ìl…%J„átÃ˳(.= i]×¾²ÏÑ€È0)öJ׎½1T”î ç&òo”ö§meûFFëµ™¶©ª„âøðE&ÀÒÄ#)ÝœTxÁ„j0_Õ£zv¼®pP‹¹-’/ŒÏò‹<ì£ößèqÖxUA>‘]|úñeYlk¡0Ö ZX¶QªÓš|:ÄùGÇX~ÑU…äǪöOõßõ\él#2<à\z"™4DbLÂUߣAð­í›`ÝÁ½µô0:LÑù:ø[&is1Ü\-×›Õºçu¹!‘X]¬Ï|F•a<}4ÅŽ·›G‚ê%”SŒSÚ ö¥Œ¨ö!.ÇÜö>®Ð¯Üm‚cÕãÄž<ÝCEMÂßËëÂnO9𤛽Ù]D ÈˆVeCÔàjözè€CЭÇ+Äbo­".ž+³=ð9ìDúÄÒ±,,f›èe8DƒVµµŠ˜ÛýnÞ‘X¢mN$‰öÎf'˜$Pn^3Pâå„ç|ÒdãX•öƽ»²ö¾"9›^ÄSÉ^wK>ÔG¾»bcqù²õí…}ÌRI_"Ðcº•%Dä¦åsO7®Ù;_Õ¼nÐ`£—n{:™¨²­ŸÇµL„bíÎ…kAãŠõ…̲ý á]˜)å­½þý:#®°Øv1¿Âmoþ}˜(I_£‘8ç¬MäΛ†Î Ïz…~¬’y(R{ǃ´ü“Eÿ á±äÖȼxÈóáæ¦ÂGÏÂ=v,ôÙ¨µÐÇKÏØˆ¤Ó{‹kfŒÖ©_›DséMw¥‚|Do,YtÞ–hP_GQ)ûáO!T3«—¬¤ôk„\6.P7› {\¯2‘ÊX.Ñ~ñÿ2ÎwšÝÕߨñn}/©ûÈQû¸Ó:ÜñM“Uí$´II½ßÙÛ1Ìk9 àÊSÍ.¤}× uÆ,NÈc9~›ËáŒUtìhžFǘ4°ÃŸ£äè*<ë‹™\x€Ž×p‚7’þÛê=‡÷7G4¨þpù£ÎÙ"—¨RNÙ?Û÷•ë{%^=ZOTc  ë~ÃȤG%'‰\•¾;ùÔ9ºWÖŽÇÆºX†«ÖI¢Ê𠹑ÿj³ø¼”8  4+äëé¶îù ƂźÛà—ÌЙ*úBƒxXNø›<„¢&:1‘A°¿<‡$ìÑ”óå­ %žfɦ£‹ÙáÒ4OÆ£&F}AâÆòÉE¬JåÅüX¦Bô‹Ük¹wp~EC¼XÐH _¯:ùüŃà9j• "ä*èT¿_à ô€ÿ//ø²ŸiÑ™Æ d€,eDÓÅã‡P¡ãÈ‚Y+ËÅ_ý‚Œ,Òà–늆L ½¸oà2Fšå×ðú@Toåûlýãfð\9U0³Æî‡†bÎf Éj—‘ëüdNJàÉ,†)ûd9Š"Á(:LÕ0sõœ*Å<Ò`´äŠòष±…a/÷ ùŸêt”x¤Ú[w:ÓèJ—ˆAB½¹¤Œ‰;ùIY),ú0ƒ×,ñQ{¾T1·“ÀóöÎ|º9.종GTn]wÄ#+„Ö&çÒ'$.Ñõ|ò54DØ™ä™X{}¤ÜëÂg$°F$Íöé£x v!…«/À·Ì ŸO€ÐŽêºX(ãñÌ÷9«–At7pà‰¥é…[€Ðõ·ÓåŒ@ÃÐÛ…¿AAhìÏ:öõw5}~¶Q£ïs¡ MØàb¨¬û»SÙljŸÑ¼Ÿ›ÇÒŽú9ì° ÚýÊX"ÏÃWVß~é!¤´!§&EÕÚÉ2Òu¡XÈß{Öì…Û\c²$–sÂŦ°J»¥ãgl‘XÈÐÇw†oŽèß ÿ=iÁ1·3|I•…\ÝÄ@šuqó|ÏØýjQ051]ÇPUDGJÏæg¶vÍ… ¨a)æ]Jšå^4Ü“ƒWx5»aˆ¯Y¾~¿†ôDqíé±/ÉÆ Ö Ãÿ‡‡+‰xö£FL”¶¸W†@Cpf.ä¸ð„0‘¸éò‹êÙ$V^÷%dÇ*¥)‹ºÒ¦Ýs·¾ú󰵯[@.†Ë.p‰AëÎk6ÂY“* ¸}Ï)Nœf š_ò‚4 ëY "Æ$<–)>P¤eæUrx¥5`ó˜<~ñn¼¦vq‡¤0…Qj ] Î-¦é‰3<ýáñD³2[4¾|ß:Q‹ÈqÛ^^Ô5›à©^ŽXý|1€mÎö:ë]c}ÕŒŸâë§•4=ìÕ#ÈCŒÜ¬­A<^~u¸U«^èo*‹XÙ&ëkbÊÀHjhá¶/à v†9Ñÿ—  Óù€íÛ(2é>e:¶ÓzTcl­²ˆAN2æQð¶ÉXäìOœ×ßÑ£ú ©Í/0ºiz‚-°KÄæc¨t·(ëJ·¹ºòô“ ‚zs­'¼«·B¨lûWMC(w'Cà¼2éTL… ázôA2eLeg~ç…NvŒòïUücy©B§1Q;¯È×¼µx¾Ù]ö§ xâšAQ Ÿ‘j:Úžv˜–sHM9œv`NþXœ3†êm'­rß•K<â}jï¬ñ|°C8p„œˆ¥L¨¼£Nןè/[ß!¼Û  9e¿“këª8|άð!Ñ&K¨ó+0MÉ‚¼(0í¢;ì­ nó,Þ$nº­ÅtËÃõMr¶iø_º"î¤7•$‚¸ÛdÜ¢¬mí,7ÔJ%¨–ÆŸœÃéwèµEåžÌ)–qÇG†fµ¾%Ï®ð)ܘ²þú¨ ÷Âï5(vŸ“‘pÙõmÒ"oC¯Oÿÿ}§d¸€ö[T9 êÄ¿½Ó‘@o`Ô|•Ù³¯ÀÛú»süfHzˆµÈ@/˜ôzöþ$ïL_Hš%9Œ’ÔS´^©Î¸záOºücgvñt[Füa¼ÆCNÓë¶Éê!cë*GcîIl@¦î¥Ü–©eSv0ùÌ´\7Cè—'Í'¬…fÑð쌘ÍõíFVkþ¾á#¬¯«¢f}Ia¥dzÓÃâpü¯T<«Aªä%×áq¥Òö½"úöÐøÿï¬YrÀµýȶ#,üe<ö®ôàÀ5$’(\²¬ËB8ªï²"N{‚MRH”y¿ì4e˜0‘Îæ©^©go¾Èun6žÀ‚åa|o —_ôuÝÓ삜_Cù.¡ faWSص8è(ãp&f3[ê&ÿl]ѧޮÔÞ‹«»õÿ'‹j'f¡sÈÉh°ã²À }Ñäß©ë# `8‰ùž¥VÜ·:”ȦŽÒç äø\·©qBý)c"×Ö¶¯U¶5=ò ÷™°tR÷l“äøÏÛ“£*?ð¹O°‘}'¾Öñ×µMWíÆŒ® gãÎÝq¤L¬¥#„LVÌYu-u” . xˆ§e'É‚`‹—}n`Øýÿeh‚ºJt²±uå0tæ@1€Aª Ù* X²p?öŸèÐÿUªâ³v¦ìegÿ®‰xH뿊t–ó}ôú•) ž:¾64Á\OkÖ¢ÂC˜*'©Î…G=·dê|„”÷´ª`6äJÅt…|ál¿“¦Ò°\öcÕVߦ‘òŒD« Pƒ5zË8²H<*“3å¤YfÇÔ Äu™Ä÷3y/Õ¯×]€Ñ†\3b¬=ìñT¼œ|±/@rhÄ…´šKFV|ëP KÅW¦®°æéïºj0i*c8]¤Mm–ô°mŽfÆ¡›¼ãÏ–ÄËl Ž.ýÑFA[¬Óm&ö;LDµ'}-šÉYå‡@ÄTs‘/¸½Ø\ø(븪+G¤çKl‹³@H½{yձÖó"¹¨" oëx¦âý¬½œ+Tž­`S×Ìz)d =±AÑ/<Ü¢ÃÔ-Æ—lúRÐæNÄ ñªçŽ¢;ô΂>˜àˆ’¿ÏOy ^ccäŸZZèÊ»àáþ>rÁBcpÏ —»Å(#±¤N[êR; $¨²ÚíûŒ^ÏéYV: =ôsxS™4yÿðdF¹¯ ”1~Ù½fhvóŠNä/vÇ« Öòz&áRáköL÷Üëš ’D©u ý‡4DÀVe<ÐCÈ—cÂÃט0E³Í¾ïSÏå"$jædE¶RLh–ú°šm~7Ò™T2¹//#z…&äË;çÇKHÀ2Šê=ùÉTX>8ñ+A¢×{ À®ŒØ,ñ¼0}tñˆK{1Ö“r‹&f~ÕŸ ÑЖ:³ÚZû¡ì±××ÀÇ'lнµ™wd¯™^€å$Y>0 ‹YZEpi/data/mortDK.rda0000644000175100001440000014465012144476640013630 0ustar hornikusersý7zXZi"Þ6!ÏXÌäý‡Éj])TW"änRÊŸãXa“ÆqÅjnçj-&éŒÎà,Öj³´ƒêMŠF¼jýo!2QZÆÚEÎݾU‹c=?Ð]Ÿ0^¨+vgrò VÜÖØð]È>jŠYBËQ3Ò;Ê´YÙ*—Kçþ?Š‘âfbm›˜>z ÐÊ_‚!Æ´r (Ò«S†çïR9{Sú|­V*{3Yÿ[¹.SE}ŒH».1J*Q§:'!K<Œž7“x/\õxŸÊY§õqꘄi¹áTв¥ÞBás ýªUd°ˆï¯«…ã¦&·¼ÛЇ^ÃÜÞȤ ¶T5—3¡Êðüµ0®Pã0=$Lï8¸N"ÃçΪ÷žtÄù0ɾâø$c¥fÄ·®£ÔµÊ€ Ó*„W›a[àÐû>Zëw‚·ˆ†“h>²Ä%…­TVŽúÞ€¬¹‰ƒ}pÛÙ²5óì>ŸFØã½!Z`޶0{gIŽä¢õ·?×*–>¨Ã¹éZFtPùåh7­’;#áé,Ö&„´t¢h¡pËäÑŠZ†žB%NÏ 1‚Ù×™¿±d·~ÑåÓÐ&•S¡lí@ ë×#"~½âÑžgÖ þŽÏ£É_Üe[Kº© ýòA¦ ã½tç!í§J+Ž9OÙYe¥iR|ÑáýmJýF#r¢2_[¿‹ŒÊõõn0õ‚»ˆeÛs6åE)nnž‘ÚÒ=ØŸäÍE r•ìÓ…¦Q Qû.ò‚ ½\y²÷te{J×ñ vT(+<ó†qfÉK{I}ž¹³qœGA‰^ `t  4Äêðïý‚Þ;¾¯ÒÓ*S[}\4P”Yv"²°_§jš+uªœà]߿Ѥ£ Sed6ýBß2Z»WS€ZÔÿ©¿²ôl)L”Ïœ^™“·^o8¹õÜî8ÐÝ(d7`…çX~ÍÙw+¯övŒ«f÷=RÕV98ó‚QÜDŒ—÷e¯ïS;äGÒ èm²fÇipI˜ñåù&Ù©Y1tñÄù¿z;HžnFy«.é¡¶GŠôñ 5€Z7Ëò|}Ó¨çýܪ•>ÏØot\‚ÜQÉnÓÙÿÇ“Û cå¹!.WÉ÷£¡~Ž>òOË«Çàsï&óÍ© ÜO*%N?À¦ÒëpimÂ2ÏîT®‚ø”úi*JTƒ¸ƒïÈ–óõVÍ´.XœÏÚٲà 4+p Égš6ÎTWî1 X/‚.½ÔÉT"âÿMâ}lÓŠªÓÆ­ôªµaûéÙï¾Çj®7Ú o?¼ƒsƒE¤.6µT&Ù- |Ä?ŽôK³ßÌ[ª&àÕ©Øes¿ºæªh|­›’Å%ÍGGCx4ØöÓZ¾,òn#0ô§¶¢ðêG§è=91¶í¸M?X½ÊÃKÆä«Ÿmž=œ^0Â3<š‰æ¬˜ ŒJÕmQL›D¬¡ÃT‰­…‘mç¿?,ˆÉc³6|H‚ãbšS]‹ Á²]½¡¾F9Œ*ØÀ¢Jéç—UXõËLFÚ„ì}fÆP§K Y“ñžœZºˆèEÖƒ\.ÉÒ÷ Økh·Ä-‰ˆ°©Ø›j¥ëS|Æ›C'ª” zus¦ÞÓ65<<ý"gÊšO[+àMò$ëã«T]æ{¥ðž¦GùÄf&=-ÿ\£LUd$)¬WɱÜqE+ÒÝ3ß:\;Ÿjû|€òÅuïh7/4à¤Rž~©M¿š„ñsŸ2(± –AqÑläDϧW‡Šer¤I¢*„Î×Ì¥ÁF÷ªrÿÈl‰v<æÃ4æ©ZS=A‹üì`L;·”ÏË{ñ¯YXî-Ã/­¬g ýE£«¸‹ëN罇ÕíŸVÖàÀ€¾¥1mÙ>u­¡kJsw, ;ç¯,(„N}a(Ÿ¤ ··îÈÏm‘ÞÔ…ó©öI¾C` ÿP2í@(›©ˆ³}›íbf¯nf«ž…ñ )Ý=pjF„Xæ‘'2†‹,Ú«ç²:C3Ia ¾ ¢ \8ÏcÝñÚõ×qm¶Å=k fûnuÎ;ŸÀZÒÙÔ’ÑʬõéR¢ãd”šà>¥¶Ž\¨ ¹‹ŠÍÎ&ØñNwävõ'— Ö3Ø:<\{e‰µx.fÙõÛ‚6ÅùŰç5*Ôøæ#åÇ#T¿é^^Ÿ_Xj,'Žbrs æPF/šCm/ a˜JD?ð‡Iÿãòo²˜pµUÚgÑ"ô“6ý¸d* öEÌÚE÷§Bf±hQñŒ+yéYX/tÍàZDÞÀìrnGÍ3¶),2öï"¬½Ý!hÁ'ª˜ÎïZÕ.I‹u½}`±EX‹§J»ù©Ø%þÿËd1oÑKûÈúÑŸLö£6á°K]Y¿µ‹ò1UcÍ¡}2³I»‚n¦M­x6Á­ýk5r[ôRxóòpØ¡bf´;’š3–XÜTy;Ìt£Ý“¹Ú)¡‘+)zSJ±Ø_ï#˜œÍ†÷óFÙa ì7Þ­¯d”ªöûøSøI?.øZÑã#´ÉÔÏbƒ Vöt°û.÷`Íɧ> ¯½×é nÚk9YÎ3}‘Qi©Ž3GÙ¸žŠÔKغȥ¶¶ujVdO"¨&K(£8!âê îdaF˜Íwá$QŒÁ¢04ØÚîuï‚úk/9ÖSÿ‹¯mrµ á…bŠ%F¡Á/”U wÍXÕß¾hÕšžgÏ]Ä OˆL4ð瓤Jwˆ•}ÖI‚þ"¤ˆyÏŽŠ¦ÍD'1[ôªS&3´vÒTmô6’LŠ-Ò7ÛíÚ˜Þ´àÌ"G¬û“»˜ $~ó_Êž»š\)#Ò»Ò•íŠ'vÞ&·MбÁúôÐä¶5ƧÎÂâ»ý}ŒNã´oNêåÇÃ#óÆÙÊ!flœ^¢¦sBJhOñ><t¢6´§†î¬<à%ãIAH²-‘Ðu½ý:úĺ(Ô+¿·fЏì/ŠÒ°Qþ°Ç†ÝÂúÏ*/¸q†94”ËV~Ú¬¾“tbÑýRñˇ/m39V ⚉t~DÁÉçõûúõÖ›á—ëßO±õ.DyàªõI0 s7jAû³üF[tÉvšW¢Ò([ß~ŽFåvYí‚Õqͪi1¹¡{é¿ø¾ ã½KñføËÓŸÂáCMÎ3ÃÉ_½¼ms5!Zÿ¶qnc·jåÌbý—¢÷²íÚÑ÷—)ü’pƒfª š(àþ’E¯L’>ÃϪ©ð¥Ã…d+cQwAÄH ?XɃó™E|]à Ì· (<¬oä56dôNÉo½ð´ß@ñùN ¡y×ñ¿ 4<Œ§ ÛLýÊn £é¢•]µ«Z˜¥ºFï\¿çã9{>/ª=€­Ï<®…°öfÌ…œñP¿ñ{w!H c:8/!Âá¯ÈT` ãn=CiYäJ~þ„Ä£C÷Åõq,\GL½0Ñœp:•<Ô©0äR,6ü€Xþ!a}VÄèL¹Ì6¥z°ÏYµn¶ô­š#&5¤)yx€ù Ý̾"4ôvVå̦ Xî‘çΠ"ä¾_¦Î†ü^HOú""’•·¦Î` š,‡Þ{ŒŠ`K¯MFþ'É¢Á!9Lxßji…$ )“²£­ï2Wýψ,ÇÄ4ø {»Î‘sá†}ÿ%`’ºdåÏ&øqF/ñdL-»³‡¼îè|2÷ÜïÙ—…èB)& ¦*˜›GÖsÈë>cZ9J„¾SåÙª‰Ù¥ -œk«)Œ>Ä‘´Ý öû9‹w¬½æâæo[®13yͼ·ÐèuDî ÉKKŸÙW§IÈ®1nÏeÊiw%'9ãÖJÆãMàÂ!­YÐ̦«®x²Ÿ­ðlë1°Òˆ£ÄǯSOü%Ú¾A³»Ž cw¦à ÂG?Я¤´”³ùÀcXéÇKOÖœõQg“WVʦðÖLÂ4ƒ[ó"Ô‹7yñ­( ÖÀm@ÀwÌpÓ)n =‰HÜÝq¼\}”{§ÌOàÏaÏÔ:?WâúÒvæp§ýV¶jÔi û¶ñfŽËDP#úQC è†ùŠóKIàøë1ˆBÆÊS¡&¹SG&}Épne[û Ž¢ês¯|ãµöîZĘQf³}¶H«òç‘´VwצõdK‹dùYÿ]1ÏF,Á³{SppîVyeã ÝòI#yªu'r–ÔS«FÅÈ™‰Ï Õ¶‡Å™Ä5¿°¦Î:ÑðgÝý®Ð,5;µetÍW"„vç‰5Ƭ@{•¾UIni‰8*Á¹÷K?óªËFà‰õu©EÈ*ÎE‡5`°.âWN;èÝåMÈ_(vÚÒã+ÿBZ”žÀz¬H°¤ž°6€Íšîªt>§h”$G“ö¼GÝ„= `5ÎqÉy‚†í6™‚ªÁ™Ä˜'¥[ÀÀÚ(ΕCùÃn"8 H‹AyBç¾íoz,)Å×äeƒÈ|zÞ(&¶[Ïþò]øžQE±6JrL¥÷N¼Zuÿ5ã1Ù4–ÐUÑ!Â`×'v‚d£’.|“†÷Ë™HÝ‚q[M‹Œ2Έع㬨jpG=ý±6‰´ï÷>½<§ÌŸ/vT𠻢íãuÑê‘>5„Ý­wÁ;R_?À'»ó¢‰úû<«FÚ¿›vtµM”tæð~ØÛúqã&Ÿ¸—•ãµi†YO¤‘ÆUk‰aÅæÁT9S¾.ãën¢V¼CM[¸ ð–À6ü‘b™ÁöÁ_(DÇÌâì 0" kƒ9H$ºYê“îYn9ppþœAeŽ;‘sñ–,±÷·ïo:OQRJfs—ì’sj¸XŸnÅÃ&‰Ux̰é&«'¯ÿB¿Ñ[FAÑ•òñ"*Ý×t™·lû"få,²m´Ü·ŸA‚ÖL­s‚ýý*QÓ=óÅyŽoÿ"|z ÿü˜0±Sj=&QÒÄ)>Ëäí*ôXˆpfŒHº‘‰sö>è\'ü1oÍ>Öñ9ðè¶½›âi†.¤æ÷éXL5=uߺûž¬CSÛ%²°S|ž-A)qÑY E`Îz&è·Ðˆ ÛÙD¢ËCŒ€ËÜ €þAodƒj3W3ÄBDJÍbêšf_¬ÞÖ©ær;ï²ù:Y-ÊÁ5¹66†åh£½‹öÚ®;D%ÿ@§ƒ¼©¨ Ímr2ä?Âr¹¸ÔûñrÙa]¥¢²ÑåP@Y&Ô¥ÿ:‘T³+&m‘{G¥‡ÿ ɾï`3gb -—}´I+ÓT]aãÞÍHÐ"2b8…nRÞƒÏãO<üYãF—Á´îÓÚâÿá;“åO>~÷rs½rÛÍàøSæÃAú¤‘#]j“T,Ã:“u†ªB@qפl_gßÊj·µˆþ·fðlRÌ_yCµ)–d©Ã Zû¯nÞ|_è°¾·”ƒ³3ì[÷|NJ^=‚Š–žõpá`z§K'7F›ã_ûɦ¢sMäÄ–¥üÓ*YòÈjõ{úþ~vMBþ›ÇM¦Eц¦ 1_íÛÍ9?û(ŵIKiÛ%±Û™.(¬x6ÆHÆx aÆv†\Tô¢nFi›A¬”¯ým ïëg2Š{Íötj¾©}“M¤ë;ßÂ]æfÆÅbò MEbüZÔ_xŒ …çm?Ni|_ôv ^ØÀeX÷â–ƒÆË³ÈèøARFjPÓÙEˆöÑCÍÚ"TŽÌGO—±áXò¾Øžhl—‰ ×ncl%x6)©ã;ÂêçÅc:ç{;Ì(à œ2(uOs2G©Q£Ü’žÔO-h¼@'‹ç ‰†ï£7iCn‡r¹‹¸z•5ðWÍ×xQ“"€Þô¯FQ:bÝ®kž¡Æá§?§:ì¨2ÏsÈå‘èùS¸•h– 6ïžB¦ÅÈœ€ÂB vº7Ótæ1 ë;¥žEk‹’¶ú—‰cAìyy(’hùñ±¬.¸XMC7žŠz)”ûB^Ò6¹Â¯n°ó7⃮(Åõm‡Åã¢"ãàßÐ3Ì Êî+÷ñåö¿¥¢Ãʸœ´‡çüÒÚDë+u_µCŸ«‹àxº_s“üö;`ü5lw¹Â×a IÓ˜ Þ&“Ü'?×Åá,èVÿ î\q¢‰¥€Cx|œž†;Û. 5Û«;´úÐÎzu¹mã–Pý従Ԧ©ÅkhGjå¢Ë{¦¸Îã^Be|¦&rg9q“ȯÀ¦×*Ë6bdÅiÑ+cA;ÌÚ§)†qq*ŽÛˆSH¢ÅŠPÊ!$ñ“%‘XÒ:J¤EÿKí1¶E+Qç¬îå­áV=õž/7 á3aãQàK±Ð|YuA‚®­y.ýwÖq¾W;(0DoQDbÈýBW ƒ½ÆK˜“_+”‡1œ@3¿÷¬‡)á…ökvû#ë=j3‡²`˜@?••¬ [NZ”Ëì àc)>-‡u¡œCVˆUDZNÐFŽk®Ê¬fÜ2â=ƒ:¢ð^ Ó×á’¦#û=KVäÏzìoÇnZÏ£/‘†@Îy6©þ“^íT–âü;É8÷¿," ÐôR‚‹)U½úUÿ7^ÜÞ`î“RÁ‚ê!Åu• T_(×Û˜U!»Ðnj# õ¿€_\3í_Ý^Ì>Ø0Õ5t¡aà£ô‚øâ¼Î¸í˜IaŒrvPžÀ@ãHa`ïê/@O¨Fê7ŸÈM”fwÉ—ºö"‚Ÿû@=âKÚêÂ`†9ÆP.†LŒ×õÛîAà «ˆ²vDÇÀöÝ²è ³ÑÈÓÊ:'´YxÇFÅsý#uW Šnå62¿îJ÷R•ubpKÃã–‹€Æ¶ä¢Î|=*S†Æç‡æöœ€;˜‚0pPÊXùÑ™3AcÔRµ^`9²‰Ï¥ËþÀ¡o âÞô¢ãåX àw$¹©+%Ä‘z¨¿ŠyŽEoßY::„*ŒmwE>ðj.ŽásŽ?™Ñq’Ó¯€ ÑíꦈÖõOÖ§z2ÉËo&fY{¤…–DìÂÔ.©ÏÚœCO*=-7¢WÈ(zh䇊jä§ÈÃoÈoÍI]mË÷µmßtižƒIºa}ybyc ¾ÃÂWüé&ç.Qµ3ŸTÉÞÚý nrÙI ¨î/åž„ OS÷g¬FàAjAàÿô­€èÔ Íò:¼ki/”Ïkj±CÍ9RÑÖKhãgc˜4õ0%§Vb3KÞov4èF‰¡Ž÷dêàŽþ_ÏIpURÑX0G/š)<êœbßQÄ×*Ý"%>`›4šn؛٬±ÆŠ<ÍI±õÊÈó×öíe*› ´ R\ÈԶªî1m©`Z·‹ ˜J÷zálù5_z–¦Éî+,¨­c¤MÝÁDdÎi$´;9¨¤äê=Ù#ìrFë pÖ´Òð¦«h÷ZeŽQ“DŠ0ð ¥Y¡monNyÜ1j/áƒÞ†O«Y”q¹8ÔïX“Ò´íʰÊþ×€þÏ q¦ïótSmÆ À´Hç­LÜš/¶£Ìoô5k±9Jí¢î2BÅÿ½%ùd­âžÙë>ѪâÝ}åÙ<Rùõßߞ·fÿˆ±Ã),6¯|úS¡kÁxá’Û"áû;¯«^ ìꙸq½¢b{6mÖ”C}ŒôG‡ö.®ÊQ’{‘=~ðÛpЛ>îZ8öÃô¼]кȡý fg4O)*$–a,14ïsΊ ŒŒ—Œš¿+y:š•Ç{ôP ×èÓKÛò‡iQUá­NÄ8¸³=IAþ–¹ÚÃc„:ãR7!P_gɱ”w| j6%?~Ã&ZÞIp`ψÌÓ“i·öpläf€ ÓïÛ"¼«¾‡¥‘B‰}÷«¦ËÑ¿†ÑZªµnöŸê' /9‚°£5±SaqúcoN7¦Âíø­¯ÊMV«ߊ˜£¥mŠÈH÷þR}_xÀâ4Ãç²ÌàM‡€dLõ_ÑûE(ïáÀNI:FÛÑtc3;f%0ìqM8ýÄår`˜ù)LâßìsW‹‰‹ &›„HäzTðhúX¨œÉ ‹:8"‘ ¿$¯»/ÇÒ £éžxj ‰H>HEÖåêóZ/ЬÚ€g|Ô9,™/þp!êýE†.>iÃÿï-) w»¹àw`;«ëì,Ù˳öü³É¿«š^(èÌÏs˜ ½/ÈÑÄÑ›¶Í9£×ºV>¨7HÄ%lìGÁ¶@QrxÖ8Y´âBëåèÂÙè®2ïm4yqøc¥5Œ¤[>–‡1~o4i­v"äªØ#öZ½2ñ8l3«UÄ„ 7•ÒeÖ…Cƒ"ɲç°,mDºá°UG!Î.êÈÁõJþ¯€¬~bo á˜SN%;0ÝÛ,˜s~ÒUîÔ±.üæ/ÝêD!Ø«>ÀhûÅ™˜äcôÍÒ’ƒ¬I°ÓöÙ¿Å*AN!ÃIÒGKl©Gí;ôA\Rï—[:âf zy(.~¡qÄr;sþ‡ùr”´g+‰þþ‘úÇõ?ª…pnSŽd4Eïug…^“8Ø´„!PËûwÃ9¯½D¦cwº–Î …09òTÉš:?\çÏòEg”v7ê¹õËÝ"kø}ÿÉ¿u|ô1ü5FÀÕoxÕaNÂek ~ß¡±fâ]HÛ±äéÚ:rÝ€VD¤o<¸{ÍCO©ŒPP&»ÓßIâÈ«yÿ-ƒ¡>…±VËgg®…‰Øe~üS”õ[]ɽ’ÅôSžªì•µQ…Ö‚èˆüb°¥2X¹Õ­Ü´õZ„GÂ’íž"3L¥ðÒÙ@ÛÍŒ3xº±+(c_¤«D ˆ?<¬ÆÆ™Fjf}öZÆË·á]ßH1ÛׄŒõ* Ú÷ÉÄöjxS c§|ßvìÜŽ½¡;¸ê}† 1 }Î0‘ÓØŽŽu¤˜ÀÄ߃S ÐцA8[ íRÆ®ÚsŽ:…#íc2ž½Rн|êî8­¾R×½7¢›„tZ¢$»i„mÏBM÷ÒòmÿF€€€}¥øŸÓ¾ä ‰æÚwB\·#©{{ì]!qO l C‡ËÒ䀓öÜøŸÐKß —{/´õ$Æå²„ñÖ*9 à¢úéûƶ!ÿgûJÂ?\80ÊàŽ »aåŸÕ”&ç¿«RqTLK–.œTL|Þ™»Cò?=í—®\J<É\FcZÄ…ÂõÉÔ÷¤Å ×ý§ŸbŸ¿ù|ÁDöÔÅÒw‚ûܧ¬ºŒ&Ç» iå€ÉP܃FÎÎ3&ò»ÝMQ˜òžRà+jŒñ'¼z‰DK‹ +¾g&L6´SZÌÅJPêÞÔ$ %šW§”U§•ól4fìÆ÷qÔw°Û‡ÄsmàV¯l¢ÛÔ0kæDJá’ÑÆEg>›·ölf8®$»¿ªè8é*‚ÙqG«fÅñƒ.sÈÞ¿fž†¬ªè„sGÒñXä$¹™1£^‹M8¤·³bpç³ EŸ×ŒÄaK£BÆn—ýÜÒüçk>Ý×`2QgÝ·òoÓ§]¦ù—Ï -cåþ£ÜøkhÂR†ì–²Ä³”¬˜#zwÿ¸^3~=Óm:Ý|{·F¡Jê”T—rÙ£Ûu@ënË0RþùŠ»‰Â;8¼$4쳊+jå?FÇ}]þÖùi^Ç‚ã›L ›ÿÑRåª Û•2+œaÔ¾Œàà?÷¢½ µìÕ´ôƒÚÝ û™€çGr ‹ §`íŽö!›+$:ö­²Fš~‡H&:Ù}X¥y6¾—i”ÕמtlýI—f®ê­Ùoœ%¦*]…‰@OjÓcOEšwùÖfïòäÚg{h ™Ò¯IVF°Ž€ôáM”"/y`L«û} ×1pZ ºµM"bg¹S]¤YLð3Ì0|ÇGŽ›Ø£uÇKÒ–H,õœLÖF Ö>XÏ…NÔW°ØÈû~ãYÅ?wD… ’ø?37JY'YêÉÀé £N?Ýé„”ç•Ö5 v ÅO‹úPw¥qfQ‚ÑqÛK¾ïþø8Ú ûl¢.#7Îö=µ*1! mG}eñ¹Sï€û­“‰Y|…i«>¶f¡Ç8 “´ûÄÙ=-yi®¾©Cr3ñNÀhïäa²ç·„ý0PuEüOǯ­ÝÕZ#'÷.8ÝÿË«1¶Ìx%(Œži¢¶Eµ[ºœ~ø.ßRéO„ÁÅ0IzÍÝs S‡UäcÔ^¿m[3åõ}WTñÛú<þèSør×Nã©M§LxÍAñ€óªSßq–é­`Ô·ë|RhaMS—/ïd%;Çüi÷½A8­šóȵ]– æß[Ùò®Ô„S\—Ü÷î­.l®6 Áw¿nâuœTUB²Ükl*ðA¿Óœ fQXy]™”ü°Uªáӗݯ+÷у‘Ô*$†4‰ þr"rpNˆóª±Ý‡ºP¢üê¥R °ºÙßWYL|¢ÈìµB,”dO÷oä}æ“[YA¾ÊE®n”=.Ž‚ÒÉ5¢JëÇ{WvjÅyò·8 ‰ó45<Ï»:^xŠ:>Øw%GdEÿÉ…­òh‘Øá'N!Û‰%ëw~=ã^–•äìÔÀýxXÒ..¯ÂÍS¸z4©²[Ù…Ï2(Áá⡽~oõ\Ð\¿Ê×xî\¦Ñ)në´=°“:Õ‚ËÐf?Ȱ“þ·’>œT§ÏKÃÊ©EüLÖ\¥Wˆ4 %ËgÿÇ8bÎZæžEÚ~#º9bNÝpÉrt©aÀŠ?ÄËIߣºtº‰Ï¢¶4Q”å#CŽ{gtÄbì‰UpÀ=Î$éPbÖÁlIJŸ´ AVæ¯c~ƒˆ˜ùr6ëêÔÿÐ8Qé(Bο^¯W*¼¤Â¼öš›ÔÔi]\ApYºqJËW†>zo8¿Êy-o<çT43˃7*ÌÙÒŠ˜ïÒ…rßr8¿7Lƒ§ÏÇë½Ô?FŠô¾&)¼@GS1òÿ¥Ô·?þb¤ë ·`°1¥©Âó1Ò‚Ô–v$x·yÏâiãžåŠv;ßÁ»¢¿¹ØZe¥CÓ&T†´Åºh4fLi<Ë:JS×´G _E?Ù„ÿCub­µ.-!ÒiO¾"̉ÚÃy oì]¼&±#Q"îv´<î›ÔH òjRãËûéùÞ4A}LMÇb¿Aû®”¤¶ÚiöÄ{©Â #!ãŒÃË¥I,º<½ ¿ /­ÂþúŸ­ÄV k{ÐáÑ¥L‹“¼…ܯ ¾_f¶9ÂR€>r[pòZå­oк֩ÀŸ55ÚGÙã[Ëþ;À§x^þ/šc—B tÚ :lôX%uÁâqXxG‘„Ñô·sÏŸRRã+*ëz»/4DßDOÏ:­Õõ‰ƒr˜p·- òi B¨÷¥>çÙOÉßñè÷}¸0Úˆ#;µós,{6ÞŸìð]¡a1ÌPزg—Û̈|æX‰ÂvÒüÁChy“*ÌxOQ?Ȉf%ÚŒûN÷—[íAýŒë莽kÉž<–=Ö•õɳsÈ%‘¼Ií7Y^3ì?£¢àõ³åbjHH»=>Öï:Ѳ3åH ¬s†ùí†õ{9§ßR;jÅTVl<ÝÚr¨ ÚK;U"¸ÿZÖ÷uáè(&­6öÿÎÛî7j—èåü˜Î·ƒ«È'Á)x6ƒÔ®uDø6y‰ge8¤éhZAJ–I۾߼¯µIлփ+¹~lwÀ¶íšFPöäÒÁºÉîSϺq”1àÿtñÿœE9­§n*Ô§°×yJ‘Ç©•ûE$·)|J²mO•¼Ãi3ó¶¡,â™òNÔ2£»ÜS‰ä\èõpVvǃ{‚ŠƒŽ…<¹A³¢á¹³c–, ˜] `¸Êã±yXu”j•ËVƒ2ý8Q–Œ%?€šå¥¾OûóÇ- ¼4ܱBøÕM ½€Yà½`à^¤ïµøîkñýŒ•’f­mWðÖñóf©6fß©ý89Õ…&¸£âO/žö!‘ž2‹Ax…±WÃÐF颌šU¼Iº¬FT͘Ô;Rëhh*çb„$iIÙá(¦ÚH9yбèý ްÚ̆ÕñK4»EßdÕ  üƒ1+n £q*_™P_ôÖ†FÍÌŒ+‡{àz†£Qr—‡º~Bß{®€½UŒc>¿Ô«—« s«Ü<+?qÅø•=´'˜$|O•±½2ÎQìÕ|¡ôÎÞw:×–PÊ|BPÒ ,R—B-œ_ ðc¶â:û)l;’„I¥Èpôz%S«ÇcÖòWû,ôþGz]$H°gЙàºåI‘ ‘ö$ÆìüÔÓ™:³B~®s)oT†Ã¦âU–˜âæ],7n¬5k÷ $‡vIõ)Ö¥Á9¥›ˆú@‚òkí¤4ÕÐÔ Ÿ¬@ÝÆíƒÞC¸D(ÅwFqNÉÕàÄ:¯’kº?{¹Ä\LA¦ì’›½>ï7j*/ð®Ö„lçq¥G€–O^çô×qÕå›ëÏæ3it´qIõe÷ÙrrlQ6«*ù¯z_Ï ä&kÉ„V /çMÞZ$š2ØlHk n:µ I\ç±bq&jÙh‡L.[£ ýöýå¨0³mÍ‹ô¥$qË D:âýã ‰³¿®,Þñ´UåÖk”‚sE±·ñ̾:ô‚H¡£7"aTþ‰ROtMÂìàýël“{ÐñçAsžn«qÅç”cÎøf={wÅ 3«€³Æ °¨4úµÂl#…”8´,¬tµZ@ŸÞÎqÖÚª»ŸÐ¥mÄÏ¡ªâúÂ]obð–æXû aP ɉ/@œ°çîJÁhö—ÀB<÷(G=˜N; ý6‘kƒõ>¹ôÝÆ²þÜßâ®ô8?Þ§Ÿý*Ú˜b?¥¶ó…èÂÙ¸C—OÖ¦<±M€§Â…©zôð‚FìMbe®±ýö‹éÀ|O 왉µ?'}©Ñ7ös™Û{L6pªFm—ì-”éþ5/ ›*ÿË~·v°7^›9Ÿ4Wx¢ÊŸ!~ˆáf‚”«ÂONæÐûTU åc–‡sƽW_ÔAUEDˆdÚàè‹ îñ¢N$í ¡“¬Y²‰Ñ´Nï]í`ʼ0bôŠ}ÐlEu™×E4ûwâ`á ¼y2 NT×R¼Ðw×a7"¥ ‚*¡§»wç#@¤F YzA5c'àn«ÜC¢1Ì7QÜÉ–²g‡O¾ËWXÅ=ÍŽ× ^ø?z†ÚrôŠoß0Ðõçî£íÑÈpºÄ»»N|@Zëõ¾ÝO'0ÓÔÖgÁ/+‚Ãogk8¡Ýø:3Ö#}Åýù¿or–×ayLX~æ“Z]´³+ ·ܽ¦£d§^¹¾YCêæî¶e7„8l½zV¾á%åõÔ0‡3®T(q«Z¤.‘9oiŠr8•'ÌÊ{~¦“í_ lô³Åo%oð×Á‰Û 䆦ñaeÀ?ÎÕȯó!O¤.BÔOz+GÜŠÝùNH™h Jî™äTUÕËŒMº×£[®”Ã5{ÿBD‘¼±~&>š3#eÿÞ›9‘h‰tGyÓIçSQáßÇ÷³¿é=¦¥PiøÁte=Á×\€ü§pLýÚ8~Âig+=l ûôq èüšGpàœb0¨‡µi]:p ,·C¯1!3OhQ/cj·Ü+7$j’sB+ѺsÏ„ÃëÌÿK¨] ¹ Ë€lXç©"W*èPºtÙª³”•Ë9•—~g(1Ù)yÏ‹ ®9Â;9¿#†’6·²Ô勪@lŸ®›ß&¹_3{óŠz¼Á£ãýÇz P»†7í…/uÑ*3˜‡Ø–Säjn "è/¯CU¶ºÁâpxÛ¦¦ÈWB¾PÀMp,tWûxR¯ÃKg×íõ­ý"3ªp™E…&·ëÙ3Óáž¿KòR€Rí%‚«šìÌ3n”ˆË)Ó.^žÚŽû'kÈäO½úÅcµü¼:—Dz·Ç õçPš<}_·Jùr¾zµÑ´beP dÀymúQ Ó#¦¬&¤G¯ÔeOÇãsìut÷›H§ +TVíà48[^‹yDÖ½ÆÎäቑkê6\D¸ j— ¯—gô’E ÿÝjj( Aì¦a ÖÖÀa5Plíø&+¦›:¸šÏn” C+üÆÁ´wGH¶‹,ͪ è†ã/­m1*õ•·7Š›ÈŠÈIäæõß+ ¿§àË4ë*”-éßjL‰URÏùÅÉ_ÃŽîŒÍ:ÀˆÆa¤¢6&Mð›wi= ûžU8»‘î`¸{’A‹9~To64oM“@[Û¹Tq3*¶Pì-KnK(g•áÔ:eŸÎæž<HÅÞ°)6锢e°;fñ½cx•?4³p_Ó!Å­Šn‰X$À®‡ˆà0N)Ÿ|ÈÀƒs&n8CÓníçuíúþ©¤2b,Th·â¸>+WùÛ»Q)b¶ÙN´Ì»Ó1”EÍ £}UãÐTóE{ uH ’Å;À¹sXëÆ¨\»+˜˜?Ö±ºÏ(ÊMùÓölj8Ÿ!N0릯'üÿºÓNbß]…s¦W±$$žÙ…¬X¬,o·ú\‘¯í²†N¤– yÕ†‰³TþÖ‚sdNï–¾!a ÿkh¡:uù9콡3†{SªëÑËhK«H0ÖÀÄþF'¢$Ô¼qG2_Vý^õßÞérSn«þ¼L”d4ñ zi&+­z)~î.ÉBذ¼ª!÷DŰïíWa¼H #€×²Z‡›¿A›+'èuËÚ:öªý8•_LðƒºA¥¤žáÆê~Hà²eËÍ×F9ßS.øÐZÉ0;Èø%¯ÙïLJ,¡á·ÄÌ—É$*L RŒ5r{w¿ÓÑð&D  "Üå‡XeP©Ï¬DQøUy@wž=ˆÞXÄ›k»Áé¢'Ž0õÈvwÉy‰`A* Ë ¤±Õ ‰Àj›±8ú’|;ÿÖ ó·f¥! ÇœÆïO¯[yO<£ð‡Ž”ß>£Û*Þôk£Ÿï Gã)ûzb¢wÅ^ýXûs;2r5jNê)ýVPƒµÅÐ^`[$í°MEB!ÂJÍ5‹T°W-†RÙm v¨2÷•"Ù%³Fbr}ÑFVs|U×fPk»¿çœ¯mÙøîüSh|¿ìtì>5Lã?«ºýÕü¹*;sÃ^ôé>÷ÔAGˆ-2Ú×cŒ¨ñ–s ãNw‰z–¹rµRb–¡T|Äçqg$Á›Íš³á.‹kf"UÈØº¶ùÚ1¼É踯£ÇwI,Ãò÷ ¡»ù°‹Hÿé<àßÓ`iù³“ÃjšOhÈÇzyùY…Û¡z_ç´šÝy#§·ú*è6yªIU²¡ÝÛÃÞx5 ¯±Œ³™1„¤ ¹DŽ^Óp@yÏN-³+JˆD¤{b2”Öp5ù–kõžâ¸îDì<„`NȲíUJ„b×yýTNGu‹¢‘ ÷UL7œZ<]-i°U7Á«½gÇñ)r’^Í$…ªJ”'‘“ˆǨƒ?iÒØLZÓ§aÌØ­Maør?Âæ³0s^‘T¿Ÿ—¶V‰SßäÄ·1TvO~pœwM}­¶ˆÑF»ì’›AÓ‘{ª»Æ—S±Á<›3†ötùö"üýÓO€We+%!êËó1$¥ š9ÝBÚµ¦˜¤Ç åŒèëuƒ,φûå‘Q A…G&W5­kûd­>«¥”·RoârmÎ VÄë+-rí_s÷¥Dëïgi˜+bi¯bb´û@‚g‚£ç²ïˆçˆ1ë!ºB#³sL¯W×øåx`sãÃ,Ì“æÌë~)×ÏÅRYÁ¬8e̾7·ç»"JTŽ(ï¶·õ#ÇͳTÛªx¬ŠVñ+œÃ±^ûãó_8*¶ŽÎ·º™àIÒ÷eš…¤åAáç,!—Xg{ª¹ŒÑ¹cxŠg\CÆkФÆðù‘p~_Û WçÁwÑVk£D€÷‚ð*ûv¸_¹¾’ø~@CWaP‘B?©4©hí êÀ˜}™[a* Ûà¶ôÌE\Òé&A:i(5H¼{ZÝ$”cvû´ §¢ß Dï3iôçdcïÏ4lTE»—ÎÅÊÙß6ù]/™µøD}VÀï^Y³–Áñ­—Ö0†±ó5–»P%#ìyüw^Œs<(ˆÃðÀcÑÙŒD>" å¾ùäòÉ gG}ú0 Q‡F.Õ¡\ÌÄêßóü&Rà´áBm0¾Î¿ÇŒËåQsõ®§ŠÏÈuzOŒt¯ÎšÕÓ!âF1¿bíÙ½@—oã e|Ô´° "€ØžÄGkáèl¥[æCµ_‰ÑÀ¤/ TjÒ)°©.Pò’’Ú¥íFÎ~±7(w%”æÈ­9Q>Û`Á³Ï¸(YÓ:.?‡šæßË¢8Ñ)<£°üäêÕ‰’p€5Ñ×U‹.]e¨µ¢ã±áâk:brþ,¿AƒãCvŸœLÈp~PØ s ¤ø?ü³B&³ G쳫¡fD ìr·Õ1„´÷Æ`î>…®ˆ“¥uŒFJ¢Ç¬~sÔ“¥ØÇÛ®Þ‹öqà‚¾¥ãŒ¶àòòÖ•‘h"ômœˆZ/Žd|=9dS|æ|}o:ÕuÿXìË®c×׈‹XR5Íý7Ý#L'"öD%ëºóM.Œ…ä1ÍŒàË~+˜èäIðÇ3îùðCg†+³¸ùO±` ç$¯½€­¡D„ª)Ñ@ç"–¸`¤ [ñôÞ=’ýQ $?;÷ÃΚ‡ÈþÊEW}DI5ÖóØ<ÀfgáRzÿUJÆX¸ŸR+ ™<É ]}7m½\½W UdïB/'‘—·oeeMnl­|E=YvÉO¸ür*+©„~¥Þοeh-Ï\^þ´‘­S\íD‚ΰ`Ö,×ê;}ï/pšê™Œ‹ê‹29›Ã‰§qjé|€ÎuÊ¨Šší”ÎFï'JhC¿Ì|è?þÈ[3qÕ}¥ ë^š]”27²s›ãÀ îmsoÀ ã­«íÐ’óÃèÉsÙÅž„¢˜8©µæt»ì3즛:™{<}<¶1¿røæ­Xª×ž³ÂîçøëÐ~Æ–í38†+²üžÙ~*V±eŒ¢$×BÖ4Ú9ÃéGr@ä&¢M9BsãÐøÕœàGËî5S“Òóþo ÙMqĆñõ¾ˆ„hVo/sc1ÝMÛÌŒQ+ùº(N$#ÞêyñåÙÏzÞX+/_å& ‘d ®‹ P#_–­ÏùBÿ,Õ¶e÷}kš„ï.ïî­8rJ*C§ãŒ ŠN1¶ø>–b#þ8 j¹ä×ð#M×D˰ñ¦J×Ì<ªN"ÝE¼ñ-ÜLˆÛ¢vìàÏÉ®nÀ†,)óÚ‡P¯J" ò"Ò\À³†X`Ä—ˆÞçÖöD|LXLÔ 2@ˆ".Qb£hüžÛšÊ¸IãšP- ‰|ð#°Ú@%…ÎDƒÔb“uäñ•„¯MÑiïìÆÜ; î¹üò~{Q¶è b`ë —ìFéìÌûÔsOÝ-VÊ䢃[*¶ê|ŽgU õÝGShšn8‚éöá·S¢™¬»ˆH8Iõ1ö³ ´— ¾nV&ÓÙöýT›&)úU +Ï,¨§DCÇ%X\mˆáæ{¹#ÜÔ.X˜‚ü˽ûòÓû´´þz¬Ç²èµ=Y )$BþÑ}Úöb@‰ Õ'AêÖú\V†Š¼¤Nú|ZëòÌ7¥–Ôynh¢Ó»š)z|ú³Š6ñöJÉk–Y?‰ÚnUHÔ§-Jôù²ÕLßëe ¥,éPLÜ-Ý’ Q/Ÿ5s,ˆ¾{ñô\3þÑ=êÛÑ+æW²˜gìôNÁºÔ>­!«)X Ï~c[Û1Ï<á@ïǹC‡ÂÜ+à‰Bëë¹,þD¸üÕÕ£ñlã•Dþ!Vžgã%ôg8'ûš>¬D cªP,”m“:€-#P*ÜÅçɧ?h³šåÁ{ÖÎ_@SÔ¹ÿ°WtL8üQˆ^hº_Ä!" μÝ&Óáq’2Óü>z &ý÷¾>^GálSU„`JéXz-d±å¿pšŒÆ 3-¼Ôƒ„K[û[îû08)Ú›ª7ÚcÞÐàÊþðºdCÎr{…•Ï‘@ÚÊ훉M7§Ög5Ì3°2 ð¥ž\@Qã)ƒ¤ÔaØYô明*ÇŸ­Åâ…žsIîÿТ‡R è®U<àtxÊLŒšjk¹¿ÕQ„Ô¼(œvÆÜ´»‡žAy¤y¬l>ÓzñÒÒXtÉõ+®¿CvÒRÆWK*¬iÚñÛ®— ª‰„’#ˆ* Á“a&ýÎÁc¢þi2ÁÖdRÒ˜ò{ÃæF2_¢Td˜Û„c™sæ>½¤ÚÚʨÂ[99º¶à‚üInŸ÷,0lÿ÷U³½¶LoÉõ-¤2Ñì¦ZS¸c|ä»e6hþמ|7~HSVúU@)¬û$u‘̰)ìD®h×R,Á¾EÇÉÅâçà€àÉį¨@ʉ„•hÿƒD¸3Hmžû™Ÿ¿ß0òÊ{ð( ®¸àF$¶Î'ˬüºÉ»²½iÓ'Õ+uÚüQm‹ÐSµ‹1èåĆ€A|&ì¢ÛÓ¯ÙNÀIžnî¶ôÊQÌaÈ‘]´þðÔFÖ¹µÙÖèë žóÿNú×ßÓ^FµFÍ1· tib?èêòÌYüs¦n³^ŠÇq†Â`Õû•Šm¿±#.Êv¿Í”W±'ÕXìÓg©ÿ¯.öÏqséÈu”ðÀë§",gP›uýs…rÌlŒ‹F\TÍ‹¢¤jipõd·}ìù4¬Š$½F¬PÞ–âÓ;äÀßCUâ䧘¬‹\§Ýãŋ氿˜p-^Ȳ g½î¥¡"áíTb™`€|ªÿùÙy sGÐGyuv·gyH2Lµ8”6âçúö<|ÀÜDŠ‚zèV!#x‡}/ÿž=ÂÛrÌ3Xÿéqz­DÁ¦§-⠪Ѭ_O¬¨¼°–5¸ ª•ïw_¬ÀãôZ#¾ÞƆåFEÔ&Ä]Œµx‰âöÒ)"•øðÏ6»,âNéd|²TˆñzÛc+®´HÓÛžù‘«Ãü.¾}p±ÚNaidMºë Ü܆&à;϶&Æ©˜è¨ kŽ‹Q¼Ån/6´™gåG²É—>ÆMšpåzJG+oÉTÑ`yK€çá\н„ȳR—¥ž†« @Ë÷^@ :óFz’&C¼Ý¥â&Xíz1HÎBnÍœ”{ÿB«ªÅ H[]À»f¡ {è0“úé`ËL”y?mØxgw›7?t©+[?z“_›)„÷§Â¤¡÷´Å'ÅX¶ÓÍè¨VXôЇ-ç¡o{O—¸Ó¥yKm3}„ï æñ¸½No7q¢Icéo¶› Q„axÝ~­Mb ¿Sà¨B‚œúfg½°Ul1/“ãq9/ô.Жu˜‚~möeHؾŸòI2£÷f ¿¥çÖÊ4Ø­¬žîÆÆDAéã+;:á‘ô²gö÷º¥-Ðן¡Æè™ÕM’Ëíà¡Vµ{½aüqëä©´–æ{Üï¶½(:&F4Ïx¢ßô¹CÙXHý”ǰ-œ –dç«û¸!æk Tri/ˆ™ðåÄÜbÜQq<üß·/XýJíÜ0ì5•–š]ÌýTù«á/,oÚ.¡WÎ}­ß‘êtqTÔl…+«ÖHÙš2uÒ´<‰FN_K| ?%*héºXSÆÔ ÞZR[a‹ óùŽZÅÖ·*b€«Dm *¾Í‹Íxéì¤Ër QÍqfÔ3ýjÚÍžì×ÄC“ê!œÓ:U’þlh)6_ñsÅY k;ú@ü÷6 §…eeÁO2-f𦠇nLà©}+"öÄŽ±x¬?³l`ª¤gæ±2Œ{U~S©O1?üàåPÙ¼7’M¶³XÂÒ‹ä4ÁÐ|…§âe-Zö^ñÕ —%n•@ÇÔ“& Múûy«Ó ~ýý¿÷,| ŒÉ¢S‚*”Å\[ûÓÊ"”Û=íõ‘6®'ñ¿âöR(~ŸK¿\q>‹ð/ƒ0¿ÿ¹|IÙ_Ì8A7°IûGyªàw“½ê^Aníå J€Je"_ŸÎgU6©>ׂI£OÂA‘Õ@y¯PNÁA^7‹S¯´úZ6]²>×.>ß;¡{Ä vDà8iÊSå.)'3ŒÊ¤þÇÔ’$dÆrÜlékJ/ˆÐþXLÚ8S*Ì'oÿçüª•øp ­$;žÄ¯¥íxí]Ì=v‰o¶gS˜M m¬N R@õ¨¡‹ÐK˜ŒŸðBÝïgxG9$ë/×=œQp0£ü â1ýK.ÛC¾H¯¢s?:´Î>K[¿õûŽjÙ‹M›ñþ=âêæ5²‡¹~ÊÀ¨>‚B·ÀS¨ÐráÎoÁœžô b6×,ü°´ªvŠ/ ´vïYc'E=Ò¶ Ýæ{|Ù…?ô]ì–ûe™zN…0¨[i·©1±¸ÚeÃ8_ã\o1…¢9ù(r¤Ú£Àn·ÝͤDžl nG4â+¼X­.>ó¤‡êº0»hÀ2Ëß½ÒàÊ<ôÏüø~][Ò•4rê¾¶i›ñ³%N[ÑÚiH<ìúŒé¹nÁZ1Y-áT§»Ôô]O J«ª–#Ûz@?dÉòÅØŠt ø»¼ÿŽƒƒ¹¬÷C¶àWi»Žå®ÿðÆ.­OïTýÿcAèzuyq 5ËUÙŠe©WºY{@›ÚÏ£¯g ;ÊÁ¬jð$Šù˪Rþîbu ÉŒüȶj¡xñ2šš%^?+;üh1Þ_z6:5Œšð¾í 2»2Ø ¹A›Ûÿ=4Ïôm¶—óµÍ\Ìff„·{Y"ð©ÛÔÀ;yC‡g—^zŒtpKxÑGxí½‘“VbïJ’º5í²Â7b|öxc¦„úÖ27í¬×Qþìƒñâ §€zèæJ† Bz–\Ç žwxfƒ@Q Eå 0ËÔV Ùz•‚EÄ¥Ôs &’Ɖ €ïñ›Ú€r-&ØjÚ'ÕÊø&—Gdå²0jÀu~ó§ Ú-žp°õ'ØX³Ì&N5Q¶¾Ííˆ%⨇à¿ìrŒ‹(•—ýƾI—ÆŒª'|Σ XmúÊï6·pfÃ62;uæH½mÕœÇQ”¯^ÈnMàà÷õ¡/µà&´±—N­éÃÜ2'‚Té!Þ1÷;͉Üç QUÛ”Yp/Òˆ—ÙËú?¥`šöâ/YÛÎÙˆ`}9bUH¶ÕNÇûiÅmrIjÆÜÐ1qû×\,“Áç˜D]Ö)\»ßBa{Ä6Âã832ð+ wa8÷î4ª ¢{ɺ…üppµ@ΈöH# ¶êÎ܇ªŠrö‹ÅHLfU£4äãä?¶©yS¼ýÏ»\)/…¦>m’;5|­Ú`>*p‚F †ëó*ÝD#_NmxÖ7@+Í^Á¼¥/¾È>øÄWŸ±î ÿz.B{ÄFy+ŒîA'µ**÷TʤfºôÇ¡§[ÓK½A®CzF‡ÛÂhÿùçžIfMz9ñQº ÈŒ.ýÅšÏk!Óg,.’»@Èe\ ª73¤k$ôEâPjŠžQžõ*Iä››ååÃÒ tF¨uVþgL×ñf%2W¹C²,e”kªMoî>¼²¥vV#nùiÂü¢Š3«eØŒî#k—wÇ¿gå9/C®ë¥GàHS6Ë ]€?Óh-¤oÚ^§:0ùݤ#„kj™xvׂæ]ÓȽXZî\™RÇ­ÜÙ½à/æºgpwœŸ¤¨=Ѿo#™Êwætód@{LÝÔ[‰›‹Ob€Ä6·ú^vW,)ûN­ñq€çÐr÷m.DÖ€M4¾®F½ÝUñFíñÚöäuѦížÉç«:þ³R üê\³ý?o¤û"˜‹å€Zï/ª)\¾so‘³¤¤i"¶z¡Û(z¡îgžË»‘ëywmrÿ•keKB^ è¦d8Nkøªqéðs€[# ¾ÕÓ Ÿ6·†Œíl“á…nx¡ÎvýÌ uÃQÄP|<#N‚)õÞGV25cÒžèUÞGzã“O1BqbÛ˜”bn!?¿GÓ̯u«Ê5g]Y•¬Yƒ$Ã7+î„A'ssç…ì €Èòê£Y²çaæ·kξ!æO-SÿI]~ ¬Õý,Œé\5çš‚Îi§_äSRƒ ŠËpJú1áž¡kLªc™»ü묹¢×B°îyáå»qÈ’ãfŠGDáÇùò_žç¤ÙgEZŒŸ]0±L)’ü}¡­6’éâ$Óf5 gJØJ‹wÃ_òs}dNÈwɲj7ïÖ¦˜ŸE²^À9½FÑÖŠOÑl¥bÀX¼ûÐÿô- ÃýY„y´.ÛS~Ž%Žó‘AcLV,y½ôfÔn T÷Eðø$ˆì/LýØŒH\vÐ6óÏ;¡—›/Ø+!BÁ×Õ\î,½òJ#A,Ò¾}~IV“ë¹@°=ÊûÑ}U´”ÒåÇ›J_ÍõŽ"ÊúƒäðŠÛ#gý º§Ã12Óœ¼ç÷Øý¶™‡}œr/°Ê%¶ Ðp<ãovÁ•²ýµ„[³ÀÉÒǧ‡A÷šÑêø€dJ¶×,ê°„3û.,—E<ÌmsS‹q…)Ô78®+ÊO $ð·B]Q>‚ƒÿùojŸÕ¬4Íú¢¨²ºaõ>GI7”Í‘ž¬ÉÏò`UæZX—ÀMЙÍF ü“‘ß?L·„„>F¯ï”žZIЂë*ß‘DC­±›6Īš¤–‚LÖ Ì­ìºf>ÔÎÚ%$ßÒvÕÌiÊŠ<¥#õn^IrÝ>j-Šy§êYØÔjBøÕ±c¯õ-óu·ŠZ¡«8j÷½ÇoB}_T,54B,h‘µòÜìÌ£\Ε¤÷îTx_²;mC6—Æœ1YA±à¤‹?o»àâÎ×6“±05J9ôÍTÓK­~¥"~Qö»± ]äJ¬h¡(¹º®ø­x¼ ó>‰ÌŸ—•ÇŸ¿•åµç[ÿº¤Ìyl¿¶n²¥ñFkª£LuãH˜FY–£œÉð í_.Œ,þOŸ˜Ž d®Æ~TlcLÒ2ô M wq8Ýq¡€jóµt.̸c æÞ=ÒL÷ø“ü÷¢­Øö'6ÇÔ“™šW«<àrG¤–K:W1¨T†WÅÛvz5Ã<íÐyÂIŽâYæÏžJcõ= |ðƒK"û$5 …f¿o’V;Ÿè¡¤kÕ¦¼•9™ýP¤?2N"]œí)Áy¨ 3›œ¿Š¬ ·Ï²R1ÔŸ0«KõÏȹ‘QÎ4 9jÓ-Äë¼ º„jä©ì³!{Á蔹Íz„£««ýìž-¿ÉhÔéLõ‘—©vø.}Oj¹æ©ãK^6 •ŠÈaž&+é'm*G ´lz—9µ7O›p­f‹ê„„|²rŒÛVg[÷J.¥å:®$ŸçT›o§ÊM€v¥)!›°ï³á‡FÓ–)HŒÏàè«ô÷!‘í8´{¬üƒhÆWKœ*ÚaЍi\ŒÏÝGš¢Þ^êÈK\¿¤=“w~‘ÌlfzÙw­¤Ék$bŸoc>öö¿A¼WTÔÇŽÈZNaüý†˜7©O1šwè® UjrTu ö袮Œ»©}nyýŠ:—Tô©  §o¦ãôZ^ A&Çz‘ñšOÆœ1U ï…Kìtÿ øÓ÷2o_ÐU_ûÀȱ3NmN•„¦öe9`̺ZøzÿÞ£»:ÏÕa*².pø_hNÎTÎuûÅt•ÛŒŠ;@7&¡ß€m±–‰¬Gb³Øh7¾®Ôµ|ÕQ§ f,ï=Îiè¼;½='Å )ìvÙ˜”¡ÂWÖkG”‡:ž XA©JéeD=ó€L‚on ‘ó-¿BÉÚ¬>9ÇÞVú³0¦[;Á7@`"LÅ`=¯0­:Ü JISàÛŒeê7d›‹Ia-úC¾\5Õ·³ï]І‰’óá^#ÏyÕß =ªÁÚ1ª¢²ÐE¨]ªU2µ¹[ŽôÙ²Dƒš ¨bAŒÉA¥íüÓ¯¿Gœv&Åùú*€4Isn éÏž])³¾Ú3¬fî¢À¡Ü2« <Ø’|jW™A«âµ3­ÄOÌà¬^éEj Фñ2Ó f¯’C0áuD}X[Ê‹†°FÅÆ‹à[f6HDZfT‚˜žûq·fL<à ®WõxúƒL ù¿A é88ùµ[ ñ¿Ã²»¦ˆpÙ¤6üÔ¨Îc¥–å‹èÞ™k\2 žsá Ü|ÊãLcÓ’O³ÈÛ÷§]óLï8ì”’Gýô ¾±Ì_ CHtÛî5CYÕ–N’¼ØhGzÕ´‘Óà¦R0¤´ïƒ¿LÜ%jɹòx1ÀL×ó¨–]>jº ­€(Òû¢›(UýíÅ9UDû¸€hŽekßjùÁêVôKzrtÛ…’œ`ßàK’¤ö¬/šx²ñtez¤“ƒí8Dx|[ÏŠHÚªñµ¢h謑ÒÖ}ó¬h`a÷± Hh5;5±¤¿˜aßþÅ ZhjŽ×aÍ—ëtcåiB6†\ð®I¼Œ¢ÍˆÕ.Ê3ƒÃ©#-ÂC}+ºÐÊ–üÉÓ— p?.ø§ÀÏú‹µlhÿ­›Èü‡..oxxf*{4œXˆáöÇtÄb â×2Ÿ”&cµ(6íÕJ¹ù¢a< ¼§Ãu¡¬<ŸØ4Lôqs 4%€Tþ¢¤OõÎu ú¶ŠÅʾ÷BùÓ!Ðç“TçX˜¼_«¼ØGómŽ[…ƒ -ȸ7 Dwά”¤Š]É%hGIet€‚‹I~…åö÷rý4Ÿ]~[ÙÆ‡´ þña=>Ç‘!¹çy¢j•· >Þ]¨€¼^}± k£k=É/ªúKDVX°³–"¿Ëˆ¾ed.Á3uQ·ª˜æ]¯ˆŸóYhúP!lßO¤=Êô˜îžZ$HO?)®MÚ-Ø%ÞF{ {‡ˆ)I ŸÔáCÒÕ«0~µ½3=IêÚ×v3ÙP­ýÎÌÜyâF°”|`±ñŠ˜f0DR¯²ó*]¸tŠõ@ú)‘¨K2Ô&µ¿»£êþ\ÊÂòEš\?u,!ˆ³%Dù¥ùFa›Ý øÎL7È‚Qãw‚q¾‡÷WÑM=´~q~f†O‚ÄÞH£ÌÌhh’Ÿ¢ó?UW p–}È|e;t©åÑ)*®*ØÀIt9¢­pF¼–O™D};uéÇÞ“1eLºbG†6UÿŒå¼u:ÉèA ³7R¬ß4Ð}B»š”à7Û›øZP¹()ÛñÊ3Ö–TN¬)êe Ì•©Ë}˜ZøGÏ0çÖÛô‰¶™á†>†oÃÔ JeÀäJÈÑ9*ßVÕÖ…¤!]:Ñ êìœè’Çáf]¿~94Ã̘®ÍswþËÄ?·Án¥¨±ÅþíËôýÂ@B]>ìúá?1t§Ž`,B?Oã-|´ç*¡ȼµ 2´p,nðGösBq“Æ~ŸÈé=v×Zjå&õ68Îõ˜ ±/q©î¤âíQ oG?]k|u,-í Óy59L}O½cž¡àRð ƒ—âÁˆî· b²ß¬dMéñi¼Ç…ÞÒþ£¤þTYŒZ—ÃnlÇ Ël®}X ÒV¤p··¿[ß´#FŒ—-‹/D ÂÉvßq TždFHp4¨`7F0Wn⌳Dý‘ [ªéƒ\^ô©9#´øû'? ‰îÇÿþ’è‚67!0GôhB.ô¶¯ÕJF™ý¡3·Ee/m­¨ìx\]Õr-­H‚þЦ[ß:ÂþŽº/óLRµ ŽÙM“”–×M°*¤äÐ&N–²‰Þr­«H„vK–UÑñEÄ[ª½CïÖÃÜ|r^Ýo"‘®ÂT ³Œ÷Ì-ë bñʃíÍK#DÜFüiC%Ú'²ÚºeInè4ÚÏkk˜£çÄ·Ppé15‘Lmº®(£Û׎¨˜;À<\ …BÛΔŠO|–2•3ø¸\ûS÷vÆß²!á лd+uí‰æ™,¸à`ÏÜOÉù¬ù¼Ó×eˆºÂpr½Ar³/ÜP’ÅK €qÓFbP^è®A×õV¨þÉ‹·JŸüò°´+û¶X³^;åÕÞ‘ºŒ¶Ÿl=×a† ü,Ÿ»(ÔìÕÑmteÊ|N¢ M8Ý»3y¯ÛÓÂ\øÜ&ØöpÙk<Ö+fí~ŸUãʰß4n¡U%(¸£¸ ³f -{‹ó}hrfD÷öHg{å6¡YN<ÐѼ å‰A£¬C O©ÊÓC`ZB—ÃÑ x]A‰ÏqdÊ*ôÒ” )†AdU‰¸GK*Ujïf¼ªVœtèëØˆ¶ Òy¯ºK´}j' ;@†Ò/UàÚt¤èmø5ñ¶-:Òº‚'/c¶.ºDÙ\CiÓ' .û¶±„pÉr(S+ƒá\yãt~^>JëQµ^k89ÑØkbÜ"ŸÝÊÞ~_yªeŒ50¤UœÖ3ì`à4(4Æ“ýãÄ`“Jd~<«>ûaŽŒgH·;ÿZ¸ämÄĬק!¨ø°Ñp’Âûﵽᵲ¢K€“ð(ŸöÈŠ–>' %!Ëø©]h‡–âmwµ×Ïɯx¸ýÝûMÆWîSV.[tÞ4 ÇøHQÇë<êbLا^ÙdÌÜŠ'uÔ£ë9ÖŒ‡¶º¥`åvfa~‹Žf%ݳV¶ÏûœúÏ…¸%ô b¹ˆ?wY^Ô„~9Í$‰.äe‹8…ì.Í ;¶~p Xu»Ü4Ð9ÜÛíï|‰nO×9¦¸:(]7Xž¸ùÐE'š¹Ò–¿¦ä¨´„›6Ý+võEé|jѶ)>ÜãâX”ù+ì_ÑBVá×Xcéâò[Ô¹³+”ðÍýã±Ö^úéW›!éxíÂI•P×Åûî ‘þV`2ò(»ÎáoŒZMý3OGRý1éà_ækHxˆ­§ÏÈ«FµK»š”ä(9ï=…ÛÁÆ,?×m40N,:/ivãg»KY`œ¥‰Æ*É3¶˜•gü¢ƒ„a¤)”¦·¢èžÈ =q, ³¥+ÇZ€b˜î£m)"å6²²³ň5] @1î–{w;l<ß#œ;Óô6rôÔ! \ÁFb]Ÿ…À†¶ÚE…ÌÛîFtO ÝL#]EÍä]¢žÂßrƒ®ÙŽ.\°¿ëÊ×ZŠ8,ÀïaDð9ØÁ—òçÑÂûÉÈ´´šSHYžtJÅ‚ògô„HºÕô‚o²u¦ßRóds €>¨„‹áȹdZ Û–Y•¾ÔRŽVÒÙæn‡ýB£ÿ1qåŒëä}}'Ib0µÏ…'*¦º/‹ïuŽéò¶7x–™˜(TìOÞ·ë“< –Ä´¨!Ab ©+ÁÒ¶ìc£Rf+0À{áLk-¨ŒäÂQäd‹a&´XÍÅ6}n^ú͵Yé7¼€–Î!,fÀ;¹ ÚôrÞøqߨÐç¶{o1ž$'ç–mA4Hz¦¦í«/bð3«Î>#,ðKàÙ‹‚&߬‘Óõ›´-T™8æ¬LˆGüYŽÿQî¼)Îýã¦E›¨úü—\X‘wµþa•²Z´²ƒPÆŸÐ „¤"Z‘-8µ± æÎ^†:pþ8–µ«ÔL¨,Qf47¤oƒÐÄÏ•ïO/®Ü¨ÑĹýøX½¯OF•ÈÞ×Ý+ƒ¡´H³55.”¯EokJaß ë”Îãåtü—Å„ûïìoÌu…³© g¢1(+M•àÌügõhòÊSùÙåP¼5:1‹—a“Åmúê?ÓÓ¶õR3@_7äG¡òž‘Ë%8Ü CóíãÂï…„*³c¯%µˆgŒŒ§Ì ö”4K>~ÜlåÐa-ky<‚èQ¿Õæ81–oWôA€|€Za³Y#qWŠç•Î[!È×wÃFö(óZ”Ë7ðÖôÊ×ÇèmhdsòO0³­)Œ['9&¾§ãßß×ÓÌÙÌ&S_3Ô,’Vl³Ÿ\层ßàȺ†ïCcšük¯>¯‚¹8ƒ©.û_LÚⲃÃ*~öm&ÁCRöQWs´íÛºŽQ•íµ¿ÇnP¶zéÞ27Nbú«S›^Ñ"ÍÃfs_,@MÈêL´ø¢‰´YCÜ“>¤Öæ&z¨¤°bDx¹bU&'¡œcñj÷ÂA"ê^˜ihEáäWÂû¾<“I¨Ãôd»/œ¥¶ Üs5á"ì­¯‰¼-„ ã4í¹¿M™ý<±Ä·Ïôµ^A+æÿGIWõÉ+>_#¥„}þü|`ªSæ<JAÈûžÓ¯6ŸEj@ýù„\ÛäˆÙæ]÷M¹2[åo¯œXjnÖ.æÈÌÀnx`Mâ)÷RNŸæ‰ðãÖ'bˤQ2÷ó •ûñ“wv)J€¦ÆµŒÒï¼Èè·ê@î?G0üo:¦í˲^ïóe`cA£¿ØÓ<ñ\;2@Z"š^ Ç †ŒQEaÈÿ?é¬Ö~Ä~ÿµ«#4k&õ&x$ ®yÜZˆÅ°±ýW|¯ÝÈð´P Gt ËÈÕ,Âmó ƒfjZ…^áþƒŒ$|Q©êrØ—¡¿jîÌRXÓ…M¨Æ€qvéÕóhŠIÔwÇ:áxPzõG‹YÙ6š«Ñ`‹ ÆeéëÞQ5YBÆÆŒQ+Û$¶ gä5ŠÕEaUkpò/dlù·Rg°’?žª†5Yëõèü XóÙ"yÇ©ˆ¯Øæ÷»iÓ]µÓ¥€dËÀªlôÿ~Æ1BîÛ ùm¹âÂP¶ˆš9«ïÚK»çPêDzÁ">D”´w¸~_D‘ð7Ã=F˳֫#€¯©kË6§z¦‡®äº–’h1­Awv?Á”^’âV ¯N¨­ €·®Éû„’Ë8ûœ]`™ãE“Ò(«e„ÞÍ•ÌZ950Kª}~…ª*6hÑL0l\цÌ@E¢¨è5üÖßúof&ËzÎ4¦{Zº)“ëã7^ ¢(É‹5´önN±N;ê' £1žŒ—ñE›LRóËÛÄ3øì듊žÙ“–ÎÎŽÖ…@¨¤0çÇëE•s ø W’ƒU^6ìëÁ gzŽèÓÑ-.n‡Ùà) y^²@³€·¼Q"¿ÜY+ÕÁ¶€ÅúgÔ¤ËËAåÕ\‹Ýbóch\‡´â–ôÇ92#€½ YV·8btpõ£kŸf×à&uY# ÌO}³ɾ~§ßKäoÏS&؉0ÖrHÕæ\.»Z ÿjÍM•¾Vx¤ÄŠ ,Òï$†úšBœ¾Û?7ùÑ5ójçUAò)>mÔ 4ô’³®W‘›˜W>×Ü”‘ ˆy¡{ Á΋ý qÁxnwè!¾c‚×lŒÌŠÎŸ†¨*š†PÂé;ß“‚ÎPäÀWYi:·ýí±”_:ˆùÃ$r6ÿ'+Xƒ,rV}z*Çn0y›âD©5 K4á‘é/Un+Û÷ý+ÚÀÊòÈ [ Æ§N´é ÷#ˆ(ÎÇK;^Ù-=tFš…ÛݯșÖ&¥POl=~AëŒÎA¯4ü<ÁmM“lì/„UáhñÄü{×zÒçá4¡H¤dz ÂW|¨sˆH²E}Ú\Ÿ‡¼kÉ™ÑôRïë+QÚ®·˜~zk÷‚4ízJáéë!Af³ÃºÑ‡xP­Ðáß@©·H<×GþÔ¥z#´lîRšs—ØW¬nxÀJ Ó›qÎä¢xa¦òÏtûÁ|#~¼_âxÍ]p•«­h¥‘@o.Z:g°}ðLÄåCJÈ„é’ ù.!Y}zcïi-2ÎËD_çˆeR‘‘»€ˆxÁÙ1¾jä¼6z`w–<±Tçé’¬ÃËx/´\±ÃŒƒHB¾8â"JdíúÓýYîÏÆå¤¯ø|Xƒ„é¼³·óéÞéžUSæº}<êDÇ ÐÍæˆzýÔÕ¡, |‹ìiÿh,Aù(NÀ/*JX|ÔXHTÖ¾X eç•Ášò)#t[«C’ÄSQûL6Ê‘¯×¢Z¡NP°¤2ýhäp1™d¤ÆxaoPAÞâQM ØÁ¾eboÁ‰ò«<^¨g/©qs Åáp¦÷ 4÷£oÄgûê #ÉÖy_Å+r¹ ÉêšF̸¥¦ol¥ôLÝ:~uJŠgß©ý‹tþo¡ãEž ò0èC¬ØVà¼Ç>úŒûØÏ¶ÍPUÓ~Ä*Ya6 ÷ ")³¹ö·c½|i†Ê  ¦ßåqõ²áØxP|«lŒX(ïtÂï×55±msºËåÔ.wL^5 Ф @ƒ®XÜÏxÍfmk¼g+@êQ…îs’ jœ$de[½ÒÂaôã²bÑUáßmõ¿!ð»ömÂ÷^8¡¹™ÿr±g`ç:ævˆUírÑž“^NÙi‹óÛ࣠yŸÔg#Œ¬º™ú˜½U  ™ˆbåî†b;è8ªF¶:1ŠKÿjÈÄœ‡DH}²¥Ð0Y9u1¾„á’ç?_´Šã¿‹P5A’Ð7l¼€vb )‘ÍÙN¦R‚ÛÄu±öéûêèüŸ¾^-þ]¼D- ("r·ŽqŠZ_£Ÿ´rqý&Çj;=&*ÑÐåõ[¢QÓþ' w&| ±Â –tzOŠ‹ÙŸÝDÜoÝ»ƒzdÀS$›øýæIÂøÛñ˜šâHšm“.½1™uÒÌTu‘'¶=>UéDÜkn¨·ÙSC'óå{ÕpÏ•ºÈŽwø‹v Q…­0pÊ z‰?a™Â’+š †{Øî•í2ém· 4ü¤ûìKbèZª0† gÀ›Ó’1*ÔãÕblœ#„?`“•šÇ¼¸†BÃk—¼ƒMlDd™ª2|Þ*m !w>Üÿá"«:sRɲ‘¢h;žÞÈúo —ê§"O²Uº÷V¬ôÑØÞæ³ü «ëI˜VNŠ»Ž:Y*f€Ù «? µØø˜¤òçTHVÖ¿%/ÆÌúÙ¬¦!O6?=õéÄË+“4é÷ý Uóc¦Æ}™/òÍKÅpæ}z6I,:ë|òXQöQæ”ÝmÓ_(GÝ{`à¢Új‡¶;b餋å×3b"bø½êò¥iXÝñÇÓÉM//ê`ì0TóÉÌÙ¸pLé»”…¤/ÞhÜxGZHáÅ£ëùïU7ìàúLY&ç»?þB´¢q÷/r¢iÔž#‰¡n»40*‹­ùO`,PÂLóÕqL'œQMÙExÅE}Ï8Úh8¼ÑE0#Ì{%v¯Ê€×ª÷[k]N²'9ñ%ÂÖ«he?¶N-ßì\C&Àã’¿úÅ¥vaŽgAÑ¥w[¥÷Ú~”w-ÉW)àÝP߸Cû# s:Dte„rðšŽoÀÝ)÷poRµ11Ck2ú'ši¢)^Éø\BšZ1˜ÕŒè»óŒÅ̘ÓQU.}NÔéþB»UÇe ×+s$òäS¨m.(uÞýõáÚ©Z~ƃ!küŠáõèê{Ö¤fy¸Fç¦áøúÄÊCª „-²›[šâ„ž”|’%Aæv87û3Ô'LqŒyh8Yý:HÐM¬dtí~(SÄÅòqÁTìi õ ^Ä-ØÄœÇGt—Ò/Hj÷ÄÔÀú3"³PÓ¼º<’Þ²Ì÷$“£uV‡“?G³ðëL¼=#'!P{WFô,ß[%Y?×]UéqŒ+ßÉ‹“¸¦Å¯»"‰‰ASœ`a6®ú€|QÑ‹¼öTÓ·'J>ñ­ëQ˜9Ë*ùûÓìÙÛM$ŽÛZ=ÈQCl0{€™Pâ„#ìKô)cpîÇRê½6ñ7«®Ä9Î^;/·Þ>Ugÿ²ÊbÒ:ʸ­HâSeYmâ}ýÆÅ6ÀWîbÓ/Y÷ŒÃ‹9ëbÎÓ²ÆkOÖo„­óð€ˆ‘nÊè2z³0áS 69J€©£šåƒ?¶PºæÃKŽˆõî'§n\±¥ÁÉ÷:›($¢ðÆ6 ªU­`5è«Ñã÷Òö0íÍ;Y€H±ž1-mÿ9§”¾ã{fÐ<Ÿ%6¢ŽJZDf&Õ—“ÿM‡|üúÀ‹aŠØ7šÓÃ7Êö8¥áÖsÄ*7™‰@%]| àZqáÃ@bQ󨆧fQ­£Þµ"ó½á©BÁ%uÓé‰`A³ŽwBL8úöžòSŽ‚çH†ŠŽjW]"'$õ)p6oÖ©_É2õ9Ð{ÎZc0õØ•o.Ýà$û¿Uùžº›µn®K“Ž;® fÄéðΧŽ.ê´Rr·±EŽ¥þ{Jþ²R+€ÆS»«Œ´õÎþb(é·›`T‡à¼>Uëý/}ýg]µÒµ~‘õ3#üáÎcÎN=!ÇȵºÓ©îТ]ÌÜuF¹A}f3ó4ÌÁ/ÁÜq žIíTª`þêo£ñêÊ9UíjõcKüóh¾ZçRŸ{œ#<„gƒêpòLÁû.¶6\Ï9)¦Y–ª$/ð.ùi¤äO¯ü.#‹JÚÄñµ¿Ö<þW¢f_!5™p¹gxièæ<슮hîSeiÀŽQ7sÆÀfÈj È^VÈŽÏ™›Cj,r¢Òx–Üñ,Àgþt#ZGКÁY£¬n$€K@ÒŽ­xi­÷7 8N¯%0ÓÙ¢~A* »Ð^&n„F:;ºPð _Íè³Û§‚GÐ'ÚCˆIºN(óªøyÑâ<‰Î§Ø+ï?™Àm€^$«G¦X'ôJaÄ„I¯§›ôGÒ»:ê¶ å0¥¼Ë &øASNÓYÍ9[²\W}‹¸®;³©sw礒¼Æ{:eü_Qþu!%ïO®Ê„ÏŽçØk´µhR°Ü£Ý0Là~b8$l¿SQN‹Ò;*¿¿i”d i½»ä&Ý<]Ñi­ÈÛŠ.D´6$Žá;ØL*9[1b6|@óSÌBB ­Ú†EË™T7–éW陿ÝJßušô'a8£F Åî”akZ °ìýc0ÝÌæ†Ÿr{`“Gmä0|s DÓªÎýÖÙò¤ê óègùEh€Æ=ñ^“-´)„Ï{«YwZ5l.‚…€ãVFý`èߪ0dÞОµ_ŒM–üÔ"˜•¦ÁAËB©‘3*¨ç2.£ñÄc‚cpíù àœ–Ÿ0±C¦j1¡€E:i Ý6a¨ÙÚÝfóî³rÄm1զ­ 0G¡)8ú£´P¦,—ÉXj 5¶>›‹•£-;¯Ô,ºÎO±4Pß…?ñØä–ʲæmbGÀãíŒV¼«r˜\¸¯ŒòÉ@4˜$§4j4´ÌTCd€*yéáµMúð2äRÍ‘Jànþ×RŸD"AÖxcœ³–«ì¹DÚt<Ÿ¼z›7WܨÜü@Gƒ—©Ff¯*?ÒÔ­ç{¦¥aã/}мNCÉ%¿ûôLÀ«Ý½r÷Șַ­jȸ8Ñ•™Ì—äÈ à¦/_ÒBynuÉC˜U–ë¶Þ«ê @ÅI£+câ×+p` 3¶‹´W'•I™]}½èâI6r‘3¡–øŽå-°“[»?SîÒÊ«Û›Þ  3@vÌ‘1ACáxžSþÝùË/^ƒD£=íˆñz¢æ: 4NÚ4uÝê¼1œh/‚M L¿°í´¡ãEqünN‘y‰”íjWaó `#ÞÞ…'Ɖ…3§ÞëTO~DA#¢Sh ¹Î+eAB’bNì7œ¬«Y›d”oêmH¦VÁüõ+Häiöl7%:"qJ4Žºœäø>­²Cû2o¯­mï5Ü9BZfÌî)_\G.ÌòÙ.¢V¯·’)ƒÄkéÛßÛƒ¼°;OïŠ t§= …!â!§ÌŒanA¨~ôPÙ#r~Âül²Ø‘j^ÞÕ›ÐÁJÌaCÞýA]¡HiÑe›Vy¤){ëqQ"5…2¦V$ö¹ÉÙ@Kµ%À|«ù¤©ØÐîû*² ö)Ä`»Õø›ì³®B8{È8ÐdŒË5¼¦SfeÅóuNQºA#¼ˆü¯u¢"@3#d?y}¿gv[}¸D›U?ò`hk¦ùÄýrwTq^ч˜.ïäš›ôÜEÈ’L¬YÁØÛNßñ8´qÙfÜÖ¦8˜¾]Xí!؉À„SËõ˜15<^;>ÔÙÃÜ‹hÙÛÛ-D¼÷±&£Plïdæ§‘.£'^LäTcFøŒ ¤]°~äÎ>ú¨ÇêŠÆd&™TJy'9ÍG.´6øÜ˜ÐJyí¿ÚT¸ØÖ¥^ãÁSr -`å˨Ê9ÃçÎi`ãċ̻;뇛Ú7ƒG¤ÕÔʉiXÊ?·ßðÅ ?†¡ÖwÃ]š¶ÑVqrnº¤ø'b7ìŸb{ÏvÞ,vy­hËÞÒj¤Ó¢I L¹äEý‡mûÚ‘$ŽÀ?…l™ÎžÇ¹8‰º ý· †qmøß†BÐæ¥ìãdÞ!9f ô[‹ÍãöÅ€D+5€/ˆòVžtôô…س_m¾kÚãKqÔ7KãÁ#Hg–ÅÅ÷6»)Z6á‚niYIÅ.´ÌßÝ%èu§XÁß×€“¼öÚF;¥VÖ9tsïËÞôåä‚úáàmÖ÷U…JÆzª×ØM %Á(S«ñ‘"ÍF£‰\)»]ÆÒr¡"úÇíO~IJ¡ZyÕhJÉò¨… !îÉqqü~'ÖÅ+LBQJ³DCývF$-¤dÆqKq×t†@UÌ6ß"`ÓKç?}„o0rVpÓ-¸½ß]îc„soÐgù½BU±,¦°’¶lã—ùÎ$þT0b¶¤•ŠÒÐÕø€Mº@1 ‘Š»—8 %už{»Ö*D÷“åpý6‰­ç%›J¿.‰^ô …ð ÎI˜¼Ö÷Ô['.K,aŒ~³²aXDÓLíºTÿ—Z5ÐZ9židSª| –ê7ÊŦîJöü2¯E.p`%m¨å{+Pgi{ÎáCPVÁP>:9c4T’Ê3êÿæwt{—§ÊŸóŒj§£h)J°Ò¡éDî" ß ,Êþüͤ½¬¯–¥÷\`<‡Òª‹0§×¥KV%óEÖý.$ýÙ¹=¨L–F’2¯ß5ù$±úÃÚ[õ×dÿ{…!–8ùº‹áÕ‰îò»»+Î'ÍH`Õ]auNÔ»\Úy¿ŒÒsœW}ĸƒ~G†ÑÀ f]?7uŸ=Âc£_U‡QÈéx"·::†Z¯“E}òA iöd³•&s¼’Þ´¬ÝcªE¾Þi ®ÀÏùÌW¹XLw>šõ¦ÌÏèê ›ž:J©õ2D°ïïCãñÚ!Ûcj%¾.®%¢»cª¦-¼Ö¯] Ó–`ž!xÙ,.§m%‡UXÜ\S- g„Ÿ#P:ôŸòGÅÇ't°ï>I‡äÞ$F¤ª®FÎ’‚T‰ò±ÉxÁ_Öš¸– úîJ>K¤>N7üY²u±ù~…öÊ+ê QÒ»eÙÔÊÞ÷mšcí%Ñv1e,ËïÇC/7 ¹Pýe(·¤&ºÒ )€¼ÊÚ¡(VM¢<}SC„|,SÕ/ø2áðh>yxż§±2‘ôRSð§™,H˶ÞËc)‘‰"Y(öëøÂ#þƒûSÙ”.ö#³¤Z'‹ý¶ ÕæŒwnð¬5ÛIáÿ௻eƒÞ™:¢ÅŠÝµWÚÐL°Töщ'bå³y³‰ííTÅk_Œñ®xZÑU =̃ŠyýA!IãTêš›y×€ ´}ü“Ö—g°´a6hÝ÷Ô ­¼ÿ»AE3ø‘rVíñ£eBIˆ”b1Ì×ø¦•€:“õA7à'Q㬅:=¶g0c§¡^¢=œ©21¯Ï²‚v·W=F¶Û™Bz)Öp™o6L×~‰o_Mó%ÒÚÜŸ Ê ÉBÀ@<Ÿúò (ÊÐÈý[J­™¿Žß[,I¢/qLP;N¿9Å£*«ªIç5¨ÇlÌA·ŸÀf^³.¡‚x5\Z$%xÀÏCÕ²KÒàÁ E %$˜†*håè`Á¶6~©›ìX^[~fáM»[« ?ˆ¢ŽŸ 6é¤Ãi‘ Ô‘{̓Jo$ÖÕStkááŒ!Dé: Œ­0¯e‚]þhÔÏÈïüË"ƒ|pÓþQO4\,Áä'B ÛÐó{ªÙ¦ÅÒ™aNb[ínH´”k©²NjÞìÌ -›%äÔ* ±úc¤¤²JÀ²„ܫĜp·ƒ1[ùmxú¿öMÁ úì‚pBv”‰B”þ@P…ﶸ©ÚÐÄ-ƒ×·5‹çìhfÆf2°OUùøz¬,-g("øpZñOíhµ5ÔŸ{“c楘 ëœD˜ì[0[§8ÿt¶+eüi4 ‹“l÷‰Ï5YìdÚG¥t¾=e$ŠU>!2¢ýBÙ9ØÎMûÈ@/ÕËJAK-J™@«S>xŸ3O*iX„Œ«^Äô߯yS¼ÝôH€tÐS/PZ¹*±ƒž >äQòÇ=ŒÉ.X¯ã·Ù;¬¢;ÀhÌ ¹^ÍÂ@Ÿ“ÓÝ&éW£¤6§§¶'í|sûm¨šá.ä¸ûµ‚:\íì“qÊ¥žY¤SQ¦(/­Š~fó: CU‡|Ó«i”|ÐI<)ÖŸï1t0ÀAÌÄ„qâª*V•¢vªbJ€žÊä §çªb¡Ú™à—¾ä™²þçô¥ºÃîÌÆ7°æå.(Ç©çUÿµ~_nNÑôÕç%¤(JÚWíÄ€pr'â„ï7˜?Ã^¥Ò×\†[$‡”Ü®3Š‹ÚD$P,ûdÊ·`VÜQÓKL˜½iq¬ñ€RØ$Ib²šöáØrƒ¶¦úå¨F¥ÜMßû[t=‰¹Ë†þµ­ØfˆÇ÷ÈÚ1ˆ7ª~ë ¾óè™UvCJU[Å/Øe+¢3cÂ<  ÛØC’1äµJ7¿ešŒ/ãô],~¦‘tiM¿ìzã–gx˜®â¶Û¸Ÿq—”¾Ö,àg}Û‚TÌT°ð4Œ¹­ý ù?±ÈsßäúdæÔîªGôÆKƒeôs¨´L¢~3éÖ€%SHbõ ën(+Ç rÍqÛbäJ[â´`”Á„+ºAÉGï7\¤ #Îwùé ÄßmŽ®ÜƒDí} ?Ü8РìNJ€)£}[Ã4îÊG~f½=U‹v“*Èô&*žó°¼ ŒZq™¼¼¼2tÝv@ô}·H‡Õ&yÊ'YÇ+î8a@·WÁµ§ÏD2IѬÿå³ALÈ¥¾Aõ .æ(RŸTìÂ/·È@#P–Üp9úÁ.'Ø ²ùvw): BÊi/˜kýá[µÊ:í{‘ÝnFsjÒÝσ o!IÑ?˜ã¬6»ìúk¿ê=ƒ§R·¢ìCM#ˆr8ŒE«ß‚{§C´ß¥ñóÊì¦~ÂÑÂÕIìÆ,õ$3 ¸œ¼Lù¨Lfà4Hììmå©T¸´©JðvSëî ¥.D7Ým¿.w®c·:/–ÓNa«¼M Sºi‚­p7–ÎþB‰{šÄ¸¬í,§úí»~¤aŽãàZäuª ¬âÄ7êA±íÂiP/¡:Gð_³bÃ4 ©å.±ZШ´‰/ÜI’ç£xWŽ‹¡ƒøf¶äçÆ·ƒ]öŠiž6ës·(ó„z²gèm™çKvjì1±.Ón@جÎ3x»'~ªŽ7DÓ«d—‹ÈÐ=°ÊgB$˜~"ööC¦6‡IÝ.¨Ÿ·Öu &!8%<Ì­©ÌqnÊ«söè”㑞Çx½Èé› “*( }Úœ{91)J- ´cß”2½3$PkÛpÀI4âØ¼(â2d€ A.þk§'j¯B”Ï{·Ãk#"íß°v<ÃÛ™1¼¹v'ªpÆÒÄè:]ûPN ÷È즴ˆ·ª;ȆëN1DÊLvÂ=j©ûC›´mjBš6­³E¯ïþCÁSö*‚%€8}99?Ò¨gÙJ\¨€n½üë e)T÷ÐGõ»5•v²¡ÝZ‘¬u:%Ý:4š”b3QõË‚U¥t'âhK¹<¯"0½3ÃMOÄ:#Ÿ¬L°¿Šà£Xòº½RbÔf=uóï6£ÿxCI¾°É¡H…Et溆œzå¥ÔÔ0êjÑ®zTt1dFñÖ¨%|· ¾‚WßM#qc¢{uz8·ýµ4iG'€zT‰ô±w?gQßkY*µHË4xj"‘uv#Êj-áô~VI¢fLAÎíÛê‚p–¬ð®ý¡¹w6WjÒ Œ¯²­ô#¦H°—ç# zËržb¤"ˆ£{„øØûÐicBeO—+mCãªuDc~•»ì@ì3”mV9œK~-Y:ÁïFÿ¡ÖŸGÒÅ9VÚÑ£÷ËLL…ã4{‰ƒË°‡p™˜²¾”¼ë¥@!DÌT³ ™{Ù!ÒúáñOÅš¦A%EŽ;û%¤ 'û=Ô“XUå’¯oA­wºMa«$ô¡ŸžãAíù…âT…š¡wý@…œ1àü$N®æ»´I—©Ñaðw1yßùå24¿þ±Á¾"õò_‹¢ÞsÎð®'dCÙÁxÖ1ú6õ´ÛÕNwHÃChßNO'C8) g Î˜ÏΛA4ùÚ\}Bõ‰È@Ïååì•'1([1‰,[#‘õ_‹^Á€M«¶ñÀFžéCjp Ï¡sj{j1¬`° Ê~f-ªÄôô1ƒ›t×ÜÂCîÁ´oVXÇ“2¹Íð™ûœ’¾¼Ð«E€[˜õ²n83Bê]²ø=ÿVá…Ý(ã“Ó™I¬¯.±>M.Û€õö£¥Ë{aJë² ÆVlWP¸SB(¡ ²Ù\ðߥÅ>‡`Þ¹\œÚqP5.G±Nô”»Dß3žÃ*0JÒCW2¾’¿å ª ¼•õþ… ¶r!½Nc† Ð2èÝ©œ_àC& ‘îbõЏhñ îLBÑ×:oélk?¡}0jhÛàþº€«û§˜ZI%Ū:š#âýõÍÈàÉ\+ì¯ ž€øÞ5POg{ÇMísxHºzþ°MÀsXïaüÌ~È)‘0Òø§èG›¤z¹ëÓ|nH!5r®Ý%Û¡0˜Ø9åc–ªèƒâsFzæVm*ƒyýi#'&èÝäå!o\[í ‡2(ŠTí"“}^K}Öã“äNŽÚÍ~ÕЋòoy ¤Š˜!vï$óÍ„þ·+0èàbú8Rh" áq¤‡ýM“q9sÛÛa‰Òv1Ñ+ge«Á…ô".,TFÆK癬M·7Æ‹ÂÉüX “¼ò±U&2 ( Ìæ‰Z› Š¿ù3üÄÞÄÍ4x ™ˆ HY)ÓpÁ2ŒþdvWõrîhó s=Æ$è€u–DBéýÏ&[¼r‘Hïž·D †tælëâ;äÖªÀâ!to%!£|ˆIØ&4Yæ]<³E%fb%Óõ«ÛWe]͔МÝEäâþ5•qYÐ%[OŠ]|u3 ftÔ Ù1úÿÖ«ýæJïm²c3[¶Û(:'É“ fØoGÛ('p°ª¥¶ ‰O€ZYYí”5)?ròmêã‚EfÚ)I9Á%ó…ÂZÒ4Ü—×ÃÀ1ªuÈ£Iµ–“Bo0jábÛCød†÷lõºÙ“b —õDM¾õn]Yöƒdq Ù@«&%Ùzÿj‘ê=¯;ü¿zÒVzç@P½A/¸Ÿ\“ÁDd“¨©ãQüô®-VCô£5^62ÂLÕZâƒA‚íÍ…!žSÈèEjW¬ÒµÁ^bGÊÆ‘‡ú—ƒ–Í-@循8o­ÓkùÍçÛ§ÎbޤI*û!íü¦z7•:½ÅÆâ&Äémû„Ï74EÓ7 ¡zͺªòúà<+t˨ݬ瑋þ‹-Úê¿ÈK‘âINaUÒ©Є–ÃÁm[™ Lcòõ2(–ꂺÉ6áY§ŠŸþd³‹[öíM,`8|8}}åêlЋF“ຓ‚°Ç7ªÓšýé>ƾGŽd]Kމ†”½†œk MÐkõHÒ¹Ò[ýkÛ2húœÉæä) £o.7ñ:ÌQqe2;›NÀóÆo2ž ¢&t·û¦ÍíÃ'i!b4‚Uo^†××6Á%CfFŒR˜Žú·CÍI 2Fj~Aàv³¦ÒØ¿|yÁFÙ(c–âZ=+¨RÛYºõVÚF£(#êçðo@ûàª×¬‰jR[÷rÆÒ[±féMÛ,šüõáÈs¡ƒr”q¡åV¨½%àCÖ¡v”ýæ2辰հªO…«€'wjó¥ÙîµAÅ” å±;X{ä¨è¢Ø¥Áb†™÷6â'þ‚i 4§áRd5ð¬ÅvZbT“›ÉGzµn ™%ÏP}ÝòN—åÖ¥Êà²ÂL5©ËŒäÎê“-º·Ôw®4w)z]›2<T辌3ÃP0j¡š´åÓ—o¤ë;z>ÊÏûÚ«à™ãªE‘ÁC×ö"Ìú›Çm=~NB)à_º>e–8·|á ‡Ì9 -]Ï Lntâî”gö¶÷1—JòÑ£¶ÿ¤24RZi×¢ù»jO˜HZ¾l\=’±í«‡‚} Ň|•¡`Ö[íÛ/›}:ñsäñˆ›ÄŸå3*­zFƒ6ýCÂL³õÃâ.¤Ï%Y»Ì» Ó˜OE»9žA§^ªªÔA N„ ŠŠB1,Ǽ×~j¯†Bž´Í¢gaMíZóàóSzUÞŸC¬¸þr_{ó™Àù6ûË˾›¨¾D;V[1o:Î!DCiΑòzÛE´nòýýБ´'Ý$£_Ým±‡Cë£ ¼¹òî5Ò:__©¾$…)†’·uoSy=h"÷m2¥VY r."Y¸úGlÝÃ4|>Ú[ë9Àž„Ÿö8úCš³9zŽ–»{®QØà*ðº×|¼×(Þ@P«zÞ-1ÐdXámDÑa•ÀWzèÑ2È%ÚíÑ-ˆ8iÍ?h†ï·¢/ÿ<Ž# ±Nïy9¨Ù„ª÷„Qd/•!#>ÿg8õæl8)0RŸ$óq~²>/DI©ßx§$Œ/@ÅCA Øß¯ÄØ#gáƒÞ×^g&<8²*Ô@ =Š– Ñ >©ßQL<`YåäkÃI—gX¸Ã Ú)N/½è8%:2“»ÎÃonHêb®pAß bÉT7ÊW›CÁ~Ú“ôá¸É …пW)[ ýO³p'³ñüxBÉÖ¦ÓÚ Ì7ª,Ëm?¹ÈðáH¥ÑÈì賘lÑXdWXZûK“Ò8]+ÀûLé¨9™ %q+aj dÐqà±Wˆ°_ó³2Úc¦æ²ANjÒµ¥X×7DáÜHFwÅp÷!©A¤P³DH>=¨ÑÅKëIÃÔ®Q¦Òòï?ÏL#J–œ¢¤Gg—͉ÖêJøÛž8ÝVýuÏD ÄÿO‘¶§‰´Û€؉•µo¸<€íêÚaêÁ¢ÈX|8ݶœ“‘XÛ­`ïA­ò…ô’t9ËOò®Nž1 ܲ ×ç„ѳ>†é’LìÍ‚ÝÃ7¨ßV/V¬ÛûÛXœýmwÁÄí凈JàÐÒÿZØ‘­uá2½t` רh¿=¹€FG]`@~ï¿‚¤¢6ƒ f˜U`áK¿•hVªú?‚£8Z‚¸]î­ºN='rÌ¡[©‘Åvb~6Ž}Ñh…ý·Ê—QûX¦ÚT^òIÍA­ P] ¾>–<ÛÏëC§¸3á¼–‚ÎI–ÇóÌ5eê_ ðøSØ…0ÞLÉ Æîë¢ Ö&-˜@R<}§õbNÄIá¤æ® fKÍyLµÆq:$~Åk‚’C,À¹ûõžºÑ©?)8î[˜GΰÝgå¿Uë™I˜jœWÆÿÍ-ªèÈÄì"Ïÿv»žÀ„;¥é˜DÓ%¬" Ó4c…ŸHœÄ³ºüŠ,%è"ÄÞ B¸¡×âÛ [¸T¾¼æT¼¸~ö‡AeÂ’1‚¦3ªíÁ.¦Ä›ëiSµõ—j~†“_lGe a¹ p-~,¯~‚ «EgŠdÑt•"{ƒ¹"A‘£—¦à7Hãïías‚v\rŽvß'—©nÇ·–SZ0ã<˜\úA“ô›^ä™yΛî )ªâs 胕áR×À—é…ÙË$ÁpòÕcýÊýeLu0ÞO’ˆ÷¸ýUi?ï5 ½\žñXÁ~Ñ#·ÛBYÍP&Q­e -¾…ʬ#pŽèo˜ÇÿÀ²së]+xÝ'·#Œf™G&Pv–%ÌÀ}µÁˆŒÎ€Ö…9F•l:d…Ò$Ÿ^Æ àUÙ;êÎ-œx1ez b¿h‹L’£ç£ç‘ìÊ;Uk¤ô¥V&Nÿ™þsy©ŽN ôÃþÅÿ‡û›¶IVmÆÐH¨UjŽ_‡sá¤MŸ„"7Ÿ_‹“:1xƽ‘5b<¸Öæ}þnÌÅãA¨ùæÒõè ÊÔw>ÖVf-óÁé­é*¥Iû¤ÌX!T„âüœóeˆx$x, éÞ9̦؇8ZþÒ}âgžRæ[²+ÔŠ`…pJŽŽôÈQRé\HÚX;dB¥¡\9wì"^ Ûg´Ä‚©»ƒñq­?'‚w˜B÷,¾E ŠËkTÑÄÓ“DE_ºP(^•Få ïS-êî£EyJ( f- ªB¨ª¸×J™Z}hp­Õ½Õå%¶žÝ0™?Ÿ°Ÿ.™ø;1vI> ò\» ¼nê€ÿp¥œ¢7xß=gà»boc^ª\„‹g_šöçá˜idÕñl[¿w!ר8x_´ú^ÿ†u•»ªGUøÒň> ¨ë{‡ôåFŽAùÐXleÿ©Ä=æa…ÞHo/ûÒ':;y3áéf<¸êN‰íJÕ[ã“‹7 Á °w{A¥Â“CºKR7-®6C޽ED'ÏI²i‚•TÀm Ž±ˆWi‘ðâ{Ò¨¨ž®…g®8mºa•Gí ›É[ãsäã„…Æ?(%D^^8Mâbd ŒëÆû'6läÜGÚŽ¹ù|m‚—¯yDõ¥ùÄ;F…¬;ëTúg5×tOÎ'µñD²QQß5dÅÁœ$ß·Ê‘í+t—–1Ò–AáÜ8GÛßÕãíÇŠfÝÍa2ÓN,‚’¨½ó›ÕÑ5ž¡ÄWIüB5›ÂެHm©¸Ãám³å]ïi3 M&A²P€ o>ŰïêÃs£o“µíž:Ó4&×’7½ ̽/_´F:\w ó-”%Ú'nŠ)qÂb@V; X ìƒËËläܶ„[¡'úß\Ò î½‚8ô0=oâAå'<=‡+ã|“ŽzZ˜¶‡}0ñ§ÐI‚·²RÈŒV¡€CÛýÛ¦@’ÏQa’XøÍG8´A>h€ŭsÎÔ­é’íá#‰˜Cì?¨X @³ZgcÑ^Mé,\ƒþßìfinº´1¼OsSêëðÁ,mBå> ’sˆ ržXþTö9ºié`0øUHÍCSyJšŽÝÊÂZ[´êxý¤eysÌçÐÕÕY5Î ùè»Òܧ;:Íz=sñëØ0ÄÓ¦ÕíiÇϨ/(Idô÷+ŒºÞvå‹>Qœ‹5"‰ ®ÈÇ^ÊsQÛ¥ÚYl©üÔ_kåy¦{r"Õï‹%k~:è{‹Ê!kMôùÏý8¼Çÿ—"U&•÷ùSuúØï=ýÛr°,šªž’ð)¾×ôˆ&‘QÁ[SB¨~àY3‹“÷-L4¥ƒ¶ŒªXÈüÒ J×·Âmw9„_0ñë0Z:b&@ž Á–ê³øé£dÂÑnP׋!‰R­]è¯ÒüØžWÙS­Ù­©°g~ã‰,–#•c‚ªV'í úP&\ÜðÆÄÖ:ÁÐÿfÎÆ*±¥B–¨õ¹}+¦F}°ãµ‘ݶL«NœF†~è1Ò¸lÅÌ qëêH`W/<¿± ,{C»žµÜÈaÛ„C-f€©GM= Ö«¤'T±T­™l3ñ†=Â_k…þÇÝUxAK?É)ZDç‡ÁC[œ0·æ”÷ÞÌcçˆ 1Ý=0ÕìÙÙž­9Rk&U b‘ÓáR’¤M÷pæ"Þä8?:J÷öÎÜI#J}®Â&™U¤ZápºðA™&Çÿ¬Ÿüæ„Ô³æîç):w¾QàN‹ªNsGÅ¥#ù.Œ§\š¿ùÑ9ôà£ðyÜD¥"öžY(T©³ŠUd<§MìXú•˜Ê>šƒ+`Ú,^Òj¥J†Y~¿ú(‰ô)‚>-GBÞŽ»³íñ‚POÈú\£K,.^ŸªŸ8Yêì Ë# $‘bTŸ³qÉÝtl0Y~– ô3·QUŒïëT1Y<7bgˆöˆó¼o–€WiDh˵ë+jÙ$3Gú4µšôÉO ì¨ajöŸX£ì”¯¦ób¿ä5mÒï*t=’ñ•Í+W¡6±kð¬º8ÖÚÌ =ûLJ¤ ‹uθæ guß´¾”XÐÂF<»2³~(ûb·v¾¢‘óÅDbÒÆ7Ö™Óñ84.æûžy{[èpðºüMQ†s†r¢]¾ïöÖ¬%"Í›|ûnW ©j§ YÐ…#H­\PÌxJÒšT¶…oPt¹ýHð r\Gt~ò7/&èqĉ½Œ«F/äû£õn…‚uÑV°«3ÔµÍÒÙ£S¨öá‘}]qxÑx0`FÐÁúBèHÌÑk¢P{ã>¤EìLxí6È'ü¥ws—ýg_óôHGðÉ\bÐ@ %|×¥'Ö/´æë•ÊÊL†V<ßX—"cñÁ¸ªÆöjaÍ«ubhÛÿ·„u"œ)Ø:E©žè)&æ¿PßÞžÞW=Url¹àºþÝECÍ. "Ü@µ/;wŠÚ-³0¦ÿ9™ÈWd¤õ7UE2V×Ãñ•’Gm§u ? VºïAÃÂóä&±ût·ñ;½Ò.D2Ï‚››4K1 È•Ûêµ²|+.š¿©+™Š\ ê ðÐëŠM6rçáe>{Z?®Èô7´®¦å¥"‡‚ˆàTW ¶]U•šW–¢å"Œõ …žŒÍ±©a‚sl ¥\Jª*¶€ΟËŽ-°OñóZÀÁ4@ƒ h?¾\P¥cˆ…ºôåèâÄ:_†e»ùÁÜ€§è‚ikw›x`‘à ©9Ó"eˆž¯Èê+‹ñäT´\]U¡XúýF`£H%Å^×™³<_n<äE¦€ï(åy¶[H*ɇk»ØÑ;LJ-„S1ˆÿv+’j*¾’À‘]>×]çt¹®ÿ1Fd*K`ÍÝy]+J)Ó L3ö\Ž™÷š4L…°ùø{©Ö#‡?;ZÀf»š;Ðu’'Wx<ö2u¦æä:ƺ7b¡;PrÙîŸuÅZr–OÓ+Ʋ(’u‡`¯ãdà*ŠWTP\:B(žÞùD´>·¤AƒmçäëƒÞÆíXœ„a'Õbƒ0=‰Fh‹Fªó‘®•Au„9dð&Û1}Ê%-:sÞ #Æc¥#UÇCÃaìˆ:Ò"‘¡‰”Æ­·D H—j™„6„ûDÇ‚ÀðÜB¤z'Xäg]HhP ;»­‡ÕgŸdÜ·@šX¸žÒŒ®¯õ¶Œú.÷5dÅ"•$æÐ†S±·d/`Á=»ñòñ0‡¥ãÕög¶ÈWg—ÝåÒ&žpRqT— ûhÇ€ÙÉð® ÿÊò¨ZeÌé]¡V(’CZÀmf”jS "Å™ZG¤()•r˜*)è½LõR{µêd\~FU0.`µB_ޏV§ùz)|Í0÷N1¸è\. Ï­_Å|\ç!Ù[ ÖÆÃßÊEbF.ŽÓÆ^VîQ>²qá)"Ó8ÐØ2'·Â.R„šümWÊrŒr+'0Ú †âᧈDœzÄW[6—Ä“kÃ9ÎÀ§e…òɽ…GŠÛzÅ‘ÂÌ;m/¥5"Ü^E4B%ã³iÄ®³ÊËs$>»“h»šITs±)bYÅ€{d¸x8WXõi#,àŠšÑ1?nÏ Fïö¯ˆ9<°O í;Œ&{j XrÍ[kw )úGØcë ûaáKÅá]åT {ïêRÙ1oK¼<µØI¿Ýúú]h¨P”ÖVŸ•§ /øÈ÷Ùš[,¦Ä¼m÷ Ö`âpK>ÎÒ…tÜ3uåÅ#Aè~S1ÄNÈÍ}Z«I¼ñ8sh ·û¦˜üoZlwþüoˆ>ð;¢¿€8 ü# õ2¶³%ý`7GÒ<€³¿ #'=ò5ž¨ÛSÌpýDQÚs«±ìÁt‚kOÐsµæ•uƒ[)×?ÅñMܺÛJ£ˆ µzÇ#´“u¤V`V 犵¤êœ¨;!ÒÒTν«C;Ó¨Ô䫃÷Qµß.¼(ýKsfŽÔH®Ûê öIóäã|9Ê܉>E vàù‡r‡ßŠUºÏe¼¦ýô’ò_˜+"ÿø9u=$³~-æu•¸Ú·.¥wÌå•Í^Ífn„…ÀÉÒK˜”•² å'‘.uÝ›ÈôÆ(½-\Ù+nš,ÄYn¿fjy rñ4xÏM \5ïæ¡r­ëéURðZ¶Â»¶›Å¢uê"*r¦r‘XøŸ„]^޲EZ怒½‰~¨±ö(Ãñc˜6£š3× ûÈΘl8‚iX×*ìA%Ñ—™O눥chF†  õˆBõúÙL罬¿¬çªàvtg3Œqî3^7×¶»oU‘#žh×O´±-ô³Kÿuu¯«™Íä°bj 8åPÍ\‚SȆÍê΂Âg)ÄP@äž“¤ÒÞ£Ä-•‡Oåôg{0º·Ú,&'­}ºk- H:±Ã¾]`<÷4ãèéÿ‰D#«Å4*{ÁaK™š…R&íti“øîF5f—Õ_ý)ºOqGöõÌ$©˜öãÝHÕ¾> ½ã™B=}>€IK<2f=•OÍOÄr‹ÀÊ3ŽK,“Ú´l6¸ \ÄN’‡ËIJ°|A—7¿oèjËÌb¿“ð Ž¿Îs$ÍX+Ö1Û½]B€%xEƒ¨Xó!r1¨—-m󎦭C<öûßc;ÏÄÁ*âÏ…ü^aC)þJ;ï1}ÍÏÖ€ã÷}5¿§ ƒË&ò–0ƒ³ËÄŽRýXS?Ê=`Iƒcm·LÈîMb‡»™¼A+ïh.t™ÈV7¿'H¶A5I²Ù13É ·Ók’ŽÜ·rL—­âãa×™Úðo¥vð±6/¿Ëû*3v Ú”ÙeÙÿǽÅRlλ*}Pfï/0mŠ¢îDáLD®¡ûŠ›DÎ{'{Ù£@f×rÓô[eoü+ˆÆŸNl6ð@«î 5Âyã‘v¨+ØÍ±Åÿ,>è­ÿác§|˜ŸU aÙ´A1–6Ç(Â[+·yž´y“&‚ý€5¬Úý ˆˆQf’êÓT¹¹7º÷(õvKS:ÿs5=7ŒÍ5I¡ÁµãJJ(øgÜ–RÊNÝG/@ˆÓ‡È®Æ$Ícï>).ŒFšƒ0šeE#Âp%­’ed`K€Ìúˆ¤Æ¶h©i6F|þ‹7ª7ï€C'Š)$)Þ±10XTx]ön²6û¨µ r)Õð)T1EY¤êQ¹N;C¨e]üI`sŸèÙšTeº#‘‚h“3“ìèò‡Q®;(GÀúSùÞ&ðcÙ–€”½àÆ¥Nf`JŠV¼üu\^šåÛýÒ.ÆëÅH­N÷ !Z7Tfb ‚q86†$»¸<þnÐZ±¸ç½–kpË&f¾hðÀ,X“S'èn¤1¢kZ–K°þéÒOj¬B/3œÐˆ2{«Z'Û—z›zžÀã™MI1ëš-0˶O¯*óӜ홄2‚|¢¸Æ)òÚžÅcÁ¹ʉÉÜöãYsØLï³›W[0KÉ;ˆÎÝ…ñ2 …¦!=]G'Ñ i¦~—‚t—wëßÖÉ®Šh$è(ùM.õqRêÉÅcª²wf,SqÚsýÜֲ̲Y¤EbIYÍ,Ã\¹Ç©#®É ÍMc{Ї ïñ ÄaôÙè,ð ù2\ 2¾xÓr!á­þH?£*'MšÏÓ;ºnkã屯Ôòël6£Y®¯³Ç„º”ÓjÀið\\ Ç`’éÞ0¾vÁY¤*S‰Az·–”Χ‰ ñUèµzV¢„4Ž3í…~¡ËNí(~$¹#àÞa„ÌTáx‚»J"óà}¼M„6+DÙ¾tC«G‹$1Ó˜uŒ÷»Ëᥟð¤\è1£aáˆÓ8èšÄ»…ŠZ¢U ¦•÷ÅiàPéXl»š*f·@«›ú1Ùpá›ÑÌ›ÒKë9èà“Å{(¼kš¥€ç3—Ì(àôz$/së;ªëLãÅo}_ÛÂé‘Ä ¼_9SéÀäÑ;j Ñï˶Zz&¬zôDf²ˆÜ xÑ·ïCêì¾Á™ÿBôTƒ¾À¶ý·U¸k‡]3‡@Àuá6³WÊc‡š«u•5¤ßT”¦ŠÄ!«dS‡G £þF4§–¥Í¼Éf«lÉÒ$l.®´g‹¶F jR€âV2Í¿dïN€mN¾ïþ"¹nØ_Éü@î6%;Ôu~P¢Hâ…Ãp08š’òëœëE\²HÀ•yÍ„ÑIĆŸ¦_(‡[ÜÅÈ/“L@™èçä?ùd¬!nêær‹# l9åA­ÒDèå=UaýÿH‰žoÄLvâXÛoådž=oí+ªÈg2ÚÆ2sV–Ò™Ù¢h¼I)´ %p¶u ”³Á0Þ3ƒy¸^š E/êÞXÊ‹6>V³ÜUb0ƒb¤÷]%ì¬5*¹g0ß³7ðr‘‰cÀMþž–j6pûGň«TRÃ>lÏ%œíp‚Øê3ÌQt¡AK¾ÔC‡õ–“ëK5Úqâ›XG ccÁýÇÑêø^èo·q9ùŠ•æ —G¶ÉáãThhö2cyÝSvúg;:·àè$Ä?é—Íøó,:’$ò{ ¬·Ûgãg¨"jú,OB{†UJI™Càë™7¤Âh1ÕöO7wCö'mDß{E33·í‘«2ð«PB7Ák[šŸÚf–Ï©0¨•ÂßåÛòÖ/>7ž’ÇvÔ¨c²öÖ: *´¥+K*”0,')iÓêPºß<(ö+0`Ï,ï\V¢±ÿùÔƒæF,Í¡šÙ¤™=–RÍ•ZõûCi¹V™iMÖ.ÿÕä³äFɦKó‘•2¿¯Kl#í(s›¾ —ãè†ø÷‚JÒëgî‘Æ'âãŸ^œÅ¸êⸯ·!øI-ñɲ=ÇÊc-hRÎJqxƒjuï˜Ø³Ã)DµÍq9 s ÜJ–RD©ªh1ü Ñ ͤ5DÓÀŠ~¶– [4ñ—M[ÄÌ1‘ñwÄcþ A|ÝÞT½ÚVÏk!ë{hsHØù…Èyú-pæÆ\hVÓ”ò!ºIêå \O °òbµzsµR€NÓÙÒÁªeN‘'»`ó.‘|?âÓšf²´ÌX•ÚKFºûôÙŒ°·úŽb5L’\|;ŠÃ- W/¨Â:"ã¶Z£ÕH‡™QžÓ”3uÌ]øpBU Ò]n“1Ù@1Õ@ÛYk•N*àS¹#Úç|oæˆô¨|ý©]tÂÒßC`Áýb³CT0>Tî³Ø<‰òM(|ª¢L+å¿yxÅþ–¤›$Ô8˜²ä€4¤D(ùá<ÔWÐ0žS)!Åï”>ÔÐ̸JßëÞÆ»<‹·W?[n5°><ÁÐuèññ®/À%Äÿ¹¼uQ9+Ô på\ÿäø±‹IiÁÅë)k™Y^)­Žú÷gqŸ$¬Ñ‡‰¬è'¨µÿB¬­Þ«äÎŽäzQV}ä0Xiݧ“=)—l½k²5xÊðý[ŠsÝt¥ •ŒZEÁ–æ'L8¦öŠùg‚óÇ} ä‹]¢uÙ:A¥M‡Ê‰ñ%Æ 7¹ØiÂr£;Úˆ<ÿ‚A-µüª˜\ž#Ò¬œ›pÅ•¶¥¾ñ¿âUS«o8N•P]v[ ¬»~í¯Îk>ÔEÉoÀ–ówc´+å夰å&èeü— ¦Áùƒ2Y€ÓÐ,°Âž´);œ\ªß7+[%ŠŽ(¬Þ¥/dàŠE6ð$²ZIÚ4Œ¢ÙòX{¤K82Ã4Ü>OÃSÂw¼+irJrù\ÇAçìûE¦©oÊmG¾&Ú®îk†’³%}M 0в¡³Ú„éö* à ³S‹a–/Už#u/;ËÕ5vr Ò¼¹è¡(ŽÅ›1„š—_¨ƒ×>5¹n2’< †me"bÙŽ õënß>RûK|Fw–\NÚ Òå`y!†s£w[(JÙBâ­Á^àˆ|àz ÿ“èÜ»HŽäÜ=]²ü^„Z*%µ}îx@ÿþ¿)Õ,?³n1|)‘C^åksð¯uà_)º¼•?”ÞŠº‹ö…Ûbõ¨Nçð—¨­”‹ëžÝ.#©fyÔïWiÜŒ¤>„( z@º’ïϘÅsZ±/¹]@YÆwa•ä %Þ%@Œ‘¯.õüKgB¡6`OäÔàчҞ{›!.›Þ|s\Ý|üà7EEkÿÐú%2~E&K°ø³&œ ¶â+ÊgL,¢¹aªv ÔÔâ®ZhDïKÐõ)~‹á×Rºaüdž+ës‰,âèx4H”¶j-~ƒL²ìÞæ`'éÛHd¥¸ ñáÆÚi'ToÀ‰Ï°ÿ¡·¹Ñ\OTì•"«ªñ€'ËÔWìç?ªçS¹ÐŽ¥[´÷½™o,ÔU¡Ôl"›ÙZ;‰ÕwC¥âD“è˜*tWð_Rò=M9¨Á’Ì‹cr³ `2oXÁï4»÷ȇ§ÃpšÝl°Œ¡’ŠŠ*™Av³/áø¡! ¥®Ä\Ž.aï±Æ]/-xC©æùMßIj(ÿâWP.7Õhñ€hÚŸÇçøq ÓFLÖë%íZ~»?¡Px ¹o€˜ù²½\Ÿ‚ybý7Ò€¬Nȴί™%²µe~®ú“‹Þº¯Ü*{ E ,Oj€jt;í›o¾s¡.'ˆ¥§±äDAuÈ ð¼¥”E›ˆ£–;˜U‹Ì‰|:Ĥ'QæFOÑ>º°X ƒïmlQ¨4µœ¼ $Šóõ·)ý±ßï^±š¿º{N\éo ÿXß<¼ºH1-±ùh<ó)Æ!)‡¯Œ4æ`=Çt¨çª Eh˜ O¼õ^à Ì²ãÀ©óÅõµÉ窒ÒdöKu¤!÷¥Ç_CðjX6Ñ+8-wv\’Ëú&?úJ±ÌyëA´¿ß“FW`\ã!Óz´O ´¹=R/ã࡞ vºñþѪ’òWÇNDÒ!ÂÜ­—|“D OD4>qrüž©¥²ïu54׫ٷ¤£Š\×çb{/¯‘ßúÜ´}°­Õ¢)8–##Øï„9‡¾°ÆþC#ý‹°n è«¢ÕVvË`â6úd×e©IÚæÏ©ä£³Ç?r‘鬩,#îG.®£)ãPø¿-"„Åy‡ ˜ù ³×†yMª^¶ò7ÃÚRã£v˜÷阭[Ÿ2@8Í‘G'÷l–ϲK|†¯1¡3h±E“×Ñ>v…ùÔ‰‰,ÔãÿW¤#¤.´\xÇ>dÛzpë‚àæŒ}¤øDÄù|« \ Ø®ê:ˆm${'¿)CÅ)ýį/©6 U*‘ÐA«-- ”€|Æ4‘íªa„§Ì c^c£¶W÷KlÌçG­·ÔO™„A3àЫñžµµošÖ[ßõÂXµ áŽBåbI†¢¦œ:ïÝ(‹‘0Ÿ¹ÍÀ C`f8t a(ËÒÚÒ¨ñuz&d`÷A·ÛšuÊø@àµãœkÊrˆ”ÞºWë wÓËDÝ¥Ü÷zÔ¥KcϹ&ƒ@Ž „ÁDåïúÎÂ; W"÷už•°åQ|s{¬ŠdÞåÍL BÇ{o¡7§ÐÙQÂò´Ÿ¶ÈÓæ¨ù¬'ªßÿMÏ.Ÿ âœEwÍ à›Œýb|Q¹’ŒÂ޹6<Œ€ =l[èåÁUit~>ªï6LRy¸fŠÎ À)U˜M5ŒBÆ€§hýT:)ÃòA/e[ìPœ¸_°nœ¹ŒOm)W^]q™O‡¨i ›·‚hœo´=NîèCuƒ~ŠÝàhvLJÙ´ô!}ÓŽ‹/JXú™NwÙæñ¾Å]"?rfó¥ y52þ–4.õ‰ªq£¬…ò¾ÈSóvbêÌÂð2¹$©Ïµƒµ4ð©tÂ`vøS‰á>7d¹wÄŠ“s,—?F|l ânBt ã¾CƵ£LûV‹q¦'¼ÁÙh֜Զµcx¸}»t»­óäw=ˆ=M„b„FÿAas`ï~q³ ïxKl­„½ƒ*¼“„‹|‘qk¿H~Ú:Ö@fBÊc^AÎŒMŸR]ï|Ý2ÝGUôxƒ6£¶œF‘L’Ýß,*gjÖ;0ËÇN*@@x<ëci.„Xi#âåÅIBÈs‘ÕþZÍjMÆwàפÒÍ9]â±Âl]-“ôfkZšÔÐ-øÿcîjîxðÒfýn’·nZ¡ÇBËhyc·:Ðݰª¬dK|u×ÉO÷¢ƒs-ŒH¼áVÙBþ ·wêTÚ3¹º¤·E²W¾Õr„À…Ôï¯[%d¿q±€Q§}À‡6ÒžŒW]£y& IðF~Ÿtã"]‡?×|ç#'5[qJ÷(‰ðb›dÁ¿˜öÊ…ŒþÖ/Õ°tâŠ`CÏûßSc¢›WJrP Ī™ÐÅ7š×˜”ÞˆÜÔFªpTXË[Rž¾,¸öÝÀþÐüZˆíø¦…°üWé=±ÊuÛ•Eiº=7IºožH0$Œ¼Rf¼›­GZzh½[ŽÇ¹ê‚–›ëpvÈ}¼«E7„ç¦Z›ÐHM Tg–¢Ÿká×ãg¼Üu:Ù §ûÚ,7ߌáÙ)7¯Â§ÁÀ™¨µšð˜zù kå[ÓF_—©Â©Ð@¹ù!*´=†ï[>µvçs¤ Q‘uú°4ªÐ:÷×…j:€Ãœ€M Wboú²9.Ftx[u"w¨è}1¾Õ'ãFщ½TKó©§ô‡a "¢+l÷|£=õÙ"fIEFvùÿ½á/CÙ‚P­´ÈqïžNzüÿŒÒ T”¤rÓ±Hs—Þ;@ÌÄ\ïŸvPñ¢ägLØ‚“ˆû° îˆ>0 ‹YZEpi/data/lungDK.rda0000644000175100001440000000535612144476640013613 0ustar hornikusers‹í›{tMgÆOA"rÃriVGMÅŒÉÙ×sTu¢C$9„JˆK¤D"ÄR-J0‚šfºœDGi'S,mZêjd. ­–.Ñ¢fTgÔRÓºE1&3ç|ï»ß·gÿ3ÿ²g¬Ï÷|·ßóíË·ÏaËJÏ•¢s£G¸#<Öÿg„¿Ø)ÜÿG˜ÿ7ÊÿÛ¹¤bѼôñGDÖø»9>7ÒâÇ6úx•½tœÃ^:¾Ê^:Ña/Í4쥓«ì¥YÍöÒ‡½ÔkØJæs®nÔ“–Zt­Ek-úšE›-zÊ¢—-z?Xëã,:0XCyCyCyCyCyCy@^‡ùœó½ õ¾C=aÑ¿YôN°Öu³hŠE‹Žµè<~¾çQ_µhÍ﫲äîàù}%–Ü<¿/×’»ƒç÷¥[rwðü¾4Kîžß×Ï’»£çïjÉÝÁóïºeÉݱó;ð9÷Ø5GÐOȇ|ȇ|ȇüÿƒw˜ßçF7~öé­^ÿÏôïǦ‚㵇ÏÀüãZíáŽù'xíá'aþ‰­öð““šmdŠúýÞgyÁO¾bŸ½|vª=|N+øœb{ø)x}xláé9WWðïu ícŒºeèW¡¯F¿ }ú½è ýŸÑGýè¿Aß¾>|}údôýѧ¢wâøPÞPÞPÞPÞPÞPÞÿž—žs¾&h÷µ@»ï(úÓèÏ£¿‚þ:úväGbžxô}ÐBÿSôÃÐ{ÐODïýߎŸï%俎¾ƒç÷mAÞ‹öÈï[ó¯·G~_ÎWfü¾É8>ßù}bÿ {ä÷ ÆvÍù}Iè´Iþ0ô±¶ÈOϹ øKLc8ê¸*ЦGÕQ' ŽÆ~£…:ÞÒnö7ç›dá™íæ{×S›ƒçÉD}Õ|Ø|ï9Õ‹õ3püT¬ÇMÃöÂÝè±_‘9ÎÜ>ë f·`ýLœ¿Ûgbý<#8ŸÇÍ@?Û2Ï“8~ÁÐ%È/Áþå5 ‹°½<û¡.Ç~KN€.Ãy#§ç_lŽÃöâÝÁ~N3ètô³qÜ|³¿#˜S^ Z™‰9®V¡®Æ¼Ïâ¿·¯ÄœkŽ Æ®=ˆÿ=ú\ïjä­Á+‘÷t#èÌožç|ì_„ý"¿ë—"oU ΃œµ˜wöÛô0èÆùèñ=± ½A7cÎ͘»fh5λñHð|ëqýË1¯yýg7ƒæ¡ÎÁuã<æuPùª0×l_W‰ù0ç/0g ÜXÆ6|ïl;úœ¯Ãö”`­<ÏjìoÞÿæý™‹:sçcî¹³@KqÜRÔÊ4Ðg0§y\6à¸Í¥ [1òw$b¾\O¶+ó¬ÅóbîS¡ŽÁ~Ù˜7 ëÍ}&Û‹qž¸óú®ÀuTÅ®Æõ¬ÏDî ÐMø>à&·¥t#ö¯ÆñkÍë9ý0O*ª‚:s C?½¹ÿy1¿ùý¬  …ؾëKp|æ,k} ù•¨æ}µ u®{ÎSŽóvÅùâP¨)Žàõ¤¡Ê¨¢ºPÇ¢šç)ד…¼ioî—æþ>Ç™ûú<ôæ~_`&ƒçœ'qÝ+þç_¦'éô'þç_£'Y ´×ù‹ú^_·‚Fïšœ9 0ØÓká@Ð-Ó…&7¬št»æË#æI¼ó–ФŠÐ/¶I´÷îsIÔ÷©´çÓâ‚ö¤l-ô·çzú?×(Úû.gÊ¿ªDøø¢páv6Ãüa½aþ õÀmè y‹^‡u,ìëªÿ=äk‹…ún—!ÿ \h/+„yêÏŠúÄ{]Ä<‰O7@}ü-е0þw?ýúü¨òõˆþŒûZhügâ î鑸‚]àé™ ¾çÁ:XÏ7ãE¿„Ñ=³g¬çÛá8N‚ãýÖ# qýa}“î@ûª÷ ~ ®ûÃ_Cîsá0ÏÌßÂüGá¸'.{8yÖÛ t^2Ï'Ίq1GŠ¼Ý›_Hë=Ýk?íq•A߇uÄøÎÇÈÀywÌÓzòÊ€ãUç1)æIô܇ó°ÎOÒa·E†yšƒÎ=œ‹ÁWOùûý»éâNñtÉY!òF]ly£6¥ Ù&^ÄòÄ /Šybý(Iô;U'æ‰{·ÖaÔ€ö‚ë;qh6p_kõ {áuè„ú÷€¦ÿ T}ÆG|ç?jÌÿüÈ™¿Hä ¿»_ð#º$|§§× ßeÈ¡WˆOTž®¯¯KËŸD}ÌÒjÑ?úƒx8/‡o ív”¹p½yvÂõöéM‘£gÌw ³Gˆ<=þ½®Ã•ŸA¾7àþï™P-|l±òuÝ%ö‹»ÃE~£ýÚCþúFûf¸þÂ^xPðÏý#–Âù ç£ÓvX_DôIXW¬/rD-¬/¯Qhç«™B£ÿRôïúþX_Ö`X·Rë<~Mô‹úÃ]¸>c =: ŽGxCV@|8^Ó›“ÄŽl\o ì_ÙÆí»âz1ÚžŒ{£÷Šõ|W&® ã_g wÕHÿ<-F{¾Wø{¿©\Gc-ô;q/Ðî ;÷Ôw„õço–qAÔG6ì…ú¼d‘/òí)BÃ>÷qÍ1Á9·Â!ü—yûoŸñ×¶6ÿ¸ ÆWùEb_¾yLÔ_]8Kô»,EŠúkð¤0®Œ„ñ×·&‰u^=©Šö7a]ß:¡½-ö=Ñ~½:ðÅl¿q;o¯ð7^nþN:ô¿å•„ÿçKWD¾Û9#…¿ÑÇ­eg€3Õ8¾æýã‚Àñoœ|!ÚßïMãhàô5Ô§Îþã´fÑïÌ–&±®O®‚žÿYЍo¨ áT±Î3j†wq]šh?7æù{ß+p|†ƒ¿46Cø/Š…^lŸŽÏÅ}¢Ýò¿È#ô]SBç,[7Y€vºÞ’>,ÿP ­N=R÷c),¥G.f?‘QÈ£–d)Ýè)Öè´–ÊU¡,d'ÇŒÝ׿z˸?íoËà4ŠÚJ9ž“Ó¹áD³ÈH,!ٮؖÓÀZPXãfl±Ëu%ZˆÏPêË•÷¤èøÉ,˜HU>Ç·@DE&N´Uæg³ÑÓKZc…¦VIßKç³WDKK’Ï-vm‡ í Ž#ͱkÔfžwX©"bt®áö伪Ý-”¨°ørž'Ù¼;Ç ‰Ž}ç¢ÓkãDæ™ê™×`K)’/.ɆÏî²JU{IŸÀ{Z:¹ÛÜǃTtÙlí¡Ïãˆ.0ß:ÝW {_Ã\SÉÎ]CJU¦%*”‹ ±½û"¤ž¬ëô¤ˆ+µ…\Ýkͼ-°¯'UÒAW¸m¤ÝAN£ùO‘îv+ĮΉsèPDz#7ƒÉA# LÖ‘ÛyØ[*Û|@Ô ÃÁpÓž/œ¯`䳊ïž4hùÃÔF²ÚyPÃoiD+£ öêÔæT3þDþÙGB(Šô–3Tg/'ïPÏèéws]¨óÄwÄÖgX(8ßõ°xÄŸ;ªM;,×wÄ¥3jÛáÐ.ïC\bkÿ2Ʊ v(˜Ý²òK·£?MIöCydWöÉ8çòV_·îº7šöÁ<þò˜«OJøâõ”½’C`#bVkg™Áþô’öÊÆºÞ¥=0j¬ÄŠ0Ý€8Žoš„aÃå$šSÝÏJ;wL·m{‹ 2\žñ%+)¶‰ ¶¹ÒÐ'GRo‘ÝtÛïÿÅ8r²6Èb´+E‘Ô³ü”©±8äEæ5@tðA ¦PÎè:õÁ •¸[ù¸ßm|—_hh×~°õGGÖôîÙiåMr²"Ö`eýpkÊ’ì‘>8ý+e„n¦ŸxqÔ2±´©”¿…ÒÜ,kØŠì³38b ´Ñ™7V#h›~ö \ZPG÷ âU—.VŽ}ØÞ€£¼F"'Wu·ñ4ï1;žwŸò|(r‡¸&îèùêðdzÄ {θ^0I·f\C^$Ù4|ü0?ƒ‚E3̱®M©” ðr¥Á€vÁÚºjìõ„Z¦«ÿš¶uK¼}! !»y‰b‡g¶uGÀèFK*˜èžË#Ÿœ6ƒÝÐK$€-ãj@jŽô›ˆ_½uÞ,Ÿm8~@€(è$ýo„+ÞyÔ—¦— ‡ÌVèÅñå†WçÍy&—Šš†ØûlH;2SD“¥sµçeq¿:VÙº(FÍ¿TGÿ ¥vŽNQ•Òã„ë|]J{™—SAZˆÂV‡©ä¯ù U g^ 9u¨¹Rýãdû `~\q°{J½37±2%¤3©ýøÓ‘)NõlUÁ -Ô”ËÚñ6Û°’¾ø0ùÈÄ8רð^×¹U QÃ(Zñ(Az#Åždšéóª}g•#K4¡%®­k•'ãu=w—ZnÃúé~ß5±%³³ K=ÈãOÇÔ!ž¯HGS Á}Ù^¦òÿª¥gT÷]ÖƒVŠ+‚£Q U#ð\ 3×q­ÉÙÅ~k)ðõfÅÍa­¤Jeÿ}½!ÞÈ+yÛ°zúÊøNMÓo`ÍÑZîråD;ìG^ûûÕ@ÕÆágê’Š˜1bág–ÖÏ3­5©=Qe$êgjRºJ”BeКa£>똠yßÔ¿PsÞº‚êààX Q¸T>&0 ®ã‰Æe¯¬ôè»q¼æ»%ŽsJ½ý`°½ Ÿ¼Ì¿ó0/ Bþm—Ú¨\…x“9÷‰ó%¬Û}>ˆÙ—ôÖEÇÈô×”h#e?R`H Í÷œò²¤=3´ôk{ðrÑ8r|Þ”8Ó^‹ÃïSÚ #¼ƒû=€Rןɤž;Zx/1¢ÎóÕöåõÝ¡©ÄñH\jG5å"eèõËU©5ÝL >ÆHåq%ÓÌ‘æ›a¾oJgWÀ™…—%#)0 ÚIcV6\kÈ]"&‡\±9êþ¶96Äò•}ʺ ›97QÍ™‡ÛÓ—¯d÷q+(Ç9ª¡ìƒÂ“^è,á%‚› ÚYƒk[qê2¥rLoŒD<݆H)cäýÔ#u¦8©uË ki`°ŽQ¦J¢û®úÁhž4ƒÃsŠ`ukVh—‰¾› ´/^?űxK`´·Òw%І€ÚÁ.Ã<žv§¿ûMp0›qím‰°²·?ä4&µŸ^³~™«@ôuívû¥~toÁƱ‚ƒK]#ïöÈCFÐðYX›9.DÂÀ±ÍÑÞOSk´¹îì}G÷Á\™8™Ï€žVBçöL-"tà°9+±ç®ŒëŇ³÷=Ar<Œ‚ÏO nÏNòilÖà ¿;¦)ÓñzÖév­L½Mòð½±s!Sà;¿õf׬ì%rñ=wí‚n°õjfÝ3Û­FX\ÇþíÉýCšxï¿qà×Óî¢ýd>Dx†?H‘ùýk¿5˾â1Ìxù(°Àüø0E-¹Ów|‹´WrÍaµy‰î ÓP¿@ÛÏoD0 žßR–ê焈’mÜÎæ±¡sCÉP7u?F¹ŠV³ØŒq(éw 7‚ ï)CŠOذF‘–W³Sú@âCÓwê·>®YÜкîB¤‹(ƒFªèû…µñ"HÅ<&Þx“ô^£6<|vTT»V©ÂÀ­ã¦r0CŠ@ºjRêîó[©çiÃ÷Ë DðÌþí:»½‘â¦õ\I³|ô”¼nÚœh5ÏLL»ïÅJÑñpZ?ž–Pû[iÖ6C8Ò'ÁáÉH鈊5çû”´Â2d´<ëU ¿¹ìbü‹°G³&Ý‘í_?ëaÚ.*¸fŸ M†ø"©“zJMÊg®òøÔn+3p¾݃[Iõ)ªI¬¾Ýr}¿0ÞéMùšÖå¥6¶8”ÛÓ¶:߸š±˜î"à%È!n¼Àœs¯Z»3/#æß6ïó¡!JþìoÜ#ýÀ;I-›Üà-4Ç…@›JÁž5Ï"´ß¿II-llèå¥Mí³Çô»‡ظ’)~ä'ˆ ”’M®Ø½Ì¯$èÕud!Qƒwu?BÕÌêÝ@ÛqwpFßj?im’2~ÛCÆSãDÒlŒLþ܃‹Álõ³ñ(t45y6$Ü\‡ x£Åj==q ¥òMÒc§NÛ|°³ÖãªßˆÓXcµûQйH–K ÂTGð¯%ÛÐ×ï£Ù›™Ò«A)[#ÛòÚ}{Câ€îíÍ6‘Úõz'eb@=ÜÁWb¨|ì>„kþeMUs4mÿ_˜ðÁZjß\!¹¦ Ÿ#=eÒ‡†©Iö·äB²nï¨0åvä Œª[[ VóêÓ‡ÎByµ0EI,= 6$zq˜™Ë=u§{,mRø:}hûÅw¿ ¤j‹¬5¶ß"ë±yR å'@¦#õÄÃ1±ƒÌɈXb}"þo<óû×ó,Èzáqù· B-¸*Ïå&þqµy¾EÎQjöÒýKºá ]n¤8IŽ0ÛérVðÈZ‚˜Ú0‚éÕ›MàARê>ªLïA#ã†ñ¶.»Èn1æ®N©¯–óøÏD{ð 2 ‡W€KÄŠ_Î ÐE`J[Öñè™Hþ`Mèáu³¬™25çѯ ì ¹ëàÚHù¢‹¢$s°U(ðü^9ù8½º;‘(¤·5]ÿ'Üœv’š¹bmÆà“ŒGôÎíЪ 1|7Åñ1TwÈØŒ±æ><‡³›øË.¡ØÑ¦‚çfÙOÐê¿Yë* Þ²ósB9…aÃÎãQ¿ !<œÑVØ£»:Ï=V;ß‹_yêa+ìéá…%ÉÿÉZpô§7W¡·çH]s]ýôù&›–›œ!®JOÁc™°rå™vêzzÎd_" C«uü..ä³¼òK_xé¦çc‡”ë{ÍÑj~Ÿ(ÿRÇ7½ïºéÑ.YÛ¤[fäxâàýÈÆ»pÍ`üë·ŠK’›#ú œ±{ÄÇ¡ãVÓjØz¡ù³L±æ\P#ÞjŸcO€tk .®“(Ìi¸:úÆU’ca˜!ö\a 1Ÿ~N²#)—ñemµãGLªbrtÑÙ´í·‡«^RCÂ#Ý¢Qߢ£0bYÀ%ÐDÓœè°;ù ×a4Ož¤Ü+}¶SºHÞå ÚÏå Ì@’¸ï'"kÄxz ü‰†6+ ö‚ã1Óî7ÔÏŒÕ@öÀ{p5 8î Q3C®2Qõ3Õ ü•:æÐ¨Ã×næz®Ä¦Ñ=1S;ÓÌ•¶¬xªãkm¨ê¾aý˜ÄþǰÃn©ÀÈ`8‹aÔ¥íÉOÛϼ9ã¡NïBçGq÷v Ÿ°s& ‡d¯ÀM•Í/ÃO¿*Я$ÆžÅåg!UÚ#ŒrÂp‡ú±.J9ËÂv|eH(fže4¦(:‰Œ`E†Cß”uwˆ ßAqÏrñ-ûbú› íjNéÖ@÷Ž»eyy©[ƒc‰ù³zòÈ›…ËlÈx3ÉF™=÷¿Õ•nJ7Èv3Ŧ]´T%^¹ü'·V¯iÌʬS–i“hjÞ2¬…°ÜÇä¹Ì`´D¶£fô2…#Á]“…Îk6‡@ÏWäÜnª¶Cæ0Ñß{9LH°œ9þ΄ÕÊ0ƒ>1;[·›—Æ/ƒ›˜­5ˆV$Šlw¹%™ôL®8qÉêåhÖð±H–!¥t-¸{‰ì¼Çðv[Éx»Qï kŒø!ÁÞÖöšò¥y Ý^Á?ïFÊ‹ ½2y²ðYu$'E`ÈÓAoy%8ãásš­!BïSê[‡«d&]^¼±-~Ahi0Qµ+(5¨ 0ð¶ïŠ#×äæ=¸ê°6(µ#UbJ<ž#Iy×®„rÁ*—"º.¬M—¦pKk¤s¾Q"YäÕŽ¿ #+_¯[1ØX°™ÎùbŠ»*Fð÷Zbª`S2˜/ ö`ë øg€-UMØŒée«4èAäŽGo؈“ Ü´h†lsÅ.°?¶³+Š¿á½—Ø[ÍÅŒMcÉÐ_OwHäÀ·¤LÏ6{KÁäúÿ®I½ÇžÂòŠ»·Äå”JG7úC=ÏòokóÆFÕ~v}n^Ò·xȪÌC×yÝH2ô4(—G©aêXÁ:C¼¢J˜¸¬½i½œ°ï?³_HÅ?«hóÁéeg¨@ÃÕ[Cd­ È©õÕT8SŽ¿è­n¯tþæ9«vœáŠÂUå7þõçD©ÈQ¼ãìÁ)=¿»86IÀé$Ñ“†zZH5X2ÅwB³ _Œn¶Ñ‹›càlGdÓW5yâ¿ÃÜËFòœîÊB|ÛÁBý+ºq´Â=%w0/zBË«ãu!Ï&/š ¯#q6XŸ‹­/û4RDJÔ¦¡Ã¸KŸ¦†tSĆü^¾óW‚þŒÊ:Ë%oÛH^³öߣ0‰„º…ŒØÊ…¤†`´ÚòÕõ¦øÆù^F”¿M@Ä´­^Ý¢ßýotМ—_ay0·À7j`ÅasÒ·Ûf „yÚG’N¢3_ —}ŽìxNý»cJcƒz%F Ö“’¹¬eÝõšäpZgçuãæOª1̨͓á†.c\Ö¬2Àº?ìÕ¦n¹'‘ñ-Ð6?Œ3g×—»ÛõgŠ%pExð õ/£‡€7u¬Î¬*½Â©£Ð˜œ1Æõ9üKB4ŽÚVøt<[m™Ú&›„Tr»›&©!]nYÂ`¡ößtEIð@dÑê…ng€áߦ~W›\mßL&0pŸXrOùýO\_zÙ¤x¸í´§0ɘüLdA×€FÚl«)¾%<[X *‡Ýcû+öÞ7í?èÕà^³'ç5ÈY汎5Žj‘ºpŽtw¦²öÕ7£s¨y¡«÷›f•;¹Ÿg©¦+–Ò(F‘öçË0zg#$ äAõ7ï ±3õ:ÒÈv£.LnQß÷ç.Zp•ócoVFMúß³™è˜D•>áîFÄüFûéDøÛæ“$ £mGÓ¯ÕÅ€Zªþ"róPîh°ßTÃNƒ8Pš2è˪’CîI-㘳.‰eïÑŒƒà`w}ŸÖÙg;·È0T9@’Ô‰ÚÓŠ÷¦Ä¦R::g ÷$…ž» ‹²@Y˜]v«[MÄg{Ei³é¾ðyügtøœß>æ*­†«kßɾ=³Ëœacï5”O?„t@Å…´'¨e¤ÿKʆÓü‘éÑ,;-`$ ÖÞåkÂÀXF¬½g¾_¾Ón”bq’6±%¸Í8Óò½²£Ì¡>6íhàw,×|‡,)˜H£N2™}ë¹WKÝ‹£¡ÈüÆ/ÒRd‹E1}Õ\¸yâ d$bcv!x 1)îNùœ“¼Ö.ºe{ ¯LÎ!”¼MWqàÏDv³Æ0"LÔdA¨£„ËÇ¡ìéÇ=ÍíR*d-Oʉ÷>W•c Ŧ"°ªË‘Ö#Èè"å]'9þ±K!jY‚«Ëo…}¼³¥mh±£³q±IÊDâ/—øu³†ƒÍ'¿WpŒ#]V–@Ÿî4wy š FQ%XkÉezðŽ ¯µº§ ]ac€»Ûä2­Qpó3$ ç¯òÎ2í«uª3RÜ #µÉÉv©‡•rXqM´¾ ªe˜–+b6#ý–Å ¯è?÷æ\וLµýÓzÝ@£”LU·ð{\ØQÀž¦Ë/»Z€æ<Í ÇK33x=¦÷#ˆmgmYÁÎÕDÁ3Ä%C 1»ÿLÙ: öeù˜e¦ÔDµT– Üäq#uY ræ¸Ë™e;Ò—=*÷¥*˜Ýõ¨m_ˆŠ¬¯”yxï«©[ü?JÌ×-r÷i(ÿTy‘«5Kk!ÕºòG_L2ó ³Åyî‹Ë†ÁK ÖVI±Þ Ä!sƒŒ5UÙ‘¾‚ÊKùrTm ^}»§Ôw³óñšÓZ9ñ˜í£B7Öl¯,-œ[Û×Wg1n€[…²±¢RhHa–WáÇÆØuôÕ<›¡ØQV.ê*2 ÉÑc'/ó8ÂEx,SK¿¡ù‚ ’?_°1öÎ æ ¬>0 ‹YZEpi/data/hivDK.rda0000644000175100001440000000420612144476640013425 0ustar hornikusersBZh91AY&SYÛ„ ÿÿþù\TUuñö{}ÿçßåþP@FPBôHÀ@BD@@@Aà }Ø`0zݾ¾Vp€cеXfµ¡¤J'àÍR6›Qêô§©½MC!£#Êz hÐ6¦ž dßê©H{ÿõTÒPÒ¨ÐÐj“Iêi’M€Ð 44“I‘ ›R3D˜š‰“ÄÂb24ÄÐ`©£L„4Ó@àô˜FLÈÔÀšdÉ€Œ&4h!€•$Ñ ?RM=)ÈÑê@Hõ2>rKöŸáª6Ûm¶Ûm½ò5ïoæãŽ8ãŽ8UUUŒcÅUUUUUUUUUUUUUUUc˜l« Í‡Rvl7êfffffÖµ¬dqÇq›ÆZfffffffffffffffffmkZÖµ­c¥-fÆ1ŒcÃ²ÖæÖÑÉá×Ö“³cÉ.ýö~v¿9Xrö“ÓÍŸ4ÓM2""""""""""Q4ÔEïí±çšÅŠí…±V× 2±~”ýøó-~wXêâfJ©Z;·T±u¼Öæõ¬ES®e32ëm ˜æòêÔÖ›¦%Å»ÆÜJáŽ-¸åu¬2åÍR®ìª)«¸˜íÌZ5ŒZ´ÒjÚjšMå £«\¥Ë½;ÂîiËw•ÂÓz¸†Ç4êbbRåÄ͆´šwpÕ4jéÛsXnæ(OÍÊXOÄu}ªëVþõÝî´IÀxfà±³SõD˜ò­ã&î;ûl6>׃GÌÁô¨µE2!™d„jÜ#Áè$&&úÄa£%Y­\¾Ör'ÒÆ}I8¶4«`‰„Q0IiWµ©+Œ,ÀÑ•âá*cbÛIÛK!ƒæ‘@й&œÇ§n Ù‰&Íb`à 4¦ØÒTž$ËdºÐŽieL+ºû‘ÆÔæµmt¦ “1‡Ý:•k~<5\,YÕ±aáÅ&Xù½ÿôiÔÁ’õ`„ñ‘mà<¡oÏD‚Aö$6¨ˆ…r¶¹Ÿ·­éá|éu”Á å,©Eé…ۯᗩê½ïŽŸ¨ê¹uÃùû_ÂòĈ‘U}ƒÏ ëjUr-ú E×’ëZ«“UÏe}ÂÜ£JšÑÖÆ"¬˜¶ááÇ.Jeߪ0÷ 4´?&Yµ7ü×0bÝnîŒ2ëàÝJ°×Ò BŠ}+ ìEùÚQÞߨÕÝ–i#ð8oûÌ…%‰î7ðyQ[ôqþLXœŽ•†¹ÐX†M¬é•a\Ãñ´vs¿O#yº&±V3ÁÄ+Õw'’Ûó~'#w°ðkdCÛ71B§«,í»W‡(e0 dÿÇÜêW¨IÊ¿„ƒAÊòæþ)ggåàëµLKìÇϸ 6lÅ{@àV OÏœy=ÙCì"dÁw—xs¸}Ë)H4 œ‹,°0"o|÷w'ײg–œA%ZÚÒ<¬oæ0µ«Ç’ÕÌ+©ýø<%Ê¥Îô=0ƒSAWd LAküR¨,;hàækXH¡ú£ÊÚÆÒhvr‰ú¸—ò¦5pQT§œ(6UM¥iÀ0z£ |}ˈ/bŠ#'ú R?îy–!]eòMD¢Î­Îœ†Ò<ÑV6Gô‹<µ”Á¨c&½¼ðI ®bvD?@=¬.3V™;¹`°í`#%àaÌtŒ†u§[ú"‹¸$hi±ˆÓp@"øs¤qU ½Ã¹ 4'DO” Þѽ­¤–÷„US)L¿0«¾b!¹Ìøíe£ ÚâäͽÉ&ãš+è×Êžë|í6Mò¢?¸*ü…χúeù%êÌyh>-ÓôŠ‹Ïa{jfc™u/rM’ ¸ üA¢>enÃjH7©ÇsAu­¥/zp˜¨¯ .íeyc÷| m»”6Á¬Qe®à³“Z¢Q÷ÈÖÈmÛÚž°üê"€üu­²Øs'KÓsQ 4¬˜_'<^$Ê—lj]áã½r<½þ#0nƒ ÞwŠh>d>Ldµ”@Eš›ã_éÌÃ6x÷½±<»mâ§ãÜ}ƒ9eã-ÌíªJ< è¸ßê¤ÓÅLå~gN‘µ‚X@μ–;  Ÿj}N™‡5L'/«¥\éú¸È¦þÞý‚ªBc6Œ ô뽂H2'—Á•Ìh¾ƒÛÖêÑ5²ûŽ$@ µu.ÐEu¬î;¯Ò?öå¯îìÇð½íe…eÞ ¡6C²é Ó>‘èrtJT¶Á¼#ui”×î1ê-ãžú^Ôž¡è£¯íÚæÔ2JàÝ![¦’ŸsžܺüÎã‹[þc%üµ†ßÔ׬Ñ׺“ÌETèlånï”fÙµâÂzŽAS‡l±¼!¼Í¶óaž,T¬§}díÏ®±ù@ËÄð;hqT²]Ž7qôk^oÏ €©û6Äd=Ï …M/5&šbÑ­‘þ‚P¿+.ÂLgÕ6})< §ú³†“z“QÈ$‘vœÄ]‡> ¬ßßù§ð`à ‹züÈÛ#¯ 'oµaÉ¥KA¢ŒÉ¤.ý•éË”:mQ0¦¬Öê}T.ë¦V}½Ð¿”r® Ò‹œuÊÏZ~XZ‘!þ“h‚*S\YÅÀ;–f=}‘‘‰`¶À°¢Nœ/ØÕ’p¾ ]“õŒÉJçÖXvyüö@z/í:æ$Ý€¤Ö¸æB$gý¦ | ?j?ÜÀ²fåIs÷àk1׊¨Z6'†òÈF”¥ô•F=A$>ÂÇâÔöÆ•" Œ¸·ùT1 *3§…<+\ç]ü5Õ¹­ Œ#[ŸÁò÷ÿ¶´ñ+'W×0bsBdpÕ pžÈÚàèÖàÜ4)u"\Ò‰¡¤²9êÜy?Ȱ¨’Ï+È U=yW ^µæ“,IZ£< Q\rQbÛGÍ7[2è~n1Ö·–§²xaƒ‚ø¤‚f{vóïÄU öÓÕH_A5=ûBœ˜ºþõQ1D#c~‘EOzQÊE…±ï^Ìy{}0³T0þÜzÔâ|Ÿó‰*L¥Œ!± çw‘LÒöAÀˆªÙµ×¥å»·‰çfɱ2ô¾ðm~´‡ÏXHãƒM$L3ÙF×þõçÂSmî×fê>Õ÷þŠw@ÉB¨Á´¥¨Óþž‰I¾6!ÞA$4‡k7Ô¢B¯fû<ûÉ Ñt\gŠ?ˆ ÇÊfeßL–êG(ò™æu#4Ÿ"x*vÃÿ©x®5é€c´Ú0䊢d!±MÄ®UýÖJ]¤‚O¢P„VŽÚ²‘QÞëºñäÞ"—aΤÔ\[Zecì–:ái³ÊTå}6–BØ Ø²q|ZÐçkÄå£qTO7ü>fö—K\Öµþ{ýŠb–PƒL§³ßÿ«ÛVœ€“&ÙÐöU®Žó%Éz›@À4œ1 ÂßýIH_Ì"ª% 𙫺àéÔÐÏ “OÒ"rC,ؾ^ãD&ÃÛ³R+ÖDÝLJp)µÊàžA¤ã–_D£mßm¾>\taJ{:í30ÂÓÂ~òÅ$$(¡­d†n_býÞ¸9 ”2|™;çÈŸ§åS—ïVÙFlÍg»È%³yô|È{ÜÙÿõô%(^ùJó¬î¯tTŸž…:ð©ŒwôGmTm®ÛxËãë»(ÄÆ;¥`~øØ^ ÷ö”PЍŠF ~†f~‰H·è˜|È”¼Ó3q¯³i¦N*õáO»³‘øËGP kjY[‰¿Z'+ ¿Øà Ýd¸GÁ†®‘!M÷ËÓ].>Ä6ž q©P !rº‹c}s‡Ì†ÉÑ[z>;Ac’t ™YØšMµÛÍðÐ`>"}ëj =Ù‚ãJ"8Dø©ÉýbÊjàQœä­÷rõƒÛ!ˆŒ‚ãÌ¿èŒ]ÿ“ 2+a âœp¸qŸଷwÒÞ*KÐÒ#/ÊU"½uÜÀ]ŠdBñ% Yýj,VÚÈäüÒbéÖ´JöZ¿»o­åZ Á-ÈŸK.›þ\«³uwHv˜GÉu…2%ÒYƒ j L>ÌÆT¹¢ÀìÏÐw¾Õ¢:a]5Mš‰Í­¾‡Ùë±ÜZpÓi¤P(ÿ×’ è@²q‡àQ8Î ÆFOœG‡¼X/Ñ—Þ¦gPÏ])z3Šx¤·_‚:kF+<óÕã멘喇oÉÞ<—íþb» 0—w—ÌäiÑ~iR¶aéÖJÿrÜm…u‰ôNÚë øÕú n(pa XGNhÝŽfC]–ÁA{ÝðKҿИÜ+W} ½Z#|¸vIoóÌÙòX1 /Ýó†ÃËÿ§š‹`(:>¯]Ú+|fî ׈%sÁàÃ+_A>¦§¹íËø~‡y½ÄEˆFô G²mQÊZé <õÿâ«PÈÃz¡íÃ‚Èæ*ÂeGAiœ¹ää ŸÍ¶ðy˜'ÿ¸I5 W˜Á™×tÉ$))Þ†ÌoêÆ-z4Z1=biV*v&1Þ“GBõ }ÌØO,%RC0go4¾ÿ„-Dd.¿K:IM æfÇk·eº&ý4ã°V>¼CO1Šw² Úbèò7cÜ5 ’ëèeD¼*Ù—ãNfÀjgÕ>ü ]”pðè°R‹îÔ껾Ú1 bR©{9ï«à®ÍÏaáºè@—0OAù FúàÈ0U_{‚–IE5 Ñ6ƒ­õ2¾)6Za³–á|>••^Hi¯qx¥t¾4œ,b‡KOìtA/ŽÎ" µZl„Ñè…‹3٭ٷ‚äôœV9ƒ\BªËî;ÂÿTŠ_ÓL,ˆc*Û™åÊ_s»—ut†¹ùfñ:q­_“ÛG“Í=ƒè`k ©Š#èe× äþ¶šÚ%BBÙ¦+Ê`ïzªì|ËEŽM9¶À‹ˆýÜfŽÞMÄTƒ:*y=ð°:ü~®7˜€0ö+šœ&¦ª½Fð[’"TÒ(ˆP#1„[û+w­†yñØ6ºã·îˆŠ{†¸Vú¸ÊqHK%•÷b††q ‘}#`FÔ9<í§Þì°%ÉI"í!šÞ—Ó~ˆ\ yÔÄ{+$^Ïë­¯opØUDK§,jSÅñ‹D‰ê @‰HoŽKq̆¸¶ ËOeÊ5š6$öÞ}'D¸®œAÝ‹~î„‹r¶Ž±ë2þ>fïø°†…ªFŠ'§ú…ŠƒéÐsv€ ìµëų;÷ðke£¨Ÿ£à£/3Ȭ6ð øƒ$à`Nƹî;Öª5ñÉ$2[â~ ŸпáV.^?Ä„™³.ºL¨H±Dý ”ªU̘®Ë˜½²cmøqãóió@ó °š¡g6:ð.S‡ƒ`kG ujgÖ‚^7ƒrÊ C`17|ß®GánQbFícÏZ”'–ãÞÿ`G›‚HèÊU%_ˆu(ŸSÏ@´#²CŠÚ0æ/H‰­P§íÌN Õ6—ÆŸøƒè¨y@ç|uX5nè Й„α•Úl\àG¡ Qp;‘¢_¼x« É~¼@šŒ †ea˜Pñì$¯ÕN`8¶í•‡%°WVbq8Þ²‚;n¦] ÆâéŒØ#½ J«¢åû¸U†¿YVœs°üŸYDu)ÙÅI¿ÓóÐ;:ªJ * JìÓ@K Có„ÑM‡ÍK —®: ¢'9Ôßš9°…\Råb8÷¤%úu£|Ë‘qYébu ÐE?çß·Ó¯Ö¦J¾½ˆ¾¸ ˜¯·¤\$3TÕüAäþË{?8»eãnŒk£ «žP6üºÎNä™Èóƒ¬â³r!:Zs‹ËøZ*i÷€VM“¬)¤PdjÃÛ0h(z¤†Í/\4@v ¿e­¹T¦àÄJíÍxÝþ.Ö‘ÁE>~¶ÆSh k y›Š¯Ìˆ3^T#¡jéTw€9ÑJ<'‚!VC¾{©SäºsßWùFåGiÛ 9sFUÀá3^¸kSËÉ[ éî:Hò¢Ç׉¦öÝLjþм)„{£Ú½0ŸÀjyÆ &埄?™Lo:ÐUöâ¸âgT­Ú“¾‡ý„ÿö¼z½¤ÜUÌ¡¡Ñh"ŸçZ ©”g™G/S5D5œ;f×XæÈj| ô­ÐQ]Ђïf–4«d76Õœå]f™ɦÛ&ã¾ÜV”wrˆ®öUH—ëgŽ”ÐHˆ¾Spçþ¤ÑZ ^¯Ø3“ÖŽÓŠãŸ:ÿÊG¸§3T¥¦È3à-Mö‚û§’mq`sþÀ%ã™q= ¹Z»â·[澦Ep ¸6B!r!¿„èž7l§[Öa¦Ió§QƯ)@f¡vtÌpD'õ‹Jxè™ç›&ê;p¸k²è±l'Siä,)òÇÎÜ0 Rÿ‰§24:ƒòQÉ1÷ ƸË9½Ñe5/Á¢èìá_~ÈîS³¿kMÕnàïù*tgï ñky•mí1Ì⸺ÏÝq¹8ò=Œã^S*ë–m”à¦T€¹ä±ïëi!™#¬¢‚Hã´¾O¿Ø¤ªál‹ÑT〬c±”­I7”nÁ qv}ºÄwº×í›õÙrmÙiÙ²ÿ¤iƒ¡)ø•å™™â^ƴ ‘ŽJ=«1 ,µ‘Ù·<¸l;ÇŸØTàÜRAÛtZß"Œä‡þ˜ë $¾=Ò`Å­õŒÁÛ{M¹yÅ$c9˜îÚÝ–óVÒüû#hÐÞ,q“ûTýÜô—ñ̤>Ç\wy¡f»?ƒêghªÄ‹p WþSÝ”](Z’»hÇÜŒ@Ň\;¦ÿ°wÌœJ}‰Ë´šèVh}¨’7Í\ËŒr¯ ½6’fÒÏç‹—À¾óæ©Áö Õ¬•^íeAN0.ãÍ gfJÀçá0:±ª;MéH"E£V”¾ÄyqÏîìýG£®œ¼[nüŠhÍ´Ô¯V׊žÙ¨”Í7(†È Çwó|¥ÖÍÛVUýϱ½6k‚4ðK†×ã²Ù*ÔÓõ[‰& är>’xþídsÒáQÐ?ÊÁ×ë0JëÜ?#Ö¹Úí²Âü*êwJid¹¸•²fkǧ* (èY?oÞ`’I„Û9°jôqÀó,“`BãPƒ)]ib¶bõ‡]ŽÞ_®E™9bmäɾþ±Ü¼Þ›ð˜µQ „AÓ˜°Y¢·8GU]` ’<è+/|Aûf?+í Kâql:q³“È-5qŠr'lÿ»‘~Ý]=„VÀ•üPÆgœ½­ðL)º!ÜoZŸ›¶j¾Èy{">I‚ÀÔõU94²{‘ÁÚAéexßùõ¿æ³4·¾A°¼,‹Á¶0↋Übp‹HÑ#‰#阢#΢Ûa¯Ëç¹E,5Š—ŽKÕGpO͸=¨úš°“0í}ö_™46fd^nϹ.Úš*ÝÖÜÀÆó“ù#Â5·V:óµyt=øð‘¦?K~[k°?lî6J ¯nù§6¸yÉ"&¤4Ô AR4öÔÐb.bV5<ÔpÉ™¾@Ê;5Þêa]kÕh)‡ó£3Ø´à[QuÅÂ{Ú‡ZDe¨ŠÔÏjŸ÷ý›ÛB‘–yÑÔ«XºyFzšœ&º:+Dz afˆo,.KÌè͜"_Dióy‚(MAøŽ’¡?ù }j5ä3yA˜Õ·5È9ó’9—ÈwhZ˜Þ4š\E,ý²ûæqƒíœ§‚ù,LšËÆä°õÙ~«„Òi¼‹üN|×,ž„‘¶ Ù;Ï‘º5 ¼S)áô#G!åMšÿ•zM©ª ºKËÒ ÄŸ˜ã^ã)œ×‰!dº|·¥Œ¸JvÊ|8=…6RöÎÑ €É†˜µ{GæÛ÷sÕéÝðã=Ž)è/Ã3Ø”;X·6ŒFåF'Ÿžu”pȶ3‹]ÓWRHA¢ Šø+$¬a½>gFVf\Gºï„º8-:÷xkXçcIæí(ÌP¨D¤£DEa–W&r"&ÓEaœ‹àú©K"-üÛ+3VñÌ>¡Mb÷9 ”‡†"Å4’ê‘ÔD€øÈƒ;Éý“¯xiê€iïœG…éÊ4€o®J wW­™¹?‰;h€År‰‹TsФÈV¤zbeÐàЙeš{×âÌS!TJÅñÖ;q:á›ÒœÚ¥Å–Nâ¶$H‡zrý«xÖ§U©Èí%·Qæ°êü5^µ¥È°&±àz¿?ì@VE+m„PÓk— Í­•„͆}ñ½¬üN@Èà]JÙ¯­—¶vÌ~Õ!œ‘Ò_¬­¯¡U@’¡DV¨0;L|N¤Ù¢ ø#µ¹“gf&0YFfÊ;åë«l~`æe·ÍŠñ³hºmøüZ̉$)ƒFk\4ÿQà²RâdÓM¡_¨•r' ý–Ó{ÃTz!£åkø¯ÄiQm„ÿ(ný’ó¦§óŒ+ëjˆ·0ÝüЍܑ–²«`…,q‚^þ/U›xKS£'.ÒQ'qZ±úvË}@µ‡_R Û-ž“Œ½†ïÛ&?iêkLhÒõúÿ_TR_7YBÅïI…Þ$[jÀ-×xv—Œ8’I ’ùœm&b n5šˆ~x@c@øÿ€“ÛœQï8J™"?0¥cîÑøOçgRÛ1ù™ôwõ‰£ýFÚ-7ÀQœé€ÏïS`¡¡úŸV…Uô’¹ÓYyÑ®„È!·&z=Ň#4aÍWÓ<ŒB þñ£ܰP¨}D£ˆ¶$^֢Рù6 Dö)™ý÷=HŽ×;·Ÿ’í`;Gˆ,&"°#DÜJÉäQ¹9 ‡ zMFb¢” Äœ ;ê‡yÅùÙB½,ÒôÇ[‡ˆr?>Ìÿÿɉ}r[Óàþ^ê¾+ÂF6¤µ·ÙÕ½‚mòäR”E|+2isˆRÂ垦*([ÜSxóÒÅ}^¥Ÿ>ºD•åVKîêÙ•†>øA¶j³jÅø‡2Ç©Ý HÙþ‘ôÙטé&þ«îN(mãÿ1`¡EIb÷BECs¬± ÀÈ‚öÕ˜«õÅoÐíÁèzuóˆÅVk½4ƒwÿ‹Ü&…Ç(Ý'~45G›¦‘rE£>ø²‡W³ääè˵;- ßæo7:‰±%%US1ïä÷ znÞðAcÛå¤ft”kÄh쇗Ôëã(XÍèâJ2e~úaùT»ÊÞÛ-Ó·¿œáꎙhg^ï¹f^;ÀqïP¶2ß¶^p8 ø-Â6rHBU_›NGFüýì!Ç`ñ(m¨›Ä\ É€ö«­½êm(ïâé—§~+â¡%— ¶œÂä\ûÝ6€>‚w³xôå[®ÛFÆüÓWãôký…O`Ýez¦"KlÚùæO–>Ÿa/™êWiVE×QBK|9R¸púc®H_Ã&buì.žc‚š|é¦ß<«U%Š«h“8ÖD1Ÿ×LX#ƒ¹žŠéÚ¡a$~)§i¶®ƒï(sdÇŠ“´]mïáçGÞO‰DâÑSÃ.O‘ôðk†Oû íåF¶Fí7¹in¿º/lÖ…sˆ´é•p£ð‚•äÚZpãTTȽÿaçk#Î*»/w— Z×Óž’‘€ÝÆÊÇUpêMœ“óµâ´p†7­–Eöš æ˜¥ nç-ù¶­Hš‰žï’÷_À—>á:ØGÏ]Ó.7QÛmî»æˆûã͈Âx âÑ'º-©€F%Õ>D¿„óÍ>»ÊXö0^ø]Nõмþ>ê½¥ŠxŠŠ(PßéËP6z)|„jꆠoLq VéüZ: CeŠ“ÉΊ‡€bÒp ‡£aØ,}ÍÃ௙6´lgIÝ ¯(§*þÐó³…Ôîœf7ó €ÿ觪OO&›íS³{j„ÂYéþ"][wX½–éj2¦9<_Åê¦ïØAnÝõ¿ùõ;“æŒj IÀ˜^¿§SfgkbóÌ[£Í–pÃ|öåÔ²®ŽÚŸ§O²Jïl-î:5ƒù×·òä½^Ú§Ã׸3ôPÜ¢ý¿$Šç¬ä`ï{ ’[»Ã7ßÑ dWVƹíÚ(¤_Gÿe _¼‚xÉÿ-km wÄyú4á°G}¿$3•Btãs°_t¾ÛϰQHÄ)ôÎÆ6 %ÛhOz`Ý®Ø5Ÿ{v=„5§;’=0•ˆáªÑ7Dzæƒú±‰.ÕußÏÔÂ{Aé~Ù*%V%LoWiGÿþâ‡;¢ñqAI/ŠS`ÛYÓ<Ú¾vå }`šÞT@"àH¿æ¾‘©ÏëôaÚ÷‘U¨·öª ½ý˶rßæ&hÈ¥éV­Ýq²eÑDd Þò½ð[Æ ¤ ìåŠ,Ç;:öoûL]ücŽÙÔ–édķãPý×ò`C×9ÚY‘tR|µ¥?¸&<žäÞ€_âcùf’Ú!¹`Ì_ÊŠŒx'òÐ{æ˜Ï›ºÇ.òu£’0 8ÞCÛm|—®v!SÚF(6ÃÒšUÞ-ùìóÛ±â>8ŒauêížVµæhA«#eˆÄØÇg‡±·Y‚+ÃOZŸª«À´ò¡/¦k‰bZ‚þú0¨Ë«.Ã=ÙªÁ¨Kž}{l7þ;þCÞˆõcãqGt/éB§Ðf±h¹‡R€ÁÞ×óDÇì<Ìf,*Òh+nü”Œ­b*¶˜T²E—€j÷yØ'o¹3xnø•ô•]Ò÷p¯iëÙ×.Ò×22`%ä,uE¼1ŠÃ瘷Ä|w¹3]²¼Ïïý|öãÔ_RqECt‡×7oR*þ€câlU$+;™=g"sHNr°œ•)&Â ÊÆrŽ)«T\h-ë&ùˆ!¥!«Ú¸k½ œÃõçBkcÂD®ÿýó”ÖZmLFb]l%>j8ï^βEac9r‹&¼Æ4N›ÈCûüÌ'È÷·*ûÚŒ’°ŸþIÏna—CÞ1ñ½E.„Ë?*1 "%Pü7¬ÁÒÜð…>Á••CqÞrЫÍÙßîœvw¾²rz~¹|,Ê;‰3•üc¥Ð®æ|R`1 ¡ AnIYLÉ]ž²³}=ì â0ÐŰ.„‚œÈ˜2…Æàx’‡­¦$þ v ®ÝÜìתª’íCŠ3%1ÿ|¼Q+ó‰n Ý:ñÑ2Ê…Ra.òÐlò͘亶’TÛï5 ˆx §¾t»!¬ Ý<ûV*íÑ:oKô–LJٖ_+ãÇ.«ô½ƒò‡Wð± þ¦ƒÁNK_eß¶1~/PßÝ_›#á™ò•Øú¶ö?§2âEÖMdªéD^“BAëÈ m€n“"d0ÍZèŽì úµóÿ‰ÎX©@JŽÐmâÒ-‹±¨JVÝäY¢%nÉpÍ!_ÉC¬LT>0Ћw¸8sî<ÒÒ¹ÔìrB@³Œ•lƒ[\ cDl‰Q~¨á¹f-×!&F@hæÍ,¡õa|–ó3+³„C0ìR? ²žd×7)†*}*X‚™VN]šŒk’þrg­åH‰Ð /g/ÓùghmÅS7—Šð3Ç9@Ö½Ôù8–Ë‘=ðªíá™— ÿ¥S®cm—±¶€+ †Ígûç:Æ$¹Bâ'7/ù4#bþ'»7(.¡"d5…^Ä´’Œ”’ lrŸî9æÚ¤?ÈŸèòóelÝoã€ã´±-3±qI[\°ßéá Ú§—áë’ÒÛbðêÝ óàèØw°Pî¯ßµéËëþ>qq4iÿõ%EêPÕ]Öëo¯¯N:'AÃxZ7~X݇®ÔŒ¾ìžP¼™ŒÑa0&&Òïd®81YÖ»_!Ö¥ðÍõRc½0‘7ÓÊX¼Ôç~U-˜m9W^Îî}ಈ&â4=¦Þ²²(+:ð­‚ Œ  ßŠs&¿=Quaßx~ ëWàïþWí |¬L ñ;c½™êÍbÜU’dR˜_9åØPuåÔÕÅõówíT”+àßE`±{\¶ìΤRâ×~Znº älo©áNxQÁÓ¥/ÛÎ^•×âÑOÓœ_=dð=¬$þ7¯r•¡[Á: ^«$xÌosNFÇø8BÅ|„ãPogoK’¢ð`˜ê€öd -~üÕÞ+u éD‰„COôžâ®[eÉ:^¿-¹®„‚)Ø1YÖ¹žë¨¬ÎtÅÊ!ó¢ÍHÂfÆË°é•ßÀFu#›€ÎÕªrÂe¢1Du»\uÍ*yÍ™Eô.´¾W:qÍc,6*l²ç?c.µÜ,¬+žñÞFvõß°QßF»»æYºö Mã¼ÚÍNØxŠ€,ꑘß")Ò…ñ”aÍQ\éÛhÅo›!/á}AgEê„Qè”äŽzćRôÙŽ';•öˆmSžDwHì[[øw¹ S0:ªnÒÑs¹úrŒ±9Ö$Ǽ”ôsw§Êx_$—öu•GÓ<àq½ 3øXºÈ"Fr—yb`ƒùÅj« R7ÀAánqø&ù{é zeO8*6¶ù- Öú…]>ð€Ó—ÞdûÏÙp5DÓ1â<ÀÅïv–¯§ñÝ…îhºjhň®üÇ÷<׬¹W[&캅,ùÃþÛl]±`þ :ŠðyDòÞ•î¯Ëd)’X™0“‘Q¤}bC»'¨¤BÃ’Àˆ®uGðH!¬¼7§‚ô|p³Û!ðë‚YÐÀž:f}ÐývMÁ=é)èÒd‘‰:ÿßEÖÂèîrMÀm]¶§¶¹gêÈuú9\ž:rdÑÒ¬‡ÌWW0•SŠãë€WŸ°N’¡Ñ¢ËÐSiÄä‰âÚ¿ƒÉÉ®éâË8wÐ)¿nÍŠ%@ kKNDßyìKöµ»æÒS@9nÊU9,݈2|c‰²ÿþÍ5Ú¢*]ÀAE§Èö¦ýsÆû«àç½1ƒÐˆî³ 4òD˜¸•X‰¾·îº SÛ ÷{²ºê5é8º`ÐÇÙ»@ž]ªD(¦r(˜ƒ¬þ¢P³$¨fN#c„€W·ô˜9qðÕ¥øžõ²P©Üœþ¤ZL†n`”ð¥d¦Â[â"?dÈYó˜¸bp†OCyÂÝ"([2Uð mí̵ô ï›0Œ;ª<Àj´óápœÅ9 Ã…ZŒš$í ÕÙèü ~¶”ô-fËÈ0ZE¢48†ý?|S5ÃÞ›Ìð¼UGrR¶÷Áë¦wÛô<"â4|yýKG¨['-lѾuŠ;„â æí@NÛý÷óÞ9:-Öç Ê)ÍÚÃà ðyë…k|˜Ûäé4Id4­Â&ŠÃt0Ç«¿uœ>XüÖ™ýÆ…Þ38ó,‚ðíÙœ³1g‘UágJ{tVo¢§õ §Tj%d˜“‹LÐTXÏûEƒ¨MS²¶>Œ­:‡þŒîëûÏ­šïi§r5™a­éáyÙæCAv…½©¡µ Öaµ-†GEÔ¥=ýºÅôÿŠ‘¾…+[ú@IF•2‡± 'ÐŒ’ß<#¨‡Æˆ¶ª¼x’ Ø›ãÆËNhKð[}sH¼¿`cž…Ù'?ùtç_”ºaÉ`óA‘¾Ïë&žÐ`gI˜ÿ?¯õJ9RëŸtãM(£¹ÿRdûF•BÖ5&#n vKtШCo€Ã9ë1sZ5IëøÍèI£Ÿ˜ð¦Øæ¨ð>uð*²Ós×\&š ‰8e±’9«ëyî9O³rîR>èð{“bã~„oìÇÑU¸–qo¥Þ&~ ¶ÀõH-w´vpŸE¸,hƒ¯å¨ËšÝmXҙ䇓!rö“dÇW‡sB°Ü}¥ôáÒÉ^K•ùss¿‡Ý+²æMpIžÈ©Óœ ãKöù: ¬9À$¡{˜¹Td†C8ý®Ø…[pӣɲPÿÕ¹ùФ¦ç†Г]Ó!e¼ÈÒØÝor†O£²Â¼Š£„zì´õ««I—–Ú6Ëlj»àÿuÖ6-#ayý0Í1Ö+/™'\èGv‘y^âހÆŠÎ%‚–Ë€ åÂ3˜ úÕ¿3çøqZü]E\ñžØýñG§”’ÏÑcB¼î“0U¦2 €ß³k9ú³hV^0`¦i€}Ó̵ãþ C„ièp¡yŠ?ççí>qKøÿÆF`òDÉ(Káy9WÛ \ÊÚ•û•‹®hÂY¤Ó|!+ ?AþœÐTAÔ¼Tóéëf?‰„ Ûó÷­)MÛÚàRãÄHŸËëyNÛéÁþ~“WÈœÕ èÉ#¼¹y«:Îg¥¿ÝÄZT\.õWÔƒÇê,ÅA`qO.Oq¡j«”`c>-(™k¼w 1÷PÉ\È¢²ßñŠýþûˆQ¯Tix‚”Ž2m‡‡Ù4T‘sdÑ×þ|6-v”æ=¡6k4ˆË[øjÅ×Óþ÷³) 3bÇlùÚŒ¯ø7ºäœ+•ç<+†3Ïéï5™4:-°TзúűrÁÇ›×õd@®¹BÿR ‘^ŠZ´µj ~ñ3n³­i´¾&é­\ðî„Îúu‡èš~ …ƒÀ‰Ö:M¦f še«¼\M‚# ŒÖnÑÐt@Üàù1w¢K¹¹º&z%èÚäÍo]¥Âþâ YË=^üW ¥xÎ-Ô.Ê9Áu™™ûÙ«€]M72 §BÈ8þyæ—mn_‘¤ë¬ŽÃ…4D%Zy®`’òú[©##;—A£SÝÉ}5ò´-[K0k—m¹ZyqdÄŒ–žò GáÜĘØóÒß@E<¤fV1Ïì×Õ^'Ýóìý=’‡äϲù8ürŸ©ŽÌ? æðÆ“±à[ýìô4¹!Ú¾û¦oS¡ëf¨¬qÆHóèóSçZ:ÏN.äa4ž‚1 Á™Ñ¾5s!ÅŸÌOüEõEÃ6Î4©r‰;¡âa¿%Ïž"•’™I1óÅ1µðºiX*¬ˆ@ùQ©Úbò¦Ûýx ÷?¢ŸzÄNÇâ?ùŒ*’ «®<]ÕÊ «,Ì1Ô³oÙBS³ZõÆë¨å=‘¯¬f0_²ËîTc¯ ÷¼œ(:…N¢bë‹~~žoºs/IW1üï!JZrNŠ ! ¡4ømz2Õ—ìˆ8fðA­ï îIhMÒ0½$ã&ÜŠ8Ö9Sš:¶çû‹áÑ^=!ôKË.O„~‰YÅ·WÇ ëŸ÷ãÍ=ðåéà[¥tùY¤ ³2ërα2ÍqgÈ­äµ ™ +SäÓé„ÔZ±ôî!ãhôå´¥{°K÷Ú\O˜¯»×ï‹èN§uÒÓuðCˆßðÅ7ˆžÕýYiÎmó\´ÆÎÜíl§s8í¥I­€ðž´‰» –> »×u\§[jžaåǨð/¥.Ô¿‘»Ãµ¾cP% Š)ƒã³3RoÞsð÷ÙÞÐ0¿K'°ƒuö aÌc½4§ŽÊ­Üòc=ßr…âߺ,ŠõÀ×q`ÏuÓR=°¡£¯V;ˆµs9N8²!Á±ëXÒé[¡õ 0r xPÆë覮œE‰®íxC¹¡ºI¾°h,êcJÚ»À~/á™6œÌD@¼µºÓÎë²Ýõ4WÁÑÍÁã‹“ÄñsXÄehÅ}ôÐûi²,¯=ƒµ$:õJ…¶”A´+*ÏR# ­* ¬ z†ßÞ†úXJw”ÛùOeäiÐy$:LÛµ‘óHè@ÅQ¡…ó±t6SY(½D2/F~ó‰wƒ–œGˆ÷/ ÓUšû]ì'oߌµª<¶y+”M¸éc|~ÆŽY&}¬f³„&©˜½ÍM£ýd*‰áÝa¯5û—ŸWŸê tTíòf¬~Ø~B븶?âröˆ&㥆Ã{'ÈG,@ç(Ö娲»6±ˆŒ›ÞÊ—ŽýÝ™€«©˜la8Šýˆ€ZÑq‚ØùVKh™×+¯­ŽÂ”CEû¦]„2ÈND%¢ÀÉÎç/â7Ø’4­Îñe­öGN…"~<‹ñ~A":LkÆêÝAN³ÃAý@o DÅEÛOu"ºAÎ0¸l„ú*j‰—ð’SfCà-‘Y³ýîðòù‘Ã\BtG;P‡ž^f¼B+¾ƒ•4’,Ál”k‹MN˜ÝꂾGô°o¥j¹c;é9†4±„écaŒ#,ûõZ…pçwfýmäž%G¦Ý¯î6}VheŠmfçAÎòôx›OÛàúˆF×xâŽðätÔ"Í‚l9‚)n_„`ÂóUdǵÖó®ðäÇ‚®<àtÐGð˜vhÓà¤PÔ“0_ùS]Sõ²Æ_Èßw-¦I­™¹h4| .Hl~­Ž*6Ϊ¨…̸¾a§ÅÍ­#¨;.'~%Çi[Ùð8²4ÈŸAø C+w0ØTEÁ1¡ìS@ï¶>Ûº$ÓùÝGÍýyï_y×›€1¢_‡÷­Ðåâ?SÏ™…Çú: œk¡êƒ‘ïÑ´¸(Íø›367•ŠŸ©‹{•#I,_5‚gÚ\¨[ÁÎ1"ˆ'm;øI½Ú—¢¹­ #þ&á;nŒ¿°¾ýÖoâçs®ÿ}#Ìi ®`ëMµÜ°Ü3Íc»ã5:æ±Ø³«â«V|rý€]Y-ëR ó­‡ðîÐÊ O3™óH…cƒ+§©Ì_¾·oau0R&¤¦b8³Ë0pa¡‹SžÄø*KÛùe#€¾ºÛ¿‰óDŽ%!¸´ø´”y©Œ(UoN )™ÁóÇ·.Â-*‹!x¼Á Îù+_Qö$¹DÙ$SHb[ácS¯TÈc“xØO¤:TÓ&WÞD‡ô<šèžabHÎÝ0>§Îycn§Q'RÙXØòiJ®èÏ6±oìÌëØ7²g]¤|ÒÞEø£‰¦cÌŸ¦¢œï×v5–H'|ÈÜ¿„먗¥AÇSrvCêñç~Jñ¨£9NÏPþŽp†Ì}Ö*>0 ‹YZEpi/data/ewrates.rda0000644000175100001440000000303112144476640014065 0ustar hornikusers‹í˜klTE†O/€T4M Q‰?6ÄbH³ç²7¼0ðŠX*‘ÆÄ¤‹0”¥HK¼,ˆ—P Å"¢P 1PˆB ñE Þ]Œ0Q,$·ç}纠 ?\»ÉöùfÎ9óÌ7眙é–-s Ê ,Ëʵr¯OÿÍK‡ù¹é?9éoÏô·GÅôêxMÅTËÊë.vKÓçYMjÙ@«ãóïSe‰£²ÄñYâÓYb2KlÉ·e‰g‰©¬ÐÒóÖ-(¨"Ò#cädqÊòÝ,ßÇò,`¹D#Y_ÚŽâñ.o—·ËÛåý‡^‹óÖà3<Ÿ•êFr`†$9¦œg 5«œŸO‰µà3¼¾¦ÿœ7H“£p†ÇöjY?‹íÖ¿ Î?Îc?^*g?¸Övö^CH‡¼‹'’3Yß°|V¯—Îe=û™ü…ý8a]ø‘|o&oÕùÒSFNÒyÒÓˆŽªåÃÁUgÁÕ߀-¼® ª¦À¥½…ä€ ïhEo9½“éåñ•}Á·Žƒoo ÙŸuPµ¢åÒÞ>dí%aûRàLÞÏÆ>lï pÃ2°õ$¸y ¸iý­Ÿ¯~¿õûü09Lл0@¯Cïwà–%à6< j+ÇcÓN^y¾2½QòAr,=ÏM“|N›ë·Ð·s?¹ãIúw_Ú«óÖÏ—M'ãå`]œ_¾Ñ ®Ã…js½˜Ô®ÙàNmÀ¼e]æ£ûuÑ{§Ÿ‡Ìy7Hºämä½ä=‰Ë)»¼ÿg¯¦^Oô<§ßýÞNƒO¯ßWú¹È[HÈ~¤^Gõú2ˆJï°«ô²,ã¬ßw=¿Éy©×·ÁWæ¹hœ 3ø ¯ÎS{Ur•^—ñî—Aý|éû¬÷oC:û-ýb#×m=ϯå<¸¦™eî'6â©wzƒmhPí~ÙoP¸åo±QQÇ{¥|þ¼åß+‚,î÷xÉšw!÷K+7¡o×o[w`Tœ‡÷3®G_5 |¬ <ÿ¹Rß_œ·Õ_ÐÔ I«“ÿU½_â:¾œû›U3د§Àmà{סýOCùËõm>¾èwXb{íÉfx´ûåg-ÔÏÙ6FÉEàbîW–—ƒk*Á-ÝÁwóÀ}7ÑËuÿØýåÈ÷ Êç¾/ñ½ù}‘¯^Wëy_L“üÝ­‘Ç_ÇĨÞ<¶b"TmxpÕ'EÈûðy”Ž@¾§Ù¯ö1)ä[…û[GOÇy&>5Ÿ\˜—&ÁÕ½èå¾j×Jp/Çëðaz=ôãÔ”óµVqîׇÚzÛÁyÌ{.÷3 àÅ|y^ë*z¹ïÚ³ <„ §:’B¾§òÛàíÆ÷ZgýDMkÆùzœçÑW_&ÉÅ̧…ûäÖVzKÁÝ{ÀÏ áýý8y þ³‹üú✇|¡ªf¾õÌ«¡0£ °‰ýYÉ}ÜFŽçÎàG<ïàpä—ª…ï§Pÿë‡Ì÷}œØùgûnUñ‰?Ú[ön¬Ì¯«ˆW3΋«ÐÕ•ÓªÆ™ë¦Æ+uaRÍøŠêÌ–¯ŒOÕ-ëÊ‚'â5ñ¢±ÕiiÆé=«'M/º°3Mü–áιk` „ÊIê·zç®6;“ÈX ß°Nuä &Ú¸D©“?¾×ý¢Âpeª„ë­<³}ö¼Êakú¹X9Ó¸žãU’ù©ÉˆÖ¶d~šÌ©û ŠŽü]r#uI™J4ÎÌ­¹|7z²îRZ{uå,‰ÂëTˆai;†²_Ô&i!£,…§/ù9ãc¡Ô¨!ïìVö¢™>æ ]û‡"+ª0Úc"4BÖ¡ËBK¸E‘ÞF‡4BVe1Gë4!bó*ü&ÝR~ÛñõŨ<a±ªX ÈÑŽ?K$õgÄóĘ /“m‹G]Gî Ž/È…bBð5ÝñWѤÊ~!t“ÞâPÓ.Qì=ÏU«PðSÜ~Dmg‡TÐx=+]Nõ‡SNÚHRç£÷æa»Âj4URhnµfNaˆý'íý˜™q4ªˆú„•CjÜÊt·M÷L¯=`׿áqª_ý˜‹Q.Ð^8ã¸2ƒÃ….îû5 NšîînÓUøÈB=’ãÕT^® WÆ ñŽ.e÷:ÿ&™Ê7´—fž6ØR’#JÒŸµˆ];¶¢dãxРŒÖÔ"„íl GêvªkÒü¾Ì…KµðòǠꣻy6dœ¢„MÙs¤Z¦ß€…¨Q| ÆзJ3NéI]¼öÙ#ì¡É'ó=2è¼—¡9ê 8+[œñƒè(NÅR÷X áß^Þ‰°o2²¯Mbìl<3}ö,•Ÿ;z•Bâ-p‘ tÔ±Gij2¤ ÞŸ9:}GiL{7i€RŇ>7Ÿú>:E®¯¾´YC¢"Ý]ätÛ_ølRÜÂsûÈÕjÔyK4Ë9ܯëûO黿4òªôx4-ºð®IÐñV¡@o„£sN$¾3µ¶¥–•«¼_.PÂݧð˜VLªÈ1VB(áÊQj©àýMÞïÞ/‡Æfnô–/ž»ðÒêºâÅÍâÏ•X>¦Ã¿««rº`¿×Ô®lï˜|LðŠós™n*B#Ç}1#×Ü`»]3XÿƒÏ'H°)æÍJ’h5YL}ŒdE†Î¦{Õ®8Âäøü(Q\ íÜ5+Ê c+ËžçNR~VÆÂk @®%ã¢ÿ è\!©¬4N{4ë}*ÉÊô¼ ¾>Jµ±M(–ámºF&ßL |ƒÈì®ø»ò N?Ï‚dMÊÒaùDÅ'Ü:f‚Îçêé+¹bC<›èæy= @%lìâœÜXÄã çeÿ{ÿM'-WsÎ yòÙ­‰Ù6°ò{£Ñldó¢cJj÷”êÉ—…ˆ…Ó³rñ lyÍÅÝȳ F˜¢Ø£a°T”´æÝ Ï1ծΠ€ŽXwÓòÒ@¾·ï°D,_c Èá¿´ Ö°Fˆ•-‘O)N‘Á¼*Œ£¾¶iá²Ã|+XäPaîIrâÍwØÛe‹~\¼uú V^³må—ûÉk“}ñ>£tVHù bû$q¼Ï‚¶ö½Ñ>ûM¤(–y}í>/^~Î $l+¯× ¬þÞѦ &–“œDK»íxÑY †)ô&‰  àŸ´¨u¦e9Q¿ æ÷à”5>”k¬v¹ô:Užò±ê¶>MÔ xÁa'ÔA¡ûðñ‚ž0çùÿ8„³ —'Órþ? V¢C±:<²F NJ{«Ci¾Ë’lñQÛUzpxèšï–}ß@™vnFÂzª´•KÕK¦ª µÝÆp@Å[†b ÅÀåpDcFV9ü‰«$ðŸÌeñ]d2ê´ÎÓÕ^>¶¯ý Ø[ÛcCA‡@ÛiaáîÙ§TíI4¦—Ë ëÏœl2†sþ(¤V…óÏŸUÁ ”¥!¼r€u™,Ú°6ßšÛ¯ú÷N‹’´d=lMtyNÒTøÄÊ3PAºTÐ@Ô,²ÅŽMGeÅŸå$š¨ì¦>ŽŽ~ž+ìÖ,'r˽ºAÓ|éÀ=\(·4­žþ Ã(lÅg4åa첳৴S@®Ù¾Pzì"~eÙ<:©c ãy,zUË6O°z¥@òÃ{–t`JcÅ$iy+V%:=ûnI?ñâR×tOÅß³+¶+$¯´gnP´5êò0Ò=u üfÏc-8TÔ**&îýÎ[¦ÇÏÀÓi‡ûÚà ›¬Ž®óÁÝ]…Aiƒç!=V®êäC£P…±- ¥•¢íG~ÐEb€íM[ÒS²LQE&" ÜV®&·dN/×´¯u3ùš.4W ˜£À -ìè®]ÿÀ¤(6À1 ò!'6·°¦_ZŒ]5PØ}î2)¸Ì&D´áF”¥t¥VÇýOt;`D!$itÒ®*2¿UJ(Å¬Ä µˆ»FóµÙÚ ¨Ó…^Õ‹f¸fèˆp–ŽÔnÂÿ†dÙÓ(ÉX»2LÚz­öV÷¿W!¦³ï1‘eœû/ð“ÒPýûŒ8AZ—Šá$Ëü÷쳩\‘”|ç&/ê%*zO…Ãíˆäé®’'œWatÖ½‚y ‰±ìë  žJejª‹2Æe«ø—ü†å˜¦˜1ƒ¶Õj_Ò³=u è~*ãM$ïú”q\^ïÀšÒ0ðâѺ–“#ÀS} °øÐѦ 7âù`kŽ•¯# ÓGx+µ'o5Ö~[…3ƒªzëø/q#%£#ünc1'¾dà òrOˆî=›!ž „uœ¶T’æ °Âà ófó{%|@§†Žá÷¯“‰˜C7UWÉ%.j @E.ÿ#˜5¨K yI€þ–e*´\¯SƒˆÐ£fÉ=,±èMàþ +ô-5ÜÁnmóåîó,ÛCÅÞÞþ¯ØMô¦0¿rÄÚSÔsÓQL^“¸A©ÛgÒ·Ñ{ä=ºí|u!ñ`cë@Ñ?Ô€b‹;á©$ Ä0c;åõðݨòw„>:^¯5;4øE46­ºW%ºÖÈíŒ"ˆÄ«e9¨’r[Y‚!4g¬£îŒM¾uÆ%_’«GÐúŸÇúÑ3æÕwÕzúo«õ‡·.£Dæno¾êœ6üWü²rUZÚE4x[¢”?E‚õ<Šá‹°äí ¹´j[è>&<¡×¶Y›éQŠYd¾–~=ïyI$±è›„Ùï9 ­³x‡ŠAuyô.c¦À"Œ]a7zI£µ„ÎÅÞAçý:7+ žï>]rlÏíz_û²ìDÖóV¤g†ò3&{ë&÷u'^Ù™@ø:òEúÝÛkå€õ1)9Pü¸õûîéÇ÷ZQ:iSlÏrçðºò®þ¢66_žLbÆÓ"Ûjê{V0h•}ŸGZ…ߺ}‰2HÔ;Õ!R]Ž\í©on¢ÜBÔ:Œ^CUq×'­ÅkDýtÈQƒº7eÓÿ¹Ôˆ§Õ`¯J…Û#⧈ZEZd–ãý §|ŸÂ¥}ÔVOô¸÷Ë{¹+ðó¸A¢`/¿9žÕ[êðEûèx)qî/g«JœšŒýâ¥YôNŽ+ð¯ñ|_ÔêÒ ÅiZºN³Ñͪnq´ ]Xœ™ÏÀE¿mfz²Á åàpªÜL}t¶Ck@¼ʨË÷ɯ† ƒ¼x8úÎ1¿‘ÖzÓ·sׇ•ëUòîý2 „ümÊ!ª˜O‰mâÁ"Bí½Væ5ýC‡aé_;Úø€dy•i¬÷²Ù]ß.¼áB˜¬9¨Ámòú»4 {¡‹dñ:åã G_*7»ó¯;jõvE—mŠì_w)©%G§K¸Z=ø ;--#¨1»} úWL¥ñ‡ü`’rE>ënCÌ„¯™ÎÚ àõmÅ:à<Ÿsl5 –VÃo[!xјˆÃ£œÜ© IŠï™oWèâ…{ö¹×ŘZÉ&km—;hÀ? Iƒ'@]–‚ðúy¿¡ãÈœƒN¹ ¨Ý«4¢ÑÑ ¯ TCÃûo°KåÜê[÷gv†å¤+o3òˆñ©†YìY~¬T0K!ƒ=BÚ Â5²C);1=°GTž3µÑ½ÚSA@’‰™™þÉ1×kÇ]mSš‰(È¡VÕ <±uЍßÜ{†¢‡‚"Ç•™6Ü€&”=n™@m÷‘{Ê‘è1’&9­tA4›x|qð T×yƒÃr ™ìz ¶rLp}i;~xó®©X#¸=p­ ¦-$§âè} e“^8½iþÏ™.ŠLFøŽ·c)¶ô¡Iëf Þ<íÝ Ð_œí\¸$SbA÷Ë VnÎTzzÿ¥Ÿ“¾†{²™ÿÓ{*…y‘’áí7 &ÞÏl5®ê»IC4NuÚZGÛí»„­àB¹#@[ûй¹ËA„;­ž ½‚s†|‰l@ìF¨¨yým€ü·É“Ò{:ÃQË Ð`I£2*ªÁÓr;·[ß ¯ÇÌjaŒuwaù~RBÁH%#/{´±28Ð3þ’FÏ"ÕcÍkW-Ä2Õ\ˆœ»äJ Rú6:ޤ‚ A õa½“¸°Ðâž·—< ¤"U D(SU° )þœqËèF¡%3ÿ`ø‘~ìT»ˆiMœÕ:Äé!%°{tZJž j¥K³©‚mÇõÙ^©,Šé@8'rêï¦QDJ]bÑ7dËè?Yèñ¨¦LŠ{¶*û£ ó`ºÛt¯G«nßä¾ôªâ!xá–VŒ‘Îm‘fñ§ªöÐKð^£¯Ð­”½áÛQžËùøŠ½•èMÊZÕŽªŒ^µ€F1‰›·žÕ·ËýÖ½ŽðõüÞâs@Õ¢‚*ls§Uƒ$OÁ“–¶ÔeÆ ú­èé¼{K:\²þÇà‚î´)þxI=éöM³°&'H=`´û]ü¢}"A¨÷„Þ‰ŽŸâv–42øNŠ ’êþ/ð÷Ûq‡ä¯«µ[]lòAsË"rf~šÊê,âìa“›¤hñ@èâdu¬W«È`ŸÆ†\Bw<¾œŒÖft<´Á%„LNÞñ«~h"OœÃGÌʘÔâõoaŒû™G­R¶Ê ûû%šN¼óä{ÿÜ‚ZÌSZ@:”û¨¼yGÉd^æ%!—ƒ }É)tNwÛ€2"°,¼³EcGÐg¬qXŽpndã:Æ*Êcê>ð;ú¤Á ÀÙÆÆ‰ôž…ù‘-ýñϧßDŸ°§¡äx8_üÞý¤ÿ7|AKâ_›ëÀ‰[šÕLñóÀôDm¥‡§9´0ÀmŽî’À©v¾!Íìb±M'îX‹Ÿ2µ…ÆfÕÖZ>f$ìÒ+½Æ³ì­’ÜOú ç{ÎxýDÅü™¡Ϧ`f$±öë ©rTâžÊĤVÏËÏp‰Ÿ;´î¦)¯8óUæ¯ |ª]ƒ-§¹<·@cöÎèWFc=7*Ö³M ¼r*²±$7 >­$jøEŽaµˆ(8Ûkí€Åî\ üÅI¦t_…×dwѯ(ùÌH^‰ïùþ“r…(Œ¥Îvr–S–õÓU&Sˆzk-DW'ƒÉê›uªà¯uíz´ŸÀq„oõ°ª©¥p@rðǹ¸}ŽôŒ6–ö÷|oŽJ"íØäB±íw\¡aRŠ xw Gâ6Ï5ï×ÞÁâßVÌQ3YŒ_¥ËÎ-Àçh©¹e•XvumÞ ÁèX7‹RŒï=b³áˆÂõ è^Ÿ‘¡ð†•äÖü.ÿõ7î€iÖ òä94ì‚üÔîè4Ùuÿ“?_l({ÇâS¯· ÿ³ˆ}3õ÷輮 Fó~\ûavF•Aaº€8ÁØ+ÍòÿrNû|zŠŒ6ÙL„ÔLðà4/üQR’¥‡Ï–»é-äLÀ•x…2(3æNlÃÖ«‘;[¬-ôI‘&´$†§Á ×cþñvíKè\ô’î²']¬ÌÌÛf_¼ëÏÎÕ ,–nè÷K–à©É”½Æÿpyl›nåØÙ> ©îçÍ6Å À\âe•÷Á£¯ÚU–×Ê` Ca(õ÷À`k/À v L—q§ÿJëÀKí<ÑÜ„ ‹Ã‰Ê´·uëzx8";‚ÀÔ{ÍŸ)»Æ ¤B[:è$ÑÜ)Œþt³¿;Ý«xdS£»ç‰½¿±n:/ “F˜Cýâ^% FñQ)ç¥Kã­bÞnÊ8éQˆKˈ†9¶$‘I8žhÉÅÅ}½n«=0ÿ(_YxÓI Y¥z@3*–ĵ㖱BoØŸM†¬6_‚+Eœâ=ŽyßÍSŒè~MðŽ×Ñ[€™)¯ÒQüo«Ô2Å¿Sf¶/ǘå(ˆzµI0pñ±Û÷,±ûö¡Èþz”ÛO*ÙÜÐlˆk» äbTJ e(f:dþŠ'0ñšµ‚.^Öw™ƒ³‘Æø¼9x£vS0üY»†°êt),±e³w?ËÐ+ÆQHî=Þ4í. ÅKÅÏ¿RE9!_Ì*ïRDnOI¥ßª¢äãÑ´I&¦8UÌKÝÁµ—üZù­—Ý“©háŽDAôlcQß:Ç"'B¯@¬D;!DG¿1vT÷ñ¶™ÈÃï£E’ÈäJ² a¡îÏ„­é°)”Ú ™Kôtljã6ª¿Œêìçp;•$5ÍçK5s o¨F·Bú\\ÕôÐcãÌ?ì¼ù›Ò€èWÈ£RâaqÓ»á;ZìÔ c æÄ(ùUº³ÀŒÓÝOBüyR'­<·éÉw-Èñx“±Õ1G&,] ¯§{<ªQå)çeïÄÑì¦tŠÐ=[øfÄZSiREFžE~àÏäŽ!ëœÛMÞ»q—š´»(å|Ž„ß7€9är@%/OàNªiý¾Ò_ÅKž~.f3ÜÆž¬ õ{#Ñ/f0G?å:aÆšš$ãùdÆnbé_]HÊ]x‘eÌ?íÌ bwƒüÀ¢u Ê `JBxÎOhù†KoC„ÇDÜÜ+:œð²5 ŦWdÉb”YÊÁ ºãml°xÐËšPò:tÌ!%þ ãp¶Ž¶|²w®ÝC«]QE¯øa]*Ù%ÌÝMáÜŠú®}­~7ê…óÒËòN»#<@#s\zk½sÞLë³í:Fä¥t0Ç"% ‰·ïÒ -¦º?sË)-©oäM ?ƧG†ê7¿¢ŽˆG[÷íÖ™eµr׉û>Vû3Æxt,¹ÎQ»Î/ç˜$¹oI†'iШu£8D ,´ïîèD¡@§ŸÚ‘ö‰ ÒŽ•Im"$ Ø EãÑ< „<Øñ=zW2=J™n/ê‹y  »Pù™ä¾ÚýäRaÊ`Ã7a¡}I_‘꘶3 ]ewõí>°ë;Ä­õ¾nÛñcÏFéÉrýó€dÓÆ›#¨_䲦l{bHgWLN%Ÿ½@ ibä?ã+KÜ53BDßäW§Ô¿êÈZÐÜrÅ`Ta¹/wfa|ç6¯¢-0|I17€úMü„)å¤Ë}Ÿ¶Žw–/€"ãÛ’œp ³nº‡’ÔÚÃy4õ¨è×äÈLñÈ8¾2\;¾îìq%Mme3ÈËrկݱg|Wà‚lìT³`#‚Úyý";äÑW0„)_Í ´[äu +ìà`Ë P»Qí¼ ­Â`³ñ†­>x^ªÎÄé†T™äçäÍvÈ=C]OžÂS ñEиŽ×4êç&U÷ÃFìÃü/Zrqç“ãy½¡¨È„÷‹#-‚•ñ3 ØjÖ-8³ÕQ' ÍŒ;(,f'ü:Sà )ºAj9T jÁÖ0˜åÈZd”ΰ=ý°Z€×hV‡U4 ²¬Z¥4çmÄÉmé¼g¯=ôxùº†uõÄÖú(Í.“ÔA:H¬x8}qS"|&I+pS-Ÿ"u朔ÿ¡¶½ó4BcÔœ¡];%c½³€%d.µ”³=OÍ }ž„5º’LEH òÑGF¼lçj6ŽH‘j Á2ðü¢òì±B¹Áy^ðÏcvÅp‘Šßgcå RÂPŒØ÷éRªRLÄhsE^»©ˆ4Y³­¯{·V@Ì£->îáKk¾r9Ÿ+&2™Ý¶ßyü§臠ýçt=q^ iƒ4ÑT;‘þU}{І‹Ñí ¥rJw ܼ³8”/‘äðÜMÚx¼?p øôé‹2(œwºÿ¹iþ=G®w­Ä.…úpÕ“%–Ι“'Šà0&L’¢¤ôngŸ€oÁšàúàXmî5aG¾[&6„g`™ÿºçNW˜jÕfÅÿ€Œ¯ ÿ¬)´\¥Øi¥šÁõÐëÛ¡}ÔÔT((ë—Ÿãö¶°=/5%4ií¯­,ÉۣƎÀŒ‚XÈ]ô³G»?·3›x3VÐßöX/=GcÞh¤w8÷Ø=ü\ÈÔþÈú/ºkY¥Db¡<þñöhœæZ«¯§enÃ{ï7>%" ð+‹¬û¾¶RŽÎâà$¬5RˆMdV…×<;h­ˆpí1%LXUð…½C<¶û5Øž°\x\` QÈz‹\iŠ”!+™ fÄpÞ@¨Ÿ`© …‡ ×3‰&˜ÕöpŽ/©ÖPÈ[h@C$éè—½>B‘n$˜u\BòC¬æ,‹e¾L$‚@×7œYv˜(JùÞQ1Ðoæö°<ÓïjÞ¤0„ì¿b]òÑåý‘É×€jþ¤©û°³r§k%ÐWG «Ź28Z¤ PCÑšÍ <5¨a$¹Wx…;—·l’ UÊß—Ä·,mÇí0RÕˆ>0ŽA½³]°%ƒÖ€‚û eÈT5h*­ïà ø~Ü ‡¯úi‡6ÜŠþÅX™æÈmšXAŸ §qb• S‡6ðÆÉ‡üíÒˆn;G25•¸²^z¦qÆ¢ ´¼4q=+쎔ì@ŽDaçŠÞARìdæ)¥óu-Ot¹è#Ó!ÔÙéu•¯Æ/Z P+vo±qsH‘f TEJ”›º*GÿFÓ  §¯xà‹—~ï%¿¡ûŽTVõ&Þ~åmz7™#)0!};ã Æü¾dÇʇÍDêjÀ\uÉÆOÜt˜ð¥qÙkøGÒ>^bfsc.ñ ¼í¯kÊQÛÁÅ,Tª “¦“E¡üQ"–w^²í´Ru\§ÓrY_;¬MªåþZyœÎDdè~æl«NZ`²L½—ÞFH)ädç©Hîl q}ÿ0ÙÓ=Ø‘¢çc¤Hš©6Ýðud¿ ¡h+‰Ó^šÃN,¥)E,ðÛßHfi2ÒóÛÞ›`ÝŽÙ¹ÌðgÓáíö QÃØª Aà€÷ý©LêyýǶð‘ÙÍ„OE ­‘é„òÑs/ñãq_#wfó¥oV³Kɤa¬[‹ÅLs8¨ùPŠ––ûûº,µeÝ,ª©w Œ…^ðlÇúi>”{:itôêž~’Tø…§‚XïÅ¥ó¦üСdŒ·6m¥êÔå·Ò޸ޤA3#:–áâ-²ÒÏ£'8³È-Óci~âøKoäÈt Ußþ„Qæàh–ÀÇèFh@?ý8ïœ&ÄÈÐIöt_‘k©†þÞUý¾êXÞ|í;º;`tȸ Å“ k´DBR²zAçN:4\`P{¶ÎúiàM3˜2 °êGÇø–jåAâ}vÌé².Hž $?[79ܶpÔï„®îL»Ú!55ÂN=ÐÛÁ+»˜F/(£òÓ2Cè/§Æ9zðôõA–ŒêpÈEu¸Ø è‘[è”Õ«DZ-Ô½wâèZJ¦ÿU•&ÔþUƈEcʦ1‰V‰Ö غt±‘벨]éPÁ¢*1¸[51<ÆA/2.v.œ8ÛÒ§ó UÝ–“Q̲ %޽ ëïÇo…A^æ'-‹-%W-\ˆp6´U׸+ m݈ض7z dó%jß:_&GIø‹eÚyžé 9©¿glF/`©×us•ði4E}®œÞŒ PmŠwV”À…¨×KƵúÑ=:„OþM^Þ¾ñ!éÑ £]õ[—Ù!çÂþé©NÚ•ùJò9î£oª*2G¸. gzïÒ°%½×#²¬²/^í¨Slðbu§ 5‹ÓTª&~–½…P¨26Åhœû #÷§Xó R˜&»“oGcI¥qðÃcœbW ñ¢ò?ëOwŽ(€ÓHz¤Z6íõ©ÀõÀ´7¼å2‹»z7#Uoç…y²–ëáË}µrÁ؃÷\÷8ØèÎc<1C‹“ò#ÁÚ§C¢sõúÁ*Í´9]rÓŸi`îlo·Æ=oP8YÆ3D3–èÚxÁÊœ*C}Lì¦sw ˜_CšE258+,Jž ;ÀnPVñË.XCöÓO°›]I&×u5 ¥£ŒîL~Y߇Éð‰"87'nÚ†¼RC‡=9dÏjŠP>þÞK¢Pø3v‡çÔ'ú<ðOL°ì¼%²X˜:?Ì»½çG>Oviîf“thŒ+©‡V pg?°à§ÍY;<…bTÐx 桵x0L_ý[ýΦ%ÛÆÛQ§ƒŽ‚8Ó•Ö,ePÀ’ÓšÏKpµÎÉ:|­½ü+Ú©W·ç&&ƒ•·É“þÙ^þ Ëá$3¿{åý3×Úƒÿj:¶ÃÀM¶gu•òš[FuH Ç03^’°Ð¹ˆq8tïwôo ‘G»>àsüÞÏû¥D¤wÊDLa¬½Ì[ïLþ*G&%>רý(  ÉtÀ’…J æ¡~‰Î…šN€?êwã°@vD–*À¡ÁÜdéüõ“1E@†lªÁBí­ý;0ƒI$V¬:e°Eäè逻üÖ©:•ÅôÞb²X¼+Tùøƒ—Ï΂É;+\yu †² *=“>\Òãj}¦FA†ÍûïÉ7†åŸòºÕå’Š)™ça•³F¢à2‡¬4¼Yg‚lÛi<“PK©Ûà‚=Õ ù&‹{›‡AEªmp]d""Õ°_ð!M¬»gEkÙ¤{ÅÉï¿ë™@åI/ŠË–1Êì½ö‹ø5tiÒ‚ C¾¹[*Ñ£Jõ‚Ž“*ò5˜•Þ¦cköÁ ÄPãû±MëâFñcÀ7±+Í‚·*W£ìegŽR‡áLágÅb½¾ô ½ýØ -D(…&z}nÚ¸N6ÔNÓõ8©x¡Ý)wVª`Gc/Éàš}öÕ®-ºé*»)DAVí§Ô €Da™ ÃàG¦ßZ„èšì-Ä9GgKa\oSáä¼5w[Rºæä±;7&® µ!s:¿†b$9ú™Ùyw2£gÀ²ØþÒyÏDìQnËÿ‚¾&:Ξ« ×f O‰»ø‘Ú2 ï@»ì¡05Ñesã6÷ðß0Š#~#lmŠG¥ÇR4¹}Q7stV §ÃýúueÂ;·‡ÝÀÜÈ V? èò&G46«e‚ëð]̬óƒ¯iÆÁjJ²æ¶ ÙWÞ…‚­H:_ó dVÅwÇó˶A@>k­Pë¶F”’ªº·RöC •.Ž ÅH?áà6r¡òÙSN(P—tÊ yµj£& ¥“£­!¦·ÖÐsäõôÎoa“êwd0°¨D©8AÄ>ÈTò&xŒ¾‘„šÞ4ä5g\é‰}%×Ïž¤¥” ‰:æèL¯fä\"ôo¦ßU #œ ,k©±¢²3ŒIÙõ±ðÒÛ‘µ+²óÝÅÃOéç’qP ¢üÌêºMÄ›Ÿ×$>âá¥NKPä°tq¯æÓN;ƒÙ_Õ“ð9O%ôÔ`á_ÐWpòô×ÄM:›­'ñqiE¯’Ðñ¡Bß™Œaè)µ]ß*"RRèHŠ»¿¨%®À¢Á ófR„ª÷Š7­¼P¬™ƒŽÕ)õAsHÃȈÚòZrÀ$Ò²Åb”k|ôp~ô#–ly#†[K=Œt-|àÒs2]Úd"ÓÈuN%¦Ýפ†Œ£›Ä\­Šb÷¾y KÇ8ÍÙ–,’³ÆaM\€¹‚Q‰}Ëç2.Oªn”L˜È10î³úÿŒ)Õ·ž©ÈEúÁƒuOacÅŸ7ÛŠøõŸ(½;6ÚZq8š9Ö¥Ëî‚·&j¡·>üÁࣵÊÛµ©´>¾v©]ù9'IÉn|ºJ̘ça±’æ)òìÙ…µÝù}«ŒÀgÀJ6J8ør„¡Ó¢­S"D‡KuYÖC!ã%Þ3ò.wzˆlÏžj;%…CY`wÚy± /ª„îc Çûµ‰>¾*¢ñϘ´ÿçU¸’þt!°–梴æj:SÜ99†°AàD‡—‘+ƒ,€º=C?brßß_CJ–8z Þµ(“ƒ ‘†‚üœ‹dGTùr-Ÿö4­jUb<‘€Xý5k†ŠpD¾'`ñoš ¸\yXsµ SQݬbÙj‰ÌB@{Þô‡$˜ýWm4øyËHf‘hÏíéÀ!p.•Y¶Ë€€ø2ÒpÑ·Ò†þiBZ_$Í“‰Ì Ì|÷’OÆ\è/uÞNŠrfZrÒb\¸^1|æ&+Áa–‘SÞ §¡f™<%2^ÁÐÎÝ:Åã>Zæ‚í¶¦Õí“â0“¢‹¿ø·3dÚ3•= ©é èjs‰áΜ—TÛ1¨¿6^½hT¨T°÷Ó­ cwv®;`Lë§‹'Rœ›‹vôõõÈ›ïGÍÛâ9§DzDöekobÞµJ´òÉ}{GVœ´nÙK÷Á¬Nš 7Œ—²MœÛžÏäTÏíH;ˆ÷XýÈv'>0 ‹YZEpi/data/brv.rda0000644000175100001440000001346012144476640013213 0ustar hornikusersBZh91AY&SYgútr7–ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýÿÿÿàÿyäwÐ{Ç ;ཷj¥Ex^ø»‚€^%Ù¥ qÞzbn°5OHšL"ièЇ hFhÆÔýDÚ&~Š=ôƘ‰èÈ(óSÓSÐÈM©²j›{L©½ª›Ôzd™©šžF“ôMê£Úi5?Q”ýSõOjŸ©êŒÊzi=M©é‘=¡’ÿT¢žÿýUJŸ´eD@h=@%jž¤ÒhŒCQ?J~©íSe3Q£@PР =MêÐê$õRJ"F€€ õzšh£@€Pi£FÑ=56)§¤a43CHÓCÉ©dÓi14Ó (Ó#§©´êi´Ai¦Ôz#4šzM4õz &¦¦ɈÄ6£¦©ši=#M©å2  ™2¤4ž‰è)šaG‚›!¨dúP€224z4h42dÉ£Ô4 4dÐÓ¦@2†û¸ßÅ.{§¢IÄC›I!±!ÐkŠpç9Înœ“‚^Õκ“œäsqsqï]7RáÈÇ8åÎqLŠe%2„!)I`ªI¥33) L’Jš•6„[«b‹HHA$“33‘pŽ\ˆ¸\¸‰Ä\sœp¡Î\'9ÌB‹—ã.qÎns7 \#.rk“‘ÎKœp¹rHÅÎK‹Ç(sœ\“—— œ¸œs8ç9Âs™Ç9'Ä”¢P¦R‚;ÜÁ%! !!BBHHBI !HBBBeXïì»».îË.Ë»»‹²Ë»²ì»²îË,».Ë.ì²ì²Ë²Ë.ì»,»»²Ë»²îîîf˲˻»».îì²Ë.îîË„B(‡àvp )SÄAIuÖ÷´Åõbéõxïo7l:Ñî?·í÷³p»Mš§[kÆ}Ý=$ÍÎNÕ ‚Jí†ÖþÅFzÏLýMj/ªVÜnÃ(ºPD:cz€˜ dØ¢Þ{6<{Tàj‡;÷‹DkŸž¶bâ.ÿõ"= °å+VžòÒ“óá­3—>ÅÑðB"Õæï÷Ð{ÊR n,Ä©¸Îƪ2«ýÜd‚~ Ánñº+wÏï ´l ŠòNÉK)èZ)ÉC™"ìó?Cöòü  sÞŸ be(>*Š}Îõ4Ó+¹§uKWèç´@·4ÃWô—;þ”N­¢`ìªuLÄp¥£ÒœÒ+<œæÓP¦`¹ázé8Váœþ¡þ›K4if~øÖZDg0ÃÒ<ÑVp“:ë›§ºõn@Nw1Þ/”óŒ]Ÿ‡“×x¹}NtYPt;K’è¬6uþ§¦†´«ü”§ûŒîÏÞ•™;•yL–õÑê&žô ¦Z„ Ëz­¿\nibÙÆž÷ÿ|È”9M––HTÿ$¿nÃÝCÝ¿0ž'D¬†dwÒú‡²XD>/#>>õ€þcÔ‰ëÊ¥]¹ÿI*)Îì?J_¡œ9,¢´ŽÖ›C%kFö‘ÇÐzÒmÿ®6—EyWR˜îé*ëE%?wçÓéôÐéê˜ÄØÇ³GòlŒ¼ø¢î÷6 '¶_;ÌÏu®¾’Ÿ"éêÍQáÜxQñT˜Äs{NùðÄ,:ß¾s·IªÛ¿Ñ:¼­Ûcì=Õ$¶2î®ùð1ðkeüÖ¶n6Pš]ä—±Ååù’;*¯ùy¹äÓûò”O,ƒ¥e·1’=!è_lmʸG Á<8ØC'åì\VÑýc3v.·‚b>ñä q™”7ÖÙŽue0³ÿÍyí˜ù qÀàp¤UµßKY4NV¹µÅ+•|¯UÒ©™&&¡™™BP‘úˆ‚ T$¦ -«úëëÁ€Ñ‰”Å¢ 'uÃ2lÊB&`ÒE D’"`dÃ(ÈQ@ëôˆøÝ]Ímmk¶éˆ“EˆÚ1AF™b1„#F 6Æ¢±WoßîZÚî[m¶›„ HB:x„›ÑV––––––––—€ nÝ»víÛ·nØfU‰Âe8Í4Qìä˜W¯Šv1[YÚd?²#öê<ÏLÁ© I [©kóÕ0»>ØA!h³PÅBøp‹–i$…KI! ½¡$€ôÏÇÀ Ú—°;~Ÿ+0PÄ’d† I‚@ŠæB=úî’*a³` `^Ça)´ÓÈ)¢7×WqyLš::1»–þ³p€àå.–!s–Å&>‡";Ý@U§-ÃçÿÞ„Œ±¾®÷Š5~Æ o;H5\ 6æœßl™@-}ƶÓ^ò l'q@a†¡¼µ>΃ƒeíϑ̳–É™Ñk"£WtÃ;^SWN@E8uU\P±ës­ÅIqÀqË3ï'ïŠÏ;<ñšÿ\à8“q+áÀ–€â`8øp6¶v7»<Ëã 7Ä›f »6†žÿ1QÀÛ'Jƒ9ƒç•Ôvu ¢á0]‚¼Tæf×$ç;BY+(¾…„¯%×8 S¬·]ÖßZË(æèÇ(ö©¢ÕT]½‹àç˜88888:~¨Ye–Ye›6d’I$’I$’I$––É ê7w£F.T PÅQjŠi¦šhµE4¶Èm6Û m¶@Ûl¶ÙmÓEª)¦ši¢ÕVŽ’ºð00/^½zõêÀË,²Ë,ºv®|ùõHm6Û m¶@Ûl¶Ùm²Ûd ¶Èmqѱ±¹¬kdYe–Yf (µE4ÓK m¶@Ûl¶Ùm²Ûd ¶ËTSM4ÓEª)¦ši¢Õb,Ðì°W]u×]€°I$’I$’I$’I$’I%ÛVªªúúúåË—.\¨UUUUUUUUUUUUUUUUUUròxýÈVÿTÕ×]u×`,I$’I$’I$’I$’Iz׿v‹·÷÷õUUUUtD’I$’I$’I$’I$’e|N!Âaé¢Ëu×]uØ ’I$’I$’I$’I$’b(®íÛûûúªªªªº ¬²ªªªªªªªªªªªªªªªªªªÜò²9™õ5w¦ëÞbAÈá•ù6î .4åúgÈäqä´ØQÁ·ÓÞ5æ> c¿•Ž8|ç?Á·PÇb‰ƒxNÝu[²®M®›¤eï×32éØç7\ld­ÓESœ¡ÕÎêèQˆ»MÇg—cw.k‘44`3 A0„ÂPF•ÒÝ•áѺUÒîºQÒç:îöÝ+²ž—_)Í]ê1¬ë—!µÝ\¥Üç3B( Ó³©:ç+®\ðç€J(¢IÊþ'D…Ç'ýYHÛCh›†ØØceÚ¹n;Þ\‚‹¦_á»WmxÂÕÊL#•”ÁHVFËEN‰ZdßÒ¿1éÏ+#•àãÒµê¾í":¿&«_od?NZ~Þ;YŠC ³“u0ê8Ķٽa“çÍõûÄ]AÒ‡*ÃÊðMŽõƒ3y¹vÔH†|¢y[2h¦ ÿC Í… ŸŽ=ýàzðÙ“oñæ\áö)jš™TYô¾õgmŽ7ÎS%ç¼ f ²¢©1$ön?pâl*"«¼»Íí7úwüǼ ˆF& Ù"G;Á•aÅeÅìXê]QAÐtéÐÀu:[ðÐDÒ`ˆ†\øa\7ž9âç{ÑìüÙÑœ—ÊòGÎôή$hå9ÙM6›|S†ØÛo1#H± ¤LKœ‹‚ŠuÎc:—s‚Ý.÷µ¬òÚ÷ž J°†.|‚eTCF_äŽéí|g¶,"‘}l~Yo9›\Ô­Ô+C–IIdóTKA&ÔlØvsS ½—Ï@ ‰±ˆìN¯ßZ‡ƒeõ ²X¾hS14á?g‹Ü<ï;}êO¯µÇOÐÿK‘MGˆaG;:V£¤›€KKX$–2â;äÂu£ºt%dŠQGqj1Ñ5u‚aÚMV›HW%6Ccñµ·â}ùMpÍ£*bÔÁ+ÝBq,2µÈ¨36¨Hµ4ñÎ()³{ZG“ù†5Ød4úÑ~ƒ a6bmQ Â6ÏçêgêÕ¿Vj¿€ÇÎlÂØªJ¨‚þFç¯ËâÃÕãð×Óe¨Ú-×ó_¢²’Fm©ªïkT»Û†Œbå”q6â}ò×Í‹më§iz(ëÙTZyŒE#šJè?$ ……¥éa_ýS¼Awã¤ÕòµÜïìÀ·Ø’þýº«@Ju´Ï–®‚¬ó¦l–…‡ë ýñãI$žÔ…@à*»’V.—úõÚ©­ šáaœS1§‚Ûw¬H«”QÞqÃ9ô—¬Tüe#2'}Í.\5D2zº7î{®Z_”;šDÍ@F ùX pñ°›ýÿP°E aš3iøƒkÁ!HËúÜŽ½a|ƒ°6¡ž'Cӯ㺣®¿¾ÔšP§{½’Du0\^ú®O­|Åtõ‡W…Ý!LìÂTìãJ~ÍBùàr­Xhë¨ħlDü*ë›;œ§2¨½æ¼•šô‘Ce1fyõþ¸À®«öë‹ÌÊVa7:òD¾d¿»·Ä]‡ëe¿M]^;sÉšsÂLÍ,5”GB.&ï¢1ß~**‚ˆåñX;1éå2f« UÙUf U›¶¡é8EÜ'M7Þaõ´hÒ-£@Ð4 4 Ã6yÆa„ ÀÅrá jöÔì'!Vî\ž®Ökv›=•t=¦Ò%qÇÙ9ù—7!Epöã®|Ô¶Ú…µ®M8m”Vi÷2¸Ï¿:²Ë¹{K,'Fàuïâyô•˜Çl‚ŠÌWã¡n·FZf}ŠõZ2VB¶úžÈÍÝIóä/'˜Õ¬63˜™ˆÝ—½ÝÙļt¥a¼5õsp¥cƒl¦hYÌHY;¦€­%6@Ò@0Û¼®e£.-A§qò†Zê‰ç h.JPÿ…[3æXCèÊTÌN™¾^8ähÚi5´mÝm·mE´T[d¯Ýæ·Q&‹­Å–·Lm¯âÞxš™Í·ª$Èj˜Ë(‘ /1¶Ú b17ý³4pM ´3¿8ãX(iE™$…Y¨ë$¶ QœÌƒ‡J&C9$lÌq+HœYªˆÓ˜ëZÁ8y1Ç]p’ $I ’I$H$I ¼=(`sìh]G%·'Û"N¾GºâUÏ7Ó­AKÊ50èÓô0çdé™›†oºÁVíð®G3¼¬ÂçŽ)–×)Ûqc®"Ù—Ñ! ³y™æbâ8.íÝ÷Qk‰NŒ…sÔÝŸ›v~ê’œFLfr|M§NWITª‰ãèhyåüß–uk–EúÌÿþ.äŠp¡ ÏôèäEpi/data/blcaIT.rda0000644000175100001440000000137512144476640013562 0ustar hornikusers‹í•KHTQÇÏÌ”å,L²EQ„ôؘs㈘wð•Yfj9£Íõ‰4æ3š¡–¡…á0ôr).ËEDA´IHHAAI ‹Ýû}ßù07Þe‹îüþß9ß9¿¹÷Ì0UE!Åò !ÜÂf½{¬¸Ám½¹¬+ÕºRbfYž {ʺ¬6‘cä x­ËCŒ;c‘pÆ’¸3– g,;c…pÆJÃOıjÖ…<¿äŽ'ï_ç‰ÿûþ¥>!Ïo3’ߨN'î'f}ĽÄÌ5 ó‰FYH”¿ÓêY"Õ54_Kãb»lEѲ€ìœFv½AÐý^¢þêïÇ2®ŒÉ3¸9BÏçZ'òz”æißQ¼!cœ˜ Ï•8J}sÔGÏ71†¼7ƒ|0…¢u£1Ú껟Sä»ú9|9¶ 9ñ9ù\Ð Î/ظ®Ksù–ý„‚ žÁ8Ôç?GWÏGWJí'Œ$Øÿîåð×+ìŸñB¿¹xæ#?wÃx}¢û~„ýÍX!