fields/0000755000175100001440000000000014763003301011533 5ustar hornikusersfields/tests/0000755000175100001440000000000014676551716012722 5ustar hornikusersfields/tests/mKrigREMLTest.Rout.save0000644000175100001440000000435014275255352017115 0ustar hornikusers R version 4.2.1 (2022-06-23) -- "Funny-Looking Kid" Copyright (C) 2022 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin17.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # > # fields is a package for analysis of spatial data written for > # the R software environment. > # Copyright (C) 2022 Colorado School of Mines > # 1500 Illinois St., Golden, CO 80401 > # Contact: Douglas Nychka, douglasnychka@gmail.edu, > # > # This program is free software; you can redistribute it and/or modify > # it under the terms of the GNU General Public License as published by > # the Free Software Foundation; either version 2 of the License, or > # (at your option) any later version. > # This program is distributed in the hope that it will be useful, > # but WITHOUT ANY WARRANTY; without even the implied warranty of > # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > # GNU General Public License for more details. > # > # You should have received a copy of the GNU General Public License > # along with the R software environment if not, write to the Free Software > # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA > # or see http://www.r-project.org/Licenses/GPL-2 > ##END HEADER > ##END HEADER > > > suppressMessages(library(fields)) > options( echo=FALSE) PASSED test at tolerance 1e-08 Testing: mKrigOmega PASSED test at tolerance 1e-08 Testing: lnDetOmega PASSED test at tolerance 1e-08 Testing: lnDetMc PASSED test at tolerance 1e-08 Testing: testing det Omega formula PASSED test at tolerance 1e-08 Testing: REML Det shortcut PASSED test at tolerance 1e-08 Testing: Q2 Det and Eigen Det PASSED test at tolerance 1e-08 Testing: sigma.MLE Krig verses mKrig PASSED test at tolerance 1e-08 > proc.time() user system elapsed 1.965 0.077 2.028 fields/tests/Krig.test.R0000644000175100001440000001436414275214521014710 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2022 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.edu, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER ##END HEADER suppressMessages(library(fields)) # # # test of fixed lambda case # Check against linear algebra # options( echo=FALSE) test.for.zero.flag<-1 fit<- Krig( ChicagoO3$x, ChicagoO3$y, aRange=50) x<- ChicagoO3$x K<- Exp.cov(x, x,aRange=50) T<- fields.mkpoly(x, 2) W<- diag( 20) lambda<- fit$lambda M<- (lambda* diag(20) + K) ########################### test.d<- c(solve( t(T) %*% solve( M)%*%T) %*% t(T)%*% solve( M) %*% fit$yM) test.c<- solve( M)%*% ( fit$yM - T%*% test.d) #compare to fit$d test.for.zero( test.d, fit$d, tag="Compare d coef" ) #compare to fit$d test.for.zero( test.c, fit$c,tag="Compare c coef" ) fit2<- Krig( ChicagoO3$x, ChicagoO3$y, aRange=50, lambda= fit$lambda) #compare to fit$d test.for.zero( test.d, fit2$d, tag="Compare d coef fixed lambda" ) #compare to fit$d test.for.zero( test.c, fit2$c,tag="Compare c coef fixed lambda" ) # test of Krig.coef Krig.coef( fit)->test test.for.zero( test.d, test$d, tag="d coef Krig.coef" ) test.for.zero( test.c, test$c, tag= "c coef Krig.coef" ) Krig.coef( fit2)->test test.for.zero( test.d, test$d,tag="d coef Krig.coef fixed" ) test.for.zero( test.c, test$c, tag="c coef Krig.coef fixed" ) # checking A matrix in the case of noreps set.seed( 222) weights<- 10+ runif( length(ChicagoO3$y)) #weights<- rep( 1, 20) test2<- Krig( ChicagoO3$x, ChicagoO3$y, aRange=50, weights= weights) Atest<- Krig.Amatrix( test2) K<-Exp.cov(ChicagoO3$x, ChicagoO3$x,aRange=50) H<- matrix(0, 23,23) H[(1:20)+3 , (1:20)+3]<- K X<- cbind( fields.mkpoly( ChicagoO3$x, 2), K) lambda<- test2$lambda Alam <- X%*%solve( t(X)%*%diag(weights)%*%X + lambda*H )%*% t(X)%*%diag(weights) test.for.zero( Alam, Atest, tag="Amatrix no reps", tol=5e-8) # test for new y fixed case set.seed( 123) ynew<- rnorm( fit2$N) test.d<- c(solve( t(T) %*% solve( M)%*%T) %*% t(T)%*% solve( M) %*% ynew) test.c<- solve( M)%*% ( ynew - T%*% test.d) test<- Krig.coef( fit, y= ynew) test.for.zero( test.d, test$d, tag= "d coef new y" ) test.for.zero( test.c, test$c, tag="c coef new y" ) Krig.coef( fit2, y= ynew)->test test.for.zero( test.d, test$d, tag= "d coef new y fixed" ) test.for.zero( test.c, test$c, tag=" c coef new y fixed" ) # test for multiple new y's Krig.coef( fit2, y= cbind( ynew+ rnorm(fit2$N), ynew))->test2 test.for.zero( test.d, test2$d[,2], tag= "d coef several new y fixed" ) test.for.zero( test.c, test2$c[,2], tag=" c coef several new y fixed" ) #cat("done with simple Krig data", fill=TRUE) # These tests are about whether decompositions # handle just a fixed lambda or are more general # checking passing lambda or df to Krig out<- Tps( ChicagoO3$x, ChicagoO3$y,lambda=.001 ) out2<- predict( out, lambda=.001) test.for.zero( out2, predict( out), tag="Tps with fixed lam") out<- Tps( ChicagoO3$x, ChicagoO3$y, df=5) out2<- predict( out, df=5) test.for.zero( out2, predict( out), tag="Tps with fixed df") # same for Krig out0<- Krig( ChicagoO3$x, ChicagoO3$y, aRange=50,lambda=.5) out<- Krig( ChicagoO3$x, ChicagoO3$y, aRange=50,lambda=.5,GCV=TRUE) test.for.zero( predict(out0), predict( out), tag="Krig with fixed lam argument") #A very nasty case with knots and weights set.seed(123) x<- matrix( runif( 30), 15,2) y<- rnorm( 15)*.01 + x[,1]**2 + x[,2]**2 weights<- runif(15)*10 # compare to Krig( x,y, cov.function=Exp.cov, weights=weights)-> out.new Krig( x,y, cov.function=Exp.cov, weights=weights, lambda=1)-> out.new2 # compute test using linear algebra K<- Exp.cov( x, x) H<- matrix(0, 18,18) H[4:18, 4:18]<- K X<- cbind( fields.mkpoly( x, 2), Exp.cov( x, x)) lambda<-1 c( solve(t(X)%*%(weights*X) + lambda*H)%*% t(X)%*% (weights*y) )-> temp temp.c<- temp[4:18] temp.d<- temp[1:3] # test for d coefficients test.for.zero( out.new2$d, temp.d, tag=" d coef") # test for c coefficents test.for.zero( out.new2$c, temp.c, tag="c coef" ) # and test<- Krig.coef( out.new2, lambda=1) # test for d coefficients test.for.zero( temp.d, test$d, tag= "d fixed case") # test for c coefficents test.for.zero( temp.c, test$c, tag=" c fixed case" ) ynew<- 1:15 #compare test<- Krig.coef( out.new, lambda=.5, y=ynew) test2<- Krig( x,ynew, cov.function=Exp.cov, lambda= .5, weights=weights) # test for d coefficients test.for.zero( test2$d,test$d, tag=" d new y") # test for c coefficents test.for.zero( test2$c, test$c,tag= "c new y" ) #cat("test with reps" , fill=TRUE) # ################################## #cat( "test A matrix",fill=TRUE) ################################## set.seed(133) x<- matrix( runif( 30), 15,2)*2 y<- rnorm( nrow( x))*.5 + + x[,1]**2 + x[,2]**2 # perturb so that this example does not generate (harmless) warnings in gcv search weights<- runif( nrow( x))*10 out.new<- Krig( x,y, weights= weights) testY<- predict( out.new) testY2<- Krig.Amatrix(out.new)%*% y test.for.zero( testY, testY2, tag="testing A matrix") set.seed(333) yNew<- rnorm( 15) testY<- predict( out.new, y=yNew) testY2<- Krig.Amatrix(out.new)%*% yNew test.for.zero( testY, testY2, tag="testing A matrix new y") Alam<- Krig.Amatrix(out.new) trA<- sum( diag( Alam)) test.for.zero( trA, out.new$eff.df, tag="checking trace") ####### checking GCV ####### MSE<- mean( out.new$residuals^2 * weights) n<- length( y) GCV<- MSE/ (1- trA/n )^2 test.for.zero(GCV, out.new$lambda.est[6,3], tag="GCV" ) fields/tests/cmdfile0000644000175100001440000000002613754255070014234 0ustar hornikusers s/supress/suppress/g fields/tests/KrigGCVREML.test.Rout.save0000644000175100001440000000471414275255352017422 0ustar hornikusers R version 4.2.1 (2022-06-23) -- "Funny-Looking Kid" Copyright (C) 2022 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin17.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # > # fields is a package for analysis of spatial data written for > # the R software environment. > # Copyright (C) 2022 Colorado School of Mines > # 1500 Illinois St., Golden, CO 80401 > # Contact: Douglas Nychka, douglasnychka@gmail.edu, > # > # This program is free software; you can redistribute it and/or modify > # it under the terms of the GNU General Public License as published by > # the Free Software Foundation; either version 2 of the License, or > # (at your option) any later version. > # This program is distributed in the hope that it will be useful, > # but WITHOUT ANY WARRANTY; without even the implied warranty of > # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > # GNU General Public License for more details. > # > # You should have received a copy of the GNU General Public License > # along with the R software environment if not, write to the Free Software > # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA > # or see http://www.r-project.org/Licenses/GPL-2 > ##END HEADER > ##END HEADER > > > suppressMessages(library(fields)) > # > # > # > > options( echo=FALSE) Warning: Grid searches over lambda (nugget and sill variances) with minima at the endpoints: (REML) Restricted maximum likelihood minimum at right endpoint lambda = 0.2767992 (eff. df= 9.499985 ) Testing: predict sanity check PASSED test at tolerance 3e-08 Testing: predict using direct linear algebra PASSED test at tolerance 1e-08 Testing: GCV PASSED test at tolerance 1e-08 Testing: GCV one PASSED test at tolerance 1e-08 Testing: GCV model PASSED test at tolerance 1e-08 Testing: Tps/gcv for ozone2 PASSED test at tolerance 5e-04 Testing: Tps/gcv for ozone2 new data PASSED test at tolerance 1e-06 done with GCV and REML tests > > proc.time() user system elapsed 1.402 0.094 1.512 fields/tests/Krig.test.W.Rout.save0000644000175100001440000000610614275255352016604 0ustar hornikusers R version 4.2.1 (2022-06-23) -- "Funny-Looking Kid" Copyright (C) 2022 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin17.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # > # fields is a package for analysis of spatial data written for > # the R software environment. > # Copyright (C) 2022 Colorado School of Mines > # 1500 Illinois St., Golden, CO 80401 > # Contact: Douglas Nychka, douglasnychka@gmail.edu, > # > # This program is free software; you can redistribute it and/or modify > # it under the terms of the GNU General Public License as published by > # the Free Software Foundation; either version 2 of the License, or > # (at your option) any later version. > # This program is distributed in the hope that it will be useful, > # but WITHOUT ANY WARRANTY; without even the implied warranty of > # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > # GNU General Public License for more details. > # > # You should have received a copy of the GNU General Public License > # along with the R software environment if not, write to the Free Software > # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA > # or see http://www.r-project.org/Licenses/GPL-2 > ##END HEADER > ##END HEADER > > suppressMessages(library(fields)) > options( echo=FALSE) Warning: Grid searches over lambda (nugget and sill variances) with minima at the endpoints: (REML) Restricted maximum likelihood minimum at right endpoint lambda = 0.003053154 (eff. df= 14.25 ) Testing: d coef diag W fixed lam PASSED test at tolerance 1e-08 Testing: d coef diag W PASSED test at tolerance 1e-08 Testing: c coef diag W fixed lam PASSED test at tolerance 1e-08 Testing: c coef diag W PASSED test at tolerance 1e-08 Warning: Grid searches over lambda (nugget and sill variances) with minima at the endpoints: (REML) Restricted maximum likelihood minimum at right endpoint lambda = 0.002794267 (eff. df= 14.24999 ) Testing: sqrt of W PASSED test at tolerance 1e-08 Warning: Grid searches over lambda (nugget and sill variances) with minima at the endpoints: (REML) Restricted maximum likelihood minimum at right endpoint lambda = 0.002794267 (eff. df= 14.24999 ) Testing: Test of passing W explicitly PASSED test at tolerance 1e-08 Testing: d coef full W PASSED test at tolerance 1e-08 Testing: c coef full W PASSED test at tolerance 1e-08 Testing: A matrix PASSED test at tolerance 1e-08 Testing: check trace of A PASSED test at tolerance 1e-08 Testing: GCV one PASSED test at tolerance 5e-08 all done testing off diag W case > > proc.time() user system elapsed 0.874 0.074 0.943 fields/tests/Krig.Z.test.R0000644000175100001440000001441014275214521015110 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2022 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.edu, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER ##END HEADER suppressMessages(library(fields)) # # # test of fixed lambda case # Check against linear algebra # options( echo=FALSE) test.for.zero.flag<-1 #cat("A very nasty case with knots and weights",fill=TRUE) set.seed(123) x<- matrix( runif( 30), 15,2) Z<- matrix( rnorm(30), 15,2) y<- rnorm( 15)*.01 + 5*(x[,1]**3 + (x[,2]-.5)**2) + (Z[,1] +Z[,2])*.001 #weights<- runif(15)*10 # first without knots compare default to fixed out.new<- Krig( x,y,Z=Z, cov.function=Exp.cov, give.warnings=FALSE)-> out.new out.new2<- Krig( x,y,Z=Z, cov.function=Exp.cov, lambda=1) ########## ## compute test using linear algebra K<- Exp.cov( x,x) lambda<-1 M<- (lambda* diag(nrow( x)) + K) T<- cbind( rep(1,15), x, Z) temp.d<- c(solve( t(T) %*% solve( M)%*%T) %*% t(T)%*% solve( M) %*% y) temp.c<- solve( M)%*% ( y - T%*% temp.d) # test for d coefficients test.for.zero( out.new2$d, temp.d, tag=" d coef") # test for c coefficents test.for.zero( out.new2$c, temp.c, tag="c coef" ) ####### testing predict function hold2<- predict( out.new2, x=x, Z=Z, just.fixed=TRUE) hold3<- predict( out.new2, x=x, Z=Z, drop.Z=TRUE) hold4<- predict( out.new2, x=x, Z=Z, drop.Z=TRUE, just.fixed=TRUE) hold<-T%*%temp.d test.for.zero( hold, hold2, tag="predict for null fixed" ) hold<-T[,1:3]%*%temp.d[1:3] + K %*% temp.c test.for.zero( hold, hold3, tag="predict for null spatial" ) hold<-T[,1:3]%*%temp.d[1:3] test.for.zero( hold, hold4, tag="predict for null drift" ) ######tests where coefficients are recomputed from object hold2<- predict( out.new,y=y, lambda=1.0, x=x, Z=Z, just.fixed=TRUE) hold3<- predict( out.new,y=y, lambda=1.0, x=x, Z=Z, drop.Z=TRUE) hold4<- predict( out.new, y=y, lambda=1.0, x=x, Z=Z, drop.Z=TRUE, just.fixed=TRUE) hold<-T%*%temp.d test.for.zero( hold, hold2, tag="predict for null fixed" ) hold<-T[,1:3]%*%temp.d[1:3] + K %*% temp.c test.for.zero( hold, hold3, tag="predict for null spatial" ) hold<-T[,1:3]%*%temp.d[1:3] test.for.zero( hold, hold4, tag="predict for null drift " ) # ####### tests using predict.se x<- ChicagoO3$x y<- ChicagoO3$y Zcov<- x[,1]**3 + x[,2]**3 tps.fit<-Tps( x,y, scale.type="unscaled", Z= Zcov) # here is lazy way to get a grid.list gridList<- fields.x.to.grid( x, nx=20,ny=20) xg<- make.surface.grid(gridList) Zcov.grid<- xg[,1]**3 + xg[,2]**3 ########### tests on just predict have been commented out to ########### indicate that they are redundant given ########### previous tests however, they could be useful for ########### future debugging ... # full surface with covariate # curv.mean1 <- predictSurface(tps.fit, gridlist, extrap = TRUE, ## Z =Zcov.grid, drop.Z = FALSE)$z # just the spline surface # curv.mean2 <- predictSurface(tps.fit, gridlist, # extrap = TRUE,drop.Z=TRUE)$z # explicitly here is the difference surface of curv.mean1 and curv.mean2 # curv.mean0<- as.surface( gridlist, Zcov.grid* tps.fit$d[4])$z # test.for.zero( curv.mean1- curv.mean2, curv.mean0) ## new tests predictSurfaceSE( tps.fit, gridList, extrap=TRUE, drop.Z=TRUE)$z-> curv.var1 predictSE( tps.fit, xg, drop.Z=TRUE)-> curv.var2 test.for.zero( curv.var1, curv.var2) # SE with covariates included predictSE( tps.fit, xg, Z=Zcov.grid, drop.Z=FALSE)**2-> curv.var1 # as.surface( gridlist, curv.var1)$z-> curv.var1 # SE for just the spline part predictSE( tps.fit, xg, drop.Z=TRUE)**2-> curv.var2 # as.surface( gridlist, curv.var2)$z-> curv.var2 # SE for just the fixed part predictSE( tps.fit, xg,Z=Zcov.grid, drop.Z=FALSE, just.fixed=TRUE )**2-> curv.var3 # as.surface( gridlist, curv.var3)$z-> curv.var3 # calculating from more basic functions ## these tests assume that Krig.Amatrix is working correctly! out<- tps.fit A<- Krig.Amatrix( tps.fit,x= xg, drop.Z=TRUE) Sigma<- out$sigmahat*Rad.cov( out$x, out$x, p=2) S0<- out$sigmahat*Rad.cov(xg, xg, p=2) S1<- out$sigmahat*Rad.cov(out$x, xg, p=2) #yhat= Ay #var( f0 - yhat)= var( f0) - 2 cov( f0,yhat)+ cov( yhat) look<- S0 - t(S1)%*% t(A) - A%*%S1 + A%*% ( Sigma + diag(out$tauHat.MLE**2/out$weightsM))%*% t(A) look<- diag( look) test.for.zero(curv.var2 ,look,tag="SE w/o covariate") A<- Krig.Amatrix( tps.fit,x= xg, drop.Z=FALSE,Z=Zcov.grid) # see tps.fit$args for value of p Sigma<- out$sigmahat*Rad.cov( out$x, out$x, p=2) S0<- out$sigmahat*Rad.cov(xg, xg, p=2) S1<- out$sigmahat*Rad.cov(out$x, xg, p=2) #yhat= Ay #var( f0 - yhat)= var( f0) - 2 cov( f0,yhat)+ cov( yhat) look<- S0 - t(S1)%*% t(A) - A%*%S1 + A%*% ( Sigma + diag(out$tauHat.MLE**2/out$weightsM))%*% t(A) look<- diag( look) test.for.zero(curv.var1 ,look,tag="SE with covariate") A<- Krig.Amatrix( tps.fit,x= xg, drop.Z=FALSE,Z=Zcov.grid, just.fixed=TRUE) # see tps.fit$args for value of p Sigma<- out$sigmahat*Rad.cov( out$x, out$x, p=2) S0<- out$sigmahat*Rad.cov(xg, xg, p=2) S1<- out$sigmahat*Rad.cov(out$x, xg, p=2) #yhat= Ay #var( f0 - yhat)= var( f0) - 2 cov( f0,yhat)+ cov( yhat) look<- S0 - t(S1)%*% t(A) - A%*%S1 + A%*% ( Sigma + diag(out$tauHat.MLE**2/out$weightsM))%*% t(A) look<- diag( look) test.for.zero(curv.var3 ,look, tag="SE for fixed part") cat("All done with Z tests and Krig/Tps including predict and predictSE !", fill=TRUE) options( echo=TRUE) fields/tests/Krig.se.grid.test.R0000644000175100001440000000531714275214521016240 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2022 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.edu, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER ##END HEADER suppressMessages(library(fields)) # tests of predict.se # using approximations for conditional simulation on a grid. # options( echo=FALSE) test.for.zero.flag<-1 long.test.flag<- FALSE data( ozone2) as.image(ozone2$y[16,], x= ozone2$lon.lat, ny=24, nx=20, na.rm=TRUE)-> dtemp # # A useful discretized version of ozone2 data x<- cbind(dtemp$x[dtemp$ind[,1]], dtemp$y[dtemp$ind[,2]]) y<- dtemp$z[ dtemp$ind] weights<- dtemp$weights[ dtemp$ind] Krig( x, y, Covariance="Matern", aRange=1.0, smoothness=1.0, weights=weights) -> out if(long.test.flag){ # the grid ... glist<- list( x= dtemp$x, y=dtemp$y) set.seed( 233) sim.Krig.approx( out, grid= glist, M=200, extrap=TRUE)-> look predict.surface.se( out, grid=glist, extrap=TRUE)-> test look2<- matrix( NA, 20,24) for( k in 1:24){ for ( j in 1:20){ look2[j,k] <- sqrt(var( look$z[j,k,], na.rm=TRUE)) } } test.for.zero( mean( abs(look2- test$z)/test$z), 0, relative=FALSE, tol=.05, tag="Conditional simulation marginal se for grid") # # test for covariances ind0<- expand.grid( c(1,4,5,10), c(3,4,5,10, 15)) x0<- cbind( glist$x[ind0[,1]], glist$y[ind0[,2]]) look2<- matrix( NA, 200,20) for( k in 1:20){ look2[,k] <- look$z[ ind0[k,1], ind0[k,2],]} predict.se( out, x0, cov=TRUE)-> test2 ds<- 1/sqrt(diag(test2)) test3<- diag(ds)%*% test2 %*% diag(ds) #check plot( diag( test2), diag( var( look2))) # Another plot to look at plot( c(test3), c(cor(look2))) hold<-cor(look2) upper<- col(hold)> row( hold) dd<- (c(hold)- c(test3))[upper] test.for.zero( mean( abs(dd)) ,0, relative=FALSE, tol=.05, tag="Conditional simulation correlations for grid (RMSE) ") } # end long test block cat( "all done with grid based se tests", fill=TRUE) options( echo=TRUE) fields/tests/vgram2.test.Rout.save0000644000175100001440000000412214275276625016703 0ustar hornikusers R version 4.2.1 (2022-06-23) -- "Funny-Looking Kid" Copyright (C) 2022 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin17.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # > # fields is a package for analysis of spatial data written for > # the R software environment. > # Copyright (C) 2022 Colorado School of Mines > # 1500 Illinois St., Golden, CO 80401 > # Contact: Douglas Nychka, douglasnychka@gmail.edu, > # > # This program is free software; you can redistribute it and/or modify > # it under the terms of the GNU General Public License as published by > # the Free Software Foundation; either version 2 of the License, or > # (at your option) any later version. > # This program is distributed in the hope that it will be useful, > # but WITHOUT ANY WARRANTY; without even the implied warranty of > # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > # GNU General Public License for more details. > # > # You should have received a copy of the GNU General Public License > # along with the R software environment if not, write to the Free Software > # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA > # or see http://www.r-project.org/Licenses/GPL-2 > ##END HEADER > ##END HEADER > > > # test of vgram > > suppressMessages(library(fields)) > options(echo=FALSE) Testing: vgram single time PASSED test at tolerance 1e-08 Testing: vgram more than one time point PASSED test at tolerance 1e-08 Testing: correlogram versus covariogram PASSED test at tolerance 1e-08 Testing: correlogram versus covariogram PASSED test at tolerance 1e-08 > proc.time() user system elapsed 0.850 0.077 0.925 fields/tests/SEFixedParameters.Rout.save0000644000175100001440000000360414275255352020040 0ustar hornikusers R version 4.2.1 (2022-06-23) -- "Funny-Looking Kid" Copyright (C) 2022 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin17.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # > # fields is a package for analysis of spatial data written for > # the R software environment. > # Copyright (C) 2022 Colorado School of Mines > # 1500 Illinois St., Golden, CO 80401 > # Contact: Douglas Nychka, douglasnychka@gmail.edu, > # > # This program is free software; you can redistribute it and/or modify > # it under the terms of the GNU General Public License as published by > # the Free Software Foundation; either version 2 of the License, or > # (at your option) any later version. > # This program is distributed in the hope that it will be useful, > # but WITHOUT ANY WARRANTY; without even the implied warranty of > # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > # GNU General Public License for more details. > # > # You should have received a copy of the GNU General Public License > # along with the R software environment if not, write to the Free Software > # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA > # or see http://www.r-project.org/Licenses/GPL-2 > ##END HEADER > ##END HEADER > > # tests of SEs from the Omega matrix > # using Monte Carlo > > suppressMessages(library(fields)) > options( echo=FALSE) PASSED test at tolerance 0.05 > proc.time() user system elapsed 1.639 0.142 1.699 fields/tests/Krig.se.test.Rout.save0000644000175100001440000001357114275255352017011 0ustar hornikusers R version 4.2.1 (2022-06-23) -- "Funny-Looking Kid" Copyright (C) 2022 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin17.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # > # fields is a package for analysis of spatial data written for > # the R software environment. > # Copyright (C) 2022 Colorado School of Mines > # 1500 Illinois St., Golden, CO 80401 > # Contact: Douglas Nychka, douglasnychka@gmail.edu, > # > # This program is free software; you can redistribute it and/or modify > # it under the terms of the GNU General Public License as published by > # the Free Software Foundation; either version 2 of the License, or > # (at your option) any later version. > # This program is distributed in the hope that it will be useful, > # but WITHOUT ANY WARRANTY; without even the implied warranty of > # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > # GNU General Public License for more details. > # > # You should have received a copy of the GNU General Public License > # along with the R software environment if not, write to the Free Software > # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA > # or see http://www.r-project.org/Licenses/GPL-2 > ##END HEADER > ##END HEADER > > > suppressMessages(library(fields)) > > # tests of predictSE > # against direct linear algebra > > #options( echo=FALSE) > > > > x0<- expand.grid( c(-8,-4,0,20,30), c(10,8,4,0)) > > > out<- Krig( ChicagoO3$x, ChicagoO3$y, cov.function = "Exp.cov", aRange=50) > > > # direct calculation > Krig.Amatrix( out, x=x0)-> A > test.for.zero( A%*%ChicagoO3$y, predict( out, x0),tag="Amatrix vs. predict") Testing: Amatrix vs. predict PASSED test at tolerance 1e-08 > > Sigma<- out$sigmahat*Exp.cov( ChicagoO3$x, ChicagoO3$x, aRange=50) > S0<- out$sigmahat*c(Exp.cov( x0, x0, aRange=50)) > S1<- out$sigmahat*Exp.cov( out$x, x0, aRange=50) > > #yhat= Ay > #var( f0 - yhat)= var( f0) - 2 cov( f0,yhat)+ cov( yhat) > > look<- S0 - t(S1)%*% t(A) - A%*%S1 + + A%*% ( Sigma + diag(out$tauHat.MLE**2/out$weightsM))%*% t(A) > # > #compare to > # diagonal elements > > > test2<- predictSE( out, x= x0) > test.for.zero( sqrt(diag( look)), test2,tag="Marginal predictSE") Testing: Marginal predictSE PASSED test at tolerance 1e-08 > > out2<- Krig( ChicagoO3$x, ChicagoO3$y, cov.function = "Exp.cov", aRange=50, + lambda=out$lambda) > > test2<- predictSE( out2, x= x0) > test.for.zero( sqrt(diag( look)), test2,tag="Marginal predictSE fixed ") Testing: Marginal predictSE fixed PASSED test at tolerance 1e-08 > > test<- predictSE( out, x= x0, cov=TRUE) > test.for.zero( look, test,tag="Full covariance predictSE") Testing: Full covariance predictSE PASSED test at tolerance 1e-08 > > > # simulation based. > > set.seed( 333) > > sim.Krig( out, x0,M=4e3)-> test > # columns are the realizations rows are locations > > var(t(test))-> look > > predictSE( out, x=x0)-> test2 > mean( diag( look)/ test2**2)-> look2 > test.for.zero(look2, 1.0, tol=1.5e-2, tag="Marginal standard Cond. Sim.") Testing: Marginal standard Cond. Sim. PASSED test at tolerance 0.015 > > predictSE( out, x=x0, cov=TRUE)-> test2 > > # multiply simulated values by inverse square root of covariance > # to make them white > > eigen( test2, symmetric=TRUE)-> hold > hold$vectors%*% diag( 1/sqrt( hold$values))%*% t( hold$vectors)-> hold > cor(t(test)%*% hold)-> hold2 > # off diagonal elements of correlations -- expected values are zero. > > abs(hold2[ col(hold2)> row( hold2)])-> hold3 > > test.for.zero( mean(hold3), 0, relative=FALSE, tol=.02, + tag="Full covariance standard Cond. Sim.") Testing: Full covariance standard Cond. Sim. PASSED test at tolerance 0.02 > > > # test of A matrix > # > # first create and check a gridded test case. > > > data( ozone2) > as.image(ozone2$y[16,], x= ozone2$lon.lat, ny=24, nx=20, + na.rm=TRUE)-> dtemp > # > # A useful disctrtized version of ozone2 data > > x<- dtemp$xd > y<- dtemp$z[ dtemp$ind] > weights<- dtemp$weights[ dtemp$ind] > > Krig( x, y, Covariance="Matern", + aRange=1.0, smoothness=1.0, weights=weights) -> out > > > > set.seed(234) > ind0<- cbind( sample( 1:20, 5), sample( 1:24, 5)) > > x0<- cbind( dtemp$x[ind0[,1]], dtemp$y[ind0[,2]]) > > # an inline check plot(out$x, cex=2); points( x0, col="red", pch="+",cex=2) > > # direct calculation as backup ( also checks weighted case) > > Krig.Amatrix( out, x=x0)-> A > test.for.zero( A%*%out$yM, predict( out, x0),tag="Amatrix vs. predict") Testing: Amatrix vs. predict PASSED test at tolerance 1e-08 > > Sigma<- out$sigmahat*stationary.cov( + out$xM, out$xM, aRange=1.0,smoothness=1.0, Covariance="Matern") > > S0<- out$sigmahat*stationary.cov( + x0, x0, aRange=1.0,smoothness=1.0, Covariance="Matern") > > S1<- out$sigmahat*stationary.cov( + out$xM, x0, aRange=1.0,smoothness=1.0, Covariance="Matern") > > > > #yhat= Ay > #var( f0 - yhat)= var( f0) - 2 cov( f0,yhat)+ cov( yhat) > > look<- S0 - t(S1)%*% t(A) - A%*%S1 + + A%*% ( Sigma + diag(out$tauHat.MLE**2/out$weightsM) )%*% t(A) > > test<- predictSE( out, x0, cov=TRUE) > > test.for.zero( c( look), c( test), tag="Weighted case and exact for ozone2 full + cov", tol=1e-8) Testing: Weighted case and exact for ozone2 full cov PASSED test at tolerance 1e-08 > > > cat("all done testing predictSE.Krig ", fill=TRUE) all done testing predictSE.Krig > options( echo=TRUE) > > proc.time() user system elapsed 2.991 0.107 3.124 fields/tests/KrigGCVREML.test.R0000644000175100001440000000731714275214521015730 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2022 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.edu, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER ##END HEADER suppressMessages(library(fields)) # # # options( echo=FALSE) test.for.zero.flag<-1 ############ various tests of GCV and REML set.seed(133) x0<- matrix( runif( 10*2), 10,2)*2 x<- rbind( x0,x0, x0[3:7,]) y<- rnorm( nrow( x))*.05 + x[,1]**2 + x[,2]**2 weights<- 8 + runif( nrow( x)) # x0 are the unique values. out.new<- Krig( x,y, weights=weights, cov.function=Exp.cov) n<- length(y) n0<- nrow( x0) NK <- nrow( x0) NP<- NK + 3 K<- Exp.cov( x0, x0) H<- matrix(0, NP,NP) H[(1:NK)+3 , (1:NK)+3]<- K X<- cbind( fields.mkpoly( x, 2), Exp.cov( x, x0) ) X0<- cbind( fields.mkpoly( x0, 2), Exp.cov( x0, x0) ) Alam <- X%*%solve( t(X)%*%diag(weights)%*%X + out.new$lambda*H )%*% t(X)%*%diag(weights) # predict sanity check using replicates set.seed( 123) ynew<- rnorm(n) test.for.zero( Alam%*%ynew, predict( out.new, y=ynew), tag=" predict sanity check",tol=3e-8) # predict using unique obs ynew<- rnorm(nrow(x0)) Alam0<- X0%*%solve( t(X0)%*%diag(out.new$weightsM)%*%X0 + out.new$lambda*H )%*% t(X0)%*%diag(out.new$weightsM) # Alam0 is the A matrix test.for.zero( Alam0%*%ynew, predict( out.new,x=x0, yM=ynew), tag="predict using direct linear algebra" ) # test<- Krig.fgcv( lam=out.new$lambda, out.new) y0<- out.new$yM n0<- length(y0) # compare to #test2<- (1/n0)*sum( (y0 - c(Alam0%*% y0))**2 *out.new$weightsM) / (1- sum(diag( Alam0))/n0)**2 NUM<- mean( (y0 - c(Alam0%*% y0))**2 *out.new$weightsM) + out.new$pure.ss/( n -n0 ) DEN<- (1- sum(diag( Alam0))/n0) test2<- NUM/ DEN^2 test.for.zero( test,test2, tag="GCV" ) test<- Krig.fgcv.one( lam=out.new$lambda, out.new) N<- length(y) test2<- (1/N)*sum( (y - c(Alam%*% y))**2 *weights) / (1- sum(diag( Alam))/N)**2 test.for.zero( test,test2, tag="GCV one" ) test<- Krig.fgcv.model( lam=out.new$lambda, out.new) y0<- out.new$yM n0<- length(y0) # compare to test2<- (1/n0)*sum( (y0 - c(Alam0%*% y0))**2 *out.new$weightsM) / (1- sum(diag( Alam0))/n0)**2 + out.new$tauHat.pure.error**2 test.for.zero( test,test2,tag="GCV model") ####### tests with higher level gcv.Krig data( ozone2) x<- ozone2$lon.lat y<- ozone2$y[16,] Tps( x,y)-> out KrigFindLambda( out, tol=1e-10)-> out2 test.for.zero(out$lambda.est[1,-6], out2$lambda.est[1,-6],tol=5e-4, tag="Tps/gcv for ozone2") # try with "new" data (linear transform should give identical # results for GCV eff df KrigFindLambda( out, y=(11*out$y + 5), tol=1e-10 )-> out3 test.for.zero(out2$lambda.est[1,2], out3$lambda.est[1,2],tol=1e-6, tag="Tps/gcv for ozone2 new data") #cat("done with GCV case", fill=TRUE) cat("done with GCV and REML tests", fill=TRUE) options( echo=TRUE) fields/tests/SEFixedParameters.R0000644000175100001440000000324614275214521016346 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2022 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.edu, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER ##END HEADER # tests of SEs from the Omega matrix # using Monte Carlo suppressMessages(library(fields)) options( echo=FALSE) test.for.zero.flag<- TRUE X<- ChicagoO3$x n<- nrow( X) tau2<- .1 sigma<- 2.0 processCov<- sigma*Exp.cov( X,X,aRange=50) cholCov<- chol( processCov + diag( tau2 , n ) ) nreps<- 1e5 set.seed( 111) # extra random covariate Z<- matrix( rnorm(n),n) # the stochastic part E<- matrix( rnorm(n*nreps),n,nreps) # NOTE: all fixed effects set to zero Y<- t( cholCov)%*%E out<- mKrig( X,Y, aRange=50, Z=Z, collapseFixedEffect = FALSE, lambda=.1/2.0) testCov<- var( t(out$beta) ) test.for.zero(testCov, sigma*out$Omega, tol=.05 ) fields/tests/Krig.se.grid.test.Rout.save0000644000175100001440000000365014275255352017732 0ustar hornikusers R version 4.2.1 (2022-06-23) -- "Funny-Looking Kid" Copyright (C) 2022 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin17.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # > # fields is a package for analysis of spatial data written for > # the R software environment. > # Copyright (C) 2022 Colorado School of Mines > # 1500 Illinois St., Golden, CO 80401 > # Contact: Douglas Nychka, douglasnychka@gmail.edu, > # > # This program is free software; you can redistribute it and/or modify > # it under the terms of the GNU General Public License as published by > # the Free Software Foundation; either version 2 of the License, or > # (at your option) any later version. > # This program is distributed in the hope that it will be useful, > # but WITHOUT ANY WARRANTY; without even the implied warranty of > # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > # GNU General Public License for more details. > # > # You should have received a copy of the GNU General Public License > # along with the R software environment if not, write to the Free Software > # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA > # or see http://www.r-project.org/Licenses/GPL-2 > ##END HEADER > ##END HEADER > > > suppressMessages(library(fields)) > # tests of predict.se > # using approximations for conditional simulation on a grid. > # > options( echo=FALSE) all done with grid based se tests > > proc.time() user system elapsed 0.889 0.083 0.953 fields/tests/cov.test.Rout.save0000644000175100001440000000447614275255352016302 0ustar hornikusers R version 4.2.1 (2022-06-23) -- "Funny-Looking Kid" Copyright (C) 2022 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin17.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # > # fields is a package for analysis of spatial data written for > # the R software environment. > # Copyright (C) 2022 Colorado School of Mines > # 1500 Illinois St., Golden, CO 80401 > # Contact: Douglas Nychka, douglasnychka@gmail.edu, > # > # This program is free software; you can redistribute it and/or modify > # it under the terms of the GNU General Public License as published by > # the Free Software Foundation; either version 2 of the License, or > # (at your option) any later version. > # This program is distributed in the hope that it will be useful, > # but WITHOUT ANY WARRANTY; without even the implied warranty of > # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > # GNU General Public License for more details. > # > # You should have received a copy of the GNU General Public License > # along with the R software environment if not, write to the Free Software > # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA > # or see http://www.r-project.org/Licenses/GPL-2 > ##END HEADER > ##END HEADER > > > suppressMessages(library(fields)) > options( echo=FALSE) PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 Testing: taper with great circle PASSED test at tolerance 2e-06 Testing: high level test of taper cov PASSED test at tolerance 1e-08 Testing: high level test of taper cov PASSED test at tolerance 1e-08 end tests of V argument in covariances > proc.time() user system elapsed 0.785 0.072 0.864 fields/tests/diag.multiply.test.Rout.save0000644000175100001440000000365314275255352020271 0ustar hornikusers R version 4.2.1 (2022-06-23) -- "Funny-Looking Kid" Copyright (C) 2022 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin17.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # > # fields is a package for analysis of spatial data written for > # the R software environment. > # Copyright (C) 2022 Colorado School of Mines > # 1500 Illinois St., Golden, CO 80401 > # Contact: Douglas Nychka, douglasnychka@gmail.edu, > # > # This program is free software; you can redistribute it and/or modify > # it under the terms of the GNU General Public License as published by > # the Free Software Foundation; either version 2 of the License, or > # (at your option) any later version. > # This program is distributed in the hope that it will be useful, > # but WITHOUT ANY WARRANTY; without even the implied warranty of > # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > # GNU General Public License for more details. > # > # You should have received a copy of the GNU General Public License > # along with the R software environment if not, write to the Free Software > # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA > # or see http://www.r-project.org/Licenses/GPL-2 > ##END HEADER > ##END HEADER > > suppressMessages(library(fields)) > options( echo=FALSE) PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 All done with testing diag multiply > > proc.time() user system elapsed 0.776 0.070 0.833 fields/tests/evlpoly.test.R0000644000175100001440000000344414275214521015503 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2022 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.edu, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER ##END HEADER suppressMessages(library(fields)) options( echo=FALSE) test.for.zero.flag<-1 set.seed( 245) x<- runif(3) coef<- runif( 5) temp<- fields.evlpoly( x, coef) temp2<- coef[1] for( k in (2:5) ){ temp2<- temp2 + coef[k]*x**(k-1) } test.for.zero( temp, temp2) set.seed( 124) x<- matrix( runif(12), ncol=3) fields.mkpoly(x, m=3)-> out attr( out, "ptab")-> ptab J<- nrow( ptab) coef<- runif( J) temp<- fields.evlpoly2( x, coef, ptab) temp2<-out%*% coef test.for.zero( temp,temp2) fields.derivative.poly( x, m=3, coef)-> temp fields.mkpoly( cbind( x[,1:2], x[,3]+1e-6), m=3)%*% coef-> temp2 fields.mkpoly( cbind( x[,1:2], x[,3]-1e-6), m=3)%*% coef-> temp3 temp2<- (temp2- temp3)/ 2e-6 test.for.zero( temp[,3], temp2) cat("Done testing polynomial evaluation",fill=TRUE) options( echo=FALSE) fields/tests/testZCommon.R0000644000175100001440000001224114342501207015303 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2022 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.edu, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER ##END HEADER suppressMessages(library(fields)) options( echo=FALSE) test.for.zero.flag<- 1 set.seed(122) n<-6 M<- 3 N<- n*M ZCommon<- matrix( round(100*runif( N*3)), N,3) # data locs #s<- cbind( 1:n) s<- matrix( runif( n*2), n,2) T<- cbind( 1, s) Sigma<- exp( -rdist(s,s)/2) beta<- rep( 5, ncol(T) ) gamma<- 1:3 set.seed(111) f<- t(chol(Sigma))%*% matrix(rnorm( n*M),n,M) E<- matrix( .05*rnorm(n*M), n,M) # the data obs y0<- matrix( rep(T%*%beta, M), n,M) + f + E y<- matrix( rep( T%*%beta, M) + ZCommon%*%gamma, n,M) + f + E # NOTE for fixed covariance parameters spatailProcess is a wrapper for a call to mKrig look0<- spatialProcess(s,y0, aRange=2, lambda=.05^2, smoothness=.5) look0B<- mKrig(s,y0, aRange=2, lambda=.05^2, collapseFixedEffect = TRUE) look1<- spatialProcess(s,y0, aRange=2, lambda=.05^2, smoothness=.5, collapseFixedEffect = FALSE) look1B<- mKrig(s,y0, aRange=2, lambda=.05^2, collapseFixedEffect = FALSE) test.for.zero( look1B$beta, look1$beta) look2<- spatialProcess(s,y, aRange=2, lambda=.05^2, smoothness=.5, ZCommon = ZCommon) look2B<- mKrig(s,y, aRange=2, lambda=.05^2, ZCommon = ZCommon ) test.for.zero( look2B$beta, look2$beta) test.for.zero( look2B$gamma, look2$gamma) look3<- spatialProcess(s,y, aRange=2, lambda=.05^2,smoothness=.5, collapseFixedEffect = FALSE, ZCommon = ZCommon) look3B<- mKrig(s,y, aRange=2, lambda=.05^2, collapseFixedEffect = FALSE, ZCommon = ZCommon ) # hand computations Gamma<- solve( chol(Sigma + diag(.05^2,n)) ) YStar<- c(t( Gamma)%*%y) YStar0<- c(t( Gamma)%*%y0) bigSigma<- diag(1,M)%x%(Sigma+ diag(.05^2,n)) bigGamma<- solve( chol(bigSigma) ) bigTA<- rep(1,M)%x%T # collapse ==TRUE bigT<- diag(1,M)%x%T # collapse ==FALSE # collapseFixedEffects = TRUE bigTAStar<- t( bigGamma)%*%bigTA coefTestA<- lm( YStar0 ~ bigTAStar -1)$coefficients test.for.zero( look0$beta[,1] , coefTestA ) # collapseFixedEffects = FALSE bigTA<- diag(1,M)%x%T bigTAStar<- t( bigGamma)%*%bigTA coefTestA<- lm( YStar0 ~ bigTAStar -1)$coefficients test.for.zero( look1$beta , coefTestA ) # collapseFixedEffects =TRUE ZCommon bigT<- rep(1,M)%x%T U<- cbind(bigT,ZCommon ) UStar<- t( bigGamma)%*%U coefTest<- lm( YStar ~ UStar -1)$coefficients test.for.zero( c( look2$beta[,1], look2$gamma), coefTest, tag= "spatialProcess ZCommon collapse" ) # collapseFixedEffects = FALSE ZCommon bigT<- diag(1,M)%x%T U<- cbind(bigT,ZCommon ) UStar<- t( bigGamma)%*%U coefTest<- lm( YStar ~ UStar -1)$coefficients test.for.zero( c( look3$beta, look3$gamma), coefTest, tag= "spatialProcess ZCommon" ) test.for.zero( c( look3B$beta, look3B$gamma), coefTest,tag= "mKrig ZCommon" ) #################################################### # generate a large set of 2D realizations #################################################### set.seed(122) options(echo=FALSE) n<-100 M<- 1000 N<- n*M ZCommon<- matrix( round(100*runif( N*3)), N,3) # data locs #s<- cbind( 1:n) s<- matrix( runif( n*2), n,2) T<- cbind( 1, s) Sigma<- exp( -rdist(s,s)/2) beta<- rep( 5, ncol(T) ) gamma<- 1:3 set.seed(111) f<- t(chol(Sigma))%*% matrix(rnorm( n*M),n,M) E<- matrix( .05*rnorm(n*M), n,M) # the data obs y0<- matrix( rep(T%*%beta, M), n,M) + f + E y<- matrix( rep( T%*%beta, M) + ZCommon%*%gamma, n,M) + f + E look<- spatialProcess(s,y0, aRange=2, lambda=.05^2, smoothness=.5, ZCommon = ZCommon) test.for.zero( look$beta[,1], beta, tol=2e-2,tag= "big data beta") test.for.zero( look$summary["tau"], .05, tol=1e-2, tag="big data tau") test.for.zero( look$summary["sigma2"],1, tol=1e-2, tag="big data sigma2") look<- spatialProcess(s,y, aRange=2, lambda=.05^2, smoothness=.5, ZCommon = ZCommon) test.for.zero( look$beta[,1], beta, tol=2e-2, tag= "big data beta ZCommon") test.for.zero( look$gamma, gamma, tol=1e-3, tag= "big data gamma ZCommon") test.for.zero( look$summary["tau"], .05, tol=1e-2, tag="big data tau ZCommon") test.for.zero( look$summary["sigma2"],1, tol=1e-2, tag="big data sigma2 ZCommon") options(echo=TRUE) fields/tests/derivative.test.Rout.save0000644000175100001440000000721214275255352017644 0ustar hornikusers R version 4.2.1 (2022-06-23) -- "Funny-Looking Kid" Copyright (C) 2022 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin17.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # > # fields is a package for analysis of spatial data written for > # the R software environment. > # Copyright (C) 2022 Colorado School of Mines > # 1500 Illinois St., Golden, CO 80401 > # Contact: Douglas Nychka, douglasnychka@gmail.edu, > # > # This program is free software; you can redistribute it and/or modify > # it under the terms of the GNU General Public License as published by > # the Free Software Foundation; either version 2 of the License, or > # (at your option) any later version. > # This program is distributed in the hope that it will be useful, > # but WITHOUT ANY WARRANTY; without even the implied warranty of > # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > # GNU General Public License for more details. > # > # You should have received a copy of the GNU General Public License > # along with the R software environment if not, write to the Free Software > # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA > # or see http://www.r-project.org/Licenses/GPL-2 > ##END HEADER > ##END HEADER > > #library( fields, lib.loc="lib.test") > > suppressMessages(library(fields)) > options(echo=FALSE) Testing: radial basis function exact PASSED test at tolerance 1e-06 Testing: sanity test of stationary.cov with RadialBasis PASSED test at tolerance 1e-08 Testing: sanity test of Rad.cov PASSED test at tolerance 1e-08 Testing: stat.cov Radbas C multiply PASSED test at tolerance 1e-08 Testing: Rad.cov C multiply PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-06 Testing: Wendland exact PASSED test at tolerance 1e-06 PASSED test at tolerance 1e-08 Testing: Wendland C multiply PASSED test at tolerance 1e-08 Testing: Wendland.cov aRange=1.0 PASSED test at tolerance 1e-07 Testing: Wendland.cov aRange=.75 PASSED test at tolerance 1e-07 Testing: stationary.cov and exact C multiply for Wendland PASSED test at tolerance 1e-08 Testing: Wendland C multiply PASSED test at tolerance 1e-08 Testing: 2-d derivs from wend.cov/mKrig PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 Testing: 2-d derivs from stationary-wend/mKrig PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 Testing: wendland.cov quad 2-d PASSED test at tolerance 0.005 Testing: stationary.cov/Wendland cubic 2-d PASSED test at tolerance 0.01 Warning: Grid searches over lambda (nugget and sill variances) with minima at the endpoints: (REML) Restricted maximum likelihood minimum at right endpoint lambda = 1.938365e-08 (eff. df= 380 ) Testing: stationary.cov/Wendland cubic 2-d PASSED test at tolerance 0.005 PASSED test at tolerance 0.005 Warning: Grid searches over lambda (nugget and sill variances) with minima at the endpoints: (GCV) Generalized Cross-Validation minimum at right endpoint lambda = 4.881835e-06 (eff. df= 380 ) Testing: Tps derivative x1 PASSED test at tolerance 2e-04 Testing: Tps derivative x2 PASSED test at tolerance 2e-04 done with dervative tests > > > proc.time() user system elapsed 2.422 0.199 2.512 fields/tests/fastTpsPredict.test.Rout.save0000644000175100001440000000430214275255352020436 0ustar hornikusers R version 4.2.1 (2022-06-23) -- "Funny-Looking Kid" Copyright (C) 2022 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin17.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # > # fields is a package for analysis of spatial data written for > # the R software environment. > # Copyright (C) 2022 Colorado School of Mines > # 1500 Illinois St., Golden, CO 80401 > # Contact: Douglas Nychka, douglasnychka@gmail.edu, > # > # This program is free software; you can redistribute it and/or modify > # it under the terms of the GNU General Public License as published by > # the Free Software Foundation; either version 2 of the License, or > # (at your option) any later version. > # This program is distributed in the hope that it will be useful, > # but WITHOUT ANY WARRANTY; without even the implied warranty of > # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > # GNU General Public License for more details. > # > # You should have received a copy of the GNU General Public License > # along with the R software environment if not, write to the Free Software > # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA > # or see http://www.r-project.org/Licenses/GPL-2 > ##END HEADER > ##END HEADER > > > suppressMessages(library(fields)) > options(echo=FALSE) Testing: Comparing FORTRAN grid eval to matrix vector multiplication PASSED test at tolerance 1e-08 Testing: testing PredictSurface and predict.fastTps PASSED test at tolerance 1e-08 Testing: testing PredictSurface with slower mKrig predict PASSED test at tolerance 1e-08 Testing: predict with ynew PASSED test at tolerance 1e-08 Testing: predictSurface with ynew PASSED test at tolerance 1e-08 > # > > proc.time() user system elapsed 0.809 0.071 0.867 fields/tests/vgram.test.R0000644000175100001440000000532014275214521015120 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2022 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.edu, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER ##END HEADER # test of vgram suppressMessages(library(fields)) options(echo=FALSE) data( ozone2) y<- ozone2$y[16,] x<- ozone2$lon.lat vgram( x, y, lon.lat=TRUE)-> out # compute "by hand" outer( y, y ,"-")-> hold hold<- .5*hold^2 rdist.earth( x,x)-> hold2 col( hold2)> row( hold2)-> upper hold<- hold[upper] hold2<- hold2[upper] order( hold2)-> od hold2<- hold2[od] hold<- hold[od] ind<- is.na(hold) hold<- hold[!ind] hold2<- hold2[!ind] test.for.zero( hold, out$vgram, tag="vgram single time") # multiple times including NAs at some times y<- t(ozone2$y[16:18,]) x<- ozone2$lon.lat[,] out<- vgram( x, y, lon.lat=TRUE) N<- nrow( y) hold<- cbind(c(outer( y[,1], y[,1],"-")), c(outer( y[,2], y[,2],"-") ), c(outer(y[,3], y[,3],"-")) ) hold<- .5*hold^2 hold<- rowMeans( hold, na.rm=TRUE) hold<- matrix( hold, N,N) rdist.earth( x,x)-> hold2 col( hold2)> row( hold2)-> upper hold<- hold[upper] hold2<- hold2[upper] order( hold2)-> od hold2<- hold2[od] hold<- hold[od] ind<- is.na(hold) hold<- hold[!ind] hold2<- hold2[!ind] test.for.zero( hold, out$vgram, tag="vgram more than one time point") # test covariogram versus correlogram y<- ozone2$y[16,] x<- ozone2$lon.lat tau2 = var(y, na.rm=TRUE) lookCov = vgram(x, y, lon.lat=TRUE, type="covariogram") lookCor = vgram(x, y, lon.lat=TRUE, type="correlogram") test.for.zero(lookCov$vgram*(1/tau2), lookCor$vgram, tag="correlogram versus covariogram") # test cross-covariogram versus cross-correlogram tau2 = var(y, na.rm=TRUE) lookCov = crossCoVGram(x, x, y, y, lon.lat=TRUE, type="cross-covariogram") lookCor = crossCoVGram(x, x, y, y, lon.lat=TRUE, type="cross-correlogram") test.for.zero(lookCov$vgram*(1/tau2), lookCor$vgram, tag="correlogram versus covariogram") fields/tests/Wend.test.Rout.save0000644000175100001440000000431114275255352016374 0ustar hornikusers R version 4.2.1 (2022-06-23) -- "Funny-Looking Kid" Copyright (C) 2022 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin17.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # > # fields is a package for analysis of spatial data written for > # the R software environment. > # Copyright (C) 2022 Colorado School of Mines > # 1500 Illinois St., Golden, CO 80401 > # Contact: Douglas Nychka, douglasnychka@gmail.edu, > # > # This program is free software; you can redistribute it and/or modify > # it under the terms of the GNU General Public License as published by > # the Free Software Foundation; either version 2 of the License, or > # (at your option) any later version. > # This program is distributed in the hope that it will be useful, > # but WITHOUT ANY WARRANTY; without even the implied warranty of > # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > # GNU General Public License for more details. > # > # You should have received a copy of the GNU General Public License > # along with the R software environment if not, write to the Free Software > # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA > # or see http://www.r-project.org/Licenses/GPL-2 > ##END HEADER > ##END HEADER > > > # test of Wendland covariance and stationary.taper.cov > > suppressMessages(library(fields)) > options( echo=FALSE) PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 Done with testing Wendland family > > proc.time() user system elapsed 0.771 0.069 0.830 fields/tests/offGridWeightsNEW.test.Rout.save0000644000175100001440000001365714627437061021001 0ustar hornikusers R version 4.4.0 (2024-04-24) -- "Puppy Cup" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: aarch64-apple-darwin20 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # > # fields is a package for analysis of spatial data written for > # the R software environment. > # Copyright (C) 2022 Colorado School of Mines > # 1500 Illinois St., Golden, CO 80401 > # Contact: Douglas Nychka, douglasnychka@gmail.edu, > # > # This program is free software; you can redistribute it and/or modify > # it under the terms of the GNU General Public License as published by > # the Free Software Foundation; either version 2 of the License, or > # (at your option) any later version. > # This program is distributed in the hope that it will be useful, > # but WITHOUT ANY WARRANTY; without even the implied warranty of > # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > # GNU General Public License for more details. > # > # You should have received a copy of the GNU General Public License > # along with the R software environment if not, write to the Free Software > # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA > # or see http://www.r-project.org/Licenses/GPL-2 > ##END HEADER > ##END HEADER > > > # test of sreg and related functions > > suppressMessages(library(fields)) > #options(echo=FALSE) > > test.for.zero.flag<- 1 > > > > # simple covariance function for implementation > exp_cov <- function(dist){ + sigma2<-1 + covariance <- sigma2* exp(-dist / 10) # 10 is arbitrary + return(covariance) + } > > # ----------------------------- > # Define grid and observations > # ----------------------------- > > m<- 10 > n<- 11 > nx<- m > ny<- n > M<- 15 > dx<- 1 > dy<- 1 > sigma2<-2.0 > np<-3 > > > # first a case where all obs in same grid box. > # addition of "dx" also tests that this works when grid is not just integers > # set dx=1 for the most basic case > dx<- .5 > s0<- rbind( + c(5.1,6.2), + c(5.1,6.5), + c( 5.85,6.45) + ) > s0<- s0*dx > > test0<- offGridWeights( s0, list( x= (1:m)*dx, y=(1:n)*dx), + aRange=10*dx, sigma2=sigma2, + Covariance="Exponential", + np=2, + debug=TRUE) [1] 2 Found 1 grid box(es) containing more than 1 obs location > # explicit nearest neighbors in this case > sTmp<- cbind( rep(4:7,4), rep(5:8,each=4) ) > sGrid<- sTmp*dx > > # check that same grid being used by function > test.for.zero(sGrid, cbind(test0$gridX[,1], test0$gridY[,1]) ) PASSED test at tolerance 1e-08 > > S21 <- 2.0* exp( -rdist( s0, sGrid)/(10*dx)) > S11 <- 2.0* exp( -rdist( sGrid , sGrid)/(10*dx) ) > S22 <- 2.0* exp( -rdist( s0, s0)/(10*dx)) > # local weights applied for prediction > Btest<- S21%*% solve( S11) > # find indices for neigborhood > sIndex<- sTmp[,1] + (sTmp[,2]-1)*m > # Kriging weights > Bfull<- spam2full(test0$B[,sIndex]) > test.for.zero( Bfull, Btest) PASSED test at tolerance 1e-08 > # standard error matrix > # note that transpsoe also taken so SEtest%*%t( SEtest) = cov matrix > SEtest<- t(chol(S22 - S21%*% solve( S11)%*%t(S21) )) > SEfull <- spam2full(test0$SE) > test.for.zero( SEfull, SEtest) PASSED test at tolerance 1e-08 > > > # now test several observation locations > > dx<- .45 > s<- rbind( + c(5.1,6.2), + c(7.1,7.2), + c(5.1,6.5), + c(8.5,4.4), + c( 5.85,6.45), + c(7.3,7.4) + ) > s<- s * dx > # Note s0 from above is s[c(1,3,5),] > ind1<- c(1,3,5) > > sTmp<- cbind( rep(4:7,4), rep(5:8,each=4) ) > sGrid<- sTmp*dx > sIndex<- sTmp[,1] + (sTmp[,2]-1)*m > > S21<- 2.0* exp( -rdist( s[ind1,], sGrid)/(10*dx) ) > S11<- 2.0* exp( -rdist( sGrid , sGrid)/(10*dx) ) > S22<- 2.0* exp( -rdist( s[ind1,], s[ind1,])/(10*dx) ) > > sparseObj<- offGridWeights( s, list( x= (1:m)*dx, y=(1:n)*dx), + aRange=(10*dx), sigma2=sigma2, + Covariance="Exponential", + np=2, + debug=TRUE) [1] 2 Found 2 grid box(es) containing more than 1 obs location > > test.for.zero( sparseObj$Sigma21Star[ind1,], S21 ) PASSED test at tolerance 1e-08 > test.for.zero( sparseObj$Sigma11Inv, solve(S11) ) PASSED test at tolerance 1e-08 > > Btest<- S21%*% solve( S11) > look2<- spam2full( sparseObj$B) > test.for.zero( Btest,look2[ind1, sIndex] ) PASSED test at tolerance 1e-08 > > > SEfull<- spam2full( sparseObj$SE) > SE2full<- (SEfull)%*%t(SEfull) > test.for.zero(diag( SE2full), sparseObj$predictionVariance ) PASSED test at tolerance 1e-08 > > SEtest<- t(chol(S22 - S21%*%solve( S11)%*%t( S21) )) > test.for.zero(SEtest, SEfull[ind1, ind1] ) PASSED test at tolerance 1e-08 > > # check that debug FALSE also works > > sparseObj1<- offGridWeights( s, list( x= (1:m)*dx, y=(1:n)*dx), + aRange=(10*dx), sigma2=sigma2, + Covariance="Exponential", + np=2, + debug=FALSE) [1] 2 Found 2 grid box(es) containing more than 1 obs location > > test.for.zero( sparseObj$B, sparseObj1$B) PASSED test at tolerance 1e-08 > test.for.zero( sparseObj$SE, sparseObj1$SE) PASSED test at tolerance 1e-08 > > cat("all done with off grid weight tests part 2", fill=TRUE) all done with off grid weight tests part 2 > > > proc.time() user system elapsed 0.283 0.023 0.414 fields/tests/mKrigMLETest.R0000644000175100001440000002555214341543716015313 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2022 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.edu, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER ##END HEADER suppressMessages(library( fields )) options( echo=FALSE) #options( echo=TRUE) # ##### generate test data # data( ozone2) # x is a two column matrix where each row is a location in lon/lat # coordinates x<- ozone2$lon.lat # y is a vector of ozone measurements at day 16 a the locations. y<- ozone2$y[16,] #ind<- !is.na( y) #x<- x[ind,] #y<- y[ind] x<-x[1:31,] y<-y[1:31] y[31]<-NA ################ test that optim results match the model evaluated ################ at the optimized parameters. optim.args = list(method = "BFGS", control = list(fnscale = -1, parscale = c(0.5, 0.5), ndeps = c(0.05,0.05))) MLEfit0 <- mKrigMLEJoint(x, y, cov.params.start= list(lambda=.5, aRange=1.2), cov.fun="stationary.cov", optim.args=optim.args, cov.args = list(Covariance = "Matern", smoothness=1.0), na.rm=TRUE, mKrig.args = list( m=1), verbose=FALSE) # check agreement with a fast return note cov.params.start and lambda.fixed # are the switches to indicate this case MLEfit0C <- mKrigMLEJoint(x, y, cov.params.start = NULL, cov.function = "stationary.cov", cov.args = list(Covariance = "Matern", lambda = MLEfit0$pars.MLE["lambda"], smoothness = 1.0, aRange = MLEfit0$pars.MLE["aRange"]), na.rm = TRUE, mKrig.args = list( m=1), verbose = FALSE ) test.for.zero( MLEfit0$summary["lnProfileLike.FULL"], MLEfit0C$summary["lnProfileLike.FULL"], tag="Likelihood Values optim and the fast return") test.for.zero( MLEfit0$summary["lnProfileLike.FULL"], MLEfit0$optimResults$value, tag="Likelihood Values summary and optim") obj0<- mKrig( x,y, cov.args = list(Covariance = "Matern", smoothness = 1.0), na.rm=TRUE, m=1, lambda= MLEfit0$pars.MLE["lambda"], aRange=MLEfit0$pars.MLE["aRange"]) test.for.zero( MLEfit0$summary["lnProfileLike.FULL"], obj0$summary["lnProfileLike.FULL"], tag="Likelihood Values summary and direct mKrig call") test.for.zero( MLEfit0$summary["sigma2"],obj0$summary["sigma2"], tag="... and sigma^2.MLE") # test that grid seraching is correct aRange.MLE<- MLEfit0$summary["aRange"] par.grid<- list( aRange= c(.5, 1.0, 1.5)*aRange.MLE ) MLEfit1<- mKrigMLEGrid(x, y, cov.fun = "stationary.cov", cov.args = list(Covariance = "Matern", smoothness = 1.0 ), par.grid = par.grid, mKrig.args = list( m=1), na.rm = TRUE, verbose = FALSE, cov.params.start = list( lambda = .2) ) hold<- (MLEfit1$summary[1,"lnProfileLike.FULL"] < MLEfit1$summary[2,"lnProfileLike.FULL"]) & (MLEfit1$summary[3,"lnProfileLike.FULL"] < MLEfit1$summary[2,"lnProfileLike.FULL"]) test.for.zero(as.numeric(hold), 1, relative=FALSE, tag="consistency of Likelihood values") ########################## ### now evaluate on the "grid" of lambdas found by profiling lambda.MLEs<- MLEfit1$summary[,"lambda"] par.grid<- list( lambda = lambda.MLEs, aRange = c(.5, 1.0, 1.5)*aRange.MLE ) MLEfit1B<- mKrigMLEGrid(x, y, cov.function = "stationary.cov", cov.args = list(Covariance = "Matern", smoothness = 1.0), par.grid = par.grid, mKrig.args = list( m=1), na.rm = TRUE, verbose = FALSE) tempCol<- c( "lnProfileLike.FULL", "lambda", "tau","sigma2") test.for.zero( as.matrix(MLEfit1$summary[,tempCol]), as.matrix(MLEfit1B$summary[,tempCol]), tag="grid search with and w/o profile") par.grid<- list( lambda = c(.999, 1.0, 1.001)*MLEfit0$summary["lambda"], aRange = rep(MLEfit0$summary["aRange"] ,3 ) ) MLEfit2 <- mKrigMLEGrid(x, y, cov.function = "stationary.cov", cov.args = list(Covariance = "Matern", smoothness = 1.0), mKrig.args = list( m=1), par.grid = par.grid, verbose = FALSE) hold<- (MLEfit2$summary[1,"lnProfileLike.FULL"] < MLEfit2$summary[2,"lnProfileLike.FULL"]) & (MLEfit2$summary[3,"lnProfileLike.FULL"] < MLEfit2$summary[2,"lnProfileLike.FULL"]) test.for.zero(as.numeric(hold), 1, relative=FALSE, tag="crude test of maxmimum") #MLEfit3<- MLESpatialProcess( x,y, # cov.args = list(Covariance = "Matern", # smoothness = 1.0), # mKrig.args = list( m=1), # cov.params.start = list( lambda =.2, aRange = NA) # ) MLEfit3<- spatialProcess( x,y, cov.args = list(Covariance = "Matern", smoothness = 1.0), mKrig.args = list( m=1), cov.params.start = list( lambda =.2) ) test.for.zero(MLEfit0$summary[1:2]/ (MLEfit3$summary[1:2]), 1, tol=1e-5, tag="Testing MLE from spatialProcess ") ######### making sure spatialProcess uses parameter information correctly obj<- spatialProcess( x, y, mKrig.args= list(m = 1), lambda= MLEfit0$summary["lambda"], aRange = MLEfit0$summary["aRange"] ) obj1<- spatialProcess( x, y, mKrig.args= list(m = 1), ) test.for.zero(MLEfit0$summary[1], obj$summary["lnProfileLike.FULL"], tag="spatialProcess finding MLE " ) test.for.zero(MLEfit0$summary[1], obj1$summary["lnProfileLike.FULL"], tol=1e-5, tag="spatialProcess given MLE " ) # testing Krig function #out1<- Krig( x,y, cov.fun="stationary.cov", # cov.args = list(Covariance = "Matern", # smoothness=1.0, aRange=.9), # na.rm=TRUE, # m=2) #generate observation locations set.seed( 22) n=100 x = matrix(runif(2*n), nrow=n) #generate observations at the locations trueARange = .1 trueLambda = .1 distanceMatrix<- rdist(x,x) Sigma<- Matern( distanceMatrix/trueARange, smoothness=1.0 ) U = chol(Sigma) M<- 2e3 # lots of replicated fields. set.seed( 332) y = t(U)%*%matrix( rnorm(n*M), n,M) + sqrt(trueLambda)*matrix( rnorm(n*M), n,M) out<- mKrig( x,y, lambda=trueLambda, aRange=trueARange, cov.function ="stationary.cov",cov.args = list(Covariance = "Matern", smoothness=1.0) ) optim.args = list(method = "BFGS", control = list(fnscale = -1, ndeps = c(0.09,0.09))) MLEfitA <- mKrigMLEJoint(x, y, cov.params.start= list(aRange=.2, lambda=.01), cov.function="stationary.cov", optim.args=optim.args, cov.args = list(Covariance = "Matern", smoothness=1.0), na.rm=TRUE, reltol = 1e-6, mKrig.args = list( m=0), verbose=FALSE) cat("Testing mKrigMLEJoint against true values", fill=TRUE) test.for.zero( MLEfitA$summary["lambda"],.1, tol=.006) test.for.zero( MLEfitA$summary["aRange"],.1, tol=.02) test.for.zero( MLEfitA$summary["sigma2"], 1.0, tol=.02) ### now test REML fitting MLEfitB <- mKrigMLEJoint(x, y, cov.params.start= list(aRange=.12, lambda=.5), cov.function="stationary.cov", optim.args=optim.args, cov.args = list(Covariance = "Matern", smoothness=1.0), na.rm=TRUE, mKrig.args = list( m=0), REML=TRUE, verbose=FALSE) cat("Testing mKrigMLEJoint with REML against true values", fill=TRUE) test.for.zero( MLEfitB$summary["lambda"],.1, tol=.007) test.for.zero( MLEfitB$summary["aRange"],.1, tol=.01) test.for.zero( MLEfitB$summary["sigma2"], 1.0, tol=.01) cat("Testing mKrigMLEJoint with REML FALSE against true values", fill=TRUE) MLEfitC <- mKrigMLEJoint(x, y, cov.params.start= list(aRange=.12, lambda=.5), cov.function ="stationary.cov", optim.args=optim.args, cov.args = list(Covariance = "Matern", smoothness=1.0), na.rm=TRUE, mKrig.args = list( m=2), REML=FALSE, verbose=FALSE ) test.for.zero( MLEfitC$summary["lambda"], .1, tol=.02) test.for.zero( MLEfitC$summary[ "aRange"], .1, tol=.02) test.for.zero( MLEfitC$summary["sigma2"], 1.0, tol=.01) cat("all done with mKrigMLEGrid tests", fill=TRUE) options( echo=TRUE) fields/tests/diag.multiply.test.R0000644000175100001440000000270214275214521016567 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2022 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.edu, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER ##END HEADER suppressMessages(library(fields)) options( echo=FALSE) set.seed( 234) test.for.zero.flag<- 1 n <- 5 m <- 4 mat <- array(rnorm(n*m),c(n,m)) mat2 <- array(rnorm(n*m),c(m,n)) vec <- rnorm(n) vec2 <- rnorm(n) test.for.zero( mat2 %*% mat, mat2%d*%mat, tol=1e-8 ) test.for.zero( (diag(vec)%*% mat), (vec%d*%mat), tol=1e-8 ) test.for.zero( diag(vec)%*% vec2, vec%d*%vec2,tol=1e-8) cat("All done with testing diag multiply", fill=TRUE) options(echo=TRUE) fields/tests/mKrig.Z.R0000644000175100001440000000433114275214521014310 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2022 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.edu, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER ##END HEADER suppressMessages(library(fields)) options( echo=FALSE) test.for.zero.flag<- 1 data(COmonthlyMet) y<- CO.tmin.MAM.climate good<- !is.na( y) y<-y[good] x<- CO.loc[good,] Z<- CO.elev[good] out<- mKrig( x,y, Z=Z, cov.function="stationary.cov", Covariance="Matern", aRange=4.0, smoothness=1.0, lambda=.1) out2<- Krig( x,y, Z=Z, cov.function="stationary.cov", Covariance="Matern", aRange=4.0, smoothness=1.0, lambda=.1, GCV=TRUE) test.for.zero( predict( out), predict(out2), tag="Full prediction") test.for.zero( predict( out, drop.Z=TRUE), predict(out2, drop.Z=TRUE), tag=" prediction dropping Z") xnew<- CO.loc[!good,] Znew<- CO.elev[!good] temp1<- predict( out, xnew=xnew, drop.Z=TRUE) temp2<- predict( out2, x=xnew, drop.Z=TRUE) test.for.zero( temp1,temp2, tag="new x's dropping Z") temp1<- predict( out, xnew=xnew, Z=Znew) temp2<- predict( out2, x=xnew, Z=Znew) test.for.zero( temp1,temp2, tag="new x's new Z's") temp1<- predictSurface( out, nx=20, ny=20, drop.Z=TRUE, extrap=TRUE) temp2<- predictSurface( out2, nx=20, ny=20, drop.Z=TRUE, extrap=TRUE) test.for.zero( temp1$z,temp2$z, tag="predicting on surface with drop.Z") cat("all done with mKrig Z tests", fill=TRUE) options( echo=TRUE) fields/tests/sreg.test.R0000644000175100001440000000444314275214521014751 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2022 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.edu, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER ##END HEADER # test of sreg and related functions suppressMessages(library(fields)) options(echo=FALSE) test.for.zero.flag<- 1 set.seed(123) # Tps has been tested from scratch using basic linear algebra # so test sreg against this x<- rat.diet$t y<- rat.diet$trt sreg( x,y, lambda= 10)-> out Tps( x,y, scale="unscaled", lambda=10*length(y))-> out2 test.for.zero( out$fitted.values, out2$fitted.values, tag="predict at lambda sreg/Tps") #### GCV test sreg( x,y, tol=1e-12)-> out gcv.sreg( out, tol=1e-12)$lambda.est -> look0 test.for.zero( out$lambda.est[1,2], look0[1,2], tol=5e-4) Tps( x,y)-> out2 KrigFindLambda( out2, tol=1e-6)$lambda.est[1,2]-> look2 gcv.sreg( out, tol=1e-12)$lambda.est[1,2] -> look test.for.zero( look, look2, tol=2e-3, tag="GCV sreg/Tps") #### replications set.seed( 123) x<- rep(rat.diet$t,3) y<- rep( rat.diet$trt,3) + rnorm(39*3)*5 sreg( x,y)-> out gcv.sreg( out, tol=1e-8)$lambda.est -> look Tps( x,y, scale="unscaled")-> out2 KrigFindLambda( out2, tol=1e-5)$lambda.est-> look2 look2[,1]<- look2[,1]/length( out$xM) test.for.zero( look[1:3,3], look2[1:3,3], tag="GCV sreg/Tps reps case",tol=1e-06) test.for.zero( look[2,3], look2[2,3], tol=1e-6, tag="GCV sreg/Tps reps case") cat( "All done with sreg tests", fill=TRUE) options(echo=TRUE) fields/tests/cov.test2.Rout.save0000644000175100001440000001051714275255352016355 0ustar hornikusers R version 4.2.1 (2022-06-23) -- "Funny-Looking Kid" Copyright (C) 2022 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin17.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # > # fields is a package for analysis of spatial data written for > # the R software environment. > # Copyright (C) 2022 Colorado School of Mines > # 1500 Illinois St., Golden, CO 80401 > # Contact: Douglas Nychka, douglasnychka@gmail.edu, > # > # This program is free software; you can redistribute it and/or modify > # it under the terms of the GNU General Public License as published by > # the Free Software Foundation; either version 2 of the License, or > # (at your option) any later version. > # This program is distributed in the hope that it will be useful, > # but WITHOUT ANY WARRANTY; without even the implied warranty of > # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > # GNU General Public License for more details. > # > # You should have received a copy of the GNU General Public License > # along with the R software environment if not, write to the Free Software > # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA > # or see http://www.r-project.org/Licenses/GPL-2 > ##END HEADER > ##END HEADER > > > suppressMessages(library(fields)) > options( echo=FALSE) PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 Testing: taper with great circle PASSED test at tolerance 2e-06 Testing: high level test of taper cov PASSED test at tolerance 1e-08 Testing: high level test of taper cov PASSED test at tolerance 1e-07 Testing: stationary.cov versus stationary.cov compact distMat PASSED test at tolerance 1e-08 Testing: stationary.cov versus stationary.cov matrix distMat PASSED test at tolerance 1e-08 Testing: stationary.cov versus stationary.cov asymmetric distMat PASSED test at tolerance 1e-08 Testing: Exp.cov versus Exp.cov compact distMat PASSED test at tolerance 1e-08 Testing: Exp.cov versus Exp.cov matrix distMat PASSED test at tolerance 1e-08 Testing: Exp.cov versus Exp.cov asymmetric distMat PASSED test at tolerance 1e-08 Testing: stationary.cov vs stationary.cov with C set, compact distMat PASSED test at tolerance 1e-08 Testing: stationary.cov vs stationary.cov with C set, matrix distMat PASSED test at tolerance 1e-08 Testing: stationary.cov vs Exp.cov with C set, no distMat PASSED test at tolerance 1e-08 Testing: stationary.cov vs Exp.cov with C set, compact distMat PASSED test at tolerance 1e-08 Testing: stationary.cov vs Exp.cov with C set, matrix distMat PASSED test at tolerance 1e-08 Testing: stationary.cov vs stationary.cov with C set and asymmetric distMat given PASSED test at tolerance 1e-08 Testing: Exp.cov vs Exp.cov with C set and asymmetric distMat given PASSED test at tolerance 1e-08 Testing: onlyUpper=TRUE: stationary.cov versus Exp.cov PASSED test at tolerance 1e-08 Testing: onlyUpper=TRUE: stationary.cov versus stationary.cov with compactDistMat PASSED test at tolerance 1e-08 Testing: onlyUpper=TRUE: stationary.cov versus Exp.cov with compactDistMat PASSED test at tolerance 1e-08 Testing: onlyUpper=TRUE: stationary.cov versus stationary.cov with matrix distMat PASSED test at tolerance 1e-08 Testing: onlyUpper=TRUE: stationary.cov versus Exp.cov with matrix distMat PASSED test at tolerance 1e-08 Testing: Testing p=1 v 2 PASSED test at tolerance 1e-08 Testing: Testing p=2 v 3 PASSED test at tolerance 1e-08 Testing: Testing p=2 v 2 with distMat PASSED test at tolerance 1e-08 Testing: Testing aRange=1 v 2 PASSED test at tolerance 1e-08 Testing: Testing aRange=2 v 3 PASSED test at tolerance 1e-08 Testing: Testing aRange=2 v 2 with distMat PASSED test at tolerance 1e-08 end tests of V argument in covariances > proc.time() user system elapsed 0.840 0.073 0.902 fields/tests/misc.test.R0000644000175100001440000000316414275214521014743 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2022 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.edu, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER ##END HEADER suppressMessages(library(fields)) options( echo=FALSE) set.seed( 234) test.for.zero.flag<-1 y<- runif( 30) lev<- sort(sample( 1:5,30, replace=TRUE)) w<- runif( 30)*.1+1 y<- as.matrix(y) # compute by loop hold<- rep( NA, 5) for( k in 1:5){ ind<- lev==k hold[k]<- sum( y[ind,]*w[ind])/ sum( w[ind])} look<- fast.1way( lev, y, w) test.for.zero( look$means, hold, tag="fast.1way means") # now vectorized case ytemp<- cbind( y, y-10, y+10) look2<- fast.1way( lev, ytemp, w) test.for.zero( look2$means[,2], hold-10, tag="fast.1way vectorized means") cat("All done with testing misc functions", fill=TRUE) options(echo=TRUE) fields/tests/mKrig.R0000644000175100001440000000000014342501121014053 0ustar hornikusersfields/tests/offGridWeights.test.R0000644000175100001440000000764514513237653016741 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2022 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.edu, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER ##END HEADER # suppressMessages(library(fields)) options(echo=FALSE) test.for.zero.flag<- 1 set.seed(123) # Local Kriging - sparse matrix implementation (small example) #source( "makeBigB.R") # ----------------------------- # Define grid and observations # ----------------------------- m<- 40 n<- 45 nx<- m ny<- n M<- 10 dx<- 1 dy<- 1 sigma2<-2.0 aRange<- 5.5 np<-4 set.seed( 123) # locations random but avoid edges s<- cbind( dx*runif( M, np, (m-(np+1))), dy* runif( M, np, (n-(np+1))) ) # random uniform is ok as we just checking agreement set.seed( 222) y<- matrix( runif(m*n),m,n) yUnrolled<- c( y) #look<- sparseB%*%yUnrolled look2<- predVar<- rep( NA, M) theShift<- 0:(2*np-1) - (np - 1) for( k in 1:M){ #k<- 3 yTemp<- NULL sTemp<- NULL i0<- trunc(s[k,1]) j0<- trunc(s[k,2]) for( j in theShift + j0){ for( i in theShift + i0){ #cat( i,j, fill=TRUE) sTemp<- rbind( sTemp, c(i,j)) yTemp<- c(yTemp,y[i,j]) } } Sigma11<- sigma2*exp(-rdist(sTemp, sTemp)/aRange) Sigma11Inv<- solve(Sigma11) Sigma21<- sigma2*exp(-rdist(rbind(s[k,]), sTemp)/aRange) Btest<- Sigma21%*%Sigma11Inv result<- Sigma21%*%Sigma11Inv%*%yTemp look2[k]<- result predVar[k]<- sigma2 - diag(Sigma21%*%Sigma11Inv%*%t(Sigma21 ) ) } ################################### # test new function ################################### sparseObj0<- offGridWeights( s, list( x= 1:m, y=1:n), aRange=aRange, sigma2=sigma2, Covariance="Exponential", np=np) look5<- sparseObj0$B%*%yUnrolled test.for.zero( look2, look5 ) test.for.zero(predVar, sparseObj0$predictionVariance ) # check 15.4 mKrigObj<- mKrig( s, rnorm( nrow(s)), sigma2=sigma2, tau=0, aRange=aRange, Covariance="Exponential") sparseObj<- offGridWeights( s, list( x= 1:m, y=1:n), mKrigObject = mKrigObj, np=np ) look3<- sparseObj$B%*%yUnrolled test.for.zero( look2, look3 ) test.for.zero(predVar, sparseObj$predictionVariance ) # cheating on mKrig object fakeObj<- list( args = list( Covariance= "Exponential" ), summary= c(aRange=aRange*2.5, sigma2=sigma2) ) # fakeObj1<- list( args = list( Covariance= "Matern", smoothness=.5 ), # summary= c(aRange=10*2.5, sigma2=sigma2) # ) sparseObj1<- offGridWeights( s*2.5, list( x = (1:m)*2.5, y = (1:n)*2.5 ), mKrigObject = fakeObj, np = np ) look4<- sparseObj1$B%*%yUnrolled test.for.zero( look2, look4 , tag="sparse vs mKrig") test.for.zero( sparseObj$predictionVariance, predVar, tag="prediction Variance sparse vs mKrig" ) cat("all done with off grid weight tests part 1", fill=TRUE) fields/tests/Tps.test.R0000644000175100001440000002112714456244534014565 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2022 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.edu, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER ##END HEADER suppressMessages(library(fields)) options(echo=FALSE) test.for.zero.flag<- 1 data(ozone2) x<- ozone2$lon.lat y<- ozone2$y[16,] temp<- Rad.cov( x,x, p=2) temp2<- RadialBasis( rdist( x,x), M=2, dimension=2) temp3<- rdist( x,x) temp3 <- ifelse( abs(temp3) < 1e-14, 0,log( temp3)*(temp3^2) ) temp3<- radbas.constant( 2,2)*temp3 test.for.zero( temp, temp2, tag="Tps radial basis function 2d") test.for.zero( temp, temp3, tag="Tps radial basis function 2d") test.for.zero( temp2,temp3, tag="Tps radial basis function 2d") set.seed( 123) xtemp<- matrix( runif( 40*3), ncol=3) temp<- Rad.cov( xtemp,xtemp, p= 2*4-3) temp2<- RadialBasis( rdist( xtemp,xtemp), M=4, dimension=3) temp3<- rdist( xtemp,xtemp) temp3 <- ifelse( abs(temp3) < 1e-14, 0, temp3^(2*4 -3) ) temp3<- radbas.constant( 4,3)*temp3 test.for.zero( temp, temp2, tag="Tps radial basis function 3d") test.for.zero( temp, temp3, tag="Tps radial basis function 3d") test.for.zero( temp2,temp3, tag="Tps radial basis function 3d") #### testing multiplication of a vector #### mainly to make the FORTRAN has been written correctly #### after replacing the ddot call with an explicit do loop set.seed( 123) C<- matrix( rnorm( 10*5),10,5 ) x<- matrix( runif( 10*2), 10,2) temp3<- rdist( x,x) K<- ifelse( abs(temp3) < 1e-14, 0,log( temp3)*(temp3^2) ) K<- K * radbas.constant( 2,2) test.for.zero( Rad.cov( x,x,m=2, C=C) , K%*%C, tol=1e-10) set.seed( 123) C<- matrix( rnorm( 10*5),10,5 ) x<- matrix( runif( 10*3), 10,3) temp3<- rdist( x,x) K<- ifelse( abs(temp3) < 1e-14, 0,(temp3^(2*4-3)) ) K<- K * radbas.constant( 4,3) test.for.zero( Rad.cov( x,x,m=4, C=C) , K%*%C,tol=1e-10) ##### testing derivative formula set.seed( 123) C<- matrix( rnorm( 10*1),10,1 ) x<- matrix( runif( 10*2), 10,2) temp0<- Rad.cov( x,x, p=4, derivative=1, C=C) eps<- 1e-6 temp1<- ( Rad.cov( cbind(x[,1]+eps, x[,2]),x, p=4, derivative=0, C=C) - Rad.cov( cbind(x[,1]-eps, x[,2]),x, p=4, derivative=0, C=C) )/ (2*eps) temp2<- ( Rad.cov( cbind(x[,1], x[,2]+eps),x, p=4, derivative=0, C=C) - Rad.cov( cbind(x[,1], x[,2]-eps),x , p=4,derivative=0,C=C) )/ (2*eps) test.for.zero( temp0[,1], temp1, tag=" der of Rad.cov", tol=1e-6) test.for.zero( temp0[,2], temp2, tag=" der of Rad.cov", tol=1e-6) # comparing Rad.cov used by Tps with simpler function called # by stationary.cov set.seed( 222) x<- matrix( runif( 10*2), 10,2) C<- matrix( rnorm( 10*3),10,3 ) temp<- Rad.cov( x,x, p=2, C=C) temp2<- RadialBasis( rdist( x,x), M=2, dimension=2)%*%C test.for.zero( temp, temp2) #### Basic matrix form for Tps as sanity check data("ozone2") s<- ozone2$lon.lat y<- ozone2$y[16,] good<- !is.na( y) s<- s[good,] y<- y[good] data(ozone2) obj<-Tps( s,y, scale.type="unscaled", with.constant=FALSE) # now work out the matrix expressions explicitly lam.test<- obj$lambda N<-length(y) Tmatrix<- cbind( rep( 1,N), s) D<- rdist( s,s) R<- ifelse( D==0, 0, D**2 * log(D)) A<- rbind( cbind( R+diag(lam.test,N), Tmatrix), cbind( t(Tmatrix), matrix(0,3,3))) hold<-solve( A, c( y, rep(0,3))) c.coef<- hold[1:N] d.coef<- hold[ (1:3)+N] zhat<- R%*%c.coef + Tmatrix%*% d.coef test.for.zero( zhat, obj$fitted.values, tag="Tps 2-d m=2 sanity check") # out of sample prediction snew<- rbind( c( -87,41), c( -81,44) ) T1<- cbind( 1, snew) D<- rdist( snew,s) R1<- ifelse( D==0, 0, D**2 * log(D)) z1<- R1%*%c.coef + T1%*% d.coef test.for.zero( z1, predict( obj, x=snew), tag="Tps 2-d m=2 sanity predict") #### test Tps verses Krig note scaling must be the same out<- Tps( s,y) out2<- Krig( s,y, Covariance="RadialBasis", M=2, dimension=2, scale.type="range", method="GCV") test.for.zero( predict(out), predict(out2), tag="Tps vs. Krig w/ GCV") # test for fixed lambda test.for.zero( predict(out,lambda=.1), predict(out2, lambda=.1), tag="Tps vs. radial basis w Krig") #### testing derivative using predict function set.seed( 233) x<- matrix( (rnorm( 1000)*2 -1), ncol=2) y<- (x[,1]**2 + 2*x[,1]*x[,2] - x[,2]**2)/2 out<- Tps( x, y, scale.type="unscaled") xg<- make.surface.grid( list(x=seq(-.7,.7,,10), y=seq(-.7,.7,,10)) ) test<- cbind( xg[,1] + xg[,2], xg[,1] - xg[,2]) # test<- xg look<- predictDerivative.Krig( out, x= xg) test.for.zero( look[,1], test[,1], tol=1e-3) test.for.zero( look[,2], test[,2], tol=1e-3) ############################################################ ### testing Tps version using spatialProcess and Tps.cov ############################################################ set.seed(222) n<- 50 x1<- cbind( runif(n), runif(n))*100 x2<- cbind( runif(5), runif(5)) #x2<- x1 cardinalX<- cbind( runif(3), runif(3)) m<- 2 # simple check of marginal variances look<- Tps.cov( x1,x1,cardinalX, m=m) look2<- Tps.cov( x1,cardinalX=cardinalX, m=m, marginal=TRUE) test.for.zero(diag(look), look2, tag="Tps.cov marginal" ) ## comparing with the Tps function data("ozone2") s<- ozone2$lon.lat y<- ozone2$y[16,] good<- !is.na( y) s<- s[good,] y<- y[good] ##### Tps used as benchmark out0<- Tps( s,y, scale.type ="unscaled", method="REML") lambdaHat<- out0$lambda.est[6,1] fHat<- predict( out0) cardinalX<- s[1:3,] out2<- mKrig( s,y, cov.function="Tps.cov", cov.args= list( cardinalX=cardinalX, aRange=NA), m=2,lambda=lambdaHat ) # should be invariant to cardinal points and not need aRange =NA # defaults supplied by spatialProcessSetDefaults when detecting Tps.cov out3<- spatialProcess( s, y, cov.function="Tps.cov", mKrig.args = list(m=2, NtrA = 200), lambda=lambdaHat ) out4<- spatialProcess( s, y, cov.function="Tps.cov", cov.args= list( aRange=NA), #REML=TRUE, verbose=FALSE, gridN=50 ) test.for.zero(fHat, predict( out2, s), tag="Tps vs spatialProcess" ) # other parameters and likelihood test.for.zero(out0$tauHat.MLE, out3$summary["tau"],tag="Tps vs spatialProcess tau" ) test.for.zero(fHat, predict( out3, s), tag="Tps vs spatialProcess default" ) # eff.df exact for spatialProcess because nTrA is larger than # sample size. test.for.zero( out0$eff.df, out3$summary["eff.df"], tag="Eff.df Tps vs spatialProcess") # look at prediction standard error computation. SE0<- predictSE( out0, s) SE3<- predictSE( out3,s) test.for.zero(SE0, SE3, tag="Tps vs spatialProcess SE") # compare REML for Tps and spatialProcess # test.for.zero(out0$lambda.est["REML", "-lnLike Prof"], # out4$summary["lnProfileREML.FULL"], # tag="Tps vs spatialProcess REML log like" ) # test.for.zero(out0$lambda.est["REML", "lambda"], # out4$summary["lambda"], # tag="Tps vs spatialProcess w REML lambda Hat" ) # gridList<- fields.x.to.grid( s, nx=20, ny=20) sGrid<- make.surface.grid( gridList) fHatGrid0<- predict( out0, sGrid) fHatGrid3<- predict( out3,sGrid) test.for.zero(fHatGrid0,fHatGrid3, tag="Tps vs spatialProcess predictions on a grid") fHatGrid0SE<- predict( out0, sGrid) fHatGrid3SE<- predict( out3,sGrid) test.for.zero(fHatGrid0SE,fHatGrid3SE, tag="Tps vs spatialProcess SE predictions on a grid") options( echo=TRUE) cat("all done testing Tps and spatialProcess with Tps.cov", fill=TRUE) # # lambda0<- out0$lambda.est["REML", "lambda"] # # Krig.flplike(out0, lambda0) fields/tests/Krig.se.W.R0000644000175100001440000000477514275214521014552 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2022 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.edu, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER ##END HEADER suppressMessages(library(fields)) # tests of predictSE using # off diag weight matrix for obs (W) options( echo=FALSE) test.for.zero.flag<- 1 # a nasty example with off diagonal weights. set.seed(123) N<- 50 x<- matrix( runif( N*2), N,2) y<- rnorm( N)*.2 + 2*x[,1]**2 + x[,2]**2 weights<- runif(N)*10 x0<- cbind( c(.1,.2,.6,.65,.8), c(.05,.5,.73,.9,.95)) temp.wght<- function(x, alpha=.3){ Exp.cov( x, aRange=.1) } Krig( x,y, cov.function=Exp.cov,weights=weights, wght.function= "temp.wght")-> out Krig( x,y, cov.function=Exp.cov,weights=weights,W= out$W)-> out2 # direct calculation test for A matrix # Krig.Amatrix( out, x=x0)-> A test.for.zero( A%*%y, predict( out, x0),tag="Amatrix vs. predict") # now find se. W2<-out$W2 W<- out$W Sigma<- out$sigmahat*Exp.cov( out$x,out$x) temp0<- out$sigmahat*(Exp.cov( x0, x0)) S1<- out$sigmahat*Exp.cov( out$x, x0) #yhat= Ay #var( f0 - yhat)= var( f0) - 2 cov( f0,yhat)+ cov( yhat) Sigma.obs<- Krig.make.Wi( out)$Wi Sigma.obs <- Sigma.obs* (out$tauHat.MLE**2) temp1<- A%*%S1 temp2<- A%*% ( Sigma.obs+ Sigma)%*% t(A) look<- temp0 - t(temp1) - temp1 + temp2 #compare to # diagonal elements test<- predictSE( out, x= x0) test.for.zero( sqrt(diag( look)), test,tag="Marginal predictSE") test<- predictSE( out, x= x0, cov=TRUE) test2<- predictSE( out2, x= x0, cov=TRUE) test.for.zero( look, test,tag="Full covariance predictSE") test.for.zero( look, test2,tag="Full covariance predictSE explicit W") cat( "all done", fill=TRUE) options( echo=TRUE) fields/tests/vgram2.test.R0000644000175100001440000000532014275214521015202 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2022 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.edu, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER ##END HEADER # test of vgram suppressMessages(library(fields)) options(echo=FALSE) data( ozone2) y<- ozone2$y[16,] x<- ozone2$lon.lat vgram( x, y, lon.lat=TRUE)-> out # compute "by hand" outer( y, y ,"-")-> hold hold<- .5*hold^2 rdist.earth( x,x)-> hold2 col( hold2)> row( hold2)-> upper hold<- hold[upper] hold2<- hold2[upper] order( hold2)-> od hold2<- hold2[od] hold<- hold[od] ind<- is.na(hold) hold<- hold[!ind] hold2<- hold2[!ind] test.for.zero( hold, out$vgram, tag="vgram single time") # multiple times including NAs at some times y<- t(ozone2$y[16:18,]) x<- ozone2$lon.lat[,] out<- vgram( x, y, lon.lat=TRUE) N<- nrow( y) hold<- cbind(c(outer( y[,1], y[,1],"-")), c(outer( y[,2], y[,2],"-") ), c(outer(y[,3], y[,3],"-")) ) hold<- .5*hold^2 hold<- rowMeans( hold, na.rm=TRUE) hold<- matrix( hold, N,N) rdist.earth( x,x)-> hold2 col( hold2)> row( hold2)-> upper hold<- hold[upper] hold2<- hold2[upper] order( hold2)-> od hold2<- hold2[od] hold<- hold[od] ind<- is.na(hold) hold<- hold[!ind] hold2<- hold2[!ind] test.for.zero( hold, out$vgram, tag="vgram more than one time point") # test covariogram versus correlogram y<- ozone2$y[16,] x<- ozone2$lon.lat tau2 = var(y, na.rm=TRUE) lookCov = vgram(x, y, lon.lat=TRUE, type="covariogram") lookCor = vgram(x, y, lon.lat=TRUE, type="correlogram") test.for.zero(lookCov$vgram*(1/tau2), lookCor$vgram, tag="correlogram versus covariogram") # test cross-covariogram versus cross-correlogram tau2 = var(y, na.rm=TRUE) lookCov = crossCoVGram(x, x, y, y, lon.lat=TRUE, type="cross-covariogram") lookCor = crossCoVGram(x, x, y, y, lon.lat=TRUE, type="cross-correlogram") test.for.zero(lookCov$vgram*(1/tau2), lookCor$vgram, tag="correlogram versus covariogram") fields/tests/mKrig.parameters.test.R0000644000175100001440000001557514275214521017234 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2022 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.edu, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER ##END HEADER suppressMessages(library(fields)) #options( echo=FALSE) test.for.zero.flag<- 1 data(ozone2) y<- ozone2$y[16,] x<- ozone2$lon.lat # # Omit the NAs good<- !is.na( y) x<- x[good,] y<- y[good] #source("~/Home/Src/fields/R/mKrig.family.R") # now look at mKrig w/o sparse matrix look<- mKrig( x,y, cov.function="stationary.cov", aRange=10, lambda=.3, chol.args=list( pivot=FALSE)) lookKrig<- Krig( x,y, cov.function="stationary.cov", aRange=10) test.df<-Krig.ftrace(look$lambda,lookKrig$matrices$D) test<- Krig.coef( lookKrig, lambda=look$lambda) test.for.zero( look$d, test$d, tag="Krig mKrig d coef") test.for.zero( look$c, test$c, tag="Krig mKrig c coef") # test of trace calculation look<- mKrig( x,y, cov.function="stationary.cov", aRange=10, lambda=.3, find.trA=TRUE, NtrA= 1000, iseed=243) test.for.zero( look$eff.df, test.df,tol=.01, tag="Monte Carlo eff.df") # lookKrig<-Krig( x,y, cov.function="stationary.cov", aRange=350, Distance="rdist.earth",Covariance="Wendland", cov.args=list( k=2, dimension=2) ) look<- mKrig( x,y, cov.function="stationary.cov", aRange=350, Distance="rdist.earth",Covariance="Wendland", cov.args=list( k=2, dimension=2), lambda=lookKrig$lambda, find.trA=TRUE, NtrA= 1000, iseed=243) test.for.zero( look$c, lookKrig$c, tag="Test of wendland and great circle") test.for.zero(look$eff.df, Krig.ftrace( lookKrig$lambda, lookKrig$matrices$D) ,tol=.01, tag="eff.df") # same calculation using sparse matrices. look4<- mKrig( x,y, cov.function="wendland.cov", aRange=350, Dist.args=list( method="greatcircle"), cov.args=list( k=2), lambda=lookKrig$lambda, find.trA=TRUE, NtrA=500, iseed=243) test.for.zero( look$c.coef, look4$c.coef,tol=8e-7, tag="Test of sparse wendland and great circle") test.for.zero(look4$eff.df, Krig.ftrace( lookKrig$lambda, lookKrig$matrices$D), tol=.01, tag="sparse eff.df") # great circle distance switch has been a big bug -- test some options look<- mKrig( x,y, cov.function="wendland.cov", aRange=350, Dist.args=list( method="greatcircle"), cov.args=list( k=2),lambda=lookKrig$lambda, find.trA=TRUE, NtrA=1000, iseed=243) test.for.zero(look$eff.df, Krig.ftrace( lookKrig$lambda, lookKrig$matrices$D), tol=1e-2, tag="exact sparse eff.df") # compare to fast Tps look3<- fastTps( x,y,aRange=350,lambda=lookKrig$lambda, NtrA=200, iseed=243, lon.lat=TRUE) #look3$c<- lookKrig$c #look3$d<- lookKrig$d object<- look3 np<- object$np Ey <- diag(1, np) NtrA <- np hold <- predict.mKrig(object, ynew = Ey, collapseFixedEffect=FALSE) hold2<- matrix( NA, np,np) for( k in 1:np){ hold2[,k] <- predict.Krig(lookKrig, y = Ey[,k]) } #plot( diag(hold), diag(hold2)) test.for.zero( look3$c, lookKrig$c, tol=5e-7) test.for.zero( look3$d, lookKrig$d, tol=2e-8) test.for.zero( look3$fitted.values, lookKrig$fitted.values, tol=1e-7) test.for.zero( predict( look3, xnew= look3$x), predict( lookKrig, xnew= lookKrig$x), tol=5e-7) test.for.zero( hold[,1], hold2[,1], tol=1e-7, relative=FALSE) test.for.zero(diag(hold),diag(hold2), tol=2E-7, relative=FALSE, tag="exact sparse eff.df by predict -- fastTps") #plot( diag(hold), ( 1- diag(hold2)/ diag(hold)) ) test.for.zero(look3$eff.df,sum( diag(hold)) , tag="fastTps ef.df exact" ) test.for.zero(look3$eff.df, Krig.ftrace( lookKrig$lambda, lookKrig$matrices$D), tol=2e-7, tag="exact sparse eff.df through mKrig-- fastTps") # calculations of likelihood, sigma and tau lam<-.2 out<- mKrig( x,y, cov.function =Exp.cov, aRange=4, lambda=lam) out2<- Krig( x,y, cov.function =Exp.cov, aRange=4, lambda=lam) Sigma<- Exp.cov( x,x,aRange=4) X<- cbind( rep(1, nrow(x)), x) Sinv<- solve( Sigma + lam* diag( 1, nrow( x))) #checks on likelihoods # quadratic form: betaHat<- c(solve( t(X)%*%Sinv%*%(X) ) %*% t(X) %*%Sinv%*%y) test.for.zero( betaHat, out$beta, tag="initial check on d for likelihood") r<- y -X%*%betaHat N<- nrow(x) look<- t( r)%*%(Sinv)%*%r/N test.for.zero( look, out$summary["sigma2"], tag="sigma2 hat from likelihood") test.for.zero( look, out2$sigma.MLE, tag="sigma2 hat from likelihood compared to Krig") # check determinant lam<- .2 Sigma<- Exp.cov( x,x,aRange=4) M<- Sigma + lam * diag( 1, nrow(x)) chol( M)-> Mc look2<- sum( log(diag( Mc)))*2 out<-mKrig( x,y,cov.function =Exp.cov, aRange=4, lambda=lam) test.for.zero( out$lnDetCov, look2) test.for.zero( out$lnDetCov, determinant(M, log=TRUE)$modulus) # weighted version lam<- .2 Sigma<- Exp.cov( x,x,aRange=4) set.seed( 123) weights<- runif(nrow( x)) M<- Sigma + diag(lam/ weights) chol( M)-> Mc look2<- sum( log(diag( Mc)))*2 out<-mKrig( x,y,weights=weights, cov.function =Exp.cov, aRange=4, lambda=lam) test.for.zero( out$lnDetCov, look2) test.for.zero( look2, determinant(M, log=TRUE)$modulus) test.for.zero( out$lnDetCov, determinant(M, log=TRUE)$modulus) # check profile likelihood by estimating MLE lam.true<- .2 N<- nrow( x) Sigma<- Exp.cov( x,x,aRange=4) M<- Sigma + lam.true * diag( 1, nrow(x)) chol( M)-> Mc t(Mc)%*%Mc -> test ##D set.seed( 234) ##D NSIM<- 100 ##D hold2<-rep( NA, NSIM) ##D temp.fun<- function(lglam){ ##D out<-mKrig( x,ytemp, ##D cov.function =Exp.cov, aRange=4, lambda=exp(lglam)) ##D return(-1* out$lnProfileLike)} ##D hold1<-rep( NA, NSIM) ##D yt<- rep( 1, N) ##D obj<- Krig( x,yt, aRange=4) ##D E<- matrix( rnorm( NSIM*N), ncol=NSIM) ##D for ( j in 1:NSIM){ ##D cat( j, " ") ##D ytemp <- x%*%c(1,2) + t(Mc)%*%E[,j] ##D out<- optim( log(.2), temp.fun, method="BFGS") ##D hold2[j]<- exp(out$par) ##D hold1[j]<- gcv.Krig(obj, y=ytemp)$lambda.est[6,1] ##D } ##D test.for.zero( median( hold1), .2, tol=.08) ##D test.for.zero( median( hold2), .2, tol=.12) fields/tests/Wend.test.R0000644000175100001440000000566414275214521014714 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2022 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.edu, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER ##END HEADER # test of Wendland covariance and stationary.taper.cov suppressMessages(library(fields)) options( echo=FALSE) test.for.zero.flag<- 1 set.seed(123) x1<- matrix( runif(2*20), ncol=2) x2<- matrix( runif(2*10), ncol=2) fields.rdist.near( x1,x2, delta=.75)-> look temp<- matrix( NA, nrow(x1),nrow(x2)) temp[ look$ind] <- look$ra temp2<- rdist( x1, x2) temp2[ temp2> .75] <- NA #set.panel( 2,1) ; image.plot( temp); image.plot( temp2) temp[ is.na( temp)]<- 0 temp2[ is.na( temp2)]<- 0 test.for.zero( temp, temp2) # test of constructing covariance matrix # and also versions of Wendland function # default taper is wendland k=2. DD<- rdist( x1,x2) temp<- Wendland2.2(DD, aRange=.8) temp2<- Wendland( DD, aRange=.8, k=2, dimension=2) test.for.zero( temp, temp2) stationary.taper.cov( x1,x2, Taper="Wendland2.2", Taper.args= list( aRange=.8), spam.format=FALSE )-> look temp0<- look stationary.taper.cov( x1,x2, Taper="Wendland2.2", Taper.args= list( aRange=.8), spam.format=TRUE )-> look temp1<- spam2full( look) test.for.zero( temp1, temp0) stationary.taper.cov( x1,x2, Taper="Wendland", Taper.args= list( aRange=.8, k=2, dimension=2), spam.format=TRUE )-> look temp1b<- spam2full( look) temp2<- Wendland2.2(DD, aRange=.8) * Exponential(DD) temp3<- wendland.cov(x1,x2, k=2, aRange=.8) * Exponential(DD) temp4<- Wendland(DD, k=2, dimension=2, aRange=.8)* Exponential(DD) test.for.zero( temp1, temp0, rel=FALSE) test.for.zero( temp1b, temp0, rel=FALSE) test.for.zero( temp2, temp0, rel=FALSE) test.for.zero( temp2, temp3,rel=FALSE) test.for.zero( temp2, temp4,rel=FALSE) set.seed( 256) rv<- runif( nrow(x2)) # test of multiply stationary.taper.cov( x1, x2, C= rv)-> look temp2<-stationary.taper.cov( x1,x2) (as.matrix(temp2))%*%(rv)-> look2 test.for.zero( look, look2) temp2%*%(rv)-> look2 test.for.zero( look, look2) cat( "Done with testing Wendland family", fill=TRUE) options( echo=TRUE) fields/tests/spam.test.Rout.save0000644000175100001440000000453714275255352016451 0ustar hornikusers R version 4.2.1 (2022-06-23) -- "Funny-Looking Kid" Copyright (C) 2022 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin17.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # > # fields is a package for analysis of spatial data written for > # the R software environment. > # Copyright (C) 2022 Colorado School of Mines > # 1500 Illinois St., Golden, CO 80401 > # Contact: Douglas Nychka, douglasnychka@gmail.edu, > # > # This program is free software; you can redistribute it and/or modify > # it under the terms of the GNU General Public License as published by > # the Free Software Foundation; either version 2 of the License, or > # (at your option) any later version. > # This program is distributed in the hope that it will be useful, > # but WITHOUT ANY WARRANTY; without even the implied warranty of > # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > # GNU General Public License for more details. > # > # You should have received a copy of the GNU General Public License > # along with the R software environment if not, write to the Free Software > # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA > # or see http://www.r-project.org/Licenses/GPL-2 > ##END HEADER > ##END HEADER > > > # test of rdist.near > > > suppressMessages(library(fields)) > options(echo=FALSE) PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 All done with SPAM tests > > proc.time() user system elapsed 0.987 0.085 1.072 fields/tests/derivative.test.R0000644000175100001440000001702214275214521016150 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2022 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.edu, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER ##END HEADER #library( fields, lib.loc="lib.test") suppressMessages(library(fields)) options(echo=FALSE) test.for.zero.flag<- 1 DD<- cbind( seq(.01,2,,50)) look2<- RadialBasis(DD, dimension=2,M=3,derivative=1) look1<- ( RadialBasis(DD+1e-5, dimension=2,M=3,derivative=0 ) - RadialBasis(DD-1e-5, dimension=2,M=3,derivative=0))/2e-5 test.for.zero( look1, look2,tol=1e-6, tag="radial basis function exact" ) set.seed( 234) x<- matrix( runif(10), ncol=2) ctest<- rep(0,5) ctest[3]<- 1 stationary.cov( x,x, Covariance="RadialBasis", dimension=2,M=3,derivative=0)-> look0 RadialBasis( rdist(x,x), dimension=2,M=3,derivative=0)-> sanity.look test.for.zero( look0, sanity.look, tag="sanity test of stationary.cov with RadialBasis") Rad.cov(x,x,p= (2*3 -2))-> look1 test.for.zero( sanity.look, look1, tag="sanity test of Rad.cov") sanity.look%*% ctest->look0 stationary.cov( x,x, Covariance="RadialBasis", dimension=2,M=3, derivative=0, C=ctest)-> look test.for.zero( look0, look, tag="stat.cov Radbas C multiply") Rad.cov(x,x,p= (2*3 -2), C=ctest)-> look1 test.for.zero( look0, look1, tag="Rad.cov C multiply") ############################ end of radial basis DD<- cbind( seq(.01,2,,50)) look2<- Wendland(DD, aRange=1.0, dimension=2,k=3,derivative=1) look1<- (Wendland(DD+1e-5, aRange=1.0, dimension=2,k=3) - Wendland(DD-1e-5, aRange=1.0, dimension=2,k=3))/2e-5 test.for.zero( look1, look2,tol=1e-6) look2<- Wendland(DD, aRange=1.5, dimension=2,k=3,derivative=1) look1<- (Wendland(DD+1e-5, aRange=1.5, dimension=2,k=3) - Wendland(DD-1e-5, aRange=1.5, dimension=2,k=3))/2e-5 test.for.zero( look1, look2,tol=1e-6, tag="Wendland exact") x<- seq( -1,1,,5) ctest<- rep(0,5) ctest[3]<- 1 wendland.cov( x,x, k=2, aRange=.75)-> look0 Wendland( rdist(x,x)/.75, k=2, dimension=1)-> sanity.look test.for.zero( look0, sanity.look) look0%*% ctest->look0 wendland.cov( x,x, k=2, aRange=.75, C=ctest, derivative=0)-> look test.for.zero( look0, look, tag="Wendland C multiply") wendland.cov( x,x, k=2, aRange=1.0, C=ctest, derivative=1)-> look wendland.cov( x+1e-5, x, k=2, aRange=1.0, C=ctest)- wendland.cov( x-1e-5, x, k=2, aRange=1.0, C=ctest)-> look2 look2<- look2/2e-5 test.for.zero( look, look2,tol=1e-7, tag="Wendland.cov aRange=1.0") wendland.cov( x,x, k=2, aRange=.75, C=ctest, derivative=1)-> look wendland.cov( x+1e-5, x, k=2, aRange=.75, C=ctest)- wendland.cov( x-1e-5, x, k=2, aRange=.75, C=ctest)-> look2 look2<- look2/2e-5 test.for.zero( look, look2,tol=1e-7, tag="Wendland.cov aRange=.75") stationary.cov( x,x, Covariance="Wendland", dimension=1, k=2, aRange=1.0, C=ctest, derivative=0)-> look look0<- Wendland( rdist(x,x), k=2, dimension=1)%*%ctest test.for.zero( look0, look, tag="stationary.cov and exact C multiply for Wendland") wendland.cov( x,x, k=2,C=ctest, aRange=1.0)-> look look0<- Wendland( rdist(x,x), k=2, dimension=1)%*%ctest test.for.zero( look0, look, tag=" Wendland C multiply") ####### 2 -d quadratic surface x<- make.surface.grid( list(x=seq( -1,1,,20), y=seq( -1,1,,20))) y<- (.123*x[,1] + .234*x[,2]) obj<- mKrig( x,y, lambda=0, cov.function="wendland.cov", k=3, aRange=.4) xp<- make.surface.grid( list(x=seq(-.5,.5,,24),y= seq( -.5,.5,,24)) ) predict( obj, xp, derivative=1)-> outd test.for.zero( outd[,1],.123, tag="2-d derivs from wend.cov/mKrig") test.for.zero( outd[,2],.234) #%%%%%%%% repeat to check derivatives in stationary.cov x<- make.surface.grid( list(x=seq( -1,1,,20), y=seq( -1,1,,20))) y<- (.123*x[,1] + .234*x[,2]) obj<- mKrig( x,y, lambda=0, cov.function="stationary.cov", cov.args=list(k=3, aRange=.2, dimension=2, Covariance="Wendland")) xp<- make.surface.grid( list(x=seq(-.5,.5,,24),y= seq( -.5,.5,,24)) ) predict( obj, xp, derivative=1)-> outd test.for.zero( outd[,1],.123, tag="2-d derivs from stationary-wend/mKrig") test.for.zero( outd[,2],.234) ############## quadratic surface x<- make.surface.grid( list(x=seq( -1,1,,20), y=seq( -1,1,,20))) y<- (x[,1]**2 - 2* x[,1]*x[,2] + x[,2]**2)/2 ############## wendland.cov obj<- mKrig( x,y, lambda=0, cov.function="wendland.cov", k=3, aRange=.8) xp<- make.surface.grid( list(x=seq(-.5,.5,,24),y= seq( -.5,.5,,24)) ) true<- cbind( xp[,1] - xp[,2], xp[,2]- xp[,1]) ############## wendland.cov predict( obj, xp, derivative=1)-> outd rmse<-sqrt(mean((true[,1] - outd[,1])**2))/sqrt(mean(true[,1]**2)) test.for.zero( rmse,0, tol=5e-3,relative=FALSE, tag="wendland.cov quad 2-d") ############## stationary cov x<- make.surface.grid( list(x=seq( -1,1,,20), y=seq( -1,1,,20))) y<- (x[,1]**3 + x[,2]**3) obj<- mKrig( x,y, lambda=0, cov.function="stationary.cov", cov.args=list(k=3, aRange=.8, dimension=2, Covariance="Wendland")) xp<- make.surface.grid( list(x=seq(-.5,.5,,24),y= seq( -.5,.5,,24)) ) true<- cbind( 3*xp[,1]**2 , 3*xp[,2]**2) predict( obj, xp, derivative=1)-> outd2 rmse<-sqrt(mean((true[,1] - outd2[,1])**2))/sqrt(mean(true[,1]**2)) test.for.zero( rmse,0, tol=1e-2,relative=FALSE, tag="stationary.cov/Wendland cubic 2-d") ############## stationary cov with radial basis x<- make.surface.grid( list(x=seq( -1,1,,20), y=seq( -1,1,,20))) y<- (x[,1]**3 + x[,2]**3) obj<- Krig( x,y, cov.function="stationary.cov", m=3, cov.args=list(M=3, dimension=2, Covariance="RadialBasis")) xp<- make.surface.grid( list(x=seq(-.5,.5,,24),y= seq( -.5,.5,,24)) ) true<- cbind( 3*xp[,1]**2 , 3*xp[,2]**2) predictDerivative.Krig( obj, xp)-> outd2 look<- as.surface( xp, outd2[,1]) rmse<-sqrt(mean((true[,1] - outd2[,1])**2))/sqrt(mean(true[,1]**2)) test.for.zero( rmse,0, tol=5e-3,relative=FALSE, tag="stationary.cov/Wendland cubic 2-d") ######################### x<- make.surface.grid( list(x=seq( -1,1,,20), y=seq( -1,1,,20))) y<- (x[,1]**3 + x[,2]**3) obj<- mKrig( x,y, lambda=0, cov.function="wendland.cov", k=3, V=diag(c( 1.1,1.1) )) xp<- make.surface.grid( list(x=seq(-.5,.5,,24),y= seq( -.5,.5,,24)) ) predict( obj, xp, derivative=1)-> outd true<- cbind( 3*xp[,1]**2 , 3*xp[,2]**2) rmse<-sqrt(mean((true[,1] - outd[,1])**2)/mean(true[,1]**2)) test.for.zero( rmse,0, tol=5e-3,relative=FALSE) obj<- Tps( x,y,lambda=0) predictDerivative.Krig( obj, xp, derivative=1)-> outd look<- as.surface( xp, outd[,1]) rmse<-sqrt(mean((true[,1] - outd[,1])**2)/mean(true[,1]**2)) test.for.zero( rmse,0, tol=2e-4,relative=FALSE, tag="Tps derivative x1") rmse<-sqrt(mean((true[,2] - outd[,2])**2)/mean(true[,2]**2)) test.for.zero( rmse,0, tol=2e-4,relative=FALSE, tag="Tps derivative x2") cat("done with dervative tests", fill=TRUE) options( echo=TRUE) fields/tests/mKrigREMLTest.R0000644000175100001440000000655414275214521015431 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2022 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.edu, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER ##END HEADER suppressMessages(library(fields)) options( echo=FALSE) set.seed( 123) x<- matrix( runif( 20),10, 2) y<- rnorm(10) lambda<- .1 aRange<- .2 out<- mKrig( x,y, aRange= aRange, lambda=lambda) test.for.zero( out$lnDetOmega, 2*log( prod(diag(chol(out$Omega)))) ) Mc<- exp( -rdist( x,x)/aRange) + lambda* diag( 1,10) OmegaTest<- solve(t(out$Tmatrix)%*%solve( Mc)%*% out$Tmatrix) test.for.zero( OmegaTest, out$Omega,tag= "mKrigOmega") test.for.zero( log(det(OmegaTest)), out$lnDetOmega, tag="lnDetOmega") test.for.zero( log( det( Mc)), out$lnDetCov, tag="lnDetMc" ) # check that det adjustment really works. set.seed( 323) x<- matrix( runif( 20), 10, 2) temp<- matrix( NA, 50,8) aRangeGrid<- seq( .1,.5, ,50) lambdaGrid<- 10**(runif( 50, -2,0)) Q<- qr.qy( qr( cbind( rep(1,10),x) ), diag( 1,10)) Q2<- Q[,4:10] y<- rnorm(10) testDet<- function(lambda, obj) { D2 <- obj$matrices$D[obj$matrices$D > 0] u2 <- obj$matrices$u[obj$matrices$D > 0] lD <- D2 * lambda N2 <- length(D2) sigma.MLE <- (sum((D2 * (u2)^2)/(1 + lD)))/N2 lnDetCov <- -sum(log(D2/(1 + lD))) # -1 * (-N2/2 - log(2 * pi) * (N2/2) - (N2/2) * log(sigma.MLE) - # (1/2) * lnDetCov) return( c(lnDetCov, sigma.MLE) ) } for ( k in 1:50) { out<- mKrig( x,y, aRange = aRangeGrid[k], lambda = lambdaGrid[k] ) # turn off warnings for lambda search because all we want are # matrix decompositions independent of lambda out2<- Krig( x,y, aRange= aRangeGrid[k], cov.args=list( Covariance = "Exponential"), give.warnings=FALSE) Mc<- exp( -rdist( x,x)/aRangeGrid[k] ) + lambdaGrid[k]* diag( 1,10) X<- out$Tmatrix temp[k,]<-c( out$lnDetCov, out$lnDetOmega, log( det( solve(t( Q2)%*%Mc%*%Q2) ) ), log( det(Mc) ), -1*log( det( t(X)%*%solve(Mc)%*%X ) ), testDet( lambdaGrid[k], out2 ), out$summary["sigma2"] ) } test.for.zero( temp[,2], temp[,5], tag="testing det Omega formula") resid<- temp[,1] - temp[,2] + temp[,3] test.for.zero( mean(resid), resid, relative=FALSE, tag="REML Det shortcut") #### testing Krig verses mKrig # test.for.zero( temp[,3], -temp[,6], tag="Q2 Det and Eigen Det") ###### testing sigma.MLE from mKrig and Krig test.for.zero( (7/10)*temp[,7], temp[,8], tag="sigma.MLE Krig verses mKrig") fields/tests/mKrig.test.R0000644000175100001440000002015414342501141015047 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2022 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.edu, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER ##END HEADER suppressMessages(library(fields)) options( echo=FALSE) test.for.zero.flag<- 1 # test data data( ozone2) x<- ozone2$lon.lat y<- ozone2$y[16,] #first test addToDiagC I3 = diag(nrow=3) twoI3 = I3*2 .Call("addToDiagC", I3, rep(1.0, 3), as.integer(3)) test.for.zero(twoI3, I3, tag="addToDiag") # turning spam on and off Krig(x,y, cov.function = "stationary.taper.cov", aRange=1.5, cov.args= list( spam.format=FALSE, Taper.args= list( aRange=2.0,k=2, dimension=2) ) ) -> out1 Krig(x,y, cov.function = "stationary.taper.cov", lambda=2.0, aRange=1.5, cov.args= list( spam.format=TRUE, Taper.args= list( aRange=2.0,k=2, dimension=2) ) ) -> out2 temp1<- predict( out1,lambda=2.0) temp2<- predict( out2) test.for.zero( temp1, temp2, tag="spam vs no spam") # # Omit the NAs good<- !is.na( y) x<- x[good,] y<- y[good] # now look at mKrig w/o sparse matrix mKrig( x,y, cov.function="stationary.cov", aRange=10, lambda=.3, chol.args=list( pivot=FALSE))-> look Krig( x,y, cov.function="stationary.cov", aRange=10, lambda=.3) -> look2 test.for.zero( look$d, look2$d, tag="Krig mKrig d coef") test.for.zero( look$c, look2$c, tag="Krig mKrig c coef") set.seed(123) xnew<- cbind( (runif(20)-.5)*5, (runif(20)-.5)*5) temp<- predict( look, xnew) temp2<- predict( look2, xnew) test.for.zero( temp, temp2, tag="test of predict at new locations") # test of matrix of obs N<- length( y) Y<- cbind( runif(N), y,runif(N), y) # collapse == FALSE means each fixed effect found separately for columns of Y lookY<- mKrig( x,Y, cov.function="stationary.cov", aRange=10, lambda=.3,collapse=FALSE) temp3<- predict( lookY, xnew, collapse=FALSE)[,4] test.for.zero( temp, temp3, tag="test of matrix Y predicts" ) predictSurface( look)-> temp predictSurface( look2)-> temp2 good<- !is.na( temp2$z) test.for.zero( temp$z[good], temp2$z[good]) # testing stationary taper covariance # and also surface prediction N<- length( y) mKrig( x,y, cov.function="stationary.taper.cov", aRange=2, spam.format=FALSE, lambda=.35 )-> look Krig( x,y, cov.function="stationary.taper.cov", aRange=2, spam.format=FALSE, lambda=.35)-> look2 predictSurface( look, nx=50, ny=45)-> temp predictSurface( look2, nx=50, ny=45)-> temp2 good<- !is.na( temp2$z) test.for.zero( temp$z[good], temp2$z[good], tag="predictSurface with mKrig") # # Use Wendland with sparse off and on. Krig( x,y, cov.function="wendland.cov", cov.args=list( k=2, aRange=2.8), lambda=.3, spam.format=FALSE)-> look mKrig( x,y, cov.function="wendland.cov",k=2, aRange=2.8, spam.format=FALSE, lambda=.3)-> look2 mKrig( x,y, cov.function="wendland.cov",k=2, aRange=2.8, spam.format=TRUE, lambda=.3)-> look3 # final tests for predict. set.seed(223) xnew<- cbind(runif( N)*.5 + x[,1], runif(N)*.5 + x[,2]) temp<- predict( look, xnew) temp2<- predict( look2, xnew) temp3<- predict( look3, xnew) test.for.zero( temp, temp2, tag="Wendland/no spam") test.for.zero( temp2, temp3, tag="Wendland/spam") ### testing coefficients for new data mKrig.coef( look2, cbind(y+1,y+2), collapse=FALSE)-> newc test.for.zero( look2$c, newc$c[,2], tag="new coef c no spam") test.for.zero( look2$beta, c(newc$beta[1,2] -2, newc$beta[2:3,2]), tag="new beta coef no spam") mKrig.coef( look3, cbind(y+1,y+2), collapse=FALSE)-> newc test.for.zero( look3$c.coef, newc$c.coef[,2], tag="new coef c spam") test.for.zero( look3$beta, c(newc$beta[1,2] -2, newc$beta[2:3,2]), tag="new beta coef spam") ### ### bigger sample size set.seed( 334) N<- 1000 x<- matrix( runif(2*N),ncol=2) y<- rnorm( N) nzero <- length( wendland.cov(x,x, k=2,aRange=.1)@entries) mKrig( x,y, cov.function="wendland.cov",k=2, aRange=.1, lambda=.3)-> look2 test.for.zero( look2$non.zero.entires, nzero, tag="nzero in call to mKrig") ###### ### test out passing to chol data( ozone2) y<- ozone2$y[16,] good<- !is.na( y) y<-y[good] x<- ozone2$lon.lat[good,] # interpolate using defaults (Exponential) # stationary covariance mKrig( x,y, aRange = 1.5, lambda=.2)-> out # # NOTE this should be identical to Krig( x,y, aRange=1.5, lambda=.2) -> out2 temp<- predict( out) temp2<- predict( out2) test.for.zero( temp, temp2, tag="mKrig vs. Krig for ozone2") # test passing arguments for chol set.seed( 334) N<- 300 x<- matrix( 2*(runif(2*N)-.5),ncol=2) y<- sin( 3*pi*x[,1])*sin( 3.5*pi*x[,2]) + rnorm( N)*.01 Krig( x,y, Covariance="Wendland", cov.args= list(k=2, aRange=.8, dimension=2), , give.warnings=FALSE, lambda=1e2) -> out mKrig( x,y, cov.function="wendland.cov",k=2, aRange=.8, lambda=1e2, chol.args=list( memory=list( nnzR=1e5)), )-> out2 temp<- predict( out) temp2<- predict( out2) test.for.zero( temp, temp2, tol=1e-7, tag="predict Wendland mKrig vs Krig") # test of fastTps nx<- 50 ny<- 60 x<- seq( 0,1,,nx) y<- seq( 0,1,,ny) gl<- list( x=x, y=y) xg<- make.surface.grid(gl) ztrue<- sin( xg[,1]*pi*3)* cos(xg[,2]*pi*2.5) #image.plot(x,y,matriz( ztrue, nx,ny)) set.seed( 222) ind<- sample( 1:(nx*ny), 600) xdat<- xg[ind,] ydat <- ztrue[ind] out<- fastTps(xdat, ydat, aRange=.3) out.p<-predictSurface( out, gridList=gl, extrap=TRUE) # perfect agreement at data test.for.zero( ydat, c( out.p$z)[ind],tol=5e-7, tag="fastTps interp1") #image.plot(x,y,matrix( ztrue, nx,ny)- out.p$z) rmse<- sqrt(mean( (ztrue- c( out.p$z))^2)/ mean( (ztrue)^2)) test.for.zero( rmse,0,tol=.02, relative=FALSE,tag="fastTps interp2") ##### test precomputing distance matrices: # set.seed(1) # test data data( ozone2) x<- ozone2$lon.lat y<- ozone2$y[16,] # # Omit the NAs good<- !is.na( y) x<- x[good,] y<- y[good] compactDistMat = rdist(x, compact=TRUE) distMat = rdist(x) ##### test using distance matrix print("testing using distance matrix") mKrig(x,y, cov.function = "stationary.cov", lambda=2.0, aRange=1.5) -> out1 mKrig(x,y, cov.args= list(Covariance="Exponential", Distance="rdist", Dist.args=list(compact=TRUE)), lambda=2.0, aRange=1.5) -> out2 #NOTE: compact distance matrix should not be used by user for fields compatibility reasons mKrig(x,y, cov.args= list(Covariance="Exponential", Dist.args=list(compact=TRUE)), lambda=2.0, aRange=1.5, distMat=compactDistMat) -> out3 mKrig(x,y, cov.args= list(Covariance="Exponential"), lambda=2.0, aRange=1.5, distMat=distMat) -> out4 temp1<- predict( out1) temp2<- predict( out2) temp3 = predict( out3) temp4 = predict( out4) test.for.zero( temp1, temp2, tag="predict: stationary.cov versus Exp.cov") test.for.zero( temp2, temp3, tag="predict: no distance matrix versus compact distance matrix") test.for.zero( temp2, temp4, tag="predict: no distance matrix versus distance matrix") ##### test SE print("testing using predictSE") temp1 = predictSE(out1) temp2 = predictSE(out2) temp3 = predictSE(out3) temp4 = predictSE(out4) test.for.zero( temp1, temp2, tag="predictSE: stationary.cov with exponential versus Exp.cov") test.for.zero( temp2, temp3, tag="predictSE: no distance matrix versus compact distance matrix") test.for.zero( temp2, temp4, tag="predictSE: no distance matrix versus distance matrix") cat("all done with mKrig tests", fill=TRUE) options( echo=TRUE) fields/tests/evlpoly.test.Rout.save0000644000175100001440000000365214275255352017200 0ustar hornikusers R version 4.2.1 (2022-06-23) -- "Funny-Looking Kid" Copyright (C) 2022 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin17.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # > # fields is a package for analysis of spatial data written for > # the R software environment. > # Copyright (C) 2022 Colorado School of Mines > # 1500 Illinois St., Golden, CO 80401 > # Contact: Douglas Nychka, douglasnychka@gmail.edu, > # > # This program is free software; you can redistribute it and/or modify > # it under the terms of the GNU General Public License as published by > # the Free Software Foundation; either version 2 of the License, or > # (at your option) any later version. > # This program is distributed in the hope that it will be useful, > # but WITHOUT ANY WARRANTY; without even the implied warranty of > # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > # GNU General Public License for more details. > # > # You should have received a copy of the GNU General Public License > # along with the R software environment if not, write to the Free Software > # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA > # or see http://www.r-project.org/Licenses/GPL-2 > ##END HEADER > ##END HEADER > > > suppressMessages(library(fields)) > options( echo=FALSE) PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 Done testing polynomial evaluation > proc.time() user system elapsed 0.773 0.069 0.827 fields/tests/mKrig.parameters.test.Rout.save0000644000175100001440000002245614275255352020724 0ustar hornikusers R version 4.2.1 (2022-06-23) -- "Funny-Looking Kid" Copyright (C) 2022 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin17.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # > # fields is a package for analysis of spatial data written for > # the R software environment. > # Copyright (C) 2022 Colorado School of Mines > # 1500 Illinois St., Golden, CO 80401 > # Contact: Douglas Nychka, douglasnychka@gmail.edu, > # > # This program is free software; you can redistribute it and/or modify > # it under the terms of the GNU General Public License as published by > # the Free Software Foundation; either version 2 of the License, or > # (at your option) any later version. > # This program is distributed in the hope that it will be useful, > # but WITHOUT ANY WARRANTY; without even the implied warranty of > # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > # GNU General Public License for more details. > # > # You should have received a copy of the GNU General Public License > # along with the R software environment if not, write to the Free Software > # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA > # or see http://www.r-project.org/Licenses/GPL-2 > ##END HEADER > ##END HEADER > > > suppressMessages(library(fields)) > #options( echo=FALSE) > test.for.zero.flag<- 1 > data(ozone2) > y<- ozone2$y[16,] > x<- ozone2$lon.lat > # > # Omit the NAs > good<- !is.na( y) > x<- x[good,] > y<- y[good] > #source("~/Home/Src/fields/R/mKrig.family.R") > > # now look at mKrig w/o sparse matrix > look<- mKrig( x,y, cov.function="stationary.cov", aRange=10, lambda=.3, + chol.args=list( pivot=FALSE)) > > > lookKrig<- Krig( x,y, cov.function="stationary.cov", + aRange=10) > > test.df<-Krig.ftrace(look$lambda,lookKrig$matrices$D) > > test<- Krig.coef( lookKrig, lambda=look$lambda) > > test.for.zero( look$d, test$d, tag="Krig mKrig d coef") Testing: Krig mKrig d coef PASSED test at tolerance 1e-08 > test.for.zero( look$c, test$c, tag="Krig mKrig c coef") Testing: Krig mKrig c coef PASSED test at tolerance 1e-08 > > # test of trace calculation > > look<- mKrig( x,y, cov.function="stationary.cov", aRange=10, lambda=.3, + + find.trA=TRUE, NtrA= 1000, iseed=243) > > test.for.zero( look$eff.df, test.df,tol=.01, tag="Monte Carlo eff.df") Testing: Monte Carlo eff.df PASSED test at tolerance 0.01 > > > # > lookKrig<-Krig( x,y, cov.function="stationary.cov", + aRange=350, Distance="rdist.earth",Covariance="Wendland", + cov.args=list( k=2, dimension=2) ) > > look<- mKrig( x,y, cov.function="stationary.cov", + aRange=350, + Distance="rdist.earth",Covariance="Wendland", + cov.args=list( k=2, dimension=2), + lambda=lookKrig$lambda, + find.trA=TRUE, NtrA= 1000, iseed=243) > > test.for.zero( look$c, lookKrig$c, tag="Test of wendland and great circle") Testing: Test of wendland and great circle PASSED test at tolerance 1e-08 > > test.for.zero(look$eff.df, Krig.ftrace( lookKrig$lambda, lookKrig$matrices$D) + ,tol=.01, tag="eff.df") Testing: eff.df PASSED test at tolerance 0.01 > > # same calculation using sparse matrices. > > look4<- mKrig( x,y, cov.function="wendland.cov", + aRange=350, + Dist.args=list( method="greatcircle"), + cov.args=list( k=2), + lambda=lookKrig$lambda, + find.trA=TRUE, NtrA=500, iseed=243) > > test.for.zero( look$c.coef, look4$c.coef,tol=8e-7, + tag="Test of sparse wendland and great circle") Testing: Test of sparse wendland and great circle PASSED test at tolerance 8e-07 > test.for.zero(look4$eff.df, Krig.ftrace( lookKrig$lambda, lookKrig$matrices$D), + tol=.01, tag="sparse eff.df") Testing: sparse eff.df PASSED test at tolerance 0.01 > > # great circle distance switch has been a big bug -- test some options > > look<- mKrig( x,y, cov.function="wendland.cov", + aRange=350, Dist.args=list( method="greatcircle"), + cov.args=list( k=2),lambda=lookKrig$lambda, + find.trA=TRUE, NtrA=1000, iseed=243) > > test.for.zero(look$eff.df, Krig.ftrace( lookKrig$lambda, lookKrig$matrices$D), + tol=1e-2, tag="exact sparse eff.df") Testing: exact sparse eff.df PASSED test at tolerance 0.01 > > # compare to fast Tps > look3<- fastTps( x,y,aRange=350,lambda=lookKrig$lambda, NtrA=200, iseed=243, + lon.lat=TRUE) > #look3$c<- lookKrig$c > #look3$d<- lookKrig$d > object<- look3 > np<- object$np > Ey <- diag(1, np) > NtrA <- np > hold <- predict.mKrig(object, ynew = Ey, collapseFixedEffect=FALSE) > hold2<- matrix( NA, np,np) > for( k in 1:np){ + hold2[,k] <- predict.Krig(lookKrig, y = Ey[,k]) + } > #plot( diag(hold), diag(hold2)) > > > test.for.zero( look3$c, lookKrig$c, tol=5e-7) PASSED test at tolerance 5e-07 > test.for.zero( look3$d, lookKrig$d, tol=2e-8) PASSED test at tolerance 2e-08 > test.for.zero( look3$fitted.values, lookKrig$fitted.values, tol=1e-7) PASSED test at tolerance 1e-07 > > test.for.zero( predict( look3, xnew= look3$x), predict( lookKrig, xnew= lookKrig$x), + tol=5e-7) PASSED test at tolerance 5e-07 > > test.for.zero( hold[,1], hold2[,1], tol=1e-7, relative=FALSE) PASSED test at tolerance 1e-07 > > test.for.zero(diag(hold),diag(hold2), tol=2E-7, + relative=FALSE, tag="exact sparse eff.df by predict -- fastTps") Testing: exact sparse eff.df by predict -- fastTps PASSED test at tolerance 2e-07 > #plot( diag(hold), ( 1- diag(hold2)/ diag(hold)) ) > > test.for.zero(look3$eff.df,sum( diag(hold)) , tag="fastTps ef.df exact" ) Testing: fastTps ef.df exact PASSED test at tolerance 1e-08 > > test.for.zero(look3$eff.df, Krig.ftrace( lookKrig$lambda, lookKrig$matrices$D), + tol=2e-7, tag="exact sparse eff.df through mKrig-- fastTps") Testing: exact sparse eff.df through mKrig-- fastTps PASSED test at tolerance 2e-07 > > # calculations of likelihood, sigma and tau > > lam<-.2 > > out<- mKrig( x,y, cov.function =Exp.cov, aRange=4, lambda=lam) > out2<- Krig( x,y, cov.function =Exp.cov, aRange=4, lambda=lam) > > > Sigma<- Exp.cov( x,x,aRange=4) > X<- cbind( rep(1, nrow(x)), x) > > Sinv<- solve( Sigma + lam* diag( 1, nrow( x))) > > #checks on likelihoods > > # quadratic form: > betaHat<- c(solve( t(X)%*%Sinv%*%(X) ) %*% t(X) %*%Sinv%*%y) > test.for.zero( betaHat, out$beta, tag="initial check on d for likelihood") Testing: initial check on d for likelihood PASSED test at tolerance 1e-08 > r<- y -X%*%betaHat > N<- nrow(x) > look<- t( r)%*%(Sinv)%*%r/N > > > > test.for.zero( look, out$summary["sigma2"], tag="sigma2 hat from likelihood") Testing: sigma2 hat from likelihood PASSED test at tolerance 1e-08 > > test.for.zero( look, out2$sigma.MLE, tag="sigma2 hat from likelihood compared to Krig") Testing: sigma2 hat from likelihood compared to Krig PASSED test at tolerance 1e-08 > > > > # check determinant > lam<- .2 > Sigma<- Exp.cov( x,x,aRange=4) > M<- Sigma + lam * diag( 1, nrow(x)) > chol( M)-> Mc > look2<- sum( log(diag( Mc)))*2 > > out<-mKrig( x,y,cov.function =Exp.cov, aRange=4, lambda=lam) > > test.for.zero( out$lnDetCov, look2) PASSED test at tolerance 1e-08 > test.for.zero( out$lnDetCov, determinant(M, log=TRUE)$modulus) PASSED test at tolerance 1e-08 > > # weighted version > lam<- .2 > Sigma<- Exp.cov( x,x,aRange=4) > set.seed( 123) > weights<- runif(nrow( x)) > M<- Sigma + diag(lam/ weights) > chol( M)-> Mc > look2<- sum( log(diag( Mc)))*2 > > out<-mKrig( x,y,weights=weights, cov.function =Exp.cov, aRange=4, lambda=lam) > > test.for.zero( out$lnDetCov, look2) PASSED test at tolerance 1e-08 > test.for.zero( look2, determinant(M, log=TRUE)$modulus) PASSED test at tolerance 1e-08 > test.for.zero( out$lnDetCov, determinant(M, log=TRUE)$modulus) PASSED test at tolerance 1e-08 > > > > # check profile likelihood by estimating MLE > lam.true<- .2 > N<- nrow( x) > Sigma<- Exp.cov( x,x,aRange=4) > M<- Sigma + lam.true * diag( 1, nrow(x)) > chol( M)-> Mc > t(Mc)%*%Mc -> test > > > > > ##D set.seed( 234) > ##D NSIM<- 100 > ##D hold2<-rep( NA, NSIM) > ##D temp.fun<- function(lglam){ > ##D out<-mKrig( x,ytemp, > ##D cov.function =Exp.cov, aRange=4, lambda=exp(lglam)) > ##D return(-1* out$lnProfileLike)} > > ##D hold1<-rep( NA, NSIM) > ##D yt<- rep( 1, N) > ##D obj<- Krig( x,yt, aRange=4) > > > ##D E<- matrix( rnorm( NSIM*N), ncol=NSIM) > > ##D for ( j in 1:NSIM){ > ##D cat( j, " ") > ##D ytemp <- x%*%c(1,2) + t(Mc)%*%E[,j] > ##D out<- optim( log(.2), temp.fun, method="BFGS") > ##D hold2[j]<- exp(out$par) > ##D hold1[j]<- gcv.Krig(obj, y=ytemp)$lambda.est[6,1] > > ##D } > ##D test.for.zero( median( hold1), .2, tol=.08) > ##D test.for.zero( median( hold2), .2, tol=.12) > > > > > > > > > > > > > > > > proc.time() user system elapsed 1.770 0.161 1.888 fields/tests/offGridWeights.test.Rout.save0000644000175100001440000000420114627437061020410 0ustar hornikusers R version 4.4.0 (2024-04-24) -- "Puppy Cup" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: aarch64-apple-darwin20 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # > # fields is a package for analysis of spatial data written for > # the R software environment. > # Copyright (C) 2022 Colorado School of Mines > # 1500 Illinois St., Golden, CO 80401 > # Contact: Douglas Nychka, douglasnychka@gmail.edu, > # > # This program is free software; you can redistribute it and/or modify > # it under the terms of the GNU General Public License as published by > # the Free Software Foundation; either version 2 of the License, or > # (at your option) any later version. > # This program is distributed in the hope that it will be useful, > # but WITHOUT ANY WARRANTY; without even the implied warranty of > # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > # GNU General Public License for more details. > # > # You should have received a copy of the GNU General Public License > # along with the R software environment if not, write to the Free Software > # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA > # or see http://www.r-project.org/Licenses/GPL-2 > ##END HEADER > ##END HEADER > > # > suppressMessages(library(fields)) > options(echo=FALSE) [1] 2 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 sigma2 2 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 sigma2 2 Testing: sparse vs mKrig PASSED test at tolerance 1e-08 Testing: prediction Variance sparse vs mKrig PASSED test at tolerance 1e-08 all done with off grid weight tests part 1 > proc.time() user system elapsed 0.300 0.024 0.329 fields/tests/Likelihood.test.R0000644000175100001440000001123214275214521016066 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2022 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.edu, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER ##END HEADER # this is a test script to verify the likelihood computations are # correct with the eigen decomposition format used in Krig # see Krig.flplike for the concise computation. # suppressMessages(library(fields)) options( echo=FALSE) test.for.zero.flag<- 1 # utility function foor testing REML.test <- function(x, y, rho, sigma2, theta, nu = 1.5) { Tmatrix <- fields.mkpoly(x, 2) qr.T <- qr(Tmatrix) N <- length(y) Q2 <- qr.yq2(qr.T, diag(1, N)) ys <- t(Q2) %*% y N2 <- length(ys) A <- (rho * Matern(rdist(x, x), range = theta, smoothness = nu) + sigma2 * diag(1, N)) A <- t(Q2) %*% A %*% Q2 Ac <- chol(A) w <- backsolve(Ac, ys, transpose = TRUE) REML.like <- (N2/2) * log(2 * pi) + (1/2) * 2 * sum(log(diag(Ac))) + (1/2) * t(w) %*% w REML.like <- -1 * REML.like ccoef <- rho * Q2 %*% solve(A) %*% ys return(list(REML.like = REML.like, A = A, ccoef = ccoef, quad.form = t(w) %*% w, rhohat = (t(w) %*% w/N2) * rho, det = 2 * sum(log(diag(Ac))), N2 = N2)) } data( ozone2) x<- ozone2$lon.lat y<- ozone2$y[16,] is.good <- !is.na( y) x<- x[is.good,] y<- y[is.good] aRange<- 2.0 # check log likelihood calculation nu<- 1.5 lambda<- .2 out<- mKrig( x,y, aRange=aRange,Covariance="Matern", smoothness=nu, lambda=lambda) # peg sigma and tau as MLEs from mKrig sigma <- out$summary["sigma2"] tau2<- sigma*lambda N<- length( y) dd<- rdist( x,x) M<- sigma* Matern( dd, range= aRange, smoothness=nu) + tau2* diag( 1, N) X<- fields.mkpoly( x, 2) Mi<- solve( M) betahat<- solve(t(X)%*%Mi%*%X)%*% t(X)%*% Mi%*% y res<- y - X%*%betahat ccoef<- ( Mi%*% ( res))*sigma # sanity check that estimates are the same test.for.zero( ccoef, out$c.coef, tag="check ccoef") # find full log likelihood chol(M)-> cM lLike<- -(N/2)*log(2*pi) - (1/2)* (2*sum( log( diag(cM)))) - (1/2)* t(res)%*% Mi %*% res test.for.zero( lLike, out$summary["lnProfileLike.FULL"], tag="llike profile from mKrig") # formula for full likelihood using peices from mKrig # lLike.test<- -(N/2)*log(2*pi) - (1/2)* out$lnDetCov - (1/2)*(N)*log( sigma) - (1/2)*out$quad.form/sigma # test.for.zero( lLike, lLike.test, tag="llike full verses sigmahat") # REML check nu<- 1.5 aRange<- .6 obj<- Krig( x,y, aRange=aRange,Covariance="Matern", smoothness=nu ) # sanity check that c coefficients agree with Krig sigma<- 500 lambda<- .2 tau2<- lambda*sigma hold<- REML.test( x,y,sigma, tau2, aRange, nu=1.5) ccoef2<- Krig.coef( obj, lambda)$c test.for.zero( hold$ccoef, ccoef2, tag="ccoefs") # check RSS with Krig decomposition. RSS1<- sum( (lambda*ccoef2)**2) lD <- obj$matrices$D * lambda RSS2 <- sum(((obj$matrices$u * lD)/(1 + lD))^2) test.for.zero( RSS2, RSS1, tag=" RSS using matrices") # check quadratic form with Krig D.temp<- obj$matrices$D[ obj$matrices$D>0] A3test<- (1/lambda)* obj$matrices$V %*% diag((D.temp*lambda)/ (1 +D.temp*lambda) )%*% t( obj$matrices$V) test.for.zero(solve(A3test), hold$A/sigma, tol=5e-8) Quad3<- sum( D.temp*(obj$matrices$u[obj$matrices$D>0])^2/(1+lambda*D.temp)) test.for.zero( hold$quad.form, Quad3/sigma, tag="quad form") # test determinants N2<- length( D.temp) det4<- -sum( log(D.temp/(1 + D.temp*lambda)) ) det1<- sum( log(eigen( hold$A/sigma)$values)) test.for.zero( det1, det4, tag="det" ) # test REML Likelihood lLikeREML.test<--1*( (N2/2)*log(2*pi) - (1/2)*(sum( log(D.temp/(1 + D.temp*lambda)) ) - N2*log(sigma)) + (1/2)*sum( lD*(obj$matrices$u)^2/(1+lD)) /(lambda*sigma) ) test.for.zero( hold$REML.like, lLikeREML.test, tag="REML using matrices") cat("all done with likelihood tests", fill=TRUE) options( echo=TRUE) fields/tests/vgram.test.Rout.save0000644000175100001440000000412214275255352016613 0ustar hornikusers R version 4.2.1 (2022-06-23) -- "Funny-Looking Kid" Copyright (C) 2022 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin17.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # > # fields is a package for analysis of spatial data written for > # the R software environment. > # Copyright (C) 2022 Colorado School of Mines > # 1500 Illinois St., Golden, CO 80401 > # Contact: Douglas Nychka, douglasnychka@gmail.edu, > # > # This program is free software; you can redistribute it and/or modify > # it under the terms of the GNU General Public License as published by > # the Free Software Foundation; either version 2 of the License, or > # (at your option) any later version. > # This program is distributed in the hope that it will be useful, > # but WITHOUT ANY WARRANTY; without even the implied warranty of > # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > # GNU General Public License for more details. > # > # You should have received a copy of the GNU General Public License > # along with the R software environment if not, write to the Free Software > # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA > # or see http://www.r-project.org/Licenses/GPL-2 > ##END HEADER > ##END HEADER > > > # test of vgram > > suppressMessages(library(fields)) > options(echo=FALSE) Testing: vgram single time PASSED test at tolerance 1e-08 Testing: vgram more than one time point PASSED test at tolerance 1e-08 Testing: correlogram versus covariogram PASSED test at tolerance 1e-08 Testing: correlogram versus covariogram PASSED test at tolerance 1e-08 > proc.time() user system elapsed 0.864 0.082 0.944 fields/tests/mKrig.se.test.R0000644000175100001440000001267314275214521015474 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2022 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.edu, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER ##END HEADER # tests of predictSE # against direct linear algebra suppressMessages(library(fields)) options( echo=FALSE) test.for.zero.flag<- TRUE x0<- cbind( 0,4) Krig( ChicagoO3$x, ChicagoO3$y, cov.function = "Exp.cov", aRange=50, lambda=.06, GCV=FALSE)-> out # direct calculation Krig.Amatrix( out, x=x0)-> A test.for.zero( A%*%ChicagoO3$y, predict( out, x0),tag="Amatrix vs. predict") Sigma0<- out$sigmahat*Exp.cov( ChicagoO3$x, ChicagoO3$x, aRange=50) S0<- out$sigmahat*c(Exp.cov( x0, x0, aRange=50)) S1<- out$sigmahat*Exp.cov( out$x, x0, aRange=50) #yhat= Ay #var( f0 - yhat)= var( f0) - 2 cov( f0,yhat)+ cov( yhat) look<- S0 - t(S1)%*% t(A) - A%*%S1 + A%*% ( Sigma0 + diag(out$tauHat.MLE**2/out$weightsM))%*% t(A) # #compare to # diagonal elements test2<- predictSE( out, x= x0) test.for.zero( sqrt(diag( look)), test2,tag="Marginal predictSE") # now test shortcut formula that leverages the prediction step for Kriging # Sigma<- Exp.cov( ChicagoO3$x, ChicagoO3$x, aRange=50) + diag(out$lambda/out$weightsM) #Sigma<- ( Sigma0 + diag(out$tauHat.MLE**2/out$weightsM)) Tmatrix <- do.call(out$null.function.name, c(out$null.args, list(x = out$xM, Z = out$ZM))) Omega<- solve( t(Tmatrix)%*% solve( Sigma)%*% Tmatrix) Id<- diag( 1, nrow( Tmatrix)) qr.R( out$matrices$qr.VT) -> Rmat Omega.test<- solve(t(Rmat)%*% (Rmat)) # Omega is the GLS covariance matrix for estimated parameters in fixed part of # spatial model (the d coefficients). These are usually the "spatial drift" -- a # low order polynomial test.for.zero( Omega, Omega.test, tag="comparing Omega") # M1 and M2 are matrices that go from obs to the estimated coefficients (d,c) M1<- Omega%*% t(Tmatrix)%*% solve( Sigma) M2<- solve( Sigma)%*% ( Id - Tmatrix%*% M1) x0<- cbind( 0,4) k0<- Exp.cov( out$x, x0, aRange=50) #k0<- S1 t0<- c( 1, c(x0)) hold<- t( t0)%*%M1 + t(k0)%*% M2 test.for.zero( hold, A) test.for.zero( M2%*%Sigma%*%t( M2), M2) # benchmark using standard predictSE function SE0<- predictSE( out, x=x0) # shortcut formula explicitly MSE<- S0 + out$sigmahat*t(t0)%*% Omega %*%t0 - out$sigmahat*(t(k0)%*% M2 %*% k0 + t(t0)%*% M1%*% k0) - out$sigmahat*t(t0)%*% M1%*% k0 # collecting terms to make this look like two predict steps. MSE2<- S0 + out$sigmahat*t(t0)%*% Omega %*%t0 - out$sigmahat* predict( out, yM= k0, x=x0) - out$sigmahat* predict( out, yM= k0, x=x0, just.fixed=TRUE) hold<- Krig.coef(out, y=k0) tempc<- t(k0)%*% hold$c tempd<- t(t0)%*%hold$d MSE4<- S0 + out$sigmahat*t(t0)%*% Omega %*%t0 - out$sigmahat * (tempc +2*tempd) test.for.zero(SE0, sqrt( MSE4), tag="test of formula with explicit d and c") # test of new function Krig( ChicagoO3$x, ChicagoO3$y, cov.function = "Exp.cov", aRange=50,lambda=.06)-> out0 SE0<- predictSE.Krig( out0, x=x0) mKrig( ChicagoO3$x, ChicagoO3$y, cov.function = "Exp.cov", aRange=50, lambda=.06)-> out2 SE3<- predictSE.mKrig( out2, xnew=x0) test.for.zero(SE0, sqrt( MSE), tag="Krig function and direct formula") test.for.zero(sqrt(MSE), sqrt( MSE2), tag="new predict formula and direct formula") test.for.zero( SE3, SE0, tag="New se _function_ and old Krig _function_") # # test of vectors of locations. # receate object out0<- Krig( ChicagoO3$x, ChicagoO3$y, cov.function = "Exp.cov", aRange=50, lambda=.06) out<- mKrig( ChicagoO3$x, ChicagoO3$y, cov.function = "Exp.cov", aRange=50, lambda=.06) x0<-rep( c( -20, -10,10,20),4) x0 <- cbind( x0 , sort( x0)) x0<- rbind( c(0,4), x0) k0<- Exp.cov( ChicagoO3$x,x0, aRange=50) t0<- t(fields.mkpoly(x0, m=out$m)) hold<- Krig.coef(out0, y=k0) MSE5<- (rep( S0,nrow(x0)) + out0$sigmahat * colSums( t0 *(out0$matrices$Omega%*%t0)) -out0$sigmahat* colSums((k0)*hold$c) - 2*out0$sigmahat*colSums(t0*hold$d)) hold<- mKrig.coef(out, y=k0, collapse=FALSE) sigmahat<- out$summary["sigma2"] MSE6<- (rep( S0, nrow(x0)) + sigmahat * colSums( t0 *(out$Omega%*%t0)) -sigmahat* colSums((k0)*hold$c.coef) - 2*sigmahat*colSums(t0*hold$beta)) test.for.zero( predictSE( out0, x0), sqrt(MSE5), tag="Benchmark of formula") test.for.zero( predictSE( out0, x0), sqrt(MSE6), tag="Benchmark of formula mKrig coefs") test.for.zero( predictSE( out, x0), predictSE.mKrig(out, x0), tag="test function with several locations Krig mKrig functions" ) fields/tests/Likelihood.test.Rout.save0000644000175100001440000000467614275255352017600 0ustar hornikusers R version 4.2.1 (2022-06-23) -- "Funny-Looking Kid" Copyright (C) 2022 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin17.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # > # fields is a package for analysis of spatial data written for > # the R software environment. > # Copyright (C) 2022 Colorado School of Mines > # 1500 Illinois St., Golden, CO 80401 > # Contact: Douglas Nychka, douglasnychka@gmail.edu, > # > # This program is free software; you can redistribute it and/or modify > # it under the terms of the GNU General Public License as published by > # the Free Software Foundation; either version 2 of the License, or > # (at your option) any later version. > # This program is distributed in the hope that it will be useful, > # but WITHOUT ANY WARRANTY; without even the implied warranty of > # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > # GNU General Public License for more details. > # > # You should have received a copy of the GNU General Public License > # along with the R software environment if not, write to the Free Software > # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA > # or see http://www.r-project.org/Licenses/GPL-2 > ##END HEADER > ##END HEADER > > > > # this is a test script to verify the likelihood computations are > # correct with the eigen decomposition format used in Krig > # see Krig.flplike for the concise computation. > # > > suppressMessages(library(fields)) > > options( echo=FALSE) Testing: check ccoef PASSED test at tolerance 1e-08 Testing: llike profile from mKrig PASSED test at tolerance 1e-08 Testing: ccoefs PASSED test at tolerance 1e-08 Testing: RSS using matrices PASSED test at tolerance 1e-08 PASSED test at tolerance 5e-08 Testing: quad form PASSED test at tolerance 1e-08 Testing: det PASSED test at tolerance 1e-08 Testing: REML using matrices PASSED test at tolerance 1e-08 all done with likelihood tests > > > proc.time() user system elapsed 1.004 0.102 1.110 fields/tests/fastTpsPredict.test.R0000644000175100001440000000455314275214521016752 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2022 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.edu, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER ##END HEADER suppressMessages(library(fields)) options(echo=FALSE) test.for.zero.flag<-1 set.seed(123) nc<- 10 center<- matrix( runif(nc*2), nc,2) grid.list<- list( x= seq(0,1,,10), y=seq( 0,1,,15)) coef<- rnorm( nc) delta<- .3 out<- multWendlandGrid( grid.list,center, delta, coef) xg<- make.surface.grid( grid.list) test<- Wendland2.2( rdist( xg, center)/delta)%*% coef test.for.zero.flag<-1 test.for.zero( test, out, tag="Comparing FORTRAN grid eval to matrix vector multiplication") # testing predictSurface function nc<- 100 set.seed(12) x<- matrix( runif(nc*2), nc,2) y<- rnorm( nc) delta<- .2 obj<- fastTps( x,y, aRange=delta, lambda=.1) grid.list<- list( x= seq(0,1,,3), y=seq( 0,1,,4)) xg<- make.surface.grid( grid.list) look0<- c(predict( obj, xg)) look1<- predictSurface( obj, grid.list, extrap=TRUE) look2<- predict.mKrig( obj, xg) test.for.zero( look0, c(look1$z), tag="testing PredictSurface and predict.fastTps") test.for.zero( look0, c(look2), tag="testing PredictSurface with slower mKrig predict") # new y set.seed(123) ynew<- rnorm( nc) look0<- c(predict( obj, xg, ynew=ynew)) look1<- predictSurface( obj, grid.list, ynew=ynew, extrap=TRUE) look2<- c(predict(fastTps( x,ynew, aRange=delta, lambda=.1) , xg, ynew=ynew)) test.for.zero( look0, look2,tag="predict with ynew") test.for.zero( look0, c(look1$z), tag="predictSurface with ynew") options( echo=TRUE) # fields/tests/Tps.test.Rout.save0000644000175100001440000000732714466722413016256 0ustar hornikusers R version 4.3.1 (2023-06-16) -- "Beagle Scouts" Copyright (C) 2023 The R Foundation for Statistical Computing Platform: aarch64-apple-darwin20 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # > # fields is a package for analysis of spatial data written for > # the R software environment. > # Copyright (C) 2022 Colorado School of Mines > # 1500 Illinois St., Golden, CO 80401 > # Contact: Douglas Nychka, douglasnychka@gmail.edu, > # > # This program is free software; you can redistribute it and/or modify > # it under the terms of the GNU General Public License as published by > # the Free Software Foundation; either version 2 of the License, or > # (at your option) any later version. > # This program is distributed in the hope that it will be useful, > # but WITHOUT ANY WARRANTY; without even the implied warranty of > # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > # GNU General Public License for more details. > # > # You should have received a copy of the GNU General Public License > # along with the R software environment if not, write to the Free Software > # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA > # or see http://www.r-project.org/Licenses/GPL-2 > ##END HEADER > ##END HEADER > > > suppressMessages(library(fields)) > options(echo=FALSE) Testing: Tps radial basis function 2d PASSED test at tolerance 1e-08 Testing: Tps radial basis function 2d PASSED test at tolerance 1e-08 Testing: Tps radial basis function 2d PASSED test at tolerance 1e-08 Testing: Tps radial basis function 3d PASSED test at tolerance 1e-08 Testing: Tps radial basis function 3d PASSED test at tolerance 1e-08 Testing: Tps radial basis function 3d PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-10 PASSED test at tolerance 1e-10 Testing: der of Rad.cov PASSED test at tolerance 1e-06 Testing: der of Rad.cov PASSED test at tolerance 1e-06 PASSED test at tolerance 1e-08 Testing: Tps 2-d m=2 sanity check PASSED test at tolerance 1e-08 Testing: Tps 2-d m=2 sanity predict PASSED test at tolerance 1e-08 Testing: Tps vs. Krig w/ GCV PASSED test at tolerance 1e-08 Testing: Tps vs. radial basis w Krig PASSED test at tolerance 1e-08 Warning: Grid searches over lambda (nugget and sill variances) with minima at the endpoints: (GCV) Generalized Cross-Validation minimum at right endpoint lambda = 6.735369e-05 (eff. df= 475 ) PASSED test at tolerance 0.001 PASSED test at tolerance 0.001 Testing: Tps.cov marginal PASSED test at tolerance 1e-08 Testing: Tps vs spatialProcess PASSED test at tolerance 1e-08 Testing: Tps vs spatialProcess tau PASSED test at tolerance 1e-08 Testing: Tps vs spatialProcess default PASSED test at tolerance 1e-08 Testing: Eff.df Tps vs spatialProcess PASSED test at tolerance 1e-08 Testing: Tps vs spatialProcess SE PASSED test at tolerance 1e-08 Testing: Tps vs spatialProcess predictions on a grid PASSED test at tolerance 1e-08 Testing: Tps vs spatialProcess SE predictions on a grid PASSED test at tolerance 1e-08 > cat("all done testing Tps and spatialProcess with Tps.cov", fill=TRUE) all done testing Tps and spatialProcess with Tps.cov > # > # lambda0<- out0$lambda.est["REML", "lambda"] > # > # Krig.flplike(out0, lambda0) > > > proc.time() user system elapsed 0.745 0.062 0.806 fields/tests/Krig.se.test.R0000644000175100001440000001046514275214521015314 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2022 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.edu, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER ##END HEADER suppressMessages(library(fields)) # tests of predictSE # against direct linear algebra #options( echo=FALSE) x0<- expand.grid( c(-8,-4,0,20,30), c(10,8,4,0)) out<- Krig( ChicagoO3$x, ChicagoO3$y, cov.function = "Exp.cov", aRange=50) # direct calculation Krig.Amatrix( out, x=x0)-> A test.for.zero( A%*%ChicagoO3$y, predict( out, x0),tag="Amatrix vs. predict") Sigma<- out$sigmahat*Exp.cov( ChicagoO3$x, ChicagoO3$x, aRange=50) S0<- out$sigmahat*c(Exp.cov( x0, x0, aRange=50)) S1<- out$sigmahat*Exp.cov( out$x, x0, aRange=50) #yhat= Ay #var( f0 - yhat)= var( f0) - 2 cov( f0,yhat)+ cov( yhat) look<- S0 - t(S1)%*% t(A) - A%*%S1 + A%*% ( Sigma + diag(out$tauHat.MLE**2/out$weightsM))%*% t(A) # #compare to # diagonal elements test2<- predictSE( out, x= x0) test.for.zero( sqrt(diag( look)), test2,tag="Marginal predictSE") out2<- Krig( ChicagoO3$x, ChicagoO3$y, cov.function = "Exp.cov", aRange=50, lambda=out$lambda) test2<- predictSE( out2, x= x0) test.for.zero( sqrt(diag( look)), test2,tag="Marginal predictSE fixed ") test<- predictSE( out, x= x0, cov=TRUE) test.for.zero( look, test,tag="Full covariance predictSE") # simulation based. set.seed( 333) sim.Krig( out, x0,M=4e3)-> test # columns are the realizations rows are locations var(t(test))-> look predictSE( out, x=x0)-> test2 mean( diag( look)/ test2**2)-> look2 test.for.zero(look2, 1.0, tol=1.5e-2, tag="Marginal standard Cond. Sim.") predictSE( out, x=x0, cov=TRUE)-> test2 # multiply simulated values by inverse square root of covariance # to make them white eigen( test2, symmetric=TRUE)-> hold hold$vectors%*% diag( 1/sqrt( hold$values))%*% t( hold$vectors)-> hold cor(t(test)%*% hold)-> hold2 # off diagonal elements of correlations -- expected values are zero. abs(hold2[ col(hold2)> row( hold2)])-> hold3 test.for.zero( mean(hold3), 0, relative=FALSE, tol=.02, tag="Full covariance standard Cond. Sim.") # test of A matrix # # first create and check a gridded test case. data( ozone2) as.image(ozone2$y[16,], x= ozone2$lon.lat, ny=24, nx=20, na.rm=TRUE)-> dtemp # # A useful disctrtized version of ozone2 data x<- dtemp$xd y<- dtemp$z[ dtemp$ind] weights<- dtemp$weights[ dtemp$ind] Krig( x, y, Covariance="Matern", aRange=1.0, smoothness=1.0, weights=weights) -> out set.seed(234) ind0<- cbind( sample( 1:20, 5), sample( 1:24, 5)) x0<- cbind( dtemp$x[ind0[,1]], dtemp$y[ind0[,2]]) # an inline check plot(out$x, cex=2); points( x0, col="red", pch="+",cex=2) # direct calculation as backup ( also checks weighted case) Krig.Amatrix( out, x=x0)-> A test.for.zero( A%*%out$yM, predict( out, x0),tag="Amatrix vs. predict") Sigma<- out$sigmahat*stationary.cov( out$xM, out$xM, aRange=1.0,smoothness=1.0, Covariance="Matern") S0<- out$sigmahat*stationary.cov( x0, x0, aRange=1.0,smoothness=1.0, Covariance="Matern") S1<- out$sigmahat*stationary.cov( out$xM, x0, aRange=1.0,smoothness=1.0, Covariance="Matern") #yhat= Ay #var( f0 - yhat)= var( f0) - 2 cov( f0,yhat)+ cov( yhat) look<- S0 - t(S1)%*% t(A) - A%*%S1 + A%*% ( Sigma + diag(out$tauHat.MLE**2/out$weightsM) )%*% t(A) test<- predictSE( out, x0, cov=TRUE) test.for.zero( c( look), c( test), tag="Weighted case and exact for ozone2 full cov", tol=1e-8) cat("all done testing predictSE.Krig ", fill=TRUE) options( echo=TRUE) fields/tests/Krig.Z.test.Rout.save0000644000175100001440000000517514275255352016614 0ustar hornikusers R version 4.2.1 (2022-06-23) -- "Funny-Looking Kid" Copyright (C) 2022 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin17.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # > # fields is a package for analysis of spatial data written for > # the R software environment. > # Copyright (C) 2022 Colorado School of Mines > # 1500 Illinois St., Golden, CO 80401 > # Contact: Douglas Nychka, douglasnychka@gmail.edu, > # > # This program is free software; you can redistribute it and/or modify > # it under the terms of the GNU General Public License as published by > # the Free Software Foundation; either version 2 of the License, or > # (at your option) any later version. > # This program is distributed in the hope that it will be useful, > # but WITHOUT ANY WARRANTY; without even the implied warranty of > # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > # GNU General Public License for more details. > # > # You should have received a copy of the GNU General Public License > # along with the R software environment if not, write to the Free Software > # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA > # or see http://www.r-project.org/Licenses/GPL-2 > ##END HEADER > ##END HEADER > > suppressMessages(library(fields)) > # > # > # test of fixed lambda case > # Check against linear algebra > # > > options( echo=FALSE) Testing: d coef PASSED test at tolerance 1e-08 Testing: c coef PASSED test at tolerance 1e-08 Testing: predict for null fixed PASSED test at tolerance 1e-08 Testing: predict for null spatial PASSED test at tolerance 1e-08 Testing: predict for null drift PASSED test at tolerance 1e-08 Testing: predict for null fixed PASSED test at tolerance 1e-08 Testing: predict for null spatial PASSED test at tolerance 1e-08 Testing: predict for null drift PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 Testing: SE w/o covariate PASSED test at tolerance 1e-08 Testing: SE with covariate PASSED test at tolerance 1e-08 Testing: SE for fixed part PASSED test at tolerance 1e-08 All done with Z tests and Krig/Tps including predict and predictSE ! > > proc.time() user system elapsed 1.006 0.116 1.113 fields/tests/sreg.test.Rout.save0000644000175100001440000000424514275255352016445 0ustar hornikusers R version 4.2.1 (2022-06-23) -- "Funny-Looking Kid" Copyright (C) 2022 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin17.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # > # fields is a package for analysis of spatial data written for > # the R software environment. > # Copyright (C) 2022 Colorado School of Mines > # 1500 Illinois St., Golden, CO 80401 > # Contact: Douglas Nychka, douglasnychka@gmail.edu, > # > # This program is free software; you can redistribute it and/or modify > # it under the terms of the GNU General Public License as published by > # the Free Software Foundation; either version 2 of the License, or > # (at your option) any later version. > # This program is distributed in the hope that it will be useful, > # but WITHOUT ANY WARRANTY; without even the implied warranty of > # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > # GNU General Public License for more details. > # > # You should have received a copy of the GNU General Public License > # along with the R software environment if not, write to the Free Software > # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA > # or see http://www.r-project.org/Licenses/GPL-2 > ##END HEADER > ##END HEADER > > > # test of sreg and related functions > > suppressMessages(library(fields)) > options(echo=FALSE) Testing: predict at lambda sreg/Tps PASSED test at tolerance 1e-08 PASSED test at tolerance 5e-04 Testing: GCV sreg/Tps PASSED test at tolerance 0.002 Testing: GCV sreg/Tps reps case PASSED test at tolerance 1e-06 Testing: GCV sreg/Tps reps case PASSED test at tolerance 1e-06 All done with sreg tests > > > > > > > > > > > proc.time() user system elapsed 1.109 0.080 1.182 fields/tests/offGridWeightsNew.test.R0000644000175100001440000001065214275214521017375 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2022 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.edu, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER ##END HEADER # test of sreg and related functions suppressMessages(library(fields)) #options(echo=FALSE) test.for.zero.flag<- 1 # simple covariance function for implementation exp_cov <- function(dist){ sigma2<-1 covariance <- sigma2* exp(-dist / 10) # 10 is arbitrary return(covariance) } # ----------------------------- # Define grid and observations # ----------------------------- m<- 10 n<- 11 nx<- m ny<- n M<- 15 dx<- 1 dy<- 1 sigma2<-2.0 np<-3 # first a case where all obs in same grid box. # addition of "dx" also tests that this works when grid is not just integers # set dx=1 for the most basic case dx<- .5 s0<- rbind( c(5.1,6.2), c(5.1,6.5), c( 5.85,6.45) ) s0<- s0*dx test0<- offGridWeights( s0, list( x= (1:m)*dx, y=(1:n)*dx), aRange=10*dx, sigma2=sigma2, Covariance="Exponential", np=2, debug=TRUE) # explicit nearest neighbors in this case sTmp<- cbind( rep(4:7,4), rep(5:8,each=4) ) sGrid<- sTmp*dx # check that same grid being used by function test.for.zero(sGrid, cbind(test0$gridX[,1], test0$gridY[,1]) ) S21 <- 2.0* exp( -rdist( s0, sGrid)/(10*dx)) S11 <- 2.0* exp( -rdist( sGrid , sGrid)/(10*dx) ) S22 <- 2.0* exp( -rdist( s0, s0)/(10*dx)) # local weights applied for prediction Btest<- S21%*% solve( S11) # find indices for neigborhood sIndex<- sTmp[,1] + (sTmp[,2]-1)*m # Kriging weights Bfull<- spam2full(test0$B[,sIndex]) test.for.zero( Bfull, Btest) # standard error matrix # note that transpsoe also taken so SEtest%*%t( SEtest) = cov matrix SEtest<- t(chol(S22 - S21%*% solve( S11)%*%t(S21) )) SEfull <- spam2full(test0$SE) test.for.zero( SEfull, SEtest) # now test several observation locations dx<- .45 s<- rbind( c(5.1,6.2), c(7.1,7.2), c(5.1,6.5), c(8.5,4.4), c( 5.85,6.45), c(7.3,7.4) ) s<- s * dx # Note s0 from above is s[c(1,3,5),] ind1<- c(1,3,5) sTmp<- cbind( rep(4:7,4), rep(5:8,each=4) ) sGrid<- sTmp*dx sIndex<- sTmp[,1] + (sTmp[,2]-1)*m S21<- 2.0* exp( -rdist( s[ind1,], sGrid)/(10*dx) ) S11<- 2.0* exp( -rdist( sGrid , sGrid)/(10*dx) ) S22<- 2.0* exp( -rdist( s[ind1,], s[ind1,])/(10*dx) ) sparseObj<- offGridWeights( s, list( x= (1:m)*dx, y=(1:n)*dx), aRange=(10*dx), sigma2=sigma2, Covariance="Exponential", np=2, debug=TRUE) test.for.zero( sparseObj$Sigma21Star[ind1,], S21 ) test.for.zero( sparseObj$Sigma11Inv, solve(S11) ) Btest<- S21%*% solve( S11) look2<- spam2full( sparseObj$B) test.for.zero( Btest,look2[ind1, sIndex] ) SEfull<- spam2full( sparseObj$SE) SE2full<- (SEfull)%*%t(SEfull) test.for.zero(diag( SE2full), sparseObj$predictionVariance ) SEtest<- t(chol(S22 - S21%*%solve( S11)%*%t( S21) )) test.for.zero(SEtest, SEfull[ind1, ind1] ) # check that debug FALSE also works sparseObj1<- offGridWeights( s, list( x= (1:m)*dx, y=(1:n)*dx), aRange=(10*dx), sigma2=sigma2, Covariance="Exponential", np=2, debug=FALSE) test.for.zero( sparseObj$B, sparseObj1$B) test.for.zero( sparseObj$SE, sparseObj1$SE) cat("all done with off grid weight tests part 2", fill=TRUE) fields/tests/cov.test2.R0000644000175100001440000002245414275214521014664 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2022 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.edu, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER ##END HEADER suppressMessages(library(fields)) options( echo=FALSE) test.for.zero.flag<- 1 data(ozone2) y<- ozone2$y[16,] x<- ozone2$lon.lat # # Omit the NAs good<- !is.na( y) x<- x[good,] y<- y[good] x1<- x[1:20,] x2<- x[1:10,] look<- exp(-1*rdist(x1,x2)/4) look2<- stationary.cov( x1,x2, aRange=4) test.for.zero( look, look2) V<- matrix( c(2,1,0,4), 2,2) Vi<- solve( V) u1<- t(Vi%*% t(x1)) u2<- t(Vi%*% t(x2)) look<- exp(-1*rdist(u1,u2)) look2<- stationary.cov( x1,x2, V= V) test.for.zero( look, look2) look<- Wendland(rdist(u1,u2), k=3, dimension=2) look2<- stationary.cov( x1,x2, V= V, Covariance = "Wendland", k=3, dimension=2) test.for.zero( look, look2) x1<- x[1:5,] x2<- x[2:6,] V<- matrix( c(2,1,0,4), 2,2) Vi<- solve( V) u1<- x1 u2<- x2 look1a<- exp(-1*rdist(u1,u2)) look1b<- Wendland(rdist(u1,u2), k=3, dimension=2, aRange= 1) look1<- look1a*look1b look2<- stationary.taper.cov( x1,x2, aRange=1, Taper.args=list( aRange=1,k=3, dimension=2), verbose=FALSE) test.for.zero( look1, as.matrix(look2)) u1<- t(Vi%*% t(x1)) u2<- t(Vi%*% t(x2)) look1a<- exp(-1*rdist(u1,u2)) look1b<- Wendland(rdist(u1,u2), k=3, dimension=2, aRange= 1.5) look1<- look1a*look1b look2<- stationary.taper.cov( x1,x2,V=V, Taper.args=list( aRange=1.5,k=3, dimension=2), verbose=FALSE) test.for.zero( look1, as.matrix(look2)) u1<- t(Vi%*% t(x1)) u2<- t(Vi%*% t(x2)) look1a<- Matern(rdist(u1,u2), smoothness=1.5) look1b<- Wendland(rdist(u1,u2), k=3, dimension=2, aRange= 1.5) look1<- look1a*look1b look2<- stationary.taper.cov( x1,x2,V=V,Covariance=Matern, smoothness=1.5, Taper.args=list( aRange=1.5,k=3, dimension=2), verbose=FALSE) test.for.zero( look1, as.matrix(look2)) # some tests of great circle distance stationary.taper.cov( x[1:3,],x[1:10,] , aRange=200, Taper.args= list(k=2,aRange=300, dimension=2), Dist.args=list( method="greatcircle") )-> temp # temp is now a tapered 3X10 cross covariance matrix in sparse format. # should be identical to # the direct matrix product temp2<- Exponential( rdist.earth(x[1:3,],x[1:10,]), range=200) * Wendland(rdist.earth(x[1:3,],x[1:10,]), aRange= 300, k=2, dimension=2) test.for.zero( as.matrix(temp), temp2, tol=2e-6, tag="taper with great circle") # example of calling the taper version directly # Note that default covariance is exponential and default taper is # Wendland (k=2). stationary.taper.cov( x[1:3,],x[1:10,] , aRange=1.5, Taper.args= list(k=2,aRange=2.0, dimension=2) )-> temp # temp is now a tapered 5X10 cross covariance matrix in sparse format. # should be identical to # the direct matrix product temp2<- Exp.cov( x[1:3,],x[1:10,], aRange=1.5) * Wendland(rdist(x[1:3,],x[1:10,]), aRange= 2.0, k=2, dimension=2) test.for.zero( as.matrix(temp), temp2, tag= "high level test of taper cov") stationary.taper.cov( x[1:3,],x[1:10,] , range=1.5, Taper.args= list(k=2,aRange=2.0, dimension=2) )-> temp test.for.zero( as.matrix(temp), temp2, tol=1e-7, tag= "high level test of taper cov") ##### Test precomputing distance matrix # y<- ozone2$y[16,] x<- ozone2$lon.lat # # Omit the NAs good<- !is.na( y) x<- x[good,] y<- y[good] #####test that stationary.cov returns the same result when passed distance matrix: #with x1 == x2: x1<- x[1:20,] compactDistMat = rdist(x1, compact=TRUE) distMat = rdist(x1) look<- stationary.cov(x1, aRange=4) look2 <- stationary.cov(x1, aRange=4, distMat = compactDistMat) look3 <- stationary.cov(x1, aRange=4, distMat = distMat) test.for.zero( look, look2, tag="stationary.cov versus stationary.cov compact distMat") test.for.zero( look, look3, tag="stationary.cov versus stationary.cov matrix distMat") #with x1 != x2: x2=x[1:10,] distMat = rdist(x1, x2) look<- stationary.cov(x1, x2, aRange=4) look2 <- stationary.cov(x1, x2, aRange=4, distMat = distMat) test.for.zero( look, look2, tag="stationary.cov versus stationary.cov asymmetric distMat") #####test that stationary.cov returns the same result when passed distance matrix: #with x1 == x2: distMat = rdist(x1, x1) compactDistMat = rdist(x1, compact=TRUE) look<- Exp.cov(x1, aRange=4) look2 <- Exp.cov(x1, aRange=4, distMat = compactDistMat) look3 <- Exp.cov(x1, aRange=4, distMat = distMat) test.for.zero( look, look2, tag="Exp.cov versus Exp.cov compact distMat") test.for.zero( look, look3, tag="Exp.cov versus Exp.cov matrix distMat") #with x1 != x2: x1<- x[1:20,] x2=x[1:10,] distMat = rdist(x1, x2) look<- Exp.cov(x1, x2, aRange=4) look2 <- Exp.cov(x1, x2, aRange=4, distMat = distMat) test.for.zero( look, look2, tag="Exp.cov versus Exp.cov asymmetric distMat") ##### test for correct value when using C argument: Ctest<- rnorm(10) #with x1 == x2: x1 = x[1:10,] compactDistMat = rdist(x1, compact=TRUE) distMat = rdist(x1, x1) temp1<- stationary.cov( x1, C= Ctest, aRange=4 ) temp2 = stationary.cov( x1, C= Ctest, aRange=4, distMat=compactDistMat ) temp3 = stationary.cov( x1, C= Ctest, aRange=4, distMat=distMat ) exp1<- Exp.cov( x1, C= Ctest, aRange=4 ) exp2 = Exp.cov( x1, C= Ctest, aRange=4, distMat=compactDistMat ) exp3 = Exp.cov( x1, C= Ctest, aRange=4, distMat=distMat ) test.for.zero(temp1, temp2, tag="stationary.cov vs stationary.cov with C set, compact distMat") test.for.zero(temp1, temp3, tag="stationary.cov vs stationary.cov with C set, matrix distMat") test.for.zero(temp1, exp1, tag="stationary.cov vs Exp.cov with C set, no distMat") test.for.zero(temp2, exp2, tag="stationary.cov vs Exp.cov with C set, compact distMat") test.for.zero(temp3, temp3, tag="stationary.cov vs Exp.cov with C set, matrix distMat") #with x1 != x2: x1 = x x2 = x[1:10,] distMat = rdist(x1, x1) temp1<- stationary.cov( x1, x2, C= Ctest, aRange=4 ) temp2 = stationary.cov( x1, x2, C= Ctest, aRange=4, distMat=distMat ) exp1 <- Exp.cov( x1, x2, C= Ctest, aRange=4 ) exp2 = Exp.cov( x1, x2, C= Ctest, aRange=4, distMat=distMat ) test.for.zero(temp1, temp2, tag="stationary.cov vs stationary.cov with C set and asymmetric distMat given") test.for.zero(exp1, exp2, tag="Exp.cov vs Exp.cov with C set and asymmetric distMat given") ##### test covariance functions for onlyUpper=TRUE # distMat = rdist(x1, x1) compactDistMat = rdist(x1, compact=TRUE) out1 = stationary.cov(x1, onlyUpper=TRUE) exp1 = Exp.cov(x1, onlyUpper=TRUE) out2 = stationary.cov(x1, onlyUpper=TRUE, distMat=compactDistMat) exp2 = Exp.cov(x1, onlyUpper=TRUE, distMat=compactDistMat) out3 = stationary.cov(x1, onlyUpper=TRUE, distMat=distMat) exp3 = Exp.cov(x1, onlyUpper=TRUE, distMat=distMat) test.for.zero( out2[upper.tri(out1)], out3[upper.tri(exp1)], tag="onlyUpper=TRUE: stationary.cov versus Exp.cov") test.for.zero( out2[upper.tri(out1)], out3[upper.tri(out2)], tag="onlyUpper=TRUE: stationary.cov versus stationary.cov with compactDistMat") test.for.zero( out2[upper.tri(out1)], out3[upper.tri(exp2)], tag="onlyUpper=TRUE: stationary.cov versus Exp.cov with compactDistMat") test.for.zero( out2[upper.tri(out1)], out3[upper.tri(out3)], tag="onlyUpper=TRUE: stationary.cov versus stationary.cov with matrix distMat") test.for.zero( out2[upper.tri(out1)], out3[upper.tri(exp3)], tag="onlyUpper=TRUE: stationary.cov versus Exp.cov with matrix distMat") ##### test Exp.cov functions for correct use of p # p1 = 1 p2 = 2 p3 = 3 distMat = rdist(x1, x1) exp1 = Exp.cov(x1, p=p1) exp2 = Exp.cov(x1, p=p2) exp2Dist = Exp.cov(x1, p=p2, distMat = distMat) exp3 = Exp.cov(x1, p=p3) test.for.zero(exp1^(rdist(x1, x1)^(p2 - p1)), exp2, tag="Testing p=1 v 2") test.for.zero(exp2^(rdist(x1, x1)^(p3 - p2)), exp3, tag="Testing p=2 v 3") test.for.zero(exp2, exp2Dist, tag="Testing p=2 v 2 with distMat") ##### test Exp.cov functions for correct use of aRange # aRange1 = 1 aRange2 = 2 aRange3 = 3 distMat = rdist(x1, x1) exp1 = Exp.cov(x1, aRange=aRange1) exp2 = Exp.cov(x1, aRange=aRange2) exp2Dist = Exp.cov(x1, aRange=aRange2, distMat = distMat) exp3 = Exp.cov(x1, aRange=aRange3) test.for.zero(exp1^(aRange1/aRange2), exp2, tag="Testing aRange=1 v 2") test.for.zero(exp2^(aRange2/aRange3), exp3, tag="Testing aRange=2 v 3") test.for.zero(exp2, exp2Dist, tag="Testing aRange=2 v 2 with distMat") cat("end tests of V argument in covariances", fill=TRUE) fields/tests/mKrigMLETest.Rout.save0000644000175100001440000000575414275255352017004 0ustar hornikusers R version 4.2.1 (2022-06-23) -- "Funny-Looking Kid" Copyright (C) 2022 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin17.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # > # fields is a package for analysis of spatial data written for > # the R software environment. > # Copyright (C) 2022 Colorado School of Mines > # 1500 Illinois St., Golden, CO 80401 > # Contact: Douglas Nychka, douglasnychka@gmail.edu, > # > # This program is free software; you can redistribute it and/or modify > # it under the terms of the GNU General Public License as published by > # the Free Software Foundation; either version 2 of the License, or > # (at your option) any later version. > # This program is distributed in the hope that it will be useful, > # but WITHOUT ANY WARRANTY; without even the implied warranty of > # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > # GNU General Public License for more details. > # > # You should have received a copy of the GNU General Public License > # along with the R software environment if not, write to the Free Software > # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA > # or see http://www.r-project.org/Licenses/GPL-2 > ##END HEADER > ##END HEADER > > suppressMessages(library( fields )) > options( echo=FALSE) Testing: Likelihood Values optim and the fast return PASSED test at tolerance 1e-08 Testing: Likelihood Values summary and optim PASSED test at tolerance 1e-08 Testing: Likelihood Values summary and direct mKrig call PASSED test at tolerance 1e-08 Testing: ... and sigma^2.MLE PASSED test at tolerance 1e-08 Testing: consistency of Likelihood values PASSED test at tolerance 1e-08 Testing: grid search with and w/o profile PASSED test at tolerance 1e-08 Testing: crude test of maxmimum PASSED test at tolerance 1e-08 Testing: Testing MLE from spatialProcess PASSED test at tolerance 1e-05 Testing: spatialProcess finding MLE PASSED test at tolerance 1e-08 Testing: spatialProcess given MLE PASSED test at tolerance 1e-05 Testing mKrigMLEJoint against true values PASSED test at tolerance 0.006 PASSED test at tolerance 0.02 PASSED test at tolerance 0.02 Testing mKrigMLEJoint with REML against true values PASSED test at tolerance 0.007 PASSED test at tolerance 0.01 PASSED test at tolerance 0.01 Testing mKrigMLEJoint with REML FALSE against true values PASSED test at tolerance 0.02 PASSED test at tolerance 0.02 PASSED test at tolerance 0.01 all done with mKrigMLEGrid tests > > > > proc.time() user system elapsed 3.474 0.194 3.108 fields/tests/testZCommon.Rout.save0000644000175100001440000000506214342516755017011 0ustar hornikusers R version 4.2.1 (2022-06-23) -- "Funny-Looking Kid" Copyright (C) 2022 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin17.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # > # fields is a package for analysis of spatial data written for > # the R software environment. > # Copyright (C) 2022 Colorado School of Mines > # 1500 Illinois St., Golden, CO 80401 > # Contact: Douglas Nychka, douglasnychka@gmail.edu, > # > # This program is free software; you can redistribute it and/or modify > # it under the terms of the GNU General Public License as published by > # the Free Software Foundation; either version 2 of the License, or > # (at your option) any later version. > # This program is distributed in the hope that it will be useful, > # but WITHOUT ANY WARRANTY; without even the implied warranty of > # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > # GNU General Public License for more details. > # > # You should have received a copy of the GNU General Public License > # along with the R software environment if not, write to the Free Software > # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA > # or see http://www.r-project.org/Licenses/GPL-2 > ##END HEADER > ##END HEADER > > > suppressMessages(library(fields)) > options( echo=FALSE) PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 Testing: spatialProcess ZCommon collapse PASSED test at tolerance 1e-08 Testing: spatialProcess ZCommon PASSED test at tolerance 1e-08 Testing: mKrig ZCommon PASSED test at tolerance 1e-08 Testing: big data beta PASSED test at tolerance 0.02 Testing: big data tau PASSED test at tolerance 0.01 Testing: big data sigma2 PASSED test at tolerance 0.01 Testing: big data beta ZCommon PASSED test at tolerance 0.02 Testing: big data gamma ZCommon PASSED test at tolerance 0.001 Testing: big data tau ZCommon PASSED test at tolerance 0.01 Testing: big data sigma2 ZCommon PASSED test at tolerance 0.01 > > proc.time() user system elapsed 1.173 0.099 1.238 fields/tests/cov.test.R0000644000175100001440000001110014513071506014563 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2022 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.edu, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER ##END HEADER suppressMessages(library(fields)) options( echo=FALSE) test.for.zero.flag<- 1 data(ozone2) y<- ozone2$y[16,] x<- ozone2$lon.lat # # Omit the NAs good<- !is.na( y) x<- x[good,] y<- y[good] x1<- x[1:5,] x2<- x[6:11,] look<- exp(-1*rdist(x1,x2)/4) look2<- stationary.cov( x1,x2, aRange=4) look3<- Exp.cov( x1, x2, aRange=4.0) test.for.zero( look, look2) test.for.zero( look, look3) set.seed(122) C<- rnorm( nrow(x2)) look<- exp(-1*rdist(x1,x2)/4)%*%C look2<- stationary.cov( x1,x2, aRange=4, C=C) look3<- Exp.cov( x1, x2, aRange=4.0, C=C) test.for.zero( look, look2) test.for.zero( look, look3) #### check tranformation of coordinates V<- matrix( c(2,1,0,4), 2,2) Vi<- solve( V) u1<- t(Vi%*% t(x1)) u2<- t(Vi%*% t(x2)) look<- exp(-1*rdist(u1,u2)) look2<- stationary.cov( x1,x2, V= V) test.for.zero( look, look2) look<- Wendland(rdist(u1,u2), k=3, dimension=2) look2<- stationary.cov( x1,x2, V= V, Covariance = "Wendland", k=3, dimension=2) test.for.zero( look, look2) ### check tapering of covariances x1<- x[1:5,] x2<- x[2:6,] V<- matrix( c(2,1,0,4), 2,2) Vi<- solve( V) u1<- x1 u2<- x2 look1a<- exp(-1*rdist(u1,u2)) look1b<- Wendland(rdist(u1,u2), k=3, dimension=2, aRange= 1) look1<- look1a*look1b look2<- stationary.taper.cov( x1,x2, aRange=1, Taper.args=list( aRange=1,k=3, dimension=2), verbose=FALSE) test.for.zero( look1, as.matrix(look2)) u1<- t(Vi%*% t(x1)) u2<- t(Vi%*% t(x2)) look1a<- exp(-1*rdist(u1,u2)) look1b<- Wendland(rdist(u1,u2), k=3, dimension=2, aRange= 1.5) look1<- look1a*look1b look2<- stationary.taper.cov( x1,x2,V=V, Taper.args=list( aRange=1.5,k=3, dimension=2), verbose=FALSE) test.for.zero( look1, as.matrix(look2)) u1<- t(Vi%*% t(x1)) u2<- t(Vi%*% t(x2)) look1a<- Matern(rdist(u1,u2), smoothness=1.5) look1b<- Wendland(rdist(u1,u2), k=3, dimension=2, aRange= 1.5) look1<- look1a*look1b look2<- stationary.taper.cov( x1,x2,V=V,Covariance=Matern, smoothness=1.5, Taper.args=list( aRange=1.5,k=3, dimension=2), verbose=FALSE) test.for.zero( look1, as.matrix(look2)) # some tests of great circle distance stationary.taper.cov( x[1:3,],x[1:10,] , aRange=200, Taper.args= list(k=2,aRange=300, dimension=2), Dist.args=list( method="greatcircle") )-> temp # temp is now a tapered 3X10 cross covariance matrix in sparse format. # should be identical to # the direct matrix product temp2<- Exponential( rdist.earth(x[1:3,],x[1:10,]), aRange=200) * Wendland(rdist.earth(x[1:3,],x[1:10,]), aRange= 300, k=2, dimension=2) test.for.zero( as.matrix(temp), temp2, tol=2e-6, tag="taper with great circle") # example of calling the taper version directly # Note that default covariance is exponential and default taper is # Wendland (k=2). stationary.taper.cov( x[1:3,],x[1:10,] , aRange=1.5, Taper.args= list(k=2,aRange=2.0, dimension=2) )-> temp # temp is now a tapered 5X10 cross covariance matrix in sparse format. # should be identical to # the direct matrix product temp2<- Exp.cov( x[1:3,],x[1:10,], aRange=1.5) * Wendland(rdist(x[1:3,],x[1:10,]), aRange= 2.0, k=2, dimension=2) test.for.zero( as.matrix(temp), temp2, tag= "high level test of taper cov") stationary.taper.cov( x[1:3,],x[1:10,] , range=1.5, Taper.args= list(k=2,aRange=2.0, dimension=2) )-> temp test.for.zero( as.matrix(temp), temp2, tag= "high level test of taper cov") cat("end tests of V argument in covariances", fill=TRUE) fields/tests/mKrig.test.Rout.save0000644000175100001440000000712314275255352016554 0ustar hornikusers R version 4.2.1 (2022-06-23) -- "Funny-Looking Kid" Copyright (C) 2022 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin17.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # > # fields is a package for analysis of spatial data written for > # the R software environment. > # Copyright (C) 2022 Colorado School of Mines > # 1500 Illinois St., Golden, CO 80401 > # Contact: Douglas Nychka, douglasnychka@gmail.edu, > # > # This program is free software; you can redistribute it and/or modify > # it under the terms of the GNU General Public License as published by > # the Free Software Foundation; either version 2 of the License, or > # (at your option) any later version. > # This program is distributed in the hope that it will be useful, > # but WITHOUT ANY WARRANTY; without even the implied warranty of > # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > # GNU General Public License for more details. > # > # You should have received a copy of the GNU General Public License > # along with the R software environment if not, write to the Free Software > # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA > # or see http://www.r-project.org/Licenses/GPL-2 > ##END HEADER > ##END HEADER > > > suppressMessages(library(fields)) > options( echo=FALSE) NULL Testing: addToDiag PASSED test at tolerance 1e-08 Testing: spam vs no spam PASSED test at tolerance 1e-08 Testing: Krig mKrig d coef PASSED test at tolerance 1e-08 Testing: Krig mKrig c coef PASSED test at tolerance 1e-08 Testing: test of predict at new locations PASSED test at tolerance 1e-08 Testing: test of matrix Y predicts PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 Testing: predictSurface with mKrig PASSED test at tolerance 1e-08 Testing: Wendland/no spam PASSED test at tolerance 1e-08 Testing: Wendland/spam PASSED test at tolerance 1e-08 Testing: new coef c no spam PASSED test at tolerance 1e-08 Testing: new beta coef no spam PASSED test at tolerance 1e-08 Testing: new coef c spam PASSED test at tolerance 1e-08 Testing: new beta coef spam PASSED test at tolerance 1e-08 Testing: nzero in call to mKrig PASSED test at tolerance 1e-08 Testing: mKrig vs. Krig for ozone2 PASSED test at tolerance 1e-08 Testing: predict Wendland mKrig vs Krig PASSED test at tolerance 1e-07 Testing: fastTps interp1 PASSED test at tolerance 5e-07 Testing: fastTps interp2 PASSED test at tolerance 0.02 [1] "testing using distance matrix" Testing: predict: stationary.cov versus Exp.cov PASSED test at tolerance 1e-08 Testing: predict: no distance matrix versus compact distance matrix PASSED test at tolerance 1e-08 Testing: predict: no distance matrix versus distance matrix PASSED test at tolerance 1e-08 [1] "testing using predictSE" Testing: predictSE: stationary.cov with exponential versus Exp.cov PASSED test at tolerance 1e-08 Testing: predictSE: no distance matrix versus compact distance matrix PASSED test at tolerance 1e-08 Testing: predictSE: no distance matrix versus distance matrix PASSED test at tolerance 1e-08 all done with mKrig tests > > > > > proc.time() user system elapsed 1.993 0.124 2.103 fields/tests/misc.test.Rout.save0000644000175100001440000000371314275255352016437 0ustar hornikusers R version 4.2.1 (2022-06-23) -- "Funny-Looking Kid" Copyright (C) 2022 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin17.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # > # fields is a package for analysis of spatial data written for > # the R software environment. > # Copyright (C) 2022 Colorado School of Mines > # 1500 Illinois St., Golden, CO 80401 > # Contact: Douglas Nychka, douglasnychka@gmail.edu, > # > # This program is free software; you can redistribute it and/or modify > # it under the terms of the GNU General Public License as published by > # the Free Software Foundation; either version 2 of the License, or > # (at your option) any later version. > # This program is distributed in the hope that it will be useful, > # but WITHOUT ANY WARRANTY; without even the implied warranty of > # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > # GNU General Public License for more details. > # > # You should have received a copy of the GNU General Public License > # along with the R software environment if not, write to the Free Software > # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA > # or see http://www.r-project.org/Licenses/GPL-2 > ##END HEADER > ##END HEADER > > suppressMessages(library(fields)) > options( echo=FALSE) Testing: fast.1way means PASSED test at tolerance 1e-08 Testing: fast.1way vectorized means PASSED test at tolerance 1e-08 All done with testing misc functions > > proc.time() user system elapsed 0.775 0.069 0.841 fields/tests/spam.test.R0000644000175100001440000001005614275214521014746 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2022 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.edu, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER ##END HEADER # test of rdist.near suppressMessages(library(fields)) options(echo=FALSE) test.for.zero.flag<- 1 set.seed(123) x1<- matrix( runif(2*20), ncol=2) x2<- matrix( runif(2*10), ncol=2) fields.rdist.near( x1,x2, delta=.75)-> look temp<- matrix( NA, nrow(x1),nrow(x2)) temp[ look$ind] <- look$ra temp2<- rdist( x1, x2) temp2[ temp2> .75] <- NA temp[ is.na( temp)]<- 0 temp2[ is.na( temp2)]<- 0 test.for.zero( temp, temp2) # test of constructing covariance matrix # and also versions of Wendland function # default taper is wendland k=2. DD<- rdist( x1,x2) temp<- Wendland2.2(DD, aRange=.8) temp2<- Wendland( DD, aRange=.8, dimension=2, k=2) test.for.zero( temp, temp2) stationary.taper.cov( x1,x2, Taper="Wendland2.2", Taper.args= list( aRange=.8), spam.format=FALSE )-> look temp0<- look stationary.taper.cov( x1,x2, Taper="Wendland2.2", Taper.args= list( aRange=.8), spam.format=TRUE )-> look temp1<- spam2full( look) test.for.zero( temp1, temp0) stationary.taper.cov( x1,x2, Taper="Wendland", Taper.args= list( aRange=.8, k=2, dimension=2), spam.format=TRUE )-> look temp1b<- spam2full( look) temp2<- Wendland2.2(DD, aRange=.8) * Exponential(DD) temp3<- wendland.cov(x1,x2, k=2, aRange=.8) * Exponential(DD) temp4<- Wendland(DD, k=2, dimension=2, aRange=.8)* Exponential(DD) test.for.zero( temp1, temp0, rel=FALSE) test.for.zero( temp1b, temp0, rel=FALSE) test.for.zero( temp2, temp0, rel=FALSE) test.for.zero( temp2, temp3,rel=FALSE) test.for.zero( temp2, temp4,rel=FALSE) set.seed( 256) rv<- runif( nrow(x2)) # test of multiply stationary.taper.cov( x1, x2, C= rv)-> look temp2<-stationary.taper.cov( x1,x2) spam2full(temp2)%*%(rv)-> look2 test.for.zero( look, look2) # set.seed( 123) temp<- matrix( 1:48, ncol=6, nrow=8) temp[ sample( 1:48, 20)] <- 0 as.spam( temp)-> temp2 test.for.zero( spam2full(temp2), temp ) spam2spind( temp2)-> temp3 test.for.zero( spind2full( temp3), temp) test.for.zero( spind2spam( temp3),temp2) # test that ordering works MM<- nrow( temp3$ind) ix<- sample( 1:MM,MM) # shuffle temp3 temp3$ind<- temp3$ind[ix,] temp3$ra<- temp3$ra[ix] test.for.zero( spind2spam( temp3),temp2) # temp<- temp[1:4, 1:5] for help file # set.seed( 234) CC<- matrix( rnorm( 64), 8,8) A<- ( CC)%*% t(CC) as.spam( A)-> As test.for.zero( solve( As), solve( A)) set.seed( 233) CC<- diag( 1, 8) CC[4,1:8] <- rnorm(8) CC[7,1:8] <- rnorm(8) A<- ( CC)%*% t(CC) as.spam( A)-> As test.for.zero( solve( As), solve( A)) data( ozone2) x<- ozone2$lon.lat y<- ozone2$y[16,] Krig(x,y, cov.function = "stationary.taper.cov", aRange=1.5, give.warnings=FALSE, cov.args= list( spam.format=FALSE, Taper.args= list( dimension=2, aRange=2.0,k=3) ) ) -> out1 Krig(x,y, cov.function = "stationary.taper.cov", lambda=2.0, aRange=1.5, cov.args= list( spam.format=TRUE, Taper.args= list( aRange=2.0,k=3, dimension=2) ) ) -> out2 temp1<- predict( out1,lambda=2.0) temp2<- predict( out2) test.for.zero( temp1, temp2) cat( "All done with SPAM tests", fill=TRUE) options(echo=TRUE) fields/tests/Krig.test.Rout.save0000644000175100001440000000730214275255352016376 0ustar hornikusers R version 4.2.1 (2022-06-23) -- "Funny-Looking Kid" Copyright (C) 2022 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin17.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # > # fields is a package for analysis of spatial data written for > # the R software environment. > # Copyright (C) 2022 Colorado School of Mines > # 1500 Illinois St., Golden, CO 80401 > # Contact: Douglas Nychka, douglasnychka@gmail.edu, > # > # This program is free software; you can redistribute it and/or modify > # it under the terms of the GNU General Public License as published by > # the Free Software Foundation; either version 2 of the License, or > # (at your option) any later version. > # This program is distributed in the hope that it will be useful, > # but WITHOUT ANY WARRANTY; without even the implied warranty of > # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > # GNU General Public License for more details. > # > # You should have received a copy of the GNU General Public License > # along with the R software environment if not, write to the Free Software > # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA > # or see http://www.r-project.org/Licenses/GPL-2 > ##END HEADER > ##END HEADER > > suppressMessages(library(fields)) > # > # > # test of fixed lambda case > # Check against linear algebra > # > > options( echo=FALSE) Testing: Compare d coef PASSED test at tolerance 1e-08 Testing: Compare c coef PASSED test at tolerance 1e-08 Testing: Compare d coef fixed lambda PASSED test at tolerance 1e-08 Testing: Compare c coef fixed lambda PASSED test at tolerance 1e-08 Testing: d coef Krig.coef PASSED test at tolerance 1e-08 Testing: c coef Krig.coef PASSED test at tolerance 1e-08 Testing: d coef Krig.coef fixed PASSED test at tolerance 1e-08 Testing: c coef Krig.coef fixed PASSED test at tolerance 1e-08 Testing: Amatrix no reps PASSED test at tolerance 5e-08 Testing: d coef new y PASSED test at tolerance 1e-08 Testing: c coef new y PASSED test at tolerance 1e-08 Testing: d coef new y fixed PASSED test at tolerance 1e-08 Testing: c coef new y fixed PASSED test at tolerance 1e-08 Testing: d coef several new y fixed PASSED test at tolerance 1e-08 Testing: c coef several new y fixed PASSED test at tolerance 1e-08 Testing: Tps with fixed lam PASSED test at tolerance 1e-08 Testing: Tps with fixed df PASSED test at tolerance 1e-08 Testing: Krig with fixed lam argument PASSED test at tolerance 1e-08 Warning: Grid searches over lambda (nugget and sill variances) with minima at the endpoints: (REML) Restricted maximum likelihood minimum at right endpoint lambda = 0.003053154 (eff. df= 14.25 ) Testing: d coef PASSED test at tolerance 1e-08 Testing: c coef PASSED test at tolerance 1e-08 Testing: d fixed case PASSED test at tolerance 1e-08 Testing: c fixed case PASSED test at tolerance 1e-08 Testing: d new y PASSED test at tolerance 1e-08 Testing: c new y PASSED test at tolerance 1e-08 Testing: testing A matrix PASSED test at tolerance 1e-08 Testing: testing A matrix new y PASSED test at tolerance 1e-08 Testing: checking trace PASSED test at tolerance 1e-08 Testing: GCV PASSED test at tolerance 1e-08 > proc.time() user system elapsed 1.043 0.079 1.108 fields/tests/Krig.se.W.Rout.save0000644000175100001440000000421114275255352016227 0ustar hornikusers R version 4.2.1 (2022-06-23) -- "Funny-Looking Kid" Copyright (C) 2022 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin17.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # > # fields is a package for analysis of spatial data written for > # the R software environment. > # Copyright (C) 2022 Colorado School of Mines > # 1500 Illinois St., Golden, CO 80401 > # Contact: Douglas Nychka, douglasnychka@gmail.edu, > # > # This program is free software; you can redistribute it and/or modify > # it under the terms of the GNU General Public License as published by > # the Free Software Foundation; either version 2 of the License, or > # (at your option) any later version. > # This program is distributed in the hope that it will be useful, > # but WITHOUT ANY WARRANTY; without even the implied warranty of > # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > # GNU General Public License for more details. > # > # You should have received a copy of the GNU General Public License > # along with the R software environment if not, write to the Free Software > # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA > # or see http://www.r-project.org/Licenses/GPL-2 > ##END HEADER > ##END HEADER > > > suppressMessages(library(fields)) > # tests of predictSE using > # off diag weight matrix for obs (W) > > options( echo=FALSE) Testing: Amatrix vs. predict PASSED test at tolerance 1e-08 Testing: Marginal predictSE PASSED test at tolerance 1e-08 Testing: Full covariance predictSE PASSED test at tolerance 1e-08 Testing: Full covariance predictSE explicit W PASSED test at tolerance 1e-08 all done > > proc.time() user system elapsed 0.979 0.092 1.060 fields/tests/mKrig.se.test.Rout.save0000644000175100001440000000521214275255352017157 0ustar hornikusers R version 4.2.1 (2022-06-23) -- "Funny-Looking Kid" Copyright (C) 2022 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin17.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # > # fields is a package for analysis of spatial data written for > # the R software environment. > # Copyright (C) 2022 Colorado School of Mines > # 1500 Illinois St., Golden, CO 80401 > # Contact: Douglas Nychka, douglasnychka@gmail.edu, > # > # This program is free software; you can redistribute it and/or modify > # it under the terms of the GNU General Public License as published by > # the Free Software Foundation; either version 2 of the License, or > # (at your option) any later version. > # This program is distributed in the hope that it will be useful, > # but WITHOUT ANY WARRANTY; without even the implied warranty of > # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > # GNU General Public License for more details. > # > # You should have received a copy of the GNU General Public License > # along with the R software environment if not, write to the Free Software > # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA > # or see http://www.r-project.org/Licenses/GPL-2 > ##END HEADER > ##END HEADER > > > > # tests of predictSE > # against direct linear algebra > > suppressMessages(library(fields)) > options( echo=FALSE) Testing: Amatrix vs. predict PASSED test at tolerance 1e-08 Testing: Marginal predictSE PASSED test at tolerance 1e-08 Testing: comparing Omega PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 Testing: test of formula with explicit d and c PASSED test at tolerance 1e-08 Testing: Krig function and direct formula PASSED test at tolerance 1e-08 Testing: new predict formula and direct formula PASSED test at tolerance 1e-08 Testing: New se _function_ and old Krig _function_ PASSED test at tolerance 1e-08 Testing: Benchmark of formula PASSED test at tolerance 1e-08 Testing: Benchmark of formula mKrig coefs PASSED test at tolerance 1e-08 Testing: test function with several locations Krig mKrig functions PASSED test at tolerance 1e-08 > proc.time() user system elapsed 0.810 0.070 0.888 fields/tests/mKrig.Z.Rout.save0000644000175100001440000000420414275255352016003 0ustar hornikusers R version 4.2.1 (2022-06-23) -- "Funny-Looking Kid" Copyright (C) 2022 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin17.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # > # fields is a package for analysis of spatial data written for > # the R software environment. > # Copyright (C) 2022 Colorado School of Mines > # 1500 Illinois St., Golden, CO 80401 > # Contact: Douglas Nychka, douglasnychka@gmail.edu, > # > # This program is free software; you can redistribute it and/or modify > # it under the terms of the GNU General Public License as published by > # the Free Software Foundation; either version 2 of the License, or > # (at your option) any later version. > # This program is distributed in the hope that it will be useful, > # but WITHOUT ANY WARRANTY; without even the implied warranty of > # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > # GNU General Public License for more details. > # > # You should have received a copy of the GNU General Public License > # along with the R software environment if not, write to the Free Software > # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA > # or see http://www.r-project.org/Licenses/GPL-2 > ##END HEADER > ##END HEADER > > suppressMessages(library(fields)) > options( echo=FALSE) Testing: Full prediction PASSED test at tolerance 1e-08 Testing: prediction dropping Z PASSED test at tolerance 1e-08 Testing: new x's dropping Z PASSED test at tolerance 1e-08 Testing: new x's new Z's PASSED test at tolerance 1e-08 Testing: predicting on surface with drop.Z PASSED test at tolerance 1e-08 all done with mKrig Z tests > > > proc.time() user system elapsed 1.208 0.105 1.285 fields/tests/Krig.test.W.R0000644000175100001440000000700414275214521015106 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2022 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.edu, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER ##END HEADER suppressMessages(library(fields)) options( echo=FALSE) test.for.zero.flag<- 1 # # # test of off diagonal weight matrix for obs # Check against linear algebra # #cat("A very nasty case with off diagonal weights",fill=TRUE) set.seed(123) x<- matrix( runif( 30), 15,2) y<- rnorm( 15)*.01 + x[,1]**2 + x[,2]**2 #weights<- rep( 1, 15) weights<- runif(15)*10 # WBW # double check that just diagonals work. lambda.test<- .6 Krig( x,y,cov.function=Exp.cov,weights=weights)-> out Krig( x,y,cov.function=Exp.cov,weights=weights, lambda=lambda.test)-> out2 Krig.coef( out, lambda=lambda.test)-> test W<- diag( weights) W2<- diag( sqrt(weights)) K<- Exp.cov(x,x) M<- (lambda.test*solve(W) + K);T<- fields.mkpoly(x, 2) temp.d<- c(solve( t(T) %*% solve( M)%*%T) %*% t(T)%*% solve( M) %*%y) temp.c<- solve( M)%*% (y - T%*% temp.d) # # test for d coefficients test.for.zero( test$d, out2$d, tag=" d coef diag W fixed lam") test.for.zero( temp.d, out2$d, tag=" d coef diag W") # test for c coefficents test.for.zero( test$c, out2$c, tag="c coef diag W fixed lam" ) test.for.zero( temp.c, out2$c, tag="c coef diag W " ) # the full monty temp.wght<- function(x, alpha=.1){ Exp.cov( x, aRange=alpha) } Krig( x,y, cov.function=Exp.cov,weights=weights, wght.function= temp.wght, )-> out.new W2<-out.new$W2 W<- out.new$W test.for.zero( c( W2%*%W2), c( W), tag=" sqrt of W") Krig( x,y, cov.function=Exp.cov,weights=weights, W= out.new$W)-> temp test.for.zero( predict(temp, y= y), predict(out.new,y=y), tag=" Test of passing W explicitly") K<- Exp.cov(x,x); lambda.test<- .6; M<- (lambda.test*solve(W) + K);T<- fields.mkpoly(x, 2) temp.d<- c(solve( t(T) %*% solve( M)%*%T) %*% t(T)%*% solve( M) %*%y) temp.c<- solve( M)%*% (y - T%*% temp.d) # Krig.coef( out.new,lambda=lambda.test )-> out2 test.for.zero( temp.d, out2$d, tag=" d coef full W") # test for c coefficents test.for.zero( temp.c, out2$c, tag="c coef full W" ) #### ### testing the GCV function lambda<- out.new$lambda Krig.Amatrix( out.new, lambda=lambda)-> Alam test.for.zero( Alam%*%y , predict(out.new), tag="A matrix") N<- length( y) test<- sum( diag( Alam)) # compare to test2<- out.new$eff.df test.for.zero( test,test2, tag=" check trace of A") Krig.fgcv.one( lam=lambda, out.new)-> test # compare to test2<- (1/N)*sum( (out.new$W2%*%(y - c(Alam%*% y) ))**2 ) / (1- sum(diag( Alam))/N)**2 test.for.zero( test,test2,tol=.5e-7, tag="GCV one" ) cat( "all done testing off diag W case", fill=TRUE) options( echo=TRUE) fields/MD50000644000175100001440000004717514763003301012061 0ustar hornikusersc1ce28727c395931850c50540a5afbfb *DESCRIPTION 3b1b7ce654d028cbe16127df91148c8b *LICENSE.note 531c98e8ce21095346bde935580d23a1 *NAMESPACE c1996c33b17a2091025d8eb91ddf2a50 *R/BD.R 8be09e95722089ab90459da8388e47eb *R/ChicagoO3.R 905b86817acb869b12e8a8f2e5e80508 *R/Exponential.R 421ae9eceb563d7aa31ca213fccbbffd *R/ExponentialUpper.R b641f253128247c4b88d1c008c0940d8 *R/Krig.R 6e8a3acda34dd14005dcbccf29f46a80 *R/Krig.family.R 3566e58fb47c3739916e2b52d947dfe2 *R/KrigFindLambda.R 1d1d4ba3e271e9cabc4ec9fd40d9a54a *R/Matern.R 439f99d313ca8ebe03d7bd8f821d7d02 *R/Matern.parameters.R b90e36bb74c3bad00bf99b3e34060498 *R/Paciorek.cov.R cd0aad5fd303d370db3828d9ee062cf1 *R/QSreg.R e6b34213cce8ea0392dd33887227eba1 *R/QTps.R af824384f5c309850085ab9aeed87966 *R/RMprecip.R c0317636cb3889d8cdcef9cb46d77156 *R/RadialBasis.R 76564e509a7dbf5c7a31e4559fc2b5d2 *R/RdistEarth.R e495e4805b2d63966e4350a992079652 *R/SUBSCRIPTINGSpatialDesign.R 649a6b45e3e43643341815717a266366 *R/Tps.R a738010a4ea3c59aa1fc855b29a904c3 *R/Tps.cov.R 01a4ddf2e03aa7b405e3c2d45281d1da *R/US.R c9345495669b86b5f0560d0daef3228f *R/add.image.R 943c704694c3a59e0cbdfea4ccb67c01 *R/addColorBarTriangle.R c0442c06049ea41c1629510b6e8161cb *R/addLegend.R 82f7f9531999221dc029bd96fa77d4fc *R/addMarginsGridList.R 63da5fc67648d8487b054686dfe22198 *R/arrow.plot.R 730b958301b60a6bd0ae51dfd1e8ab94 *R/as.image.R 7c286f6c71897dd36b77951134ffd4d4 *R/as.surface.R 11f75093ed367eaf0435151d580bd5f6 *R/bisection.search.R a9ef7e3361bff7113188dc0687f18801 *R/bplot.family.R 73b2252f1f760659e2f5ed0c0069c8e6 *R/bubblePlot.R 3e6f06b842e65cdfe4c1930eef2cdfb3 *R/cat.matrix.R a033be2da55354c482dc06590e9d5638 *R/cat.to.list.R 15f2215a06d11f5d9c6807479ddd3884 *R/ceiling2.R e90481af61c82ea43834a492c61eaf2f *R/circulantEmbedding.R 9c4e723ff65a19fecc966d333134010c *R/circulantEmbeddingSetup.R 2d047118b89bb6de935bca404587f9e7 *R/coef.Krig.R 38e04d40feba78a4b2b34bfc2724175f *R/color.scale.R e99827640cedb63f069658724b7719cc *R/colorBar.R 96875cc40093e3168bd37fc0b20b257b *R/colorbar.plot.R df9e6de3c9fc4dbcdfb90a1f7c0c7754 *R/compactToMat.R 0c58fa476286b264d98a5c9a80f3e264 *R/confidenceIntervalMLE.R 08919466c5c4812f990b1cda1fc16a9c *R/cover.design.R 4389ebbb7ccb600e19d64bd536e65497 *R/cubic.cov.R 8dd1d9320ee58731a5eda704b69966a5 *R/describe.R c7d6aa2be6692aa06c6d4200ad3d5644 *R/discretize.image.R 6e957e4b6d0ae1d4b647f3b5800437fb *R/double.exp.R cb78cb756bdeda50e9506bb6262bd8bb *R/drape.color.R b8f110783ade603f57965e82dfbaded0 *R/drape.plot.R d3295cb10e9e4c6c944862c7c1f6de43 *R/dyadic.2check.R b6de17f5ded19d813792e499f8fdf8cc *R/dyadic.check.R be6b80f9cfecc58976cc763128ac14c7 *R/envelopePlot.R 95f03085de008562b2df4a716186ac37 *R/evlpoly.R a3f9233d8f8cb7a65e5326cc060a70b8 *R/evlpoly2.R d8b473b34f6145158bf6ae6019188a49 *R/exp.cov.R a227752a0904f6848c699aab0b9cc154 *R/exp.earth.cov.R 520527c6fbbd9e7992df3330153e8020 *R/exp.image.cov.R 39f6c85a7e2ab329da532c129c971c27 *R/exp.simple.cov.R 11833d8f5a55899c11f476605f4560d1 *R/fast.1way.R d4218542d0ea4971cdb0b9848f9404f4 *R/fastTps.R 03b20d9b2280d1b4d125a4b7efa2e253 *R/fields.color.picker.R 71c84bd38e44a61b3ffcd24f782aa7e0 *R/fields.convert.grid.R d54c4d25a4b70392a285016ce6f2c416 *R/fields.derivative.poly.R fede72831c8304e2bfb058cc6cf5238b *R/fields.duplicated.matrix.R a95d9d8396e1bd9b9b05e41180c2145f *R/fields.mkpoly.R 130c09796a7ea8010d6327d75706f674 *R/fields.rdist.near.R e999f587dfd4635fde276d07b5aa9f80 *R/fields.style.R 20b73642f1ac79ab33fd7a008314953c *R/fields.x.to.grid.R e647ee3e54d63c6fc99ab92fd0a88a3a *R/fillGrid.R 62d640cbe968e449726cf5e299cf66be *R/find.upcross.R d8b8ae745d09e7b56cb92ba404e2501a *R/findGridBox.R 3fce75d2033815ccac965bf2a4b1a148 *R/fitted.Krig.R 340233c1f2b6c5784d0d8fd75a0e652c *R/flame.R 01761505b929426b447a93d21ac99079 *R/gauss.cov.R 2c9b39f21815ab12af006f2e3e323dae *R/gcv.sreg.R d494620b4786a59848d49aa8d92c7b10 *R/golden.section.search.R 65454450b6da3c5e603158275274afed *R/image.family.R ffab1761b727ecc042fac939fbfa24a5 *R/image.plot.R ac05d33a260bdda2589f4e4c15e64938 *R/image.smooth.R 59b3d29b5ea3656b10fde926dab85345 *R/imagePlot.R 826ba04cd0ca9d1404d18b8778366afc *R/imagePlotOLD.R ac6fec7679f6035588fb911508fa6651 *R/in.poly.R 0b3a84726b1b98b16feb1e49aded7982 *R/interp.surface.FFT.R a7ddc0f971dfcc9d6553b6b8d3ed8ae4 *R/interp.surface.R 14f99a616891e1bd358713d4aa1cec83 *R/interp.surface.grid.R 3c24aefcae255d2703efe863ab14cbf3 *R/larry.colors.R 338783aa68e5624420a420c1eb12383c *R/mKrig.R 39cc6770d41bc306c521f14adf3ab354 *R/mKrigCheckXY.R a73d3a218c70a802ea85288d814334f7 *R/mKrigFastPredict.R 104029dc6b5724483455a04f297ec246 *R/mKrigFastPredictSetup.R 050ab1341896e23de795a4767ad0c318 *R/mKrigMLEGrid.R b497d2943ec8db00878b5f004be03f56 *R/mKrigMLEJoint.R 24509525593ea4e7e539ef7149198733 *R/mKrigMisc.R 6ce0ec4071286ea2014da41038fc32fc *R/make.surface.grid.R 2865556c9420089471de64e4d6a2f3c8 *R/makeMultiIndex.R 6a63445eb046ebbb8677b9a1980d215d *R/makePredictionGrid.R 22d5e8d8e71a0b2ccf0ae173ec71b1d2 *R/matern.image.cov.R 2cd66a049e65c3df3cd72de92e32fed0 *R/minimax.crit.R 04e0735adb149c2b93da4590cbc1b1ba *R/minitri.R ad2dee836d24a9f1ebbbc8cc91ecd639 *R/multWendlandGrid.R 202300f8043fb356fbfe30d67e04cd6e *R/offGridWeights.R 0c7b6ba2e5963fa089b871252f5e4a0e *R/offGridWeights1D.R d34dc48214a43c99563d53cb3fd6d317 *R/offGridWeights2D.R bb2eb5dbff22c23a4d08dee04de2ff1b *R/parse.grid.list.R 3b3a904618275ce12256f652e8af92b8 *R/plot.Krig.R 284831b1274a4a901146eef933986b62 *R/plot.spatialDesign.R 1416e36b6bc09e062bd0471bca59e53b *R/plot.spatialProcess.R f6db82245499aba267f2e6eb4841e95e *R/plot.sreg.R 904bda7bd7bb2edf9a13252f5ce06fd7 *R/plot.surface.R 8a6fb56d99a8ea0e618d9ce12a0cb7a1 *R/plot.vgram.matrix.R 5b944f0043a84851592aa7d7ae69e4a1 *R/plotMatrix.R 54f2c31c5fb0282eeb6a1d95e169ee47 *R/poly.image.R ff14d8844a83eb6aa6ffdfb44b87c78c *R/predict.Krig.R 0b3ea5ec9733903219a044fb6db1a47c *R/predict.fastTps.R 5652249dd279fd51bf1a3412cadaa665 *R/predict.interp.surface.R b2b9b4c20b74682f86c1a71c369e3d6e *R/predict.mKrig.R f8f47c07720b0d093a9e2f41d5cd0940 *R/predict.sreg.R 9de1fafa0a8e22bb6ef435c131ffeb6d *R/predictDerivative.Krig.R 523742ef567170b5f10997e7cfa2f08f *R/predictSE.Krig.R e6bb44bb6773821660c434cf714d2509 *R/predictSE.R 40f187152e79bc745986c13d11cc9c03 *R/predictSE.mKrig.R dcf534595fe165c62e63e88ba0a4d0e4 *R/predictSEUsingKrigA.R d5509bef2023e9b0d8ae9499a15ad887 *R/predictSurface.Krig.R cbc2b3d0e5b12baa7b1d6d91b43ac2ec *R/predictSurface.family.R 7821b4f918b04788a0d5a848c9d8a299 *R/predictSurface.mKrig.R f38fc4e3ca474bf98e45ee1e59d3c2ff *R/predictSurfaceSE.R a1e481f4823f89fe1d3b94cbbbc48c77 *R/print.Krig.R 43e9a292a86be39153aa474a3b3e8ed5 *R/print.mKrig.R c7f8a0749a37783de971e7c59923e11a *R/print.mKrig.summary.R 56d1f09db48da11a3fa0497b013c38a1 *R/print.spatial.design.R 8390c24d13c8ae66682802271d096bcb *R/print.spatialProcess.R 06a53baf11e594fb5ab1370cfd284c6b *R/print.spatialProcessSummary.R 7d0529d475951aad322e6d284ff15616 *R/print.sreg.R 56d576453b372af24dd80395664916ac *R/print.summary.Krig.R 40931bcc2c20b191f94aa7781678d51b *R/print.summary.sreg.R 5c58b07a8d97ee514da5e886bbfde9e9 *R/print.summarySpatialDesign.R 24522e21593b4ee3b7d44e65f0c42765 *R/printGCVWarnings.R 74793747dfffcab222a45501c2ecd207 *R/profile.R 541e55ef8da35ba892d4a3907f7f9656 *R/profileCI.R cfafe520b839713336c44df4c2b22636 *R/profileMLE.R cf0f68184af2da5d5ede92f276c97943 *R/qr.q2ty.R 0e08db27943f21e5726e8e4d6e159c87 *R/qr.yq2.R c4a05701fd9a70a89cf0808f4a0b47b7 *R/qsreg.family.R ea615bb7afca7df9a6eeb8fd7ef0c49c *R/quickPrint.R 1a595f35f886c6702d2be74a2280493b *R/quilt.plot.R ce34bf35843e7673095e388853416273 *R/rad.cov.R 790ac2a00f7a51c1f3c3c76e84c9bfe8 *R/rad.image.cov.R 01cd3619c12b702785e25b3a3c9eb200 *R/rad.simple.cov.R 284dc4560b6f04824b3be421ef1bf0f9 *R/radbas.constant.R bfb2a03460fbc7d4ea9cdd6d38bd133f *R/rat.diet.R d46d3553d40abbb0265eb2fb4dd4a2dd *R/rdist.R b552f1769b94d14f25bed05415e2e759 *R/rdist.earth.R 6957bfaabf43b12b5e6c7450e6f7fbcf *R/rdist.earth.vec.R 8003ba0213e7289b5db833c43e0c5a01 *R/rdist.vec.R cda0100e23c7c482fbc904cef7e31ac8 *R/residuals.Krig.R 6f8e5bfa2a5abef8eb3e1d916387c8f1 *R/ribbon.plot.R 95131caac39a1a97741e3eeee5ebee63 *R/set.panel.R e26ae2c02aeb0e0f0314aa3d224f8304 *R/setup.image.smooth.R b07f449f86640b41be7ebbd030da4b1b *R/setupLegend.R bb577b7dbaf8e74f2c8afa292498bd2b *R/sim.Krig.R 0896ffbe674ceead9b379294ac5b939e *R/sim.rf.R 88ddfa0dfff5b184cb1b323897e048e4 *R/sim.spatialProcess.R 48e2adef074260ea09a86091641328b1 *R/simLocal.spatialProcess.R fcced35eb055085de15a8a2d81b6f186 *R/simSpatialData.R 4b68d519b9bfbbd7ce8bbebaf7d44fe1 *R/smooth.2d.R a01ae7b9b1eace42808fe018fd230007 *R/snow.colors.R aa4f2f5914477c67f70780754364667d *R/spam_2lz.R c1e48f55014841d2d986caac697c49a0 *R/spatialProcess.R a84e0ca40172e329995d4f5a45d4fbe6 *R/spatialProcessSetDefaults.R 5377ff7792b9048a033d600ac5887395 *R/splint.R afc0dfa684e354cece179fdaaa5c7072 *R/sreg.family.R 301d7c9324fbe5440f700a7d950b06b8 *R/stationary.cov.R c0ed97f29a51c69cca51fcf87d6bcf93 *R/stationary.image.cov.R d0d54784f6edd6b19d3bb8de93874c0a *R/stationary.taper.cov.R 97fd13b0880789c51d79184e0afa91f3 *R/stats.R cab405d1e19c4064981a7a9d159685ba *R/stats.bin.R 63735e703a113607406e19c66d5d08f2 *R/summary.Krig.R 759cd1adbee2c6c6163dc81b2042f3df *R/summary.mKrig.R d4c52e603429bf1f99e0339830bef6e6 *R/summary.ncdf.R b1176f1d8ffd92fda2ce639675cae8c9 *R/summary.spatialDesign.R 87d5a309c39a7b20ace65edeb050edcb *R/summary.spatialProcess.R fb7ebf97c7e2c2a0821edef0124bda62 *R/summary.sreg.R 86b00e5bd47ee871d3764e0fd648c43f *R/summaryGCV.Krig.R 8dec9e763c7169805a2a3237923256fd *R/summaryGCV.sreg.R f7c49c0d447ebe05f50c7614d7d3f2db *R/supportsArg.R 0d909e996547d52c966b56e1e10c9a3b *R/surface.family.R 51a54b84d2645192e1e81047a43f8033 *R/test.for.zero.R 0b8603a3635d9bd3f9a1ea35a82de2d5 *R/tim.colors.R f661c5a54184b5f91db18dbfd6e58a62 *R/transformx.R c9bc93d282e1186769a87d35ebc910e8 *R/unrollZGrid.R cfb7c10f8f4e22bbe4c029de906bcde7 *R/unscale.R 068517c1536de5a2da124506fee0446f *R/vgram.family.R accb65b6f9fbd806d5f78edba0416409 *R/vgram.matrix.R 0802c12fcd4365ddf2eacc24dfc3b5e4 *R/wendland.family.R 0b279c0a769157c5a6f0098a02a2d348 *R/wendland.image.cov.R de3860ad4525e3ac2f874a4ee7b875e9 *R/which.max.matrix.R 9d171ad8405ea7b7db64ba44f59fa961 *R/world.R 114a492ee7e6f5b1714298f5fa2e2fcb *R/xline.R 5369f97ec83414b20e55d5cf6d7ce423 *R/yline.R 7c4d276b3e4abc430afcd36a2d0aaa01 *data/CO2.rda f043357f32843f9f31ac77af4fc26215 *data/COmonthlyMet.rda dc23bcff34eb0a3bcdb1a1b0863ab104 *data/NorthAmericanRainfall.rda bb2e1247bc278ac7e1448bda34beea3f *data/NorthAmericanRainfall2.rda bfd7dfb0369b6bf45d86cbf9f1a9058a *data/PRISMelevation.rda fd70d9f4398317f5dd1f62494c9e5f0c *data/RCMexample.rda 13b520f57245ec57000e82ca56cafa51 *data/RMelevation.rda 1998dc562ff37941b3775efb0f6d6d86 *data/US.dat.rda 53fce1897040fda400a4a8fa53b00eb1 *data/WorldBankCO2.rda bb8b53d19f80136f4c1c00b300b98b84 *data/datalist 2cf2f88fb9f9c83cda7bd7c2a53fb0dd *data/glacier.rda 9d1869540be407ee705987ee31db153c *data/lennon.rda 575d9a2167fda0e2a55e078823e0dca9 *data/ozone2.rda 69dd2ed21d3dbc98483209e6b810ec36 *data/rat.diet.rda da771ca25c7d9dfc6851a8b106b73fb5 *data/world.dat.rda 8a386b95a7fbf993c5d26c07932a9405 *inst/CITATION b29a37323f9654ececef6bd595b94cab *man/BD.Rd 76425d3295c8f669ad603cffb7d62443 *man/CO.Rd 773fc6f0716f64b4c72ba74b7d4026c3 *man/CO2.Rd 0b2084796d83050caa452ffb7a36f2f9 *man/CovarianceUpper.Rd 217bf84d6760dea6343a0437621f14b9 *man/Exponential.Rd 989407e8c59c2f9ee0e3c3e38a12eb69 *man/FORTRAN.internal.Rd 5822339d11adbf9bdbb83b1cef0d419e *man/Krig.Amatrix.Rd 07aba5c4c8a045737618478e7834f884 *man/Krig.Rd 910beadadd7c1c132805af04561b7d9d *man/Krig.engine.default.Rd 0b932328b059bf1fe91bd606698d4cf0 *man/Krig.null.function.Rd ddfae45ee771871e9662a1d55648810a *man/Krig.replicates.Rd ae813bce34d616555baac3c9762a4d7c *man/KrigFindLambda.Rd 077e0e588d936f4804abdceb25a3bdbb *man/NorthAmericanRainfall.Rd 631d577f4de2b89bc6362a313402a9f2 *man/QTps.Rd d4405220ee5481516fd232a8578e4e1e *man/RCMexample.Rd 87fb4eac04cc349cdab3352741b548a7 *man/RMprecip.Rd f92faa233c9dad8ea931925ba69c5f00 *man/Tps.Rd 9b48c979432a7173ae580ece8a50149c *man/US.Rd 69f2ae7429b9040fc9ede655c095a5a3 *man/US.dat.Rd 44e3525f7d377bef82360da60df22f5f *man/Wendland.Rd 497fd27552e1bdaecc9ce59ab74bd60b *man/WorldBank.Rd 781721fa5c385f21b0c71d20f7b5ca00 *man/add.image.Rd f9dc0df4497c483aee13e0fa1f595abc *man/arrow.plot.Rd 5812da7ca74d9e69a574ba52f8bc1957 *man/as.image.Rd 5b6675bd59dcace2d8f7394b1a88b2f0 *man/as.surface.Rd 1db2484bd42d8c8f51322eb7eac90d88 *man/bplot.Rd 453eb5500600f10e48fdd47869b912f7 *man/bplot.xy.Rd c09d33e9ea55c213398a56323a2c470a *man/colorbar.plot.Rd 8ece1cf5b1958d4390690e52f75f59c0 *man/compactToMat.Rd 6b9e6fd493b1aeb0d0b3d342cdb9b672 *man/cover.design.Rd 3eff0af3e4b7e3c0c1b091e301baa70a *man/drape.plot.Rd c065aa72e5c50ccb130c7b46fa74b509 *man/envelopePlot.Rd eda36f37e3e8b270ab40f96f870a9966 *man/exp.cov.Rd 18778983557c3638e477d5592be7a70c *man/fields-internal.Rd a0c47e6e35a5789303f6cbb15fc64b23 *man/fields-stuff.Rd 41cba24aed840da0888ac51c9a6e546d *man/fields.Rd f16a46f0e5015fddedf195c7d2fd81d9 *man/fields.grid.Rd c6098c47928866de56305047e13ec21b *man/fields.hints.Rd cadcdadbaf2b1d0f5f9f346ee7ed1580 *man/fields.tests.Rd f6db66a3baad622524408f2bb35ef045 *man/flame.Rd c723620b8a3dae611e7e6067f791cd12 *man/glacier.Rd f36fe2384583dbc871ec79a588a99e04 *man/grid.list.Rd 5b6ecc3db01b43188d8fbb3f0cd39ea7 *man/image.cov.Rd 9e327593a77b9ef1d4d02dfcbfeaa4db *man/image.plot.Rd 14eb559d295292d59253e93e905c37df *man/image.smooth.Rd 2696c8228a05be79083664a7844f3c89 *man/image2lz.Rd fee9e5f5d542c889c1e985e991c41c78 *man/imagePlot.Rd 114c48019ba1218b8b7b0505e4cbd6ef *man/interp.surface.Rd 585e1c859a537caf7cd9c5e6d710135c *man/lennon.Rd de95c33dbe2ffbd95ed58684d9411fec *man/mKrig.Rd 42c48f4625ce805c86b396fdb043fc33 *man/mKrigMLE.Rd 4eece28a995d79abae11a710a3373050 *man/minitri.Rd 12db8c555d6e2bba66dff59a06596642 *man/offGridWeights.Rd bc221a80dd29b05c400a046d408bb00c *man/ozone.Rd 2126b317380e8af3fbd65382815dda91 *man/ozone2.Rd 677e1bbea1ff85f29e847de2635f7a97 *man/plot.Krig.Rd 7993354a05d9428696b3792c671c4ade *man/plot.surface.Rd ece8eba4a57ef96fc1279799c39acd04 *man/poly.image.Rd 73e9d606b0876e0e645765d53a43ce74 *man/predict.Krig.Rd 34fcb22b1aee15520db88f42dc1d9c93 *man/predictSE.Krig.Rd 547534bdac9de07a9e6e62b990b68913 *man/predictSurface.Rd 0c96bca989df753e8444aee910eb4989 *man/print.Krig.Rd 955778c8c72f9d2e99a42e17325f2a7d *man/pushpin.Rd 0c3a114ba00cacdf2f661a94e3192833 *man/qsreg.Rd cbcff1cd9ec5749dc3ff41b5cada4106 *man/quilt.plot.Rd fcaa3f68e1ff7d6b88ba43e6db63cec7 *man/rat.diet.Rd 9239701de5d1fe697ebbd95c3434992f *man/rdist.Rd 6f68a6517b54bcbabdc0522031b07277 *man/rdist.earth.Rd 23a563ade89b2454808fa5f840980cea *man/registeredC.Rd 732065230d310f168aee033942783e1b *man/ribbon.plot.Rd c7440c8135721c21c8d8d99d3a9ccddc *man/set.panel.Rd 1f0b6e0aaad1eb6ea87ee4abe611222d *man/sim.Krig.Rd bc2a1769a6e18eb35b340c01aa180651 *man/sim.rf.Rd bde530bdeb2227f5f83370ac8ed7f746 *man/smooth.2d.Rd 1266570bc054d42eab4166974d64bc03 *man/spam2lz.Rd e8dc888aaa8250e4e637156642583055 *man/spatialProcess.Rd 683ad101dfeb5d0dcf91c20c068836bb *man/splint.Rd c05a09ecdb17ec89311fd4472fd871ae *man/sreg.Rd 08a12dcdabb4de5aa1be3ae9ebb454c0 *man/stats.Rd d53b9809da90cc52b3d51c0b75968313 *man/stats.bin.Rd c0debf68c982530596979689dfc4a79d *man/summary.Krig.Rd 9f3041d57d8c30869b228d4f586047e5 *man/summary.ncdf.Rd f0e07111449593c0b89245e52c1edce2 *man/supportsArg.Rd ce321b57faa8d8aacf04a27cab064043 *man/surface.Krig.Rd df383a861fecf4ce00cdbdd7517582a1 *man/tim.colors.Rd 29ab45677f4fff62d93bca09fc1c184d *man/transformx.Rd 150c0f35752032b0bf5a0ae63606a484 *man/vgram.Rd c46568a90968215e449c0c39e950df16 *man/vgram.matrix.Rd 7d8a077ea70c873bbe9b9c02cf261153 *man/world.Rd 09ab233a39cb7f8ca0d296a4de8d3d36 *man/xline.Rd 54759109d8ac32a1723b91365c2d4ec5 *man/yline.Rd d6621f72345f8b583ba2fc844e436ce1 *src/ExponentialUpperC.c 8a4db0a4a45d07aaa6b52eef529e8557 *src/RdistEarth.c beec7a2c592eb85f1e3a62c51cb4c065 *src/addToDiagC.c ca7ce08599c43df98991056e5555f849 *src/compactToMatC.c 66b9c403ae8577007f8ffbd90f9fad23 *src/expfnC.c 5e23a58052f7141aff8e63f23035d25f *src/fieldsF77Code.f e57a51e3a25af0f33aa1229d07f8f9db *src/init.c d17d031b0f8f86066dba6f029e892498 *src/multebC.c cc0ae12f403309c82568f081fc11f705 *src/rdistC.c 771f86f0e7cb1d4c98ae3b898d417190 *tests/Krig.Z.test.R 95dcc2d3ec1b44d524adff03ed92f5e5 *tests/Krig.Z.test.Rout.save 57e32be66852dcbbf3ff84d1cbac9d9f *tests/Krig.se.W.R f67b453035ba1922fb057099631ec81d *tests/Krig.se.W.Rout.save dc0bcd164845369fd2944f832e630ee8 *tests/Krig.se.grid.test.R 08f6f3a38bd0bab8b0bd0bc2cc1ffb94 *tests/Krig.se.grid.test.Rout.save c4989e7ba0a7e2975ec71cc75a730497 *tests/Krig.se.test.R f1245f4d9c88bff5ffa210dac22bb1e5 *tests/Krig.se.test.Rout.save 772ae392dc2838385f8a8d4d97692a3f *tests/Krig.test.R 0a67cbc61f3a63f9a1b6b26625d26a08 *tests/Krig.test.Rout.save 3c56eafe8e40749a54326ff2ad071635 *tests/Krig.test.W.R f4442bd717015c1b97808c7bf7e46736 *tests/Krig.test.W.Rout.save de8043abbe7a869b5833d6fb3d2349fe *tests/KrigGCVREML.test.R f7af28e763e69137d5e58e2bd8af3633 *tests/KrigGCVREML.test.Rout.save 7b41f648b174fab07d77dc75a41271d7 *tests/Likelihood.test.R 9340d2cf2ea9666e43db490bb8ddb217 *tests/Likelihood.test.Rout.save 4dfb0c782e2d935ffe10b7d5e0b273e5 *tests/SEFixedParameters.R 96c0335e5e8f539a2c47275f066965a2 *tests/SEFixedParameters.Rout.save 51481bdfda6a88d5a0a5a83b91e0532d *tests/Tps.test.R a18aff0328a45c4b816deaad6365e2d2 *tests/Tps.test.Rout.save ed29aae913ae40698bb15b203e07969f *tests/Wend.test.R 2241010ce5f53600484c6932342d5d9c *tests/Wend.test.Rout.save 500ef3b605d4d7da6d45daba62222f2c *tests/cmdfile a3ce8e6540266112f80be23b2d897c83 *tests/cov.test.R 1560516372d1904677032e5720f3592f *tests/cov.test.Rout.save f9736781a6e0240662fb30e0f6aa6483 *tests/cov.test2.R d9b4f310d687f4b1069cfc7621f1c0c5 *tests/cov.test2.Rout.save 0d86fa77ee39945333ecc192f4e075fb *tests/derivative.test.R 1a122ef0241e6e17faab2a188da97b6f *tests/derivative.test.Rout.save 3edaa5350496babe46e496ea845fe017 *tests/diag.multiply.test.R 06acea0985d2af4556005c69fce3cccd *tests/diag.multiply.test.Rout.save 840017376ecfe3cceac8767746c9552a *tests/evlpoly.test.R 5d9a99b206da870d1294fb6c8bfc56a0 *tests/evlpoly.test.Rout.save c5cc3f636ebe475850cb577111d256c8 *tests/fastTpsPredict.test.R 16d386b745a7c6efa353ec06202cb2b3 *tests/fastTpsPredict.test.Rout.save d41d8cd98f00b204e9800998ecf8427e *tests/mKrig.R e156596edd8c92461bd996daafbee609 *tests/mKrig.Z.R a3d6bfee43674ccbb9fe36994b843f17 *tests/mKrig.Z.Rout.save 00dc3b9ea109de0dd48d86ff1288386f *tests/mKrig.parameters.test.R a43f593658a7cf0ae541173b32293d45 *tests/mKrig.parameters.test.Rout.save 55e7e70045a8ce16d88a4ea1cfe7769b *tests/mKrig.se.test.R 52402aba74fb6437ccf20c27fb46fda4 *tests/mKrig.se.test.Rout.save 9e40393a5f1edeb8f930999da28aaee5 *tests/mKrig.test.R 04826e6db0d4c5d9d9606c90ec7c21d4 *tests/mKrig.test.Rout.save cb71af6f2c1701fc685b5e8ab69d3dda *tests/mKrigMLETest.R 9c6090fb3a0b857998a1a6228066929c *tests/mKrigMLETest.Rout.save 0858b0fa7889742541819c3ef69b2c28 *tests/mKrigREMLTest.R 7800e931fdce01f339c2d6761d898868 *tests/mKrigREMLTest.Rout.save 21c68107c1122b23f00147519561d2f4 *tests/misc.test.R 563e4a4fafcd6e18aad0ff92e10d1dc9 *tests/misc.test.Rout.save 8d944068971da3b9499c66624a4061a1 *tests/offGridWeights.test.R b3c7e6f182e7791d1f949dcb7900c158 *tests/offGridWeights.test.Rout.save f6e1d0439badd31aebe4186af2b1ef5d *tests/offGridWeightsNEW.test.Rout.save dff29b03b0f0a2ef23ca09de2a88b52c *tests/offGridWeightsNew.test.R d182574531e410b3a9f56b9ae638b8da *tests/spam.test.R 05bdbc518bfb21eee6061dbfc3520bf9 *tests/spam.test.Rout.save f0aace807398a09022a32fe35861862f *tests/sreg.test.R ae6f71c115017a67c9b4e89de0390d28 *tests/sreg.test.Rout.save dd0c675ddc196904b234bf57fbaeb789 *tests/testZCommon.R 09542c527bc8990b7483c0ed71e41c96 *tests/testZCommon.Rout.save 371acfa059289e24fc401773fe76495a *tests/vgram.test.R 9f3841f50a6bc31eca277587adc7d8eb *tests/vgram.test.Rout.save 371acfa059289e24fc401773fe76495a *tests/vgram2.test.R 91e78370c8254cb54d2cfe31e11529c7 *tests/vgram2.test.Rout.save fields/R/0000755000175100001440000000000014676551716011761 5ustar hornikusersfields/R/poly.image.R0000644000175100001440000000767514627453256014163 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER poly.image.regrid <- function(x) { ################################## temp.addcol <- function(X) { N <- ncol(X) # add extra columns to X, on either side cbind(X[, 1] - (X[, 2] - X[, 1]), X, (X[, N] - X[, (N - 1)]) + X[, N]) } ############################### # find approximate grid with z values at centers M <- nrow(x) N <- ncol(x) # new x matrix that is the midpoints of original grid points. x <- (x[, 1:(N - 1)] + x[, 2:N])/2 x <- (x[1:(M - 1), ] + x[2:M, ])/2 # now add extra rows and columns on all sides x <- t(temp.addcol(x)) t(temp.addcol(x)) } poly.image <- function(x, y, z, col = tim.colors(64), breaks, transparent.color = "white", midpoint = FALSE, zlim = range(z, na.rm = TRUE), xlim = range(x), ylim = range(y), add = FALSE, border = NA, lwd.poly = 1, asp=NA, ...) { # check dimensions Dx <- dim(x) Dy <- dim(y) if (any((Dx - Dy) != 0)) { stop(" x and y matrices should have same dimensions") } # check whether grid and z values coincide. Dz <- dim(z) if (all((Dx - Dz) == 0) & !midpoint) { # expand grid in a linear way so that the z are not # grid box centers x <- poly.image.regrid(x) y <- poly.image.regrid(y) } # figure out the breaks make sure that missing breaks are passed as NA. if (missing(breaks)) { breaks <- NA } # code values in z based on range to colors. # if midpoint is true z values will be averaged first zcol <- drape.color(z, col = col, midpoint = midpoint, zlim = zlim, transparent.color = transparent.color, breaks = breaks)$color.index # blank if not adding to an exising plot if (!add) { plot(xlim, ylim, type = "n",asp=asp, ...) } N <- ncol(x) Nm1 <- N - 1 M <- nrow(x) Mm1 <- M - 1 for (i in (1:Mm1)) { # draw polygons one row at a time # uses feature of polygon to draw multiple regions with NAs # marking start and end. xp <- cbind(x[i, 1:Nm1], x[i + 1, 1:Nm1], x[i + 1, 2:N], x[i, 2:N], rep(NA, Nm1)) yp <- cbind(y[i, 1:Nm1], y[i + 1, 1:Nm1], y[i + 1, 2:N], y[i, 2:N], rep(NA, Nm1)) xp <- c(t(xp)) yp <- c(t(yp)) pcol <- c(zcol[i, 1:Nm1]) # draw each poly with different color including the border # if the border color has not been specified. # this will avoid missing some space on some output devices. # one can also crank down width of border lines to avoid rounded corners polygon(xp, yp, border = pcol, col = pcol, lwd = lwd.poly) # fill in border with different color if it is not an NA. if (!is.na(border)) { # this does not quite work # borderWithNA<- ifelse( pcol == transparent.color, NA,border) polygon(xp, yp, border = border, col = NA, lwd = lwd.poly) } } } fields/R/plot.vgram.matrix.R0000644000175100001440000000300614627453256015473 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "plot.vgram.matrix" <- function(x, ...) { ind <- x$ind ir <- range(ind[, 1]) jr <- range(ind[, 2]) # x and y grid values temp.list <- list(x = (ir[1]:ir[2]) * x$dx, y = (jr[1]:jr[2]) * x$dy) # fill in a matrix with variogram values ind2 <- cbind(ind[, 1] - min(ind[, 1]) + 1, ind[, 2] - min(ind[, 2]) + 1) temp <- matrix(NA, nrow = max(ind2[, 1]), ncol = max(ind2[, 2])) temp[ind2] <- x$vgram.full temp.list$z <- temp # plot it! image.plot(temp.list, ...) } fields/R/KrigFindLambda.R0000644000175100001440000002271314627453255014702 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "KrigFindLambda" <- function(out, lambda.grid = NA, cost = 1, nstep.cv = 200, rmse = NA, verbose = FALSE, tol = 1e-05, offset = 0, y = NULL, give.warnings = TRUE) { nt <- out$nt np <- out$np N <- out$N D <- out$matrices$D # Yet another monster function called by Krig # but there just many simple steps ... # # if a y data vector is not supplied then # use the one in the Krig object if (is.null(y)) { u <- out$matrices$u tauHat.pure.error <- out$tauHat.pure.error pure.ss <- out$pure.ss } else { #with new data need to update some statistics. out2 <- Krig.make.u(out, y = y) u <- out2$u tauHat.pure.error <- out2$tauHat.pure.error pure.ss <- out2$pure.ss } if (verbose) { cat("u used:", fill = TRUE) print(u) } # # generate a reasonable grid of lambda based on equally spaced # effective degrees of freedom if (is.na(lambda.grid[1])) { temp.df <- seq(nt, (np - offset) * 0.95, , nstep.cv) temp.df[1] <- temp.df[1] + 0.001 for (k in 1:nstep.cv) { lambda.grid[k] <- Krig.df.to.lambda(temp.df[k], D) } } # make sure that the grid is in sorted order lambda.grid <- sort(lambda.grid) nl <- length(lambda.grid) nd <- length(D) V <- V.model <- V.one <- lplike <- trA <- tauHat <- rep(NA, nl) Dl <- rep(NA, nd) # # this is small little list used to pass information to the # objective functions info <- list(matrices = list(D = D, u = u), N = N, nt = nt, cost = cost, pure.ss = pure.ss, tauHat.pure.error = tauHat.pure.error, offset = offset) # # loop over lambda values for the grid search for (k in 1:nl) { # # all the wonderful things calculated for each lambda # note the use of the info list. V[k] <- Krig.fgcv(lambda.grid[k], info) V.one[k] <- Krig.fgcv.one(lambda.grid[k], info) V.model[k] <- Krig.fgcv.model(lambda.grid[k], info) lplike[k] <- Krig.flplike(lambda.grid[k], info) tauHat[k] <- sqrt(Krig.fs2hat(lambda.grid[k], info)) trA[k] <- Krig.ftrace(lambda.grid[k], D) } # # reformat as a matrix with all these values. gcv.grid <- cbind(lambda.grid, trA, V, V.one, V.model, tauHat, lplike) gcv.grid <- as.data.frame(gcv.grid) names(gcv.grid) <- c("lambda", "trA", "GCV", "GCV.one", "GCV.model", "tauHat", "-lnLike Prof") # find minima over grid ifelse used to avoid 0 length vector from which.min IMIN<- rep( NA, 6) IMIN[1]<- which.min( gcv.grid$GCV ) IMIN[2]<- ifelse( is.na(tauHat.pure.error), NA, which.min(gcv.grid$GCV.model) ) IMIN[3]<- which.min( gcv.grid$GCV.one) if( is.na( rmse)){ IMIN[4] <- NA } else{ rangeShat<- range( gcv.grid$tauHat) IUpcross<- max( (1:nl)[gcv.grid$tauHat< rmse] ) IMIN[4]<- ifelse( (rangeShat[1]<= rmse)&(rangeShat[2] >=rmse), IUpcross, NA) } IMIN[5]<- ifelse( is.na(tauHat.pure.error), NA, which.min(abs(gcv.grid$tauHat-tauHat.pure.error)) ) IMIN[6]<- which.min( gcv.grid[["-lnLike Prof"]]) # NOTE IMIN indexes from smallest lambda to largest lambda in grid. warningTable<- data.frame( IMIN, IMIN == nl, IMIN==1, gcv.grid$lambda[IMIN], gcv.grid$trA[IMIN], row.names = c("GCV","GCV.model", "GCV.one", "RMSE", "pure error", "REML") ) warning<- (warningTable[,2]|warningTable[,3])& (!is.na(warningTable[,1])) indRefine<- (!warningTable[,2]) & (!warningTable[,3]) & (!is.na(warningTable[,1])) warningTable<- cbind( warning, indRefine, warningTable ) names( warningTable)<- c("Warning","Refine","indexMIN", "leftEndpoint", "rightEndpoint", "lambda","effdf") # now optimze the search producing refined optima if (verbose) print(gcv.grid) # setup output matrix for refined values lambda.est <- matrix(NA, ncol = 6, nrow = 6, dimnames = list( c("GCV", "GCV.model", "GCV.one", "RMSE", "pure error", "REML"), c("lambda", "trA", "GCV", "tauHat","-lnLike Prof" , "converge"))) # fill in grid search estimates for( k in 1:6){ if( !is.na(IMIN[k])){ lambda.est[k,1]<- gcv.grid$lambda[IMIN[k]] } } # # now step through the many different ways to find lambda # This is the key to these choices: # 1- the usual GCV proposed by Craven/Wahba # 2- GCV where data fitting is collapsed to the mean for # each location and each location is omitted # 3- True leave-one-out even with replicated observations # 4- Match estimate of tau to external value supplied (RMSE) # 5- Match estimate of tau from the estimate based the # pure error sum of squares obtained by the observations # replicated at the same locations # 6- Maxmize the restricted maxmimum likelihood (REML) # standard GCV w/o replicates if( verbose){ print( warningTable) } if(indRefine[1]){ starts <- lambda.grid[IMIN[1] + c(-1,0,1)] out <- golden.section.search(ax=starts[1],bx=starts[2],cx=starts[3], f=Krig.fgcv, f.extra = info, tol = tol) lambda.est[1,1]<- out$x lambda.est[1,6]<- out$iter } if( indRefine[2]) { starts <- lambda.grid[IMIN[2] + c(-1,0,1)] out <- golden.section.search(ax=starts[1],bx=starts[2],cx=starts[3], f=Krig.fgcv.model, f.extra = info, tol = tol) lambda.est[2,1]<- out$x lambda.est[2,6]<- out$iter } if( indRefine[3]) { starts <- lambda.grid[IMIN[3] + c(-1,0,1)] out <- golden.section.search(ax=starts[1],bx=starts[2],cx=starts[3], f=Krig.fgcv.one, f.extra = info, tol = tol) lambda.est[3, 1] <-out$x lambda.est[3,6]<- out$iter } if ( indRefine[6] ){ starts <- lambda.grid[IMIN[6] + c(-1,0,1)] out <- golden.section.search(ax=starts[1],bx=starts[2],cx=starts[3], f=Krig.flplike, f.extra = info, tol = tol) lambda.est[6,1]<- out$x lambda.est[6,6]<- out$iter } if ( indRefine[4] ) { guess<- gcv.grid$lambda[IMIN[4]] lambda.rmse <- find.upcross(Krig.fs2hat, info, upcross.level = rmse^2, guess = guess, tol = tol * rmse^2) lambda.est[4, 1] <- lambda.rmse } # # matching estimate of tau from reps. if ( indRefine[5] ) { guess <- gcv.grid$lambda[IMIN[5]] lambda.pure.error <- find.upcross(Krig.fs2hat, info, upcross.level = tauHat.pure.error^2, guess = guess, tol = tol * tauHat.pure.error^2) lambda.est[5, 1] <- lambda.pure.error } # # OK done with all six methods # NOTE that not all may # fill in return matrix with all the right stuff # fill in REML results lam.ml <- lambda.est[6, 1] lambda.est[6, 2] <- Krig.ftrace(lam.ml, D) lambda.est[6, 3] <- Krig.fgcv(lam.ml, info) lambda.est[6, 4] <- sqrt(Krig.fs2hat(lam.ml, info)) lambda.est[6, 5] <- Krig.flplike(lam.ml, info) # fill in GCV results for (k in 1:5) { lam <- lambda.est[k, 1] if (!is.na(lam)) { lambda.est[k, 2] <- Krig.ftrace(lam, D) if (k == 1 | k > 3) { lambda.est[k, 3] <- Krig.fgcv(lam, info) lambda.est[k, 5] <- Krig.flplike(lam, info) } if (k == 2) { lambda.est[k, 3] <- Krig.fgcv.model(lam, info) } if (k == 3) { lambda.est[k, 3] <- Krig.fgcv.one(lam, info) } lambda.est[k, 4] <- sqrt(Krig.fs2hat(lam, info)) } } # Note that the estimate by default is # REML == restricted maximum likelihood. if( give.warnings & any(warningTable$Warning)){ cat("Methods at endpoints of grid search:", fill=TRUE) print(warningTable[warningTable$Warning,]) } list(gcv.grid = gcv.grid, lambda.est = lambda.est, info=info, D=D, warningTable=warningTable) } fields/R/plot.sreg.R0000644000175100001440000000477214627453256014027 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "plot.sreg" <- function(x, digits = 4, which = 1:4, ...) { out <- x if (any(which == 1)) { plot(out$x, out$y, ylab = "predicted", xlab = " X", bty = "n", ...) matlines(out$predicted$x, out$predicted$y, lty = 1) } if (any(which == 2) & length(out$lambda) == 1) { plot(out$fitted.values, out$residuals, ylab = "residuals", xlab = " predicted values", bty = "n", ...) yline(0) } if (any(which == 3)) { if (nrow(out$gcv.grid) > 1) { # trim off + infinity due to pole in the denominator of GCV function #with cost ind <- out$gcv.grid[, 3] < 1e+19 out$gcv.grid <- out$gcv.grid[ind, ] yr <- range(unlist(out$gcv.grid[, 3:5]), na.rm = TRUE) plot(out$gcv.grid[, 2], out$gcv.grid[, 3], xlab = "Eff. parameters", ylab = " GCV function", bty = "n", ylim = yr, log = "y", ...) lines(out$gcv.grid[, 2], out$gcv.grid[, 4], lty = 2) lines(out$gcv.grid[, 2], out$gcv.grid[, 5], lty = 1) xline(out$eff.df) title("GCV-points , solid- GCV model,\ndashed- GCV one", cex = 0.6) } } if (any(which == 4)) { if (length(out$lambda) == 1) { hist(out$residuals, xlab = "Residuals", main = "") } else { bplot(out$residuals, names = format(round(out$trace, 1)), xlab = "eff df") title("Residuals") } } } fields/R/simLocal.spatialProcess.R0000644000175100001440000001734114627453256016644 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "simLocal.spatialProcess" <- function(mKrigObject, predictionGridList = NULL, simulationGridList = NULL, gridRefinement = 1, np = 2, M = 1, nx = 80, ny = 80, verbose = FALSE, delta = NULL, giveWarnings=TRUE, fast = FALSE, NNSize = 5, ...) # # NOTE throughout $x is first dimension of the grid in a gridList but also # $x in mKrig object is the _matrix_ of locations # { nObs<- nrow( mKrigObject$x) sDimension<- ncol(mKrigObject$x) if ( sDimension > 2) { stop("conditional simulation only implemented for 1 and 2 dimensions") } if( sDimension == 1 & fast ){ stop("fast prediction not implemented in 1 D") } # create prediction set of points based on what is passed # and if the grid is not specified if (is.null(predictionGridList)) { # these adjustments insure there are enough grid # points beyond the range of the locations. # Put xr[1] in the middle of the npth grid box # and xr[2] in to the nx - np predictionGridList<- makePredictionGridList( mKrigObject=mKrigObject, nx=nx, ny=ny, np=np ) } nx <- length(predictionGridList$x) ny <- ifelse(sDimension>=2, length(predictionGridList$y) ,1 ) # # check that predictionGrid is equally spaced # this is needed because of the fast simulation algorithm checkPredictGrid( predictionGridList) # # if (is.null(simulationGridList)) { simulationGridList<- makeSimulationGrid( predictionGridList, gridRefinement) } # # # # # round off the grids so that they match to 8 digits # # that way prediction grid is precisely a subset of # # simulation grid predictionGridList$x<- signif(predictionGridList$x, 8) simulationGridList$x<- signif(simulationGridList$x, 8) if( sDimension ==2){ predictionGridList$y<- signif(predictionGridList$y, 8) simulationGridList$y<- signif(simulationGridList$y, 8) } indexSubset<- list( x=match(predictionGridList$x, simulationGridList$x)) # # shortcut to avoid if statement for predicted in for # # loop # indexSubset$y = rep(1, length( indexSubset$x) ) if( sDimension ==2){ indexSubset$y=match(predictionGridList$y, simulationGridList$y) } else{ indexSubset$y=1 } # # core covariance parameters from spatial model tau <- mKrigObject$summary["tau"] sigma2 <- mKrigObject$summary["sigma2"] aRange<- mKrigObject$summary["aRange"] Covariance <- mKrigObject$args$Covariance # wipe out some extraneous components that are not used by the Covariance # function. covArgs0 <- mKrigObject$args covArgs0$Covariance<- NULL covArgs0$distMat <- NULL covArgs0$onlyUpper<- NULL covArgs0$aRange<- NULL # # set up various arrays for reuse during the simulation nObs <- nrow(mKrigObject$x) # timeCESetup<- system.time( # set up object for simulating on a grid using circulant embedding CEObject<- circulantEmbeddingSetup(simulationGridList, cov.function = mKrigObject$cov.function, cov.args = mKrigObject$args, delta = delta ) )[3] # if (verbose) { cat("dim of full circulant matrix ", CEObject$M, fill = TRUE) } # # weights crucial to fast off grid simulation # timeOffGridSetup <- system.time( offGridObject <- offGridWeights( mKrigObject$x, simulationGridList, mKrigObject, np = np, giveWarnings = giveWarnings ) )[3] # # find conditional mean field from initial fit hHat <- predictSurface(mKrigObject, gridList = predictionGridList, fast=fast, NNSize= NNSize, ...)