ÖÅ]öÏøÓ€—ýuO@½Œû«¯aߺã_aüôÊ&`Ýó†ÍpO/ö—þ€Ïw2±êУ\˜¯_öƒ/lfÀþµæ3˜¯\\Vß@ÿ©}Àpô…üK°®|~ðX毹 uuæ\·”7MÀ|IP°ä}xäÂ$®Ëƒol0oÎãùo? n_;÷ û†ãp|ý;nT4tü2ðò€ ¹ܾlN>N '•“ÆIçäç”Ã)À‰ ;v(ìPØ¡°Ca‡Â… ;v¨ìPÙ¡²Ce‡Ê•*;Tv¨ìPÙ¡±Cc‡Æ;4vhìÐØ¡±Cc‡Î:;tvèìÐmÇoûúÈm/|î Epi/data/births.rda0000644000175100001440000001176212144476640013720 0ustar hornikusersBZh91AY&SYÜMÆM+#ÿÿÿý÷ÿ_ÿÿÿÿÿÿÿÿÿÿÿÝ÷ÿÿÿÿõÿýÿ÷ÿÝÿÿà_9ÁpÀÞ<|d‡ÁõíR–ÙUU]àǘ×Pу8!Du¤”œ MMhÑ< £Q¶¢f¡èÚzzdÔ4Ѧž¦‰ú¦Ÿ•=©Mè§©ÿªHô†ŒL!ú‰ú¦OQ¦šy#M£M6‰æ” 6Q£M ©êažˆT¥=ïTOÿÕT¦ê¥@OQ“a€dÄ` “Ð&õ#M 0LM&˜L#0022i€¦!‰„ÀL 7¨ßúª¦šhi“£hd˜L#L†š4Ó`M4˜˜CLž¦C&ŒCÈ4ÈÓ ‰Â4M ɣфLdš$§“DÑ õ¡ È@ ¦A£@iˆ €€h=T’4SÍR~¨É£¡£F2FšC ÐLA„Ä@4hÐÓšL˜F¡ d„h iê &¤Äi„Ц€õ ÚCOS2€hŸªƒ@hÔôŒL€ÐÄ4Ѐ 4zC'¨š1h G2 #°4&Ä»›Iu,@ÚGŽ*è©ÕУ©$’I$’I$’I$’I$’H‚ ‰%)*m`Áƒ 0`Áƒ 0|?;+io˜¹,çS—ßfzRI$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I<.Jz¿—â|çàäÞ9lH<Â’²cg—ð©ÕèÑHºz”Õ!éÑï“ü[O¼ ÊówÙo©ýÐ4PÉöªdúŸ5™Uwö›Î>¯ ›ÈÔÿ‚!ù¶ ^¿Ðí0O@øÎê:y]ǃk½uiY³ç¼ÀÆÆ·sg´ƒáÞØvÔα¼Š*îš|C£!šY¿g£æút8þnæËÀì05Ýß­ȩ̀Ä‹ÔNï+®c½ï÷ÒªöRaȹg¥UÓŠÜ<æ47ùxû-Ò9û-ÓÿwÎë‹¥¹]C6ÒLx>¾Mì€ù™ø~Í¬š‹Œ®ÆòþÇ/ûîíï«nþ¶e/©¶—o ïwSç¿}K±ÈÊÑþH}À׫mžß?¹•¾ÎÐ̾ìM…uůŽÿgR½ÊÚ‹<=]wwÅîWyÏ2®òÒ³ƒË…›«#ú«¼œ¹8Ù¼\NUþo.ÛçÚ} Ï ¿qâxeÌú|Õ/yÌIù¨9îBçcÅYÙ”ªiiä®2LFIrÉn¬ih¬£Zî °•6*Œ•Zµ_&`Ñ W,÷³PUÃZYÊ-C«ÕØÁ(q$2Ú¡ZÅk[ZïXs/Vg0¶½‘U™aÚ´°-‰¼±—¼Ú.²¹¨„z¬T°[Ä+MbZÓ[!¥J%Ô£°©³°„‚Õ]eŠác,T3Kº6n¸uÈÊn¬îd`"„_y<‰åÎÔœþÖ‚_·Ñ×÷%èv}Øj'ú=µ#ŸzV– 4u^-—‡[!,®fbÙ#–’жá%˜Ä1lbV1ŠTÂ1‚¤’Bæ—^hˆHKb¹ö8àA‚P"c ‚@n 8Á¶£hŽH­’5±-¶Ù;Ô¶'rx%š ˆUJŠ!ŸXB(ˆ¨µSvI™ ‚“bF‹HwKÄË $/"ÐtÜßBB¾ÅI!1VúÕØ’*ˆ’WÓtô à T€U1Úú7Uw´xŸ åotçú»·ÒvJ´ñr;¬«—¾-ÛǧÊHjÁ}Ò€èËK𙺼êãþGïY“.¯æL®fdÉ“&L™_Ó­ Öš²ð¯m/X´bÕ,ÀÙ,A.»Û`zk…¾71x娔 †o ÿ]AL½¬`õ!èƒÒ|šÒµžYA1€KåôØPR >]ñáV­ûb"ýMŸ°”tP²jÐ¥& Ÿ>ÇÑÑÑÚÓèèèèèèèç]è¶Ûm¶Ûm¶Ûm¶ÛmÝãø×ðÁ€Ò1rô’Ø&0ikÒ`y8.”ºïXa†t3¶ºÕUUID$’RˆI$¥’IJ!$’”BI%(„’JQ $”¢I)Dàóþ^š»o{ß]u×]³333 4Ð*ªªûï¾ûï¼^ŸÀëSõíìcÝ»víÚ /¾ûïÉ2$œcÌæX °¾ûÀÛšg—————˜0o“Ÿ.û×cÊÊÊÊ’IŒ&gdÌȵ³flÓÓ´@Fßôñ[æÛWŒ™1ÆŸ)éβäf]×ïy=,¦|cKcº4[$Ûk¨HTB(F·Ò÷9³UB”ˆ*)K Hˆ+¦ño¸?s¥»?áíz×fÓÕÍÛ¾NŒé"Å‘„Ad*$H«D‹€J«E¢ª"øÎêêZûqàxZʨ§›ª!þ_ÐðÇqâaÝ:ïA¾-_¦ú™e}nUø ³†–Ê´^A!¦ïîŽ6ég®n«lÐ"‘Un”É+ÂòÜÛô'ÎÃs Ó‡ÞÉÆÅÕØð.òΉeᦪ¬ž×0§îÔrvíàc˜õõ2¯Œ`// SQmMMMNL­HZšššŽo­ÜÀqÇrÉÇqÊT¯çR¥J•*MÒ¥J–&ÔÆÍ,ˆ¤E$B…*¢Ð*%KÛ ¥¢THŠ€©j¡¡E„€€±"OK»Kgö–O ¥¥d™×ЧD˜‚½61 "¡¿±KêtòÊBBRA@•Dy~Ó,©PRÄ‚#VrYLˆ©HD´Æ£:戒"ÂBÍŒ’ DR©T’ítcK_>¦lÙðd$ JŠº2Êe›eù2ÌØÛCM0`Ù›.=,2æÆåUÌY-%åñàÜP‘VE…E™ÞgWS>»e©«­£_.Õ³lõË)?fe w5ú˜ªs„ÚÛ6º_a(4!Ö4Rª¬I–)4¶54fÖ×ϳã2××Ñ­£WOja×,£,òÚÍV7•ØÂwN+®IS£¼^[GÐØ[\+ì¶5|b ë22‹9ˆ€±F¢¢ÑUh¨Šˆ¨¨¬FYÔ®­e›!ÎÕÓ|ùóÝOŸ>|ùóç×I“&L™2dáI“&L™76ñŠÿ"çôÂÍù¬­­k͈֫ڤ`€gWî­#tF=ñØð¯é ŒE¯Jœ†!Ù_UÓ Õ5© ­e`-,În_;ñùƒ¤zõZ™ J’…,ƒ©x5 å Å@ceZƒ ­LÌ”[ASo î#h’VÀàÂЮ®jPlœÌSžä®ÕõÆ8¯.ÇÑ9žYÆL³¼¾8$&öÊDŠé$H‘"G‘²‰ û²1µÄ=¿ßó±ÐrAMûÌÌU×`#…„î[î¨8a®ÝØx~·­¸Àز͙E¼}¦ð ¿ó•Šåû-eÈD#/襻ÖÖ¤…Û£¾0vái÷šæÙš4r<´ Ù2Z wŽPmÆ#—ç:O):Wë¾Î¥a0ņ„ÍûÇ›ZÕÝîµ4ƒ©…ru­X.赈0¿ʶùßÀV`u“Ž›/ƒÚí0Y ûbFuÅëkF6ê¶-gh6Ý0¦ÙNkºÂ–„jJqÑN”Pr-kBͲaT7QÈݪ« aÒ´rJ¨U8@’S¢ÑÒH IÈ$ˆŽb"#AÒt+oÐèt>_B¿¡åQÓÓøzq4ôôûM;½==®žŸ'¥³ÛPÉÚñ6Üχ7sCq¸Ë¡B…¾… } ö‰}Œp`3Ì 1Ãx¥KrÆR”DYž:ã„«ÿz2ò?Ì>©ÐF:Äu´(í2朖Ï'fäë¹&ÑÞxˆh·ŽôæµTîÉÄr}á]ýˆf§èþ}Rõ‡Å~’ –»“­f:—\ªKËH*šüâ,X±bÜE‹,X±bŵµá¿~jËX;d¨Šì2¥×:ÙëŸ=–8TÔ¿÷|A{Eî é'´Öï¼L;§ÌoÉr ,*«"ñ/`°ñP<¡á®‚  K—.¹råË—.\iråÆ4hÑ£F 4hÑ­ñ®€ÃÏ1Œèýò!ì~tóÒ•+U d ÌcëÒ/”£áN¿^:š¥×]+¦7¹qÖï#-ò޲ijçnöv»ê…€Yö&± EìH‘"D‰$8‘"D‰YY‹D.04%`q˜îí{•̶ºÅWX¾`Í»¯ùçû€èå è9Ô¼ÕÃ2¥SH65õl„m0.©=Þø¼.1c¡Ÿ?6¾ÛÙ¤À[#É :6.µþáfØ1°""DÒÒŠ…„‚*À&k.i6I"¬Z's³L) £³–Oþ.äŠp¡!¸›ŒšEpi/data/bdendo11.rda0000644000175100001440000000316012144476640014013 0ustar hornikusersBZh91AY&SYÜÂÌg.Ôÿ÷\TU_ÿÿÿÿ`?çß¡À@@Aà |šÁÈÛÆ{±@ì7ÂP¦“OTÆTòz§éOLMšmÐ4ÈÓM †€4Ó=I‰£jšM Ð ÐÄ*ž§’Ð=@ŸªJ)hb4A C@hM¨#õ‹«.Lž@Zft„ B1y QÅ R&^^Œ¥BUPð¬¬çÍœŒõ ÅÍ%àNA41Œ ‘9(r©ÅQQCÕQC¤é  H)|û¥ªÇ.z/jñW½WŒ¼KļKļKûýbè] ¡t.…кBèZ-‹E¢Ñh´Z-‹E¢Ñh´Z-‹E¢Ñh´Z-‹E¢Ñh´Z-‹E¢Ñh´Z-‹E¢Ñh´Z-‹E¢Ñh´Z-‹E¢Ñh´Z-‹E¢Ñh´Z-‹E¢Ñh´^¤öz—Rê]K©u.¥Ôº—RÑh´Z-‹E¢Ñh´Ox#ÁðG‚,½HuIËúëøÖèèµZ ª¶ÊJX_fx ³—eedW‹þ~ýw‘dëg©ËöŸ5ヲ'­ÓËQCžyy6£ŠbÃÝí$œ†R:ñ·±ÏC›»ëÏŸÃO_íÓ­<±„Š™•R•™HU™E™…™„e‘–E™LLb!˜Ì#2%è™+l+0†ePÌÌ‘µdbª£lŒËC1Vfb~ìE-aäŶ_Fľ."yñy#;ó.éµ[FÌ£<ûYèÆfmOùµê½bè[—¢ó¤½%ç.Å¢ÑsçÏÈ*êê­‹™u.¥Ô´Z-RêZ-y‹ Ì*ض/O!W"ä[l[öêØ¹–å¹n[–å¹n[–‹Eêö.E………………………………„vv—"î.ÅØ»bì]‹±v-‹ØëØUÙ±wqv.ÅØ»bì]‹±h´]ÜÙϧ€«Á±w—yxxBè] À¼ E¢îïïmà#×À¿žíËE¢Ü·.¥Ôº–å¹nZ-bßßóì\˜.yw—Áp\Áp\‹±onÂõyl.2à¸. ‚à¸. ‚à´]‹| |*ݹwå¹n[–å¹n[–å¢çÏŸ€«Â¸ÈÑp±$ì‰Ðœ ¡:h Ä¡¥šDÀW¢|¨Qˆ'?_ǵÕdU$–ήI.6I$˜’IØoVÒûí›×xçcy0" C(Ë›±`Y(LfF_Ug˜ag6L÷uµž»ó—vså³<›Ô턹L•=9AÝõøCw­£ÅÙ³ˆÇ¿þj:ûHlr<§&tÅ„^éÇí»w³å@÷Kž•¨×‰ôhPT˜›9ÏãBK_Ù£@í&̹£@¶ÌT.èW™È•edpÄȇ?7\Ö³^ 6ö‡HÄæ©999ÌNNrœé9x0N™`l9UŽÊçBÉXGP¡šb¢¯€UU *¬Þ)$q}J„hÒ2g&e¶rÆÍžFc—,öPêÝ\Væ0ëþ.äŠp¡!¹…˜ÎEpi/data/bdendo.rda0000644000175100001440000000557112144476640013661 0ustar hornikusersBZh91AY&SYW „ÐrGÔÿ÷|Tu_ÿÿÿÿà?çß À@@Aàü6)îШày·€zÜ:‚áìì$’ž¦›Q3&‘Šy4G¢mL4M¤zOM ¦šcPò! B4Ó! © ôA§¤ š †j`€ “@pЀšd4ÈÑ“ ž©IJ=DÚOP iš0Œš21 1&€ $TSÔõC&€z@ ƒ@ •UOý¥ÿú© ) ~¨ÿº¯úÕkÿáVçnp»©)wtÝÕÀ»ìsœ»»·7wHFî¸Gw˜)t]:në‚î㤮¸d»¸î»ÐäQ&Óm /ð:½©â„àž@Q½<À§æ†öÓÐ 7eQ¨hÑD(FíPfÖ -®`–vÊ6‘}hÜGu¨ÀŠ(Þ ›¼5°´Ýôa qºº7ÑubX´òç.c *áG<(ñ#ˆñ£ÈoO˜]«ä :èŒ8ZÅÕ"õ‹„š5¿]>x¢ÜÁjíggS³¬ý>ZÐs-æ4îÏÂ9,¨à@bxö4c6vó¯hOš¦Á‡Û¯"†¥ifŠ-‡v$«+íÙŠh»–ìÊœWY¹ó ºjÆ2ªÀI*Ì¡A&ÄÆ6‰í(ÚØµƒ>›vˆ4X¨‚’Õçux¹´h±6Âw]ËùUäÔ`“h1™NsÇ—•õÖá œA^§(L¦dÙ4 Å<õãÕ×=^:ñ»¼óyÞ¯<+›$ #Ås LNîõ×XÉ”†dȉ„(¯;v;»CºÝ‡xëÒ77¦ï<ç7¦ëÎòó§vÞ5ˆÅ™$o]ÔO”(!Ýç]y&ÄÍ"ˆÌÒ‘£$+ºº šH‘bs“4’DÁ‚d)™éÀc ¹uݵÍ]7¯:/W®®nW.i îwž»×ºîKÄç¼q\”¸‰1ÉÔBÞBI¥¦p”¥ZK*t¤Ò‘£ H”“×\îêRcÛܹÐó§W BPÂlé^=žº2#zî‘ë· B ¹Ð‚€AEMÁkÓ¼^/=wzëšeš’o:º®î˜óºH 3,TFdbA£h“IŠL‚li˜›!±ŒcIŠLPÌh(¡,ÈØÐ›%b4ccXÑk˜JH ¤ËŠPš€E&’ÔT@‰ì®–ù YbGQ¤‚4 $$Œ[Umª4V6ÕÖMXÖÚ5¨M‹¶-mÑU¨ÕhÕ¨Ú+2U«l[-­mXµ´Q[Û®êJ-¢Ö±µŠÑV£j­¶6«bÚ×mJjkUVéFˆ¶Ñj¬5}Zµk†Ö-¶Æ¯|¢Åm€%¾‰ -ö„z-, xm`D-oS+5›&Š•TØÛ^ý’k¬33€èÊä¥5AQP€  ð+À¯Þ—¹bÅ‹,X±bÅ‹,X±bÅ‹/OON‹. …Âáp¸\. …Âáp¸\. …Âáp¸\. …ë=UÙv]—©z–,X½KÔ±bÅ‹,X±bÅ‹,X±bÅ‹Ð_1x/ô ».˲ì»v]—eÙv*ì».˲ìUÙv]—eØ«²ì».˱WeÙv] º.‹¢èUÑt]B®‹¢èº{uv]—Î^åî^åî^åî^å‹,X±bÅ‹,X±bÅ‹,X¾—’áz—‘WEÑt] º.‹¢èUÑt]B®‹¢èºt]EЫ¢èº.…]EÑt*èº.‹¡WEÑt] ¼Ï2ì»/%ä¼—’ò^KÉy,X±bÅ‹,X±bÅ‹,X±bÅöÞ¾K¢ö/"®‹¢èºÑt] …Âáp¸\. …Âáp¸\. …Âáp¼ÏBèº/%ä¼—’ò^KÉy,X±bÅ‹,X±bÅ‹,X±bÅߣæôñì^…ê\. …Âáp¸\. …Âáp¸\. …Âáp¸\. Úv]Eì^Åì^ Áx/bö,X±bÅ‹,X±bÅ‹,X±bÅßÏó¹ì]—‚áp¸\. …Âáp¸\. …ôú.‹¢áp¸\. …Âá—™ä».ËÉy/Rõ/Rò^KÉbÅ‹,X±bÅ‹,X±bÅ‹¹x/ç¢èº. …Âáp¸\.Ÿèì».ËÑÑt] …Âáp¸\. Óâ|eÙ|Á|Á|Á|ÁbÅ‹,X±bÅ‹,X±bÅ‹¹x/ç¢èº. …Âáp¸\.—EÑt_G§eÙv\. …Âáp¸\/Oˆø.˲ø/‚ø/‚ø/‚ø/‚Å‹,X±bÅ‹,X±bÅ‹/rð^ ÏEÑt\. …Âáp¸\/=EÑp¸\. …Âáp¸\.•äº.‹Éy/%ä¼—’ò^K,X±bÅ‹,X±bÅ‹,X½===‹Áx. …Âáp¸\. …Âáp¸\. …Âá@P@P¦—hã´7Dw\ç‰%õuš»i†3…ƒde €› õÜñ4¼"†ƒGó˜¹Ïõ»øíiô¤=`»­ üY€²Ä¯0EÝÒÚ*8„ˆé ö:½ŽÞÅ{áz¡¥ {¦šCm 0âW¬ÉHhhan!†nRo°»J{7Ûç¥/^uy0`hØšRÈH €Ê÷®ÕöõÓLbÅѨ†o:æE24šö6¿9¼VbÑFÒQ±F÷{ÉyîuïGø»Ì5ÓM,§U9­B¹"Bä1$”CIWÙ$€%Toõ u<]x18çaІÞò ¤¼P3ªqÉüiãe•<ÈŠ¼yõ{³ë)£±BÅ*åz/‡­hÿkÔA¯™³TAqÎ)š¶¬WzUsÜž8®‚aðÍ¥¯~÷Þk9v:{–oW6ÆÊ?žŒˆz2#®4}‘ÐŒˆz)#ؤc ùc[ *ö˜B‹F«"¢ÄDㆠV³-‰Þ4+J¡¥ãôW’øë³Þ¸›@΢d„Ci¶2bb¤ÛÆž%röÕš‘Á碽Ï}îû²ÜØã–¯u®Þ5毊å9T’@S@V‰LJX1„¤ñw$S… p¸MEpi/data/Y.dk.rda0000644000175100001440000011077012144476641013232 0ustar hornikusersý7zXZi"Þ6!ÏXÌ빑»])TW"änRÊŸãXa“ÆqÅjnçj-13ÍÔäãc”¼™Éž1[OØ¡þQ¦ñ7<Ó=èòv#€™Rð@B+Œ/0Š7%îúsÜáÑà\ºúj…XÞCN’ú+¬!q³‰ˆ¥™4¼œ2}4ónùÃl(í.È–åÇvÕ÷„P@VòæÔ§€2á˜(T(i7òìQ®ÓQÙí·00ÁÖùegð4&¥q®7äuyÎú°¹,_Fá·&u æd+0ᵘY3øúñ‘Hý(2)6[J \Ô_y¾¼«ø¡ä{µáà WÓãÃàÔÐ=–á@j‰”—Æ®=3Ü®¿ .Y/3­b‡­5×üÅÒ×m’\—·®†³ÐAtFõ8HQž~ÕÕ¿ß‚rYV~á#‰j–ÎìÌû¢/˜üÀó#rˆæDð}Í`ÿ.뚺ΧÙQ¤!Ý—6‹4&0Ë)¯âlé^K$+ý®Þמ+Œ iœHj§©ìä%¯FB>èà’8õáàИ¡•"ïåWé%Ö»/îÅêQè0çÓ׌é<$ÈÀ…¼ð‡‹YÀ-Þzew}2ï2FÕlF>z Ÿu©kHg«´g²1ï(š E®Èæýz@[ÊOÝu¨øYž›J‚ÚFŽ ¾qÏݨb¯°" ^¬Dò.¥"cŒ77¸ V ,Ä-ºƒø ›»¿”AiYs©Sò ˆê&)¢»SocÖé-Eê°ÄÐRâù½ã¸„ëȃã â´`J Eþ"i h‹Ú¹ÖÔç‚C0˜d[¾·3C¬¤®žÜ•!MÒ‹nX74…†}(¢HÊÍi)‰Ë²ãÍá“`ËÖ°ŠV2_@—çn½"›å©ç³0m‡êZË›Q DãùVÕ·?¿ãý ^ºìM‡1:ýæî(4–$ÀvÔÉ^:ï©;Dý€cîØŽ'¿ßúîÞà⊹ƒDˆ/âéÁ$ö!Øù<¶¼¦ÒúRÈn¶ÑÁဒâΛÕÜMAŽ¥‡As»1eÈN„Õb< ‚æ¶yÞHcJ§+>ª]ƒ:¸*QLM²tºÐ|z¾©;‚€mxš÷CXÊèKÿ}¬É\æ<ðè¤|]’ÑD/¬û"Yñô†œçzêkËÔŠdY&¬2÷”—áä ±A4…ØÃ€*$þ“lÒÒw苜¸6)’Õ>~ç¹*ü%•OåšÛõrÞGN¤}@ð geZËŒ")™ÉUÝJ+ v7ƒ±]p¹-Lb¨àZ}âÁ¨Xɾ‹¿jÈ(H½tÖº{§px±t! È6¢ã$§bŒ4Ö*¥ÉÚìvŽ_cóߨXÇXFަ%òµFêa‚u ¬7/tÌ´8Z.V(‘úmi)©ààÿ`”Xiø-Ÿ[ –h?©ýdà}Vr}å­¬äÍÃR­lÀ‚–å=dU|°ÖkÆèæ¥xÎ^‡\ίEŠÝŸy´lóÎFToßAËÛ»ýë÷ë¹”0¥fóãòè.©ji#§c¼[cþÍ~Š'éÏ0éªNÇ|é8ñ¥ZÇ}äöŒE1ÒÞúÕÿhÑ”79¨]Žg9‡9ò—ò ¼ÔO,Ú‚eqbÅ §>èxª(¡Vë+Ð /dñB„ÛN0Âû1¿>0_ˆÜÉoM“RZùÞ¸æµCO|ZÙ÷Û#;‚pÝV%S˜ 2º« !Ùœh:=AX‹½œE·érDóû—%¹¯ù·Wý×[²Ï¤C¸—Vž0žñÅXE§/­Ã)gÎ5}8Î3ÿ“±²¥vûÂ`„:ô+#†¸€ ç⪞þ!¼?¸è’ éfö,8ˆëè1Ù* Ìã”§Õ)7wºÚ@ÀÄ%×ébjÃ(WâvÈ z>?PEügJO—;»¶€@RëËñoÔ›àãu+$9¾%.†‚p®­ò$z¯%·ë‚$åÌ—dûn­v DÀ¿j-UœÕí¨|EH.Œ>lQ¦ †Q°°_žòRbŸ±`*‡(d]o '#ùÄð–[RL07ÿ=œSZû~WYí4a®í‘“*4Èï{Lº~Îä,v!èÍâ3:<¸qÀÄ`sV¡šù«$9‚- }ž¤WwÈHVAmÅRT4Œ¥u´¡ng atsqä&—?¥þË3PU¥>§”I‚ÝŸÓží®÷nöŠ´ÁB¤‹}¤Ym’ä`œ;*×@h¼ùÄQ£÷Rîg¦µ¶¾f07U ýüâWÕ^›ým"¿³'¦¼•æ\vf°¨ñû¯ŠlOΣ% ­K·ÆrT¿{iíôåuH·òCÒˆÄ:¬Î5,ejÓ–ÏéàŽ}cØo)eZ}mÊýƒ€¼Åš²SþMg©$?½bœ;ù®h³ªÆ‡ˆù;Ö=„{[¿ø¿g¿ûð (îV¡_ÊèýX0ÒþEà+q”­fºaˆcÀ¤&< YBÌ®¼ô-”²Vß4žOÀÜXœø}¦lˆ· ! –¯ ËApó Ø¤3¸¡£ <ˆÌÛÄ´ ªTÏpÇ-õ^‡pœ$:”³‡§8è¬Á½úÎH{•ŒE5_wÍžˆv¦Ó¯SY¬³ ,:¬çIJ<è™\§‘} &á"ÿ<ÓB虳t£œhÇ'P‘ãh·íljÕi³ëv6d…%r*ÂìVD.—¡FZÊtà’CEF]ÞÏMéC@¢ ½2ZØfÕmêù`zpÃÿªªåâVAJ"Ä^ ˜A²Q´XËp/ k[4š‚°a~£ ìŽØ@.ô)°û¦—Vë”PSkÔc¬kŒ¢¡zÕ¶ €Þ4r\I@~mHȲ›“Ô6²Éȃ ÒD%€Í. Þ°ämެÑ\eü¹Ynû¯[×^ÑuÒo™Ìˆßý3RÁæ÷€ù$Œ}¸UZ®%•æÇ_§RJ&gö9ÁŽlµyij“^>­ô˜Œ†%Æð«ë~hOÑŸé’A èìÞé©3¥Ip5ÑÜdÎzÃpk{.‰lBÞî­,ÖÊÙ “`ãÉaüHÔ¨4pãß_5ô—QôA†WôÉI5½«ñÄæé5•N3“lþ!wgø[؉4¬;²|´]#äk°ýD±d™ˆ®e—&ú¦VÄ.g“‘™h‡– Û¡¿3inî5¡ ²X¸"ÙÓ˜#¡¶š0{êótÿ£1¼ ¼ Äÿ¤êöù@ð©žUêa £Ï¢…„õ…Kz¾ëôqŽD#Vf¤àñùøG¾h­\ÍOÅk%; ïnÞx²¥mž UæLþƒaÖ‹ˆFª tþ ÔzVÄÜ`PÄ]à[/,ÞR[çeþ'#gÆL>÷m&Œ£ÂY¼¼‡‡0G`Thþ6‘d§ÿTþ"6åKsƒ©£Ü£cšeœDQ¿Ï&C¥c}1ÚÐ58¡Xô®8irèJh“HJRðŒÀ —ñ"_òÙz5Q[v /“’ÁãÁŽ÷ ©ÂKéØG² /gÃ$a†£NÈ„`#€cba0w'g¶äæã®õÉöËÏÃËc6k‚FûÔíEM’ ØõË =gœÇ7’®çŽ 'ü¢r¿°\¦Ú_~"áSY£a¡iÇïº0ÓäˆÜ4 ßÜ›NÒÌfjšºZAÂâ‡OÁ—( ©‡úÜúb†ÉÚŸ!=7¢1ë×ä RÑC3z`' ‡ìõ*ˆ«„ÐLn˜ªRôƒè9êzÀ“àYœufUUÿø«}Övãʨ a|Þ|Heჽl†IJ:VÇቴ²ØV¿±ûí!̹ ‚yÇÀü6YÙ,^%Úî7ÌÓ Íõ÷iáú*|é}öj@Y[öÃ(ÙüûòÏÌ÷ºHd5G÷3”A3m•.‹r‹+©ã=Kü\Üx™‹ù-âUº»ÿSNñÿ³ð!œÉV;+÷ý,3¨ï@ ÛI j—$JöI¬)‰v2‹e‰Ñþ¬hhxók¸Þé5Q°ggHewÖ…TýíÄËãgÓ/•¨`æÓ¸[ö¥¢qtJù¸‰¤¨Ãvñ•”'#B–àóÉŒ‰ö]%Oº‚dÜ{eˆ0WL¹JQ§ÓŸ„}±CCŠ•Ž|åz!ÌcP3ŸðjÔý–Å$Oajâø×‰ÖåÛ?ÈAÒwbTßtm]è—°dÍßã¡žš¿“ Û~l${Ø6ÎQ-`En_…íÜ¿•B“í±è27è¥éÂ'0g·xøð_Ñ’uzL.iª-lœ/O2)/EÑ}äyB eù‰·ƒÂ+½K˜lQ\¥–Ñ•öÙ‰ž”b2Ìè¸êŒ¹Q»á÷¹‡ë;XO·®$ ÔùûUø¢Iê«=Ý#%ß+ãÿ0®¾ÕkÉJ´ôö!?˜q ŸÈ<<ÆÞ®Ký““äü†¬¬ÕÞw‚;ù8eäÏWüu‹Fâ‹úR÷þ«¿€§9:ý­…ÏˮćóûíÕ ®=­qîÄ誟xæ–NÙ‹Vû‚1{EÊ`zx]j’÷×B¯=G½ Åù¿L “çl«R2ªÁŸ³àÉÆÇ®½g‚Á«-tE%'†/t<‰§†âbý¹^dHó+€H’…4í‹fªV*G€—…âfŠíî_Jàu«…¦±ôHn;EùVpiäÜ'_`Ãh±‹ØGÏöê¯ÎÄX3y²E9áÊ«CƲôðån,ÑwÓñîÎDVKvôà^Ê ãü‚ AX1Bv}û5DMÞÕ☃Â$õ›™‚ÅúÊNƒJš×=åцR÷H+K‡;£n É}â;”½Átƒ‰ JIk!Ð×ôªÃä0)t#B8úqú‘‹çš,ª¨ŠìÛ Í$ÇwõªÄ-¨Ã ñÞÑ(ĵ̫ËÊZ$·N2kcIn]ó?’|09€ù&v 2÷ ¨—]°$J•4›kW{@ú^›ò3AnÇÝÈŒùÇ4jW³5Û¦€OGØN¼=(’"A!0ø’¿Ë¡„«byúFÐs9cÆqÖ„—B_Êé"Ä%Òfš`7):c߯òjW+Öêd š>’õ# ?)ò<Öƒñ~²?qúê¦ÁGúMËK*]É4]¡„à=æÊqdÖ?ae¡¯aâØ—-POás£¥§¡Ðð·Ú~Nx)©yx=€ãÌP”Æüæ·>+ÈXÒ„·g·³¶}ù x\TîÅÞê&º«‰ÒpÌøW-kÒ牻Èñßräa |çÎ䬇µ€¢Ê•&f‰6ÍxÅ’ ¾Z¶Ô]©¦§F%çE$}j#w‡¨—ÚÇhPH¯?¨0tûw8 D‚“|=‡ýv3õÕÇ KEÆ‚°sá-TÔì°Œ¯rÓ‡ å|dèÓ«'¦h‘ý¯Qv”¦sä21ý+€à@©í~‘¡dÌLDI~žx—ˆkñÕijÏpÔ¹,jûbMÅz:‰Wô +u¿ücçÔm7o(eÒ$ª°òchŇñ'Ö“$­«cã‹§wú\î~\™6ã œ:…Gn›¡MÁßZ7åÛ|ŸâÇ$ˆÖq^×ø»WÍHF´p‰v[œúÓ=S2‰?é,¹ ¬>Aým 7d¨ýîÌùDc7^ÿHãÚÌ¥ÌgÝ Ù‡– k‚2B7Àº*ú«¹jHvÅ«8<çô¤òW VH¢ÜùI¯ ôÈŒ!s z…qáwã´^Ïj§s9š‰O;¹Ò·d¬R±ý»à?/Bt s“œ ‹ámŒCÛ®ZªÌ=bßS•+­åúEoÍ5ìì¶Rº^ˆ|îÞž7ü¡!Wþ§¡|¯·ýÙW~À#ÞÙZ ÙtA¶é—%Ÿµ²Ñ¾XÏ "iîªã´‹U¡ÅIQéêÞàŒÞM`ëq×óÃ54|òd0Uò„êÅN;=<¡€,=ã¡Ö ¤¬J“Ym•Í!CÜŠ–«ä9gÀ%ò‰¶Vÿ‘œ^}CbžAZ“6âÙã60KÒ|RPÇ«¾}D*-~¼¶fÐ;þ»Íâ+Yëg*º”…íZ¿„/×Ì×Õ5{mùÑßY0R³˜Ù[üÏÑHLªÓ-W‘~NF°Fp´ÈüÀDÔ…q`?\ÍágßÙw3‚‚ù$ýç—ë2Œ(ŽÃ⌾IRÑ‘k7Mú2æ‹S~Ô…©×bÃþN–6V™Žœr«­ŽTJï~™I~[ôÿUW”„=†¬ cY¿ÔœÖ .LÄ« µiû3ûZwáú©7èÐÛk¢G݇Œkî±ñ¸sÅÆ®lcLm(ÙàŽ9É–.ºÿU¹:uƒ£ví¦@Ê_¯ó¥&§Gà?b#]TãÃ5HݽYh%?JoaJ1L¾À?ýuÈô{©f•ìúÖäæÂ‚ÿ­Ò+ªèi¡ÊíÓÝhžöd#=›š¶ž5ã1wÖeÇ©låo)ýwï I²WÍEäýdZƒêï1ý j]âásÀI† 1O:if.z)QíIc7ŒKš#D`òGç*¼× R®ÅØå—l9ô^MmI$úNcì(œ×©d5àµÛ#E ll®u—Žöò‰ËĽIð“ç“¡W“ ¿žÐÄ ¸L/ ù¶ñÖ:ZÔž´HA\MXŸäNJGÅBËeðØw—ŒFÒD)—èÅÞþ>®(+üã šÈæÍƒµ÷œ¢Ž§4‡PãHÔ#Rœ×²AŸÌª@Í1eÝ%F]ŸðIÖ~y_MWÔ«I rÐ0µ >ôEÈNÂï‹t¢ÝÍ)üW@D•¡xAT°…;…Ù¦è«JÄøÎ.G aÔ߆û.[”ÂçñùëüiBÌÓb/Z\ ÑNªìa®,‘c; loBz¿)ÃŒëtsó#©b¸£yaN[R¹àN"¤ýñýÜÛ$AßB<ëz– agÚ Ë‡ÇωLNJW5ÍǾùÎ13;ÒñÛÑ|´ÆM ¨zE„jÓ†«vÔâÈ2›¸†%òWûW!P’Ùç»PŒ½¤©Å ÏV¤Už÷z^;d‚n_íS:aVDUðxµÜÄ9|'örØ$1‹[üÆZ¾Â‘Áß´—ˆ^‚žûÁ/ÁBæläÈPêî[°ïyï(g}ºK.-ä¥'@K+µj^˜½™ECÞí9+ÿžæÝúÍm™IŸä„0—¡ ̽wîm§x>¹3„ŽÜýÒ{<¹dA2@ű2ûAZœ­¸y'«5™qûU5 È“È~ÒK⬘-®cOQ ^”-ìl·Qv›s±÷¸h..‹D;3IèSõ0× å ~~tY)º{ïv'’E1Ó»‘Îõ (){rÝ*ýÛ~’qŒŽ ¨ðr«hµfû lÉ«tªþ8ž¢ ­ªÉgéãùãQZGQÊ`×EóÓØÎÉRãÈáWÆ®glpuó…Ä)¹VÝi{.„c!/t—#:Þ:{4º&–à÷)) =GÀã¨î¯ýîK^/ xÉ.oØ* “¤²)$+[ èNŠÛ.Ñq^¡ÇQy“ÂÕœ¬¡ß^d¦ ~F#—»#³Ê¬üÆ;§£ÌÞØçUÄQakÉìQ€¯ÑÙx¥žRd5Â{$¤ge] Ÿˆ8–ýŠëÖ•yrˆG4¡äÅ]„ÂÝ’ñ§-p˽•«Q÷úÊ~ïŒ$2ËÒÿõ‘;{Ü´)]÷×\ëfªëPlÐeO O?•l-å=@æ!bíÂÐCÚztÓÈ‘ÙëµCš”´3W£ÇÎA)æ\¨íÙ+0ÝæÛðò—#DöÍþ¬Rwå¸&ØŠWŸ[ž ÏÀ"fãÀ·Zuæ¸kl–›˜_c4¿Þ²Õ.¶´jóÁñêGH~K¨kU»­{¥w«¾ÿ€‰Ò–·ämñ×S¤ä%¯%Oœ‹NÑÊh…ò`³G\(nü•æéAFzŽT¡/ ¯Œ[DáŽbÎ ì–ó}¾÷WtQ Ü.A9? nW9…þñéw át~ FMÅc›^Þ¹ßåàVÇP`¨¾bûpÛ·!mI½Os&@6Sêè' àHÀø¶žFú2“ek±ÖTâÙ@gq ñòœ<©ñ!š„µ$;ÜIB¥Ìqg»†µ„?g 8²c{ÈQËâx´é<[mÄÆ¤û $b/ ØN¾Ñ}b¹zõ·+¡V'íMâû=(]…uòSbÑS¥œë=aBxÚæ…[’g ÜÛ8Nm©L£@“‚œüûÝøh|z˜¬lvYz¥Ìô-€Ç_CC¶ÄãÀ† δÜò`¨¬U0ЛFìV-¶ë£Òv7¹¿À¢éÐrP¥ú*ŒW?Çzo»âïÞRoªxûö\&1_C/(8¾“ñ®e¾3º^zÚqAØÝž¤˜ãyÀ÷RΡŦà|¬´xæÃ³— PÓOJþBʉMÎñÍ@XXj‡û°—Aî q—o÷¨4ûH[E2ù»û•GŸÉ/v—Œ§è4Ó€NHe˜çp¢{T×$©ÑÏÕ¯Ìm•š£Y_³Ÿ÷¯}Ω·0òw<´%|B_¼öEl¶l€DnÍï\’0X;â·( bÖÀt·ÜHBÊ£Üo / Xq/À¬¥KÝ=×óNœµ«^ÈPoöª<œÍÑzluK°Ce®ûÙ} %)‘ê{àgws/¸‡ñ;÷ny´põúžn¡Ç›ïw/F9ÒÎ7Êc¼0Çq³Û8ÚõÿUÿyKºÑø»Utcö:צËIØÒÂ Š±‚s…V×?}ÄRàÞAl¢ÿEŽÛWoœ³ÝïÒ"@zÃë… »‘ ÊlˆÛòîÁôˆTÙ€¼U~·Té öŸéT# „Ë ?k'DÃ=–óóóOOòîýyXt Á‰Vl3½ý.&L®Zö_–|çîÈÍ t.ˆê¡ Àú â¯ÈwͰ'‹s7=Ñ‚LLÅÖÙòÎþh©ˆÔesîš^é¡çÙõÚõö9óóýÝÞ*ÜG'©›  ·t·µ#ߪ']ÀhÄ?<ïcôj¡g€aoÞœï"vú ½lßËË'íØ¹YÏÀ´FŸ²ƒ;§Š×ÜuîÇldØ.‹rD6ÈŸ¿¿–Pé[[Š{ê8T?T2•ÝUæ-D!Ñrûü†ñž‡Ü#( Ó‘çXQ3áN§ Œ3G^šëbk/qyÖTÝ`UÞA¦Âø®Ç¨ÎušërÅ9ZHiÒò³²1Ìhϼ¨³Ç‡­šá-"Ñ]‚!Á¥÷»5h~´{ݬ^t©©—ñÒ»hû!¬šÖFlÁç@SÈÎeá¿m«µà.”#ýœn]òóJñD×¼ÇáØ™³[ã›uóqTnûŽÑçåqö¹g¹lÐÒÌï+ W'Þù¹UÿÊ1$w6¬¡éæö‡c¨“Od¿ n2¡êGØÀïÖÃrVæÀûûCá9ûn¼Õ O F;V8z¾[y·†ªö5IT¼ì4•¢ÜùÿÐ8-‰Eû»RÉbv5ˆí27ío#k5N—9IØ[>F2$ˆ÷ ´o÷½2ËF'*Ðf¶¼jœØ©ƒ ­@CܘLÍbí¥šÃ‹)C?šÏ—u\ó°%¶¬š4’fPãm®·ºÝ{üS`> ü.ó³v ½ëíá2h…”¡üq >‚*Ab²äcé”,I) £mLâ78¯¥00Ãáiæó“NÖqÎ$—ž°ä*Ïj>ÇFê"Ó ¥y—ìmfTQñ)°Þ=0L—ž~cÄk›‘„Û(šŽrÛÄÅwûßÃÕßR(¯ÔÍ$‘ôõŒWiÅQ«¥‚B=:¬Þ"\à寄°+ò„ESC¦·ívfnvñ'Ì6%t§.HWàÍŽà_f¦p•^¤êý=&]Õ+H‰Ê®?{ Cþ„튠™Çëº žpé‹eAû|ÜÑ ¾Í’ä©ì|öT+ÇQ€tfº¤¿ëý~³{»ý¯Ðh'EŒ¨Æ&³>M‚5Š´†YC›…Ó7:½~Ã^ZNùU‘n¼%ÍcMÛk”3ä¿;žCÑõdÌ¿¼k˜r±}Ŧà¥` +ÈcŸU,$?> {#…¿§­a±}•19T-ò‘hí„ê_­Ð¼´€^½$WµSq³›¯ánqÜÀ¦ýJdÈázgÀíÐ3˜ÿ3ç·³(ü²'Jûõv|)è¹ ³:ŽÛª3൨âE¯6b¨4‡zWv‚dxe›©±y+Ž­+4Õ½ã;Så8FÞg½F>$H×ˆË ™èÇÇFiD/UG^A®CbõáÚ²j,-Àd©m·ôC·XÑ{õ‰þfSËð,÷ÿ(œ=æ" ½´½5¬×*60m³ë$µByE¨a牑:¹×Íè7#œê>f†BYE˜3lšE¡²¸Îvn“‘`êó(vºŸ,OÁ…•oÛÞ·|–øÇ¢N/`A§®coœJÊ[xã~×^sÔX\œŠiyèHDÐ4Ûí†Êâ”,„äî—ë¾vÞ$<†4²®®©X(8_iÛé ¡ZÛDÓ‚žS+Æ\\‡OCúâdŽt,±(:ÒMr—…j$Þ•=Îq“–3ûÛ.Þ©ÇÅ •y-³äK1âêõ|\3@øÙ§ù‘ä\fø_&ÒfÍÙ?Gîž  ,a¸KvÌ*ßÒ4«°^䊗>8×I…ÛØSŸvÝä2hë®#È·RLÿƒmHÜ¿D¢à×ZÜÄZéÎÓ˜xrû9T¦oÔ–"ØÙMC`¾±–ÑÏê›wZÓ*§]B°èé̸ H¿y[îœù+. ™éE ±P¬íw³qn ?V8_6¯lM‰’4ñ@Wl·ré uew{²`¤[³ƒrÞÉÚø>lÙO@‚7ZŲx â°-h>¨XÅ ùOåâH ])\ õWÕ9DmT׌i´»#šòì+¥øæwοà>Õ.ÌUÝîvØÞê4'èyN–ðËý`1.2ŠÓY‡JY Qm¿ßúT§à1ãÄ‘Ë6ãgïê•áTîàÒ §ð€’¨yÇ®F„¢MT‚bQ>\înФþ=vÁðµPµ¦ð‹…œ þÕ ¨‘Å‹NTÒµÛUr/ X2ÊX²uéëOF°(h ÓÀv:ñ¢ÀáXj‡azEµ[Ƀ„ºÁ烨óšU÷P۬,£¿¬ò=ìŽ!ëê¨2¼­,¡TãM†íøEÂSE£wïÒ"á…² þ@rðúF‹¬±ýà”šÄÒRHš/…ý__z-`ó¿|øÝɼ¯‚Ãé>JšT3žŠBVuú1uqd'w<Üþ $üe;¨7¥9Pv‚üž+!ªÏŒsÎŒ¢”xؽ‚\Nßö-÷ûW ø¾ %Fu‰×(Í{÷\‰²ˆL£™«›}é™B7a;Y…ðÀª»Œ­œZÅeBÝ~z&ß|b¨ „¦™(Òß òÌ•oþ¸Ôðõ{ldOåJk­ïo ±gv–‘:ø˜¦ ”×Î'P*u—­Ó¥×že‘ÃCÆ¢UbË)vqä縳髥CDµí5v$yÝ•èð­J„# .A"Ŷӕ‚P‚­+|q˜oeG¼.M÷Iêö¿ÚÛ™b¨Ù€'Þ‰±X¸Ö!‚@«ÛÆ¢œÈdŒ±¤òU&ŸÚuÊ{±êÃV„Æ­°œBUÀ•.¼ø^íƒüΟnCßöXʈPINÛ¼â¶`'nòj/¶õÒʰ߶bEM0÷›1ÕÊmû2P1N{½vÍr‚‡<Û^¾9½Þ03ëv].¤Y”FL9{ßV ÑÁì‘ã_fsˆ¬É/f?S*avY©‡u˜®S/à¡¿Ý9<Ô*«œsâÃîlÙO‘¬|†øÆE7ôÎ~#]P?ÿ·ƒÔ›?*`èªL¬ w‚múÖÓpp~ÏÔJÒeêœdÁ *ïŦìs“»C:Èñ'z@Íö,ö,MS~ï囄5£à:gv"|V„¡}¯ÿxù2—ÂÈ£O”ë RÄñx_)(Ãk0Çße¢¹ Ö¨"Ð_ù6O§Î›uF %Êp†8û²5\¾ý¸P\qBçõsƒ×}AîÄ ÈåD­u¾S|I¬kmÅ\òƒOF±½»ñfòëê<†z`(lkºíJo2ý$ûÉQ=š1¥2¡çä…^nºb `Ñ¡á55EÔ;@ÇÂòÓH¶£¢ü‡d»=8—¼ä4µÃSØ)gazƒr±ý—cЬîõêÐu­Hý!oRâ £×B=ˆâ¤O«Óú­èòo`à70Oí§§D oëÆvlÚ5p&OÆh`ü’I—ª‚ c”È w¦Y¾Ñ O¸¦%«#‹ñè’ÈÊâ+æ_‡Ü],¶ˆk‘~+Þö½¤Æ¡w^±˜»;ûŽG0øUªqŠ4!Ë™‹¾ª2ϧš-ð,lÓ¾<+Äv/Š|X —ö'ú*“¯°T-€.Âï$Ãgyw…š³÷þ%‰eF™J;YëöŽN×vÑï²²}¯L_2NiÖê ˜׸}èlñÛÖ;ªãØ•y€æÕ‹¼u¨k¾pÏ“¡é®`•ØZiðp3DŸágqÃÒ ‚Í—vÿf™Ý`†'…deõµé^æí-8?¯“Q6ó|ÚÛÑT}}ê²øïZº[ñ,{Ñ`Å›Y‡ÔÂB b÷lÞ¿ÔøÄŽ7a6Ó¥býìøKOÇâU¤á«¼¶Ä‘ÖãïâŽð‡®êC=©xñÿEðŒJ¢•á(ã¢WgÆ“d•ïë7 &Ùÿ½Úº³vŽ¡ÈÝPé¹Ýn¦Àoha+Iæ*޵MàÝÁ£™…]ïþ/̧SÅóŸ!}Çfwr³¹,†F83²åºÞèT)ûyËä1‹ìDXÌé÷íˆdù½ÖÎnÖfÙñä’\ÉZDf³ÌºÙ"M¸D½’vy°ø»ç½­h€ºõáðz0sÜïgf‘T®”Œ`±7ÇúWòóôÁÇ:V´‚²¥§ÓËWåkÒø èòTÓBÏVê¦JZëä7O­³¼oì%yR°ÂG=óž Ð'è7½!›„zõ)*ÆsQÝ¢Ä, iC2>¯})í3ËnR-wž5Vx_@oðº§ë=­ßøÃ±*ö…Á֢ЂòûèèŠã¬ÿôÔºš ÏD"òšpÍ ÆÅ0°CÙ7Èw1˜¿Ñ|(º!m˜·z$7">½ÃåìŸÑr%ãgªe«§sÑ?‹$hNÛ —¦ÚØÊ>¢´ºJ’‚µ…ö4°ü½úŸîNûjjχ€s½*1Î ÀÝéêAt=mhǪå»èÜ µòƒ‡ÁnxºL«1©Žyÿù‡ œ¶F,¾ ¼ wgÀ—7Í(q@R~(bNê–U¾™,}»1-í‰Z¼fc«¦>ㄈ<„«‰¨ú’Þ[CRT™áf\XG_â At [Ö×Dya ÕTàÉ¢Gˆã¥;”'íŸ5cÆ×©ÔÍ=š¤©Ír´o{Õ*äGIë ̰±ðÞKŠñëUÖi="ªÔ}æ ä¥3«Ù ¦G% q˜|¸³ R&Õ?ƒChÌÎq’ZWc¤»¯?æEw<úk=—z ©,»—‹ÁxÎFZpöQó&ñž_܉Òà*Hå#¹x -‘Ý_®£ §2îÿì'H¥µ³QaoDô[fŽÙΟ°¹¼šçáˆÀäê×ò?À¾þ‰“ŽÄ~š4©å°«•7p[â*@\$k¢ßJA°,Íqͳ#ò/TÞÂÙëŽ-Œ½.ÁÆa@XËÄúþñz—öz4w\ôÉ›R®äöÊcž;₱ÃLLôI2zòJyÄ\ù¾ ×¼¹ÓuñmS 4HÏïÒûÕ¨[Ú¢uÝé¼%!ëûK â2[DüÐP\ ß Á‡F’ºG\Ëââ‹4ð9£|B§ZM±L©Áš'ØŸ$pÙ §¦,±JÇÝoŒåÃF¿ký²0jÎ`¶_Ç%8ÜEÍŽ'`U'Wû²~–Bë>æámJñXK,¨ˆÂ÷¾‚„ª4— è ?÷Ydž[þ(ü¨ÃŒÄ[B<£™ÅÚW›!Ú]O=3 k²hÝžl¤Óg•sœ¸ðù¶‚ÇlÞLóß°€çÒÆT•=¯Á}/KuÞæB¥É siÏÖïã„nš ÕåqŠoãËÑù¢\'Ô;Hj{?Î ÆxìÁýBö0¿®¶©, HÒûÕŠ¡‹ý¤ß~Õ_ ”·¼ì «÷¤®ë ŸÂ±% eigd1TÓÔz?e׿£YÜÚ%Wâ¡^J‹ˆ„S¡Œ`{¢?ö÷ ?l­¥tµºä’¯xO›¥Í±(î´ŠÅ«›µZNHsB_ag×C4®e]e¨”ªªiŒÊVؘôŒç^ˆ@(°Y»·Üóú0ØïO.¨×ÎîQmí±uøˆ¯¦mÿÝŠ£­k+µ Ì ÁÕ*» N©1V!½s"!¡VüÖ¼º¼A5;í{Í×Í–åòÉ$j‘+ãçrð³³òŠ%›DX/ÿ6ìÕP tÿìÉÔe–³s˜‚´ìX‘¯áÓ‚Ç,;½=ø9Ù%á¨À1ßa…Œ”U“ áWÏÐë@«™ÇãO[Ÿ=[l«qëðÚD¼ÿ&öTïä Þ¯ºíÓ‘>Ùnû§kdJR¼±ŒªÐ=ŠJéÝ«¶ðÊ‚m×PÌYQ¬w»„T¹Fmþ„ÙuèQ…€Ïè<,cn-éÿk£²½8´ìVÀ2‘x°í¹µN?ÙÇx^öÇû¿-«SüañØ‹«³t±ÕJ!f±bp_æúÆ‘]’¦°1Š&66b¹&–îò¬aŠœdàN¤ñ#)œa>Jƒµù¨+ÛnšÝT–8£ËàÊãÃ…šÿ)ãƒÐV-¦k?ŠR‹6B¢5r²“ɸ‰C³ƒ‘]¢oka$‘ñ hìßQ÷ÞÜBú­Vµê×íÓ·%–<„K&3!´ ³vÙìöZoš•;ŸÅêÝß"h }¹œÄ[¥†çÚGÁ Ç3vªé\z@ãÚ¦À–Ÿéÿåòu íQ}%•Žä0ªeéZ½Úun|  `þ¿À ³¼E¦½MÞôïé4ù¹’Ë8-÷;÷nTDtñN»Z{‹@OÉÁ ¥  ²»¿ªL¯]h9 ±x€–Ï TerÕ9d`qVÎÕÁ»Â;Ãç¯D1ª÷½Z¶[j$^e8q´-£f¼ºx<Øeù]YcHÎyörA‡ xD^üg—U½Dv5ÒÕã6¹ÃŠ üñA]ømvÃD ¢)›0N¦ˆ^¿d®uDÉ·9*@¨¶ä1lø†/ çu_7d4((©r”Öß5æ¬-M1}Äim*(Ó€U>«³™Ñ×|Ÿm'1¼”˜â*±“¸@#![]Ñ:Fš@µ0©Ó#v\0 ûr¤… (Zx(倖é1G§Nžé§$ Ðïl‡Ü<©o‚‰‚ëÑAöðßÎäþÑERÊ—ó“éŽíeECè@ªZQôQ×vÔSäMR/në9ØÖ­¯@:?aBkO‰RúZvi×5€p[†å=ÖUJWD_1‘Qb•9ºé-é3ú±{fØCwCÀB z€6¶WMveÿÐ~«ÃæÛA0ö®©t¢¼K•­ˆàà`£´þ/ö½s`ÅÚà+N¢í]ՉѶ„ë‚>ú-8 æ1êÕþ¬†˜ÿ/Ìf56µ>ä$œ$žŠîQ‹Öj؉¤·oî˜mmRÕ©§íN›™¤àÅŸ ˆ´{oŸ·0æJ —ñÃÙã:£Ôn=Q2’:ö¤ W&[í˜QÏò«+ Nl®Ä ðË‘Ž!myó’YË–È:½ˆ¡`ÒPa±„Ž©äŠ²m…°«ØSüÌ;”#ëèâ3\­7zý$¡&¥•ÈÐ\#c$UÑÿô÷ç+4¡âúl½ï`¦ËòR…ðH}Eý™cïuê°u,­¤ûôõ>(!'†CpwÔ@¬[#•3gdÛY}z¤ ‰c½B0~ڕDZv…ÓÙ*Ä/¬éÒ &nß¹)—+‚b ˜\†ª‰ÿ ˜óh"\Heï¦ô}O‰]f²q€·,{±L©¡Ö"«V"¬ `?% ¬wßÈüy¡ö97õ{oýˉwà:$U„ îIâC´‚ͦ§š&þ'çšŪÛÜš^§žÔEÙÙ±¬{&$„7¡oƒÜ9Ó‰íªã`¶~£Ò—ÒÃqíÃ5-MxDn÷65ƒ™ÝOU.Ư1ØÓœ/§øT“8 `ÿ^о~5ž%]ôÚŽHÜɯaÏ¡âT«°ø’&ú4õ2ìµlY1F?$7?ùv眛Wy’a½Î{xjr…‹ÝP‘<ŸË”í§µí²ùöÝÝÄÌrÏ\æ ù¥µZ5V[Ýš“ÍŒ÷R»Ü“8‘ ò¿¡Ö~Ûöóð«àº ø|MY‹Ë¡â!é;ò¬0¯ÿ=­W«y?¬@àvN’¹ªØÀŸè¥Ç5=”¦Ÿ±‡mdñ=›Ñõ÷ç* z2?¯èTèâ)Xmάê£U³/eÏÉ:f'Ùaääas µEaܘ¯=3œcÊêåTÝc/oM *éÙ©ÁÑÈŠ: ³X/w‰)‰.øà.4ꑳ’²:pel¡uU´õ÷‰RChn2$½3„?ûpž×¼ËÕL^á˜z&pp#VÔ3¯èJê¹¶è¦â8êuûR“›¢_²ƒ¤%ñòà:_]Û‹x ìèÃÒÆ±öv²Bù v~6æMÌÞiE@³N™ÅQ¼Æ¼JŽê³Û ¶ˆ©¬ÊF3y6á˜=dmEð8pSÎèäi’È ¥jáÿÆE¼r¦€ÎúÎNÃ{å-~ŽdÚìÕ!TV’Q>ww^n¸wžÙÒ•_.âà‰e¥‹—½;q^ÅY\w;þ5 R&¹!)¤ö}tÄ—½ÈÐÁJ,©Z“¹WHârÛiVÈ[ë3â¦jº>ÞÜóÿ!x4Ä„þI•†£0¼ ìÉQgÚI|p0ò\¥÷Û;Ùû\F«1ÄR½¯7½ZA‘Ú$ ÿÆ·…¿ÛÀXœL7P‡7ñ•nÒZ^ȸ· Ëª<Èî–}=ö­ÎW9Ì1 ©Ë“Ϩè§FœÑH€ü¢Ë unDr{–ZÀ!\³ðã/<å‚âœYË‚h‚õa1¦6Ñ•Y_Öx®ß=L'OÔ}"±Ý€ÖUù´8¬j5&BEòtÊf¥\2–„K_ÀÓ’ñE8°ÅÉ #õ*¬•‘k(Ë㶦0yj܆êVòXȃAëõ\í¯+ÿº•S._YÉ’~ À$h´4™Éæ'°Ѓ@¿­g6¿>&™Ø›¸Ñd=ƒ^ךÁ_wJ±Èñr„Lk5ú¡az ÅèZ$c’Ƹ ¼Én˜8Áÿy%=q?¶{µ A|Q?H•O©!P5}97².¶í_u•¼škÏŠ´Ç¦’”–_åDƒQÜ‹œSÊG:ó« ûÞÁKèR%¯¥Ÿ|.%¨’ÍÓ*Ó@WZ5O# ’èÍ^`ûÓ;{p)§ýþ.|or;®óÊ™pðûÃW<ë ™ûܾrù2@Íz²›§÷( ° M\§ŠÞB“VE³8R…~T~ô~'CgDýlbDVW¿ïé2ÆÁ•3ߵʣó;ú¶N¡ h*w iþI¨.‘¼éy¿uQ9ËíaNr tˆ I|¼Jtú䀷”5šX_#>³Âšsê(T¹‡NÙÙ¿˜ÙLu³ö±%7€1šG ¢kû(™Ì¥Ð,rŒlÅ;¿ëTLƒ;u²¾æóµ·8x„Ž\¬GŒ!î·gê¾åœû· dU9½– 7P;d¼ÒÂÏÁhÏX{—¿‡ES+<ïUy»£Z›b­ŸÝx¶¦´ž½‰Bc)†O¸ºy–>nþt“ÌèµèÇ­üX~ûP¦ùe ‰ò1tM®Ò—ÃÇýŽÎ¸7Ž„uz«Kö¯ƒXx~ÿGæBG÷Ø2}<Á ¾8Âò¼¼‹h p£R¢²Ì ­øW´µ­'dŸXQiX…†þ‚\%5 “ÖíkI\c[ ]Ë% à$ô‘pd/P"4ï\ù4¢¥Z¸‘ƒZå¬îmèy„=/`ñ WÈž‹ø[xïâ{ ÿWceÕ™™=mËù.]ÓZß  ª….o2¡,»·ˆ*‘:âxWL&&¶s:&¾°Èšñmçä¤^†ÉUzƒe(9:Z>³çC—k“P“+Üx¡ˆÙj‰tìZЙìB]z9Rõ>×+$épð•4÷ÞnÓ]QÕ_èŠí‡ðˆ±ÝÔƒòÓfqœ^Qò³ndÕ'ßu“t‹ÙÍS{W/éÒò è‰2R®.8S¨B>D×ïÝkN„¶zW®aãt³¸Mú ˜•û‘8ä èå(,&oÀ@vÁ”¢HvµW™AS²4 bK®3ä˜mð2WEv10Ëöcx¡‚Ì—b°í ¾îM&‹þº×/d¨„ „[éŽð×î¸(¯â4ΔSÕ«w’Ô‡öÄGÂn ¼qëÍAWn ž–TUåÌúw\uü¥š]P/ÀBW·Ÿ€ Ñ=˜ããâ„§Ìd34Ýßv%\ÿ,ú/Cƒøo[ ¡ëŽfœ@ê«Ýg‡ÿÝ®,§¸z±Æ®æí€râ°Á7<¡ì”#æŒCmly“»Kå³GàaæL•&š>?p“¸&(#“ø}•ˆï)§öœiÿÐÂe }ŒæÔAe³Atsö©Iý5—¶¦b( ‰‘¦KÓ犫ok€¤Íò€TkÁÔx°×?½Ìôó: c׋ ¼?¢=þâÒÂSx]z3Áÿ6‚PR…ê<Æf NbÐ;_6ñߌWPtœîzËÞò%¼3^·/EÌ«¿•yýïõßV›< †¨$_ÛlÛukb0ά¥rÈ¿#J7ŒÚìôí<ä(|†ûd¹Xñ÷)>Ñ<3;Œé£õ>lcx4¶+ºT¤´Æy{­á·\Åšè¬hmUòçÉ…¹@HëÐ¥÷™¢ÈwXÓuÀ?“….C™Æ‹žè•KÝ.½ç¦ß)Ƣ˅𠆬u”Ã~$ Æuc_:dp½Pìð†Â@%C¹|>–Aa¾¯xî/úDÄò,д"ÉcªcNá糃k¥9˜òÐö‚x‚ÄÆn¼”ÓÑÍü…kÕk;kÂ7Ó ÜWta°íß&úQ­¨ó5S‡I‡ïJ? ÑMõæÙj^éãyc>º}Ñ ·Z)2Ã@©·–áŵL»Óί½ÿÔS›/ìç˜OÍIhá×ôé©\¢ŸÞö°šS*ŽoÖÌY¸Å…€Z\ƒaqméµJT'š„®˜hÇ4â»è.r®.·l-”N‡}β݂ˆªq­X‚Å¡ªîïªÜµv/^Ë[BÑv/gA$T9ïNǹ­Ž<2ñ 5TôË×d¦a–1ÞÛr(r¬ºâ›2Ĺ«¯Éˆl$î—Q^ŒÊĪõ3,¯Øð'LjªÛÀ>ÏÆ¦íï;éÔY·ë› ¬ÍÛÁy·ò åZië:@Ó•:Œ/üÚªpÓ^›`Ýý&}M“Õã–f麊ƒê‚ñÒ6Ù‡R î[î¿4EóJÔLËeJi ¼‘XnƒŠÞ‹Tqd[Yðþ$~Ü/ˆ °ÇŸ¥¹Õƒ¯ÆíÄà‘U‡ñÓ@"übKηœ¨1Ú˜—ãO-¦ÁÏWé~i=î®n¶YËxWÆ´N†à®ZvPaÐ30Ô·/ƒ’­:)¾Žë‡}j±æ2¸Èþ¨ëãùK³LeÓQOÆž:pîF0gQ[@e¤VÛí"Žj1þŸ2¶Y!lýBöžHäÀ…¨‡W:tL¹”Ä:™IBxWêl¶ 8Êa©34°}wUNX0ãi ˜Ü»­¦y JåTµ}ÈÞû/O”ØÕ°jÕÐý~}±€0Üë[ú¿ òUÜÄÉyN|g›ÜsÿüktÝê åJg>ûFàfw1ZФ,ëCسÿëz„|çLHjf˜“•-µPš†« +–ÂuÑp‡Û·KgB` Óth[F¼g¾®ÇY¾F±îàðÒJIXÛ[Ds_~Óí^‹# )± cö@rñ‚xݽÃõy/á«íHÞ¿Ð=3’^Áq`»Ù²œÙaÌ`K hÓV/Á©×•¡!RéƒD²µäÓ¢0™|A½»Œ˜´íMõ@K¶þĹUC>0¤áûѾ¼Ë®õÛ7 íªHWîܰ;ú¬V—ðžQÊg^{¥Ñ{¦'Åø$5ÞslЂUõÐü Y‡éœ`Ãr‘W Êûœ#Î~¸tÙ¢o&MíF+‡B|wçÜ“)ÉÚlÎZÄN ǨÄHö*DØ’ÒÈgt\aU=;Áó_þÁ7·=É3å<¢ÛÙ ’7Ùi ò*…¿n…ƒë¼5“‡7„›¾u~êÕ—šø@ cö“³ã)dp)dæÿ¨Ë:"5°Ÿ°Öp—ر§~q¯ <³ž1‘È.“j,Û’íI™ôs! \Ó.¸ð©ùÖ iýÔð%n] ƒ{,s·÷Vâ,Dô•­zOÄÆå?›\\Qµ¡Œ7„ê³(Ø< bm߀™JÕw }K.?RQOfÑÛ¯’¿¥ê³õ Uà¨%0RúŠF‚°„Õd„Ã=ADËÞ"13DŠœNښ溛Î*èH·¨Ø¶xøÉ»ÚoÔ 4« šá¨O]Y¬H(²c½ ueA‰gzJU}@{ ¢†œÆD7‰M»îÖ{ [íALˆ”Ê·ö·f½G˜“BÔ‹¿ëLó®ÐÂè¶åÌEKš‡1}yÇ>©~|uhYqøj‚Κ#$‰öìÜ\!(=£hÑ‘xpãff]ªˆÃ°;&޾Q=dÜE-|ý—<Š0?8ÚXÈxß%òÛ)+®,k¿IaŠ˜MÙtú ø/z¶>Vñ<>9…¦aH Ïô¸«2Ý&¤6.=¶;a/9Oi·Öƒ¹Ñ°@gú]Ik4±µA!4x^lý¥h¶4ÒóCÉ"»ú¹pŸšoˆ.zpØlýá‡ñB7Kŧ.ïî>iÝÒxøúÏÊlÈdFWV•Ûž&kLY†nÕ™®ðsw!¢²zKN©Š<GÉcù”̧¶3~þÉNÅU`“ Èe1áúÜJ§£ÊyÍõCßÜã¯?D^1zJ*ØÉ##;¸…ïH€c:£]r Ä«Bg7ÅwÅ:Ç—’J UÖç$~ö¹ð#*ûÕ _JÖ¸Ûú>P F°is‰Ã"ßU«r^MÄ\egª .¼Y6ôwsŠlElIQÁõ~TR‰js&‹TM’¥°# Ñ©¹în»bȱk!š[ß_48:êï¨|ÊŽÞ­–Û¡€cŽ·ä áÌx³‘CZˆ }\-€™yBŽÚÐÀÁnr©ÁÛ^j(ÃëØï›ZÎŽç¿Àã5ªãÊaÁ¥Íœê›2ö'íFæÄób^/#Éd=O«¤“–ŽrvSíeë5Ÿ÷]ç„ðKäêåêêïçЇÃPk³ä>õ#½ä»ŠïI‡‘ä`Ï=Œ×öâjÕgÔ.j2!rB¥±kÉ5ÛuL8 {檒²óÖŽmÙM…W 8Xu‡ì±)õÀTÜx+U°-( ¼rÃÎÙdjÀlÚG3ÃólÌ*Iþ2>Vñaˆ‘,´Š‰<ÔÇtxš+ª Ûu®üú0„cõÅåÝT‰m§m©¾³õýEÒzÅÝÁmXª»ªþ—WDèð‚ À+ò¤753vÒë=§Õ]Ý ­`ÐÎö¡[øÉùZþ jE_7l¬Ëo݉·´Šó®$÷¿`ªwÙu£fgDM»/@X?ß“[:#Ýžëø3ƒ½]‚­¶õä+gÞ§J0ë};½ª7ÿ»ù_ÛYáë"~{¸ò2ó!~"iŠ*MD‹µ:çOä. 7p0AN(—Ñ kÅôv±~cµ®oQpåJŠÞ4§ž*æÀð§Â<±„XQ”ÒmM&ÕŸÒ\ݵu_C7yü·Áag´h £{¡ÇÉöâzR†Æ&µ]kg.«üäŸ['lX°ÏÒM‹‚§ Xò+üAènMˆj'¡[8x¡&†vªÁ=%Ð^wÀ‰Y2×áÈ>7q>?[ÝHŠåáû£#6 Rf² å•ò”l=êÔ/YçaQWí ÿC·yò–Çør¶›«½̺@1òaÒié*· Mø—tï˜g.f{½q¸ åÄU±²X¹“×SÈš E-Cä O~ë•ÀµÌº‡ c÷M%ðéT#¸Á8>ÜO7ó„Dvbͦg¥ûþLáp p³7úÀ}_úŽ)rbo…ÙÍâi:‘)¡¸šBiøSs¼ÆÑêú+Êö{JÆR[ôo h°3ˆcÆŸÐ~ºÐOÉípÅ›”Â)ç GÕ}O[{—Òðj0¶¬F’j{Ôc& ˆîA;(an˜¨éðIiäùä#O¶ l«[†ˆsàu°§æ+èúN_ÃUÞï;5o#[ ò!¼AÕñIJ†ôE>ŠÁ8*„@io'‚KRÎŒ»ctè2…(âsí©sz^½¼áÜŽ"ýEo!Ñå¥Úp“sù³c85Ãñ¦„³D&˜Ñ>Y!q‘—Sü6s‹õÿ¹Û¹­w'ÌA𕦒¾öÖ%È€X®Xð3¨ûS]TÃW¯ß‘ºiÅùãÂ>FãÕ27ë+Á"WnDGv²*³mº4´‹åËÂNÅV)í ÀxÝ„#™7›*ÆÀm¶÷÷¬r7×n:ô«„œ÷DBo ÚŸ²ñõ„<ôhAÅýu#Â¥bת¢WŠÝÛœ×[ò—ª€tü,“¾d×Gzˆ-V ÁE´r šuNÐ¥í,›§¥¯ËŽöl‘)YäÕÁÜ­>ðí+°€PÑŠmÏëÈ5ÄË^Å!¹4':l™×ƒHº` Q˜urÒ;w[7971朆,¨+ö2œÌ¢ £¼V_Þ.Bȵb Ì@äþÚ9Ú§ä‹ @1Ù^.Šbw¿æiŒûj‡$ë4ô]ÇiÄPÕk°€£ÂJÁ“‰î&†$ñCFy’š# † +dÙÂO.Ê{ ›¬Æ§_>mô[áóO8’è¤&LÊwU}Ü ƒ’8ž²ªøFªç`‘¥L•]JÂ÷µh3§WªÑaã°F¶^°¼GåAZÌ ãÕæ¬È…»¶–\â D–AM¯™âÏÑ®šaÆŽÿ—û\g§@šléL¡º}ÈÕ q‰YLûàVK&÷K²ã•”µßÛ³°¼·ð…Ë‘ ¡ô'*ÛQ#)5œœ0ŠÐ½‘“­©ß< k¯÷:s¢(«‰a‘¸«à;/¥1î-íL ïDÄYd>¾çÓYtçºîK»âƒá N$›4ÿÊS ÕÝ7XŠ;s¡²ÈîŽx¹µsëÎXqš4Ö°Ê’O€/·ÊŒÚg¿;]€fK¦¼´ýÔÉÝQí‚H¸ý™1P!Ò.?=hVÐiz[ïLšOñÉ·UÝ´¯`¼blùg͉&Yü¯ÊóC‰"o~%ú½×ÚßðWK/&e§RC 5øl´w×H—ùªz»_N%aw3ljÙ!åèÕVÆ2úÅEÚ+­rîÿy•t›F.vr³ùRÂ45èê%7u›MÀ)ˆjsCqš,µ‡’ø¼^K|ÒíßÈ3`æhÜùù¡SÇ7(¦VG®PúÚJ‘³üÔÖzáŒT‹\ ÿë#lqFdŠ"­¨¨ü°Ãð¤zQ8èQRæ-`?å—0%Ký¤·r›ÛÏŠ¨~d?`Òm mz™¦pÚÀ-Ôöü –È3Ÿ¨èøµ¯U_·ƒ#qä4ª?ª‡Š^+IÄvØ' »2Ï’¤l£IZIZ žön¨¦äØ9Ö•5CUnî ð* à‹ /?«€„‹802zßШN®h±I.m¥ 9 $áõ¿Yå lÔjçÿEd*[KBŸO;ºg ‚¯Aûx™øñö{Éàó—Ä!õÖãíOË"³‚½Žµ@ÅwÒg_ô6ÜÛ³õWX=âÂ$æô™ÖO').Á“./¤Ì"r›ÀЍ6B23Ÿ<EŠvós¯^¤è·1Ôʇ]xYJ¹Õüvf:Ñ}ôf'FZÂKŒ,0>굘’ß(äi‚ÿj¹d2ëíjû¢²[ rãêË£vÖjÒQ¸&< ÎL1i Û1…™Þ馠è`h»R‡xµÚÙ€öédT€ï!á„4ؘ zA®¬VáñUÀ¦›ÚèH]÷½³P\Ã:o¥…[_£!¤]©„@F‰ôÛÊêiiýy¢$ôcÛkßÇÑÏèS6¯'.ŽÏH' ;/2¨VTؾûÐmjæß~Ìœ(¨£ c û¸#¬âG˜ÿ“S‰­$\KeËž¯06 ¶ˆíÿ!ÀÒj¾ …4›Ó\°1ey<á\TH{øŸ®×kšGÎÑÿœÝPjƒm´ïîën炈)š…˜åmüv®V))ëWsö&œ."ûAƒe€ºŒßqC’´.¡‰ƒ’:É*7ÀbJ—‡8ô Z4q8+Dsx½>3€…ã×Im|=Ã>ÉyÚ³ V&~¢9T¬ÈÅåhþtñ‚ÏÒC¾]EÔ³(Ù{põD³•ìé±RA1µ`Üì ü1ëâòMÉÙNþ`Óù$´§†áŠw$}Å;ÙVžsô¤·%̨ۢNh`½‘ç˜lg³ýàßFÖ¿ˆÛ)ÖÉЂ%UÓ>By,6 "¨˜êJ´òwl5¢þºöüeØyÀ@ÿO˜< ô~ÒûtGÛ, ÎjŒa<*%r'×ëevh]¿‡þf•¡| Ò¹éÅ¿_bàÈ^Bi|%y9@ m¾~¸³ÊØ´É`;UBGàu(_¼ùOdþgÎöf) MÔžåá”8Íã\Û¶Ú>þ¦ýê@«d•˜0Ìyª6æ3æç-ã0A{=÷¾!T‘"›ûîû¤ùMh˜KÑñbüæ_ÁºäÚlµ0‚ú‚¨“ÌQ'Ô~æÖ{õKý6 ãÂØ |Ï;>3ÄkÊ𡬢o ’òð&5ÛI'I³%²Äš;èÖ&×øè÷D($Ï=ú#ƒqÏ@%\#^ô„=Ùç’ùœÜÒtºRî}<ƒÈm…‰[jè[í¥&±+»´!‰u±À#lLü^º—vtñª MXlOØŽl7¡pI‡ý~ñP1òÄç+%=a'žæÔ¾¦¬8+ÀYñþ“Ä0 Z>­‡d•…·YŸ„î`\RKþõs³µ¦-ywO×Lu·ýŒÅ¿|0Rl­$ñUmHIq·÷ŸH}?¼î¶‹$l†ÁÜUs™¡N.zƒ˜Y,URÈIs»>,=¼Ò¨r 0u ð©Žxý#³$  E}¤ïZ~‹òj"KÄ‚-þ©ÖÉ*¨_ã”@ú¿òtQƒ£LàU¿k¢"ÔúS¥ƒ:}¦â=$‡To“•m-Wîý|íHˆLË*Lx†qäN§-˜ãèHÿLUT•^\!§¡µÐüX™YDÔ ü%0{ŠÇq¹ÄìXçªú}ENƒˆò~íCPÙÜ@ÃLÐQ¬±²o¾ˆT}†ýëê–ɰ1õ°œ%—ßRàD>TL¶Ã7Ûd=nCºÕg³ß_m>ëºlT½#þ€µ)¦­Àöšd²©$»jJ>|ÁûB*"ÊýÀZóX_œ ö¤Ešª"î·&£Â{vìG¯eÆ€\³a\¢lœŸ=$ Ød‹©±±)':ï[Áù×'lÇVײElñ'ͧËmsŽN5¹´¦¾Ò •'C&¾¾Áÿ)Ź[S¾º¦©—\ü¯šIw‚]ûm½}bsùÑ,Cw®ÕâaÕðc<'FDD¸þüJËdÊ×øœ ßK»¼P§ײbòìóãØ4äñ>´PíXcôÊPFÕ)/ªKWÔw¯ê¶â²§kS*6èÁós cý~GŸýO›ÝÝ4ÜÃE©}¸¹Y#ÏÞéâ\”bÌþ$›\©Êà1ŒkÔéoÍùôžÀÉépþ f…Š¿z#-ÿ¾ú´#|îý?âì:½L ¼u?ÿÐ5•]]ÖIh£Æk³&²®T‹¹MÇŠˆúaÜ*ɲw {G€{¸ïÜ–<}W?|9”×H>:%5×bQƒ)šG÷°ÕšŒ( ØNe˜ç¹Æ'¹cûôáq}¥–Wûé&‚²ýSç”rǘ¯K¼Ó¹ åÂ%Gw¡š-eÙºzë^2¼³.[å È”ÍËÐ=cŠú W«¼{ÒÁÉIÁøU‚í·ÌÈßlGf«ÛnÈ $Á…ËòÞ¯uÕ TžJ­Ñw \gqaªÈ´Ý0Õ;¾ß_]x  ›BWs¯•Æ¿mFÊÈ@–ò“é,_{÷Ýï1fBksrtT½cïjÈ¢Œ%aý´‰ž]L·„ضÖÍÊê§òìyÚš¨ìbŽWŽ£h“锸\tòJ,´@q†~§™ïiìX­¹7ÙÒþ¢¾ìÃUf;qjŃ’«©7BË/ãàDâý‘­R9‰½y×2þcVÂ×¥÷õÒ&Ð ¨¥!·™]ž ÇÝéŒåR¿÷@j3AFs#($ǨµÖ‡¨°U½kEGl|jÈÝYÅÖ‘·~õ GBÊI(@PJ:Á‰ê žáÍÁõm—ÈÀ:¡f¶ëžhÿ¬bbcÚlÍ6*+Ö’gCd˜'zËE ‡m–1VgÄÊÿî“j#î‹© …á6ƒ?ííéùs½œü8dÔŽgÕ%Îð*I¤N]'ˆ˜Ú1¢Q@6²kƒ1Õ1 ñ´ÿµÚ…Ã+a›e%Z»lfДí:måxh'3zãvµ+à”¡9h؈‘C¼W€>0©cGt¡¸Œ9ÓS;Õ£AÜð> $ÃüèËm-!"¤‚ s½ºN=-·…ŸdÐhÚ8êÌSÃ;&%û¯íÖ¿‰ä e-¦i!ðÊ Õ@”ìKäÑ‘æˆ xžç—IÅü‡T`ôEÇ¢éàêHöÞ¯2¹øú8¤NAøV–ÝîÈй7+£¨ºE`öIáGáó]-jß7ZpU¿ñ JfÔ•ºÛ˜”ÕDögQ Sé{ïAÔLJJà/»¥-õáJxÂ×ÚaY„“¦~йÛ@øeKf:6È|Fû­ÙÇQ’¥îâ|ŠOf…Mx€NCNÈŠx‹ds²Ž œ9’8Läײ‡DY ‡7˜ü @?ô×ðÝÛù–ð2êénÛŽ ªØð;JÊÖÛ‘VÁ-Ú©*çñ?™^¿]²£µz äÒ5°½*B~{7ç–¶ñHgžT2ÌcêÂú¡¨Ò‡UX–0 €âå5HŽ÷˜ñ¬8,ÈÅ4VDñÅ˃yyj™u%°pn‰õ´Xý*‡U—¹Á‰Íå:¡ÖоõÚ«1]û“Êß4eÂ8ßnùo÷Éö8ªlÀZ“=¡ >›­ˆÎ$ö¶ä@lÓ6$cGšBôýC;ò`§1¤’MÕï#ÊæáyYJ{MÏ_[1,è{ø¼Ò^*=«å¿s“{“×׫”.|ÇÖõ¹×à¹-æc5O ‰$³ÄœP9é#›ê: ï1 â–’F¨xû%Y¯­Bߥq(5j;¸`' ÖÚ þ”TŸÛ%c+~Ù[%?Ò×’ªÀ,`ÑâYe0T…ËTOÊ¡–±éÓNE2»ñ5õ’l["ŽUǺ1‰%ABFò·Å>”ŠÓÒu¹f-:cóøŽè¯(k0nšMÔ&jòe€•ßùÅtA•D#Óy“nNïE|³vnMÅWû¿æGa{kÁ³ëØ¥´ï=6|ÃÈónB:Ž‹-ÏB¬š™ÌëÖSú3ðÃ_f6r*à~¤\™ÜÊWDÕ®×èÿ –ÈN#ªô‹ï±ªKŠH6]ÿhÞ€±©,À_€ð51]ê½MËíc¶ßm³AF®S]î³rŠYÇñ[Ól 'æ™ÃÞ| Hm¡³Q„bžG 2ˆ-µ®2ÃeüSgjÒeH«Õsõ½3ÿ„«[ôkuè}Jr¡.ª›ÑàïCYð,bdK™(#¾'ñô\˜ÈèøŽ~.Ü\œFÞÅ×ÎÅE¸Qªz=e1º"XPKt èK&ø3ð]°²ší'“X&õló¥òq“¬ðÀW7ÛrªU~Æö(1©¤9”rÇ’㹬êø)-Ú0qJ…DÆbˆp,:4¼í Úsâ ›íXãé=R¦q¥ó䨧àøGs6À¨ŒùOÜj˜¡ÕlhHOúI,ƒë„* íhÏ»ó@L`ž®!îVÊ'§þ…¼™µÃÑ5SÔÒ‡ñG—p›ž8_#0ÉÛ!Õι+Hre– Ôì—šYQ¼æø’¯ÊxÚ;÷÷x¦í¶¢©xy¿2;FùéÓÂX'v£,mH¼Ñµ\êÑÙi"éžÝ‚xÝe±V“¿2\æüž{ÿOšs“Ù¥nçØ—wy4!‹Ó½QvUvé¡îÕQä†Ü¼ $¬µr ¾,ù,!Úþ#Îoç=ªo 9ðKÓ±¡ê"iÖ_$¤ÌÂjW]‘uQ;$ëäÃ\ïýìóf#lcì8ñ|–©ÉsÂ\Üè7”µ}xnÛÂRm=VødØEÌ å~÷:Å?£û“IÔ'n}'“ôÉ›6æFïÍu„²…ÛÈý =6º;´á#ã‹¢£ƒ ê³èmÜlutˆ°>O 2U^¥&‹„<(ƒ3 ­)*h¼Üp¯åbŠ 9ð(blX¯éQÏÉ7ªâ†ÝCew¨õÜ¿ìEÊR;w"(N©îàî;œRÄc(çÎGdB–CÀGøÒEî;]*ÑJȧw`n+?àê8å/ß™‡»˜ëEJúàÛ‚o߬À×LÈsM§NKu$§èAÌLÄK/¼n³é¿#ômÆÖËž#3 "•) ØÞFÙõƒF$‚hÈ×ü€†ÅaÃ'!ÊÛò6…è³Ðßh0µBåO±YÑè·_±ø´•„RÝý æÝ´ª51üü4B8bf²übˆ°ñQd Ý#mÎ -³,î°\x}ÕŽÊŸ)ÿayÑ´-bœåª‡XÜL ñWÉ> se¤¡è1³ÞO8Þ›\&͇4Jì}ð€~?KõÆáŒ(€^k  ñ9½?Éu[~ß,4n¼ÍøŽ×ÒTLÃ\Ã[¢ z %®•íl¦±[•LÑüV*ìÈUºü÷º{‚WCH@T e®}†Äâ±ç, ©çjÉCbZŒ6p<õYŒ9_:Ûzs ™¨û)ÅJÜÿ÷dqÆó+pÝííû\Á0áÖÒ'uCÓ/›ÀýÈ¥­åÓg ÔOpY\š†*Õ=oV©æÒ2wð/[‹e·7c†x)’ˆÉlCNÂá¥ÄRøñ5î·ØŽö¼b÷ˆFˆ¹äñ÷ýŽÓ?[ i–"d*Püý „ý ²ò}Z¶Öãõg}ë-3Êö˜œ·(ó=‘#â)ˆÂu"©囤\^»%Ó6«Þ'Oˆ™öyšð@¿6hý@Ë€=Ò»¤³t‘€.M½óÑ3A¿Ìƒ/Zj›öixµ¶JÓ‚¤º‰éÙ®DöÑ¥Yz;r?ðPk&%A¦—ºÞmˆémÔµçöÑùëZ5µ-Ø.Ópÿ=§Ä¹†tj¬ ¬[ÈÈ€ž·Šç£¶ÎaûåÅ#NàÑß«õ_· ç<ª¯V’D`€6C¢:ãi†pá\D>fx BJ4èäà\ù¼\2PùYÌgÊt‹Û; ¥0†öì~îØ QÛ$¬ Ý­Há–MÆMžN@©¨²úöû$¾‹[Z?þ|è5ʇwÿ’F$‰A<æDî8DMÝÌ!Î>—bªZKJ™ÓÓS¬Uò„ZSUÑ:U|u ùÆ[“ÅÓJ?\!wv5C¾_dÍ_ºzÁ/Ñ¡5 Ï÷ì{iËcõ;b‰yv¹ž;"61ti¨§¯zòQ…¯›˜ÖÄ ï° |”F…þ…¬º‘IÕœ«EVØ¡`j¦¬ò1ëÎ5M©™tÑ´*]j\ÕÕD@úB ¼#n¨-bg#ª@º*E S9´J©Dí¨ë¯P†twÈzm“î©¢=”]÷(ý&vÔ«Ór¯É A±ÐìÓzA’¡w ‹YMU-:1&ð™ØóA709•÷ÄŒœ†®5åž; FÐSUцÈ& ©½jÞµ/iqEMEAÔÂÓ ŽÏñ$Ïx‘`ƒKO®ÞP(žù÷¿Eÿû! …Ä$ìE¥PÚ¹¯Ûà=˜üÇåóÀÓ ‘Üc7’Ìà€kÖ‹Ó©fâ×V$QWÞ¡J+ìǯ7 ÿ𖼞é]¸6—a!’¯w–Ïï ÒA–¬Œž¬ËOq …¢´ZÃÇDm‘0·JO¡±ïnðÕ¯^Rõ §ÇOhª¬r’U€BÆrÉØï{H\—þÜ‚Ÿvã‹]e“„½[9r²PF%콡¦SòÇ$×Q.Â’<-Éý9¯¬IA…bMÑJp»{Ù‹/Fi&½ UÕIm˜Ì|˜íß¹z'[Çû{¤%ú&¥‡À3£‹„“$ÆQ©@89{& ®ù¥){ÿ¡+ƸUL¢**NÛhƒ¯‰ Qƃµ5ÚWÜß<;,¬ƒ¥8öqÏFñFÓ/÷eC‹–æé ¼·œVªô ƒ/ñ€z×DDª,UàSqÈyö FêöÚ\3xO‹8-gÉj=L¯Ü·¿©Uk0£8gÞ]ÆŠ )–™Óò)´¦ÀÚ×Ëà>p‡k¿xÄ._im™õ’©¿îÀÁóE>4³³¼!O¶W`3“úõƒÇµúi¸^b-Z²^ø‘ÐAµJp@³A†ÒC:ôÕm#ìeÔWé#j4@PþñCœ/R €¿K~)©ÃGÕs‹ŒÌ2 iR ìü†‘ß“wÙ7 È3‘¯9CüÀ/ çL¸¦UW‰‡áÛÒ$ø´§ô·³Ô£ÔNc“È_âÈ0¿Ô±CÜ»?I aÊÍ勯ÌëšLXgÓ=‹PbHï´“’ÏÝùŒÉÉLa‚…Z îûy#¬Ec‡·¬ÞR CЭÒv43‡½ÌêÜÔÆÈÕÍy>ž"e¦}CâS£¦MÆêS5TAìšÿ7AÞóÒ'£S¿÷î³C²½Úüj¨FÛA\Lƒ¾€Ú!@<Qû'¥ ?:Ž-ÏûËî†F‰:+,‘sbi‰«8ƒY,˜5"£$ûÆ%ˆßDÒѶV_ž€ŽX’Rð€"/þé-f¸AFQ×~ \5¢:§É÷©±Ê¸f…ôLVyýí$õ‡à´üÊÄrQ*SÞUÙ­9w?eT{Þ’éé–ܽYÖò yÏØ´:œ2âûÈÖ:6ÿº³Î+ª'CŽäUZáû²p(ïDíàǼ¿©Â›Y؉›4f8¾›);ÌQJ¼åæ«õu0)~u$Yº¥)F¼;Á½s„¯ÍØœ©/EªŽ«,©ÇDlhþ6´×»½Âxâjà‡ó(@À‰+eX·×Ú‰P Ï´¸ö}€/#c.€¾ÓÀù§LJv: 4Ö žÙ.tü¤8VéfžõFÀ^¦V` +¥"=‡`ŒÞ>òóëÄñK_&ÉÚ·M.)ø+•ŠP‰~àò åú*ªü Q“[¸êZD#'J´°ù’`&Ec±– i4ˆñŸ£ó<ú)¢Ê«§òÌh£”{§œþŒpúŒ{—®Ó ”-Æ8²U¦¶õ™¯mu¥M«.“hØnŠsµzÜÕªFšèaTIÙ¤$÷øÈ´'Ëtú¡ù¹†Ý»ñw›•®‰N#‘…$?Õ‚ñI'`bJ¢ç=¤ Hô‹WYœQ^û7Dó7² °›Ñt\µGµ(î]žá !Ìͽ:Nø¹ñYò®vbqºdáµC,<^±¤ÛMþR|qíá°×¡*™95ǹ…°6$-°ê“Z\1%x­ÀÛU©õ7Q8žBBRZ»„}‰-Ië.Ì®B~c²Î°íÜ:˜Þ’ >[7ðn,ÐhöÎO ’•±–§´È8TÕ°LO‘A”÷ æbËéåP1A”bC¸ÿ· ¯ÇðEÕ«yt =ý=P¨ÖI¢× œA e¾²Û¢ß#Ûµ•,Vói¾ S–¨Ô ¥ñ‡9Œê‹ÕfŸåâºá¬›ä?ÿJ;}´hpJ/uûù3shLœ›Áà˜öœúÌßK¿k“+ñ·óÊhqß_º÷C€$# &áV ùÀÛ6L¦’R¢öwɾ¦° î[0 ¨:JHМ µÚâœ"²wѽ0ñ<ÏrHz4¶y‰guž»ÍF9ÂOGúdïMdׇùz'4êy^†–(e™A2®ÍˆŠQ_ˆ]û‡Èü¤œwm[¡ÞB6úAÂoÙ¨-À½P†ùÌpoŠW±Î$`~MÄ4ÔóUžb¸·­…¦‚±vÁгŸû›9"þ§>GI (î,l޵½3+¬jÂ<ìH[ê0¶e§3-2…,Š<=÷»Û‹CCb.†â¦ëîЖ uþ´ƒ@¨SÓZˆ³@ý³yáîÇQf]ò±DK-0¿˜}­çbìñ+¯£À_S†ïü¬kª¯T;!ÊŠ¢N¯‹-h~O€ÒpüC9B|¨y©(ÚŠ5øõ¥ÝNÕ•ä-P€F±…Aq£W¢jd½ú"šü/Q „pM‰‘^a"-Ž PŽËЫhö1šù¯0^ø}˜ÑtƤ­$;á6–+`'»½¥µŸ,¬°ZD›Âúº·‘­¿¸üeÒø¢tb˜z>¥€@&V­dž¼¼V6ÛrVÒoR1O—nk¨l§;»iúa8Ãή& Ýd “ŒÈØS‚M‡Gýáš%’È®n‚îTÍ”È×¥µkUyÅ^þ8æAV…Jx!ÒâÎR˽±~Zûæÿò›|ƒg$'Gkµ¼±À.x†<‰€çš‘ê UäJЩïŠÕˆÖ&ÓHž ¸Ë»ž „w6‚a,yYæ}‡ªe5*h­²{ü%ýBëóᱚ¶êpD¡¼LY*Út1$›7ý þÏMgû"fëÔÿ<ÊÚÔÊ…äE0 6úƒ‘A–ð´´=ÏWo”RdLf&FÐ'Ëf½ŒìpöY©/>÷~!RÛ®ŒÿÿN÷û Ü¢ÎæÅwˆjê™*Xô¾¢¼jº#í/ÄBÖòì*ìÚT½áql„Fò@_"EŸ~¤PÿƒèšÐ ,r,ûßpKëAe÷avàFäúž¥èNéÀ25?úÝ­£"Fçgɉâ¼Z§šßÍñ‘YúŽæ·ðÙ~0«‡QbôŸR LööïzfX?‘PºÊKLú )•xž7"™Äã50˜êß NŒœ1 ä/°ïóð£ ì9¢[”-2ÜÐòy»ÚñWÞì,’¢%L\fï=wFN.m°àµ¡4+<}J³ñ¶^&rÚ}-§÷Ȩ>YêpØÑƒ?£·^¹Ç8½3õHž­çà9 ôûëöøàAõûóSdzücaÒFê®e£Ç­é%O<^u³‘î”}âêÿ€¼È³{8™¯ÉÁ»I¬‘ÖËü¨@?Œ,èêµ6ñdºHíE!aÕï7ÓPb–$ò]¶êÄ èƒ¹%w †Tä±âÞfš²óF0±r”#Õ±Wã:B@[Žˆ„‚»å¯£Ç ë avù…}íÛjÞMá*ÇNÞºŒÃßÚ`Ý#— ‹ÇOŸ‚Ð`2‹CããF©Ã­óVfGûÕˆmyPoz¾™Øß5ˆ·´U›N¿ÕÏŸyΠ#w_gû4*&gàˆwauɬJrp'JL„Ì…–¥®‚$ÜXJ±mî‘`C¯ Û§\=—á·¡Óå[¦_Ò¼ýmÂy)»ü·’ö o)nùØl›—dYñã´QiÊ!HΦ$öé*Nìv”4?¤íH–Ü>ë:©ý‚D |kóÏh³*M"À¨×ðe&|Î[T楯֜•ôoÈOm—œÐc3ï—ï]Oþ7öº|V§ö×la}NrÁbˆ^*ôžòƒovÂI ƒ>ÝcAåc¼¼rnddìÉ ä½ÝWúŠñJ=Ó8ÇwŽN9öN!@A(èHFhý¿˜Ôõi}Ôn6ç"ŠAÚM¥’Fª4«™ƒ†B÷¶‰ÞÇQX‚‡´º±çÞf6ëm­8àh ÊÅÉ~Wìu¬"®¸D±øz Wªìl2%ÃL',U¢“qð0XÜdu4m?l€HW7iý.bYT€iåhH_ó¸JK(ÐE¯ðØi?¿ N:'eôš¦œð‰Ø[Ët•36å«7 ˜¬âÛ /ïV7—9Ò[rûœù0:™slœô}¾…[ºågÉnŸ?¨ìU.;á{ýlIqU”«™kRkJÏŒCrÇ›fyê¦Ò#øq«Ûœ±IyÂ丶¦ )­8Õ\< ’Êy™ªÁRlý[$](0§üIý0ûè|X✘k%ðÆlF5òR´X˜ùâê)L†¡EÝý-Ç{Ê0žT½ü6#ç[à²É’¶ÍQóõx _-#1Ó }…¹m{ÛyÅÌiñI›¥9Yo’G¹éíò›Zßû|íÉÈ;C•µÝ¦ù¾Ùý§Ô=W¾£êÿìÈjŒ[áÄ8% ßÕ¦ qe镳±V/©Ø«Ì°ƒG­6jÉ”®ªá½óñõ6éø\Íî`UŒKÄÜ5GïF™¶v• õË?h¸üŽÊeñcáùÄ¿ˆ-™í{±ÚC=Ž2YôëMˆºé?ä÷0qU ZS—Ö”.”þŒZK‰íŸ¥JwµLð.ËþLµ¬Ø¢^Þ—Ìq“ù`³\óE§,½¢y†-ÈÌr3gÁ/}k¼fUë?cøA@ ¯ƒIàrÍ×É^À8d¾ 8èÙɹt®÷—íc‘ªŒa¬ Ü]-pêV«ç9;2¥Œ#!µ½ánßKD ½ ØW-GR'U¬àïU:êüvìã{¿±íz†I¥gѽìÄ4Fœ·¡ëÄ–í™ûæ©øÈ^áªù9ŧà †AêÒ.o<2Ê1i¥s({´¬µ_¹ì„ñ™\–è ZV!Nv‹RFà¸7oÐŽÃ ‹êX+ƒ"³ºX'ú—ýê¼!‚*V-¿ïsÊ·Cþ>òŸN» z‹Bk ªi0q K¨´œÔëß§‚®á¤Y £øæWaerþ¢$¥ùÄÆ¬r9ˆ¡ÎçÆƒœ’ ‚vôi÷®}ꈦ×&Ó0ÉÞP qVòð¦Ñ‚”ˆ–bÁc8jHâÆ«8gô6DséeâTÀÇø2äÐ@4ZÁ©HÞ†¸^Gàz…JÆ£…îàpÃA':ö"$®~ö|²­+ ¼·” U/܈À'TéD?óM?´=†GÝÔ¯ì¾û1S¬#ëQHêá×>dì<6%(0̬ œüwN@@ò›¨ûÁkÍ~oØõŠ‘²š5v¡„¤¾hЂoHìënÌqo§¦aô®ÞÇøŸ,x\UnZ%yö|ܨ æ­ó¬y”*r…—땢冼0ÿ§šJå{.XĈ½xI2bu‡2Llˆ=Au¨úÜIÈÓ”ñˆ½¿)àdÓ#e¹ç¶.¨ƒa‡¡d†7!€9IB;âø Ø «;œÝà¯øìÚ• µ¬²Å„¬|8I|ÌœNª ›KˆÀd(¦³ô#Yó¾4ïÀ÷&꜇\À%ÜM¸ý ±>âD“wO•,j÷ ¬3sM ,௰!ÙôY°Êû•ó!†ûX.ÛÓDŽÁ¯¼wˆþ;ÙéR5zöÆÁž¿Už "_m¦æ:íÜm¹ìYÍê7b“Gñúó›ˆÀä;9*Ö !¦>ð¢Brñ2©7"e¢•uÅ㌎ÁÎADé ‰^8¶ãä§;)Õ7„0 ®ààæ5X“ÉÓ Ä¼€«Õ’Y/WSO±Km*¿˜É1d˜¢‡-¨E3áý¾R…!*÷ðR|J`%5̨DE’ZúO™Hô(u÷'åÅ ‚XˆÙ¢˜¾Õ6 ÂtÿÇ©ŒÕ?×Ûç³àÕ]ŒºQ…Z´¼©k«YÙ{Ø®¯1<ÏRh¤rØ…6L žÃ¯1[åH¹îk­‘ˆŒ•å€X(²üJíÖœÕÍsk{ƒÅ¼i?·þžù9~6¨ëZÍÅ‹ÌëS¯ë¥”¸ú`ÎköjÜ2¡«â¹Ù¤]|kÞË‚>ètžµ´øˆÀ˜B1.&<;]+†¸\§&81?ÓYIië€ö`Rd©„dí2ŒYÃVÕ€Xs¡¼ß̣ё¦‡ÙOÿ¾ ÷½nPLÚÍó ~‰º;#}ƒ…L|ïù(T níP¸ìšŠý&P\@‹ƒº|ðâ·ïJQà‡ðé (Ḣ٩P« múy¶‹™Žm×Í£CtŒóuÒ}ìý6Ú…Ø|Ãê O,©:mÿ„§©—æltÙdô£ 1Q”–g·0ž †> ë•28@§Ý©&üÏöøâô"ô–èss¢™h (ñxð"…-XÊÝ2ŠÞë§Ô)AwÆ!¸rêoäuF9?²Y¤îâ© ² †ÃuèÈ¿¸€ÊŠ£ä©' ©Íf…Þnû„A¡Uë„!­?X[ØK SÒ½" ©ú)ça$˥ʧ“¼/7UþnåžÇ:~j‹òOæ³Ï l©°¦鈫Ø7|Bt¼y0ÐñÒR¿¬®²£.;5÷¯ÏÑ@òìb¾ñ±cAýÿפס£Õ§+ œÆú¢ õ‚šÐM¾¹m û) ð#á(U yD5¿pîϵÚê¨AÕqX˜šTR±üŸ)Ûò— 꽬€BÖƒ½¿f`LCÖ¡̨ËÀÆó#÷“þ¯þ 7?7‰RŠDÀв8qš¥Qlµåx‰Y…fü?kežŒc ©ÔÈï‡V—üÇÃ÷¶M!²­ÙàÈA—ÎF.r¯•]…ÚÕäç²q·5: ûë áÜxU+BŽ {Ò{ZDÀ^úô}ß`Z•/‘ygˬôWs¯'½#ZÆ;Nêá³d̤òb£jvÏŽtN9?ù½á¦ïE6®R`Š86ª¾_ÑK|º†- ¶øãš íñK¦$ҢΦó˜8¡åÆÜPæç0wÌKœ´ÝÔmÛ&zaMÓ¯¸îNÀ‹Á8Ç·D΃ŽåÆ»3س›‡Lªy£­±%²æ.Õê«ß§¬jXo6<1Ùš¼ õ ’9ñÑn#Ô7óV"ŸèrWý‘˜xøÕ9»Gs­ä×E %Ý m–ú€ Œ˜Z¯&N=óŒ÷ä·Â” ž%ˤþ›¢Bn®¨áM9ù±l“ŽEìLôê…¡s;X€úÃ…Á€ 0$ìÓ·MÍQ-K»,€­š™PÓDRõZ¨Zc.ífˆÂ/ï©ÕØÏ©ú5"mïh$È!ûâ‘[ K‡OÞØ«Tƒ Ëgb’€‚Œ…;C úbø(–ӊ ¤²þÙ!žÞ{üú!öà=%Ýbé3(€ü{âî\ÙŸŠ@#ÍÙ wÓ‹$†”»µÇlåJ´yEV¤Òëâ x™Pn’…%î!ŽkdŽ2Üg™»ÅÓ*hÆÊôØšzídÈoS×Ú­2˽Ʌك9ÃN>‚/}?2% ùẚ¯üQàýnóëù&´)ò¾[Ú¨ÙšyýÜUõ2pºóá¦3Ó»L3G¢Ñpw©úŒ îÜ ¼eç;žÛã/C³š~ÒôSÕR#ÂyªÞZöÜgF,ül¸s‚NÇ;qç/CD9°æw’NhUÜÒÔÎåâKz­‡$¡1,ÚÈܺã@kš£’.ÕØ+v¹µtç!œPŸ¿1:-þ4´C©–.Âê”ªŽ¢@Dg¹M’ºS÷1»aª¡=¦a'f{âh &ìŽ`BrGWS¸ÞxÈåã•3Ñßu•­¸p¬oJÅ„á^ ƒ›z\ ‡O}•_…%݆{½Ï°MØ,œæÏ#²^9ª±k“ëBºäx¿¿œ]HE=Uµ`G‚?SMùÊJ§»û¼ù¯(xã°FV@C—aSvrp¨‚âʦ#XCür‚¤Æº9‡ (Ó¥OÓ©±±Ä8­ÐËså E†.„‹!€ElÈöœ‚{PƒN‘]0ÐßEÐai’×ô¸6ôœ¸kWž ÓÐï«XI“9'‚q‰O9WÈcr‡4N`*ÙéúSÀ·áŠ–èHìRrôªºØÖdW µkÄ3Žóɺç÷‰êj!ý‡Ø©­zªNE¨¹ Ÿaöý‡3„Úiâ̸Ãàõˆè/žöÁæö…iÞÊRÒû35HÌ"®`]ªr½7‰kûÓ±ú M~åæ%ŒŠñqȯîà¨Cªét€óolÏ&öïÚ·¸„ Â/Gßkm? TéìLŸXèïOv\ãÙ5gê`DÜææª|fù‹ê_•䉻ÂmFa'O¸‰°oBï®”°õm‘´‡NæîÓOŽ,²\™üÅðH+.~È+ȉûÜj7Ñ#ËZŠ%T é(ºõ¿CND§ë7LÈt<ßÍê®``FœLB°p7„!Ú Ä¸Í,5šÌûÔœ…ÒAöØ3N H6š|ÎÏË4$^X!F_ÀÿûŸp”ÏUñâ žf~˜úŠY+&ëBÎýî?)ÚpÔ»lyl†($ ß¼Yã($ }Ïް람‚Å“Å]1Sr0ƒNðøì‘'¥Z{e3 fÔÂbï¦&y+ê¹Ô¿h>+4”º{u^ø/¼:Øpƒ“Ë弊ɪàe‹=à’c›©[º^c^Z~±3½C»©iFTe»xæVª²è¸ˆ™Ï€³;ñäDöÃØÛ&‰Ô†‹Xú ÇkAÔ‰‡™ý¼ áþ¤eü÷ :ôÙ¨P´|ÎÅîãÛ;—TÛËÝí¸Î±¥Ñ¶i@{ò˜ÆøE®6Ë…ñ¶šÃo#^;³árZPT¸|`kWCµž`K:JnPä.™0ó^ìÞLT[‡ýÑ7Å»±auõ½ñ^®"BÝ®cE5ÿ³G‰_©aÚƒTe0¯,*NšF-¯L+ùÊÁÀÆÉ8Ⱥ¾h7¶Ë8iDaþö²…äw´Æ¶N˜cFäw²¥#@ÍaKT O^ ž"¤â8¤ŽWñÅxÉÕâÉÂæV×yÌ™kÈ9rÙ+–ߤ×I‘³œ?‹Ã»h³Ú˜‘‘®pŸð>àç²Ã¯“ÿ?t”â>Ã(pnúX­ë`Hg8éWæÒVÔﻺ“QTϨ€lö‡Ûz̺ˆwà0™T)LœêôLÃÖ¹d… ri{Õ€jwl) |›@'ˆeŸ•€%¢OIûmì?“NסÛ.¹È”ÞNzBQ0¹ØJW„ª îÅ–j#%N…ðá—]Fd˜ç³ô  Ê’¥i[üàD“Ò9¶® ùO‹/¡Z\Þá—ás”{‚Œ Ã7v­w(—z6]C¸+àH¾»¶â™ZØ£óf6 áV©Ö’w6U+öj£m%ÉqgÄI¡?ò@d„>/tWOBf‘Gîõ;Ë+ksï# TN2Âpè×o™dš”ËÜÿ—.É÷„ŒžÙ¨l~ÎWe_Rµðª£îßì²VåiÝ;;¾«»ZØ2cYŠä6˜ùG=ÒÝ yêOÚ_Çßø®ȇcrf:xƒÜÐÊ—©/XÂ@ˆ¼ËÈ–j-“höGãqÂá©oI×7SzbÓ£€ó. 3È>0 ‹YZEpi/data/S.typh.rda0000644000175100001440000000247612144476640013614 0ustar hornikusersBZh91AY&SY|õ™qºõÿõÞT×]ÿÿûÿÿÿïßàÄ@ P@@@IP£Ùï´ñ§ 4E?T©C#'¥0†ši£‘äDžˆhCCL‚¢jš7ÿê•D2&ž“ÐŒ™ ††š424ÈÀbbd0“JB<¨zPž¡‘ˆh  Ð4JP&L™0&L „À0&L#&0`LL˜RQ€ü ñ€NûùmÛmµµ¶ÛZÕ¶ûw÷ Vfõ™™šeVŒ!3AYbÑŒÐ$p"D@*sð™ÖsçÓŽ¦§³ÖöI´^@³žœ£¶yo‘{wÀ¼×_4ÈvZ˜K›‚¸5†•S bƒG1sW8g^]Jí¢n×<  (…n°'®š"ü”Ò˜ãÍ=a«6T_êä-'O!Å"6ñ,N.æPJcŽ1íÔ"·"DÞ6ÈÀ*¦¦G&¸‡ƒ:}TêU­^Å›W.Þ¿ƒH°Õ½"d)ÿÚ!'×qMsRkO@$’I”BŒ#"¬+m+4}0ÝìÀÔBIФ$(HHE„HD P!4¤@  ë\¼º,\¬Ÿ Ê"""" iîté~iQÔØøkÏ-þ 6ùRµµ˜ˆ–£ƒµ•QNV I@”€EVÒª) ­QÞTUdÙ´P¾„«„?aÿ™’SšO±Ÿvþfð !9t,ÈÎw;¤âàГB,žRšyO)¦—/ùú¢SJTëéӧѶ©R ¥)¥w=DDD@áÇ i i l–ªª®Ð6Ý4Û·nÝ»vìÙ³¯Û’ªªªªðíØÕ«víÛ·nݳf͸URI$£¼ÝÝÞR“„ˆìÌîîîò”œ tGfgwww”¤á€ìÌîîîò—:€‚€(f¢Š(¢Š(”œ p1wwww”œ p/HBP&L! æ¤ ‘IÞ0•ÂVBtXYÄÌÄ “…f‚Ád0Ì™:-V*檕U\šêL †L*µt²Vja2EÉ 2C'

òäàSf,AnwŠçIf;B[T-¾À¤Ýuü¦Ò°äÎPÛÐû±Œ Ö=KSCEϵүçØúŒ™¿†æ[d,´ñŠY;g-çž%fÚ:©ïñ”o‰ç£¿u³+™C0ë…pªj¹_Æi Ô‹ŠnºR²ÂÄ6Z¦Ü)üÚþzÓ¯›!»KE¹Ä_ÚŠß™)w`ó¸ù‹ýzÚû_DDÔfý éßS~oüf¤ e‚O[X³Éá —ñ—îe!+8WîÀ{a·CONøQ.àÅÿ¨jú&ÁgèRj›‘¸>1²oýÓ)ÖΚ7Åã  ¬YkͰ>ý„‰€O”½õTêè;´Ç9…Z2ßÍs™x¢µ:§FßÃ+˜³m|fÅ‹¢œ&h]äà–b}+y߈À®+£Vq˜a¹—ÛèÓ\^³œ÷ž–à©#Fxè2 >““Cª,´NN3IÞ%®ö¤þý.™Í›T6«˜ºY"¹ Š!}¸¸ÔÆKêå9öΚ „ÉËþò‚M\­ä•0èÃôl0^“ñ=šÙ´Bæ%ǸóÕ¨]ÃM8z Â$6hEH6Âv3¬¿êšDY¹”âèSg›UE屃[¶eg+|–¡QOd³§¢»|•S—<ä%@ò€šÝZõ㟹ø*à À:ÈyµX„”5€LÜÝ¥—pÈÕ’‡Ã^¡¬æ«S¢f¶"“|Ì?ö•›ÂqÅ$ç~Y1.ˆÙ•V1÷óu´‰žK·Ý’?÷ýLÚÚ Hª12Ríq9à•A‹/°äî$¡Â9ô*Z=›ç»REö·÷¬!œùS 6@Çu0>óe¨»œ²9ÜüL†] ³K:¹1Ã,îa½)Ä9é”j±6âèýž\ñ›º¥J$‚C`ßóŸÆµ°ÌåŸZ‡SX‚L  åœý&eøƒWÒghÛò{f/¹íI]¬/Ó¯ ¯À ç:ȇìMbý|˜ÔÛÃJ½B¹È8¡Qèú^óB"ƒ½•ïÜIŠ}öý 2µÌœÐ=½RS8€›îi;!¡ž1?ØcÓ q6Ñšöûņ&piEüù¸7`<nÔÿ?ÅmWnÃ'ãöÎc|;¸{¢Ïl‹Gˆº:öÊyPƹœ¸‘ªklTëYJ/‘ë¥GÌõJyÏ—¡j-©gæë€Ø(U Ï>ךçÄÚ#® °ÏS²öo'-Å“£ $’…fƒã§šó¼·0=cú¡žî¯Gw¼áºB6g{š2„dRÀ‘kôÑ™~¥p'>¹Ìkæ¤ùöñ³º#!›=KÓü×*kT(­ß"/XkÎ\W¾4î*#èPôè^¯‰úàŽQC*C‘ÖŒDòàýÊ9ùƒ=ET"8æºtÄ—^øÌÊ%î¿°Úp¨É†_@Λ ö‘&.!Фå1¸þþF<®ÓôðbjØ9ÄG4óß82\ë|ÊYè‹sèPõtC÷¯“XÆÝzÿ,”þ3 >ļdŠˆ ‚jùI½¾4hCéÕ&¤\ˆë‘ ÿ»c‘ ®BÒ¤!³_ºMýXîãÓôTëü¶MQpbAGŸßÃ|#ÃxAjÍzаÞoAv7Ÿg.jjª\>A« é8žÙ™z¯e¿™]Êq½ÕÕà0ÓU&?ôãWç0C]ëF+Æä½…wŸ‹Hæ©Dˆ ø¯ö ¥F¤¼'A±ÀŒô‹ÖÚZ?±* Ãô±w¨ {r… j'Ä݃’Æv ä%j ëÇ'—<,èg¹®®;VDâ-ºÂ¤<l€Í @PHòý¬U€©o›mG¥5ò‚—Ѧ›7˜.‰<èF(B5˜°,1 ‰U(á_*~È ‘Ý5´43ÒÇ>†g‚]çM@õ.Â2Áž[Ù}¬w̓æCÆ“8¿—®Ô>ïv]v)€­°Ú´îP ŹV”\3>ö¿ø.¸ú‘Ù`áE^¤Td/¹—4‡í”wb@³²1f¥§Îp 6º˜YtéÆüá}7ž wIª´;×wölyÜß``¿íst.mvÉ×OŠ?ü›[î_W®ÊjE[l²dÍFï´Xb E‡5öÄÓP+DýŸiZ&<4ÀÜ$¹¡h¹xIc"CRW©Âßk-zãœð©h}$êÍGkûÎülÞeÉåìÕ];°¬ªv.("ß¹CÓF×ðî¯h5ÀF³/ŠüœMfc4º8/½4Y5_GhYƒŸˆ D";ÄTE%WUx‚ *¶¾¯q¯>¶WËf<èƒ`0€Ýª¥ôsxxEV^‹ÌW@‹Nä̶ú«–\éëDZ¶7^Aøæ`Õ°K?òê_Zzú:Í/Õ¨Õ ü‰ªÙúþc¤ݦ*Ü‘ðŸ?{pwcèÒŒû‚ƒ¼SÔpXµð^c;ét _¸ù /BžŸ4UÖ;Åá·Š[‘Eó·:ÏþFy÷ö_œ¢5 §?ƒAdz^™ ¾ãHâœK¼¨¢1¹O 3.7¼F@$a‹¢îa4¹dT çm®ÊuSɵŒZIlkTŸ†IK>K– 0ù¯”¿Ö[ÃPMîô~ÌÜQÆuð¬—/*"g~Œ6Àœ9)(Õ¦æ˜øš_7 ÛÆum… I¬¥HBhh œã£OYÉ™¥€ÈŸ¸íP5õŒ cH=x¿›üëªÝ¦q¥—®§G.îX~>Ÿ 3;Ñ3üä ³c1ÝÓ¯ÍG¦Ñ× Úr‹ÉoG¹”苤VÛŸC§fµ¤ú\I]ã,/u<ªy^”Ï]obâ}a÷–¥.Oš*kA¨ªdÛÛ3rêIÛUŸÏgU›^$yt`eQC3ïYþ»‰MNÅaA,(¬iBpæp,{DßÃ:sÔ_xÓq¼G‚é8Æ·²Ø6}s+oïÄ¢C83B]÷är¥û±õüt.¹ÇÑ9ôNTˆý¬L8~1š‹[µ—Ô LN~Õ'ú =§cQ›¡È‰£ˆÎm&$\Qø„ˆ6tB‹¢˜ñ½³&ÔÓü¯9Æúñžëy{†ÊŒ¤M‘ܱÙ}#ÉYÛÔmð8<Óε)a½×¹FÔgÅ ò`M:üa-Gnïïj&yBŒ™?}kŸc º^ʪ£7P«Î/':åŽ 6ýM ¬KܦŠg6ƒ^Ø’íyŸ•D'Bôt­óÝBve›ÏE¼B-(QekÜ7!É0 Gê¦9D©zuž¤B‹«Ø«RÐ.4RáY\E°ƒ˜hîºK>öh~R¯=1S–¡l2똀ÀIª1æ\>NÑË}7«ߟ+ßmâÿ(Ô±Z xÎÓV,6ÚîÞl@1s3°*dð¢'˜‹ãÓ)t&ý&>È-Àў΀·‚êMò•FXÜŠT gªª)Û ¤N7]ÐÓ S)zè‡èÑ·Zß#HûÀOŸ+ŸSâ}‚?@ N¾ «Í@Æ£¿bÙÝ9R˜fN„Ê.#%½ÔtޱwÑTDÇË„‡Ké,Ô É§ã-ÿºdœíè‘GMœd&fuÈ:¿˜ÛGÂSù»k„X¼$åÛ+ögU§TNȃÅÝ)JCJ5A`…¤ ìÌÙ ùºI œŒV²¸U²K+ž¿ƒ^‘ÇS\ü;W‡‚¦/\CI¤Ã)²Ù«âZšÖ:\+@ÃEQä@u©¡5´—Ï„{]qs‹=`g _ŸYQk‚6j_c-­‰\²zØ%Qàq¼D,S·ÁuUßÔ×úÔ¦½Ô…þè-Âí< iƒ:`eq¬{ÚávÁl=„¨û§ý¸ÇQ‘´f…¢ÿJ4çÌT]óËxJQ`±D£š®ºñ jG( h”+í »-Á¢•¯‹b(ryt.*ÜmBb›»ƒ 1ìñèU\’{PŠ›ã((µ }£sù&±ë9D§(›ønþÌ×.v4Œ9îcä¤míŸA‰‚1Sx-eŒæÛU¨‘)ŽdàíyÁ¢†éx5/Èr¢@³gï·X`ív¦ÛÙ/á3Ì9 i„/Óß•—Œ8hÖÛ5ÿÂ%P ‚q›lPñ½Mްjx··ëfvÂ㸄Õg>ŸŠOv®@q.ëÀÝr›×¢õ—”Ÿn«™Ùé‡sùìÝ6Û4¢lýn= éù¹ôÒ øÁ‹ âÔÝÅ„ðkÙÌyÅ<õjÁŠx‰!"EØoRoFôÒ¦"sܧR—{¡ÆVHB9¥ÊIÊð¬]VŇ؊l#ãîþ8ÈãÊ3áß{–¿Ý—޶#ÀU§ÝÓúäÿVƒrf¸Ð²³X»·‹UBñ4lƒÆáœ9sÀ“¿†ÖœÏÈçBÓ‹Á\Î/øyIËD38Ïtî+% 7:ƒ¤³«=d©œ;ÑÍWä—¥Ã!ãÒj€B}3NÓçHk«AOŠaºÚ¸QËÙ ƒjro² ¢ãݤ£땹Nn‚‘f‰E¼Ÿ²8%GµäúþT í+‡¦Ú‡‚ø®&îDÛàôÁeµL¹zëmg¤KåÓ¨xaÉQð;¾ºoa–æHì çz¯ÎÛƒB²£2µRœùùtü‹›þ}¨ÿ–_ýæÓ7軬ܜþb«Â²” Rè3CégÏöw:vé›O z5ø\š¹«^ë]×é¶4ùU±¤¤!¬g \€„ºÕ²PË_;·¶ {‰Öàô•?³…_$qtm)šxå[k9÷C˜Mï.ò—6Ó èû6™x9ôðí×BÊØÿÄ ‰›¬×fœŽ/S: t‹•SK§g‹Æ5b ÌÑãí³qé>ÞжEó·‘ ~'±a‚!IS÷—š# º'X Z>š&*Ã;òfÛ I„{ÿc¿a6áëÊzE!QýùvO1ll2Ówd{”u‘+ª9ÒGÂlYqÚ-¸£…ƒÿ?Xe=ßk#nÞÒ€4”½ ¡ËžÅ*~ß©a4½Q§ðÆþvŒ%¢ô Wle Ïîà}9ª7ín8¥Íîö~*Ú˜œ:“h$ÿ·YZïtÍU¿(/Ï’ø#ä„ù1vó\®7ä‡Ej´òÈä¶ç×hßg0Ï$LÅܯ4“i§}LâÇ¥CãÚ)Dw‰[61ÏÓ½ÄaIY»üJ·©8?ÃvøôËAX–òHaa{"$¤º[ é5E O«[WLûÛ aïÞXî½H>e ñ‚HÃlã¶ÍrŽpé¬Ä9:d£·ÖžÉÀœ3„ó޹"ÀŒÞü˜ÚQ>}à¬8s¡cJîѨ=£ë¥’ù& ËÁf{GOzo,y³0bÜÒÙŸoü©z¢ò³ÃUOÅ âáVÆ%­¶½¬˜qB¶cSø5äU¦q»ésN½ÆEJu¯pŽ€ÐžÀX/#Òn÷Ê~23TËÌjòžÂÕšmDññ`E.æ²òkò½v¾¥°z2®>ÖÓM z—ê¼D„Ë|·³IˆÙ9Z¦RøéП<”N×F>'ÃÃê àCºLÓ•då; º˜©`†& dy{[…ìÿ··u…çt”1j4™”±9^¨Žxì•bVªl0ÞY<>ª­D~ñ£Í4.B9°†ÃfB b)ÈJúÑEw’¹€àøî>{«´ÏEãÌ3Œë*rÈ’a× jc†Eª%G„²4ÂÁGÕË–È‰í¦‰óAöùÒòVhØ—·ù‡;ã(òÚÒÖí«ðé%«sÑ¿‡t¤ëÄrü8:ãPâæ¾õ‘êº_=à ãçi¿ó×Ý›~¦Æ\¬žnæûàms®âÑpøç›LŠô 3 FV~Ǽ|i¿œ¥¾}E†¸"Ó—(lN?’œ1kÍÅ-‘O€Œš }˜êûñA–º° `Ô˜‘þ»±Ê}qÈKÎô°b"âÅá—š«€ú~•(A×|„!tF-5Êo:±>¤0‡4¨a3¨¬6ï¯m­½C–˜éÙ@Üw5,M¡ÊݶãHÞÖ #K½µãáG=î+÷4»av¦ª.ûاötÑàó‡g,ß(ù†°ðÊ7‡¨:‹ËúfÔxïÉùY uÅæ ºmY,á0æî“›C*jšµ¨mEî®NBRÊ÷ÈÆE ÄõæÍN@ù[NAûï­E?^Q»8„õ룊ò‹7#Œq>è7®‹xM-$Y»·™´Ìt`ûNîwL$ºz‰AkZãþ—Õ˜ƒLÚ΃ư ®êsu9JZ¸b„Ã>Ý—j?wÿü~AO¬8®^À?1³¾hç¹7‰*tSda#E²­÷$AR3£; AžÚV^¿tÚ†ñ…¨ßÀÞ#‰²ª-GÄO–ü`4É­ý^+l©Âù‡˜¢Á%õ…ƒ1!”õoÒ'÷gøµœÊûÛfÚYÜ¿ÈÿGqȨâKåÕ ¤ŸSØÄG ÿònÃ"” (…épÎÕa¦¸dsH=ªlÍU5œ¯9ËÊç7Ÿû¹QÈüª¾ ”ÛözRîÔcå)ÊvUxÛ2bŸ2TóÏ ºdýÞ¬à6Ç_\•ˆX¾¨©âƒbvt1c&Á¦øoÚå`RËᑘ\,÷–®±]ˆÍjZç~7†&u<£JªwVï2ß[R òIyW¼¸¤hb’ÿ:´Çý©¤þ€z7ÕN+õ¾—³öÅEg9ç2 Ç*Uäú[ÍRN}Úý4ù‰vÎþ›n,Fç£W[ÜLÜ}Öbã yKyhVLªÆ\ZFv$$Gë üE˜Q[Ê7¢Æm= ¥‘;–ßþ÷ë+(:Ï!oáñë@axIíþSÕÌŽnÏ/Lï‡uÊw²ö–{¾#¨@Ïä erLîñoÉÞµxÔ,‡ ¼"º\5[CŽ®#ˆ]Ûi– ç°¡Ä‘ÕãiÃê“/äBôá-F.)^ªª“¦´SkÕœôì˜Uƒ|ËX‰,”ýš…Q]Âøé¢º³Àòç`µµ"„ŸU«y$±‹IÁÎÆö=Ž;áå ÄU}3'Pú\æwÌ´K[pý,IqEâ3Šè²P»,c–Šá<¤¯ÏÆPëÁÐ…`J–e;ÚâÜ 2`ùõ©U‰I­1DKw§ç°OÎEÎjRxv&âpõ\á'nD´äë‘sª¬ÏÒ›=mðÕéì×V¥\(§ð­÷ —5Á!¦Ùʰ0/§ƒLPXËËT®•»°ÆÞê{–[¬Ý$S“l6žs³Ü`¬ÉƒŠæìy÷&f«”á“ &8UÊmçl(ø2˜û¨=Ïâ¸1¢g+d›öªõ†@Hy?™nä–ñìk R9ódÙ%Ç£jëýÌ‹:` Q0#ã-ãëÍ÷¼É”£*¶Æ´…ÞÍP5æ0Á/íR.JØk)3†/.C¶¿¶!L–ÙŽÞ«ô)#–Æ S'âN7¢Ç‘‰&º¯aU)4ZÐÞ6“ó[ÊL†m÷èDfqÝ¢ÚÙ×%µ‡Îlclzîd…€ªèãœÔ¹Ë9œ{®@€PFEÜc.÷¾CÙÁȬ$Å»Êbcšu6\h¿c Õê¿ °« ˜p¸AÛdÍØ}ÁGóÊý™²bÓõùøZÕRâ+•L8\äz?Y~ëü•ÕÑ^ŒY  @JþŠMÙ±§vN„+mëÙwÒî*ÞŸ?×Õx©šÊ]:ó3Ë“‡M^ÐµÉ €Î9Ë‘}/œ¸úþÛØj^¶&¹)©¦¿ßjLA5ÎNoÒÜïšñà@±ÆÿØ»Átö¶+D¹ó´d#_´á~¥Ì‡NmÅIðã\ƒŒ9Ö€@Œ¯/*C i‹<<œ8„áòØÔ|«Ç)s©¡±Ct÷&æýÿa˜ÎKqø¹ºa"Ž#ØyÚ‘|?¾yœIþe`Š×‚g¿E'7(Í;;Ã6ö¯™$~¹Ü%˞ǮÂåF…^aÚGl·¥€…D[ƒœktŽ’Hi %·b¿l@{㎣„é¶…™š&aTQæÈ⤪ª–Ã’®×mÒ)¿Ò?Ÿ—öVÖ†yïàÄëƒÆ˜š[OÙWT^Ãf;€]§`&èÝ|þ"ï"Ï/uëÆFÚF9L«C} x;+ƒÔÀ–o*½ÉÝã( Žý`¡h„Úí{<,FÙÃÀþRÖu >Óæ·.V.«¬"qf¡L¶c¥S×~É΢!A¶N’ÙWlí“€jK•:öàºÃëÐ7ÔkÒk3¾ùpò[mLWáRs©“B3׿ƒÕưs6˜ëþΟJŸ³;O®³Tl˜˜ùŒÈ3¹C8¥:Ôµý¢.‡+Þ—T|«‹:ö¦†ÚþåàH—QÑ+³‚Pw5ÍøL¾éËs<¦(†«RoÑY°®ÙPN  ¸É¦s´¶djl=4¯£”³LcNUþ'‹ÊºD«¥é šˆfS€ƒå¸L>ÆáÖ >;V/s"/õ©ïûáG\¥RAÍ“Tå\üå·à×Éÿ‰´ïåT¦ì>MTe5Gõ4fÙqÐ}ÚŠhFœšÌ@¯¥åÛxÀ¿l݇ʢdIŸOg›FT`6ÙÄ×ʼÎð;ЯAq‰m¨-.ål’X6\«ªy_{)ðK\¤-’˜2…ƒ…Fþß ¬_~§! s?´ÁÛ¿øK…A’™áÓä›-¡ÿ´æÙ[½€ÞîßñgרÀ¦[\" ÈÝÓd us=vÈ!ç’nâŠÛ<œmÚ¹?†ìÐ¥Lû&ýJº’ÖL+NçAçÖ2nƒŽPl<Ývo¬'ýE]U¼Š'#F0chÓ#o¡ÜñX„yNNŸg! ª—h2µ/¯Ýihƒ÷‚ôæí²ÚòYGÅ¥ w}bS䆿ž& %DøÚºU øî± öA&ãYjmЍëª'ŒˆÓ–¡/BXäÉxF¢ØJŽm!¨œéJ]Gi¤ !•º«(n©”·D‡Žd*2˜e°ìì›ß" Õ9⾯XÁ¤üD¼£¸[ó‘y9‘C8%™E8"šFyÚîd)6¡ä¼cZw^WãMéuõu<ö XƒZ$˰¢n-F–ÏB£Æ&##ñacñ›2§–)=Áú+íÃnßð±˜ß5¹Ô^ã[á¯gŒ„æ9¡f®ho…õ RÖúWV“x2È=íðU55Ê4ð)i²k;äwûLR|ù¢ú‚œ)lX-øþUpx(¥r™'„ÕÚ¨|äÑY{ÊE£~Z¢†KÎyDÔЩèÜ;¡->È5J.­ÊKžs2Ú˜óc™-9ø9¼jç,lªÂA/=3€Ï•,$~ëƵݛßú –¡Ó2½ÜÔÀ[Ë’ÛQ5Uã{â»o·î.+§yOÛ ˆGg;r¾(~’¢þlñ&J¥g ¼¿crþ[‹¨f¬&¹(‡ÙFh£mætðDl§Qþ¹G/‚œ×Ñ(;Ù¢ôœ®5¶„îš¶QŸ(»øÝ Ä|þ½²IÓºY*C&>ì–ï"c—4oÄ—œÙ¾(¢ñðNT‚Ú¹DæÅ"´LxŒè«õ†šÛ¤u6ÉEýѼWñ§k´öù‰Âè§lü8W]›‰šqØ7¯ùlú­~M³”þ”µW;‚€’HÊ? ôÇЪ ÊnËng5|¦Ï‹Hž›„ÀÒ6Å@8”Ÿ«ŸD­Š¿±þ^OgtëˆYÊd„ì6¯ñ{Æ-’wqZÖïâ aážtÝŽ ­%CDÆ^×ö}º¢’æ•P  »ÕžvŒE‚âîS´&Ê §\™õß¾Kú‘ÝH"HˆaôÀ÷¨úx MèÛKkÀ‹¬Ï ·Ö+ín×å ò! ú‰õHÒãØÂ«Š ƒ1h¯€‡‹¤¸ò]±_ä!5íÞä ÿp©gÞJ<.ùiŠög•ÂZ}4|t Žx|5áù7˜áÖÅ¥ñc«rZ†xœ·!LnD)°ÔÁÖiDz·_¿~ucé$·á¯_@”×KÉ>+‹’–¬)›¤'lZ}J•©¿‡âà$»è¾zZJv´nëæFkΔº:"ûMK©ºOÚG†ˆç~AE†éx‚‘·f+yŠ6~ÇΓ+­ÐsËÁÂþ¹Ëõ"fÆ[ÅùÊÂëÄò¢¯W¹‘Ôé3ùæÁ8ØQ˜u]¿Þµ”´ã-6$o†¿Oü4L$$¼%^é4 ÙÆœò'ùw½ úbÔ„-}ÞÝ`èjÃ;€6ÎÅ> >›ÈxŽ÷rÝ@ýþ“|SûVJŒòÕѵ÷µ(ÖÂï'G$J$ÁÅ>|ð8Ø11ÙþE¯…¿êšà¿G¿Ÿ¶8ÿÐNå´WçK]Ï ÕÙ£$\×¼ÌM¬l•ñ.ø‚ÍŽáÖï6ÐUV9¯ø– ‘yÙÁ5 ‹¬;ª¬ÈÊÛ>þ“ÔΚki[KœPÏCmð _;Á/„$0ß“;Kc<þ_÷N®À%¹ã wtzûòÒÄ_<ëò–šâΞQ÷@\ŸÙÙœ,PÔÇX‡¦Y,ZâÕ7ô×&/>jÚ’Œ úE½T®çÔÖž¥Â±Pǘã@Y\)Ž¿ø,· ú!qháÝK#*âNþ0Š”Ê_nÊ¡’_¢Èß«±â±l2b]77"Ñ‹ÙÎV[ƒ:°L§Ðr2`’’˜èêÔ*énŧ‘™ék¶\=Õá~t-EÆ%ÝA"€1Òg×&»ÖN#þÅ<ż՘²B¿SßS¼íG‚Õσ–ãÈüFl¢@5)†º†EÂÐrÓbH]ÒØŠ?Bžr«I7ù¯ 5¼®ŠMd\ éøð¤fát-iœT#ÄGAkm#}‘¯+¼D10XK=Wt×tK§f­¥.6žïîóÙÒØÂ?PQ t.÷Žã}îHW.U›GGAè3 ÷ðéž‘w•ŸifO×}výÙ ´¡çüÖ¨EËíäzIØ”P„ÀÝ=ÖaÜ'?‘$7¨)òý2é,ü7×ñ¨Î¿±ù ÁìvÝÈ´±@HIÞ3u7LûŠV_x~ "ÚÖQ(st¢ï°ÂÍÜÎñ{bÙ„³™uuôȲ³r¦Ë —U­¥6`=*=@}ª%ÇuNÒdÔ&»ã, Är.Ålýh õé~£ÏêÅeÖˆÕ ‚Ò3oA]¯VeI]´®mQÌÇ×{º¹d¯!®›ÊØ™ ÌþH^ùÆòAµ6ÇhÓDŒXª1iÛÖv³VØQ4›}]®•ÄM͸øÄŽZÛ Èž‰K6NZ€fß”¦~d£ÿáUjbÙõ)]$ýsâëá°¸ª#Š;N¯|“ñ2ɪâT¤ÅBÍ’å|SAžÿÑ^Çÿ¬8?;m3;ü±iÃV+ °¤#ÞT‘$>u·èQ<O@)Ò$¯·E¥Ri¤›(¾Î&c-$>ö:̤º |„n ̨í[ƒítÇ~룓ÏÙÙœ_üûS™ÛÐÇ‘éóÖí "%u‡—Øødu•¿†õ½™‘Ùµ Y…."1<Xl]é!)P“¯0Ëiz -òWߟ¦(¦cÔ$K-Ǥ:»Y¡UÀuR KKaŸç¼&6˜%ÓÐó…'PøökKu;ûAŽ‚1¶#œ8Î-öHK¸¨óÝ‹† Oè¬â‰fz%+ÚH›Uª°/L dôýa‚)Z•XhTЗȃ”’Í­­ç ”å›9èD¿¹ ª’ü Sá’D¹w¹O¶zAWäWŸ®~éþœœ@àf܄۸}Jf¯€¸àHs¢Ò¯ÃoŒk?K,a(ôØä«1h£NZ‡µj¶K²-þuµæÄ9;ÖÚT®ZÕyÉ«X‹|áÈò_Nú©cÖb|ˆ)x£ôA{ÍEñ*Z(Òó@ê%ÒÕ[7_àm—x•ˆ­±3¬I†«´DÑ4³KIZÁÎ"ÌêŸQì=õTá÷ã«8YáLω´k/tôñ5q£ ±¸Ì~€s5Eä½ÊçAQÊÇÛ×âz>§,?ê7«·!7ÔiGèA½U\WŠ”k@owä,>}JûŸVÑÕ%ÒNS^uïByuqq¯ÊµpBÞ0üqÔÔñƒG°g¹º¿ÇäB(nj¢p ¥x1újXö^üûÎGLB{2OÙã•ÔNj4`syO/CüчS¦…CfH Ür°Æã¯4Ä*;ÂÂJŽ\4ªÄù<í¬¢Ñ਷Pöpü¯W|›‘ïù‡I@ «»D°I.dM”íÕEZ¾#Ī…dñ(¬ž€~‚ #‚¾”×Ä +èøòàÁúÐÌ€½{0ŸøàGv÷+愚\µµMNJƉþq¤ÈXŠEífΚ_F І¤¯ã âv.Ä?õ5é<ºÅ—ìPh:žÇ¾Þ¤ÌQPRh»Wâ'åR l&ã Ø Y6|LÀȰCV丅OxòMÓü’=#bLÌ•‡ f’ù¶Ú‡ >Œ°Ç²YfIÁÞO¿8œ½žBš¾pϸ×Ã=XçÃî¶¢Üí]Ä!]ûýyM:T9•û™·Þä-âzÃwÿ²×@˜•1¬¤Ö]Å{úùF¹Ï&t{_a#~ì%Fa–ËÕ,·´—XneH¬„åví³í UZÌ¿¶.g9ÎÀNoÕh!‰c7#þÙÉÓ Ì-Ó­f­áêÛçØáPŒ¢ƒ/çèæI?MÿÌ€^„·i¯ 0¯ ñˆsN¿‘giƒ6œ"_HV¨n‹äè…8êÇ¥Ó0 µiËyåsUï(ã¡§BÂæ¨7Gû)S‹dªL¤ßøj÷Ô |ØÙf0ÝÙ®Up°µGæ ´È£X³¡W—­žÕH˜Ì+¬†Õ®ÇÓŽ¨Y¾Ùdy(Mv­ÂgKÄL3ÅÛÆñ‹~‡Û]ÂWG^½¢uèa¹á1o0ÊhÖÙ­ñ¹¯4ºœDw/ƒ/ ZáTŒ*‰ aªÙX¡·¹F= ®¯e°Þùñ‘›8Í'B¥)ÜŽñ¬dðš~)öà»}ˆ8ºÄsåqëÜ)”o~¤»çÞx6X0™ù1¾Ëbj´¥A×r£Ÿ¸ P 4(\EŒÀÆKB .öT:´°qÕXÆ`_Ã[ÁÓÎÖ„àâ‰tÿú¡±—œøà³hÛ •H÷PŠ;VΞÒR_¤•F±¹â„L[²º»9Ñî'vp~4Bëàf/kY’ìka¼}[°‰Ý®”·>fþ† xq þuœšÍ™é5,$2(LZórÛ?Ý ùQì i-ê³ÂGdš[Ó]ÄèS—ˆ…ró_ܘë%â = O—“šé×ïßX«Ë©ÞÇ.57B=,õ.Y J,QdIËÅŒÙñÏ~›³¸OÝ%ÙxÅ ~a?äë·òôv°²$±†ìB²K:2&ë•Ëyp‡äøõ‡·ò·èÖ.D`$prÅö9y{üÈÃ5×­‘ŒÉu!§ª‚º”KaI)ÚâñÐ?Úu;kį8ˆUìË©=ÄÝ!–’ì©I:.D"ÆãÑÏ$j¿ F-Ât0ým‘ӤФ¤ÍTK#ïöZé Œ« ,dGiÍN‹ZHa—-@fëŒESÒ/wp5(~ôºŽO‡Y¡V0mNKìÅlh`ŸH6˜±hØ”ÔiØûÉD©L’Ÿ›§Ÿ´±‡£÷M.·¤‚Äx‘×U tò :Zõ{Þø¹«ÞK›1NϘYûKG;ç7#Ü)º´‰ýxü¢®£ÇÒÒm6X1“ê¿ þÑÿ%ò½…ðƒ]¡Ñ¿Ã…ÝTå5dô‘ÍO43;4dévuX;ýü¹û£·R°ÿ¬g«›û#Æ´qé·k7ë)ù¥æ˜°è׺ zÒ5qL<ˆH°¶u«û«¢NJzÐàž*S-JæojÔÿZ\O3Ý“ 5Í ñv­ïTð_8ƒ^¾~ßc`7[yÄDt¸‘°ä{C(4I2ø m•ñ¶xq#4³"Ý£öYr.¿òD…OÑ +SĤTê g€£@èÒ‘)¿#{ãÖ…ô¦`_¢&,ÆÄ¤Âë…ˆåL‡”!°'ŠËîøe¡R y0¦/¯å·NüuíŠí^6ÅxõÄ ÀIúÿ¹l_«ƒ•¶Òתßñ8î.ôDæWm¸÷´[›S ˜Ê® ! ‹Ü]¾í™•L?ßB¿†Ì}ÐV½_†êF—í箣¨‘·§Ðvº=ŽûÁ˜08&ãëñ@õ5UµÄ%=ù0T©Ûk÷ ô+q;[>µ’Í”Ý«è‡ØV…oª`ò½è«gí~nta·h˜Ð[bC§Ã¥ðü2Wg"ñö݉R¦w:@ÜxHsRÐçÆ¾0¢Zkˆ(«ÜõÑîâµfÀYI:Ü öÍîÐÙph=tÐD#áÐ4æ³ËršäšÀ‚wù–eBH× j/·¢õ°OšŠ~‹~ªÝœyü~lE—vE)˜diuV+M øÍ¥!àžhG'¬Ù'šÃÄUóð1ÌJ‘9¬åƒ¡0ÎÂ:NÙKèpˆ²•\Ýmþ›„õÁÞ ,S¿˜:º2È«ì`{*¨fx")f\V7ÿ¶•*úös‡x_üéÒnsÞdÁŸ‚§dÅ+&Kö~xOÎlˆ±ªa,—ŸN°å~{L°:ŽG~Ï‚mbƒÂhR_¼ Í”PÉí=ùÍ¥£ç±Õ;˜Þ|z±e¶ÞluÀ &ùVãÁX½¾u寥=VVnìgmm«t'“´ûÀ“MÅí¸fEໟ*Eg°!gÁš»†R¬œ»N©VŒQM‹ÿ"÷w¦Ä'1\1„KYõ4ˆa8Ž#Ç—o{lŸ¿—îRòÇõñÿ¿aý«1…_µ ·eÚßJùÖa‰+ (ÎÝÙ°š_1Í2„ý Ìâ…ëèÊ|–Ux×ã’÷Fó aB¯dXò§È$œ²Èfù8GLŠo(…UÓâÇÔŠe ,ñƒÑÎ#–Ä«Ùâ– xÁÂÿ àé™g‡臵·Ü_Š]-÷лâ²Û¬Nkÿ¢ †dNH‚Ô°±½£pBãQI[úž®`–Ç2z=}­$³«4{Iš•û¿8 wÃ#‰mÝ\ºäÁ·Ø-½ïù¢!ª­~¨XȬ€lÓÂYÁþ9 ¦ øzosö-çf «Lˆèmè]éÓÔ%”Þΰñ²ò”§¥„î{Ïù9%ßìLù|ê ¹\ç•-;klaÏí6ž“[½ðf‚=wmÍ¥†>Š™Àb”à¾|/Ÿ+`—Š…Yç ßÄ€n?¼Ù·Z’›ÓÄo»8¢£\ü>I;Æ‘n®}𥬅°†)ºñßÏ{˜aÑ*ø-Tbñ…ßÒþ}/œ³ÀmÊb¾ÓªvÏïí=1¿ÃuT—Œ}ì¢âº«¦-©.—kZD3E6ï×~Òe„£xèG£h´¸é&‚C5áÌÄñ-/4 ´Ìp¯ã 2§PºÑ Ü`Þë±öïxËŒ¡d¶sñû_¸™q0UÜ,„]‘üÍ·AƪÕášæ2ƒ·ßâ0Î3ÈLÄ®6 …þ0“K øÛê;ÏåkÖ_W¾ØòÖoþ|ðMº=ŒëŠ@|Á+ߨwZ",úúéÿ™ŒÖö°ú~ºßÆT“Åaí‘çYlží¾‘þ¯§7ºwÜYÞ ÿA&6wŒ›a3{ŃC·$oºJb¯Î=£]Ñæ–ô[#V}eÚŒF“低ʿ2žOÍîv>7ŒÎE+*®¬ÂkÃà IIpÊÌ»z¢äÔ/;´~R› ¹pÿ~:ÇI%ª’¢Þ`ÀnŽÏ(XÎ ÎÔx·“m½r‹=T—¢I*6?>ê®zFÌ敾6*¡ ö<â Æà¦Áâ"t ÌÕ \äkHòº~8ÆàÎ×b¶Ü9Ÿ÷Íq„iÚ²Ž0 #ÀI'+¾ÙÔ?ÅÆ8‘˜·>Á×™dÏ0Û]QÈkBË·dÏ9ÏA¯òÞU™ð_·ã9 A0Q–…„ÐÀ™‡d˜”ç4Ðã_³´ñFHø! /í›é†¸§@9½(^m!¼FËasÕäP,3¤z·ök¼ÀrŽö4+=üÅZ°Q€;Üÿø¤ëÎ…*£8ñ6~º¢Ð-Ñ®óÔU?HñÚÜ;¹¢<Ü)v†õb«kݽ`ùŸwmÄ>,¥¢ݨå3yÕò#·š~5œ7¶Ì32êÊ>ÏRì“jIÚ‘VŸÊwŒ½ÍEh1ž±Þiþ.ƒ/!À ¢}‹lyQ;À¾¾ªR3ôœ1ø7ñMÁ7½RÙAZ#¸êΪÃ6 ’.8Ÿ S{? ãÝäÜùÏ€D΋²¸n­^RoOƒºÍ|Ú:Ük Ú‹Ö3 ®ñã§DfMÿè _,”Þöë1àXhjCáõ²5wzò¢ïkhôÆÍw]¦†[û³RBA ¹¹å½X\¾£¼T&žIüSþwª´sk‹Õ,n{ ß֛Ƭ«¢s*½š|,dò©jò¾X«]Ö^v¹“Ýз˜K¤pÀJsr½œCO [«…‰êÈîý±‰-‰ÄLJAÝÛ"OB¼Úçû¼tGc®ìøµ—=#ÑlÓSÍ’o‚Û«$ÃJqWTe4›4º ò JãxSp*rØKš¢×gðRÐ%žš²µÇžÄ-â[H‡)Ö—œ% © XŠO¨Ü3^ϯ8*HºB„×öF.+6}· ÒeN‚h³ª%¢þŒñß"ƒò‹ÏbŠÀï£-Åÿf»6 3=&{#\ ïQט«tPHÌØqÛ;3VX‰ùáÖï™íE˜@ÁBƒº»Ÿ9ˆ¶†°kÐÀß/¦6"›È«ˆÐð ^Aðtïh.BѶ~ŒÜ•r檅ÎÚ÷Æf€B?T„KÈä3)㹸bw_rØÿ§Ê[&å|£Ñ§Ú÷>\¤:g"•’l¨HÇ­éfh&ˆôû0Ȥ,ed‹kmh£´?ã–·e¨•ìxZá¸ÎúGÎÕ¯òÙ~ ø‡€@EUB ëúÑœlcCö5†ÌŒaɧƒÜÛ!±E%~Ú’­ÞÚiÉ[°‹²‚¦S™ D6Á#Çjüο%çCíé“a<¹U4ÃçÈ@Wý‹èUù„·bÅPD÷iÓ¹ Oæ´EÄy,ýæ}ÂÎpƒµãºwèä;ómnþZØ¡™{lÓÍÏþ­çŒº-“âts)ˆn¶ãbÌD}”Pœí­¯/t*Mq3‹ƒïEÔ­?‰¥·ÿlûk-iS}¤b[Š>$]1úèv7cŽûÜ—óR‰–V&9ÖP ^Õ#¡æ\O/‹w.ñcé5É냫ïX©¯šg_¢{™!™B¾ð%·.Æì0ë¹ÉŒµxz}*•b×ñÛ ¯¡Îêáö>yÔ”é9ÁGaáèÁjo<ì°[˰·t^Ö_™k5øÿþã¿î_3léÄ“…£_¹m÷žÁG9M9A¿Ú“¥í°LÄ—ÐуAèh…› ‰xÄÙÇ„xÓ§_‘VóĄ̈Ä2"«²)GcC5™ØwàE’h&™é8ìžz“âÕ¸»4dG GET˜fý£òë/¡jc@NèìUáþÔ—€æ Ô»}QLzSÇ'_Þ»×áBx¹U‡°Ç×w׿¾ÆôìL«ùtë ¿ì'í~Ãæ¢Âºˆöܼ2†Üÿ”!øÄ<Òü.jp<` MÍç8Þ“€ðJYa&­ÒmÚvK†w’o\²ÞJ‚h‚î:–*·ç-»²¬sÞþýk13ÅÈŠ¸ Ò.‚cu,¼I1 <Î@A4‰Í"q÷­-ĭ᣾q–:—6ܪî:‡ZxŠÌe›*áuUHXR­© O¼\ç@WÐk"ìiìe…ƒäCi_å½hNÎdírO¤à5åSãìz@ l+Y»Æ@CwX$ö@D¿Ë' ?®½QžOmfDÉó™aŸûô{—ʪ²¶¾ÞxDw_á=¾ij«åiïüþÛ˜ä"â|o±úžŒL6›¤Q)q“=„ÊÃ1.e7æ÷!C?HøÖs¨¢£Q?®u3±Ø &rA­Ê„¼çloü±ÉG\Î?i±Bc~”“Ž®>pE,–iæª21]vC¤Î©zø†“éi…ÿIuâGÍðà‹I–%ÝÎ*¬ Oßm‚@dí=}ˆÀdÔ*×W±‹`¥>˜.i`NOàÿãÖ*|ô `Ê Ma 9Øx¼`EQòœ„"Z3 œÎÓU¬_ÃS÷x ýãh ¶qÙá®<" ßN‹" +à„#Óa/­æï=¾÷F°6Є©Ê¯ FI6¥Ó_4@³ûp^Q¢¢ÉaCDÞ±.>´´ FR@šD%ˆª"çÍ™oòJŽ¿îZÖá?úk!BØ\f™±¹MùV`Ê u£µ+ ££öMe³ovõËã—š hqCÛ”[ qjgÄÑMõ?,h‚IÚ¤þiˆÅåµHŸW]³ø"¯L挪á_Û†6Ü…bN3ÑkšÏgÕíÉJ¥k=ÏÝ×0 ƒ¥anœÔ „Ìg¯<½äu>2¸B¥þrr²“$†¹ãÆdÓÔê©Ý!Õ.ÃÊ¢E¬VÝn ôÇÀ‰#ØöÔ‹—Ä”Ÿlå2„W´™ÜÖä5 WUzp;ÇVë°1†¤»÷M.6ÞüšPf…í—ÿ„"÷/!LÙfoûü0[?,÷T]Ó¡'"p’C ‰û÷ÿ‡¬O²ò­#ÀhmÙø™“·)±Y«n†ágŠsÒÑñ×'š‘[*ÃeTùI¯üÛFúä×Ü8éV¤gÛñØŒzˆF Ý’<{¬N Ü"6‡î¡fÂq=Ý„qñŽTÊ †6”Úk¡/î7> PG¿Úꚣ®Æ\g§0«}`y籦Ò„Ä„yk‡´>0 ‹YZEpi/data/M.dk.rda0000644000175100001440000023136012144476640013214 0ustar hornikusersý7zXZi"Þ6!ÏXÌåâïþ])TW"änRÊŸãXa“ÆqÅjnçj-1qçWf/»‹u[#Xúúoc›µè‡ºWU±Ûgñ`E¬À”¹©†bù0Áîé/2ü‹eËÍ×ÊÈüÕ#FÕ£>Ù¡7Ñ>‘¿˜ ÈÀÐ0ë 2­QË÷0_’ ‘Þï5¯ÓË)V'­dу7ÐøÝ³Éw6(UBR œ†km l}Á6*]ʼæQ<Äí&(ª›=MD¸J¾†a°B?V´AR»µ.Úñ;_„þÄ8âT˜Õø@Xó— †|“_~tDùØüyF×ù} „Pj³Ä·B£0?ý# Ð©bG%Šhó¯ý÷öÑ[±ÚÌ{à€·4ôd–²[axàUl;¤z#²™ÃðÞe[ó7—0z7C HÿÌÆ‡Øï½}x-?·5¾p«›*´"øL¿¯§fÁÂQVç-ãп:BL¯äŸM ûëðC=ÂñݥŠYÍ{MK ¢´¨)ZÈò©<=x`0Ë¢3ÄpŠmLpkÃËê–.¥`Ô§ ÍI`Av~WróSôŸÍ£ fræ?ýøQ£%wIN»¤µDohö×ÿ qÐùQÏáÒ0-PzFÆ[¿ÂÕú®\ô£hë ¿^.ßÃ3»}H^­*ÌN9^!¨Þ_‡VÇòŠJׄNE:QW­r£/é Y¹ø‘*ÑhÜŸŽ¶Z€ …6©ïò†hêÓ‘—VÉ+7Ô¨>Þ& †ksŸ5p8ZoG5«LûõxOà~.C»¹°¶p[y ’—ûÝÛF³–bA"™­Ö¦*üϽôd o‘Åœ ˆ#j¾%LBŸîJÃ?a E”4…&¶ø%l`st ¾‹\$„øëff:+L¹9°t3Âêµ6n´jÓ»âL¬vOɾFUhKù'LÁCNd¬zvpÞ Ö—Û™ƒ½´Û—ÜMäWÐÊõb)iYÎÌu±`ý×Ô¥ê—+! 4Q5‰cMà9[å§}Ì—§,Nð†¶h÷Š›žd2\‡5;ÞQ܋ԎéIg–_ä=*@Jê–<9䊕ßOBðV%Î…8£sI°ô9Öbp.ÜzÐŽh‰œÍ}æ z€GÃ#²)Õq.Gü”~l6Þ@`õ@Ý1,ŸDàHÃͼ•rsX÷xP©=\–åâÐ`D†eg™aìõØÜ2ïc,ZŸuC°ËÐ|nVº¹GÇsE8ÏËçñVÓtjˆ'Ø_úz†œºs¦…8ÎLÌÒ“Ú´¦ÇK¸l"~3»šü'2†X—#âÈm–9m÷m,0=Ä¥T7ñ´—²øŠî¦æ˜’Ø—,¥„Jg«N_ØÄCø0ÞÒº¨ˆ´Ì¨OE`Ây ^Ã+f§œ 'lÄÄÎ×1­-½ú`åÁÁ½ÃÅéh©-¬Ã¨bæÒºA„ÅÍoótÞSRêÀbª"@§½¯J&©²Öp;€Rו"&~ë}×=ó)ÀÝåÇ[ê¯ÆÈŠƒgŠ Œ÷G ZÎéøŒOd¨À=ãe4Óäù§A±·©å—¶©¥_Ƭø<º<Ñ,WÀ'g<›å@²gy‹·Nj )ŠxÍ?„1nžGW šÝ½âÅÑ1êªüñøÙÿ¢  ´#¡ZP¹¨ü+Ú“ï!mrk' bÂzfÉÛëÞïe¥LÓúz'Y5ˆÿ|–éºqª©û:µ=Žáš™ýÚyµŠ1ù®0¥– ÔäÐS}<=ô¢ÃGñÉÇ}CIÝG5†T?tÆßÖ@1765Öï°ªNKõb±/;ëXÏ”–-8Ž^Y•ü`kžB0ÄãÇvš{EØþ“Ž:¨)­•è§ ™GäeYÞ›¡'÷¤ªò;ôÐRŠ_†Ötê³à9,´d¹Å¿êð°[ pWÛ€Ù‚# #îÚ½a¬/£{8Ç([åv{rÃe9í³˜éŸ ag}X™X£ÇôNÍ ¤å»¾`Wfò)ÛVTURî\¼yYÄܹ$d¸|ޝô².Aö}‰€BÅCìSJúZuÈ &s5ppö¹Ô,ñûÈ•” Û¬Õ‘Í”›V屑µô:‰^UÛðÊLgbÐZÏ‹­ÃÁ¯ç<†³)(§rûãTÝô+Nµ{8”ù}&ÊŒ¯ õÙöÀ$†–sD£jêÚgf9Ç·.ÀÁÐ4Ë„¨'-\]´ÍxômèùVæNîÇ]à OrkUã§ù¶·wí)Øv#ºïq»µS¶ß:rÞQše$³Aç7®ºoJ-•ySšGcÇí äþû•32iò¸õÍŒ%Bbû•Óp£ÎÏüP9ÇÂ^7-î.¬ÿûOPNnÙ÷ÏÆŽoýиé'A¨ÂÎx¶FÄA’4ªß£‘OÃBö^+÷¯&Ï,jd`E@âÅ“â¸âÐÍ%)¥:–kωü…öUÓŽ8Ï;áß” V=˜þäª]‹‘À¶šOšö’pIŠ–~¢U_a¾Ç›ƒ‚/BátñÒ)Ýäß7]•Q;ïi?ÿ?`Öš0äüCæ©ÊE)ögÎcØtö>:ÝŽú_Ù};¦Á }0Z§æNQE]|¡!pJÏsˆ¨W"ª'î»aÊU`­YK‚Èn¸®€,fóä¹JyɯêÊ2ˆTµÆþø×âøAÙ8+«­Å ÌãÞDÆ1Ëv. C.…Ú¬‹™Å°›;qßþs ìèµM `ÛE{-° c¿ #ÑaÄäòs·ïx´¿Zonw÷Í®ÓDOS3©ZLêBTªçÝÖ“¸QÁ-Q¥:n®d¨Üœ4½ŠYÞ‰jÕ>]‰u´—†íõgl¹wD’añ¢#v6Izƪi»z{VyÂÙ¹§:g˜£©“, ®k°Ï†‚©G‡¡þO÷“h›m[H”rÈðx—¼³Q¾—-襗eíÈo‚z%T˜¤íM£*™X¬½zswü÷Å ¿+zß]Û¡Zu7`oáÇ^À‰Ñ9¾wz*¦!¿”¾!Y—²ÌŽ)Ál‹‰p Êñ¿‘u•^Æômv!±³ÀXÞC M¾¯€)ªz¥îç¯SIàÁ‰‡‚`âO狽P+Å®\(»HÜ »U˜#€ŒÚE½Cí_Zê‚ÅPð/çÑxi«æ·¯´æ2KbižÆ\T›µß «#ánN[£TÙ‹c`G§Ã’¢'LÜ…#a¢È%¨ëüVû÷ƒî—}§NõàŸKK,5¹^¸–Äö µš÷´óesþq˜ +[(à Ãî˜ÿÕ pOߎ‘]ƒ[vÎD¹GÃýDòÂx¯òîn ÓýÔ)¸*÷ë+Xˆév‰Åš6ó3'R}_l‘¨¤P’—j…ÐFf%êE%B—±€‰ì½FçÒÉQü—Ï Í­«D„t‡+±ÛŸ‘©ˆÔ{Öé%؃‹‚§vÉD´¦Ä ÈWÔe¬&×Ù¥`²3wê—•4— ïŠÚ8->ª„>®„;>ñŽ–83Kïõ©›âÙÌ2ÃϺz:œNàCÄH°¥xäÈP¥(ÐÛ8¦·{oCô¾ÇÒ¾Ö嶸WïJ)ÎÏ„·E¡y6v?OÉr¹ª%¼b»„_££¡%ú±ÚËû4HR’öÄ—ÞU'Ȧ3o8ɇu¼âÿ•Âçã‚Íúå…ª¦HŸ–ÏÐñ·³}¼ +"A,«zH1+™«´‡\b:HƒÆ‚k«÷C†Ç®ß9¥`Z ÿ7æäL+×¶ûÎ2;¤üñÏ㢠y—Y?Ìâr8F MôÎr¹s ×D®DÛɤÙB¿Ælkå­ï’ísp$§I"h}€!3Ã*` âdà^vŽƒSã AKóç´j-ETžwÂ7øÊUMC6?Í,X[tûÂß?obV/^ç»ÿh\dD k.Ç%Å‘‰‹Ò+d•›‰•é@Ç6Óÿñ÷Íza }²…XºÒ’mB.Ö4¶«—ÙíÁZ‰Ì;L?[‹·€òiuåºó€DýO–õd¸ëžà"r0¶¤ÈŒ~™ÆÙœesÁRV?øA÷M–^ŽfPíçýßd¹Ï;F:„“7+p[D¨Wž…(C’›  kD¤eë*\¦Ë)Ï'NÃ…ã×Ö¶½s^ LoÑÜL| ù:kÁof¨…2ã$ó6­¹}ØçÝ-.—Kú.F‹¸}ŒûñéäOÊõaE™ûn Oì*­³m@®¶"{am !º44{‘›L.kÑõK§›fÕ\ѬsHx@ï˜û# {¥Ú艹é?ˆ[€º#»šA° º®_jZÞ¨]®ÔÖÖÂሠóíõšÉlYÐŒ Ã5æg|œîÿ³ÛñpÓ÷}ªÑºNyþ;¸l؆ËÃÇN‰Öå2^±±!ë÷h8Pý Ç²k¿Rļ™yá\¯ß«H{µ!å ®j¹öªùEZØ¢7’'eèvB$pò yÐÛ·t§tVrs?dž­­¾J¸$Ê`iVô4›âüKõ+ÀuÈ6òp9Þšþ6Lèœwªìø1Ýu¯$áJ´÷˜&Ån"J`àkwMsä"4+Pã®I|]=»—.iO‰+¤˜¼Ït'ÊTÒŸÊ‹E9› pÑ„}U°tã¶›Ž‘Óg³ nF¯ cZ$m0£5“îœæÇÒþtA‘ôËÕµ\ŸiqZGÖç@ìmÀF\é%QÙ¦/f)E«ÂëÜQ-y"{Ф?…QÊÞ“ôOç4Ä uÄ´æ¹ë_;ß7µfn3øFŽLG¦(äyÃBÐÞ‚ú”)_ZxÏeôY¼f©›–þ꜉ŒVÇ(Πð´ò©™tžYääÔI}PÏêžyd4´Ì‘—Ð㉌qLø(þ¹MòîàËÅ ËÖÒ˜hª#´ˆ@HÈTï òA™Ý};ƒ7í§ÞUϲºè9šH]äæáÀá¦<íÜÊŠ}nÒU–¦%6àáÃÆN¶ +užè¼‚ð®þÂeóQ›vñ¡{Hu*Û’šnN «CÇ>‰ëbÛ$Û¶xlbBìØ¸MéÇÝ”þ™²§KÎÞôlûy—‡pçëûŶFu=ƒës»bqéÕšK}Wð+H€<`ÞÚ¡*èbìY‰ä²دwïܶwýT ¦å† DLçUá¸Ï0¨È)ò¬ñ1öìK´\9 #F-¶àƒÈ¾Iÿ5Ÿ×†*4ÙFd㊵XÅ·‰l¼iß8~3—X±Väj²ì&W:ç±NiÒ+áœÎ]ö‘Â…¬Ö· ¹Âõïe¿O¼RNq·‹ïþ:`ÌVh"-NæépHœèáî¤ýs„©—ýO©pèá½û¨è¡dÏIõ¤¾f JIÅ=̯r(v|ó!I‰ÙävŠ?zjçŒèŸ¯µí9ìÙiF6¡çÄèbs2¯$6ᶺô ÿUûÏ{¾0@¹…ºLqÛÌ=(l«Ït0ŠxMÄfÎ"gÙ+Q5±K‘¦?Ú<ݰ!Ã\)½ô*ÌðÂ’ÎV#öP{t+ù~<«™d°¹ÿGñ®WR¥¥é˜öÞš6?š¼dUUÑM®Hê°9NñL›‚ìGâ@>l~ jUê—9–mñž7™I'©}!/çP^a:kXÈç„8kÎõ3ÂÝ8l ó\“dpÊ>Ø…ÜQ…çdqóˆÜ gvõGØ]»bsîDº—kšJñ9µ¯JeRßDh ƒ§1–ÔäÖ=ÔÓ|Ö0¥ d"ßi5“\Ÿ|¦4Ðåg©»%ûP[Ñö÷áâVmL­,ƺi;ÿÜÓ²¬»µ,;ŸÙçÿ aÐŒÂY&{#¬ ‘I+í¢cŠ‘™¤ôÕ$u¦5•BÙåóWOÂÿ}ˆm-Ë$9 Í’Ì3yÆ€PjjW;B_¯ß ø¥ë£é³&›P aÚª8ѳ‡‡5¶×m—„£Ù7»ñòoä(SÚ¾©É™]©Ï;êÚ-ýÁD^¼Ô@­1™áàÐ+‰ÅûêhUŒÏkÀøÖ³  ã2 ÉIþ¿ œ›¢)3¶¨¾&t±•r¦ö¦oðFj;i»ËL“°ɾ¯ø²·è‘@Ì$)ܼn8L d‚Ff~¥ XnÐñ$Ú#hW²lî¯îäm¾˜ÿ-¤9󠽦^-BÏOÄæî2Fµ(úIàOi·±£l& ª¹Å@Q(#¼ö”j¯(e}™úÝ&'4ãÎÍg­yûS ´Õ÷Yô.¯æ@"sŠÚÓ¸ŸÂ¨^~û»²lÜüdW¾!h¹°&Yå¦(܃â¾ëDk&—i;oâó*í’Ô¥§ JÆ· †óCR·!QWÍÜDÞßž7Ô:üs˜y&fo;BQÀ®N µDÉõÉ4Œ1)Ã0LÒ3ñ§Z}ù"òß\W@´·¸çÂ^ÔX§¾­Ú¨9@Þ[ˆ•¶ •µ¿.n_†ö¼2GʽU®[çQÄP4v]z‘ŽÞ|M1EA~\6¬K •=ÏŠwÒK‹8_ûSóÉó‚W4)eî¦ð*g9*HJ$ѽYÓ±4pº¿PÆ4©ºtb>Üb2—¯ÓknàÞPc( ŸkM!®nÈÒaÜt¨-1¡öäî<ÜA|†l“¦™}Ñ_AÓå¶æÒ~m-Ü ,OúÛ4¬0T¡G^œ^ÅL¿ûcT`IrY%+܃hèV ™S`JéЫÐqŒÄqegf&vpZvÒÀdëà‰­!Œ¾ïa?;:•\cq«ŠšîäÊéW®yK(‡‚u¨U=±‰1.VAœ?/ë½ê ˆ‡$´2Þ=ÿ"ˆй¶C±­q5õ¥î-X‰Å¦švmÜÀq!w«""úÏÞì‹ØtXWõòƒu@¾ËÈT£àÏ£ŸMW øÈ-ØXÈdáÿ¹R‰ÿG©O0øôãÒyó¹ïß°ÿ¤Rg±&*ÊŒÕxEö0m¨a……UÒŸ8¨&Cý©4ì£Ò¥EÂã»´¤ù–Í*Yp´ÄÎ4Œ(U¶Y§¨ {fy¶åÏ Ã„ei6ߦÁゟà%°h¢¸Á&jçÓ&Ð>@å•§üïiR©‹ËÞc¬ÊüÈ\mVÒ nÊûü=ÆÕ38~¥“ÀÑÏ_— ÔV„¾á ƒ‚+ÒN3HÈLÁ•(HN_¶¼ïoÖ9s'p"^ÿ9:Õ†·®Ä店@9–Jt 4,]bˆZm‰å¶*$s›.bô¼Xí1 ƒjã¼mv¢7ÝKG„«piÖ˜e {s¦ô#üb0½%\­"×Ôôü~'˜Ø 0ßvî”t×EEéSƒŒ¡V®ŒÐi vÅO «ûŒ¿&[¢;ßf¸Æ’·ØqÅð/€ã2ó~¦¿=æzo†*i!q-›“ÖâÿQAÊêÝ‘³¯ÒŒóŽ—LUq<ë÷"ÞU¶^qs"ƒ B9=j2%6굜³çUR#oÇÑá±‰Š´rìJ@0²!UZ §ËøCw•u’µí÷#Íšõðà @¯Ôàîa­X}Æu6Ùûׇ+3²='Í@MÁÆ{†\  Å7zN©mWøèm«Yƒ§Ü É—Y€&­U;±Vä’ë|SGƒ8PØ…yÌ"YÒ§Ýâû—€lEõ{E$?Òõþó›?:vvlëüîõÐ0¤†;0ÎT~(VlóÔB,Ù$}|>éƒÅŸÙ´Ðûˆ/ϰéÎgqcšJ†3¦G;)¥²AÎU¼XÐ3¬uÏ¢ªr0Ÿ¯;½Ü•íü95Š$W C´¹©GþC§IfÿøeÐÿ9gÿx' ÝI§ÇÇ–°¹æ5Ç{âÍs~‹­>ÛК`Ö+I´£m©»[|ɘ ä÷9g» N%fÉ´Àõ÷ÓBd4^Pî øoºþmZ4˜>ËC]€¯ÛâàfáB÷A\À—6P„SÀÆ;›ð%]úo+µ]OaÏ›ôHèÃzƒ.A„Tu¤ bØ +'ª=BûĸŒÆg‚t]K‚¸4#I¹ò;ü!WreÕ8!>²20¹]gw‹* E7ù‡?í• œýOÿÿ`UÛ4§ ê8žÑÈéNLóÀYÏÞðøQ¿/*AH-û'éVµ[TË:ÑîReÂc‡QÉí(3¿qOFˆziVPÅRpUI7W-„^sìMÔ Ñ´Yl£ÊN¯·I™a[d§ë˜pÑ¡ÈZ¼* ¬Ø¥oh/Ybie î-vQüEðÅRVçךá:›Ümhêë–5NÅϨkß¼0r_Žtxv¨’á$BT}ýÀ•'£s#ƒ—Ûzl­YV¯éÑ©`‡Š’*l1¡èD: Üÿ k0zûmê*q·è°-Zd;®M–R–žj¿Ct.#â45êrã⸠Ý3³)³B„äc¦~T…‘µXWšŠ%Û1(Ai©‹¾lµåèÙS21<[,Œ\^´Ý®…³f'Cë]}4¡Ã$ü}jj8™¦VäP‘ç  ?ÈF‘eêAtŽžŒDCb߬Šè|Éw;¥æ,žžl,HS”EÝÏà P)®T„x®E"u÷ôÞÁ¤´ìäøt“ú&ÛBÕ}A• ½Sm¢-(Ka~j†\ô’ú½…öñó¹ «G²Êƾ…¸„ƒLd°À¿Ó¨õb]º|[ÿøoÔA›ÒPÝÁMs}`Ðîp ÚŠ-³Û»ø,= °©ìŸ|Uým"Êi³Ez!܃s4%*"]âÍÜ¥·b=:²ëm´\Š6\H‘£g„^½OóÉÒ!õ×sê[UoØ^5>ÚëèæS&®ˆ¶÷rŠÛ¡Î'¬ÏX8ìàeB òÊÄLc~»&!=ìd©÷ü\ïi‹ó8ü A¿å’sÕÛø79¢köçz¼«Q“ /MA­¢@š²B³ÈÒ w^ßä©']ùÛšò|ýòñuŒ.Hc?ž,—ih†ÞŽ]ÀæœÛWÈÑI °…ÊÎN4Ä”±0¹ŠZ—Îf÷úÒ÷- ì¬Éx‘Ò1o[çößµG/Ôß!Þ·œ`«»‚)œ¸Íž!ý®çhºd‘À©çx¶Ûs ÉŽä¦==\œFhªâÃ`“‹]Ü\1û·eB&8¯Bþ¯þ~)ŸØýÐIO!ª,g/·5–þ0¡éHÞ=aÛŠ²Óg¡þxB’k¥}æ9‰†nA¤ÜÞéœÌ¸%›hN>ÁîK ªcüA tcžÔCqaŸ@º²74 ƒ¾ƒëXõ¿‡• äÊYõ‰Ø¶ºð$xU*i½ÈX+°ûÕŠ³¦‘Íè=×øï ç ñCÿºc„ÉÌ”Ïé›'n&=hÏ ÕmøcÿÂRyXUü¡‹ƒòÕL§OJ S±¥êØ××·°Æ½o‚Ö 6Û_—> L¦æt{Pé¦@ òu;Qv”Z÷+i•¥0SÔEÓÀe„xµÇÏœ6?ìwˆ©²½øeéC÷3>àZR<_ ›pA˜§C~MÓ` RÌ'ÐD3}^jŠ€døák30ék¿šÇ²MEK V{שXã7kRÖ|‹þΚz…0„\Ho›;3Ä)Ò›!ŽcòLÉ£ÉÊÇY›>#Pª8©$ReJ±³·[=ízŽTñ{ëmn[Êͺ&GˆC!9ûÑúåýyƒC…µW¦ד÷}-'$:ý“ž[€–ô‹û xÜÂ#çÛ×ù)B2Ä]æÍÒ;®»>f‘¯éžm¦TÑ—‡§¤øî¦ ×ZM?×}T޵.<êb}í©'"VAÍ$Ц'w^$Hp’—±³"íØk*@ÃOŽà¦wĽÅUðÞA¯•ú%cú<<=ùewx„½5ê*d‚1[ùüœ×<ºÇãozÊ^Z mÎUdq025a ê3°pº0–ßèòn³Ñ¢'ö<…qøí?ð}ý? õ¾ßÕ?ÚA!FÆÉ0; øûzù ÁÞ'Øç<Ê-f-~Hwø(é p©5Š2¹ê<’8æÙ¿ÊPüê8›“râDÀã®tÚºšÍ]½Øn"ƒ(ù‘ùxNˆ#F&¨…šÆqÂCº¦éKÖŒ_ h=iÜ›´žÏæ3ò5&;7{ú‡ 2ö@úô„ßQÿôÊ¡t¼©æ—UO~k«Ç\ão°VnF1˜§eB(ž5QEl°‹,ëœíc\Uí}³3¹3•+Q9ÀÕ»=ß%ž[°‡âm²M×`[õÑâí®ÌÊ1R-BÅá´í.÷5ŸQâàËÆ‘B¾E<%ØU^T¡8 ÎÆ SÖï±<Ÿ×ÍÙ!ô@›bN¤”ê…g­±²Äó•«?¥®Æ8ÙZ´Ýì¥R;ŸG,r!ðXØë0´€§ÃO’&e1w®Å”Afîý4<ÓôÏóàE¥(jâé­*â¦î a²ßÆX ì›6†#óÆð‰w2Â; ô&…Éü9¤]‰8ß¾•ˆj¡„ZÙbisqï×7 ]ù¶ Ûp*50j{È/°ÍhÎ7¡sõ“æ>N"™rš]¯Âða¥M"[ý;Ý4•°4ëœÀ{ð¢Cžï›Ùœº6aiàF—8Ó¦¨Ï(—ÖÊ/ç4§Ø`_l§¿QHþ—?ÈÚº¤‘¹Ù7Ö~»Mä4¼[üå`¿Í}ZPNwtã¬.t÷kq”ë™¶¨ ¬|Vê”Å0ù¦Ý¤ñÔ«Àïƒ×m«á¿û³cñ®²'Úöu¦ºKICÓÞž‘~Õ ;æª%©Òdm¢aou9:ø\Í¿%ÎÆ  V„¿ó(_1{¸öYí‘H.—Ú?€Ne厃*QÎŽùË‘˜ÞqhÝð]·´¦Å¤É.áÌß­ÀÌ—ΔÀð0©Yןož¥sL¡RŠÀæÞàFzd= ];PämìÍ\cêj.ض§à»‚°m[]V£T ‰ãigYJž¹Ñ:“cÓ.Y¸  ²9§Õ$¶À?¹ye|ÜzÑe_ÞŠ¯]6Œs*ŠÍÚž6ùs[r!¼ÿ«æJUÝ´pïœCçUвoàº79Ή y¯y=3„ýá` 3‘4™nV±£ñ.ˆ<^,zø¥]MA\_­i`ãyê+†ù} M€¿Í-×Mé7ó#°Û «T³\¤T¹(5€Àg4þ®9n¼ÓH‰ôn¼[Ê š%`¸ä ðeoþ t™Õ+ÒŽûTÊ+ɼ"¢îñ¾ ÐH¦…žã-Ü`ò¸_Ž6ÙäæÂÎcÑ"€Pâ/÷Í‹F¡|˜jî ­f¦;‰f\#€oÿy~ü ´7×ÁÉÛD1 ‰èÎ4Î(ØŽ /Î-cð„*‹×è©ùôºPEx¬2r GîZ´ˆ úÑ _©˜oZ7þ9ÿ„°Šœ•ÿ9Û uÚ%A6hOkx‹Ö§n„–åó¢Ñ2ã@Œ?h~ßTÜçg¡Ù»Lëc¸,b9’!¢äàœÑWöýbÐ'œøM„ÁìDðƒZ1‰kÃÑüDÅL^ø¹_\œÍϤÄiMÙöM£¿myLIJÔ,¢Î¾kÙð­ss60Æ)ÙÔ’Õ,b¯J‚ÂKˆ÷uõQ^sZ"k•Ë×u©ÔúãƒÄ06Acnl¤Ñå]p®:6²:AÙ7a¸J£=%A’šíOŒŒAƘÛdV†IüPqÎX®¨šŒÍÈ/DJÕR‰` Gˆo¨6Ãß›ð,_Âfi"Ó5°ø™ãï±4ØlK–6:zá•+YUž·Xÿ2y`~Å;_;Jà*µ+A±7ÿ“8Ç\„k‰çÎ6ö2i‚÷Qx‘D40Ë¡•ð,Ks 3¢†Uc£‚a!ô‘Ý?à>#_ÇÇN_iÑÛÄu ½vî²[—W‚ìž­Œ¦A[NxЪ†œéƒ³ÃÐ ÔïO)»Ê÷ò“J4>i#â¦Ë»{¹)Q„;¥-ûÞ ±= Ù Þ˜öù å¥Nök›&/ã&³Òš4®cvl| ïý?Z¡%ã;ʪ›Ë×ÍaNÈš~œ‡»MÊnû÷œ*ü‹uUCxGäŽÏJ‚¬mÜE± ¯',Šî É>viĸ±³–lMr·Ðëë¶ÍçÛ|ÁÂ*¿~…üŽ~ƒ³ð©Lœ?6ðí *©|‡:rÿm…Ãy9ÐåDF•§D˜éAt޶b¯Ödx¶Å¾Û»¥ƒHÕˆ€áˈsªü“a’¹w”àÊ”@˜Ò¯?ÙŒqÈÈö+`¥³1"4d€½c æ‹ä„%‡74DÝme>yág F¿6ê)¹¯ ²Qƒ4¼ ÚT•Oys‚TÂéÝ fþU Ǥw ÂúN“ãg߸ÌõôÂ()O^Àòè ÚNRb·»¥SþféS #w·ÓÑ@ñFëM#ÒxiDÕ|LJmþUYÎУ©_×_àÀóìç«)ND}ÖS2D0û¡ó_[1¢dd­ƒU ÎQÆCá`_ùKra­`Ö&Ñ)F¶?ˆ+°w\øZ–Äë$úÒ9´©íçû Ÿ ÊNTiúÔ¹²)î*Dt Ù”êß÷á#êÙŽ¤ yÐÞˆ 8‚ÍŒ”“ÐäO¸$–~y>Ó‡Ÿ`´2h™àœú™¥3¡_0Ìr­ƒSÀ–aÊÕmRVÅõCní¡Ëó??¿+ iFI-°XYl´oéXVasç>Ó¹ý*‰»µ —Üf8úA6’síc±æ±{E¸HhåÉBV ýã¯c¬°qVˆQE°×Ù_¹³­ÉÏõ]^B©Ñ¥ÕHêSC  *Û´…Gê0–(¿¦ ‡Pë*¬°@¨KüDH´î@änÇ܉PAêv½U 5Ôt+´°h?Vû™¶Ÿ@â ªöF½Â$UãÉ»½¡Õ¯S,·än¢Í¿ÃhvñG€s 0#Ö4 ?%.\ãjÂdÈò†í[unNÌg±Ï•¾÷Ùâ߉6íÆ£TzñÝSǤ¦"3› •Ÿ(¤£‚=¢`·@MY´—Ö¯ÀF?]•ùkÅÁÏþ7h,ýUe::bÎài9cÑ ¼àËBZJ'‹Íª³Èî÷·ó¼=‰“©Ó¶ðŠòv38«­ gÁÂ']º/bVG„^&«Å'–%íÏÈ{à[á|ª»xpóéZ¹2R‡ëls tô nF™[(ÖÄ%Pr–È/’µ0›ÆƒIÂGÉäÏ­¬ª° Q°4c¤±vp1Ú¦˜’ZOÕh#QËùãŲ Èp—a./› ϬäÖî3Äߙƙp®C½H ’»8„áD‡h,ÆÑu‹uqÃ’xø6hñò$õNÁ{ç"ßJú÷8#Ü~B5ÄÕ-X/?ž onˆÍZple‹¨rŽ”8ýâØ—(¸¦—â–ÚVñÆ[ß;($¼>ç‡`×eë½£žã‘6Vøeåêz¡dÚAEéãXrÖk}n帉@ÁË^iEžEûê(ß—õÿô•V¶Ã–qõÍE›ðfXÆ)ÄZ[exªê21`ÚBùŒìkf üÊUÁp=‚蟢 òg™%0üÂr B¸ ‡~ÚÄE1+)Ä]xnF’ |©W@9‚´(ú–ªZ€j“h]Üx¿¾1†_N[ý ø|%+dîÁb›#@šÒqK…0h TX=»1a¦ùÓ!á=Þ;x„;ŒÍyî´ëîöX¶MNAf ÓÚh>õêkóÐð c†oõt–îV”×6ÐRžˆäv‚£óÀFØÑ#r}9a Ô¥ò%.Ú#¡*h]Z#f^<äŽ7¨êÕ=%*×~•Ò^ÍÄ£¢žôöû”ìª&\c´ÉïLô£EtZî“Û+Wj›Í¾6Ï×Q¯ÅÂ0æ`F@“¢Å#<+P«ï$®s;+à‡à¢<Ь{üÿ+¼±ùr·Ùÿ™ÊÜ Ì¶IÍ“4òfS9â<“öþó”v„²™è-¡¤±„™àû#º€1ìÚßк¬¼šhëV¿­ž%rj¿'=ûB\ªù²ˆ*gTÊO<®âI!ÔÀ†o rzj/¾ø>gGätbqîûG/Ї*/ÙØŠVv÷)6axÍ^[ëÌËòâîŒãâBwSÒ^ªéœÀ~„ Û?½t ÏŽ-–“Ê+¶ÛW¡¾äoŒÆKÛ1ðûpùEì<-ÓÎ:`ÂëêöéòŽÃ3Ô‘EgvÌ” Q‰¶[Zìz‚t0†í,ƒÝ­_óŸ@xÝ'¤½Ù8®?§P=Æl=°sÔ—èUº¸Ä°+"­ÉgᢣKvL‘Í¡p“JµÑ`CšL<¼êäÀHŽG$‹c‹˜wšø8¶•_]d§h€CucŸDë׋ƒùŠÊólØ¢7ªuÔ¯±ÿ¢†Ow®F®›êAµ^H¥l³qa2¬é¸ÍhÔÇ2=< AÆ£F"]Þ¯Þ‹6™mAXS’h”a?“c -‹ ¢W· °LˆA 4òK QšÍq“_·\“c˜]û¡ñ9GPMÖ†?r4:f…ll•mC«”$p-¸¦ì¯‚È]…,ô×ÅöŸvóâlÑS…õÈé5O+àƒ‘Ãz00éßóXAúˆWAå7M2Ò-wL~çsRO1ѯ‹Ðë-¹÷TšH“ýGá›)L÷Æž¼ŸªÓ/~×.G ]‘,ad„š—xD}¦ðÞpÚçw –äê}Ô0g0Ÿ=¿ü Ù·“'å€Âªçn+"àÓS˜±ÝP“œŸN` Òí¹³B¾mÞé2–ßÑ…ï¨^¢‚ ø.ÿðN€r«‘¨)é¦È$ ýŒ\-fÁj®VCU]¹—7èàwÀÔ&_öZªºêí]l›ËL‰Ð‹lç¯*©MþGÜØÓi°ÆÿÐ&Qä_ DwoŽÏiøFW¯FêÉä’Ðmwᙾõ»Í±#¹NZPàc!ŒÏÙ”Íñİ¢¦0'Uìrߤv@&Z=…ä¶NqýeëB=çÅÁŽ•÷Õ|Z9KrÞ÷?Ô\¬ŸÉï5‹à=–¥šRáf$zì&Pö$1 jE}úþD^±ç… °öb!Ñ%®—ÀtâÙäDÝìoôAºóWæêƶŒBvô_6 f”\7û‡Ë×Ô<°Uf„˜3MôâØj­fÚ¨O4-(°o›•BVàôu–ï.ýR2êߘl¿!¹wSä7 •$p< .sÄlyÂÅ׃“ØK}5yZVœ>ÝRÁâ Ü\ÓSâ̲©è7 “ |}ÇÛ,|x•)é—½T` ͘±À¦ó3cîû-„®­Ág ÷ZÙì3iyvzÖzƒ.ùºgÔ—¾µQ‚#îRæÁ†È[5…ÆKä«Ï{!2&ïp^uå1ã©ÑŽÉ}«–:$½ðõvõ#„Eje5û’ìk¦²D.aÀ€…x|pÆF ¢²’æÈ"ç @"›ü¹¾6ÒÖí.9Â~Á“ÕÊñUŽ0_3g·!ÌŽnY‹Îκ”×T¨1À95Ëû%-œ·`üX£=^ÑÑ>¹…†À lõÊhHM’ÃUà[¬LIßê' uçuxÕàØu7Àd1-5Ýw dÐäeÞ'³ßvÞv4Þ/‡[= `µù;] ¹ÅYR+êqº)C ’‰øz…bÙ’ý&Þëó¹4Y#OïŠüÆ{3b} «TEÛt Ë…ýó„!”/=Ð}¨“›y añóí9Ÿò©½:_F¯1Ý}Bí!Tf6¡Äûñ¹õßt’JìÈÏ £Yƒ'e²í-/9g½ü‡'V"ÜÝ:n¶¨†ÿ.×~Våùv¨4 —Toh¾G/{;ÔÁLæŠè”--"ñÏ;²a7¢°ðÀyEqççúøl1þÆÓÙ†z5¨Ÿõ º]¨28u¨\[Ywåøgëûƒ6….Riþwbs×”;æ5ÅÑTÏöÐBpµ £•<¢OÞA›/<êîKf߸CfµÞ¢¨Í&ƒáfŒTŸb‡:K¸[ ñ¤À¦Ètçt¯§Ù“´;‡‘ñQÙ±¤Æ° ‘¡š? òAÚ9w€C`2ð#ráöß¶ä©Tyþå6·q)Rúîë¼Qvp‚£E>‰w"„Æ*‰Ë6ou‘D< æô|-°Ý. a,GHz‘jݯêùýÝ^=K§g”ød8öÁèQòˆ"ˆ¾<]àø{$CJ5 >@ß5÷DV%x’ØÐ%§ÄÒ†˜žÜVxaoÄ8eè­‘1ÃnÅtÇ?¤Q&œäbp20—SAQÂýÕU»Î­ø4ðömM‚. Ȱs éñnUÈÅàW+«vú,M"VÆk˜dз ¨»ýÀK·Ë0öؘr DV¸s‚ï?·<²•Ýp?óU‰ü òîUDçÇê®·m’¿·Ä%ôìæ"×Îz d- cOU­„íÊ‹¯÷ñ‡“|†¥³g­Hßhï9Ë%‹GzÉrªáÍ×àð;Âå¬IR$´Ó^N¿ÐdžŽ3TUÕHpoò¹šÇFDÊýÚ.}E%ïD{³…5Tý Q½Ä’?,2‘¢Þ¸¯ÖRfL´ú š‘`ÌN³°ô4in³ ÞbÎKJóÿvy°¦ù®JZM9AÌ ‘N… VAf¢!§ðÒƒžºaKð§¼Æ;›ï‹÷Þv»ŸÉBÝG®ž•ò%Å ~ó‰Ä´¶+Ëä7²pÁeؽ+¢ŠQ¬‰‚:J–ú5Õ‡çi|™÷²¯°‚<…:<}À5›8ë…°E}Ü ª”ŸŒŒ‡àOù'‚¼GJxÈßQüå‡þ:d.ì¢s¦;‡¤ë0;kÄai= á¨÷—» gÜÝù “S¤œBùž ì84‹}Ùú÷z}ä¥ùbF–h÷DÞŒC¹=ÉRb‚Â[ÄF"ñªM§"¯Í\ýÛÉìf«¡ŸÊ´T«TßÒšCõe)÷)ie¹ kŽ»Û;eà²þ_Uf°®ÑžÞ¦¾–Éþ ›®ß)B—xòΕ¦‚‹Ò¼zîž¿R}¹‰û¬sP²œå–âXï¹­¡ö&%5bÓKÃà­CÑà[Q|—‡l²mÖ¸Qt«0éí!‰M<–£¿Væ6 —öCõ aÿ[ŠŸdGò.·ÎN[îaKSÝ1†ô¹øó¿|އé:³E©WÍè  œ9)…nT¦ãú0r¨NTÁ„ž/°ïæ‘èGÆìŽ:uÙ«iêØ­e15§“ƒ“éAˆ‚ˆTÃø‰ à ¹ÖÞìþÓÄ‘&CoWôéHxXFϱúñ^vQü—Äkf§s+¿…“Lõ7P¤Pî§[¯ Åi\^`jÀÕÆcå]ÓJËxSç²@ì¥7#ƒ† Øç °˜¿FN1c oVÝi®EB}óu7–¬µÓ¨d»´µÐ¶ÑÜ¡½ÀG@|51Ãé(;(EêAF`eÝUˆ”§pGÓVyûðŽ'=™¬%b¤ìècC&[ýhk“h{&#ùŒÀ@È¿T÷4;%.’ø…¶…(5nÙxNTö,œ.sÂ`f!oÒú]oKwÛ$5KK>ýj@ò8•½ÊA-‰’)Pý†¦N#Jï~ý”ªY¤ŠãŒŽÞc)D²[Æ¢æìÂò™8É :¡/_Öø"õI´$© By$Q·åÁ#:n¨8i‡)”$Yác-u,v:òÝ:zHé\CžP⳸¼Ît¤NÓ‰S8î×úˆ6¤‡U&cƒý œT¬øp¿¬cE oAÎjðÔdæ°„8mØãßþ£ÜdÑ:“ÙíóaÒ|° ¤/ÈX~HC»DX¨ÓÜžÈg¢"@w¥t[fìÃD¶ƒm}‰þœŸl”«Ô„||ŽÊˆ)eƒ¦«G\ètâ(•Õ,$ý 6 't[w¼ñ“¹aªûf£ f¬ËV£­|øC RB¤³5±&IÄ•ï®uøÿhñL–Ž1ñÛç>×eôKÒP³© ±Úl‰fõ2(yÐñ)ÆÚË.È7 ¨/‚ xÚyÛ®œ$¡§¦Îä!4äÜóïoÚßܵ.{”=ÎÐüËRó[ЬÊèl‡ðè&ŠÌC{šQPdWœIš…2—€Jx:+—t4!¼†À`À÷Lz°þˆÜ“+ÞGŽÀdܘÀåžož ݱǿ`ÔúÅŒîcçáóÇžë/Š:Ÿ¨Ûvœ}XË!"ݺ‚AúÕî{ÎS¼$Î%[‚Ú9ÜO˜{­¯üŽN.þ^Y«§}﫞ýéÛd0ˆÈÇ,mÉér&G££ÀM ÿ Æm½\Ãàk;ãjK{¹óâTöõE= ¢f°¥5ØÈ±¬6A÷šqÍo†-_+“:*;œÑ&óêËÁ|ª9)Òü~÷¨=ò´™ˆ´Ps¶xÕ÷QpM b Ÿ¼¨ålãoh‘¼Kî켸Áùþ\&›…Y¶1aU¥©N°TÝE'n"»y4€Q”l3s ‘~vŸ¨xn£ÝÜÉl+ÊåPËEë¡´_}ø“Ð×è£IyÛõ`Ýgò[þ6ãÍwWõùɈЎ¾“d°ÍµŒïMÔþSëÁðØ‹ÛÔ $Ùù6^ùÈüÅç£)° WÀkêï#ŒÎb@´²ó™Ð´„oÖ«æ9ÊU"{Që[%Âõƒ|LâTT£õ=Pë™[ëg]¶Ó%’›ûo'K&?Ž .ΞLøzƒÑ=¥½¯¤íÒ[ã“+þãÕ?Ì*ü¹™n'X•Ýr?èÞÕJ3%晹tùã•„Õ‰Ú‚†ÿ6zÆ€)­ï¢¥›F+g¦z“þ(êö?:MSŽ?^50Ýàæ¥ÜU#³€D^xã’DK÷n1>M¹dרk…¾éÄã°øy#2±ñ‰BƒDKu†ˆ)©©Ð‰ó¥ýtªº›Ž;9³8¶Ì9îRðHòWU–\ô÷¯Å÷{9g'M {篹ŒœBÇ(•:¦˜X?äWÿ¹ _'ÓÑ3HÀ!¼³Ç*ýR¾Ì_³Ÿ Rhè]ƒ@Ï®·‰€&vÿ©4ع6y¨ +½dH5óWU·“ɶâð/ºà[ÖË¥iVƒŽ©J_.HdQLÑàWw¨L0n30Òå¼”‹3eb¾°G¸ÌHi)~ú”–ކÍk”ÁvÚ‹¡^=ÑÄÈ0)48]öó0jù‘×Ð)·Xd”[\Y»{ S–VD>|Iݔו çOžú3ÙSJÁÖþHœW‰t{¡0%éôjT8I‚.¾‡ö-ÌïhÆJ0~òÓŒ3±2!¡’è…¹[ª‰¾ÌNB~§ýäÿ ·¿°ä4ÅwMTÍE Bì/™—b½®+5 …fá,¥|ï•« ù8ÖO›i ÖaÄM2 C¥ñŠ4˜ŽN«|õ3Ð&ÄS {äXÕÐzжO–a2 8ˆª zC•~¹ûDñÛ( ɇ%Æ£M{¾Ô{ùuÂÆ~‹(˧բq%6–Û¸¾Ì¢ó­ÃÜÒ« ÉäjºQ©a¤ ® æG '–ˆ·*–_ çvKRëŠêé­ù@xømSˈR^Öú¹)KFØÄur—­áo*ªišf0øæ/«…!D,o/F¾›@Îb!‘(LÖ4ëpéWÍ NÏ«L9Ô[×l|6.$Ú\…¾›ø¨“©-¶éÚ¯Ö´€œ¿…­A' ŒI<+âÊ®3ÿhC$2Ö|Íù¬ÜÈDâ(‘À‰ª©˜Ì‰‚[]«¢MF”Ë$|¿1³Ã‰TdNK½ÿt–Å¥”@h¬JåªÓ|îh ÛË2ׯ˜#÷¦ÈF[…óüðs}Ë[[õ¢Æ§ï ‘¶kvÿÇÑŸ‡<=MþÈKÔïÞ*œÓe¯Ç’&.7¤i,*\³\ß:V¿|9YU‹ B×F°Ø±îYl(Uh=L媢+4'(âœ&Ebü4¤Ë¯$µ‡¡)ûËS9~®æ=Ý´UŠÜuwnbS2ý±_ZQùƒ} ¯ŒÜ(÷û)¿:Ü•˜¼JÝ+Z|¤cäKCÃk›îÅÄ Œ@WÒ–|“˜'^~¨Ø’ Çç8¥”oWò–¶šr¦¬Í"P´j¨ÃNBœC¶z—Ïu›žl2î^+ŠèþvÚ2_ÞAö:Æá„2±ÄÒ¯†ßŸ ]X)>X¥´ þ¡‚E¼æöj^½ÚøE÷uÙœŒi‚D!Kc ¾M?jÍ€‹×Òæxå ËÇÐLby‰ÉIÓ>ê^¬ÉoÒUçÕ%ß:‘ê â¯ÏsZA 2Á Ъ\jÜãÈ>¥—0“)¾8CÂ÷jŒÑÚ¼a…§šÍ “@ö“ 0ë© £bÆ*Œ Ï®wEB‹ $Û®M\\o¦Vš‰œ}Ë÷"`ÜRæ¾=]é°Çjñ)dp(. ô-9­Œ_F\V¦ÊÍÞî"'ÄoêÌ ;ÊbÀËŒÉOæ$RU[ë¡#\Ô‡œ‡²=“'ÜaÖ Î4;œèòÖ¨fø'¼ýÄ:ΪXA¸‚”qñž‚»\6<é{ÐwŒÿc{@Ó•ROó@…£™f;ÿ‰íNU~qÍMmQc6’K„õW¦l~ õ‚ø$w„ Ž’¢‘úC«„;N?ÍJĪhî©ÇHPpú ºÕ£dÙú.T¯…gž Áúî÷!¸È:‘ÝŒåÛŸùfËšùý¯\è^“÷ŽZDl0©ç³¤.@Q×ß¶;¼}«ÿ€ ¿×&É„B Ÿ`Ïwbº6ŒÓðYên~Ôö÷‹ºüÐü†MÁ¾êÍAéYê–­‘HÑ–1£Ú£Â؆X-N`%Z¶ñBV]È|œ;W”|ýŠ>7˜ ÿz'…éü"ìGÂ6‚¼nCì‘ø‰r«»ìêŒÓþØ©õhGuàÏ¢Ú÷ÿЩÖ3±%qQu @碋Ђ =|8~ÔÅ ž¹ ÒŒ]zûœ2+É'œmWÂ^9Gbg廑ià—›c\7öÚß'÷‰²@VŠoøÄ<ëWhÎÊ£µr×ëâë„qXyáÜ$\=¦Ï•o%i“N M6d&ÏW(ÖË™^ôVˆk˜ô@²$ÆR7ºD‰{u LJW5wà^qžç8{^è?¦´ˆq* ’ê 6"Áröžé,eGÞÂ~飂BƦÞ€Î×ã†g4ñ=eÞ×ÒE9on%Éy¶é&/cõÒyT¶•X‚ Ⱦy×vú Ùk-ótͧÖÓßmLALrZü“±ˆ±ÜyæLü”*TJ½ùÁ/jDbjôÛ7_Þëßµ• \eL*hrhÝêø m Oœ+Žg‡M±E¾Ï(;¹›u¸ô:»ŸŽ—š¶[;â½:ü%ç‘4²Å;ß0eçC›8°SA½zð¢­H¬Ü‰tk;¢pEÞ=B®–ód\VÔ²ú q³Qð=Óý£ ø¬£!V¹ ,ãè„ÄmËmó8 kô>‡}2&°ƒ5”Žúë+Dõ²5­]µÁÛ°·@(¤’1ŽÝµÝç< J¢e1¡Œ›8ŒŸÏCeksûT¤x”¡“ÏdZæBþ±h’•³÷»?¥Ñµì;òºDÓš` b\VzUËa£Xq¢ÎúýPa?Þª$Sªê.£ß]š.8Tæ-é Ú³X·ëgé’jÀ¯IÐñ>Óœ:Vˆç#wÄÜØÊTë§_!¢NüËïõ$)ú2 *;+›Ui/§÷üA°5áâ 9,Ùqê¿öåô…¾¡Ý¥€³¬4¶Ed/V/O2çÑG4ià"p¤ùƽÛà,˜D𬫥—zM€%X!—æ®Ö"BrF9¦„ÒÒ1®(;²÷Ö§@Þé:‡Î§u˜˜«˜&a-›Ú´é7y(ÝKðu  E™íòà nBŽNãUþ9´%ãO\•ˆ= RÀ´ þê¦Ó«‰œ×žíMÉl~Ua¼VmPŠ= ]×%BçŒ÷¿àNšª }¤óaú­äŸ/¾ ”S!²É?˜, HîmÈQ-ù Œ²ÇZ–NîÆŒÒM¤ÓÓ5µâ•åž G±*Oò&6öñ­æ­'…‹¾}ߦãï.ÄV‹™°¹uÝrÈø8­–ƒc]z¿ÌÒX‹±¿m—~ýpXŠM¯m‚ŸiÊF "Šb­•¬ïÆâöJ ßq]à¥Wn¿ý1L®»ã»Vè'‰}Éw¼¦ àäõ±v,õíhYë â%u"­ö÷øª÷ò,­zòþ2*[Èrøá¼C&Æšw38Ë»=Á?Ó÷‚ÞüÑÞriG"Ƶ Ï"$PÄCáþ C«bpíž ¢Îå^rMß[µþqµ¨$›³®uŒŽy X÷;Çßì]3÷ ÞD ˜—\R#'…¾žŽ]»dº®*ÊÏ…ú»r­´XH™¹­<Ûið`J²AF£D.–7B2°Ô3§ Võ„#—>ü[ýk|X\ÀtdÁj0 Z:ñ<ê¡Ó¸*H‘²Q'„˜£Ì[»16‚ÇG cÏõàá¤FüX@`OdbVß.ÎÆAGVíÚ²D9‡³ÎQâ~˜y:²q1&w1×7´Å9"ß­„ܦçŸwa§^‡õ]8+fܪcÿ,7]ÌZ¦'ƒ«¸1€Ìl{]ŠC}áåò03µFõ|ÁÐ(ï'zZZ!@é;Ë'Šó:i/—[ptKÉOéûM*tÐãoò…|›wí¬–ÛôGuìÁÒéÝÅeFD7ÿ>tUVwO'œ±Uò³h3¸‡ ¢á¢º#š '1Üã½óÄŸÅ„âïèÐP¶å¾»žÕ£m)âKÐÒïq¥H;}¯`ô*óew2í”7ñòYï”ü|ç˸‚Q'hû¤õÁY‰5Ô=7QÙc#1ýžobÜÍ줅ÏC2†¥#cz·Ñ}Áô–ãA)„_ä†8häø`úK ùøÙH«¨O8Q5ÓÚL\l鮞„88 TŠF”áKƒíGV{˜Ì x˜+»äP ¹ŽúoðŽÓC·èœ Zëæ¼® Ž/Q«Lùª—IÀÈxh*ÆîŠÀ`#ro׺”œ=ú ÞúH iT†/†rJ±KÛ£!k€lk)•%x\DÞk£.©K)Ò»áu[öÆŸ›Š[gχ+ÈÈýšjÚÛ°{<4¬××{ èŒBÈ㙽n4š^() sL‘¥$^ÐGÇ¥(. bżA-{ǰ‹3]eJôê™HÙ>P"ÄíÐr o侂¨©k0¤¾¬ÑŽÓŸö)gayg6n#禿M&ðiºNs6Ü`·oþXÈ<']rÝœ¾ÞQÑ>þ‹J‹ì\‰`(|2c}*ÞÕÓ¿éŸ2z,”Qš¤õ1ž ±Ÿ‚õæxFÈ´£B8#ìž›Lô·ù‹!&›!paªƒ¹l…¶D¬‚¥‚Ú=@$šD Î»Hî…ƒ1¢Unx" ¥pZÙfÍŒXÚý,s‚×ËÊ,¡I†Š%—Âß·ŸìëþiÒ …¦•ú­šÉC绋÷:ú&Qˆ€!…äÁvr†Â@«†ˆæ›4×°-À*/‘‘Ï"ÞnCR<¡.±·ý»úM_åUM±ÅEö£ì¡‘\xZ5h¢ =»:€á¦Zúð( ú.¢Z¿[I¿´(¢±‚(ÌÈŽ-ýòžKƒeSI@~S53¼zC  `k¼ÄJóÇÓ·²¿"Wêô‡Pð/qª‰…NDŒŸ®2—×ל‡8¥o•HGÏžÕéz¢I¦ùYÿÛ·ÂÓó$¤Á‰íJæAHäã—XѲˆÁc›rž€Â2Áí*: h7ŠÐ™åtC$ãß+È V¼ðw°ÞʵÒÝ ªÇ]ú½°dÍ &7²gE¤Âtý; Ž)| ,@¸¢•WYÐ"U6›¢Ü“GŠDJ3¹*A½ž¡G«Os(;ÓÐèôŸq6ÛÒ>–Âÿû {¶y+‚pmH0 O³;“Ïµè “ éÝy•‚7áÕ6­ù±@Ïû±±”+‰¸íW*‹Íâ³ÃÊ’]i‰uŽš{è¶×fˆ}÷MX`{¢Ói6»k!bzýÆC¾ûƒ]ZꂆÀÃ…éÏŠ‹Gs”µÎsúç7 VÔóÙÅo3\… iAw²J—Ì™5 u(]Å+‘÷ÃXâ¢í5+Þ¼¾Oþ[8¸€u/жÄñéÞçg„³"ëÃÝÜe{Eä °Ýq !½‰¸»' 2=ò5³úŸþúŒ­‚Á#{ ¦¨ØDÕp¹˜ü±W:°<]‹íàHˆ™I?baþ–J8. $’oW{ü?2 äI¿šæ[ jb¢ÖÂ1â*3ý­ª¹×“ô$ûîËfêFâýWÓ ¶®q<&+œj&w²ñ‹#„ÖÒãâDò÷I«§äË <žwx#EÉ‚MŸ?I-è®ð~Y0ñý^)ÜÛ6o<8¤¼³@/jòQ8ô£=Ñ»·–COä]» Bx¦ÙO;iõfÏÈaõ`ÿ|x&æ–uF +[ÑF4Ææ±¯°¶,>EÒ®§Ø胑„("²¬2Oyh{AÏ*¬;·±žv&€}_c_9¼B˜Ps­ —*Ž_øU×[\DzˆûPî´Dju‰„šýC¢·¼åä^gpE#í¹.)ó¶­¢p›&iqdvÊOô‘Å,“˜hgóY~¸.·>4óµ:‘óPJ0Xr£×‰$µm÷?M!Á6n¹Èùâ}¦ÁQý1¦Ý4½×Êõòýé~µ—ËÄVðcKs1"´>ýµ9±û%÷º?¢’ŽfÏOí«W¨%Zö¹£z?ÞùûWžäÇLY‹òj5C“š´.ó$ô5꿦¾{æFd/T¯7̬aùQ4TÿìÙ"ƒ6;#·C<´Õyµ¹”K;K||q:™k¼ºï¦AjÀD¾,÷CGдÔ9’¿ë>,e²Áöÿ¾pä6s?ó(>4öl•¼YòÀ´?-Œ ›š* ÕiÌÌ*‡°™ekYKÔ£Ëèûª=&\'~áràéóë׃vû tÂC¥2…¥#ù•‹1‡Rȉ‡û zÝ#<Ð÷üºªxÉ ±Ê´_”¢Z€åØr¥Lª¹I¢½>»¢xÚ= QÌ¢XòÞ%š8îãk¹Ò`eñò>ÙeéÎ$øÑD‚kÄGGn«¤LúJ"¼㘢ñuÖKÆX·Ùì8¶Ð"aSðRÖ­‹å£`¬nLëPkÈY#U¦fxb¢äÁ‡ ”¶/ÄOvQ›fÕ„ÍŠAç¼I¹R¤ë,'¥=³hƒø!˜üƒ$,­˜Àb}A¥¿p®à*%· ý›c®ù÷ëKž,Öõe: äWl¿}»K-f,-ÿ¦\¬~ÑsOØvðk„²(ð.ÚÎR:PVÑÓ%’úx_3ûLI£ûÑRnÈìùŽ„ˆn}}DìaKeéu%)ÃgöbÞ¥1«#‡H¶Ýî¬C,䯫Áã_cZUN_Ü’Vº¿lòÖ… s-©•Wz½§À= Óʪ#Ä‚‹¸rOF‡ûJÅ]59Rm 0(|ŒÏ©‚ebsÚ"çwÜÝÉÌ\}É·¿¤„Bó¸¹]k͵=IvD™1 v¹ËmìöÌ!ÃF‰P9T¹+3ΰj ×83¦^”K"÷¤­=0“Å/ „•ÕO½+AîSkÒÔ,¨ŸŒ¨In®÷‘/…^ÕÞ(ŠÐ”ïBRŽŒV¾¯#û(Bt?e0@ûs*õdljüÊ<ž÷/tÒ­côDû¥ûRþàÿæ|Š–Ý¡å?D¾µ:7! ‰é%%Fžx‡‹F„¥¯–1H‘×"{ëNT;Ò(5‰ÌвcÉ1ÑÌßèÎ|ìŽø§?öýÎ û€T¼Sˆ9„ÂGƒA/2{#8c-Àt´]ÕßÁÓèø’IH! m`wJÂüÊ^Ê{œ –ü毩×FŒDò¤ `çð¨í!·çM’QØPf%*Õ:Oàð hM3 ƒ=$.ü_² ÷ˆÒrI>±^8HPh¾S}hªBƒ¹~çª y`Òù)vÊ@Á£2ÙŽ·ÌF€•S[:’òj¦Ríø7E'^öúÕä Ž²à é 5ý*SÙш¤ž®È¡$æa²^×°Xu!O¢n\–ÔÊd>M°.¿1×”‡ïm÷*„̤ȇaYŸºûš9ósP­›Î„î¦Z`°·Åø{ÿó9wÍà‚H¨à ,vhŽó”iÛ~rÈ-$©¹`l¬R³Õ¥ë¥áwÜîE]•bL‡b5+à-Ïr-às.UJ4Ð=Gs€jˆú Ï?Á  0uˆ0åÓ+]E Ðx£ aOY‡þ&PP&¶œ\ÞBÌZPé¯+ˆîdƒ²ËŒD™r/Ce×Ã#ß»º‹þ‚­ôus=ÍgØTT`‹ÝL™9©K9°kõHƒÉéŸxËU*—/¶ ´ÚaŒÇdS‰ÕeVv˜ ¹ÙýÙWfê‹ç6èøsÓTƶ7,3—áÝÖlÛÉqþˆPò¢ø&0ßrí—½«›è\X#‹ÆS°~FëTȄ굀\Ûo?ÈÅ ¡ –²_³ò6õhÝ€{–¤²çÎÞˆÌ! ÛhÝáÅž`Ÿ5ê ¡Õa.þþÊ“M€‘_QA‰ûÕ%»@mA"I®0‹n­ÑÓUŽùLþ£@@y–‚Ç V22”-LÊ:¯šXôN+«‘ ûFÀT2ïXæ‚íŦV˜|"DÄ‘ªkiùOMJùŽþrfõË å[¶W=‰¥§üúb’^…D†ÅZÿZ{×)$ݲ‰NÕÆyúä%±NÑFì.£®ÞpSêuà¤EväÇÏŠ´²dr_ÿ¯ø·ùpŽÜytß”£è­Fw}dê~3Š Ì,6úG9°î¯ÆMmÊ´wz˜®0£ŽÌTûyŽN“©Y‰ìš@ÜúPœ±¢=ÀßÌL4éøà¹yâÏΨGa×Uk½Î"KjñBÀÀàeü…Qÿß’%&¬((ÜØlr/a Ôzå 'VÙ ë›#â³!Œ4í 6Ó;øGŠ<›Ðr­EI‰®v±*5Üaûšî® GÀŸœÌ…4{¡z4ØlFêR«%GœŠ«U5êt@t§k &̘Üú¦Ý"‘ÙðgxoÝü›g1@³ÕgAmæÕ×'½µjÔàa¢4™}~Ô¥ì±1L{Å>îäÙµ£ºÌuM0%¸Â3%ašˆý¯ã“'ûáiã÷ón(‘§ìQ.| < hfâ1ƒ»ÍØo"Ê8úiŠ8Ag8¿º1Š{µ„`4#>j湌+3™¤{¼-ýHrvÀð+%õçåÒ?Mò °Æ~»GÍ‚«=êvT}™1ž~¯õWàKï lŸý¹&¹@­_XÚ° × ]/íá@3p=ÞÇ0q•Ö`áCQÅKýû¨\ñòÆ…ªQþQÐíOÿ¹ÆÊò–K§ž„¬½ÄJ®n¹xc…¸ëÍE®ÑHŠŠ¢•YàŽä ä[P`ífj$ ·(Æ\íƒ ²Ò˜5Wo[ã[6U|šÌêíF“(G«¢=gÊëqæÍŽZ4¤É,J¼èأ߽"÷¢…CÅåb°Ì’KS˜#Ax¿®¡™üg +R”œ0˜%N¥e‹“¾¯2àäf7ÈÌê¢ÍêªRÇL?-ÕaÖN8ÑA„)Æåäljv2Š3ª÷ò2(жaò“]jæI Ä±©Üë¡*á2H( _rjÁ£?¢#ÞÙ»1»îbZç1/´ÚMaâÔT{ê„èŒY7RŸ™PÍvåÕbœ@»¶ Êï©~`Ī"§ºy.¼[äøÝÕ¶©“º¦Æm'ó«Ñ΂ˆÊ1ÌŠ¥Ð­ ± U®yÛzÇ'KŸe‹rÈáÑ<™¡$±?¹—˜¯HE€ª¸z¿™™Œ) LÙ±„þ 8UíZ·á*òbŽÆ‘ÑíçK›UfKf–ØX67YÇ ½kÃBçÛôúvÖ‚” 9½^Çr½½KËÐUÅ:”Öf•À”/ΰ#ÿ`QLþv¤bâ|mMð]ÚVîL@ªSØ’U:*d9’ ÂMäbɆÄZn,v#éñ<3Wix·¤• ïœÉH2''zÅŽ’Œš¢.P ð{;*]ãŒë†ŠïåGʦªz|äN¢„ŒJÂùc.Ò™ð½¯n5/ù«àù úø1‡v–Ý%ì9´ ¦f—‰½zj(èÔI⌹HØ—Œå=R;b€'N§o–5F=ðÁ‘?ÐÒ‚i(æè§²Ù·ÏeÇ@*I´*Y?AñÓ²F@ÂÍH/5Êš–Zô ýf2´#™„áÏâ2ΆÒöÂT¢üðžÚd (rž]]À‹Ýþ´ŸåU¤\\žJªBø>êìÔ|Æiæ4X§˜MB:²Ù=ž@” ¬8Í0;e–c¿Ç­ªmø¬Ô-b7Lc)0ÌÂ'àtyÊ]?G±[?¸0Ÿhu{4²¥*UdÍx㦹á¹]²¿ ûäøŒ?æé|ü`°á]¨eÅ—Úã©^œÊü–Vœ”˜ºˆÓ½Û%ÁÑÖ!^W-E%TøG‡î96‹Í°ØÝó†¸Z+³mçvå£_ñÐ/IM{Á²Ïë–¢°Ù¼Ž½ì~ Í5¾ú‰·Ðµà›ÓÜsãPZ©½ÚeZõ›ƒÃ RÎ)*Cô¥X«ÿžó…¡ ± ë«dð[h‚Ò•š þ¢ÿB|{ßú…aê€Ì™~‹Ý«wuÓ¿ýz>Ÿ”lüŒÈïÒ ßüÃv5ÌØêKÒ凉,9|G’üÁ¯6'+œ@„løóÆ*=V Rp÷ǯ0•E·ÊñÙ„¢¤”¾”¶‹€ßEœî¯4²N<¸yÌaÎÝ :ð¿‰ÕN,€ ´'«(+&5œ™b $)x3jˆC?ÂÌßå ¬òm|¾ÓJ¹LÄ5ÞÐÙÜÑè %’^GÛEŠ]“ѧlÝÿ3̘MfAýw¢öF®ˆÊO,bãÄëß¶/>†y]û§y·h?gd¯bµlÖ,´§Ž;ùÿìjII+€J]¿ýH1C˜µùºšÛý|ã-oo/òþZ I…ézÍu¤Íõ–ÿk³9x–Áü/7­ÆfÈÏÍ CG~à…/ ÎKì JkúMt‘r–ù“ç3+~ìg†×Ñ7:=^>«º¿Zϼr~Ù‚,"/±jÎÓ$DC{~Dæè5¯¾wNBÝ”2—vL wÏËÜ 7FXζ• þÞ?Òo‰j‚…D»r¢(ïÎ`Þ¼‰ÍV’³ò©“×Ñ¢úʸúB¿Ž…@„cO” XÑ‹÷yEÉi/3жð¤åPt™†Ý‘ÈßÕ”suŠé ®ÆU6¼#ÓLþïE¯ûÕrk’4ÀÛK,ÍS¹ €ÚdÙ¢ÛU´¹x…€w¥âZL}É ÅäÁaŸI{…F¡¯<3ÝW¶CmÜ-¿é?íð¸6iW'™êä",à™Ó9E>G\³¨ˆ¨"ÐRG1†¡¸7+áK½ôôç–µY55€ ¸ÉZíPΣÍt.êw¶æìxN7eì öó9~ 'ALùŽglˆGÒ“13ó>€{;ÖPe+äX‚áIò µ!ÞXˆéÍœ$¯}:pé° ëõèŠøF”¶[Ëÿssb#_^Àg‰•Ëzëx­ÂJHÞU–Á#€-ˆ:òr‹›h\õé}Ùîù<îsq[ùᯱ[sDLzÏì2éJ²Q{5m‹ »Tþܿƈ?·AE]º¥š†Aþ`Åš‡Þ¡Øoj¡âR‹ ̓ý1ÛiÉÐûjH´õº ?Õ¶4“  =ÒÌp:¦~fúFÓâÊŠj¥ãâ‰ÙÕ‡”Ù5ÿãFÚ›×Kõ‘Û;¢~~†W¯ŸïC€gtù¸›½áƒïÚSªk~ßL½ÕþfX LP´ÎP­M˜7ö½JÌ; "m4W¦î/¸¼2ûðZMy‚ÈuÃëÆìyÎm;'ØìÁؤª}†Ä_^2"¦BT7áPËæ;î–¾‹´¼C÷Á‚È®F.|.¤RÈò<ÐDÞ[MR“Š\˜~ÇueBtâ†)$‚éí%”¡G”"ß±QÎÇ2Y{Îà‚Ф¤¹æ÷EUÂE+"\æ’jßµÿ}ÖHßncJ£€€UG+ÀdáLÊ!'窓Ïi-Xq÷žÿ¶gee‡&1l'—ldÒ!ù  x‰ç¶Š]h ¸Pyƒ Û^ðá‚=•žA·üâ>^”,®áÊáX@úij` NRŒß•R„¢1A¶Æõ´ílažÓ‰ò!Ÿóý.ÈîS—^’˲ÁÍd+ñÅt€©vÜ×Õs¸½‰<®´æ™«¨ß…® ûÛöt™õaD6âxyq:*éL¯ÜnòpD—öï«g85HÇŠÅ®‹¦züa%:ëqÖf€æðÁ¯›p· oÌX°Ÿ¶å¦†¾ãç—L&ËÉŽÒíxÆFV¶e¾£‘ ¬¾’sÞ†ðó[uì×)/ŽŽßŠÛ–d§ñ¨æÿS¶®Ì›:‹O€ç¸ÂIJigšouS?Àã \ÆÎ…-ÂM£Ð: %éÞÊèÔòU¦—Ç´ïÌõ‚÷9êv¤qEØþÃæÛÒcyrwˆ¼ìè–;”Þ`Óh£¾TH¦RݲË9ÄrðåÖt±…[³ª4••¤[ mƶo"•¦8âÒ^G˜sÃŽœÓxŒ–}zC*aÀ–<R—±#ÜŒÊÞ»¿¡ÀáíoÀ¼É”ØÚЇo£$Ôj5®}€¹MÓÌuÀ]ùÒveÉ1^ ¼!.~EæxØ]v† þ°%þë³G¢ærëܙꔔ‘ øÐ“]G½7~¡uPŽÃ´!`¦ N‚|¯eÄ|áû_ŠПlɱÐG½«dEr­2€Èc552Õ{ E‘·æKr=1ç4#VKQ™5七 iGéQ|ºØCÓ™!)-÷ƒhJ!æ=âu¿&\:ýcVш5›ij’Rx+<°bTHe¯6!ΜÈÈbîDIW0zÖiáxºšæ<¤Øhö(^ëÏÊzØ`+wâ±oo‹5‘ßx,ÒÑ.à ÀbàGa…±) 4&ú]æ—9ì>œæɲ”¼ÀqU¬ ê) ”I¶:(ë„Ä5Ní9ŠQz£j±ÂY:ñ6‚nz¼ŸWÇze碞s¶?ð¾{`ð€ÇF°“ÀqtÑ KÄfe—DÚê÷Îöv8LëÂÌõÃ>ÝwèˆV=²âÿ¿œ`¬KÕL|Šô'I~PÂÍ ’ŸŒj…­BbØÀ®Ug€Ü¤#úãÇÕYeï s¾IÚÑF(|UÍ|ɯoCkž²ÄìÔõ&»—„øòNŽN—‹CTˉ³×žöâQë…t²Ô–ɽЇFŒ€}÷)W—{ùåOàĦm¤oÕ’Ü*Óžý6ò§“×A‚c§7˜›.xà™ÉjÜòwt©±ÛpÈþQ(¡bc° ŒÓ„f÷9^šÂnì0˜»^7ñœ‘~HׯZT$&Áõâ5ßÓš)¼Ó@œ€tä\©Ú‚Iá€W»Ò£p"ŠáåN: «%h¯"[§ë%ÇòI’T¬v¿üdÈ®ª­OÒ$ж#À]¿PhËÈýµ& {ùŠ’ý¿>ÆëÞɬ÷Ü©[o×NßC-p·b븪á1`ˆ·‰ý:ê¨ÊvnN5îqDŒG”9üä ÷Ë¥±T,B4£9^ó¾W¥¾í pLbÖ®WϦð™Hò.ùµé2ä{®+ÈÖ: Œ¦dR¬ðÅ+üUD¾]çÈQš ƒŠð^ãÑ"&4•ÕsÈWÝyÇ? ×Ù¢>UB3Ò'éa”‡§…¶âó^x'%ñOðMl^$¦ä{…RÐ Ø n£7? û1mcÍÜ\~›#­kú(²àÎQlÜË“âsÞ•ìÃã§?ôH–Od.4®KþŸOd±ìÁö¬C³LæÓ¥…¶èþbHýë3§"åÁby ŠNFk£¾¨ÅÞ@„ ÖÏîøžØ›¼°7°GHL”Ä<_/Íj{ÕŽ•{¨3‘Ÿ>˜`| »ÃnTB©T/0ÞðƉ‹51ývØöp¹äKdzD«‘UfÔ nÚg“ªuasiÏS6¢µ÷vÝÎî0ØDGœ­¢w»¶”æ[ŒãŒŸ½XoSp\¼¼Œ|3¤ ‰—"„Õ7ã !;à÷c\ T¨ÓµËw×{®³{Q»Cð5Ò`¨”ZùÌ7Åôãôé$ù¿öºúdÃ= kN~ßWAHÈA†—Ài•>MKÈ€L!U<ŸœK/ ¢‡†ð?ïRêúz·N¿è5³öoÿ$Øð+ÃBšL­† y麀ÓÕRæjG¸® µ^ÊÇ£†ÀÁž|4E– }gߌùW;»¹6“©ëìwî$á™ïà¢òd²'#·Ò}kó%¦ÆÊrvZ@¿Ãæ¡ü ŠTßD0Nba>v·Pˆ8½%_àè ¦êÍæª.ï†E´öE g]™­RÔ„JšB‡v˜¢{”C­ób!Èž„$O0¨“]Ä0+´ €CûenŸ¡ä-©Î°¿åÈ"Š3 A^+B‘®E›^Ç/œ"ðšØˆ²¯ìxÞ0}^+ýˆóΡ|T™ƒñ/—€„QVè-ð[ Òä6E”†­:¨÷¼•e|Ú«‡­v½)ðØKàLp{^Fıl¨¿<öSkRµkMg4‹°Ü,pN»Âv¥/Û Á­Ø,™< ÈúËðp<þ«³ÉS)ܼû³œi»?—èÍUƒ´ÇkHܪ­¡WPcÚ™ù¦œ½,pÅÙÄÁ3F§.1ÿå”Ä+¾ Þ±nÞò~pJ26Y1ôöÎìÊ¢${?|ÙÆ£Œ‡³ûñ¤zeŸ‚[:ֻͬ ®Š}S0×ù* Yߜޘä}–*½ŠH'±¹5ÈE·¢B¦ŒñÕ™z¿ÝÀ½îz䘕£;Þk>—ák 5I¾´N¢À–˜à'Ò¨µË<$Šä‘½šH8¤ô7V.§Q°îpn™ü§IÁ¼&F>æë¥;ÀÍx¥’ÝõÍÅs‹,¼?øßêì ¼lÇ{¹Px3m<—h×/FT³ýÁNú’à Ã/cÞ1ï½I=?SÄË|æ#¢hÛ0•ÀK*=6OwL€‹t,cõTôþ\©'¹ÑHy(Cåÿˆ<µç½vCXK ö#ºQœ¸(…?&ù³kV1ßd”[h< ü7Ã$ÜÍ£ñÑϙ;®qÃ% }چʦ—\Û‚1{ûi‰ùU¦8’@/öïñÓ¡ fM±Ÿ‹{8\ 3¦Þclô-ÛÃì_Lâ“·kKw6ezÜ*7s¡‹–ÎóUàjÚ ,ŸeÅŒÓH.«6¸?Hš=p?\ª×ÑA Ín j[t™wsˆàA®//S®5 «aD;¸"–ÜÆvøÕˆj!D€mÿÖ<âƒÈ£³Š¯r^ž"܈¸ƒBdäµò«ÑºšE†#±n•;òâoŒYëìÊ*Å>O§ 2ÞL‚”Ù‡Õ=?˜'ØŠ\JÐc\Ꙟ¿ƒ>äQˆßý1eÄXĨ\P=àa¥ã¯Û›òŽã0üUÓ4<4ø’«kÂÎâñVácDOH»¥œÞJ…ƒÔ1 § Ü›Fe=Z‰RVz PY-Åú&I­âÜS†RÓç’´ë·x{"ëG¾8u áÕ{ Œe àvÍ`RéktšvJÌš¡õ=ö@’Ï™˜8{ÆœãNv¸[´.V™Kߪ5™VhŽmHx±ðÃñ?±Óžd¯(µd˜pö~Œ`±ÛƒýŸ­ìõgò“® a(1A‚\Ûç*>'R P7´6c)¨†DÞ9mRù8¹_åcö‘Grç“ëJ6Ápß ³B¥ebXJuºfF`{AÊ©øZ‰AùÁCÄ.Ž püÒkTK|ʩ׫¼÷2½Omã¨'{"p‚»Hõä=‘6nfÝî&/ÜÎó“%›Õô>8¯]ï £D÷Fñ¨Ë*@P[3¯Z¯LDžÌÑë dÑe™…;Cþ¹t•ˆÄ:ú8UUc ±žZ#Fؽù’§ZoÕÒÏÉÌ5m”ä)Ñ$ÏŸ¥Û‘ø:|eQV„‡< Ëue€ —Á-5 îäò}¡¾ô\ôÞ4/³l Õœrí‚uì«D}(];åÞÛoZ‰lZ[ËÀÕSLeÝzØËí7á‹btcX qžÇŠòÝA)Æ ò¸!or v€­%?&ÿž-éZ´ ÏL#™/ã>å°.YðÆÊà–üÍ`Ä~uƒG´‡™4ú°»ç¡¯¾w¢è ¯÷lüJöy@õu“]|^¿¿sÇÔ”Q§mm55~Äš-tHxÝ$}3u dmÝ¥j§ÌáŒ2½nýÂvÈ9`öírDæÛŒ^¸²s¯CÇ_·Xo ÕaГ"\Ô(gôoýYFV ëI™ÂI$á¶w„à!Sêy÷°oí8u [>&"}GÎ&# ŽªîŸØF´MkwÊö¯*®Ý[²H2š}àU>\sM…—ïh} ‚ÝŒJ»£:l”†Ò泬¯ê—;ñ® MC2‰ùRdê)ŠH#ÑK"†•Ýi¨zÙRF­;…sÍ,ü¥E@i¥…BuT QÕ©9¢eÂù¦¼hå¾®ˆÓ<ÛXñqPTyîÌ2˜¤µ$£ÿ0Qt¹.*¨›”3 ¾h§Û îî ÛçÂ Ü ò3s¤» ¬Ã‚{ŒÜ9ö+âïy'ðª2bí÷¤ÖK€T1/—á'åǵEââàj€zº̆¸-Y9’¢÷Ò«A[e—…ôc_â§&'`çÆ^'îXr½£8B‚ŽyO^{M®,GÞͧ¿ŠT¼.À/¡=¯WµÑJÎÌ,é¼*‹´ZçÒÀm y™·£ƒâË¿ Œ—Ví›A[ÝJÅ4qœ½éeto};Ó¦ÚúA§è)Ò4‹Š¹‚)7³Â¥N¿ŒeÄ ë rýŒ£«éÇíô/š“®œlð.ÅÁ{ìö‚7QÆÊøñuCÕìŽ\52~BÍ@!¶)˘§P$Þ] S†1¹¼²V_\–R0!°[ï¢ÝÈÿWK"™íS~ÿ.·y(‘¿^Vt»h•®‘ðµÐ\ˆéÞc8n¢æ]ýîÍPäÊÓ†Á R}<GßÙÓÎ $ø™Ç}J¡"Ló“¼Ì»JÀ£Õf+MOb†Â·•¡ŠýeQ8’Ø;·@©9Ó4ºf+¯ßäȘ&‚˜ÿÆÜ]mæu漸ìÓ¥I@þ˦éÇ,1ÆÿÔËŸ»4&J—#ˆ:׋%YïÓ¿QzfS›P|õœ1Û+” 0eü#Zð÷N(Ò¶Í¡h›ëXØÈû£Âaš{1“Ù=ŠÏÊv’/,·Ì ýYð´šX4rLa㸄\?¥Cø r¼C(ºOh[K%ë×€ÌVÁrɰ«ë.PhÙý|ë,qÓy%wµ¾`‚ÑÊË®)$Å+¥ü߀’Ô¥W†¿ª î6¢´/ŸŸˆ¸¼®TWËX/§äæ’ »šRŠÜsw†Á£ÓŸZÑõ°,¸bO><­ES/éP ILP~H~¿Á½Kø/®xË.¯Ûú˜Rí…æ†Nçঃ;‰¬µ7©eR¼^ÊÍ£ ¨q“\£§¹µ³}=({©?§ÂÆLL¡ Þ´Û e š,6ûBúp° ‡:ƧT-ô1e¤Ûý'Så XP6öVÝúrð @—ó¿ƒmŽº‘½ƒ˜ÄF¥5³>ì–äÛ×cår~Om">8!n7*Ü4,±å[eïÇGÍ „£Ajóú,ÎÑ{£—-7§>•8K¢¢tˆÞ¢c4*ïTýkøx—{Íõw ‡Í‘a»!50¨w”me©n-Ÿ“°Ã# ]„Ô¦6+ ó'ßy{¿ »M=´Ø6°Õ'ÃR¿pTFYÑìí’V!