$z sdNugget<- tau* sqrt(1/mKrigObject$weights) # # setup output array to hold ensemble # in 1D case ny=1 # out <- array(NA, c( nx, ny, M)) t1<-t2<- t3<- rep( NA, M) ########################################################################################## ### begin the big loop ########################################################################################## for (k in 1:M) { if( k%%10 ==0 ){ cat(k, " ") } # simulate full field t1[k]<- system.time( hTrue<- as.matrix(sqrt(sigma2) * circulantEmbedding(CEObject)) )[3] # NOTE: fixed part of model (null space) does not need to be simulated # because the estimator is unbiased for this part. # the variability is still captured because the fixed part # is still estimated as part of the predict step below # t2[k]<- system.time( hData <- offGridObject$B%*%c(hTrue) + (offGridObject$SE)%*%rnorm(nObs) )[3] ySynthetic <- hData + sdNugget*rnorm(nObs) # # predict at grid using these data # and subtract from synthetic 'true' value # t3[k]<-system.time( spatialError <- predictSurface.mKrig(mKrigObject, gridList = predictionGridList, ynew = ySynthetic, fast=fast, NNSize= NNSize, giveWarnings = FALSE, ...)$z )[3] # add the error to the actual estimate (conditional mean) # subset hTrue to the prediction grid # note for 1D $y is 1. out[,, k] <- hHat + (spatialError - hTrue[indexSubset$x,indexSubset$y]) } cat(" ", fill=TRUE) return(list(x = predictionGridList$x, y = predictionGridList$y, z = out, hHat= hHat, timing=c( CESetup=timeCESetup, OffSetup=timeOffGridSetup, CE = median(t1), OffGrid = median(t2), mKrig = median(t3) ), gridRefinement=gridRefinement, M= CEObject$M, #simulationGridList= simulationGridList, timingFull = cbind( t1, t2,t3), call = match.call()) ) } fields/R/offGridWeights1D.R0000644000175100001440000001560614627453256015210 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER\ offGridWeights1D<-function(s, gridList, np=2, mKrigObject=NULL, Covariance=NULL, covArgs=NULL, aRange=NULL, sigma2=NULL, giveWarnings=TRUE, debug=FALSE ){ # # function assumes the grid is # integer locations and 1:m by 1:n # grid and off grid locations need to be transformed to that scale # # also assumes the grid extends two cells beyond any off # e.g. s coordinates should be between # 2 and m-3 and 2 and n-3 # # If mKrigObject (result of fitting model) is given # extract all the covariance information from it. # For the Matern family besides aRange and sigma2 is the # smoothness if( !is.null( mKrigObject)){ sigma2<- mKrigObject$summary["sigma2"] aRange<- mKrigObject$summary["aRange"] Covariance<- mKrigObject$args$Covariance if( is.null(Covariance)){ Covariance<- "Exponential" } covArgs<-mKrigObject$args # some R arcania -- strip out all arguments used by say stationary.cov # but not used by the Covariance function # Do not want to call the covariance function with these extra args. if( !is.null( covArgs) ){ argNames<- names( as.list( get(Covariance))) argNames<- argNames[ -length(argNames)] ind<- match( names(covArgs), argNames) covArgs[is.na( ind)] <- NULL } } m<- length( gridList$x) dx<- gridList$x[2]- gridList$x[1] M<- nrow( s) # lower left corner of grid box containing the points s0<- cbind( trunc( (s[,1]- gridList$x[1] )/dx) + 1 ) # index of locations when 2D array is unrolled s0Index<- as.integer( s0[,1]) # check for more than one obs in a grid box tableLoc<- table( s0Index) allSingle<- all( tableLoc ==1 ) theShift<- (0:(2*np-1)) - (np-1) xshift<- theShift nnX<- cbind( xshift) nnXCoords<- cbind( xshift*dx) # # sX sX<- s0[,1] + matrix( rep( xshift,M), nrow=M, ncol=(2*np), byrow=TRUE) if( any( (sX < 1)| (sX>m)) ) { stop( "sX outside range for grid") } # indices of all nearest neighbors for unrolled vector. # this is an M by (2*np)^2 matrix where indices go from 1 to m*n # these work for the unrolled 2D array # sIndex<- sX # differences between nn and the off grid locations # for both coordinates # convert from integer grid to actual units. differenceX<- (sX-1)*dx + gridList$x[1] - s[,1] dAll<- abs(differenceX) # pairwise distance among nearest neighbors. dNN<- rdist(nnXCoords, nnXCoords) # cross covariances Sigma21Star<- sigma2* do.call(Covariance, c(list(d = dAll/aRange), covArgs)) # covariance among nearest neighbors Sigma11 <- sigma2* do.call(Covariance, c(list(d = dNN/aRange), covArgs)) Sigma11Inv <- solve( Sigma11) # each row of B are the weights used to predict off grid point B <- Sigma21Star%*%Sigma11Inv # create spind sparse matrix # note need to use unrolled indices to refer to grid points ind<- cbind( rep(1:M, each= (2*np) ), c( t( sIndex))) ra<- c( t( B)) da<- c( M, m ) spindBigB<- list(ind=ind, ra=ra, da=da ) # now convert to the more efficient spam format BigB<- spind2spam( spindBigB) # # prediction variances # use cholesky for more stable numerics cholSigma11Inv<- chol(Sigma11Inv) # create spind sparse matrix of sqrt variances # or covariances to simulate prediction error. w <- Sigma21Star%*%t(cholSigma11Inv) predictionVariance <- sigma2 - rowSums(w^2) # easiest case of just one obs in each grid box # sigma2 - diag(Sigma21Star%*%Sigma11Inv%*%t(Sigma21Star) ) spindObjSE<- list(ind=cbind( 1:M, 1:M), ra=sqrt(predictionVariance), da= c( M,M) ) BigSE<- spind2spam( spindObjSE) if(allSingle){ duplicateIndex<-NA } if( !allSingle){ indDuplicates<- (tableLoc > 1) if( giveWarnings){ cat("Found", sum(indDuplicates), "grid box(es) containing more than 1 obs location", fill=TRUE) } duplicateIndex<-names( tableLoc) [indDuplicates] duplicateIndex<- as.numeric(duplicateIndex) # duplicateIndex is the unrolled indices for all grid boxes with # 2 or more observations # following code is written assuming there are not many of these. nBox<- length( duplicateIndex) indDupSE<-NULL raDupSE<- NULL for( k in 1:nBox){ theBox<- duplicateIndex[k] # the obs that are in this box indBox<- which(s0Index == theBox) nDup<- length( indBox) dDup<- rdist( s[indBox,], s[indBox,]) sigmaMarginal<- sigma2* do.call(Covariance, c(list(d = dDup/aRange), covArgs)) A<- w[indBox,] localSE2<- sigmaMarginal - A%*%t(A) localSE<- t(chol( localSE2 )) # localSE %*% rnorm(nDup) will generate correct corrected # prediction errors for obs in this grid box ("theBox") indTmp<- cbind(rep( indBox, nDup), rep( indBox, each=nDup) ) raTmp<- c(localSE) indDupSE<- rbind( indDupSE,indTmp) raDupSE<- c( raDupSE, raTmp) } #print( dim(indDupSE )) #print( length(raDupSE)) BigSE[indDupSE]<- raDupSE } if( debug){ return( list( B= BigB, SE= BigSE, predictionVariance = predictionVariance, Sigma11Inv = Sigma11Inv, Sigma21Star= Sigma21Star, s0Index = s0Index, s0 = s0, gridX = t( (sX-1)*dx + gridList$x[1]), gridList = gridList, duplicateIndex= duplicateIndex ) ) } else{ return( list( B = BigB, SE = BigSE, predictionVariance = predictionVariance ) ) } } fields/R/summaryGCV.Krig.R0000644000175100001440000000417414627453256015036 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "summaryGCV.Krig" <- function(object, lambda, cost = 1, verbose = FALSE, offset = 0, y = NULL, ...) { out <- object nt <- out$nt np <- out$np N <- out$N D <- out$matrices$D if (is.null(y)) { u <- out$matrices$u tauHat.pure.error <- out$tauHat.pure.error pure.ss <- out$pure.ss } else { out2 <- Krig.coef(out, y) u <- out2$u tauHat.pure.error <- out2$tauHat.pure.error pure.ss <- out2$pure.ss } info <- list(matrices = list(D = D, u = u), N = N, nt = nt, cost = cost, pure.ss = pure.ss, tauHat.pure.error = tauHat.pure.error, offset = offset) if (verbose) { print(info) } lambda.est <- rep(NA, 6) names(lambda.est) <- c("lambda", "trA", "GCV", "GCV.one", "GCV.model", "tauHat") lambda.est[1] <- lambda lambda.est[2] <- Krig.ftrace(lambda, D) lambda.est[3] <- Krig.fgcv(lambda, info) lambda.est[4] <- Krig.fgcv.one(lambda, info) if (!is.na(tauHat.pure.error)) { lambda.est[5] <- Krig.fgcv.model(lambda, info) } lambda.est[6] <- sqrt(Krig.fs2hat(lambda, info)) lambda.est } fields/R/exp.simple.cov.R0000644000175100001440000000472414627453255014760 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER Exp.simple.cov <- function(x1, x2=NULL, aRange = 1, C = NA, marginal = FALSE, theta=NULL) { # this is a simple exponential covariance function # with the calling format and behaviour used in fields. # # different locations are the different rows of x1 and x2. # this function can return three different results # depending on the values of C and marginal. # The three cases: # 1) cross covaraince matrix # 2) cross covariance matrix times a vector (C) # 3) the diagonal elements of covariance matrix at locations x1. # # theta argument has been depreciated. if( !is.null( theta)){ aRange<- theta } if( !is.null(x2)){ x2<- x1 } # CASE 1: if (is.na(C[1]) & !marginal) { # rdist finds the cross distance matrix between the # locations at x1, x2. # return(exp(-rdist(x1, x2)/aRange)) } # CASE 2: # or return multiplication of cov( x2,x1) with vector C if (!is.na(C[1])) { return(exp(-rdist(x1, x2)/aRange) %*% C) # # if the rows of X1 are large # this line could be replaced by a call to C or FORTRAN # to make the multiply use less memory. # # there are also other algorithms for fast multiplies when # X2 is on a grid. # } # CASE 3 # return marginal variance (in this case it is trivial a constant vector # with 1.0) if (marginal) { return(rep(1, nrow(x1))) } } fields/R/fields.rdist.near.R0000644000175100001440000000374614627453255015427 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER fields.rdist.near <- function(x1, x2, delta, max.points = NULL, mean.neighbor = 50) { if (!is.matrix(x1)) x1 <- as.matrix(x1) if (missing(x2)) x2 <- x1 if (!is.matrix(x2)) x2 <- as.matrix(x2) d <- ncol(x1) n1 <- nrow(x1) n2 <- nrow(x2) if (is.null(max.points)) { Nmax <- n1 * mean.neighbor } else { Nmax <- max.points } out <- .Fortran("ddfind",PACKAGE="fields", nd = as.integer(d), x1 = as.double(x1), n1 = as.integer(n1), x2 = as.double(x2), n2 = as.integer(n2), D0 = as.double(delta), ind = as.integer(rep(0, Nmax * 2)), rd = as.double(rep(-1, Nmax)), Nmax = as.integer(Nmax), iflag = as.integer(1)) N <- out$Nmax if (out$iflag == -1) { cat("temp space set at", Nmax, fill = TRUE) stop("Ran out of space, increase max.points") } return(list(ind = matrix(out$ind, Nmax, 2)[1:N, ], ra = out$rd[1:N], da = c(n1, n2))) } fields/R/exp.image.cov.R0000644000175100001440000000433714627453255014551 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "Exp.image.cov" <- function(ind1, ind2, Y, cov.obj = NULL, setup = FALSE, grid, ...) { if (is.null(cov.obj)) { dx <- grid$x[2] - grid$x[1] dy <- grid$y[2] - grid$y[1] m <- length(grid$x) n <- length(grid$y) M <- ceiling2(2 * m) N <- ceiling2(2 * n) xg <- make.surface.grid(list((1:M) * dx, (1:N) * dy)) center <- matrix(c((dx * M)/2, (dy * N)/2), nrow = 1, ncol = 2) out <- Exp.cov(xg, center, ...) out <- as.surface(xg, c(out))$z temp <- matrix(0, nrow = M, ncol = N) temp[M/2, N/2] <- 1 wght <- fft(out)/(fft(temp) * M * N) cov.obj <- list(m = m, n = n, grid = grid, N = N, M = M, wght = wght, call = match.call()) if (setup) { return(cov.obj) } } temp <- matrix(0, nrow = cov.obj$M, ncol = cov.obj$N) if (missing(ind1)) { temp[1:cov.obj$m, 1:cov.obj$n] <- Y Re(fft(fft(temp) * cov.obj$wght, inverse = TRUE)[1:cov.obj$m, 1:cov.obj$n]) } else { if (missing(ind2)) { temp[ind1] <- Y } else { temp[ind2] <- Y } Re(fft(fft(temp) * cov.obj$wght, inverse = TRUE)[ind1]) } } fields/R/fields.x.to.grid.R0000644000175100001440000000336014627453255015162 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "fields.x.to.grid" <- function(x, nx = 80, ny = 80, xy = c(1, 2)) { if (is.null(x)) { stop("Need a an x matrix to determine ranges for grid") } M <- ncol(x) if (M == 1) { #special case of 1-D grid.list <- list(x = seq(min(x), max(x), length.out = nx)) } else{ grid.list <- as.list(1:M) # add columns names names(grid.list) <- dimnames(x)[[2]] # cruise through x dimensions and find medians. for (k in 1:M) { grid.list[[k]] <- median(x[, k]) } # # # overwrite with sequences for the two variables of surface xr <- range(x[, xy[1]]) yr <- range(x[, xy[2]]) grid.list[[xy[1]]] <- seq(xr[1], xr[2], , nx) grid.list[[xy[2]]] <- seq(yr[1], yr[2], , ny) } return(grid.list) } fields/R/predictSEUsingKrigA.R0000644000175100001440000001035114627453256015706 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "predictSEUsingKrigA" <- function(object, x = NULL, cov = FALSE, verbose = FALSE, ...) { # # name of covariance function call.name <- object$cov.function.name # # default is to predict at data x's if (is.null(x)) { x <- object$x } x <- as.matrix(x) if (verbose) { print(x) } xraw <- x # transformations of x values used in Krig # NOTE knots are already scaled in Krig object xc <- object$transform$x.center xs <- object$transform$x.scale x <- scale(x, xc, xs) # # scaled unique observation locations. xM <- object$xM # find marginal variance before transforming x. if (!is.na(object$sd.obj[1])) { temp.sd <- c(predict(object$sd.obj, xraw)) } else { temp.sd <- 1 } # Default is to use parameters in best.model lambda <- object$best.model[1] sigma <- object$best.model[3] tau2 <- object$best.model[2] nx <- nrow(xM) wght.vec <- t(Krig.Amatrix(object, xraw, lambda, ...)) if (verbose) { cat("wght.vector", fill = TRUE) print(wght.vec) } #var( f0 - yhat)= var( f0) - cov( f0,yhat) - cov( yhat, f0) + cov( yhat) # = temp0 - temp1 - t( temp1) + temp2 # # if off diagonal weight matrix is passed then # find inverse covariance matrix # otherwise just create this quickly from diagonal weights # Wi <- Krig.make.Wi(object)$Wi # find covariance of data if (object$nondiag.W) { Cov.y <- sigma * do.call(call.name, c(object$args, list(x1 = xM, x2 = xM))) + tau2 * Wi } else { # this is one case where keeping diagonal # matrix as a vector will not work. Cov.y <- sigma * do.call(call.name, c(object$args, list(x1 = xM, x2 = xM))) + tau2 * diag(Wi) } if (!cov) { # find diagonal elements of covariance matrix # now find the three terms. # note the use of an element by element multiply to only get the # diagonal elements of the full # prediction covariance matrix. # temp1 <- sigma * colSums(wght.vec * do.call(call.name, c(object$args, list(x1 = xM, x2 = x)))) temp2 <- colSums(wght.vec * (Cov.y %*% wght.vec)) # # find marginal variances -- trival in the stationary case! # Note that for the case of the general covariances # as radial basis functions (RBFs) temp0 should be zero. # Positivity results from the generalized divided difference # properties of RBFs. temp0 <- sigma * do.call(call.name, c(object$args, list(x1 = x, marginal = TRUE))) # temp <- temp0 - 2 * temp1 + temp2 # return(sqrt(temp * temp.sd^2)) } else { # # find full covariance matrix # temp1 <- sigma * t(wght.vec) %*% do.call(call.name, c(object$args, list(x1 = xM, x2 = x))) # temp2 <- t(wght.vec) %*% Cov.y %*% wght.vec # temp0 <- sigma * do.call(call.name, c(object$args, list(x1 = x, x2 = x))) # temp <- temp0 - t(temp1) - temp1 + temp2 temp <- t(t(temp) * temp.sd) * temp.sd # return(temp) } } fields/R/profile.R0000644000175100001440000000213014627453256013534 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER ".onAttach" <- function (lib, pkg) { packageStartupMessage(" Try help(fields) to get started.") } fields/R/sim.spatialProcess.R0000644000175100001440000001153214636620027015655 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER sim.spatialProcess<- function(object, xp, M = 1, verbose = FALSE, ...) { # important variance parameters estimated from the data tau2 <- (object$summary["tau"])^2 sigma2 <- (object$summary["sigma2"]) xp<- as.matrix( xp) # # check for unique rows of data locations if( any(duplicated(object$x)) ){ stop("data locations should be unique") } # # find sizes of arrays m <- nrow(xp) n<- nrow( object$x) N <- length(object$y) if (verbose) { cat("m,n,N", m,n, N, fill = TRUE) } # # find indices of all rows of xp that correspond to rows of # xM and then collapse x to unique rows. if( any( duplicated(object$x)) ){ stop('Can not handle replicated locations')} if( any( duplicated(xp)) ){ stop('Can not handle repeated prediction locations')} # x<- as.matrix(rbind( object$x, xp)) rep.x.info <- fields.duplicated.matrix(x) # find uniuqe locations. ind<- !duplicated(rep.x.info) xUnique <- as.matrix(x[ind, ]) if (verbose) { cat('full x and predicted locations without duplicates ', fill = TRUE) print(xUnique) } N.full <- nrow(xUnique) if (verbose) { cat("N.full", N.full, fill = TRUE) } if( N.full > 5000){ cat("WARNING: Number of locations for conditional simulation is large ( >5000) this may take some time to compute or exhaust the memory.", fill=FALSE) } # these give locations in x matrix to reconstruct xp matrix xp.ind <- rep.x.info[(1:m) + n] if (verbose) { print(N.full) print(xUnique) } if (verbose) { cat("reconstruction of xp from collapsed locations", fill = TRUE) print(xUnique[xp.ind, ]) } # # Sigma is full covariance at the data locations and at prediction points. # not to be confused with the lowercase tau that is the nugget variance # Sigma <- sigma2 * do.call(object$cov.function.name, c(object$args, list(x1 = xUnique, x2 = xUnique))) # # square root of Sigma for simulating field # Cholesky is fast but not very stable. # # the following code line is similar to chol(Sigma)-> Scol # but adds possible additional arguments controlling the Cholesky # from the mKrig object. # x has has been winnowed down to unique rows so that # Sigma has full rank. # Schol <- do.call("chol", c(list(x = Sigma), object$chol.args)) # # output matrix to hold results out <- matrix(NA, ncol = M, nrow = m) # # find conditional mean field from initial fit # (these are added at the predict step). # h.hat <- predict(object, xnew=xp, ...) # # NOTE: fixed part of model (null space) need not be simulated # because the estimator is unbiased for this part. # the variability is still captured because the fixed part # is still estimated as part of the predict step below # create synthetic data for (k in 1:M) { if( k%%10==1){ cat( k," ") } # simulate full field h <- t(Schol) %*% rnorm(N.full) # value of simulated field at observations h.data <- h[1:n] # y.synthetic <- h.data + sqrt(tau2/object$weights)*rnorm(n) # predict at xp using these data # and subtract from 'true' value, # note that true values of field have to be expanded in the # case of common locations between object$x and xp. h.true <- (h[xp.ind]) # temp.error <- predict(object, xnew=xp, ynew = y.synthetic, # Z=Zp, ...) - h.true temp.error <- predict(object, xnew=xp, ynew = y.synthetic, ...) - h.true # add the error to the actual estimate (conditional mean) out[,k ] <- h.hat + temp.error } out } fields/R/cubic.cov.R0000644000175100001440000000370214627453255013754 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER cubic.cov <- function(x1, x2=NULL, aRange = 1, C = NA, marginal = FALSE, theta=NULL) { # comments in Exp.simple.cov for more details about the # required parts of this covariance # theta argument has been deopreciated. if( !is.null( theta)){ aRange<- theta } if (is.matrix(x1)) { if (ncol(x1) != 1) { stop(" x is a matrix this is a 1-d covariance") } } if( is.null( x2) ){ x2<- x1 } # local function fun.temp <- function(u, v) { 1 + ifelse(u < v, v * (u^2)/2 - (u^3)/6, u * (v^2)/2 - (v^3)/6) } if (is.na(C[1]) & !marginal) { # cross covariance matrix return(outer(c(x1), c(x2), FUN = fun.temp)) } if (!is.na(C[1])) { # product of cross covariance with a vector return(outer(c(x1), c(x2), FUN = fun.temp) %*% C) } if (marginal) { # marginal variance return((x1^3)/3) } } fields/R/larry.colors.R0000644000175100001440000000255614627453256014541 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER larry.colors<- function(){ ctemp<- matrix( c( 182, 106, 40, 205, 133, 63, 225, 165, 100, 245, 205, 132, 245, 224, 158, 255, 245, 186, 255, 255, 255, 205, 255, 205, 153, 240, 178, 83, 189, 159, 110, 170, 200, 5, 112, 176, 2, 56, 88 ), ncol=3, byrow=TRUE) ctemp<- ctemp/255 rgb(ctemp[,1], ctemp[,2], ctemp[,3]) } fields/R/addColorBarTriangle.R0000644000175100001440000000473114627453255015746 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER addColorBarTriangle <- function(lowerColor=NULL, upperColor=NULL, horizontal=TRUE) { usr<- par()$usr plt<- par()$plt par(xpd=TRUE) if(horizontal){ deltaY<- (usr[4] - usr[3]) unitX<- (usr[2] - usr[1])/(plt[2] - plt[1]) deltaX<- unitX*(plt[4] - plt[3]) } else{ deltaX<- (usr[2] - usr[1]) unitY<- (usr[4] - usr[3])/(plt[4] - plt[3]) deltaY<- unitY*(plt[2] - plt[1]) } # if( !is.null(upperColor) ){ if(horizontal){ triangleUpper<- rbind( c( usr[2], usr[3] ), c( usr[2]+ deltaX, usr[3] + deltaY/2 ), c( usr[2], usr[4]) ) } else{ triangleUpper<- rbind( c( usr[1], usr[4] ), c( usr[1] + deltaX/2, usr[4] + deltaY ), c( usr[2], usr[4]) ) } polygon( triangleUpper, col=upperColor, border=upperColor) lines(triangleUpper) } # if(!is.null(lowerColor)){ if(horizontal){ triangleLower<- rbind( c( usr[1], usr[3] ), c( usr[1]- deltaX, usr[3] + deltaY/2 ), c( usr[1], usr[4]) ) } else{ triangleLower<- rbind( c( usr[1], usr[3] ), c( usr[1]+ deltaX/2, usr[3] - deltaY ), c( usr[2], usr[3]) ) } polygon( triangleLower, col=lowerColor, border=lowerColor) lines(triangleLower) } # par(xpd=FALSE) } fields/R/find.upcross.R0000644000175100001440000000337414627453255014523 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "find.upcross" <- function(fun, fun.info, upcross.level = 0, guess = 1, tol = 1e-05) { l1 <- guess tr <- 0 for (k in 1:50) { tr <- fun(l1, fun.info) - upcross.level if (tr >= 0) break else { guess <- l1 } l1 <- l1 * 2 } if (tr < 0) { warning("Failed to find the upcrossing") return(NA) } tr <- 0 l2 <- guess for (k in 1:50) { tr <- fun(l2, fun.info) - upcross.level if (tr <= 0) break l2 <- l2/2 } if (tr > 0) { warning("Failed to find the upcrossing") return(NA) } out <- bisection.search(l2, l1, fun, tol = tol, f.extra = fun.info, upcross.level = upcross.level)$x (out) } fields/R/rat.diet.R0000644000175100001440000000415014627453256013612 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "rat.diet" <- structure(list(t = c(0, 1, 3, 7, 8, 10, 14, 15, 17, 21, 22, 24, 28, 29, 31, 35, 36, 38, 42, 43, 45, 49, 50, 52, 56, 57, 59, 63, 64, 70, 73, 77, 80, 84, 87, 91, 94, 98, 105), con = c(20.5, 19.399, 22.25, 17.949, 19.899, 21.449, 16.899, 21.5, 22.8, 24.699, 26.2, 28.5, 24.35, 24.399, 26.6, 26.2, 26.649, 29.25, 27.55, 29.6, 24.899, 27.6, 28.1, 27.85, 26.899, 27.8, 30.25, 27.6, 27.449, 27.199, 27.8, 28.199, 28, 27.3, 27.899, 28.699, 27.6, 28.6, 27.5), trt = c(21.3, 16.35, 19.25, 16.6, 14.75, 18.149, 14.649, 16.7, 15.05, 15.5, 13.949, 16.949, 15.6, 14.699, 14.15, 14.899, 12.449, 14.85, 16.75, 14.3, 16, 16.85, 15.65, 17.149, 18.05, 15.699, 18.25, 18.149, 16.149, 16.899, 18.95, 22, 23.6, 23.75, 27.149, 28.449, 25.85, 29.7, 29.449)), .Names = c("t", "con", "trt"), class = "data.frame", row.names = c("1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "30", "31", "32", "33", "34", "35", "36", "37", "38", "39")) fields/R/mKrigMisc.R0000644000175100001440000001024714627453256013771 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER mKrig.trace <- function(object, iseed, NtrA) { # do not reset the random seed if NA. if (exists(".Random.seed", .GlobalEnv)){ oldseed <- .GlobalEnv$.Random.seed } else{ oldseed <- NULL } if( !is.na(iseed)){ set.seed(iseed) } # if more MonteCarlo samples > number of data points just # find A exactly using np calls to predict. np<- object$np if (NtrA >= object$np) { Ey <- diag(1, np) NtrA <- np hold <- diag(predict.mKrig(object, ynew = Ey, collapseFixedEffect=FALSE)) trA.info<- NA trA.est <- sum(hold) } else { # if fewer tests then use random trace method # find fitted.values for iid N(0,1) 'data' to calculate the # the Monte Carlo estimate of tr A(lambda) # basically repeat the steps above but take some # short cuts because we only need fitted.values # create random normal 'data' Ey <- matrix(rnorm(np * NtrA), nrow = np, ncol = NtrA) tmp<- Ey * (predict.mKrig(object, ynew = Ey, collapseFixedEffect=FALSE)) trA.info <- colSums(tmp) trA.est <- mean(trA.info) } if (NtrA < np) { MSE<-(sum(object$residuals^2)/np) GCV <- MSE/(1 - trA.est /np)^2 GCV.info <- MSE/( 1 - trA.info/np)^2 } else{ GCV<- NA GCV.info <- NA } if (!is.null(oldseed)){ .GlobalEnv$.Random.seed <- oldseed } else{ if( exists(".Random.seed", .GlobalEnv)){ rm(".Random.seed", envir = .GlobalEnv) } } return( list(trA.info = trA.info, eff.df = trA.est, GCV= GCV, GCV.info=GCV.info) ) } mKrig.coef <- function(object, y, collapseFixedEffect=TRUE) { # given new data y and the matrix decompositions in the # mKrig object find coficients beta and c. # beta are the coefficients for the fixed part # in this case hard coded for a low order polynomial # c are coefficients for the basis functions derived from the # covariance function. # # see mKrig itself for more comments on the linear algebra # # Note that all these expressions make sense if y is a matrix # of several data sets and one is solving for the coefficients # of all of these at once. In this case beta and c.coef are matrices # # generalized least squares for d if( any(is.na(y))){ stop("mKrig can not omit missing values in observation vecotor") } if( object$nt>0){ beta <- as.matrix(qr.coef(object$qr.VT, forwardsolve(object$Mc, transpose = TRUE, y, upper.tri = TRUE))) betaMeans<- rowMeans( beta) if( collapseFixedEffect){ beta<- matrix( betaMeans, ncol=ncol(beta), nrow= nrow( beta)) } # residuals from subtracting off fixed part # of model as m-1 order polynomial resid <- y - object$Tmatrix %*% beta } else{ beta<- NULL resid <- y } # and now find c. c.coef <- forwardsolve(object$Mc, transpose = TRUE, resid, upper.tri = TRUE) c.coef <- as.matrix(backsolve(object$Mc, c.coef)) out <- list( beta = (beta), c.coef = c.coef ) return(out) } fields/R/supportsArg.R0000644000175100001440000000234414627453256014434 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER supportsArg = function(fun=stationary.cov, arg) { if(is.null(fun)) { #set fun to the default covariance function if not specified fun = stationary.cov } argNames = names(as.list(args(fun))) return(any(argNames == arg)) } fields/R/RdistEarth.R0000644000175100001440000000323014627453255014146 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER RdistEarth <- function(x1, x2=NULL, miles=TRUE, R=NULL){ stopifnot(is.numeric(x1), is.matrix(x1), ncol(x1)==2, is.null(x2) || (is.numeric(x2) && is.matrix(x2) && ncol(x2)==2), (!is.null(R) && is.numeric(R)) || is.logical(miles)) if(is.null(R)) R <- if(miles[1]) 3963.34 else 6378.388 if(is.null(x2)){ ans <- numeric(nrow(x1)^2) .Call("distMatHaversin", p1=x1, radius=R, ans=ans) attr(ans, "dim") <- c(nrow(x1), nrow(x1)) return(ans) } ans <- numeric(nrow(x1)*nrow(x2)) .Call("distMatHaversin2", p1=x1, p1=x2, radius=R, ans=ans) attr(ans, "dim") <- c(nrow(x1), nrow(x2)) ans } fields/R/gcv.sreg.R0000644000175100001440000001744714627453256013633 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER gcv.sreg<- function(out, lambda.grid = NA, cost = 1, nstep.cv = 80, rmse = NA, offset = 0, trmin = NA, trmax = NA, verbose = FALSE, tol = 1e-05, give.warnings=TRUE) { tauHat.pure.error <- out$tauHat.pure.error pure.ss <- out$pure.ss nt <- 2 np <- out$np N <- out$N out$cost <- cost out$offset <- offset # find good end points for lambda coarse grid. if (is.na(trmin)) trmin <- 2.05 if (is.na(trmax)) trmax <- out$np * 0.95 if (is.na(lambda.grid[1])) { l2 <- sreg.df.to.lambda(trmax, out$xM, out$weightsM) l1 <- sreg.df.to.lambda(trmin, out$xM, out$weightsM) lambda.grid <- exp(seq(log(l2), log(l1), , nstep.cv)) } if (verbose) { cat("endpoints of coarse lamdba grid", fill = TRUE) cat(l1, l2, fill = TRUE) } # build up table of coarse grid serach results for lambda # in the matrix gcv.grid nl <- length(lambda.grid) V <- V.model <- V.one <- trA <- MSE <- RSS.model <- rep(NA, nl) # loop through lambda's and compute various quantities related to # lambda and the fitted spline. for (k in 1:nl) { temp <- sreg.fit(lambda.grid[k], out, verbose = verbose) RSS.model[k] <- temp$rss trA[k] <- temp$trace V[k] <- temp$gcv V.one[k] <- temp$gcv.one V.model[k] <- temp$gcv.model } # adjustments to columns of gcv.grid RSS <- RSS.model + pure.ss tauHat <- sqrt(RSS/(N - trA)) gcv.grid <- cbind(lambda.grid, trA, V, V.one, V.model, tauHat) dimnames(gcv.grid) <- list(NULL, c("lambda", "trA", "GCV", "GCV.one", "GCV.model", "tauHat")) gcv.grid<- as.data.frame( gcv.grid) if (verbose) { cat("Results of coarse grid search", fill = TRUE) print(gcv.grid) } lambda.est <- matrix(NA, ncol = 5, nrow = 5, dimnames = list( c("GCV","GCV.model", "GCV.one", "RMSE", "pure error"), c("lambda","trA", "GCV", "tauHat", "converge"))) # now do various refinements for different flavors of finding # a good value for lambda the smoothing parameter ##### traditional leave-one-out IMIN<- rep( NA, 5) IMIN[1]<- which.min( gcv.grid$GCV ) IMIN[2]<- ifelse( is.na(tauHat.pure.error), NA, which.min(gcv.grid$GCV.model) ) IMIN[3]<- which.min( gcv.grid$GCV.one) if( is.na( rmse)){ IMIN[4] <- NA } else{ rangeShat<- range( gcv.grid$tauHat) IUpcross<- max( (1:nl)[gcv.grid$tauHat< rmse] ) IMIN[4]<- ifelse( (rangeShat[1]<= rmse)&(rangeShat[2] >=rmse), IUpcross, NA) } IMIN[5]<- ifelse( is.na(tauHat.pure.error), NA, which.min(abs(gcv.grid$tauHat-tauHat.pure.error)) ) # NOTE IMIN indexes from smallest lambda to largest lambda in grid. warningTable<- data.frame( IMIN, IMIN == nl, IMIN==1, gcv.grid$lambda[IMIN], gcv.grid$trA[IMIN], row.names = c("GCV","GCV.model", "GCV.one", "RMSE", "pure error") ) warning<- (warningTable[,2]|warningTable[,3])& (!is.na(warningTable[,1])) indRefine<- (!warningTable[,2]) & (!warningTable[,3]) & (!is.na(warningTable[,1])) warningTable<- cbind( warning, indRefine, warningTable ) names( warningTable)<- c("Warning","Refine","indexMIN", "leftEndpoint", "rightEndpoint", "lambda","effdf") if( verbose){ print(warningTable) } # fill in grid search estimates for( k in 1:5){ if( !is.na(IMIN[k])){ lambda.est[k,1]<- gcv.grid$lambda[IMIN[k]] } } # now optimze the search producing refined optima # # now step through the many different ways to find lambda # This is the key to these choices: # 1- the usual GCV proposed by Craven/Wahba # 2- GCV where data fitting is collapsed to the mean for # each location and each location is omitted # 3- True leave-one-out even with replicated observations # 4- Match estimate of tau to external value supplied (RMSE) # 5- Match estimate of tau from the estimate based the # pure error sum of squares obtained by the observations # replicated at the same locations #test<- sreg.fit(.1, out) #print( test) if(indRefine[1]){ starts <- lambda.grid[IMIN[1] + c(-1,0,1)] outGs <- golden.section.search(ax=starts[1],bx=starts[2],cx=starts[3], f=sreg.fgcv, f.extra = out, tol = tol) lambda.est[1,1]<- outGs$x lambda.est[1,5]<- outGs$iter } if( indRefine[2]) { starts <- lambda.grid[IMIN[2] + c(-1,0,1)] outGs <- golden.section.search(ax=starts[1],bx=starts[2],cx=starts[3], f=sreg.fgcv.model, f.extra = out, tol = tol) lambda.est[2,1]<- outGs$x lambda.est[2,5]<- outGs$iter } if( indRefine[3]) { starts <- lambda.grid[IMIN[3] + c(-1,0,1)] outGs <- golden.section.search(ax=starts[1],bx=starts[2],cx=starts[3], f=sreg.fgcv.one, f.extra = out, tol = tol) lambda.est[3, 1] <-outGs$x lambda.est[3,5]<- outGs$iter } if ( indRefine[4] ) { guess<- gcv.grid$lambda[IMIN[4]] lambda.rmse <- find.upcross(sreg.fs2hat, out, upcross.level = rmse^2, guess = guess, tol = tol * rmse^2) lambda.est[4, 1] <- lambda.rmse } if ( indRefine[5] ) { guess <- gcv.grid$lambda[IMIN[5]] lambda.pure.error <- find.upcross(sreg.fs2hat, out, upcross.level = tauHat.pure.error^2, guess = guess, tol = tol * tauHat.pure.error^2) lambda.est[5, 1] <- lambda.pure.error } if (verbose) { cat("All forms of estimated lambdas so far", fill = TRUE) print(lambda.est) } for (k in 1:5) { lam <- lambda.est[k, 1] if (!is.na(lam)) { temp <- sreg.fit(lam, out) lambda.est[k, 2] <- temp$trace if ((k == 1) | (k > 3)) { lambda.est[k, 3] <- temp$gcv } if (k == 2) { lambda.est[k, 3] <- temp$gcv.model } if (k == 3) { lambda.est[k, 3] <- temp$gcv.one } lambda.est[k, 4] <- temp$tauHat } } if( give.warnings & any(warningTable$Warning)){ cat("Methods at endpoints of grid search:", fill=TRUE) print(warningTable[warningTable$Warning,]) } list(gcv.grid = gcv.grid, lambda.est = lambda.est, warningTable=warningTable) } fields/R/ribbon.plot.R0000644000175100001440000000321714627453256014333 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER ribbon.plot <- function(x, y, z, zlim = NULL, col = tim.colors(256), transparent.color = "white", ...) { N <- length(x) x1 <- (x[1:(N - 1)] + x[2:(N)])/2 y1 <- (y[1:(N - 1)] + y[2:(N)])/2 x1 <- c(x[1] - (x[2] - x[1])/2, x1, x[N] + (x[N] - x[N - 1])/2) y1 <- c(y[1] - (y[2] - y[1])/2, y1, y[N] + (y[N] - y[N - 1])/2) eps <- 1e-07 if (is.null(zlim)) { zlim <- range(c(z), na.rm = TRUE) } # convert z values to a color scale. colz <- color.scale(z, col = col, transparent.color = transparent.color) segments(x1[1:(N)], y1[1:(N)], x1[2:(N + 1)], y1[2:(N + 1)], col = colz, ...) } fields/R/addLegend.R0000644000175100001440000000342114627453255013746 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER addLegend<- function(legendLayout, col, zlim, axis.args = NULL, legend.args = NULL, legend.cex = 1.0, legend.lab = NULL, legend.line = 2 ){ info<- legendLayout imagePlot( legend.only=TRUE, add=TRUE, smallplot = info$smallplot, col= col, zlim = zlim, legend.lab = legend.lab, legend.line= legend.line, axis.args = axis.args, legend.args = legend.args, legend.cex = legend.cex, legend.shrink = info$legend.shrink, legend.mar = info$legend.mar, legend.width = info$legend.width, horizontal = info$horizontal ) } fields/R/minimax.crit.R0000644000175100001440000000242014627453256014500 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "minimax.crit" <- function(obj, des = TRUE, R) { R <- as.matrix(R) id <- 1:nrow(R) if (des) Dset <- attr(obj, "best.id") else Dset <- obj Cset <- id[-Dset] dist.mat <- rdist(R[Cset, ], R[Dset, ]) mM.crit <- max(apply(dist.mat, 1, min)) mM.crit } fields/R/mKrigMLEGrid.R0000644000175100001440000001152514627453256014321 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER mKrigMLEGrid <- function(x, y, weights = rep(1, nrow(x)), Z = NULL, ZCommon = NULL, mKrig.args = NULL, cov.function = "stationary.cov", cov.args = NULL, na.rm = TRUE, par.grid = NULL, reltol = 1e-06, REML = FALSE, GCV = FALSE, optim.args = NULL, cov.params.start = NULL, verbose = FALSE, iseed = NA) { if( na.rm){ obj<- mKrigCheckXY(x, y, weights, Z, ZCommon, na.rm) x<- obj$x y<- obj$y weights<- obj$weights Z<- obj$Z ZCommon<- obj$ZCommon } # check which optimization options the covariance function supports # precompute distance matrix if possible so it only needs to be computed once supportsDistMat = supportsArg(cov.function, "distMat") # precompute distance matrix if possible so it only needs to be computed once if(supportsDistMat) { # Get distance function and arguments if available # If user left all distance settings NULL, use rdist with compact option. # Use rdist function by default in general. # if(is.null(cov.args$Distance)) { cov.args$Distance <- "rdist" cov.args$Dist.args <- list(compact=TRUE) } cov.args$distMat<-do.call(cov.args$Distance, c( list(x), cov.args$Dist.args) ) cov.args$onlyUpper<- TRUE } # find NG -- number of parameters to try if( is.null(par.grid) ){ stop("no par.grid ") } par.grid <- data.frame(par.grid) NG <- nrow(par.grid) # output object to summarize results summary <-NULL # begin loop over covariance parameters and either evaluate at a grid of lambda values # or use these as start values for optimization. if( verbose){ cat( "******** Grid search in mKrigMLEGrid", fill=TRUE) } for (k in 1:NG) { cov.args.temp <- as.list( par.grid[k, ]) names(cov.args.temp) <- names( par.grid) currentCov.args<- c( cov.args.temp, cov.args) if( verbose){ cat( "******** grid value: " , k, fill=TRUE) cat( "Cov args", names(currentCov.args ), fill=TRUE, sep=", ") cat("value aRange", fill=TRUE) print( currentCov.args$aRange) cat("value lambda", fill=TRUE) print( currentCov.args$lambda) cat("start values", fill=TRUE) print( cov.params.start) cat("optim.args", fill=TRUE) print( optim.args) } MLEfit0 <- mKrigMLEJoint(x, y, weights = weights, Z = Z, ZCommon = ZCommon, cov.function = cov.function, optim.args = optim.args, cov.args = currentCov.args, na.rm = na.rm, mKrig.args = mKrig.args, REML = REML, GCV = GCV, reltol = reltol, cov.params.start = cov.params.start, verbose = verbose, iseed = iseed) if( is.na(MLEfit0$summary[1])){ cat("mKrigMLEGrid: Problems in optim", fill=TRUE) return(MLEfit0) } summary <- rbind( summary, MLEfit0$summary) } summary<- cbind( summary, par.grid) if( REML){ indMax<- which.max( summary[,"lnProfileLike.FULL"]) } else{ indMax<- which.max( summary[,"lnProfileREML.FULL"]) } if( verbose){ cat("summary from mKrigMLEGrid:", fill=TRUE) print(summary ) } return(list(summary = summary, par.grid = par.grid, call = match.call(), indMax= indMax ) ) } fields/R/quickPrint.R0000644000175100001440000000253014627453256014231 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER quickPrint<- function( obj, max.values=10){ # this simple function will only print an object if # it is not too big if( is.list( obj)){ sizeObj<- length( unlist( obj)) } else{ sizeObj<-length( c( obj)) } if( sizeObj<= max.values){ print(obj) } else{ cat("Object size is more than", max.values,"items (", sizeObj, "total)", fill=TRUE) } } fields/R/predict.Krig.R0000644000175100001440000001071114627453256014425 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER # wrapper for Tps object "predict.Tps"<- function(object, ...){ UseMethod("Krig") } "predict.Krig" <- function(object, x = NULL, Z = NULL, drop.Z = FALSE, just.fixed = FALSE, lambda = NA, df = NA, model = NA, eval.correlation.model = TRUE, y = NULL, yM = NULL, verbose = FALSE, ...) { #NOTE: most of this function is figuring out what to do! # # check that derivative is not called if (!is.null(list(...)$derivative)) { stop("For derivatives use predictDerivative") } # y is full data yM are the data collapsed to replicate means # if new data is not passed then copy from the object if (is.null(y) & is.null(yM)) { temp.c <- object$c temp.d <- object$d } # check for passed x but no Z -- this is an error # if there are Z covariates in the model and drop.Z is FALSE ZinModel<- !is.null(object$Z) newX<- !is.null(x) missingZ<- is.null(Z) if( ZinModel&newX){ if( missingZ & !drop.Z) { stop("Need to specify drop.Z as TRUE or pass Z values") } } # default is to predict at data x's if (is.null(x)) { x <- object$x } else { x <- as.matrix(x) } # default is to predict at data Z's if (is.null(Z)) { Z <- object$Z } else { Z <- as.matrix(Z) } if (verbose) { print(x) print(Z) } # transformations of x values used in Krig xc <- object$transform$x.center xs <- object$transform$x.scale x <- scale(x, xc, xs) # NOTE knots are already scaled in Krig object and are used # in transformed scale. # i.e. knots <- scale( object$knots, xc, xs) # # figure out if the coefficients for the surface needto be recomputed. find.coef<- (!is.null(y) | !is.null(yM) | !is.na(lambda) | !is.na(df) | !is.na(model[1])) if (verbose) { cat("find.coef", find.coef, fill = TRUE) } # convert effective degrees of freedom to equivalent lambda if (!is.na(df)) { lambda <- Krig.df.to.lambda(df, object$matrices$D) } if (!is.na(model)) { lambda <- model[1] } if (is.na(lambda)) lambda <- object$lambda # # if the coefficients need to be recomputed do it. if (find.coef) { if (verbose) { cat("new coefs found", fill = TRUE) } object3 <- Krig.coef(object, lambda = lambda, y = y, yM = yM) temp.d <- object3$d temp.c <- object3$c } if (verbose) { cat(" betas", fill = TRUE) print(temp.d) cat("c coefs", fill = TRUE) print(temp.c) } # this is the fixed part of predictor # Tmatrix <- do.call(object$null.function.name, c(object$null.args, list(x = x, Z = Z, drop.Z = drop.Z))) if (drop.Z) { temp <- Tmatrix %*% temp.d[object$ind.drift] } else { temp <- Tmatrix %*% temp.d } # add in spatial piece if (!just.fixed) { # # Now find sum of covariance functions times coefficients # Note that the multiplication of the cross covariance matrix # by the coefficients is done implicitly in the covariance function # # The covariance function is # evaluated by using its name, the do.call function, and any # additional arguments. # temp <- temp + do.call(object$cov.function.name, c(object$args, list(x1 = x, x2 = object$knots, C = temp.c))) } return(temp) } fields/R/predictSE.R0000644000175100001440000000205514627453256013764 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "predictSE" <- function(object, ...) UseMethod("predictSE") fields/R/describe.R0000644000175100001440000000331514651544643013660 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "describe" <- function(x) { lab <- c("N", "mean", "Std.Dev.", "min", "Q1", "median", "Q3", "max", "missing values") if (missing(x)) { return(lab) } temp <- rep(0, length(lab)) xt <- x[!is.na(x)] ix <- order(xt) n <- length(xt) if (!is.numeric(xt) || all(is.na(x))) { return(c(n, rep(NA, length(lab) - 2), length(x) - length(xt))) } if (n == 1) { tmp<- c(n, xt[1], NA, rep(xt[1], 5), length(x) - length(xt)) names( tmp)<- lab } else { tmp<- c(n, mean(xt), sqrt(var(xt)), min(xt), quantile(xt, c(0.25, 0.5, 0.75)), max(xt), length(x) - length(xt)) names( tmp)<- lab } return( tmp) } fields/R/parse.grid.list.R0000644000175100001440000000413414627453256015112 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "parse.grid.list" <- function(grid.list, order.variables = "xy") { # # utility to find the x and y sequences in grid.list # this is used in predictSurface and as.surface # M <- length(grid.list) gcounts <- unlist(lapply(grid.list, FUN = length)) xy <- (1:M)[(gcounts > 1)] if( length(xy) ==1){ xy<- sort( c(xy, which(gcounts == 1 ) ) ) } if (length(xy) > 2) { stop("only two components of the grid list\ncan have more than one element") } # # swap the roles of x and y for 2D grid if (order.variables == "yx" & (M!=1) ) { xy <- xy[2:1] } # # # here is the good stuff # nx <- gcounts[xy[1]] ny <- gcounts[xy[2]] x <- grid.list[[xy[1]]] y <- grid.list[[xy[2]]] # # extract the names of the x and y components of the # list # xlab <- names(grid.list)[xy[1]] ylab <- names(grid.list)[xy[2]] xlab <- ifelse(is.null(xlab), "X", xlab) ylab <- ifelse(is.null(ylab), "Y", ylab) list(x = x, y = y, nx = nx, ny = ny, xlab = xlab, ylab = ylab, xy = xy) } fields/R/rdist.earth.R0000644000175100001440000000364614627453256014340 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "rdist.earth" <- function(x1, x2=NULL, miles = TRUE, R = NULL) { if (is.null(R)) { if (miles) R <- 3963.34 else R <- 6378.388 } coslat1 <- cos((x1[, 2] * pi)/180) sinlat1 <- sin((x1[, 2] * pi)/180) coslon1 <- cos((x1[, 1] * pi)/180) sinlon1 <- sin((x1[, 1] * pi)/180) if (is.null(x2)) { pp <- cbind(coslat1 * coslon1, coslat1 * sinlon1, sinlat1) %*% t(cbind(coslat1 * coslon1, coslat1 * sinlon1, sinlat1)) return(R * acos(ifelse(abs(pp) > 1, 1 * sign(pp), pp))) } else { coslat2 <- cos((x2[, 2] * pi)/180) sinlat2 <- sin((x2[, 2] * pi)/180) coslon2 <- cos((x2[, 1] * pi)/180) sinlon2 <- sin((x2[, 1] * pi)/180) pp <- cbind(coslat1 * coslon1, coslat1 * sinlon1, sinlat1) %*% t(cbind(coslat2 * coslon2, coslat2 * sinlon2, sinlat2)) return(R * acos(ifelse(abs(pp) > 1, 1 * sign(pp), pp))) } } fields/R/make.surface.grid.R0000644000175100001440000000324214627453256015371 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "make.surface.grid" <- function(grid.list) { # # the old fields version of make.surface.grid was complicated # and we believe rarely used. # this current function # is essentially a single line replacement # # but adds an attribute for the grid matrix to carry # and carries along the names of the grid.list variables. # along the information as to how it was created. # see as.surface # NOTE: for compatibility this works for a 1D grid # temp <- as.matrix(expand.grid(grid.list)) # wipe out row names dimnames(temp) <- list(NULL, names(grid.list)) # set attribute attr(temp, "grid.list") <- grid.list return(temp) } fields/R/print.summary.Krig.R0000644000175100001440000000762414627453256015634 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "print.summary.Krig" <- function(x, ...) { digits <- x$digits c1 <- "Number of Observations:" c2 <- x$num.observation c1 <- c(c1, "Number of unique points:") c2 <- c(c2, x$num.uniq) # # print out null space poly info only if 'm' is used if (!is.null(x$args.null$m)) { c1 <- c(c1, "Degree of polynomial null space ( base model):") c2 <- c(c2, x$m - 1) } c1 <- c(c1, "Number of parameters in the null space") c2 <- c(c2, x$nt) c1 <- c(c1, "Parameters for fixed spatial drift") c2 <- c(c2, x$df.drift) c1 <- c(c1, "Effective degrees of freedom:") c2 <- c(c2, format(round(x$enp, 1))) c1 <- c(c1, "Residual degrees of freedom:") c2 <- c(c2, format(round(x$num.observation - x$enp, 1))) c1 <- c(c1, "MLE tau ") c2 <- c(c2, format(signif(x$tauHat.MLE, digits))) c1 <- c(c1, "GCV tau ") c2 <- c(c2, format(signif(x$tauHat.GCV, digits))) if (!is.na(x$tauHat.pure.error)) { c1 <- c(c1, "Pure error tau") c2 <- c(c2, format(signif(x$tauHat.pure.error, digits))) } c1 <- c(c1, "MLE sigma ") c2 <- c(c2, format(signif(x$sigmahat, digits))) c1 <- c(c1, "Scale passed for covariance (sigma)") c2 <- c(c2, signif(x$sigma, digits)) c1 <- c(c1, "Scale passed for nugget (tau^2)") c2 <- c(c2, signif(x$tau2, digits)) c1 <- c(c1, "Smoothing parameter lambda") c2 <- c(c2, signif(x$lambda, digits)) sum <- cbind(c1, c2) dimnames(sum) <- list(rep("", dim(sum)[1]), rep("", dim(sum)[2])) res.quantile <- x$res.quantile names(res.quantile) <- c("min", "1st Q", "median", "3rd Q", "max") cat("CALL:\n") dput(x$call) print(sum, quote = FALSE) cat("\n") cat("Residual Summary:", fill = TRUE) print(signif(res.quantile, digits)) cat("\n") cat("Covariance Model:", x$cov.function, fill = TRUE) if (x$cov.function == "stationary.cov") { cat(" Covariance function is ", x$args$Covariance, fill = TRUE) } if (!is.null(x$args)) { cat(" Names of non-default covariance arguments: ", fill = TRUE) cat(" ", paste(as.character(names(x$args)), collapse = ", "), fill = TRUE) } if ((x$correlation.model)) { cat(" A correlation model was fit:\nY is standardized before spatial estimate is found", fill = TRUE) } if (x$knot.model) { cat(" Knot model: ", x$np - x$nt, " knots supplied to define basis\nfunctions", fill = TRUE) } cat("\n") cat("DETAILS ON SMOOTHING PARAMETER:", fill = TRUE) cat(" Method used: ", x$method, " Cost: ", x$cost, fill = TRUE) print(x$sum.gcv.lambda, digits = digits) cat("\n") cat(" Summary of all estimates found for lambda", fill = TRUE) if (!is.na(x$lambda.est[1])) { print(x$lambda.est, digits = x$digits) } else { cat(x$lambda, " supplied by user", fill = TRUE) } invisible(x) } fields/R/fields.color.picker.R0000644000175100001440000000407414627453255015743 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER fields.color.picker <- function() { c(mar = c(0, 0, 3, 0)) # names of colors in default graphics options. clab <- colors() n <- length(clab) N <- ceiling(sqrt(n)) M <- N temp <- rep(NA, M * N) temp[1:n] <- 1:n z <- matrix(temp, M, N) # matrix of all colors image(seq(0.5, M + 0.5, , M + 1), seq(0.5, N + 0.5, , N + 1), z, col = clab, axes = FALSE, xlab = "", ylab = "") cat("Use mouse to identify color", fill = TRUE) loc <- locator(1) i <- round(loc$x) j <- round(loc$y) ind <- z[i, j] points(i, j, col = clab[ind], cex = 4, pch = "O") points(i, j, pch = "+", col = "black", cex = 1) mtext(side = 3, text = clab[ind], col = clab[ind], line = 1, cex = 2) # write out RGB values to console cat("ID ", ind, " name ", clab[ind], fill = TRUE) cat("RGB", col2rgb(clab[ind])/256, fill = TRUE) temp <- signif(col2rgb(clab[ind])/256, 3) # This line is marginally in LaTeX format to define color cat(clab[ind], " {rgb}{", temp[1], ",", temp[2], ",", temp[3], "}", fill = TRUE) } fields/R/arrow.plot.R0000644000175100001440000000351214627453255014207 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "arrow.plot" <- function(a1, a2, u = NA, v = NA, arrow.ex = 0.05, xpd = TRUE, true.angle = FALSE, arrowfun = arrows, ...) { if (is.matrix(a1)) { x <- a1[, 1] y <- a1[, 2] } else { x <- a1 y <- a2 } if (is.matrix(a2)) { u <- a2[, 1] v <- a2[, 2] } ucord <- par()$usr arrow.ex <- arrow.ex * min(ucord[2] - ucord[1], ucord[4] - ucord[3]) if (true.angle) { pin <- par()$pin r1 <- (ucord[2] - ucord[1])/(pin[1]) r2 <- (ucord[4] - ucord[3])/(pin[2]) } else { r1 <- r2 <- 1 } u <- u * r1 v <- v * r2 maxr <- max(sqrt(u^2 + v^2)) u <- (arrow.ex * u)/maxr v <- (arrow.ex * v)/maxr invisible() old.xpd <- par()$xpd par(xpd = xpd) arrowfun(x, y, x + u, y + v, ...) par(xpd = old.xpd) } fields/R/plot.Krig.R0000644000175100001440000000613214627453256013753 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "plot.Krig" <- function(x, digits = 4, which = 1:4, ...) { out <- x # # don't do plots 2:4 if a fixed lambda # if (x$fixed.model) { which <- 1 } fitted.values <- predict(out) std.residuals <- (out$residuals * sqrt(out$weights))/out$tauHat.GCV if (any(which == 1)) { temp <- summary(out) plot(fitted.values, out$y, ylab = "Y", xlab = " predicted values", bty = "n", ...) abline(0, 1) # hold <- par("usr") # text(hold[1], hold[4], paste(" R**2 = ", format(round(100 * # temp$covariance, 2)), "%", sep = ""), cex = 0.8, # adj = 0) } if (any(which == 2)) { plot(fitted.values, std.residuals, ylab = "(STD) residuals", xlab = " predicted values", bty = "n", ...) yline(0) hold <- par("usr") # text(hold[1], hold[4], paste(" RMSE =", format(signif(sqrt(sum(out$residuals^2)/(temp$num.observation - # temp$enp)), digits))), cex = 0.8, adj = 0) } if (any(which == 3)) { if (nrow(out$gcv.grid) > 1) { ind <- out$gcv.grid[, 3] < 1e+19 out$gcv.grid <- out$gcv.grid[ind, ] yr <- range(unlist(out$gcv.grid[, 3:5]), na.rm = TRUE) plot(out$gcv.grid[, 2], out$gcv.grid[, 3], xlab = "Eff. number of parameters", ylab = " GCV function", bty = "n", ylim = yr, ...) lines(out$gcv.grid[, 2], out$gcv.grid[, 4], lty = 3) lines(out$gcv.grid[, 2], out$gcv.grid[, 5], lty = 1) xline(out$eff.df, lwd=2, col="grey") usr.save<- par()$usr usr.save[3:4]<- range( -out$gcv.grid[,7] ) par( usr= usr.save, ylog=FALSE) lines( out$gcv.grid[, 2], -out$gcv.grid[,7] , lty=2, lwd=2, col="blue") axis( side=4) mtext( side=4, line=2, "log profile likelihood ") title("GCV-points, solid-model, dots- single \n REML dashed", cex = 0.5) box() } } if (any(which == 4)) { hist(std.residuals, ylab="") } } fields/R/Tps.cov.R0000644000175100001440000000471414627453255013441 0ustar hornikusers Tps.cov<-function (x1, x2 = NULL, cardinalX, m=2, C = NA, aRange=NA, marginal = FALSE ) { if (is.null(x2) ) { x2 <- x1 } if( !is.na(aRange)){ stop("Tps should be passed an aRange parameter that is NA to indicate this not used in the covariance.") } PCard<- fields.mkpoly(cardinalX, m=m) PCoef<- solve(PCard, diag(1, ncol(PCard)) ) # Note by consturction PCard%*%PCoef = I P1<- fields.mkpoly(x1, m=m)%*%PCoef P2<- fields.mkpoly(x2, m=m)%*%PCoef if ( !marginal) { # a computation that is less efficient but easier to read: # bigE <- Rad.cov( x1, x2, m=m) # K1<- Rad.cov( x1,cardinalX, m=m)%*%t(P2) # K2<- P1%*% t(Rad.cov( x2,cardinalX, m=m)) # K3<- P1%*% Rad.cov(cardinalX,cardinalX, m=m)%*%t(P2) # covMatrix<- bigE - K1 - K2 + K3 + P1%*%t( P2) # and ... if C is passed covMatrix%*%C # if (is.na(C[1])) { bigE<- Rad.cov( x1,x2, m=m) K1<- Rad.cov( x1, cardinalX, m=m, C=t(P2)) K2 <- t( Rad.cov( x2, cardinalX, m=m, C=t(P1))) K3<- P1%*% Rad.cov(cardinalX,cardinalX, m=m, C=t(P2)) covMatrix<- bigE - K1 - K2 + K3 + P1%*%t( P2) return(covMatrix) } else{ bigEC<- Rad.cov( x1,x2, m=m,C=C) K1C <- Rad.cov( x1, cardinalX, m=m, C=t(P2)%*%C) K2C <- P1%*% Rad.cov(cardinalX, x2, m=m, C=C) K3C <- P1%*% Rad.cov(cardinalX, cardinalX, m=m, C=t(P2)%*%C ) K4C <- P1%*%(t( P2)%*%C) covMatrixC<- bigEC - K1C - K2C + K3C + K4C return( covMatrixC) # in more verbose form # bigE<- Rad.cov( x1,x2, m=m) # K1<- Rad.cov( x1, cardinalX, m=m, C=t(P2)) # K2 <- t( Rad.cov( x2, cardinalX, m=m, C=t(P1))) # K3<- P1%*% Rad.cov(cardinalX,cardinalX, m=m, C=t(P2)) # covMatrix<- bigE - K1 - K2 + K3 + P1%*%t( P2) # return(covMatrix%*%C) } } else { # NOTE: diag ( bigE) is zero # K2 <- t( Rad.cov( x1, cardinalX, m=m, C=t(P1))) # K1 <- t(K2) # K3 <- P1%*% Rad.cov(cardinalX,cardinalX, m=m, C=t(P1)) # marginalVariance0<- diag( - K2 - t( K1) + K3 + P1%*%t( P1) ) DK2<- rowSums(Rad.cov( x1, cardinalX, m=m)*P1) DK3<- colSums(Rad.cov(cardinalX,cardinalX, m=m, C=t(P1))*t(P1) ) DK4<- rowSums(P1^2) marginalVariance<- (-2*DK2 + DK3 +DK4 ) return( marginalVariance) } } fields/R/discretize.image.R0000644000175100001440000000712314627453255015330 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "discretize.image" <- function(x, m = 64, n = 64, grid = NULL, expand = c(1+ 1e-8, 1+1e-8), boundary.grid = FALSE, na.rm=TRUE) { # # NOTE m and n are ignored if grid is passed with $x and $y. if (length(expand) == 1){ expand <- rep(expand, 2) } if (is.null(grid)) { # if grid is not given create a midpoint grid first xr <- range(x[, 1], na.rm = na.rm) deltemp <- (xr[2] - xr[1]) * (expand[1] - 1) * 0.5 gridX <- seq(xr[1] - deltemp, xr[2] + deltemp, , m) yr <- range(x[, 2], na.rm = na.rm) deltemp <- (yr[2] - yr[1]) * (expand[2] - 1) * 0.5 gridY <- seq(yr[1] - deltemp, yr[2] + deltemp, , n) grid <- list(x= gridX, y=gridY) # convert to boundary grid if needed if( boundary.grid){ grid$x<- fields.convert.grid(grid$x) grid$y<- fields.convert.grid(grid$y) } } if (!boundary.grid) { # find cut points for boundaries assuming grid has midpoints xcut <- fields.convert.grid(grid$x) ycut <- fields.convert.grid(grid$y) } else { # cut points given boundaries xcut <- grid$x ycut <- grid$y } # at this point the xcut and ycut are a boundary grid # even if passed as midpoints. # bin ids for each location # cat("call to discretize.image", fill=TRUE) withinGrid<- (x[,1] >= min(xcut)) & (x[,1] <= max(xcut)) & (x[,2] >= min(ycut)) & (x[,2] <= max(ycut)) ##################FIX THIS ################### index1 <- findInterval(x[, 1], xcut , left.open=FALSE, rightmost.closed=TRUE) index2 <- findInterval(x[, 2], ycut , left.open=FALSE, rightmost.closed=TRUE ) if( any(!withinGrid)){ warning("Some locations are outside the range of the grid") index1[!withinGrid]<- NA index2[!withinGrid]<- NA } tempHist<- table( index1, index2) ix<- as.numeric(dimnames( tempHist)[[1]]) iy<- as.numeric(dimnames( tempHist)[[2]]) # 2 d histogram of locations mBin <- length( xcut) - 1 nBin <- length( ycut) - 1 hist<- matrix( 0, mBin,nBin) hist[ix,iy] <- tempHist # save discretized locations xMidpoints<- (xcut[1:mBin] + xcut[2:(mBin+1)])/2 yMidpoints<- (ycut[1:nBin] + ycut[2:(nBin+1)])/2 loc <- cbind( xMidpoints[ index1[withinGrid] ], yMidpoints[ index2[withinGrid] ] ) return( list( m=mBin,n=nBin, grid=grid, index=data.frame(index1, index2), withinGrid=withinGrid, ix= ix, iy=iy, hist=hist, loc=loc) ) } fields/R/colorbar.plot.R0000644000175100001440000000570214627453255014663 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "colorbar.plot" <- function(x, y, strip, strip.width = 0.1, strip.length = 4 * strip.width, zrange = NULL, adj.x = 0.5, adj.y = 0.5, col = tim.colors(256), horizontal = TRUE, ...) { # coerce to be one column matrix if it is a vector if (!is.matrix(strip)) { strip <- matrix(c(strip), ncol = 1) } m <- nrow(strip) n <- ncol(strip) # find common range across strips if not specified if (is.null(zrange)) { zrange <- matrix(range(c(strip), na.rm = TRUE), nrow = n, ncol = 2, byrow = TRUE) } # see help( par) for background on graphical settings ucord <- par()$usr pin <- par()$pin if (horizontal) { dy <- strip.width * (ucord[4] - ucord[3]) dx <- strip.length * pin[2] * (ucord[2] - ucord[1])/(pin[1]) } else { dx <- strip.width * (ucord[2] - ucord[1]) dy <- strip.length * pin[1] * (ucord[4] - ucord[3])/(pin[2]) } # # dx and dy should have the correct ratio given different different scales # and also different aspects to the plot window # n <- ncol(strip) m <- nrow(strip) # create grids in x and y for strip(s) based on the users # coordinates of the plot and th positioning argument (adj) if (horizontal) { xs <- seq(0, dx, , m + 1) + x - adj.x * dx ys <- seq(0, dy, , n + 1) + y - adj.y * dy } else { xs <- seq(0, dx, , n + 1) + x - adj.x * dx ys <- seq(0, dy, , m + 1) + y - adj.y * dy } # # plot image row by row to allow for different zlim's # see image.add for a fields function that just plots the whole image at # once. for (k in 1:n) { if (horizontal) { image(xs, c(ys[k], ys[k + 1]), cbind(strip[, k]), zlim = zrange[k, ], add = TRUE, col = col, ...) } else { image(c(xs[k], xs[k + 1]), ys, rbind(strip[, k]), zlim = zrange[k, ], add = TRUE, col = col, ...) } } } fields/R/rad.simple.cov.R0000644000175100001440000000334114627453256014725 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "Rad.simple.cov" <- function(x1, x2, p = 1, with.log = TRUE, with.constant = TRUE, C = NA, marginal = FALSE) { if (marginal) { return(rep(1, nrow(x1))) } if (!is.matrix(x1)) x1 <- as.matrix(x1) if (!is.matrix(x2)) x2 <- as.matrix(x2) d <- ncol(x1) n1 <- nrow(x1) n2 <- nrow(x2) m <- (d + p)/2 temp <- rdist(x1, x2) if (with.constant) { Amd <- radbas.constant(m, d) } else { Amd <- 1 } if ((d%%2 == 0) & (with.log)) { temp <- Amd * ifelse(temp < 1e-10, 0, temp^(p/2) * log(temp)) } else { temp <- Amd * temp^(p) } # # if (is.na(C[1])) { return(temp) } else { return(temp %*% C) } } fields/R/print.spatialProcess.R0000644000175100001440000000222214627453256016225 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER print.spatialProcess <- function(x, digits = 4, ...) { object<- summary.spatialProcess( x, ...) print.spatialProcessSummary(object,digits = digits, ...) } fields/R/mKrigFastPredict.R0000644000175100001440000001340014627453256015300 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER mKrigFastPredict <- function(object, gridList, ynew = NULL, derivative = 0, Z = NULL, drop.Z = FALSE, NNSize=5, setupObject= NULL, giveWarnings=TRUE) { #NOTE: covariance model is specified by the arguments in object$args #cov.args <- c( object$args, list(...) ) # For convenience the Z covariates are already assumed to be # in the unrolled form. But this may be awkward if this # function is called directly # See the code in predictSurface.mKrig for details. E.g. unrollZGrid if (derivative != 0) { stop("Derivatives not supported with fast prediction method") } if( ncol(object$c.coef)>1 ){ stop("Replicated fields currently not supported for fast predict.") } names( gridList)<- c("x","y") np<- NNSize xObs<- object$x nx<- length(gridList$x ) ny<- length(gridList$y ) if (!is.null(ynew)) { coef.hold <- mKrig.coef(object, ynew, collapseFixedEffect=TRUE) c.coef <- coef.hold$c.coef beta <- coef.hold$beta } else { c.coef <- object$c.coef beta <- object$beta } # fixed part of the model this a polynomial of degree m-1 # Tmatrix <- fields.mkpoly(xnew, m=object$m) # only do this if nt>0, i.e. there is a fixed part. # if (!drop.Z & (object$nZ > 0) & (derivative >0) ) { stop("derivative not supported with Z covariate included use drop.Z = FALSE to omit Z ") } if( object$nt>0){ xnew<- make.surface.grid( gridList) if (derivative == 0) { if (drop.Z | object$nZ == 0) { # just evaluate polynomial and not the Z covariate temp1 <- fields.mkpoly(xnew, m = object$m) %*% beta[object$ind.drift, ] } else { if( nrow( xnew) != nrow(as.matrix(Z)) ){ stop(paste("number of rows of covariate Z", nrow(as.matrix(Z)), " is not the same as the number of locations", nrow( xnew) ) ) } temp0 <- cbind(fields.mkpoly(xnew, m = object$m),as.matrix(Z)) temp1 <- temp0 %*% beta } } else { temp1 <- fields.derivative.poly(xnew, m = object$m, beta[object$ind.drift,]) } } # add nonparametric part. Covariance basis functions # times coefficients. # syntax is the name of the function and then a list with # all the arguments. This allows for different covariance functions # that have been passed as their name. # enlarge the grid if needed so that obs have np grid point points on all margins. if( (min(xObs[,1]) < gridList$x[1]) | (max(xObs[,1]) > gridList$x[nx] ) ) { stop( "x obs locations can not be outside the grid ") } if( (min(xObs[,2]) < gridList$y[1]) | (max(xObs[,2]) > gridList$y[ny]) ){ stop( "y obs locations can not be outside the grid ") } # adjust grid if needed to include a margin of NNSize+1 grid points beyond xObs # these are the slightly larger grids by adding margins. # also create sparse matrices. if( is.null(setupObject) ){ setupObject<- mKrigFastPredictSetup(object, gridList = gridList, NNSize = NNSize, giveWarnings = giveWarnings) } gridListNew<- setupObject$marginInfo$gridListNew nxNew<- length(gridListNew$x ) nyNew<- length(gridListNew$y ) # indX and indY are the subset of indices that match gridList # ( gridListNew contains the grids in gridList) indX<- setupObject$marginInfo$indX indY<- setupObject$marginInfo$indY if( ((indX[2]- indX[1] + 1)!= nx)| ((indY[2]- indY[1] + 1)!= ny)) { cat(" indX, nx") print( c(indX, nx) ) cat(" indY, ny") print( c(indY, ny) ) stop("mismatch between subset of larger grid and gridList passed") } c.coefWghts<- colSums( diag.spam( c(object$c.coef) ) %*% setupObject$offGridObject$B ) c.coefWghts<- matrix( c.coefWghts, nxNew, nyNew ) # fast multiplication of covariances on the grid with # the coefficients on the grid temp2<- stationary.image.cov( Y=c.coefWghts, cov.obj=setupObject$cov.obj) # cut down the size of temp2 trimming off margins using to approximate # exact covariance kernel. temp2<- temp2[ indX[1]:indX[2], indY[1]:indY[2] ] # add fixed part and spatial parts together and coerce to matrix if( object$nt>0){ return( (matrix(temp1,nx,ny) + temp2) ) } else{ # return only the spatial part because the fixed part is absent. return( temp2) } } fields/R/wendland.image.cov.R0000644000175100001440000000733114627453256015547 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER wendland.image.cov <- function(ind1, ind2, Y, cov.obj = NULL, setup = FALSE, grid, M = NULL, N = NULL, cov.args=NULL, ...) { # # if cov object is missing then create # basically need to enlarge domain and find the FFT of the # covariance # cov.args<-c( cov.args, list(...)) # # theta has been deopreciated. if( !is.null(cov.args$theta )){ cov.args$aRange <- cov.args$theta } # delta<- cov.args$aRange if (is.null(cov.obj)) { dx <- grid$x[2] - grid$x[1] dy <- grid$y[2] - grid$y[1] m <- length(grid$x) n <- length(grid$y) # # determine size of padding # default is twice domain and will then yeild exact results # delta indicates that covariance is zero beyond a distance delta # so using a smaller grid than twice domain will still give exact results. if(!is.null(delta)){ M<- ceiling(m + 2*delta/dx) N<- ceiling(n + 2*delta/dy) } if (is.null(M)) M <- (2 * m) if (is.null(N)) N <- (2 * n) # make sure M and N are even. # (not sure what it means if this is not the case!) if( M%%2 !=0) { M<- M+1} if( N%%2 !=0) { N<- N+1} # # print( c(m,n, M,N)) xGrid<- (1:M) * dx - (dx * M)/2 yGrid<- (1:N) * dy - (dy * N)/2 bigDistance<- sqrt( matrix( xGrid^2, M,N, byrow=FALSE) + matrix( yGrid^2, M,N, byrow=TRUE)) # cat("Wendland", fill=TRUE) out<- Wendland( bigDistance / cov.args$aRange, dimension=2, k=cov.args$k ) temp <- matrix(0, nrow = M, ncol = N) # # a simple way to normalize. This could be avoided by # translating image from the center ... # temp[M/2, N/2] <- 1 wght <- fft(out)/(fft(temp) * M * N) # # wght is the discrete FFT for the covariance suitable for fast # multiplication by convolution. # cov.obj <- list(m = m, n = n, grid = grid, N = N, M = M, wght = wght, call = match.call()) if (setup) { return(cov.obj) } } temp <- matrix(0, nrow = cov.obj$M, ncol = cov.obj$N) if (missing(ind1)) { temp[1:cov.obj$m, 1:cov.obj$n] <- Y Re(fft(fft(temp) * cov.obj$wght, inverse = TRUE)[1:cov.obj$m, 1:cov.obj$n]) } else { if (missing(ind2)) { temp[ind1] <- Y } else { temp[ind2] <- Y } # # as promised this is a single clean step # Re(fft(fft(temp) * cov.obj$wght, inverse = TRUE)[ind1]) } } fields/R/print.spatialProcessSummary.R0000644000175100001440000000571114627453256017611 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER print.spatialProcessSummary <- function(x, digits = 4, ...) { cat("CALL:\n") dput(x$call) cat("\n") cat(" SUMMARY OF MODEL FIT:\n") print(x$summaryTable, quote = FALSE) cat("\n") if( !is.na(x$fixedEffectsTable[1])){ cat(" ESTIMATED COEFFICIENTS FOR FIXED PART:", fill = TRUE) cat("\n") print(x$fixedEffectsTable, quote = FALSE) cat("\n") } if( !is.na(x$fixedEffectsTableCommon[1])){ cat(" ESTIMATED COEFFICIENTS FOR COMMON COVARIATES:", fill = TRUE) cat("\n") print(x$fixedEffectsTableCommon, quote = FALSE) cat("\n") } cat(" COVARIANCE MODEL:", x$cov.function, fill = TRUE) if (x$cov.function == "stationary.cov") { covName<- ifelse(is.null(x$args$Covariance), "Exponential", x$args$Covariance) cat(" Covariance function: ", covName, fill = TRUE) } if (!is.null(x$args)) { cat(" Non-default covariance arguments and their values ", fill = TRUE) nlist <- as.character(names(x$args)) NL <- length(nlist) for (k in 1:NL) { covItem<- x$args[[k]] cat( nlist[k], ":", fill = TRUE) if (object.size(covItem) > 10) { print(covItem) } else { cat("Too large to print value, size > 10 ...", fill = TRUE) } } } cat( "Nonzero entries in covariance matrix ", x$nonzero.entries, fill=TRUE) cat("\n") cat("SUMMARY FROM Max. Likelihood ESTIMATION:", fill=TRUE) if( !is.null( x$MLEInfo) ){ cat("Parameters found from optim: ", fill=TRUE ) print( x$MLESummary[x$MLEpars] ) cat("Approx. confidence intervals for MLE(s) ", fill=TRUE ) print( x$CITable) cat("\n") cat(" Note: MLEs for tau and sigma found analytically from lambda", fill=TRUE) cat("\n") } else{ cat(" lambda and range are supplied : ", fill=TRUE) cat(" tau and sigma analytically derived from lambda", fill=TRUE) cat("\n") } cat("Summary from estimation:", fill=TRUE) print( x$MLESummary) invisible(x) } fields/R/fitted.Krig.R0000644000175100001440000000206414627453255014253 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER fitted.Krig <- function(object, ...) { object$fitted.values } fields/R/stationary.cov.R0000644000175100001440000001346314627453256015072 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "stationary.cov" <- function(x1, x2=NULL, Covariance = "Exponential", Distance = "rdist", Dist.args = NULL, aRange = 1, V = NULL, C = NA, marginal = FALSE, derivative = 0, distMat = NA, onlyUpper = FALSE, theta=NULL, ...) { # get covariance function arguments from call # theta argument has been deopreciated. if( !is.null( theta)){ aRange<- theta } cov.args <- list(...) # coerce x1 and x2 to matrices if (is.data.frame(x1)) x1 <- as.matrix(x1) if (!is.matrix(x1)) x1 <- matrix(c(x1), ncol = 1) if(is.null(x2)) x2 = x1 if (is.data.frame(x2)) x2 <- as.matrix(x2) if (!is.matrix(x2)& !is.null(x2)) x2 <- matrix(c(x2), ncol = 1) d <- ncol(x1) n1 <- nrow(x1) n2 <- nrow(x2) # # separate out a single scalar transformation and a # more complicated scaling and rotation. # this is done partly to have the use of great circle distance make sense # by applying the scaling _after_ finding the distance. # if (length(aRange) > 1) { stop("aRange as a vector matrix has been depreciated use the V argument") } # # following now treats V as a full matrix for scaling and rotation. # # try to catch incorrect conbination of great circle distance and V if (Distance == "rdist.earth" & !is.null(V)) { stop("V not supported with great circle distance") } # use V the anisotropic scaling and rotation from covariance arguments # if exists if( !is.null(cov.args$V) ){ V<- cov.args$V } if (!is.null(V)) { if (aRange != 1) { stop("can't specify both aRange and V!") } x1 <- x1 %*% t(solve(V)) x2 <- x2 %*% t(solve(V)) } # # locations are now scaled and rotated correctly # now apply covariance function to pairwise distance matrix, or multiply # by C vector or just find marginal variance # this if block finds the cross covariance matrix if (is.na(C[1]) && !marginal) { # # if distMat is supplied, evaluate covariance for upper triangular part only # if(is.na(distMat[1])) { # distMat not supplied so must compute it along with covariance matrix # note overall scaling by aRange (which is just aRange under isotropic case) if(is.null(x2)) distMat <- do.call(Distance, c(list(x1), Dist.args)) else distMat <- do.call(Distance, c(list(x1=x1, x2=x2), Dist.args)) } # # now convert distance matrix to covariance matrix # # print("**** in stationary.cov" ) # cat("aRange", aRange, fill=TRUE) # if(inherits(distMat, "dist")) { # # distMat is in compact form, so evaluate covariance over all distMat and convert to matrix form diagVal = do.call(Covariance, c(list(d=0), cov.args)) if(onlyUpper) return(compactToMat(do.call(Covariance, c(list(d=distMat*(1/aRange)), cov.args)), diagVal)) else # if onlyUpper==FALSE, also set lower triangle of covariance matrix return(compactToMat(do.call(Covariance, c(list(d=distMat*(1/aRange)), cov.args)), diagVal, lower.tri=TRUE)) } else { # distMat is a full matrix # print(Covariance) # print( aRange) tmp<- do.call(Covariance, c(list(d = distMat/aRange), cov.args)) return( tmp) } } # or multiply cross covariance by C # as coded below this is not particularly efficient of memory else if(!is.na(C[1])) { if(onlyUpper) { #the onlyUpper option is not compatible with the C option onlyUpper = FALSE } if(is.null(x2)) bigD <- do.call(Distance, c(list(x1, x1), Dist.args)) else bigD <- do.call(Distance, c(list(x1=x1, x2=x2), Dist.args)) if (derivative == 0) { return(do.call(Covariance, c(list(d = bigD*(1/aRange)), cov.args)) %*% C) } else { # find partial derivatives tempW <- do.call(Covariance, c(list(d = bigD*(1/aRange)), cov.args, derivative = derivative)) # loop over dimensions and knock out each partial accumulate these in # in temp temp <- matrix(NA, ncol = d, nrow = n1) for (kd in 1:d) { # Be careful if the distance (tempD) is close to zero. # Note that the x1 and x2 are in transformed ( V inverse) scale sM <- ifelse(bigD == 0, 0, tempW * outer(x1[, kd], x2[, kd], "-")/(aRange * bigD)) # accumlate the new partial temp[, kd] <- sM %*% C } # transform back to original coordinates. if (!is.null(V)) { temp <- temp %*% t(solve(V)) } return(temp) } } # or find marginal variance and return a vector. else if (marginal) { tau2 <- do.call(Covariance, c(list(d = 0), cov.args)) return(rep(tau2, nrow(x1))) } # should not get here based on sequence of conditional if statements above. } fields/R/coef.Krig.R0000644000175100001440000000206514627453255013711 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER coef.Krig <- function(object, ...) { Krig.coef(object, ...)$d } fields/R/spam_2lz.R0000644000175100001440000000555014627453256013634 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER spind2full <- function(obj) { # create empty matrix and stuff at non zero locations temp <- matrix(0, obj$da[1], obj$da[2]) temp[obj$ind] <- obj$ra return(temp) } spind2spam <- function(obj, add.zero.rows = TRUE) { # Check if there is one or more missing rows. If so either stop or fill in these rows # with a zero value rows.present <- unique(obj$ind[, 1]) if (length(rows.present) < obj$da[1]) { # The missing row indices ind.missing <- (1:obj$da[1])[-rows.present] N.missing <- length(ind.missing) if (!add.zero.rows) { cat(N.missing, " missing row(s)", fill = TRUE) stop("Can not coerce to spam format with add.zero.rows==FALSE") } else { # put a hard zero in the first column of each missing row obj$ind <- rbind(obj$ind, cbind(ind.missing, rep(1, N.missing))) obj$ra <- c(obj$ra, rep(0, N.missing)) } } # sort on rows and then columns to make sure they are in order ii <- order(obj$ind[, 1], obj$ind[, 2]) # shuffle indices and entries so they are in row order obj$ind <- obj$ind[ii, ] obj$ra <- obj$ra[ii] ia <- obj$ind[, 1] # define total number of nonzero elements M <- length(ia) # find places where rows change hold <- diff(c(0, ia, M + 1)) # Note: 1:M is the cumsum for elements. ia <- (1:(M + 1))[hold != 0] return(new("spam", entries = as.numeric(obj$ra), colindices = as.integer(obj$ind[, 2]), rowpointers = as.integer(ia), dimension = as.integer(obj$da))) } spam2spind <- function(obj) { # diff gives the number of nonzero elements in each row I <- rep((1:obj@dimension[1]), diff(obj@rowpointers)) list(ind = cbind(I, obj@colindices), da = obj@dimension, ra = obj@entries) } spam2full <- function(obj) { spind2full(spam2spind(obj)) } fields/R/predictDerivative.Krig.R0000644000175100001440000000565014627453256016456 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "predictDerivative.Krig" <- function(object, x = NULL, verbose = FALSE, ...) { # this is a lean evaluation of the derivatives of the # random component of the model. # several checks to make sure this being applied to # simple Krig models where it makes sense if (object$correlation.model) { stop("Can not handle correlation model with derivative evaluation") } if (object$null.function.name != "Krig.null.function") { stop("null space may not be a low order polynomial") } # default is to predict at data x's if (is.null(x)) { x <- object$x } else { x <- as.matrix(x) } # transformations of x values used in Krig xc <- object$transform$x.center xs <- object$transform$x.scale x <- scale(x, xc, xs) # NOTE knots are already scaled in Krig object and are used # in transformed scale. # i.e. knots <- scale( object$knots, xc, xs) temp.d <- object$d temp.c <- object$c if (verbose) { cat(" betas", fill = TRUE) print(temp.d) cat("c coefs", fill = TRUE) print(temp.c) } # # this is the polynomial fixed part of predictor # temp1 <- fields.derivative.poly(x, m = object$m, object$d) # add in spatial piece # The covariance function is # evaluated by using it name, do.call function and any # additional arguments. Note use of derivative and 'C' arguments # to do multiplication of partials of covariance times the C # vector. If C is a matrix of coefficients a error is produced. temp2 <- do.call(object$cov.function.name, c(object$args, list(x1 = x, x2 = object$knots, derivative = 1, C = temp.c))) # returned value is the matrix of partials of polynomial plus partials of spatial # part aso add in chain rule scale factor because # functional form for the surface uses the coordinates xscaled = (x- xc)/xs return(t(t(temp1 + temp2)/xs)) } fields/R/multWendlandGrid.R0000644000175100001440000000412314627453256015344 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER # multWendlandGrid <- function( grid.list,center, delta, coef, xy= c(1,2) ){ xGrid<- grid.list[[xy[1]]] yGrid<- grid.list[[xy[2]]] mx<- length( xGrid) my<- length( yGrid) # transform centers to correspond to integer spacing of grid: # i.e. 1:nx and 1:ny dx<- (xGrid[mx] - xGrid[1]) / (mx-1) dy<- (yGrid[my] - yGrid[1]) / (my-1) centerScaled<- cbind( ((center[,1] - xGrid[1]) / dx) + 1, ((center[,2] - yGrid[1]) / dy) + 1 ) deltaX<- delta/dx deltaY<- delta/dy nc<- nrow( center) out<-.Fortran( "multWendlandG", PACKAGE="fields", mx=as.integer(mx), my=as.integer(my), deltaX= as.double( deltaX), deltaY= as.double( deltaY), nc= as.integer(nc), center=as.double(centerScaled), coef=as.double(coef), h= as.double(matrix(0,mx,my)), flag=as.integer(1) ) if( out$flag!= 0){ stop("error in multWendlandG FORTRAN")} return( out$h) } fields/R/mKrigMLEJoint.R0000644000175100001440000002571714627453256014527 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER mKrigMLEJoint<- function(x, y, weights = rep(1, nrow(x)), Z = NULL, ZCommon = NULL, mKrig.args = NULL, na.rm = TRUE, cov.function = "stationary.cov", cov.args = NULL, cov.params.start = NULL, optim.args = NULL, reltol = 1e-6, parTransform = NULL, REML = FALSE, GCV = FALSE, hessian = FALSE, iseed = 303, verbose = FALSE) { # overwrite basic data to remove NAs this has be done in case distance # matrices are precomputed (see below) if( na.rm){ obj<- mKrigCheckXY(x, y, weights, Z, ZCommon, na.rm) x<- obj$x y<- obj$y weights<- obj$weights Z<- obj$Z ZCommon<- obj$ZCommon } # main way to keep track of parameters to optimize # lambda is included if lambda.fixed is NULL # (most of the time one would want to optimize over lambda parameter) parNames <- names(cov.params.start) # precompute distance matrix if possible so it only needs to be computed once supportsDistMat = supportsArg(cov.function, "distMat") if(supportsDistMat & is.null( cov.args$distMat)) { #Get distance function and arguments if available # Dist.fun= c(cov.args)$Distance Dist.args=c(cov.args)$Dist.args #If user left all distance settings NULL, use rdist with compact option. #Use rdist function by default in general. # if(is.null(Dist.fun)) { Dist.fun = "rdist" if(is.null(Dist.args)) Dist.args = list(compact=TRUE) } distMat = do.call(Dist.fun, c(list(x), Dist.args)) #add precomputed distance matrix to the cov.args cov.args = c(cov.args, list(distMat=distMat, onlyUpper=TRUE)) } # these are all the arguments needed to call mKrig except cov.args # if lambda is then it has been added to mKrig.args # if lambda.start then it is part of the parameter names and will # added in the cov.args list mKrig.args <- c(list(x = x, y = y, weights = weights, Z = Z, ZCommon = ZCommon ), mKrig.args, list(cov.function=cov.function) ) if( verbose){ cat("***** Info from call to mKrigJoint:",fill=TRUE) cat("Argument names in full mKrig.args: ", fill=TRUE) print( names(mKrig.args) ) cat("Full cov.args names:\n ", names( cov.args), fill=TRUE) cat("Parameters to optimze: ", parNames, length( parNames), fill=TRUE) cat("Starting values (cov.params.start) : ", fill=TRUE) print( cov.params.start) } if(!GCV){ nameCriterion<- ifelse( !REML, "lnProfileLike.FULL", "lnProfileREML.FULL" ) } else{ nameCriterion<-"GCV" } if(verbose){ cat("nameCriterion: ", nameCriterion, fill=TRUE) } callOptim<- !is.null(cov.params.start) & length(parNames) > 0 ########################################################################## ###### main if else block ########################################################################## if(callOptim){ ######################################################### ### actually do something #set default optim.args if necessary # abstol is anticipating this is a log likelihood so differencs of 1e-4 are not appreciable # # setup control parameters for optim .... if( length(cov.params.start)==0){ stop("On no! Found zero parameters to optimize!") } if(is.null(optim.args)){ # number of step sizes either include lambda as a parameter or not. ndeps<- rep(log(1.1), length( parNames) ) optim.args = list(method = "BFGS", hessian = hessian, control=list(fnscale = -1, ndeps = ndeps, reltol = reltol, maxit = 20) ) } if( is.null(parTransform)){ # parTransform: log/exp parTransform<- function( ptemp, inv=FALSE){ if( !inv){ log( ptemp)} else{ exp(ptemp) } } } # capture.evaluations <- NULL capture.env <- environment() # call to optim with initial start (default is log scaling ) # init.start <- parTransform( unlist(c(cov.params.start)), inv=FALSE) if( verbose){ cat("Transformed starting values ","\n", init.start, fill=TRUE) } # and now the heavy lifting ... # optimize over (some) covariance parameters and possibly lambda # wrapping in try allows for error catching optimResults <-try( do.call(optim, c(list(par=init.start), list(mKrigJointTemp.fn), optim.args, list( parNames = parNames, parTransform = parTransform, mKrig.args = mKrig.args, cov.args = cov.args, capture.env = capture.env, REML = REML, GCV = GCV, verbose = verbose) ) ) ) # catch error in optim and return if( is(optimResults, "try-error") ){ cat("Error in call to optim", fill=TRUE) out =list( summary = NA, lnLikeEvaluations = capture.evaluations[-1,], init.start= init.start, optim.args= optim.args ) return( out) } # reformat the optim results lnLikeEvaluations <- capture.evaluations[-1,] # first row is just NAs if( verbose){ cat("Captured evaluations from optim: ", fill=TRUE) print(lnLikeEvaluations) } #ind<- which(lnLikeEvaluations[ , nameCriterion] # == optimResults$value ) #ind<- max(ind) optim.counts <- optimResults$counts parOptimum<- parTransform(optimResults$par, inv=TRUE) names( parOptimum)<- parNames # update parameter start values with converged ones # note that lambda may be part of this cov.params.final<- as.list(parOptimum) } ########################################################################## ###### end if block ########################################################################## else{ # no optimization required, just setup for a single evaluation cov.params.final <- NULL lnLike.eval <- NA optimResults <- NULL optim.counts <- NA parOptimum <- NULL lnLikeEvaluations<- NULL if( verbose){ cat("fast return in mKrigMLEJoint", fill=TRUE) } } ######################################################### ### just evaluate ### at final parameters or if a fast return ### and also find the trace and GCV ######################################################### cov.args.final<- c( cov.args, cov.params.final) mKrigCallingArgs<- c(mKrig.args, iseed = iseed, verbose=verbose, cov.args.final) if( verbose){ cat("**** Final call in mKrigMLEJoint", fill=TRUE) cat( names(mKrigCallingArgs ), sep=",", fill=TRUE) cat("aRange", mKrigCallingArgs$cov.args$aRange,fill=TRUE) print( mKrigCallingArgs$aRange) } fastObject <- do.call("mKrig", mKrigCallingArgs )$summary ######################################################### summary <- c( fastObject, optim.counts, parOptimum ) out =list( summary = summary, pars.MLE = parOptimum , parTransform = parTransform, optimResults = optimResults , lnLikeEvaluations = lnLikeEvaluations) return(out) } # Define the objective function as a tricksy call to mKrig # if y is a matrix of replicated data sets use the log likelihood for the complete data sets mKrigJointTemp.fn <- function(parameters, mKrig.args, cov.args, parTransform, parNames, REML=FALSE, GCV= FALSE, verbose = verbose, capture.env) { verbose<- FALSE # turn off verbose # optimization is over a transformed scale ( so need to back transform for mKrig) tPars<- parTransform( parameters, inv=TRUE) names( tPars)<- parNames #get all this eval's covariance arguments using the input parameters cov.args.temp = c(cov.args, tPars) if( verbose){ cat("pars in call to objective function:", fill=TRUE) print(tPars ) } # NOTE: FULL refers to estimates collapsed across the replicates if Y is a matrix # NOTE cov.args.temp can also include lambda as a component. # due to the flexibility in arguments to mKrig ( I.e. the ... argument) # any covariance arguments in cov.args.temp are matched to existing mKrig arguments # in particular lambda, the remaining unmatched arguments are assumed to be for the # covariance function and used within mKrig in the call to cov.fun # # Don't find approx trace of A for log likelihood evaluations. mKrig.argsTemp<- mKrig.args if( !GCV){ mKrig.argsTemp$find.trA<- FALSE } # the summary vector from the mKrig object has everything we need ... hold <- do.call("mKrig", c(mKrig.argsTemp,cov.args.temp) )$summary # add this evalution to an object (i.e. here a matrix) in the calling frame temp.eval <- get("capture.evaluations", envir=capture.env) assign("capture.evaluations", rbind(temp.eval, c(parTransform(parameters, inv=TRUE), hold) ), envir = capture.env) if( !GCV){ objectiveFunction <- ifelse(REML, hold["lnProfileREML.FULL"], hold["lnProfileLike.FULL"]) } else{ objectiveFunction <- -1* hold["GCV"] } # cat("objective Function",objectiveFunction, fill=TRUE) return( objectiveFunction) } fields/R/add.image.R0000644000175100001440000000355114627453255013714 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "add.image" <- function(xpos, ypos, z, adj.x = 0.5, adj.y = 0.5, image.width = 0.15, image.height = NULL, col = tim.colors(256), ...) { m <- nrow(z) n <- ncol(z) ucord <- par()$usr pin <- par()$pin # if height is missing scale according to width assuming pixels are # square. if (is.null(image.height)) { image.height <- (n/m) * image.width } # find grid spacing in user coordinates. dy <- image.width * (ucord[4] - ucord[3]) dx <- image.height * pin[2] * (ucord[2] - ucord[1])/(pin[1]) # # dx and dy should have the correct ratio given different different scales # and also different aspects to the plot window # # find grid to put image in right place. xs <- seq(0, dx, , m + 1) + xpos - adj.x * dx ys <- seq(0, dy, , n + 1) + ypos - adj.y * dy image(xs, ys, z, add = TRUE, col = col, ...) } fields/R/snow.colors.R0000644000175100001440000000475414627453256014400 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER # # from development -- the script to tease out colors from # piecewise linear color scale. #library( fields) #look<- read.csv( "cmap_sca_256.csv") #look<- as.matrix( look) #rawRGBTable<- look/255 #x<- 1:255 # y1<- splint( x,look[,1], x, # df=15, derivative=2 ) # y2<- splint( x,look[,2], x, # df=15, derivative=2 ) # y3<- splint( x,look[,2], x, # df=15, derivative=2 ) # f<- y1^2+y2^2+y3^2 # indm<- 1:253 # ind0<- 2:254 # indp<- 3:255 # maxInd<- (f[indp] < f[ind0]) & (f[indm]< f[ind0]) # temp<- t(col2rgb( colors())) # colorsFound<- rbind( look[1,], # look[maxInd,], # look[255,] )/255 # HexColors<- rgb( colorsFound[,1], # colorsFound[,2], # colorsFound[,3]) # rawTable<- rgb( look[,1], look[,2],look[,3]) # snowColorsMap<- list( x= c(0,x[maxInd], 255)/255, # col= HexColors, # rawRGBTable=rawRGBTable) #image(matrix(1:length(HexColors)), col=snow.colors() ) snow.colors<- function( n=256, alpha=1){ x<- c( 0, 7, 31, 63, 94, 127, 159, 190, 222, 243, 248, 255)/255 col<- c("#091E5A", "#0E2266", "#243493", "#225DA8", "#1D8FC0", "#41B6C5", "#7FCEBC", "#C5E9B5", "#EDF8B2", "#F9FDE3", "#FCFEEF", "#FFFFFE") colorTable<- designer.colors(n-1, col=col, x=x , alpha = alpha) #grey added to represent minimum value withGrey<- c( "#808080", colorTable) return( withGrey ) } fields/R/simSpatialData.R0000644000175100001440000000562114627453256015004 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER simSpatialData<- function(object, M = 1, verbose = FALSE) { # object is assummed to have the spatial model according to the # components in a spatialProcess or mKrig object # important variance parameters estimated from the data tau <- (object$summary["tau"]) # set tau2 equal to zero if not there if( is.null(tau)){ tau <- 0} # sigma2 <- object$summary["sigma2"] # xUnique<- object$x if( any( duplicated(xUnique)) ){ stop('Can not handle repeated prediction locations')} N.full <- nrow(xUnique) if (verbose) { cat("N.full", N.full, fill = TRUE) } if( N.full > 5000){ cat("WARNING: Number of locations for simulation is large ( >5000) this may take some time to compute or exhaust the memory.", fill=FALSE) } # # Sigma is full covariance at the data locations and at prediction points. # not to be confused with the lowercase tau that is the nugget variance # Sigma <- sigma2 * do.call(object$cov.function.name, c(object$args, list(x1 = xUnique, x2 = xUnique))) # # square root of Sigma for simulating field # Cholesky is fast but not very stable. # # the following code line is similar to chol(Sigma)-> Scol # but adds possible additional arguments controlling the Cholesky # from the mKrig object. # x has has been winnowed down to unique rows so that # Sigma has full rank. # Schol <- do.call("chol", c(list(x = Sigma), object$chol.args)) # h.data <- t(Schol) %*% matrix( rnorm(N.full*M), N.full,M) # value of simulated field at observations out<- h.data # add measurement error (aka the "nugget") if( tau > 0){ nugget.error<- tau*matrix( rnorm(N.full*M), N.full,M)/object$weights out<- out + nugget.error } # return( out) } fields/R/rad.image.cov.R0000644000175100001440000000433714627453256014524 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "Rad.image.cov" <- function(ind1, ind2, Y, cov.obj = NULL, setup = FALSE, grid, ...) { if (is.null(cov.obj)) { dx <- grid$x[2] - grid$x[1] dy <- grid$y[2] - grid$y[1] m <- length(grid$x) n <- length(grid$y) M <- ceiling2(2 * m) N <- ceiling2(2 * n) xg <- make.surface.grid(list((1:M) * dx, (1:N) * dy)) center <- matrix(c((dx * M)/2, (dy * N)/2), nrow = 1, ncol = 2) out <- Rad.cov(xg, center, ...) out <- as.surface(xg, c(out))$z temp <- matrix(0, nrow = M, ncol = N) temp[M/2, N/2] <- 1 wght <- fft(out)/(fft(temp) * M * N) cov.obj <- list(m = m, n = n, grid = grid, N = N, M = M, wght = wght, call = match.call()) if (setup) { return(cov.obj) } } temp <- matrix(0, nrow = cov.obj$M, ncol = cov.obj$N) if (missing(ind1)) { temp[1:cov.obj$m, 1:cov.obj$n] <- Y Re(fft(fft(temp) * cov.obj$wght, inverse = TRUE)[1:cov.obj$m, 1:cov.obj$n]) } else { if (missing(ind2)) { temp[ind1] <- Y } else { temp[ind2] <- Y } Re(fft(fft(temp) * cov.obj$wght, inverse = TRUE)[ind1]) } } fields/R/ceiling2.R0000644000175100001440000000216014627453255013572 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "ceiling2" <- function(m) { if (m < 1) return(NA) M <- 1 while (M < m) { M <- M * 2 } M } fields/R/predictSE.Krig.R0000644000175100001440000001043214627453256014655 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "predictSE.Krig" <- function(object, x = NULL, cov = FALSE, verbose = FALSE, ...) { # # name of covariance function call.name <- object$cov.function.name # # default is to predict at data x's if (is.null(x)) { x <- object$x } x <- as.matrix(x) if (verbose) { print(x) } xraw <- x # transformations of x values used in Krig # NOTE knots are already scaled in Krig object xc <- object$transform$x.center xs <- object$transform$x.scale x <- scale(x, xc, xs) # # scaled unique observation locations. xM <- object$xM # find marginal variance before transforming x. temp.sd <- 1 if (verbose) { print(temp.sd) } # Default is to use parameters in best.model lambda <- object$best.model[1] sigma2 <- object$best.model[3] tau2 <- object$best.model[2] nx <- nrow(xM) wght.vec <- t(Krig.Amatrix(object, xraw, lambda, eval.correlation.model = FALSE, ...)) if (verbose) { cat("wght.vector", fill = TRUE) print(wght.vec) } #var( f0 - yhat)= var( f0) - cov( f0,yhat) - cov( yhat, f0) + cov( yhat) # = temp0 - temp1 - t( temp1) + temp2 # # if off diagonal weight matrix is passed then # find inverse covariance matrix # otherwise just create this quickly from diagonal weights # Wi <- Krig.make.Wi(object)$Wi # find covariance of data if (object$nondiag.W) { Cov.y <- sigma2 * do.call(call.name, c(object$args, list(x1 = xM, x2 = xM))) + tau2 * Wi } else { # this is one case where keeping diagonal # matrix as a vector will not work. Cov.y <- sigma2 * do.call(call.name, c(object$args, list(x1 = xM, x2 = xM))) + tau2 * diag(Wi) } if (!cov) { # find diagonal elements of covariance matrix # now find the three terms. # note the use of an element by element multiply to only get the # diagonal elements of the full # prediction covariance matrix. # temp1 <- sigma2 * colSums(wght.vec * do.call(call.name, c(object$args, list(x1 = xM, x2 = x)))) temp2 <- colSums(wght.vec * (Cov.y %*% wght.vec)) # # find marginal variances -- trival in the stationary case! # Note that for the case of the general covariances # as radial basis functions (RBFs) temp0 should be zero. # Positivity results from the generalized divided difference # properties of RBFs. temp0 <- sigma2 * do.call(call.name, c(object$args, list(x1 = x, marginal = TRUE))) # temp <- temp0 - 2 * temp1 + temp2 # return(sqrt(temp * temp.sd^2)) } else { # # find full covariance matrix # temp1 <- sigma2 * t(wght.vec) %*% do.call(call.name, c(object$args, list(x1 = xM, x2 = x))) # temp2 <- t(wght.vec) %*% Cov.y %*% wght.vec # temp0 <- sigma2 * do.call(call.name, c(object$args, list(x1 = x, x2 = x))) # temp <- temp0 - t(temp1) - temp1 + temp2 temp <- t(t(temp) * temp.sd) * temp.sd # return(temp) } } fields/R/vgram.family.R0000644000175100001440000002463014627453256014501 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "vgram" <- function(loc, y, id = NULL, d = NULL, lon.lat = FALSE, dmax = NULL, N = NULL, breaks = NULL, prettyBins=FALSE, type=c("variogram", "covariogram", "correlogram")) { type=match.arg(type) # # if prettyBins is FALSE then generate exactly N breaks and so N-1 bins. # otherwise number of breaks is at the mercy of the pretty function # and may be N-1 or something else! # # coerce to matrix y <- cbind(y) # if nearest neighbor indices are missing create all possible pairs. if (is.null(id)) { n <- nrow(loc) is = rep(1:n, n) js = rep(1:n, rep(n, n)) ind <- is > js id <- cbind(is, js)[ind, ] } # if distances are missing calculate these if (is.null(d)) { loc <- as.matrix(loc) if (lon.lat) { d <- rdist.earth.vec(loc[id[,1],], loc[id[,2],]) #we want result in miles, not meters } else { d <- rdist.vec(loc[id[,1],], loc[id[,2],]) } } # normalize columns to create correlogram, if necessary # if(type == "correlogram") { tau = apply(y, 2, sd, na.rm=TRUE) y = sweep(y, 2, (1/tau), FUN="*") } # center the columns by their mean and get row means if y is a matrix # colMeans <- apply(y, 2, mean, na.rm=TRUE) yCntr = sweep(y, 2, colMeans) y1Cntr = yCntr[id[,1],] y2Cntr = yCntr[id[,2],] if(type == "variogram") { vg <- 0.5 * rowMeans(cbind((y1Cntr - y2Cntr)^2), na.rm = TRUE) } else { vg <- rowMeans(cbind(y1Cntr * y2Cntr), na.rm = TRUE) } # #information for returned object # call <- match.call() if (is.null(dmax)) { dmax <- max(d) } od <- order(d) d <- d[od] vg <- vg[od] ind <- d <= dmax & !is.na(vg) ## add a binned variogram if breaks are supplied out <- list(d = d[ind], vgram = vg[ind], call = call, type=type) if (!is.null(breaks) | !is.null(N)) { out <- c(out, stats.bin(d[ind], vg[ind], N = N, breaks = breaks, prettyBins=prettyBins)) } class(out) = c("vgram", class(out)) out } #calculating cross-covariogram and cross-correlogram (cross-covariance and #cross-correlation) crossCoVGram = function(loc1, loc2, y1, y2, id = NULL, d = NULL, lon.lat = FALSE, dmax = NULL, N = NULL, breaks = NULL, type=c("cross-covariogram", "cross-correlogram"), prettyBins=FALSE) { type=match.arg(type) # coerce to matrix y1 <- cbind(y1) y2 <- cbind(y2) # if nearest neighbor indices are missing create all possible pairs. if (is.null(id)) { n1 <- nrow(loc1) n2 <- nrow(loc2) id <- cbind(rep(1:n1, n2), rep(1:n2, rep(n1, n2))) } # if distances are missing calculate these if (is.null(d)) { loc1 <- as.matrix(loc1) loc2 <- as.matrix(loc2) if (lon.lat) { d <- rdist.earth.vec(loc1[id[,1],], loc2[id[,2],]) #we want result in miles, not meters } else { d <- rdist.vec(loc1[id[,1],], loc2[id[,2],]) } } # # calculating covariogram will center the columns by their mean and get row means if y is a matrix # colMeans1 <- apply(y1, 2, mean, na.rm=TRUE) colMeans2 <- apply(y2, 2, mean, na.rm=TRUE) y1Cntr = sweep(data.matrix(y1), 2, colMeans1) # subtract the column means y2Cntr = sweep(data.matrix(y2), 2, colMeans2) # subtract the column means # # normalize to create cross-correlogram, if necessary # if(type == "cross-correlogram") { tau1 = apply(y1Cntr, 2, sd, na.rm=TRUE) tau2 = apply(y2Cntr, 2, sd, na.rm=TRUE) y1Cntr = sweep(y1Cntr, 2, 1/tau1, FUN="*") y2Cntr = sweep(y2Cntr, 2, 1/tau2, FUN="*") } # # calculate covariance for the given points # y1Cntr = y1Cntr[id[,1],] y2Cntr = y2Cntr[id[,2],] vg <- rowMeans(cbind(y1Cntr*y2Cntr), na.rm = TRUE) # #information for returned object # call <- match.call() if (is.null(dmax)) { dmax <- max(d) } od <- order(d) d <- d[od] vg <- vg[od] ind <- d <= dmax & !is.na(vg) ## add a binned variogram if breaks are supplied out <- list(d = d[ind], vgram = vg[ind], call = call, type=type) if (!is.null(breaks) | !is.null(N)) { out <- c(out, stats.bin(d[ind], vg[ind], N = N, breaks = breaks, prettyBins=prettyBins)) } class(out) = c("vgram", class(out)) out } #plot only the line of the empirical variogram, where the y coordinates of the line are #at the means of the bins plot.vgram = function(x, N=10, breaks = pretty(x$d, N, eps.correct = 1), add=FALSE, ...) { otherArgs = list(...) type=x$type #set y axis label if not set by user if(is.null(otherArgs$ylab)) { if(type=="variogram") otherArgs$ylab = "Variance" else if(type == "covariogram" || type=="cross-covariogram") otherArgs$ylab = "Covariance" else if(type == "correlogram" || type=="cross-correlogram") otherArgs$ylab = "Correlation" else stop("vgram 'type' argument must be either 'variogram', 'covariogram', 'correlogram', 'cross-covariogram', or 'cross-correlogram'") } #set x axis label if not set by user if(is.null(otherArgs$xlab)) otherArgs$xlab = "Distance" #set plot title if not set by user if(is.null(otherArgs$main)) { if(type=="variogram") otherArgs$main = "Empirical Variogram" else if(type=="covariogram") otherArgs$main = "Empirical Covariogram" else if(type=="correlogram") otherArgs$main = "Empirical Correlogram" else if(type=="cross-covariogram") otherArgs$main = "Empirical Cross-Covariogram" else if(type=="cross-correlogram") otherArgs$main = "Empirical Cross-Correlogram" else stop("vgram 'type' argument must be either 'variogram', 'covariogram', 'correlogram', 'cross-covariogram', or 'cross-correlogram'") } #set ylim for correlogram if not set by user if(is.null(otherArgs$ylim)) { if(type == "correlogram" || type=="cross-correlogram") otherArgs$ylim = c(-1, 1) } #set line type if not set by user if(is.null(otherArgs$type)) otherArgs$type = "o" #get bin data dat = getVGMean(x, breaks=breaks) #get bin centers versus bin means centers = dat$centers ys = dat$ys #remove NAs notNas = !is.na(ys) centers = centers[notNas] ys = ys[notNas] #plot if(!add) do.call("plot", c(list(centers, ys), otherArgs)) else do.call("lines", c(list(centers, ys), otherArgs)) } "boxplotVGram" = function(x, N=10, breaks = pretty(x$d, N, eps.correct = 1), plot=TRUE, plot.args=NULL, ...) { dists = x$d type=x$type if(type == "variogram") y = sqrt(x$vgram) else y = x$vgram otherArgs = list(...) #set y axis label if not set by user if(is.null(otherArgs$ylab)) { if(type=="variogram") otherArgs$ylab = "sqrt(Variance)" else if(type == "covariogram" || type=="cross-covariogram") otherArgs$ylab = "Covariance" else if(type == "correlogram" || type=="cross-correlogram") otherArgs$ylab = "Correlation" else stop("vgram 'type' argument must be either 'variogram', 'covariogram', 'correlogram', 'cross-covariogram', or 'cross-correlogram'") } #set x axis label if not set by user if(is.null(otherArgs$xlab)) otherArgs$xlab = "Distance" #set plot title if not set by user if(is.null(otherArgs$main)) { if(type=="variogram") otherArgs$main = "Empirical Variogram (square root scale) " else if(type=="covariogram") otherArgs$main = "Empirical Covariogram" else if(type=="correlogram") otherArgs$main = "Empirical Correlogram" else if(type=="cross-covariogram") otherArgs$main = "Empirical Cross-Covariogram" else if(type=="cross-correlogram") otherArgs$main = "Empirical Cross-Correlogram" else stop("vgram 'type' argument must be either 'variogram', 'covariogram', 'correlogram', 'cross-covariogram', or 'cross-correlogram'") } #set ylim for correlogram if not set by user if(is.null(otherArgs$ylim)) { if(type == "correlogram" || type=="cross-correlogram") otherArgs$ylim = c(-1, 1) } #make boxplot bplot = do.call("bplot.xy", c(list(x=dists, y=y, N=N, breaks=breaks, plot=plot), otherArgs)) #return bplot.xy statistics if plot==FALSE if(!plot) return(bplot) # #plot bin means with plot parameters given in plot.args (with defaults to look pretty) # plot.args$x=x # plot.args$add=TRUE # plot.args$breaks=breaks # if(is.null(plot.args$col)) # plot.args$col = "red" # if(is.null(plot.args$type)) # plot.args$type = "p" # do.call("plot.vgram", plot.args) } # Returns the variogram bin centers and means getVGMean = function(x, N = 10, breaks = pretty(x$d, N, eps.correct = 1)) { # Can calculate mean or other statistical functions of the values in the bins VGstat = function(VG, minD=-Inf, maxD=Inf, statFun="mean", ...) { ind = (VG$d > minD) & (VG$d < maxD) do.call(statFun, c(list(VG$vgram[ind]), list(...))) } #helper function to get mean from any single bin meansFromBreak = function(breakBounds = c(-Inf, Inf)) { VGstat(x, minD=breakBounds[1], maxD=breakBounds[2], na.rm=TRUE) } #apply helper function to all bins lowBreaks = breaks highBreaks = c(breaks[2:length(breaks)], Inf) breakBounds = cbind(lowBreaks, highBreaks) centers = apply(breakBounds, 1, mean, na.rm=TRUE) ys = apply(breakBounds, 1, meansFromBreak) #take square root if variogram # if(x$type == "variogram") # ys=sqrt(ys) return(list(centers=centers, ys=ys, type=x$type)) } fields/R/printGCVWarnings.R0000644000175100001440000000444314627453256015312 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER printGCVWarnings<- function( Table, method="all"){ ind<- Table$Warning if( method=="user"){ #print nothing, expect that the user knows what he/she is doing! return() } if( method == "all"){ kIndex<- 1:6 } else{ kIndex<- match( method,c("GCV", "GCV.model", "GCV.one", "RMSE", "pure error", "REML") ) } methodList<- c( "(GCV) Generalized Cross-Validation ", "(GCV.model) Generalized Cross-Validation on replicate means ", "(GCV.one) Generalized Cross-Validation on individual observations ", "(RMSE) Matching estimate of tau to supplied rmse ", "Matching estimate of tau to that from replicated observations", "(REML) Restricted maximum likelihood ", "user supplied lambda" ) if( any( ind[kIndex])){ cat("Warning: ", fill=TRUE) cat("Grid searches over lambda (nugget and sill variances) with minima at the endpoints: ", fill=TRUE) } for( k in kIndex){ if( ind[k]){ whichEnd<- ifelse(Table[k,2],"left","right") cat( " ", methodList[k], fill =TRUE) cat( " minimum at ", whichEnd, "endpoint", " lambda = ", Table[k,6] , "(eff. df=", Table[k,7] , ")", fill = TRUE ) } } } fields/R/drape.color.R0000644000175100001440000000546714627453255014323 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "drape.color" <- function(z, col = tim.colors(64), zlim = NULL, breaks, transparent.color = "white", midpoint = TRUE, eps = 1e-08) { # range if zlim not supplied if (is.null(zlim)) { zlim <- range(c(z), na.rm = TRUE) } # set any values outside of range to NA ( i.e. the transparent.color) z[(z < zlim[1]) | (z > zlim[2])] <- NA NC <- length(col) M <- nrow(z) N <- ncol(z) # if midpoint is TRUE find average z value for a facet and # overwrite z with matrix where row and column are one less # (reflecting that these are box centers not corners) if (midpoint) { z <- (z[1:(M - 1), 1:(N - 1)] + z[2:M, 1:(N - 1)] + z[1:(M - 1), 2:N] + z[2:M, 2:N])/4 M <- M - 1 N <- N - 1 } if (missing(breaks)) { breaks <- NA } if (is.na(breaks[1])) { # spacing for grid to assign colors # +-eps included so that if z== zlim[1 or 2] it gets a color # if statement is for when the limit is exactly zero # thanks to Rosa Trancoso for finding this bug zrange <- zlim[2] - zlim[1] lower <- ifelse(abs(zlim[1]) != 0, (zlim[1] - abs(zlim[1]) * eps), -eps * zrange) upper <- ifelse(abs(zlim[2]) != 0, (zlim[2] + abs(zlim[1]) * eps), eps * zrange) breaks <- seq(lower, upper, , NC + 1) } if (length(breaks) != NC + 1) { stop("must have one more break than colour") } # the magic of R ... icolor <- cut(c(z), breaks)@.Data # returned values is a vector of character hex strings encoding the colors. hold <- ifelse(is.na(icolor), transparent.color, col[icolor]) # points not assigned a bin from breaks get an NA # NA are converted to transparent color list(color.index = matrix(hold, nrow = M, ncol = N), breaks = breaks) } fields/R/qr.yq2.R0000644000175100001440000000205214627453256013233 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "qr.yq2" <- function(qr, y) { t(qr.q2ty(qr, t(y))) } fields/R/predict.mKrig.R0000644000175100001440000001003414627453256014600 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER predict.mKrig <- function(object, xnew = NULL, ynew = NULL, grid.list=NULL, derivative = 0, Z = NULL, drop.Z = FALSE, just.fixed = FALSE, collapseFixedEffect = object$collapseFixedEffect, ...) { # the main reason to pass new args to the covariance is to increase # the temp space size for sparse multiplications # other optional arguments that typically describe the covariance function # from mKrig are passed along in the list object$args cov.args <- list(...) # predict at observation locations by default if( !is.null(grid.list)){ xnew<- make.surface.grid(grid.list) } if (is.null(xnew)) { xnew <- object$x } if (is.null(Z) & (length(object$ind.drift) >0 )) { Z <- object$Tmatrix[, !object$ind.drift] } if (!is.null(ynew)) { coef.hold <- mKrig.coef(object, ynew, collapseFixedEffect=collapseFixedEffect) c.coef <- coef.hold$c.coef beta <- coef.hold$beta } else { c.coef <- object$c.coef beta <- object$beta } # fixed part of the model this a polynomial of degree m-1 # Tmatrix <- fields.mkpoly(xnew, m=object$m) # only do this if nt>0, i.e. there is a fixed part. # if( object$nt>0){ if (derivative == 0) { if (drop.Z | object$nZ == 0) { # just evaluate polynomial and not the Z covariate temp1 <- fields.mkpoly(xnew, m = object$m) %*% beta[object$ind.drift, ] } else { if( nrow( xnew) != nrow(as.matrix(Z)) ){ stop(paste("number of rows of covariate Z", nrow(as.matrix(Z)), " is not the same as the number of locations", nrow( xnew) ) ) } temp0 <- cbind(fields.mkpoly(xnew, m = object$m),as.matrix(Z)) temp1 <- temp0 %*% beta } } else { if (!drop.Z & object$nZ > 0) { stop("derivative not supported with Z covariate included") } temp1 <- fields.derivative.poly(xnew, m = object$m, beta[object$ind.drift, ]) } if (just.fixed) { return(temp1) } } # add nonparametric part. Covariance basis functions # times coefficients. # syntax is the name of the function and then a list with # all the arguments. This allows for different covariance functions # that have been passed as their name. if (derivative == 0) { # argument list are the parameters and other options from mKrig # locations anbetaficients, temp2 <- do.call(object$cov.function.name, c(object$args, list(x1 = xnew, x2 = object$knots, C = c.coef), cov.args)) } else { temp2 <- do.call(object$cov.function.name, c(object$args, list(x1 = xnew, x2 = object$knots, C = c.coef, derivative = derivative), cov.args)) } # add two parts together and coerce to vector if( object$nt>0){ return((temp1 + temp2)) } else{ return( temp2) } } fields/R/wendland.family.R0000644000175100001440000003074614627453256015166 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER Wendland2.2 <- function(d, aRange = 1, theta=NULL) { # theta argument has been deopreciated. if( !is.null( theta)){ aRange<- theta } # Cari's test function with explicit form for d=2 k=2 # taper range is 1.0 d <- d/aRange if (any(d < 0)) stop("d must be nonnegative") return(((1 - d)^6 * (35 * d^2 + 18 * d + 3))/3 * (d < 1)) } # # # the monster # "wendland.cov" <- function(x1, x2=NULL, aRange = 1, V = NULL, k = 2, C = NA, marginal = FALSE, Dist.args = list(method = "euclidean"), spam.format = TRUE, derivative = 0, verbose = FALSE, theta=NULL) { # # theta argument has been deopreciated. if( !is.null( theta)){ aRange<- theta } # if marginal variance is needed # this is a quick return if (marginal) { return(rep(1, nrow(x1))) } # the rest of the possiblities require some computing # setup the two matrices of locations # if (!is.matrix(x1)) { x1 <- as.matrix(x1) } if( is.null( x2) ) { x2<- x1} if (!is.matrix(x2) ) { x2 <- as.matrix(x2) } d <- ncol(x1) n1 <- nrow(x1) n2 <- nrow(x2) # logical to figure out if this is great circle distance or not # great circle needs to handled specially due to how things are scaled. great.circle <- Dist.args$method == "greatcircle" # derivatives are tricky for great circle and other distances and have not been implemented ... if (Dist.args$method != "euclidean" & derivative > 0) { stop("derivatives not supported for this distance metric") } # catch bad aRange format if (length(aRange) > 1) { stop("aRange as a matrix or vector has been depreciated") } # catch using V with great circle if (!is.null(V) & great.circle) { stop("V is not implemented with great circle distance") } if (!is.null(V)) { if (aRange != 1) { stop("can't specify both aRange and V!") } x1 <- x1 %*% t(solve(V)) x2 <- x2 %*% t(solve(V)) } # if great circle distance set the delta cutoff to be in scale of angular latitude. # also figure out if scale is in miles or kilometers if (great.circle) { miles <- ifelse(is.null(Dist.args$miles), TRUE, Dist.args$miles) delta <- (180/pi) * aRange/ifelse(miles, 3963.34, 6378.388) } else { delta <- aRange } if (verbose) { print(delta) } # once scaling is done taper is applied with default range of 1.0 # find polynomial coeffients that define # wendland on [0,1] # d dimension and k is the order # first find sparse matrix of Euclidean distances # ||x1-x2||**2 (or any other distance that may be specified by # the method component in Dist.args # any distance beyond delta is set to zero -- anticipating the # tapering to zero by the Wendland. # sM <- do.call("nearest.dist", c(list(x1, x2, delta = delta, upper = NULL), Dist.args)) # scale distances by aRange # note: if V is passed then aRange==1 and all the scaling should be done with the V matrix. # there are two possible actions listed below: # find Wendland cross covariance matrix # return either in sparse or matrix format if (is.na(C[1])) { sM@entries <- Wendland(sM@entries/aRange, k = k, dimension = d) if (!spam.format) { return(as.matrix(sM)) } else { return(sM) } } else { # # multiply cross covariance matrix by the matrix C where # columns are usually the 'c' coefficients # note multiply happens in spam format # if (derivative == 0) { sM@entries <- Wendland(sM@entries/aRange, k = k, dimension = d) return(sM %*% C) } else { # otherwise evaluate partial derivatives with respect to x1 # big mess of code and an explicit for loop! # this only is for euclidean distance if (is.matrix(C)) { if (ncol(C) > 1) { stop("C should be a vector") } } L <- length(coef) # loop over dimensions and accumulate partial derivative matrix. tempD <- sM@entries tempW <- Wendland(tempD/aRange, k = k, dimension = d, derivative = derivative) # loop over dimensions and knock out each partial accumulate these in # in temp temp <- matrix(NA, ncol = d, nrow = n1) # Create rowindices vector sMrowindices <- rep(1:n1, diff(sM@rowpointers)) for (kd in 1:d) { # # Be careful if the distance (tempD) is close to zero. # Note that the x1 and x2 are in transformed ( V inverse) scale # # sM@entries <- ifelse(tempD == 0, 0, (tempW * (x1[sMrowindices, kd] - x2[sM@colindices, kd])/(aRange * tempD))) # # accumlate the new partial temp[, kd] <- sM %*% C } # transform back to original coordinates. if (!is.null(V)) { temp <- temp %*% t(solve(V)) } return(temp) } } # should not get here! } # # # ############## basic evaluation of Wendland and its derivatives. ########################### # n: Wendland interpolation matrix is positive definite on R^n, i.e. n is # the dimension of the locations. # k: Wendland function is 2k times continuously # differentiable. # The proofs can be found in the work of Wendland(1995). # H. Wendland. Piecewise polynomial , positive definite and compactly supported radial # functions of minimal degree. AICM 4(1995), pp 389-396. ######################################### ## top level function: Wendland = function(d, aRange = 1, dimension, k, derivative = 0, phi = NA, theta=NULL) { # theta argument has been deopreciated. if( !is.null( theta)){ aRange<- theta } if (!is.na(phi)) { stop("phi argument has been depreciated") } if (any(d < 0)) { stop("d must be nonnegative") } # find scaling so that function at zero is 1. scale.constant <- wendland.eval(0, n = dimension, k, derivative = 0) # adjust by aRange if (derivative > 0) { scale.constant <- scale.constant * (aRange^(derivative)) } # scale distances by aRange. if( aRange!=1){ d <- d/aRange} # at this point d the distances shouls be scaled so that # covariance is zero beyond 1 if( (k==2)& (dimension==2) & (derivative==0)){ ((1 - d)^6 * (35 * d^2 + 18 * d + 3))/3 * (d < 1)} else{ ifelse(d < 1, wendland.eval(d, n = dimension, k, derivative)/scale.constant, 0) } } #################### # [M] = wm(n, k) # Compute the matrix coeficient in Wendland(1995) # Input: #\tn: Wendland interpolation matrix is positive definite on R^n # \tk: Wendland function is 2k times continuously differentiable #################### Wendland.beta = function(n, k) { l = floor(n/2) + k + 1 M = matrix(0, nrow = k + 1, ncol = k + 1) # # top corner is 1 # M[1, 1] = 1 # # Compute across the columns and down the rows, filling out upper triangle of M (including diagonal). The indexing is done from 0, thus we have to adjust by +1 when accessing our matrix element. # if (k == 0) { stop } else { for (col in 0:(k - 1)) { # # Filling out the col+1 column # # As a special case, we need a different formula for the top row # row = 0 beta = 0 for (m in 0:col) { beta = beta + M[m + 1, col + 1] * fields.pochdown(m + 1, m - row + 1)/fields.pochup(l + 2 * col - m + 1, m - row + 2) } M[row + 1, col + 2] = beta # # Now do the rest of rows # for (row in 1:(col + 1)) { beta = 0 for (m in (row - 1):col) { beta = beta + M[m + 1, col + 1] * fields.pochdown(m + 1, m - row + 1)/fields.pochup(l + 2 * col - m + 1, m - row + 2) } M[row + 1, col + 2] = beta } } } M } ######################################## # [phi] = wendland.eval(r, n, k, derivative). # Compute the compacted support basis function in Wendland(1995). # Input: #\tr: a scalar representing the distance between locations. r should be scaled into [0,1] beforehand. # \tn: Wendland interpolation matrix is positive definite on R^n. Or, we could say n is the dimension of the locations. # \tk: Wendland function is 2k times continuously differentiable. #\tderivative: the derivative of wendland function. # Output: #\tphi: a scalar evaluated by the Wendland function at distance r. # example: #\tr = 0.5 #\tphi = wendland.eval(r, 2, 1,derivative = 1 ) # The proofs can be found in the work of Wendland(1995). # H. Wendlamd. Piecewise polynomial , positive definite and compactly supported radial functions of minimal degree. AICM 4(1995), pp 389-396. ######################################### wendland.eval = function(r, n, k, derivative = 0) { # # check if the distances are between [0,1] # beta = Wendland.beta(n, k) l = floor(n/2) + k + 1 if (derivative == 0) { # # first evaluate outside for loop with m =0 phi = beta[1, k + 1] * (1 - r)^(l + 2 * k) # now accumulate terms for other m values up to k for (m in 1:k) { phi = phi + beta[m + 1, k + 1] * r^m * (1 - r)^(l + 2 * k - m) } } else { # evaluate derivative note use of symbolic differtiation. f.my = expression((1 - r)^(l + 2 * k)) f.deriv = fields.D(f.my, "r", order = derivative) f.eval = eval(f.deriv) phi = beta[1, k + 1] * f.eval for (m in 1:k) { f.my = expression(r^m * (1 - r)^(l + 2 * k - m)) f.deriv = fields.D(f.my, "r", order = derivative) f.eval = eval(f.deriv) phi = phi + beta[m + 1, k + 1] * f.eval } } phi } ####################### # [n] = fields.pochup(q, k) # Calculate the Pochhammer symbol for rising factorial q(q+1)(q+2)...(q+k-1) ####################### fields.pochup = function(q, k) { n = q if (k == 0) { n = 1 } else { for (j in 1:(k - 1)) { if ((k - 1) < 1) { stop } else { n = n * (q + j) } } } n } ######################### # [n] = fields.pochdown(q, k) # Calculate the Pochhammer symbol for falling factorial q(q-1)(q-2)...(q-k+1) ######################### fields.pochdown = function(q, k) { n = q if (k == 0) { n = 1 } else { for (j in 1:(k - 1)) { if ((k - 1) < 1) { stop } else { n = n * (q - j) } } } n } ############################# # fields.D(f,name = x,order = n) forms the n-th derivative of function f with respect to the variable x ################################ fields.D = function(f, name, order = 1) { if (order < 1) { stop("'order' must be >= 1") } if (order == 1) { d = D(f, name) } else { fields.D(D(f, name), name, order - 1) } } fields/R/surface.family.R0000644000175100001440000000554214627453256015016 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "surface.Krig" <- function(object, grid.list = NULL, extrap = FALSE, graphics.reset = NULL, xlab = NULL, ylab = NULL, main = NULL, zlab = NULL, zlim = NULL, levels = NULL, type = "C", nx = 80, ny = 80, col=viridisLite::viridis(256), ...) { ## modified so that you can give main, and ylab as arguments ## in ... and have them passed correctly out.p <- predictSurface(object, grid.list, extrap = extrap, nx = nx, ny = ny, drop.Z = TRUE) if (!is.null(ylab)) out.p$ylab <- ylab if (!is.null(xlab)) out.p$xlab <- xlab if (!is.null(zlab)) out.p$zlab <- zlab if (!is.null(main)) out.p$main <- main ## else ## out.p$main <- NULL plot.surface(out.p, type = type, graphics.reset = graphics.reset, levels = levels, zlim = zlim,col=col, ...) invisible() } "surface" <- function(object, ...) { UseMethod("surface") } "surface.default" <- function(object, col=viridis(256), ...) { plot.surface(object, col=col, ...) } "surface.mKrig" <- function(object, grid.list = NULL, extrap = FALSE, graphics.reset = NULL, xlab = NULL, ylab = NULL, main = NULL, zlab = NULL, zlim = NULL, levels = NULL, type = "C", nx = 80, ny = 80, col=viridisLite::viridis(256),...) { ## modified so that you can give main, and ylab as arguments ## in ... and have them passed correctly out.p <- predictSurface(object, grid.list, extrap = extrap, nx = nx, ny = ny, drop.Z = TRUE) if (!is.null(ylab)) out.p$ylab <- ylab if (!is.null(xlab)) out.p$xlab <- xlab if (!is.null(zlab)) out.p$zlab <- zlab if (!is.null(main)) out.p$main <- main ## else ## out.p$main <- NULL plot.surface(out.p, type = type, graphics.reset = graphics.reset, levels = levels, zlim = zlim, col=col, ...) invisible() } fields/R/bubblePlot.R0000644000175100001440000000433714653475600014175 0ustar hornikusers# bubblePlot fix bubblePlot<- function (x, y, z, col = viridisLite::viridis(256), zlim = NULL, noLegend=FALSE, horizontal = FALSE, legend.cex = 1, legend.lab = NULL, legend.line = 2, legend.shrink = 0.9, legend.width = 1.2, legend.mar = ifelse(horizontal, 3.1, 5.1), axis.args = NULL, legend.args = NULL, size = 1, add = FALSE, legendLayout = NULL, highlight = FALSE, highlight.color = "grey30", bubbleType="circle", ...) { x <- as.matrix(x) if (dim(x)[2] == 2) { z <- y y <- x[, 2] x <- x[, 1] } ctab = color.scale(z, col, zlim = zlim) if (!add & is.null(legendLayout)&!noLegend) { legendLayout <- setupLegend(legend.shrink = legend.shrink, legend.width = legend.width, legend.mar = legend.mar, horizontal = horizontal) } # only square and circle supported! if( bubbleType=="square"){ pchSolid<- 15 pchOutline<- 0 } else{ pchSolid<- 16 pchOutline<- 1 } if (!add) { plot(x, y, col = ctab, cex = size, pch = pchSolid, ...) } else { points(x, y, cex = size, col = ctab, pch = pchSolid) } if (highlight) { points(x, y, cex = size, pch = pchOutline, col = highlight.color) } if( !noLegend){ # save the graphical parameter so they can be reset big.par <- par(no.readonly = TRUE) mfg.save <- par()$mfg # figure out some legend parameters if they are not already # specified if (!add | !is.null(legendLayout)) { levelsZ <- attr(ctab, "levelsZ") if ((is.null(axis.args)) & (!is.null(levelsZ))) { axis.args = list(at = 1:length(levelsZ), labels = levelsZ) } addLegend(legendLayout, col = attr(ctab, "col"), zlim = attr(ctab, "zlim"), axis.args = axis.args, legend.args = legend.args, legend.cex = legend.cex, legend.lab = legend.lab, legend.line = legend.line) } par(plt = big.par$plt, xpd = FALSE) par(mfg = mfg.save, new = FALSE) } } fields/R/rdist.vec.R0000644000175100001440000000231614627453256014003 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER rdist.vec = function(x1, x2) { #make sure inputs are matrices if (!is.matrix(x1)) { x1 <- as.matrix(x1) } if(!is.matrix(x2)) { x2 <- as.matrix(x2) } #return distances sqrt(rowSums((x1 - x2)^2)) } fields/R/predict.sreg.R0000644000175100001440000000233314627453256014472 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "predict.sreg" <- function(object, x, derivative = 0, model = 1, ...) { if (missing(x)) { x <- object$x } c(splint(object$predicted$x, object$predicted$y[, model], x, derivative = derivative, ...)) } fields/R/stationary.taper.cov.R0000644000175100001440000001325714627453256016205 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "stationary.taper.cov" <- function(x1, x2=NULL, Covariance = "Exponential", Taper = "Wendland", Dist.args = NULL, Taper.args = NULL, aRange = 1, V = NULL, C = NA, marginal = FALSE, spam.format = TRUE, verbose = FALSE, theta=NULL, ...) { # theta argument has been deopreciated. if( !is.null( theta)){ aRange<- theta } # get covariance function arguments from call Cov.args <- list(...) # coerce x1 and x2 to matrices if (is.data.frame(x1)) x1 <- as.matrix(x1) if (!is.matrix(x1)) x1 <- matrix(c(x1), ncol = 1) if (is.null(x2)) x2 <- x1 if (is.data.frame(x2)) x2 <- as.matrix(x1) if (!is.matrix(x2)) x2 <- matrix(c(x2), ncol = 1) d <- ncol(x1) n1 <- nrow(x1) n2 <- nrow(x2) # Default taper arguments that are particular to the Wendland. # Make sure dimension argument is added. if (Taper == "Wendland") { if (is.null(Taper.args)) { Taper.args <- list(aRange = 1, k = 2, dimension = ncol(x1)) } if (is.null(Taper.args$dimension)) { Taper.args$dimension <- ncol(x1) } } # # Add in general defaults for taper arguments if not Wendland # aRange = 1.0 is the default range for the taper. if (is.null(Taper.args)) { Taper.args <- list(aRange = 1) } # # separate out a single scalar transformation and a # more complicated scaling and rotation. # this is done partly to have the use of great circle distance make sense # by applying the scaling _after_ finding the distance. # # flag for great circle distance great.circle <- ifelse(is.null(Dist.args$method), FALSE, Dist.args$method == "greatcircle") # check form of aRange if (length(aRange) > 1) { stop("aRange as a matrix has been depreciated, use the V argument") } # # following now treats V as a full matrix for scaling and rotation. # if (!is.null(V)) { # try to catch error of mixing great circle distance with a # linear scaling of coordinates. if (aRange != 1) { stop("can't specify both aRange and V!") } if (great.circle) { stop("Can not mix great circle distance\nwith general scaling (V argument or vecotr of aRange's)") } x1 <- x1 %*% t(solve(V)) x2 <- x2 %*% t(solve(V)) } # # locations are now scaled and rotated correctly # copy taper range if (great.circle) { # set the delta cutoff to be in scale of angular latitude. # figure out if scale is in miles or kilometers miles <- ifelse(is.null(Dist.args$miles), TRUE, Dist.args$miles) delta <- (180/pi) * Taper.args$aRange/ifelse(miles, 3963.34, 6378.388) } else { delta <- Taper.args$aRange } if (length(delta) > 1) { stop("taper range must be a scalar") } #NOTE tapering is applied to the _scaled_ locations. # now apply covariance function to pairwise distance matrix, or multiply # by C vector or just find marginal variance if (!marginal) { # find nearest neighbor distances based on taper threshhold. # This is hardwired to 'nearest.dist' function from spam. # note that delta is taken from the taper range not aRange or V sM <- do.call("nearest.dist", c(list(x1, x2, delta = delta, upper = NULL), Dist.args)) # sM@entries are the pairwise distances up to distance taper.range. # apply covariance and taper to these. # note rescaling by aRange and taper ranges. sM@entries <- do.call(Covariance, c(list(d = sM@entries/aRange), Cov.args)) * do.call(Taper, c(list(d = sM@entries), Taper.args)) # if verbose print out each component separately if (verbose) { print(sM@entries/aRange) print(do.call(Covariance, c(list(d = sM@entries/aRange), Cov.args))) print(do.call(Taper, c(list(d = sM@entries), Taper.args))) } if (is.na(C[1])) { # decide whether to return sM in spam sparse form or as a full matrix if (spam.format) { return(sM) } else { return(as.matrix(sM)) } } else { # other option is to sparse multiply cross covariance by C return(sM %*% C) } } else { # find marginal variance and return a vector. tau2 <- do.call(Covariance, c(list(d = 0), Cov.args)) * do.call(Taper, c(list(d = 0), Taper.args)) return(rep(tau2, nrow(x1))) } # should not get here! } fields/R/exp.cov.R0000644000175100001440000000676514627453255013477 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "Exp.cov" <- function(x1, x2=NULL, aRange = 1, p=1, distMat = NA, C = NA, marginal = FALSE, onlyUpper=FALSE, theta=NULL, ...) { # theta argument has been depreciated. if( !is.null( theta)){ aRange<- theta } if (!is.matrix(x1)) x1 <- as.matrix(x1) if (is.null(x2)) x2 <- x1 if (!is.matrix(x2)) x2 <- as.matrix(x2) if (length(aRange) > 1) stop("Non-scalar aRange as input to Exp.cov is depracated. Use the V argument in stationary.cov or scale the input locations beforehand.") d <- ncol(x1) n1 <- nrow(x1) n2 <- nrow(x2) # scale the coordinates by aRange if distance matrix isn't precomputed # a more general scaling by a matrix is done in stationary.cov if(is.na(distMat[1]) || !is.na(C[1])) { x1 <- x1*(1/aRange) x2 <- x2*(1/aRange) } # # there are three main possible actions listed below: # # if no cross covariance matrix and marginal variance not desired if (is.na(C[1]) && !marginal) { #compute distance matrix if necessary if(is.na(distMat[1])) distMat = rdist(x1, x2, compact=TRUE) else distMat = distMat*(1/aRange) #only exponentiate by p if p != 1 if(p != 1) distMat = distMat^p if(inherits(distMat, "dist")) { #distMat is in compact form, so evaluate over all distMat and convert to matrix form if(onlyUpper) return(compactToMat(exp(-distMat), diagVal=1)) else #if onlyUpper==FALSE, fill in lower triangle of covariance matrix as well return(compactToMat(exp(-distMat), diagVal=1, lower.tri=TRUE)) } else { #distMat is an actual matrix #only evaluate upper triangle of covariance matrix if possible if(onlyUpper && nrow(distMat) == ncol(distMat)) return(ExponentialUpper(distMat)) else return(exp(-distMat)) } } # # multiply cross covariance matrix by C # in this case implemented in C # else if (!is.na(C[1])) { return(.Call("multebC", nd = as.integer(d), x1 = as.double(x1), n1 = as.integer(n1), x2 = as.double(x2), n2 = as.integer(n2), par = as.double(p), c = as.double(C), work = as.double(rep(0, n2)) , PACKAGE="fields") ) } # # return marginal variance ( 1.0 in this case) else if (marginal) { return(rep(1, nrow(x1))) } #not possible to reach this point } fields/R/unscale.R0000644000175100001440000000222114627453256013527 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "unscale" <- function(x, x.center, x.scale) { x <- scale(x, center = FALSE, scale = 1/x.scale) x <- scale(x, center = -x.center, scale = FALSE) x } fields/R/predictSurface.family.R0000644000175100001440000000670514627453256016333 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "predict.surface" <- function(object, ...) { UseMethod("predict.surface") } predict.surface.default<- function(object,...){ cat("predict.surface is now the function predictSurface") } "predictSurface"<- function( object,...){ UseMethod("predictSurface") } "predictSurface.default" <- function(object, grid.list = NULL, extrap = FALSE, chull.mask = NA, nx = 80, ny = 80, xy = c(1,2), verbose = FALSE, ...) { # NOTE: # without grid.list # default is 80X80 grid on first two variables # rest are set to median value of x. if (is.null(grid.list)) { grid.list <- fields.x.to.grid(object$x, nx = nx, ny = ny, xy = xy) } # here is the heavy lifting xg <- make.surface.grid(grid.list) # NOTE: the specific predict function called will need to do the checks # whether the evaluation of a large number of grid points makes sense. out <- as.surface( xg, predict(object, xg,...) ) # # if extrapolate is FALSE set all values outside convex hull to NA if (!extrap) { if( is.null( object$x)){ stop("need and x matrix in object") } if (is.na(chull.mask)) { chull.mask <- unique.matrix(object$x[, xy]) } out$z[!in.poly(xg[, xy], xp = chull.mask, convex.hull = TRUE)] <- NA } # return(out) } "predictSurface.fastTps" <- function(object, gridList=NULL, extrap = FALSE, chull.mask = NA, nx = 80, ny = 80, xy = c(1,2), verbose = FALSE, ...) { # NOTE: See predictSurface.default for comments if (is.null(gridList)) { gridList <- fields.x.to.grid(object$x, nx = nx, ny = ny, xy = xy) } # in the case of fastTps and not great circle distance # pass the grid list instead of the locations of grid points # (see xg in predictSurface.default) if( object$args$Dist.args$method =="greatcircle"){ out <- predict(object, xnew= make.surface.grid(gridList), xy=xy, ...) } else{ out <- predict(object, grid.list=gridList, xy=xy, ...) } # coerce to image format out <- as.surface(gridList, out ) # # if extrapolate is FALSE set all values outside convex hull to NA if (!extrap) { if (is.na(chull.mask)) { chull.mask <- unique.matrix(object$x[, xy]) } xg<- make.surface.grid( gridList) out$z[!in.poly(xg[, xy], xp = chull.mask, convex.hull = TRUE)] <- NA } # return(out) } fields/R/Paciorek.cov.R0000644000175100001440000000637214627453255014432 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "Paciorek.cov" <- function(x1, x2 = NULL, Distance = "rdist", Dist.args = NULL, aRangeObj = 1, rhoObj = NULL, C = NA, marginal = FALSE, smoothness = .5) { # get covariance function arguments from call if (class(aRangeObj)[1] == "numeric") { class(aRangeObj) <- "constant" } # coerce x1 and x2 to matrices if (is.data.frame(x1)) x1 <- as.matrix(x1) if (!is.matrix(x1)) x1 <- matrix(c(x1), ncol = 1) if (is.null(x2)) x2 = x1 if (is.data.frame(x2)) x2 <- as.matrix(x2) if (!is.matrix(x2) & !is.null(x2)) x2 <- matrix(c(x2), ncol = 1) d <- ncol(x1) n1 <- nrow(x1) n2 <- nrow(x2) # if (!marginal) { aRangex1 <- c(predict(aRangeObj, x1)) aRangex2 <- c(predict(aRangeObj, x2)) # this is (Sigma_i + Sigma_j )/2 aRange2Matrix <- (outer(aRangex1 ^ 2, aRangex2 ^ 2, '+') / 2) distMat <- do.call(Distance, c(list(x1 = x1, x2 = x2), Dist.args)) dimX<- ncol( x1) # adjust for dimension. # detS1= (determinant Sigma_i) ^1/4 detS1<- (aRangex1)^(2*dimX/4) detS2<- (aRangex2)^(2*dimX/4) # detS12 = (determinant (Sigma_i + Sigma_j)/2 ) ^1/2 detS12 <- aRange2Matrix^(dimX/2) normCov <-outer(detS1, detS2, "*")/detS12 covMat <- normCov * Matern( distMat / sqrt(aRange2Matrix), smoothness = smoothness) if (!is.null(rhoObj)) { cat( "sigma Obj used", fill=TRUE) sigmax1 <- c(sqrt(predict(rhoObj, x1))) sigmax2 <- c(sqrt(predict(rhoObj, x2))) covMat <- t(t(sigmax1 * covMat) * sigmax2) } # else assume that rho is constant and 1.0 if (is.na(C[1])) { # distMat is a full matrix return(covMat) } # or multiply cross covariance by C # as coded below this is not particularly efficient of memory else{ return(covMat %*% C) } } else{ if (!is.null(rhoObj)) { marginalVariance <- predict(rhoObj, x1) } else{ marginalVariance <- rep(1, ncol(x1)) } return(marginalVariance) } } fields/R/exp.earth.cov.R0000644000175100001440000000226014627453255014563 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "Exp.earth.cov" <- function(x1, x2, aRange = 1, theta=NULL) { # theta argument has been deopreciated. if( !is.null( theta)){ aRange<- theta } exp(-rdist.earth(x1, x2)/aRange) } fields/R/Matern.R0000644000175100001440000000422014627453255013323 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "Matern" <- function(d, range = 1, alpha = 1/range, smoothness = 0.5, nu = smoothness, phi = 1.0) { # # Matern covariance function transcribed from Stein's book page 31 # nu==smoothness, alpha == 1/range == aRange # # GeoR parameters map to kappa==smoothness and phi == range # check for negative distances # phi is accepted as the marginal variance of the process (see below) # within fields, however, this parameter is sigma^2 and we recommend # not using phi. if (any(d < 0)) stop("distance argument must be nonnegative") # rescale distances d <- d * alpha # call some special cases for half fractions of nu if( nu ==.5){ return( phi*exp( -d) ) } if( nu ==1.5){ return( phi*(1+d)*exp( -d) ) } if( nu ==2.5){ return( phi*(1+d+d^2/3)*exp( -d) ) } # otherwise ..... # call to Bessel function from R base package # # avoid sending exact zeroes to besselK d[d == 0] <- 1e-10 # # the hairy constant ... con <- (2^(nu - 1)) * gamma(nu) con <- 1/con return(phi * con * (d^nu) * besselK(d, nu)) } fields/R/xline.R0000644000175100001440000000205014627453256013214 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "xline" <- function(x, ...) { abline(v = x, ...) } fields/R/plotMatrix.R0000644000175100001440000000064614627453256014251 0ustar hornikusersplotMatrix<- function( A, M=5,N=5,...){ n<- nrow(A) m<- ncol( A) obj<- ((A)[n:1,] ) imagePlot( obj, axes=F, xlab="columns", ylab="rows", ...) nG<- round(pretty( 1:n, n=N) ) axis(side=1, at= (nG-1)/(n-1), labels= format( nG) ) mG<- seq( 1,m, round(m/M) ) mG<- round( pretty( 1:m, n=M)) axis(side=2, at= 1- (mG-1)/(m-1), labels= format( mG), gap.axis=0, las=2 ) box() }fields/R/in.poly.R0000644000175100001440000000570414627453256013476 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "in.poly" <- function(xd, xp, convex.hull = FALSE, inflation = 1e-07) { if (convex.hull) { xp <- xp[chull(xp), ] } nd <- as.integer(nrow(xd)) np <- as.integer(nrow(xp)) # # inflate convex hull slightly to include any points actually on the hull # if (convex.hull) { xm <- matrix(c(mean(xp[, 1]), mean(xp[, 2])), nrow = np, ncol = 2, byrow = TRUE) xp <- (xp - xm) * (1 + inflation) + xm } # Note: inpoly FORTRAN has built in quick reject check to be inside # the bounding rectangle of the polygon. ind <- .Fortran("inpoly",PACKAGE="fields", nd = as.integer(nd), as.single(xd[, 1]), as.single(xd[, 2]), np = np, as.single(xp[, 1]), as.single(xp[, 2]), ind = as.integer(rep(-1, nd)))$ind as.logical(ind) } in.poly.grid <- function(grid.list, xp, convex.hull = FALSE, inflation = 1e-07) { # loop through rows of grid to fill out a logical matrix of # being in (TRUE) or out (FALSE) # # this is to avoid the full target polygon if the convex hull is # what is needed. if (convex.hull) { xp <- xp[chull(xp), ] } nx <- length(grid.list$x) ny <- length(grid.list$y) np <- as.integer(nrow(xp)) # # inflate convex hull slightly to include any points actually on the hull # if (convex.hull) { xm <- matrix(c(mean(xp[, 1]), mean(xp[, 2])), nrow = np, ncol = 2, byrow = TRUE) xp <- (xp - xm) * (1 + inflation) + xm } # Note: inpoly FORTRAN has built in quick reject check to be inside # the bounding rectangle of the polygon. ind <- .Fortran("igpoly",PACKAGE="fields", nx = as.integer(nx), xg = as.single(grid.list$x), ny = as.integer(ny), yg = as.single(grid.list$y), np = np, as.single(xp[, 1]), as.single(xp[, 2]), ind = as.integer(rep(-1, nx * ny)))$ind return(matrix(as.logical(ind), nrow = nx, ncol = ny)) } fields/R/setupLegend.R0000644000175100001440000000355614627453256014370 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER setupLegend<- function( horizontal = FALSE, legend.shrink = 0.9, legend.width = 1.2, legend.mar = ifelse(horizontal, 3.1, 5.1) ){ # save current graphics settings temp <- imageplot.setup(add = FALSE, legend.shrink = legend.shrink, legend.width = legend.width , legend.mar= legend.mar, horizontal = horizontal, bigplot = NULL, smallplot = NULL) Info<- list( smallplot = temp$smallplot, legend.shrink = legend.shrink, legend.mar = legend.mar, legend.width = legend.width , horizontal = horizontal) #oldPar = par(no.readonly = TRUE) ) par(plt = temp$bigplot) return( Info) } fields/R/envelopePlot.R0000644000175100001440000000266214627453255014561 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER envelopePlot <- function(x1, y1, x2 = x1, y2, col ="thistle1" , lineCol = "thistle3", ...) { # sort the curves -- just in case they are passed out of order ind<- order( x1) x1<- x1[ind] y1<- y1[ind] ind<- order( x2) x2<- x2[ind] y2<- y2[ind] polygon(c(x1, rev(x2)), c(y1, rev(y2)), col = col, border = NA, ...) lines(x1, y1, lwd = 3, col = lineCol) lines(x2, y2, lwd = 3, col = lineCol) } fields/R/predict.interp.surface.R0000644000175100001440000000212414627453256016460 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "predict.interp.surface" <- function(object, loc, ...) { interp.surface( object, loc,...) } fields/R/matern.image.cov.R0000644000175100001440000000600514627453256015236 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER matern.image.cov <- function(ind1, ind2, Y, cov.obj = NULL, setup = FALSE, grid, M = NULL, N = NULL, aRange=1, smoothness=.5,theta=NULL ) { # theta argument has been depreciated. if( !is.null( theta)){ aRange<- theta } # if (is.null(cov.obj)) { dx <- grid$x[2] - grid$x[1] dy <- grid$y[2] - grid$y[1] m <- length(grid$x) n <- length(grid$y) if (is.null(M)) M <- ceiling2(2 * m) if (is.null(N)) N <- ceiling2(2 * n) # make sure M and N are even. # (not sure what it means if this is not the case!) if( M%%2 !=0) { M<- M+1} if( N%%2 !=0) { N<- N+1} # need to evaluate the covariance between the center of the grid and # every grid point do this using several simple steps for efficiency. xGrid<- (1:M) * dx - (dx * M)/2 yGrid<- (1:N) * dy - (dy * N)/2 # a matrix the same size as the grid that has the distance between every # grid point and the center point. bigDistance<- sqrt( matrix( xGrid^2, M,N, byrow=FALSE) + matrix( yGrid^2, M,N, byrow=TRUE) ) # this should make for a nice image plot of the covariance w/r to the center point # out<- Matern( bigDistance /aRange, smoothness=smoothness) temp <- matrix(0, nrow = M, ncol = N) temp[M/2, N/2] <- 1 wght <- fft(out)/(fft(temp) * M * N) cov.obj <- list(m = m, n = n, grid = grid, N = N, M = M, wght = wght, call = match.call()) if (setup) { return(cov.obj) } } temp <- matrix(0, nrow = cov.obj$M, ncol = cov.obj$N) if (missing(ind1)) { temp[1:cov.obj$m, 1:cov.obj$n] <- Y Re(fft(fft(temp) * cov.obj$wght, inverse = TRUE)[1:cov.obj$m, 1:cov.obj$n]) } else { if (missing(ind2)) { temp[ind1] <- Y } else { temp[ind2] <- Y } Re(fft(fft(temp) * cov.obj$wght, inverse = TRUE)[ind1]) } } fields/R/fields.style.R0000644000175100001440000000232014627453255014501 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "fields.style" <- function() { par(cex.axis = 1.2, cex.lab = 1.2, cex = 1.2, cex.sub = 1.2, cex.main = 1.2, lwd = 1.5, bg = "transparent", pch=16) palette(c("orange1", "green2", "blue2", "red1")) } fields/R/mKrig.R0000644000175100001440000004106614627453256013160 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER mKrig <- function(x, y, weights=rep(1, nrow(x)), Z = NULL, ZCommon=NULL, cov.function="stationary.cov", cov.args = NULL, lambda = NA, m = 2, chol.args = NULL, find.trA = TRUE, NtrA = 20, iseed = NA, na.rm=FALSE, collapseFixedEffect = TRUE, tau=NA, sigma2=NA, verbose=FALSE, ...) { # pull extra covariance arguments from ... and overwrite # any arguments already named in cov.args ind<- match( names( cov.args), names(list(...) ) ) cov.args = c(cov.args[is.na(ind)], list(...)) # #If cov.args$find.trA is true, set onlyUpper to FALSE (onlyUpper doesn't #play nice with predict.mKrig, called by mKrig.trace) # # next function also omits NAs from x,y,weights, and Z if na.rm=TRUE. object<- mKrigCheckXY( x, y, weights, Z, ZCommon,na.rm = na.rm) # as the computation progresses additional components are # added to the object list and by the end this is the returned # object of class mKrig. if(find.trA == TRUE && supportsArg(cov.function, "onlyUpper")) cov.args$onlyUpper= FALSE if(find.trA == TRUE && supportsArg(cov.function, "distMat")) cov.args$distMat= NA if( !is.na(tau)|!is.na(sigma2)){ fixedParameters<- TRUE # work through the 3 cases for sigma2 and tau # note that for 2 of these also need lambda if( !is.na(tau)&!is.na(sigma2)){ lambda<- tau^2/sigma2} if( is.na(tau)){ tau <- sqrt( lambda*sigma2) } if( is.na(sigma2)){ sigma2 <- tau^2/lambda } } else{ fixedParameters<- FALSE } object$fixedParameters<- fixedParameters # check for duplicate x's. # stop if there are any if (any(duplicated(cat.matrix(x)))) { stop(" locations are not unique see help(mKrig) to collapse to unique locations and weighted obs ") } # create fixed part of model as m-1 order polynomial # NOTE: if m==0 then fields.mkpoly returns a NULL to # indicate no polynomial part. Tmatrix <- cbind(fields.mkpoly(object$x, m), object$Z) # set some dimensions np <- nrow(object$x) if( is.null(Tmatrix) ){ nt<- 0 } else{ nt<- ncol(Tmatrix) } if( is.null(object$Z)){ nZ<- 0 } else{ nZ<- ncol(object$Z) } ind.drift <- c(rep(TRUE, (nt - nZ)), rep(FALSE, nZ)) # as a place holder for reduced rank Kriging, distinguish between # observations locations and the locations to evaluate covariance. # (this is will also allow predict.mKrig to handle a Krig object) object$knots <- object$x # covariance matrix at observation locations # NOTE: if cov.function is a sparse constuct then Mc will be sparse. # see e.g. wendland.cov covArgsFull<- c(cov.args=list(cov.args), list(x1 = object$knots, x2 = object$knots) ) if( verbose){ cat("********************************", fill=TRUE) cat("**** Main call to chol in mKrig", fill=TRUE) cat("***cov.function: ", fill=TRUE) print(cov.function) cat("***cov.args: ", fill=TRUE) cat( names( cov.args), fill=TRUE, sep=",") } Mc <- do.call(cov.function, c(cov.args, list(x1 = object$knots, x2 = object$knots))) # # decide how to handle the pivoting. # one wants to do pivoting if the matrix is sparse. # if Mc is not a matrix assume that it is in sparse format. # sparse.flag <- !is.matrix(Mc) # # set arguments that are passed to cholesky # if (is.null(chol.args)) { chol.args <- list(pivot = sparse.flag) } else { chol.args <- chol.args } # quantify sparsity of Mc for the mKrig object if( verbose){ cat("**** In mKrig", fill=TRUE) cat("**** sparse flag", sparse.flag, fill=TRUE) } nzero <- ifelse(sparse.flag, length(Mc@entries), np^2) # add diagonal matrix that is the observation error Variance # NOTE: diag must be a overloaded function to handle sparse format. if (lambda != 0) { if(! sparse.flag) invisible(.Call("addToDiagC", Mc, as.double(lambda/object$weights), nrow(Mc), PACKAGE="fields") ) else diag(Mc) = diag(Mc) + lambda/object$weights } # MARK LINE Mc # At this point Mc is proportional to the covariance matrix of the # observation vector, y. # # cholesky decoposition of Mc # do.call used to supply other arguments to the function # especially for sparse applications. # If chol.args is NULL then this is the same as # Mc<-chol(Mc), chol.args)) Mc <- do.call("chol", c(list(x = Mc), chol.args)) lnDetCov <- 2 * sum(log(diag(Mc))) # # start linear algebra to find estimates and likelihood # Note that all these expressions make sense if y is a matrix # of several data sets and one is solving for the coefficients # of all of these at once. In this case beta and c.coef are matrices # if( !is.null(Tmatrix) | !is.null(ZCommon) ){ # Efficent way to multply inverse of Mc times the Tmatrix TStar<- forwardsolve(Mc, x = Tmatrix, k=ncol(Mc), transpose = TRUE, upper.tri = TRUE) qr.VT <- qr(TStar) # GLS covariance matrix for fixed part. Rinv <- solve(qr.R(qr.VT)) Omega <- Rinv %*% t(Rinv) lnDetOmega<- sum( log( diag(Rinv)^2 ) ) # now do generalized least squares for beta YStar<- forwardsolve(Mc, transpose = TRUE, object$y, upper.tri = TRUE) } ########################################## ### only the T and Z covariate fixed parts ########################################## if( !is.null(Tmatrix) & is.null(ZCommon) ){ beta <- as.matrix(qr.coef(qr.VT, YStar)) if (collapseFixedEffect) { # use a common estimate of fixed effects across all replicates betaMeans <- rowMeans(beta) beta <- matrix(betaMeans, ncol = ncol(beta), nrow = nrow(beta)) } # # Omega from above is solve(t(Tmatrix)%*%solve( Sigma)%*%Tmatrix) # where Sigma = cov.function( x,x) + lambda/object$weights # proportional to fixed effects covariance matrix. # for the GLS estimates of # the fixed linear part of the model. # # SEdcoef = diag( Omega) * sigma2.MLE.FULL # # if fixed effects are pooled across replicate fields then # adjust the Omega matrix to reflect a mean estimate. if (collapseFixedEffect) { Omega <- Omega/ ncol(beta) } # set ZCommon parameters to NA gamma<- NA OmegaZCommon<- NULL # GLS residual now used to evaluate likelihood resid<- object$y - Tmatrix %*% beta } if( !is.null(ZCommon) ){ if( is.null(T)){ stop("need a fixed part matrix (m>0, T and/or Z) to add ZCommon") } # check dimensions n<- nrow(object$y) M<- ncol( object$y) if( M ==1){ stop("No replications just use the Z argument!") } N<- n*M if( nrow( ZCommon)!= N){ stop("dimension of ZCommon should be nObs X nReps") } ZCStar<- matrix( NA, N, ncol(ZCommon)) for( k in 1:ncol(ZCommon) ) { ZCtmp<- matrix(ZCommon[,k],n,M ) temp<- forwardsolve(Mc, x = ZCtmp, k=ncol(Mc), transpose = TRUE, upper.tri = TRUE) ZCStar[,k]<- c(temp) } testZ<- matrix( NA, N, ncol(ZCommon)) # Project ZCommon onto subspace orthogonal to TStar for( k in 1:ncol(ZCommon) ) { temp<- qr.resid(qr.VT, matrix( ZCStar[,k],n,M) ) testZ[,k]<- c(temp) } testY<- c( qr.resid(qr.VT, YStar) ) ########################################## # ifelse block on collapseFixedEffects ########################################## if (!collapseFixedEffect) { gamma<- lsfit( testZ,testY, intercept=FALSE)$coefficients OmegaZCommon<- solve( t( testZ)%*%testZ ) # find correct beta having adjusted by gamma tmpResid<- YStar - matrix(ZCStar%*%gamma,n,M) beta<- qr.coef(qr.VT, tmpResid ) } else{ # collapse beta fit -- common fixed effect parameters in T # but need to adjust for ZCommon that might not be the same at # each realization. UStar<- cbind( rep(1,M)%x%TStar , ZCStar) allPar<- lsfit( UStar,c(YStar), intercept=FALSE)$coefficients # extract beta and gamma nBeta<- ncol(TStar) nZC<- ncol(ZCommon) betaCommon<- allPar[1: nBeta] gamma<- allPar[(1: nZC)+ nBeta] # repeat beta for all realizations to have consitent format with # collapseFixedEffects =FALSE beta <- matrix(betaCommon, ncol = M, nrow = nBeta) # correct Omega matrices Omega<- solve( t(UStar)%*%UStar) OmegaZCommon<- Omega[(1: nZC)+ nBeta,(1: nZC)+ nBeta] } # GLS residual now used to evaluate likelihood resid<- object$y - Tmatrix%*%beta - matrix(ZCommon%*%gamma,n,M) } if( is.null(Tmatrix)){ # much is set to NULL because no fixed part of model nt<- 0 resid<- object$y Rinv<- NULL Omega<- NULL qr.VT<- NULL beta<- NULL lnDetOmega <- 0 # set ZCommon parameters to NULL gamma<- NULL OmegaZCommon<- NULL } # and now find c. # the coefficents for the spatial part. # if there is also a linear fixed part resid are the residuals from the # GLS regression. c.coef <- as.matrix(forwardsolve(Mc, transpose = TRUE, resid, upper.tri = TRUE)) # save intermediate result this is t(y- T beta)( M^{-1}) ( y- T beta) quad.form <- c(colSums(as.matrix(c.coef^2))) # compute full likelihood if 2 out three covariance parameters are given if(fixedParameters){ lnLike<- lnProfileLike <- (-quad.form/(2*sigma2) - log(2 * pi) * (np/2) - (np/2) * log(sigma2) - (1/2) * lnDetCov ) lnLikeREML<- lnLike + (1/2) * lnDetOmega lnLike.FULL<- sum( lnLike) lnLikeREML.FULL<- sum(lnLikeREML) } else{ lnLike<-NA lnLike.FULL<-NA lnLikeREML<-NA lnLikeREML.FULL<-NA } # find c coefficients c.coef <- as.matrix(backsolve(Mc, c.coef)) # find the residuals directly from solution # to avoid a call to predict object$residuals <- lambda * c.coef/object$weights object$fitted.values <- object$y - object$residuals # MLE estimate of sigma and tau # sigmahat <- c(colSums(as.matrix(c.coef * y)))/(np - nt) # NOTE if y is a matrix then each of these are vectors of parameters. sigma2.MLE <- (quad.form/np) #sigma2hat <- c(colSums(as.matrix(c.coef * object$y)))/np tau.MLE <- sqrt(lambda * sigma2.MLE) # the log profile likehood with sigma2.MLE and dhat substituted # leaving a profile for just lambda. # NOTE if y is a matrix then this is a vector of log profile # likelihood values. lnProfileLike <- (-np/2 - log(2 * pi) * (np/2) - (np/2) * log(sigma2.MLE) - (1/2) * lnDetCov) # see section 4.2 handbook of spatial statistics (Zimmerman Chapter) # for this amazing shortcut to get the REML version lnProfileREML <- lnProfileLike + (1/2) * lnDetOmega # following FULL means combine the estimates across all replicate fields # mean for MLE is justified as it is assumed locations and weights the same across # replicates. sigma2.MLE.FULL <- mean(sigma2.MLE) tau.MLE.FULL <- sqrt(lambda * sigma2.MLE.FULL) # if y is a matrix then compute the combined likelihood # under the assumption that the columns of y are replicated # fields lnProfileLike.FULL <- sum((-np/2 - log(2 * pi) * (np/2) - (np/2) * log(sigma2.MLE.FULL) - (1/2) * lnDetCov) ) lnProfileREML.FULL <- sum((-np/2 - log(2 * pi) * (np/2) - (np/2) * log(sigma2.MLE.FULL) - (1/2) * lnDetCov + (1/2) * lnDetOmega ) ) # # return coefficients and include lambda as a check because # results are meaningless for other values of lambda # returned list is an 'object' of class mKrig (micro Krig) # also save the matrix decompositions so coefficients can be # recalculated for new y values. Make sure onlyUpper and # distMat are unset for compatibility with mKrig S3 functions # if(!is.null(cov.args$onlyUpper)) cov.args$onlyUpper = FALSE if(!is.null(cov.args$distMat)) cov.args$distMat = NA # build return object except for effective degrees of freedom computation # and the summary vector replicateInfo = list( lnProfileLike = lnProfileLike, lnProfileREML = lnProfileREML, lnLike= lnLike, lnLikeREML= lnLikeREML, tau.MLE = tau.MLE, sigma2.MLE = sigma2.MLE, quad.form = quad.form ) object2 <- list( beta = beta, gamma = gamma, c.coef = c.coef, nt = nt, np = np, lambda.fixed = lambda, cov.function.name = cov.function, args = cov.args, m = m, chol.args = chol.args, call = match.call(), nonzero.entries = nzero, replicateInfo = replicateInfo, lnLike.FULL = lnLike.FULL, lnLikeREML.FULL = lnLikeREML.FULL, lnDetCov = lnDetCov, lnDetOmega = lnDetOmega, Omega = Omega, lnDetOmega = lnDetOmega, OmegaZCommon = OmegaZCommon, qr.VT = qr.VT, Mc = Mc, Tmatrix = Tmatrix, ind.drift = ind.drift, nZ = nZ, fixedEffectsCov = Omega * sigma2.MLE.FULL, fixedEffectsCovCommon = OmegaZCommon * sigma2.MLE.FULL, collapseFixedEffect = collapseFixedEffect ) object<- c( object, object2) # # # estimate effective degrees of freedom using Monte Carlo trace method. # this is optional because not needed for predictions and likelihood # but necessary for GCV if (find.trA) { object3 <- mKrig.trace(object, iseed, NtrA) object$eff.df <- object3$eff.df object$trA.info <- object3$trA.info object$GCV <- (sum(object$residuals^2)/np)/(1 - object3$eff.df/np)^2 if (NtrA < np) { object$GCV.info <- (sum(object$residuals^2)/np)/(1 - object3$trA.info/np)^2 } else { object$GCV.info <- NA } } else { object$eff.df <- NA object$trA.info <- NA object$GCV <- NA } ################### compile summary vector of parameters summaryPars<- rep(NA,10) names( summaryPars) <- c( "lnProfileLike.FULL","lnProfileREML.FULL", "lnLike.FULL","lnREML.FULL", "lambda" , "tau","sigma2","aRange","eff.df","GCV") summaryPars["lnProfileLike.FULL"]<- lnProfileLike.FULL summaryPars["lnProfileREML.FULL"]<- lnProfileREML.FULL summaryPars["lnLike.FULL"]<- lnLike.FULL summaryPars["lnREML.FULL"]<- lnLikeREML.FULL if( fixedParameters){ summaryPars["tau"] <- tau summaryPars["sigma2"]<- sigma2 } else{ summaryPars["tau"] <- tau.MLE.FULL summaryPars["sigma2"]<- sigma2.MLE.FULL } summaryPars["lambda"]<- lambda summaryPars["aRange"] <-ifelse( !is.null(cov.args$aRange), cov.args$aRange, NA) summaryPars["eff.df"] <- object$eff.df summaryPars["GCV"] <- object$GCV object$summary<- summaryPars if( verbose){ cat( "****summary of object from mKrig", fill=TRUE) print( object$summary) } ######################## ### add in some depreciated components so that LatticeKrig 8.4 ### passes its tests. ######################## object$rho.MLE<- sigma2.MLE object$rho.MLE.FULL<- sigma2.MLE.FULL object$lnProfileLike<- lnProfileLike object$lnProfileLike.FULL<- lnProfileLike.FULL object$quad.form <- quad.form object$rhohat<- sigma2.MLE.FULL object$d<- beta class(object) <- "mKrig" return(object) } fields/R/Matern.parameters.R0000644000175100001440000000337614627453255015500 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER Matern.cor.to.range <- function(d, nu, cor.target = 0.5, guess = NULL, ...) { # define local function for root finding # ftemp <- function(aRange, f.extra) { Matern(f.extra$d/aRange, nu = f.extra$nu) - f.extra$cor.target } # inital guess is exponential if (is.null(guess)) { guess[1] <- guess[2] <- -d/log(cor.target) } # extra info for function f.extra = list(d = d, nu = nu, cor.target = cor.target) # find guesses that are above and below while (ftemp(guess[2], f.extra) < 0) { guess[2] <- guess[2] * 2 } while (ftemp(guess[1], f.extra) > 0) { guess[1] <- guess[1]/2 } temp <- bisection.search(guess[1], guess[2], f = ftemp, f.extra = f.extra, ...) return(temp$x) } fields/R/predict.fastTps.R0000644000175100001440000000616514627453256015165 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER # predict.fastTps <- function(object, xnew = NULL, grid.list=NULL, ynew = NULL, derivative = 0, Z = NULL, drop.Z = FALSE, just.fixed = FALSE, xy=c(1,2), ...) { # the main reason to pass new args to the covariance is to increase # the temp space size for sparse multiplications # other optional arguments from mKrig are passed along in the # list object$args cov.args <- list(...) # predict using grid.list or as default observation locations if( !is.null(grid.list)){ xnew<- make.surface.grid( grid.list) } if( is.null(xnew) ) { xnew <- object$x } if (!is.null(ynew)) { coef.hold <- mKrig.coef(object, ynew) c.coef <- coef.hold$c.coef beta <- coef.hold$beta } else { c.coef <- object$c.coef beta <- object$beta } # fixed part of the model this a polynomial of degree m-1 # Tmatrix <- fields.mkpoly(xnew, m=object$m) # if (derivative == 0){ if (drop.Z | object$nZ == 0) { # just evaluate polynomial and not the Z covariate temp1 <- fields.mkpoly(xnew, m = object$m) %*% beta[object$ind.drift, ] } else{ if( is.null(Z)) { Z <- object$Tmatrix[, !object$ind.drift] } temp1 <- cbind(fields.mkpoly(xnew, m = object$m), Z) %*% beta } } else{ if (!drop.Z & object$nZ > 0) { stop("derivative not supported with Z covariate included") } temp1 <- fields.derivative.poly(xnew, m = object$m, beta[object$ind.drift, ]) } if (just.fixed) { return(temp1) } useFORTRAN<- (ncol(object$x)==2) & (object$args$k == 2) & (derivative==0) & (!is.null(grid.list)) # add nonparametric part. # call FORTRAN under a specific case if( useFORTRAN){ temp2<- multWendlandGrid(grid.list, object$knots, delta=object$args$aRange, c.coef, xy=xy) } else{ temp2 <- do.call(object$cov.function.name, c(object$args, list(x1 = xnew, x2 = object$knots, C = c.coef, derivative = derivative), cov.args)) } # add two parts together return((temp1 + temp2)) } fields/R/QSreg.R0000644000175100001440000000670414627453255013127 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER QSreg <- function(x, Y, lambda=NA, f.start = NULL, psi.scale = NULL, C = 1, alpha = 0.5, Niterations = 100, tolerance = 0.001, verbose = FALSE) { # # if (is.null(f.start)) { f.start <- rep(median(Y), length(Y)) } scale.Y <- mad(Y - f.start, na.rm = TRUE) # if (is.null(psi.scale)) { psi.scale = scale.Y * 0.05 } # f.hat <- f.start # create Tps object to reuse for iterative fitting conv.flag <- FALSE conv.info <- rep(NA, Niterations) for (k in 1:Niterations) { Y.psuedo <- f.hat + C * psi.scale * qsreg.psi((Y - f.hat)/psi.scale, C = C, alpha = alpha) # find predicted for a fixed lambda or estimate a new value f.hat.new <- sreg(x, y = Y.psuedo, lambda=lambda)$fitted.values # convergence test test.rmse <- mean(abs(f.hat.new - f.hat))/mean(abs(f.hat)) conv.info[k] <- test.rmse if (verbose) { cat(k, test.rmse, fill = TRUE) } if (test.rmse <= tolerance) { conv.flag <- TRUE Number.iterations <- k break } f.hat <- f.hat.new } # One final complete fit at convergence. if (verbose) { if (conv.flag) { cat("Converged at tolerance", tolerance, "in", Number.iterations, "iterations", fill = TRUE) } else { cat("Exceeded maximum number of iterations", Niterations, fill = TRUE) } } # One final complete fit at convergence. f.hat <- f.hat.new Y.psuedo <- f.hat + C * psi.scale * qsreg.psi((Y - f.hat)/psi.scale, C = C, alpha = alpha) obj <- sreg(x, Y.psuedo, lambda=lambda) # CV residuals based on psuedo-data) # Use the linear approximation Y_k - f.cv_k = (Y_k- f_k)/( 1- A_kk) # f.cv_k = f_k/( 1- A_kk) - ( A_kk)Y_k/( 1- A_kk) # # Note: we find f.cv based on psuedo data but then consider its deviation # from the actual data # diag.A <- obj$diagA f.cv <- obj$fitted.values/(1 - diag.A) - diag.A * Y.psuedo/(1 - diag.A) # leave-one-out estimate of f.hat CV.psuedo <- mean(qsreg.sigma(Y - f.cv, alpha = alpha, C = psi.scale)) # add extra stuff to the Krig object. Qinfo <- list(yraw = Y, conv.info = conv.info, conv.flag = conv.flag, CV.psuedo = CV.psuedo, psi.scale = psi.scale, alpha = alpha) obj <- c(obj, list(Qinfo = Qinfo)) class(obj) <- "sreg" return(obj) } fields/R/RadialBasis.R0000644000175100001440000000402214627453255014253 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER RadialBasis <- function(d, M, dimension, derivative = 0) { # compute the exponent for a thin-plate spline # based on smoothness and dimension p <- 2 * M - dimension if (p <= 0) { stop("M too small for thin plates spline, need: 2m-d >0") } if ((p - 1 < 0) & (derivative > 0)) { stop("M is too small for derivatives, need: 2m-d < 1") } if (derivative == 0) { if (dimension%%2 == 0) { # factor of 2 from the log term ifelse(d > 1e-14, radbas.constant(M, dimension) * (d^p) * log(d), 0) } else { radbas.constant(M, dimension) * (d^p) } } else { ## find derivative if (dimension%%2 == 0) { # factor of 2 from the log term ifelse(d > 1e-14, radbas.constant(M, dimension) * (d^(p - 1)) * (p * log(d) + 1), 0) } else { con <- radbas.constant(M, dimension) * p con * (d^(p - 1)) } } ##### should not get here! } fields/R/predictSurfaceSE.R0000644000175100001440000000547414627453256015305 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "predictSurfaceSE"<- function( object,...){ UseMethod("predictSurfaceSE") } "predictSurfaceSE.default" <- function(object, grid.list = NULL, extrap = FALSE, chull.mask = NA, nx = 80, ny = 80, xy = c(1,2), verbose = FALSE, ZGrid=NULL, just.fixed=FALSE, ...) { # create a default grid if it is not passed if (is.null(grid.list)) { # NOTE: # without grid.list # default is 80X80 grid on first two variables # rest are set to median value of the x's grid.list <- fields.x.to.grid(object$x, nx = nx, ny = ny, xy = xy) } # do some checks on Zgrid if passed and also reshape as a matrix # rows index grid locations and columns are the covariates # (as Z in predict). # if ZGrid is NULL just returns that back Z<- unrollZGrid( grid.list, ZGrid) # Convert grid.list to the full set of locations xg <- make.surface.grid(grid.list) # NOTE: the predict function called will need to do some internal the checks # whether the evaluation of a large number of grid points (xg) makes sense. if( verbose){ print( dim( xg)) print( dim( Z)) } # # Next call is fragile as it assumes the predictSE method includes # a Z argument (even if it will often just be NULL ) out0<- predictSE(object, xg, Z=Z, ...) # coerce back into image format out <- as.surface( xg, out0) # # if extrapolate is FALSE set all values outside convex hull to NA if (!extrap) { if( is.null( object$x)){ stop("need and x matrix in object") } if (is.na(chull.mask)) { chull.mask <- unique.matrix(object$x[, xy]) } out$z[!in.poly(xg[, xy], xp = chull.mask, convex.hull = TRUE)] <- NA } # return(out) } fields/R/circulantEmbeddingSetup.R0000644000175100001440000001062214627453255016704 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER circulantEmbeddingSetup <- function( grid, M = NULL, mKrigObject=NULL, cov.function="stationary.cov", cov.args=NULL, delta=NULL, ...) { # # if( !is.null(mKrigObject)){ # mine the mKrigObject to get the covariance model. cov.args<- mKrigObject$args cov.function<- mKrigObject$cov.function.name } else{ cov.args<-c( cov.args, list(...)) } L<- length( grid) dx<- rep( NA, L) m<- rep( NA, L) for( i in 1:L){ gridTmp<- grid[[i]] dx[i]<- gridTmp[2]- gridTmp[1] m[i]<- length( gridTmp) } # M is the larger grid size for the circulant covariance that includes m # should be at least 2*m for embedding to be exact. # It can be made larger to enforce positive definiteness # if( !is.null(delta)){ M<- rep( NA, L) for( i in 1:L){ M[i]<- m[i] + ceiling( delta/ dx[i]) } } # choose a good composite M is not specified if( is.null(M)){ # table of composite M with factors of 2 and 3 p23<-expand.grid( 0:15, 0:15) value<- 2^p23[,1] * 3^p23[,2] # all values from 2 and 3 up to 100000 value<- sort( value[ value <= 1e6]) M<- rep( NA, L) for( i in 1:L){ # smallest composite choice >= to 2*m valueGreater<- value[ value >= 2*m[i] ] M[i]<- min( valueGreater ) } } if( length(M)!= length( grid)){ stop("M should be same length as grid") } # create the larger multigrid now using M bigIndex<- makeMultiIndex( M) MCenter<- round( M/2) center<- rbind( MCenter* dx) # this might be made more efficient another way .... bigGrid<- array( NA, dim(bigIndex) ) for( i in 1:L){ bigGrid[,i]<- bigIndex[,i]*dx[i] } # # here is where the actual covariance form is used # note passed arguments from call for parameters etc. # out<- do.call(cov.function, c(cov.args, list(x1 = bigGrid, x2 = center))) # coerce to an array note that this depends on the bigIndex varying in the right way out<- array( c(out),M) # # a simple way to normalize. This could be avoided by # translating image from the center ... # add to the middle point in the array -- matches the center from above temp <- array( 0, M) temp[rbind( MCenter)] <- 1 wght <- fft(out)/(fft(temp) * prod(M)) if( any( Re(wght) < 0 ) ){ cat("summary of real part of weights", fill=TRUE) print( t(stats( c(Re(wght))) ) ) stop(" Some weights are less than zero indicating a circulant embedding that is not postive definite. This can be due to the correlation range being too large for the grid. Try increasing the spatial domain or decreasing the number of grid points. ") } # # wght is the discrete FFT for the covariance suitable for fast # multiplication by convolution. # covObject <- list(m = m, grid = grid, dx=dx, M = M, delta=delta, wght = wght, call = match.call()) return( covObject) } fields/R/cat.to.list.R0000644000175100001440000000242414627453255014243 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "cat.to.list" <- function(x, a) { a <- as.character(a) label <- unique(a) out <- as.list(1:length(label)) names(out) <- label for (k in 1:length(label)) { out[[k]] <- x[label[k] == a] if (length(out[[k]]) == 0) out[[k]] <- NA } out } fields/R/quilt.plot.R0000644000175100001440000000446714627453256014226 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "quilt.plot" <- function(x, y, z, nx = 64, ny = 64, grid = NULL, add.legend = TRUE, add = FALSE, nlevel=64, col = tim.colors(nlevel), nrow = NULL, ncol = NULL, FUN=NULL, plot=TRUE, na.rm=FALSE, boundary.grid = FALSE, ...) { # # note that nrow and ncol refer to the resulting 'image format' for plotting. # here the x values are the rows and the y values are the columns # FUN = NULL means the weighted means are found for each grid cell if( !is.null(nrow)|!is.null(nrow)){ nx<- nrow ny<- ncol } x <- as.matrix(x) if (ncol(x) == 2) { z <- y } if (ncol(x) == 1) { x <- cbind(x, y) } if (ncol(x) == 3) { z <- x[, 3] x <- x[, 1:2] } # at this point x should be a 2 column matrix of x-y locations # z is a vector or one column matrix of the z values. #discretize data out.p <- as.image(z, x = x, nx = nx, ny = ny, grid = grid, FUN=FUN, na.rm=na.rm, boundary.grid = boundary.grid) # besides the image information this list has the indices that # map each z value to a grid box # # plot it if( plot){ if (add.legend) { image.plot(out.p, nlevel = nlevel, col = col, add = add, ...) } else { image(out.p, col = col, add = add, ...) } } invisible(out.p) } fields/R/evlpoly.R0000644000175100001440000000272314627453255013575 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER fields.evlpoly <- function(x, coef) { # evaluates polynomial at x values with coefficients coef[i] and powers i-1 # n <- length(x) J <- length(coef) results <- rep(0, n) temp <- .Fortran("evlpoly",PACKAGE="fields", x = as.double(x), n = as.integer(n), coef = as.double(coef), j = as.integer(J), results = as.double(results))$results return(temp) } fields/R/imagePlotOLD.R0000644000175100001440000001207614627453256014366 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER # Thanks to S. Koehler and S. Woodhead # for comments on making this a better function # Thanks to Rodrigo Lustosa for adding the asp option. "imagePlot" <- function(..., add = FALSE, breaks= NULL, nlevel = 64, col = NULL, horizontal = FALSE, legend.shrink = 0.9, legend.width = 1.2, legend.mar = ifelse(horizontal, 3.1, 5.1), legend.lab = NULL, legend.line= 2, graphics.reset = FALSE, bigplot = NULL, smallplot = NULL, legend.only = FALSE, lab.breaks = NULL, axis.args = NULL, legend.args = NULL, legend.cex=1.0, midpoint = FALSE, border = NA, lwd = 1, lowerTriangle= FALSE, upperTriangle=FALSE, asp = NA, verbose=FALSE) { # save current graphics settings old.par <- par(no.readonly = TRUE) # set defaults for color scale # note this works differently than the image function. if( is.null(col)) { col<- tim.colors(nlevel)} else{ nlevel<- length( col) } # figure out zlim from passed arguments # also set the breaks for colors if they have not been passed, info <- imagePlotInfo(..., breaks=breaks, nlevel=nlevel) # breaks have been computed if not passed in the call breaks<- info$breaks if( verbose){ print(info) } if (add) { big.plot <- old.par$plt } if (legend.only) { graphics.reset <- TRUE } if (is.null(legend.mar)) { legend.mar <- ifelse(horizontal, 3.1, 5.1) } # figure out how to divide up the plotting real estate temp <- imageplot.setup( add = add, legend.shrink = legend.shrink, legend.width = legend.width, legend.mar = legend.mar, horizontal = horizontal, bigplot = bigplot, smallplot = smallplot) # bigplot has plotting region coordinates for image # smallplot has plotting coordinates for legend strip smallplot <- temp$smallplot bigplot <- temp$bigplot # draw the image in bigplot, just call the R base function # or poly.image for polygonal cells # note the logical switch # for poly.grid is parsed out of call from image.plot.info if (!legend.only) { if (!add) { par(plt = bigplot) } if (!info$poly.grid) { image(..., breaks=breaks, add = add, col = col, asp = asp) } else { poly.image(..., add = add,breaks=breaks, col = col, midpoint = midpoint, border = border, lwd.poly = lwd, asp = asp) } big.par <- par(no.readonly = TRUE) } ## ## check dimensions of smallplot if ((smallplot[2] < smallplot[1]) | (smallplot[4] < smallplot[3])) { par(old.par) stop("plot region too small to add legend\n") } # Following code draws the legend using the image function # and a one column image. colorBar( breaks = breaks, smallplot = smallplot, colorTable = col, horizontal = horizontal, lab.breaks = lab.breaks, axis.args = axis.args, legend.lab = legend.lab, legend.line = legend.line, legend.args = legend.args, legend.cex = legend.cex, lowerTriangle = lowerTriangle, upperTriangle = upperTriangle ) # clean up graphics device settings # reset to larger plot region with right user coordinates. mfg.save <- par()$mfg if (graphics.reset | add) { par(old.par) par(mfg = mfg.save, new = FALSE) invisible() } else { par(big.par) par(plt = big.par$plt, xpd = FALSE) par(mfg = mfg.save, new = FALSE) # Suggestion from Karline Soetaert # this is to reset margins to be based on the mar arguments # par(mar = par("mar")) or # par(mar = big.par$mar) # unfortunately this causes problems by allowing plotting outside of the # original plot region. invisible() } } fields/R/fastTps.R0000644000175100001440000000443414627453255013530 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "fastTps" <- function(x, Y, m = NULL, p = NULL, aRange, lon.lat = FALSE, find.trA=FALSE, REML=FALSE, theta=NULL, ...) { # theta argument has been depreciated. if( !is.null( theta)){ aRange<- theta } x <- as.matrix(x) d <- ncol(x) if (is.null(p)) { if (is.null(m)) { m <- max(c(2, ceiling(d/2 + 0.1))) } p <- (2 * m - d) if (p <= 0) { warning(" m is too small to satisfy thin plate spline crierion \n you must have 2*m - dimension >0 \n smoothness of Wendland set at k =2") } } # special arguments to send to the wendland covariance/taper function. # see nearest.dist for some explanation of 'method' method <- ifelse(!lon.lat, "euclidean", "greatcircle") cov.args <- list( k = max(c(p,2)), Dist.args = list(method=method), aRange = aRange ) object<-spatialProcess(x, Y, cov.function = "wendland.cov", mKrig.args = list( m = m), cov.args = cov.args, REML=REML, ... ) object$call<- match.call() class(object) <- c( "fastTps", class(object)) return( object) } fields/R/interp.surface.FFT.R0000644000175100001440000000174714627660663015461 0ustar hornikusers interp.surface.FFT<-function( obj, M){ #a z<- obj$z m1<- nrow( z) m2<- ncol( z) #Require that m1 and m2 are odd if( (m1%%2 != 1) | (m2%%2 != 1)){ cat( m1, m2, fill=TRUE) stop("Need an odd number of grid points for FFT interp method") } zf<- fft( z) # refined grid sizes N1<- M*m1 N2<- M*m2 temp<- matrix( 0, N1,N2) # this stuffing is touchy and that is why the odd # number of grid values is needed. n1<- (m1-1)/2 n2<- (m2-1)/2 temp[1:(n1+1), 1:(n2+1)]<- zf[ 1:(n1+1), 1:(n2+1)] temp[1:(n1+1), N2-(n2-1):0]<- zf[ 1:(n1+1), (n2+2):m2] temp[N1-(n1-1):0, 1:(n2+1)]<- zf[(n1+2):m1, 1:(n2+1)] temp[N1-(n1-1):0, N2-(n2-1):0]<- zf[(n1+2):m1, (n2+2):m2] look<- Re(fft( temp, inverse=TRUE))/ (m1*m2) # trim interpolated array to be within bounds of source image look<- look[1: (N1 - M +1), 1: (N2 - M +1) ] xOut<- seq(obj$x[1], obj$x[m1], length.out=(N1 - M +1) ) yOut<- seq(obj$y[1], obj$y[m2], length.out=(N2 - M +1) ) out<- list( x= xOut, y=yOut, z=look ) return(out) } fields/R/Krig.family.R0000644000175100001440000006201114627456143014252 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER Krig.check.xY <- function(x, Y, Z, weights, na.rm, verbose = FALSE) { # # check for missing values in Y or X. # # save logical indicating where there are NA's # and check for NA's # ind <- is.na(Y) if (any(ind) & !na.rm) { stop("Need to remove missing values or use: na.rm=TRUE in the call") } # # coerce x to be a matrix x <- as.matrix(x) # # coerce Y to be a vector # Y <- as.matrix(Y) if (ncol(Y) != 1) { stop("Krig can not handle matrix Y data. See mKrig.") } # #default weights ( reciprocal variance of errors). # if (is.null(weights)) weights <- rep(1, length(Y)) # # check that dimensions agree # if (length(Y) != nrow(x)) { stop(" length of y and number of rows of x differ") } if (length(Y) != length(weights)) { stop(" length of y and weights differ") } # if Z is not NULL coerce to be a matrix # and check # of rows if (verbose) { print(Z) } if (!is.null(Z)) { if (!is.matrix(Z)) { Z <- matrix(c(Z), ncol = 1) } if (length(Y) != nrow(Z)) { stop(" length of y and number of rows of Z differ") } } # if NAs can be removed then remove them and warn the user if (na.rm) { ind <- is.na(Y) if(all(ind)){ stop("Oops! All Y values are missing!") } if (any(ind)) { Y <- Y[!ind] x <- as.matrix(x[!ind, ]) if (!is.null(Z)) { Z <- Z[!ind, ] } weights <- weights[!ind] } } # # check for NA's in x matrix -- there should not be any ! if (any(c(is.na(x)))) { stop(" NA's in x matrix") } # # check for NA's in Z matrix if (!is.null(Z)) { if (any(c(is.na(Z)))) { stop(" NA's in Z matrix") } } # # verbose block if (verbose) { cat("Y:", fill = TRUE) print(Y) cat("x:", fill = TRUE) print(x) cat("weights:", fill = TRUE) cat(weights, fill = TRUE) } # # save x, weights and Y w/o NAs N <- length(Y) return(list(N = N, y = Y, x = x, weights = weights, Z = Z, NA.ind = ind)) } "Krig.coef" <- function(out, lambda = out$lambda, y = NULL, yM = NULL, verbose = FALSE) { # # NOTE default value of lambda used from Krig object. # # Determine whether to collapse onto means of replicates ( using y) # if the data has been passed use as the replicate means (yM) use that. # If both y and YM are null then just use out$yM # For readability of this function, all this tortured logic happens in # Krig.ynew. # out2 <- Krig.ynew(out, y, yM) temp.yM <- out2$yM nt <- out$nt np <- out$np ndata <- ncol(temp.yM) u <- NA call.name <- out$cov.function.name if (verbose) { cat("dimension of yM in Krig.coef", fill = TRUE) print(dim(temp.yM)) } # # case when knots= unqiue x's # any lambda # if (out$decomp == "WBW") { # pad u with zeroes that corresond to null space basis functions # this makes it compatible with the Demmler Reisch decomposition. # from an older version of this code u <- rbind(matrix(0, nrow = out$nt, ncol = ndata), t(out$matrices$V) %*% qr.q2ty(out$matrices$qr.T, out$W2 %d*% temp.yM)) # #old code beta <- out$matrices$G %*% ((1/(1 + lambda * out$matrices$D))%d*%u) # ind <- (nt + 1):np D2 <- out$matrices$D[ind] # # note use of efficient diagonal multiply in next line temp2 <- (D2/(1 + lambda * D2)) %d*% u[ind, ] beta2 <- out$matrices$V %*% temp2 temp.c <- rbind(matrix(0, nrow = nt, ncol = ndata), beta2) temp.c <- qr.qy(out$matrices$qr.T, temp.c) temp.c <- out$W2 %d*% temp.c temp <- temp.yM - do.call(call.name, c(out$args, list(x1 = out$knots, x2 = out$knots, C = temp.c))) temp <- out$W2 %d*% temp temp.d <- qr.coef(out$matrices$qr.T, temp) } if (out$decomp == "cholesky") { if (lambda != out$matrices$lambda) { stop("New lambda can not be used with cholesky decomposition") } Tmatrix <- do.call(out$null.function.name, c(out$null.args, list(x = out$knots, Z = out$ZM))) temp.d <- qr.coef(out$matrices$qr.VT, forwardsolve(out$matrices$Mc, transpose = TRUE, temp.yM, upper.tri = TRUE)) temp.c <- forwardsolve(out$matrices$Mc, transpose = TRUE, temp.yM - Tmatrix %*% temp.d, upper.tri = TRUE) temp.c <- backsolve(out$matrices$Mc, temp.c) } return(list(c = temp.c, d = temp.d, tauHat.rep = out2$tauHat.rep, tauHat.pure.error = out2$tauHat.pure.error, pure.ss = out2$pure.ss)) } # brute force way to find the smoother matrix: # yhat = A(lambda) y # trace of A(lambda) is the effective degrees of freedom Krig.Amatrix <- function(object, x0 = object$x, lambda = NULL, eval.correlation.model = FALSE, ...) { if (is.null(lambda)) { lambda <- object$lambda } M <- nrow(object$xM) N <- nrow(x0) # create output matrix out <- matrix(NA, N, M) # # loop through unique data locations predicting response # using unit vector # NOTE that the y vector has already been collapsed onto means. # for (k in 1:M) { ytemp <- rep(0, M) ytemp[k] <- 1 out[, k] <- predict(object, x = x0, yM = ytemp, lambda = lambda, eval.correlation.model = eval.correlation.model, ...) } return(out) } "Krig.df.to.lambda" <- function(df, D, guess = 1, tol = 1e-05) { if (is.list(D)) { D <- D$matrices$D } if (is.na(df)) return(NA) if (df < sum(D == 0)) { warning("df too small to match with a lambda value") return(NA) } if (df > length(D)) { warning(" df too large to match a lambda value") return(NA) } l1 <- guess for (k in 1:25) { tr <- sum(1/(1 + l1 * D)) if (tr <= df) break l1 <- l1 * 4 } l2 <- guess for (k in 1:25) { tr <- sum(1/(1 + l2 * D)) if (tr >= df) break l2 <- l2/4 } info <- list(D = D, df = df, N = length(D)) out <- bisection.search(log(l1), log(l2), Krig.fdf, tol = tol, f.extra = info)$x +exp(out) } "Krig.engine.default" <- function(out, verbose = FALSE) { Tmatrix <- do.call(out$null.function.name, c(out$null.args, list(x = out$xM, Z = out$ZM))) if (verbose) { cat(" Model Matrix: spatial drift and Z", fill = TRUE) print(Tmatrix) } # Tmatrix premultiplied by sqrt of weights Tmatrix <- out$W2 %d*% Tmatrix qr.T <- qr(Tmatrix) if( qr.T$rank < ncol( Tmatrix)){ stop("Regression matrix for fixed part of model is colinear")} # #verbose block if (verbose) { cat("first 5 rows of qr.T$qr", fill = TRUE) print(qr.T$qr[1:5, ]) } # # find Q_2 K Q_2^T where K is the covariance matrix at the knot points # tempM <- t(out$W2 %d*% do.call(out$cov.function.name, c(out$args, list(x1 = out$knots, x2 = out$knots)))) tempM <- out$W2 %d*% tempM tempM <- qr.yq2(qr.T, tempM) tempM <- qr.q2ty(qr.T, tempM) np <- nrow(out$knots) nt <- (qr.T$rank) if (verbose) { cat("np, nt", np, nt, fill = TRUE) } # # Full set of decompositions for # estimator for nonzero lambda tempM <- eigen(tempM, symmetric = TRUE) D <- c(rep(0, nt), 1/tempM$values) # # verbose block if (verbose) { cat("eigen values:", fill = TRUE) print(D) } # # Find the transformed data vector used to # evaluate the solution, GCV, REML at different lambdas # u <- c(rep(0, nt), t(tempM$vectors) %*% qr.q2ty(qr.T, c(out$W2 %d*% out$yM))) if (verbose) { cat("u vector:", fill = TRUE) print(u) } # # return(list(D = D, qr.T = qr.T, decomp = "WBW", V = tempM$vectors, u = u, nt = nt, np = np)) } "Krig.engine.fixed" <- function(out, verbose = FALSE, lambda = NA) { if (is.na(lambda)) lambda <- out$lambda call.name <- out$cov.function.name Tmatrix <- do.call(out$null.function.name, c(out$null.args, list(x = out$knots, Z = out$ZM))) if (verbose) { cat("Tmatrix:", fill = TRUE) print(Tmatrix) } np <- nrow(out$knots) nt <- ncol(Tmatrix) # form K tempM <- do.call(call.name, c(out$args, list(x1 = out$knots, x2 = out$knots))) # form M diag(tempM) <- (lambda/out$weightsM) + diag(tempM) # # find cholesky factor # tempM = t(Mc)%*% Mc # V= Mc^{-T} # call cholesky but also add in the args supplied in Krig object. Mc <- do.call("chol", c(list(x = tempM), out$chol.args)) VT <- forwardsolve(Mc, x = Tmatrix, transpose = TRUE, upper.tri = TRUE) qr.VT <- qr(VT) # find GLS covariance matrix of null space parameters. Rinv <- solve(qr.R(qr.VT)) Omega <- Rinv %*% t(Rinv) # # now do generalized least squares for d # and then find c. beta <- qr.coef(qr.VT, forwardsolve(Mc, transpose = TRUE, out$yM, upper.tri = TRUE)) if (verbose) { cat("beta fixed coefficients", fill=TRUE) print(beta) } c.coef <- forwardsolve(Mc, transpose = TRUE, out$yM - Tmatrix %*% beta, upper.tri = TRUE) c.coef <- backsolve(Mc, c.coef) # return all the goodies, include lambda as a check because # results are meaningless for other values of lambda return(list(qr.VT = qr.VT, d = c(beta), c = c(c.coef), Mc = Mc, decomp = "cholesky", nt = nt, np = np, lambda.fixed = lambda, Omega = Omega)) } "Krig.fdf" <- function(llam, info) { sum(1/(1 + exp(llam) * info$D)) - info$df } "Krig.fgcv" <- function(lam, obj) { # # GCV that is leave-one-group out # lD <- obj$matrices$D * lam RSS <- sum(((obj$matrices$u * lD)/(1 + lD))^2) MSE <- RSS/length(lD) if ((obj$N - length(lD)) > 0) { MSE <- MSE + obj$pure.ss/(obj$N - length(lD)) } trA <- sum(1/(1 + lD)) den <- (1 - (obj$cost * (trA - obj$nt - obj$offset) + obj$nt)/length(lD)) # If the denominator is negative then flag this as a bogus case # by making the GCV function 'infinity' # ifelse(den > 0, MSE/den^2, 1e20) } "Krig.fgcv.model" <- function(lam, obj) { lD <- obj$matrices$D * lam MSE <- sum(((obj$matrices$u * lD)/(1 + lD))^2)/length(lD) trA <- sum(1/(1 + lD)) den <- (1 - (obj$cost * (trA - obj$nt - obj$offset) + obj$nt)/length(lD)) ifelse(den > 0, obj$tauHat.pure.error^2 + MSE/den^2, 1e20) } "Krig.fgcv.one" <- function(lam, obj) { lD <- obj$matrices$D * lam RSS <- obj$pure.ss + sum(((obj$matrices$u * lD)/(1 + lD))^2) trA <- sum(1/(1 + lD)) den <- 1 - (obj$cost * (trA - obj$nt - obj$offset) + obj$nt)/obj$N # If the denominator is negative then flag this as a bogus case # by making the GCV function 'infinity' # ifelse(den > 0, (RSS/obj$N)/den^2, 1e+20) } "Krig.flplike" <- function(lambda, obj) { # - log profile likelihood for lambda # See section 3.4 from Nychka Spatial Processes as Smoothers paper. # for equation and derivation D2 <- obj$matrices$D[obj$matrices$D > 0] u2 <- obj$matrices$u[obj$matrices$D > 0] lD <- D2 * lambda N2 <- length(D2) # MLE estimate of sigma for fixed lambda sigma2.MLE <- (sum((D2 * (u2)^2)/(1 + lD)))/N2 # # ln determinant of K + lambda*WI lnDetCov <- -sum(log(D2/(1 + lD))) logREMLLikelihood<- -1 * (-N2/2 - log(2 * pi) * (N2/2) - (N2/2) * log(sigma2.MLE) - (1/2) * lnDetCov) return( logREMLLikelihood ) } "Krig.fs2hat" <- function(lam, obj) { lD <- obj$matrices$D * lam RSS <- obj$pure.ss + sum(((obj$matrices$u * lD)/(1 + lD))^2) den <- obj$N - (sum(1/(1 + lD)) + obj$offset) if (den < 0) { return(NA) } else { RSS/(den) } } "Krig.ftrace" <- function(lam, D) { sum(1/(1 + lam * D)) } "Krig.make.W" <- function(out, verbose = FALSE) { if (verbose) { cat("W", fill = TRUE) print(out$W) } if (out$nondiag.W) { # # create W from scratch or grab it from passed object if (is.null(out$W)) { if (verbose) { print(out$wght.function.name) } W <- do.call(out$wght.function.name, c(list(x = out$xM), out$wght.args)) # adjust W based on diagonal weight terms # W <- sqrt(out$weightsM) * t(sqrt(out$weightsM) * W) } else { W <- out$W } # # symmetric square root temp <- eigen(W, symmetric = TRUE) W2 <- temp$vectors %*% diag(sqrt(temp$values)) %*% t(temp$vectors) return(list(W = W, W2 = W2)) } else { # # These are created only for use with default method to stay # consistent with nondiagonal elements. if (out$fixed.model) { return(list(W = NULL, W2 = NULL)) } else { return(list(W = out$weightsM, W2 = sqrt(out$weightsM))) } } } "Krig.make.Wi" <- function(out, verbose = FALSE) { # # If a weight matrix has been passed use it. # # Note that in either case the weight matrix assumes that # replicate observations have been collapses to the means. # if (out$nondiag.W) { temp <- eigen(out$W, symmetric = TRUE) Wi <- temp$vectors %*% diag(1/(temp$values)) %*% t(temp$vectors) W2i <- temp$vectors %*% diag(1/sqrt(temp$values)) %*% t(temp$vectors) return(list(Wi = Wi, W2i = W2i)) } else { # # These are created only for use with default method to stay # consistent with nondiagonal elements. return(list(Wi = 1/out$weightsM, W2i = 1/sqrt(out$weightsM))) } } "Krig.make.u" <- function(out, y = NULL, yM = NULL, verbose = FALSE) { # # Determine whether to collapse onto means of replicates ( using y) # if the data has been passed use as the replicate means (yM) use that. # If both y and YM are null then just use out$yM # For readability of this function, all this tortured logic happens in # Krig.ynew. # out2 <- Krig.ynew(out, y, yM) temp.yM <- out2$yM nt <- out$nt np <- out$np ndata <- ncol(temp.yM) u <- NA call.name <- out$cov.function.name if (verbose) { cat("dimension of yM in Krig.coef", fill = TRUE) print(dim(temp.yM)) } # # case when knots= unqiue x's # any lambda # u <- rbind(matrix(0, nrow = out$nt, ncol = ndata), t(out$matrices$V) %*% qr.q2ty(out$matrices$qr.T, out$W2 %d*% temp.yM)) return(list(u = u, tauHat.rep = out2$tauHat.rep, tauHat.pure.error = out2$tauHat.pure.error, pure.ss = out2$pure.ss)) } Krig.null.function <- function(x, Z = NULL, drop.Z = FALSE, m) { # default function to create matrix for fixed part of model # x, Z, and drop.Z are required # Note that the degree of the polynomial is by convention (m-1) # returned matrix must have the columns from Z last! # if (is.null(Z) | drop.Z) { return(fields.mkpoly(x, m = m)) } else { return(cbind(fields.mkpoly(x, m = m), Z)) } } Krig.parameters <- function(obj, mle.calc = obj$mle.calc) { # if nondiag W is supplied then use it. # otherwise assume a diagonal set of weights. # # NOTE: calculation of tauHat involves full set of obs # not those colllapsed to the mean. if (obj$nondiag.W) { tauHat.GCV <- sqrt(sum((obj$W2 %d*% obj$residuals)^2)/(length(obj$y) - obj$eff.df)) } else { tauHat.GCV <- sqrt(sum((obj$weights * obj$residuals^2)/(length(obj$y) - obj$eff.df))) } if (mle.calc) { sigma.MLE <- sum(c(obj$c) * c(obj$yM))/obj$N # set sigma estimate to zero if negtive. Typically this # is an issue of machine precision and very small negative value. sigma.MLE <- ifelse(sigma.MLE < 0, 0, sigma.MLE) # commented out code for debugging ... # if( sigma.MLE< 0) { # stop('problems computing sigma.MLE')} # commented out is the REML estimate -- lose null space df because of # the restiction to orthogonal subspace of T. # sigmahat<- sigma.MLE <- sum(obj$c * obj$yM)/(obj$N - obj$nt) # . sigmahat <- sigma.MLE tauHat.MLE <- sqrt(sigma.MLE * obj$lambda) } else { sigmahat <- sigma.MLE <- tauHat.MLE <- NA } list(tauHat.GCV = tauHat.GCV, sigma.MLE = sigma.MLE, tauHat.MLE = tauHat.MLE, sigmahat = sigmahat) } "Krig.replicates" <- function(out=NULL, x,y, Z=NULL, weights=rep( 1, length(y)), digits=8, verbose = FALSE) { if( is.null(out)){ out<- list( x=x, y=y, N= length(y), Z=Z, weights=weights) } rep.info <- cat.matrix(out$x, digits=digits) if (verbose) { cat("replication info", fill = TRUE) print(rep.info) } # If no replicates are found then reset output list to reflect this condition uniquerows <- !duplicated(rep.info) if (sum(uniquerows) == out$N) { tauHat.rep <- NA tauHat.pure.error <- NA pure.ss <- 0 # coerce 'y' data vector as a single column matrix yM <- as.matrix(out$y) weightsM <- out$weights xM <- as.matrix(out$x[uniquerows, ]) # coerce ZM to matrix if (!is.null(out$Z)) { ZM <- as.matrix(out$Z) } else { ZM <- NULL } } # collapse over spatial replicates else { rep.info.aov <- fast.1way(rep.info, out$y, out$weights) tauHat.pure.error <- sqrt(rep.info.aov$MSE) tauHat.rep <- tauHat.pure.error # copy replicate means as a single column matrix yM <- as.matrix(rep.info.aov$means) weightsM <- rep.info.aov$w.means xM <- as.matrix(out$x[uniquerows, ]) # choose some Z's for replicate group means if (!is.null(out$Z)) { ZM <- as.matrix(out$Z[uniquerows, ]) } else { ZM <- NULL } pure.ss <- rep.info.aov$SSE if (verbose) print(rep.info.aov) } return(list(yM = yM, xM = xM, ZM = ZM, weightsM = weightsM, uniquerows = uniquerows, tauHat.rep = tauHat.rep, tauHat.pure.error = tauHat.pure.error, pure.ss = pure.ss, rep.info = rep.info)) } Krig.transform.xY <- function(obj, knots=NA, verbose = FALSE) { # find all replcates and collapse to unique locations and mean response # and pooled variances and weights. out <- Krig.replicates(obj, verbose = verbose) if (verbose) { cat("yM from Krig.transform.xY", fill = TRUE) print(out$yM) } # # save information about knots. out$knots <- out$xM out$mle.calc <- TRUE out$knot.model <- FALSE # # scale x, knot locations and save transformation info # out$xM <- transformx(out$xM, obj$scale.type, obj$x.center, obj$x.scale) out$transform <- attributes(out$xM) out$knots <- scale(out$knots, center = out$transform$x.center, scale = out$transform$x.scale) # # #verbose block # if (verbose) { cat("transform", fill = TRUE) print(out$transform) } if (verbose) { cat("knots in transformed scale", fill = TRUE) print(knots) } return(out) } "Krig.updateY" <- function(out, Y, verbose = FALSE, yM = NA) { # # if (is.na(yM[1])) { out2 <- Krig.ynew(out, Y) } else { out2 <- list(yM = yM, tauHat.rep = NA, tauHat.pure.error = NA, pure.ss = NA) } if (verbose) { print(out2) } # # Note how matrices are grabbed from the Krig object # if (verbose){ cat("Type of decomposition", out$decomp, fill = TRUE) } #### decomposition of Q2TKQ2 u <- c(rep(0, out$nt), t(out$matrices$V) %*% qr.q2ty(out$matrices$qr.T, out$W2 %d*% out2$yM)) if (verbose) cat("u", u, fill = TRUE) # # pure error in this case from 1way ANOVA # if (verbose) { cat("pure.ss", fill = TRUE) print(out2$pure.ss) } out2$u <- u out2 } Krig.which.lambda <- function(out) { # # determine the method for finding lambda # Note order # default is to do 'gcv/REML' out2 <- list() # copy all all parameters to out2 just to make this # easier to read. out2$method <- out$method out2$lambda.est <- NA out2$lambda <- out$lambda out2$eff.df <- out$eff.df out2$sigma <- out$sigma out2$tau2 <- out$tau2 if (!is.na(out2$lambda) | !is.na(out2$eff.df)) { # # this indicates lambda has been supplied and leads to # the cholesky type computational approaches # -- but only if GCV is FALSE # out2$method <- "user" } out2$GCV <- out$GCV if (!is.na(out2$eff.df)) { # # this indicates df has been supplied and needs # GCV to be true to compute the lambda # that matches the df # out2$GCV <- TRUE } if (!is.na(out2$sigma) & !is.na(out2$tau2)) { out2$method <- "user" out2$lambda <- out2$tau2/out2$sigma } # # NOTE: method='user' means that a value of lambda has been supplied # and so GCV etc to determine lambda is not needed. # gcv TRUE means that the decompositions will be done to # evaluate the estimate at arbitrary lambda (and also be # able to compute the effective degrees of freedom). # # The fixed lambda calculations are very efficient but # do not make it feasible for GCV/REML or effective degrees of # freedom calculations. # out2$fixed.model <- (out2$method == "user") & (!out2$GCV) # return(out2) } "Krig.ynew" <- function(out, y = NULL, yM = NULL) { # # calculates the collapsed y (weighted) mean vector based on the # X matrix and weights from the out object. # or just passes through the collapsed mean data if passed. # # # If there are no replicated obs. then return the full vector # pure error ss is zero # tauHat.rep <- NA tauHat.pure.error <- NA pure.ss <- 0 # if no y's are given then it is assumed that one should use the # yM from the original data used to create the Krig object if (is.null(yM) & is.null(y)) { yM <- out$yM } # # case when yM is passed no calculations are needed # if (!is.null(yM)) { return(list(yM = as.matrix(yM), tauHat.rep = NA, tauHat.pure.error = NA, pure.ss = 0)) } # # no reps case # if (length(unique(out$rep.info)) == out$N) { return(list(yM = as.matrix(y), tauHat.rep = NA, tauHat.pure.error = NA, pure.ss = 0)) } # # check that y is the right length # if (length(y) != out$N) { stop(" the new y vector is the wrong length!") } # # case when full y data is passed and replicate means need to be found # if (length(unique(out$rep.info)) < out$N) { # # calculate means by pooling Replicated observations but use the # the right weighting. # rep.info.aov <- fast.1way(out$rep.info, y, out$weights)[c("means", "MSE", "SSE")] tauHat.pure.error <- sqrt(rep.info.aov$MSE) tauHat.rep <- tauHat.pure.error return(list(yM = rep.info.aov$means, tauHat.rep = tauHat.rep, tauHat.pure.error = tauHat.pure.error, pure.ss = rep.info.aov$SSE)) } } fields/R/evlpoly2.R0000644000175100001440000000323714627453255013660 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER fields.evlpoly2 <- function(x, coef, ptab) { # evaluates polynomial at x values with coefficients coef[i] and powers i-1 # n <- nrow(x) nd <- ncol(x) J <- nrow(ptab) if (length(coef) != J) { stop("coefficients not same length as ptab rows") } results <- rep(0, n) temp <- .Fortran("evlpoly2",PACKAGE="fields", x = as.double(x), n = as.integer(n), nd = as.integer(nd), ptab = as.integer(ptab), j = as.integer(J), coef = as.double(coef), results = as.double(results))$results return(temp) } fields/R/stats.bin.R0000644000175100001440000000325214627453256014007 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "stats.bin" <- function(x, y, N = 10, breaks = NULL, prettyBins=FALSE) { out <- list() if (is.null(breaks)) { if(prettyBins){ breaks <- pretty(x, N) } else{ breaks<- seq( min( x), max(x), length.out=N) } } NBIN <- length(breaks) - 1 centers <- (breaks[1:NBIN] + breaks[2:(NBIN + 1)])/2 test <- describe() obj <- matrix(NA, ncol = NBIN, nrow = length(test)) dimnames(obj) <- list(test, format(1:NBIN)) obj[, 1] <- describe(y[x <= breaks[2] & x >= breaks[1]]) for (k in 2:NBIN) { obj[, k] <- describe(y[x <= breaks[k + 1] & x > breaks[k]]) } list(centers = centers, breaks = breaks, stats = obj) } fields/R/circulantEmbedding.R0000644000175100001440000000266214627453255015670 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "circulantEmbedding" <- function(obj) { m<- obj$m M<- obj$M prodM<- prod( M) Z <- fft( array(rnorm(prodM), M) ) #bigIndex<- as.matrix(expand.grid( 1:mDim[1], 1:mDim[2])) if( any( Re(obj$wght) < 0)){ stop("Weight function has negtive values") } out<- Re( fft(sqrt(obj$wght) * Z, inverse = TRUE) )/sqrt(prodM) out<- array( out[makeMultiIndex(m)], m) return( out) } fields/R/transformx.R0000644000175100001440000000400514627453256014302 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "transformx" <- function(x, scale.type = "unit.sd", x.center, x.scale) { if (scale.type == "unscaled") { x.center <- rep(0, ncol(x)) x.scale <- rep(1, ncol(x)) } else if (scale.type == "unit.sd") { x.center <- apply(x, 2, mean) x.scale <- sqrt(apply(x, 2, var)) x <- scale(x) } else if (scale.type == "range") { x.center <- apply(x, 2, min) x.scale <- apply(x, 2, max) - apply(x, 2, min) x <- scale(x, center = x.center, scale = x.scale) } else if (scale.type == "user") { if (missing(x.center)) x.center <- apply(x, 2, mean) if (missing(x.scale) || length(x.scale) != ncol(x)) stop("Error: x.scale must be a vector of length d") x <- scale(x, center = x.center, scale = x.scale) } else stop(paste("Error: scale.type must be one of", "unit.sd, range, user, unscaled")) attr(x, "x.center") <- x.center attr(x, "x.scale") <- x.scale attr(x, "x.scale.type") <- scale.type x } fields/R/mKrigCheckXY.R0000644000175100001440000000607014627453256014373 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER mKrigCheckXY <- function(x, y, weights, Z, ZCommon, na.rm) { # # check for missing values in y or X. # # save logical indicating where there are NA's # and check for NA's # ind <- is.na(y) if (any(ind) & !na.rm) { stop("Need to remove missing values or use: na.rm=TRUE in the call") } # # coerce x to be a matrix x <- as.matrix(x) # # coerce y to be a matrix # y <- as.matrix(y) # #default weights ( reciprocal variance of errors). # if (is.null(weights)) weights <- rep(1, nrow(y)) # # check that dimensions agree # if (nrow(y) != nrow(x)) { stop(" length of y and number of rows of x differ") } if (nrow(y) != length(weights)) { stop(" length of y and weights differ") } # if Z is not NULL coerce to be a matrix # and check # of rows if (!is.null(Z)) { if (!is.matrix(Z)) { Z <- as.matrix(Z) } if (nrow(y) != nrow(Z)) { stop(" number of rows of y and number of rows of Z differ") } } if (!is.null(ZCommon)) { if (!is.matrix(ZCommon)) { ZCommon <- as.matrix(ZCommon) } if ( nrow(y)*ncol(y) != nrow(ZCommon) ) { stop(" nrow(y)*ncol(y) and number of rows of ZCommon differ") } } # if NAs can be removed then remove them and warn the user if (na.rm) { ind <- is.na(y) if(all(ind)){ stop("Oops! All y values are missing!") } if (any(ind)) { y <- y[!ind] x <- as.matrix(x[!ind, ]) if (!is.null(Z)) { Z <- as.matrix(Z[!ind, ]) } if (!is.null(ZCommon)) { stop("can not reshape ZCommon with missing values") } weights <- weights[!ind] } } # # check for NA's in x matrix -- there should not be any ! if (any(c(is.na(x)))) { stop(" NA's in x matrix") } # # check for NA's in Z matrix if (!is.null(Z)) { if (any(c(is.na(Z)))) { stop(" NA's in Z matrix") } } # save x, weights and y w/o NAs N <- length(y) return(list(N = N, y = y, x = x, weights = weights, Z = Z, NA.ind = ind, nreps = ncol( y) ) ) } fields/R/color.scale.R0000644000175100001440000000500414627453255014302 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER color.scale <- function(z, col = tim.colors, NC=256, zlim = NULL, transparent.color = "white", eps = 1e-08) { # # converts real values to a color scale of NC values. # role of eps is to prevent values exactly at the end of the range from being # missed # # convert factor or character z to integers colFactor<- FALSE levelsZ<- NULL if( is.character(z)){ z<- as.factor( z) } if( is.factor( z)){ levelsZ<- levels(z) z<- as.integer(z) coFactor<-TRUE NC<- length( levelsZ) } if (is.null(zlim)) { zlim <- range(z, na.rm = TRUE) } z[(z < zlim[1]) | (z > zlim[2])] <- NA if( is.function(col)){ col<- col(NC) } NC <- length(col) span<- zlim[2]-zlim[1] # expand breaks slightly to include obs on the boundaries. breaks <- seq(zlim[1] - span*eps, zlim[2] + span*eps , length.out= NC + 1) # the magic of R ... icolor <- cut(c(z), breaks)@.Data # returned values is a vector of character hex strings encoding the colors. colorMap<- ifelse(is.na(icolor), transparent.color, col[icolor]) # add zlim and col table as attributes so one can add # a legend and know what one is doing. attr( colorMap,"zlim")<- zlim attr(colorMap,"col")<- col attr(colorMap,"levelsZ")<- levelsZ # potential hooks for colorBar functions colorMapInfo<- list( col=col, zlim=zlim) # .fieldsColorMapInfo <<- colorMapInfo return( colorMap) } fields/R/summary.sreg.R0000644000175100001440000000403314627453256014534 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "summary.sreg" <- function(object, digits = 4, ...) { x <- object if (length(x$lambda) > 1) { stop("Can't do a summary on an object with a grid of smoothing\nparameters") } summary <- list(call = x$call, num.observation = length(x$residuals), enp = x$trace, nt = x$nt, res.quantile = quantile(x$residuals, seq(0, 1, 0.25)), tauHat.GCV = x$tauHat.GCV, m = x$m, lambda = x$lambda, cost = x$cost, num.uniq = length(x$y), np = x$np, method = x$method, lambda.est = x$lambda.est[!is.na(x$lambda.est[, 1]), ], tauHat.pure.error = x$tauHat.pure.error) class(summary) <- "summary.sreg" summary$covariance <- cor(x$fitted.values * sqrt(x$weights), (x$y) * sqrt(x$weights))^2 hold <- (sum((x$y - mean(x$y))^2) - sum(x$residuals^2))/(sum((x$y - mean(x$y))^2)) summary$adjr2 <- 1 - ((length(x$residuals) - 1)/(length(x$residuals) - x$eff.df)) * (1 - hold) summary$digits <- digits summary$sum.gcv.lambda <- summaryGCV.sreg(x, x$lambda) summary } fields/R/vgram.matrix.R0000644000175100001440000001037214627453256014522 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER vgram.matrix <- function(dat, R = NULL, dx = NULL, dy = NULL) { # a useful function for matching shifted indices # (the kind of internal function Dorit does not like!) SI <- function(ntemp, delta) { n1 <- 1:ntemp n2 <- n1 + delta good <- (n2 >= 1) & (n2 <= ntemp) return(cbind(n1[good], n2[good])) } # # check if dat is in $x $y $z image format # if so extract z and find dx and dy if( is.list( dat)){ if(is.null(dat$z)){ stop("need a z matrix in dat") } if( !is.null(dat$x)& is.null(dx)){ dx<- dat$x[2]-dat$x[1] if( any( diff( dat$x)-dx > 10 *.Machine$double.eps) ){ stop(" x grid values are not equal") } } if( !is.null(dat$y)& is.null(dy)){ dy<- dat$y[2]-dat$y[1] if( any( diff( dat$y)-dy > 10 *.Machine$double.eps) ) { stop(" x grid values are not equal") } } dat <- dat$z } # if dat is not an image defaults for dx and dy are 1.0 if( is.null( dx)){ dx<- 1 } if( is.null( dy)){ dy<- 1 } # if R not specified go out to 5 grid boxes in distance # if( is.null(R)){ R<- 5* max( c(dx, dy)) } M<- nrow(dat) N<- ncol( dat) # create all possible separations for a grid up to a distance R m <- min( c(round(R/dx),M) ) n <- min( c(round(R/dy),N) ) # # all relavent combinations: note that negative increments are # needed as well as positive ones ind <- rbind(as.matrix(expand.grid(0, 1:n)), as.matrix(expand.grid(1:m, 0)), as.matrix(expand.grid(c(-(m:1), 1:m), 1:n))) # distances - only take those within a distance R. # and trim everything to this bound d <- sqrt((dx * ind[, 1])^2 + (dy * ind[, 2])^2) good <- (d > 0) & (d <= R) ind <- ind[good, ] d <- d[good] ind <- ind[order(d), ] d <- sort(d) # # arrays to hold statistics nbin <- nrow(ind) holdVG <- rep(NA, nbin) holdRVG <- rep(NA, nbin) holdN <- rep(0, nbin) # loop over each separation for (k in 1:nbin) { # indices for original and shifted image that are within array bounds MM <- SI(M, ind[k, 1]) NN <- SI(N, ind[k, 2]) if( length(MM)>0 & length(NN)>0){ # find differences BigDiff <- (dat[MM[, 1], NN[, 1] ] - dat[MM[, 2], NN[,2] ] ) # standard and the Cressie robust version. # modified to handle NAs holdVG[k] <- mean(0.5 * (BigDiff)^2, na.rm = TRUE) holdRVG[k] <- mean(abs(BigDiff)^0.5, na.rm = TRUE) holdN[k] <- sum( !is.na(BigDiff) ) } } # finish robust estimate Cressie (1993) formula 2.4.12 holdRVG <- 0.5 * (holdRVG^4)/(0.457 + 0.494 * holdN) # collapsed variogram to common distances this what one would look # at under the stationary case. top <- tapply(holdVG * holdN, d, FUN = "sum") bottom <- tapply(holdN, d, FUN = "sum") dcollapsed <- as.numeric(names(bottom)) vgram <- top/bottom # wipe out pesky row names dimnames(vgram) <- NULL out <- list(vgram = vgram, d = dcollapsed, ind = ind, d.full = d, vgram.full = holdVG, robust.vgram = holdRVG, N = holdN, dx = dx, dy = dy) class(out) <- "vgram.matrix" return(out) } fields/R/imagePlot.R0000644000175100001440000001210514627453256014020 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER # Thanks to S. Koehler and S. Woodhead # for comments on making this a better function # Thanks to Rodrigo Lustosa for adding the asp option. "imagePlot" <- function(..., add = FALSE, breaks= NULL, nlevel = 64, col = NULL, horizontal = FALSE, legend.shrink = 0.9, legend.width = 1.2, legend.mar = ifelse(horizontal, 3.1, 5.1), legend.lab = NULL, legend.line= 2, graphics.reset = FALSE, bigplot = NULL, smallplot = NULL, legend.only = FALSE, lab.breaks = NULL, axis.args = NULL, legend.args = NULL, legend.cex=1.0, midpoint = FALSE, border = NA, lwd = 1, lowerTriangle= FALSE, upperTriangle=FALSE, asp = NA, verbose=FALSE) { # save current graphics settings old.par <- par(no.readonly = TRUE) # set defaults for color scale # note this works differently than the image function. if( is.null(col)) { col<- tim.colors(nlevel)} else{ nlevel<- length( col) } # figure out zlim from passed arguments # also set the breaks for colors if they have not been passed, info <- imagePlotInfo(..., breaks=breaks, nlevel=nlevel) # breaks have been computed if not passed in the call breaks<- info$breaks if( verbose){ print(info) } if (add) { big.plot <- old.par$plt } if (legend.only) { graphics.reset <- TRUE } if (is.null(legend.mar)) { legend.mar <- ifelse(horizontal, 3.1, 5.1) } # figure out how to divide up the plotting real estate temp <- imageplot.setup( add = add, legend.shrink = legend.shrink, legend.width = legend.width, legend.mar = legend.mar, horizontal = horizontal, bigplot = bigplot, smallplot = smallplot) # bigplot has plotting region coordinates for image # smallplot has plotting coordinates for legend strip smallplot <- temp$smallplot bigplot <- temp$bigplot # draw the image in bigplot, just call the R base function # or poly.image for polygonal cells # note the logical switch # for poly.grid is parsed out of call from image.plot.info if (!legend.only) { if (!add) { par(plt = bigplot) } if (!info$poly.grid) { image(..., breaks=breaks, add = add, col = col, asp = asp) } else { poly.image(..., add = add,breaks=breaks, col = col, midpoint = midpoint, border = border, lwd.poly = lwd, asp = asp) } big.par <- par(no.readonly = TRUE) } ## ## check dimensions of smallplot if ((smallplot[2] < smallplot[1]) | (smallplot[4] < smallplot[3])) { par(old.par) stop("plot region too small to add legend\n") } # Following code draws the legend using the image function # and a one column image. colorBar( breaks = breaks, smallplot = smallplot, colorTable = col, horizontal = horizontal, lab.breaks = lab.breaks, axis.args = axis.args, legend.lab = legend.lab, legend.line = legend.line, legend.args = legend.args, legend.cex = legend.cex, lowerTriangle = lowerTriangle, upperTriangle = upperTriangle ) # clean up graphics device settings # reset to larger plot region with right user coordinates. mfg.save <- par()$mfg if (graphics.reset | add) { par(old.par) par(mfg = mfg.save, new = FALSE) invisible() } else { par(big.par) par(plt = big.par$plt, xpd = FALSE) par(mfg = mfg.save, new = FALSE) # A suggestion from Karline Soetaert # this is to reset margins to be based on the mar arguments # par(mar = par("mar")) or # par(mar = big.par$mar) # unfortunately this causes problems by allowing plotting outside of the # original plot region. invisible() } } fields/R/qr.q2ty.R0000644000175100001440000000240014627453256013414 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "qr.q2ty" <- function(qr, y) { if (!is.matrix(y)) { y <- as.matrix(y) } dy <- dim(y) dq <- dim(qr$qr) rank <- qr$rank if (dy[1] != dq[1]) stop("y and qr$qr should have same number of rows") qr.qty(qr, y)[(rank + 1):dy[1], ] } fields/R/spatialProcess.R0000644000175100001440000002772614627453256015112 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER spatialProcess <- function(x, y, weights = rep(1, nrow(x)), Z = NULL, ZCommon = NULL, mKrig.args = NULL, cov.function = NULL, cov.args = NULL, parGrid = NULL, reltol = 1e-4, na.rm = TRUE, verbose = FALSE, REML = FALSE, cov.params.start = NULL, gridN = 5, profileLambda = FALSE, profileARange = FALSE, profileGridN = 15, gridARange = NULL, gridLambda = NULL, CILevel = .95, iseed = 303, collapseFixedEffect = TRUE, ...) { # Through out this code: obj is the output list and will be added to throughout the computation # This device is typical in fields functions where a list is built up in the process of the # computation. # THE RULES: # Being in the cov.params.start list means a parameter will be optimized # by maximum likelhood. # If a parameter is in the cov.args list it will be fixed at that value # # NOTE all the ... extra arguents are assumed to be for the cov.args list GCV<- FALSE # A top level placeholder to add GCV search capability once # algorithm is stable # this default choice is used in the next level functions. ############################################################ #### Setting some defaults for the covariance function and parameters ############################################################ # It is also convenient to just add a few arugments of the covariance driectly in the # this list collects those. E.g. spatialProcess( x, y, Covariance="Exponential" ) # will pass this choice along to the default covariance function, stationary.cov # extraArgs<- list(...) if( REML&GCV){ stop("Cannot optimize for both REML and GCV!") } # set defaults based on the model passed. # the following function fills in some typical models and # just avoids some typing and makes for some clean examples # # note this also creates the initial components for the output list. # obj<- spatialProcessSetDefaults(x, cov.function = cov.function, cov.args = cov.args, cov.params.start = cov.params.start, mKrig.args = mKrig.args, extraArgs = extraArgs, parGrid = parGrid, gridN = gridN, collapseFixedEffect = collapseFixedEffect, verbose = verbose) # # obj$CASE # 0 evaluate on passed cov parameters but MLEs for sigma, tau found from # lambda # # 1 optimize loglikelihood over any parameters specified in # cov.params.start but not in cov.args # # 2 grid search over parameters using parGrid and generating starting values for # for the MLEs # # 3 profile over lambda and/or aRange # this is more computationally demanding. if( verbose){ cat(" The CASE:", obj$CASE, fill=TRUE) cat("Complete list of components in cov.args: ", "\n", names(obj$cov.args),fill=TRUE ) cat("Complete list of components in mKrig.args: ", "\n", names(obj$mKrig.args),fill=TRUE ) } if( verbose){ cat( "Names cov.args:","\n", names( obj$cov.args), fill=TRUE) cat( "Names cov.params.start:","\n", names(cov.params.start), fill=TRUE) cat( "Names argsFull:","\n", names( obj$cov.argsFull),fill=TRUE ) } #################################################################### # CASE 2 grid search for starting values #################################################################### if( (obj$CASE == 2 ) ){ if( verbose){ cat("*****************************************", fill=TRUE) cat("***** Grid search ", fill=TRUE) cat("***** Grid search starting values: ", fill=TRUE) print(cov.params.start ) cat("***** parGrid names: " , fill=TRUE) print( names( parGrid)) cat("***** the grid to search:", fill=TRUE) print( names( obj$parGrid)) } InitialGridSearch<- mKrigMLEGrid(x, y, weights = weights, Z = Z, ZCommon = ZCommon, mKrig.args = mKrig.args, cov.function = obj$cov.function, cov.args = obj$cov.args, par.grid = obj$parGrid, reltol = reltol, na.rm = na.rm, verbose = verbose, REML = REML, GCV = GCV, cov.params.start = cov.params.start) # use grid search to set starting values if( all(is.na(InitialGridSearch$summary) )) { cat("spatialProcess: Problems with optim in grid search", fill=TRUE) cat("returned object includes the likelihood evaluations up to the error", fill=TRUE) InitialGridSearch$optimSuccess<- FALSE InitialGridSearch$call<- match.call() return(InitialGridSearch) } if( verbose){ cat("results of intitial grid search: ", fill=TRUE) print(InitialGridSearch$indMax ) } parNames<- names( obj$parGrid) if( is.null( cov.params.start)){ cov.params.start<- obj$parGrid[InitialGridSearch$indMax,] names(cov.params.start )<- parNames } else{ cov.params.start[parNames] <- obj$parGrid[InitialGridSearch$indMax, parNames] } } #################################################################### # CASES 1 , 2 , 3, 4 #################################################################### if(obj$CASE !