óÀB+é¸(wØ„*pŠX;ÅÃ)ƒ$É–¡DϹQüÅŽš)ì‡óc“ Δ¨›õÍò2f7Ç–ðôm¦Ç £/™†;¤¥™Û¾¸¬]¹ÎA: Ûj’]„&d½1Ù=¸a$ßxâ¢ó½ïîÌ K+ ûɦؖâ0f‚¿2t„P8µ×Yã·@Pθ©5…  …Ooçað*Éôq(²…ðÿÚl€y5¬Y+/P¿ûÈûµ:Të;vÿ· Ó"?ìi9Éç¥pº¥¤Âþ¨c²òâHà¼Þõ2–•­|¨1Î8 ?ÊÔ2Á^‹aæoÞáÙ/å€T5§wy1Óá Å]íaão»B£npgËt]‚r OõlÄYéU­MàÕÎ?ñ÷AcãOßßþ»v)º#³ìÁºpS<‘<&ø$R&MHÀÀ÷oÝ:Rh¹I0Á-íVuV,6d@ÚŒÌmÀXìðï-‡Z¢Dg ­.yó™jk”øsŠLÚ·ÔIo]ͦk¦¡Þ¡‡BÈ.6ŒÜá˜{K¬í¤ÃDxGbn¯³)æ­31ˆ¨Îyˆw=ØA{<QG/5DɆ ]äjò$ F²|!_Ê£t–I|˜r$™b‚žm,Q0Õ~Â’1_Œ†!tårsCžý…Ĭ šs ñ"Óκ[€SÒ¼«Ó5$¸œþÌÜP”[=}¦çˆsÒ½þ¯a/¯¶c¯nÓþ¯;hµ¿Æ­uóØjnއ4`þ“É/(WóH¬µEjF¿©Öõ¬fäãŵXÚßNa»]ÕÈå rÝyÀ<•9î…{|†i½ðK·oMýB‹S ×ì”Õa/wF³e»I'€¬°ºõäÇÕÓvÚ:Qp¿ØÃt‰êÌšÎÐZ—1,⸚ûŒc6±ùj:Kö*ÚE<´ÌË2±Nf ÷Ù»ž¥–*šðñ—þÁq7îgÕ2¢ä ÂjµÐIE@á/-­¯SöªìûU5|#,OŸLP0ÖˆsܯýYOSS-$¯ƒF¨ÂÚñ{·™áóèÞã{w´ ä$)H쥌:Vp¼‘ ö8YfôTÖÃUŽ›¿¥¤ÂQÔ¨¥ ýJ“µã×L›N"Œ.)P‘™jú`JÕ¨ŠÃß=µó;‹(u'²l_q8\Iûc$' BÓ6¬ÓÝ[U¿.9âíHYd5Úª6sd ÅNÜ¢:GQ¦-YFKá4gÌüôªÜs ‚Ú˜½Öü8“%‰Åh!*>ƒ2ÕK¦l±Ryű‹™îúz0ø8¢.\êÀf:Ð{†³:l‘ïï10Vø×±Qña£:ïê ç|õ~ OIæ2‹4 åœé`wðdâÄÕPO7³÷†0¬¼‰‰À“yÛ¨ýg^p¢aájeweˆpI(è.'Ôkø$X¢P[½¤9/îꡟ!›¾R5…GÏÔ€fzÈŽUXÊ|ãý>FÅÔ‰Pª>Ç™›î0³[¤ÃÒ{ ,~Ϥµjưæäg+°Àã<¶q©ÛSÊ¢q¦ ÞüZíVõ¿T±ÀÈ®™¶ç9³AšÞiÖFkÞcL™­?çþ—`^ˆ¿Ë§¼/_IÃÿ•ëh$žj ϪÎ'uOWéìïâÊïó&›î~ÿI;½Ï-¼—¨!|u.!Ïñ+| 88òëeEÀ¹­©¹¾~c_!H¥!ß! ¥¹M"ÕšÛ¾êÒ8‚¡\Å@:f\HŠ´%B­8¼ç5´@U@2di< ¹ Oè¤q†Âd}–Åw¦AXꈳ0ÔË»/nîâC_àÓ3*‚6¶ª6V'·u†U=dp—yÍ"ö Q J»õ°|³×] ̆‹Iá!e6OÒ ýqˆ#Õ­ b›˜î“ƒ€êáÈ•5žòSrz ¿ÒŠÎû\ÅMÛ =4?ûL}7ÎXin‡ÆC³z¾­êÊx,¶^ž‡»H¹Ž| ÄtJlQD6ô°ÿúÅ¿Xa”#Ùàˆ2T½]¨‰E¥ÿg¶ ×;møX2.ªz• Wñ3ôì vÿw˜²~pŒ„ž«³!ó¤#]c)À}{{š›3amñ€Å™„Rxÿ´U ~äÎÄ¥“S[t}‘WËÜSodVAëŒ-Ú‘Çÿ^mϨ§?\¦˜¯ž§ˆàíé0 8Ìf«‡“}Üiz §xcjé¤Z°TȼOõtcaY¼OE(ëDQùÝ´N^¿¬ES×Vþs'bø©ÀźŒ_*ífÕ2]ù¹aR¼÷¹F› ˆ:FMW3¹ ”OETQÒ.Y¼&i©à‰¿\n›t·¼!¬Jìì ?ûü̾·×Ócù!ï…ÚBË+¸ú`P0Óú]± „Ó&Jì_ª=·þåc}©>ú•b˜ ͪ”Ýg PIJv>wÒÏ$÷Ç vYy¬•/D Œn:NÂBâÈž÷ Ì‘ÁŸÐ&z5¾|·áAÍŠ·x;â/'ñ¯´n(@øxųӯœŽCÜ£ƒ€ÜjYòöp T§obËË߇»;C#ºLo¨’ò! YöãN7„oލ ¤RzÈ ¢yò•ü"^µè4šƒ@BÜ4ðrD[‡bolwÊÇ­dY,D®›¢šQñ«Qd:»=B¶H3gEÍ5¢U8½™ù0|ôdjHße ®+ÇxÕÈ#cuakÈÌ]Hyi@Èå Øó7;toè½ó§¯†ìßñfý¡ _Ç.‘cZع¢ù´ÂeìxÎ c‡ ú^ãzìà9n§˜Â{JöÑân2²,§”š»öx“ÎNÆ-õ:0JM¼)ˆ¾d#l4•ž9¶"†º•JàòWp&]¨>’¨ëÁî¨qÇEÞ+xÏd”Y;6sÊ©Óϳî ð/gþìã ¬5Ì{éX˜×³y Z;â·¶ßZ”£iÈßw‰–ênzÐ]nsÍL;Z™–v=Êéî4ð ò¦÷ x‚¿ä£Ë°”Õÿd±Û¢· a#"uÕÓï<ÑŸrù Øà£uI‘ûŒ³Ò^û.ËTà)@"~üxÈÍ"¼nƒ)ö]üäµ5*³ ¦Æ'²wç¯X„B`ý2 æ±wQ †m'û׎2’o:·÷¤–µ5—=މ.œýùžÖn1¹Ð?mg4æp¢òÌ…vHm€¤Ë_1 «¯Vàå”#ƒ‰²°^ —Í~ŠAE]³'÷w#\™¯ÕÛE„¨ä¼Q<4©zà®^öÒsmy)È„Dáõú“'úÑc>„Y¸ãLtS f*ò¹ùû[»ss—Ñ*¶XúYéZY¦ˆEpâd="Uzè€ ¡Ta‹˜Zq̰P”¡˜…ûðl*T¥Ú¾iáKQ½J×€)¥OLµ_1Tá= áMi+íüÛç¦ÓÁ»f}+¶æS ª†÷w^›Ëê ð¥òâ{Ø1Ô9þʧÃÌsO5æ’öq,Þ~eÆ Ñí‘†Ôø°€±õ Ø­~¥]•à …pÍlÇpD… ¶•¨ù/|‘Cepq,Û‡¤­ôìOs”ç_Ör<ÍœÑ×Ê>ØáÖóBHÊû½4êÛ6ûøScªwñºšž6h!ÿâùŒ­n¢*WÈLeÄÈ:F€%b`jŠ=z0ÈJ"œùÑÑb±Š°rØô°e€)-]ÖLî¾UÊ­ORªt3 È«K”†®Ìlu§s^Àß!’N|±°­&¦ŸëÊk¼#m"Φ€X‹fœàŸcÓê $"«H¾}•^Ñ´ÿlÿ\{ˆ_²Ù êÇœ–©¯]jÇhN;©;6˜ƒbl±’œ¬kG0^¤ç«É¸6êÑõá 9L|Dù#ÜØ”(D—Ï@߇*>ÈPôZ(¦¡h×—«ƒ.Và8°Ü?Å^Šg>„¿›¦ÅÎh•³’¥½‚DRÞGgd‚Iò³©ÈÝHAEÿ½¹±+z´{ Dœc»á„)4+]ìS}ÑE‹'® ýi÷ ¼«ëí±ùF8BéÂ7þ§©( ó+ì…;‘¾b[Á3'|‡öƒ¡ñ¡9 îoc³‹¿âÓØ èÓT´Uh”üz*e×Ô›œ¸€š˜¾éF&æÌ3çŠo'ó)û‚udzcûH1O&f«©Ë8 {/гE§;"M3JݽQ—¸éé@–ŒÖî|·øÇ#A*?²tt& !’'µƒ¸Íq¯qÇw¶éæ¶¢¯·©zÐÇ&BH;a»<:ñLœ³Žé´A:59*!åø~vÆÚB@¨\Âá[e$}f=2JŸˆ TLXjn§ÒÒ{ûŸÇº„$Tvêžt;´‘\èIÉÍ.Dkùi¶êàË`=*}+(7iÞ yäa îÿ—Ü^}ÿ9|~ä·QhÒØ¸¥°®d¥»vÂjheÜ „`íøª9–1¹èQ¯gùMÃÓZçòKµ·˜ë¹÷÷Ò“^^u/½+‚ö7ê”F/u¢N[&ç¶>N 9ï­Ù…cE‹\Èðv±âó8ÄãëÎgüÞ%˜ðÆ[/É.2À…–QXknÝèNá:á?/ˆL®›ìrqÓ §)Ó7åbÁLĺÝ_ƒþ-ˆº_­C<)ät+BŸÛ– §‚ûof±ÿÆ–Æç`Íî%n%d ô´/'o5—›|'w‡6v_½¡àPúù­†"ÿMÆ&âne†ƒ¬¨¼‹7¹뢱»:GÖ†7,S¤MŸ«x'köŽ—9IÕCƒµc Os¤IðîWöÂÔb‚T6+±“Æj¢Õ”I+’ÿÕ"úˆ»Ÿb­§þ:#õ\^yî̵`?þäíC;“Gïƒ<7ÝêeÖG L…½få hEX_ÒFä,¥yÉ£e5÷&¬œ<ŒºKÒ‘çêÌbwe1+ÓžG/ýÌIÝØ`KÍZ«,È{Ë8Ú,Ó*Œ›Î„pÙKƒdÝÇ‘±ó ý:¹%SòSº® -øàêâ¤bŠ»óÌœìŽx_þí™Q÷µc¿ÙÄ­fO¤çŸºvE¦i½…’=M¿êä´c`ôPß]î)IÁ?oÊ9ðk ®ú]¤ø›}ñ,ùtm—Çvº¨¦¸—*þ±6úÅîñW¹YÌAW½÷s‚—€Úتî½wä ºÀùŽìdù  U…7BôzË£ÒŒiûÿ®QË3¦cx*#9£^¶î¨qç׃)<¼ÚVtä&F¸ƒÊht´í•NríU4 6Ü™ß-[ÿC'ÆXü a!ûlögzÔ-¼ë>6’›|%ù«=gŽ#B¡GN÷ÏX¢c@S@8Ê)c»…N6et¥÷à…Ïå@)¸“º¢!…4ùáÌ4çÄ?ËFø·EœW(G<†uu_“6œ@ú†áTßb°×jñ= ú‚ŽÞëÕÃ"Wü,)Lž}FvZ×¹PsœsìXŸMPt6Þñcâ,æÒyý6½£6 ,Ø~§Æ<¥»Tý+t‚ªçhÀ¦'ì:<Û×ïHSÆœµîU9Um€àÎÄf_^5–• ‰õþ–Rü–B?ø™`¸zp؃þ)¬˜¬«“¤Q ùhëGì°Ýƒ‰ H@Ű5¶úQ¯0b¢ý™î)©®9ÄãÀØá·“ûbÇkÏïÎÀ —õ•ËšA⿪ #vð(Kfkbç—(Õ|pŽIù1ÅS´ öÿœBT–ÉdK®©ÖÔç~™ÕÕÓûÀeXÅ<È;Ÿ„ùœÉáÒ§;žBlmH—ù›åZ ÀÎdßTP7ݰ?nZK=UD„?±ÎÇYNû¨ïŽnCýàÚû[ äçä„Îu; •H^÷ù›Úü/†Åù <55):%}×zi ¡Í x¯äÀ"I÷Ž{Q=úCàê±…3a.êÇ8“Ð!!ü¤ÿFA‹¤Ëzé&˜™ùÄÿBM,¬Ù1¯wöÄ¡3вʮ!3·tv»Á:¶ˆ“ m º“jј¾±LÓB$ ïCÛ±ö'ýàQnZ»êf–-´–¢IŠônEL3¢$˜oØç7ð‘±hÿ€Ëäû`RÏ!TŒ„ – µ¿vzE•ÀH]0¸‰(uÊç¨#hútHœ°ƒvuæÀXm¶«ëúó¿»\¶[D,,£Cê ãäÄN×±h킚"®¦¹à¤u"ö’9 Ÿ xH(Ã%â~P¶¨°ŽC{9)¼yk u QWDU´n $´j‡’n‹ìt·“=ÖaÔ 9‘æV3%7/Åúï„ߥ(´D¹è¯ïHàÈÏ¥¡2¤—B_;ë'H@µ+|åȶ0O£_[ xym¸bTë çÚ”fºg ùi”2'KÆàGëÿ8Úšßs¼áÙf¡ãþ:† óžÞZKµ|yÂCžGÁ•Í"¶ÿyÚáhËËjž*ËN‹­Q.v³Äò7Ò¬†Di‰fÚ"ê÷$\­*0ÅŒUº\ÜX¦Œ¿ ätÎ$y¦ŒÝZ@þFý„ø¿BH{fxPŒóhÔSŽ%˜‹qÉíèfXÖ¶Ç*J)ÞÄ”ro¦#|pŸX¶šU¹—Cå!WN)È1¢8µu¹8n,ÿðÛTÁ¾uiò<ý¶Á´Àq3|2–ý›+ÏÞ’¶€ç*Hæ¶:,§Eˆ2Š5½…¿éÝeì;¹€ƒCÖ°Šiu}@Ÿ„ßeÀ¦u`õ-g{šFÑõŽèÂxhòÄX[%½£e“_þ=V¬ïD¼o±‚ž[WfRê/ <°rú6æwMF¹"fxPv¾ ïwÑQ—›Ñ¡ê¬†M™vy¥DÌš¡÷%6B~zÂW"æÑCXûÆÆU\ !íË[û:B¹ Ð)jÉÿæ§Ý­–ƒþQÉâñ¤ˆ›'ÌÕ\b£‚æ^k 8ã})J!訇šZÆ®ä¾æÆ4Z`…2Rœà%jþ1€úc6ºß~Ü×ÜAÑÍwYüÉsî{ŒÝÓñdB•9Â*ë='ž£dÞý@s(’`UÁÝÀ6è3ăK⦣£Á?‡`öÁ=ËÜó¥€Ú)›,†W¨j¼ú›åË×qP·çç•FäCîUªg!ª‚l¶$æ¿M]¥‡º\ý÷-.cE^ª+<–Ï`¯ëG°AÚ`uuºu^¡iÅËK½ReJóÇO8ÕHÃýh™c_ÙåŠ&"TFñ“È~3aÌi §xÙ§ˆËÔ̦—Àd™è _eqÆTó¼â=¾.Rw6ˆwj@O§ZÚ„\"{eÒH`M™~í7Xv8³ ³S¿]tuT¤ò‰2H8öÞŠKFª¸^kQ›àkBÊ Þí|»”1IÖoïÈŠ=AXÙ!€Ï !ÅŽŠ 3›¯ÞÀÜwÿ²*[S€{"<†!Â+A:´”sW¿(´±“<äÍ4àQCúF‰ óæà?}zü©´!³Q0?²RÕ#Iø£Ð¹ €„y]Ô\ù»¯&†½ó>c »üÛê7“]"iÒk üÝp²¬°eˆÏÃ7O#t)Õüõ4¨æÂò®–v楳cÈ µéU½Ú¼1Ôž´q›´ñg ʵ¶B³^æ?îi}œ=F@9~Ý—sÎÇÍô»Ó áпRÈ~LxZ˜_Ãóó!Rá‰ç…Úá¸Ê¾,òÉ9°È¿ ˆ|õ!E@Ì´3͸Z55ÑŒEÐÓFŒù8)ï Cçd/a¸bEpe´½/½€Ã <*åöƒ]Ãñ8IŠg.ø@ Þµn:imð%êE~!$©RÛeˆŸpÊÒ¶˜Äv½oƒO¬ª²2A2¼žà™X¡õ-9G4ÙS/ÊÑèçlÞG˜ª´«u5#½Ûõhâ Ïb¢ØŒÀ/ù ÓÅöà]D­§<7íÌæúÁØ ÁC;ÃS[3ÇÊVÄ=)ÀÞ×ç2Õljõäg®Iý,I¬ŠìrHÉM'ÀíOu2\XãÇ]#îêÖ•š’ˆ¼§O¤…Ï«ô&ctÿIÅX(‚´â= Ùz/ýò?õfCép û±VÓ‹ œ‹Ðó9®˜Só\*YXà-=Tý`-½¯cÁá’n‡:góp¥øTbö•‘Æì)\Ä€&=F?6ØTøT~—ˆä’ë1NÆ 1¿‘f˜%ä 5uïÒ‹‰ùŠß›TV@4$ Ç…²"ðE ÆÀÚ2ä“é¶Ãl{ŽksR—ÛgäÏÒǯ¤™¦ýÅôë‰g'p%ì´C2ÁËå`hTžÜmšY˜M‹×nŸ"-q*Ú:Ô˜˜/c°}†ùû¯½]Åð£Ç¿ Tvæñ•RÖ’—®^÷Ì,tÀÎé3ôì)Çz‹4û’ËóØÕ†3?И;݆\ zƒO¬ï‡Òx!}daõÇ‘YFÒÆ!ëü6¡¬v>Ã$PàoŘàH ‚5Â^µM™ÓNž6£tµ˜T2¢·ŒÏ½õðg4G/0Ì|cŠŒ¨Ž8¼u§×å †SÀT§$ôólsHXÕj RpÅ:¢=ÀWRxæ Ü (m²§°¡¿!©ÖqÖï ÷¸ÿ¦”kÖg\‰¢ßè:Gz%A¥.*Óºe’‘Gór₆¥qüNºí~¥wMÖŤ²kêË ~`'¤]QžE„žÐàGý, J¹ ¨±ÚŒˆId úëŽ-Æ9˜|ø-ÜsÎíü+îo̾EúHr%êGÆ{ÅPÓÍwSç’Ä–²_ª¤7„ðÈéÑ1‚Žýý­ÄgžÓ`Ý{K¶!ž Þ§sš NC§ÕQ…Cæ`k0 ž$êWÜ[qÄ8°Ö‡ù$öþ7úÜÍãL"N§4¡çtç™óÄáîàYŠã»†*‹þè~%Í·Ô‚§î¶ëÿôJ++óqÕ¾¹óyäÒ.vufzÌxUê€Üö!·qø\0$#…Žàbe7_ 3RãSíœY•¹X\m¸¤˜¬Ô °Å^:xFÜ銱4zßN·<´L•©gJJ–=“[k'w3wØÚühVy²õ8™œŸ]`žRúK¹)ÚâuÆ'Òm ¥:‘q'[ˆÖÄùÀëBÚl"ÒnÎFЫŒt&â¡öfÂw¯RÜ39fɨ^×ï(Ÿ|Ü€ ‚!£ôÄr^Z !ÿðÍ‘„NLîƒ#Ê6so‹Å‘¿«€Êæc¾‘³ †»¸ñxQéJúàÏu¤»„úXˆ>§§°ãJ·à,$K-]n’W?p×­sóüuy Ï6Vð¦Ù`Ù¾ü”v§yþç½@ÜMqpÅ­Ì µ Zð«uÖáeáç¶ù8DHp"ŒÚ*¸*Æk†;q„Ó¤3Û(µ[kÆ÷v‰àW÷-˜3w2]* )²[QnÉJ.¨ÄѺ;o‡UžÑ?‰:øéx ‡ß§EqÒÔ~z4š¡p}À@ù,•½"W1¤æ½»÷a™åè]µ$•‡ë´:ô=˜S †–¾®™1iôRr¤ÄùШÊ+ÔÁ:+A úp¡¸’ìAºÕ‰+MýŸÑ›¡yzf@ž|—?\ÐHš>‚“3<ÑJgÉßPŠ1W6Uì;zæh6q•“þ)¶ƒ_Pç‹2¾ûïÏúù¼dÌ<·ÒŸšåÏh ™»’Th¶ÿÙC¿O#åV ©ÎQ#ngæÀÆÑìí¥Ô²âŸs`¦Tj7PEá=˜{ ¿Ü<€ÀÿÂELáD Š‚HxNØ*ú*ÄH©Š³þùÜð·oQÆA{aeSN8Ýì•ùØZé'Ý5à'%OˆBC]ÈLcoÒAaóðÆ ŽsGÙ\™ý»@ܹê¬Ã"iŒ°¡„õï ú¼pn³~4´û=SMSqšˆÀ¾ª«Ø´_ê*ÜUž†ƒ¿dòê•ïÖã–Zb;d•‘A°ô ã2 h›Ââ[&´Å{îQ'×-~Ì­l¼×94æPc¾nz€èáÒ}¾@´÷ÀvÙñ§4ýGY^›¢ŒÚ†šöÖ«ê¤c^áX# ׺¾¢ãÑ0î=½„ö?§/ÐȲdXçdв©ˆÖ"ûLl *!ªA8ÈÃK2ƒrv–®Ý F–«œ,®³c­¥U§¢›[’4û¦®æc÷>‰)i†ð¡´ûú¨EÉQÎÆ§Ç‘‡L. ¦ß’`õ\f:Y±éù5ËÀ4£sÍ$ Ì)Ùx'Œ3PÓDz_Fét™#…cyVñ¤¹Qš”²O¥ª ôwVIÖ‚ Æ=J©|“‘J,7QŸêS☄€ÒÏÈeÝòKG\‚í• /×÷¿?ÇX<«“›DïÚõ•Ï&_Ü™r}Ò«Æž6­u€ ~E[†ƒÈ‰€ýCÚ’çS:IwbõwØòMô2Ãr! ‘Ò’·F÷\ô0¾Ôù¤%ÌñEaÇãµ|ßNR&+÷L/êùaï§*,Ôí]+€È’#^Ær¾­#®¹§*±çÞëËÖSmkÑùk•(‰ÌêÌ2Mc½7œbÉ\ò%‚äæj¥‘ݾøþ:òÁNWàòköKwäîÌÅÛ“7½u °Ÿ5M<•þIç„ÉX¼£ÅÝÃþ\Ç0ưy`#>ºr=¿¯ÕŽ\ÖwºÆØ«YÁA{Ù3ùe)͞Ѷ>üE±ý"aŸ2¸çàp ñ‹è@öt‘•Du@Kx­›eÊÍ ¼C•^Þ â¿©?Çdåã×/‚+gö$ ¿©­ S¨!û u,ØŽ(sZ˜ÚVL?“D½_d¡ †î~æÍ9Û7Å,N:™:¡ÈOZ…2¬ùa–öñQÔý@?ò>h6¤)å>¤I&öMndøKÙšª“»‰73íQ¿²k®ùV-ßô^®jù ½¾°ÙÓ¬ÝÖ^íÑB7È⛯b=ƒÈòQÕ%ñ=˜§ˆ%BÇU'd¯'±÷¬?­™§ÿï çÖæË4øƒËYtHBþ¨×“@Ñ3n{ CS²©Q¬®¹ÉSÛ†J Ü¥o$ƒŸ›íd¢í¡×nôü§mŽÝ¿âCÕÖ]KCd¯ýf¾Ý>GŽ 6¦ÄÆ ™Y3F“ÝP݈֑äÚéy\ª&ª³J“ih’ëØgª€jª¨pŸf”›«,Rv¬£I< þ-€–¯ÆDõýóaÞšeK“ÏOìÉ©SþŠÛ£%‡zÄT¨¾èUé Ø‹³‡§¢’QrëÁ9[¢Fí^*1^@:é×_Gɤ¿ÉÞjÿÉ]GæÄ"ðÔ`ñõ ~×ñdÞ†f.ÞŠºŸú€©{[±AÆ$É®l `žUÂï­pµ¢&RŸ¹*®ÍÎ(X80ú÷1¢É@s¨7Êö÷æ| `õ‘8¶TãR8e¶D!ún ¦ ұʯyƒüôf©w„Ú®üJÓmt<ÆnïÐxlo¦&Ÿòc` ÝJ@H,ŽbþA08óðh¨©R²åï’!Ê2oD|&jJ‰ja{<0³l{ô˰õò’©²Ïh§m=€TJŸŸ¯‚}ùË‚É5öø¬Xæxåv$G…ìëž$“†|"è/N«†©;¬êîAÇÁLšîâw=lÏsHLê áë®u:ÏDWÿWŠ>È#ðšûaòžñ•‚À¢!1¦jÇ ÞØÎŒ@ÚâkTÜ÷' —koã}Uõ²”°?gáï¥kœ½wßCú*ñH* 1B´Sâ[èð³óqH&ÇÙ‚‘3†ca`Ëá¡Y·§Nuˆ„½.ÃÊÁ^Ž5å6`zE& *@Äø‚`[ú¬« ‡µ¯—ô13?ëŠ\ ?. µÒg‡ÖIX)À­89ÚÛ7×?{ õê•xqÃwPkýSÇãùY&bÜb)Í:ùñ­ìºõe]Ï}³ádéWؤôÉVà«n8›'êÜÕ†ld„zÝKÝ9ö\§€,>¤öh_xF”Ü«ÓLÖJd‡»P|Þš¼Ø‚Ðhˆ/o’!ê?@m/—Œ·†òŸz¹[B3h"¿Ÿ‚ ê8­7ÑOziõ9Öh†äS4øDú™)QÎÌáx+ì;,Xâò“RÛÀ°8 åÀAH¼Uਵº¶ÑyTaU0rÑÁ7Ù}îîe>W&ÑÃ6ÏB Mdsr~oE¥5œã78=eоÏÞ¶ûЩ·gþh,µ¢a+ĉ#¦2+¯Üo-:w´-š¬¯#Gn&·Ltý;ÿ­‹«”‡/ÚÒ‘÷&Á,¶Gè@®ÅS5·5’ˆÐÌ&”ÿ«@3Ÿ¿ý¹Z/kpÚøåË Å„ì8ø4 E%5„\Ÿ¶Ê•‘ÿY`þŠòöÓëÛê­ÔÍ9E:…>CÅ~þZ BR,7Û|®­Œƒ‡&ýcÁæýöÇfiV߯¯ZÁLþŽm›.6Ü~8`e3ÎàÜ\ÈX:ýüõ¡CXHÞjŸ³=¦™è¸Mb†2_ø¶|Å’¡¢?û]F†å…ÖÅœÖVþ#^õéÊ.÷ÖÃTfÌÛÏÀfúcÇÍ!û?§ÖüóîAÕajÊÛ»Àä-D¥A†ÿƒk48S®ÚC[ø¼Ÿ‰®–cë*Ù¿IÃHÍeËßEÓŽ*ip¶Í—Qód T&éžÏ²¦5¯Çx“‘.}ÿª‚­ÏÑÉIû4¶ ªñ‚‘Té}´áºíL …bäÚ—Ç.q<¶´L Z ÔŸÁyÉ+»’:WóHáùYPñÁ}?á÷p>2`mÎVÍ÷ÒÿsBÑv±µŠÓjGªÇÙ'%##åd¤äë›úñÆù­Z=–ö«0ºúüØÓQW23óÎw à^ÿ†Ö$K”ÀFtûí{YÁüâõ‚à2jŒaÊbêóÈù„-Ãh—›3WßFÎs ÃøiƒÐ$bäÆ.y›ì^*psäíÞ›H¼KC¥€¶k)8†ÿË1û…xdj¡²‹Ì™ã²®hWÚMké@YÝ„—1zåÃhïÃ.Ha‘ì¢J³@ûzšüÄ*¬›ÓÄù­FúÓtßVQ„Æ ÚÑ%º¥¹ÚE|Ï…Âl_…  +Ɉ¸²˜±¼O-ö9“·í™«¯ì[õÖ±-èb´ ™ïu+Œ/ÇÞzçó…ž”7ñ.Ú‰ß^D˺VåñŒ£¦(.ÁD‘*|¤y8XˆTØV×9ÚëOÜfÅ@ŠýKHEAyæ–J~ùü˜•IÂ@06ÇAŠæ øêÄŒB`÷¬[ăå%+] Èçô–?}LNFR7^‡'+®‚ÀT ŠÃrL]#„˜Y3oâfCïŸ|±º :í¬ܼOë]º‹U¯WÛ·lKHn<b&ATÞR=`ðB æE¸ÉG(OÚÛ?Ú-Mœx›™þ±ògç&‹2ȧøOÏiD1‰M1ŸÆˆ`Ó§Ö'_T˜*×M ÌæØÕE3¦ñŽÛV¼z ïèn‹6}í!$Ã)KÇ]ç!ž£¦ÒSçyc¿Cn|nŒ¢±/«0Ö%Ç5ï‹â°¡6Î×Þ¹,µ>9:ãpÖ¬;XdL²V„öêìÀ¤Ó*IRÕ\„ÖìÐe²¼Ñn¿®eÿZ¡w­MGuʈc­.goKÇÕgš²>¸ ¤QwdâZ£N¥ô ¯Ë/ˆ…KÝkshâöΫ‰ rÒíýf­$ËP ÷ûsxÍ[„‚ŠšgòÓp‚œî›:VeTô Ê„œ,#s¢.Õ¿®y1ìvAÜ^¸ÑÈ7Ò”éô… ]î*ÔÏ–Zop?çòÄ¢R¨+Å Òôp÷jY¯&üÔ¤’€³Þ”·¸5šîzW¾OÎ&µÅ¬oEßZõŒ!Æ4Au|"¬*¥>èO,š\fŽ3ú‘c¨¡øer,Ï,/ Ï~µqç¦;œ$*Òã~@eÛ;Ë<ãùÓÎ,µð1í:&ö ya°KCSOÛ$¾l© ù‘#@’dr³¢eãtÀ…^;é 5kì±î0óµ|iøQ`/Ôâgãø*«åQøú.z¨wˆ¨ŒáWm5¨Ùþh€Œs·K=^b4…_ÝAO [?_$‹ÐîÁ{TÇ;5™€/T£.ö°Ì ¨ý Â/<@~߬1esd‘tû×rï¸f> ­Uö@MêƒÜYÛ@ÔÿÍ[ºüÛ²+ŸîsJO¼¡z ¦ãýÀÞ_tVhƒƒŒ¹’Yýþ@lŒ}9íóxئ"XºÀ°ÏÀ[ÐØÑUE¾ü­ô\6ÒIùoqàÖr£þ+Ÿ£ˆ¡28•$0Á¼aYC«œ=X¶É²¨ë_Ò ±“ws Â^Í*Ø7°´ì¾yvñîÞ:€=κEŠÏi~M4#¤Vóµë3RïÚyb YÚ‹­ÍÜY*…òülÌ:Ú$™Ï%ÿõ!ßslTC¿^>Uþq‰ÐØ:ÏPáÆµ¼ÚʺÜNŽdJ„‘pæ¤iD±ý{(s©òÇEýªA\&¥Ð]ÑB?Èk¤àã²ßqsöš|Ÿ)Í€ W! 1÷Š ÌÖ›,ˆ„ƒ#Üfÿëò-h´•»TÖ29Ýv“h7ãÝgÓr¯0 7fki¨F»Q–ÁÁªe3šÅÀ 0aÿ%e°öGD‘îÙ2†Xìï©Ý¦)©äux•¶l{ÇõËÍ&*a“ªyéß‚B'[*EvÕa>ŸqÎwH B>;žÁ@CC H[EÚÒÔÝÜæGÛûÂÃ(Ü’6¿ 8Åø„ öT‘öÓ™«‚êü.úɵ—@ñ…6»N¨z7KÒ*(ŽøkwÛC¬f1Ú±µwòîÕ9ÄÚ½ZsÃ4¥´ÙÇTq¦-²“PÛ<0ù:«ôƒß(Ýž¢]UVíHè®sœîki™ù.«0“î>˜õéçyW3ˆ@á µLÉy´AqqÛ‡†uþZ’Èœn¯ —²nácu—¸£í?^”oŒo­ú'êräˆÜăÌ0ñC›qµ2èÖƒ¸•¾Ò(í+ô\i‡œ8p$°­ö‰ñjj…À"ƒ}f¬­*:@]»úsíG´~÷¨ÙÿoŠ¢¡ Æ·ô VEåÑŽO©¿²y&ÒÄoÒá½^¨Îª\R²óA˜óC‹ êK™;Zç8)Ä¡zéŽ+RŠP·;ÃÃO2¬ÝØäW‰¹CiºaÉÇÔmr|Ot6‹K}ž¬’è£BJ²ðt/ãhS­Í ó_= •çìjÞv·°ÂéÎÌBöù€¢$€=VBRö©_À×`çõÑ^w†ú`ÝËërÀk*vIñĽãk¾ƒ^Ÿ±†wY‹œDÙuÆUà¢'Š=šs_›¨0ˆ‚Z5D©Ðÿx@°—ÅÏΦ! YûÒ¹–îvÌöÇLjºáBFu×*h µg‘¥£¯ûŽg³-ºfÅÖèZ;<˜ÅZ,Ií;ý˜F¨hgùŒ'•†áÊaR)ÏNîó þ ²ÅùòÖÃpqÍèÒH0GIˆŽõÉã.‚v—&¹ø ØçM¤ÚŽÛFÆËVg3¹ßî8¶F%õ‘bâ¡Y£GÏ^VóÃ)÷_#JZå˜ï—nìH>¨“W?Ê>Ù÷¬Ú¾å€ØµÖùÌ’] Ôêùee8]ãeÆÈ !^‚ŸžÐÁx rTf–’:ö0&ÊÆuÁ K”N6?0?|÷4l¢émØ©l`ÃPëèKŸHíþ<\ ½€1Kw#.¿ûìÏ O¦< qòÖ¯y¾3ЫŸpZ—}ɽ˜}Ö€Ê W©% Ó¡Ë™âMÉ•r¬á]@K.V¾œµŒ"æ‡o2ê‹Cö(·§jÕç¶àäXÒ\CIfVMvë¿ärÖl¼{8,Þ×BàŒ»õ:†[åÙS—½êóû²Q¹æŸ›VB°:øÈ†¨`]â£ÿ­ÈŽFxÖuÀ¥U2ahÌW¢ÁºðC¶ìèÔ¤ÝÓ\W#ÃM>¼S÷ìH7 Ð(þ«2KÕíw=s9ŸFÊ„×;dDËœ>éÞ»b³‰­hJ¬ÀR’Þ²Ìk”ý” *»Èá»ÐP\wY¹jXÀÑÎÉh&u¯²þ"LÃË’¬/ÖIu<oé¡À “¦xŸÄõ̰µï–<Õ-ðMÇɃAw4@j‡å ¨ËÕ·“ž8-)‹Ò°³í2]¯U|ëð¼—que—&ξ^éOJ(úaÆÚ㪜_i“Ïê―8\¤ˆÂ~„Ïì Tq‰ÒôXå%ë ™Ë£©Ü¯&´þ¤ ÃPÀNΪÕä„ýçsÿ‹T­ xÝN´".»ù2ħ÷}¹!Ò–¢P¹ÚíñûÖêyÀ‚Z_–uiP`D‚š-¾0'X}—fú">•©š“¢à¨ZÄD*GÕ…Q.hžäëNð4ÿT4~Äû!n[öv•HãÝÉ£9¯B*df\á˜¹Ž»‘è ¶ÖÓÁ&÷„È’I­÷Ò'U«G$b±d¹Žû©\Üoi™ß•NKˆIõ*t%Ç sý!Ö`q­ÔÔóc¶Ft›´£O&¦U’ÃIè¯ý”Ó\|߃t'¶šw^7L×ø¢ §i8;¬Ã8Øœœ8¸Ñ|³_27>$é˜N¾$²äQ+£Z0£y|Õ³& Uß›¤kmsh? Äzmß+9CMl´»».Ö騝’?@‘y•À½Ú¿%lã‰ÉYš£uëNË3Ÿ„p¼jA^Ø”Y5³¥A‚ÜÊðä\h:R×»…¾l™õA{á 8/îë¡M „q¬Nç¶©Ttű’B¹ÚÏݦ'/²¦­è ±Ú:n!· –øá€Q`\ÞŒfÒ±ZýtšÈQ›t ÐÝÜЂ·s7‘BCÜñë¸ëó¥iQy¯’\à!ILìZìºÝÔ庴)îï@ÌòÚ;EºZ¸˜#­X2ŠbheÀ1gˆ:¿Ù_"¬o°/¥l!Â. œå¦Õ3¾3¥=fï U_缊yRÌçôÅÍ‚›’¢¡ ,40ôžTÖ±÷ø´NyÆt[å ÷nü&+ßì„øÅ†ÙœØ ìXî‰ìÕ@?uP¶6O ¡4ýW¶,+Àt7}Ýq6Ú¯¦¾œêyä?¶3 ‚à8‚x·)sqÊsªY÷ƒ(*š‡:÷/¸MC®î!—p7]`¿ÅÒØ#ß—LÀ3Y)³v2nÕÔ>´•âómn© Ji~½Þ|Ÿ°À=ØÐD…Öe\¤ó'¶”çAŒkw_¹…ºÙxzÕ¯$ŠùT0å*•ˆX6eƒ’ÂØ}^K{¦%ж¤¡A>¾¯å`¡›i¼§Ðuƒ\1¦7ØjÓtëˆ3†ä·Û®ó”WÆ’G—ûY(ê€Ä´N\8ÎèçZ%ºÂý…êhA•w™µK9C'K…þ¸_ ÇSZç Óø­µ¥±8£nÓXÏJ‰9‰HU둎¸€G… (F˜¨EXnŸÑNþ2Ôi³ùaàuOrWÔhÀ?ÊJp†ì¨$ ap/dÌBš±¡;¶˜¬LüÞ¸©N¡² ‡(bµ¢îLÐfœ‘ËÏ¥têX¤¡)4ÓÁâ¬ß&ê|Qf Ï&RüŠQ\©}\ùn,/®É)™Bm÷t5Áº\*uÃGþËyD¡^=Â)¼š7Û p†^xNxÒ~8kRt‚‹¥{‹l[:ëff³Žâ^sQDƒóN'ö\ñκþ¿ÒÊ[Q·™ ‹¸^E×ûâÝKý÷ø JXS3mO_zaDN˜0?ç+*6~p }8<èÌb±ˆºzç”kýáÚàœE½ž!Õ=_ycFúaÕ®*ãÛ-WH 6—Æ߸ç¹d?S{Ú3¡ÕåBZSçbºÈŠ«܆ ïÝN_qP”EÀ(QòIŠ~/ÜhàÜŽeݼ£ê‡­§;xˆ·(PÚ{úÒ®E|ÝŸœNdºŸ/õîy Ù°³Zì6"‰jÝrGR¨+ÁÉùî .%Sg]å3õGËk¨Ú‘dµÇ½Uê;Þªªz#:ݨ±ÃmI1æ) ¸:˜÷üúªâlì“m*Ø—ª ˜Gµìú’%AkâE4èw‹k¶GÜÊÖDÍ[Q¤ê‰c’4ŸmŸø…ÃU Þ¨)¸†ùŸßD:óãºz³º„½ÊÞOƒšë™5!)ú¦"Õ= [:SÆ‹’~<öªÁŸlÂä£Ñ±y½ìü™Z\Põ3·H(XN6Øé,e±¨‰¤… 4³ÚøÏÌXÕbk˜Žü=jKùFd}E½ŠSc¥6·$iX±Ü•V–·þÙ} _æC«˜¡tv²_1O ¿ß´Ã’jRJíâƒf0Ϭ2z´õÞ€Â=½Ü³úÿ`ØÐt ‚ ’¡$Ä|P‘ (û,_:“j` aËØñ]ÁN$'l#‡—%‘øbô[&WNQ¬(½…–®²šcx…t|–Nø›XÙ…:§ò$ØËOZ¿ëMåM‡\Ö…Ìkžk«ó2H³TW°¡º”ÈsÈ9å·Þ”§‰±"°]˜ €q« …_™ºÈæ<³³W™OÊ‹Ùhp·s¬º’´ùø‚ÞÖÚ³¹CÏ«KÑòò¯Ó¼\MZΞ;>lÿ™’U€Ûc' ÃV"rºÂ‹7(×­ÒõSÜe°v9Zz›?h/›Ëžto‡u-oùª®‹”Š~d§nЊ÷¨ X]Ó¿>GàÝC¾õ[ý¥ûϘ›MǨŒƒ(¤ˆÂÃuôVvGnzhD¹$ÀRØÚÄo­pE;…“þ±ÛÕ{ðç†6hL÷êë¾üлjðîg²Ñx†ç  @¾VQ€döÛ‹Dï9ø±) @=ì•/ãL2¨ýü¦°A6ÑY×2{;'Ð]¥Í¢K'-±]Þ‡¡¹Þî5ô•ȇޗÅ8ÜÁ$ñçÝÞ?ÉÑu#¾w= nLê&ñ¹ÝªMoTÔ„ý®WýLIíï<Ç•tâÅ‹ìåU½_ Q5×ðßYRxg b°* Ý1¦Ø¥·ø¨xêÁ;Ô÷9{?)Jxu_^¥¢ôýÿÈÄHØž&öƳC^«ü±?yïEî†!vYAj'x¶È2âU*š WÐ}ä9p„[ã XÑ̓’Ж¼Î_ó«g‰jÅ(%,ÙÛÅØn]E¤PtZom,Õâ¿ ÏŽÖžP?…rí^/›¸Ì1@²7~?·±¢)CÞ¡’ ü®“÷®ï´Nü¹5l = Âj£©êA_]z[L¶¤[<‘„Ýo=†¿ç³ÍåÄÍD&åê5Yv¤ð!}ïˆçC7]bfû$š©â}QQ¡CšÙ¹ƒÝû¹ÈX×¾*´$’oÂÔ˜Ú5ª'ÍʆW¤¼T6©øJƒ"ÞÜH‚Ñce–á)ÌvúB÷îü®7SBº’ÚÜ©LßÒbÃYØoDŒCB‘$;³³¼Ö‹Äosëdmб> !7î“”ÔLÉìç–ÙœöÂQQ”<ÑgJÒ’ò7OB»–ÀaíÔN„]&ñÄalËQ‰¦˜.Û"´b…?øó1Õk°K•!fϦÇþè¨=~•®-­¸d^†œO ¤BÕ.±>a9Ô…vä–1íZmqr8˜Áoßæ®¢þÿak6±¤¤eÏÃô8 a#”d$Å”Ë<ÿ^"YðC[³ǞHgÌ]*|k•/ÂâwgÓ[|˜>1«Ï ûéÄfœ$­·\àØÅ匋z£e†v%™ïì+A˜mÌq × P+()ÖŽyTâ1ŸnàdÔÜ®_DQä¼ÛB&”{—÷¾³2Ë–(=¸~¥Zm‘ înÐ*ßÒäud8„ð¶Hºc8¹ñ¥vÐÛà+g”~÷nÅLÜd-âÍÌ(9¦™#vq¡ 3pâ›þT\O²ÛŠ+[† £ÈS~ä %8‘Ñ)íÀVÕš3£Û¨]|J.­â΄3Ç„¬º×^)d-~ìîšõßÄ”+™Aë½nH–€lSÿÄFèçÂéžs)K†w¾µ)sÛâÆèC€kO%&qbŒk»ÕÛ²æ‘^=õÉáåVm#Ó4¡ d$ÒØõ: M!]Ûi\L¿=Z~ Ú‚ö©Ú­ fÙ¬X‰[ŸKöØ7²dÿÉ#WŽŽ,9„ ñzk7+HbÛº†Í²ÔØÿ£VAÛ×çÝæ²˜äyPÂèD¹iVCþLUïþ Ï4¥÷-@²Ö"…bÎÏ Ô{Äû‘{ÔÌ„Dè¥~hGµ—žðZn¤ï14¬Ú5¶ôøÎXnÕB³rˆÄ\©Üp…¬H 7¶0ù´ë ðúi¹ïjM0Á|Ô⬥ì2Ý=šŸÜ¼#Õs¹OÊÊ÷ª*Fœ1$¤–kHâÁ3Ÿ~ŠðE€ŽÕ÷ ƒÜÜû,€0*ÜÿÎ6x«í ÃM3#·_€¼˜šîD ½íw ¹»—ASLðÿ&LoÃ%Âan…k7˜æXE}¹ÃÐ?ÜÓê±ñ½…x¿øS;®…Óº4ÿ¸å,<^"-t[(¨”;Öñ@P¾T|þ 9þ~æF¥¿O©’8Ц¦“’Œùâ°{ÏkãbýÎ,)KÌ>?ï|<4(vœ 9à{ŽéTw—'òR˜]î¾BÐï"ò©,ÿOD ]xëä’›/ñªÃ( ꎙ±¬Ä?¤{Ÿ>Ôªù+ûT:7·§nzD×öçäxõ.hÅWJW¹èXà¬g0òýOYŸîT›+不þi •/41—0OÒ!·~£?pkܲÙPu‚a)—'Z3&ÉÚ¬_Í5h“a²N®fEöÐÜpܰ‰¿å¥RXÔ?PSöP–¨ou6¡d†{6ÞéY%ÄUQù®‹'íµqò^@.ÇcEQŸk‡ˆ:2œ>¬¿×¡«G¬}ø§x‚÷üø{Í´öKÚ†ß"nï›|¯àÉËÕò£:'÷}`î² ö÷‘Ü:gWqhßý-Ú]¶=bîdFuŸ¯ý感¢êÀ~¤ÙìŠ*¬Ì`¾daÏ<¿¦ö¯$-ÍM¯ð][’L‘ÔŒoqÊkS #³ Ò ïŠ¬’Êè\öÆ¡,g³ö Ê/S4ü“L !’aZ 0ÆÎ5®I ƒ y”W{PâÌË¿k Aœò@*%÷¾”"q»`¬'”XYªë4CðH!€9%0©_ÚË¢¤µëÿ0…ø‹‹¨Õ~‚ë#N‰Î¡f.ѻٜªñéUkŽÌX_,[ ”¯(–H$‡PªËCÛ½oÅ‹£ .¼¹Ì™õŸXÕQŸn;Ü9cHßÃÒp`1¤²ƒ çæôßÎÇ)ëŠb*Úq²îÛnBóîsQ<»|Ô|ýæRàóÒù ™HÓ„$'zn5Œt͆‘ A‚{ÌÝ#v¦ãþ*ë6•@®Az„ã"• ü»cû`{÷1Î@J»d€(ú“ýy5õ”Ü­»;)äµt-k 7©dï¼¹<'½Ïq¥Q,dѤÓXÙa †:k¾ÑýiãßÂB¶fJ²¬±SW.V¿ˆ– ^+–¾G…=0 èèXè<ÐòÙ 7h0µüé·0Iù¶º†ö‚ä‡ã…åÉ\·nš)ƒsä ‡­–ƒ˜¿Ü%(5„š0æ|X!‡†ê ÅúûLJÞp‡¥lU®þb³¸…1j°Z®C—Y˜/­†0ôdR´x×Ïüjè~ˆórã¦28îkŠñONÓ¾¥>~ÞRûÚð%»a€:˜?EýÍw®ÀŽ(!ö#JV‚e ¤%Õ—íKÞNl§í Å?ñŠ4¶"„Ü_¼È¨i9hC-°šü1’išc®éó;ÿ]Æð*SÛD§[ýñ¨ ‹ ©•BT ©Ç^3Ý™‚§æÛ”ÿc:ËÈ›öCzbÀ“b³1–ZÏ@UAÔŽJ0Z• šv¬žð¨Ú×Ǧ/J@!×rÅÀA_=Þ‹èg?¼ÊYo HԳȩ°øÃO^ò˲ðæ»èŒ©ý9èÀñ±ì‡ ‡ŠÖ™—·i tÑ33^é’k’Á²ñCy*“ÊH˜ñ8f.–1ËKWš ´ÝÜŒ<J³7î.Ì™>ñ”WÞ.™Ks÷^­pm6¹A¾“[)*÷¹ÉâÑQù.ãe—AF6œº€mGÓÝÈݹ¾tÂêX0¢gtÀ÷Z95pOµ’+6Âú¨k³¯x‘Ɖᵯ$w]žFk<ÞäË›ž§¿‰â¹ÊTøi×Á†ÚC°wüS…”tkW Tzé%‰MWÂlf]F“ê®u„7åÛDaGíWÄËÿWmÝÍsÃèo†ئY£Nxþa$l—åÒç7[¢yj`d»RÈÉ3;Å,~W8eµ7M‚!Î ³—­™¹'2ƒ9T×sQaH)?tƒ/,^ ˆ)mYLÈPv6õx½¾sášZhÛD8j ~8›·o'Ç ”ÇL›—ž‰v¥ºÓEšÐa Aãåüêâk4ÑÝbFR‹, m`˜V¨RÄsHaË$J'Z½×|ýi²(1qá¥OFÊE¾x×À¢(gÅŠb.;ô*ü ‹k¥qÿ|ŒàÞ‹<÷r4.- :€i¡ÿËùÔ»éâûgsÖP“ÿtdÄcõµ”¯É1—:«Ó^AâɆ¹‡¹nãÄóâVz½ëT×>âpÞwŽ|ºÉôŽÁ½œÆ%|]òEuÅ/t!ñŸ¥qè¤G俺—êþ ý±ægâ;É®-dàGä "#aŒŽÓ]La‚× =þU‡%Ýuåš!ÝÎZ:;‡u–2ƒH£äi£ª·Œ³0)£R+_yzÁ ašªycݪл¾ÿ8üIHUЗð߆ú¸Dœ×~†{éœCñ^@h4‘{†¥¦8OÑgÓ‚ õ><ž‹±Á?µX2ߊ1´,´×+?ˆjráàþ+-ÚáªJTÝ<ÙOæTÝ2nSŽU»1¯ÿï†,«ÇøÈÙ3êªzÚ÷ýäõÌ4 ’Áâ‰\ªu"|­,ÌÑü¡ôJ±›ÉzªJÐn6µWjeê‹)žµ°µ$?¹ÂQ9ÜÂ’‚ÃT”©‘~×s›s8fNJ8çebó®2†›çŽÐFÄKõëØÈƒÓHôg$&¸÷äyzÄvŒØ–É#ñû‡É×€•ûu =i‹ôÖè<ŸÙñÛt/³v«•êJoÍvû´fEQªµÜâlÏf:˜¹3ï  aˆÇdFŸe!¼öBŠárˆ[i‡¹8øË+LOÓ^Ù{I”ÐC cÆ#ç‘à®!¤ã÷ý¤¢ êúê§¡¯¸Í¤nFÒu¬¯+S:qŠ4M33Óa;3!D»9Ñ•°”¢j¯ýfý’׺‹bL”°-ºsèñö@ÀTÂø³mß+½ÅÁÔªäÊÃbÄ‘UýóËÉSú˜æéÔr_Œ”#á”ÀOYq³ HêH×=s>/ ál˧5æ¹J×ü­\JešÅ=Œ|˜ßPüÊh#¾Œ›íÆ(QÊé)AÏë¦{Œ[ïBƼÁôÔЮY™£j{Æ5ùu¸)ß×@ô£ý—†ç÷åG]ýÐÞÇa`öMAEû…?F•®º'ÏÄŸè2z…DI;og çz‡þKO€’Šzƒ¡Ò»'yøG_ p‘) ´ç±ù‹9í³PL§Ïa¾Ïþ0¹Ã¾™ògUÜéñ®ˆäYOž¤¥ëÅÛfžmy¿îKG¥Œ+ݨ呱¨6|ëÍõlÒcšä¸h¨»Ó|Tæ° &ÿβ¢Ñ£©4ð¤Éá„ßh)™8NÉ£'îîl’jÜ-C”ЍìÌô§Õ¢S’BñRÀì=D°ÉŸvOGÃL×?ª½k‚¾ì—æгPꤳ"DÒã&VVƒ‘ò¢©Mòߘª3±ØÏ‡rÚ’¿L€ÝI¢‰æ°+þ VϪ;õûaÓ÷0ïe8kßÄåªZ¯ k©þ>@†Ô­¤ÀiŽ€k˜åwè&Ê'Ö~°‡?0£ˆÒ~"Í åýØòƒLaý¾ŠWá£i™­˜é2’ÆçYÀ² 8â,»]OlÐøiŽ×ó „—˜¹e^ •ŸyËІYzAa*M!À5C?Go‚¼ƒ<Æ&nC¿AÀÉ•U¹­.QBš S9Át&#@ц‚^»~»/Ós,m¬]Ä­›îΣeK*†Úpȧ“rIIEUî詃7Êr0GѳeÑ¿{…ök'Ø-°Ã{bó0º¦ÆUâiTå–Hg¤Å?¡1“–Û2𯉫Þ}$v×Z)s K-›ÊñŒqó_á*˜/må~J;Þ€óÝ™ÖYŽóT¼êÆ›™´…î¤z8·Q›F¹)†ñFÀ„__ÂÙe6ýxŒŸk¿ª˜&н7L• Oç·ýþ í˜”X+R}s u€Ê[û&I^T¬}²U©E —¿]›œáKhš­;Hç@ñcÊÂÒeyåñgw±‚+¤2uË©ï´RÃ6®[݉ä4—žl©ÓQÛw9Tœ¨—îR´“ ¡k3ÙŸ±‹‰+êöBµ=¥—¹âˆHÃpçà|»uº¨]À¥Îw´ØcÊŸ ¦*1¬^µÚ$uEè¼ð922$u™»óuºov5- ¶Çî,¯#SB’qP(V±ô‚|ðeæ÷–ˆõNÍ5ŸSA;´‘çðöÞÑx–áËI[ Š ùB²Å= ¾Ùq±·§¾¿“ìC‰"J7žíÿv1 C´V0ôUŠŠél×Og4² ¹9|jôR:Wë>,ß²¶Žâä[_-Q0w¶8Ï?B¹¦%ùÑ´Pݨp<·HU,jìV•¬õ”:ewN‹EÕ)ãDãíÃ\6tWÔ@õ³–Nk›wà2§2N"#Ç/X¶»P{ÔãÆ.uáhúØGŸæáäm`÷_wðÞyã1¢>X#ÐD&ΠÙ!ðƒC.õ6xîaQ߃%í]¹)Y½¨²ûñ&¸ÿ9¶Ê¯‹Ùop©ëÝÊ;±¤W„pZ)‚ŒÏü-Í8u2¥azE§IÄüÍ&|`æÝxéíAØØ)Öª‡øzÚª3ã©ÊØ1°ç*Ð鬯ÄPÝÈöÁa.IíÅ<±ÝyŠ)Çcèƒ)L| üw…m<ð)òíúUÕÝÁ´Ì([Sí…€õängm+â5Žâ:<=‹Ð :öuòmÉÔÊœn\E4®‘è"5Ãïª{®q¢`àSäEÞÛ1KMRZ@˜‡PÜóŸLÐòÊÏJ,&µ¼Y`gMÓ-D]gW2roE›JA캳 !Í—èX˜à#JÅêÛ >ÞêlŽŸÁcI:uƒð¢lûõ†#JëÝ-Çx§ Àzõ¶î3Ÿ '\ÑTPœˆ~Â[Ä €Â´Ì{L¡³c`Há/ÈçËϵ:Ö±•‘<ŠPÀuí°××›4hþ…ÌÛHÓñÛx&åco‚€6Æc_½DW)d)Ã#N‚¡ñøíÀ:w¸ø˜¯ Ýê@ÍhôΕetû]kƒÿ!TyÕ÷Ü »­8I<*vsŒˆ¯-/ mªù-‡†Zc6³¶¶|ªP(¨j}y5Ì|,ú#š±9 aÀ?¦±ÐøǸˆJVšýzíÞ2Bã"ü¾²éL¸ÜWÛ ®÷`|™RÀ‚9ÛÍ.Ñ/à+¸kéúÏêÉü–ËÖGÃ/;ò€ž@yˆL†çÆ,49µKujhª¨f2‚B©âBR½ÄWsô˜|(…Ö'kÆ vVr­«¼ÚâtþIææÿ‹ ”5JÀ!BMŸõ0*öfèaÜò +¤€*0.'ç´ÜE ‡ŸJDhÎT(φFQÇki™YQè³$Àá«a‹bŸ&šôõ—5þõ^õÖ^a‹)&l™Øhešù™&QMWqj V/Á\žÒýÃÐ7wô1R0Žï5Çjµ¥ºpó1'™0úõÝc: ÃD}éÇìÓÓA¨:å $îPÉË…qÁ¹~[ºôJ”ìl†a¨ÚÔï&¯Mî¥ÞL«õ z̬w÷PœÛ}2Ú ¤´â›þeÉ‘í®ý{¶ J ŒT1 -Hy—–XTú±l‰•c/Ä]ÿ Ûe–6÷•W:8ź‹“—r¨[®C—*_f´n …;jp*›á4hÈ.'å÷kQäÝ„¢ý‰ê-Ô6ç×”:Ôoãz_Øý‘=”Û°Œ9Ðë @*àÀ¹ôÚë³{ýV¤âcHÉòßB(ÖøÑÎh¦¤q¨pgÄÂø {g\Ø^—*ó°vÓÇ"ý1SÑÄ3]æh¥µnmk ˜¹†Öíg.î¨l¶|·ñŒ_eå ãÍ_"‚´à<½bPš_ì5”9•üîc¸§ZV3K°3!Ñ…´uªïŽ)=QE^¯¬ðMõE#<×d@·®#Ȇï(œBÏG«ZàG_BGYF¬e÷¿\`;)¸4!ÄÀ¨âíWvî®÷¿¤=œRg± ;ccÍûŒóP“ :ƒOl"n8ŽMìÊz‡¿'xw7g-b¢·uÔä¶ê,<ÐX‡÷.¥Hþpïæ Ìž*e­·§q¤O~­xy}òŸŸ‡éú¢ÅÚ sÂAõ¿! cᱩý'B£ Cv܈Ôlæs§uT«­wG‰˜ëø”XñjìÈÒêïsåÊura×)£þéìÖ'ÏúF Õ2úY “*´î—ŸK@Œ~äeiäøþa=ÿ®Êæ\#“I¾RVℲxÅ¢7¥æN+q9ê. 7xEë #ë(Šw€¢}Q¬p?Ø<Ùï>’¶Â垨Í7Yó’CC ¯råá¬ýÃ×Ú-PVFºÀók<Ä}ÅÕÎÓv°>Ÿ§Ã£a¸Z¤ö9 »űñ%·+:#ɹ(oŽá¸>#7âCú±Ú}q5ß´Ê÷õ²0VCtVìsŒ?±vÑ|O–!% Øˆ Ñ=Žê2·ªùÁà}»ŽX?ŸïV/&–PU^ôÔU~)ú|R:ëÃzÜnîÚ]³(ËÎÏ\ñϯÅel-]A¢m®Ó –ã à\‡¶ö °SÿÛ1l£e"Kî~sÖFIþŒ„ö‡C« ÂhsçD–M‰:XhäÐ t¦ÈLÎpîJ Q6tr J1–õS°ØBïÑv’bÓÛ†‘;? Ù¢˜dKêM–ôÚ|!â±Ày2ji[²jò*¨‘9«Ãì\¯LÛˆ9Ñ@@†ÈFEùûÛåí¥það§ö„Âm«Õ1´Ô*-ÓÙ&1»ã©¦É÷ãõÏ^ƒßÛÔZãB^ݺ¡ÐÆZHá»™Tm¯%Ð+w)—ñ»'Sª1%_MœÍU|ŸÏøî£9ß Q9!~Dt£0c臶B¬Ï¯Z(6dŠ0± QÆá(ÒB&kš.~¨åµñ¾,+à¿NC«ÌóÇHæt‰AuÝ1rïK“]í…F¥‹‡‡>k XØÌøŠyÊ{Ø/,øáĬ €¡SÞ5î¬_†¸L„h£rä}Õw‡~Dó“6GB‰oäwÀE×ilBÆ™\ K± ×—¤ƒX޵él;ou¡¬bÄá‹ê€@Ò–ÝB¹[¡1d½»¤&”l¹~- p~¼y(©¡Ã£‘€gÐö±×´ %ù8üø,Ì"Ò×Í«§Ü2Õù»(Érã«p/ß* âõ¡8EÝ“PO–K:_!ˆÂÅM(Äœ¦îï]£0^ ¶äR–xµ«i¼N ~øŸßu'Gñ7:n¡¼™c­¯3ÌñÂ]’e®Oµ)ø1‹@>Öñ"Žðn¦oûÅ~¿qmYÞŽJë. ™‹t^¿„tˆªôŸ ±Ê…8¨Šã+ g3còrìÙàÆcç/ÑñÕ¯Yx5TêNSÜ)‡3+© ¸ýh°¢N'XS—‡¦Û7l‰)€áTZ–Q×´Ëcàl…®&ñÂCðÑÀÂ~ŒBi*<¥tˆ1=ä–œa ^9¨07¡ eº‰Óšfh²•¥¼œÇåÀnùˇp˜A’/y˜Ã)ÏÌnê®Âñ=ï3:!¥Z‡ûÅ‚K¯MK¨€¥ œ˜`WÔÙ7»ï €&Ó'’ÙL¸¨OnÝÄy, }9U·Ö˜ Ÿ>‰ˆ¤ «ÈìƒùF*ÛPªç{.züä[óA{MÖ%â«H†šE1pFü–¼«#¦ ™ ³[o¢:Ÿ"Þåçz6j± žà]íE‚æÎ©aòl÷]kÀÇÍ} »v?ÏYu7I¹wõzù3Áð,°÷9è·\HšˆB`"6(e¤éù=õñ òè=Vk?Á—úî1|_bæ< eÔ ˧ 7DÙéN¨ëŠOÞ]ÁÍlý Õ‡ÇüsÀHV÷ŽD5޳(ŸdŸó[ Y’Ëò‡píÑÂhõ–P+Þß.E|oH‡•W‡”Ü+Yç2ñ)vLó–{ÒJAÝÆÄ^šŸç–f½Ÿ7sá"ߣ nç—X â3-·ê%i1„Ìj Œ#‡‰_:n\ï¸&ÔÚ¶Ù@\ØÕ¼.Þk/‡C¸#^Ö¬|¬9¸×Thúwð5G~Â2+å•‹fyDsdY’[ÄOQû˜B”"RL“3ß_áþ_B&˶T€Õ?S†3 +3c¹áŒæÙ·ëzžÅúÖá;ëæ<ßî Š•‰v7'QÔh—Ðí 6Ï#ðGøØ1üè®4„þÐAl w„c§äaË#®q”ÑŒojÙldë?ºã4dõf5;£hcp‘Lù™ƒâ&ŽÜ³Îþ~]ŠÞŸpf>=Ù¨/=XqÐÖp¶M](Ï‹3ù¯ j+©²bw?¬ã¢0SAè’¾¢±¢§ÚB‘së3nˆ2G`Øá´Xkoño5Ù”Ðä6±tq)®‡C¦.bá G{î½y[!çU6j1 È,Í»ÃR§ôG„­$‰Œ(îX©H •ðFãÄ~øVˆG!«‘_óZ/\v¯j”äâšX„Ç‘Nì©'ŠæˆQ,²•Ç¥$Æ=2m´×ÈŽO³ÜÓZèÒ"Cð ØÏß›¥0+¢¶‘>·ÆÖ8ízù#+L!ò*Q> 雷IÜq±H{‰ƒÆßdç4ŸEùâTª«¬[¾ZúóÈ5ì½OÓöÄ@Kƒd &õbBÒ¦ Œ’&»¸-,Mt%k>b,/ Gi@à Œ’°F ÚÅ?L'»:aÂâ4O¶54Ù›…©vQAkÔ2Ò H²€Ôýˆ6=á¤OÑ¥û“:;^þ‰vŠc ‘rË9Høšl°7‹dfåoͬÂßàv†T·i»4ejú ÛãÆ–“ªõóQ:rèsÝDì&þÖh‡Pj°•š0‹› ¦ãuûÓÅ-¯± +^® 9#7ö‹áõ*ÙG/ØØ—ÌŠŒ0GE¦X!碶,fù3]¾Ø‡eŠJ `ƒû <¯ÜlmË<$ˆÙlК£ KnC) ýU\¥ÏR¦ ÷íÎ%æìÛL'±…èR½ÊpÁú±7ší‡ÐP-\ù%\ðD+4£®²½Óú£Èä/—H›¨ì—µ0-m¸ãœy£Hk=RpèAzF{ìî¼È í%ÂÖb­KÕÐßß'Þø'°œdõr «%ñ 0eYþù(I%o½`"^ –BÀýúcxë[,ß äKreÑæŒÉ™¼8ÀsbýSúÂ6ÓùMïÈN•™ x 99gŒ7bKZ„‘ÒXk׬ )³ŠÚìŽW—lØ}ñ'WNÍ0 ôck<ýíœ*F®fãŸo߯ =î’?0³˜vÇ œ‰žœwI‚bµðPå?tLÜ ½¨Ä™h–ƒÎ&ÃSp®¹”Lú¡mF¿raù“M=ÐP‘Ù-«B Éø¹€«~“˜¾,áRÛìò…ÿ¼¼µüòyÖyâkàLÉ´EC ž$‘ïÑMÎÕpRúüìÒzÝØ_ˆáyÏpýzØT~÷<ï  ÖTËMÝþõ¢DκÀ!ê@1Ùp+bP/Ž”)é¯ ³¢W7ˆùNƒT–°ð*ÂÅå!‚¢ñê}A{1½6X×ÝÖ t²%:L]Ê¢ 82Ι&¸zûÝ‹–hˆŸÐî+‚¶¸x3ÿ¼Ù3a n‰7ÒP.ºi*´ÖZaêšÔçx¹a³èwË¡&=ÑgÙ ڕ0·øOË”¿ËÇ׳g ËÏÇ6¡„|#‹Ílúñ ãpßÄà¬VÓb˜›'9oˆi­ø7³OÁoÍM4>,/›_ëU-„iBí=¹^nS]ÛŽ{ €ü=WlD;^ Ê_ª ¦óî¼%T+nvb5­«¶xuÜkÇŒŒl]ÈÓÍd´Ð=ËN9 -šé0r±gñØ; é^³•³8EÑiá2§ðÏjÕfrýBê^º´s¿¡]¶" ]Y]Ì_Åë Û€.lbkŒòÿ§o©Š¾˜j7²”²tžŠ¨Ö——âkÑq[E…dÞ/RÆŸ÷ U¬ò™Jæ"^ì¢}pt Fõ»”ð4ÐÙ’Ô|dY">!kª'¨²Ý‹Dæ9òaNƒBaâË-箆š¿Vƒ×ùψ Æ€L%ò®ú[ºæPKÚU †Åc"«Bc‡[OkEÁlª=³ù,+šÚÿŽÉ_‚eæÙ¡ŒûŒÐ¡‡%c KÛÓÎl#¶å6‰PÝö=0òOÓSF3ÛgêùÕ ݦx²Ïø¡r¼ìn­TöÄ3Ah¼ù­nbÆ<ö9 ðk,~cš¤6'glÉŸ*øÞO~1¸¡º‘E‹CB^ 4…:yè:£‘L: _a8¬\Âp‰>¹ÿ,ã—ꆀXö#]ìŬFAÜ£;ÊèZýn¶vši$Ü™}é°#€NB­'¢¢Ó¹½Ï俱¦/mFí£”H¾Xߣkéö# A4ç"$‰ÿ}ˆŒ3µ´ýÊ9pVóGA>wF¢õj¸Ä·¨Ûý(Êf^ˆ¡«N —nS?9Õ&­¥) ?©Í>tôâÕD‹S™]n»›ä^¨„K·MŠUc<"‰R×â¿’ÎeÞ^êܲz›QŽÂã¦÷Vnsß¡;³Ýlñ\±FÒZ+£ åÏŽ ;3§,N.FÉO³¹@Ûð×&øFŠ=GbÊLÿÀfʱ5}êfþÖÒ²Xk®òXýWn§¿èyâÂïR ®Û\0vµâ\ž0Í‹rËu/Œ¨huØ‹Û-ÇH®Ò˜œ@z@ÆŠÙ÷Z(-§ë^5âãÀ€®O«RGiô¿7i#N¤Eax´CDlÄqpk¯ìè©îcz˜¬ºÞ6ˆlºNHƒ•ì’')-PÖbf³Ô@á¶Æ‹xþGXy4Í2ÿºš¹Ñ7þî+&ÄÒJªˆ~åè2rס8o=˜kW‚Áb.z—Œu«Ûáçb=„9æO}(7¤šßS‰çDÕ÷îÛ?:–Ü—Ã"a=<á_›¸7”'MÒ4Jä "+ºï:Â7“—ÔA‚b*ßÌG ·,¤W±+í¨¸‘w14Ïö¶iUjèVÌG* ÿ2Mî}†øgó8yh |i©„²+}«H…+%¹°‰ŠY üW©ùZÙ[ˆ¤¦iˆ„¶ÄÇ/p6…>-5 Áóø”&~óÓÒ*rjúÉ-GFIrÌŽeMîVä{“Ù)ôN9Ð÷Ï=\Ýd}Ò+ôB‰nf¥"ÿvR¥4Á.Ëöàðª8WÖvÚ&Ñâ ©¾®Ç®Á"MSøx­á å›AôŠWw9ÌHNÊm£Žw€ z»/¢;¡¥~ÓŒ”÷¯x³V\ªfZÀRaFuÁõ—°u'.E'ø¯¼‘yÿ© šÐËîåÝ}d¿mpéøze•§ú¸X“³¯ùOò¶|;Ì¿å»/öy–wýF*ÿ¡Ä$×1&˜U¡uÍùL[¿:‚ýxmC+ôû£‡¥Yˆh½Äp=ÅÙS” õna»áó©ŸÚ)®ËX¦ë>}ƒ¯W\]èØ~óÕ®™› _¯ZŒÄÿ÷ÂKÑŧ‹ŸàŘhã}ïÞlÔ-Ü} qº2tE埨G$a$ó)K0y @Û9ØÍ…±–†$2;µ¯õª*êl«(7ËRÈb¸òƒ»†h…<ºz*Ó š¹Q8ôO }!ûoþW±;Ì*›Öeé W“Ôk;æwþjò ¢ûQ`RcÓ!v·]•’:³nc ÷Oàƒ8µåO“«EéËœùSs•NÅ{¸ŸðÄ…G¦¹™ øjí!¹6•¾–»c`Ê¡Ïö»õVh±‘õ%Ðç΢Û/cI•4¬IØ`Ó)ðû©n÷]MVB ¾óV5šíD"ˆ|*«Ý18'ðÇôqußsÚ§5ÅMêdŸH½ÙžwuÖÑRVÏþhÙçIª’D}2Ä3ÿˆ‹vKO©/mFüD#ź™îu¬b]Ìý'•íä듵ˆz†——„ë d¢EŠ|‹·ÏÐ ê¡…°àãCQD;t*‰;ˆn”*sÖùúSF;c4,Kþv˜¶vøÑxl³ÑÂËX*Ìÿ]‡ö;þGW‰ÿT*m81Œ$ü?ü¯³=kf²sS+ÿ¾f¼Ôa ·vÐ sðè»lìU¡l½íu3H29•ü»AœÜ婚/²"E³ŠÑ_\Œ™pŽ|òÓ¤HÞ¬C±õºÎÍN}WÏáçbÿó]¶7#oèf”VkÒ ‡QûS™['‡¤ ¶IeÝØ¨[g󔙯Ù|§n…å"¿}"Ï@„ç[pc€-ôÄ€b6  û†L$-O]:®û¨Ë¡WÆÆ°{rèßã5S¡SÙàŠ¬&»Š8FžOfs/ „Zs âƒTy Ècd>çV˜ËG¾M,2*¸ÐÒ©¡|¹I¬q޼mÐ’ïÅÈ2v`§gd|S’O$ÂyÈÂú ¹‘"ÏQÄÌ1™Ö•Î.è_äFxoé;¼$rçkz§ Ó°lŒ_ªI\±ªïqK!Y‹}‘×Ö!Yž1D³½u1-^ªënf=šÏÆJ⵿è$NÉ^Ë“ƒ¤Àlhƒ|ô–/Õ/ýò ~ðÑ^1ó÷°úéi©l ´×Vœµ¶Ì–,þ³ýÿ!N¶Ù@t|‘·˜ÓÌ Ý^p= '¬É y ƒ&‹èòήg4A`²öǯg¿kÃ9Nè#qÕ¹W;Ìql+t}D‚ þË<6$aÀÝ–æK³™=JÝdgé)=DN|À­ÊÇr± ÆÖÖ“€òÆMoâŸg É±”ê Ê6“†Ï ¶lô»ÀÞðk¶I€Ž º¾˜^Æ4hýofË‹#ÕäÝAH*vªJ«N£Wyˆ;4á_= Í­ìU7Ì;ÃÒ“õ¸Õ+Kw¤Aè%’«ã–YaH8v¶Lcì¿$´¦Ðö¤ëÚ5‘áa¼IË åïINÞ&©§ŸUÜ.õc$C?Z©$urœ|áÐd…¸Á牸äs+ÇVxþJÙ`ÛÈÞ­ã=¶ÑDɲýèp4h‡]a\»¢Š³ˆŸ|`#màà#–›¾ßØì§l ‘ôsØ!«{Hßé;èÑ‹×R/¥|¡ÅÍÅT!ööi'Ü ÿU¦ fMÖ¿ fÐÅœ|´”´7)»î‹,ìhùíeÿbV]ÇêNË%aö ?P>K¦j½n¢A{ñ¸\—‹Õp_2<%O4Ñö?††6SãðöÁÏ ÛRâÔ{s!ƒÞ£‰˜x¾H3b,FäOMÉ=7^°º¡É´¥±s:ÅfzÁ¥d¯¨rûÙ¹|¤¶€x¿ÇôF½vg¢Ÿ@ §÷t€â™Íîðt³?™sèèO£Y†àŸ¬º«+Ø@nÓ´ªœÄ:BÓºÅÕô%¯4–t)p¡ÝwKµ)Ížu.{îøïK;B§èF²èÿq“±3¸˜Êê4 ̶IBÇ×/A*]ž… =ý¹…ƒ¸ð¼ÉÃÈšFó’&õPmÂWϬ—½ÔIšW^%5M#Ã?t­R¾·3Èz0=U~YÑ—É#c.tÐ[¿>W& 7Ê´»K„jïl‘ÿ)õηÐÉ[àÈ ž:mzý«„#n¨þFÞ-i§äè~ÎÉòXg— )çåN“«"]›Q~3p’O³±þàë"çNô•ùL8™$Étj£Õ¯Ÿwí;ñgø<Õµ´¨ ˜&gÛì/ŽÓv+*wÿ•àxzÜ@ø‚ž#>ÝÛ/_®Nõó¶ 샛 tóQDrþš~íuxÀim£Ä§ˆîÊr/ûF u8Pæ;’Ià­E!‚Ôü©GÁr #)™Õ*[2D%‘œ#¸Ì×/bc³rºÑߣcèNç_¼žVJ~/ÃJ‡M’ S~Ò¹°R'ù¶’º++q5鋙ߑö|±ÇµxGN–½¶UZÊæÌNyªDY_>°§‰Eelë§)y3YÒªÈ×>C,Afë‘i(2ÔØ)wat÷OFâ‚ätàa–¥€U?íô¬J@vˆy€Iˆ.……–@ÎÈ!²K]½“ÚÈ«^éB÷`=¤Ò‘~ÐÏS›?ï¾ùpÝZöŽD–ïúÒMMwu° ÷N©0mÏTx›¡œ¶ø&ðƒB î9 z—W—Ï|´ÃNuÁ|‘Œ ©Lå !B­žâöp 5™gš—ó2 „Q¾ VøDâC¸­?:_/°àº£Õ¿už:ñl/AÔ ×|ÌÍôz²жÔdYï­»[@ðO~Eß°IÌ™×éý?,-¿+Ðèñ~ígïžù3ßá…“ZÙý™1c-IÎŒö «<†ü £µÊì°cœº#ß5ÖH: UÔ²îÊ ¯¤óYL7k¦Þ̹®}%“xe`M¡‹W‘<èûd­|‹±¦x­5ר müKQ;Ù= 4{¬¶ÇÝiµé6ŸW”ÿÀ&FM‡ò²Î,¼.Ý 5BÌ¡~oôC" ð²€pý˜³ž¾§3¡i¯ ûpÝò@ÑïŸîSÔí$l Z€¹Üðۗݰ:ÎX"Þ·`"Ä2iú}xaÀG1lKu¬UñQ ήU‹‘}ói„f9®ìI‘à˜6rHêeý[]mº¢áµãäÅ‹%׺GLlˆÄÃx-úà"Æ&qѽÍίYò‡{yï¢Î*âL¤­ Å;9,° §2Öá¸}VWµ*9…¾.i‹_…nR8}¥`Ý0ñœÜTN˜{ûaý{£è*Ïýt¼Å4‘“ÝØ¬1†g\vÀ²F9rÆì ÐUÿ¶Û9q­¶5ï¯Ô™Á]úŽþýÕóºÖPrD„~9ö΂qöVktËcä›'^A'oÎ(¨ÁÙüq¡ˆ…/¸Ûƒ«ˆí?ÔsàFbtäd‡L¸þ0}n¾”zŽ{lgOö~ÍT^W¹Sƒ]Ê:¼&í‚û³Þ: S4m{Ò‹FÎÊ”õK<ÄðëDéº;è#ò–!ô%YüþñÓ8šž2z:I¦ßÿé ›7OJ '´Úå~ãF1(ô€kˆIö¬œÝdö6Åd6Uò8¦Ñ3Wˆ3g·SGЦ@8ÐT²",Ñâ\R$'t(Ù÷½ôEר©³q}cq-–%üÈtNý<¿#½+Þ5”1Ó<š-r¸ÿ³X¹G`²ž2-ê¼³ò”Ö‡–æ†}HvpR"nX=(ŸÌ¡‡*•½8}wXoGîì _Óò‡šH¯w½;{ !k´¡§.IVËüìõŠÐgŽa«#ŽTÔýô½š°˜]Ò%IãR²8®•Ol¯ñ€üfŠÂ?µTi9qsÚÝÂ3i÷~cª˜øP[±BmG~³Ömsü×1«9}ksÛþÌ3wæ<ÞM†õ+žž„Y#ðÂ`ÿ)Î1K‰N¸ÊÎAœƒG  ¡TõÝC`7Þ*úx€hw›{ÄÄvº!öÈÄI¢hLëÝ.¶ôÔ ú[ˆèÒ¬&V}À'u) NÇ `cUtmoi&Ç ©=좳Ÿ ¬…¢¸Â·%B3‡h£ïXƒK)6Úõm×6êÕ—¼×ö¬ª-+¸c.Šo` /‘„3WEYô²ËŒÿÀ¿e9rç£îJ0)SÑ®‚ý}U³ÙLHÞ£VîˆÏ¼ž6vQ–¥ ’©`;Â;ÊF£¶kÑ ¬89å‹9‡N¢$z—´ ,¹ã+”‡¼F´¿J{ý‡#€OmiN2b¼(Œ¢o‰ÿÐ:Ü~p—q)XE䊜˜ˆ fý‹bk ¬ŒÍç¯lÓÍÚEçð%ƒS­-rôüR@âc Ðy¦húN)/9@’×!pÁúyM3 ̤ÿ"ß¼çÐj3oDF~*ɸ85óAéÏî ºSÂ'ämf¨gàÇ*ê±øš£%½}¹y½Ðzuµ©ƒ6Ë-˜)AæˆpüZ–!!$òx´ Ûg(BÿåC!‹µS“:s‚`íVôKÑï Šµ2$HQh k,EÄqNˆÚ`ã1a ‹úøV—þŒ(®ÌIñ¬§ÊrÈ(¯È³9³„X ”×6W2_ÜÀHþæržöŒËÚ›ÎmKЮq‹=’áæùµøn Û˜1š9+¼`ö;éË0ý­–ÝÜþ“T©€”>‰÷£ÓGo5Ñ-9V4óß;tªRÕ¸ó|ϼØ~Ϊ#È]¦¹¨ ¿UÆ?º¤v¥«àæ.é6èÖÞ;G ð‘A¿,zkéÐgtwüXÉFø%âgÇœ2ë«itDpyežº,cï±<›YùKÝë:Î*t. X‹l¶éâë³äá–¥Œ~t¼†Ð¯ˆmBÍÖÐêÏ‚ÓÀ"b×¾ÜÏl³JšØêÏ—VXïD ëú,¥ÛÊ3Ìñçg•ÞuËRa5¥,’÷}Ii„µÎ®gÓN~SX‰ï1aAˆ0%F2rGÜ­ÔG˜k¡ä]_'YVS­V7Ï›:þÔeÔðž9®ò¾=4.¤ô2°Z³ù>7äŤEª„$ªNã2Ûˆ¡E¶‚«ÄLöX øHÎbQö[;‹S&ùb¬&™ù ˆ~+°/…HtyÅ)‹NÐS#êI,óÀ:V»W–G¤Ù®Pvâ¾£ûZ(¹Ó?;¦©e“ã5yãF‰áÃ7äÃQÞ¾÷ h(Ýò(¹MËT¼'BGÂtj‰`'øšåØ&Cº·üÉhˆ¡?Iêº'gC:‡CÅ©b–¨<ÄoöN@¤UÐŒmŸ¨ðy~Ò‡”ã¶¼?T\û!Wÿ'Þéb,Ë]þ_a{‡!±AÖ¸)!øÈíîIP©Ä¤‹‰·[°Ã™ÜWañŸŠ(zë{—G,„½Fj!ŒØK,Iü'ù©Y]„€Â2Î8ÿÕTͶч¾pµFds<Ú„ßuO}0_S¾Äê:4™WgtÖ1‹ð5ðú>ƒ›ô®§J¦ÒÒòØÊ´6ç÷iìÞ8¶ÇLˆùxüâ.CI€ù³j+d52g"vÛe~m]¼ÛèÖ:ù‚-áø¾çH$k½Ç?³fX<Ä|„ÝRàäM»ò¸ö {ÈV0ikpþ2T‰(‘¬bãçDBÒ2Ôó!*OGCkÀ»ü„ix)rx9e£M¡ÍC9š;Å]}’~Ú¸ðX–G2ˆÚ-êç¯3ÿ9ML St8ÃBÅ&íé(®Ÿ‡!Ã=%«ãbÁùCòMt‡–q‘r}w§6M÷ÄÔÏY‘ù$ˆLxÙªÕÀUÒØ'8%Þ£¶£aû¨êwZf¡¤îކyX®¿F ÷üG;l_ûØé>M£C<±©„°³võšê?›fÒèÕ¾³s]S ‚VQϯ"ùUÓÁ”6iSè\ø3§µ݈I(›;ͯE’ÿÜ€0x2R±2e¿U¨§(jÑÑrS‘]僇-÷€RwXJþíXl :ÖG ïi’$Å‘¸Qî¨ö ‡¥!Ðõ0švª’K  \M¶v3,Î[€U]šÞ ÜBiàÿá®E«Iä†eGöÓ(`óÛŠÖx…Ûã´  7þ*W‰ßô¾%Ü û:Žuî$r‹â<ü³*0µlìá“Ö½º€!¿wÄfkIBjþl·àä©c‘>8]ß¼s0kÓ·?¡Ø™‰iÄüPÖ :@hÒñ²bnÖ QS¨¦:–LIÅ‚›½ìJœ¸^ˆ~d<4Që±âØ †ú'àg\$¡OÏ~{ Áó]Ò1©“ÒÇü`&lÀ•/¹§M­ç5rœõ¶&51ö-ò–Þ³Q¡—“d5H"eô˜¿Fäß&ï J¼ Ë46©ìúu±¢"ªaQ´ä×9(“âý¿Æ:ôpº¾40·àPåý²Çú¨ÇY{¶¨¤6¶<쫭ܸçÉóËó¤„Ò®ŽÁ÷Ò]±,v”²ñ*îYxÂy©M“… Ó<Q82Ÿ²¬¾zZå_, aÞ´ëxë|W~oþ6éWɋҳ^>ö:ô[ÉŒ}”5 žtôÀ+[[ÛèÕüô_D(íûü}—°*ª­OõóÌø$;ªÎÑ|¸´;ÖÚH|‹‹VÀí}…ô®0ãRŠ•Ô¨Ib=CJ"Ö¼ÜÝä²yHÂS^­4òëëpøÑý¨¯¯’>˜NåÍŸ]\·›O+ÇwÇæÉÇôŽÛD^/§ædmNg¿î–nµ.£#/£¹©Ÿwé’ŠJ0Þø¿,/·yRœœ˜TÏ „ðÄŸ•ÓåÈØÎ%z.[Vú³P ñÒÓ E¤Ñi}ˆŸÓ[änÁú¼®ôWÏw hìŸËȦ5+§Ñä},|3p <öëd8ôbñYaÂýö1î®(Ž6éƒE \º´€qãB½3¥'ýÓíCŠäû‹/¢'Ï2¯}íÍ‘µ&$—i¬É@Ë_x»^º|k «”DEX1xÔÖ+VÀôB5qmK. ›Md/IÒÃ¥£8xÉíˆ1¾ç˜#f3:nÛ›>t³6ñÚAónÞ÷óõ‘¥TðÆÓ×Âê*8•Ëî*Ÿ„=áÔ3˨÷œõÅa.0¬‘³áb9¢Jñ´Š‰6Ù€@æ½h#'œÖãÎE¼AãUË Dye¶œ}µœù© g犟vVP ¶¼»nw<Üi8ésP¹Ý0Ä·Š—‚¢*H)Z—ÂDuJñWtëû1‹÷þí3ËÐØÊƒ¾ø|Në<¿ é „¤ú–‡Q’òXÑWrãS1£¨~4/Z9Ÿšö*4‚ÿès>g!›çÕ¤;ÿã©þR¼ K¥ åÇÄÛH$Œ¾âTcåŒBÉ9%kVî_p`œüæ ¬ïÁ±‹±¿©ÁÍÆMïLvøÊ˜Äµ£õóéh¯ìžŠðË»ŸAùBdˆ–¡V\á;‡¾æiaŽRöç‹m–þtoüýý¾¯â3ý/z‡MíëuÔ›1÷sCIé0ßûbÛf"ý½¸ki‡ì!\øÁÑ/>é` Y®õØÒ$q·—™Sú§Íª5_ëôÛ¾Ìý%a@ÑÛ’ûW°ˆ%„µòp㸪”Ÿ>ÖœøŽ`[ÀcK”:Ðtà#%¿Íþد&òz(H¾f±KíC¨`+Æ¥¦»’éÓÅëì¶êÙá‹ï•¨4Ú‰ÈÑÚí¹òVƒ[ÞJ©EÇ,ùw>®Ëe…>Kuã —i6£ÙM @4¡È*—å¦z¢k$L%kË@°ëÖû²VÐîÚíuõ盀àçk±òðEuû…} $k-³'¥kÖκö 'àÒÓ.+¦ö©å5(% {oiÚË/åD §ý':kõœ=8*FÁ¨ÄLËðö›³ÁËàòS¹˜0õmíô^ÒâÑ0)»åj<\PS³s ùlÄʺ‡²2t‡]U~Íi!vˆ óÎ{E Dºh¬PÅè÷‰SÃüß›·¾xƒøéBbÃø†6Ä+;ÎüV¥-ñ †j2š««[úBÕ´j:Æ€N¿ï¢m2ùWþÃÓøá%9Ì›°Ü/5ÁlHSÍ{“â쎲­ùD |ùØ,i¶²ÓÈ„°)öØ"ÿ6f)ÁúÏ1rm¯ŸÉãí©…¨ÿ!“žjî„=ÙoµÎ\>”¾#öô¡ðC×êVjB:S“1Êa{d«ª-=ŠJ’H?Yx“|õ枯™KqÕœÎÇû¨Z¶©Žõ²Àñ:ÄL“°(J äùò ¾®á àÖûî}ÇöPÊ<Úk«–@ÜL—;yá3=>¯\bÙRÒœ@† N/ÌCt­È°=hšË&[²÷>Ê*zÒÁ!td"ÄêG”Y‚SîD‚Ø[¤ðµXJçª E"ñ*š¤È7} ÕjÆÓŒ†RÝQÑÖšÕšsò’\…g´_ÆfO¢Æ4Œq¯”–ƒEAºCîYí:&ðÚ[çRsd›«Ý ^A"KBØ^~<Ý$·çIÊ|”ÃŒð)™Ù¨ÞÊß•Œvæ4Ûä6s,¹‚¶ò`ƒn3 Òþã1êJeò­¯l±=4ýüAGÒ»Ksk*!Á¡ké]‰Æ[^‚S¥ÂJßÄ!OS΋|ùŒü[“f-š/*,×z¼L©¨7ÌÁ¡\çÇÙùp/üj°ç»ÂâÕì‘üÂþ„õ¼yì„[ݺO ‡-B5}W¯ŽÊEñ–tœ8ÆS³Ø¡¼µE™Ž¶KXô±ÛîΠ™>ÁQX¾zØb§ª+ Ø/+ëô¿°¢#¢ BxEñL¯õ’EXüYV„ÉÕ‘‰Dº[•l”ºZ·»e7êÉ7ŽBR’˜D„]_MPý«U¿™H!ö– õé(å×uåáh°jTd—ñIQë _5˜ã¸Zpv˜dŽmÿUƺýîëú—OÏnP÷Zv» ÎwžS Í&_ UŠÅ4¡£ ’nãmI=ܭhY8×YܲNˆ,«šED¡ž£Fþ¹OO[Úž4¿ì.&G°K-4¾ ÅVä++©#ÿwƒ7ãÓþâеéÂãånpÿ¦ªÅ7 ™¡wbUj~ž#j‰.,BµËÄá†O:IêÍšnÒBHý©w¿‚æÊ¬ÎcèV'ƒˆ´Sz« íâ ø˜œFâ–Ý”åÁjNƺ~üÞ:¾·0ºòT=F€XÆz‰³éEg:d‰ï†LÃjx²v,z/YÍõeL•Wµïôb“BÏ=u-×ñ·caá™—æãz7C°¬ÜÙwtÌû» œ½Wùû«|h òÚ,)Îú§z@ÚÍ·æùHùäœ< ÕêN× Éeæ¥5Äæ^m­Û§o}<7åÃ2šFþbÏ·MHö÷hdú=ç©Hpê›Ä£ G&:ÍoqÖ¿Æ‚¾YþN‘wÞ¨‡à¸Ò²ÕeÜïþËŠîlر®™°ÖÞ’¢àÙÖ5”¾çžÂg,da¹|m>lœ6Œy<ý¬—H&ÂÝ&ú¨‡xÒɿфÔw êí§†ÇY{+©»øÁ®ya¸]Í\c Þ»Þ ²O ¨ŒÅÄD7ß_Ð/)f´¨ é·õaæ© …zðR×r×ÙfÁŸEÝÝšÙõ‹Cf×Û¥šœÃîA£pŸºÁ[¿3wž÷ºÃC/ßæˆŒ[ÕFÔmsÎ9ÝßÏýQÔ«†y7ÎÔª¤Úf¬³XÿýÉðy|ß›{‘΀öÄj•ÜîI{_yË7{ÓÁq¬)B×"„E©êp7[ö`7§HÊø@@ íjrç’’‚¶¢ÈnÞ~M¯t‡hV}ü] Âù4ÜkÔÚ-øç)mÞ-ˆxÄïôãEîÊœ“ðÈîðm¨ð4i XÙª… ^N”íöózZ›×ÔdMG {bÇ|ìî(/<"Vñè |¦ n¨¸RYk‘±ü§>“NÂEɰ…Ã5µq©×Öf»Zìª_{…`ª¹·ÏP¯ƒÔ/µ.cÔ%¡¢ä¢Iá§©ÒM% Dµß¾Ìå¨Î£ U0Íï›qpA°òÄò´ÕÞ¾½‹1‰–¼, ÏE¾àbq|/†@4˜¹¸9"üã¬^8K¼&¢œÖÃ1z[Blàä~jèê÷¬#¨*^~.AÇòÀ¿=p—ã 1ª›Úpödjzr,F`¶ñ«Z·ÿÆ’gÿq¾ÿ#$ƒÝÅ»73KŸAÏ ¯[æ+¥ççÌ3nÛ æ‡p d÷’…jf¾?9KžÞ0Þ„_i}kèñ¬ë`rùZïßb¦}ɲ˜ÿ}ù'S:忯øÇ ½%ê–®÷L²o‰Ót*pÕ \ö# :ì)°¿j/Ù;WþÙx\nD¼§Ô0dGŽŠ$O–oØœuÄwX 7î>Ì¡Ób^£«‘ï‹{ù}¬f6"(­·T5i* b=°ån`4h·`„ÐÕÖ$NãŒR7³$ õ#( M|L‹pßþ´2ðùÉøA»õwðê÷§c* Ž«]¦iE%ÉÔ•Ì ŒkH«|å‹x p Õ,Rq|dÃ90Ž5@I5a9чð`ò~(€pri.®èáiæ³h)°èg®›*ï%är¿nžCù¾Ä×÷þÅ ?pü®×{vðmlï¦}Í}N§áŸspä ðvJ"´ “§ºC‚||KÅ©EÁß±ÔJ¥Ð>yX飽¶£¤ïVŸ/Óê‰î¬<¼Ü;RjË,´jÑ[”þ$UÁG½®44µX¢¹ŽMËò,6¦ÇºžÐhñ¦>àBÔm*²Ø ¼¼xM`ÞH¨°QãÏ¥Ã#Pêz¿Z˜îgš€”«ZÓÇÆ{£·~Ó>ý†£È¸˜h8m:Ș]«@Õ-ÙåapRåbi3:>›ÃŽðÉþ-¡q ¬ɽíùc%Üâ¾+ï¹eÕÐp¡Ÿzå äxèjöº@õØ ÿ…§ ­Ð}n$0Ž˜ÌSiŸ{Æ ófEž£,3ª±$†¶­Í !~IÛPRË¢!(PRg*ýÿX®Ä‘á^eÅ'þÙSS —œÓ{C([uli±‚e)¶Eu_»Ì·ƒ1p£AA^2OÇ& ¢ê$‚` ®ñöÏçÿŠ!Ç• é]X)JãÑK»ý—=µu ŠÜ Ð|>¯7X…ÆŸ÷ãH[Ë…·ù”ç­¢7>zôfÚ¿¦íJ&qÏh)„z*ÙÃØ‚e7¡–$ê•Ô× Ôakx:й‹XÃW÷R¢eM0—ÒÍ}ÿkÞSì=›H&ó+j¹~t)©ÿ}š½ ãzýÐ7ßdõRÒ"ŸI›×ËbØ!.úçu-:tñi¤˜ ¿Bý×îÑfL/–{'Ò²–•B”Fê•‘q§_$^&VfË!WëlùÝ8J#­rçSæÄý—z2($ZK4ää –'cû[®~5ÎNÔÄİL$@¨ÙÏ`b¯ QŒš7KÈC-u‰9ô¯ ᚤ¶½9Àô¹gû(æCî(‡o©f£q;Õ'Ñ÷©fí¬Bç_šþ©GF,¥ç heË-ƬXªœ´èÌÁæ¼®;±LV«±€-¦ˆë=ZØQ?»œR"–¬éd{„1SÁÙTÓRŠèçüÖF÷XŪ٫ë*6×J-”ç“´=ßcòª¦ñi”ô«­§À#pÅ‘š÷¯ãŸÏò šQ‘Gµšf§}f‡ácÒW{kÝ\yÚŧÔ8”ü«;¥°p'h%5Zâ¨iCó\íÜtóD!¸ÙÆÎV)IuŸÖK^ œ%iŒËíš»¼‚î›òÎU•B˜äöÂ|ì…ß[|Éè´ðyý 7e1å»Â8yô`l! ú£Û¦ ë@Æù7p†ø-[ÎØÑÓžßÿ°…äÕâÙøëÙ5Dœ´ëüõè/(+Ø d}>IæÄUsî @o²Ù'»„#qÍ@4ª*£=êRK¶Sv~âDÛäé­å7ÀwB:º)Jî¾xŸŒŠg6AÞ0cfͱj0 ½å\@`Šr†µÆ·[àC­D„»­·=§ àñ‚_Íó˜E2ð—Ñ4iïò‹‰Q8p˜±€RµZzæþ·J} Ì„ÿd57ˆÞ)&)@ŠðÒ6þúê¬éš‰{%š «¡É£ƒùÍÌK7»d"dwë>]¥ÖOw#ÒÒÍên×ãÐѳɗ½áA Å åeŽ–p>ò{P¹g••B6Vü-9—óMPÅa|?é„U6šËÀ"áǬB›U9øšy9 )*Ò 6¤NDåà¹7' “1ÇTÜnræzE†V¸"Ò$Øÿñh;s£îøu£ó·†Àøû³ð¹‚B³u×Ú˜B’ Á†ÀOÆÉF‡ýìÈü&vAâ¢ä¾A Ûd˜a¤G;‡³T.ÇÝÊQL¶b˜^·+·œdí¥±†ï«Œ-Ïê„&‘ô—oÔÚ¡ò¨®,ú‡§Ð|Ôž„>ÇË¡…¶ýì$C€¤Æ\Bžçfr«¡¸(j;æÅxdoي†!R¦`›©qt[#d´ê=\)ëÕ,UfpuÂ.É&˜L—MyQTRÀîD'ÚŒ·j@;4(°úë{‚›7É`‹­\aã)¢dzržkN½Â‹¤OVtg„ìç†k©'ïMÜͷ±èâÆ©™`ÌÔȋɦç•fôE­‰¬­g‚‚èóª&Ú^ ç%ûš|TþÎùžSGP|T»e,'ëüüÕ4YƒI8|I­}#þü4;±Š›€/°9ÅWe“Õm©ÌÊÛynjyl,I‡d& ›%Vs†(ž±·y—GWU¥§FÎñ\Ïe<˜–íà@·=ÿ&£„>]Ø«c6†7YuÈØc‚â©0ž»š/² U Ê4Œ’#Œ¦Œ¸ Œ$À蘽k±{ròY’Mîa³êªQCÊRúoýk…{K !÷^`IÜ ŸXŸ%LP5Ê›Oæû®úè9é65VD—Õ%¿å@G“Åú‹ ÄD4$Hô2YiÎ0ȉ¡âe¦Û#,ª]¬ŒvÅÖ¼¬˜ªÅH-¼¯ ÕÒj|ÄJòMKWøØÁû‘:/‰5:Âø„¡Ça}þæç\¯ø2ªWº @jž‘H!’‘J9Ñãî­]¸j Ë®–ñeŽá"~Sz“pœR’Äš*ÑÞ‹ýÜ—:à’öL×ë ¤]«Rt € raKmZ&á@àM’Žzî[Å2 ¢òOƒäL—®îûï¾§´™K°É¹òW¬à–P 4ËMþTÆ­ÀƒS ¸ž§o­ôñA€%v&^4’6ß-0¿÷]=Ç9mYÈWíQ“þ,a§>Ö¤cQ(k)ãJ<¬ç‚ß-(°§¦¶•yBÙs÷ããß…óÎý×ÑÕµ®µµùª…pàè ‚ÌŒ!âÝÛnX—Har)´oŽÖPÊ•:^X‡ž!™?NñAF°ë<†a b®T礡o,Ð%]׳ ÎO&äߨ²üñœá Ú˜¹N õzã P誴|-ÈY‹5?45Ö0ÿUpšMý>‰ü˜66ͶÚ#Øo—nÅwÒêJrþòv‘h1ŠAu-îr˜›mϧzŸ›0).ý{˜«¬|c0a¾Ö1^mPŒ¨°Ë.PB‰Í“÷¡FoÈéYÙ X…7‡_møÄGœNô¿~Ù%@”M:á¹Åk;N䦨¦ë²šÔþGÊ•,2ýxˆW?ð´p"µ¡Á ø×òåËÄ)¥äø1 ’]- kœ gOx’pÓJ+°üĻǒŒ Lyvtx ú ëŽx¥L–‚C œû‡š÷XÔHÅÎÅtÅ1wüT`ÿá ÿ̪´‚«ÉÝYŸ§˜ÛÄ+»“CðÌØî÷Oð6›ÏALt~2òÅÊúÓƒ1ô“‹~*F爹ÿ¯ ¬ÊÜÿw–Ýg¨pàNáåThjr ‡5ŠDauЭ>%…|„ßn¯%[¦öß.'w™Œ]üéLl…½­ð‡Ÿ‘Ás6`‹?püÝ‚ô§41h4þ:ŒÕÇHÖïVÆÿèÓQ˜Ll³¼ÞNÅö[ؽŒIˆpBiR&ĺ ˆµŒ#F·°B¬paI=2õÓ.¤Ewâ·p}Þ1SÕ«•Ò¸]Ž“æ.¢ºeÔ”êªBâ$]Ö ý ÆÕdcýßLÙ¼¾è?òEnº£ ±œ˜cF*¶F¾ºuç-V¯Û™öƒ|G‰NRù°§Z-‡Ü0,æ¨{˜©°(Zö%7¸ˆ„VùID4±ÔÖ7gèz’çSÎ`Î;­!¥ê‰²ýu$z•ß4maH':õ”di<‘œ2›¡X ”Ýt’"ªfµ6Û`èE!–F¿¯;ÛSÕkÁ%;&­eÈÀá·g(8½lc’²TB׿+è?3Bêó`š]vZlnæ¯@Ýæî\IV1Ñí±(Ðn¦ŠfX$¦Ü9yWÃ¥™3 ÐCxÿ=Õhyè,–Ȫl“tS uáL;d.ûô©pÉ´óc«Þ< ‚M)Š¡£$EèÏ=ÇšÌ_‹`Öì¯>BñÙ!³úüjãÃúÇ;:dñ ùñ+ÌN(/l‰m4ŠËloðá"ƒ¦un¡ÂÈœë[?œ†lâÁÀ½Ÿ¨Ãïñ3 øººÍO˜•üÔ;m3 õé3˜‡'«A©[}°S‰ïæÀtõF)µ¸W'b=vÍÜÅsÇEþnýTæ-:.m˜¶7¬™¿ =0Þž²«Ÿ+õD‰¦}õ| D“Kƒ›Ž%SÌ:ëmá"µ‚5§Š‹ ¯L9¢æ÷6ÆÓÉÊÐ6/Ëîƒá9gé8{rfë Êw¯ 3¥aXf%éÜ%ÕÎ{°U6ÿõ+×øOeÎ’7x¡ÁxFV.W4à•›b{Ô! !÷Ð"12Aïu|v˜ÛJª ;ôgó¶Ré}Ëg‹ÛÓÙ8Uë°µÑÜU’ƒè 3»¦n¶[ÔååLÑtJe~Ð8õ;‰õ‹°œ¤çO÷ Kí';háå¿Ú{’qƒÍ=z±ÙЈaHêä¹™K`ëGVBå¢GªT’Kš ^±&p>˜}…l§k„ìH¾Cáa†4pk·+2ånBÜù÷솼Hâ°/E aüåTÓ‰U-2ÇEúµÐvVõ­-Q­ÔV°Ÿ5¯š°ÀCÿ/~‘3ç»ã¾¸®è…Ø”Ðl.e‘°7}žu_kÈÒQ¥Ä½¦eæÈŒîá{‡^9o™Þܸ Ûò2s˜O›aÎÝ Bûm˜ðÿ‰ùÔYíÜ\j@\.ú>ÿCEK(cÑ–áÎÔhºõ¶å —’§‰8Cr„õÔ©&‡ÃXÓiû´€lyt-yzahþ¢ðã?{(0oÛ–‰OšésÈ 1ãç ñÚ.Þ†Õ“÷°«£ €^D@ÁD­g"›‘ׂm*j?1Cúضþ ðCm¤"ÛJ =bÕL\Ä㮑ZÒeçq7„mdº vXVØ3­Ï'íAà•5vŒ•,r*í'ÀÙÜÄ»`¹=¯Þ×nä¨ùçnŽRNÉ 7þvÛñxY¸ èf”®,DKvHgÈÏì Æþß (›ó0$‚ù[ùª´ÏV)ò´¦, `u=XÒÎcð/¥kpM.·¹“Uó˜ËdO¬eÕ¡99`_å{ƒ;Ðwk‚;¡aŒv ìaþ0¢5@*íáÇ–Á'?R­¬&Wöz”MZXóo²¶r¼Éyðhâ¦Yëmû7ð*kLbHç-±Ke'Í•‹”bÇùøpJðVÞÁage½¼@€»†ñM–+TÓôÁM§W˜ÕÏf]°¼Lº‰:¯ pe5]u:»!2)0i²n¨¤—âŒÅÉtp¢¾£ æe¬ggV-™üú÷MñW&rìšeÛ¹cÄ3°‰4ó0À‡¨ÉŠ˜?WÐÂ_ŒÁk3N„Ãx¶aû»]­»ϸZ 8æÉ‚ÊY‡ºàVÜ3 ïØâ/ÁÒÌfùäÝ 6£ÃÄ _Dwæ®›W“þû鮳®ogÔ Æ•õZ )X‰Uam( }9‹Hl“+LÈÖÎPÿ*Pr ÉÚ>: µ½ºuÆ;–ƒ}rÿI(¦/û•¢oµ”Å{ëèáp¿”XÁ¦X£j\ÐB!šg"ªvYs„¥pT·,-é $iÕo¨žÉ·LÑ–ö>٘߸Ÿ«&tˆ9òNxP,ÇN‰Ç‚š" Ѱ5Xjµ×‚Ä:é2KþîËPPõ’¡uÕÍsjÊJ1‹¶dàŽÞÎÌô¡Ð‰xo°sÆÍœ¢Ôü°:¢)U$×îGw0†mÎx‡¥}Û­#Û„Ís€"Nr²Û6uuZ)Ïã#ê‹5Às†J{Vñ†6¸;âPEOD–e'ËÁíö}ºØh³Î·…x…ä‹{ÿL޶$þkkz=j¸#;g5Bý²=`?r÷ÌHßË„}ò¼Ôe9!n¿÷X…Œ—rѬÂîT«½A _±O×Q¥ÿz–¿?‹Æk;x&Ò>o~]Zñ°¼^å0“8]©OopÝÄÐVȸn2G‹ ¾PŸ’3âû,æãá.·)ª¶.YÑ]4ÂZgZëØóM,lôŠ*hÑdÊE{þѵbhïîçG5_%™i[¬$?jBSÜÑæÏSùQ~m»4û9þÅVtäÚ9¼z‚Ú¸?¤ÃŽ‹­«ƒ‚öVz¤67!;~¹}PšÞ;¸‘¶ÞJI›gþ–‘*Â3ܲÝϤÑ3ð…—@‰Vž‡]öä÷Öý4äšuÃÍwHPƒù´ ÀÑ´DYf–”ÀÂ×WE)”¸*;óëæÂ"ꀩ¥­G·¾~«ž ^ÖRöøÞ µŒy¸uXþÃ>À×;lÌS Z›1)7 Zž§³ƒ×J#CŒÌËäO>øÒ<~2Ä’¼êE,¸ µ¾XÔ}ú€+W/3Jä™A /Û‡´o8z×Ô× »'Y¨Ã±GYã€8&@› = cTkË,b0§èbì*“}=p(ÌN9> ¬;Fÿ5çDí;ï“Gv‡aÏô9rHËFpˆ‚ð.—ñ±ÒBÛ­ÙGÈ9ËLr~ÕíÔ´ ÿÕ2*êpCG¾ 1¬}¡ÑŽÉq£8ÒBÿ¸|}HIÏEåù_eÁyÅ;Û9øb;µ•rW/êDxû0êàjV["Q Ê”r×ÅÈH¨€I“ò=„‘Œ@ÏŒ´Óô¡O•)|Ë#‰0˜Ì$$¡Ì-K>#©½NÙZÙÅ Î]8Ÿ”SÇÄŸ*¨Y·Aß®èú¨aتÿ›à™_«º‘ÕPC7x€}"7GYE»5§Ãª‘ëoŽæ€â0¸-6q?ø>#vl1g^Þ+­w:‘NO:UáY𭉉»:®`Ó·R$ãS†¯Éí'B††;ÌÇi~¡3= ϼ;»n,Ôâ1ë—¢ßàš¶Û¶ðPØ =NÕ›NT+vf*âˆ|qrÊEÄ{UÛ|»ÕñpùóœÌÓVþjU¿uIx‹pŽ™Í ƒ·ß m ß®‹ýíG™ ë²*CŸ¨Ð×Ï„{q*‚¼Z¶Rñ3Jò Ÿ«6X¸Ô ™‹ÿä…AÑÂÐ UÇ+Ô„U7c®xÓ‹ Îº2³¤ªŸ§šr|„é˜h”"•›Ϭ/û‰Q#emI覧Ì¥U¼$£?z,ò®0ãʈ/“¤*: Ye6WÆe0¿ÜNx-CŒKLfA×+zD޹¿CÓ.ñâ’ã&\ÂŒj|t_¯É"J§Ú$žÌ€MÏØ¹ÆLÉo‘,"5¤‡^S™`±’uÕW…¸r¬=½®ÃÛ'’÷Â)dÐGÔFwÿ ^Ý»bsaÑ|-UˆL¨7‚)óÃ8iNÁ;…‚•×-u‡ÿOò.‚6_w5™rÜÛà >zšL÷ÚÜ;k„$îÿüº”áè4ò,Ó9“ðzÅ`àûõ0»§ÝßÇßÄŽ|-?ö E¼ÀŸS]´4Â…û?r‹7 @¦Bg™ºÝ›€cd"‡Àí •ÆêJDZ¶f“«ÉåèÙü_2>0 ‹YZEpi/data/DMrand.rda0000644000175100001440000045344012144476640013575 0ustar hornikusersý7zXZi"Þ6!ÏXÌâ¹Ùïÿ])TW"änRÊŸãXa“ÆqÅjnçj-&é‰;Qª¼ÇÓ®e¦I&9±†À§K(í”kÚ±&ÁKc‚a$WqRc–*×òǸ¹ $ܸ—>åp a#„s©­”¢qPfXxˆ{Fxª¥½üçºØPOÝæèS€Ø…ÝÛx."—+kÂÀÃØ D;9¼Ä±¦’ûµ˜kMÁ(ÃàTÇÁ”‘’õ€NÞV84X+uÁÙ O´:Åô•ŸPErç¨Ldþ±wŠGÌ‹ Àˆ\{“9Í/«ìC3‚ ’õš‚òmÓ¥EJüX{%‰®ÕØ 9ÒÏ›àuǶ ÅEçéÓƒ¶½®ºg’{áœ`{±”ËñÛ.‡]¸1Ï\´VB/¾PÆ67üMßZ¶X»Þ‰KòW":é’Ôõ«oé%94Vý‘§þš‡ÖÕx…Ñö2 Ø) !ù¥×²®õ&î“Õºª4&è¶¾…ŽÿþÌ­ÁQaâÝSRpoªœ]ÝËFJÎï-­ Ÿƒï?H›ÕˆC„r(äÛIç¨3û)ÛÚ=EœéêuÓéÈø{BiÇM™æÌ+-ù›äZ˜‚D-ªU•c,.™p4•Ð8s¨›7öNѽÐ#Ÿ¤{1 H©Êç½O]EÄß`Q~ê:[Y/¤bK—Ü-#ñ“à•¿Ê%ƒÅ,Åóî&=—S]éeЯ3è_ļí ýöÙE2ñ—l!« ßÞ6i5¹Žä‚¦åqÅ.…»Rľ"rÏ¿$U|¶‰ l~Ø¢%ÓúÐÔ¡w+O¸'2*†m B’W¨…!`¸ú¯ÇM'z-tä3Æ¡Ûößi ƒc°7f8ia‹ ~bnÊg L:éÀÉTX0ew*X*–nWÇ|ÉKR)i.ýzÿïÜ}÷tmü$HI»}žþ[KÐñ 9p[µÃŨeˆk‘E2³û„ßÒ7MXú´Z” r¼8¸ý&ëñ÷™šþãÐŽ¦³gÍ=+n lDßð©¼t®e(ƪÁ i\•OÅ6B%=3ÿ’åÛ}å9!3T£½i­lFþ¦ %Ìd.ƒ:žŸÓ3…|qdYÖ¾Õå¥K”· M“iën¡yEC×µ»¡-_oĵa²¹Ì-Iv>¿¦í À8âhr#—ÐnÍœuß>úº,—ô³«ØG©Â2ä·ð¸£´…<¸“—¹#îЃƺ‹>LÅ·†f뺽šæzõ‡„\¼²[hC…­Ìõƒ7xbQÒñ!N%9Ošv³ –ÑÙIÊ–%*ÜþMDïûl>_à MÅ ŸúÄÊs·±áö{™H7l¼8„a3¢=~~P­ Ÿo·¡Õ W¨é—ÏæF¯iS™ Ê«Rªí½(áÁíÒ²{(#Rˆ,CÊ>™\€b•²üª@0³×;eV"ô '„ÝŒð«(9’ìOúƒ! €Ø"­gˆì\\-mñ”…ýÎúµò|àRÍλ¬óÆ“R²T¦Ç9WUÜS*ø•ƒT·ýZœMˆyžÂðŽíâzùÂ^{ÝK¬ ~ƒút=‡ãÎ×Ó°ÃÃê]tVußa Á™ÈðC/$ȸÉVQåy؇DPƲù”Ÿ¿àãz§ÿ¼8—äpvH‰PÄ Ÿè¾¥ýSïž`áî”ãx Šøou.0T·Ä°ÁÌ3ŒsoíßÄ¡W1™•˜µ’Y Ñ­“jÉš±1)a&|=¾ND‰ï/[ÀÕ32T,_È,;¾ézAïÈdð;SÑ\<õ'ü˜qûbÁR£°j™ÎÂQyF/[ÄA‰õýT;W"apÀ¤ ×«„øDM,µFמkàÝ^%5]'5‚¥­ 㡚ý$i$†5'\ßbX"pcœÂBãhЄš%#ôÑšy‹sšÕPS]«\ð›Œtd+dZ¹‡*qœ÷¾´Ât¡ØÝ„ã8Kç8¡øô­™RrïdUXiCÈk5†UÞÆpN…òÝD3În©#”Baö×ÐÒƒ<ÒMƒŸ84£b?!síÁl É$=:€>6Ó¯XE9`5xàë€ËfŒxœ¤øÖÞºÙ+1·¯p¦ÃyÉÉÚNì"¡€E?{a‚;æ‘"”þÖ$ߨëû¼É •hϪ´xHËð9Ô•¼ |ê cÉžaû¹£™²ª¸0ëí|΃Ê(¿ù°¦€Cw´22œ¾CÒÄ—ªIlÏ"áàð°·jÕÕ2Ü«ØÂÝfå¥lèI Y´ ku³’/$'Œ³ú~¤ "„gõ¹B ä¢Áª:!·=.ÁÚ-Tõj½£¦§ý,‡óö`3;-“g±1ÏòÍ:ôÉÔµÒÔA›lf˜ÖÔÛÕ瑊ò{ફn(ÜM-²ih&ö¡ø†P*Ø-ä.¤ [wË1ö:¶”>LÚl"ŠŠä»L 5:Õøeª‡¨±T¾ÜzÁT7Sÿ)I¤¬Ù¾qyÜ*]4¼?ß^±¬n$mu ÊH¨½!ŸhìIý'Ð0èõkœÒTÄÚLíç|f –œ‰›¶Ý\r/>œèHïH¶Ó k½“ØrFU¶œØ˜®äXd~lßÄ<9qË)¹WÍÎbÊ–yèÕ-mƒdaÙ¬âË›Š<·¼—ÿ/€¾Ô|ý13Íß©6ya!?L'yê½õÕ[š2„>>^sB=ÐÜËû…;¹ëâî²T\Ù™ËÀ¿ÑQ³Ded·xêâÂîwðA\£TnxeƒH(Š õT1j²®`Ð{ËôDµGþú»iÐ_­,Ç#¶ÈÀî»Ý¢Yz¥Äú1‰“¯§n!º{ìÌõFç³P ©[°ýÍ 5­kÿ›ØAÀ y3Œ‘Ño»;=×>¶æIÐzl ¡ÂÄf-ă?Ô¸ÛU¼ù£D›“ÒNNRHö ö—­›(Ñ~•¹6¨#6eÖ]4;aë_”N§©Ú޶bÿ{§§RÁÁôX^c¤œóÕEE'G ª~lãh7ÌoìÍQ¬õ°}»ËW7Ù}Uc®¡nb­C ṳ̂ÃÞaa—ý};CÒÀt :f´¦­ÔË`Fü1‡+¬˜c³_„Ms)¨Z>ڻɷÛ}‹ð"IÎN­.?ž²;‹X…Im¤6Zké{œXûÁhÏâ)ŽEÆð¿šQFFÜP¤–b;w;±EÏ"dïƒYmR¢eãLíµÒ¦ÏP`Bð [=MêõÖk}]|Îzèy¸ƒ K;F[#眖í‹÷dTî`ÃïŒæê·æ Ò·zÖÕ‘ª¿Rááúe„½ÚŠƒ×š³a¢ mè ŒÆ%'b>è¼­;ë'r'*-‡¨dß ¸Ém3±ôŸ¤±Tæ:Zq¬¿òN>§ÒkœP„Ö‰§±pFš ³Z Oé·FÚ×0¬ãNÂÕDý4ÑÓ¡ƒdDjüŒ³0¤øbòéŽBC&}\'´©L*€™ž¦}¬fî4ËÓ@ü2®k í?l± ˜»½X 3Õk08B€CDn?8 Ùn#óAƒ?Þ<-Jš”™YW7•jY 2Cj&™¹°ø*Þä}6‡²é©]Ô‹eÉ$&Í#×§Õ·1ú¼u2mPåE)&¡õ.07Ä Š.¤òð‡Æ3iÙH½6BîÛ×oÒ¹ ³9Ò&Öä‡Ý8®®-J€;—5¸.Ø6øóv…ûWGc?Ž'êŒÇMhŠâüètKÑû½‰ÿÃÚÝa£W¥ Êü¢žà£]•y}^®ôt„ÝÏ“™/kÏ4pG©h¶–½øÈß±’X¢!AÆQ“ŒË9ÄžU¬›‰“ÄY‰+ø‹múãI{ŠöftûÓµ¼5-3ö›ˆªV Èë~1—6:¥ŒÓ;%Œù}Lgùzß%î£4înܽéöëO óŸ[°C*Ù’¸–ÞíŨ™žD›×Ê*ŽØ–,†Å-_ùÒh26›™Í£Ÿž“‰„gTˆÛ Ü”ËmWõ¡^Üþ,;¦µÁÁ£äƒ§’ÎŽÇÎ0†[ä–uŒÀ‘rØÍ'¹6cýs þëö…%~‹`Ïû`¬á\ÿ+4ú3ÝÓ‘gòªÁÚo*ø})”™ùðÁ¡†³¶./6è"LJÀ„…Š }#¼t˜EÕL§énÙÙdužë¿ùÓ¸%\wa¡­ªâùs¼Á/ÃÊ=$/¾“ûMéËÛÄ—ø7â–D±™€Ï²ô±àŠ;U dÃ댡D—pæÓß®ýÓ/"juºþB£[„6¬Ó 5‚Ð"e>54%Ž`þT¼`*ÓpnâŽl@ƒ޵ O 0¦Vj¨ÝnpœeœµÒ¥ÇFŸŠ ^óW87ŸshiŸ°;jÅ" kÎ[LO &]ïÕµËEY˜&F¿'Äù‘1R†¼§$à<ݱ‘²>P_µ‰x{òáÉÖ"ï_FCí×$Ë]6ˆFPI‚2e““ÒdžàŠÖý@2²SF³ß°“D$fŠŠët ÿ6"\’ƒ3ðzk} ÂÆÜÿB«3úÆT- ,Ìs¶Ü©«#’{€“I¤Úw›=¨J}µq\Ô8P‡Þ;ê<¹^‘6:qé–ж åÔÁdEŽè€. 󵆉hûÀ48|®¦´ß/§NÝn•ÐÉÍ@ TÙ»Ìû‡E-¡ü=LêM¢ÙˆVšU±¤–†bR¢Šp’î£ú¸y¸äî¹t\²$R­XžÞž\åQd•õíᄃ<µ¯®q´J¡X@*(ZNyaÍZi Ëâíõ½øšK›Õè³-§NŒ{fU_d©E•Õ@™‹ãyª4­¸Ö%%#ÉHõø|BM‰,$˜«U“M–Œ²"“oÈÉ2MÄyÍ Ø³ Ôû*•358\#§~¬oz‘Èü˜(\ÊÆŒÍ}=÷j\Ý…‡¶+à5dnÇ%7ª)•‰Øºm%  ¼æõyŽïÞàS ò.à„˜§šè}]ÆÆ«bA ¬ n qÆú ËŠš’·zÊtÙæÇ¾Ôï²b3Aܰ•ÐÌÜçPÚU¿ˆ1²õv6$ XŠT·e÷håú×8fD›V{W¸Šú?û6å80Ò1D3^J@"xhf¹¨4!ˆˆ£J:£äâçñ„ /¾*…D‚ÌÅ«²æ±ƒpÞ%¥v„‘üñÌe€?vÅƒŽ™ÆxØÓÞôâ6ÃJß8#Àò*™Ëu“¦ òæ2“ídsSÝ;¢•{•¢þ¾Ê†¾2#)"tKF%Nä_Ð5„Dh2|Î2#ê]~¼¹þ®® Äìnù<‡%R‰] åÄmf™zi&œ²q[üÞÖßB%ëÊ›Îhî<œf›wIMBšÙé: N²]'‰¢‚•V;GvJl6&$ð²ìõßÌÕ^ÈÆJÞZ&·“(÷ê8Yl)0¢p8åk!OµÿC#€½Ñ‹84¬ºpSßÕ±°ì†M· ƒß0þŽ©¸Qàá=ª¹Óo›¬x¶Ÿiêð¶ïímÌáIj»„ÁÝÝqZ„WPÇ»5_7o¾ÀžW“£jPÈÃŰ»Õ!Ätv2<Â&ÂÍ‹{°“£f0Jä^}ØNó‡LÍ®ö±k=¤ 鬂<;þ lˆÝ¨hø·‹êú(#Üü$ö%S4ïKÏnÇUã‘wíßÅâ°;v l’[Äã^ä(êIƒ;ØDJ‡|Qa\Êå}QaP1éå. [Ë2[ ¨„Ú hB65$éO*s3‡™þÝ”¶$ßW‘ ð÷Iá^æcsrÛH¬èÇ`6`ˆåʰØß‡Ýè]cÄ*MÂ_uÛ¶»²d†3Gƒ¿†Ø´Î)ÚË»É)åË_ÍmVªÔÊqº°¢»Ú/õ…nýØá½YÊ©ûס|œÑsÎ3hü·|En”x*­”ÇNpï:LSÝ*x«šÙ! eàaWSµ¾û¿¹#š‰PŽ& ¯[&xtáŽÍ< á5 ‹¦,Ý‚–ó¤‹5üNƒLÚE39–Ф¼]€†1BZ*(ãЧ ‰§¬Þ æ¼3=ï‘|j¦áé¥ñ+³MLlÖ#H]HH#& ö|;ðÆzâ:Âð´çM¼«’Ô†×7«‡2ÜXs Ö•Zw×CD L•O I1=ZU7ÿÈréÂÝ—èc‘>œ×c±B,+ dé[Ê"vVÐÄJ6I`ô Ð¼zií@p›³.üšiæÒ!{©OÎvªôâDÅâôªý9Ý´!Vñ·+õž8°çÞì†Ôm†­Ï(f߽ɿ­XîKU-áÄeáC1µk-€ý- ×¯ CÒ@3Š ã77ØK2¢ÇƒÊáhÎéÖÄf—¬Ñ.A&嵿ñ¯|½–°Š9(çjÙà‘Œ&ÉÇ€šÏ1 HtTOn\0 Ð—š˜òrÍÆž7ª´ÛÌ=Ø3|â'¸‹”YpDЭs޵ üáƒE³Kž/Œ&OÌå g”è;¬›àp˜»ÈÕÜu9ý¾%'07â£{SQ\58éàÌ¡ oÖï½÷Z۸˾Dk¿þ'ÂOâfb( ·‹0WJš w?& 8Á¬PrÅëB¿ã)ì9©PÚT·^@3µ®à\*ˆ‰ÍÆ ¾vù°r ãצm-ÔÏëmú¬mô—i<— ‰Ä5¸d]¦|ŒÙ“®Òà õlÈNÌçV6oü†Y b4\ûØí’­`ÔÏ™·ìnn¦¶úÇÿ¸BØ~ZQ ~—‘–ˆ"§×óvô€À“Wt?,°ûïÜ`z¾=ÛÙ Pþ”Ûu㌙²êé—%6[}½QO¸Ð×5WaõÈë½düáõ¯Õ‹B{ê[ŲV`Àç+?¸×Ç“ossa„å„–wåönrŠ•uÿƒZFDÝÀÖˆzÉ!¨Þ Éí£MíOäPx%³|½4°M§mR5­ì¨ÈÑ/;vu¨éÑyÆzÞLæ©{ýR¾ áÝkÕ ùoJ{­â1RBÑnE›•ž0Lëz‰jÙMÓŽÖ«fÚ`fCзÂ*ÏWË%ý¯ ìÜà•ŸPM?—W?Ø b'šÙjËC»+ùºB !´Îg½'®¡Pßæ.”2ür¯ê—Ìð‘LDÓñýW»!i±^ßrOœä\9äÄ/½kËîšmá¹¹ñÒh~¯; ³@•gŒôô2`9la¤é¿ÃñcºÚ±/õÎ]s¾¶õ8žK­ÛÍë®m-üŸÆÝyz8Ä:¾íHýLß~¿Fðz(. €¹å$ðm¦E•CÖ­YmÏMåÄqïÛp¬i£&üR.ÆÝ×=*4š‰A±°a·†ìª|ÏÑ/e¶¾:ƒÔ¯6ñ¸âb‹á}ס×&#*ªðŒ+ÒX}Âzäæ%hlp‘P¸çX*Ø´¶ýTq,ypM eÏ3‡:çM;\ÀAÉ«s÷ŒfL¸Ièžâëíjn[ý×ñOã*7øðf¨î¦.Iˆ¸J¹™Ùùu΃+Ù”?$+ ŒÙé±MÂ&§à·ÁÿÚ•Ù”| \¬jÎÒà(ÖË×=C¼Ð+ø„ùÜ4vûŸ²*Çž…d#U;HCT„šéKÅÈ _f[¯ûns~NgM(û=ž‰ëÐSýDݯèi÷[¢G¤Õ|7QþªŠ#ü(?ðbbOÒ°mIê?òci_œrãÎX¹Ãjâ÷lú ä ÊQ÷±ùäÏÐË,íê‘î‚1Þ¢ê]e-áA,´^Ó$*¯Ól^ð‹fÑÔÇwitm›s8×PpŒ€]©¸Ës÷{² Õ·¡x•× –<ËesK %s7L IЊ¯?,ãÇ ¥c"£wº ‰ûõ»M ’{Õ¡uõ°ŠRËCyøôS¼Ç;æ·ø…}µúçÙ_£Y¦¿Ò–|x¹÷±ÃÝkLeY¨Œ×Èþm¤rÔ}hky b™½C‚qѼæhÌ«ÄDµÓ$Q­ÜL:)‡-™"CãÝü_Y]§ e74ÊÖ|V¹ ùü (¼TÌ®£óþøåÇg3€éÖ•oVÄ@ù¢e¾&¶?zµ¿ºùþ ¬+¥ÃÚL+OÀtH¢íÕÎ~ŠW}UÇ%¤.w«¬¿9Ò7 í&ò$­*_Q|í»ÁÖŸ„³h¬ù™íÚœ‡IœEVåá"ëͤmØk \D•¯ÐbdV»2rÚÀ©ˆáÖºêeàZ7¾†ñm´ ¨¶¶ŠÊþ× „}ŠÔœ±ÿ-ÿÓsHzøggiä¸e}àù`4wÏ™à¤ÎÈÍÍ´!…X€G¦ zT´JêF080°}èíŠÕwß=ÎW³}½Böãò{±èX¢?§û^lãCD ?ŽAÜ âSOdõ6£ÛÆ!¤Í‘µÕŽõã_†×Ài„)é¥È]$œ2ŒN™>ý»¯·ß|Jc`g=-ÖžzÐT½5å— BªœRå Ï?úäj.-Ö5ÀµŽ”ÂØÈ…M^µž"sòÜ4}½þ¥@z3;uº_goÄ )kó“hþun@}ƒ¨-äîII'ÒìrÑô¡¦ØFD„nP¬ËÉò”)OUE‘#Ìf6æ€'.•Yà ©½3ÚÝáì»eß±ÂÕm‚› DÛ3mÑ{?ß0ŽõnÀI°+*®apöÈ™|3ÿ6¢Œ~ÞÏHv ˆóº°vW|h:o…³ˆ};0rÂY÷ËÎóͶçD“RfO»šJE'0ââ^mϲ}ò0‹8Îi\&Ç‘\É“\ù“›ÔŠª½dúî Á{9Jëöè„DŽ8ËÛ\ß„N¯$Üîz^~ëj¬ÏÂIiÀÇD „+ÞÃy‰PäÜP¶!n8Á–mœ¢r2ñ pä7P(E•LÊ­|É}ÈHÄâ5£áeâCu%0\ œ Êš†‹[eÉ™¼C!µCž»ªŸO.ºZâÔ»ƒŸÏ'¯íçÜ &5–€VÀƒô¼ ~6ØsÉ!­R_î áéf) sf§Åšvòyrv[…éèk““w ”«Æ¥?—Ǥ#'WÃ#Ï©ÒDw㌕X®C=÷¯ÏA,% 9]ÇÞ}_› R1("Q/äPÁàšg}ñ]LÂ&£û5MƒòuýÑ¡¸—j›Ö™Ö"ŒíŒÅôÀ“:åöØâwMŒûÍË‘rR¤#v{yÚ1'DS⚸Hê>Û &íà“.€ƒž»ßZ>FÕ¼¢E56™±«;³Šý.Cx²È–¸rÍ9õ`ÙVypÒQt·Í‹©fÖ7Ýýƒ+’T\5œ€ä>·€'äb|ÚßIz0»Dº‰]OweöU ß±a@šWLˆë±LVÙà6>îsŸTê`+× nÓÅ™~a{æˆq#f–»yä×,µýŠÑÃÏ?W¤¦³@¨)ïÖæàÃø×K¾£ØÛ ¶¦h,Å?Ô±TÑ9¥³VPÇ_µ·iÕf9íÖÏzZaÂjç.…']@é²zàŒÑÎKïŠÉQŽ.ãî`ÙòñOL‡<¢öfJÈB ,(_ʾïÿ™ÞYŒîE;áW*Í÷ˆˆ‹%ÎyŠþIlü¬þ1x9Á+ÆBª™ ˆL†q´?ø4?ŒÅ&û…Ýj\\`êtüѫѯÒ_† h]\‘°íeÞÃtjmR'•]µP9¿qsf-ßÂðÓ(^°ëÚÀ™µØÑÌ%®EÙ|R…€ß"Tôן1ôì¹]êt’ð,°§TPò¦:3òàfÕ£÷/'+Žk`c<ÑpæDÜåÎS”(tO,‘cñŸ#äºfŒ­eËßzzò’¬Œí@ ß~~È—³R\ Ì|¶¿WšKâ~‰x~Ô5÷œeë‘{·%FFfZž‰_\4/ ÁpãZ='²Ï(&ŒCSxŒ0E5Ái¬ºça=Z°är_êW=~þÁEmHÌUq&zRgX"¬~'Áaô`}è&µFÔot”VNe5Þ’vLÚª¥Ý¥ØcšNÇûGA­1b `Y,Œà¬¢xTˆW"öRÌ?\[öͱ†¿7å,I÷âÞƒ:Z/Àh‘¦®?"ˆêÁa:³Ð¤¥èŒ¯$ U-kÖxE擉žpìôäð-‡Kø2Àà ‹ ݸª‚Óf¤V †7hWZƒ‰¯ò+rŸn£‚ eÑ – å1TÿË–d:ÕvŒ';,>œ•­r H¶Ë BTÕÝÌßø:,fšH¦•ºhV(­ó(xpÖ\ä—ö%ª®ùþª”“ÖVÿéßVÑÐD#ÃÁ¦?û6‡K¿iÍÂL]~&ùgš¼°‡ÐFA¯8Cƒz¸´>í$83}Ö°+u|âË7Ï@xQXWýƒ³;g¡)ÃI´íïîÆA†ýî&¾ÀéqÇŸ7¬!|K}™ƒ û f¬]U˜üÁ\Òr/'µ³vÉÀÌ‚ŠÒý¨`Œ ­?‡äãßÊ&Êç(QíŒ~‘®³,ë{ðxüªŠâŒ½ýìR*)Σú,ß·¿@µ»’ÀÏns€Œ¨¼4C–ÅNbÄÓ6}`R »HYèÄÍÏÕrèPÅÖ«N¸¶ó\ƾ‡Ôq-}ÊÌÔBFýÀ>æËk—T8¤|dšÅòû“íNQô€nø’¥yäH ÃÐq³¤Ã;ñãâW£èP ÐPeÒ]ñl¢¹’Oß¡uç:ððc qA¶>bîd]^þ²Æì6zKïYE½ ENŠÇ·"yª<Éæ&á?—ÿë€vNä¡IÏ-±²íÄÊ>Ì’«þZÿÖ¹RÄPŠS0{¨H"ïΚ¯YÀyý–Fe·É5µß»zÞ¯ôÔðhµÑéÿC8) ÁyrÌJý³8G:bAfN˜(‚*0Ývsw ÌâG`D0pÑMù_­ëô–&†ƒ[)mX-t³O&éë!áöåÊäØÖÐè¦ê‰C»©ªµ[½,‚ÝUZ€@>÷­,èŠðÅ¿ÌEÔÝR K¤ò¯KÓŒÊ#{/H@B`a®9Ø×†w!ô„ŒóˆÈ£«ß–Fi·ÐȘÒj?&U†_´3ŒlËÍG¯¦ÀQYŽ ^‘š,™OWðÆHb ‚M9¹òŽ‘®Q½¿0 .iºôÊÕÑ5 ±\]š±€—Ó¢—|*H€ªLº‡ÜùÐS‚Ô”5(î-/ìÃ&ûÐÍRñ=7è¦m¨ÊsÛ'¡{¼<6ÊÇ]ÐE.Ù‡žÃZ=V™ì5M`°UÇNc2Dî ð¥tظR‰¶Ê2SK#Á‘®­:‹e¨´–ƒA¡qq-sž»Q5›®z´væt…šXÌ9Ê€F&⢷ap z…jìqhâu¨]ŠYy—†Êõô°0ˆMþbî’¥ŽöÑ»t'…¦ .òª›G:P¾5q›&°tk¤H°H‹p›N}Ža7ÔcP*pbG®¢Á¼=ÕÇÅ0T,‡:MWf³ò¢ç±SªÄ؇¬Ð[ûò³êéúuäxÜr…ÞËwjP?²» 'õ'ú§&AðcL±±;æR¼ê7åÎhY|ݯMïi@ÅõSzé¿ wŽ×ŒÁý­÷‘\bˆ´@oé1‘è®§â0@[øQÀ®iȼֶ±ªlˆ£Øxa}w™­w J¸2ƒaCĶSƒûú×¾xú|JaÏÿåéÚJ×cÌóùÚm‚³Ed]¯ª‡ã,'Z½øÁF>䃖tÑÏ”ÑÀ\Eõüù†tHXP=/ŸôÎô K7)2$Yub’ݯ¨l¥ D ±p{Bø¤Ÿ…vR¥ÙAéĺ¥ÅÝíë¬ gàWÒm+FˆrTq³Æ2}yʬ°Ó…uN‚b¸_°›Mó¦í)N«OU\ý.ЋË×—0.Ö­¶:Y²’®êLUúïôA31ÇŽÍ¿7ÖÕšïC¦w}'qj—üãy4—ߨTC¼°i’”brÈm>NýÑ•¦ÞŽjZßu•#zBÆóG³[Þ Åƒ6iÚVû¸~š}™­§ý~‰ad–¬ä¸úXª]É—zDÈÕnå":ë æ£ Ðס>«a"òÊÕ`ÔšEŽ‹ß"*ͱèÌlõŸÀ.Ðõ•D¯¸L•`hv¹:öþ¢î˜³ ,ºæÔ/ƒÅ¾:šËÃLz‘@Rd:u^§tçqâÅ[Êp&ñ*6HwÅ‘ïàT63àuðxÿ)Á4w>¹û ß“‰'H+­ã'"†¾ öŠì@4—«Á™tMoó…̾h”g ¿&g:fÎ,w3éÚYåqádˆ¢­°òAm¸À#¥H뾚àˆâã§ ŸYhcžº‚hƒ8°æìõ}ï5©ð›o°'ÎÆ‘‰Ü)7Ê,c6¹ŒùëE á%+°¤(5Øæˆ¬©‘Yà"ÓZ˜ÀÜ¿ü,“ìPWÆ,ÿèm!WɵˆÀ¥!;'ZÓŸ¾ÂKi<ë°So±/fã÷¿›²fÇ;‚z£¡¾€&"AŸjo™„UkÏ´§ÑÜ]+é"œ—†õðvÑÅuwž“î“¡±WQ , ÜSͱ&yÉŠd…ÊUÃp™·Šµ­3òº`f»µßX«LBc Ž[”ô"g '¥j낵>oÿG?ü±};±¦ÆŒÒÓmNÃlϾ&ñ ÍÉÐ1UœºÙL69s#¾,BÈgË9iIÉpcàÖ¡»l’qXABµSo”zõ/f®ó2¢'¾o=¯õãn%Bñ`Ć÷nHŠ£ lNy²¥ëKhñX£Ÿ¾Å5Zµ(¶Çé"j/1ǽ ÚÄ62`7ºÅŸ%aØŒÿY |m>ä[Œ{¡Œó’ˆ¹›ù×ò¦ŠÛWl„A3Ã0îèúΪ‚›½ŠÞh fžUÕÈúΣLcÛka@Lö™´¶'a„-W×–©*S«Yñ± œú¸úÈPM·_.ñW-˜ÕÁÁÊ ‹à“¥¹j±;»¶?IäÎsµÛs+I m¢\+ælQ[WVYKÄ„yòäÙpг+èóRàÆ“e‚^¢7éE7l‚fäð0{Xººv@>kñöço¥Å°Š{ˆã°6T‚RBÖtûë½Hü¿‹¼ÿÛ::ÏDMlyÓ(37“é®;§„éË"¦|Ssw,/åèË¥› =£8Üé×y ^eF龩R|ž(ß}sœà,Ð+—#5X;þüRö²Ú/©Ÿ Ñt&Õþ õôUö¸Pô`3[%¡ç]•q0Õ=æçË‹Î05Œã´y¯OidN¾Á_sRf”Éù¿|êi²xçì>ç.}-Ž¥?WæµUsZÊ[¥ŠÖ_©Ý²@(T!ôT‘»Ùºb áýÛš¢«01#‘ÜÒB¤8èá„]ÊÓ×qË@X’ÉW£2 PÆê×y¼ ҈ѽ¥<1UBåàuÁƒµØšë¥Ée˜ÛÖj!uB%|ÐÊ2þÅ`f¡²‚á›Pn3~LÒÊm23.¶ÞÝL[ž8åAÌœ¡¡uiØÎh‹ßÖUô®Ù2 $;@¸êq+f?ûÝúÁDêŒ,P¥D¸J¶@ƒÒ«5‹³Lõêê#°ˆÛý‡¢ÊnMbƘîJ)œ‡Æ×„QV—ÔYÇdKÄÔ÷P\â ^Ô¤,¨Ï:mûÒ×!3Ñ×™ ° UФ-[šîy+¯4÷Q—¦iÐb(lã$ÏõC"€âa…®“É™ °z´Û­7Gèööä0 šI¦xÉq•æhx.Ð(&Üé7´â®–$ÄòHí¤˜v¾±Qè™ä8˜vñÚ©ì3v(ÑÂ"³IvÜéü7ÍüŽÜ…½ý™ú¥·“_joã¥0g*^­%mŒïem%üqÒá%ùpFHS>„óÙv#Z1 @Ïcfª]ÛU'Ÿ˜dAhÒj…à˜]´£(dƒºŠvŒ‘åëØ»,Ï£%ï2›äÞu[3¥‹¸ø­Ü M cYUG©¥­¢2×ÐŽad1%é(ûGÐŒ×ø(;¾pÙ÷(• $lÁΗy?ß’ŽdžIÿëzý¦Zž6 |U ¥8àù ’æü\U>È®Ü5Œšš é³—ï'›½½Ó¹ÎÊ\_6³4“Š›K%{¿ö¸FÄ5gbÎj?ï†\µ„õHº£ú>Ê:{F¨=äh§”·ÏzŠ˜Ç‹|þ -qZ cù3ã¤ãä¯m¼ÉTÜxÓQkTÃÆšˆUâǻȯ‚èHÔGsœ3o5BrLº ¦Ë“)Ì­9:ÂÇK6”/ËËà†hžÂ¶™Ï{cìÈë®`æžk?êÉ &´ÍaS€Ž(n¨¡ã_ËìÖ¯¹’°$±ÍÐÁütÁÿ}yÄíéx¦Þñ¼ø aœ/8`ÔŒÎvô’q×2–E0 ™+EÖ#ô±9Øy™ ŠgßÌdzÌM3•;F—áéCë[þQÄÀâ$Sž0<¤ õ%¦Û’¸`~0œky¾AìèŒùXüÎ Ž{¦|yÛä/DLÄÒΜ‘Ì/ÙèðýÒ{m•ù¾+Ú‚0(›$Ž™í8¨ ( ”3VÊw“+Ò©ª¬¸Ÿ[=ŠßRòöc_”æly9¢ ¯zóiªp¨ÞЂþ‘y½5´Û¢wðd±C×£ ^ôÕíƒùèïˆù\°ž‘yòÜ6b'9$M\¡ô\«BBágm‘ºJnµ¿a#‡^¨ÙßÐуރshìX=&·ïÓUXËØqÖó_C'æÀï‡edÃNî¶y&ÉÌI¨]}êyîDg›ð§Poö~’g-#9Ðñˆ€´|Khd‹Z¬”Uy‰×N‚üƒ˜3•|¤eâs(;pbq†–<<Ê—RòÔûoéMù«ìQ"ó¢ác¢€é†…µo±ÝpC.êm/ž……tûsr‚ vr<’CŠÏÙ³ç-!AüZ½¨húX—±ƒ¿agÄ,-’ÀÒøæ«_TœØ°á «ú\frÖ1¯ô7¬,¥ïn¯oÍN¢„ã‘[ìÅÁ²byøS8|t ŽÐu?žÐ^·ÑÏÚì<ÌVùD/»³ð‰6 _ŒL I™ä¶ºA bÕƒ©dcÝfUbÅn¼8™èIàÅ[¡‹[È·4\ý½H{Ø:¦‚Méîئç0°ñv÷0¡p†Cpµ=ÅŽ)ÛÆÙ™4L¥2z£k,ƒ ¶‰ŸÏ/Ÿj–… íQÙ…` [ ì¬"iInH¯áˆf#Lð ÑH½D`™{÷9kkIDºdSM}1|£÷¼~3ì•7|Ò«•a6qMæÒéÜUj:¸V@BÊ6`ե퀧{SW-§“2eÍr#‘8DŸÑ6D æ §Pº¼:lRT‰îÕSÔvÉRÏì¤ùá4êG)•ˆ:ÜÊ =Õ곤/œÆø­)¦Ø*yFëL‚_fËDi¹0ä cr|WDŽŠËsâH[a.fk€óÇW´µ}l™æª-c~#îþøý»mL¢JÂö§U9Žh¬îûƒå ¥™Ù~nØS`$“ ê•7¯*ãËœHrM³²ªõkðu_Û·<̧ßôB9Þm‘rß'~ä?d#YñÄøè÷0¾¬-à (ã¿ìûõ˜:™ÎÄgDÇÍU”˜ÀoOÿ D‚p64(Å1‹p‚&ÒSyš|ÅüN$kMCYþm£QÈɼxšU¾wø' `R3$‘LQä øÔ “c\•yûf²¬ |ž¸yå.¢–Q9k²e3Ÿ}ùù±Õ(¸¤*Ì‹·”^ÖëŽôvXÖ¡OºÓ@­‰w§õÆî«PCyaçÓ'°Å+TIoSËÕ5õnÉßf%¡Q‘Ô#Fa[šRµ¸˜éíôá£zö„¨p?åWãiú+|À]CGjãÃ}¯ÇŠªpŬªµƒc¼£$Ä¿û шHSzD¤"EØup˜—8+–]zår½Ná8ùF3ÙòÂ-­"$a§MƒÊ‚[Œ¡‡©ûD]¾Ì¢c¸Ä€î)x‡s»9FZCæ4дÔ{ƒ{Dºž#ƒ™pp&ÆÔý"ò×-º§vXjb9“o0‘àÚºþ “‘Ñëú¶Õ u.¨dVu©œaˆn-õ×W—s÷.Y½ª½|T^ýf²*£¡=kzNHrå—' 愵­ù*@´‹#¼¯“½ ‘øN>z@¦¾„õ[G‚óá×ÅßkâH1žˆâöË"r8QsÂE¨ªæË—>ÑyÞOÕ@+iŒ$ × hԖʳ}ñ¬5Ì¿únþö†=Ê‚¹Z´´M ÐJ”%šƒ4(ãË< Ï—wªs¯¯;¶¦ªS 'ºkT"0*åÐZ³Ôä²ÖB´;Ð 2¶%f²Ëµ± ¯WxEéœ,€.z/†v-D³z¾x%£HgãÔ4ìM|SBŒŒKW€Â3 ÁÝz¶Qˆø»D¢NaMiD;ôÍXΟì­éÓ+ùP®a±¨£uݶ>Ü"V+¿jö¶Hí«qƵ§Ùˆdþ§j¿‹ï¼/ÒÁ†£wWh]`dÝE@Þ½Ö.Ÿ´!¸L5Ô—Q_ý8™£ÝíxÉÃÇ‹ÆS»„e963]ì{È+«($£þÙV ­0¯îÃ!‘ÁýÌ“6š&ºµ¼·.( žåɰ…å"’-Ãïgxi ‰@6ª5£¢ÙfìÕNTÆûs(þ3k3ÄOX ¢{M„VyE&ËÉ;›Är·Y 4ô“œÞ ¼s “9(Ew–»”sެk"Kö=aoObV%8ïH‚øÇÃfÏd·‘ÿ/xÎüáðxÏ*wÀ•è0ï9îh:ÑYéãÇëzo z]pûõrS)Ïqý+GéAªÆíû䙇¶G(9òòá…ï&šª¥ÌA2”ÝßP‚1¸òóë5 JrA2x”§ÆÀ…þ²g‰r¹›ÙØ üíCxº7fdrœ)T]FdÌODjÆfø&œ•4Uô& åWòìät;ÞèÉ®¸K{œŒ˜ \4œ¥¼¤Ç„>nŸæÎà ˜.ã›à( hÀÜF|uÜ÷2˜ï{í Ùàvý]8Ô—¡mAÚn¯3gFhA•b¡#ÌyÐŽTº£p!²ð¶>ÙJ›0mx)ï&(¸z‘«I`N†‰ê6Û³ä|ï—ùì&'ÊX¿¼ú$Ù‹AҶŬ¹Cös¢ÆƒU<¤k74y¡×20ª}UStBž!‰¾?O6‡Ðà@T{˜ï—±Û¥Ë™=JlÂñ Ë“^H}oÖt5îG—kµ ñéÁKÿ@jÞr_éQMV0ÈŽw»ÃÌÕ;¨³çUò#Â¥|ìn<¼̺RݪÃh@­L‹‹Ë!ðìsÌn“íZÝ+l¾Ó@`;!Ç\ îb)þâz†×²E\‡fÑ`}ó=S×Ήö½K¸¹I¸IdºÞX2|Åu.I tÇE+¦ ¹=¥:¬&&ñÎÎx xz\t} m]EÖ±¶µ"²~`tž‘3 ,(2ûñ_k†$1Ü8ý…›SAY¯Ø­ÎΚ2W—òxŸr^U´Ò%ëm³™-ìÞLR(J¹ÛëÿÉuI›ªŸü˜x{¤§=×ÿs.F,ŸL G=UŒ¼Ñ°‚Üá kƬ”]„ð±î/ü‡““àHR§¯È`+ñޱ—N{qÓ/õ×Þ“½ÚÁí¾¥úœ ó jºõ{Û€B‚wò0I¼«#€õ¹c³lƆL¡7¹Ͻ8(º™ÓëfÄcoçZÊUäu2óŽf•ºD½F •iÐÒ¼Þ‚iÌÍ›e˜Y :_ñ‘¥)¦1°ü)­O0ë„t“gÿè²½ÅgoT¡Öhr“ ¬Ôb4³¡¼vóÖéˆ àÎþ¥`›îœeœŠ–Ñ=A$TÀ4_SÚ>íOœ‰ÆÎž‡%±Z<_k¤`À V¢ËÒ§7HEçºp¬(˜I@ àk©.œŸ¹J‹‚„ðb¯ÁÁ«ão—tÔôa8~×¥êKsu_0JRÕ‚ÑX}-gŒÌÕ£a3•©Ê=;ÙøÐ€j2Ôƒ™Kú­–\6OúÅI+š8Gu‚›aÙ¦ÅÙ`’†–‘Ë GåÆ<•|‡êš)2£ÜÔ<4ÑæÕ(äÈ/Y$Sb[‹šÐk÷OÇ,éÃ|¸›ÇâQä=DêÊ JÑäÏ!c%*³E²t.o‚sññU+E,¢r›×ùZm ®QÜ/,+ÏßRÃOáþùƒ„{5ž±G SÍØ@;ÊëžS“ÊM`³.\ K©óæa’YÌi¾t¬áÝÏ8ºiÑkýÿ°}ãXKïF†Ÿœ”-mmNÜyD/©ò,8䣱ý5ÿY)GÍePø‘ꔇLÇó•­fÖÆØ^—½ŽË8Åh»ÑKJ&ê…M$µmÕ+uxZ¡ŽŒMuƉ0DÚ8¬jwGؾjgñ¨ú@þê´ñv ¯­í´“´zÙ²àþÏ_%_‹Pï©r¬{í$Ÿo î-ù:ÅV®ÒNóvÛÅ-ÛÖg{yéʯ‰Þך9·N#l]¨[Ì5Ãʾxèß”ö[@zd²Û8æYT“ÏÎt¦„³‰j ³ê䱃DÄ|!K±÷šb)Ü6÷ÎÞ@ß4¬½œvc¿ (N…’ì¥VNÇ{KcL¥+°ëÿîS,‰sÁõ¢ÁÉìuEs1H³ÏxZúW4&}81ä`¼¯ ViÔ'îÂ8×?BÊñŒpÜ ÂT#ï«Uû´t çNzâT{˜/ä°T€ò>ªµ©w¿ÝüWCö@€ÅŽžHl:#C±&å©VüŽè K^¾ê]ÿ¡í‰óø¹¬¬º1ÐQo1+ÄiÌT¥ÌøV|ãVš0ä'ìp~±w?l;DMï.r~]r^ç}F~´œäp®ïˆøa¬3;mNûdžÖºmi±R~Ój¡EÍ2VDûöï†ÓæÿÄåë¾(ï¾éÌÜlî¶e€¹|ã/÷ã'sÜNìuè°ÇBI¤œ¾Ê~’ô;¸"¶Ðà94ìiºr‡5ÕÀP.²‰ÅVÓ‚YéÐôvN®‡1´ôLÆ0ä’ÃÍ£O[ïE-B¼xø÷™'mR±žŸ¬0–i@–U1Cì%šxÇèâ6Áh•æ]!tÅÎ[Ü]–‘"êPÐ!W‘kÐ †c/¿jˆçb ÞöºDFÓrë¤Øç(œOâæ `ÂãêËÚiŠU¹©Ÿ±}óúj@0mê"ëÆðÓíüÈX°ñÕž9xÒåö4È’ÜkŒšef>vÛ@ˬ©¿û1×V;òÜq!pªÏˆÕ£Ô­ 9ÍÆ_„´üDnŪ ¶8þs¼lYb4á“­iêvV’Ñ«©ü¦'B‘àZSÎÜÎ ÇË߯«PdYc¸«CÔEƒÍ8~tV„BÀ¸iҽ啄%WQ›‡e©!¶ö®SP ¸$ìïÈýÎ×ÇŒCÜ]<ïQœ%Éññø’ÿOcM ´ Br€*™\ê<›¥ã)Ƹ½G dQÂø:„dذ’¼÷y挩fGÑL¾á@Ö7ë)•%jÄ’Zñÿ{˜<ÿkÖÛpr]ÍÉ–(ëƒÛ6 å÷ZžÔú,8ÜÁšÎ¸~¼~òéößä:†Ä)+hgOX8íãÃù:4a1Ø8D[¥Uüz©ë®—1²[>âìˆë¹ÓL¨E–E™¾ê àÎ`ÈZÍ‚AŽZ’÷..Mµ†"n×Ftø‰ †lÍa¾éÈ„uWœtM&f&®À>j>/ëÞ ÀpŠãôÌ“!›ÎîMä¢Í»° [/ôO9¸âF»Ý2õ]þæEö5)ÍYÈdxM2#äá2öÀ÷ø´È3_Ž<«‘·5µ’^îÀ.ƒ;öÚJA€#.*œ²Y1µe?“—ãA\D¬El’¹éx#y LƒiO@…1Kyi!LQ²© µ¶üž“»…vt¸Öð4¯:ÒŸãH¯¹šò½„a±[`4tz”Çï£1÷<îa›tF‹r±8ln*T¶Ow‡à“”œ|W{Ç™ï¨D¬¢ˆþÐxÕ:g&*QðaºRäXÃcã;+‰½¾]®.Çd›˜Àb >:4ÉÈéƒR6FÇ¢|UO5¯i<~:ÔÒc4kÞ•‘kYîþÙó1ÓAŒë¬©?òe}zxY*êæjî 9vÝPþïÁi Ó9=œÝhìM¤ÉOôFuÿ¯/rQ\†âjTŒHÐ^=Çïˇ“â¾: Ù‚e]êIª&®ÄéÝ0´ô^«*ûÙ™=±ŒapÃ%¨‡(X¤“RXpIåÊŠ™ùAÕÿÑqReOc!è²Õìü§j-c;·d£ö#Xr€SéµÊÅJ¤Qxô‹'† Üœ‘@ E;r§$t”¯P¬tê†ÿ¥Õ×cÂa›±Ø†¤,ãKNYÑJÚÚõÏÈ·K¦¦£•Ù¦s“  ¬ì“²w+­Ö1ê¸ã,ì’´ô§‘²S‘¾ºÐî/B¤ÊÉ=í†zÁ”mÖc²Áu-·i-о´)²C,.b+>—ç÷ï½Úvúv­;æ¿!Eˆ2)SR³Ä5°ÒqÿЗ“ý ÈÃ\RÿNYpÙÐîìí»ð ÂËD`m¡Õ¦ºô懌úv~ú.åäÝ-¸¬¥é¥úíÕj礕uB2Gê%7l?œÇG >d¼ ¡žî(cnÑ:”;tx 4™”KŸQ67ÁÆ»pºä•+^h©b×$ôñ~©sÑOÃÝh³JO_$E’A€£å¡òûPb³ymqåd€‹“½~Á!˜ð€hÛbýŒ]ß>ÅÊê¼âèàܤ×N¶loQað&­giq}¸æÇvš81bX6–ärîC‘4l`~ àÝYŠBÄ׋g„HïÁwë]¶z9´ÌÔHo%fÇ'åÈ2~iN^,½û\Y¬´o\“<ÍÒ8û±òø£ÐÅH“ší.ñ+Ç•U4'ëbB&@}}”¬)å¹þv3xˆj‹wŽ¼Ð­š`R$/ßDë~]A/GtÉ·ÎÒÁÊ9rªÍÄ5Ë€!V»üx÷ú‹Ù’yÅi<ëŽG±°®žb|œŸËÑ»ø¹ÍvkÖ¿|”±Î…$0ÛÝÞ« ­ŠÚƒÇ‰W3ƒ¸¦Ç<úÜÙš'ù³å$l'ËTÐ"è=pnaò¤ýöp™x±W)Q¶6 Xsªï˜T^ÚC·îù®¾v4¾,¬x`ù;ÒØ_¿C¡ xèH]†b:¥­÷êll$ñUå/ âBæ[ÐÐ0™Û¡ÍZTÜævE¹Añ·lÚÄmž!¾ÿ/Eã–L •ÿ²×R¬Õ‡DA¢&ûÄ•äù*w©Ql÷S²˜Î,cDÈȦP¼ ©O9Ã.ËŽðg ‡ˆ†e•×ú®þ…˜‰R,êñ•vleÞ²Ý-˜Üg¹§ž"€Éç\Ÿ¦ÇF1‡™À\Ò÷'Ù<{õ-6,ðr´Øžæö|õZÿÆ$P¸¨+q¯!š†1Ìt½œëÏ¿¸¸Ä;0%ÒÛ*3ïÓÚÁßlµ¼ÃǰûYÒ;±TÅ]ͤÔ{XÖœpî7áàÉÊO´ï6—†§‚Îrëêßn–ððèâÜ4\cМ"­Š¾}dÂuvøû<öG¹’X"* >žÊŠ7;¥tÞA_EÀ2ISHU ­„%+Y7oî|C­Jo%ŽàP¯Ðy–_KBu§•BrãÊ’î¼p5ûO·ã±SŒšrމ==U®…Çw™išæÖ¨9½'7›î°ÇœoîàN[º¸ó‘}îX’Y8´Ì6»²oKœ GªD ðžóÍ[ê€àpSž4è²܇ ‚lO‰©t·òÏßÅÂù”÷ç*7‰ÑË­ë,C&°0,•Š×8ÅßµÛGcÁ¤íÉBéM&EWÞpLŠÝ±Bœ@T§ˆõ¹³¶+ØòZjxZ“ϱÕQek¨÷p 9䎈‹¾Iž¿6JKN·¤QtZœÕ~ÚYNiìgDÒ™3-O©“p|ÚÅÁÔ³´sº‰à––;ËšENe)€¾bÓT¤ªˆYÅùHÞªPš“‰`s$V6™³JZU;úÜ]ß³hw´üçÇ|Ê?rú9 IM÷.%CÏ~5Û2~‚¹î²Ù 7a‡üQK¡Cpë·7Ý )sJt“vÉ…j¥k¥LÝºŽŒZlÇ$¬ +Æ{›´p=û…±Ìó•.P_Nëe¾DœØQ£˜‘cÂ(ŠUþ±6îøHàtÄÎQÂñ:Ë‹&­U,ĺòÐ 7œ\ß÷ž;1ì°6 à@{H€œ÷/n¼×h­Ï þ¢rãŒé×"Ûqû|*Š›O ˆöI4îñÏ‚¶Òžå´Ÿ2DlT Ù]'.æ¬ûFFOp1‡u€¸a/ñÄFZ’Œ:´£Š®I )ûñh‰*ªû5_½ONÓúïáï9 Cˆ&øër²(P%Õ,m:ìŠ>âÎOÒŸ^.Ô”® £ÚݳƒË»*óó¬Vq%."²ÞŠ€§é š†¾ŽóhÜÌ:}Š£*Çê˜ÊUßhY;Æ{¡í¤óÀ’ÓAܾLˆy±iŸ¢‰c‚£TÆRûÄHF&˜iưÐkȪõxœëm‚‹ÒûÁßÙöPý¤t‰Ì„áß7Ÿ)DÚô½å™yj©Ät{_mÙ#öi˜þÃ:T9¶AéI4˜/˜¤¶Ü¿D¹÷ñîo>6ìÏÖšäp+(ðïÂÙ+é±ê9yµõr ΛÁ !Ãü‹I)þÆ/BÓÃê»aël}.„³ ý¼:óºW’ ¸‚o¦wþŒ„x‘œ©Æç\o‡qH )òÔÿÿT´Ó)Ò™¦Â^q ‡”–튓ûTÄ;¤ž®‚ƒKg-b_ðœ7“žãy ª*"~ä“ð3H¡ p”/gÏ4§0z`< ôT¼ê d„•"ÓŒúÒv“iâWVå:na÷+ÎêG¶Ô”ïÝš‰‡Mt'ÓËö®8bSzjÇoü¦5“YEè8¤+Ë1Ú;¯Œù5‘ÿ^4?Øß¥tL¤Í3à?’âö 1é­vé)TûÛ Eb6¼÷ÇÅø­±;ÖÞ=èlÑÿÍ[³“…#ކýõW@[_²4î ‘ÕwJ5¶:ëÉQråÍéÁ³}ðIá‡ÕSh¸[„}^ëÑo÷8Ä_­S¶õ¹cÖÐìC”v….:O,&¥ïí[VíEI«U†Ó…¦•wûYB_6ØŸÐí«·L=7BŠ‹Úø²¹˜ >ßZ&ÐQdS¬2XÁÄÇÞ g´”†° Ç3QàÿÏ+oÍëÀ¬ÜBõ5~s4IË+éüãÄ­£bYàî„o:Òòq <è’zLfq•õ/;:(—uêî‚÷ø M}‘»(àš« áŀʤ$…| ç6°cb8Yÿ/Í,Ðü±©ë¯ ` Ô»A½3f»R&u%:;uÍ ´Çï§Ál>¾þ²öm$ ,>e‚‘‘rÿ1ºÌ;ÇsJòwMÁ·Œ‡—ÉHbûOÉJ“k[meáãTÓäœ2|lðKÏjM•BÜ,C‹¤Á¨C{žáW¸ÃÍyDçe%•æЉž<+…§-® (ælli°e-t1œÛÌo@H ã‚jš£tD"vm½qâ|tÊ–sVüŽrœ0XªîT+¥Ÿbt¢evë~þ’¡øyì K»é…³ê&Í€•‚–N|/–¡hÇiÙþŒÇˆÌvî0µ’'û5j°0 ÌŒ¥ª,Oz¼<$vóM{‹Ÿ4"ÊdîsYO_¢t¬G§è$Û€èþûíÀÌ神Úë¼ÄsHK2êøàœâŒÒA½”‹pÜú/^Þzˆ~s²Æ¨Ù Oóvéˆ3i×ilÀ®5´ÂÑÂþúͨéz?¥;; d…ÚEÑ>Ò4gÍ0œmº%¬ùÕìDzۯ׀ÏlÐcž/UÔý0LC>ÿ³æH+9b8A˨i¦»Ÿ:#’ÉUürãƒ2ªðž$í#Oìxg?.oäD»LáËÆ~Ú šRL^IƒøFh-'µ f¸ÍÄUc£]úZa°ê¸¸scï÷BGÅÁAF‹Ö¦÷PíýWÃŽ·Ê áÆßŠÓBQî› ûá3uŒÍüLj÷ øfƒ‰£•Ù¸"/íîGõxÆ ©J0+D'oÇÛ9[Ïj6â¼Ñn›­ñÃÇ–äú¾mù7jFÑI²jaÛ¦GXlmÇ - ×$U9q“T ¨Å¹¡Öš·”JÖE’:2>ŸZ£2;¿¶4¹ßÐT³ßI¢˜ CqÈ–ýƒ„ݵøÄŠÙ7ÿ GœØØeàéñ\w…n[\iÒo%†;juS$Œ‘æ]`Ï”µ¼~­€¥pÛPËMûÎä݈À ᢱG•˜!˘Uñ˜ÿáX깤`5ÂÑp…­ÆBï V u6´°È{N ½$[*8Ò¹bùü{"\—/Û0SÅ=Ø”÷J†àUxvñÆúÏ3/Ž(°ˆ€Åß òP4)µ;H8Y4ë´É~&0–rïÓ`ºÊt›‰¸=£´ÈiM÷ñ+Á×ñ.çlï-®§ ‰,ËŠÑjéÒMéò¢©ªßË{r› !!*ª£“²\~‚MÒ³gzªÁÞÀEnÈS™E1Œ@­P¨lØfʱy}þɵf6f 5¨÷ £´h6¼0{gI‚´ÝÂ^ ¶|0ª©Îû„YÍ/@þöS*SÇJÈÈǾŒéMÆcøiûsjl€±Å›EVÛ£ù8~Í+Ò¼4‹³j/kHd³8L™R‹±YÌ>A¸´©û) &+PªìÈz®4cJ¡eš ¡!ô…©0²Ó´íÁH‡LÝí‚NJQÅMŒ™s´òÅ‹áF5`ª7T¨?ðCrh)k-¡à‘¸ó“/1†Ö£M+w ?0ѧ-KÏൃ©@DÇE÷ÑÌFk·âÊ4d\p#ƒ„ú1`ÜB4ÁͲ!B1„QÙQ5”ïÈØ÷$oñ7GÁ­M¡åa<óê|æ#½Q^\‰%©ŸRnPEعï¨ùZY÷(%¸˜©ïHÛÞ6Ùu§oX#"ÞgwùöäœJ…ç°ì_z?3¡vu„ÐÙR¯cjh¨éþ?ØÝà[õ¼JãDDùòœÉ‡u•Ðü6 ØO¾gQt VÍVRhë/™"W”+%¬!öÒÃiçÚpž¿"¢cTÇSÝT;õÿ‡Ï¹Rñ²‹\戾1Á4Cj6àa³Em¸W<Ü`ÈR7›ß õ4!±¿f§Ë‚_ÑQZĶÔn'cæóɺ˜Úb7xƒà°-ÖÅñ#”5Ð:[ô7ö¶º¹ðû©é©þ^ÄæägJ±¯ W”²#8…9Î7Œ°pÒëPUê+¾âyüa·¿™q¡^Á£³ûÖ´^n&¶GM³T(+ªÙ$\Ø©ƒ‡&]¦\ÇlG3*ŒóqI£îé²eRþr?ã1H °ó\Bø¶‘Š\xaYó['JdNðl{”4]«L¾u Šù†V¸ŽõI'¦øÄ!M ;ÖÑÉAZÕ^¬”«G(ÝaÓ”QÑÜÕÜÇÖ͵ÓBûÍj GñVŸó[ûX%L)+å`v*ç¦0g×ôqhöe‘á¨7~Â-€Í—Îïfíx¼î³_¹çº |ïYsšI±Àî|1§¿q * ”޶”¸Óé}ßkm¹þ‚çɲÒà8!LY .°3m,™­‹ˆ*š Øh2~Œy€F]›ÿ‹À ýIšS@®––‰£¾¥ª_5ä šž~Vkqn3W6€¶P¡´€‹à òk0úÈuŸ `>yu™e³rÚ2¶!'>ŽSš”t{YM¦|®å ‚WkC z9Xn—Åm4YGÇsyÀ¼5acE¾ÕV[…Œ…ÒT¨³6!f*ZL]sŸ]"dn¯!Äz!Z÷r^½A©’>¶çN:†Ï·÷™]—ý4"¨YÃÊÕ.>“QÝVœòåã7àÁTØ¸Ø Z¤\»2øDå6ÉÙL-ߎ•¹Œ+¶Ô‰X [E&•ôÿC‡}ØUÕ1nqŽ©UcG#H˜¬Ûdök,L¯‰¨eDXØ”c<èB•Þÿ‰ÒVùk¼ÁNXŒÉ?‹¸öÔÅ84k¼ž˜°÷ 2·f*ê…±öÇAòוOcÂ{ù˛ʶ;¤n¸Awýy˜ÿ‰ÿ;Íí&«‹}×ø„,¼Ñ¡µˆ$zx!«:OT)nqXÖž6¯R'AõŽªQíp>¼ü=§UQަqß«zJµ¹p'í›K<'8•Å4¦Hù®Î~lÚ¯vŸiö‘=ÕVò´0h]ø]ÚNòg'´ZIùJ.ì ž4ÐOnŠri¼½H’ɼùæó—RòÅý{ø“ ]¬ <Њ¶ì}7erlt ´ÕEˆuV?0èXÛ]„Úö¼V‚¥ìûq(BÓV0 ÆQ̳ŒÔŸã;½6Ô;èà¦ï{è(OÒ€nTÜ=ýMM‡4#¦·0fôpoVWÓpŠ}4òœ뮂×ÖZjõÌAÅ[yJá‘U¬áGM ]Ê üõèÒ)”Ñ4tn/#ào8j4^ZA+\4—+qÇ« "SÚ*5–¨™À9¢ð–è—qfò¿o%ŠYµÞøeØ)Œ ×IuµbCòbtõ\ã±\“M‡(‚oÅ 3˜;Ú‹Î’ ð¸Ü6^£4=ÖheŸ ä)+o.1çí–‘‚yÀQ¦`üö¨Žrèæ½F8¤>ï0MðÁ2}:”í‡Çùàb™ª¨õF§ d,þ<Ä{†¦ÏQŠ˜<_dO•ð/¾µ ËÇÏß@ùW¯Q8a`9Âú>™™š5á–ˆÆ¶í ­Hço‘Úô>‹‹U5]ûÚç{³‘k<»ùÁª¦- *Ë[¬ùã¿{·F§Ãœ"˜¿I¶25ñ•Nmd˜C ëGn&ñÅÉŽˆÅMFy>`UŠñ6vYœß Æ©*’Õ–ð®œÎçÁ­è÷Ú®å.¢ŒÞô ض 5n´QÂ\êÛ0Ç +σÝóE“s\ÍýV¦œ‘¹˃i j·Õsïæ¤ðáHŽÒ‰Ü žlUt_[œÏäã¥YJ¶ÞÙðÉb#+ÁÓ’G‡˜àÒt‘ço"e•±6â[Œô‹yjµéìÝ1Ò)$Iµ­·?¾}RnGÊ/LFû챈Ã.5,Õc¢vŸÊöÂÖrcÝ4ãnäZŠù-Ë ži÷!ž‚%‹]‹Ä†cÇHæ‰OÔ6·h¤CÖÇ&ú,þ+•x0wöÚÕ&éÙ!j@/¨Ò)pÇœF…ç1(Ïý9MóÞ,VšÞåúã+)Q ©W)=#îV‘[o »n³ø8 ½Óõù•†’SM`ÞLÅÄÌõØ¢¥•`èqó"Bàœ¹[0D­ÀIõ;ZAø~`/ÕQ¬²» \žv¡«'ÕÓ,¦ ŸÎ+êM…`3é íû.PïÃÏæ*¦À[6»YPyd~ңÚ[ÐÒ$XÓÿÛ\ÙI )n'žbÓa .â«´ wÜ3wiòÀzÑbh¡@Â/èH’.Lس×{¥ o2†I$öJa<Ö^h p2iŠêúB`ñÆmv²ˆcHà‚sÝ›;ÂÁ¤Š•¸i·‰ˆ@©f3“˃ÚÂ4r}%"w އX®U7ow34—ÔjæRdBåð{T‰ºgàU;­igA Mveá†ãkœy—aðÎ ’;ìÒ% ´›« þ6ßß5·nŸ•˜WnþÐÏh5ŒQßÕN‚hµrê\À ß«Ü6¾(ü¨Þ›^À “—¯¢ØÇ„‰8f1‘ÂËm†¡ˆâUç)fr7ç,¥á”Ò ‚PªêGñdA-œ8@šÑ@z±É{žä÷Ç[«šœ;â_ñ€óñÔõöެµ¶{Í´ ˜å”e“–B¾Â»ðÙ|’þÇå…`-ˆQÓz¾Ÿ´A ÅÊâ‹þó6Ã-gò<õ$sb'Ÿ «a¸Ýç„»ïýhð‰óC-¸‰œlW¨N@Î=,1ÖyxAútdZ±‹)‘®Gebî-äÿ(p½ãgk )bGh°ÖÀqﺗ;­6´³\gðdÕHßÝd 2=³î«3Âe¿­ÃǺ©(Á Òf†Œµêxñj]JÓÈoé=‚zMAϘMƒlgñ9hÃi{`z| l‚Ï7§â•QŽ©¤ƒÈ0ú \Õ†²D YwÍ'B‡#…IÃãø&r®C€õù}Ži½°GEž×µqŽàÇw!úÉ}Ï¥0yuyVÄ,þ +hmÇ |?PQ“ÅKIt¶˜¥7ût—ÝÃýœ+ îDÐ,ð8Û¿hh+Ë­Ï( ì\˜ž¶<²ümíï¶#álh•ÔçÝ‚žL™Ÿv[Û7NÚªÞñ°¤vêæt—›mgèy¯9ÞŒÃíÎÄ×k3Weæì{ü¨ñŸ(΋¹ýí‘}Ê+^®ä×S i;9Ožõêýí«øX;³I©—¸Ú’d&¦´7TTâÀTªz9@b•ç+“‹m¶¥¼sÍûC“V0v÷¾¹üq‚‡ðŒ´ÿw;‰F Ü6ܳFžÊ9pÛ^*…týÚRìqømsÍÍ`°2 RláÆFd"¬PßçÕ0€36F¨ùÛ€¹0EæÀ¡ªËÖö›ñOÂÌuýÝi­Û¹.2U„,=ƱƒƒÔ#œ]3Æ][È×°K¼ !£u¤ -™·Tƒ[p»lf,y„ìBF.(¼ár?‘2å!2ÿëùråp M©ˆtHf.Þt}¿Ô¤#Aâ·· »ÒŒ:Ú}ÿ OÀõ.TA+ç×C#!›ofBŒ)H”…"i1@‡@$”Š2c Ñ (—²0†W¨“äˆïH}pZŠ^9Cº—¯¡¨/ÇBBÄ m£†¦‚¹kVqXf „¹‘Ôî3Ôõèq&]A¦öÍu¶D½ÐÜZû«O¥¸J¼ñ!Tm1Í j•¢Ëød^-)pØ·z(ô ÊhËÝAÑ·âéõ C¥ìCkóʱÒþ29ðû|H³ÒÍ¿Tä*ƹV6vKR€P} '«ÕP’%ö½ Ž<[Ôl |»8Ù_ºó_¹ÿÛ'‹EàÌxÐÇê±?|ú ¶°Ñ›ä,seÄÈ.¬ÒX¬j¾qbƒñ$Ä Ä ¯ŸÚUHíÜš”Ç*Xºß?¼| 0‘$‰Æ Ñìì3U%c+håê¢Ð´éé²qK`vø–v¬6{|¡¸sý§âu¹Ã†ïxçI-g"´X¬ä“Ðp`ÐË/²îrq'hàËzõ€2ú{Š0.Ó¼s¾"/_“ÓYCŒ¯óÛ»˜}¶aݱêf­:5.AŽ|ê«¿&!Gìöìîï«`!¤£‚Œž:8 Ly¾ãüK©àMëAJ¿ÕƦ¢‰yæ•ô<›qÛ¥"Á0¬è…nêäìe6lÈDŸ#ðÁÐ…ÉòRD.Ü0P]Y³„AÛ¼ÏûðËýΖ2’”K¾x1’‚òk-¢£j¥ÞW£ÛÈË0bº¼ˆŒ~ôÎRPž#K^‡Åµ8°²z¸T«é‰ÅŠB窴–‹O ›°¤ÉJ=«šCdÈL!–1M˜ä3yå…\fd!†Ð7ƒƒ×ÜÇø3àý5T ññå4×m¶=ÆaêN, °Ê¹o 82Ð'g9Þmáܳï¤5BB*ÎDÙйúo,|fÈ%ÇÍÁ^3ð´ÞÀž7W˜÷dôôôª„¼#*Cü–ãDɸ¸¶#9 ÒS»¢Ë“·À¿øKâ@tõèWR£½™(¥ô±?Ú³°Hèz=oþêAߨ3½TE|õWƒ2 QI™;¡1’ù1„¬×šèYRüæzµ¥òdox×4Døá)-k:Wò ñ‰–~)ªˆU?±ômm ˜.ý~$ÜÀFS[‚ŸÔ(u´³Ø¿]2|· ½L²¤©µÀ~½(26AOûÃîeåÐ8!,ü™Ÿ–3²bŸ¸sHfü‰(ˆG–ÂòÀȘ±ËKÄZš¬BÆ?‰í/ ^«íM¹EÈaŽd? ЍEU\gÃ!I°@o§?!Oà>àQïç,¾ïÔø0aˆå‚qÒ…a$#¬B?9¸@J&ÜFé—è11hk*ÿA™èâ<©–Ôû¯}îáòõÎrWµ¡•4Å£øI¢¦ËÚ¹*Eé{óëì‹}ˆÃ·)LÚ~Ýþ«Œãhú%Lש7cÒȮĖ\ ÷ö÷î„)ï; O°cPÚ ~‘h«ˆDè%!‡eé6Ö†[C–þ`DTôóŽ‹á#!ÏÎb*Gƒ ©&Õ(Ãð·È¯’¹Hå Sªá°eê ·ò9ΫE,,æjügWóÄ7«˜™`tà~µ© {v’ žúÒNöñŒ>ðç̃Ëçwçwv8!ÜLµšƒš•öš×®ygö·µH§ò@Ã…Ù˜\F‹â’–ÿdC) Ú¤6]yÔõ¯IªçNQ¢LˆÞFB¸‘ÄQÑ+bø2ãlÉbC}Å8“T{ ÖDÈe—ãc¯?:ªüH¨¯–¢Í–ë…Õ žUöü)»­mÜe~Â$“Û1hè¤ì!¤3]õ6ÖU~_ç’3¦¸ ÞZsˆÈöõï( {Ñ®©¹P ìÁAKÇØò³³êºÉ%m2)„ç£ ¹zp‘àZç6À§¦è9ªÂ7TMÊøÍ5‹º$Õ®t?#æ‹¡„ù¼]Ù Vú€´–ñ´…À.yã’FµÛVþMÓ ]qҽžR0èä -§ƒWTÈø{e°Nî9±BîæVè9©çAº°c§¹/M©•÷NisòÇÆá>è¤^ÉUÀ67)±G(1»f:Ä‚fM÷;À]pi `@…‡ºþz# ÁÒ.jÜfYZ|žòd¿ë±ýÁ¾—ÊCÌÊÄý‚¨PzÏÿv¤ÊÆ3Gg;Á¶©¯þ· v‹UŒýse²Ún«j—ü\Mf·€3 !t¤þÊvÄÁT‡²&… ÞKƒ»Tï xlÅÊùû~°ƒœV/†Ó0­&‰{sE&ìa B“ävŸ×º16פ} ×¼$¹£ö8ÑÛ1Èi¥ÌJ¦ý¤Ìž=èo熮QháÌÊ3#œ*k˜ÓñŒÚ>#\Åä^ÍA¶d>aÑ$9žGSG˜äõ&šelá²9#‹¾à·ÙOx ðôôpasÁý_CÁÎ¥…l |·wH*e³oɳh2Q=˯jŸÕ~G"·ë××ðY&Å‚¾ ;³¹}¨GÂêœY:HUÛ Ùk+‰öY1÷æEãmáñ¾ªî¾$hÀø·=ŽNÊo÷õDœŒ®ðÆÏ#tÀXP¾Fä_@[„v2[5ˆÄgqÖ x;Y/üº$ÓP.à5¼`Èë¶µw'3Ì”¬¤M<\¥µbÇ»¯j•—¢bgl%´à.Ü›Êúx5ñ.õH“vâQqn›Òä…¤Ýà®Ú´ct:üƒnË\"¸Qó…&šº¡ÿ0¼Š(Zåè×PÓ}Î.²™Á@£FA×ã_Ÿk0aÖâ<Îú¶µHåŸ/ê»ù¤._yXU÷¹º²ækÆz¯ :> ÷tíPõP8XGøO,%Š-qý²¨üósOìï–°}é“wnÄ—²ÙIào Ñ À0ÍQM¦‡=ÚÐÞ)ý,š>4Ï·{?SgT,QS±vâ‚<¤Ó3jMYá± ÑŒÖvtLú^ gÔ‘(5-ÎÎÍ%ÖœÅï‰jCçâ¢0N„éÖ S¡ÚÎ’V”£Ç@J‚zLõ_q%`æÐÆ¡Áxl9²˜U§Äbã ‡ÚäCaD>õ™¸ú/­“% Œ#v&ql¸+„F6(_¦t¯³3f›î.;±?þ‡/òœ3âY¼¥õ Y€¡ônJ ñÂñÓF¯û›Ê ‹ÙbÆrqëRœ Íìëé5—˜æÆ¿þWÓ H{ò7ö .^¾ÂI»Ü¾+HL_oúïôMY?e Œ-ì9S¿@¦ûŒUÎvF@«úp&€wzŠY©m M&°j¯†^6üˆ Ÿen—¹UÇó˜|#©ßbÖæTe5V!™™+60ÆRå¹'¨„Ö!Ý7e«ÜÚÏÛÄuÕÌE’‹¸Ø¸šFÍõ|F)r¼øt»Xîù•ï¹)á 6>´ë+¿:hò'ûièRRª,Á_E&5ýyŽP÷]y~4Ksò©ßÏÓ]‘ÂvX}xãuÔ‘‡_ûfˆ:).ã†ú'  Y'Ð žµŽ«ÄDL†,Ε^¶; 0õâ±4-n 23 TO„N_óÄ’ðYɨµö†š¿ƒ¾¨7b»ä‰‚‚ÈŸ)Ž|µ`ùïÅà¬K©àÏ2µ¦­3L«ÖdAÄâúÄ•A¤Ëµ'{_‰Æýió{;|–‡ÝÛ¼œÇd…¨\VÃUm¹õ ¢sÁ/¥AÅ7»·¸FÌ7D º?†AÒ¬’OÖçDÌêZ™¾ª •ì£ð-÷³ÏÁ:Ù']#.¦ù Ź|P? ºd=”ìuV¯Ñ—µ´Á!Æ©W&±™É)&KaÜ¿/Ñ6b‰Ï÷g‰HðåOxé Ûjc"1¿ E¶˜ïM¸6ªÏO«ôš`ovŠÿÎÅ}LhÑ­&GR>¦„.ô½_ÏÅäúMà¤8EjºèË ÷šñ¹Á¼Ëw•Mq2c‘¥Ðð¼®-\SæÓ$ã=I1âï×4J±áO>|ׯg“ùY´(µöàý'‘#õîÌÁÍ[MÞ}FìÄr*g­€ºK3ªïš›Žù¸F¦. Äãƒjðò÷bR·Ê^Ÿ#]‰Í½Âò^ÐF#l™±úP>X7³úâJ'¿¤ÑÝù0ýä8c   MÖ²üãw9-Üí6Ã0F ‘?É“õ›¬ý>Xrkjt‰±Õ„}Ç;4• Ž®©-ùeœ@küÖö%¯#Ïœ%!¤ª©Â–Á²ÿÆby"fQDø"M0õUµ%8Çñ,ãGõ~ø>"ˆ`ø…õ¹Hßµˆ¼±mÊ]ë;½ãgö`&–Ъe渞ƒÙM9ˆ‚ž¬°DfÐLþ³ÐÔx1ðú´ÊÚ5áܳł°wÑðj3™oTæü¸¶õ‚t˜µ1«å¶õ:mF¡ýĽ(¾ƒÑ‚àßä¬Þ×åXÞוJ9·Iãôo…£PѪåâày.è"î­IžT|ŒS)Þ~èŸÙB°…M¶¯1" ÅÁEÂS"á°?&½R~ýuFÛþëÐ}Y†¡êPoQ|CŠ; kýU3—!&½#ͬN\¢¦«Àné|†Ü3q£dó(oéÓX™ ÅH@Q9{uÛñG)a½§5[)>޵’ÍÔ«V ñËÜí·_!n ZﻵJ¹²ˆX¤Ú³Éy‚P$m=nzDºzzÝAoü"¦£¨lȉ& qÜ×H]v•oÈ1}Ú»*@N¶ñ ˜«Šö™Žð"¹ ×ãÒquK3Ø"¯`mm4’§4‚þ–Í Pš Tã1áËš¡õ°¼±Â)aR ìÌ!™ï±€=¯§V‹5ßT0Ή›=Ù•§Â^”Íf³nã’ºM¤òÌÍa‘;á9Jýo3ZKÈM•Ã_EjÊRqâÞºÜAÑ_N#úÒ€4õw‰H†À!}Eõ8w¸ Ž Qœ«]ØRx·y•䪂kSô¶(ž+1nqmb]ൾ#fªÙ¼#bfofwÁ]J‚•úPZ¢Ê©ä ÐŽ…eq™¹uÔ!îßë§wÈb€*[¯Éà¡Aâg‰ææë1â…ﱦl1g‹ß(V ì—-qõ+bã ÿ;Ù¼,6f(h¡ˆ|tÛêîξԱɇ-Žu"d¹ÀQÈçÒº Æh¼(ýºÈ‚_´ÊO X¢"öù7zJw¤Ð‡A²G–0L×3÷5ÀA§uX´ÞZ·Üû‰ÇåJìÊ‚oܦ‡ëž´g;¾»‚ Th+äÆhxB€Ÿ(ŸÈîáhº=HMìJ¾Ô¿<. 6x–âÃ…/Ëðµ²±Ìè!b§•%^Š«Æùÿ ÿ@m°ó¯”:KY7„ñ¹KTÄS´9®¤¦'e‡ó'°'bë‘”ÞØ50­Í¢BøíeFQŠô÷ÖÄ­¢M92sýr«yc þËeßÅÌ=vQ08;¢¸à5ïäO‡T7Ì]ó¢ÒÏ.Û×'ïüYšÈLõ{;QóUW·r¬‹ŠþQÿNšÿ fΪ(w¸×ø±Ö«Ù²Àü[r<ˆLÂ0f…ÜÔ{ ßìî=“é?$ÑŠFr1Yc™´v!S€-©¾Ÿ´úþá·ލh˜=2>”(¦$ˆõ„>L4po-4ÃÇЕX5ý²¿¬e¯°¡ç€€òUðŒ2Ô3ãÇÛzIRȽcÒIv#1'M\ÜÉ߃# õÜ3µÜöæ7Å|§’‹+PìFìþ3B•´:îlìRÛGÇi¤4„Œ|×:±þ9o˜¥€Õ”ÓÛ/"ŠÌÉÖvTQewë]õÞŒ-ÑGgì{a¹±ÀàרzªjñÕÒ;?Y"Ãk¬á Wö£¹C4còdÓR$X¯9&‡¨w•£Å^ç E{q/t‹X(MÌïNN'›ægæ[œüƒgÍ©z·‡è¦™Sæ,ü˜žSuÜl²Xà'Ê`g¶¹.e*îÜ*ôÞ… BñÈÔ{HnÄ"°¤Þ[ÐòF<€\sï‰ä¸·0 Õ8êX`ed—½sÖÖzÐe ½MWø`Ÿ™ÒGÊ…TrÚm¸,Ö?ª*,çîoÖ=xšÿš8Hç¨sÌÝ].#M6OB0k›IÒ@ðsùTsX'Œæd§ ý¸dŸû)û$VBû9ýë¹BðâCnkð$°=qÉ`qÞÚ~råšËÝàúJŽZM/Ÿà:ðßÕEMÂ¥.2ÎûSL†ée9ÊÂõ$~#"¬ÛB·¥iÀtC†á0™ÕT¶ål‡®ÁÎÀ&øº¢GÆ7ÙK¿Óˆ“<Ë>Š%6ÙÀøŽÐ¼ç·Â³¾oø”KG;Ã,Òfô; ä«‹¬·K¹jc´§!újH—d½Zð*'©ÞƒËèΞ»°Í-[´ËíÝâóz!sâQZšè£ù»Xòž¨h™ÞiÃÄÔ½§€ïGó Œr¡9<ê‡ç­[ëÇáwËŒ“üJLE3½®Û?B¯_ b¾ÞQ¾Ò7„(‚5(´ü¿Àå5¼c˪b²’–‚&IE*W–37¦{„õZÙ?oeúɼ”ó%ÿÐÔpX¹«äsÛ=úçRª’âŠAä—{7š=¨{Ì:_Y0þÍ °yR6,’Hú·>Ö¡Ä¢#ÿ.…é/¨g‹ó¹=Lf“Ž®±±c,…²®Kc$V“Ý >UõŒf‘ÖFö;Ù , &{êm·í&¾ÒÇIc"–ÚÝõR•flüEÀ˜÷Ü óGÝ£®W¡¢H­å¯Á^2®®œK/ýÉ”:z°Ò®»Rs%8Q“ö¾Ìwú3(}4í€È:µ›A0MMx1vzÕÆ6¦ *3>uÛ<_{}-¬lC¥ò°pÜó÷ì½b‹EÝaã'FHV6rÛ.J {.oßL¡à Î HºŸh“lƒÍh*”¬ÎÒ-©õbæ{ï©¶È•'=p‹P°§¤žÓòˆNê¾+£û`»qF¦þ.úÛÒ ÿ {XfóÓÙƒ¢‹ú:‹ä"è”è[ áMU ëæ²•êPýºuú˽‰hÌÓø“I &#ƒ#ÈÖÌHð™—x‹è™‹À¦È9kÂõ"˜uôrvbE›% `½Æ”9Ö52zAç(7Q=hFz†wä”^¢H “i:=Wúçžòš`¦l-ƒ›lz­S‚ÆšKDÆžžæS]â)ˆ–³ºë;Ãx1w,¾Å R6n-Âe§³<ì­Ó3  ÓŸ¨TJŸGØ3ûLE]‚{˜%˜Q¿é*t©P}a¢y6(0Χñö.“åi« ¸éÆq}¬e«?6‚~ `4³$Ùºaï;O肱ù¯§•÷xJ›@žÍ¿”« Ik᬴ e#ÊüøPD3k_kè3oXê”A¸€'4òõÏ€wf^2PºD}Š'ïŸÇŸçM¤õµ“.qËÿB…·2á©aß3CØëãCf30R…„ËU›Ñ8£W´‹VÇÃŒ‹_9•þÓ¸JLJ›¶Ä ‚^5\¸›ouëÉ]øo5­ ²Dj×(O›Ä»i&(ï}#Bš¡á‹t&ØO`ýòF©¸1/~¼Xy2Ä6;J“¬èBÉ‚_HÍ.¤^¯ ›9ÉY™6åB@úƒåè¼2ü3ðñq í­_²–$<š´';už™Ñ²S¿¼ô™™7æ]dîí’Ä –,\á< © ò~©ë ÖÉm¥#½¶ß¾ÃZKÅ@jìâÂÖÈÞ×ÑÉïÅ" Öw»˜«åèDsˆLYºrm HZ¿  Á)rJx¾&Â~ŽÖL)¥]sÅñlP’ì@= Katl÷kÏ–z^OQ誔Շ Ò–ßÚÀÄ·‘¢|±¨uŸ¶šAíRïƒåsQ¬à"íKSûßruK¶É$€ËýYG®û“åTiÜûV)„K\D¼-šÈ®ÄÆg/XFÖ¬ºßwï=CåüdÓÌ.žŸ‰åKÚeD+ÚÁ>¤€Š‹ Ì–cÒqðð`È|¬ —ºŸC z¼ hºüªÚÊ®“møœJÈdÐÙ™yÀÎMêêÅb˜Açø®žŒHR@—xˆB† P(äÓ^9äÓ§U‰º½EÎŽvwnL œm B>Ö£v¤x>>‘ìÊÞĉë°ÖƒB’W=ßX[¤»jzmõ-'¬FbûZ¼2Žé {ÇìÍ¢”žÿ–“Ÿªyüä˯gËÁP³r÷ËÆ<}øx|‘=ªOò£æìžšy )𼄦»ºuD[ Ä´°-ž¯µÐG"¹/,¾"û+? €[? ¹=†ÝpL“7cf³“{ÍyL÷ê¡®€9Ú›\»Êþ1é{Rl:ù¥ŽËŽ©Ý^Úñq`«ŽÓƒjV—§ËÌ0ƒ€„ª±ˆþRÕÑþ%l°®@£Uï_§—ò/AXËi†k93•È`•i9BµšaV¨¨ƒÔØ\YÔ Bµ2‘8‹wu—?̤ú…åø·ïŸŒª‰é“žI–\ÖöÔé :îUšËt uHOÞC±¥s­°¦´-¤oºHŠXD‘þ½C@c!ݼho È.~Žïàsá!QHø*5 ¤ûìüÐ `ëÛO9{„X¬§|P–3ïL# ÁÌÙSoç“¶\úáú©/S»û>æmF^°ôw²Ø¹8Ø‚ëÕ‡Ûç5'Ós÷JÀ1xvv“%ºà¹‚3€~·Žl;ÿ~[$TäЉ;·õ¿Ôò¶Xíÿ-Él´@1qƒçn¢ß?+XêÉHð„Ø²CÓ>Û—ç9È«¢‰„2rR¡hWÊ?Ê I´[`öµñ¬µƒ/€3èMb©y½ÇPɱƒ¤äGØÂDvÊ“–R†SK;®•ßDô»¨Ï]ÆŽfÙjïåq¸ÐZù@ºÞª¿‘¶ÉíÊ|ß=ÆžÀGÓÙwXƒ¼Ubo»D=l¡ÚüÑX~–wVvÆ#·F±ÌßEÒU ¶RÇâ>Ï*"YšÒ!U(ÇDç5`Jˆ5G$U¸t´v¢«6.3„C¯¼Ë¯É#KsÇE=-#È•v1¢@lO+¥ož:ÿŽƒ–FûÍx½µb÷/!&üPïœZ:¨¤äŸŽ’avÕóª:Ö3R£ ë†Úê4*þþk{­!‹|³¹øx^6tMâ*Opѧ_Wžsú ÿ¥åI…aœ‹ qWŽ*¬ ÊÛ/•ñƒÂqî¯úÚ¥ˆÃ¥çÁˆ0< c8 é…EQ’ÜL` ÚäÌ@ _³Vl[À}LY‰·á¥[2öïýò‡ùP¸%ÚAÙGÅb¦GòaN}Ijòd*ìvÓåq¬ß>éweÑc¬+Ý!A2”3¬Êý÷Vj;«od~îìù®²8JëcïÉÊ»¦Î€°öíRY^ÅÖ§y‚0¯×xäcÓV8ñ—B¶CݰV®e+S­Ï‹ðwã„ð‡ÔaÜ<1k!S²%Pñì{uyè; ÑJ!üNÿ»¤•/4É S­IäyÂ$¨qËD渚»~‚­ÇmTƒ½kg=öб¡¬<ïÃ;©(T’ùV›²rçäs–t-2©Z¬¶Ñ1 ÿ)øÙi/¹tÞ©äàÌ>UÕ¡ÀLÜ¿(ó ÄÚˆë6ˈF¥{ã±8e8*»}bý®ES²ÂVØabù3 Z_bë:*Ç¿GerîHlÙ¯¦—B\UBž§gPî¯ ÔŒÅ}ößBM A š G exî<é.0c pšÎA› ^,y§nEŸÜÅ”tˆq3ÛýÌä•5|ŸsgMÓV†ªsyþú°3’ž€µ¹jÉÅ0+Yj ‘£CgÕ‚b"Ú|\즻Q>ݸÙú±(ë"fhð! ¹fÈÀñ¾Z^Ö•Q7/4µŠÂ.ß‚ßõT0ýV™<½UQ F§ Ï”2)KŰ•ª€æ† ù\F˜¢ƒN£tô·Ò—/ó†Ïô'n¼äñûÙÐíìÞ2‹è.ïÔL©èkü¥c_¨Êï¶Ü¼¶àç®þ&p aV]¿b¥vJ¢ ¼xG:ÀÞø² Ø’R 5ôèûvA€ "Æ›òóqÝ€Ä8gû‚Úßo(Ë®¹äï+ˆW™sŽ¥.&WeSÙýiì1ª´ùEÎ]™ìö a@”(þ¸áDÌ–ýÜg_úºËuv¯GUÂeT_Sa-“msSÚA¸5‰ï<Âó£¦nÏ-¬kÀv[¦¼ËÑx¨rÇYéô\:€ïc#æ§àÛþ]Œ¬Ôé…ñùlÀþ~6EG­…I„‹fs\©ÃDvš®ŸKcºÇ&¯—hÐjþû¦¾üôƒ×.'¤—"å-Šû™Mˆ6Gr*A›Ä¡Ð7„×0müÅXW½5¶ÂfÆú¾øѸºq´â?q_§Q’.¡^¶Ä•m¥B}GÑdÒ)Aˆß©áî‡TÊB¢ƒNJcvðÖ<“À9ŒëItÚÀE*ç82ã®Ø¦ Y,ýÿT5 Tc{¹ÈTË=4͹cúQ)àË%ðfl/怮¼¢^&w³$®¶harL¶ ($•Ra,D“²rvC{‘Øúűöµ!^{Ó>™M:¯7ñcGº¯¹ò„“íÞeI`ÙãÄ«M!¥Çêï”Ævt6=Ú‚!£ß,ÔW·ð›Ñ‚5ªË52IìšW×ç_Q0#¶xá’ùõøÁþÒ¬› ®òôï†^úlç'o€I-°Æ›sMþhHXYÙ¢+NG”|›Ø©ðVW¡dKÉ3_âŽ.ô—ûŸÁ¿S¡­á5œ?]1û¨Åd™¼´r¿Ìê X»-æÃ¨FpϪâ zÎ’ä=ž4­Q3çM€×ÃÅÏ}bÖÄ™¬ŒnÈ(š†¢E«¶Ã’ÀÜjBÓÙ¹4Ï*¶¶Tk4 2î"¨œ£.ê»~@ÒÑ‹Þîë˜ í·>O™4,˜<•4²™”iöèÃŽl;3âµ·e‰†m9çs‰Ü8m¤ïŸD€ÛæÇ˜²"CúÁj“ÄmÍïô|pÔd÷_;’Üõ–Ãz< =ß$5_+¿÷\dƒC“ô+§.ɤ%ƶyCžÄèÍŽF5àü~\~ ®X¤ ܇BXÁ}[”„Ž#ð˜a–fz”•‹J§-Sµ!l5µ÷z_ˆñïv„2wz2†Þ8>ì:IÌ¥©`ŸDr©2º¥šÞB[죫€Ç.„ÖG‡0£,!3îC€›ˆ$+HB³Z C•¬^È’Ržæƒ@ç8ãî¨ÿ”Ý…MðÏtÍOa°Û:ÞÕaò g{uõEÁûð©8JD Âüøre¥lCÐ/ì˜î{3sK®ö¹ÔÀnŸ„ò¸®Z!Ëî8Q¸ 3Š Îc“͸ĻÊ<öó–iŠCÕ£ ½åZ„®v§#puShfÞz&?Ö™ƒ‡/|9@Ú%HˆnLmBx#¨4ò} Ì5¨þ‚:–*¹øòžÚ•…›X}0twOª_~/läN1EÅÛB›ôÐ;_¹™RçQ2IGNœNÅ~(ÿ;4c@Ñ’á5ëî&9c.KÞöÇŽBZa#÷C«l– bàäo0Ç¿¢}ºÇ˜¶[€’„Ï|¶›êJù'†ªÐ¹¡6—Š[Ø•IÚM?Íb¿9ŸŠ›KxÐøé.Q»5"ø¸Óé–¥)<ÎmÙa¯c‹kôb¼[üÒ)ÏbNMú”S·5êdæûªl…)ºÜ$0’eæ Ð†?pYŒZq.}“Ã*W™ÒAŸz@†òÏY1X YÍ"árEWôŒ/% 0ÖFa~x@cèù#•ˆó`$4¢†®%¨ï4,pÃUŒ8H¯‹n‹ô^Hœ”BÜ!oo½üAµàÅ6WºÜ®ylNÚf”ÊLivdþÀ°6.‘ws{X± Q&˜œE!™§A}7¡L©\ÁEôr„à<G`ŸjÙ—K«4®RO¤¤"O¾<¬SPŒt3²›XHS2èœÎ[«}µý?³Y*¾³pß'H¯bˆá}?3=O ¥üƒŒ lóû¶c¥dj„³s>Ÿ‰Á›ÜKz‡ä'a¿T¿2·¤®ÓVÜÖë“:Ô¢2¹÷8Ò^ Æáuëë{Ÿ„Í;ðÞ­¬.[w+Ùt‡|åEykeû„ÝwQ¸í ü`ÏPj4»­vU°c’H"S¢Áè½D¯¦h\rôì@•¨H©ûëÖÙÝ”³™FZÛÿÑaT ]DLeCž±“¼¡±G™a¯à¹ÂüûÐÙ<·øoÄŒ0g JW߬•Ÿ·üMæ\Á[´mâ …oŒ¬©ƒ•hû*,KU}7HµôõÓWÜ“/‰WøjÚD»¡J‘®Üý9ÐÁ+é5²D\8j}n¡ñˆQ RƒÑZ°snÁçC2§ƒ“5{-µ¢ tÀ0»7¶W±{¦‘xÁ·ðT77&NÀõ<£ÓzùNUúò‡¦Á/HøkhkÊodZÈõç»S¿°¯Äº6»±‚õ3ŽI•sY¶eÿÕŽ>¨O?ÕÛÈÕšÔy »ßEò¸CÍ2?EƒéåÍú‰¶*U`ôݘ þ½ÏQ¯2‡ÇbàQŸßûæÏ"ž- ³ÝŸ½¿û˜¸³Æü“Ï‘‘¡_šï®i¢{úÅ&'4•<á¤í¼€æ©'ÒxÊ ŒTI —Ë!£‰-ŒSëäC2ÆÑ| ‡K0P  ­ÿBiÔÇóRg¨k·K–,›MšˆÚ©eœšZÅÀ:t˜AÖÌÎõØÚwÁ§™z§'/­“×’½ú¤%‘Z“l˜1¶yÉYCÎ3þwz - ¢ï°B7 ÒÒh 0[+6“úžœ;ϹH©ˆ› ”%P^Îú±hê’ØRZGT‰v˜;ws†°ôIÜÝâ°UÛ€‡ôÙ%àuRÁrû«éRZ;”Œ‚Ug5'‰Õcÿ×R‹GìKuîûrÍù¯Ô,m§4ؤæ%ÆÖƒ íØM1'Nï¸_÷ŠÎ¥À¬Ë>Gx± _žáêE¥NÖ›ÐI!Ñ`ÑSJ­º 5dÔ,+È脸_—H– {‡³¼‰¹Ø8Œˆ®Ò5‹¨çß—Žjb'¶"¿rßÞùHaR¢¥+JD“ü€¬LMÐò;Š´¸pù¦ô´?ƒ°ÐX2û5#¬ÅØÙ\G'½R3³Ï1Ž?Ä Ò¹»ïïmtJûÇïM\Õ%¦5bm8ëº<„rÕ¨oŒÀsÝÌm+:N%CÛˆzôÊFà `ûJsêAå2ZƒÝ“Vô”æ wBA“5"§³Ÿ/~ö­W=2Dð(íÛ\þϽÆcòôÒI°r¸0xj»žÕþR£Ü¨ƒ×-¬³OGÀß@H¾u’ØŽ‡ÃMgÜ:>S>CðSÛß2[‚Æù̸1#™§«Ön\‡ÇUß_‚­~2ÿ‹ÚBhVþ"wña«.·àï²UN¿³[ó20OÉ4{E&º#EBb¢ÐÁÚÐQíHª€ßRëÏïr± ÞÐd•ö ¨l¥ÙÙ!Âüðw,ObQUÒ²Í#¹{߉—­W§ÿÍ(A¡#cE+ÉLK·  £…Áiaözñ­Í뮀(Q–„2æ%pÌ$íbÖŸJ#ºg2üâÌc÷ŽºÄ¡;÷ÕO&¼Ëv:*F¥h“ƒˆUQçËÁ”A|Qï0Þ}›iz­eÑ,Â/3»t;˜–1Þ°¿="äòt.õðÝþ…ÆíöWV®œÑG¸@ŠZÑzöXËÆÇØo#Ë@¨Ú›Å¤‰ À÷碭!zt„¿rÖÛ}"å´zt†Õ‚¨Áƒ­ÃîH/Œò±ùÇfÛæ’îLÃúï’; ÊæAj£.ºNäf¢L½˜úÕ„ýIãP¡DI®_Ø'­ Ê‹%ÿþìJM¤6™ª½õv/ÝÁ¼2´©œ¿t„/å¯v¹Œ!Aç!5‡m ÑßÕ ÚXÒñhÆ.QqÊÛŸýû¿ëlz,ƒ} ³ír7³0PÀP#14Rùi„p–ÁNZûõ¾òò¬>„¸Éd™\HûÊÆ-Û\Á&´¶oEÖ*å~Pw ÁÃZ_@È k7PcÚ)RGW*…r.[–š.à#ûavs9ÀK1ñIí£-;bµ†Ðq†4ö ®¹Àmóåݵ ý>öÇ»†“ ÃæÂDØùÎãÃÞ¢îP_7ë;Ë ¨6+žÜ¹¬HÔmû·úˆ!žø¦HÔ;:ØŽÂÄ;ÅÑz(R(¯&+Oå¼(Â=²àaå´;#“[Yjmn1KãÊþÐW>vÜŒ¼•IîœÚ“oÉ<:VÜÛüñÕ x/0f² YDð1ü­­RöìRþc53øÆ‘40†•Š×Œq '@$—• ÷oz;r3$â½Q=겸å7Ú¹HB“·pvazjVÚá¬O…Ÿ3]Ô×/ááµ”íqȃ ¯à4Î"·ŒI­à¢Çá@/(ß¿ÐÔ™æ @¨ÕÕy@v•µbŒ8¿Ó¯÷#Gस¨yÑÜfÃËâ–þškM;Ø>¿|ÚŽÅÈv:ÎÐ¥_u]XÁÔ¨ù4ĵÚ3j—§K18¼vøAP10G©­rá)y3©@mn¼/n€&óìÎäÌ›npIôjHµÍÛ16TúöƵ1ªU1¦ö…íö?%#'ÏM™‰9÷ú™Z;d„BOàÁ”,äÆsš’†9íÿm—°U®ù Ñâo'ÓñK£S Yê&Á¹Ö¸ª4õ¶‹ùM«Í@]€Š–zÔ°ïÜ’ã§Øïpú*ÿeTu5ÕWkf @‹›pRãŠ]™Ê+ ^°§=±GÝE¥³^÷û^è)!Rõ·Eb‚ÂGëPcÇ@'<{2‰Ë ©ËgžHÁIÙÄs6öQ¦1w.˜;'ð©c‘[ãï.o Œ#í„÷•mÊù‡h£bá §Ú9´dR‰ÀûÍÁ0:‰ý¹‰)Æ,+­MÖD6º¤ïα+?ñ}p¾—³`¤lu8Ç÷ktåPx\«N#Ãç®ûÄ‚ñ—$ù °¢Ûp§ó|Ž™ž E.<™¥rW >0Ó—èâ”bÞhW<ËuËåýÝ÷¹Þך<è—÷p™ž„ûgújľçäíɳH•B0µ¤!ÐRL@}Ä`ÈC“²—áÄagòë@º  Z¬P%e~„ùqð™ïˆ>_Bÿ}Æ¥'¹S˜ïÐ0JX×(”Èìƒ;sÚÛûaH†¯ˆ•&nPèBžx«'¸6Odn °(§«ýG^Q*ü*ÐózÞ¬1 žÿ™Ù\qp¥I¦qá„> ÚU5þ}HlX­çû@ ˆá¹ •{#D'EQñß0—äÏg¿Îá-Ì„oA™^æœA¤ÚK:ÔšÉ)áfiUW§wÅps)$#ùå-lÕ|̨6$ÖÆ P¥±M+r¢Ÿl8]pf¡TO•‰!H¬[!—Äh7J©[éÑ—UÄæfq†GbdXϱZ=µ–'n·n–ŒÍaÓ™³NÚ9éÜòSÄ=;§Éú²ìA sFoRþ¿“6¹íÔÙQ¦l×Þ.ÎR¯<=7H³J8Cå¯ÃÒh‰¯ýÀlÒå E‘÷;…XH]Öýt}÷ài>YâŽtê\ôIÄsôÇ;ÎIÞº“aFÍ–¨8ù··ïæ§(8•#Û˜[fQW–¤P\ßÇáרX*C>$4+Z·‰¿¸h;f† 5 A.bîÚ!ç©]ƒÿ¯Þ$-€=“,žóìn¯:‘½ck¡WÙ!_„ꑾK‰Òjúò]õÑ™oØ›!Ë'{‡ÿsÎ(8­Röén+Ãf ƒÕN™O³D²EöÖ²¢Hw k"èÅ]ª[¶ìkc.‡^x› .[“Vl5ðÁU©ñ®\îÙ‹³¨½ é•›ÞŒ™BH‹ê`•´í¬@Ð"v µšü%9A¥Ÿ¸˜¯£M-¢©ÜË  .ÏÜ,¢w‰­:ä =ðÜ ì1XƒM .¦ê/æ )ÜDؽ¹ ˜ý‘çÄ]2CiS?°³/8C䥸¨&ƒ¢âo?Ó6ió4Í~7IùÌÁ¯;û|IpÇc6ÍD¨W4ì”Çš¸´”³ †›Ú‹ÝáÎñÒ:Â÷î¿G¿¢—Ð"ºÿšG­5¬P»§Áì÷FHDMq÷g ïÜs,à«W£¨ Nœ­ÓÉþŽIWÌLP3]H¹eŽj»ó–‹¸ú^¨u•|fÈ1æ‘P¥°idWSnDxÂÞ¡ À‹Ä4‰#'?aê-WÞR¾TÞÀ…àÚñúÂïEÿ@žîAe.¹ p)^ãAuà)žc–§¶ˆÍøÄ Yˆ¡!ÙÇÌybzÚÛ<²EÕ|Õ§ÆXåñùHÍPГmÙ~ßlȨ鄪š¼ŽI³Ëmkšf5åKæ‘8IyA#ö”ì—ƒ{¿=™½Õ¦/Ñ#`Îʤ¨ÚÙÞ§vo¹ÍqÙôn'ÑaËÑ¿$`œ\Ž”+9Ö%ñÞrìǵõUYÏfP}È >ù=ËR—mpasÎIïÂ{S“Rìm¼MEù½^hèk$síÏ`äa"føNh¿qf¦$ê°ˆûÚÎw‡)7YïíH_‘Dz5Ôq‰]]~<ù’Aƒt÷²¥l‡‘ :~Ç´ÀÍõYÓ¶=rœB‰¤ÙÊ29DV¨Ô²b°µÉlW¯§®iŒw±´®q`À>Î+fj!ÃøJW!¿¾$Ó³®5«è<›’$ òQCUF¥˜)”…L)å'HÞŠJ>¾aŽÕG|±úý`O8'CoáXA Ò˜%Êâ_ÓYâó§Pß=ŽLr:¾÷”ë+¶-ßìCéà¾'‰ý˜36!Ì¡9+Ž+…õYjŽ×1ø@_ò:pb1½76jfýKfø˜$UŸoÀ†‚‹Â{~M}cÜf`¹ŒgÃ++g-1m¯ì¾ÃY·-VK45 ŒÃ¬Wó¶ø{OÈ” ÆDRÞ¥ß%´;P)qÔé½Q(ô)QëÐ-ëÒ|6!°ñž•ã°4Ý·R!t¶ýG ÞBæŠÁöáÊnËì°è…8ƒƒkºS(âœÛiRÜ“?™9šÂÅÚMä´SAhztõ{%á4îÑ/fˆ²*©è9Cèÿ±í·&RÏÓV(OŸ{ªãÖq€úóذÖXBiS*ì(Xõ½æ*ü¸ÏÈ®’ýí!ÏTùÝ*‡\–sŒ`5ö³o[Zï>rŸ@ή/øœL75 cV,ß\\©Z‚K’%Yeão$~¶8äq*5,xD¯#ÃÜFC¶Cž1ŽË›l•“ØJr­¨¹Õ›÷ïpÓaµÜs퉡W1Õyá±+ää/x·\85û •Û‘o[–téîÅ‹ÿ›ïÿœ ˆ¹xøêù^_gžsÁñ2ç§ :T´!.`PÛŽU:¢I<ð+2¤òÛdíYÅÆð¤féå˜×ž`9JtwhpÙ)8ǿǀ™™?¡œ°Ú>ïîLàWÚ5^âë‰Ò£qTK3™?¨Í¦FŸ&‡ÞxOmr³†šû¡P¦[s\9à!D?^Ï%RßÒ~Ä#¤* öNRÀcÔ>y„^´;¶r-VèÈd²»W¢›i&Ÿc½˜¿kµ$®`ïüY‡÷ÉR( 1mZNdh+]>÷ÌôJÄJ`ðg ÷ `Û¯åþ“Á ìÑÚEE¶QßäÇÅïqÝSu…]÷l[‰„\àÞ TÕC xIéd´ýîÎ1ñY%1p4üQI‡£¥EÇ¿ªw3"É`HÍU¶õŽíÈàÔÑ0Û#z¦Îo]|Á>“ aî™~¾Ó¥Ò¥):J¸A jÜR‚ž–ο›Ô£úm[GM±Rà>kÅôcçø`™ç'ZG¹7÷.Òå×»bê/ÈÔ¤Ù$¦®!©×z4»˜GA‡Á•èQ©HGÚxeÆ5ÓFl*lÄ´†zîå£ï9‹Zn’¤Þ!øeR· åâôÈ2X‹Î?ú®»*ûÝA*§@½¶‹¦‹f›ªÉ#ƒFúþª8É•1V¥It3§…HÆÖ–|MpÐ9jQt9´@ø(pI0!áØtía~ÍÜýÖÈ…Ö0ÌÞòW(yòäæÌÉzC&SŠ«+ êyzÂŽ+UyJFi!;‡^ÙБÕÁöÛòI[ZàL=íäˆ9sï’2,ÖóÌÌÏÌ9(§4U?øÁh?ª*˜œ/4jÂYŽ{:fU¼$_xÖh»©‚"6’óÕêËq`µÏ’ÞÒ‹l3„Š>×+&ú} ivóìp)€¤ÌÀÞéN(¡÷æM¤ÅÆÂ̈Œ¤ƒ{ 3‹§â×ö‘p ÌÜlx“Ý®í÷Û“-åÂÌEe‚N'ª y¾k÷žÇu@š]Ì&U‡Pe'ö1ZáÔ¨­¼á‰|¿t§ñÄ(*Îjç½¼Y”|îAE÷ÁtJbJcògvCèoQ™j¤égTB%Øí½.*4…ô®Ò×7Ý;[qÅ.ÇŽj$2néݱr" ÁÝŒ;@œxÚüôaôF>T ÂÓàòå:ÓacåSzârNð>i¼ÈÄêÌ‚ä2G††ªì •AÈ©ºÈág^JS¬IãÄ<ê…qù,]ü²ˆc}ÀñŽÄÄî– ËðfÉoP(ò+ìÇ`³ó¢†ü:+ãü?ÂêQ1˜šâ÷EaÀÄÞVð&›@ìÚ¸b ÞÉrOç¨á*Qf¤˜w‚"‚@¡h1íÌ68Òje×Q³i§´¤–Õ<÷îë‚“¼¹¡ˆ–îé/®Jj¼U9 w•Š©Fo^AÕttqµÚpÛâUÞ„qè›d{¼Ìã§fA Ýøˆ|>ž¼ø¶2ó@· o4mÖ© `·7#û_žQËë„f8_ØØ…66(v||ÖúG!®U«'ÏÌ@Ch»)æv-æ2Ó ‹”ûž•F¤s>V*Þ©9ÊØ»Ùÿñ‰÷áô¨ eÀb$£Ï:•¬²±˜ Ø'®õàƒ©h°ïÔ!W¸¦Tiý¥zî›Ú¡“ÍÏÝ‚P¥´ÚOœö ÞÌå-`á3­ÈÇ´ÒH*ŠÉÓKÞ”H‚à ØEl‚Ö_p-Qp¬k»8ÎïdÌd TŒhàý¿¢ d²/µšoýÁ`OÊ–þVE, èéïʘéý®g8Ô“Äí6É/±w…güöW•^ ûÌ¿]Ê.ÜRé×2øœB¯Ë0\ÃØiXIÊLÿ›Ÿµ¦]NaD^”LØ‚Ø3jE½Ý´#l£¢•8ŽAË+å„ѳ8øÃftι£ ǯUÄ´Øë ßË,ä¼C— ÑÛ83³P.UQl]Ñ3úu‘T‰ OóDÅiu09œ¸ Kˆ©=_5Ũç8v%« uíŸ_t ¾õ“–Ù¨Ûš±›ʵyÍ‹='¢zžÞ¦ÓyÍ‚+ÍJ }—[ÛMžÄ9 ïÖ*;¡5:q’ƒ²o)`1ÖmÐVËIÊ/MÔäc†~–ôÜ*o6Y?ÿ8ÜÎû‚az5³mS°\ðëFñÆ Ì ch@ÄR×êÏ›uÔð¢d›tµU°5ißÚ¨Ö-g]¤chêRîEÚ5e·Âëíõ¹ÊNnÊ^Š—‘•åDá[• Óßב¾M(*ñRRó1WÄ‚_ÖwÚTÍeòPJ°vB§¤ ¦&ì¡òåž?CM¿1UÎ2Äš{-S)Z•…•aÚÖ0oM¿ß1ô2S°ör|Ò¯£ââ“g—ê¥1`Â= *CàÃ;¿}–¨oÝï¨klh»: òÁB¯^žBŒì»k%ÍïôÑ›ŠŠ ¯!?oÛ¥ãMô/ ³dzqÃãÒ§Hy4‰sÈõñ ɼ ¹S Nà‡'ho—ŽXøKè+V ñì«é±1üÔŸ]ÃJK1(½  ÿ7²ðjâB‚Ó°Ízç‹­ã 7XEþÔÿµ^U÷ÂZÊL_Àɹcø£Yï`ØÐ¼0?ºÌpŒ:+«®=»ž}ˆÁ³¦8¯ù ²7QðOéÚÍsüÃÈßÚñIn-‚{ZxìÖP2A —¸ÝoD;çª@€MÛBŒ…x,>1©èT&0&‡S–ƒ¹u¬h—d›&• ;¸F_HktÈ¡¤ÇYS÷TìƒìÿÎsØÔ& .ÕüS°È#(¯° ‘MõrÇ ¶Ó"Âä@œçTÝ¡œSÒCý"HGÊCÄëK e|µH«NÙ h†áð&óR™‚‹v½w +¸Á<Μjµ¯eÖÛ' _ÉHû/zŸ •g!n£ó,ÿ¤½%Õ%{èí-ŽÍ‡F!”·þ‘šÄt8¦}¥˜•‰X"ì‘x-›·ìÄÅÝYÜ’y××Ì´¶Ê™Ã¤Ñä>{py,˜’:y?—>¹{ Ðáne×Ýé&ÛØÜ Ýr3xépŒ)ÄJ¬»&.La7ê4C¯e@.á3 CVEêÐSh)²%mU’Ô±ZOvÞ\/“GÖÍOÖÉÖ¯;ˆX”•°ç¶/h²ç›28ù´SÅé"ÈO,yâž®åÆêTŠ›mŽa;S¡]jèˆyüÍówÇàÉØh’jØhTæC‡ªz’rÒ~=öMAßm/§ÛÝ™A(2q~OÜŠÅÔt_’E쇶; Ví}h¿I7ñŸõÿ1sÎwÐM˜¸‡c –HýTBd®¼]\×b~^pYý‰ýûÞ(µ¿0 ÇŒýO¹?Õ8e˜¥¹üúžÑl‡¦O®NºÂù[¦bPÌ®S²Dþì]¸&‚TËh¼¢Ûæ’’i©²3a£ iÔ[ƒ¸r±JŒªän0>VÜÅdäkyêr‰0ŒBÉÔÕ˜0?èÊžÿÕ9ˆCÿCMà#µÏ€^NÖׂLòßh/?ywT2–C£q4q“âÉ‚^Å­ô#Ä=gfŽèú“šèW…Ö+Z¶®{³’œÉøCKŸ,49†,€ˆþ6DT!~…u{ÂĪL7`~3÷LœÐŒì?ö<Ú¼¼:¼_~Šýs.ÊÁßk£±Vn¥ÿDì>îÛ °È–©ÅaÂ%™ŒÊbºå(!Wø/ñ›Ä:wÚ¾°¾2¼¾¦)nÑDi"i,è·ô{¥3Š~uS!¸»­…Œ{I8sÛ+²…žòÎ-p8:UFfÿ´fNfµ.âI„PDr™„L](ZcMÅÔôŠË¯§Œƒ½{YõDªú—<¶QÈ«ñQí`g€Íµ·[Óכ݊êù Hyä.¿)JCD~:kœ>ä1ˆÚ/Í’Îa÷soY‘žÿ6Eâ¬3¾ÍÌÏq ż´K‹A¦¸õoì„\0Í~+2†A¤‰]²˜¥ñ<ò­J ¿<€j/ÅpŠÏù‰‡²ã>Ÿ-Ë–¿ ¤}$OË ²"‹”$­˜1Z„˜ÿS´Ðªÿ­x¤Ö ̸/ñdB•K,}IŽšó ‡¦þ"ù_êb+8Ú›û|z3ú=âV§[^)vI´˜Ê…õ(eRú\…]=b8Çú9Ù (íp%À‚R>_EÑdzg)‡|‹ÌPþÅd6Ÿò+¬ Bp°Ÿ"Zm~'ò©àÅë¶×¶§ÐòÂU@Pà"N01¥ÓxÏ9×—ƒý%u%ÁN>妳0´×[“CÕC6i&Êjò9%„b¢…ÀC=7ƒ-°rnzÄÉ(°†f}z­•;ŽMz}BOE¾&s5‡¾ö¢˜°~§=ôÞmc»8`Ü’È­s}dxÇTQç‹þ’Q\OÑÜÏ®Æ'‚®@ XfÓŽÖæþõ1w® ú°‰HãÔ…È,CÏ6 5«ïY}ŸSçXQKªž³?Þ¢Z݃h…ME?˜´S°êÓ¾k4ÌÔxp»}î{Ÿä™5à ó–GU>-5]GòÆÉüÍÕðl?SbùÁ€ð CïNoà}ødr4*ðÊ)é£ p÷Ù¿íÃRÍÖêáù`8¢c*˜Æï£¼w¤}'yä]/bâ¹î²êoj*­ïQùönÜ Ã_E8ä½üÅÛ#1ljO!.ð¹]0‡Wq\"Úò=ßd~{dØ]z_TÉM/‹'Fñ³?#ÿ¤M…ÈbçW¢ksowJcd)õ8U–xA®ÿm ”¤Ûë½r}H*Önª‘À^n€f½Q~¦¿ó“hЉwRÇ&Ø;“…Lìn¶ÇâwM#ƒ{O ëÒO^¦0i6̔ךõ ™“(ÓøœëeÅoé’l×¥N~M ,Ü;ÕȘ Ë1V÷Ÿi%ÃcÉ6D¬üúVP-žEøê~x1Ùª®—lHÓyÕ2÷0eüÉM’„'²d›™Ú(†S'¯Ì k@@ÉE$l†o§t\òuf1KFWKÍTËÂŒiøV!5-É1–·­ÖÈ(¾ zü>éÛ¦”òÅ/¬å¨çU§[{ÐAOÏLÐÈ?dá;믔ÜÂö³À£MÙ4¥Á‹‹‚ý2£6k÷<òW$LãäuWD¾Ôä±èýÕiÒí Ž¼SmÜâëäˆ4—tõÃߥi‚öqFCÀ³‡¹+%5áIk,ÅtüùÊÝÒâY–¼*q@"8™ æL·Æ>£z{Õ5”\ñ¾ÉéGë sŸ6ș΃“hAE|U©žñroDby¯x¥ÝCzO®‘q žät!ÔPW黓¶ËÞXæS‹éuÜBÛÚ.„ÜÓÃ×-äP\ñ:D¦6³m‰%[zÙ¦0Ôx÷»íŠ­m­ÌÒ#æ3! È˜2¬«@Öš;$Óôo”U gµ ‹mÜóDq+òžábÈ*¸ ™þ"³@;Ý­+‚J>¹®ÌД&WG8«mÛõV`FU(Ö'ˆs™sä®d”f-_ bÄç›âÇg•ÍÇÀ*{o:(:e¹‡DÜûK]ÁaáãºÍÝ[O>†ñð\wæ+*4¯9›bðdáóµu‡5f«Yw+b€W¢Q5O(“NKàp|e ãëtõˆqê J^H[ýyH #nf÷Fv1IÓš©ðR?ÿ›Ý…ZÿpNò·®ØŒQíl;Û-À†]c}MXAM"7ã—¬E[:ФI☆øêÈæ_]XjçCxöި6ƒ]uØ«LLÙã¬fÔû‘R¶‰¯…ù»DŠñNq·¾Q­ÕH GNCþïÙJ†ŸéEßè~Ë.ø™ÇzÞ3€Í}O¾nÑ#ó7ÁºÝ Ý‹ç¿øÁþጅš©Qû"åzä-Œ‘¹?LÇÉ9e»eGIÒç,SÏ+?lí0>ÕDÐI¥¤šm+€ëzü¤}ö±§9Ûdgì…º p\1cÂ濲› aïã¨Ëpí1q%Ò©ÎûéLáaxw…ÃyíYíü,…’‹{«NVM“ä‘‚ÿ›SMUßÞ>|>Š:?†\ßÈw|øìé‚‘Øâ;-Í~*ŽA‘ΪÐÊE:. ·„7~}Vàã X¼\#‡n²‚ë¢Kêy¿v#‡6¹³ŽF†wão2QÌ®ñ’Xg!35#Ëy£ì€—5Þ0¸ ûç¢úMýåbñ|\‡§'#z_d³áPîÿã98‹šN½Â-{GŠ*|½®4ÿ¸·ÒŸxYþ5æÜúKâ!Ý©2‘o¾CÒnv÷­×æ÷(ºLœørØC ¾XYº* ³]„m‰&ÖÄþƒèžŽYÒF:8<3VÞú.ìÌ v:׿ÂH³Àœ-ŒqÉçÅß`¢²…dŹ™o{±gD-zÕЃl›.‰¾É[¬ ï+φXyÛ~Í×4J¯C‰?¶óßßPªýê-—Ì—ëò©NXj9–œÞŠEšY»Ì´!ö°šd·ÖÃ*(…’@I^v¿í¹Æ‹On›œx¥) f‹=Kˆ²_Ç ž™EÙ¨ŠŠ3P ±µ°¹…ÜÄ€ë£(ÀÂê=M¡r·¥¤ÞŸ›ä?ÄûMP ’2LD4ËüL*UÕy] ÂæêYGÀØ,@òy£* Ú°Ï@&‰Õm¤ÎŸÛþ(µ¢[G^Ëo E j&6:”ÛÕì§ÓhHˆA:òÜþ¬mg8ñM æå`Ž ÈÛB¦ßD‰,©4ô3š¬ÍÛ”-¬"ÑM)!jñvØÕO… ™IÓ—ÿ1ͱŒþêÛ„t,<}N:_²åç—ŽýÁøÿA©tÆÉ‚—°xéÙS:Su'º"ñ°º:Þ]¬¡‡ð‹î=­6MGÏ2~Û›soÈ'ó¡E$)ð<Šø/‘±ý‹Áø´åZKWža2ppÄ„›7Ðõ†j_ˆæn–[kƩƾ¨CøB~UäÇwnêùÀpÁ7M+l ­¿6ËçÀѯ¬¡ÓŸ$”›¬1 4¬÷ëÁaG‘cÇù¨('íèM%sëR_SÛfÑv{S½Ï´$ «dh$:6°׃ŸQ^®Ÿ`è°årïôÉ\ÓUŠŽ.OêŒÀ¸í²/\[.;Z‹“…ºöò§Gfö+¦IÝÞÍÀ q¥‘h·ù¶B­ážª¢-2PßFC0*kQõØß…Þ&dð±W³rO§p<é5d·ûBèy//ÁnƱéK¤ëå¯î¡Ž‘…B´åc,˜ÔMi¡S6±!¡Ô½t©ä¢"Å‹Ìú•ù¡àN W©±±üæ{¥Ó…a†B@xúN In¨XЇI©?UYÓU.Ì•“|_s¾¤E´ö|™6MM™Ù&œUÀPq¸·{‘„æU¡„FóÁXG9çc¦¡³±”4lMuó ÂÄÊ€Ürݤ–,^»N>'äðÜ?þX¶éÅãLÈ Ü.»h‹»Éæ^õP–(ﺅZÔë%Ó>Éf–…–Ó•dô~6Oþ}ŸPlññÈm:s$ZPe5ÞuUá åÆq“Òñ Ò¬3vB¼”`f)”Ula™4ÜÕeÀëß ¬ÕÖD@ÿOôâ  U” Ì(y‘IþŽÞ(ÊR¬o ãg3rÄÓŽ€—$_C¯”sÞ WæM¦l¤æû[´|ì¡Úƒ‰j(8sT¿3rqú+i¿1–J³¡z ©b‰{€àÆj³ŽfÈ®W4èKµ±Ó@ ½70‘µuÔÔ¦1ªÁä?EþÅ)òuÂÓDÓ0훚嚫´˜– ÜzÓ{/Ûa€TÈX¢©F,lÍãê®þ¦@4„aÃÄ:„?0<¢Ä8qÛ›ºRìþ@[_À£º}p¿Ð2«½Bó®R怙ëΩ¤íƒ@P&/o»Ý·k4^N4Í KBÇ7¡÷¼˜^Ò¾%Ò7ž;85ÃBILßíQI'kŠ%ÊÒÿñr‚ICìnÐëªã¥~dȲ®1&mH¿&ò›‡‡˜¤NOtn–˜_{ÞÄ™úæ‡!ø'œ4ÿ±©#|Ž´ÕZ°S¹qÂð€(G 8·øx÷}{•É J¦´ZvkÝX5¡D_è2KO9¡8–«Z¬4|u»•—£åC®áîª4›Ä1@Õ T~ÁÉf΃×ûô)2ù‡üó—–H lN“~>ù?WAk½P˜¥®Ö‰kÒ*_¨cÛÙáÚ ,¼_Sf=$¯÷W[ìû&ØõõN1@÷5Ó—)â¬cç²·\äü„‡îjo”ì^3šey^’³¾Æø!R÷±Iõðøàù¢Ršø,@Æ‘ôé¾ ¢14ÑÓPÝÑ dƒŠ3˜V-¼ûpøQˆ+ÑèýNV%ѳò½ÌwB½ ®…¿>_ ²šMú3$ñ ©qšTŽ ™à·I¦4ÍBkUg½a†š^ÄSí8(’ÊÔf%8[Ôô?Ê»GÌ88}µFŒÊ/°´q¹÷ÄDçGhàÛ==ÕI…Tº…‹Íoƒ›ªÎK˜—âÇÁgÛû«ª<={Yr."Þ$3I\O[U®Êâ–Ñ„/fíîöМ½€è†æcE¢øÔ&f#¡¼¨JôA„©^Hà$ŽºB·¿ùŒsGòÛÐ¥³Go´Õ£ {ØHuqÒBÅ 'ÆsŽœcEoÂïí–D×ßã†Hr†µºZü¥<]mª®®€lÎèEïß~œí«–îZŠ’K9žxx”²šgJI޹dvüv …0˜t2à5¾=·owÍ®ÐyH0¾º öñz9p»^>±7ªÏÉM<š>°ö? Ì'/`å‡ÝrµGá©!5žg%ÁÉ4ìƒÒådù-èy„*Dÿxƒ#ÑüËŒô†YZD®Yl5àÛx8Åvˆ«óŒoU×âÙ-öü`ÙÉÖlÊ!q×:Z=ÀÒž¯L/Ïö§'‰~f<#"D§)õ#AnÒ`ñO=ûGéKd–¹ÿòÆÙ©T¶N´ÕØkp¡PÏr ºíC|²þ7çŽï B˜×Ôc˜{ý¼$ @àw''µb‚ɃòÂŽªHžXyðä’â¡ën{^üt`fûgÜ·¼*UÛ,š{‚ >޵Œï9ÚõÕóIÞSEþcÄÇRGV‡R‰:V©¶Ê}:”Ì¢?