=0 ){ # optimze over all parameters # where starting values are given or if # values in cov.args are omitted. obj$cov.params.start<- cov.params.start MLEInfo <-mKrigMLEJoint(x, y, weights = weights, Z = Z, ZCommon = ZCommon, mKrig.args = obj$mKrig.args, cov.function = obj$cov.function, cov.args = obj$cov.args, na.rm = na.rm, reltol=reltol, cov.params.start = cov.params.start, REML = REML, GCV = GCV, hessian = TRUE, verbose = verbose, iseed = iseed) if( is.na(MLEInfo$summary[1])){ cat("spatialProcess: Problems with optim in mKrigMLEJoint ", fill=TRUE) cat("returned object includes the likelihood evaluations up to the error", fill=TRUE) MLEInfo$optimSuccess<- FALSE MLEInfo$call<- match.call() return(MLEInfo) } covarianceMLE<- -1*solve(MLEInfo$optimResults$hessian) HessianResults<- diag( covarianceMLE) if( any( HessianResults < 0) ) { warning("Numerical hessian from optim indicates MLE is not a maximum") } } ################################################################################ # final fit # now fit spatial model with MLE(s) # or the value(s) supplied in the call # reestimate the other parameters for simplicity to get the # complete mKrig object #################################################################### # if all parameters are fixed -- don't mess with cov.args if( obj$CASE == 0){ obj$cov.argsFull <- obj$cov.args } else{ dupParameters<- match( names(MLEInfo$pars.MLE ), names(cov.args) ) if( all( is.na(dupParameters)) ){ obj$cov.argsFull<- c( obj$cov.args, as.list(MLEInfo$pars.MLE) ) } } mKrigObj <- do.call( "mKrig", c( list(x=x, y=y, weights=weights, Z=Z, ZCommon=ZCommon), obj$mKrig.args, list( na.rm=na.rm), list(cov.function = obj$cov.function), obj$cov.argsFull ) ) #################################################################### # sort out output object based on the different cases # also copy some information from the call and within function # the output list, obj #################################################################### obj$GCV <- GCV obj$REML <- REML obj$CILevel<- CILevel if( obj$CASE==0){ obj$MLEInfo <- NULL obj$MLESummary <- mKrigObj$summary obj$InitialGridSearch<- NULL obj$parameterCovariance<- NULL } if( obj$CASE==1){ InitialGridSearch<- NULL } #################################################################### # Fill in all info related to finding MLE (Not CASE 0) #################################################################### if( obj$CASE!=0){ # logical to distinguish from optim failure obj$optimSuccess<-TRUE # obj$InitialGridSearch<- InitialGridSearch obj$MLEInfo<- MLEInfo obj$MLESummary <- MLEInfo$summary # NOTE: covariance for lambda and ARange based on log(lambda) and log(ARange) obj$parameterCovariance<- solve( -1*MLEInfo$optimResults$hessian) #################################################################### # Approximate large sample confidence intervals on the transformed scale # followed by # then transforming back to original scale (see MLEInfo$par.transform) # These are filled with NAs when numerical Hessian is not # positive definite #################################################################### obj$CITable<- confidenceIntervalMLE(obj, CILevel) } # combine everything into the output list, mKrig components first. obj <- c( mKrigObj,obj) # replace call in mKrig object with the top level one # from spatialProcess obj$call<- match.call() class(obj) <- c( "spatialProcess","mKrig") #################################################################### # Profiling depends on complete spatial process obj # which is why this is last #################################################################### if (profileLambda) { obj$profileSummaryLambda <- profileMLE(obj, "lambda", parGrid = gridLambda, gridN = profileGridN )$summary } else{ obj$profileSummaryLambda <- NULL } if (profileARange) { obj$profileSummaryARange <- profileMLE(obj, "aRange", parGrid = gridARange, gridN = profileGridN, )$summary } else{ obj$profileSummaryARange <- NULL } return(obj) } fields/R/print.sreg.R0000644000175100001440000000404314627453256014174 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "print.sreg" <- function(x, ...) { if (length(x$lambda) > 1) { c1 <- "Number of Observations:" c2 <- (x$N) c1 <- c(c1, "Number of values of lambda in grid:") c2 <- c(c2, length(x$lambda)) sum <- cbind(c1, c2) } else { digits <- 4 N <- x$N c1 <- "Number of Observations:" c2 <- (x$N) c1 <- c(c1, "Unique Observations:") c2 <- c(c2, length(x$xM)) c1 <- c(c1, "Effective degrees of freedom:") c2 <- c(c2, format(round(x$trace, 1))) c1 <- c(c1, "Residual degrees of freedom:") c2 <- c(c2, format(round(x$N - x$trace, 1))) c1 <- c(c1, "Residual root mean square:") c2 <- c(c2, format(signif(sqrt(sum(x$residuals^2)/N), 4))) c1 <- c(c1, "Lambda ( smoothing parameter)") c2 <- c(c2, format(signif((x$lambda), 4))) sum <- cbind(c1, c2) } dimnames(sum) <- list(rep("", dim(sum)[1]), rep("", dim(sum)[2])) cat("Call:\n") dput(x$call) print(sum, quote = FALSE) invisible(x) } fields/R/print.spatial.design.R0000644000175100001440000000206314627453256016141 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "print.spatialDesign" <- function(x, ...) { print(x$design) } fields/R/yline.R0000644000175100001440000000205014627453256013215 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "yline" <- function(y, ...) { abline(h = y, ...) } fields/R/plot.spatialDesign.R0000644000175100001440000000206714627453256015651 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "plot.spatialDesign" <- function(x, ...) { pairs(x$design, ...) } fields/R/set.panel.R0000644000175100001440000000250414627453256013772 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "set.panel" <- function(m = 1, n = 1, relax = FALSE) { temp <- par() single.plot <- (temp$mfg[3] == 1 & temp$mfg[4] == 1) if (!relax | single.plot | ((m == 1) & (n == 1))) { par(mfrow = c(m, n)) cat("plot window will lay out plots in a", m, "by", n, "matrix ", fill = TRUE) } invisible() } fields/R/print.summarySpatialDesign.R0000644000175100001440000000350614627453256017404 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "print.summarySpatialDesign" <- function(x, digits = 4, ...) { cat("Call:\n") dput(x$call) c1 <- "Number of design points:" c2 <- length(x$best.id) c1 <- c(c1, "Number of fixed points:") if (is.null(x$fixed)) c2 <- c(c2, 0) else c2 <- c(c2, length(x$fixed)) c1 <- c(c1, "Optimality Criterion:") c2 <- c(c2, round(x$opt.crit, digits)) sum <- cbind(c1, c2) dimnames(sum) <- list(rep("", dim(sum)[1]), rep("", dim(sum)[2])) print(sum, quote = FALSE, digits = digits) other.crit <- x$other.crit if (length(other.crit) > 1) { cat("\nOptimality criteria for other designs:\n\t") cat(round(other.crit, digits), "\n") } cat("\nHistory:\n") dimnames(x$history)[[1]] <- rep("", nrow(x$history)) print(round(x$history, digits), quote = FALSE) invisible(x) } fields/R/interp.surface.R0000644000175100001440000000425314627453256015034 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "interp.surface" <- function(obj, loc) { # obj is a surface or image object like the list for contour, persp or image. # loc a matrix of 2 d locations -- new points to evaluate the surface. x <- obj$x y <- obj$y z <- obj$z nx <- length(x) ny <- length(y) # this clever idea for finding the intermediate coordinates at the new points # is from J-O Irisson lx <- approx(x, 1:nx, loc[, 1])$y ly <- approx(y, 1:ny, loc[, 2])$y lx1 <- floor(lx) ly1 <- floor(ly) # x and y distances between each new point and the closest grid point in the lower left hand corner. ex <- lx - lx1 ey <- ly - ly1 # fix up weights to handle the case when loc are equal to # last grid point. These have been set to NA above. ex[lx1 == nx] <- 1 ey[ly1 == ny] <- 1 lx1[lx1 == nx] <- nx - 1 ly1[ly1 == ny] <- ny - 1 # bilinear interpolation finds simple weights based on the # the four corners of the grid box containing the new # points. return(z[cbind(lx1, ly1)] * (1 - ex) * (1 - ey) + z[cbind(lx1 + 1, ly1)] * ex * (1 - ey) + z[cbind(lx1, ly1 + 1)] * (1 - ex) * ey + z[cbind(lx1 + 1, ly1 + 1)] * ex * ey) } fields/R/cover.design.R0000644000175100001440000001544214627453255014473 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "cover.design" <- function(R, nd, nruns = 1, nn = TRUE, num.nn = 100, fixed = NULL, scale.type = "unscaled", R.center, R.scale, P = -20, Q = 20, start = NULL, DIST = NULL, return.grid = TRUE, return.transform = TRUE, max.loop = 20, verbose = FALSE) { if (!is.null(start) && is.matrix(start)) { if (any(duplicated(start))) stop("Error: start must not have duplicate rows") test <- duplicated(start, R) if (sum(test) < nrow(start)) stop("Error: Starting design must be a subset of R") } R.orig <- R R <- as.matrix(R) # some checks on inputs if (nd >= nrow(R)) { stop(" number of design points >= the number of candidates") } if (any(duplicated.array(R))) stop("Error: R must not have duplicate rows") if (num.nn >= (nrow(R) - nd)) { nn <- FALSE warning("Number of nearst neighbors (nn) reduced to the actual number of candidates") } if (is.null(DIST)) DIST <- function(x, y) { rdist(x, y) } id <- 1:nrow(R) if (!is.null(start)) nd <- length(start) if (is.null(fixed)) n <- nd else { n <- nd + length(fixed) } R <- transformx(R, scale.type, R.center, R.scale) transform <- attributes(R) saved.crit <- rep(NA, nruns) saved.designs <- matrix(NA, nrow = nruns, ncol = n) saved.hist <- list(1:nruns) if (verbose) { cat(dim(R), fill = TRUE) } # # do nruns with initial desing drawn at random # # in this code Dset are the indices of the design # Cset are the complement set of indices indicating the candidate points # no used in the design # for (RUNS in 1:nruns) { if (is.null(start)) { if (!is.null(fixed)) { Dset <- sample((1:nrow(R))[-fixed], nd) Dset <- c(Dset, fixed) } else Dset <- sample(1:nrow(R), nd) } else { if (length(start) > nd) stop("Error: the start matrix must have nd rows") Dset <- start if (!is.null(fixed)) Dset <- c(Dset, fixed) } design.original <- R.orig[Dset, ] Dset.orginal <- Dset Cset <- id[-Dset] dist.mat <- DIST(R[Cset, ], R[Dset, ]) rs <- dist.mat^P %*% rep(1, n) crit.i <- crit.original <- sum(rs^(Q/P))^(1/Q) CRIT <- rep(NA, length(Cset)) CRIT.temp <- rep(NA, length(Cset)) hist <- matrix(c(0, 0, crit.i), ncol = 3, nrow = 1) loop.counter <- 1 repeat { for (i in 1:nd) { # loop over current design points looking for a productive swap Dset.i <- matrix(R[Dset[i], ], nrow = 1) if (verbose) { cat("design point", i, Dset.i, fill = TRUE) } partial.newrow <- sum(DIST(Dset.i, R[Dset[-i], ])^P) rs.without.i <- rs - c(DIST(Dset.i, R[-Dset, ])^P) if (nn) vec <- (1:length(Cset))[order(dist.mat[, i])[1:num.nn]] else vec <- 1:length(Cset) for (j in vec) { # loop over possible candidates to swap with design point Cset.j <- matrix(R[Cset[j], ], nrow = 1) newcol <- c(DIST(Cset.j, R[c(-Dset, -Cset[j]), ])^P) CRIT[j] <- (sum((rs.without.i[-j] + newcol)^(Q/P)) + (DIST(Cset.j, Dset.i)^P + partial.newrow)^(Q/P))^(1/Q) if (verbose) { cat(j, " ") } } best <- min(CRIT[!is.na(CRIT)]) best.spot <- Cset[CRIT == best][!is.na(Cset[CRIT == best])][1] if (verbose) { cat(i, "best found ", best, " at", best.spot, fill = TRUE) } crit.old <- crit.i # check if the best swap is really better thatn what you already have. if (best < crit.i) { if (verbose) { cat(i, "best swapped ", fill = TRUE) } crit.i <- best hist <- rbind(hist, c(Dset[i], best.spot, crit.i)) Dset[i] <- best.spot Cset <- id[-Dset] dist.mat <- DIST(R[Cset, ], R[Dset, ]) rs <- (dist.mat^P) %*% rep(1, n) } } if ((crit.i == crit.old) | (loop.counter >= max.loop)) break loop.counter <- loop.counter + 1 } saved.crit[RUNS] <- crit.i saved.designs[RUNS, ] <- Dset saved.hist[[RUNS]] <- hist } ret <- (1:nruns)[saved.crit == min(saved.crit)] if (length(ret) > 1) { print("Greater than 1 optimal design; keeping first one......") ret <- ret[1] } crit.i <- saved.crit[ret] hist <- saved.hist[[ret]] nhist <- nrow(hist) nloop <- nruns hist <- cbind(c(0:(nrow(hist) - 1)), hist) dimnames(hist) <- list(NULL, c("step", "swap.out", "swap.in", "new.crit")) out.des <- R[saved.designs[ret, ], ] out.des <- unscale(out.des, transform$x.center, transform$x.scale) out <- list(design = out.des, call = match.call(), best.id = c(saved.designs[ret, ]), fixed = fixed, opt.crit = crit.i, start.design = design.original, start.crit = crit.original, history = hist, other.designs = saved.designs, other.crit = saved.crit, DIST = DIST, nn = nn, num.nn = num.nn, P = P, Q = Q, nhist = nhist - 1, nloop = (nloop - 1)/n) if (return.grid) out$grid <- R.orig if (return.transform) out$transform <- transform class(out) <- "spatialDesign" out } fields/R/compactToMat.R0000644000175100001440000000371114627453255014474 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER compactToMat = function(compactMat, diagVal=0, lower.tri=FALSE, upper.tri=TRUE) { #compactMat: a symmetric matrix stored as a vector containing elements for the upper triangle #portion of the true matrix #diagVal: a number to put in the diagonal entries of the output matrix #lower.tri: if TRUE, fills in lower tringular portion of the matrix #upper.tri: if TRUE, fills in upper tringular portion of the matrix if( is(compactMat,"dist") ) { n <- attr(compactMat, "Size") } else { # (n^2 - n)/2 = length(compactMat) stop("input matrix is not compact or is not of class \"dist\"") #or if class is not dist but input matrix is still compact, use: #n = (1 + sqrt(1 + 8*length(compactMat)))/2 } return(.Call("compactToMatC", as.double(compactMat), as.integer(length(compactMat)), as.integer(n), as.double(diagVal), as.integer(lower.tri), as.integer(upper.tri), PACKAGE="fields")) } fields/R/fast.1way.R0000644000175100001440000000342514627453255013720 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "fast.1way" <- function(lev, y, w = rep(1, length(y))) { # w are proportional to reciprocal variance. if (!is.matrix(y)) { y <- as.matrix(y) } N <- nrow(y) NC <- ncol(y) # ordered unique values of lev tags <- lev[!duplicated(lev)] NR <- length(tags) # lev are now integer tags lev <- match(lev, tags) # means <- matrix(NA, nrow = NR, ncol = NC) # add together weights with same lev w.means <- c(tapply(w, lev, sum)) for (k in 1:NC) { # find weighted means for each lev means[, k] <- (tapply(y[, k] * w, lev, sum)/w.means) } # find SS SSE <- colSums((w * (y - means[lev, ])^2)) MSE <- SSE/(N - NR) list(n = N, means = means, SSE = SSE, w.means = w.means, MSE = MSE, lev = lev, tags = tags) } fields/R/interp.surface.grid.R0000644000175100001440000000243414627453256015757 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "interp.surface.grid" <- function(obj, grid.list) { x <- grid.list$x y <- grid.list$y M <- length(x) N <- length(y) out <- matrix(NA, nrow = M, ncol = N) for (i in 1:M) { out[i, ] <- interp.surface(obj, cbind(rep(x[i], N), y)) } list(x = x, y = y, z = out) } fields/R/mKrigFastPredictSetup.R0000644000175100001440000000457214627453256016333 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER mKrigFastPredictSetup <- function(mKrigObject, gridList, NNSize=4, giveWarnings=TRUE ) { # the main reason to pass new args to the covariance is to increase # the temp space size for sparse multiplications # other optional arguments that typically describe the covariance function # from mKrig are passed along in the list object$args np<- NNSize xObs<- mKrigObject$x # adjust grid if needed to include a margin of np+1 grid points beyond xObs marginInfo<- addMarginsGridList(xObs, gridList, np) # these are the slightly larger grids by adding margins. gridListNew<- marginInfo$gridListNew offGridObject<- offGridWeights( xObs, gridListNew, mKrigObject = mKrigObject, np=np, giveWarnings = giveWarnings ) cov.obj<- stationary.image.cov( setup=TRUE, grid=gridListNew, cov.function=mKrigObject$cov.function.name, cov.args= mKrigObject$args) return( list(offGridObject = offGridObject, cov.obj = cov.obj, marginInfo = marginInfo ) ) } fields/R/test.for.zero.R0000644000175100001440000000307414627453256014626 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER test.for.zero <- function(xtest, xtrue, tol = 1e-08, relative = TRUE, tag = NULL) { denom <- ifelse(relative, mean(abs(c(xtrue))), 1) test.value <- sum(abs(c(xtest) - c(xtrue)))/denom if (!is.null(tag)) { cat("Testing: ", tag, fill = TRUE) } if (test.value < tol) { cat("PASSED test at tolerance ", tol, fill = TRUE) } else { cat("FAILED test value = ", test.value, " at tolerance ", tol) # generate an "error" to signal failed test if (exists("test.for.zero.flag")) { stop() } } } fields/R/SUBSCRIPTINGSpatialDesign.R0000644000175100001440000000205514627453255016465 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "[.spatialDesign" <- function(x, ...) { x$design[...] } fields/R/smooth.2d.R0000644000175100001440000000557314627453256013727 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "smooth.2d" <- function(Y, ind = NULL, weight.obj = NULL, setup = FALSE, grid = NULL, x = NULL, nrow = 64, ncol = 64, surface = TRUE, cov.function = gauss.cov, Mwidth = NULL, Nwidth = NULL, ...) { temp <- as.image(Y, ind, grid = grid, nx = nrow, ny = ncol, x = x) Y <- temp$z m<- nrow( temp$z) n<- ncol( temp$z) NN <- temp$weights grid <- list(x = temp$x, y = temp$y) if (is.null(weight.obj)) { dx <- grid$x[2] - grid$x[1] dy <- grid$y[2] - grid$y[1] # m <- length(grid$x) # n <- length(grid$y) if (is.null(Mwidth)) M <- 2 * m else { M <- m + Mwidth } if (is.null(Nwidth)) N <- 2 * n else { N <- n + Nwidth } xg <- make.surface.grid(list((1:M) * dx, (1:N) * dy)) center <- matrix(c((dx * M)/2, (dy * N)/2), nrow = 1, ncol = 2) out <- cov.function(xg, center, ...) out <- as.surface(xg, c(out))$z temp <- matrix(0, nrow = M, ncol = N) temp[M/2, N/2] <- 1 wght <- fft(out)/(fft(temp) * M * N) weight.obj <- list(m = m, n = n, grid = grid, N = N, M = M, wght = wght, call = match.call()) if (setup) { return(weight.obj) } } temp <- matrix(0, nrow = weight.obj$M, ncol = weight.obj$N) temp[1:m, 1:n] <- Y temp[is.na(temp)] <- 0 temp2 <- Re(fft(fft(temp) * weight.obj$wght, inverse = TRUE))[1:weight.obj$m, 1:weight.obj$n] temp <- matrix(0, nrow = weight.obj$M, ncol = weight.obj$N) temp[1:m, 1:n] <- NN temp[is.na(temp)] <- 0 temp3 <- Re(fft(fft(temp) * weight.obj$wght, inverse = TRUE))[1:weight.obj$m, 1:weight.obj$n] if (!surface) (temp2/temp3) else { list(x = weight.obj$grid$x, y = weight.obj$grid$y, z = temp2/temp3, index = ind) } } fields/R/as.surface.R0000644000175100001440000000466214627453255014141 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER as.surface <- function(obj, z, location = NULL, order.variables = "xy") { # if (is.list(obj)) { grid.list <- obj } if (is.matrix(obj)) { grid.list <- attr(obj, "grid.list") } # # OK now have a grid, parse this to figure # nx and ny the x and y sequences and extract names # if a 1D grid then hold$ny is NA hold <- parse.grid.list(grid.list, order.variables = "xy") grid1D <- is.na(hold$ny) # now fill in the "z" values -- the actual grid values if (!grid1D) { if (!is.null(location)) { # location is a logical or two column matrix of indices # with the position of the z values temp <- rep(NA, hold$ny * hold$nx) temp[location] <- z temp <- matrix(temp, ncol = hold$ny, nrow = hold$nx) } else{ if (length(c(z)) != hold$ny * hold$nx) { print(length(c(z))) print(c(hold$ny * hold$nx)) stop("z does not match number of grid points") } temp <- matrix(z, ncol = hold$ny, nrow = hold$nx) } } else{ temp <- matrix(z, ncol = 1, nrow = hold$nx) } # # note that coercing z to a matrix is just reformatting # using the standard ordering. # # output list is all the grid stuff and the matrix z. return( c(hold, list(z = temp), list(grid1D = grid1D)) ) } fields/R/makePredictionGrid.R0000644000175100001440000000321714627453256015647 0ustar hornikusersmakePredictionGridList <- function(mKrigObject, nx, ny, np) { # # np used to add additional points so offGridWeights # has enough neighbors. # sDimension <- ncol(mKrigObject$x) xr <- range(mKrigObject$x[, 1]) dx <- (xr[2] - xr[1]) / (nx - 2 * np) xg <- 0:(nx - 1) * dx + (xr[1] - dx * (np - 1 / 2)) predictionGridList <- list(x = xg) # add y grid if 2D if (sDimension == 2) { yr <- range(mKrigObject$x[, 2]) dy <- (yr[2] - yr[1]) / (ny - 2 * np) yg <- 0:(ny - 1) * dy + (yr[1] - dy * (np - 1 / 2)) predictionGridList$y <- yg } return(predictionGridList) } checkPredictGrid <- function(predictionGridList) { testX <- sd(diff(predictionGridList$x)) / mean(diff(predictionGridList$x)) if (testX > 1e-8) { stop("predictionGridList$x must be equally spaced") } dx <- predictionGridList$x[2] - predictionGridList$x[1] if (!is.null(predictionGridList$y)) { testY <- sd(diff(predictionGridList$x)) / mean(diff(predictionGridList$x)) if (testY > 1e-8) { stop("predictionGridList$y must be equally spaced") } dy <- predictionGridList$y[2] - predictionGridList$y[1] } } makeSimulationGrid <- function(predictionGridList, gridRefinement) { dx <- predictionGridList$x[2] - predictionGridList$x[1] simulationGridList <- list(x = seq( min(predictionGridList$x), max(predictionGridList$x), dx / gridRefinement )) if (!is.null(predictionGridList$y)) { dy <- predictionGridList$y[2] - predictionGridList$y[1] simulationGridList$y <- seq(min(predictionGridList$y), max(predictionGridList$y), dy / gridRefinement) } return( simulationGridList ) } fields/R/summary.ncdf.R0000644000175100001440000000364614627453256014517 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "summary.ncdf" <- function (object, ...) { tempList<- NULL varNames<- NULL # cat("DIMENSIONS", fill=TRUE) for (i in names(object$dim) ) { vname = i ndims = length(object$dim[[i]]$vals) cat(vname, " has size", ndims, fill=TRUE) } cat(fill=TRUE) cat("VARIABLES", fill=TRUE) for (i in 1:object$nvars) { vname = object$var[[i]]$name ndims = object$var[[i]]$ndims dimstring = paste(vname, "( variable ",i , ") has shape") dimTemp<- NULL for (j in 1:ndims) { dimTemp<- c( dimTemp, object$var[[i]]$dim[[j]]$len) } temp<- ( dimTemp) varNames<- c(varNames, vname) tempList<- c( tempList, list(dimTemp)) if( is.null(dimTemp) ){ dimTemp<- NA} cat( i,":", vname, "has size ", dimTemp, sep=" ", fill = TRUE) } names(tempList) <- varNames invisible( tempList) } fields/R/as.image.R0000644000175100001440000000655214627453255013573 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "as.image" <- function(Z, ind = NULL, grid = NULL, x = NULL, weights = rep(1, length(Z)), na.rm = FALSE, nx = 64, ny = 64, boundary.grid = FALSE, nrow = NULL, ncol = NULL, FUN=NULL) { # NOTE that throughout ind is a two column integer matrix of # discretized locations in the image matrix. # Thanks to J. Rougier for fixing bugs in this function. # # coerce Z to a vector Z <- c(Z) if( !is.null(ind)){ x<- ind } # set nx and ny if nrow ncol are passed if( !is.null(nrow)&!is.null(ncol)){ nx<- nrow ny<- ncol } # # check for x or weights having missing values # we do not like these ... if( any(is.na(weights)) | any(is.na(c(x))) ) { stop("missing values in weights or x") } # discretize locations to grid boxes # this function will also create a default grid based on range of # locations if grid is NULL # temp <- discretize.image(x, m = nx, n = ny, grid = grid, boundary.grid = boundary.grid) grid <- temp$grid # index is a two column data frame that indexes the x and y grid points. # points outside of grid are assigned as NA # # empty image matrices to hold weights and weighted means w<- z <- matrix( NA, nrow=temp$m, ncol=temp$n) # find stats tempw<- tapply( weights, temp$index, sum, na.rm=na.rm) if( is.null(FUN)){ # usual weighted means case: tempz<- tapply( Z*weights, temp$index,sum, na.rm=na.rm ) tempz<- tempz/ tempw } else{ # just apply FUN to values in the grid box -- no weighting! tempz<- tapply( Z, temp$index, FUN ) } # these are the indices that are represented by the locations # they may not include the entire set ( 1:nx and 1:ny) # so define what they do have. # insert the tabled values into the right rows and columns. # ix and iy are the range of indexes for the grid, but account for missing cells. z[ temp$ix, temp$iy] <- tempz w[ temp$ix, temp$iy] <- tempw # xd is created in the return list because it is a pain to do otherwise and handy to have call <- match.call() list(x = grid$x, y = grid$y, z = z, call = call, ind = cbind(temp$index[[1]], temp$index[[2]]) , weights = w, xd = cbind(grid$x[temp$index[[1]]], grid$y[temp$index[[2]]] ), call = match.call(), FUN = FUN ) } fields/R/dyadic.check.R0000644000175100001440000000254514627453255014416 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER dyadic.check <- function(n, cut.p = 2) { # checks that n is of the form # n=p*2^m where p <= cut.p n2 <- as.integer(n) while (n2 > cut.p) { if (n2%%2 != 0) { cat(n, "must equal p*2^m where p is less than or equal to ", cut.p, fill = TRUE) return(FALSE) } n2 <- n2/2 } return(TRUE) } fields/R/splint.R0000644000175100001440000000663014627623741013414 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "splint" <- function(x, y, xgrid, wt = NULL, derivative = 0, lam = 0, df = NA, lambda = NULL, nx=NULL, digits=8) { # # reform calling args if passed as a matrix or list if (is.matrix(x)) { if (ncol(x) > 1) { xgrid <- y y <- x[, 2] x <- x[, 1] } } if (is.list(x)) { xgrid <- y y <- x$y x <- x$x } #default values for weights # NOTE: weights do not matter when interpolating (lam==0) if (is.null(wt)) { wt <- rep(1, length( x)) } if (any(duplicated(x))) { warning("Duplicate x's using the average value") N<- length( x) out <- Krig.replicates( list( x=x, y=y, weights= wt, N=N, Z=NULL), verbose=TRUE ) x<- out$xM y<- out$yM wt<- out$weightsM #stop("duplicated x values, use sreg") } if ((derivative > 2) | (derivative < 0)) stop("derivative must be 0,1, or 2") if (length(x) != length(y)) stop("Lengths of x and y must match") n <- length(x) if( n > 8e4){ stop("splint not dimensioned for more than 80000 observations") } # find lambda from eff degrees of freedom if it is passed if (!is.na(df)) { if ((df < 2) | (df > n)) { stop("df out of range") } lam <- sreg.df.to.lambda(df, x, wt) } # use lambda is it is passed if (!is.null(lambda)) { lam <- lambda } igcv <- ifelse(lam == 0, 2, 0) # call to FORTRAN -- only return the evaluated points (ygrid). if( !is.null(nx)){ xgrid<- seq( min( x), max(x),,nx) } ygrid<- .Fortran("css",PACKAGE="fields", h = as.double(ifelse(igcv == 2, 1, log(lam))), as.integer(n), as.double(x), as.double(y), wt = as.double(1/sqrt(wt)), sy = as.double(rep(0, n)), as.double(1), as.double(1), as.double(1), as.integer(length(xgrid)), as.double(xgrid), ygrid = as.double(rep(0, length(xgrid))), job = as.integer(c(igcv, 3, 0)), as.integer(derivative), as.integer(0) )$ygrid if(!is.null(nx) ){ return(list( x=xgrid, y=ygrid)) } else{ return( ygrid) } } fields/R/world.R0000644000175100001440000000301114627453256013222 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "world" <- function(...) { map("world", ...) invisible() } world.color <- function(...) { cat("world.color has been depreciated. Please use fill options in\nthe world/map function.", fill = TRUE) } world.land <- function(...) { cat("world.land has been depreciated. Please use fill options in\nthe world/map function.", fill = TRUE) } in.land.grid <- function(...) { cat("world.land has been depreciated. Please refer to fields 6.7.1 or earlier to acces this function.", fill = TRUE) } fields/R/gauss.cov.R0000644000175100001440000000205214627453255014006 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "gauss.cov" <- function(...) { Exp.cov(..., p = 2) } fields/R/findGridBox.R0000644000175100001440000000520314627453255014276 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER ### gridList<- list( x= seq( 0,1,.2), y= seq( -1,1,.25 )) ### set.seed(112) ### s<- cbind( runif( 20, -.5, 1.5), runif( 20,-2.5,2.4)) ### findGridBox( s, gridList) findGridBox<-function(s, gridList) { # # function assumes the grid points are the centers and # equally spaced in X and Y. m<- length( gridList$x) n<- length( gridList$y) dx<- gridList$x[2]- gridList$x[1] dy<- gridList$y[2]- gridList$y[1] # create new grid of m+1 by n+1 assuming gridList are the grid box centers. xGrid0<- c((gridList$x - dx/2), gridList$x[m] + dx/2) yGrid0<- c((gridList$y - dy/2), gridList$y[n] + dy/2) # lower left corner of grid box indices containing the locations s s0<- cbind( trunc( (s[,1]- xGrid0[1] )/dx) + 1 , trunc( (s[,2]- yGrid0[1] )/dy) + 1 ) # set points of s outside of grid to NA indX<- ( s0[,1]<1 | s0[,1]>m ) indY<- ( s0[,2]<1 | s0[,2]>n ) s0[indX,1]<- NA s0[indY,2]<- NA if( any(indX | indY )){ warning( "Some points outside range of grid") } # print( s0) # # # grid centers # sGrid<- make.surface.grid( gridList) # xr<- range( c( xGrid0,s[,1] ) ) # yr<- range( c( yGrid0,s[,2] ) ) # plot(s, pch=16, col="magenta", cex=1.2, xlim=xr, ylim=yr ) # points( sGrid, col="grey") # xline( xGrid0); yline( yGrid0) # out<- (!indX) & (!indY ) # print( s0[out,]) # points( cbind(xGrid0[s0[out,1]], yGrid0[s0[out,2]]), pch="+", cex=2,col="blue") # # index of locations when 2D array is unrolled # note points outside grid are NAs s0Index<- as.integer( s0[,1] + (s0[,2]-1)*m) return( list( index= s0Index, gridIndex= s0, m=m, n=n ) ) } fields/R/offGridWeights2D.R0000644000175100001440000002105314627453256015202 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER\ offGridWeights2D<-function(s, gridList, np=2, mKrigObject=NULL, Covariance=NULL, covArgs=NULL, aRange=NULL, sigma2=NULL, giveWarnings=TRUE, debug=FALSE, findCov=TRUE ){ # # function assumes the grid is # integer locations and 1:m by 1:n # grid and off grid locations need to be transformed to that scale # # also assumes the grid extends two cells beyond any off # e.g. s coordinates should be between # 2 and m-3 and 2 and n-3 # # setup the grid info from which to interpolate m<- length( gridList$x) n<- length( gridList$y) dx<- gridList$x[2]- gridList$x[1] dy<- gridList$y[2]- gridList$y[1] # If mKrigObject (result of fitting model) is given # extract all the covariance information from it. # For the Matern family besides aRange and sigma2 is the # smoothness if( !is.null( mKrigObject)){ sigma2<- mKrigObject$summary["sigma2"] aRange<- mKrigObject$summary["aRange"] Covariance<- mKrigObject$args$Covariance if( is.null(Covariance)){ Covariance<- "Matern" } covArgs<-mKrigObject$args # some R arcania -- strip out all arguments used by say stationary.cov # but not used by the Covariance function # Do not want to call the covariance function with these extra args. if( !is.null( covArgs) ){ argNames<- names( as.list( get(Covariance))) argNames<- argNames[ -length(argNames)] ind<- match( names(covArgs), argNames) covArgs[is.na( ind)] <- NULL } } # # wipe out aRange to prevent it from being used twice # in do.call below assumed to be 1.0 with scaled distances # covArgs$aRange<- NULL M<- nrow( s) # lower left corner of grid box containing the points s0<- cbind( trunc( (s[,1]- gridList$x[1] )/dx) + 1 , trunc( (s[,2]- gridList$y[1] )/dy) + 1 ) # index of locations when 2D array is unrolled s0Index<- as.integer( s0[,1] + (s0[,2]-1)*m) # check for more than one obs in a grid box tableLoc<- table( s0Index) allSingle<- all( tableLoc ==1 ) # np=2 # specific to 2nd degree neighborhood # (2*np)^2 = 16 points total #xshift<- rep( c(0,1,2,3), 4) #yshift<- rep( c(0,1,2,3), each=4 ) theShift<- (0:(2*np-1)) - (np-1) xshift<- rep( theShift, 2*np) yshift<- rep( theShift, each=2*np ) nnXY<- cbind( xshift, yshift) nnXYCoords<- cbind( xshift*dx, yshift*dy) # # sX and sY are M by (2*np)^2 matrices where each row is # the unrolled row and column indices for np=2 # yield 16 nearest neighbors sX<- s0[,1] + matrix( rep( xshift,M), nrow=M, ncol=(2*np)^2, byrow=TRUE) sY<- s0[,2] + matrix( rep( yshift,M), nrow=M, ncol=(2*np)^2, byrow=TRUE) if( any( (sX < 1)| (sX>m)) ) { stop( "sX outside range for grid") } if( any( (sY < 1)| (sY>n)) ) { stop( "sY outside range for grid") } # indices of all nearest neighbors for unrolled vector. # this is an M by (2*np)^2 matrix where indices go from 1 to m*n # these work for the unrolled 2D array # sIndex<- sX + (sY-1)*m # differences between nn and the off grid locations # for both coordinates # convert from integer grid to actual units. differenceX<- (sX-1)*dx + gridList$x[1] - s[,1] differenceY<- (sY-1)*dy + gridList$y[1] - s[,2] # print( cbind( t( (sX-1)*dx + gridList$x[1])[,1], # t( (sY-1)*dy + gridList$y[1])[,1])) # all pairwise distances between each off grid and # (2*np)^2 ( np=2 has 16) nearest neighbors dAll<- sqrt(differenceX^2 + differenceY^2) # pairwise distance among nearest neighbors. dNN<- rdist(nnXYCoords, nnXYCoords ) # cross covariances print( sigma2) Sigma21Star<- sigma2* do.call(Covariance, c(list(d = dAll/aRange), covArgs)) # covariance among nearest neighbors Sigma11 <- sigma2* do.call(Covariance, c(list(d = dNN/aRange), covArgs)) Sigma11Inv <- solve( Sigma11) # each row of B are the weights used to predict off grid point B <- Sigma21Star%*%Sigma11Inv # create spind sparse matrix # note need to use unrolled indices to refer to grid points ind<- cbind( rep(1:M, each= (2*np)^2 ), c( t( sIndex))) ra<- c( t( B)) da<- c( M, m*n ) spindBigB<- list(ind=ind, ra=ra, da=da ) # now convert to the more efficient spam format BigB<- spind2spam( spindBigB) # # prediction variances # use cholesky for more stable numerics cholSigma11Inv<- chol(Sigma11Inv) # create spind sparse matrix of sqrt variances # or covariances to simulate prediction error. w <- Sigma21Star%*%t(cholSigma11Inv) # print( w[1:5,]) # print( rowSums(w^2)[1:5]) # predictionVariance <- sigma2 - rowSums(w^2) # set to NA negative values -- due to colinearity/roundoff predictionVariance<- ifelse( predictionVariance <= 0, NA,predictionVariance ) if( findCov|debug){ # don't find covariances if findCov is FALSE # but debug=TRUE overrides that # this saves computation for the cases with multiple # obs in a single grid box. # easiest case of just one obs in each grid box # sigma2 - diag(Sigma21Star%*%Sigma11Inv%*%t(Sigma21Star) ) spindObjSE<- list(ind=cbind( 1:M, 1:M), ra=sqrt(predictionVariance), da= c( M,M) ) BigSE<- spind2spam( spindObjSE) if(allSingle){ duplicateIndex<-NA } if( !allSingle){ indDuplicates<- (tableLoc > 1) if( giveWarnings){ cat("Found", sum(indDuplicates), "grid box(es) containing more than 1 obs location", fill=TRUE) } duplicateIndex<-names( tableLoc) [indDuplicates] duplicateIndex<- as.numeric(duplicateIndex) # duplicateIndex is the unrolled indices for all grid boxes with # 2 or more observations # following code is written assuming there are not many of these. nBox<- length( duplicateIndex) indDupSE<-NULL raDupSE<- NULL for( k in 1:nBox){ theBox<- duplicateIndex[k] # the obs that are in this box indBox<- which(s0Index == theBox) nDup<- length( indBox) dDup<- rdist( s[indBox,], s[indBox,]) sigmaMarginal<- sigma2* do.call(Covariance, c(list(d = dDup/aRange), covArgs)) A<- w[indBox,] localSE2<- sigmaMarginal - A%*%t(A) localSE<- t(chol( localSE2 )) # localSE %*% rnorm(nDup) will generate correct corrected # prediction errors for obs in this grid box ("theBox") indTmp<- cbind(rep( indBox, nDup), rep( indBox, each=nDup) ) raTmp<- c(localSE) indDupSE<- rbind( indDupSE,indTmp) raDupSE<- c( raDupSE, raTmp) } #print( dim(indDupSE )) #print( length(raDupSE)) BigSE[indDupSE]<- raDupSE } } else{ BigSE=NA } if( debug){ return( list( B= BigB, SE= BigSE, predictionVariance = predictionVariance, Sigma11Inv = Sigma11Inv, Sigma21Star= Sigma21Star, s0Index = s0Index, s0 = s0, gridX = t( (sX-1)*dx + gridList$x[1]), gridY = t((sY-1)*dy + gridList$y[1]), gridList = gridList, duplicateIndex= duplicateIndex ) ) } else{ return( list( B = BigB, SE = BigSE, predictionVariance = predictionVariance ) ) } } fields/R/golden.section.search.R0000644000175100001440000000732614627453256016267 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER golden.section.search <- function(ax, bx, cx, f, niter = 25, f.extra = NA, tol = 1e-05, gridx = NA) { # check if an initial grid has been passed if so then do a # search for the minimum on this grid first. gridx <- sort(gridx) NG <- length(gridx) fgrid <- rep(NA, NG) if (!is.na(gridx[1])) { gridx <- sort(gridx) NG <- length(gridx) fgrid <- rep(NA, NG) for (k in 1:NG) { fgrid[k] <- f(gridx[k], f.extra) } # bail on search if objective function is an NA if (any(is.na(fgrid))) { warning("grid search has found some missing values in objective function") return(list(x = NA, fmin = NA, iter = 0, tol = tol, coarse.search = cbind(gridx, fgrid, deparse.level = 1))) } ind.bx <- which.min(fgrid) # if minimum is at grid boundary print warning and return if ((ind.bx == 1) | ind.bx == NG) { warning("grid search gives minimun at boundary") return(list(x = gridx[ind.bx], fmin = fgrid[ind.bx], iter = 0, tol = tol, coarse.search = cbind(gridx, fgrid, deparse.level = 1))) } # use grid results for initial values of golden section search ax <- gridx[ind.bx - 1] bx <- gridx[ind.bx] cx <- gridx[ind.bx + 1] } else { # if no grid search, sanity check on starting points f1 <- f(ax, f.extra) f2 <- f(bx, f.extra) f3 <- f(cx, f.extra) if ((f2 > f1) | (f2 > f3)) stop("starting values not convex") } r <- 0.61803399 con <- 1 - r x0 <- ax x3 <- cx if (abs(cx - bx) > abs(bx - ax)) { x1 <- bx x2 <- bx + con * (bx - ax) } else { x2 <- bx x1 <- bx - con * (bx - ax) } f1 <- f(x1, f.extra) f2 <- f(x2, f.extra) iter <- niter for (k in 1:niter) { #cat( x1,f1, x2,f2, fill=TRUE) if (f2 < f1) { x0 <- x1 x1 <- x2 x2 <- r * x1 + con * x3 f0 <- f1 f1 <- f2 f2 <- f(x2, f.extra) } else { x3 <- x2 x2 <- x1 x1 <- r * x2 + con * x0 f3 <- f2 f2 <- f1 f1 <- f(x1, f.extra) } if (abs(f2 - f1) < tol) { iter <- k break } } if (f1 < f2) { golden <- f1 xmin <- x1 } else { golden <- f2 xmin <- x2 } if (iter == niter) { warning("Maximum iterations reached") } list(x = xmin, fmin = golden, iter = iter, tol = tol, coarse.search = cbind(gridx, fgrid, deparse.level = 1)) } fields/R/qsreg.family.R0000644000175100001440000002744514627453256014515 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "qsreg" <- function(x, y, lam = NA, maxit = 50, maxit.cv = 10, tol = 1e-07, offset = 0, sc = sqrt(var(y)) * 1e-05, alpha = 0.5, wt = rep(1, length(x)), cost = 1, nstep.cv = 80, hmin = NA, hmax = NA, trmin = 2 * 1.05, trmax = 0.95 * length(unique(x))) { # see the function QTps for a different computational implementation # and a code that works for more than 1-d. out <- list() class(out) <- c("qsreg") N <- length(y) out$N <- N xgrid <- sort(unique(x)) if (length(x) != length(y)) stop(" X and Y do not match") if (!is.na(lam[1])) hgrid <- log(lam) else { # find lambda grid if (is.na(hmin)) { hmin <- 0 for (k in 1:25) { b <- qsreg.trace(lam = as.double(exp(hmin)), x = x, y = y, wt = wt, cost = cost, maxit = maxit, tol = tol, sc = sc, alpha = alpha) if (b > trmax) { break } hmin <- hmin - 1 } } if (is.na(hmax)) { hmax <- 0 for (k in 1:25) { b <- qsreg.trace(lam = as.double(exp(hmax)), x = x, y = y, wt = wt, cost = cost, maxit = maxit, tol = tol, sc = sc, alpha = alpha) if (b < trmin) { break } hmax <- hmax + 1 } } h <- seq(hmin, hmax, , nstep.cv) lam <- exp(h) } # now loop through values for lam ( really log lam) b <- list() NL <- length(lam) NG <- length(xgrid) h <- log(lam) residuals <- matrix(NA, ncol = NL, nrow = N) diagA <- residuals cv.ps <- rep(0, NL) trace.ps <- rep(0, NL) cv <- rep(0, NL) predicted <- matrix(NA, ncol = NL, nrow = NG) trace <- rep(0, NL) converge <- rep(0, NL) wt.old <- wt for (k in 1:NL) { b <- .Fortran("rcss", PACKAGE="fields", h = as.double(h[k]), npoint = as.integer(N), x = as.double(x), y = as.double(y), wt = as.double(wt.old), sy = as.double(rep(0, N)), trace = as.double(0), diag = as.double(rep(0, N)), cv = as.double(0), ngrid = as.integer(NG), xg = as.double(xgrid), yg = as.double(rep(0, NG)), job = as.integer(c(3, 3, 0)), ideriv = as.integer(0), din = as.double(c(cost, offset, maxit, tol, sc, alpha)), dout = as.double(rep(0, 4)), ierr = as.integer(0)) residuals[, k] <- y - b$sy diagA[, k] <- b$diag cv[k] <- b$dout[4] trace[k] <- b$trace predicted[, k] <- b$yg converge[k] <- b$dout[1] wt.old <- b$wt } # second loop to find approx CV residuals based on pseudo values y.pseudo <- rep(NA, N) residuals.cv <- matrix(NA, ncol = NL, nrow = length(x)) for (k in 1:NL) { y.pseudo <- (sc) * qsreg.psi(residuals[, k], alpha = alpha, C = sc) + y - residuals[, k] # # call the robust spline but set the cutoff for the huber weight so big # it is essentially a LS spline this helps to match the lambda for robust spline # with a lambda for the LS one. # b <- .Fortran("rcss", PACKAGE="fields", h = as.double(h[k]), npoint = as.integer(N), x = as.double(x), y = as.double(y.pseudo), wt = as.double(wt), sy = as.double(rep(0, N)), trace = as.double(0), diag = as.double(rep(0, N)), cv = as.double(0), ngrid = as.integer(NG), xg = as.double(xgrid), yg = as.double(rep(0, NG)), job = as.integer(c(3, 3, 0)), ideriv = as.integer(0), din = as.double(c(cost, offset, maxit, tol, sqrt(var(y)) * 10, alpha)), dout = as.double(rep(0, 4)), ierr = as.integer(0)) # # CV residuals based on pseudo-data) # Use the linear approximation Y_k - f.cv_k = (Y_k- f_k)/( 1- A_kk) # f.cv_k = f_k/( 1- A_kk) - ( A_kk)Y_k/( 1- A_kk) # # Note: we find f.cv based on pseudo data but then consider its deviation # from the actual data # f.cv <- (b$sy/(1 - b$diag)) - b$diag * y.pseudo/(1 - b$diag) trace.ps[k] <- b$trace residuals.cv[, k] <- (y - f.cv) cv.ps[k] <- mean(qsreg.sigma(y - f.cv, alpha = alpha, C = sc)) } # # # cv.grid <- cbind(lam, trace, cv, converge, trace.ps, cv.ps) dimnames(cv.grid) <- list(NULL, c("lambda", "trace", "CV", "iterations", "trace.PS", "CV.PS")) # ind.cv <- (1:NL)[cv == min(cv)] ind.cv.ps <- (1:NL)[cv.ps == min(cv.ps)] out$call <- match.call() out$x <- x out$y <- y out$predicted <- list(x = xgrid, y = predicted) out$trace <- trace out$residuals.cv <- residuals.cv out$residuals <- residuals out$fitted.values <- y - residuals out$cv.grid <- cv.grid out$diagA <- diagA out$sc <- sc out$alpha <- alpha out$ind.cv <- ind.cv out$ind.cv.ps <- ind.cv.ps out } "qsreg.fit" <- function(x, y, lam, maxit = 50, maxit.cv = 10, tol = 1e-04, offset = 0, sc = sqrt(var(y)) * 1e-07, alpha = 0.5, wt = rep(1, length(x)), cost = 1) { N <- length(y) if (length(x) != length(y)) stop(" X and Y do not match") h <- log(lam) temp <- .Fortran("rcss", PACKAGE="fields", h = as.double(log(lam)), npoint = as.integer(N), x = as.double(x), y = as.double(y), wt = as.double(wt), sy = as.double(rep(0, N)), trace = as.double(0), diag = as.double(rep(0, N)), cv = as.double(0), ngrid = as.integer(0), xg = as.double(0), yg = as.double(0), job = as.integer(c(3, 0, 0)), ideriv = as.integer(0), din = as.double(c(cost, offset, maxit, tol, sc, alpha)), dout = as.double(rep(0, 4)), ierr = as.integer(0))$dout return(temp) } qsreg.psi <- function(r, alpha = 0.5, C = 1) { temp <- ifelse(r < 0, 2 * (1 - alpha) * r/C, 2 * alpha * r/C) temp <- ifelse(temp > 2 * alpha, 2 * alpha, temp) temp <- ifelse(temp < -2 * (1 - alpha), -2 * (1 - alpha), temp) temp } qsreg.sigma <- function(r, alpha = 0.5, C = 1) { temp <- ifelse(r < 0, ((1 - alpha) * r^2)/C, (alpha * r^2)/C) temp <- ifelse(r > C, 2 * alpha * r - alpha * C, temp) temp <- ifelse(r < -C, -2 * (1 - alpha) * r - (1 - alpha) * C, temp) temp } # next two functions included for just checking with new versions "qsreg.psi.OLD" <- function(r, alpha = 0.5, C = 1) { temp <- rep(NA, length(r)) r <- r/C temp <- r ind <- r > 1 temp[ind] <- 2 * alpha ind <- r < 1 & r > 0 temp[ind] <- (2 * alpha * r[ind]) ind <- r < -1 temp[ind] <- -2 * (1 - alpha) ind <- r > -1 & r < 0 temp[ind] <- 2 * (1 - alpha) * r[ind] temp } "qsreg.sigma.OLD" <- function(r, alpha = 0.5, C = 1) { temp <- rep(NA, length(r)) ind <- r > C temp[ind] <- 2 * alpha * r[ind] - alpha * C ind <- r < C & r > 0 temp[ind] <- (alpha * r[ind]^2)/C ind <- r < -C temp[ind] <- -2 * (1 - alpha) * r[ind] - (1 - alpha) * C ind <- r > -C & r < 0 temp[ind] <- ((1 - alpha) * r[ind]^2)/C temp } "qsreg.trace" <- function(x, y, lam, maxit = 50, maxit.cv = 10, tol = 1e-04, offset = 0, sc = sqrt(var(y)) * 1e-07, alpha = 0.5, wt = rep(1, length(x)), cost = 1) { N <- length(y) if (length(x) != length(y)) stop(" X and Y do not match") h <- log(lam) temp <- .Fortran("rcss", PACKAGE="fields", h = as.double(log(lam)), npoint = as.integer(N), x = as.double(x), y = as.double(y), wt = as.double(wt), sy = as.double(rep(0, N)), trace = as.double(0), diag = as.double(rep(0, N)), cv = as.double(0), ngrid = as.integer(0), xg = as.double(0), yg = as.double(0), job = as.integer(c(3, 0, 0)), ideriv = as.integer(0), din = as.double(c(cost, offset, maxit, tol, sc, alpha)), dout = as.double(rep(0, 4)), ierr = as.integer(0))$dout return(temp[3]) } "summary.qsreg" <- function(object, ...) { x <- object digits <- 4 c1 <- "Number of Observations:" c2 <- (x$N) c1 <- c(c1, "Effective degrees of freedom:") c2 <- c(c2, format(round(x$trace[x$ind.cv.ps], 1))) c1 <- c(c1, "Residual degrees of freedom:") c2 <- c(c2, format(round(x$N - x$trace[x$ind.cv.ps], 1))) c1 <- c(c1, "Log10(lambda)") c2 <- c(c2, format(round(log10(x$cv.grid[x$ind.cv.ps, 1]), 2))) sum <- cbind(c1, c2) dimnames(sum) <- list(rep("", dim(sum)[1]), rep("", dim(sum)[2])) cat("Call:\n") dput(x$call) print(sum, quote = FALSE) invisible(x) } "plot.qsreg" <- function(x, pch = "*", main = NA, ...) { out <- x old.par <- par("mfrow", "oma") on.exit(par(old.par)) set.panel(2, 2, relax = TRUE) plot(out$x, out$y, xlab = "X", ylab = "y", pch = pch) orderx <- order(out$x) temp <- out$fitted.values[, c(out$ind.cv, out$ind.cv.ps)] matlines(out$x[orderx], temp[orderx, ], lty = 1, col = c(1, 2)) ## # residual plot # matplot(out$x, qsreg.psi(out$residuals[, c(out$ind.cv, out$ind.cv.ps)], out$alpha, out$sc), col = c(1, 2), pch = "o", ylab = "Pseudo residuals", xlab = "X") yline(0) if (nrow(out$cv.grid) > 1) { ind <- out$cv.grid[, 3] < 1e+19 out$cv.grid <- out$cv.grid[ind, ] matplot(out$cv.grid[, 2], cbind(out$cv.grid[, 3], out$cv.grid[, 6]), xlab = "Effective number of parameters", ylab = "Log CV Rho function ", log = "y", type = "l", col = c(1, 2)) xline(out$cv.grid[out$ind.cv, 2], col = 1) xline(out$cv.grid[out$ind.cv.ps, 2], col = 2) title(" CV curves", cex = 0.5) } bplot(qsreg.psi(out$residuals[, c(out$ind.cv, out$ind.cv.ps)], out$alpha, out$sc), names = c("CV", "CV pseudo")) yline(0, col = 2) if (is.na(main)) mtext(deparse(out$call), cex = 1.3, outer = TRUE, line = -2) else mtext(main, cex = 1.3, outer = TRUE, line = -2) } "predict.qsreg" <- function(object, x, derivative = 0, model = object$ind.cv.ps, ...) { if (missing(x)) x <- object$x c(splint(object$predicted$x, object$predicted$y[, model], x, derivative = derivative)) } "print.qsreg" <- function(x, ...) { digits <- 4 c1 <- "Number of Observations:" c2 <- (x$N) c1 <- c(c1, "Effective degrees of freedom:") c2 <- c(c2, format(round(x$trace[x$ind.cv.ps], 1))) c1 <- c(c1, "Residual degrees of freedom:") c2 <- c(c2, format(round(x$N - x$trace[x$ind.cv.ps], 1))) c1 <- c(c1, "Log10(lambda) ") lambda <- x$cv.grid[, 1] c2 <- c(c2, format(round(log10(lambda[x$ind.cv.ps]), 2))) sum <- cbind(c1, c2) dimnames(sum) <- list(rep("", dim(sum)[1]), rep("", dim(sum)[2])) cat("Call:\n") dput(x$call) print(sum, quote = FALSE) invisible(x) } fields/R/RMprecip.R0000644000175100001440000010233614627453255013625 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "RMprecip" <- structure(list(x = structure(list(lon = c(-110.53, -109.53, -109.55, -109.23, -110.1, -109.77, -109.4, -109.1, -109.05, -110.73, -104.65, -103.15, -105.85, -108.53, -105.88, -105.48, -105.52, -107.17, -102.18, -105.27, -102.45, -104.33, -104.83, -106.13, -102.27, -104.22, -105.7, -102.68, -105.23, -104.87, -106.12, -105.28, -104.85, -102.35, -107.52, -106.2, -106.77, -107.97, -108.73, -104.7, -108.57, -107.6, -106.97, -105.68, -106.35, -108.07, -104.88, -106.03, -108.97, -108.5, -107.88, -102.78, -104.57, -105.32, -103.07, -102.83, -105.08, -108.05, -103.8, -104.7, -104.03, -108.75, -108.93, -103.5, -105.7, -107.32, -108.53, -108.58, -105.83, -105.85, -105.68, -105.53, -104.7, -106.33, -105.35, -105.38, -106.97, -107.62, -103.15, -107.25, -107.13, -106, -102.12, -102.3, -102.28, -105.22, -102.68, -102.93, -102.25, -103.52, -105.1, -102.78, -106.4, -103.48, -107.32, -105.48, -105.13, -102.62, -103.22, -106.32, -103.02, -105.07, -105.95, -108.28, -107.47, -108.08, -107.9, -106.75, -108.5, -106.15, -105.6, -103.83, -109.03, -105.02, -108.28, -103.75, -103.7, -107.68, -107.02, -108.35, -107.58, -104.65, -108.07, -104.5, -104.72, -107.1, -108.8, -108.03, -107.75, -107.27, -103.7, -104.08, -104.98, -106.13, -106.02, -106.43, -104.97, -102.52, -102.52, -107.23, -107.67, -106.42, -102.7, -106.83, -103.2, -102.07, -102.58, -105.12, -106.37, -104.12, -106.62, -107.87, -104.48, -104.33, -106.32, -108.73, -107.58, -106.27, -104.8, -102.28, -105.2, -105.48, -105.77, -106.78, -104.48, -102.23, -106.9, -108.73, -102.73, -99.55, -99.77, -101.05, -100.95, -99.65, -101.53, -99.2, -101.38, -99.63, -99.52, -99.73, -100.35, -101.07, -99.33, -100.12, -99.58, -99.73, -100.42, -101.9, -99.57, -100.82, -101.7, -100.48, -99.3, -99.33, -100.62, -100.45, -101.35, -100.48, -99.97, -100.28, -99.4, -99.12, -101.25, -99.1, -100, -101.37, -100.92, -99.57, -99.53, -99.18, -99.57, -101.38, -100.33, -100.87, -100.07, -99.03, -99.9, -100.18, -99.93, -99.83, -100.85, -100.52, -99.57, -99.57, -99.32, -99.3, -100.23, -99.92, -101.77, -101.95, -101.18, -101.8, -101.92, -100.08, -100.9, -101.75, -99.27, -100.18, -100.83, -101.77, -101.77, -99.07, -101.35, -100.17, -99.88, -99.83, -99.42, -101.25, -103.78, -99.87, -102.9, -99.87, -99.13, -100.18, -99.47, -99.83, -101.53, -99.63, -102.08, -99.87, -103.1, -99.68, -99.15, -100.17, -99.7, -103.08, -99.25, -103.42, -102.43, -100.83, -100.5, -102.97, -102.28, -102.2, -99.92, -101.52, -100.08, -102.17, -100.17, -101.93, -100.32, -99.22, -103.88, -103.88, -100.97, -102.68, -102.7, -103.08, -99.37, -101.63, -99.08, -103.67, -101.67, -101.98, -102.63, -102.63, -104.03, -101.55, -99.32, -100.6, -100.68, -100.22, -101.68, -99.4, -103.68, -100.4, -101.33, -99.13, -99.33, -100.7, -100.75, -99.83, -101.72, -99.5, -102.33, -102.43, -101.12, -101.35, -103.32, -100.25, -99.3, -100.65, -102.47, -103.6, -102.98, -99.73, -100.38, -101.23, -99.38, -101.02, -100.97, -100.68, -100.55, -101.17, -101.38, -100.73, -100.12, -104.33, -106.43, -106.62, -106.07, -103.17, -108, -104.1, -105.25, -107.97, -106.45, -105.6, -107.97, -105.38, -106.58, -104.95, -106.32, -104.18, -106.63, -106.97, -107.52, -105.05, -107, -105.27, -108.35, -106.18, -106.73, -106.08, -108.4, -108.78, -105.43, -106.38, -105.77, -107.9, -103.62, -106.68, -107.4, -104.37, -105.15, -105.2, -107.02, -106.3, -107.57, -104.58, -103.37, -108.45, -103.92, -107.62, -104.27, -105.05, -107.87, -103.73, -105.68, -104.43, -104.45, -105.4, -104.2, -103.33, -106.37, -105.97, -108.73, -104.58, -105.97, -107.47, -105.57, -106.58, -107.18, -105.97, -103.68, -104.93, -105.37, -106.77, -108.78, -99.77, -100.53, -102.48, -99.62, -99.38, -99.8, -99.62, -99.12, -100.05, -101.62, -99.4, -99.05, -101.22, -102.97, -99.9, -99.35, -99.5, -99.17, -102.73, -99.63, -100.87, -99.28, -99.38, -99.07, -103.65, -103.82, -103.92, -99.98, -103.32, -103.82, -101.02, -99.32, -101.87, -103.6, -103.72, -103.78, -101.52, -101.23, -103.82, -102.53, -103.47, -100.67, -99.07, -99.43, -101.27, -103.18, -99.47, -99.45, -101.87, -103.58, -103.47, -101.95, -99.87, -101.33, -102.17, -103.77, -101.5, -102.47, -101.68, -102.72, -101.15, -101.65, -100.67, -100.6, -103.45, -100.7, -103.45, -100.42, -103.23, -100.07, -103.27, -99.08, -103.5, -101.6, -100.28, -102.13, -102.45, -100.17, -103.1, -103.28, -102.55, -103.78, -99.45, -102.43, -99.87, -100.48, -101.7, -100.5, -101.45, -102.25, -103, -100.37, -101.37, -102.25, -102.55, -100.32, -101.97, -100.13, -101.4, -102.4, -100.02, -100.28, -100.6, -100.63, -101.47, -100.6, -101.38, -100.8, -100.82, -100.97, -100.25, -101.2, -102.08, -109.07, -110.27, -109.62, -109.48, -109.55, -110.73, -109.83, -109.75, -109.4, -109.08, -109.3, -110.4, -109.42, -109.87, -110.17, -110.17, -110.72, -110.87, -109.07, -109.37, -109.22, -109.67, -109.87, -109.55, -109.33, -110.07, -109.98, -110.05, -109.68, -110.8, -109.98, -109.52, -110.68, -110.92, -104.1, -104.65, -107.65, -108.05, -106.38, -110.93, -110.12, -106.73, -108.52, -107.73, -110.43, -108.2, -106.68, -109.18, -107.53, -109.28, -104.32, -106.33, -106.13, -104.82, -104.82, -110.03, -109.08, -106.38, -109.07, -108.93, -104.2, -110.17, -107.27, -108.6, -104.7, -105.12, -108.93, -105.4, -105.38, -109.63, -104.98, -105.87, -106.42, -108.37, -106.62, -110.95, -109.42, -107.48, -105.47, -105.88, -108.05, -108.95, -105.17, -104.6, -110.77, -107.83, -106.63, -110.53, -110.2, -104.17, -110.4, -108.73, -105.68, -105.62, -106.28, -106.83, -108.38, -104.48, -106.2, -104.93, -110.72, -110.58, -110.35, -107.47, -104.22, -110.83, -108.68, -104.48, -104.15, -109.87, -107, -108.75, -107.92, -107.2, -104.28, -108.38, -104.93, -109.07, -110.97, -106.82, -106.97, -106.83, -108.12, -110.67, -108.8, -104.35, -108.98, -105.38, -107.42, -107.32, -108.2, -104.22, -110.42, -104.62, -104.77, -107.98, -105.33, -104.95, -107.97, -107.97, -110.7, -104.3, -104.77, -107.65, -106.22, -99.97, -99.85, -100.73, -108.25, -99.37, -99.5, -100.98, -109.37, -110.07, -106.17, -100.28, -107.8, -99.92, -104.433, -105.867, -105.583, -105.82, -105.569, -105.887, -105.645, -105.544, -105.761, -105.2, -105.067, -105.25, -105.664, -106.983, -106.317, -106.083, -106.933, -106.233, -106.5, -106.367, -106.9, -106.283, -106.781, -106.094, -106.67, -106.046, -106.969, -106.677, -106.612, -106.608, -106.615, -106.542, -106.59, -106.953, -106.548, -106.657, -106.321, -106.263, -106.392, -107.133, -107.583, -107.85, -107.433, -107.533, -107.3, -107.067, -107.067, -107.183, -107.267, -107.167, -107.267, -107.167, -107.058, -107.357, -107.805, -107.689, -107.675, -107.507, -107.512, -109.017, -108.833, -108.9, -108.917, -108.058, -108.382, -108.195, -109.917, -109.65, -109.233, -109.567, -109.783, -109.8, -109.667, -109.75, -109.817, -109.95, -109.75, -109.317, -109.45, -109.167, -109.1, -109.267, -109.55, -109.883, -109.967, -109.667, -109.517, -109.267, -109.483, -110, -110.533, -110.15, -110.667, -110.833, -110.217, -110.433, -110.05, -110.017, -110.133, -110.2, -110.133, -110.917, -110.6, -110.917, -110.8, -110.533, -110.583, -110.667, -110.683, -110.817, -110.683, -110.817, -110.2, -110.483, -110.433, -110.683, -110.5, -110.617, -110.467, -110.583, -110.8, -110, -110.883, -110.95, -110.75, -110.983), lat = c(36.68, 36.15, 35.72, 36.42, 36.98, 35.07, 35.2, 36.9, 35.68, 35.02, 37.38, 40.15, 37.43, 39.58, 39, 39.4, 37.43, 38.47, 39.62, 40, 38.45, 40.65, 39.98, 38.83, 39.3, 39.7, 39.65, 37.08, 38.42, 39.37, 37.75, 39.22, 39.65, 38.82, 38.4, 39.38, 38.43, 39.25, 39.1, 38.82, 37.35, 40.45, 38.87, 37.98, 37.67, 38.75, 39.77, 39.63, 40.23, 37.47, 37.28, 38.48, 39.08, 39.63, 39.28, 40.67, 40.58, 37.23, 40.22, 38.68, 38.13, 39.17, 38.7, 39.28, 39.7, 39.52, 39.12, 39.07, 40.27, 40.25, 39.47, 37.72, 40.42, 39.88, 39.95, 38.68, 38.53, 40.37, 38.45, 40.48, 37.77, 40.97, 38.05, 40.58, 39.7, 39.57, 39.65, 38.07, 41, 38.8, 39.5, 38.77, 40.07, 37.72, 38.05, 38.92, 39.75, 38.08, 38.07, 39.23, 40.48, 40.17, 37.17, 37.35, 40.03, 40.52, 40.03, 39.37, 37.2, 37.57, 39.65, 40.58, 37.82, 39.9, 38.13, 38.22, 38.52, 38.02, 37.27, 39.1, 38.87, 39.52, 38.03, 38.28, 38.27, 40.23, 40.08, 37.68, 38.15, 37.72, 38.03, 38.87, 38.85, 38.08, 38.53, 38.4, 39.38, 40.93, 40.85, 39.57, 37.8, 40.48, 37.38, 40.5, 40.62, 37.3, 39.3, 39.43, 39.25, 38.42, 38.82, 37.95, 37.17, 37.25, 39.08, 38.37, 37.37, 40.73, 37.62, 37.38, 40.42, 38.13, 39.9, 37.48, 37, 40.07, 40.15, 37.55, 40.12, 38.47, 37.2, 39.8, 39.63, 37.87, 39.62, 38.52, 39.35, 37.55, 38.12, 38.8, 37.8, 39.38, 37.27, 38.9, 39.32, 39.63, 39.62, 37, 38.93, 37.98, 39.37, 38.97, 37.6, 38.87, 38.6, 39.35, 37.18, 38.72, 38.25, 38.07, 37.93, 39.67, 37.93, 38.18, 39.62, 38.48, 37.05, 39.67, 39.95, 38.67, 38.58, 39.78, 37.28, 39.27, 39.35, 39.18, 38.45, 39.83, 39.82, 39.7, 39.13, 39.83, 37.82, 39.23, 39.73, 39.23, 39.07, 38.63, 37.33, 37.23, 38.9, 39.77, 39.85, 39.18, 38.48, 38.9, 39.43, 39.47, 37.48, 37.98, 38.47, 37.82, 37.58, 38.65, 39.02, 39.17, 39.42, 39.07, 42.42, 42.55, 42.1, 41.62, 41.42, 41.42, 40.37, 40.13, 40.05, 40.52, 41.07, 41.95, 41.67, 41.42, 41.78, 40.27, 40.7, 42.83, 41.55, 42.7, 41.75, 40.22, 40.67, 41.42, 42.05, 42.27, 40.48, 40.42, 40.68, 42.8, 40.93, 40.02, 41.9, 40.08, 41.65, 42.68, 40.52, 42.68, 42.5, 42.35, 40.43, 40.52, 40.7, 41.25, 41.22, 40.57, 41.5, 41.15, 41.92, 40.85, 41.23, 40.2, 40.42, 40.38, 42.92, 40.93, 41.95, 40.68, 42.27, 40.07, 42.6, 41.13, 41.07, 41.08, 41.13, 40.13, 41.4, 41.3, 40.35, 41.13, 41.22, 42.07, 40.32, 40.35, 42.72, 41.87, 41.13, 42.82, 40.53, 40.13, 41.77, 40.18, 41.55, 42.58, 42.88, 40.83, 40.42, 40.75, 40.12, 36.18, 36.23, 35.05, 36.1, 35.9, 36.83, 35.53, 36.3, 36.67, 36.73, 36.73, 36.07, 36.13, 36.92, 36.47, 35.63, 35.4, 35.23, 36.02, 35.1, 35.18, 36.93, 36.57, 35.05, 36.33, 36.6, 35.98, 36.73, 35.52, 35.9, 36.33, 35.58, 35.17, 36.6, 35.77, 35.03, 36.98, 35.65, 35.53, 36.33, 35.88, 36.23, 36.55, 35.6, 35.33, 35.82, 36.82, 35.07, 36.18, 36.32, 36.3, 35.58, 36.92, 36.88, 36.7, 35.95, 35.12, 35.17, 35.65, 36.77, 36.37, 35.17, 35.93, 36.42, 36.72, 35.8, 36.65, 35.2, 35.82, 35.27, 35.97, 35.1, 36.13, 36.82, 36.73, 36.83, 35.42, 35.2, 36.38, 36.77, 36.85, 36.6, 35.6, 35, 36.87, 36.9, 36.72, 35.87, 35.13, 36.23, 36.93, 35.27, 36.82, 36.17, 36.45, 43.5, 43.07, 44.7, 45, 44.52, 43.48, 44.22, 43.58, 43.73, 43.97, 43.77, 44.38, 44, 44.83, 45, 43.3, 44.3, 44.4, 44.25, 44.07, 43.23, 43.17, 43.83, 44.52, 44.87, 44.33, 43.93, 43.43, 43.75, 43.92, 44.62, 43.43, 44.35, 43.47, 43.23, 43.23, 44.9, 44.07, 44.45, 43.3, 43.12, 43.88, 43.88, 44.73, 44.45, 43.18, 44.7, 43.4, 44.88, 44.07, 44.05, 44.38, 44.62, 43.45, 43.97, 44.15, 44.12, 44.7, 44.48, 44.25, 44.07, 43.38, 43.5, 35.23, 36.47, 35.65, 35.53, 35.65, 35.92, 35.12, 36.23, 36.02, 36.43, 35.85, 36.43, 36.25, 35.88, 36.12, 36.23, 35.23, 35.7, 36.05, 36.1, 35.33, 36.4, 36.1, 36.45, 35.23, 36.2, 36.35, 40.85, 40.32, 38.62, 37.62, 37.28, 37.52, 38.45, 38.15, 38.65, 37.72, 38.8, 40.17, 40.93, 40.28, 39, 38.25, 38.37, 39.73, 37.38, 40.37, 38.3, 40.55, 37.15, 38.58, 37.87, 40.2, 37.62, 40.42, 40.08, 39.62, 40.3, 40.45, 39.55, 42.75, 41.42, 41.15, 41.03, 44.38, 42.63, 42.88, 42.53, 44.13, 41.58, 43.65, 43.23, 43.42, 44.35, 44.5, 44.77, 43.37, 41.05, 42.92, 41.3, 41.15, 41.75, 41.43, 44.98, 44.62, 44.53, 44.38, 44.93, 43.42, 44.87, 44.88, 44.58, 44.12, 43.23, 42.18, 42.77, 43.57, 43.42, 44.47, 41.7, 44.52, 41.18, 41.27, 42.12, 42.83, 44.28, 42.87, 44.5, 44.7, 41.15, 44.68, 43.47, 42.5, 43.73, 41.8, 42.27, 41.63, 44.55, 42.82, 41.32, 41.35, 44.85, 42.18, 44.85, 42.75, 41.9, 44.27, 43.67, 43.85, 41.27, 42.35, 43.85, 44.47, 43.25, 41.63, 41.17, 42.87, 43.02, 44.78, 44.2, 41.8, 43.25, 43.02, 43.6, 41.6, 41.82, 41.45, 44.77, 44.83, 43.23, 44.13, 42.47, 44.4, 44.05, 41.77, 44.07, 43.77, 43.65, 42.08, 44.92, 44.1, 43.93, 41.68, 44.63, 42.12, 44.02, 43.97, 44.97, 41.93, 38.68, 37.38, 40.03, 37.77, 39.35, 39.47, 36.7, 35.17, 35.05, 35.57, 44.33, 41.98, 42.37, 35.43, 44.55, 35.42, 44.475, 42.433, 42.283, 40.414, 40.207, 40.532, 40.311, 40.035, 39.916, 37.209, 37.331, 37, 35.829, 44.25, 42.733, 42.567, 41.167, 41.367, 41.333, 41.333, 41, 41.467, 40.534, 40.347, 40.08, 40.875, 40.848, 40.537, 39.075, 39.298, 39.317, 39.088, 38.82, 38.894, 37.379, 36.956, 36.512, 36.716, 35.922, 44.167, 44.683, 44.8, 44.5, 44.783, 44.567, 44.4, 43.883, 43.633, 43.517, 41.117, 41.05, 41.3, 40.167, 39.765, 37.651, 37.749, 37.934, 37.485, 37.714, 43.667, 42.567, 42.7, 42.583, 39.058, 38.418, 37.892, 44.733, 44.8, 44.3, 44.783, 44.65, 44.383, 43.7, 43.5, 43.933, 43.117, 43, 43.867, 43.267, 43.033, 42.867, 42.65, 40.717, 40.617, 40.9, 40.733, 39.317, 38.483, 37.8, 45, 44.717, 44.483, 44.2, 44.133, 44.15, 43.933, 43.75, 43.25, 43.167, 43.133, 43.383, 43.517, 42.95, 42.517, 42.25, 42.467, 42.767, 42.533, 42.3, 42.817, 42.15, 42.517, 40.917, 40.95, 40.6, 40.55, 40.917, 40.75, 40.717, 40.583, 40.867, 40.767, 40.8, 40.683, 39.9, 39.967)), .Names = c("lon", "lat"), row.names = c("020750", "021248", "023303", "025129", "025665", "026190", "027488", "028468", "029410", "029439", "050102", "050109", "050130", "050214", "050263", "050454", "050776", "050797", "050834", "050848", "050895", "050945", "050950", "051071", "051121", "051179", "051186", "051268", "051294", "051401", "051458", "051528", "051547", "051564", "051609", "051660", "051713", "051741", "051772", "051778", "051886", "051932", "051959", "051964", "052184", "052192", "052220", "052281", "052286", "052326", "052432", "052446", "052494", "052790", "052932", "052944", "053005", "053016", "053038", "053063", "053079", "053146", "053246", "053258", "053261", "053359", "053488", "053489", "053496", "053500", "053530", "053541", "053553", "053592", "053629", "053656", "053662", "053738", "053828", "053867", "053951", "054054", "054076", "054082", "054242", "054293", "054380", "054388", "054413", "054444", "054452", "054603", "054664", "054726", "054734", "054742", "054762", "054770", "054834", "054885", "054945", "055116", "055322", "055327", "055414", "055446", "055484", "055507", "055531", "055706", "055797", "055922", "055970", "055984", "056012", "056131", "056136", "056203", "056258", "056266", "056306", "056326", "056524", "056740", "056765", "056797", "056832", "057017", "057020", "057050", "057167", "057287", "057309", "057337", "057370", "057460", "057510", "057513", "057515", "057618", "057656", "057848", "057866", "057936", "057950", "057992", "058008", "058022", "058064", "058157", "058184", "058204", "058429", "058434", "058501", "058560", "058582", "058756", "058781", "058793", "058839", "058931", "059175", "059181", "059216", "059243", "059265", "059275", "059295", "140135", "140365", "140439", "140441", "140676", "140836", "140865", "141029", "141104", "141141", "141383", "141522", "141699", "141704", "141730", "141999", "142086", "142213", "142432", "142452", "142980", "143153", "143175", "143239", "143527", "143554", "143837", "143855", "144073", "144087", "144161", "144333", "144357", "144464", "144530", "144642", "144665", "144695", "144775", "144807", "144821", "145115", "145127", "145171", "145355", "145483", "145628", "145692", "145787", "145852", "145856", "145888", "145906", "145920", "146192", "146374", "146435", "146637", "146685", "146808", "146813", "147049", "147093", "147095", "147140", "147271", "147397", "147832", "147904", "147922", "148038", "148235", "148245", "148287", "148323", "148495", "148498", "148648", "148988", "250030", "250050", "250130", "250245", "250320", "250355", "250427", "250640", "250760", "250810", "250865", "251130", "251145", "251200", "251345", "251415", "251450", "251575", "251835", "251973", "252000", "252065", "252100", "252145", "252645", "252647", "252690", "252741", "252790", "253355", "253365", "253515", "253540", "253595", "253605", "253615", "253690", "253710", "253715", "253755", "253910", "254110", "254335", "254440", "254455", "254604", "254865", "254900", "255020", "255090", "255250", "255310", "255311", "255388", "255470", "255525", "255590", "255655", "255702", "255780", "255925", "256065", "256075", "256167", "256200", "256365", "256385", "256390", "256480", "256585", "256880", "256970", "257002", "257110", "257415", "257665", "257830", "258090", "258215", "258255", "258455", "258628", "258650", "258755", "258760", "258920", "259020", "259115", "259325", "290022", "290041", "290234", "290245", "290377", "290692", "290858", "291000", "291063", "291180", "291630", "291647", "291656", "291664", "291813", "291982", "292030", "292100", "292241", "292250", "292510", "292608", "292700", "292785", "292820", "292837", "293031", "293340", "293422", "293488", "293511", "293586", "293682", "293706", "294369", "294719", "294742", "294856", "294862", "294960", "295084", "295290", "295490", "295516", "295560", "295937", "296061", "296115", "296275", "296465", "296619", "296676", "297279", "297280", "297323", "297638", "297867", "298015", "298085", "298284", "298501", "298518", "298524", "298668", "298845", "299031", "299085", "299156", "299330", "299496", "299820", "299897", "340332", "340593", "340908", "341243", "342849", "342944", "343070", "343358", "343489", "343628", "343871", "344204", "344298", "344766", "345045", "345090", "346035", "346139", "347534", "347952", "349017", "349172", "349760", "390043", "390236", "390559", "390565", "390760", "391124", "391246", "391539", "391621", "391972", "392087", "392207", "392231", "392446", "392468", "392557", "392647", "393069", "393076", "393217", "393452", "393574", "393775", "393832", "393838", "393857", "393868", "394007", "394184", "394516", "394596", "394630", "394834", "394983", "395154", "395285", "395325", "395506", "395544", "395620", "395638", "395870", "395891", "396054", "396170", "396212", "396292", "396304", "396335", "396427", "396552", "396597", "396636", "396736", "396790", "396937", "396947", "397073", "397882", "397992", "398911", "399367", "399442", "410211", "410944", "410958", "411000", "411033", "411412", "411778", "411946", "412240", "412282", "412617", "413225", "413787", "413981", "414140", "415247", "415770", "415875", "416070", "416477", "416785", "416950", "416952", "416953", "418236", "418523", "418692", "420050", "420074", "420336", "420738", "420788", "421020", "421163", "421168", "421241", "421308", "422150", "422253", "422864", "422996", "423418", "423600", "423611", "423836", "424100", "424342", "424947", "425268", "425582", "425733", "425805", "425969", "426053", "426123", "426568", "427026", "427395", "429111", "429368", "480027", "480080", "480270", "480484", "480540", "480552", "480603", "480695", "480740", "480761", "480778", "480865", "481000", "481165", "481175", "481220", "481284", "481547", "481570", "481610", "481675", "481730", "481736", "481775", "481816", "481840", "481850", "481905", "482375", "482399", "482415", "482466", "482580", "482595", "482680", "482685", "482715", "482725", "482881", "482995", "483031", "483045", "483100", "483170", "483801", "483855", "483950", "484080", "484411", "484442", "484760", "484910", "484925", "485055", "485105", "485252", "485260", "485345", "485390", "485415", "485435", "485506", "485525", "485770", "485830", "486120", "486395", "486428", "486440", "486555", "486595", "486660", "486845", "487115", "487200", "487240", "487260", "487376", "487388", "487473", "487533", "487555", "487760", "487810", "487845", "487955", "487990", "488155", "488160", "488209", "488315", "488385", "488705", "488758", "488808", "488852", "488858", "488875", "488995", "489025", "489205", "489207", "489459", "489580", "489615", "489770", "489785", "489905", "489925", "053002", "054934", "059096", "142164", "143665", "146787", "293142", "347565", "349668", "416776", "481855", "483396", "488192", "419662", "488124", "348652", "04E01S", "05G04S", "05G05S", "05J10S", "05J18S", "05J37S", "05J39S", "05J42S", "05K06S", "05M03S", "05M07S", "05N16S", "05P02S", "06E03S", "06G01S", "06G02S", "06H09S", "06H13S", "06H19S", "06H20S", "06H22S", "06H23S", "06J01S", "06J05S", "06J06S", "06J12S", "06J15S", "06J29S", "06K04S", "06K06S", "06K30S", "06K40S", "06L02S", "06L11S", "06M23S", "06N03S", "06N04S", "06N14S", "06P01S", "07E06S", "07E18S", "07E21S", "07E23S", "07E33S", "07E34S", "07E36S", "07F01S", "07F02S", "07F03S", "07H03S", "07H04S", "07H05S", "07J04S", "07K12S", "07M05S", "07M12S", "07M27S", "07M31S", "07M32S", "08F01S", "08G03S", "08G07S", "08G09S", "08K04S", "08L02S", "08M07S", "09E07S", "09E08S", "09E09S", "09E10S", "09E11S", "09E13S", "09F04S", "09F08S", "09F18S", "09F21S", "09F23S", "09F24S", "09F25S", "09F27S", "09G03S", "09G09S", "09J01S", "09J05S", "09J08S", "09J16S", "09K01S", "09L03S", "09M02S", "10D07S", "10E03S", "10E06S", "10E09S", "10E15S", "10E17S", "10F02S", "10F09S", "10F15S", "10F16S", "10F17S", "10F19S", "10F23S", "10G02S", "10G08S", "10G12S", "10G13S", "10G15S", "10G20S", "10G22S", "10G23S", "10G24S", "10G25S", "10J01S", "10J04S", "10J10S", "10J18S", "10J20S", "10J25S", "10J26S", "10J30S", "10J35S", "10J43S", "10J44S", "10J52S", "10K01S", "10K02S"), class = "data.frame"), elev = c(2196, 1710, 1937, 1976, 1696, 1756, 1806, 1580, 2059, 1489, 1938, 1385, 2298, 2074, 2724, 2358, 2361, 2324, 1113, 1672, 1199, 1488, 1519, 2434, 1272, 1586, 3056, 1312, 1625, 1906, 2339, 2097, 1721, 1295, 2208, 3514, 2438, 1823, 1763, 1888, 1885, 1963, 2705, 2474, 2402, 1562, 1615, 2763, 1805, 2120, 2012, 1284, 2208, 2135, 1525, 1295, 1525, 2321, 1320, 1693, 1324, 1366, 1495, 1708, 2614, 1800, 1479, 1409, 2556, 2556, 2650, 2475, 1418, 2367, 2425, 2499, 2329, 1903, 1382, 1943, 2743, 2365, 1033, 1137, 1208, 2146, 1281, 1162, 1058, 1559, 1677, 1305, 2233, 1292, 2711, 2593, 1718, 1106, 1186, 3032, 1339, 1510, 2344, 2147, 2377, 1806, 1903, 2379, 2123, 2339, 3240, 1510, 1976, 1635, 2139, 1312, 1453, 2355, 2169, 1440, 1733, 1922, 2220, 1415, 1480, 2464, 1610, 2690, 2133, 2898, 1271, 1833, 2758, 2345, 2182, 2583, 1861, 1092, 1216, 1806, 2873, 2532, 1396, 2085, 1202, 1128, 1342, 1780, 3049, 1525, 2809, 2643, 1838, 1753, 2837, 1531, 2332, 2471, 1897, 1312, 1586, 2396, 2761, 3243, 2312, 1077, 2405, 2092, 1260, 634, 600, 881, 888, 717, 1052, 613, 1043, 726, 659, 656, 802, 967, 635, 756, 644, 631, 833, 1104, 647, 866, 1115, 805, 683, 613, 869, 824, 946, 775, 692, 814, 656, 519, 914, 608, 708, 1007, 864, 595, 631, 613, 653, 1028, 763, 921, 705, 558, 689, 799, 713, 719, 927, 774, 686, 695, 581, 656, 812, 766, 1034, 1077, 903, 1025, 1098, 759, 905, 1049, 546, 763, 888, 994, 1101, 625, 930, 796, 747, 714, 567, 1013, 1357, 769, 1217, 793, 668, 823, 714, 658, 903, 769, 1025, 763, 1117, 762, 664, 689, 720, 1007, 689, 1119, 1165, 790, 829, 1302, 1196, 1214, 763, 939, 811, 1083, 788, 991, 824, 610, 1360, 1478, 924, 1180, 1160, 1302, 707, 999, 656, 1451, 1007, 1083, 1061, 1168, 1235, 976, 688, 771, 836, 729, 991, 705, 1244, 860, 1052, 573, 680, 850, 924, 814, 982, 601, 1034, 1168, 842, 933, 1337, 820, 709, 781, 1138, 1209, 1247, 744, 756, 854, 686, 811, 997, 894, 787, 952, 897, 857, 702, 1842, 1952, 1619, 1731, 1373, 1720, 1372, 2547, 1766, 2432, 2336, 1870, 2455, 2393, 1993, 1695, 1293, 1557, 2105, 1879, 1568, 2065, 2516, 2202, 2095, 2074, 1705, 1577, 1973, 2516, 2105, 2288, 1989, 1827, 1909, 1781, 2257, 2092, 1935, 2214, 2233, 2196, 1845, 1344, 2438, 1693, 1760, 1394, 2339, 2098, 1723, 2105, 2114, 2025, 2644, 1793, 1289, 2138, 2207, 1510, 1805, 1945, 2025, 2129, 2278, 2043, 2464, 1245, 1922, 1769, 2486, 1965, 750, 751, 1263, 547, 598, 605, 671, 470, 677, 1009, 555, 473, 913, 1326, 644, 622, 531, 568, 1305, 549, 825, 692, 580, 512, 1083, 918, 976, 491, 994, 1864, 698, 506, 736, 1623, 1388, 1847, 637, 735, 1049, 811, 1007, 484, 524, 658, 909, 1007, 576, 570, 808, 1522, 1085, 744, 518, 659, 869, 1601, 753, 991, 920, 827, 573, 714, 790, 854, 1571, 707, 878, 506, 1019, 567, 903, 488, 1382, 673, 526, 741, 851, 552, 981, 1052, 844, 1192, 558, 708, 601, 664, 1100, 869, 958, 973, 1266, 714, 1037, 1165, 1218, 775, 1114, 854, 967, 1196, 784, 741, 778, 840, 976, 885, 1052, 897, 912, 915, 717, 946, 1126, 1659, 1955, 1259, 1841, 1315, 1165, 1800, 1537, 1432, 2068, 1257, 1682, 1911, 1539, 1241, 2012, 1313, 1860, 1647, 1446, 2048, 1945, 1296, 1232, 2156, 1549, 1983, 1830, 1418, 1731, 1557, 1603, 1646, 1867, 1629, 1833, 1903, 1170, 1832, 1897, 2080, 1510, 2050, 1720, 1983, 1467, 1430, 1572, 2501, 1873, 1644, 1618, 2461, 1868, 1617, 2150, 1229, 1196, 1528, 1623, 1088, 2489, 1199, 1251, 1177, 1312, 1699, 1891, 1470, 2121, 1327, 1244, 2169, 1354, 2254, 2080, 2010, 1973, 1391, 1528, 1156, 1460, 2040, 1147, 1904, 1928, 1421, 2120, 2013, 1400, 2368, 1698, 2215, 2175, 1281, 1830, 1168, 1551, 2001, 1287, 1973, 2072, 2074, 1925, 1315, 2248, 1658, 1495, 1579, 2187, 1818, 1332, 1199, 2067, 1186, 1509, 1369, 2055, 1931, 2070, 1203, 1143, 1470, 2098, 2400, 1449, 1964, 1861, 1464, 1476, 1326, 1249, 1912, 1290, 1458, 2080, 1101, 1414, 1237, 1273, 1899, 1290, 1789, 2464, 2332, 791, 653, 894, 1717, 541, 528, 985, 1793, 1976, 2185, 763, 1305, 662, 1988, 2553, 2409, 3262, 2622, 3085, 2896, 3021, 2951, 3201, 3049, 3232, 2561, 2549, 2393, 2591, 2820, 3116, 2573, 3088, 2729, 3064, 2561, 2909, 2707, 2957, 2652, 3201, 3232, 2652, 2927, 3232, 2927, 3098, 3354, 2561, 2835, 3049, 2896, 2890, 2851, 2860, 2921, 2402, 2707, 3006, 2500, 2366, 2463, 2485, 2268, 2701, 2774, 3317, 2707, 3201, 2988, 3317, 3537, 2736, 2756, 2652, 3043, 3049, 2866, 2927, 2866, 2332, 2671, 2828, 2805, 2982, 2668, 2857, 2546, 2543, 2866, 2912, 2936, 2628, 3079, 2768, 2662, 2896, 2774, 2866, 2515, 3003, 2622, 2241, 2466, 2567, 2393, 2215, 2817, 2143, 2921, 2360, 2512, 2418, 2668, 2500, 2713, 2317, 2494, 2457, 2591, 2744, 2873, 2576, 2390, 2317, 2790, 2896, 3079, 2409, 3079, 3323, 3329, 3232, 2759, 3140, 2774, 3037, 2774, 2607), y = c(81, 63, 36, 46, 33, 40, 97, 99, 58, 32, 78, 88, 23, 61, 84, 179, 45, 41, 77, 134, 139, 110, 61, 43, 106, 122, 106, 109, 113, 139, 45, 151, 90, 109, 58, 89, 49, 58, 45, 119, 45, 39, 64, 61, 82, 49, 105, 51, 76, 62, 101, 193, 172, 78, 74, 57, 130, 44, 46, 114, 127, 34, 66, 79, 101, 42, 68, 46, 97, 70, 99, 73, 76, 72, 116, 73, 48, 44, 180, 78, 69, 70, 225, 34, 125, 195, 91, 144, 57, 85, 85, 129, 84, 104, 71, 47, 100, 191, 59, 57, 57, 74, 37, 81, 102, 69, 84, 67, 48, 59, 114, 95, 82, 81, 83, 89, 154, 65, 73, 44, 34, 124, 15, 105, 159, 86, 55, 54, 80, 48, 131, 77, 136, 37, 68, 43, 136, 49, 40, 48, 87, 63, 122, 88, 62, 155, 108, 148, 74, 101, 66, 94, 35, 126, 38, 28, 102, 32, 108, 162, 95, 56, 103, 149, 74, 95, 97, 59, 111, 170, 160, 99, 93, 145, 116, 129, 112, 116, 139, 139, 139, 109, 143, 108, 70, 59, 122, 72, 130, 176, 134, 102, 178, 161, 218, 111, 88, 168, 146, 216, 202, 72, 258, 135, 104, 203, 106, 46, 68, 119, 157, 121, 79, 109, 122, 126, 151, 92, 80, 71, 118, 124, 144, 112, 109, 142, 95, 128, 136, 112, 83, 89, 70, 94, 163, 65, 89, 132, 154, 145, 112, 151, 161, 104, 131, 135, 69, 120, 59, 74, 35, 34, 65, 98, 96, 47, 77, 90, 34, 66, 49, 60, 89, 38, 100, 33, 70, 34, 31, 55, 90, 71, 49, 65, 58, 117, 86, 46, 126, 60, 53, 81, 87, 51, 133, 42, 49, 66, 116, 71, 141, 62, 47, 40, 61, 55, 29, 120, 134, 84, 59, 36, 49, 132, 18, 113, 130, 96, 41, 86, 117, 89, 59, 59, 80, 106, 63, 54, 60, 53, 111, 73, 40, 37, 35, 46, 60, 94, 120, 74, 52, 103, 43, 157, 92, 93, 57, 131, 35, 50, 55, 155, 62, 78, 107, 48, 151, 54, 61, 156, 96, 72, 73, 24, 51, 79, 44, 63, 63, 46, 76, 37, 47, 83, 28, 74, 72, 66, 80, 48, 93, 83, 40, 80, 69, 70, 38, 164, 55, 66, 74, 113, 57, 34, 91, 117, 74, 94, 113, 123, 134, 73, 68, 78, 42, 38, 29, 67, 138, 19, 41, 100, 50, 69, 115, 84, 67, 169, 93, 64, 103, 234, 122, 219, 146, 67, 175, 140, 84, 190, 146, 107, 119, 91, 144, 174, 122, 108, 94, 126, 138, 105, 49, 40, 18, 27, 42, 39, 164, 54, 66, 51, 104, 86, 61, 79, 84, 27, 35, 13, 57, 104, 33, 45, 45, 38, 38, 39, 61, 32, 75, 34, 77, 51, 51, 33, 115, 63, 33, 29, 53, 37, 15, 51, 71, 8, 94, 46, 65, 22, 14, 82, 43, 85, 52, 52, 34, 100, 92, 35, 43, 71, 28, 57, 69, 36, 71, 129, 195, 112, 75, 87, 154, 83, 81, 83, 89, 82, 57, 62, 93, 66, 52, 106, 81, 130, 91, 102, 76, 90, 96, 81, 43, 57, 31, 74, 31, 26, 24, 28, 46, 71, 38, 106, 92, 45, 28, 44, 32, 104, 14, 50, 37, 104, 30, 48, 72, 38, 32, 68, 38, 107, 43, 61, 43, 52, 78, 148, 61, 13, 45, 49, 97, 13, 103, 49, 55, 25, 21, 24, 53, 39, 88, 19, 69, 72, 62, 35, 39, 10, 33, 26, 23, 89, 110, 12, 32, 6, 43, 89, 44, 43, 39, 6, 89, 9, 61, 63, 31, 36, 9, 53, 12, 28, 120, 18, 37, 41, 22, 41, 62, 140, 60, 21, 50, 64, 37, 32, 6, 17, 52, 0, 63, 70, 49, 32, 23, 47, 34, 76, 62, 49, 0, 23, 13, 41, 20, 22, 20, 42, 72, 54, 42, 13, 53, 80, 34, 39, 41, 69, 42, 21, 25, 47, 57, 16, 6, 36, 6, 61, 11, 13, 52, 33, 114, 109, 67, 138, 95, 97, 28, 102, 159, 73, 27, 52, 74, 48, 19, 85, 30, 79, 64, 91, 53, 91, 102, 61, 64, 58, 114, 89, 94, 30, 43, 33, 66, 58, 64, 74, 58, 56, 81, 86, 86, 84, 71, 58, 56, 56, 46, 64, 76, 48, 94, 102, 97, 76, 140, 23, 38, 30, 30, 56, 53, 84, 36, 51, 36, 76, 46, 48, 97, 79, 165, 91, 89, 94, 91, 43, 48, 61, 61, 56, 66, 79, 48, 51, 86, 48, 64, 99, 69, 53, 102, 64, 86, 58, 61, 71, 58, 41, 117, 160, 46, 127, 147, 122, 94, 48, 53, 38, 56, 64, 58, 56, 94, 41, 81, 71, 58, 43, 64, 41, 38, 48, 61, 46, 43, 66, 46, 38, 69, 86, 107, 89, 64, 157, 124, 124, 43, 107, 61, 69, 124, 94)), .Names = c("x", "elev", "y")) fields/R/plot.spatialProcess.R0000644000175100001440000000715014627453256016054 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "plot.spatialProcess" <- function(x, digits = 4, which = 1:4, ...) { out <- x ########### plot 1 predicted vs. residua values fitted.values <- predict(out) if (any(which == 1)) { #temp <- summary(out) plot(fitted.values, out$y, ylab = "Y", xlab = " predicted values", bty = "n", ...) abline(0, 1, col="red") hold <- par("usr") title("Observations by predicted values") } ##################### plot 2 residual plot tauMLE<- out$summary["tau"] std.residuals <- (out$residuals * sqrt(out$weights))/tauMLE if (any(which == 2)) { plot(fitted.values, std.residuals, ylab = "(STD) residuals", xlab = " predicted values", bty = "n", ...) yline(0) } ################### plot 3 profile over lambda profileLambda<- !is.null( out$profileSummaryLambda) if (any(which == 3)& profileLambda ) { summary<- out$profileSummaryLambda mar.old<- par()$mar par( mar= mar.old + c(0,0,0,2) ) plot(summary$lambda, summary$lnProfileLike.FULL, xlab = "lambda", ylab ="log Profile Likelihood(lambda)", type = "p", log="x", pch=16,cex=.5, ...) splineFit <- splint(log(summary$lambda), summary$lnProfileLike.FULL, nx = 500) lines(exp(splineFit$x),splineFit$y, lwd = 2, col = "red") xline( out$lambda.MLE ) usr.save <- par()$usr RGCV<-range( summary[,"GCV" ] ) # 8% expansion of scale delta<- (RGCV[2]- RGCV[1])* .08 usr.save[3:4]<- c( RGCV[1] -delta, RGCV[2]+ delta) par( usr= usr.save, ylog=FALSE) points(summary$lambda, summary$GCV, lty=2, lwd=2, col="blue") axis( side=4, col="blue") mtext( side=4, line=2, "GCV function",cex=.75, col="blue") title("Profile likelihood over lambda", cex = 0.6) par( mar=mar.old) } #################### plot 4 profile over aRange (range) profileARange<- !is.null(out$profileSummaryARange) if ( any(which == 4) & profileARange ) { summary<- out$profileSummaryARange plot(summary$aRange, summary$lnProfileLike.FULL, pch=16, xlab="aRange (range parameter)", ylab="log Profile Likelihood (aRange)") title("Profile likelihood for aRange \n (range parameter)") xline( out$aRange.MLE, lwd=2, col="grey40") # xline( out$aRange.CI, lwd=4, col="grey70", lty=2) splineFit <- splint(summary$aRange, summary$lnProfileLike.FULL, nx = 500) lines(splineFit, lwd = 2, col = "red") } } fields/R/summary.spatialDesign.R0000644000175100001440000000216614627453256016370 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "summary.spatialDesign" <- function(object, digits = 4, ...) { x <- object class(x) <- ("summarySpatialDesign") x } fields/R/addMarginsGridList.R0000644000175100001440000000567114627453255015623 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER addMarginsGridList<- function( xObs, gridList, NNSize){ np<- NNSize # ranges and sizes for the inoput grid and the obs xMin<- min(xObs[,1]) xMax<- max(xObs[,1]) yMin<- min(xObs[,2]) yMax<- max(xObs[,2]) gridXMin<- gridList$x[1] gridYMin<- gridList$y[1] dx<- gridList$x[2] - gridList$x[1] nx<- length( gridList$x) dy<- gridList$y[2] - gridList$y[1] ny<- length( gridList$y) #### x grid block ind1<- floor( (xMin - gridXMin)/dx) ind2<- ceiling( (xMax - gridXMin)/dx) if( (ind1 < 0)| (ind2 > nx) ) { stop("locations outside of x grid" ) } indRangeX<- c( min( ind1 - np , 0), max( ind2 + np +1 ,nx )) xGrid<- (indRangeX[1]:(indRangeX[2] - 1)) *dx + gridXMin ind1<- floor( (yMin - gridYMin)/dy) ind2<- ceiling( (yMax - gridYMin)/dy) if( (ind1 < 0)| (ind2 > ny) ) { stop("locations outside of y grid" ) } #### y grid block indRangeY<- c( min( ind1 - np , 0), max( ind2 + np +1 , ny)) yGrid<- (indRangeY[1]:(indRangeY[2] - 1)) *dy + gridYMin # new gridList contains the orginal grid # up to round off based on integer steps in dx and dy and extends # it so that # there are np grid points beyond the min and max ranges for # the original ranges. gridListNew<- list( x = xGrid, y = yGrid) # these indices are used to locate the original grid as a subset of the larger # one # the strange coding is due to the fact that the original grid and the larger one # may differ at the level of roundoff error. indX<- c( which.min( abs(gridList$x[1] - gridListNew$x)), which.min( abs(gridList$x[nx] - gridListNew$x)) ) indY<- c( which.min( abs(gridList$y[1] - gridListNew$y)), which.min( abs(gridList$y[ny] - gridListNew$y)) ) return( list(gridListNew = gridListNew, gridList = gridList, indX= indX, indY= indY, np=np ) ) } #fields/R/print.mKrig.summary.R0000644000175100001440000000441014627453256015777 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER print.mKrigSummary <- function (x, digits = 4, ...) { cat("Call:\n") dput(x$call) print(x$summaryTable, quote = FALSE) # fixed effects are reported differently when fields are replicated. nData<- x$nData cat(" ", fill = TRUE) if( nData == 1 | x$collapseFixedEffect ){ cat(" ", fill = TRUE) cat("Summary of fixed effects", fill = TRUE) print( x$fixedEffectsTable) } else { cat("Estimated fixed effects found separately for each replicate field", fill = TRUE) } cat(" ", fill = TRUE) cat("Covariance Model:", x$cov.function, fill = TRUE) if (x$cov.function == "stationary.cov") { cat(" Covariance function: ", ifelse(is.null(x$args$Covariance), "Exponential", x$args$Covariance), fill = TRUE) } if (!is.null(x$args)) { cat(" Non-default covariance arguments and their values ", fill = TRUE) nlist <- as.character(names(x$args)) NL <- length(nlist) for (k in 1:NL) { cat(" Argument:", nlist[k], " ") if (object.size(x$args[[k]]) <= 1024) { cat("has the value(s): ", fill = TRUE) print(x$args[[k]]) } else { cat("too large to print value, size > 1K ...", fill = TRUE) } } } invisible(x) }fields/R/BD.R0000644000175100001440000001044014627453255012363 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "BD" <- structure(list(KCl = c(30, 30, 20, 50, 25, 10, 40, 15, 50, 10, 20, 45, 50, 35, 40, 35, 30, 15, 40, 30, 10, 50, 20, 10, 25, 45, 30, 25, 45, 10, 45, 10, 30, 30, 20, 50, 10, 40, 15, 20, 45, 50, 35, 35, 30, 15, 30, 10, 50, 20, 25, 45, 30, 25, 45, 10, 45, 10, 30, 30, 25, 50, 10, 40, 40, 15, 35, 15, 10, 40, 10, 25, 35, 35, 30, 25, 45, 50, 40, 20, 50, 30, 15, 10, 50, 15, 25, 45, 40), MgCl2 = c(5, 5, 4, 7, 7, 4, 4, 6, 6, 7, 4, 7, 5, 6, 5, 7, 7, 6, 3, 4, 4, 4, 3, 3, 3, 4, 6, 3, 6, 5, 3, 6, 5, 5, 4, 7, 4, 4, 6, 4, 7, 5, 6, 7, 7, 6, 4, 4, 4, 3, 3, 4, 6, 3, 6, 5, 3, 6, 5, 5, 7, 6, 7, 5, 3, 6, 3, 5, 6, 6, 7, 7, 7, 5, 4, 6, 5, 6, 3, 7, 7, 4, 3, 4, 3, 3, 4, 4, 7), KPO4 = c(25, 25, 20, 20, 30, 25, 20, 45, 35, 25, 40, 30, 45, 20, 40, 45, 40, 25, 35, 45, 30, 40, 30, 20, 45, 30, 30, 35, 20, 40, 40, 35, 25, 25, 20, 20, 25, 20, 45, 40, 30, 45, 20, 45, 40, 25, 45, 30, 40, 30, 45, 30, 30, 35, 20, 40, 40, 35, 25, 25, 30, 35, 25, 40, 35, 40, 25, 20, 45, 25, 20, 35, 40, 30, 35, 40, 35, 30, 45, 40, 25, 20, 30, 45, 40, 30, 25, 25, 25), dNTP = c(625, 625, 1500, 250, 1500, 1250, 1250, 1250, 1500, 1250, 250, 1250, 1000, 1000, 1500, 750, 1000, 250, 250, 1500, 1000, 750, 750, 500, 500, 500, 250, 1000, 500, 500, 1250, 750, 625, 625, 1500, 250, 1250, 1250, 1250, 250, 1250, 1000, 1000, 750, 1000, 250, 1500, 1000, 750, 750, 500, 500, 250, 1000, 500, 500, 1250, 750, 625, 625, 1500, 1500, 1250, 1500, 250, 1500, 1500, 750, 250, 1500, 750, 1250, 500, 1250, 1250, 1000, 250, 500, 1000, 750, 1000, 250, 500, 1250, 750, 1000, 500, 750, 500), lnya = c(12.904207, 12.672946, 9.172639, 9.86786, 9.87817, 6.423247, 6.131226, 6.011267, 8.44247, 12.072541, 11.252859, 9.088173, 10.089967, 13.946539, 8.985946, 9.197255, 9.786954, 6.398595, 8.051978, 4.969813, 5.609472, 4.94876, 5.874931, 6.50279, 6.811244, 9.69892, 10.348173, 8.101678, 11.703546, 13.745088, 8.830543, 11.643954, 13.034624, 12.479909, 8.166216, 9.711116, 8.665613, 7.659171, 7.992945, 11.140411, 9.588777, 8.074026, 13.478638, 10.410305, 10.817776, 7.575585, 7.021084, 7.912057, 6.44254, 6.042633, 7.130899, 9.680344, 8.318742, 7.654443, 9.595603, 12.456831, 8.064636, 11.060369, 12.128111, 13.191889, 9.268609, 8.273847, 12.441145, 8.958025, 8.538955, 7.886081, 8.422883, 8.565983, 11.342137, 8.457443, 8.38936, 10.606585, 11.3679, 8.665613, 8.773385, 9.384294, 9.78132, 12.25009, 9.510445, 13.311329, 11.14331, 9.441452, 9.056023, 8.846497, 8.76873, 9.130214, 12.657148, 9.239899, 10.210972)), .Names = c("KCl", "MgCl2", "KPO4", "dNTP", "lnya"), class = "data.frame", row.names = c("1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "30", "31", "32", "33", "34", "35", "36", "38", "39", "40", "43", "44", "45", "46", "48", "49", "50", "52", "53", "54", "55", "57", "58", "59", "60", "61", "62", "63", "64", "65", "66", "67", "68", "69", "70", "71", "72", "73", "75", "76", "77", "78", "79", "80", "81", "82", "83", "84", "85", "86", "87", "88", "89", "90", "91", "92", "93", "94", "95", "96")) fields/R/print.mKrig.R0000644000175100001440000000215614627453256014310 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER print.mKrig<- function (x, digits = 4,...){ object<- summary.mKrig( x,...) print.mKrigSummary(object, digits = digits) } fields/R/tim.colors.R0000644000175100001440000000367414627453256014203 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "tim.colors" <- function(n = 64, alpha = 1) { # tims original 64 color definition definition: orig <- c("#00008F", "#00009F", "#0000AF", "#0000BF", "#0000CF", "#0000DF", "#0000EF", "#0000FF", "#0010FF", "#0020FF", "#0030FF", "#0040FF", "#0050FF", "#0060FF", "#0070FF", "#0080FF", "#008FFF", "#009FFF", "#00AFFF", "#00BFFF", "#00CFFF", "#00DFFF", "#00EFFF", "#00FFFF", "#10FFEF", "#20FFDF", "#30FFCF", "#40FFBF", "#50FFAF", "#60FF9F", "#70FF8F", "#80FF80", "#8FFF70", "#9FFF60", "#AFFF50", "#BFFF40", "#CFFF30", "#DFFF20", "#EFFF10", "#FFFF00", "#FFEF00", "#FFDF00", "#FFCF00", "#FFBF00", "#FFAF00", "#FF9F00", "#FF8F00", "#FF8000", "#FF7000", "#FF6000", "#FF5000", "#FF4000", "#FF3000", "#FF2000", "#FF1000", "#FF0000", "#EF0000", "#DF0000", "#CF0000", "#BF0000", "#AF0000", "#9F0000", "#8F0000", "#800000") designer.colors( n, col=orig, alpha=alpha) } fields/R/residuals.Krig.R0000644000175100001440000000205614627453256014771 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER resid.Krig <- function(object, ...) { object$residuals } fields/R/ChicagoO3.R0000644000175100001440000000674014627453255013645 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER # test data -- some old ozone data for chicago area "ChicagoO3" <- structure(list(x = structure(c(10.2420950223404, 3.80376523711237, 9.10894898014071, 9.62401536295848, -2.42853799498812, -12.626852374789, -0.419779101996896, -7.88824165286121, 3.54623204570348, -16.9019033521803, -27.2032310085453, -6.18852258956094, -5.26140310048807, -12.2147992685346, -25.5550185835271, -15.6657440334172, 21.109995699806, 12.9204402129956, 33.8836419936979, 28.1148985061338, -8.81404505952784, 6.475624941694, -12.2040623901154, -18.5689928883614, 6.8907291046231, -14.9714234763093, -2.03401039835273, 10.6958505981398, 12.287083222701, -4.939739538856, 11.4568748968428, 20.2432463455088, 35.0486281566463, 28.0610414140067, 23.2873435403219, -20.2294095400778, -19.6759373228389, -16.9777602637997, -17.5312324810386, -18.4998088612067), .Dim = as.integer(c(20, 2)), .Dimnames = list(c("170310032", "170310037", "170310050", "170311002", "170311003", "170311601", "170314002", "170314003", "170317002", "170436001", "170890005", "170970001", "170971002", "170973001", "171110001", "171971008", "180891016", "180892008", "181270020", "181270024"), c("East.West", "North.South"))), y = c(36.4902936963152, 34.6396930821552, 31.6444005657229, 34.4646956838262, 37.7204739668803, 40.1342965426748, 37.0181086910068, 38.4001686365134, 44.0485589002946, 38.4870329290307, 42.2402282830657, 40.0049235817847, 42.1090485712195, 39.6319596353327, 42.8054712629932, 44.1097465187358, 35.1186331327201, 46.898470931915, 42.9564231070325, 46.6868555984414), lon.lat = structure(c(-87.546, -87.671, -87.568, -87.558, -87.792, -87.99, -87.753, -87.898, -87.676, -88.073, -88.273, -87.865, -87.847, -87.982, -88.241, -88.049, -87.335, -87.494, -87.087, -87.199, 41.757, 41.978, 41.708, 41.616, 41.984, 41.668, 41.855, 42.039, 42.062, 41.813, 42.05, 42.177, 42.391, 42.29, 42.221, 41.592, 41.6, 41.639, 41.631, 41.617), .Dim = as.integer(c(20, 2)), .Dimnames = list(c("170310032", "170310037", "170310050", "170311002", "170311003", "170311601", "170314002", "170314003", "170317002", "170436001", "170890005", "170970001", "170971002", "170973001", "171110001", "171971008", "180891016", "180892008", "181270020", "181270024"), c("lon", "lat")))), .Names = c("x", "y", "lon.lat")) fields/R/unrollZGrid.R0000644000175100001440000000334114627453256014354 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER unrollZGrid<- function( grid.list, ZGrid){ if( is.null(ZGrid)){ return(ZGrid) } if( is.list( ZGrid) ){ if( any(grid.list[[1]] != ZGrid[[1]]) |any(grid.list[[2]] != ZGrid[[2]]) ){ stop("grid list does not match grid for covariates") } # wipe out the x and y components of ZGrid ZGrid<- ZGrid$z } # check dimensions Zdim<- dim( ZGrid) nx<- length( grid.list[[1]]) ny<- length( grid.list[[2]]) if( (Zdim[1] != nx) | (Zdim[2] != ny) ){ stop( "Dimension of ZGrid does not match dimensions of location grid list.") } # reshape as a matrix where rows index locations. # Note that this works whether Zdim[3] exists or not! return( matrix( c(ZGrid), nrow= Zdim[1]*Zdim[2] )) } fields/R/profileMLE.R0000644000175100001440000000500114627453256014072 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER profileMLE<- function (obj, parName, parGrid=NULL, gridN=15, cov.params.start=NULL, GCV=FALSE, REML=FALSE, verbose=FALSE ){ if( class(obj)[1]!