Š!Þjf<ÌXEh¡ÍòC¯wïôÜ$‡sc±d鄃AŒÌÖ ìÉÚ÷Þkì]é»NZÊ#÷R?þãÆÛ°˜%Ãí‡ÉrLôJXÍù›¹ ú2 Õr!mÞ²±@g2.»©¼Œ5 $ÑpÞ'Å|~H+i0¯ÍësF ´˜`jø—úvkÂ4@{ztÞiõêp—ü° qáyÔ¢ÁÛVëìßhŸ"ŒuÓ)_ÜÚõ¤ÀøMç %í’¬)ûvfRæ“y޵uêàþ^‹Ö¿ü/HPbÐ=ÆŒtadD…”û™`@?Æ'³® ˆPÇn&ã$»3!˜ƒc]§ÅIùÛ8ÔwW#¤­ò°`4ðBâhb­lgÏ:ëÀ"ßÌWô^RÏÉ»Ȳh[&olZ‡-´T¯ÒW¶çn®Ýkw$d½O°W¦·ß‚çþ™­Â©º²p­ÞzM„tªìö:"â4ñïˆ@càˆô6[](o¼®ZÄFòEÎSx‹òåf=|æháËŽì¤QÒïÅGðíÈ-Ê¥ 8ï-©ÅY®GÛçì2"ÚïF‹£Üá~1€X¦¸ŸµŸD‰‘‘{„´ #?” ß7¦í ³_pà®SiJl*8bRî­A@„a³m\K÷Ìa—0ø‚–»€Ò´bqŲÍ}¹î@œÍò„nÓÐÅPÞš3“€‚î, H Äü?ÿØâÎØmŠòƒFå"Ÿ€*³¿j7’¸‚F -SðŸéb¯>à ûŸ¸•[8ݳ8“þª«sܽ¸,T#àuB³/5¸]ñ¨²ÅÔÛ’ƒò ‡/kZÂŽj'(œ Ë,WäÄï>:ZÎð¢îú`·t) @{vz1S3êëÙUz;LI#ÂJþ?¹ÆKŠ/‡eî,½:2CàÀÀ'ÙYwW"±Çy5Лt¯0Ͼ”Ò‡zØ`ÝׇÙÓÐaÓà˨Ëfˆ×Ö~ÖñÍasšÁI€Á,…!¤ëRw L'8\Ÿ±Ù.õ‘\ :ûÈppG߯FH ]¯òSÌ›ƒ<‰£Ý‡²‡ªéýfÜõÁ±ß¤½aÃ½ç• <.NIâI¤€©RÀ3¬5­ M‘A¨@ÒêÔbr}öu_YÏî§7Œv‚%æÀáóÓö%Z<[±ñR¾áÎÍL5÷­VÀ)Æñ‹²Ð¾ vÃû0+7‹"™œD©B_ÿƒ|—ÊÞH–F. 'g8 ¢³õ^ULÑ †;ã£KlyÞÛÍ,‹¡:|¶–¦åB¶´%IoËL®”–Ú‹@¤¨Ðíìi/_«¼·'§'Ñ•EÙ¼0·ŒòÚ¶5©³R#™‚Ñ¢N>\°°ßù±Æ­ÕB±)ûº!㮕ã?—6Vè­3UŠÌ˜`è——ŽÈª¸+ìeƵ9n€ëBêÏ äë^$M²ÞrWg !l¼ôÅÍÙµàY*Cq…(/êÖºz91ù‘´´†`AÔ`ôpáœv››Ö¹öI†KL¢¿}Ÿõc„,ìtStÅ,n¿n«Õés¡NWTµRƒ4ðCf¾ùTÖ@xÊûúÍ^ºÙûH@6CÆ=`×»ë|.u” ¡eއp®C7Ð)KéÔ‘”8½»'Ú¨¡~ìf`äBnü“z êJ®c6E'‡Z|ì/V¸yóÞñ ìY‡‰—hˈ‡{–¨Ø2°·†µÒ±ÚF¹ê¨„=Ôt†«IZ¾f Gküj4t,H¶)’úz§é‹áÞZA9CŒª £W¶4¼ßÇõTðéÎæ³ _bT3èÉóŽRJ–—w{hcåÐñ¤ãNH .®‚/* '<ÉX!!RAÒÈ&tíò Èuç{ê2ÓþÙ ÛÐDŽýXB€ZþÅñ)mÉ9¤i1¬j„y©…,fì ›£~™7}Çɽt'Ä縨{óB=HQðSÄW:þ3i¾å-àì¥K†BŽÍ—ÿÌ¥5$ s'^z'ÝÈ1vj·w)n\›Ù1û³…\¥f}3‘ ™«ó’òˆ]+”kë“}ÖƒT€ç$rH¤[ 8Áý@ÙOì·ëþ q¿ÃÖ¤þ0êÕÛà€ÛŠÎóŠâý'A.¶â–1K÷ %V±Íwn‘ÃântI7r²š9þ¸Ù žìxrÅš,cä çåÃd+s˜Ÿ;V\]ÅͰy™í™ö~õç¨þðצ÷¬Ãæs³ùXÏ*t`×~øTYe@ôÇìõÃO4…¼RSÂô‘É=éÛð‚Îö‰«•Á×Ú Yï|ˆDßÉÄi"W%#&V'ØóÛÌ®\ K W~­9CŒÀ—&Þvh`eÂ?EêÛÞ¦/_Ý'ÅJ‹í'·O¹ÐJé3•/ßjºÏŒ!hÙŽ3XÕUoYŸí¦ Æcy"¨µÛûµNæäÇsñ`TÍ,ÑJh†MšÀㄱ*ŒÝ-"´Vÿ•ó±vÙvW¿=´ªÔ,ÕÍp… ÇÂðŠÙ¦5¨c!Û¸ ‰òêò!u¼ä•¡l,›<ÑvÙÊ^œˆ_6Püò"W_Á÷¿‡‘{ŽÏÞ¹àˆù•y ÙÙ‹¤[—h£;5ÿ}8©„æU;èDÖ³WpsÐ'[ÙbºOçÁ‰Z/~±‹[ÑEÛÜ·H/Ýé¼@A”ál óÂ9Ö Dû!ÎÔ4l åžy ÀÖõLB¾Ãuáô øVÚ"ÖcŽ ÷®‰ÁDß¡3ØOïmsŒñtŠ£(¼y¯UºCÿ Sýç¿oL®?ïØ!yvb‘ ÕúÏFóäMÒYSÓJ…zWXP8IFtƒàe<Ú52($°×bnxýÖ¤á!­ ¦24wVMó¬j®Ó³#0P¯|ço©ªrö0"t ÂÖ¹‰“BY8þ›  …S‡1 Xºí²ËÁÒ=À ºx´‡Œu¿?:¸y]_iHÃYŒ÷õ¹k‚ÃNÁEÇ«F¶ã¸ÜÏ×ÝdS¶Øm<Í ùìÌfòf¦MÝ´‹‹™´cÍšäjØÚ©R”gÖÉÏH—Üž³&‡I ÿ|ú˜Ih¿Ç¹èh㓟Ô>^‡Ÿx^ú Yšq´ PSºš¢1m'ïN"ÎJ ƒÕ±]‚¿g˨ùO˜_öÁÙ‚zkL— 5[­Ï:•%Zx:àðù¯|,’ƒL4Ÿ±ƒòiµë‘$XJ¤á}í|…}OrÔ'4!ÕàÂ]¬ŒWØdð¨—rµNÅÙæz«œóƼÏlhý¼ÁÖ0QÛÍi„m ƒÆß™÷õVàNX ¢ÆŒìl³­ ¢/Ÿù†[Üp“—8³¸ks¢t¾úouUš_@ ¾mùI>jýb~s©¤j8Ky-©@fgŒ`:cŽöߟÖ#ä.Žmñ\}Œ½¿9\’La…ž ÜϾŠü§«=l™Yʸ©cšûJªM+¯´Öpä´8fÅ—ùr,‰ÃÈÒ*“˜õcùÇ5Þ¬»ý "5=қř¸¢ÚxΧ[žy$‹¨Ó¾Øù¨íC¾X¢²«—¾} ‚ 0žâ‡ É?) eâhí'Ò§þ$Ñ ùJQ13[¸R— nKló°ÏÏSÂúÞ“í¸úÈÊs”ªS5E·«´ûÈççe’hÑË¿Ÿï=п»´«D§f Ó=»èØ@ÏÝãÅ·~m¶*ý [ O[±'üœ}øqêïЫŸë ¾by tتVEÌþ¶/¥1ïà+ ¬¥1fAÁ\Mü -¥.Kà‘R ³£ThÊ;©¤q§)]9µæCæß%™(|¿Ì%BBÓ¨æa§‹'¢éRç@… ×.ÉÂt°Ó‘|3¿ëOÚæ¨‰3?;æÌ'µ@g­\ÑU§7kàîh|3è¸0ßPѳVj8Òí]ÄÏAj§© !`왿JùòèŠÎ€£ìê7ôpêË脦³šVJ¾­~tÞécªêƒ]ä»´Œ<8ÝK\¸­›á¿@…®Ÿš–láq$`ñŠ žšç£æK¿cûû\$€áb¿4ƒ’¾µ‡^ôQeY¤ ¡ýR,æZMuv´Ü¸±s¾¤ºiF /˜òhO.BX­ñ/zœ]á^«°Áä6˜oÖ«“9 öQ ‚Ê€•Ùæ¡m¤Î³*m$3àÍ\ê·c…GR2B<âØ)Â/piE¬È6vY5¢psø\<É?lÉên átñõH–0û] —º{$ø©Ç‰ÙÀÏ,¾é*Ý8àÃ…f÷`Û:eft£ÊUa]mßx‰Vc$ƒµB#Gìex›_ïkùË;ä(îUX%»g¦Hd~™Uùig˜LjuŸîDNƒOH7\Á´ÏŸqd7ò̤¶B$/›(^IwY–1ã{d¦5Nú2ð…#ÊØ…ˆ²P6(ª÷­ÏS@…IæsÒþ¬äâvàÕèÓ‹6Ÿb@·tø ü..0¾ö»W(ÓëòJN·%f°³Û…GfĘÀ¬åÎä%ä!¸±Ä÷ vó¾ìÖçµB§"dÅ»Ìkë-"’Œz¼f¸ü*ãD¢‚ÁR–G3¸žÁyöŒ³ÓèÏRª„þ?¬û`Úb¹¬¼ê–3ô–l ~²Êup¿¿ˆ|suÌŠ"‹oªqŸÓXfœûs´(òXõbU¯Öxäý§âµ§¡ãyO^œß<Ó€?‚Œ¯ htÛK\}¦j¶- ºÕU$2ÇžüY¦T§)Wt”§f1 é´&sñKå£ñœ9]FZ‹– ‰#É(3ÌàPØä(p3à„§èÌ æÖ yåOn×ÿI¨ÃÑf¬SãY+˜Ñ«¬ƒèXG'bÔ‡ÎÊŽ‰Â¤Ûç«Pz’‘WÙMø&þ$Í™6r_ëÁ††Ýôþ–¡ p¨é{~H›ÝnúLøþþK7jØ?]¾ÂëGŦófºL¯cºÝúÙÅ”8®öq¹‘²[“NzvÁeãF!È9«’é͘›êÑþ°e”¼@—·Õ Ù½p7ŽÕž§—ÏbÊÚê”[…!ºIúÌ"@› dxqŒºkeˆ*v>êˆg8œ!k`‰ú¥¢ºÑ°£e_•êtŠUyÍÚ¡;ÿ­D¦EÖåÀÆkÄÑMÿ_Š2œ4.üÒ%›ÚÞ³ÿàÓ*‹%¤qYÉ\æb~©j!T¡3ú28纑wÇý#\›á3Ýäã A/ .nÁ¼—N ¹· -@Ïç)sñr’’òZȸ¨í&¦âÛŽ8” ÌdlxGb×€:ýCÝIb×G¢á)YâÍGeÑ ½‘Ta—uâñ#>F_!yüòÆa!’"=¬4¤T1ÎQƒT“§ êÖ&“¡¡Ðky…[ÇùkSjPƒ2Sj·úÎt0p5¦û[ÞxŸ"S«µ‰Šû÷ $Ú&æP=«Æ€2êïÍCªU‡¤ÉÂóšQÝ1n£¦¿éô(žÕ±ý3÷þÌòJ1…§b;Š× Åð•µ]HEûß‹{yW"tßnbž'x!tÞáªJæ6<-Z vMµcd/â³ö¸äìã Íe Ò¯]!n½o™Ö!5?°ÌAÇg½¢½·²ÒÞÄNÒ€ÙI)dwšºx;xF{¯R?ˆasƒWiê4'ÁKµø/KykþÏŠŠ×Vx$~šäG9Áöß–ƒrz„ Û€ !ŠiéæýJÑôPò>ÂëêU¾'½~êTVIŠÍXgͱórQ è•rÜÆOlëöŒ*7 Ka"(Ïn¢Û MU¨#:^˲²“Û£œy}ÛÁ¾®yŸ–™Á ׯ”½ã'܉Él¯ûUL&ÓDZ¥Þ¡ÝÈb>£òó¶ñæxiPéù*úî|ÑÑ7–1¦TЙöº±³d4ÖÑŒ„­5žÚó¸F¼›p¡‹9B²„JAÌ6Óo@…àʦ F‰õ/›³¹è]òú£Ù ý3ÕS©ºXàž_o£#íxs!1te²ï½W\݇`þùŸ«½cÈ9ÞâbÖÆqßjBÐw¼øNn~ž)µâHÃr"C‰ߢ¿]÷ “xiʰŽVŽ6_ÿ‡ÄðGÅ„iˆ:š”–¸†óùÓ3Ÿ£²Å0ÜÊXo ëŽ;Ó(îU^Ûxb;ßi0Äc÷ ^±²ÌBX iëÏÆODþšœ©ƒ'(œ~’k w¨×&y ÄÛ…¶ü÷Ó¿ŠUQ+"jrºr{{PªÇÏÀªÿ€¼–Ä‘ÖÔ6`<7Êr£ïsÝfŸ ‰@ȸֶ¨˜¼Ä.a™¡kl¥‰S@äP™ëÙžÛÿV;˜ÞHÙ6†§›b¿{…F¹æá98ü¹.™˜¬jRT¬«ÝíïœY¬ ü®qsGàØ^AjlbA³·°D¬I¥Å„A)¨“‘gx¤‹TôXز-Q Ö¼M’³ÝUãÕú¹x~gåí¼ ;ÿNE8b:¢é1ð×¹7€¡–Îà8’ök#³½ Ù¼d/ŸV+mûçxFubªqæ‘£‚/€t åÉÀ½îÓØº~j˜¾‡}$^<¥{;Î$†’`_/=faþ›-vM댢8$œŒ×eêW‚¸Ý܈¨©²=›¯t„®6ü[?y)r‘Txec}÷tÞY;þµl¦:2ƒn–Ô~}©tâ$Cç”uï„H&–Ó:ÐS†*S*úĦ‡"B„ã˜+ÉØB¾ð5˜~«hi0‹Dæsá]„µûcÍ´Ä^/yÞWü>JÎŒÁ"Œ`²tpDÄ=Ï Ïöt †“íIA ~Àx@Ö2dóx˜ u~ÑÎ<\`±¹‰Z>s³)]ªA1n„òôP %Ãÿ›Ü ölÅéßF´5Ï`‰\ô$8뜗}5ú«~âO%&j¸×ÕO¯•ÅæƒÔp><.‰éh4qu6½rÃH÷WQ¡ÞiïyÅTGKÏ'Ütn‘’‰ Œ«Vl|“ô ·I)c¢(oêðB!°\Þ&ÖSTÇ—IèµÑø«Eº‹ÆÏÍ¿ÖÆCŒHó7y–rjðA5÷s‚NïmC­¶vÄ¡ªø\ÆŽ¤ÒýÉFÒ³÷ÕdŠS"$“y8«©zbèx}Èvø†ôåß)j¶gª¶p!Oƒ@†Cæ(øÖn´ë¢Ü‹öO£?F‰r­Ì—å· »q{ÊiýB“U¨4 ÿƒƒ0ðd \¶c¹ I«Yî ³©í}”:îÜ¢(Éž)h›ÐyÔ«¡_…*“ qG­Fiûy;­Zna½I6yÆ´wS»[ÅÉz˜•f?nÅŽ•I1ª¢Ì')ׄ_ö¼êH:«Zý§g$i¨*uŠf“%I,ÿõÄt=…¬°íë«E+m·òc@¼ÿ¬9s ui±¼x©ðêè<ꂦ€Uèõï·Ab­êðUøØ0imÚôÉ`‘¶ò‰Ã¯²–ÆçXôÝoo:šeõ—C=¶ô”ž­BåyÁÛgp6& ÎêÆåL †¢™9Oÿ¦ 7_‰‰Äׯu²!ô ÀÌø$¥¨©ÓÍúŽ}´µ+`ÌDÚwÐx{NœGLÕSÚ›Õ¹â@Qœ(öÚf¨í>zj«öÎ4ŠK9pt6„5Œ­vêeÁ¤æ¦‹/;†×Íoɤþ*>àðB;[ßDëŠS’p’ÏÊÖ^áè]_àE(ãÝË¡ïa÷ ü0Gñ™a0#ã–(A55–ܧ9ÜÏÙÜò ®”­÷½8dJû‰‰\·v³/´ÃG—ÆJAûb>% ÅHnZéD›h>p°ETʲå8¼­‘`bzå¢ü8´ù? 6ü>ŽME‰,ç~¤Ü¶ó:yZöî‚WÕq‡}ÝgÈÃ@ãÄVb³lµv~úOØ× ʞȗm³'ÀÇî…å­ñí&û¢^-RòÙx5ám­Þ;9§o70(²ŽÂÇ·à¼ýú0[½BŽH™ÓX MN 1ˆóâš­$¬UÞá†&Â:ÓÁðâ†äj9 UD¹àÐçý éRë6ä¬bh%lPôEyºB?- “7­¸Óõ‘IÜV+¸eYµ32U×Ó§#¨ç¥£é ˆ©7Y°e1y¾ûÇsnÂGYBO‰ºy¶ÏÐÀ»O§۫áŠiØBo 3¢Òm'Æýß9‰›4p~ÉOkÕh,DùôÐ?Þ¬ÛIÜÚâûÞ%m§ù˜«/©§C˜ùãñ§*KÞ;´¶‰¶_ÈÆ‰ç2ãcûÒ¬ìàt¯Ä†$[§Ô•68#õ¢;ži§}¿øQI¬zIƒGüª Û?\C’Óÿ3ü{§üæµö¡”J µ9Bmùk/›TÒÃx°Ûò„ŸÑ½®|)%W¢džé5 @éT0޻ѡ„ %ïþ+m°®–LT´Õ¼±C{ò$¾ÅÓçKÖê¯NÆè•lr­}zÚ '@9Ò½4 £nÈ?ü¹ÜlL_ @À]ÀÃÖr—ÞΊTeès$mÄš±HšÑ-Û/4uwœzÀt0ŸÓÂ6†°zØD†ââ¹,¿ÏïeóˆYWi»§ÇÑÏpóŽÂ¾Öœ€Û¢æ;ûéºÖ|'qð„<„4±„[3k‹ÅØ Ï]í¤‰=4qõŒ38{~©E\m‹XöW?ÏåýUq,ˆ tŒ šÔ]Oh·µ1ò+yNÐdå²³öD’w݇>ÊBŽÅm{bÛß²6Ž„·]G‡®lµnÕbž#SV5­«#žTÚâj4Êûõÿ Ü"ZtýÑŽ~½uòãxœCÕ[u@8Ê‘š¾]x«džBõf…Ù±¯1¨*ÚHg¦´Cªž|Fu*½Ô`ÇÄPtW$zÃíZe*Nð”–pwï!|ü@â–Œ˜6Ÿ ­á³[X¨!€ü[â oÖljEk·‹÷^ZºäŸÓdf¶ÈÞŸôH Tø?ÝÒ F HgW5—qS,ÊüáÞʨT`¨´¦®(z¼É« Äc;X>¨Ø„´Úª¹æ’¬5ã÷-æÀxƒœØ\KMu¼¹<;ä-Ͳ1M·Úãa¸ƒ,˜ 9Œ9h4úšFó@Þgbô¨n>¸Ê¡vš ¶î÷ï€jF Á>5Af°ó?­æ Ä{¥-ÊOel ¼ét8ȸ/¼_e“AèBÐcQtÂygz¶mÌÑ“®X@Õ£K(a:€¶»—¼Ø?¾—#Lûއ 'ô9ÉÖô1¿nÆ÷M‘ƒ7z²]nÕŒÁx1–„«¸ÌHïdj§zǘhpªÆm31Üè [h!ðAL9W ê¾>çŒ,öâ…Ë6u]~د_Å|ÂHKí ¿×¹ålßœðØl^\dv!š=/øJ#I9ÇáÅߩ؎<6M¼š‰“;¼n¡åå4’iŠ$|샨 ¯M"#{ Åô™‹ÞQÇ‚ï«ÜkÜ=û`æõÎJ9ÌÏ"Æ\J!7YåAÚø¦KA¹-xårÿ­ múk÷·üá*¼´*Õ}›±{WÜ+Ÿ^®V_È…+ /´å~ëº}U‘Íô×?û\f9Ê’ùç!ÞÃ[ãüdéûƒ V¼óÖÀv'Ž¢˜‘¨|ÙvŒì±‚ý8Òa2î«Ö yŽºœ&ÃXçÄçE¬œÙúòÏY/IïÆ_;­fP¾Ÿ4ŠæEIV‹ 4^‡’i¥=Â××µLüË"Û×Za#mÚ¶¹ì%šArªÛz' ߦ/ÞxÈ]¹SeX e£Ù+*¬óùûžLÛ­ ZÒ±—ÏÄ(LrÑüã —Aršqí„ Äj´Ú=^ /p¬çCá•a²ƒ <À[–tlc${Û{…±¢þº‰ÐþïÇùk¬®è·¤7ÏHïC8þpì¢C¬¡ù}óm5–†ËPpˆþ# |ë°ëü_¸´Ñ.¶m5ÐðH AT 5O'æ)»yÅnrmмGt}¤ºÊþ§ÐBЃUÐA×#«²!NÃàâ_f†5Ø w)Q3!׉ÞÐ JnûÆ Vþä)Dúüm —üFÙ…E°üá%½‹TCž5Eë ci'×/ÒT²ø¥ª¹¼—ø9˜Ù©ËòžgDhKb1ah7W°á…›(o›?œŽùßòSå¢;(‹¥i|læwÒ¤:åZdʆ­©‘¯Y¹g£1ÏÛ³ÛY°ÖÌ™ÔS1´ Œm(Ô¢íŒ*vò[£%vÒí§-ÃÝ×÷ed^Bâ“͉º1ƒ5GÎj¶R…?¶'EÑ|„û«×ðѰˆ¥Nãß+Å•ÃVcéH pŸ$ê7Ž«C¶1ŒAýß;qˆÀ©v_ i„Ýó¬ÌÐq‚xÿà×íÈÉb*(2<j¸‰‹N‘YÕö¯yc/­¹üÜ6&ñl\°Õ|½“Ud+ºýºb[f:]¬jL¨Û¨¸ÉULq#PЈŒ Œº­01è.e¯Ks”[÷…¹<ã ¤ÇNë€-çå›ûõ¯hOÔvOÏUµÎ<^„å ÜþY°4ú„ýþ![sU‡Àîô[¨®@KãÛÿGÕªy\‘Zûƒøb 3’f(ðñÀ²x'°¸ «êMuZVÍe!h`S38E]+\Œ<}×Ai:¯@CA¦5±6ib·±ÜŒ¦´ƒW‰¬ýf eÒ…!<êï+X*’ù$‹#VÛmO~Ô¹v(RL÷Jµ@P?XÞCz €E„hÇÍʧZô9)¨Dú¯Ú£FsÔ=ÔÖ,,¢’)r9û”PŽIc$ABПªÅàáö ¼Ñ‘ñ — G™³óÅ[¤Xˆà혦5c—UéißÅwÇFu7ÿ‚ŒÌ¼Ÿ¢{œRþZf÷£”!a¥XœS9¾ú‡ªÕÂx±#z%_Áå(ì³úE–€M× ä©‚NßÿMÿ(’Þw I6;¶èF€jE]$…aÿQhö,YClÝ{¡Ž=˜1[,ªõŠ®bœVz€ç阹j¥e{•hN˜÷vTÖÊËCåJ]ˆ®Ú6ÌBJ]o _j ¿ª.¤ßI‹™o³YvXžU¡mŒuP>Žds'±ïlÄò tu}_çæóÁörÙáDXv0Î}°Û2Ÿ×l¿üqKíÞÚ±€,‡[­ÁÏÈ öÍYÜÙ^庠lÓ³^áB¬ xàèÞ_ÜÇ][]R*éwhѲHÅw­Q;ÝÉF(,æg¢ o±!‘Q5Žò…a(3|Ö¥÷±m­eö%=9¾Ô¢V ?Ó;="ü Äð#Hº„ß̵hÉÆ(Ê”LçœÔb® Išs%Ófφ¶óù]›©'5Ñòí¤có# ì*F¯e ytÃÍbmy‚_éVÓ´åã±\¾$–ù‘øÈœ9¿ƒËs±' .z€gÿŒ.ËeW« îçÌÏ…¼ÌÔb¹ÌíðºÃztålÒÒ§6Ý…pÂÝr&œ¾*3+^q£Ø*½æ‹t2M•áıÈٱΩþ±®t**; ÇB^¶¯K*¶ÛwdNÏïÔÑ;Ùÿ©÷$Qœ©£œï2–<¸¡7mpÅ´…)elÇôÒ¯Væ°n©¥¶”®Öí ­UÝib’¬jbJÞ¢ål F+«ƒ¾XXï;Ìú ™o–þõ1”Ê‚”¶*ìÈ÷gÔÅ¿³‰c"=E|1ëG~ ¸šþ:.’ù±Á;ü—T}(ì%gŒóg<;ùÕ»2l|Rû+$°M—5˜,”ä%\ Sìxš)ê^¶ 4Œn‰Z#[¯'7q–&ír´±–·ô“ŸáÏTºÁ#âÓIæ"1ŽRo³^šmN';MIDëO­œ`ºwm¡ÛêAôüdÄ9ú^¨8¼úØ–›"‰®ÖðÉß[îFb ‚ñ¦ìæI¸ÕÜ^Á|¡gºÛ Ò‘Š¡”w’ãJQ1ºÝãˆkÊ=æŒ æ7rmS¢2Ͷí®þÊÙOì³å –î%ÔÉØ$ƒ’pÆfwC±Šý°Ÿ‡>¥¹Qé·–ó2ëÔ(ê”%¾K¢å°ëÚa*¥nKƒèUa±sMÉî”Ú±¾Weª\ÄŸÌ=²ê—ãÒ)ÙÖpCC„‚פ$Û’¥L”üÝŽ©À* š$³“Œ\ÿ‚s$dü®aT(TfKƒB^8ÜÀhLul‚©}ñ¤ˆ¹ÓREL’ê>°®æÚžØw¼E~o@ê©ØVÊÍ0Æ´„{¥âíä8ÿÐõ€0áÀþ¾py³l%õ›èZfÊb«­5¸<ê=­yôH4°ð ° "«ÀrçK÷=W&_‘[‹&Öé±dÔyµÌ•OŒg´+´<2ãH3¨KîãÛ€ì5uÍÈ×Ë2oóöÎÁ^`Å6ïì¼vHàp†ØÒÉT0è>Ám::a³¬f[´ýúÑ‘“Šöýä|`ÚÄyeÒ´ µ1÷þÊ Ø ?âÒZާJi^ܘGfÔhu¡9<ÌFeŒï(#éÕ‡!º—@w†ÃyåÛiÈÌ–%OWž*¦d9=äí´Gß³Z,HY%h"‰¬‡sœ¯—à™AE×1Äêdoç¡Cnê´O”&ÿ3¡®·J6q•ïǯ×5ï2³!ƒ¼/…Åîxäxvq: þ»¯îüÇg]KÍv´õÐm¾ñ,ÒˆŒ7Æõéh™E£üõÑpÕù}=Ar“OëÏáéx–Î;Ê7•ଢH¬¦uÀô“!Ä«¢Uˆ‰„GÝo¦éáæýäô ˆ¥YºP‰¥¾ë—¤ê1Ó½@Ê…y¨ Þˆ ñC$¨)ã*„=J^ UèÀ>ò’Gns UnO·að½dp8·‡Œ÷ïRBXÅ {zåAD5·4¥Ú¼tÀ›"É\ÍPòìfy:5^Èà+áÜ(heá4ïC8̳ 9œ»·¹ã0d›0”@nûñÂÉíxGË«ÁÛ½/æò•GåÊ/rP^ÕÚÖíÿBj h9Öuι:%Œ ß&’‚g}‡óë LsäMY~²q>áøÕo¤ľ²IoVÐØ†ã9)´vxÅÿ¢.5¯ó9À¤¶ûæ¶å˜b‚`Cl<ÝË¢¬ôpßjöÚ8¿ãeÃ0  >?§BlcŠ”fÓ9t~æûÅÙ?|>’ݹ4±ÂÆ`,åžHŒ}(Vh9Äß*ö$Q-š#;d©^ZD.ò7ß½>ÕÀhgL¹‰_øâþßâm¼~`niJe_£älìË3ûŠ$÷f°sy‹Ë-˜ýv a1·Ex¨DW¤ÆŸ`…Mú?“J'‚4IË+u…R¨{áîjÕUùŸº[h.ô9Òë¥ÐÄhß© …<SÊùt†Å`LR™¨:F„yÓP½ÕV¨ãc\|í[½0𣭼Š_¹èó†è3\ 0Î%˜«ƒg"œ#aþ>¤g% >§zž&Õä$–çaœ`¬¦4­jN]à5<þðäþ“ˆ~­ZšÎúÙz䌠Æ %‰fŸÝµ£ïýûïnö(Þ¥½Ú)¨#M­­lÕN÷j ا(Ôar´^>4ShG½Kµ˜éãO@ ^ìós#½ÈeÙÌSß7B”eùdv¬¨Ç2]ÍÝÿ?×ã{Üm¶ék¦b_#>&œ“»2rxÔÈ¥‹„}¶TÜœ¼w{|W©\‡)ãÁ‡—dìeF#oÉ@HØ^c›+lÝ?,²¯ü©(5.æÌä©[Z¢]‡w1VÆfDuG_*F几òÔªüQ©ð‘£ûé(àõ»˜¡˜8CéR¶ƒ®]¸ÕÔÄE3ElÀ½“z$èÝìâL¤¢”iˆÄeâàV…áªý„~í[7ιèÂÆ /Ó—½aI:`^ö °{س»{zSÅ‹[–ºhHT4¸¸ôÔãÖ™Ïzd%7Ǭ2°ò%I£×Î ¥DÙ—ÿû>\³‹bĹóÕº¹õÛíf£ùãž]{KÍó<æWvç¨6gÞ¤r—Ì{Îöü˜ë©rf뉛Œ—ØçÙ¨qkRÝê7M÷`Øqò8Ö%k’mÕâ÷€yš‹k5X?ÉÑ] †_Œ{øÒ,ÇÕ#!]j?í¢ß2ŒÆµ+\´¡j"¦<…mØC#ãMŽAûÔàOe8ÆFß Ð„pA±x‚ÁMÏéÄár±-O@mÏ=‹Ñ®˜È>‘êrîGŒáÄ‹uM6ÙTÔ ©0’¨Ucž I9¶‘‰œÝá”e—•ücVýì gõ;u þ\³ÖÊÙßͬð¨ˆOk:›]yÁºÉ×pTŸèA=È~s|t!ü?/1„ ¾a »:.å]Ñ3ìæCöÓïi˜Bb;¥_o¿¼ÎÄõ*ƒ §Õt{Q|Aª Nñ£á¾M4ô-]y›'… ­0Ó|Êܺ¢ºà¯µ*ÕtÝ;7Ê÷‰»f;ÛÅÖî$QÊfáÑñdò«ßÇn}Î;^Ù™òóf´3r¬å˜æV9œ½ýkr]zVȦR NûË7éàš>È-…ýÔ)§Ô y‘(µyÉØšxÅØÙÃf8‚dhËf<æ.º{˜oŒü/d¨î2œ_ð³ó)£gƒÿj‰1…ë°Ìˆ&7WßI_ÿ4V@˜D¼8TBšY§UeþùE½7{Zœ¦1’)!³^-3 À òÞ•%ê걄â× ÝjçÊßêšC?ù´^>i6-<`½!.=à0–ÇQðKxv›,;¿LáÈ b92/¿÷˜'gçBÎófuÇ‘å ^$çdôèàø"™ -š·tÒA S7°Ü¤;Ö•ü|À2h<ñÌ8<³INLÔU£ÄH3b‹]¦?îiªþù{ÇßËp† ¶³{hh‰ù{åÛšÿ’š³¦òò•¯ô à •%¹išXÞÀWß¾¿þ‘ü›ŽBþâõJ”·eDDŠ&­õ£xe!>ÓÁ§Þ›Ì³žlO2=‰Áð÷ :ë'ý@­:zçét/©€¾ äö2Ei½ æ.l”ÒÖêÜQ™ë•òàDö;Ú¬· Œü r•÷•õ—²€Àké‚Ä™XŽot2z/—ÿwÆ‚{ `6J‚é»Õ¶&ˆø!âvÄßbYѰ¬ Ñî-Pº ”±§öãA߯9,Ñ /ß<–k™˜~ØøHæˆ6ªtB‡‰¿®’¥h¹Ze̯:¬‹‹^R>B§ ì/õã¡.9ê=Š;;ÉùÙ‚(+mÑÜ ï§d5Ö‚;ýo‚œš}a^à‚D,]ã÷¾@s•IdcÃí»Z("ů²ç3¦(Àv¾ RgúiJ›(Å4è¾á¡ósØ0ó®È3ôðÃ&]ø´Ð$6X®ÖÔcJIÞÜ$È+‰ÿáiq*S šV1ñÿ+XAׇ}Ûðòä§Rc+¶¼¦$ ÷*¥¯k8‹ª¢ÿ`¸èÿ£L«à¬¨jh®(,yÉ#¨|gôì°}?ÝælDh3ì¼mPÄ0H‘¨íL.€‘;6pÊ”Æ`=ã«;J~šïˆ"¸ã¦HChÀÌž{Ü´ŠŸïDݰ TT#0»øNöºÚ—OFõÿãÑdÃPšô²6‡qý7¾†|ã¶FRééçÏ>¤Ê×ãÏhÐãdGñNÔ½Yµþ5dz/™l-£ÛÏ6æ[>RMð«¦é %äNº´®üM¬,ÞFç-3R—ŸW)‰ñÛûÁU¸–STQL,NÏp ´¶®SˆÜœ5­*Ô²Šì"ÁF‰«‹¡Ð/úO!²çd_JwÅ9îÿV{ÇÕ“w#ŸfºҌʹ’/Jà“3=ëœ_9³Mµ~ª ä:ØêÚû€,(=Oø$Ç@6k÷cD}åË¥fÒÒ;ø¼Æ‰ç­0,86'Í^ݨ:K„Š@·ÿ Ë9ƒÓòp'|ÍY(m°VÇh¼™¨œþâ'Iõ‘ x—åÊ¿8:dÓö›PÁ:ÖXF‹Æżêš/Ø¿_6’ðfã‡À»RÔ Úô˜½PÉËïÿ9Ÿ\Súû $€ìºjžñ›Ñò8­YÁ•®œ³î[Â\©! Ždû1që•WŸÒbåå—Deì$2Çÿ¦.BFÒ}³"´ (N=±ñ#ä©i:±8KÅä,š¸p½“Úž]œ„rn<ó§cž»ÂÜç °éœË*”»šµ‡5’èç–ì ‰Z}œÍÎÙÛf”§:°Ó9쟀>zÄ·éõú-«•9½ha ¨ªÔo«í¾í}aâÉ©A,yP$è„¡-q¨Ì­'Ÿ]ƒ->EèW5eÎwuùa‹H\j™€ÿr? €ƒñ\òLáu4#t+(T/eeqP1v½?Ï<ãͺrõº€º.Gg‰1âC¿)¤øDÆÌ~\¿KÀtª(å ‹Ðx›¢;n¸þÖüG$›¥©..ã+Ç)¢Oâ€o‰Þ~¸Ë´ouB[X%&­ýã6ºÆ¿Å÷‚o1í;¤é y¾Öò‘¾-Îið4D°›Ýɘ®Ä7»€ÃrM;3Î…Æ• áQšPˆÙµ5( J55=•pFL ˆ>&°$m]Õ40ñ–öF5ÇVQ¢Më]‰CÙгqz_V˜ØªˆPmpâÇ_Ì3ÌZEóÅH¡©$èéÙIĤ\Mt Æ…ÖR¶›g*ÙÅj ô4b U–1áÎfÒ1LR\fú×ÃÓ½S(ªfhÄzós$§±l¤E‡aG.§ß¾Ün³·ôØ7B¼iATØË­dQj‚•bu,>I–BÖæ_5„ôfu`î¶öp&ÿÉL+Lï§/ä®ÃÈ«{3¼  f¨=.5æ3f±~dt\¶ðƒ ±Àª2’=‚žßä\Å Äq¨ù#(óx•¯|o%ëÚþ-ÿt2ú})Ñe鿤Wʼn3ý©$Îûð½‰4½Ç©´m«ò^Ìâ&µ‡cR©³ÇU Ø’Si„ôû‰‡šòHãæùiH+ŸµÅZDeWÇËSÆûÄÒŽÊÝ÷šIR¸5r$ÖŠüžiòßÒ=ó‡jŸmEè¾ l2ç&ðmУ]Ûq®jîÕ–åHè BXóÖÓ™ÙS-W÷ ‹Ó!` _B#¶¢ Œo1Žçþ#œ“‘,Ê2z5›x“’•”À$AñPÈkdXÊ Õ1Ì×Wf«SºØ” )\ô<¦B€14‚+³ši…«hðÜ;L"6¦IšO+-¬0œUÜY^N£xgOXMøØõ?éc!®Ã²/]Ðç£'¢pí‘Iè¥"J3eF ‘Ð19Aq‚ûºÏ —ÕŒo®Æ÷ÅKÂD#~”t„éç#ÐFA¡¢éï·cÝ ue>uLÚ'=Z̦ñÇ÷Ô®J™C­lfÇr’fÌ£¹¨j',çc«Ý¤ÕÁ^¾%e~¿aìô'-‚8]œ$š&Ç{53¡5¾Û¯ìRH©¿ ~Áh¿Pk€›q¬z6ÁÝä6éCG ?yÖ¨õ´žS×ר‹bTqgë6 <_mô~Wê?aMú6ÀoL¬Ù€$ÛçÎt#ÿ‡"&2£>î¡}<0Û“ÏÊe¥2œâŸ}TIÍ·ŸÕz÷dsíÀ•¾[̪@;«zç!‚PB˧p Õ"F¶ìËTU E–Ož~HH oGÄ~+6ÖxØ­1}˜ZB) ”&€12_ÔµFø(عdÅÊ(¶‚ášÃ–α˜3‘Ø›‘Ð2iÝ…ŽÔ&ÛRäÛð%¼ýÒ‡bÏo2«“ä ͹Q\ ŽY >sBPê1o*)`rê";ì´ZË”b×µ°~…jT+ÌKAæí@‡€¹ØiMdÚì6?›ËEa;à sª7è+{XÀeæ%Réùòö OV§Uy)q+ÝŠî oϞì„Ûµ/ BLET—Ítè_[†¦Uø—øw>æp€¶DüóÇ ÿ›ùšWRE¬,Šî½ñ[ÖåäŠ ò“;C$A‘.]!|vÝõ¸#c•Ãi/xD"­ÃqZ¤Ð–ý¤ôÙåÄÄV@œ i¡C7FèôÚ¸šB€¼íF«C, ªÕJ×mx¾¬ÙЩbú¦$½«X „qÜ!cæX· ÈÙíëÓg™ª­ ÂZRG-8ì/j© á˜ç;…7³ç*a[ýVDù£öÉ VuI€íAx3ùI,cuÇó"ƒå¤͹XX‚ÊGž¨7¢¶OÐp\êÓ‡¿f®u:¶¡¿’ǯÜÊ7nnKì¯Ï¡Es›7xY&¯,4—k+úÍU†&xŽo¨°® ÚmÄKxË‹Ìà úˆâ8-nÞÚБ8bÒÚnN ó¸)·èìSEžŸ}Ñ ]š a#‘ÔÌ:*á¼F ¦‚ ¾Í4–êÑw ä/þU‡½LuóÔ5Nú)<Τè7…ˆDC’¨%kÇŽ#ööé·RÞÛW!$Ä´¯AY¾Ygáu€ƒRi\¦ù¡5P™9ÑôyVB(WÏ]/·^õÅŽÊwmóóH‹î°%Dô,:1°;›f 61Õ d(wzø/U’£’¼S‡—Ÿß…[5×3™«l”¥pÀ•åÑüTš0•|9¯¥FGÙhYZHä¿m®³)­8>Òj¿:’jÞ(âà6¡–½¶)È'ý3Î{…sæ§Ûgn‘­è#^Õ<*ú Ãì¤ß*ƒÚ"Ú4Oî£I –(·Jty€¦¨Uy{)8".T•éT¨ ¯ª;x yW[ä†íÞžõ–6ê/Ýþ; r 8 +ÓhÖ8zËÚµZÚ´dÞ3©!z‰Š­âå/ÏÙ˜Ød®º'@uRø@dìðKVIÆ0!óãÆ ÈSï—åtC—Ós‰3ò¹' Bééïé‚F[ÉGòLÚ4Ç-Lø)®!tdL˜ˆºþvƒë wM%4­ÕQc2ƒ{Á3f†·VÌøBj$%y“T [‰q¾ÊÇ´äû»Ýk4™K¼ÏŸ×ÂXqÇyÈÊÅÃázÅfvR”1Íü^ø\4õoÖ¾ÈǸ6îò9gVgÍÏŠ´`­¥ëk’A Ëã¶â!…€Ò)9õ˜*¹Ëd¬aæ­ò‡;‹Idß7þA>K ´Î]PvèÉÛiSÊ?âƒ+7¸)éä›j@RºYeo™*Øs-ïðÕ:ïi²}‡™$µ–H$zÝLOeÎ{ tZZÈ¢æ9ä‡_2õ.ra‘­ì-Gæ“ ñ‘—XnI¿&±ÏãB›msòŠÍâÒÝqÄaéòÅÅð òO®èC4ÕX<~|ü…¿göw‡¥)IÓ“J·§Ýøôµ@dmþ"×ÁøU2èŽeL|T:¯5àI}‹‚ÅÉiz{Nøº!C-ág\£´+hƒÛ³~$º¯}{ô°Œ“óï-ÎT­² õüÔuÙýß×ëê 8BŒéI5 uÇäóøj½€Kwƒ›!d[­]Ñ›•Ñbš3Ðçâ/ûq‰ÓÖ t÷¼ ¥¬`‡øÜš¯k…ùJ:vš_®—Kzb±t¶%f4«p®T, úïªËQ²½ÛŘXn ]ûQÇcCD)\$–†|)Xm¡þœúwöқ]z’nï·2¢{êˇG}b›Žª`/p£bRäÅŠIîòÖ«˜JÛ'/ºR„Ùýÿä*cu[ÅÈG£>’(AÉ.Æ·qÿ(m¶Ëáÿ¥ÝÕ9ù³ù›rK0sQh¢‚d¤ }ÍqO.¥Ýk&¡^Gîáÿë)}ÿŤWößA\?ÞZüÑ,|½3g BJ¥gð®]Ó#›|íWÇ­ {Š”•‚æt¸S¢Xh;ÏD·‘Ÿ¯ ¬,c)Ã\Xi…ÚÏ´,…=àš<… :£*#±GìRÅõ¤·  딚ãùÂ/2Bß·Æ#òˆ]k˜âF±D<ÏŠûC™G@©Š*¨µó|öŽÙq¯ñhôâ†dA´J¯£¸ŸJÒ>b¶ –a¸Àú…búÒŸÜg4þ0›Ð>PŒVcUˆg7VísCàJFBM@„ü'¾³¿#XƒG,ÎÎHìÆfü {ú4ލÏÿ}­B!+¡Ïíj•F³]ŠñXÁvš’eB{¢Üö’ÞŠøE~Z zT‹÷¢‰,3ÅžgÀá»ÎÜŠ¬ZAª üT˜Wl·Ý”(Î| 5V‚@ÍZÐ…—Gµ±Àá!Á6¹Å­0]„~ì 0´}Þ&)½—"g¡¯{1éôUÑ·Új’q J~å«h=x%Ô:ØÒ,ÏàP:ÉúÌëXÜc!Ati‰[ûÿ›Ç µváÅ©ìiaPYÜ`B¢…Üñ æe…0”ÊòÁ{8Ô¹WB+TκŽ5aV 3ðÃ6ZBÌì–6FÁÝ×´GX¾ÀjšXCëã+útt©jïÍ|gËÓ€[6HëÓzì9´kÚÊ¡1ºãêΞ«?™IµŽwÊNàÆßÏUEå&Õœ ƒzªt]=6e|Îô£[_y¨芰èX¢ã ëïçÕXY4Ü sÂTþÓÈŒçŸóÚ5ÈÒ1ž&*’ÿÔ—˜ÊE °zNëLY-âÈ#Ÿ¹gª½ÜÉÿ“¿pWÛ}¶3GkD<š lhunÀÚÜØ¨¢ä9Ê_ñe Ÿš•=×ÿHÌx=„\‹†³¥Ã69ƶڣ÷ÐÂöeØ⚟„[oõµ—N™û‹-—Z ]hëT;CbEË| ðZDM0äÄuƒ«ÖúmÜ€5¼RIA§¥O)ƒ‚ŽÏÃ,ú…ËÜ‡ŠžÂ–VºðËzö„ßÔ¦5§ÛØ{”Dûë÷'cÄ„ÆóO¥Ë!zu¥Õ€ã禃E¾1ºÞ™%ÙósŸ™âMÛoÉ~'uû™0½£`ï3èaðÙ¹çE¶AÙ$E2¼IlzZbÑý¿NŽ+¾%‹É,j¸yºÃ“’Áô¯õýhX¼G›9Ól)œ?«ÿQ\çÛäŒIBrVU §UæsXC‰‰DsoÁ ì«Ã û'ùþNƒß7f…ŒzDy n]Âaô7¾ð˜÷±w B¬‚à›k¤Ižƒ]‡_á7<תõØ»×Ù["©¤ï~aÊ }Îp0ŽÎˆŒö¯aü‹oB°îöÌ8øÆ|'±ÄJþ÷ äÎéCÀªª±e;|llœí¼ÇÞ¤´R“q\?«È0ífëúÝñÛjÑ'¥{´A‘5 ®sº©Pž6ºÇW¨w˜vÐøç¨D£#ܘ/|V-qäž ùJK]1Dà7˜Uk#ˆûA®ˆJ–³\åO IÐu×.ëŠv˜ó_v_ùo±† Š&|ß•žo!ƒèžC ÖÜUú@ km8^âK‡n'¥šŽ`¾Ë9X®œ( oôrò V–°1îeú‹0{è¡éaÀ<|«°ã|ýlìD u&^›ÓÏ=¹HUú®à£ì½¼[ ®;†^µxqÏó*ÐÂHZÏö/[ƒ»nMªß¤ÜÅŒèZ.”º†æã{Ä&€1éolÌ4€,U£>ãp¶£f¡Ž%̱I¤js@\¬‰€¦ìÂk1j”€Í›µ'mjW÷*!)þ8Ó4r¬/X_'=î PL¥•òbÿU p€êbࣤR7©•ͺ‰®8U@nˬ…\UBÝæ°á£“%v-‚ÔMìd•ÈwOIJ·ÿ›;â²,,fù„P:14-Q°ãúgõð>ã9¤5h÷zŠ0~·“dää³­ÁlùH1ýj\ß½u2îd,ª3Ç´½iH»—xåîxæ¾OŠÅ*1SË0ñ”l’.å¡Ò™™3‚*3/•pWê¬]Ò>uiH6fÁúëãÎnÀòv ï•o)Ö§sý⺀í+«8z @LÀyDÕ¤nP|(»®ÕÌííŒ6"cëôE ¬XµàœqÃb¥¡ŽbÊÇg\N˜¼iz°x š‹ÁMBˆ^Ïèf½ûnä]ÃήtÕYÎÛÖ“ö×"ZÌEô½-/‹)@ ^¦¹ÞQöì/õíæ¼Ê«)ß94—i±²ú/²Z]ž?ÙbÈ8‰ð;º˜L¢š—°m¦.ܯUÂ,ƒêÞ~ß»?áP̶˜9"´*`MQ«»û"ñ9!µ=°×ØMãÁ÷{RٴɈ•°²awÏÖrùXM¤=„%u fÃ+5´wŒîEV‰õy22ÎU—8F؆<‹”C=H¤ìŒ{"e‹È‡©¯âÁfU‹&·GŠ…³1zi”L¾Î÷æÃFÊç8B€7Sï]¤õK©&Ÿ(C9Ÿf3?¾#_ÃÅžž®ƒ/ÛC`+'Ž4ß1²@Ä¥fiÝv×7¸ —ÃdX^aC–Ýý{D–’ö¥L…>²™ýée­VDÍI v>ž¸ ,ÙR˜£H`ÀPëì¶ÍÙê&Zÿã;+ýXÚ2 yìðaE¹gsó RqYü€YHÔà­yã2£ìѶ¨ŠçŒèŒª_Èøž LÃmè0“z.ÛòüÑ¥2|ÎYj”  í‡)Gè€eÌ}¥¨Î¦ìožUÂ; DB̶2…±IeRv×È)´XŸæÃÕLûš¥QI¹œß2F¹,»–¢\VFâßi9;á»=¬½]†ZjMl›™‹ ?‚+ÓmMýJóªÙɈ’;}Q&õÎ+ò¨JÇÓºª=vwË„FY¨˜SÁ@ñ`“Jfþ¸÷ ºß™1R‚?¡ÿ).ýÙˆ®£h⌂ÝEÒ°ë5§*¢<^\÷÷ªËe¼æ(‚R‹£Ÿ)À+«¨VÓ/² ¨C™Œq½Æ# ¿ K¾µÆö& ä h!žZ‡)0ÇVc,3´ÊFÓjçršØ1' ©®Ü+Wƒþlgm0Ãüº1ìZ`bW¼œMð^²3a‰~\éW-Zÿvg34ûßÚì] ?½MAæÃ'|Gjœ´qk±‰æÁØW~†žú7Ö Ýi/õVëðÞüídÕðÍ—.i>_æbjk2Dt“Nfx%»ŸíRáZU#BúçæW(“þç6Ùjnqñž bèWÍ*.ŒWÎ×þÊ_ ¦ak¢ú‡³´1©Dß'š¥YIh¯èn¢òzR¼Í¤¯>néòqÛ»"®.Ïì¤kä°žæà¯OãŸk]™ä-P‚÷v׉…?"_r=öÉt\·CÚ. §º21ý²ø®ÏÐ3j޳.ar¥ ìÉþ¥ëÎ’…ŸñÓ‰ØYÏ¡ ¢Z¦‰á"G³D)48 šf`üay©Fm·âû¨©éÍdœ‡8ðvØ›Ä*{i)ÇÛ¨è4cMpè"åÖ¡ª«¶ð/sQ~ …û…`zvùçß„lÝOv*;LÊæ1ÝÛv¼ÊIg ;Qˆ#;èÕ_wN·|6ÝÊì¬"®aèj]èüåM¦¬ÉÄPé|Îñyûz R“¯z޳‹×üÊ„cn½ 彪»Úç÷Tcœ_ç5ÙþؽôÜõÅȲ8¯"²H%œáµc6ùqt*f¥*#`iÉüåWÚ†}S`½Ä.üG:MÌeL4W„ŸM\‘Þrõ£u‰UÆØ,—iò ¿9Ý'| øÃk”©ýˆv³hm¸ÈL‹³`(þÔâ¤Ì‰p Sg·20µ£h´~ЬÇ0C–.Hå1é´ò >ÊÖlN¯µnêcԕŻ8uFdæîWuZ–² ÈèäòÎJpÕ%¿ÑßM'>K—Û)âä4=kyJ‡kÁ{løºéØs¨añ´Š±†¥Ê(óè< Ûìk>bþ—+„ÓÁìÆš™ ’ÎA/P¦£?ØÞÿ É?aÿŸûëz ‹¾3ÉX‘¹´7KèA(­ëvS@qgd¬ í¶b£Ñÿ#ÌZKE­Ù×……ƒq©o ¦«ÄG§<¨Pr µ¢[mçÁÉ †j¼uA£W¯!AíÜ}±·N§’M±â~߯'&êõÆ^bQ »­̘â ®‹3Û¦âpN B•êN¾Ø+¬gü(Öû0efì ¼/rüà»§Ân™È¡÷Ï’â«fŠÅSÛù!†U¯*T¯­QÖ¤øÒºÒUc¥Ó¯ìG4×a™o‘–$0ÕRÓùê{v¾…((yá†|Õ¬þømE<3êœ Âè—P„+‹Qôêp®Ç‰!˜Q/èë"M€FÛ4š ¢ÕºnUÄ5âoôF Þ]ÙadŸœ(~®Ü0߯l,o'ì·ŠÅúy¤S#P†â²ë¿Î²¢\”’]@/ØŸFÕX[ñÒ¥åun㌥°ìÊt,)”3ÜÿãBÙ8ÀXœ(f$±Ã%lŸi³Ž§@#N[8ßèUY[kÔ6•><ùÈÿ“}Á/â§' Î^[×[ÙSXð2Ž•fóú¹xØÜ‹ÕáÆ’ÜÂ4HÔûþ)äÞÓœ>å¬þ¾¥Èv—þ<»Î[I£§4È/‚’lß±g¼Hµ|‡rýqÙodâôÒ^úhMà[%Pºf?ù®¯@6™/4˜ q!©Ò¯X•ìaRÚ;™üøé]h”ݸõ@S òÓçbÕÄBÜ*§#Â@ Ú SN,®„4Ó)éóƒPR¶ ŠVج™EÝqWº%%Ú  ‰‚í:IZ¤Qx+Úry‰È ¹¤¸^ô 7âí8ZJЊ/9ÈL¾·ÛÓòµ4ž¸n©Ðq&ñaˆ‚„È~æê<¦Õ£àw@Ø$ÄCç»Ðüu+Uº.)÷¡¶Nt޹âd’E÷‡"žk?~+æãS3,×Ô!Ä.a©õvâ€Ô¸u4>wF^`ƒ¼‡~±Õªé-pRqv×K|ØýšdÍ ø³ž! uI}o@T@çñXäçG¼±yú6á½XS¹)HÂV ë>–f§PÜ`§gŠø6/áÆØ=ûä#Ò@­¶Û1aæ,)IŸåœiQÔ‘®MæâBm¦¤{¼›P½×”ÐDщ¤I”õšäž(NÞ]q±òÿåzmÝUs¦ÈœG¹ÝITŠiN^‘Þ'“½Z!ÈÑm@W»‚®¤ÕÒ><Áæ–JÉ-æÄ—кÿ‹2«.º]}{ö³íM‰ÕSyÁg›¨O Õ´…F|@‚0£b¨ü:|õÀ–xc°ì¯ÆfŠô7‹gãÞ§ù„!§¥ä ”V„—’'Ãj4ܤçà lÆe”T¡lš³­b}­¤Õ¢$2%ozÁNiMªS‡Ã<[(HäÊJ`š¬‡ï¡Õ9.¡+—»‡8rö“6iÛ ›RÃÔä¥Y> ö]z±gí¹EŠuhÿ˜¥z†Ð .2S‰¨WK‡Gç5aXP`Ãdlz*Ráwà¶$>T¿êYÉ*~>}@c5.SìâzTÈdÅ_=Æ”A¶Ä”–lØ !ÊΘ`K‡ñ‘]äøMØ®”åÊZüÁ5óß¹êï<_sfïÄÎV»ŒÑãŸqä?VjÕô«l$bÍŠE>ƒ7báòDP:ÊUY{QX÷‰È\¿‡® \fæøÂàb»ý¹ý{Øå ä¯'@»Î­¡ª‹|ëÁ¼ò+ûD6™ûnÓ_^à.ƒÌí6Ý©š·Î^WC>šÒ  Ÿ2£ˆ]àÖˆ5™á4D—³uɰп:¿Yr”ª”ybÒšà²Æü25‹€ÇÏ5Z‚˜ÍˆW]p`mZÊÙ°Ìêg¿^œ<]ßJÝË2 w%ƒR¥㥬ƒõ›Ž>¹ï÷SKŒ¯ÈÞ\ñ¨|+`†:)_üØiAܘ;¦ƒ‚$™p ìÃÑùR¢ú޶nF…n?¢\^E–tÚ0ÑÈÜá¢&¿Ræ}ˆú„ŒÀpwH7rõ.‘\ÍVö`òǧ³ 4ÿä¬\ hÁVµYHFÅÐ Á`ˆÚǹM"šp]‘^@‹;B•ºì «ø:å ´½r=P„†^¤<4 «V™nsAx¼ðÐZ˜kvY;±µ°E‰ Öq”yDÏç—’4 KäöCªü!Âq³çã ‹bEPïüýzs)$³Áû4|5pümI¸Ë“Ô³°Ï;)©òï,¾˜§5]zJ2–× Ô4hH#Ü߬˜ G=2V.È]‹",ã@"w GÁ%Ã@ kè# Ÿ«XEùã²–¥’C‚zþ­±¹jó¶ÉLŸâ ¥#Ή´•¿ú”p›µu¹Íp“Öâ<pa ˆMžä»v=(B9 îk¾¾™HöþÓVîB”Ïu´uEÃе¾)ÅUÁ7^Ž£lâ­+Óà.HÅ#äÏÙ§Ï{è@uù+Pà/Ø8|7|‚Ý '>aàR!Èò*ØëîÕ+Ux™´›*Õ¡-)[Î¥§S–?72—¥j.W+ã’‹+u`-–*ƒY]L])ÆÇ-¶?„PDìûŽ8;é`ù­:Oh7µº¿++,V£4ó91¯pt9W=†G™¸±Ñ.#ô>$:\¬çäf1Niaàíò\€øïîê¾´_0¹K2êRXÞü±Ž ª`^¦S%!÷²ðˆ›vXZ¨Xi䘀ëŸAг“tspÞ^*”ÝŒ&ûUÀFIMu7Dìí%C›Ï¿²¾xTƒ bÜ߼ c!½¾Ï£=)x“¬Dq¦;çM:á.aéÜF¢ù<ܳéei¹D×A&Êå§ ;õ¨Z9¬å3,6@SÏÒù‰dÒZW°£9 Ð\ºÎyúß’0]L›€ü)ñ¿¶Ú 1e&b3”£ à­o|€ÔÕФIzÞ“Œš>×KW¦Eô)­>µþ蘆øÔ”òD£íVÿg„X¡;cT~Oîûn¢|Uéµ`6½è|­õ’ °YÒôO|”[Ò¿N‡Y­w8Úœ]Zs?–×ãaÇ]Àï ¤Tõ6ô½Ëj,@,´M qÂá]‹VR[pzñµ.·Òé'F¨!Ñ©®i4¿H¦Éëh+²®m£0k'*¨Éd„ê{A5°ÄäûÏwV ´§SÈø4ì°Šøº à{¥ÂïŒ&ù<³TŸÈÈu;–ª ¹ú"ˆ5ç =l!dìž×R„Á¶hOÝ?[,J®´óÈAOðe¢âŸnO·KãKØÀ5ðŠ?x®ŒvÌÄé[R˜¼¾?¤± ‚ž›sm`ëëÏkòƒ%êÐwÓÛî£Û Pfc«BÒœdIÕ*dø÷^Ùà¶c„ôi”C|ÍŒù#úöù.©Äyçä/ óµð«¿/z°s?ýPÐd†^ùŽCNÀßX!sƒRõzK·W¾Pgœ_Âm(PÈ´™H~y#vy 'B<˦7fœ£,æÒà 80ZÚX£5׸ Í=O玤4ÜF–ŽQ £\‘.A7cPÒ’æi &²)l%ƼÎçÇ!"²£Òk ¶Û±ÀróZëò7딘±-$JäènH¸æT #⺞Ú5 96©\«ëpñ½0¬÷qÛÞ£¹‰j×™NÔKEÈX2v;DI/uïÍnÊ1m*èœ7ñŽ¡c•°Þ*E(>pªI†÷K`×åOô‘°e«ä/Åé;ì U-á “T ÉÝO £ã”9åOþ!«¶þŠ3è±a,4‡{ç/Òß¡Œ[²dOVøJ‡³ËÀݨïÏUiC1¨msY^ éh¦¬½ ôÝ÷[…×#%•J¥7).³ùP`Âã?-lÄèK!9œ]ň!ü\ÖHj ‚$c ·&éD¬"ÙGƲŽnAíÐ(ШEœÂ‹!¹’̬PÕF2¡2º3¼­U¯I0ôëbe2šm˜û—o¡]¼qÖ˺ˆa½`{¢@ý¥O\‚®Èu+ä…i ü4)FÐd›Wp”Hr“H9a´ý¬ãRy±_d ¡Ï9ªà…sÎÞi©´¬‰Ä¾÷& ÓW'A²2ÕMß À»y~‚†×ÕQg‡’OG$i{(€,…#~ú›,Žòëyc_DïÙ›ÿ–—Y’—ˆci–k'Ö™O²ÀW]œdƒ°lþ‘%XÖpÔ¾ŽËš{Æ ÌçíŠ_tI¥ß€Æ{6YžWU ½ÑÚÝ8$H9Øße²>‰ª°ƒc9Ò®`Ñ°Íæ‘HŠpâ°ß¤/´ý¨ýè@à·–Ë—í ˆÎñÙħ÷ ú£çü"àÆ$›¯<ìÇi;òO¸U{‘õiB(ïÐzÌì—'`ŒÎ2ový ß´FÏaâUlÉÃ%+ÃVþSYß#Ÿ%Ø+ µžV ÒÛg¢™Þ‚¹ø{[õ¯Cã¤N’µ``3à ¬}o@våö7óâBs¼†Ðò¦"V`¾âPãy4”äÿT~‹‡ýç{aŸÐ6Ð_ä_øáðÜû%Ò<„š?äsZj&b!†‘Âõ Œ˜­ Ò§n”Unv*/æS(]ô…& Ë.àŸ‚\ëž™ØÄ(ü¨û÷Éh|¸ ¨…;ÔãíYÂXÔÖË`‹T8â›É®BüÆqHä EêLœlZ #רbÆS†¦¼+h Ò:§³±/I|4ºmÓ¹ƒOjùî§ÂŒÉí‰í´; xƒmUd¦r²H¡êŒžý:4¡‚´Èß}·üÖ±>æ¥ò˜ïOÍDö1J¤ùã cV¹ðe“"éż þ„ü|‘yÈžh&«Ùó¸ý/,;àߟU—» Ñ‘0¹#~$Ç÷¤@”ò°F×{«o~0ÏwN][ñûééÏFòŸðšÀ;LŠ:HÌÙmá¤üéÃüçäŸS,´3ÝGcâNˆ´CüÈñ„ˆww\ùí´Úκ"v­ú2Bƺœºf«žþêùÞ®8fóµæòv‰|‰ÿ`q¾3¹ª&Õ§ÖBÆÅ&#h²ÀÕ³ëË›Áç’Ëj˨œ‰õÅöýa{¶¢ÑYTiMiÚÅ€ëÐÂV÷ÈfuÄÚõhÈ\Bª»c?nÈ.xfXç·õ¸ëª Q3·™¶-„à;«G¯,tSÁ„”¿ß”*…5,ŸÞ’B½móËHR¼Y6ågÛ̦5L–òz„¯ß¾U³_ñ…ÎÌâ‚)äîfC– M÷ ͨT Dâ­íÚˆ¶ºZÍ)€Aƒûغ|§‡ùùb#8ovëËߤ;¼7Üí^ö“|rE©¶Þ©‚rø¾»bÆí¹R—(}SóRRUÆ/мß$Û|½M¡Eaí•êôrJeccyÿOœ¿1fP5ö¡sÙ]xYŸFúüÚ Ö^î9T¥°–žQ3$I¨?'ï#™œ\j䶘_€©tî@Y<ý”!¡¿ÂÆÁÇF/à¿´Žæç壚ž®ú é|B2f˜ÙÈ%Ñœƒ08»ñ!Iå+Ô'—ô[dñ²ßfeÚVb:I„¥—è˜OøZ*r„]>†’X‹Ì ܘú¸~·8§’¹©¹C§¿%=î‰J?S3•;ᕪ¡›,ã&ŸFúv'?ùƒ@DKTeëÿ©¥EAÙ}-‹¥E‘•·4±7=¯}ßb² y7lðî(©—üYWv;bDÃâK¯¾Ï}3Ô¯ÕN±hÖÇEE~1#X‰Œ£À»gÅÀ,,†3EŽøsöåkÁW{Á­8¯ŸŒ#¿%sÛsßöúýÑ?Yݸ±çÆW¸¡ Ì‹(“Qo­üoo&ô~wë 4û¹°ê’ 0Ó‰}Fxˆ®âwlõ”á 2¶–Eç‡qõ«©ææU»ñ”nµlTcn>ƒgâ¹›±5u°„ ÉîÚ 5a>–™(¾…,èoðbº™]ú/…„<ñœ4ª¨Ò†+yôÀpzKc¯`ª<>"¿¡š2?ã(Êv )Ù²™¾†·YXŠ] B?àÄmˆÖUõ¢Û¸ç|×¢'/‰5’vƒÞ— )cAõª«ëL€$EÜq ᯉƒr^Ô]ö÷û –t½ž w7zJÌÉèwÑÙµ ÙŠÕR¥ uO°“¾‚Ñ·+8u geÖâÛ:eŒe|q•ª™z(*f¿ê"Ç;ß!ÀJK×ÛÙŠ'¶«ö%«_ßWÑnµî‹#Iä/-÷7ÏOîk™c”I!\¹•ç;÷›²fdþ±N[ѽI%]E|á”@¶ý1á\œljde:š¯ÿqYÝ„Áî–²¿îZàl9çø kmJûÃg^9Fž:f=u¨” [3aJ¢ZŽî KÂWrlR&?ñØÅàÅ«gu^›³Tæä«´`éé€\Ì)HùeÉ&ù#œ±ÊžÞV€±l·l×À¡"[!·Ñ¿ýÁüìó&hÑ]$šq`Z3pÿ,át˼ç—kòõøw”‹-ó,7q¨· U‰?|ÊÿúJî“#÷‰â¡¾‘^f±<ϦÂ÷­ÿ°œÉÔ‘ŒTP¨h+´(ê-1¦Úø°ÛpU†¦æLåñ ¯@k/£>ëœÆ:êµ”ð%–µWéw9oÓÙ]5À᦭í¸þ)37¾8ð""Ò@ŠàÂ× Ùp  Y¡{mäW ˼Q‹\@ß=ñÛýSê ø ý2ÔŸi§Lv| Øò·øHU)³—oèSÙ%zPxjIîA>xÉo…@áú²m8  : .nXfEùlÞþ,ÂlŸ˜Uûøû*ºéqB!CªØHJ?‡eÓÓ?ÈW/³¾½ì‹4RXf#Oõ㥇¸p;p¤],•é\ t¼œåÉ=N‚ðÑ²é ø¿ãæda «<Ñ8…iûç"€ñòv'˜ø zrŒ%_5[§cÁuasü0ÛÕÊ0À¿†¥Aê"Yét˜wš¹|ZR+ qö ‡–B1ÑtCº  ™ GàH v…8w5gÊ•Ïé?Ê¿ÊÚnsðma"êk#Ù³ËØil…ý 0‡÷¹:xRålÜq“0qW¨èã_×#KûEý²€à–õÃqŠs¶FXvgº3˜ ~œ[°ªŒ–dl½)¸ëVIÈž…Ðlœ Œé„eŒuZ\\š‘`Ìf‡ôåÈ*i¯W'h|èãŠ0]}ñšÜufµ{ðüC´ùüaåT¬õSpåj°‹Ø“‹™™t³Ê€xGZ@­ÌUŸ‘ôý¤#³åNÐÐ锬~Þ>µQlê­.+xËóìbä+ÎòO@½†1l9"{®ù$^,¸·|œoÙÆ~hXkï´!3ìÍ)Q-5ÉeçðjWÈ>ħ6銌V“ðï«ælô«küw‹Zß(õl£CIwQ\r¤…••*2CŽÆÉ9{¾øŠk€ƒ¥Ð-e‹m ÉÄMú#‹K°‹;å9©r®‹Z5³tjR€AcNš$¸RÊBqJ7Ðd íLJ;Ü€S Ò!øÇv'7:‰ôJƒ¼g:Ûî½…z™mNƒâ±X$e/`ïàlô5@Z½sáé‚Ü‹|RUžãmËK£ž‘ØYd&_ÏÊëškÊtè$[ÉB+ ™ŠåÈÂj·ƒÛïÛÐXf’„9VÉÅA°f¤Eª'°Ý­Hé4-»ýÖHYØ”ãÞš¯q~P¼2{€óäY6‡`ÉWÝÏè˜{ÉfCO;¡¼þÿEÔ¿‚ñZ´CZœÛ‰²’ãòg›aa+;d´Ôà™AŽ\59‰ÿ[‡i-k49Ë”ÞòP¯­‘Š˜Uc2‹õB}Sš6^½Œ·[ÖÇÞt¼õV¼U,¯-­óRê/YΨ<ïÚâj›Z Nï<£̯¢âuG.³u4åsHmƒ.ûLP `Õë<¯íFÝSÇMÃ0—¸ Ún>—l4öUî(Їjg#®·+Ñõé,öÈ ÕÛæÌl’NîyŠIÏtÛÈe®M5 Hнr‹ä/hg†¨Wñ|w[7<¥=;Õ“,Uäãù·ÒÙ¸'Y‡¤D §0ŽÍ‡Ù”AZÄa£ˆâ°|Õu+ŽD‰ô¾•âÃ1܈Ý4ÁÆ€¡ Á–ñŒM(k1—¯ñ×îtÿ4"<À5{|]okV.Q%VRt»ß›õˆ´‡=ed~êV4˜'{-)pÒ ”sñûУ_ö¶Hà©/Ù×Nz7–û¸A†L(ßø6Ä6x‚U£º,ȤfsD­’€&ˆæøµ^#"´q1±Ï¤2³&l¶ÿÓqÞÂ~@žáü:ÎNúü—¾£ú‘–é(l:[ºïŽséûŒø#ûO¡c‹ñQ)HŠ;,çê÷%ü/ËÑô6Õi¬òh;t˼6v¼Áœ^ 6y_AnK´Á;„äyQ >Ãõ‰iÝJó ¿ްR1\9Y±]ÄR M¶ßÐ壸ïN„y¥}„n›0S‡ip`»µׯ~«âð;ÜbKd³ãëX´£V¿vš¸ù-í„§š¶IAm!’±>,(óT0°—¦V½[wŽxcÞ ‚Òtÿh¿ŒmXmq×ᬰ?€ ƒ)ƶö7šQØÅÿ¨mMÙG(,aÁõœzBp›»¤YU#n£TýåÈÿ¿¸F“-ˆòÖ°³`¡¤Ð:CŒgÚqj6s•YŸßï€V¬*®³Ç•”Ó´712LƵF,…jØ "MlÉýïéXÿ®C¦³Ö‘æ8 òT³âºiay5p’ßøÁïP¾ó×Ãtxõ­¸Ú6ö. ©`Xp£zôz?aÕzb3&ã¹n®}úÀ®$´õê¯dcy(,c8;lÌ&Ð@fûñZíÙ³œBx¬½_tá3Á­¦ÙÔ³æ¾{Gk Ò‘1¢e©×”áßpoÖO&Á(4±åµl¢Òfq‹3ÜÐÆ¿B6œ ¨‘¼N† ¼ƒ7ó¶ã$ „¢§¸è¬¹ÎŒ3~ãa;¤:ö‹•“^Æt‰§´µ¦Êí¤yg˜Ð†l®Ròf?á%{€"ÌÔ^þP•àËKöŒpJ²ð¸ƒ1¼“Œ9ƒ©Š,DÜîŠF;*!{Æ}åE1 mzøC7"‰Zë]xÊmá±ù–-TäÞnÑ®|î×\Ñr=tÿ®Û@À4¸©mš_>¢m(<œ±oøÊ+Ëèä48@Tw3zT ~ùžÇ™E¾N¨úq›I¢ ¿#.Ñrã)‡Fo?$óqáÙYGÚë¥ôDI9HÌ,›:¹³bòú҇1)@uÁÇÖj<ƒ ÀLXªÃ¡÷hc÷'Ê¿ãƒÖÜKöš‘“.ºBÕø›ÌäY²†rqØBPÄ@]Òtìðå‘x P€áçó !Tc[ôùrÛË c§Ú iˆÚêrá3®=ßY_t™G„€°¯Þ±Â\î35Š$mˆ2Œv¨`t—#/°•õ° E+mÅÁK°øeü© û=E7tßõ sÚfvŒrgW;WÄ0•›¼up:mº›êÊÍ„~¢†Ê…Ñ…C¤n" ?ÿ6ÕæV;K×K‘7‘:æ€ì‡êÒ['lˆayÉß/Ôœiˆ)g+9*ù‡ÊÀ•ƒý§ø9/„ cg1p¿Îq¾G¨D[ºfµð~µÿ4C´çý­ëM=rÃжÅN¡ÌïüW¬yH«¶$x-¨àtÂBï¢÷q\çFZç|.ÕC8é.÷„á|¡ÿ‘¤M7Òh;Ádœ#Y¨PÃÜøï‰h+-“%"urÍ0\ÐÓÂâB:7£`CÂZ V°w³JÂw(ÏZ Ø•÷)¶ÓšÑk¾ÅÇ™B44á WµšáA€( éXÒaÌ¡ªßƒa0$I¨3ˬ¸ ãc*¹Š ªjo¥.(® ø0Ò5ß C]TSUþúcà‰/†´#ír|g ’ÎJŽÍlðâ -DñÓÄM’¡~rtwË~øÚ—Í Ç'¿Ì[tǨ_UN1xo‘ÝcNVdz~<;}îdÏ‚þÜ«pÂKâ±äMÇŠÙŠöÌ¿ø“þÛ×6ÓVF‡·¯ìgƒ¡`>åèoº¼dYWÅB OAYÜAU®PJ †ÐŒ49P‰Ñ’<Ç@ èCü¶ñgÔ¼û˜æ1ê3Ž(¿àÇÉõ.n·ÎtšaêÌ*}Ðo=Çlgƒ¼ÐqðNŸÎìò|=ª ;‘ÓX½„Ò–p¡ÿ~| ¹3[ØO¹ÆÐ"—-µ­b¸“Y:0ßå×ÿ᢫§›|d—Xãf Åþ¸%î£ÌÎÙíǯQ™ÃÈÄÊq[Õ-¡ ’(‡ dªL§(ú9å.rÛ·¼™_ûO>Ò¯ ×Öi½³ WÍ$3F&‡†ïÊùjô•I¿v!J¶c–}^=Å®a®±Öp$ÏË‘jT«Ã@]~Û¤ ú®nP¥q¢<¼¦ÞS–û3IÄæfÂÃDÀióÈéÏs—ˆNp³q~€ÙOšt–JýJ~ÆúzàªÊ®ºí~ hôæWÆŸ ºEì ¾2  }±Ä`ïmø7ª#ìÑ€ …­‹çÚ¾Êź¡0¹8'q;i‚5‰Úåøë¦ÉzÐ Ýwä•Ð/Ùn˜K£W¦zN´Ëê¢n|.Í.€”!üúOF¨\Ö#Žßsí SÏŠÛkoðžá=³OóñÕÕKò˜J¤7|i€q®ówwEX’Êcæ|\"“†¯w`£ðÑvxñ ɸLàUM>ëšlᬺ=þ'ÕzoÆ$‰˜zóü‡ùËÅ?u$’‚éœHc®9ã§s¿žtø¶œ[ö`SÃGO|u@È€ŽÜ|?;)É=÷iPš¢·˜¼¥&%iOJŠš`Y˜#ñ+NNÁŒË£©o“övhuŒÈ-a«„íÜ^tkiRÆù©p¼tøÍöC…ÍñûùiªqLtR¶‚V?@1÷}¢ú­òNŸ@göëWµ4œxx¶¿Bý+AkVøêì2°]|ËW-ÙñäÀ{I’ ;šÝ[åÐ×ýEJz ÂÏ‘ÚåÉ¥Ò¶‰èWyË‹ÈñOùZ¤¥Aµ …ì(ÏòÒPÜp) ,âZ¼Ù&zübÏtŽ0è:¼°ªÇ:æS¿RQMä]`nÞËYÞè! 0cüÐbŠ­öþ`ˆÕ¸Yše%؞ч!½ˆÀK”Öµ¡|¹«÷rÿéMóèçü²)*ÍŠ6$ . ÈM s†õY,¨ªÌ”²`8–؆fz†&Õ«è)È_;*ûäqÞ2ªbv u÷p@n«×-6•—w%‹V7BâÈ(¹M §¥…›î~¿?ððØG—#fJÖCÆä¬½ãÊ)Ô@r|:¦OU?¨ÿídLÀ%ßÑ#(°kZ+ÇmìɧK ùIud©ƒÞ‡žfϬ|¤À™}ß «‚t“¥!ò­áðÆ …lSª n oƒ—@Ç#ÒÊ„äÏÓ›®frî¨\l°î’³>“NÕ˜6•w§%ó>ëÖag€“ÛÃ¥‚ø2º"m]¥þÒ:/º¡ï˜iv´—ˆÅ­ÓÇÞ7ÉxŽ‹É+W LøªõûoíU¹¯Xë}w öbä àç™eñw‚§í¡ ~¹·;™^ìâ¡î17ãÑV#Aò¹ò]e¤AmwBÀ…Ôª±ŒK2îGÝùŒ®aÂ:Gâ ,¹²< "Tñâz3ò”À±ÑkL(N|ô‰u‹r´hq¼Ý·©£‰Ëþß÷™e࿬ÛÒ4m|)›ÔâÇÙ$Ð\õy B}hyG‚Rvu67–T©&À図ØBì6lI«×µ•¦†ÄåžÕÈcÎÝèǺ4^èa¼µH˜:ø…#¹®D·¬ 7æÞ|gnËX‚­vž6¹Â·:ÞÊæQ~I;sú Ôrz^)uîuÉ×ÜóðÙµî¡è‹JÅŠÊÑv¶BA`|™ÀOìnªÎd¾s0w@¯øÍ¼ëå‘ÄÉŠA_n»4ăîî4eiÓ‡³3v«¦êEìï C_ÜH¤ïr6Ž ÷ÊG±®DK=·.û,õ°ºC+ù ¹x+7eºæsf.Ù¤¹¥ï䜘²T¾q_Ê­jm_§¢dWÿ_‡q4Z؃þ€.³Êõ±ŒË'P•;úhÄjƒçNP¢Ï€(üÙ¬,~úw7¦Äe¦ï|©%ØZÔuIN·Æd9ŒÝCƒœLú5­w õWþÖǧy?@ã! ÊsuTÈ ~°5Š}¹)óKÆ×Øoúq†-ÛbÀnÛÛ!€¼O8%wp%¡öZù¦Ðº¢%O¦â´ÐFD°ÞÞÑ}‘áœB$}AŒf¤Õ÷/¤®¢&¿ï—ÀC&¾îÈÝÚ žÊ6’ï“ùÇ|1ƒN64koÚ뾯¥5¨S¥¬"ü쀔…,.½DÙ4^s™ês³lujóò|#³ïÁÖ-\àЄäÅûVØt"[AnA ‚5#éE•òíœÿõÞx O{3)åºk‘à6z›FZÄY ™¢?qyY¯V‡×›•¨?ªsTñ +îʠΩg¤rÀ+é#k¬ãâr ~à/Ù%q+˳¿ÚjÖ[Hô…ig¿˜rUvý‘ØïîÁ: Sú”;úÝɇað¥k{Föà#Tô v"vc?Ø„*ÔŒT±]ü§Ñ‚´FÅ—^¾%ŸWZJbBQï• ¯ õ3Û.˜QÝKÿÁçtúw9D’ˆ‘ÜÕ•¯AUÛ`èµ®å åþŽðmôÁ¹sª ü]4Ó³†Òl$ó÷«:ĹÌlH›O–K„ãsžä ¢À”¡3[Ë+Ùå7Žà‰ÞI:{ÀZc"ð&#Y‰†ÆcVÙ+~Àë©6ç}•Ìà[µSÉŠg£{*à'È»GTöÀÀ~¢¾ gJþójøÙ^߀åëGl(uÑGnRææ1áÐZÈ/í,šór±Õ¼`˜IA"‘]º…2ÜĦoðòÈoQûõË+-bÂÙÉ*€RÝç®Ò€Òlùœv÷ËÂâýFJïºÄjóò¸†œ‚›ÉÇ0ÒÑ*âf¦tµ¼˜À+ˆkƒ]y%E (ìш(މ_™Bu*Z œÇØa-%S‡‰óÕ½ÌÔý5é²ßÈìÔP¥=Mlñ0•LºJ•®¯€Ï£R6aÞ>a©YjÃ)|’€ #vqE½´b²ÙŒ·>°Ð8>(ªCfήà(QH§»õÕEß7yn0—å{šÝnÓ¾ ¿ö±SJKRàW@j‡¾ötfa›óq»½VѾ>Ó@ Ž]ÿ€¸¯C*Ü>6Ôéцr#œP^©ÙM%bÐðs¾),ÞÜÎF+¢Z›áÍi€oœ»Å±eõBމzº@æA5—‹gÅc¦ýê E“É>&ÙÄ8?ÊÑÔÝñÚþþfS2ÜéÙÎ7|µÏ,~É’¡k¿©‡7Ê=n/‡ Y)¥+ìÿ%‡6$õJ.~g¹è•·Q¡”3OÉ-!ÑÅÏÖ”5R&Ñ!€$9‚ W‹bžãü¶*4ïbÏö }oÌ:›Å,}ëãaj¡Lü±Ce!|Ùª€ òbµE.Ù ?+„‚Ý`äªi±qùɨ#)‰šzrÄ9p´~~J5X¸‘'ûq±dØŽFjgØ&?j÷,ÌI¤ÞÀ—/åÊT¦Šˆdj.çòÜÃŒÉÕX4Etdß` «ôÔ´z^?ÖUx“;£¸¦úÍ]¬êHç¶JË=à‡'aÆÜ÷m!¢ŸIx*Á—Fúnî-ÐfS!5x†ß&}GN6±b¿˜Í*k‰/^äÌ'(/ÜJ7Ý3AïÅZ…xŸª¥LA×˯Jñk§ã,@ú‚Ñ'ôÒ`ùñ5µ $–äü˜¹¨W¨‡ê<@#¢M”´ïçT_Ô#ã]³!w÷ã2% ÷}N_÷Bd0úYô}HÐ`¨‘*%oL4s`!ਔà¥k _lI` O‘9«éT\‰YæùHV ã„æ:Dîá”.z>wäå×Ô<<Ë8;â'é…cE Îj•‚HïÍÀ-¾øMbzLþ’Š\€Xf€[¤+tX¿1ÉùXêß7TÔµÊÔ± ÔlÙUŸÍ²$ÉË”m &?øL,#Ñýç6„n¯^ðrsB¢Ñ†'×!¤ƒµÎVEõ‹_†×Ù‡JÔë°{áŸ|}d0£å;ÅIÓI6 ©ôÈ.䃔‡“e‹B 1w:Œ£´Åãn¸76ß’j]a×!:à;V@ÖšîÈþ‹dû¬ßqyr†-OfAƒzŠã¡ )ù‚4Yí.hÍí€!uÜ0Aˆ7‡Î'’ÞùñÊH6XÔ S›Ekšµ2éyLx<+®á, ¸LÓÒ×Ngº[Z6ít¼k¦o^()Â1'\¤%6ÆXÞ8ˆž…›@tèý;foRí+©ÓKïNZìÁ#uÏpÍÓ™ÿÉü¾gÚ H0 ð«ÂÂEW×!IRf¼i{›a=ŽL4JXzõηÕà iGc™J2 n´”]…:ŠÀ‘ÔZ ÔN%msçÔ*¯Õ´\·df!˜ÕBV)š·»³ñÒ+š\ç*›CúsÂt¡eÀÚ0ssA3fS·½A¸³T&‹ŠÀº²i‡¡ó“ŒZmúù¿“1Ì@Å’»Vjî)µ¢“ w¼$cêPK”:QE%õU“Œvç(ÿÙ&KþVò&ÁˆL xMP™p'bŒÛÆËc›Ø êæÄ‡.è¿Á>F“oËîøyýnE´îãûš’—`’7+E ]Ç%ßk …%ÆÐ¸,[„' Ö@a¹i˜Ä%ÖF· EKvv¤¿>&ª¤&%¼ÐÒ^ªxv¹àÎ@æN e}E?|w“ç(¼ØoîHf¡Û£ü"Óò]L‰^è$oÄ:-sþWƒ¯–'Û¢G þG>¾•y;¶ î&~þî¥Ãþ° íš­ïú‡ùfkõ0ÑÆ S*(ù4å§Æ@à%.Ìèí@Aöp747aðk%nbd’»ìq\u&AÊ/‡©ª”7…n}qH†FÙ×ZÌm„S/ѸøÀ¯­-h€Wú%é°š¤¡ª­mónX7¤©(•Í\¹ö¾>¯;±>åOÿŸéã-髞56¥ås†7C¹téwö1ûùN×ÌIÅØÕ|‡yÜÖb!èGHfÖ{®ªL|¾Ã\m´v‚à8ì œ^/~à, ¾½YHÇd‹ŒŒÝ—[‚s£om™ýCßrñ÷\f¢`Û²±)ˆ½ºß\hn‚&bžþ¡Þ°=ÅØªE Ó«“Sÿ›lT˜ÃWB ë1g:¸Õeñx0Î4ƒšT2X¯¨ƒr@Wc>]Z¼©îÏ…~à" ¼% bVkc¡z ýCU£±”º·í—?ÕºqxdF¬¾¤»Úâ±J2͇Kýo«:¹>skõþç-JG FŸÀ'Ú_ÔïyäªSÃÍùx|—û‘<[£àò z8Ø3c@ Õ¨%õ4Tš^ûeÖ« .°§¡öÔ(–laÔÊoÐŒih§¯…LPVN)á.ëê¡ÿçð›\Å91RΛÝsÅlÜò«|lË §S¹ox“¢û—ŠA­Õ0IAQ,yÜÝû¯„óæ› Ìä5ñ%þX*‚cOêwà;Ђô³¹ËøþnáfË[Ä+(ò ”†Œh£g ~ŠFV~CS’!æP‚CŽ E YŽ4-ìH"i9] ìzGzS|¨–«öjÒáZÚû²zžR~‡–·ê‰YK…«(ÕVEuÖ¯ðÑp>•b_*¸ê{hŠòá) 9ŽþG/šÍP• X®B­€åk§Ö?Ýeä³7 ­ï3÷#q¨®ÛN)@âO&Tô*ˆÌrÑö¨pç[ Z¬Ô 7m~ô?çÉ©Åq­Jó”W&ˆ"¡ÛCÊ*÷ º¡§usžéäß÷»Ê€*•µ°Òj°÷„¬–©ñÍÙBZ¶sÜ’Dà@»¬J©wúéiÒÍ´U+λÂãòÇ¢ïƒêq¸7¶µ“O<[! uþ|Ó,˜ÊZ˜i©¢Ή!ä–˜§QÉ™6ðö|+DÌF±Ã·IeG]ŒÂj‹þ(¹)„@Õ«:t# §•Èa?Qß“) MÚo#å²Á%x< 5`¥@.ö¸P¨n’Ë B ~Kbp tE<é#ƒ´ <1ea @¨ZkçöÏ×1ÿµøk\Õ2Rmþ#òit(ë|b“^‚Ç=‹ JýÈÏòÿÁ!ƒ7*®VßyÖxÚ¶”@½}ŽƒN¦|-LJ·“ó½ÌÛ´m=ñ–ÊóQ¸´!¦çy™ ™:Ç~zÊœiÔšü¡7jfî %ç¤ÐUÛ”eÞíea]>K=ÄhéHŸ<7 ÏvbÜðÕ@¾~ˆ!Ã†é¬ø'íÒåÍÞøL…Ïàákc`oóÑ›Ü/êã&«±¯>¿ ¿^z¢¼ i ökâ¶ÅœPÂPRÒ3üV47·¡™K¿ˆ»É.å†PZ[½—r°ÈvKâÅÏ÷²júUϳ7µÒÌw¯ðubl^Á@-gÙÐLqÓ7Û1çË!à_ ¿w±ª¥ÐÌ~>ÏÇÕÝ"Ùg¸–~m‚Á€%¼ùãbåø¾úL˜Y‹(%0y˜ñïrª]Ñ[c¥Ð­ÞMFRÒä7žè$ûGÁŸvXMAS˜ŒÐ´ÄßSz…ì:éO[‹À ܪ*è©î¦D1«ò)·‚àGòËus­3Eî[LDgº‹²“Ô†èDhqÙ~É ;¯…5(“× ®¬f±mc+§•e:“ÿ‚¼m¯¥ê©­– LwÉd—ï«jA[»q¤òÔ¨â˜/,pAÿ§Ê;Ûk‡1>0N½fÆ[:Õ×b·ø2|¼íVp§vKýHP¨'¼9ÍqSE?è¯Õçv§t«œh¢ÿÍí5š~؉Ð:+ðò"Pòé'AhË·¼‰áRy‚bÏŠ“{ïºK¥0ô¹ú™œie6*“ öV&!_£ªé•q#4ýG5ÚU0! B–©sú1ë -öºv¢e„(SùK-Œ1ýsy§{6Gîb/Æ£¼‹ÆµoK>çadÀ¥—¹@¥Tv)M¼ué§‹çZ¯p:âRFè‹n¸»+ø¢©ÿÿß‘I™€ú¼èúîŸ}ÖÅ¢›d¹¬ò”êÒÂàb¼o:]Ú£«&ïÀ?is:LrãaDÌùþ-ÂL¸dc}êþ·žIüLALV‚ÙGš n°sÀæ_—LWï"ջˆ®,šStËz|ì<ò,§SˆCtº^Š’ ¨úa7d÷‹4ÍW=Aô ‘ꣅ’ì'„P;Bp"8w ^œG,™Ýï\†¶ÓÏ-˜Fæw­Ñe¡®[åƒ’È ï‹¡hÞ·Á2èÛé#ŸGwÉŸ\äìsA#ßç׈tj.*”•¨~Õ_dÖ8ò¹UöàÖ;÷g_ÕÛgEùVoƒÏÜÕì¯ó•³ãª õÍ}bdÌåˆ?üI•ùHM’ËsÖ§mAœ\ÔHl¿üCW×('BJv¯×GEñR—ªpú„J<s[í¨7tiØ €”¥UÎ$ÍÏò2|Z’gªž+_w¢È#Ú²Äú!Vž;‘ ¢¬cÚ–0vªo¹Ï3§†ÈÔÏNVHÿVjÇþä¡ T‘úèìÝ"½–Ý`Š6+ùç N ª ÖéBŸÌYKEü×sj¨Jce*¯~þ¥×éÍaÞh°tëv[‘ZåÂÌ—ÜþM2ˆe8Â|õ­¥`j´´ÍÆPZ‹ˆÅ™y§½H!ÕIh†þDŽŒ9óEðy¦Áà#O™òl7‹óµòþ"íðÀ¾ºÄ€›$C )f’£.ÎôñÀ½Å¯sÏ(ad+,ήt‹\ÃYH’sqÑsÝn=NL•âVž]ÿ9¤*Í€ }¯ÉÔ÷|b ƒ«a£è´E– -½Q´äáP‡ÌÈ’¹^Úl÷¡µaü€âÙãù³Þ>ï†X"@r_°O­㙓}ff"Í× Äš Ú„ÛN ‘#Eܾ‘‚°`ÁRÿëUE%Ãö·0Bûâ®àÔx£ÞÔY˜G:4©À§ÚÙ"MõÃó#|œÞUÎÛ)ðœ)m>€ä¬·§‹pÎ]±Ñ ­” e 3rš£qáÆ!Èû'‹¢0ÎóˆïDç3•œ•dòp+¦= \1žmL×mSFmèýàtFúÿuKGP ¨ƒƒ'¤‡oòIÏÖ üi‰ ƒ…Z-üUå&[[t·sœ@%«wÊ6©û¾ÓÒùr4;å-v«u›«W ò†²Ðß•Æý¶ãV¿kÂxV›Œ½K¨Z-Ó}p%>ä,JÂ`^TŇR¡g²è¹º×+by–é:”§…0ü²ÐŸ2V³õ”Ÿ§OTÚuŸU ¬v–Hç„Vÿ ½3Ϫ¶resä“¿Šhoš"û÷¬ºÅu@çk«0Š` >:êv£raHÑÑ%þûmåjO#,>yJ»z—ZÞ 'I´̲] «5dQÝéDI) 2=¶ Ñ@KvúH‹ÅÓ øáÔÉÙ‘óT¡eNöêÒ6%DÆË%Ü×ÍÅЭMsˆBÓ¾²Ô,úŠ.8-Ìß}ËÆê`ú µƒ‹œ£R„Êl1@oL%ÞÓö¢X…hV´Šu’¥¸ÁTÛ`¦(s&Åhe%Ì%ým«#= ôµDŒ!W-9´^e‚¢Ò'fð?Uv#aI}Kb™HßEÇ3à®ÜèÐr—ÄÏ3{ÙCo9+$€Tj' ”æâ‡‹ÿ¿¸5UN—}ÛÓUÌ]W4^×jìÖ”›D'†ƒ"Œ¤24¦â¤Á§¼×©0¹—”zÃFšÞ˜Iù°d3+¼,æIå/l´~v ÃÔº´í‚"k¦Ÿ§ì›ë§.HBZÁÝžöTzyà “Ù¿ÝµUÂÍ@×¹äãÆ´+ÛB£‹—·¿q,¨0#óRxõpìhÉ!¾Öý0«›«;òÚBô{GØ%‹„ˆ3†þ+ï‘Ä–‹c¼sýŸ¬éJvÜ­ hÖ nôŸ·N‰ûvdÓŒ&W$/uÊsÂZàCˆ š,¢‚•뜥^Þz˜“kkZ"öŽØBÉ/sçêJÉüñéT“?ï!2Œ2ÄÕ(ªBìXΕÞÖòÂ~•˜Pßâ–ÝNÂÌÔöl$7ÚJüæZªi+ÓÜx´¤v¯N6»ÇE'Y ³bcԋ܇H‡g.•OóÜ$[Å{‘PÞ5¬O–Êùbü½ß)½Ýz½J/sϽŒ–í´óÌ ‹eú}ˆuÛpìÿÍ‘/X“ùz(Â+ã™ä>ÜD2’¨ÿ]7sšÑ«ù½!Œ£B&6µ2üôa4”¹}ßÞ¨¶zöäÙ×$J(HëëOjT^3"a=åÖ ª“£¿¯´ŸÏ §ÒQÀGOU;ëËÎÁÏ<´l¦S!ø]…bxL[ÌѼCéÏmñ¿[°,1±g/t’ë ÈÑ BÄò;ä ‡¿r{œêñé<Lá¥Vw$ä½Ñ޹À6ª®>ПܸŒŠãw¯$~-š“^Ç{úÈäñZvv®Ŭ8Qu÷ó¦1fÚvAå Nþt^ý Òbž lÓŒgÃ(—s™ÛûÁ+*ˆ€ä¡>|“*™o¸¼îo&)Z¡­Ô†dN^åç—§Ð4ºœJ/T'?™'À<³< ©Ö¢ˆÍÏE_š@ã®kåÑéÌhÅÌĬEòaĘ)ºì~¦(â‹€6†K%išH>}q=_aŠXý¤\#xö*û'jçÌ©ðÑŒaNÍwù…Ólñ˜ö ´dÏ›¥q®]g‹`&jêéìʸàÌGf–_`\ya4Glþ‘J Ç btzJVd?\ü~½SP(?È‹’8ÖíJïGÓ¤ Œ@ü¢™º;¤ÅN.¸©¿¼ŸC·ô Ù1hFŒÅKüv*³4OGtÀ­~WÇÌ…ñ:Ç Êlõ—RT #B/7¥( `Md’Ô$(F„g‰ª1+z7=â~Ñ œÍÇ¡…‰žNG9è(Dpð$ˆÒµ‘ -äaI¶~ î{Ã63PyÎC؉Rã̰‰„_þ;Î.¢ØKÏ‚éÒ× ,é_†B¬9ŒäYý™fx¯5Ý[T°bPæ¾ô³‚ˆétÛ "mRï¯é盿>ÍVpöoRÿXûC˰µÓ-4VG.aYzѶu[øù]¾2üÑ©ç Ë&pÂöÀ-ƒ-­) +:ÅÏâÌ»*¤"¥}†ïa 9Îéë«qRƾ¥ºø˜*<š;œ·)âL×Ó¯6;÷O‘){ÅÆpªØzµ`´õzú‘œ‘€øá]*À¯:QYJLÊάò¡ŽÊ…8äÝyÞq]Œ›&$=¹Ôbކ ï ó-™‹Z1V%É% Ϙ™ÈdùÚ(Qc&A½|ðÁÿI©[SÄ^ˆE,ùÁò{ ѳù[äÏË4_úi EÇÒPI3‚Æ«ïÖñ’¢Í­é+qíh%Xü%5ƒw¬B……T,¡ —ÞcgdÞþ+ùÆøžc¬À2¥{š>¨´<ý§•ç6À™Ã¨³{¬CØ›DGpý;†WkÿÝ™rm£múl‹´FÔÎfküý‹ª«w~¯Ñ¤ÅU^4×£­Œæ(Îí²²ã\ñ>˜ë»’¯eʶ,_¥€‚§ÙÚÕ!þÚ鯑(1°õOIÝaئzãÁ¯·v ’±ÛÙ7y.ˆ8G­Â°z²&»÷½MW›R¨êáë¤8/>úV¿òH‹œˆê®á[Jà¤"=ih ËýxÈS1 ¨ìlU ï—éGëa\ø/#-Úe¼Ø²«¡M'«âÞ 2ìúh`ÓC÷É@îç`kbäݦ¶`Jæ¶ã©mÖºk½SHIÑÙäÞ¥+‹¶Áõ–Ý0Úƒ?¸zªxME“Ç2¢¬:7 F@ÄϽÏF&Ød\’Ku¿(«)'jÍË’/25%ã=@Ñ –œ¾=®5t¨}™¬æØ®½Þî2Bºë3N£qÛGÌ'`ß*2£Va² ™ñÁ]ø®òj\Bbñà@Pª4’›eûÖ{«Ô€  "›ëVm-Ðw&êbzáëÜ wÖc¡rCÈ˯âçÓîËkŽHÈfûïÓ”ÓÑg\nÜU!<»ÂÒ2@ƒDæud…¼Ab4aÊ(8,ª¡Ÿþ‘³¯ŒXßA¤™2ºìn!5`¯øfI<Zû¹1”ýBõ%I/¥ dz2”Aø1óàp0#/žbr?èÔý<©5@LxíRÜëTnS·Ätž'ÛãþfÍ«w–h}-ŠbÆ@e©R°ìe%Î1/_ŒíÀª¦ZÜyªp3ÓÍÆ£xy‚¸Ú€ïªéE 3Hù’yŸÜójD’ÆÀmüÈ¢Ú–Ú ]„Â÷´}¡P|@Óª%Kà§Š(ã«Í¨¸)¦Ao·ßç×î!(=q]Ä'P³ú”AjK”œÑËž‰¸Ü+P.5N¦ýeüéM ?ëqš?°A&éR'Ð+ýçy÷jÛ(÷i\×öz ô†8-Yé’J ´íu+&RòÐGÅSò•P'Þ[DäÇEV˜È×bé¡›M˜(BÌ*cѵ!°§B„îB²*Á¸Á$™‹ÈíÊ_ˆ-¬ !‰ÃÍTé»3 {†„Q½RªÌ^!¦AjXÍ]€ÉàrTÕÖqo+[|ä—QBë«ß Á¹Õ<Vú<îkÃ.ÓÿÛæf„'¤nÎzß]³P•"µ)‰`’ó^×*®‹kÊ£rÐÎG¤fBóá »õmŸ«bEzôG ” ¡#ù)y÷Êw2†w01îEuS¬iL£©´šÖõæDúÛ÷@M&¹V¾xþÍ46#¬ÚR‚%#Û"m÷”Ò ›ö¾ðÆÝ|Øà™ø¸,XoõÐ4é°ÚïxQAªçd¾ë½(åÜØ¹‚éÃþ½´}5G¾sÕºZóÿ Õ²žI–OþU–‚ÔhÀ’ÖòžŸ|V°Iy~º‡~ ,Èh¹•ÙÈI `[³î6C«uð ê‚MCçóXWÞ®0›“a¶Ã²m§ù‘oè1,Ø•T‚ª|dŠ_•1[9~ /c~›Ty䨤`*jk Qa§°»2T þ‹0ú%,]ß^_Î5MXÚ$Ž/åKpË=ƒ5S©ñšèjÈ9âÏ*ô4NÉv7rŒ_¥^ˆ3£LM|…ä«*Œ‡NŸrB †ÓÃüRئišÝ&e|°Q¢=)XÖ¶HrÔ‡[(€’Îúñ&b5/îmbÒ"Ìf€³ÛŸ·è¦õÀ×Úñ`,ÃD4'Uùœ,8ínV â¶" j¯mQQMywlWðUÖä½Ìî@8^^&ýŠb­©RVñƒäuù„~$lR–ŠÙ4óÂØß8CUýiè¼Ñz3›þ{¢„80î#»—+r±¯¸/W|¶¾[åði·æ±G\õÖCiªÑÇŦ0ÜÊ“1zG›•EQ`ˆµ†cù9|ñb¢:íKÁƒ1l`„ ?<.ì)§îz#ëò9–hõêA†f`,=ì¶šÛ@Û§'Uü¿èwhèÒ¬ ”gÑ‚Ðo±éd®K¼_“f~º³!6å|N~ózÒ çs·¿_Ël;Ž$ZÕ²ôÂ]Ë¡Qõ¡‘í£;Ì'ŽÒT)Šƒõ€ˆUbÖ Ê´\']e³ï±ÒœƒŒôC5 ö\õ«ÀYØó”vðl$zʈ¡”2¿g.*˜§‚¤Û<ÊÃ)9°wzÌ´‘‚ç|°],Ù:Ä@ïv?áÁ¦]³fZ# ÑRX_Þå€Õ|ÿžúÕö(nœµÜÖ««š‹–fBÖ¶^A–¨:ÔáCTa†|O•Ž,þóLB5ܧó½ä5¹¯øÔ½¬bˆ6aÑ­ÉÇo2õ?Êuͽ-§ yOÆrΗ]ëçôzp™-Q¡¦+tx‚£™,ú0žTwxŽê}÷.+b0sPëÙ"€×uÖFÞ‚˜-x+•CÕ¦<ëÆbUÛ*/]SÝmû}ñcª|܇Р–‡üzt84þÓŒôá£ÌeôãJ¤A‰yÏÝØò0egÜ?ªRÆÓEä~‰ÍòÐ>€úÏhÅy‘Û@ï‚øÒV(I£˜àr©eÅbóÅ4[Æpü`At+0òž‹¼ÞLS°'éƒV‡L¹œ®§°kø¢L™§mĨ¹MJµ~i\‡1Ûµ±ÈhÛÃv†ª}õ¿˜lµ=†ÞÀb ßüþĺEÑ7<¥!¯7ÅÛÇhÛ4z…ÍÊCµÀhõÝ!ÈÜû<­¯•˜Ù·qœ—Øñã2¶[×Ëz'Š ÀxÎ rMØ>ÚÞB†røC!,Ûg‘E7& ‡7ISiܶÉû$?LÀy, ‚ïÍ#ƒ¾ 3ÀE2°Äb>Üæëø[ŸìêRóŠœa†µ Ù¦ {¢_=C}YZ.ðJ4ª…T¢éƒ¦Nãÿþ÷6 S~¥õ?ó2x;(áQkG“Jl¢¢‚Õ4˜‚mÀk–âd¯ç‘Çã¶KD,•òcû›1Îpölܽ1”'ÆZîÖ‹Qÿ¶¶ß³¸ÖÜõ‡J™¸Mz³¯×àÉ]Gr”UL¢&€‰øh¤‡ÌöÔƒ“FʱúY`’%>õV dÙŸqIÔPûû6²ã¿Ñ\àgyKdù8)}µ}‘h׫àW»Lº¤³>ÄT\Åë*ñû¨\W/ö$\t$ŸÒŽð´šÉv8Ä?RrWùHÅ|ÒÀ&lZ4â-©)ès2LÀgìÔ@ˆáˆ9Ö#!8€©ZL„~*¹Í”EåKëîÅÏ…r²ãúð0ùdþ@Væ‹+/=³ƒ")fî´¥[éhZA<ß6Ñ9o²á¬Â‰…€ƒ|3–©:6mgŠvôMÎã6·8 Nza»=ÞV¨XêVòio™íæ3•‘<Ç´Ih— nÕÞt–ý–ª0$^«÷àõÈò2¼Eý‡¾ån ¢V$½2ï(Œ½ÿÚÝ4×ÌÿÈñ}FgDñk†ƒ!*Ó=€°bšÒ˜eöûËôØ:ÊÂå(ý»cÒi‘g½ù,¦Ê«^”ൽs€I÷'ùºþ“­´’§Fàûÿåa¶>ôجæë¬}|ŽjËë'[ÛìáÆÎº i¡Ö>лºXß 2–.üß‘e*| PRÕ=ø¨©u8;?‘lq½~&Tx§Çdñ)ö<"rQœÚXu¢}–\”úÌê7 šãTFæM–FNRLAq[p¼–ÓžLŸxͺ‡æ,>C[¶§2…ŒVŠ«%jáñ÷ÎÄŧz,®|$°PoxωxE«“Ã"üB¼Ñׂ‹ì –÷,s=©.,7?÷X†@`Ë\™-r8!8­7«N«±$·…,œH¬;‹2BŸ"[ó>Ò©l#ø ˜¿séÛC›î{ý/¯ Ó/ú•wb¿ŽúÝÙª.š¸LG!oæÝk| ®;ÜËj-ž‹ÇR™zAƒúÀHÁ!:ÛUËNØ]ÖÐfä`˜€`YŒÙ°FÛ ‚æ˜ÖŒžR`GÚá UDe0Ûêý½µQ_Î#„@*ˆ’PEjENQ­¢Ùø碤÷;2õ`¸}‚_;¹xd£V,gºb¥ñ7ü&+ƒb"c\p‚·Ê–dÓß6bƒ~½`‹M;_÷}V­G•Ï)”¥Q–D¹{[–á'BL7®0Ëï¢XjΚ7€yæO]ºú䈙ví©ánü²¾’“ºðzü{¢Û#‹äùƒ$>Cy¥Ï^ñhy÷„ÏÁ@£¯»6ïÞÕ)“éi†Ötú ®ƒ‘ÿ.uŒ·.H•Ý‘’\–8Õ¬7ÏQ™Ü +U]¹ ³´K­ ½+<Ðü¢lç9á¿ú®ŒCÕ{ÎqnðuÈaìH¾0e%c×Z/ààˆ³^£Ïo¯”„”íHìIê5´RÀbÑÎ͉(ˆÚÆÁ8¿‹Fú6hW}oËêmÍ¥‰ýgYù\=NÞÁӠɢFCFÅçâ¿©Šgù&á@8Î=.¤ÝJ¿D›H«)-Ni“´ùÙ8‚؆…åKGT;V…mï+NíjS‡«YÐÇ›_³¹î¢ùQ‚ÂWoS> 3¤Ü5ðµŸØMjo?ƪ¹rÀÇq`‘Ñ0íqk‰Zˆ Èæ´ÔçqHo2v„B ütØ®Éf%½)«läÔ²&3D^êÛÖ¼ÿ›Ó+žÿ÷˜ `x+—Ÿõ!mŸÌñ8'WàxW™--ü%×<Ö׊ˆiJxH}%jE$šš¾\n%tͨgµ-±bÄœ,DG•ÙWø¤ü°çÊ’ãÓ³^ì+Sšd঱ìdÇÉ¡óDzȶưØvÆ7`jÈö7%¡©ô®—öpîJAsFŸ1¯B-+ŒÚ@-+ÀFŽ­Ù&A~Ê¥[ T–¾B:ÆÁK¬Pø¾Å¨]ƒ¶á Ê¦˜š@«lÝ.b?(ž6Ȭ…KÏ.¹ ¬àÚ+½ñ}+Œjø˜ 3ÇÞŽ ’²o’µ–•ÕìÏ®û…‹©%PO™Æ]³5£ÍçSVрȩ…17ãQÜÄ›r¿`[<äD^Ï å™{©‚NX\•ÆÐ3w*SéCsŒLŠÑë½0Ðsœ$#œyï a¢ µ'_°sDö¬SYÂÜêü§²Ô †6¢pÞKü _Üõ‹å2Œ z ý†Àý;¹DRæ¿õ_agÓ5ädÍzëQ”Uãè0ïÞ·T±I=Ößff<}6…YéŠzÞ˜ï o ¿•+Ån†½ ýo°¬TïÜî̺+GH6jôØu…Ð'qÕFÆ•b—¼†ééDÓÂ#yö‰)¢W%´ê­\]9u—n$<ásgê,é}\›óàdk1—ð¬ˆ-Žyަ¨µxõÓ(üÒšo$yÆ ¬ íLµO$x¹cüöìŠD6'®0jܰ xúS«RújðqQ¹I’Áu¸¹Å?ù6=ûfþþÕw;¾/aäÁ¤¿q[£Ž‹šß%¦v þ Çí×ð¦µÆ¥üy7çvd‹~CîŽ"0µPÜ„Á!Nш:S‰?ûô¡„ƒ #:rÉ7?cÛPtþ¢mY+}«Ó“˜Ð+mOŠ¿6×üOÐ}’+Ö¼^‘XF2}ºíõi‰",S"û(¨K#Áºuámì|ÔeÌšfèÇî;Ñ}Ë™Œ• ïc6u€–ol”.>c°)ñ¥R§A( 5jFÁVJAatj!É<{ÙÐtBÆ¡yÊ‚K©¸Æù­ì£FfÒG÷Ó—/MÇ–5«b\ÀÌØñ¼9j½’Ù n3°p zJMnÝ<÷± íÊ1u ³![,åè¤å@¼ãƒ§gßÛƒ¦iÆ-ã`A2+ l±–É-Ñ똅ó¾É’Tö}]Ò9ñ¼’Ò8'æÝr’`P¢¸¸jÁw+°Îng÷o޽u£"òªÆÙ¸ÇÇî“?9qö»ÙÁvtO &CôÓ(ÄÛ}X2œ¸ÁÑb¥5ÙÆGÙ›²zr×8 ' JìévgãBè+ÕÕNE; ˜,ñæY°(î”$˜§î— «ÅJTÊ †•‘á5€æcÌè|\h{#þ®¨‡| Ly%™ƒÅ±òœ¥¬Io8tLÙ0®S&ؾ)!‚J|ø±lðtC¦Ù¯ÆmÓRÈRרTqñÜ= L’¸3K üoÍûäX‡Ê' öAŽlÞÜyFîmàõ¥>¹Â·¨xçW‘Ü,]B¾æ09²2äŒW(£…LCÊDMoàÓ¾½>Œ4¶m‚æØb޶2ð±ÿŽSrºXŠ U÷X¹ÓãÆ`²4v4ûåœ1[‰Éðº;“åîᩞG÷Ü|¼ÊZH ݱ!Z¬k‚ª÷†þ¡'$®ÙžÜ`²BËæ¾Sï,2QlÊ1®(#9-1KHÿ\oÂÑbmž(¹øAâsŠ;´Oaµ<|‰Ò”§‚È4 QÎ=(ÈX~Nû`S˵ÓjKi?¸ü ð¾€ã‹]cØkÄq£t§* šçAek'e­­ÌÁäSVì×FL®Há&M¶ÀCbï0u ´-ƒð ذ©—ßûAS÷›ô:T#ݰÞÞÔ…=FX±Šm;xÆ:´Ž4ô—u7Æ“‚žgYw»IÈÑ@rŒHóZTñ‘G¤ôÙï46l•„Ä7,ªq¼¶©$F8„Æúð“y‰a#O9ر‚ pz¯åžk×”Z9Mb:™Šb·0·,S%rɽ®“:ÎŽ@~$Ö‰wTÞc RÇζw¢ý§í"ùæÖ…þE ‚#oçÜ( bjªÓìHÎBÛŠ)M†U´U™#¢Û÷A§ü§/(Bé]ª;êEápß"'‰ #B”šfëZ—ÃAùž~S•õ~DÚ{7ÞíÕìÉÇ´MÄ$ÕU7KÚ}àá:yRû$:‡½Åðî˜)ì¹6y…豀 Dó¼}9óƒ‚× O¢V¥ê í&(O”;O—ÿ²nølÉsù*«–KpÏ+áªÏyÙÐÅ• 6…Ó1š…Pè·ž`ø›%‹õ4Ó¥àÄ_÷Ü ¾ø^ò g_“¤–åšty¶(Ý:×þŒ Im ™1¦ML‹Äk×ÜýÔj"âð§Òµ`¹93?¤È|2Kw~eçõ„SIÎåž>‹o2.ƒhn’»ßbO©wºïU«zȼä YÒ֧ЬָæÕsp¹ãŒT×­)ÕzXrD‘ø-“/F–/ohö­AsŶ™±.D{ƒ‘Ós´~ 3NIu‚=¢´| jý =|3„ú_Ëx“3›‚œÙ7Æ×ª[õ«¥Zƒ[ŽÕŽUxKíãð3‹§³ÌØìa.RžŒB¿ÝaWR¦}”Ÿu?y nlžR|…Gcö‚Já;ýü$ôâJOÀ©ü1x«ôO_Ð] ¦|MÈèŽ&_¡l â—I蟱ª¡3Ú…x¤Œ ìPÜà­à÷ ª‹Q07™|Âߣ«abêGÚ¡öFû7VOŸàéïè =ë#è-b\›ü394õ}RsŒ)èǿ͗Ï&«5[r½-arôiB¤þ•ÊÊZøñomÍ6Š!¬užeA(wQœÌR)?ó„J÷™7r¼»­oFÊ‚˜àaWB%g>æàeE_"iññ¾÷‰Ê5A£IžÐ7§³ “NâºÊJðކåÝÙVbÿ×#[|î õíeñáM9`ÎNœñô÷ø…N“ .!)þ¤˜AáLŠÝE\œl5kþl²v !$NýËïíçÞ|ÂNø÷«ÜÇéRœóŽ ”lÒž‡2»ŒÀ „+Âeã0­šT6޶˜r]ëŸj, +pÖÙá]Àˆ?Ó1ó…VŒ,÷?š öqé,ïW‘&¬rN¡h>ïµ³¹|z›DïÏÛAS°ØOÞ¢¸ÈAJ´â°ÖL™3¹D°üYôâ Š*.f†3Rq:ZÎŽSà@8Êœf§ƒüÍ]ý½Zù¾íj2påc~Qõ¿Ê&aîñ<”åðz?sj;¦ÃæfàÌ7ºÏ¤ço·þžÑ¿ÌßKØ ¾7R'‹s-5Ý­›çã»ì(!À×·´¨Ò;N1K5ŒCÒ´X'÷¦YºŸÜ!@HK™¤Êoîб(d}óy„,ÎOÚŸÙãìx`¡ƒ¯ÊašUC®?`2µ3aÚíŠZÁ‹0þKeád;éŒf“»wž™´r³Íª„Ó—ê†ùï$®ÖSKN’=Åp~,Y€`‰4BCSïƒ~Á¢€ÆpÔ,aðòÓBU£å‰:²Za+…¾6"ŽëèhñÉ)8]›ÅÚáöoV6TQäqëdüÙ–r1ýÝ?³ö¾`÷"2@ììs9õ|æåùAÆ¡’œßƒžz-;¦õǺ Ú´P±3¥hWžfn:tÃýièò0¿Ä®á˜RÇù$ôh’N€Ì{ࢵÁ+‡ e­ôü¤Òð,'!ÿå¸Hµ‚gC}m•Ú}þš|=ÆÁÜåݯ☡Â@§ÈRNŸ;lÖñÊÒÛÉ…{Y QjÌwë³?Ik„í›ã|(vó3¡P¶Tgæô:Ÿ/¿ÿ±•óöÙÊ>Ö§aè$ur Ñ‡šï£hãa!דMÚm×þÑ÷¦ÜÊx“&ÀJÉÍáË[=æU¯“&Vìpãâ~4#^ ð.´špþñÆüA6Qúš¶Ð¢ •Ä·ç!IvÅ…V^XU6š–ï:[¨û//͔ݼ\v)‚! \M½DàD1+»à+âSØá˜±~3Ô0<Ò8O;“ \bJÚ[ CгB/bÙÞÔõM84¢ÜØ+þ]¬i²ÒåÝ©…Žßxïþ!/»™ÛôÚE\> ¾Ð°Mˉ]C±Gìødć0ŽbŠ=æÁ®ÐU*dŽ\ík™tc¥ïn›g2¥éhÀóz“B’$ý©6"Êi(oîË;¿ÅÈÚ¹s=ÜsH×ÛÅåõØ8$ð®öz½zacv¸PŒ3ÀmWFÕPœlb²}E‡ 4ÁžîD=”w l^ø¸%* Nv:^Iö‚ý¡hNf<–HoøtŠä ¯Qûzî—ãô­ôµˆú “‹ôG7Žuê HJ *[« ƒ'ºözÑ*éSÑfÀÕ’W´­ßªÞãPŽV Ø€GÁìàßòoš:Á>OØ^%ÀÎLp‚)Õî^°Zþ®CŸámëo#û“*Õ½k¬hõ-½^Þ[v\ÈwÝ,ÙX¦¨ð.•+Ž?·¶K„¦´ÿcªàÄA†9‡ºà-ÞÏ3y±qíC²(ŸnŽÓŸ#mQØË”âI‹‚*X1Ñ{$‘{§Æ‚!PØÜ‚FßFðÖƒˆï§‡ü‰X¼®óZÒæAð siü´,)•ÊG`m¢ÜµšN?Ú)cÌÉKé9Ù{ï–X‰è —hŸ;ä³É@ßKP_ÚkX XÙ+,³µII•½ÙïϦK¼HžŒýÈ8u¦äøjNµ®Ðu ºdEú™Y#Z “dJE¬Ñs><ôš>_¤b'Z¦i}|بNŒy¿D;~Ö÷ç9#ÊØ{ ËB<úçOûLÖòÍ¢_1ç%•éc‡ÇS¦öK.«#nÉÝ—  \wOï·8-ÏÄÃ0-õP5œ}ƒeGT‰,“KÂu†¶ ð@¯át=Ä×}#«¨ªE‘d»Ðò3…ŽfõˆAÖKp|{Esÿ}N¹ü)÷’ÜçUóÐËî´_.1.¦¦Œ½$ŽyN÷@<7?P‘ãÕ‡U¯s4‘{ø=BVA¨‹„Õý:ÅícOλO‡ÈRº÷¼æñÉ \—îNü–¥‘ÞqÁŸÃ詺‰Hý™·hÿèvdÏE$Nh­’³Ô™Ú°A@>™Ñ­½ù}®¹kçz»¯wTÃÁÑnÂW,žô§Šã¿8à‰[Üõ2@Ó×´åAéKƒðag9`t)-ûeØÕ{À*@È!ưïÓUùॿîQÁÞœ¬[H$ãö¡7=W¼£»;å„C$ÆÎôö™@û6A“ƒ÷O´èl—§~Eî1~óÑÆn§ŽÏKÖ$ƒ8 ºsz6$ŸhDùÁZ7^ñË–…F|£s‹^Æ;^ê~©t¼LÇêlKøvYýñá]Ä ÀTé«›2ù?øªÛx4v ‹§ˆpYàˆT%²WáPôΗ÷|e•~ +O7|ϲ–^3qØE‡-ÈËÿÔ_„nYê¸"+ÇI¨üaþža"õhj I£yl ï5KÀô¤õûŽœÓež£•¬ÁVÀÊ\LßÚ¦= v2–Ól{âþ‘’SÖäÃQŸ‰Ÿ§0í1$¦J¸¾´â#€<'O‰¹BË!ôÜ ýIIkà¶êCFإᦠåв6¿œ¶²¼>L ÅcÎN¾þ£BýšM¥lOd†—È9ý0÷? ¤{éóÙÞĬ/YCwZõ’pø#xÑLñçßAc1ßXDa°qôÅ%†©è+|DÙ²’ ±k ã±9±ø{ˆøï¥´G¸ë{Rý"ÔnIúö u;"–»,5.“©G³FmE•}ņi7³™ïÑ ÑšB“}äu© xâ‰D ]Ìb¥(Ž³ÍŸE&¦ô4ÀoÆ=ú>³)“Ø»0ËÆ¶¿Á½Ð—Ê¡ËGœ¡c¶2"f˜ô¢Š™[xÓ]=µ³XˆŠÿó/µMýÉÊ·KÿÄP’Q82„’ÛFTñjÕ¿<6õ±i×3™À¤}‚¢…>øgW2[æ‚Oÿpv·ž~ýÐJÓ‚‘iŠŠ5D±¢=4û^ÈhÕêî¥_`ŸØù­ù—Ý‘^P¡¡¶+!r‘7¢î.Nóe´aP‘wCÚ×íÙ¦c¤ n)Ã1[ÚP\Mé9‘sßÈ4Vúõ°£¤¤nxDcûÚÁD¬€z6I)ÿËŸ6'oÌ×çT|&jtÃúzY¤x¯- —°fœ€0…[ÀÕêd€ŠÊxIJ §tF龸¾ÈïP}FèíÛÂá›N´kò ©ùËöö쌵á>ÏíòÚ¶¢O¥×.‹>Ûÿ!%…²šÄµ~H»0¼Øšæ…üò­0!ÄN{[ ÚõAMqa¹°îf†<æ3ú‹o tØÿõI f'«N¹QOmVgíZÏ>˜Ï8pݯ@–\Æßâ }R—-ºR†á̼W/ ‡Áu±÷µÎÌÞµcêc.Ô7È,OYKäéøÖʱüR]%wå¨L¶^Yˆ m8r6? “à´®eò6Á¬ü]iL>W{¨ì (;r ÕΦØÀê3²zµÄýÃë\"/Z3U¼¢J|ÓzåýbÎ%Ì:<Î íFE_¥øÄæÌzD´É@²ì 4»Â5”gJâ‘—¶ž9T¹S(û•àù#0àizœŠÄ€¨1„“¯ŽKÕ4³_¤¬èÂ$®?õÌ*ñ¼}¼ï>mÓPfËLˆË@ÔQGx^2ùñ¢°Åç|rjd°ê™R-ï€(/šfASVÿâžà¹µw$›Ñgòš–1×ù0R^§¼Þf^÷ÛDW‡páØó“Fs#.kRpˆVk.² å{P§s–+™™ ¸)§\ǺihØC6 %&‡’·W†X½F%‡1 £Û!½×‚TÞý.>5yû?O´ NðûŽxY¼ši‘!ùæóƒ¯J¶GĸÚRócÎÔå„0=@Ðót• Ù+¡þ°ÃMzH ›µÆ(¨’;äeƒ_.œØ·P«ãóþÊV·ß¯„”?¯}r“11Oàçø*Áߟ³°P8Þ%g]«&±Ðe =cÏF6HÅ®…;êq{ô¢*‹‰×»B¨ÙÖSœFÜ€_‰vÀª=ysmA'ÄXYÄìoz«L¥³wšÂrÍæwu5ø7›_$¯à?Ý _5»)zÅùefw(",O[ ~ü5Uð ¨Ñw!òœbsÔç‡ ÕªF“éÕç7­9i8|ø­"*¥®"hWuß.ò[c¶“äorÌEsúæÚê’Åô²%]Í.A2²£/ð(3Ã`o Ò“qƳ¦ÕíNIª]ç’;1݆љ÷æ«yøûßîa²!šþ1Ê3™g§WÝÆü¦øìsº Ñ0Ø«,ÎöŸË‡ 7G²úŠ ÌÎ]{™Ï7_?˜Î\)g vöÞ;׬%”¬œ®À&>† "Éb ±ª<6Z÷=” i§/­&fIìÓä4¢TÐ )–-ân¡±ádAù1*7ÕAüWg†µ–`RF ‰KAø¦ C‡ÇSéûþ£màŽQ[‰é$Ö4îÕFË·F˜p¯]·ý(4»§·¶ý”ìˆïKg͇Ðå° ˆ.š†£Ëx„òξSR}bKÁ½à:{GFÁP¾Ê£(A€ x˜`Þ¨yø9•ŒÕ;üÊÔìC÷îöÕ>ŠZ€û/’´5Ùì{»8â2]G+#Ù|F® (ÊÍê9NßrÉ›&œ#[Ò¦ ]äNk«D¢b7à7j¯Óa¾ÚÁ3d9ôÃX N£¨FºÛ爕Ö'vŸˆŽ/ºk$|5ñÉÉȱۿYî´Öh/M&È?x>dƶ»ˆKHòõ¦œ€g¥càœ_³ó ZúÄ|è¶Ë`”Ýs!÷„ÜHœK‹üêñ£Š˜Ø+þ}$qf>à!8f[s¯"³•ß`‹2ˆAס y»ú2_ÚÎ..¢Ìü ~¶úœ°x)„éÕ^!—¤´î8gwUáÖû²Ú Ü’‘eÃ]Ë£ A5iô3(‹ŽÛHwœòêüô7ˆ#`†d4$ Øšlì³"Ú§¼5FR!Ìq'µ#ýôÃæŒÉÏê‰x1cÜŠCÒ– v1¶„ß( «I{“ghËââ¬Û°¢WìÛS k5úÌ•ïgî-¥ 6¡kú/ôRñ‚{ÌLÓMÿøÉÏL¥£°È%rQzEûò†À:¹Ûx¸‰÷ÁM+̲oÔOAÔõãÈÕæ•À{°ôr$]Â3˜5ÓUTÍ;Ù›òÎCþÎÇvGE”¡Œ!ZñçBŽô¾4ðºAíºìؼîŠ+ÞÐ.€EcãVƒWÉèõïÈXŸ ÿF>ÎįKÏô_CBÓ ï6¹â™´ï^}ˆX•¯¾ß]ZZ’[ÎS÷=êbé7AÞQGš n<}Ëâ–m,Iªûyþ¤¾<²vÃ0´ïeñ½–“oP~«I„QUGj¶,aQ+ßEœ•GG¼ xí¤vMÿ>Ùà†÷E¦K˯° rÜ»ðÌ€­TLÇv{Âäá‘~ôcØ?œ‚UäÀAG!ô1ŠÇõí€V‰ÅV;Y…Œôb@r“ªq„ùåQ^ÂÛ’Á Ó×]9íŽ=Ä& SßÛà+ÿ<îã¿ýŒ£eDÉãήÂ-è I(µQq×ã_ë_0ÕK{îax6qè­wéÄ úVƒÔö~ŒEø|¸;ÝýXXâÝ—±LººYm½´hí ê³+¬FÅšqâI ÏllN 1¸ÅõTò@ÝÖ úìàaÖáMn·6o>¨õãöذjË´‚aòVǃ¢ÃYfÀna'#ºb±Hyù»Ÿ.ê·ø¨¢¼L“CÝ}biÞOê¼¢áNÌ›ÄêÚçÂÓk­â0wHÑ h´8y¥û¹î¾±`ÝwÔuG˜Kó,kfÃÉ0,¶y6¼ùÛòܽ1ÆgUÇÕ*y%§^Ëâëñ©†|Ð&YÆ]þåW­aM=¥kÚ_DÄÈa%´Ù¹}û¤R÷ 5M{¾ß2@§k$ÇÙrÚß?I˜_ýR²Ewí0PüSMåŠ2îR<¿1í ° s·Tpüœ"&=ËâoßK—À™Z,z*eç18¾5çò˜¾í/‰õÄÚ=j™«M”×{pc‡î&¢D~~3—Í%ÇxÔÈ?óXåVfD…ôC9<>±†ñû ´—Ð%;·è ´î‚v_%ìø<«$uLظ…^ê³aÑ]³§¦>¦©äÞ˜m/æ&’¹[×ßÍ`*!+ʺLŒÀϤ wXGȇß ÿmj½*Ü}Ã`-Qƒõ¶ßÕpƒˆ Ù)¸cn'@ðtE…Ü ¿@i.arOŠ¢Âtˆžè(’°¼ä½-VŠÊz–éC™ìë(€Ïö/|ˆpóTy›J†?4­¤ÁÏ'ü6·1N¦ <ÎJqKùLÔ'*úäµ?äóê ÁV;.§•7zŒ/p·þÓ¥a!bbú=MÙ½›ô"—·ì¡ÛäFä—ÓÄSȽÑýéøŽÄ Â®ß§’È×=-Ü+¹ha± ý7¸“ÔXZÜ3Ö}:4çÚ1|8öVÁ¼ô¸çÑzkûd?¥“´®+8¿¤cs þjŸ®”dÙ™q– çî/_È#hØá†þyÇÛ;ÍD58pÅê’’5;¹Ô¯;zÞ;Ç6Î ©L½ÛBû#^ Õäüc£°È9CËYÆ­°2ˆÆºü…´¡EÀ;ý`}E€®–6G+ùp®ÄùËS©šaMèÖû¹Õó-e^-VŠÂ‘óÅtñR¾¦Q†óóvõè9Öuɵ%!':¶ÔÄÛÓ]o¸²FkA?ÇIý] Öûz M`£‡.Γé¡yèOÔæxMÈ™«¿Íð ‘å¡ÞÅîPúñP`C¹*g¡„6‡.©d׸Âã¹Ð}¶œ£Âèâg Ö>JõÜ’nþ·ôR£ÝLNp}OY[²îÒ!”mzû´ìÔ"Ie†Ms²dLëG,Zçƒ_Ið+'žê_GzXkCÆõ–Fعþç²>ëÀéèòz³(ÙÃРy‹ì˧´îÜPøá›ò¿$ËHd¸âåe"“váèœdLj^‘J¼5tÓ¿¹Å"áxQÅ\È3~5¼Lf.=ül|Áš•^4g'L=†Ô¹Æêî;·ÄP W(ϨÃ8}ÝÓ¿ëõÕ ŸÄqN˜Ÿšß=úKˆ!¾Þÿz®Ž /²ÜÀmÝÑËWL´âX ¦i~øê®žÁÓ„mzk2?SbM„®kÎ š$ë<†\bÉmp½S~Ô|WKý¹~ÙûÕ8 Òö¡@qêe¾ù þ?¡Û/+M°´·õs:š}—ÞÿÖ1»‡ª«4Ú:u;‡„ŸžK¡±²ºÎðÈxe“_Áø®ßû=R”ÈN{ÆÚxÐB}ó³ê•¥~51z’QúXÖûö’í*8ç.¥ôšu;²¤U«\¤oDr5#!mû2Ã/qF`ô§eç£+[UèS È|Õ46ؼž¥Ÿµ;|i¶ö+¸em ¯´ÛI²hM7½¢p£[‹µÚ‡Ì€§9qV¿ïEÉPž?iëücO·z'VÞÀÞ–b‰ÛäVŽkvÜ‚”¡à G±Enf›ÝÛÁaÌ ô oâ Émº“ƒÈ[bÂ]Ìä‰K㱬øE´·AÒ•[ÍH./“ùZf¹â§;I·<[)º&¶Ýû0ïýÅ‘Ÿmšˆ¢O½ü]®G¿êîú<.ì/—ЂÊæÀå^™³v GI¥ ;¸4ãF¿µ¢Btá9üW͹"1zª£ì 7B.%I.ÍmáÚÑsœˆ CÇE­à¯º¦éU “^x?.©õRIKŠBÍŠ Ñg£æ®$nZÓùXt% þ‘ÁÅÈ£ØPyD³hQ÷x9kW „ò(sž{¶F‹Ñ7¾*Ø:R0CèuÞAfú`ø` ®!Ø¡þÒû<ºQpÞÿ›_•kDn^^k—µH%£´‹WI'ï‘ìh§_ök¨|Ù–Íù:à;t1êû’ 9FŸz¡¬4©ÁkÒy/Óray ŠJ*è„\Ï™­düƒœîÞ€jgýCAõ‘bÕ·¥±=nü´F¤Ò'×(!L›~‹5ÁÉX}ëEê¨>0óÒ}û4Á¤«+-ÄDD‘Ó‘}¿/Ad9ó1 NvÊY£Z5§e ´…¹Ì.;PûÖ)š„"Et&—< ï[=èöS¿Àʤ ÅfüQq w6„õ£ÜCt%2û4€dxz»·¬IOu¨4‚SÐNTÚÔùFÄ,·pDã!k!×µíEªLx×Ùç¿au"Íg¢÷„t½ó~,·'6ö›µÑÁÁ6ŸX((ÝnR¦ ãýþIý9?÷¢, œå\Só”„”¶æMƒ9æÎŒ&nlÉ çEdKàÃôùi6,9YL„¹ f@s-žœå °FŠóÆixÕ¸³ŠžÖí4ydy•Íøûˆ»ÇM>nJÕ€w´|¸á]á±éÚIó;2×ÜBþ¨`¯Ø4èrY²À¬'vNyÊ .ê²»8¼J’àšeþA\£Y£‘j¬AWí’‘|ŸÕ¤VË‘v—¢ ½[åÝûiÙm=k§Ûh+["{ÏÎ_ašu¿oA7¸ï†,‡ÊͪŒ3¾;öë3°fôS·FeàìÞîm[¾U‚²]•°lÄ=UÀÊóékI²ÂÔ|wyØhLsWž÷Œ»ŠrIL޲‰m÷Øl쉼ŠïJåFÈo¦8aqÙ®ù‘Õ4Ú´@ù“UC®“ÿÜJ=ÊÙ›²­¶êºÈO«VdWVÑžß93VtÀøåË*¥€wLa¢8ß%ŸÑb_ââ XOž->· ù”ö—ñÓ9€öýeFµ¿Näè™±à›WÕùý‹Ý}¤ð×wÕþ7ê(Æà1Zïߥ¾,£†ßÊ!iúÔßMš·âš×êüþ?àŽ¤y›ˆÈGk‰ý4ù˜/èf*Pü”òós4ê¢ôOߎºv@9Ô¹ƒ6ž[f]æ“ê5¨|8°jÇÂâÆ’LqfçÕ%{ééœòfA¡ÉI³öM—ËpÂh¸÷ù‚áœ^{44æšÎZÜè~éÛ“fS^ZIAdÔ\®X˜€|½Òk+ˆnfŒˆïÀ¤ÜŒÞe®%d$OCÿ¿JzGC€±±BÇt_2Nc1߸”&þªãh€èÑÙežüXDu¸çÏLüý˜Ÿlþ£Êt93ÀþÚ‡³Í¦ Øë0×q­8 /oCµæN}¯-éa’ìç#‹ÍpsžJh÷!KÍРx&˜Ó~øvÜÎúÏ3£¸‡WQ³à®ô{yCú†Iªî°7¯ê»ÞÎCï®sàâ‹o-òõQ‡‰äûòônnâŒ}”õ%Ò²×À"¿³+Å0­E}G‡+±Ñ‰ªv5¨™dË™,îH£_¢ÑF¥…@ÞwN‘˜BÃ˰Á°aHAÐw©b'”ÆlüÄ%ÉšŸÒ–yÞ·“q‚›’E7œ·ádHcVU›Þ†ã0KŒ€ÝAЛ9¼o›vÒúý=åO,ÙmÐ02Gµƒp3ÂÃhMÙy>]RÒ¢î4æËúöÚ"¦6Å "Q¢³“zÝݤÏÊÆ2œ$wÊÍmEÞáÒ½y6Q%hrëO%÷Îßø bªvnŠ©[qªr ­º4Ó&DÑ~˜2à¶ gU¡²Ö±]goR†wÉ`ˆ2ê·¹Œð&þq¤M0-ó b¹rT×+G¯„¸Qbb:úHUL§¥¯?r'vr¢kq ’mtœ‹p®:†Îœ6-³¯º´šfY+Nª™¢å45è.®_˜–¦¯s…¦Ý¼DZV:5( [´1]] â<‡ §:<$ï‘Ø= %Éž"/Ñr.©–ÿiƒÓ„ÔxBZsf i·q "*f|Ý®Že4’̉UÕ¨-z´¾œñ:E×qnEá"=mn ¨§{?ò„`S|XçÎfØÆÛ$Ô\ZÊÒR5b[šÌè¼²ú“-ˆg›˜”’BpD)ðÑYKïRàÝ{È!‚ÃHgyŒ Z†lNˆú®¯R˜oA¼ìs¼Ê4³ë¡°Zóû\H!þ%RR¹!Õ$\O͆á#}ßC~wSgï‰~quÆw뙦©/Xø/o.×±çxyaS·—Œ`•OïЂ€Qi6%”7Ú²ÄL樑•1‡Ì"7 ‘sRBzŠÛd9ºþ’ùEŽ4 ª˜w ø›çà/”cñëUàY{¹ÆªûHÖý6Ç" ùòò†ëØûB’yŽ·Ò¼¦:§©/ôêk×ý¢O_¯‹V=?a¢ã‡Œ0Ííw‚~ÛÏAþ)¯lRÍ•|C r]^9R°åv`ëÓNVæSÄuïºÛyG 0†.¾B…µ›óÚaÁÌ?èzŸåµ TkŠÊ~ F´Ý¼!ýBHÍ6^6w¡À!rL,àÂõ˅±Þ øVVpÓ[ÈŽ÷¦,ã‹t?F9¹šGú’2¹~°áPóöÍMåy «Çò•œ¡Ï$fØ[Dzyol9Òà1/vdÕîÊvÿ×Wô}D´-ôùånÄ~@HǤÛ0ˆùÜñ¼ý¹Wºî _«õ„,·Ubþ³¤'ñ@¾<£a¹¬uq#5‘ÚfxÿŒf?@“2‘º Jì”ù/Xø”?=E‚>~›î¹ÂQþ€vv }ä$Í\Jƒ2ò÷ÞaChQ±Ìå¯:ª@&ò45¸øÕ~ÝÖÐÇ¥ Å\®BôÃs‡å9ÆãÀ³¨T¦><ˆ¶«.®&ÒvC³i§ñ6ý©(nûâPÿÌõkë )íÎÑfV+ãŠVÿú#œ/7®Ê‡dõÓ¶ïb¸õü”vèØ…# ç-÷_wÒR,gv\rœfâaè†b© ,õ@L¤¬|“åÀàÕü(æ"£ˆW–ÿ¹;»Ï6Œ-LÙ/¸z.(½ó®ÛQU„•a3 'Ð1PäÇtÓ:ÚWC 9Ž(ã½µÁª%8šCUdì:ñ¶:xç>i,l¢3×,Ò¸:Ú©–Cƒû_îWl#•Ý»Wäð²Ü$–ƒe“;¯Ñ¿PÊôÐI»PGê¢Ù~ ØôŠ.zÃôr’¼Ù|Ó+¸ynBv€¼J]‡Ñ“)jc)YçI4Šv¼+m Db!äî¶Ï=–IŸ¶Ñ®¥„µÊƒÛœÈ¼çà΂.à/ãG>Irí †&ªT:4Q03ö(HÜ——Û gÉ&#|°tòœ¹À¥×[TR§„Þ³)ljºõO".S·¨ì6ëo* á ZÃXé¶wÇ qOõ²Q¼Uw…&§5UåçSäNõt+€¥CGïà*àQ©Ãq›¡Ê²Zíù…,¿ÿú[Í ´ºÕH`žUßÔ{ZYB'焃 ¸îÕÅo#ê¾7š¹lú»¨WÛífâ\XE‹üŸëzî§nåX(sqÈ1œŽë©âKxz®ãžÔ¶z‹†ÛÓt°ÿÄø îóøÞT?¹§Œq¨Üü–&¸ñ?Oc…‘Q²Ç:ᇾ֩ý‘qØ]uF<ï.„óD;ó¾QKÈÅ «$¼±‰zçvº-‰Pv¯¯^÷ž¼ì•{!k<²×@£Zp ]JðlÂorêE oPß•4úð&#Ú6PŽ·³ø1·mÅ^œ¿£(Uߘ 4n¦L«Î%¦ãÒR‚¿ ш|ïN«¡Îæ^|}ECˆây2‰ =:x·î·úh¦„Y/›ìk5Œ³60;áQôÖÝOÏ­ãÙŠ•á`šö´ºè YSÛ@‰_ê^^lïÀú‹•Ì(n0ê8çåwãÂÕ9ήB•aQèÈ¡æL†h¾Þ ÃjÑ0àkäŽW{.fʬô÷Ö²ú(¾$“¦ÎO^ ºt©·VýëÔCRÏHíêH)[>8µÅ² PG™Óñç=×ô¥`ÚÓµÿ.·Ò‹Ã¸Õ.*ÇLƒ;ð•×ÖUŠŸvB¾.¹ ¶±·ç»ÚàÐ ’1Ü-ÎǼ'B Ü…4¦ðíÅÙ÷ TU'íH¬Oç5¾™XN[·]¼¹ä¸W·­tkû¡Ožïèôg£š_‡§<øóî¨ «XÐ¥®üÎoâ1:Ï:„½w¿d§¸$ %‹›YHJ»á k&Ñdê¡\mœp"Œï3X \¦±"mB½W2Ä»‚IFžy‘‰ÐÓ½S­d€4½ -Frü´;®]xöÍ×quhÒBÇòì‡ó±;|¦uÈgÞÙ˜©®l»Qrƒb¶¥$Ç|[ &œò9JóqX#¦~Lºë­Bñ”•À Â5ŒÇ òЉB­ûÀö ¿ÆP ¡â^·2+Îüž“îr5>hªï×YH¸²ºÿ•*yŒáí{?D†â΄١£X›xWIþ%ýÊ?Mû YEçýGMË H÷Ê9:ÅQ>FÞ Q~–&œõA´šò‹Â™¥œ ïƒ^3é”–jB¦ÿG;ÙÚ¨¬ >žçO Ì_YÇíéú«Ïþ#ÖEdiÂ&¦ÈuóÖàLÔ<ÈÕ \“œ·d\7hœxdˆc’=ê}¤Ú$;@¾î¦÷ëЩ¶:ãwéo”xt4ñ–r‰ýîóú¬2…=qN‰F4Az‰ÿ ËƒgٜӢmÙû ]‚ƒÎýÊ+ÎÒ`ÔãKÊ“U–Ñõù¤²ä×y6‰K[Z: Ô¯3·“ãt½²ÊÃ\žÓKGòFžD¬Ý¹}2:©èèÆ$fÅ@ñ*´_í…s[ ªj‡*6âÇÖôÏá%Åz1R#€¦Y„ÀÚ^a®$€µlðžå|\–¥í ;Ø-{|7´´°< 9›êCJ…+#iQºƒ‘°Š´>·ic—͹P%äk D¦øCRY ø ULÄlSÐàïÇ=ªg6–´?p¡àšq~Ö„þWÀœ;TÎ-úâT}؇U¦y<ß5¢±áo?½\„VÃ'ö#è ¾{^r QñçnÐ ]“?äˆHìYxÑ”#lÛ£è 4Œš@ª7œe(ÇÔ7jæÃdVF÷Ôú[lƒ\³É ?oÑ@-ø'3{qµË ¾ƒ¬ŒøØKuzö©ùÕ. |_Äφߞ‡˜ö”9èÎÚ@|ÚÕ›UÑÁæ‘À“Iý“¨¾ÞûÆvÓÏî—žæ8‚ò”D2-ʰÙ3YßÕmO ˆVSÐë=C'G_œc ªòÖzMó]\µ¬vke5G7±€œ¼ØCÔÁ£ ¡%œýÖ@t¤Ît¹ª$õóר+-}ùà›8'%>”ãz‰¼dÑñ…©ÄGm‹•ˆƒ&A{åG•g_=dÀ=Qzª\6y=Gô‹¾ªú¿¡ê^¯ÃIÉû’Þ7ÉoŸ½î cœxÀEÖI›"ŠÊ ²Œ÷'RI‰{!+Ê{®Žõ¤ŠÈ¡NŸé97 m‡=7´MyŸþ˜ÀÅš‚>{þIb®¿oâlÈl%UËmµ§ŸñÝ&Õ¿,)»—d¶:/OcòDÛ»H*Õ¹ éwž¤7äp‹$`Û.94A%n­;¢Ù(þæ–™†h á}Êæ_:ÎöÙ±1ÑŽ,WÖ¨çµ{ûþY¸È“„Ø#Ó'n±E³µ@ÍHB³¿ I÷ÙÿïOƒÝAä„þñ?ª$(ïä{¿/†wÊvIõ”myìbCÿu'œß‰“v&…変HëJ·Ñjâ\ì´½4zå¤KÊÇ¢vbä´Yb›oòŠ7S›ô4 6"™à % VPÞÊ6‹¨ñJþÆõþhìW÷Ö¡}Gj¦)*ók6꿚~ŒeŸÏΠ„Yvc»Ú”ª2Zm·²­kœïÙ ;‡ª§…~ˆ^¯@ínåØRÜH—ÃÁ¨ÎŽ/šÙ34ÎÐÖðKøÊqS6̵i|ÓZd|Øi9õ‡á¹|È•{Qûá ú,=§ÿŸ}ÒªêÐI#Ö¨m¢›Ì®ÆN29ߤæ5o§Ó ÏN£ä_:9u©ªD·ç%#Z‡»PímW¼NÅFgµs! {:Z¡÷h¨Þb•7‡{gÆ®à…„V óò¯ñšÀ\‡Ñâá|þæ2âü»¾ÜĪÖ#s Ú'EÛ×Rÿt#Ú ;½„^hW1H×Zu@cˆ«n¸عˆàt ÂvF¶…9ãiŸjÈÐô^ÁJ»àòv#vé:Zd‹ú˜ØYNúUâãéªþ\‘y¼Vè>X?ªÖW‘˜›ûkw51¥!N꺫ת}Ú‚7/cpÔ ¬=È:> ;~)øÙËòÊ_%œø@ÿMˆ2šaÄ¢¿$%•Ì‹}@Ÿ]4· ùQZƒ{àdës¾F¿ w˜8N£Rüx½\ý•LH@çþò…›ÒËÒSðZÝ‹€‚ô³í§ž˜ ÍÚ ¼ñY/Ÿ= xq©§á¤4ßøÐY‘×,m{¡ª/‰kní‰Ííô½.Ž «Fñ¡6ÏÏ…E0Ž …i6Q7p¸Ct\Ǩöbd†]<]ÿàêÓÙ~„/#ˆg±ð¹)¶…劊ýM½Ìœéä)µ_޹fo¢¶×Ô€Dð*Ë5A¯'[Ͳx©õû×"b¦¯?û|ÜY¥*YÎ Ì?0²EN šتÇ´®4بaa“Ø™ ! _?•EutBHrÏ*ÐêgG`u«€úWz™Ã‘Ò¢íC9\µ–Íõüä~X”ÀD ¯©•ÀQ+½D^y‚ßaÞ¯Ê'9·>>N„@·gëþ—+ûâ—pØ+J§|¿èÆ4¥À}A°‹ó²Ï—ü\mbÄ€oŽ-ðõÔU»‹ƒ[ø*i/ :F×Â!ww(+}ð'¯Ò?ˆT]0郞Ï—娝“!òŠU$«‹¦¦†nÓ ú0¶bÕ“òü\ˆÏ›3×[U¸¦+7ê;¬‹¤ý½\U[X«¢ /¸S[D›«#0y4ÐdÍÙÄ\§{2eàù`³`~×"Gå®@ê*­Aþ‚yâç4ãH ð÷ë :4‘ ‡G‚°ï.«¸ÙÑQÀ¨KIḼȉ”ÛHlE´§™Rs\·m1à(›Õ(—õd†•Xçù ÊG*–ÖŒJûõWL|`ÞÜL'BnNO¤wÅ0u^_»º˜Qv6UÿÌç³"¾Ëêöaéײègà<®²Ñ‘A÷½ÔJŸâu[$g(Îa¼ºôŒ_•r¬`!ï3œÌÊž ò°P_Jà¸N¢#ß³[j­ŸÙ^@³¶ TÕȸ¥‰Þ®W´§Â²àæ‡õ£Å¼ïÙ0n‡}¹žËâÆ‡øLæùŸì–XÏÿÓº]T;Nv0"ȯ05^ÁÚz!p‰É ’‚OXκŸî|¯&ʪhX™tã –ûpÖvî`ŒBúÚ Eq¦ÕÚSwQÉõ´H.âÚp^=„˰ <ÇÑh½`Ì%zNÚß+NÉŠVð³íBÁ•y|!Ž ” 8n•·äfË·6þK¤I FoÛ=‡ß´I"Ld<í¶` .ÒoW„‹&BÚëb,dá*ÒÇ•ŠXÕF–AJ*ÅðLJ1悉T`ŽúÎõlrü½‰ ª[Æú²é/õÖ®{üú6{Ê8çZ¤ÑGET \haV0wFWþ›%žÁ-›Öe¶S4ïøM¢=Ê.=xAã*šq€ôö_\ÒÒ÷ºäÐx©vþSMui³« „•°V_½€·ž¨jºÍHw™n2r=­ÜŒÜQ” ¯ _]^ëùR­‰èÜ«mÆg·e±ëC'_ü NNš’šbŸ9kwãtp­ je,ºšmŠ ñî<ŒûÑk|ãGˆž}ú¡D$ÑÞ”úh( ½ë°¼ ©YLÏ¡ñ¦.©wc]¯ÞKð‹Aê²§Ý’…é³G™]¼›óÖ‘ Y‰6åè=odÈ‘SºõvU±>)6PôöÀÇ€`4Þ“Ù¶ñ³‘O—Ò¸ô@‘6ˆ¯išîgúýÕÑêy÷6­&xÉ‚“z±Hîü¡†ÌÈöýGæ÷0?S|ÿVY†Æ¬2ßü6•Ò¶Ô~]Ü:ð–ú`Ñ$›Â`[’‹j–ËàaKñ:åÐù‰ó+Ù2Ù§µÊÍùgëœÜLáÏsš¯%ž²:µŸî•Ôøy}³ÆIŒd¬ç„µc{Nç #ÀªûJ½»øKÙó—cXMÑ]y낤žÚ½$Obx²ˆ pvùË+ætgH\mGÓ‰åøl8'™@Bs[Ë_©q6Ã÷Acr{¹ÂûÝ×!¯MÝŠõH·î"Bó–ùð„®G‰zã…±€ï´¬º‰·f¦ÎÆÆåvëîð£è(¬Â çˆ Ûêkü“±Ã×{wò.¦§x€(vÁÀKW¹káåWôcšR¿!xòéJz¾éYª|³Go‚çY‚‹zVBÁš¯±l‹ÀæÇÎP¢à(ð–áry¤I5ãFHfPÚèª*…M{ç.åÊ] ‰Q€ºž2¿¸’zê8ÓYÄ›n‹- ü°orý8-T!‹4ÝJ—Q'YçÀÌÐn¦ šÊixßÜøN ©^Òš+w`üX_ $Á"*€Èä!ªŸA«Bè¶¢b#Vš}óŸ Ѹ#Ùæ[$Xò´s¾œééqeêWLø »‹1/LÕR,>¾ÖÁQX<ã˜^nä¬ÙrF½±_¨á€Uònc‘ÒÃâµe­“åa0Ü<¨‡ ú(á ô‚ßú×iÎŽûÙ´F “Leéfy †ˆ_â’âDü(¶ÌØÊ?„æ¾(ðÓÝj  ô-L\2¢µ0$u¼>Q®ÉKŒ„eRi uÌ·Ãdøª 誷ôÇ|9âì }î{Ós®a}ƒ³ÞŽúæÆF-Âñà %nƒ†uÞKCE Ö8&]‚zÄœ¹¡ÐT€µå‡‰&Ï!ÙŠw5O:(.v£ZúÒ„Ú@ ¶Ï°|k” ¶ð‚Ý5$üjeü^ÃT ÿ`1r´OÐvíÙøûÜ5=µ$ÌŠ‰ÊÛ–Ò<ÿpá€^çÌUÄOóR{âþ0'âSæX ?*4Uöq¸l|àˆút@ÝF²•ÉÙ¾ü„ýEÓvDDSæÉøa"¾a sñú–eƒÆšYl¹mij -ꉇm=í ÿl\©mfUQd•âLÔ÷ŸpÍ7¦[»‡Ö®”’ìÌg+©ÃÀ¸äÖ[{é BŒÜDZ»^0\«Ckxgæ*˜lBõOʺã´YS·6l=LO³î„Óû¯ëº>‡Ñÿ¸Å‡Ä-¦—û§*PûƾÒXá8& Áëu”µ©æÆMÏY,eTÁ»tY; S)j©X\iwFwÀotiœWþ iÊK‚aÉd¨àò'•y¡òdÀE‡üiV¼äBäêOä ›iò.lÓ#K¥”šõSYŠÍáŸyŠU._&çaýww‰"½,SÖ©Éá¹{\·Å}«2Ø4,ÿ¾$[å{À)믻2áR¿¦”o¹k7´};† “bƒ’ò7O¢EEÃÕ[4ý2Ñ´$f^E‚Š£·éB¬3ªV­WE#þ^›èÞ6ÙÔÞìå5þòãpº[‚g­& ³(òªAÂkëÝÛ~ÑBÙÔk#63‚Æ ýÈûÞ¡º¹î3bzüÆ·çãfmâ6»[/t!û™FE’™ëM ¤$f“‡wvJBÁP‹/€$Þ!‘]‹ ùÀWáxæJÑmmxëùi"Å<~Ô»+Ý|Øt•¥·½ÐÕäÈõàÿ»¹Hâù²ï o —Å(L`[´¤Q††??ÑMoˆas2ùüÌ›öYï@ø*#3ý#Mý×a`à¤ÿ \aPë—65¤‡X/’÷Sš%è"3#õ¢S(²™Ÿ¢ùM%“É(BÊo`8¡‘aùh²W¿¦EÛd˜÷šPä f¼â®Y€Ó£Õ6m’B2ŒcÍeUS‰Ç!ŒB».3k2ÒûV~›Îðxcþ^iôTIš¡¿b·¬3ÛÒSùœ5͉ÆeO¸ØéD…Ê])±™Aiì‚ud¼«ÿÌäÍ}εÐËÀ Þ3‰…»Úú»Ç“Šëv&þi•½ZY­ûD¬®Z RãÖPLÆh#‚.‘¦v5‚Ï-!¬RFRA°i€¤Ä‘¥ý³å]Z&s-¥üzø@¿…ž;Û4 )@0¥2˜áa§·9JªÄ=„EYY/ÍwáF¡xPë£iZ^î#ú™…,9ÛRð›hST%²ÆíH­©ÃXšÂ¹+O´ìöL$,!7](è/þ¬ß'ºW$EŠlÇZ/Ë÷ñçùä a¡‚¿Ç€v“ý¼¦2W-> +eí­"É©%ê{Ìí‚o[œ±Ñ}dâŠwÞŸýLÈ BRqHQøV$84.°›aåwÉ^MaLÚTr'\05.ʰš6îãâ…~Ž‚ŠëÄmãý¾P&Ö†·¿7²Àh-é'£­«°3ÚÄŸÇ îR"^ÞX<¥D›¼pƒ0».ä¶ ×í¡™åà7hÁþjUü$µv‰¾¦*cÛzÓ¡œ·ê=àT+ýÿ®«^Þzw/çáMYC÷¤ÇlzƒŸ•D‚ OÏñ›l¯†1ІKEü•±K*…ìfîßhC–©NîBëo“¯.óê¨çÉ3S›˜ 6‹—ßÙ¦@‚NÏR¾4O žF#™Þ|àå\}ÜX‰ï"dT'¤V`rÙ[:*"¬Œ’Rf d4GN*~uâ5±¬Ô—/Òe_½äu€Ý­b„,l2m© §&iåuc)ª:xƒzýëÁt=Ió CÑû” ÎF¼"ìµ¹Þ8˜Ç¡sÆæ <¼y\³ñ îüEôzç'¯=*ÒmœŒ÷ðsÄýP-Âà鉟â ‰>gû“§ìÌæ, N3MlM§½9«Þ ¾ÉžVÀ>PB}ûôÀ‚iø‡*ÈÎÖ .þ·kc)˜´Æ;OÑ‘ksow_áà7îV ì…aÁê ¥ŽhÕ/1Ayr_F*8Ea<ãÐÝ3lÎ ª¤vÇm42‚Wa—®³>¤çÕY“oÞc±A‹IŽ×ßg$n}öôÀ››ÝWÁ !ºOµ§ûIÚÖÚÝÁБÐJÉnq.! IîYv#+eqió6Ü4_Ž÷7XAh¼a¸#úw0NÄ蛽ÛT³šÃÒÇ-lõz?M]Ý÷ª7Œa êT_î¹ëxȶܽ-ÞéKæ!ÛS­ÍâÄëB;ÐÌ­=pµùÝ ¢Ð ~Ù¼D\<âLzµYk†Uoh)ÊêÙÍrp$VÐß{ÑÎŒZ=PpRžó9<ãq ,Ò˜ù›iº-KÌ¡AðIÜ%BgD‹šDÏ’Pð.:Ž­@9üÞ:ÑÞ¦A+Nm ôKJBºŒá Pc?£îŽß:<›”¢žP "ÓÒ#®z/?s§Ø,ëFt³dYâäþPƒs›ó×vq+⨘ZK\¯\aûSbLc„âÇ8'‘€Y¤åŽb^¸x:96ç›-‰.&xý²‹ëQ Þ2Û%Ÿ:í×ü;‚ÙJ$‚&7ƒ¾Ûí>+g9òÕ®$GNÇt§£#cvmàí¤]X…oÖtg)¤’½c¶EˆGÞÉ!(é+„ô7&v©`úk ê̯9ÔAovnkÑqˆüyÛõ…¥y&N@cãúÉñ¤/à-Å..脳é%7cm6©è4r…ý}ܾVÞ´=¼>ܲ,VÚbŽt¼÷³Æ‚Ä'†ƒ˜F&+V0–I%‘Äq“{h ô¥ðFñvW˜Ë²ÀÞ;ÞÉà;<]¦mèJ¹K¬– ø@% ]R„‰ßWŸ‘—¼WÐwWá~m 0‘g¨O|NÜŽkƒû·’ ,$a£uPYË,¶¦ê;\“Ö¶žO"®¤2×\©€Ñ{½}Shš]ç?ùü‡„q&ˆó™íÿ£¾l«Æ£H”¨µÓØl^&`o¦xQ´Ý¡«U͘Í1ØH8|Ï3ê]Dþ~%(Ì6ûùÒ{ÎIà:k¯uÉ ”§ø'盀¿Üòšš| f‡ˆBtºhŒ¢SÕ Üða ×àÆ,øŒ~Ô?fKuL•]EÀFØò6¥Q¤6;¿‚¶È.ñ¾Z³AIÔ ×=œâ'¨ƒ ×ûîJ”À¡T$’TSèã&˜ÙB"¨tuRI+ΦB¿È—æòFO;‘uóãá3Œ‹/àzŽ>VˆcİZ"²£Â´û’ÑÁö¶šÓ^eýlÕvIÅuÜyn™ówÁb6íSÝQ‡¥¼ÐJoú÷Ál= ,/“S¬e¾ãë§:@$ª¹¦²É8e'*ìùdâR¹£\fm¾I¦Ó¦«˜Vú_¬O5ÉßÌéRºk–ÜÞ“'ßÕŽ*‡ š‚ ÐNfô·ik¨ÚcÂÊ^Eˆb8u =¶ÏΖ®÷dX¹bñúŸ¦"¦Äm{e]3å˜lG, –¿ÂͶ´Ì)C9š}ýç†ã¥žGpá¬âÓ²Ï'!&:0gµ˜X)×|š¼ MŠ+Ø0©ô^IéüüÉAuý—ÀßQªøœ*ßaŸfÿRBV·½A~0¯«Ýnõ1Çn"-|âê^;NPÆl í‚8HÓè2?ä‡.P3Q¿,ã:CÐkТvetîa¯é¾ÎŠéÑâ=”Wx¤ÆÌHÌíÁ0ùo`c©ö”¶ <ø9‚‡ n}3”f„iËvôV½ž9XNUx›”:̸ñYÇð\ ‚Fe‚ÿlF׺iÇj¶À¡›¾&ñ` ñ’ò˜ÖÑ{D㛺6œ €ˆtÑy××Ãošn2 *0}pg|ûþQT´ØÃM?Íj-Fœl•jû]Q_Púm‚›ÁÆòkUé\õƒa:%Ÿ½^XCž%FMfFj8¶ÖÚù¨ËMĦöÝuCæìEÊóþ,É>¶ƦÖú€É€Ò ÒñÆ‹Z·aÅ íhóövfžÐjîïPŠÀ1À:(Ý}}}- .nÜqoÈ¡¦©ÌÁ«ÙpEœlóƒÌdÖq°5l5ÄÈ ]‡èPE};”pëâ;ðyzgÈÝzÈFº¨W~r Õÿ÷`û¡³ÝýË «|OÇd‰ HlaëïW83­‘<“7ç&«0ÔÂ\]ãc-^_“º(.̘„ ,”ãæ µÄwÙ6² ˜ÎÉË„Uôõ£Ä‚‰MT½þ®ËǽÀ¡¿t•ƒêð€<ÕŒ†àŽl6¹Vþ‡IÀ¤“ 6Èœ’T8©n£nf*‰È¿/¶§6Ì¿š°ïÏKB-·Q…ÃÚè÷‡—êYMæŒiÀPójÀq jÔc—õ º«±ÙbꑼäüÈÍžk„+`j+Ý?.ylÄÏD\hÕ^þb•“9€E«±¬Ž áp×ÿ¿!fÄCQÍ¥Ô(GS¦|…ë7:JÎïö3ô|Q™ÓÉ’ìh ,Ôa‘.tÐçlvqa:³s^Q@r[²=I^ÔGe·(Q÷â‚aýK`)‘²7½;pÓ Û¶uêàul­l¢¡:¨yÉù6ŒúM%+T¿¿>>é„‚Q§¿³z¯qÎÑ@ãø‡+5ëþ9qÍgCJ¾à|SË;“TËå"¢Å!ŸËË®=XÞ ŽÒÙîõmcÀáAú°7-ËíÀÄ'÷zÖôbMy»„åË p(´îø[Ç~U ”2—ÛW^ÕÀ\™#nŒÆ6k–RGÈltŒ§«œÓb³JÏ7.¡/(9ŸF ­XyÀÙpwY@×Gg:Xa/ÐÆGçæœ,Ù£H32˜û…ù{:vn38C+ÝòP•Ò—:g>‹.IàÐ ýˆô@˜¸˜ãŒ_ðn}ä8T%rq¤h#Z KÇJ¯[Ì–qwý•‡2ô_ú&ÛÂ2UH5[d¦QùRóñ*˜æ¦.îGÞ£öŠóºÞ”äkÄ•‚6U3e ‡Êø§ê§=å‰ÂÐVZ 9r¯»þò½h®h.ãÔbM4´|´lZq”SôqTrNð‡ÂÛ¿ 9º¹a±]Eö´¤ÃŒïÿ}ÚW…kL¿—‡ƒ;|'Ï«&ñ}Íkt;RwHõˆ“¨DuìÉÝàñ´QïRÞsŽ}Q0¹<¦ÐvåGRPSZ³S»„ÓÕ —Äp˜äÓ_Þ5ÿO0Sø ~Çr¥ðn½¬6Ÿ˜u§8ÆdJ;/µÉ82œ5sI!WÞ‡'Ÿ`ˆtÄÛi÷¾Gè<2P'#ï…Ñ_äÈ ˆ{«MXcËçFpHKs§LÕeìõâzz?èê,L]§écJBB†6#JŸÁ¸gصÒ;”® %,†øŠ²{¦ø\áO“xJ%÷ÖtÇ6“#k'A{Ý”ú¬ëuº/ê mŸdáhKL™ðR’,Š¢^…Y×pÙ¸î4UvB'Ÿþ¬aí#С##5¿*œã[iu©ã,£í¼›wxVNRä°,`f™ ¤ú¾.?Jö¥Ÿ.qRd讋>—RÏOà¼0–©G@ƒ¦AZ‘á’RöK5[çú.j9ö„ÝŽ@Ì®ug³ò‰û²kÓÖ½’hÇñ-[»)±Z ðŸ¥ÊWDû}ù­Ä ¸8‡¿Ï)lŠW)¡ëCyèï¦/ГôE‡†ëx¨~äŒ)k¯ãÑNÆDš,Çó,†¶¯C°;vJØÑ¨@ã#ãC7”]ŠpŰã â!ü)JVZ}ypOƒuˆÖÒiU„†é=¨tmEx¶q-䘊J¡?º+øšû¥G;ÛÑ0¬Æ·„^°Ý"èQÃÃX£ƒ¦FU¤v(%Ô.È+ Pý<·žqÎJŲÅúì[ݤ%-1åOªºBTŠÏì „¬tJ]»©޳W,ÙsaBäëp›Ñ}dÒAW% `YÅÝ|ªflßéÔ—Q>Õè©ôT¿s@î¤ Ì¥ô®* ’Þfi.|®~s4Ýýg «ïˆ$^²’úFç‘ÁÉyN\ëQŸ‹“¼ÍjwНk냂1ÌTs¹?ó»ÓTÚâ$®ßí¢n&„NÖsÙ:ÑèLuë¬Iòs•Cã󦜻¯ŒLžžåË;ÑŽç ¥ÃVòª}GEæÜUc©/ÒG.]¡­ªŽñ§ÉuS ÜnÓbáWa7¤î¡aÖ²…¡.’”A gY‹ªÚËDÐ’XÔü–x\I£•¢+×Òñ®c­9þtÆdÏbsÄÖ×QÚ •ÿÊÕï<öçÆ†µ¢_¦Xcþ…À3¯4b2+ÔGM~œ{Žÿ}ÒjˆpYi‚ã餓À—ûÍ­›TKÔ2ØF±>b1íjŠˆ‘re4à güD8,©qd4X”¨¿lr_8Ý\r#ƒ![æâxñ…ºr‰FãAêè¾,A+4áBçñE ~š…^²-z nvPªÌY'?þýl"¢ÿž±>çÚ’WS,t’=¦;S °JsÈ”‚†JŠ­Ûƒï4¥l䆯y9ý6íkOui-ž«Ü*Yßêá"s68EÒ¿1§;ÅV¿_„ŸN”g¥•þ¿/VRvf''níîPýõOUr"gº0©Nq#'T8àÉ¡Ãw‘m¢¦7ÿ¦Ñæ0hR€xà ñ6U—=±¼þ \Eý€¢ÀÙ8¥RÇY¾ê½ª-пŒ-ÂÅÛœ¤±€0D »Ó ­F½˜ªe|¬÷¯ÓÄH+ KßB×Üôp ­Zå¾Õ7²x㘠bAÉoãÚ¡¸¸AÚv/Ï”'ÖX'ZJ¸œXú~Þ«”¥$r…ö'…}×_¹OVÀ DV•¤ð|9à „ð󽆹 åÜ{A$Ù×E° ‡KA~ E¢8oŠTŒu]ÝK¸“ÌÖruÍôS g<=D¥½8Wþ®®<~NͶ¡ÙñHÚwò Ç®Ú:Øi¶îâþ ïÌ"„iœÖÍ?Ú½ª†¥Ã »`ÖÏ ×5¯á;pJ=Çeì—:gtBÑØs¤ÁBVK7†é«ág†45aXIƒ¦RG]}vx­æg( ²%ä ¢0”k枤ÄÑ dN ñœáaö(M&^Ñ-@ê7ÒÔè®5!Ù´©[`ýÏ&‚ÑŽÖ·PŒwñÿÖ”s[i>¦±‡ZìîÈZK€*q@ˆcˆŠ¼cØ/÷ÿ„ ×*({ÚJÔwTv t†3²D;~ænØüCݾ¦­ÿ9bÙ>Þó©¹—ÖħžTšEv­«7ÅEËoÕ„‹'À){rÓ›! ›^OEMøZY¿†hÚÉE6-¤ô>vÿ¨ôì›ÉŸq¼~âYÃTZaó¬!};{¨FAÀwÇ‘/ÿ›ðRkZ~»Ÿ¥ÃÕ–N/™ìTkýN†þ,XÝ™½3Ösºõ2L‚A›&O£êާAׯÓðºWi_1œóâ‹,>!OÇ/Gí$ƒé O}o‘ê/™Âþi¬ô”ÁR‹a˜Šoãóù¢k½ÖVN†ŒED0ùÝ2¬TœïÈ­düi>é"‹‹{y¯;XjÁ¤M³§…Wdº­ýžUøDJ¡ÈÉ)ž^ÀJré€K®Ç¾CÓýƒj2‚/}oÀüFYV$̘¼€à`Ôˆ8ïÃMµŽ€ ¸›Å,Hxau¼/o”-R£¾—ù¶{F?~4æ'ÿMh•Á’ Rá­ßˆ¼¦÷[kºüfèD#‹Žhó10BN &`<{d~DÊ.<ûPä¹8wdÝœG #h½Å`E4¾…}ŠmÓÏ»ž‘xâD$àܶ©`¯Ô-žhýéî ŠGÃT|³ªß<¸’±"»àÄ›Õk÷üS/€ ;Rrd`PÜó—4Wõê“$&¶¸Ã(†niÉ#¶Å‰„Ê„Éêû°ñx¼ú‚º½bÝLhœ3ªR—¨^¢bG߈&ˆg é1klíÜq¾—H [iL"×àJOÂoý ¤TTú;¸7«Ø÷ŸSï þÓˆ›j>N’fag•4Ü™[Ý­KIç” `1å*θXèÖ«n)~âŽq@ïúÂ)ïÿGÖö0(¬óù϶‘[µÿv)VõÏ€ïЃՎåQ$ÒPü -áX ÜÏQ²– Âiw«Qm,ZŸ`iðL‚@8=Fy²Šm‘€4yÅkèÉï7•L.¡!ÆD?vëàås+…9CªZ3¨ÄEIÃB}Óù÷ÆôŒ×´‹›,6ê¾™˜ECP") 4ó¶ ÒN9³G!xQ̽¶æ8ûF[N,Å¥žKbFEÞõè¿ÅPþÏ@ã·‘¦ ¯¼Tÿ¨Üy fì4”T™Æ_Zz\œÇÙ€0–©ã{¥…"™æ¨ÓšÒ³õÝñNøÖ›5í#+Ô·8ª©Ÿ“~£Y•Ráªù –²¸o \7^%‹‘£0ˆñHGå·ã)(½œôêæa#™ŠÍFÅ3[ê§_¯ ¼.­aÖeL'­¼(Dbu Àà´¡î‡rêOOe¸ $8®‰nÛm(öÿŽÎ]F{õ“ÓL™r¦™tç¹×f¾a0Ìk@ݤpíK W„ÝGû›6’ @CÂw*ñ§ÈÖd/m}ñ­QcçþvE£c¦Ð¡-­é×|Q;Œˆø‰ÂüÊ{Ï®÷á´%˽„­ÕTJ”£±¯{û°MH|Y"÷¬ŠjÖá™þ#¿{ èöˆœJ`œr"1ç1Ö‡sá§AññÌ•ñ^*.,ED €ãÌlÝé—ZC!½nƒÖƒ 92pÊÈAÚl’²ñ„ø¶±ÏŸ&‰á ó¶»!âkZ¿ VßH‹®#ü¤MX%½‚@ì슓høK ¿ í„“ÕpAlxG$˜µp’9Rñ:]1[4òú_iÕ’úŽ »‰gÆ«ÂÂ/˜gß…¢äÆçÝñäÕ—µå¦ð# ès[Ö •RÿÏÉÝY ù¦ÈgV§íd1¡”BcxHmæK¶çµ–‡¼ƒljú‡€~ÜÅwiK†w·öŒ]Kb=Ý;è’x`/ð[ñ_Ó‡W¶<²aôS}©á»aeRå`,ÉÐdrÞú Á‘åáÒ#ί?àS¼~ÊIÉ3ƒ²û[ÀÉ< Òî›­r4ê¯Tý7x£kNxÓÇukÝùÿûcïR6[Q…L/G¯Ógvü¾ï¨¾‡ Xr?>×ÜZÁÒOÊ@è - væ‹aŽÕ#¬'Å\⟨Á éÆsýæ"åŸ@¿ù0GX©G«XñÛ‚>hÒ§•K†Éù¼ÀàˆG5™ñ±¸BªÎ¨ÛІ¾XËNÖrÚí«k¾"¤JkgÄÍYð #Ö=Ìçiçþ/{ë/W×5оr,U±é­(3x  9âÌAš¬705vˆÆ} %éÜ Œ œhŽ*È”‹D¾–ŠçAÆ€ÛFóݘtuÈ*ùöuó­ãA–frBCÕÍS’5(²37'ŸÃc˺h]ÞœmŠQ›&w3‘j¢?Óqy’ÜW ®'Íʨ´èI ?‚‰ÂpÔz÷JzM«²%ÛP*U™“Ø6{ Âgò=jŸžCì§•. í’÷ú@ðFîA~”ÆÜ?cù>Gè’“~äV™6Ò<<$ö8çb#ÔaY&JtÕ¨2’Ûß©—¦†ÓG˜;‚›Ñ®ŠB; ©Ë A–NÕÑŽ;Zà÷wÿþàjà÷#F ÕÀÚ`À¼ëoylu Ùgê®sÛ)«÷½Ð/Ý~)%PûI#ŒCœQ}U/&»›…Vk¾®¼SÔ zÂ!ÝË(aGjè,_òÝÖTæÒ#*R)·ò5íÍ£9¬S¯A¬Ë/…ºzÆ•_u-â /òpdnª…a>óìÊŒ-…·_ú¢ã…:މðÜQb`·»k›H"9Ðòeؾ§c¾û]þýˆébý¿ÀÅîM\£ªbEwͱžïzJýùºj«'ݧ¸wŽ§ÐµÖu‡×ÂÌæµJ»ƒÍp3u“çx˜éÖÏÿå ¨il2Lé ÊçLJ’UT—?b³µ ?!¦¯™a¶ÎàêLrߨ‚¼½Ð#Â`ð–Æxr]¡ðQË™}5lßÁMµËSÐSR: ƒUj8¡ZÆ/Í@@üè\]²ü‘òs’Èê[DGÎÔ·ïÀ,’^,Á«àÊ„ß8 Óöx§,’Òß'hÚ*lžÅ`Lò*+„ú¡ò~>]vÒSå_ÑeÞƒ›jè£ó£{ÁÞZ }.r¿Œ•ÔØ£$I)Õ}(Ü•V¬ºàjÜÝö³gj )ߢç„ûpL«Ÿ~;rýyJB7ÝF&GÚ…0¸4Ž»¡6Ï ‰O•"`ýݵHjž€»ùhæ‡!ºN1 `š`` `Ìò]¶S‰xu¨66¹Ú¯ˆc¿´¾ãŽ•w³ù³ RG{1à].N#_YÕØ]Çär ?;z'.ܹÝÔþ;`©¨1_t]z2æ­Q°T³/åkî8¬Ž‡Bvºh!¤+6äÒ•¼êÖ€ä8%sƒ12¶åø°Jîù79µÓbûÑdzú5¬5îZ„– |ž;Q ßJžÔï¦ÔžÛcÙW˜É9mú€vY0û!Á*†/W xmæÒ±Þ"bá­S!_r·Nxw¬ó´‚=”Æô¥ë?Ã0W$§ŠÕ™„W ±¸R[ÍQoÜõÍ«š6f‡~e<–_BËói]R£JŒw¥ fŠ?r¼á6uL¢e¢t`gœš£ÚØãNƒhB±A,œ‚»ÛBY+ûº:¬§^¡C°4Rå]U¥¬^p(q+ó±W$yK‰éuNÅÊÛ §¸ã=YcµÞ¢üARÁ°ê©t±*¡ÆC!ÀuAò XÑÛõÉÂRe6¦›í=ÇD³‘bÎðבÝs fcx¥PE㘦¸(héÎØ-`ºŒˆ°$Fjj;èQN‘`[b|¶…¥7ø†ˆî›3¼;—’sÓŠ¬$ÍÏ;t¾ó§ŒÜa-©nÜœ/Š!U ‰Ê aûUq˜‰&:¨Âò/hE÷ÊÃIÿ±¤³—½^Úè9 \›(Ï֮ºE»ÈÕ³] ´2x4’lGök`aì4ˆñÁÔS©WuV®ÁËDBðµ’÷G…¶+ÿÞ‘­K,â²Þ&¯m¸¾IéÒI­jÉùâPÐ.£nºé g ZÛ¹£J\Øa÷£z¿¨HF`]b¥Ä¦ŽlÒÃË:1Ë’ž.OQ±[$:m0$Á¡ìsÂS;ºOǽÚ˱¬À»ª$~½rÅES"YRYø#XB.Mä‰?€ k¯Ì—NÖ·Ü Í·&æy!Oã/ UdvØUØ»Dñ_¶¸ÑаRvb ka¦ü BXy™¸Ä$' â%9F3[‹8€¡“.¥ßš']å6’Iœ3—eïåß¾»MéÖVk-Ò`Þ±E_K¿ùI› Žô ¸­Ê£` MÞªRŽ„ÔÆœ™´¢õßžICàI26Zô`Ç_Äôý{ã›Õ>7®Kç¨Ì= Äʃ|<˜·4{ÑÊpm¼.i}—?òƒï“A)ÖÒ7#Ãûc} ªNì¢ñ®iM‡*„wjÙ(•?É2§Ñ»ªT"RÖWõk›·É¦ú‹»¶µVx¡ŽaÖÕ&À">L‡½½Å]׊äoyF ‘ËÛ{‚¶Jÿš©^Uט{ÉN¤ž—=wŽ—HŒ÷õ¿ ªg˜@ÅŠ[ãSà¦ß2Ñ:äÕê€u×H«…O'~ÍrUôâ W:=/:rÇ‘âuó˜Q{¡ÛRƒ›ç¨ª'ªàгüAX‚ m[׳DR]Jþêgÿ|RÞ{}÷.ý“W¨ñÑüÔÆº¤&´ÎZu/óŠ!ЀÀò 3éðÜn–fzØÿ2tAQ[,÷»)OßVS‡6&g 8¹g65ã˜ïn‘;2[çxX¥µóUŽ‹Ÿ Ŷ错€GgÏV¬E1)J09‘³~RœÄðøƒwFW÷»©0öL•ïoiùA¯"¹JÔ¢¼ šàÂìÆ†7ºŒ:+ÖÏyØÞ™“(é»gøÝ¨–²hV®¨uVN;Î(ÛZTOšHOkT¥YWjo-®é#e ’ñ¸5结%k=Öþ~uöGP…7ÑÜÞ”4Éô†MÂ4æ?w›‡>Ñ¡‰‹aŒûËN¾ ‚’ŽpçÁ‹˜DWa§H?·Š -ý°=7¤‡/q«Q’ì{"Xº‹Œ+*©g/¬<_©öã¹YVSK4Ó¿<®‘‡)w˦Ãj¸cÓÛ¯Ò°ý”ñ¿§=­Ð¡‰ŸŠ¬»$rÓk¡Œf.eCdhâZäd ,ÙÓç3PѨW÷+;s›É{’/©[Fpi&õÜÎ?O?Ø´ŸðÓï*‡Kèžif~ìfêï^“ˆ©æcÇϪÔׄ¸ñxu¦x£Å¼¤Ç^ኌa€×©¼&”uUº},Xäq¿k• +Äé-Õm.rïØõ}Å@]‰®ZÎ×3ªš_¸Þ‡ëqÓ‚éΠL €mH·¯V•P±àã…Š™±Eéï³ÇXkm¢%çr›ÏM÷ÜÅzßp•)’0[ˆB[ ´² G€Ðnßäú*_0«‘7Æ'ç1É•ÁܼK½TC~~—N}±ÂŽxëE;c‡ƒ^Í—ÄÎ3ˆAò`‰CP7åà .­G @Ý\§Õ+øíÄúEwAü³®Ióëv†Š5 „2 ÷Ê4 èf'¢ƒ°Nš !y’|¿!^e¬ÒOÇ› î-·Ÿ3%·˜dŒ‚¿ýCŒZm}º‘VŸqF´îÙùhA‚Œ›Ma≹¥h½EZnnH ËÌV¼m¥]|E€,äå îyw.LŽIFã(t—Ž^æêu.Çû³ý3¯AþøÖ \cŒ.¢x’+¥¸â^%¹FõáÁjA¶jŠŒIi‹Ú6Ò±ƒY‚éÔ@û%à §åAcñ`ËbV/™køÅÞSJ‚ÿ?‚ôfºùòŠ };=«Ìl’ê3çù —ºShÀòŽäŽË~‡ T*c–¹vèÞ_›k¯¡ ùôµ ì¦BsŠqG¿Kïñ4jÈzK3¥z+Ò›çT&L‘ja»15^ûû 4Yó¤ÖB³IBYD‡î£¥Œ°$)øE™û¢šÞò¾u×P¦$œiÈwÈè)Î)AåÀ] +9B"PLæ&qšÃ×I¡]߃¤†j!÷bGSü’¶/ªÞû2ÕŽP•æŸéÕ¡R‹™¨m Zsd®&ìĒЮtè¢ ŽþªãÏ|H{Øtœ±‰ì‡C1ºY™ùõ¤¸óú?C/t«j†_;lý>–€y‡Þá<ÌMâÏÞ¢&éÍò-ÆÞ˜~§ßgîf άQ!R½´¼hÖr 0ìxLý‰“ƒ8–&Ò4Îg»ƒ×v=>‡>ò¨1j#ªùVœWwýK“L¿B@Es{ðî"]³k_ñ*ç¤â„ì³EÞ'ÐI¨AÆ›yL´Þ@S°?Y#§–t85’7ŸÂÆ"†š´3€íH~aZ„|ÃÀ¶ýxté «©±Ê'CJ ÏNXò.³UÇWv0vdßO»°Í´ ¨´`ë‡J‘fo_Û^0ƒø!° €¶¼h×QîÂÙ'á‡b¬[¾“äøÓ]Y°‘6À³¹ –21ôºB­Ëñ©urm¦X@<–pìón·'ZâRBãáxËöáâ_q¤QÙý™± ^à*làš_X€Yíid|é»2‰ªé vG9¼¶Ã…Oj÷ÐíŸSïú&äCÍ¢ Æ–µZE_`d›+¹!~õÜw?Õ¥œ‹Ž~ÛŒ]|`ÿ·Ÿ¬N‰…Eú±‰Ä¢æjºixWnšÊšqd–¢‘Òüw¬` ›=¥\ªg^û’wÛt=/¢[ºð–`ô|¬=œ`áYBÙœ?{ ežƒÏHm哺þ*¿þ?ì–Í—ìü(p‰ ;{þ¤m£­Œú‡ÜžÁÝöü&-—nÀÆ:½›Lû{÷×6‰¡¨_’y±kI¶8× ôðÊ[`hgy¥FD!ŠÜ.r\¥}ªáƒ0NB9ÉC7«EfA~Ûe;N¡ïÊŠqMÉã}µa®™Eê¹*¦é—atƒEžd]ísÔ¨ÚtÓ¤âXBúS0_Z©­]£hÝ57bʃ%Áþʤ÷Èõ‡ˆ%,•A‘\½x….É4æܙҾ‡½+³M‡v¿QÖ•a”Ò£/ˆ$D?ÄÀ*Ê…È«^ÿ8ª"Œíø €HŠ´~§Ì>MüÊJ ÔÀ2ôxH÷ÎË1ßiª/ÇR‘amÈ,ênpYü¡øt‰ ¸UŠ¿FÔßAŽMÂí¾Aeœ£$XÝ»’¸õçò,Ò¯¶ö‰UVÃŒð+Œù&ñvß~¾væö±Òj‰ {ËN¯©y›øZ`IÅ„wI:x»J9¯øMSÁr†à}8ÒLð¼öÜã÷ÝZŽ[Zv܈@߀ìˆÉP﵌ މm ëø©RÝ%ãÕ¨«œÃ„óHâ~8Ͱ@ÆÊò ì ¡áîÙõ°¢&ëJí«ö^·ê3ÍÈ e²°£îú<°ŽÇCt_ôî± ùàPŒ?‰±ÑüÌ]…1Û%ˆIfMˆ1:f8˜5ãÙ“a¼ºÆ–$æs0påÊ{Óœ/ÑztAÙ’æÚ3‹Hé’궯DŠæ¨?Sa¨>ߟ˜š’ûO}ëUªº&Ú‡]røiçG\ö…¯¼/b]µ ¾¾ÍgòSUàSÆòä<Ápë³ËÅ EM=éÚ¥­ô7NG1E©—>ìqˆBìù bÈ‚«|î'Á¼aC\C¡8Ô®‹ÆøôtP=¤ÒE8™5ÓÂïWÜN+lÐ46BÌíLG”O*XÜÿí¹“¼Õh]=æ¡;2Q-”<¦ÍU‘为+ˆëCZþ’Ï1Ül}§# ìÕÝQ¶ø2ËÀÓBòd”ýäsÇW9 Çg E`ZéëR=Ë*ú1Âþ‹þå0M…ehHWÑ'÷ï£,ídžcWÚ½ O èÍ’#/"×ÿoè=ð¢IL|Hë¤&\WmBþ…;q#RTñRžJ}¿žs©Žö:•ÇŽç‹Xêu† æ•Ï ØžFéžoé_Ÿz±çw± Ĺ]Ä*e¹A] –m¯+eGzˆ OÖÆÃà~©†ì)VI¨8F“­,ËÞt{åÄV±÷,+Î’8áüÔ&ÛÁàü7¢rŽã®.·(ˆ@ØÔ;Ñ 8yQ‡¥'˜¦ïˆwH÷[‰fÑy‰Ö¢Ð•Ãbû_Ðæ™ÂD±zë'¡q¹Ä°ŸàˆÆmq»Æ¼£¶ ¿:¡æ4Dáa3ɧ20›Y‘¶£%2eñ8ZºLô×±†c׬¬˜Ê,ýÕåí;Éš1A•@=€l€ª| SᎸjVô-¤Žøkèì%<3ȼ8ÐõL2ò´vµ\ Ñ+lé}ÜsA†=\¬¹ð:‹‹úFX8;$8G)>y=µÇ·ï=R“»‘T`e~¹Ç/4YSËÈiéêÛXFÀ5ÓÈ@íóx>'ÇiŽý~Ì™á~YPòºŠ­i¸dÏ•o èX{ûFp¥±M±æµÀǧ4ëÓy´K'wûFÅþó ¼Lø!QR¨†tã’öe̳£Û/o€cÜÎõ âÛ£d!}bvt ´`±~Sv"×´ŒíÓ&`Ù¬E]i[t|À-çZC;G»×‰?ÉÃŽ‚;q~ì1jñÚOƒ|ò¢<ƒJÎÊ‚'nŠŸü²â# ­Ñ.‡H \²óhu1¯ ·lj%ÈÛ³½Ê¯$ÎjÚÚ±¥Zà€>›yJ1ÀüžU`ý3Ïþ¸V ÈÉ…rt»µ'q ñ1׿aÇã ß¼õJÖkÕã±*ÑS˜9_ë‰$óÏμžªË\.«LàǼú.3×õ•^bœXõ2q%¯púgÓÍßöêm0ö0èÖg×CëöéßR…¹j#ªêKúÞ…|wÏÛ:@N6L‹GyŒÙ„Îò…‹ÎHªeunWZVûu¼Ì·2;°Ng§¦¸¸°êQ ÜìjKµ•ïQù¸HwÈðáÊÆYKûÜ„$WÉÓ+ªömvíÖçÃm,`Á'™¢Gâ"¯ Dr ÞÏÕ‰‹%ëøÚ͘ǹÕÍëÆ#©Ù**Èa;ÁmÏv2…­VMû·/‰ qHaÍ/}«Z‡Ç”XXœ0éz\òRRÎ ó®‹­KY/!];lV—çœ9Ÿ:T¤ô·åZË{ p €pºeš8¸_Ýæe¢ÌáÊu7–AAk®¨9rh—‡‰ÿUç?br¿IÃÄÌOA²–ijB}Ãl¥§ÑB°c—kÀHA³X30W™´´*UP—•)Ø´£6Y ŒN”6P×ûRfßR-æÇZ½ˆ)Kå¯N¢°síŽ?)‘”c»ðH3šb (ˆ¢…qƒºÛÅ)^Ów‘CØ[‡vo­Æî žŠàQªgÍ~À‘„‹Ÿš„Ý…gÌ +”# œâ«¯èx>4l¤ün}¿Õº,Lµ¿OIîÍ0¹wbDvX¦‘urPHÀkÍ“.¸qÒªQÎ4}Ùê•A\VÚÌw¤¯ýÍ1î•° ßµ‡° õr®™ 6·Öêwc}Ê•\y Ë­àv‚§œ÷ˆ5ñ\žÃ;di,ã*#Zkz˜É64vSf†'$ S­M²ìÎc3£¾Ìà—0Ó|‚íôCº Íe)BàEYÄ[‹X†Ä(0ºySlÓS€’í>Ô6Iç–R@s|Yq“ãM°y4Tñ¼©ÀòD`6„yÃXŠ6ùL$¼ý 6Õ<£Xë»æÉ|ŠO³|_‘39"oŽPVw—À3ýKÿ·$›#áavUù¡ ~¾iæêÝÚšø»¬¨5˜g¾l¢ü€Þ‰xW·ÀÔ..y(÷¹)Ùœ|à³zß7¤Q’rOÅOj ÞHª°”ü±ìæ„ J²S@æéàLU°íÑ ‘S^CÎ|—E%·eG \g=p6xDí4zÞóÄéé<ÿ߀#ô±KÞÉ ÛÿýU'LJ…Œ“ß]öbS@RµaÆšñºQßÖ£5~Jâ°€+¹ÃìMn1•ÇÙIÿmÖª•¬r´°6…O·UÍ}¼Ù˜VÈu¥”ÑZŒØ„‘ÒWßMU·d‚+1|pÔMÑ,ËuA^ä«>k˜S» s˵Ÿø4t©<’º~ã÷Ú£³yyžýõN¥úAy~rÆàHý‡T\z_ô´¦Íòétÿ½DÙ½BxU¿ÙKÝHÇäër†æýØ`‡Wã#8Cnnºû¤ùì¥&7ü8•Pƒß—j™’%×v¥ú¾#³C†,¢(bÊ*ÆL§éÆ)8ŸHôÅñë›T:©SO½ úå á©Ù$¬|´v2´4ŠØQÞdH¥àî®t ¦’)îŸê<¢’»Eÿ¼Ñžž5ŸÑ—yí’,¾`¨^9°:³åB{ÁàÍkL%=uhó[\hçw¥™Ô¾è‡nÅØhKÓF"ÑCèZ³JNs9Wü•?6W×äÁ\KІøí¶ÈÓgä©/·GÇtçZÉ4;­À6Z5QòE5OùKƒð*Éï)MœØDVÔ^KxO%÷Êy{ÏFh¦§æ[ŒNð>üNÙ·ôEãÓ ƒ^ ÆåtZYVJyqëâŠ"·ÜUðÉš™°œ§vÖó®Û›1kˆÏ?X·Ê»ý]VÓÓóg3iüÿÃm‡ef¾J7Ç$ÔÿÇq+³r¶|«rJk^S(mOU”Ïf(gRéÔ㦥êtmš×3MKsäÓ}x™„u¿zlwÆ“·œè’eµŸ¤¬øm°¯g_»bäéT§)~VeÙ¡,[0%¬-ãz78zCöøý§Wé{îN™I“,ˆF#=DZƒ‚Q5 }ä¤Ò•É^@ˆ”¢ˆ NQÆP‹+Φ†þ a3þ{>JÿàâÎÉ[ÎH¬4ÊǤ‚‰júdkO1ºp æ¯ÊÒ5¤7t®UØœMíAЦŒ¡¬S×pWo– oµ §'P‚âW&dñöŸÃ»Žý8¼åº¿Zwõ‎cϕɚt8¤¹ã&¡”'!Öœa–HBm3ÆÎQzŽCÕàê’&â`Éõ!.ôŠ ü#˜Ê` Úÿ¦ÕÞ˜zîJs•7Œþ€-ýÍ|ƒeºm?C?¬ˆuå{ }&¼—…ç`ê.UšRyßÇ.äsÎIöÅÛíâÂ?>¸Ñ†ºš|°6›>ÎBXj¹D,¹ ¤þ¦á‚ã­„{ÛÅéõ\|…ê³ ¶‚hØ”Ÿ¨.¼y/÷‰p5XÀϸrZRÜ5¯˜æ¶vbо’ŒKKÒ!ÊŒ€—©%u7™Gz˜±å x Îoꀕ£XaCbŸ‘;½#_O:4¬ N‹¶K¥R4…жâŒe×]þýÇd è9§H&œÊ†Ç¯i̓Üžá°Ì»½vÕöÉ‚šéÐõPN{L^,£iš¸jdÍûÜãþ^—ÈŸý )ñW™&Œ0'ãy@dr7ž2$·ê"ßËelHlý˜0ÔðŽôAMøî‹¨)M½•Ö¯"DŸ!lžÇlfG^Þ3V_/¨¤ìb±Õcµt+liåŠ}çÚà™m,îx wêà¹w)`¬uøƒ ¯üûœy|þDõºÕã2`í~’Ö” ùwaÂñMÛܰôA˜*~Ùž~ ToÀé &_/ZÖ™Îä–߉nöâNÕËT$ AôÞDÌ×½µ‡þž†“ªhÛ™çfÒ \àêqèÿî܃&V¢ÃeÇ*o˜8Åm½9šþ«†”à”ß±³K'nS*×ǹ˜¨`aBÙ_ ×Zp¿C½¼—*ª PD)ÔÉ£Î[çHOŽ|ÕCÊ~jµï¡ý$¼‚µwÈŠÎ{(<‚Èî–*†f¿„•˜HgCúÖ1@)®TÇ4¢E¹–± ÜnpaE~\ûÑ(ÿÎÚþ,VSƒ” ’½rÿ-óìš,Ÿñ2ƒÉ:%¿5t¨:u%èñf®‰%¡· ðÒÏfÑá¾®@ LÅù|âÚ7Y •|¨!bv¬§™37Â>Ɉїã¬¿±fî …Í&¡r`Ŕ旅bQÅà Å0³ŒCO¡üó†% B&^u¹]™Bè9húi+Œôý‘n§—¢B[ycË'r³j´BÉI@žêKU?t¤aMä0:Û{Eú´7ktB‡ï©>Q¯k°²fóG<•˜ÌKq§;w°Ž>M¡hQ x¥|‡s nRÝPÇ«h·ã2Š<`i‡Z¶’8,.8ÄfƒÖ¥Hƈí×$ÊÃ;cM\ß”±â#Ÿ‡#é«O:Ð#3A¡Êöu¢Ú–¡«²Âh8}v^¡ØVÍÈ÷ut‡þ@IÛWŠ`G¸¿å´ÐÓšÆÑƒÍ¹=Öi“$x…õRP\V]¸x_ ,岓w‹„ÑÎ9üİT%ÏKI©kx¬«Œ—^ŽL7°¼ßª‡FÏ£IѰ²ä[H™T(ó[þ¤xä–³²ßÃ.¤R~DŒÃѯ‚¥¡šïÛ˜zqæmfÖ·±0gzTÜ JwÅy†K*å>`v&Ùë €*—¡V–qš}‹¿^JßtYù8ÙmBœ7wò “P"VjoûÞ›¼Co¦Ã–yáôûºÃ{…8(Ç=`SJë]Ž÷p’{³+z&åF¬{µ[P^€j˜[ÿ$ªÂ¶UôŠq ɾ’îé†ÜeÛFÄ <šÁ}ËCû¢`Vzb=‡‚èÏrb~2~¯©yã¦ËSy(Ìl…;§$þ_èÂ|š¾jž#u¸¯‡èÂZ<Éäú€š©Q忚‡ÁdÊ$ÕÚÍX•—4<û\G¶•~Š)°~mxjj[êGxÁM]‹¨çéÌæeª­³}Æ(޼ÅáµÙ¸7º°V™.é}YØÊ¨XÄ(ûðÐ;3Ñ& Â~kÿÔ¹i3`•µ(ÎÙu¤;OÀ ³‡VÍ£V‰˜¿3׬G?2{&[ýr͵FÂeÇìù½ë÷ÒNÈTÖDðtÈÓ÷°€ I?ã,õLBjÖ!€3×s‡€‡Yß_ù\ ¯° ¸™@hÓØŠÚéKõ:W—€×ãRÏ÷YÆk9š’l4½¡>"ÉoÚ÷U¦†ÿ®¨/Ô—ÌŸÚõšT==ÒŠ BkFËÆH‰›­ä Ï2~ŸkÇ¡T¦+G(òÕŽÛ¶y²of¾îBRNM2‹¦åXºa|z¹ ¿`#X{Jð=ðšÚƒ>Ä´úI*òûáÐ)¼º 7îÔI)çóOæý ¿ge—[Ø”þ·–ßhÞ+xl¿n\1÷‡Õ?#Ö‰ÏÁÊUa¯0Ú€‰)6ÔªÁE §`»–9}Ðr³ž=/3»…àŒ ¹¸¦'ᆠVNô…'¡>ò‘xe-–©K‚‹oÂôS”½õÀ¥óµGU+ðg¡°¤Ì(Ëä40&ðÙQ¾Q’вn¼!º‚jÁžœXôsNJ4 Y–UÝÃÉ¢/Ç¦ÄÆ’Mü l»& Ê® m‡½ýØÞtæÔ©Ý"D.´RæÃÌeˆ!`ÉË2_ðRùä3ŠÜ¡6\$ôæˆÓªK·gïáÚa‘³*ŸGõ BÚ0+;{ôú‡¦[ïlIi,-6ÉnD7p/˜ü¢0„±á ¥ºsZüÝ8´‹¶7RP–6\3ò2°J¸ý¶«Ê𤯄Ÿc˜L§òfz=~‹9Äq~>/J…±#`[w|J2l‡x”·å`kXÊ#Ú‚wõˆ{ÛBweHXÅkñƒS@1º>8iÀÀY¤Køøc *ªPVõ§$OþZ¼¥¤Vþ‚«ZשÏðÕóf}s€nl'ƒ•õçÃQ ¦eöVšF½x•Nèh–,ÚdðOš6QÒô#BzJvwYHðBL-àó®Ñ'"âkðŽ©ÚCƒŠy1µ*£«%¸æ£’}1Ã!ð}KúŸñÒ“ùÂÆYš³»u¼è0JM:†ÎeÀëQ-tˆ$My‰…²’2Ü;“9ç-7]ˆpAiÀåÛ}&Ó©£Ý«ØnŽ }ëÐóë×Þz·J>¢°Ô˜RÌÒ3Ò.ãRoTS+š:‡ô"Ï˾>ˆíÜÐådÑè1ÓG¥_sìrQAÒG›³¬~ñiT´0°ŽéÓ1ÊÝò‹½+à‘êˆüὃ¶¢Ê~ö§;(ÆUÙ üsø ß=-ôè-æj—ô‘3þÌD Ç‘a!§‹Ë ši:ÍC‚AªøO€:`ÓÀ0£U55‹ i]pÍn˜"ç²…E¶ž\žš²`·Ýªrá›3Ñ 7÷Å™,ßîhT?¶J»Nó¾Â ¢l²˜@Ìï>m÷À H.RL3gP¡M™Ë_+16_øg] |ŒKtSÙQéGßDs^h«ƒýR\u¿WÄBcy*°cšŽ^"O´Âì¹à3ÊjÒJBZnì&ÍmeKɇÌE½ý(‚ö–µ¢e49,¯ $äJéãøP3f)wƒÕrZ¶WQç¶ÚN6Õ¸¥ 9sºY¾ï4ÉF†¢_wm(KÂö&2]$8ýæ •|1J?P§»MÀ-•Y§¤Ÿ"!3ý §'T)ɪ_Úà¹:N9ªÇ`ÔgŠ›p@¸ þ$,ìûeÁ„ÝãUàá#œ´O7!ïʉðKgnÕÈT:£<7Ó¬÷]ÜWœ!í A íœhV¾@Öd·F‘’ø× œPYHE: €ÖbÀ–3)ñèËVî3T¬$ñî,ƒï+Ü1¬rf–}§ÉQk”ë±Î€Qb¤*£Ã\аúãL!ç*Ñ;Ò»ìâ«Æ ÈJG²@Lùã¡øØóªŒ«LÍóÖÙ±ö‘9i`"0<Ž£>ÎËäšR »t=‡ì'¢¥Y~×ãÍžiÆ[¸¦5 !›³Ù]‚Å@NÌ3)éMAü€å¹5ˆWýj’+=³ÖiTžxÄ6Eù]TP Й‡yTmQèèÇDQ«ÌNW™[±xsDA2”ÝtN•›I§¢³A–iµ)ÃòL O¡E¾Ý%ÅB,$É¿/0fÚq‰ ߪqO«e^ÄÛý±€«Š‹ã¸ Œÿš‹Þ(3À~«ý4õ0R‹ÆId¬$âLôÖö•ì»MTáÑÔ!9yœÏ˜Xq-—"Îukáæo‚ù1\Ó)D~JáyÃLâÊ,€óÈtÌÖŸÜÚší{DÜЕx Vúj5qmBå¼jŸ“©°×+aÆd71æpµ­ÓÕèû?ÍɼpKÖñFÈî‚Ù’*çÖ©Ã;ŽŽôBن6¯“‡v]1 ùZº"{£éÕKnã t±îô]©íï¢×UæÙ«ÁXIîFÿ×TÏþ‰g8Ÿ~§$º7à‘ëã†ĬÇÂ(¹„”höÔ‰±×·P÷]™J‹%ÄòG„ya¨F>_ QÅøŸÃþ6ç<PÏìǬ÷kaøŽuwÆ’ï†ÍgçÒ7@þœ{¨™7¯ßg»ïIþgó>çy—HƱZÍØ2¨åÏsø"ún™AqÓÔ!O Øx›û–[ªeB¶£ äwÄÒtÞ8¸ü3”ö¢}8™GÔ$Ad Ž…ð0þ™ŽØ¤§i ͧHM˜dÉô«Š’Ô΄=S5ËqwsIæý2_„¢ê¦ì·O›²’UÎÛûZ'Cë¡üã§z ’h†X•·Þ%Ìè­ÿzøS€Apã–¶ò}îÎ gñ¥ìæÚHÌã3µƒÓ¨¥é÷OÝìÿeŽøq_bÙj9ÞÌ´™=Çó¾3D#>À:‡`hâ¿=¨F­Orþ©i«‡'‹6Ž¥S@4IÞü»\Š3bùñlý³s¢­Ùæ; áçÑ“È&Æm„UÆTÇ„ ß"úhWƒÌ­v“æÙµÕGމe~h2NÀæ€mŒ–â€W÷ al"°±‡Ý±ñª·ES:=Æeœ.ˆS¡ ¹ÿÒzï=/†¦§4ñ/z³<Ò£¯ lÿy¯úl6¥QÐŽ³~ʪµ ‹j,§3­Cê·˜~ÐOUF*%09³¯œÚì…–Þá-@Hs,6c\®ae õêâhEÌäFÎL2Íd1÷Çn3ÚÆ¡c=zÝc#îñ±™M] „°Þr=>>6/³ÐY¸5I·bôÐè_†…ŸzU=Îèǃ/‘Œ ¼a2îúJs 7ìm—™‹¨®6Ž~M%gf @>àûm·g^9.Þ5=Ê—ØŠJáá–WçaG¬ïvÉ|¯34ð7à–ð«) ë5ðêÙ[±&Õ%#ÅpC0ˆºÚØM`*8έcH¶ƒÍ’×kð•ã‘nÄŽ¤9¨«úçhß­N¼ÝóÇŒGœal;ÍÜ;1î56«ûöaaŸ«&¾‡–ÿÙª­‰Åößd5,*·†µmøz2P¾ ÔJ`lT¹gµà»'oº±R"ôŸDÁÓö°-Õƒ¾²ß¬¦k’W‚&| Äɯš“Äg…6^WMëh$áÃŒ'amÂFÒü)W N[òsPl†jò^ÊüÀ_ ~ź!Jë¢R¶î÷a.²õ—›ãº\rþ—ÖŠú “¯ïX«itkàŠYš²sbuÂ9'õeè¿©sç7SõCÞ£0©Â¶óÂ/@RëNµìˆÆóôåUyv;ÐÈHâ@j#ËSOêÊÿWYU(öcâÐöç~û|éo¶¦è‹p£—o7ÅB :ܯ7in£EJÉø9jT©xŒcfUK¼:4=ƒ”Bñvó¯Cøø¦“3E1;áÐ@„[Ø¡`_øs>x/ceѸ§´”ó»_%IòˆívtšÑVL¹¥÷[@£U+fÂV&wšˆpîe îå›kŠrßÎ?”‹† ›: *œý§!çß¡[´ça€< êë¨ T–ìÆõBb £a­³•¶ºi½vÝÞ¥€wA91üPîœÖ ~¶ú5sMòI¢á è’UÖ³.þU¯sòÿóÎ%›äJÜVçÕ§Š“ÞnQ¿’‰JáôŒtÈv”Ý•± ÿ™ÇÍëç~~h´†1¨âJüîJÄ“Ëf`µuê’E Óvh»y‘©ßïï’…â âŠ>ƒÔM„F(/Ln„Ewýð©Eûœ$Úðõ£õÎ-ˆêýe,í š…_ŲήvΨ Þ¶AæUSë2ñH§Å¼Á)0ÙKë˜=ûyg=QóA¶ÆÙÑ3›&Á½éí6Û4"9¸9«Òñ·¬wæmÎnÆÉ1]EƒEeÝ÷´žÄ‰•Xð]è¯Z^&!³™Ã ¢'èܽ4vº8Ë3Ò²ëÂ^.z¤^ï)3l]›b8–f×0Qô±Ek¹qš*Ù.8Oôa8žYí££pµyÕ…&¦“ÉOåG»ÙÁ$Îúp£bË4Kø“P —~÷G&ul¸š¼‚”0rjˆéÒ «€‚¶Ü(ÙÒeN¿h)³ý]3¾µS*J{Ít ­á9ë=Äǯc‰soK3O7Ž"ݶˆOC×íu—Ù >â\gH*%›cYǹ)Aø€˜3á'•HìæŸŸ„Õðì”Èîþ äËÍ6‰•Å\¾³f‰Ó òsßÊ!ÓÛÙ²¡ØÞÖ6^zê(9d6YʯÉ9tž£¤G®o{VûOúx.S×C£*„hÓÞ’wOªV±oÇ,†èݵӜҚäw-$pXuôŒ5t£tá ‡¹ý{£ñK+ø˜›Ùã‰ÀP± GÁõð(y´Ðg•=»¢äV,Ó&®‘«£^HÓ†Ö4 ¤òØ4û·jœg¡ßÉö:²¿GA!zdqî^!¾E}CâÈS&%áe¤ƒFÙ‹Z ¨¢¥i\­YÛ~QŽîÌ ÅàõKA‘·Â]ß;^çÛE•Én±µ=°ªbŸïÚÆ%Ž«…ý ¯M˜Sç-T‹›Íj>õT¨WíeT>uÐ0Í3lGËTñ×ñO®AXÿåÔ,Ï6úk²Ï™˜TCÚH ÂÓM>V&Z´S2&®Ô˜ÚÁ^+W¸ÅØsC ãÃE¢Ès×Ô¯ü£{w¤7Tª wfíP¸ -*p¶ê9‘=‚‘²ó_'Z*ŠÕïÖg¾’À;ïjòóÍû¶D^#U¯¢âk¦jþ³¶ÂUm”ýn—÷`ßwÛŠ»uµMioò7b&Á¸ë{k¯€–™µÍ…êÒì9½˜×>âÀ2ktÔ>—Õ8Sƒ§Ð¹F¡ Ó°\+Ê(ysÌ%èDÕ?”‚躽’$_°‰ð2‡wM¯™ä#ÎúQÖÔ[`ŠÛbÈ©—ÏuàbºŠ]jbÇQå-ð „9˜³6Öt³kbì ‘=é†W·5qx_4x¸ñÓØMcƒ øtÂa‚?CÚŒþ¥.u+:ˆãTCŒ­áýûG@àÓ@™âÿŽÑ(!w‘Y9P@¨µ¨‚:6*‰Ù—‘Ï!T ¶m³Í-|›"G¦Ùë·š$EÖ=U½ßu½z º¦+ G«9Ø­÷Y:¯’ÆÓ™aÜiˆ-Š@>ý3½VV¡¬ÚªÅèÕ°0p†jo/¹OÈ–KDçÐh4Š+I´@¬þñYoRí?bÿÞÌžÕìEY£Ýxñ[ ŠŸÞÒ5úµëü†ï#·WA;EvØØÒ©ÄGãOçØŽ/”ß·KÆâ_³Ÿ£UíT×P:7‹¼ÚVOœ8µFʃE9‰>ao´;@¶2¼­Az€%ż…×iŸBÊ‹‚årúƒfÿ¹wŽu¢ó”$™d^uFŸÖWÛƒÉæ:9£©ënÔGMoˆ”ô¤Å¬·lvŒ¨/ůùLªãú? ­Q‹¯u^y‰Ä¯£RÑv\ç–§€ñÃÞÓÅTxìÓ6üÜãuþctx]nª§`¼Šò™ØQÇâ¥ÊlXÁŒ –Š1Â>nd!µw'˜Üoì\¹é@¤¡¡úæcê*óÃYq»ëò¦Ð4l•CÄ„æ^ºórÕý…èÿÕÑ¿rÀˆÜÉNãʹÍJwÂå¿Ò}ŒR ­>V¾E9VL•;—=Aôq¬àÍ’s&tgp*§•#‘+0~¯…«øæIt”×!‹Aq—'½% oÈïÊÖ·NXv´–¼5bÊxa“ e ¯v± œØmÜçÒ0A*°=”þúüÇÕˆÇ'&âp-cA‰§LÇ% h÷ k…¦E¨m~¸U§ZŸ.ž!Y´É¬ãT"xG£`zoÙØß<Ê8$‡ë/ñœH³,ûšˆ2º´@¶Õö):ìix´c³HºAb˜»2ËH|EÈá#Ó,&ˆðBà9¬V%HcǕÈâ$µ_“ Pß|zþìJ—¡O úYÄ/ã06*ŸžwÑ%¡Ô¼üâ×<†´³¼ò¸%ÿxù·‰ð³«ÃŸ7Íâ-à(ÅH¹‹bjà5bðÖÎÝ5wóéÇ=/Ïè2·4×Pg%v»Á…ÙsÕNÛk\ŠXCázxŸC&ý©rYËu“n.S½"‡ºUëVåib'Z”¯’A£T¡å•}¹×©ô].BüxÝ4¹÷Ÿã.ÄŽÌvÿ~_4étŠüHV"Ñx£ûñÙF(ÞÍ—®©3=¤|ÝuV¸é*~¦|j("íÅKÄÃÓ~ÒâÏ=Ñ@AœßE€Ø.UËëúpÏM{Hx+bj$'‹½0xÙÉÄ91¾YE“ÆGàÒ^Ëô˜_(÷»ºl×ê¶MI§d#ì t‰]áY•_X¯//u©pPnp‡IZ?̥ȿa²Fâ|!û `h*šZ¥ÆêÐkµø“IôÍk{1mÁÖ×–WC!J«V¶º)UÝð'z$“áñ8SŸ•ø¸bFê’9´Å»Š-4» Ò= ¡–âú´fI“Õˆã{ ÖÎ_ùö ùõ¤.޵ u½tr¿~ìýÞ+4o¥EFk%øQØzü«û°œf|úÙ1ǺØ"$d• `aŸ÷ºº­'.b7ç¹Ó#ža乤½ÅnqÏ—ïxtÓ¸­«X‰H. E&–õR9XyŽWÈa„-JÓ'LDeà–W#œ1à‚cä«ç%ryÜ⌊º·}óV'Q³*ðDû„]2¼Ìöj»Òcºû¿½Ñ©Ü‚wò¥<ùÎò7®à«R‘÷$çEB|÷ÔéêíÚÎ^L±±‰vÍÛ^ˆôPbê$ÐÙwß!×’çåB0¤U¸6üò´îáV¥ÀmìçÂýÔð¸8{I+Ë€do1º´áxKˆËMsáf“ŸgJä¦ÿóÚ@`ÁYy°›gºÒndh3 {r)á?Ýi¾“J9©;8È©‹Þxl·€Ñ~ÆñŠŠò‹+&ñw—ŽϮܽ"YOtï@;ÏBuØÜ#–â8í,7mnïÉž„Ò¸Ÿ88“'Af#ºq^79.Í•¦ÉÍÍ+ níðâí!ìiéÝ[Ÿô UX"pױЧ`îú¼gF#ØR„aNc0ˆ©sYaö B1uœ¤ÍcW{›©÷dgâÛ„/ÚC¿¨Ç-ßyÐ.Œøiâ²å¥¦¢SemÖC*Ã"Q¯Oåga)¥úÚ4³#aþVÝ#‚oÇ«;[c0Ò´êKÇÑÍíãcCÙÜ·ðçüY#R<ö‰Cµt_duÊIÓ«y¥×ÿn×N÷gº}ÙÙ=toÅRán/ßòNññH鿳_MO8T%Rdã =³ŠÛvÆéÚËýý)ɉŸàB’ˆ{;mBq±9›¿Uh Á°‘s¦4IC¶´Ô ôÇÃÉŠÍ_ MPÀÝÀŒlƒ*C2 ƒ!ºµ,>ДþÉFèߊ?!9Ñd«þM¼*›Š@¿Z^$†9ؘ£”JyŽÉ ë#üb—1û“Ò0¿f #+‹¯·ž™¼âÇ Š†üÚ-S²'ö¨ÐߥoÂ*‡}ßfüŒskzâÏÚhd ›1~øÐ­káÙ,÷»ÿ:Ðÿn%Õ…9|Ž\xf33?ž˜l]ÈöÞ¡Ê݇v~ȵ<ø¬µ¼ðÐÅÖkº–Ý/ðÜfÙ—)”ŸªFr•*\Ó¥«4:œ^b­ÂJU8îš›c~^Žj·Ñ•¤øœ±ôêN 17y0AœèL©¨=NqÍSÚi½»‹7êS OM–.H(® Ú±!_ÁóɎנ޵¹MoÌF›÷Qþlû.e*W'5>Ávíݶ÷h²‘™ÖÄÉü‹âMOîz“²¼Ô÷KQ°a¾‹ãÄ«½ù’-òÀÉÑk¶œ<öÚOD”Ž]A0yŽ‘è¹:ÆÊÕu#3’1rBa¶*{r,2ÒAP/Ž*vH|fQ‰aà ðÄu¯PŠIä #+Ãó¡F1¤Ñ7a˜ëB5ã ¶ô›RZŸ74ÃŒ/´«+œåL) óò™ UXfBÎ6@H¸¨øä:—,5¿¨ÕÔ]󅥪hãå ØyÌ.%Xg-¡ÌÈi‚p\¼4Ñ>{ÞLKõ*˜á½Bå_ú‡ß½–'¥'œŽ±yx޾1bþ}x'ݵ„”<¼º­ÐS“Lj·ýa×åÜäðA-Øÿ–òò"A¦’;6Œ²µâñ·L« lêˆî`¿7R¨å¹Ç})3Œ¿k_kþÛ± ì¹Á‡Ñõªïñ³(b "¶t<þe³3Öže½„{ bIÝÐb£¯½Æ,pÚgµ²àî…<”óÉ10øgº%¿çÊþ‹¼Ó@T¼|ÁŒ‚JCŽ4OŸêâݱÕâ´Äé­¥~.oŸhÀc—,nà~¹;?Js……B:Í0ì²ýuË~"™¢§/úüü™Á¸Q×z‹æ, ŽW3j°¼¤‰¥û±JÍ!‰ûà·-:wÇW§Ó€éë[ÿ@3Á‹®WŒÌR;®Z ZÖÕ.iGš!Æ÷dN¶`Âl nmôœJÔnök‘% F‚7WþüYÐOø,Õº}VÚ+:gô;2§¦`²2iz-v€tht5¹ ùIWÙ«æùVV|¾k¼)8`ÐüuWQ-5W ¤ÀµO%à'8Ïñï`ýâ"·lu¤£*”ÂË|éÃË‚žyvå±(q׎'F)pìz(A—ë^ãRf¥íÅ6º×¾»ÊÞ•1ØòGØ|—V¼ÏÛ…Q†¿´“Å¡²ˆî+¿ÕƉsÜ2üPâV,výe—Qü’³ÍéÀîoðXu ±zò¿ýKœkˆ˜ÄPÛË›‰çu£¬®7]âIq ´nº ¯Ÿsdî_™Û‹åìbDJ:NÁx ?ürû@»Þ/«Ç±3³Å¥§;30Y/Ì`§«™TaD Àîv÷›“Gkcxrž,o:–×÷ãSä<œìuÇW˜œãVAa²h—' ¤OµZÅÑFIê:~MËÀ¹o1±€=MÄt+µ¸[Ì…ôÁß‹õí8,¢B·tvçEˆŽ-42P¦¼ö gÕ™9d¢®:Q'ò6Ú˽bÕ(ÍF áÜv®×#e#$Œ¢¡2$,Ôß©Þùº±![b¾ûÐîoma|ãxÁgAYˆ0xï%©„G2Œ‘ÁÁðйC.oæ2§ï|•Å@>:æâ£íПÞéÀƒÓµø‰÷†ßUƒçÊ 7"-mÅÀŽpb»lئ(ʦV|²„à-vWâ•ÚA3hP®ûåÜ $Íйi$ýßHù×A–?õ@×ÿ"FŒà9 -.Œ§n Ø“ä+3 ËgèÚéh¡ÒG±f_­Å_»!1®)©‡µË@VùïVNÜóžq\傹dǃíÖäQ’Ü3|"Ľž£d–`SÛáC`Ú€¸›0R?ú€L$O©^YâCµ”!wY–n¸ËÙI}þⲫç§"È9DPH•4 Q_‰9ž*•päëý¯OqðŒÿó´°úßh›vŽÃß²n½;î–øów2Üóɼ=HÀñs2­0Ã÷[SJ1¾Â§€òK_Üg>µ©ßþ2â »<£'ð’Q¥þ6n\sC•A4­ÛYß"•Û¦wù¬?nJÅrP¿ äLYüâñ/j¸$¦½­Ï–Ø uÇaÖýYqkWd£ø¥æ_ÐÙþ ž¸ñâÇûèÃOÌ%#O‚{Šw¼ñÔ÷fÝ„‘yT(°x‰øD‹kÉ-–6ÎoÙ<6N1mã3µ~O\Ó6 <¹@ùK—\j~òYLµÐW›£“£²žÇË/sœJ$ç5µ='ºß³Q÷&Ëô*;¨Y¸b|´'õA`‰dQ»hµž©+ˆG`´ð‘§¥ï¿[kÿ¨ó%±¦Ìï­€Px[Ðø½ü¯¸ØØ÷ˆ©†R,BÞŧCê9²CA?¶ã¦7`¼~M[65ýÃmeTl+¦Å±nÓ H¸Pÿäá_Â[ƒÖú2­Ø1³!eO2gö€8ÓÍÖG4. ¯Aem‹B…´1›Ò8¿C=f?waŸ‹FA°£»ã@bòž ³6¹ˆ·|À?.†ÈÔóø[ƒ2…ÓÇÁêk´ýF3ž´HÁ®ƒ7« ùÆ«NÁ`ÒXÅÔgë+Âwâ¾å:Ö§/ṑ´ÅÚ]ò ·°sü_Α¶2Èó¯`¾êßÁX€òÞ[yv¸Â).ùõëhà9•(u:­ÇwÝ”jás {àS5'¸'ƒëÜáa0í&;è.ð*ÀÀÐg´¨(ÜAʤRyîžEå[Cú%ÊâÊ5PÕoÐVE)fœBHãk*4)ªo–Iè›–€ËHäCð¨ 1÷uóÀ‚ß‹emÐ%Ô!‘|æøÇÛ0¬UZWËá"cCù¨ë£ö ¦æ´ÎýŒE7¶Ÿì2îÔSr¾þmÜ´eÈ•4H,ÿðÌi×÷ðë,–1‡²Ã^¨àÕÓ}G,z7Âî™’Q²¸š.$†÷e>»*dõñå½…žÂÞKñŠÔ¹ñ*~¼†“Ð3þ ^¸æŒø…º­b•AjÏ]îãÒÇï";·÷ÍîVPÛj@6sk««Ã{Õö ÊRàï˜_¡z74ïˆåà —ö³z ’SlxKSmŒ7"¿Êö½!oŸ•Vaø‘¦Ä×­ ‡)¦\©DÌTP¿Ò܇œìU]QxRb6‰!¦˜Ï\Ÿ‹·þQÿ-EÂ'·„¦…þƒ¶åÖyë“Ã&ÉA7Î~&#ì¬ã;[’™½Êtl~d?"p9 Hß0óšb‰ÊB€õßÝsÇPOø‰ dÑÙƒÛûÏ<’v”Âé`Q~°~um²þ(ÄF`;§¢ÆA°4ݼÔMݰVšÏ…Ê4o9fQÌ1¬Õ@‹f¦ÿçf“¼~šê-–{Y:·½0"o»3ÌÆÉ?Ž-\U?¬ä~ «°°9ˆÄE°g‰ ¹²Â&œïJ—tUØçB¼s}D¸¨!#+%›‚!d+þÞýt­š~¾g{ þ~œTººLuðº»%ÀH­—e™³RXžVeWá€2b=k˜]¶z½3^¡uÅ•.š•v`zE÷dADŸ•Э{À€ ì0±»¼N+Æ‚•—ÀýuÜú›|\!ºH¥eù»ÿ$¶m zëÖBI]wb¶‡‡À¦ aª£^Ü› á¨QååÈÿ0_—•—æÒ£xîÛ4Ƨ]z/K¹`»Š"¹uÀiZJ_+Ñ:Q!ÎÕIEºn‰S§¿¯ &—GFŽ!*<¹_ë&ÑÇiœ *p<àý¿JÊ9êc{Ý“·ggž>°ÕŸ•ŠfúAèÞýHŽ\Ò£~ÔpSDŠÃ^¨·Û%«Bº]e„ïÜaYöcWîƒU®Nc/¡ú¯‹ä‹5ô‘Æ“£€öØÄêþ†-$Wç­f\ãâü ¸?1K¨ˆ0÷Øø[ʯ†9~ ¸×d&`CMÚäÒþ°(È›bÌiKW–áŸP¾¶Áÿ=)b——*þr_½`¸vS÷šj3æþò…•æþHnXaáÔ lû'S0”»OUýa©<‰ňò‡RKFÍ7±`‰s‰O߬ͺ"»â²>ãr¢ëq¬?=:a®¢ tøºãq+­’•¼†}{¢™0óë3èÑûIž}ñiÚª!G_s˘U”ºŒ$÷§‚gi“H߇ëÐn>“¸‘)°¿ÑXÙ/ç¦9LÕxþßÂ8‹í™>Î0u~}Ô)zâ¢EAEèÌûÍ«íô'ü£²"`lÚ°+‰‹!y$!LÂ…{/ð!³½#mÖ¨XF0¥Æ²¯.Ñ è V*®ÎG–½CÇãW$ÕÝŸÛþm©<]ßÛŒ¼ŒT¢~7ñ¬Ÿükx²vjnœ[-‚þÇf´ƒï B劒°x*†ás%×8œÄßp°T3æ"ƒEÒKM*wø%YUž Z¼v}ò¼Ö@ì:p ÕIkÆPŸccG¼àœ¯*õårðšeâÔ.À)B%WzÙÛ\˜Î‡t$nÅfƒ²v¢lqØo·Ì†¹¢^Àöþw×HôÞ~âTäÚNÐRžÊ <ïf$°1¢ƒp’ÙÐÝ/÷‡ÿW,p“*Á')çw\Ü|'QC“IîØzOû¯tv`Ìê·u@êSÏ ‹« g?ÅŸ‰¬H‘ËyøSø,SŸú éŸ+{Iúhì»üõÖÎh¬þØbʰ™]ðÌ4µGa>ìûö©9hv†&wyp»ÓÎA,” ±¤K¸üä_NÉ—ýÌôÆ×}‘‡*Ri{×Nˆ ìsþ4ŸQZÞÿÇãžÓ,¾~ó_Ù@Á.-37Š™8 y4&¬¹ˆÙˆç9Þ+‹/¯ ¨Ì\‘‰¬•6É›Yf¨~;=5©»²¥&R­2ô¿bëè'wè¦^߀É}zª[ tÙ”oÖ©¹äE(쾈¨:g&Kx•BjX\ ÓÊR’j.¢âTnÑKk«!] 'õèâ»­$ü ½\ âbˆSA[RR÷(ñîÒ Ⱦ|ÆîçžÛïÙ¾ü=ÌŽº‹äÿ5®Í_‘õ=˜Ÿ>Y¼È&¢Šÿ9Ž!ÊÍ9b-áßpÙþ;¸gÔ­¬WŒóøí‘Ù¨"¨î*{O´~ ž¶Ï@.“h>3ZÃ^±&½ ª£…ˆ?ÁEÀ)b"÷=È&‡ÛG¶= öUx ¿Öe¦»‘öóZ´>2³ÌçFU gÂzh7Ekq•3ϾôÊ><Šj¾¾ ™\'îߟß=y0]Irådüˆ=>ž?#â%oKµ—…ËFÍïSœœðÚ¥©ÉÀvR§ W)™èæ¾°Ô3 # ϗ뮽Ъ(Á6„}0<EÈ÷c¶vK¬Œð$ß¿¢ÙaYmƒ²¸k°ô›ú>T PU·hì·}‰%è7ÿL© æ?ýïWN£)ä„R“§äƒ‰$+=œ®‡×¯¶kÐè0_9Nw »¸4)Ÿ÷/w(ñvToÏl5êQw“ë+BA‰tfÛ †—+,EŸª§tІ ˆBg o/ªiûýr#"ÏzQ$¤Û›H÷}„xS‰*û“‰ßè¿<| ½.Šgv]chºÒý?ö^–Tšdž¤l¿ü",K(õHµCbP/Vܠ󮻤A_œé¹|dßõO1&¢Ñ“ ø+õM@)È7à˜¤(úßLYÛÉÄgb¾Ç}ÓÀpUP:1ï󶀯‰Ò õûo kXZ,“¨›¼Õ;Ùd2j×ÙÒäËå§Ç7¯ÅU>ö[»–pº°ÁLâ-ÿÒÌžDMÁPƪ¦ÂuY0ñ¿¹¬'Ðþ©lOùðŠÖ˜• uÇ{ý˜Åˆa~¯Ü-)ƒh1#hzϼËgŠÛ²†±9ù¬Ø}šæ,˜³Îý#‡wégÓÖª¼¼Jÿ¢ñ‡%>€na¡M°¨ýõ–¼óF«+^úÐùáÑ.d9gåÔ-T£tYQfoã›.†³_{Â¥\#‘f}ññu ñÜ*ã€ZÆ_Ü£ÿÓ%ïï„Lº2·•ˆÍË õ3*+bÅò¦•Þ¹ãz‘[Ô7»üÞDÄ!AØéÉݬªê‰QVóÍHÀnôhlãîcšên‹xyöÂ’I·äbÑŒ›vÜ7õˆ)óŽ$à;a@Q»D¿~,>ïΠˆ¿¥_:ÇÀñï·¬Ü$©Y‡w*p-Ùw j ¨ï•+¢]•6Â'Ò™bãdOîÍê®**Î\mÌ»%·gÓ&Î7·Œ»lš?g—¦Øþç.ê5êò$ÙÒUè 3¦Év<â›tS té^„í'ñëÍšà¼ù×àù–³?èÈÂíâÃÖR¥¯?­®î¼2bkä4ðd†Ð[E’Ï'tßr'.¾âÛÞ=ü؉NDZ¦jÜÂRü«€j$Bdö,ãžk%B'ëí†]¼¿Ì’¼4 Y‚Åҙй÷€0rEÿ¯0dE–sdˆô ¯[Cöy6Ø›¥þô›!žñ©¯À¹xEÉ‘b,lŒÍB 5¸Âúùž?·Y Ý- »I1…ÚhÍË?©#=ªNæ2Ñ V»áâ@ PÁãÖ´ç{ øÛ÷L±¿@t'´±ñÆîÀœY|£ãGñ ¶Œ_íSC«87½äÚý <ïAôæ,6B“Ýø…Âü× ¤ÞO¡éÌ…Û‘ígŽ]0êRJ¶ö"ûG«Ó|»’„h `M¯nÅ9Ë/F‡žU¤ê-ý…Te‚;Òq®æ=²’ÚݨŠR+õ/f ã0yÛJh~ÔPÅ¢ø† žÿ*Ék9äÐaï.Ý>áÆ f“̇¥/‘gK™caÉîˆMv(kú¢Åý²e+¸BÈb·G€ê{€“n2:ç‰ïò˜ŽªÝ©káŒ21‡1‡e½½æœv§u$Š?ŸûpùÈ ×­Ž|°—W÷÷Nu`7 fLš=÷¡ÂUíÿ„hªª€ˆ¦ÖxŠ@#ìFS^+( êI‹aŽ.QPíÑŒíI= ™³³×BêX®kl׿ץ  šKgóžÆo¦¢¸I#®0p®§MéÌŽ|DûŽ!+*’”ÅÑÀ¸l×°0 NÔ><¿Pi]>D(”(˜Ñ*TÈh$"Ý·3±”Q axÏ–«¬ÍŒÏâ¿ï¯§uª,ˆ‰ÖÃ>“M7&5)÷8ݙ߰O¤¦/Rn|ûúÏ•è+ÄófC‡ŠTżßîú¢Kˆ2aû‘EuþaXØ>í6ß&§?·++ª™Ï*þLShÅ™öäŠA©ºáLi³AêyG­6ïúÂÙ§=¯N DöÌ?Ño4n9_$þ bûÛʹHF¶¡TžÑ¨„îéUòÌÚ&c„ªÜïµq÷ëPc÷£.ÐHú7ê1Gg»Øož#…Øx`Ìß7 è ÙÙå‰`O°—óR’$2¿rns]º¤ê¿!ä!6#VaâçöDbe e×™£CîÏlÄI+”ÝæYÆ|6;‡ žùÄMªš€°ÁcŽØµ6xWŒDáÖîBTß~1HëÉ„?T{Ó¹üB[Ù Ûn<ÖDñ  ç|ËŒ‡—ç÷Þ:ÊŸ=ÆD;…%c.ôA"‹·šrž@îq+Òà´ü„f ŸGb‚ðáºJF.&¾‰1Lç£nØgß"î»$ú=—†5‡¾Êßý",…§O1îGm°Š'ÿ[ý¨añK”e R4Y2?Pš‹ Z´]*‰Ö˜Ø \ž'© ŽV&<}©Á,@¦«]TY†chW%q»#Ro(· }ƒ@ý&ó6Ùù{E ® V(K ~yŽ ’NŸrPòA.vb½ØÝ°Ý²3-Mn÷î% žuPÚúÄ§ØØä>VA`Fª>?ý°†Írг"ƒÉ'*»Rz¬[”?T 1£JË4~÷öß’LÛ ÈïWÿ—kfä9Z¸í[e@n5øÃö¢­îG ÏëÊYr¸V@X5ó9é˾¨|UёУV¾‡êÂjŸ¢Š Ø`v%-À’Úrnꄸñ[öîÕÊV‚ú5­Ò±åc0yžäLDþã¤ë';fnË _7 ̾yÊ_­‹»äuÔ†[{Ã÷Q.