= "spatialProcess"){ stop("only implemented tfor spatialProcess objects") } if( obj$CASE==0){ stop("object needs to be have MLE parameters") } if(is.null(parGrid) ){ parGrid<- data.frame(obj$summary[parName] * seq( .5,2,length.out=gridN) ) names(parGrid)<- parName } # remove profile parameter as having a starting value if( is.null(cov.params.start)){ cov.params.startTmp<- as.list(obj$MLEInfo$pars.MLE) #cov.params.startTmp<- obj$cov.params.start cov.params.startTmp[parName]<- NULL } else{ cov.params.startTmp<-cov.params.start } # just evaluate other parameters at MLEs and don't optimze. # E.g. just use MLE lambda hat for all choice in in parGrid. # if( fast){ # cov.params.startTmp<-NULL # # } # cov.argsTemp<- obj$cov.argsFull # cov.argsTemp[parName]<- NULL profileInfo<- mKrigMLEGrid(obj$x, obj$y, weights = obj$weights, Z = obj$Z, mKrig.args = obj$mKrig.args, cov.function = obj$cov.function, cov.args = obj$cov.args, par.grid = parGrid, na.rm = TRUE, verbose = verbose, REML = REML, GCV = GCV, cov.params.start = cov.params.startTmp) return( profileInfo) }fields/R/plot.surface.R0000644000175100001440000000665214627453256014516 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "plot.surface" <- function(x, main = NULL, type = "C", zlab = NULL, xlab = NULL, ylab = NULL, levels = NULL, zlim = NULL, graphics.reset = NULL, labcex = 0.6, add.legend = TRUE, ...) { obj <- x old.par <- par(no.readonly = TRUE) if (is.na(match(type, c("b", "c", "C", "I", "p")))) { stop("plot type does not match b, C, I, or p.") } if (is.null(zlim)) { zlim = range(obj$z, na.rm = TRUE) } if (is.null(graphics.reset) & (type == "b")) { graphics.reset <- TRUE } else { graphics.reset <- FALSE } if (graphics.reset) { on.exit(par(old.par)) } if (is.null(xlab)) { if (is.null(obj$xlab)) xlab <- "X" else xlab <- obj$xlab } if (is.null(ylab)) { if (is.null(obj$ylab)) ylab <- "Y" else ylab <- obj$ylab } if (is.null(zlab)) { if (is.null(obj$zlab)) zlab <- "Z" else zlab <- obj$zlab } if (is.null(main)) if (!is.null(obj$main)) main <- obj$main if (type == "b") set.panel(1, 2, TRUE) if (type == "p" | type == "b") { if (type == "b") { add.legend <- FALSE old.mar <- par()$mar par(mar = c(0, 5, 0, 0)) } drape.plot(obj, xlab = xlab, ylab = ylab, zlab = zlab, zlim = zlim, add.legend = add.legend, ...) if (!is.null(main)) title(main) } if (type == "I") { image.plot(obj$x, obj$y, obj$z, xlab = xlab, ylab = ylab, zlim = zlim, ...) if ((!is.null(main)) & type != "b") title(main) } if (type == "c") { if (is.null(levels)) levels <- pretty(obj$z[!is.na(obj$z)], 5) contour(obj$x, obj$y, obj$z, levels = levels, labcex = labcex, lwd = 2, ...) if ((!is.null(main)) & type != "b") title(main) } if (type == "b" | type == "C") { if (type == "b") { par(mar = old.mar) } image.plot(obj$x, obj$y, obj$z, xlab = xlab, ylab = ylab, graphics.reset = graphics.reset, zlim = zlim, ...) if (is.null(levels)) levels <- pretty(obj$z[!is.na(obj$z)], 5) contour(obj$x, obj$y, obj$z, add = TRUE, levels = levels, labcex = labcex, col = "black", lwd = 2) if ((!is.null(main)) & type != "b") title(main) } invisible() } fields/R/rdist.earth.vec.R0000644000175100001440000000276214627453256015112 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER rdist.earth.vec = function(x1, x2, miles=TRUE, R=NULL) { #set default radius if(is.null(R)) { if(miles) R = 3963.34 else R = 6378.388 } #convert lon/lat to radians x1 = x1 * (pi/180) x2 = x2 * (pi/180) #calculate distances using Haversine method lonDist2 = (x2[,1] - x1[,1]) * (1/2) latDist2 = (x2[,2] - x1[,2]) * (1/2) a = sin(latDist2) * sin(latDist2) + cos(x1[, 2]) * cos(x2[, 2]) * sin(lonDist2) * sin(lonDist2) return(2 * atan2(sqrt(a), sqrt(1 - a)) * R) } fields/R/makeMultiIndex.R0000644000175100001440000000430414627453256015021 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER makeMultiIndex<- function(M){ # M are L integers with product prodM # Will create a prodM by L matrix that is all combinations of (1:M[i]) for i =1,2, ...L # This is organized in the standard array ordering where the first column varies the fastest # for M = c( 3,2,4) # 24 rows bigIndex = 1,1,1 # 2,1,1 # 3,1,1 # 1,2,1 # 2,2,1 # 3,2,1 # etc # ending at # 2,2,4 # 3,2,4 L<- length( M) # qucik return for L =1 and 2 if( L ==1){ bigIndex<- cbind(1:M[1] ) } if( L==2){ bigIndex<- cbind( rep(1:M[1], M[2]), rep( 1:M[2], rep(M[1], M[2]) ) ) } if( L > 2){ prodM<- prod( M) bigIndex<-matrix( NA, prodM,L) for ( k in 1: L){ if( k ==1){ ML<- 1 } else{ ML<- prod( M[1: (k-1)] ) } if( k ==L){ MU<- 1} else{ MU<-prod( M[ (k+1) : L ] ) } gridTmp<- rep( 1:M[k], rep(ML, M[k]) ) bigIndex[,k]<- rep( gridTmp, MU) } } return( bigIndex ) } fields/R/bisection.search.R0000644000175100001440000000323614627453255015326 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "bisection.search" <- function(x1, x2, f, tol = 1e-07, niter = 25, f.extra = NA, upcross.level = 0) { f1 <- f(x1, f.extra) - upcross.level f2 <- f(x2, f.extra) - upcross.level if (f1 > f2) stop(" f1 must be < f2 ") iter <- niter for (k in 1:niter) { xm <- (x1 + x2)/2 fm <- f(xm, f.extra) - upcross.level if (fm < 0) { x1 <- xm f1 <- fm } else { x2 <- xm f2 <- fm } if (abs(fm) < tol) { iter <- k break } } xm <- (x1 + x2)/2 fm <- f(xm, f.extra) - upcross.level list(x = xm, fm = fm, iter = iter) } fields/R/sim.Krig.R0000644000175100001440000001143714627453256013571 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "sim.Krig" <- function(object, xp, M = 1, verbose = FALSE, ...) { tau2 <- object$best.model[2] sigma <- object$best.model[3] # # check for unique rows of xp if (any(duplicated(xp))) { stop(" predictions locations should be unique") } # # set up various sizes of arrays m <- nrow(xp) n <- nrow(object$xM) N <- length(object$y) if (verbose) { cat(" m,n,N", m, n, N, fill = TRUE) } #transform the new points xc <- object$transform$x.center xs <- object$transform$x.scale xpM <- scale(xp, xc, xs) # complete set of points for prediction. # check for replicates and adjust x <- rbind(object$xM, xpM) if (verbose) { cat("full x ", fill = TRUE) print(x) } # # find indices of all rows of xp that correspond to rows of # xM and then collapse x to unique rows. rep.x.info <- fields.duplicated.matrix(x) x <- as.matrix(x[!duplicated(rep.x.info), ]) if (verbose) { cat("full x without duplicates ", fill = TRUE) print(x) } N.full <- nrow(x) if (verbose) { cat("N.full", N.full, fill = TRUE) } # these give locations in x matrix to reconstruct xp matrix xp.ind <- rep.x.info[(1:m) + n] if (verbose) { print(N.full) print(x) } if (verbose) { cat("reconstruction of xp from collapsed locations", fill = TRUE) print(x[xp.ind, ]) } # # Sigma is full covariance at the data locations and at prediction points. # Sigma <- sigma * do.call(object$cov.function.name, c(object$args, list(x1 = x, x2 = x))) # # square root of Sigma for simulating field # Cholesky is fast but not very stable. # # the following code line is similar to chol(Sigma)-> Scol # but adds possible additional arguments controlling the Cholesky # from the Krig object. # Schol <- do.call("chol", c(list(x = Sigma), object$chol.args)) # # output matrix to hold results N.full <- nrow(x) out <- matrix(NA, nrow = m, ncol = M) # # find conditional mean field from initial fit # don't multiply by sd or add mean if this is # a correlation model fit. # (these are added at the predict step). h.hat <- predict(object, xp, ...) # marginal standard deviation of field. temp.sd <- 1 # # # this is not 1 if Krig object is a corelation model. if (object$correlation.model) { if (!is.na(object$sd.obj[1])) { temp.sd <- predict(object$sd.obj, x) } } # # Define W2i for simulating errors. # W2i <- Krig.make.Wi(object)$W2i for (k in 1:M) { # simulate full field h <- t(Schol) %*% rnorm(N.full) # value of simulated field at observations # # NOTE: fixed part of model (null space) need not be simulated # because the estimator is unbiased for this part. # the variability is still captured because the fixed part # is still estimated as part of the predict step below h.data <- h[1:n] # expand the values according to the replicate pattern h.data <- h.data[object$rep.info] # create synthetic data y.synthetic <- h.data + sqrt(tau2) * W2i %d*% rnorm(N) # predict at xp using these data # and subtract from 'true' value # note that true values of field have to be expanded in the # case of common locations between xM and xp. h.true <- (h[xp.ind]) temp.error <- predict(object, xp, y = y.synthetic, eval.correlation.model = FALSE, ...) - h.true # add the error to the actual estimate (conditional mean) # and adjust by marginal standard deviation out[,k ] <- h.hat + temp.error * temp.sd } out } fields/R/stats.R0000644000175100001440000000336414627453256013244 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "stats" <- function(x, by) { if (!missing(by)) { x <- cat.to.list(c(x), by) } if (!is.list(x) & !is.matrix(x)) x <- matrix(x, ncol = 1) if (is.list(x)) { ncol <- length(x) out <- matrix(NA, ncol = ncol, nrow = length(describe())) dimnames(out) <- list(describe(), names(x)) for (j in (1:ncol)) { if (is.numeric(x[[j]])) { out[, j] <- describe(x[[j]]) } } return(out) } if (is.matrix(x)) { nc <- ncol(x) out <- matrix(NA, ncol = nc, nrow = length(describe())) dimnames(out) <- list(describe(), dimnames(x)[[2]]) for (j in (1:nc)) { out[, j] <- describe(x[, j]) } return(out) } } fields/R/ExponentialUpper.R0000644000175100001440000000317014627453255015402 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER ExponentialUpper = function(distMat, range = 1, alpha = 1/range, theta=NULL) { # theta argument has been depreciated. if( !is.null( theta)){ aRange<- theta } # Evaluates the exponential covariance function over the upper triangle of the distance matrix if(nrow(distMat) != ncol(distMat)) stop('distance matrix is non-symmetric. Should not be calling ExponentialUpper.') return(.Call("ExponentialUpperC", as.double(distMat), as.integer(nrow(distMat)), as.double(alpha), PACKAGE = "fields")) #convert ans to standard matrix #ans = ans[[1]] #dim(ans) = dim(distMat) #return(ans) } fields/R/rdist.R0000644000175100001440000000264614627453256013235 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "rdist" <- function(x1, x2 = NULL, compact = FALSE) { if (!is.matrix(x1)) { x1 <- as.matrix(x1) } if (is.null(x2)) { storage.mode(x1) <- "double" if (compact) return(dist(x1)) else return(.Call("RdistC", x1, x1, PACKAGE = "fields")) } else { if (!is.matrix(x2)) { x2 <- as.matrix(x2) } storage.mode(x1) <- "double" storage.mode(x2) <- "double" return(.Call("RdistC", x1, x2, PACKAGE = "fields")) } } fields/R/bplot.family.R0000644000175100001440000000407714627453255014507 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER bplot <- function(x, by, pos = NULL, at = pos, add = FALSE, boxwex = 0.8, xlim = NULL, ...) { if (!missing(by)) { x <- split(c(x), as.factor(by)) } if (!add & !is.null(at) & is.null(xlim)) { xlim <- range(at) } if (!is.null(at)) { boxwex <- boxwex * min(diff(sort(at))) } boxplot(x, at = at, xlim = xlim, add = add, boxwex = boxwex, ...) } bplot.xy<- function (x, y, N = 10, breaks = pretty(x, N, eps.correct = 1), plot = TRUE,axes=TRUE, ...) { NBIN <- length(breaks) - 1 centers <- (breaks[1:NBIN] + breaks[2:(NBIN + 1)])/2 obj <- split(y, cut(x, breaks)) if (length(obj) == 0) { stop("No points within breaks") } if (plot) { bplot(obj, at = centers, show.names = FALSE, axes = axes, ...) if( axes){ axis(1) } } else { return(list(centers = centers, breaks = breaks, boxplot.obj = boxplot(obj, plot = FALSE))) } } fields/R/US.R0000644000175100001440000000206114627453255012425 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "US" <- function(...) { map("state", ...) invisible() } fields/R/summary.spatialProcess.R0000644000175100001440000001320214627453256016566 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER summary.spatialProcess <- function(object, ...) { # output list outObject<- list() digits<- 4 if (is.matrix(object$residuals)) { n <- nrow(object$residuals) nData <- ncol(object$residuals) } else { n <- length(object$residuals) nData <- 1 } c1 <- "Number of Observations:" c2 <- n if (nData > 1) { c1 <- c(c1, "Number of data sets fit:") c2 <- c(c2, nData) } c1 <- c(c1, "Degree of polynomial in fixed part: ") if(object$m !=0 ){ c2 <- c(c2, object$m - 1) } else{ c2 <- c(c2, NA) } c1 <- c(c1, "Total number of parameters in fixed part: ") c2 <- c(c2, object$nt) if (object$nZ > 0) { c1 <- c(c1, "Number of additional covariates (Z)") c2 <- c(c2, object$nZ) } if (!is.na(object$gamma[1]) ) { c1 <- c(c1, "Number of common covariates (ZCommon)") c2 <- c(c2, length(object$gamma)) } c1 <- c(c1, "sigma Process stan. dev: ") c2 <- c(c2, signif( sqrt(object$MLESummary["sigma2"]), digits)) c1 <- c(c1, "tau Nugget stan. dev:") c2 <- c(c2, signif(object$MLESummary["tau"], digits)) c1 <- c(c1, "lambda tau^2/sigma^2: ") c2 <- c(c2, signif(object$MLESummary["lambda"], digits)) c1 <- c(c1, "aRange parameter (in units of distance): ") c2 <- c(c2, signif(object$MLESummary["aRange"], digits)) if (!is.na(object$eff.df)) { c1 <- c(c1, "Approx. degrees of freedom for curve") c2 <- c(c2, signif(object$eff.df, digits)) if (length(object$trA.info) < object$np) { c1 <- c(c1, " Standard Error of df estimate: ") c2 <- c(c2, signif(sd(object$trA.info)/sqrt(length(object$trA.info)), digits)) } } c1 <- c(c1, "log Likelihood: ") c2 <- c(c2, object$summary["lnProfileLike.FULL"]) c1 <- c(c1, "log Likelihood REML: ") c2 <- c(c2, object$summary["lnProfileREML.FULL"]) summaryStuff <- cbind(c1, c2) dimnames(summaryStuff) <- list(rep("", dim(summaryStuff)[1]), rep("", dim(summaryStuff)[2])) ########### outObject$summaryTable <- summaryStuff outObject$collapseFixedEffect <- object$collapseFixedEffect outObject$CITable <- object$CITable ########### if (!is.null(object$MLEInfo)) { outObject$MLEpars <- names(object$MLEInfo$pars.MLE) outObject$MLESummary <- object$summary } else{ outObject$MLEpars <- NA outObject$MLESummary <- object$summary } ########### information for SE for fixed effects if (!is.null(object$beta)){ if (outObject$collapseFixedEffect | (nData == 1)) { outObject$fixedEffectsCov <- object$fixedEffectsCov SE <- sqrt(diag(outObject$fixedEffectsCov)) beta <- object$beta[, 1] SEbeta <- SE[1:length(beta)] pValue <- pnorm(abs(beta / SEbeta), lower.tail = FALSE) * 2 outObject$fixedEffectsTable <- cbind(signif(beta, digits), signif(SEbeta, digits), signif(pValue, digits)) # get row names if (is.null(object$fixedEffectNames)) { outObject$fixedEffectNames <- paste0("d", 1:(object$nt)) } else{ outObject$fixedEffectNames <- object$fixedEffectNames } dimnames(outObject$fixedEffectsTable) <- list(outObject$fixedEffectNames, c("estimate", "SE", "pValue")) } else{ # if more that one realization just summarize the coefficients outObject$fixedEffectsTable <- stats(t(object$beta)) } } if (is.null(object$beta)) { outObject$fixedEffectsTable <- NA } if (!is.null(object$gamma)) { gamma <- object$gamma if( object$collapseFixedEffect){ SE <- sqrt(diag(object$fixedEffectsCov)) SEgamma <- SE[(1:length(gamma)) + length(beta)] } else{ SEgamma <- sqrt(diag(object$fixedEffectsCovCommon)) } pValue <- pnorm(abs(gamma / SEgamma), lower.tail = FALSE) * 2 outObject$fixedEffectsTableCommon <- cbind(signif(gamma, digits), signif(SEgamma, digits), signif(pValue, digits)) tmp <- paste0("gamma", 1:length(gamma)) dimnames(outObject$fixedEffectsTableCommon) <- list(tmp, c("estimate", "SE", "pValue")) } if (is.null(object$gamma)) { outObject$fixedEffectsTableCommon <- NA } ##################### outObject$nData <- nData outObject$call <- object$call outObject$cov.function <- object$cov.function outObject$args <- object$args outObject$nonzero.entries <- object$nonzero.entries outObject$MLEInfo <- object$MLEInfo class(outObject) <- "spatialProcessSummary" return(outObject) } fields/R/minitri.R0000644000175100001440000001054214627453256013555 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "minitri" <- structure(list(swim = c(13.77, 14.25, 12.4, 13.6, 11.23, 14.6, 15.63, 13.62, 17.03, 13.1, 16.5, 15.57, 14.28, 16.13, 14.98, 15.65, 14.55, 13.73, 14.67, 14.63, 12.53, 16.52, 14.45, 17.23, 15.77, 13.53, 17.38, 16.58, 16.97, 12.9, 15.48, 15.6, 16.43, 17.37, 15.65, 20.17, 16.57, 15.75, 18.32, 16.15, 18.77, 19.55, 17.05, 15.75, 17.47, 22.18, 12.78, 19.05, 17, 18.65, 18.38, 18.03, 18.08, 18.22, 21.3, 17.82, 16, 15.3, 19.8, 16.33, 14.9, 18.08, 17, 24.77, 17.03, 21.72, 14.77, 17.28, 19.88, 19.75, 18.17, 20.67, 17.6, 18.07, 20.53, 16.78, 18.42, 21.43, 25.35, 16.37, 18.88, 20.3, 21.93, 20, 19.42, 16.97, 15.25, 22.52, 16.8, 17.58, 20.45, 21.78, 17.92, 24.83, 20.38, 20.37, 28.35, 23.95, 25.15, 18.57, 19.95, 26.22, 22.08, 25.77, 23.7, 26.15, 18.05, 30.7, 29.88, 30.77), bike = c(39.72, 39, 42.2, 39.95, 41.72, 42.25, 43.77, 42.17, 40.63, 44.68, 43.63, 42.78, 41.7, 45.57, 42.83, 44.52, 43.9, 45.73, 43.05, 44.9, 48.07, 44.93, 47.87, 45.55, 46.1, 44.6, 45.72, 44.73, 46.85, 49.4, 47.43, 44.52, 43.67, 47.7, 48.57, 45.78, 47.35, 45.63, 46.47, 47.12, 49.62, 48.5, 54.4, 49.4, 48.77, 46.97, 49.92, 48.98, 50.57, 49.52, 52.58, 47.62, 50.05, 51.75, 50.68, 52.28, 48.57, 50.38, 46.2, 49.93, 47.7, 52.68, 50.28, 46.12, 53.17, 51.63, 58.42, 55.3, 50.68, 51.82, 51.93, 48.82, 51.87, 55.4, 55.17, 53.82, 50.23, 47.92, 50.98, 51.95, 53.47, 52.5, 53.98, 47.05, 58.92, 52.67, 52.1, 49.72, 61.33, 58.73, 58, 56.23, 58.95, 55.48, 61.03, 57.37, 54.68, 57.62, 58.52, 56.7, 63.82, 59.07, 66.03, 60.83, 62.37, 66.87, 75, 65.38, 68.25, 67.35), run = c(25.02, 25.68, 24.95, 27.65, 29.25, 26.83, 24.8, 28.73, 29, 28.1, 25.85, 29.4, 31.33, 26.2, 30.45, 29.32, 31.13, 30.48, 32.32, 30.62, 29.92, 30.12, 29.7, 29.25, 30.28, 34.07, 31.55, 33.5, 31.03, 32.72, 32.28, 35.1, 35.13, 30.48, 31.5, 30.37, 32.82, 35.8, 32.82, 34.67, 30.33, 30.95, 27.57, 34.08, 33.13, 30.57, 37.43, 32.12, 32.93, 32.4, 29.63, 35.08, 32.65, 30.98, 30.22, 32.12, 38.08, 37.23, 36.95, 36.72, 40.7, 32.87, 36.53, 33.72, 34.45, 31.47, 31.7, 33.03, 35.68, 34.88, 36.57, 37.27, 37.87, 34.32, 32.1, 37.33, 39.73, 39.07, 32.12, 40.52, 36.77, 36.57, 33.55, 42.55, 31.48, 40.8, 43.45, 39.03, 34.12, 37.12, 35.03, 36.45, 38.48, 36.25, 36.57, 40.9, 37.98, 37.98, 37.45, 45.9, 44.18, 45.02, 42.37, 45.38, 51.8, 45.88, 48.18, 51.8, 57.23, 57.35)), .Names = c("swim", "bike", "run"), row.names = c(" 1", " 2", " 3", " 4", " 5", " 6", " 7", " 8", " 9", " 10", " 11", " 12", " 13", " 14", " 15", " 16", " 17", " 18", " 19", " 20", " 21", " 22", " 23", " 24", " 25", " 26", " 27", " 28", " 29", " 30", " 31", " 32", " 33", " 34", " 35", " 36", " 37", " 38", " 39", " 40", " 41", " 42", " 43", " 44", " 45", " 46", " 47", " 48", " 49", " 50", " 51", " 52", " 53", " 54", " 55", " 56", " 59", " 60", " 61", " 62", " 64", " 65", " 66", " 68", " 69", " 70", " 71", " 72", " 73", " 74", " 75", " 76", " 77", " 78", " 79", " 80", " 81", " 82", " 83", " 84", " 85", " 86", " 87", " 88", " 89", " 90", " 91", " 92", " 93", " 96", " 97", " 98", "100", "102", "103", "104", "105", "106", "107", "108", "109", "110", "111", "112", "113", "114", "116", "117", "118", "119"), class = "data.frame") fields/R/sreg.family.R0000644000175100001440000002316314627624244014322 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "sreg" <- function(x, y, lambda = NA, df = NA, offset = 0, weights = rep(1, length(x)), cost = 1, nstep.cv = 80, tol = 1e-05, find.diagA = TRUE, trmin = 2.01, trmax = NA, lammin = NA, lammax = NA, verbose = FALSE, do.cv = TRUE, method = "GCV", rmse = NA, na.rm = TRUE, digits=8) { call <- match.call() out <- list() out$call <- match.call() class(out) <- c("sreg") out$cost <- cost out$offset <- offset out$method <- method # # some obscure components so that some of the Krig functions # work without size of 'null space' out$nt <- 2 out$knots <- NULL # # various checks on x and y including looking for NAs. out2 <- Krig.check.xY(x, y, NULL, weights, na.rm, verbose = verbose) out <- c(out, out2) # find duplicate rows of the x vector # unique x values are now in out$xM and the means of # y are in out$yM. out <- Krig.replicates(out, verbose = verbose, digits=digits) out <- c(out, out2) # number of unique locations out$np <- length(out$yM) if( out$np > 8e4){ stop("sreg FORTRAN not dimensioned for more than 80000 observations") } # now set maximum of trace for upper bound of GCV grid search if (is.na(trmax)) { trmax <- out$np * 0.99 } if (verbose) { print(out) } # # sorted unique values for prediction to make line plotting quick xgrid <- sort(out$xM) out$trace <- NA # # figure out if the GCV function should be minimized # and which value of lambda should be used for the estimate # old code used lam as argument, copy it over from lambda lam <- lambda if (is.na(lam[1]) & is.na(df[1])) { do.cv <- TRUE } else { do.cv <- FALSE } # # find lambda's if df's are given if (!is.na(df[1])) { lam <- rep(0, length(df)) for (k in 1:length(df)) { lam[k] <- sreg.df.to.lambda(df[k], out$xM, out$weightsM) } } # if (verbose) { cat("lambda grid", fill = TRUE) print(lam) } if (do.cv) { a <- gcv.sreg(out, lambda.grid = lam, cost = cost, offset = offset, nstep.cv = nstep.cv, verbose = verbose, trmin = trmin, trmax = trmax, rmse = rmse) # if the spline is evaluated at the GCV solution # wipe out lam grid # and just use GCV lambda. out$gcv.grid <- a$gcv.grid out$lambda.est <- a$lambda.est # # save GCV estimate if that is what is needed lam <- a$lambda.est[method, "lambda"] out$tauHat.GCV <- a$lambda.est[method, "tauHat"] } # # now evaluate spline at lambda either from specified grid or GCV value. b <- list() # lam can either be a grid or just the GCV value NL <- length(lam) NG <- length(xgrid) h <- log(lam) fitted.values<- residuals <- matrix(NA, ncol = NL, nrow = length(out$y)) predicted <- matrix(NA, ncol = NL, nrow = NG) trace <- rep(NA, NL) job <- as.integer(c(0, 3, 0)) if (find.diagA) { diagA <- matrix(NA, ncol = NL, nrow = out$np) # add switch to find diag of A. job <- as.integer(c(3, 3, 0)) } for (k in 1:NL) { # # call cubic spline FORTRAN, this is nasty looking but fast. # note lambda is passed in log scale. # what the routine does is controlled by array job # spline solution evaluated at xgrid # b <- .Fortran("css", PACKAGE="fields", h = as.double(h[k]), npoint = as.integer(out$np), x = as.double(out$xM), y = as.double(out$yM), wt = as.double(1/sqrt(out$weightsM)), sy = as.double(rep(0, out$np)), trace = as.double(0), diag = as.double(c(cost, offset, rep(0, (out$np - 2)))), cv = as.double(0), ngrid = as.integer(NG), xg = as.double(xgrid), yg = as.double(rep(0, NG)), job = as.integer(job), ideriv = as.integer(0), ierr = as.integer(0) ) if (find.diagA) { diagA[, k] <- b$diag } # note distinction between yM and y, xM and x # these are residuals at all data point locations not just the # unique set. trace[k] <- b$trace fitted.values[ , k] <- splint(out$xM, b$sy, out$x) residuals[ , k] <- out$y - fitted.values[,k] predicted[ , k] <- b$yg } out$call <- call out$lambda <- lam out$do.cv <- do.cv out$residuals <- residuals out$trace <- trace out$fitted.values <- fitted.values out$predicted <- list(x = xgrid, y = predicted) if (length(lambda[1]) == 1) { out$eff.df <- out$trace[1] } if (find.diagA) { out$diagA <- diagA } class(out) <- "sreg" return(out) } "sreg.df.to.lambda" <- function(df, x, wt, guess = 1, tol = 1e-05) { if (is.na(df)) return(NA) n <- length(unique(x)) info <- list(x = x, wt = wt, df = df) if (df > n) { warning(" df too large to match a lambda value") return(NA) } h1 <- log(guess) ########## find upper lambda for (k in 1:25) { tr <- sreg.trace(h1, info) if (tr <= df) break h1 <- h1 + 1.5 } ########## find lower lambda h2 <- log(guess) for (k in 1:25) { tr <- sreg.trace(h2, info) if (tr >= df) break h2 <- h2 - 1.5 } out <- bisection.search(h1, h2, sreg.fdf, tol = tol, f.extra = info)$x exp(out) } "sreg.fdf" <- function(h, info) { sreg.trace(h, info) - info$df } "sreg.fgcv" <- function(lam, obj) { sreg.fit(lam, obj)$gcv } "sreg.fgcv.model" <- function(lam, obj) { sreg.fit(lam, obj)$gcv.model } "sreg.fgcv.one" <- function(lam, obj) { sreg.fit(lam, obj)$gcv.one } "sreg.fit" <- function(lam, obj, verbose = FALSE) { np <- obj$np N <- obj$N nt <- 2 if (is.null(obj$cost)) { cost <- 1 } else { cost <- obj$cost } if (is.null(obj$offset)) { offset <- 0 } else { offset <- obj$offset } if (is.null(obj$tauHat.pure.error)) { tauHat.pure.error <- 0 } else { tauHat.pure.error <- obj$tauHat.pure.error } if (is.null(obj$pure.ss)) { pure.ss <- 0 } else { pure.ss <- obj$pure.ss } #print(np) #\tNOTE h <- log(lam) temp <- .Fortran("css", PACKAGE="fields", h = as.double(log(lam)), npoint = as.integer(np), x = as.double(obj$xM), y = as.double(obj$yM), wt = as.double(sqrt(1/obj$weightsM)), sy = as.double(rep(0, np)), trace = as.double(0), diag = as.double(rep(0, np)), cv = as.double(0), ngrid = as.integer(0), xg = as.double(0), yg = as.double(0), job = as.integer(c(3, 0, 0)), ideriv = as.integer(0), ierr = as.integer(0)) rss <- sum((temp$sy - obj$yM)^2 * obj$weightsM) MSE <- rss/np if ((N - np) > 0) { MSE <- MSE + pure.ss/(N - np) } trA <- temp$trace den <- (1 - (cost * (trA - nt - offset) + nt)/np) den1 <- (1 - (cost * (trA - nt - offset) + nt)/N) # If the denominator is negative then flag this as a bogus case # by making the GCV function 'infinity' # tauHat <- sqrt((rss + pure.ss)/(N - trA)) GCV <- ifelse(den > 0, MSE/den^2, NA) gcv.model <- ifelse((den > 0) & ((N - np) > 0), pure.ss/(N - np) + (rss/np)/(den^2), NA) gcv.one <- ifelse(den > 0, ((pure.ss + rss)/N)/(den1^2), NA) list(trace = trA, gcv = GCV, rss = rss, tauHat = tauHat, gcv.model = gcv.model, gcv.one = gcv.one) } "sreg.fs2hat" <- function(lam, obj) { sreg.fit(lam, obj)$tauHat^2 } "sreg.trace" <- function(h, info) { N <- length(info$x) #\th <- log(lam) temp <- .Fortran("css", PACKAGE="fields", h = as.double(h), npoint = as.integer(N), x = as.double(info$x), y = as.double(rep(0, N)), wt = as.double(1/sqrt(info$wt)), sy = as.double(rep(0, N)), trace = as.double(0), diag = as.double(rep(0, N)), cv = as.double(0), ngrid = as.integer(0), xg = as.double(0), yg = as.double(0), job = as.integer(c(3, 0, 0)), ideriv = as.integer(0), ierr = as.integer(0) )$trace return(temp) } fields/R/predictSurface.Krig.R0000644000175100001440000000555614627453256015751 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "predictSurface.Krig" <- function(object, grid.list = NULL, extrap = FALSE, chull.mask = NA, nx = 80, ny = 80, xy = c(1,2), verbose = FALSE, ZGrid=NULL, drop.Z= FALSE, just.fixed=FALSE, ...) { if( is.null(ZGrid) & !drop.Z & (!is.null(object$Z)) ) { stop("Need to specify covariate (Z) values or set drop.Z==TRUE") } # create a default grid if it is not passed if (is.null(grid.list)) { # in more than 2-D # default is 80X80 grid on first two variables # rest are set to median value of the x's grid.list <- fields.x.to.grid(object$x, nx = nx, ny = ny, xy = xy) } # do some checks on Zgrid and also reshape as a matrix # rows index grid locations and columns are the covariates # (as Z in predict). # if ZGrid is NULL just returns that back Z<- unrollZGrid( grid.list, ZGrid) xg <- make.surface.grid(grid.list) # NOTE: the predict function called will need to do some internal the checks # whether the evaluation of a large number of grid points (xg) makes sense. if( verbose){ print( dim( xg)) print( nrow( xg)) print( drop.Z) print( dim( Z)) } # if extrapolate is FALSE set all values outside convex hull to NA if (!extrap) { if( is.null( object$x)){ stop("need and x matrix in object") } if (is.na(chull.mask)) { chull.mask <- unique.matrix(object$x[, xy]) } indexGood<- in.poly(xg[, xy], xp = chull.mask, convex.hull = TRUE) if( verbose){ print( sum( indexGood) ) } } else{ indexGood<- rep( TRUE, nrow( xg)) } out<- rep( NA, nrow(xg)) # here is the heavy lifting out[indexGood] <- predict(object, x=xg[indexGood,], Z=Z[indexGood,], drop.Z= drop.Z, just.fixed=just.fixed, ...) # reshape as list with x, y and z components out <- as.surface( xg, out ) # # return(out) } fields/R/fields.derivative.poly.R0000644000175100001440000000320414627453255016467 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER fields.derivative.poly <- function(x, m, dcoef) { # dimension of x locations # goal is find partial derivative matrix d <- ncol(x) out <- fields.mkpoly(rbind(x[1, ]), m) ptab <- attr(out, "ptab") if (nrow(ptab) != length(dcoef)) { stop(" rows of ptab not equal to length of dcoef") } hold <- matrix(NA, ncol = d, nrow = nrow(x)) for (k in 1:d) { nonzero <- ptab[, k] != 0 ptemp <- matrix(ptab[nonzero, ], ncol = d) dtemp <- dcoef[nonzero] dtemp <- dtemp * ptemp[, k] ptemp[, k] <- ptemp[, k] - 1 hold[, k] <- fields.evlpoly2(x, dtemp, ptemp) } return(hold) } fields/R/fields.duplicated.matrix.R0000644000175100001440000000253214627453255016767 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "fields.duplicated.matrix" <- function(mat, digits = 8) { nc <- ncol(mat) temp <- matrix(match(c(signif(mat, digits)), unique(c(signif(mat, digits)))), ncol = nc) temp2 <- format(temp[, 1]) if (nc > 1) { for (k in 2:nc) { temp2 <- paste(temp2, temp[, k], sep = "X") } } match(temp2, unique(temp2)) } fields/R/fields.convert.grid.R0000644000175100001440000000264514627453255015757 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "fields.convert.grid" <- function(midpoint.grid) { # converts from midpoints of a grid to boundaries # x are midpoints of grid # this will handle unequally spaced points x <- sort(midpoint.grid) n <- length(x) # interior boundaries xi <- (x[2:n] + x[1:(n - 1)])/2 # first and last. x1 <- x[1] - (x[2] - x[1])/2 xnp1 <- x[n] + (x[n] - x[(n - 1)])/2 #here you have it ... c(x1, xi, xnp1) } fields/R/confidenceIntervalMLE.R0000644000175100001440000000347714627453255016252 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER confidenceIntervalMLE<- function( obj, CILevel, verbose=FALSE){ if( is.na( CILevel)){ cat("CI not found") return(NULL) } MLEInfo<- obj$MLEInfo transformedMLEPars<- MLEInfo$optimResults$par sampleFisherInfo<- solve(-1*MLEInfo$optimResults$hessian) if( verbose){ print( sampleFisherInfo) } testD<- diag(sampleFisherInfo) if( any( testD<=0)){ SE<- rep( NA, length( testD) ) } else{ SE<- sqrt( diag(sampleFisherInfo )) } CITmp1<- transformedMLEPars - qnorm(CILevel)*SE CITmp2<- transformedMLEPars + qnorm(CILevel)*SE tableCI<- cbind( MLEInfo$parTransform( CITmp1, inv=TRUE), MLEInfo$parTransform( CITmp2, inv=TRUE) ) percentCI<- paste0(100* CILevel,"%") colnames(tableCI ) <- c( paste0("lower",percentCI), paste0("upper",percentCI) ) return( tableCI) }fields/R/print.Krig.R0000644000175100001440000000467014627453256014136 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "print.Krig" <- function(x, digits = 4, ...) { c1 <- "Number of Observations:" c2 <- length(x$residuals) # # print out null space poly info only if 'm' is used if (!is.null(x$args.null$m)) { c1 <- c(c1, "Degree of polynomial null space ( base model):") c2 <- c(c2, x$m - 1) } c1 <- c(c1, "Number of parameters in the null space") c2 <- c(c2, x$nt) c1 <- c(c1, "Parameters for fixed spatial drift") c2 <- c(c2, sum(x$ind.drift)) c1 <- c(c1, "Model degrees of freedom:") c2 <- c(c2, format(round(x$eff.df, 1))) c1 <- c(c1, "Residual degrees of freedom:") c2 <- c(c2, format(round(length(x$residuals) - x$eff.df, 1))) c1 <- c(c1, "GCV estimate for tau:") c2 <- c(c2, format(signif(x$tauHat.GCV, digits))) c1 <- c(c1, "MLE for tau:") c2 <- c(c2, format(signif(x$tauHat.MLE, digits))) c1 <- c(c1, "MLE for sigma:") c2 <- c(c2, format(signif(x$sigma.MLE, digits))) c1 <- c(c1, "lambda") c2 <- c(c2, format(signif(x$lambda, 2))) c1 <- c(c1, "User supplied sigma") c2 <- c(c2, format(signif(x$sigma, digits))) c1 <- c(c1, "User supplied tau^2") c2 <- c(c2, format(signif(x$tau2, digits))) sum <- cbind(c1, c2) dimnames(sum) <- list(rep("", dim(sum)[1]), rep("", dim(sum)[2])) cat("Call:\n") dput(x$call) print(sum, quote = FALSE) cat("Summary of estimates: \n") print( x$lambda.est) # print( x$warningTable) invisible(x) } fields/R/rad.cov.R0000644000175100001440000000762614627453256013447 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "Rad.cov" <- function(x1, x2=NULL, p = 1, m = NA, with.log = TRUE, with.constant = TRUE, C = NA, marginal = FALSE, derivative = 0) { # # mth order thin plate spline radial basis functions # in d dimensions # usually called with p = 2m-d # Because this is # a generalized covariance the marginal variance is not really # defined. # Thus, marginal is a dummy argument to be consistent with # other covariance functions # marginal = TRUE this should only be called within predictSE.Krig # and provides the correct calculation. # if (marginal) { return(rep(0, nrow(x1))) } # # coerce locations to matrices, if x2 is missing use x1 if (!is.matrix(x1)) x1 <- as.matrix(x1) if( is.null( x2)){ x2<- x1 } if (!is.matrix(x2)) x2 <- as.matrix(x2) d <- ncol(x1) n1 <- nrow(x1) n2 <- nrow(x2) if (is.na(m)) { m <- (d + p)/2 } else { p <- 2 * m - d } if (p < 0) { stop(" p is negative (m possibly too small)") } # parameter list to send to the FORTRAN par <- c(p/2, ifelse((d%%2 == 0) & (with.log), 1, 0)) # # multiply by constant if requested rbf.constant <- ifelse(with.constant, radbas.constant(m, d), 1) # compute matrix in FORTRAN if (is.na(C[1])) { temp <- .Fortran("radbas", PACKAGE="fields", nd = as.integer(d), x1 = as.double(x1), n1 = as.integer(n1), x2 = as.double(x2), n2 = as.integer(n2), par = as.double(par), k = as.double(rep(0, n1 * n2))) return(rbf.constant * matrix(temp$k, ncol = n2, nrow = n1)) } else { # do cross covariance matrix multiplication in FORTRAN if (derivative == 0) { # evaluate function not partial derivatives. C <- as.matrix(C) n3 <- ncol(C) temp <- .Fortran("multrb",PACKAGE="fields", nd = as.integer(d), x1 = as.double(x1), n1 = as.integer(n1), x2 = as.double(x2), n2 = as.integer(n2), par = as.double(par), c = as.double(C), n3 = as.integer(n3), h = as.double(rep(0, n1 * n3)), work = as.double(rep(0, n2)))$h return(rbf.constant * matrix(temp, nrow = n1, ncol = n3)) } else { if (ncol(C) > 1) { stop("Can only evaluate derivatives on one spline fit") } temp <- .Fortran("mltdrb", PACKAGE="fields", nd = as.integer(d), x1 = as.double(x1), n1 = as.integer(n1), x2 = as.double(x2), n2 = as.integer(n2), par = as.double(par), c = as.double(C), h = as.double(rep(0, n1 * d)), work = as.double(rep(0, n2)))$h return(rbf.constant * matrix(temp, nrow = n1, ncol = d)) } } stop("should not get here!") } fields/R/image.plot.R0000644000175100001440000001576314627453256014153 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "image.plot" <- function(..., add = FALSE, breaks= NULL, nlevel = 64, col = NULL, horizontal = FALSE, legend.shrink = 0.9, legend.width = 1.2, legend.mar = ifelse(horizontal, 3.1, 5.1), legend.lab = NULL, legend.line= 2, graphics.reset = FALSE, bigplot = NULL, smallplot = NULL, legend.only = FALSE, lab.breaks = NULL, axis.args = NULL, legend.args = NULL, legend.cex=1.0, midpoint = FALSE, border = NA, lwd = 1, verbose=FALSE) { # Thanks to S. Koehler and S. Woodhead # for comments on making this a better function # # save current graphics settings old.par <- par(no.readonly = TRUE) # set defaults for color scale # note this works differently than the image function. if( is.null(col)) { col<- tim.colors(nlevel)} else{ nlevel<- length( col) } # figure out zlim from passed arguments # also set the breaks for colors if they have not been passed, info <- imagePlotInfo(..., breaks=breaks, nlevel=nlevel) # breaks have been computed if not passed in the call breaks<- info$breaks if( verbose){ print(info) } if (add) { big.plot <- old.par$plt } if (legend.only) { graphics.reset <- TRUE } if (is.null(legend.mar)) { legend.mar <- ifelse(horizontal, 3.1, 5.1) } # figure out how to divide up the plotting real estate temp <- imageplot.setup(add = add, legend.shrink = legend.shrink, legend.width = legend.width, legend.mar = legend.mar, horizontal = horizontal, bigplot = bigplot, smallplot = smallplot) # bigplot has plotting region coordinates for image # smallplot has plotting coordinates for legend strip smallplot <- temp$smallplot bigplot <- temp$bigplot # draw the image in bigplot, just call the R base function # or poly.image for polygonal cells # note the logical switch # for poly.grid is parsed out of call from image.plot.info if (!legend.only) { if (!add) { par(plt = bigplot) } if (!info$poly.grid) { image(..., breaks=breaks, add = add, col = col) } else { poly.image(..., add = add,breaks=breaks, col = col, midpoint = midpoint, border = border, lwd.poly = lwd) } big.par <- par(no.readonly = TRUE) } ## ## check dimensions of smallplot if ((smallplot[2] < smallplot[1]) | (smallplot[4] < smallplot[3])) { par(old.par) stop("plot region too small to add legend\n") } # Following code draws the legend using the image function # and a one column image. # What might be confusing is the values of the "image" are the same # as the locations on the legend axis. # Moreover the image values are in the middle of each breakpoint category # thanks to Tobias Nanu Frechen and Matthew Flickinger # for sorting out some problems with the breaks position in the legend. ix <- 1:2 iy<- breaks nBreaks<- length( breaks) midpoints<- (breaks[1:(nBreaks-1)] + breaks[2:nBreaks] )/2 iz <- matrix(midpoints, nrow = 1, ncol = length(midpoints)) if( verbose){print(breaks) print( midpoints) print( ix) print( iy) print( iz) print( col)} # # next par call sets up a new plotting region just for the legend strip # at the smallplot coordinates par(new = TRUE, pty = "m", plt = smallplot, err = -1) # draw color scales the two cases are horizontal/vertical # add a label if this is passed. if (!horizontal) { image(ix, iy, iz, xaxt = "n", yaxt = "n", xlab = "", ylab = "", col = col, breaks=breaks) } else { image(iy, ix, t(iz), xaxt = "n", yaxt = "n", xlab = "", ylab = "", col = col, breaks=breaks) } # create the argument list to draw the axis # this avoids 4 separate calls to axis and allows passing extra # arguments. if (!is.null(lab.breaks)) { # axis with labels at break points axis.args <- c(list(side = ifelse(horizontal, 1, 4), mgp = c(3, 1, 0), las = ifelse(horizontal, 0, 2), at = breaks, labels = lab.breaks), axis.args) } else { # If lab.breaks is not specified ( with or without breaks), pretty # tick mark locations and labels are computed internally, # or as specified in axis.args at the function call axis.args <- c(list(side = ifelse(horizontal, 1, 4), mgp = c(3, 1, 0), las = ifelse(horizontal, 0, 2)), axis.args) } # # now add the axis to the legend strip. # notice how all the information is in the list axis.args do.call("axis", axis.args) # add a box around legend strip # box() # # add a label to the axis if information has been supplied # using the mtext function. The arguments to mtext are # passed as a list like the drill for axis (see above) # if (!is.null(legend.lab)) { legend.args <- list(text = legend.lab, side = ifelse(horizontal, 1, 4), line = legend.line, cex=legend.cex) # just guessing at a good default for line argument! } # add the label using mtext function if (!is.null(legend.args)) { do.call(mtext, legend.args) } # # clean up graphics device settings # reset to larger plot region with right user coordinates. mfg.save <- par()$mfg if (graphics.reset | add) { par(old.par) par(mfg = mfg.save, new = FALSE) invisible() } else { par(big.par) par(plt = big.par$plt, xpd = FALSE) par(mfg = mfg.save, new = FALSE) # Suggestion from Karline Soetaert # this is to reset margins to be based on the mar arguments # par(mar = par("mar")) or # par(mar = big.par$mar) # unfortunately this causes problems by allowing plotting outside of the # original plot region. invisible() } } fields/R/summary.mKrig.R0000644000175100001440000000757114627453256014657 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER summary.mKrig <- function(object, ...) { outObject<- list() digits<- 4 summaryObject<- object$summary if (is.matrix(object$residuals)) { n <- nrow(object$residuals) nData <- ncol(object$residuals) } else { n <- length(object$residuals) nData <- 1 } outObject$nData<-nData c1 <- "Number of Locations:" c2 <- n if (nData > 1) { c1 <- c(c1, "Number of data sets fit:") c2 <- c(c2, nData) } c1 <- c(c1, "Degree of polynomial null space ( base model):") if(object$m !=0 ){ c2 <- c(c2, object$m - 1) } else{ c2 <- c(c2, NA) } c1 <- c(c1, "Total number of parameters in base model") c2 <- c(c2, object$nt) if (object$nZ > 0) { c1 <- c(c1, "Number of additional covariates (Z)") c2 <- c(c2, object$nZ) } if (!is.na(object$eff.df)) { c1 <- c(c1, " Estimate Eff. degrees of freedom") c2 <- c(c2, signif(object$eff.df, digits)) if (length(object$trA.info) < object$np) { c1 <- c(c1, " Standard Error of Eff. Df ") c2 <- c(c2, signif(sd(object$trA.info)/sqrt(length(object$trA.info)), digits)) } } c1 <- c(c1, "Smoothing parameter") c2 <- c(c2, signif(summaryObject["lambda"], digits)) if (nData == 1) { c1 <- c(c1, "tau (nugget sd)") c2 <- c(c2, signif(summaryObject["tau"], digits)) c1 <- c(c1, "sigma (process sd)") c2 <- c(c2, signif(sqrt( summaryObject["sigma2"]), digits)) } c1 <- c(c1, "Nonzero entries in covariance") c2 <- c(c2, object$nonzero.entries) sum <- cbind(c1, c2) dimnames(sum) <- list(rep("", dim(sum)[1]), rep("", dim(sum)[2])) ########### save table of information and the call outObject$summaryTable<- sum outObject$call<- object$call outObject$collapseFixedEffect<- object$collapseFixedEffect ########### information for SE for fixed effects if( outObject$collapseFixedEffect | (nData==1)){ outObject$fixedEffectsCov<- object$fixedEffectsCov SE<- sqrt(diag(outObject$fixedEffectsCov)) beta<- object$beta[,1] print( beta) pValue<- pnorm(abs(beta/SE), lower.tail = FALSE)*2 if( !is.null(beta)){ outObject$fixedEffectsTable<- cbind( signif(beta, digits), signif(SE, digits), signif(pValue, digits) ) } else{ outObject$fixedEffectsTable<- NA } if( is.null( object$fixedEffectNames )){ outObject$fixedEffectNames<- paste0("d",1:(object$nt) ) } else{ outObject$fixedEffectNames<- object$fixedEffectNames } if(!is.null(beta)){ dimnames( outObject$fixedEffectsTable) <- list( outObject$fixedEffectNames, c("estimate", "SE", "pValue") ) } ########### save covariance information } outObject$cov.function<- object$cov.function outObject$args<- object$args class( outObject)<-"mKrigSummary" return( outObject) } fields/R/double.exp.R0000644000175100001440000000211714627453255014145 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER double.exp <- function(x) { # double exponential weight function 0.5 * exp(-abs(x)) } fields/R/summaryGCV.sreg.R0000644000175100001440000000333714627453256015102 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "summaryGCV.sreg" <- function(object, lambda, cost = 1, nstep.cv = 20, offset = 0, verbose = TRUE, ...) { out <- object tauHat.pure.error <- out$tauHat.pure.error pure.ss <- out$pure.ss nt <- 2 np <- out$np N <- out$N out$cost <- cost out$offset <- offset lambda.est <- rep(NA, 6) names(lambda.est) <- c("lambda", "trA", "GCV", "GCV.one", "GCV.model", "tauHat") # # fill in stuff for this lambda lambda.est[1] <- lambda temp <- sreg.fit(lambda, out) lambda.est[2] <- temp$trace lambda.est[3] <- temp$gcv lambda.est[4] <- temp$gcv.one if (!is.na(tauHat.pure.error)) { lambda.est[5] <- temp$gcv.model } lambda.est[6] <- temp$tauHat lambda.est } fields/R/Krig.R0000644000175100001440000003337214627453255013003 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "Krig" <- function(x, Y, cov.function = "stationary.cov", lambda = NA, df = NA, GCV = FALSE, Z = NULL, cost = 1, weights = NULL, m = 2, nstep.cv = 200, scale.type = "user", x.center = rep(0, ncol(x)), x.scale = rep(1, ncol(x)), sigma = NA, tau2 = NA, method = "REML", verbose = FALSE, null.function = "Krig.null.function", wght.function = NULL, offset = 0, na.rm = TRUE, cov.args = NULL, chol.args = NULL, null.args = NULL, wght.args = NULL, W = NULL, give.warnings = TRUE, mean.obj = NA, sd.obj = NA, ...) # the verbose switch prints many intermediate steps as an aid in debugging. # { # # create output list out <- list() ########################################################### # First series of steps simply store pieces of the passed # information to the output list (i.e. the Krig object) ########################################################## out$call <- match.call() # turn off warning based on options if( options()$warn < 0 ){ give.warnings<- FALSE } if( !is.na(mean.obj)|!is.na(sd.obj)){ stop( "correlation model no longer supported please use fields version 11.6") } # # save covariance function as its name # if( !is.character( cov.function)){ out$cov.function.name <- as.character(substitute(cov.function)) } else{ out$cov.function.name<-cov.function } # # save null space function as its name # out$null.function.name <- as.character(substitute(null.function)) # # save weight function as its name if it is not a NULL # if (is.null(wght.function)) { out$wght.function.name <- NULL } else { out$wght.function.name <- as.character(substitute(wght.function)) } out$W <- W if (verbose) { print(out$cov.function.name) print(out$null.function.name) print(out$wght.function.name) } # # logical to indicate if the 'C' argument is present in cov.function # -- a bit of esoteric R code! C.arg.missing <- all(names(formals(get(out$cov.function.name))) != "C") if (C.arg.missing) stop("Need to have C argument in covariance function\nsee Exp.cov.simple as an example") # # save parameters values possibly passed to the covariance function # also those added to call are assumed to be covariance arguments. if (!is.null(cov.args)) out$args <- c(cov.args, list(...)) else out$args <- list(...) # # default values for null space function out$null.args <- null.args # # set degree of polynomial null space if this is default # mkpoly is used so often is it helpful to include m argument # by default in Krig call. if (out$null.function.name == "Krig.null.function") { out$null.args <- list(m = m) out$m <- m } # # default values for Cholesky decomposition, these are important # for sparse matrix decompositions used in Krig.engine.fixed. if (is.null(chol.args)) { out$chol.args <- list(pivot = FALSE) } else { out$chol.args <- chol.args } # additional arguments for weight matrix. out$wght.args <- wght.args # # the offset is the effective number of parameters used in the GCV # calculations -- unless this is part of an additive model this # is likely zero out$offset <- offset # # the cost is the multiplier applied to the GCV eff.df # # lambda and df are two ways of parameterizing the smoothness # and are related by a monotonic function that unfortunately # depends on the locations of the data. # lambda can be used directly in the linear algebra, df # must be transformed to lambda numerically using the monotonic trransformation # tau2 is the error variance and sigma the multiplier for the covariance # method is how to determine lambda # the GCV logical forces the code to do the more elaborate decompositions # that faclitate estimating lambda -- even if a specific lambda value is # given. out$cost <- cost out$lambda <- lambda out$eff.df <- df out$tau2 <- tau2 out$sigma <- sigma out$method <- method out$GCV <- GCV # # correlation model information # set this to FALSE -- has been depreciated. # out$correlation.model <- FALSE # # transformation info out$scale.type <- scale.type out$x.center <- x.center out$x.scale <- x.scale # if (verbose) { cat(" Cov function arguments in call ", fill = TRUE) print(out$args) cat(" covariance function used is : ", fill = TRUE) print(out$cov.function.name) } ############################################################### # Begin modifications and transformations of input information # note that many of these manipulations follow a strategy # of passing the Krig object (out) to a function and # then appending the information from this function to # the Krig object (usually also called "out"). #In this way the Krig object is built up # in steps and the process is easier to follow. ############################################################### # various checks on x and Y including removal of NAs in Y # Here is an instance of adding to the Krig object # in this case also some onerous bookkeeping making sure arguments are consistent out2 <- Krig.check.xY(x, Y, Z, weights, na.rm, verbose = verbose) out <- c(out, out2) # find replicates and collapse to means and pool variances. # Transform unique x locations out2 <- Krig.transform.xY(out, verbose = verbose) out <- c(out, out2) # NOTE: knots have been transformed after this step ############################################################# # Figure out what to do ############################################################# # # this functions works through the logic of # what has been supplied for lambda out2 <- Krig.which.lambda(out) out[names(out2)] <- out2 # Make weight matrix for observations # ( this is proportional to the inverse square root of obs covariance) # if a weight function or W has not been passed then this is # diag( out$weightsM) for W # The checks represent a limitation of this model to # the WBW type decoposition and no replicate observations. out$nondiag.W <- (!is.null(wght.function)) | (!is.null(W)) # Do not continue if there there is a nondiagonal weight matrix # and replicate observations. if (out$nondiag.W) { if (out$knot.model | out$fixed.model) { stop("Non diagonal weight matrix for observations not supported\nwith knots or fixed lambda.") } if (!is.na(out$tauHat.pure.error)) { stop("Non diagonal weight matrix not implemented with replicate locations") } } # make weight matrix and its square root having passed checks out <- c(out, Krig.make.W(out, verbose = verbose)) # Do the intensive linear algebra to find the solutions # this is where all the heavy lifting happens. # # Note that all the information is passed as a list # including arguments to the cholesky decomposition # used within Krig.engine.fixed # # The results are saved in the component matrices # # if method=='user' then just evaluate at single lambda # fixed here means a fixed lambda # # For fixed lambda the decompositions with and without knots # are surprisingly similar and so are in one engine. ########################################################### if (out$fixed.model) { out$matrices <- Krig.engine.fixed(out, verbose = verbose) # The trace of A matrix in fixed lambda case is not easily computed # so set this to NA. out$eff.df <- NA } # alternative are # matrix decompositions suitable for # evaluation at many lambdas to facilitate GCV/REML estimates etc. # else{ # standard engine following the basic computations for thin plate splines out$matrices <- Krig.engine.default(out, verbose = verbose) # store basic information about decompositions } out$nt <- out$matrices$nt out$np <- out$matrices$np out$decomp <- out$matrices$decomp # # Now determine a logical vector to indicate coefficients tied to the # the 'spatial drift' i.e. the fixed part of the model # that is not due to the Z covariates. # NOTE that the spatial drift coefficients must be the first columns of the # M matrix if (is.null(out$Z)) { out$ind.drift <- rep(TRUE, out$nt) } else { mZ <- ncol(out$ZM) out$ind.drift <- c(rep(TRUE, out$nt - mZ), rep(FALSE, mZ)) } if (verbose) { cat("null df: ", out$nt, "drift df: ", sum(out$ind.drift), fill = TRUE) } ################################################# # Do GCV and REML search over lambda if not fixed or if GCV variable is TRUE # also does a search over likelihood for lambda. ################################################# if (!out$fixed.model | out$GCV) { if (verbose) { cat("call to KrigFindLambda", fill = TRUE) } gcv.out <- KrigFindLambda(out, nstep.cv = nstep.cv, verbose = verbose, cost = out$cost, offset = out$offset, give.warnings=FALSE) out$gcv.grid <- gcv.out$gcv.grid # save a handy summary table of the search results out$lambda.est <- gcv.out$lambda.est out$warningTable<- gcv.out$warningTable if( verbose){ cat("summaries from grid search/optimization", fill=TRUE) print(out$lambda.est) print(out$warningTable) } if( give.warnings){ #NOTE: only print out grid search warning for the method of interest. printGCVWarnings( gcv.out$warningTable, method=method) } # assign the preferred lambda either from GCV/REML/MSE or the user value # NOTE: gcv/reml can be done but the estimate is # still evaluted at the passed user values of lambda (or df) # If df is passed need to calculate the implied lambda value if (out$method != "user") { out$lambda <- gcv.out$lambda.est[out$method, 1] out$eff.df <- out$lambda.est[out$method, 2] } else { if (!is.na(out$eff.df)) { out$lambda <- Krig.df.to.lambda(out$eff.df, out$matrices$D) } else { out$eff.df <- Krig.ftrace(out$lambda, out$matrices$D) } # add in values to GCV table using these values # this the 7th row. lam.user <- out$lambda info<- gcv.out$info newRow<- c( lam.user, out$eff.df, Krig.fgcv(lam.user, info), sqrt(Krig.fs2hat(lam.user, info)), Krig.flplike(lam.user, info), NA ) out$lambda.est <- rbind( out$lambda.est,user = newRow) } } ########################## # end GCV/REML block ########################## # # Now we clean up what has happened and stuff # information into output object. # ########################################## # find coeficients at prefered lambda # and evaluate the solution at observations ########################################## # pass replicate group means -- no need to recalculate these. out2 <- Krig.coef(out, yM = out$yM, verbose = verbose) out <- c(out, out2) ####################################################################### # fitted values and residuals and predicted values for full model and # also on the null space (fixed # effects). But be sure to do this at the nonmissing x's. ################################################################## out$fitted.values <- predict.Krig(out, x = out$x, Z = out$Z, eval.correlation.model = FALSE) out$residuals <- out$y - out$fitted.values # # this is just M%*%d note use of do.call using function name Tmatrix <- do.call(out$null.function.name, c(out$null.args, list(x = out$x, Z = out$Z))) out$fitted.values.null <- as.matrix(Tmatrix) %*% out$d # # verbose block if (verbose) { cat("residuals", out$residuals, fill = TRUE) } # # find various estimates of tau and sigma out2 <- Krig.parameters(out) out <- c(out, out2) ################################################ # assign the 'best' model as a default choice # either use the user supplied values or the results from # optimization ################################################ passed.tau2 <- (!is.na(out$tau2)) if (out$method == "user" & passed.tau2) { out$best.model <- c(out$lambda, out$tau2, out$sigma) } else { # in this case lambda is from opt. or supplied by user out$best.model <- c(out$lambda, out$tauHat.MLE^2, out$sigmahat) } # Note: values in best.model are used in subsquent functions as the choice # for these parameters! # set class ########################## out$rhohat<- out$sigmahat class(out) <- c("Krig") return(out) } fields/R/profileCI.R0000644000175100001440000000272614627453256013763 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER profileCI<- function( obj, parName, CIlevel=.95, REML=FALSE){ y<- obj$summary[,ifelse(REML,"lnProfileREML.FULL", "lnProfileLike.FULL")] x<- obj$summary[,parName] logX<- log10( x) lGrid<- (seq( min(logX), max(logX),length.out=400)) yGrid<- splint( logX, y, lGrid) yMax<- max(yGrid) ChiLevel<- qchisq(.95,1) ind<- yMax - yGrid <= ChiLevel CI<- range( lGrid[ind] ) CI <- 10**CI return( CI) }fields/R/which.max.matrix.R0000644000175100001440000000265514627453256015301 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER which.max.matrix <- function(z) { if (!is.matrix(z)) { stop("Not a matrix") } m <- nrow(z) n <- ncol(z) # take care of NAs ind <- which.max(z) iy <- trunc((ind - 1)/m) + 1 ix <- ind - (iy - 1) * m return(cbind(ix, iy)) } which.max.image <- function(obj) { ind.z <- which.max.matrix(obj$z) return(list(x = obj$x[ind.z[, 1]], y = obj$y[ind.z[, 2]], z = obj$z[ind.z], ind = ind.z)) } fields/R/radbas.constant.R0000644000175100001440000000316514627453256015171 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "radbas.constant" <- function(m, d) { # local gamma function to avoid imprecision warnings for negative arguments. gamma.local <- function(x) { if (x < 0) { temp <- 1 while (x < 0) { temp <- temp * x x <- x + 1 } return(gamma(x)/temp) } else { gamma(x) } } if (d%%2 == 0) { Amd <- (((-1)^(1 + m + d/2)) * (2^(1 - 2 * m)) * (pi^(-d/2)))/(gamma(m) * gamma.local(m - d/2 + 1)) } else { Amd <- (gamma.local(d/2 - m) * (2^(-2 * m)) * (pi^(-d/2)))/gamma(m) } Amd } fields/R/setup.image.smooth.R0000644000175100001440000000400314627453256015626 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "setup.image.smooth" <- function(nrow = 64, ncol = 64, dx = 1, dy = 1, kernel.function = double.exp, aRange = 1, xwidth = nrow * dx, ywidth = ncol * dx, lambda = NULL, theta=NULL, ...) { # theta is depreciated if( !is.null(theta)){ aRange<- theta } # M2 <- round((nrow + xwidth/dx)/2) N2 <- round((ncol + ywidth/dy)/2) M <- 2 * M2 N <- 2 * N2 xi <- seq(-(M2 - 1), M2, 1) * dx xi <- xi/aRange yi <- seq(-(N2 - 1), (N2), 1) * dy yi <- yi/aRange dd <- ((matrix(xi, M, N)^2 + matrix(yi, M, N, byrow = TRUE)^2)) out <- matrix(kernel.function(dd, ...), nrow = M, ncol = N) out2 <- matrix(0, M, N) out2[M2, N2] <- 1 W = fft(out)/fft(out2) if (!is.null(lambda)) { # want fft(out) / ( fft(out2)*lambda + fft(out)) W = W/(lambda/fft(out2) + W) } list(W = W/(M * N), dx = dx, dy = dy, xwidth = xwidth, ywidth = ywidth, M = M, N = N, m = nrow, n = ncol, lambda = lambda, grid = list(x = xi, y = yi)) } fields/R/sim.rf.R0000644000175100001440000000245714627453256013306 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "sim.rf" <- function(obj) { n <- obj$n m <- obj$m M <- obj$M N <- obj$N if (any(Re(obj$wght) < 0)) { stop("FFT of covariance has negative\nvalues") } z <- fft(matrix(rnorm(N * M), ncol = N, nrow = M)) Re(fft(sqrt(obj$wght) * z, inverse = TRUE))[1:m, 1:n]/sqrt(M * N) } fields/R/drape.plot.R0000644000175100001440000000530214627453255014147 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "drape.plot" <- function(x, y, z, z2 = NULL, col = tim.colors(64), zlim = range(z, na.rm = TRUE), zlim2 = NULL, add.legend = TRUE, horizontal = TRUE, theta = 30, phi = 20, breaks = NA, ...) { # # Thanks to JiHO for making corrections and useful extensions to this function # # if x is a list, discard y and z and extract them from x if (is.list(x)) { z <- x$z y <- x$y x <- x$x } NC <- length(col) M <- nrow(z) N <- ncol(z) # if z2 is passed ( values for coloring facets ) use it # if not use the z matrix that is also used to draw the # perspective plot. if (!is.null(z2)) { M2 <- nrow(z2) N2 <- ncol(z2) if ((M != M2) | (N != N2)) { stop("draping matrix dimensions must match z") } } else { z2 <- z } # if zlim2 has not been passed, set reasonable limits. # if z2 is passed, set it to the range of z2 # if z2 is not passed, z2=z so we set it to the range of z (equal to zlim) if (is.null(zlim2)) { zlim2 <- range(c(z2), na.rm = TRUE) } # determine the colors for facets based on z2, the color scale and # the zlim2 z limits drape.info <- drape.color(z2, col = col, zlim = zlim2, breaks = breaks) # draw filled wireframe and save perspective information pm <- persp(x, y, z, theta = theta, phi = phi, col = drape.info$color.index, zlim = zlim, ...) # Note that zlim2 defines limits of color scale if (add.legend) { image.plot(zlim = zlim2, legend.only = TRUE, col = col, horizontal = horizontal, breaks = drape.info$breaks) } # return pm if an assignment is made (see help file) invisible(pm) } fields/R/flame.R0000644000175100001440000000500314627453255013161 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "flame" <- structure(list(x = structure(c(3, 5, 7, 9, 11, 4, 6, 8, 10, 12, 4, 6, 8, 10, 12, 14, 5, 7, 9, 11, 13, 15, 5, 7, 9, 11, 13, 15, 17, 7, 9, 11, 13, 15, 17, 19, 8, 10, 12, 14, 16, 18, 20, 8, 10, 12, 14, 16, 18, 20, 22, 10, 12, 14, 16, 18, 20, 22, 24, 12, 14, 16, 18, 20, 24, 12, 14, 16, 18, 20, 22, 24, 26, 12, 14, 16, 18, 20, 22, 24, 26, 14, 16, 18, 20, 22, 24, 26, 28, 15, 15, 15, 15, 15, 17, 17, 17, 17, 17, 19, 19, 19, 19, 19, 19, 21, 21, 21, 21, 21, 21, 23, 23, 23, 23, 23, 23, 23, 25, 25, 25, 25, 25, 25, 25, 27, 27, 27, 27, 27, 27, 27, 29, 29, 29, 29, 29, 29, 29, 29, 31, 31, 31, 31, 31, 31, 31, 31, 33, 33, 33, 33, 33, 33, 35, 35, 35, 35, 35, 35, 35, 35, 37, 37, 37, 37, 37, 37, 37, 37, 39, 39, 39, 39, 39, 39, 39, 39), .Dim = c(89, 2), .Dimnames = list(NULL, c("Fuel", "O2"))), y = c(0.005, 0.017, 0.031, 0.041, 0.04, 0.008, 0.021, 0.037, 0.042, 0.039, 0.007, 0.017, 0.032, 0.04, 0.041, 0.035, 0.008, 0.018, 0.033, 0.041, 0.039, 0.034, 0.009, 0.018, 0.029, 0.039, 0.041, 0.037, 0.033, 0.012, 0.023, 0.035, 0.04, 0.04, 0.033, 0.033, 0.015, 0.025, 0.035, 0.041, 0.039, 0.033, 0.03, 0.015, 0.022, 0.033, 0.039, 0.04, 0.035, 0.03, 0.029, 0.019, 0.03, 0.037, 0.041, 0.038, 0.034, 0.029, 0.029, 0.027, 0.034, 0.041, 0.039, 0.028, 0.026, 0.024, 0.032, 0.038, 0.039, 0.035, 0.031, 0.027, 0.025, 0.023, 0.029, 0.037, 0.039, 0.038, 0.033, 0.028, 0.024, 0.029, 0.036, 0.038, 0.039, 0.034, 0.029, 0.025, 0.023)), .Names = c("x", "y")) fields/R/stationary.image.cov.R0000644000175100001440000000713114627453256016146 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER stationary.image.cov <- function(ind1, ind2, Y, cov.obj = NULL, setup = FALSE, grid, M = NULL, N = NULL, cov.function="stationary.cov",delta=NULL, cov.args=NULL, ...) { # # if cov object is missing then create # basically need to enlarge domain and find the FFT of the # covariance # cov.args<-c( cov.args, list(...)) if (is.null(cov.obj)) { dx <- grid$x[2] - grid$x[1] dy <- grid$y[2] - grid$y[1] m <- length(grid$x) n <- length(grid$y) # # determine size of padding # default is twice domain and will then yeild exact results # delta indicates that covariance is zero beyond a distance delta # so using a smaller grid than twice domain will stil give exact results. if(!is.null(delta)){ M<- ceiling(m + 2*delta/dx) N<- ceiling(n + 2*delta/dy) } if (is.null(M)) M <- (2 * m) if (is.null(N)) N <- (2 * n) xg <- make.surface.grid(list((1:M) * dx, (1:N) * dy)) center <- matrix(c((dx * M)/2, (dy * N)/2), nrow = 1, ncol = 2) # # here is where the actual covariance form is used # note passed arguments from call for parameters etc. # out<- do.call(cov.function, c(cov.args, list(x1 = xg, x2 = center))) # check if this is a sparse result and if so expand to full size if( is( out,"spam") ){ out <- spam2full(out) } # coerce to a matrix (image) out<- matrix( c(out), nrow = M, ncol = N) temp <- matrix(0, nrow = M, ncol = N) # # a simple way to normalize. This could be avoided by # translating image from the center ... # temp[M/2, N/2] <- 1 wght <- fft(out)/(fft(temp) * M * N) # # wght is the discrete FFT for the covariance suitable for fast # multiplication by convolution. # cov.obj <- list(m = m, n = n, grid = grid, N = N, M = M, wght = wght, call = match.call()) if (setup) { return(cov.obj) } } temp <- matrix(0, nrow = cov.obj$M, ncol = cov.obj$N) if (missing(ind1)) { temp[1:cov.obj$m, 1:cov.obj$n] <- Y Re(fft(fft(temp) * cov.obj$wght, inverse = TRUE)[1:cov.obj$m, 1:cov.obj$n]) } else { if (missing(ind2)) { temp[ind1] <- Y } else { temp[ind2] <- Y } # # as promised this is a single clean step # Re(fft(fft(temp) * cov.obj$wght, inverse = TRUE)[ind1]) } } fields/R/QTps.R0000644000175100001440000000724014627453255012771 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER QTps <- function(x, Y, ..., f.start = NULL, psi.scale = NULL, C = 1, alpha = 0.5, Niterations = 100, tolerance = 0.001, verbose = FALSE) { # # good <- !is.na(Y) x <- as.matrix(x) x <- x[good, ] Y <- Y[good] if (any(!good)) { warning(paste(sum(!good), "missing value(s) removed from data")) } if (is.null(f.start)) { f.start <- rep(median(Y), length(Y)) } scale.Y <- mad(Y - f.start, na.rm = TRUE) # if (is.null(psi.scale)) { psi.scale = scale.Y * 0.05 } # f.hat <- f.start # create Tps object to reuse for iterative fitting Tps.obj <- Tps(x, Y, ...) lambda.method <- Tps.obj$method conv.flag <- FALSE conv.info <- rep(NA, Niterations) for (k in 1:Niterations) { Y.psuedo <- f.hat + C * psi.scale * qsreg.psi((Y - f.hat)/psi.scale, C = C, alpha = alpha) # find predicted for a fixed lambda or estimate a new value f.hat.new <- predict(Tps.obj, y = Y.psuedo) # convergence test test.rmse <- mean(abs(f.hat.new - f.hat))/mean(abs(f.hat)) conv.info[k] <- test.rmse if (verbose) { cat(k, test.rmse, fill = TRUE) } if (test.rmse <= tolerance) { conv.flag <- TRUE Number.iterations <- k break } f.hat <- f.hat.new } # One final complete fit at convergence. if (verbose) { if (conv.flag) { cat("Converged at tolerance", tolerance, "in", Number.iterations, "iterations", fill = TRUE) } else { cat("Exceeded maximum number of iterations", Niterations, fill = TRUE) } } # One final complete fit at convergence. f.hat <- f.hat.new Y.psuedo <- f.hat + C * psi.scale * qsreg.psi((Y - f.hat)/psi.scale, C = C, alpha = alpha) obj <- Tps(x, Y.psuedo, ...) # CV residuals based on psuedo-data) # Use the linear approximation Y_k - f.cv_k = (Y_k- f_k)/( 1- A_kk) # f.cv_k = f_k/( 1- A_kk) - ( A_kk)Y_k/( 1- A_kk) # # Note: we find f.cv based on psuedo data but then consider its deviation # from the actual data # diag.A <- diag(Krig.Amatrix(obj)) f.cv <- obj$fitted.values/(1 - diag.A) - diag.A * Y.psuedo/(1 - diag.A) # leave-one-out estimate of f.hat CV.psuedo <- mean(qsreg.sigma(Y - f.cv, alpha = alpha, C = psi.scale)) # add extra stuff to the Krig object. Qinfo <- list(yraw = Y, conv.info = conv.info, conv.flag = conv.flag, CV.psuedo = CV.psuedo, psi.scale = psi.scale, alpha = alpha) obj <- c(obj, list(Qinfo = Qinfo)) class(obj) <- "Krig" return(obj) } fields/R/image.smooth.R0000644000175100001440000000727714627453256014507 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "image.smooth" <- function(x, wght = NULL, dx = 1, dy = 1, kernel.function = double.exp, aRange = 1, grid = NULL, tol = 1e-08, xwidth = NULL, ywidth = NULL, weights = NULL, theta=NULL, ...) { # theta argument has been depreciated. if( !is.null( theta)){ aRange<- theta } # first part of this function is figuring what has been passed and # what to do if (is.list(x)) { # assume that an image list format has been passed as x Y <- x$z grid <- list(x = x$x, y = x$y) } else { Y <- x } if (!is.matrix(Y)) { stop("Requires a matrix") } m <- nrow(Y) n <- ncol(Y) # use information in previous setup kernel function from a # a call to setup.image.smooth and in the process override any # passed arguments if (!is.null(wght)) { dx <- wght$dx dy <- wght$dy xwidth <- wght$xwidth ywidth <- wght$ywidth } # set up grid if it is missing if (is.null(grid)) { grid <- list(x = (1:m) * dx, y = (1:n) * dy) } else { dx <- grid$x[2] - grid$x[1] dy <- grid$y[2] - grid$y[1] } # padding of zeroes around actual image # if less than m and n there may be spurious effects due to # the periodicity from the fft. # make sure that the span of the kernel is less than xwidth and ywidth. # there will be substantial speedup if the kernel has a small support, # Y is big (e.g. 512X512) and Mwidth and N widht are adjusted to suit. if (is.null(xwidth)) { xwidth <- dx * m } if (is.null(ywidth)) { ywidth <- dy * n } # kernel wght function as fft # reusing this saves an fft for each image smooth. if (is.null(wght)) { wght <- setup.image.smooth(nrow = m, ncol = n, xwidth = xwidth, ywidth = ywidth, dx = dx, dy = dy, kernel.function = kernel.function, aRange = aRange,...) } M <- nrow(wght$W) N <- ncol(wght$W) temp <- matrix(0, nrow = M, ncol = N) temp2 <- matrix(0, nrow = M, ncol = N) # pad with zeroes if (!is.null(weights)) { temp[1:m, 1:n] <- Y * weights temp[is.na(temp)] <- 0 temp2[1:m, 1:n] <- ifelse(!is.na(Y), weights, 0) } else { temp[1:m, 1:n] <- Y temp[is.na(temp)] <- 0 temp2[1:m, 1:n] <- ifelse(!is.na(Y), 1, 0) } # temp and temp2 are numerator and denominator of Nadarya-Watson estimator. temp <- Re(fft(fft(temp) * wght$W, inverse = TRUE))[1:m, 1:n] temp2 <- Re(fft(fft(temp2) * wght$W, inverse = TRUE))[1:m, 1:n] # try not to divide by zero! temp <- ifelse((temp2 > tol), (temp/temp2), NA) list(x = grid$x, y = grid$y, z = temp) } fields/R/predictSE.mKrig.R0000644000175100001440000000632114627453256015034 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER predictSE.mKrig<- function(object, xnew = NULL, Z = NULL, verbose = FALSE, drop.Z = FALSE, ...) { # # name of covariance function call.name <- object$cov.function.name # check for collapsed fixed effects # if(drop.Z){ # stop(" Sorry drop.Z not supported") # } # # default is to predict at data x's if (is.null(xnew)) { xnew <- object$x } if ( is.null(Z)& !is.null( object$Z) ) { Z <- object$Z } xnew <- as.matrix(xnew) if (!is.null(Z)) { Z <- as.matrix(Z) } if (verbose) { cat("Passed locations", fill=TRUE) print(xnew) cat("Assumed covariates", fill=TRUE) print(Z) } objectSummary<- object$summary lambda <- objectSummary["lambda"] sigma2 <- objectSummary["sigma2"] tau2 <- objectSummary["tau"]^2 if (verbose) { print(c(lambda, sigma2, tau2)) } k0 <- do.call(call.name, c(object$args, list(x1 = object$x, x2 = xnew))) # # old form based on the predict function # temp1 <- sigma2*(t0%*% object$Omega %*%t(t0)) - # sigma2*predict( object, y= k0, x=x) - # sigma2*predict( object, y= k0, x=x, just.fixed=TRUE) # alternative formula using the beta and c.coef coefficients directly. # collapseFixedEffect=FALSE because # we want the "fixed effect" computation # to be done separately for each column of k0 hold <- mKrig.coef(object, y = k0, collapseFixedEffect=FALSE) #print( hold$beta) # temp0 are marginal variances -- trival in the stationary case! temp0<- sigma2 * do.call(call.name, c(object$args, list(x1 = xnew, marginal = TRUE))) temp <- temp0 - sigma2 *colSums((k0) * hold$c.coef) # add contribution from fixed effect covariates if( !drop.Z){ # fixed effects matrix includes both spatial drift and covariates. t0 <- t(cbind(fields.mkpoly(xnew, m = object$m), Z)) temp1 <- sigma2 * (colSums(t0 * (object$Omega %*% t0)) - 2 * colSums(t0 * hold$beta)) #print( colSums(t0 * (object$Omega %*% t0))) temp <- temp + temp1 } # return square root as the standard error in units of observations. return(sqrt(temp)) } fields/R/cat.matrix.R0000644000175100001440000000251414627453255014153 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "cat.matrix" <- function(mat, digits = 8) { nc <- ncol(mat) temp <- matrix(match(c(signif(mat, digits)), unique(c(signif(mat, digits)))), ncol = nc) temp2 <- format(temp[, 1]) if (nc > 1) { for (k in 2:nc) { temp2 <- paste(temp2, temp[, k], sep = "X") } } match(temp2, unique(temp2)) } fields/R/Tps.R0000644000175100001440000000443314627453255012651 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "Tps" <- function(x, Y, m = NULL, p = NULL, scale.type = "range", lon.lat = FALSE, miles = TRUE, method="GCV", GCV=TRUE, ...) { x <- as.matrix(x) d <- ncol(x) if (is.null(p)) { if (is.null(m)) { m <- max(c(2, ceiling(d/2 + 0.1))) } p <- (2 * m - d) if (p <= 0) { stop(" m is too small you must have 2*m - dimension >0") } } # Tpscall <- match.call() if (!lon.lat) { # Tpscall$cov.function <- "Thin plate spline radial basis functions (Rad.cov) " obj<- Krig(x, Y, cov.function = Rad.cov, m = m, scale.type = scale.type, p = p, method=method, GCV = GCV, ...) } else { # a different coding of the radial basis functions to use great circle distance. # Tpscall$cov.function <- "Thin plate spline radial basis functions (RadialBasis.cov) using great circle distance " obj<- Krig(x, Y, cov.function = stationary.cov, m = m, scale.type = scale.type, method=method, GCV = GCV, cov.args = list(Covariance = "RadialBasis", M = m, dimension = 2, Distance = "rdist.earth", Dist.args = list(miles = miles)), ...) } obj$call<- match.call() class( obj) <- c("Krig", "Tps") return(obj) } fields/R/print.summary.sreg.R0000644000175100001440000000514414627453256015673 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "print.summary.sreg" <- function(x, ...) { digits <- x$digits c1 <- "Number of Observations:" c2 <- x$num.observation c1 <- c(c1, "Number of unique points:") c2 <- c(c2, x$num.uniq) c1 <- c(c1, "Eff. degrees of freedom for spline:") c2 <- c(c2, format(round(x$enp, 1))) c1 <- c(c1, "Residual degrees of freedom:") c2 <- c(c2, format(round(x$num.observation - x$enp, 1))) c1 <- c(c1, "GCV est. tau ") c2 <- c(c2, format(signif(x$tauHat.GCV, digits))) if (!is.na(x$tauHat.pure.error)) { c1 <- c(c1, "Pure error tau") c2 <- c(c2, format(signif(x$tauHat.pure.error, digits))) } c1 <- c(c1, "lambda ") c2 <- c(c2, signif(x$lambda, digits)) #\tc1 <- c(c1, 'Cost in GCV') #\tc2 <- c(c2, format(round(x$cost, 2))) #\tc1 <- c(c1, 'GCV Minimum') #\tc2 <- c(c2, format(signif(x$gcvmin, digits))) sum <- cbind(c1, c2) dimnames(sum) <- list(rep("", dim(sum)[1]), rep("", dim(sum)[2])) res.quantile <- x$res.quantile names(res.quantile) <- c("min", "1st Q", "median", "3rd Q", "max") ### ### ### cat("CALL:\n") dput(x$call) print(sum, quote = FALSE) cat("\n") cat("RESIDUAL SUMMARY:", fill = TRUE) print(signif(res.quantile, digits)) cat("\n") cat("DETAILS ON SMOOTHING PARAMETER:", fill = TRUE) cat(" Method used: ", x$method, " Cost: ", x$cost, fill = TRUE) #\tcat(' Stats on this choice of lambda', fill = TRUE) print(x$sum.gcv.lambda, digits = digits) cat("\n") cat(" Summary of estimates for lambda", fill = TRUE) print(x$lambda.est, digits = x$digits) invisible(x) } fields/R/fields.mkpoly.R0000644000175100001440000000504514627453255014663 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "fields.mkpoly" <- function(x, m = 2, tag="term") { # m-1 is the degree of the polynomial # this is hold over notation from splines # where an mth order spline has a m-1 degree polynomial # null space. if (m < 0) stop("'m' has to be zero or larger.") if( m==0){ # warning("Note: There is no polynomial fixed component") return( NULL) } if (!is.matrix(x)) x <- as.matrix(x) d <- ncol(x) n <- nrow(x) nterms <- choose((m + d - 1), d) temp <- .Fortran("dmaket",PACKAGE="fields", m = as.integer(m), n = as.integer(n), dim = as.integer(d), des = as.double(x), lddes = as.integer(n), npoly = as.integer(nterms), tmatrix = as.double(rep(0, n * (nterms))), ldt = as.integer(n), wptr = as.integer(rep(0, d * m)), info = as.integer(0), ptab = as.integer(rep(0, nterms * d)), ldptab = as.integer(nterms)) temp2 <- matrix(temp$tmatrix, nrow = n) # add some column names xNames<- colnames(x) powerTable<- matrix(temp$ptab, nrow = nterms, ncol = d) if( m <2){ colnames( temp2)<- "Intercept" } if( !is.null( xNames) & m >= 2 ){ varNames<- c("Intercept",xNames) if( m > 2){ termNames<- NULL for ( k in (d+ 2): nterms){ termNames<- c( termNames, paste(powerTable[k,],collapse = "", sep="") ) } termNames<- paste0( tag, termNames) varNames<- c( varNames,termNames) } colnames( temp2)<- varNames } attr(temp2, "ptab") <- powerTable temp2 } fields/R/Exponential.R0000644000175100001440000000357714627453255014401 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "Exponential" <- function(d, aRange=1.0, phi = 1.0, theta=NULL, range=NULL) { # # Matern covariance function transcribed from Stein's book page 31 # nu==smoothness==.5, alpha == 1/range # # GeoR parameters map to kappa==smoothness and phi == range # to make old code from Fuentes and also the package SEHmodel work # phi is accepted as the marginal variance of the process (see below) # within fields this parameter is "sigma2" and is a standard notation # # check for negative distances # # fill in other arguments as aRange. # Note that the theta argument has been depreciated. if( !is.null(theta)){ aRange<- theta } if( !is.null(range)){ aRange<- range } if (any(d < 0)) stop("distance argument must be nonnegative") # return(phi*exp(-d/aRange)) } fields/R/colorBar.R0000644000175100001440000001125114627453255013642 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER colorBar<- function(breaks, smallplot, colorTable, horizontal = FALSE, lab.breaks, axis.args, legend.lab, legend.line = 2, legend.args, legend.cex = 1, lowerTriangle = FALSE, upperTriangle = NULL ){ # Following code draws the legend using the image function # and a one column image. # What might be confusing is the values of the "image" are the same # as the locations on the legend axis. # Moreover the image values are in the middle of each breakpoint category # thanks to Tobias Nanu Frechen and Matthew Flickinger # for sorting out some problems with the breaks position in the legend. ix <- 1:2 # if triangles for end points upper or lower limits in breaks should # be omitted and the colorTable also amended. lowerColor<- NULL upperColor<- NULL if( lowerTriangle){ breaks<- breaks[-1] lowerColor<- colorTable[1] colorTable<- colorTable[-1] } if( upperTriangle){ n1<- length(breaks) breaks<- breaks[-n1] n2<- length(colorTable) upperColor<- colorTable[n2] colorTable<- colorTable[-n2] } iy<- breaks N<- length(colorTable) nBreaks<- length( breaks) midpoints<- (breaks[1:(nBreaks-1)] + breaks[2:nBreaks] )/2 iz <- matrix(midpoints, nrow = 1, ncol = length(midpoints)) # # next par call sets up a new plotting region just for the legend strip # at the smallplot coordinates par(new = TRUE, pty = "m", plt = smallplot, err = -1) # draw color scales the two cases are horizontal/vertical # add a label if this is passed. if (!horizontal) { image(ix, iy, iz, xaxt = "n", yaxt = "n", xlab = "", ylab = "", col = colorTable, breaks=breaks) } else { image(iy, ix, t(iz), xaxt = "n", yaxt = "n", xlab = "", ylab = "", col = colorTable, breaks=breaks) } # add triangles at ends addTriangle<- !( is.null(lowerColor)& is.null(upperColor)) if(addTriangle){ addColorBarTriangle( lowerColor=lowerColor, upperColor=upperColor, horizontal=horizontal ) } # create the argument list to draw the axis # this avoids 4 separate calls to axis and allows passing extra # arguments. if (!is.null(lab.breaks)) { # axis with labels at break points axis.args <- c(list(side = ifelse(horizontal, 1, 4), mgp = c(3, 1, 0), las = ifelse(horizontal, 0, 2), at = breaks, labels = lab.breaks), axis.args) } else { # If lab.breaks is not specified ( with or without breaks), pretty # tick mark locations and labels are computed internally, # or as specified in axis.args at the function call axis.args <- c(list(side = ifelse(horizontal, 1, 4), mgp = c(3, 1, 0), las = ifelse(horizontal, 0, 2)), axis.args) } # # now add the axis to the legend strip. # notice how all the information is in the list axis.args do.call("axis", axis.args) # # add a label to the axis if information has been supplied # using the mtext function. The arguments to mtext are # passed as a list like the drill for axis (see above) # if (!is.null(legend.lab)) { legend.args <- list(text = legend.lab, side = ifelse(horizontal, 1, 4), line = legend.line, # this may need to be tuned cex = legend.cex) } # add the label using mtext function if (!is.null(legend.args)) { do.call(mtext, legend.args) } # } fields/R/summary.Krig.R0000644000175100001440000000451314627453256014473 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "summary.Krig" <- function(object, digits = 4, ...) { x <- object # lambda est may not be available if lambda has been supplied by user. if (!is.na(x$lambda.est[1])) { l.est <- x$lambda.est } else { l.est <- NA } summary <- list(call = x$call, num.observation = length(x$residuals), enp = x$eff.df, nt = x$nt, df.drift = sum(x$ind.drift), res.quantile = quantile(x$residuals, seq(0, 1, 0.25)), tauHat.MLE = x$tauHat.MLE, tauHat.GCV = x$tauHat.GCV, sigmahat = x$sigmahat, m = x$m, lambda = x$lambda, cost = x$cost, sigma = x$sigma, tau2 = x$tau2, num.uniq = length(x$yM), knot.model = x$knot.model, np = x$np, method = x$method, lambda.est = l.est, tauHat.pure.error = x$tauHat.pure.error, args = x$args) class(summary) <- "summary.Krig" summary$covariance <- cor(x$fitted.values * sqrt(x$weights), (x$y) * sqrt(x$weights))^2 hold <- (sum((x$y - mean(x$y))^2) - sum(x$residuals^2))/(sum((x$y - mean(x$y))^2)) summary$adjr2 <- 1 - ((length(x$residuals) - 1)/(length(x$residuals) - x$eff.df)) * (1 - hold) summary$digits <- digits summary$cov.function <- as.character(x$cov.function.name) summary$correlation.model <- x$correlation.model summary$sum.gcv.lambda <- summaryGCV.Krig(x, x$lambda) summary } fields/R/spatialProcessSetDefaults.R0000644000175100001440000001735214635135434017242 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER spatialProcessSetDefaults<- function( x, cov.function, cov.args, cov.params.start, parGrid, mKrig.args, extraArgs = NULL, gridN = 5, collapseFixedEffect = TRUE, verbose=FALSE ) { ## convenient defaults for GP fitting. ## and also sort out what starting parameter values are provided # this code runs on by perhaps it is useful to see all the defualts and # logic in one place. # Note the stranger device below where mKrig.args is created and amended # mKrig is the basic computational function for evaluating the likleihood and # setting up the Kriging predictions. # # aRange and lambda are handled specially because are almost always # estimated and this will simplify the call in this top level function # ########################################### ## Set some convenient default choices for a ## stationary covariance function ########################################### if( is.null( cov.function)){ cov.function <- 'stationary.cov' if( is.null(cov.args) ){ cov.args<- list() } if( is.null(cov.args$Covariance )&is.null(extraArgs$Covariance )){ cov.args$Covariance<- "Matern" if( is.null(cov.args$smoothness ) & is.null(cov.params.start$smoothness ) & is.null(parGrid$smoothness) ){ cov.args$smoothness<- 1.0 } } } ########################################### ## Set some convenient default choices for a ## thin plate spline ########################################### if( cov.function=='Tps.cov'){ # determine cardinal points if not included in # cov.args dimX<- ncol( x) mMin<- max(c(2, ceiling(dimX/2 + 0.1))) if( is.null( mKrig.args$m)){ # m should satisfy 2*m-dimX >0 mKrig.args<- list( mKrig.args, m=mMin ) } if( mKrig.args$m < mMin){ stop("m component specified in the mKrig.args list needs to satisfy 2*m-dimX >0 for the spline to be valid") } # if( is.null(cov.args)){ cov.args<- list() } # if( is.null(cov.args$cardinalX)){ nterms <- choose((mKrig.args$m + dimX - 1), dimX) cardinalX<- cover.design(x, nterms, num.nn = 50 )$design cov.args$cardinalX<- cardinalX } cov.args$aRange<- NA } ########################################### # overwrite the default choices if some are passed as ... # (some R arcania!) ########################################### if( !is.null( extraArgs)){ if(!is.null(cov.args)){ ind<- match( names(cov.args), names(extraArgs) ) cov.args <- c( cov.args[is.na(ind)], (extraArgs) ) } else{ cov.args <- list(extraArgs) } } ########################################### # check for duplicate arguments in starting values and fixed values ########################################### covArgsNames <- names(cov.args) covStartNames<-names(cov.params.start) covParGridNames<- names( parGrid) #print( covParGridNames) if( length( intersect( covArgsNames,covStartNames))>0){ cat("A problem with duplicate parameters:", fill=TRUE) cat("Names cov.args:", fill=TRUE) print(covArgsNames) cat("Names cov.params.start :", fill=TRUE) print(covStartNames) stop("parameters must either have starting values ( in cov.params.start list) or be specified as a covariance function argument (in cov.args list) ") } if( verbose){ cat("Updated and passed cov.args", fill=TRUE) print( cov.args) } ########################################### # Some logic to figure out how do MLE search over lambda and aRange ########################################### noLambda<- is.null( cov.args$lambda) & is.null(cov.params.start$lambda) noARange<- is.null( cov.args$aRange) & is.null(cov.params.start$aRange) makeDefaultGrid<- (noLambda | noARange) & is.null(parGrid) # easy default search grid if lambda and/or aRange ahave not been specified if( makeDefaultGrid ){ if( noLambda){ lGrid<- 10**seq( -4, .5, length.out= gridN) } if( noARange){ minX<- apply( x, 2, min) maxX<- apply( x, 2, max) xCorners<- rbind( minX, maxX) if( is.null( cov.args$Distance)){ dMax<-rdist( rbind(xCorners[1,]), rbind(xCorners[2,])) } else{ dMax<- do.call(cov.args$Distance, list( x1= rbind(xCorners[1,]), x2= rbind(xCorners[2,])) ) } dMax<- c( dMax) aGrid<- seq( .1*dMax, .7*dMax, length.out= gridN) } # now create parGrid if( noLambda & !noARange){ parGrid<- data.frame( lambda= lGrid) } if( noLambda & noARange){ parGrid<- expand.grid( lambda= lGrid, aRange = aGrid) } if( !noLambda & noARange){ parGrid<- data.frame( aRange= aGrid) } } ########################################### # Identify the Cases 0 - 4 to set defaults ########################################### # CASE 0 is to evaluate at fixed lambda and aRange # and there are no other parameters to optimize over. if( !is.null( cov.args$lambda) & !is.null( cov.args$aRange) & is.null( cov.params.start) ){ CASE<- 0 } #CASE 1 is to find MLEs using starting values provided a grid has not been # supplied for an initial grid search. if( !is.null(cov.params.start) & is.null(parGrid) ){ CASE<- 1 } if( !is.null(parGrid) ){ CASE<- 2 } ########################################### # Messing with mKrig ########################################### # Determine linear fixed model if not specified and add in how to find fixed part. # collapseFixedEffect is important enough where it is handled at this level. # if( is.null(mKrig.args)){ mKrig.args<- list( m=2, collapseFixedEffect=collapseFixedEffect) } else{ if( all(names( mKrig.args)!= "collapseFixedEffect")){ mKrig.args<- c( mKrig.args, list(collapseFixedEffect= collapseFixedEffect)) } } # don't find effective df for optimization -- this would add extra computation that is not # needed if( is.null(mKrig.args$find.trA) ){ if( (CASE >=3)){ mKrig.args<- c( mKrig.args, list(find.trA = FALSE)) } else{ mKrig.args<- c( mKrig.args, list(find.trA = TRUE)) } } out<- list( cov.function = cov.function, cov.args = cov.args, mKrig.args = mKrig.args, CASE = CASE, parGrid = parGrid ) return( out ) } fields/R/fillGrid.R0000644000175100001440000000054114616575611013632 0ustar hornikusersfillGrid<- function( gridList, M){ deltaX<-gridList$x[2]- gridList$x[1] m1<- length( gridList$x) xSeq<- seq( min(gridList$x),max(gridList$x), deltaX/M) deltaY<-gridList$y[2]- gridList$y[1] m2<- length( gridList$y) ySeq<- seq( min(gridList$y), max(gridList$y), deltaY/M) return( list( x= xSeq, y=ySeq) ) }fields/R/dyadic.2check.R0000644000175100001440000000270014627453255014471 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER dyadic.2check <- function(m, n, cut.p = 2) { # checks that n is of the form # n=p*2^m where p <= cut.p m2 <- as.integer(m) n2 <- as.integer(n) while ((n2 > cut.p) & (m2 > cut.p)) { if ((m2%%2 != 0) | (n2%%2 != 0)) { cat(n, "and", m, "must equal p*2^L where p is less than or equal to ", cut.p, fill = TRUE) return(FALSE) } m2 <- m2/2 n2 <- n2/2 } return(TRUE) } fields/R/image.family.R0000644000175100001440000003202414637264247014444 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "imagePlotInfo" <- function(..., breaks = NULL, nlevel) { #NOTE: # image.plot.info # has been renamed as imagePlotInfo to avoid confusion with # an S3 method temp <- list(...) # xlim <- NA ylim <- NA zlim <- NA poly.grid <- FALSE # # go through various cases of what these can be # ##### x,y,z list is first argument if (is.list(temp[[1]])) { xlim <- range(temp[[1]]$x, na.rm = TRUE) ylim <- range(temp[[1]]$y, na.rm = TRUE) zlim <- range(temp[[1]]$z, na.rm = TRUE) if (is.matrix(temp[[1]]$x) & is.matrix(temp[[1]]$y) & is.matrix(temp[[1]]$z)) { poly.grid <- TRUE } } ##### check for polygrid first three arguments should be matrices ##### if (length(temp) >= 3) { if (is.matrix(temp[[1]]) & is.matrix(temp[[2]]) & is.matrix(temp[[3]])) { poly.grid <- TRUE } } ##### z is passed without an x and y (and not a poly.grid!) ##### if (is.matrix(temp[[1]]) & !poly.grid) { xlim <- c(0, 1) ylim <- c(0, 1) zlim <- range(temp[[1]], na.rm = TRUE) } ##### if x,y,z have all been passed find their ranges. ##### holds if poly.grid or not ##### if (length(temp) >= 3) { if (is.matrix(temp[[3]])) { xlim <- range(temp[[1]], na.rm = TRUE) ylim <- range(temp[[2]], na.rm = TRUE) zlim <- range(temp[[3]], na.rm = TRUE) } } # if constant z values perturb the range by epsilon (1e-8) to # avoid other problems in drawing legend later on if( !is.na( zlim[1] ) ){ if( abs(zlim[1] - zlim[2]) <= 1e-14 ){ if( zlim[1]==0){ zlim[1]<- -1e-8 zlim[2]<- 1e-8} else{ delta<- .01*abs(zlim[1]) zlim[1]<- zlim[1] - delta zlim[2]<- zlim[2] + delta } } } #### parse x,y,z if they are named arguments # determine if this is polygon grid (x and y are matrices) if (is.matrix(temp$x) & is.matrix(temp$y) & is.matrix(temp$z)) { poly.grid <- TRUE } # set limits from the usual $x $y $z format of image object xthere <- match("x", names(temp)) ythere <- match("y", names(temp)) zthere <- match("z", names(temp)) if (!is.na(zthere)) zlim <- range(temp$z, na.rm = TRUE) if (!is.na(xthere)) xlim <- range(temp$x, na.rm = TRUE) if (!is.na(ythere)) ylim <- range(temp$y, na.rm = TRUE) # overwrite limits with passed values if (!is.null(temp$zlim)) zlim <- temp$zlim if (!is.null(temp$xlim)) xlim <- temp$xlim if (!is.null(temp$ylim)) ylim <- temp$ylim # At this point xlim, ylim and zlim should be correct # using all the different possibilities and defaults for these values # # Now set up the breaks if( is.null(breaks)){ midpoints<- seq( zlim[1], zlim[2],,nlevel) delta<- (midpoints[2]- midpoints[1])/2 # nlevel +1 breaks with the min and max as midpoints # of the first and last bins. breaks <- c( midpoints[1]- delta, midpoints + delta) } list(xlim = xlim, ylim = ylim, zlim = zlim, poly.grid = poly.grid, breaks=breaks) } # NOTE: # image.plot.plt<- function(...){ # this function has been renamed as imageplot.setup to avoid confusion with # an S3 method # imageplot.setup(...)} "imageplot.setup" <- function(x, add = FALSE, legend.shrink = 0.9, legend.width = 1, horizontal = FALSE, legend.mar = NULL, bigplot = NULL, smallplot = NULL, ...) { old.par <- par(no.readonly = TRUE) if (is.null(smallplot)) stick <- TRUE else stick <- FALSE if (is.null(legend.mar)) { legend.mar <- ifelse(horizontal, 3.1, 5.1) } # compute how big a text character is char.size <- ifelse(horizontal, par()$cin[2]/par()$din[2], par()$cin[1]/par()$din[1]) # This is how much space to work with based on setting the margins in the # high level par command to leave between strip and big plot offset <- char.size * ifelse(horizontal, par()$mar[1], par()$mar[4]) # this is the width of the legned strip itself. legend.width <- char.size * legend.width # this is room for legend axis labels legend.mar <- legend.mar * char.size # smallplot is the plotting region for the legend. if (is.null(smallplot)) { smallplot <- old.par$plt if (horizontal) { smallplot[3] <- legend.mar smallplot[4] <- legend.width + smallplot[3] pr <- (smallplot[2] - smallplot[1]) * ((1 - legend.shrink)/2) smallplot[1] <- smallplot[1] + pr smallplot[2] <- smallplot[2] - pr } else { smallplot[2] <- 1 - legend.mar smallplot[1] <- smallplot[2] - legend.width pr <- (smallplot[4] - smallplot[3]) * ((1 - legend.shrink)/2) smallplot[4] <- smallplot[4] - pr smallplot[3] <- smallplot[3] + pr } } if (is.null(bigplot)) { bigplot <- old.par$plt if (!horizontal) { bigplot[2] <- min(bigplot[2], smallplot[1] - offset) } else { bottom.space <- old.par$mar[1] * char.size bigplot[3] <- smallplot[4] + offset } } if (stick & (!horizontal)) { dp <- smallplot[2] - smallplot[1] smallplot[1] <- min(bigplot[2] + offset, smallplot[1]) smallplot[2] <- smallplot[1] + dp } return(list(smallplot = smallplot, bigplot = bigplot)) } "crop.image" <- function(obj, loc = NULL, ...) { if (is.null(loc)) { image.plot(obj, ...) loc <- get.rectangle() } # coerce to midpoints m <- nrow(obj$z) n <- ncol(obj$z) nx <- length(obj$x) ny <- length(obj$y) if (nx != m) { obj$x <- (obj$x[1:m] + obj$x[2:(m + 1)])/2 } if (ny != n) { obj$y <- (obj$y[1:n] + obj$x[2:(n + 1)])/2 } # coerce loc to x,y list format if matrix or data frame if (is.matrix(loc) | is.data.frame(loc)) { if (ncol(loc) != 2) { stop("loc must have two columns\n(for x and y coordinates )") } loc <- list(x = loc[, 1], y = loc[, 2]) } x <- obj$x y <- obj$y N <- length(x) xr <- range(loc$x) xtest <- range(x) if (xr[1] < xtest[1] | xr[2] > xtest[2]) { stop("cropping outside ranges of x values") } x1 <- max((1:N)[xr[1] >= x]) x2 <- min((1:N)[xr[2] <= x]) N <- length(y) yr <- range(loc$y) ytest <- range(y) if (yr[1] < ytest[1] | yr[2] > ytest[2]) { stop("cropping outside ranges of y values") } y1 <- max((1:N)[yr[1] >= y]) y2 <- min((1:N)[yr[2] <= y]) list(x = obj$x[x1:x2], y = obj$y[y1:y2], z = obj$z[x1:x2, y1:y2]) } average.image <- function(obj, Q = 2) { # fast method to sum over a QXQ block in image. # Q is the number of elements to average over in each dimension # e.g. Q=5 -- blocks of 25 values are averaged to one grid cell. if (is.matrix(obj)) { obj <- list(x = 1:nrow(obj), y = 1:ncol(obj), z = obj) } M <- length(obj$x) N <- length(obj$y) Mi <- trunc(M/Q) Ni <- trunc(N/Q) # space to hold results z <- matrix(NA, nrow = Mi, ncol = N) x2 <- rep(NA, Mi) y2 <- rep(NA, Ni) indQ <- 1:Q # sum over block of rows and handle x grid values for (j in 1:Mi) { x2[j] <- mean(obj$x[indQ + (j - 1) * Q]) z[j, ] <- colMeans(obj$z[indQ + (j - 1) * Q, ], na.rm = TRUE) } # sum over blocks of columns and average y grid values for (k in 1:Ni) { y2[k] <- mean(obj$y[indQ + (k - 1) * Q]) z[, k] <- rowMeans(z[, indQ + (k - 1) * Q], na.rm = TRUE) } return(list(x = x2, y = y2, z = z[1:Mi, 1:Ni], Q = Q)) } "get.rectangle" <- function() { temp <- locator(2, type = "p", pch = "+") rect(temp$x[1], temp$y[1], temp$x[2], temp$y[2]) temp } "half.image" <- function(obj) { # coerce to list if a matrix if (is.matrix(obj)) { obj <- list(x = 1:nrow(obj), y = 1:ncol(obj), z = obj) } M <- length(obj$x) N <- length(obj$y) M2 <- trunc(M/2) N2 <- trunc(N/2) z <- matrix(NA, nrow = M2, ncol = N2) ix <- (1:M2) * 2 iy <- (1:N2) * 2 x2 <- (obj$x[ix - 1] + obj$x[ix])/2 y2 <- (obj$y[iy - 1] + obj$y[iy])/2 return(list(x = x2, y = y2, z = (obj$z[ix - 1, iy] + obj$z[ix - 1, iy - 1] + obj$z[ix, iy - 1] + obj$z[ix, iy])/4)) } pushpin <- function(x, y, z, p.out, height = 0.05, col = "black", text = NULL, adj = -0.1, cex = 1, ...) { # project your x,y,z on to the uv plane of the plot Sxy1 <- trans3d(x, y, z, p.out) Sxy2 <- Sxy1 hold <- par()$usr Sxy2$y <- (hold[4] - hold[3]) * height + Sxy2$y # draw the pin segments(Sxy1$x, Sxy1$y, Sxy2$x, Sxy2$y, col = "black") points(Sxy2, col = col, pch = 19, cex = cex) # add a label if (!is.null(text)) { text(Sxy2$x, Sxy2$y, label = text, adj = adj, cex = cex, ...) } } designer.colors <- function(n = 256, col = c("darkgreen", "white", "darkred"), x = seq(0, 1,, length(col) ), alpha = 1) { # generate colors at equal spacings but interpolate to colors at x xRange<- range(x) xg <- seq(xRange[1], xRange[2],, n) # convert colors from names e.g. "magenta" to rgb in [0.1] y.rgb <- t(col2rgb(col))/255 # matrix to hold RGB color values temp <- matrix(NA, ncol = 3, nrow = n) nColors<- length( col) if( nColors != length( x)){ stop("number of colors needs to be the same as length of x")} # linear or spline interpolation of RGB color values at x onto xg for (k in 1:3) { if( nColors > 2){ hold <- splint(x, y.rgb[, k], xg)} else{ a<-(xRange[2]-xg)/(xRange[2] - xRange[1]) hold<- a*y.rgb[1, k] + (1-a)*y.rgb[2, k] } # fix up to be in [0,1] hold[hold < 0] <- 0 hold[hold > 1] <- 1 temp[, k] <- hold } # convert back to hex if(alpha==1){ return( rgb(temp[, 1], temp[, 2], temp[, 3])) } else{ return( rgb(temp[, 1], temp[, 2], temp[, 3], alpha = alpha)) } } #boulder.colors<- c('darkred', 'darkorange', # 'white', 'darkgreen', 'darkblue') "two.colors" <- function(n = 256, start = "darkgreen", end = "red", middle = "white", alpha = 1) { designer.colors(n, c(start, middle, end), alpha = alpha) } fieldsPlotColors<- function( col, ...){ N<- length(col) image.plot( 1:N, 1, matrix(1:N,N,1), col=col,axes=FALSE, xlab='', ylab='',...)} imageplot.info<- function (...) { temp <- list(...) xlim <- NA ylim <- NA zlim <- NA poly.grid <- FALSE if (is.list(temp[[1]])) { xlim <- range(temp[[1]]$x, na.rm = TRUE) ylim <- range(temp[[1]]$y, na.rm = TRUE) zlim <- range(temp[[1]]$z, na.rm = TRUE) if (is.matrix(temp[[1]]$x) & is.matrix(temp[[1]]$y) & is.matrix(temp[[1]]$z)) { poly.grid <- TRUE } } if (length(temp) >= 3) { if (is.matrix(temp[[1]]) & is.matrix(temp[[2]]) & is.matrix(temp[[3]])) { poly.grid <- TRUE } } if (is.matrix(temp[[1]]) & !poly.grid) { xlim <- c(0, 1) ylim <- c(0, 1) zlim <- range(temp[[1]], na.rm = TRUE) } if (length(temp) >= 3) { if (is.matrix(temp[[3]])) { xlim <- range(temp[[1]], na.rm = TRUE) ylim <- range(temp[[2]], na.rm = TRUE) zlim <- range(temp[[3]], na.rm = TRUE) } } if (is.matrix(temp$x) & is.matrix(temp$y) & is.matrix(temp$z)) { poly.grid <- TRUE } xthere <- match("x", names(temp)) ythere <- match("y", names(temp)) zthere <- match("z", names(temp)) if (!is.na(zthere)) zlim <- range(temp$z, na.rm = TRUE) if (!is.na(xthere)) xlim <- range(temp$x, na.rm = TRUE) if (!is.na(ythere)) ylim <- range(temp$y, na.rm = TRUE) if (!is.null(temp$zlim)) zlim <- temp$zlim if (!is.null(temp$xlim)) xlim <- temp$xlim if (!is.null(temp$ylim)) ylim <- temp$ylim list(xlim = xlim, ylim = ylim, zlim = zlim, poly.grid = poly.grid) } fields/R/offGridWeights.R0000644000175100001440000000433214627453256015015 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER\ offGridWeights<-function(s, gridList, np=2, mKrigObject=NULL, Covariance=NULL, covArgs=NULL, aRange=NULL, sigma2=NULL, giveWarnings=TRUE, debug=FALSE ) # # This is a wrapper function to distinguish between the # 1D and 2D cases. The 1D is useful to follow the algorithm # details but typically not needed in practice. The 2D is # the workhorse for fast approximation simulation of a stationary # spatial process on a regular grid combined with irregular # observations # { callList<- list( s=s, gridList=gridList, np=np, mKrigObject=mKrigObject, Covariance=Covariance, covArgs=covArgs, aRange=aRange, sigma2=sigma2, giveWarnings=giveWarnings, debug=debug ) if( length( gridList)==1){ # always find prediction variances for 1D. return( do.call("offGridWeights1D", callList) ) } if( length( gridList)==2){ return( do.call("offGridWeights2D", callList) ) } stop("GridList should be either 1 or 2 components") } fields/R/predictSurface.mKrig.R0000644000175100001440000001027314627453256016116 0ustar hornikusers# # fields is a package for analysis of spatial data written for # the R software environment. # Copyright (C) 2024 Colorado School of Mines # 1500 Illinois St., Golden, CO 80401 # Contact: Douglas Nychka, douglasnychka@gmail.com, # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ##END HEADER "predictSurface.mKrig" <- function(object, gridList=NULL, grid.list=NULL, ynew = NULL, extrap = FALSE, chull.mask = NA, nx = 80, ny = 80, xy = c(1,2), verbose = FALSE, ZGrid=NULL, drop.Z= FALSE, just.fixed=FALSE, fast=FALSE, NNSize=4, giveWarnings=FALSE, derivative=0, ...) { # if( is.null(ZGrid) & !drop.Z & (!is.null(object$Z)) ) { stop("Need to specify covariate (Z) values or set drop.Z==TRUE") } # grid.list is old syntax for fields gridList preferred if (!is.null(grid.list)){ gridList<- grid.list} # create a default grid if it is not passed if (is.null(gridList)) { # default is 80X80 grid on first variables in 1D # first two in 2D or greater for > 2D # rest are set to median value of the x's gridList <- fields.x.to.grid(object$x, nx = nx, ny = ny, xy = xy) } #print( gridList) # do some checks on Zgrid and also reshape as a matrix # rows index grid locations and columns are the covariates # (as Z in predict). # if ZGrid is NULL just returns NULL back ... Z<- unrollZGrid( gridList, ZGrid) xg <- make.surface.grid(gridList) # NOTE: the predict function called will need to do some internal checks # whether the evaluation of a large number of grid points (xg) makes sense. if( verbose){ print( dim( xg)) print( nrow( xg)) print( drop.Z) cat("dim of Z", fill=TRUE) print( dim( Z)) } if( nrow(xg) > 5e5){ warning("number of grid points is large for exact prediction consider approximate prediction using fast==TRUE") } out<- rep( NA, nrow(xg)) # if extrapolate is FALSE only predict for locations inside convex hull # (or the range in 1D) indexGood <- rep(TRUE, nrow(xg)) if (!extrap) { if (ncol(xg) > 1) { if (is.na(chull.mask)) { chull.mask <- unique.matrix(object$x[, xy]) } indexGood <- in.poly(xg[, xy], xp = chull.mask, convex.hull = TRUE) } else{ # 1D case indexGood <- xg[, 1] >= min(object$x[, 1]) & xg[, 1] <= max(object$x[, 1]) } } if(!fast){ # here is the heavy lifting out[indexGood] <- predict.mKrig(object, xnew=xg[indexGood,], ynew=ynew, Z=Z[indexGood,], drop.Z= drop.Z, collapseFixedEffect = object$collapseFixedEffect, just.fixed=just.fixed, ...) } else{ # fast approximate method # will always predict to full grid. out<- mKrigFastPredict( object, gridList= gridList, ynew = ynew, derivative = derivative, Z = Z, drop.Z = drop.Z, NNSize=NNSize, giveWarnings=giveWarnings, ... ) # wipe out predictions outside convex hull of observations. if(!extrap){ out[ !indexGood]<- NA } } # reshape as list with x, y and z components out <- as.surface( xg, out ) # # return(out) } fields/LICENSE.note0000644000175100001440000000100313754255070013511 0ustar hornikusersAll R code and documentation in this package (fields) is licensed under the terms of the GPL license. NOTE: The sparse matrix methods used in fields are supported by the package spam. The spam package contains some FORTRAN routines where some licensing issues are unclear. Please refer to the spam license information for details. Note that many functions in fields e.g. Tps, Krig, all the graphical functions, function indepedently of the spam package so much of fields will be functional under a GPL license. fields/data/0000755000175100001440000000000014676551716012471 5ustar hornikusersfields/data/PRISMelevation.rda0000644000175100001440000242774614762765720016006 0ustar hornikusersBZh91AY&SY}3 Qàÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿá óè4е_h¹EÔT"")­k6`µÀ{±È&h‰²j•jlÚŒ‰flªÛ,±m¬lÀ¶ ­­bÂJ3jÅ©M4Tcwpë€Í3fØ‹MK)VÍ lÍ`Ùi³kÀl¶ìzK³zÔ ´ÀŒ) h ¡ € 7w#@ÐÐ(P¢…°Ð¡lÛ((($¢J)”‘$”¤TPAIH  $ô%P‰BRB€H©(@’ˆI€PR(@€”„¥I(Ýñ™KQ3i€ZÁfj&mÖäÈЄن¤ÂÛmµYi†Àø>{æ6²ËAÉšmX6¦ZU¶T‘¬ÌÖ²°²ÛjÙ˜…3XÅ­šÀ…kM­A›,͚à EmY‹ E›Y akfLÙ©FkKkL™dØÍ³ZˆY‹XÊFÆÊÖ “a,2Ó&˜Miš¦6š0¥¦«SafJ&ÚÚ&d¬Ø i™¦&©T­b„ 3c0ÊÁ«J«/€>ø}ñôe°­RÖµDD°#fÅÓ1&ô×`ŒÁkm4éŒ1»ØË$ÚÚÛ f›ÕL¶6Û ­lm6@&Ñ-dÚË,k0Ìm,¥†3eµ¶bÍ™M˜ +LfË6de&lÀhF˜KYfjË –°ÛSlÚ°DeÍeßGTü €10Ðh h¤4É£C@dšd4ñDiO&i¡”ɈÓÂ5 ª€éM@`@@'©šh5ÓM5=‰§éÔö£&šde2bžIž%=¦JzO)šzSÚ§Š~E<$ÚOSÊg¦¦§ê„SôÈ€€MˆÈÑ'¨ôÃS@ÔyLÓÔõ7ªdÉ£Ôõ™4Í §êž§éúUf hõ Œˆ14Ôõ0ihÈÓMšž©RB"dÑ'èшM¦£Ñ¡Sô§“e<Òƒi'èšz“ýM4ž’{L™)úO"ž oTñ“Si)”yMš'•6šj~“SÚ§¡ #Ôôm¡¤É*~©ù L"=FÉêj~TØiOS'¨"RD ˜†˜ Ó# ÑhÐÑ m ¢?Bj3Õ†hÉ“4`L&h“OFƒA„`LŒ©¶C T)!   „Âh Fš&&L¦¦A0žP3MU?ô§ššO zM1OÉ Ð#Ù4)äÔôi3!4Í©áOõ3S 6F ÂOJÄQõE bYš6OËñüŠBB*4rN_\ït¢ææú_.òy"÷ýÃ×(ßrºy®èÃõ]æy/"ª4‰$#U,w•Á¼ ‚ˆ,°x„„ç§ãxz“2xâôéä¿Ý­u®ñTùÞÜd¼îòÚ»²`½CÆxéèªóU¼yO.ôyyÙàÎíæ­u[²Øo ñ^5^4Õ<]âZÞ-æu´ÞGŸ¼mOueÅæ«Åk¼vÙßø|ª°•ëÐa*-‚T@J °¢¶2‘וRÕå5QZeÓZå^—Üöו-äµu+]+<Þ§tñyY«Ç¡èñiæ®@X•BÊ IcÑ¡T°¬ Oš^ïÕÖ, 6uUkÆÝëuo+y+u5•6Ê–²m¥šµË¬­*mdÛfV´›smQ¶¬TmFÚj‹hÚ”ÛEQV5^¹ZæÚ5cTUÊÜÚÕºjå®îÚîêîíZ­F¶Z¹jå£Y-¢ÆT›kr®mcU¤¨Ó(¨®î¶M]óݼJ6M¨Õ¢Ø¶¼-næíb£Y×mÓmE%²î«’óÌ@ý µuÀºµ^éR¡yøĨ@Ãú¹\îî¬CU× ‰Ûªé"‡‚œRÁ]¸GcCÚ@©8rJ¶(Œ’†Ð …oÄñÖ¡¿ÕùKWº*I1ÿ’÷›j2#—þÛ2¢H«yùunÜRs}>ÔDÏãÖâ~ž7ܶÿ,/ãQÌC{À¨tIHŒ‡`¦øˆ_¤ëC¤Páƒ7Ñ£Þ¶" \9úZÐU½ÂI$¾!nmÈÔdJ!Ý.Ðȹ›»¨²PåÚ9¡ÝÑ\åͧwR¥$2 ­~‰èQ eSÚÌ€böôj²ØE¿®¤Õ_2»®MçÂ×kýƒû·!ù:úø°×|;»±ÖðÚ\"¡ç£NZwΨ©eùd8 mË‹¡òú·»]iVׯ­F°‚ wýà¿ekmU½ã¹¦é‰ÇlØìwŽÇa¸o÷áp¾_Âl÷[°a3´¹ª x¡·èŸ PÀHÌšüÞWQ8 +ƒéÿιŒPd‹ $aaV¢eóxçƵùÏbš°†ñ*ÏDÙúzÈ7H’1‘Cf$B‘NQLV醀m&£„$’)B¿Åp§5>Kåüb|Î@`¤ÕÆ‘i ¡¤A@,$ÃûÛ.¾Ëþ^w[…©»Þ¨ZÀQÞÛÅE¢¾;j£åOSÇï<ÛR­È¼w-Msi¨—;³¥Ý\¡™ª9Ñ8‹»¦.éÕQÑÙ·±R zD#°:dA3x»!ö÷ª(‚ˆ/YÁò=7Ù£ÁXú`¨?(‚×EZÚÝNhG.%m…..Ìÿ *¡">|Ë •_[訪¨Ú´m¨Ø‹cc`Ö,lÉ(Ši‰ ‹Eôk–‹c%¶Æ×5sDk»£snsnY7$ÆÓ$*6¢ÆÑj+TZÝŒÆ_ì0¸Ìf3Å^±œ~ãz×®=B¡˜Qît ½ &±“Ë0¡§)mÜ<¬‰›­âoCù½EÌŠDH&^GÙGÅPÞÀõp¢ kAÔ%ã¿ÞÀKBGƒ€ÈÐ$$Z$„‚’RF€Ñ@’…mb'F›uZÁiù°œÊ  ‚$k[¿tixä‚—ÃU^‚ >DTV£GõýwïùnõÀZ6zJ3†AÈöbIÕD) B›˜(•ôÛu9x\ò<.1PB€I ÂÐXXæfùý)nªvgª)Vé1]Ubt3­Çø—¬‡S`ÛÅ©— 2ˆ:Ë]‡cÿ¨ap´÷2”mX%Ù:H¿›m¶Ûæ?#Ï|R±ˆEA¨KiDXld™y{ÚôýîßCßù?QßL¿Âÿ{Ø_2Åõvccch£I&´ÚÓ5FÙ-´mcX¬UŠÚÆÛQƒmc”[E †H±“h1-wv¬Ã[Šƒj+cc'uË–«•ZæÜ뺷5.ä4˜—7wE×íÝÝÊPÄXK%ã¯-»6å®ÌZÅhÔmËrÜ’Þð«Ã&Î]x[Àð×.ÁŒCx\xîîì ŠŒYw[¡j4kk•sUá¼xëCÃÇwØü¢16¾ë5 @|@s¢«kkc"­­­­~9[韕.°ª·?ÙÍSéÎ~jVþ'¨Àôߦ棸s•^€Mµ!û9Xª¨–6{Šl;Ÿ[ÑÁ–b¡ó=Ñ»·`˜ÓµÒÂ,“cÆ×4q‹…rbŠÓsrtäSÑþ¿Ñý7ë|¾áïõkë0Œ‹Uˆ §g^׬¦%ÜélUímj{\ß «ÿ{Ÿ6-¯(ô hµ|Ò ‹uÛŸnÖƒcN4=Š|þ¾wêëŪ½[Û#÷úã 0Z!4j2!(Bh$A2JRd‚DÊ@# „$Ð0hÅ&0ؘb$Ì¢ H€…!„‘"`Lš2RLb 6a%‰4 D È±¢D¦™(™%–dÄ ” BËf (Ó#1‘"*H‰Œ1•¤Ð±e½¶Žî ¬„$x„9ÔP²€íe¸jdzq 'YSzöm3Ý€Š9° Ø¿×ÿ¾¼¦‹õ‹eĈ«…U®‚}̧4 XëæYOµUσ+X]•UÆBq\5g±ÃýÄaBR B$„„Ô™¹®jé˜MÓXÐv)))" ’FE rÖ…žg [3™Åcs9œÎ噿ì׫.{¹õ«'h£á€ÓýLW]N*ß÷÷½³e„œÌ øåd;€§ÚÈ¥—ÉÝÐÅs´Ê`)´å>:Ý ,¢P÷ˆ¸QØMΘ§n˜×6[\ãµÊåÜVcHF ”é^Wâ}¶Ú¿Iï±ã ª÷;ø·ƒKçýÓꟷ†‰e"$‘ 뉤/*€YµøxÎrÔþÔÍÔo;Õ?·ï€‘S~ ¯˜¢§" oïDmwñÓÕ¶þ6¢óçS$Û•ÝÎë¶¹\îåÙ6¹]ÝGêæÝΉF¨°•I H¡CT+ýEm›:· íÕ5Õ½á)ª†|‘Cº²Çx‚?¨FèCŠð…±®DþjhÂD^¡ãÕnEEùÅ2è(¶¯ÃÄà­¯a|Ÿ§î®qò¾T­Í*ŸíZöööûÆÞß}åwþ.ÞÞÞß Ùâô_ñªüw\5ó½»~™tÙèl· °7 @›+#$“ìXåP6€4Br HI ó4d¨’ò¨™PΦŸD¯,:ì¾™DÎÙi€ ¥Eüâ™*¿:§³Ð‰Ój-,5Å:ô§ ]õ½g›ÎݹœØ`}åOGý ¡¯ëñwÔèç«8I¾q*@‡"&bGéVÅ×iÇß7¼ýÍ·vMdƒq× R”Y R”¡,|~9´îp‘T9¦¶Ñmkmض¢L‚Æç0` )£5ÕscQ\­Íj79Zå®V«”mص ÍWwZå¹Ë„®î¢’B”F’34Pš6-hÚ£k—M£–5\ض#[ôÛﵿòëÒµ( áªwÞ—aæ xÙßéÿ3â!ð¢ì~ØSÂÕêTí›d·„’N@¤¨þ¨˜­nÕ— ­Øv»vôý»wušàQœ· \×Q¶îí©6 —AC›³¹JB¥ 2P¥$„fW†ÃVÝQ4Η¨8ßÛøõ:=óA Íh4 óA á¯: Îªã¿–ÃææqèŠ/‰æÂBBÞB%”D«Ÿû»ïw~ý•^vUSJ¯dQT¶€‘Hï ®+ú2Wk  ‡ÅÆ|¿ÃXxþ‘Ž‘Sêäv\M¯VvÇáï8õp@Ò`ÏÀÏàT “tÒ*ð^‡2©ÈmÊ9¤×éýÎÖÕìvѬ¨£a¢×ÅÅݤæÜÛ»¸«”ås##", xè ›8›Àk™!pë¡9ÍÀòR@–Ðe'~*«gºWIßfyîÙî}oé|ÿÀÜ€«ž¶È~½~cdþÕÛʇó‚"H! È£X‹FFŠ4bHTI¿¿÷{m÷•¯¨"³EÌF‡“Û  kø[Ög3™Ìæs9œÎgpàr™çŽ×úž¯Óâû,oG‹Ýôy^ËÉÇî.ýþ?°Žô{*ˆ>ççrë³™~_€¼Z°Gùظÿ Ñ‘žŸíNŸüeî»®ÕCv,P-ðH… ”ŒŒ€HR-RM’¦4[H0˜®[¡˜C3=ÇÑý>þ××¥¯ÀÀáæˆ€ûžfoºÀ›V¿ÒÂðù§wQ@óÄ:hÉ$„ˆÅl¢­(tiHG¢»ØoVïýi°§7ØÞ­b;(­$‘)’H„)»\…8sfúP·õ¼®Žæ„>Ÿ¼ êþ KŸ7÷7¿ŒSÊî½JQZ@¡@òD2(qWp®Þ«áãA=ó€ñ\ÚæókkÍæóy¼Þo ›ÍñX¯Â™^läƒxht™a 6TDË ÖÞÕJÒ I!$M`¢B3~s bHÉ(HRñ#Ìq/EžU;ïC]ºLú#Û )´tûwûµOóè»›f·¹ñ”5J›?¶ u‚: w:ˆ(2êì ¨vȉÞöHfâ‰ê)ïzB;G±m¬ªùBÂB³"£aòk\Úw[€®kw\ë‰Îs‘Îît·?k¶¿£­åã.Þª¦ Rú\3jEÈåq7Ý·Äùóy.ãÔÒˆ†”ãÔT÷·#׿·ç~O~ê¯Qñƒ¥è•Ap®Áž×.ðŠÂò[?‹îfþMðtz=ôUnÖÜn7ˆ·m¸Ün7ÆÜ±¸ÛÇa²w]×u³þÝÓ‘ü¿ï5©üµžE@š1B3³ôn•æ{ ²ç¡¦€óð[ÌQkó„®n£[™XJ·)&$u8«ê¯Ð¨'èëÕªãä]@OŸJ í|ŸsÊÜþnîþ;îúñ:à8„L€…$¡Oº .®ÿ¾¼R|œU׊ ÜTµå4Ûö*³’*H ·ã-­^ÇDÌ$–IˆÛ4YÕýŹqŽå£›–Y,Q&ˆ3\RR™±*D./š;0/êÔ¡öE:Žü(yŠ<8bÈSvPÐLjy›Aà:œ ‰ëÐ5»b8ðzûlN¸¹9_áý‘sé¡õ•AoµøûúÐý?—^…h­h¬mQXÆF‚ªöËk‘ݹ‚5Yr-—wwa"[›æ‚Á¢»®F¹KÚÑ] 9Å& i”H«¥®â×.îì&Lülçiiiiiºpv–Þ3_´´´ùµGjéªFElÎþ$“dEC{‡èÏ Wö<Ž WX],I"Hëü(¿ý×î)h6¢F-Qkh­¨Š* ±j-aJ• ŠMš“lj‹¬[±ˆ¶-ŠJ1Q¬FÓ¾Q)î¼< RŠ¯Ô¡õä9¼PÏÃg€H‰ÅnBåxÚ¢lÖð$BF$˜£f#ö6ß»6¯Ú_v¬~²<¿( ˜¸Þ?Ynƒù?²%ߘ¿~vy_UÁ}x/à¿ÞÅ\@M­žÊ€ž?‚´ÕÞ/ê–P‘„2&ØÞÝt)Ýw kßÑüqçûÍmú,v€‹šà€!Œ‚LUÿ„ÿߣŠú}N7òcˆ$SD8p@\~Bãkä9Cºò…ûä8Aïjö_[¸ý›_±šý7îç!Øû9Ý?Œ‰ ".˜SJ ¼&þqš½¿{€È„– F6Â(ùy’ØH†"ųZæ‹F1 ¢Œ¦îãŽì}GûUõð~Z¸‚g)Ô»Š«¬úb|ô^©gb‰Û3Ä€ßóÉ‹tN[«@9 C´pº¿wÕÇüºÍx×*É<=JiÚâý¯+íø¦·æíA¯žæô|uèT7áÜè±¼ö9@Üd&Ð*!»X4Aüâ&>íÊmºïÀž­o¢‰¯¾˜¨=kÉ8‹·)….Ý/m«µÜ⤋#%ê#H² !%(I¤Î€¨óÎÊ¥D$HHˆÖÔ †áóà²ù}Ÿ/—Ëåòù|¾_/¶qW>‹ÇLž"ëîy|áæÜëñ€‡¤ØÆjÅzE:ý_Ä#ã^ð¢>‡“¾\Ó@$d’zt3H(gì×ToËcH‹E&¼Ù+‡*ë\±Œ((Š1ˆÉ($IJHFõ·p»¾_q|AýÈ® èü™_£Úé€5H§L ƒ3@…ž¾¢p~~eÛ8p}#Œ‚ä‘dJ*T4¨û‘Ç"c,:;.KÜ«žr€öµ¯ ÛͪˆPŒ"nlt«Žr¨»»­r0sv"Üè åÎ[E“LîºpÝŽç9ÝÝÜZúÊú½È›8zW~˃÷Ú¨HƒÊ7 Ay äð56‹þ–ãçûØ?™Ämž"»"„6ß„¾ÛÛÛÛÛÛìÖööûö+Ëô¾rçwûW»…ÿî;¸ËÊI æ¨s *zÿG9…î÷.ÃÝËaQ=o;²·1`}ÌN׸©]qJ"ÉA$‹”ú°ï/”Ožì†úk„<0O.@ |b öõn_W‡€­Ðt}ÅçÕÚs½B'þ)šÿ¨›žÝƒßýÝ—í|º«DpdI h±Tˆ,V†¢FC!÷< GMmb€~ž?)°¼ky½`á‚é³^'„#ͪø*¹ÑBèS›ø€NÚÀIÀÚ ‰Ô\…q »¯ Àª€îו°ðAË În¢œ*=2. y‘ ÌôøÅyÕîû4®s’Îg3™Î“Ús™Í÷9œï@tÃå÷_l~W•U×)®R¨ùÀ ‡ æ2›“Á«®ía.ôV "HH©BçŽæw»$óÔMÁG?¥ jEu_UòØ÷9¾“Šú=½/†êE.Èš¡_†ãýø¢¢‚ FEX˜$ÁMßëÍl;¶—Äÿv@x,‰!BBD$€B2 ü¾=‘K?wU¢Ü5;ÿaÉ€âÑ0¤ä•byMEÌT tˆH Œ$I Ô$}v\&Ùûѹ¸ñNA1à˜–ÙEÂ7O'ôа_RÛ›A½ªêÕ È'Ti80±†m¥·CQÐt¿ç;Él¿ŸIÿÜ_Tå4kŽ]Âøä=^ï—ì„ •‰$@ÕÉHBUÛ ‚ë{ÍnßZ’øÅÝÝuÛB É0Ld¬Di(Ôgðû¦ÄÀ°Al„ ’bC&¿ÇZå$ÀH ’ †±}{¨™3&bEŸë€†R€‹ÄE(Ʉأ) $š€„4ÈQ2Ä$› ¢M(¤¢Ë±ŠF` ‰ 1°#bÔ¶!¢¥þ7-»Qs"Æ£$ GŸÞöœþ?ŸÏçóø<þ?íÿûÇ@DãÅ-Ÿ¡MŒ ¯‡üs›÷¨ƒ•ƒ $¨ô‹@ÅÓ‰EU4žæ’ïøuöov³`’###$dd"(ÄdÚ!FÖAeI–xM¥È|uE›íÓÂìnCÙút› ȇgu"¨L]^ÏÝëp;NoiÏ_³¿Ë%àû•Ñ1>§3üÕ5H¨Ùó€®ý,€='„ ï±ò\€â§ÏÒn*„ ªE(2 …Dª lc}¦«èm¿—Zþ†ÒÑ{Ví˜HÖÌ*ˆµÎ\¿ "sä>ÎH©î ©õb¸LWlÅb±X«f+ŠÅb®[eÏ|ýOZÿZµö¯Ðk4ˆI¤Ê(tÚ+•sq®Y„.EwX¤¦å]ݰÎvé™Ý×]ÑˬK®Î–étî*ûoõ~ëßÛh zhžæyE"¬ Îpß`§'"ޤÁö¨ž¸²~Ù»Á Úšˆô¤@Qþâ>ÇÕÖ wêœwÁœ8ÐL´VI!7­ÕKèˆ|=ß+ýº Öë%¸À©AIE0¢ØØf÷}¸\®êé¤ ~|>óŸ¼Þa7÷ï»þC!²Èd.™ †ÛÈqÙ ¬>›÷þÛï{Gøø¾½‹ã»Ø ÚÈû4X›kŠ€jŠ©ÿ€¦ë“õ9ªÀ§&‰¦¼ü¿‹ý.ŠmD‘a! 2(ø¯<®O€AþÈr"é™b¦JâŠ'Á_ø•rèåÁyƒT=îS.‹”.ÙE€^LqDò´Ï,€¹†K=õn@æ¹§n½ö1ÞÖF²%á¤dI!Àè²f%N ¾#@(é „!’r¢ctŸlóìù?få­ø|½×ýºžÃiõŒŒGz¢¨yÛ>ñnÚÑ@q»'UébÏ9n^‚)¡ÇíµbT„ ÊaHi†ˆÚ-XÔVì»¶‹AT„l‹š*$œã»té€çwv¶,­$I$ $’ƒwâ³9ž+Ìò¹œÍþõyÛ9}ŽÇAïÝýþïÝöù‹;ïwÝ÷Öï{<ï›ê"oHí¸;0A#ùþñuTæ?Ò&^XI Z JêʨÝŽ}^ÿXë†_]ÆH²‘dd‘ŠH cFB$7Ã/“¶Ý¶=2*'ž!çú_ë|½šM«gíý­êÛ´ýßFã•úu¼¾Öˆ®GhÖ¨U—ÙI]QD¼~~ÅloƒÀh-jÍ„"$ƒ!$ ñÚ˜+p{¿ŽÎ]¶8ÐQòAf’R”!Eéȼv¿Á-´6̈ýþ¿€rÛfÃÛoŸfÛw¶¶¶¶¶Ç`xEá7aO±—î‹]øW›õo{Ï”»Ýý×£j¹cY™X±FŸÆ0çKw:›.šæÃGq©2¹R-7s摪&Jƒf îwt!XÙ<úd!g4B±Vñ!¬:„AR¾Zy×=2'1[¢§ééÅ;]5ÿèò*ÓtEë M[–óäj°ÝKÓíÿŒ‹›Q±DÍ¢Û°=¦%¯è‹½«Kà(—ÕC°Ì쯚®) rHªZzêöCcáˆEUzY§Fyu{îßî~_·Ñ{¯Ôû [_›Ti"*„‚Pm$Ñl5£ƒHšnwWOòþ•ô?qj–Ê„gB)HH’–èˆê«¸ÎŸ,õ¡}^ÕC$‹úÀ{‡èDP¬j§O• *<<á§»‹§Šò@¦ãÓ¹l™ª­Òí‘) Ai4˜Ù9Õ“¸êØ×]y~±}ËÒ·ûèmãé\\ñÀzCÌò«UB¿/0|m¥§®ZZZpW›N*ÒÒÒàvWnÇ®Át»~Ñdl—/§ýïÇøßqº¾Øm~¥:{1@;a0’¦ã碨UÇ ©5÷˯ÝOcª²ª ŠH ã¢'À@@¿À ¤T6Ð,OÂZðb¯QâI?51±U†—©¨ç¦*eî@¡ã"\U0¥s? EE÷æç é8NÿD’zÈiÒÒP Hà" m½ mËhŠŠŠ1b‚#$H1¢CIFc,4h˜B C™‰¡C i3$„‚–˜`A!2‰°bS £ccFÛlM6i,ó#¹Üɰ’±C®Òƒ‘RîÅs™×] ÝÜk_'¯šúíkô^§ ü)äå„i2J4çÐ1”ç„uð§<¸ÞÔ·VÚœá–zhÉ ¯vŠ¥|0Î×­|¦^ϼøý¾SQä÷ÿsµ> ðiÄA ÎÿB€] ͼ6E+è¥#½ÚªH‚ ˆ"(FÔmQQ¢ØÚ4m"F"„¦1£`6ß‚µÍ£X±hþ mµËæÛZæÔe[h¶AXˆÆ˜Þ’ÔÑAB5Ówn…%ÿÓÒÞx¾Jæææç/„¹á®q×77£Å•üÞ¯jF¸¡Z$]ħçP@,qÛ >¡P¼Ñïî ÿ $U¨´›ò/+NgÈ< h÷@¢”55QäâHÄÁ¬kç"“.Ÿ¦Ÿâp•©’¸Âô«{€ÒR $w.p¨«—!µÍÌdŽ ܈19}2ŠT´>9ÏvôݦÖU6Éo ¨SþLqˆ<ºçaôØÜ8ÿ/ö}ï5³þ¾2ðëá×ÃIѨ‚ÄT OB¡ è¨çÿSË…ÿàþ/ÄÕ½-_Ý Ì\©Ýn]S»(5¶ØjLÉ Ð:{?Fÿ`§u܈ü.ÿj âKmE˜v0ÒOo=Ò(†° I#Ež{7…wq\ê&LC|M6) òÌ‘×ÊÑÒRZÿUUL|óªÒËOécÒ­eæÐ³¨¿à4YÕRŒFH ~7Úé“ʇ̤Èäde÷_ÌD›¢dc#8þzeÕùÞ(Ø2ˆ‚M2OBÿÑÔf¥õÒËlÔ}ù·ø€_9"–‘Y~ëõ0MF(`*™!‘À È”HÝ "f®¡‰CT74$A¨È*ªžC …Aa2<¾èddYŠœTIc1C2)‰ ÀÕQŒþö¬¤Ô ŠˆŠ€X“#02V4ÅYÝëÔ“@e’Œ«ýñä…68—¨ú,©E‘2•S`•¢¶ø\ ]"V¸ª.'úP·5´üP:è;dŒ!ÖÆ]¨7x+#{ˆì°LDû<È.6&¦e• yTRíƒePVó(k6R«ôBÂ-P¥Â…-РÛáKÖ&•^¬©PÈ ‹·ûU0CéwŸÙa½#ûÑüx8 d#—3B`Z6¶rT(y&DáÁ½ùˆB±ô¼Mzþ» Ñ¾µúÅ}¼‘»ïüx¦DEú¶çÅyþÇ•ê÷þoŽøŸlDj¡¦@3ï©ïcȇæ,>&ÿ¬ÉBÝ™@j¥-” j·ÚÖwªöŒ¥ÚµF±I¯XR©¿Ê@’'U+zTü³ÕyÐÆPay»ÃÂÅ˧Ó÷OW®ÓËå|ýëw–y¾3ÆïÙ£¼Þneå9ÜuݺåÜ<ÝÏÖFîeÝÝáx¼uÎKŽºErâK»p‹¦ë¥ñ½ãÅ]åâñ<+¹L·]væÜµÊ6×.g]²vkGc‘­sr× ¹slTlmͽ  ^5!Ìôû¡¡áÛyºíã¹Ýr½ÞW–ñâë¹Îï/.b\Uuã‰Þ·çꤠ@q‘™Â—Z!bú­”Í«àeV#C†„ M2BD$C4ìR<„+  `Ás $Fhf€Á$b @~X90¼ÓËœ—\Þd£ ªg©š±!‘š5Eєã.Dyƒ¢%#èÈdƒ**)›UF™žF‡tÉC!‡<ÌŒÙ@;FLh`€b5FBpH ÈSÈR;ÐÀ’’dáP‘‚@Y‘@Q)’˜3b2P®l A*a*>Ne“€¦Yœ(H$y ÉÛ&J€€ÌÏ%$T#W]/ wŽîî+Çqã¯C̼ÞcÍãÇ"‘™ ÌÌŒŒŒ!ƒ"DCSU†#@Hª™#,”(#3#0È@Ñ]ˆ¿d‘üɤ Nyd§‘’3TTô‘dYd_¢"”‘S,©€AàÁ0—ÌÞõ{­VÉFµWÊÕU*¯UUéT€ÃPF>$V7#u N¦ˆ`ŒÈÉ™”Cä¼`¡|' ²!Òk”ÜÈAæH°î ”#š¡¢2äªælªÊÃ"RFEc#S"a–H2¨™($C D¦jf†fFˆ`€ÈÂ!š+#05CTfY C+Aœd¨Z§ ÔÌŒ‘L!¨) ‰AH "‘ªt¢‚%syŒ€#º«Fb&F fÁT²1‘@`@‚0ìfŒ3¹!©2©•ÝúŒ!¨#UD5<# Hf†@À$™…… ¡IYL"y3HJ 1"TÜ6N€ƒ€ŠHPF@„<‚õ4P(`2_áÿ¤­ù%ù/°D\ËB–afô%g@ꋈJFn§‘Â3¼‰aÈá É  Ì™‘4Œ`èÊGcbHÎdPnŠfH¦p ‚±¢†6#1'6Uus53S`9@F¬•‚#:Â!"Á»ƒÌ”;°S•؈Ð̆C™À MIW%‰È#˜d2 jî™)›™(BpˆDF23#ŒN @("Ⱥ% L±Bº0#Ba «¢™™šÈÝXd@„'dÆc/¹¡Œd Ù@‘„]ÊòRtWÌ „3ªTVSl˜3²8rA@A} ˆssÕ7IXÛ%ƒ$³#Ãÿwæ„“ËøÚt<9üZ'ÏhmåC±Zö‡Æpe" ’9.hŒ²U"L…DR“Ê P;ÊDçØ“ƒXGÉC/c«»™¹M‘ÜÂ22Ò2PA1j« ŒÆ†µ46`J Ì*¨0@€23RCPY(4ɲVFF’’3¢…S& ¹¹)†2T0fŒdã!’D*‘8@æG&u<‘Øœ‘‘ÈÌ`ˆ„¦Ñÿ*’dHÈ&¹) 22CêC“‘ºš˜‰™‚484Fds6щ)†x! ìfÌŒæà™Áz:«9ùî²Âî¼þ?à‘d_""/¼•®c)â—FÌÛ{‘á]Ò&ê¡P*ªÆSÌd@Ü1+’RSf0ªfŽê¦3g &2­ÂPä¢E †lІnTE3ɦá”ÖŽJÂ’ƒt`du3%40F!U`‚š†`ÑPÜ‚@9“ª*;£²b¡ ÜBFÐ9Cû"ÍŠ!DQYˆ!‰lЦ"ªO!I¾lÄÍGìÑgíF‰fô³Å4vý„©oÐsEÓZf®)FÔ››ŠhÈN„b¨Œ ˜U Ó$u$ ꥢÌHÞIVDÈ3"‚C@¤¦Äè£%0NŽ”L"’¤5f0 ]¡A‘©;››B²Á‘bPHŽj‚‚5ETk3;3“‚ ˆ¡UT3`0l„°G jÓjœ9+º$++*© 0ȪîãºPPÌ I KœåHº—¢“´Ž¿*¹ÍbŒ¸ö&°yaÈ] A}Uò;¡I 2 ’©,“1“¿Lž! À3¤ÐŒÑ×/ÓI™(BPo#W9 §Øf¡ˆÆ@†PB,®ñ n R”TÁÁ È¥i!dRâ@‰H( %CÊjȳ¢ È8  …)0ˆIŠ PàÈ9³* :«6NÈZ%|Ÿ)@gÞdÏ‘‚ŒÂ»£A»+ hGudE;²•XÉŠh¡}ƒÝþeqRð=©†$o›±ƒ©q©‘©*8DpÆÙaª/ºNsƒÖq’š„(@iCVTJ¢HÉ’¨R _|AQÐI lõvƒÈŒ,&ð¡Z¡~•IJ²iƒi„¦l¨fdH ìØÉAsjd舵™1Yäªø6ùí‘¥Žƒ%ª¨nl­¸ÈÈ¢¢˜3Ç’( ©%2z=Jò()$4ˆ›õ IÁAL€éPáªqÃNŽÓ/®ýiY~!Eû¢Ë/_·Ë¶òåÀ¼{Ûös$繟¯Ÿ8–¬¨ShÒjJ‚¡ÜƒþfU`!2´GÑœC”‘ $ÉULÕPØÀD%2R<¥ö¦L ‰ÉÞCJ¬lî®¦Š Á"‘¦†Îêô™K)¤º`Ä­ ŒdA¢"Kq¢“T)ª(„4Tc `Ì!ÁšíC›IÈœA˜DRàrcr¬B(܃“1›‰­Nì2eUw dpýˆ‘™PÞTá]]g³¤¨f ž†¨lЮ Û€?-ij[‹3 çOÛ­[Hp\µãM‡ÍY¤ÅWuY†¶(`ä¨ðÊÏ £‘œ¡kŠäó2PBkA6‘7;kXŒ#LË5F™”MÈÍá ™ ÒÇ‘¡›L1JM$7«LŽT('9” å$–JÀ¡®g%$XfUf…rBB"¡±¡¦F³5 !È+É¥ Ý$r@®®‹”•²JnAÞ³:ÌÕÑJ!¢f¬¡‰LH2¤ÉL+MÔÚ!UáÕ $©`ΞuežøÙ— O]\’U«²#ÒrAxL&Œ~®”…¦x…+‘ª ±¿Dbxܦ…4Jª>·|â2ŒéìF‡¤oDMÂaUÍë[3æò‰0Esdk1­Pr:•bL²%“ÒŽ$$*§ FH檙ÆF¦jP`Ý È£¦RÎ’†RR£©“†tHl§9Ê'$%€Ä¡Bº£Vk C  9+25U#bÜ– ‰Þ‚Õt£©šÈ€B4ˆYÑW‹iŒžEÂE†hÉéVB3("ÚKÈÆF æÊŒ„¦<´Där:à8Óöy¤ ¦kKZ<œ ð5Ž"ŠíJu–Û¤•¼ZºÑÖµÙUs¬ÚPa ”ÒRiZfû–Œ³t©£RƒB¢Ét;pÏC<á †T–#Í&‘C9›Ø•(ˆdÙ ZÍ‹ ªΨˆ2Ú1œ kæÝŠ‘ ›˜xQR2#dD2U 4\+»™‘–M‰S#0×5‰º¤òE“:³! 7„£=W$)’Œ“’¥6‚J:…R8 ŰPJ²4[VÊ&ñTyN‹99M÷M“@INnˆ› 4\g¡ÖÒ{ë#~ˆ+·;Œè{jJ|õãÉî7áÖ!÷Iš¹¬1ÒÓ=i¢¼ðˆIÄÍ3E°GCˆµT3±±U`svg$&!¾Rš¦³l¤³Ë4RMàÐH’%d Žáîv£LsY¦*•“ †cBQìq +ÎtYo„8]ÕržrвVg¨•ë @ó…B‘&!‚e }&Ĭ°ï. tL’s$i“¢k4”±X&Œ$3AœÖk82w Öb+×|–,ohu­D«êç¹Ñ!âz-\‡8Š ½QäˆÀ§}òwx'‡®Œ¡WLU ‰«€k‰‚ûà–E—îÈ‹kâÂ4¥¸æª¸¶™ÄR(’“Ð÷Ðè$T@7ˆ4*‰4‰܆`ór¢ÖäÚ®t2Ó3Ѭ£-`™ô]³Ìÿrçe¶½lM¡ÅÏhVWÓ ,ZZÏc´‰J ÜÈì[rtvá5LiëÈ! ¨XRÍa"R=³¾GV®HÔÉŒÅY¢ Îr’Öh!¤oƒÊvT‘JIž$ò‡’îxš“äå3Êj¬–CŠÖ †LK$ut±âsp`ê|›9”fòR#S4p jG™½Ò‚è„êÐâHÖT›‹HëDÍ­Pr IXt]Œó{ºCèïüCig9ƒ%d ­œÜ”‹œàLÛ Žš>…¤ÚÒ“SMó‘Êczøi¯CÏ~’Ø„¹l¯iíi!L ùNmTà’ÞtßÁÔNÉZf kGS”Ïr”Ñâvu°0¦è%e˜iàÝJÉ`”ŠfvCC)¬¤b´H3¨2ÑÏ$±¡%#‚ß<Ì*%ƒ­ 2„<é3R%!@€• r)h¨Q<Ô¦+DFÇ‘L§PBB))És39¡ˆÁÒËK=y6"]sÌìºQÉ HqÙZFuÁ„qeeJïœ*Ær-“HÌéµå{’M¦t¡ž‰Ñ¤¥KþËNyçÅwß#Ùµ¡ 6¤xÅ‹ugÂNAÆšØûªeaЉ|õ“æÇ£œóäÒa¡0`†ÔEVB¶Íœ¥"r´ï²£lf“s3Ù’‡™Ñ’|Ý*¥®Ëf)ERð KA]¨Ø[9ä{³¶’$“ÚV£ºÅ¹>UŠJJHÕÔ§^ ¸f êŸÓ ÔŸNäç«×Ø%ó¾6M¤{Žš®Ž(YÔê7YÉ)kSgµ¹ MPWIJR±,œ§ã΋•E]¨¤éPÔ<ou(%‘’fÕ$"($!Rr+!Ô1:¥§*3©ÂÌ$¨ðÌcZÕ Nd§šÀ¦ˆÀ¨2¬ðÅhg H@Z”$-¢ ÖHÌ3s%7cÔÜôÖ“‘ÎG&I59¼ú8«ÚS´Š’ \¶"$G<(ÐÄÄ “±!€…³/óì`|ê*âé)â'1úifÿñç+žv ÄùÓžðwŸ§½(³oÎa<¾Yºz´WG2ÓÓ4J2zŽŒè‰4+ÅðÔ…eR´´EºËÏÙ€úm|ç²j¹œäÖÇÃä¤AÞ¸T¤I ÒÍÝÚ ¨{3k#£Ì—S£ÊqJ5lŒi<C ¬Ud(H‰'[^ —?`Œ\ÒQlWHн™’ c@~ý-*g­Œÿ‘ü&¶æo·ãôIuÿoÑë„•ñíþ®¿ò‡L9Ј’ž 1ÐIÒˆ X¡‚R#  @a6†Eòy}sQk]Öõ“ì+t¥³’œYU^1žÙÎÚ!iJà*˜ôÏFÛ³YC2 ‚;쉞Ñ5ˆW$)`(9ËF’o‡½'iSu kœ;5èÏRÓ}³y´°&ѺøÎmäܼ ¿Òrœ´wÐîªp§ì—ôÔÿÏêsý—öŸ’üß~«d︿;Øú÷ |å·ä÷~ÿ—DåPþŠïƒžÄû|öÙ·mÛlÅ}j· ^×ácüþaÑ~ÉiïZu¸÷éUbÌ‹­!+_Šf©OVsƒª|_g¹Ûs!Ff™œ¢Ù6K‰gê‹1ƒp¤rª©À‡bC˜bv&\¯œ–54”R†,Éöyž3Ž‹.‘ঋ›4Äf.4E•3Á-¾VÏjé ³Ti‡­e©^q3Òõ[mi5xDÅ7^”ù?cþ/ô?_÷Ÿ¼üÒü_û?ÞíýwÞ«ü?Ñþ×ÉúÿÓ÷õø ³>Ô1àòŽèñzËârcqÖÔ/J…’‡ñŠy¹é{ŽîR7u%ûH“+LÉô9ÎiOUŽÚg¤• Až×ô+!€ôCÎ Znl …=W†¶­ñ †³edf<ì‹ › '©2ˆ[]‹:>޲IpÄ)Ryi"m˜ÛûVÐ]mœÐ¸è²•–òU3X9ÿoýªÕ~Ø»ÿÃÝæî¯íé~-ž˜Î›[§¦çÜcãñsHu3ᙆ8‘ñ0AÑ= ‘ðP¡@žÅ}^çª=è®Ð!+qkŒ÷mR½Z Ÿ›ÝžÒÎ6,jùÁ‰Œ"ÜÆl&‚7iYÙëñ[E*Å hHzV.­_voOþc¢‡†5(Yðj²o¬nz\nÕ&µ™L˜- [JÛrJ¹âi@Âhô”MË[NTL\WTe¦Š7ìzÝä)‚<õv„Ñ í¢ú篽ûÏÓæÅü¯ûü¿Ü}gïôþŸÓú~/§ôþŸáþOð:øyÑ©þ½|¾O¼¦ñ?Ô(ORzèÞoUÂy§ÍŸÒfZú$RÌô®yµ,žÿ®MQ=R·d÷¥‹HÅYƒ9g3*2Ie#º){šë’J²ªÑYgUk‡Î“š•§ <Ñd+3Ï4bƒ­VÃ* ËHlêY¤˜f4}§zJŽû§Y<Ò¹Õ®m%ÎîòÌïb›…”©*#ž=ýezÔrHw×Y,µFßv¨ÁoÈpà¶ÒšiÙ¿ûû}û—<®\rçKKKKùéé×éééù¹s|åÎ×…sÚ”KB å0eʇ hQjIŸðáûov„-ŸÉœ¢Ñ(/…Rþc*ürîãW¡†Ý£k+SJ=cGù€­Êù.B°‹$VWYJÓyJ𠽉wþ"6SÍå¿í³k í,ðî¬ 4áæº”óBw´Ó d έ˜ß62|B&‰EËiԔ°µCЂ…š$„õº¨¸¾|˜­cÇÑi®©¤íóÞºtÜ]ØY!:ÚÚÁµµµµµµ†ëkkkkk"ÖÖ·Ðt¶9)Ô@‘J‘05OiB½ óøgê¬A³.‰æ$%«ÇkX•]ЩÎY½kFI)•êz:`ÉîFAÄÖÍ'0A"=2?ZMsxV›d¤­jR>ê")…5Ùõd-˜l(Û¨¦JÚ ó\kkÈ~²ŽºVYèí›ÙtF ´æ›Âo=òåýô¿«ÿ'îÿ”tgSóË’ü¼äË’á âúÿ×zJCçÁ R¤@ŠÞÆ%P4X5#}>“ÎAlÞˆj·^uÌÐØñCµ¥BÖ”‘D¬†•ÔÙÌGªLHó§ØF‘=]h¾ÇÝ+ŸaE;Iæ·÷*‘'¿Øï™Xöƒßö7¶îÀ´©<_dGÏCœÔøÚ†Ö’ÒŽ–µU"+cÙLÚ\´‹{Ù¡q!¹¹Ú¼F‡¸rÚ¥vÓ‹0®'{í⵮Ѻ`°ËýÿÙõÛ&Ï@dI$‚š%$ž•ÉUF£B5Ÿ…×4Ù‡µñž:oåý«ð~Já3úÿ¯îþüö¨¿óËúl<ÝCÑTË^]„F *¡AÖŠµ2ÑC)|$h…í3¶H^é’aþ!漢bŸäm-½ÜôK¹¼õ¹Ù᾿㎮䅎3Y*©iw½/"ÂÍó7&é$Ž•Oëhë6'¾+¤¤U_`= íÇ)6½vÒ¡äFç{~lnbÎDdu/©ï½løÿ-’U=T×Y²L0¶‡|˜a^çæÁ/ôþ—ù?7ü°þ×ü>÷ýïóÿíü?Òƒóƒë5l‘šÓ7E%Ð(myD§ 5[@Zç˃²Gãå†ÙÁè"ºÒQVÔ”9¡ðI1ü(xÓà|îúYWƒÝ¤VÅÐ\š["Uø•e¶ÊÅ*g b/Z°`!!°+ïóöðºßÓ÷£ÄìšåÿÂ?7«£÷|¡L…Ê#Ä…ò#ø}$-ìñOON…ꪞ‡<äo¡¹N“µ¹:ÊÕ“SÝÆž¯rˆ§O\«éœzõÛuåŠ$­º`\-]MM(’lW)AŒ NŠÇjÇ$:º¤äç´—w¢d€³9QxPÔdÀ €ÉÂ72"XÍ 1Æ@Þ±¯²*úgœžŠlçWÑ0LdgHb¾ˆ„÷ØÐ´Ûz®åBÆò;T«,9”̶}·û¯õ´µ´ÇîÓ–Š¢t~eü¿Ùþ£ù9þ/þûÿSû?Ñ~ð¿÷ø?êÿôîýïóÿÖA²õÜ£ÍÁAç\DìÌtGÀ™ ‚U¨u§ªAC'®~íoZæ¥ë÷=nÈ3j¿²"…'}w,4ŽL’Gá¥~}šá²jK_,k#dIZhĹïL 1ÃÁ«;¬Ã¹Ì¹oÛ} eœÊ¹é­áÆ·¦ñÂ’¨+,¸Äb)bRt±#b†„ÞöîKžê_::àñ)¢«"…o€ÓÕý&Á=`ÔþÞß»óŸ/æï!ûu¹ræýË—.\é¢ÓÓ Óç0<% DïeÄ :°€×|Kñûõ÷ÛÖù‰|z-~IwWä§ÆzžÏ= )XZÉ“|;[ñÐÖÏDþÒœ$V‘xš"|‡t\qÕÞl{µm>:D=ëTbƒ§#|á-G^(³5'«ricÛE'4LKø™É:M8g¬ëNº·îÓ~Æ{ƒ×w4¿M䩺ŠX;MÅœþwYS õœ+šõ? µ^¿£5m9[êÿë>§ÔúŸSð‹"þww·Ûíöþÿ¿Ûíó{}¾ßo·Ûåü†¾/›Æ½þ¿'£õ^Iú|¾ƒ¿¸4e÷kÊžý)?e© 1¥ºë-I@ç/yañUÍ¡R;zßt¬yÓŠUÉýÈEש£ÞL“ˆ°gÛHBÄlÙ×èÁ–ú¸ãŸDo¹Ú”Õk\KK<Ä®µRÓVãòo<ë,{‹zqÛŠâiÏYpÍ¿#Y|LuÕwýÝ9•ôÆ{m:-}¿'·Ûßíöû}¾ßo·Ûÿß·oo·Ûíö÷wuù|]þ{y}iïx|¾[{–òøèò÷<È^Œ4¬ŸF™¦ ÝÉ-ãßø>§^;©ƒËCö-ŸPI$¢–x6râš“×IN £ØÅ"°l¶=+¦™‰!q{èó+¦ôž¼Ëd¥³ï¶Ô®5:ûúëº1[yÓÞÞi]5¥bjtBñ­~_Ãù~_—åù~_å|½ßs§N:uþîNºtaÓ¥Ž’Çž~Á! ÖƒL¨!r#D%”Pê'V cðü_ÝðÚˆ¯]>y/£ÃâÒOŸGA Yïùo@HÆRJ:’-gÌÍ`Q¸¡Qt5ÊÒènk¥3êÒ Ll¢àóá]ý(“½0§ZyÒ„eHݵÞn0¥óðu(Œí|-ãƒTEë:vL厽mÓÊj6ú3¦šè}ê_»ÿÛíÖÖÖÖ.éÒNŠ:tê¿WWWWW¸`ÛÒ5(L¤OĈ(@‰Ä© ¬(Á"†{!4¿»h$÷­ePþÄRjÓáL+—ƱŠis!$i6=ËII›tUئÚ7¼€Í “Sø“‘•$éŽLYÈg*¬QI©¸"Ö~AʵX°vær 6MÊÓ›îÅ4·×kŠ×Õ^“ã¿ Ö3›ôp×úƒÞþÿÝO£ž¼´èüÐýO©«©©¨ËSSSSSS¢sWW¢é×ð8Œà4Ò…yP*oŠ‚-1æ]X÷…C„ |{vY\÷êzÊÆO½¥ê¤—o¾žtc#s<ÎT»àháBwݪ3g¢Î,hÆòl“=ÕD«£U‰‡ÑRRƇÉnóJžúÍï­¸æ!(O,J Ï“¨ ¯šê@bF()"/U¶½xñ¢ˆ‚× ­­­­­­üKëkKëj½jêêê¤råÉðOG† :ö‰çÈ%è_UýÌÑÍãÕô1ìÖÚM}Ðþìüé¤>ïsqm¯ÁáÚ_eGŒü|aéξó¸Æ[@öô&³Î]4¼‹í8Ó9ž¹¤nbJPÿ]»âs•e^ͤ¶Õ8ÚtÏJ>üô˜ÝÒ±¦-‹g=ÙÉm¥UóiŸ ™k­´f—ÑÔíÓ~žé>{oßÂp¶SýÉçqrâ“á‹ >|˰ça„J”:4p¢c ^h˜ÁoýZÜ5¿œoó­­üõÕkë˜×þ¿Åñ|_¿ñ|_Å/Å,YˆªË 'Í0ƒMÚDƒË0m#åÔšeÊfÙDì>¾ó|ÊiI·ÎC9ew6?ª8±±OZxU Ö›i}>|õry«­,æŒ7ÂL:ìRzsÔö'K/?˜’ÕF”2ÒüÄ3žî]¹9UÙÛfµEÓo}–ÒiÝg½#XÍeHζ«Õõ†ÒÝ ¥RÛR¿“]ךUÒù•£«7ß>mѽ:XÍÇaD¤—R-² ‹hÂIÓ’SØþ‹û[ŸkíIñCâø¿ãñ|_é|Qü_ÄßÅñ{§²ÌÉw·9¤þ,¹ Å€„G×°¬]ìcxƒï´Æ‚G.Ckñ½v,ø{õÒlØN6ÒtRå]±/zÜsÒTû3°|ìØ+9êWÃÞ‰=PËkÕ4áG+ʺZV“Y‘W­õIjY§Øà©‰þdíðµ¥ÕŸ1-oÕÙ;­¨±2¾iÇjrlÎr‰“m¶y“î¾—I&}Vk·oÇf.¸åÆ÷tΧ·äú<Ëævëëë–××#¯¯®éÓã§NŒ:tö Å"J201)‚ˆ2€ƒˆJ¡Ã¼Þ_dŸo†ˆò™ô.Þ¹æŒ=M+NÂ>sVfØÐÏ×<õÑç; ʆ 3÷gZH{´µ³=Ó˜ËàÖN}<1rlSJR3qÒ¹µ¸Ï‰xîÏ[g.¿ê½õž‡jo¨LkÙŸéÃ3õŸJŸléÒÅœoåo‡•vŸ^™‰pDòÃ዇¦»û¶ë¤ôû]ÃÁ„tè»§N:téÓ­Tzººººº¦µP°|¡"ƒ ’«@¹ht¢R ?Ö%}?™–—ÁÕe|ÿ³÷ï+ÑSÕfºµõé»Y~kлq¶¶{ÔùßâœIsÛ‰­U³Yq&!„ŸÚ¹WZâfÕ3âb‰ð»V “ÏC@Ó ïr.9é"þøøÒÒeÐÈp›jm-ß$¹1Wk.¼–\;ÚgÓiuuÖkËŸ?‹®”Ï'§Äƒ_§£åù~_—ù4öû{?Ó§N:téÒ'N:tÓ§E!H³µö‘Ý{ãëèPï’Ï„‰ þ-üÕá×j\vó:¦¨‘(c‡lÃÕ1&[GÂîÅûæ&âDî2Џ†Ú4$û(´K[º>ƒÇоøöŠËTÜ>‰]y_mŽZrœ_ÃKQ¦U«,«¡v‰fGúÉý ,Ìü8ÝÇ—®½ô‘W—×,ùczãCòvW>?s OˆŒ-,¹O"&DÑà£k‘××›téáÓ£i]oÙ:té[§I˜yö¬"“5˜B¡Sj1ÇÁ6RÀÁ¸ŒÁ¤•s¤ÊD ZFàJþJž%Ö[ré¹ïïln²6*ŒRUu*™ÒzûÛê¶+ê«+ÉïËž­IpÇès×¢1…ܹý(Åìõm¾– £cÓæRxôák·T)Ú“)$¡ç»¢Øã®ÆúmGåGùz¾)“n";jDù²&މy›·‘Ï£ë#¿R»vu÷\†ÒÛI÷[}|“ä\L¬— ?&#åÇ9”ü.þnA>sV}zçåÒ~z]<é­±©}g?KWÓÓ,Ù1Ý+ïnæé¹pIí»>ÞÎÇtˆpÏÁwÍýé—@&OÝ3Nø§ ¼'7VégmÞ¸P¨ØIgZõõuø`³â-ãRÆ4ñ÷Æm>*)Ñ©’ÖЋd4}È€»jy!g»ÓGÞ4=%5ã ,Ò@!=µÉqršv%5 Ê=;ìªrŒéêO ïsaÕ*µ 3IFc sënëöLs“—õƒù_½îî-u¦Û­ãï.¿íܫϩK¸/é{úž†þñ¿½9*wv¢w è~»V\3Òüñ)uqñ÷óés÷]R×`‰½»<ƒùvÊö.‚ÃjgWë¹——•SVÛvhöçŸL÷ñ³O”¦ûpã¶üìñ»XïçÇ„½<úOWJúv¾ÚÞ’Ï«ýÕKþ ø•§ûïÓ²RêìëšxO£óZvöÏ~xçÜulSÐz51!2«áqé$ÞÂÑÌÌk)5­¤¢©VqO W§V¯[QšƒËAÃ|ÖÑÙO*çZî#5œ­Ïgب°< WâÝŒZc=ɬnÝÛÏkb:ó³úw'ÓÁòmçìr§Y2ÚzzG/Çw upÜE‘ÓË"-2.QÃ[S¼oàþ.çî—–ÖßáïÖ¥CîŽ ëžÞýE×Q:%ºz¹øY}þíwHg­qáÎ9l\Ëqb[é¸WKiqÐV“Ež“ŽÊutEØ®ãóuë»Å¿âT¤2©16R<çÛTr=<Ó­<=<ùï}¯¶¯|úôÓí–¼º5”ühž{ žIx82źR}?ögÙÑÊEÖÔïÎ<½ôá #M§‹0“j…aOžÝؾÒeRèÕ¶E,Iv‡‰e@’T M™ÐQ>Òêð_ÅâÏÉâ–Ý©]Ö¡ï·'Me¬öÏlúG–Zïâí ±ä¦£~µôÁ÷çZÂiIuê8®'ŒÇ•÷ÑÄùrRÏ…üÝÛú¯ÏN¨á] 4?ƒ>Þ1ÎÞÎZU­ÀÛ‹g›W¶\—Á`i,>¬*SE³ÑéË,¸ B„A”èÍb6a‚LÓ£ÿ¶¸”DCm6Kd2µ .°„LÕX¸ËbP ñ‰ ™lF8PšÛ«Êz…9[t®ÿî7·G:8¯‹§Õº3Úùór¡ã·‡Oª±Ïn¿ŽÕáÏ»súß§Ôr–k.&h…æÞ¯æ§wq•½=Uï›ë >ó—s¢bËÉ­'#¥"m©XaˆôÌ™õH”©+R«Í9(H“7JØmÕL÷g§ª{9ëÐ:÷ÊÞ_ ³óöñëÔÚJ“ä~,Z³jLwi×Öý¸^À½¦û6-_¸¦{¹o¢-Èè ¾Ÿ.ïTs-ýãÅѼ¶p<<¯1×ÁÔdÔëê×w??TõÍ»¡uðø_Ñ.;õJzÒiã\i7ö”DÌ' –„ÙEUHb風M4.›y Ó"3nÿ¢ô¯d[uñàÑßàëØt‡ÝÚ;)Cûžƒ]üxðòð‘ç.­:¸µo5‘mY³#fÕ×aDÍ‹Ï`ã¤Ëb£ô©=%2(¤)²d&¤õЍ¡cÙS¶¹/% ”«MˆE„‰W[s òHºÇ(SEde¢lÇ  2±¨¿R0I¨àf8•@EÄc.@ñ”tÏÊC¶RDjœŽ…fUÕiµ˜Ý9âHÃdFxØ™3ÓeôËQÂY–˜]+sòOt÷¶¹{í¢ÍFeº_u•øªøyãnkløpmñ®øDñ oâ¿ýûìeÕáÛ¦Uðöù}ný{tA+ ç~¨áêÖ±côߣÀkÑ­úuV[u} ®–ó}‡ju^gŽ]øÆê?tn·w|¸–‡ù íÞGÝNî¼xÄú}Ÿi*z)æòüâ,ˆ¿Ð/Õå–YõÎÖe ©\©ª+&¢v20€Ë]EAãªñ.I ½K ´2ï*Ö3,TÂÄš7ÙrµI1ÁÍTeŸÀM#,áÑgAµ¸ØuG0Ê©ÅE$>¼-céçþ>³é×Ï_M|‡Ê˜Ý×èµ}ìnŸ'OØåJ.ˆ1f”²M™$Jš’ƒÎRe"ZãUFh&tvT1wÄS³ŽÞî¯Úw5Ἧ+ÊÊ-ñ™–ÉÑŽ™ØèÙ…òã©ÔH0÷j€ˆz4‚²˜Ý^óx_ËÕW‚`šžAÛÝTß^·ó ¶Ûå_Fáסòµö5ÐÊ$zß]{)]³±W^þ$ˆðwjÜ5×ñŸnÙÏÁyiÙ§'í.åÐ<×^z ‹´’ åÄ« á4D«ÒÍ11ñ#Ç$ÑÈ©c*‰®”;N”al´AQE¶$Ko‹‹³.H°†¥èh*¢ã(=≚šÒÏaÎavÚ9ÓèDƒG­W›Óm4 ¡È,Ûö^éç{ì“cëì¯*oò·™©Iw ¶žÑè'ú¼ñ;÷-:}œ¡†î®\ω¹çgáJëÃQàœŠñ'2¶Ê<}ø´ûtñiô»õ}ݯ4ë›FÉL*–F–1ܯØ\¬Aþ$Puá!ÓSE¢÷Ÿ€² 8—ªd‚ÁAÙ¿Mê–ÈüÊÃ}Rl]) ˆ¦ÂI2ÉDLô–Àæªô 8™DŒfƒ§St[W’[£Ž4LO¡~è<]_t×™ª«éãÇ·ÀÍáë×—‘öï~ }-›GÝì±ÛÕ}u.iÉû¦”éÙ8nï99!̹ÖÐ×Û}J1ù–YS•n—'Þ¶%é:–k$ò¢=9ªÆM#Àôéb)´H‰èn=ÄiìØb« Ga¶= %^QXL"š÷ž•èHëäÞz¼[N<í¦¶ÿ›Švxû“à‹utçiyt§ŒãryˆH’](ôæ‰B_6•v €ò#HQ¬tG1Ç&KFÂ^%ÿÛo%]‹®Ñ'ºÞÁÁJm(¥FZ%%ÐeŠËEcÅ ‰+ Mç¤û<½Úx·Qrñ纼ÙPôÝȼ{w¯šÄb!«ï?w‹ŽêS˜ÔŒˆeN’DYp‚b1ž‘PL!8tˆH™KH³†ÀDDƤÃÕIòð¶¥À…v0‚nþó§m°E5ÝÖÜì‹e2<ç+‡\¯’D- Ï]ÞîÙÿÓ'—[a½Têì^'*ul»¥¦jÞfóoøGÜ/éf5Ö©àn¶ŸBøûøøuõðåFœ5Ö[å›í™ÓŠg¶É¤·­v^¡ä¼ú¼Œ©tžÞÊ×=ÛŠoI)tŸ«³«¤ùnôÍ}]}Ÿi„Ži’ä•ß‘ˆ% sÕ¶X!ÈZé.i¶· =£iÒ}–ÀÈSvG^Ó-xv#¬ÇÉZÒ©¡¶GS@dT&›Eƒ*‘ÆÞ4¶ãº¶…9ÂU&äII_QÇ!Òq”cè6IGDʇ;i0(ÚŽQȘ¹|ÙÊ ™SžR‚áH ´ë_s)ˆ°€Ò3,±o’KÌ ’}¢Tª˜Jtcdãÿ7AJ2Xïß$ôW×N-2'RñÛÎá‹.BìšÕòFÖâ™dºÃ÷Oƒ.AWš¸%šbjñô\ùÒ}| ©œGÅ"çW,nòWמÝ^{GböS¥8ôI ,·^e‰cˆL¸‰H4«¢}Jhˆ»É ì…b²8 x©.ÊA-ºA²ûG›ƒœÑ#MI©4V;P4góÍä9Øá‘ÒÕ}‡a™(Höí?_Ž3]KØ{ øð›wèzÛÌéVèéÇB[»Ìå›wy÷@퉗£Í¾ðÜãwi'¾˜â|·Ë??®Ùù8bÖÁã®ó¿CŒû6¢ù3˜ç [`ôÒÝ Ç‚eÀ«…ú¶ÀºM.1"jXCZ€‡ÖÇ‚Na8þãí“¬Š¡¢„–CͤÀ@vHFyd(¢¤1º&k aCQTs6d`Ç®|1=v¨›ùÊ•…H±OX¹±¬1xÖ°4”ѳ.) FʹL¢±\Î"ÓHŒˆÙ/¥:$Ÿt¸×Œƒä.²†t¹§…‘×ñ¯$âMÐéŒ;ÌÀËq:‹@EÄê»Q°_Ú†‡•XP—U,M5¹=û (ˆ4DÈ͈’ÑËS¿jÍÛÃ=»\ý~²>[–9,–½Ùø8g#¶3JGÀÞ糸ÛÍO>Si£!vk»ˇ>Þî“G_•zŸ?7{k\G‹Ë§n"ª>°yª–²P$a§—jj»IÂYŽÑ¿å 0ÆËY1±å6^-¯ƒMK­N9níNg+xeÙ/›kZ÷× öêëD—o“b×vþÄž|‘¬â_ZK„¼^¯?U¶ Àüxáñv¤‡ïãRóû¹¿9t©(ž¸Ž}Ãǰ£]z0(NMøËt2¯RÛÆ˜º¹¯iFXºƒ'AÓY¹+%’%Žã“';±¨ixa› ô7j±3SF èl—I5ÔÒ}{ê6:“/:Œ0¤HËr’° $lÒвJd‹#eœØ“0´RÔ¹©º·/'Ò0@±×NóνÛH’“ayqÈk[x‰ y$V"!ݳ¤a—ˆHfJÔ) éÊÚakB(߸yF˜„Í)80ÒX€Ô©%Õ%åÍÀõÆ'0³@tÉw‰U[-ó•<¨ÚxÓ‡zF»…¿Aã-Où™]4l\²TYR¥›¹½ ç043<¸ d˃‘;ŽFÛå˦e^ —¥¬(Ó]Aòz'WB‚ #϶T”Y5ØØr ¥% !E&Z„)¬•äȬàR8¬p£"s†“c9©¾å5*£ãH‚å–nî²îªáa¢µ–ˆ†È8©rÐÕ/›öÏ€µYŽ(œáŒ/- Æ•”Rm'G(²)ZAwÑy0yß}xÏÔù–ÿ+gßHòטó7†3⸧Hª–µ–þODáŸY°³Ø`aÜh§‚\A&ÛuBWy#ïLQ5¤æ¨i'2(ÔÆ…Hi¦½qÚ=–°ôH&z‹œ8®«¤d0žfÒ>N¨¯ùÁÞRßçíó×> ‹_vÒôfý­Éy+E£Mu“ӯؒéð›éìóö0DÚEWp@' e%IÅ™,”ás_žâa-ðÄ*Kªä©ÊÙ ´Iê”~\¸ d­¦äR2p)9àeUšvˆ¼(Ù95èÀ„ç?TBTbÕ~.ïøÿÜK”–ªW=K 93¬»ŠøÊ/X`!<–HÚ™@þYQS°,¼ÃÂòë-ZÇ.Ÿ<†%$@Ô§”1Q˜Õ­h9>3RyÇáõNñbw/ZAz ¯œÉ¶TñÁ§™2â)ˆìMÞ!”_ ”9vGI˜7}Ze[f¸¬ÃŽ¡×$ä¯ßŸì™æÿ¼…á†zÒj!’­¥Ür‡ «Â$ûRt•²­|ª¦4mº“°Ž…R<ÅÖ‡cé”Öt•”Âb8Õ—ÌD*±ƒ9·#žøéEÁCåÈ¢…J¹f!#;õ(„+¶ªL‘LÀúǘ#"‘4»ò $`e•"&$X9“ÎÛH¶ffV€õ+ž§_i¸¡™„ê»ÎL¼ˆ´ê’dÛq¨’Ó 5¥º\VÍài{ZtÒ„{ B’è/a(¸!]‰{–Ê&’BCš*›J+§[*²^s:hÁHóe8éKn¹D4—%°× 'ºßX66®’&‘,õÓ÷Û ¸¯ÖLÂøcÄV#Ÿ™É¨y›©Ükf# =䈫ÔÇvG_m"ƒ _b‰Ò•KÙ vˆTNî1œ—¬Ä‚¡-ûõHN hivpyvåžD*g²IÉâ¼LYÈ¿@ˆ•9F9´$2/ b×@ŠãÝL¹±”BÓÅ„š5<–å±"Øí¦Ch¢e7œÞs)fÊÕ“¢5,9ŸÀÉø5Ûñ”²ôÒàñ+LWA¤q¦z/0™*¤%2Z.ª$\M·.C"ÎÀìM°ÛÙ!ah ¾k,ÜhwQM$ žûf JÔ¬dt•v—”˜Á·*œÆ!vÈ¢†H}‰ÛµÓ‡JŠéPÊÈ1*U°» z”iÒ‚Ô/"ˆã’Tb®.œ@Þ MR™ºÚ b¬•R-¶Y^"£• xâ2ÞY;ª8º-T‚â¬0↞kMÅßvÁ݈ÝqåJJ0-j¼å=ÈÏ<Õ§yÄä¿p¤™”Ò_r • èI<Ô ªˆ °#cEèD°Tbð¬mQ#Q‘ž:¬œàìãŸý:•U¨h>” ªè5.¦áäO=z¸_ÅÑŸ—˯O¦uÄ}ã‰K§†u†ëõãѧÁ­qÑÔ~Óßá‰ôúÏ=ûô¶oŸG8èKó÷i=Üâ’⪽ÜJ8Òޏœt§RÈÌË ìGVZ¤¶Áº§VëͰª4ßp¢ ÐX :écªÎBÙ”àÎã.¦Š æ¤1Ê5†r¶V<·L…Ó!h¼ u <þlû$pô‘|±£b˜Ì3ï^³øÞmÙ,<›ÅàTHa~ümL‘· }4œt….5ÇDâmœ‘à„jЊHQ!E6 ƺӢC#Ï¢óìÉÂN''šãÆCŠ4~Ñ—‡FêW:æŽÅKŒ…)X¼®’À«ZMJ¦(ÁÍH¦k<öØiuÌuBdZba-vÇä‘¿xÄš`Õ<­k÷LLu#ÌÖ‡"1ãX\ôTÝP »…§íˆÓL¬XÊåoJœ¬i0hцòÄ@šêœvT¹–)¢€…«™*Õg"X¥d‚‹INÇaž‰fá"ôô72òÜö«ê0"]œÄ&•C»V8éy=qA1*2°Êã‰z)Ò™bVÉfÜQ ö í‡åpÑ‹!3ßnú\ЩÆÐÑúÇj"¢—TMsmq™ðq⌱ñ2LC™ÆBéˆÊÛK;© xe P‚¬—u¿q”„åŠ~²ˆ*»mTÉY%8Õ5 `°ÔŸF1¦MIH«uÂP§%±™18-±JÄíN2ÕP®¢Æºy‡¤»%¹ £:SÜUm‡ÐÉ®5œŒ-a•#™e r$ÆL£S áZq-+ƒ5„yî×~ñkÐÓÂù¹Vp_~#naÖ‰1<tWŠ(ü‰›äZµ­Y‡¶34c<·&rÔR²kÓºzöy;¾Z+cª3VŽ8ìLð\µÆŸ6YQu{ÔeŠ(BYíÅ*ˆ ÕÊìµÃdĪubðÜ·E˜j«¦XÙÕÂ=×~R(òÌò°Yܰ‰8Í¥"Étxdh´? ÅLaÇ Ñ±Xúg*iP]8¼™™]•XšeÅÿ’Ë>c•Ü?$§ ŽÉ®Ú\ºÕäÔ»äÔ’oâÆ²Î×Z|tûRºhî ÄZÒÙW¹UYÛåœ0õ–ª%f§ÉEƒ#®âx·XAòËÜ¿zL2ñ?Ç¡ã/Tf™+E…ŠK\B-}.@¤°êµMª‚í-ãÝQ®\5/ª¾ÌÍ„GV0f,v·GF›6gbiA)&eõŒ£<Ü(e¼y4]ÄéYn$«â¤×L¦z–á4óDõÈȪšb•S_x9®*ÉL¿ r^.f©Uú—6ú,-aÑ–Ú‘<‚£¬“éÞT·$1KW…e/XÔE ß=̲Âbu¥ÁÀzêÒXÉɲ̨—=ˆ’™¨–hiî:°ÈåÄ,ǹƒ+¨Œr6ä²é7”hhn¦¤Èá3F…[U8ä«4üsN¤-®rÍ ¸èCqõ[Ý £,7®l‹6êWY%YåQÂ.<#Ž´»é¡,sÏüVbîqEÓËσ¯R)¦®»ðÖÇ=?×ox/eÍ‘ÛR•ÓÞ½‹Uç¶S²"‹¹^3 ðã•ñ 'ñăï1›qÅÕY¾ Ù)UO.ª7FeÈtñ@±…'Œ~ÈcM-óã`¥«%%wļ(N\"ˆÓLöO¥ü°½'ž»cRZ²†*Õãô:·d{‚óroGÑ7N¡ÈúRrë†>òÑHpÑð©c™¨¤$@¼öEœxÝÖƒïG|°“R3ê2Š'¾¬jBƒÁ ¦ð'àP\uVr\ \$kJÙg N½C}|ÁVfç¥ÛÈ,Ý¡~°Êô¡ 6‰aêPH}­ÞB3%‘T[êJ\!HPS¦-J¼*´õ:Ìûi¢ T íÞs¯%©t¤9€  ,ÌE°Äø÷Y”ÛIwá‚ vñ5#2©RëNÂMŸj( œãjλrAæK?IÊÀ‚cG¤]û“@Îæ‚Ywž9ÕÉT7dAÃ3'åM™0|É0ioªF6,±PfÉçx™ŒBº(ì¢ö´–´‘-Je˜U1ö¨URЬ‡nBT:åau³¦&³•Pº6”¨„Å3Þ-h¹vã“ÛaÑlé¨*3ÞbôHJ;k T&ë+-ÓÖ(Ckžøì›. 1Fa6­­†^Õ£K2½YÀž$¯hUIãX—ž”¬s³Žæ¹vÒ"ró]-' ´pECJ;«Ikª…¬µNzÍÔâ¤Ã‡%i°Ô…¸Ñœ?ƒÒ;,q†„;X¶A¹qÔŒÌ|6(ÚH4Òk’î|rÔ~i¶%¼ÉUàRûsÀrjZó8–ËõOURb3ÂFqfÃJ+§†„ P›¬?•q€=†oLrh1{±®9eW}£8¨Xeï¸Ê”x›‰ûˆm;J82òãgE: )^†0ÁÆI‹›î×N ©\³”Ñ>K_ìxËùŸÅpÈÙ˜kZqtÏCírX¹û&Âq£Ûà%g2N¢xο9•¼Ž³(55Ze«S$aåpÜ4rFÔ7Ê]n'!((Ùìœ+З™ËmT°Ãc Ë'§m#VÃËÃÂvÁ5s[ò´Í’­b >«b$yJ{­¡€bXÄ~°ÀÅC8«rº>LI[Ö¥2ð,Ò  ñk¥G‡17PÊ´Ä<)\R%”¸hŠTäBýÄ̺†S†§`ºõä_m ›Ä=Y‡¿»QðÒ²¬˜~•ðU˜f&Î⌞Ö'’4ö*™ß\¡w$Κ™Ó0QµØQ W¡ÕA“B=r¬fìÌ ÍÒµxïRnq‰´NF¢AÁ¨Ì‹Ôî«vá –f *h[k"wóL¿"hE‘c£"ÿêc<ìXø°ÀÌôÌò;z›Siu §4ò™±ÆÞLšàˆÝ•Òtmòä>ðËÚþ†È­7)›rôì9®;ÒpdÚÁisŒÝÕ–ˆ*©LØÐíu¶ŽlEàÄ3¹JF؇Š%J í!o;æËk5¯§ÛLvM™<H= ã„»1—µžFÜË¢g²¢Ú²_/!©KuKšÛ–ìMµ|‚àKŽÎfÂAÌ‚Hq°'¹s?›%ÆU¬Â’­ƒ)Mq‚E·µï¤Õãlfdg¿ÜDzWkðº]…¯Fù™'ئ7…µà/F ޾zT"pÚÈÇ`ù‡"<‹¬€—‡qÏ[3ññO@ë6”‡’gr ²é¶@[³˜ÓüdMµúøõË»mX?;Ôyéìy™ˆ²cqippÖJçæb%â íÚéÚT¸~4ÓrlîA™ÄS¡á÷cå®If÷wh"bE]ÌO¤B• 3‰îÞþ¨)‰Ëg×"ÃN\²x®•í¦«XÿÁxýL‡U2;›ïRK7í³¼Ï_# woZ†%°æ1Ãá&ù r1½•‡ê¤íÒ=R¶½¨ŠHãFÀ‚uBõÆyQ6¼®+rÂ_CÌ «~EhííšbC™ßÄDÐÚICñ[ŸìlÿÛ×7 ®Œò«¡’.hÆ‚™ÓÑ»ŠLØVFèíã¸Î!h5±Éô*u)öƒG\‹ˆôÈ,ûr« Ý†˜:y 6•䉒#Ï—iДéGYõ¤œ»êÑCÉ.Ú¤QÎfÓœl›7d©Y)4õwøQØ\Ý¿{u;©É†Ã[&Ëo6uëM¥7&²#ÞØ:l"™,0VéëÏÚ®¥~Í6•­Í©‰f^ËN,^rxà½êelÒÖ#.СÛn¡cŽ:-¦$ÞIRI œ¤r¬Ö’P³I¯Aw^‘‡OM¤q_!³e»¥¤ºDbpÇËaë®d%éÚ§ ¬Œ©dÂ1fF7åX,šéFÕ•k¥o§Èè–% ’ 8Y£Fl& ]rÕ”¡~×)þ[&AƒÞ*´n–ëêisjÙ¶Ñ} æ›ËÆ#ž>LÌ>AÇ}ëqÂPÝ,§YYŽÌÉ2î+…=0'J ŒÝ¶ÍAèËÅ€‹«<cJï¨}×ñô4uY/_=I‡ÇA‹A¨¶h(eÅ–§î2qrY…0s<6ÁÁÌù8™W>í©#P«§ ­aFrÚi%Ó¬¥+,9aÂw\£-ëy. kÚù÷ˈÑï7 ^ì¥ÆÛÔš—tÒåƒ$LW׬v0Œ¢š6à÷MS€hJ#"µZWè-sÏΓ7絓kU¹V™ÉJˆãäÃJ8wÕ~¨íÛQû¼ÿVþnŽn×dÝ>OãÄór5€;/ñ4æ[Lk5^%n»ÌFl‹X¦EóŒ¢k§š JC¶fñÙx2¼w¬ªqZŽ ÙºO.o ¤F®È Sjζ³4íôl‘~›ZÛa>ýI>]5µWÔPÉÔ#}W+¼ÊXÖÁ»réØ8L¥¥®âs“YI¬vÖ+´Þ®´.!-ÉçJC9 –Eßâ>dðÉQ­ñ4⯄­ÈC£ƒ‰‡¡é÷"[2©ËI!¸\ÉF;ȹ³•dš† <æj9˜l÷tBùDf"û„ç‚Vµà¿¯‚œUÞï)™ý¨ZÈðÖÝÂ=¬’ðÐkᲸªéójnbu›˨ÍÊÕ«'R{\yÖ¥ó®Á3Ð8ž¿K[퉋†»ÒÈzJkËr&71e’ø;*BýÔüæˆR ’Ýb›…ž;ö s9âÃØÔ±Ql¦’« Ã=(MB a&å«¥«g:ñ.„yŠžÚB›ÆÃ‘šÛ¸§jý¹*­ Ï©æ(ø O):w©ÝÒaK.d Y–ð`>–Z¹’Ý8˜˜Ð]5#T´p‘è!–ö¶ÙZ>§L¥§®)äZX¤Bñ"Ê&uº[I/¥íuêØOë9¡^‹®¡SŽ»ù³ä(l¸³H³œne›UöüÏ¥ç|P÷§m-‹9Ãׂ¬wpX4éÀlÊâÑp‚±ävù\S0áCÍ’úf™~ï[Ù"6m1¦QuóòãÇ€|¿“§Žw¥¼ÜD™ì9?9W/™©ñÛµW¢ /t­Y-lIKÊ]źŠÜƒšÁ q4ʽa¼ÒŒFxíUÉyi¹¥7°ØÙVZû'žæ±L 0Žùß5~jÚ>ÛˆÑuzîÌÎ]¸.º­ ˜HmG³%å6èxóšqÁÇr†SQ¼,ÆÁVäZÂòò¬,Û«âÔ´oí¹Eúòu¼ê ™ûTkÐPöµµ ï£i9Ñ®èùoß.Ûò:ÝÕÐñü$¹l$†9$LÛs.!B²t%wBy`")4•7Nl§aÜrLŽ3&%o¹ÉýÅφH\?ZÜW¸.ÚëØ5V¸ëÕ ×ITü¥^VºÌº1Œ›vˆ)ì=J_ÜÄiU¨ä‰o@`’‡Ol܇\ k¥-5Ý;üQ÷þ>ÑÎÁÕø±wP—92,®‹Ì¿®'e”Ѱ‰_ÖªŽ­d'cZ…“FZùò6àÅ¡y±ay‚ÎUa–ey×§.\fwí+ç·VLUy㱃cÑã5Ë®¥…—$”„—>FSdbéTÝÝ­g£uº+)ÂJlÌ¿{%±ò¤n\õ]CÐd„ [ì¢Û†ÊåòžÈ ÿ^ I̼@ƒ¾ƒNµ4¦¢nšhÝDßȬ4ÄRB޵-%:n’3e©E³O€ÃÎ’«Xû&åÜ0qÅï]ÞD¹ÔVtÜÙŒÂd9yç’ô—LTm•9õãÖR‡e*Tœù}¸ò#~ºÈã5∞b#^Þ@¤TDÉ •FžÚË©•Ñ>¡®ŽÙŒ¦V\gYIt"°Ö8€Û¹WŽ‚,‘è)júÉO’ Û¢*M‚+¨ñ§”¸çZ܃J"EG7(ž™ÄÜ)y/± 1—h{‡¡ô71CÕ‰Ô2™kÏa8¥‹»}93Ä9\H+} b+£° X÷ȉÍ0˜Ž-Euww飵‹šc®¶ž(%IlŸ'†"džàó±KGÂ>ƒ—n¥p&ïU”¬óÒO•ö´ÇŽ:N&Ã*4P&24Ò˜ê Wé";ÄTºÊ²dÀûŠ+·¯Þ‹Yc6"A–<‰Ô”— n–›DxŒ$‘\öúÓ—"ׯ5‚YÊ‚`Y»nc $3#Ú×ä´ß¦úWΚÛ÷fD‡“Z#̤Ë5¤ªMO—ËÿG•å 7ü¼­*!§îÐÁÆÄ@t±£55âg/6Å„`¦>ë-œgE~}çð+h\„ºÔ ºŒ7 %A ËÞ'Y—JÓ]gz°¢~8·)xšF|ÚˆÃÓ­ö'‰4DêíÓí{g â/ ‚îÅM^sñ¨‰:]Møœ¿kk¡®½ï¨It±°$á4]ËlHÍ$ãÇœÓôkÌ%ý\ Y\WÄ„„T»äu&øÚw A#ÜЦcsþüDfLswcÄÚ²®©aLÂK¯É Íå2ÙÓœ„ wiœ ÂÝGëÿ­¥ˆ.éirÔ[#R[k¦IšYõ „˜ ’ô œ´càx 1GBŸ¯:ŽI÷ ¸ÎäÎlUìŠôBWrBB T‘¯eG†.! %mœòˆ¢u-ùÉk)½ê—ó2„)zƒMJK2—$®”M¸,õL@„ Ìf>ÚÙL΂§ZM´C>½Ø)a¤Z:¥äa¦€ÛUøì¶ã'WT?»··ÒÑøÖ`ó^Xºmž rË)0»ZÕ0ºãH;9õ6ûÖ^v¸Ø‰—ˆz,¾ó¸ZEãÆ£FE <Ó&û¦”µè͑ٛ™gh kòzêyÌæ7,30!Ó“‡ Ÿãm2HÜ(áq(’ÇÅ\z.£ˆ_vCƒ™¹wjüÿò ðGý¨ÌNwn=C?l¾])†¡&Âgž!°_ ÔïÕ†ïB¾ü] «pÐÐHÕœî_>ŠºèÅ'çpÐF™6FG’RÍiÙßTᚥv/!xÓH wþП³p:1W±zi¿sTmf´&_‚œ™§/Úáx—BB»‰Y3©j#næ’Xβ¢6WŽ·Í'SÖâhX÷¬· ½¤Ù’L^ ,Ãh,ÑßN\62ÅGeÿ–>R&èMe-j"ä&q ÜÝ-Œªqš5 ô>4¶#!ÍaÊßÏAßlßÝjkU£Ðvæg•ø†?7”uךì›#ö‹þšög°c7Z3“kØó¾þ‹¸Ä™M(¶íå» ™‚*bL{¹ˆÞÀ©Xë³ô¯g±º‡q/"ßz›Ы=WSÒ5ƒãËVoQ<6î’a%´ÁRi!¨Ì¸¢’þmýTßME·JöÛéÔ¹¥%—[ÒŽÿ[hŸoª{D¿€j†{Ybâ\:;úr£ÅÑ×c÷nèàY0*/˜C»õ`v—;.z±{|$ü,úÿr‘›ìdél¿s¯ÀZŽMÓ¯iö©èŒóuë͸îŽÇ'YêçêÚ½â÷³mG'Dè)ͺûy!'?M¦Ýåçûí-´¯¹ýK›iy¨]û†Ønÿ&+Þ Þa®•Ø”åø:Öôç¡x a›c‰]ÛÐŒL3–÷IüwfåâctÞ¦»m9Å–ùFù/‹Èͤêâ㹯W}íÏËÕÎ{Fú%\‰•x6*ì2@­fîtõÓŠñ_‰ÁÉ›£U^¨éŠFvö˜-éÿ#’þ™ö" ¬´”Ìl‘?§Ý@©È«7rçÆBl(\¬§Žq—êÃòûUãí÷þ¿ÐÛ•üJ*Og( £kÓ;8 ³mÅ¥–˜Í·×TkþØÝÐ…¤°6öéz2p¥SÄ´Ž+”«ÕŸÎÍ‘ìKnøÿOëézç»B=wZž=ÝŒØý¡¯rá3Õï›ÕÅw}¾^¾öN¾Þ.¶î¾áªKÒž<ðÎI;çcëÅ1<}¬ËõÉØÕ:ûwx°4‘ÉìT»ßt?[D>éû˜,ܚηh­›·=$½ ùZ§×àýÒ²o=Œ÷ÞK_¥ÅÕˆíGô~/,ºØùˆ}.ß?¼;õ«ëKÊòšÞô7yC„çF7}ý¦žùgæóï¼ÞhwÏíQù‡A,9)‹¦7¾0óý¿—Ÿ|£I¸«ä ÉTôAn‚'Á%P—Ïä F¢ÏyÑðm ǨòI<ØyûÑ]´Kò£§£Ö(îà®{ZËvÖ¸GìwFܯWžg»‚é1óÏÑ ¥^œõä‡Åßâ½ÞÏÓvóû’éÚñjÊ9º%†—ñwŽgY\U›´®î”èôåîùésçWZËðAv.?Q;ÏðlOz;›‡X®²üˆÑ—{7½êó÷ÒÕ·ø›\þ2ý6ÇvÒß?ИŸ“ô°ïp¦(ì߯Ï5Ç©ž ²¶½þCs!¶mí«§÷¥ÜÓÄ.–±2PÌpŸrÂöøzkÁá½Õ Ã{)¯_ Ûìzp#wsJ\F¯ß|'eñlØŠUþe8bì÷WºpÉ)kãä n÷è¼bìܳ½ªí>}¬·\<›{xÉBçËïEãƒJËŠ*Y®9J[˜?ƒO¨Àê;°OÌ^™ú£È\;ÉFª–i·gÝü‡¾ðñMx;OkyÍåò>/Ãø>_ƒ¯ÞßR­Â¤àUÝ.æ?‰æK¡'Öú{̧âvSì‡9˜ùl;w¬Ö\$–•ì§+£ØÂ/œG‹]ÏS#4ãåÛ@ ís9¶„ÜHƈa? WøH-J=¥Mw&ü’1éÇRù‡9nÈ6WEëæëI:Øq~ÜnL—ˆ»p˜\k=™TÍÙЧW–ç{ܪQ¹±2ø0˜ý7ˆñX[ÅÀV¿µ¡ìÉ­¤ä{lK‹¯¬ÕÛÖ'bOÃ^û¡z¨·šOéÔ$ÜËK~ y }\®a/ Ïîð[æ ÊãÐØ®¿Ïp£ãi¯Üm<.(g»’^ŸJöÔ ÷€./Xž×A8ÓÕþï«‹ï9‘ª‡jG.¹­‚Îû'öɯŠì÷±zIßò°_ùÔ—ÛEfÝ!(Ž1Q‹­üKŸÁ9ˆt•~z&N›=½Ú®õjµ(ÛŸóz±ÄÛ4rÛÉ+êP·¨î¿ÆÜsæý;Ê®Œó•!kÜ.'; ýëÖ@îÞôµQMûè}Nºú¦?HЗÀðÐ_GÔŠûë’?YÌPL‹š«¹ÖŽ´ÑÅ¿òèf6f–=*>×Õ7Î8ÊxRR×j‰\¬b5òÈngIß¿{Æ+™±è,wQ]ÖgÁŸjöç-EAðrEÕÿ¹}½tªë1mí7Ži!vG™-RZ‹˜¶«ûÈ‘+%Ã+ÀUø¡Ò¡Ï*– (c‘¾îuNë…üæ[ny[wÖôÿO œ !`‰pp^ð#éã< GDj3N©^ü ­SìG\9Û†í]$¼’êâ®fá9Õâ%-ÅÉóàÔ„êf1vÆ·Š–lD¹p™5O¿-æOQ0‚j¬J|L¡²£žÏñµ‡åNý[@3·[j‹¨7äúu‰þ´·åZ–¶1ôò–ë·W_y?¸Ñ;Œ`GDŠ"›®ŒýjB9‹(¡ +Äì)zÞâøêÐhÍà€ŒÅd®RnfräË÷&ýÚÀ¥{°NHi]é53K4Z‘6:J>¥fÍY2EfØLÊ ,Ìã0½ÖÎ:I« IJ™(Nÿ¡8™UuTêD“u „¦µ¬1Y3(fç‘PŽÙ+Ȳ&C¦úó!ËœÀ*¡(»#rU‘ˆÛ¦Ë­V Ë™â!–ïãaãÍ™¿ü]‘lnH'šCpCÙÀϦaeÀ¨¡´«Ò\ùw¯X™ ÒvGT­žž‰F@±N<³ÊJêSˆO}\Ö›”»è:æSWº{È3ë¦îHÐ¥ƒ#ˆÜ4 qxhºçþáÒ}©L9UÌó-~G …#È •®ir”€ÌáÚ­XŸ‰L˜;Õ‘&'Ä=¾ÿð ©ï9ñ¥¿zš¡hoeéÏOügß5ÿлpd{8=kš-köâËR–ѵo|úp2ê^º¥_0Ä Ã&zd-úùw2œ’Žü,܃¿gÀ¹Q4qÐ{ÇÏ«)Îch®²mtêë´Œ?7͉L sçopOxº‹ÃĺOî5Ø‚cEU/!Q5~mÂe†A¨‰îÿiL á&wäκڇ^á^ÓšOøOá‘Õ“­½Dƒ~Û¦%!úUN‚Ìúÿ¨t¥Ab²cÒø¼º7Ý®:ñmi5žXg(¤òêNd7Öå×øý†›Œs¼¢ >LG´5ÌLðtÉoÞVB¥ªôWé¡ ewÐq]ÁçÆe2îœÙhǽŒÒo|äeü ²EÔmÊÞL»ñu|r' gWp²¶SËð—ü. ªe”ý&ö“˜[¡rþ×ïÿbæS㻢¦×Œ¢‡å=ô—ïÿGÐ’Wש9ZŠdpïJ]P#{ÈSæýoøÑ™1ÓºÆ÷[ËXÓ©öOÞ›ÿ߇Åífƒ6Î74ìè†åþ pºPÃŒu‰Ä—½Y+•_Ûf¬jÞ—kµáÅÉ=ãfV´(eûó^ú®@^>¸(MM¢9Äeyû´4ôßw€ ºã½…Þì|qoiì†ÛÔÌ&X—ÒÛƒò¶ã¶¶Ôì\æÛ!‹˜r}¥OÜÚtq=‰LˆÍq+ÖôÿѺ­íµwËN?´¶?;”I4ÝѶÏR¹ÒÔ6J±ö¿#©y˜ÝÿåÒKäc†]í‹åì}"G¾~ŠçdÝÞׯú;êåO'uf>^3vòÝB×§5%¡üÿ‹>¸Èꌫ¡|N(o‰iÞ"2H?=>×Iåë‚h¹âñù8}\#îiUÑôoô ßÁñaYõGKŸu¬ýçòÞÒwcÆ4á´¨žGËÆÌ(ãæ•Â¶å»ßâ­µ¯¬Û”a&ñ½áîæ›L(\ÇZÓnµe¬òË­Öìxæú_»?éráûqöëò_+‹”f?=Š:Â×jŠT=pšøþ޽Šhû¼gbʇ½ÉNþ4{† c–FNœ½iþ¶NJ^æ}ciu6KÓN|µ7=»þXÐY9ü £uØ¢vÒû~Q6äRNj8u?¡¾'é‡ûßq/þP~>’vË­»_ƒ¶ÉÜh³DÞg½óÈ[ÃV+…9kLîãÇ)Õ_¿Û›H(aIT”§gUrW¯¶L\Ÿu¢ûqÕt—gºÊyAÏôzÞð¹|ˆfa:«ë|é5ÓàÔþ­$\w«"&$ŸÊ´ûßÝŒŒ÷¿¿;ñïp}/—®Ý4g–}qXØâž‚£èÿ¿‡æh5Æè˜±Â[X†Þ ÿÁøo“FeÿÙùZ½ÅHýy;1£Ç »²5Õâ,™0iå®o¾ø¸6¶U‰)9“#žcmIÕ¤“N5O[n`ôì|™{¿ ›ÁŸ…Œ¢I}}ʯtx"æÕ—GÚÿw|>ݪÝ{HÛbü Ò Q^Ö › ­jgî}çíúh[±fz9ž%ëÌ@SX/üœ>†¦Y£ˆšÝp†›'f·ª÷ÿª†G£ÿ:ÖZ¡Éy¹`Ë-«àNwÏ÷±,ƒZ—5ocú_—w×þO¯‹†Š±nSb1¸ü¸ É o®†>?`æ•>1Ø<›fC‡gÛ/m_/éÂú {š.IJ}×âUÝ2ê-m_Ó2P¿ØùømTiÙ^ɇròÙA²K2‹DÜâ…í­(íɺ’9ÒåùŠ?©U3C·uë‡Åƒ¼¿Èmo/æCiô(úítÅ'µœJ䘜\ó¶à!<^âg€Å¡ äg‹î«öÊ;þÚ­j%µIån$»xпAƒ–ã×äSM4ˆ.ŸžøË'tsèâôÝÒ|O<*D¾¢ ®”?ÊqlŒrRÞZ|o r¿ÁÔ™ Õˆ‚Íã™Rþûï?çÿ²p¹ƒ¬<ŠÁ©ccBÆ=­»è:¤‘žKþ#›±fíëR¯Ø©cö:”dëŽlEWrÞQó¥ó¯ÿeM.QÍÔ‰!¥—Ÿwóο §\#0ƒ~|Y·øË™EO0Ü$[|l7;ù¿?©¡9"ê•{w¥ˆ§r²>y¿¯ÿçð>‡ZÃÉFkã©¢zP߸œ ^9>>Nþnœ.ðfd„I¸Å|äÒfþù—¶ôÜf"Ñ.I(Uä•óÝoU÷g…í{N­ã"E–÷>¢H^ÍJû{ŒîWñk¹*¨“–/²¬? GH©i$\BdGÄÏͧàli®î@1ZF)c>GÖr¿²§_ñù²ûéÜÉã‰ñ¦Sx£Ÿå?ÙrÎô=¹Ä‹7“pÏ9èᘟà®3˜@Øö6Ózîuå|åTß³pÁIùc‹Ú“mx›£“ó?'ï§’ÉçÛÇ‚EáCÆÚO_š¶€µ‘y×Ìæ¿k¿â¬t×·+vÝ}þÉùÞ´øßÌ}L±gWÏ_0Ü;ùülàPÚÕL¼¯”¾®ªKÒüóšU]s ãø{>ÄZ}î•ÞWl¤ñ˜åQÓˆb†dÎÑk?Ê,çjçô4ŒÒ|¹ª~j#+ZY®ïÍÇo›miív.A·0‹ áEáÊ0›,¹"„¨̓&îJ½?Ë½ÜÆ„çàUD˜oY“<¿Î$ñ@øÛç‡&£·o¡ C¨ÕÊù!ôýn$`‹ðÈíåQÜù:`êb5MŒ‡ö·HÇi/ø}íÓúÓRK¹·DŒT“f%¬;!»ýŒßÍVËø‚N]U*n?ú¼{ù™‡úßÿtÕ]ýÌùYÈÎçðj+~­È{sr2ÃVf"î*ÅA„ѧµ?[ýœRdÒ”j'§&Õíè¿üêèc·:%³,c)»ÍÑþí­·ûÞÖ>Þ:þwz{ªŸƒ$í¤aw>â©nÒr4h°¢_‹ù„þßouü®çëÖ/o4»£§Å«Åt‹ù÷±†JŸ¿ZØKÉäÿvö«;¿n}¬“ÿ‡»(¶sñÃÎæ2˜wØþr½ƒnßóÖ¼'"¤vªãKá‹î{0{;H%D[ǰ­ÜÀœ¸•[Ód,\<|‘ óå$5AbZ¨BàÐϧ6*®7¦¡Ñ9†ìV dIÁ„v\aŒŸí02Il5›a¯`¦-)»ÕÍ6¶Åýî&JibæÂ]Ð ¬„ôÁ¢ì‡ÝÌC3NEùÙ‹òo6ÌIÁÏGá»ßR¥Öõ¿Ï>nêrzy„fdÿ ŽÊÄ÷_ó´BªUˆ®Ç}7ÏÛ½ÿ“ãèå¼ w!÷y;eóHù}y8ûy°cž _‡ÊÆ5ö§Y4±³óß“xâÖÈDÎ!Š>+Où "«ƒ#0ö—…eà×ÎÖ2;Èx|³^lå?©;âÖ‘_%Ut˜Nòy~?Ð÷S§“Ý´¿0ò#2¹§eíÛâ-/%(ð5r D壔#.Ý”)u ÈÆÉ„¾>‰ !I§þï—ÉØ^¾?•£wuŒ?ksn²º¦}taòéÏ®©ÅöåôXJùM[µëÏ?emÏGåô‘™í¥wCØ…ÿx»7/õ1—ÈWÚü:Ŷ»¦LÞ"«üû±x½¯Käi˹Œž*tt)Ÿý‹ç,êÞäUÖ´&ÎBõzÇ÷~Çý.µ[}¿œìw<þKþ,šèç†ßÞÉL±µ+u¾=;½ûx¿wy/o/]Læìb¨÷tk÷Ÿðñ˜2aÒ44s“á[„›Z¹Å.ÂÁÁ  Ï62Ómñ\ Áª MÏ'®Q"¬ÌÑ͆S©Íˆ&÷Ôeï2¨É"‚äÞ)cŒ‰Jž%ƒ#hìÍ‘éP×ÉôTmo¦4Õpb®öúóŠ5©Glí U2„­ÔJ!Ï3T4ôOFæJ,Ž*@‚bã:<á·0ôqÕ÷=ë·0êcõŸ'–*Ï7ši`•ˆ¬ðÖŠß’¿Ë/ëzéwŸ¢1KÁ"Ów§*ÿ½îÿKbõ6ñUñ|l-[IÖ÷únÑ«®g›š;Ëæò–ŽÏ_Õs+¯&Ó}ONVŸ ½|Íñ£‘øéÄLe”0#0°*&¢ƒ)Vî"”.’æc%Æ-[Ú½=la˱×"þgÓúGN^^ÿ¯‡ÚÚ<ÅŒÕÍ¿ÎCß›n:!ôÈñúdÇÖã(\GwÖÖY]»¾²û?m¨´ÞílôPSî9qåiºØ“Ýoy¿¹ÙjÞC¾»\?ÅØúûÛûy5>çÞÌL?®ÿßBŸwOì{Õâ—òÙûòn’üm£ëzQÃé¶÷Ù[N]P ç6ªY“3u}×ïòÿ ž¯œ·7™Ë͇ܺLv›è'épû^Ð÷qw“ ·ÙŒm\yH!Ad-bÂö[ÕµTÌ»|5så„F•·b€‘äbW[ˆ„Ê…`|PGè„&ç¥äÝæzðPjü¿çN·´Éð"ˆí á ØØ8æ‘(½4°­O wD§ÿ/¿’ž/NÞ[FE¾UæuzLÐKÛãüþ •ðïs¿{h‰™égówÐ^ë÷á§2„0šy”4©{Ї«l·óÈÊåŽ`XápÎåj`X+¹B6†a[²Ð‘Ïs3“R¤®žŽÏ±=²Šy5ÏRËH½*§Ï𜛠8:KiÕAá£w팈B¾Nj²M®2¼=ÚéÆA>,Šv= ¿CÿçÁèƒ=£ÿ– üx\ºxöüÐV¿å2Ívú «Á³]½ÃÅÞåäïnþÇÀßõ½“ë1Rqõòaö}=>²–†Fˆèîðw<›vq1±ö.øÔªŸš´PQ@Ì>B.›µp)C3q|"Ó6 öœè¨1´AdÃÒ’ô¤bBù܉'‹‡y¤A b­Ù;ØÊJ®U/~!¶¾½‡÷k¨³rÞWÎÚÉæxõÉë‚oÒIÛü)~_Ò?{³É6œx®ZþCçý£5ÓëLàç/h¸ùes å ¡²Ä?Ôpv‚>ÎÞ¬Œ¥Y øüÆ›ˆoÄîx½Cc7D{ýÿÜ~/»ð!%Íe!à‚o_Þ鱚á=ê§âïv}½þ̈Ô6¯˜e^ [¹6Ôç“Úg£//¶?p7êêð^ð•ûôÙj«­äú¾¦C7¥`!íb›>ò0{Õ·ŠÌ;}b [žõƳ{Äõ¼ß¿;‰/6¾ì·ìêa%9vë¯TßuŽíp´;J‘×cµ€q˜ÕÓÓâã´Úíî—§OñU¯q¥ô*†í~$Õõ¹»\_ŸçœªþfŽÓ‘äg|nƋŗ’‹¨Œ>ŽîÐØx-vÐì ¾$à+ã‹û¿×Óè^ì{Ü]¿'«Õýdâ×¶jÜô9Y[Cÿk.Sóiíù}Äÿ”Ü’£g†çDÃͲO–ç1=}ü=ªiÏ"× Sm®¾U²š1“zÚø=++íthw‡GžÁŽmµºÖUÙÑ“î™ÇÙHõ9µ•èö`Í2þTN–æM[º°Ü«Ò7…vHÞ+„‡¸Qîv:>ãµÁJä;屈!³ÃnNF¤p%_Ï;Öpaùïú ðw—$Žs©—_7/õôLÉœ#¡.f| KÝçUnßo§r ª‹âßcVA»­*×ÑLº¡äìzøúÆnô%x^t›äwŽÙ' ´¤,»¾¤j^—¿iŽçG>xšcl¦¶Ï#piE:]fN¥7o— Âuz÷{»×±¶Š/éðÓÇ»G‰ïÛòpoðïw—õvãð­êLýšŸø®dê[c½2›¸ÇÐ Ù÷µ×;J7wìqnRf<uGà;—­fr$RËvýNsR•ûh<ßšuø/•ß&)%ª›Gõù^ר¶d—9WêëepU!‹¦4Q“Ù+Ÿï[c½åù}ëÚÊæîhòrñù0îa°Ç'j8åßxg·$± n_õMƒÎZ,6Ùvø‹ÚJ›}½ÞÄ™7,—ãv§û*!Ûõ0]ðzš{±ê#DááÝ«¿:3_Ž ¾"ŠÛß'ä5f³üÍÆöà‹ øJäGkÏ­ñþöxþój.n&»>yðµ¶fé=n-5oôÙÜïòN:A†UA§S0ZZ)ðùþNhlÈßö½M²ÜèÇËgƒi}Ø9ÐÔŸ&Þœ4Á{Ü•³»ÿ}›‘ÜÙø9y1dó)ËÅÞÂ}‘üß›È×è;îí;OõöÊ÷!8~½Ç&ô:pû$• ¡ÖÀæÊ ísíò]Dì›±äùߨý žpÜá{xeÕÇÉ·«?>›™+y>;½³¦Ñ·FKÞÅG¿Ø‘~b^½IؾÇb¬EÊA>.]¯%ñ³ÙÕ×hâû}œÛÅ«û¼µÖ;þ Céø?‘™—.bç¡Ö{¿f¿Ÿ†—Ã×òî§Å“W\Â4¯  BmÁFŠ£é<É©+JΉÞ`ôáˆÈbÁÁÚAD º=‰Ý¸YHI'—’†§¡S´øØIgÃìMÑzùñóÃßvžëêGïø‰Èz3œø±þüáâùJùh^‹LÞN8z%à4Ê¿O¾®^;ûZ·›Ý–¯Þ"†\ÞD¼Ö´=äBûûF$RëuiÄž$pw»n·ô:ݯk¯þ܈״¯?tôyo«r÷Až-¯s°ÅIû›Á?v\¼=»ß7ÍçÊ6̺b;7Uç&s=´¿é÷÷õ¼GzÊt]_µ"^Îö¤âÜD싘ÞöžŽdãÛò†>ml6 ÄOÃǞ毮Où”ÃÞW^ªéдC÷ïö0ìÜ÷Ssrã§®-·Æ÷†Aò{üÌg±šÿŸ)Vùƒð•‹÷ Úëuý*B R¦ õú Ì–ç*Çz·<Žû|ãeá¥)7zÛ¨µ9±½àîÆÏ¥sÿ©ykþwŸoò6aópk”5‘·k7¼Ò:ôc}öw£G€Ý÷ó?îdwwGj U÷‰ã‰ú'ÑîsgÞË÷ßù«¼–þÚÜZв[Yɾ5în"x¾ÁÓ7øþòr9b.|Wj#’æ&wÔí:²Ý¹,bî݈ÍBß~÷‡¶¦ä,vÂvoІ4òg¶9ù!U"›¿+_Oñœí ^'.‰Â\ìLF³Poo cþïÜ/#^¿Q\zÚ_\÷ÀóÆåƒÎÞ×~Ž4«ìS7/ùµ6Ï$œñú­Þ/I…H.ùæ‚òëj_/ÁûëííÒv¾:ÝѲùöïz¿÷÷Òâåïì/w²yiñIéµÞ/¬ñžL‚ÕÜ{ƒ?súŒ¶ÿþ¶~þó—/wËýpþ¾×ìêå)®+­ÁͳO¨º#´/.D|+@§[½N>¹Í+__žëu~U”âù½Þìmïo3î#Â<;Vö|î<;êv8¯~g™j0ÞL†üYYó¼}¦/¯Éáçkü½Míñ > Ãմǃfßçmäí4i_Êá>je6ï°m!Y BÌ¢hT5-Κ•x `ûá‘AVœ1§îy\á Øæ LÄÔ‚€ÖÛ†"8¡c® 9 Ñ9säâgÖØ|…ã`«Lû2"$ûŽ ÆXÑŽˆ·B_ßÂWÑ÷¸ú®Üì{=ÉòûwöjÈG’_4‡ýoѳ›Ç/úìvðz¬”-'Uò¸6ÝYfñˆ!Þ!¬¢â,b›ó>³ÞoÇ×Úº½­­ñ3h¼Ì=î${Úózk¯Óï¼løXͽ쨴Ün&¹|IÀ"ÐÏ·îo÷bt5*ïûk"â|kìñ«5?ÏßÜCõwËP>•Ó$ö7-`”}>_E.mÛN?re-ƒöf¹ß>o!ââÆBÓúš•Ù~ñ6ö»U¦¸¯W)›ßÛÚêó~ò³"{¿J}c6ÈgÌ¥X8N~]ܾµy=ž'Ü‹öx{­jEœä]#sçƒsœ™Ò¯k£úÿK—»âÍ™~ÿWÏH²öûå»BYÚœt°é× d°}fŸîôøw|žd¼iJxبÙÀ8Ûêg?×HìÀ×§¸(b1 ‘h¢aèSrL!Z¡3ò»Ú!käÃ@ó\¾8ÛYBUr5üÍòäS>§ö“íü½ß—ÝñXS^«x +zö‰»xpz=}½­>~þz¾WðY}*:U‡É·‰­².öýܰñØ_ª^çŠqgOþŽŽÏG7^©0lÃÞ$ø½e)-WŠ«y>4´Â‘ÑÒæ&hဢAé}Ùsòôá) ¿ÃH4ýIQ3ƒV"ºð©e‰$XÍÂÎÞ•¬Þ¬BISÑSÂ×(-d59(W™Ãq›Z¾*–<˜Ý éž`U#w&«×õÝßìqó;ÓÚ=Z¯²ŒEö¾cܛڻÝÏk½/U'ýé3³Õé+ò}ÆPU×d¢™A¼%†ŸL½’-ä)Î¥Fá¦ÕOž|:Z§w±Óï뉬 û)3X¿GÀ2®I‚ D$*‘£ \¼Ê`ñ„ÛFˆ…”¤K)ú=)*Ag~ÈÁ0à)CàÌp›;¢ ¤Ãy!%ÖÞÎ}ž2…è aô\<ÿ$‹Š»µ3C6D1„ûh¿×{Ìùþ „sÚ#ãŸuæ1ãÉ:».Eìú°|gýŠôÈ‚¶óâ¿Ü]ïVï{‡ž£¾ÏÇ?ÓK”¦L ®¹ÞÅIÏá×2`ÍÙüùS½«w»ñ¼Ì‹fö~šPnÿ›RU|}Û’ø¼)3øÿ#ëGô4WÖéâÁàŸÕÇâì°„Ú>]¶ìØ>ßNÉÇÓöý·óÀ~ÖçÛ6G£m»ü²I¯òΗG¥Ü®èrÓ²öãë{ö÷–^Édö»_Eႌ:4Ty¦¦3Zs.‰ŸûÚå=”DÈÕ]„ƒ’ŸZÈ\,’ò±Òo]‰gÍîȧzD*W‡$´tq–&¤C¢RH,quÕ¾âÙÈžë÷V}ÅäDÓŒ ±]4&å%Šj¯wÔ]i@Ö¶ʼžbÞýï† ˜S¬ŽS ¡ô$@"o(ÞK^¾Âgô ,L‘ ’B„Ø…„ Ø{à Dj]œÿZÜä0¬¡‹K©& *¹(–%ÓÇ»S5Ú¤¹ê™zmé 'PþaçfàÜÊ Áñ$Pš¸·Ñmï4¢³3éÓ.&™dÄ!rb`Ë‘ I·ÿƒÐ„„jW£ÀÖ‡NuùîÁd¤ÜZE’‰uþkWÐáÿ Yª¹™î.H»–IM™a Ö ì FÙ|mB’Í€¢’À©c•ä·EJ„ j¼À1ÐRuVÁ˜âƒ.ð Ú䣵@ØŠm™D4Ìn‘mr•MÒ“)cÀ¥q*O¼0´â«”ä_6K¯-ʲ?žßÌÉä÷»½½,n~‚±p§èhR¾ìxyDG ZJúÆÚf‰!ÜeùÐc58"à†ê“&hù¿Ëz› ²${v©m [¢BšKчêMµ70µ6÷Œ|¸«ÙI›ÙH4YÅãO Ó7‰8“èE„ç…fÊHJR­Þòäy´è΋z8­ææø–Ð`íºuÐð‚š©ìYÂ8:€ËÀ‹›JJØ[¿f `J ˜2Á/ ´ŠEâï©îË1%v’õ‹F¸‚bO¢’ž¥Ï¢‡|BÏf•’§d‚A³½ |˜v }¸zž™ñ„ÉÕCÞ;„¡à!4~º’ l«ÛѸ”ûç¡4$«ª—à㸹š"cÞª¿¸1{Ixº¥LÆÒEÉÞDAAÛÊÊóÐ%2ˆ`¶á^fô_ï†Bš@€XB\-¥Ô„3Yk(× - ƒRp†Ð<wƒ7$âäêõòÈO9,Z͹¡1h!^¨ÚÑ‘%?o²´ûæJ9œb5À ¢’6¢îð‹z‘«—{BDã>‘´5"NV¯]jç™ë£ƒ˜¤¡_[ÜÌ{´žü“/È,3› ãS:¨Û ¡ÓWLg¯5æI>R4cz=âU/¯iÒ¦á`Øyð±*Ä1@²¸sZ¤KCG~ºL^áƒ ŠÆ$ùllôu G•Ú&1GAèÜ~$¼ãÞxJr̯‹/BP4ȫюEÿW¨5—Ú¯±ð‡»ðÚæ!­ÁìÆG¿”Üû’~9Ekpþ¿šÞËà÷îøý–IC´JõRÊï-†W&J`$h[W—÷#ÑQ Hó€Eì$æó©âD¨Æpø ’}RXµÝ÷þåòéßÜÀÊþt¸Õ/kåÞàúþ™Ñu5À§‹è«‚åÞš8ÉS«=ZN^oBž¿ÿcÓAýo;/oi¶Ý 0»çA·É=×ûßìq±ˆÿ¡ ]Ú¸8 þÆUFX¬iæb$W?,{‡e^ ©¿Ôͼ…2³$ñÕÈ5Xr5l ‘åbÁÀ<‚ˆiÏ®–QM Ü1‰XWqŽÑNäÜAÁl\üqسCÑ4Û*}lñ·ƒ‘ÍèÌ 2ùÐd„_n #&àãã°s8 Báž³v %2±yó¯QÎwN48&㘤ßÇŠÁþöi~~K¸\ßi|Þ¯äú_‹ÝãX†t?`©ð»µ6"Jg/~I9‡p„SX3 ÄÔ†²v?ž1lûe¯fIÉÊDJùÛKU#wóàîGíK÷)¤ 14‰ë‡ØØƒþTG˜Ö hØ|\)„NÏÖƒ¡­†)]HÈ4Hó§T÷ÔdÓœLüÎÞu|Säòž4¾HfbqØâÊ’ONLmÚ·••,‚ÝE»/l‰ű% Ø8$Â3HŽF LBr×»?ÚeÌú£“ÛhA²TÄCž¡AÙ# ­*¬Éöq”QÇ0æ+µñ¼íâñ­íù­xµ´šŽ ½´^ö<„ñiÄö´¼ëŸqáz‡ó7oRx’·ÛEôÃ&ç^ߦSW¨È¨5 ïtd´ _Ìê`¨¶Èó×Y}é`›‘Ù½gÆ»¡ÏW2ÿ²“üÞ¡.3ý~ƒ ã/ÞĶ£¾à×íýZzóvøÝÎ§Ûøø>]|RuUÙŸyå`˜SMù;ßcÓ*žM¿.tœs¢KÎï¶æÁ,°&tNÇ?Üöp#¼£Ýn(²µm µßݘÓëªW#؈‡g­ñ­üÒúÿM¨ùKeb´à‹ÎˆØöó¥ÍèvºMÚWËn¬_ˆLêŒéíLë¥öÿü…E×õ“Œ  DŸFñ°ó -ß¾ð¶ËùVì˜ÎA‡Ûr‡s¾Qq ÛÓ×ü½\hJ¯,×»–ysžîï\’düÎNåg}›Ý–ïΚ• Œ>£OÉÙþ§ÊbîßyFO†y·Úˆ˜?·¢€1ò-æóLÁnûìhÕ©åý,Šm¡îú»“):Lò3ùNÏ—½àìwsòÄ»V)AÞK.˜çiòéOd¾Í…«ÄO2¥›ƒwþy“ (:4’n»˜Jöžæô_±tÿöùÿ?ÐÏÛSBïKG›V¬XŒ­Îë[—÷>Ï™ãøÜÙ0ÿwüÜÍb¶Ò;ž½è9ÍÝí_°¸TÕb~Ž©ÿ^gñïí&h ¾›F¸ÙñÅc†Ê•Š’‘£Xýsž<“=…Bø’/} ü~^/T€íêÉáx­¶FfÆ-s÷áí9Ÿwì™ô¤»ÊÑh,Í ‘å ¾†NÏýŸÁ®L&í-\»‹¦ÒçAKßáSxŽ_Ïî<Ôÿ¥÷÷˜Ê;íq6Oö¼ö}š{òá D{¿>ëz=œÙøý¿ €ÞY¯€÷—'iÓ;Åq ½¨Ênxd'új¹*ÿäò{ãóþ¶nÕ>îäEo«/4#±»cÀ‘¤$@ê%[u³ýΧ`ÏðÛûŸ³ÖðG²Ç}¨íaˆ“ ÉI˜åñ¿C̼VjŠYs÷©Íó~§ÞíëZ.w¸É{o!­*Þ"s<Ù$§ñèzhØÒY“dûìîÒŸ+*o»×)ÆÇyÒð ­ïÔ/ÆÓ#ò¿¦u—R6ÿÇÎøÐDDcËÔ_åzÜ=1ͺŸ½W`~o@–‰›’å.3øîû»¨Rg»øWþŽ}g|ÍoWµ7ª¼—¶©ã§É”5!”ûGŸš²ÌÜøò(Wç]ýWº¾Í¹61nþõo”iûqþŸ3_}^£mè#Þì®[.™é“ªŠù4ÞÝX©µä:î?Gglky®m-äBŠtÖŸƒ—q"$½éo|mÞmÖ·ødiù|ÅJð¿ ÀYÆE§ë¬n¤ØÙÃÅMïøág¼ÇèÞOòíþ«»˜Cåðigøu<ƒìŸè¯0Iè±ñͧúfxÙfF®{Äö{^³Oä×ÓÿKªÆÀ",'ŽC¤7ƒýÚÒgû0ïút÷½;Xéái7.¾ö´ÀWiI ¬?£±*HËøL ÏDU „ [Rs”Ы*iJÈKW¿Q°“sãü*†º}Œ>çóþ‘ÍC¬áà#–çKœóYÕ²Çqõ¶öˆ\|;ò4ÆÖNÿÛ~c©÷<å!®MsiÎÃÚ½AÒ2z^¿Ñ¹ÿÓûØ›|µ¾ëc¬µ"(!¢õQ€‡J£AFÒØyx‡›<3O˪†{ ¸1*rÏb3-YêáÚIÚ·)NÏ%ÒöÈ÷s¹^(ý‹c#¨d¡ÂLšˆ^ »×ýKýGúrj_Vµý¿-m¦€Ïºt¬ä”d±ôö«8îËŸ¦…{¼æ}…oYf*!§Ø;´nF¼Í®äŸ’ócÁ±­Dÿ'l#{Áå«Wa%¾—˜wÕÒƒƒzþïž³bí£¹Ök¡UþL½º(”÷Ðsïîwþîeô'‰_s Íaø½þ/?õ±!éÂ1ä"©â0±wVôZ·ê¹ÂüutCJDH–-* ÌMtxh¶§RÂ|‹ ïB) äœwÝ»øŸSú%ÁÒGÇK‘×¹íŸ~ŒwPñtîñÙ‹V²…>ÓëÓÒnÝßÙIËÖ>@ƒ­ö0GðSÎgôMïìPãu§Î3‰ç—_ÐëîÙÞì—IXuöþãýlG?J.Na@4“JI1’dKßù¶?N¾ä 4 Ч‡ÐE²˜ìâü¥ˆo¯ìq7ªZôº@ÚÛÕÆ=ؽrÖüƒÎýîç& 98•ð¹_—Ú]ZˆÏœ^ ¸é%‰Hn“G׉Âð“Ñœ—·M¢~!µUó$-ÞWaœ{‚ýãå ÉÉ”»ƒC:¨s ¼‰4]TütëCÑ}ßÑrb¬ÉX:Hñ¥¬dnÖ%ߢŒýRÑaXÍæŸÒ¨«ÿÍïjÿÇë÷ôy“9²äôT¢l0î‡\SÀ¿ïz~Ðëßo½†}ËykÝPõtoÁßÅñØ•®ïZ|Ž/Ýþ}Ý·=Mí5;WIœŽoÌÁùfq“è?¨úT!!¤T²2o¶ž4ÔO9óÃO ŽÉ<œ*Sf„…I²S”ÿ®GlŒ¤ØG`S­Á«UÝ®PãÏñL<>Mœ",œJ;çØ‡§¬š¾â}¢q. ÙÛèçÄG Si½Þùþq\(¢ŸëþZ~"â[š?Ñé2žýzú^o‡Û‡…'Ë$¤rlŸçÞ®q›@·¡c! +C •…<3à€+YÒ“¶ÈZÞêH‰g¾, Åô®y}ÿßæ€h·†®Á¢È…‘¢•ƒû£ò·fËN#6@Ô‚ÙðaŠ­"H u©Èn¼Ã¼©ö1Œ >W>Ø:¸|W‚­ÄI”¶HÅ¥°«i·|îa¯Zù°ôò2óTNËŽ'êKÇ¢>rjXLñD÷ÿo0¨á¦=È!ëíO;ž5wVµ>–Ùthp§¢>û^;ÆT•HjvBýш« ô÷Øá„YD²zÛ ˜ç˜?R!ÝÀˆbËÂR­4e d{³:EPybvh[v ©Æ·½MJh Òo¸sv…ûÆ0O삌/ücÏüyR1Å~ —ÓQ©@ý‘jÁgàb+W§Kó ëᢽD 1¦,Bc1󡦗—&×S^ÜTUùQ‰žÇ²5 ‚– é‡E!X/‘–4L4h‰]Çrkš8•‘ƒNß±|þ ÷¤—i* ä[ÒUV¥Á—š×«|åB¡J­å9ïÀ™x‡;Ę„ë3YJLuƈÝàáP%hjl+êÑóÑ)â)Ay¶Ê cùH¤‚È¥“@šh‰Õ² $„\gõÔ­ò*÷ éÞˆõÏÂ]à’ıùë½ëúž (¡´5!ŸÄd® J0¤&Y×eÑB9ö°d½Ø!ëK«ü.ìiøª¯Ÿõ: @Î¥ƒTä„sÏÉi¾Í‹#ÅÂÒƒð"&€ÙÈÒï³dÅMÑ•ÀãéE¥yÁÞŠŽ9ÕTÍXË aÔœ¿¡ñ|{Æ—ÞÈ¿€»íÈo*1§A\ã…‡râ*¸+$Ñÿ˜Q~uwñä!ýBBd Ð7å_•£xÒWöÑQ¬ÞÐ#”ÒßWè¨â!½Ÿýí†þÁVL¶ƪ‘4¹á«³ü4$õI/Ddv+ž (ùô Ȇx‘çÙËÒvíÐü‘ÈQ¶ßÐ|´§Ì£'‘Ûx}^}êø]EôþI'wÇÿœzÜЩ¨Å^qê ç‹¿ù¿Ûޱ‡2ÑÖW<øŸÄàÓy¨t“z½¥Þé³ÖRL¡uƒ6˜u+sb™Éw{¼r\;»Ãzñÿ‘üò8e0Â£š¿¢®—ÙöhóßÉÏ;S±Öï²õ$+Pô°nÂ2!›1túWsÉ~sâJ~Ó9âæJOPöI.véüfÅyI™à>¯ø B•_9ÀWí¼f€œiNŠR™( ú¡Ñk ߈´·àУ£ÿi$µÇ¢içì~ΩÿõYpÁ„½)#ÙB"¬ ‚Ï0ËwLÍahÄüÌþV¾‰Xpßä7RxôCÞ‡@¡l‹^ˆhˆsÅÞ_Õê㥣Â$2úûe…¹3gz¯"•>ÀÒ YÏ¥±{xtÂör¾õ04°ÕA Q‰!ƒ`ØþUZá¤N?‚²”§þ.›REqµ*%D•¥æ6Žéž¯iFÌ¢<5‘ø¸©•dyC‘ð}· $Xº@Kãµ²“’,¾‰¦Ú,Ã…•¿”ñí6k-P—Mq¨y¢Šs øD‹ëņ›Åg™"XWÞ¦Qt$ïèRiÙ{SÛ¿e§¹j¹2À¡Fñ”vax#“úþh‹J©v’ÂÚµ`Cí˜êûSÖ€Ø?QWã­ô«sLÐ OhÏ·Øù¨ø:?¶ ÇôͤA[1–‡½|xÿ5s «šYWr,g鼨Ü"ðrø+ n柺Ojñûu°›€•éðOáL wÿódqÓ¹˜¨rá"†kúPÜ)ë»8˜ Z2¨’.›ëŠnÁò#ßE³‹Õ‹˜Wò¢|훳372 “ï NwÆõËjòŒ,·ó=Æ`ÀWy’VÔG—Ïí{yÚzƒ•uÐÆ–>à´ ãø²ôAÞoßHx-Ö-¹LË·ކ€)|ŠæF˜(T Îo…óþóú¦‰*Šm.Æbk´–fðÌ#]ŸÀMßý‹eþIP U©”Ïõ×áz.^òk¥Q¤¢¶ ë\9| BÆ¥£G‚_¨àÆçï-;òy‡Ü~ƒ™i)޳<òÔ1©Ù\²Œy%ŠNëÓJ%¥H¢’ÓÚ> ·3¾ {v`Ü”*yy¿öÿ°õ¯Ï%Ÿà£F×êL%ÎùžYy·¨!à0ZïýÝô–_¼ˆó}ò§ÆÇR„^ëzIéòrý-˱Ъé3Gýó¸ÅÒ}JɈò%ò›fè!5ÔúŒ½@ñ:÷âÅÁciâN‰Mê»q‡Nùb÷ƒýñä¡‘yÞüîÉçz$RyºÉÊúo\¤}\¥oâû,¶`ü]rG´ÂÂPÎ6Ív´4ñmŒÇ^%7ÿÝ3ÊÖÖëÓéºü‰(qc£»#ˆ7‹D ÷רÉîgŽüÞýø±˜æ`ð,±q‹¸W*Àòü¶ÕSëÏ™özPö¨Ê'X{†²3`ØŸW„¯9~á #eƒì2þïĺฎáíKLJÜ‚*óõ%P3à#ÒùXòèiiÞ Iô&f}º&ñ$n\nÌ•7:Þ~Ç,óæåL&–Ά߽Ű'µoÜæ£è~ýéÔoÔ¹/Gìý9–ñX騺 õüFŸñKt¹Ó¤fËýÝŸÆ6JIí½7È_Û–¢ÁL†ãJD^:7U!ö¢ÿ[e *•¨NŒ÷h9S~B^†VçÞ¾ÝÚÍÖ‡í¿–÷Aë×(ßuòá¯^‹Ãêö-é[bZ ’†Ú!Cøã®Ô7àyòUPø¬ëfû‡v5âlL§—ðÊÛ¹?K¨ŽØV𠢜“õª·A­²b§áV¼ÚÜŒ5÷æ«MŸöçøòãè“ óì”@ßß æ7¡¯vž>ã öíÃj*&ϧçN.6F¡´Xx`]ôk¤ìâ¦péõÞ&1þptq ±OÜ£Ì2bC³ù¿Ã|Ý’÷¤ä:xñ…ûb“ÃŽF]íüV•R¤|K¹‰Š3â,ö‹Šèú9Ù¶¦'»ð¯k¹ÖBb·‡œ<¤5ô1¢kÙí½Ye¯6îÂ<¬˜èüš)l›Uá]šÁëÙ4cØÄõ]?4·Ÿ3¡³ÆÝ¢µõPtQé?`[C.:¿Æ3õÏÆÀÉ„]W»4¥¼*£½ºØ¿Ûè£fN|J:"–{2_“»p_#÷ø¦z¥ùq:ÈÑÐï>ÕxhyÒe àr©G±x«y€c)1çÅA°óþ¬ÉÞ–@9ÐCƒûýH/cD° Ò”"t,1RPðóÇ¥ã¡úð‡hy§Ë[}wÛÍì!8ÉÙ¹*Õ9ƒ]¼É¤±Š•Áµ¡oÔÓ=<§ö#—ößASæÀØiþkpçÉ ïêN©…ÀíÔ#‚û´N=RöaLʨ'…€ûŸÐOøR²u^›.¨ÓÜÚºžöRý y(È.ñOM=NØj,;ù¿‘HªŽ>ο±J.95BÛëþ—á€Êð?6ˆ‰—¶AÐX¿2|L*{É´Ù¡vÚP©,B'~R‡HG̺0TÞžùÙYø²ö·>­¨ûh NŽy5 â•fFèt ë_üÂ;aA=ÚÆ}G";â Ã+WøhÿÖ·ºj`•7m0=”¼}@2é¼ ôYŽîÝ)܆;|&µµt¹RnÐU”_x{[øž5XqJžJÇM%ÌÏǓٮç™9ÑÈô—!LúÔ8Ôã0¤p÷­ŒDöû>Ï*hžDnÚgU]…%ñEö.ÃgœôH0õ¿e“âo ÜeGŒí  „uÒ»é ¸•†ˆ™¡€ /&` àÿU;üä btNᜆäYäù®ÂõÓ£“Þ”’ö7»‡ªÙ+j¦hQŠðpÀ7¢3‡mzÏù#74†¸W·©šCiäüøýMSTgÀv;sgíÝûl§ýÓ–Z¥F9B@؈ÉÛ—‡<Ì@yÖ"…\=f1RÂiÓÚDyÒˌɨ˓c@”UU4Î{%–¼Nf×VþœsK:°´žX»U>H´¦`fÛ˜zÄ26½NŒXY¯i'µ222ñúX˜ÏÛz[1P ºAÈÊ‚´<¼ÆÀùó_.¤U‹×Bcòè¡Ø@~_•®‘LÂx0<)%_ÝIzŽ=6ãÈ‹WIacŽÛ­„j#x¨Eâ©Ý”?­%®£$ÖŠf{a³*ߥ0ÓÞ–CÏjº •Ü!Í\íVõÂsPÌ@FHÁ[îÿÅn:öÙÿ½ksô5`µ;í7ƒTÖWjNÛq´UIµÏr§ñ?~-‹¨qÖú“ÿ ù‘‰%{°Bx¤âšG¹— à§¶Ð:zu=ñðq»Œf‡˜ ŸÖh9ÑtöÙ½n«Hþ˜k1‹ G µÛ$cüVh-éŸâ>‡zT¬“·Xqùg¡5j(µH ò>Š„¡HÊùo+°¸ 'ß”;}ïãà*¢¡"ì1Ç8 ¬µm[Óv yoFÀýGºCö_Š中õÀlN—¼§~%C{›vXsy8¹ù=n?Kp÷žÁ.ÇîCœ°µmvb#¾9ê¬ð5té;gzÁJb_+PéR§È?I‡½dy€ðÊeƒ‘U¾jR½§ª§ýsÿûBãŠê÷2+ŸÍ†’­˜ÔǾ ƒƒKµ«m†ñbBÞìw°4#,rN1ki–A¡Í¹•¨¹¨¿ßè[Æqw:³¾ÊÊL®Ü»=œkûY©¸±ÛÐB…íÕ0CäJ’fqúP6õ4«jŒ]Lº6ÉwêZù²í.ÝÙø Br”׋-hÔˆ Æ+WÝ÷~ÿBö[ø*xPs»“Þ'âg$÷Z$G]üÖz>’;ÚÁHU;»ZêEï`VäNDç†0 üMt…íÌÓÔK¦ ÌÂ_ n!&ôþà-ϧèéAþ{ë ØÚò1àçBFŸg§Zx]U5]ÈI¬ô¥5 ¦Œ³Jƒß‘z;tù j8,‹%NŒGvév¶k(!è­.sòN•ººàëøÂú_ò Ê;{M± žgjö_È)Ù“–ò¾ž†6šk».õoP›lKöŒqa õ û.#à¸ã\Läà$‡¦@¤ 8éËGð“v †È¼)ç=H·LöýZít/“iÛ<óÍô¯ÝÇí>Æn`<žWrÜ/}טi=QrÌéïÃ?€û¡Á‘'nvrå°,Ptµ›H¢*ïæ·ïZJ\ ™5 œysW]°©‹†a–§ž&g~ lUnÔÀqL¡2×q«“dzøHK#$þG¦Œ§ÍÎáU8û6Ó319¡n¿ÝCß0Ð:¬2•·úý¾ÿ×o}¶ZÏu†Ž;ƒ—/Þ*Û[ì+âÑXC¾™ŸKÇߊaK‡lɦ îæü{3-HS×øUæób׺-dœ®ªçÂ@Á‚< !ãÂn !0|Q o„”UÐü!é«â$"Pç÷–¯ =ª‰‘™NÖ·‰A"j¤ø£È阸$w”.²9|)Û6Òƒ ¡0±â9,‘f`Áw¤ºqQ¦Îí¨I¤T:‚ðêI37@dPÙ’ìŽZÍ÷Pí¼œîO©^f`ô!×ÄVéT X°Ý¤YÓ´Óú¼("íÊ“¶cJPx84Ð'XèxÓ¿2«# ž%̨¦¤÷²Ø˜;v"éT»#äpðJÊMÊ™kà M<ø£4Æ\ûèjÿåIbÿià éù鯳K·hC$´ €y£½S$X<‹½;†jää^ ®b@<°šñq Ê$ ïÅPò0LÛð´òXjzŸHØqÈeO%¬'Ê(Üxa'–åÃ!-YLjZÍÕN¦ËM&z±þ.ª,á(È\gf°$NâŸXü¥“ë1 µÃ%³vu¿…å;i¨hèú¹H*×ÜZl…ý•òˆß;[Rôñ9:ꡞaPÈÀªX°à»3œø,òQsFQeÐJQ²¦¹ £¬ÛüñS¼J߆„†ÅŒUè`Ž•89 SQ4†ø.9S½­˜þ/О*é‘ÈÐTáUI‡VeÚSÁ‘\±"(ÃãÜR„ûˆZ&BÒRlÀçþZùV¤-ô®/•ÉÊÜèÎfë Z†ÕM™—Q5´_y訾Ïd³+ž›qUÏÀÂx¦KÖêXÐÑùíÞZx&¡Q |$² Ûýµ›Ó .ÄÕã.ÙfwR.-ÏÁ[ð:AgQMÝ©ü€×2û¯x¨ˆÑáà Ø”Rñ"—ÁÈ;ê1,b2v?a?$Lð޽QŒ—¹°áuªœ&@bu2Ê ÿþ¥«©†âÿÚ£ù×Ê®õθ«©è·>9 D2¹i+â(ÁâlÃ=W½m½]õ[_‚±àÓ”]‹ô.…éo!7Øi ö’¤©2ÕË¿ÖH4_;núqùµUSù‹£»ïûÎdÇÁ,®2¥9<”¢Íx‰l©VíS3©c†C&IüÃÎnºïïP´Ý@8–)·f &4ƒÊ¢cñŠý¨n´v±>(M óG¾Mí‹A¬úÇ4ò~9$„L`0ÂÐGv1D¥À·€?ÐSD‰ç¹Úh.ø ï eÍW“$rPþ4}íÛý‰p íÚ"TÞÔñL`ÕeÌœ ¡:1>øêOöÕvµ=`Ô‹=ñv)ܧ FŠñ|,3X·œ=RRÅdœÉ?5ZvX7ê5Nä…7L ê{{i]ê~©‘¶nÛ]L®éi©ðÔ½H0=²Ñ¥lbÔõâ׆36‘ÑIgKÎKZ6†C|dÒ´²ªè¥™¿æÈà õ³œ»þ'¹zÎ""_’Ý#ñÏ&¦­bŽ(Ö&þ”FOc 2¾¼þ*#F¥©Á„Ÿ3‡sìëþyÕZSÊíÍÐÕL¨y Yzf¤Í#ÎÂãÅE[„¹W{8|5Èð‘ÿÄçÐÞ VÔ°çiQq*¬ß«§?ò£±êÞUBS„S[ë夭F·; :ì ?çqá‹ _H¾mŒ¤Ü~ªX¦ (&‚:fLxn i³|ðo©Æô°3o4ÄÿÁ¹\wõÏZðq¦{äÚ! 4.Š‡È‹%9Á ßtB±#·Çä`﵆ «Äcì99ÓѲó÷G*aa¹NŽæ‡†Æ5“ØÌÍ祾05çÉŒDS$[ yÞz¶Bï(´«æ @v¨ –„‰¥pÉÞr¡Ì#l²é'!¤ý>©®ò0´‹™ KÙ¹ÿDyÈÔu âO?æô:Á¯jë¹]`Ûõ´ÌÊj‘:/8´çÜQ} êËyêB²”kdÛɉ°ðÈ£ul­‘™ÂUnÝ»·±…PÍ`ùQ[[j·gèÿ¦?˜{oËÛr`¸wzø\ýâÑWÓ*šÊ(|T4´Wqv^Ååà݆u¸ût£Û…Ï¿nÙpqòdªÄâØB²B£2Ž×,³y¼H-…ÔçžÉ"|²`±0yúî¿hdo'œ$¤7²–aÉ ërwØj<Áhqõ¯Ö„$'$µ|ýžÉ=tÈ¡¯ƒÂ²-ó•5ôª#AÚ¦@®ËÊÌŽj—رuqg¨`YžY á"m~dzX ~šhGך le•œ¨}'ÿ0+O»¨bì¯Vwr4¡š”!cí…$뇠øÊÇ[È ³ÒÑ„!ÁÝc¨len‹Í»¹z{â÷g3}yi <@eƒ;]šÑô\¶¤cãðCöE•[æÑ_WST £W´p` ­µŠ‹Å?ÄG30öwÌ3úlæûÅcëpÀ¡j ÒJ0úÙÚì+“ï—Fœ´ÿëâPh¼ØÑ;Þ7r±`Ü&I ê¤+À¤ŠdùóAڼʉ"ϸԙhg|f=k¿e1˜¶t0×I’À‘Æ3El-~Ùrò3’ƒq˜\A×mT¥™v$Bå3§väÊÅI?õÀ, p‡£è¤bLš‡g%’pÆn+zhFÝI|:ŒtÜh hS¢‰ „nŠÅãkÃ÷AÚ7µù>2>m[¼ih“Å«”" ŠÜ}`àÐufºõšÍf©jºêú##"&öx®¥.DÒÊܱ kAÐtŒ<­Ô|À gg„uR]du .÷ä°< ^º¬ÉsY–ÀNœ.pòpªœ§\¯­pï›·Ôuô—¡à{â%3˜¨•-²SÑ ËyÚðƒm?½O8ï‡zGÈ sËqB/ƒ‚ÕÆ\ÂkÌVF•qÄTÁ´ -+‘ºÝ±T”‰®£]‚0Ùÿt®_uÄÕ™ò¼à–çëb;–ô«F[Dª'·‘ |'6K;óýÂsƺéa¬ -·½ÏÒ‡0Ú‘æ{bëÔ{µ?BÁ1ÞžÒŸ„< güè‰-Æ/ÙPgn§õCC†[²ïvr,3ˆö:Jèú8ttž²°9S}ÓÀDlã¶2\A”~N;Ƀzp|\ÜI”Û„mˆf{9Öc®ˆ¼œöç+ÒŒ‘CU¹ŒÎ2@å‰"/s•—üü´ ÈF`˜’ZìòV¿é!.ý7ÎEO‰Œ$´4äî9L Jl§£wÝžÁ½Î·KônC·%i¨Or3ŽOi}>ôÚ ðìÌçÞ%çç*R=Ômø’ð+g÷Ÿµ8£€;YÝ­¸ÎÑ9¡ŽHNˆ»€’Ô¾îR5¦yS®Q$Pˆ·Å+ÜVÁ±#?‡ú/~‰×‰ú<Öjz+êéò¸}Aéz6xÂháÐ¥ öAÙ+^v`]ÉÞë¬Ä½ÌîYH¬ó˜ ýßñû@P÷ÏoãÏ{0mw:>%¦gbhæÌ‡b-ŒR‡½ÛcÚP“ù²®Áu–¸Hwû³ÙV%Zmg㨴ȎÐÄ[Q„nXg•fMŒ¥µ4.Z„5O£6›¨ÿDåíty/ñóú:TÃÈKvlŸ?sç’èqb›­RIaò–Ä 'Ÿf3l%l(ü~‰ŸÐÑ^o kÃÚÁ­¤?0iø¹51º3«_Ýè\P&é¾!¸zÅja—>»½}‹Plt­°Ó¼HÚLÕdq±pá£-~…ª'Í&cìü7ô:.<§pÀaÂ(KÞÝ]vTTJºkd ƒêÂÈ_oœÐ üëc¾°J1òmpˆ!¼ÃÙ#i\îUYµ™pÁƒ¥úÎ¥–Æï=¡yw餑S™ˆ„:[Îs8-jnH;EÙµ©wê=”Lï4¯Û]^ü$P6×sXµº²¯^jÕ‚Ð1µ÷+•ÚíxÍ®¸6•+Ü”<í%G²râ|÷µÿ$ëð½K¤|áwªž«ÒLÌ08k*'±‰5®ÈÍÒVE%97oK{jYB 0OK í®¥«^|3•B'ØÚ31ð*µ»ITZ„DF ¬§O£›Ðz~¦¨`J¨>6ÚÇ‹šÊx¹Ì¨Û¬v›6‚.fW±ŸîÁ3k]ŽŠ²:É+-rÉ|ÜûÝ]­rÔôÞü ¥ˆÚ›2b¯)iöÿ4q"®:3JúD¶ßLËARÅc£8¥äp(l&‡GãpªÚBÓ5]Ë|ë« IV´¶Œô°àÑ, &B œ©»‹3° vå'§1PÇ—•Cëó!Mns]û@fèËBHØFõúY@ÝŒÀ§ÆØ(ìí…ZVƒ\‹oÕÑá%+'»òw%íaƒ”xU)U­‘züÆMø'kz¾Ã²d,jÁ]nÚ2 ê*ˆí÷Kq±ƒ(&ÀÛ.'Z¿RkžV5d½®7Ví+jÊøm™¯ øSpDäô´,ô^­bÙ/?s%3÷Ñ'yŒc¬D(éMø5€/O§t'(@¦·Oö°®¾8‹Ž·§¼¢Æ—%“i~ªÀÑ032×ýš‰Lª*»mk :Ñ:q'-VÚÅ”ÇSЗM7FoÂÿ_DìBÚF&x®¤ œÙ¼/y„2³Œ— M¼Ìæ—a!Ø&æކä·kšô”ÆÉË*m—5} XIœÊ@ö0ÏŸs4¼„ÇH¢¬]º,ØæÖo"n#$«t;ûEzÏ/[ôÙ"¢ˆc7ºÚö5ïÑ.Wj+Tds$fñ¥$1{™6×ç¤dUM-•/*JNç*‰;§•HA„^LfÆC &OÚÓ*øo‰ƒ6šr!eæè»Ã:×â1®| +ÚÊ~zþÐVÝŸVç;VîËEì»Ä’üZmõÀ©Ô²‹±]œÿ¯n¯$Ú†ÃèLêeåäR\…¥JdR¢pЃ‡LÖŽ¥<ÅÓK¯SœüƒŸõ7#=¿%odæiXGÜ[µé.rªé>vr›£åaϬ­i^ï2wÏoe!–€Œe#¶ä®‚žÓþ•¹ïŒÖ>žg*3W0pJñƹîâñÞš¿à´™ÜA W.×ÜFýÏÈõh¢…Š+'ȇœí j*VW2€†X°ðÑgßhþnÎMÔëï»,À‰GôfÀ¹u=Ñ)<K_ 1CÞ*««¬[&É$„pWBŽA•Lšß¶²¯dŒVkô Ù¤¬väõät­S“¨Ãj‡§<üäÒÜ&u[£oä9x,;ÃBsö$îö-©FмÀ½Yæ§T÷§¯PªAÄ}.AÑl $YÅyšhnÌÖõ ÷ü7¶s™èò…Ú „®ç2Ô. ±­H†ÙÖ®¤’”Z£Â¶4E2úÙ~ƒa厠+ xû³zNLÌ8nì2ÄÒÎ/m"^”tçL!ÄÍÍÈ2ü+=‡>Áõ¹‰ÆšÞ Ù²Hdž˜Ó¾O[\Fq»ŠéÅ‚W¨| sI軵T•:ü²ûDXÖj«„ÝyˆÆDHÈKà˜ —έq7Ãç²ðGE3ˆŠÁ$ƒ±q#L*Nw‡†­ì7jSGö2Aà ىéÉóžoYÈ4õV@ƒèšWWtbêõÕû ÕZÖÎu(÷pÈíÒÒN¹æß# îÑÌÛz'aqdì$Ub¤—¹ë ‚£-pðî*ã3®é´õ¶–Ø‹ ˉ²)/w7¦¤éKÅá”ÓVÂg?4¹M¢á&c”P=èXf Ò5ë°ÒxD°ÈùÖÏLÂÐÚÄçc¿¬ß°oBóB¢³\%ñ ¡ ×”èbPTƒž«œÃ:”e†¡Ö‘`ÝñLJB/¤« ‰ëX¾s­}[Á݀à CV"tŠîGB ­êüG¹¡ 3çHˆÛ«:úv¸D%P™kÌËÝNñ“Å‘cò~·¦tÎïsÚ)Ú€ç·Éa‰3 Lìq.~ÏR]Ìb÷§3š­ŽÆ«‹ic­OZAbêï#¯2~› àZ°6¸£"QÖ—ØÎ¾WUjCPˆ™ –ØÏüÝoÎ…Rx­ˆ¨Ú9å j­¬3MŸÃœÜ E Ã&œžNfÏ'Ždõïž©±‘£w†­žŠ°ÛBž.”?jÅí§)ÙÕžB|_Q®åvz жH‹?1ÑY­j÷"¿…ý é¥}‰íÌxwëí0!-õÒ”–À2¢ëÄXå ²Þi~’"À•ëµZFÕ½ca–‚cTå–³U–lÉyOïçsõoºVƾ°~“0xñË©)õj![ïQdï­Û¹½^3)¦’2ŽóO¹ócÞLÁat$2[XÜÑ_] ^…û±$Î|ÇÚv™‰GäÌdwÒÆo'NvšÐŽŒæ>¦ä ZMVn¦‹ÒÇî‘Ãg`_“ù0{C3¯§ýiðbòÄ[/Ÿçâm¿³×rÑè@K#Ÿ,´½¯ØQ)o³è¹Ù@T Τ¥çM×`eêT])>ä“ ILn儤ÄJh«â!”]÷èòEs¥Xáïf˜E3§l)i!»…÷/çpË@kÝ«´™oÒç%´²8Þ=„l¥5S?§vHtFò—Üq\fž‡ëìKiÚž‹i œ#ü~ÃÁ¬ú3}9Ãry0ÕÕ›¼N/Êh„¦FnŒ¥ÃíNš /_pÐMÉk¢ !³À·;qO©Ö£ŽÛwØT+)T°v0¾Ø[¬ž‹HA½R¶©ª—³—­sš¦nwF*¬ß[È­Lƒã;=b•&¸:î@Äx- …“6ïÎÞF3eŠŒ‘]…ÖvnÇ­MÙ«š‘µ /¡—a&Cpš][˼<üiëËs8¿>lƒ¨MÉæ±‚sºNÛ¨|Rl^þ¼6³ÁdŠç`R¹=ˆî”/o·?7fôj,}=^ó^°\ø…³QÙ‚aÄQòêbø1%¢®mÚìx‰\_w"Ô`<>ƒZˆ£ ÛùºC´¸”‘$šªªž& B–…!èUNúÂk{¶IäKXLXo]œò¶t-…uäáükáöŠHH¤±bþ\A«Åëì»vDËŪ“ÚïD}â(t¿:ÃJ3‚{Ìšm› Ƈƒ-´íÙq @ÌŽ”ö+q4Šl7¦u§DýM)—–óÕ»Ù¡]Ñ4r’}þí’T•=~¡_/Oq®-Læ[˜z¯VÉûll!iúž_ˆÞÔ[º Ú|Þ ·pbÎÌ aÐ̼w#·(£m,¾<§È Øi¿Á,œi–nvŸj8&’qz¡>Õüøpަ”¦þbÌÏ­¡µ”¡WVïEÖiª„\Í…!š—«Jƒ5ºÕp~rùs22Tƒä^‡›oCœÏ·Ë™zŒ…B-éNÁ[éMëŸM€|h¶P–0Þ…>Èz-®ä!e&Ë7o½#µŠ.#5„G=B Ñò=×üÛ(ùÂìûŠ/1áÑ_‚ÈQU¸À,d#Î%=o:’|öpà¥ã’îtòü×¥a ¡aއ³Y½’]–—§nÕrÉ‘…m:X¢*ÆÄ¸9yè5ýŽVõ£é F“ås›é@ ñs†özìúÞ™¦sÒ‚‹‹ BP±©Î®ÖgÐŽyŽ‹µº„czbH˜ù:óŠKP½BÍÓ~´1RP¾TÁ°ãO¦ pÿø«!lö¬hRå5â[Ç#©Î,!-ⱺ%íøü²6³§Ù¡¹ƒŒv~/Ÿ¦«R§Cˆàœ²Øðã6êð—€²l9ßLÆ&~Þp£žo©§{.£;z–¶Ö%†€3Ë_ö§Ö‚EÕö£p\WÜ㺄s±á1åÒ¦òëqL4êóëZæÒðì{Î!-Ùé]Œ>ÎöˆU˜HUoæw^¤¢ÆT4S~Ož®/ïñRq²¡ƒ'Q¥²þ…ƺ"RQ](uùå3žbX8 ÎÉš÷Ðáu1¯¶t"&,²#Ü”ƒÍ‡HDtƒz¹E?}eQÅJÙ×§}Å-«ªQD•”y<Ù“ÚâNV‰‚Õ »ŽîÍ¡Yyxd8¥±ýeúõën ³:ºFÁ,*´ÃªŒ¾eØZ 8ÏuŒåv-phñÇqo'+ec|h Êxæ¾Omkè¶²/œnÛ1Zf$# gßϽ¬É7¤»/2 ¥æJS ჊¬4åle»Ô…^³üe)•ïˆ)¬¢g‚ÏYÔa@×Oåë©GÌ­#\“›X¡@O!#1‡)ž"Lû^ :±ÜêÜçàFâëüQÈÏôOf¥Ùb—]û…²ò­¨ž÷¥/CŽïöjnðù“`DÖõö‡?OìÒ‚}ÀaôØrÒRàz'FD(a2…C¦4qö5b£ï¶KÌá:ô–,…$‹¬8l)*èݸȴ½~“3Áp"š+Ý0΂º›±ÿFµa%f_D‹CT¡(42QÄæeÐÙÈÑAétÐX½;ªimÔ Ø~ì?½—°·GÝÔý-¼…—vù‹œ~ûÞHúÍ8»í)iRÑ©ÊÈáo0Ê`p® Ö…ÂéËÙ<˜ž¼«½ì<µ¹×ýž^4ÏS(lèv½/øè»Df a5§–Y…ãÕº¯IËäSc´ërÏ;{äÂ)”ãš2¡8A1]8EW2œLd,m²Ÿ¶é%ž^f‚™pSR¡*-Bú={ãfc½'ü¢a$㥄ýId4*qf½°Þ…ÝŒ˜*î†sþΰëÚî|IÚÑæÌ¸X^ü]•+Mw›8vÈ\Œì‹M50‚²(ÓI-ãíârÝËçà ¼N*o q*K¿5õ©Êb¸WølOžœ*2%Ë£¿/cHfœþì3/ANwS/ $ؘ)³”QZb°ÃÇç¸;ÂË{Û`O®?­eÔðB“Z”úУy™h«fß*2êœX—‡RÖtâ*;”W\>£ìfõõ5Ö¼ðv‹Î²õ,¶­ÛÁ¸žÐ"€*‡ÇhÍ9œoÌC¥ß©ŒŒÇC*‹q“’gzY[🾇œõ‹ŸR&¢Žl¥”žò¨>¬¾oT–ÂûÓ–@ð€g@Ÿv¯ÙÛkC?ŽÝ‚(%wá]»ÏÖ0È,“F͈¦¯B©Þ;ÎzˆÉXl¾æLÛ=Øj¸á ÆÏÈ$ÜôHú/#3Mj2‰©-ž–+ÊÔ0š²–”õØ8}ˆ6Çcìäh=®d˜¦ý¤2™¡¦PYÕÊxæ0¡ò:Åî‘Æ ¢x’5#ÛìvYäôìU™éEP–6éó5c‰K:Q÷ɘÃHÌòjb‡!6B’AÊÊ}Ž6‰žˆêÜÆ ä/Ã…7áÜ{‚\ë;tt åŸF×eÙ÷£pz“ õ+w­{‚°agÚF@ϾÕZì˜/h`A¼”—*†Z|Vù‘”W Ž< Zο‘Cµ8©ë)©ó"!ôîÜîÁÚËHfè¼À ˜êB†ôõí˜PtTd߬nÍÏ”*‡<û7ã.¤d¡|½Dnƒ„VлÙ'å’â÷8-‰ñ ¡ñÔ‘U\_W¼UújC'¦o¥~#: Žßè Í+|ª,'¼·êŸmô@´‚qxñ{•èvèxâêc¶8œÞ*"ÊâžÂC±¹~Ú¬>ín4íE¯UÇhƒ¡¥ìºFxœ¦Ä‘MÏ÷î8{FU6XE•a-£1ì7ƒ‹E;Îl;yI7Ì!X¡wÇv88ÁjÔ_Å(ò Ý›56wV1×Ç´§–+aˆÆô„ÅØv=¤Q)†*˜Î s;“/ÐïU+ï.×?d‰4µLš.!Þ8—ÀíØØ¶ßù0­b.ÚhTf[æ¥8%âw.ã,gmú¢‹DUBÇFÊpð´jvIúvûsŠ~Nxs0ÊÓéKñË…)÷Š[ íw¯7OŠkvqåK`\V£ #§¹* ¯tîÃÔŽƒ,Lì2Aœ/ܦ5î«dÝ.w:\QʦӎÚu03¶7:C‘Õ8ÕÇ«`=ºÃêîgu=Ê·9âúDjz=/¨L* !Û6kAöš|-úØ5GmªC­a#s]ëäõ³šØ¤’‹éz®çÝjO#zv¯ß«³ð¿îY¾QÑÓÁesÃ'†]ë‚Îw j‚¢%4ÊÏ<Ë ‰'ë™ï^·<^ÁޤËib«(å 35(«Ÿ‚Ï©#©ÆÆ#ð0Û–øÚؾL Hz…ô„cgŒ#ŸEDí.(“ØÊ`Å <œœec@¶Á|Å„.±—£Þ»ó“­¦}ÚÍW£âvˇqIqG#{öåq¹š”&>`?f~œÔªi7§Ó¶3ä|Á—ÅQÖ F~I€W‘3‰qòŸxJdÝ6úÖ~ƒà`O½æ2þ¬l27¥‹ì În!]g£o·µUÞyÓÖ´°ìÕ›Fù -v^zÔ½.&Ýg`<ׯwq£Ü Gîvõ “ŒyŸFq­KB°†V&µöoz£NJ°²¶œ¶‡z–#›¬ñCžC«.J¡ <é÷I2u¡,à”µ4m„í|3qÅaón.·œ)%6q)d½ZR°™+âËJТíšêÀTNRåeðÖ0ðudûõ´»ˆ*ë†UdBþéÍ».óµ–H‘ó¸Æ8èú‘@¨³ÕŽ‚y^vš›z®bb V´¤ƒÒ^ùh³ ¢‡ÊÅV2¥¼Œ¼OŸ†8jú ª˜^é%#ÉÙo¡y¯äϾ;èî2ânÀ-=¶·@Ær (‹¢›ý,Âg|Õ6<î‚§­ÂñqÔ÷=Ší‹èîêêt¥¬0i¼5t H³‘^€3‰…”¨-‚J_Co¬5=MBZß¶£QÛ³íÉšøúp‡ŒsÏEb­÷«üoð×! øÆÕ!®ÊÛâÓ±åM`lDêŠ0OSoÔ[vμ½dõoT×RQŠý!1p˜Uð’àŸæÂóíÀÊ›]0æz·¦Ð¹"SííÝÑhŠ;ÙŸqt"@E…>|c7Ç@Ó’Åç} Äô5d3éáq½Ù6Ñ´ï+ðS•'lמ7Ù¿ŒÙ+Åp4X}5´]öcøxöAb:ŒP37ÚñP®wójjQñ‹çÌ|ŸOW/Ž_*ÇzbÎÕµ– :±m~™.ÙIaoÐ[¬H‘Þ¶á~üûYšxç 01¢u8 xPCÛ‘›6±ÖêðBéW¬C¿Ñ¦Lì`¨4”ñ°“‹dÚ-yˆ—ŽªŸC½º«­5ˆž¥vgk“åÚ/ØyzeÜN.m]ì£ËávÌ0!(Î9ÿ÷W³ìШ‹²BEé–!nŸÉŠÊò®´ÅuTÈbõ&Õ 1gªþÜ<›Û<ú ѵ±X(‰%o¹Ò6r<4‚r &µÀ®¹òé½ÜØëKÀý-Ç=K8AÍð¦óCÈÏw;ÕϨ,J«j+{!dð†É¼Pñ<¢j¢MßeV²©ú/k=Y=ýê…†ûF©3¢˜ÙH?)ó…èævË{Fø©CbÒ”NÙÅæ·+4=PŠgÎ7²‚àñ( éöÚÁt§9Ðß‹áq/ÿî¤Í„ó=PÓw'.çÙIÞå>dÇá»et%þ;=T*ïÌ=ãKúïçúß8sÍœ2ZO¡_x—"^Ú5™H¾ sý²÷ò=´\o7£SaõÃÍ$¢£[Õøøƒ„ˆ$^v6ß"¿ÿ{Öäù_w›S´¸?¯ÔD¼ºw‰I_ÃêªáËý±GüÎcè­îf>Ñô_znÏR^ˆB7iöÞ|¸ú{?ƒµïÓí´ÁÍçÉ Í-*’6¶ö×®¿Tê1öÓŸ2÷L"s$AúDd4>côäòÅO¤ãÀQòvÕvho)BX œÄ졪ä?“#Z·.׋µ ^çä-س˜“l¯>–‹—ÐW¨Kêseæ±jçãòéÙ¡Ýß|…íl÷¡Æh^Ñ“¶ã–þ·•öZ*V®œ=ÿ§ÁR¶q•‘‘m®¥hr{PŒ˜!=åÓµCOoÒ¤¼qèXjŸXçtyyÒ% ´Ûä‰?7ô~ÀqsŽâ* ÐþÿO©\Ÿ½\š¿3U:€7Ñ1ÖúíµÝ9cYŽ£èÖÊ|ZøO¯¸^¬8g{×åÒS;„+`ÎzI|l¥ÅçŽ ù£6ß_àõ‘_2^^ º–3þ:zvæzY蟓ÉT ÔorŒ94¿#fßWššõæ†ÃêùÕËßúN!ŠÉóxü³o»¶ôôtu²ÖÓ?ƒd–ØÑú§è'4çH©ïüñžG¸_q¸ÄÛzó0hæ4v·üUjí4›÷3µçP oP\®[ù=i¾ž‚s‘â«Ìr¾èIíxåézIeøSå[H•ëÑnÖÒcá¼~Å•]ßDÿÐýŸ—‚3ÌT‡ã8ØŽŒÞT½øʼn¤ãÄ¿“E °*ÌùeÖÀæ'Ã7Ç¡yµõΓ¿ù™½Ð7„å‡ßæðY¬ßOâ„Hw¿ë\ìdõ…ªS>Ê‘Fô÷2ú+&Œ©;/?áñÒ_l Ͷ-ká#Ú#bõ`" Òýí7èW¨—ÌúÛþT^~ȶßMçÚ*/A9.hÑLÍUJYùù"Uœ­ÁXžWUâ‹ ²zœ†fRl Ñzñ[ù)û…;¯ñÛºg\»)ÞÙ[ôMžØõ[ç|85ºu],Î!x-ð!É6ErN²"™•×Ùô(åÙìC¥òyf5ßs¯sz>Œsþ¤¸½¡Ï–ü+uÖ(#ŸÎzò@z¯a*¼Íéˆm,*ÞÝV=mŒoÇ}D;ùìô|z£eMÊ}Ï›;7C®“6'!Fd®¬;YÅ×ÏH¾¸X°ÅtÇÖ'Ù IÂÏ”Þ<-Sü]÷ÎŒõN(Çoþº›Ú¯Xû‹‰‘Ì6»ƒ¿ k§607E1/ŸÅë ç¬õ–j«íª=ôYÖÿ…ño2Ú{6 áþÏ1ºZŒòQÁÌ=Y{.ød-²Öƒ™[yîèóªm©‡þ³}Фíœ-XÒÝt—Å_s§Yn<ëÌ,^Øzžýfê{$ÿ¶rú z¾sï¸E ûßúÛܾü*‹'!g+²ŒIN±t?Ëž/’ G…û||•¤:] ÛÂq·Ó5u¥‰ø—ï„R<Œl©,î žq8”h-+P<ÖüÇäûßdj_l‡ÞgXjôúÞÉÍæËúºßlÆ6‹Ûæ^?u;·j°ÁâÎÔvšY Ê3[ûã û?9ÂúFÙÑé!{®ÂAÏTÃåû*DR®÷ÀÌSwó²Ö‰¾1t@çaÃä^bëî} k¿§¶¨™Ù§µ_ŠÏõÓ°Þòf©¨wi[ûÞ¢ÿ7ƒW¹h7×úÿÍ%ø»C·RÞnï¶òGI;änü/õ>ýç± ì`%ëµ%y9]î³’÷QJœ;nŸ\M'éñ)Ѭ-~äoJ¢³JAVÈ<êé3Ï/N Z½{>ˆrL&¿Ó^¿û˜Ù‡¼úïæo(ÒTÞ}ŸY»š°Ÿå]xWÒ«¨­=Œ‚€¿\/7âߢº»i©?ÉîM(é½ÿ&üØÎý¤ôø´'zqxÑ´o•«NùÓ.†£_ï}Þˆ'o‡«S8±™›JE_uŸéP÷£üâ *ü¿ú’ѧ±]NÝJ ßÔ*R+ñêdø€©º_‹ýò:99ädXÖ÷e£q:¦ÓÉþ;¾m¾w³¡¶ý “w²xs>à»Æm—?XýWMò—ÎG¿4×%R§äU¿šGÃØÈÝ®¦î`4ˆ Æ8Téà©ûnºíA>Ui¿ÂPÅ^žŸþÊÎn+|B÷°Ç½oËA)MzŠRÆ:±®çCî}\~g^S¹„õÎÆNãuEQ½OÖ³òqF¸€‹Â¬Æ¢b( VßÝÚ¦Š"L„¼÷_žCó¹ºÎó¾ÿ= çüß›û”AÌz©7 Æ„¡÷Ó>ûñðMÊ®ŠÎÜM¨îÇÝÓvÔ**ú ×ìù(xgõWúòûÿ‚›oé£ðøÞ°Tu‰Iü8·g§ü_Ò[ùøÞÏ1‚*ž.©ø/.@*(ƒ…›tÇ~vŸ<ÖSýA¯ñûA« Ã1ò¹ðæß÷0d7ª<$¸«Oþ’üuñ6Týžô`²ž\^9x »vV}:Ø+·W±QÐJ¬œ¦œ¬Õ´»ªmó¥Ðÿ0‚vÓ‹sÕü¿Z¾Û óÒù}ÿµ}]h,¿á(Õ—Y4ÙüÿÝï*›~µ÷ì/=×iýÇo" C^ÆŠA{‘_qíç<ÛNûÎÑ~mT~ëzìOå™=eG­3¯_úÞ›î^WyyŸ”£MI—¹™D+Ìlíú~0°CÕŸo¤r^õ;NxÇC§®*0Þo~ëÉÕ2R¸údP¼#_^ç¯Ý—¤ÏáÖ;%I¹ÿ}J¿ýà÷ŽkQt‹çcuaêMøæbã{)«ñ§Ïw>®XßÌGüO’7&R£Î /ýÿ|æšZmïLõsb^5c˜2 GÔñZ rú¿üàóçÿô‡®5¸$œQº£tÄŸôzZÓÔþ¢…èßþ „÷áUÓZUëÒ_a…5‘kÜnç&Ú(¶ˆIßÈwg^š.»¥Ókð9Ɉù+™ 3þ*»‡æ"ñn%34¢"—½µž½èâÿ·kmæ‡"DFk«jzPö¡î¾ß}-š@[pŸÕÌß?Á¿ù)HüuîÐŽEÇ«8&i·JŠòŸ²¦ÙUø2pݬJe‚ÅüÂþ¦•w{R¤\¬ü‡ÿÚ.¬Ù‡Ú"e¡&¬~ú¶aŨÕP:—­þ—Âä7¬ñý§g×å£ýz,Àxu³÷`”ÖŸ¼‚àÝôØ¿ÀaÙßû•¸Ücê_7žXîÔ²h“Pz_ÖïÅÝëº~ ù¾ªJŠ»»ô Dr¤Ìí]ÚßD^öøø„œ…ß *lôïú,ü ~ˆ¯±çôg O#Ÿ‚›Òçm³„DÄÊó>š á“÷É—vßü“óßù«­ / ó>{ÖÜýNƒà @É™-µÿ§v˜®ÍfAÊi®¿ÃùzCBòþ1˜›eÓh~'0…èäºhWHÓ~ÿ÷™Ù¬#%kYÎÃÛ_»ú²·ë“%à™Y:Æ'ÒfAkç¦Çíò_ߘòÿwƒ¦ÁqvÆÏ/Fï-„UFñÒ#ÿ¨ªÜTnqýò׿¸²Av‰ QBEFÌÛA{NÒc› ¦hÖ7(I\«œ¬V…æß6×Í·“åÖ­>2†vFH!}B@¦÷Jjʉ\¸ÇnÇ6Ïš…') ý)¦”„™N˜øÕu¨¢Vñ,PC7)‚”$ýSUU²”$ú'Ë` ¹#2KÉ JsÂ5÷p¸¤G7CÛT°ìG~ rÑZÙŒ¡Hˆ®|Sl¥æV°¥Á¢<(„•UðЦn’©“èÅOBAdJ«׊×Vù:®ç?ëo=ç‰ÁÞoÒ×ÌA¡OV›NÝÂÚ||—“ŸÛúàA¸B"ç«"ÉÝŠT‚Žæƒ£ ¾ýŸïm¶×Âü2ÿº#æÜŸÈë••d$îe ˜ÖD^úñUµUá'xç9ëÕ{ŽwW;%%Fs•ºgræ-—wjåwtî¸Ý´Œîæwt]˯Gëý>Ÿóuß#Bõ)NbR£+S *Ÿp+œ@ªÓï”öDiøw´àÐJôúÁ gU?1Ž•OØ ÆÓ‹­€¢èj¥÷*´ª`”é<‚¥~ +xÀº_xd“å„ OL ;àK9yeôJSL#E§ñ÷ªì%oR‡Ì U6±P/`4ªh€e=á s³«Pÿx€k•=ãR¢ ieó¢JK™HIvžÕT$FBLÆc ˜¯˜Ìf6üÆ ˆÌf/7io¿Ó‡­C ˆm1 !$Sõ·’ô(‡ú±±$×%!9^ýGçnü?è|µ¶øÅhõÛc‘KlîŶås•šÕÚ IX£]¥¥‚BOZRÇUZOº”ò±*›Éb·à4gÒˆ5DPÏÛŠÀ þPBR{xá\U§äü¢´Ë‹¬¯Q›D”°¡Nzº}=Êߘå²}6wÓåĶ۹¾®%mPP¦¨)©%ZÿÆ¡ 5ð!Md¨¿UnK)Ü^ª©HÏ B·ÿZ…Úà‘BŽÁ 0¦©{+Š‚ã[¬zQPIs›dëZˆ£e È€ ôD{dYf8?Ê·è Ùä#•žÿkN!DH^À²§›>_¬L⯖ üõB+aŸF Qk F‘#!HR c!“›…Ê”•é—a6NíÙŒKpº’R… H”Œ$ ôpoeùÚ°aÔÐëCx¡ÐýÔÀ).ÉÂAHó‘(Ób[Üœ<Ý1775®k++ÖR&¬þ2ô™™ƒûÞ^‡Ùšáë}fúSX ÿç “Ag¾ß¿@bð`’ƒâµ€¼º ‰$€ëŠ„EÃ*_?œù£³`ib'Á¾Åö"ªnRB2! CÙùžë\×Gvã®ºí»ºMØSüÿEðõ«×Ö·Þ¡m ÿ ˆ![È•«" Gn/Ã@ÃøüÇéq&MQ †>ľÏÜ¥}xœ‘Å•¾x‡l€5îP.ÀEUM -ž]çÃÜô¬)‚€B2Dd$’±nsˆ4ö®pâ5{¹`J¬°¾õ9ñÈ…1åáU|«tÖœ÷ê¾VjŸÝUJÍæ³_ãȺßqØ îŸWmæ#ãÜiº]T¥ÝÑ*èãˆÐ¡Ú*ZÊÚ*jãwK±±MƪÖkÒÅR|‹¶Âîêº$¤!HHÃÞú©å^0›6B¿áxœ†C!áíE³ÆëTpÁuBXY}Ô¯vV…ä@i1³§ø¦»‡mR‚µ¿nЇ…ý§z[€Ês-[w©éTææ5|®("ÜÿMÏcØ,) D 1Î-]#`m¹n]Ù„bË’ÆÅ¹3$ÆÒ°n]qÒ1½?tß—û޽•jÙù[YòãÚ¾÷ó~þµW´4jA_xÖgu4§O RZÅÊ*†‰‡¼¶Ùlúß›˜ÌÙ|ùï#ËÿUü IêÏReT9š\AAÄSXƒý=ʵô2b¦Õ~P®l'oCqíq·°Ì ¾R%!HH·-#3A»¸©±¨6rt¼ÿß|ëì‘×ÃÕüê·¶;ŸÝµf·ö–ÀDsö£mÄS“GLª³ŠçÑi¢DÚ´HéT³("Xvù5dÔfHYÙÞ8 Öw‹;?ÑgˆýVwŽç_í÷®ß5оÙƒŒô.;ºZeD™TöòÅYd™©¶ ©Vÿö«Cìß·aì€ÈHEIžQ0Á’wâdDGïWÏü´¨3Å7õ;IÉc*¹ˆ©½Ó”˜3gŸÂU®ì‹—pçÜŠ…{ ׯ“†Ý½ÝV_ðíoåÊë­p(¢Bñzt{9Vé@¤ „VRª”øf'ºDã*,NéÞ¡ìֱ͙Qße £I§Ú%mÅVXCäÕEH€Pªj€a“•fÑ:J‹’Š“Ðßéa.zæÿk– hÁ)-I©ª~c´¢5Šf£uÝÔFç.‘®msn™ÓdØÎî–EÎ'$ÉÝÞ^ãò6߀ÛÅé>g)D;¸!*uh2´ö¦RøNÆW‡N M»j¦´¼‚ú¶(‹TUí6ÚÓ̾¹r¿MÝEü‡>oÏm«vð}éH™@ì“;¸E2ðV»a%g³U H|Sç•Bí ¨J°´,˜Uùú-ÿ{± ’š#cjÇ‹ÖP¶k  ÒÙë“PGN!$ˆpúD¯bu“ £™” MÚ–¢ Æ©ýæj@‘Èäy,|ŽG#‘Èär8œº×6x}R¨^Á ó¹ªô p“E,l¨€ÌÞøþ?ïÍá¸ïjûkºF$\¤oR'£K‚±ªÏP)B²è hЫö/2‹ý%ý–óúãI‰$²$Ú5äÚÀÆÐWpôyïVÕ¬)0-:(V#ZR]ZSÀ&ÖŠcÄc\CµT¬×¥ X{UP7ÊP²På(Y[QĬªsPèFUùu•â§D³x…Q׬‰ ?êŠVˆ)^8ÈU/ì9ÉV)ëC`Kþ9s~K”_šÅ{OÃï[kZø•X)Q3%–½¯;D(Ó‹¢îÜ1£wK›r¹:ÝÝR¢;‡eµÊo?´ô¾ÚÚñ\£÷ëÙTù`¶ð$HÍÑDRµ‰ÕÆ‘þ2´F{)CO¸BªÌëÁ•C¯D†*«@*Ú…mü&#ÞÝy›¬fõá]±èæ†0ùÏ J»I^Ê);v4zñ­LÜ:ð%Sy&º=•TÂ%­7(¿Ž¹G¿ÕWÜí_²kªuÎöˆ)Z 3c,Ct$FóGoÀ(¶qR@H®îå5ÍÍÝÛ©,îEk¹Írᤦ¹±¢n[±IÎWKt´î³bÆ*’$$…%!%!ILþ#MÅìß…ôq;åëËÁx\N«Oÿ?y^W”7•å þy¾d’{_Ãü?“õ'ùíµÃlÍ}Þ?¹ú¹ýÆ/“»³æü»ëÄDDDtJ_´œç9ÎRü|¥)JTöP½U,T¾}‹êó/›¡|—/‹{•îW¾W¹^å{•îW¹c,`±‚Æ ,`±‚Æ ÷+ܯr½Ê÷+ܯr½ËÆ1ŒcÆ1Œc½ï{Þ÷½ï{ÞøÆ1ŒcÆ1Œc½ï{Þ÷½ï{ÞøÆ1ŒcÆ1Œc¾?82Ëë;²Ë",ˆþ¼†^LT_}‘dY}¸Ï¼ Žë\r°³…ª*‘ö¥æt t,@+‚‰¯P·TôÔ7X”¡°V½ÝPIiíÐtyÈ¥îÕ±SÍÕZøˆHÎEhS,îÍs\á#Q\ÜÚá1w\‹^ŠýòßÓzæ¾[|öBŸ\ta1—‘hh­omXhh™w†Â)a´ÝàmylWóý{ÿ™»7õU'ˬ}xÉì($ZÍöí´¢Š0­=È6ñ>Õèÿ5iæPû¶bÆ¿Ï®Š·È dm¤ÆôyõôŠúëÕ~û'ÂZÖ"ea^&ï@¨¤ödZB4*ï”V¨¨?’ÏK8ÈZ‚© bàe VÏ ²\Ù\ÜÜÜÜáp777›ê‘ï%ÞmsÏQÒDÿТµÃËi M²†¸¤8Š©y-R$”X¦Äø^®Q“I…¹’W.Z&æÝ•Å)B¥ ‚h€o(pígBƒÒ‚q N„C" “ ‹Äñ•5±Qu®°£¤$Wí=%k^GzuSÎÎèWÏdŠÙt¨„]* ¡$TÓ ™ÕM0ôõ¿ÞÞ,{QSV 9¸ƒvUú{Ñ€ –Îé”rÀ>šm/ ˆš$Kè¼µ¯ŸQ7ôñ{Cõ£ÑÈŽçðá€j§ò*pº=ŽÇ#~Ñèôz>O‚Ñå[ÍðéMÞÀ Ö" øœv*µaEœ’)‡}aI H©ÜTðWÌü6[×ÿuÿÕ°[WÿQiÌJ . ЫêPsŠ=®EGª²mç¿êû/Ô~óÿG¥^ÐlhJhÌ…´XŸ—î¹ Å®j^žÒ=­Ú‚7Ý÷W¨€ká$ZHuh‚Yˆ¦BÆ[꬛½càñ3ÅBµmˬ€6Êî¡@ư‚KþÕ_­G|Zö/þQÝíB©½×Ôøà!o~‡µŒ±‡FÑE7òãéÙïˆÈIChÓTl¶)0¿ƒ½Y0ÔhÄFÁXضDÀ¦Œ2#X°Ð(hX ÖÔ@X±€£FÔl–²£b &¢¤¢Æ‚¢Æ™QXÔFÉ¢ÔkV+h¨1ª*4LÉBF$É&a5 †M#$C*"Ò¡ŠAf’ E¢,kQ¶„ÅŠ 6"Æ€Æ@JƒX*5¢´b±QÆÑU‹[ˆ,@X´™6lUF(6ˆÆ5ɱDÒƒKdŠ+ÐB’o ”©<ñ’‘ TBž¨êÜ‚Ÿìiâën’¥«H©®Ú”úXWøë 8.÷ºÖ´´Üm----?F,WÖ |ýH }9;}ÄQ7MÖó§±Ýí}vívQÍMʪÀ36ê;âÑ&þ …ÊÇά*¹y1vë@JRP¤))!FÄÑ ¹±Ý\ÕÍYÝ¡Š×+¢è»ŠºrŒ6t×ìîµÂÝÃrÝÝØ›Ý×7.îºs»u¸¤»ãì?¾šÔÔe¨(ùh=h^Tt߀N¶€ŽßVí¾pUkl(>ÕZ€B£ì*@*r±’H%)¸U*’5IY@B¾¸ z½M`¯»OÝW©·X[@ºâ°€@””RR‹I.î×,hÒfån`( ”#HQ”.ʆƿº#ƒù¯B ل°Äd²*lŠ{ö aÝ(`û¥dÙÑk÷(Žâ«£ì{tÃðDL€¦î>޳bÑ{_–³ m÷w‘rD¬„” ˆ…É."s+“µwêp=Ü ©T:”±Æ™ C’®ªfëý™úVTq¢œ 2 @ðÞÀV¾àÞî˜ S©#"1“HË!´IA“ƒ2Md#1,b‰1)X„SÙ”™)&“’!"e²ŒiO ®=ÁŒ’‹wu\ÚI­rÜ‚Œ²µnÙ¼ÞN¾o7Âqx Þo“¼ö9ÞDZèzO}í.Â¥¥Õn^²)±…ZiUìdd$X‚"©××±A'mäì+µ²ÙšT(|4¶¨É?dw ;H¡Ù‰êùvH§©[Ù¹•®«­s¶Žã)”i…ÎmÇ7±wJ©!fI Z{·÷ÁñÃ^ðŠuà4*CQ ¹F:‹?ø–€ɱª O»U½åk‚›o_àò|ýZ½ÀÓšP e¹ö  þ|U0Žû®€Wyá¥Rì!ãéÁ7e$"¦ž’¤“OÁ5­½=Uöö×Êø|/[cI5ÈJX[ª(îuÇd†#$lw;H)*æ…H”” £O=“ÞÕ<Ôz´ P‰Ïxy7úÈ7(+æ* Ö‰C°Ù@9šÄë47Þ=¬°5Ÿ]¯‹Àn˜¼^/‹Án¸¼]ÀçÔ4b>ÀôÈÿ×A›€-ˆ¡Ò«Æ'=šÚœÐ‡oý"‰Å`/¡÷žËç¾çØë䆡h¶ù†¢,F–æC_:DƒÒõb†ËÚØŠ(¹…jÁ(6âì€$ÝIJv¬³–yP¬ õ9®_ÇÖ÷>Oþv: ›TS°Ù÷ƒ 2Œ ä!#¤$HÑâvÕRÂëúÔèýúÎïºW6¶ô½³j(‘ªîîLjîd‹îü\ÅQ®×Ûú@j' ®ÙÁtŠ `¢r€¼†î£¤Òj¥@oÜgÙ©µÜT/œ"P|׃ôq\À&tê[µêü *²ÊñµìSiÒ2)%%E "Ë”S»¤6îº!nnmŠé §wUݹΠÎì[×Ó¹×uìýµúÊû?µ½ý­öûh·:‚3hŠ…ˆ ž‚;e«eÆíXÜo ÆãxûÆ7±öønßp×üNßKöuš|®ÏØö=ŽÑw÷¼þß¿Ða½Îߨö­Dw»Ò'be™šâ?vÛ@CxÆ\*E²PÜ“BJJH'75È)±µA*”£!ÇðpY$ —ùê÷¼e¢›ð(ž)œ@8³áD¸¡Ôú:½ÚÜC”õòHJ†LPø®@‡7‘Týù[‚9Êàÿ>x à&?÷ ‚àäKñLk»òxtÒ;EšGvUÊH™õÚ¾ ®E”‰Áíu  Öˆ2’lc2Æ ©ÕÚH„„‚I“"hL†&%)’LÊŠ0…”``ÆH3#kÔm¶5«|#TfŠ61‚64¶æIr%µÍ×*OÿËVÿO6£÷ù}¸fíË ¥ð çvÂŒ $‰•'Ì÷-H‡_2ÿ¿ÌÉÿ=o¯tÞµ­Æë´Eºê|Õнt€÷ô’@Í d¢hºéP.3¢Ú (½ôÌDDnÁZ¥m‘V!"j—Y{ýÕÕ•Öñ˜ººººß~ç zë_œDD艉ó|J€ ¾/?YÉjÿö¡LŽ­FÙV@d$Ãîè×Eý=r»¾¢¡b¨šXA íÀWa‘ÀŸ¿Ò·ý7qêáàKµJP‚H&w[šîêæ7.Ë¡Ý\×4’A…)BHR„„’—TÉõøß¯¶P´D7Ü’‡ó¨î™;ŠóŠq¨‚x¨>ñÖ ½°¯™"›Ä"JþÊ(§e¶Z€ú%¿^©R¡øzçÏâöš?£íð¼?wQþ~b »öu@P¬#Îv¿5BWþ¶Õ|nü÷¢«{TQR¾Qh¤ÒB0ƒ%?¿Ñ…³6d@<°TòÔ#DòÊ”@Ëjo%¡•ö(‰À¬µÌä4/â瘵U ƒ´ñ((å×ñx2ZLKù.8üÎg€Ìß±¸Ün7½cqºýë³ìøNÏ)ŠÚì­ý)†*TÀÛ0®íXW%¹%ôÉD$BPüA_¾ÄWt対Ūé~ _0Æ‹FLŠ-$†HFId£¨Š=Íúˆ¶ép±Ä?ŠdDu¹qz¢Alðˆ@¦ÃeDWœìDsr ت΂û•Òò÷íï»ìTLÏìAuÀB ƒôªz` p_dµs=?J)ìÈ©`«æØÐGšTк¿ÖøÚÛÒ«-¯dÜìm¸@”Õª‰úÐ}!KA^CÒØÔ‹í€úb ooyZ¯Pµ Ï›EÍÝÛ—KŒ[»ªv]ÖÜ(Ü’‘¶è®™5›B\íˆ*åË99G@„»º;»º—ÝÊêñ[|¯íkþ%µú6Éé zAªU½þ5Õ_fêmôQä9¾ÛŽü« 9¾ò£¼ aÔ<éÓJ%eP,D`;>!¬€qÉ=~ˆ¦†×íè‰Ëw_§xL4 !4Ñ¡‚)¤Š&‘ˆ6!¿•éêßÏùm[Æ«j½DSþº "¬¾DÒ*e˜‹?¥ÓÒ¹ïê­¶×®-šJöÝ×;¹¤ƒJP¢4Q öØ{Zê¨èä|” b¦ÊžC"YˆèÐp<0«Ò•Á9^§æ Ê„M]3蚤 R(çGEÝoíd½áHáÎ-ø6š‹ï…¶sù»¾¥ÔœEæîîeè‚/û ¦ít†naAB„ùZªê‘^kkßþû÷1y­m·ÊªÅ’¡(Œ™¶MlojŠS —‘Ý·.n¦ºîírÝÝw(¬¥wwwJŹFl—3$I0’Q’ÅC%pXÜn7ÆnøÜmëwâµ³Qû5ü§q›Û<|ž#eáq™+báËÑBô‘ùÞ@‘#"$$@Çô^€*ñ–ˆ)ƒÌÑW¸åð¾eÊ*m±TÇŠ¡ù:@­HT¨ššÀKtàj¬~x‚¹YRËdõ2×aÞ$ Â@ºØ€|دHD^0ýÈ€{Þî›ÝB¾Ì@:lßé©Þ?¥¿´Ì¼ÿ¶£Ýƒ™€À=àAh¡˜Ýè)u€‡ËíÑÐ(eƒ}@Â~;]šB BDda,‘õ}š"`uTw¸)„ˆ»°9øPˆçJ4ýbÖÓ{tçÿy \ÌE ‹È ' –Þ”×ø ŽßŠÙx\V+ŠÅb·mu„ϪçÇ}ͨ"qHæáø sÒ e.àœgz)¶*•Û éÅ ËšÓŠøè)b£Õy¸ÕÄBE!)# Ñ$Z5c =èŽL$@ü€¼@¶`¸.“ÞÇá…89$’ 2AIclµù‹r¹nZäª9T´ID£LGu×.ró}­­~ö@NÝ¥.¯I ÿÊ¥¨Xîÿ¯zn—ëà­RA‘$‚Z*w¼l£å u-q¾^(#ÏEFýÙ`´ßûæÊ_õv¡lÿJ战̭[8¡‘ÖŠŽQ¢¢o—ÅŽ?ï¼|.ÖÛç½mm·¶ñ݃´nwur¨Û±"ȤŒ‹–¤C ÚP:^€—x‡Q{óµú¬!iöä{ûß`¡ìAlû(ƒƒÔPTüQ2êz¦†2‡[Y†s%d)ùæ¶¿SüÓý¿§ñËoˆ,î¬wnk»»¸tHÉ@Œ¤¥gì÷í/^%nH©ƒäC(ׇF}‘À†·Ò #FŠׯºººÞn¬í¶[««««««ß]¶åzÜN‹´Ù€”ê±;WèÄÿ ›!^V÷Aà/ÑTd$HH¸°À! ¨€6§ÁëÐA7ÿZº ¥ôJÈ;‡Wuí‡Fsâ¢X(ÿ˜ÀDáN·Í Žo©ÒT©Ï«¡T.' ”:tPs(aCé»užÅª&‚Ñõóê5€9¾X¢ ¸%†YJo~í’ÎSX@ò¹²‚<Òf PÝ :"…qNT{¯¡Nþðš¨2 ¢ˆ+•Š•D-p÷¢ƒbEQ¼‹$¶.‘mÓrº×fæ¸FåŽë7 ·wbŽî"ìrï7º‡ƒæw yл„µ2ª'q$ßw@Q+ªð‘WGKy»v_~íü~«¥©[ôºˆ¦Ä³@dF,ŠD 2 ‘:Œ- ½ö×ü V¯^ÛšåDTÂhÄkÆ£UmŠ]Í´m”Éç>Ú„;¥KD QwŠ¢<¬b$„˜R´’bL†‚J4†JÆ2„†f1Ɔ†,LÂ4Äh3 ˆÈ’‘²%ƒE2Da$†#ÂÉ‚F¬Ô’DIH"’)XSØÌ ¯D{»ÂÂ¥ÅÅÅÆâãn¸¸¸¸¾nðÉ]Ø2ª!½?üŸ?nðQ@ìþJ ìDÃmN3ͺó½DSÙhƒ€>tE2 áP@ÝŸÚiš¿Ôk5jæM•¢ë¾íjÖÛöXªcº~fíöW¼Ùu…(”! Q¥)’H4ºÔG7IµÍe£—*åÝ|x*è<üTó C^…Q¬#¥N<·@ÂÝÿ!O㦶ˡÿ=už„µ"oÑEøxKBBÉ€•Ñ?ß}DOŽ"<¤ÝúÇUí dÓh²’±©lVm@Ššû³ÛVûj×Ú[^’¾j†Óó(ø@µ•4`§†ÞTT9Q56 œj€›L$! +vï¤Qó•z»¡òŠk´TÖ~Ý¡Qý"èÔ+ªv§SEÐ!r©áŠlõ•î4†R ƒ"HÆ1"ØÔU£kQÚåµËWý Žø®Xgî§%jDõw@s¨œÚçK¤Š2AÊ~,©îÐÖZÐgn5 áÎô ÿ¿‚€ì¤1D숢 ïd+üð¨¡g 9´„"Y°(Pk¨Šª¿/:hüðW¹²(Ø@( ï'x+„/(ADB¢`€4 ˆ5È(x½óÎÙÖäEQ±"¨­ä‚%‰íäÐ5ÂЂ†ërÞÉëÔ(¡jøþj#è÷÷w-ÃØ›f"œ4uÉæBá4œí?8¶y\å²m0;'‡Ç, €CÔ/Òƒ …&Þ{E@m;¬áQ!à^h û½E@q Ýz(ôðS¼ ¡~³ÝŠ•0ùªB@t±@_ô@õÈùuòÄ €%ôþåAPÜndþ~àÁál{Øæøcé+ˆ¢lH¢]ˆ‚bÈ»½A0dPëïûÙP"†€*âþ`ª‘BàÀ`}¬µqUß½Qmµ_×–­Qkmé+&ѵUc²ØÖ­¹£U¶ùôB«ÃÆDEpr@S'AAo‘ µ¬l}5çîñÞ¹«Z#ZµëØÛZ¾=¢¶«^¢5Z¾ÆþWm}:Ú+kp¯Vm92" QëKÍ$Jñ$d­)kpå " ‰FĈ¨@$U ¡j´s›–ªóy)¤*­¶ù5mîþÕmZö~m¡E¨°~íe€á·œ—šÍf°ù­Ã5šÍf¯<ýÖŸ±Ùú.?g³zȈ÷·TTt‚?¾0uà|Ø Ö U¾ˆf*R–£óïôõÔüÄ@ÂÅ^¢ ‘DB¼‚ÅCýEL4Dt°ݱ´D¿Ä/³ýÏÓzµ_âJ’‘QPÅX©D-窯­Û_óš² HÚ¾ÚÑFž8 )X\tþqE×#ÇDüÁuò5ùÕ£mTbQ#A„Q´V(6ʼnD¦åñçy¾ÊÁIýÁ$$€0C`QYEú  ``.î"„ÃoÔ@.p?Ô-PWëÄ jD>º(I=$ Ü1õig ”¥) ¥wk¥ˆ®LšŠçuP]×Wusrs®î()Ý\¦b!J&NÙ;º5vï+[üäò!£‚>4,¢©nߨ¨`ßî ñ‚T?kÿhˆX¹µï®ÕÄCሼ҇4 Ûîy”‘¡䊄|pMT"!é”qÄâq;ùâvÝæý‰ÄâuЈ!9Ñ_R€¹}z"oƒøè ÿá¹¢ŽÎ@ѤEÑ„÷¾Kì>.µ~jBÕxꌙª&ÑzˆP’ƒ¾âY‚ii¨'Jw¨ 5*™lMw}Ø¢‡=‰(ªÞ" ™ÓÐE,¾îÏ[—Ú,¿Ü+•CĈÅ4 ¡¬*¢Ø m1ëŠ\A ÞJ‚88"o‚*q`Ÿ~ YêAŠƒð¢Åú§_ÐémÆ5[Bú)o˜‹íH ÷Dl pâ‘WJ ‡@Œ$Â(2€H³6 RôEˆ=º¿ËP‡ž ph0Dõ )±@ˆ½§¼!E *åà¡Ç"20š¨u6?Nwýjz¼}’¢|Qx_†‚Ö"yà.š\ Ôˆý~]V ®çݱ.R) ’“&M˜6Ÿ!Ó»w%€\iÀdD©SäÛ`à!›ŠÂŽ-@èAñdq WAìâ¥h¯QCssss¿\î×77<^Ësø6~ÓqÙ/ÞÎÓùz½ãËv\Ïe´ü—p©±@í³÷Ó£ê,Ï7‘¼mJ芼Dî ®ï«é¾Ã÷~-zvÖù]b›21ª$”†¯ZÕ½D**ùª·ñ-U¯ßú w8¼Æ*‚‡i€ÐQl࿽@_š°.]Z´j>þ?†°TË£2È@ ²Š d2€PCŽ`޾SA{Dr‰¼Ô¯ôŠÈ!Þ(ùÊ|HI–T¬©A"&‚ysÅP†Ÿl-Úœåu ™¶­ël Ý«—\ì2X°væÅ’ƒ­næñmW×6ö"Ÿ\TÌ¢ªv ¨Q[XqÔAúb¯q}ûlýe§í:± 0MV EsPC’êÕ(Ù CÍׄ"’, ÷Ô¨`SžŠ®"¿EyH£u±Ò(¬@²{ZÚ‰±QdÔ"¨²$ÔV†¶hWZ¾Omµ½ÖQRëR§nÂ\­8ý‚ÒÒÒÒÓ‚·«œ‚¡†€íW`(êÁVÕûè‹á¢w+åB"q¬» ‚<¿ìêÞ‚Õ\<z( ªËÐí…xVŠð¸§ØUÉ‘vÔ¨bhÑAxPÖÝED¨ý‚Cj¶Þd‚pÏÄ;~B«[Ñi­UéµA{nª4eݸչRÆÜÕÒ¹w —uŒl`nr3s.î“uÝ]7}Ý­ýï6Õð}Õ5Xˆ}Ê1@ÓD_áêÐtˆÕ´$DsÑd‰@ȈX¹DC|€?Û²Öekªêâúb©X@Ñ Á€ T+öÀC”Š¡Ùghu÷6:²…¨Bã$VMY´•6ÞÝÖ75‹ñ•qZBü¬ƒç·ªÈ ‚×Þ 9ˆŠýð^*çûêEMLÕy™Ï;]ò_#ÆQ²W±ï¨ªñ±CðE É·dvlfc˜ÌnWŒÇÜÌf/}w[Ïõšž†ÁÙŠ/³jŠ'Š€I q µ–›Z¾§ò¿›ò›Zøâ‹(Ù J‘)$„R@$Jè')o°W)¤Pµ ”yoÑ€ñÍaþqò ñÕ*ÊEGF ª¬©Ÿ‚(¦€†è!à¢u ‡çWU·@:J †AVˆz€¹Ñ$\P…B9ÕÑJ"ñ@Ò‡õY̨fÁ Æ©ì¥o{ÆXòœÇSÎ+Ø%ŠL@H§d¯QYDî„3!A¬:‡…#› À¦ ¹˜ ô`šEÐB$Œ’h ÍŠƒ]=XÙ.07Ø¢½¼h±»ÅRI‘ƒdl[CX¯ww0ÝLîì\Û\íÍ…ÍÈ´Q¢„QS·\·tò­þ³m{f´x*Ô(!ý #¢Šõq üÄD ,tð6ï «Öÿàå  :!ÀÀÛ(*5…C_G^B ½Aéà*aˆ©›‘‘M@5páø=mÿ·¾Ÿ÷^Þ¾¬Ú’DcÎ)Ä@÷NÇ?DU¯KX('a|xöÑäQàÄðàŒ‘u€‚é+ªŽ'£Ñèôz=G¹`ðº;ÈŠ–—új;?w%`­æè)¥‚!§Š(_b®XPX(œ”AKÒ<¨P QÁ€ T"†ß³RE‘I $ £¡P«‚‚-Ò(üàX ä‹ ® $}´ÝtV·Å?l¾À_ÃXø2ÕÔPÕÀéEîqê‰ÉÖQZ `ÅÙ‚¤ÌrÔP2ðïô ªÀBUPˆeqÔThPФAü46†“]¨ø¯í¶øÆÑh‘­ŠX¶¬Œ}n‚Éì¯þ $^ÙU^ú ¥q\Ø‘T8Å"ÂÄ40UÝ’³ÈÖèš á ¯6UÂ(!yT×*h‹GUùp÷©¢°{𺠈‹ÅD\UO ùÀ.X ‚H’C“ŒŒ:åk½Û`~ó"#·¸ž~®m]shÝÖ¹Z.nlš9ŽWw\®]Û—"]Ý:ê"®.ܸ:u1¦c¨Q$¥% Q„°€db"mÖÖÖÖÖ×»kkl¶ Û¿òxã•¿dþïËyùî'rí2Ü]¨+¿Å–€ ˆ†Ð‚!žUµ¨‰R [` <„CC|üù.^¸/úðh€@ÉëAt¦¶ŠÈÒC§®+Ç„AÍ@퀃¸APúb›¾šŠ»ÀL¦OoÿàFBHI­P,ß2¯E­þ€}h …Ú ´Q>ˆ¢rÐPL8ØXˆ9ô€c ¨nP~¸.ó΄FIn VV@NÞó”ù/•ÕN¢&n(¬.'{J”{x£H-Oñ»Zû¯³Ø´4‹ªúÝ[f ZðT&¢Š%Ô`âÜK„ˆ64,k ’£J‚˜è¡H*"|°¤P9x =ÑU<È‚ÈGÈ„jk¨Kd0t¢dwBˆE<Ä\І&¡Sqü8ß'xñó¢™0ÛŒµ¢çP Ú­­À ô”¨˜«”E¢%œ¶ùà ãÄkŸ‰G¡@ 9Œ@É"TŽA_À[ •îUqêPƒ»ã±Øìv;Ãã±íêܦ»æ(e¤v]-΢e„¢–0O(&”-ZˆùœqE·!`V@3›:e¨VASI™×ð„„‘ˆÉ @ƒ ƒed<* Òg̶¨o£kìb-Ë–êÜÑe_Eµ„®/þ²¢…§@ú W«A×)÷â­ íJ"’+×Ò‚»óp’Å€|@S―A¼‘›ED«æ-f®j¯üënU|ú¶åª,úÐD °®W§X2µÅ,l´P¹Ë|%µí•z;¹ÕwvÜéîíÛ¢9Ë–ŠîÜn]Žî4‹ê|öô–±mqk•~嫚«ü®íWöš×5c,€û±MdSùÂ5ꘊRy‹ùâÕé8Þk!ðWÆïEJA ´‘AIg‰Dy1S|Pˆ”¼ˆŠ—DZ¢Ê”\ )ÀÄ=ˆ%XJÕïûz£iÿÐ}WÂ_ÝDT¤æÜººîæå&ˆ£c[*&Ï{émë–±¯pÝ1ñi` ¦Q5Ad@oUQyêPlììöÛ;=~Ïi³³³³³·v™¾³ì²¸;­’%Î åÒº&ÇàíV7ïÁ () ßÄ+Š÷¸ˆ–¿ÛE A-<*%PG‹H!öR‹s‰H®¶”‡ƒH.Ì  ­-‚‹M®hÜ£as¦ qNê5»v¡ÚárçX¶Ž:*båÙ&š®Šñ_Äóu± mß·ëT‚[Diûp¤Oå¤@IÝ?[Pѵ×[‘š|åj­å¼Í¿mªˆñÂ÷;ïÇ] €ØÑ9”ˆR3)™£¦€U‘5ö «ã¨ fJ€V‹ÍáÀêQS¾€#\±$ @$_:!VíèZÅ´j‚£cÞ5t‹RXµ'ÛõÖ,b…öýÉ0RK2Fþzå&Ø£c[Ù­W5bhÞ¦š®-±mµ2ÔB·ºWJu;©+‘;¶;®LÛš¹—N]\eÇuË³Ž¢u@„j\ Ž- n”¢2i¢Ò.¯¾P6ô¸Åˆ6Ù$n  Ø Ž¼Q @1zÁEĉPV‰×(F‘=;D[@Vëh=zôGU£^P+CÊÏ{Ç;ôu"‘¨ËP»uñj^„ZŠñÆ!¥£T?ŠŠ*n QJº´¢žJ!Í4 Ð4ÑiçQJA$Cƒ¥‘p?% ÞæÖ­^å«[–Õ½my-«˜lm35°MEŒ ¢%@ãP6pRFI;Q •¸¸¸¸Å\\ZÜ\n÷«Ð&2ª ‚`¥åà‰û§KUûâR dCÍAæPU ’´]³WË…®?6Ë×X¬² !6ê&R5@=˜”‚Ì?`†®$Œ‘vÑÁ¨Ö:'›èí‹|EüïÀýÏä|‡Ÿá½u¯h²K¹É0nvW6ŠÑ»j(“F`Ñ$»ÔÿCÍ·/½û¼+íÚ¹~ŠÍ»å»naðÖ©9È6ÇJ’¾1õV¤¾B´Yϧ!PŽÎÐi}êö"=iÒ‚_ª¢‡çS<€È)! ¨5¼ âÒ)w¥Ûzi $P´©­3¨›¥«ÐØ#›¬=p!^‚gÅ: UÉD€þê½lH.š¿À›XG›T$$€È‘BŒ‰$"wà6•“ÖÕ nµó4à& @/÷FºXÕ¬þªÖ·v!@ö‘ñ“¯Yò5€  ñ[š%ÂŽ±²×ˆ)#è‘i’- 2|Âß”t™Ýˆˆ?o#þuÿKjpP¼Eû£’€R! 2 ý£HÙ@å7{›ž瑹¹¹¹¹ä¯Øaæy»Öɰý>o°æós¼Ôþ‹P¼G%¤Yz'â§(5 3TÛ#kÊ#Ó€[ÐjŠù‹³ÇÝ÷Q¤iB¤¡ LXäîhÚã—4WwB¤’JY= Žq£vˆõ¼ªÔMÚ`­j!ßÄ:ÔTG«‹HR'_@Jº±(…Â:ΰJ5âô°ë#·" §„BA‘^À@픬4PJü:0 £¥âÒˆ2V jÀ)JE=nÛ[‡é|ËxK* "¤ˆ2!Ÿ‹®B¨‰ˆA9eT%PBE'åBá*ŽÕ¤P$¸ŽÀ­ðJIR• èâR>Œ>uMÓIø`‚Vb#¼V}(48X"¢’ª`Dh» ÔT–Ê4R z©îÈ-¨wøúb[¢£HH†åþ3¾#›ÿÁ Y-œL ¦<ˆU꫎-PËDuU€‰D­ÞHˆyj¢Áß`U$…T2!“ A¤BtJQ@ÜäQŒ‹Oä(WµˆXè(=Çgø¼›4ßÙ±j÷lH½ wWBž:æñxñØÆã±Îäî"gq¶å\ÕrÖæÑµáËœÑnj½*ø-½wÍu\Ú,Wö¹_ÞzµkU·¹j@,çʨvê;ê*+PWªŽBU2 úÙÈd2 †C!ÈoVô¸EÄûÞGôcþ˲$ öÖ¨$IÍ–P³ œÄXŒ.AÌDÁdÅc_Þo¼xX¾Ùøþ:óÖ¯r4TXÂÆ‡É˺ ã“»%®×9UÍʸ9È­tîΤ¥)I) ’´IâQ>9¼Ö ÉƒAÁ*»55£''Jsñ§±F’FG£œ•ïÜßl> -Q°ñD!"HCA‚P9+|€´Øyà)›@¿¦ÊÃ@Crª¯S™@(U4ˆ¾ê ‹A+Vû(Õ9HÕ  \e_@/áC™Åi¢YŒPCkE’H2Ï"s (oºÿ“w…­o1küˈÛpræ³F¢¸—väepÔÒ!H­@’x»íŽ^•xh„¨Åïa^¯¬Ë‡é{¯Óë¼¼nDÿ_ûŸƒú]Rˆµè˜ùˆª2”:Ýó˜´î¿=× lµ’~Êiê)8ßJª‚I=JS¾¾}"¢ÔV’IÕS|­rPl÷d$ˆR”¤"H)%…óþS]³³³¿ÙÙÙÙßîœ-žýg°c9k´æ·«­ÐÈÌ·ÃM|iA‘‘’¨*-ú™LDþÐæ6ºqòãcM8¦œ„Q¨¿Êþõ MÒ”6ì 6ì7MÏ]¿ãu¼Š)ÓV¢¨šðCHH'•#!R¢Ö¸n·®KÙ¦®øOç±S)-zºULè ;}zÚ t¨^UEK òTü¥Çħ ìÕË<¥ F µíd×6zª-÷æ={ųo‡šÁ6DëKºë¹¥Š4&I¸W´ôï²~#ózÑ®BH² øµA­‡îžÄ¸ÍÿÞÔüöü7[þ(£ÿ£ßÜþ÷ñáÿéý®ÿÜüo?öÿ¿íSËÙû öˆB„!B„!B„!B„!`Æ¿N&_­Ö¬ë €~^³ÜõDDDDDDDDDDDD¦EÊeÛBúª—̱|y—á{÷+ܯr½Ê÷+ܯr½Ê÷+ܯr½Ê÷+ܯr½Ê÷+ܯr½Ê÷+ܯr½Ê÷½ï{Þ÷½ï{Þ÷½ï{Þ÷½ï{Þ÷½ï{Þ÷½ï{Þ÷½ï{Þ÷½ï{Þ÷½ï{Þ÷½ï{ßéä7ú½-¿Òùþ¯‹lö}RÌãBùÙìûE^W—K î¦×Z=mùm¯ý^z­nk‚4¿Ìë¶Åræ×FÔwnî²h£Xº,š,Ta¢¯K÷_A÷Ÿñy{ß¡ÿjÙË*#[ËÕúÕn]nZ®³^åÐêž( :¼mgbX°·Îuø½×½îo±îP0ßæ¹Db0+òœ@lŒ‚l4Á_”ä¢eX‰ 2iF Ê,)™‚¦cS@¢‰)’RB”F0dÄbÀmªžµÊæ©ÕÊ(ÕH»»báÝŽn2u¤çKkq% Ȱ A ¦Û¡ÍÛ·Xõx5d!)Í€‹Ð _ùD×QÙ¢â»5‹´DÝ{@[à%§h§ ÚS¹ì}#mñ²ý¯UØuëø¡¾nƒˆæ•}\äˆ^ÚÀ¨w]M¯«¯ðU¹]w[ÔM[Uü ªeš+ݵ'-Ød‘ )) !'È©ü>$¸¢–šBï–ãô:‡7¡Ðèt>¥·á¾ð¸3 ÀÖôÁ[Ò'2u ¨Ý—ðYÛq`÷ÂiR¾ësà äZ¡~QUÆÝ+gñnÎ ìo{¯G¸ÚàéBHH ŒåÂwn\¹r‘G8sGs¸”¡)HJ…) Q¥)C‡&¢ï•Ú¸å]i"Ê¢5íæóÕVæ1»Ækâïî{ÛûßÏ©·^öµrÂ(ﺺûf¯±«]»6h†@Éø¹4O*EB#™D@´Øs¿Ö­„Íñž’ h‘ýuúÌ&󄨰˜L' „Âa0˜L&½°vþåúó\¶ùš.×™‡Ö £Pá“ÄÑȦDêl´!“»ENÈH“0ÚÁM"•³´AíA¿A"+ª¯™ÉsDˆy0:ÍÇüm %ÈI„ˆÈïZ4nkš—.Zë§OìÚ¾çYʨè ²7p] R*Ô*è4"†õ$ƒWbm`˜Mð¸ί )ûD.[·¿Ä‹Î•x`: NyèE?0P36æŒlt>ßôê0w<×yšÌÿüÏùýo䯲ÕWòHÖI¬e´o¿CE$7@@8Zü$:¹¬ÝèlˆŽïJI$$4W1ÝŠå]™Iµ13BF)JJRVñ5[ F€‹}I>…@æá>êò4Û…›‘_M¥šÄPO–Ó†^ìü;…+žtð·:a¯êÄwD+ßÙ×xþÝçöª×'.–‹¦†—uF¹uÁŠŠ&d9­qÜLbäAÉÝrº %)D’ JQ Yhí_Îcçñöée7%À¢8Õ¬‹" âˆÿù@­tÔ홎G#oÈär9Ý´dr9UW^5GµÜr[‡¾ùúOÏà¶Öبୱ‘$BDŒUþ/uBlQh£hÔYÝk†ÔhÖ£Z¹Ð¬kF¶,Z[lUb±I0¢4bÔkRE‹"5%i"Ã4lh’¹r “Q$ÀZ-hÛI„rírãXÛŽí¬X®U¹kEbÆ®nQŠŽQ£[stŒQFŸY× *:îwYnv‘sG;«›3'+²£T‘ÝÔËhÛÎh±[ŒVfÕ‹˜¶ŠÜ·5b®›–îíéi-Í\Ðwt”t¹×IüšÛm·ñlkCiêPé¯v{ÎCŒÀSm³@XH¬Ý)%(W,C»s]¯ÿÔêß~åªo÷€I¥°Š¢òùžh<Šñzªa€6®öð<®Üˆ¡cÒe e” “¾utƒ$6,Ó’ô8-ù½&¯7aÎ$È&dE¾€Ã=‘„ìT¯Gµñx¬ælï ,,¿K‘«g=*аY8¹çˆ=€²$Q„OE«÷hq¿ãùßGµéóŸËàÛM®>‡j«²€ì’=p€•þƒ‘¨ß^ï{¶ÛVô|R5*Bˆ-¸ç9Îh,ŽîÎX•Ä]ºwWéws®îîâŸUð?Mñ¿/ôÿç}>õµæ·,Ök-²f¹í'­°ã{M¸f6 ¯sÜï|– Èþ0L¯Ҩ©ìï6MÔÛj/šq‰â(^‚FD’)#BRc»£\´ðü ·TšÞnÝ=O U‹ÿWky"2F1ÑmŒLQT4"Úùˆá€À‘T«ÕÐSÙ²¼µz“•ÂS÷ §š#æÁ’H{`‹oŠ­…¹ëº__~ÀÞ1Õ¨oþ†–®pû²iA ´‚¬#\À@$dI"lð$JQ×FƒS¶wnæ·Š¢’4%jotÜ~o®äsÕ"_.禊’@IB øhC„A´Æ"ôüJ*› ­U¯µ"ÁMb WFÇö œÚxßæÇˆ!r7ÅD<åw5ï@l<ÔL˞ъuŠÀNU¥ößU¾)•Å[ÛÛÛàw¬µïËaÿ7^©ö;;÷xºœ.çGíĤ®í®k»]wPÜÔÙ1¨™E$±iÒôüÒ¦,ôï$þË×—®–†¤'Q©PÔª×õþ½P‚TèÐû@€h€tÝ_‰ù|ùNß¡½{• ëØáy/§[^+z^á*äæá“øªÍ"¹.∡¼VðušîÈXI@’2Iƒ¨¯Ì¹ÅÉ\«s¸´bTLsV-¸\æ2b„IwuúuÂI`a~jk%ÅWÏSŽ¥ Ó*£áôÖ©èO>yR° •"uÞB$Ÿ: áv‹‘öêáÄBõÿ¼þŸôÿ9êÞÎX‚gÅ\åÒ˜œ(6Á#†Æºn®îÛqƒiuàS|*H!EK__ˆKç„TД444((hhhWPП¡¡E®k[NîX!pD©Þú~ÇÛ’©1wñ]H‹µAöVüüG¯Z¹2³{µæà,A€H—HŠV÷¬P* ÌV%(R‘ÜåÝ] §]Ê·U]«ˆ­†Tôfü·Šáˆ’HEìГ(/)cŒÞ)k4óžKdèê!j‰ÿ÷Oê|Ý–Éck$Œ„L,LI#&Å)’Òi$ÉA¢lˆÂ˜Áf,Bb1&™ dÀ–,X$€”ÁHlh&’cHÁ3¢e€LJ1FD Œ˜°ÉblX2)“c)B)¦Ji4"˜ja‚C(°#E¥?>¿ÆçßwOû?ïx¯ j6ÚÒ5M/mÝA‰¢‹»´k»ºqÛ¹×wN›J· 1àÖßþ( ’*ŒxÑŸ™¡á$‘^à$0íºê¾à!² Ø€sb÷|-ÝÖÐTJê)¿:g»ë€s[M÷üð~ãùÿÖÛ£Ä[ršQGHüê)»ûüMzØ¾× )áÄ$"²¢Ž"ÁH¬Œ‚¤ˆ@Z6Ðj™[FB´EQ¬5;·4¢Q "0†²j4Z31Y5Qª4I’¤¤ÕE[šºüÍT$´ „„dDÍû–ø+¾ÞÞÞÞߌÛíííø]úþ?%_ï_äÅ1ç…"pèˆá>­·ÙÎzØ¢!uVE"¾HÒ‰lPKþ«(zX/žM­šå¤XÕ…26Jø¯Åý¿òi3 ±7Ñ@h{<ž¯#rUçø¿ƒúkù^Íã'€Ùà*žÜ(F‚¬ˆˆ·ÛçÁÒ€Üd;µ‚ŠÐ+×Üp("} 3ľíŸH‡óT>‘ÖpO?U´ø!´À’DÈ SIZlQh$i3ç鈒 "At¨pº“S½r¨>£ @ ÈÒm@‚Ÿ~£Þç^uø'ŽÅˆƒ‡Ø7 ,È™™”³)æbÈLÒsshLEólseXÔGìÆafÕ‚ â_ +Ïø»˜Ÿ _œ>® %4\à®} ¡¼Šä-¶Y”J¬Êey\R`Ì·Åý›è­½I‰#"`âBmÝÓ—wæ‰rîë•ÍÓshÂ:®îìÇ;3wW\‰ë®wiwëëøåßøÿÛ~Oè«ö¢PIÅ-òs¨ zúç¤ù`tÚï¿Ù[›ú?ÏS¥Mòþk)˜Ï×ÛóýßҬˋ©1òLÿçö„°òX[TÜHs©æ³¾;nðþß&ô—ãËïx*³t¦}›¿gN–ûÝðº®ÿý›QÕý@}~ßËûú™@}^ÿVçòÓ¼ÚÙÍìþ¸ý¾Î_ýo§ÁëÛÓ‡ø}~oÿ~à3¾î.¨ð?ìú{àm¾Î§{¬§äåóüßh›_ïü|ú€j{ºŸ‹{P N»û÷õÔü½oþþú€~ÓîÿN çéü¾ðàÿŸ£ãÏÕõþ O›÷òÿO  Oíþ>ÏǨ§Éÿ¯ïÔSõOÙúõÔüŸgûþ]@9¹¹¹¹µææææÈÜÜÜÀ9ûþŸ§éú@Ôÿß«êú¾ 5>¯«êúµÔú~Ÿ§éÔS››››P Nnnnm@9¹¹¹¹µææææÈÜÜÜÀ9›››˜?óôý?OÒŸ§éú~— 9æææærž^^^W 9åååår////+9yyy@Ó———” 09yyy@Óúù¹¹¹€sÍÍÍÌä<¼¼¼®@sÉÉÉÈä<œœœŽ@ääääär''' `rrrr¦''' _///(yyyyy@sËËËÊä<œœœŽ@sÉÉÉÈä<œœœŽ@ääääLNNN@4ÀääääOúròòò€ç————”<¼¼¼®@sÉÉÉÈä<œœœŽ@sÉÉÉÈäNNNNG rrrräNNN@ÿŽ^^^P5?¯7770œÜÜÜÚ€jròòòê©ËËË˨§///. ¼¼¼¼º€ròòêäNNG 9èú>‡ 9áðøi¦Íó|Ú@iï~ñ{ýú hûýþÿ~ˆ>ÿ¿ß¢¿ßï÷ûô@÷ûýú hî÷{´Ðäù>M=¾ßnƒÏg³AÇÇ£=ëõÏhOhz½^©í íW«Õ=Ÿ=êõz½SÙÓÞ¯W«Õ=›=êõz³\f¸ôú}9®3\z=ŒçÎ<Þo6sŒçO#Œ×¾?ÆsŒïÆã9ÆwÇãqœã;Çãñ¸Î;ÇãÎ8 ï‹4 Ð<>h wûýüÐ3@î÷{¹ fÇÆh¼||`f›·ÇÆh¼||`f›ÇÇšhœ\Y€fÅÅŘ`\\Y€fÅÅŘ`\@e—òññ˜g€fqññ˜g`€fqqf˜`€qqqf˜`€qq–_ÇÅÄ`œ\\@f™ÅÅÄ`œ\Y€f™Ûíæ˜gkµ˜`®×k0 À;]®Ö`€v»@e–k´X`vr€Ê+±ØÊ( ®¿_(  2ºÝl 2€ÊááÊ( 2€áááÊ(2@ɇ„ 2@áÉ$ ž¯W(  2ºL 2€Êéôò€Ê+ƒƒ(  88É$2ȃ€ p1Ààà p88ǃƒ €2:],€2ÈèôrÈ# €27ÀÇ }ð1ÀÇ| p1Àßß p7ñÀÇ ìp1ÀÇÝÝÇ ~? p1÷71ÀÇss p1÷Ç ÍÀ1ÀÇsp p1ÀÜÇ p9ØàcŽÞ8àcííãŽ>ÞÞ8àcíŒ0Û`bŠÞØ b·Š( mbŠ(8 bŠÆ( b¯Š(ºúø b‹® ïIîñ'Ä lDˆT %á ]¥·êÖ¾z¿–gåÞ{^¿ëüˆºPRÉ$”Püö\­ç…º¢ëÑ$bˆy`> X‰ŽDÛ<õORè€ócao¾mÊêåsw] ·-Љ@8ž=G?é½òj}ÔCsŠÔ¢‚`.ˆ¾`§ŠH‹Èð३(Èß©OAB¥L‡–‰Þ*`9?k"q^/µWòÏ"tÿ·=R/,I"„$H²"kŒ øJ(\wzÛNóÆap꽨½ÞÓ|×_£¡ºí…Š®½I4^ïøœÖ(òl>Õ>PdF~4…Bª_ù±¹åÐ{zOs°Ä\ð|G³¸Zþýý7 ?mÏo:½¿ÚÙ¸OKeþ¶¨‡Ž¯j! 2ãÄAÄEAÎt¿EH8Ÿ±¤„X5“šâ]Û³gW`ç]$iJP…)àrÜ¥ pߤQ##Œýý¶·I·™È¨$!$$_, ™Ð¨kÈߨ>þ7A IÍD°\ð¨'‡"$Š—Ð|:t<”:DCvváÖm¡µšm†HsºÔWû íHyI>qAJÎAÈpwz¾N¯mUd‘dBB„!#"HeŠôÚåÛ£c3œX·n9q¹pØ’å¸Ûôw徇òÝøïGÑþ7­m•îE‚tÒЍ ~cÉo=g¿Àñü‡üöºÞrÏ…Lw=Áˆ/! Õ!ïu~mKvŠ7¨"ŒŠ’F@¤ÑF¬·Äwj¸S&æç"œ· ÝFåËZ"´„›ÇøÈæ·ë¾×Åæ³\ktÍaóY®÷ìnÅ$µFHzÊ"^1W^2°¥ðʤBF33*{{œ)wk˜ºèFÜ®MJ2râ¢'v’åwwDîÐÆ`†®ç:îvìisŽîk‚Ðß|!âƒó»(6×UûtÚO3„ÁܲþŠ$‘F$„œêˆžÍ»ˆÄb1ŒFù¼â8­“ˆÄ,&îhõ›FNê‚ìëX›E1¦ÑbÛ~‡mmD ŠícÕ¢ªïØoÍƒŽ Æ1L©~ä<ìb'Àv€šx±èù xz qJ†Òª§6 Ò*Yå|aLÒ¼ÚØ$î´¢¯ôoA«aÚNÛƒ˜$Mr"èà€%Ų9(a½ß¤Cú d@6ˆ·é}(Z&L‘WÐPɨjÕ7ä"+žUç€rX¬V+¶b±X­ÇŠÃâ±[÷ÒŸDæÕíp=Ÿ)Ùs|ÇÑÿ̾ö)…Ý@ÐH VCM¦D’À’Ú(‰žTè—yÅ„WŸ>®˜C ]WõPñ„5å`37$e­xEL²$R˜§X!ĹìŠZùÓ Î¦@ô²ÈI@Ô3ŸPÉ{À­îÿvÍïü›¶;à÷*Ã*rÕ>Táu7ÞGd÷w»õ ÙI@Œ€H$ƒ K2…úÏæ ü&¨[o¾’ÖEsžúÖûùÍÇÃÞŒ‹"ÏMp oQ[œØø9]Ž]ÇD€s "»Æ i ïîð6 $ ÜÙ\ÕÝÔ"†h«›E,ºè´Жî»qW7-Ȇî8wr*(¿Zú¯‘«í¡µkßmÄGîûT@€M4D`P^£ü«Û¢{w[ÅÖýuuuuu³]]]]] Þ¿Ïø»lfgeî>Ý?ÜÜ|ä^S’–ž åp|6ÍÉñÿ‹áæü«a}‚’‘ ‘„ˆîð»}„ôPzÅ‘$f.m\ªŠ¹²-Ë—oïV¶ýŸõ?S‰ø9¤7ü øÂ"À ‘ƒ(‚HæPUµ5w£ð¦‰ÓáÓdÊ'-·¿ ~ ¿m[õ^ûÙ~“üÎóIQbÉ“%‚ʼn1¤JR–K& hFÄØ„‰¦‰JFC& (‘@’L1 ¥) JLdØÆ4F$• mâÔEs«•rƹÝÓmsh&"è¯ÎûoÐÿ[ð½?”­{³Ä…tJ"ý8‘¸)í|: ^­@Ít¿ãèìý]ó½ã5@¥GlêÐ3B}]H¾Þ$×D„Š„‘7Ð6 ~ÝÎÆ¾–mÚž&ɼÂFŠÈÆÑŠ‘“F£Sžó«‘HQ¥ BF]Îå‹ÅîX¼^/‹Åþ¬^/Í{Þö{Þän½Ï½Ò_q[guÝq&?H£êEI °„A»À>…ó3úû­ÊãÕØŽZ$KØŽ_·à0:Î%E¦ÓERk÷uµµûÏÃü·¯J˜fĉ’‘k"5*Ë3XÊ*`¼‰$Ççßô¥˜ìo߆t:¨ 2:DD?æÕ¼fÿvË®ï>þkËá.·~ÂÔQ0GÌP¤JÑM˜QŒÅ÷b™ô^>‰žTçó·“Qãç¶\ø!oV‘›|‹nc¬ÍÝ×w7k»¶Ý‚5\ÝnhZ»g~ÓÍk_ql숼ŸðQ¿ fÐ<SÑ_F BD{ÿ!P?ÖpÑÐ h8Üò¶_†ë©ý;8Š \„<©z¶0©ê:Ÿ·Îð\vw;Âgxîw;ݳ»¾Í¸úc~YXÄŠ‹0Œ¤'ïwõµi9Ä rB ›¯Pj1 ™Æ€ôúxÊòj c‚0/¿†0œT†ˆSJ¨DyБîq!uã9¯íéëŽÕ°/ƒÜ¿÷ÝÎgîÜB­œ?%N+¶Çfxl"å Ê !BB!JQ¡J[ŽšåˆÅtè›—8¸ë‡ ¹ÝÜà˜íÝ®¿aõ_ü¾Ö[Iû©<(‰ëÿλøò¹þ‹—èEz±f„(‚¦ÁÊð»èï›Ó´cNÂÔ \”#“Á*7¢@Ç‚ ~Í/Óëÿ ¾í²YÙÙÙÙÙÙÙÙö›GgÙv]g/ºvWÀÐDHþñ=Û.‡íðül·%kä-rë³O@âÈqI'(§µÑgÞjæê¼ìß*·6çb«­vتë¢I7ÿníÎþëÅŸ›‘b²$„ ÈGíPAÿ;¹ Hl“ÛõÈÔm%3œ±Ín(ܹ‘‰ƒ[)¶(PHÄTQ[¥ I(DD•ráI`b˜"Q°lIqÛˆÒP& ŒFLxmr¦È5\Ý—wb®S®µÈæ×HäÝqwqs®âníq]Û  W7D¢A&™ŒÈ“E„’ˆ#ibE0å\ÄÒ†bDL”¢c”£EQ‘ QIšŠ-ƒFÛF¹®j±­k¶ÑR"Ñf´h©`1‚Ä·.wuÅ’nk¥ȞߟÏ-©ÂªqHîò<‚äO-G‹wôýK~“§Ü7ŸÙéî¹ïÈPò"2Ðqö¸.’¿£}Û9èDHz¨©ðå8*Õœ²ªž¾eCáÌŠx{J¦—°à:%¡Ì+ˆ<`CbË­ânœfÈí˜Ìf3Œâ1˜Ïçþžçü·îÜë÷N_|ïq]®ŸiÏÅëþÑ2Јµ‘áÐN€o]ájÍô½ï£mó’2(Ö…ïfÛœš rÊ"4F˜Û˜®¶¸M™ÍË¢eÈç9\9ÝÓ·:åÄ®ãww~{_Mûo·þ—Ã[m_;HTH¦|d‘•€%•¯Y’Øöïüê3ŸGÅy§«°A\P.x@£ü¡A 8õ;„Cå´ð…7UT6ä@C#œUÁ|ªˆ.ꎭ@Ø€kU=$N|GhPâ¼Q'ÞEé„<©$@´Ïå}Ì0€îpB@’2±‰X‰­š¿Zõö«kã4ª¶õdØ@ÖZcü~'ˇ{’.š!uQ«WÓénxlï'¯ÄC“GÓ–Šƒ•è¶DV¨Â kÙ,ÅWé\ç-Ú ‘BRYoEã‘ÝŰ î žöƒA¹è4 ^õ Ðh4Ý›­ßoœÇéÅíÿ÷óêyËŸ 'ˆ¨©ô¨ú`ø’FV<]÷af‚ŽÛ„c!#’Y©5¢fhÑ4f{„¥ @¹¼a!{j¨?ÕAÕd;/ˆøo]ò¡ß`»@ ßÑ_ùÀûtøð½iþ}×^€m"Ì(R1’0Îާmû_Òû/g[^r¤¤¯oÄîŒë–4w+•ÊÅwjå§r Í-ÝܦºU¹É»»&¢,Ë—`$Î\ÓŽC‰öî)ÓcG¤4¨ j” µ@¿eìÄ uSêâU7\¶Bómõø?K¥®/hÚ8¦Ü–ÖïÁ}|ñ~$òQD®ï^î›ß9{µÐÃAP/PÖ4Cc5FF„$RI ! $$:=ÆÚÚÛ‡Å[[[e·ËkÖõˆ¶ûŸg­Ëõ½Vo¼ûqô@d‹$ÿ` íog¬ôm2ý5§(¡ˆDLB!$]˜‘;@Cd³ûu{f«¨Å¢‡Ì’>4U/>ÇCU¸$d$VDÃRR/oçyÍ¿¿GcgÍÿQUZ'‰„‹ ^ Æ¥T_\þú_Óì>n“èÖdw~AÛˆ§‚ ÷©ÜŠ©ªÅ|ÿ§Uúv]âÉØ„!! H„¥5îV9Øîvtè¹×7ùÿÑø«àI"è”§)†ýÿñüܯÞKÈtb¢®#§¶¶¶È^-­­­­¸l ¶ám_“îtŠ}´ïtˆäô@æU2>è­€¥ýBš••@»`oˆµ"ÞdJD‘€’ P´è{kþSɈ½þ=DËì\º¦¾#—@ñ€r² oh(ù<°ŸAÉ€ðIqî„s¹ð f"ÄèÌp2¾×ŒD¢èFEB âÖA’sÈ k~]^¯iò6«Þo–ßr~W±~Œ‚ƒža‘ .|¡Aý¢€iø 5¿úü=Š8(¢HŒƒ#!$cF³Ú­¹ÎuË\v‹™ IQ@5:ØE f±C½Ùµ½vGY­ÑèrÎ`|´½úyOù† „Õ]º,eÈõnšâÈ’Eb¥¶5£&ÆÁ22HBD‘ F䊎…îES÷w{_ÉÇ^>îâãs¸Ûó[ÅÆçqqâý~Âí=}_‹Ôo¼ÆÑÚö½®ÝœÌ¦dRDŠÉ9 ¡#L ˆöœw›ºæ,¯þ>§ŸÙ~­WY߉ž ùEQC¯§·ïb›ìSxFÂ)I;›s[–UÂÛ—bÑrLnŠ×"¦Î.pÜâçcJv)×g;iûÿ®öÿcëm¯„„7”=N“ÖÁÖÿoD ÁtHû¨PÓ¢øh¹4‚} H+è ˜¯eψn`ò[ÿšqÒ¦s˜Kzd2þÝ6¼”Š"mtŠ4Sd‰"b£šÓýZ½¸×ÕÛjßrÛ2+FÊŒ"Ú‘Ò×â ìí¤y<±Øi OV\&[a¬üÃÐPÅÛ ÅésfáÐø¹Ÿïz1pÊÍtã!ŽŸ†¯óA"‡/!)BZx£0ÓfnÙ;ÍŒ @d0Œ$’Öœ€€fQ´Û¦{oÞ³ÛF{=„Ïg³Ùì÷ÝÜ/[¬ãæ¢l@ͧgûë—ûŸñ¼½ê¹ŒžTÏLº.|¼I9V¤AÚ«–Èê%»ï»Ïµð¸{·E®v,)4­Ô ¢‹#mÅÝÒêqR”2|ÈŒ}會=//(mˆ?ê¹ØL,0‘¿òvÞ£ÉÖï×ÕµMäRvHÈ€¡=ðUA®úùš9¹ëOÓ/j¦0 eT™‹ù»wÝÕöódšøJ*7rÑ´D­#@ˆÐÌ£ziü)iÀÐ-⽨€éíí¯‡Ä€wh;^R¦÷OˆÀFG>(ø,$$@AþžbŽ@S¾¦?ÌÆÈ¡WÉñ‚y©€0^cìøl¼Eh}¤&•úáNq)”DñyѼVñ.ÿÕAþ@ºÁ~ÊYpÊA¦s9œä¾Îs9œÎg7\æs}ýÝîõƒë;ÌßÈe®™U™H©B¶S>ª¹CþÒàšºô\E©"˜Ø¤)%(4@(Ò5úyT/“ˆæ+À¨ò”ëÊ#ðX4³lÇÇC«Š'‡Øþ×èï÷>­V×íÝUiÚ ¯ï}!NU‚ˆ•óH>?(©WM2“>éÜC§› ·sÜ^ÉoÎìô@¡³(ˆm¹L& sp-ÎK"Ø´ ²’JRReT üHR)R‚‡jt3xÌÿÄ¡²Š ªBÓÿÊ(£\ý–Ÿ_[Û¹ÆS¬@8 î®ÝRoó5ãƒ!$ ² &ÛQmj³**-¾y¶æ“d£RÉ‘JR®r(¬wv±ns\å[…¹X­ŠÕY6ç4ºwTE®nF»sŠY…"£ssEclZØ«Tc-®koZøýUû]U÷D4â‘VϳÓ|@•Š#MÛSˆ´0ÒDd#$’Dîîᢹ¶9tܹmÉ; Û\äÛºíÃ1wuí¢¨‚êìásw]ÎçC3N]¹Ns›‡pèäWÎÖÞçÑÇ÷UoÝxìÐaýðˆšÃá·=ÉüaÍ]]]]d®®®°·\n êêë=|ê§Í¥Û¬ûoWÝ´æm†ü«‘B@c ê ï@í‡g¾P0>¯ËŠ,ÉA$aHȲc"H‰$Í^¬xP¾™€j{ìõ"?_EBèTM²8…)L\ŸˆA¿'ó}u½yµË(bdõ¨t¢Š1= APÜi¸<Ï´¾ÿïýwµQj"f,Pb±H…˜$T¤”PhH!‘ „F„fa@@‚¤LLY’@´$D¡`¹ãS“«¥æ”1x®TWŸ±ÃhÀ hÄgxÈ èU| "£m»ró\ãÃZÖµçú¹ oµ¼#[¶u NU6ô§›Ôå¤UY$$‹QhÕEdÑ5’¤$Q$E˜ô;¿s×}}-®?$ìÕuɨ뀩Õ}¤PZf#æNæv3uËó9ëAk@Œ%b‚ÄóÞÓà~‹Öú_¥ú_Ïý./‹Ãðߣ‹å5^£lï8ü~£¬Ía¿FOù.âóË€©èƒŠ æ£IF„‰*UO»¶Ï¦Î˜lSG0®&¯†|VÄM„Š’Dz¤±ýÕ.`n?£ïªœò¤™8pQk[ Sr÷¿Í™Ù€oĉ!$H©±“cd1*õ^—û-ý/…ëç8Z¯šØ¨ê¸/3~ó~¯?y²,_©m»†B!hÚ¨Õ„1(Æ’@$jsb¨} š/©HÈ?¾R…ú¸ª kÖ8{*¢ôBÓ’Pï®2®lWÜßê{ïîÿwÜ{÷JèîvÜ«“»µÊ‰kNñBÑMzçH©@:Q4/Løô»ÀÆôY<Ÿ»–±®EÍ#$$$D޹PÛ@Cþà‰]ò§MëS7›ÅÙfølÞ×›Þó{ŽoŒÛ8DQÓ«“[ï<”)¦QʺaC%[KËæ{‚·<LÕZdOxGJšSxV¾Þ®mÀÒA6xÈA)×w]™ZîÛ"“bb´QÑ¢‚ƘØ`îåÑö½¿N‰'&ØäB¬29¹°3UŸYTÑ tq"HC†”ðįÏËõÞŸWúÛ8=«Ø²?¦…¼zÁ@<ÔÜ9îf¹©ÌPó@pÔ±1~µ.qDFIH˜Œ(¨¶{Hî¹¶ÝÙή‡vç-Ó×J»¸»¹QR4sÆè™îîáºwq®ë¦3ÿOÅÛoué—ª¶üH](­¬#;ùt¶†¹")3MšD„jÅ¢ÌQ3+¤U“h£bÚÔmÑV6±I†´€Ù5i™(Â4Q%ŒBhÁ‚-ˆ¨ŒQ²&Q´2±Œd0˜¨ÌHÑI3!Š” Q‚°MY(Ö£F1lj#m£ZÑX¨¨´XÕE&°`Ð@‘PkFÅQ¢£cQÑj-’5@ÈkÑm£Z€±D–,Z¢Õckm£j4$±±[F-ˆ¤ÆÔQ­ŒbM"Td’D¾û¹0š¶*ØÚ‰Š«ä—eQcK‘#—K…w;dšæç;» ¹j"b°ˆ•!‹„ã|tÀcíD0Ð9ë#¤žÿØßªïgsžzzr #ÛA$„‡6 «r ¤ùþ]“QŽé:Wþ¯Äëå[ùŸ´·°RQ&$ö®Ë–æÅªMlmƒE%ŠJÉ«p3ܘä$+€+Wá ¡e(¥d‚AÔ•“cwu"LÉwZ-ÄU‹b¨ÛElV6ÆØFØ­sUÍ`¥)‘ *&RNíÉ‘XÔQ׌Rh4nW!‘‘Ëš( )Ý®F Ѱ&Í™L)ÍEÈ4ZŠå·wU®Z*‹EFÑ%‚B¤ºînîn%I«•sk”q7(×(0H`åÍÇpËœs¤¤‹³&ŒeÝ8äë†èåÝ9wtç:]ÝsºäܸG;»v¬hœwEÇ4ÝÝ£Erá®mÝÖå\ã•FÛww(Äh±ÝÑrèåØjåÊIMÝ®•ƒ s¨jHåtH¡+–ç9&W7I#F±!¤æÜ¹psœ®Æ’ŠMF£i()+¹ÝuÝC#»˜…Es˜·:HɃ 2S\æîæÆÅ„„Ë»©—,îÑ$j.p(‹»´Žvw[–QPƒg:‘bÔ„hÉŒIQHK»³.]ns qÝ9ܺ•Ý×:9Âîºk¦ë¥Ó¡rsŽW;±îwM×u sLÝ sš]QÙÛ£’2:äîwuÜÛ‹Ž~ xÏ·a 774¢A;¸éÜP¹]:93ºé3ŽnaÎá;—^ó·Í;·LîìÑ“7vçÀËÜíÇ]¢:nuÜ.t& îý£§ˆ»ºÝÝt2rM].XŠ9» ÄÇwEpˆ.îu×tîntË;®îÝ%Ý;†sšäS¹×¨µÃ\5»ÊŒl;­UÎî°V®VåEW-rµ\ë®ëªÜË›I¥‹ ×[t‰±¨Ô6,h¢ŠÂAomè¿Uó¿°ý‡é.¹;«­úë‚Ê]]p÷³!ÎQø|•NDÕÈH`V”Ë #`ôãî.ûôú5ÿÔÇCÌ›Jr‰—>a/QEòÆ"ÉNÞ*çà*1Ai M¼z¶=®ÿ DÉ•¹‚º|0D€º»á{‚ÂA$„`•ú.ÀB†”Ñ@YdAHDDÕ£BYQ²cÅE©5oxÛrµÊ³»CM¢ÔjæÚ¹µ®U nò+TC¾âT{ÆÎEj‚ìUµýj3K=µÏ5ëõn±³£áCðøÿ÷cÓyÛ•Âþ € !v;ÈܢxÓóÍä]$DHÍL›X*×ÑO/«âø €c$(ÆÄ1WÆ·:×-rçV9 Á65nn[²îP”¥Ž’>ìÕyÜἕštÊ çi×k([åóÚêoŸ¶¿îû´Â )þ¾ùoÔœíös‡^n=þŸÔ¯Å×˪Šîsãwì¥6O€Ð @   ( P(P@€5@@(H PRP $U•(P(€*@ (@”((ß|1•€m¨i€k@µa²hi‚l›-aQ2ÂÀ,´D@6˜‘³-6 Õ¬ZĶ*‹a#X" €2š€Z¶Ö¨BØXÁAYmY–V–& VVØÚÆi0M©`1¬"Eš¦ZÀ`¶ h™¶2„Û"£khHi¦Õ¦AcÕ±³ÊÂËl ³f0Õ$SM!@Z³c˜Ó"JÆÊ±…‰M– -5XØbc Øm+!Q³ FŒlkAl †±T›SeñÀŽjí²FDl2#iX*&†› - Ò[+ ˆEP&Ì#cV‚P‰ZÀÅ›X¶m€µ`dÐÚÐZ-¶`Í´µ0lÀÙµ‚%°6Æ –²©-µ €…ea6PHÐ P"ê©ÿ€&šÐÑ‘ÐLši£@ 24˜`š ‚U?ðdh&F€dLÈÓ$ÀM24&iM„Ú ¦M4Ò0Œ™AäÔÑêzFL ô›(4òƒA“FѨ§èÐ…<‰õ4ÓA¢hÄ 2£@™4di2hz i£A£G¤È OQêi£M#@2 =R¤ˆ!ˆÄh§²he4õ™è†“É=A§© ÓÒ4hLÒjëÒò6õDW*®îÜåÝÛªè.IÀ‘¥Ý¹k ŒXÓADmHÉbThÚ¹«jèKáí­_¢±¨È‘›Ù*&JЭÑs»«šhÕuÃqœŸ¸”§÷Êõ*ðy³?8ãêhJó=6åcÂ×sÊŽ]»§tæcVÝÉÝr.s"5Í®—·L“›” a¢‘ÜÖRŠT—ãmU¿¼µ¿‰™/Ñ\mÚÔG‡ó©ô‡Ûk7#Á º…O¶Û ¾”é6QØÕ:UŒŽ”NÆ.›-¬—=_úý!Æ›mhÑɈÅ\µ«š«™„¢Ø¬m¶µ¹Ï‰©ë*m\ýËÌ=’V.ÎG­Ø¯.ëÔõÒv2½z; žÂç°'¯GvR¾Öd-DRP“~´„ųpú:äãs¨äEì ôd—ɇީúý?¦ÚÚ¯D¶5|wvãÝhØ®Îvˆ×]m¹²‹munøº·¸‡kKÜìxUì1¯X§¬/Y^¬}ºÝUÝ\Á„§¡ ó²y<ÛÜÅÍŒÛØç¼Ûmµí= ‚ Ë¹\[e­®(¶Û-Î*®t¹Ùžãì‚U÷m…ô¸àá³è·&×V¼@GãUÜ»œcý)%s? lÆ­‹a£Qh4k%(›$–°¶Ti’KÃn•¸ØÆºÑ_7jù½«Å—‹¯Pôˬt/}Ö~õßäè™›VÒÍmüþí¢ŠŠŒ1I(Ò§w&`Âh9EGwcrîê+™wj*æ”3Lˆ1‚ÅŽ[VÿAk—%Õ¶ÆÚs^xmÍ×x;ãÚ¯Ô[ä5¹\ÛrËä4{’G_ÀÖ“¾SiÔ}D×ýª!ÏM|Ómt®Væ¹¶ºÝ±Ü)wNåÜÕÎlîrŽG5rŒ`ƒ(Gné¢J':9Šår®\Ñ:vîë•ÎeE±¹rW*Œ„‹wNî.jåÝÙÎd7H©wq+™;p·6ÝXÑR¬ÛYáJE F¡Ó=â”’;¹r» ]„^ÖW²æÉ+©—î¶míà‡N.]]÷Ëˡ—«ËëÙßœÛzkz$Ë0F5)d“b4É A°dÅa˜L¨Ê¢Ì« ¢© ‹ÒbPdÅL&‹FŒ&0%¤Ä&&¡)YJ1² R FŒ›’1JD’M%„Y#A‰ 0*4F®k©B$Û6lÚšMý‚¡ÚÁÛíK·©³ƒçþ\„ó~+Ôy²»tíöóO‹> ‡€ð|)?^ª9ÝEW¿p‡o´ÚÍ&ÌÚ,Ú7omwºß[Úµ¹‰±´I"HŠ.î°kŠ$Ø.:2îÅk¶ "*+KŒmºÙVÏ +åÏù‹™z¾¤§¼Såí[Eó5“‹æ?º tó§NÓÎÁØ]/=ämbõGwr6¹¹;¢b Û.s.¹F5táË‘Ý:îìîÝ\€A»ºå×7R+råÓºå’MÝp뻶ÜePØ·86îënhåÎpî"áÉ’(”Ìvˆ¤DÙ­¹ÁÐJêgÜ5@¹Ò®t­šÌ Vßxs[•u·4·ÞøóÚµWÔž¿ Öm¶l›)µs©Î¹×ñÀ®Òz ê¶-…Ú$ü'}æ®,q­sV-¢Š€Å\éNí®Ë!®íÊ;»sGwk›wu‡;–$5:îi¨ÁËs›+›F66.YW;¸Å©—4QÉ7Q.E)ÜîkF¦kdÐÔXÕ]E+j·ÅZ¾%¶þÞªtÖlÑnЪëIÚEÿLQûµ.¶Ú;h|Á;)]Š®ìOÕªõo«‹q¤Ñ}Sºïi%÷¥;eµÖGÏUè4‹jo }dÇGÿ/rßï”.vxì› 6-£lÆÆÜ)ÆÆÍ­8Ü8áìÑ£éª>ªF¾ýtVwñ¼uÍ;¹¯ \¼xðßYþmù²¨{bºJ{j®‹döÈtÉíEÓ×¹•×]l®m.»›+šNhæ‹«©ñ!õI^¼+oÞßøøª|U=<“ín¯ 66^ŒœeÉrk[:ê¥Kœj¶ùÇ]Ýܶ-Í˃Q\î®mÂRF·;šäl75s[ªC]þ _ŽÚ6ÕKªGï·5r¢Q&“š5Ë[r·*й]qÓòZ6Ú3“7&³¼CÚUÞf»Ãƪ'÷d÷ª_øD}ø_Ȩüˆ]k£íj¶ZWhœ„‘ýá=tº>ûxg4mÆTQ¹·4æ.]Ý]Ýw\ÑNë•Î]wu'4YÝ]ÝFˆÝ+·ÉͬnîA¬®litÈKkrÅÊ9w[wq¶[mÇM´·£Îpåø·‘)öªw“Ý¡+¯ý÷v ;·×Èmdlë4ѳdãrpã.92•;ºƒ»Ñ¶‹»Www¥ÿr"æêï™6¦Öڦƣ€Gµñµ*[mm¿ÀI}=½J<6XÚ¶°E'±Uãáë`òþÓªO˜öü’Ju4žH:šòôêwéÔ£Ÿº’u$ê|Íx…ß2›&ÓŒ C5®Zæ+c@V-a&˜ÃA¥1ŒYšMb´VÅQBö®œÔgw6Ü7IÍÊæNu;u芹Ý×:ìÚKWb²`»µÍ¢ ¨«F¥mÛ0O‘µ­|Á4ö0ö(ö*{{^¸Ð»¸Úx{Fãå 'UK¨‡ê¥ä;ú’Dæm¢¤¤d ±ÓBLDPT±ŠŠ&#Zĉ}öª×ɶ¿1m\èÁ­‡d}mÅ\:ÚwR~t;«ô?™H'\ñä$ó÷w£mUÝœ;·´%ïÞSzÿ(ɬU”obÙ4ƒ—0FÑÎî¸ µ Fض(U¥I°É¨¤I²‚J î“éí¯ÊÕôÚßiœö-³¡óoýR  ¡_Z¦Km˜±ˆ²$£Iò{«¶Å×Û ¼9A-uÏ÷Õm­ë*ôf’9Í%Ý·,\)rÛ‘Êî8íͲØËlɾåGvwzÛ?E+•þJHïÅt²u¢»À¾Hw¶³kc½¥ÅµY¸¿¯Htõ]<]<¯'NN‘N‘$:EÍW¿Sì#éÏÅö øÈð_…•VÊ"V1QmŠƒÔÅ™¦hÚ4F„‘66¢•bPQ³îíÌh"A'uË»;¤¸‰wU˵Šgv\äÊ[­¿U«|Š>|Ÿl¨^º•ãí…à‹ƒ–ätuDúHW¬úC_Kô7Ï:è@þ¡(wº¬.õq·ÖÖê%Ô/<¦¢YA­§€ÑRa¾ |ƒð­mŽÚ]²ãÍ*—üâ+µ+K] µÛl¿–ªÖÞvÛ%±ˆÞ£ŽîÇ.X:'v®’IW!bÚìm*Ôú'~UÚ»Wiû#ûèOðB¯îÊ:W”+凷mmKo3Àãf«‰8Žã̤«ž“ž‡<œòò yl¡ºçgë¾-öµCÇêÛešÁF´Z(£EŒ"£™ü{¶åuÑ,[—]9læÑDMF(Œ‹1H6¹·. (6Û8Ù³ÏÞ—:g2%ªUï¢÷À÷È~ê‡qU]½Å8œfßá(½LžøÿßQãh÷Ò÷Áï¢÷Ä÷Ê{°ù’¾fÕ¿l©\«b­ERRXÀeÚ KQXÆ¢M£h¶&2I¤”a‘Œ[cEE´DFõ—bú±bæÜÕ®sWwrçw,ˆC»“®ÙœÜ×s3rîî’nrŠ)ÆŒZwsFɇw5Ñ‘rÜÙEƒsŽë·\$ÚåÎçc]Ó°9­ÍÍ1¶,KP4îÑ®F:Œl6Ø QÍÄb³¾6¾éj ª61 WÆm˵?ÚíAŒ£<÷gJÔWâ!]…6›JÈO¼ë»[U¶£h±´XØØ„$‘ŠÆ‹h£hÚÆ¢/æ¶Ú¯Åñ¸Ç&ãR¸Õr\]Âú*>s`ƒ÷ꌱÚl•Ừ§h¨yÌÛµ|KVø>íbØÑHM‰(Èh³«äj¯ô[|.ª¾Gs¹¦­ÉÝò<[š¹-­þì){ö"ö1ìk­u®µßJåËÓwO „Ø<†-ÃÈrnOø¡.b¦Ö±¦£c"Ѳˆµ6½Ueݺ‚9¹ºfA¥¾÷U}-÷ªÚ4î?§T¯XžFÒ£vàò’»·ó¶¶ýÉ!vž×[ZO6W9Ù3m´O]°ž9W6ðZ6ªÛba™£L„ ¥4Ì–$Ò^«\¨Û!UÛœÔwi"±·'vÖÜ%ÝÑÝÄRîÙ6åÜèmÜ]ré¦Q´Ã\Ü]ΈµŒZ1„Í"Ƥ–6.iΨȎY­±ÖTzýâÓåòlE±³ „¾†£TêesÓèDõâçÎþ—ÜJ6ØE¢Áb•·ÞSÎãWÓ*/§Jû|¥fÚÞß#š{‚½¤^š«ò4#h6»0{PôržÚ—»ð_Ù/pÚ§ªí%{˜{ÏÔE?WYHûÈíð¸Î ïþW3á¤SíþRO£±6|»‚øô~¬#÷úZ‹¾£ãç…xy­…µ­–ÝîSNåK°EÝŽîþâR¹d.‚Üz<][-³¿„9é{ÜÕ8º<Š^>$ðµkV¡=¨ë…ì“îçÝoË~†õÞÏÒ®QÎmŠIs•—„Zˆºi·,QU†çÁ¾ºß\±,ºŸUÈ ÛY6kjm«cÂn.à=ì’¿€èCìxZL¼/Þ_º¢YÅ(?óª]UÞwz-'y›“gñª¶×£­ªõiÝÔXÎî±4îs‰rÉ¡7-¤;®ØRTÅPÛ›—4—:ÓÆŸ\ªÿÝ;Ìmmáþ˜¥> /€—>ô^Qæäò¾âW–yéC٬͉­\­®4Ú±8»,µÒ ‡ßG¸Itª“g?ÕW®UÐvDí§—T«×ÇÍÂæ±Cœ±\Ñ»uÎr×.líÛÎçgq‰;º¨†Ô`W-qTk•Çc•uÎ&#œæP—#˜‹˜»¹‡q­¸àãJÚÍ7­‹Õ•êÅæ$ÿœƒûš™²TÔ½{«ñ^ P:ĺÅ;§Î̓RðèáW­Ú߃"= U¥PFhŠ"„ÈÆ D_ĶßsúKóT¿S·@|ä¼+kiZùض¼-ÆÔã-96»½ËüÒ%Ï€çö>8;£ºšRî‚òxç µ[fÍ“b£6Ñ,jMÖ®÷¯3GUN¦z¥ß!›5/[5kfÏr>Œ…v¯_6•Å.„õŸ]¹›h‚J¢‹X´j£€#!M²!Qb¨¢ØƒÈ£Z1”Q ¡ HÙF6–²ÚÏ'´Ëk[x*Î/)Ó"í•=å'eC²'ªËf'aK¤©ê…ä­ŠüôKÁÖÕ5¬Öcx!ÝlèRK³QçƒÊ*§âƒ§Ø”vÒ»¹:õ?z_v§³‹ñIíÛ‹®K¹½O>OÏUOØoúö66¬Ùµ·ëmåÕBèdè ¡ž3ʨÒõÒ¶"F­r¨²t3Û¾Mí@ñ­¨úmmôêö.“ÿ J÷ò{ú=ü=ýNñ(¿Ïkk(ØØY6‹C´mÚ•~o½)/ÂÓ±±‹!"Ì4CZ,”Z4I(Šh)-µò¨ùGþä¥{¾íuXilž®§˜Íü мu<•Iy#Çž=ãݪ'ÜvÙP¾àýo½µZßSµ¶úá-êû\Êm -Ú6,ÖY(­Ív(µË*'.Wwm1Dl‹•Š’Æ¡†Š/+m_¥´ø¹g×&œ6Zó°ªô]i;]-V¶òI¯MWME-Ñ¥4À!,†bŒ´VåtÔk‘rNÜJ#i76¹m9Í9×gWuÝÓwÊäbÇ8ؤ®1Óš§w'\î뛑«»«››FàÆ²î»w.œÛ³nîæÜºwt¨ÕË79Ãsn•s“®6—yæ'a¨Ù­Ùq.8àÁ·+“W…ÈßóÑI]–¨j”;'å‚/x ¼.HØM³ß»ÏLvz­²ÆüóZ(K4U‚Úå˶§â]¥¼wjãzvÕ¶¾¢¯VÚµëâ"±* "#‹fÌË¢QåŠè¥yttJ¼Äº%=1ê)y;¶‹Ô{±÷¨þœI^Ò¶´Þδì”ýx£Ã¥îez0öáíå{i=´¯9GevJ»>œãe¸ÊäÜGŸ£Z«^ÀDFŠŒ—»îÌÄ£j1FÙ–4dÆI4$H¬‰µ EE!-–4˜ D2ш°ji¨Ä†¤6Æ5PZ$a%£R†,0Œ›Dj0X±b¢&hÉhذ™hP‚ŒXÆEHcç—v]ÜÛ\æÎE±£P¶ŠhÙeÅv•yí)µ ÿ£µÐÇkþB œs†:TèÄ’¶µ[;Dâó¶«ßkezL˜ Ñbˆ¢ÆFÌɬ„X5£I- 1‘#`Ñ(­&ˆ1‘}%WÜÚרw™xÒ“Ó—¦W¥ô—¬õŸŽò¹°ØÝÖãU68Ün)qØñÂ}YD½ñÝ©]œ'ݤ{Š®Ò.twóÌæoþUKò$|VÉòÊû°¾dž‘W‡Tsg€Í©fÜnœÚ˜Õ CFŠ2m·5¶lløôŸ1°{ò?WÍl«±‰Û(í°ÚÖ3j>_vR«ÍT:݇cKcklFìc±¿öQ/4£ÍÅìèyº{0xÑìåtìÁæïfO9w¹'³ZÑaMA(ÆÄ¤HÀZÈДÌ(¿Ÿ£ÙÉÔ‹Ëuô»Ù«aØŽ0ÎÇ“J£Ü)îx~æ—«'¹r—¹S©£úaÙÏÂT§=R¼™×ÝŽ[M“hˆ(géú«…9rÕÅÝÚ†q™l®2ÑØöN[ØI#œ”[fÞÏÍb£»n¹Ë»»s;ªã+Žs»µ\Ðîâ**æw]ÝÛœ5s(Ýݹ¹h·Zˆ»ŽW+$-£í­¯¼mZ56§Ñ ó»-MCéùõ'¢ÍrÍ)ÜŲÚùätR‡ëÑôgÔ»BQ}iO¨‡±)÷½yìÐõÄövÁ³Ìñ¬ÎOþåUsÐŽ{&mtKê/…~ƒì/Bö(ÅX²@´XÒ$„¢´kb‰£h¯wÝ!(·.X\·wSºväU͘ˆÆMÝÇ"‹s|}¶÷>‡&»ÿ×¢/e$º¶Umi~æ«ïw6"‚‘øÿ9mµµæ«kðÏðz%_•õÔË›¨Nù¥›-±©+M¶ý}ª¾:jßJ%àUp¯Ûko@$=¹W·“Û‹ÛÑÒ£ÛÒíRíGkO¹+¿’wçt¿¿R•ê´“´©ÒEÒj-•3´Ð^uO5áTWáQÃ+bfÌÊÚ8çÔôäO<îHžd¾˜ã7´½aIržµz×}ÎÕVØ<ô|7=öa–¢<%¾“èám¬ÄîvÚ§ ܸäýJ[[z6ÚŶƈ¦¢,bŒV,Q¢1`ÐTF’؈”¢!ÅŒhÔb¢³,mMDU蹄»«ˆnW7J.n–ÜÜÑ%9\Ù’##»ÕÁ Œîè‘4É\Ú* ¹«…æîìd¤””‘IAŽî¢æîí·7wr¹ÓšH£›‘%i±´ˆ77 2’Ò9\æä]sw: ší¹)Œøú;ýƒ¿.ýßÿ•*/ J¼µûw´Õ´´˜Å66EWêî\´íN3#é¸ÇýªEãËLJOÂð6›!HaZI£iM5eµ“e›f¥ãücÆ>Ñò=úƒê#é×ÔÖfï)#ÁÅâ)_P[2²þŒEæ*Õl6å¢RôÜÿ‘ljÆÔ¡Kl4``Ø$Ÿµê^Ô=òÊ©ð‹âRìqÆÉµqÇf+‰m{îJì!G1/^W¯_'žU狽Ó¤~§¼lì÷ÔìnÅ㤣ÈÞÉx·*x}FÀض ËhÙ¶ˆ‹¦ˆ”Ë *M(X´lPmI¶ ÚÝÝuÍnjëº.Z8ErMŽwÇu9qEÍuÝØ1d¨Îë¤%±µÇ;•®Fs›r×wníÍÛ‘»±¹¡Ü(ÛrÉ•]ÝBŒk»˜çM¸¬J·y§ï‘v°ÊÑnÅÆ8Ön¸„= »\+6'^¤¿VÏo'r•ÖÛTù¤ö¥sä{Z>bÚ—Ì+ÛÑó(ûø¾1=ÒŸã)^jOwµO›SÝ!]™vo»÷"ƒºKÞ#Ü)çd:w1~(s‰Ï ½–Ñ[+iµµ¬(‚4ˆ3Fض1cmÙ##E°™b(Øjɶf…XfWÑÝuݸZ»Ó"s£Lvœ×bF/k_wV$E víœc56ãŠ[aøê%%þº®°;{·oè•KÀÀx±é“Ò]  6Úú½[ß4(£^õ¡¬Vê+|ô^áåù+km~Õêg´î¹‹\Ø·Gj7uÛ»jë¹Û«QVq-³5™¹µ:Xt©ÒΕûR­ÚãmvÈWõáSÃP®×k`ÌÖÕv£cÆãk–]À£”‘t|‰Is03m¦Á¶kU6m§~~ÍRu$âGxü}{ôR]ØÓWy+ jø ®MxwÇ«kW«ë[[Yýä£×*ýƒ·Ñµm¿Ë!sw|Â÷;m´bÑ‘ !Š)˜ „™¢6*Q1¨ Ñ¦›% ÆbÑ& cY$¨Ø£‰2XQ˜¡`Ã,š±ª+mV6Ú Дj’1F†TȧŽÎ¹j)ww9¨Ñnaj#…w;µ]c—L±„Œ4s†J$] DPn7§{J@½œ¯#W‡+ȧ²+É”KžêRóžÁw×Ãדázðôv«§‡oòe^CU³#å+ëÕn—oÄ+Í¥ã^7.~(çìç½GnÖ£Ùf¼ Js¹í-–fÆÆÌÒE-´mmLÒÖÔk4dÌÁ’ÈQA¦&Æ1’5A(«v5BÉDN¹dÄÝÛ¢©ª üM«ãjµ÷zû´jÀ+|.ê¹5nÞ<ÕªµWùšTþüƒï›(n†<¥wÕGÌ—rw-·å%„ <,ÿý,“ŠŽ5,ÚƒŽ8âR]M.¥]BôoTõ¾?Þ-­£d×Ì5Û“ºå•Ѹë´dµÝrJ¨ˆPIò-*ú£a±’í1Ž>ªÍ*¥è^êê½Oœ‡:s³^uŸT•9×G†ÓM£k¾œ9%%yº”ràrl›°“»nœ¹7(î¹]Ñ;\®X¹¹ÎÖ„ –5Š˜,e³»¹ww846ûÛWjÕævz¿ ¹Òm­¶Kmm¾Ÿ0pÛ5[WÓñ•öˆ]¦j=vÆÅy(¿™íWÍçÑÜ¿½Ó¯Îk—û<œŸÊåååÄßÛ›a1„hÃæú 2„d,$ò¡L|€” ƒ(Úh&?` md2d#&3#S°Å…úà¨è•¬ T/K¼þ‡ŸÃÍs.ñ× òqÍzhÿóé8$‘@‘Ø A/ÒZÉùˆ§ö Üßc²µ‡é<gíÿŸü>§ô{§å¹ï!âÔ»}ƒÙå@¾¶°6ƒvBã/l/;] ‘ÐáŽ÷á38ã‹gœþ vÿŠØ‚€.ÿß'bœP!uT;Güñ˜ ý†Š`2253hˆ@¿&H²Á3D2%FBñC€„ÑA\-‘ØPr0‡c„ýd™;?Qü‡ËúO¯úèþ®Â+?Ce–}å…yZ2 6ì?ž¤`µ yªžÀH,[×l¼;Ó̺GŽËç|q¯]»è|Þ—•æ¼×<“&ñ:ô»¼q®í×=^/7w˜dÉ…S˜@Êv@XQdKÈ̺)¤ZÅ3e2D2H%ÿ½„>>}–XEgX°Yg耰ŠÏ®E}Œ­3+‘0¨ŠÌÑÅê{„ÇpGäpìÑwNã\Žç­âóxò/y¼žo ˜Ô*‹¢j¤d “+‡ý‘"+ ùÒ²ÂxÄ¥$"C§ç Z9 A±€ v([Ác#c6%2eDŒÐ‚!c°Ö,vcp®5TB  T¡ dL?3™ÄAŽ2Bÿ€B_Á‡ós0_£þÇñËJ‘]0j„ 0©ëBaNdˆR0@Ô”——™xòòñæ.òðw…æñâxÉIááãÇs“ýx“³=B01bºw8¤ÄöE5TkÞÄQXà}-ëÚïVü‡á~–Ye…`€°¬³|–2‹F5¶ü]¶øÕ_¢¯KÚû?Oǯ{ÃT X¡¶£ÔÏ@»2g`;@l„ ˜Ã#šXp‡tC'q€‚ÅÖº¢“ 42ÍäPWA!gD ²FèKíèBI«F-Ëô $m$f&d8"¼B›°ÐPïs#™8GCGƒ29‚‚0 @ÔÞ î¦Y¢!1 tuPÌf,3±XD ­+1ŸäWö¹|“¤#C$+CQ™ÑYRÔ3 WšÅâñ$sˆèHÌ œ‰NȇUc'vesaå$gB‹ QÙØ#™® °c`N0b‚2;XŽlÄ`Ý™Ýø „ê`›þ?ÃîéøÒ""þžÂ"þH¿A\m B0ÌBò yœ³à°ƒ™E” dŠ¢XaIbd„ ¦FLÊff 2œÑ Sc*ÈA ÌR‰À1€Ò°nÿbj¬ð/;N¯d–³)ê”ÞÅ ÖEP1DeF4P†‹c)<Žp„ 0‰(‚!D+»¤ I ‡ÉÉIÎÿ¾J!Uÿ²C”½?:îö~ªèDª‡Žx+ÚÎÀÍ2Cf0DÛ3‘Dþ¢ÀP”Å€7=k)Â1±‰!‹"ÇaCBQ IQPØÑ(‚ÄrE3pŽnäjÉP ADØîyš¡…c` ­º6”(¸€¾ÉUêHi¡™›1—æÖÓu(@Õ“‘¨FTJ$ÜØ€ZaT¢†ÊE#%K gáN *$¦o$“¸óü缬"³X!e–YúR°‰¨RÒÛ-EÊÌð27[R“)\¦æL¤Æèqi››³š9+šªàhY±BˆDñW5U l«a‹DB ÝKY•PMD×íTïdÁ'JVFP:¨pt=r@ e8ÒBö9¢”ɪ¥FšF`r4„‰ LªÓG.Ðà$JŽLË)"çK•äêq•ñ;e0¨e+–"KRpr%º°ƒF…D)†½i!Ìí“ШˆDð›[û:§ågíÔ´¾ißk4 M‘æ±w':ÜÀª’ÉVFP¬ˆXö€7%3L¢ƒ,šöH[’QÎ4RÁØ¥×Lþþ4.WÕkx¢šQÙð´ñƒD+Ú“Áo…’Áš”e'£@…(ÊE ÎF‘XÌÎA™œ”„Îl ¨jn«*Z²²‚‡HÕYµ6›3wµÄmP¶ïšÝØVYýhXE­ ¥•Ø¡Êݦ*Û‚,ï&®”È$3‚4ÒŽšÚ³WÂPB–«o¡MÖG9ÂwÊáûÛiúó«ñ$¬«Áç9p6‘T¡ÛœrƒÁP«âˆÄˆè¶°&LÚqhÂæ¾JùJQzÉ£¶™"´m-Uýì4Ã|ÿc*~&½/ʘL¢•u[Tõ3d¹‚XêF!Q¬"ŽÄ¥%ƒgZ-&„ŠŠP1Á Žej±Â4GqJ 2¤MblR‚ †•‰ ‡Ñêóÿó-ŸyüF-»$ A}±‹Å÷£eS¼Àµ ®H¶k¿D(UmQL¦ti30!‹Þõ!¡1à$+W)Ïhâä¥ÔÁo"ˆ"Ѿ®_`^¼Rqåþ¯êp‹åŽÆ\J©,xÅL µË0Rr[°d$T ƨ@SÕY½ctbddd”¶ˆþŽ‘®mD½îHÛx¿,ã<á4#ƃDÌæps%ý†½QƒÆQR“]`+ ð¶—ܘÂ%0$x B¥”µM^úP¢r‚œ&…€¶jI¬c*ÄŒbÄÄ‚,`X®QÁ„Lž´9 `xMå*½ic‰Åž­3ú¬JÍ ãükïþWÞmC<3†1lnºðLƸs°"JuiåÍ#YžêÀ‚ºÚ‰C@èI}¦×Ò$%¡ÌÒa^@ˆÉƒ¡àá šÀ%Vt]zŽ”íŽ t¿øŸºû¼=™iŽ:]½ -3€ÙU\©Œ†š©rpDK¡*»´ÕU"’j!ªÛ’ÐV6ƒ¾š¥la¢…•Ìó¸Ð’ ø0—\v´{?jEaú ¬"–XŸâX_¬+,(åLoL«x,ßcàQ¢ÑaŒVÉê- އAÍ+î2A‹ÂEhÒf°²„ÚFr¬Já¡(¹] Èç° èàÈWNsÛXÉÄÊØÙ}7FÕq)O|?µF¸ˆÛ†Bù`ìé¯pʉE]x¼U)|‘7Þ0y 3ÍQcƒJi9I¨Ê„÷¢L ÄÈ.Bo«l ny)DØ)P0ÄÁ™ !€%T‹(›ð»RÈbû‚­V¹Ü—ÆòÆ(,r¿ ÄuWöòÈ´…Lô¯ñ~¶Zï™N&xtñMÄ¥hÕ ¦¬… Ê;.fÄ÷®i2üí#s:ªšT¶¢ÉÕNÀôt‚]‚ÎRF ¬Œ J†z0)à Yž¬í_ĺèKn×XÅÞìcý·êóÇ<ÏÞ=nù"_ƒ} ŒfŒC MŽy"BƽR@™Ù‹™‘#Á!@ˆÕ°ƒ¼àn¢AE‚gbÚî­C°¡0i$’ÌXF ÷ÂÓ‚¨)„£AØ ØÞ¤ÄçaÁRÄ[3•(–aöœo5J è§Ž6 ÓµHÁ 0 €ÎÅ‘ÍrB1•"# H.¨ç9$  °u•"˜8á}m2ì9ÖL’¾§uñ¸B·ÃþÖtI¤®¨ã~¼5ºÝT„m’du!4$)Üu›8+du²fQ™¼QÍPÌ ž•§yÄJCV-Ö¢DŒˆÁ\,0§ÀÑ3&’¥æq_´WÃeËô¯«lk`A`œ˜Þ‹) ‹OóG,µKI ˜ØèqŠ!ñ+‹ý?ûò¿)Ñk[gÁöJ˵ÂK Æ—S'Yet‚}19G>0œ0$;¸Uh[R% ‘Y«os…YÑ•I Î/*ÒÊ‘ Q£ª‘‰±)(sbVC±qƒ+^íSNXpDÕ¯ “TÿLV–X[­Ž’÷gnAXjEÚ°­­lP­-g²w²s9>)ÉÖ.êµ²Ilƒ8¨B‹!‚€'Æ@1!!ú–×bwb½Ô¥)È •v Åž+6‘=)u¸æÍŒvVµÄb²ÖÅÔÙv”™?ÜŒt—äwÿ(FBŒZ&4[BŒVƒV™#TR1Y24D ,¬°X@ @ˆY²ºj–ÖÚ·g¦ïÔmMMl¡ô®Ûyj¶d+ûŒ ‚]ƒšëƒ)‚6@†`4d±¡°‘Î %Xˆª›2üXAVãë”Erâ´ïKÿ$óê]-Ïnæ¼rÛ›ç– ©Ì­Ï\ãzœÁKQœÕ,\´Œ²•bQœÐ·tÛ3‰;""—*¸þÿ3 aÄ‘×&Ë\ÁS+˜3Ì‘ŽUƒ0Š;´hº¡Žë`C\Ö‹~7ãF½L¥<6yÒPÆP“Ðô¿4=gy± ûví‹rgµ¯S²‚ šÙ‚L<"mŠëþÞu‡Ë’cæÎ¸e‰ÃД³:—O’ÙV±Œ¶ru/qŸIcbÑô#’oŽ0k+g¹-¦PB×D”³vbI#`H¦hw±Œ§ È_(OšÈ*²&<^ÕZ¤J1{ÊRw?›ªsºÊ)|¡‚Ûç%+ü÷ ÄeÕ=]~Ú®¢KøÜjì=ú×KíÏCç¥Õ»låqF¹³3€&[`—)‹ŽÍd–88md tœØÍXŒ)HY¤•Ü8#ƒÍ™ÌØ)A¡ ®Q'¾,ÔhuÞÝž¡{ä÷²RöŸ»ž¡cúðê¦Î½?V[˜Ä--@ógÀ̵ð×”¨38Eç¼VYiÝIÑb!ÆL€ª¢ #“)j˽›—ÛŠ¥\Ù¹’ÝZnv?:s’¾»N’»qw¥ù,:§¶Üvì¶ÙNV÷nxfQ<¥p€´º%mXr¹ †›cºÐéth«^› Y9@y@@‰”7¹¥)UÕ)-ÌÂO»Šs&U„b¸,i*Ia£BrÛ5âÙÃ>úÖ ö#~ÌKdLlžºË'Ç U v&c1£…½‰ÐdªQ]5£“ÌáÐÊJG•Ʈİ““KH»–!Ý·K|Þp4‚–Lìþ¸dÙ UÙ²¶ãç\pK~~ÜucËh¢‹h¹]öä®QÊ¢ÍÉ ©’¼Ö|ãJÆf,‰¥JÊ U ô'$d@bĉª˜´‚P-Æ÷AÃ>D+y¸/¥YÉøÝ纈Gto» ˆ5_Ñ1\¸RMÛÊ®»ŒËrcyAßuKÚÇ“$LÑ‘XÊ—f¨º¡‘ŠrÓb@%pfVJ ›ßpÊ«AçË¢4l±ë„ ºí»|×DG†›Ç`Û¯mhýîúKÇ4‚'•UÂȲ]óœÔ´ˆ‘NFi´J}x"®¼TšŸL ‚™sUêÁä@séTÊq/[&ñ¾F6²Ã Úq ‘BôúÞ*þÌ£ÉÿšëÇó¦Ý„;3=]:»x'Ø–ÝØuã-¸®ˆx|®·Š&À ŠQ/¯c}ªIßl¨¦ÑOcÅ™ÍÑbŒÊfªÆ9!)1B„°3¢XAÛ¡‘C”dh<„Fqn¾yì.£zìß^>8~¬;×îz1¾ïÅm¶{nñÛ5zå ocÈi^¸•\^üùºŸ€‹èíi8¶Iy©\dFv‚¸@c‰³ÍäÄÊ´D'5&>`Ã`𔢇“c;ÙìB’H‘ cÕÞì!,¯P)3Ö–Û9ài±z¥«QŸ²#\ð°ŠË>`!a“°¬+ya à„´nú£ß¼±*?Ò)˜S ‚!JEÑI‰G)—€G¶ü îäSýçìœ"›tE¸n¸Ø|¦á9ž{Ž¢¤^›MW9Õ–ÐZ0;)Aéª ÙÓyWçR-^ëRéñÒk¦QéäÙwïеnÏñZx|oŽí£Þ.åÔW/_(ñ\ö©a¯h’ÞòÓÏJÃÜs•̤gT3¢5SD…H’39k*®å„£v™Ë&ƒ9C—Ò›aœvçVW¼2“‘É••Pźձ`:¶tj\@~¿ÃØû¿|÷e׸˜ûº.ùGLSÓ–Ëwβ®¸NŽrÆî­²=˼C‚¿…¬`‘,†7SÑ+ö‹sxë-a\•M/KýØ­EYóÆÒ&„22ª^ÓCb©I.2ÑV™Ò´rt¬Š~”ëÚWû®¶JÒáÝçI} ÓêÕ §&ç³Ç™lÛm}vë.vã÷3žÊBPâ9ž{´ÏÝTÕ]/×0x_)GžÝ³”JˆWäÍ!G€6lVRŽÎ™ÉˆO½pb9Ä´O&Ïœe°ô×·-7-½ìɽ·KiîGHTrÀ›m²Çø0¢¬Ä¼£Æ  G6|&TËÂÄÝ‚–0E:Ò?ζÝ+ê#}òk±Ë£»º´Ê·B3ŠÔn…Çq—RŠýFRø;JùÏHÁP’Ø%ŽD Œšr%0ÊõU 5Š“8Š,Æ­¯dl$º¾Á§}­8x$1Á1ݹw>»·ip)û5úõ××\-™q·, >Qëá ¸´ös.žz®Oˆ~?ð¹ô}h:µgwW¿ÙÐÚÁöŸ-ôN(k»”¸†ÂUN½]wP4"¥I)x¢õÄ:$§„ ‹9ªFÌ•õš¤(…ŠŸ¤7…%…%Öhœ $…™E&[†z̲XH†àŒUS+6ž+ˆF¤S(h¥ ÁYj2íRGšR0I¢xðUËQÑk+³{÷]Ç,r#³hÖ:ã„VMRû†èlûðèËÉüBôc®þ/×D«áÑZ%Øé7õsÖ_ “£•Ó}ø¶Ýü5ÐŒL¨Ûà1:Z " €9@‚7pIŠ:Òñå ò†PB9ÛŽºeÍØQ:ÝI<É‹P`x¥÷¶þóáy”­¿f¨HѪ ­KÍ'èb˜•à·ˆç{}‰‡Â>`¼ò.5Å—ižÓ/cÍÊáÒ|Fée-ì”ÍóS¢&UµJ°Û Cx½g>m€³i¯P”Ý –1i¶î‹¸áŒ²¥W D<ޱ¶”Îý2¬(I.6å ñ(kæ8®´¥ŒqJ‡•»|¹û}y×ÎüçOÁýÉYeŸ¹°¬/hv—ðì°¬"+>‡w_~Ù·»;<{÷—rÝÎÕº>'Ðïîä#â:ðÓ¯-}¸÷w5»§V/-ڰ»+:ý¡aˆVñxÛ¾õ%yú\´“Åp¿íÂp„Ž@Ï$w’ N¶ð†áª[E³šBºÆô¤Iƒ4¶§©ª ƒ ßrÈz_”šµGnXòIKß·V‚â[GÙžyC…ZlC²¸[²mªÔ†›…ö­ÔÉ~>ýžEe„EgwG-zÒ—îÕ­žìž{¶|ž0¬¶mï7÷õs„_]ܰÀjró¶>{íE—vѳWS¦ïž%FǶ¤¸y ÷ËÙÝõµ&q{ciש/G¬^™³‰o½I¨ñ‘‡$Ê«¦ÒðÜ}_:ÞP`²!Mï—žlY˜o’xllõ±n[¼uó· ß6Ü¿Öêš°·»ú9y/Oñ~­k³.ý1Ÿ˞ݵ•:ÆÎŽßAÓ.·à™·°ç6Õx%áIO3ƒ’Fè9nøÍÚ0v¡ê…Sio=·Ús&)I˜—U`òº¾Ö]}0ºÛú¸®º=ÉvÛ¨/ÇdûïÛÕšù{øCÉp*8àŽTJ =ç wð0H€€.6Z€ó/âŽÀ#ѺX¡‰8hÌr6 9©tãµæX‘sì•¥ÛãïM%Ž(Ô×éJéû©sº„{aîhèy“Xk¬Æk3ȈA‹]ÃóbµŒáïðÀ–{*s‹kI“n7…SÄ[åããtNöôÛÏn:´AÇoŽë£ÒÅÑ {wk¯Mû¯ãM™c¨/=òå‡\9Ë N¶þÛ²î¼)†¼³žÝ–ˆ5tjnWiÚË>®«øí õ6_¤lþ–Ç}÷©ÚKÑTdýïÙ|ÿ%ôkçJß×ÑÄ•»£’züôÙÚvŽ¸ÇŸoñŸÄý ÜÕäÍ"Í»ûf߈ðsdz¢Ý¿“ßµûdðf&&~:¦©½ÉB™Ÿh/Zh ÂP™)ƒ‡B6‰ßDw(@",íÉnrhÊQH ào®mÂ(’=ÌÔù£¥|•o_]©”ä™y=›£Ç\–+ÂZóû¾ìi0ÚÿQ#M´¤ž\à)ËÌ”,­JiŠhÐè¤E _×=Zô¯nš®=Gê^Ë|oÛA·ÔåqíËîk‰íLµç69¹#Á  ÔÔ£-ˆ{Á„q ¯Œ˜Ä3í”Q†Ì8VW]¹ÜËtqßso¿fËð×ç¯Ç†ÏÛ‚6[>u¿ño½×§ikôØy‡>[Õ厜Ú5Û¬ó ÑÊѶ4æ¡mê·@ºc]"wÚ|™m™ºC%}G5Y…ó; ‚W_KÁäˆ8ë6ɳÓwUÍ©ñjÓ¡;=·`]e]Yoc:p5Ô¿iƘꙖ%¶ää1ShdMF×Ò!ISiCµÊ–„L|úÊÝÜ:g»£qýùÔå“­í∷õr‰÷% ’HÀ3.†:K¹Ö%A#°Œ¸È¥Ææà¦Ð²F\¨ÝªYo½p˜S¤¢(;Õ{²¿Wñðã×]s•{¤üF<ñåɳ×ÉÿNÛ“w ßq }üÑKÛÆð·^=oå¿”%ìÑtŽÎöûšÊûõË/-ÙBþ9C»·Çf¢ŒÃ†¬¡¢ÝÙ6åOHökjjŸ+o{RÌ€%@(AEc&Û—§åt²ø¼£t1t‹.éðÓÃ:BqCŸ 6PØ748Ë"Ä­ã.w&£îãB¾R\¯ì<†;ŸÇv¼þ§ß-zq]š§çŸ<¹e]]µ{:øçŽ|}zûÏ’¿+ºú«qxԴϰøçc†–9öFç1Î[4Ùá¶=CÏØô¼ú¼3æ»k­fP[#ælM^µÁ0P€/ªFįcô°Ë‘߇Fg”1é:ÒvàzÒñ§—ÛŸEØ™ô¦$#ðgD%‚–ÄãFTr(*xκ9!ºAG0 rE°“ÊÆã¡ž#\íÓ­bŸÛϲ½UlS<Üb»m¸Å)з çŠY _-û©®p( `LŒ(.‹Úÿ,ž=ò… ’*ƒ´"ºà¬ç2-­àrIjKa^‡.¯Ñ±ÝKGTø?mß(¸d­ÚÅ(¦Ô•uÌ ðgëÿhrâi—1kþ£…õ×e§V4ØE+ƒ€ÅbD‚ÅT[1…Å®)âºZíO9ã–2´BH< 3³QEÒñº›Töu"‚Œ¬g–+„–)˜ ŠðY;8V2äš9¯J:Î/ÅzF¨N+(Dž ‰­Ö¥íw}ÍëãÓ¢¥€#ßTÜ*Hô”Þ…sRn‡IŠhdØ*„ÓLªT@Fˆ‹Äö]ÎXã»§|ž]üi¯T8>Ép&®¨SvU‘xêÊ%p{ã…,Šp´§GazeoÙi@ó—r’Œ±×—œvu¥wn÷'oîñ¿µ¸ywp£mÓA<ÐþƳO“úغ“Õw8[ý‹MZënãËÆ‡>Ÿ —(åЙj»«¯œÐÿ3én~»ºc.§ðÕÕaxÁ:‘.ç¶èKõ>˜'E‚‰¾©nêÕpõGÔäÛ5öú·¤ä,\Ž.23¡àG˜³Z™1AÐÅhÄÈìARÀ…›ÕÕ&NÝý‘eÝmfÙQÚÞ¸•û9qõpÏ…¾:¹é†ÄîŸ_#^]”â}mÝ®Z¸ù.“èòÒ›;9WŸbïÌqç|_xçõe^Íý{{®M¼!n9ñ¹{o^|æ­"؉2?¢\¾ãl«m•SÉ:;NÅgaÀÌ[$D4éïmS'B‡zŒ“Íp(„@oèðšï¯k+tøÒ¸ùB©Ô“Çéó÷ëëðØ\ž©,¹öq]^ÔTŸ~Ê*eÔѧ&/\ûõrÃ,úÿ›/ g/NÜ­<»xöiÚ§xöϳz_‚6Ï8tÒ¢Xl›/;œi ‡5‡Y“'X–µbѳšÞ<`°q¾‹Ò+‡¥ÞMH™^.—­‰ð@‡m´p’\:ãÖ%k•[ :ÎݲT*q©dâÉ´!¡Å1qÃñ¤VY™YâTí¯ õþÖ%åí¡NYéN®|[ºÒæ¶§ïøUñú|oð÷mò»Ø\ýXõ®ªGltpHò [äj`K8))¡!¶äv‚0/¬…éñƒê;#½á]Q#éO ü’f·ˆ}RX]–Oˆ³„÷+ÐMÒV¥Þ!çK!:Afä dŠÃN«Ð~$}Ïõ4Ãë/úïODc.:£¼ Àİô,ûˆ“ ¯†8¦V"‡¬Tó'ÖGO©Û«‡oÒ=ȉðï…t‰‘û¼Š‹ïxˆà„Zý)ô¬cýN­Q¿ÅëŠÜ5Ë>Êý%,ÁSÃf«U.„2j 4nÞq1HÖGš=£X,âRD{¨ /²ôÎôk¡¤˜Â·Ê,têÙô¾Múþèö·:rÞ^XD»²…Úûó¿Ç*6x`Æ£)¸'Tqm÷ưižªe:“4yÜv¥¶ˆ{íèõã†YuÊTõãëȶ¨‚*êîÂÃÆ0Q“‰-Á9¥¾EžŠn!‡Ì ±)÷”1ƒÝÙ½³ç¯¼›‚ãÒyá’^>ƒ[¶?[éûiÝ_§Ù·žTúÍÁi¼³c3ŽB ¤–Zé%,óT²Ø"B'ÙïÙA”óùj9÷e¨úi¹0³³D(ñžI·íé°]Ç—mü·^)ó¦\õßÌ—Õë?ºìéú‘·ÃD€8SJ4ËJš1Â×:ˆ¸/ÒÚãfs!ˆ, ±¢±´Cc§¯·>E—nZ¼½Ùd úmM€›3Û«·G³„=[ÖÓsM\Ñ[˯~}g¥n5¨ýn:ù®v¶Ÿ;Õk.’Û¬4}}Óøû¾)øü™¿¥±•W·¤lï oŠˆ¡ßÌÐàœµ!_ArŠaw†|¥†£÷q„Èò­YÞž}Ÿeó‘—_¸½œ9³ó–ÅÛ‡Åç}ñl£ƒö^Ð÷c1¯m­ìöœê‡Ü©Ò¤–‚,Á7«Ñ‰ZÁò >*}®õ•ÿPîÅ{/Ä §.ò(6B’‚.Ngéâ㼘1ŠðÒÄû¦–±¸q࢘¿˜Å LOjÙÛÏ{vk’»&6xE¯Ö¼D’ÂB¡@AŽÐÃR8^x{on¥?Ñ>ôù©ºž>>˜,Oœ$Äg‚Øï ÆKô¸.ÀÑÜ•‹ß¼@a© Øl,M„}<0ëK÷Ôš0:†t‰ LrPòo1®Ž;l ¼nöÎ1ë·hdµKW¤§HT¬¾‘aJJÍ Àÿý.€a%òž®«lDm'/œp*žd­R•$ÃÏOàIòKdíõ óÜžÁ:Å=1:wù^«¨á·×Å»ÔîꡤˆzÑ­ôKéëñšEºíñÿ;òMé~Üñ·Çuû‘¼aê9½€(Ÿh-P :­œ±Czþ<ÎcðeC˜4áŸx*XH#••kOrp´™—h—J¼õcQ Vª° ¸ä-R†±1dTàÒšy:y¥éP @‰ò剔²„³²(øÂÙ·HMú íÕ»¶í¾Ç®¸ŸÀü2õwÇv\až¢Y--¨’k!õ>< ¾š£»!¦û~IéŒ{{Þµø–ñá7&ô¿ÓÇ'¿öá×ñâößkó•i¨û1㬺ûÿ1 šw:¤Ôך}\o÷u£®1N›iŽ™Ç ;ÒÕ1Œ®÷á^ëì·_yZI—¶KËNÜ$Wùíí}¾—K‡¾/Ó§+±Ü xžÓ\xuY-ãUqÅ„ºª BÓR“¸Ç=îÖ i#õ¸Y„¨| À¡È‰ÎBð/®›™[®© 5ÛNÔÀ‚Ù3 ¤¨«%<-dž"E8Ø0…€ù«@™l,ó•K%A )ÆÈBrA¹ ÆÔ¾'͇QúlÙ³¸×"œÎ]éÊ1ŒKS_k´D.«z½º_rì{³¼ËeÝOÓS^ÃÙî½]U†œ(¶3Or_º{`RÉùüI§Ýy4ü]ÑKaŸ_G.{sê½øöá¬8ež%]Z£Ûîå,véȶêå¬p–hƒ€D™‰e „²n`Û$&Y5ØPr—°Ã1™¦–Õ#GÕ K¡fs?h—?W²Ý´¿¯]ípßŸŽ¾Â'•:ðï“ì.©Ûð\©2‡Ç™ì‹¹F—ÁÛYü\É‹äÁË3[­¦{Obt)lâÂþõi˜ÙOΛlð9=ghD\gG>Ú¤ˆøÃM!À"E©}zþ?T;dvìN½¹êδéªz‹ÉüíNý³ééç=)^uߨáÛ9æx5ÈäkãÓ ¿ŸVŸ­ã îP_²ÏMü1ËŸîE}àÏlí¯¾’¤ B®"R‚E”¬ýÂÄ@ KIiÌ 5“çë&S¿Ï*Šêø½×µô;“‡oÂ|CŽ^«Î)*_Ù±ý¹óû)½©^Ÿ‰zîhðÃݘíÛ(18ÄûAxÈÊBÑÛi“tž#žÿW±qÙ;1ÓuVBB¢Ñf¡€°ªù…Èû5{Õ½ŸO[é‘vá,Æ­fZ»/B<—§âÖš[Óü¶,-· "v™7U³v.ˆ›á—D&¦ÿw¢\@¶‹ÁzƒoÎkÒ)ÛéW\!öy°v6’\½·-¬ï^£Ï™À¾ ®V_4·Lò·ùë×Ð耯]ëD#R\«Ét¹Ê²@j Íé(ûèYmH~†{«›iÁOSû¼ãÐïw´|ž8Ý1ñ>Ï¥î>ûÊ)8:æÿ q__±º/Öü¾ åðîo^;5þB!Q%¢ïÙñöšêˆ fZÌxpO‡”<ÔþY}ÇâkÑoeªVÞe×§:o8uRçõÝ.ˆ|]=·â<§–ÍÖçìÓt¥2¿—±[—¤‹,<í#ÀüÎ0à>‡4]O(Pˆ…TÁRÊ1ښő=Ì"KuŒ+Ö‘/?ýµØ°jABј ‡JEK(Ñó>[·Ï\Ìb¡$‚F%Z7‚ÃFŠ‘^rñÊjoª,vì-köp^熾=|[‚KjÏÄÛc‘€1`xå(N^Ý3·äÊrÀ¡Ö;W&Ïܤvž1#)D÷“Ù~­ŒƒÏ»,FЧåÑHx?KÕ05ü„6íå•óÙѪéü§n}áÏÒý³Ý‡¹¥­*\ÄùXì™è'6š5 bkœ`Ǹý*d»pÔ\Iù›Évœ!_0yP©3‘Ò-%Ä@§_'ãrg#DI~¥ƒ >îšÓ‡Õ‰OÑŒ]Ýíã?œÚ/ŸìÎô·¢CNŒ»þ Lýgø¿5÷ú_ yÛµ±.ÿ<6´ºk«æ§ËoλAù7Â) 5s¿} sòµªÍw¼{x¿tuàTÎ>äRæˆÃó”LìB}ç§8:‹ìªåêfÃÁ/>Œ-’€à Cb¨!Øfq&‚› ž“p~EÎ0[ËË•²Lc5`”æœnÍt=i©QÐ CÈB £ÔW¬µcHÂT®@  DZñ²Z<àX@ È,è¯ ¸Î¡€bP-дÆ~ ”¸¾”Py]ô°"ù 5RWOI Iþ{cÆiJ Ò"3sC !Š@1@jças؉ÝY/§åçm£\6êë…CNŒã”)ÈQµ6«˜.X:¬€âÒ@]ÝÀN³NAR¥ EŠñIˆEÍTÑqÇÈ6ìKÜ@ðn[ ëiauºz±ð¶Ñfbd¼$–iŒ/o^½ÏÏïü>âÞzH$2NuO_qêÕãçëôÃ顦­¿Zö-pž¯ŽX[Œ¼Å0ÝìÛÛðŽ~ a‚Ýj¤’Mûí(„ò6¢Ìå#–‹˜Òa)V]i ßâV¨­~Qpó@‰ gˆ»Õq/ià;rgz2€®3¾¡y¤i°³ Ë â\3!šß_NÔKsöiýþ­ýÖæYÅ;mñd̵ÆsÓdV‘ß'·=¾®¢Òç»õTê^ï^¸k¯¶íØëîÖ¿³äÃæ½égéçl¼ixþÆ;ÌQFƒ˜¤Mb ‰Š'"€ÿÄZNC¨ƒ¬™Ô$’‚Jcñ^º›]£¨È%Çn^¼¶–»}e’Ñít¯Æ›æ]ç%q—ÈŽC‚W¡W7P!U<¢½ È‘ùÈHl’‘éf,…r•o&t¬q¦Ò˜rU?H"Ь¬7xD4Ç +#H6Bv<þׇԑEa<•uq!Ë™lˇ²¹k>2úNÂa4Raålš(É_IŽ8‚VOŒÒÒl1Áb¤m8ç,Àjh I÷­Ì²ºÀÈÝÄgL áÚõ.LVÓõž)ˆøž®D+“W%‹š<²%j˜‘(‚¾í<ÂŽ–ò+œ~Es„# Y+ †§€Ù¿Í‰Zæ Esã6„FqY2`ñå-P /ad\Qb”'x™I)„‚ZL°a»„FÌRñ;œ!Ã]=ÛšåñÆüîl‘]ÎÜZ_éÒ4[$¡´U y^“Üp. ‰`¼x`]¸¢:n˜ÝíÇÑ`eRXÝLb¶ùfž † <É‚Lp.I¸CÂ8=/¨Bã…œÑMÊì²ã…Œ¸BPžc-‹é…™Ñ0Öôé@PíË&Ž6U7‰gho1¼6T;B©:̵¢SªY<W½'Ga\F[5éF4&onìºÖº‚GŽMŠHdœöÄ¡U¶Œ”}­úèß(ý¸Ÿvû¹%a0Pf'ý‹ó.(¬ãúX]ŒÇd!–(º&Àig=(f `|«¡ª†{†€AØLœ%ÄdgJ*Ä`S XC&®î"KvC$g‰7Œôü‘}£JU*´ÝÓf¹È‘íï8ÃEœÔb 4dC˜L䈂©ILS\P.)G±µƒwv¢*QUQ6“ZPí¦ÞkEÈÛag@i ¾’«Á‹%Jg†i0€ÚŸz–O R†Â,‹:ƒ¢QbH vš@°îˆ‹›hoH¦ l~_=Üþ6pÃÿxðñw"ð>÷ò„‹K†¹å†ˮ䴈Ïk72º«[‡'ÏQ!ñh‡(‚‡È#*ޤ·þè9Øx/36;€€‡À( ®¢ÙŽ%¢ÄÁغªsîg(´_"•G1Šî2;íœDbŠ µyÓÜÈh#“AÀ‡p•¡])¢bu*Ç”aìÕDàUô Þ…ö½êßS®MàwwÊ«`2Ál Ë´½¥¶ñÅ™ ®Bx™óΔ¢Ab?! 纥M–±³€ ôbàÍâÉ%wWÄ@ñÕ2Œ’aN:0B‹®«˜Óz.¿Kš´6žG‚PKG®7yé‘6CÓQ=á ;„<ÃB¦l&l>Í®òêVÁ§òËí·rgæNÕBò’ײÜóà< }Õk¢T‚0`iÃÈ•¦„„”`˜J…Œ!1ÄQͱB„æ+‹¬èS(*"»‡*¬!§™)n%ËÛÝ2•ë,äš Ö mè!þ¶>ã¹¢.Îo±îGÛ¡Ü&o²îäÇ»?@:ÓçoT–f ­x¥·–L• ¤ B£O¥Hsê<ÔTk)øæ÷î'B\€ñ—E«—þlMŸOècšíù¸v)æSx±ß¶pƒúvô36˜ýj'mïãÑ•zš» VŒtÑXjIÞi&ÂU-ÝÐøp ØÖìãVy±oaM Ë¯%œ¶ñ!_™¥/o·Ë–œW«nÍªí»¹yeâ¾kÖ®ÉWî ‘SåRJ0`3Ëáݘc3¬›”%á$q1‰Bð4xNßJç̈FæG0—ÓE`€ÃÌuj4|H'ŽˉP+Á`Âr8Ïzé˜qO¶i¿$˜”q”;zº]«ðûÎÍá…!°!mßíOnI(?WŽ'ßkË/ÇÃ~®}ÒË\ÁSߤñ°†ôÄLÚAšÑVŒBs°vàó«_UÜûЧk­XŒ ¦_ôâÍ¿ °Í!nÒ'‚1î+yòÄí±Œl#À`!®ê¹ÚncˆTpʪq4Ø /w¶ØÏ·€Feç°Èʆšêæã*ótæQ‚=Ѐk!΃!ÔF„ ,E½ÂÈBAb€ÜçAËK÷c<°”J(¨¬&QYœ7n!Ö˜E |¾ðÐús?UÅ8´±\?}#‰^SF$b•€Qá$Á¶©6ÂjÝÍdÜÞA¸J†”Œ~(K5ˆ²,>LòੳÎMæ‹·<®ACqôƒŠgš†,û… ’?KHzWô %ÈïXî°\q3vgI€NÄ@l<C„t½xÒlŠlƒ›ˆÒƒð´Ùª’ÁÛW Áï‘È~d˼Bžëgåfóœ+‚Ô+Œò1& ´bg{•jê^Vð&k溘Œzz×&£V‚™—6mÑ—¡*O4F³Cðà2ú@ lCs¨iuXBi©\©¥±QÓ–·â÷~3f/Í: 9²¿Ëª·ÝÛ,o¹9¡ûãîáÌajýˆ§—ÃØ YÉ®6Ã$wÈD«Ó* 8‰Å`M¶z꼓C°9À*ˆ°ƒ’$I¾hÛÃ:À%Þ"·ñ5âþ9|ýrÃ+è¿? îÇ\TÎÝòö.XOØ!wA6—bÂŽú¥½qðIãÅì[*rà‘qTÀM F\UzÕžH=%¸¡âî‡þ|V·V¢ÝÁ¥ØÂ–8 k= lsrs–ª ºÃû0ß ç:¬Í˜ÖCÝÈKú€€Ýb<Hxí‹Àb×J´’™Rå„RqÎ*eŸpu²¼C9‚PVÔN&*evsŸ²`•_×™l'ÈëF2’ÖªìU×ç W›B–ܷyT&“Rû',‹’é]="|%q*[,ò`¿y;èà&`|¨q&¾i±Z6û†ÿ!÷Q~ëYãËÒB²ERŸ·CXð@…¯ˆ*¿ÈÎl„ß +ùlTsDGÃ¥7ãݶÄ%U$,Ë \¤! 'Èpͨõ=#yÜÃpõ!¢“–¾4I°*óŠ|¯q¾bh1€Ë˰R2œð1vatKŒc9-•D®&ž;ˆ‘}œFn(5bµe%8g&ŠfoàU9„€ö©$Î%‡@Vìy˜2‰³­ý&Ž|ºDnŒ†BLp²ØÝV1GËAå {wn’qÏÅF<Ê dËå†üOØUºp2m‚¤b;2Ó‚D[åbrš-nÖÜÉã4榭¦–Ùmdà8I K”½TÈâdìGEÇ(c+OºMibö¬­*_§­F6ˆs$ŸA+jÇ<7ù›o‘kú¡öd‘¹B%Ônä1ÉaŒ/Al[Ù¢:ñÙµ¾#p° ¶ßgNýVv£Ã|3-µ™–ÍbM@¨T,Œ ë±¥ ñ“”rÐ áÉjé‡Íj„¥@]Ö #º>~çb¸ñ²¹‰¸@*Ù«`7¢c&QóÌŽÁ”sŽ8Ð.Ðöò·o-S®}b/Ì´ù«šÎ€c–÷$ó‡.4þÙX¯°I{aÍ}÷u +0T¾„v²…Çç µW­%ÿÙ!i–èÑ’êøW—h¶!Úu=œë “K×,T9(—™¼i%®ÔFÄ2á ¦å—‡ÔM3(ÚÃN¶×V,¦ Ьï´.‡EŒÁê^hÀÄê{F<ßOœÎ Øk(< YŽIy1g§÷ ¡¼f6X™nê×ø0p+†ÝG£pB˜ˆe,Aîð‰jèiuw•9Q”ÆÝxƒðˆJð)¤°.aÉÂc,Œ,”Ë£¬uɈ;®ö €BÚB´¤né<¡5 ±ÂIG µ‘qDÆŠæ,í ߖʈûÓ÷$k€Ùžÿ÷q¾°o+•+šš!ªºHû¶j” À°Ö:¡«¸2|HÜÕ‘,5ˆBçTê"¬…yuØJ>F£ÍqF¯é`@þ(ãþëk–cìkeµë×3¾ž8Ÿ#fLÐV Xq·#ãHRð€ñ ŒÑ~Z€Þ<°–7 ¶v$Eý ÿ¿#OšþüNœ²œF©P€™¯"QÝø„G ³yU›$RºâßxašIM }G\OMî2!sO¶àkŒŒõž‰ûÝ›tç&Ë-DF9 ¸¸;×)•Õ "7t“(¤qÐâMf‡l3 ºžl€¸ Ó :Óº•“…ܺöC Œ·ni<Ç–æ¼€²I„…€Œ«ûÂÒŒ’és4 ÔÈ„¤(ÊïÙè°çv Ö³"âR‡yEZd€(îlØZ|ˆtºZDKŠë‘…`3~{ì••G{o÷å5R¶¾ïRSoKx`’›è ìã ;³:*€Ÿf–À‹º'~LSV]#5ÔB»L;™„¯^¤•¸66÷]ÃPYh² ³ÐÇ1‰/^ËÚ»ë•4„ qù£(œl^·éo= f±»kÒ³2ã)v²"•´KˆÕ”tKDc—²,™ÚO·ºnHsr:ÞåGWãÕxÜQà- ì›çÀ"t4ÄÞZÌ}RÑâ =¨h¿„Æ’FòèÝÖä)åÊû±ŸÒÂÈ@|ã\-Òùµ` ûá,ÿê°-½+>8´—¬‘ÌWXn:K 2åEŠäÐ0Ëé› †È‹)ÝUa£x®.üìeöÏvŠp‰A)d­ŠqeI‘mÞëéäù`€<Ós©¼a¢:…Œ…]ŽDÍÁ»…‹Ä¼A`Ø|‹hàÊh$§‰ Þ2bÐ1G¬ûý¥uºqŠÛ¦·kí¿ptRÒA9Ð]Þ¹¼CÈ-¿e+ðI»Bs–VZ¢Þ.MíÁQQ™^܉Á&}G8˜«îKkºzÒ'ÅLù›Y”Ú„ÔS“šó4 ABfTË|lŽà€¦žÐNÌyG–ûPb)#vÌ—³¡Kü¹ÏmÝH9ù¥nDg|t}]¹'æ5ð9RTÿ6Êo Û;5a.¨k\‡Ú‹àÒ¤Õìú ˜­ÄÎÇxÂoáep=üåèvøì,R“{CŽ,~W1†p÷59œŠ6aÎ@Û‡iÓm ì$Kp©æ!¨&5ów¼½·lÊônäÞ߆[ݷΊyÇ‹úù6zxžUÕ=úÁg,—Gågžë«ÌuèhU[”•¡½Úð4 ~öê€;b . x›—3vÃFÝ‚œ3 ¢n!ì0Ìþ3*€ÈÊR»ä$²4&7,½ÒÄBü¥™¾tÂw3vP11r¹ç)œù—geSËÖP×D'±Ú¤ºì¸½K¼Ã½­ÇV–+MI¸pÚöùäÕ+ F3&`)Ã(÷bµ´ âêΨå¼äή@Ü€xf_¯ ¯î^iÔZ/‘_™¼SH€¾‡Ý8m+E51\ÝE›€!~ò.íàÔÙå+TAÛ¾IîNV÷µ„rÐ^ «ëÕãŒü¶kšXƺK²x1ft|Ú(¤FÏšb àÃVvcNòµ'„ÔDŽ.“èqÀ;dѪ¡¬k¾.³ÿÞõXv(ª9°ã`ó€&°^"UŽë‡F#&Ü9 “–j0ís]$‰,-Ä ó_XPïëØY»NAEižÐCO377x¶5:„é9)Ýdž–<7¸»Çºô¿“’’¼ ´(ÙMAâ/×ÙÖ0¡RÖ#› ,C®(d 1ÉÉ,èjšˆaC”°$w[Äo”ŒÏ¬­—Jdé+ ×Ìi,ç6#–;Š>o ãô¨‰.ŒÇÍySØ…pH  ã¢äp_ ØO3äÏe“Ò›K´¢p=c´3xXLB…ÖÅQЮÈBD@¢PÀ9o)IC¨D¸“¥é-­!Œ™¬ZÒÄ^¢ºÓ¹&T‘¢˜FÙG…Má&¶#ªàH¶˜" Lž¤˜> ¢â|òªö6)ÿgWÚÅ’›†Ëh|/‚KùßÓ ²Îm¯âÞÆœ[BYÜÊMÉ{ DTœ¥ ‰a~‚Áé™Ï¡œ») €iÙàçeÅfg)ÏÕcýfL ƒºÁ@;®¾é€Ù`ððë“ Ü.ÓW&‡IÔKŒ®{ë‡gêƒQÂfL”H4œ‚þµ²EÚJ4“Êct0Ó:äÓæÁ’ð0]7<_ZŒ…ŸQ'¡uÄ*†õ'NÚ1}J"1 ô®î±=v•Ó?¶Œ-ˆ‡l&L†78m·UšÂ3™ç½zÞÞ yod0uŦDp<£ôšÙCp´"¼`1ø¨uÐ…‹yGÈLaA…Ì)X¢kiΞq„í˜+È"6²ö_S]“œ¡À5Xæ*è¯||›ƒ°>HÛELF!KNT‡I9q®Y·È/#ƒ§IÞ5@(Xp¶J¨ ÈyË`ÇA“ïeËóo!‹2¿¼¢|]ß‹f^è5…k„\ŽÑ;xSa+>í5BÚÄxM …Ü Ë¸ÌY7ÃP 6¤¸Y¹p6Ëd—Ñ[h=:÷ðQMH§HÂaÃ&-W€£žñµ­¾2ÉŠaPĉޫÏqºÎaõ+‡BBF…™bàÚŽLõÂR°ÙŽ t0d*ãHK@Fp‡v@Ý¿ãëS«ïüL§ —æÎ&j¤Ö˜W«|ÈwæwEs•lÁî°O… ˆŽI8ž Ê´:N#E'@'zJÏFþa°dá3‹!ì”›Ã2PJCp%1¯ î‘"<>(,œÞa¼Œ tuH}wرâCáä…†#a'žn=àÇ‘<ún u;âÉ3Ú£T­—ïbä3h±^WE6ûô¨¥ÿÈ'ó½Á*1ûAúíW ‹aàÏ!¸ÎÆ„ø³Mšë„Môœß–!Ê©"˹˜dn\ÖT[ñAL­‚®i$Ø7ÖО2\¼Dˆ^Y0˜ŠI4©‚'°Qqn;,2G §NÚMçd"¦š’ʈEÒÄ·JãÆ/›î1Þr†n„Ù² ülëwæ¯ú™Ž}ØêV²H”ÈN-KÁbmHqë…„D´oiÖª•°Öd%Q]@Ñw3ƒŠcF$U$`ª®»<Ø0`#_W„ïr§¸¡€-}’†:Œžù7|I¹¬2†0 ÅÁŒIZB šð–’òY@ ¦¤ E.7Ë;|0•#j¸•°– –¹3¡Öæ¯h§8…¡=ÂzAÒ‘¯e£ Q$'udÏ 0v ÙŸÆ²ì¥fMêLzqX £Š4JÿÔAãuOC¯…q/S©[’)¬}yª¥(\®á@OJ×|_¤¶%¥*7ÓPbܹ”ÕÄ­óåv}ÃYñ\ăk§´•ï )'Ðþœƒ‰[&1$ѳ ˜L‚á&Ey)^p…QY`Øs+ÂÃfº²Š1™‰#ä!»—ÂDï®$s*F‚((¬´ ÌrÇž©O‚žp]¥#¨ðΩÁN*øhx4›îpõm@«™Ä{Áä}Üæ÷/ÙíØªvþNœ@áäg!•À#4@G(;Ûn@¼Ç^ Wï=‹0ršY¡`Ò–d%«ÊÝRú^;ˆN#§^ðy+= šˆ¦¡ÚPÑia0nzÜUÞô0ì\°¥«D¦¢Ü ³DºiìZ &|Ñ»Îne·{š}ß ûn7û5NŽw¹/Üù&áÙÝ—&×òCfã¹:„dɉ¯V¶áÓñ7ÖÓt»zsêéèÎî©W/jdÈ|cô}…/ºé«º]šðk„C©U$U^vBA…Ù¢E½‘_\P²R9ƒ ®!ˆÿ]þåë7´;†1yÄ•°´3•1†©ªÝz Ž‚„8Ê=ñ]  q"E~àÓãTv-U£ÂÔºÁ²B¥X5, Ì’Ç’ÑÿÏ$èü.È€,'ØÃ¢?Jœ“©eÚw×§ëÇÓyN8í´³Ó_\‘-ÂXýâ…o^CóSÎÙ¾Èi*-­ áDI!á€'ŠWP‰ ´ì—qcKêÃÐc†›kÔ‹Hž… R¦x_ ËÈá•ÓDÂâø„}“9×ðþQ/êT×ÿ4ëÞÌ0#pɼ;Mì hDÄaŸK`xŶ۾ d6ê¶™¡YͺxÜ!©|@$…ëV¬§¹-­ú¸¼ˆ¶K IR¾Boß•¢ÅÉ*ÐÄ) \ŒÓ“ƈ ÏC4s`#½Q|2ÀLÕô*i–&H”`xñÅp}-¦ìjUr̃‹Ë¾Åòðœ]ì¢N¥¤ 2|!usn¯w ÿ)pÉU=½B|Š¢t¿HI Åá ÅËÓ)`x AÂrË·™{ÄdN±†ùõx”å¾yÑ| åÃ-ÓΧ b¿i|+ê£úto_O=çÙïàžßUÛÄ,l¬xs¶T¼úé¬9@ü]XMa˜S) JH2ˆñí¼ñªºŠI®㺺BŽ*»fŠ@ó F]%ÀwGvlÚ*Ô;^‘åÁ;÷Ì:U(;'>å2ž°ÄÚXÇ6dª»à¦Ô‚ìû¥àDѰƒ=ŸÀ=@”ÒŽT* x`~ÑO©Ãä|¯)Z×Ä„%—Ùsq ‘² ̬Œd›À=VÄiÊ€hÉ~|1¢­PZöºÁ¿ë”“UÆFfZŒî…õŒ=_SŠõÄ=ç’’Ö¿˜%.w¶6Mè²åøàµG€èÁÎ"È®’Šh8Ù Õ‚Êø¸ oÌOÕÁ‡:M<; ÎnÇD‹àË!¯„ÙàÐ9uçXçÏàeóEÊÜupÙ9wE§åõhµ’Ÿ&àúYaÕí©ád!$0‰u€Ò ää`U\ hXMFEQÏww€nâv§ì÷ùfKæý)`ÀUëí£ÎºÛwrYˆÕ»õ+ÍéôXæ¥ÒÁtU,+g,qKÝnßÄRòó®dñ¦ZÑ;#¨:-Ñ€nBÿƒ?ï^ÊÉ{4–ÞI3ÉÇ ¸°92VÆ)JÉÂgEµ×QÀtB•lÉ·/|®GZ…†ŽòÉ·Óòz%oÔ³¿)¢Ò%a¦:Y}ºêË{Ã’Ýmx*WÖ©%Å´· Tþ—¶ÁÙoTú´aÖ©*æG2Pz»+¾kŽlqˆñ‚ìß8ÝåÜ4gp-ñ'Ò›ŠSiÔ‘ààÝxÎîY>¬Ë® v(ËŽ†)%ÃìYÕ÷7tÔ >×ù>—Òú_Kñô€Ÿ\ë°ÿS£‚JîÀ–ƒkâåÂEáûÌ&xÂ-¯Gy¥AbÅTq¬% °º*n=ÓçhÂ-³ÞhýÕQ>(KÛZ¸‹ó¬SÛg(z9ÄŽMŠÄx©¢Bi¸i`œ«$G¸àF׸c²îþT. &n”×JÒ­v{ÝÿO£¸`4]Þ»Q ‹nеMóÚ:â™áC— cj"*N¨•:þ;Ú)-œlÏF@±õ4†SD<”`XŲӸsZi)‰8O q½Ï¯ÅtLÄè1ÝÙ>èή&‰‚*±¹NMà½$O 3ÖÄJÀA0¹Úôö•µ"9 xDöB5w‘hŽê¤SÈE=R<MïtœRÙ³ĸ¬ K’Xãi‘)¸ÀÒˆ©E1w„ÌW¹‚8p_K,G»õ¦ÅC+GóW2%mìeÊr%Êx–»4CÄ:{~‹ºªÈõäršVm'³êƒþ>÷ÇÎ/gœµ{\4¬¥®ñy—#:ï@ ‹­9U.ÄG¾VµvôåGRùªbÒDAqêi « y`oˆÙs@x0ø·AM\ꞯæ°+N2+š=»Ñä]ûZðŠMÂÙˆ1y{“„æÃ̪þÚcØ};¬Ë|ETQ Êåù6„xK½#5__UÆúˆÔnkŠ‰Ò…ôÈöƒÔWî;©>:mçPêŸ äË9l«j7N#kH%-}ó9 íåzÊ ºò\LõËH¿ˆ9klNÌ_åCØ¢¡úpÃn[Y·uWtwpæ[‚…¨[¦÷«}¥áBàe]H‰$©™½€˜Ld€=B³1+C»Ž¢©/™{¡~áIJ5Mµ‘ìô˜vdŒ˜—r܇Žm@ÄÃ|¦÷oEFÏÜT±z v[Êt¬ãF»¢kòn)·C†G¯ò:\bßïÇ9Dš»dx.$½«…š¾ÿι]†ÔÞp]0LâPõnsÁYOŒh.nݨxÅÌW×E¢{Àxy/MŽ-ÁTvAx{憦"|l>ªø ä8B X´Û[N~Œ§u©xp¯Ñ18}†7\™ŽÆ÷axÖwQ¿1ß[Ö“/ŒcÕ”tø°É ã'¦ízoÛPdÇSû+™±› hPHè'V²2®+ Eµ ã­)tÜU½ûš…KÎ;šOfÁp¡‡™˜^8M2VüöµõØD¤P$;³û‘zÈjàÁ¯IØ‘kŸÐè¢_ýŠÏUlÙ±ŒYŸ—ì»xÎ0\Ôg áf+€O.fî^L}‹ë Žò@uä寀âp¤Á©”R‹Þƒv’‹Fø¦^¡O¸D7:Û#¶”I7 «E!)e“q¨¡ÜþÕ->3\WîÎþXÄ*4¥ì[®P\%r¦…³‚”†™ÔBò¼Z1Œ­_xDáBóÌ–ðÕÕða[«L¼íÙX,œ7ÊÆö6R´¼Ž¬IݱÕÈ“‡9LÆ%›båå{­Ì‰!c?w1ê:T:?2ó«wš¬Xy™(‹ËÛ­?z®ïâÀutnd\ 8žëµ­ìkrH…08˜2!£¯/½ÚßÖ£S„Ô÷_ÆøêÏ9¥Á•¬HèÄää¾UG> ¬gÖçö.rq7ö?°ß©û×ÿQrEËÛÛáÖÿc,(a¼7 ØG{‘ï¦!Yüæ”癆Øagíc¹ÖX}¤½Tñ%òQ½âw¹Xé áq+ñSÉpjTÑŒÁ‡·À0ŠÜ( žÑïá+‘E9Ó}cÝ¿Ì2‡«¯&'@ë8Ôá ÞÿPLð’’Ð •`ØÀ-½_k¬P»†?Î,…V…ÀN·…Œé;ÂMÇÛË@\#˜G´P\åfÍéS›Ív¼n‡ãÑñ`9¤=yÊhKéFNÕ½®²Â|ä²fž& ö)Ô°™4æa´«*À‡R»³çû ÈÏ‘qµï$Ù×qm#-'E‘Øê,Ê?¤zËqãQÍóu ^´îh/(ÒL ìy÷/?¬…ù0¾Ã-@½ö™T|UO‡/s}¢¯ÍwÇq{ñÓîެ¶‰aú¸UmÓÀ £6j±nð …írZÔtùÒS_f…’³øÍ0ðÿŸ!·“mMþ÷ÿ&Û?ü³ÐuåE›Í^å$÷sÑЀÅñp%•%y íx÷10Q-‚ý}âîc„$õaùVqˆPi4 ƒ523¡UÁð ,-!“1â[Ìè l:¥ôÆ L¾J݃Œ~bÚ¡ø‘$Tp1Þ G.c 8ò„·ˆv 0S˜Î~Î1  òD>ì–‘ø ¾|B„iøAº#“°xÐþ“þQóGâ×û£8ë2Ã<ãè““÷¨…/`Ø3ƒLXŠ>úê¹3|ƒpZ~Žêg-y´åà*Œ×R5¬¡PÊN¥1º «ž?b¾ <\IÝeŽï¥±ÝzuUÌJVÉÞÞn?ã±Ïú¿âC6;ræÏ®ßO8-ˆˆ+ngý}ÿWûcÆf®-EAÕe›ª1ŸvÚLÇá«Wø¨•»ÐjæéàZ_µ”K¶éC˜[¬lÞehJDFS‰F Á×|FaZçy˜;>NÙxÔÏÄ´0#ÁjX9dž²S Ñö†rP+Oë+¹X.(“XØ0VŒ¨x¡ÆÂ!°{pæ¿“ý;˜€˜fé©5G‡F²›r n¯áQøu¢@«Ý N?'¥žÞJ3™‹L"ÞUxu“…ã7ÊĶ ›B°VM­¡wû0835À¤o2¸Fd@_l·…Ê2ñã{§'±OàçÙJ^#™{@\b¯#Wã0Q.²‹³žkå‹’̽ǴÞeXF?™UΟækë¾yÃ’±~‰8qŒÎŒ…Rž~ô""}¿¦XÙÍêë>¤yº(‘õΨ £MÎeEæNÃn‘ÚÅÅiD®zûoüC¼F=c”á§})3|7ÛûÓÜÌAg}Sû½ïµÜÎÑÚé»DIàÞ>Ü\îbÆ¥Zü†×™…°š\'œ¾V]ev,×[ž”Qk6´wO‚ÀÝ3b» Àçw,òˆî ãO¸^øÌ3 ™ YÙ¨.¼ˆ\Ÿ½,“IVÙB•hƒîìƒÇ¢VVuãg±ewdzN‰q±Óéæ›¢Ž5Õ*ë B8ú‹ƒOWî~“£¹ú¦x]ãw¬Ž+&´(°æ› ýüÑž"—.âëà2BbúééÇ8Hß™tF¯r>s ¹,¬c0ï’Í…%da÷‹½ƒéÚtŠw͘z°Žõe§Å¿T{­Z4&ƒF ûž^Ñ3÷’7¢Ÿõ}2Ë¢:.unA¯¦“ê"á)M0Ú3szi¾-{r³WWèiüpõ¸§=þ5ÇIìe©»jÝÛ6½·0_&©sѼ‰hÜjQŒ$Gb/}‚°\w{‹“}^«ñ²XM÷*‘6ó?¹^F±›„#;FÄg»è”-øÿÌpr„„)Úʬkœ >‹÷7|²ç¾.[&4Yg6P2 Æð„bá©g¢]iÈ‘îcÉ“G¬è›™eÏ{;¤F)íw • µ_ŠÍ°¡»½]Òü¢{Ô’ »1¤bj˃ßïl=Þk;ÞlbøŒvöF¼¿ >*™9½Øµ×€>ÑybÞ¹!òT>z x㈠±A¤0l»Žè­áчcr;Yœ{nÁ}Ä/xÂjtNßš£æ.A.ydÖt)zîŸ ô<PÁ²îJj®\&6îìIwûåR,&-z¶ì¡§ú~ Wàö>¬‡FµåùS/Ú•I‡V/…¦H¯/„ßjÈw $ܦßøAåÄhûü—¿¨ì'¨ã6S¼éãCƒZýwƒ3o^†e1%Á¸ra°‘=ðû~:áyËKäSÎñJáÄIW‰oWµßý+¢AƒíB_¿ÓüÏšWs(›7‹´vÿo{Ø}`üíÆRbµ“W±ÍVŒH…îŽÝIo—ÛjÇÕ-}ÖûÙËuÐ,Q œ#J€båï¿ó|KúÛÕj¯x€×î웙âÂ5QZ~mÒQ†ôðj³Ãr†zxF]˜t‡ô ¤iyíÏrÜ»ÿjA›_|K*aÇgÍaýdŠFýŒÞ×!Õš„9—vGØ©…Þ¦5äVqÇ ¦I+êb÷¬[€˜¡KJ´¢[­ˆ!ʈx(Hk0u}ãfÎì¥D¢ö(½|üzy‡ʇ¼ÀQ2ØEá8vKÖ»¿NþO·¢ôNVUëÊ.ª‰â"j·†¾t‚DUüÒ‹(’ƒÂ@ ƒFüJu8ã¹XwÔn =‡û|_kwȱÂR© ÊË’ù¿sû[¹PÞÕó^Ø ¿¸˜*WMBŸ;CÙ¡’)߸üÜWCèryZ(îýÔLfŸÉ^“œ{ݱ­®<ˆ‘Í·ÜT߂啟K†m•šÂˆ=ºåñìõpäscÝJÉÄÇçöÐÇ”—îu2çŸöD­‰d6‡€‚c½ŽQt€\wl”¼Ò€]Ë鄎pÑsï¿8VÙ—ÆåŒb¦mk Œb >ÂÂ*på#×;Ü,!Æ¢?Üvb£@o¿öWF¼ÍûÓ» Æ¡eâXÚuÉLb„ nû0S‹Úç÷—0þD•·’ÓÇ×%î| åð‰WoVaNQJ 2³O¸–’‘w?hŸÙh¤´ë`ß„Ae !å½97¥£A8à²T‰lj»/¨lù%á~)×ßæìZÒ‡ãä>7©d¬¢ÏÛ+qµ5ž\XUö´SŽÑV$A…CÉ0©þ#×Ì¢pšT’·.ÉOÂÏWW¤ÏdcŒvö!Ðh];5òÚ‚Ý­£ «”2÷z%¿·y:×j09¥ l¨N”-ÑnoˆûÍÛ±sMÚ¿Lq~½Þ7vý_·ÜÓó÷yÿçÑê4„”?ñøýŒ³]ö¾¢»Ð3~É{ÐïpN»nåbšPeºCSfFâWc\0!Tþ—î•r÷¥^Pû)t§«zÛI,+дJQ½HW5Ø¥P\|W“M¸ ‰öæàΞ^À抈 jC’¿ðvÆWï? B¨ÎWuôU‰CïWAÒô ù?0Ì…¸Ÿe,ßgãëjŒ}n>NŸ `#b[€‡»8ÚI¶†}‡€ãžxÀcÍ™ym¨;Í*aþšÌÂoj'ÂIùƒèðöù…õVOññá0çþ‡||=p6‡ì@™;sÜpOµÜ^倣MÒo³j˜ö1{š"à0´ú•À¡X~6Û Ù2ž´î¶ƒ¨¢ppÑÅóoþmu`Òzŵ ·*óà¹ç†µöOC'd@|FsKÊË!¥â¼³;¯9@€è×–”U¨ZÝCšújDS…¬sRÛÓ•t™dúDQDuTCæÅâˆvÕx¢.…ÄÛÛµgeÎ<´Èa ÷2”aï1Æ;æÿ“x2_ÞmZ;f‘¤%@¨ €àþBöΚx`¯ð'-\µçíU{¿Ä­öºm *û_¸3Â5ÿ·1÷õåí²3„ó!é÷³1¢šÖåÜ÷A´ï6 ¬Á‘7‘¼e·ã¼†v¶FáȨÿ[îD§{€7_ª0‚OºÉêûÕÐZ¬Iê›bÝ„æ;ÑI]Åz^rgÓÄ5Àå´Ýdp‘&öìvw>gùlð#Ô”fzý_9G&,¹+ÇFþ3d2f)5&`ÍûÓ 9 æûý±E‡QìŠI«EÔ4ÞÍ»3£™íB²ÁÀ„R~Nt¡ îK¸¾"ëÚ¼Y¨ïiZ®´.ì™}_ u¦ôòébd@¥‰ðTáÁW¬dÑ› ']!8 V©1 ˜N¸PQ V–7VuT Ša¬þþ@Ö°|4øí,Ö¾ ÈýŽÁžg£=C*2Ê©qåpxWõ‡ÿ í¸È6íÓntIæJjIo´?«Ý¯PË‘áí#§ì¶Ÿ Ÿ}ƒ˜òHuÇJ»x¤…íÐì¯àúL:×£}…Y˜´ÆhIÈ3LY¬"1ØÚ[œœø]àÞ-ãZoùÈÀ¦h d–í£|böÛN~Ãóý>î§nå6DXYÇ‰ÐæÔ/[©aš/ÜSÃøÏ÷ s_¼§ ¯Ó –üAccåK.o9’ŠBE:-Ì…9àˆÂWÉ£Ôºäê•‹Œü†'vî=Da^zdt%N5íãÌ/Ë %¼Â"¾$º€ ‰*TrçƒÖ. ”ò¥œ«ý(ÊrœF!ü‡™ry?’µî èô BæîàPîsLË׈¼4|¬r¬]7Ž QŠ-‚?&¤X†«k%ùDO. Íïª 2Ÿ¤yA&]@–Hd»¸Zå>—Ö8áP¥¸H[Ø$¢}–ÐF–+ý…Ü•j[Þ²"Xk÷3ŸöOKæ#^;™:±;Ü~´%ðñy#svóø\áÍ/.mß*âºÝ ¼Ò¤oëdõ-=i¥°ýT"6~®“W„v±àxo9¡ƒæŒqE H×Ó¢¦CŠýÎÐf#3—t H«¶ jZ¢’¿bЉÎt·Éé'o õÁŽCBzêKíÓ˜c£ì¹„FBñ¼§Äˆß%+}èöÿ¿õ»|…BãÜ0}Á?›JMw´qóA^Ly¶EVæpñër»¨"Â_Wmu í»K÷ÍÙ¯œÄÅ0þL°iÄÆÜ$ç1³9tµLäÄOÀŽ6øëÿ°ù.»qgM3‚ÆZé_u³Ô5Å42u8\ñ`;’rOB uŠÇë&Mü¡êóû~¿»õïòþo;Í|'¦œmã^j®c­ª”-–€0Üà•6æq©‚ƒë Ѧ‘µÓ6$Žô^qFÒzúãM/Ô]ýñP~ý<âO–^ ð☦è,>Oòô|"›N‚Ó²$ÂÀˆ3Ì~wβl&ùòk<ÜðwógY~Ú; 5´[V*FÈ@ç ‰;¢pCQ_E6…EàPàQhÌÓB§W¹WIœIEÓ…Èã~úÁ-P]‡<:g*L^ ¤cu]œU»6Lˆˆ‰¡w=Oá|£ÈA3p'Ç Y<g€ï¥ãS]ÍVvÂ/“kcC0ájþívo<þN½Õ´Ð)`[ƒí÷ðÒ¸PÝÆ*°›‘‚°—»”ñò²!Èòw1yŸXß½<SŸ¶^w¨G—iôñûG]ð·Ql ™8]$lƒÆþ¨DW¢¦KB$¥“ ë{<º Ææ!>l½õ¿|† ì 2ä÷ß+NŒtiŠîe±¶~tßkµú_G£ÄÏâÿ{o¢êk81)Ä*Ù~1þ¶.ö;õ?°CêÐøyÏHJ”lUçKÄ [{ÍÃÝÜäe@ ü#ùJ;‰ ±ZÚÙ}¶ÊŒç„#:ý!|…"va@CW0·qôð$Ú;— =†(46×_ËîZÝJrŽ'ÛGn)ÂÖw×¹7 ‡á{øß¹~í¼ÉÍÍ|—Û4ß~`ó=ÍýíÕš*ÏçÌéŸuÎZžÝ5ÐGH7öt ‹,;ŠdÃ3˜¶ EÌâ £¾Çï­ a?¬ù“g>)³y|9¤Â6‡ÑÇô;SvEÞÀnQNƒåpÎ,* +O\+AeÇ÷TØ; à[º²‘á“M¶þ× a€Bk:ÕÄGP|Ž$ró5©ÛIGöžvów}-¢‰áW°¹èö0ª‡‰ÅU$ä‡ç¬¡/,_¾7WÖ5…°Ü·Ž ö€sàM¯öæ„€x¹â»t,çvÂxK–ޱ e.ì…Ô _ã)"Þëuý÷/“îwUG«q¬~t=8!ðú’¬Çà 'ûgäÖÐóþýÃâžHI¤Ï^­°œ-QÆ®)5Eå+(Âv)ÐØ’ÁÏž±SGwAn{‰œD :,èÛÞåókHPu¹M;œ¡3iý«_¥¡Ro¬>Ö]ÓyËÃ|¬j.˜N@!¨9„ äixNÆïÝS»1:Ø Þ–¤Ö—Èúgá]Y2sï_sÔ´»Íüvá·â+?PœÍÝÇó÷YX]M…è õ_(ÅÊ´þ.ÏJÉ÷‹Å…%¶&„[‘g{1|g$ÁÞðÜ`‘ÏB;Žç÷ð„÷ÚɽáP®L…%Ðd­þÃËð­Å¥8¹Õ“Ò(€•‡½÷"( ›çç»ñÝö•Uÿ"~‡¸øãñõÞ].cêÝøx.'¸"QhÄsæÃÔAÙÇ3·Îža5Œºáòà½ëñÜ»tVèñ[Í?¬sÞÛ5YRÍІóã«w1mïóÉÀaÔ ˜NlB%ìx:½²°ò¸Y4\1]I?¥9Fô¥(J7Q¥ã¼t¼Êzÿ© àýDÏvQÔ L·« n­wƒŒ±!?wµÞêi•ýyõ`õÄÓÝ_ˆæú»äࣈ¢@.æˆ[¬B¶ÑëíLëƒÞøÄ¿Íã­\/ooa¾“H")¹n†n‡^º™NªžÝ;ػѻ¼›ÿóÿ þúnHnÇévÞ,ú¿”–ãzûÍ÷W „æíñ-¹/Š*Ø-ô0Ö5x7!ªrñ§rü«÷¯îæù©]×ì,k îI›\¡~FÖŒæÉ½ˆ;JZù³è¼ÆO‹¼G„G‘7M1àË×cõ†p2eÚ9¼…Íìé›ZwxÜ~o­OQ56焊>ÛVtl錨.Ž|W.˜q6ی޷öü÷˜5oeûó(Ì­Ñ–÷Ê"F3»Šñ ÌõáÆÞG‡tgö©PÂR¦ò¢‘£’eîØ¤_湺-æ´ï;Jböi~{·×âq¸îü2 Åßä+ÑHäºëˆþ£¸ŒMÌñ-kæ?Á’èøœ? wгj—¤#‡ÕÝOÑ•‹½çÚ…Ô6r½ræ?ºnwÌù ’1}_OÖàWŸs¥Ä·sÄ<q²%#7txÔ@O"¼M^Î`’•7g O3(É™ 'DßײáèM˜]nì‚]ó:óÏ,ƒ&Ö_„ÜBÄNM~ »z{¼>ã\|`íµ=ÂÏW—rï»#ÏÿÕÇ„ëFó¼<cÝD´oXÉ_Q®j‰?iâÏ#ÇgA\!Á¶gRC´M NnRY¤€PI2P–þ(@ìQ"=kXîVA}Áðf¯&(‹¥Á¬:ŽˆXj‚ éi|<“穸—ÑÈWµÊÎ×Òºå)Ë.t˜a `E3ö1°Á@á­­¤º·ºŠÊ3âsp½Ü`³¼ãûÛÛã#©N_¢QŒ×ßg¡Ž:˜^—MBM,SN kä°ìàf¬0E~ØrûH%ê„Â+è;MgsÖðNç·º:øJ‰:^»žÞø&w0Ðå}t¦ñóèù¥en/ ïjîãæ*yx[Æÿ'„¸TTù•ÞdÌã‘ËQ‹~’ý  iÓ(HÞtnŸ2ôùËÂGSÖî¿À‡Ÿ¬¶’ Ž ›÷§þ‹;Ć]N}R}ïõæµ gͳÂkµ£Ÿ>·ïñæÓG«›¢Q¨ë3üå5¸@¹œôO´#r¨žU^3#¸¾Èþ®§°Šžad>LÒ&Àrs¯éææl½4 ¯ rpÃìr˜4YÒɾ­ÌPÎPþÜY ?’§9úz+[éæû:0ÿ3Ì'çáÃÏâ‡Ò– œk­±¢×Y0g×¾÷Æ ³ôú©Ëlç) >N ½ý51oª¡õ|½=ÔºÖÇðãOÔÅ6>o‚gíŽLD¾]1ͯ¥oÙÑÛŸ§öbÆ ñ:°½¬j8‡-¤ …Ò‰®h)ö÷“«,†c[¼ œýü(çEÔçˆa8t0~ðW¾Ë¸BÓÆ‹X¡aýp\Ó©ò,N•ÓÎä Ӟ󭺃zšü|«F@Tý<[¥tôqmÙS¹b·ŸàÚó8ü˜šÝ¾k±Gm}Ê#þ:è©Þ¼ÚWô‡`j‡QÁ˜àЄÁ+BW=Ã~w¼ `FØÊíRÍ¢Ç7¬B«É£R &f° ƒè'”·3”õ(ˆe›º¡ ¿;\>Šd `„xW5ËaҿÎp‘rÄGÕäþaìúŸC§…8Sb¡èÙ»0`å#·k7 åŸ6Y冡ˆÅïg¯\œ‡Á.èðºÎ^~ì&;³¹8ˆ0ùÔ ž ¼Ä¶¾8%ö–ÚïÇ4,'¹o¹¾êˆµí”|Äqo4[Á÷þ×»W$·Ú»tøH»æÁrsêêËØÃ9÷ÅûÝyº•È÷¡kÚl³.­[)ºUM.œû¾O:¸m9qc¤¦7ãQç´I=wÖ&÷qâ¶-Ä‚ô ­øx Ýî·Ì]G‰è9Œðü}™{ûéGV.ïjt™m¾Xn£Oµ…z´ÍÞ%Äâ7n´Ö‘ª}’L¨DÜ/•h÷³qî•n\°Øp1ˆ¢›ÀXÃŒwì@˜"owîÇîYþžƒ½W{žô]ÐÅ@ÊwA<¾^·ã<.XCJÛÞ^­ÿRÉ=Ÿñ3í9Oêa¤f¹ø^ßO5x4¤®®¦#è ¼ö¾ =†Pçf÷W¤‡»å ™?ÕÎ{BŸL)q·øü¢xyòqŸÆ™ëÕæiíœã)à\a&Ï@ÅÅ‹•nwxP+-Qóob~7­Leosw>5ÈžF÷Leœ ÷ôs´BžSÇ•–ÓG%ÅŒ.ö|MV”FLšÙ¾?<|§†d™šù¹Ó¹‘S 3¶fxòhÈÞŽoZa1`H;:溅ä¹B¬x 9ƒ.ì0ŠÓ/ò€]:s‰Ò'æÁs×e”EtÉ©Q¼|dyûã½Ù—F‹bз*,l^-k…°kÕpX`ýB!YŒŠ«¢+ÌfW*zžf÷Wõ:ƒ«BcÑ\}û1õ¯NÆ78¿±ÁRY–G€4T9HYãâÚרNP ìá»4•hш35Bæ›úP!œiOª=8°¶ÞOï3ÞsMëà/´ Û››È {ØÂZùÝÁ£ê«Y™}Ü#~ŠÀ÷>§w >žÑYÍø«¨¾dz÷ë ïWØùû¾ž4náf…μɔ‡=ÛÆÜŸ€h¥²å AÁí_Î/)JvèºQìïµ $¯Þo|ÿg¾oáéß̯_:ÿ§@ƒ£‚¦½›BkÇzŸÏññnlZüåpwú™©Ên7ðå9U½¤‰e–¯Ó%Ýçq”s;úÍú®áOŸå¯Bñ>f §ÒÃóÏ›]ÆÍìcw·œOc3»÷½‹ä¿ÌŽa÷œ[˜eóòxýЇ‹ÇÏãöu'ßÇ3æû9û…_Åö™Â¯,5ññàÄÿŸÃ|¦X£Ñ>,Ãý$N' žê`êý>’ß-¢û8Á´›oÕñ¯ARW•t–fÍW@=ô<Ñ ÇÎ| OÊ">{®Ü+l>o?žãEË¡œÕ6gÕ{;ç"ã¢Ø¦ñî¯óøTúh_Ö÷$÷/wy+ÏèŸ}hóaðv—8ÿ/Ù?eîÆè4{—;\ýÞ¬àðc—mR÷Z¨(5ƒoz‹2iõø9yú³sʶ ØâÑ…rÈsËÆ­mãï;±Q â!’êK¥)ó}O·L EÖhÊ÷†`Üä¿­}Þ1¶à=×öð(Ô/gÃHr´RˆnŠÔne½S¾ U»aÉDœ¦~Mû²´·•Co‰‡é¢o»ÙKá컘¬©fï½EÌ_¹5æ`wÃŒˆK|0æñ‘Ìö·ËðtuõêÿÕ)‘À™žè#Õj`‰Ìý×ÜÆ`´é‡ÊéåŸ]ÌãÌþÿ+Ftß…n¾Òt¢?,·>º;èòygTùcЭÏ[Àý¸Yžünß›quœ æ\ N6Šõëîfº•jwGêùgZ_a®¹ÃË–Ú˜pû<~lkbúïˆî×Iú”ê BbÜ 9 éEnÙfßʽ]=¸x)ëÓ´Ð…Ï=盌®W÷\5!Ù ‚Ž_§_Ÿ½ò·{ØíØ©ûßW71ø}ØÔ{Ų “j´=+ QèCƒO>?k’r+ÃÞæÌzû^tþ‚În9»_q#õg‡ÀRpØ25IÃ@óŒ>o* i)ªöµýûù6ÁËÄIÆûÏÑÍösaðà $ð ŰJùu®$½»ÜŽv²Q¨„ý[ÁCgkGŽyƒû^NÞñ½~’¾¾‰tç_zµc¶ܤqO¦õ<yâ1}ÌÕye[Vû6±g›Ñ›uy¹<Këâãð©tc’Â;²¡"¢õík“ôºÎxo]Ky¨1R»áJ`³¢-`bešìŠ ‘d¨èŠƒ•7D-t™Û÷uVÓ8ib˜F ¹ñµÅÚR;ŽkQ &¸¢/fçwuB“ìÍ òŸá×·&çìyåïðð;¢0íÑ«}~ª91ÚÓCrðL $ÀŸ7Yû‡]æàë1L;3æO˜†.8óøJY0…äÙ—˜rˆ$Ʋü ɸy~ï3_¾Ï ^¯ý ¿«"ûÎã…öå¶øgä“çÁÞ7pÂßÑ«×ò-&Áw»ÖÖ1õ·„qåî¡áíÈ_ÁÇOótÖ×\ÞÕßÜtCl‹@ç|<"GXÿ|ƶS7hŸ¡[t#u)~7ožµ\Çv¹âäªÓêëö<ætöó}}¿4<^ ݪ×â÷tù¿Í€±æ2@}•´oâ®íÑêUãŒQ.µöòpgJ€ô‰"?8-!±,^âÞ±Ûõߦ+þìQ1×Úöûïðâg*"x+óø|ãË%î©ÇÄ|µ”9dÈÌuïrz=Q÷ú'?ŸÊøì–>%Ä=4y>ô"?¿ÛðvÇõN1Zî8ïOƒÍD¯–?­°?Z/\=ˆÒÌîӈƥ@ËÍsF¼3 ½fû®Þ8VÏ™!ðÀH^ ò’74yCYýìÍÞÃÕ"²ù’â*}A[ìÚÀ×W¹¼ A¡ Î#¡Ú)wØÿù£·âà¹.Lþ6 «iú‹fÏ` ½ëQRóë|Æáæmqeƾ ÿ}ÝuLÐ_1 ^ð: >=Ã#´N]ŠÄ5ç}ÎeN#Â2B:ÚaÒrâQºŽŽRÀ]‹†Cꕻ͘~ÙO÷¹ G“¯®68X¨…ÏíƒIlÈB½’GV¦Ê£ÃÉÚõË=.*îqܾŸþk.ùÝ÷¹+ƒ”]Ý]LHÑNo–¿©ø¹xH}Á£ÝÞyéàat?Úôdðͨl‡î"œ ocüÜ pŠ´£´©–ñëŒ[ñƒ¬`Üë¢Ï³³…“=oÖkÞy±ßñ êGÑïôùï`U†x·nÝü{ªaí¾¶NMÄ1¿Å—ÌVxn·è–*/E²à¦þüªwHÒv­¹@‹‰E¹¶1£¿>^^8]ž_7ævøìŒÆøQJ—;Ú(°J‹ËŠYÕØ†:}l¨›ŸÇ^c®g\þ©8°ÄCž Ý·Ï„üPz±ž,•§~>ØfåËwxw„â{ $ô¢‡É.$óßq ýIQÌ«Vqj%Þ,ƒnj} ž±ãŒ‚G]ó!2^¡y191‡O!^¦nc<×6™NÌ|ÅbOn¬?‘äy¯n©}’Þùðn›»º9£éÐC¥Ì<3ìbuº}£|õïhßMÝ‹„ÖEq0"v@¼¾_Ùc‡fãTßÅ\»âŠUÌw'/+Pùul•êk椴i¢:¹ÚÐë`éó’&ž¬Ñÿ§Ïñ{Êú>‡;WüN‡o èm‡ o1ö‹wâvµósñwõWYínoKÆ­ÊÐ¥ç;X§iú òžÁ Ó­Nþ ƒ¶ó>•]äÏË@D(5Ðg{ÔØ–Mœ•T˜½ÝîoB…©ßüºqbãÄp çI®Vs Í ¦üQîÉÝè½Ä„×JôwZWË«EU°\ý­\.<#í; ‚§@ ›Î¿€ ß_!aòáN_lÝæ8Ñ'Ø Ééîk“%Ô~s°qCð¡)ü3ÃÉ_ˆŸX|ZJsùº‹Eà·!,ÚN£Ýînjë'‡2.tf¿ºøjÃGô`¹ÞºZ&˪¢ÕP2ó?ÔþÚ?¨^DšKvÈoeÑ‹ü°ß΋³¿µÀÏŸx®V—ëQ¼N)‰ûjý‰ ï^|1ñä³pBeöx÷ÁŽp7½[›Ü/ÙÚ  û–fLÓ÷Ê+z—®wË? ½Tù:rA›•c(#¾)q~|~¾[–Ò^®bÕãmjB hyÇÓܽMÍ:º{ªÞí—½xZñVc‹Îwä™7­ŸÄN Ûx÷3]&ùL ›‘FúÔ»<,†²CÙVœJêø`¦Ž]_U>½Ø~jrè5ç>¹Úöù¶Ï%¶c9þË’v¤„è!“0 ×ñ¼‰ôôsÓÚïâÐÅlß~>sDž¼zŒ#¶kƒºÁÛ÷)Í"o(-äBã¡iÐÎWB˜ÿlÒ¤‡¿Ža¤°¾†pÇ LoNç"4CÁÔ5RƒÊDýÊ3ôùÓ]}V¯H.Z޵æüʲøgíáÝÍŒM9¹4p˜ ûK¶vD?Ná¹NG*Éy1 ½:fœè¶—¸Á¥ïQ”6šƒîú%ÚÆ¾4µyŸEæBÐáÞL²‚'A-§cüW›åÙ_£?TDøû¼ã{[Ï~î=0ø¤‹Uúª<ü·î÷ÒÑ"ÍáìpaH»ä ¸³ÞÊ+Z5*^>ÕÌ ~éß9Šof?¼rÈÂIÏoqÆ—i‚¡Ê±!L2¶µô!3<©ì›ÿZØ+Ûœ¡2Ã@äEÕ…_¯ìMý(;˜·y€âêí1ÓÄG\+š] •¸î“Û‡¹¸–c½|¤ã‹þêõ®Û‹›1 »ç£·~Œ‘Š`Y4ùNI’ÉÄy_eX´­'ƒáÑr| W„KØ0@߬IB£&³˜ä`ýh­ÞmŽ™ʱ£À C]š¡ ‚Îàô¤Ô¨9,všÉrõƒƒŽ“áNÃ35DuPxeáFn᦯èm>KüÝÓú7A-MA–6Ó DÌœ\Oªz 4_¤Pwša‰ÝÝ,}²g‘¢iMlIðsv¼›|){k=ÙÙÂòJF!"»ó»<³ŸÏäÉê½÷Oþ!ªÈ9å²Ðûê7ËáèaÛ}¯ o`ɿɄ Y—8Câ-ÜsŸ~I@»YxÝ´¡ØP=îŒê¶T uÉÑþ©GizüæéH9Búؕˇ†bx†»á’OÎþ ;[ЬªC¶‡±¯¼—D.vóøÔMÞ¾>Îv(ÞSàOÇ·Ân›|Nº0„T`Xí“âô­¯w *n?$¢N.ûfqëì›pUv…F7¼…bàȦí†þ™)Ç›\Ÿ*ÆáP.áMryr²¯w¯·ƒGÒ´K€¿9‘½}ï„y´<Þ¬öÐnïºDÛLfvDÞ?«SLló©ôž"¥»¨Ï|7‡9bR`?QÑwóáïå.Ò®ooݨNþÒ5îþfûàÝ#d…߸@µèáo}½3¦¾¿#T|Ûê³Éú^Å?ú¥¾8Ý%Ш=œ a¶Þ˜é èõ×Ë´ãäÝÂ~a²åÝ—i€W„î’+ÅCzÕSîw•AŠ©d„çâ3š_|Þª¸l<Œjì—Žƒaó ãjöåŒ93Ðoöòäõ.B7U ;q•îìèEwÊê?k[oó¤3øÈöÒÒˆ7\+a‰&M¨¢IA/H &à®çëYí.¸½Õy"­O!Wƒ’Ö‡eÓ¯»¾¾0Üwè»ÇÞÞ×7rÝõNFbôRw]ƒ²àù«¥œ—d(i o GÏRÕlì%V¦RLƒóó¦—Zìðʽ½Æ48XÙžhjº·zËÛI{^ð¢³Òæþu›7‡4±«'žfŸ:}«d-ÞæÙ1‹°*3Ø£‚ޏ{­ CØ·‘S8sP]Ì•åx4Ád}Áý3•÷îZóÅ…1}ùó,Î÷^é¯] f‚© ÝðØç£qÊ€•æÃD6ï€6Ÿz¦Uòrê­„2á(tÜt œá?SÛxMl6BE€Þ~M²¿J²MÜôº°IÍ9­™÷ÇJ1QFµù+üÐõ:´Û¿~v·CÝ€F—5ÚÄ{ySo5ݹ9'ð_GZ NÈEæDS0¸ƒŸ]òD×LWòú8ÜðÓµ ê»~dO%Xé&°Â ë(BHm(Žò2 ¨';’cS£J7+º‘úãvŸ”úgqxca,ºû[q‰6KŽNœSÆ.x++}’ ™À©†O·Ž²;ˆ"•pEµÜ]z5eP‡W(ÉïÄy¯]9ŽCR"oE¬ËÓbEÞÃÈjó”øÝ ?èîÜ}|qîôbþ·øçê÷Ôâ1+3Mí\‡Hßgºåª ™¼ Žxõ¯3Üü4p¤¨¸¸Sú„wE¡9 lܘÈïïtõ¶]›¥§Ü4*qä*BF!@~îr¶ð½^‚.DƈkÅléŠô]Jäߌµ9cýœ’|\ãÓÍMåÑ‘Æ\î+4 ©³ÃÊv½ìFÌ·®g"n[´WÆd-Ä}Ñ9Çïõ¦ÕòöªZTX¨U¸%Ê|CáÏöw|”@+¸ŸŽÌ*hˆ_¦mÝîΟø»õÊï%ö$/ N×Íô’Zý°,­œ.éç䲕ÍÈtâf‰ÚœÕÊè¬_Šð@Æ.Få¥xEΉbÀ§¶p÷I$½a”.T·¦ë®þ¥TzÁ'•’½Lû!€E|fNld¸;Ä©U‹PLñÆ- Ÿv§(D·ÅØqÃç²ý§ŽÖ6QL¾Iw `Jš —[àG=ÍÔÛÁü,9ÊKOÊøË«"±úŸ¸>ç~æòÛ·6y|Xg˜‰Ç¢ª/<„ÚÂ{¸¸Ü“ ÕÒ…8o_‹3h‡AŒ6aúéH\ùÜo˜·¢¼û æ(‘*9ÕüòÜáuxw[œ]šQXp‚¼>× Sgþ@•i ~âp/4Lp.á·x2N`Ù9ÍKc*¾EŠ‚lŒz¤³wI¢c7K<€*¬Ø2iˆFÀïâX“°uz"Õ¯/³J¢­û& ƒPüŠQ¿Óùô\£„¸!ÕR¤“û×Í#×䮺s’š0FV™“ðÓ}vgÅ5¢®¨2r¬ý°jë’ª:›”‰ƒ‘Ø@Fšq·þ`ûûoèÎR§ú5fŸí ÉMTt²z1'7×y+…äÝ @ _Õ,M¢Åö–å›,VT§t#V½^Óø°P™ –=¢÷¦ Dv¼ÙLK¹"ðÞ‹,5˜cÉPýb Â-|Ö§MOq>‰‰ÕuL€àßCí§†ýl‰ V dqÅò ø*™Œ  ᦼtÓž«·™„Þúä¾sfjo?y‰g vˆ8O´"&i9‰0ædmü¾Îa7 Ú›<Ë;N9WrH<^Ÿ©?Ôûw¥Ã:çÕcúZhMº]]ÝÏþ¯Ô’>2å³}ÀÜè¹À.Þ.È㎢‡-ƒÄ×¼SÜÉeŽÿÌlmñ&Xë^º çÏêÙì”ì9Ët‹ŠÈR² Ue¢‘`yÛá„~šZÞࢢ¾s2ˆ*âaúÖÇÐŒmܺÙÖÌõ†L2ÈìÆÌ¥¸À!9€$ o,)ú¬A i@¨Í–Øh#_c íÉZ×g´¸½×jäJ5ìx“[ºS=fmëuÏ]µò—@F;ñwŽÒȳœ4¸wÜ­ b€PœŠî ¸2£Ã4’RW Qï–IÇŽÒÓTÀj…:­.<8 œ"B;òUÁ€úpûÿìøÒý˜)á]ɴभ”›“I) ÔqtÑ  m¨I€¼@žÒŠ™>MvþQîŸJï–íèFer¨io"54ÙÝ{h*/ûÐ{ðbäµbf|ŸuT}"õŸÊFùØtÛó£|7'IT»¤ôú°Ê÷/-$x*e p$ˆ«äVs›Ð¢Ö ¾ÈŽxû°d :àÏ¡‚â«5Òôà±>L«€êªžy†­³\D¡ùí¼Gö~óÛ?ém/ÿTg(UÜ-+ÂW)|Ú˜}ê†å}l<&q±0®.É[Ö'À%Å—Iho.âÅx¹D»ñ¨ÖªP,˜ã¬¤kR’zäž‘nõø¥“dÍC¯Ö­ ê.NXý¯÷’SýztjÕåå4î?>ôeœ>º>þíéba·mµ/Ixr XËL©ÑFûJ$*ÐQº;µ›J´-Ó˜uçÌD±Ô|cƒhLb‰íŒ‰h”ËË>B¨T‡ˆ£'rîá>)Ãì=ÃÂÙ×øüO0Fo7ñtj.-rv˜§0¢ b­­”Ò‰Ÿ1Eh]ãÑ»øa`bkÆô÷i‹õÝÚ4aïù8¿—òè”îë^Í{šîŽ,íà q黨˜aËÇ#ØÜnÇ센ž_¿yïçØOÚ2/ROnûº»X¸$½`0·æ2€pI LP€TsÊ*`¢^ +jÔQÕˆ»øãw.ŒH¨ÒNœNÆöGMçKÑÉJîÏÞ@e<øÁeãà$‰g §¹çIO“ħ"#Þ†Ë*RÔ¶ë³Àë"Š 5CŠ@Òa~w’ô¦–‹64c>Éâp?©Xò¼JdŒ™JRõ2Ú %®0G.m§ØÌŠ8¡\v­ã$UÎA³'a$iƒ˜nœ',}XDPâÿáóï~€à²å,Üž\¶y£R{ 47ÖÀ)ÒCÄ(M'–?ב{©V!ˆ'¡Cn ¬|½MEÁ9$ŠW9AáP|ª¬Ø)«àI¢òd‡¡íNKŽ0JsŸ-õ€?y²=ð x«Wí.öÿhfîËþÏWüßï!Y{¶~v¤0ÿ(ÔÌÜfºðÁ Fׇ{îÒXjs&9wÒ„:E(÷’O«µ‘„( Ѽ~Ú§*„3‹„Œ%5,”;^ÁJÒÝ}Qåclúï‹sãsó„Ïò<—Úô‡[¥QqÐY7ŒñTFá*hþ˜I =FñØ.É€`0hÝpÆaƒo: G™9à~ÇÚP×åì…Ô»Ž›(7!ãm©r¦üz5ËÑ3Ýw*SÙ™”йý-Éüª÷½=?è Ê~è(™ÊìÆŠxš3µ¤ç¡"À ø ,Ë¡Ávj•a°R»ã’¨Þ¨ºsUÔÁ…•inùœ¦¾úéøû©µlÇ(q}¨QÂ{ñÍ$¡ÎpÃT;³Ü(æ°¡]Æ=‘÷xåVÉÿS§ËòG<†Íl†•].a§$0äÔ"“Î@EÚ(ÒŽ­ï|õÀ4 ⎠±¾±Ì\º’‚ÏlåÍ@ƒånä·€Ô¬m$ÊÂŽs)#“?éÿb—¿Išžî.<²¢ã¦ÂÌ܆å7ŠÃSŸ ÜXßϤɯYÀ ùd\[-}Ò•ö‰*QOp+Ùñ|©ý¨n‡ÿ ržÑÒCuéhÆkcµ÷Φ€ ¦%ƞ˽^pŸ¡uÛ®öÛôºýyZÉçÃÌwúí1Ò¼=é«u_ˆ·  ¡qfBýž,<þÏ{¼àçó!q ISa¸†m@„kÇ{m2$‚ÙÎDG¯oBñ*ü´(Q‡þã‰\ÊÁ«ì7ã¸óÄ¢‹8Ã`‹,pà—*åÒ½ßaß©p/‡âù§Ã>Xªý‰Òáòï‚ÞrJr]ÍÇ~àˆÌ+Ý@„A¡= =ü¿#Â÷Üû‘üˆ{¿^õÛRÁ Húð½S)Í£ê°~»¿2DAgáïQ.T/Ü!KÇ$ Å„r–I:¥¼– (ȧ˜D qYWõŽó[‹J‰_ÈdÀ«ù°~Eù¡-ýôá²õ°¶”¦î¯8ÃÆË3XÑ ÁàÒ:YKŒl UJÞEè;^g¯ Ó÷Ñ ¹ˆÆ½¬$bzٱΓÝxê-þ÷½w÷Œô› Pp * š8+u•´ó5tê‹„+g² Ò5$’°h\:+Š ª$˜2Á´Éê ¿ª}°w5“Öiû—JP!ÄÉõº\òBV§²£ñÖdýöÌú"¸àǺøÝÕŽlÐÐ,‚¶K.¥Õ¾0O´PKºÂ’Bà™=µ-7 €E)ÿEÇ¿sZÑvU«GÚ´ŒÝæ«bo»ŒZ0Ý¥ƒ½6Êä÷7oK€‰H­Vaâ— ÔEo){….RƒLÚh@1¼©)=ÒHXÏeA0¹¨•åíóØ8êÕø"ü§0 g8œ›sù´+Ší•µšˆ¨?KJ" §À,ûƒôD3ŠÌ‹àO`‹H{(«ì²2c8+Åx±ÀjŸ\ŒB?Ôg‰äóY#6Ô»$.6„V, D¬5 BývÄ¢U_Ê;L©H'pv:°QB5™›çÃ5¦©±÷ß^ÔcB¢ŒgoBô6&'\_ë|7ï÷DûëûÐÿ5¦IJ¤špÄêbÜâYNsÊÑDrU9t‹І,–TÛ\(.¦b„*9yÁWNˆâ¾ëÏoÈTÿ—¿«óéDA⸴ÿköûO{éR¹Ž"ýס¢âB€d¢ÓS´>¸lwJuK—‰Ir-X„–ˆn©+ú‡cQö/ú¿g™ßňž+ÉúŸ•¬vXÜ6‚挤@-¹ÐTßÒ¬4+ëñg2ÏÊ·û¼§îø_÷áÙ—®’iÜÚg}¹W;Rw}F)îË2ë¿,èý&Èø9ÖÿAú«üö“¼Ë¥è¿\¹Á5´ÔôHf3‰K:&xÙµ·/›qõAOú¶+ô xù¤—»/"ô׫Õãë×ñÃgºý”ò^µÐeýÙ™æó”Ôß* ß‚jæÂÚ?%Æ¢h â‚HÆNq1Ç4Àý–·à 0RP^QIþ_ÕH[Ĭá:8/ý€j¾Á¤OýWçüÅ~Yÿu NʆÓ,qÄ…2ab·¯€ IÃ[’‹ G›ß¹p?AýWª ¦iíÊ)ÚS‚à*>> }pGÀóÀä÷±’E3Gr Ã+£³/Îw÷¦zq?åÜ¿–šå)#P=â%XV›¢ ©.Ç„¹1>S”–Òr0šBû =Ð1²]K)•ã»ì+yÒ€6¥ŸqwŠhöWìö3žt(ïŽc~×°õú0;–@?nd©t%[,’#KHÑc®Ô „¢¿u5k†¨ÔpñYj_Òî3ÒÍÇ®¬ ãÉa骢r aÅD‚Eß9B‰h›ibaZÉÈ)χö?{õ{_°aíW}˜Ç‡¡@*¨»¤Ç䡼R¥ŒýÙÓÉ –»——¡[ó‰eÝ+¸º.RZƒ`mY4†ýc™TaˆEÞiiiPÀ ,¿úTåXðBÂ;qüê”ÑÊÔ öÜsûòŸ¼(ù¿‘׫OþûAQÐÿç¼\æd¬ä" áÖÂ=¥YºPß òXYAò0;í PÄBŠ$Ûè'v¸z‹:kå;ÖHB 8“ƒ»í¥” P3 3 >ŸSÉø¿OØŒAI=4îZ ùlïÃ3Tˆ'Bì¹UÒàŠÌé½äße„w× ÀÍÓkàƒ­&ÏP[IN98#ë$Z¤6u†„¬Òa´7‚# ´î§ö[×ÕídÖúÊE­Õ×%më&»xBàÇ6”®jzàÖ¤­ØÖL[XÆ“† È,& «°Ne qK Öyc©‘ rj¼Pºê!Ë™hµ&>æVE® ¨Æ%F‹û2Í€5ûD8µÇ£}!x“;865WŠ•6¯òÕ¨|ô,:/Ô~îåïÆ<*³É˜óCŸeâÈ¼Ä „PTÅ…QŒÿcê© ‡|Wêx{Þ Æ—Øafºìøi„eí¦9dÌ/w0aˆm<”CÛä¯pÛÌéå›ÓÎGÝð÷)gðõ¥ÕÃv{u|7ì;w” ÆŸ¦üö6ô¹'Úßþ?Ænϸå¯pAÒr3¥exö6ã[ °¥ãêyŠ,ÅŒ°÷­˜/šf‘7^´ÀL(S ·BÞñäpš*"¢â˜è@Q‹tqÌv ‰@À¤Q ÒHp¡ #us\mÁ­ª)®Ôî~ëš®’»ëÒÈ´ëdôD£Á¿)—ŽÒbð8l|jUÜE‘žæÿò⨇­Â*w"I”QâS@ \ߤGÀ*Z1¥¢±FBÒ4@——áT_¹,ÅÏ­ÝzÐx>7î?3Â'!ºÅ8myf·!uC?ʾ¼®špó8'²{*Lè°‚ƒ3-µ›—a}ËD¦l1ÖÌrÎúµ*0Ãjœ›•D4/,’ÑÔY.h°@ÖQzk}•Ýè^aágœ1ð3¢oe½.6©½Pÿ/ò*çé, ÄY¸f•¡|œ#ÿüžNNÏŒŠ‡Â…X ÁÓ|;˜˜­°ÌÉèâ#:cÄ£=Oz®2™ýЈTÔNò¯x„Á›MhRThkS°ŠÉNœBªbNQXk$²ŒØ¥àh•È–D1³bö®BifS‡pa—ÜpÛ©s©F$?H½÷+dM'>N{ ÈK—}c‘W»¿4Ѻ3}øï”†¸lßZ B]ÂJœ²H¥,ÒÔ)‘| )ßÒîw@"EeW-á; <þÏxÿÅȽFX¿jWm7cí®fê\¾-ψ—Œ–:V4.miÒèä Qtñð”—ÛÁ»ôŽ€|ÐtéGÀš}¯ÜÜyȦú«i⌀]è«’Þå÷<âÏûÈ6ÑsáHÃä¸#<ÄoàÎV ‡²M¦jeß'Øyoô¦f󆉹$oM¨+é w‚‰­J'¨éC êÞfø8ådÍkÁÁ7'S¾'+™¸Ô)2¹²ÿ”•›HÂHgäz%Ñ9à¦BñHPL™˜ä©O ¯Ê@¡š:$Ú¬)ˆš‚uØzÓ“ð— ˆ)¸òÐo?‘¬Ùò¤‡|¤-~c7µ’pÈÔ ( œ\ò–}Èt›¶î7\ u}[“hË^> }Ï»8 ªmÚzæû×8×ë„ûE¶6~×9hK¾ Þ`úGÂn º0Òf)üÚ{ÕËË÷ä¡<çWö‹ÑçD>¸Ùפh¾k@hàñu®Ë´¼øÇÅŠÎôO¼®pòéÞ¸p™Ù×Ûw(oÛß¾¼"Ù°/µ‡ë§ ¾N»í^Vó•¿¾ߨƒU:‘cm°mŸgwyÊäOTÔ{,O÷ [—‡¾B¿ì‘ƒòá¼5®d^Ñ—ØÛy~ÆÞónª{ÿ[¸B¦¬#zr‰½½·²btî‰WB¶]ÏÛëϧ%ÌMzuJÎ¥»¨¨z«i½5 'ÇÒÅõ¹3òÇt.ÁÓ¿ÝþÁ€e—Ÿôá’“CuÝ÷÷åWÑÑLÙkÞÞ`æ#f J–‘f{¡¥ÎN|¡j1@^Eº:» ŠÿaØCô±íˆ¯ê}odìž‚Þ(¿£³’¥![àïÜs×[£Ú2±ØaÜ&ÛÁ°9]<éLCÕ•¾*ÌZÚcòÝN¼øy…Ö†šzø»Á¼+ÐjoQºd8eÁpCv¯“4˜krKÛ—A&Øz ÔŠ¼g·$õTT ÄVÚ3ÍÚëæèŒð­ôgùSÒŒ±Üm½ö0¸3Âw•psñX±=_½ù%§¢Ä¸ð¢ŸlºcªèÜ;ZÕKÞò~[ÿ¨Î‹¾Ü¾m)° &S.dÌ€žÍÙò‚’=ïçvóßËÜÁœ±üàÒÐ_£u*ï,Qî€[z³«²AÚ~›ÒB|\ýóåf Úú„©jÔ+“`¤Yÿ‰¯¬€yðùsD¯ÍK5‘s ¹ÅÒ ]šL)ô„üý›8Pš<2àD»ùa‘_ ¢PÛ±d‚\0å’£.«jA×pTZP{Š6üï¾ât=ßc¼ìÍ6˜9ñF]Å(TЕúÞúç† ˜×Üý°î•¹¿—þ˜A¼¯ˆpÑÐÙÜ”ØT°,4ä‚{åM¢ö>5V,“j»´@ç .Å‚ö×ô#$x;ػ߱OóԃؿÒÚ÷q ø÷-ç$0³ 3‡‘zðF$N‘DéÂ;oêCfFuú~¨Ø‰ñäøô&R'Œ»Ùá÷nhh7¦tý6ÓŽg¼ßb£;bç4®ÙVD‰W®”P_»µê[ lý$íïýkù¿»1-$m1™pY:ÄEzH¢£ª-€üV )Dñ„€ªªHyïšA@/7ŒÍlQh-6Ñ&IîãÔƒpŸ~,J¼¹ ™½ÉÞú¬SÁ‹¦@¨ëšáá͘W6×l6 ìó#sk•Uú‰6êŒNÇ·2dAP À"u»Â/уÍÃwÈñù°îèÀ9"Ä‘ ` ® æî_)úI»×ÀX›ßþ.å̶èþ=þÓ:ÖtøiOŒÖÜ.¾½0`˜/¾Au oqK«Wh8íûò-Õ&÷è“ûLkw¹þâ³÷… ÿKÜOS?ÊMv{Z­×t›†yø$ŠÔ°8„²ÐÆÕ–ÄkOkþTÞ„I‰ÿàùÃq”øKšíØ~Å{‹c™ÛýyîW×ßqñ$Ù¶Ë׫'AWÉ{kA„ëÂÖ «Ö^0åk6ñûßGAœ\©”ñâz€ˆ'oöQ¶€Å.;‘ŠzÅ©IXqaѤr*ÒÃZÖ&®ÃÉùfþ?T^ø†®{*f‹çøéç‹vìæ¬©Ï .\QGC-ä¦}Çœ¤´is^"1 ‚wýölâÅ“k<]Ùüÿ±ùÿ¶¶ßO·e`g»DÔ ©]z %\íÙ_Ú5tÙÇ3J¬Ç?·À¿€Œ'à vo× ,¹—éþvWP÷ “ë|§¡1¿qG—àëäÓx½Áxp*Oj÷Ü×½“œËâHƒ/ÏiÖ›w÷÷ÎüJŽv<+¬&ÞãÊ'¼Å ¡ÚÏɳø½ ç¥ÍG+ŠhÜ^Šf‹7ÌcL¢†¨®¯¸¢[â4[ºÿBÖº,N_&%œZ‹GÓ_)ÿ›Í?–ºTGľZIdàÅ8Ië ÏŒé‡ÁÒv|*$ºH FíÑü€ïå~2*¿`Π208ü nö¼Qmñ däü¸~XûTÑåÙ IŒo¿ÄÜmÝ<ïñ!˜eÀnø_ƒÒ_üÎü)dì¸4‚i®¡ç8ѵsÌ à†¾à7Û3¾ƒì|òÿ*p{ÿÅùoùsSņF[Q±DVÑx‚«càu2b“¨¿Õì”ARÍý>‹çOÑßµj?UÞ'ïð2ðmÕø}uåÌÀEO‹P+ÜX¥obL ¼EÇ£ƒ6¼ÛÍÞ|ˆ€Q&tÝ)ñN’éNʲä7ò×H6f`šÙ(?3Û;W­Ü?ËXGÍsëÇì”9ÍǤXê}râÄ ¼0{7¯¡rq³¿ûò­}Ÿ]B 6[€»sÝE³ó9ò“ýÔ†ÑÎà’áT¡²íjƒÇ|H3›§ú¦¡Z‚Ùm:]&wÿ 9óý|<×yü¾/ȇÄÏûx À·äÝÍUƒK÷ ª’´Çh²sŠ0¤0Ð$ú3Uò‚‚ÿ¹uÍ};Œh÷!œCWYM¹f[1ºdb“7AÄÞê"§0°Öb¤}9ýÁ(˜s’V° A?ôxvx¼'+Éî8¢ŸÜ 9⇇ǰc¹0Þ(êÊeÏ÷ìu£Ö´èfÝ]ÍîùÕÿOüŽ·o­ HzÜ”ìz ¬Œ-50œáÁ=…çYЪ?2ýŸWÚqÉîyÃø|ìäÞûüˆIý0¾‚õ°´ÀA4€5¦WnÒâL Yµ&BýìÜc@:ýj(þo»×Ì8ûÄy{þʯs$a¼P:¯Þëçæf²ç†4ó¥Nub;žÕ M-­X Õ“ÌÉ}OŸwЪóþì|4f<€¹À²¡€äd¹ŸøšJiÙèÅðTÿÃöþÂ6èþgÛêrJ„ÃsP‚«.„Ë à@8ݹ²Á=M§¬U«;ìÉT*kMkS—‹ªÈ”ˆ°.ëé{Xå™r‹›W/ºœÈ"O5ÝÃn›z¯Œ¨¥$¯€5Þá«0u®{Ua51%áý‘fø´jžhG/\ØpDÃÓ5åÉ vôüÀ6×`Ëfž™`kM m,¥º»BÊ’¾™³Sz4À|{×üç1zÅÓ 6Ñ(OшU2u#0"M‹X#ˆ=1˜9˜îSÃùÅ!í¤cbï׳¯ûŸË«ÿ·»ý•¬ëpê<ÀŒ±iæ$msš7’r‹¶EɃÈÄž×ðKã;Ö_o3û@þNÜCÅ¥u!