ªwiY!iø$ˆèž O™£ …hoAÌf€“µj ND^ã3Çÿ Iƒ–‚í"Þ»U°áÎÓ°;}ÁçY%y”wÀ YB ×§`C!Q—x’ÇöŒ¶ßƪF|#p2¾ °¼7Ny«Š^NJ‹.{¯æ÷áwý³4Ý£ñŠ®oÉ©¥Wøï4ºþfüÆJß.#4pS©8bR!ãk·ž¯J†E#„Ðc„¤ã)ÿõ&lÃ^öþÌáåü³jïãDKV®®1Cë\0 ÖÅ Á0 ‹YZEpi/data/DMlate.rda0000644000175100001440000031110012144476640013560 0ustar hornikusersý7zXZi"Þ6!ÏXÌäuïþ])TW"änRÊŸãXa“ÆqÅjnçj-&é‰;Q€cj‹á:^©QœmâÙ0^®?_ûâì¿ ºaÙ¶êÉ"¹±Z3z5ËX?‹y(¹‡wSÿ²ö_ǯ6×m¦éó?RûÐ+ÿPô¨R|$FJ‘ˆm bN°øÑ)¨’ذ÷ÜÂQ(g<ûì1þªæïHX¶›(u^"†A„þ¢2y„¨RÎ!giÔ™g!°ˆ±ö,bÂey ØÇ¥½WÉÕb·Áã… å.s¾c[kb÷n¬wK?ÐèbŠºà~Q>Ûf~Òî×1äWñû7qÊ–’ü|™Šå!õœƒ­üª(ëí—t^†LÌìW”/°Å/pO ÒƒÍq„VN‡8ŸR\œÃÓtŤ¹eµ½gW¼>ODhvGƒÿcŽ~ÅvÑ ÀŠ]o÷ã:¥D-˜”þcMP7]7.X¿¾8mŒCõ”õžx<ÂÂßຠ7ÌÌF$hI–Ù)Ñîâ`6ðÚ>žÖvå‰O1ZÎJ†E¾ÇFx|t÷Wó ZÀ9ASƒlió¡_ÎLÉp¯C}rc„úuþcÂÛØŠJGã, šÊ,zëà E66|0±•‰|cñlÙ.5ÑØŽ,ƒ¿0Wø!ÇòoþG“UÅ¿/rrƒ Ë6»[=4GEêÄBxw__}dÚvïÅç>¬[{ÆV½E¹`Rf‡†™/x§D? Ñ'_v6bRà‹Í%¤‰cÀ»vH¶‹¹é­‹dþÝU“£+å¤ œPÆÒ Eõ7š¯A ’aJ|#Ð3'móñþ8‚”ú‰óA“ó›‡ï®Èµú`ô¸ÓÞ1´,‰á†¼0¤7­4ª³¥¨8 Ó”½§8%î³ ¬þW½Œ ó¹[¯æ“<1ÀÑMGG«Ìèïá\"îÐí'©ÎЍh¢h›¢º òßj[Jè%ªÞýõÁ­[qø9àÖïÀkbd³Ø5*ŸÎYl28ÀíÐ\Ô³Žê&ÄŽ*‰Œ-~Š¡>òïÃ$¡UŠ{ ä[Ü SŒ«Ä¶Óî„ Ò ‚¶¨¹%ƒ•H}ª¨ì]S™ ÿ 1ÆWˆ–i\¾={[ãdxf¿4f×> Ï÷}1Km@Ø–ŸCëñ¹E)N¶¿-XÆ6ÂTÖ.ˆ]!jK83RâFæ{™ÄÇ#X¥ÿ•ÂôMµÁîõæccGý’¤™þþé¡Ö¯.}¢¬uKÐÛ¤84BM½G¼³°˜µE™?2»ƒòL1_£—X~¬)Ó’¤ðèxîk¡L_W]ZYŒÔ åÏé­Äó_‡¨Ý Þ¨ÝtJY--×È”yµ±/CP&줋PœA•é/%U!éÒ.¥Ýç§)òÚ64B4/1•øûáÜO€÷¥ˆðÖIW“IéÖÑí¸¬æoëÓ Q·|‹ì”<Ëq@ÃßùÇ’1P nÑ0oÑ\vÀyn D \´Ç7Zœå¢ªút°24Á8§š,º%óUðÂfø£ÜwRоÅÓO‘"v!0Þ\Ys ¡zaOKY;É£¨Â]YÅ¥kÞÑ18VH#[»Î Þ „X-u]Ôúá‹ëh¦»äó%ñ5P0L8½ù×½ÞKüp®ÛÛý¯-soy؈³:‡ôäQ¦rÛ<•’-zIÉoŠ´árÊ ¾8 9ŠGõuh :ƒ†ö®Û„DfÐy#fÒù]ç_"“w²b<þaÊrŒï,OOãîö ‰]»«eeåu˜ïEÙ€ÀÓ{m°-$\N>Š¡a¾f±cM›ítÄY,±gŠHÚÎÉÄ퉕bèà|,“¼ÞLJûŸ%ئ.ž ÒÌJÄK—´9+ÌÕ쬇ÒQÏ¢²3!Þò>ž'1b°¦¨ÁÆ~/3f)t$MÐg•¼ÁPrjn‰íŽˆÅœýÅ'¡]%\”gÂtHßWƒ±z·øyÚÈÙsc2G²Ø)%f„|¥@MƒjmS4~&ê¯N±™šü"BZû¤æ„žŠj˜g׿ɏìæC‘m™¿v‹M"lfDx±JcLÎy·4ÓnPaþˆªäA}ô«3:pàz¡—„{ÜÐú°7ž:”â€á©k×ãKLûÍ—Y¦æuYõTNœŠ< P¨š­9šõPÊHØL–ïË™ï8A„Bv­†^ïóàíR Â7¯˜²²t¢äø¥ÇЈ¬§°¸ÓL¥·k³[Çs#C‘ø D g‰,`ùÁÆ(´c³AWé¹:Z%ÝéÍg]ùŠÀ ÄTùwŒ„Gó9cÞä[Ó •€äª!Ç.$ œ°+Fl°‘¯OÎ,E}íX_“µcJPñ¬†"ý.îö",µ˜Ü¿r·‹Tñ¶Û^®Y,~EÍT•-s !íÀ yëµóÿù1DðG7²Rÿ£üßj¤¯+)ª9—WJšaamÁŠòSq/¼Ùuorá¶DLÁªá9;ºHëXf/‚®!Á«hÔÑÏ£ÛµhÜny7/3rŸQà®Q¿Ä€vo›ìø·Ñ`œî r×oç*ξ‘ÝWH¼æ’6LÂ.w›+äçÆê’+xFÁSû¿G;Lç—Æý­/ôczé £ g‡Ù{>ïýœu¨ $Åuõ»)¬×Âp6-|o…ºŠÚAÖ,“öð@‰î6øD è Jéˆ`p@ =d-í%oÎOD|ÊÖs´oRNŒ˜QÞŒº—•ž¾˜þñÇtѽü„"÷'æößcÚ²^¼Þ¸b…£€BDÓÊ?\e¿ÊZ}lܪٞêIB:Ëp9ìxÙæ§Ð …Üj•lÃÐÜ ]VJ„Ç 0g÷ª~âÍc§âË ®gb?CBEFž)ƒ9ýeËö|ü´x¼ ]× f ¹þ¸˜¾c©M°àˆ·¶°õGÄI¸zu¯¼p4·ج¹¨{á‘7Á5g2PòzoNoýK†ªn]“Ž2¾hF6Ï 0Œ´)*â~@í££¸Q Z„a¢Š{kés›oVû½fý@Fu‘#%þSBHBëµcX®Ïp‡#,`&YfîÛ¼“; ô&òtPƒѵ.Ø$u?â,S>yé<^û³»tqú‘µ1ŠPk´„#8X•}Eˆ[,Ã5t <Ý/R €@¥„xˆ]’˜ï^äZ  H÷àþ¬çÊ&ᢛZ¨lÔ 9¨áHµ<—ªËÖݰ~-+¤À\ñ'A5¸O5¶zÓË7ÙFO£yqÀŒêjLn#ÑZ-Aµ§éAÖå:ƒËL#~*¦Z[v¿È€Bf¶cãuLâåzÐ|ÞÖÐ$ÇW£4дJ‚|œ¾^7­¢4í|¨_Wì«£­ö²ƒ¤F~ÿà0ÚáVþUä±ëNêFÃ*H‘š|þ‡©N°ÓHWv’ó$Ëö„g»n-'/¯Ü2Ú³—Þ伊ñ¡îÇà ÒÚeâèBš #¡‰nJt>Bé{ç1¯§ü×çPùòì¥õ³S£m‹v„6”Áˆòh‹€*¯toyŸ5ÅP뎖”ø…˜³MÄàm¤¾h"2S`ÁýÙ[ѽ­Éúw3[ÓåùÑaÔ¡§8!)ý@ˆäçY9h$èÖ³æž.„L z/1D‰ _Beô7 ºßE–å 5K9!t”T¢!î©’ž"‘s¨÷…‚–9.Z–6î€y÷QW/Îëç8÷ žÍ²(“ž»Z®¶Iœê@åKg²iuJ™³–bÌB5nˆñ¡ùdžJy¥êbBâÓAåC™¼I ¾N!¡×$MòÖÊÇá"ÈYDŠK™X ›ÜËÙ\î¯Îo×ë:Ï?g;Ì©w¡¨ª$Ä~M%6µm a $w) _£_#Ìt‰â ¬©#Þ’0åê¯îjKS‹GoBÒæ‹¼¦Xcbvøá<ùcI·†¬ä`ï¶Å%ó­ãNZúw±®WÜà–~óÇ ÀŠ xXú÷e ëù!Z)ˆâ„øD…{+"ÒomÁ<‡¨Ì°ËW)[|d›Õ¾]Q~ ÊÅ¿ŒÜ8 ÄÀê‹+V°ÆºýV&úÇUrGªïÕù§”¹Ö+G^¾@9l$kÀÐfÑÙ ßVÁíä#Ò$Ǿ'¿¾9Sgš,2‰År7œñ ºÌª+T‡HúïØIw¿”?€Â¸­ä'V‘×¾BæQù¨ýG©4±Å¬ ò a±íCqáäƒÖÃ×@O>Ÿ±ÌĉҎ,ÍÜίæ)¯N¬.š#Ú¶ È´S¡æËŒÌ]q9ÉŸÊQˆí½/ ÝÇp^ô¸è«âØŸWƒED×E¥ÊÊÊIÔT°°Táö„ÕîFRut«r!Á`êàä¼OIƒH¹\Àûåì?+Z½”"üÉ Šn‚b5SÀÉ8Pƒ_± këXœNµ¥zÁ8H„@ùº¼”nŸÐ¢à/49ŽoØÅµôOï̈T¯ž\8‹^€†1éƒ!ÑÌ'OJ#9«è’ǯÑÎþ=‡‘¯p§ÊÍqSÖÉ6ò—ùÚŸÎn‰Ú…}Y\éÖxh”ùί7†Î/©*áÏzØCÃOªtZ%¦ÅτМ'Ò»N¢Á}¼°ëöÛ*Oì¿âim ›ƒ R1(ÐÙºn¹+9Âä .‹`§>㲦ø¡cNéÄ.e†Sf{ÀÜŽEeJ©Š³<—F0lkÛ–gæbÚžq€ŽfŸ÷77Í“%ÆšÎsEôúÉ×wm ‘Ò(ƒ°?¸ˆ—ñaØÅïë©ME)ÛUÈõíE¡ŽÃ;þ19R’R¹ d¢Ò<­¿Vªêç_! F¼ øI e`}Ù]Ÿð ¯¶&Š3o.^6_е8 Ò8A6¨•WLéäzÒMK»Ëë^ß9£<ÊÞ IBM F\\SÖk‚09=WÐÿŸ#o¼®¡}&—2&3ȘÙ9–!ïÞÔ}Q*°'ü§ÂBHª‘~jÑŸzǰN„Išæ O pF£„ÿ[ªnb¦ÈûÇ-Êè˱NŠôŠ1èï½V@ÕQD{ qÍÖòc¾Æð íP Ào4¢Jj1X¥ê ^û³ðžæi‰PÐí‰J£:óð´D©šqm?Þ@' ~õ7LFÜ”oQÓÅ}GÊ?ß´T[Ù;KšÑêE8A¾­´‚gIú í kµ`÷µ³¹ÑHÌîj°v÷ð0XÎg¿[kE<ÐCÏÁ~›´ä²›úçgÙùCà‘v’뤿K %Ç©Ñ NÑJ»£w|tès^ë¼ eRÚýð ãO»ÍÀ6V`ÞçBFG ¥sÑôyd–¿PŽ[æÎŒþ›}>¹{…ÜËä1 ¿r´­Ó "öc¸t4gû2t@ö®òÉšÿ._~Mެïvécsµ&)6€ ¶€¡ŸÆ …Õ– ìqèÓÂ$í ‡úèl¬‰´0®q‚*OÕòÚi) Æ—Òïén—9Ð2+3¥(W!šÌqùdã=ÿ—^3 GrߥdZœÉÃû 4Cú]¥ÑÓ0ÜùRÈ·òN^hÆ‰æ´ `=ª7ö(ËÌ’Ü–ã^²X8ƒÜ5ô£c, k±3º£Ñ¢¦_Gßús5v&?½ÄÍ‹æÔ$A8†ú8!.KR[ç×oHÅcäUªLà¬díÙáÝ@¸ÁšøòÜG„;Úñú-Ò7Qêeµ€™F“α(ÿðž…ý„3Ȥ®ý}›–t× Œ†žÐ˜µ\,>š„3¤Iê•&BòŽ,©z˜€–Õ&\g°6ó›ÇS4–¡—weD%ª¾€ˆX³~‚rûÈw³€ÎcèÕVq4ñvªû¤#}EcõV¦’±ˆðebÎÒÓºˆ;Ú*ÃÝÿ-jËQÍbÈV«œhGçÚõì,„óÀˆ’ºZ²ˆ#aåŸzîËeÑGò‡Ÿ=v†ÏÐÄ}V dgÂÂ^a›9Þ¤k:– G\£¸|î@:A+¾õI|¥˜Sl­•Ðs‡[vªé2 X9ÃÎù=»¾“FEGVRäúU«àjÀ !évù”ª²Ê‡Ôw'Y²_xöwPY <Ð]’‘x«>@ù 9'QOùWADŽé #¿9²œˆÐE=J“$%Ì) 6š6ëέ»Ÿi¼Éû4Ä[hÚq$Iß%³¹Õ¤¹‚sn¶Lå¸wQÎDùÜzøƒ+ý$aP"‚…â¾@˜ÁJ™ŒÁYt°5sØ üð<`ׄžÝ¾œ†ƒÁ›¡ìÎ|Oûü «7Ø-/Œ,ܹ”0L‰.ÒTíe낟XÎÄ}K‹Æd‘¦<2¥Ôœe’6ïŸj—biÿØ×4‹MnÒ¾æñ\-¬¨žLù”jŠxuþH,4½„ Qÿ¶úMeF Mï[N]rµY ì£ =ÏøŒí¸TÝÿ/ãç8Vä ÖïÛ»G,GŸ¦&C/¸½-Éo]fõlÖgc.¸dÎÔ$yÈÃûERšwÔ•ÉdÈì4u¤øð§å²„TþU¿W§m©FÏhì ½Ûjlæè¢7߆UUŒqøšž{msNilLm\k”KÌusÕù~o£0Ƨu¯Ÿb¦\R‚?eÿ]ß]‹“Åó†:_#Aßìݤ¶RÅtŒÄ&ÄȾyš°#wlánúM;Iæ›~.G{ ðDˆi”å|?­b}⊘5†‡Þ½^²^€wÑÏ"ò—G 11 ‚Þü)+çr0ß› ¾+ˆìnÍßÔYÝtÝñu¢Œ‹Œ4LÈð±`[¦²Ù¥ö=i¼h,À™Q@“Nºë0mýÍöÀÜ1 ðüÍSÂWC—Ñö¥s€ëÝ£ðÎö-1õ«I—Ž{-ê@-Þ¤olA¾» ’møðoˆ¤'Ü\°ÚõpO[8ÅwT{Õ6c)/Ýns£çzlÉb0‚ÊÈ.ˆM0劸±ˆŽå¥ùŸO¤ÞØïâ£Ý¹ªÍÅÇìÅNÎÐÃí?ø„à »mýØÒ=£ûr€×gÌhˆäEÚð á0€™%R@‘œU3µZ؇;”Îm-½ö0ué± ÞaºW¡’ÆJk+…ÙWâB>5Î)îkó»¼báçX9?¬úŒü§Vü;TÐXUž§ç%JPCÌûA¾ÇCÒñ:{öºµkó†•íh¿ô•‡!X€ÍF qf=þ-Yø° ¤@3q}:É ñìÎù„B[QHi:<ïé¢f½•—t~Àm¡¦M{sZJ¡ʨ… )'ù>âöýçõþ¼ã3€?!l[âMìm³ÇÍþ5ù±íD‘7/”æRZÒ.¿M3ˆÖŸujÍ{\ö„smð&•R3ÓÒ¥ýîOyšÐ¢µž¥R0ïÖlöq²ú5'½¬~Äy·Rà´7’×"i¡ÏOÿ`ÒŸAPo Ší¥Ã¼ätHý Ùˆ„]¦ø[G¨¿c:‹Ód© óšk€ž‡1‰ä„â¤ò”7(ñò½Çq*À‡ªœ£cæÎ9¬>°Üö)%EÖº›´½S”ü˜>-*¿ò'Œ“p‹!¹7ÅÙò‹¦kÒ7zRæJ1çk¨w«D¢ž‚‡×mÜ}ÝìíCcý“¼–Q5€eê´+«P§ˆàiÐiâbR°¡ [&€t-L›è=Ï7"¯ïMöÙé]8_\y¬ÈYtøß8ÃáÇaºÆ±Š®~s1 6‰tQR—eæòõ뱕2UEM6âá."c³íMÑ%¶¸ªàúù¦þFÙX"-e0 ª'BŒÕôñ‡è,²œ6‹N*hûÌó%c’’?7--F3'…eÝeÖçz’ËMé[]'ƒv÷ÓÞ4WkSY3d£ðÀÐâ€Âi ?Ö¦¢mD >=ÁrÜÄŠ÷ÁÐÂ7½¹³¶_‡í`^å£[#ŵ_¹YƒÏ> @¢ ˆ:¯lFü£×èNg®î¡]å,J´Ü¿Jªš!ì%jë;í©OÔÞþØ÷ߟˆÕ7^C0¢±Vg]²ÎOê{3âˆìÁÇùDù´+­ÂAÇÊ]Øq]ÐmDº¿:..¥Y;̉^Ù£?¶“'Pd Ø„Xé~Á#ýtn)á éÈŸÖ Ÿ º® ÃäøMþ‡Ú|üþ:æóFÙ‚kÛ^ç·³¡¾ÈB¾î(=ãdôáõõVÛQb$˜­¡Ùß8$ƒ¶y¾¡—V†~D±e«à-˜’í¥é.Z,Èq/¢lWŒÜ9ÆÞº;†ÙüêîûÍ<-ŲŒ©pä£@;~±PZܼðÃ!WYQ·º]¥kïDŒJÍmò&¤7½iˆ%]-ïÙÊOFkO[o8ÿ½Øø^ïâÅ +<öBL¼„Yĸ§JsñWØH.@ŸÜT“Pe®'l Rä÷D«NÐ;zÜ ƒ),CŽ1$ÄíR”!8_W ß“ v%œoµý14óf¬j÷/ž¥~íà%Æ©•’!÷)¡žwÃ^ò™Àȧk#ÿŒ Ëç ˜Ÿ,ƒ¾cžŠ|«ÞR&wþ=äPvµ¬dKZjo6ªÑvD{4!Êßtë„:‹Î~?dð=ºz§õ±¬9è¿m½h:©ZÏÇÁ˜ÌtCл‘@4@dÊóOpWŠc6_ŽnƼÖ@í7Å%"ò Õò=«G¡è,J¥úDæOÝ,¯F9¾ÅUõoUÑ!5îô§·aibÊøAR—W7«»^"[öËÙö&Æÿ?ô&õ¢ œxÿi¯›öï]5dú-—¦„k¨’Y¼cuÛ}‡˜§+é­ó'’0h(ì–¦Û®2;ËÈRjxc™ß¾KîêºÜnc¿†³?/˜zá*Ö´ÜXB`7TP’ÉÇg‡¬ë½pRõQ+ê ,3f¥#þžÕwš:9ùì»%NL—hpC4MŪ̠†ÓrÖ¦2W’h'>Q®eÑ&äÛM=}¿ Ü~¾SŠƒÉcH‰]kóæÿR`} –Eêúeù„ç“aVèŽ[’ñ3fKnYj*©‡÷¡|¥¿BŒAFfä8ì‚6èM;K/ò´%Nß—ò«|ØÌk =SÜ'º« @54sÕmݲaõ«³ÃFÆÔÊ×è´hŒ0BàÍ={ç!lQY¬a3˜å`9žþÂÙržGiùÇžÚÓÎ…34mÁ_Á? ™c‘;$s-]ÀCrö"o´ÈiÙ¢0# AÒ[Åö³øpë²”ºÛß<Á»8‹¬Ð<º8i>ó%xá®úöËn]¨©’žÚ5%ÒÀId0g`x¥U@õÿ”ÚøcO«a¶þÃì¢ù ©e€[\÷‹O/M¢C‡Á QHìFé¦?ë¸Aûȶ&=ßN²~/t¥ÉeͦC2}ßí¶ŽmÍ7µ ¼ †Ç“gÁz‚žQma ÊçïDfÊLA@nm}Þ²áä\å×M˜yin‘ý$×Êy+± ´7=fð=€qK¸7´ùÔ²ÅááŠõœoVC,ø`K¥¯¿Ä”b¯3æ¯â›R%dÙ™?Pš*¤¶²)OuD&úL­Rmvèt¾™pÁ —óET–/’0’r¥¤€ð¸÷d¡“šhy 9וÏ`°Ø¢qÀÝ×S©"¦¼»>„€ˆÂÃê˺™éÀWO1 GöåÜ´b­†Þ­xê;2Tñ?¥1Ôçqݰ:"ìúíÃÁLÕKQrÌÝäîç:ØdÙÂklŽÈEgÛîjTŽrJÞΤ(.ãe¤ÜùåÃíùµÅ£ûiø¹˜áºU\Éù¨Üߢ’ 5.÷»³ÿƘQ+öU›õÑ?Cdjj‹ +¬ò´ކŽ)˜]þÙ¹zð½8v#k…Zw°veÎÌòÙÚ›çÿ¡<&Œ\€DÓ„cÛAš Nšªá€LŒP©½{¹Ê4 ^¨z˴ѱ¼J÷AS0  úѺèõân¸{€ ¢X¯áë§±‚ˆC|mC÷Ê™?ûmÂ- µ³ u±ßœª*Mv”4Üü*(Ì…IJV8uìŠ( “ùó†p ÏS\¶JÞ¡îVîñðÖÃo›¾gЂùaŽ:¸^Ü0ÌÛÅ€^JAV#«ãa”} {PCò ÅH–À…ø·:«¿«Æ‡ß£>·*=‹cI6¨ÔmÕÿ®ˆ2?oBÕºy¥bi­b‚¢Wº—èH)hÒ]ï |pæ¡·ƒGë›(£ævÙDâÙùûéš‘‘ÝvuãÂψu4þüñHàn·9À×>¡æž÷‡¥0~âw à\®‡ÎÊsÐP–Ü¡¸Î*«'[¦MÓÆŽ„b. P[¦¶¡6TÜ‚')Ý)öÎÀv‚ëÈÙÆ«N¯Ã0V\¿xVê&âxÜ $šŸ#âoO;4Z‘¡Â,ê8pGWùJU®çÔ•YØcVVhá^µ}ßõj"CÔ7 fߎmáp,´hyØÏi”4"¥´%y»ÎåÝhÀ¹³4`ç™=©‘3*|›ÿèÏB„­9ãºf1Oaaní”ÞP çÖM}ž^®€k.3P¬@TÀÁ-üÐRX^r^½×\÷Óì‰ú™;n´(ÌHóŸ™4r³Ò¬!¾HÌÝ1J@ÚÜjÀ‹-K­¼?RG$뜀(TºaiÊ‚!-lÉÝîJZ'’³£!)dŒìéÛcÐᦘŠ)j"¾Ùùm2‘Ǽùèã¤Øû ˜~ýþáöŠ¥v["΃†Ûéê-"DéÚ[Íó‹Š,ÞB $¿Y¶È?¿¢™‡ ô¢i¸¡)Ð&QÖ²†¸£ÐH\À;ñÒäv——ÕòjBk–è éo\öÑ9Õco¹70·q&Û·Në\ÏÇZ¾ÚÆ$°06“„é¹ÿÑJP MRÿ?œ¦Ú:ÂÏ Ä™šúÜ  ?ЪÕ¤„Ћù@€o«l±°¨È™p„Ö\fDÎÕfËðõ!Ë]¹ãâ­ÍÚÓúÙ=~SëèW&Ûáuí‘ÿ†ÿJι}Áhãœ]‹ÎP#àìÍdªuë(;ŠDóú:T˜Ñ-áÌf:׫S>ænÍ Ä²Ïïàõ–[²•au1麃gW*ÆOÞ¶<3Ñ&sžGÎvÿÎõ ì›·;@ù +S9'thmgQÖ¶FÐÅ_/u¦Œ}X¦Œ´œ¶EmµMÙñ»Ú…¹È÷^Ä.5o쮩¿ H‚5”Ê(þždèxKµæ²‰ BÜœâ^31–fÉ¿Kf:Îc™l|&M ¾é¾¬¿äÄ–^cUSü®-¨é%^ ^ü³Ü ôЯúúÿšxÿCºS?BÉ¥`ÿ!u⻨¶"ŽÜ¡¹¤TâVBëOQ-i…Vù‰Â4…ê<Þ‡°QS—"NÜåâï„÷m¥²#©ÒF¨®òÐæ»W–: 1jO“õYˆ _ªùëV‚ܹ›`‘ËQk¸F£sI`ÅAC¹Vt'cEEìí]gã•Cáû©½êüz϶öû·äìºèÁXûSJÝ“ /VЭcÂS>J¹õØgëǼ¨Ù ë•ПW,§;‘\̳zphŸêé•ÕLÿ´èž- ‹ÃVVŽy¤†(^ΑG²úJ£>yi„Hü›~ÈŠ«%=ù5(¤¾øB9]Y^ÏY<›÷ƒ ½˜!:Ï3#(fRp!QÅàæK0—©oŠ1‹ÙP'TŠŠóEÿÍÉö%gžçY\iî:›¸’Þ§‰M³’í0ÞMØ#¦"–63.§¹4‰@-âÙ±úݱh{>U½ÿË:…è*…¬K—îÑÛpqòŠcòsuúÎmC«>·dKÔ˜,4h1YT(Œ@¼µÊý@XH"‹@ø/„­7ì¥#´ìu6™¤ äR£¢^5šñ‡eö×Sf*JËëû„9µÞ æélÜècs‘A b¹IÞjI]w:×ʽ§³ò£ã7µ¹_wé¨V3‹ÌÖ-Ö ,»]»YJcIa|U¤«Á|È©þþ/‹y.æÊsÒr;‡àrÒ—šé9ëàlÛšú&gžIâúx¶µüÊVø½5‚ˆÙìàͳyciøÓ„-;òJ×Gx<²£ëÌFÒñ%Ò>Ò&õþYw*V“{´ö¶ƒ…R?wU]µµár!Ií¢›ÅÅhÍI§%9íM º[‘% ÓjûÌPŠºëªNŽ­ ðÇÃ׫NÕÁ&T (㺬1*[2Ve˜ ÜÒÞ©#½YìïÄnNŸz¯%G•Ž©”I2ñÕhiÂ*a¿è¥nlé=²ëÚ›2[>n©”#üé:YH†äP!O‡üòF"Fìýî~•Ñïhtpö».ÕŽ®Ön±ê5‰¦3¼ûE.†#& ï5ÝãYâṟC›L‚¥‘Ô‰aܱjÉÁ%¯ö|dåí‹áÛ”­±€IïvÒ¯[0bŠþ寘üB|@Øvs*Îú‰ä U ÊÂúùÇÛnVG4Mpõ½²AM¹¿M‰ÔM_W§¨=­¸A3 ¦!&¥1Ïlù›ØòºN—‡Í’÷¹TøiµÔ ˆó"DçÄ™7Eý-D÷òW±/Lõ~¥„_9C|O vƆYrÇÞ$8Lûòq;®±Q¯§ýñ8jÈè®dNõû\ݰ ¬Õƒ?îà|úù…lX¶{uxÚNlš#‡f¯ìåpán©KSk®ù™+Ï‘?’‘Sñ7Û=Ú¢(VäoëaIßž*>ÖÔØNÙó§´pãŸÕH¨eébÁ’²hË>¢au%æÃC3)lá9‰¤ÁîS úEMn‹‚\ ¶„û'œtÙEó-ìë7°k¿ƒŸCQ]a¾ãA$ Ö½ƒˆ¢Eîæëé©ýSºç ''šKç?>Ÿú)Š@sµFÀÌÞ…a™Nzö2yVÆ™™%8âàtT«Ã­±\­þCö—:nš%ÇôÆÍØ-ôâþa„6x£åy¢Û'ʇ<ÀIôv‹#ÝÊS•ÇR)‹ÈÇÙØº\iç=ôžé£H Ç6N4l˜uñ¥_d FwXÛ«øå×£Õ–xÏ`â(¢¿÷*Ì3Õ5°ê~¢Æödb Fá} ;YgËî§J¸.p|J¹Xí¯ƒ£ZàE†$3ŸÛ]W® %9Ô™ùsÄ›JÊ÷„ÐràBj#1 ´Fâ.¨Q“¨Å‚æ÷¼¹ÕÁˆ´(>3 4^¦„°þš5#$j+{r²9à_0;¼ -¼r¬vIÎÜñÀ{k]׿ºÖçRY÷Ç  :éЙú8¿`·°)ó'ïÅÙÀÚÅõ.7S`O¦)r±+g,Dóšþ¤×L ¤©"0ÔÂIDOÆÚ‡rЈ™p]K=23&@rÔšå=\ o÷hªRÆ Þ$úž6¢4Ž6gšÙ¬óåK°ºÝ¾‹>¡¶i\-8y’Ú 2£@ú;ãp˜ûcð®0Ž3‚AoVx…`ÐõЯ¨*ƒžU×À\á&´DøŠßß&ró;%x“W¬Q¿©Ì+Ú~Ä$¾ý2ݘ¦C3`hZ†¬xÒIÅü“‡°ó³&FO #àKŠÛæºÁ>cûàk¯P’¹=¹j°’èê~%…Oš|$f×¢žñí+0d$Úç| ‚[”,f{"äZ‰ŽE[mC~`¥K“ˆù÷TÕ32bàúrmê&þ\w„ž%Ý5*“ÀÕÃ’Òíf›UÆpåé4êßÙæá¾zOG6þ¹ˆ“)JT8³!Z ’à[Â7—©ÙkëC+›ZmƒV¹k¼|<#Yg’{Žlˆ·æèä·ôÅS“>6[ú…©ÉY‡/-ø]QjL']'iÂ|ªAÈGdkT4ð½5%‰KÿV&i\‰Ãno˜ø.u* _øÌÏîÀæ:Cå½›Un%rÿ.ÌäÔ,5ÜÌ’-\ýZ)ÙÞ[T÷ùƒÍï"‡'kˤdðàçÔõÊIGà­Ñ6“rÿÏiÑ1yó ­vU”Ú—óüÚiÓwR™f´E«åJ7ÝAÕeC±Pmy}¥°­-šU¥JÐRõçAw®õ kú¶«œ~3¿”òÃf„¤\=æ/‰|:~y‰±Þ­ŸjÆÐ¶^‘˜íÁ ¦Tl~Å[`GÒS`Ä,Êz°;ß¿XõÂ×ëþI“¾¬Œ²ºÙ„ùиFÀ¡­ˆy\wœªEóJ¯v ¢¿R ´è3ôæ—WXš àýÑð )ôYÆ÷z\ArbîL_žÀ¶δ©‚þÇ-p`iêì¶-þæ ÄņܭCË÷µAúg'ã¹%*ýïòw"ó=õ}Š»}ø3‹[à ¤²)¸Õä\Ûà¿Ébibúå'õ„ˆRyú‘bŸ™„ÔöN†‰€ûhè§Õm52±Í@wsö/xïûžtzçŒÛšd`jÄɉ«=ÒN·C«;Ë–CrÀ&ö¢-ÿJ£}|šZŒ]Öj·C—Ñì·0÷kœ¿«û†ˆÊ<ÉGI®œ™·ŽJœ+qAIlO›rȶ£yßö—m·ØèED³¤6L¯½ÉØXI¥²,äÛ;P¨vÚÓ E©¡c3Atv^uº«¿W–8ãÚ–7¨óœsÆÉÐÕk`„Çó0Çêî085Sà!p¥u¾Ùñ½:8“r0+9é áŽÙèôIš±6‡%Ÿ^O—ùÀ6;¯DsÀ-W}oÜ1j¾¬ùZ÷Î*µ6$ÌVÈ¥Y›B‘Ê“ú-Ë éj†,/Ö¦&-. uÕÚÍ-ž—}ºŒØ¶ºë $+ ¾ºŽŽ=­>ÊN\2J–Åfuиr³bͤ£x‹Fßãôˆ)Z¼1vFq€¥yR5ìl¡j ïë/§£÷Š]¬¸æQ)¯Šú=frÄñòêyZFrÅVIõÚiŠc¥ N)£ßÒ>wg­é§7?¿.§°ÜliË5þêÒzÌc1éqS3F#k–Öˆ¯î¬ê#åûKM»:bM„Rµžs‡’¯T°¥€ß:MzU×8x5w©ÇM2”w*Ä •Üü²‹’:-p˜¿ûhf0ÜÔÞË—6 T]˜YiÔ=ž¹a>(Îúº×ðíŽ5lX¢_ŸpH)¼'dÅ*Õ¸ØA·jbrí“ Á`FRzB2hëÁo)‘Òá 'ª¹y}MÅxz#9ŠøPÏÌß16ù¯YIûÌBßäIàI4ÚAQ£hÒX(Âô¿·ùùV+R†Ú ùÊPB8¦“Oo .kv6ih¹ã¼18Â`¬[o„y¦g§–Há½çß’§ƒä…RtN™¸»{sU&{E-ò[õ|ðÃ[“aÕÈ!4Änú2£h¼¸Fÿ“$ápitÍP:ý¡c _Ó®_®á¢f±#h‹\¨ÆÕ<ä-7D›@vÛ`z±‰ëcâ& L¸ •XÜb³‡¬[[ Ì>Ûp"ÍþžÆxv]rÛDDsA^œÜü˜w„×âÚ„à#Tz-Pá³P}DP]\Ûa˜sNÏõ¤)ò:&µœdŒI’°‡¼jTn“/GH(7»!¶‘?©ˆZÖ£»ú'+qiÆ¢8)üð›©H9E Ç¢š ¬—Üoû=á\_ëýŒrQšx;þwJ¼”›€vL}Â’)·•êVÌkF¬É:úWak/ü÷ÙW‰“SE{™õPC²ìÄŽ*ànÌü Õ¬¡É|ÊÆ }n·†Ü%ÀÏ HEðÈ¿kÈ;[3&ýìÞ5h8ðù!B¾ŽiD¬²ûÛÛw“ªa{fœ_Cýÿ6®/Ì:÷çÞ+§¯X]ø!±a®¬¯JhJ-R)þ¥P¼a‰±Ÿ’ŠÎåì÷´•‚…ƒ8väb2Òh9†îéòŒB›n?dd§§¾?ã¥"B=É-ÆfA“W(—¾¡¸Ð¦O.mÁÄWZ-âpíàз±J+@†ëÿ<Õr[‚ê.Z'Ecõ@½4ÚÇ·KÍÜJyu×ó­Èä'èjÙJi£›°³±H>×_Õ—Í ¶°üÍ]KIÿƒô¨‡{$>¾'+½s/炪#oÞS Ž“Ùóm[YëDã 9»å'L1ßhÏINZUƒ‡Z FÞX|à/dl\®‘7ÿÄ/ip΂ÕC \ïØÞõ¾l—v’‡ø¼D©Ë\dÝ#xœA²PT Ë’ GºÙ‘ò%ÛÓ;zøÔP 6 ›­¡)K’E6¹¥°h¿°=ßX CoË$õ#´2þ5¨‘!ßÕä ìíntï50T‚CvùRNwÓ,ª)w´Oahô\ÙÙzí‡áL avK”Tk‹tÏ꣬Š6 Ò«ŽC¶ú8Äò‘Ü9’7pTsšN”»Áª,Éí>* HX‰¶?òn &s¢/:nÜsí³O»¼#¯K­›`PÑèÃâù´ŽÙ=¦ölpäúžW‚0!aæ¬Å99r“!ݪ¾\õÕ6whüÈb°‹‚ãS›…®cBÒ–E’z<{†£´Vi tÐ*Μ¶lðÃS4{†'>€ŒY4ÖzÐÔè㻦w»g.7£ÙÇÖ}ÒX{.8­(@ýh»…N˜Äb²`Š&+ +°éWYGA#íMI`!l }6Ê3’(ѼÕ0’F•JÂaÜH'ÜÍÅØg<×lÑs {6 S²+á|ó@¶ÔégKNz@ñ} Z–DtþΠ‘¢p4þŠÆ÷ß³ŸÎ¾]‹6(·•Ÿ1¶*ïâ Ï)ïÉݽüælGè­À°X³:0tBâC[,a;ôºm¤É ¤/d×/Ëm¼ÖÄØ‰¥T[éýë%Õö^[$-]ì‡#g Ë3aoÀl@%ÙMßøºDw,v¦LŸ³T©¤oã­8pµæÊÕ:Ë]{Zx`’&Ö9DÒ«?ú§î·ÑOäÏqÊpJczÔ`Ac íQy)­ØåKª ‘Åä1:µd–Bzásî+dÓBž<¯@|{¢’zaJ!ƒ  ÙÁEó¥g4=âQìÕöß¹¦-ÍHÿ/®/0—#„EfÞ¯ûô£’» P[®Ö¢PO\8ï‹yÃQ‡Ø•©Îaðá´#EÎÆ‘âËÌD’6)WÙCKæö_Õ‡YÂ|ʯF£k`©¿H¦X–ËצÚçsƒØ9äb¹Hï”þ˜úÅòĆÈ/5{z î"‘#ŒxCfÝzA¿&©áÑÎÙ© PÃH‚ÌVCãOA–>Â'\UnªJ~˜eþ<ú¬ŒÊ!ÖG/ù rµ:tûèwN°ÉÑï9sEí"¾@⣬`!>§$¯öüò Ub»>¬Ê~€ô! ”Ó4—ÐÛÈîaKã½ÐêÁŸqL„ŸLîµ…áã @ÊÅ*—ÏòLª²×G zä²Û…FŠâˆè%4Ò‡pªÈÐYËðÈÏÐ^®ÜÆ5•O ës¨D%®6ýg¨½Öˆ†A2ÒIBj”ùõrdJËR—+I4Yµ°WFM/Ü]ïD"ðµ6Ï ÅC4ó~"€—uªrž—ªÙµíãÝ+k¥b¼pG¿-ô2rQZK,&ÉkL‚ ÙñøÞÜÍGjâ_ªšscÝ©bØLÓQˆÍî§QAì ~¦@ô«2¾ÓÕ¶"%®» Âf3ºíx­OJ¬øÁ­ÀW±î’˜·Û{æ¹H¸X!G¦+‘þ™6$ˆ%95u?Â;¿`‹&ô$ß«L¸_¹‘¥‹G‰ào÷$Ž ¾ÙeîmÚ3˜ÖdV\ ƒâ¹Ü§ô“ŦϺ…g bKSJ=ú3¥ó|ùÁàœZÆVg7¯•$°ŽÁÈFÕ∕Lk+ÌEUýý«»â~òéÛäW4 ;„‹¯ïèÙ{îI>â…Ÿk*÷¦<ÑLx]#¨¬VÝWVÉó%¹’$(ÒŽÏg±q°ÀíŒ|ÓlÁjÂêl˜5£œD¡¤÷®‹Î\› ™²X¯v‹H¿[F­›×ÜÇ’aãcV*ÓÑÐð ËŸØçûÒÆ(ÏŒ.£Ôµ¸Ê…2£ª.õ§ $>®âÚÁðÁ†c;Öñ‚Gß:”~mŒY•Ú (¦\|VÎv ô’öWMØÑ•)x}¾Fá+ A¯c‰ Ñ‹ý·üY4o!=VbÂÒeèÓE,JaCB»ìŠ„(›˜,w W-¦ê{Ì âó‰W¿iƒWsů7uc(-¹Ó‡õ©ÎHey D1»í¼ƒÔbø~U ,hi/Ü ‰Uµ¤ J6)Òoää¹ýâ( ¸ð´oý |PÇVôaÖ†}˜ôQÆó%Ù€§î&8“9¬¬$3½}ûõŒ•Qú圀xð|ÒY²ktµîø>°rãšë¡—dÄ™1cK6ðäz8ݦ‘;•¯¹±úgÙX=ÈíѸ3 ÕóFù¥;*ö…*kõ½_܈ãÛ>ƒ©Ñp&šÝŽêH=&CS¦e[Õ÷¬^¼fà  )íTi{ŸG©i1ƒØ—OFrz¯€”˜‡/ä4³Ýµv¦}¸ÆPxqVK+’Ö1úõóÔÀ 5Æ¥–õœÂñtÏ”×4 OR†áXÕ$bCÞ-èÑZ¯âg1òÜ&Oa nGö2KñK”|üp¹8†-ù­-aV1‹À†ùÐÓîËŒ©±‹ÉŠÑl•¢­Ž  5¢Üjp4 ¢ ÆJiÌÙ-+)лíÖÙ ”â²¶·ëK$oÜ#Ðõˆ1žLs{ÀšÌ.?Á9‡o}ˆ°(}‰ç˜ßºŠ¢¸†añJ Xƒ5ËBeâ)òsgWCʤ•h'ÈÏk³ ™}hŠ3ŒR„úð×r‰{.6ÅtžC~søÕô^ ËÌÞKK9¦ðÙÖOäDÃ3¤¶ïXBù¯S®1¢.¯è]€ \ÐŒù š ŒºªÞ®Àq©¥ýá¨ñÌÝ.Æud…ì…GÓ/—â‹1?ž–}öû¼›Ô/º~”?•vÞ… ݳâ±'½qñÅoææW×Á›ˆt°px¬^'ËN2 Gb˺Jd¦ØÕ=…K°)Z­[Ö¸„¿+ ¡ °ûŠEor®Ó˜»)Àp<¨í޼þ%á ÷§^,Mÿ[p€ÜõmÂk·Žà³½éTópó®-Éÿ诲¹9IáX÷ý·þ““s^Õ9÷9ØýòŽÓ.’ÝÜ1igµ•ÌS‡å‰³™רãp ˆÊ[¥RFð!k2 óôÕü¦µÃ 5Ä¿Š|\¥ìŸ.V ¢Nß2„áT uV²â`ã\ ×Kßó–K6B’OjÛòÉ*í9”„Ù)¼6ó¤ÄƒX‰5k z¬Å«ÂLÕ —1ñ;ºHÁåÁï±!.>å ––m&ýë¹c­ÃOJU“1Ùš @Sng0*O!ÈFZ@Êö™Thœ`Íü _.v¡pºâïfø€«¸WƒZ°ëüu‹“¡@´?NØË»Scûþ-¤ÚIç§#¨JZÒECTcÈǘž‰Ïšž¼h¾Òì£(…åÛtñmº«([Dçå®Ù‘ r @儜£8¢QÑ€œà¹´×Ró3¿óLI}š”â)¤:s^:+06>aúË3[²}£gcèyþP7Ñ”›×õ¼ºWuWŽ YATóYdËÞJi}ˆÍÒÜ ;§_ï8±’ö¿M>°ç´©=mgj°MŠÅ‘KiŽ–ižå(ÆÌÇO º@ÇhAÆ’ qÔ[îÒ®+ë4Âd ¦ÏF²½ž4TWÇcÆøÊ {Æ“É=ëMò̦`·¡l§Ër`‡ó~+Ãö1Õ'«è-bòÉF8{{=h¡¦$Ëú’z;bZe[î6³yö¦™aXMI¤ºêÙx*uÄ“‰Ÿ® FcRÉ¢z-¯àÝ×3Œ_ÊÊv[»Ø–ðGÉÏ%gÒÈ?lÙ A™×ÆM©×¸M|q˵‚9Þ´Ñë+'MÑ5_àÒa¤©"Ç¥—'Üž©NP"ÉHÝ ìé±2!ÓôS‡U bFÉ׿M·óÄx *°z*!^Ù j½‹X¦Ý¸^9KŽ£ˆíMð}ÈQxá} @ãMbí1bÎ'ľñõÛ¯Aç} ùYm´»ï¥5CXÝ6ø«º-Vý w ‹ؘû¤uR•·Äu&–—› àW½ö´Bx%I¾öß¿úU¾+3õfiçÐ߯JjŸŒo}kè-„œåÓ-qJ‚ø8j¸­Œð'¤îǰmS1ÁÌv隷Q ΜËPœnQÆ&åîäÛTWz˜Î—•ÇœR)6G<ª@PMë–MNäSûÇÛý8—8] §'(Ыã-‘±ø´†N(K勼G­yKxò&çRQ;ç?ŒÒÚ®>Í>`h£”¬ „ Õ- ÉF…b­Œ‘¼Øém¾)XÔ±d;Ý^Meú.ì›ßJå ©«¬Ÿ ›ÅjûïåCw¡Ov| >-Çg£g¼8€h¼:D:ô|ø°j˜?(üUB;¶‚½¿ÍMcB¡ƒV% æÂúìUÒ]ˆñù¢”æŠÑKi„ XÐ6Aª‡¨ÊUE=86° ã0n`žÅ-ŸÑ˜ÈpQÇ"î„UIò4Ì鉂?uø-¦qFƒ[ŠQ§ú^QÑ öÝ£8ëúI‘2L¾Pï^?ä®ÏM"«(Rz¶¡+!¶üd0çq3*³‚¼¿G}ü;?4‰[`†FáØ´=NÊ wo‹LVïÞ—‚ áÒ´÷l™J p’¡ç‡7µæ+G ï Ùá8ñ{Ûðƶ1Ê$,qª=²X¿Xõ2W° E±ÞïÖ à&èvÕ ã€q˜= ±W3õç…r*CÁm¥d´­8úÅ­|À°ÌóK±È'H%fÀç¹#\!p%%ö2¢÷öåM½¦šcŦJwéªÁVO 1»¥:Ó¼ÿÖ}Å¡y'D—5*«:`k»"»Šûc9O’4œDó#näyNi–)óä=³å³‚é`” õQÔÈpÏ[*Ú‰aq䲤&Ò¨œ¢g©é×™NúD.ç Yü’‹¦!„žH Ä”š %ŒpÁ ¸ìc-k¢-q\üÛ«üç¯><ÇÓjþj›® jÃóT ? )0’âFøà‰20«P´è`!®è%M…¨ÊÄ‚ç­Bd” íà€-{î} µJ\Œ"èk¯>á‹ì¥ømçEtÔs90¨ö&½/L¿`¤š1Æ\FûÑc…t#ž2ZN#¥êˆÓ,õáþ¡}ÿG°œ´”s„À¢8=Þß @doùa-u› B¨ƒÚ£‚äÓˆ)´‰…šÛ ßÀCŒÔÈ`ö“y=™´' \"G¨57J‰$ñÔQBK½a¡=âdùsB€€KlœGµ÷Þ¦ˆÝ(A'A^ÚìÞ!u=:•áÉ‘p8Òº×%B•›c_ØMM‘)VsÓMЛÈóW¾kÆÑÊ“tÁ­’þdÈ߃aìf>b«ºÑkÜì –Ÿˆþ{¥ž¡O–?È€w%(òÜöèƒ-~YM¯5wü†ÎÅcCP¶ ³aŒi Ä;„kå½énªÿkRë5û–õéüCîAÇ0ÇÊ-¾C‘KƒÍÈÌuf!ÔçQís 6`z\½ã——>wlu —´+[<ÐËD[_Á–ÔÊ7“çWpj”Ø`'‰å‹ ©ZôÍ[%ˆ§ÝË“|è Mƒ´ÅŠdÛoòw´Êü¹j”h Èœs9ˆF£ÓÑ(ÐR/›h›ÆôŽ—!Õ”Ù¢1àH™¿ÂŸf1-¨bŒ/‰åûz!¼Ä[ìÎÄý´ÍNWÁâ§o>”ÐòKè°{s{þÔ;™É}&NœË¸°®Ž„&ãž8ÒÿÀ—3àSpæÙÚnvELUŒlAEJR1¦Qç-¬|ƒ¡Oða§mêxDæTjqédªSg. %ƒ ²m,–¨;!B5!/šxj)å±Ï×ÚS—rÐ7zµÐÞ þeú¸jm- ½Ãį‰ô[2ºÂ¦š)ñfÐ0(°ázw=Qΰgë*¹æwBv¦øòèʺËz«>ltÁñ£;g‰^ Ë]fº­¯Wø8`›#£*M¢TâÞŸŽ¼_!Ôˆö÷ §ñn¾k[Á%h/çá¬åo‚•]¼ (?ð,Û–òž”…ù}¶Ù\âéŠÌ8ÉÎ&V¸åHú‰€ñ7F¼Ë¸xàˆïÔ%'©^öç„Ç-Ø8R9ÖÒÊ€FŠ0n«µô²GðÁLÕÂ8¼Ín~ ™«"4eµ1Ñéž]Œª}«W«Ç# õø‘Émgm.\‡Õ`‹"-¼€·ÄW“D 7Q¸ ÛˆëÖÜ·ÿ¼r$pÖAO»fAñÄÒƒ®™rrÏ ØÎCèñœèiçû¶FVÉs·ë%Vùáe¯P‘,òK…fFº]ûnO}Å6X.*Vi‘ÆD<ÄùôrΞ¶"2ð†%v'¤39eiï HñѪ@U_?Ië Lº£Î¶ÊMf—ˆ¡dwÁ¢Ýa3Ý[”ýà? ´|áj^Ddx+†~™–£r§c“. ª„®6qD{ zZ|‚üU²±ÁÍEçêÈ-ŸÙðÝŽîJ–cÉÁ*h0š˜ŠÑ ‹Üç.ç9ÃÏ9~yl\ö{{YAÒ»/›x¤…t*ç Š ]'Û»X©ýv±-…„Dc]¡½Ôáä¿ñwc Ÿo„œZìÊð÷ú­AüObÖjwóKḠY$wl‚ [m4‚¸ÏÖÄ¿øLË…¤/{áB‘lD,{Ôv›A)OFupC¿Ñ]6OÉpO5§Ϧ´²ßFÒÇû îᤧ±î…Æá™2ÀW;A,ÐÀÉXû úZL_®©sÏn:`©Õ¦_Š n+S¾"u'XÁαªdÜ4ë(Ã)áÿL¸åepóÝû]®‰‚N0îmªäVÜKíeYðîe#f"5Š­Òd¹–¹’ÂÜܤ®¸EÎ)2§íÆÌ½j·¾ÆúŸó=°ÍIQq«e¨«Ý0ˬív0½ ѾFôˆýd=ÞQ¯äðó6‘I¸}Ë€œ¿Ôv‹ìmÝJ0¼€n‚Iò#/?-AÝ~Ýdô©nî÷E°Ð´x±›pÐdß]O}my)‰†£¢_¬é©ûL#õn—G:eYùð€·BÝ.×Sæ—¦à?X¼—ñ;:ƒÝÁë0›ïJ9Új§ÜÿöüS”ºt¦bï/÷ŒÙHt4²åÃßcpŒ”…ón¤×Â'M´Ÿ>h–3ðxy=Ê ƒ …ž¾þõ‹a@Þ­©ÌiW­ ÝâŸÏ @DÉÕÞïíz&Ží’ѯ—¼fØ~[}ë¤+p8ÏÅØIŠF&ÓúûÜé9×UÞþ“ µq¹Ûþ”èñ=‘«”G¾у P…†ÅÇw(¨\/ºÍæ™ñþ¦¥Ùã5ùôªÌë;Š"GÑ$g•=ít²Ë ݉ꠕk;ß·š0Xеƒ€®å¢ÀböÑþ) Î2ðjXz…š/'läí-"Þ8ªLA .Ï» ÉFôÊ¢yj7ûKL6¤®¸:ûÉJ„®½çƒ2œöb¤êNxúMþ‘߃2·1Ý¢Y?5!ámÂt^oë}•aêJYÚp°Hã徯,¯e£ €ÃGZ§×+ɡߵƒ•¯(q§ºQÙÙØ¨a˜M ê Îl¾Aǹ®ž‘+®côµ+þN)V8X¾VÆ ·\•YÑeª2‹bÍ2+Äð¡Õ‰îcú(ã#ÞîyV4ÆwÒZ-ç§Ê‹”·NáéåÔùT†FEéPÝmæáq1›J†‘^=ý©«‡…Zù•nÂÒH×–2ÕO¿?¤‘½!…|p6˜v޶¥6hj7´Ù²BŽ1ÞzµÊp»°83ÈË¹Ü öŠ RåÍ©“ [€ùqéËè´S£¹ÚqD¢s ¥d²½Áª®/+OuºKPžˆÞÌŒ µ»þÓÙ9édA—ŠZìH§[Ç`^5µ{4ø$˜Ut’ì&QgÕc1;ôÀUÃ}Ðæîe¾Í>)Ò;c6”³Ö’%ã3³;ò¯ñ+:ÀvFºµCtïÔY†Þš‚âè7µ7×$ÖitL0®‡†_³iIÄ ȃé~mÇ¥äåbðß“¤*Åf õSŽ»…óotFD´MÄŠoƒµ–®šæú: 9ÕÓÅ¥ÚLè) –:Î3AcÇ}ÇãíчʡÎZ8‡PÞò–×¶b AH„¡˜å‘Á€D×8ñÝ“ÍO ƒàð†¾ø’–ª¢«‚ÀbÕŒ.#œ M{ÃcDæ„Ü’Ô\k#0/ê^©á6ë1«‡ó…Q†€+C¨Á’Ö0¤áHß¾Ðîžál"­·Ð–î¹ÊÜ1ôtœæE¶ ˜#äü¥|GP^Á6E@4穃§Á² ºM»dgf8üdÍôty‘(Õò“ea̰YA§¸yYW¼èŒ]·‰›·Çá)/xŽQ O,¥R#™Y¥À]xP>¬–è¯H}ìÑø¶$Túݧá+ ¹˜ò‹¾º±Ù+±Æ(ðE%ÿñÅV‰,ÎMÀÎ dCÎ…Ü»ÔXÏäU`4„ JÝwê˜Ü†ÆÝßá›û”+7òòÎm†Lw4½:I)Šô¢}ª'Î…a¢æu4 ¡þ˜.+lÏfrž‰]ç»±0‡oNe9•[”&ºº^›@[öÌ“(W(ˆZްœÛX‘ç-äÖYÝ휠/a ˆŒ eɾÌÚ¨øaŽOœ\Ф&ÌHPgÆŒÓ÷x9œþ£7ÔÓ­Så€]‰qiV àß÷&evAC‹³E$FR}bGÞ¾(d”À©~àp-d€W{Úî€l ²¡ÌC]ÍÕaGÿQzúk)žVºF˜1§0ÌÁì§š§5?`7“èÈ Zužöïpx4@Óßiq>†ÑÀ=Æ#ÇI· ˜Ø9¸ü)å²þ^º^Ö 0½'ú×%ØCPe¼cK„è¬øJEÁ¹QŸyÄŒ•=!ü‘ç›ÔŒÕkÆÌè±Å¡ŽÒ}•Zž]ä¾iã³ p²3ÞË€áà%ëô­¹ E mÊ1÷uí­!ŸÔK3‡¥®^‰”âùW\Ká8³3£Ü#N3§é?ù_‹@»® tÝ ä£Õì…¨sn€ÎBñçORˆ0^$ÓêèÖ¦ ZV‰+fÒ²ª‰âÝ2´ÿcJVRJûYnê7HÚ¼_Iœ¢KÕ8ºrÅeÈ%^ @Mmßë;‘<²Å³uŸ{X|°¿}¸V­ÈY†ÖÆ–@éW(*ÎèPE¬Èš)æ ?iúñŽü± @¿…fa„fßV>mžm ¼¸­WaêÆsv»ìÓýUìŠ0y™ïÐ˜Ô [)H"æÄ$æ,,©˜º m¾…D=‘éB$pj“jiÕöJœ\t2‡uí׿xÕ§é@ÞYè-.ViC=J—¬áÅÜê¯sSD@¥Š†âä’£õÎJoo+壸P:`KÃ4Oäè|÷ŽÍíy<ŠŸ ÀÕèãmnÝ*½£\;öȱ;!ˆ?϶Õ'̸ڃèq¥p=åÃ&²m¸h¥f†›¢BŒf]hY¾uÈRª¤ðú,¢ßî€iØN¯š¹dF¢(LЉè²ñâ€i õc˜f¿˜VD6# í3§˜iA ‘W<´·602úËÑFÿ@£þ§@_ÜLMÏžêþ;üï4rüâ\ó)xéügáè ‘¡1³âþþq¥iŠ«žúbhoðWJ¯©íV/8|«Œ—µß aØÚõF® &Ôó)-†}tPÜ…qäk­£˜P|ôº*88L™û•î¦^Ïœ÷õµáÚs›Yãü0‹¥ÖÜU¢Dv¶#ì< î/ކ à*sÙÐæõ÷¡±?DÎ ‡’—ÖW.™¢'ù…Ûà-üZC‡ƒîMÍÈÜ#ã~º’ËNèÉ؇ð‡kN[\ÊÁ ­RõGçlÄXh«’(—PEïÕU¦IЮÌ~Ù[æ}ÅU†ŸN¿%Üñè¦ÌDÌ㥠,Ò6õỈ)Óì‰à§œ‹®>y…ƈÈWFpíÑÆc-è ˆ‰ñÀ$0ÁÆoŒ9:ÌŽv¨,÷¤N´/«ZÑuÍæ„(Ò”øVua­zàŽS¡)›êöA'œÇkÉA;Ç*e^ M%ЯeW†W2<{ÐŽ>G¯9l…/ôýokƒ¼±ŸÊq—jkϯŽý37Üm—ÔÒinTÊÈ-¦&%ÙbÕÐUÿkZ} –¦Êg‰” ?Áçš/I;öK7ç_z¯ êEé=R"¬ŸÒ ü7æ©•zfÀ)Ð^!¦“›§Mñq-\aƒ§­²U!?93žÊ¡Ÿ6Êv.ØÛ^ÿ¦ìžRœbšU€=•¸Ä®ßIs1æßÍaY7‚ÄËõ<ȯÖ#“õó œA(6>CŠ0çÝò' ýw© !·]ƒ±ðJXþÈùåLñ};Óà =ÔW+g5†@Â|¡)¿ñVŸØR?&¢”‹ì§Êø—¢i^ô|Xî¹h6‘.ì°Lìºr•º„ÌOì{ÕQý O`‘ ¿'a‘ æÓ/Ü\gÂZuÕ‡µ']!† G%t ò)IŒrÜ¥0ÍÙgÜâp¥-j„ë¤Bˆ­í‘ŸI™Ÿ‚’Å{ÁðWf‡Ç®}r-mVcÈ‚µn—ßûQ^vˆ>[¸ÁZ-;=&¸bl\rTÁp)”nÊú{'"2Lrè‚dz8aÓ}‰gj–S…¨6ÀÛªøQ— =™€BJÖì­t9‡$ÑWõÅàTï,P=~¤˜ßidÀ*Üï\!ÌÞ¸uüd|ÓõÇÉÅXá§tÖ+rü<èa××8ƒïr¾=úýßÊïyµ¥Îe}ÖÞyÓŠ…/A™©ËsÌúʋܑÑô“Vcg¨ìàÄVy­ ÔÀcßùdä}Æõz³MsYš|F‚ö(†¿ zXJ¬«ÿAå +Ï?ò@3wãçXù·¬›ìArÈ[åŸÉÀ:Ï=UݽŠ9s UÚeVüX¦a÷eÝ¢`Jø®–_}å®;¬m‡ƒbáM!B©M)ÛSúk"‹ºÚ¡þ'[Y™}þ!PE઩§ á#"¿(Ý7ŸÂåðá,Øò™j‘âÇŽ~ää—á#öÿŒBø€õfTx: SqV\¬jµÝÁžôžD>³e¯sÁô=íÎßÂëgWùàçÂ7߃ADA[íÖŸRˆ¹ïN™ ’GG_ÚŒë©w3³…ÃÅeóVDžÜTÒ`‡ÄðÈ´ZJÐ4± `ÝVàä"ЫUc=‚b´o㙟ˆÞÝe:Û îà–-½ßìFç –fw¯B-·û« è¨Æ°å¶ŽP´C½GtV²#z{!–ÓõÃb' žY‚Ô¯¤©k èF:™c¥¯ü‰IÁnÒ9®qý8ØáLsÏû ÇòT-Þ]ÖxÉüÉÜID¿ïdh7¾ÎÄÙ!¬]u5ù­ ¼8-õÖ>èkçú2ĦF;ÉM„ë °˜‰O ’WïÚ¢¬j!%SÎX$®¼§”gO0m™C„$¬$EP9t·Ñ ¯wqŒÐˑžï‘Þí È+e¨A¤Ì>odɃ¢1Ñl+Ù9´þÈ€(µf%`4§=û^©-2)© óÚÑ·­¦®Oí¤k®ô„œ>Ïw? ZW_$kj· ƒ²v.x¢Í>Ž{Täà%<5È;ŸÎ5›4¿áñhÿ]PT¶DÒŒÛù6’3¯¢[ßÂà!ñÀG†;)l o«¥R90c$¢’ÃyL¯.˜²ÈlÖ †MîÕŒbÑ~¬¼.¸á-9U·wõÂîª"d,@§„@$-)\2.ýí7Œ¯åçgˆ¥(Ú·µqÒ)8RHMOhDͤP€M\Ô¢Sâd%Íßúظ/KB4ÀƒJ%ë·Èà±ÿñÄØYÐ,M2-õ²«ŠÓš…=|æ_dKìÒeßÚ'n¥qE/?ÐÀº´¾xeÐïE8ï ·GÒVZàÒø1”q{7þÈ5W¬/ᾜ‹ªEJ‹r&›®©ì1åS«Nºs¢¼í"ņó=dpnOFvÿ¡”"BCI•òƒê›KdÊ|§€?4Qýb¯éeê+œjÎî$–iN·ñ&áÚ±(z]sbF¹jß}Rjðô¢y]`§5”ãO;Ý~˜þ³ÚÈqÅÈ8œ?:åJ=ÓÁA{£Ô[xO’[}ç”9#*9; 74PÒ^i$Áè׿¾0 * Èäx°R}' áë¡Å½“/¯,¼î-f ÄPñ-mÏf.ÅØ›}ÁÚî´o^2X045TGÚ&¿¸‚D?Š™¸¢&zn<”„ž‘Íì{•ß‘Jç21¿ÒÊ÷Îvû>qté+–ˈúÛí+„µç„m-r0Rœ¦ô~]Éy D/I¤ø~”š¸Ú’æê~÷…wrB¦‰ZR)#ÍÉd¿&á"ËdÖ­À©W»í¿3´6yM˜˜ã¥NÞIŒT©°$:GÀÎa÷I|-×ò·O=¢»LW£EZ¸3WA±æÎ‡"¥ %Yx 6×.…[,o’»S{«Ã¤*rðúµy6ÀPÖ¬Ð|b¦píá‹ Å¿x÷{OÙQo[xMÒ™›Éꉒ}%’ûbпc@”BL€h£°e\~zÖ˜¡y¶€Áà/'ÀÖ™Ï1:«swÓbBžöéQ–Ÿ(Ñ«¼þo—ŽéH¤æ;¤´vwº©€‚‡»†x®ò´U–r×Ð¥ú E”œ¿oqˆ!ûùˆ)Ø7ÛØÌ Hi•J×¹“|ØJNiöBT@ƒ’Ý™Rß:OjÅ©–󙨥A>ã9cV›ÇÓ»9W9r}©MH]îÛó²3[OYí±â:YÈ«u8y°Dä:S°¹&õ_Alj‚Pç,“´d‰ì…Zj^6˜>@íFý àÅ%;c !±q—EŸ#>Š+ŽËí·ÁŠþ“´o>¦¡1AÔ,¾Û›Np­ !ès"œ\IhíÂ_é(‹p*à:íPk2< …ß\Übʱå2ãj†ý’¸’Y½Æ!óq÷§â[™ Ò ög:,º´dxu¿N^jEÛãû¿1–´ð¨&N21u+¬/CàOEÞÁ×\8Äá^wFG¬!1| à”ý:,e€_MD×õIK0ïX1Ä[ˆ*2Ëœè8°;ßœ[V¤iIæf^öØ® LÔ‚rþÔjÆEz Kß:EC¶ÅVDÙ÷üYrÃɺcÀ!¯à³ø¯P¥5M“æhÃÍ/Ö°»LŽ<|W'KÉÐzQƒŒÐíJ Uí ûVhÕ¬rw’v&~34ßäR­Xi¨8ì#\`¢¬7ñõ¯‹>ŸŸóžˆ}”àÊf*…}#ÿ#e¡wÎðx‚ç’¯ž¦¯ `6Â9++†\××…ûÿ‘Ô “±Ý¡¥ÝyW¨Ïã5JE/Ã\B›|vR„ÓLÀø+S€¸¤‚|I_už»¥îßís²£1œ?i3ŠW"¿WÅvÀ±Ši¢¬WjÒw# Ë^ÖfBu•1hEóX ‚mèDæ& ùù„‰µ„|úÊ7@°«JQKæp͒؇Œ€»þ˜®óQ}›üÕo‚ŸÙ=ª/w²I!Q$¤ xmeiÓ¡‡b*%¼ü¡GM}8Éòø ¡¶GîF𜞇à‰LÃw—W=}BÅwË1B-vdŒ{·IK½©ÅƒZ~Ê:g— yœw Ð"…'Ê/×|¤·ÜìPÉZey'2 •Ö&¬O¿’=ÿkŸHØsh#¨%«•-Àž‹Žô¦+¡½>·º¿Zyôo¿°+§Ï ²†êsÚ³©õÖNÄ=Š?S 8µÃ»fŒøñï Øü=BÓçÇÔ).kµ=ÿ«q¶ ]3sØE˜ÕYÏpbûd¥šæÉ{ó—÷c»ïýÎST°†aÎZÊFr FS£ß™{_·šÎaVÓ8Ì„†±Á.—ytm¼ãæÉè9jU)¨ÚøÙ-ÍÄÃ*üh44–r丈[5˜Ê´áúF‹ŠæëŒ7ã}ùAVòvqìÀÈsxc=©ÃÃ7ÿ›kgõõ2áFÒ€©îàó¾LG‹o… G©CHÏ]¨?•=â'“q#IØ“…[€:´Š  Ã%“ `—˜š×ËŸØÛ„­<+º3n÷>¿Þ7 BÍ/Dúº"ny å09^ƒaˆ¼Á^BKbóX(ÝÜS_„°aóÝ-bΛÄÌ”ëxr=ó[ü3ûñyôí:ÚÁ4R^GB‡ß¿´:Þ:M~™e(îs²H3Chg>,:#!ܳVîèT\å»—õ‡sèyí´ýŠÙ¢@S!xûzÅ¡¼EIå1ˆYCx,¢ì¶«„}è‰qjà Úê‹P!j8N‰Üòt“ J®îMòÎ!ƒy}â¡¥rVQRÃ_§%èT áSníæ[¥+»°á:Zb_“3Ýͬ<+)1–`Ê–â伩"¶Ë.Šx;bô\R® Ÿa=ëÑÅÌ, ýæñÐðŒÞÂE¾¨œb0P׳G©Ôœc³óþºjröSs4'| êu Ð!„åL‡iesTÖíŸ^o—s ˜A£Ö2ë›ÛTŽ)#=’Lz´ ¡°Í£sʯ’¿BóêBKª‚Ý)ÉOìÊ›5x‰¾•Щv-ÍGÎÎça~;[¶ 48ò9u¢I'€È³w%{2 iþ¬‹_”Ç%K"ž±aÜézÓB(ƒÑ‰ÌAcwú猶5¥óîn+úVrγ6Kj›‘ÂWõ¡Y€X5 åMW*î¹»—³µg%_e35­Ü;) Æ•¶ze@?ƒ¯«ã=Uí7­ù¹_Ïj_]ë°BÃRJ |²»ÈÜyÁŒòkÁ•\S{û³u¢/ñ3§–ļå¤_î]Ì€W”N•>Xõ̦¶k7áhÈËD$ëg!Ÿ>ú´èY™î³úpù­:銦tRÈôˆyzW—YA”Ï»?^J¨f8ݽ‰"m£è”ÕÜ™ù<ç-,{ìMnµ$éi¸¤Ò™º—[{÷«z=CÔX2Äþ­öý-'á¬ôؼEÊÁ¼š ã±€rÂ5%–L$äüNf§ø\¸ï¼úEâü6^È6·Ä#‡-2ߨØlý‚“íúZ&_½;2)JÅI^oÁ0öÛnÇ—OÊs¥žE¸2O,D&ã öæÒ@ ×lQOžŸ+ÖTÕ!ÌS4º/ÞÞLX‡†=p‚ãb»·)ȤÆîev©é±mŠiéÄwÊbŸ¶^(lgö ËvÿfïlÁÀ¸Á¾ñê.²|Bu3L_ŸÀ7Gå7îÛïRzI"-±P\]âñ¹ªúËÌBŠ ½Ç ±eDÔr¾zW[ç”Qd½¤ ÅnsI¢&Ê}5lªES9ª·ÿÕ\ˆa{D¤yΙ‹. z5 J¦Ü×èÊ¡%ŒG¿égYÔÑê"L/óNµØ ‚É=‘}O;YÃûÈÙð0²Ÿ&Ï;xÊÀºd×a zœüIЖÉ׺ŸLq¼àG Qnpé¬×9¯(¬Ýf!fϾ~±í•°¸-°ŠÄFƒè”–Ã8Ô¯–®`¨«ßžûQ3jŒÁ7Ÿ7·ßãâ¦î¢`†}€“úømèŸ÷‰£žlÆh8t=GYÂ:Àäð«i“´ŒóæØF pº &êµñÔ[µJŠ÷"iS(óálá»Óô\YÅ ˜”k±WqМ)°V¸ uJºó.5þ•,˜úÓωÔÉ*„_&‘( ˆ»çT¢„$\°ãP ¹•¦Î¨ƒ)¦7‹á‰1 A/JAÏÀp·˜Þœ¹]n¦.z&‰½óú³*‰šJ¦tŸ÷Râ¨ÚÃÙîÐqS£*0”C."ÚMŽGY²ƒ›1ª‹ý²ØÜ< º—ùý˦´n‹ ÀþrUÁ•‚%±/à§ø$E0j—|ù¾D>ÒÉ/Ü'cƒà”6žÚœî1˜ žéQ ¢Yëu‚}ñá 9¹òzdÊn¡T'm, ¸¦&]Øek¢Š$ðü«”€ò¹´u–·_“É+º±Ç,µ½:PZWghO)+²kíyý„pDÆ÷ÿþ‘9&ñùP}¦¬l׿ñb(«1÷eeëCŠY„¹t#*2µ\Àîfôppé“`Tøs/é¸NéxêHž[9Zß|»69ݶíÉÖwìwâhA ©<Û|ª.íšô¬=->uê^ùNjĽ+l»¥’+djS5θIâ®rwô%„ëÔÉâÎd$j·–9yÞÌcÀã³—H™LØSò Ǩ^$“"%áÛü¥.49åeIÓš3énÔžT©—•ÛçÝó™'fÔ´2°pUH#n²0†>/éò“ïjµVÎpÜâÛ·*G,ÔLŸÒQ>ôù'©å²À ¥ôæþ!(é- N|.7c£†Ýìƒíâaͪªr¼;5usI·„x&¸må2gо¼ñ,_ Å­oc­=â‚$²°Èf€ôoƒFíµcptN7£Èôi½ïê/Èæhpæ[tèeãè`ØôuÆâ``á$+6GT|Bäèe†x+1³ºÇ÷ņAaâº}ôò&ŸEBx£ŧv¾Ø{xýøL'Å­öÙ+´Sòù.QdÄ ‡§Õxäì•ýÁd¹žö÷“B…¨k¶gdys½„¡³8³"ä©Ì4®øžN²‹“nÝ,ììE¢Ër¸]lK†`…6iÚÍ^K¸˜´2ŸÓc0€ÑÎýR%‹†+Yª³áY|…%” «sw’½ÐÑD˜n|lô±${dQáÔïHï'Ï/¢®º.ÛÎzöÚvíè÷ )àõ|ødÍji’“!Ý»ÇÏÝ­ßãÛÔˆê4±YUŸBa²ú R]œ’Bà'ß5Ç^ íiðÄö§“ì| ô€ÏNá^ê®qè½_-"¿HÑ Ù¾)¥šSàÚ¦$pæÓ®À>—h ¸£Fƒ~eŒû9Pl‚#+¾WÌqz¦yT1²þ©zõ*t<:¹BhWð‡°HM1¿ãk‚W`gägg°˜eðí_Õ Ýµ¥+êå` ±¾}ÉʤHº5Þ?ÿ ïv“Úð)N?"iEr‰”ARžðoyf̺j–Κ¯¶Vð?Þ5š~ÌÖ±ÈÓòÕ¾÷­ø×«Z÷äšíÊóÈñjc'߸oõ™›è·€›ñíáhLmçËÈíìWsñ ù”¬‹ã£Ö~ÔsB]œ J€WÁc×÷ «ºÄFc‰Uh5|ÏÞâý÷¡X8;VÅ ÂX»Ù«Ö®'Áñ4›¤brÓÊÆL‰›Wü×ß`9ð d^ º½:G¯$AäE£âc¿¢”mæ³lk×ý-_ †N`í¶Vz.Ò¨|؈²Éý¤«ýn{έ;K€±A½aaW¼»}áÑ—Úµ8 ÅP ·‰jÕ­ßý{Ø‘n jËG1‚Å"±E0õòÀj_ØsYª4¸5pØ‹}P>VÛzOCéf$kúyø•;àµ`àÞØ/ÈQÅnyÞ3V]±«ä–„Þ%4“ƒÞ2ž>/„ §˜`W‡Ô£w':Ñó+ ¤gê¾Î‡K’l\ gî›0Œ«EF}aMšË÷Ü{Z/©gì3޽¸‡`ãøyA…uçmñ†–w*¢@rûf#ç>½g˜)kíþ‘‘‰_Îí­sG£D+ƒÀà¶«J²½+m“šB·XVòòLæfs‰Æ!èÏ-;£ñlèªÀ#æµ~uê8ϲ®¯(ÙÇÇs“î±f‘›ab~IÙ¿Ïcò¡Æ¸Î}#—êlZƒ`!¥B!9à§Š ·/ü=òí@²‹æ’­4‰(H<œðzFüc¹[8ÔdC…¼ìD}ë÷ýżíJöþ±¸æ ô4„r‰„5‡®½ÚGL…7§Ú{.'406&UTSßÐøK˜Èxi7sZqc ™ØÆ4·}öyÙ”ˆöl:RïìšQæ] -ÿ̉GK,µ…–¼/ùƒbß'¥Ÿ1opÆà,ÞnÏE=%¥!ê¥ Ä‹ùÇâ´ðŒþ–R4X¤òè¦îãñHîã5cÑš«ÀÇÞ¥¦½nd·‡é>'}Œ<§êîÚv±ITà>SRù…ŽÂ|ùŒºU’Ô›múy¹2…MÑJ¬ý6yñ ø‘Ôê?´ Þ—üLÚeH£­‰8­B_xp'Ÿ¢l–W­·iP°S¨¥ÈQ›Û’5Jµ®Š˜ûý’°&БhŠG7 íg8¯qùòÖÞõ¬¡ò[Ǭ“—+d.ìtɨ¡xPxLD-¤#ê:0ÐóJ¥Örü[зè­9{§iXt üT`7+ú؆òx@§ì fP¾F-ŠÈÄ≳˜9ûiVªš1ÿñÒ £ãBë·Ÿ¹>ÿŸw”†¼105ó‚ÈG+{ÊL½H4¥¡¾ ©àaIFµeó`üz} ÔàLJ©šiÜïëéO ÕËU"°%NgMܽðÕsB¡&„ñ–ùÈáì$ó¦vÉ/ü¿pŽ¥\ñ1·˜KÈýG€[¨¿ŽŽÜ€}¯+¿½ÿÂTƒñ®¸°G;ÀÔy›dцw#é$[Š5½6t Ál{2 ¼øäG‘G¦É § µ- öÓ©ŠI Uª«qH=w­ïv›•$PX¾}»ÆjEn-xí—B¥©Æ55ÎVÁ’ç:¿—^6¥]EfÖò %ub6wá~2OZÍóC­dÀ±ø? "mDzý2iýÌšÐ^ã¶”5ÎEå2ž­Ø/Ú,P…°×G³3Å>Wé»K¹ö%uøJSáõ³OL>8O¥K[ãï1†)}`ÒÛT¦ Üë£lç$[|f‰ ɺƒÞ@°e2¹Òòöí4‡ëÖÏ{¼^\-ùT숩f:Íoñî‚õžÝÙ—äµÚˆüŒÉðƒ¾cÑÔ9ÃÙÔÊJpýõõX+ÛysÈS1ÛžW@ÔãÕ!úr`l™ˆ&˜\´b6hž;÷ªKÈSI+WÍåWÿËxÒÜÖÂõ‘ñVjà~B;P i–V[¶ †ñßùÍ”ÜHí¾u\Õ+U^޲,)€©ô‰²û‰F ÜëÉšöLÜZ„¥€9Ó=²Û?ÛŽõË̸ã=á§ÂMqß?B"wèaF³AO Ý«· Ù5þ¾Žm×¼l%íŸMÏ:>nZ‹-ß_g$­RÞ¢” ‚û ê_&߯ÄäðÃv·D F-Ù–•Iˆ²EdÕË €}ÛM)•VžÄ»ñ¼qq\º1Å2˜uJ>ñ©bªúÜô.´ÏG‘õ91aG±ÞZpç­‰vz÷°‹Wiù2 #ôI™±SÍÍ¿äbU¬ ÂWcOm¢leHÁ§}Cá’+¸aXùçI¦„ÿ²¡/+Þ8 %öòvòöusápø6ící1WûûˆpJBfp4ÁžcÓ˜Ž-ÅØä+Jh __ºY°…è:$v~ÅJª÷WI™%0 žöBù/ò> èþÅpW-üŸ¿œZÊÌí¾±[7Í'€2!Ï¥imã÷b0€`ŸGkÎÚÇ·¯ŸÆ ÿÙ[ÒAa—2ø ðï+˸)îá¬ww® DÛ d=3ÃUº´‡š7‘ D&Êp}ê¦+±å <è¾NŸ‡œ»Â­l ¬¸aÑi6nVlŸÓÖ3ÓEx¬rqÃqš 1N°—¯I —˜ß²!WE,뀕8ï9ò4Þ×HÅûWñÚ²9¨yìnuAÁç¡cy˜!êÈä·Å›€;bsüPð´v÷ZÂ%?ÏŠÖù̃Áš¹Ë¹†‰±×<éi>ôälegœ¬¤[1Dw+°;ô𓈃FäJÑõº¸ ‡W•lô†]V:8Ém7²°§¥\…d!Puz‘½O=JSÍŠ¡`@“°*€×:o’U‘ôK¼â'œb¨.°äXC“üBß{ûaâ25„Bªß)‰Í¬õõaDÝõSJT: ŽF°ÁùbãK¿B™~pùÐΠÐìö?=xŒÉ¨$29n¨¹Þ]+UgZ†Ø`âlaçð|bÚ0 ˜@F7=nsåàüb&Mu.Žnu](=¨’œƒ$‡/Ú²º>³ÃÒXSMpj¿ò>ÉÛ™9©t7ý‚)µëÛòö?¸³KÂ!e“·<ðw¼qÅžSá+ÓoÕÆÅnpìÒ‹öibÂÉמ»é¨ÍlSÝr¸7•†J’D;®?½ZÄ8c#o=q–kF:˜ÚM‚=|ÃÎcŠêä­½o•4Ò¢iøµÊ~Þ®àwÍñ h`Xsø¾ûm‚äÌêåºÜ¤¦)×å¬P­<ÙÞܱM Gx$„B—R)ɔŠRL«ÎO}…Q³g΋ó²Ìã™D÷Á´­ÉµÀç$ûßÁ „b1G‹"•†õ»ªÌI¢, aôK„EË£Þ \裲¼™#C…Œ\œc²›OÇ17ì~ç˜Èlh Z=ÄKŽÛ™²Ü‹ÉŠ]@ïU³6Š]C×LÀ¿%@IS¼…r±éwö\k4D5¦.k&¡]³µ9p«—ߦ4±XÚ¿¢ùÈn…A òHôÍ뺆±­xCN³Ï±wªLvSâ8°;æ …8 ™@&Qî1S°FxŸ6:¾ÖN ·rôâYÝ41â.­:™¤„ NçÂn¥s•ã( ÀÛò.‡n hέMÈ\Õ|ÏPÛä)õµ}`KžÙáöÍ»ÿ/¯¿K@`m¤=½*XÿŠ AÁõb3¶og® D펟C]mÿ*©.¹å zéT:i[ñ¼fœ¢þ ½þD-g€˜Gf…F¼‡7Åäãréð®À¼aC%i\oPU+ÚTdPkúAô‹÷ƒ‚§dVu—þK Ë'ÑÒïás¹~A×@¼VºuÜš@FȆ¸æ‹Šb röN;*£Ïš bÆÑ¿—'ÿÖ}ûÖš_½d{¾£ ðlæÿ#<œ)ˆ{·eŽÐ¦¾Z˜fÆ,ž ¦,‹ði*—Fó†ƒa÷m{éXNDwʨH›ž¬ŽŽ”Ü(x7(½Ù<þœ†KÁþú)~¦u +±ˆÓr¿Ä—Ôç€\žÑ£3ƒÕt}ô¬ñµ ½tGßë-ΕѭڅŸ]˜Çœ¤¼7õhw™ žÐQˆýgvCª¬ýª—/Ó¬„GsbVHåøØHÊFA0…,ú½¦MFø¬ç+ÎÑ8w—§CôÁí—º â­µ…E«=ayßSð?Ò/µH(¿ÂÌå-?1Fæ#uxÑL;Z¯q;#™hCaÒ¶0åÈ-¡uëÈ ‡ôEª+V_¹+ïƒ Ž[2m¥¹Ë’ûûMÎ×Îy`ñLлñY3W­Š$û t¸¦Ë4\*Hyê¿*ºDP«ý*Wn$6-âÚ#¢D[-à@zÀ÷†¥0¶èä=¥|˜äªI”Žû OsuÝ-ô„6Ï+{ 8ü9²(ó)jÍL÷ îËq9^K Ë.¯è̪‡…Í ’3WúÕ lÊ댡…ʯ‘ôZg$_ÐÒ|ßuRùÿÎm ) ùÈfeâpªcüxfyh¡\vJ·öK~_Ìv33ìEv:³€Ùipõ“"^$èÖK6$öà¾"jGÒø# ¿~×v5.KG±øÓ×®t ÛsxßÉýX†ÇÄ›ÚÞ¾yš¥~šêº§U˜Ð’+I¦{:3RF×i²ÒÎ’¦âmév¨x¶A×@ £o)út·íFzC÷Ú*òŽö ÁRq¼‚€¯$±WIt‡sKA¤aEz5’]J’É×On…L286Ó2E kô“OLÄ Vò°l‡r‚vzÔXmRŒ–Ç^¯ITži”Õ¯¬||؆5Äœ½Þ ;‚[Ë&‚ä)Ô‰~#WsÑJ|ýîZ9n(ûÛ÷dâ1Îj˜V´«Ý;Ô ÷ËŠT<4¢hâÁ]JË+œÀQýµï¹Ú„ç4y|ÖÛFú9gE¯ å‰zÿƒ½IÍ\LµÐ0 ?n6ËÏî26¤—{Ä.Ô2g17ã´e9)O¢Ô—ÂÒ)¡Š‘%¿†òú!ÛŒõã_È%a:CyL<$×[]íš4ÀC ædäœk5”ê9¿wÔ˜s)SküÔ¦xïl§¹ŸÎψh®Ét{Ú¨ \ÅHÀ÷ÿC5‚AÜÛ‹1°ý;Ø€ÞY‰Ç^)ûo$ KÔ¤éKß=$•Pg!vúÚ`ÈÜÏÂîö7º?¨r”Ž*ÆÍ#§‘a EÂbF~<¼ò&•ñ5Nÿ׫úš _X‡"©§¥Ñm¨’óè2Õß¶cü±äÜ G{‡¤Ík8WKÃ=Éè†ò-T¬]q1u^êÖê!PhÅ.Dòƒî¦73Ìг´w+ádÃ×ðPõ\ìÇçŸýý+éûó½gs¬…?F;õó”…CÀwçÌy®86.ýìŒ" 5Tö‹Òøn…À Ì¾ðïÈöSßô±hTŠ?,Ó\ÎC¯WŽRŠøèÆ³ˆ"¨‰˜Z‘»[¯Éhݰ1²Ÿui ½+$¨ÝypY,« À3ó‘ò3=qý¯YùÚKƈ"XyÑŒ„¦H°Íœ«Ñ1µÍB“Ü3y9ínW½C/X‘Ct&ù68èOY“Ñ–ñýþ{cÎD+;v‰5x-“É ³ôUx Š“A[_e#I’ú uCJST¡Å*%çOWɯ÷Ûâp°&¤ÒXuGHV•«t!ѱxoB&›³+ÂÄŸÅ$½hŠÄRa»AlM„ÕãÝ%Ó (.fîåe7Þ[1|¶¶î‘,ëà $@äó»É±ì1ÕX$ùË¡J2FyOÔ¿xY»I)cØëyγ‚ÉÀ—zAêDq,[…ÒÊ0é5ŸÿÖ' pò©oj>øèXs°°rþÿ¯ê6c'þÝÌß­jÚ ”›„ýJ®H¨ o/¹e¬ƒ­Íâ‹z=±L6>›j꿊Á¤ùÍGÉœ;NŸÜίƒe^zÖ¬nÿnD»È ôHb–(‡ô¶+’ìb–CZÿ`JÚqW.G‘Jö× <ƒjƒn!¨¼:«Ë·c¡cP` BŽÌ”ÅŲ)âÙàEÊÿG’-Ão5ÝšNꢶǒ—4LOƒiBå4¦ü•=òÒÝwö1 ŸíXObÙoˆ%æ‹‹´Çîÿ ñiW˜È®ü ô^=ýL !è|ËCV¤‹ìù}£ÉD`Ö}ô$áF__Vÿc{myˆ¥µñG„X  À¥wcS®›Í¼þ„îãÅ­°sJE†²q½ŠŸ±Ù–àd3ÉÒYÝ:ä4]iJ  Í·j0O™ ·Î¬Î=}ᦈí4nÅhξžïÇ*jl+í]öJ@À”ÚàZìËoàê¢n†+†=c†p@áuÛh™ÐM£eZÄØZÏÞFK‡Åì ) ß:âÛ%Ç_>Ÿõ†GÞµübáz£`oŒzŒ, 4/DäŒÐfœUbµM|*vÌØžp“ý!(à ”Ö2m>b¤G‚dáºÙôNÔ¢°_Ÿ«¯T­<¯±>F’¿ççzzÒ'tå« °Š{¾NH\*íPóó<È5whÃÇÖ'‚Å3›8ZX­xÛØ¢B¹ÄÀÌÝžÒBT‹WŠºÝùP¶ë8Ú…0¡ŸËð„}œ¹çÓÕD±Ö†m燮~K/½Ý/åx_ôx4ñøwKêV݇®J§-W8áü õ§²D`q€y zÁˆæåò§ÿÞ¡áZÂÖ§"$ã‚fnÚòÒæ#¦9íBÝ*y 4c{ÆëWÒö h˜l4•0èUj¥|gÆ›tõù••ÅNÒ×Ö¸r y«ƒʃC¬v/a宕ÞC<](õó}0ø¸Ô~ à–Æew߈Ìwº²QgÏíà)ë; ‘ ÿ‘ÁÒÌ«Å\«€u¼»î,îzŒS"c¨#W¹°àݳ}‘†éM^Qå(ó¦Y0¥jî$:ñ¤oUŸßÂòû#VTö Î+±×í±SrV„ÝmW½¦X âW6/ÄN0€®…ÂyNñpët¹õØRˆ8øÄÛt¾­dO&æÒ¶åÂÛš!ç‘Þš¹]MµÁ@¡Qy6R÷8:ÓˆŒ4e|êÀ™I^as峡E ”÷Ã~({Ì¥Z9Ó<!вùõ΄åVî¼$Äë +,Íè5²å­Y|h:1)e$;EŒ ÔέÒýô *ɉ€ˆ‹[q¯i<œãò¶ ´£)Dp—“=E¦‰Ð4ÛJE ÷§ZšÅçŸa Ù’Z¡EºV1õw ®ÿè ücël÷ôpaŠÆBÅF«óöv»Ñ4½âÁ$ˆLK¨9Z•Ñ·ûù„aÉ¿½Ê‹C?Çôîï V¿]Ìt!D@ñN}¬@Ìǹ:…9ä­÷uÕÎÍ‚}àLÂö_W„±ø|Ôýhó Uò«5ˆLw UÁI¿ F€VϽåeQiÂß ñã<äßéëîÎÌ(£æ±© +Í\Ö7ùW0Ræ.eã¥ô <·ÙÃAS».Ž”v~Jù€'ô˜ËàI­ÆÔ,KwøÞM'Þ!üè >³Ð~hXm±÷,U­û9/šhY„veyŠu[ Ø“ý%Ï·Në#kÉ(nÑñ9j6ýÓJ—ö¤•À-3}©u—]xIœ\ï…ñN)–ŸOÄn|9.:Î*—ÕÁq;›˜´ÃûQ gGV¦ÍÝ„n3ØÐÏóÆ H x;­`ÿòØì^ù8úùÙ¤ñ0g4$‚æyëz\'¼sÔÇš]û‚3óʨ/É„Bbf ¦½iFg{¼1xwçSªEC¶eù\:7x‚BëR9É2ÇEƒ.Æ$ÿçwj@ðœ‰^a¥Ø¿pöòpÑ™«©H÷ÎïÏ )fŠ»mçô‚h5¸h«,‰O_¯¤'$S‚D›¼Úê%é€áM1†îgˆ­þ_|ŒáÂÝ¿‚WÄCJd” HR¡vÃY´&ÃV°S/¬æJ†ºVá?­l&.’úÛ¡»+upJ§È<•¹_j ]Õ†GÍXÝH·¬Qÿϧ®†³|ºng³{ª£u‹º÷9O‰˜Œ;Z+-ß¹ëxÈ[/ÑÌ¸Ò °Ê+T:6öî ü}‡°„ßÕIàK‚|DâÖãs–K+Ëe1°mkB‰ª¤UpßÀ,][oö¥ÇÊE*S™þGéѦùlgöçÜW„ÃßÙI†M‡Hªæ¦¡'loÿK74ÁÏI:éÆzp,÷äÙ,Îéë/•D¦¾öfàU·þÄìO»GiHùK¶Odâ·ÄYáñŸ,Ïb‹ÉoaÀäæþºgzºEå­]äøÔ5^MÝÒÏßB\Ã0ÆíW¾t>ø½ƒ7 ý½Eÿ±9ãÅ4ÆCšt€§ÿøy(­ù7к°ÉÛÑÕ]ìИ.ò…]ÁêQ”£;±ó¯ƒ'DTË'xlÝA¦%µ¦uà ‹*\ªÉý“•"wd{Щâ3Ñ#"æx¸Q„Ë+ÞzvæZþL¿ 7pí»æs[XŒÙtTðÇáÇüÒß=:OƒëäEãx©'þ­'[˜Ãcã9r1spÉϘý³ï¹¼"bPÙ±2ƒµIköœ~’Q…Æ5JQølQÌAt5½Zp‚1¹–ÐÝVÛ;žÚÐnÊI’@¦åí$‘]jõà™bŽ2“j!ôƲë;úûîZ=t)Æ A¯ýÙUe´ŽY Éǯ)¶FÃÞùtº ^Õ´æú“.Çw"ðr·Ï˜™d9î³¼ ÁŽM{J—?E°7çA¹¯Âù—î£r~#^'¨+‚˜µs¸yÒ^ ðâPú9f¢ßƒYfêùíÌÔqàØ‰á Ϊ¬÷Vza®™4ÆMSp ¯²Oß½aŠv5~‘6 ÁÙ¤¦» Ò%vgkÓ¯¿!“Jó™ è#·ïþ¤`á£,|fÌbU8nÕuX?ò#º¤ÈëÅv¹Fìè^´uVÁO=P2Fñj²úÄK-ìIæ¿zúÙ ùÂîÀ씡¯HïÀc¼W¢z |YnˆC*àŠ­­ú‹eÀÓíØÛ–dÈí—¨1ÝÜ^¶×?ƒm¡—n@¢ úýlIÁÃ0ɬø×  }ZÚïÅ…l@ûÌ\g:žuœé üö@¢3ü–q¯×q¥R)gÿøp|8®ü'd6bÄUÙž:Qùé/Çþü€2á-ê!gzðÄ®k¬ÉÓº nUH¹|Zäž§¼m‡f‹‰æÄ5b±Ð6îþ] ôÇ‚ô«"xi]í«§ßI Õ¾@ÆDÝU)s±澺ØØS®/0Å biOçZw’á‘UƒóH ¸z®0š]°@̱F4z„bšÎÄ¶Ä +™ªžuoé ˜µÇaoÚîwøœ³·aø8‚b“$£+{Âz .R'uú> jDª,#$ZÆŸ¥,$E¹åYbg<û{Âa¯«¶`O¬'ñÎÀŒ…²'98•RöùÄÒ<‡L½A~=7}šs£v˜€ÂÁVˆ°Ä7)* õ=˜çLkïåZ¿¯©cW‹-1—ùºö’m¶3|1&Ýs÷¢4Æ..Ëv0þ£hP>JD“0<äýiëÍLPÇaU6ÍŦüE”o6ÊéÌe̬t¬ÐëCCHl9Ö"²à\dX°Á3¥¤:Wô&µxÎý6ü“>¹xüv½¸Ë9b f1Å«NSjÛQéºoƒ2‚¤ôY8®²ô'<Qš·ƒ/÷⨵¨Œ½šÈ~^‰‚㈭)ô-Ÿ›$:ܰîÜ{ì×~§AÖ\ì*ÁþWr›ûIsjy"Óû[r%¬´Î4©&›åR¡Í=PÌ-ï`&/xk«µì–^Ázº²gÉB"'ƒ¡ äéU}L^pæã)û¦bã¶7uBåŠ šá vtÈe­Az¹ÙjC$ÏÔY{2·¹Ä!\µ^.?E.ÊUœ¦n+p±æÓä©Êq§D»Íu=Ä.- é­ßïg<µ¨€íÿ¼]žÕÀ&mÒN"‚uE4T ]~4_`yûó\d©íZû—0áÍÜd<ŰJÞ«jgðP^UÍPåÀGô×Í$jŠ»;AÈÞú曲s9`KSã#c_·´X&÷ùø¶Ò'­><6ÿƒ;:Önj…뿵íe’ûRé NuÏœ6š§R&zlV1ÓëÔ | ã'ÆmOºãgg4¹bzŸuÂõŠý&` BštŽÝ=Ç©jhÅ'Ä\œ ‰†Ñ ¿ÿeáHçñ(Ê1LºôT€r/ê©b*ÛPOnMÏN]v¬S"ù›ã—›b÷ª½açç*‡*E½8¡H>m¿ úî:<½æÚ÷y]h»Èx£ÿõõœSÑæ&ˆËýA{ê;g}k £U}6,0Ý–b(•4N×s Ø{Ÿ J&—iB>"ÈÊŒ½ÊÊö<`BC}{5ÉRzuq϶À©v¿Np8Û%g'˜¼W‰ªæžtàèÌùÝÙÖ {@ýõ7é{BOSòx0^äïMBE>PÑdÐGŽüKàèq ¸}‘/‘zñ8ZÒÌá]Æëhì{î c,—’È u0ö˜«¢ë<‚Q¯sJ€;zj†žMŽú‡¤Ç}ûL>ÿÑ,| xnÃêk¶ÜO«"àR¦´íšUxñ1øjt-˜™|7@Ý×:# ÆËw ,Qqîõ”ÍHÉh¦—I€¢‚8™”ßó¨Å¹Ì±‚FCH1âÑÜóù„ZGî4&ð)3S>HÚª7Â?ÎDdn¦]l~ÙÜ{p÷:d¡Û ŠµÙæ¨Ç}%ŽÔ?É6ÕLW‡«Åï@p¼=¬õ@>xäŠ<(ãIV`{h°>*¢;ÔU‰¡‰ëA àäjS=Y1wR`=„>ö?Æ`‘—ŸXØ3w=åÈXɦ[ëйÃ*Uu-™Á’FÑp:îOÈr¯Ô‹õ1«tµ5ê‘”àv ù¶ü Ÿ%Ä%Qÿ%H’ìöyÄ‚¼$Øè£û ª‘Xÿ‹™5œóf;Ø >»O°ÀeQóï˘¥ÈŒ ër!¹”úÏ1“ãsz# ¦Ê‘o'êÌ ^ñÞÖÞÆ¼H´Ž•YÔýz× _ßÙ2Ï™lÍ͈‘ÁÐ8ŽØúsÆdn²zÂM š"~/xþ{|óžÇhöî1jÇÁf<>ѱw—âZ–?ÂgF7Y` £ƒÝÅI˜E;טÒtÒM§È.¾ð˜ò8b:«“£!^[È]FÓèR‰'?ß™­UcO²ŠÊ;¯åLñâòr²GY™gEÁ<ÉkíhNuIåi­9…S_±o…ôyA%AÚæ,5·ÆÏQ阗¯%µ dšN¡Í`0pãXeŽM²ßÍuš4ïÝ\. _}’8)Y‰fÕ ¬BímçAV˜ïSU6å`¡µçšÖÅ‹)£ÛÂK§WîU%ÿ¸Rp'çÏŽš| ÐR)`x¥Zmš ¢»Á§‡¿}=±6KnºÁ~·¯sû¼pÁ ŒéÓÎɱpÃÖø©æòSçlSÃÒC€ÍO&XÞhþj»;˜»Ñå*ÊZþ¥¾Ž¹âêsq_¿ŒÆ³¦Yp¨HXS$mö åùrÒõUת–åz¢ˆ©i+æ¦õ‘­Q¥‡õÐ9»>Rþ,¬)¤´ÍÕ»‘pq;èÅ?b[NS©q‹?Ñ&éÑeè fb\ ׫‘!£1Ù¤þHK#Žtc@*ÏÝ'¥BXø I–¯íú6aíÛïÉ­QJxuÞé ˆ¤ ò½žÂ8ÌR!-ï Zz¸ˆ49¶’E­•ÃçŽDÓImm~J…€bÃd„ˆå‰–R®çê˹<Ý9 ª6¯“ãq-MÊeÍ»Ìgâá_ÀfÒ_ߣuxÜi Ÿ-IBqW&›GežŠ:~8ɦk5 Úœ™(ä­Ó7gÜ ªwk·(IM¥£V,7A|ÿw¥#Ž»zlT~üÕîRÁHÎ%ûÎþ*ãªm ò+I17£EéH!o’ -Á¼•/ÆŸ±U˜–VPzA›W\|6gáÙLzŒ¢÷·XGË¢ØÑú…@ X5Ю2ƒ(ÌK¬vûCeË ˜Qü¼ØÚ=íÐkX`*]^½âμ!²ÁKÌ·òØÔœ¨Êq§Ú¡[Zr¡ÔhÅ*F3ép™Ý ˜ñ{(Êmëâ¹ðñâ}˜ó¾úJ•„y'7J\ŒÌCçýéPpªú,A+K)²b\‘ Ïkúp2ÊJVÑ[‰/þoåePÔãRô@úœ¡* &&A¦ôA+÷’L.Ì}ýÞè#ÁÔ{§­&{T,nnÍYÔƒBÛs\ý› •Ê;¢άù1å5ý€Ó83«¸ûi^L[´ß]J—íO—AóÃõÃõ\]SF¹¾œ†Ò8ŽÛ ú±ƒþÔ¨×ÌR§Gô„ý/—¹Bƒ_–9呱Jj© E gÐ!UEF¹Èw¿«Q]µ˜ÇͰyÝ% Øò-ö€ÔIU%4 +§ÊÍ®o`­ÖÈOL‘T—¦,Øïë*pµ–oN×*ßr‹ààAþs‰5âÛ±|°ˆrž5/%t3.r,™i¾žæH!l×.Ç þѱÄ(kšÈAAá,!‘œ}«F+DI†÷AöÁõÉ—}X:‡¥:•UFíL s[|øISÇ1½èÜa¸M€õ^¶Ik¬×’PÕ"Ád‚’ŒˆS*þ衜f.o¬”Ôn¿ö–õÖ ?o´·ÒL3ﺳÚÂä/5TRVÒŒë à~°z÷Ï–‡Hk ÉÃÊWýø ¯¥„ÙB¸åÍùº¶Ò±žJÒVkháí|!$ŽC‹€ ›‚™Ç ä4UÖZ…’-)åv“ª;po§õ§ð­Gµ‚òÿ»¾ìÈÒúû@׆cÅv„áß…m€ÅøÝR¸~,Þ‡kMÑÏâæ²8°ûo KßÊŠÄì˜ÿkß4ÎÈoé­Þ\ÉG<𾀋§´ ¤d=ÊÛ\‹E‹¡JŽŸ£{'óTòâHî\D:@_/fEÁrnyÄéKpUúÑ÷t+OE›J…ú¡Ì×_51O?ï_Ó¿è´9IžÅípßóf’øè9¢f/ bV²µQ}ŠÉwÚEå%û™!¼Þܸ )µñÆßHhJÝÊ¥&~ßbÅ;ss)’º3bè#²é“í&…JHiÓ}ö䉩Àõ mµz§¹êEjßs/4´1¨M"^ßÚ6õ¨à¼j†êç»±:Å\¤¤’íéìù:wGñ–¯ê*nQ”W‘}êòÈœ'%òèeü?ôéôº:Qœe870¹Å;’ݸ,… Wy=¶ÀÌvñÚ… l„ë¦ñtüÐú„Tø®ˆóåû¼¥ö¤”ˆ¼)‡wl¸ rÃ&ã?=Ù“«ŽGzF¬sØVèØCPöøV÷A Ò„ëW1FùvWfÊÅ|{X¿[y>”︃M]t¥µ@x(t«þ˜J}P„îÀx">Îi}k¨ VVÇmiaÒÇlÌ^×±ã~‡Æ:ðNih­Àvs½L'¾Oj«ç#­ >Ý“RÆò d-| ú`|“ Öy­Pzgx à!4ü`ãÍuŽÓå,Š<„þ½ÉÞSgêÁp—_>§:‰d'äëZ©÷¬¦U{múŒdà0W4b„g´%˜Œ=¹lï–þ…fÖùí†k*$Ùsæ0E ÕvvZÜ"›ÀI^6 x„R\Þ÷_«?pàˆ¡–ǯ£‘LAêm‡ÕÆ9 œqä·÷nËbÜÍrçø/whÀöJ7­éiP`yêAiÍÀ,®8ÜK6 æ¬n˨ :M \QsÏ‹mé®:IØÇchÞRs Ù+Ä6dåé?žSçòí.ýöþAS´Wú¬mt¨Ÿéi€ã™Œ„ÜøéwiÜ )ÃQn5ù&Ÿ³›Ó _•Š#,‡¿—‚Ï8–ßÿ•Ýßn¡»ÔÅŽ]Û¨¾tÁ*¦fÕ«ùbF»Õ/„HÜ7P{ÞZÀÐeg¤Ñêx,_îÇ‚",4åÞjÍ´ëZvÆZ>zBÏ®ÐrìÁKq0Žõ«Ò5´‚²Êߦ_z„ÌÀìcð@Ä„:÷v¹í×)7«OXd?ÔØ ©_¬þW.Ì֣ğûë~EˆÝ¸ý‰KV¨[°YjÛl•±ÎÙ˜óå²þ +óñ zî”ëÉj¬÷…E:^ s#Õ­½â[¨ÊqbãéqÖs€T?ÿÍûg $‚´Ûè'òÐe_Ùu˜Œ,‡Ø…—]ÇÁä nle^§ M3VsðŽ«( ƒ!ý«:$Ù¬ ¶¹º«ˆƒ+aB 47Ñý–yÒ†/õ±þ¼²>W†%ñ¹Õõ1äh¢[wIFï“'ãòMÇxN–ijÊÏæíĪþ8¯#ˆZ:Ñåp —“[9¤£ñû'hE³ED£Ô".zïë*9f}ì•/´½hZÀÍ'ëô” ¿±®Lk—¦8¥òÔ«'æþ Œî5äo0FPba$_GÞ·xÂæ3¦ Çýk ï›§É%NHe4¦P¦Í=dPH¶©¬2Lo`ý º} ´"?SÔx1&陚á—jôPWÞJÆ/J¼?†E6Cܱ ¿í§ºé­Ë&ÓAp-ß Á¢Ùf, R­ÀÌp>È-¹Æ‚d¹•u•ùê÷}½"¤9“×N{ÿ<„T=M>ã…í“@ÿ-T†;s±ù—ótEÙ4çÃb$… „ëŠeâì+[ð‰9¤< ”²3CK6úP¡V1a¬#Sf$E;¨(„}ý¢eq¡XÐèÛCKE v¨uBü(ÉdŠrƪÏQàŽÿʇͺ!gSö[Z´ÜÓeF°cb¬]K˜LHR[úA&ð[kCÏQÌ}.ýí©•S;1èªqζû´x~§‰”='ₚ¸ÙØâA®îb\æùQkóQwÕÍ»"ѵ¸3¢lŠïæÃ™£Èÿ--z4š!jä†=D‘¢]LÏ 3@%»[‘ Ér”Ϩõæñ>A¶Z"Æk­hb7±å°c ¿t£áVòªûF94è~žcŠ!¨?[øÉ¿Ûþä'¥¾1ÿîæK³‰éô¢Ÿ2´™C» éù/ ÖÓz;³9Íñ™dúŒÝ-gf¿i>U6NHƒ×ÖO’älà5)!‘“éÎ…s·Çnw2ù˜ÜÆT½ÈÜe úîRp%Ⱦš<ñÏ);jLñãôl°àµçl$›Õé]†™íYÑ1¢¯ÒLaàðóÖÀröÞ+! ï};Ðü#m`4`äÍô¯Y3:›Yh¬Lç…€²XT9Pßöà[æÜ¡l¡Ædñ£Ÿ`©H&É© án4׿¶v \yû®[=.fꦶ“PKÞ *¾‘”‚øÛÀ"ÐíPáuéžã4âá WÈè¿Êý«~ \‚ ß©Öà“’sDYzÚk+ã–LH—äÝuKðÊïfž Ù“Ùn³±®pP£/<ÆwøàdÁ.Jd^L$S¢/8 ¢P¦°…­ îIá./Ý&@íLY'òÄø1`ÁGðNŽÔé«»$-~–ªÑÞšCŠŠ»€Ë 8<Ø!;d?þÏ~¬ûåž« b»ØÒuÌ—p_Új @ãc¡ãm¸ÿG,Þ¢ø×°‰jÉ#Ê|3ظ-Jèà ñu¦÷t¨&ÃþŠ4¹!”«¹Æ©«¢{vD1à¢`€“›2ÝKÄ>Og÷|@Q¦´S _Ãçìz¤¿ì¦ØZíBÜBîñójñ @L•¡n··°Õ`xÍ1;Òøÿ+ÍÂ#Íëã²ö¾O`˜ü›£Î5ø ˸D)«1G:‹ F°òë@HYïB´ ]Eˆ«^ ôÝŽ„Àæã¯mP½ɬ‚Tø¸#¿‚·«‰Vž=Â…™L˶}I›à‚XÂ*1þ=³ç|sðÈ9¯8`㨤ßc"XÜEâ«Ôü$4rÇa¨Ð„|AázÿÖ\?áxÉ8zÆYgîç&ÊÙg:;CsþÊÍ=¹ÿ”7šTz¸ÆV,àQ»Á=*ÀoÛ(?D1GêÆ ¹-+ÉÈ+ÂÆúó›³ÃÅnÙÍÓ÷Ë1ö“n†£f! w&ÆÐÒ¬º(&¼h¶æ ×èŠ0)-Îü \àÙž:ü©Ä°‹òC6çœ „‘ÿÁðA@“Ýjýï…‚Eù$ÕÌŸŒ=á†v›+³(¾4¿¢¨oB‰šaióð#¹x+³® ŵÚî€xðj 2,§K7ìVvšù8’fa¥~)‚øn‡@j±H ¢m¤7ÒÐû…Ȫàbâ²´QPÝÉîž;LW~zÍ("S‘|µâ½õö”ù|K ¢™¦èÁç?EÅzÞ˹?,‚ƒzpi_¼§€í%j±õ@eÏV0‹ÜÿÊ@z4ê¦F¬0948}›¾è0Î{°½³ÕKsR|ÙõÓ8, `ÅÂ4Û•ò†JèTÞò‹åRÕ͹Ó.…ôÚŒÐ&«þNö¡ÂÊãµÑÇY_x8ÍÍ©»Õ§¾òZ;æP„¾ýÁPX†Õ÷7 ßrÔGƒÑDò³S¶†4 )(ÆS(oOwjrNM¯b;ö+XšåëaׯI¶nùKÂùÓêU„ÚŠ˜…n7gzì¸5Ãè ùI»M˜z~ûµ¸—8üp•AïØÎv³XÔ‡»®n5;’঒âËYa^ï*ãןëÜ È6 ‹3Ŭä8‰‰ÑAt¡ô¸É‹ÇÅýßÀö@…E4Í¿¯æ"¥,à ÐmúcXãuŠk©lfàó‰_Ñá÷¥ÎÍ(î¶ÍÁjsDÿ ïöв9'IÑ ,(ëÿfüöÈXñ#äkIÂìókA’φIמšêq ÿÄd‡‡JiKŒÒNV»>•oí)¾¼Ò¤–oô|Âa@*:nÏ6ÏËJ»yX|èu‡«Ü©e6äÄ|lÿ“abcõ=ꆫ“t¡äÃkgàg¡J}"Ý3³ïF8!Ë2 Én÷S½èC®17%ñBÄy"‘ÀÍÅZR›³3½îà<¸¥4ž3}•*µ—À! 4Råm_¬B×Ë=#Êû¼üƒ«gߨɩ )k ÈÏÄT6É!íÃ÷ ‹pj /7ÏóÒ_Aâ„Ôþ0¤Š8Ø»õ“6†þ·»›fãzž(’w‹E …±·l†Iõ¶±n)Z¿Ôöµ)Ù5=’‡ëðmíJõ½Ñ•Ü“ßÂg3½³¥šŸB‚¨æ}2K1ðXä“Þþ‹šæiR”ÃÄFà Ÿ«£›€¡Úm„DXÌÒé;ñ`зct3ÀH§pÁbËÁ±£’ î踪†âŽw9ÞŽ3Û“YzlÒ âœ9X[jàÙ =ñÅ ™@mÌ Õ Ì·Å+—À>Â^–™¬Ä\Æ uÆXS±Ïp&ô|Ø.ëÓŒ,Óò `ŽÝ)“'‹xCs– ”~ D ´»+Wì¥ý1gï¬>÷—_ Li_Eýì@OÅ^ôiS«íûPt˜â¤5þgEÜSÁyPNsÝ*ßÐç¾JÕ™6e®ªÙÙÉJnùHÈÝSG6°£¸»s¿¶…o3G9ý°‚œÙ®m>Í2×{&=°›yWeà¨EÛ^"†L­) ‘¹°s±}ÎúwÚ< ô:3^aî Ð|èÍ]¾¨ç×)×mI98aÀ¤/“c£úáÐX£ÌÁ $†?K÷pÄ!àë!T0~†0Ødè/¿FU<ñ/¤ÝãæœzŠŒßl…X©,ªØÓËà÷"!dpV,íÞ ¾F Ž(W!Rä: pÔé¼B2¿E—naÒ1I† † x—ÿcéWjaV¸¶aÕüË;‹©8º“Bö¸†Â̈嫳¿ánGqØZÄkÛˆø'tN}ðØdû¡&®Ÿ¥ÄhH›‚®ê N^Î<ü-l8i È“Pì2 ¥63û‚ðôÉ¢ª*~©¾"iQèq«Z·oxðõϨ‘#ƒóõ{ØÞ¬Â lãJÛJjÙº‘Õî”Ï„?í‹e¥;n?BoÅ>Ï2N'£82Ïþƒåaœu~¡d·‡£Y-’÷â¦çd?–#Ûǵ“r’s»ˆaø˜Ôô_ÌÑ,TPx¬¨sFóì))'˜1pe÷véßã#Lj=€é@ðàZ.(§´è6µw„tM^õ,®;¬A^÷4ûÿ“íLˆ¡¬ õša—”®+>‚ï×¶ŒŸ_÷!³¬¬Ø E4ÝB“Æ Œ^Àçc±eñÅ<[h­&4|ºÞ¥†ö‡(KNOã„8\σ¥i…ô³/]ifDþè§ÆI b‚ÛÜŠÎDk³·)VªbTò“aùqxaLØÓpBóã>Üs,ùúuQÑŒw¾m3Biß®Ðn]$ qõbi÷ŽŸô9K_·&.3wÜÌïæÁ&ží4þÄ•œ9€ìSD·[ÊWsKQLaJnT¶3÷)×÷Ly\Ždî‘Áìm…Y% >~°>„Â唹¢ònF̤z}6{ïþQÿŠ*A#}²+ãP?õéÐÖìS:˜’äbpÙ¦ø` †,Ý9ŸË>!þfv×åTÔ¼²gâyôñûÂÇà›]["sŸPÚW¨”ío<îN}Õú#òWˆlôŸ;«ª „14¸lÆ-¡×ÂØvpVHùóÒ£úÿuœ.ßm>“•€ú…oþ»dû¨~Yóï‹ût.;Ê(AÎý–þâèh Ä›³ŽŽí ‘fÓ€;©ø˜mêL–bË=Ë‚íß-üD$U´ƒ=W/8èF! ÜÄŽýϲ OD|´À¢sµžnA€ÛãP<¬`¤p1ˆªÆòÒÉx°½Á.?¡¸XŽûI5E±:ËVC9ºíðº³#;|9‡$rŽJê‹‘AÖT’3íL{¶y MYŒ¡N‘Q¿¹ˆòæ¡Twk Ÿwt`+ë8¨(yÓ I$Fy}ÀAvéŽj¦rÝV¹€RmÖÕ9M¼qWïúyÊ}\в/¦^—]Kb˜†nòf÷ñ7*„N!×2ݹòmLŠQC@LDOµRbü²\Ã3ê÷Sùå0$nÆ Ѫ‡û¡O‹^°gAƒGB £URq':I×R{Ô˜>—BW ãL„×Ùk‘w~!\;.b ¸¥wØ»¯n[ "·åÏBG˸Ó5gÔ1ŸŸ²dl7xÂnÑ"ѨeDmJ@¬ÏtÞIRø²Á`;‰ª¦{½ÄTEÎÜÛ¢¬x Öòœî¯-Báã…o‘—€¼õ"&B«–³´KÄÉ$|Öm 9YJ*x#¨ðC‰›D3qÀªi]Ñøë1ôkÛƒ¨)‹ Ìú=³Xk1FÔÜö<=”X‰á+ þ‚*eN \Ìàõ¸±ëÉaVlf:a¿÷Õ¦óe¥•:ùÒ9z  K@PZ…Q.È/ƒ)“ÇqɽÄm÷¨*Ñ«­Ä¥ÿKf· ÈæNËÚ2bÃoZ³Oáyl$©Ãu̇`ºK8,F'hrr!!…_¤é<Úî“LáHÿ¬ßŠœ•= Ge³TWLïï$áƒ~e"ä7EàqÞw˜TÎíÚÛK¿¯ë5Ú†üÕíå9¦ÑÓűÔh©Ë È“oZÊŸýZŽÛÅ)ZQ¬ô•mÐTÕņ`Üi¬*ˆÚ™Xç”h8Gÿ7Üíœ9ˆU¾ÿŸÏQ(êž7¾3»ŸbvµU­vz¯2È2¢FÓU U$¤Kž(“¼ËûX›àb¸³¯ßæÚ!n56yqÓ‹2ð>Éù«jÚ·Ø+îéÚ?8–ǣ撽ò”[òøX‘†–˜ªC©â7O/n*MÛ}£"ǰd¥ø,j…‘Pc'ñ„\àyˆdÕùss×Ç丵ŽË+<ÉßìUÿ±K,«[¦ðÓ‹)ö*ÿ™›ûFßz©cD¢3Ýàj‡×‚¹l ¥“U»Âûéáo¤6è¬Ðsöû”J·‹Àš’騀ÓVç®Ô¢ù’ã<[½d¾?Åùà\…ÀÈxIñë4DÍ, ˆ½@b-@0bPª¹xG/«éšt7,I°“â°ñ¡êˆõ9ä¸OAM¹ ]Aë~ãÊî@†ÅmZ„±âL%¢“ì‘toyqÆšÌ:NÑê•yû»È¢£/"yÖn]UÅit±~ã¼k} Å›ñ‡î3ãÖ!¾ü—ô-½üÌG>¢`Þ1/l¬_ó<©²ýv‹²xë© ºµ æ³ÁòrÔÑø‹&± Ï´_[ã×ü³âm^ѩ税ñ¥O;°ö‚×Õ¡äADHg =Ç}r•³c2>M¡bŽ”3å(o­8<¢ŠÉ·‹ h%.ƒ@w›n¿íÎÊÑ+¯µ-ÞK'®Â=±Ë½­óiánòXêÈfG¶©4¹Ê.jÛD…Ĉ>¬ìÏ¥†Hg±[·ÖÐÄuªÕÜã 'à>ÖBèŸÍ^ÊàX¥²N:ei$ÛüÀ¼‡ê$ xjiõÐ(D8Ëo]Ùñf‚]–DËÄt¯‰å’ N–à6ƒj«a"XSu\ua øÑÝ¥_$–W:KNlKÄd(s )ñ¦-n2½¥0¼?KïGƦ O¹·V©¾bðôb"AÇqr#2eƒª~ —Äû±À?áßÐrn²UK8ç™?ßa¢íO5~Kç϶¼V1™Òݨ·òpºíþ9?ayCÖK¦*ÄŒ—ÚcϸèèuöøcátçØ €×¶²¾`}Íïh;³Øþ>ªqéY§VÙkî+Â]'AËî9•Ô! ý«~ñ¹™’Ík{NJûiq-n Ï\‘-;´¤‚ÿ°}®½¥˜Ã>BG©·ò&‹|?r¿Ò”ŠE8sÈ¡¾zpŠ ìÆ”F‘’FÓ…þ¹Èu=wBÓæ‘aâÄRýÃÚèËRÕËK³ŽäŸä Ó(» ãJœh_´²Ó–þ^aÆbSas˜‘^gÜýM¹T¹äÁ)¤Ó0§xN¬•ådÛ8áV-¨Â) °aÕÓn µÉõ_ï#gauˆ· ª¬²=Õ陾Üûùôó•Î͈ógJ×Ll,ŠLÜÝžâkvèE,„‹»I° ¶› îN³­©I(ó^p^Jø:ÂsÙÏ.ׂ‹ÊÀ|ÓLÙuÁy¡Pµ³m®֌ ƒ6:JeóØÇÊ}kf‰·‡øK¹. £0ï°-JÚ¡k$¨áþõ…üÝÖßÈ¿Š]SÝî(ëÍsÖ_Eì<œþu“XÀ(KDC»ö.D[e¥Ñ×~%»xlˆ0Éü#¨ËsIhì8S®2þ%MNŒs¼ –drQÝ#°¼¡Ù@‚ºI³;2¬ˆR>ÖO$m„¹ÀóH[tªë]¾ ®[ ½:UŸ¾oÕ—²L‰ÚÏ™+•½ôIJ×<âSI¨•=˜£Dçá£ÓÆÙ`™”ÒUßË|s&$|D$’HÊå SLÆIc!éNg aÊÂ{Ml4‰Q¨ù÷ dï½›ŒÕŵŸ ;1WZY¯&c!$0 YÆ¡ŽäßÑ¡æydÏk{W›@Õëútn­Gø¦dÕö|—EÁE‡•»¸–cÖ‚G Ó`ããõp©%½ QÛsLSGÜ‘UÚ¤¸Xˆ¾à@æ%©šÃÎGü0ªEuEAWhHŒcϕՀd㙆›Í½³ 0iç+ú ˆzãË< &>LÜl!æu”ÝDl½'ûÃqµ¯Š@9âcu[ùjÓ¡gWO+45®¶ñSrçF@rGÝŸz¥og—w1Ró0äùYb‡ã¾¹w(}âwpõÑ zÞyì”=!¢Pÿû’‹wé(½f` 0£¯Õ¶ˆ»rJ'Ù*p‹ÉC«ˆ!ÁÛ¥bycÄ¢N. YSyzJ†e«ÎS_}³:̬8§Ÿv¢Z¼ÉÖA”{i±«2›Œ×kEbD¨À]½ÜÑŸ=?î>,•5'Õ‚~¹ˆÄ*Ä4O4}`æÓìµû‰e_¹ï ^²Ôlœ?æíAÂz4 ‹,ç­X¤‡‹ªxÇP\á¶óÀ†,‚Ï»¡ýžd˜œ;~®4!ëš!Œx|‰T––¥P_3¡ãÝ1ÝVë½y‘dåÑ~…DS ÓOm@þ|,±“ÑÞvD¸<ÿDï–*åÂ’ã€AËJ7ƒþ»ê5ª{:eÞcȵ«J‚ L²ñ¨:RКëAAfpŽ“¤jsÑg]çâÛo³-î «¯:=HžþV¾ÊÍŒ†zoµw‰dÑDLý/uw… ß WÀO ?0X¾;'k"_è·sd­ Õk;²•1ÙA_m‰mŠ8a€¶z+ðf@ÙØñ—|¿`‹˜b-ŠkTLÖ I\ƒ`â1…%fožná¢9ŽH'¦œbÚºI4טÁëçºh8R²zÌpêó~ŸÚ§›!ž¤n0dyY‹ÊаÓãÊ0m {f»]=«#K<€É5WË’I~÷Ú¸7d®ª¾¨>"Ii÷„Ý\ h³7“ ÷.>Ô?EHÔ¹fͨõÜw˜k±‡Áïòó#AàT·lÖ|Èè.c²at»Í_®T©V…6ÃrÑæaœ*µWÆïPN™ `îB­_­Òy"—~ñw›e7NÀUÝ+ü¤m‚Ó·a¬ÆLPv};5€¬èì»K›Ž ‹ÄåƒÇ%*ƒ†ZÝIó_ZZ¥ÿÓ«ä³?XD&âìø)÷1[þFHc÷wt&ŠÕAh.•1ÀÍ—:ˆW²t˽ ´³…BâÄ^©Î,ê:nˆO£eƒ]z«xLK lÿ48iÙOßàoâ)A›“Ÿ;gaújÁԦغàÇ—…¡Tµ‹Ø]º&Y1ü"øIõ5¨@k3_˜4+ Ç>›ÁŸy[_Ûo ª®vžÔ'½öóÁŸaÎb«v¯“V¾@N ÙwÄQ \‚Pý®çO‡dÑsóÈ´–®˜­Š„C±9¾ÊƒÄ‰ ÒÏøòjJgO‹û^Ï_=›“KœQŸ€"ʃ÷Ãí¿{º<Æxí‡I¾©ÖÚ6_ô˜†¨Épöñ×=¹èk_˜ מ\·Øc)5í­â¸?(ª™f~%¢}¢Ù¿_¾¶1p(’± ôºIï…øMj'y€6G«s™#†Õ¤Úa›A3ò‘ÎÖäýÜÛŠI6ÿ¦†ƒPI6yqàëFÌñI—Õ¶™^¨;­GmFÒ‚rz5Vî½Z¯*wUäzdcíÔ£vzùã»±Ãóà×â¿Ñr%0p%?±”øäLÓ@§¦“1•íY/t+eJ"L7©F|Îõ„wmLZÎ tV!x›ÇýeÄÓeÖ’ P²¤¦|GÞðf #"õM…蕤ééŸÀ›Âá°4Èþö:ƒäq«œþLÔ\K2"[¥+w) )DµÇ[Ù)ħ¤xs fô|Õ3iœ!ãFD-ï´bÂܼ?Œ÷~ÄcóU{ä.–rÒÏô/rœ ®§aWE…ÔÀè„|À·ý‡Üå*ñ}kJ›êò;v PÌ—rßÊz21B<‹ÓçÓl'ÖnÿXª;a+K‹vôL‚Åè”Êf8S®£,Çóó&uöø½ÌNÝ`¼Æ äå¿V ¡oÜ0SBò­Â$Þ4½µè:Xæ¸Åu–ˆ"õQÇ)™U.6\›4X\4C¸4ÄhšóÛñ¾ŠâÐÅ ¿†BÙ¶ôt¸Ò¼"¦ÇåŸ&ºˆª Ò@?„¬h,þ¾÷$\eJrׇeilîI¦¬€]6—ð­ü"YÆþ´ñx6]+Twõr‚†@–äcëUµ”ru„oß$Ãâ뉊õï»úqÆø©0zåБ+ÎŽ¬™èº{¾2‹Ëw™b¾ÓTA²b7n§Y?AGÈì®wûW'Îï7jö¸:¢ê î»Ý15>¯8 Ö1½Á+Î,í¤”]5eztͳG)h2ÿ¸4ãÊ-$g«Üè–ôìì7‚­ñ;öÒI~¿ß“ŽlžŽÂËßÙÎF—®áÈRMþÐó·™ À+ˆÿ6û½ùb3ïÝÄþ3AÏÈø2`…ÈÈ£ó"9fì8¶˜¹ptxúÐ?5˜Â(z¸÷y¯P©<˜W¶ßöe³ÑPŸ Áàî«û™6`…Ó3²U^«EÐG†¾å¡HÓ°Yª"c£* ,3¦-̓AžÑ’üNf\².}…ÑoAŠYÿNdÓCž ]''v·×÷?c ±ÈQø‰E^ÃÝÛ ×­z:Ð%äÙ¼É2˜…m©PÚ·ýñͶ^Ìf„% ;Ɔ‡i<7µ¤¨Í?ÑË$>4êQΑ&‘(À^ª©™oU>·råšZ4ÍÑøSbÎtYcyñ¢]Ã%ÿo?(¤LW2\¸\<¿É(á5Ëz4Ã}뙢¾Uræ@®7;^Dòh±È)â]œÆ]ÃÔYScGKéÔ‘!‚Bô|–0–OÈ}=ñèÎxmÓe¹Ç»ÿiî0w/ÐA›÷Ð!á.(…Ó,vËU˜”ö.Í-÷Þþ "ƒÜ-Ï“¿Âäÿ$›«G8Ðr~ñÑô@#²4¼Afb3çþp˃ gj.Àl$H 3òŽ©É YOë.[¼µ¬‘Å‚˜ùŒÍé³ãm`ü,!}´è¡OsG\Òñ$ÈXë¾ê‡‚¢@Ó‡ŽŒRb}i™d…#¼êÆð(¨ë–~²#ûQ†¸»ƒ\šR̨’´® IGîÇá¦vÙ®5 ÙsF±†Ç=¡~¼D“Ï®÷]šÍ÷B¬?ùÀ izLÊDÌ­c–gk02æ¢v¡ “\¾ó+Ú) aÜl7ý(KLÞÃ9QÎLÞ’7›Õ í®.R…½¸—ˆbT5þ€?èÊχ«}1jZw«t/‰½vHø×ò~$!°Ë1SqRÒÂzÆí$÷!cµ›¾4{æ‚’ªæØ1w½¼àsií<æµN U®ÌC¬¸^0úDê*½üo_¤lqꙃ¿±"8“{e¦Þ æ+„ñêÃsm"ÊxާCÑØÌðÌ]4ñL­w«†R!ÓFw}ú4á~W/²Ï|@Üz6˜`¿¸öÇráÒœíÕ"öœpªÿ©Ø GoÄc•w-û¹à°fïèñº¿4™,~ðÕŒÀ<-?1³”OÎò#Ð@mª8ÁIz«I‚eMøF… È²ŒÂ’t†ÕDî¸‚æŠ n®ÁDì”ÅÜvXñ*â‚‚LR‘Цp¯+ý²µ$Tú÷’ÍTmSá™{EÂh†‰9!ý¯¸‚‡ð/¦²¸Ñž,c4œð Éhñ)KÐpT uAÝ®^Jªà„««t\¸7?(•«ÄÀ)ΠΤ¤åʧF%{XáÏNkCS}¹Wé$6Óm@AQІA;?«º»E±¬WÞtnh™f·"ÞðÀ£NÐ^íÞr›Eöw]"@Þ5ŒVÄ ûVºÈ0 ¦1¡Ê˜Í…Ô‚·G0öH¼sxiH¡õþ\'Agà«úø(þ=oVÜ•“iBznoE…‡Ä7»!X˜ãÃm2GJíºáû§lsÔý¼oŽè@³Nª…·¶ÇåÆ?^sv%–yQ?« ¡ hþœBþm‘ú£º‰Üœ@WsIùĸæµÈ5]žÖV+­*GÛyUî-5lúÒüu¶Æ4œ‚ wó½o…KÍÝ\ï¢P‡£T7@7Ð{©âšãZþÈîÕG©Ì“@v¢H¥.£6ãm‡ôm}ú;Ž„>9Ì~`eÎÿü½²Íëóhú˜ó~Å8œ Lƒ;¡àÒ<+gqÉØkæèfàÀ%2·#ç̘³3˜U­j4†‰0]š²ÓšO,Š˜®…ó÷\9}ZÁ„Óô·ÑìÎiØ(AŽñã7Jï/ðÇËwFÆŽÌö+Á³Ègáåiè#¾†¬{FœU CLô½`¡KÎÜ–ÇèÿÔxN&¹ð*ô·mÜ_>=j¥c6feëå;¯ÊºLâ± WŠkƒ½¤÷d ¡pj 3Æd§¼ì=¶ëßrn0Ñú-†ó§Eo3Ò%Þî õ €@Œ¥ê°‡k|3ôYñ |o›KÎÜDbÜ©aòEe9Ä·Ãô“ÁÄ¢s ³"oÎû°cúø™×¤3Ç1ß“´ì OBÏFnÃ8‚6d.{ÓLxß ï]©[çàÔì¼G¹µâVV·x[Ä,Ûç[t‰‘ßê¹b¢(ídÜ E»b”üéyêÝ0Ús¾VζBK.z‘U¦ÂÇž}$]§YÁ¾þp®ÒÖÂXö8p ”·Ÿq‘H+WÚ·¯HëÒGT¿_Ã<Š;fŠ1Û4•7¤hcÏω"—!¶¢UºP¸×°W:X¬ØX‚ŒW ¹ŒxüE•T_¬Pûu°Ö<‹pêšò]9ÃôNáE)oÃfFw5æ¨ßó3öùT~•nñºÊ# ÇTg èˆ¸–• ·%Aj)Ó¤žÓc̃‡Zõ‡`?Î+ûhu¦{Ik†~„}g5 êaýì{\ÌÃpL.›,ì¢xÁMÕ#Ù2¶Æüw¿Î|õhÕŒêåù0©ù:~[”úé£Jõ>3Ì„º!?tÔoùw:µ2ÆFüÎ̶‹!ýý¡…“sþÎ> Ø.Ë’G–EÃêLeVŽd?˜ƒz-vÕFP*Qâ=Ä×¾º­è­P Ñ-“ÉúûÅSxâ [Ú[ÌEyžÇªË‰Ò Ù4;þ:q˜Ö ¿Å¯ú¡Å“ Åùø18n[ô^˺Ñ&b‚寭 ,­×ë=˜ìRåe2Q þŒ¡§¿ªÃ÷Â÷! ^•ûm`íJ'áÖÃuV Qü>ç ¤à!R‡_÷mí¯Ž¬¤™>”«W†! `T„õ"¾ls2a޵ÈBÙ¡K`FÿEÙõè€KŽïÖKíµàuiI7ï/óëŸã†UnñšESe„‰§D:ì—¬t“uQh–ý¾b“NáLv›H¤$ì·š¨ª•µ{±Wržûñ±Sný<®4Ã]Ù9OÃUBª_±ò?¾÷qò‹ÒWŽ*@Ëûk#äi 2ÙXÄlªbZT¥å¸¿û¡B!¡4«\Ž|§üßè°:­°ì]NsÄ©ZéÇr gné/é‚.£nàYÞøîyø½ÀB 1Ÿ/‘}asmZ¨Ï[‡++ƒi›N' çžÔ¿I£ªDYÝM¹0 “¨òcq?±lpeKŸžVÓ° Øu©ƒ‚UÁǹ[þ7nâF9JàÙyí@).ï”ùnö§l>ÿÌæ4|áÌý¹7±kæÜç¼§û¦ûtu­ë5VÆ‘œÜÉžN-R&.&;€zÅ ¢_tŠÈs&È(BËü ú0…ïrÝcÝEâ2²°ç½<š7sà÷—Ó›ipîX0§îQÇ¡ÚbÛ¸í? ÎÏ™PoWQ·ÛY<æ¬+¢Zý…¶‚—þ†W’]†qJ£*ŠœDõ3=¶ •aBrYœQ•U(÷Œ…ëb«¨NÎomðO?.o›å-ÚSÏϵ[~…iŒ§<*§¦q™m¯WÈÓHN;‡U'9ö“N¶át­å!UJ/I•àO®&…#/izkmB/ iÁ¿•úbñC/¬åÙx£™W@õ~½zîoá„6¥þéX'ÜZÌñ* †°è_ö ´I….Ç¥ ‚â‰u9S ²¾³W÷E‰¡V•üËb·eÛC—¬Ä븲þ‰Qg!È·ÍÙÊŽ†~(9ì9F칸_îL@0R± <,Ó˜„ºë1,´FœÅ¡û8¯ WX9ëñÃëÄ; Èÿb4ÌÅÇ·áqApfK1œ¼)÷æ™Ù”iL’%™ó‰Žc9½Q)ƒ—ý;98q@¢b„Db«“="8ño’0·]…)Zi‡Ig3…FL ƒ¿kðƒÑ<ë²"ïÉXÈÂ`ñù¼JL¸êã5üÐGm™ÓöÉ(B™Š£hÒÒÏ ÁÐ ¾µ=m% B©Èw‹¢¬xÕíxN^ŸÂ ¤ª÷>4Ç+½‡Íœà©µgl÷wýZ½ˆîI”„€ÁÔ†¼Ð•iX7×.€%l”ã½,£æÎÙÞ‚7}¦#i—‡š%C÷Ãtè,#/kî(V 鿈»w¢ÒYø°gÁâ8K´{ÿ(SHœï—²ÒÙçŒÈJ"NìâÁ:,M’ÙB†ûâbW#)§÷»0½ËÝ-{ôâDo3)S(°¾VÁ ÇNÓ›h{f#DmU½î8×é^ ;Ò‚û¯N­ö¦÷›™kn¥ —H/´Gd* xïjÑbà–ÚÖòŸè³2è7„Õƒä£éîý@øL0è¬oõ¡¾d6ÈôÄú*èÒ’šóÞ ¾\¯¢Í*UEôÔ…¸ˆÈ¢ÓMÖ@Ÿ% ²ÃE Ï<%5fÀ‡œ39\à¬3Wi×(^<Ú"šÜŸ÷PµÅ±ö@„ûŒ"  n5kZã"\ÖyÐ{"O—ô<²¦>,"9'§Áœ"Œ‰gš‹º¸o>\ Oÿ?˜hXëѲ,œ× .h­#eH§Ì¿iZ¬¬¾¢Š¿|Qÿð”ÌñÆóÐ:œÿÌAK6—»+Ç‘»t¡Ž†[z8¢¸5·¤>Ž>S¨nPj͘bÃ{=ÃG©¤ÛÚåm~gU£ê˺s$ØüM7;N˜E(¼ó[`ßDçþİDæË¾Wû*ˆ™;ÒKjé)‡ËÞËÎÀ::ª\@­S~]b÷z_ï’]Ú×6—§}¿iO>¶“UÇòBy³¦6n­jÿT¡id×µC—›±hè,àïØ|ŸˆzmUÇ Gê«üRªo>¹èÍL³@8²MÁÁ2…É®©¤]zº9H^¨ËéA2ÄD); /š%Îy*¹Ï74cˆÌ±} ÕÃPÏÂbƒ¶ÁIþä<4‚Òì¤Ê 4ß$Èû_­ªo‘ÿ4êá7¤0H–pWÑhÂ-æ­cù FÑ[и¾ð ûiJmB 5ç*®â;ÏüŒºXȈmI&6­ºiÐö©oÜŠ‹/U½ojΦ´`é÷€ºO Í{ˆß–¡g摆Ù@ÝЯé㸩˜n99dá(j¤ 8m£+û–7æŠðü]”ÙçŒ)ÑÅü??FNÔ)[®õ™Á?=¿ó?*k3Ì‘É6Á Ô40ZYôx¦Q÷Ía]Q|…$~³¹Œ,{ºRï±Nù‚K¦}ÖØ'`ËmlE/o ‘K‚ªD@›¦~ÅÎq4îÀçÏ }DºnV§—Ótqóo¢JXæ¡¥ 3Å| è-“ T‚ÂR”Ý¡ò Šˆ%·É…€VÀÛ7²˜’ÆèïµO._ºLôn—Ü:Ðogø§ËpæÌÎá+ü*_Œñ“³ÿÛêsË‹dKòåÛpËr,>é'ñùG JËP·d¾ªªÚbÜY»°Œ5Æ`¾®Ì{ë¥?É èFhŸûR8¹·™ž#ýuºF)AðíØà#~zDÈLêÊøe}€8Ú1($ Áå†Nˆˆùßàí)÷3mÖkÏ­ÍVæ§¶¼4±ú†D Ãy±ÍË˦EŽä -‰l€¾âZD†0ˉKs3dçÞ½ ¶XS¯P>òLJÏÞ‰”Èû4Ã"¸Òièш;|ÄíŸÙ÷îs\G+»!_bÎ^‹™“-'öA·€S‘;­f„”Ûô#:˜IAõRCù­$ér²o©½ø¹6ï, !¼dî»ÖJSd•ب46Öû¸h×¾ú›ççÑ·„%§o–QÿaM‘€ ÀõɼÆ,dœE_ʯ€ÁL ±oë:°Hëm`¶ŒŸ-mÙ%*Vå8@F›°á—ïo'Ê›¹õ‘ËÍT²@Þ©ì9æ+úƒ?ô‡f§aŒnÑt1wø "ýrW­Å€`¸Žxù|Þ€³‡Ÿ~"é´`žsÖ•Æ4ZïM¹Vy Òc—¦w®‡_)E)‚.¾?ŸÛ\uÜ‚ÿÓ —ß$°DæìKÇDñßôG9•AɨÇ÷ë¤x@'ÎþäžM¾•Ž>:ŠjbŒi#«míD-_ë…¼"g,õ/—LŽÆš&†¨³’˜GñœBÿ1°D/0%’šŽ_°‹ùHEÒY‡»ô>XÙ8‘§BÍSr Ië·dyS¡i.I“›iöv‡§Ë1KÐ0cØv‘=×ð¼d)õZ`Ûä3)|Ãnƒ ø\Ñ*ôá=r8{ç”Àå1¥B/i-ù~LÄI?KÚƒ§°síBu²½HÛq7È~'}‚ Ÿ8å6ÍßÞ<,øôÃpE{á„/k/¦N™ÁÌìÈÕÔl¶ .0äÜ$âÑýBƒEÇVÞ ÎvÔ+¥]¶Ç|PzšQ’ýk=E²,š%ÅĦ:QÄ+ÔOÏëÂB44üü\®ó¿vlï ÖÓk~xámÅÏM (7úËíŸDÀÍH8”ÿš=\Ôô<Éee-eû&×%'7…’åëöí:쨅·ËŸMl®~oØ;*ŒÜl#Ãá¶Ý(‹;dé ä^^³„õ¢Wþµ-ŸWT”^1µçäSh©Ä'Äc7$sý«ùN›ëcš$‰>äX/j˜ˆáÉŽÝÑ_ÛF1šhÓL%¬Ní¢5™z8Š®8üÐ ©ûhzaž­ì'£…Ä­„cª`Äÿò¹z±#ÙÙFltu3×{7 Áœ@BbÆHt Wvé) EAùjüK°Ÿ"ñõÐï ˜ÙÝÊÏ1ì43…H¤!îWçrê|ÊÝyF§BKbo›ãL àýã(šWë‡È¾»Ž¨ÀÀÒ§«qÇaÕ¸æïž7NÍ®ÄYyœjTÔUV+ë3L‚}óà tŸ·Ÿ†^5æëk‘J-PT×:ÊÆ*YµÈ$19EdÖD4"BOþ怛a4žÚǺ¿'RªªEÒ”Ù–.¼ÓŒîºÌ‹zÒT8àvû+—ˆ¯ +…ÒË8€“ºîðB ˆzM €¥1æï/·öÖÃÃ*/òôqÁ‰(ìX>h£;þ¼yM£" ž£4+±þ˜òŽ•mÞXÏ*`·ø1¢ö•©ú´ˆ$B)j=z/ ­VÙÔ‡<²è]é 53 ¶}dèøälQ\U{Hë4~ä©»Á ¬e爾»æ?½YÌFæþZmg}Uùçâ†qåûéz¿ +po˜…ÎæwV§Ã,YëhìwÉÏ…ÉÒG>'eðÖ‹è BN&0žÃõZ[Y".-µAAóÁ½Þ5ž;½Ø•ÃÖaº"‰â"¢ú'ÉsÛ(7sµ=¼(ÄιÄ6Ž!ä: IVÙËð¼áùŒMz²<çn‰ ›k.âæ¥×­ªo!yÁšN>.g}«\ëbrÆEÏB#-m¤)%}J¨Lóª¼{:®ñ’#Ræ„®íÀÔE0§ ÅÞ™:-tð$3å¶fÛÕ´0©‹ð cä=Ð{Õ;rìû¢0«nïT~û@Žü@@4Æ%e)x²—=ŸE Ѷ È`“¤åhûÃùR€ùÐ]–*Òou”/Ò73ãÐ'ÕÞð,”B÷`ÞŽ DH½„}›ú¦ÔHï=QBsOÎ=H˜}Ê:¾Ú+€Hu¥&(/GöãÁ•9 MØ÷ѺmL€ú¯ƒ¨ÉHÃGd ›­|­H³¢¶FÓϾÞa‚ók}R‹+›^=„Å.RA[`¢z|ùÊ/•¿DÏZLaÎR9vœ—S¥¨¶ò;Õç;šhºSw¦T.‚LÂÃ.A('jZa ÕJL†|)8ØqLÒ%¼Å¹³vÂFj¯ž'±­¤sLwžìÞ®¸C>.å ߨšó ½|Ç*8mÃv®6gõôºÏñKLa³º3úOâ¯V¸ŽÄL«eçO"á:tDÔÕ¡ò‘ÌÎAÜÄÏSC+Œò¤ Ab߆agÒóR÷e ö@ lj„TœX2;¢Ø±†6ÕØiÖÐAGþYÿñ#:ñ8¶³<šµ¬58¢j« 2Sú±.Œ<%¥hT7Žn_&|õcÊV’ì~û¹#-¿2mÂàš½&2 ú¾[—‡ä&•¶eÓö놤ÉѺqg}÷šÊÂG¹®0z•R9ŽÒ≢(~WRžøyn°¦Âû¿‚»\ìíõµEO a•‡ «¨Eãf^Ê‚¢„¸£1xç»wÏ·7AÖ”Çôv’c\­2jÆ6Aû”ƒ¯Èã:BòOt~ô4UõA×D9B\jžè±GQ‚V“:Ö)ÐI“ñ}ø-®0 ã«þÛOŠxÁ.,®Š9F“¶Oì®á.xˆaYWw—Æ4Ì©MÙ‹ùñ¼ÿ9 6}çœn¤p’}ûtŽ@C›ý·^1PÔ@¹ )< S’`Ô¯ÅzÈW{çÿÆÎõ5\zˆf€“)¡ªÆ›o•zƒ>¬&ÇdYM(„PŠð€×=Ç`Æ~Ãë… {nëÜÛò$›–Aì¯ËI¯´Ç]P´Qì¶“äÒñ3y´ð7œˆ³Ý›¯91Î*ÿH¾^ŒúqͰ»“%· GE›w›+k10Sx»A¢'¡è>a^HcG¹Š‡]Fògß1ZÀ¸ŸR¬ª‰0ÂèØËAKS'i¨ÑjUø %B¢ÛŠÝã“"'_dŸT,Ö‘ñÔl-»}Âÿ•Ù˜­ÔO{W9OµÝV”* ]µÈFËÍrD‘9¯,Ò;wÝd¹Û˜Oåé\Næ›ÌèÀ´úþÐP‰ä~ã·z*Z~f8Î!¿¢,ݽФ‰¾ÃWŽüÔ¥+;ß÷Ø:7ÑÄÁD3à‰ÖÏ-:“¥©Ç3 LS)íÌ"j¹¸«Y[PÒ®¬¿—Ï{¾w,2:mû*Ó´ÇìÔ½Ø —¦7Ë™°[ [›ÛpÛzœìº:Ãû°9†çÁsÞ×(¨ØQ`,k³v3»…%º7µ^¯¨ÿå/ßV5òd‡Ñ \hõÊÌ¡£ÃA;´*‚eB þ¶±DÕ G¹«ŠAãvê?ø@Þ¿Š¢Žj%YjµÅˆB„™É²Õ@"4÷Ž]+4é!Ûè¸2bšu̲él^$MüŽ¢š;¼ÔK7ÍÂqûCXÐáQ Ä×/ð89‘þŸ‘B›»Ör.Hu¡½qo](<«Á84 q|[zÌßÑcGÜ«f}ò2Wnuå¶JQ‹È¥mýK}šCýùXä,ë`ª9¥äy½Q»- °SMÆÅ±Žú½wÿõTe£Õ”Y©¥(tÔCŠÔnZ…#ÇJѾ»0IëŠtTWm í{¾BSøÚžålcŒ]vºûí¯H”«\ØA´]rƒ*öÌŠrƒ–§•š6Òî)¤ô±;B[Û õš†¼9’Íx)®¥qÝŽyT®8ˆÖÆ4ã¨`•Iì›x%ó·,³ÿ+BG„jÿ©ó©âŒI¹Ú¯TÆé„¾ù¸™œ®É¦èòKApêÂò.õY 6”Œn9TÜ4£¤¹ï$[¯wcÖ2`ÜD)v½G}}ì:¸VüÓ£®tÚt8s ¨š@x‡'.é ÕÒ¹ @‡”é{#ÍÄáè’]ƒC±¤¤ó6d‚ðLŒÒ‹-²äÔóŠGƒ*îª+'gûA æt5â¶6ùüq»Üç a÷qÚšüM³@ dÍ䚈h€$LSüLý¥gÕØâÒå3އ„„Ï,•{c‰Ñß?*ý•; :å8[ïóÛ:ŠË”ð'+¬ ¥tþ‰†ˆ[t·d$0Ú›üÔò_Q°™j‰ˆ{gøÉ¿Z¯>üÐŽK‹ 'Ü[ ›¯ŠŽ¨ûVø: ÈD^&¤FQ›Ì?<¨”Škd+be>PÝÉÞâå¹xò°Yš>ú?Å›ô£¸=¶ñr5ì;¾$›aj|@è€dªEƒíÞ…jÕ…>_aŽH™-"¬{ ö9¬2ªˆê X{o«ªØÆU*ý½¼}zdí°+«³ÕPܬbð˜vRJSÈà­˜F2+J>E4F¾Àª ¶oºØ3¾wyi§Í_ðm{C“ìé-KH7Î6#Ul)½3®¬-ÿ­º6­Ü —ü3 ÙFï†`.æ¶ ÅæÚ軓%N]æw‚å[Äu;]ž¹Ëàr|¼Vfº»ê‘àoi:tãqSwþDMØÇ(Á†\äÅÄšÃÊ´¶²,¦€*lœÅ¿£‹x ì!Ö^ÐËRù¯wŸÒG:!¼Ÿ^$õÇã³»™·P´BD·¶7n阕 -˜µäŒ3:Ñßí©©«¼V¡=|±¼ðÌΣà‚ÀÅí&Tf0“Ús/^ü¾«k=(Èf£X¥‚¦ùáFÛa²ááþ¯&SR ;‰ñ}põÝç‡\S't-4â– )èìvÕÃÈÜÃQ¶ß Ö;Hzva ÅLrÓs}Yå'qG–‰­ž\L8Y1à¾G@š‚*@PüÏ#çÛ5‰ í·v "rF®dÏ“÷''{¹R­ry;ÀLŰ]ø0 €žËd'oÂëQ¦[Å1ßã' J #!ÁT‚-ÅpbÈøi’¯sSÈŽ'PKv3ÎÓ7IÞ8fˆ>À×J@j./ÖâŠao]¨X#§ëñÛÇ™¡(nŸòs%lKXoÕ‡×Xô?¸fÃáÅpT'° µ¼\‹§fÖíÙ¾{¨bC%­F%”sº‘f²ª@Í4ncTËߣp5¶Çˆ­†aÉ­ !’´õr‡åðeü ¢‚•tÆW¸îþ|©º˜Jù›=1$cþˤ†}’Oá°Çk³ß]¿¤|1ÔSŠ8ÞÒˆêEhSZgRÙZ3A7ùKº~hðÝkvF/¨œñEþÀ”©ëÃ3z ïó—¿tÉà@'€ÓJwИY=Æ®¯²³i¹ƒ@â@:#tÌB’  ø® $¹W¡7 ƒÛ±…ž·L_DÈ÷±´p~ —Þ3×NP:%™«K§/™VÑ]$M—œš¶ÆðpˆŽL8óÖPÕ0‚ÿ8ꇞ„ H2®_1#W±:'}G*’bÚÔª)§!„QOÞ‡4ŽÖß¾.5laS¼?Lê÷åû€¦aŸTDš„¯‰ä*Ä“ä µ)ßp°íª’51URY8[›JÛeožêÿ¯ðÕ…Ppm>W(æ‘ûK%A(öëhÊ d1ÝmÖâì7A·È… h¥´zÀ.†&‘Km;@2½&Â`,»Ö\ ‰;»vÏ…Á¢2Á^ËPôŸ1Ûá^ì£Õ󜾦9€¨…vÁ©? ¥¯z ÄæãËf‹åùŒ©Ç¾üš¹m»g–Ì·©vÛs°Ý-®‡7™´Wò”Eg·;’ÒüAR=/5¦š¯Jâx•Ì1WcQbfÖ*Èï¯"–—  NõŒa=ާrNß,·©ÎŒ @7æñ[_… 0î*Â^”r±”¥ ÚyÈ–— ·?U`JŸ„T!äbèhÃ>'Ü#ˆ03áÄâ ¦:ó¼þ·õ||dk42Ž¸Òø¢ç_¿ZnÒF\ë,OÏæËŽEh%)ßÑÿ±‰ÃîŠçŒ8R Qi1›ñý¸!ã€&Ïlxˆ“EYlÂuœqÐ^»§=ž:dW&ÿ'ªù2©QÏf­÷•ÞÃï}M²) –“-9c†J¡mhÿDñ!i0­À üá,j`Êdñ2BûŒ®ÿ@ýáÃNË] J(Ñ—ƒnoWäW \H£´›©£åL d5S* ‡Ws÷Êÿ³CÂe˜;餷×?šZ·¾Î,šb8Š? ¶!(´¦ˆDŠæEá|jܼ^¢(ôïH†Ü5wÓ}‰€‹A¦«'ÒÜïÿŒ ‹9p qW^^hìI/ ÷¿¶>3Y›>Ó—·Ó¥~3V%V=šõçq Ë7C`ÜŒ“ËöÛ_ w@y”¾‹c Àû° Ac„¤eþ*Ì܆ ‡]¸ÎμR3¢V†Ö-f’î¾võ5Ʊco‡áÂ4YvLä½?•Ó†í>6¸.Á>BÁ+ž6ùŠvùh;lÊGø©;ê^)Z_ņƔOVÞU(@ÐG.A°ç5%Šæn5AÉÑ9ŸæQ“#Ïd©§Ú‚¡|èXKêR©¡~”+¢>ø°† IHà‘°ú Fòg¢ð¹m¤„­@™“Ð*Z*A°üüÜ•*hŠ›cÉŸ°Å_ŠCËgªl@i`&n¶UnŠq`@9Ž=áÚ&ù":Y+¥Œå×ã•òä §޶ï¥ÍÝ^°›Û‡§›ËÝî^Çû% ìR|‹ Êe'b*©z£­,2#à!O˜£P„c?…KŸÍ†eù;\±)ãe¢Õdç ÕêÑIŒÑ+› 1‰WÏ”c¬]X³Øx: Ø*ÚDÝZwz­D W°aóÈÕˆÂéÒî¥8@L[ÛÏ{uP¼GãÂWŸcæ6rf¿»þœO{âÝ­x6Šú¢Ê³hLeu¾‚’’A¥à‰ëÁå|j‚ë«h%lO'. N.°ßÍØôÛgÿÕ£;àðy¾bä—t…/€Ï¥“‰hGØ!aŸ— !¹2|‹p—­¯ÖÌ*&•Z=eH$ö <–ÔsÜ I„êÈÌŠÝ)EÿŠ;:¼·HßK‡?å<¨S£U+²ª8¦ ”šß<þ%¢TžK¸Ê¯y)K*úÞÑ´,á5»ÄæúòA²’'_퓜oŸïóX‚ÙŒ¢þã«!îä:íÑÑ:å¼ÕAX¯²FHA;/R•Ъ¯É˜Wj¿I/èz?9°ýíîiåªÊXÒP5¿;Ô[ r æa8ej+¢ià‘)J'\4ÉÈì8¦3z%i¤œl=VÜøsú·™ì+¡öݽÉÜE2ÊBm”ʪ®XÞ•÷äzi&ÿç1±k+<Õ0Ðm:l©ìšÆŸGýú¦Aƒžˆ/Îpx'Îüøa>rˆª‰Gs‹aÀ¡,ê펫^†¶¿¨³:Šm±9žsÑد‡Ñ%™ôõÈ«Uâõ{pW]9¢$á=°1ׂf+IÚåÓ:¢ñì0ÓÙ¢ßå¶þ¸u²Q‘\J(}Çgªcñ,•§båfZ_mò×ÔäÌ0‡†›YE¨}àgù>þaNz, ÌÊ ý* vËcëiíK!À$ /y¦ë€ù7 ·É²ÆêZD ´ "ˆ·z5¡¶yÀ‹ §.i\“=ê$Ö¶€*Lu—µ=Q"aèŠ÷[ñ ÔW‘ÔÈa>¨ lh@ß=šËœZ;¶H¿×|pÚÇÀñ¯´&™€¯™MÙµ›òˆ¹½´æèªSbž‘€âûä[`z¶i“ĤFøÓ S²òWh!’¦‚e΂Ó[ ù$Ìü´‹ß¤×WP»K¹§w>›ƒaá/‹k8$ŽR^JÇùòj™7„X'ÕÿE“¯êèùÚ½HôÃ=‡fmÒŽ£-­ oìµú‹EH³áÒ½ôY´µªêI›ÐñÒ¤ŽšÔ2žf{é`R·Å—E1öÃUškœ ø¹Åº8ÆQâILèt_Y‰UUdS8 65ÀöGaÆ^*7æü~ØDhG´iÌ7‰À!8á¥ä¯†@Œ0 ˜¹ç%Ÿž5:ÒçXd9FmwkÍËô VÝêæÝäà·ýS«ššb\ËåÚ› !3r`:ƒ•û_ÀtA÷VUŽ6» «M¾¤}õ/mŽwúò••2*yªcÉ„Á¶=¨zǵ¦1©ažFâ›^j¨—’›t¨TÔÐKÄ C”~Â2 üÍ ˜·¯ÏðGg]Í?S½tûe˜“œ}³Š¬œ½B‡ÖÒÛqŽpç¡w$ïq¶ªu‚jt\Áû;—Z|^^Ы m‘[Õ|T„}ŒüÈñè7íÑ!²”ò“"˜MxGT …­%žmô£ð€J9ÏGêó¤ÂêNáð‡¥î p•Æ‚X²R©†O ƒ‡ò©ê}C‚f\öî±Ç° '~â2º7Ù¤k÷Ïé¾ÉJÔքƃ†•㘵Xû‘°s ŸÅB…N®MŸôß¡ðeßM¡ÈÓ—ŒXq‰d·É‚‹‚ÀÔ?•A¶A0Ø­G)Iû:x§—ÿÑ\xæ>µçëû\ß°q­»6xû¢œmkÇ©Q9®šK2"Vb£Æß”DÔ7žõìl/@£¤¥ Dd¯ Þý¥‚dÍ+ÉÜ:³Ý.¯©8üúª6ðï7Fêx–ÚÃüÒâÓÁª_*¯{ÑÐ[WƒÂNþâÎ"É.føï"¨—¡GÕÃýCoM’•!la2fµíšò¨“BK« T‹Ÿ1¹'–ÅÓ¼7)ÙSÆA$_¨¢%ßßbY]vç;œ÷S­r\Iô–ùoà®ÄÖÆµ y‹qÙ|nÒKˆøvÀ¶Uë=YðÆmÉù²m(Þ‘2Q_#Ÿó¥Á¥¨3bÕX”çf>— hŽ-qÚæéG „ïO2_u²ÂB+¨ãš¨GݲíÜœAæç)ÛÄ80Ù-·`‚—ezðßÚVS¸Þp¿—#¹»n÷¾î^ïqÈá)Qf#v;@½v€½0nþÝñ‚vÓª@á3[™Š”]Àíãn#ÕÀË;‡Ã+xÅÜ<Å܇r·Út“»†n ."é(©ØToEÇÞˆšÏø¿E y©o‰7°pQºíŸš½kçy伃´Ò« šm³š_Q¤Ei¿›‹^áVã](âáωؔ2[oG4MÂØPF¥"ÖòV/,4Ä “Ž×øaL,ké‰ÖoC{… ]é (ªURî¡Y3ÂâìÞ™»Šx3¥ ¼§œ… y÷cPšiáZÅ‹køIÉ;KׯW2ÇIjÍ¿íï•ÊQÍLçE ôøÍû¢Ê3Ä×±Ž\µI÷¤gøΞ¨¿k(°&ðåËl棬 1Ñ>Úuqõå·›ÅW\rYU?¬¿,Üö.ï®Ú@È¡ÂÇ9Úì©'ë‘Õƒs·Äïý¾Ô}Ý?gþAWVv{àaâèut°R ¸RuÏ‚# 0;¡CR¸ ­>nŠ® D1²¸5âë,ÛÎLQtÏjЊLÅ Ì|‡o3£ˆ¯ pMd¹¢¬ú\ët:\Ýû7Ijˆ÷­³qÉ{©P éT<׊QoëK'•ÄP\î¥8:ìF ¸oŒÎá)Ü—´&oC›ˆúÂãfšV55¶ãiòùR)ÛÊ:ˆƒ_P"ޤZòSaE¬ŠhäëóU—uó†(Ý­ÆÌ¬>F î[He Ÿ iež¡ìÓ©ìÀ§Cãë¨p¸$`4ñ9ri±ÀÈ<^è¢ •I8Ì$Ô5×ñC£Ó¢ªyù8›HtxαÅ^\š]F]æÝÀ·îäI4~C;˜ã¨«Xö ãÄÐq÷–å=(¬b”“¤o]¯Æã,çÇz‘öüJä/¸í_*°ÀídšËiö¦ëi>@µ…'·ìl^ÄÌ@éöƒ°näÜχÀ÷ÕªkãeøUÑÓª v0zÈ7õ9Güܺ,b v ®ØÃE§–NwDZv‰ ùžÙ…¨¥TG‚Ûó"¤gDg%`ýÛ4¤dÿö1ÐMÿŽr:˜†0IÄw][ÆS­öÿ{0\RœÔX>$eTÜ ÿÀˆ‚çïêÉ9+³=uÔŽÛ‹Å;z„7ýµ•ùÏ©‹öÙ•ÀqÄ£Hó -QO‘ø‹5ÊÌû»ˆÇYÊ˶iùR]¸!ŸFfm´ÂQÆíqNã2±o®;²Ëqïp/LÈÀ•H“/û¥åâpJ<\ØBêßä%Ïî.áªT,qĉbå3¼¯ÕÞF«ñâ9©ë)u!46ï¹nÉb ý‰ µ‚Åb‘ÿÍ5¿ôZ˜’oY\Œ«í’‚•ÉwxdâÃù{þBØ·¦‘gû%äÚˆrÕ÷]lsÅÌ9°tYüb}ò ähEP×û.(žN`<¢Zï3tGÎZ÷ˆ±qRégº)šþ¸N¸¶*¥J‰ý™$j4‚f»7éÁàWÚî'3G‰Bâé×',^ÍU€n°ÖÒ Ž±Ñˆ_„œcŀǙ©õ`s‚àZ1y8¾#éšt~Ù%Œ~N^ÙG(`(1Ò^bÈ,¥{‰/6ßíÓݧzù€¥pC°†"PV*Œ ‹/$Ü”Ž0¸?wU–øà2¸]ŽwuŽÉ8º$¹ôÙu^èלâœà¶t¬•GÂÏx£zjꪳ:Ñ*¾…Õ'ymñyÍïwXwb‰Cäöh‹¤í¡r\ ?®ÐÏ +È–¹¡Í\ü¸³#«žŒs£7#¹³a–oÕ È‚ìb‰¹DÏ”þ^1@!å2 DfÉÆì13óF4–ÑW1ãêšWe²zöñæÇ† §<@°ºš\¥æ0)@>²ÍÖÙÎA¾YU¾®q0Р›§ƒ‡¢P5Rמšô˜MxD×€I»”¸2PvÝÆ¥·_MMEÙª G¢&~ð§4Wòÿ¤;ŒUYɸ€ä½)««ä¬C@cïù3O0òC5:F°$–óXÁ;þýf„ôÊ_¨•ŠB/Ô*¤¸ôòu¤{„áä_x#ˆµP KðBôáÿ­¥Š%½ð‰ÒrÌ”QM¶xÀ¯/­‘Î ¡…lw“ÝMª?kÍÊ~×Dåƒ\CöÐÄbAalxí9Ë€+Ð6ÚJÉDñwöl ½TWeÂûVYj7P5AŒ‡h¢eVؽ­–3î®ÅLœ½§Ì=ØMÚ.‹Xåp…©‡ ¯~轟ýh¯‹4ìÓ=‘âK¹æ*îÏ5 R‹°4#‹€±ú—rœ ¡¨ÒIi9ÉFü|GC©0Š>àòîÓÁ)i¨?3 ¾þ˜=è[ÔXXƒ¿†®—IJôoO<_ /±3jSµ¬ÜÁP©ÇÃ.æÂå0ÌDY ãÍ“½*¢äqñúˆ kÙ-Æ#ãè@'l$]îré‚AúèZ\êà 0x=,¤á#%n¦‰Hã¼ãÌB6A%séÛFîtgK9ê<0§xÖ…mŠ^yg9I8i²ì~îa¯D†²¿PAk¸]wq@H#Í…ƒˆ+Ø›s ñ˜ÿ]Æf~qô]Ó Àû¸6Ê_±]×öA‚ÑviU=@Š*H9bÑK{gh"æUÙÇwhS¶¯K²…)ÕöÆÝñNà·‡1C¯Œ•ÞðÄ$=_g’$}&¢Ï÷6‘7oBK rQ4Øö•ÉöZï#Õ†¶TÁi/ÅÍÍ?î? ¼›3§&´€¶‚¹'(°¢t_|É%í¦¼»ä²½Ê‘ž(‚¡Ï¦£J W„×í<ÜOªá€Õüç÷üH·dæ"Ì'åÈD@ ·Š«1­oIàa³Š$¸—½ïuªÃèl.jÌ_Õ“’2 OK "Ú¢§ÁnVŠÀä^MîØ]u|46]J¼˜r¯P2šyÉ[œç5MÉ©ÝC0Ò³YJB$Xæ]ñkÄèÚQÆQùNL£¤Ü0êWƒ©^³ã)®à1ÀøÙýÐt|…T·ÑÔlؤ¤HÓ2*Ñ×Grµ‹ÿA„Ý1Ê}8 §(¶éNjrŸ-pg¨ð=ò±„„v:$Å*s  ÂÑš”¸j‘FTS¿eýÐÍmÆ·‚rH^öÀ’KìÝ„÷ˆÎÈAºÂbß™¨Ú–Ái;Äîì!Ó/?Òåó5¹—s’Å‚ž¸AzâøÇjÍnzе ë¦qÊЫœ€éêÉžö'›šžŒ*8E÷¨>~Þ“¥Å¹ô¢ï‡³p¨po§ûÚ!aý0~2çÜÜzœ9­w«Š®=Y+Ÿ;uF šU°– ozkæè™¬QÈ]LÿøÌÀcΩ˜ªÃçD†WÞ½àÍpLªÒæ?Wñù:µSl“°åL«nÙ¯ºh2[•ükä§ô=ÛÔVºÑê²Tm&C ’ÃÂX^5¥[Î@ªéÛ’»åÚr÷sê ‘žKÃÚè7%ç…âÞɤÕÃŒ‚ÊÅIòˆY›=ŠÄšÞ b†¸®—pM@—WåóŽ¿ß>zTc”§.†¡…d^®ëTN茢ëZÔ;KƒþG®úˆ¼¯è.p|Q>n& :—¢-¦<ѯp8™<-·Vb^Ò–å³+$ªëiPž68ú¤øÊ•ßõîaE‡HéÑ `N¶gC¦¹_¯ÑÐë6è×ËÝ"û„yfBÜ}ÙÂ×ËE£\HÛÛ¾gu*Ž< Ñt‚&EšKhýM³g‹½ES“¤²Iû‡[• …þÙƒåÚ…ˆÈ´`Ô5B˜žr%ŠÙÖvL1¬<Å?:|Ó p~~ïáÃBÌçf÷w GézßpñüMÄY#ë—𷜽êéÙ—=]C"s¼áã ÚÛµÉÛp¼ÿ‘4CìÞ%AæXòú‚'w+r?o‚Ä9…˜GèBëÅ ™ã‡ Äf­gâ+ìRþ_ بÅxÐoVRy& ¾ýåþ³ls5ËciÉCÐ4ºlÚŸ¿‰›-Øà®×|#ƒ·0]À qAô)Ö÷YЦ`uÛÌQù¨Ç“RÇ{­ÿL‡ÏÞ”~Jž™ÉJ)n7€´_£Œ¡j¢¹ÙÞÌÒ,WHM$n6ñÁ”S╪· ·íFk;.’•E¬Éý§9h&ýñý+‹r?ß 8Üx§Ûže¤ïZCµÛü)ž¾½¬d?°¶< Î`úÝKŽæû”îINzx9ëøµ»¡sT—s§RŸÕ‘µgöÃ*è üu1As»¹‡;34 ÌK"&¡,húb‰þÓÈéʘ{>§¼½~µJ_?·.ïmöŸ!±&3Z)\*+ݹÀ&µ¹ÈT÷¿–Šì7Ì#´[M&SŽTk>KnÙCçÕØÃ$:¦Ç`“‚pê–?J³üœÄ«§|´âbÓrÝ28•Y„u÷ï?"1(ó‡›#Eæ1jk9¶â~nžw«ûXÃ6{¼z›$ãÇŸ[gazJŒïë®jX`å–Q+/vå(2d(k à`¡±/ÖÛ5a‰pÍŠf±0×Á¤ð òk¤ìË9ò…*vÃÈP²zå@Ë ˜1W#Kú¥5ÁO&¤+G&N6|«]„ñ_äO‹Zšü ÿ¡y…e=c–x’3ù™rT”:Ó¨d3sÒ†ýáö;ù ]AN¨=VpD•TÅ 5#«pÀ0 [( ×™QÉüËÎL‹vØ'È`Hçò˜óF#dòß9(³‰¶i+Ó·{>6gØ#úaÚD´sêÃñŸït®ß¶Gq½û­Œh0{^i»ÔüÇIó™½rà…Â’„·ÚIž7“-*3¬l¥”Ò¡"‰ZJ¡?|ûÀ¸r§2Æë©dÛL‚P¯Ì&3øŽî?¶¦¾ð.@Î5¦Ä å e\ÌóJñÞ.×ù«0¦Ïb#Âuâpl2͆TéJyS÷;PÅ•…j×÷p‹žÎ$Ùg±uýV«Öµ,3x;(ö”ŠŸ"›‚_æ›%V(Ês5\¨’iýÍK˜Û¡ß¦(07yö´ùq(]žn¿MÚÔ±,˜Â@¶–p²oÆl´ååy!üVØ,Ñ/—œÎ¥$ˈ÷‘5±¨'÷¼ÑAû¦Þ¢ôh: >T~ ËÐ=j¹Iò+®mÛÜqîþ·¼ºb«ÿÌX„d)õEJ§ïN?Ÿw›þëšd9hªÎÇ'&×¥ÄMm.¹b¤ðæé(&» €¯ß¼ÃíÓÆaÎ%¹) D$:ÇŒÈ7Û NT]ò  GBò'èÜOš½”+æcVô„cFãT¦’ú÷(wïßM BÒwÌ·ü¯s§Hƒo´½÷O“TÊ/‚ˆJ'k½ä PbG’þ¡‘©„eï"Œñ]Só…—}S΄r ‘â‹–nB×s¿aàrÀ™ïX¬Õÿ.ö1X†5X£èTÜG1þ‘¡%VõÚóæ#1Šæ[ýïËýÐ*ì)"ÑŸH/·ú5eÖ%s°8òžñ)À‘ݧÈÛ´Q ©3ñ.÷¤;­«@'YZƒê¥ßiO÷®Ôn4JJ’Ö£ãE›Ö‹%¯Ã¾6o,R¾UwTÁ˜„ø}qõ0HzC ¾öÌaI ”<Õ‰#Ëžõ·²3Û㕥¬\Í61”ƒT{`äh'QQ^Û–#VåÉן~ ަ_‹Ø½ïÙ'±g½M®@©|²bap"‡å`mÝéå‘ÈÆLxˆ†}ú² âVB_úÆ¡¤ÅëÊdb ÁGA´†6ƒu¡íW+˜øê€é¦ƒÿ³ 8òyå0ŸÙ,7›ï˜ZÈ[¬IÆ+ßQbJ˜|œ@жóÇ9Ìñ¡±jÜW1Äßé„Ú2¤ ¨$œLׇ@kQ­fOAMeA)<Îà‰‚&‘|z³†ÏA…R‹~Ge©Cõ%1E»Œ_„´o$Y¯2oêß´“7{Û_ÜVìØb8lR³[3´ú#QÔo©Cda² " W `ÔîÃY?(ó6>€q1ûéÕù»ð>Zeð®'dvRêÖlBg'5‹˜Å„°†1²Âñ¢Í¿+ÁÆjÊÖÿ¯DÂyB¾…÷vwTöR´p­¼§Y®sß$9ŠÞ|¶Õú{Zu3×ó `|Ð2¹·Ì¦ËÔ’pÃlãðö•À®§ƒÌB}‘ß™:€ˆW7Åß§õ©)†MèXÜÂEY¥$¼8§U½˜¼@Ïjzc²F/óŽÆå÷ߢ²Ý±æm‹Ðj¢m^U¨±(9©™>Wï±8ÏoK÷r ùð,˜¾¨¦fÅú bOq©ýóž\–×?Ñ¡Tç(¿ê‚ö­.lð†=f—`qe¢~¤ÂÜÑ ²¼È&bËkî¨kz»ƒŒÚT•·-™­žì`hòùÂÕÕ““ªo®0ÔYS€íýô!Užupu)´ŠpÄL¼$X»jí>qÁ^Õ¨R !€3èÓù1ê©êIñUSÚ‹“—18*09 ðwÀõ„QÂò¿™¸~À¿ðþÊ“mC·Äç¦ÝWy`ú±}ÄkZ<Ò; â;¸¹ð7b„Tšü&&ú´6ÒI£Ï>ÚŒÒboù]­n9ϽGO‘°» WNà* l¶Î²) «\Ǹ/ãLIqbY·_oÑ]ý ¢ÉÅ_°IUý ~W[ÿO \¯jTÅâ2nžDØå'ÐQ(d‰†Ñ4€qy®s ì”âÊá¼§x$3Äõ?HÃÕ^3†{’U©qzëÏdnüØ}zåI‚nòlÜœBÅ–(x:ÁÞ–~óÈ@õ€ïÏÏÌfËÉt|ÿ‰ Á¨Æ÷ ¨5Rn¯SðRºõ?H‚%.D¶ÿ-·Ñi™)¦ÂÝñälÐ,ã&XIóÞ2nŽžJ M]™ØjýéUk÷‡E /÷ß#¯,™ …ð&çKÿ Ó¨ËÁ1F÷ }Ã_м×^„XãYIšw4»xÚêS"éè¨l†x£§håE u“3ƒ!>Ü9õ—AlOr:óˆhŠ|_O0ƒ]¢=øÑž‹"ns2U²7€‰ÆÉw¢?O¯o'ƒií_¦³QJ݈–ÀìzϨS?¹¾ûDãQJ@‘ŒX”–Ž&ÞØÊYÚÈžT‘[^5”þÃ1ÙçK†÷*[jÚÓskuGã‘ÙZx Ù©C¼¬b8†„nŒvû*èœažžOÈ}›‚n+š)ÓÊnò ׌2yÓчø ßu>£„˜‡å¨6ƒ3àö{ã4æYH|éÃÃ&&këPj¢”,1ÙvЧöèü­Ïõ(š–˜aL‰„ÐÞjÀrßRC’®l°%J’ ë­ôXy;’údÜ¥Ú¨ ×H›"&^°%·ìì§¼¿[7"À‹üx|.Ò*ì‹ ¯ìÒX÷<ëêõ¼;Mà ë:×­+p}Ó?AwͱS‚ŠñÉï5óA•œöW7À ò$¤T±­Hipß-ðî—ªÀOîNüÛº-W<†I¯à|Çì¤ëy¥Z‹2˜ÏK.pÒVß”¬¥-µ×½ƒvàª0¤B¦- ã^#Ò ¦Uá¸.ól\!ââ>Žö'1ÙËN­5ðÙí ³¡Ô†Wné¾âÊÛªº;²Gv&v¿I;ÅÂâ2dV«H‰9Nê€ ºA Ò[ÒçªnßA ­7J C¨°Òã=æÓt@^ `;á{ø×뻫›ïØ’¥ÊÛœ}Ê)ÂV«åÄ{´ ò”I°‘ùe6~ ßÝ>í‹Ë°3ƒìËöDÇf{˪Ú<„Ó±¹?ªüTÒVT»¼o1Yˆ¦ˆØDhܨØàÇ?Eaô•1óÑ'õÖ¬q¿È\CËý²1”ãÌ[­ÚO¨À*ÝD桊IÔS›ŸWyhC‰Z âßååÉY8&ôEo¼¿ó!ÛX4Mþ’wÙ‹?P®ÊѱbÜNÊ÷³ ’ss–õU*9ê¦<-Ç]´–â^@ h…ÌÁ¾•¾xá´úiµH)Çî´­y`ˆé9Šb¸£[ˆwîb)Ê òs r'ï‚éô—‘¼‡°KOÈ8S¸G8ôÔ´³¢ÚÜÎé"< Ó{P±( ’oËŽqŠËS‡HØwßé ø*â_¬Ó±¤‘Ñsj|–ì̽v¹4Åú¤/çߌy¾ô¶ªé{êVˆîÀ PýÆÓù°åÈ[!ÈqjùhG‡ÊDc°¸îèzŒ-³x[Öe4½„øAóÝ£ê>ÞcQƒü°wáÀ»"c2p£¨Ž8g{‘’6£~jš(þîc©÷ )z®Ÿ£Ã“°idiKáV©³>ØcSS·ºhl…td¥?î…âE) n–¬MI~y† :Ó¤ º¨›PSݬn£ß͸Úvô'ÁøAS+­õ‚ÑÚº;[šô#~W±ø«Ð팒¤¸ ³’‚‚y|ÒZó³õ˜ ™ÔšVkýõÖ·²î¢ ò’zdhÃNFÇØåí­S_Dﺅÿ(7E#©u¾Ò’’q#nÛÓ©U¹¯õ».¨_¨ÞwRlö;éܸ“ö]œ`<é£P‘Ö$:à £·Â|žBNO#ºÖû=§ø.°ç\ǵÙû.×k!ChWßÏ[´ù#‚!¿:pxUIû5ÅýÐ)<Õwû®®NBö¶âCƘ¯¡/õõÚ M h–Ÿ—ç+G^×pÓiÄÅóR}’ë—‚Lì£T}x`iNšY·|2Í%Æ™×­ ø8ÝŸ÷èTzî)õj$;#‹@­À-³UWºLreiCu™p”4Šï*ÑéUrú#Qå¨]º£HV,ªÚ*3³ }ütEä1¯ýÐoÿÖü€ð°™1m ®õzsI`ÔtMi :LQjh }‰ÂO¢ðÊÙYÍ(L/2ý>ÚG:Áö²à¿ÌR›^œa§wQËR‚Öº‡&^Ø7ô2Ê=í)œ•¨lIž¦ EqÄ5-§øì·ˆÐËÞ¿óvAÛÜG¶1ÇêÞ›+—2=Q¶/Ô‘NòvïRÏ¿þSŒ¼”iXF(÷lÜdúóšL`½n×]aaQIº;¹>ÑY™†Ö'¬Jv*Øí6O öEd:dÊ?bºÞ•‚º"Óä?»ØÇ!sñ¼ÕlåLâ®4|åâꨇEâBÿB®Ù-æ¶Ob ND+½PêÕ¬ÚÄçi}\/íÔÚ®éÒÊœM6] cŠPxkØz˜ç%ƒ’?·‚,ÅïïnhÀB(^÷;‡=:»,ngà3Í“â?rŒ%Pr‰´ŸÉ8ºrÇžk2ó4B?//O ¼×µnÁ¨˜µ7Cµè[\7ö¢:ÄI­ªx’„¹}üf® †6‡É3 ºŒÇo°Â¬DyS¼óIB£³ÑqëÆ²Qn\Þdí̬ÄíêÊm»òlqCº½á6¢mïÄ|YûF´×Çyb!}³bIfÍ”>FBÅÔ1¹Ô÷'û×ïÌÑò£>ÿlð“¤\L`ÃýeTðÚ\¹7ƒ'8ÿ‡/Ó?¾fW”1c$øŠ0#!@qÅ»'ÞW9ÓU¤/SP>ëÑRÉÈ…ØWïM^ªgI±F6%$1:£ uØè1[¾RºÁ:šŒ3œEG‚P?tEewýH2Bìƒ6’©Ÿ,ø¶ÝQÄÄ<,çÞa†ÔŒ%xýòM#  Z Fà_Žã’׺¢É)S­ÈÄh«)šÑžI5¬‘à)õkÆ7ï°#k[õU¾ÂçÐî|“‘‘G*p­Ãyï³1àØÊÂç‹Fχx…ª& Ë%Ä×£†ídìEM#ÅäÜWN˜Ÿ˜p/ÔXf(KÔ!ž9¾°+ôý?öÊOþÄçj3!\)j-%"«¹ŸÅ” çimGe‚µêÐþ7°QXmµÚˆõ´}?uYØüÚÿxÁý‹×79gYÅï‰*塯nª-ÌšKã ̲œbím) 1°I¥±R¨s/xÍ¿[Ywnø9ÐqfeÙéš+ÉÈ}§Ä›ÜÒÅcÎí®öámÝá^JŸ¼»Òâ1»®:~2Ô0; Zƒb)ó–ÁŸD”Mã§4Γ`X“Çy—£€[¯s^ZU™oT³[Å%½›a‚Ω²,T¼.ÐH…ûø#¥êi §ú$¨Ä.•×az×î‚%g˜Æ„DłհÞ+ÍŽØEM6Ö•«Êœ†°åûjB^•¿ëÌ-Êã^¨žð¹p|Öp%q”Ò»ÒR':oMz‚Yjm‡†Lž {l ¡‡ÿC2‘pƒ#AW£}«àÁeŠz—òMßK3î ©iÙ>è‡è§¦¡w6ÙK á÷‰žG KÖ!aðu“†åü|^ÔB3'¸DÇX/4¶³HûÿÝYÝÆ¶”>ΛᢠBEÍOiÞÏÉß–q)¾­Ç•ÞøÅqƒ‚_méØbXät¾ÐœÿäÛŠ/3æTˆ"iÎàÿá# }·L–cÿUmyµ‹×ÅŸ½”ÁO¬Ð\à‚˜NìrÊ0oǽ³•ÛoÇ@pÍ4·!÷‡×ÄNȼî:b{’þœJ@éþÔ=}Rêùô;ZïìA•²z-/¼œðND²=Hpö6@-(Ê ^ØôHm ð!9°áÃmßc¶Fîµ¾NÄÔÿ¹b ÛŠOW;ôaÕ_Èá‘/Étño‰¾GŽž;°´ãš~KXJšwÜIOÝçKrBøÍÿk6Ÿ`ƒÑK’–¦ªÛÁ(úUó§5-î=Ãÿ{³†‚FÒáÞ܈ ˆ:fj¶´W=^Æ^“rZý¸ä±ž¼!=OËõùã¯H‡ÐųÔå6ß¾‡“ç“æÉI^;·å[5UÌì.…ô¢ JA¨ øbAX/hrþ‘{|>ˆ¯t¨¿Ê6úZ›O¢‡uyËdjbÚ«ÄêÑÑ”íd¯³Ö®¡ /H`;Ke]Í‹ïÉ­Œ±'bYÑåø2xv1o51»ßêÆ€ò&«¢Z§¤ÆÊp@2:»Z΂ñD“é6¡À\ïƒ ¼¶‡a£'~ÛãØ¶ùQ‡äÈ~4ÿ= YZ {÷}™—ë¤9Ÿ†J~lxB²æ%›cŽ—W_„áÜ ç[àI ÿ‡£ T»—tðˆQï€×¾J6Ò–þL%‰4pÃTz÷ØŸÓ¬þBGû&Ö”€ÜÁx€fk‹ñ¯ M%äHónåÚž’K¬ Z›•¶žŠÆ»•?m.büjz~A„ÿm}R ñ_e‘Joj-xr²j‡ëi7Æ;íÝñ^~°•&ù« |YMÉÏ'Zæ kBÒo¿±W½ïZq]8­=±½¢”©˜™LèîYdâæKOW_bn„fÑ~žª ú!DB1€]âLæœoÔÚ#ó ÅìÍà‚~r6Ã^I3àg¯zí$US$e¾ÛZ\Þ}ß<ÎŽ-Ô·þ¸î!ðë1!´ÀµK^»íÉÅCõ„U̸?;oMH£Ñ¼nÇË;æ|cÈA퀎yIʸ$Ó8ì©SûÐ_™v1:·½•Í:s] ›_hAÆM·Â)Cq‚PÜ‘´? SY ðÂ4ÿ£óÛä 1é+QGàÈäX^?¤= t÷ðµÑ))ÓþÖ—?9Xó[§ÔJln(jB1üm«³ýih•[ã“ÊE£2ôì.C5cÓiX¦œ]}ôˆUÐE6¦RÒîàÂfsx2ãÚQžž’,¹•äÜ8‘¿¿Bĉè–I:kÜöv T›û÷.OÍÌ„@8ÍfLXpž½Ý參eÚŠumÄØ%g3óq!î˜ì“g¡ˆƒž±^=‘ü<£øœ/w‹&ï¹ùY þÃöswxL¬hŽQÎ/MÈ}öçéw¯iÈë¸ ìƒS¯ÕøTU†3ßÖÁßLO+ÿ¢9é9¼‚{Ô‚ª>@œ†ÖZƒ$”:†Ü§á0²¿pOÔp•3Ù¾4 M7‡ÐÚZ köÁnD†½Å©ª ï£ì(C˜˜…§žvë_<žLŠÉkè§v¾Ø ¨¿ä˜I·ñåbŒ`MÔ|&€²•<›§»dÐûÎ`=À½öð[ò±°zëõe«"ÌGÁtžRtÒØëÂË <9‘<Ë%t ×Œ‘Hªs_ÖµY5¾}†IÀÞÆKB+qx|«¶óôúz+ú{á@ «Ätû¦Ø|+¯¸YJK«.fÄGu²˜Á èŸ÷(òß”@F: ræø‘qB®i’¼ªx€9A‚vÁ€—“^L!®sŸl)õìW BUç§Œi6†*G²kxzS9U‚p˜™¯Ö²H¹K:f18'¿µ¢ªǸj¹€®£±º J>—’o$1¡ß)ø6Ýã5lûÚ$^]@2ÜÛãœæ: €3:gÓtçmF•‚[ñ–²¸ FDFÁ9ÃÅÁ³â-`…¡®Bézž¿¹Ðã ¨‚IŒËU(×U«<¸háŠ÷Ù­&`äu!jTUŠ7ýÊ% ‰ÎĆŠ]¿lMŠØì…¶p1=ˆ ág9ô•Í=?~¾š•EÍ¡¢æ& ¤â‹œZnU9ˆmtËÙ>Þè¼ peÀ†…Tq¶kÒ„]6[rº¥Š†Yº–PV¡1“uðˆúgŽE› Q°ÖZ¢Ë ³ánBráÂÝbHjÃ.Eä¬ VÆHSªjŽ(>Óá6 ÆMîij7” „Ë ÷ "=©@'0¥“®Kœ 1ÑÞQdz$éÔýq  ÆCߢÀ´_3p<ÆêUh܃ܓ [ àp û+]Ïñó‚rÜ©cóGM‚€ZñˆÇØiwàíûÓ+©ß>Ç | пY2ÿ£¾©#ˆú’þ³ãÎmŠ”<¸9øÖÁ³ªôx²|_Øÿ.”YOm— ³+ù°$ÇìÞ‚ñ0µG¬½í,ÜàŒ+Wmþ¢1A󋃃t÷ƒ¤m¥U7ËHUµÇ©Ré *XÿBÈΞŽîy±xÀhòMžkÖ„¹^ôú»S‹Bg+£÷œ+±Î‚Šéþ!…ô"…,š åuqœžmû½h¦},žG?,3ÂÆ€RÑ€H‰õ§w²Š<™AØ !ï¢[¸‘ ‹M3¸Héè#k0<÷à9±=ÿ°È×$ ciqï”Ì2SÉÈHeÙƒÁ2´8ë 1qÀ+2Õ·Oz_ Ê’SM ùeæmo0Tþ4’ñ[œHA¬1Y‹Ì|¼ÝÖR}àâîÚ¼ÒL¨ƒB )YÜšá•q% dâÔ¼säa°NjëµÂòÒ(2꺓SÜ™†IÇ›ITÿHÙj„vwgúƒü¯,?1¾:³‘3`hxŠÌ‰­ù°Wzf²î3?3d3ü‡„Ê[“ÂÀö!<½Z”¹`nJAÈ‘Ùã<㥗Bƒmö–òz û­B3Ûï°ÔTéLÜÅë0ÑÊ_]l¨rHGwèž~'¡QæÛB †4A3öðKí@oèDLö*•Š¢ f$Xªs';EÁhM'—ˆ8Ä?ÉM,Ú°´(m,Æ€éo-‰œÛOýùy …µ]fä!ôãÜÍ+$BNFUñšxÃ,L#iêH‘ÊÎjf¸R‚A—4ð?ÙôåÖ‰÷tÉTz$Ò¥•e´šuǺƒ"c‚^ â´š.².&~‘Ù¿n<£RßÛ•'Tûé$9 òºbYâëöJƒqïaœ3Йà÷ŸÂ´Txihðü ø%I@ÖµÀ¡u•{}Yš–¸"x\Z®­-æç.2L[À‚„ØAž¡ÇhºH>C‚bÈæ;–»ù´×ÞQ™Èå§?ìàGeAª«ÏìÅ7,nJÂüÚomÜÿˆl³ÞÐÔ‹‰+é³™œOñZÉjÇÂPàe˜ÂÑ oÄÙöàoÛGD¹ßÉäðggZ§²r}1UB½¥i‘ŽÁjð|Ë×ß÷ ir* 9ÐOb;ó߈TS’˯ã‹A '!Ç*‹Cñõ-i8Eÿd¯§V›,%‰N3~ì²¥){v ¨c#wË‚NùäÓ<ßs‘š‰x\ ‹Üß*Åq`”U`€óˆÏnd~)½?Aù›B­ FÈC^–¢ä®Z-Þxh†ÿûܰ$ǧCe±v+Ì2ÀPÈ)"Ì:ïùÔ®'¢´i §íÖT ?Ud6p0ïsØ2¯/—ÄÓ^°©íJ!x÷¯È÷ùƒ´=¨j}œ“—×ê8m?öG 7¡å–··ªp<{Çæøyîð2}]Au_Û±Ä,Ø–‹—è9•ö]™™Ë]ü$Åcú$Ccjè÷—>GéʵݵxY€©§Ö²¶¸¦t×Ù¦òÃP½7-˜ã*J³ààQÞ>{ˆ¦t6øÃÑõ貞"G2ª½¦I'ÁÊŒ gÃÒøvåœäXP‘TCÆC…bÓ #W¶fòåݪ{7Ÿì,²•&z0†ÅâPÚô6]JìîÓñÕ¥W§§%^ÎÆÆÕ-°Ÿ™)b?£Óþ°žCòá­‹ëÜ*OÆ'–oÜêQZ‹2¯vd ,œ¯½€4ü¢2Ó£Ž¿DÚƒùJ⺪/@oµ9­%–LCnWGRàH¡N50Ý=Ë‚x‰aßÿI€¾ÆCʃ¾c™,:8hÅj…;—äLNqô2Õg‰˜¦2ùbäÚ|Rg¡iª´­y©jeh5”U»žÖ ^t± 1ËÜá?‰‚¨÷¥tìÿ@¬çá`þ~"°Sa½Ùé¶A2;s=ÖHr‚‘Œû9éþ[NÛŒmž~äwRwS1(Ö»ú S²jÅÂúŠÒaæâI#ºÍ‚²Lmf·áàÌ=VB½¶Ã-ÎÞˆ°éš\œŒVç°/@íGn!…ÆKŽF ‰9ÙÚt 7îýøø×&ØtŒÓÔ¹yÞÌ´Š !{=si>W‘ºOY¬n!”‹¸ÛIª“Ž Tð5­üàΔ‡§œqÆŒsjs}_äéFý¥Hì;5‹” X,Ðæ½ÁÜ5\€*üHZºé_ÂGþïÕüÒ®!@5ãÒTávEžáåkj–çÝNlÅu ò©S €ÚÖ¡P>2¸ó[ÊÛ¨´i|mÍÍi.®–п¦ŽïRñrJ÷ Œƒíá¿NýʺKª]Ç,iJÀ(QòœÑº4¹ÊZòÀ8fó#ž0L'‚Ó.a°{R Œ0›|‡¶U\ÛÙMEâ_¿ÌL— ÐÕh ÎWˆ‘Õnš¬Ù´1¶Ê‰0±íih"=RÃpƒD>[¡$Ô“ZhT5in T±n»q¥"+D7iaàÑ@üJÃg¦WdÝgåà “ú/þ:q­u×Lš vLg¹¡}ÎÞZ9$RˆL”òüËò_=›/qÛ›¢tQûµLHÐÀúnô9~–‰Ï*q†¬Š¬Cÿ¼1Ø>íÛŠñþ6o¹õK¤¼œƒY륳ﰚÞ.£†¶Šª<Ü·†Y7™_±¥!V(·ÔžôßuëIÛ&ŠFÛú&§<2¼â£.ë"‡(¤$pÕlfŒÞ¯Å*ñ{@Zõâ×%ÍO—d‡¦ûØ™ÐõÁÝ•W­òj§dâ÷ fM2ø¤oµ-%{MBºQ–áËÙšww`Gb—Gÿä¥Çi­$xЂ½K¼“#Ó’È<2ë˜0ˆë?Ýz¶7Ƀ ˜Üñ·q*É™Îk‰D« )¯Ôã8>Q“ÃáN”F³é¼—E5¨Ô:Ë%"{¶Ÿ õ£‰#RÊ"’ÑöÝGêä5©¨Â‚ز+šä/¶mQ‹—ŽÑ®öNˬ=ÓÞÒê—âîN2öeçWˆ8âïõVšiÜm Úi$ÄŽ¹7Î!ÎxÚ?¯~°Îhð|–¬ãp<¨‰­Ì1>dï ‘Në9VÕNOã ¶#ÍÑù@!pÆãÆ"·5ÓcqõÇb)m'~ ÃnyðÞl>Xˆ‡bZv@ ¡˜’jÏuß&€¾ -âk…”±JeqYù± hØV:Բ꾖O7µšý«Ÿä3N ]…®C _Ï"3¶söÔ”Ïæ“C’0ç ?ÈönAJ™ß~ÿ V†ÍüWñQ¬Œ$ÏÂx1ŽŸÀ?á§RøVáŠouMÿmHZJ΀nì õ芈¹RzDڙߠçGÅ-T}wzžs–:ð²cŠŽË¹ „¼àÇa³µ„`@K:¦YµÆÂCwf÷¾0NbÜ–s«Zµ]UF;òÿE7ö—üÈü€@ÁNiõ³’6±\¡ȹn`B¦‚"ÆUjÉãÍp¯6DÛж̔Ò#…1 I¸G@]'€èÝÌã°²¸ÏQ)¼ä¬¦Ñëµ!3Ýs=‡\Ó/øËb„ÊÑ„~2:&cýÄØÜzÕ¶B™ˆ’hßÁÈkk2 Î3Ý.Ëí󆿾#×ÌcpLÅ€È eÜÉZÎȆVâšm—ª¦wû±5çŠÈµÿÚ=[¨Dg› ë.®…פñå•òÔjmàÂ3Ì~ t‹¼XÎÿË{”22Vÿ1ßÞÍ{Pòû0IMñ£è'¾±³2 ;2åqõ •îÙÙíicÏί˜Ðä¥|Ó8â\›F=úórrâ¯íäÀÈÏiÐþ(Ï“ëO$œ „BâQ! #ýê)hŸ–§–²[—d$€‘ë·»R"oÝ)fMf—ŸÜm¨’¿Þ“…q#XYâ ˜** ÿ†‰àkn.ÉæWs¿)Uè'.?u?’;œ%£KDi—b1KCò¢]ùãºU«Âïô†É× ‹+Uòù1_£q¥ª 6%²§zpÊÜÇlþ$#B Ž4hMÃó}—ióƒrR\Ý6ÅäúíBaÊ ¼ž«§üg.˜Ø@µ Ya˜ŒBïÝ'U?úù)-ÄŽ{g}Fñ6§Dr&ÜûS$cy‘ή7ã׎4Ò×íÍ{™rJ.?SZC•!J5'$OøoËʯ–‘ 7Âf@•ùºI²™­”¦åÏ<ª×/eoãä™A33 íÚa$®C¿n„B»Úz„ñ(:Å¢ƒ±­EˆohiàR\þ ÿhê è¯ÏÎ&š¡Ò1AÓVÚO ßr®òœ­e.õÕhžã8F7;á,¾‹¤0!Òv¡ ãØÌµ[ÚX²6•¨%'S¶<@Ù'V—t-q W­æp†ÃQ9óXǨˆ be‹uÑ”¼ïnõæz”f}<¨ÜPâº.~“9 zúãA¥+1Gš¼PrdßEFÑŸ´µgÁÜÂ<´Ù¢ »ÏØË(Îܺx—Ìߨe–'“uï÷î\>´4¢íLñ:ÈÑoÖr‰Å?È´f|ûöC’²÷Þ¶ZRœ•–ûào⯚Qîs}ôÅž8”U$ô)iHyÞžŸJY¿1:­-ÈMeH¨H»w\î¯þÌÏw¢Ræäâ ÂôÝ©-' €îÚÐ[·¼íѾÌÉnøÉ6õq³°·ÐÓAÒyê%F¾Øš]tbÑ·­/Úêbωq— E  Õ’N­­¨ˆRu\Ý„ %ŽmqGœÓgœ—HÁ:Ãë¿L·U#!ÍÇ(µF²Ïm ‰µ¬ö³Uþ3êG³nV¨QG&ïu>=eúé%˜ùÞ7ºfÇ›0™àÐ\cJ”‡P Rzþn^IÅ[ÞóíBÈ ¯Ùæ×c¼­<½î2ûµ¾H·t*@o­§6#ÿÛ%-J«D<êxd™™?¶r)MÁq«‚j‡ü]R ÊÉg¸þ$*Ó÷’¿ ¥R²C¶÷NÜj¯öN] ¶eÌÜíBh£RË.WŸîp¯BèòÃI¼Ù0Ê®†'r$®Å3iYö_¹T£¤vÁ¥ãÍòʧ*‰‰Ä8@äuö³Ùr›l) €Á“æ™Ôº’-šRœpªYäð=™§VåntÌmTy òc2bà.†¤bìäq®à6ŠIäž ã0ŠŒ³t ‹–g/¦OR¤þ¡Öþßêd'—SSÅçA¾n`¦Ÿ©œ«ÃíI÷‘Gg*O¨hLåF¸Ìdt´òW==ä\‘[ÿkD>¼Ù´g â®*º%—W»ŸBéôu3ìXÆýŒÏx=ˆùüÞ—2­e“è¼€Ðu>D{©E¶Å\õ\½'Òaû² Ä=é|KµÙOÍtoµzG´ c>·ÆwžèS€Ë÷öžÊþC-/§†âð–®1‘“(ñ ÄôdsÚÇOY²Ç›G([½HJè¤ã[Í“Ãl‘=^L/,Ú KÀ)‡ {WM`)Y>a®¡—Ö¦²Â¶c^ï£[î(Ë@ÞÝûd­ñ ·Y%ÅaT6ÿýYêt¢^¢‘îV‰äø…6ˆ¡ý[/H€$‚&‡3õ•sª™7‘åÜdô@8fø’ž¼¶·½Ÿ{"¦ »5àPç‚—ºX톎L+»Ô4¤Ü€ë ™»L@± T |FüNmƒòšþ‰ž&àÂÆìVv´î»‡”¶†­q%ïUc±Ñ}“e1uÏö3¤½@d3»ƒÙÁ3|eæ¢óc ?ñ· <3ß©æG©Û¤¸œZÄUКA4“Ñò]M®Au]ÿ‚„àPê0Œ.È+YL ôR Ÿ c$ÌG%7W¥GÀ”¾¬1D©Î'bvóV°ÊAë妑 ž„þH-PËÛÞ¤“îΜ½PøµÒ¾ÐsÃÑÐåÅ´Òƒ@®oç;²¥~b [Pÿ—Ù^ãMkNÛËí¢!ÐjÐI…dB ²•mÐL¶µ%A1ÍÔcöÉ„ˆÖàÊüu‹§âèÂŽ«¿—Òg©î*dö\#,aoi„V“AWÎ ÄT„î®­S …mQ‚ ¸—°q˜ôúha><%r-ò#¹™~w&$ês*9JCV~<<÷qݺŸ¼B=¾6éûðYF}޾ÛlÆö1þø«Áá‘«Ò†G N yõ´º–œ“:ŒŸ¨Q—ÿyZ8j,–¨v ÕF¢)\;=d¶/WÝò-aˆ¾uhPic¶=s¶w€Úø†æÅ –ÂdTëöŒxðà9h­ãeƒí„ÍM¼|ë<¡é­K’%hÜ×#0Áâ½z¹Ñû¿’Üân²2Þ|Ÿ k™ €÷#ý3ÖDètÂóÑuïàz×\Pš×ü@Pà5ä†ïxhöß&H.òÇñeÖm_@»Î°)ùÙK.]§`ÎÁݤ·WÎÚˆâ´è–G}ü&Wyì üP·ózQPÊU¢»Q|86¡¿ŸK{ÿ¥Éˆ…twdß¹jxPó)üô/Ò}#xn©¥».ðN†Äl4îyï+Ê'iR:¾òãÝkA´‚ÑuÁ‡Ë$åù«bKŒŒU\Ž]ß8Š¢þ7{[¿÷Hmð*öf¦W¶ ”¢x=fú é謼sd”´E`¦ÔÙŸ,•@¥%tÒüá)áÞöÏR0>'Ýp<9#†²îL™€Ð"qqg¤¶AËmp”f’JJ¡½A•ÈÖ®‹÷4¨¾ÌRéDX  Ð4,ÝÀãLø(¨z.z+±;§)óf£Û쵕jÀôø“oþÚñ<’E”ÖÛ`ÊH¥Û¤#MZ5X5IÁtñÈ«ÄÌ „…RÎ.þÿÆã¬ÛÜ7"¿dKìÞ—nAF d°a©¶ôB»m”W_EÜïð]á}ùŸ¼èæ\ZŒˆ®ÝZ¦ßöØõ{eß w“FLf¼í_½ `W?Ì_S`O²¶óLµÚk?÷ÁÒ*¹ã½X˜ˈ*~/ÿlW(1ä%(~>²áÜqõoYMq~wa„=k”[\Éïœypí…^¦¤TO×Lr‹¢£ôæ´h1¤<Þììhã‹kÝo·y'xo_,¹-Uô<[Ã;G]ÖŒô ¤Ñ[ž0áPL 5ArÄÉÐE².hh>|ƒV DeŸ~L˜É Fb•ÂŒ¶2Ž­†­¡Ç0˜Ï&Íp*[„bf{Ä[€8÷`׃üÚu¡ºß4Sº3š«wi4ÁJ™ÿy~•1…J¼êŒJ9ëõ@­$èßB›Š0[œŽ‘$o£S>';·Ý´Ûøh½´Ø¤¢jœý(À@(pëÿ°< šm“#0Öÿ³€0¼õàÃp¼C[Ø6öBD›î…-ÿ(,ÙÒ™ÖXFRÆ„¬mãRÀ4t€.òlEC'Œ£v=Ö“­Ü·¿œhŽøÞäô뤕éØàÒp»>€@ïÐk'0:@û‚ƒ,:êý¬wDG ‘ÚcäcÚuªHÝ1 Šªœù=¬|¸2i†ø^ æ„o³ç¹v¦ƨn„UÐG[Aˆõ3c Ž0;Ò%€À¬Bx‚ÊORíÀ¥"–µäÒŸ!Yn eë®ìqÙÙ»§ÀþB¨¦ÙJOÜÒÒ±b‹‘_r‡* úU¬Jïå¤X`~Y‘1þSÕ>›RÐVÆ ÀqæÅJj&ÎRÎ(]¹«·_m¸3äò£²!Å;þ”ÂÞw˜¶H¥ç™)ÑÏï5¾*ÌRŠQ>š\Ömû Â_“ 3–˜Z<ÅÄ14̵2Yé†Ð(‡7Ë[­ 1Úºý|D2,ÕlŒøöy½jîÖí“–'6: r»Ê eêA·ò{ëó$3KÈ[=ÔЂ´ÿ;ѳ®"†7À9äÎåt@F`ôØù¯s§rÏäWðåk›|Bþ4GÈ"‹ X¡/´d$½¾Ÿr|9]‰ú,gº™=òyê’W¿¬ÜHˆ‚ªl=iÇwçú™=!ä ðÈá;P‚ý,¸³œ+žÕK¼/ Ĭq9}ѵí.¶½ ,·g?ÎÝhŠïøš]9PMè*hù㓾¢eL.[™ö™ÎÄúݬðBT8î`ÉÏÏÒ¨~ÂÝ¡1EÇ&Цbªî m™âJñïRÁ)¨®k"#%ù…çL“`ù{([úv( —å·/„ÚœS7Ü•Úò+Ì:¿9¤ð GðÞ$Y<9]7Ѓ.–…ðc*½Ñ (yûÙíÐæÐŸ‰‹Ð#—¢¶ýr½ÝÍX[¸°6ÕþÚPD±ë+^Á‰¸™…š^Ðtµ°\˜…ðÙüÙV½_¶÷O%R6@[–çÃN˜¬¥HÈã׿ƒ]­ò12­ —ÕùêšlH[¦Ô¦Ô­Ãÿ è9¿éÞÛ”OúZpÑ=8a …~ÙÞ$yyþNNP>¾ÀÔ«UñrE>Ó>©ƒjãÁ.ægêˆÆ&E 6 ß]º!íüãD^'×ÓExY­t>›;= øH™MÞÄ“‘Äè4uF—dªZ¶EШ8’Pø×a¾oÏazd!—å€TJUGBS¼¶ ‹ÞNüg{¸~‹çø…´‡öDÿ ¯91÷añ©]Z¢ w@ 'Çý‘>(o9;lö|~h!{IÂþ+áä6¢Üw¶þ!áV–CÓ[ö/ÙÏþb¶Ü\VJí¸Wûf?âßÌÿ¿‰ä]sDLØ$ËÙé‘gß1Yˆ0•ÀB¹%£c ×z}m!0 `gD‹ûgÑ#^=QݦCžæß|ˆñÕÉäÀâÁf*ÏÈ,ß}‹ýã?0p'à0W% ”.c£t`:ìŒLŒ{e =ç¥ÍoÆ¥¦>EKÀÁ):¥xX ’ŪeßÛrÿEë—§&r»–&Ée®$TnÇùY‰O¸‹ÿNʼ%µn–!Ca4µ&°º¬Úh¬h}Ó^­$ãW÷†Æ"“w}&aø$|Ò'ÕR¹MÎ%ydá{›bIYT“yäÕ :׫ùÈ‘sq}Üá ùY‰ÓÔä¦5fÈ\±>Ö%%w›LÊHý¤`@PW;å>öDŠÔxÓý%{¡Ÿ‚á¨Û”8gìlý(qÐÿ_‰>íR%9ÑûKnä ç¡¡±ùå´Â ½¦ì¦!yØŽ™‹Í»k+[ã(é½»˜ß&¾û)«by@ÀôÓ,s­Ý‘ (%IFâ´¨ZV€+É‘ÜúMˆuP,VN¦$ÑéÆ¬Ç«{Å(Ëã¨EþX<µWÍŸ’ "Èw rÀov•ȺàœQGØWOÌ_o¢^¶B¾ðŒnoüsŸã|åí‘R>¹¸Œ”à^¢šã+z›§—¼¢Õ’ÿñØ#ñTFP(£ °‚°ß?[.Ã6wÒt6—ó$¥»3O9…þø‰Ç%vÈL¬=ã—¬ªÌî+ïÕ,ªÂ'úX;j´®~® ª>ôWTuÀCu9ôµ*¢ÈÅx6ƒIÆD‘ÌTH5¸B;ñÏÞŸn†w—zT—íl{²X)–£ó2V=Ûõ|*§ÓlšÚîd|{zï¢ìú<ÿñï±E8å”2–ƒ†¨wcÌÈ#¹œF U”T_壆…=5Qcê¥êèÅBøª¹`Ó"Xê–¦Ùü÷(4y´€¾+—1##kvƒžæÍžWw c9™q=$3í8rÀÀTÉÃR Œë~\¶Fñ¹&¶ñ–ô9nÙ~•БNÛòhüó½HpØ£AM!$sp _ çC6Zj®s°xƒÈ”¶ª€þǃ©Ë½fL¥'søE5âÉq$$œ£‰4[¶ÙðEL_1´ñ45 }-¨â—–¸yN‹ã®ÏÈŒf~xöéjqÐÀP/!== ÂØžWÖ¸8D<p®ðÕ“—It”lŸVg±2„÷ƒ§ Ï N™Ž0y‡ÚïOGr zÌŽ½ú@ì×Óö LŮ٠Ò]jáÔßܳYƒD‚„àåÕ\KïÿÛ¾Kç̵,‘á¿`[r^•vÞ[VÝužIcTQwxp ­«Ú³ÊL?Ôs*`à°ÒYb< ÏŸü}àY¨ê€Õ%ÀŠw{cëmþ¥Â™Ýè²W™›¯÷‚¡Â fOQÈ—‚Èœv _ëæãµ†õ.±"Ey¬.EwúB6Œ&3ŠŽËAð§F蔜¥}Óñô(RÇLY9Ø•2ašJŸˆJ½*È•3çÓ4üÀ«ßKãu™D¾hÅ};»G?Zº˜ð$‰½y›!P‡k…µ¿áÎ׿í”0±Uµ 4Á!:;”Ö°”vmÅfuú0÷uð£I¿=éÚ¤Oð¡yË´sëþ“åMе1ùÍ莴X’ç÷ kÏèh‘èŽ'?£!šz†ïuJ—AcáT ñ™ý2%ãÓ .Âò<®‘y0÷_[ÊyÛÏŽ±3[¤ùéÁP6þ„(ÿ0o¨2Ùµ5$AއúB>œ[ÝE®_,LD^ZÊöŸ+³ðÿj>ë6~QñZÈê½ÓPN?Ù§Þé¯eR|v.ÓˆAžRÝò.pºáÁ¾üy·°íᾟÄó^¥»×í¯öz°èÑ´ºÕNfOçý´âÏu¥ ¾mMpÃñx@žÁ™“·,xÙxI?¡+a¦™VÜc‡ë‚äø‡ZÏÁyÑ\@©'ñ¶5K‚Ì£!4Ã×Uz6³…xà¾7 uì} T”z†É!€Þy Û†>´Åoi±ÞÏ´íQõËIÞkó?Ú¨Íô˜­%ü25&2xà•ùÈœŒ§éÑ@»ì±»ë×ÓòŠN2ßécFgXP¹¿'¹öä¸8¢ô4U_½ˆå­ÿyÉŠ4ÛvAq[ÔX‹¾–Æ!Êéö µr¯QkŽü-IÚ˜æÓ•¾š—5–l)›¯ƒ£6(¡ „ü‚-j|VŒÜÊ‚ºUJ›„è Yh½-ö À@ëßlÄä#Îý๼Ûy1»Q ßÌTæß'“¥Õi’…ô]%€tçÄñ›ô˜ÐRg±wç‘ý•âcv˜„­ë-Ô Z£7¢†%Ž­m–‰f¾}ÈÓ!"›ã.÷t/"òaÿ舃—ØüV]†ó ì4yN©VcÎÀ&øŠõFö®øïñ•³Lyfp6<#òu¢öÚïëœèÁVV9¤É+MET—âÖ*‚^íaÈT3KÁ1@.¿¾x{•Øo•¬XÊA*Mýi»iB¦Š÷®êÂu9^ô¸•ívX)Ä-¯m@T~¦Ä£Yø-}GQµ¢Çé‰ÕT±ÈTÜ¿aò«#¯^š ·´°‚ë© ›ªE‡Ø`$¿3§4=-uo(‚o½"Cõ‹fhœËœÊ”èI‡§O³±ÊšäL[yìòh3à<4Ø€ZoÆ·E&Ü=\q´2–ˆèØ/`Á~Ï®‹Å­è½¨â Öóur¸ôüq5;søþ5ËÄ6ãÄ~­œäÃø@&PÙ?3³;ŠCÑ.†C”A©ªnï÷çÚÆâÕ*rÌruùF÷­<`g“ÙI‚(wÜ%ˆ,׳%ë›&Èöÿ-é*‰Cïj£L幃DΞ+3opÒ®/5Þ­Ÿ/É« ó­VÇEÀlá½.yz›pÑÞ ýüëäž5ísÌ@=bf¯0fÝ0HgIØ{cøíÖ -}{ÝI~ôÔê–ƒ^SqÛ_ñƒæl¤]á/•>æ~. H”'­òñã}óÓW|¡Õ6{Ë;Á†Ô‘ר`TF[{ÈVžÄ Œesý+ÊÒ öÝEõ×Ýx€ˆ,MðN‡9.ñ Uü¤:I»!ç……Í4MA ¯½CGp<²®Éfâh6.ÜZFËå(ð-;û»}ìFµ ix¶ óëvàkYKöæ}Ù°1ˆ‚BJqúæ×'Ç“K?ÿ_+µ7D \v«ec° ·Þœi]™ê=gáÓI—CâbŒ?ØûûzA¼jGà°Û-åïaÚA'¬õÂ7®Pl5ÜrdW‹ù÷Ë0ž…)¶“`×ñ®r¼¡ô2µ8Ý;‘’‘k¡ù™ˆÒ’‰ /EQÁg4s9AqX .‰5TähÞ »ÿó•Q¨gMy4ˆ?ükôþÈÓM9ŒPESYhl¹#J‘þV¥„Š\§GýqÓQßà2Û<\jÛ‚TˆÂyô‚ë JfúK¨J” ¯?¿Ïz§…q9/NÆð±×ll|.ìM&Rx[­¢m sý ±5m‰§dô «§Êµ‰9ÂmBÌHqÇÏd¸x6‡oÒ}Ž-jÃMaø¾¬}Ùº ×c¯:‰?þG¶ v äžÓ‹‡—®ã  Ü¿œž"€@7  ‰ýFû­w>zÊ©šRQůÃ2@m}jL³£”.wØT%ÈUµ=ëqÛÁS2½JML³Èø>Ê•)™5JÀ;nÃ7®µ~0aG+W¯G¼Õ‘Ï/u˜èra ¼CýîÝ^=а‘# ÔSÞ…ßÓåza&I©OfÖ2"€¦ðÌ‘_ðDàŒ™½µ2ù|Ò®º:›5xÍ2 )ª2öNBi1ƒ´£­ÌX—ªeŽãü¼šÎÊ €˜Q©ðŠ-éOfó7|kíàp{p¾™6©zýéA¯¡Ù€½·ÏÍÒÀ}.R‹ä:ùŠ=ËŒÁ|>ŠfñtÕo¯¤ˆ{Žb£€8¤õÔ!ŸŽuù;×\d äíÍHˆÀ÷q)ÃÑ }¤\F?¡/kK­ÌÖ»->>Ñ~æèïM[ÿÕ¨²à3gƒÏ ²³Oâ݈8ì—ŽBÒ¶`©RàíSiÛ‹°ø™Kâ¶$-¯Pç3œgö«eQ¬K"AÀ{î×g› ªL”HYôš³î<c»¨ž Ú_óòäæ^®)wçhã)92e¡Ž”+çæ°f' ‘3#êÒ¥û曕F`( ¯¡Ü½In4 Aèž'\S¢‰»;XÝkd·ÍÊF}ŸØ"«'ÇÍüF¤¿è)éͺ¶ žªyÿyãûÔ¬žO÷²Óû?h+nkR¼&ÃË÷OMÍ—ä›ÏÛÖG6ô3ý«‚©x÷-,¹D–/Óµn[ôNësàÀiÆ£WÜ¿bZ¸È‚Õ½9îâ­âIÓNŸÇî»8wûkÈ|&ß[I™ŸqÕßaÜ=оå«ßɵ)Œ#Žöñ¨W±ˆNªg\éÄä Å, ƒkCKÊ웦|Ó§ nmD6Ы ­ü¦ù™tÍŸ…¹šq,Š»H؈°"FåªW54vª"È Ã  `®ŒÚ=Ër´lý ù»6 *;Ñ0'Û%·†œð¦zp†¯’Š•YõFÊÕP}yãŸxŽÄ*)÷øS» ŠGôL¯uâ¦Tï ä“['k4å#Bñï1Îð•~4c¨jq¡)ÆZæú9¯ëêŒ6W‡€ák°çIç€+‚3 Aóõ“8³W‚vƒÔÞ¬Ìý”–/nAzKi ì“–¾2VYRá5ÌxžiŸÀxÆÅNÍÛºø·@ü½lbÐ\á/z°tììBÇë!t–Ƹ ¾øñå@H“Ó ?×¶ù™•÷~ ¸wMͲ˜ö™omòÏ%HœÈÒÕ¯uÃj@íO2Ëýb˜ ú£Ö}w€LPkfŸŒ~ Á¬*~Ô2Mñ­{œeã8d'[£÷‡kÚ¦1¥'¡[eüñ:ÒJ‡ê¡ðf_õù²`(ÿìÌ5T®›ü÷ÎŒE›”¹Å5‰Ößnf©H9oúêF[N thÞƒ°ì¹ÁTR¨ŠqNF‡EÆÀÂ`€lñ…ÊþuzÁ|óu|¿‚îCBGçI$ÁCy@gãZí{Ʊ”~οe¤‘a_Ï¥&nU”#ÔÁÎS³sùuÚõm›½âeêá­b™Þ°ã/âµ ·üÏVªŒŸ…ýÚü×®“p—Y6eðî$Ø-3µÓZýb“¥™¯6-‡–,B˜冭̆-P@«óv1v<Ô¸E éO=FÇ"¸S¸Õ”äeÁ6hÒ El”ï`;ÃÑ5ËØ¦.Bû<’{¹¾‘ˆÁº!4þžÆÎ÷¡^á1Ù¿•cÖS?-Ð]`®æó$1¨€‘P¢È" Ièkc˜‡^këÁ¦›Ù^’ ò“º /ÿF@Ìߦ7›oÏïz¥Æ dUt‹Ì´ý¨ò/HF „Œ“5ë‹tÓ{ í¦>B"´Dº¿ûEÓ``bœÓÙľÈ{˜À ¾“óì<$0öªN&Üç÷ ¤ q¹¯#K^ª9ø[² Š«\‚ZWq.×ÖGHòoRdÞ~Õîå;Iï˜xß•(‡hDŸ¬d>•©Å­_Õ-VW^ûÎHÌ‹´$×ô™àw­?N‡"PgÌä”%a„cÐc‚À $tJQj½Ä|néŸÑRâN%÷XP—nÐK*E“͵:D´Ç,Q4Ña0ieÎ+F/=I«in…†CúaÆ y+ƯÈÿÖ‰ÓÖ{Îàa®®Fºû F;¶DåÏ}ÉE0å¥ÕãzÚ]qëÞÑ­«Áï‰ë*Ó@iê…ðÁª\çØ˜*ô%¿pÇä8wp‡Zibf±œž9ü#Uئ™¶ON|5@Ìa÷;Ѻ¤1ý ÉI°Ç•$ÉÌ3·`æ—’nÇŽi=ßÕ@KÚÁšÿ"J8ÉLøŠ±c Ö]h ÍwÞ‹»{L¢½„€9"×ÄýŸ?ʶþÞAG¢ ò©þ?Y¦EC ÎQ´j?iŒ¡há͘ô¿±NÕ²?ëøÅÛP 4 Âô®¥z×Ì¿¹öfœð%»~Ñj¡Š‚@·^´ò'aâ‘Á²ñȺMMÃïÈ2‡{AÐ3ivåê)ËœFû¨ûKJe­…ÞõçÈ<ö•Š·”mëƒ1]ìël×9–W%<Ÿá?¿$—u¶<$¿àΟ†>N±ÊX–@¤Èõ¯ëzƒ¡’ȰãJw„½ŽoÛ$ÄýÝ,[ÕÁ†ÀÜBG«{*ìMÔ¼?ý%ì§ëIt ”,„ÍFiƵ#˜ÿö–ì6Ä,Ú |Vù2Ý®Ž› /ÿ!¢ÊãÄ¥:‰"b†o*+rN@|â|ç4½†4 °phiÅ &FC:Ì6Ð ÆÊ ÊyÛÙ$«Ûê¢lœÄ¼—àÇ'©¦O0V= œ-£„WB(V6Ž rЙ}™«?áLìLhÏ•\žñRÔºÒˆ£ òeÑ5ùA±»}ºÌĬ¨©§ÏäýqÚ2ºæ!øž‹5{2gOÕ ÷@\—š-˜ „0 º°Ñ&>Þ¦(ð§ä(ц5ÓϲX§È©feXúp ¦ìÎhMkWzÆ}”€~Õa`±G´£§ò¼éÄü·8¯{t¥BT¹£ƒTx…•¨ >Ø:N•ïí'Óá?®¼yËÏüsü² º4ê#*Ç/RM€|üAŠasë‚¿HDj4˜GãߌR‚± ´y˜ËțF£Þ$Ï ÜË-„[»jú—„dÏéÿùõœîHôfÔ}Gs•]yÉ]ò%]äP¸h£ZrªˆPa´ Àéç_c`™g'¹öXuÖÕDpøæcòÐ #A.2ÁMC‚䈤+›®/ýø]©Bf$ ¢CA/.ÇãÊ`O¼ŒÆ÷Ã(9/HŠû]ØSnd\Òû{£%U!ñ„\ÒáP;ðíìPWãR—O¬ry÷=DþìÎÒ…æ?D…jéÞ"a 0§©d«ºô]ýI9Ùy/¸£–äüåV5*¼"‚û÷=ôV19•ëkÖ«ù ¾0ÖÿøEw”ªÝæâÃì¹kó«$ÃH‹Žò™NX›eEp!C<Èÿ¿´ÿ{Ñ œ Nh"ȃ©z…GÔ¹c ‹Ôsgv70±Êa×ib…wvCfKHäsOàê^võõ\öT¶@ƒn‘Àᵂ¸ÅÔ,Wx†• (0B‰9œÓrœù·¦o 2ÙqÐט–¬ù  Ú)`/¿Q»iaÓ%)äÁLü‚¸ª´› "#ºÓÛÒâ~¹Åžç\É&|cijÝKÈÂþ>‹öå&£‰ìûz&¸õ@É`“1Šï±=½ÓvÑ $JU#2 ù–"bZ"LAäƒÜÁH‘dðXY;$Dëìß¼°åÒç=1T|{y0‡·s­.Té©ÁEMÂôï±æHŸÀËݹœAX,hµoC&¨âŒ¹A¼L Aµ=Œ wK&k:i`(ß®§i+($W§@+…Mêpi§‚͵..+·“ôX(…ýž’mGfx@&P#Šm2óbu„-Ü7cÀÈÆ°¾s/½²kFTf ܈%r8¨]rB€”'£Ï˜2¼ìwö• ¡°k:è¬Ú!¡.ö€ëÍûß ½”µMgjÖe£¹éÕq”rºÀnXW®® ª¨Ÿ®ãùçÕM¥ÃQ7¬=Ѱçö#†ˆÓ”ÇiÖ)‹Úʽˆ ûiš¡ýfà^sXá É %¢òºx^º¶·SßL³^𠵨 ÙA‚ÑWdWŽGmÉÓ›á:>l]o›ÞQИÛÓ¢k¤Þ—[(X­tËdKÞÚÝ>£¼Îÿ7[NvºiÌEÁ¯ŒèUL3á³ÉN hò×Ý+º´¤áÓf¾ÄWåt‹êQº÷Â3œo¯Tã„àŸÆ}Ûãû¾*Oj‚£!^·´­¼_—ý”ÏÀª|j…#ï1¢D}mDüë?RÒ}ˆù®Y¾ûäLßb ö呹úDg›:»¼FfÊ>]ùR:¬Eº4´ÔßñaÑøWmÎÎzô1ãWíBÚþã mZwF9¥ÜÅž˜ÿ¿Vu“Mû+pe·FžJíóhÈ¢®ò¦”|êPØí¨lñÓb=²!2änz»±óª ”à™a1”$”ßE{wt…"èx€‹Ù¯ üÿ¼]‚ú-#„~câ8'ìÓe ËBï8Ãt:jñ6XÕ:5Äù£Ÿð@#ƒßè¹*¨;jF”]ÙOÔ ë¥<ûôù«·\ع¥xçzpåÕØ1ûúêiñ Á–ˆ÷©†d0X9<Š6³&_(–k™@­^”ù™»–ÍçûòØÎôAò¢ŽÍ“ëõ5¬¨’,Ù¿K Êw4ÌzTé®™áÁb–iH›h¼ÅŸlÓ(åQR~¼QïWºÂîÞØ%ž‚Z/MÝX^H•5xs=Q E† ÞänXS&Ý‹w W‹{(k^G¯(<…ë²åœMÿ¶EÀxĨx#}aG´Ö­8;1áQ°ÿ¾¡­xî¡%LT¹F¹¹‹¸zNs³ŽMCÃãL¥Â=ª§M y¿dÌ•}õ|`B}þEé›S’ø¹–SS# ä5Ÿ„Ë™cSZæœdðÑ®ëZÞ#Ù.(€‚ë!†”-Ÿ2¹ þ~ÍTÐOÜ ³>«7Çí8ßdÄâÅÆé?äËŘ$÷žß~Æ›ÝTJ £(ÖÁ/ãö'D6Fb+)¿Fp´ÙÚº“U&Y/úí=Ô+ãPy×à4¼J"Â"@˜@)>, 4ºH:Œ+~Õ‡–ª\öi°W-‰Í6 eŒ¬R„)¿++ö‰p ÚÊxÈ"qLåô^îâÜéu}€ùÛŽu(^ ]#1ƒ¶n³/ðgIš¢ÿÉsÛpÙ”üOjÒ®O•J¢aYI´¹RÎcýOGˆ/f MÎx°Òꦚ‹ ðÆŽ\oò3LxwÊì¶{mÓ¨„ÀPƒFÇPÕ…Ì¡5þ ÀÝôd/#Ì¡›FþM0h™s+²VÒ…ÄFGSóÛÞ¾–¦¯U²âiÙÌ4ÑÖ„Ì1p+z^?MO‚ÂJÕŽã&™§<¼Y‚SÇŒ•Úa†F´ç"E=›2¥4¯è·5N–t‘¥¾Mx nJ÷ÁgO>ª}ÞAãáRZöby*w&ý^NðúG1Ž&G™9D«ÚD¥@Q„½~£¹§>ȬÃ4"L?bSmƈÇÊm7æ³8÷KD¶‹2ßÒ+h¨sc€[[Õ–g Ìï…U:»N}ÈE#AÍZÈÿ–¯ã -3Ç~ŽêÈ,xÞ-ùõ¹˜†Þˆh%ö—Ô|Ï$¨h‚d;¤ºY¥7Iªr«)ÕFÝÈ8 âóJE$utik]f j¨6¼$ãz3.²GÑþl#§vyŒ—Yÿ÷Y!Ú½’©ï­B̦Ѷ½škxCCL¥Qö‡Z9D0'ùÝ´ú·ÉAaV™E)^µy)·¹@a˜²Tâ¬ñôTÁ7¢ÔQ§¡BßD\ÇT"h¬’/QÞ Þ¸¾H <·R³÷J­püë Ô~솣Wš„¥úÆwSF§mت.¡gaªx6Ć߈84÷ù ¨¬ïc¦ò+¡u´ÆÐç‹1ºdùbÛXUQŠuˆ¶*6UpÄNe·£u²x”-je0sß‚§Î—h€ÀL‹|î"ÕÝåÁapEôâ9èAZïÆ{¤ùYb¤¡].äù]dm„°^ÛmÔúÑÚÕ‚¨ÆuÔî«ÂF™ð?—Ž…~;ÄÁ¿lÎ|‘¢šºä<}]¾Us}©ëãÓpI\ü€¾ëõ×ðnãd¿…iÒïE*ˆ-ãÚ; õq¿Ñ`á°µÖþî2H:=kC Û‰‚°¾\¸õhƒªeç¥TöPÂl"<æWN1sJrŸô¹Ó0ôö^:­¸FMÜ;Q¶w¥iϘžUv¤É3’riªøU'ýzÒ <²ñM:‹ÜøÆ—w‹4+g k²§çz—]·u$Ï:/EÄ)ØD$§ Ô¬ú8Ù#ýc#VÃ:C<©­pÓ\* ‡'«ÃtYÒ ÚË‹žLñ Œûæ²®†/!qüØ,ì)gžã}´ñ̸’Êöhá_^ßkH=MØÝÙøp©#)Ü)CI>îãEâ 8H6€¤1¡ oGÌBºò®ÔML\Lÿ?Ý]À"*8>§À Ðý¬ÃºÌÆÏL ãÊç’š¼VG»w¢ä±‡á.=Ì Îkm`-*É%,e›UùãÚ, ègBéízØs¦é¡UÔ?à˜©ëïXæ6w§E|ÜSÍ0Zþ0®/-¾D¿U{¨Ç;Ì-¤:&ðþHšaý^ÄVʪpaÏúìb…  wâã5¥q)Òk:b`?`-À—!`«ûÒˆÒN–%]ÍN1îI€j¥4Š)ÿù¢+ËÙ$¨Âsi·¶ë|TnÐQ+—<"kð×à`1B1?nö=ˆh(lëj}‚¿Vž©_¿<ø|Ðþ¬àèiVâ†Hcyq– öЏ6F¨ô¢óqý¢®TËŸ¬¼Š÷%£: µò„}Œšoúg޵r¾…GÍSHn@6†ëÊì[ òuj„­€p€/;ou°jfKT÷F1m äšñWOeÍÙW‚ìºÍ„ kGô6±Œ}ŸMøòØÀètwüèz©èˆÛZLÇEÑ”çiÕ×?ž ÀA²ã#2ßåK Ó[æ‡Èء؄<3).1'R¬^•œAmëÓÏrvzßB„]J©Žo$FpÓÊãàɈÉà:ýˆ Þ­yfÃãyD¤dXèÑ&‹Œ¾ö¿ d“›éÍZÉ.¶#0‡Iqêè³!Gnº^)7\Øø‡}Ô/âÝ´–ì¹²×=FðjïšðF®p‰†@bÉp%*}èÛÍ“5B 9þ»¶q÷Kÿ'6©âÚ3àï,¥Ÿ†¯¥X¾Õ/´\ŠÎw•<#“c4|Ö“éÙ#¬Øm'pàl´㉊­IbÂmçw{Wÿ,;©ß"Ü­¡A€0Á8Ö¨hó‰´ëéšzˆð}øOóì)ÁÏrºö³!qî¡N J—®Wæã# ☿Þ+Ì4Ðs cñA…µÜ„].¥ä«âTce†î ¤M°4&à/L+h…_s|.ÞX ŸÒA¸Ÿ7zþ°PSÕKŽðd 2:§¯"˜­+1ñK%r™Ó¼;[6D!ÅȦ€ÿôõû…$V ´[tár:¢ƒèm ̦ý-~›¡šO‚k~ܱ alè}5ëꯓŽÒ¶\ê ˆ#LÁ»Fë^4Zonf3ÔèoÈ‚|@ç`…Ì:®’fUæ+µD@y[ZJýe/ØÉŒ¡'Tþ΀;Î?hè:?±Ð 9·d‡™ÈL‚¤ æÂ(%#K¨³’¹½^¼ÝM…WúÚß•«“l½¡ÕÉ`#ÈØÖ†À*b£±¨—ýà'W“Þ}‹4ñ5ï[Žq•Wv¡€ÞOö«#ѹsŸ–YOõH9mnÚ—©…_ßnÉ QÒø.6ÀæÊ³f!2€E¾=wÍ2Eµù3$Í÷Tc!G’|Io6ÊÂÏcá™Ò“`.gô:´Ì÷H»º—S=¥"ìeœ*ØÈÉ·a“íÌVû?€8·w!Ý­ÓêTÒ":õ¢©9Ìk¨ª0TTBK®9’ƒX|ŠÁ7½Q¹¾×%¹à¥ÒÇY:–Ít‹Æ-Õíy¾zñ1`&h#ü—vÁb¾©r{;(ö\/g‰DóË pAÅ¢¦*F ¢zI¬Ø¸Ò`AéAl_ª¥”ð­){i/œÔ?‰˜ÐÏÕH‘¿ûÛhzòÊO˜_B‰B³?9&ŽG&ÆÑ喜ٙøœüóJ¾ Íž5ÚÒi‹|LLR©t’€¶çN,pöÙëÖù,¶j!GÛ³µ³x~#~uÎaÄ:\ QM1§.ÊàlÃXa3ØzÎ7@É´+ ±ù¿P—ƒ?<Òu6Ò`+%ûÏWAhÞÚÚzÿè0wý‚*qH—ä¼¾ƒ°¤Óý·ÿÕ’„êÇÏ®eqË):\Tv=âÃ×¥n¸åø €UË«í|üÒÛ3~"ñ¾£¦²¬g`c‰d¹wq§å>M%ºÊÞ.ôÈ\›ò¹‘$ü-zdL§õ©.ð|S|A¿ö¿¢?ϹYèAåÎÜdöQ{‰xäMžš1ù§zúDÝC5¢ÒOyµB -rŒðšx£FY7u™’;?ÿz¤érkÚ|ý‡î‚9ë÷¤`Zeè׿§È´Ý ¯})Yh`Ší¢Bëk^¦£©#Ö2|©Ø#ŠBÜ".Vœ¼«M‚´{/GRPÉÎeæUpcÃö±â¨Èâ©Ç”Ç6xB_¢1bʦAå…:om#>’ÌVç4~1U\ûËÜGp¨ZHd‰P;m{)"1ð$@Ãu֥ЫÏJ¤m–µ*9ÚªkÇBd ³7Ž>žc÷Qé.ޝûFO@ÃéŽ µ;9l4Ý?@|>E­c±{™ b¹$“YQ©ÿ¿$-GRÕ[•D±Þ8…öµ®9ÿô4)f¥—ÆãŠE}ù“Ðk¯€'ûeÔ0ö·9X2 ›_EÎÛ9+pDmé¤~ADEŽBYùƒÜ7xSM~Âtü- )à†Ò4{„ÖòW»õW[ih拌ŸÅØÑ‚>çaå‘´œgVË©€º7 ¹é D©£AåqõròmlàD_ôÌ4ÇaðÀz¨R»u-Ÿ^qÕ™Çõòü¶ñ3,§†‘:G]B/HÖ–oÕš2¯_•6ygã@üúa>[³9Ÿˆµ2“˜kXòÚDkÖö îzíöW;ì=A€ù¯¦ŸÒQ:¥¡"ÿ_ OÏ.¤=RÿHUÄ,Ѷ “sÍV"ïõá, gÖF`{Ml‡G`ô…ƒ6ÅÒ0‡Â´hªJ€RIîY²TUi²Ç®oß„ÞdžkJéÞÎfˆrïv}‰ò¯1µ>Ù²$ô29’èÁWþ64>îó³ ô¬HÅPU— ²¨îÕrr4iL¦_çªÆ—” µÁ5ëµÁï½ó40—ë„ßK†§è¸~\Z¸RQ§ºo ËH¥´'w³ºk³²|©ÙÁöÁCiöÓᯜ‘;Ý„Ïj+îÛ=o:A‰ßÊ¿Sˆ±î8à{ÂóJ/$ÔBH fµáF¸™ÕUï“TÑ0öQð$ ÑÊ‹TÃÏ-ñPùFyCô€BG› A†J*)‹$—okqåô—,áÈHÄÌ–Rl•Ö«s~Æcý¸}L¤$%ËgY9v#ãeç•Òg<9u˜IŽè¤`t€drìÝOòNic±*:$ÝéméÔÚÚnh·<ˆô¥¤×ô/&¶jÒ þÅÈ‘%—j½ n¯ç-+]¦Ù™5i¦¦üˆ§XÈ¿mì¸yùJjZÿtæÈ2´{û{…Ô¡›‹&¦2‰]”Šð.¥•¾åÝ£gÈ#`ý™sÿØžJ‡?Nµ¶Í_ù `ÑîwÏdÒõ]ºhÜšæÈ•ùWF—pÉÚ¢fñ° T,E±§Ü Ñ›©j¶2{³EvŸˆ/IÚAô=_¦üaòé8¤Tò<£Dn©Þ:nü$ ‡ùDÑÛVIÍ &s.J>¬Ôü†ÕéÉ–BæâsWŠC Âôpó%C7éRUÙ €×î‹'#etTˆ0 zK§1!'‘ ÂJæ×1_еø:Þ…ŒZMBF}N®cWDνÞÕJFPÚ¦ðV“êPò~çVToÔ#Ÿ]Q%'.ÚwR¡³<¤û0YØ›ŸÁÊþƒsœŠ ‰›µ”Í+×|¸Võ£Îec¼ßïZ5íõ—¸{Ò/TV躕ü½b$™Þ+Š+툾·²ÉªÛuL´$ÇŠ¹¤9d¢ó%û—´³Î!ß‘;\K8@¯4ò²¤ÊpÅëÕ(  íJ-¢…iÈ“œAó˜*ÓÆ ®Bïê5î†ì®&¶¦±D5´MAx¦e¦ËѬ(”wû—¤óI ±[ä–]a‡o`€wcZ<šÓ¿µ[MdBŒÝ¨}2íä¶1ó»ñmûK[©-©@ Þ¶to¼…â²\ÞN¨(ˆ€S“4«¿U¬Ô¢;:mª-®½¤ö„iÑco£Ãp\j6Ø"vj£¥ÄwÚ;í>¨ŒõœíÊŽ"ÑÕùmWp¢ îžCf,6fåf©‰@ƒ‘Õ2O÷Þìÿ$Ý´vM}pjêz-ìñ¬[a¤ÑÖ+!ÒÝ#IkãŒÃÛÞqDç7ƒÒYEE§”`¤½ñ°GBÓZù¿…>ð(p»ËQš‰üpÞgX|èÚÑõø1Uûa˜ïÞ4»’# åÚ$ªÏÞˆÀ+Z1ò¨ö+ŒÞ·Ø EBÓ¶õtÚ"éKN€³ø T껌g˳ÃË>x£AŠYº© hý$Oš˜”ÀzŠ)KÍÛ«:ñvZÊp<ÿW¥Yø½zµÅ@èS0ú… ÛÙ( ˺ „"éÿ 8WÁÄñPÂN.úW†Å& È ßíIÎ\8¢]J†<ÄDë¼M¿o„ÁÂ’¦‰¹6Žíï¦;uÛ#¹ðDÙS Lô Z‹”¦…lk*,ÄØVÚ·L&ÄÎýM˜=z=p£à¿ƒpæ /±Áÿ«F~ñh<­kœMï“‹·ZföîÛ¨â¥E½t¹ðÚÞ¾?D'µóÄõ¦ÞnØú\˜þiöIB\~7þQcu¼Á«@ëV\r° à Óà„žKûþùû³ ¡¡‹úPaÜæV;„ÿ€µØZ‘£(‡%dQËøgd“Ûþ­Ò4# wŽ~ƒ6 L²‚h¬Y~Mõ+ Ý$<{¯ÜªxY²VrDßÉÈ0ù8¶,ÚɬÇ[@X‘K_|DÞG&ASDÌÐS0¸=ääPºLöð2qšc* yŠéè9íöÑóÒ{yBÝASÓEÔÎ«ë ÌU¶ùðöŸ']¡­´‚iyÀ…Å]5ÒšwÊòW=•ÈéðøâÊk)Ñè<€BIt`^€ü]s®Eà»^Ηœ¤†š") K²>0 ‹YZEpi/data/DMconv.rda0000644000175100001440000001735412144476640013616 0ustar hornikusersý7zXZi"Þ6!ÏXÌàׯ¯])TW"änRÊŸãXa“ÆqÅjnçj-&é‰;QA²FS,Þ[‡ÑQ£ $;àDÃx™h•XXÜŠž0Î1N’1Í®ª—‡„B­ãTÙƒ˜UHÑ*åZ°¢Ø¢ËÚx]¸1 øê ÄïÃ埕ÊÖœ1 ÒúëŽ{°FSÕ銗'·L†˜I@.ºa™’õ`8Ü „üPÔjÍù†Sõ…eRjoùw¼Ûýðe†bl>6œû ó?^Š¥¼WàhŒ×?i:ÌPáª;e€Y6.ŒŽ|PÜ+Á‡ëÊrßÍÄàÙ¨tÎ×è÷ž±fV‚]!ëúÌ }ÝÜd)²2Úáå< ÍÆ`¶×sAHÙM8†Í¡’qÓEu™n-,ì«°sóøÀ½zXÚÝó=û¤rÎøUª“îÀ³KåÎY€ëa€»Å¥™ æì±ÎžYÖµì2È•@mˆ¬ý"‹ xÊé2<Ê%…Qö®‰À$¨ËÛ¯œ/‡)”PTú Jùø³²ºM‹Ô c¿44ç|hâžÌ×Â~”XkÆçŽÂ+±.g2òÕÒ±IN¼¾žmbou³ëTá9~ºÇôÌxÃZðÉQM‡LïDɼùOíÒDÝo;RÞyM¤ScT}à-~%Ø1À´:²¹`¤{ƒ´xS6l{?ú_fж¼; ›óqŽi|åµ{3@hDæóá9¯VOŽíˆ³v“²Ì¥Ö9µ.*©<ʃ¶«³Q˜8ë›ËšÙU®Qm|=wÎmÜãèô0¡È±è¾÷èD>V`€šê/—¾9÷=ÐpYÆùú¢!Ç…Q‚œb~%ÃÔ– ôÇžž}p·›Òi j¸ìª§.¶SK—ÑÅ«d:Üÿ_ÔýÜÙhö 2‹'}X]³Îw[Qª%îr½r@b“›‡aynC•; :šòf’~,šà1 +†¢ =é7²+6à-cQ`óëMh«ºWóꊊ“ƒг2¶ /÷"*]mVG•±‡•y¢…p} · þ‰¦#­X1ÍεžøÐ aBÊÿ7jo2‚žCÍXÓ/Yϼã´8áµyÅh……Á×î\£#c 5hÅéFn —%°[:R&Dj´“Q|°Zô¥ ,mø#J¢§œÕb¤Ä,ÇÊPIŸ!aÞ‚H”æÒ+`oUï+¼,žX6ÂÈ@¡(ôUøMþg¤¹·VzkŸñ´1{©.1¯1ELgnqžª‚sÉ(ùü`ùlòü5”nÞPøi_"Ý+Š—VõU7Œ²å‰Ó1þ¯{6WÅÃùã ïJ}—‹{· v¶9¦5ÝaâQ 5Sœ÷²ÑtÇQ‡ÑÇî]lu¼Ý§­@³q”qÏq˜è“¢+ÌîãÂS̹hÏ#F·Ü盎aæ:Ýš™9Í~AeE Ï€Ÿˆˆhº{Ù'‹|¥¸ÓO.½vK<'•JH ¯5ßy{°p~¬>YäX­‘w^x'!¤ÕÌÒ½u¹¥åÞO™-gÃ6‡ÂÜÖ¯ôÚÅéÐ/dWP†^=ËΟܯ½^РSÈÕ+$¹O¹ò^}13˜ª¯¤ÝÀ¦¶Moöóø–T¬UW©.^ž¢©f¼ÁËñïÚ=_¾ænP«kÁÞÁc`ßÐFÜØ3‰Àkh/…q÷O¾æ*šÐýZìÜ;E+Ú¾ƒ’>Ù[Ž-rÓ Ïy[ð£õk+Á³õ#“YeC³|L.R €þ·íiñné(8u8m¿¤CC-â¾_ç§i³#L[£kŸ,Š0d¿×ëÀp±št¬.JÈÇ‚y€ó”OZ9”f鵃íodà4uŸY¢ c/œ•µê9@¼ê øwãütn:8î"01J,š”²ª&wª¢J¤/QÀÑÓ£€’Õ,ÔÁÜëìþJøMÂ{ÏêŸÑ•;}#›a”‡3çP)6ûÜïµ?;(#}h¿bŽœÜÃÚ` O¨šÇKÿaGt¥kV# É* ¤Æü€MGÔì|¤27j«l°û÷=6åßìlè§­Kâý hS£ÏÅÅ8¤¹–›íGîžûÚ8õ’!ây¦ãøˆ˜³4þï\jÓó®í'\†Ûží8L%Ñ9 óŠ ÕÔpÀÓÝêï%/RËrÌûþAÿI+Ý…Ñç²râ=ØvK¤N< vÓ¥ÕÔKÔ6ÿ9Ôóú%…Ä“ 5”Ï.Xo½µ@?!¼JhæÕ†ƒïÒ `(+Üksj‚ ¹%¢ç&3D`ü—R(‹_ tM“.ÃFRüB–L!½yÞŸ™ò9ªÊttگɷïlË¡¡Yz+3h’¢s'Ýñ´žÁ99ÝE—È]VTÛ¬sñdu¬ê±ìgÿW]‡ÃFpž¹UqoD ¼3áa ¤O-³s?9S)Žv|7Ì:0>ÉáC†òÄÕç|ÌÎ'‘ï¯üŸæÂkÌÃZÑq#eG–#¡èVV0Â7é%6ìzhƒì¾Óü÷ŒUñzÜnÒV² ­Ž`[ZPi’Rp†­¬½æ­G?øk£®§ÀƒGy”†rÕû*w rô.¨¡‡·o,¼Ø…üï“A™Ü9N8 FP è}QÓ'†ìÕó­/%r”ûz‰þÆÌ&^ìH,õÈ8"`3°=pÊŸ¥>-3•k¡".ƒ5mfu†ŒÅ‘´w«ÙPs¢õzoLJ`Á 8^ËÛq±ÚÑpQØn5â–~J @üT`-–WÃ$€iªHƒëC·6G“Ì”Y$“ž6¹¦­Ì‘5Ô˜SzšV»zÂîJ­5'”ÍXÒwÅ›tdðQ0³Ôas²÷¸ŒoxÅcU—XÚ¥ˆWhQL–Ùͽïˆr†‹QH Ý9'Z`«W~Uµ0J¼3RD¸¸Qðmþ@B‹ò­,î¶Ž!÷²¯+(YîȘ‚î´äB?‘qðv)+ DÕ]ÿh!ÕrV'x!†_–®osaffÏÛ`µ›šuÊ™™øòJM=ö’ò¿ÍO'wR[†¥ 5UùJû-<Ÿj²¶ƒ³Ñ=?ók‡;ŸØÊ&žvøÀY†´^NÑB6{ŠŸÛ{Ô‚r˜.C¬™ß2;¬-ˆßkÆ¥¥…bȼܺ4'›Ü©Î¸»ž*|Ò5gN)å+B¯¾å 1ï¨ÕPKÚ¢{:¥Cò³ qá§—`â€^iFá«~ˆ"¡Cnžmz­›åEÚ¨–)3ËU\ÙÆ7&¤£ßìçíP¾{ç×5X£ÜŽëA[{ªQ×òO<{#•&W[¢W‘‡ÓJP²'z?Ó i"‹L2?Ÿ²Ò^Mör¾ü6¿Lç‚ B §ÀÕ¶Bï…,/tïÓ {¡˜ ÙV?À$# ¨H»%ÝQY²aÌ¡l÷"¨pFÀ³=ÑWI¨Ë¼äw`ð^¿a¾üöðìÙ,ÜB bTNˆ²ÂóÐSÈ7ö9«Zxî)áÐèrÜÂï ^ yÉ·_” OE)_ ‹B˜„³Ñ”«ë[žzÅ)Ðô“}]<ûü÷Ç%¸òc &Å ª,çô/^]ú@ƒÜj4Õ+<åXžX»Œ3}¶€MR4]ƒë¸Ÿž5ikôÿ3™®æÑXRIMô…¹KÌ{ðjJ)¹¹¹<<ºü_ÑÙ:Y¢gl ”P&—¶ý^Øz¾;´™LÚ4”W¦AEpþ1ð.!ïÒiïGM^0ÚõÛcå–X&°óª¬N?ƒ`ßÃoŽYü>Êé°ÓÇqôÄý€à FÊ´gáXð/ÍæDçyh ¯&B}Ô6”]XèkÖe¸Ûê9ÂÞT¸H`8ãµÆE+8¤ê4^`¶OIí1*å&%7£üÖÄuZ™ )6‹«OE{x)Cÿò©SËÈ쥥ތ³dô"Ûìè‰NßÁñ;“Öf¯)ù*.ëK­‰AE“7BjøFôLt]Ò© ÌÇ;’až‹ñumúøL Ç\%‘øYãï[5zýbdI°p©\DuÛ4OÇK#›Ÿä½Q§yÁûXoö^¬qp¤íÂÄbÓz?&霱\«’y?K yËÆ¾ BߪSäÀï¸ÿ$gPOÊ¥]M6Ú"º|™+˜ÄØ—çÍõƉrhæYjˆ?QÇ›½vêšFj©·ÕKJF\FXÛ×7´†I6Þo#;tÔi™¨)í™qYM¨è[¸§eË-ÎÎyºW>n‚æwüe‹8 áÆÊZÛÝŸ•£àÅѯÈôk×.Mu²‡ªéI¸áWŠ•JÊÙ:÷¡àï¯zN?à=˜XSû,:)êz+Ç. Þ<_Je‘ˆ€-Öì[w®=‘o@蔊Îk²"ùt?¬ÒÁ8ƒ›²Ôî¶y˜x¨9W8Ác+ýWTrUÞb…z$«zUDVYO „<…ò£êFw:?nã–áÆ\kÌZ…Y¯-˜Ð}ñõ^Ý,·¡š'x˜DÀ|*+Dpfܱ%¼]ååkÕàdúó´*Ò»–r@p”@Ú¨ÔuõZž†TÂîHòäÃ8NSä>Ç~ zHã¹™ŠG¹ÛؘyDõ °¥ÍÁË H;ÜEøèE§ª“!ð{]­ .è·.,ñã#Žƒ÷Z€`\ýV•a VµÞzQޏ&â¼¢gÐá-À€Çrëû—°^¯ ‡*+ÎÌ¢çDGÞŸŽ„h¿Ú%²º–ä3¨b¨4fu™,›r‘`þüuÔ]„aÐ#§õyu½dt›–u—·h;Èn‘;ñKÔj8‹ZAºn }’²¯V?¾×Ûã"ëVt—Jª—ZÛ ¸)Z(+Þ0¾L8|{%”­ãàôs$œƒœ½Ÿ9HýæÄÜÿ¤BÚG¤jU–gü ÉmìPpq*’€“™ú¤È#Ÿ!{°=í!Êôkg̼;²ÿŒ"®œ¬™È¶Êjä ƒ€„=‘O;Ä ¨7ºQÖ)´vQƒJOŒpúK.çÉq!¯©¡¦ÇÑò| ý™ùÿ$UtІð;lýÈIkgº)jä=mîÄÚ’ºJ¶÷DZ—äÍn#ªÅX²û-m®Ï”&ô,gô U$Ó¦[¥âo͈Q˜å†ú¯“ÊpÃÁ Ñ턎}©ÒÞ=ò@Ê~–X[Òñ¿‘šë„‘šœæ¸ºA޵òѬS˜ê€+OOH ž÷ñA¾¨TdOѧò®ì,ÂËJs©©j¿Tû°þ¢Ý‚ ŠúÇ{~©&7Mæ–wÈŽbæ•ãÒœCŽõ¼±”ÝœÕ5ü* #è½WJæäÉB^Bfhÿ4D¶,®õù8¨b&ðéžà=œ;‰m¦~zpô ®•¦ $ŠÏdx´Ú¸lžÛ"Î(V‰b¯ëïé*WrÍ©ÌCÂù &ž„ïµ{0sʉèÏœi°FÉÜ.áì°SÐAÃA¡CŽó锩ªÇë_ló˜þÄ÷/‚eª)ô(áIJÈï€Èo¼ÙFE,Ó9, —@ʶ9†!%W÷e®N ÍDPB=^J¬¯ÌÂø¶A[Ò™žj "‚àD Ö‹ˆµÈàÆýªG³½jñ/ŽEæÒ#bjØáv»ÌÔ^«i³ |ûSWrŠ€RòWUŒ²aö ™Aα}„BÄþ‹sûŒaéL½(A»ùÀU¶œÎ8ÿ8ˆìo1OÅþ=‘•dJ(#ÀåÍÈÊ8øÖÌ ggzØ ™¬üU8ŒÊ?÷\™Ÿ¯2ÁC‘¶›þ³XmvÊü)Œi­Óúí¿eòm®¼R‰ÈÓÄݱeÓÊqRäfÒ=ã¹^¬aÆ1ƒ¨Nø]§sTTL<áIîPÆ•äâ¿›âˆoËwùkƒ(‚g\ ~£+¦¸µR[K·Ýu?ÔTaàÝó@—Óôp°Š)ÌÚ^ÌÀôï¨&Qd(ØBöB(uÛgÂqCoÍÙ6ð“Óõ°T70y슢#^‰4úôyuü䊗±ÁÄØ…ÄÆ¶DTBIíâéƒvV ¨†íUëq}¯«1 El†×ºXòê’ŽÕ‰ANCð!Nö3þ@`K!â'6†G Xó7öŸoíxú¤7‘´Ñ«ª)9ؘ_ý{ï®N¦Å9þ>»\Ì*Ð=±Ü¼ù@¿„µ×~BZ3-Ñ;_}€©V«£5Ïù3'¹^¼î*Ôw^(Y3¿­kÏ‹‹Qíº‚ÆU䜖Œ@"Ãàõrîd2Ó¡‹]º(u8<‡Ù˜mÑÿ°Ì% Aá˜!äÎ<‡ë¡Õ­¢ˆL‰˜ éËãÕ—Y;P‰ºR‡‘K_¾› ¦xF­º¦üK3D –¶I»¾Â’…˜IÜý»e¨‡e¶P y޼DÏÿ+¼ÎÙ÷ Gf/%B·n©üØýßCîè\ކїµ$}+(l‰™“ZŸîSˆÂ­B‰?¯ðXï@ÙÒK6,>;hxË Ë{õþÇΟ¼'µ$Sÿiç‘5`ŸUYÈ!_µ"·¡N¡½l'¨‡ A‡s+ žô{¸ 1±É‰Ë<®¨ÀUUÈR%W‘hê¤Æ+\Œ©\´#2"0'E·w¿«FMˆiæX&.²¯ä–5ËÃ÷‚ø³Š¬ti™v²;†!»‡HJàH€ÌLèŸ wƒéYWÂ'æ;‘üÏ«[—&€ÚÂÉðT3yñBšÔ (€œÓ@µ¿A4a©‹EûÛD|½ëbÌç"\3­Ó kŒ¾ýåjA ü_Jžù[{øº/_Û„ †VF_pI®³\ÒŒâ"+*ÔƒªEAìrÖt¯y$Œ†c1‘ÒIîŽ8éƒ*H?WËÂ%ÑÖœþ Ä¿%PbFº‚£ÜÞvL8";º/ ï>Ì.§ŒKíÂ;´Í¢OÊ¿}Y¾dJÒpl-ÊS cýôxOü,I»“ËéÜ­òòI:µÏØá)"mgЖwõø”J!8¤l¯Î„ÞC“QKŋܒŒïŸm4‘ga¡µJ“XZê¾.I!æn®lÔ?$ñ¢!é§m@KJ`lÞH}™ãTßÿpòZá÷+·öU©¼+>\u70àMçóyð½Úéò¹ÅwRŒ¶/ýàÌ„^¸™íö3eÈ9|r ÷5$ÙùˆÉ`‚“©+Àî(#e¢4 ¨’v~Íxo>2¢r Óí î ‡rÕ÷cZ ¢(^ùÕŒ¬w÷ÁNCÉOD}ÜŽ1½è„,raÍå06øƒ}6°Ö³Ýŧâ$wUÿ˜òÑ3¬;›‰§0ó¨ÎòYµèÞM_1¼¦™xu2'JùÓ»Šh[øo£Ê§ð±·³‘sÇú~ôG!tßÙ~ïInë{@Ä+:Ãö¨#Ôæ–ý¶"Šî-ÅÍb¥ŠýeàÅÚ4`, ëg§ñ˜‡†zezTU^ÃÊÏ›NVXÉ,““±sc~k»…´ÕÄî@F»m`ê·ç[Ü%}`±5k+UZ©¾0ØOÃJŒðO&—‹à|íÐʘžG§Sñ뙤ŽhøVñˆË0lBê£Qòè‰`»Ó# È®…µdM ›Å‰ÁvŽý³m¦FSðbö³ö\ÿ¼+Ò6*ù:e•jiqZ9÷fœExŸhsb¼^(Æb8ÎÀAÕ(…ý¬#ýXpfúcoºoq'õC@pNIF6  ;òò‰2Œ|FøyªóVE»‹åßqæ“fÇÏ/ù¯Öªù õ·YŠIv’"ìÚº~¨ö"ûJuxò+e±çë4x"§«·— L=ÆœÛÛ€t¹+@N.mN‘ÀÍ $Æû²cï6šeO¤7¡¦¶a­DZF>Å“î//v¿}'\4÷t:Wë£Ë»¸{DÒ•aÓÀèÍë^_òî+λ¾>d$ñß±N6Ô  ÚäÜAjÆïŒßcÿ4¬TänJueÝN–ôîÉ%âºÕ3ó?¶ÕÂù‹+°â½æßTéhŸFÎGô°®õBµD8ö«‚¼x|Ù™u…/aå û&mSû_VA¨ú¼ðK€»…¸XÅeÆ}+R0 ‹YZEpi/data/B.dk.rda0000644000175100001440000001425212144476640013200 0ustar hornikusersBZh91AY&SYÓ]g;ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿà–€p øù)Uª@^¤hJˆ:•TdA£ É Ñ‚4z˜šÓM2‰4ÃSh € €Ó  &=I¦†˜&&&C4˜ŒmÊž?Õ=ª”÷ú§ÿ’ª¨uSühad4ÄÄÀ`&˜ * Èh4 ÐF 4@hA¦€‰$Ô?TýSõCe=êhšGˆ†ž¦ž i 4z hõê Ðh4=@)â'¦“Êl‘ê`™= µ=M3SMiêz†PÓ@4)骕OöÛˆ„Sʛԑ€˜FÀ˜˜0F˜i€˜ÀF¡ª¥Ïl(šROTÐz€ê@4Ð)IMµSÔm@ò†šAˆÓ@Úš€@4hÐÐ @Ô ÿéUM4@ h?¿qá|¹¼½ß‰e h¼»ï½þرž1žôÏîyU§qW¶/ûLó!{dÂþ”ÀÀ2±Tï+¤ü:¹9-°°‰ Y–¨Äz)#Ðþ÷µè·5QœŸà»--÷-jFr`¿h£Ó·#Ú£òãÿ¾êÜ[޽roÞ(irªŸ1;Þíôªsý@MEZí|Ù Q;OTùÿôpvÄdËÙo¼‚cÈb(3Â}Œnõkp;¥ñ…Á¶à£"Çšq.‚OWï-¤4Ü_ïê3öÞ)u5 çü~!”EÏ5ôLú'ñ¼uYXóæ¾)âäѽÿs¹dz‚B L[1à“½(?ÈÙ $Ð8’ãàÿNºBM¿l|‘Ð9ã@EªýààLûb.é—køZs’ôŒM[ξæâ§|ÑëX–:aT Λ ʰŽLñØt¾ÝÑj5žýã PË‹åxy6±§­ '„Ðë3ÆçÐöña^f:ö1ö烧X?$‹ÌÔÜMÄ»9¨í]À”EBB‹Œ!(¸wxC޲/kÎ&kW¨>fX´`H„ãN,ξ’ÑÑg‚ÅFñèWÒÆºÉ2â Ç×>h?Àúïå=g‚gDk7 S‰–Ü#i¸ Ôœ–^H^ßiÍm%¤2jËv«¿&EÐÂÝ5pÝïâëÀ ˜Æ$Ÿ¦LÎr'Š?Jòøv¼ÔÀP:ĘoQ¢ÔÝ`ί6¡¨º¹v‡ë¸rž[‘¹y+ÏÀ÷5`ØÀЉ6 }L[Ìñ„r::­:£¼Ô2#a»ÓÔLn¤±©õ¯Àc1jsPšt€VH)eiæj-.Ãqˆƒ`ÆŽ\Jd6õÌ`3çUMKft‡ï—S¼x2™¶Ò– —Ud ÿká˜U¡CµXm8S©C@Y $]H …d›”ÒaÍm²ääÀý}S×ÅwÒ«OÉÙ&­*)Õ±Ï:· £”YžïFúí¬R­Ë(*òi ß‚qXÉó-!AüèæŒÄmƶÄëÊmð†6×µ‚Ø÷ô¯â0¸b«»yóQ‘õL”›ÄXy wÝr T™ŸR$ÜîIÔ\Lu°5îÎjù èΑ‚.GÒ‰ u|Âq¤IbÁó&ËÁF.V)Y ö¢¯Ö|¡@*S\ó®aæCcQ:ÜH¢p0Ö%÷øB…á yìF›]j™èGP~8QC˰R‘jƈÑ"œ®{RqR¬¥ëY5¡–"p½ ]˜«|>÷+â!’Æ£ n(»ê¦5÷Óg|ª«(f_–”èÜWЇ3³ ›ª4r&ˆÐyu–²¨Û¥²aµÏÁlH)÷G ö£²‡ŽÂ Ò|Á 0rqùÚiĘù¥ßˆ%¶{CX3©ãgN‘e±Kw$v#Z†–b_i¨®¹¸z …2Ó‡HðY‡z&Hx—Gò­T¥½$f¾¤<œ]I©¿9«ªÇù 30'MÏ,®r-Kknf¸R‚ÎÏ–VMöšßåâ}å›9RJÛÓ¶SM)•ÄbŒÈG…ï2g8¢˜6Dr¶KTA!dVý]¥È æDl¸h!˜„ê° éýsæL” ‚”„¯R±)‡‡lõ»jß rKïLK=¶ËÒo ,/”Fh_uð‡¥¿f“g6‘ÎŒYeóŠê¯¬'A}¾ãŒ“6VNk ܨpàTëVbßÁÇÓ™T^”}†oš ERÎlH]1¸•yQBÅ^ýROÌk†EØFÄŸ©í5ïîÎâ—bEŠû¤5ñÝ}ƒCJ2&“¢6P¿*ê–€;¹ÊƒÆ&Ó“-˜¼P_+lv(Ý$DeÙñð›FLŒÁ<˜9測6=e‘Ç ²@ÙÁævõ›­E⬆à’ž¯wÛ±uª)±é…eq,` V‚b¤‰ÂêY¸5Žz §:mÍ+ZɇLCó#¡ æv¾N;' h¢üJö¤§Lÿv¹Mþ©AyæŠA*¸©7‡Vèê²¥cêµ´f›ÓƒÓѵÑÉË“r¸ìW:Š=ǽ­di­!$³-úŒ`¬ôO€þ0מ˜Î…b¤D„LIe \ì[¡Y5»ôð•SÀ°]Se!‹£©òM<ÜE¤‹{ªÔK\èÆÔÛ€C,¤ €“Ë"ØÕ€4\+$¥ni…Ë~Rf)ÄÔ"ÝR ì£c«ÐS´YôiЀ·Å¡‘0§´‘éЊI-Ü5³Bd †ØŒ£ƒØâ²ñ<ï3@·-·Â’\i-õ&„ ²¹N£RéÁ¥r.Ëð…)]¨„MùÄbåÝ‚ :#‡Nÿpw+\ø­NQmKÏjp£È^Ȧ…êÛ”Aˆi®ÎJ½¾qw&Î pt¸çH€·Òa•íìv ôŽ\¥`(h=Q•¦HPÑ{«f±åU k{v‹í²<ðs¼SÆÜÍÀ< "¡¡R:”¨d`ÚI׌=¹´—lós7“p%RÙâ–(EÛ…¦&¸„¦ ƒÑP"ˆ1ifyÔóš ·XõˆwθŽm[3»áV Uƒ@c­øñ cóÞa‚Üõ ¥…Ã`'("ì,#s¦è§‚–ötEÈùö †´`â©1€èŠWênÖÚ+Ë` n²) .²zM ’‡Šw­j/ÅZÝZ(pÁ±¢òèB”ÔÊ0²q絬- Ù Øâ“*ðº16rW²Ãjô2¯+ˆ©XpÓî\ÌFû  á3¶¨Ô öjŒãÌm£Úh&7  &8©lã,Ú(@¨ó•B(׫µ©`mcaQãÅGž. ºã\‡ƒ,€.h*=!YˆtjÎy9±,X·0ft_[~P½‚Æ8Ùì•…6ŠêÉ”š¦jc#e68¼W'½¤£VqÛF†VU³6úYe<¼Î›NáÇ7g.Ã)%0Ù^¾jjn;²œåN°e2åÌôÌúª ƒ…mèc]h+è´vº…eOFÒ‘cÊ;úZ^¬‚Ö4ÒËç[òuºóÔë; ê&سz÷´ÑóF­Zõ'%ÛvûŽ»¯ªiûÏ;5/ßø*<4Þ'uT¯¨êêüžuþsýô?¿E¤Òùí¿×wþô]÷{ÿ4>õÿº=/}¦Òèô–¶nŸ/öÔi­§Ôêqÿ³°g/Úɤέ+JÖjdÔÉí)JV¦œ&h8 Aã `pXÀ–p%À\WZÒ’Àà.°8 ,àK€¸Àà.°8 ,à`@8 €s–êªùü@8 €pà2Àd€¸=kZÒ jŽ ~ È @8 €pà2À\7  UVI$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I3©ZRµÑh4I$’I<|’IõUUó*ªªªªªªªª®Êªªªªªªªª®>ªªªª¹åUUUUxUUUUUUUUUUUUbªªªªªªªªªªªªªªªª¿Jµ­iUUUUUwUÕèøOO1ZÖµ¥\ÊR¹”¥s)JæR•ÌAdAdAdAdAdAdAdAdAdAdAdAdAdAdAdAdAdAdAàh  4€Ð@h  4€Ð@h  4€Ð@h  4RŠFü‚¯+¨ÝUuuuh ¦­«ànuX¹¹,Tذj™ŠZªµµµÚÚЗ*I( ÷ßã%Vg³ïïÆâ"" ¥” ˆ ±$>»ï­ à„Dîîä" BI$D ã™î4K+6˜r܈â"€R”¥)ˆÀˆº#¬¡ˆ–÷™‚"kZÖÿ–""ÌÌÖil`_Ú,ˆ­kZ”¥)J»`:Ã.³ea!šìöž3vdLÊI¹˜Îa1i³¸îîI$匰¨ØUÉDHÆ1Œa‰6&v>T hÑ[¡ˆˆ‚I%óÒôgxˆˆ‚I'fµCS!Dއ­UUQ$“Q‡–•$ˆšqÇ1Œc ÌÌÍ6kde"ð­kU©•)JS+˜w‘ãUˆˆ…UUw©™×|Á‡ª馻­kZÝëÚ÷iÜûÎÍ›6lÝ·MÀ÷mËhÖµ­jªªµçTDΨœžyçš…U^F{ã=üá8PwwuUUäòÜøé"Ö)U²ƒÁ•ÓA{Þ÷UU]-a$ÑÈvˆˆ…U½÷ºT8Â(v ¸ÂÓjîîüŒ’N®4Ä,]EŽ K’îîÿñþ}ã{{{{{†333@Ü pñe¹ÝÝÕUW80ˆ•Š®I‘Æ@ß‹[r’÷½ïÌ8Y™›^>£h<ÙuÚÌ›Yo®»æff‰$Ëå wvË-­}©Œcªª¸ðè‡QPÝ1•â"!UUsÏ`ÌœìÙ³fÍÊ$“tnÓ (¶Hî¡Æ1Œc½ïz¨Œ¡Uß ª«¨Ï:ƒCçWÐ&î©339 E0@€D*$B‘  ðð¢ÕÄ*ŒB€U‰T$@¡¨‚±1¢ÄŠDD6ÄΉT•TÕTÎîî/{Þþ7¨êb!F@ò]Ýßæ~æff·1­“iäy%ŒÅ…ΛRœ}-kZʪªâÃ~êʃµa¢"""÷½ï0±…³+0‡[Z1Œ;ªª«¿öAÕT²|²„EwwuUU­K}ßaŒŒnÙqi‡wwÿ’xƒ‚0íœ@P«™V™ˆˆŽDI'`˜…Ù†v|²Ë,¼¡$ž«³”áPÛK#UU³Nëàùv1ŒaUUglLJ!Êše¶ÖJ.Vµ­kYUUx¬#3fŽN!+ZÖ¾Ké³36¢4˜9C1“ ç’""!UU`Fq!É/ÇÛkZÖUUY‘.@ÑÆþþþþúªªðmÆÌs3ÅÝÝUU|5þAþŸÕî?×°z&â=SC3œI—ºë®¶æ™™¿Ÿ–ÞÖ; ƒVâ¸3™™ŸãüŒÌÚos¾W,ÿz 4ÐÑÀÆ9Vµ¬–ñXefnTn™r39µ–ÃI™™ ¥)Jqõã\\ZÑi²ñ-ï{ÝyT§%›häp5VjV3²0¥V¬êf#áÜ©'Ì€œO Ή½¯…¯ uh‚ 0‚Ê1Œc$= " (¢Š(GߨÁ"dè“(4KÃÞâšÊÁTpÓ“rýu×]u $òâÞÑhUâÍBœFq!Ó§N:$WBW%7h²Ë,²À\: B}  @ "7ˆcÆ0L$¤I$’HžŸ1Ÿ€4@€ù3 ¾§<óÏ<ÀBI$å4 U.ë¨u‚Á–âG ¦ff@BI$æ-Ã×5¡9Èmt²€Ù¶ƒTæÃM4Ò´ $:Y¡I5•™Z”LDD@I$€Xæfff6Ï^n§£»»¸JR” î:ë {‹mÆ1Œ`$’@M_-š4³H*ùÌÌÌ€„’H ²8,ì°Œ®°ëlcÆBI$ îè®Êá²À™Ï™UUU„’H .²FÙš‘•¥m›Æ1€’I4ÀÜÜUl¨³ šcjb÷½ïp Fff` ™pp o]rÉÔô†šê5½í{Ü¥” ]á Ý´;»»€\–ff` TÄ8Òìªðm¡ÏA332I &‚pPæ€à„fff@-Y™™€.e·qãMÃÑÐÏL·fÛuÓM4Ó@’I$mP±!r³2¨´LcÆ0I 'eÃ"á™°Ó`rË,²È$’@JãØ\ Ëd(BãÆ0I &æƒ&À* šUP|CHˆˆ€ ë“330Àž ®šè»ÎîîàLÌÌÀ+çƒÁfˆ+¢›»»¸àˆff` ¸ 0) stat.labels[i-1] <- content.names[i] } } ##Define the allowed tabulation functions count <- function(id){ if (missing(id)) { id <- seq(along=index[[1]]) } y <- tapply(id, INDEX=subindex, FUN=function(x) length(unique(x))) y[is.na(y)] <- 0 return(y) } mean <- function(x, trim=0, na.rm=TRUE) { tapply(x, INDEX=subindex, FUN = base::mean, trim=trim, na.rm=na.rm) } weighted.mean <- function(x,w,na.rm=TRUE) { tapply(x, INDEX=subindex, FUN=stats::weighted.mean, w=w, na.rm=na.rm) } sum <- function(...,na.rm=TRUE) { tapply(..., INDEX=subindex, FUN = base::sum, na.rm=na.rm) } quantile <- function(x, probs, na.rm=TRUE,names=TRUE,type=7,...) { if (length(probs) > 1) stop("The quantile function only accepts scalar prob values within stat.table") tapply(x, INDEX=subindex, FUN = stats::quantile, probs=probs, na.rm=na.rm,names=names,type=type,...) } median <- function(x, na.rm=TRUE) { tapply(x, INDEX=subindex, FUN = stats::median, na.rm=na.rm) } IQR <- function(x, na.rm=TRUE) { tapply(x, INDEX=subindex, FUN= stats::IQR, na.rm=na.rm) } max <- function(..., na.rm=TRUE) { tapply(..., INDEX=subindex, FUN = base::max, na.rm=na.rm) } min <- function(..., na.rm=TRUE) { tapply(..., INDEX=subindex, FUN = base::min, na.rm=na.rm) } ratio <- function(d,y,scale=1, na.rm=TRUE) { if (length(scale) != 1) stop("Scale parameter must be a scalar") if (na.rm) { w <- (!is.na(d) & !is.na(y)) tab1 <- tapply(d*w, INDEX=subindex, FUN=base::sum, na.rm=TRUE) tab2 <- tapply(y*w, INDEX=subindex, FUN=base::sum, na.rm=TRUE) } else { tab1 <- tapply(d, INDEX=subindex, FUN=base::sum, na.rm=FALSE) tab2 <- tapply(y, INDEX=subindex, FUN=base::sum, na.rm=FALSE) } return(scale*tab1/tab2) } percent <- function(...) { x <- list(...) if (length(x) == 0) stop("No variables to calculate percent") x <- lapply(x, as.factor) n <- count() ## Work out which indices to sweep out sweep.index <- logical(length(subindex)) for (i in seq(along=subindex)) { sweep.index[i] <- !any(sapply(x,identical,subindex[[i]])) } if (!any(sweep.index)) { return(100*n/base::sum(n, na.rm=TRUE)) } else { margin <- apply(n,which(sweep.index),base::sum, na.rm=TRUE) margin[margin==0] <- NA return(100*sweep(n, which(sweep.index), margin,"/")) } } sd <- function (..., na.rm = TRUE) { tapply(..., INDEX=subindex, FUN = stats::sd, na.rm=na.rm) } ##Calculate dimension of the main table, excluding margins n.dim <- length(index) tab.dim <- sapply(index, nlevels) ##Sort out margins if (length(margins) == 1) margins <- rep(margins, n.dim) else if(length(margins) != n.dim) stop("Incorrect length for margins argument") ##Create grid of all possible subtables. fac.list <- vector("list", n.dim) for (i in 1:n.dim) { fac.list[[i]] <- if (margins[i]) c(0,1) else 1 } subtable.grid <- as.matrix(expand.grid(fac.list)) ##Fill in the subtables ans.dim <- c(length(contents)-1, tab.dim + margins) ans <- numeric(prod(ans.dim)) for (i in 1:nrow(subtable.grid)) { ##in.subtable is a logical vector indicating which dimensions are ##in the subtable (i.e. which have not been marginalized out) in.subtable <- as.logical(subtable.grid[i,]) llim <- rep(1,n.dim) + ifelse(in.subtable,rep(0,n.dim),tab.dim) ulim <- tab.dim + ifelse(in.subtable,rep(0,n.dim),rep(1, n.dim)) subindex <- index[in.subtable] if (length(subindex) == 0) { ## Marginalizing out all dimensions subindex <- list(rep(1, length(index[[1]]))) } subtable.list <- if(missing(data)) ##eval(contents, parent.frame()) eval(contents) else eval(as.expression(contents), data) for (j in 1:length(subtable.list)) { ans[array.subset(ans.dim,c(j,llim),c(j,ulim))] <- subtable.list[[j]] } } ans <- array(ans, dim=ans.dim) ans.dimnames <- lapply(index, levels) names(ans.dimnames) <- index.labels for (i in 1:length(index)) { if (margins[i]) ans.dimnames[[i]] <- c(ans.dimnames[[i]], "Total") } dimnames(ans) <- c(list("contents"=stat.labels), ans.dimnames) attr(ans, "table.fun") <- table.fun class(ans) <- c("stat.table", class(ans)) return(ans) } array.subset <- function(dim,lower,upper) { ##Returns a logical array of dimension dim for which elements in the range ##[lower[1]:upper[1], lower[2]:upper[2],...] are TRUE and others FALSE ##Check validity of arguments (but assume everything is an integer) ndim <- length(dim) if (length(lower) != ndim || length(upper) != ndim) { stop("Length of lower and upper limits must match dimension") } if (any(lower > upper) || any(lower < 1) || any(upper > dim)) { stop("Invalid limits") } ##The math is easier if we index arrays from 0 rather than 1 lower <- lower - 1 upper <- upper - 1 N <- prod(dim) ans <- rep(TRUE, N) for (i in 1:N) { l <- i - 1 for (d in 1:ndim) { k <- l %% dim[d] #k is the index of the ith element in dimension d if (k < lower[d] || k > upper[d]) { ans[i] <- FALSE break } l <- l %/% dim[d] } } return(array(ans, dim)) } split.to.width <- function(x,width) { ## Splits a string into a vector so that each element has at most width ## characters. If width is smaller than the length of the shortest word ## then the latter is used instead x.split <- strsplit(x,split=" ")[[1]] width <- max(c(width,nchar(x.split))) y <- character(0) imin <- 1 n <- length(x.split) for (i in 1:n) { cum.width <- if(i==n) { Inf } else { sum(nchar(x.split[imin:(i+1)])) + (i - imin + 1) } if (cum.width > width) { y <- c(y,paste(x.split[imin:i], collapse=" ")) imin <- i + 1 } } return(y) } pretty.print.stattable.1d <- function(x, width, digits) { ##Pretty printing of 1-D stat.table if (length(dim(x)) != 2) stop("Cannot print stat.table") ncol <- nrow(x) col.width <- numeric(ncol+1) col.header <- vector("list",ncol+1) n.header <- integer(ncol+1) print.list <- vector("list",ncol+1) ##First column col.header[[1]] <- split.to.width(names(dimnames(x))[2], width) n.header[1] <- length(col.header[[1]]) col1 <- format(c(col.header[[1]],dimnames(x)[[2]]), justify="left") col.header[[1]] <- col1[1:n.header[1]] print.list[[1]] <- col1[-(1:n.header[1])] col.width[1] <- nchar(col.header[[1]][1]) ##Other columns for (i in 2:(ncol+1)) { col.header[[i]] <- split.to.width(dimnames(x)[[1]][i-1], width) n.header[i] <- length(col.header[[i]]) this.col <- formatC(x[i-1,],width=width, digits=digits[attr(x,"table.fun")[i-1]], "f") this.col <- format(c(col.header[[i]],this.col),justify="right") col.width[i] <- nchar(this.col[1]) col.header[[i]] <- this.col[1:n.header[i]] print.list[[i]] <- this.col[-(1:n.header[i])] } ## table.width <- sum(col.width) + ncol + 3 max.n.header <- max(n.header) cat(" ",rep("-",table.width)," \n",sep="") for(i in 1:max.n.header) { cat(" ") for(j in 1:length(print.list)) { if (i <= n.header[j]) { cat(col.header[[j]][i]) } else { cat(rep(" ", col.width[[j]]),sep="") } if (j==1) cat(" ") else cat(" ") } cat(" \n") } cat(" ",rep("-",table.width)," \n",sep="") for (i in 1:length(print.list[[1]])) { cat(" ") if (pmatch("Total",print.list[[1]][i],nomatch=0)) { ##Add a blank line before the total cat(rep(" ",col.width[1]+1)," ",rep(" ",sum(col.width[-1])+ncol), " \n ",sep="") } for (j in 1:length(print.list)) { cat(print.list[[j]][i]) if (j == 1) { cat(" " ) } else { cat(" ") } } cat(" \n") } cat(" ",rep("-",table.width)," \n",sep="") return(invisible(x)) } pretty.print.stattable.2d <- function(x, width, digits) { ##Pretty printing of 2-Dimensional stat.table if (length(dim(x)) != 3) stop("Cannot print stat.table") nstat <- dim(x)[1] ncol <- dim(x)[3] nrow <- dim(x)[2] col.width <- numeric(ncol+1) col.header <- vector("list",ncol+1) n.header <- integer(ncol+1) print.list <- vector("list",ncol+1) ##First column col.header[[1]] <- split.to.width(names(dimnames(x))[2], width) n.header[1] <- length(col.header[[1]]) col1 <- format(c(col.header[[1]],dimnames(x)[[2]]), justify="left") col.header[[1]] <- col1[1:n.header[1]] print.list[[1]] <- col1[-(1:n.header[1])] col.width[1] <- nchar(col.header[[1]][1]) ##Other columns for (i in 2:(ncol+1)) { col.header[[i]] <- split.to.width(dimnames(x)[[3]][i-1], width) n.header[i] <- length(col.header[[i]]) this.col <- matrix("", nrow=nstat,ncol=nrow) for (j in 1:nstat) { z <- x[j,,i-1] this.col[j,] <- formatC(z, width=width, format="f", digits=digits[attr(x,"table.fun")[j]]) ## this.col[j,] <- formatC(z, width=width, digits=digits, ## format=ifelse(identical(round(z),z),"d","f")) } this.col <- format(c(col.header[[i]],this.col),justify="right") col.width[i] <- nchar(this.col[1]) col.header[[i]] <- this.col[1:n.header[i]] print.list[[i]] <- this.col[-(1:n.header[i])] } ##Correct first column for multiple stats if (nstat > 1) { pl1 <- print.list[[1]] print.list[[1]] <- rep(paste(rep(" ",col.width[1]),collapse=""),nstat*nrow) print.list[[1]][1 + nstat*((1:nrow)-1)] <- pl1 } table.width <- sum(col.width) + ncol + 3 max.n.header <- max(n.header) cat(" ",rep("-",table.width)," \n",sep="") ## Supercolumn header super.header <- names(dimnames(x))[3] npad <- sum(col.width[-1]) + ncol + 1 - nchar(super.header) if (npad >= 0) { cat(" ",rep(" ",col.width[1])," ",sep="") cat(rep("-",floor(npad/2)),sep="") cat(super.header) cat(rep("-",ceiling(npad/2))," \n",sep="") } ## Headers for(i in 1:max.n.header) { cat(" ") for(j in 1:length(print.list)) { if (i <= n.header[j]) { cat(col.header[[j]][i]) } else { cat(rep(" ", col.width[[j]]),sep="") } if (j==1) cat(" ") else cat(" ") } cat(" \n") } cat(" ",rep("-",table.width)," \n",sep="") ## Body of table blank.line <- function() { cat(" ",rep(" ",col.width[1]+1)," ",rep(" ",sum(col.width[-1])+ncol), " \n",sep="") } for (i in 1:length(print.list[[1]])) { if (pmatch("Total",print.list[[1]][i],nomatch=0)) { ##Add a blank line before the total blank.line() } cat(" ") for (j in 1:length(print.list)) { cat(print.list[[j]][i]) if (j == 1) { cat(" " ) } else { cat(" ") } } cat(" \n") if (nstat > 1 && i %% nstat == 0 && i != length(print.list[[1]])) { ##Separate interleaved stats blank.line() } } cat(" ",rep("-",table.width)," \n",sep="") return(invisible(x)) } print.stat.table <- function(x, width=7,digits,...) { fun.digits <- c("count"=0,"mean"=2,"weighted.mean"=2,"sum"=2,"quantile"=2, "median"=2,"IQR"=2,"max"=2,"min"=2,"ratio"=2,"percent"=1, "sd"=2) if (!missing(digits)) { if (is.null(names(digits))) { if (length(digits) > 1) stop("digits must be a scalar or named vector") else fun.digits[1:length(fun.digits)] <- digits } else { fun.digits[names(digits)] <- digits } } if (length(dim(x)) == 2) pretty.print.stattable.1d(x, width, fun.digits) else if (length(dim(x)) == 3) pretty.print.stattable.2d(x, width, fun.digits) else NextMethod("print",...) } ## Satisfy QA checks by defining these functions. But if we never ## export them they can't be used directly. count <- function(id) { } ratio <- function(d, y, scale=1, na.rm=TRUE) { } percent <- function(...) { } Epi/R/stack.Lexis.R0000644000175100001440000000377212144476642013544 0ustar hornikusers# Functions to facilitate analysis of multistate models # The stack method is already defined (in the utils package) # and hence imported in the NAMESPACE file stack.Lexis <- function( x, ... ) { ## Function to stack obervations for survival analysis ## Make sure that lex.Cst and lex.Xst are factors with identical levels x <- Relevel( x ) ## Same covariates xx <- data.frame( cbind( x, lex.Tr="", lex.Fail=FALSE ) )[NULL,] tm <- tmat.Lexis( x ) for( fst in levels(factor(x$lex.Cst)) ) for( tst in levels(factor(x$lex.Xst)) ) if( !is.na(tm[fst,tst]) ) { tr = paste( fst, "->", tst , sep="" ) zz <- x[x$lex.Cst==fst,] xx <- rbind( xx, data.frame( zz, lex.Tr=tr, lex.Fail=(zz$lex.Xst==tst) ) ) } xx$lex.Tr <- factor(xx$lex.Tr) ## Reshuffle the variables wh.om <- match( "lex.Xst", names(xx) ) wh.rl <- match( c("lex.Tr","lex.Fail"), names(xx) ) xx <- xx[,c(1:wh.om,wh.rl,(wh.om+1):(wh.rl[1]-1))] attr(xx,"breaks") <- attr(x, "breaks") attr(xx,"time.scales") <- attr(x, "time.scales") class( xx ) <- c("stacked.Lexis","data.frame") xx } subset.stacked.Lexis <- function(x, ... ) { y <- subset.data.frame(x, ...) attr(y,"breaks") <- attr(x, "breaks") attr(y,"time.scales") <- attr(x, "time.scales") class(y) <- c("stacked.Lexis","data.frame") return(y) } transform.stacked.Lexis <- function(`_data`, ... ) { save.at <- attributes(`_data`) ## We can't use NextMethod here because of the special scoping rules ## used by transform.data.frame y <- base:::transform.data.frame(`_data`, ...) save.at[["names"]] <- attr(y, "names") attributes(y) <- save.at y } # The tmat method tmat <- function (x, ...) UseMethod("tmat") tmat.Lexis <- function( x, Y=FALSE, mode="numeric", ... ) { zz <- table(x$lex.Cst,x$lex.Xst) class(zz) <- "matrix" if( Y ) { diag(zz) <- summary( x, simplify=FALSE )[[1]][1:nrow(zz),"Risk time:"] } else diag(zz) <- NA zz[zz==0] <- NA if( mode != "numeric" ) zz <- !is.na(zz) zz } Epi/R/splitLexis.R0000644000175100001440000000777212144476642013520 0ustar hornikuserssplit.lexis.1D <- function(lex, breaks, time.scale, tol) { time.scale <- Epi:::check.time.scale(lex, time.scale) ## Entry and exit times on the time scale that we are splitting time1 <- lex[,time.scale, drop=FALSE] time2 <- time1 + lex$lex.dur ## Augment break points with +/- infinity breaks <- sort( unique( breaks ) ) I1 <- c(-Inf, breaks) I2 <- c(breaks,Inf) ## Arrays containing data on each interval (rows) for each subject (cols) en <- apply(time1, 1, pmax, I1) # Entry time ex <- apply(time2, 1, pmin, I2) # Exit time NR <- nrow(en) NC <- ncol(en) ## Does subject contribute follow-up time to this interval? ## (intervals shorter than tol are ignored) valid <- en < ex - tol dur <- ex - en; dur[!valid] <- 0 # Time spent in interval ## Cumulative time since entry at the start of each interval time.since.entry <- rbind(0, apply(dur,2,cumsum)[-NR,,drop=FALSE]) cal.new.entry <- function(entry.time) { sweep(time.since.entry, 2, entry.time, "+")[valid] } old.entry <- lex[, timeScales(lex), drop=FALSE] new.entry <- lapply(old.entry, cal.new.entry) ## Status calculation aug.valid <- rbind(valid, rep(FALSE, NC)) last.valid <- valid & !aug.valid[-1,] any.valid <- apply(valid,2,any) new.Xst <- matrix( lex$lex.Cst, NR, NC, byrow=TRUE) new.Xst[last.valid] <- lex$lex.Xst[any.valid] n.interval <- apply(valid, 2, sum) new.lex <- Lexis("entry" = new.entry, "duration" = dur[valid], "id" = rep(lex$lex.id, n.interval), "entry.status" = rep(lex$lex.Cst, n.interval), "exit.status" = new.Xst[valid]) ## Update breaks attribute and tranfer time.since attribute breaks.attr <- attr(lex, "breaks") breaks.attr[[time.scale]] <- sort(c(breaks.attr[[time.scale]], breaks)) attr(new.lex, "breaks") <- breaks.attr attr(new.lex, "time.since") <- attr(lex, "time.since") return(new.lex) } splitLexis <- function(lex, breaks, time.scale=1, tol= .Machine$double.eps^0.5) { ## Advise the uninformed user... if( inherits(lex,"stacked.Lexis") ) stop( "It makes no sense to time-split after stacking ---\n", "split your original Lexis object and stack that to get what you want.\n") ## Set temporary, unique, id variable lex$lex.tempid <- lex$lex.id lex$lex.id <- 1:nrow(lex) ## Save auxiliary data aux.data.names <- setdiff(names(lex), timeScales(lex)) aux.data.names <- aux.data.names[substr(aux.data.names,1,4) != "lex."] aux.data <- lex[, c("lex.id","lex.tempid", aux.data.names), drop=FALSE] ## Check for NAs in the timescale ts <- Epi:::check.time.scale(lex, time.scale) ts.miss <- any(is.na(lex[,ts])) if( ts.miss ) { na.lex <- lex[ is.na(lex[,ts]),] lex <- lex[!is.na(lex[,ts]),] cat( "Note: NAs in the time-scale \"", ts, "\", you split on\n") } ## If states are factors convert to numeric while splitting factor.states <- is.factor( lex$lex.Cst ) if( factor.states ) { state.levels <- levels( lex$lex.Cst ) nstates <- nlevels( lex$lex.Cst ) lex$lex.Cst <- as.integer( lex$lex.Cst ) lex$lex.Xst <- as.integer( lex$lex.Xst ) } ## Split the data lex <- split.lexis.1D(lex, breaks, time.scale, tol) ## Reinstitute the factor levels if( factor.states ) { lex$lex.Cst <- factor( lex$lex.Cst, levels=1:nstates, labels=state.levels ) lex$lex.Xst <- factor( lex$lex.Xst, levels=1:nstates, labels=state.levels ) } ## Put the NA-rows back if( ts.miss ) lex <- rbind( lex, na.lex[,colnames(lex)] ) ## Save attributes lex.attr <- attributes(lex) ## Merge lex <- merge.data.frame(lex, aux.data, by="lex.id") ## Restore attributes attr(lex,"breaks") <- lex.attr$breaks attr(lex,"time.scales") <- lex.attr$time.scales attr(lex,"time.since") <- lex.attr$time.since class(lex) <- c("Lexis", "data.frame") ## Restore id variable lex$lex.id <- lex$lex.tempid lex$lex.tempid <- NULL return(lex) } Epi/R/simLexis.R0000644000175100001440000001772412144476642013153 0ustar hornikusers# First the utility functions cummid <- function( x, time.pts=1:length(x) ) { # Computes the cumulative area under a curve vith values x at time.pts cumsum( c(0, (x[-1]-diff(x)/2)*diff(time.pts) ) ) } sim1 <- function( rt, init, time.pts ) { # Simulates a single transition time and state based on the dataframe # rt with columns lex.id and timescales. Each row in rt is the id, # followed by the set of estimated transition rates to the different # states reachable from the current one. ci <- apply( rt[,-1,drop=FALSE], 2, cummid, time.pts ) tt <- uu <- -log( runif(ncol(ci)) ) for( i in 1:ncol(ci) ) tt[i] <- approx( ci[,i], time.pts, uu[i], rule=2 )$y # Note this resulting data frame has 1 row data.frame( lex.id = rt[1,1], lex.dur = min(tt,na.rm=TRUE), lex.Xst = factor( if( min(tt)1 ) stop( "More than one lex.Cst present.\n" ) # Expand each person by the timepoints nx <- nd[rep(1:nrow(nd),each=np),] nx[,timeScales(init)] <- nx[,timeScales(init)] + rep(time.pts,nr) nx$lex.dur <- 1 # Make a dataframe with predicted rates for each of the transitions # out of this state for these times rt <- data.frame( lex.id=nx$lex.id ) for( i in 1:length(Tr[[cst]]) ) rt <- cbind( rt, exp(predict(Tr[[cst]][[i]],newdata=nx)) ) names( rt )[-1] <- names( Tr[[cst]] ) # Then find the transition time and exit state for each person: xx <- match( c("lex.dur","lex.Xst"), names(nd) ) if( any( !is.na(xx) ) ) nd <- nd[,-xx[!is.na(xx)]] merge( nd, do.call( "rbind", lapply( split(rt,rt$lex.id), sim1, init, time.pts ) ), by="lex.id" ) } get.next <- function( sf, init, tr.st ) { # Procduces an initial Lexis object for the next simulation for those # who have ended up in a transient state. # Note that this exploits the existance of the "time.since" attribute # for Lexis objects and assumes that a character vector naming the # transient states is supplied as argument. if( nrow(sf)==0 ) return( sf ) nxt <- sf[sf$lex.Xst %in% tr.st,] if( nrow(nxt) == 0 ) return( nxt ) nxt[,timeScales(init)] <- nxt[,timeScales(init)] + nxt$lex.dur wh <- attr( init,"time.since" ) for( i in 1:length(wh) ) if( wh[i] != "" ) nxt[nxt$lex.Xst==wh[i],timeScales(init)[i]] <- 0 nxt$lex.Cst <- nxt$lex.Xst return( nxt ) } chop.lex <- function( obj, cens ) { # A function that chops off all follow-up beyond cens since entry for # each individual zz <- entry( obj, 1, by.id=TRUE ) ww <- merge( obj, data.frame( lex.id=as.numeric(names(zz)), cens=zz+cens ) ) ww <- ww[ww[,timeScales(obj)[1]] < ww$cens,] x.dur <- pmin( ww$lex.dur, ww[,"cens"]-ww[,timeScales(obj)[1]] ) ww$lex.Xst[x.dur 0 ) { nx <- do.call( "rbind", lapply( split(nxt,nxt$lex.Cst), simX, init, Tr, time.pts ) ) sf <- rbind( sf, nx ) nxt <- get.next( nx, init, tr.st ) } # Doctor lex.Xst for the censored, and supply attributes sf$lex.Xst[is.na(sf$lex.Xst)] <- sf$lex.Cst[is.na(sf$lex.Xst)] # Finally, nicely order the output by persons, then times and states nord <- match( c( "lex.id", timeScales(sf), "lex.dur", "lex.Cst", "lex.Xst" ), names(sf) ) noth <- setdiff( 1:ncol(sf), nord ) sf <- sf[order(sf$lex.id,sf[,timeScales(init)[1]]),c(nord,noth)] rownames(sf) <- NULL attr( sf, "time.scales" ) <- attr( init, "time.scales" ) attr( sf, "time.since" ) <- attr( init, "time.since" ) chop.lex( sf, max(time.pts) ) } nState <- function ( obj, at, from, time.scale = 1 ) { # counte the number of persons in each state of the Lexis object 'obj' # at the times 'at' from the time 'from' in the time scale # 'time.scale' # Determin timescales and absorbing and transient states tmsc <- Epi:::check.time.scale(obj,time.scale) TT <- tmat(obj) absorb <- rownames(TT)[apply(!is.na(TT),1,sum)==0] transient <- setdiff( rownames(TT), absorb ) # Expand each record length(at) times tab.frm <- obj[rep(1:nrow(obj),each=length(at)),c(tmsc,"lex.dur","lex.Cst","lex.Xst")] # Stick in the correponding times on the chosen time scale tab.frm$when <- rep( at, nrow(obj) ) + from # For transient states keep records that includes these points in time tab.tr <- tab.frm[tab.frm[,tmsc] <= tab.frm$when & tab.frm[,tmsc]+tab.frm$lex.dur > tab.frm$when,] tab.tr$State <- tab.tr$lex.Cst # For absorbing states keep records where follow-up ended before tab.ab <- tab.frm[tab.frm[,tmsc]+tab.frm$lex.dur <= tab.frm$when & tab.frm$lex.Xst %in% absorb,] tab.ab$State <- tab.ab$lex.Xst # Make a table using the combination of those in transient and # absorbing states. with( rbind( tab.ab, tab.tr ), table( when, State ) ) } pState <- function( nSt, perm=1:ncol(nSt) ) { # Compute cumulative proportions of persons across states in order # designate by 'perm' tt <- t( apply( nSt[,perm], 1, cumsum ) ) tt <- sweep( tt, 1, tt[,ncol(tt)], "/" ) class( tt ) <- c("pState","matrix") tt } plot.pState <- function( x, col = rainbow(ncol(x)), border = "transparent", xlab = "Time", ylab = "Probability", ... ) { # Function to plot cumulative probabilities along the time scale. # Just for coding convenience when plotting polygons pSt <- cbind( 0, x ) matplot( as.numeric(rownames(pSt)), pSt, type="n", ylim=c(0,1), yaxs="i", xaxs="i", xlab=xlab, ylab=ylab, ... ) for( i in 2:ncol(pSt) ) { polygon( c( as.numeric(rownames(pSt)) , rev(as.numeric(rownames(pSt))) ), c( pSt[,i ], rev(pSt[,i-1]) ), col=col[i-1], border=border[i-1], ... ) } } Epi/R/rateplot.R0000644000175100001440000001551012144476642013177 0ustar hornikusersrateplot <- function( rates, which = c("ap","ac","pa","ca"), age = as.numeric( dimnames( rates )[[1]] ), per = as.numeric( dimnames( rates )[[2]] ), grid = FALSE, a.grid = grid, p.grid = grid, c.grid = grid, ygrid = grid, col.grid = gray( 0.9 ), a.lim = range( age, na.rm=TRUE ) + c(0,diff( range( age ) )/30), p.lim = range( per, na.rm=TRUE ) + c(0,diff( range( age ) )/30), c.lim = NULL, ylim = range( rates[rates>0], na.rm=TRUE ), at = NULL, labels = paste( at ), a.lab = "Age at diagnosis", p.lab = "Date of diagnosis", c.lab = "Date of birth", ylab = "Rates", type = "l", lwd = 2, lty = 1, log.ax = "y", las = 1, ann = FALSE, a.ann = ann, p.ann = ann, c.ann = ann, xannx = 1/20, cex.ann = 0.8, a.thin = seq( 1, length( age ), 2 ), p.thin = seq( 1, length( per ), 2 ), c.thin = seq( 2, length( age ) + length( per ) - 1, 2 ), col = par( "fg" ), a.col = col, p.col = col, c.col = col, ... ) { # Remove 0 rates, in order to avoid warnings rates[rates==0] <- NA # then do the plots for( i in 1:length( which ) ) { if( toupper( which[i] ) == "AP" ) Aplot( rates, age = age, per = per, a.grid = a.grid, ygrid = ygrid, col.grid = col.grid, a.lim = a.lim, ylim = ylim, a.lab = a.lab, ylab = ylab, at = at, labels = labels, type = type, lwd = lwd, lty = lty, col = col, log.ax = log.ax, las = las, p.ann = p.ann, xannx = xannx, p.col = p.col, cex.ann = cex.ann, p.thin = p.thin, p.lines = TRUE, c.lines = FALSE, ... ) if( toupper( which[i] ) == "AC" ) Aplot( rates, age = age, per = per, a.grid = a.grid, ygrid = ygrid, col.grid = col.grid, a.lim = a.lim, ylim = ylim, a.lab = a.lab, ylab = ylab, at = at, labels = labels, type = type, lwd = lwd, lty = lty, col = col, log.ax = log.ax, las = las, c.ann = c.ann, p.ann = p.ann, xannx = xannx, c.col = c.col, p.col = p.col, cex.ann = cex.ann, c.thin = c.thin, p.lines = FALSE, c.lines = TRUE, ... ) if( toupper( which[i] ) %in% c("APC","ACP") ) Aplot( rates, age = age, per = per, a.grid = a.grid, ygrid = ygrid, col.grid = col.grid, a.lim = a.lim, ylim = ylim, a.lab = a.lab, ylab = ylab, at = at, labels = labels, type = type, lwd = lwd, lty = lty, col = col, log.ax = log.ax, las = las, c.ann = c.ann, p.ann = p.ann, xannx = xannx, c.col = c.col, p.col = p.col, cex.ann = cex.ann, c.thin = c.thin, p.thin = p.thin, p.lines = TRUE, c.lines = TRUE, ... ) if( toupper( which[i] ) == "PA" ) Pplot( rates, age = age, per = per, grid = grid, p.grid = p.grid, ygrid = ygrid, col.grid = col.grid, p.lim = p.lim, ylim = ylim, p.lab = p.lab, ylab = ylab, at = at, labels = labels, type = type, lwd = lwd, lty = lty, col = col, log.ax = log.ax, las = las, ann = a.ann, xannx = xannx, cex.ann = cex.ann, a.thin = a.thin, ... ) if( toupper( which[i] ) == "CA" ) Cplot( rates, age = age, per = per, grid = grid, c.grid = c.grid, ygrid = ygrid, col.grid = col.grid, c.lim = c.lim, ylim = ylim, c.lab = c.lab, ylab = ylab, at = at, labels = labels, type = type, lwd = lwd, lty = lty, col = col, log.ax = log.ax, las = las, ann = a.ann, xannx = xannx, cex.ann = cex.ann, a.thin = a.thin, ... ) } } Epi/R/projection.ip.r0000644000175100001440000000172012144476642014166 0ustar hornikusersprojection.ip <- function( X, M, orth = FALSE, weight=rep(1,nrow(X)) ) # Generate the projection of M on span(X) w.r.t the inner # product =sum( x*w*y). # ( Stolen from PD, modified from stats:::proj.matrix ) # Avoids computing the entire projection matrix # X %*% inverse( X'WX ) %*% (XW)' by first computing # inverse( X'WX ) %*% (XW)'M # (which is (p x p) %*% (p x n) %*% (n x k), i.e. (p x k) ) # and then premultiplying X (n x p) hence avoiding making # a n x n matrix underway (note that n is large, p is small). # Note multiplication by W (diagional matrix) is done by # vector multiplication using the recycling facility of R. { if( nrow(X) != length(weight) ) stop( "Dimension of space and length of weights differ!" ) if( nrow(X) != nrow(M) ) stop( "Dimension of space and rownumber of model matrix differ!" ) Pp <- solve( crossprod( X * sqrt(weight) ), t( X * weight ) ) %*% M PM <- X %*% Pp if (orth) PM <- M - PM else PM } Epi/R/print.floated.R0000644000175100001440000000160312144476642014114 0ustar hornikusers"print.floated" <- function(x, digits=max(3, getOption("digits") - 3), level = 0.95, ...) { K <- qnorm((1+level)/2) n <- length(x$coef) mat <- matrix("", n, 4) ci.mat <- matrix(0, n, 2) cm <- x$coefmat cat("Floating treatment contrasts for factor ", x$factor, "\n\n") mat[,1] <- names(x$coef) se <- sqrt(x$var) ci.mat[, 1] <- x$coef - K * se ci.mat[, 2] <- x$coef + K * se mat[,2] <- format(x$coef, digits=digits) mat[,3] <- format(se, digits=digits) ci.mat <- format(ci.mat, digits=digits) mat[,4] <- paste("(", ci.mat[,1], ",", ci.mat[,2], ")", sep="") dimnames(mat) <- list(rep("", n), c("Level", "Coefficient", "Std. Error", "95% Floating CI")) print(mat, quote=FALSE) cat("\nError limits over all contrasts: ", paste(format(c(0.99, x$limits), digits=2)[-1], collapse=","),"\n") } Epi/R/print.Icens.r0000644000175100001440000000020012144476642013567 0ustar hornikusersprint.Icens <- function( x, digits=4, scale=1, ... ) { emat <- summary.Icens( x, scale=scale ) print( round( emat, digits ) ) } Epi/R/plotevent.r0000644000175100001440000000217112144476642013424 0ustar hornikusersplotevent <- function(last.well,first.ill,data) { subsetdata <- data[!is.na(data[,first.ill]),c(last.well,first.ill)] subsetdata$n <- seq(1,dim(subsetdata)[1]) plot(c(subsetdata[,1], subsetdata[,2]),rep(0,2*nrow(subsetdata)), bty="n", yaxt="n", type="n", xlim=c(round(min(subsetdata[,1],subsetdata[,2],na.rm=T)),round(max(subsetdata[,1],subsetdata[,2],na.rm=T))), ylim=c(-2, max(subsetdata[,3])), xlab="Time",ylab="Conversions", main=paste("Times between ",last.well," and ",first.ill,"",sep="")) mtext(seq(0,nrow(subsetdata),5)[-1],side=2,at=seq(0,nrow(subsetdata),5)[-1],las=1,line=0) mtext("Eq Cl",side=2,at=-2,las=1, padj=0,col="blue",font=2) segments(subsetdata[,1],subsetdata[,3],subsetdata[,2],subsetdata[,3],lwd=1) left <- unique(subsetdata[,1]) right <- unique(subsetdata[,2]) names(left) <- rep("0",length(left)) names(right) <- rep("1",length(right)) MM <- sort(c(left,right)) type <- as.numeric(names(MM)) type2 <- c(type[-1],0) diff <- type-type2 int <- MM[diff<0|diff>0] mat <- matrix(int,length(int)/2,2,byrow=TRUE) d <- mat[,1] - mat[,2] segments(mat[,1][d!=0],-2,mat[,2][d!=0],-2,lwd=3,col="blue") } Epi/R/plotEst.R0000644000175100001440000000731612144476642013004 0ustar hornikusersget.ests <- function( ests, ... ) { # If a model object is supplied, extract the parameters and the # standard errors # if( inherits( ests, c("glm","coxph","clogistic","gnlm","survreg") ) ) ests <- ci.exp( ests, ... ) else if( inherits( ests, c("lm","gls","lme","nls","polr", "mer","MIresult","mipo") ) ) ests <- ci.lin( ests, ... )[,-(2:4)] ests } plotEst <- function( ests, y = dim(ests)[1]:1, txt = rownames(ests), txtpos = y, ylim = range(y)-c(0.5,0), xlab = "", xtic = nice( ests[!is.na(ests)], log=xlog ), xlim = range( xtic ), xlog = FALSE, pch = 16, cex = 1, lwd = 2, col = "black", col.txt = "black", font.txt = 1, col.lines = col, col.points = col, vref = NULL, grid = FALSE, col.grid = gray(0.9), restore.par = TRUE, ... ) { # Function to plot estimates from a model. # Assumes that ests is a p by 3 matrix with estimate, lo and hi as # columns OR a model object. # Extract the estimates if necessary # ests <- get.ests( ests, ... ) # Is it likley that we want a log-axis for the parameters? # mult <- inherits( ests, c("glm","coxph","gnlm") ) if( missing(xlog) ) xlog <- mult # Create an empty plot in order to access the dimension so that # sufficient place can be made for the text in the margin # plot.new() mx <- max( strwidth( unlist( strsplit( txt, "\n" ) ), units="in" ) ) oldpar <- par( mai=par("mai") + c(0,mx,0,0) ) if( restore.par ) on.exit( par( oldpar ) ) # Set up the coordinate system witout advancing a frame # plot.window( xlim = xlim, ylim = ylim, log = ifelse( xlog, "x", "") ) # Draw a grid if requested # if( !is.logical( grid ) ) abline( v = grid, col = col.grid ) if( is.logical( grid ) & grid[1] ) abline( v = xtic, col = col.grid ) # Draw a vertical reference line # if( !missing( vref ) ) abline( v = vref ) # Draw the estimates with c.i. s # linesEst( ests, y, pch=pch, cex=cex, lwd=lwd, col.points=col.points, col.lines=col.lines ) # Finally the x-axis and the annotation of the estimates # axis( side = 1, at = xtic ) mtext( side=1, xlab, line=par("mgp")[1], cex=par("cex")*par("cex.lab") ) axis( side=2, at=txtpos, labels=txt, las=2, lty=0, col=col.txt ) invisible( oldpar ) } pointsEst <- linesEst <- function( ests, y = dim(ests)[1]:1, pch = 16, cex = 1, lwd = 2, col = "black", col.lines = col, col.points = col, ... ) { # Function to add estimates from a model to a drawing. # Assumes that ests is a p by 3 matrix with estimate, lo and hi as # columns. # Extract the estimates if necessary # ests <- get.ests( ests, ... ) # Cut the confidence interval lines to fit inside the plot # before drawing them. # xrng <- if( par("xlog") ) 10^par("usr")[1:2] else par("usr")[1:2] segments( pmax(ests[, 2],xrng[1]), y, pmin(ests[, 3], xrng[2]), y, lwd = lwd, col=col.lines ) # Then the point estimates on top of the lines. # points( ests[, 1], y, pch = pch, cex = cex, col=col.points ) invisible() } nice <- function( x, log = F, lpos = c(1,2,5), ... ) { # Function to produce nice labels also for log-axes. # if( log ) { fc <- floor( log10( min( x ) ) ):ceiling( log10( max( x ) ) ) tick <- as.vector( outer( lpos, 10^fc, "*" ) ) ft <- max( tick[tickmax(x)] ) tick <- tick[tick>=ft & tick<=lt] if( length( tick ) < 4 & missing( lpos ) ) tick <- nice( x, log=T, lpos=c(1:9) ) if( length( tick ) > 10 & missing( lpos ) ) tick <- nice( x, log=T, lpos=1 ) tick } else pretty( x, ... ) } Epi/R/pctab.R0000644000175100001440000000070212144476642012433 0ustar hornikuserspctab <- function( TT, margin=length( dim( TT ) ), dec=1 ) { nd <- length( dim( TT ) ) sw <- (1:nd)[-margin[1]] rt <- sweep( addmargins( TT, margin, list( list( All=sum, N=function( x ) sum( x )^2/100 ) ) ), sw, apply( TT, sw, sum )/100, "/" ) if( dec ) print( round( rt, dec ) ) invisible( rt ) } Epi/R/ncut.r0000644000175100001440000000074012144476642012355 0ustar hornikusersncut <- function( x, breaks, type="left" ) { # Sorting to get the opportunity to call the function recursively. breaks <- sort( breaks ) # Get the indices, but fix the 0 indices to produce NAs: fi <- findInterval( x, breaks ) fi[fi==0] <- length( breaks ) + 1 switch( toupper( substr( type, 1, 1 ) ), "L" = breaks[fi], "R" = -ncut( -x, -breaks ), "M" = ( breaks[fi] - ncut( -x, -breaks ) ) / 2 ) } Epi/R/mh.R0000644000175100001440000001034512144476642011752 0ustar hornikusers# Mantel-Haenszel estimate and test mh <- function(cases, denom, compare = 1, levels = c(1, 2), by = NULL, cohort = !is.integer(denom), confidence = 0.9) { ndim <- length(dim(cases)) edgin <- names(dimnames(cases)) edgen <- paste("Dimension", 1:ndim) if (is.null(edgin)) edges <- edgen else edges <- ifelse(edgin == "", edgen, edgin) if (is.null(edges)) edges <- rep("", ndim) if(length(dim(denom)) != ndim) { stop("Cases and Pyrs arrays of unequal dimension") } if(is.numeric(compare)) { comp <- as.integer(compare) if(comp < 1 || comp > ndim) { stop("Illegal argument: compare") } } else { comp <- (1:ndim)[edges == compare] if(length(comp) != 1) { stop("Illegal argument: compare") } } if(!is.null(by)) { if (!is.numeric(by)) { mtch <- match(by, edges) if (any(is.na(mtch))) { stop("Illegal argument: by") } by <- (1:ndim)[mtch] } if (any(by < 1 | by > ndim | by == comp)) { stop("Illegal argument: by") } } gtxt <- vector("character", 3) gtxt[1] <- edges[comp] gtxt[2] <- dimnames(cases)[[comp]][levels[1]] gtxt[3] <- dimnames(cases)[[comp]][levels[2]] ctxt <- edges[-c(comp, by)] if (length(ctxt) == 0) ctxt <- as.null() others <- (1:ndim)[ - comp] select <- function(a, el) { b <- a[el] ifelse(is.na(b), 0, b) } d1 <- apply(cases, others, select, el = levels[1]) d2 <- apply(cases, others, select, el = levels[2]) if(length(d1) == 0 || length(d2) == 0) { stop("Illegal argument: levels") } y1 <- apply(denom, others, select, el = levels[1]) y2 <- apply(denom, others, select, el = levels[2]) d <- d1 + d2 y <- y1 + y2 if (cohort) { qt <- ifelse(y>0, (d1 * y2)/y, 0) rt <- ifelse(y>0, (d2 * y1)/y, 0) ut <- ifelse(y>0, d1 - ((d * y1)/y), 0) vt <- ifelse(y>0, (d * y1 * y2)/(y^2), 0) } else { s1 <- d1 + y1 s2 <- d2 + y2 t <- s1 + s2 qt <- ifelse(t>1, (d1 * y2)/t, 0) rt <- ifelse(t>1, (d2 * y1)/t, 0) ut <- ifelse(t>1, d1 - ((d * s1)/t), 0) vt <- ifelse(t>1, (d * y * s1 * s2)/((t - 1) * (t^2)), 0) } if(!is.null(by)) { if(length(by) < ndim - 1) { nby <- match(by, others) q <- apply(qt, nby, sum) r <- apply(rt, nby, sum) u <- apply(ut, nby, sum) v <- apply(vt, nby, sum) } else { q <- qt r <- rt u <- ut v <- vt } } else { q <- sum(qt) r <- sum(rt) u <- sum(ut) v <- sum(vt) } rr <- q/r se <- sqrt(v/(q * r)) ch <- (u^2)/v ef <- exp( - qnorm((1 - confidence)/2) * se) if (cohort) ty <- "Rate ratio" else ty <- "Odds ratio" res <- list(groups = gtxt, control = ctxt, type=ty, q=q, r=r, u=u, v=v, ratio = rr, se.log.ratio = se, cl.lower = rr/ef, cl.upper = rr * ef, chisq = ch, p.value = 1 - pchisq( ch, 1)) class(res) <- "mh" res } print.mh <- function(m) { cat("\n") if (!is.null(m$control)) cat("\nMantel-Haenszel comparison for: ") else cat("Comparison for: ") cat(m$groups[1], " (", m$groups[2], "versus", m$groups[3], ")\n") if (!is.null(m$control)) cat("controlled for:", m$control, "\n") cols <- c(m$type, "CL (lower)", "CL (upper)", "Chisq (1 df)", "p-value") nr <- length(m$ratio) if (is.array(m$ratio)) { dnt <- dimnames(m$ratio) size <- dim(m$ratio) nw <- length(dnt) } else { rn <- names(m$ratio) if (length(rn) > 1) dnt <- list(names(m$ratio)) else dnt <- list("") size <- nr nw <- 1 } dno <- vector("list", nw+1) so <- vector("numeric", nw+1) dno[[1]] <- dnt[[1]] dno[[2]] <- cols so[1] <- size[1] so[2] <- 5 if (nw > 1) for (i in 2:nw) { dno[[i+1]] <- dnt[[i]] so[i+1] <- size[i] } s1 <- size[1] tab <- cbind(m$ratio, m$cl.lower, m$cl.upper, m$chisq, m$p.value) # as.matrix(m$ratio, nrow=s1), # as.matrix(m$cl.lower, nrow=s1), # as.matrix(m$cl.upper, nrow=s1), # as.matrix(m$chisq, nrow=s1), # as.matrix(m$p.value, nrow=s1) ) print(array(tab, dim=so, dimnames=dno)) if (nr > 1) { Q <- sum(m$q) R <- sum(m$r) cat("\nOverall Mantel-Haenszel estimate of", m$type, ":", format(Q/R)) h <- sum(((m$q*R-m$r*Q)^2)/m$v)/(Q*R) df <- sum(m$v>0)-1 cat("\nChi-squared test of heterogeneity:", format(h), "(",df," df), p =", format(1-pchisq(h, df)), "\n") } cat("\n") } # Power calculations mh.power <- function(mh, ratio, alpha=0.05) { n.se <- log(ratio)/mh$se.log.ratio pnorm(n.se - qnorm(1-alpha/2)) } Epi/R/lls.R0000644000175100001440000000172112144476642012136 0ustar hornikuserslls <- # A function that expands the functionality of ls() function( pos = 1, pat = "", all=FALSE, print=TRUE ) { # First a function that returns length/dim when you ask for it dimx <- function(dd) if (is.null(dim(dd))) length(dd) else dim(dd) # A vector of object names lll <- ls( pos=pos, pattern=pat, all.names=all ) # Are there any objects at all? if( length(lll) > 0 ) { obj.mode <- obj.clas <- obj.size <- character(0) # Then find mode, class, name and dimension of them and return it for(i in 1:length(lll)) { obj.mode[i] <- eval( parse(text = paste( "mode(", lll[i], ")"))) obj.clas[i] <- paste( eval( parse(text = paste("class(", lll[i], ")"))), collapse=" " ) obj.size[i] <- paste( eval( parse(text = paste( "dimx(", lll[i], ")"))), collapse=" " ) } dfr <- data.frame( name=lll, mode=obj.mode, class=obj.clas, size=obj.size, stringsAsFactors=FALSE ) print( invisible( dfr ), right=FALSE ) } } Epi/R/lexis.R0000644000175100001440000005125012144476642012472 0ustar hornikusersLexis <- function(entry, exit, duration, entry.status=0, exit.status=0, id, data, merge=TRUE, states, tol=.Machine$double.eps^0.5) { nmissing <- missing(entry) + missing(exit) + missing(duration) if (nmissing > 2) stop("At least one of the arguments exit and duration must be supplied") only.exit <- missing( entry.status ) && !missing( exit.status ) ## If data argument is supplied, use it to evaluate arguments if (!missing(data)) { if (!missing(entry)) { entry <- eval(substitute(entry), data, parent.frame()) } if (!missing(exit)) { exit <- eval(substitute(exit), data, parent.frame()) } if (!missing(duration)) { duration <- eval(substitute(duration), data, parent.frame()) } entry.status <- eval(substitute(entry.status), data, parent.frame()) exit.status <- eval(substitute(exit.status), data, parent.frame()) if (!missing(id)) { id <- eval(substitute(id), data, parent.frame()) } if (merge) { data <- as.data.frame(data) } } ## Check for missing values in status variables wh.miss <- any(is.na(entry.status)) + 2*any(is.na(exit.status)) if ( wh.miss > 0 ) stop("Missing values in ", switch( wh.miss, "entry status", "exit status", "entry AND exit status" ) ) ## Adjust entry status mode according to exit status if( only.exit ) { if( is.logical( exit.status ) ) entry.status <- FALSE if( is.character( exit.status ) ) exit.status <- factor( exit.status ) if( is.factor( exit.status ) ) { entry.status <- factor( rep( levels(exit.status)[1], length(exit.status)), levels=levels(exit.status), labels=levels(exit.status) ) cat("NOTE: entry.status has been set to", paste( '"', levels(exit.status)[1], '"', sep='' ), "for all.\n" ) } if( is.numeric( exit.status ) ) entry.status <- rep( 0, length( exit.status ) ) } ## Convert character states to factors if( is.character(entry.status) ) entry.status <- factor(entry.status) if( is.character( exit.status) ) exit.status <- factor( exit.status) ## Check compatibility of entry and exit status if (is.factor(entry.status) || is.factor(exit.status)) { if (is.factor(entry.status) && is.factor(exit.status)) { if (!identical(levels(entry.status),levels(exit.status))) { all.levels = union(levels(entry.status),levels(exit.status)) entry.status <- factor( entry.status, levels=all.levels ) exit.status <- factor( exit.status, levels=all.levels ) cat("Incompatible factor levels in entry.status and exit.status:\n", "both lex.Cst and lex.Xst now have levels:\n", all.levels, "\n") } } else { stop("Incompatible classes for entry and exit status") } } else { if (mode(entry.status) != mode(exit.status)) { stop("Incompatible mode for entry and exit status") } } ## If entry is missing and one of the others is given as a list of length ## one, entry is assumed to be 0 on this only timescale. if( nmissing==2 ) { if( !missing(exit) ) { if( length(exit)>1 ) stop("If 'entry' is omitted, only one timescale can be specified.") else { entry <- exit entry[[1]] <- 0*entry[[1]] cat( "NOTE: entry is assumed to be 0 on the",names(exit),"timescale.\n") } } else if( !missing(duration) ) { if( length(duration)>1 ) stop("If 'entry' is omitted, only one timescale can be specified") else { entry <- duration entry[[1]] <- 0*entry[[1]] cat( "NOTE: entry is assumed to be 0 on the",names(duration),"timescale.\n") } } else stop("Either exit or duration must be supplied.") } ## Coerce entry and exit lists to data frames if(!missing(entry)) { entry <- as.data.frame(entry) if (is.null(names(entry))) stop("entry times have no names") if (any(substr(names(entry),1,4) == "lex.")) stop("names starting with \"lex.\" cannot be used for time scales") } if(!missing(exit)) { exit <- as.data.frame(exit) if (is.null(names(exit))) stop("exit times have no names") if (any(substr(names(exit),1,4) == "lex.")) stop("names starting with \"lex.\" cannot be used for time scales") } if(!missing(duration)) { duration <- as.data.frame(duration) if (is.null(names(duration))) stop("duration have no names") if (any(substr(names(duration),1,4) == "lex.")) stop("names starting with \"lex.\" cannot be used for time scales") } if (missing(entry)) { ## Impute entry entry <- exit - duration } if (missing(duration)) { ## Impute duration full.time.scales <- intersect(names(entry), names(exit)) if (length(full.time.scales) == 0) { stop("Cannot calculate duration from entry and exit times") } duration <- exit[,full.time.scales[1]] - entry[,full.time.scales[1]] } if (missing(exit)) { all.time.scales <- names(entry) } else { ## We dont need the exit times but, if they are supplied, we must ## make sure they are consistent with the entry and duration. all.time.scales <- unique(c(names(entry), names(exit))) ## Fill in any missing entry times entry.missing <- setdiff(all.time.scales, names(entry)) if (length(entry.missing) > 0) { entry <- cbind(entry, exit[,entry.missing, drop=FALSE] - duration) } ## Check that duration is the same on all time scales dura <- exit - entry[,names(exit),drop=FALSE] if (missing(duration)) { duration <- dura[,1] #BxC# apply( dura, 1, mean, na.rm=TRUE ) # Allows for timescales with missing values } ok <- sapply(lapply(dura, all.equal, duration), isTRUE) # ok <- sapply(lapply(dura, all.equal, duration), # function(x) identical(FALSE,x) ) if (!all(ok)) { stop("Duration is not the same on all time scales") } } ## Check that duration is positive if (any(duration<0)) { stop("Duration must be non-negative") } ## Make sure id value - if supplied - is valid. Otherwise supply default id if (missing(id)) { id <- 1:nrow(entry) } else if (any(duplicated(id))) { ##Fixme: check for overlapping intervals ##stop("Duplicate values in id") } ## Return a data frame with the entry times, duration, and status ## variables Use the prefix "lex." for the names of reserved ## variables. if( is.data.frame( duration ) ) duration <- duration[,1] lex <- data.frame(entry, "lex.dur" = duration, "lex.Cst" = entry.status, "lex.Xst" = exit.status, "lex.id" = id ) #### Addition by BxC --- support for states as factors # Convert states to factors if states are given if( !missing( states ) ) #is.character( states ) ) { # This as.character-business is necessary because we cannot assume # that the values of states are 1,2, etc. st.lev <- sort( unique( as.character( c(lex$lex.Cst,lex$lex.Xst) ) ) ) lex$lex.Cst <- factor( as.character(lex$lex.Cst), levels=st.lev, labels=states ) lex$lex.Xst <- factor( as.character(lex$lex.Xst), levels=st.lev, labels=states ) } if (!missing(data) && merge) { duplicate.names <- intersect(names(lex), names(data)) if (length(duplicate.names) > 0) { stop("Cannot merge data with duplicate names") } lex <- cbind(lex, data) } ## Drop rows with short duration for consistency with splitLexis short.dur <- lex$lex.dur <= tol if (any(short.dur)) { warning("Dropping ", sum(short.dur), " rows with duration of follow up < tol") lex <- subset(lex, !short.dur) } ## Return Lexis object attr(lex,"time.scales") <- all.time.scales attr(lex,"time.since") <- rep( "", length(all.time.scales) ) breaks <- vector("list", length(all.time.scales)) names(breaks) <- all.time.scales attr(lex,"breaks") <- breaks class(lex) <- c("Lexis", class(lex)) return(lex) } is.Lexis <- function(x) { inherits(x, "Lexis") } check.time.scale <- function(lex, time.scale=NULL) { ##Utility function, returns the names of the time scales in a Lexis object ##lex - a Lexis object ##time.scale - a numeric or character vector. The function checks that ## these are valid time scales for the Lexis object. ##Return value is a character vector containing the names of the requested ##time scales all.names <- timeScales(lex) if (is.null(time.scale)) return(all.names) nscale <- length(time.scale) scale.names <- character(nscale) if (is.character(time.scale)) { for (i in 1:nscale) { if (is.null(lex[[time.scale[i]]])) stop("invalid time scale name") } } else if (is.numeric(time.scale)) { if (any(time.scale > length(all.names)) || any(time.scale < 1)) stop("invalid time scale column number") time.scale <- all.names[time.scale] } else { stop("invalid type for time scale") } return(time.scale) } valid.times <- function(x, time.scale=1) { # A utility function that returns a data.frame / Lexis object with # rows with missing timescales removed x[complete.cases(x[,check.time.scale(x,time.scale)]),] } plot.Lexis.1D <- function(x, time.scale=1, breaks="lightgray", type="l", col="darkgray", xlim, ylim, xlab, ylab, ...) { ## x Lexis object ## time.scale name of time scale to plot if (length(time.scale) != 1) stop("Only one time scale allowed") x <- valid.times(x,time.scale) time.entry <- x[,time.scale] time.exit <- x[,time.scale] + x$lex.dur id <- x$lex.id if (missing(xlim)) xlim <- c(min(time.entry), max(time.exit)) if (missing(ylim)) ylim <- range(id) if (missing(xlab)) xlab <- time.scale if (missing(ylab)) ylab <- "id number" plot(time.entry, id, type="n", xlab=xlab, ylab=ylab, xlim=xlim, ylim=ylim, ...) if (type=="b" || type=="l") { segments(time.entry, id, time.exit, id, col=col, ...) } if (type=="b" || type=="p") { points(time.exit, id, col=col, ...) } ## Plot break points brk <- attr(x,"breaks")[[time.scale]] abline(v=brk, col=breaks, ...) } points.Lexis.1D <- function(x, time.scale, ...) { x <- valid.times(x,time.scale) time.exit <- x[,time.scale] + x$lex.dur points(time.exit, x$lex.id, ...) } lines.Lexis.1D <- function(x, time.scale, type="l", col="darkgray", breaks="lightgray", ...) { x <- valid.times(x,time.scale) time.entry <- x[,time.scale] time.exit <- x[,time.scale] + x$lex.dur id <- x$lex.id segments(time.entry, id, time.exit, id, col=col, ...) ## Plot break points brk <- attr(x,"breaks")[[time.scale]] abline(v=brk, col=breaks, ...) } plot.Lexis.2D <- function(x, time.scale, breaks="lightgray", type="l", col="darkgray", xlim, ylim, xlab, ylab, grid=FALSE, col.grid="lightgray", lty.grid=2, coh.grid=FALSE, ...) { if (length(time.scale) != 2) stop("Two time scales are required") x <- valid.times(x,time.scale) time.entry <- time.exit <- vector("list",2) for (i in 1:2) { time.entry[[i]] <- x[,time.scale[i]] time.exit[[i]] <- x[,time.scale[i]] + x$lex.dur } if (missing(xlim) && missing(ylim)) { ## If no axis limits are given, set the plotting region to be ## square, and adjust the axis limits to cover the same time interval. ## All life lines will then be at 45 degrees. opar <- par(pty="s") on.exit(par(opar)) min.times <- sapply(time.entry, min) max.times <- sapply(time.exit, max) xywidth <- max(max.times - min.times) xlim <- min.times[1] + c(0, xywidth) ylim <- min.times[2] + c(0, xywidth) } else if (missing(xlim)) { xlim <- c(min(time.entry[[1]]), max(time.exit[[1]])) } else if (missing(ylim)) { ylim <- c(min(time.entry[[2]]), max(time.exit[[2]])) } if (missing(xlab)) xlab <- time.scale[1] if (missing(ylab)) ylab <- time.scale[2] plot(time.entry[[1]], time.entry[[2]], type="n", xlab=xlab, ylab=ylab, xlim=xlim, ylim=ylim, ...) # Set up the background grid(s): if (!missing(grid)) { if (is.logical(grid)) { if (grid) { vgrid <- pretty(xlim) hgrid <- pretty(ylim) } } else if (is.list(grid)) { vgrid <- grid[[1]] hgrid <- grid[[length(grid)]] } else if (is.numeric(grid)) { vgrid <- grid - min( grid ) + min( pretty( xlim )[pretty(xlim)>=par("usr")[1]] ) hgrid <- grid - min( grid ) + min( pretty( ylim )[pretty(ylim)>=par("usr")[3]] ) } else stop( "'grid' must be either logical, list or a numeric vector" ) # and plot the grid: abline( v=vgrid, h=hgrid, col=col.grid, lty=lty.grid ) box() } if (!missing(grid) & coh.grid) { # Make the 45-degree grids as fine as the finest grid on the axes for (yy in c(hgrid-diff(range(hgrid)),hgrid)) abline( yy-min(vgrid), 1, col=col.grid, lty=lty.grid ) for (yy in c(vgrid-diff(range(vgrid)),vgrid)) abline( min(hgrid)-yy, 1, col=col.grid, lty=lty.grid ) } # End of explicitly requested background grid(s) (PHEW!) if (type=="b" || type=="l") { segments(time.entry[[1]], time.entry[[2]], time.exit[[1]], time.exit[[2]], col=col, ...) } if (type=="b" || type=="p") { points(time.exit[[1]], time.exit[[2]], col = col, ...) } if (type != "n") { ## Plot break points brk <- attr(x,"breaks")[time.scale] abline(v=brk[[1]], h=brk[[2]], col=breaks, ...) } } points.Lexis.2D <- function(x, time.scale, ...) { x <- valid.times(x,time.scale) time.exit <- vector("list",2) for (i in 1:2) { time.exit[[i]] <- x[,time.scale[i]] + x$lex.dur } points( time.exit[[1]], time.exit[[2]], ...) } lines.Lexis.2D <- function(x, time.scale, col="darkgray", ...) { x <- valid.times(x,time.scale) time.entry <- time.exit <- vector("list",2) for (i in 1:2) { time.entry[[i]] <- x[,time.scale[i]] time.exit[[i]] <- x[,time.scale[i]] + x$lex.dur } segments(time.entry[[1]], time.entry[[2]], time.exit[[1]], time.exit[[2]], col=col, ...) } ### Plotting generic functions plot.Lexis <- function( x = Lexis( entry=list(Date=1900,Age=0), exit=list(Age=0) ), time.scale=NULL, type="l", breaks="lightgray", ...) { time.scale <- check.time.scale(x, time.scale) if (length(time.scale) > 2) time.scale <- time.scale[1:2] # Save the timescale(s) for use in subsequent calls options( Lexis.time.scale = time.scale ) if (length(time.scale) == 1) plot.Lexis.1D(x, time.scale=time.scale, type=type, breaks=breaks, ...) else if (length(time.scale) == 2) plot.Lexis.2D(x, time.scale=time.scale, type=type, breaks=breaks, ...) } lines.Lexis <- function(x, time.scale=options()[["Lexis.time.scale"]], ...) { time.scale <- check.time.scale(x, time.scale) if (length(time.scale) > 2) time.scale <- time.scale[1:2] if (length(time.scale) == 1) lines.Lexis.1D(x, time.scale=time.scale, ...) else if (length(time.scale) == 2) lines.Lexis.2D(x, time.scale=time.scale, ...) } points.Lexis <- function(x, time.scale=options()[["Lexis.time.scale"]], ...) { time.scale <- check.time.scale(x, time.scale) if (length(time.scale) > 2) time.scale <- time.scale[1:2] if (length(time.scale) == 1) points.Lexis.1D(x, time.scale=time.scale, ...) else if (length(time.scale) == 2) points.Lexis.2D(x, time.scale=time.scale, ...) } PY.ann <- function (x, ...) UseMethod("PY.ann") PY.ann.Lexis <- function( x, time.scale=options()[["Lexis.time.scale"]], digits=1, ... ) { if( !inherits(x,"Lexis") ) stop( "Only meaningful for Lexis objects not for objects of class ", class(x) ) wh.x <- x[,time.scale[1]] + x[,"lex.dur"]/2 if( two.scales <- length(time.scale)==2 ) wh.y <- x[,time.scale[2]] + x[,"lex.dur"]/2 else wh.y <- x[,"lex.id"] text( wh.x, wh.y, formatC(x$lex.dur,format="f",digits=digits), adj=c(0.5,-0.5), srt=if(two.scales) 45 else 0, ... ) } ### Generic functions ### Methods for data.frame drop Lexis attributes, so we need a Lexis ### method that adds them again subset.Lexis <- function(x, ...) { y <- subset.data.frame(x, ...) attr(y,"breaks") <- attr(x, "breaks") attr(y,"time.scales") <- attr(x, "time.scales") attr(y,"time.since") <- attr(x, "time.since") return(y) } merge.data.frame <- function(x, y, ...) { if (is.Lexis(x)) merge.Lexis(x, y, ...) else if (is.Lexis(y)) merge.Lexis(y, x, ...) else base::merge.data.frame(x, y, ...) } merge.Lexis <- function(x, y, id, by, ...) { if (!missing(id)) { if (!is.character(id) || length(id) != 1 || !(id %in% names(y))) { stop("id must be the name of a single variable in y") } if (any(duplicated(y[[id]]))) { stop("values of the id variable must be unique in y") } y$lex.id <- y[[id]] } else if (missing(by)) { by <- intersect(names(x), names(y)) if (length(by)==0) { stop("x and y have no variable names in common") } } z <- base::merge.data.frame(x, y, ...) attr(z,"breaks") <- attr(x, "breaks") attr(z,"time.scales") <- attr(x, "time.scales") attr(z,"time.since") <- attr(x, "time.since") class(z) <- c("Lexis", "data.frame") return(z) } ## Extractor functions entry <- function(x, time.scale = NULL, by.id = FALSE ) { time.scale <- check.time.scale(x, time.scale) wh <- x[,time.scale[1]] == ave( x[,time.scale[1]], x$lex.id, FUN=if( by.id ) min else I ) if (length(time.scale) > 1) { res <- as.matrix(x[wh, time.scale]) if( by.id ) rownames( res ) <- x$lex.id[wh] return( res ) } else { res <- x[wh, time.scale] if( by.id ) names( res ) <- x$lex.id[wh] return( res ) } } exit <- function(x, time.scale = NULL, by.id = FALSE ) { time.scale <- check.time.scale(x, time.scale) wh <- x[,time.scale[1]] == ave( x[,time.scale[1]], x$lex.id, FUN=if( by.id ) max else I ) if (length(time.scale) > 1) { res <- as.matrix(x[wh, time.scale]) + x$lex.dur[wh] if( by.id ) rownames( res ) <- x$lex.id[wh] return( res ) } else { res <- x[wh, time.scale] + x$lex.dur[wh] if( by.id ) names( res ) <- x$lex.id[wh] return( res ) } } dur <- function(x, by.id=FALSE) { if( by.id ) return( tapply(x$lex.dur,x$lex.id,sum) ) else return( x$lex.dur ) } status <- function(x, at="exit", by.id = FALSE) { at <- match.arg(at, c("entry","exit")) wh <- x[,timeScales(x)[1]] == ave( x[,timeScales(x)[1]], x$lex.id, FUN=if(by.id) switch(at, "entry"=min, "exit"=max) else I ) res <- switch(at, "entry"=x$lex.Cst, "exit"=x$lex.Xst)[wh] if( by.id ) names( res ) <- x$lex.id[wh] res } timeScales <- function(x) { return (attr(x,"time.scales")) } timeBand <- function(lex, time.scale, type="integer") { time.scale <- check.time.scale(lex, time.scale)[1] breaks <- attr(lex, "breaks")[[time.scale]] time1 <- lex[[time.scale]] band <- findInterval(time1, breaks) ##Check that right hand side of interval falls in the same band abrk <- c(breaks, Inf) tol <- sqrt(.Machine$double.eps) if (any(time1 + lex$lex.dur > abrk[band+1] + tol)) { stop("Intervals spanning multiple time bands in Lexis object") } type <- match.arg(type, choices = c("integer","factor","left","middle", "right")) if (type=="integer") { return(band) } I1 <- c(-Inf, breaks) I2 <- c(breaks, Inf) labels <- switch(type, "factor" = paste("(", I1, ",", I2, "]", sep=""), "left" = I1, "right" = I2, "middle" = (I1 + I2)/2) if(type=="factor") { return(factor(band, levels=0:length(breaks), labels=labels)) } else { return(labels[band+1]) } } breaks <- function(lex, time.scale) { time.scale <- check.time.scale(lex, time.scale)[1] return(attr(lex, "breaks")[[time.scale]]) } transform.Lexis <- function(`_data`, ... ) { save.at <- attributes(`_data`) ## We can't use NextMethod here because of the special scoping rules ## used by transform.data.frame y <- base:::transform.data.frame(`_data`, ...) save.at[["names"]] <- attr(y, "names") attributes(y) <- save.at y } Epi/R/gen.exp.R0000644000175100001440000001364612144476642012721 0ustar hornikusersuse.amt.dpt <- function( purchase, push.max = Inf, breaks, lags = NULL, lag.dec = 1 ) { do.call( "rbind", lapply( split( purchase, purchase$id ), function(set) { np <- nrow(set) if( np==1 ) return( NULL ) set <- set[order(set$dop),] # Compute length of exposure periods drug.dur <- set$amt / set$dpt # Put the exposed period head to foot new.start <- min( set$dop ) + c(0,cumsum(drug.dur[-np])) # Move them out so that the start of a period is never earlier than # the dop exp.start <- new.start + cummax( pmax(set$dop-new.start,0) ) # Compute the pushes push.one <- exp.start - set$dop # Revise them to the maximally acceptable push.adj <- pmin( push.one, push.max ) # Revise the starting dates of exposure exp.start <- exp.start - push.one + push.adj # Revise the durations to be at most equal to differences between the # revised starting dates drug.dur <- pmin( drug.dur, c(diff(exp.start),Inf) ) # Compute the end of the intervals exp.end <- exp.start + drug.dur # Intervals in the middle not covered by the drug exposures - note # also that we make a record for the last follow-date followed.by.gap <- c( exp.start[-1]-exp.end[-length(exp.end)] > 0, TRUE ) # To facilitate dfR <- rbind( data.frame( id = set$id[1], dof = exp.start, dpt = set$dpt ), data.frame( id = set$id[1], dof = exp.end[followed.by.gap], dpt = 0 ) ) dfR <- dfR[order(dfR$dof),] # We now compute the cumulative dose at the end of the interval using # interval length and dpt: dfR$cum.amt <- with( dfR, cumsum( c(0, diff(dof)*dpt[-length(dpt)]) ) ) return( dfR ) } ) ) } use.only.amt <- function( purchase, pred.win = Inf, breaks, lags = NULL, lag.dec = 1 ) { # Compute the cumulative dose at all purcase dates and at the last # (unknown) future expiry date, computed based on previous # consumption. The resulting data frame has one more line per person # than no. of purchases. do.call( "rbind", lapply( split( purchase, purchase$id ), function(set) { np <- nrow(set) if( np==1 ) return( NULL ) set <- set[order(set$dop),] # The points to include in the calculation: # All dates after pred.win before last purchase, # but at least the last two purchase dates, wp <- ( set$dop > pmin( max(set$dop)-pred.win, sort(set$dop,decreasing=TRUE)[2] ) ) # Cumulative amount consumed at each dop cum.amt <- cumsum(c(0,set$amt)) # Average slope to use to project the duration last purchase avg.slp <- diff(range(cum.amt[c(wp,FALSE)]))/ diff(range(set$dop[wp])) # Purchase dates and the date of last consumption dof <- c( set$dop, set$dop[np]+set$amt[np]/avg.slp ) return( data.frame( id = set$id[1], dof = dof, cum.amt = cum.amt ) ) } ) ) } gen.exp <- function( purchase, id="id", dop="dop", amt="amt", dpt="dpt", fu, doe="doe", dox="dox", breaks, use.dpt = ( dpt %in% names(purchase) ), lags = NULL, push.max = Inf, pred.win = Inf, lag.dec = 1 ) { # Make sure that the data fames have the right column names wh <- match( c(id,dop,amt), names(purchase) ) if( any( is.na(wh) ) ) stop("Wrong column names for the purchase data frame") names( purchase )[wh] <- c("id","dop","amt") wh <- match( c(id,doe,dox), names(fu) ) if( any( is.na(wh) ) ) stop("Wrong column names for the follow-up data frame") names( fu )[wh] <- c("id","doe","dox") if( use.dpt ) { # This is to allow dpt to be entered as numerical scalar common for all if( is.numeric(dpt) ) { if( length(dpt) > 1 ) stop( "If dpt is numeric it must have lenght 1" ) purchase$dpt <- dpt } else names( purchase )[match(c(dpt),names(purchase))] <- "dpt" tmp.dfr <- Epi:::use.amt.dpt( purchase, lags = lags, push.max = push.max, lag.dec = lag.dec ) } else tmp.dfr <- Epi:::use.only.amt( purchase, lags = lags, pred.win = pred.win, lag.dec = lag.dec ) # Merge in the follow-up period for the persons tmp.dfr <- merge( tmp.dfr, fu, all=T ) # Interpolate to find the cumulative doses at the dates in breaks do.call( "rbind", lapply( split( tmp.dfr, tmp.dfr$id ), function(set) { # All values of these are identical within each set (=person) doe <- set$doe[1] dox <- set$dox[1] # The first and last date of exposure according to the assumption doi <- min(set$dof) doc <- max(set$dof) # Get the breakpoints and the entry end exit dates breaks <- sort( unique( c(breaks,doe,dox) ) ) xval <- breaks[breaks>=doe & breaks<=dox] dfr <- data.frame( id = set$id[1], dof = xval ) dfr$tfi <- pmax(0,xval-doi) dfr$tfc <- pmax(0,xval-doc) dfr$cdos <- approx( set$dof, set$cum.amt, xout=xval, rule=2 )$y for( lg in lags ) dfr[,paste( "ldos", formatC(lg,format="f",digits=lag.dec), sep="." )] <- approx( set$dof, set$cum.amt, xout=xval-lg, rule=2 )$y dfr } ) ) } Epi/R/ftrend.R0000644000175100001440000000520312144476642012625 0ustar hornikusers"ftrend" <- function(object, ...) { if(length(object$xlevels) == 0) { stop("No factors in model") } xname <- names(object$xlevels)[1] if (!identical(object$contrasts[[1]], "contr.treatment")) { stop(paste("Treatment contrasts must be used for variable", xname)) } xlevels <- object$xlevels[[1]] nlevels <- length(xlevels) coefnames <- paste(xname, xlevels, sep="") ncoef <- length(coef(object)) if (!all(coefnames %in% names(coef(object)))) { stop("The model must not have an intercept term") } index1 <- match(coefnames, names(coef(object))) index2 <- (1:ncoef)[-index1] m <- length(index1) ncov <- length(index2) ## Centre the covariates according to Greenland et al (weighted mean = 0) X0 <- model.matrix(object) if (!is.null(object$weights)) { mu <- -apply(X0, 2, weighted.mean, object$weights )[index2] } else { mu <- -apply(X0, 2, mean)[index2] } mu.full <- rep(0, ncoef) mu.full[index2] <- mu X <- sweep(X0, 2, mu.full, "+") ## Information matrix with centred covariates if (!is.null(object$weights)) { J <- crossprod(X, sweep(X, 1, object$weights, "*")) } else { ## linear models J <- crossprod(X,X) } J11 <- J[index1, index1] J12 <- J[index1, index2] J21 <- J[index2, index1] J22 <- J[index2, index2] ## Variance matrix V <- solve(J) V11 <- V[index1, index1] V12 <- V[index1, index2] V21 <- V[index2, index1] V22 <- V[index2, index2] cal.V <- function(mu) { one <- as.matrix(rep(1,m)) mu <- as.matrix(mu) return(V11 - one %*% t(mu) %*% V21 - V12 %*% mu %*% t(one) + matrix(1, m, m) * (t(mu) %*% V22 %*% mu)[1,1]) } f <- function(mu) { V.mu <- cal.V(mu) # lambda is current vector of floating variances D <- sum(diag(V.mu)/lambda) - c(determinant(V.mu)$modulus) + sum(log(lambda)) - m S <- (1/sum(diag(J11)) + t(mu) %*% solve(J22) %*% mu)[1,1] grad1 <- - t(1/lambda) %*% V12 grad2 <- + sum(1/lambda) * t(mu) %*% V22 grad3 <- - t(mu) %*% solve(J22)/S attr(D,"gradient") <- 2 * (grad1 + grad2 + grad3) H1 <- V22 * sum(1/lambda) H2 <- -solve(J22)/S b <- solve(J22) %*% mu/S H3 <- 2 * b %*% t(b) attr(D, "hessian") <- 2 * (H1 + H2 + H3) return(D) } ## Initial value of lambda lambda <- diag(V[index1,index1]) ## Do the minimization nlm.out <- nlm(f, rep(0,ncov), check.analyticals=TRUE, ...) mu2 <- nlm.out$estimate ## Calculate parameter values and their covariance matrix ## if the covariates are appropriately centred coef <- coef(object)[index1] - c(crossprod(mu + mu2, coef(object)[index2])) return(list(coef=coef, vcov=cal.V(mu2))) } Epi/R/foreign.R0000644000175100001440000000410612144476641012774 0ustar hornikusers# The msdata method msdata <- function (obj, ...) UseMethod("msdata") msdata.Lexis <- function( obj, time.scale = timeScales(obj)[1], ... ) { if( !require( mstate ) ) stop( "You do not want this before you have installed the 'mstate' package.\n" ) tr.mat <- tmat(obj) # Essentially a msdata object is a stacked Lexis object with other variable names tmp <- stack.Lexis( factorize.Lexis(obj) ) lv <- c( match(timeScales(obj), names(tmp) ), grep("lex\\.", names(tmp) ) ) # The transitions that we refer to are extracted from lex.Tr: ss <- strsplit( as.character(tmp$lex.Tr), "->" ) # The resulting dataframe is created by renaming columns in the stacked Lexis object data.frame( id = tmp$lex.id, from = sapply( ss, FUN=function(x) x[1] ), to = sapply( ss, FUN=function(x) x[2] ), trans = as.integer( tmp$lex.Tr ), Tstart = tmp[,time.scale], Tstop = tmp[,time.scale] + tmp$lex.dur, time = tmp$lex.dur, status = as.integer( tmp$lex.Fail ), tmp[,-lv] ) } # The etm method etm <- function (obj, ...) UseMethod("etm") etm.data.frame <- function (obj, ...) { etm:::etm( data=obj, ... ) } etm.Lexis <- function( obj, time.scale = timeScales(obj)[1], cens.name = "cens", s = 0, t = "last", covariance = TRUE, delta.na = TRUE, ... ) { if( !require( etm ) ) stop( "You do not want this before you have installed the 'etm' package.\n" ) dfr <- data.frame( id = obj$lex.id, from = as.character(obj$lex.Cst), to = as.character(obj$lex.Xst), entry = obj[,time.scale], exit = obj[,time.scale] + obj$lex.dur, stringsAsFactors = FALSE ) dfr$to <- with( dfr, ifelse( from==to, cens.name, to ) ) etm:::etm( data = dfr, state.names = levels( obj$lex.Cst ), tra = tmat(obj,mode="logical"), cens.name = cens.name, s = s, t = t, covariance = covariance, delta.na = delta.na ) } Epi/R/float.R0000644000175100001440000000666612144476641012465 0ustar hornikusers"float" <- function(object, factor, iter.max = 50) { float.variance <- function(V, tol=1.0e-3, iter.max = 50) { ## Calculate floated variances for variance matrix V, which is ## assumed to represent a set of treatment contrasts m <- nrow(V) if (!is.matrix(V) || ncol(V) != m || m == 1) stop ("V must be a square matrix of size 2 x 2 or more") evals <- eigen(V, only.values=TRUE)$values if(any(evals < 0)) stop("V not positive definite") ## Starting values from Easton et al (1991) R <- V - diag(diag(V)) V00 <- sum(R)/(m * (m-1)) V10 <- apply(R, 1, sum)/(m-1) fv <- c(V00, V00 - 2 * V10 + diag(V)) for(iter in 1:iter.max) { w <- 1/fv S <- sum(w) w1 <- w[-1]/S ##Augment data matrix V10 <- as.vector(V %*% w1) V00 <- as.vector(1/S + t(w1) %*% V %*% w1) ##Calculate new estimates fv.old <- fv fv <- c(V00, V00 - 2 * V10 + diag(V)) ## Check convergence if(max(abs(fv.old - fv)/fv) < tol) break } if (iter == iter.max) warning("Floated variance estimates did not converge") Vmodel.inv <- S * (diag(w1) - w1 %*% t(w1)) evals <- 1/(eigen(V %*% Vmodel.inv, only.values=TRUE)$values) divergence <- sum(1/evals - 1 + log(evals))/2 return(list(variance=fv, error.limits=sqrt(range(evals)), divergence=divergence)) } if (is.null(object$xlevels)) { stop("No factors in model") } if (missing(factor)) { i <- 1 factor <- names(object$xlevels)[1] } else { i <- pmatch(factor, names(object$xlevels)) if (is.na(i)) { stop(paste("Factor",i,"not found in model")) } } xcontrasts <- object$contrasts[[i]] xlevels <- object$xlevels[[i]] xname <- names(object$xlevels)[i] nlevels <- length(xlevels) ## Extract the coefficients and variance matrix for a single factor ## from object if (nlevels <= 2) { stop ("Floated variances undefined for factors with less than 3 levels") } ## Get contrast matrix C <- if (is.matrix(xcontrasts)) { xcontrasts } else { get(xcontrasts, mode="function")(xlevels) } if (qr(C)$rank < nlevels - 1) { stop ("Impossible to reconstruct treatment contrasts") } ## Get coefficients and variance matrix if(is.null(cnames <- colnames(C))) cnames <- 1:(nlevels-1) contr.names <- paste(xname, cnames, sep="") coef <- coef(object)[contr.names] V <- vcov(object)[contr.names, contr.names] ## Convert to treatment contrast parameterization if (identical(xcontrasts, "contr.treatment")) { V.tc <- V coef.tc <- c(0, coef) } else { D.inv <- cbind(rep(-1,nlevels-1), diag(nlevels-1)) S <- D.inv %*% cbind(rep(1, nlevels), C) S <- S[,-1] ## coefficients coef.tc <- c(0, S %*% coef) ## If we find a baseline level (implicitly defined ## by having a row of zeros in the contrast matrix) ## then adjust the coefficients is.base <- apply(abs(C), 1, sum) == 0 if (any(is.base)) coef.tc <- coef.tc - coef.tc[is.base] ## variance matrix V.tc <- S %*% V %*% t(S) } names(coef.tc) <- xlevels float.out <- float.variance(V.tc, iter.max = iter.max) var <- float.out$var names(var) <- xlevels ans <- list(coef=coef.tc, var=var, limits=float.out$error.limits, factor=factor) class(ans) <- "floated" return(ans) } Epi/R/fit.mult.r0000644000175100001440000000260212144476641013144 0ustar hornikusersfit.mult <- function(y, rates.frame, cov.frame, start) { if (missing(start)) { ## Fit model without covariates to get initial rates estimates glm.out.rates <- fit.baseline(y, rates.frame) ## Initial values for iterative fitting lambda <- coef(glm.out.rates) beta <- rep(0, ncol(cov.frame)) } else { lambda <- start[1:ncol(rates.frame)] beta <- start[ncol(rates.frame) + 1:ncol(cov.frame)] } niter <- 1 cy <- 1 - y while(TRUE) { ## covariates model off <- log(-as.matrix(rates.frame) %*% lambda) glm.out.cov <- glm(cy ~ -1 + offset(off) + ., family=binomial(link=cloglog), data=cov.frame, start=beta, maxit=100) beta <- coef(glm.out.cov) ## rates model wgt <- exp(as.matrix(cov.frame) %*% beta) temp.rates.frame <- wgt * rates.frame glm.out.rates <- glm(y ~ -1 + ., family=binomial(link=log), data=temp.rates.frame, start=lambda, maxit=100) lambda <- coef(glm.out.rates) ## Check convergence ## Convergence <==> deviances are equal TOL <- max(glm.out.cov$control$epsilon, glm.out.rates$control$epsilon) dev1 <- glm.out.cov$deviance dev2 <- glm.out.rates$deviance if (abs(dev1 - dev2)/(0.1 + abs(dev1)) < TOL) break else niter <- niter + 1 } return(list( rates=glm.out.rates, cov=glm.out.cov, niter=niter)) } Epi/R/fit.baseline.R0000644000175100001440000000065012144476641013706 0ustar hornikusersfit.baseline <- function(y, rates.frame, start) { if (missing(start)) { ## Get starting values from logistic regression model glm.out.init <- glm(y~., family=binomial, data=rates.frame) mu.init <- fitted(glm.out.init, type="response") glm(y~-1 + ., family=binomial(link=log), data=rates.frame, mustart=mu.init) } else { glm(y~-1 + ., family=binomial(link=log), data=rates.frame, start=start) } } Epi/R/fit.add.r0000644000175100001440000000117212144476641012714 0ustar hornikusersfit.add <- function(y, rates.frame, cov.frame, start) { ## Modify covariate values rates.sum <- apply(rates.frame, 1, sum) cov.frame <- sweep(cov.frame, 1, rates.sum, "*") model.frame <- cbind(rates.frame, cov.frame) if (missing(start)) { glm.out <- fit.baseline(y, rates.frame) mu.inits <- predict(glm.out, type="response") glm.out <- glm(y~-1 + ., family=binomial(link=log), data=model.frame, mustart=mu.inits, maxit=100) } else { glm.out <- glm(y~-1 + ., family=binomial(link=log), data=model.frame, start=start, maxit=100) } return(list(rates=glm.out)) } Epi/R/factorize.R0000644000175100001440000000547112144476641013337 0ustar hornikusers# The factorize method factorize <- function (x, ...) UseMethod("factorize") # Default method is just the Relevel method factorize.default <- Relevel.default # The Lexis version of this Relevel.Lexis <- factorize.Lexis <- function (x, states=NULL, print=TRUE, ... ) { # Is this really a Lexis object if( !inherits(x,"Lexis") ) stop( "First argument must be a Lexis object" ) # If lex.Cst and lex.Xst are not factors, make them: if( !is.factor(x$lex.Cst) | !is.factor(x$lex.Xst) ) { Cst <- factor(x$lex.Cst) Xst <- factor(x$lex.Xst) } else # just use the factors as they are { Cst <- x$lex.Cst Xst <- x$lex.Xst } # - but amend them to have the same sety of levels all.levels = union(levels(Cst), levels(Xst)) Cst <- factor(Cst, levels = all.levels) Xst <- factor(Xst, levels = all.levels) # A table of actually occurring levels and their names tCX <- table(Cst) + table(Xst) all.levels <- names( tCX[tCX>0] ) # If states are not given, just return factors with reduced levels if( is.null(states) ) { x$lex.Cst <- factor( Cst, levels = all.levels ) x$lex.Xst <- factor( Xst, levels = all.levels ) } # If new state names are given as a list it implies merging of them if( !is.null( states ) & is.list( states ) ) { x$lex.Cst <- Relevel( Cst, states, ... ) x$lex.Xst <- Relevel( Xst, states, ... ) if( print ) { # Construct translation table between old and grouped states to print tC <- table( Cst, x$lex.Cst ) tX <- table( Xst, x$lex.Xst ) cC <- matrix( colnames(tC), nrow(tC), ncol(tC), byrow=T ) cX <- matrix( colnames(tX), nrow(tX), ncol(tX), byrow=T ) cC[tC==0] <- "" cX[tX==0] <- "" print( data.frame( type=rep( c("lex.Cst","lex.Xst"), c(nrow(tC),nrow(tX)) ), old=c(rownames(tC),rownames(tX)), new=c( apply( cC, 1, paste, collapse="" ), apply( cX, 1, paste, collapse="" ) ) ) ) } } # If states is a character vector we assume that it's just new names if( !is.null( states ) & is.character( states ) ) { if( length( states ) != nlevels(Cst) ) stop( "Second argument is a vector of length ", length(states), ", but it should be the joint no. of states, ", length(all.levels), "\ncorresponding to ", all.levels ) levels( Cst ) <- levels( Xst ) <- states x$lex.Cst <- Cst x$lex.Xst <- Xst if( print ) { cat( "New levels for lex.Xst and lex.Cst generated:\n" ) print( data.frame( old=all.levels, new=levels(x$lex.Cst) ) ) } } # If states is a numeric vector we assume that it's just reordering if( !is.null( states ) & is.numeric( states ) ) { x$lex.Cst <- Relevel( Cst, states ) x$lex.Xst <- Relevel( Xst, states ) } return( x ) } Epi/R/expand.data.r0000644000175100001440000000436212144476641013576 0ustar hornikusersexpand.data <- function(fu, formula, breaks, data) { Nsubject <- nrow(fu) ## The model matrix to be merged up to the expanded data if (!missing(formula)) { covariate.frame <- data.frame(model.matrix(formula,data)[,-1]) cov.names <- names(covariate.frame) covariate.frame$id <- 1:Nsubject } else { covariate.frame <- NULL cov.names <- character(0) } ## 1-responses for the survival intervals Nbreak <- length(breaks) ILENGTH <- function(x) { pmax(pmin(x[2], breaks[-1]) - pmax(x[1], breaks[-Nbreak]), 0) } well.mat <- -matrix(apply(fu[,c(1,2), drop=FALSE], 1, ILENGTH), nrow=Nbreak-1) ## For the sake of the stability of the fitting procedure, each record ## with a 1-response is further split into separate records for each ## follow-up interval: id.vec <- c(diag(Nbreak-1)) well.mat <- matrix(apply(well.mat, 2, "*", id.vec), nrow=Nbreak-1) well.id <- rep(1:Nsubject, each=Nbreak-1) valid.cols <- apply(well.mat!=0, 2, any) well.mat <- well.mat[,valid.cols, drop=FALSE] #Remove cols that are all zero well.id <- well.id[valid.cols] ## 0-responses for the event intervals is.case <- !is.na(fu[,3]) # Observed to become ill fu.cases <- subset(fu, is.case) ill.mat <- -matrix(apply(fu.cases[,c(2,3), drop=FALSE], 1, ILENGTH), nrow=Nbreak-1) ill.id <- which(is.case) ## The dataframe for analysis is one observation per survival interval ## (well.mat) and one per event interval (ill.mat): rates.frame <- as.data.frame(t(cbind(well.mat, ill.mat))) rates.names <- paste("(", breaks[-Nbreak],",",breaks[-1],")", sep="") names(rates.frame) <- rates.names rates.frame$y <- rep(c(1,0), c(ncol(well.mat), ncol(ill.mat))) rates.frame$id <- c(well.id, ill.id) ## Merge the covariates on to the model matrix for the baseline if (!is.null(covariate.frame)) { model.frame <- merge(rates.frame, covariate.frame, by="id") } else { model.frame <- rates.frame } model.frame[["id"]] <- NULL #Remove id variable return( list( rates.frame = model.frame[,rates.names, drop=FALSE], cov.frame = model.frame[, cov.names, drop=FALSE], y = model.frame[, "y", drop=TRUE ] ) ) } Epi/R/effx.r0000644000175100001440000002541112144476641012335 0ustar hornikusers## Program to calculate effects ## Michael Hills ## Improved by Bendix Carstensen and Martyn Plummer ## Post Tartu 2007 version June 2007 ## Addition allowing a TRUE/FALSE as binary outcome ## and possibility or relative risk for binary outcomes and rate ## difference for failure outcomes, BxC, Ocitober 2012 effx<-function(response, type="metric", fup=NULL, exposure, strata=NULL, control=NULL, weights=NULL, eff=NULL, alpha=0.05, base=1, digits=3, data=NULL) { ## stores the variable names for response, etc. rname<-deparse(substitute(response)) ename<-deparse(substitute(exposure)) if (!missing(strata)) { sname<-deparse(substitute(strata)) } ## The control argument is more complex, as it may be a name or ## list of names if(!missing(control)) { control.arg <- substitute(control) if (length(control.arg) > 1) { control.names <- sapply(control.arg, deparse)[-1] } else { control.names <- deparse(control.arg) } } ## Match the type argument type <- match.arg(type, c("metric", "failure", "count", "binary")) ## Check for missing arguments if (missing(response)) stop("Must specify the response","\n") if (missing(exposure)) stop("Must specify the exposure","\n") if (type == "failure" && missing(fup)) { stop("Must specify a follow-up variable when type is failure") } ## performs a few other checks if(rname==ename)stop("Same variable specified as response and exposure") if (!missing(strata)) { if(rname==sname)stop("Same variable specified as response and strata") if(sname==ename)stop("Same variable specified as strata and exposure") } ## If data argument is supplied, evaluate the arguments in that ## data frame. if (!missing(data)) { exposure <- eval(substitute(exposure), data) response <- eval(substitute(response), data) if (!missing(strata)) strata <- eval(substitute(strata), data) if (!missing(control)) control <- eval(substitute(control), data) if (!missing(fup)) fup <- eval(substitute(fup), data) if (!missing(weights)) { weights <- eval(substitute(weights), data) } } ## Now check validity of evaluated arguments if(is.logical(response)) response <- as.numeric(response) if(!is.numeric(response)) stop("Response must be numeric, not a factor") if (!missing(weights) && type != "binary") { stop("weights only allowed for a binary response") } if (!missing(strata) && !is.factor(strata)) stop("Stratifying variable must be a factor") if(type=="binary") { if( is.null(eff) ) eff<-"OR" if( !(eff %in% c("OR","RR") ) ) stop( "Only RR and OR allowed for binary response" ) response <- as.numeric(response) tmp<-(response==0 | response==1) if(all(tmp,na.rm=TRUE)==FALSE) stop("Binary response must be logical or coded 0,1 or NA") } # If a count is given we are actually using the fup if(type=="count") fup<-is.na(response)*1 if(type=="failure") { if( is.null(eff) ) eff<-"RR" response <- as.numeric(response) tmp<-(response==0 | response==1) if(all(tmp,na.rm=TRUE)==FALSE) stop("Failure response must be logical or coded 0,1 or NA") } ## If exposure is an ordered factor, drops the order. if(class(exposure)[1]=="ordered") { exposure<-factor(exposure, ordered=F) } ## Fix up the control argument as a named list if (!missing(control)) { if (is.list(control)) { names(control) <- control.names } else { control <- list(control) names(control) <- control.names } } ## prints out some information about variables cat("---------------------------------------------------------------------------","\n") cat("response : ", rname, "\n") cat("type : ", type, "\n") cat("exposure : ", ename, "\n") if(!missing(control))cat("control vars : ",names(control),"\n") if(!missing(strata)) { cat("stratified by : ",sname,"\n") } cat("\n") if(is.factor(exposure)) { cat(ename,"is a factor with levels: ") cat(paste(levels(exposure),collapse=" / "),"\n") exposure <- Relevel( exposure, base ) cat( "baseline is ", levels( exposure )[1] ,"\n") } else { cat(ename,"is numeric","\n") } if(!missing(strata)) { cat(sname,"is a factor with levels: ") cat(paste(levels(strata),collapse="/"),"\n") } if(type=="metric")cat("effects are measured as differences in means","\n") if(type=="binary") { if( eff=="OR" | is.null(eff))cat("effects are measured as odds ratios","\n") if( eff=="RR" )cat("effects are measured as relative risk","\n") } if(type=="failure") { if( eff=="RR" | is.null(eff))cat("effects are measured as rate ratios","\n") if( eff=="RD" )cat("effects are measured as rate differences","\n") } cat("---------------------------------------------------------------------------","\n") cat("\n") ## translates type of response and choice of eff into family if ( type=="metric") family<-gaussian if ( type=="binary") family<-binomial(link=logit) if ( type=="failure" | type=="count") family<-poisson(link=log) if ( !is.null(eff) ) { if (type=="binary" & eff=="RR") family<-binomial(link=log) if (type=="failure" & eff=="RD") family<-poisson(link=identity) } ## gets number of levels for exposure if a factor if(is.factor(exposure)) { nlevE<-length(levels(exposure)) } ## labels the output if(is.factor(exposure)) { cat("effect of",ename,"on",rname,"\n") } else { cat("effect of an increase of 1 unit in",ename,"on",rname,"\n") } if(!missing(control)) { cat("controlled for",names(control),"\n\n") } if(!missing(strata)) { cat("stratified by",sname,"\n\n") } ## no stratifying variable if(missing(strata)) { if(type=="metric") { if(missing(control)) { m<-glm(response~exposure,family=family) cat("number of observations ",m$df.null+1,"\n\n") mm<-glm(response~1,family=family,subset=!is.na(exposure)) } else { m<-glm(response~.+exposure,family=family, subset=!is.na(exposure),data=control) cat("number of observations ",m$df.null+1,"\n\n") mm<-glm(response~.,family=family, subset=!is.na(exposure),data=control) } res<-ci.lin(m,subset=c("Intercept","exposure"),alpha=alpha) res<-res[,c(1,5,6)] } if(type=="binary") { if(missing(control)) { m<-glm(response~exposure,family=family,weights=weights) cat("number of observations ",m$df.null+1,"\n\n") mm<-glm(response~1,family=family,subset=!is.na(exposure),weights=weights) } else { m<-glm(response~.+exposure,family=family, subset=!is.na(exposure),data=control,weights=weights) cat("number of observations ",m$df.null+1,"\n\n") mm<-glm(response~.,family=family, subset=!is.na(exposure),data=control,weights=weights) } res<-ci.lin(m,subset=c("Intercept","exposure"),Exp=TRUE,alpha=alpha) res<-res[,c(5,6,7)] } if (type=="failure" | type=="count") { if (missing(control)) { m<-glm(response/fup~exposure,weights=fup,family=family) cat("number of observations ",m$df.null+1,"\n\n") mm<-glm(response/fup~1,weights=fup,family=family, subset=!is.na(exposure)) } else { m<-glm(response/fup~.+exposure,weights=fup,family=family, data=control) cat("number of observations ",m$df.null+1,"\n\n") mm<-glm(response/fup~.,weights=fup,family=family, subset=!is.na(exposure),data=control) } res<-ci.exp(m,subset=c("Intercept","exposure"),alpha=alpha,Exp=(eff=="RR")) } res<-signif(res,digits) colnames(res)[1]<-c("Effect") if(is.factor(exposure)) { ln <- levels(exposure) rownames(res)[2:nlevE]<-paste(ln[2:nlevE],"vs",ln[1]) } aov <- anova(mm,m,test="Chisq") print( res[-1,] ) cat("\nTest for no effects of exposure on", aov[2,3],"df:", "p-value=",format.pval(aov[2,5],digits=3),"\n") invisible(list(res,paste("Test for no effects of exposure on", aov[2,3],"df:","p-value=",format.pval(aov[2,5],digits=3)))) } ## stratifying variable if(!missing(strata)) { sn <- levels(strata) nlevS<-length(levels(strata)) if(type=="metric") { if(missing(control)) { m<-glm(response~strata/exposure,family=family) cat("number of observations ",m$df.null+1,"\n\n") mm<-glm(response~strata+exposure,family=family) } else { m <-glm(response~strata/exposure + .,family=family, data=control) cat("number of observations ",m$df.null+1,"\n\n") mm <-glm(response~strata+exposure + .,family=family, data=control) } res<-ci.lin(m,subset=c("strata"),alpha=alpha)[c(-1:-(nlevS-1)),c(1,5,6)] } if(type=="binary") { if(missing(control)) { m<-glm(response~strata/exposure,family=family,weights=weights) cat("number of observations ",m$df.null+1,"\n\n") mm<-glm(response~strata+exposure,family=family,weights=weights) } else { m <-glm(response~strata/exposure + .,family=family, data=control,weights=weights) cat("number of observations ",m$df.null+1,"\n\n") mm <-glm(response~strata+exposure + .,family=family, data=control,weights=weights) } res<-ci.exp(m,subset=c("strata"),alpha=alpha)[c(-1:-(nlevS-1)),] } if (type=="failure" | type=="count") { if(missing(control)) { m<-glm(response/fup~strata/exposure,weights=fup,family=family) cat("number of observations ",m$df.null+1,"\n\n") mm<-glm(response~strata+exposure,weights=fup,family=family) } else { m <-glm(response/fup~.+strata/exposure,weights=fup,family=family,data=control) cat("number of observations ",m$df.null+1,"\n\n") mm<-glm(response/fup~.+strata+exposure,weights=fup,family=family,data=control) } res<-ci.exp(m,subset=c("strata"),alpha=alpha)[c(-1:-(nlevS-1)),] } res<-signif(res,digits) colnames(res)[1]<-c("Effect") if(is.factor(exposure)) { ln<-levels(exposure) newrownames<-NULL for(i in c(1:(nlevE-1))) { newrownames<-c(newrownames, paste("strata",sn[1:nlevS],"level",ln[i+1],"vs",ln[1])) } } else { newrownames<-paste("strata",sn[1:nlevS]) } rownames(res)<-newrownames aov<-anova(mm,m,test="Chisq") print( res ) cat("\nTest for effect modification on", aov[2,3],"df:","p-value=",format.pval(aov[2,5],digits=3),"\n") invisible(list(res,paste("Test for effect modification on", aov[2,3],"df:","p-value=",format.pval(aov[2,5],digits=3)))) } } Epi/R/effx.match.r0000644000175100001440000001531612144476641013433 0ustar hornikusers## Program to calculate effects for matched case-control studies ## Michael Hills ## Improved by BxC and MP ## Post Tartu 2007 version June 2007 effx.match<-function(response, exposure, match, strata=NULL, control=NULL, base=1, digits=3, alpha=0.05, data=NULL) { ## stores the variable names for response, etc. rname<-deparse(substitute(response)) ename<-deparse(substitute(exposure)) if (!missing(strata))sname<-deparse(substitute(strata)) ## The control argument is more complex, as it may be a name or ## list of names if(!missing(control)) { control.arg <- substitute(control) if (length(control.arg) > 1) { control.names <- sapply(control.arg, deparse)[-1] } else { control.names <- deparse(control.arg) } } ## If data argument is supplied, evaluate the arguments in that ## data frame. if (!missing(data)) { exposure <- eval(substitute(exposure), data) response <- eval(substitute(response), data) match <- eval(substitute(match),data) if (!missing(strata)) { strata <- eval(substitute(strata), data) } if (!missing(control)) control <- eval(substitute(control), data) } ## performs a few other checks if(rname==ename)stop("Same variable specified as response and exposure") if (!missing(strata)) { if(rname==sname)stop("Same variable specified as response and strata") if(sname==ename)stop("Same variable specified as strata and exposure") } if(!is.numeric(response))stop("Response must be numeric, not a factor") if(!missing(strata)&!is.factor(strata))stop("Stratifying variable must be a factor") tmp<-(response==0 | response==1) if(all(tmp,na.rm=TRUE)==FALSE) stop("Binary response must be coded 0,1 or NA") if(class(exposure)[1]=="ordered") { exposure<-factor(exposure, ordered=F) } ## Fix up the control argument as a named list if (!missing(control)) { if (is.list(control)) { names(control) <- control.names } else { control <- list(control) names(control) <- control.names } } ## prints out some information about variables cat("---------------------------------------------------------------------------","\n") cat("response : ", rname, "\n") cat("exposure : ", ename, "\n") if(!missing(control))cat("control vars : ",names(control),"\n") if(!missing(strata)) cat("stratified by : ",sname,"\n") cat("\n") if(is.factor(exposure)) { cat(ename,"is a factor with levels: ") cat(paste(levels(exposure),collapse=" / "),"\n") cat( "baseline is ", levels( exposure )[base] ,"\n") exposure <- Relevel( exposure, base ) } else { cat(ename,"is numeric","\n") } if(!missing(strata)) { cat(sname,"is a factor with levels: ") cat(paste(levels(strata),collapse="/"),"\n") } cat("effects are measured as odds ratios","\n") cat("---------------------------------------------------------------------------","\n") cat("\n") ## gets number of levels for exposure if a factor if(is.factor(exposure)) { nlevE<-length(levels(exposure)) } else { nlevE<-1 } ## labels the output if(is.factor(exposure)) { cat("effect of",ename,"on",rname,"\n") } else { cat("effect of an increase of 1 unit in",ename,"on",rname,"\n") } if(!missing(control)) { cat("controlled for",names(control),"\n\n") } if(!missing(strata)) { cat("stratified by",sname,"\n\n") } ## no stratifying variable if(missing(strata)) { if(missing(control)) { m<-clogit(response~exposure+strata(match)) cat("number of observations ",m$n,"\n\n") } else { m<-clogit(response~.+exposure+strata(match), subset=!is.na(exposure),data=control) cat("number of observations ",m$n,"\n\n") mm<-clogit(response~.+strata(match), subset=!is.na(exposure),data=control) } res<-ci.lin(m,subset=c("exposure"),Exp=TRUE,alpha=alpha)[,c(5,6,7)] res<-signif(res,digits) if(nlevE<3) { names(res)[1]<-c("Effect") } else { colnames(res)[1]<-c("Effect") if(is.factor(exposure)) { ln <- levels(exposure) rownames(res)[1:nlevE-1]<-paste(ln[2:nlevE],"vs",ln[1]) } } print(res) if(missing(control)) { chisq<-round(summary(m)$logtest[1],2) df<-round(summary(m)$logtest[2]) p<-round(summary(m)$logtest[3],3) cat("\n") cat("Test for no effects of exposure: ","\n") cat("chisq=",chisq, " df=",df, " p-value=",format.pval(p,digits=3),"\n") invisible(list(res,paste("Test for no effects of exposure on", df,"df:","p=",format.pval(p,digits=3)))) } else { aov <- anova(mm,m,test="Chisq") cat("\nTest for no effects of exposure on", aov[2,3],"df:", "p-value=",format.pval(aov[2,5],digits=3),"\n") invisible(list(res,paste("Test for no effects of exposure on", aov[2,3],"df:","p=",format.pval(aov[2,5],digits=3)))) } } ## stratifying variable if(!missing(strata)) { sn <- levels(strata) nlevS<-length(levels(strata)) if(missing(control)) { m<-clogit(response~strata/exposure+strata(match)) cat("number of observations ",m$n,"\n\n") mm<-clogit(response~strata+exposure+strata(match)) } else { m <-clogit(response~strata/exposure + . +strata(match), data=control) cat("number of observations ",m$n,"\n\n") mm <-clogit(response~strata+exposure + . +strata(match), data=control) } res<-ci.lin(m,Exp=TRUE,alpha=alpha,subset="strata")[c(-1:-(nlevS-1)),c(5,6,7)] res<-signif(res,digits) colnames(res)[1]<-c("Effect") if(is.factor(exposure)) { ln<-levels(exposure) newrownames<-NULL for(i in c(1:(nlevE-1))) { newrownames<-c(newrownames, paste("strata",sn[1:nlevS],"level",ln[i+1],"vs",ln[1])) } } else { newrownames<-paste("strata",sn[1:nlevS]) } rownames(res)<-newrownames aov<-anova(mm,m,test="Chisq") print( res ) cat("\nTest for effect modification on", aov[2,3],"df:","p-value=",format.pval(aov[2,5],digits=3),"\n") invisible(list(res,paste("Test for effect modification on", aov[2,3],"df:","p-value=",format.pval(aov[2,5],digits=3)))) } } Epi/R/detrend.R0000644000175100001440000000067512144476641012777 0ustar hornikusersdetrend <- function( M, t, weight=rep(1,nrow(M)) ) { Thin.col <- function ( X, tol = 1e-06) # Function to remove lin. dep. columns from a matrix # (stolen from PD, existed at some time as stats:::Thin.col ) { QR <- qr(X, tol = tol, LAPACK = FALSE) X[, QR$pivot[seq(length = QR$rank)], drop = FALSE] } # Now detrend the matrix using the weighted inner product. Thin.col( projection.ip( cbind( 1, t ), M , orth = TRUE, weight = weight ) ) } Epi/R/cutLexis.R0000644000175100001440000002536712144476641013157 0ustar hornikusers doCutLexis <- function(data, cut, timescale, new.scale=FALSE ) { ## new.scale is a character constant with the name of the new timescale ## Code each new interval using new variable lex.cut: ## 0 = unchanged interval (cut occurs after exit) ## 1 = first part of split interval ## 2 = second part of split interval (or cut occurs before interval) cut[is.na(cut)] <- Inf #If a cut time is missing, it never happens ## First intervals (before the cut) in.1 <- entry(data, timescale) ex.1 <- pmin(cut, exit(data, timescale)) ## Create Lexis object for first intervals lx.1 <- data lx.1$lex.dur <- ex.1 - in.1 lx.1$lex.cut <- ifelse(cut < exit(data, timescale), 1, 0) if( new.scale ) lx.1[,"lex.new.scale"] <- NA ## Second intervals (after the cut) in.2 <- pmax(cut, entry(data, timescale)) ex.2 <- exit(data, timescale) ## Create Lexis object for second intervals lx.2 <- data lx.2$lex.dur <- ex.2 - in.2 lx.2$lex.cut <- 2 if( new.scale ) lx.2[,"lex.new.scale"] <- in.2 - cut ## Update entry times lx.2[, timeScales(data)] <- exit(data) - lx.2$lex.dur return(rbind(lx.1, lx.2)) } setStatus.default <- function(data, new.state) { data$lex.Xst[data$lex.cut == 1] <- new.state[data$lex.cut == 1] data$lex.Cst[data$lex.cut == 2] <- new.state return(data) } setStatus.numeric <- function(data, new.state, precursor.states=NULL, progressive=TRUE) { if (!is.numeric(new.state)) { stop("If lex.Cst, lex.Xst are numeric, new.state must be numeric too") } data$lex.Xst[data$lex.cut == 1] <- new.state[data$lex.cut == 1] data$lex.Cst[data$lex.cut == 2] <- new.state exit.state <- data$lex.Xst[data$lex.cut == 2] is.precursor <- exit.state %in% precursor.states if (progressive) { is.precursor <- is.precursor | (exit.state < new.state) } data$lex.Xst[data$lex.cut == 2][is.precursor] <- new.state[is.precursor] return(data) } setStatus.factor <- function( data, new.state, precursor.states=NULL, progressive=TRUE) { if (!is.character(new.state)) { stop("new.state must be a character vector, but it is ",str(new.state)) } current.states <- levels(data$lex.Cst) new.states <- setdiff(new.state,current.states) new.states <- new.states[!is.na(new.states)] ## Modify factor levels if necessary if (length(new.states) > 0) { all.states <- c(current.states, sort(new.states)) new.order <- match( c(intersect(precursor.states,current.states), new.states, setdiff(current.states,precursor.states)), all.states ) levels(data$lex.Cst) <- all.states levels(data$lex.Xst) <- all.states } data$lex.Xst[data$lex.cut == 1] <- new.state[data$lex.cut == 1] data$lex.Cst[data$lex.cut == 2] <- new.state exit.state <- data$lex.Xst[data$lex.cut==2] is.precursor <- exit.state %in% precursor.states if (progressive) { if (is.ordered(data$lex.Xst)) { is.precursor <- is.precursor | (exit.state < new.state) } else { warning("progressive=TRUE argument ignored for unordered factor") } } data$lex.Xst[data$lex.cut==2][is.precursor] <- new.state[is.precursor] # Reorder factor levels sensibly if (!progressive & length(new.states)>0){ data$lex.Cst <- Relevel( data$lex.Cst, new.order ) data$lex.Xst <- Relevel( data$lex.Xst, new.order ) } return(data) } # Added by BxC match.cut <- function( data, cut ) { if( sum(!is.na(match(c("lex.id","cut","new.state"),names(cut))))<3 ) stop( "The dataframe supplied in the cut= argument must have columns", "'lex.id','cut','new.state', but the columns are:\n", names( cut ) ) else { if( length( unique( cut$lex.id ) ) < nrow( cut ) ) stop( "Values of 'lex.id' must be unique in the 'cut' dataframe" ) else zz <- merge( data[,"lex.id",drop=FALSE], cut, all.x=TRUE ) if( is.factor ( data$lex.Cst ) ) zz$new.state <- as.character(zz$new.state) if( is.numeric( data$lex.Cst ) ) zz$new.state <- as.numeric(zz$new.state) return( zz ) } } # End of addition / change cutLexis <- function(data, cut, timescale = 1, new.state = nlevels(data$lex.Cst)+1, new.scale = FALSE, split.states = FALSE, progressive = FALSE, precursor.states = NULL, count = FALSE) { if (!inherits(data, "Lexis")) stop("data must be a Lexis object") if( count ) return( countLexis( data=data, cut=cut, timescale=timescale ) ) if( inherits( cut, "data.frame" ) ){ zz <- match.cut( data, cut ) cut <- zz$cut new.state <- zz$new.state } else if (length(cut) == 1) { cut <- rep(cut, nrow(data)) } else if (length(cut) != nrow(data)) { stop("'cut' must have length 1 or nrow(data) (=", nrow(data), "),\n --- but it has length ", length(cut),".") } timescale <- Epi:::check.time.scale(data, timescale) if (length(timescale) > 1) { stop("Multiple time scales") } ## If we want to add a new timescale, construct the name if( is.logical(new.scale) ) { if( new.scale ) scale.name <- paste( new.state[1], "dur", sep="." ) } else { scale.name <- new.scale new.scale <- TRUE } if (missing(new.state)) { new.state <- data$lex.Cst #Carry forward last state } else if (length(new.state) == 1) { new.state <- rep(new.state, nrow(data)) } else if (length(new.state) != nrow(data)) { stop("'new.state' must have length 1 or nrow(data) (=", nrow(data), "),\n --- but it has length ", length(new.state)) } if (progressive) { if (is.factor(data$lex.Cst) && !is.ordered(data$lex.Cst)) { stop("progressive=TRUE invalid for unordered factors") } if (any(data$lex.Xst < data$lex.Cst)) { stop("Lexis object is not progressive before splitting") } } lx <- doCutLexis( data, cut, timescale, new.scale=TRUE ) if (is.factor(data$lex.Cst)) { lx <- setStatus.factor(lx, new.state, precursor.states, progressive) } else if (is.numeric(data$lex.Cst)) { lx <- setStatus.numeric(lx, new.state, precursor.states, progressive) } else { lx <- setStatus.default(lx, new.state) } ## Remove redundant intervals lx <- lx[lx$lex.dur > 0,] ## Remove the lex.cut column lx <- lx[,-match("lex.cut",names(lx))] ## Update the states visited after the cut if( split.states & is.factor( data$lex.Cst ) ) { post.states <- setdiff( levels(data$lex.Cst), precursor.states ) tmp.Cst <- as.character( lx$lex.Cst ) tmp.Cst <- ifelse( !is.na(lx$lex.new.scale) & lx$lex.new.scale>0 & tmp.Cst %in% post.states, paste( tmp.Cst,"(",new.state,")",sep="" ), tmp.Cst ) tmp.Xst <- as.character( lx$lex.Xst ) tmp.Xst <- ifelse( !is.na(lx$lex.new.scale) & tmp.Xst %in% post.states, paste( tmp.Xst,"(",new.state,")",sep="" ), tmp.Xst ) all.levels <- unique( c(tmp.Cst,tmp.Xst) ) ## put all the new levels after the old ones xtr.levels <- setdiff( all.levels, levels(lx$lex.Cst) ) new.levels <- c( levels(lx$lex.Cst), xtr.levels ) lx$lex.Cst <- factor( tmp.Cst, levels=new.levels ) lx$lex.Xst <- factor( tmp.Xst, levels=new.levels ) } ## Include the new timescale if( new.scale ) { ## Rename the new timescale variable names(lx)[match("lex.new.scale",names(lx))] <- scale.name ## The timescales' position among columns - used to reorder columns tn <- c( match( attr( data, "time.scales" ), names( lx ) ), ncol(lx) ) oth <- setdiff( 1:ncol(lx), tn ) ## Reorder columns (lx will then lose attributes) and sort rows lx <- lx[order(lx$lex.id,lx[,timescale]),c(tn,oth)] ## Update the attributes new.br <- c( attr( data, "breaks" ), list(NULL) ) names( new.br )[length(new.br)] <- scale.name attr( lx, "time.scales" ) <- c( attr( data, "time.scales" ), scale.name ) attr( lx, "time.since" ) <- c( attr( data, "time.since" ), names(table(new.state)) ) attr( lx, "breaks" ) <- new.br attr( lx, "class" ) <- attr( data, "class" ) } else { # Remove the new timescale and sort rows lx <- lx[order(lx$lex.id,lx[,timescale]),-match("lex.new.scale",names(lx))] # and transfer all the other attributes attr( lx, "time.scales" ) <- attr( data, "time.scales" ) attr( lx, "time.since" ) <- attr( data, "time.since" ) attr( lx, "breaks" ) <- attr( data, "breaks" ) attr( lx, "class" ) <- attr( data, "class" ) } lx } countLexis <- function(data, cut, timescale = 1) { if (!inherits(data, "Lexis")) stop("data must be a Lexis object") if( inherits( cut, "data.frame" ) ){ zz <- match.cut( data, cut ) cut <- zz$cut new.state <- zz$new.state } else if (length(cut) == 1) { cut <- rep(cut, nrow(data)) } else if (length(cut) != nrow(data)) { stop("'cut' must have length 1 or nrow(data) (=", nrow(data), "),\n --- but it has length ", length(cut),".") } timescale <- Epi:::check.time.scale(data, timescale) if (length(timescale) > 1) { stop("Multiple time scales not meaningful") } lx <- doCutLexis(data, cut, timescale) ## Update status variables lx$lex.Xst[lx$lex.cut == 1] <- lx$lex.Cst[lx$lex.cut == 1] + 1 lx$lex.Cst[lx$lex.cut == 2] <- lx$lex.Cst[lx$lex.cut == 2] + 1 lx$lex.Xst[lx$lex.cut == 2] <- lx$lex.Xst[lx$lex.cut == 2] + 1 ## Remove redundant intervals lx <- lx[lx$lex.dur > 0,] ## Remove the lex.cut column lx <- lx[,-match("lex.cut",names(lx))] ## Retain the attributes attr( lx, "breaks" ) <- attr( data, "breaks" ) attr( lx, "time.scales" ) <- attr( data, "time.scales" ) attr( lx, "class" ) <- attr( data, "class" ) return(lx[order(lx$lex.id,lx[,timescale]),]) } Epi/R/contr.orth.R0000644000175100001440000000040712144476641013443 0ustar hornikuserscontr.orth <- function( n ) { if( is.numeric( n ) && length( n )==1 ) levs <- 1:n else { levs <- n n <- length( n ) } Z <- contr.sum( n ) L <- 1:n - mean(1:n) contr <- Z - L%*%( ( t(L) %*% L )^(-1) ) %*% ( t(L) %*% Z ) contr[,1:(n-2)] } Epi/R/contr.diff.R0000644000175100001440000000057512144476641013405 0ustar hornikuserscontr.diff <- function(n) { if (is.numeric(n) && length(n) == 1) levs <- 1:n else { levs <- n n <- length(n) } contr <- array(0, c(n, n), list(levs, levs)) contr[col(contr) == row(contr)] <- 1 contr[row(contr) - col(contr) == 1] <- -1 if (n < 2) stop(paste("Contrasts not defined for", n - 1, "degrees of freedom")) contr } Epi/R/contr.cum.R0000644000175100001440000000056612144476641013261 0ustar hornikuserscontr.cum <- function(n) { if (is.numeric(n) && length(n) == 1) levs <- 1:n else { levs <- n n <- length(n) } contr <- array(0, c(n, n), list(levs, levs)) contr[col(contr) <= row(contr)] <- 1 if (n < 2) stop(paste("Contrasts not defined for", n - 1, "degrees of freedom")) contr <- contr[, -1, drop = FALSE] contr } Epi/R/contr.2nd.R0000644000175100001440000000037112144476641013152 0ustar hornikuserscontr.2nd <- function( n ) { if( is.numeric(n) && length(n) == 1 ) levs<- 1:n else { levs <- n n <- length(n) } if( n<3 ) stop( "Contrasts not defined for ", n-2, " degrees of freedom" ) outer( 1:n, 3:n-1, FUN=function(x,y) pmax( x-y, 0 ) ) } Epi/R/clogistic.R0000644000175100001440000001500112144476641013317 0ustar hornikuserssplitMatrix <- function (x, f, drop=FALSE) { lapply(split(seq_len(nrow(x)), f, drop = drop), function(ind) x[ind, , drop = FALSE]) } fixEvent <- function(event) { ### Convert outcome in clogit model to 0/1 binary coding if (any(is.na(event))) stop("Event contains missing values") if (is.logical(event)) { status <- is.numeric(event) } else if (is.numeric(event)) { status <- if (max(event) == 2) event - 1 else event temp <- (status == 0 | status == 1) if (!all(temp)) { warning("If outcome is numeric then it must be coded 0/1 or 1/2") } } else if (is.factor(event)) { if (nlevels(event) != 2) stop("If outcome is a factor then it must have 2 levels") status <- event == levels(event)[2] } return(as.integer(status)) } isInformative <- function(Xsplit, ysplit, strata) { ## Identify which observations are informative in a conditional ## logistic regression. is.homogeneous <- function(x) { all(x==x[1]) } y.bad <- sapply(ysplit, is.homogeneous) X.bad <- sapply(Xsplit, function(x) { all(apply(x, 2, is.homogeneous)) }) is.informative <- vector("list", length(ysplit)) for (i in seq(along=is.informative)) { canuse <- (!y.bad[i]) && (!X.bad[i]) is.informative[[i]] <- rep(canuse, length(ysplit[[i]])) } return(unsplit(is.informative, strata)) } fitClogit <- function(X, y, offset, strata, init, iter.max, eps, toler.chol) { ## Safe wrapper around the C function "clogit" that ensures all ## arguments have the correct type and storage mode. y <- fixEvent(y) if (!is.matrix(X)) { X <- as.matrix(X) } if (!is.double(X)) { X <- matrix(as.double(X), nrow(X), ncol(X)) } if (is.null(offset)) { offset <- rep(0, nrow(X)) } offset <- as.double(offset); ## Split into strata Xsplit <- splitMatrix(X, strata, drop=TRUE) ysplit <- split(y, strata, drop=TRUE) osplit <- split(offset, strata, drop=TRUE) info <- isInformative(Xsplit, ysplit, strata) if (!any(info)) { stop("There are no informative observations") } ans <- .Call("clogit", Xsplit, ysplit, osplit, as.double(init), as.integer(iter.max), as.double(eps), as.double(toler.chol), PACKAGE="Epi") ans$informative <- info return(ans) } clogistic <- function (formula, strata, data, subset, na.action, init, model = TRUE, x = FALSE, y = TRUE, contrasts = NULL, iter.max=20, eps=1e-6, toler.chol = sqrt(.Machine$double.eps)) { ## User interface, edited version of glm call <- match.call() if (missing(data)) data <- environment(formula) mf <- match.call(expand.dots = FALSE) m <- match(c("formula", "data", "subset", "na.action", "offset", "strata"), names(mf), 0L) mf <- mf[c(1, m)] mf$drop.unused.levels <- TRUE mf[[1L]] <- as.name("model.frame") mf <- eval(mf, parent.frame()) mt <- attr(mf, "terms") Y <- model.response(mf, "any") if (is.null(Y)) stop("missing outcome") if (length(dim(Y)) == 1L) { nm <- rownames(Y) dim(Y) <- NULL if (!is.null(nm)) names(Y) <- nm } X <- if (!is.empty.model(mt)) model.matrix(mt, mf, contrasts) else stop("Invalid model matrix") offset <- as.vector(model.offset(mf)) if (!is.null(offset)) { if (length(offset) != NROW(Y)) stop(gettextf("number of offsets is %d should equal %d (number of observations)", length(offset), NROW(Y)), domain = NA) } strata <- model.extract(mf, "strata") if (is.null(strata)) stop("argument 'strata' missing") contrasts <- attr(X, "contrasts") if (attr(mt, "intercept") > 0) { X <- X[,-1, drop=FALSE] } if (missing(init)) init <- rep(0, ncol(X)) if (iter.max < 0) stop("'iter.max' must be non-negative") if (eps <= 0) stop("'eps' must be positive") if (toler.chol <= 0) stop("'toler.chol' must be positive") if (eps < toler.chol) stop("'toler.chol' must be smaller than 'eps'") fit <- fitClogit(X = X, y = Y, offset = offset, strata=strata, init=init, toler.chol=toler.chol, eps=eps, iter.max=iter.max) if (fit$flag <= 0) { stop("Information matrix is not positive definite") } else if (fit$flag == 1000) { warning("Iteration limit exceeded") } nvar <- length(init) which.sing <- if (fit$flag < nvar) { diag(fit$var)==0 } else { rep(FALSE, nvar) } fit$coefficients[which.sing] <- NA fit$flag <- NULL ## Add back in parameter names cfnames <- colnames(X) names(fit$coefficients) <- cfnames dimnames(fit$var) <- list(cfnames, cfnames) fit$n <- sum(fit$informative) if (model) { fit$model <- mf } else { ## Without model frame this cannot be interpreted fit$informative <- NULL } fit$na.action <- attr(mf, "na.action") if (x) fit$x <- X if (!y) fit$y <- NULL fit <- c(fit, list(call = call, formula = formula, terms = mt, contrasts = contrasts, xlevels = .getXlevels(mt, mf))) class(fit) <- c("clogistic") fit } coef.clogistic <- function(object,...) { object$coefficients } vcov.clogistic <- function(object, ...) { object$var } print.clogistic <- function (x, digits = max(options()$digits - 4, 3), ...) { ## Print method for clogistic objects, edited from print.coxph cat("\nCall: ", deparse(x$call), "\n\n", sep="\n") savedig <- options(digits = digits) on.exit(options(savedig)) coef <- coef.clogistic(x) se <- sqrt(diag(vcov.clogistic(x))) if (is.null(coef) | is.null(se)) stop("Input is not valid") coefmat <- cbind(coef, exp(coef), se, coef/se, signif(1 - pchisq((coef/se)^2, 1), digits - 1)) dimnames(coefmat) <- list(names(coef), c("coef", "exp(coef)", "se(coef)", "z", "p")) cat("\n") prmatrix(coefmat) logtest <- -2 * (x$loglik[1] - x$loglik[2]) if (is.null(x$df)) df <- sum(!is.na(coef)) else df <- round(sum(x$df), 2) cat("\n") cat("Likelihood ratio test=", format(round(logtest, 2)), " on ", df, " df,", " p=", format(1 - pchisq(logtest, df)), ", n=", x$n, sep = "") cat("\n") invisible() } Epi/R/clear.R0000644000175100001440000000056112144476641012432 0ustar hornikusers# Clear the workspace of all objects whose names don't start with a full stop clear <- function() { env <- as.environment(1) to.go <- ls(env, all.names=FALSE) continue <- TRUE while (continue) { nxt <- search()[[2]] # bit of a botch if (substr(nxt, 1, 8)!="package:") detach() else continue <- FALSE } remove(list=to.go, envir=env) } Epi/R/ci.pd.R0000644000175100001440000000604512144476641012344 0ustar hornikusersci.pd <- function( aa, bb=NULL, cc=NULL, dd=NULL, method = "Nc", alpha = 0.05, conf.level = 0.95, digits = 3, print = TRUE, detail.labs = FALSE ) { # Computes the approximate c.i. for the probability difference # Optional methods: # -- "AC", Agresti and Caffo, Am Statistician (2000), # -- "Nc", method 10 from Newcombe, Stat.Med. 17, (1998), pp.873 ff. if ( !(method %in% c("AC", "Nc") ) ) stop( paste('Method', method, 'unsupported: Only "Nc" and "AC" supported') ) # Fix the confidence level if( missing( alpha ) ) alpha <- 1 - conf.level if( missing( conf.level ) ) conf.level <- 1 - alpha # Allow various forms of vector and matrix input prefix <- "" if( is.vector( aa ) & length( aa ) > 1 ) prefix <- names( aa ) if( length( dim( aa ) ) == 2 ) { bb <- aa[1,2] cc <- aa[2,1] dd <- aa[2,2] aa <- aa[1,1] } if( length( dim( aa ) ) == 3 ) { prefix <- paste( if( is.null( dimnames( aa ) ) ) 1:dim(aa)[3] else dimnames( aa )[[3]], ": ", sep="" ) bb <- aa[1,2,] cc <- aa[2,1,] dd <- aa[2,2,] aa <- aa[1,1,] } if( length( dim( aa ) ) > 3 ) stop( "Maximal array dimension (3) exceeded!" ) # Function to give roots in a 2nd degree polynomial # (Polyroot does not work on vectors of coefficients) pol2 <- function( Aye, Bee, Sea ) { Dee <- Bee^2 - 4 * Aye * Sea lo <- ifelse( Dee >= 0, ( -Bee - sqrt( Dee ) ) / ( 2 * Aye ), NA ) hi <- ifelse( Dee >= 0, ( -Bee + sqrt( Dee ) ) / ( 2 * Aye ), NA ) cbind( lo, hi ) } # Put the data in the right form x1 <- aa n1 <- aa+cc p1 <- x1/n1 x2 <- bb n2 <- bb+dd p2 <- x2/n2 pd <- x1/n1 - x2/n2 z <- qnorm( 1-alpha/2 ) zz <- z^2 if ( method == "AC" ) { x1.1 <- x1+1 n1.2 <- n1+2 x2.1 <- x2+1 n2.2 <- n2+2 p1.1 <- x1.1/n1.2 p2.1 <- x2.1/n2.2 pd.1 <- p1.1 - p2.1 SE.4 <- sqrt( p1.1 * ( 1-p1.1) /n1.2 + p2.1 * ( 1-p2.1) /n2.2 ) res <- cbind( n1, p1, n2, p2, pd, pd.1 - z*SE.4, pd.1 + z*SE.4 ) } else if ( method == "Nc" ) { A1 <- 1 + zz / n1 B1 <- -2*x1/n1 - zz / n1 C1 <- ( x1 / n1 )^2 r1 <- pol2( A1, B1, C1 ) A2 <- 1 + zz / n2 B2 <- -2*x2/n2 - zz / n2 C2 <- ( x2 / n2 )^2 r2 <- pol2( A2, B2, C2 ) dlt <- sqrt( ( x1/n1 - r1[,1] )^2 + ( x2/n2 - r2[,2] )^2 ) eps <- sqrt( ( x1/n1 - r1[,2] )^2 + ( x2/n2 - r2[,1] )^2 ) res <- cbind(n1, p1, n2, p2, pd, pd-dlt, pd+eps ) } colnames( res ) <- c("n1","p1","n2","p2", "diff",paste( alpha/2 *100,"%",sep=""), paste((1-alpha/2)*100,"%",sep="") ) rownames( res ) <- prefix if( detail.labs ) rownames( res ) <- paste( prefix, ": ", aa, "/(", aa, "+", cc, ") - ", bb, "/(", bb, "+", dd, ")", sep="" ) if( print ) print( round( res, digits ) ) invisible( res ) } Epi/R/ci.mat.R0000644000175100001440000000045012144476641012514 0ustar hornikusersci.mat <- function( alpha=0.05, df=Inf ) { ciM <- rbind( c(1,1,1), qt(1-alpha/2,df)*c(0,-1,1) ) colnames( ciM ) <- c("Estimate", paste( formatC( 100* alpha/2 , format="f", digits=1 ), "%", sep="" ), paste( formatC( 100*(1-alpha/2), format="f", digits=1 ), "%", sep="" ) ) ciM } Epi/R/ci.lin.R0000644000175100001440000001350212144476641012517 0ustar hornikusersci.lin <- function( obj, ctr.mat = NULL, subset = NULL, subint = NULL, diffs = FALSE, fnam = !diffs, vcov = FALSE, alpha = 0.05, df = Inf, Exp = FALSE, sample = FALSE ) { if( sample ) require( MASS ) # First extract all the coefficients and the variance-covariance matrix # if( any( inherits( obj, c("coxph","glm","gls","lm","nls","survreg","clogistic","cch") ) ) ) { cf <- coef( obj ) vcv <- vcov( obj ) } else if( inherits( obj, c("lme") ) ) { cf <- fixed.effects( obj ) vcv <- vcov( obj ) } else if( inherits( obj, c("mer") ) ) { cf <- fixef( obj ) vcv <- as.matrix( vcov( obj ) ) } else if (inherits(obj, "MIresult")) { cf <- obj$coefficients vcv <- obj$variance } else if (inherits(obj, "mipo")) { cf <- obj$qbar vcv <- obj$t } else if( inherits( obj, "polr" ) ) { cf <- summary( obj )$coefficients vcv <- vcov( obj ) } else if( inherits( obj, "gnlm" ) ) { cf <- coef( obj ) vcv <- obj$cov } else if( inherits( obj, "rq" ) ) { cf <- coef( obj ) vcv <- summary( obj, cov=TRUE )$cov } else stop( "\"", deparse( substitute( obj ) ), "\" is of class \"", class( obj ), "\" which is not supported." ) # Workaround to expand the vcov matrix with 0s so that it matches # the coefficients vector in case of (extrinsic) aliasing. if( any( is.na( cf ) ) ) { if( inherits( obj, c("coxph") ) ) { wh <- !is.na(cf) cf <- cf[wh] vcv <- vcv[wh,wh] } else if( inherits( obj, c("clogistic") ) ) { cf[is.na(cf)] <- 0 } else { vM <- matrix( 0, length( cf ), length( cf ) ) dimnames( vM ) <- list( names( cf ), names( cf ) ) vM[!is.na(cf),!is.na(cf)] <- vcv cf[is.na(cf)] <- 0 vcv <- vM } } # Function for computing a contrast matrix for all possible # differences between a set of parameters. # all.dif <- function( cf, pre=FALSE ) { nn <- length( cf ) nr <- nn * ( nn - 1 ) / 2 nam <- names( cf ) # Work out the indexes of parameter pairs to compare # xx <- numeric( 0 ) for( j in 2:nn ) xx <- c(xx, j:nn ) ctr <- cbind( rep( 1:(nn-1), (nn-1):1 ), xx ) # Now for the annotation: # Find out how large a proportion of rownames are identical i <- 1 while( all( substr( nam, 1, i ) == substr( nam[1], 1, i ) ) ) i <- i+1 # If a factor name is given, then use this, otherwise the identical part # of the parameter names if( is.character( pre ) ) { prefix <- pre pre <- TRUE } else { prefix <- substr( nam[1], 1, i-1 ) } rn <- paste( if( pre ) prefix else "", substring( nam[ctr[,1]], i ), "vs.", substring( nam[ctr[,2]], i ) ) # Finally, construct the contrast matrix and attach the rownames cm <- matrix( 0, nr, nn ) cm[cbind(1:nr,ctr[,1])] <- 1 cm[cbind(1:nr,ctr[,2])] <- -1 rownames( cm ) <- rn cm } # Were all differences requested? # if( diffs ) { if( is.character( subset ) ) { if ( inherits( obj, "lm" ) & length( grep( subset, names( obj$xlevels ) ) )>0 ) { # The case of factor level differences we find the relevant # subset of parameters by reconstructing names of parameters wf <- grep( subset, af <- names( obj$xlevels ) ) # All factor levels fn <- obj$xlevels[[af[wf]]] # Reconstruct names of relevant parameter names pnam <- paste( af[wf], fn, sep="" ) # Find them in the parameter vector wh <- match( pnam, names( coef( obj ) ) ) # Get the relevant subset, and stick in 0s for NAs cf <- coef( obj )[wh] cf[is.na( cf )] <- 0 vcv <- vcov( obj )[wh,wh] vcv[is.na( vcv )] <- 0 names( cf ) <- rownames( vcv ) <- colnames( vcv ) <- paste( subset, ": ", fn, sep="" ) } else { subset <- grep( subset, names( cf ) ) cf <- cf[subset] vcv <- vcv[subset,subset] } } else { cf <- cf[subset] vcv <- vcv[subset,subset] } ctr.mat <- all.dif( cf, pre=fnam ) } if( !diffs ) { if( is.character( subset ) ) { sb <- numeric(0) for( i in 1:length( subset ) ) sb <- c(sb,grep( subset[i], names( cf ) )) subset <- sb # unique( sb ) } if( is.character( subint ) ) { sb <- 1:length(cf) for( i in 1:length(subint) ) sb <- intersect( sb, grep(subint[i],names(cf)) ) subset <- sb # unique( sb ) } if( is.null( subset ) & is.null( subint ) ) subset <- 1:length( cf ) # Exclude units where aliasing has produced NAs. # Not needed after replacement with 0s # subset <- subset[!is.na( cf[subset] )] cf <- cf[subset] vcv <- vcv[subset,subset] if( is.null( ctr.mat ) ) { ctr.mat <- diag( length( cf ) ) rownames( ctr.mat ) <- names( cf ) } if( dim( ctr.mat )[2] != length(cf) ) stop( paste("\n Dimension of ", deparse(substitute(ctr.mat)), ": ", paste(dim(ctr.mat), collapse = "x"), ", not compatible with no of parameters in ", deparse(substitute(obj)), ": ", length(cf), sep = "")) } # Finally, here is the actual computation ct <- ctr.mat %*% cf vc <- ctr.mat %*% vcv %*% t( ctr.mat ) if( sample ) res <- t( mvrnorm( sample, ct, vc ) ) else { se <- sqrt( diag( vc ) ) ci <- cbind( ct, se ) %*% ci.mat( alpha=alpha, df=df ) t0 <- cbind( se, ct/se, 2 * ( 1 - pnorm( abs( ct / se ) ) ) ) colnames(t0) <- c("StdErr", "z", "P") res <- cbind(ci, t0)[, c(1, 4:6, 2:3), drop=FALSE] if( Exp ) { res <- cbind( res[,1:4 ,drop=FALSE], exp( res[,c(1,5,6),drop=FALSE] ) ) colnames( res )[5] <- "exp(Est.)" } } # Return the requested structure if( sample ) invisible( res ) else if( vcov ) invisible( list( est=ct, vcov=vc ) ) else res } # Handy wrapper ci.exp <- function( ..., Exp=TRUE ) { if( Exp ) ci.lin( ..., Exp=TRUE )[,5:7,drop=FALSE] else ci.lin( ..., Exp=FALSE )[,-(2:4),drop=FALSE] } Epi/R/ci.cum.R0000644000175100001440000000614712144476641012530 0ustar hornikusersci.cum <- function( obj, ctr.mat = NULL, subset = NULL, intl = 1, alpha = 0.05, Exp = TRUE, sample = FALSE ) { if( sample ) require( MASS ) # First extract all the coefficients and the variance-covariance matrix # if( any( inherits( obj, c("coxph","glm","gls","lm","nls","survreg") ) ) ) { cf <- coef( obj ) vcv <- vcov( obj ) } else if( inherits( obj, c("lme") ) ) { cf <- fixed.effects( obj ) vcv <- vcov( obj ) } else if( inherits( obj, c("mer") ) ) { cf <- fixef( obj ) vcv <- as.matrix( vcov( obj ) ) } else if (inherits(obj, "MIresult")) { cf <- obj$coefficients vcv <- obj$variance } else if( inherits( obj, "polr" ) ) { cf <- summary( obj )$coefficients vcv <- vcov( obj ) } else if( inherits( obj, "gnlm" ) ) { cf <- coef( obj ) vcv <- obj$cov } else stop( "\"", deparse( substitute( obj ) ), "\" is of class \"", class( obj ), "\" which is not supported." ) # Check if the intervals matches ctr.mat if( length( intl ) == 1 ) intl <- rep( intl, nrow( ctr.mat ) ) if( length( intl ) != nrow( ctr.mat ) ) stop( "intl must match ctr.mat" ) # Workaround to expand the vcov matrix with 0s so that it matches # the coefficients vector in case of (extrinsic) aliasing. if( any( is.na( cf ) ) ) { vM <- matrix( 0, length( cf ), length( cf ) ) dimnames( vM ) <- list( names( cf ), names( cf ) ) vM[!is.na(cf),!is.na(cf)] <- vcv cf[is.na(cf)] <- 0 vcv <- vM } if( is.character( subset ) ) { sb <- numeric(0) for( i in 1:length( subset ) ) sb <- c(sb,grep( subset[i], names( cf ) )) subset <- sb # unique( sb ) } # If subset is not given, make it the entire set if( is.null( subset ) ) subset <- 1:length( cf ) # Exclude units where aliasing has produced NAs. # Not needed after replacement with 0s # subset <- subset[!is.na( cf[subset] )] cf <- cf[subset] vcv <- vcv[subset,subset] if( is.null( ctr.mat ) ) { ctr.mat <- diag( length( cf ) ) rownames( ctr.mat ) <- names( cf ) } if( dim( ctr.mat )[2] != length(cf) ) stop( paste("\n Dimension of ", deparse(substitute(ctr.mat)), ": ", paste(dim(ctr.mat), collapse = "x"), ", not compatible with no of parameters in ", deparse(substitute(obj)), ": ", length(cf), sep = "")) # Finally, here is the actual computation of the estimates ct <- ctr.mat %*% cf vc <- ctr.mat %*% vcv %*% t( ctr.mat ) # If a sample is requested replace the eatimate by a sample if( sample ) ct <- t( mvrnorm( sample, ct, vc ) ) # If Exp was requested, we take the exponential of the estimates # before we cumulate the sum if( Exp ) { ct <- exp( ct ) vc <- ( ct[,1] %*% t(ct[,1]) ) * vc } # Here is the cumulation matrix cum.mat <- 1 - upper.tri( diag(ct[,1]) ) # Multiply columns of the matrix with interval lengths cum.mat <- t( intl * t( cum.mat ) ) # This is then multiplied to the coefficients ct <- cum.mat %*% ct if( sample ) ct else { vc <- cum.mat %*% vc %*% t( cum.mat ) se <- sqrt( diag( vc ) ) cum <- cbind( ct, se ) %*% ci.mat( alpha=alpha ) cbind( cum, Std.err.=se ) } } Epi/R/ccwc.R0000644000175100001440000001236212144476641012265 0ustar hornikusersccwc <- function(entry=0, exit, fail, origin=0, controls=1, match=list(), include=list(), data=NULL, silent=FALSE) { # Check arguments entry <- eval(substitute(entry), data) exit <- eval(substitute(exit), data) fail <- eval(substitute(fail), data) origin <- eval(substitute(origin), data) n <- length(fail) if (length(exit)!=n) stop("All vectors must have same length") if (length(entry)!=1 && length(entry)!=n) stop("All vectors must have same length") if (length(origin)==1) { origin <- rep(origin, n) } else { if (length(origin)!=n) stop("All vectors must have same length") } # Transform times to correct scale t.entry <- as.numeric(entry - origin) t.exit <- as.numeric(exit - origin) # match= argument marg <- substitute(match) if (mode(marg)=="name") { match <- list(eval(marg, data)) names(match) <- as.character(marg) } else if (mode(marg)=="call" && marg[[1]]=="list") { mnames <- names(marg) nm <- length(marg) if (!is.null(mnames)) { if (nm>1) { for (i in 2:nm) { if (mode(marg[[i]])=="name") mnames[i] <- as.character(marg[[i]]) else stop("illegal argument (match)") } } else { for (i in 2:nm) { if (mode(marg[[i]])=="name") mnames[i] <- as.character(marg[[i]]) else stop("illegal argument (match)") } mnames[1] <= "" } } names(marg) <- mnames match <- eval(marg, data) } else { stop("illegal argument (match)") } m <- length(match) mnames <- names(match) if (m>0) { for (i in 1:m) { if (length(match[[i]])!=n) { stop("incorrect length for matching variable") } } } # include= argument iarg <- substitute(include) if (mode(iarg)=="name") { include <- list(eval(iarg, data)) names(include) <- as.character(iarg) } else if (mode(iarg)=="call" && iarg[[1]]=="list") { ni <- length(iarg) inames <- names(iarg) if (ni>1) { if (!is.null(inames)) { for (i in 2:ni) { if (mode(iarg[[i]])=="name") inames[i] <- as.character(iarg[[i]]) else stop("illegal argument (include)") } } else { for (i in 2:ni) { if (mode(iarg[[i]])=="name") inames[i] <- as.character(iarg[[i]]) else stop("illegal argument (include)") } inames[1] <= "" } } names(iarg) <- inames include <- eval(iarg, data) } else { stop("illegal argument (include)") } ni <- length(include) inames <- names(include) if (ni>0) { for (i in 1:ni) { if (length(include[[i]])!=n) { stop("incorrect length for included variable") } } } # create group codes using matching variables grp <- rep(1,n) pd <- 1 if (m>0) { for (im in 1:m) { v <- match[[im]] if (length(v)!=n) stop("All vectors must have same length") if (!is.factor(v)) v <- factor(v) grp <- grp + pd*(as.numeric(v) - 1) pd <- pd*length(levels(v)) } } # Create vectors long enough to hold results nn <- (1+controls)*sum(fail!=0) pr <- numeric(nn) sr <- numeric(nn) tr <- vector("numeric", nn) fr <- numeric(nn) nn <- 0 # Sample each group if (!silent) { cat("\nSampling risk sets: ") } set <- 0 nomatch <- 0 incomplete <- 0 ties <- FALSE fg <- unique(grp[fail!=0]) for (g in fg) { # Failure times ft <- unique( t.exit[(grp==g) & (fail!=0)] ) # Create case-control sets for (tf in ft) { if (!silent) { cat(".") } set <- set+1 case <- (grp==g) & (t.exit==tf) & (fail!=0) ncase <- sum(case) if (ncase>0) ties <- TRUE noncase <- (grp==g) & (t.entry<=tf) & (t.exit>=tf) & !case ncont <- controls*ncase if (ncont>sum(noncase)) { ncont <- sum(noncase) if (ncont>0) incomplete <- incomplete + 1 } if (ncont>0) { newnn <- nn+ncase+ncont sr[(nn+1):newnn] <- set tr[(nn+1):newnn] <- tf fr[(nn+1):(nn+ncase)] <- 1 fr[(nn+ncase+1):newnn] <- 0 pr[(nn+1):(nn+ncase)] <- (1:n)[case] pr[(nn+ncase+1):(newnn)] <- sample((1:n)[noncase], size=ncont) nn <- newnn } else { nomatch <- nomatch + ncase } } } if (!silent) { cat("\n") } res <- vector("list", 4+m+ni) if (nn>0) { res[[1]] <- sr[1:nn] res[[2]] <- map <- pr[1:nn] res[[3]] <- tr[1:nn] + origin[map] res[[4]] <- fr[1:nn] } if (m>0) { for (i in 1:m) { res[[4+i]] <- match[[i]][map] } } if (ni>0) { for (i in 1:ni) { res[[4+m+i]] <- include[[i]][map] } } names(res) <- c("Set", "Map", "Time", "Fail", mnames, inames) if (incomplete>0) warning(paste(incomplete, "case-control sets are incomplete")) if (nomatch>0) warning(paste(nomatch, "cases could not be matched")) if (ties) warning("there were tied failure times") data.frame(res) } Epi/R/cal.yr.R0000644000175100001440000000312312144476641012531 0ustar hornikuserscal.yr <- function( x, format = "%Y-%m-%d", wh = NULL ) { cl.typ <- c("Date","POSIXct","POSIXlt","date","dates","chron") # Check if the input is a data frame and convert if( inherits( x, "data.frame" ) & is.null(wh) & missing(format) ) { # Indicator of where a date-type variable is wh <- sapply( x, inherits, cl.typ ) # The positions wh <- (1:length(wh))[wh] } if( inherits( x, "data.frame" ) & is.null(wh) & !missing(format) ) { # Indicator of where the character variables are wh <- sapply( x, is.character ) # The positions wh <- (1:length(wh))[wh] } if( inherits( x, "data.frame" ) & is.vector(wh) ) { if( is.character(wh) ) wh <- match( wh, names(x) ) # Convert the dates or the character variables for( i in wh ) { if( is.character(x[,i]) ) x[,i] <- cal.yr( x[,i], format=format ) else x[,i] <- cal.yr( x[,i] ) } return( x ) } # Finally, down to business --- converting a vector to decimal years: # Check if the input is some kind of date or time object if( any( inherits( x, cl.typ ) ) ) x <- as.Date( as.POSIXct( x ) ) else if( is.character( x ) ) x <- as.Date( x, format = format ) else if( is.factor( x ) ) x <- as.Date( as.character( x ), format = format ) else stop( "\nInput should be a data frame, a character vector, a factor or ", "some kind of date or time object:\n", "Date, POSIXct, POSIXlt, date, dates or chron" ) res <- as.numeric( x ) / 365.25 + 1970 class( res ) <- c("cal.yr","numeric") return( res ) } Epi/R/boxes.MS.R0000644000175100001440000003363112144476641013006 0ustar hornikuserstbox <- function( txt, x, y, wd, ht, font=2, lwd=2, col.txt=par("fg"), col.border=par("fg"), col.bg="transparent" ) { rect( x-wd/2, y-ht/2, x+wd/2, y+ht/2, lwd=lwd, border=col.border, col=col.bg ) text( x, y, txt, font=font, col=col.txt ) invisible( c( x, y, wd, ht ) ) } dbox <- function( x, y, wd, ht=wd, font=2, lwd=2, cwd=5, col.cross=par("fg"), col.border=par("fg"), col.bg="transparent" ) { rect( x-wd/2, y-ht/2, x+wd/2, y+ht/2, lwd=lwd, border=col.border, col=col.bg ) ch <- ht*2/3 segments( c(x , x-ch/3), c(y+ch/2, y+ch/6), c(x , x+ch/3), c(y-ch/2, y+ch/6), lwd=cwd, col=col.cross ) invisible( c( x, y, wd, ht ) ) } fillarr <- function( x1, y1, x2, y2, gap=2, fr=0.8, angle=17, lwd=2, length=par("pin")[1]/30, ... ) { fr <- 1-gap/sqrt((x1-x2)^2+(y1-y2)^2) if( !missing(fr) ) if( fr > 1 ) fr <- fr/100 for( a in 1:angle ) arrows( x1 + (x2-x1)*(1-fr)/2, y1 + (y2-y1)*(1-fr)/2, x2 - (x2-x1)*(1-fr)/2, y2 - (y2-y1)*(1-fr)/2, angle=a, lwd=lwd, ... ) } std.vec <- function( a, b ) { l <- sqrt(a^2+b^2) if( l==0 ) return( c(0,0) ) else return( c(a/l,b/l) ) } boxarr <- function (b1, b2, offset = FALSE, pos = 0.45, ...) { d <- std.vec(b2[1] - b1[1], b2[2] - b1[2]) dd <- d * offset x1 <- b1[1] - dd[2] y1 <- b1[2] + dd[1] w1 <- b1[3] h1 <- b1[4] x2 <- b2[1] - dd[2] y2 <- b2[2] + dd[1] w2 <- b2[3] h2 <- b2[4] hx1 <- x1 + ifelse((y2-y1) != 0, (x2-x1) * ((h1/2)/abs(y2-y1)), sign(x2-x1) * w1/2) vx1 <- x1 + ifelse((x2-x1) != 0, (x2-x1) * ((w1/2)/abs(x2-x1)), 0) hx2 <- x2 + ifelse((y1-y2) != 0, (x1-x2) * ((h2/2)/abs(y1-y2)), sign(x1-x2) * w2/2) vx2 <- x2 + ifelse((x1-x2) != 0, (x1-x2) * ((w2/2)/abs(x1-x2)), 0) hy1 <- y1 + ifelse((y2-y1) != 0, (y2-y1) * ((h1/2)/abs(y2-y1)), 0) vy1 <- y1 + ifelse((x2-x1) != 0, (y2-y1) * ((w1/2)/abs(x2-x1)), sign(y2-y1) * h1/2) hy2 <- y2 + ifelse((y1-y2) != 0, (y1-y2) * ((h2/2)/abs(y1-y2)), 0) vy2 <- y2 + ifelse((x1-x2) != 0, (y1-y2) * ((w2/2)/abs(x1-x2)), sign(y1-y2) * h2/2) if( abs(vy1-y1) < h1/2 ) { bx1 <- vx1 by1 <- vy1 } else { bx1 <- hx1 by1 <- hy1 } if( abs(vy2-y2) < h2/2 ) { bx2 <- vx2 by2 <- vy2 } else { bx2 <- hx2 by2 <- hy2 } fillarr( bx1, by1, bx2, by2, ... ) invisible( list( x = bx1*(1-pos)+bx2*pos, y = by1*(1-pos)+by2*pos, d = d ) ) } boxes <- function (obj, ...) UseMethod("boxes") boxes.matrix <- function( obj, ... ) { Epi:::boxes.Lexis( obj, ... ) } boxes.Lexis <- function( obj, boxpos = FALSE, wmult = 1.5, hmult = 1.5*wmult, cex = 1.5, show = inherits( obj, "Lexis" ), show.Y = show, scale.Y = 1, digits.Y = 1, show.D = show, scale.D = FALSE, digits.D = as.numeric(as.logical(scale.D)), show.R = is.numeric(scale.R), scale.R = scale.D, digits.R = as.numeric(as.logical(scale.R)), DR.sep = if( show.D ) c("\n(",")") else c("",""), eq.wd = TRUE, eq.ht = TRUE, wd, ht, subset = NULL, exclude = NULL, font = 2, lwd = 2, col.txt = par("fg"), col.border = col.txt, col.bg = "transparent", col.arr = par("fg"), lwd.arr = 2, font.arr = 2, pos.arr = 0.45, txt.arr = NULL, col.txt.arr = col.arr, offset.arr = 2, ... ) { if( inherits(obj,"Lexis") ) { if( !is.factor(obj$lex.Cst) | !is.factor(obj$lex.Xst) ) obj <- factorize( obj ) tm <- tmat( obj, Y=TRUE ) tt <- tmat( obj, Y=FALSE ) } else if( is.matrix(obj) & diff(dim(obj))==0 ) { tm <- tt <- obj } else stop( "First argument must be a Lexis object or a square matrix.\n" ) na <- sum( tt>0, na.rm=TRUE ) if( length(pos.arr) < na ) pos.arr <- rep(pos.arr,na)[1:na] # Put the transitions into D and the diagnonal into Y. D <- tm diag( D ) <- NA Y <- diag( tm ) # Derive state names, no. states and no. transitions st.nam <- colnames( tm ) if( is.null(st.nam) ) st.nam <- paste(1:ncol(tm)) pl.nam <- st.nam n.st <- length( st.nam ) n.tr <- sum( !is.na(tm) ) - sum( !is.na(diag(tm)) ) # If we want to show person-years and events or rates we compute them if( inherits(obj,"Lexis") ) { if( show ) { SM <- summary(obj,simplify=FALSE,scale=scale.Y,Rates=TRUE) Y <- SM[[1]][1:n.st,"Risk time:"] D <- SM$Transitions[1:n.st,1:n.st] R <- SM$Rates[1:n.st,1:n.st] * ifelse(scale.R,scale.R,1) } } # Explicitly given numbers in boxes ? if( is.numeric(show.Y) ) { Y <- show.Y show.Y <- TRUE } # No extra line with person-years when they are NA if( show.Y ) pl.nam <- gsub( "\\\nNA", "", paste( st.nam, formatC( Y, format="f", digits=digits.Y, big.mark="," ), sep="\n" ) ) # Any subsetting: sbst <- 1:nrow(tm) if( !is.null(exclude) ) { if( is.character(exclude) ) exclude <- match( exclude, rownames(tm) ) sbst <- sbst[-exclude] } if( !is.null(subset) ) { if( is.character(subset) ) sbst <- match( subset, rownames(tm) ) else sbst <- subset } subset <- sbst # Recycling of box-arguments if( !missing(ht) ) if( length(ht )0 ) arrowtext[a] <- formatC( D[i,j], format="f", digits=0, big.mark="," ) else arrowtext[a] <- "" if( show.R & R[i,j]>0 ) arrowtext[a] <- paste( if( !is.null(arrowtext[a]) ) paste( arrowtext[a], DR.sep[1], sep="" ), formatC( R[i,j], format="f", digits=digits.R, big.mark="," ), if( length(DR.sep) > 1 ) DR.sep[2], sep="" ) } else if( !is.null(txt.arr) ) arrowtext[a] <- txt.arr[a] if( !is.null(arrowtext[a]) ) text( arr$x-arr$d[2], arr$y+arr$d[1], arrowtext[a], adj=as.numeric(c(arr$d[2]>0,arr$d[1]<0)), font=font.arr[a], col=col.txt.arr[a] ) } } # Redraw the boxes with white background to remove any arrows for( i in subset ) tbox( pl.nam[i], xx[i], yy[i], wd[i], ht[i], lwd=lwd[i], col.bg=par("bg") ) # Then redraw the boxes again for( i in subset ) tbox( pl.nam[i], xx[i], yy[i], wd[i], ht[i], font=font[i], lwd=lwd[i], col.txt=col.txt[i], col.border=col.border[i], col.bg=col.bg[i] ) # Finally create an object with all information to re-draw the display MSboxes <- list( Boxes = data.frame( xx = xx, yy = yy, wd = wd, ht = ht, font = font, lwd = lwd, col.txt = col.txt, col.border = col.border, col.bg = col.bg, stringsAsFactors=FALSE ), State.names = pl.nam, Tmat = tt, Arrows = data.frame( lwd.arr = lwd.arr, col.arr = col.arr, pos.arr = pos.arr, col.txt.arr = col.txt.arr, font.arr = font.arr, offset.arr = offset.arr, stringsAsFactors=FALSE ), Arrowtext = arrowtext ) class( MSboxes ) <- "MS" invisible( MSboxes ) } boxes.MS <- function( obj, sub.st, sub.tr, cex=1.5, ... ) { if( !inherits(obj,"MS") ) stop( "You must supply an object of class 'MSboxes'" ) n.st <- nrow( obj$Boxes ) n.tr <- nrow( obj$Arrows ) if( missing(sub.st) ) sub.st <- 1:n.st if( missing(sub.tr) ) sub.tr <- 1:n.tr # First setting up the plot area, and restoring the plot parameters later opar <- par( mar=c(0,0,0,0), cex=cex ) on.exit( par(opar) ) plot( NA, bty="n", xlim=0:1*100, ylim=0:1*100, xaxt="n", yaxt="n", xlab="", ylab="" ) # Exercise the subsets by putting the relevant colors to "transparent" obj$Boxes[-sub.st,c("col.txt", "col.border", "col.bg")] <- "transparent" obj$Arrows[-sub.tr,c("col.arr", "col.txt.arr")] <- "transparent" # Then draw the boxes b <- list() for( i in 1:n.st ) b[[i]] <- with( obj$Boxes, tbox( obj$State.names[i], xx[i], yy[i], wd[i], ht[i], font=font[i], lwd=lwd[i], col.txt=col.txt[i], col.border=col.border[i], col.bg=col.bg[i] ) ) # and the arrows for( i in 1:n.st ) for( j in 1:n.st ) { if( !is.na(obj$Tmat[i,j]) & i!=j ) { a <- sum(!is.na(obj$Tmat[1:i,])) - sum(!is.na(obj$Tmat[i,j:n.st])) + 1 arr <- with( obj$Arrows, boxarr( b[[i]], b[[j]], offset=(!is.na(obj$Tmat[j,i]))*offset.arr, lwd=lwd.arr[a], col=col.arr[a], pos=pos.arr[a], ... ) ) with( obj$Arrows, text( arr$x-arr$d[2], arr$y+arr$d[1], obj$Arrowtext[a], adj=as.numeric(c(arr$d[2]>0,arr$d[1]<0)), font=font.arr[a], col=col.txt.arr[a] ) ) } } # Redraw the boxes with "bg" background to remove any arrows crossing for( i in sub.st ) with( obj$Boxes, tbox( obj$State.names[i], xx[i], yy[i], wd[i], ht[i], font=font[i], lwd=lwd[i], col.txt=par("bg"), col.border=par("bg"), col.bg=par("bg") ) ) # Then redraw the boxes again for( i in sub.st ) with( obj$Boxes, tbox( obj$State.names[i], xx[i], yy[i], wd[i], ht[i], font=font[i], lwd=lwd[i], col.txt=col.txt[i], col.border=col.border[i], col.bg=col.bg[i] ) ) # Done! invisible( NULL ) } Epi/R/as.Date.cal.yr.R0000644000175100001440000000014312144476641014006 0ustar hornikusersas.Date.cal.yr <- function( x, ... ) { structure( round( ( x - 1970 ) * 365.25 ), class="Date" ) } Epi/R/apc.plot.R0000644000175100001440000001230212144476641013060 0ustar hornikusersapc.plot <- function( obj, r.txt="Rate", ... ) { if( !inherits( obj, "apc" ) ) stop( "Argument must be an apc-object" ) # Determine the ranges of the horizontal axes a.lab = nice( obj$Age[,1] ) cp.lab = nice( c(obj$Per[,1],obj$Coh[,1]), high=0.1 )[-1] # The necessary range of the two vertical axes r.rg <- range( obj$Age[,-1] ) rr.rg <- range( rbind( obj$Per[,-1], obj$Coh[,-1] ) ) # Align the RR with the rates on an integer power of 10 rr.ref <- 10^floor( log10(r.rg[2])-log10(rr.rg[2]) ) # Find the tic-marks for the two vertical axes r.tic <- nice( r.rg, log=T, lpos=1:9 ) rr.tic <- nice( rr.rg, log=T, lpos=1:9 ) # Expand to cover it all r.tic <- sort( unique( c( r.tic, rr.tic*rr.ref ) ) ) rr.tic <- r.tic/rr.ref # Find the places for labels r.lab <- nice( r.tic, log=T, lpos=c(1,2,5) ) rr.lab <- nice( rr.tic, log=T, lpos=c(1,2,5) ) r.lab <- r.lab[ r.lab>min( r.tic) & r.labmin(rr.tic) & rr.lab 1) "s", paste(c(" A", " P", " D", " Y")[nm], collapse = ","), " missing from input") if (diff(range(lv <- sapply(list(A = A, P = P, D = D, Y = Y), length))) != 0) { stop("\nLengths of variables (", paste(paste(names(lv), lv, sep = ":"), collapse = ", "), ") are not the same.") } } med <- function(x, y) { o <- order(x) a <- y[o] names(a) <- x[o] return(as.numeric(names(a[cumsum(a)/sum(a) > 0.5][1]))) } p0 <- ifelse(missing(ref.p), med(P, D), ref.p) c0 <- ifelse(missing(ref.c), med(P - A, D), ref.c) ref.p <- !missing(ref.p) ref.c <- !missing(ref.c) if (is.list(npar) & length(npar) < 3) stop("npar as a list should have length 3!") if (!is.list(npar)) npar <- rep(npar, 3)[1:3] if (is.null(names(npar))) names(npar) <- c("A", "P", "C") lu <- paste(formatC(c(alpha/2, 1 - alpha/2) * 100, format = "f", digits = 1), "%", sep = "") proj.ip <- function(X, M, orth = FALSE, weight = rep(1, nrow(X))) { if (nrow(X) != length(weight)) stop("Dimension of space and length of weights differ!") if (nrow(X) != nrow(M)) stop("Dimension of space and rownumber of model matrix differ!") Pp <- solve(crossprod(X * sqrt(weight)), t(X * weight)) %*% M PM <- X %*% Pp if (orth) PM <- M - PM else PM } Thin.col <- function(X, tol = 1e-06) { QR <- qr(X, tol = tol, LAPACK = FALSE) X[, QR$pivot[seq(length = QR$rank)], drop = FALSE] } detrend <- function(M, t, weight = rep(1, nrow(M))) { Thin.col(proj.ip(cbind(1, t), M, orth = TRUE, weight = weight)) } if (is.list(model)) { if (!all(sapply(model, is.function))) stop("'model' is a list, but not all elements are functions as they should be.") if ((lmod <- length(model)) < 3) stop("'model' is a list, with", lmod, "elements, it should have three.") if (is.null(names(model))) names(model) <- c("A", "P", "C") MA <- model[["A"]](A) MP <- model[["P"]](P) MC <- model[["C"]](P - A) Rp <- model[["P"]](p0) Rc <- model[["C"]](c0) } else { if (model == "factor") { MA <- model.matrix(~factor(A) - 1) MP <- model.matrix(~factor(P) - 1) MC <- model.matrix(~factor(P - A) - 1) Rp <- MP[abs(P - p0) == min(abs(P - p0)), , drop = FALSE][1, ] Rc <- MC[abs(P - A - c0) == min(abs(P - A - c0)), , drop = FALSE][1, ] } if (model == "ns") { require(splines) knl <- is.list(npar) if (knl) nk <- sapply(npar, length) MA <- if (knl) ns(A, knots = npar[["A"]][-c(1, nk[1])], Boundary.knots = npar[["A"]][c(1, nk[1])]) else ns(A, df = npar[["A"]]) MP <- if (knl) ns(P, knots = npar[["P"]][-c(1, nk[2])], Boundary.knots = npar[["P"]][c(1, nk[2])]) else ns(P, df = npar[["P"]]) MC <- if (knl) ns(P - A, knots = npar[["C"]][-c(1, nk[3])], Boundary.knots = npar[["C"]][c(1, nk[3])]) else ns(P - A, df = npar[["C"]]) Rp <- ns(p0, knots = attr(MP, "knots"), Boundary.knots = attr(MP, "Boundary.knots")) Rc <- ns(c0, knots = attr(MC, "knots"), Boundary.knots = attr(MC, "Boundary.knots")) Knots <- list( Age = sort(c(attr(MA, "knots"), attr(MA, "Boundary.knots"))), Per = sort(c(attr(MP, "knots"), attr(MP, "Boundary.knots"))), Coh = sort(c(attr(MC, "knots"), attr(MC, "Boundary.knots")))) } if (model %in% c("bs", "ls")) { deg <- switch(model, ls = 1, bs = 3) require(splines) knl <- is.list(npar) if (knl) nk <- sapply(npar, length) MA <- if (knl) bs(A, knots = npar[["A"]][-c(1, nk[1])], Boundary.knots = npar[["A"]][c(1, nk[1])], degree = deg) else bs(A, df = npar[["A"]], degree = deg) MP <- if (knl) bs(P, knots = npar[["P"]][-c(1, nk[2])], Boundary.knots = npar[["P"]][c(1, nk[2])], degree = deg) else bs(P, df = npar[["P"]], degree = deg) MC <- if (knl) bs(P - A, knots = npar[["C"]][-c(1, nk[3])], Boundary.knots = npar[["C"]][c(1, nk[3])], degree = deg) else bs(P - A, df = npar[["C"]], degree = deg) Rp <- bs(p0, knots = attr(MP, "knots"), Boundary.knots = attr(MP, "Boundary.knots"), degree = attr(MP, "degree")) Rc <- bs(c0, knots = attr(MC, "knots"), Boundary.knots = attr(MC, "Boundary.knots"), degree = attr(MC, "degree")) Knots <- list(Age = sort(c(attr(MA, "knots"), attr(MA, "Boundary.knots"))), Per = sort(c(attr(MP, "knots"), attr(MP, "Boundary.knots"))), Coh = sort(c(attr(MC, "knots"), attr(MC, "Boundary.knots")))) } } if (tolower(substr(dist, 1, 2)) == "po") { m.APC <- glm(D ~ MA + I(P - p0) + MP + MC, offset = log(Y), family = poisson) Dist <- "Poisson with log(Y) offset" } if (tolower(substr(dist, 1, 3)) %in% c("bin")) { m.APC <- glm(cbind(D, Y - D) ~ MA + I(P - p0) + MP + MC, family = binomial) Dist <- "Binomial regression (logistic) of D/Y" } m.AP <- update(m.APC, . ~ . - MC) m.AC <- update(m.APC, . ~ . - MP) m.Ad <- update(m.AP, . ~ . - MP) m.A <- update(m.Ad, . ~ . - I(P - p0)) m.0 <- update(m.A, . ~ . - MA) AOV <- anova(m.A, m.Ad, m.AC, m.APC, m.AP, m.Ad, test = "Chisq") attr(AOV, "heading") <- "\nAnalysis of deviance for Age-Period-Cohort model\n" attr(AOV, "row.names") <- c("Age", "Age-drift", "Age-Cohort", "Age-Period-Cohort", "Age-Period", "Age-drift") A.pt <- unique(A) A.pos <- match(A.pt, A) P.pt <- unique(P) P.pos <- match(P.pt, P) C.pt <- unique(P - A) C.pos <- match(C.pt, P - A) MA <- cbind(1, MA) if (!mode(drtyp) %in% c("character", "numeric")) stop("\"dr.extr\" must be of mode \"character\" or \"numeric\".\n") if (is.character(drtyp)) wt <- if (toupper(substr(drtyp, 1, 1)) == "W") D else rep(1, length(D)) if (is.numeric(drtyp)) wt <- drtyp Rp <- matrix(Rp, nrow = 1) Rc <- matrix(Rc, nrow = 1) xP <- detrend(rbind(Rp, MP), c(p0, P), weight = c(0, wt)) xC <- detrend(rbind(Rc, MC), c(c0, P - A), weight = c(0, wt)) MPr <- xP[-1,,drop=FALSE] - ref.p * xP[rep(1, nrow(MP)),,drop=FALSE] MCr <- xC[-1,,drop=FALSE] - ref.c * xC[rep(1, nrow(MC)),,drop=FALSE] if (length(grep("-", parm)) == 0) { if (parm %in% c("ADPC", "ADCP", "APC", "ACP")) m.APC <- update(m.0, . ~ . - 1 + MA + I(P - p0) + MPr + MCr) drift <- rbind( ci.exp(m.APC, subset = "I\\(", alpha = alpha), ci.exp(m.Ad , subset = "I\\(", alpha = alpha) ) rownames(drift) <- c("APC", "A-d") if (parm == "ADCP") m.APC <- update(m.0, . ~ . - 1 + MA + I(P - A - c0) + MPr + MCr) if (parm == "APC") { MPr <- cbind(P - p0, MPr) m.APC <- update(m.0, . ~ . - 1 + MA + MPr + MCr) } if (parm == "ACP") { MCr <- cbind(P - A - c0, MCr) m.APC <- update(m.0, . ~ . - 1 + MA + MPr + MCr) } Age <- cbind(Age = A.pt, ci.lin(m.APC, subset = "MA", ctr.mat = MA[A.pos,,drop=FALSE], Exp = TRUE, alpha = alpha)[, 5:7])[order(A.pt), ] Per <- cbind(Per = P.pt, ci.lin(m.APC, subset = "MPr", ctr.mat = MPr[P.pos,,drop=FALSE], Exp = TRUE, alpha = alpha)[, 5:7])[order(P.pt), ] Coh <- cbind(Coh = C.pt, ci.lin(m.APC, subset = "MCr", ctr.mat = MCr[C.pos,,drop=FALSE], Exp = TRUE, alpha = alpha)[, 5:7])[order(C.pt), ] colnames(Age)[-1] <- c("Rate", lu) colnames(Per)[-1] <- c("P-RR", lu) colnames(Coh)[-1] <- c("C-RR", lu) Type <- paste("ML of APC-model", Dist, ": (", parm, "):\n") } else { adc <- update(m.0, . ~ . - 1 + MA + I(P - A - c0)) adp <- update(m.0, . ~ . - 1 + MA + I(P - p0)) drift <- ci.lin(adc, subset = "I\\(", Exp = TRUE)[, 5:7, drop = F] rownames(drift) <- "A-d" xP <- cbind(1, P - p0, MPr) xC <- cbind(1, P - A - c0, MCr) lP <- cbind(P - p0, MPr) lC <- cbind(P - A - c0, MCr) if (parm == "AD-C-P") { rc <- update(m.0, . ~ . - 1 + xC, offset = predict(adc, type = "link")) rp <- update(m.0, . ~ . - 1 + xP, offset = predict(adc, type = "link")) A.eff <- ci.lin(adc, subset = "MA", ctr.mat = MA[A.pos, ], Exp = TRUE, alpha = alpha)[, 5:7] C.eff <- ci.lin(rc, subset = "xC", ctr.mat = xC[C.pos, ], Exp = TRUE, alpha = alpha)[, 5:7] P.eff <- ci.lin(rp, subset = "xP", ctr.mat = xP[P.pos, ], Exp = TRUE, alpha = alpha)[, 5:7] } else if (parm == "AD-P-C") { rp <- update(m.0, . ~ . - 1 + xP, offset = predict(adp, type = "link")) rc <- update(m.0, . ~ . - 1 + xC, offset = predict(rp, type = "link")) A.eff <- ci.lin(adp, subset = "MA", ctr.mat = MA[A.pos, ], Exp = TRUE, alpha = alpha)[, 5:7] P.eff <- ci.lin(rp, subset = "xP", ctr.mat = xP[P.pos, ], Exp = TRUE, alpha = alpha)[, 5:7] C.eff <- ci.lin(rc, subset = "xC", ctr.mat = xC[C.pos, ], Exp = TRUE, alpha = alpha)[, 5:7] } else if (parm == "AC-P") { ac <- update(m.0, . ~ . - 1 + MA + lC) rp <- update(m.0, . ~ . - 1 + xP, offset = predict(ac, type = "link")) A.eff <- ci.lin(ac, subset = "MA", ctr.mat = MA[A.pos, ], Exp = TRUE, alpha = alpha)[, 5:7] C.eff <- ci.lin(ac, subset = "lC", ctr.mat = lC[C.pos, ], Exp = TRUE, alpha = alpha)[, 5:7] P.eff <- ci.lin(rp, subset = "xP", ctr.mat = xP[P.pos, ], Exp = TRUE, alpha = alpha)[, 5:7] } else if (parm == "AP-C") { ap <- update(m.0, . ~ . - 1 + MA + lP) rc <- update(m.0, . ~ . - 1 + xC, offset = predict(ap, type = "link")) A.eff <- ci.lin(ap, subset = "MA", ctr.mat = MA[A.pos, ], Exp = TRUE, alpha = alpha)[, 5:7] P.eff <- ci.lin(ap, subset = "lP", ctr.mat = lP[P.pos, ], Exp = TRUE, alpha = alpha)[, 5:7] C.eff <- ci.lin(rc, subset = "xC", ctr.mat = xC[C.pos, ], Exp = TRUE, alpha = alpha)[, 5:7] } Age <- cbind(Age = A.pt, A.eff)[order(A.pt), ] Per <- cbind(Per = P.pt, P.eff)[order(P.pt), ] Coh <- cbind(Cph = C.pt, C.eff)[order(C.pt), ] colnames(Age)[-1] <- c("A.eff", lu) colnames(Per)[-1] <- c("P.eff", lu) colnames(Coh)[-1] <- c("C.eff", lu) Type <- paste("Sequential modelling", Dist, ": (", parm, "):\n") } res <- list(Type = Type, Age = Age, Per = Per, Coh = Coh, Drift = drift, Ref = c(Per = if ( parm %in% c("APC","ADPC","Ad-P-C","AP-C") ) p0 else NA, Coh = if ( parm %in% c("ACP","ADCP","Ad-C-P","AC-P") ) c0 else NA ), Anova = AOV) # If a spline model is used, add a "Knots" component to the apc-object if (model %in% c("ns", "bs")) res <- c(res, list(Knots = Knots)) res$Age[, -1] <- res$Age[, -1] * scale if (print.AOV) { print(res$Type) print(res$Anova) } # Print warnings about reference points: if( !ref.p & parm %in% c("APC","ADPC") ) cat( "No reference period given:\n", "Reference period for age-effects is chosen as\n", "the median date of event: ", p0 ) if( !ref.c & parm %in% c("ACP","ADCP") ) cat( "No reference period given:\n", "Reference period for age-effects is chosen as\n", "the median date of birth for persons with event: ", c0 ) class(res) <- "apc" invisible(res) } Epi/R/Wald.R0000644000175100001440000000100412144476642012225 0ustar hornikusersWald <- function( obj, H0=0, ... ) { rl <- ci.lin( obj, ..., vcov=TRUE ) beta <- rl$est vcov <- rl$vcov if( missing( H0 ) ) H0 <- beta*0 if( length(H0) != length(beta) ) stop( "H0 has length ", length(H0), " but the set of selected paramteters has length ", length(beta), ":\n", paste(round(beta,options()[["digits"]]),collapse=" ") ) chi <- t( beta-H0 ) %*% solve( vcov, beta-H0 ) df <- length(beta) p <- 1 - pchisq( chi, df ) c( "Chisq"=chi, "d.f."=df, "P"=p ) } Epi/R/Relevel.R0000644000175100001440000000437012144476642012745 0ustar hornikusers# The Relevel method Relevel <- function (x, ...) UseMethod("Relevel") # The factor method is the default method Relevel.default <- Relevel.factor <- function( x, ref, first=TRUE, collapse="+", ... ) { # Function that collapses multiple sets of levels of a factor # Bendix Carstensen, January 2004 # if( !is.factor(x) ) { argnam <- deparse( substitute(obj) ) f <- factor( x ) cat( "Warning: ", argnam, "has been converted to a factor with levels:\n", levels( f ) ) } else f <- x # This is a copy of the relevel function from the base package: # relev <- function (x, ref, ...) { lev <- levels(x) if ( is.character( ref ) ) ref <- match(ref, lev) if ( any( is.na( ref ) ) ) stop( "any values in ref must be an existing level" ) nlev <- length( lev ) if ( any( ref < 1 ) || any( ref > nlev ) ) stop( paste( "ref=", paste( ref, collapse="," ), ": All elements must be in 1:", nlev, sep="" ) ) factor(x, levels = lev[c(ref, seq(along = lev)[-ref])]) } # If called with a non-list argument assume reshuffling of levels # if( !is.list( ref ) ) fnew <- relev( f, ref ) # If called with a list collapse levels in each list element. # if( is.list( ref ) ) { fnew <- f newnames <- levels( f ) uninames <- character( length( ref ) ) for( s in 1:length( ref ) ) { if ( is.character( ref[[s]] ) ) ref[[s]] <- match( ref[[s]], levels(f) ) uninames[s] <- if( is.null( names( ref ) ) ) { paste( levels( f )[ref[[s]]], collapse=collapse ) } else if( names( ref )[s]=="" ) { paste( levels( f )[ref[[s]]], collapse=collapse ) } else names( ref )[s] newnames[ref[[s]]] <- rep( uninames[s], length( ref[[s]] ) ) } levels( fnew ) <- newnames if( !is.null( first ) ) { if( !first ) fnew <- factor( fnew, c( levels( f )[-unlist( ref )], uninames ) ) if( first ) fnew <- factor( fnew, c( uninames, levels( f )[-unlist( ref )] ) ) } } # This is in order to merge levels with identical names # factor( fnew, levels=levels(fnew) ) } Epi/R/ROC.R0000644000175100001440000002211412144476642011766 0ustar hornikuserssteplines <- function( x, y, left = TRUE, right = !left, order = TRUE, ... ) { # A function to plot step-functions # # Get the logic right if right is supplied... left <- !right # ... right! n <- length( x ) if( any( order ) ) ord <- order(x) else ord <- 1:n dbl <- rep( 1:n, rep( 2, n) ) xv <- c( !left, rep( T, 2*(n-1) ), left) yv <- c( left, rep( T, 2*(n-1) ), !left) lines( x[ord[dbl[xv]]], y[ord[dbl[yv]]], ... ) } interp <- function ( target, fv, res ) { # Linear interpolaton of the values in the N by 2 matrix res, # to the target value target on the N-vector fv. # Used for placing tickmarks on the ROC-curves. # where <- which( fv>target )[1] - 1:0 int <- fv[where] wt <- ( int[2] - target ) / diff( int ) wt[2] <- 1-wt t( res[where,] ) %*% wt } ROC.tic <- function ( tt, txt = formatC(tt,digits=2,format="f"), dist = 0.02, angle = +135, col = "black", cex = 1.0, fv, res ) { # Function for drawing tickmarks on a ROC-curve # for (i in 1:length(tt)) { pnt <- interp ( tt[i], fv, res ) x <- 1-pnt[2] y <- pnt[1] lines( c( x, x+dist*cos(pi*angle/180) ), c( y, y+dist*sin(pi*angle/180) ), col=col ) text( x+dist*cos(pi*angle/180), y+dist*sin(pi*angle/180), txt[i], col=col, adj=c( as.numeric(abs(angle)>=90), as.numeric( angle <= 0)), cex=cex ) } } ROC <- function ( test = NULL, stat = NULL, form = NULL, plot = c( "sp", "ROC" ), PS = is.null(test), # Curves on probability scale PV = TRUE, # sn, sp, PV printed at "optimality" point MX = TRUE, # tick at "optimality" point MI = TRUE, # Model fit printed AUC = TRUE, # Area under the curve printed grid = seq(0,100,10), # Background grid (%) col.grid = gray( 0.9 ), cuts = NULL, lwd = 2, data = parent.frame(), ... ) { # First all the computations # # Name of the response rnam <- if ( !missing( test ) ) deparse( substitute( test ) ) else "lr.eta" # Fit the model and get the info for the two possible types of input if( is.null( form ) ) { if( is.null( stat ) | is.null( test ) ) stop( "Either 'test' AND 'stat' OR 'formula' must be supplied!" ) lr <- glm( stat ~ test, family=binomial )#, data=data ) resp <- stat Model.inf <- paste("Model: ", deparse( substitute( stat ) ), "~", deparse( substitute( test ) ) ) } else { lr <- glm(form, family = binomial, data = data) resp <- eval( parse(text = deparse(form[[2]])), envir=lr$model ) Model.inf <- paste("Model: ",paste(paste(form)[c(2,1,3)], collapse=" ")) } # Form the empirical distribution function for test for each of # the two categories of resp. # First a table of the test (continuous variable) vs. the response and # adding a row of 0s so that we have all points fro the ROC curve m <- as.matrix( base:::table( switch( PS+1, test, lr$fit ), resp ) ) m <- addmargins( rbind( 0, m ), 2 ) # What values of test/eta do the rows refer to fv <- c( -Inf, sort( unique( switch( PS+1, test, lr$fit ) ) ) ) # How many rows in this matrix nr <- nrow(m) # Calculate the empirical distribution functions (well, cumulative numbers): m <- apply( m, 2, cumsum ) # Then the relevant measures are computed. sns <- (m[nr,2]-m[,2]) / m[nr,2] spc <- m[,1] / m[nr,1] pvp <- m[,2] / m[,3] pvn <- (m[nr,1]-m[,1]) / ( m[nr,3]-m[,3] ) res <- data.frame( cbind( sns, spc, pvp, pvn, fv ) ) names( res ) <- c( "sens", "spec", "pvp", "pvn", rnam ) # AUC by triangulation auc <- sum( (res[-1,"sens"]+res[-nr,"sens"])/2 * abs(diff(1-res[,"spec"])) ) # Plot of sens, spec, PV+, PV-: if ( any( !is.na( match( c( "SP", "SNSP", "SPV" ), toupper( plot ) ) ) ) ) { # First for probability scale if ( PS ) { plot( 0:1, 0:1, xlim=0:1, xlab="Cutpoint for predicted probability", ylim=0:1, ylab=" ", type="n" ) if( is.numeric( grid ) ) abline( h=grid/100, v=grid/100, col=col.grid ) box() for ( j in 4:1 ){ steplines( fv, res[,j], lty=1, lwd=lwd, col=gray((j+1)/7)) } text( 0, 1.01, "Sensitivity", cex=0.7, adj=c(0,0), font=2 ) text( 1, 1.01, "Specificity", cex=0.7, adj=c(1,0), font=2 ) text( 0, m[nr,2]/m[nr,3]-0.01, "PV+", cex=0.7, adj=c(0,1), font=2 ) text( 0 + strwidth( "PV+", cex=0.7 ), m[nr,2]/m[nr,3]-0.01, paste( " (= ", m[nr,2],"/", m[nr,3], " =", formatC( 100*m[nr,2]/m[nr,3], digits=3 ), "%)", sep=""), adj=c(0,1), cex=0.7 ) text( 1, 1-m[nr,2]/m[nr,3]-0.01, "PV-", cex=0.7, adj=c(1,1), font=2 ) } # then for test-variable scale else { xl <- range( test ) plot( xl, 0:1, xlim=xl, xlab=paste( deparse( substitute( test ) ), "(quantiles)" ), ylim=0:1, ylab=" ", type="n" ) if( is.numeric( grid ) ) abline( h=grid/100, v=quantile( test, grid/100 ), col=col.grid ) box() for ( j in 4:1 ){ steplines( fv, res[,j], lty=1, lwd=lwd, col=gray((j+1)/7))} text( xl[1], 1.01, "Sensitivity", cex=0.7, adj=c(0,0), font=2 ) text( xl[2], 1.01, "Specificity", cex=0.7, adj=c(1,0), font=2 ) text( xl[1], m[nr,2]/m[nr,3]-0.01, "PV+", cex=0.7, adj=c(0,1), font=2 ) text( xl[1] + strwidth( "PV+", cex=0.7 ), m[nr,2]/m[nr,3]-0.01, paste( " (= ", m[nr,2],"/", m[nr,3], " =", formatC( 100*m[nr,2]/m[nr,3], digits=3 ), "%)", sep=""), adj=c(0,1), cex=0.7 ) text( xl[2], 1-m[nr,2]/m[nr,3]-0.01, "PV-", cex=0.7, adj=c(1,1), font=2 ) } } # Plot of ROC-curve: if ( any( !is.na( match( "ROC", toupper( plot ) ) ) ) ) { plot( 1-res[,2], res[,1], xlim=0:1, xlab="1-Specificity", ylim=0:1, ylab= "Sensitivity", type="n", ...) if( is.numeric( grid ) ) abline( h=grid/100, v=grid/100, col=gray( 0.9 ) ) abline( 0, 1, col=gray( 0.4 ) ) box() lines( 1-res[,"spec"], res[,"sens"], lwd=lwd ) # Tickmarks on the ROC-curve if ( !is.null(cuts) ) { ROC.tic( cuts, txt=formatC( cuts, digits=2, format="f" ), fv=fv, res=res, dist=0.03, cex=0.7) } # Plot of optimality point if (MX) { mx <- max( res[,1]+res[,2] ) mhv <- which( (res[,1]+res[,2])==mx )[1] mxf <- fv[mhv] abline( mx-1, 1, col=gray(0.4) ) ROC.tic( mxf, txt=paste( rnam, "=", formatC( mxf, format="f", digits=3 ) ), fv=fv, res=res, dist=0.03, cex=0.7, angle=135 ) } # Model information if (MI) { crn <- par()$usr text(0.95*crn[2]+0.05*crn[1], 0.07, Model.inf, adj=c(1,0.5),cex=0.7) cf <- summary(lr)$coef[,1:2] nf <- dimnames(cf)[[1]] text(0.95*crn[2]+0.05*crn[1], 0.10, paste("Variable\ \ \ \ \ \ est.\ \ \ \ \ (s.e.) \ \ \n", paste(rbind(nf, rep("\ \ \ \ ",length(nf)), formatC(cf[,1],digits=3,format="f"), rep("\ \ \ (",length(nf)), formatC(cf[,2],digits=3,format="f"), rep(")",length(nf)), rep("\n",length(nf))), collapse=""), collapse=""), adj=c(1,0), cex=0.7 ) } # Print the area under the curve if (AUC) { crn <- par()$usr text( 0.95*crn[2]+0.05*crn[1], 0.00, paste( "Area under the curve:", formatC( auc, format="f", digits=3, width=5 ) ), adj=c(1,0), cex=0.7 ) } # Predictive values at maximum if (PV) { if(!MX) { mx <- max(res[,1]+res[,2]) mhv <- which((res[,1]+res[,2])==mx) mxf <- fv[mhv] } ROC.tic(mxf, fv=fv, res=res, txt= paste( "Sens: ", formatC(100*res[mhv,1],digits=1,format="f"), "%\n", "Spec: ", formatC(100*res[mhv,2],digits=1,format="f"), "%\n", "PV+: ", formatC(100*res[mhv,3],digits=1,format="f"), "%\n", "PV-: ", formatC(100*res[mhv,4],digits=1,format="f"), "%", sep="" ), dist=0.1, cex=0.7, angle=-45 ) } } invisible( list( res=res, AUC=auc, lr=lr ) ) } Epi/R/Pplot.R0000644000175100001440000000346512144476642012451 0ustar hornikusersPplot <- function( rates, age = as.numeric( dimnames( rates )[[1]] ), per = as.numeric( dimnames( rates )[[2]] ), grid = FALSE, p.grid = grid, ygrid = grid, col.grid = gray( 0.9 ), p.lim = range( per, na.rm=TRUE ) + c(0,diff(range(per))/30), ylim = range( rates[rates>0], na.rm=TRUE ), p.lab = names( dimnames( rates ) )[2], ylab = deparse( substitute( rates ) ), at = NULL, labels = paste( at ), type = "l", lwd = 2, lty = 1, col = par( "fg" ), log.ax = "y", las = 1, ann = FALSE, cex.ann = 0.8, xannx = 1/20, a.thin = seq( 1, length( age ), 2 ), ... ) { # Plot the frame if( ann ) p.lim <- p.lim + c(0,diff( range( age ) ) * xannx ) matplot( per, t(rates), type="n", xlim=p.lim, ylim=ylim, xlab=p.lab, ylab=ylab, log=log.ax, las=las, yaxt=if( !is.null( at ) ) "n" else "s" ) if( !is.null( at ) ) axis( side=2, at=at, labels=labels, yaxt="s", las=las ) # and the grid if required if( !missing( p.grid ) | !missing( grid ) ) { if( is.logical( p.grid ) & p.grid[1] ) p.grid <- nice( per, log=par("xlog") ) abline( v=p.grid, col=col.grid ) } if( !missing( ygrid ) | !missing( ygrid ) ) { if( is.logical( ygrid ) & ygrid[1] ) ygrid <- nice( rates[!is.na(rates)], log=par("ylog") ) abline( h=ygrid, col=col.grid ) } box() # then the curves matlines( per, t(rates), lwd=lwd, lty=lty, col=col, type=type, ... ) # annotate them if required (every second by default ) if( ann ) { nr <- nrow( rates ) nc <- ncol( rates ) text( rep( per[nc], nr )[a.thin], rates[,nc][a.thin], paste( "", age[a.thin] ), adj=c(0,0.5), cex=cex.ann, col=if( length(col)==1 ) col else col[a.thin] ) } } Epi/R/N2Y.r0000644000175100001440000000423712144476642012021 0ustar hornikusersN2Y <- function( A, P, N, data=NULL, return.dfr=TRUE ) { # Make local versions of variables if a dataframe is supplied if( !is.null(data) ) { A <- if( !missing(A) ) eval( substitute(A), data, parent.frame() ) else data$A P <- if( !missing(P) ) eval( substitute(P), data, parent.frame() ) else data$P N <- if( !missing(N) ) eval( substitute(N), data, parent.frame() ) else data$N } # Derive the interval lengths from supplied data A.int <- unique( diff(sort(unique(A))) ) P.int <- unique( diff(sort(unique(P))) ) # Check if something is fishy if( length(A.int)!=1 ) stop( "Non-uniform age interval lengths:\n", A.int ) if( length(P.int)!=1 ) stop( "Non-uniform period interval lengths:\n", P.int ) if( A.int!=P.int ) stop( "Unequal age and period interval lengths:\n", "age: ", A.int, ", period: ", P.int ) # Put population prevalence data in a table Ntab <- xtabs( N ~ A + P ) # Devise a table for the risk times Ydim <- c(dimnames(Ntab),list(wh=c("lo","up"))) # note one less age and period category Ytab <- array( NA, dim=sapply(Ydim,length), dimnames = Ydim )[-dim(Ntab)[1],-dim(Ntab)[2],] # How manu age and period classes na <- nrow(Ytab) np <- ncol(Ytab) for(a in 1:na) for(p in 1:np) { Ytab[a,p,"up"] <- Ntab[a ,p]/3 + Ntab[a+1,p+1]/6 if( a > 1) Ytab[a,p,"lo"] <- Ntab[a-1,p]/6 + Ntab[a ,p+1]/3 else Ytab[a,p,"lo"] <- Ntab[a ,p]/2 + Ntab[a ,p+1]/2 - Ytab[a,p,"up"] } # Remember to check the follow-up time Ytab <- Ytab * A.int # Convert to a data frame if required (the default) if( return.dfr ) { ## If a dataframe is required as return value Ytab <- data.frame(expand.grid(dimnames(Ytab)), Y=c(Ytab)) ## Retrieve the numerical values of left endpoints of intervals Ytab$A <- as.numeric(as.character(Ytab$A)) Ytab$P <- as.numeric(as.character(Ytab$P)) ## Compute the correct midpoints from the supplied data Ytab$A <- Ytab$A + A.int * (1 + (Ytab$wh == "up"))/3 Ytab$P <- Ytab$P + P.int * (1 + (Ytab$wh == "lo"))/3 Ytab <- Ytab[, c("A","P","Y")] } Ytab } Epi/R/Life.lines.R0000644000175100001440000000555212144476642013342 0ustar hornikusersLife.lines <- function( entry.date = NA, exit.date = NA, birth.date = NA, entry.age = NA, exit.age = NA, risk.time = NA ) { # A function allowing any three of the arguments to be specified # and yet returns enty age and -time and exit age and -time. # Check if any variable is supplied with class if( conv <- any( inherits( entry.date, "Date" ), inherits( exit.date, "Date" ), inherits( birth.date, "Date" ), inherits( entry.age , "difftime" ), inherits( exit.age , "difftime" ), inherits( risk.time, "difftime" ) ) ) { # Convert "Date" and "difftime" to years if( inherits( entry.date, "Date" ) ) entry.date <- as.numeric( entry.date ) / 365.35 + 1970 if( inherits( exit.date, "Date" ) ) exit.date <- as.numeric( exit.date ) / 365.35 + 1970 if( inherits( birth.date, "Date" ) ) birth.date <- as.numeric( birth.date ) / 365.35 + 1970 if( inherits( entry.age , "difftime" ) ) entry.age <- as.numeric( entry.age ) / 365.35 if( inherits( exit.age , "difftime" ) ) exit.age <- as.numeric( exit.age ) / 365.35 if( inherits( risk.time, "difftime" ) ) risk.time <- as.numeric( risk.time ) / 365.35 # Convert to numeric class( entry.date ) <- "numeric" class( exit.date ) <- "numeric" class( birth.date ) <- "numeric" class( entry.age ) <- "numeric" class( exit.age ) <- "numeric" class( risk.time ) <- "numeric" } # Find out which three items are supplied. # wh <- (1:6)[!is.na( list( entry.date, entry.age, exit.date, exit.age, birth.date, risk.time ) )] # Matrix of relevant quantities. # LL <- rbind( entry.date, entry.age, exit.date, exit.age, birth.date, risk.time ) # Matrix giving the three constraints among the six quantities: # M <- rbind( c( -1, 1, 0, 0, 1, 0 ), c( 0, 0, -1, 1, 1, 0 ), c( 0, 1, 0, -1, 0, 1 ) ) # Now in principle we have that M %*% LL = 0. # Partitioning M=(A1|A2), t(LL)=(t(x1),t(x2)) # this gives A1 %*% x1 = -A2 %*% x2 # Check if there is sufficient information # if( qr( M[,-wh[1:3]] )$rank < 3 ) cat( "Insufficient information to display life lines" ) # Then do the calculation # A1 <- M[, wh[1:3]] A2 <- M[,-wh[1:3]] x1 <- LL[wh[1:3],] x2 <- -solve( A2 ) %*% A1 %*% x1 LL[-wh[1:3],] <- x2 LL <- data.frame( t(LL) ) attr( LL, "Date" ) <- conv # Convert to dates and difftimes if( conv ) { LL[,c(1,3,5)] <- ( LL[,c(1,3,5)] - 1970 ) * 365.25 LL[,c(2,4,6)] <- LL[,c(2,4,6)] * 365.25 class( LL[,1] ) <- class( LL[,3] ) <- class( LL[,5] ) <- "Date" class( LL[,2] ) <- class( LL[,4] ) <- class( LL[,6] ) <- "difftime" } LL } Epi/R/Lexis.lines.R0000644000175100001440000000631012144476642013540 0ustar hornikusersLexis.lines <- function( entry.date = NA, exit.date = NA, birth.date = NA, entry.age = NA, exit.age = NA, risk.time = NA, col.life = "black", lwd.life = 2, fail = NA, cex.fail = 1, pch.fail = c(NA,16), col.fail = col.life, data = NULL ) { ## Get variables from data argument, if supplied, or from parent ## frame if not. entry.date <- eval(substitute(entry.date), data) entry.age <- eval(substitute(entry.age ), data) exit.date <- eval(substitute(exit.date ), data) exit.age <- eval(substitute(exit.age ), data) risk.time <- eval(substitute(birth.date), data) birth.date <- eval(substitute(birth.date), data) fail <- eval(substitute(fail ), data) # If fail is numeric make it logical if( is.numeric( fail ) ) fail <- ( fail > 0 ) # Complete the information on lifelines XX <- Life.lines( entry.date = entry.date, entry.age = entry.age, exit.date = exit.date, exit.age = exit.age, risk.time = risk.time, birth.date = birth.date ) # Expand lwd.life/col.life/pch.fail/col.fail/cex.fail # Np <- nrow( XX ) if( length( col.life )==1 ) col.life <- rep( col.life, Np ) else if( length( col.life )!=length(fail) ) stop("col.life must have length 1 or length(fail)" ) if( length( lwd.life )==1 ) lwd.life <- rep( lwd.life, Np ) else if( length( lwd.life )!=length(fail) ) stop("lwd.life must have length 1 or length(fail)" ) if( length( col.fail )==1 ) col.fail <- rep( col.fail, Np ) else { if( length( col.fail )==2 ) col.fail <- col.fail[fail+1] } if( length( col.fail )!=length(fail) ) stop("col.fail must have length 1,2 or length(fail)" ) if( length( pch.fail )==1 ) pch.fail <- rep( pch.fail, Np ) else if( length( pch.fail )==2 ) pch.fail <- pch.fail[fail+1] if( length( pch.fail )!=length(fail) ) stop("pch.fail must have length 1,2 or length(fail)" ) if( length( cex.fail )==1 ) cex.fail <- rep( cex.fail, Np ) else if( length( cex.fail )==2 ) cex.fail <- cex.fail[fail+1] if( length( cex.fail )!=length(fail) ) stop("cex.fail must have length 1,2 or length(fail)" ) # Was XX returned as a Date-object? # If so make a numerical version i LL, otherwise just a copy. # if( attr( XX, "Date" ) ) { LL <- data.frame( lapply( XX, unclass ) ) LL[,c(1,3,5)] <- LL[,c(1,3,5)] / 365.25 + 1970 LL[,c(2,4,6)] <- LL[,c(2,4,6)] / 365.25 } else LL <- XX # Find age and date ranges in the current plot. # date <- par( "usr" )[1:2] age <- par( "usr" )[3:4] # Plot the lifelines segments( LL[,1], LL[,2], LL[,3], LL[,4], lwd=lwd.life, col=col.life ) # If there are any non-NAs for pch.fail then blank out the space # where they go before plotting the symbols if( any( !is.na(pch.fail) ) ) points( LL[!is.na(pch.fail),3], LL[!is.na(pch.fail),4], pch=16, col="white", #par()$bg, cex=cex.fail[!is.na(pch.fail)] ) points( LL[,3], LL[,4], pch=pch.fail, col=col.fail, cex=cex.fail ) # Return the untouched version of the completed dataframe # invisible( data.frame( XX, fail=fail ) ) } Epi/R/Lexis.diagram.R0000644000175100001440000000742312144476642014040 0ustar hornikusersLexis.diagram <- function( age = c( 0, 60), alab = "Age", date = c( 1940, 2000 ), dlab = "Calendar time", int = 5, lab.int = 2*int, col.life = "black", lwd.life = 2, age.grid = TRUE, date.grid = TRUE, coh.grid = FALSE, col.grid = gray(0.7), lwd.grid = 1, las = 1, entry.date = NA, entry.age = NA, exit.date = NA, exit.age = NA, risk.time = NA, birth.date = NA, fail = NA, cex.fail = 1.1, pch.fail = c(NA,16), col.fail = rep( col.life, 2 ), data = NULL, ... ) { # Function to plot a Lexis-diagram # # BxC, 2002, revsions in 2005 ## Get variables from data argument, if supplied, or from parent ## frame if not. entry.date <- eval(substitute(entry.date), data) entry.age <- eval(substitute(entry.age ), data) exit.date <- eval(substitute(exit.date ), data) exit.age <- eval(substitute(exit.age ), data) risk.time <- eval(substitute(birth.date), data) birth.date <- eval(substitute(birth.date), data) fail <- eval(substitute(fail ), data) # First expand intervals to both dimensions # int[1:2] <- c( int, int)[1:2] lab.int[1:2] <- c(lab.int,lab.int)[1:2] # Plot the diagram # plot( NA, xlim=date, xaxt="n", xaxs="i", xlab=dlab, ylim=age, yaxt="n", yaxs="i", ylab=alab, ... ) axis( side=1, at=seq( date[1], date[2], lab.int[2] ), las=las ) axis( side=2, at=seq( age[1], age[2], lab.int[1] ), las=las ) box( col="white" ) # par("fg") ) # Then the required grids # if ( age.grid ) { abline( h = seq( age[1], age[2], int[1] ), col=col.grid, lwd=lwd.grid ) } if ( date.grid ) { abline( v = seq( date[1], date[2], int[2] ), col=col.grid, lwd=lwd.grid ) } ages <- seq( age[1], age[2], min( int ) ) dates <- seq( date[1], date[2], min( int ) ) if ( coh.grid ) { segments( rep( date[1], length( ages ) ), ages, pmin( date[1] + ( age[2] - ages ), date[2] ), pmin( ages + ( date[2] - date[1] ), age[2] ), col=col.grid, lwd=lwd.grid ) segments( dates, rep( age[1], length( dates ) ), pmin( dates + ( age[2] - age[1] ), date[2] ), pmin( age[1] + ( date[2] - dates ), age[2] ), col=col.grid, lwd=lwd.grid ) } # Check if data for lifelines is supplied and plot lifelines if so # if( sum( !is.na( list( entry.date, entry.age, exit.date, exit.age, birth.date, risk.time ) ) ) > 2 ) { LL <- Lexis.lines( entry.date = entry.date, exit.date = exit.date, birth.date = birth.date, entry.age = entry.age, exit.age = exit.age, risk.time = risk.time, col.life = col.life, lwd.life = lwd.life, fail = fail, cex.fail = cex.fail, pch.fail = pch.fail, col.fail = col.fail, data = data ) invisible( LL ) } } Epi/R/Icens.R0000644000175100001440000000620012144476642012402 0ustar hornikusersIcens <- function(first.well, last.well, first.ill, formula, model.type=c("MRR","AER"), breaks, boot=FALSE, alpha=0.05, keep.sample=FALSE, data) { ## Create follow-up matrix containing three event times fu.expression <- substitute(cbind(first.well, last.well, first.ill)) fu <- if (missing(data)) { eval(fu.expression) } else { eval(fu.expression, data) } ## Check consistency of arguments missing.f1 <- is.na(fu[,1]) missing.f2 <- is.na(fu[,2]) if (any(missing.f1 & missing.f2)) { stop("You must supply at least one of \"first.well\" and \"last.well\"") } if (any(fu[,1] > fu[,2], na.rm=TRUE) | any(fu[,2] > fu[,3], na.rm=TRUE)) { stop("Some units do not meet: first.well < last.well < first.ill" ) } ## Fill in any gaps fu[,1][missing.f1] <- fu[,2][missing.f1] fu[,2][missing.f2] <- fu[,1][missing.f2] ## Recensor cases that fall after the last break point is.censored <- fu[,3] > max(breaks) is.censored[is.na(is.censored)] <- FALSE fu[is.censored,3] <- NA exp.dat <- expand.data(fu, formula, breaks, data) model.type <- match.arg(model.type) if (missing(formula)) { fit.out <- with(exp.dat, fit.baseline(y, rates.frame)) lambda <- coef(fit.out) } else { fit.out <- switch(model.type, "MRR"=with(exp.dat, fit.mult(y, rates.frame, cov.frame)), "AER"=with(exp.dat, fit.add(y, rates.frame, cov.frame))) lambda <- coef(fit.out$rates) } beta <- if (is.null(fit.out$cov)) numeric(0) else coef(fit.out$cov) params <- c(lambda,beta) if (boot) { nboot <- ifelse (is.numeric(boot), boot, 100) boot.coef <- matrix(NA, nrow=nboot, ncol=length(lambda) + length(beta)) colnames(boot.coef) <- names(params) for (i in 1:nboot) { subsample <- sample(nrow(fu), replace=TRUE) exp.dat <- expand.data(fu[subsample,], formula, breaks, data[subsample,]) if (missing(formula)) { sim.out <- with(exp.dat, fit.baseline(y, rates.frame, params)) boot.coef[i,] <- coef(sim.out) } else { sim.out <- switch(model.type, "MRR"=with(exp.dat, fit.mult(y, rates.frame, cov.frame, params)), "AER"=with(exp.dat, fit.add(y, rates.frame, cov.frame, params))) boot.coef[i,] <- switch(model.type, "MRR"=c(coef(sim.out[[1]]), coef(sim.out[[2]])), "AER"=coef(sim.out[[1]])) } } ci.quantiles=c(0.5, alpha/2, 1 - alpha/2) boot.ci <- t(apply(boot.coef,2,quantile,ci.quantiles)) lower.ci.lab <- paste("lower ", formatC(100 * alpha/2, format="f", digits=1),"%", sep="") upper.ci.lab <- paste("upper ", formatC(100 * (1-alpha/2), format="f", digits=1),"%", sep="") colnames(boot.ci) <- c("median", lower.ci.lab, upper.ci.lab) fit.out$boot.ci <- boot.ci if (keep.sample) { fit.out$sample <- boot.coef } } class( fit.out ) <- "Icens" attr( fit.out, "model" ) <- model.type return( fit.out ) } Epi/R/Cplot.R0000644000175100001440000000441212144476641012424 0ustar hornikusersCplot <- function( rates, age = as.numeric( rownames( rates ) ), per = as.numeric( colnames( rates ) ), grid = FALSE, c.grid = grid, ygrid = grid, col.grid = gray( 0.9 ), c.lim = NULL, ylim = range( rates[rates>0], na.rm=TRUE ), at = NULL, labels = paste( at ), c.lab = names( dimnames( rates ) )[2], ylab = deparse( substitute( rates ) ), type = "l", lwd = 2, lty = 1, col = par( "fg" ), log.ax = "y", las = 1, xannx = 1/20, ann = FALSE, cex.ann = 0.8, a.thin = seq( 1, length( age ), 2 ), ... ) { # First convert the age-period table to an age-cohort table rt <- as.table( rates ) dimnames( rt ) <- list( age = age, per = per ) rtf <- data.frame( rt ) rtf$age <- as.numeric( as.character( rtf$age ) ) rtf$per <- as.numeric( as.character( rtf$per ) ) ac <- tapply( rtf$Freq, list( rtf$age, rtf$per-rtf$age ), mean ) coh <- as.numeric( colnames( ac ) ) if( is.null( c.lim ) ) c.lim <- range( coh, na.rm=TRUE ) + c(0,diff( range( coh ) )/30) * ann # Plot the frame if( ann ) c.lim <- c.lim - c(diff( range( coh ) ) * xannx,0) matplot( coh, t(ac), type="n", xlim=c.lim, ylim=ylim, xlab=c.lab, ylab=ylab, log=log.ax, las=las, yaxt=if( !is.null( at ) ) "n" else "s" ) if( !is.null( at ) ) axis( side=2, at=at, labels=labels, yaxt="s", las=las ) # and the grid if required if( !missing( c.grid ) | !missing( grid ) ) { if( is.logical( c.grid ) & c.grid[1] ) c.grid <- nice( coh, log=par("xlog") ) abline( v=c.grid, col=col.grid ) } if( !missing( ygrid ) | !missing( grid ) ) { if( is.logical( ygrid ) & ygrid[1] ) ygrid <- nice( rates[!is.na(rates)], log=par("ylog") ) abline( h=ygrid, col=col.grid ) } box() # then the curves matlines( coh, t(ac), lwd=lwd, lty=lty, col=col, type=type, ... ) # annotate them if required (every second by default ) if( ann ) { nr <- nrow( ac ) nc <- ncol( ac ) # Find the cohorts for the last rates in each age-class c.end <- rev( per )[1] - age text( c.end[a.thin], rates[,ncol(rates)][a.thin], paste( "", age[a.thin] ), adj=c(0,0.5), cex=cex.ann, col=if( length(col)==1 ) col else col[a.thin] ) } } Epi/R/Aplot.R0000644000175100001440000000622112144476641012422 0ustar hornikusersAplot <- function( rates, age = as.numeric( dimnames( rates )[[1]] ), per = as.numeric( dimnames( rates )[[2]] ), grid = FALSE, a.grid = grid, ygrid = grid, col.grid = gray( 0.9 ), a.lim = range( age, na.rm=TRUE ), ylim = range( rates[rates>0], na.rm=TRUE ), at = NULL, labels = paste( at ), a.lab = names( dimnames( rates ) )[1], ylab = deparse( substitute( rates ) ), type = "l", lwd = 2, lty = 1, col = par( "fg" ), log.ax = "y", las = 1, c.col = col, p.col = col, c.ann = FALSE, p.ann = FALSE, xannx = 1/20, cex.ann = 0.8, c.thin = seq( 2, length( age ) + length( per ) - 1, 2 ), p.thin = seq( 1, length( per ), 2 ), p.lines = TRUE, c.lines = !p.lines, ... # arguments passed on to matlines() ) { # Plot the frame if( p.ann ) a.lim <- a.lim + c(0,diff( range( age ) ) * xannx) if( c.ann ) a.lim <- a.lim - c( diff( range( age ) ) * xannx,0) matplot( age, rates, type="n", xlim=a.lim, ylim=ylim, xlab=a.lab, ylab=ylab, log=log.ax, las=las, yaxt=if( !is.null( at ) ) "n" else "s" ) if( !is.null( at ) ) axis( side=2, at=at, labels=labels, yaxt="s", las=las ) # and the grid if required: if( !missing( a.grid ) | !missing( grid ) ) { if( is.logical( a.grid ) & a.grid[1] ) a.grid <- nice( age, log=par("xlog") ) abline( v=a.grid, col=col.grid ) } if( !missing( ygrid ) | !missing( ygrid ) ) { if( is.logical( ygrid ) & ygrid[1] ) ygrid <- nice( rates[!is.na(rates)], log=par("ylog") ) abline( h=ygrid, col=col.grid ) } box() # What lines were required? if( !missing( c.lines ) & missing( p.lines ) ) p.lines <- !c.lines # Period curves: if( p.lines ){ matlines( age, rates, type=type, lwd=lwd, lty=lty, col=p.col, ... ) # annotate them if required (every second by default): if( p.ann ) { nr <- nrow( rates ) nc <- ncol( rates ) text( rep( age[nr], nc )[p.thin], rates[nr,][p.thin], paste( "", per[p.thin] ), adj=c(0,0.5), cex=cex.ann, col=if( length(p.col)==1 ) p.col else p.col[p.thin] ) } } # Cohort curves: if( c.lines ){ # First convert the age-period table to an age-cohort frame rt <- as.table( rates ) dimnames( rt ) <- list( age = age, per = per ) rtf <- data.frame( rt ) rtf$age <- as.numeric( as.character( rtf$age ) ) rtf$per <- as.numeric( as.character( rtf$per ) ) ac <- tapply( rtf$Freq, list( rtf$age, rtf$per-rtf$age ), mean ) matlines( age, ac, type=type, lwd=lwd, lty=lty, col=c.col, ... ) # annotate them if required (every other by default): if( c.ann ) { nr <- nrow( rt ) nc <- ncol( rt ) # Find the ages, cohorts and rates where the cohort curves starts a.min <- c( rev( age ), rep( age[1], nc-1 ) ) p.min <- c( rep( per[1], nr-1 ), per ) c.min <- p.min - a.min r.min <- c(rt[nr:1,1],rt[1,2:nc]) text( a.min[c.thin], r.min[c.thin], paste( "", c.min[c.thin] ), adj=c(1,0.5), cex=cex.ann, col=if( length(c.col)==1 ) c.col else c.col[c.thin] ) } } } Epi/NAMESPACE0000644000175100001440000000501012144476641012231 0ustar hornikusersexport( as.Date.cal.yr, apc.frame, apc.fit, apc.plot, apc.lines, pc.points, pc.lines, pc.matpoints, pc.matlines, cal.yr, as.Date.cal.yr, ccwc, ci.pd, ci.cum, ci.lin, ci.exp, ci.mat, lls, clear, contr.orth, contr.2nd, contr.cum, contr.diff, detrend, dur, effx, effx.match, float, print.floated, gen.exp, Icens, print.Icens, plotevent, fit.add, fit.mult, ftrend, Lexis.diagram, Lexis.lines, Life.lines, Lexis, merge.Lexis, plot.Lexis, points.Lexis, lines.Lexis, PY.ann.Lexis, subset.Lexis, summary.Lexis, print.summary.Lexis, splitLexis, transform.Lexis, Relevel.Lexis, factorize.Lexis, cutLexis, countLexis, stack.Lexis, tmat.Lexis, boxes.Lexis, boxes.matrix, boxes.MS, msdata.Lexis, etm.Lexis, simLexis, subset.stacked.Lexis, transform.stacked.Lexis, plot.pState, entry, exit, status, timeBand, timeScales, breaks, merge.data.frame, tbox, dbox, fillarr, boxarr, boxes, factorize, PY.ann, N2Y, tmat, nState, pState, msdata, etm, mh, ncut, nice, pctab, plotEst, pointsEst, projection.ip, linesEst, rateplot, Aplot, Pplot, Cplot, Relevel, ROC, twoby2, Wald, stat.table, clogistic) # Import generic methods importFrom( utils, stack ) # importFrom( mstate, mstate ) # register S3 methods S3method( plot, Lexis) S3method( plot, pState) S3method( points, Lexis) S3method( lines, Lexis) S3method( PY.ann, Lexis) S3method( merge, Lexis) S3method( subset, Lexis) S3method( subset, stacked.Lexis) S3method( summary, Lexis) S3method( print, summary.Lexis) S3method(transform, Lexis) S3method(transform, stacked.Lexis) S3method( Relevel, Lexis) S3method( Relevel, factor) S3method( Relevel, default) S3method(factorize, Lexis) S3method( stack, Lexis) S3method( tmat, Lexis) S3method( boxes, Lexis) S3method( boxes, matrix) S3method( boxes, MS) S3method( msdata, Lexis) S3method( etm, Lexis) S3method( merge, data.frame) S3method( print, stat.table) S3method( print, clogistic) S3method( coef, clogistic) S3method( vcov, clogistic) S3method( as.Date, cal.yr) Epi/Examples/0000755000175100001440000000000012144476641012574 5ustar hornikusersEpi/Examples/stat.table.R0000644000175100001440000000152212144476641014760 0ustar hornikuserslibrary( Epi ) data( nickel ) stat.table( cut( agein, breaks=c(0,50,60,75) ), contents=list( N=count(), Y=sum( ageout-agein ), D=sum( icd %in% c(162,163) ) ) ) stat.table( cut( agein, breaks=c(0,50,60,75) ), contents=list( N=count(), Y=sum( ageout-agein ), mb=mean( dob ), D=sum( icd %in% c(162,163) ) ) ) stat.table( cut( agein, breaks=c(0,50,60,75) ), contents=list( N=count(), Y=sum( ageout-agein ), mb=mean( dob ), Rate=ratio( icd %in% c(162,163), ageout-agein, 1000 ) ) ) stat.table( cut( agein, breaks=c(0,50,60,75) ), contents=list( N=count(), Y=sum( ageout-agein ), Rate=ratio( icd %in% c(162,163), ageout-agein, 1000 ) ) ) Epi/Examples/apc.fit-ex.R0000644000175100001440000000403312144476641014655 0ustar hornikuserslibrary( Epi ) data(lungDK) # Taylor a dataframe that meets the requirements exd <- lungDK[,c("Ax","Px","D","Y")] names(exd)[1:2] <- c("A","P") # Two different ways of parametrizing the APC-model, ML ex.H <- apc.fit( exd, npar=7, model="ns", drift="Holford", parm="ACP", scale=10^5 ) ex.W <- apc.fit( exd, npar=7, model="ns", drift="weighted", parm="ACP", scale=10^5 ) # Sequential fit, first AC, then P given AC. ex.S <- apc.fit( exd, npar=7, model="ns", parm="AC-P", scale=10^5 ) # Show the estimated drifts ex.H[["Drift"]] ex.W[["Drift"]] ex.S[["Drift"]] # First nice plot frame par( mar=c(3,4,1,4), mgp=c(3,1,0)/1.5, las=1 ) sc <- apc.frame(a.lab = seq( 30, 90, 20 ), a.tic = seq( 30, 90, 10 ), cp.lab = seq( 1860, 2000, 20 ), cp.tic = seq( 1860, 2000, 10 ), r.lab = c(1,2,5,10,20,50)*10, r.tic = c(1:9*10, 1:5*100), rr.ref = 200, gap = 22 ) # Reference lines abline( v=ex.H[[5]][2]-sc[1] ) segments( 1860-sc[1], sc[2], 2000-sc[1], sc[2] ) # Fill in the estimated effects apc.lines( ex.S, col="green", scale="rates", frame.par=sc, ci=TRUE ) apc.lines( ex.H, col="red", scale="rates", frame.par=sc, ci=TRUE ) apc.lines( ex.W, col="blue", scale="rates", frame.par=sc, ci=TRUE ) # Extract the drifts in \% per year rd <- formatC( (ex.W[["Drift"]]["A-d",]-1)*100, format="f", digits=2 ) wd <- formatC( (ex.W[["Drift"]]["APC",]-1)*100, format="f", digits=2 ) hd <- formatC( (ex.H[["Drift"]]["APC",]-1)*100, format="f", digits=2 ) # Put them on the plot text( 1999-sc[1], 11, paste( "Weighted drift:", wd[1], "(", wd[2], "-", wd[3], ") \%/year" ), col="blue", adj=c(1,0), font=2, cex=0.8 ) text( 1999-sc[1], 11*1.2, paste( "Naïve drift:", hd[1], "(", hd[2], "-", hd[3], ") \%/year" ), col="red", adj=c(1,0), font=2, cex=0.8 ) text( 1999-sc[1], 11*1.2^2, paste( "Raw drift:", rd[1], "(", rd[2], "-", rd[3], ") \%/year" ), col="green", adj=c(1,0), font=2, cex=0.8 ) Epi/DESCRIPTION0000644000175100001440000000212212144645505012516 0ustar hornikusersPackage: Epi Version: 1.1.49 Date: 2013-05-14 Title: A package for statistical analysis in epidemiology. Authors@R: c(person("Bendix", "Carstensen", role = c("aut", "cre"), email = "bxc@steno.dk"), person("Martyn", "Plummer", role = "aut", email = "plummerm@iarc.fr"), person("Michael", "Hills", role = "aut"), person("Esa", "Laara", role = "ctb")) Maintainer: Bendix Carstensen Depends: R (>= 2.14.0), utils Suggests: splines, nlme, survival, mstate, etm, MASS Description: Functions for demographic and epidemiological analysis in the Lexis diagram, i.e. register and cohort follow-up data, including interval censored data and representation of multistate data. Also some useful functions for tabulation and plotting. Contains some epidemiological datasets. License: GPL-2 URL: http://BendixCarstensen.com/Epi/ Packaged: 2013-05-14 18:08:54 UTC; BXC Author: Bendix Carstensen [aut, cre], Martyn Plummer [aut], Michael Hills [aut], Esa Laara [ctb] NeedsCompilation: yes Repository: CRAN Date/Publication: 2013-05-15 10:45:57 Epi/CHANGES0000644000175100001440000004672512144476640012026 0ustar hornikusersChanges in 1.2.48 o Default of "border" argument to plot.pState changed to "transparent" Changes in 1.2.48 o Slight tidying of code in apc.fit. Automatic determination of reference points for period and cohort fixed to produce median correctly. Changes in 1.2.47 o Bug in simLexis (specifically in Epi:::simX) where factor levels were wrongly used, is now corrected. Versions earlier are likely to produce wrong state allocation in simulated dataset and not crash. Changes in 1.2.46 o lex.id handling in simLexis changed, allows for easier simulation in chunks which may be necessary to avoid memory problems. Changes in 1.2.45 o simLexis introduced. Allows simulation from multiple timescale mulitste models. Accompanying utilities supplied too: pr.Lexis, prev and plot.prev. Changes in 1.2.44 o A number of dead links in the documentation have been resurrected. o attach() purged from Lexis.diagram, Lexis.lines and ccwc. o Bug in computing AUC in ROC fixed, thanks to Karl Ove Hufthammer. Documentation clarified with respect to definition of test. o Bug fix to remove warning when more than one variable name was supplied in the by= argument of summary.Lexis. Changes in 1.2.43 o N2Y fixed so that local variable bindings are recognized (M. Plummer) o summary.Lexis expanded with the argument by=, allowing a summary by a factor. Also, the default behaviour is now to return only the transition summary, and only optionally the transition rates; giverned by the Rates= argument Changes in 1.2.42 o Bug that caused a crash of ROC when vaiables in the "form" argument were only in the "data" argument data frame and not in the global environmant. Now fixed thanks to Ben Barnes of the Robert Koch Institute, German Center for Cancer Registry Data Changes in 1.2.41 o boxes.Lexis now returns an object of class MS, which easily allows plotting of slightly modified multistate displays using the new command boxes.MS. The facility in boxes.Lexis to produce weedy code for the same purpose has been removed. o boxes.Lexis now allows to show *both* number of transitions *and* rates between the states. o stack.Lexis now takes the Lexis attributes "time.scales" and "breaks" across from the Lexis object to the stacked.Lexis object. Changes in 1.1.40 o subset, transform and Relevel methods have been added for objects of type stacked.Lexis. Changes in 1.1.39 o effx has been expanded with an extra argument eff=, which defaults to NULL, allows "RR" for relative risk for binary data, and "RD" for rate differences for failure data. Also logical response is admitted for binomial and failure responses. o factorize and Relevel are now synonyms. Methods for Relevel are Relevel.default, Relevel.factor, Relevel.Lexis, for factorise only the factorize.default and factorize.Lexis exist. o A mistake in estimating sequential residuals in apc.fit() has been corrected. The wrong model (adc instead of rc, in the case parm == "AD-C-P") was used for the basis of residuals. Thanks to Shih-Yung Su from Taiwan. o as.Date.cal.yr is added, even though it was removed earlier: cal.yr is a class for date variables and the conversion function should be around. o A bug in ci.pd causing calculations to go wrong if vectors were supplied as input. Correction thanks to Patrick Rymer. o A bug in factorize.Lexis is fixed. Now appropriately groups factor levels in the state factors lex.Cst and lex.Xst. Relevel.Lexis is defined as an alias for factorize.Lexis. Thus the functins Relevel() and factorize() are now identical. Changes in 1.1.36 o A bug in boxes.Lexis causing arrow-coloring to go out of sync fixed o Array problems in stat.table fixed Changes in 1.1.35 o none. Just compiled for the archive with R 2.15.0 Changes in 1.1.34 o plotEst now has an arguments col.txt and font.txt which allows the use of different colors and fonts for the annotation of the estimates. Models likely to be multiplicative incurs a logarithmic x-axis in the plot. o ci.exp introduced - a wrapper for ci.lin, getting the exponentiated parameters with CIs. o A bug causing unintended reordering of levels using boxes.Lexis is fixed. o Method etm for Lexis objects included. This just takes a Lexis object, and fishes out the relevant information to be able to call the function etm from the etm package (empirical transition matrix). This function is now physically defined in the file(s) foreign.Lexis.R(d). Changes in 1.1.32 o gen.exp was re-written and simplified. o Small cosmetic changes to the code for N2Y Changes in 1.1.31 o The extractor functions entry, exit, status and dur have now an argument by.id=FALSE. If set to TRUE, only one record per lex.id is returned and the resulting object has lex.id as (row)names attribute. Changes in 1.1.30 o DMlate expanded with the column dooad o Documentation for as.Date.cal.yr fixed o Bug in gen.exp fixed (It was assuming a data frame called dfr existed was wrong, but not spotted by the example because in the example one actually did exist!) Changes in 1.1.29 o New function gen.exp for generating time-varying exposure variables from drug purchase records. Changes in 1.1.28 o splitLexis now allows NAs in the timescale on which you split. Records with NAs are simply left untouched, but a warning is printed. o A bug in boxes.Lexis preventing rates to be printed was issued. Changes in 1.1.27 o A few typos corrected o Functions a.lines, a.points, cp.lines and cp.points added to facilitate plotting points and curves from APC-models. o apc.fit did not return the reference cohort/period if it was not supplied in a model with explicit drift. Changes in 1.1.26 o A new function N2Y added which computes person-years in Lexis triangles from population prevalence data. o Demographic example data from Denmark added: N.dk - population size at 1 Jan Y.dk - risk time in Lexis triangles M.dk - mortality data B.dk - births in Denmark 1902 ff. Changes in 1.1.25 o Added sd() function to stat.table() o tmat.Lexis has an argument Y=FALSE which if set to TRUE will return the person-years in the diagonal. o boxes() now explicitly defined with methods boxes.Lexis and boxes.matrix that explicitly call boxes.default (which is the function doing the work (almost identical to the former boxes.Lexis). Changes in 1.1.24 o countLexis did not take the "timescales" and "breaks" attribute across to the resulting Lexis object. Changes in 1.1.23 o A missing defualt value for new.scale in doCutLexis caused a crash o A missing default value for new.scale in doCutLexis caused a crash when using the count=TRUE argument to cutLexis. Changes in 1.1.23 o ci.lin and ci.cum now have a sample= argument that causes return of a sample from the normal distribution with mean equal to the estimates and variance equal to the estimated variance of the estimates. To be used to do "parametric bootstrap" of complicated functions of the parameters, such as state occupancy probabilities from multistate models. o ci.lin now supports objects of class mipo (Multiple Imputation Pooled Objects --- see the mice package). o tabplot removed --- it was a proper subset of the mosaicplot from the graphics package Changes in 1.1.22 o A bug in boxes.Lexis prevented the use of ht= and wd= arguments to set boxes to a prespecified size. The scaling of these is now also clarified in the man file for boxes.Lexis. Changes in 1.1.21 o Specifying period of cohort effects with only two parameters caused apc.fit to crash. Fixed by adding a few ",drop=FALSE" in subsetting of matrices. o Since as.Date.cal.yr was not used anywhere, it has been removed from the package. o A function Wald added to do Wald test of several parameters or linear combinations of them. It is a small extension on top of ci.lin. Changes in 1.1.20 o CITATION file added. Changes in 1.1.19 o ci.lin amended by an argument subint= allowing to select subsets of parameters matching several strings. Changes in 1.1.18 o boxes.Lexis has been made a bit more versatile for production of box-diagrams from multistate models. Changes in 1.1.17 o A comma was missing in the code-output from boxes.Lexis o mstate.Lexis function changed name to msdata.Lexis, according to the change in convention in the mstate package. Code simplified as it is now using the functionality in stack.Lexis. o A factorize.Lexis function has been added, it basically changes the variables lex.Cst and lex.Xst to factors with same set of levels. A useful facility when we want boxes.Lexis to work. Changes in 1.1.16 o boxes.Lexis now resets the graphical parameters (par()) on exit. o plot.Lexis now has a default Lexis object as argument, allowing use of the function to plot empty Lexis diagrams without setting up a Lexis object first. The bogus object has timescales c("Date","Age") but 0 follow-up time. Changes in 1.1.14 o ci.lin now has an argument df to allow for t-quantiles in ci calculations. o lls() function revised to give nicer (left justified) output. Changes in 1.1.13 o ci.lin now supports objects of class clogistic. o utility function ci.mat() added --- earlier defined inside ci.lin and ci.cum, but also useful on its own. o lls() and clear() added, to ease overview and clearing of workspace (and attachments!) o apc.frame now sets the option "apc.frame.par" with the offset and scaling of calendar time part of the apc frame. This is recognised now by apc.lines automatically. o Function pc.points, pc.lines, pc.matlines, pc.matpoints added to ease plotting the calendar time region of an apc frame; live off the option "apc.frame.par". Changes in 1.1.12 o Added function clogistic for conditional logistic regression. Changes in 1.1.9 o A function PY.ann.Lexis is added. It writes the length of (pieces of) lifelines in a Lexis digram produced by plot.Lexis. o plot.Lexis now sets an option "Lexis.time.scale" which is queried by lines.Lexis and points.Lexis, so that time.scale is only needed in plot.Lexis. Changes in 1.1.8 o apc.fit had a bug in the specification of knots when using the argument model="bs". Fixed. Changes in 1.1.7 o boxes.Lexis has been further enhanced with the facility to plot rates instead of no. transitions on the arrows if required. The code has been tidied a bit too. o The man file for boxes.Lexis and subsidiaries have been renamed to MS.boxes.Rd Changes in 1.1.5 o boxes.Lexis have been enhanced to accommodate two-way transitions between states. Annotation by number of transitions has been improved to accommodate this too by always putting the number on the left side of the arrow. Changes in 1.1.3 o ci.lin() and ci.cum() have been expanded to accept objects of class "MIresult" from the mitools package (Esa Läärä). o The boxes.Lexis() now gives a more versatile piece of code, which computes the text widths and heights. Changes in 1.1.2 o cutLexis crashed if new.state=TRUE and new.scale=FALSE were specified. Fixed. Changes in 1.1.1 o Functions stack.Lexis, tmat.Lexis and mstate.Lexis have been added to facilitate practical multistate modeling. The two latter provides an interface to the mstate package. o Functions tbox, dbox, fillarr, boxarr and boxes.Lexis added to facilitate drawing of multistate box diagrams. Changes in 1.1.0 o Two new datasets DMrand and DMlate with random samples from the Danish National diabetes register. The examples from these illustrate most of the recently added multistate stuff. o Minor bug in check.time.scale was fixed (misplaced parentheses in the argument to any(), causing a warning). o cutLexis introduces a new timescale "time since event", which has missing values for any follow-up time prior to event. Hence requires that the Lexis plotting functions explicitly discards the units with missing on timescales in use. Accomplished by the new function valid.times. o cutLexis now places the new states after the precursor states and before the other ones in the factors lex.Cst and lex.Xst. o splitLexis uses the first timescale by default. Which in particular means that in the case of only one time scale it is not necessary to specify it, so this has become acceptable now. o Vignettes has been updated. o Example for ci.cum has been fixed to be compatible with the new survival package as of 2.9.0 as announced. o apc.fit fitted the wrong model when using parm="AC-P". Fixed o The axis scaling of apc.plot has been improved. o apc.frame now by default plots a reference line for RR=1, this may be switched off by the (newly introduced) parameter "ref.line=FALSE". Changes in 1.0.10 o Fixed parse errors in documentation. Changes in 1.0.9 o Thanks to Mike Murphy, Professor of Demography, Department of Social Policy, London School of Economics, a bug causing a crash of apc.fit if only one row in the model matrix corresponds to the reference level was fixed. o Also thanks to Mike Murphy, a much more efficient calculation of median period and cohort is now used. o apc.fit expanded with an argument allowing logistic regression model instead of a Poisson model only. Changes in 1.0.8 o tab.Lexis removed and replaced by summary.Lexis which gives a better summary of the transitions and transition rates. o A bug in ci.pd (confidence interval for probability difference) has been fixed. Changes in 1.0.7 o Stat.table data= argument fixed. Changes in 1.0.6 o Lexis now converts character values of entry/exit.status to factors for lex.Cst and lex.Xst. And produces a warning if the entry.state is defaulted to the first level of exit.state (i.e. when exit.state is given as charcter or factor). o splitLexis gave wrong results for factor states. cutLexis gave wrong results for character states. Fixed by letting Lexis coerce character mode entry.status and exit.status to factors for lex.Cst and lex.Xst. In split.lexis.1D was the problem with the factor states, they were coerced to numeric when stuffed into the new.Xst matrix. Now states are turned to numeric before the call to split.lexis.1D and the factor attributes re-instituted after the split. o Added transform method for Lexis objects. Changes in 1.0.5 o Typos in documentation of APC functions corrected. o cutLexis updated to handle various instances by MP. A few BxC additions to MP's code: - cutLexis2 is renamed cutLexis. BxC's old cutLexis killed. - count=FALSE as argument to cutLexis, just calls countLexis if TRUE. - cutLexis no longer returns the working column lex.cut - cutLexis was missing the attributes "time.scales" and "breaks". Added. - cut= is allowed, simplifying cut of split Lexis objects. - documentation accordingly altered. o splitLexis amended so that lex.Xst is returned as a factor if lex.Cst is a factor. splitLexis crashed if lex.Cst and lex.Xst were factors. o Lexis now allows omission of entry.status --- if exit.status is numeric/logical/factor, entry.status (and hence lex.Cst) will be set to 0/FALSE/first level. o Lexis made sure that lex.Cst and lex.Xst have the same class. If they are factors, the set of levels is taken to be the union. Changes in 1.0.1 o cutLexis now works properly - no it did not! o cutLexis now accepts a (smaller) dataframe with cutpoints and states as input. Changes in 0.9.6 o Bugfix in timeBand, crashed when type="factor" was chosen. levels was given as 0:(lengh(breaks)+1), changed to 0:lengh(breaks) Changes in 0.9.5 o The Lexis definition now assumes that entry is 0 if only one of exit or duration are given as a one-component list. o tab.Lexis is now properly working as a method for Lexis objects. Changes in 0.9.4 o The lex.-variables in Lexis objects are now called lex.dur, lex.Cst, lex.Xst, lex.id (duration, Current state, eXit state and identification) o An extra option states= added to Lexis. If used the state variables are returned as factors. o The utility function deltat.Lexis() has been renamed to dur(). o state() now returns a dataframe of both (entry,exit) states a default. The reason for this is that lex.Cst and lex.Xst may be factors (which actually would be the logical thing to have by default, but it is not enforced only allowed). o entry() and exit() now by default returns matrices with entry and exit times on all timescales. If only one timescale is requested, they return a 1-column matrix. o A minor typo in stat.table corrected: in the definition of the quantile function prob=probs changed to probs=probs. o cutLexis() bugs corrected. Now works with split data too, but requires specification of censoring states --- i.e. states that will be replaced by the new state obtained at the cut date. Changes in 0.9.3 (since 0.9.0) o New function cutLexis() to allow cutting of follow-up time at a specific date for each person, where a new state is assumed. o New function tab.Lexis() which tabulates records as well as events and person-years from a Lexis object. o splitLexis got state information wrong if breaks were not unique. Fixed. Changes in 0.9.0 o effx and effx.match updated following Tartu 2007 to avoid attaching the data, and to correct the parsing of the list of control variables. Changes in 0.8.0 o A new function Lexis() to define follow-up on multiple timescales has been added. An object of class Lexis is defined and a number of utilities for the class are available. Time-splititng is now done by splitLexis(). o The old Lexis function for time-splitting has been renamed to W.Lexis for backward compatibility. o The function epi.eff() has been replaced by effx() and effx.match(). Changes 0.7.2 to 0.7.3 o Icens is now able to handle a constant underlying rate. (A bug in expand.data was fixed). Changes 0.7.0 to 0.7.2 o Bugs in ROC fixed, and the functionality of the grid option slightly chnaged. Changes 0.6.1 to 0.7.0 o Function Icens() for estimation of rates from intervalcensored follow-up data by Martyn Plummer added. o Function epi.eff by Michael Hills is added. Estimates effects in various epidemiological study types. Changes 0.6.0 to 0.6.1 o Coding errors in thoro dataset corrected. Only concerning dates and status for livercancer diagnosis. o Lexis.lines now allows col.life, lwd.life, pch.fail, col.fail and cex.fail to have the same length as the data, i.e. to produce individualized lines and points. As Lexis.diagram calls Lexis.lines, this facility is also available through Lexis.diagram. Changes from 0.4 to 0.6 o ci.pd() amended to support the Agresti-Caffo method for confidence intervals for difference between proportions. Newcombes method 10 is still used in twoby2. o apc.fit() added. Fits age-period-cohort models with a range of possibilities for parametrizations. o Functions for time-splitting at arbitrary times and at recurrent failures have been added: isec(), icut(), fcut1(), fcut() and ex1(). Eventually they will be superseded by new facilities in Lexis. o Function apc.plot() to make a plot of an apc fit is added. It is just a wrapper for apc.frame() and apc.lines(), with suitable computation of the paramters supplied to apc.frame. o Lexis.lines(): pch.fail and col.fail expandS to vectors of length two if only one value is given. o ci.cum() aimed at computing cumulative hazard functions from parametric functions for hazards. o Problem in print.floated() with printing of objects of class "floated" fixed. o Problem in ci.lin when subset did not match any factor names and diff=T was given the function crashed. Fixed, and documentation updated. o cal.yr produces objects of class c("cal.yr","numeric"). Functions as.Date.numeric and as.Date.cal.yr added.