´nç<¸%ùãþ8ÐÖË¥«SŽY”€[ˆ œ+„R ù!kzn 8rUb²&ß­¨>½È$ø3ªc ª‹W#âWøÄ.Û{â1^þÃüÞ¶Þÿǽø®7È3Òã«ì0¤®i‚9‚r ³±òiCç©ZC"”cª¿|GlGô %¯„v! Òô—»ƒÛýà…ì2€2¡eéžì#ËÂ7hBÇ9Àyàù$Úü>Ιfýê–]M%õ¾¢ý¯¨gЏ¦us–Ç‹DÄIvs™Ÿ‹@ðZƒ‚&+¥ñfiïÔ>Ü»8öñ¶oÇŒ_ D]^ ¼¯F.¾oéðÜ)Ÿ ã•°’Sq*u¥ujÖqzÚ¸8ÿ€o¦¯vdŽáú¹žQŸ²¼1sçæ1ò8V˜Ž 0U ]ä£\-Aæ »ëн à¯4Ÿd¿ßäþ³×~Hsúæ:cá>íдØd:@9Du£IàvR‡sHÒ]X¡(A‘ÊÕÊš’yäJ#Ç«Á-åý_ëß[)_gù8ÿÏŸ+’f‰ýöËŠÝñ.Ýð!<»ƒ¢­žÙ)Dm³V(ȨÒcw}]½?‡¢ûÿí}Oí;ïü8Øx¼ gf8G’^tòV&HPã‘#ƒ AÃYf˹€sT ‡ñ:çum°¹ãrpP·ùw¶'ýç º×3ÉÂÇC$É— à¡(m¢+ A9öL `²ï)²æ!ŒºÐñØpæ¤ §"í&¡e+S"¼˜C®]’$1AÞ¼>v¨R‚ª¨½F €•áõ´V÷ü²{<`ÕÖù2Aâí©ËCÝÙšž›Ú8B;òÐDœR†/æAç> ((G¿§½xe~"V׃ Ò‚9^D±·ïÄn½Í€oáXë”è-•^¯ÌTþð8Úù¯ÿÅÈi3*3ƒWˆ¯çw †Aa¨^Éêˆþ¿†ß}¡.œ´Èv¢gœCØ[võ»‹Àb¨ÇqýÏÍD²dúeq:^'¬ã‡¿Qˆº~3v“á?ø¸|¥áÎÀÂÒi¥Ty¬M“¿¡¿¦t8&¹Üüïë¼¢å`Ûëwå¿0;I±åËs¯ÛÌb>BNЍbÐ=?w £Aô{ ‰÷}žm Ü2Ÿ38=¾Ïð=‘õó*ÉØ)¶‘ÂIc+VéïwhûÚÇñGýUK _íjÔ—Ööý¶=3}ñcÈ4oªN(.pˤã‰FŒò{)¹žX 6 …ÚS]Ðhª1‡jxä“r4*Êö¥nâûõ•2òÜñ˶ÎlO5œ|c6BÃâÎÄE‚zÔ¢”1Õ›¿°óÿšTÛêlþ¥_¹ä‡îµŸÇq.ÄÿlýoÏHEáïz|†Ûú]5×fØÚ&ï?e­ê7€Y/µtþú8±Œús¨†÷»Æ^"Íþ'°Ÿpߪu>‚Ï¡Û#G$ùšÅ.ëÜ7&°^ ê¼/í$“œ¦ñ•MUºDÚºÿ ›ã_øÖý–½»À 92E›bâÐâ:ys«Züc©‘2lýÑ#½‰¿Wø¨úâÙ”ýýï‚oµŠ NadÉÅK·_•_Ÿa]Ó7éþéôÿÉ‹ÁIÊ`~ûPn¯bîö_ ¶1¨Œ+›júF$/Ú¥Üù¹öžú–ó•믅=_•  êG3y3fvGj­&…*ÊÛš$x"EK .nGUqxž¨yò}ÕûR¸¼˜»IªHÊ?GE*é)þ Öe‡,š·›ÅhA@’2 oÔ#†l¼H­œ¡ “DÏD˜9ãÍg• ŽŸ*ØiDgâ]I6{ 1ˆV0‚ \‘°H`ªD”ˆU‡/ñÜhš‰ýœÄ©-ªN)+XSGSL‰$ßDŒ€h& ÕãÏóäƒ*ß1nmUÇ@ñ ß±°¼)©ºR?OÙÔ) èæä ¦Gøâø{*_€»‰Ïi¹qw8Xè«^ˆŒÝ±€Ð•#b¨”VIžží†Œ‹ÅÐI&FÊ5¥¥/öã mrU~¸Q÷4ýÇ•|DÚʲÅçàæß¿&Ó©;¦á2Öí½èÚ–OßoÎPº÷–ªi(­‚z ±0Ô/Ç¡uI@ž* Z©ê`·*€DœO¡ÑÍšt$xBãb£§äl­äìÎ-­¡öâ\ã¤CSl*.œG?5$ÌIDQtdCv‰Ma4¯."¾7=÷FR‘>£—×¶\wvK=üB‘o…=S`Âù9 Wm섈ÌþÎ?4#mõ6ßõ‹Ö aY \ŽM'„ÌÉåt8 ðl·n®cŽTñ.1 q½òSZ3*Wâ1{:¾ê„˜ÙB/!ÁWN]ð“I[‚­ibd/€ávò …è ÙyU‘¡-0|¶¯†ÈÚŠq¼Ÿ<ô£ÕŽ¡§“BpoÝù‹ºà5HðÚEŸ8ßêþUv¿x×>‰/* 1çÁnü5¿¤™í1gBÝí* ‰Ù”œºLÜs»ê{³»{ëå £ÍOÁõÜÄ[4/ÝAÃzζ8 ¨Y #VEhºãAn£ZáæI‰!<0°}à{ÔcŸt  ·ãfUÙ´"a^ƒPë>£;DoVçkY=þú€U¦_±ÓxžžZÏúúÿÓo}8?ZÙaïgdÑ…7,k¶~ê`ò¤^½…J^d¨s«äo‡‡µËä·§&Ô ˜‰²ÑOK͇¦Öˆ˜îÉÈǪÊI··p¿!yÊ=:‡qršKÈÿ|1oeŸŒ±íÉe¢ßãWÐíiI´¸¡H­¬á*›“³H •ˆƒŠ$Ã[ü)&’…f½(ÚÏ—]£§¹sèT&¶Y8}E¥r$V)UZ†ž›"5 x¬ú4õœT&w…Õ$œAK vq™kpœèhF–”@éœjÚF’"‘èD=O¹\\øKeËà T˜Ã³Ðä…VyKØñÁ®YiÈ./ef5× ®z”ÜÛE`­"èZÐm‡™»Ð)i…‘Dòh[$ÇííåÇ/q‚*QôFàíózm$f9Ô*Þ4q¡Fz5?WjÂ/S‡<˜BÌÿx©û«.ô¯Ï±¸{Ô^Lnݶ¿Wä‘I8GU 'Xå80Ñ猴ˆ úå-ꊪËòX”SO9ǽ…¿~Ý´’ÌÝ Y‹µÃ… Ž€uöÊ u\b#9UpõÛUµé§òè”:®fecð‚uë¥IâÁÎÈ©9=Np¤¼èÒòcY=UË.¿7ƃ£Æ =L€Ï(Þ¦¢å…–0Åéª8ðPÄ:0‡øß0¡Ð²(ór6ù.º­Já#%\—n͆CÐÁA@ðÜ×sÁbÞÉeä¥"îeéÖ¨æ‰|IÝ´ÀÓwÒ/”ôž8*‚5ÔÄR>¯UÎì91K`Ф›‘Ù²5Â*êN•wÊÐai6Ô¤ILÈP¸¤…œ/=13`üq[=Úºó€ŽÆïÃñÐÛAá¥ê^Â"+1ܨ%?H(P1ÉÇ™bNC4€eY×túáPhsid5êÛÆÔᦾtÛiQÄmN£>54ãØ¼»MmAœ›É¥¤“áW©%[YæÔ³†i:Y7€2KÔ«®/QŒà´ÌeTTxˆ Ó) *ÄB®$÷ëoR„¾`ík²­}D–ªFíã`PÿÄ™‹Bö…ö¢8:xþ]C+R*pК¨áðƒ-p]ÙYg邽nfÖÄ•«Ùð¯EDÌVÄSÄÆˆLvQ{ZŽÜ ¼?zŠÎŒ¢ø”Rû`•ϨòN‚ŒKG3³Ëá''g>&Q~*(èx‚¬u¬Ü$5)HæÂËôêÅ¢&æqèõz9@À•Lè’‡ ä§¶©fûqñºh-!Æš¸«S¸õ‹dUDV´äGºÑàtÑ*µL-¦­h+~Á>‰[üìäî{m_ˬ¸M>Š$úÄL@K K¨Uh"¯¶$$†ÁN5&ø`ÆØüLÊ9€ ²¼|üo’œ̬ÁcUœŠýQÚGÁ"@R …å¸2Muä…*/‚Ú”¹—1j/"×TôùS˜=y(þÚËû>¯%O:_dq0.‡ASG¿õFñŠ„1¯°K‚{ýbûêäôvˆ[9‹ù)$neÆË©z…=àtg²ovcÈI˜F=c)&(Ë>³9†~r èûÃíÇþîgÍ4¦nâÊôž'J¬BŽªMh¶öQá‘N) „˜væå§¡Ò9œžqòÉÞ wÎ0#Ž¡S>ˆÄ#Ê^W8Þ"ØÂ²Íu7Àd\K*²BVqÛÖâ—“nð¼f¤œ#dþ*`¢’7æc}ȸ‹N@‚ $]q‡¥RRÒÎKÃ+(% cöd/5µ¸ÛQÿEznް§’JÇB–ÐbÍAZ¯†Ý7¸º¾«5Ù,ø—€ü1oøSËÄM[¶píªc¡ ©L“ú`œ›&#à¾(þeKjî£ð°ؔ͡†ƒ!«8S9([Id~xÀˆ Û$þ¤ºŸÇÃÅîÆ)9—|áÝœ¸¢â0µ}OqÕP£k½œVöã¯Ñ¶vh½l:ž!üw;¹y`Ö8 HRQ»i,Pú1´+Fm¶;Ýì/&¥b³ì‚Šêú°TÔ­‡ sþìíWÝÔ³«§¨€C"„ÆR—”žîÛƒ·”Ü«š<¢VýKà ÊKô[!ö}ìùDšBʸÈ(…H·B‘ƒ:) ó¥:¶”ÁcLfOƒ-$m¯KHvHœ«Ïo&P÷ÊN¤¤ªaçãΛX‘kuÏ‘«ˆ†)âèãäFãm1Î.&²f4Iz1E'ñ„Á9\,õì±g¤Ì•¥×|­òp“éÁ_ ;S€ ’V>¨‰59ÔLq¥øîLì?§KÜ.É"USzÆŒ& j †—,Œù:áÛƒj‹(ÿò¤CûˆKÙ”«½¸ß½SVJc°]ú2ï¤9€Á`:ET2DÝŸÀõp{.*ZÉLƒûŽVtÛÎ{3à×ÿ’LT8E€ÛUwµz ökMŠª¾˜'PÍ|Õ™fëœRi/3m”õ2®žhæ°*³îê­"+x~¼µ °öbSès²êL^{)Ñ”tå]G`^ßXÖL0›šfàkYõÄEgÔ‰X@­«È¶èê®ì1úK˜§[V…œÚÈ’M—êN^’Çшió"æ4CEƒ_ÏØLû¯#N) 3 ÂaÌ‚” ‘¥§ƒ¿rRÏ À££Zœ—ç㺶¶¹r<ðº/ËÜÏ/1W/*ù¡ôÌÔ 6UÈ‘ŠnAÅ–æÃÌsêØÈ"6z6J`ýo2 ûÞžúÿl‡çlÒòHÀìÓº ýí P ëôø?}vöýÚ𠽨Hð±,Œi¯m€×Ñd÷4!WeÒŽì”ËÕrPf¥ zs@ ò„ ±×<0)æ‹Ìڠؤ٠MtÚÛ:úµ .k&§V›lýd¡äN~uµ,mDÕ0Õ¡ÞP`¸Íû&wq½(¥¤^_Ý)Lc”Ô°‚"ݾ‡je,$&â‚ϥÓÀO/qó‘Ã%­jñsÔ{{ý~úI«'|Zòõ À=,bqt1ÀS$´(EBŽŸ~ ü³’†C3Ý?oƒ$æu8d 5›KGGÓ—–0 YÔ¢Íã–{D¯#bèáÚ#¦çn¬1eñ Hix€õÄÁŽ3!›µ»¯óGøµÖ2þQ›UN—– BeÇ1`?çêÌ K>ùŒ¾ìâ{E?ôg;aù‰vˆ#!v¢HЧ%xá¤9àømêI߃é0qcÞZ"—&²¥€/6T,¿&M$IhS±²F"#”’v“ijÅ0z)ªÓ³Ô“eÌL·æ¢@ZZš þ˜¢“¬€‹kŽêÞòŠ…ÀŒIæDV]”“Óâñ–Š«æáqô]a&-~.ÄÚpâsIGFŽp üp]¯ ‰ŽÞH†Tè0¸zÜl[«Oþòœ¾Ì5%Ò¿gv)BÇ• ‚ñ+I®êw•ÚÔjçõcOîî›ä –Ê%èM‘ÍLoR‹mJáØ•õ V绾$€oZì÷—®Èól,‹Éœ@ž±“]OÉš~@˜ Q°t|Û‘TtÍ)$YІvšÉËI’lr‹ï{´D"&¨¥„dˆâtCYZ¦xB ÕJ²\\'•¾ !Óv…>וú¶kÒß…_%Ajm”ŒÄ‘@¡@.žÐò:%*Õ)©¥U?vñ"2¢/ƒ¶7¸(žq3³wšç¹Þ7X¶"dùšÜ‘dÇHòfé Ъë X³7–µ—ªÚ¾y¢R"@ ÆQ\8lÍA$°i뚲Ϯ!‚¤Û—rƒ’·I.|¼”[ ˜’Æä´–šû¾n\;©^9o èªÇ >ð3™à@XɤJ¹ #ôgC *вwysÙÒ­zŸN£Ñ<^øÉF(¥Ï3 ¦40ÀŸ¢–h‰]-š£é‡¼¢D1ÅY“á—B¸[ÇcZ!Ü‹‚rò©j™“!2<ø;Ñln4(KÌ~yô–£ÇÓxB¶Î # ™Æ§$°Ï¸ hŸ7<†|Ö¿2›WRqäŠz˜&¹TôÔ›„ç­á ¢-†ºˆ”«ù)Z ïA¸T#w㓉fPË WD 4i’ñÎ0]H-Úü K¨o•^jº&0 ÙÂõ¹$JTÚåw&E™ 5hêßÌS¥(õG=¼ דöÓĤ%½Ð<ýÒƒG#‚šo2†hJ0eb缆 Šë"°—\½Xˆ/·Õšý®xÕq¡ï-éY‹˜@„UMB÷piÎæ @©p¨¢7cKZå(®ŠŽeŒP ×¢q/kªwJ Nœ5Ôw–°‰ +ã+'UEËmwAC•m‘ÒrW'œõ uÚ[kQI¯®~Š8!IH²¤ñ7Ãf7#À‘ñv‹^¤uŽ8éë`ˆÙ„aA;HÐ ÉEL“N­x×y_.½È9blÚtæêX¯`ëPæK»Qç4nX¨§Ï•ˆ8Ö ¢€Ä…hgs»!õÕÚœ¸ íGuèȰÉJTP ]Ù…t”aÂQi-zomb¸ÚY…v Š?·M2f¿9wÇ ©òV¸Uh»¦Â&iä@¿.çòäb?˜¦/@Ñ)mÆ?g‚8£èGEMýŠ& àg5š17ÝÜ ²ZÅãðúÝ>§köƨ‡'xŠFRŒÌÚ/ÁD5媫Þ<çAƒtH´ÔÆÆ)¼Åjè3ƒ —t…ÜÔfbÀ¦‡ §0:fÇHÜÉL¶ÔÝ;8¢ E0æ Œ:çG„*Ç1Ð0ši) HW^•ŸDui€[’bøWøè´1ç¨åž’j²äŒ'øGc.@-–(à\|ÍŽ'æ»zc ›&®7[™¼ -b®B•(1W2/ÂLÂLÈk0êé!ß t1¥Í)¶>—ˆCԌݫwnú÷£çîh²AqqÓ?©7/Drx…­3ê‰Ùæ† ;€@Å€!ùÇ }ž¾íÒO¶“BXu‚~ްn4*µ—·‹ö^¸‚èü°ž:îºh¼»3}YÌH“”°HhÓ¸·H’q”^3ñÇ‚UDùD‚ÄË©3¼üÐÓ³L®`¼>am†L¢#R,!Ÿ2„:º¼w¥,LeJ13NT†p—ß¾lTÎMŒ|Çs妃\)‰~ÚLÆ­ŸÌœ¬’Û6ñÎ0žl\ÓàK‘Cüzps©ÓÅøsÇ2 ¨‰éÊÉ…[b uóÖЈa\7½·Ñ V>ª Û˜YPÄÀ/$*–íjÉ×&¶£­MœŸ8a@.A-Nnf‘c,i –îe–ÑØl¨Yœ§¯GgáE"<¶hÈ©¦¸Á¡%#eªÜFD‘E%Ûµ[Fø|º”ÀºY° vŽWPÀjÉ)h$[ÔW7<‚d[;Tb*wl™ :–èQÎO¹šL.œÅ áBI‰QJÌÔ' Ü|$ïSEå;"I)Y•äé^H)Ê-‰˜ËÄÆ©´U´`™[€ÂÇÕ¼Â*Ekˆ«ØL.&ºƒ5TÁÚ7¥˜“ìÉf¡ìæ­£eH$[É™D@ÑJ´2Ö5òÁü¨êXSd'§q¸›Éª,€b`*À‰(ˆÕ@µSôL‘‚í II=’÷úîÚ„DœŠéZ2b%Qßâ3¼®¸=âIŲT!æ6u&8…ôË¡X7º¾¢káß%Ývîþ÷±LNé8¾µêj ¡¥ñœ°‘<ß­òRÉ—µ“§V" ¡¦¹È˜ýõQ£Åœ™PäðAE79 FŒZÿ(<ógÈôIz)Íp¦]nÑßJW4,˜#}k>½ÓS¸—½fGÔƒYTú=¿½úà—£½w›‰¼  7¹õ2¡y€÷¯µ§×;rúÕ{£ô~+hõ¼˜™üþÇ[o@e÷ÿ.'æ2Q¯çh¤ ýó¯?6êt¦tˆñÁQšTvN °RŽÝ³tÆH]Ñ1±áÐÈËÏòêØËUÓѬ 땚áLMñNÞ"wП_;}0éUXðP%jb4³„UÏD )eÊc60C£‘é¨%ʜ¬±Û,I½ß]ëΡtRnj0Ãj& ?ST ÜjDÒiÙ†¼ˆ?›¨³UÏ M—zræÇFŽ˜bõÇŽÈ»º›OQÊLù߯°`ÚÅGWGXÙ‡åßÿ䯵l2{qîÝMšíR¼IVN\PË€À]ÑŸIõÖ°gí\ƒRÅ\WƒÃ°ªÀ“Œµè`Çwú©é×_ ŽTLÇ%á‡D£@fV·XQlܼ°ÓUrŸýû 'xZl‚¥£Ažtö©´=ÈìRÚ;‘ƒsnÈ–”ÆQ~Í­¹©öVž[*â°ÙñޏGb{ º=lfaa. Y´¨ÂTµ¦-B àho&=Ö3 ¸¯.y,Ý4@0âª97é\×µ•𰥕z½[ÊnC½ã°Ýt9ïÒ<ðă+oõGmq»Œ¥À3ôf G¯ÄŸÂ]~Úæ+‹èˆUwüy[Zµáo€‹ þ¥yUa“<úÌí¶(µÅž…ê(²*eìã­dñ¡ Uõ VB#(-LÌxõçÕj2Á_]o9R0ÎË–´´X®ËÖ´T¤è½Ù!,‚£.Í·À(]Mª‡Z™¦EÈô8n•0¢óŠéKWà•‹ä%•ÖÃQ$îÌY˜êÔ&öö“}õ\¹+¼"˜iZÍ O ª™ºÐ'ê]ˆí>}ñ K‚«uùbý%(®ÙC‡¢"û{¢SS8®§=ØPÐ;‰@aI›á#+$×á ô¾r îGD†;‹©\“k ¢–håæ` …(d8k†š%„޵K•3DÐ¥[0äÄNYãç73Dé §8àÀ¥>‹¿þßZܲ;‰kx÷é gJ_”’ôD±"7€îýi/¾â­I§zõ€zìWËC{« Ÿ:™ØKp6˜h”ãE™—Pr“#•(—J•ñ ˆ¬½ég*c‰M"#lõý<úÄ„ÑÐG]HÊ ®+•ïPj±uŽ*⢖°œÊ¬÷…s€ÊÀ±99ºé£Á¯(ݤ£Ã’Þ¿ÐÝŸBFkçIñZ½ *ü4RKÄ&dØ6LÁÓg¤Žš|4êùØß¢%â>ï¶x¢ºxeY°¯ÐQùxÑŽåˆ%‘ŒäOȨR¢‹H]¡âw,Y¬¥VÉlÙ°DD2c4N%²;ŠúéuÄûÝYæLÏ9Ÿ2¼òÉχԦ+­HZ®\À0sÔiPxÜåB=0}\š|\éŒ~0ZååÆ ‘“YV[ÜÖÀf‘ÑÕ1"ècXŽÏKS åI)´¶2trüŸCÍÀÅZ “<ªt6BAP˜‰e@ÜÐMÌ"-'MLœ!¬¼°Ù)X˜ØJT<âéžÀ›7Dj"ñÕ"ˆÎé ߘ®­?»>£S¾ÐW€©g2üDlsN£VY¸ mA¿1-Í©ñÖQÙÅM^)¿+¡ƒøHÙ–¯4¹pr¢£p[Å.Ò8éçã¶:þzɬy¸ân¤ålf¢a½µeX„H?ßXßR).qYš–³ò23‹„F;' ª¸=tó|¯ókÀ'×2èGÎ:Vt¢­öۇ߷¦{÷aõO]Þrrlyø1Ûõvß•pUƒ«¢bˆÐŒŠi˜L-2§@­AY9H,ä±S­Ö»€ŠûôÍÐ: < ¼Idö¤%‹~\*•YÉ“šÑ’Óœh€8ªy"Ñ×’rò9µ€h‹a”þ* S’g<÷¥&vmdâÓ“H${ °­š¤¡ ¹0D†‰ø~œé.hÓœùÃ\A‚L©— |Ù Ô¤uXÁq=`ŒR~Äšìrçƒtȶ1Lú¥tZp6áRJoCFÔDÇIìûURïÒJÒQ TÙiù·ªWJܘ6Cï¨ ¿µ-iMjÈÁ[Q¥†'8S÷†r¶®þ¢æ“šTJÙ­ƒ9ìÛÓ’„¨¤õÅ­ ÀB“èÊÓÚ€Hiæd5ÐCgDÌ¡°u¸ÉÄ ÚQ…+v&+Ð…Fœ¹:;›_}Œ; ^”ѱ'»LÎ'm“:ÒÖÖ‡ÂF;dápº¦„TЮZ½ÕòùÐI•*ÙÊéƒP +›;a¨‚wùÜ\¦\1ûʲ,GÙUO)2±2HN |ŠúZ‹CøÍ¾Ê)Ig!ËÆ [@ƒßiWY©òæ*ïNݵŸó. 5* Ѳòt‘ŽÌl|"Dw ™Ç±/­è«^Â;&­ SúÙ““ ÐŠÙ+'Z®\©Rë"†=µF­pìÕ­É,V&ÞXý½‚_x²F‘RA´„“Ž\9·»­ €ȮɃRZ¬JŸ‘Jê<®HA¥âƒF$\ ¨ê 2òÐY¦­L=P!ü­…FbΉÑx…+‚r´¶ D“t¸¯Í ¾pÖ©“]uŽB˜¹i"O. WTè²-&/yaܲúc?áTMPØ ¢¶þžÂæø  %´ˆýç7—•ÁQ}5”wþºûèŒÅ¦K,¹éò­Â€cßÿ 7~ë^ÿ‡szX‡hÏýK'U§%B&n©H³ÖŸ-fBNoLN'Mø—'˜JŽBmd¢5p2uBHš ô$r{hr𨇖ïò|‰Û>ëà|HŽªØ¿ˆ´„ë‰Ò­›ÒÖ…ÕÏž›w¿¦Hv¹Ï?Xî^Š`$E¹M8§ŒcVÃgrâјˆâýŽ’¾ë—‘$sÈR±»Kˆ¯-'Òï[ÉÌß¹öºâé>)IÝeb¥ì[]j§D-7ŽCggJGÅâ¡E“1i‹^©ôu¬ÉBa„ñ›×ÍõÝö£I¨~A´{ ŽØn5¢'Í•èºa{`¢’HÜ^«á“¢ ‚•}d’ã£ü¥É^Ù”WžW³œš[£H"ï…,.øE¨›„1p¶ÔsûAÀ«ì¿HK]¨3©I‡Sp¦!º0w‹Æe<Ç¢êB`ÙK,Ü‘†o[3ø-¨ß®…úR$!Ñ#ÇRÚNX.F4üÂÍzL#zåû,áR!½ø¡Ó‰1@¡ñó˜:ÌØDKÆ ÃVpœ‹ áDŽ$‘v´µö&¨'¢NØšdB‡ ;|ï~ìߝĸ¡‹UÌÄL&£H@±`0w˜®_—Io2¿Z[°Þáºê¤[¶u*ÀUAÑ¢0•‘´hQJ6AD•ÃSÞýÉËÞ9Bckºd.-\¹z–Š KÃy.ÂtôÁð£i¥9ß\äÃí5tÙÑø¼'3QÕ3àºpØÁÐÍ^K ±±>¥ƒnÙ ÷3¹Ð>±™rpfäOžДA¢"1j2œ§—wí”Ë«Ÿ…qÿ8ާAHÔíf¨uRiåñŒÃÔ·øš%GÖ!éÒ÷d«EÆ÷FÐY1¦Ò¾ªç>GjœØ£ªÜŸŸ 5š 4.Á?¹Â«d-Ÿ|jÏ‘%C˜l]€è faа>î…8^a½ (CÝ\žF>ˆ[SJ¥=ïJ‡?¹F¯~ñm^|y†F1a [KÔ~âç¤Q¦ëoÎà€èÚèa[jôØè­-C)_OåÒY¶P»îB6>l˜‰ãÍäed1ß³@ÑîJ*|Kç™:<A¦= 7Paßüd+6ˆ7Q+‡£ƒÝz ù%­Áttaü9Zâê‡Ð[Œx-K RüR‹yà NBù]ýرØÑ;I†þ~Òé§5Vç€8F¶85ñyu˜´ÝQÂ?¦_°Ì8jšf¼áËËbᙄ‘Úðq.Χòvs¯Ä·y¾=l™ÆQ DHt£)J¹‡úfÄŸ À‹PŸeëeÍç]`ª9†ø0¦ê‚ŽóÉó@ŸC{ÛËç†ÖˆÏÓ·Ô]†©ñè¯ɯè"p7jS¯xo}ð*àßg|ÓU쀗}•,ϧ1Ó/dš&âÛ…×ÿ¾³ºüÜ¿'î°YB4Äìjm!aß;šþÊ ‡Ø®Å¥Ðä—Þ1òátj Z%pÔíd•1ñ.5W#;IvMúihˆø,~ 'rŽö$.+­GÞW7’¦Ù´Èì¤"çfÚÕš™\ÀXÄ–±Y B<)©¶n§ ÇA¤ŸM\µ³åjó4þäûh¬gY¸*‘²8ŠÏÂ2t»¶Ñ#ª+εß/6ðªb“=¯ ×r‘ÚˆEÁÁ®Y‹*,Õ„KY×|Kœ*Äý/²Åø[+0fƒ4Ëœr,¨©^‹@ýîÂç«õè¹³x ‹¤áÒ9,|çx{y %õy£Bý[t¼žʱ•…Ë^¬ys•’0Ä„N9çŒe`ÅÜÆœB4>^¡-îxu L0,^AÚ”k.@9ê* (4äî‹”Fz¦Ç²ûÓQu›Û\晄÷‹£¨><™ 2è,; ŒÞ{ûrëqåÛ.hÛfV§…4n´/Ïú«Òpl*kßu\îJôÍ5QidÒgÇ{&ŸJŒ¦i,M Æ ÅýÄ([­0HR:c‹Õ‹^dUš9…0!t6Ž¿á{¢÷¤Ò£‡ŽµìýÁE@DF>í+ŒG©0‘I #ª…JfÊRn®Ö7`Òl é›Ùô¹kL¤ ?£ÛTt9GªxÔ¬beß/¢ž7%SÀ±n…åí¡ã²véì¤VÌ„\ñùåYýdM¿ ïßÝã>ð¤¬8û<ÚíjÒ OJÐ뵕ڱpÕçzx|Ø wÕUÝÝ-ˆª!F Ájö˜}c\*¤/»´`á– U¨À¹z<µà0♾|g‚¥}ŸÕûÌ‘VEK<YTeT×6yy¤©-g`ÓJwH÷îuµÓ¬|&ÊRFà• Å¨nø£T18œ? >te²epq ‚¯«±Ån\ЖîL=‘Óç­Y»žÇQNüÎ$G{03?m;Ýâa½' ½A‡{؇¿ÔìÐbƒ üæ ³k@ŒR3UÆÁ%¯ÁÃÍ -_[×Y’À²™=Û3J'nF=nìÕyûö¾¸ù¶WVì`+üfÅçÓÉñî Æ¿üØögæÿ‹YйV%nÄÕ$,hdÝ·C¨éŠÌíñ~]Þ’ ˆ˜ÖŒèšϰ1hOôˆ±´÷¤þÕ9vuù%xêD–¡¤I6(eð,­™ò ij*cUJ µ˜†\iïH}K4ÆC!¾haÓÁ)­iƯUǸîïr ÀäßxÐåÿ§uÑ¢S€›á¶?kG#ºµ` ½==R –¸ž•t­òòÛɱæGDó“9ÌÀâñ<ùÕ{û!8ág¦/âèY•“fH»iP&Óá‚Q1½¾µòûy÷žÓëÔª|£úŠ™ÝIõUÃt’v!éüÔbZXÛ¥NQ -Æ`]gC)3_¹žW‹«eµù+;sù5Hºtªdñc#¾}V\×ö¼ýéH‡ä*ê 7"À2fš”Q¯i4ï³6!± õflBhdîâòR-ZÈ,ɪíDáÓÚ†'ŽòìE# yú^m”ò°IŽUmñ5¤IØà;Ÿ¨Åøå€„võrè!YV;ÎæÞâxe¶§l·Š™Ùð¶§# d"v½^ÉM曆ä®íÖ 1u7†~ôæ\äêžØŒSþßFɱMúÿ”yÊ|L…lÌÕÍ̱Jª›§aнMü;<­=_ò¶Ñ%; Ue ÿ6²ùÇÅñt0½«¯“jþò–Hm£ÑB*RtT…–ñ“êö5éïý‡²÷eó/o™–9PÄBù³ÜÊûkuA]À?˜äÏíJd¤€ÇvÁNÈWsÎ[TQx4þkÍùÄXC•*Ÿ¡¼•Ⲩ{fyY`çqÿ_\QüIêzNbYz¸†©«šÉ™éòŒ:úd‡Ò܆¥Rô©Ã_?}ucNeu2–—NÔ¤²ž<ÓyTI' Dî ár+ðú4ƒû`Æ›Úì_MDäá: Tר>©cUVSæ6Or ØQôrfŠÁ°1iâdL¸Uà ͈ì²Q@Q;^ªqÈÊj¤„¥“¿ï<*tO+ô̈€nëŸÈ°µ¡¢ÚÛóõÅÑèâ‹–|sút2ÃSÓÉM?YÄõ™Lv™¾Kº‡î-…3:üåw æÐéúûõê§\·ÿH¼«L5$kvÿ™ç`« ‡–[ÆY¦É¬æÔ­¦3‡ÊY°Ù°æ/{ ê€Äš Á@.­íXSÉîb–í½šÀ/ ÎPÜŽº3wVÊsÃÒ”;o,6\õ Þ‚k`ÇÆbÈ2š¶s®hò)ïï@ãâü|°`#Ç'\,Ú1ágdƒÅE05q_1ÏõÁº×EùGÍóws×e2V\©Ñ#ó+Èb«DÝ'yÁñèÓ>·¶í%” U¡g0Ù¬c1"ÅòøÈŸ=WVÎ[CB·Ó £á†Š€ªCÑl[CjÔ”¢þÞúzŒ¨†|­ÙqciJ™Š"ÚìÎ…ö¾Çä¢/íïÑ+2o8© àd‚5‹¹|yú ÁЗÌ_m!2g²&z‘©‘´˜"èý Îö«,Ò¤™ëWýÇ•6‘8ÒèE¬ŠÝ™&å'ønÉC³ç·°e°¨jV •tóåŸÑ`5иò‰MimÄ^|ÍŒƒÙ¤7|¾×Ç%^ø€FµÞÏ€­µÌJêíº®)$‹¬´¾:¼Õ‹¬B+‚£BÞ­t袡͛©—§A-ìÖÚÂ7 &MÎlÄÃ;N/Ïî œšÒ†?àú&äΪ’aa’QJ;ÒÆ©˜q,€04©sdbãÔÍ·ðNv½é3L‡G«^,ÐuXÌ êܵ,½l«¾fwvV°¢‹y*&z¦¤.¥Ð("‡;KHŒvglÑZæöŠØ%LŸ÷ä?:³ß½A`vIÞKž¨6ªB&¿O“»)å­ü çi¨`J§È C)#'À­†cI2j;zg>0^Ñ"å\”'gez­kÚA2l!]>k/ÅìRüõ«vRÉ•¤ûf(Hãâ’ak¢6Ò„å ý.vMëñÜéÅ”2{ËW9šjK–l~§"à´¯Õò" ¤¦}f Ô¡F[]$À‰4G©?Ö„ˆN‚¶–@ö­TyÃpŒ<+ZÑ 5_‰šlJd×!#1±4Úç+›zÆPFGpšBNK~¬*übÙÓÇkiŸ•n$½hôw÷âDäÙýt¿H³’K€à{8é—²}°'Cs na´Ü~õ®|2§Z1ÒB9äcÆLÏ==)jë©ïXÙÅÖ‰r“`ÀWÜ—{D&6'âx&Ó²–T¢¦àg A3‚ /¬#üKզ˔…(É»7c¬ LâöþÒ¯:¢@ËJႚûÆs„ÜjQÒä¯[ùèŒ1²K"õ QaýUp”u¾šÙ¯@Ôãðà¾Ñâç*‚-„ÇG{òMEì5÷˜ ñIpëõè0®t îUd$„p8^ïÈiæù«yUÏMš¼”®B<Ó;þ€áýyÉŠ`–%0n@I€Ñ– ÄàÌM•\Ã+üõLTŸ½±‹W\•Ç<ÚÆú˜i<è×rr¨àÐÔ¸»nSeÙý½ÔÕ3i¶$þÀ÷FM˜ïþh ÅJÆ¡"³ÊƒÎ;÷l“c„S„Ŧ}£Áæ¬æ®Ã™=ödÀ͘ýø ®%" µrM4lµ‚DxLŒøVðÔžÃÞÐ•ß LNK¶ æBçÓ^H°E`ßëõ–5E^KW×jžkæã)tÞs¨uô¬-–û•¹¢õWùËw9Ûbü9ì ©à¡kõ†Q‡èD« HIaSžÈk7žÇè€W+ùÀdÌLd`–†^Vt`IbŨß,äŸëO}#vfnÔÛà67\†ÀèH‰æ'Ê…ŒRw’Úʉß|‹#¸tSSWý&“tZ“¯±ób W”"ô°9CRSw&y׎¿V­Ñ ª3qìiªØÕU‰–ý†„Žñ…bs¥rÖdþŸ³ê“¦íðåWz7‚ÒWHv‹Q•üÄœÀÊ'Ÿ3š«Êqiïq»…^ÒŠ­;tÀVYl/±˜Ž›ô‹ .gû~hã^§Ež}éTáhü$?lªñOèêOÕT‹NÍW-êÓv€+âuÞG·îçOh¢ÆF–©vÃE•0>/ :"…àcäDSZhî·ƒº™WÍ ìªzF MòNñôv­tÞ°ÊBzf_jjBìÒ%P `éûºt[»Ó¬´ƒÚÖìCû,)æ’5Ã:­ÃK 3Ö=ù·eëÀƒ.ÌRh 9˜õÁ0©Ä˜7¦²ü3øC»-ýbH:ª½xx=A–˜æ\Rt9_ÄÿQ€5忯M1~Fù•gßìÛÔ«µžö™¾àû\wË7l³«ÉÑNª½™_Š‘BrÅ O9L‘é/mGM§hZ6oQQÈ´Å3¤AKãTñó¤R¹¼Uø¤‡ûöù|åê}š¸t•-Ò §è_(4ƒ»;(ÆîØJ’¯å®÷ºS·)—P½²A 'åw‚nZŽ_ßùŽ÷RJÅuË÷©BäÔtã~Ó“RÎ_€fªì;Bô3\Ì`_FµÓL«š’w±Ø¥ ‘búŒ¼ пhJÝïOñŽW@Ä ‚Œfa§‘]⃾Ì4‹ì«ñaF‘]hìEåÿp'<‹Ø´(ÀËÊ-%–)Îp!µUÆ좕  mº¶D~ ¶åltf†©[í&,ät&aRb’ˆN*ÞByöÔškòz¬ ø‡cñƒ7Ö,Ø sgäÚùƒ¥tFÒ{’A6F{Å®±Îxݲ€c0.b8›‹ƒcîODù·ýÅ9GL @|mŒQÙ¢öÕJ1îâXwÝü¸UÓ}%âßùIÍÅ<ÌúÐ3!ZçJ˜/ôž&-š„·)18C®H­*ÑpÞ ü½­¦ZûXæ±Ïò”+©ÚºÊ ƒr„£„gÙ¢î©JÑ¿ƒ<“í'Ë ÒÙPƒì¼áÿ aÝ0’*¡2 nà˜¨»™š €Å΀çȱ*´ i&CgCÑÄñ‰3G« ´àÇN >0Œ ⛿×ìÎìeïÀ‹Ã>Vò•~÷*ƒƒ;ùB†òyu$­}Y ("ÈÓ–ukPZ›>%éqäÜß8"z#y•4ß´ÒNÏ…_('¥ôgȇ•ÆçJͽÂLéÌq麔øBu;ÇO/zG¬d°kMCŽ;,žÜÈÑ¥8àø_þ„nŠØQq·ÓåÉ%0EC#”˜a›Gη›àÁ?àcƒÔˆF’ðG†m©Ó+¾óB–ŽÈP_:gX- Ê«G”TÞ¤ –ªÏÃu…}8ç6¿m?Iûâäê&œ€”*j9—Œ•mÚMû4z]ÝÌŒt7eL1|`#böç{D6¶Í÷ÿo™‘(X±õ˰:¡ ~¡Ê¤)îÕ½¦ÙÓ¥)¶ýe Z©Z9d+%ØÔ*‚¬àá=SÊÂÎüòõï{0(Ñ,“‚ ‚[Ô¡]_1éx‘gÜòK2óNÖFR¸ßf+ö„onQÛþUÊR©ƒÒçÂr¨ʈSš01 ûbšlé ËãÌ'üÅÁ3SuŠļÄY„v&— $>óáZ¬¦_a¦k}|P€ÌɃœ}•iyÒ6¡·1éÊ•¦ºg-NCˆaÍBB]”f‘…ù£ÄÖ«‡(¼Y_×Pœ°oYŽ8šAçÊÚ~<ë#u?®ñ4+¤7_˜O²LÐs Éƒ‚³IÜIZÔìúÇt~(r×r‡Ú(T¡ÃW>CaX#zyŸdN+r ‡¦OþSÒ…RZHc’¥…²S3£F,‘á‘ì”iUÙ$›µ–ºæÞˆ “ÓhÐ ÆÂ™õP²Ó׺§HfmAà@EžF :T´3ô5ÍhúxnüQŸÐ¿h˜PeÀ‘“.h(báB±7…3‡Ý^Œ#¢9– 2­œ"ŸÃkúÆô&Ä­itaƒvÅ»ç‚xG7ššgæÕ.ØŒÁ$,Ë/ àV¬úG¶ƒäµ$÷@WN?"‘1O<{~ßœK©šn`5•¶R4h$ºmÀI¥wñŽV±¿r°òØ¡ä¬N{>ï¼Ô™ 1u»3ÓB'³iþ×¹OºÙh†SùO–î+4aQxŸ°‹zÄ„k‹‹X‚ÁÏøŸ|½1å€m­¦¾w>lp_D:kþ¤Ç²wï»9]É1ACœñ0@G?ȹc&TK‚«ñÑøœ9¥–]DÅÀNÒ—%ÆÖ”&PÀoÝh„tç à[šbÔ¹|u$G,Ý<EÒeåñý>èÇ{¯šO³*™^ (P)=ãŽîþó˜¾SßÄÚ=é¶Ê4+Y‹ËÖøltUÍX# ’æ¡/ó&TÓ¸2ñ‰Rùfp!hˆ€A’´yéóu8¿íàX¤Ë—ƒŠ$Œˆ¡lÌ€ì;0±ùUf„—†““Î0{êr¤ºÇ@áÜjùèÁ0¹òr2{k>ƒeX„†h®(»FAÈÏ‘g³Æç¤Ö¿£üþ¾§|¢¼])C³’&¤ý¯þºù9Vú¯·†PùG ˜J@@³')nVÓµË1ä®]õa½Û-²Tšcjº^ÒI%.ý¾0Êݪq³rX°ì4¤»R˜ìǜݔýë4>³3X¶<Ú@ðS@^™ž ©ÿƒŠ‡ü¢ú-}ª®“E`ä„ë7Â"üÁ¨;@ðàÿɯkÜExEŠÞ\œ8RB?臕÷·•ù~`]”Im~ñ¿)‰¹rÁ`z§;'ƒ ›Þ±_Þd0»&懰“Ú<'…Š¡‹¥¯†ä‘·š„žŽÁÁr÷eÁ¦äÙ"J+¡+çãòã_%´ê‡ÏïH”20-rGJ,xˆŠ Ϋڨä+[lÆÑö1¤©?:À¹~@hA#ñØ"D圧)`¤KÒ&àÛ¬ z¸pmL©Ñß}¦bà‚tå¹öÊËÀ¨Óo‹14Œ}ÙD’o©ìÓÿ,Óå'-'+MíùË©0õ9¦‡$Á n—Ø ý‹ ûJC¬”‚R‰ö'Í/ÈÛÕå²û¥º£O2"ŸPÈ~\ÆO?¿Se¶Í[ å» R×…Lh f€ƒµÎ÷>¯LB\,˜¿eq-ßZÅgº…‚*Yi·E™›0€‰¸y¾«ž·Á¿F“, J %Ö.HA M€Üü`„ñýÎÐLìÏ‚¯ÓAO¿ð¢*RЪŠAtÕ¾>¦æÅòO¼o<PŠÿJîiaÁdfÕ- ´. ô' •£Œ»¿CÑ¥¢O£J³€kò…ÖØ6iò%½2TÈþ}´¤"NG÷}—W>ó£Ä ä*ªð†õH{rúþ÷:Ëg^£VPÑ7…Q.ýƒw¬?_íæÀ>²ÿD½?ÁÚjÉ~<ñàWæW„~„:D@‘ú0bfö¡Åo‡ë¶ë¯b@°„e¯q²MŠ׈k´<˜ƒ‹ŽL"ÓÖw#)ÉÛjc”Cõ]z™ÐïP±94o0F,à»À¯É›ÅCâ²´Ë­õPñN¯ˆd ³Ù€@dê͜캚:¸î;ßn‰c&o/°ä™u íåó:W üÿÙæù`|ð=7àÙ#Ó­4Ð϶Öp T ¤r»"ÉòfÿU—ÛgR`óh×M …à4‚5þ ²G‡ØRvõp=p8GO%ÛÅëÆ¨R¹9™¥`…ZÊÄPD"”ØO¿ñzüõõ›ü/îüŸéo©È/ ø@€7¶v3¡í9\ÓÏùá]‹¦GH‰@$ÔÔ¬ºY€Ó¡JB–ГëëÉoÿs´âï‰"b\Ø ¿ätÀy`jåÒŸ¬÷ùØ”Hï5ô“’:eÌdñ0”9X<öþSă<«wKÄKê~gÛ-È/¥]z+’-B Ï~0° ÈF×Ñïpp–Ff¯èšžõÙ~n4¿bÊìÀ ÝE¨M…ëÿ`¿e73ëþͼԾÚèpî¢,½q%}#ñtTÒÊpÜâ]=Ü éúù×b«EDäW”\XÐaó&ß prªÃÙ¯x†GGàñÉ °¾Y“¸Jšbw¸EtÅþsc¿ 0ÆØ:À%¬¸®ZQþD3KüösW=]·¾;¸†Šª&ãÀ€ž m¦”g9„sd¼ôqi(uyÞïƒØüoŠ–gõÿIÐm€e£ƒg1D|¥ñKßN†ï)ª;ªÙ­Á€Ì›÷M8Ð0ŸŠµL÷ƒ7áôf«N¬}/‚k„*ÐH@k †"é̉ÝSœ­n=q£>¹-ÆŸ7nž­ï¤B @(ŽFgÑ5z%ÖÇ)…âÚ®yd«Šz §¶#?lg~Ï/«­—¢å³¤š~Ñ&ÅÖdJBfl)Åà„)ZkØYºÏ˜.Å(×sŲ㱒/8å`¶á‚áçéûÑû‡5Ø$ê¨$ìÀ%E=À|w@Šª^… m0¬6©-3ô“±~¯Ì˨h±BZa€"PU_ä(‡>úgßìkÈEó› zÔ3oò H›½€Œ%ek?‚kâ—ÆZŒ*ò@#´ÎŒ{ 7‡Ó1íïy3™•ü›4(9Î]‰¾»~ î©ÐG’³Sü ã>¥yw_‚Ïy>ùÂO¿üDðãÀèË”Áô \û £‹f쨈ÙÑJH£ˆK‚íN·RdSÊ_ð¿þ éþßù‘)óšï(ÅÁk“ Iu‰CëZÏPx»Sÿ9#ßJ~OM÷‹°bìê¶B€ hÐ0­­~?&ÃötytwSNÊ]ND¢Ú.ì¿Æƒî²ö¯@«ðè…Þ$ž¾¬r¡dÿÉÐ$oÞ¯îèàðÉõßwÿ¡„xZŒwx+ iBÇgª£¼7³45oÕã–‘è¨ý~éiÞçç.ýgHõ `¦@olWÚà\®›„ÇbOsöN¬(߸.@¡˜3RBc܆ !ÐÍþ.PìU»î¼eÉ7 8 —Äúïx•¿§Ž»£UÒeµ§¼sL0¬*§ @OkMÆìÎÑŒÿ¯o}®†‰’”€Rh@%‹„T¸à smk’e_°ƒÞÿužŠÌÒ‡—`ZÊ茢J†hô3ŽlÛsl‡QÀÑŠ¤V= †Bò»£y‹f¶: æÈb’ƒÃwê㦚éw.þ‰wñ¿¥3 ×ªÒ !AŠ0{›úRì Õ§O—?è®Íû}?DÓwµ¬NÛ‚Še(—GŽƒäÙ£Ì?Èùñ5H9X (ý¯w­¥áý;÷Þ@¶¦?©`%L£(|ܧÎЉ<%£A )žý ñ‘wêKª'¥ÎÚÛwįT©cK°iAX€)ÃJÚ\ÁØÎ^Å#Šƒ«å—/=IRÀƒ!ÃŒjsÐo*v‡?ÑiCý ’ÐL ©I@$Lh² ׃Yá9üYýI?@¼6…~oªY¡ äÅD\ $OÇ&¹‰™ßiŽt5 Z©R`µ3s(m¶¦ý/0Jä’¶ùºÂGNÃhPyÿQÛÏÛ‹ÜšD3K×#LÈ«R ¥<ØZ9ùëw9¶ŸªÛ^I±Í~™ U€ ¼Jò`oÛœäðèIâ6Œ¢4aË®‚È15 N4KeðX„í“Þ2‘¯è^`kÆxp@¨JY²à{Ž ç7·ðˆ’t–AZ›Óf˜›ÇŒ·¿aöA*Ì Éøeô»m0Ü4rµ€‚›[ÓµŽÒê0ÙGØ7اéÿéý¡ÿ7˜‹Y®<åv@„÷ƒV!¿ÖßÒc7•µíÿ~Ÿ‚!šx ,Ã4dMl¿‰;1¹ã,$²$ç«S3.˜¯òÌÞfôÛ ¦½:ï¿wÃ['Ü®ûš—‹ÃèÁò½Ú×AS Ò9À5kü\ŸÓ¬ÊIÑeÕ“T2ÐãkõYYž.²ý'Úá'sŠÉÚBóC™ºž d9þm+ù-hRžíWÙÕël¤Ï+V´Ò×óRbÐY­†:»Šó¿¹-îðÝ<µ,8›€£‹S^ÐHSº ‡À3øR¸ÿÌ#êqD‚BÁË(Ü´µô>wÙ¿Gøx1^26½VZŸŒ KEÂ+Æ6¬ä)~vµlo›Ä™t¢ã€™e,°`LTËÚº…Zƒ*aÇ´ÏÙø¼$&"ˆ(¨òwƈ0F^š]¦šfÀ·ùØ&ôŒNªLéJÏ$³s¯@4Õ$jUðÿ„¯µ•kà°ú¥†mRÂÅ@ rBGüú}¹ëÈÎ5c NÊXš’„ApJ¢2_™#å<|'Ó=åjü³§Û‚:h@Oò8ä0¿´#“µ‡¢8ÓYÈãHÆ‘÷0ßöu ˼4Ä(§À˜  ca©=Ò†‰ÑrïðwºÉK=–äg|ZY¨2¥Fʘû*A`~h¶ø 2K‚¾× Œ±QʉX3à×Va‚»’s•#,öþ@t¹×isÉ—ŒŒÇPð}ç…ª_I§þ¶ÌÇîfhɃDaƒ6TØ)§úNŸ_ºD…½ï&SF›"xf3s‡ExzpQñBAåI+|ˆhË0Xj4 ¿M. †c)c.$m‹Uá8ž  %2û 76|±2wtÏâ–& !<³l‹Í€Ò‡gSšíD‰CÜip¡‚8 ¡*çBô°œ¥XHƒ]^Ý\œ<¹y²èÔ€Zwš!ÏqD‰ìS ÒüËzTøžrÿx­?è`ÙuÅÙÏ<óÏÛØ)›ðy;ý±só3`/’Rh˰¦ÀdÒz»ß5­o×ãw3‡|/«ì.)kÒæ€˜íL»3žÄßÓ‚+çz“ܱ)%“C*@Âp` ™ ì÷¸!¿ª[rÇK°¿©IÞ=Çër€Â,Ü fEÂ. d p+ íÔ3¦BLZ Y’ÂÓù$lÂlx™dª+_‰DÞÿÍü»;__¹Pºv¬$€mð)¡î1î~]ç}/%¤ÜóÜWÍ2T€F—8 B ¿Æ¼sÓÍ@ r]'E­Uè¹MÊJI”ˆ2ùðA2(^‚æsY}þÙÜFÿWv{—ž¼÷©ˆY`eËo¶±Š…b%G¤+… HF£¦¿¥g‹A¤ÉGúÉyÎZ7ÐM–pÚc/Œ`h9öоä²FP»“ÕïÜjoî9ª…+Ðð#/Ïrr\,’ kc½¯àï¹/¹„X¼Šåb-A T°`°3Úøbµ÷g ÍæÅq_:_+î´¨"ôÇÊBLr[ß^ùòÑq® Íë|`£\:àK‚/¢èHÐÕÔ}WºÌ÷ðåÔÌb°4Ua»i• s€uõù=£_‰•‹gå)¹U‹dͨ2t œïvÜjß×ÃÎÓÕ¢€ú¶SRXTÆ…â xW¦À>ù%s,¶Ü“›áð¼6·o%È”$¾¿i @¨€Lë…J6Þ´7÷Âë(+T'9\Œ€A¸YÁÓÔHYK¶çM“@”Õþ© öA”p|³¤©€£ö¡™€¸ùeJøÕÒ]Ï£´,§6³žù©báÎXÈ DX©Cµ¤RÜzsÏþÏž“žI&Yf© VF\H ‰ŽŸ <ܰxæ>ë.“p@SÃŒ§`“¥IÞ+$(ð·ì÷tpÄæ¸ 7ÅŇþ¾ä™FÂqŸìR»€)Î~‡#ä›Â3ü^]Ü'Àüm`b–á`ÜaÞë‚.^8l{Âq/Q&X¿?ïí~Ž ¨úaøºHT 2hé Õ€àk„«oòIˆVtK¡%éI®“0Qé$FýœÿÚ®=øòÿlËž;Ì©+Bm°?( @€^ö y9‰·tTÝåoÂþŸƒËŸ¢mÖËO¢ó j{ž”êÌ´a‹ËTƒ€ÒAì€úÛº†ÄÝv?ÞòÔõJ¶›¯€@rÌsb ­šhž nˆD‰:$Ô$þâ½ü_ ­iw/1¤yüû`ØgÊ©ÿ"fÁ˜6®…E˜'²Øªî{?jÞ<€¢¤È+94iK¦¦X¬­°€ßÞÿMOùå¬CZ:ÇàCÐgÆ©Å%³G&ÑÒ4Ÿ:Be »RPê¹ •¶óÊtekñÜû»Å/ ËGT SfæTª¸5:h"dÚ¤œ²¤0LN+•â—ê'7!CïršøÇ×(×騽ŒËw_Š8:û  t@3o#€ 5.ìjµöô?{ML G °C`š!®²`e¹Ù­t?8,*a)ì!2CQÈ•¹òá"e'¡sº Drš08!VDáQ Ïͧϫ®qö+©Äz€¢)x3àfϤ>éÒæÀqµ'§†0bHä8|ŠSßšW)öv*{Ç—<¿AâÁÃ’ €ùÏG×WÑÃ=P9Kw"Ä&[Ïï´áp@<{ÃA¼aòI×.@:_òÞI˜Aš ž«ú2v ÿ: ƒü»‰Þ&ÙüL,‰ju‡L8°—ÿýÔVø&¼¢þQî¨>n<ú’šÉj8`’A’Ð# ›l0 0 çݬˤÆôÀ~-Ý5¤N+‚„Êš,ü4„JqËP'ÕUÉáþÌ>}ÖŒéû6`l‰à+‰< 8{|úÚ´^›[G»ÿœïÆ›ŠÈ#ƒÝc¸®@°îÿ‘¶}ÿÛšïoýnË܇3çM¬ sš<açVPÜúZ¿ÐO¿æ/­“(!ÓÃ…Õ,ÀØ0 ‹0)‚&}¹×;ã’ ’„€ lGÏ[‡™="¤A )ï“«|õð+0@PÀ›¾å-/¿1(ÀnBIJ%šN½u;†í× Zìêà Ÿðþãî¦Ö2 °@øìVYM5Ñœ(Z¶FxÝ‘ŸhÅhÛ—•Á ÓL”ºd" Ä$F³ò þ^òÿ‚8²¡8&š(_õw¹¨ô?»Í5ñðž‡Ø¥ŒbŒ…IèOÉ‚Óãn÷dà¸3;™?\,eÚ†Õ8yãiÏ›u$ ê{º‘‰@ÄGÇ(  Bã¡A¿¥î|yÜbEÕŠfm0†j†•‹[—Q;ÕàNÇRn?ã…¡ùU´…$]!bÒ´gÏ©Š@? ~' Åøa—«"¨Ê§‹V»:8XƒÌ*NS´£’«hÞ}IacÈ”fäH…ª"L ]ì¨'t;`B$d‰.™DךPÛþvê¿ßS»ûûs¹½•sö×p-6œ±<¸1¡SGÁyñ™‡¦‘Sï»_CjeZÛ ^¡J~q—È’%*´òQô¥‡·>à!Àç`O_#VwøÃ^/pÖHlB˜4äL©‹dYõoÁQò©ÿ>ù?ÃSåßèÀÒò7õgÒ¸dš4@( Mƒ•jì ¢>3vÜÐ#“ Ã¯æ´õù´4ú÷bLƒ`[¸Š’vëýwwc‰S6 7‰Iù¬ûcËSÝôAˆúl/£ c ÝUÂçt,Q5¹¤Â͆Ož6mIMXb°LDÆ& ©R€\ j9•¾Ã­úû¸ûS À.<Üà $ô‚y­R{ÕFx«f§Ú}U霉"†r»‡ ¿êŠÞ›ÐêNY&@d €(Tq@M_7ñžôK4ör™åbþ¢£™öC@ýË]EWà]4ʰF.]§@½ƒfFK¤X¸3¥ è*’A® Md'xˆÉ€QîB+1ŽbàRwDx¾Îe®ÅHïŽÁªß¢âQuåø’7%݇±á *^ÃhŸ¢PH±Úlب._4Q™·‡SxødŸßüÚÙZ¨9ñÙÖ<|Þ3f ŠmQ%?œHNq.šÔDÓ $}(ÒXI´]Óß¶}\èn7§Óó"ýS…Göf·0Þ¤ˆÁc(z‹¥|Îa€ Ë)\¯Á"+ÉKCN M§Æ²ÝS·ŽªYÉ‚ËcŠŒIâq»yWðÏIv¢ê‰{‹Öû¹–q Ü:(ºXðt!ÂI]Ò¹’˳CYåÅõö/›•¢,´2ö5iX…º® Ñù¶s½Ñ“ÿvê“dÌß …“R¤ÖU’¶ˆB](›¸²‹ºßYñõ€5æ“6 Í™³ÁNݨ ðFÉCÃ]ó'»E¤$j)£ŠW²®5Uñýø‰·3>ħÁ»ã.²*ÇB•Fì®Ʋ ß{£9Öø~¹ô…UÔáR¯I6zP ¼6ƒÄY¢G"@ppâ§g1ß!M‰þ,m=xÌmªùéœh¤& ™QBÑ;ÑíИ“Gzj2æØ’M¡/u¥úv{«¾ãcæ[±L\ÿzþŒ‹#)ÆOf´¥¬+ïS@,çJÞ‹O)b “Õ¹‰ ¨C4è-›‘±Ò¤¹Oeyù@÷PXŒ„C¨·ü«æ>3ˆ ø™#ø@Ë{ßG ¢b5S%&@eÕ~,–A¯Óò^î_ž¾ÎFP -|Ó~„@©asÆîoM›Êâ#•¹1AUfÛÄ =5°¦%Wb_ö$Å¡p늈—H“añ@³Gü,v€8ï€øz¥§N#ÀFâÔJæJLÇ­ŒÛ6FÎ]ÌÆ;èn®§ÞÇ©«Šß³^ަ©fä4äÆ$¢u­yìþ6®¸oŠhgþW¥S¶Óo>‡–†X7‰NÖUÖÇs‰N\‰B•fe&ª;%$én-FôlIõºö¥.jRÑÕ²§}åÿ“xµë§yvƒ+: Š"SRX‚ŒÖÎot¥Ïü9Å“âQ9,dìíWÙl,᫽WÎŽòÀsÄOHÊAœ¼éVãsj8€fÚçS"d½M2Ñ®9@C7”<æ- "„Jèl0IZZE•¨¼0ÖëQË 1Ùï\ãABÊYDøUuÞü¡qœÞè™Ð7o{ I=d!µªeÑ(OÎV«5Çä÷òÊ—¶‰@{|tì(æõ˜-ë-qhTCì:ßøþçyJ‰€2‡pÁð#³–A;Ôï>E‘¿'5,ôÿ“öt7Ž*b­„"1¾!þ3ùy®tDʳÌhã,!©îFm€Ì|±æ<»¹åØ-º«4–ÁXj’¯—k…º¾Ðýíñxðn.z÷´ wNX_¢+¸;¦Õ\ÿ êø—s„íËVg™ÿQÛtËu;ݙ˒dqÿ,•¼˜udè¥I¯ûø;ÉÎGfV{¶Q*°0äok5¼ú¥þúΟD3˜³LÌÛvå‰+·*ƺǰ0­W«åY‡³ŒB©üêðÌœ»qIso[9 Hc¾¯¨6¼ˆ;ÿmóþˆYa·0f ÉÌ1·(X„OjRXÓÏzDdŽ4ýV­€)¯j C2%@T“¹ÀŸ´Î$”ªæ›Hš³]%l0òk2=îŽ~”]GçN0¡Ä²ÊB—¼9üÚ,:È%ðyhVÂ=¦}‹ßwÔâ`ÜM6g 9–.vsÌqY*x¥Í®¦BÎ;L]¨ELƒ²ˆ¸ñà!+ÔI'…ÉÖø|`‡ pI"—kœ]LyŒ—f…â:ptÙ ¤_þ? í\3\ÚxÃ{ÒÖ! úeþ=-æxÃw[E8 ¸íœõöQGÏç&F'úôçýIdÏÐ'¸/ä ÛÒºÍaH¬.0±ç»}‹ Ó“/¥0ÒZ+¹e}0v%¹ô3ÜÛAu³B.Uv[6&I{/wCÿ·Ü>Åe1.i|…¼Óý2íðù‚«–èEç&B~ö-yZv Øæ\ÕՖüGÛZèó†ÕÐÌ ÖÞ£s ÍKÒNˆ®µÏ £é[›¤Ï=­wZQéBÿZ…@9RlãQÚ«T‡‰í%Ó({ F¾òÿ6æ¿S‰Óè±,N–*ç$«ì‰ Ö‚áòú0DK]›Ëä—Ýç³=›h.ËÇM´Ï[j(À(éF·é0²cƒt-ñÏB¿ÖbÃc/‡U¤Ps õ3·4Ë«ZT-oûSë  –)Üg„ßÚäP$÷hü¿aýŸ“¾fë£ae‹Ô¦AØXÙ;†V”[ÎŒ¾¶¤Vk=ZlÏåÓ£$Ǹ‡;`§zé>6F©igˆËȹÐÚ—~˜| iÚ@-¦È7Ž'£{)ócEìsޝxíx†/ÜœIǨV«67(õÝøWøÚeˆO¼k×i^?W¡c®…¸ù1K ñmÏzü+ù^‚*·‡é19§í¾ÊÞgö N¬8[qüöüL¹ žÕº¥ËÓtÉyÀŽæ„PöœË`ä…àã}€ÐùKQÄu<÷XöƒH¬ìÕNV,ÿØeä±c¼Ÿ#GÕȉS 6mŒg@nKýdoœ™=}<©U /g¢·väYáÓïÍò­û’íe‹˜&˜Ø3ïZ„±ƒu3“Û"ßß«‚#$e²´8ëP§ˆÝ×%ë™$uµ6Ì"–(Z!'Ÿ…ÄsÄ©;Xõõ׋“ gQIÑœîsþÿM•!ŒöqÛ”5nV üÝÆ1iÍzØ‘_Qg’%5.*c³q»9uÓ‹&JÁÀ¹Ø¼ª“g6E± £|ØT^ö<L¾ex’¦mEßq<$Ë„©,NÚ°XË…€Š&·x3^ɉïëC¾K`qÖæ%QCTnµML_ÚZһNJ|neƒ  »cÆÄê$—ÆöyÕº?â׫529FíZaf£'vâuª=”܉{äYšžN­§n¢sdâB•]ÁÓÈdÒ”˜æ–Éåb_ â?º¡Ä»îÈœ– á~^’ISï l‚ûadƒ\EÁÈCIoºN¼|ØGûÖº<SŸ‹„èy²ôÜ]ûÑr›oó.hà á*e¥¯7ë»eÏB»à$~O§NÕξün)±ùÁM¦?kœá^ÖLiŽÏÑÖg§Y™MU¶v°ì¡²6¨”³ÙC5EV£Û5tAE°¥ R!ì*Ñp…~Âüjž¾ÛRÔÕ ¿F‡‹6CL_B`-´ÅèÞ§[ ÑÜg›“ËH¾o¿YÜØ<¬"¨Àà=Á åipÜ!«Íaèôi9òÊv©“‚š=»y.½@EªÉ£“è ·4ƒ P9z†ÝâØ@S±¨…ùBfñ®¶ g?­PF€½údMU!oK)ñN‹ìœ·å_ÛAâY— D98÷ rDžüÿìnµzbжêgm ã·ÜN/«1áÁùo”Š=’´)õ-ÀªÛ¡B’‡±º÷£ªŒy AºÃö vü’ŸÁMK±m0¼Ÿ-Û ˜Ð[ÎŽ§ÈîLó:\8¢²ó€G솠ºÖžå)1+ ì‰iôƒá?÷BÉÀ6r9ÝB˜Cg,$£5kãÕ¢/·<~ýÄqºM¦åƒ'§:Jø{¥´þ‰/ýíÎdÿ„*’o¸Œ¤ [Öœ¡Ñ䳺êZR°|KÏ[á(å™Sµu*9]«,QÄmUéKL#X–·suSÃù6•T4¤k0ëo:˜üíP–nGèâãô=°ñX>‰©3Ç9ì) #µé¶ã¡³&wØ®„ö¸€n“¹Ñ|Åþ.L¨žf’ÍSjdídZ‚ñT¶î80Vl/4GõcŸ­Cú“ y.„ʺæ,|Sš‡Ûêôa‹¢áÔ©éÙÂönPUÕá@ÙHcàTÇçÞm†½òýÒÓ²è*¤Uð¡äàÒ ²‡ßŸjëÞÕÄ¿{m9KÑo@_úw°ËÊ„4ŽTá«Ê¯ßw“¦O£úwÒJÂ2àà<žˆ2»²6Vé¶u\°Uu»‰ØyF$Ð #…dVr¿Ò+Ê.A‘G"ÙóÔF*cWÅ ZÊã²Q]ÚQà•‚´z†–·wª1IÞJošh LÝó+‹É*J.Á*œU {§T%d¾¾¥ù‰Q¢yØ;Èj»Å‹s8#T€€óõ4Ö q¥êÖ.èZaƾµù|> Ε¥.ˆüÍKÎÿ#ÉëI|ïjCÖëÝ “0­-Ð|àóSÈÁƒÜbŽ—Ž5B4h‰Ѿ#¿ƒ7þ"Öê2è>ëÕÌöªÕ?.¥D7¶6’ÿw™FqÖÓÍ#Ó2ÙĶÑ1oÐO®+îÒz³±) ñ™ûúó¦’ZŒZ:@•|í ˜œ+_b§­A:íSkž$£du9<)ŽüöL»‚R@¦ƒÉ‡ÉädF?é‡k‡Åjã‰ì‡’+Ñ$2. ÏÜÎ[µìpQ”èÐKàR'DG!Y×Àµ)žØ¢¯Ëæ%u§l$X*NËY³îE4ÑÖk>1?…Iä\‡‰‚ ËÐ\‡«À×êÞHé]ÓL*2²ûQÑ1pƵO*„Ü¡@…楊%…“†‘¤]…oÄ˃\…Ã|a¢f ™Û£¬êÌ8^`åVMt±;¦béó9ú“p`IPú¢+w¶t‡kãŽ‡Ìæº£›÷,žG‚‰¼6Uöò¢¹ßFCU"kVÅ.M SyÞ)L°[6p-jT¦ôüÀ}ïR-žË¹vÉÁÐHT”R\|+¯M|+@4WÖÖ‹–ïÕ³¸™ÝÝtÔ´«›ýiìâµ¢ïçõx9糚^–‘~±»#ÒŠ"ÃwLuK¤>ú¦’BQD] 7_åë¯ù+Ôô][HTÄrcƒ ^Gݪ‹H9|ím†{éçº~ö~«ŠÚK1e £¸&F57u‰…œQ*„"ã“( C‰³nYô;”~%‹ÛÍ dÚŽlp`ÁöíÆ.-òàë,ý= (FóÏC<Œ/<°u¨%­Ž?÷%ò`ç1¦»&LPƒÛdg*‡@`؉œåVÞü]Ùì¯Ð™ìÚ@ÜB75©px†skÏΔžk ¯ˆõU×W¨½+)Û¯9¿­¡Š¬×-Æ===¯G^ÇV_ËDWÁuz_žFùW;õU-ü•×°¡ÏÕ{`9B¼@·MéÙÝI~ˆ¹¬ãÒHä­®òYÁ/õPt%ØÁ :¥ø—3™Ëéï×]EÎDª·¹S¼¤%$\8 4|Óõµ¤ó˜j0Q;DÌÓÌ:e¬»ø9Ä3†ÆÍ>„.QËRSe4¼òÿaÁãͪ,>{ÛàÜ2wÁLÜ÷È*[&$ŠÞÉbÀò¯²mù5gëˆikÏrè+>?E/²‚™_€åÚˆi›%%·Ý¾¢Sd¨ajÔ17o1•I¢r»A´,¤u–_3cdiûÅÜ:Î h6 ZnyH+ÇZŠræo2WÙQ\O…‰«Çþ?.Y}W\NxØJÓC•­GØÁ]r\$nö±G) ™,Õ õrÓäz Æù¤„±>ÖrruÀáü\»ñŒ86ºI«èÍ]Ï@â1_-k‡=Øó|~ˆøÔ£&¯H1}µ}…&í¨‹ÄÑ졜srËiMBæw@B%ÿØ ¬6U:jÛÑñQCž¸ï'Œ¶È`ÂË« `EIþ̯DZ7eбØÛÖÉ™®–™-ý†pîã6ô¸r°ÆÝtpùG ‹¾MÝ…‡½®«1_A@˜ÃÏÍi†Ù-ó½d¾*mþÆÿg©Ã‘©\š @Ô@€_e¾îgË^f«ªt)Yiªª Ø–„Sq·èc:êÞré‡Gëð¢¤Â&–±%(s<´°3ÆÞoöe8RTÍ\0y»õÔ~€3ú½1d7޽®g9éÊ*êȞ݊ =–˜ÄWé ¿#:@SùîÖ¨•¾êž<Ü¥O›1˜HFŒ#êx%îÞõ:wÒVÁÒuJpó 'Õ£(¢G¼ôbš“Ø2û½{iqÀ$,/³ï{·Ç²%b¨taù>è©9Š`»4@t[æJ$O³‡0å˜Þ'B÷—‰AÇ*oÃØÖàÙÎêò±yDï0e1CŸÕÛžêçñcåaÂ0gsBV¡w8Æ¡€Ì8‚ÕDf’¸Õ‚‡ÕÓ÷ø#ãp¿é~â.Áud¦À"|m„—Í›f÷› ®ÒæªM«¡ cLëÖl»£ãGÌs^Î{‰éŸ;Ì'A],»´ÁêúmßhTŽÜÇÕ4½®mÞ¯$곞<®ý ŽÆªÌÞZ$PàN¤âÍ”5ŸÜ7AZøçKTÇèá`›½¬ Öî¯krª+Tº¼.¦R“:04ÏDvÇ„w;ÊR/"Ϧ¿®¾ãG©c‡%99ÖXx¯$5§‰€ÂüIĵªüNÌ@—‡U¾Â¡îîŠ;œ…]öד¹.N°Ü¥Ò·ªX£W…·N÷#‰GÉn5]GH/_LªZîlVÄ^ôÒð¸0§«8ÖZÎê#YmÏ™¹ÀÔ剒Ýó'þ\Í›=mì2˜yB²;Ø"è`Ö„­÷¶)¢±ª)ŽÇ™ˆAµw½ŽD"©ÚG#£AåÇ¢•Båüþ”ŒÀXNJbLoùáLèH âW$ö\4Òå$¦•O¥4ƒ½›é¼)Döö4ÁÉÓTLC¸¦Ú¡A϶ÛI*d« %§ÆTòÔ’EKèÉÆÀxò–’n™™À/eã û`Zã  ÙE-È‘åu>bÏÈ#Í#dCйíŠc5‹Êö:Û#ûÇïdšvMnÓðªÐ^v8¾þ-†¨„•¯ú‚Hè#Ì¿DD×»µéÖîb=ÇÆÀLœ=³=Ú¦Í0 âe×;—{À—+(j¾ˆ~¶I½5;¾^`ú*©iÎ->xo õC3ùØÿZtç'.Â$¢Î9¸í©NÖ,¥ÝgšÜ—Ã9Õ'EÔ¶g›·žÀÎvÅ?`öë—-år³ºP*÷øžŸ™Ü?Õp÷Ë@ ¥º¶™}2¹4švVÃxÞ¯?еeg]}>Eážg—waù廉¿“YŸG“66Ťã€ÉHHÙÙ°M[S?›’ß®‚FG"’²OG›mÈïä*¹Ÿ”înw=ù³9W'Ižít­2zÔþUŒkŽ=„§©ªË£&-¹,AƒHÛb=ûíAËø" “ƒ:‚?¿áƒ›æïñP¼ˆ_ØøfÊœð¼°Ý·¨dû*6¶n'™åîñÎ úR=}°Y»]*]~?.júÞ½œZÝpg35’ûýЈèCPu²ù<˜dgÔa8ñ6µIŒÏ+”ðWÌT ÐÏÄŸ¦ÛR…Ͻ=uðÐç¼C®ð¿;%¾DX“UÓØí Õü%ÝGˆH^O ¤ÞÌ¢{ÁªA ƒRÎmì5–ÙÉMCLªÖ¢7ÛúR·ô½â)~3Ùº‘jluê™õŒ Ìý…ó·ÚXgwãPãæt‚‹óqèéënò yVIÊPÓnT^âeF“þZ˜7ùëVUcM]±…i1©m•‹AÅ3êËîÌWÓ[ÓÖ>Æ•ñX ¥÷U8訡öo”ͪ‡—·Ø{È\´í8# õã8×â"v˜¾á‰\« 7›ª¬Yé›èëàwn™l»*îL¸Ý\žCJÊŽgý&±`üãiBðŽ ——Úæå¶«HÙ%*¨8ÙýÝÉnµì@3±™‰“T a;ÔÃÄŠ“†Tlp28s1å² àÑ:Ïw£FÁ3:)%€úñÇãˆ'v§L¬ºF6¤T+öiäýÐSš?k…Hëc¯%ØÍ8Å„ì P´3L\j|êKµ‹•Us§ËÞÓåøÁe»RŒ…µid+ÂÚóB'ŸçÅ{M®o{°{ÿ—€ÖIŽ÷“n ¢|%ø-º÷0u0jwd`âo™­é0ªêã¼Òšp-o"«õÆý·òGbKêkoð¬ÅÊê[ÞóŽªþ K}ú±5 ÛB´µ–¶ÊeF)JÀÔ€ô¸«¥h/ú)dš vRŸfz{<9ë.,†¨ÖúÀ$ÑÏtP®<\7*Í-'ÁF|ÏûÑRÅ ßU' Ÿ6t„VÝñŠô#EÑšÕ…}b˜›£HŠKªÐD’(9’ÑÜ`+Þ^ê…¶Ñlä×þ³ìȬÜ\G‡jÆ’Ššðö2˜ôöŒ© *IÆvn`Õ,t™è—ÐÔ‹Å””ÝÊ!O ÛÎfÞuŒªNˆ@3ßß3“×γImSÚâ"ÃíãÂÑ-3MÕ¾uM3Ëç<}EOyaÓªqÒû+2óµª/šVf4¸Wö+qz;½JVëNà‡ìD¦=5«À¡,7ü¹’¼ñÇäNFÄæÐÓÆëqƒ8Å9²&ÀL©a¸è%ý‰.¼fù$àzž+D‘b}ŠØºN2»ŽÓK €/L~P2b‹RVjAÕyØéq'öv"U¸N ëØš¶÷]M[r݆C¢6¦ø}Gåô2«³kf”Ðáñ#*ÿJÏ€xn~ÄyÉÂ9õf©³h¥ÝÑb€ÅZ†qUyQ·#®äÌaƺäœ3üÈ Þ9y­õåQ™í‡q´H ^Û´ERûÞ:àCæçfÂðcœ‹YyÜz¬lÐy³›Ò;“èûn£û¸ý¸~ùɼRÚC[‚.èüJD^ΰ™ù¢mìÛ(ÕÜYûæE¹ëE3ðN— ¾>Ü­cƒW®ù…k¸¶:8Œq<2¼0lÚ×â×…²?PŸËµ;˜Ÿ¥C?ä¹ÝÕfÜ ø2î±U>î¿Ý–—Êäã7õ$¹±ìÀ»ŽG[ºÓÕb^%i)ÁO¥Ä £z6Vþ¯ r\bì‡NàÔѺ©y9ù¦×>Ï€þG^òIF”D•‚‚ãW€Õê9Ø®qF-ÓM¿eõXÁ]×jø€§©ë×Jék›¯ù#8\‹½EÆdªOáðHnØ­àxÑÓás«€XmߎõkKcW÷h/[ô:ÖNLpžöäPÑJ´Ù$F±ŒûËGÛ`ÄîQ ¤" ¸ÞÛ¨²î¶Œ)¤v ›v }î?gsIkÁ *õø¾ÙJ,wtÓØ‘pï¶ŽÚ•Ht†Ê 0j®³S¶D3µ?_°‡' Eù{Þ˜S±¶àÊ@|ÉÿŠ JÓ»1'kßPÇN†Ö÷ÃÅΤÏâ_ó0±R÷P÷{®ôXßÕ’ Éñ*~>…§#U2:‰3íìðG3»F#OÄâŽ{I¯V•ÃKI#ùözÇý~<¾e}Íí:F‡ûZ*¥2•©¤½·6“¤‘Ëõv"ÑK÷"ÄÕŽÏNÉÈçò·Äc`QoÛŽ®ú«TŒþ.FP:. k¢nR÷è®÷t&vi)ïl«Q{“2¶.Љ(„Êd*-¸˜…(çgŒG»«ä\Tæ¢9,e¦§®ê÷µXz ûIUëæ½¦ŽË«EwþëpbˆWr›f”ö–ðôݳcëQÕÚ(“ ‘ô³¨Œ¸¸’S“äCU¾ñÉ9{à %­®‘2âÍqJœ¾¹â5‰—YíZ]†N?l7C= ½t”Òä-µ¯å.€KÏE!…•‹3ÐÚk€è;[ Àp¸ý”Wû|ËÕúÓp7D פðK8€»aÑ—ÿD‡s£!e1§KLY¸´ª->ÔÑX)¤¨RÔ¶}TdÄÒ‡FíÞ+ƒS hÞËóȻ ‡oÎêÕ¾_Z“™?A8 )9ë\€(ÇPœ\1Ø3êdë‚GŸbŽFuëls0µ¶ÙÑC .* “löˆcZ}QÌ 'WñRG;’SlÃX"f'æe"©Çö2a ô$‘$ꉵûŒå0FÎ…r'!ÖæVOÇlϻڹ§6.O4®_ $=¡hLŽ<Âw·+,Æ“Ää´CX Kă^u)Ƚ¬;ıñüÂo¹¹¤MØíšÍËG%¨Z y¼&Éž´#Ÿ >´L« çÓõÀºÊªœ™/|&ÛÍA¯éPrħCŽ6'íKF¾è–x” î.°*ÔîÅ ÊœÈð`Ú£-os£ gšÓ2.þ—oÁC*a¿„Mæ¾îþg»!k! <åê¬ÆA2&À9H%§…0æJ¡ì•Œæ¦‡¦Ù?¹P¿'( ÓñŠÂ=õÐÙ-rRÖ¯¸Ù»EáöÍM“*LÞYëCØoφ©·Ôí\x ó)¢¯ðN³;™½é›ƒÁ™Š‚Ì;‡a+/"ÆÑ^'”îLÕã/boNbËY5ÁSƒ-©7‡øðNjßçMõš™É !:n£fc8KÑlÖëÍ´k>{:Š‹$œåjeÕ0è讋ÞuÞµ MåÂ|J]'¶ Û!q¦Ú,û×ÃQ¤‡Jî·ä²LC×¼ó«™,ì‰ÆZ46ñn鸂8tñm…S ImSÒŸ¸8¼at•Ågjæ& ¥÷KÊ_Ed‰.âSNà©YRÇ«ýéðAÞsE®ß8'K¤rôzkêë`DB¨Q˜g&—Bú[…œ0‚J($ Û–í3¢g|’] ¸\1zù´ e 5–QÕßr¾g‡«9áÓªKZ%!Ž,œ§MŸL%<æü!ã­}Ðܹ" d䘧¤U˜Í ‚=Ú°h°Tæ8eGy›ÈZïNžR‚Û)(lÝî9œù“.NÁC!­»hÒî0™=9骙¢êZ·áxú‡ÿ"ZnÞåì½²Më>­Bšzâöh4KRcZ¾¶‰œˆPŒÙ+ÇÞaô™Ü³ŽjÙ"Vý,Ÿ2–†²mËaTþó)½ñZÌ œ—O ŠÉ–»½5ùŒ©OQsFÜ)ŸqewÖ~«Îò>`H ˜^ÚÆö«c‘…c3tûÝa©"¦f›Å‚WK£ƒÊË_µûå:ÃVÍ÷/äÐÆ %Ìu&ßh·®7qp²£#ur<äjYxTöæÝ‡¹é- hÚQg2½ÄàãP0‹ÉKò€Óe™1œaŒþ†t– ÎF~A ö²”½¡eâ~ÓÁÍ€¦Dso§.[ÒÇAê`<ü,‘Ó¸d7f'¸õÕ“jçmÎfíñÊ@{^¾?‘‚zÝ7¹‹ÂBºÕ—[Û]&‹¦£ùÀñÜ“/Pë“yí/í‘U9_Žj{3e ËëW¢Sࣸ…p¦ßCOZ1—T=—Â"ÆÞP`9Z®'ü†i2çkHWlgBí§*Ë®<ÿf•ÏHáºî~*Áy5Š£ºæJà0}ÓU7Ú¢¢Là"me Éqžr ×ѳ_س¨ÌÚÄ“æòjZßZXß/´ºLoX…_À„|ŒÏNÓ*ŒBÊ©Hñ¦AKvzº\¦×¤ÏVø¦Pâ<ˆå•ÔôEDáºåfª{‚¼§^ùÚÿãJ,?“MzL+½lÂÕzá×Ôq/oìrckËX5³Êc®þžÊ×òU‚Ç­ eÕÌ'†Ó™+ÓBɺP©ÂNFÇÄèÆ‚_Šœ”{J:­ÙÕ’¶þ»Xj¿×PŠY~ýÖÙÂT‘– àö¤½”k&[ŸJˆE¥ô{úk3Õs]°r±@û¶WÞ+Cêm›t@W*7:ÇÕÚó]ñwPq uC)¿ç˜7Q¹‡&˜ ¬™×V¼AǦi ¿m$Ãr‹éŒÜZ‹p˜RþaÍKzºÂ»tV8>‹)„]Ð%0=‹im\.G¡ÍDfSaµSÒ³¡ð8®Ú¸þÏH|9I`¶›³SæÞçI®ÒÙ$´éos‹Œï;§³fæ…+&ߢÍ@l„݉„b̆§ø¾Éðmä× 'Ë,)“ºÁ&o`aâA¥†²ÁæŠY´6¢ã*¸|°?-\Äãúêrc<‡Åï4Á¡¡N§xšÎIk$Rù[=µªú³§„\rú¯A†öq-LÁo…C«)fþ„ŽÄÖTŽÉ%p Xnʧ°ò;Â9^J‹Ø#*~Ç{œqÔª5DXò!)‘×?)œr±RjM*+ùö—´·¸=Yc´IÈ@9CUÖ}¤63œèÄ,å,ê\¶§²(&§°ÊaK3¡ª—xfyÃêÏiIŒìö°‘ä’sƒ£îöt£©´Ä5+jèüü m PRÝ*K2†HÚåIÒð¸@œäò×ÜÈgÆnSǫ̃ŸÐá~žuG,¨¤þÒÆxQbã'IÄÐ.b¢š­÷eS8xÜñ-º×ª»DeÒÃúÈI‘p²˜„hÓ/Ž·W«ÐÁ9k“=Ô÷5Môô&f¢TŒ,æT'õ—vû·sv[·>5N2ÕnÉe»¬çuo%ŽÈÌ’·@ë&iݺɞƒºs‚osá×ø 翞®“á‹Éã-¼á££©…´]$™â´ï3ëGåB?Tîþߣ-ƒ÷³z•! ¾4úιw’»CRR°§†Šñ.Ø@4€âå+ßâŽÐ‹ÅSà *è§n9Û‡–<‰ëË÷W®g­¯ƒŠd®d>pã_ËçܧÃ1]:¹Î ½ñ§dù÷&D–THÝ`{éÛEOéÔ©¡ß“Y\XÍEé7 çö*xÒñ¶HɼÌÇÀ²?7µÖÎÈÔ°^Å}GC­GMyÕè%ëþÓîùéö‡;Õ ¡¬;JU¤Út¦•}ËWûê×ÛðÈ•'¼õ4ÉN¸•ì¸rì5¶5¯nS;hN¸a;ÓÒã7ÀØ¡?d 2ì¿RÓ´G”¨Ù5ù„ÍA‰™(š¢æk:Íü05Œ³)6m ò¸QÊ6ö¬vo%*¯ð°ª9¨íä¹fy×!6 _Ì á ÂtG½ 'ö³¨!ëéùë{üòkD<Ô•Ákq‘IcIÏœåÜêðæAv¦¦\Lží¯Ú–¦²»¶Í˜Il­l'ŽåKòß5J6¼-Õ—¦œññêùï$@6ÐÙ¤âô`´ž…ÿ‰Ü îƒÜ(lÍÇ߉£µùS&6ïÞ€ žìtuâÌÔå~E6c}7ž€”2÷Õ‚KNQ÷ŸÎ{*¥ø<Öã oÍN55PEZ{îw2ûžhùŒPùrì_(:Lùš9£5oú³l105óÛ‘êv«ê9»Ñ¥‹¨Xj¢ŽÞâ|¼Ì*{n¯Fß>ŸdRZrÆ›c20¥“ ¶Ø¾Ébð9ÖO'»¨£òXUh÷-ês0¯°b§¯ÊËsW ßËY“MŽNs«iî`öj0š‡#p|dÍvìr`e! :‚¬œ=HÒ\óy·6xïcÄtÿ¸#ìGIvø”¾}*úšn3ÜañvDgã_³«Ô,3ŽK3ËHË3m·Ë½È³§ÚòÂÈ]‚>3ýÑÏ¿,âþ.¬vfè2–ªκ;Ü'Ö«¤‘¾±›~‡"•1c¶9˜Y\(Ë›zn}¥l‰Ãq²Ì±„pË*q`öf¾ìcµPåõdrS=?úfß?–ãwOÚÕéÙ§A0NVO+§~cWFb“¯yó¢±–‡ßâ÷9™ØT°…ÑtK5þÜlLWdªt9Z’¾Ç¿•µ å"ãqFoå6ƒ½Í°ß •›çò^0{5‡2šÃ½‹mµé.…q×ýð­£p¯å˜ÇÌ=6Ek¼ZMÒ3ånþ §jÎÕ’:?æø(²rð÷z†6ü@Si©´*§œ;Jû‹+öð«/§sªz°YÞæÒÔ›—±¦+ žqU%w§¦"f•V9±W9 ¶z”Dq¤q&ûk8ÑÀDáHXÀÑɦn˜3m¼^ŸÓ!cà÷0P ªÃæC*}2§ÖûW´¶¦¤IV‰‘ͦöÿ.Nã¼gámš8@«,}̺Ie%P€Ìè¦:LZ]\Pu¹´Œâ¤·ñ[iô@Vð„ø‡ÑPY¨wÜJ¨×´[K…†e-œŸVçiL?GhÄ+'|§xá…H¼æ{€ˆt넚ã`ææÕgu{}ä3壛¸_ÐCv2¯ÀêJúŠ_§cÁ"ë+…A¬™ÎÆ Iç¥ò,ì$ÜHõÖø×šÍ;ælÈâêð]–çÍBYºŒ>ç{ˆ+eeÃ-û¤û-’WYK/›NÓ‘mP8vÕ'lrŠêo³ÕõKoóm@Ä{sÑéDÌuÑ¿—;Oj$>ï3Ÿ¨G€=®æm=õžF,Iš˜#îŸ,¢æK0ˆ³.BKŸ5öGªºBO½‹}ÉÝ¡ñ=.ê] 9Ÿ]Ž ‚´"Épêöé,TâÉ×U?ÎÍûå°+늠ΫÌtútû\Egô×Q{¶›‚€Ôì³À†¤¥žŽ•Ý Võ"Í8÷ÒÑõ±ÜÕiíàžÜF÷wfò³¡oP¿¡Ìœ‘ XTA#J~ˆ²8*ÜGší÷ ˜t•¢JìFcÌÛ ªÈZøºÀ]i½€g(á|w†çÃ]5˜}­E²À=‘sްé°!•$âCj§®=x­o¢³ ÖNÈ\ñu §ÆLí*®B²šå  ,tÒÕvÄç?h¤¿Óµ>³Ï³Íׯ™u 泃+ >щÛh˼½®Å¸ÜùÛ~H­aºƒÒ¼•»;¤¹&ÊN6;Þ¥JÐØ´ÚˆQ›ãhØ š^enþŸ»bÖ“øÛ›°ecC±÷yú˜0·02y8¤ª¬[Ô𠩃湪ÍWÆæ–¨ÛÔÇe>*¤‘£ÕyÛD©¾i†^ýf}n‚ë„{zm ‰ÛW˘À} ª[`5vl6xï=Ì„Žº(ŠÆf a¬_^'2·@]¼”Ãà’zwóW=O°¯šs¨¼&ÿiºÝ”­ÚÆåÇ»~2é-Áì—Ó¶t²uæ8–Ó×´fìOdY‘ʱd“­"bã–Ž’>¿ ‡N}/&‚W3Ž¥}a a‘>U4nPrÀ}¡ê$Ež>IÙ<8 2šÚTÐÞP‡ÐÈ äûmäºdÍè½Ïõ ¾6ý Ú2çY¹Ffë™7Ü£ÁŸO4ÀmÇ¢c4Tž‰ êžõ>3CÄŠ`Œ— †™:ê&Û´^é,»RD¡[ñ“‡V}ßX÷c«9ŠÛ-w°Ñl2òZÔî],ÎX,Š‹ˆ†A6Gà®Þâ9šÁró8ºœN uøú\‰; „KrÊNãÊÚøVó@) 륫´X(…ÙB¸²]*ÙùÅØÎa×<—%c³_Ê %`ªkàïˆZ£æ¦›­œ¯¤#W'jÒÏwcƒ™I"Þ-:LìíûMp¼h¨ÜËgÏ;š÷‹DM-Ýv_“<–K•Û«m+pÖUe2"l6¸¦ ƒæ®ëW®¬ç&‡O/¸7`×-3¶ˆwÐV‘5ŽÍ¸žÕm¨º¤„©¥Ót¦‘Æ7’C>U)œ¾LÚù”­O{DWhÜVZ§F¸b^ ²­°_È-iã Éás›'jÌëÑ*¨%_¡¸ǧîïì^)è‘PDwø'LÄÕYʸýC4…÷¢ÔjuMà3ɉqÄÛ¨DrÃ~vboþ¤-á¶2vVhÌe޶}²ÑMs|*à§;¬`ŒŒ c¦º”ÖÅ€á9Î;,¦SE…Ô íäÝžé×ÅØEÀËCÄ&¡ôäìýÂþÍ::²=­fgÄá¾ø}õTK¨U´ËL…5¥¦¬*\ÁdûÔŒq'„‘”ª‘¥ê<“°@_“}–w¹b ý_µmeLp6€Ýèãj´\}¸ùëœ ¾x”Ô‘AÍòìÀÏ/ãÏ„;7 FÈ}ßnÏÞî@™G}¤HŽô¶”Äk"Ÿ'ÎÁÊï䬟œœÆÕtÏ…)v9}ÛÓµ‚¨3Â{Ãá”·•Ô»¤ª¤ëúü·u<óÅ2Ãé¢ Ìx½mv‡áÏ9Î5 Ý4š‹OŠæC:Îõ‡tË­Á3{NÐ{54Ÿ‹Ø›vlÍHŠKºÕË@‡0{‰ƒ¸Ñèù¯ZÊò+¦´3¥‰ã\‰ó¶i¬.…É Ù»=Uˆ ­¬²Ý° ·òY«í¢Å+ò¥§¿ ¨«@LXŽG±˜(§m'¤“Vöy–+ ~dÎü}ÆHÌú ÌŸÚÖÍ:e­gM¬´y¨rsŽ&:#e¦,e3@Ê¡ªuÜ;1{È))IÐ?Áì%FZUE]£ÜvØÝ;ø=¸Êp«KÔ^J:ùA©ž×A±«9R€9éMöÍ¥'nvÊÃhì·ŸKC&Ýy„ ³3?aÈ=‡!+n‹ï…•ãhG£X¦ƒK2ý_O•È7Bòä³ì i&‡¡mâÉ‹mí¦§ïÔÀŸzåt;8Ãp®U ¢«ÞŸ»j(7ŠHÆH==rnýå‰r½''øllç¸|ªkz#:4ƒ“ç8}åT–fŽn+F³7a*©R³Ê+r‚fÖD²]&ï|þ·Uþ/‚îÍ}±dÚuY³Rõ:¨œß†ÃòïŠÀû^@´(tWfÁã9ÐÁ“­™/lý}˜¶Êûëmµ¨×ŸCMsôrƆêÒÎÛÿoJq¨¤ëù&0'ý4ЈÍDêg„q0×­Ãm©Tµ%‡'›-bU2‚¸OU»ðD¡ý_ÚûV7¹ü¢HO¶!hfòðl¡©KêŒeÖlìÃó—®?ȱ]´srÑ×9¡E%}ÍàCp¸ÇÉHî4Ò†ÞÜlÞASP–¡zsÑ$Õ<Ÿƒ p‰9VæÉMy¯o)Ž/y“òn§_Ê'Ÿon[Pª&Ü\xõ-üÏœ/`4³>/7µÍjÛ[ØåÏ€L…Wà…—Jˆ}kõ¼y»t² Q€Ô™–×™¶×;Áîƒ4åۭ݃հKñ⨻_6h,Ñ56ª8-åF“Ü`-:¶ü½Íz¥Çh¡É3YCƒÔ̯㠑«WkN>bgˆ`oòÓžçþHQaÐ_òö«ª¼Šà'êÕ âOì„%ìÑÆ‹ïUqê$i]ØôdÜïšÉƂϚ.eˆ¹Ñ#0‹¢)‰— _X½{B"íáüÒýÏ-ˆfjQûóœn·,ÖÎÆy»€·YúR}Ê_‹6Âæ~J«‘ 0Øh×–Ôí=p:L_ôx—wŸÛ׸Õrú®—†kw*bROH ÞO²÷Œw&×'ÌÎÛ!–?ÄÇJ|}ž¤6¼p¦•õjð)òøÞª-~oTÊ®;ëavß,¸ êòxècóNwÑ߬Ý×A•/šŸWð¢?ã௒;Éì,Ù¨¿C=OrVN¦Ûû…m)6Âo¨üÿ3 Ô8ÒTyÉkªú%«òU ™Õ :‹Ø¸¡E*Gé‹g½_7€KÞ—ÀïûavÏÜþ,f´œÒjz–ÒÛt¹åï:2Yœ”JÈÝZ¨QºÆ(B )Ev;xA±`!ÂâTfÙ$Ì{—O¦_\X†Øˆ’ìo§öãO–¼ð=I@Uš÷ÇA4ûq|Ë’ÂBË|d‰îŸ/ KoUɇôœž—G¢k+"ôξ>aÎå”ÿçÜǧYÝìõÿ´yÝl«‰W­pg2èm—«wQ;oSʾMÍ:I 0­¹ÁÛ'e]±qåd¸¼}.åàÄ“t6À£“ã,ä]H Îoi ÷6i… uÐ:nõÁt@銫éïW0ø/Åôt{ƒyö¡¸Ô1èqªôo5ülð5i¤`ÐH¡mbW'Yø>ž ‚Ûo±dÈÒò‹¯ÊPÍÚòÕª5%ôw£Z Zé"¢>rýŠž¿,Ù,WÜpyJŸ÷#Ö[6 då.½;–ç›?Û\g¾I´5þž?¹cáCîÔªüft4±gG„ÂÓVSÍÓ*OÖÂâ¼€O¡‘!“¸å¸>-ù"˜óè²§ISìd¼»Ç°_*¨œkTjÝ\ t…¾íœÿnKŽS¤üòä<¦¡|yw@ê­wy³chuÎDÞ¶oy§–ô<)$*êœÝTÀîö-úI² s\dókýài&GÀ¢¯Ÿ3¨IvÿÆP· HçB™ïON@f·6ßâsG¿DåÞ¦„‡ÂŸ#»Å8P‡¥Â!%]†oÃ׫¹ÿÝ´ò“Âux¼¸³(tzÓ#¼{ÒþOëÕ›ïk~üvÌ©gà÷ÜšÝä-“už%§;™«’Þ‘xd¥Üt-°ß{¹íÞ³Kc _²!åçó;Ûy¿9@ül÷»)›µ]Lü*(½ ­X.ïë{¶.ïaµ‘¼ÕVÑñøÝ+ÖÇ.– 1¡Ð1EãN¦rda=Í·†ö7AÈlgrm'¢æÉô&¹–ž]÷’†öµSžþ 8§ùFåo ë­âûïªVâÕâpŠ›… rËžÍÀþ}ð68™;ïcçûäóžy8Jpe½ýeQ\r¼ç¿“Ί é¯Ê£[#,óâÞM[J©;žN}N4Jo+Ò(¦¿ÀéyÍAƒ­õŽañ´ûûÛ¸‰ù  ÄJŽL Q»Ñ2²\÷ àqò°2`À9uÊ¿Ôõ<ï3¥;'‹#†½þ` ‘tßôÉÆ‡1×Jàpž­!(Ü-çÔ™öße.7û¿ÅCü8™œ»zmev­+w' 3äßülNñ‚Èb^Hg¶¯Ü:ÊžÄØÝ²u!©y¡~õ&¢® N†·**z€eß®Cã³ÕÀ䛑¦Z…2‚×;–~¨ñg‚»]Å“°¾<ŠÚf°+‹³â1%Y)H#€&ªA[_›‰òiÚÑ ’³Sóø¥¹ô¼“ͨA$uzÙÏNéí:Ì ššÉ6KèÕC»OŒ_Ïñv·p)ÖãhKXóí¡X&¸§§Çʤ$ïuÞb–ñב–œnvùfi¤ý&>÷  Sé誄@.mÆŠÁÿÞж½-Ê¥¯# ™º×ÀÄ›e½ÎQ!×±kikòþ¥ׯô] Ôõa{‚« œQßðHw³#0ý“í œ˜’zt_‹·*ÿHó¿º=æ6pŸŽ^ì±B¾«_Ä¢\¬‡£0ÙÜèÈpYc`Šžì£+ª>¦)Õ¹›•þ^ôÃÒÙÅtz¦ï(Р=ôãíz×AÉ ‰4SF±NñZA®oöý‘7ÅQ”õ‰Æ¹´¾¼Ii§¦€zôs&¥&&Ê8O‘i®Y¹'ùÉødökl,t"hZÈHQV”Ï߻ϭ¸l謹?{Þ÷ ôiÒm¢ÀÚžBÍþݦaµ]ªó´Ü¿‡âBñ¦Çy†úªWµê½ì¨Œ(ª=˜‡^üc¾M7ñ#äó‘lèä¡"~ìšüííÃÝ•Õ5½9ú?¯îk6_CÛçÉÕâQÀùšìZ•¥ Ï JÿHÐÏ¥m%+NWJ”ïX *l] šÇº1n„1¬Ç«·µú›iõ¦ÌŃ‘ôƒ²¥“G¾Ø°öO<˜Z«Ðín­u“È÷…Ð}li,pñxÍ:3RÇtƒCæàô}ŠAõ÷êc-W«“ž½â?cÙWÕ°¤´ôÊNT[/dò}Ý>…xT]ùÍNõx]ÚüsúOñZ¬”kTBÑ–Oª[Â>±ÅMçò¸·Ãø·˜J—Ûä;Óæõ³¶Î(Cüiü”%Út1$XˆÄ/ãX ¼?ÂX¡+O=¶ çy|o†Óc.Rç;¨c+C£œmý¸¾ÔøZ±=•R½1½N( ——¶ùì'éð²7í½ ^ÁóïèE¨Yq)"àH°ö•“4$z5ˆ§tk/óõ¹!ìíõ-b={Ù'7ÉöÐoÐÜ­­Q‹Úv-tÃqr9yWZD¤ô¸œd:Ú/ì©)0‚ûÑ÷äÙ€“8R3ñlŠgàÀïÑV3Úƒ·µ?ü¥ªRZ9±R£ðפèçXÊ-‰k|ŒÕÍÕ(^ö‡õµ‰PsØh_6Ãäf… oñóIdw9[À¦1Š}B)ô[ž¤ä^^Þ4 òFµC·Æ?ÏÏåò7õ€g+ÕÓ%¸Ö–ôå¥Gا%»¨ |“G†ÑN̪Ó(iyÚú>ŒþýšÛ;¬SÆ.×IŽ¿á*—ßUlÿf^šÐUJ‘šÆüÔ°pÞ§éa;*ŸqÏiøSdVÕ‰–ë‚CÈ.¨J7Ü%Bú\³$\PÛo6¸z¦úÒâúKuо|yR<¬nŽœ!O뀴”‹ZBƒ§Úœ1 L Þ¶@Þ°à9ó^ÓQÓPøe¾îé¦qÊíA¼¸Øå÷tò<ÜFúœ6‰'«fíÂÙ]¬‘fìûéáG©D•Ra¹”fާ¥kÏÛ¼ýjsò?H|iîÍ¥ôæËyÉ_jñ$ñ•p¢½÷–IÒv®/k˜ï%)D¡LšÅÒ5ûËSº«•¼D†,j|’f¶J2Ë>µöÎyOó÷å.­®*©…"â:ée—¹ .†Ú|ÃÜ)ë7hºÆHðû6ø ÖS“ª£UþÉ;»õ Ç\'´˜G(s?Â…OVŒpÞ®l­Pï8DÕ³ñŒ[0mé”"¹¹tå4¢ÑV’p—Ù°¾CMï'ÞíÖïŒÛ¦ÐÚ fCbjVˆ§Jñßéð«ùÕîòxž.§GòD2}ÉK>äôûΧsüÖŒ'C߆ù× Ã2uÅ ]áh÷0½ˆ8ökÿÝ4°V¢OGî—à2{ýO~«ž%ð°àí3n½?43N¤Ý+n¬ ¥ýÖÃBiL+Mùê>¡>J4<ÂF*-Ñ`MÛÍÏìsÚ¯è«åP Õ?ìÔÿ™¿Ïäú¤ ùp}Þosc›eí3yC^§WŸ7ç:sOª=ÓþT„Û ùÜ­o Ùi?ÖëªNfv ƒ‚ªC> ǾS¼+z)ì-_ nÖ¬yr®ÍšÅ¶sgá%ØS³ þfOs‰yÊY D}K…ßÊäô„ùqú¾3ä¹¼ø+OƺËÓ&B»²¿htÓÑ•Þë)i`‡‚RºZYM¬&åÖæ‡²²G+c΂íNmþïoä:šN‰…¼¸\² twA8Èœ`†EˆäKÄ?Ø“ C‚çB}}‹‡pqÊi TÈ€l:W4œ‹ ªj<éÒ]r/SÑíÊr€?Re¥Z³¨wóÐìy7s…sñËž’«[T£>|Y\d_ªKa×w_ä»0™4L±Ø4ÚÚW^ŒP2´[HÊÉx¸¿ï‹‘Ÿi#>þuù@ÌŠi’˦s™‹îMÎH_;†ôV³U^—ºÙßÐ%ãi=äcUáôztÊ^cÖMtñÆý¾áôÕÙw ÛySöÏXíh¶»¹’áh?Ð߉ïy×eÅÁ¥Ýù¾ßÛ;8\ɹÿ7Ï‹jäbk¿«òÞâÞ!ሻÆ\¨" Mw ÎÜ|ùü¼æ­¶™Ûè$4Èa :˓ܴ"Íýƒ¶Ró;0—8ÑÈj5´õ${ŒoÓGÅáU}»òs¨tŒ"åîvˉ¾qY£”)º’ûZ°FÕE“TųÊüŒ<ÞßÎq³.Û8o³L¹á3³\yó],{ .Uï¸On•[g/ˆ&ÃÃÃp,>*Y¤#Þ鳚š€K£TÞVw¹mò‹©Gϱâ ùs}ôYà î_í‚saαµÅ'{¨”…/Œ³m©ñ 4†=n’#ùIœlY´i»üI寱ÃÒᄃîVS0–$j~†ñs$z5ïüí`þ¯ ÿæ4æ²¹õµ{ø¸ØL‚0ÓðVSó̧²Ý©1øØu08ýNÛ¯š{^eå}’iCYM'JiÐÞ:8xâÀâ©dÍ™EècÐÝùü•ÜYiäd‹ÍyÙeV­¢¯ ʽÉLMÎJ@õ:ò”„Äù"öY¦îçücå1ôyV÷b¯'úVnokõlJòØèJÁ÷†¾ÿa>7‡|X;]Þ%Dü¿BÆs6˜™ù е;£å1ñÔej㦲$P¹»_%ÇPZÎFÐfFÛWéT©çbiXÝ=‹jrhÀ•Ä(¯I‚Ú#xFöèÚڳuzÒiùã==ªªøY‡ìÿ!MuÖt…õ‚¯'6Xpˆ¶í›w+HF»‘£ˆš×‡ç˜×èè½u+—zËg/àÂû;‹óòß)±ž‚Dq‚^x½õ˜æ)ï/4NUÖ9ñhdÝ"¼d Ä¬n“:þLÅØíßÑ®-ÇB™Ò†^GS\üûnp_ôoóµÉòØâP½UcNÙlÑžÍߌã¾å¾bx“7뤵ÏÅ`Åb¨Û¼4a²Á¨ ›»­ëö2ö–~yŸ÷j¦-°EåÍ#D)³O°!æ2{»Þ ûÈpzŽrÀÓg[…n”(Uï¼n6ˆ½-íIGþH÷»9rµQî•ÿÝíâ~稣¦ª×±Nw ¿Z±'«ž? -î\€’a£#ˆ†—ÁÉñ:bó‹þ¡/d…îªÔж‡¥ûáZü¦˜L!â„Ø©e?Kvö°¹¼ùU peõW#Œ/Œh‰^¾ï5q¾³ˆ¶†Acs ä à  àl¶S)íH¯ÂZŠÅçíÛ0mtålGžÌÊúÕ¦k‘¾ß]{£Íðš”'QÄ^”•ÿÍ9S‡9äüõe-LÜH:T!=m–%¤£šðX§º'ÊƒÇ ÁÖ« Æ ¯+7ßêòt{­?øsú‰­ëMxàðrKâÑÛ<óÜTø$ÜhŽÅÆPªµŸí.ct"ùË ´Êý'¦¯©­Ž[æÔg9ÿsº9_–L×^¹ÑæDû*o4Öù½Á©|ú/yFw§W–“I'‚$`¦ïO¦Ÿ™H2'0Å2d¡àÞ_Ødߟ÷èêmv6)øo±áZj& þ¼¤özò=~Uúˆ±qk[QÈä~½óçâŽó;â žðærÿ ú#19’«€ÃßÕ»®ï6 z¨­Ÿ“¡ôá’ó%T>{rg€ÝN[ÑÏ*žÚáöÞn’§möz,1ÃùJ?+C+ÌL5Íq.ã;žÔ¬ Ùz}Ÿë¾õ³X2¾œçþ²¡»âµð÷D¯>Íi'|ëŒÓ¡òßÛá~”uŽ­¹LY<²9¨‹–Eà^ÆÜ§Ë–*šãdàyÒÐ/ WKJavv©E §¦‰eU“¿øåSðh áBŽ‘ø"Ús¥evbÁí)ßöfصÖöæ› ëŒ ` “ê×ë{] ±Â7×ÔF/Ï·Øä#_Ü2²è¯æ§庢&¾vOš*òË•—솩¥€>r‚é­gà *ðO> 1Vç @ö#G¾½Ÿ²„¿%—5ârqóýx@üIg¦«j(Ý™³Âí*ç2‘´ûðÿwþÑûElx¿`Üœ>DÇ ªn¶B^K9 Ü9$ä(»íiæÅÚÏ~ÐÖyçbŒB?)I·6õÒsÔZºÅ3¿£k+±_¹Ë­¤U08LñMP,ŠÚàô¬ä$¿)¤õ|À“Ê;PÞÒõêî֙ݙLßñïÐ/‡3GÉeMßpñ§'ôø=“xßTW>IýßXS´iêŸ'o#sì:Ho J‰Êw,QE’ÁF²%Mñv¹’>Å€<Æ=úÎæ¦Ì±t5ÐÑ{¨»9RH‘n "üe‡·Пuªíü"˜r$;Zh¸–¹ÛóŸ£úqÆBÏú¶JÑ#q?ý‡h¬¡Zƒ¤&¯pûˆâº[ 'Ñaˉø+Tgš„ŸÆ­°òÅ»oèÏ­ ’¡ìè .½î Þ®¿¶ë£¿üøµ—gm¬%x ¬çYåÐý_/>š–â/uŽ·g=½ãX×ÿûéG¸‚K—-ÿ½]Q£Q¨àô{Ùndz¨¸õ=i)Ï5þ4·ï: ã(Y/•¨Žë›Y·ƒÖ {é#&P„Ý{'@òÞ,F È‹©y›~ßÅæåüQ[á/'R{à©À›TŠ@MyÎ%ÙªE}+q…>ìFO?s7ù ÷Ô¾ÂI`èåý¼šó1ÆÅ´AçéT”D%’e]µµ-fl?êºÍütä̯QrïËÀ8ž:BÇã}T݆0~ÝN·ï¡ÿ㜾9iEyEt¹/Ô÷õwpUK$žºÿYëþ*)ØôªÆ´;Î"nfVåê ™EØ$›Ø„0Ç[MÖù¾ž5”Ÿ7¡>Ø)øšÞIÃz¡æzw[ܱÊægöYjèðñl–Ú(¸*ÊÜû·õ·milõàì~â1¢ò³½)¦e¬ì8ì†sT!—Ų¢¥Ù1ƒåFÝ%²w*š _Ð…_¶'±ÎÇ;ËÊGÆÛ¯ó fæCPˆ0˜‰ëA«%ØåíêÉ-òׂrûjÙ•.Öâ²÷&Óªõbޤel9Çc¾N+T4RÍ¡$å—éú(±¼ ÅwºæÝÀq-®ª8ð4žûp †Þþë…lÆÈóY›]BìнUó`ŽÅ¹€æ®yµ{?@0‡8( aj¤tº^L¾ôíÌé%ô¢n÷—×–£s”æï”\a4ñIÕAûDõ#á0½²™±ªÚKXo°vœOªÝ¯Ñ—e=*.R¢(øÑ4€éØþÎѵ0+zOôaòwåáx?tÄyp\í’A¿«v¨ÏÅeBŒE˜ﲜ¨oós‡dÕiÐ"LŸÚQN7öeÓÿb˜1Fu5}³ÑúšGÈf\_ÔïŸÿ;M,BXuéd̉Ñÿ‹kOÐFÔÂù¿ùÆžKE ¢S×áIåÑ‘6î“ðS½»áîäÀaÛt#IÏÝ%:âàS?¾ÙdL/*HúÙ+•ÙRj¸ÙÈÁ”&Íw¤È¥k"îño¦¦é Ãù§ñì¹K>³ý+s”$DMj!;/þ²$¡ ëp±ˆ6{Í«½òÅ"/kåßÔŽÜr¤U$êyô?7Æs&µ!m?‹Ôjg HeïâÎôXeÔ»ÔG'HæbÔDσÌ> ^xæ*iZZ/ ?{xi‹gY™eâsQe{|ß?s³Ð‘%™Í—c¯5ºvX·ñ5©üó±h²ü_ßÿo`)ùÊ¥•oôYSÚͯà6oËza<®ÛÚÛ†~ÖNXšnÎïÖyTïÆ®O“öÅkDÃôíÙTOæÔõ,”kí ‹Äʸ-1®®:Ùg›á6é½îÆVoª ø¹óUÚ9qòrý?÷)‘í™™GCЋÒádU½1üš¾‡äüöuòwùoë9¸øõ³—±ølù5[ÙÚ±|Ö¿WµnVŽ#dM #’Ømîáu4ômZ}Ný½Î?à©ßD7Ð+îflÖ¿Sm²ŽòQ‘Œ ÿÌSiÏݶªËçKÙ4ÆÑw¦¶SkÕÐï5õƒ¤×.HÏçÍë¯ã®³æsŒûö˜ÃÑ/îû~œÜ6N°MÇêj/(ìÌYoþÉï*M/ªmª>BÓÒ£Áø½¤L[ñÃ]MëÇÄã@Sò|$,áâÛ—¢’jGï¦9òöG²ê|—Ú@_þyÅäC„.”M1eøBÜ_kì¨%<@ðàµçqñ4 e#¶±ƒòX(ãWaûìÅ:­.Ѐ¢îOk­wùØR"Ùæ¬òš(XItw¼í„Ãäƒ^+ïë~·Ó¢hÿï6%‡v•ÃæÀòTŠJ6ðãlÿ°ŸóÓVãñ\È( –ø“ÉÞØdäÇ{Y¾cäUÒÊ~ê0ÌÚ–7ªÑ{IR8é ]ÿ>¬Jš=1úOüåZ,y5å@>^KÇ!¶ZMù@ûŸ~{èšü$• ÙQ‡»‰Ö‰Ì,D)3YˆÕ–DG«ÔÖØU¡cÇŸÏúL/@óá>E»JÌó¶¬ü¯LƒÒÈ?Ñœ^ÍÄYŠö‰ÝÎÃ>Èo‚G+¡ôÞëÈ„M|™ÎW®nv5>e«ö ñëb ùoSê6²×lcj4ˆ-IìÙð];]Çäqe=§§øûv}¨<8!µFtü؃¥þoµ+wü¼Œl¿ULÈ@+#ñØwiÕêØ€ú~?c‘›EµÛÄÐCðŧÐù½•^;KJÉGÑDÛb~b÷Qе?¬:¬)³Äc.²@)™ÔÛ§¶ÅVy?vEú#›__æÙò¢u#34lyƒµüœ²§‘=IìR—yw=Sƹãt¿$–£ pØußhY†š7°öÅšp4Ú‹/ª§ìö¸Ø^ŠÏ5ë–¢PHH)ÆÀÿnNϥɧ‹ño|ú¿´šcÑø»ßWΫ˜¯Æ'GÂß&a'ÆÛþ.¶è誤1‡‰æèí¯óáQöù¢°2Ns¹Y=Œ‘<£œ?ä–¦l¿tÓÊ%Wí¯”Z}ª0j²z¶\/ûW€Ç;íE"Sõ¾4ŸîLt¯sùÙSÛit 0ƒÁ³õÓ«Ó’éË5b·Üf÷Üœ–òYé©`áºì—º“~xËàú,Ú‰³ôyÏþ‘ß=òq„÷\×,õžÄÅv}èLZoí¿÷w‘oFþ¬‡ç¼„V—®¾~]ÕDZÎö?Ûg[àîî]g×­Ôé’zÝç8N¤¦Ÿèüú¡1ýbÕ|¹JRlù¥ªÃdH€…+üø¹T,$Oyå?Ÿ}p\›(g}ÍLZïß«›cͯƒÙ A½àí ™¼å.ugó«?òò/bóç1—~/4r'6JhAœó†ü‹yoúÞय़ôþffàc?øø²”þ ¾»2päŸôÙ–_"Pw™ž®Å±$d >wÝÎ¥{ãÜ9ËÌô?v~cYqU¸½çîG'¹šì”„1:ø21~ 0÷TÒyÀ™©âYÜK‚†]“§™¨ým8D¹–žZ>ŸÛMÃs¢‹Û…'ê%we@a–'<º ÐN=ÿôþ+”²?1^–#xtÖÙ>ÿÔnnoÏF'°Ô:ù ¾H껪xc~*í9@çíBÑÖcíŽøm‚ñ%s¨=¢šØfG/GoÌêÓHKþØ^+ǹ:ξÍß»†ÏÜ”)IÖ•¸°ûõ$ÿ/úé±qîÕÚýÿ¶’-ÊVXÞêþæ¯?AÅÿÐ :›¦ jOGøKÏaM÷îú`ŽŽ0(7’ýŠ˜è6ŸCð|—^Z°À)êÄß'âÇØ’¸[?Íçúû Š×%§ÐpxÊ$ö¥?ð_Òøºìã~ì9]¡Û‘özS¾ï´ o§[­Í¢HkÉC¼ò%Z­¦–?NôÏêYY! ò1JF¢@wäò¨ÿXš#^¯”ì– ûðÞ–»ï~n.Íßqìv¿w³öÃ^'"ÆaÉýíšùË~Þ4Dš»¿ÒñPÿ1‡kgÌMóÙ$¯¿û Êw±P|>Kƒ¬íÿÒ™-`«˜7ö¥÷Sfû» ;ŸÞÅæû/iÍ‘¸úýËóü}Š~…¦V¨Þ„æ.¨OS >Tk•¿7$S#¤æw~ß…ÁšÜ¯™?gæÁüf®†÷­Ã/}’\GÕ}=7¿ÏWéø­oªþ—–áâ_’·R“uáÞ¥ïö?WúÏ×µóô-½žÿ»ÿ²Xzþ‡±õÿK{/åOît>ßÜêB^°Ù³ÜÿÃ'¼~ÿö[Îñ~¥ÇÕrXÌl]sg9ÖþZ‡ÊêT¹¾Q¢·ølÿÎAKE^ÿÎI­Z~§× ÛèÈëËT\Aʃþ6ÿá=#OO~éÏ0q7ý× )Š_Ä5¥óžŽ‹F3V‰OPÿ'¹êc7¡üðÔþ ]ÑSäD£(Ïôúî3ÙüVRŸÜ\ÿµWùxX#.øBkõwzý/÷z–M ¯½²ùÿ×|¹ õé2½ê¿¿Å§Å?7÷2ÀNý¹Šâ‹¹³[óŒÄu›ÍW~†U§Ámêùdˆøÿ¢Óÿg_Ûøy×S‹™Nf‹@dåci^|„€WÝfó#ù¦ŸF †ŽÜ~öÎûmún¨ãQ/óâý‚CÛ&nËÅÃ"Ÿ˜m÷kÉeWN¯¤…«»p•OkJUÚ“èJï×M¯á ¢÷©meDÊ+ÏgÉËü_ÎWðù°»inÃö~j ¬†me|€¬þGw~¾•hx9žþ /ÎÞSþ~ÿW|æjOÔUVs¥ÄVçÈo~iôËÿ•º›ß–ËÛ#óví&-»?÷»oQµíõ—ÀHZ{¹¤;úbsnè—ûCäã{ƒÈj^}ž§×/³óàjZ¼¡¹YûKsbyhˆ¯Çô³ëªUøGe¯Ås%ó Ëø[ý骥ÿ´VOÊbA´~ÔÞWçüÍìÿWk{¤ïûq!ùñ<æ®6á?Ó*tCçáÁÙÓã·oíZN?ñ²™ým>Ο=æÓ|‡þX¯GHÄkø*ñ*^ÁžÚ+y>ã_Á¿®§Ð=რÐWhÚ—=,oòµíV:øÏw¦·èü,?B–¢'ɉ¬¼g¦“óú¼IºgÙîgr9ñ®kï ÿ?ëÿ^6I+êaµÓi=À¤¾¯Güψ'%×ë~½ÿ¿ðéøYìå,Çæ>«Þ]Ñ'm _±àÂ)ëMÉúO÷=ä¤ÿ9\´W»] ÐÞ»¾I[,ÿ&ÞÑïi9pÛ_t|´s˜_nêmIï×1j–ëäGýýïØç8+î}£Óé¨=ëÜ®Äý·ÔŸ›Ó&¯§Õì<ÿ_¯­1™jGû‰lý§úÁcW7ÔnâÝVËüÓàú\æíµ´ü=ííøÆ¼5ÕåZzñ>~༻Š>Ÿ.s²ÜVþoçÂö&îS¨ˆ»ùiöh„”Õ,‡ËÓ3ût0}ÿÏ›þ‰½î—Tc†¦Æ÷}ŽÆüÝ{ïÖv¨;·'Ò+ÁÎõÞ¯x/w½1Gì¬u¿âë™dêaYä!–÷_+‹Ô1û°;¤¤þádÔ¬ú…üE¤µ†ùù6f®ºÿçôçê–¾éÀÚf3𢩀uß/äö‚íþHˆ7wâ(ÀIÎìYSâ#CÕÇ‘öy8œÏÚJoƒéök‚³KàM?ã[1.[ûÿ¯´+ ÉBGf-ú¥|Þ[îô¯ƒàöÿŸÄŸÌ¥£Ñå7©äúÿ–cúšA›±è²ý”¡féÂV‚ホ³Ì‘Éû¾“E79p¾= ¨j?ø læÝëÎgðüö·s”½×ü? u×sz_É$ý/ñ÷'r¼ºÁô~Ÿ ¼ /4b%?ãõÔ®w´ï”gVî·¡'PÜQöɹªW‰Çë1^F†ƒÇéL3á|ZEƒïÓÕÃÿöæ±`NÓOxô¼ÐµßeÇê„mìñ“ø8Åå’¨‘âv=Ÿƒäs,þ/gß²-^¼·ç~âåWûgMgûÕvŒ>J϶¿Dù|Üϸ4÷37 ÉiÞÕóÝµÞ ƒŸ•×sqüôÙÒî[a‹úý€H¹rfW{Óô¥ÚÑþ7¶?}ñ^ûË›ù©ÞÎYåk©wVzÔ¶çoê?kúÿæì>×Èêz¯éüO£ð<êw?§ö¿súßÜzO½Ù-­²wá­¤µ‚¨ÅFÅ,JP’ƒQAlm‹Fˆ¶b2l¦ª5yÜ&ÜåF®7g-ÉÝÐU8înîåÊ6ܵf·<úÚÞvÚ•ýÿÜPFإؠÀ­@ÚŠ¿A¡ÝbÑ~sæe­¥É]˜¨úé_‡/í}¢ãêAþ’ŠòmkØ_ëz{mäZŠ)‹6D–6UûZ¶Wð•¯Ý ¶n#«ßœ¼¼|Š¿ÛýØ­¡ZlÕFÓöÔþ8流}›ÎE_•?ùuª©Ùæ¶*¿W3i²&ÇW?â}:¥ôZçüt­”úq>¡þ ­­Q°áËŽ8µÆ)°[ÿæ[“†áµ'!QÖ ó6ÚB¯ºßÍ:á ¢yœ—ÎÖSl›Wɯ̹745·ŸÝ÷ Í¢×,Q6‚%ÎÎÄ&\àÛ•Š¹79’$š.댣3Q ‹œ œÙ-FR ÝÆç ÚæåÎä\-ÎnqÕ s—8®u͹­ÝÈŠ’Æi,snÎí2ÄwnL…çÚÑÍÞµWL¬uÍ¿òR§ïª¿ÒW˜Gj—ú‰û1~œ?)/TWû ¿A/*R¼­‘«õvÖÿ€¶¯ä5ý·nV¾Rñáxxî²&lÙÆ¹)àß±w%tj}̯`^Â{GóD¤¢¢£ŒI‘&LŒÐ¡’Q!„²`$’l… S$Q¡1„“)L B` ÈF"±FH6Œ6ôi«V+›»·Q¢Ž¹ŽnXÕÓ„¹Ë.îdîÈ¢Â&ÆÃkSk¢º'CнðB}œY¿·é'kâ ;ßNõÕ~YOÛÿ°ƒ¿Öѱo­~ÌŸÎE^½«ÊM”m6[s¨Ž¼üGõñª‡ú”¯åälÚÆÕzÿù½Ý»æ±A£EXˆÄF¢4–e+ÈY ˜ÌC Ä#T‘Z1c[#"c¨¢ŠÉTDeJ  cB‰6,š#XÑFÚ4R7¶GrA몪÷ûû)|‹¾ ‰qx*UNpæ¨NkÉÑäëò ÿ½íÖz—ð]p Ì'•^.ò¼½÷;÷.˜Úº5¹$P]ÜFÃNîF¹À×w]ÀÝ]Õt¢ îÒœçBî”s˜—+„n¢.î²YÎë§*’¹”V4BePÑce¬ØØ[i²Úâ¸÷Õ$¿’¥ü4„E[Žî*º.k5}Íx×ÕêˆðiS½ŒQ»&ÆÙõ€!sUm¯q¾vÚ½+Ë`ÖÅ Ñ‚ 0F‹I4ll›F6H-CPˆ’&5É$6¨Ûb‰´a’ÌXÆXت`D'ùúÕÿ5Z¯×U¼ôgÃÿïþ©uÄ~¢Eû m>ýO¬OªúñÞMR·ïÑòdþÀ¢)zayÒ¿ßUóÒÿR¨þÞm™…ö‹íפýòˆ¿‘Jòi+ÉÞ•zWbìoމ±³ÚwßU«ÃTaA‰ã÷Þ:xëÇ“øÕmkÕ¿sõ×Ï[Vö*¼ÍX'w\wr à•×+˜×%;‹\ÂîéF¨Ô5Llã8Á–Ç­‹Ó)ÔÓ§ý]”ýcþõ".À^m<Ô*ó[š.´ê¨æªæÅÍ•Í+›4sbæÇ6OÞ£ì‹íël6o4œkŒál>ÛåJ.ª/Aøw'…Ô33`Í66´ØÈXÌ#?Mµ[_Õ¿î­øm®ú¢ä‘Î>l)ô%²¨ÚFk6#í%O±´Ú©>ÎâÚGô8*ñ)Þ’Žõ÷ê“Þ þÑ…ªýý¯–«ðß'j¶ôÞÅÉ›“ºåÎ\«•Ëšæ¹µr·-Ìi7 ¹¹¸GwNÚ5ÝA“W(³·6ÜÜåÎãjmÍÜ6㺃9Ž]×d±…®nSE‹”S–æ³83o9'›W—§–z“ÔúŸSà`ž;Òž6ØìbÚãŒtû_«$Wô•xT“ÓQ´4mVišÔ»¤úÇës.tªw· œÄÙm´¶[FÕÑ2Œ3ØÉ(ÆÁlËcc(6ÂÞÑYÝšwWZQ3vÜØØ¢Z6ÊŒjýþÕ¯5Z¾JÔѨ‘ä¸ÏãÀ§%$ç9Ç™©<Å;§•þÜTsj£›t•<ºBxݩыÇGr é¯)¶l›qóJðu¶‹ÏŠ'²*÷µóÛkÞ×Öù½œ,hÄ™EFÄDXÛAIŒR0Åt^ÎGìÊåû:]=ìâö×´/KGøºá×EÎóÒPà—â©_W[U¾þˆÛ’×ß*æþ¯ƒ“ŠäÜk[ ›gës’ûUS©!òˆ¥#ÙÐs%+¾.“ûEëÇx—׿Pst›Dm¼/8Ü7ádŽv¹¥ÝºÁhË·\ÒE-¹·bJ¤¥E4cE±uOÖmo”¤llzzÔq´¾¾cnO¯ÿœ£šÒÙ{B½¢aÂNà.Þê<¿qÒD/fNÐ]¤]¥/#ä…[E5zÑÐöhìê½±{j;)]ŒTè0jìIæ—¬´ÈU¥Dj("B,(¦R=íkêÈ!¬[e|¼°¸ô2Jë ¬/0ºÃ¬užFW}ÔF'j—ßGmvÏôJS› ¹³ìÂâ‚â~Úɳmµ°¶Ÿh¯Ðö­¥ô¡ôðÛVÇÓãˆÜSŒ6¸}7'º¢¯«ó’Ÿm¶Gç"¾Ž±<¤’ò—ãàUçq²-‹1ERb-&ÐY“BF"†l”F5ŒšÑµc{^wå¢9µËh­¤@Œ†2I(ÒA“FA ±EŠ‹&wEEŠ\·-Äm’î[œ®¹É; QIsnš’è2bÜŒ-ÝÜ9bÇEƶú¢¼,«l— ©ô£è‡x–SîÔT}Ê;Ò’~0~1ô¹Û*Kðԗᘒû¿vÙWØ\ *r”._PB¯‹ÐfÚÙ–ÖÛ[(£fB6‹*ŵùJô6­nzRê^$”ñÙµŠÙµlÛ#ç‰xž;üAKî'yãáNóÊ“«•¶^n'cUÓ*Ý‚%\õ x´¯2=ùø#ì:Zµ½ňÔEŒŒ-›ˆƒE‰5ë"Ó¡ºfPÑz6¶Úñ$¯›U“ÄqrR|5 °jª©;Z¬v²¹”K*¿Á‰W‰oØ’::^–=]1Ó=Ï^_Ÿ¯Ad+š¢ÑkQ¶ÅEE’Ì6#`,I¥60™(5£jMA±V ‰¯j¹1Ýtr\×v¹£§9±· – rë×t…nG:îâ »;Ý¢®h®k»9ݺç6äh·s®²h¸éÊÇ]˵].îÛW@&m6.þ¤{Ÿºý WÙUøÙ³Ãì—y°G=$¾|0øtrUÊéÉÝ’’õš>ºãÚ”UO,.©Nª®©.ö¡}aNïMŒ¶ ãxàãm€…ŠÝåo¯ª¶ú»×ûf­mâ‘w\* ®E¹Q]ݶ „Ôld4˜$QBîæÅƒHZ*wg:Sc—wWMrå —w0˜f Q°dܱJ\ntww7t娌Kœ¸h®çuŽi9®\ºîÌV.í¹µË£%µÈ%±1F¦¬Ykš*)I²Xš4ôuTô˜%àÀññå«vܹAËJ]*ò—樽_7ÁÜj®âÍN9oê„/Gm­¾¶­½oë™#bÙpºÝÜÜwj7'rwT[+–ÌÃP\Ý·5Ê%|š}mà¤}osUœõP<å<âà ùŠ«¿•ß“÷ða%Ë@{Ò®vÔ~Ì_ üëø¥èyõ%äñ²6Ûl±² RHi#ÂæK.íÌ®]¥¶­¾óm[ïvÛœ§¼Ú.+c’äçvÈ•s$'9E}Ù³Eþw-ºNLJãþÄÍÕ'8µ®[W¬Úîàê-ˆªwnT›ŽÝN]Û¹ÛŒm˹Ë‘·wjåÎt„ÆÀ»®Õ¹•a¹»®I®Rî¹';œ*M¸$×HÁç9r¢Ê }Õµ}RWºÖ¾-Uêixév¢óÔ»áÚEÒ5i<ôv(tªvz’w4¹RÉuÓ7Rô’º@ì"éQâ'‹£©òIÓÉÞå{ºtò§\{']Cߪ¡ïäïª']I'r—sÎÏí¨ÕT<:«rÖ…M¢ Ñµ › &2I¥$lj1bÆØ´UÕJ-4lif(Ö$Ioìªù‹Úáas¶¥Å<ÙPsÁ/ 'iÚht׉NbÙ•ýíY¶Á›Cµm8í`üßâJ‘èaçÑçcÍÝ�قÙ}«ƒd¶“‹†ÍîîüJ}ÌŠvõ]v¿Ü¹EúôZ­°=ÛcŒm¶<ËxÅ$¹–Úן·¯NêåŽY¹\·wnÜ‚¢éÑuÝÕb-‹ «’)~@®²æjüÿþŠ. ]ÞEhÊ L¦¢šÖÕÝÒâÙ6áñ-œnKÞ¢.¸<ŒrÂ:rš;X6_Q´¸ã®6·Ôûˆ©ò…èv[U´(Øl3b­dùí¶{²¹^òxNãm¢÷Éw=þÒ¼*TõýÞHlÙ›6•}ÛàëEôAð¨ôŸˆÛ5„—@ ëâëâêRó6mªÖË1lC5DD-,›!H}j­–ÛfÒw_Z¬Þßì9?¾$¹ÐŽEÔÝMÔ¹j‡Sòë’©l= ‰Ý%©±²ÈÛòć1J_rª;²>woìÕæD›šfm­•’bkÙ7D&IQQF QËšÝÝ ¨Üb±rSfœ„'d*;¥;½¸áÃd8œk/ÌqŸØ 9„¨ór~w×ijï6y¨s$Žú¨ûÚ+i­–É´SÐÊåãÒUÌéý|=–Ôñï' ä=ß9Ax.÷f›Q¬©3(˜"ˆÁEŒ XÕZ4C1FÆÄƒ&Å_ßod™E™XÈ@lQŒF4m ÒcŠ#X¨ÚŒd̤l–DË L(£kŒY(ÂTÓD[1ˆÅõºæÚÅj¾v¹smnó¼°~ ¯±­›0e´:¥8_a³´í(þ§ó’Y°[_§T刟b—õdû7Ùô„£˜ªSÒ¢ñä÷M¶CÄ8z½ßÊh”¼O8Rra¼ÜqLªåtµÍW-;¶ÜÆ-“QÍwvE”uÔ£œ]ÑŽb$·8îÜ®îèR‹9i+9±ÝwdîÖÝ â'v5ÊâuÜ5¦Qnî—7 *5wr¨Ñs®Ñ«îwkºí‹ˉHÑK›»ÝE\1;·Kšéw\NXÑXÀ†ÄÍÆ¸Ù·( ì$÷ñà>‘r¤z{Z'تäÚØ›lÛl[™ÆqýÝ-l¶™¸²Rò§)ŸœùàLå„wž àRNõwÝÇ-µuÛ›•ë\îî‹®ÝQÙ\®]ww[’Q$ŒÈ F®îޏ‘Š[8M›Ž+UÇòy¨£ÿO³kn¡çUÌT:Y%|ˆ¼Øù¿É(¾<Å#È)ø¨ø¢ùàŸGçÔsûíq#Tûy«Œ˜m¸ãí¾­RŽ÷øiy˜¿|(¾rê+ߣßÅýl«”¨¯¢æêÚ±­6 EÐDŠ×˯—QZÖ×ÑÞµîØ¤Âcb™iÒ‰–i‰E¤B¬L©š™)Hˆb#$””‘X„̤¶ˆ„`È€—ŽLŠå¹IFÀšîºlW]ÕÔ»\±"»º¹Íl;¹vlÁ»·=[ÛJ}¬fËemj¯¹¸Î%Á¾J„r²‰ßèñKÉ7넯€…yêÕ^‡_×r7Й¹UÅ1“9Ù&£•ÌW2b¹sC‡5—whæ»»»µÎî])+JÆ&5Lce±nÊ£Ê'0‘ÑW6B}…UîQíÓm l[UÅ\–ÝZº¹Õº¾…Dô¾—Ѝ¾ÄOÆûϱ¿C‡íBÐTêåvòvê9°ª®¬]¥OYwÅåyu ½º]?²z€öU=•.˜\Ї±Q‰WÎÚ¶¿¯-„F×Ô·n¹j:·2ÆÃÏrx´Ps*¢öaNûœcs F.€ìÚæå¹]ÖÁ³c6Úm9}:°ê5‡aÍÅ#íRsD±Qñ”û”œú=Æm&¶¦ÇÑ}YæR8˜œ‡›—@tÊ}ŠýOû*‰æÎƒzvÕ^þú^«jõ<ï˜îwvæÖwQs—w+–N˪å.íÚÝFuÝÊ×µÝÆÜ×w]XÜ1-¤;·6äe\æîélçú¾`“²ìäìö¢ÚÐá-Âü>?xrÒEÝU]Ôw_ï×îH§š¶ÖÏ>Fõ¸ØÇM·Gw\¶å˺6‹åqhØFe&M‡)Û×\¹r€$gQ¶õõ·¹iªú‘+n[i_iÉ­¹:˜)ÏÂŽîC;½ó8•TÀt®€Žš‡$¨é©s²z¢=R®ûÌU^¨¯êª}‘ÂG‚'ìê]«d»Rüþ:4C¥ªþ ¦KÆtÂé“yëÜÍ¢€ˆ¡4DT!›b bÐQe È6$$ÄcF“&4E‚¢ÅIˆÀȘГ„’ˆm lŽù“W6¦`Ù–É¢±´ÃE@Ê“E”ÔI$±I¨Ö4REQª ŽîXÄmrÜ·.néÊ5È.•:ºV+£º»»»nî­I!½J­]5 Pñôz)z$äDz#ÏNk¶Á±¶"#(Ö- køöׯ¾7÷¿ÀÖ¨õî…y'’Ûp ¿BSå#½Ö•¾^ÔãGUòö^4Qs$ ÚbŒÛÂXÛ[G¥Z%W-4É£d­Ê¸'qš‡ß«è¶·ê}'þrUô¢tsº¼ªÙ‹[¤¸ãÃJ+–U/éˆÌ^JO9±ø{î/@ t¥sð—Ayl·+ˆ¶ã8ÜU»ºv®b×bÙݸÖ)w\Zºp-ÍÄmq›Œãmù„ü¹úøñNaÍ‘<¤üµ%~\‡Cй¤£òè¿F’~bO?ÇÛGìëm¯¿bk|¦°B+å3mÖâú`£¡R¯ÎRî‘p‰^‘x~®m)© Š.{U´¶ØÙµ¾asmÙ–*ŠÉXÚÛhãVäõ¡/š¥W€–ÓmVÙRqõerŠŽd!ÏCJ¯^/¼+®'“¨OÊ‹æ/™˜I]ˆvt1¦•íRâêzZ¸¤zRòó‰+ËÞZuEÒ“èÃqÆã-”UUçÖ­êÚÛ|ÊÑHb(R2Ù ˜Ëb60ÍŠÄ1±¨¢B‚Ùµ¬fš÷‚^e•Tv þvÚoÏ‚I/Ì ìí©|6Ès…W?ÁÔ¶¶ÁÝ~vDÒ.nÔu´¹'2ˆí(ê± ôSè¶6Æ“˜¥}Ê.¬'ÜÆ©ÕìmNe!÷ë îÕr£–Pí¨Ô«¥%õDUøZ··µ^V6"kbO[»°áW ¸ÇÙËÉÕ¥W̪{e6»Ñ#íÑ ŸÀ¥}ʯ¹CƒÈ¡^ûÒÛ¤îµÂÛšá£Tkb‹»¬`"Äw\©7u×w[»›—7wWQ&s©ÝŽa+˜®j Ír9rîêéݹ¶.’4–“—sºîÙ»»¹ÝÜìèsšS6‹G*âå·1s“QªåÝÒèr¹™6.áÚîí»:`Hi9§+¤6M©µÉw’w‡y«f»Í¿‰@sKÉÔž|“ÿ¯WŠl®6¦ÅÂ69MÊU9‘V#ÒÅÄK«§Vâ‘Õ×WÄ£ÖàžòÒ£Ÿ^CD’ЬŒbŒBÔ„ÆÓÒŠS¥m¶üóÂñ>]D9â¨ëSTO ùÙE¬‚ÔUúŸÞ“F x\¸»Ìåžñ愵‰ ¼•Þ/ÏÞ&ñ/=Rd=q¨6^GN5lÈ®rš6J#»q.h±p‹”“rås²’snZ›F(ÐcRí"–›k3nIR~½HÅSÈ»þ+6ØmëÔÙq¶ÆÎ:''ì%Z¥WAKÏUѺ ¬”¹…S÷ŒíòKz;ZòZÑm­½E¹DÛ»¢4lZ4iÌ&ë±rÁ£u»º7#]Ýr¤wk£®ÜÓa±¬WÂÙrxµ>~U“Ŷ_§Uë¢ò‘×Éè6.|¥× ËÇN‡˜\°^W˜ºU^g”KÕ%‘:Õ^£àRöÿNZª¾>8¢{àñEøfÅ^*~>k}¢ ̪?‚«š•ÈA;¨;½¿Û‹ë髆³1ŒÙÉÃÄ}wUPNjÊð {¶®kpÖ(¨ÛŠ"¨H’“D¥2I¨Ñ£k×·J‹b£c©Ý—:ì@m¹·5ºZ#\Û›šåÊé¹Ý×&ds—:W+¡cnîáÐÕÊwi”%%;¶Ýã¹£c^ÎéÓ’nwvÜÅçnUÍÍs…®›wIŠ!¤Ñ[»¬’£®îÉf4Nä›—rwuÆî›»Ëk[WÉß(›0ÑS ™±²Øm­N븪—1@ç9µÂåIýŠ‹ºmõUÑ25ËE'2*¼½©å•åG9Ö·¦5#(ÙŠ-¡Ñ} rçϪEsÞ)y~.Gþµ(æ¡9üI÷U/Íø±z›Á×q®8㓦*©Ì±`;jíÿn*§’æöõ Š(bá®W778Ìë§]rÝèíjÛâÚ¾0A²Û+dÙò©q.5½Z”E?Ö‘é›Aã‘È¡ÛTí‹ÆµÿŒQ?¿¨?€¥÷Šz)Ø£ÏæRôsÇÁò%]A^Täå(éÊòî¸Wm±<ÍóÔuí{Ô‡ºŠ¿÷Ãkk1¶mf“j›T«`ùì’윯¾£ª'™çéeôMQ¨ŒmmAµŠ"ƒ*f“%ŠBÆ“XÖ1hµŒQe{Æ‹»ˆ£»œŒsW9v¢Ûœ·cr7'v¶Î‹D¢(ÖîÆ‹Û£ºä\‹&ˆAD\æ·èòºš=¿4CâÔöHë¢ö{%õºä»Ù=ç9UuÒ{D¿8‡Ñw:LØ›ÉqǪ6¨ì*=ZJJv({¤s*)ÎÎ\ínsüê¡Ë!mR¯–ÑèY&Õ +k&Ôóy¶ŸGÍãÃ\Á¡®Þ/ë*«yí­·¬©4£I»«¥ÕËtÙ¹9pÚævw`#`¹mÝ:jaÝÊ£ €Ög7$_òR²v×V£û½¿ùêˆæéCÏéWž5Kó€w w ÌÌÔú5\'ÑrНyÍ%ÛÁrœëY­–ÕŽk·*5ÝÓ¸ìFÙwnÇpì¹W-ι[‘Gs»¨ÅM­”Æj¶¸m¹E]J4—«O=#âQÜm³¸}ÎðTõ§z ê&êÞò p*?½uØÌÛm¶ÖÒ65‹±µh—ÆÖû¶†–ÌNvËc‹Éïè¥ÏI6¥VJUãñ3h¸‰×£ÿäçnw}®ßÝT©ÍÅGAQ¡~èªls+‰íÞ{ÊW¼+t¹â»dpK×#@÷=±=¥•.v§^Ä9*=±5K²“®}'ßÏÀ¼;úÏ"ì*d…9¹N½]z\uõ2§^§^N*޼XN½£¯“(ëÊÊy'_)¥=©5KñÈüuøç|RG*¥3ŰmW€Õl\k„6w\#ƒš¸•âîîáÅQÎÜ¢ŠmÛ³b¹%SÙ:=mŠm…å#ì8äøô æ/¼ Å/ý*Güë`Ö¬cUÿ;b„ ƶ±¶¿¬î¹ÝÞ;nm£Wí•®mhA´âÚœœpIÅË×ûÛ/ÉÂÉ~!t­Ÿ{œ)W:Qüˆ-Uý2£ïêjG ‡ß Ò;œSûŠGý[ ±­Õþ,ªÆÒCja9ýÞ¤þMS$~¬‘Ñmµ¶ÞÃÛ£lmŒ E£B"ƒP 24m¤¥(4ÁB¿aVµ¿/¯ØÚ¿\mœjpã\iÈÛ“~º‰ÏT]xÈu”ê+Jê&PÊ:ƒHz¼#™EW»ª§Õ}_÷*Rs*¨ùËmµ~+mHÑhÍc?’Í͵_˜q¹ìœÊ”㚨œ›`½“ÝFÅÍcX Ø©Ýs›¥ kºèÙ§uÌÈ79«—.×$„ÆIΜäd »¶åÎnn\¹sšç:îݺ\ˆµD®kN]wQ]Ý\ˆäÖ,nT ŽîæmÊìçtIcnÙwQnW5Ù»LƒyjKóüÈ}œÛz 9b‹ÇUxZ®œÙÑ„\ª¨ôIrUÂ^Æ .ýdm¦iªÚD=œ¯u^ÏÍm—°«×*Ä#T¤Ã6Œ4TX mc^6Ûëm«ç5øÖ¯‹ñéØmû<žK½Ò¥Ï8Uè”N–O{É+Ù©åxUìèü¾{H½Û„?‡ØÊVÌѳ»Œ­¥8Î6m#i›{z~a^à÷Š^æ'ºŠÁΑ^uUÅ™'c­²mMš%\l¿2o-ÉäG5R/tË?.ßòr€òæsØ­­„€Œ i™$³&c6³‡- û¨éÔü™püŸ).dEÍd+ýÊ“îßvû¼”)'¯‹J½pÈõ’Ñu+QêY#ÇsÊ6‹HÉIQSVˆ¶•±±m5W«Ïä ùLl›SK(Õ“[/ÄUͨÒíÈÚál?}ǦEaHýÀ?8­QR’Õ´m¡›µµ_‰Å™EE¨TSdÕ¶³e:[Õõ+—D¿h%Š9O¤Wúúi´lðö‹|åçŠj¼úªùõUÞ‘ëuÈÆÆ@;­Ë¸îœíÎh´D\î»6r‰ÝÒîªÝI¹suÍ»ºVf;¬5Ýv”f#ÅÜÝÎOª¯Ã×á¾^«ð´TåH«²“²'®Ä˜„žz½X¼ƒ–—sKéíVͰØf÷*rÖÃÖð§¬U‰ÔUˆñqu uh:aj®šMK¥•âx{pÆ‘­Ƥ¨ÕÁ(Á‰04bÁŠ˜hØØÅ¨Ö 6ÞÙ¸³º£L[&6iZMÍX„Ãc]´h¾²¶òÖÞò¬¶ßY ‹àÅôϧ­¾|¨œ°žŠ¬W¢Z«Ñ„;R®ÞEFÚ6O™Ê¢\‘èÕ¨†Ú¾”—"žÜøñbíŠîd;žçòxôÕæªy´hy %}´9U´Ø\mÄÚØ¢1)òõW•­òífÚûUâjm¬Ê&Ï~—B|‘1>¤™qMGÛ©¥}¹_j« ö¡‘=*ƒÂSi6õä§!Qx+ÀÔ¶³i;õÜ¥ Ë¿˜ëÐÛæW5¦#iBìX×uËœÔk–ƻÕlÙ8åªò¡åEÀ¼ªh¯P™WG…éŒ%áÝž‡iœl®e2í-¹<)AÍ¢õ¸G¹ÊŒ‡fì÷û„—- K[kжÂ#¶*F›U¶KÂ$z]¶Ø;3nÐW‰¤«›‰N¢ŽÊ«±ÿ@r‘ë¨ÀõÔ`ìJÁØ…v d»V§µSTö¢Äþi°•§Gû¢]¤žR :òHå•ÉFªºje:cC¦hºjóKí¹!ǯE´km{væé»¥:í%W-ͱræS$’ŠuÖæŽwYƒX·5Òa·;»§utqîKRn\rk\¹uÆÚÛ+¦å‘^ƒîà/¯Ý¢W ¥çÁø‘qăøˆeˆV“£Ð6£e¨ë³[S¯\ˆå‰WÚqDâxýª˜œkmlF¢£TF£A\ì„ 1%FÛKFH‰ بɕJ2M•²äªëà_AäêDä ¿HOö¶GÐÆ ×ÉÇ_ÿÅD®ustSó‚<…\Aä}¸—‘ŽZ/#d:´—’\ãì_ÔJŸœ¤îoÞ_%òx¹‚ö6¥}T>7àyJK]­*Ö¯;m‹{gtÚ61rëÝs×vé·wHu9ÍÝË6ÂÙ6áuÒ´E˹.îk‘®ÜénææÜܧ\¬wç-‹r³ºP'v».îwpw>Ú­½÷šÛo}mfÕ_°µYTv•:–ÊÛQÚç̓µ8øé]èjÐOÈ…ì‘©¯-ZÔÞulm±i’ÆÄŠ$Ñ­’m½e¨´*Š»ÀOòif¶fÉÙñœaxò¹ˆSºªOßþ¿Çª ”DèñfÒ1¥u Ù[2›øŽ.ENUmkò¾ÃjÕé­HƆb‹E$B¦M’¨Ú&KÅ­­ìo̪²Y.hœ‰¿ˆuÙfÂÙz…: r×=NªÒ<ܹ"¾Ø§ÐK¤•ç®T—KKÐ9 yŸ:W¹Ø^‹–Uóî6“vŠ¥ù¯˜’.T¿&¨ù*õR¹òð •õ |Mlb{ärR¾„žþ(¾ìW_¶Ò| ©r!øÁûÕ.¯Õ‰>ž–Ú'cøª¹',®R‡W‡C±ÚWTŽJÛÒ.–;O£œk¶Ø®äã^º 9”CÐe6¬hÛF 6LÂfÁ%¦Š«ç;­“jÅ´F£6ÑhÑ\£t[šˆªwW-Ѥ¤Ñq7D’ܸwrÅf3»%ÝÔ!ƒRÉs””E²î×.\ʼn’Hչܮî·sp®:A $“;§tŽç ·nîŽ6ØmȪõH_Kÿjä OÃE=—šØ¯ÑH‡*%;Ò´]ÄÆ5N¶ÿ‘å+¢“ 9ÌDÍŠ,26Ê1€“eEb"(ŽÛoËêmµôôµ=ª^v¿tÀzÆ¢õ˜PùZ ³ Ú%ÚYŠã㪑Ë$c‰W€ìîÓßD*)h–¼ôM˜’$I½§wm³eÅ\l[3r]MTv95¬ÙlÚÒm³³›‰76¢œ¤…ÝÀºÁ@®’§œ—vDò0â©ë¤xšà/X‡Š8¤õ’x¹Á/V«Æ8 §SÆðK¿H<Skm£–-£j±Í©¶ÖÕÒKÇr£Æ¼FQ³›ÿ %9Jé*y*ž¤<_ž¢†%éäj§˜ƒá'Eû8Šô’iN…MÿB¥|?eÇóI.PbYP„¢ì+ffÙ-´Ù]…NÃý‚ƒ˜…sR)á™W[6âmkJn\ÅÝ×w]ÜsX‡tîæNUÍŒYkºt¦m¹K»¹na'6ämÊ# •ÝÛœsnmÊ(Ø®qœpä@¿Ä v0’rPN\ØÅØe–ÅØì-Ûҥʗ—Z'–´§•²/)”¼†Qä˜ZùÕU^ÃÒŤ´DM£i4”M´[FRE¨×±l”fÚM§"S÷‰Š—= 'š«H˜—ËÈÅ|O=(ŽY2È#¨|¼l†µ–Ój³[6Z žðR‘Ëæs¬µ–Ú¶¶¶ÛÅÝ`†3¹vºs²ïÕ[åëRê¤|Ï—eÃm™‹e¹ ¨r•NP¹´¸)é>4­˜8Eåç[%ÄNªJ§¯KìÊpâ¥éÑÄÅC£m"º1zvÄâSáÕtrmÄ_./À¥Qñêbâ'ÄUêÄO‡C¤#‚>ºPp“áÒédáSàÁÒÊâ‹à¦§Ûow¯Yµ£a¶£f5¶Ã¥Û[‹kˆäzuZœi[òÛ_­Õo´H¶‰&´ÚÆ×mU´ö@ŽZ—Vh]\É]]iS¢Á3>(º¿ÀB¹*IãQbƒª“ìªuU>6mlÒÀˆ¼ÕZô6ÕÈÞ¬®ZÝåÊÜ+›\Ýw:ÄF+Û¥ dØØh±£)lÆäRW8Eó‘p¢N…TñøÊmyÝ\mÏþ9R\ÄG‰SItuXNŽh<ÂÉ=ï2¬ÅlÃÕWNvvS»²Ü»ºJäÜë+®â·uÛsœÜ»—6³VM@ ¯o¯+UíòÑxv‰îr—Uû0ä& ²ÍÀ'mö”®«ãK[6Ú¶§ÆnQæ(Gõ¿¨ArrQàx‚¹1­zlncX#dwuDm “LêèQκåuÊ+sEs›nYÇ\»®wu×pCºæL–ÁŠ(5ÝÜ¥sEråˆî¹\Ùݸ9\´X—9×K®\­ÝwwYФÂFFÚ¹¶¦Ôå’'*¯ÅÍͬ‡âË…q±H.T‰ÔI…êäÁ^¨0Š–â¤Ê*6šØŽ|B˜OË•O©™˜Ûb¯ÅÍlmRã’b€%ñâ‹âC*{/Ó•[Q›ñ±µ³TäKðûÿÖæƒZ1Z ¢ ¢˜"Ѩ+¢Ñ´`©BQ†6ÄÑm¶Í¦ÔÎl9%< Žmš¦Üö°{/×T>L%µ çùi)ÍIüä'u)Ö•È£­C»¢Ÿ'm¥p—Ç…_§!ñ(¿•È ýÝ@òJù¯S›#3!¿ÝUK˜”—âCì£ÌNBbV„»:«àÚÝU¯>¼š(ªö²Ýbܹuæ9 u]ÜÚ9´ˆ@¨Ô¦¤¥ÝÛrKN6ãm³Ž.9!Ô•çË€I‚8’êizÂGSG¡(u*z+ˆ¾OPà‡¯“Ûñ!ä¤Ð=€;®ÍM*îQȶšîA}„IÊLUL/h'†âCÙ¥î8’|µ#àRÈŸ•*ª~7¦9"# 6l–Ï!+ŒÛcM‹’Tx‚¯ÄGsGé¨NPÁKòUVþq>ö•[SM„¸y¨  üŸ˜ª6š…Ä‹é©ZTþd…Õ\ïƒúȤâ“¢ÔNuKé`­ª¶Ëj—§U+Ô IêåŠz£Iz“n¢½hoAUq°¸ÖýäŠ\¤ó« ç ]W-ßõ´›l`†Þåb#5;·wkœº rÔå·*]Æí·wUÌi ŒD¦ò«}2«~•¶¿$ÁôµúÒ‡ÁÁ¤~ H¹)IÙ*§ý)v˜Å°öûÔ .ejÕ-«MmWžXÔÛÕu×W7qœ€ˆ«‡H7\¹ŠÜQnî·..¨Í%ŠæçLcK›œ(QN뵈£NµÉ)wÈ<8ƒþq! jRð5!Ù[JÌÍ3`Ú›³&f'–¹bðÂid¨éª»ÐqÉ.t\¦KÇ\IÓ%ãÎñŠ<^?:z˜<0tòÉû =ZœVV—J vÕHí±›mFÓQµ™ë’—!Š R¶ÇÍt»¡76æÓpèî×w]wEƒ¹Ý\èC+— ¹Ûƒ¹Ó®:[’ŒE3»kšÒ#µ¹I‘cX±,m´ÍhØÚ­m\‡™•ƒöR<\S§¥‡O&JóªhNÐê4š¶œ™¶­¢ç((UxÅ# uU®É½ƒœs’ØwQÓ¨©ÝÎt0·B^-ªþÎŽëVÚ4­–íJTäîÖKÁÔ¤äÄåø¹šfÆm±¶Ê9èJQØWc¢Ù…Øœdq¹*‹—I»õòå¯*Éå söGEº-G¨øÉˆ|)}¬Í¶Ú¦³+°' ¦¢ÊsÛ^£E±áºíÛu£rE¹¹r\ܨ®Ý9ÜçLR7sr·5$wUÌdæá»·gwwvEÐç;µºÝ"]ÝÃŽrã"ÿÁ!q=žz–<ìiê¥iꃩMz•5zš,óa¼À·Ìõ™)lÕá^ÓI¶¥¸_Ö@s'›“O7S<ÝykÈ òyÏðxb“Äj¹Ófq¸¦Ö͢ܭͤœ×0np4[sIŠîݘ£c%!lq·fkJœ“ÈÌz,õ§š©ø‘êGÁm[Z§šq§[€T®U¤yj.µUÈîèö:Ðâì õYµ¢âìikÙ•ºù[Æ(ßAK_"àѾD3¹ îináNB¿¬">mšdùй|N«dl[kcXÆÑ%Fb@“Eˆ‹óË„hØ£j™êæºé\ÚäT\¹–ɶ5Âä§uÈ,1Q&34†²[šåœêç:(®nZé®íÒæ9.íºQF€ÔhÕÜ\»¹s¹\ìêNk¢Jä4E»— Ùݵ) XvFjÖÍ›63˜fGÈ'ÈÕ‘Ç…Š•r¥ËÅÓUx‚vúbxÀ•y*÷ÚÝïª{ë{ßE—Ðo¬ïeêz~ÉËF¤Ùs›†æMعÌk†s¹ƒub››\ȹÈÚÝ×5Ãn×6.ã”5Ìnmå½å¬yí”Û&ÓÇ› ªúµ!rÑð?µ²_€¢r gU>ÁU‹àí'úà\Îjw­ÈfÕ´Ím64m»®îã®fB,s†ŒºQœÖç.’X­˜å\ îÅUΣl]Ü9sK&±PѱQ¶Í¦Û9ùŸhL q\¦}«uWÚÒøФÍW×kZ·—ÌJôo\H˜Ä„„ ˆ†Q%Š),Œi2b„„DR!A ”±ISň**1PÌH)©›A%p5EF«nY0±Fܹ%nmÍDXÕ‚@¦m Κ €E2„Û\°bµº¹V4m΃ºîXÆM»»s[–Š&Lw.s«ÇQÝ»t¹qÎî®&(6H+œf;”—nëœæ²NUÝmrLî¹­u­ÌJM⽞ªñ„ãÞ¡ï¦Éµi3lÛÊURóÀñÒæyäm¶/Û%O‡à¿ ‚ wüDæR¯‚ªíöl¾¸ã'ˆmÔ%GÁ¢ÿBŠxè«Ýí™GD—ˆ»ESÃÇ3áäm¦Ñ¶ÉÙ"“ØfÍm&Óîv¥y³ß û­fÐéðñ/$¤t’hi±_ø’ÞJŸrÛkõŸ~ûªæ4˜±Œ±JÑŒ0Ó1G.Kœ\êRJ¹Î먣\ºa,î×e»ººî¹¹ÛtÛœ¹»º×.îÊrscD»«¤ÁÜ‹†5EVåÊÈî¸qkqµò¢‰òémªm”ÑíPÛz"õ\× îØÉ\Ç]-¸˜á¨É°ã]Ì—ËÛå²Yòò´[?;ò^ÈŽ¤6#Õ+öES©KÖ“×PO3S¦S¥¤õ0ëU^p<¼=„=zŸnIæq­«e[o—¨Í¶¹ª£ ')¡Ð+ÁàŽÐ: ñ)àfm+C566~ ‘òdù]ó[KœVÚÞÇmUyî¶*4BL›m(L1£[›»œ*w]Šèt¸¨Üç7v®îsµÝ±ÈÜ.뻺UÝÕÅ®[r×.®A#\Ý0ðö¯†³Zü‹km¾m«ôLûErÖå€XÕ5gns jé1µ¾¿j­zz×µµív¼Uè4j6*#l#dØ1)[ÒlÔØOò!]¶ÄÌÆj¿¢žaæNýÐ/|l6jÙWû§¬§ÓÒŠmý­­^3^˜¢Û˜£Q4lF;º®î31Ý] \ææåÝÇwUÜv¸ms˜]6‹n*NgvÜÛ…¹ràví¹®mŽ:ºt®„æÜ©79Ë’HÛG:åÝ.eÄrãŸam¯±Ú¯±ÖßcQâÁÖ)¶ ‡YSo•D§…èHa_"‘QñÒøðuE{ t"¾½x¿8¡ñì)|%WVŽÜ:ÊŸ(_ŸKlÖÙm6¶¿TtÐVø½ý{íô—Ô_Aèû k(×9%»r®]ÅÝ®[LFG-»E„[ľNÖ½¶JÛè ×âSb¿Qévªv²v²®Õ/ÂGÙ‹ÎOqKÜIî ÷ {€÷÷WÇK}¡h×âëUªôÒ̪* Odë»t).mÍt†+›]·,K\¨ÄÑZ9Ã3(Öæî:4whÆã‹»µÂ»ºä£nˆÛF‘Z™¥èÖßd0ÛfÛéqªüÔ*ýÐS«GW­TêËöÈ^±óûç÷Ï_¸¶¶¾¿Ï¯c"õìhÆ¢$×6éˆç8[—MÍÍ$9Ù§uܸ¢»Ž¡ ÝÎ닺îwQ®#‘RC[—’늷VÝüZµ[ð*·Ú3YÄAttÐ.äâ 56tT>+á6lmjµŠêHŽBÚÃ&=>írÛ”j‚4j+A¨(’,dåÜãA»®ÍʹÝÑÓ\ÜܵʊÁÀ·`Æ"ܹEsAÝ×-Ícb3»‰6Ñ-\U¢£D™ ò«Uî5«á¾Æ-›/DBsæÝù¤Ê¸måe’H!20–$Ó* ±%‹È!¡š,3E‚ ¢$Y1™1Yd‚H "`YL! ´m­¥XÄ5 zmÂŽa;¸…ÝÒ»¹ÎW7;ŽíÝÜ®W Dѳ…!1'°¶ÞÉ^n§‚—›‹ðçéÿV*lÃdÚ†Á^uWn—DxÙ>>¶Û a“ãÉ'¢^~®ÀÉÏ¿A!æix_@€]¿¡•þYËjÛd—Q”£ªê ëª{Äu/(ôk¸Iæµ¶Sjüù)Þ¼¥lWù(% £ffŒ”PDÚ64hƒ+j5cUžâ¶Fb&)™R`¤Ìh±£ðm¥ò|3jØÙ³ôÑ'1Í3«•7ék$Ñ‹öWwU5§[ýГÍ+Ì1^޼±ÎóFÍ…¶ØÍ¶ØÅ) •*Â1lzî×:îHæï{{ßyù¯wúo³Ûo³Ö,M‰^2QOàQòÆÊ‡o§ “j)Ŷ7EqÖ~ȺÞ8Û'k%ãTSùÁ^+öB¯ÚH¡±µ¶ü®Z®$Ôj¶†ñ$|ÿÞ¶ÚÖ´Ú½K¡–Õí bZh¤LšÆ¢)Tabš4lßBóz,Ö'ÛEO™*¾kçdm¨Åqªã‡«ûJìÒìû½ÿòÿÝöµ^­;Z:‰ÏýÞí!Õ:'ìy}¡=mç9ŸÞó.ÿ'Cå{Ez7'/…ïŽiËíˆùŠÙ35_ÌE{"ÈÝ–ÕÃðú þ/Ýþ~ôq^{e–Ù³]B¶/̯×êߊýõ–…/¦ Å;¸%÷ª¯ô¿‡›öÐŽY~Xˆ¬!ªÜéHæ²þz—©¸âCÿIP¿£{¿2DVsƒ5ð–ºvkó`ŠË,³¸†Sï Ùµ],.î×*é:èNçvÇ7w)Nìn!Fˆ¦+rä\çV“·ÛºìX×4Fv®ºìînáwKn×wK—NíÁ'uÔÝÙÇ`çNvä]Ü(»»±˜2Oð¿ÏýÞ9bœÿ ºSW¿–ÍvÛõ!¾ýfÉ•…fþÉñ|ÿÙœ<~÷éÖþ<;¯ÿ®ñË={g÷Ä}}|¼vØVí3·~÷Ì]kòê…Íå‰éÙ2ãårûÜ/Lö#¸Ya‚´¢cܼ3ùo¶©ÍKÚÒï”ï©{¤}€•ãEwë¿ÂÔp‚ráþôsjY¶Öب֪ýб¹Öµ¿Š‹LŸ“ãA~R^9Rº¶Û^»\gqš4†è¶9ÔĶ M[³6£÷ÐPSÁê›FI°^¡²œx¨xµ_„¿)+ùH~[h~ZOÍT>þÆÔ¦Õ_Ém&Â}ç&.5o¼GEQøõ^:CŸÍ›j’WCïj=£JÌÙ¶Öll[ ‘zÛc­&íQñ¶ÛkÁ>ï¦þºWÝÙ²l>ì›^ŠœÛlÚÏEc`¦)€eöWõÛo‡>·ø/Á¯ïEù;kfKêëFӯЇÁñè¯Â‡k±l¶a^’\µ6 bŠI{Ì+»ŠéÝ\“˜äqcëmÇ ã+qÅšðb?,^ÿmba²ºÊúòªýM)´Ù«bÚUlF³WrNæŽåNR»‘{Õ>R}Ù>ëdÚý4¤<¤_ŒT[ PÚØùÐ|Ò>\]e/tPñ$öÂöÊ{hyj<´ ü˜ò8[m”ïXÍ¸ÕÆ«ð©Ê5ã<($‰„!¤4DlU0É%/.íÝѨ±K»¹\¨æ×;guÉÉŒnmurÑ¡ÜæÜ±‹3Uy”ó>eÞ(ë{ÕT®«Fll›m¶›òxMš/å(_©•™¨ü…U~F¬.ä*x M”.f ÙW6±E£PZ’ÝÖí#2D”E%Bc–ˆ¬T°m«›EÝÕ×N„nkF¢Ü]1FÁ®î‡uÄA™.»]KŽ]£…u™uᢊ"×5\©(£\]Ó»„tW4m“9È $É­£Ó%ûJÚªø¯¶ˆ¶–ßâB'ûh‡EU÷‰Ô/§GtS¢]g:‚þ˜SÍq~Z½&«fУ 6‹òiµs]Ö®~–«j¾ozœ=”¥ÝrÓ»“râl¤ç]ÍËkƒUÍÄ®[JŠ—J風I‘×CkVÓÇxïWâÄŸ­A÷¶Ú¶ûʬ¢ûªwZm¡÷U˜¨wí9š!˜,/Sµrˆ ,dÑ2º¸#1£‹Å™¹D¹Íw\ºP;s¢æãr®MÀÕ¹Ôhr¹œîksÈ»Š87K;v´§Nçv]Õ0“7C»£DåÍ£Qfäî]ÝÜäèãâÅWº} Ûaã¡àÛ%£Ø t‹¤ºKµé9rªçöl¶ÖÍcfÉFÐË TXÑ¡!Œ˜Ù#@„ØÔ¥j_9¯ÕªÆZ‘}Ô¹hæh¶È´‘ô*žu¶Ô¼¤^'­Ù/+:cI–È»!~/m+eñèìÉÿP½ÀžÉ°ut=ˆx/Š«k±l–ϼU´).®k±_"«Û+ñC´Ú/½‹¸•÷ÛEúéGïƒÝ Ø*÷!ø;H½Îj›p‡U Õ„[Fú7(·-¹IZ‹‰¸;¸i„î¸Ús¶éÈÝÙÒwrnGc›n2ÅÊÜ.EWví»®Ù¦›Q¡£"RNél-Ș )DøöÚ×Ûê×Û¨ZÚ©ÏÊ¥¤ðaµÁ:aV«óÿËz¯ cFÙ1$ŠÚÚØÖÂÉç(è ­¥Ö©Ö“ÿa*yÊèî£èý‡Éƒä¶“¬l®ø$½=µmõÌF¶Z*1#!lF™”çöÜqÆãQ³!ëÔG,-¯Q¶Üœ¬Nì;˜ÛwvnuÕÍ9«”Í´²J†65˜ØÌßeª×ÙŠ#fOB?†CÃQÕæf£ýâŠûav‡ˆ“¦“½ÇKUáéÒ%â'±S£xä^K m¥KfÚ‡Ú%¶ ÍêRñNŽOÏ%ë½*_N‰ÖIɆôœ8M‹†Õ9éŠô¨ä¥óü}Nˆ^Œ®„^㲪:ÙYµ Ú]f8Î*qúe{Úf‹f­ø;m«^zö2"K¨ÅA´%TQ±¨Éˆ¦H$„6ÉV)#I0-‹0“D”[VåUδhÉ ¶4b-h¤*I 1–„ˆˆ’‹BbÅ’¬Y-i(³· ›`LwEŽMÍ·.írëÓ.2fÍFß´£«G¢›'ó©Ës<¢¹øòuúq[«Í‰¶+û‘xÂS§tΖûzñî_‘Û<®ãJÚk„`ÕÍ\1E¹œ;®¹ªUÍÇuŒnåË›\¥Á;­Îî@WN»›rÀ×6ÅÝtØ ºŠ‰*JmmuˆŽ³0½Œˆ:©JøÙj1E •¯ÍðºZ¹6§äZ¶×” HÖ0m-6͉ñÕ|xyݦÔ~’Pê©|M”ÛÆ)¼JêöÖ£çÁÕÛi^/†“£‘Ý¢|M³mKÔ‹â ê…õJ>.£QµtœqÂ_WJ§Ô*øªl;mÒø¤:}ªº—r©ñ[mlN£2:Å]nÒÙel=ìT_UÙ Ï’÷¢½±>$«ÛIßæÅìiuJ½–i^X<Æ6Ù¶¦ 04mE^¥Ý$Cq¸Î6n&ö´:¨žÒW'«W«$ëÖé¢ÛKc­£Ü”/Wz¿‡YèäTÕ‹üݶÖóÅPÚ6c"Ñ„¦Ù"d,ÛõVu¸³5mG[Ç jô€‘ÕÒðÙ”Ñ|T½´ê*žƒjlv[{}···ž¼¯M6+—'u\ª+›‡u×7Q£®º.¢ÈrîîM IF¹ÍLÝ»7vDî¹\´îåÝÝmËk»•ÊæåË·uÖ.Vîépårɤc“¸Ü—,EÎÎP ¢²I˜š ŸàUª÷x…àª/ ð½e*öMü2CôʽŸÖ O–/—´Ú…ýú§éHÿgÞ¢>wÎÖ¾ÙnÛrÐÑmúíVÛz**$Ö“#Q±fQ°!ŠM ˜HXÑQi-Q¢ÑDÉ3¢°mW·ÅDYBVâO­ªú«ljüüZır»«áÆ2lMŸÁˆ½BžšWϨ:÷]Ç Õ·%Î(¶4ÖVÒÛ xÁ#îÔè)}Ê:Ê^¾§AÓ'M-Ò¯·¾EO‘ñAz%>^KX°Õ š4l‚©5«U’ÔmFÆ Æ+Ò@P†¤Ó™±DP–0 ¦d ÐP™1LR°¦öŠæµÝÔ ˆ¸rì§"·qÃ&´î¢ìºk•uj'´½w…z$»áNAx*¶~Pxu^iGº¹ª÷=´žÔ„^È^¨ùºÊÚ¾v&ËŒeo<‘]ó jŠ&5(Ù¢«(¢£H í]ˆ€·79Òîè&ƒ.[ê%$ffqóeO™µV6ؾp¿’wA]p|ö¶Âݵ!<Œò7‘<{Ó^/Òô_Ë}l­mDÚM®¸ë±6³enGਣÃwÓÀØØ6£M±­fh¨ @´ÄLP‚M%¬J£F D¢ˆh´h¼#0Ñï­¼™>uHéó²™¶Ò¾!|Ùm«íñ¾ÝZ‘«ç#V.*q£n8®28Ï žÖ£åAòŠù5«í*¯‡m½oC×#\£.ìVæÁ­ËBF’Çw]Ý×;¤šLŹ]ݹcb‹NÝŠI;¹‘ÝÜÝÍcsZ)(ÔNn®.î—u]ÝbÈ3º«˜º4r«³œ m®(Û66gãq¸ã­¡Ö%Ö%Õ‘ñà÷{ØSçGÎÆ¸ÒåJ+á*¾)>(sjydädü(÷:´9«^ïÒäU‰%bQ%O¯îƒk˜*º(Ñ®¿öµV¾Ö£å’åºpy=¡ÓÕsôéÒô§©ã:žˆéâèzzŽœ]8=g·UÒ¥Ñ=eZ]`¶µ³j:yöÔ½±{a{byK¡Êm•¶Çà• ›¤Þ1ÂÍm:FwkqªîF£Dås“»\˜£wvër6á®iƒç)6Hû;ãb¶°øÈøRöÊŸ/‹›j¶£„ä‘äaä+Çœªsy²[m26ÉxãÆ¼d^‡CfªëiPö7SàañŠè¤о&¦Ö¦Ëâí°¿†µVòÛ[—W(¨†ç!ÜwdÛ%ÚÑŠ9rÃQµÍŠi!A'Ð| Ñe¶m“i¶£o?˜­+}"‚øP¾&C)ñd_ì(G5+ćŸSÅ?úލžquE]"ê¤ó—U’û"W\[EM‹Ñä ï.„žéü'‹¶ÃhÁ£bÌKS(¨±£Pm${7hÎî”$T›F’«»´Z(¨ØHÓ»s;ºI§;\“\á4A;¹9à ZŽ­Ò”Á²Qh ¼wD™s‰²M!†KDcc`™ AF’,g9$¤"Š&#±§vÚæÛcU[†Z(¨ÄHŒHYr鬊1TXV$„6EÇu—ld¦¥ÜÄËŽ8cm¸Î½_ΕOHOHô€ú¾>é#¬S¬Kùj‹Ó)üáNOG€ð ¶ÍÈTu´x]©?ˆxD¾ÑESm#j­½‚µŒbÀ¥ 6ŠLZÅcAª5«ËF¥ÒF¢Œ26Ê JD•6-*6 Õõ[N²®³8Ë6ØÚ[8Ž1Ϫhô\¯M-£oõÔC¾znøç9VÖÁ´=ÑS¹DXÅ„ípËi¶Í›mçQôÄ»°¿ÊÙWZm“S”Q ŠØ©è‡ .衞ƒôŸ[T­¬Ú#z}j‡éD;¶Õòñý†DÚ ¥±²Æ1dÚDdHDÁ´RhÚJ,m¨¶ÚŠª'âî[oÀ[Z-ŠIµF-x¼nºUuÛR÷Â×C®*uÛjšÚ­£VÇÐÃ8ã¸'µ¥JóU·ÌŒÙh©Ý#W¾Wíu¡Ú$OcS©KÉÊêJìè쪮ÉWdŽÀ{Z:øºè¯e'p7Z­ŸfËcfÒñrTºatÇžÖ¾ŸÊ½ÂØ¢¨ÛFÐE‹¬Dh1¥1BME¶rÊ4TlmW*åD–'8sw;sl35%77+¦IΘ×7+››–;²\Í(Æ®tÝ.rá¢wvi¦¹­Îîà9mÊ.¹µÍ:ë·PH¹vnF™9n\¹ÝÜîÑn»®™ÜH®+w`MÓ·À­| ½ý½ýô·Ô=IãÐüVÕ±³ªÖÛ12Ú®Bˆö^—ôJgkm¦eÅÉmˆê¥|dٲ͡º% øò;ÉK²Í¦‡vU/Ÿ¢6›-l†ÐÛ¼‡xÏ¥;»j:YW;ßÀÛZ¶Í¢ï5KEÞ#ç”æí±>8~‡‰hF6E×ìOR<^«iµ¶ÔP[I´k ˜%, R%±hØ£lV Y¬ÈÖ°™â\üR¯3FR_»C´ËE·h«²ì³j—e2^1ÔÅêj»À—y…©´ú¤§ÁÛàïƒ|å}ŽŠÛW®W¡Ã°níFÒ5s"ånrë¹Ýv¬[]ÈJDRc/ƒð=µùºÕóMP£ÆüZWøÐWКÔw²ïtm‹iÈrÔBæj[Ó#MYMŠ¡T"4Ri© öæç5ÎHŠmŸŽ5Õ»ÝK*ÛÊ"Ø}‰W*=)\ò¯ùtêW‹^%x?¹Þâ¶¾5´hÒQ­÷{—6ΫwÂÛU¯œ½qmUçh¼s²"ë§n›šÖåŒm$ˆ¢ åÍ×v̹ »r湊åCºqÍ˺áæå\îœæåÍ×(ÛsÝt¹Î6+vç(Ôkˆ ÖæÝc%"6¶Í£e£ñy½Â;*»)^1vÔvÉvÈí‰ÛEÒª»h»h{ªžè¯Ot‡â‹Šxt]]RžòžTtzɉ³Y›M¶¬¤›ALha¬X¡)"(Š(°TQ&ˆ$@+FQ¨ÐlÄme£e6“µjýÃm`‹E¬PÒV,Z46"±­"­—ç:ú#Êd¶Ù¨Ù›6W_šð*U{ò‰×ö±?!$~3r5DX°›ÓíS!Ëšk…óÚÞʯ}^û^öýö¿/jGã ñ¶l;-…É ;:ð~„­¿=mm·’mE"½esPÜ܈Ü×uÎni+§.A.]ÝÌQ¢è»ºæ·]ÜŠëEs‡vc»êl¯³Õ¯†¶–(óêPùÇÊccj¾©){eOB§—+·ëIÑKàÉzÊÙ.Ž^2§1 ßÔëZשbã8•´å¤Žþ-–¶ ÊÔ^¡®j†¨«n·§‘Ñ*ñçÄÒÊ߯MSž>NN¿Áéö©ðjtttÿ̨>^ªWáQÒ*úÞà]4<¸º`|*:y> G«‚“Õ©òzÙ¨±´_'`Úe³ezø¨¨:ÜfÙ›f¬Õønî&ÛÕtµÜÉOG†Ò¶+Y°Ù[5›H(h”¦ÆÑ³6,¢-¶fo4ºnlÀ»ª+„뚃wK£s][sZZíµçB]U+ú* æ“ü;p;ŠžI=:ô+ ½Õy—4çq°³0fÌ«R¢±$Ðm6,BËe?Š¿|'Ø%õ ôÆÕXÚ–·’â¶M«ˆwÀGTNÇ&Ù™²qUDö|©Kœ âîwr]tÅr.rC¤nçsQšîÛ‰Í7+wvâÐ\I* ƒw;‡wQn„ÌŽÉ·"‹¤ë‰b°4HPÀÉ&"0ÛLíévû ·ô9'´“Ú ÙÉ÷TxÑ^¹¯ê¢¶Õ\’G[/'E÷Rto SÓJü/K’è”ô’wÐèdñûÄeVš­¾cŒj#I&6eÙµ°Øm+ZËÖYSáU‡6±¦,Z,AZ-[ùvs~í·\¢‘6¶¶ÅÇýØCÒªô¥éUèž•ý ôJ><^†­“¿(Ù*ÿÅÕéXø[mŠãZ<¢Ëîfµ¥b¯'UÖskfÛmþ‘ò!sëœ*÷õBôª:¢¾95²»˜¹(.fæwÎ »´'*wFç*äp‰(5Îîæ7s…Îk‘·f(%ÇnáÍ·)ÎV56ÜÙÍsn‘Ë¡7.ÝwqvÎî\©Î%ʹʺ®’åÆ¬Öº%]º)Ñsbý,?ZtkÃ}ŠŽ||­·ÇÈÊqµ_Ú ‘%}þ®M[¦‚\»kj[E²‚Ï_ÜŒ)IHäíÑcbuº\¨¢Ü®&ç%ݸç]Ü"@,#»‘\×(( ·+–#wtÈÈ**,¬0¨´„Šƒ&¶æMËK±Â›Um¢»pð«áéi_GÔø‹amÕ”:½Ø6[øÓðÔ¤ê”}QOs‘’øÒºaxî5ÙW]á.»V©Î¨î(ëÓÝÔöªz`¹«j…NlWb§Þ";úlNá+­+‘ÜC±‡Bxa_4Ÿ4r ®Š莋¢=乿9¸ÛVÖ¹t»®íÝ×WM˵×Ûm¶Ùœppz={^}Rx@Žy,™¶îew1±ÊA{ê=ô^ø=ñ=å/âÃå©ò±µ³Rvó‰u0ø nñõ΋—5Êéh4Ë#I0;¹’#\ì’Ùˆ6¹\ c›hj3–-®î®— r«»®Æ Z0Úæ œ»bÄ*úí­}«kle´¾X®T©w°¦~fƒm´Íµ3üWäÿQ@xòö±/ ^@êª/"ò/óÿ©û<-•l›lÖÛL˜LÖmËTm ®s›”bˆ4lj6űj6en6üš“Ÿr¹lÙË×D½Ìë´¶Æ/ é¾¤?Ó¥^úåùW¶]ÝUÍ·]Úåwv‰K»µÝ®;¸.‚!&kFæºsrãs®ÃçNâEqÛ.M¹§].éK•nººA®wUÍ:äiws]¨ŒîÈ»®—wA£§%Åжã.1²œm›6yZ—Ý•uÂyºWë'‹ÇWÿ²ƒ±ŠªÛ6­£o¼‹¨ßôÕ¶ÕêyºÆÐU!¢4Z(ÚÀI(L“)Ö5Q¬X( 5clÚÛ3FÔÚV×d„]}êþÖ4]–ØÐìöM—ã‡?óØý¢EÚ׬”;U‡ÞD®Zü&Ð[†$P%ÈDAfb$‰((‰"a"˜’Á“LEŒÉ4F¡¥¤e$je £kU­u«¶ØÛd¸Î8MKÌìLO3]5=2zdºD.ƒ²”ž²®Ïm«"Ûš‘\­5_jىɵ³oWÝ•ê= žŸ¶Owߥ÷ôßïm¶ßü¨Ø£$Á­±TmVÃdñ•8q¶Íî){q{PüíÖBŽ‘xh¶fÆÕ´ÊÌZ,f-¢‹$ÂSFÙø™wý³µ©¸Fع$Õ}ÈÛŒf6hbJÛÕY•¶OÆ6•K³í´mazÒðÕ(òƒŸ/'ë½¢ïU°cZÚ*ÒØ(EŠÂJ6b¼øL¾^î÷WËÚÕñ5÷Z™³ð( Ÿ½Ò‰lØÆÖÕ±FËa´Yvr_Â…|‘wµ¾5¿×lJCºðy­mk}N¤t”¾BŸH—2ãmµm6qÅÖv9St:îjFEö;z•ÚѨwüƒ¨]^]-›i0vb á¤Nõ:B<œt‚sñÒR玑.’óJyK£è(>P¾SþÙ!:B½w«¼Ê®V/-ˆn5N6¸[£ÝÝÛ¥¹H¹ÐØ‹]uË…ÎZ-FW*æåÒ9mË•Ü,‘\-ÊXÓsnT3»b»«rѾ²«¥S¥S÷¾’§LN®]%Í|Ã÷X˜j¸{) ùu!üT÷Ç“¥[}–¶–¶½š±³„A$’Hi% ‹mlbÛcRMç¹wwvæ³(wu®n\¸âW5®ã®+•q«œÅ·77hÛ˜Gw\9»;«•ÝÁ\ÚínnÄbFãÓµ¯áÖ¥ôàúuÍGÏIôŠùÂ'έ©¶ÌÍGÏN6†Üf_ÿ]A<.å.åW¹”>¶e¨M“¹£‡áø:;+aÙe¯¤•SÏuæ‹Êüÿ®7p ŠFÅr.»ÒÆMÂÛŒ¸©‰Ø; ¦Ø›°71(ò_rbê×öÕ?/Å¿öª ëöl¶TÚB6lª­…°¶”Ø{T¥ÑQ±s„ÚÛm&Ϥä++©Õ·)ÉWé’«§ùzTþ~’ãÃ2Ê*5­¸-Íͱm´|þ\ŽMsÔü¢ <‚ù´‡å6¶[AŠ½ç®½œ-¤F¡@“I’ŒDg¼¿¸ª·Ïÿ7~ÁZرF 1¢Ñ´mköí¶æ£W;·(Ýwj6×ùJ­‘^møÍª¼5\Öîäm¢¢Úñïæóyœùu¶¾Nß)k6¢†Ñlîî=HòÑ}„«òõ6ÍŠl{¸Ÿ·!]å]åÂB»ª;½›K»mWyœœ_ ð@9©µAß0ãTI,PZ,£F"(ÓL\ë]ŽSÍ®›“îåÊ×E¢K(Å¢Ðs£-\µÈ‡"ææÎº1л’®n¹rç$Ⱦƒ[Ù«»[»ã{ѧSÌ-^V¿ÿ˜ ¬“)¬ü²ÒNUÊÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿñîu ô>K)Vª‘%! ŠZ›" Mb¶ÔZÀ+@-’&ÚÆ¦Œ Û*¨¶ D-j Ø¦€„dØ ÕJÂ[jÛ¶‘*€¨¢¦Æ l1 fY3,Ô µ k[2¤I Ù€Mµ-"Ƀ[V1 ¸PÈ44Ð }ÖP@ ‚”UìÔ‘P‚U ªPT R¨(ª©U$ ©E*T ©P(P I"’R”$¥(%(’QI$’I$’D¡D)%IJ©Š”P¢€('F P)%%@ (¤ˆ (RE Rª•E‰URŠ”•”P IRR%*…%RJ )T¥ …”(¥ $ª PР  m¨@BPÑTQB›e ((EUP(RR¤ @ТJUQUACA¥*AEUJIPÕˆ•¥$M CJ’…P ©@¨(ï}ZÂh i†Ø*ضj"Ö iµ†ÌÒÙ•HÚ«6f° ¬¥¬`Ú“Í-´RA*F¶ÅŒ´­¬f LŒÛ6 Y´[i3j+l65Z­«¤¨TLM a–¶ØlÃj³@©–…¢À̰-´E2&ÔÕ²ƒkhÚmaS3Z°ÆÚ@ÑckR­a†Òe¦³l+ÖÖmˆ °kÙcFµÖY›ÌưÙ`„ e˜C50c+ ÔÖ*X³Y0Ä–ÅŒÑ`ØM…˜dÀÂÓCk€†°Ë`L„€Y0³0͵0&¶hia„Øl$KC¶FÆmhÂ@¨f´Û›i°! XÙ`šb زÃ&6a£VHµ`M€Ù¤ --ePMahÀHhɬ&ÖÀ$DªŠIm‘³ h6Jª¥T`È6jÕTÿð0 €L † Ó@‰€L@ÄhÔ2©þÐ „i‘ `š4Ðh 2`š4ÐÉ=4 ÄÄÒd`TÛQ¦F§¡êe=2!< €š  £&¦šmM'¦L˜Q‰ššhÊ~‰¦§‘©é§¤Ùê˜L™iµ&šš2HÓAÐhz¥I @4L&‰é1¨É´L4ŒJm3 ž¤ð§êmSdõO)äcI¨ü©ù4КziLb=M´Èb)“F%=¢ž‰é=@õ1&™6SÔõ h"z@6£Ò ©R‘Ñ4ž2hSÔÞT÷‘OÓ dÔðši6™4Èž”Ù¨O4&¦Ò6e=*gš˜I§“OHɆj©øh©¶Ð©°Mšz˜†Òm#OHÑêm =¨ô‡¨É“ÑM©¦õ@¤©I&˜a10@ÈÐdÉ£B2i“hi0˜šžFšaO#šd`£$Ôy©£MzLi4e?Bh›C@É‘´“&ÐÓQ§¦~ªŸíZ­ý¦Ò*[ýVE·rïë÷.juÝã¹wÜßß¿þÿþý¢GÑvÿ»û.ò_Œ!à8ÃèÖ6ˆB1ZV‚€"Àb bHŒBˆ‚ûõ×›¼§ŽsRåÊz_=âö7“ãÎדÍãÏxîôFB~;Ž$Æ `!¸2€ U †!?™„À|( ` G\iH ÆT˜ehl1=¡Ãÿz¡€Jnô;ɛ˫›ÒkÂÑZ«^®jKhÔmnR瞃yÚaüØÔ~•…üãGóíOÓš]Á?Ù¸Gñ­ZߟTcmc`6F64V*e’Dj%djEE‹bJ6hµ$²…b0ÈQUµm™™«oö¹WîáüæÏU.ÆJþ¢¿¥£[9{kôÂK—Sâ¿#26Ö‚ÄÁ«ïرø=¼+ZãºìW†¶®[lZåkå¬Õù [—x xæÉÁܨ<m°¿‹\ÒC}5/ÎÙN/Ë*®nÚÔM‰ü¸¯ÏŠå/¨•ú \WŒ êÛE³ôJ䟲—îPáö{ì¦?_Žmãfã„«_Ì6§éIr×çQåÃûeª¡\ä]ca²pÙ\m^ek~Ù*s:ýª«ù¿™+”þH¿š'á„söȶ¿Ÿ+ÕÔå?L@«‡éÅ}®Û)û²9 ‰û´:§Mÿ¯Üî}\ŽN·³¶Ú· ¿96¢ÅQQQh°lQ ”bÔhÇ¿k•A¬b‚`6ð«x–0¯ µÍ¼7-"¨™ðá¤DÙ ƒ¹´ÊƒhÉÍw:ØÜÛw]jîí͹·6§v—uÒHg7wWDoÁ’¤Ñdé¸[¼w4¤dW…ÁLAb/ ð¯Ä]ÝXÜ®xrn‹ž:ñâÖÞÏ7wm^¯UÊñÜ8Ú-¶mxîèÚͱÑ"ˆÑ‰2¼u:æ7…úã˦ Üw;¼vïw6xçäïï ụWµCªF/m#ªŸNWmÛO¤o¡¾•OlW£¼'U5BÛÎ G²ñÜ둹-âÛ²H>9]œœ|â§äÓÛEzΦ„åìLm¢ŸZ»¹-¦ØåÑ΋q‡(áN3Wǧ·Ž=¹> Í.äȽ…9„ðKÁד㌶ÚÜyûÁAN¶C©Ú®y>ÆN1Ƶ8ÓfQ·¦šîíxžGgÑÕm·¡yáµ+EÖÖäHØØ¹ðª¬Ÿ]¬Úöñþ¨¨y¾6¨Ù}kcbúÜœi· Èw4!æ¼´©w‰}†ÆÓìf¯±müRæ/³CfTEXˆš%16ÒS0–ËFÔdAF²råÍÆ™Y†ãw\ÍwqÉÎ͘Û_AVú ¯ ­ôzŠuÑæ£ÐËÐaÕž6ù ›¾Î4m7QÒéÓ‚4ˆC1DÈ›9]ÎÓ»¥”æ+p]Ø¢æ·BCúmȼvì’»t»¸O×7†åh Á%áÞ;¡¶uÞ>øZ¿ Ũ¯â²¸Qª1fŒkø¦'‚îÿ‚ñy¸‘Ø >ÎÆÔ}xu_ÁOµ¸Û[hqO¿±ªÚ¯… z-ܶ5ÊeFÑcV(×.Dm×+2cdØ#mÎ[›5£˜Ñ¹Žî×wcBh•ΤR`Ó0³5ŒUÝÛœŠ€%˲櫜ꮹ`®îÅ\¹stGM·Lì\·9t»®„ÝÆìs³5Ír\;—9 ÍÍÁ …PÊCleåQ^¹ Fâåmè8NLlÛ-ŽLㇼ’UìPö9*®Þ¹=t;:W!}Ñ{Mm­Ÿ#qÇí©(õxȺ„¼g+£«£'FŽoyo×Õyíyëºbä„Ò ¡ÄHF¡‹* ¢„Œei¶²[m³F¶[¤!ÿ Hý1úXÒÙ¿´(ÝÝ®Në™ûÅÒÜ\¸¶¾- ueÕή¼êî‡Ç¹R~Hü­m§[û»mÜQSàoO'vòþ¡O(S³ ÞÍ¿?ü=¶ü ¥lü¹[“Üf/ÁUå9e*ÀÓQÓ#¦GM,t·Ÿóóž^~y?âwƒ6ÁmÍq4R‚“s’hѱÇNÆ Üéã¹wnK»ºu\ÕÜÛ1ÅcN*ã•ȵºéŒR[;®ˆÌÔ@`wK®îrÑ»®»Ž]w ”t‹·wsÛ§wEY±œ¾š¿Q¿­{}_žÈ—èkóNv/Ø×”'Mÿ?ÙUöµ¡¢û+hqƒfqÅÚ×05ñ€<_ö–Ûm¯ÆÛTõj¶—Ì2Ùó3>gó¤Žý }Õˆ­¿…Z½?kç]ݪ-Ej-` l„6Œ’JéÓc Qh£W9®ŽîÜŠéŒÎ[»­ËEÎwv˜@É™DQnk¤jwZåÎë´Wv]ųº©ªë¸7 T-X¶ä2P„É0!E­ª¯ÉÌ/Os™/ŽN‚’ïÊÙõ ý…^ÒUæõC󨾖Ðú4w’¿ÞÚß«¶Þ¤ç;¹\Û#A­Ë»¯QáÂ7‡xñÚçA¯Sx{Kmµ¿•Z}(mõQú^:ܓו{ }ͯ¹þzEzCÒô>‡œñÒÍ¥œÁmfÚÂb!;‡;´Ýp“󵯳¶¾5µoÃÛeªøé’¿¼»®‹ÇuΉÍÊí¨]qÇû¿Ìµª×ì*ý4?"¥íÉ^í'cîNÈv’üÄ=œ~a˜«ó üÅ^ž/ŽGí"xTò;ë¤rmÿ)^þþšƒ «YUùõ¹»dÛs^:‰¥ã­³c×ܯëÔ‹§ðÒ<æMɃi˜ÒTg\Ò®\G.ëªåf0ˆ]ݶ.î®GRç»8lt¸7w»»»šÜ–¿£­ýf¯õ•±n\´ZŠfÌ™âCFæÜ×wP˜»9¸a“§W"Ë»&æ ­mÇ­éáÑ}ìs[l¶s[/½mât¥?½¿çÿ ©ÿJï•~½G̽R—ƒ¦ÕÎ7á¶ýN98”UOú¥zDº²yg)åµãY¶É²mk[˜›º®³ -råŽgtannjè\œíœëkpm‰áqîºî…ŠÜºåË»¹·1É×q×ws ¸Ý çQÂUÝØ”7w$9rŒH‘Œ 3LͶÖê¡Ôé§$s§Ls²¿VN÷6ß«­·êî8áŸîûâRzøõó×Ï^éßó=ŠÕW±^»Z[÷KQ®îF#bÎ'#<^[¿’]øwã¾Ñ™®ÿÁ®ÿþ‚EÌÑø…ŠâÏJ¯îŠ<¾¦ÖÖ/\/:•¶-©—Üëmó¥)탠'gO?šÛ¾/çcjm6Çã>K”öÊéöÕ:Z½„O^Ú—OÙBöÔ:šæÔòþ/Kb6¶¡1¶M´j5d¨Ù,ŠH É¥ 4šb-PQªÅA¯|éÝ«—966§W*.qv6l¨6¬U ;¹œè99¹Üw.kIH  ¯Wj< :K¶¡ÒöÒ¼Ôí”të¶¡ÔNØ®¥ðëWʶ¾K2bÛzék—wbù}I½÷+mÖ‰KÔªº/ßIý´èq¶µ§ÏÙ›3nÿwçüC˜Ð ©ªÌÈ[SeÀÅŒ„fa³" PRC L¶µ­µknô ¾‹ÖËÊq²»^2ðç…·.ðÐÞ¿ßU«W¯KøÒð¬ËÀï÷ûȕԜtÉÒÇH¼ý½‹×ZŒØ«{+rìnÆÞÌ…ã{é*y³£º'%x¿#¸Á·„Ú78T\ç7VM5‘±‘±‚)cF‘Rd›4ÊÄÌ&Û6±µÐzqze=®þF:lÙ­m­›N»v|_#ü`aU>}ò±6ÊѦ*½~ª6sm îqwnîwmØÛû¥ò;®¯$õ×Ê­mW ‹ÝõÖ¢ks˜®5¹v.`M Ä’&""”–‘f"i»ˆ~-Uìm{ OÜ’å<lÿgðªiNÈO·Bõvß#Zù+’Tjè)z½«•ÆnL6Ü­7+‡\íEÚ…ÚÅæAÚƒ´h—h'h«›iÚ*óý¥OeGÎîé6Èþ¬»ÌÊöNóŒÝãÈ@OÅ…U¤‹6¢­“(b ¡6$1Š$ ¶ká-ÍÝnn\®XÚå$#clÕÎÕsrëîÇ6qÇmM­«2œu%u5uõ{À;:vjìÎλ:ì«ÚÕx%o IµÇKfN6wWuûòêïW{邇Úö•«z»[ùUë+ë®WWÒÞñÝ~T+õ”ýi>4ÁS½QÐ˳Á7½­[ÒhhÖ65±Ö*ŠŒP Z‰‹™•"ÆÚ £DE¬T­oÌ·,]7s£¶]¹Ëwq¹ØD#¤œÎκé§;»¹®tãwvåwWwWr;¹ÜíÜì$W:,œk3µ£ðCÀGß—’ :ç‰ÅfÖjöXµ"Cb«„š™w ÙÈÎWyÒ‘ÞÈNö®Òw³w®÷颧QK¨«¨—P_´GSÔÛi]Þ²ãhîõ™ÉÛªJëS®é_u÷pÏ»©iþ4U¿š»œ Êˆó'WAÕήûR¥Øklض¶‡Ü}ǃ%欚6ÙF ÓL4˜iˆ¤ˆBP·ëª¯êßj¬õœÛnnnÚ¹¹EÛ•Íò¤µàç•Û¹~¿VÉÜEÜâWp½]¹ÛËš.]Öi­ŽÆüOÜÚª¾¶¯CV+ß$]ßMãÆÇhñÞ¶ÿCjÛo:Ú£kKoMnE2r颱SK»“]qrs¢ ¹;™£»´›^­«ëêõdTÛw˜ãqw|pq¶ÇÜýõ!íAwn«½M«¦V/7ŽéÏ‘ÜéýÝ­µ¯ÖPòAç)w‚Këì­¢÷sbæ<ŽÚcflmŒEŠ‹h‹ $³2I€ª,mF£cZhˆ¦ ¤Ú÷ w]hÄS9D\·+Ýr¹¹\—we™6+'uÜ‹›»iba™¡4ƒb1¸ÃºKs·qÙpîîŒguÒn»–ã¹ÜHswJuÛœ)•¦lÍÆüú¯rr®@O¡¶Û/«”¦Ûfi?b¹ú¾¨=ÆÐ¼ùxÕõ5ŠQ¤(¢Å•;ÉÝê¿âÙ»ÌÏü"“ðĹíY«¨ÊªéêiØ*ö¤lÙ¾Ì8Ïz.½>ª^ú«°Ÿ…Qäƒòª½…ö‘ïÔB¨þ¬¡´Ùš¶”ð¥{´¯b»é]­´=ù¢¼);Ø{/|’¿ª’›)ÝÃæ‚õ‹XŸœÅŸ27Œûýj¶þ­¯bÞÆö»ç]Ïü»ZµyÖµ_Wkk‘M6rE^ëì5_ RŒmŒ±ÚÕ¯ÌÛoÙÈQkµÒÛl«ÀGæ/Úüͼÿ(v%{võtzªz:zôþ/Ã?Œ18ÓçapNëU&&6ã-™eÖ+ï*.±Õ;ÏDå)ôcèq\c\VÍàWð¢{úU<éñ_¤*èBÿ_{+{-®C+¢Ÿµ8½žþõZ†’æ _âT^ 'êPð[I±ómºð¿*ÕmôŽÚ­îÕKbxtuЬ5nF[FÍŠ’6Q&ˆdÇ.].t åÓBUv|ʶ¯ïjù³>k–ã†ý]¶Íü•ðø‹àÑч¿‹¤GZS¥GºMŠB퉕³”lµr”TšÏ‰â¼5u¼B}™ôV »¹WWOá“Ó+©äR½2ûÐê¥ÙTx§hS«sTòÍ®kÆ«Œ· Ø9®kºÜÌ» ‘h®ë–¢j-nmÝÂÜÕ+‰Ä—w.njå9×våÒéÌQ\ã¸íݹ"’Òl,jˆ &"bCmþ6Û}c²#²¼ŠWR/õ§÷´­³ZIl­SÙ§¸÷µ­·›QUÙ©ÙÉñåì´‹m쪔nî¨×úºDãL¹6m­àÜ­¼Ä!á’[%cC(¦f$ €R%’ÈÇÿMµ|ËWáXÛòúž ü¸(ûÈûÂm”ïöï÷ŒÛ1µi¹3­Âwû•w÷ݪIѤs×6|„»Û½Û6šÍËíÞ¶ÿÁ¼d[0›ÒÖ4‹s\ÆhÌŒl\5Ë¥"£›3o2W™']W¤@=z }äûÔ¾ï{¸Ûm‘©5xY$Eãx»Ç‹Åò·ã[[k¯pów£»åž3[,ÌØô[=6Ù¿ÔÛVÕè‹X6ÆÈÊŠŒm¢(CŒbŠÅhÁ±£Q[$“-hª#3h¶¦%²ƒE’‚Š™˜aòª«íÛEëÑ­Ì"õÝÜûeåð-kWçm«ãû4¾¹\Ëj/«'c'^—óõjÞÃj6…´cZö"Þ¹ì]׸€û0ô²:µSåÕí ûvÉ>½¼OÓ£Ü(öus°~vÕ_(µO¨®Øœä]ìRïéßOTÚþw “8 j3»Þ;W²t‘¯7Ôíj«ìjêjôèä'™²¶¨q³XœzzztôãÒ/C^’ô“×ú÷s*œÒñ;é{v³m¯“¾ã¾ää¿þ”'¿øñ%ñ!ñÝÚ¿ýí´ˆµf6ùfœv§v+»;Šª#hkfh6ÚÒ-LA0™Ñ,Y ÛòÒ¯÷ý[kÕ¯TfVÚ\ÎQDöÆj;fÛ aè›K›:­pÓ•}hAÐTè”è…ÑK¡.…t3¡_qQøÝí¿K\N8qÆîø¸Îìé‰UêÊGCäü†m†ÛjÍb h¬VƒE[̧V'6FÙλd°±¬l£ $ÌîãWJK»±nTêè77–Ì6›m­Lºƒ¨užèžSº-·ÛÑmH·4[¦9]Ý5|vMɶÏé%× } ÝfÖÖ¶ÕöÛvRQä2K˜ÆÉ²¼&ÃŒ®4ت ”1¹¹Lɹʘ…2b)Ë›»n s:»»ºêB™ÎÃ$ féØ)±¹·5Šæ·râ¢]ÎìNΜ•ÍQ×*îí—]Öæ×Š¥Ëª;ªÜÛ¸…Íw\—L¹r"$ÆÝwv2;«–¹7.\uÎárâ]ÝwLGGuÍÐj*wS2HãÖÕ·óµ_‡møi®lEusE™á? \Ï./ÝÞ\¿Á¶µ_ÔÛmoZî®ël ¶ÛNé¶ÝÖßÇ)'?ýyB#÷Þz¼íçnž"ðí¶'w« ¬\lçûÞ:­á‚ÇŽÎë—7\à“ ñâ$ló¹¼q¶­[àÛÞ)¶¯qµ%ˆÙxd @Éθn\ÄEú]«ë+_¥Û|]W¬WTOX§W.¶GЧÁC­§À+ÞPÿ~í*½Ñ|&6Ûâ÷aÝ¿°ó;t=T”Gå(÷Õ^ú«Ñ »R®ð}­µê¡׆ñ¢væŒñu΂ùÜòûJ¶Û{r@D¢&61)ˆÉ£I"e“@I’¢@%‹ER$ÏÌvîu;®NÜç5\‘ZíT˜À*H±h‚X¢ŽµsD_#Uµ}Ck&·õ7«¦Ím9›m9™ú~©Uéà: ^&ÚfVŠù1W&X§åU[oªÖžxƒ-cXÒk$QQQ`±M´™I¢ˆX"£M $ ‘"£d&D,E&˜!…4¾¦µêÕ|]ê­2Ûm6»Çwšwž¨uuÕR®¡=8ôãÓž^ºéÛz‡¨wewY›U;¼ÚÂãcÄÛe¹+ôhTïéæ¿ÖHþd¥ï ÍOµèlßqËq¸ÛmcpãÖ8ÿ1ö”>vÐúª~/ÒÍ[[OXžl›yèÍoNÕØÕÔYQ«r¶5…2“6ýõµWÉGì¡úm‘÷(wÐûÚl&Û2Ûa~†Ì˵‡{®M¾Í›kØ98ÿíT^X‡.ÿiö5²qŒ=‹®\^½Š?IjÛ^‹k[JÒ6-z sXÆMh¤ÖM¢F'utŠ1hŠÈh5†Å®p˜¶¸åØØŠ—v刵ÝÝHQs]‰!† »’‹4 ÓA‚™mNu»»wv¢-rŹ·S¦¹FÄw]ܲIFÈNë[›£»»§[›J³%ƒF±QÎdÍ(»»IÎî#rêé]Gg[—]Îww.»§uÆ")’&õö·¹eµòý}E>Z¸Ópwöïßç^5+üU]®cieizö®«žÊÜœ»I6湺i®FÍž åZ¥.yðsÒðòüFÓlÄÅ¢’‚DVJ ¶‹&ÅmæfúDs•s‘ÎG8sƒÉ>SÏ ^ ¼¶x:ͯ¶ëN­úþ]–#ùêSÁ R=ž×ÛùºÛ|Êù­µ¢Òóµ«Z½%mmÕÉXÉÂH‘0‚¤¢H’R!“{_?óšÄ«¯Û×ñÇ}"”üÂO•´´®çŽ86.5Jû®íí5à üÛËí¶­ªô*ݬWh¤®ž8¾ÒW™*¼ýWŸWÍô$îYÏm›w<6næÛž"º2è×—žYË-•°l?KÊ‹lF С¦HÒh¬IƒlhÚ,mFÕnkr0[›nW-dÎêì†îëp«›79¹të¹f®wv®ÝÚÛ»®\uÝ;«7*îÆ·w+rm! ·8ŠåÊåD;º.î »»pÅ× !ÑÝÏÜýõÕ}‘>ÎfÛl–ÒûC†›§ÑÈú´¥^š‡äåƒÜ•õïGÇEÜÓãÑî©u$÷Axüû´½4¯áÅÛÊ|ú_óRy¸¾ /_”.@ûjûyöñÛ[ò¸ß°T§ƒ'ÂCßZ‰Þ£ô¡÷ƒ™æb\Þ[(Ú¶ £Q‘‚ a$™šTU(Ö5k@ ¬X¢%±j ¶˜M1,lgÔ7-\ÜÛšçK·wuÝvŽw;;¹Îç;—n(¥X ®îÝê[_!5M´õ-¨ØÈÑ­Àh¾Dg7‹¹ú›ZÛê¨îÓç'w²ûÞÚÛ÷âSÈ ëÇ^®¾ë㮺êéÊ.Â%\þm¶·q£ŒbÌ‘cF¾5óï&ð¯ Æäy}eB{>Éð:7(ó;yk„Ù\qq«¥¶°Åls“s¹BDÑ’I¬¶¹ñw ÜÜS¸§ýRxE௠ÜqÆÎ8¼9CÃ~Ä’¼†Õ6ɽIdEn ½N•ÎñÞ§¥¶¶Ùó©r‚pJ<Ž¡QNg&ÒÂÚ2ÖÒ*½àÌ%þ®Û}¶ª«û¿¨É™ß/SÇ Áüª­}À‡Ürë6Ü1Æ-¸6[.I÷9\ZqÊ{´ˆñžëþ²—lÙWy¶»½æoüjCÊmãxášKB@…DÅ6¢Ö¬j6¢ÚJ¨¢&1X‹Q&‚ESmá[•Ú¹W1¢wu¢Ð4IAŽ2\é]ØwKs»ŽÝÎb¹v¸§c:!–³m38â3[fÛÝ+Ÿ£ñáÐSËUÐQøÈó맃¡W¸G£¯o+ÒØvÒûÑ^¤ûÄ]”ìQÙ/b^^RÚÚØW†¸ÖÚ¹zqœ[’ðRïƒî{ê^£âÁÕ%Ð…sû„}ÄóSÛæÛòxáÇo¸Ùœ>æüHÌÅ: [HÚØØ3 *,f­± 4›l…AdÚŠŒTAŒ™Â,ÄQ±¶Å’ˆ© M¬írŒÀk•‘&w[–1)µmVÕ³Y¶Y‡Ö©á„ñ#ä(·ÙLKc§…^:Î룻ãîÅAýd‡ø½æSac2‘ý`§6¡Òdjx®n™Í×7nMr\œ~|ˆypSü/ë¶Í™µ´¨ý¬5­šq‹Ž¼]tºâºÚe^ïŸèw —5]mvŠ]Ü›–×a 2E¦lbi¡—±¶­·±U0FÛø©¹¹q½ƒŵŽb*¯G^‰zå®ëkª½‡›ö»Ü×ÞÍ®÷Ž7rUGÝ@ûÈûºkh;ÜÜjäÜ7N"¡ÍåœJɰžîÅ×\®kœëXIF6’šD–0:(’0„S'N£“§H»»]ÝÚåÙ™"–Zù:ÞÚ¾{½µ3eÆÞ•½g#ŽLäãü Jú©¼Ú°µ,Võ‰ gu å(É‘¸Î÷“s´Jvè.»m¥všã8£¡°`öp~–èºB‚y>#¶ó>€þ†sø×ýc.4_×þh‹þ2Xc™EŒ-Ùˆ?„2œ£ ÌU(£0Eˆ¨IPšã ¿‰dYD$ÆL(Ä/ݸ "ì}ÿ÷À¸K"ûÌ3Ñ äIøb[ò™ ñB‡"¿J¢•‚Š4àtÅ` _ßþÇúÞ¯Gñ?ôûÿÃýÁ?v>¸…^Íà‹§Û5l„û¨Ú{݃v`À\€0GŠ`ÄL¨C-DÛ´Ö&ô”Hïà Àà,c(Œ^FGœ$ÃÇ‘àsƒJAáŸFc™!0 £)FF R»œ¥3?õÊa ¼û‰ˆC ÀR OÁþÏô¡—ü¬>À`ûlB Øôò›û H3öä¾Ð1¦JQ'˜X „`r@r_a€â(°Œ<„\â ª”@ð”™1J#§(`°N· XLbU§L¿›·°0 ="ÀÀ!` Þ!0J¡ÏáÅ&¢‹Nd0”˜Î@1£Z"ÔRb 0R¢bÀc…€dÔc˜Ä@ÉPÌ" ¨¸u$]óüŒþOÑÀõÂ`ï‰ä¹ Ã0G0p-¯P£:h•­(1$4ƒH§ ÀÇ óbAÁ¼R ˆ²D^‘b ž·íŽìoBççÄF”É%ÃQˆ¤ˆ0…Ð2‡}j@„ƒ 0Æ2ˆ¢ À &€RBy^^]ïŽ 1KHä¸O AJ‰Ä#œ‚œ„†‚ŒG˜§9Hp@ð ‘€C!†.£è)Mv±ŒD¸-Ü­À1`3DãÃ×ă” ‘˜ ‚•œfXÀ‰:£Æ#B€CŒeHtCAH’œ£È?ãò~Ñn Ð5 ™2ƒÎX˜B-Hx£#ã˜g1ÌAŒØaˆ°”äLAàAˆ!zRQÆHè(ÚWOæwþÿÈÁ€>¦}Uô ~ô£‚öÅ9ŒÁ‘1”Æ#¨b0È2Œf)0PBF2™( >#‘iY‹Î  ! Ï T"³—¾¿Òàˆãqœùˆ(s„4H: CˆÀ!Š„e ‚‘À‘HÈ€åõ#•N­Â1 ùŒCf!p˜q1 CŒF(Ôqf Èr cHAfHà Àf bXÄŠ“`— ü¨p,€Òd˜ƒÐŒŽ ‰|fSµ‹_HÈ! â#Dt¨Ê ‚ †%äSã@Ž¥eQÊÈG#C'ó?ÝH~µ]'½?‰ãüV·ñ~G‡)Ç’äå¹^;šãŽNÉðŒE&dˆiÈB€@!C@‚2D3CJqQ‹ƒ Gi ¡ÿ9š¦ÿÓ¬åSõ¤k¢d.¬ÁrLFà1‘Œ 3Ä2D(’P(ê ˆ0ˆ‹/HáÈ0tX‘•ƒ+FÊ09NUˆÂü’æÄEî[Û/;ÍÞnïoååí|ÞkÆqåÚO%áé÷iåÑç"c2L‡ S0 Ò XW 4 ¯ a„£˜‡)HàÈ‚Š²j Èëçý爹®6CÄ"œy„Ù炘k U8rÜC”Æ…( u‰"1ŠyŸ8 ²!@, Tr•-3¤Ë ˆô{£ÂÅוyw$ Ë@O­¤Á†”˜¤FbÍÀ«&B`Š• &C~!Ë2F Óº'Øô”C¨0  DÁÈ€L 0ÖhPW‘D¡‡@€ÊÎ"F„(Oð€?ÃÁƒü™x_uf4oÄéb.Ñ24Ó‹€²¼E‘Ù^ BˆCpãa„$˜ùGþ¢¯qhëX>h]@ð5†€§pæ,$A SVp"©L²Z¯åÎ7ËðB$#HA€á„ïša¤,±°Î,!!D£˜ES5f"LAµ¬Æ0ȹ†&°È0ÜT™èĤ­Òé|C;h)MœTkˆnŒ¡<¶ó!†<^Ü #ï¬B”OÁŽsÀùAbSJ€ŒFpO)é„E[D!—2Ë £A$XÔ3¸”Ð&`¿ö’ðT%„à:ãÑHíGSel?ÐuÀ¥/á’N/!ÐñÐôSãÛ)Îz>vå~t‰Ö6¤M«ç>É¿)ù ‘Ä0ý©, VycXáÊz‹lã©À:²ƒq@ñ’@;‹BÐ8[‰õ|‚oá‰KA´o¿•¥€X†„B`Œ‡ c„I×™”¨æIpK«`hÄ÷a}NÊF”::^œïÊïðvÉkégÐò@1´Gç1áS’ëÌ”ñŒqÊ¥4à1è„IÎÀa$ƒ#ÃHr,åANRª—Ü2€• ­¢¾qÑêöÖ믤é|)).%“ÄÒ€¥‘)‘ Ê)wF60ð,òˆ q˜V¾0Àhh€mˆBŽ!Â`  PÂÀr ˜ƒ-eÁƒÂ½?7£ãyÏGÎéíû‘·´WžÑáèxïlóšô}·›ÆP°X$"PY!AâÂ2Å€Â(€Ã)#QÆ@H P° àSB|¿žGE"}Ô ¦ ÀLŒie!˜J’N5 & l À¥‚mžQ Þ%=t˜¯+õ³¡YPôc”Œ*Õ‹d`a`¤EÆ(+×å:¥C ¦¦5BbˆD?š”ýÃ: ¦)PqdL…,mƒœì%1Á¢Õ¢¼X8ÇÄX®8á¿Ý¼0 0~¬‡þtˆ ÍŸe7å\aOP¹ž¸ h:Q¡è•ˆ)ˆ´¿í¼—õ[ó¿9öÿE´@djе"’´lÒI˜ŒÄ*¢bƒ")4¢3|GÛß½ÇÑý‡Ó{¯}ð½™KÚ™×þu#Æœï]>4‡C–ê(Fx†ô]æÖÌãµQc6/—~‚/93I0°}TÊW?¤É`yÆÎCHW\ 0ÉuÎÙdl>Xf Ô¶§¶9ê&óJ .¥÷êôT çcîuçúX ruÛ(±UJõ ôÿ Ú•gìg1ˆø:h–üž2f@Ïø–“ª#:Y‡úI?ZTˆôö“ñ`Á€6àˆ¼hheÙ±•Â׎ë~ŸöŽHs¿«I^§FT:JŽÓ5<–Ι_`£´åi©ï‹ªß/†7­eN^¦DÈuĘÍ[âÉWÓÒWzà±QÈ¥ÂÓÇR™l¬«V°§T»Ëvü–aÛNœß¹ïQ'X‰f»pU¬FpÿŸê"¶®Œyh‰!#¥Ýêµ¥eԼⶡÚ|äÒûÂ=+ Ê%pЇ2ÃöV„?å H*ˆŒÂ~Y æ¹Vq$ X¸[žA•†xÂJœ©z„h!`|K©„À·É¸±¸¿Â|ÄÁ=.ózoú?êÕ¿«·ì˜Ño¯ë®âþ‡G€ _®À0`ÁÍÑ©Ï,òˆB$ói%"ÅEÂý¸Rjësïä ÆÐþºJÕfõJx¦Þ1ª3¿×T6% FU»»Ÿ6z¼úWIZ ³°®h¸ÅR‰c¹á×^½B;dë‚~,ÊZ× Ð@Ñ™SýÆs!~é›ÙÕ#™Và€Zâ¶ôÝôë$z“´5ìõ3àè7¬Ç¹¢Ì}uíÕ¦›#/W”N“"œp×&¾xÙÕÑ< YÐMAíXA^-k«QM‰ -»FÇi`zOæMg,â}*+`n#Ö~q¬ùg ¥Ä`¡ùªjª/L¸N…H–¸…á8ƒ)rW¡ ÃÈHg•ê…­u›Äen…§%„%ÒV]•HÁ­¶u–j®`å´ç\ú3é™f={¦Ú)Ê5yxÒxÙԤϥ‰k°jÄqeôæ]q˜5°N+ò’±†Ê‚ÒÑœAmÙ&7ˆè¢r µ‘¶hsМìKÚ)wtIË£;ÎÊô|¸gö¼081÷_m7÷4tEҷᢑŸÔP͆8¼¦IÓX—ÌrÞéUuù›‘zp™ý瓟ۨûC«æ{~_îsúЂ¹jž|Ô²Ù”áËB6bã/yþ¾3ð$¢Í:¸NÀˆP>ɹ:\VÁ ˆ¹¬Ü>»òÎKcö™Æ-¾:h­»8nE¥{ž.éH‰õažö½'2«¥×ñ¿'ŽeBž¯¨ûÇšE_äãQ˜³GñdëÍT/ûšjè¥Áã(dÍÍÏd°Áò3é ¸“¹T.5.=­øÉ.pj¥4tèñ@C|¹c$² cV0ì˲pÎ…†‡ ƒÅ`ñ?>bÉ Woæ 8±ÂWl¹èßVªú ‘ÏkØÑ ŒÅ’{4§é«ÞZôÂbÿyÌ$(°^- Š ãì(Mzïb nQ…'·ƒ#d¥(‹F<ˆu©Øê„)∨ð$§ ’{|2†³þ×Ùû¸>#DO%6{´VB$ÄÌ8Èsh ´j¯#ðVøÒÜ,|=¶õ£›÷“u9ólªìÓ®sU3Nk+/¿8%²”[LX{sîÇ\“7qûút©cÁsKŠ‘Ÿ$CŽ+F‚k3h›>¯¼ºÛ;u¸Ž±SZúfS^…ÀÓÎκE ¬(ex ƒFeø€y«ºx¡–zƆ3 •ë–ÓÑ9”–ºÅPÿÌÉ‹¨Su–¸@M° aÁj»òÿ*–1y|}„ÇW¡D°ñ¼›Y2w°_­„ɇ0ŸÓ]Ê%ì„’·2¼b„ /m6ø¶òŽí“Xè#§s@<b,»AŒ]f$q¯puƒ#ýëc8S=%b¹ÝíFéømÅ÷Þ<Üž~q—¦Xð0¨–PÙÖƒb±øX«<(sôñ¬n)éZQ(ìË–©3˜ƒ4ÁxÌ27—2RD¸^ í˜B֌Ĭ´ÚEöšDÒ©aTÝ@ršÑs[¦ÚÇAƒy¯xð¿av Ô9zâˆP‡W1×éï F^o;¿&ÿyí¹Ü8HfñŒõŽnæã™‰»ßKÑüº ¨[jbs¬¨‹%¨ \É#2% ° 3þMÙNÌz%& •BæXÕWD ••š6`ÍÆÃ,Ç –‚¦µs2ˆpäx$¾¶ÐöµBsdÙÁ¾Ëè¦,[qJ3,ùé15`¾h:#lì­â*¿öE>ˆ}šB¬î5¢@|ówœ×`¥Ël_ã^õQ{Ý}Kf´¶s;0â(²í ¾{TX”œPìGKavX"Üt¦­Wq µ÷dÝ­ºÚ„t¦ (…)BãŽÌ~Ÿ™vˆ{á%uvA:1'_iÆ-+ïÓæÛí|ßÿ é†ý­Bq£…¢ŸÓ̧Îô]I㽑ånãŸæüçOÆáQ‡‘bÝîrÒO„ðQ&R‚Mu©¢ßþÙ8õUÊ*Ûk8;ÑwƒÓoÐ’QÈ ‚ 09‘„w¿è,¦‹5î(bÏ­ÌU.çìœéöùž»Ïuž;F1”gïœÅŠ`˜X²@Èñ6ÃÞú#ûý›N½|èÃZ¼®M¾³$ÓÜØ` <ˆ,H«:á¼ÁÂyQ‚h?ÒöRt5¢P¡`1ÙÇ8Ì|ý˜t+×å‘Êñ j¡¢˜hùD˜\x&¼4`Êè ¢ÀóB"¦Î£<#l!0[—Ø/F5=oÇêAué‘e½ù'NmªÙäè3vVtêS˜‘ijJ[†-*ˆÇŸÂäËÑ "‘Ñ—›X‚1Yî?Š/&²S†žÍ ÙòãÒÿž qW‡,ÂèÈ5=GÍgÊ‚åp}KŸµÅ<’–gú Š8Ã?6¨­»ŠµŒÜ>²xE@h­uHÄg¥H0à:Ã^[‚ƒÀÛc=éÓõÁLåägžo4\)ïæm×ÝS—÷^¢A F˜Ó˜¡5iªßöó9°ó¼¾Ùä 69p=AjA†Ý\ ô9¦ÖÝN[Í °¬+‰åï©ÊXêA<óÀT¯É2 ¦F¬Rƃ€ m{ÂX Fc„›š™×²îdfÄ0²L Üל¡%1³A¿h"†“Ù„ê&õtØÃzAoȶT5ª´”Ú!Š‘®°ï rTƒI"`Õ:˜µW¤P†=IÅÑæîè’Pìrš}D´çCSçÆ†•‘Çð-¥J‹‘x¦§‹åfRþ´L0×Ù€eWŒ\¨DÎ`¼8‹¼ïm N‹DÓl‹µ^“,ËTcFG Òþž–{´Ç½§k FZµëC\qà¤ïïùµÃ÷2õu|8j{FBIÕ$Û‰O|¾¾AwÄëê[¦Í95gÇÃ#´Þ‡\ðIÀØ}9òlìC.ÍÙÔ{4LÇÈi$–«„´êO•û™Ï<xç¢Øùhýÿ¾?7Ài$|,Ñ@ܳEQ]3a;oÕ¨§æÇ~GÌ8óI,‘ÞØš6X½FÚ¿<£ WM–%ò %»ÌÆ«¨´:æ°#Ž€O®‰ºË·€¤Ÿ@à‹9]/Æ ùðòimÇb€TŠR|"†u©ÕbñU‹»}”vøùî" (ÔÕV׉ÓMuŒ æƒe .MôKÍÈuá=ÖòÀmbuŠ–Uüc$Þ+åK&1a«ÛÐÙB #{ül±¸©+ÜæpÙ°rÐAŠWP¹£§ž2öi¤VZhI¾ódz|Vò–%ëŽ9·QÈ-'q@‚¥ö p‰þ3¥‰L%³ÒÂ#4QÔã «C†A@h='&nÉ>ï²±ØÍ¨(’-2‹ª°"@ËÓÉA¬Y$ÂŽI“%ÎØÈƒAº%‚‘%ž³å!¡P‹»ÿ??õì:d磃 ‡ÀÄm,d€ Ö¹ë£> pÑ=sŒKqÿ0j‚‘ñpYñŽeƒœ¸ë¡Ñ+NÀ¥Šˆa@¯¥q8ÎÞä0jòÚ½uA½Å¥ìBŸ%Š\\dnéÆZ²$w T¥&¾»WÒµCoy½Íû ”E‡D´f{.|ñðnÀTkœÐ\s*%¢¤2YtÍëE°è¬Æ (G|9[oDcкۘ¸ušˆ_G\2ZsÞ[„Ÿt&@•æeyE±Œ7ö‡w"ty´9%œ2Îמ1$Ê`Y£Ö²”àŒeøÉм[–je2);Ψ6„ÿúìZ‹Õ#Z@¡¥í+¿áØÚ>sMQÙ§v”=L„^Øó?Ø\©t0š yZ¤£Ø¯Ð‡ÅP@ô[,åé.ÛŒUk6vï sƒ0ç?9‡ Å Tߨr¦» ÷Œºÿõò÷7£+11tjúè§‹z Ûª|à\>krq úe·dj4Z50 r Áîé&4#¦­ÔEà;ùJí²™Hù±©tsK=ÇoŽº¤ÍQZæÄ7œËÓçÔå*„Ÿ$²©aì£â¿j´¬¹|Óg²L›N…ÓN¥¥€¢p^ÃÃ^¤ (jã$ÎÁvÂQÒᆃ˜—qnߟ¦g9pâ¿èrU¤TñÈb߇QU¸p”àÿþðäåþ~õj«fÛV0X¢’Ž;6ó²,FÜ.NÒÜ\jQ„ÂtÍB­Å4Ø =ÀMòÙD5ÁÓˆïúLZ´®á{u‘¥šo‹à®íUY¤zvˆ[,è‚$dÚ&uÇB¤ði-þÇ—'D­}“7KàA@˜/8ÇUkæe“qCϧlüxW ð&EÕÉU „ Y{ÕüXøÿ°̆‹oÚäQeI_äéÆý³¤ˆ(éŒ}5Å_ÌRçÓô’â÷*%ñ¹ºÇ"Ä Ùî’ 5Ù-\K°TÑc9){|¿)2ð‹;¾ƒ'”½a^uIBÏÚ^»=ÔºÛöS÷•ÖÅÍä3—åLØ£#É@ˆ´£æÏ;3t^ˆÓ@̈0!9˶Óa̬¬˜â?›5.?ÖS¤ÑŸŒ(:¬IŠmÄU†„™oï)g˜Ù‡T+/‘&@õä¢wwg˜°«ÄDpŸ1ÛÞt|ì¼>£?{’ {·•ÿG „LÕݨZ[Eª\:~Îéhõb›~îŠ91çJz£NZ:¢ä܇8RÈö¦QHw;è,\wð ˜R¨Wz0˜7 ÌѦ¿…¾+=ËqqÍoÇè»Nú±”*ùðͺd¾÷¥‘ì6–Øæ;ú‹Ì‘2Ne/MAQlŸ­´J>^,È™îÀë îa[ ïŠsq³\;¢%(ïK ê‚"Û+%ÍDvìĬT¤ƒZú”éIØêHT sv‚Ã’Ç}u•ªn¹* ÙØè A¸%V¯¸8gÜãñVg`.½å»U»³Ü•åÖaPä[¨?–ãjWÚÑL®^(WŠº~v¹¸@Q›®ê†Ÿ™)Ÿ>8BªƒÑaËù‰ðÏ€ZvÝ©¹ŠÛ׋GZY¶¦¤AŠH:x«T® $gUÖôŸ>"‚ü÷s Î=ˆô'~-ýp9žÜ×÷*û"²lPoâˆ!—ôW¤dey.ЬúcÝ øÉ™’M”ÙM¬ðŽ ,öæèÊë¹GZ©º%-ª%TU–H±xõYf'9×0· 籺e¹AÕ¥8›¹F|pÁ—éäXürikÚ×ì@@•;XG\¦çÕ\nQ›êù ÎTw.@ü„ïögýVOâåÏ^ØòàÛl>ŒªÒTô¦g²êÍ„ÅåÞu®t¼þ~\Óø×+>æ¶ëQá?"ÉÕ¦ û#ró¨Ã ÷xÇ2 Ö… ›—NVõräm.ŽÍp¿ð¸U™ypÀ2Q˜ñsU‡4”i®;ÈŒ©N¦ˆš G*a"‘³!¶bí}ñ,™!”š6…Yê‘§OHôVMÂýñ°Ýé÷ñôn‹\¨¸ç. v±ÊšÐ×ë/¤¯›m¬fX²ƒQ‰[+óëÜ™¼m˳.¸ò;ºÑßÏOoý<î(éS¸õö£Î1f}ö¡y.XôÅ[¥ÚÛÈ‚ë‚("µ]q³œZÛ­æÅžY°T‰|M¹îeý2NÆT"Fä×)(¾T€$ ­I&»Å Ä%7ÄÃ$“8jØ K+Šä¼ø¼‚Úúô!bND°tQ·ØÄ÷F[™Ø0žÎ’½š >jöº7Ò^«­§s_Bë‹iaÝ­…8Ý^*± Lfd¸Å®2»E¬œCM÷åÚë¼t˜ÑЕwÖ¥&aFÕÆA÷–+Â+Q`zØ ó@ VB¿)1µzŽ»³lckïñ.ÁÏYá nyw$ù Å®¤ -–xO†5eÉ‘šO¿*t]‰?Skð‡ínG@mD“z–½<ͼük¼dý•}ˆÉæ_õöÇx;~Ží›º3÷ðçL §Áçê!99Ý+öÅN­9Õ¥|ª´âc‰+Ó´wPaNcÈ©-¦?C£ó™Î®óeÍ6ûú;rŽPQØ:±<%¸OçÎ s4Kĺ|òËá9’kšçäžFžf$Þ©å+"mÎÏB)hãé@öÓ\j¶£HÐ3‘AÜFsÃ&ö ‰` {ýÝ‚é ääÙä%‰(®ˆƒð0”é,'ŒE‰‚è-Û,sªÄô°uŠQtY%y#¢(wËâbýXƒ|s6š§€°†våvRÛYÔGJ„Ç)tº¢4LàSâŸDÙ`~Ú¼Ìõ$8Ð!„„,·c;Mj6Äèx‹K«ƒ“vœ™as)Ô±øë+ ¤+f&™ï™ä=ÈR*±Òzµb&ï"ÌŽ©Öâ¥&›¿GæÎüa¹U’›œÕz"îÙχ)åPßëoš|ž3„šôÅ×õ ÓêÍÔ+ƺ¶ .ÇB½ü ˆžêÜA~®‹oív©"Æâö§ß:òu?çË“o"9ø‹ßÈ%¸«¤\PìÒÃ]»kgÏ…MvúñJ¨§Q²°Š†rLðÃ~Zã¨È,ŒÉ ¤^•ö&RBÂ,(Z0¨¦‚šjô­!ë1¥O.Ÿ÷ãSOQŒ-Yàqý4û‘Çk8ïÖÜ™·gÙ“w-â’þ†äXÞæ\‚ƒ[ÄߥS·››xÚäçsµž6Ëøô‹1Ô‰C€¢Ä}ø‹/ÁK¤p”0—C8Aá'[#ØoÝÙù]×½w¨²¯•CŸ «™•SšìƒÉ~:"@xÅâ êh¹Q€—yš¢—n‘ÒZ~Ý g,mÏÙCÈh´ùë#ñ¿#ü½›TÁó²Îi¤*¥GE·.ç@…gÐôv@P™ .­h4Çwâk;(ÍU”fé µg«b™º£Ð¤˜„§9hʃ›Z‰›µ Œ¢*?TM„pI3§_«7»N-ž?#k—ÜSÂü;ìâd,mËÔM¯  c¨,EâLXm @Ó­„ñþ™„˨`^ìYº¹ÉÁô?mC–_–Gü$_}g‡±bëGÞÿŒ½›è)‘‚c¹š¢Ìˆ¡ÌLçss–I à´ká5•R,X!áŠE>¼¹Xm$<úªF8¥fwQÊ& R'rT$ \¦€ŽŠÉ{GJĽªôŒ·ã1½ôóè‹>öaèþ¦ ?€·—®Ú¿hÄäÓ“šlíAj·- z–;™ƒfÎݪŠ: 4N çˆ,i'ʽTâ¹$wÓ® ëb¢g5Kj&lÉž"KU4 O²ÛpˆÍ´pÂe¯N~¶›¤±<øånO3⨫Ä71 î„Ò8#âÍãË£š,–PcBE³êiÇU eX°E1¦¥U´ ÂØf©ãFbåL¨±÷¼ËWˆe.gycª¤“ì:VìyÛ*ü7b]å.B¬àl·§DÒ®£jsä¿×У‰Å}«TkŽÚMr£ý¢#š•À–ÚZËÛØô™œq£ácž^;¡ê«Ì"6Œ(ãL#*’éñQüW´–®ˆj1”„o2)”/5|º¦ªål uÒª=öE22¸ÝïKåÔÊ×}{ÎWÏ=¢=4ŠÀÝ:C`FV TÞq7j#pÑáV×òëD~nv/Ã~˜ÔÍ6u/`@`ÆY…?Mþý=ÕªüV ¯Ž/¬L×SÞ0ëÌ_»ÑŸoË~ŠW1‘–ѵ’¹Dfµš¹f¥=#kÅ!æðm)¶?»ÚÚê Ó4‡s‹û}<Ã`ø·ŸNOŸ6!AA«Í®¾nŽvC½Ë 2qE¦ËÃæ‹Ú%>O>ï»u`4¸c`¨ß¯ž˜iTO[òL45‚|+$†±u+·nòŠwgm6™¶ÍU‚ZÂ%$13šŠD»á,ii)BÜŒÁ•3âÏñöUF4³èñ:»y¶WÑÕNªn¿9A:UVÙŸMÚÌ =ºçÖ4ú-ØÔ·JÛG!K¦Øæ5X;‚V\d˜xÚuà×EV×`‚LMHP³&b¥Òxÿ"aŒ2¸ìô &0³<‰+Š«Ý‹(lÉ5Iéù– Ì|Pdlá±ó²Á-·ºôuž&Åtªá7b­jØìÛÄÑ'Ch¹0écòØýêɪ.u‡ó(˜þÉ~¤^døûl±2¹SÐNw&…†0^4¶_Azœˆ¨ØÓábÖaG©z€´¦À·Á![xj9>KuíÓ)âqJ©:£AàF8•Ÿ6M‚Ôn˜Øö¨ÎžæëÝu@'6}B·l ú=J ­GñÔ¹"YÏ,ç†ÿǵ%¨šnRç´–œ¾ÀNzg^‡Z¨{ÈÕvMäÏØŸ œôrsèʳ5söÖ__sXµ>¾M~£xu¯^¶¿Y4d‹ c!õÕWý w+m:¤Ž =,†¼˜íaKëöû7LÇW¦±jS=ˆT°µg£W=žÍ`(]réUzâ»´ÇQ.{MU/EdÙœú±ƒæ0Ý.g‰Ã¦¬É”Ûã–ˆ ëÕ¨L~}ïþ¶Nvì’…ó ¼*2@Vé‘ ¥è,Îë&3ÙômùûPºW0¶R®ß¼¹µo.¨zl6µr­ŒMú…»(V)³PæX’Ý3l) p IÞ? 6B¬Ù·¡Vʦ!‹ùÚ+ÚÁRÞ9T|¸Á¨Ë ¾Ü)b¥ŽO^¥-, “OOK:3j¸Eb‚;–96iëÒÿ9j¡jhH‡LŸ5cÇÞœbÎM«UÐ*n)™41s–•ÇP8m÷¨¶¢,糨Y„(øFòö¹´jA‡oJéÂ-.FÞîv¸9hV w‹ÛÈ¡]Ý9v§Ø @8›)‘hŠ0+w ä@.æ×­ãV ¡””Åû]®cn§7Ðù7yßv“ªl(*$'\˜Z,P/ú™k/¶µóu6}͉D¢£ÒC§Ž/ƒ¡ÔáQ«ؤö…›NJKO ´DæO©d Æ›¯ç½ÒPj”QlÝñ¦èÚ„JbWÁ.ù¦>Άɯ£tU]PPãä‚n>WÂpàI{¢£»Ê[ê5‡›»Wôõ¾ð<]s‘ñÔâ—ã¬AèTÑPÚo\Š¢_¿J…*UÖÅ`äu ¹Cå_™Tœ O„<‹Œõ)˜k,Kë4{™mžÎ*ë £Ó/ ¢;Ê™§$¤4^1JÉ0Ž6ý:A¥©RN§0Î?ÖòÚ5¡U‹Üäm#&¬«Nid¡²ê)À(ƒã×›%5cÂÕšããÜ¢T]¬æ)1AÂh©ݸ,°A$ªI^­…Â.§4Ù›DŸÞu”¹§›E´ ~¨Ÿ¨ÏRßE¹îY…ϧ ü:;gX\¦h-™¥–%ya¿ÃæOõŒòC^ÏNVñÛçh\68KÞ>£Þðé÷ËYŠ?W5ë—ný P1x^'Œv†(š7}=z+}—:¼¨”›òՎ潈SÕÕV©u{˜çìÆ\œæw ‡­Ú;™­öƒÞ‡›Óz¨ÝÒ|Ò•¯ûnãZ”Hu’—¯¬à…Ô†ÈBžfŠb€b¶y®%€’2RзŒc#×IŘ¯ÿ ¯Rî¾¥úÉÎÑÔ²¶o%ôŸRû4(|÷k„v·v…ûÅ_(Š·ô*X= Lì°u/PÙ¬k¢&Ÿ,@ °ã× ÙÀFȉ®=4îÍ7òåªê6eY— °7ºKr¿º0 Š\ªFà¡ÐŸœEã‘ÕzØrU±ËZ²’e{¢ûèE¨R’û|¦Uäj&ÂGgw¡Ha^«@ñwê2$Ê’C…<£XΙvÚ0é[xÈYÚãŽÞ!H†êUª§u¸’²ÅƵBŒ‹r ÅEÝkûÆüõŒ©ró9g€"y€myzoT)›=N ¬ï××wn¦å%ݶæ;8ä°E ‡Qà8¸@tB1†ýz\…nÐ!Ž™Ù³JÈõú1/Úðô®æ8À—lDG›êÉlüß6›ÜQú HU¸æûÓ—QflÍiÛO)¦Äõ-·’H$w“ aê©ft¹gM¾7AP¬o1ƒ¤|‡­oÇñ›ÏQèm-lÆÀG^_e° ]jT4òW8ÈðÇVñR6& «µ„e… µÞÂ-¸GLÚ„±0<:ÈØŽ£ä¡‰€'™rñùD¼/2̵ ¹Ã-#7˜·vaÇÞÛ¼ö"é4Èx¡\{óì–`• ÞT¦(ªD!o*„°i Â0pF¢2Œ[~\×[o\ª” Å—*ŽÕˆ÷0í|YÌgq-meÀ{@’Ör²' Á2Çfí‚t]ÉXû4¬ñ¡Ý±i¥.#‚û·¸­z©™Ä…†–ˆ ¬ê€¦…\îΞ}è\±w‘Šl§Š„Gvy B©_/Á/µ<£'ˆ|öæ#½Š™#¨°–óä°Ç °~ǹK×÷t2«nè^)$ÇO|œÁ›[.¢Z¢سßB•äb¯S!ôžÇ¡ÖíØ\4žOž*÷BXÔìžäôÆC(^,z‰ut«±Ý¦dFŒ³F•R¢ªL%)AK©‚c‹9UìDò9Dae_aP—¹¡‘äTàDgÖ b’PmÅ­2tnfc”lyNdW&¦ÓÝ=e¥Rõù‰•ÈÉGYíìRu‹%‘;¹òß8õX¤²C€éèEA-³kÁ•Çò–n+Æø„ ‹!,ñr"ÔÙ:9°’gù|ÈdqÙ6–Ñ£ :Ñ"¢I :’9’nÀê‹–fô’ÄÖ¢·wLªP%ìÛ!œ”6ÁÓë|ï½ê¦m®XzÏxPŠ6mT÷†ØÐ»£ÑÉ£F&­G ^ªß².Àôç"e›g€iø«‹ÏÝÆò†÷åõ:GºÃÛôILoV÷1Ý}¶aö*rŸÜãYå" ‰l ’eá@[˜Nê¤ì‚A¸Úy îµDàÉ-jhŸõ.Ïd¬õÈûl“–‚×…±)f7Ëc†ªg²Û2Ú”û%&›É·Ö=]œ&okjÞ³+£Ø.­Bö²)iû¾çÖÈÆ»78nÃUzÜ•4°¾JzÝõüŠ-ü.V0ª÷’¼ÄÞ¨ d‰¬‰æÓ‰ ½&˜b —‡ã CÇ&"˜\÷!Ilø›2“&Ý4¶5qj¹j¡KF¼yç,T½Þ{ƒ [Õ%t@Ó‰âWäèOÀܯ­ºd…Ë®–j°ptë:‘é¥êä?níÊJˆ‘á(½ ípÑZ.¿QMâéúܪxý¾ó_œÀNMC&é,{±Šÿ=°7>Ê;ð¢:¹Ævb¥"úYÚ9Š ˜ÍÜAfœÅç?þQT¾Ÿ”ÝÿÉ50oÓ¶¿ßˆë”NFç,›¥P/ÊHÑï SÝHe(I–øõëxqJa¼hcG“¼ŒD¸úqOàGv6õ¸¤’x'¬zš/çì* ¾Jz}|R;Íþnã‹•qÍjU­“½"gÓ5ê}h¡›Ý¯W‰7¯ÕÅHùë¹C?Ëôfe³67Bûù{‚4äZSg¼mK) FšGwS åŠ4´„Ð[+Cg#©vϓκÁUìËìľÕY­ˆ<ÏdÌo 11œqÖ·ÞD~Þ‰2µ#.nxÅ gù#cW nÝÙ RPÚœ7MÊ|­‚GúÒhi³Òé©Éâº)$´žžª=oâkˆtÍ/C£P`z^OBÆ•jZ…ý Äô ùÆ8ýD—×ÃÓW=5äÆ síùÀœððŠD€{© ÃiqÓì‡Ý¶ Í¥Q>ûÒƒ~0I’€y¡^Ì¥5‡æ ¢_@˜tÏãtdƒí^TÇë`ÆÆéM¦–XôÓô„ê(U Ñ7 jÈœòrù¯‘ɼD°u†k]#Õ#È%¢½¨ On.ó°h1áùNå³ÄG–Ín’½Fj(1Þ†j;Zµs À)e³¨ÅY$õ†9!ÀÙv´L¶ ƒ‘”ƒ¸OQX&¤‰ôI<&0¶B¸u]#™WS…9˜Èž*H(°±£2Ž1 ‘—´Gl&i^b WQߎs»1Áôž/ws¦Eå¯þ¦Ix"µœèdÑFì˜(žoh_íµš[–xçùD%PÇâ¿ðqÅÑóïø‚µÀE©q Ÿæl< º0<|Tö´Æ`}‰ô«âŒE«v„ÃWc©5LJÝÕ>¶ö^>‹¹¬õxÏÎ * /I¦Äâ“΂ñ*îïÅ•äœbP䘩"ˆ·¡þ³ôáõŽÀJ±’³o×Ô®GRv˜Š—^7_…¯2Ìó\—¬×à ¢`?Ç{i~FZ›³í1²H`>éPØ ­= 2“’I>uªà®o;Îâ›Röˆ~ÆËuºÐK{¼•‹ +Zv©óªiЮlSQ»|Îrl'iCY¬S—׿¬Ö€W(Ô®R)$&„j¡€8Ã9=¾ÔÉÁ*F÷`«€Â%bA¢"( /"FDL¨Ù¥/´Éu€ã©a3”{Ç—Q[ÖËšì.8Ika3Êuü=pà ã,@á)ͨÀ,07âá׳ÌÈëíêéÖ£ŽÛ¨Sëù\;y{¥KÆ·á^¡æàk#R³^ãÕhë݈¤³òÏðnÅôòš½ pùä¾fF„GÀ¨Ì`Žžå¨ï¦ó¼é<ÿ,ñ;ñÃÑÝî©ÒøàΨì7¼Õ¥ÀuDRn2B§`ª¸[6›m@©ÔLÁeÄC{¥±…Ì’Hp°ãHiAÖÇÅç݈ÚÁ€êE¯·]Y`_ÑÛ5Kf¯%7­xª§N*Ëìý‹ïFÞõ:v…"ˆ]û# \Ao ›°¬ÅÀî)‡°RQÃ))cŠ›lg7”Âù¸rS;'àé7ÒãLW.š~NH™€Í¶äíhëÇâe„÷¯Þœá»£(F“ïÖL=Ñ ¹¿K‹VŽ­)Á2Ž>dž ç/½\áà)“™hL|ù{v¥m†fKŸ¯èÕg½6 r¶§·vÏ%»Â³ž\ñôc~´Ódíä.}X}ô<øŸ1æÒ~1¹.;#I3å±ÛùzßPžªÑ°†²ÝÒuF§•F0 ß UZvbã*it_-13Fð 2©‘&”XÙSR…@â¶s‡×Šl÷9H‡)«ìÄÃÄ}?©“]dîk'ü=3M×Ìvå"%/‡IX¶¬E úI˜pèÒÕÅBî;Ø´õxžf·ùqîLM„K‡?Yöyu‘ƒ¤Äíjáuq$èõÊŹâä˜Ì$>B¥Äú†þñÖúì ¢F5UhéãZ“¦D°l½o+"ƒ£È•Y²!hÄû à¡©&"s¡ÏÔ¼¯Q»Üò¾)Ùv%åtÎçs(`rïÛQÎ.í#êPÇLþqty=iá["*‹°(f߆¯ec ¤/'ý~Aëð10ˆZåC’#|¯`É×±vSÚD² Rù j†é](ÕN'‰¾ Q!ŽÎäcußéó»Þiž{Ïe"’‰I±©é&×Xãoà±-t8·›¾YE¶RÏÛ ¹;].ö¾×/o"èés×îåågé9 ÃW”€h^×v܂꿅‚@ј)oQEÔ¼lB{Ù{æõšñ¬’óÝ_Ì4qëŸP’' –#™Á(-ô(­P^UiæåP¬eðô,X¹c†k˜ìÊ]ËqÃøzGöÁ‹/L¿Ÿàì¶æZ”™iÕ¯¹zÌô¹ù*P“ì¯z£°]£%uÄz\$ÈêŽi©)ÀCòI±ÎTÓ¾®¦Â[ž§èaöýf=Éx”®qÐ'ïÆÃ—¿]JpT­rÙ‚D¡Ÿ^Ç)íƒW¹C-}ï‡Ê£¾›!¨zpÂÅIÁÖi0Øç0Ú¨d!†ÛÅ“S'¥Î>Õ‹ú÷eå°£SoÚr鷨ަ@È? zÄ¡YÔÒVJÝÛPœ®••Ì«˜ûvMÙ…:huÄ3 6 …•õàFØMón§=@¦93Ê"ã Cà8A:e |G8Þ™ØèVŽ’åŒ![ÊmcLnîì~¥zðBµÑ’Rñ«’_]*‚YŽì«d¶M.à®dŰÉÈ‚X­jkê Ñ´06Æéž4ÑT¶˜!½Ú†<Ðú¾ŸBÕf4Úîët·øäqö³Ò` æ }ÍYÁ^K¶À—St´9!±Uª6r‹…]Óx=)é”RD¬±û¼J_ž·zP+|}}–œÍó£Îÿr¸è"jÌ ÁâVÄ©žMX´%q L©‡P˜A­©+·Ï Ð·Í–á LvÛ¨'@äžN.5s¹PY* S§˜gûY«öû]ë¿Øá "4¡›eOŽC;›¡ÖÇc t É/Âf0êÔã:ž àP¸nv¢‹K_“Ijg‚3x"O6Œÿ.êœâK}°y ógËÓÛ<[.|¼fçOJ¼4Ë Æ³{ â2ú܉VYÓâ¥AL:X®!F^%9 ×¥)î3)D´ß>Èè® ¶×ѱ³éêAèkŒÆüµ°0-]ÿjaÀ0.¡°jZt¹;eÿ3ˆÞùú™»\Xm\Íh=gínjƒõ  %~x%_¢)Øí ÄK¢ 0&Œv4ÙfÄ[ÈYzd9eü¥O6' µío†bUL¢üÒÉ‹, ·èuµËm;âÌžçèv¯"Rë«¢(Q£å:idÒÊîÉs˜Ä(ßðl5|ï5öR«§ÐQºß;Z5[X åx-Qßcµ|.(½6=fû”9þÀÕöw¤ÔÅhþ£= þOƒ›0Ñâѽ uð‰Â×HžD‡—¬&Wï QÙQ[("*âòùº/…ÙÈ1úx5p*9”aÒ/É›Lò.K}ì1d÷6Æ]颙r0€Ì‘&Ÿü!t†Ð L%ç’–Tèš ’޼‘L瞉l3A½uOtY¯ñÔ˜E‹ÆE¡7Ëz8Œ~‹^·§eºŽÞÄÀƒÒvæýHue»²¸-éô[ò‹Å6,z¡eîÕr!ƒÉµ½üýi~ù ÅQ!¢åPñY7,):•ÂÛ´‰Â=íÛÀ’­¾±†ˆ ø¡!M_ª ”%[î Â4Y{ÒãŽx4€'2ÅØÙýV÷ESÕÔâ™I=óDúÓÙòäø² œß.B€*:îé5ã±k›Öß-2%ÿ´üOóá¾£ hXh…S’]ÚÞ½ˆ{ñVÌlzQþ£§Ü2‡ ¶aNþrõ|BÐ)=ägÞ͜ʤG™ ;Šˆd²‡)/h«Ë ŠÂ'ÉÕ[Ìq¯šJžy$ŒÒ¶¶Û“×Té QJâNµ‡Ž ÐÐiÊž™ùÊlb^ÍŽz±s3`é€3Û¶µ‘¾ÏCÕéSî·—o˜¦SÜ@€é?­›šÚv|JÝ{­çžÄ·“ÀÔÈŠ";C w°óDkC~Øç½q joކÈËÄÑ9òD,u]K* !i8X¥¡cïry¢ñðÍ1wøœé\/t+HM–›f¢tPTïÃV“BÑrû«•,^[;¬é;Ë8±Y Ž×Im{ìvi޵J«k\z‰·»€A¹Ü6'½¸õ7>W§kh›C²£¸c†¾ yYÎÜšô@ûáÇgñో"ÀDpW¥ðùvpSoJ½rBér¢¸²Çb"ü£úíjg©;Ç·ÃÆ72|®bE!ò’‚* çL “¬«*Üï“ãÙi0Éo…Ž8tìV˜ëê\•¤œÀ&PËßyé´(Tü}GVŸºIÚyø{z˾ôéuÍW/æì*íEÛ¿rÕôhj}:7­Å?'uaõªUJ8±}+ÁõÌã¾EpZS«ïA›˜$*µð¢ f&Ò¯®<Ï\°|£15%³o°æYUŒhQ†­()¸ì R‘çàkO º0—Ÿm6¼&^Éà ŒÇ2!eØi»¥žä³ H%`4 Ôô7w5Ìõµ-AŸ¯Ô@.1s1V•û]NÝÄšÎø \÷rnÑ»Ξ½š½•w ³f ø?H|‘·«…¼·Uç©-,ÕË3@ñ D8ºŒ,R8ý“:+ª*lÙt`™ Ã7r:pB`bGP=ävœéö·Ït›Z±;šÓjÛtXÒ+ªW‡´Â ÝŸ¡ö}#·r—;öT¯fÝ^= ëRå`ÉÀíøÉï’Ž&Ù]„”ibG-×W>'ÆnÍÕ|ï‹âãәמ~‘½IR%ÌôQL¨—“À€1cÀ!e@d‚(.Š%– ȉŒ“Ic0‡ñ“ìšCê¯<(™=tEߣ+¨píR$;è™+kEk”ÜG8Eb^…E’” @<¤«llTŽ?>•›4(÷ ™-T¯£‹ƒkhKé´w*ú9’üAÑÑäš-çýÑ­ka.¥}WD‚îhXãÜüýÙ5)µë"º‘l`@”ßù„¹ˆÒbhï q!Ö6BýÄ9ùrICŒñQa6‰Ž) Qî|ý~ÚÍ â·ÕÓìãxN¡Xlxe¬ qéšíWY!3âH­¸›T†Ô„}z•Í:ÊEJ ,Œ=)ë÷é &ìÚDàØ ŸÐÞÐe‡Z6WQy¼[ ÑíÏ¿Š~y;­Ù2ÃÆöVÔd¦æÞºká ¢û½;7\ºý³R¯5—§—H­´sàp˜ê†3Ò;oB«m.$'O^¿§èóóîÄ®õÔ¼UôB`$_i~¢¼b®Ý7øÒñ¿\)ŸP2Bx¢É‰G§Êøî€"`iÁ£X5kƒK>‚e$œ–0bO™CXÁ~4—èâkŸÃÛ£áhÞ!«ìí]ž¯„>åþ œ—)^ßpûº™ª‚ÚWSÁuˆêÏ~ò 5Ìć@qBØÛ›Ü· ÀQ3³.3™œ!qcfÙQÜÂV<ÂÑ7Vùbqˆ ÷â×2Ø9MjÒu :65[8:i8Œ¢¨Í!‘\ÕŒüy;+4ç¤Ùý8îBHÿ?à¯Æly¡Ã¸xÝs#àk†c*d2Ž( ­àË«9 j%Îæé ÙôÕ" ð€ý”ôk •ÌO.…åFÅiv)¢X’TY”‡g(„Á|¬ë6s´•(±䄚øËÐ=âui–Ì#¯‡›„ç Û+¤<ý:yž™ËnJ"·Ä  ™^ ²Tèq 7µ›µBæð«7WÁdY¡ß‘Íÿ¯ÏC[U/‰Ö¡½4ûZÖ#û¬ß˜|8é>w- D³¨à,,X¸×DD0›ŒFSDB³RÉ<Çžrò>¡!bEXVPq%U8ÐM·»›!¡iÌú+—Ék¯u×ݨδj¯mrF,¤€8È-âtTyÌÜ‹dàÏXý;Iñ{=‰¾Nƒ§tG’@ûNÄv\t¼ŠÃ¤\4É”‚ä¿}9ý±è¦½N'dË?%B®Z…˜cR†ærÞÄÈy, å\4ëŸÆ¾ïy‘uÔÜ¢Ña|Lí2ãℤvàQmÃ*š”ÖD&çx¼­Aqä‹¡H±Jæ³[œW98¶É =}=ñj3Bki=´Ž“Þ-£¦_Áæ¢Þàlëƒ×ááÔS§a•Eí÷ðÒ^¤ÝLµ¥ªOJ΀z`éêj”ÔàzšvÃl{Vº.Ãé^>Ù`Qdóu(,0Îù)…Ðøò¥¿ˆ ü‘§äXã‘©YP3_R¦Eû¥ú¼}h0­x½Wa_*ˆè°›¤®¡äÊAÌI÷Œ¾Z0ê£^+Ò”V¥È~emñ+iæ¹áîfí j j·b®96ç§Û‚™qõR­p–j7h®³˜èñ¶Ú̦Â7¡[{:»˜°‚ŠBšýÁ1¸ðÜ$³!´JYTöØc¦Bব#ÒYqŒ¶ú"*m GÒ t͇(Îñ!9’‚+Ç EX<WA$>éw¡[3¤ Ï𬱨ìó¡÷Uì§O‘¥Uýß„?®V³íemœÓã_­ªD»ü›áѯ»BµM`–ÞÃ)c*SÆ7¦Îm̺g0kMUÁh(wU­¤gU#ƒT4LLu‘ß$Þu{T À÷±{ï|>±ØâÝ€Möpé† ãêž9´¾¯O¬=ö°Ü\œUz,õ;i=ò"rûôöioƒý^hnûzõ·?­Ð§6lÇðŽòʪŽÉkGÏFµb¢S4ÓMrnúxšót„¿†`0í³—z<²-´œ"Чdèu‹>ÑÌàçÆ‹ ÑuT :áZ"åe5¬ñšÍ.aiì®]ÁnJáIÀàœ7`"ædÓk¶Éˆñ]‹·­’×/*ºùýYÈvo X9Ò MþeÇëËÌ”š=jÖÄÄ»‹8T¸/¨{…çÀ›9kMWÛ½}Çéõ¬SÂh8ðé+‡œçЂ;2;Ѩ†°²Gl&j¹gOBÜÄÔzHSo™òE{KËÛ0Æ€ò›׊U­q;ð rW€ÊŸ)ÌûWô!¦Î´é¯X§ë#Î]w©¢\¬o‡Ìéñ )Þo(ÿ?Œ¾…î-!JćßOd­ ™·ÂrÕCøÛ°Žs­XÖ@ÜèY6®ZÖ¬BiÛâó9&™]wh Réîë‰-¯F0Cöyó#FŠ!™S0†ÇBy¨UCuHÛvyƒTäÑ;\îß—N"¬ÊÚÆ¿Ô¥ië [¢4‘:»›´(1¢W Ì2”¾ÂQPN¾9¬ Zàc*55¯†½žþõ}Ñ¿_Gàs‰ÝýŒm ÊÍb׌Ý.‘q±OÅ-(,gâ/jö¶ +h·ô-Ó »ºovCÉ 6„ÆŽüºZÊ›ªbxiQ¸fOVþ0ù2´‰ïÆT h6•cúÄÓÞ?`| ¼1Tê…±¤Hsƒ¢¹óçÎ3BOJ@­BU*¨3¿H+”Ï%‘Öt©0Î;ù,žym »¢¤)Á‹,sÌ£ôs‰"÷¡UG-´µEö•óAUÉ~•ynÇ-¨¢£Ðæ×½ÏHЫKu{ÜryÒíiRк±·`éÒ¶.qçÌá\M ÌÏGÝöSOIÒªpjr0j6…î(¢_ÈÕ×´{H«8x¤j½9’ßrÜòæCêéÖA8.ÃÏAØ?t®•Z†5Ã("°G7§Ý¢º š.’gìÚ§PH‡‚j]¨³ €X7Ò«Ãkàý—Îø½%赦¹þÀï}ùëâxôפ÷ˆ¦9QF·ÖçNu8%M£í¼Ä‰Äúé[F‡& FÑN9ÜÅÜ=7$5ëBö!H“—Æ\ÛUW4™ï1!6í ;iù"¾ê!XÍö¹å#ýÈ¥tðñœ$7§jŒ›!0G¤¯˜*—Ö³vs+mt, €%j*etÍÝ(óF ¬Å[K ÙÐ zËúÞjKâpëèŽ=ù™ßn¶…ÖÛ2Žh¢£½ÙrºŸ¿oGŸ® ´³f £‰µºXG ƾC–ÿEʰ¥³DíÁ£0{JZµN¦Nb˜¦ÎÎÆV`„߯hHÍ#Eu“®5šRÑÖÓ«¼u×ÐÚ‚3Ðù‹T`¼¥Z G³ÁEBÜ×Ù$‰.¡àuÑ€< <ˆÎjÁT`@„œX-”x6ø‚‹6æäw@M’¯­øêô8½ >_´áD¼×rç©ß%Š“%'$žMÛ·´ç|¹Œ@äÅøñÖâàûâ>ª0Εb—dà ÀmÎÔŽ2ƒé(–ø“¥É‰u5\Ö± qoqBFé„.ÖŒéØ!‚ËÉ‚þ=±Ü¿NY¶#é©ÏÙÁîò5KËäí3Ý™ªÅt"â9s< Iļ¸îVÏ)¡†˜ÃO¼3»WïéñhälIREí½tN Gut‹ß×ÔPxøšª§« ôš`û".hî¤qdñL¬ó ³ïå°+ꑹ§9CóßܪIàÖ ò„£á¼–BH…Лáç²›}¨…âÌÀRêg€ÃÇK³â?ÀÈ•hBÒÿŸ!za¢o!NA71kÅ‘EÙž|\ô§G„y&n¾=%v $=õG Æù¢µn­e…»¬¹jÚ³öË6]K)Ù)½ǃHSëó1ïz6‘úìçÊ.Q=¢´q”¯)¦eÞvMdÊí;ánõžµÜÆ€§÷ü+w”Ší)IÚ‹Z=;Ó€\n|z:<Ю@QU¥“ÒÜ¡´)5V“ƉBi`z'»©×È·Fª@°3*Ç¥_M©À䟲ɔNðVÅ(nm¶Î³¹Ê6˜+H€Öf9sE"Å̱J…nžÌŽq¨rÇmãðÕíÖî¿yç_º oIÕÔ‡˜,˜jò¶xÍ2l~E‘Ç«»Cº6£›zL\€›®h¼·TGp­/‚b…qB½Šãžà¤â4aZëzùÚŸô1>6ÒA-k”ijë$j³„XŸŒ'+åB¹fä":ˆç«¨TÝkÉ60å*­½§…£¢Ï5ó¹áu®Û9¯‚ÓÐ6ùÄ4Êeñ+QÛ_j¯È†wû»öÍÛÊŽ‰Xcœ#ÓûÀÍŽþu±b¢ @ʰ‡`2Òš«äŠF¹WÁC $‚õC+ô"HÇ»¦Ù95ùéAédÌpŽfwMË3˗›ðZŒßpþ£Ñ…³è_U=iS_Á'­CuJ\I´ècn_ãèdá³dn^ô\;#4¥ °kóÍÞÉt*k\Ùµ^5×+P3\‡zkÆÜÞæhŒ3¸ë!ÝŒóG+,Wf˜ý`C‹Ì9¼m vNà–=m¡|× ãï•›Ì×Ú*ôEòš¬ Çø{*ü©~~ x0 0w-äK¿ÝhÁêÃ"Y<´µ3¾=Þ»Xwëì"f‚Q0õ“°ž¤ȱ+ªi…^c¥Áü>·©ž‹!¿8¦kô?ócî—‰–Ú|¨·hÍkMàhßJZhä-@ó œ8ÕÑÅD(6=ž/³áTëPï"~'5}5.2•é÷òY,4-„n¶=Ë"\¥MNÖ™Êã$Ò%¥©Äó>w„Œô+Ñھ‰Š^(æ;Þ¨W©ÁujÝ&¦!Í ¢åž1ªº0eŒêÆ–ü„¡g®B:´?ø®—ݹõîð¯Ü¸ùôé_ÐäâaÊ\»Û8ôžPW©ß¿Â ŒÇ¨p&@ŽR1š¶JekÝ­cG9¶Œß„¼¯%wX§ÎåQÅeß`„¤Îbµ4¸9i!"oz½ zt“z¥<ÅÐ#á0§˜ ø4Œ8Þò±Tæ1º+EUânÊrP@¤f òôú+.:‡Ç­Uº:ø‘@.ÁÇ&ˆ)ÍÜræ3õâ¤ý?±íÝšõ¥÷j?$™»M‘½ÃÁ Ä3òüëõëh%¼‚­‘f¦KÁKQ þk ÜÚ µAÚØç&XLo$ž}ìRÅÈ/ÛuQöÍ&Â[º#y¦é±…ª…£Œ/Ñ÷ Ñù}f £õü#&9ªoˆF` ÃFèð` D’X ‰BÀÃŒ¤Þƒ áà6tBÙ€:• 0|k[BÒ@¨§ÊîT ÃÑO¤‚ž’6Ǜ㒾»>¨¤ù ô4BùǪA9‰ó¢XW…ÙÅã`Á1gÃÞ¤ƒU_p÷¥pºÀÚAQÆ_a÷Tù›ïWš lñgc%0ñ`äC>ËejÙ¹ÉÆ`70PŽôzq›±oå@;€DÄøXÉ`çôáÒë£\µl=Ns”®éVÕÑŒûêm!X‡¦¨‘ÎzRQ-Å>ê÷ÜâV*¹P•ÄŸvzí³KéѶÃóÐ|¿Ðć,¼5/bžû ¸ï‚õƒù*C›¥fí(ìÏ~󭪀Äñ:ëVâiè¿_CCœná”[¢‹c€‹î±`mɬZ…¿9IñÄü”lÆ»lŠªëÑ냛™:í!W‘6©wä{s](d;†_–lkó$³}=±îÙŒ‹ ÞÒWIÙníØå¶zû›”i`ú{µl^NêYÈLíæ‚Þ†"]ØKɃ]3PÃ$Ó&ò×îmï(iݯbß/yÑ¢}d6qb ¤ShJšfßÔËØÕÄF“©chªÜ¤ŠÎ¤ÍÅÀtáâ9if ¬Vy6géÅ€3 <÷¨¨*5¦ÃôoÈE4!ßMmÝSCú䯴Å]åq l[ &3¯ÕÕônNT—®ËÆêWŽ<²cL”Q¼î€æ{{Y Õ~У'u³SK8õ;©\fºZY@»fD"°z9ØR}[X’Û¥›N‚Jä ÿIÛëeAU&EE+Df ’Î"‡Ñ¬éšxaFj\jRH—+–W#uçäìY¤)ðczƒÙç½Uÿo±jÆ#ØÊÈ‘û&{Z—…¡¡˜ v5kø7ål·ÃlÒ¼).Ùqç˜ÏH=*âåçTSÆ“'Xœ‡@Qz ŒŽÂ#6­ k÷­ÂFÊI ¡££¼‘ÐËVœïiìï$œ+!™c^×VRÊ$`Û73í .™W„Ê’ tÕ. Ùø–B5Í0©„éÏ6«o 1w`ö·g©Œ{ÝÀ^þžCãIGXŸ]\´" á43»‚Þ:vÐç¬Òi”Ja …Ÿ¢®K÷î· BU9{ñ6µ¢œ¶:÷ÄPŽ z:1uÜÓRžÜ:Ö òš éøœç<Á€•7Ûfm솂DÜÑêk ãÎâžlßµUnp½¦ýí"åm57bV¾×7u?2ÏÇÿ"#­VcYUoÔ¥o~ÌØÏôù”! ú«gÆ1Kn„1Ùªet¬ WMýw^åXÛ&¦ð À²²ù¹t0]áê."Ìw6WIŠ8B&ÃUê”ô¦Ç´@4â·š”xÀÓhÚ²:ãDè^ACHÞµ°Ó£_»\%»˜ ©‰çÐ@šL’¶îq6­ôv¯YA>\P°Š!éW›Á/Dxˆ{´G®ÆUðÕnà¤j¾ ˆ•Ö(ŒU½ B°†Ôã’¨(À;ÙLÎIXTæ&£ø£ó8y• ©ˆëTÃs3’š!g²jã[“X‹©K’þr5ÓŒ³jžTûÿéñÜIà¦ìê~…WTÊʳ°Íž^5’•°›Ïbë·ry@³ÕOŠF2¹K Š{Î[oCLUôùfë~:—ŠsïòÆýμôþ<Ûz~wŒ÷F0Ïî±w‰Í—"óµ ÓÞ_Pճʓ#”“ßëM¬ñÓ:SÅX\HÀXâ>h¿2Æ[¸çFJ•œVIæ¹öë*ÞpŸŒ©Á×õ½cµ”äüŒ´øÛ è™™²íÕnEÀÎí0–Øqð¼Q]~6 -IÀ2o‘ŽöGÓDÊ6n.&¬JO¥(g|ìãÉ‹Ym±™z‡/Âf„Ns×w¨Ø{ù`ˆ£)Vó‰NÑIæ÷†ó¹¼zš¯2>O@Ë ÁÕ %6CL“ì¨Pä‰òœáo›DÁ_··pénn c+ˆ5X”pÁmŽÜ8ù¸Ñ-ö·!åÖÞÓÆÌÚ Û×y+÷)ëaÌ7Lë§[RÍýeÕÅ24‡b¹Y!”ºøÍ˜BÀaƒØôËÉw@=;™Ô“n Øà"*KßhO*›}rîÎn~­OX¬qyD%dë:5ŠË ¡ê¯Ûf»ùlñ.Àíóx/–9ÑÔy2@òž}çQw˜µ7ä‘*2‚5iºÎZg•°ô¹ \œÞk±žõ8‹í¶¶˜bb:†å:Ô„¤%MŠG©]g«tì|jOLr|ãépgˆû;ß2*íé䯸¤ð?#ȯ0âÃíæóÞñºÎÍr¦¦Ë¶w¼•¥±q–Žh5uÞw7Uˆå–‡=Žë[ÝÝ4ž#LZcÆô1nÙ]M懚#äâw"e2º•O¾ð˜™XÏ*-^™Çš3 II9æ«w_=siõc÷è´ìqE«¿­Š{vn™ÖoÂáx«j—Khe¡)E,+Q—kÂæÈ)¿’Ëœ u,ŠË°( $0 ‹"uñm˜¶ÕáÍÐù±ê^ÂÞ^éI¤ÖÚ,àsæ•ͯ\‹ÝðCåÖµuáE±>ªQèdc¶š ™ÄñXjxC’Nð‘9³ÝÈÓ˜S¢M®Î+ÕD¹d\[.è_m;Ýåó-=´­+–þ6Ë‹ƒUŸ Y wÀi?%»ßçeÀÛ ¶=ÚUÕƒ ¯YÐ ª#ÎÌîRëÇ æÝª€SŽ—¯èS˜Î—¨r‹u+ˆ¼Ù_#¶ifšŸè»·6°nå 8Q®S È[èËÑg‡Õ{Ý…ÀÇ^bK¤¦>ŽAéV(XÄ8Æ åI&tˆ¨w,¢ñ=ã(ž„rŒbÚ1À „X ÃH°:™„ €,Rõ—±³ZÈiPHqŒ‚ )" xiÐs•™k"aƒÝ,iL#x§ …ƒp’ežyÚ—V ‰§Fµ:è†8 !aXÜ­p¨ÁDéEv"A ³0Ÿ°E›¯=,„i¬O’NŠuº~é³q¢7?û/!õ¼†;Uzl±iLíÛ¯;7è\w9 '%MoÔÖèå1Ÿ¶ÁàAl4ƒ¢€©ÏjØ»dÐ-ë`°]í¶Ä(3D$véu­uöqÛ»¾ åz µyçÔn%ú¼èGš4?†~ÛûO(ª{#¦7jËrJLà!ù‡ƒ´M:¦É»:ÔdBì‚ÝEÀz¦\+‡Z¶GØ-Ôc:"°•…>-`üKLĦ‚³æ°ÿ~ô‰M¨" sltµÁ>†®3®7r³k‘ö?³.K¼Ì^š8frTKé.Ìhèï—©ŸÐU+"qu“ýŽË*·–ñí *ñ¯)÷ .³ñƒ šZÙè ^j€Ójƒ ©jŒ=µm§]_7_“Õ7ÝK©®:°ñÝÃg®n« €£Å6Q§—¢‹Ñ.,ž Sœ“Œþ>ã8-ÄL=YÜ™w‡ïÑXyÒD–m>:ÈD³qÎ$ #q»ª ÌfÄ è…§n:$pu¯·+Ë?¼Zrß+áÝ«3ûT/Ú¬(ѵ;œlb¤ÂŽ„ý®ž´0< 6«ªAsäÞ®£ôÁÝ‹§¸Ê#^”Y–Y»îYZ74yðìQW½¥gI-¸hæ”{I+ùb³  ¨ †ÝäÇÏÌ­µdååT¯Ñ²Œ—?Ö±¡á]å …/7QKn›\ÉôÞü+Hºº$øúªØ™·^À†{ôåíŸdÊa2zgµ *|i¯ÖæÈætý¾(ÎE g*²ãUr 6¡3ögfÆa¨n•<‹ö¬»yë ;Ò½#O»Tqw%ž¾G„Ṁ54â2* aÌÆí­ê}ã%žç|©ôóö* ]Ú‘öÐhF¦çVG*WfH —"+b•p®cc£ Æ ‚£ l©Ž¿DØ™7#Ó™I©”9äâø?gnƒy$ÁžÃnîÕQ1$ÿ†hZ2ÐÙGÜpÚä8´wwlSˆjT$!*o„çµ½qm-eëåZü5ñ«v{Si g¼bg `WOG/‡"Ä ›ÜÏ i %0™(.B÷)·II%`ñ&ѬOÛYá<úWQ‰´†² éj,ùs‡Z•ÍWóomœPŸ~ò˜–]—oD%XÜ¢µ üU°N5#béˆcEU&°Ö–‚•†0430iÈ@{ÞYÂ{뉊4è>x![”͸çî^˜q£Ãž›çj“µ¼@Èël-6\ŸH™ÊŠ6Cå…n¼¶„TÄe4ˆE÷Üñ4ýD͈y„›0Ø/#_‘/Öûc©CÞ}Ø«80¸+«:ºBèÚÇÁ[ó㌣iq¾U B,8¢ILÎÛ³VáxÓÍ9ï:žä.Qç{ñW~_}ÕJlRªÇLç0‰Ñf¥È@VF!<“ÔƒC¥´ÃåÓBã§Odó Iªå¤@v £N·­w¨æ#²Ý÷×p¦±êdȧ)eN#ñX·.Õ†jŸ8¢ë×—ùÝÑ ’0&Ö³%+ÎëYBà#,õ½-’ §^¢Ëβ€Ç~ÂËÐbŠö§í0Q¥Š °C°ÑJ˜ÔöªÎÆuh<©Kn¾wã•Ø²Ä?ž˜ÏnÈg:I" \z ,–ðâ†# zÕ>é_:ÝßnÏ—v5•«'S5ÔU^))Æ+‚ÛbЗ^(#¢b÷P³|€ê9B¥Šw¨®•:“<4m’ Ä:hšÐG¯•oâ,|xÉoÁ©ˆ —¦CЮ™2×Lnù2w;³k4*7ã.×*‚l¢vRyÀœ¬‚l;ta#GV¼.¢çãµ[Ê«_Ãh¸3iÉïi¯Ž‘«áÊžp¡fhæf“>~ K&?¾¨ØmóóiXæ~ˆÓ¦Ž(¡hº'H—ÿ展™C‹æÜY{韰2 c˜[üêÈ—Mq Ü T¬`f¶ tÁ¢@Y¡ðe‰²,b„£iÿ7Ý—ŠÕ¿uú\¶9q5“ÇxP ŽÕ¶@f0ÔD!e\Pœhð ôß.ŠêƒqÄŽ(î+8³“/@Q'&ÝüÒ«ûíz PT$SÚ]„²Ðò½Åãèsðþ4ò£!·Ž¸ôC¨’¤-ÞªQʶ ˆçtâU D„‡åVèv>Äý)¿M 5—ÇÂ.ì\f½_ÊŽË¿ ÌdÚÍà#UA©XÆ– µÊ ‡P ­Fß´L© ()Û9‹h =ݼ8_ˆå`εK4€:¸iGÕkÞÛnÅÿ0·lŸÝן›·Dx¤ŽÞ‰íÓS*n_§<)Žy·8är|æؤÐñ. üúO ½i)Ž6$u‡s²ó+t¾Oð[à`ýõÚº‚H=E:• ³‘°c³I¾#hèo/Ä"„º:N®¶!럦6è‰nw\ü€÷{å«\£Z•ø ®Îáщ Ïv„ñc‰ªˆý»E¢ÔeaÊì÷s>Ê&úK܇î(ÄkYzEGü$Ÿ'ßK¹C¨Ö]‡ ïÖ9¤ÊJuý+ÕÚ‡‡àᘬLWŸ2-Ó†~õ}ñYÜA ?®:¶›l;žS¡ËñeÈÉ“¼¿8B},ËŒÒ¹Ç Í;™pâÐpŽr}ªrt$IW”Üa¡›TxdŸ!ŸÃžé~f«rÅ=×\k9/òf^'‘Ÿ³§î¸éš†”„=-‹€c@Þ¤SAv½¤½PqI¬žÜ9©›Ä Ü—¬r›aÕIö^¿§Ç¸ómwŸü  ‰ àÍž-äK'(Õ «¶‰SÊÇ\űɬÉʱ¤dz]í,Ññ‚q‡ ;äÆàÑQžã¼æ\ý!ä*ÃÊD[´âb­X­E›(ŽR­†qt' +#a-eš–Ùi;F¬Õ’ºÜÄF*rbkU=ÝÁB¹,·ÓA’5Íy_O;9°ƒ¢sLô¸]Åb9²;R¯1ÙL5®H«µ2À…Û{2çÍ,S 4“ÿ!êJÕÕx¼ªÐvâF…*ºýüùƒm¹b›fr]´"£ì.‘Œ`î‘)üõø¦o m¿C‡¿ oÕ.ÅE"Eˆ®íÛcU}Âq“]…;éF,;G;Ø[ïP‹òïH¬®;n5˜e·,/0¡†Îi‹f›ÆÔÏÇõ8òf…Wɉ̔¨Eœö¨SÀ™F©CN«ÇžeÂA@‹w¡ñã™Åõ+ÛLuÛÂ.!”PaŒ™ÐAÙPð¾uÄ‘vB!b©?ŽŠx xº¶Œ)X’JfZ´ìè;¦pº‚“Œº@N²s¸Gq½šYq#ÎâOD¢B© ì²/ ™þ^žDÛ2ÑÕ£W Fa©ë‚ŽB³d‚Ø»T¦nµÈ– Û ™XÕMäÑ£KìE¤“Ðwzhr& r9%—ͧa\‰-¨«s†§|™!».šªPâÍ@À”ƒüëL•Ͼ«¹é{TiŠÕ:pŠ·`#Å‚ˆÒÇqë‰À{±’iUül?†äSØM^Ç vAAâ¡ÆVÞÜ;·QcìŬ»7 øU¾ÿFuÇm:÷˜nÃRñ¤‹ ;\05G‚ ¤Ú¾õÜàjæ®5XøJÚ Ù UØBn¸T ¶ÕHž‘—ÃfƒU…ˆ·—¤˜®wiwRûFzŽ1)˜ïJ&»ôJxf¯íM›“#NâêÆÝÖÈ&†½&Lʱíú§µ&«~Ot÷ì;¡«n¨øQlß5‚…ËWe7°RŠñÇ®íøþ1_äœL`ÈÅþ‘ÂùüTS›MŠY ‘8\\5:âG…·dBk¹ÒÓ¾ˆ~3±iå¶n…èž';×vÁ„Ó#›r»"p—ª·6¼´Å³cQëÎT2crÚ=Ù‡ËBrWÚ;Ýv0±3µó^ö¼…DWð‹$ðíÍÏÀ\Zô§eÑÕ¹Ð1uޤ*,-™@É®JhÄ0mÇ(æÝµ×ù©–Wj„0Ñ]FÛ¶²õ&¥o)­zø<ôäšíh•4–qS¢…8;ç…tF’*ò‹VWŽ(pã)µ²Âã½òEq‹OqÙjbšÅeß4YTôq×3¾ãT£€rQÂíšæPy)…AaÓŠy£ðÔ²ÑL‚I+½ Ž·ö­(›¾wà¤å©)±0Ÿ¡ÕwÙél6•ƒZK“…Ò|eë#Ý–ŒÎ2²2•…¥®9öƒCrí°Œ©brIQȲl%™xš &çNp–D_‘ìFóÃÒ6xBí‚\ךÉ'ºãà‰Êù ç(÷þ‡²}båœ —62@¥@‹B“—¸¯g¼Å³K¯ÕÞîH,ZJ+qÔ°qìJêuaxDT\¥º*ýGšŒ†é—@Ö§³_²ífÃxׯ+³ºë„8ÉmgÕEÛ$Òøv—!R᳞úÜ¢ŸXH}õñnbhøHYWè@¢à8éF¨ É i@•vŠœ%°TU÷öAƒ¤ËqÒ>^jLˆaÖ½Á@¤Äë€Ý^ð金2·Eª´3F¶Mddž¹=xȵFĈHÚˆT­ž‰…Éô?ŒiuÁ+-âuqч„*uBc¶6äf¹h¢ôD7œP¸S4.ñr ‘A3£·(™EÜÔ'±MŸpб$g·9óÛTƒ¦œ•i8pì,Ô4VlaKFSܦd³ŸAÝ*®Þ1Nu/ 8!Ò¬4âѧ—{<‚²ZcL­²DæÜúòlÚÒ¾­`é ÌqŽ¡Ýæà%«àÌòU£½D›‘ 33Píðךb\b¬Ô¾Ýs(£V ¿*¾ÒB׬ÑÔ(²‚ù†¼:Hˆ LJ ޹u¥Ø°ÄHàê™10Kç“7Íõ=ðd÷í–Åɸû,ýd†,›f%äIÀ­Â@–D驸a¹©ÑÊÌEÌI]ÕŸ§v´+†¬d´y‘°8ÉEÓ•50~*ÆÏ3W$ 28JËOA9Ñ•3I£-¶C {À«1a¾Â6,%™àÝ”k Pï@b"%VÃÎݨb™SØ\PŒ! š!¬³¥'³ž÷¶jÜÉÅô©yßÃ0Ui´ ÄFX+ÏCËP*S‰ÄŒ>OµÎbÔ(DähÉ¢\ŽFú)ãMÚvY´‡rŠòÇBwl†,ÿ—aÝm˜UJ÷M¦f[UXцxñk¥·Â±ÒÆý9ÁóE–cЃ½‘’8]׆­2âhf²É4º¸#QW§|…@’‹l´È…yÊû¶ Böù¿ç-YŸxBÖòdÏ}`^mÅÁXr‰„ ð®ÒGê›\¦É«ê™ 7Fè$€@Æ)Dw†Š ]܃X/o4˜2 h"À(²Œâ Nr&XIUï°´Šß(ÝF;1JÃIQåu¹SD£¬X É)' `af¬Y‘AɈã}ì Š¥Qî S220>'E¢tÎ,Pá(Æ¢Ú ˜B Ín<Ï6Ãß`ÙŸ9bÆšéHŸ‘~=+¯AÊ ³莴X®Œõª\º%vvxÜʼÒÌ´ÚO£V–Ú\}X~ÞßÉOµXT ø¾ÿN?Œõ.D!Ñ.«É¹AªÌŽmÞÉ|ûï0Û¹K6­ïÛ¢í­PA¬¯#„’P-íà ×Pé>°  vQUËrGh Ä d#– K 0¡²2´ae4J€¥©…ó²ý˶D>Ùy£IÖéÚìã& 2ŽqÌ@dÃò´YLL˜¡ppáŲº3RªË/0íÃ**Q½ŒRªÐô»·:ô^Ô¿î :ÁÔš¯@0n ‚‚±†Üý:]ͬºxÆæ‰!Êâ°æÛ3.âl¦LOL‹]Xq`’HöÊyõ –C qíÞ‰œC²~7©=Œß‰)¹XƒˆOÆwe“:).°Ë-ÜÛ¡ñ½a¶:J‡Thž’XQŠSFà •15b«^µJ`É›qpÊE݈x£*òù2»>Õࣂd†•,š>_ÂÄ„rEžÆ|øŸÃ 't!YË•h‰Ã=9ÏT#5hI±IrÂ8É<°I…Ñ E ,6Î?VÊîý#þ;4 Ði¡y(©Hɬ=AæfdZ­AÕŠ„lX±¡ö-ç×-ZÒÄìeYR‹ˆÙéNG·Î*U m*ÐÙкSY|\%¶Ø—e˜ž`#ti®ú“*e ÷4ogײìVR¾¹—“Š,çaQ.öìÒº¬5#sHÑm8Š˜)’-k©7mòL”–ºõêÄèôk‰ByŒÁ5ñÐâçÉ ¬9¶ìÚ8jÙFýÍÀé4qvq‚Åm…j²fIva={ñha$No§_ÌÈðÉEC5Ò½ëaÛ§ùo`õ~ÝŸo§GÖ™T’W%¡S½z;D]©ŠˆLuçx kÃR:ƒ°³ç˜„&ÓHò¯ëŸ^³6]’jØŠõå0F=qFBYe5w%X }»„”Zk(ˆ¶g„7$Ý#r@’b‰ÃxOâdÕÝ„Ü0¸—×£áëTúÍ‹#º“^—5Sx£·lI¶Ñ¿}z‰^&âTîΖ}Ñ*qúî £º¶U‹„k[ bB³õç÷?ÐF[>³)vÏ»GÌʱ+UÀñ ˆÉF€s”l²›DެYÜšmƒÓëšJ¶S¦¹n˜N÷É62>ÅØÓÑs ðv9ñ[uÜLmSÀ‚uèD¿5%c1æ ܆s?J"-„ãb Ú§»Ã|úêÏÇD§°Õ$ìù«á^¶b :ÖÉiÌ`“mnŒøõ37]rÉ•QQ¤t'ÎfÌ…³·rh†É“ êr­¦ÂŠ[]Màä xATße“örb¨›­pìÏŒÓb÷ÕŽ¤'=÷ Z|É‚ \‰ƒaÌ+Ë…]9ºÌ˜hýYEODtÕ´#Nmo¸øºf+Â<» j*zúØ ëüMŒ¶vßt²h@G+8êÎ¸ë £MÈY†0j!Ž*k fUŒêÀ2d¼Î­*†ExÛL±ÅEŸä'F¼\¢Ã]3–’k»2RóX¢…ölÄùÅ%øƒ<„٢ĭ.aÅ -Ñ;£L´¸þ»ò/XT‡1²=tŽ&ÈÁ]Œ¯^g "‚ÀTš]#ÀdÑáHôN(ÃÕF#Ä’;1J¤pÆ!ÞY¥Ëá-(ãíyïüŠIMHT¯5h\g çò >Åjm4 j @°¤=(+Û©þïˆÅ¶;ßF«´íÒÅM¼×;Âùó¿½};á‘û#¸–­a¤‹ŒEÑId¡z#á`£ÍòÒð½u¬\ÇÂVjél·éV¤.š¯¸gÐFU¢'­Ã|€ºg׋ESDJ·¾ (qÏä¿Ò —²¼Z™*è4Ö%ç+ÕŒ¥k ;-Lë3b//4TÅ:FEfc§­iöK!Ë„Ñè€Ü¿è×úrØx³U6†vH´ËQ³(è²921Q)ó Õr1æfù°½—;§6D–ýfØñœðÛt$¿–Aë^ø87š#L%.Ò„ŽSå%÷â‡/ègÂî%ÒØ,ºï2¦ûýGpþ—þ½ÄQÛŠGv–û¯T”aŽÝ9hxk«D0s•ÁÜÂß¼å†íOe1rj’éÃUÙö\/#!{S»4GñSvrÚÄ90Ÿh_Ž0ÆX´ÏñSÏÂYâ2zD­#iG" u=¾ht=§……åD7ÒÍJ¼ŸlQDZ ÓH,§ÂЊàY?/l”]Ô5zÚsP”UE2ÛÄÕ8Ë¢'ùuГè9‘ Ý´Ìå˜:•Þ„ÚaMm¶*¹KÙé&¡óþoŸ'!ãØl©)ÐFƒ0Ь/4v¾=.cÅ–˜LVöéék~­[({M¹ì«°èì™U©- 5­Ž-ÐŽ~­ QÞü§œÈõwj‡qÒäë>+繘D5‚Bzy(~æ (…Æ=^Ä׿ßÚµåÁÔuD¤fPgN oHs¡H#t/‚Mt䊩qÁ¶çÆ Û6wd^ÏÅ}ëþ~èð9§Œ‚¥S ]˜jTÐ,Ó¦µhÞ@9;=‰j‚è¨\Â)gÞTPéZ°mºíþ‹Æäå6ϸµÀöSAåÄì|²„¦´|nÛ¿´ï—S½ Y>åê·'?NõI¦Vðh:yzgEꎨwÆ•U:0𓪺÷Ë‹èN™ö…òPÈöë+ÔO"mŠŠj†<ŒËsÏæ©KUâ'øž-?g/Òׇû¹™E™Û™LÙkè×®aŒ£× ˆÄë¨Òx̽j´ágn•BãŽEŠPmk~Œeì­ëXªŽŒýŽ] ^s'Û¤½åyÖ.Ôi•.UÑŽ *ƒÉöcòóÛL|býšw~R¦V®vÞ„>M‰Ï¼yôvð°\¯ð¸ÁnîAN} ËëQÑázC;$Æd¶˜žx91*F>º¸Gõ2o<¼•Nsz!ÑÃ&üX©k"´eþˆ'ÄÖ×%M˽¤ÛwÔ õ~DbšWb½7ÕÓªˆô@˜zòVsã¥ÐW ˜ö]”ÐG +!¯ã“ß«¤QÎî),–Éž<ÉŠ6|›sÖ(þªI§$»ë¿g¯DRhYx¶®Fã5¯*²Iž×ýý5V"Ýâ|<%}+ŸA)©²0H…ýªL#¯@Õi œXÔF¨‹UdtéL²&°`ÂíàOš n]‘VuЩö8íïÑ¥ÙYf—±Ô5 '×4ÞE'!‰®<®C 1aºË³1$@ıwJhU;ŠBs×-× mÙp;3ãVj“W+ûeÙ²8·ä}5"=7††ºÆÛ« õ&†¶w$ÞüMÍ4Y#ØG.ZóÛ¢·¦«èè:¦aeî­S<å£ÉÍE$šÄN±So낤p¤œj ñ¥ï±JxÁUZ4¾à ÁÖNŒ2ºõBðãF0NjֺŠp¯ÂýÖÊŒ‚¯‹È(±pcclJspŒÔ9eá `z]µâ–GÇD Ùï±»ÛjÚºIv,7*9aÃóÃUË cà²a¢¤¹@Õ¿»0xÅ.E˜úOóŸ™ú¯†…ƒ¼J?QuºäYãÓ¸rß+Ù‡IE¥ãXò{°j6É!É™ "1ÈŠa8cdæ7ìå…ñvX†­‚sa‰]Å‘£ã§!\¹ªýΫØà­{¶³‹”Õö\B±´m(*Ñ“+ƒØ†ÅÛ¥Ú9¼,Âúà™ÍLÿ–D;ÜwP9¶LiŸÿ+_Óßwÿ¾M»ŸjÝwnÌp»Àðö`’Û¦1×€˜dƒ8tìÞ`盀¸ð9I‡@ök°[èè“§›Öç-1Y–›OJu|^”:r#>dÑ©¤ÌØZNgΆª>Ï”ìwÙÇœÁªëS½>b‰>ì_ÅץƯØfÑ3•”w¤­ ïSPÖ„†Í0©m+­”bÁ@ÅmhÎ÷ÜÙd‰‡^ù·9)ªU|+r‚k¢WÍdVøõ·—88ÒÞ¾GTIã¯Kxí#™Iò[p ܯÇY\CXú¥ ‰ß4U{CÏõCÙ«6*ž´Pe¿)ƒÔ»“´á)è.Iެyœ6óñì[`VcãÆxQ²Ýð¯4U–Ã×Õ¤oÍüw³Šb_V½„Æcu­Ô¥í¦å~«àgS~¿!±öq­’9~ue­¸´s§ K6hl#ÔW1÷éÙ–v).,zGТ$M¢²d|øûÒS‰dê.¹µX~Ä‚œÕS7¥*’¢XB€#Ë t Ä‹é%Uúp„s/¢]z¹h¯z1ø`Ô°3ö)å9ÓØ8"Ç%Ñ&+À ñNÉ(Ò¬';Lm¬îѼ1ñFàn[c16Þ\B½)3‰!Ð £ëJ¬%¤ÿÓ.žs°¿KâŸ>žhÕ^¢ÿ10ùê~ÏÜa¶ŒÄ­·†½\§Ñ/|%Ù¯˜¹ö²â^¾]¥ZdpeŸ•f×`FÌ¡Ünƒ$qm8x[µÅÒì¡Æ€ ²ya6ÌÛ¼ 嵺{Cµ«4|„‰„Ô·7ǃV†W[¥gaXª¾îEÏDŸ1ÀOoÌŽ”82_À®…×Ú«f¸óÔL±cNRDÐJÚa;J¹¤ˆ5CåÅK!öÊ’¬µs»§˜ÖMϬäWªéÃL§Î°ËîmŠñdÏÑmÖJ8–-± r‹Ë»³¡ N]›u£šlÅå-`_ âð›™7­÷7¤v`vFP™a‹”tmÔ30ouo';d¶•eC`Åùs)ͬ؉¯q¼r"±89èsšF‡ µNA1‘Ž*V=U¨D;®È\â“Óë]})‹[T¶ËRNªR¨:ТŠá3KC;„9«M‡P//T1i W~ϳùààxúâÊÿx»tÚ¶$_iœÜÆX(ËÕŠVц\)zy&æ#RX.õTó…Ð98iS½³+µÁ‚¼Ž­Ê?·×Àý°ô/Ãw¥¬üÙ;ðî§Ö¿ýé ¼dì§Snt´\|Âh3ÈeÆhÆÕdË:”{Ò‰ÖÃbβ£TÜÌÒ*‘-‚E‰ãºjºï°ôzZ$ÃMAr÷VK°lLÌ‹éÜÖÛ1Ë©( n¥kål­;0ºè‡lÓ f:ú©gl³]CyWgº&ä2ãn¶æEÜ£+Çß6¨¤.\2wž¬•ƃ~‰ˆy*L~4J è®Ke()*šÈ¼·EøŠbüâ öûXv…:e¬-ÐЪ' ¡Ê(ea,[û8æ1A榤ÊÙ¶™ ÊlØÑ¥pö¬jIÕªØH°l1 ÆÝÆŽZÑ—Ecôv®ïgKCÃVSvãŠÍ]¶Ðc Äû`Ê yo謑‰E} ¹Ù\#ãPWH ĉHKþ4ŒÏNÚˆy•ÇFÞü´”Ô |6o jdÇÙ¢úU¯RÓÛ^•¼IDb™o%…Ùî\+äç£S‹mX˱&>­0_´¯~Ýs‚&°;Ñ!\KUc̪@¥Xå8WF& Ðô* =L1Ú€˜e„Š¢”Fž$Y¿OŸ“v ·WAUÐ 'D=;uLjŒ¥¦cÚ¤–ÚY§®éÓ¶©ƒæÌj»K“Á£¢ÓßTÖo+¶¤³[4¯Ž4&¤cœø öK¿—7Qžï‹ÿ‡!ÌäX9ZÙP†aðKžÌ÷#åZ´¶Ö-ãF¿j¡Xª0ÞõiŠ«7›¢A©Ü.ë3 ¹(»fˆ&î|ºt `F5¢³#h1~ÃFjð|ŸÛåq¹{ïÀ›7pò­Ø!Ú¡¸Ôìì7³fèȰ^‘€Û*¶¨¶¦:Dñ79ºÆ°Ü öñ WÐÓÝ‹:¸ƒhDò7©u$¡¶áŸ'=‹Ø2«´§ñVƒ#¨™ÄBÔ*ê“{B[<¡üYõÍ•x Ð8Ô¨†cgiÌÙ6o(íæ1<¯Ú^á5/ˆMv±Û"ÚxxM+iœÖC)‘šQâÑ¿LÎ[_QUÁÛfËöù•?é§Ãþ±ÙÄë†ÁB«•옭Òé‡KôܯrdOâŠo x%.ÅÑKÊ„ÎP**=£UÊcªl†šXH|Ê~ÑŠ &¸[mÖ3Οpò“3»åxÝdät¾KS÷´âãÀeV=k÷Es¯¡DJ†›Æß¬sG_ˆ5œ› q0À*²b^6~BëTÏ$¾Œ9ò, L¨[É®Qäi MÛQ[”õ4í2Ÿ!mÓèæ`×Í)Q/ :ŽÐ€#ã„nÖ°Ó‰Æ?Šæ³‰–Õ‡­aɳ­V*†˜•‡‘ ¯´#€Ýc‘è™Æïœ/%…V.ª€à€Ó©bÙÌzõäÇÓs ‰hÝà7y¶Ä2Œ¨cLïu]®ÈÎ>dM£vp1à\tÈ/p¢Åé¼´Ñ‚³£íZî#-˜­_ríZ¶v»ŠJn CM1Jj;¨£´¶Oø"Cèƒÿĺ˜ ¾%j‚Ë–ƒá´µ;ìô-È)ðŽ´XS²U¯±Æªv‚û†¹3¸x©ql·”ZuQ8Þ2 DØÄªˆáÐTÑ %þ˜RRÏÕ9|Î.o¹úž.ÍŸÛã¿ ªt_£È’ݨxž/ZꈬVõÞN¡Ó×l‰|eè4G$UÆÁ— Ã…5'L.7/-𕪠ãÏU64¶–ÈíYj—-lëì 8$ùJ!Ëã“"!y(qoÿí¥×»cTd¹Y!¸£Zðì Ü‹Á¥]ì·u 3?¶ž”ò,ª¡¹¡…$ÍÖ·l=¨\ŒÓÚ9ÖÎæB÷0é€Ä‹DqºC±$}¯cX¢eV®{‚XÈ›4há&ÜÎ…úÍòý¡ÊƒcíñÌåî†~¾Ó‘â[¤þjÞÑó7´&tÌäÞ×2…ñîàçFŽmã´Ê3&c^0ìD_¢ñ¤š\¶Á—ʼÊ3›|…ªÎ†Ïcw&\šÑ§Âó*«&žÅ>y ­úšì¬ûòµ5. 7¶‚r­i³kˆ¼)[KÍ0† ‰JæãUðA'û¢’™wS(Ž,cÚ39Nóæð˜¥È“"¬ÐæóôÇü ù–øÑr FÊ£8/¬‡jÉŸ$ú»¢àâµÆŸù÷M›•Ó )y¢©w·]Æyøñ² º²àz8õNDj”ê8µ¥™RÚhLýaž%ýý=µì"å5wßÞš¼PUæØÕb ÛÆàª­ 1\–jh²Æ†H° ðP40²|‚ Ê<^Ú;€Û3¦f¬oe­…„8³;”KZØc>;!“rÒ¹sf†%m~ÚNuz$Y (µ³+µ¬›KLš·,ï÷7¿‡‚ÏjgÖ—z½Ý’%¨²/ŠË-†•—¯É”Zˆ¿N¶!Í6trà"k­„Ý· M~î•}¥HÑ’ñ1±ÁB“12|K~»E)!»[]Ý%­ED%‰®Ý!QÌÙÆÃR¸w±jJXî¶2¹Žho, Ï­¤…™Šï¾Îƒ—ÜÑi’ˈ,Y¹‚ý»ö™pËØž¢ý¯Ì‹Ý7¯<ÄM°æ‚±@M áÙ@ØF·t+¦: Ö¤;d…j[rd©qT…ƒ1|¬aºÁ¯®2ݳ> S_<-jñ¼ÔRn§‹q{ïá!…®D^Š›ÈL^U ¡CFÁi +°˜~ÍøÉ'SBÙ˜˜¨M ŒPè.¹AG]Õ"z‹ëþö;8^—>^‚>g÷~Kòù<ÿƒúšZ*1V£ZºPÕ¾büBíæµˆäÉó BâLíEô¯­£½y„€Ý<»ùH(*úôRM {ˆ®„n¦E*p£01_×ê¢KÍeê ‘œhšœÈcé¿uP Ù.÷SUÝ:˜Ö‡(ÇÇqŠ=èÙ«®ÄD6ªÛ’œ)‚¾´­Ãûééýé¿,›ÏCµ_:º;Lu¡Ì±f@$è è3@M SnÍÊÅz‰ÊëÇr<¤½ûZ™‚ã±å—ξçIǹ[ÿ]ò9ÑQü;šO,é"Ÿ1 JÚPŠ^‚ «®2Å<ž"àÀ þï—¼g_`ϧGO˜f–»sr“à .B£Ÿ À9ÛµP?o<9Sor湚/Ö¶ ¶ò”ÀH›bâ×è˱bØÈ¡½@èÙ2¾Ó:@ÇÇó0Z#Â=tàÔz”|,Ò¡«Ì/•~Øœ éIºÓê ­‘ò®¹È뛇XÜ7˜å’Ö{k‡zÉ/œ±|ˆ÷^ý¢x?ѱlûíþ÷ÿKüiÞ^G.Êæ½vmP‰»ç@VàWh+¤›,Šf–nDÍGÊ©¦}LãGAd®+ãý½j“H>¨MéŽ-l:µñéèVظ ¥»Oö Š H$y ª0½$ÊŸ7²k­mZÞ.Íã&ƒ”-öW̘Áã¤ÿâþ—ÁЍø =Ÿ5˜pÙåÍË)ÙäCÅ>ªÙ¹Ä)¶J¨Õ*9¯H¼<»‹*dÓ]§ºm‡µ§34}¥©ûU*ÛC»ÁôêEzåvè”{Wc(YkU¢OJ8&s…Ù‘ÍBkóiõòÛ˜fZT’´EÀm’àÏ–[âaVB¤J¤„Hdóùú_?‚¯G±‹³Ò©´ÜÔEWà\p’´æ¬P!>ZI§{@† ÆN³tʦd¡e+™”zâ0­»öÄNoé{¶ùk&Âl‚œår•ò“ëIµ—°ÌqžƒÏ˜ô‡ÛÛ ±,ÑÞ=O0êoØÒ|X/]Ò ´Z,j¶j½¤3P"ùP‘ñ"ØWCàÕØ²Ç=ÇŒ¦RÐl\¶ØÝÉG†œÒ×ËEüþ€tŠ}`ÎbÝE ”âQBÙ R"°tÃB-Ï›~ð\¬]0Äñ‰jçš–Ó¾Fl_“AÐæ•<©éÓ܃•k îê^DaÁª]lÛ›J2Sž‹Ö€Åyìë‚Z"åê+Œ­NªN7دÑûºX?”pª—'4òhêã µ¥›óKFaq†î[rȪôní Y˜XÂLP[„¯I3DEQvõ½O£gysvØðñ‡4Zô )àW©ŠÃÕ+·T¨d,Z%ß?nÀ›’´¡ÖF´Êd ç€F”VVÄã!T)þW!zÉtöymjñõ¹‘¿Šv´GAØ]aÊÌÈ8[‘Ms¢Xœâî„R_ñ:z"Ö$ï eÞF’ŒUI;Ád,ÿ˜å•ñ±O3«¥*8 ÉbÇ6D¬ÆèCвÔãŒeGå‹Ö§cØqoáœ;ÅaµQ©0Îúu„>ÍÏýÿysõ W,1ôõb‚IÕÙ´B’kU Îs1þ½ò2Ï)z`9[, §„Ž5ß©ŸŸ÷Bù–"¼^ë£ç­ù½üËP"ï[ -§V³‹CL+%tålç:ÓPAèZvÉôs÷gO.Šà$*‘¦idVßÒ§÷¥Ñéú¿ÿ4W/ù­ Ë)Åžƒ—¤Æd ,Ñäºâà§ D}$T؆:©¸¦P!ºm¾xŽM‚ sh§‘S¬ ¼½»—Õ -3q$Ô‡ÐqÞCÊ{(y´âø€P蓤Y´Â<$Ù°SŸ‚u戆¥çÍ쿦Δíå뻞ßù84[…mö_]QCØu»”±˜,Õ$‘-„t |7ÌŒ¹ˆ°då’(T$J”Ä×1¸\¨2nãqMþg^Ÿšë¹}ÉÝÓú§=¢ÇÝ’IŇ#|1sÃØ®ÛŽzY×ÛÞ:=òG«½Ø¡ÕÚÃtL¢z$ßomªÜYž.«!-£Æâýú‡-5Àã"ÕAXßf¥á‘Ä"v—%ö¯¡Qß±DËŒw¦(ˆ35hêõÜY¤i•lÞ’[CðöÀË­ñ›Ý@‚œI"üt‰q¢Æœ[çO1¢<Æã°.M€õ¢¤x<“å\šisW4 _¥?ÆÚñ¶¢àx ;" ¡‰L_“M‘£ZW®½H±Â(KfÂ=qGXK V ÎÉ´ËÖ§š8³|ϰoÖ¿³ÅüËßt…<ùÔˆ óe¢Áe‰1á+Ö³~MbGÆÈ2HsÆZ•++ýÚfã)j“i!hýwÍG’틸í±âPžACªûqP¸îÅn”((Rý¢^ìѦEôÊ%—]¤R4ç™TEU=¨êææcàïÕîè¦1$<˜0­»va^‹„#ÉCT»Ð“M)í©IA&‰öK—ð‹ÿ¾t,Ô¢[s'íØME­{XsìÎLšJ*œªÀ lD; YKiþK²¾nt)ù¢—ä(zÖNÑ’ú\x ˜‚èMÌ[" ;Q R˜)KCQ™æm™ `¤*‹ 49©ŸWÚtÖ®ç¦ÕñtYN Ù0ñm/9Ó®ø(&Þ8SÖŒ.]e¤Íf)v ).¡¼k5á 7ãq‘}_)ç¼ƒÚøîÿ~Så¨vJÄS×ù­JAהɸ,ÆDòMV:” «T#V ÿäðaÐÓ’å<ÕëÚ¶ï†ëmBæ,À©€  ËšC=ZoQB¿34'`>#s¡ŽØÆˆàj¢å%J¡v[Ógð¼À²¼:í¢1,¢N@€™. Ã^"yn䤅%P÷'â–L P“‚‰‹ìö ÅØŠ”¿A¾gœÅ›b·µLÆ|$!êg-~¸¤¼1BPKù(\^¹þø´Q °qÁZ˜3=äs7cY¥ý†!¯M/±|AÈ3:´o‚7Ÿ€‹)×RLÈ£H©R¹ 1"`ßï\Ù6¦Ûÿ:¨eÓf‚:Êý¤îª4’Ë]àtÇߤز$O«håXÑ„Pä„Ò<ÁÏ$&Å+`P¥+,|œ:Sy'71Ï)¹ƒ4à ׆:!›Ë(¶Dè·"Ÿ!³fÄÛµ;,•áþ>kýNè/t= ¸|«˜^%ê/`-üþi^¬9Lddke£JaNŠAª¸eQËK=†¦ëŽb  H(¤` ni‡/š³± Tâ–£bò5&«Q°Šä1ðiýçÉÕJ ŠM–ƒÕ²5ËBEdI*Ê(ÄÑ'ò¨P-Ü‘C…)勺ɨ€5ÆRJ´ñ¿¡ÞëqÇû Ü¿üý;¾Zùö®ó«Ru äÔrí 4¦°eSêMP«Ue4ÃØë&.+¨'¨CZ’þ÷¦Køý[¿ç¦Ã « Ǥ@ Ð!Pv$õýÊ6>½÷[Û4Øl%ƒb»ZUÀ2¨:â£e—XqÉh@‘¡a¤Õ3ã» ü™ð r/T2j }"ŸøÞÕÔöVÈ-üúŸm¥'@|{$ÇÐv³!ÔĪĈx«Mz’=2«Æˆ3èü¦Ž^ÙÍÊ|ùÜpcÃÍøÔæGýØ’¶k¢Ÿ™â…DäÇZ’Š,þ*©¿ÀX[Š!5C~=H¨.\ãÞñÄ´)ãüqò}_«¸?BV<#&[gäЊ’ŸÐ4¶ ¹0&ãpoEQã~RtÅœüé$Š´ˆ´ b^ 9žÏ¹ì_ï•DZU íDwÏï-u–ç >®bÖ#ãåŽ/غ\4—ªqzÐu¸ô™L¾A ?TÈjº“3áÔ!-ºp»ì;\õ÷WÞÇm´œÂOQbCÛ‡+àüéy<šg Ž»(ÃÑ£ÊWà Ãí=ÙØãú²f uHħNCò aÎ!#<ÄåcþˆŽswþ^½nÑL®ÉS[Úm@5y€Ð£Ì rFÀû1$‡\%%ÎÉ}œqèŸÁá¡‚¼¹ëjÖç²UjàY×tü-AZ4“D¥f‚„¹Ê@üËŒ*.ý–/<ÄžwۥʇðÍ´KZ‹¦ˆ5¯¾´N„…Øág™4ú`Ü^™®=w¯ã‰•F¢–—FŽÜ"FS½PÀ¶·Ä&{8­ªRJ‚QIžá^•-] uÂ9Dj”³)¡ÁìköùŸ]ßÒÜý5U½››Hý^ˆtg‘9:©Vë¶r—Àí.¸¼=EÓî'Øb¨D^ý»{޾²ªÀ¥ß%4ùw+tó«›9)º.:±Ü‘˜ð0–õ4 „'tf©u%>?G^‹•¾k&ø$"Š?QЬì #ž'>­úÖoÝ8"i0D¨2;ʼÅ7øæ6DzU9èÑíyX}ïÃëH—–J\|ÔCñ܉p_¿4•ÉÝåâÝÊu0%,JêW²†•jÀwøÂ_z·ÝêùÝj8B_ Ê´Í-‹f„E¸»n*îb~g:“£g8œÍ Óaè„%¨uæ¿ãݬ øïœ/™9†ÅU ’Ý{´öHÀŒ” œq¯@ÆšÝQTAA¨F<ϼx¶:ïS³ÙólзûI&šŸ5_uH›¢U÷¶Ô‡Î­àËÑþ{ŒÁWË eÊ>¿¼kóþëL,ÕŸNÝ”ÁwàF–,X-¤„;׊›Ç®7/PAÓÙ]袿‡ßÕo/ã~4‡ c´oî1NU52[q×NÀA]÷ Yæí V"Ì?íx]ÏK!ã}>¯Úñ;V¬íò(`²PŽÅšOz0Ýfy™!Û4Ñi_ä ÅÏ v îÆß³Ÿð™wkA­v»¹){ÁB*à/~€RÁ=¹!Pt›ê´Nl ›<ý‹Dבô‚ÿ«^.Z¿àE‚áEE!lF,Ä¢ÇñíÕ`ÜÓ×d½b £jhѼ£ç:¾vm#éû?|óëX˜õ"ÈCrgÚ¤ |ZÌŸï©%b·‚ãËuüõ;o—7܃ۯ zŸ8]ÔíÍc-ã¶I>b—LÊQI¯FM ª~sZBÓÓÿOWè~kÎn·—Éb3·„0°ìÏU3árÑqß “ôE>{`zÚ[œ»ø}oéç‰4v€r€Ž'iº(#Ý 0±šSMó~‚=¹ŒýÕïûC ¡4~¢Áµ&} @ga±CÔß 6»àúÕô½)ù«ò[âüº±Öò )JÁ)ä3ejã„0!ä BGLæzÉ»þY²ò¼v¨Îlä}?¸ï6ÀBµ‘ð)‡§¬²DyUʪю!áñ]zßÿ¹ûX¡ãü9ˆý\jÞ‚ÀeújÝŸPŸ© Æ‚90߇rÞ%¸pÔ®™aª{ oÈ:¿ŠŽ5U·Vü­šÌ‰ül’3zÙÛ/Þ®º’A¥<Û`¤Šr~¾3 ©õœÜùÁ²;üb¬,Ïh(WÌ y\yœtŽ–mÆXRÀÀ‡íöµ›óƒþç¹Þ‡Y'käïÜÁ@X‚bš8‚‹lôE”¢ÃÁ€ž½+ÿyôû×¾„Z¯ü¿•Z/<¼«ëC¥¥Å¹¸¨ógø:DŠ€äe}#êÝi ìC·ú=5ËÔòi¢àV—ܹ§xˆ„1§ß5ðdz?©ÝBŸÝüþ”ô(ýÞPniaxNޝu¦I§ qu âa¸1!NüHÒÙOïý3jäŸÊà‚ÛëÅäòXÂw¦%@Bl ",°ãZ‰øZ fÊP_¶VÁ¾`~÷[W]­¯ÃÄêP*AY'gZ$£ÚÙ.ãb'ÎórÛºÐ( 0Ëtɲ½‹Á‡ÃüL~³¹% £ÓmpÃ1¯’ï5õE¡ µhÚ= ‚É,ƒ÷Lâ ¼ÖåZ<ÿS¡l¶ÎäZ Ò–±Â¨;ëúñ”w»ôþY~ZÍ-|Örí¬=š`×íSG †~¹DÝüñ©|Ë7èT\îú½‹þÔ©uìóšé|ÊÚï|ê±ÓÎLt3ßô)5»â?²¦O÷ÿCã‚ÂM0‚TèÐ aNò‚G­Ê}VÞîâ©õ?tˆ¯á *  iß?AQØ®;Y¡ÿ”A7,`…ó<7Ò‹‰ŽÏÙ¥çis(ÐSeĪ´èãâÆ’ýGâßqҡЮLhD7Êj—Áï{\Ê5”·@å–__^8¼ G0¨³† ´¡¥%®‹ïƒ6êÓ!¬yô¸|‡OKÖûýïy·Ù»£ØnzmQ±6›*ñÂac‚M ‰h‹õá»úÞ§·ÚÍ¥bŽÅø®H½Ùƒ¦óP¦+0'6ynçi³@]Í!žÄÓ‚W|$±äÒ*ò€ÑßáîZ… Ö"¡Ôy)÷³kͳ¨\OÀ®¶ \"ô˜T­‚üX ;W˃/ƒÈdLÐÏYè ˆçôƒõt¼‹5xÜ®Gîɇ™çKÖ&ÃMfVtÅ ý%סjAb²nÙÖxn™O~Dº\^·*ùû;;fíhçܸÀI4J‚(L²“ä[”ÌÞຟoÔØ¢ªƒQ1f¥`¯Ö\6 V´îx7íy”÷Ýñ>WËöwµX[.ÓœÊZ™µ{ܼÖ¡|M­ KÕ$–ýo_àò<=N^Ú´ËòMÈ6ð°“ã«òá,Wu,e‹?¦9üñ ªbeÒð¿ðÖû¿‹°×ÅW°‰õ¶ùÁÖá4eŠ]!³,‚ÃB¬´ÃÀ—]qÏas(¼öüúŸý†$2<… þÐ`^˜üQÝÆa™Sçu¿åCsŽGèӮςÞü#o’ð€-îé“ÁÅ‘`Ö®?OîGÇà˜,ˆòªì•ïõ8ý~V†*›Ò¾…¿]œmž+~AóýÂG_áêú>)ÆxÈÔkÄ(d:8ô¼²–x’0ôý}5Ôö9ºø(y¨r²n²âÌ8¸â7¸ø]‘}âYO·ÒéÜRÜHKY í¯jv ÕïV-Á‡øæx>WÙ“÷ütϞßgä'ÂÛõ}ŠOS (HC€ç¤«ï9"4xû°`»aÌ+ÍÛé~é‘'Ùü_.ÿ‚÷î!£ÜI0;FÑWT4lÎ@!ÿ(:HûÞñ@òñýâ·c¿ñE®f4Å¿Z’e*6 \û«*Ïz)( Vþ?×ùíÿÛéŸÆ¯Ùw¶8ôÄ0”CôÃcâ¢}Å€MNØâT¯è¯°ó ÎL- ’0AgE—e›­øç[ *ÒV4O, KÎ.žÔ$ï®ìÚ¾ õÏÀ,c ÝzÜ•Èß_×Ï ¿õ×ó½üJ÷gB°L;æa Vÿù·YzBpSckÒHŸÀWF¡”¡p€IJןZL–€ÓÑ(gæŠ×(dkej•×Ù Ñ1¬˜d(Mܹ‹ÔÃC9?ÅÏRC$úTï»CEˆ™\º)Â//ãÛëhÙ $¯=|ÊÞüꀾ'œõ÷_¤BþÝ«á¾<,k tô4¬Ó[žfz¿Qz¬8ßGSutÿC…Þ°"ûðÝíýOõÿ'rÔê…+õ»™FT˜©÷î” íì²gç]²!èüo-Ï"ÿ4Ä8NU˜‚Túâ¥î½KÛkÕz‘ó{ýW?N† e[ºs"LÓ2´ð:Ÿ!‘¨8ÀòÒ2@ç÷³³ÊëqÚu8éΖâ3‚ÎÀ¶ÖT~;Tró=gØö>dlÔ{ Špm Ü>:éïÐýu$=p>…Y;??a§«T:¶°;êTŒjß+3ÚßåYí@•zöyØ„UpºÙJ”Ú•»>§>½<ñÕÞñ|o­×r¢|~çŒÛá2 ¸%§ÿ,&ø7w|šœO#›ÞàæÕ¡äÝU4@Ófí!GSGáÕéñ€ÌNI1‚\w?¸רaýû ™c¦Ñ HÑ&qmX¦,æ5DVÀÃÊìñÕµ²á8ÚÂU1êùa>€¼«bù=—¾Îήç½wÖçi«zà ò®›¥ÊÎ%•`—@ÚÀ ño;Ä™«ë•>fÜø~6EÀlEÚ§³Ààzš¨’¦ø^;íKÐò>_«ù¨Ò¤¡*ŠÆY¤ü6¥8@…l Îø«—÷9¾2BiT‘` %°°©üÅIì!® ½¢´>Ôûž&†:ª2¬õ£#-·9!-aºmøoÿØ›ô¢ÃílùÉ ó:Ü´nùðQçp§wA©D ´@x:#-}˜U<}O̪> þGä¹,t¼7ù2bŠLJÙôö¯?UÁñ¢Ì^†¸ò ÒPPð…CÈñ¼þúÝ>ŸàñÜêy`¥Ìü¨²ƒí¡ ¶t¯5‹ÈÙùŽOÓÚίÍÔïé<}J€ØB*Ó’·T„çÀIØåew±µ²»*E+â #ÀLŠñ 6(‰p’%M‘]RÔÌTâaÐø†Ô±Í¡êÎ`-õ¶R˜Ä–§G%…B˜¸ ¥Õ!8V¡!¡‚>¡|óô[+¶§-7ß8ϲMžù;€&sp@°2OúD?(woS/‚ëlÀºŠ,{‚º»}p¤ì+ C‚&èÍVÖÚ¢›„~œ „×R€àtªºA-ç‡ÝçýJõ°ñ õw6E¨Þ¶ÙYdIUÉ ¶½ŠÎꛯõþIžï—S4ÐÐ p“0UÛÞËŸ.Ũ¾ažžÅ= :û†F]•¬Yhf¶æª¨'ª ß5ssÕ`Y_ÁCÚòK#ÝŒ‚>²t p¬AÂÍ]Â6ÌêÓ÷ÆûQû”K\„æE…D`JÂ4¨WëÕ;oSçú>€Û|®Öˆ’’h4E¦zÛ¢¦¢†<!„ѶGÊéÕþIO+´¼°õ,qêzŒ¤ÌIeè:Þ£Åņ–¦…ô6½*·ºþ·£³éQ‹–ó‹[çXöƸ2 @GüV®H[W^È“ØÝßsôy }»föÝï`» Õöú¸´Þßë#r(²©‚€¤U”ÿ]I~\’u}Ò—ð‰ñú‡wȺà*ι) 1Qàë{Úúö%\û¹>ÀBº'g˜_£Òñ å,<¶~ì_2º({€Â"â bö§ B[`ËðÌÕ'épÿOÁ[ìùá^-dŸ—{ö÷³a[SÅdfå÷·v?ŸÃÑýÜßV»§{‡H_âŽB}WøâÆCuû)dÊ <³ô Ή\+Ï1ü¡öùËo«õÿ‰øGý—/çbÇ%q|…íÈÐqP¬1ò Åí¯._þ  …ðVdÀ•èsüŸÏ‚~ÛÔäèÿ"6S·©Úo’Ä;±gAè*´h¸œÃ4*ꮡ 1ТÒ•‡[ýp - y[lUvÏ«ßó™XvßO¥÷,'U¥(½'˜`$gÐý<Ä=é#jò…Ò/fÉ@B 8ŠeÛ§@NËI³µ{û²ÿS|«€¼÷\ Ù§ì}Ïã›”ß[‹ýù{Û»˜th²Íðõúâ7¬7û…ø«á¨*ŽI@Eщ¾®°˜ó X*Ø@Ö©€6ú8ôû^…¡biI¸L|=E\ŠªX/çD/á©W¸8:òMzøï}Zóþ-Úú‡O|B°Ÿå¾ ºÝ#ö~T¾¦ßæô½¿Úïq%ù/"»—Zè.ú5aÆ/IÛðëé~>vAxÞ|7>7ÍÒ-²›ý®æY ¸…É~8œð¢ýÖ†>UmS¨QMV&,!A‚\Áhqjkí%‰ ܃À«FùH>’ ¤2ÂuÆÓS üËhz4ƒéd#å`ÑÔJ™´j¨v †& ørת»ÃüÝßþ½ßÛârscSOQ€Ô¦õè­(" ñOe}ôƒ3»Æ#êx’öïsL³%X-b™fæµâ,Þ~£g÷mX¯û9íŸÖ£²”ïÒ0!„jQ‚Æ£dácêü;~hŸUVŒ³ä+zë¯)éK¬ ’°ˆªÕ+ÿIòM:ÊàŒ´*¾¢‚¾é¶Ép­™îǧx¹fÞ½Út(³ñþ¼#¿ €1A}Mil Êö¾›}Þ€ù} úÿUèRc¶s,ÞfÈ‹°ÛäôT£ÿp¿_ý+ Æ[ÆM…#µ”H"÷u=ëýÕ¸áQ— ^ò,–=Yþ¡ýÿãûºž¶.uRä¶_Šn¬_½"ý>fŧèö•SÓVS€@ƒ—¬'éÝ×ÿ6µuò5 ½‹þIß ýBjÐ!À»~õzâ’Œ0ÀÎEâ-Ñ´?¿·d"f¥tÐ0JÌ ¥Ð`éEïÌ‚5¿DÊJÒG÷Ľ>~Ïðë-\F¾5o_ó¸ ëԛí2m*mÐT,*J¢ð¹¬-AÕxPˆ`yY{ÍÉŸOãy{eiá OqSUl…éM³ÑäE±õ9<=ßh¸ÎE>BÒí-t3NŠJm7VS¥ûRñ?šg0þïÓþçæWû{_¥f„xlߘÈpgÞpi?l× QHž0pø4€É/O`@Y/ÖY´aÈà•fW0–® ?Õ‰§ìÞLÈÔû,²[-ÛÇÈüzãÔ@^)~÷™*ûh¸ŒVÍÊOuÿ{¹ÑOÚ²ê âqÃ’y©0¤2óÿ;Èü;åìY§%ï†ÇövP÷suJz—°­ÀÞaáXÀáOšOãéû¯:0RñGmŠL±ƒ&¤£Š’æÓ-ˆ6º ð“ź0U¾Ö¹Ù9}ÁÀ *AÀMŸä°ÝHêU<¸¹_h—„Ô×[e욤£tÀ¢ðq»x­:{>-¯ò_úåÐðÙr•.x“ÊØH`@—\~Êö¹MØÅ¢„´D!k‚­/,/¥úÑΗ•ââg¤bÒ‘_ Ÿ>¬K°à*]0‚}žç”b]Ó:²ù&eÇq€7MÀçvà_P¾ê·L?œbCqƒBÊß™}%ñùƒ‰’ñ”§¤p8?a{‡ž›ýЃH¢P‘˜¸„Ž`”ƒ0%PF”f€Ã7‰»Ô³€:4:b‹e+£v†ˆ‰‚A¥†`üýJºµüÿWçøý¿Ôamš`[ý{îÕu2D¤¿ \ÿÓûºÕÿîWèGß*‡ÿ9ÑÕÓ›/” ÂYÜ ;ùï­ðô/XÐŽÞÅgžúÁP¥¢ üóžôV×áÅËý¢xçÕù³¨±Ë/3ki¸-áçôü£þcAdz §“A§žå u6µg¡àözûX{ ÔK‚*™`–Äɽ½ñ»ÝblÞ“ú·âèýí›…ùûb)}UÀ®f4:»1ŸâÞîý}¿²Uû Oç(U¡ -…Cb—;ä}«Þ‡f^©Ü¤qBI+òv–Ø %¤ÞÍ6þH¬×¸Ž?šçŸ—öN0^ [V}•Ü Ñç«ò|{þi‘µ&]àF·ßžYKæ*lðÛÄÉÄï×ô[åÇ‹çìÔRH¨Ëšà°”IQdåùÝ;u(&>jA!)Ô- [ ûš¾g ¼ï˜$¾\®`Œ –"*j­À9‹À=ê®PÚ:‹Þõ} ±XÛÖÖ­ÍA–]B"iâ……w€ähsS©g©2] Sùí©),TÔ'õ6ªýàûŸ£éljpËáÌoú’SÀ]‡ãŠÚçSÿ¡ÃÔ$é,-†PéTO Š$|þæÈŸÏ•ÞLªŸXþ<@]m{ËQ{œ}OìžV‘aEðž­2e UÙ\*€Hã•d‰b³~¯•žÑ°~‡ÿg¨ªs°$%ªúÿƒïôPߢ!Ö î¢ ÄÜÀá%@¶îËéÿóÃÏkcÏéýý«_o÷¿Çüi1»S´ dÛ wŒwL ^Õ{¶{62†»¹„ÔŽ Âëó²“ÌÇ; S?yÄm½` ×1áA‚“,Ä›ñÇúÿÆn‡âìEጂ~‡˜LÖØ fZð‡(ú Ý/L Þ®2¾~÷­øIùþX ×QGrëebù´ Þg Ÿcó½ 8tûÝ =õ&Ψr"\É’áÃ.Zañ‹ÍU³!ƒf…!"gÁH¡5p«°‹NæN’Ñ/)s\™O7㯶{¶m¯\Ö¥ÓñøÝð©ùBŒJfx8îíÞÔÿþ3É,HÜœmJÜ#æ…â#±Í(þÏöüÚÜl™p°n± ¬¹©`joJΠ¼Ÿàùöa˜) "n((x¾–Ÿ­å5÷Ôèá7Âò †5˜“ÌTJ¬O\ªpåæÚö{žÁöŽúå%üjk"Ë+¦¿‰P±Ä3) Xî“÷¹øäéY¶nè°r”=%Þ1p9Ïÿ.©ÜÇô f¶,[ÓÿÎ/ë«?“öeäõêÜí[]KÍ*àÒ_`U`Cïdi(ïJãZòãH 8A6$ÌSŒXNRé’MS¬¯ÜµÝ~ÄíÎÌÀ~³¢TÁ~Ý?ÒÛ_z‡§õ?/çÉ7®‘I¤DõJóé£K×Å—òGÇÒðÒÉ¢È{@€¤Íª”=×Ýý¾Þ½_·"PìFªŠˆ $J’?_÷û=ÕÑû»HÐE?……JÂ@#cIK^¢Gõ]= Ð<ð„4€v¡“΃ ¸½ßêÖÂ^ç3͇‘ãr¼;·÷ü:V—6P9Mžæ1C–bSõ­Ÿý”ÉC>COR:¾,/&—J—¯øz¹¹?Yjž^˜v£`î7‰ž÷ÈŸD¦Ád*ÛÏqº7ÛÔ×›gàý}†M’¸%ÀDÀÐ'N§›ûòí*ç €H8Ó>Hôv‡XZvùº”~9­ap­Œ«£‚ßÄÑý_S±Dž9íœ"Z?‚®ü"[óBõàcËãçH÷ÐTPè¤#á$è??Âþ~B¡íéO—©]!”ÝÆÚäŒd$%K‡)2ÓÞAš2z´ö>Æî©§¨rÈ@¥u¬aé{ÿo±ò|ØßÓë÷É­1&‚ @ïÖÒû$²@Pu”Tz\ÎOº ÜŸµ¾†‚8nŸ3NÑ}_áÔûS1Ò`À%äE£ú¦ æy\¯® d‚‰fSH:”Z þ49Ø¿³ÓÿÊý­þ÷„ )æ™ud§'F—þ7Ë^Äkswˆ-ÝTÉhj,ÿ›O7“µþðàl]„‘ƒàƶ­à’0±ŠM‚¤ÁÚdÚŸ™XCAU$NH°Uus ³@Òv S¼«uõ¯™Ë—F—’Åû×þŠÁ¹EÄþX"í¿!.Q­»Ÿ-Ž÷Z·4S9!y¶j«"ã ü+Obïîi?1€—½ Ð Cù)ŸOW÷yùÐPêÐ8aïˆg€T_W¯ýJÐ+Žw+Rš÷ÓŒ™ ^@ ¦i<ƪõ~6÷·C1ôö 4e:Àטp¨°ä,‹&¯ö{Ó¿Èý4 UüQ¢@™O^@×"ÛxêMyA•Bø#œÆÔÈC¿,Ô˜ØÜQké²êâtêH8ÑÁJ Ê«¹¡Õ´TÕd謺ڼI83ÎiP1;I7U]™ZìÒ´¼Ðañ`ŽÅéÂ`K&:Ùâ$ô¤\ÑsB‡³ów–KZÀÚdK”€ZXkù¼ù j]~7‹hœœ[}pÐ;í{ÀØá¾‡¼½¶Hùsá\Õ#Ñ^9’jr(ÖBÍC¨Is–(”±Äá±*9,ñËn3Y­²yc&2­Q¼ü>m®µRѲ·íƒèùJªp׉¢«àjõ¸ÊÆä²FŸiZ*õ½¹›xVdÀæ$-– ÀÏ8WçÉ`22$\xxEv )gfÃXZhÄwú ð»_Ç·úžÝäsW¦Ý¶[‘f£(vxzâë&‘òUâÄ¥]«ÖŸS?èed‹Ì7£ä¤FsN@FìJZÀî4ä™áÿ}¸ Mù©÷ðH“3*1V%Oørù¹€Š…EýX) zžoF{¡·)Þ¦î?tüºÏIuŸóxTèQbÿ‰¬ÿG“F0üûYC¹Îù?·#Ãåä*¼°2–Â6î½õ—éß ³çÉ~W@¬Yœã&%8D”ñ*v6»v}£¤'í¤_ˆiûwZQõÒ±°ʃùÉ{°ýoò0ë)7K¸0€cóTñ|./_xo±Ä.wPðg­"ê€@èÀE¢ÜžÂZÉéé²eÅ&TeX£¢ðâbI6¨d@º6ùYøêé«[[ð¢ZŒéè‡8kàø:•w``íÓËÖûp4@»šáŽ— ÕÆ'•g/ÈÇø>·Rç¿¿å<´ N}ùAšˆˆàbƒÉ˜Ž·£áøýNDÒ’¸&ž%5µOáâ÷Y$^Ÿ›S¹ü(TkŒ¿ Æ¥üvš 2âwÝô†Æ œþ3³W'ž—ÚõxŸLþˆË¶"z-Û£V›¶Î¿¿ÈïkÅ»°ã·M;T }Mo£½ø}/ì¹ëKíÊÖPñ ‡ËZ=÷iÙ°çðôÂ_ì#„) <°„ M(XÆ9ˆ‘dЇ\=?ºM‘ÖØcY ¤Â¨c!ès‹ýJŒÁ‘Å4ÝgNžÏWÐåj|Þ_=Oáœ;Pkk½Œuµ æ°Ë|L!Aoõ{E­Òô¦¯ÉÎ)núvþì>ÝX³ì°pøÜï7öuñ#e` ‘—EIªÛƒ=Ã;ÂUØòºFA>a-Ò^­_j,rF;µšmYº„ÿr #8—©6…¦ìH̉!7@QY©K#…á²Ë `¶ G¬»«¤â·ÄÖÁÐù'e‚50µ“Lë´  ÙÆÏJd|G>ÑTX[ìO:¥âZ¦  o¯¯®€ * =(B,H ú¯øÂÏØj ¥j]<>jÕT  Øót¶8þÇ«ü>Ç¥Vºµ€ªlÈ!†úMWÖ+ ¦ŽAµKDép ¦ 2dìáÖù})|ÏÓOƒ”•KáÈŒL5j9‰ae•?ãá…tÿ«†¡PÅéRQˆº\g–Pâ7ƒ”$àö¦ æWB’€‹}–²KÃ0ö ˜ôÃ6€mµyU1hèrÌ£…#)¬*‘©ÊicªBé`Ü|æ “ì«ð8N]Ÿ±Ö·ÛûÖ}6¾·ÐæÜ¥SÝÛà_%÷9o<ýž¹‘N>¡Ô3ÁF¤çeú_ÍÞ×;/.e|A¹ÖBÍ&›^f?ÐÕàÉéây*Ü:ôÒ彎Mfܦãѳ˜rcØЯ…&%}]`R%`2³0ÈKÊþÞ˜Wê5{X´q 5k%–O-¯FüÉ´0ŽôŒÜ¶u©‹…L•ñ\ë—ˆ`Ğ㌛:¾ÞóL¢ÃD$ý ÌâÉr‹gš‰<׆s<ûJ:!ƒF Óeq¼¸ûjiaÊ5Ъc„Ó¯ÏãâIUêF5¿J˜šË¹¾¼q½@e•)—L‡µ ÊÀ2Âðj!nÞ8ðe–êtÏ™¸ÜëýwÝGmdÄ›!†‘Fóšl o&–—5­<\_4åd7ù´²ðk/«•/1VŶR £kH`i€Þ ‚Y7ØvæÁÕUåFÜ)p,pàKp6è¹+~‰ýV_‚‘ë*î[†P&0a aK€W;–:yEg9Ô·J6zz„îs~b£Ù–‰ Ù—é[³æðµÿmUípT l;b^Fó^‹X>!3ñÂáCÈtél‡ø}©uþgÙsÐïàpÿÒв­TÙ߉©$Åٓǵø}éÆ ú ÞL.Ë`Ðkþu™-KxN7ýAUNÈiª9Á Á ÇÊ;s[a…ÉÈÆ^ÀO?°¯éüD·-ƒd)nƬm´P¯Òë–ö×§õ„5àŒø‚aaW%R:?NX]rÏšúU¿mê?‹7 @»”i—ÒuEÂÃúù¼ð£êéŒÌè”k|“žÒ©ÊWÁú]½a{]¾m°)º¼tî’Ë H ,AÙ?§›‚c„|\:€‡«¯N+‰pK%_ Å3ü5bYSH @c-"Ê_¨ú¼_Ê(†{AØèÛ“&ÿ;î¬þ®ÛŽ µ \¦iµDCÜÀ€´Üàçnÿ§ÜäYùŸOg´Òé‚èK?Û£©>C §.7yÀ®<"#Ì­óo=ßäÊ['áé†ÛÕ¬½O™Ïãqº=P*åÀ¨Ô@ZÑYÅÅ$? ÿ­äëý,«q&ª_¥™ïMW3<ž½Cä|=»ÎÃF5ÍÀ¥±~Èû“QE“ìë}ü–:T~9)ƒ ÛšËü—ŸP‚ˆî^ödÿ®cþ³…%õ´$ŠUÓêèèûž×ÑO6š6ÐL4‘gƒë{>Ç¡‚\3Qs=n`„ñýOå_¸êG•Ä_Et²d³_íù¯]-YeÀ€ Ïl¾_Í×CnÿëœÉÓAtøÿ—³†î¯o—Þ<ºê¹½…WBV’¯Á÷­rÊ.®=$ÓQ$kˆàµÎùg|1¬}3d"µmŸ¾~ç|ÿ÷Ô%SXý^€2?œ†V•tËþ~ –"¹ˆPZ°;‹Úù¦˜7&GoŠðp¡p~½š„“•@…î}àöQòšoh$êÏÅ#¼}&Y¶¯¥ó®þïîZFJ–‚”‚W)þžûg{è0üè:„•Ùñ*õ¬s%]œ—î=킉4Y3œÓŸI.;'¾Ý`ÃxÐhß³Zÿ-x½O³Ù·ây]OkÉg²†À/E†`ÒžÉ_ª=QÀÃFõbÀ4á±Þò2·Ûðmàú_\J€`l$‘‰dó:D€]œÞ÷+©á’$Š,â‰{_cèÞê|r†ÀAšY›é ”›ûÔÊï’NÎ×dÊö Úø~‚÷¸×J‘À†5Y[å•2¢Õ A‹õŒÆpÂé}ž$„}/ì|'L.‡íFPøßÎDr!T!…±Ð%ͺˆöÇ8ð‰!‚l|^—›$9*òœäy¬EaF- ÃÊšµ](€\øùŒ))–‡œ‘z¿Ä b<ï† ¢ /Ük¸«Ä}hœA8g‰Æãtn;€úõr‹XÿÒBƒ¶=`½¿hvZ°Tz‹…¯¢©¨êž…áΫœk-¸NME<+ŽUhxUœ}f먖8sZI}¸Ål  ðŒw@ÈN)=x&P¡ÔÉÏCþ¿¯îué}М¤ƒk¸ñq„ÜÔÉü?ñîLÞîžDøq!Y{ƒá£&¶™Co+DÈ_î‡ú0XćȨŸ…úã…uNã"{Z2(Q¡MÇ *‚†¬hMìl[7·¹™çé„Ke  ) žÊˆ¥ár@pÍË:ÇÁ¦tá¿Os«ÞS¼æ½ç‘HB‡Ö¡¾ùŠÔ®¯§­T3†&†YË ÉÖ»©¾˜Ýí¾Å$M®ë'ˆnÏUUÄé–Ò0ñ¿g/ã"û`HR®©'lL¡\Œ³þ^·‘’%2«K`XÐ΋ãeûœÇ¼!ý“‘‚x¶ÍzÉkþÌ j ´À25Z1F'‹Úþî<8ãªi¥ÔöÛü}®Ï{¯¦ŒŒat¤gásЧ6rìÒ9pÜWë‡'Á¸çw{£*è/v…Û>ûBŠÌ¯NOUÁ[߀ùf÷ô¿ß;ã þߥýì|¸k7b °°`¯·O¡Ó_ŸÈ¹ˆ¾ze”@Í‹Ö÷±Ç÷4.?óOLŸâ"ز²g5‹Ó¦~ÏÁsñjšg^Èã«/¥ÑùífnäHK†AÐηöÿÏüµŒå5%ºžçÖ\õàõ8Wì¼ÏûÔÖõy¿–öÿU ™þO/Ä H`:õ ±Òôw}÷í¸È3€¾2æøhJø ´E>*ž?™¬ÇEî¯Í8É€ë5®£Ÿ´_ésééÖðÚGÃ)g±ÅÞ§r`—1šO!ßÄÇÖü‚z›"3ië?ü¹òz“ˆdE|ØÉþÝSºî@ÏÚ¾Ûç´¡wéú*¡è<`%”]š,á_Sñ:U ºVƒH€œÔ:SjäÛcÍèóÿo÷Vˆ*–‘A(>ü H”êÀŒ/Ì÷õHbWÙ¾éÔþˆàÖI øÈ•梥ï®A&'»õ–1¡Þ^þ°Îoû¢·Á¶n úùú†ç Ç~·SQ?­ÿq zœ|Öâ3ý¤ð4Yµ½†6ìͧ…5 /]åÉælÎAT釵òÑöLåýÁÖÂ;¢X€+€}ÍüzÕk…åšs7H¶8p ŽíO;—´/Ë* €Ñm·LnÐq5à š[WÁ´·—„m ƒ¤P@5ŒÀ™èxÚ›åûŦ*Ê-w°ËkÅCš¹É¨YÕDP¶ I¸˜BÊ}èvØX—Œ¬„l‘ÇB¶u¿Îtâ°åÁ]#U±­ã#7Ÿ´víÊwëtÕ(£¸D(ˆ·›ÇŸUFä£cOWê Ý»Èö“XJŸ9ž¿ÐÆ%€Výcï¢4?ŠFOoÔû7€êm$ÝUŸG:¤ J=£C‡Ì 8ñÀ[Ðú .FlpN‡@€É–kêØ„Ï5¶ƒY²RÃÕã÷:¹¬Äp~rûŸ I’IÍk9é@Ú§ö¬Ð7)ÚèäG?Ÿý;ïHÆ,ÜÁO;5ž½_“¹Iÿ“)Ž?‚N_£¯¨‹‚yüÎÆݨ˿ϪPÚႊ‰”Âf8Ÿr®¶´€+ ë‹Ë @xQtÀ1ˆUÿG™/ñx×}Ý*g@Q± #¶"ÌIZî!Ì2û/ïq68µ ¼K@0 Yh0ï/@·1ËC˦>DWvXómZ&‰ ‰32T3 ’ªü/,Bž*¿åîߦ™k؈*«Õ[ü¾Õ¿+ŸF£þ9!Aƒ8ÎsEþá?³åG÷ÒüßÄô5QR¬À€&LË!¶z¬Á¾Ÿ«Ôq¼ÇºC¦Ü®ª¹íþ^˜4²E#X²¾§îý¿ÒüqÛæø<¤ô¶ÀH þOo‰Ó¸çôAþ-S4G_&Â#Q ("øH4>fàS“v:ã–ÔŠ89qïr»KòÇ¡[:,ib…ýß_^óôêž>1cÍ{ÖÄ|X=8í7XÎX9œ:5ÈTàÈñ>GUÝ‚øp„(A¢ú‚‡ct6ˆLrFVëA,GTšzWyi*²¸Ò)GPôþ±!*,ÕK&@~Lp_É—U³Ùqz 3ùÉñ¸z^^  ³¬*ò6Pž{T>ç‘§fç¦Úé:îêý¿\Ò”Ìá5ÈBCœv’—!¬æ®-™·¿«…~© •tèåÂÕ™,t0‰{„czÜž-`=û'urð!þÿfÍìOÅ‚±âÿ!žà•LE‰n°ì€úlº87ð89òr¦pþ|¯:ÒB°šJ/¥ú+¼aS±úc>›ªIg¾®£åª"Ó—HFg• +ÜæóÔâE,„EçÖ&Ò°¯Õ¿ýùNy@@O±oêiþ:$”Åp®M‡‚øÄ#s•8¥—PÄýN•ÿÁ?,ÓKbEaX0(JÂ~çÈ<±N‚`.È?Ä”ŠŒ+5ÏöKÞdc'Q>Wú¿Ôó×¹!F–»=“‰bYH?ˆ9Ú»’¿äÍú§ˆßí-c!a‘Ï´ê÷Di?Ƴ–⇼T¾Û¼OíüÊO ;cÑéüÍÞZŠ"P€´™¶Ø[ü5çýÿG÷.vkíÑ*‚­KH`*FÕâÃ)}¥(HF=¥# A?gÆÉAb]=²‚þM ÿ¿û† q(â³_GÓï1ú5`ÅŒe/e'§-t;ÿÌ‹€ >*Þ /öý'ê/þó£g ’ô¿Ñ§ý¸Xò¸ñ³/‡î+ûåðÕþJ0” ùÀÌd|ÐBô;*E0l]× ŠA$ç'¤î¥Gc4 BG\A%9z¥p0Xÿw¢‹r(šzñõCÿêYÿ8‡ï€g©Ýü Iƒ8èùAcÁfÑpº–ñÀ’ ‰!0Œ0ÑÌL’P¦]¸ œáÄò–D1…rdè§á1Ó;± >™2>v@â¡{胾¨ùÎaìP4!úÉN(P£ÿOü ø²õéWôÈž¯ƒåNÏ“§ümº&€qÒ³ù?˜F+Šð ¡OÁÿ×ø<Ý=`r©™ë¡ÞÜþë?‹ÿÛ8 8ù¾óñ^êÓ¥`Švhİ7|,§¾àžN&4šáW®°ç‹Oþ€ÿŠÍ*ÐV¡1ç#îwìûZWýݤûïÿ?÷ ú'õ,3`@6zøè ZõåàÊ&@à ówþ0û·D (°c>¯o¯cßÃöá•t“dNà–Ñ8_Åæô™øÂø¿ÀzO¤bȼúIÿæ@cñBË¿ÅÒSÿw ‰ÔB² Ô"Ô¿Ÿ„x&ÇùCq88ûÓ¾."  X.༄œ'. ?¾òXF¨†—Ò‘n˜Þ÷“ Ç$.˜(ѹÎð°(n§CÍ^p;ÿWÊ|ÖçMPˆ/‡¶ËÖ@:3|kàï«%ÔuðBÅÒDÑ >Ÿ‘û?Û»×ý‹‰’†Fä]cö«q5D1a°ÝAÌMNëCJÅ’»kᡄуÌkq`Â)²1µ~àܶ2SÝ·y=Ìõ6þwëxªä'ibž`ÎRJÕ’ÄE¿kšÛæN 9Šøìk(Ý@DûÈó7Gª”Ÿç:vâþ纴Sp4Y0‚kGwƳ=S¶¨§Ëùâ™ÃÏ,ŒŽ¨_Û:îjüÀztGçfõM¹A±¼¢ËÚ,éhÓ\nva†9ÁÎëÊÀÍ-_Ì`èP^I_›¡u•fr¶xdáÀ¡jI§î£<°1€cí³Š6˜I´N.î%YCºcrÞ´ÖlXEÌò|7¶Ê1T£ñJ qé¼PÀL °°2t9ë%Å0Œ¸ *¶ò4 q€ƒBÚw7Ìáò[˜°¨‘InX úÔ::"‘gÝÑéõF—åYü¥ú÷³ð6Å!‰ h ¿ûùU(@älè%G¨}‹ ‚mA5%ߨ’˜-û_L_±ün•|^p) „µ<É›Eê»o9³ƒ¶Š¨ÈP7 ò£Š«~(ƒNå¼ ÖîÔòëÀ¹À€‹|Ö>èQ@  ÷6XñFËS^`E¯½x}ù?›?ìñu=·5p w"ó>ÁiB‡ñ1(Xv$×ÄÔ÷÷cí0‰uݱÊ‚,ÂèˆÿýÉ”©då#ÒÉ:rLp`Cå‰Î†˜ $ñPµ(îU&àê`;É’rBY_p©Q£‘µx Ä”5+êü;Øx2°Ÿ5ÆÕÆkGM²HƒQˆlió^‡¶R5d{}ßPèoªéÝÚ4pv<ù·Â HúÝü”óËÀ.÷x¾oämÝwòqÍ跸גšÑ*.5í“«ö>üÅ÷(`ã+µ¸ÄŸ=3mn7C¥ô™êú¾ÆcV//{\?`Ì;ëv¯Ü±¬þ°f"eXFßî ȃv”˜QÁ °Mמ^¿;t¹ŽŸœ) >ŒÜªÜ~5C3ä.¢Ó±"tL0m&¿¤¼¾ËÍc4«ÆUÆ9Ñ*k}ýàÂØå>ãA\šZb'«ÈlŠ[)†0Ì„«c‰àÑõˆ…°ì߉…šÊ0ãÌ´l) )fª»ûÚüF¶>’nùÒCÉãgi¬ÐÖ@í>_ÊýÝ)¿à¿ÆW/lE¼©º Jßý-¿;Söz ÷Q¾¥j¾†(…RjU÷ºe?îž=NŒlæW›^H§ §N…¾/ßð<‰Ngå„Z§–Í"о…€ógŒ‚V®Èâ”Ðd?&©5? è†ã€H´‘GÔÌ«;ºùDUäI òMéžpç1|©Ú ­9æZâiŒ«. î¹m[ê-ݬàÒ±Åp33lµ@ø—Ú®A3ºá¿P؆yê¹'¿9gèe–u¨Ô’ߢ§§È¯w©~ª|NoÉz¸üŒÐ3ͼþH=»ßƒõón¬sWOeÊ6ÔÓ3g·J»'MÅIJ‡¡ µÿ˜4Ñ£ÌÖâ õ•fÐ6}`}í~ŠG[j¾:¾êâeãj±Ã鉤ÀQ þ0“á`¸@A„øï'0¹8;`¯r@Àäô£Àu=öê7^¼ úº*” ‡5€¼½«ÿ}û> <î?ÁÜÐÝæÖ>UÝ€ê†Ð#¾ý€ÀìVûêÆô)ù½, ‹`!E$ãíæc –¾¶Ž\¾‰ÿúsÉN,kýîº/ˆë ´ºt©{€, `ƒì}a¿Kãêøü2ë+ÇR¥[Þ]ÿŸê†¿›ôgp ¾¦ ¼ÓùÙ­*i–À“Çž„òö¹èpª±d Y3À «s{z?=•Žþ=Ša¦qaX¸EDô‚p§¡¶¶œlè±£Ü{òK&Dó!‹Ð‘€TB(±tl`Ê~m¤H¶rP'6 :¹g M0)qíO=žÀåÕªŒä匀°¯" u§’¥` VW½E+1¦R€ÌŒ>´w?p ÖËêVMRއõrÒû²v>ÆÍÿ¿Ç"¾€½Ðhk€Eɦ6»f›[mÜÿÞˆ å]öZ‡œîçli>ßVßÂì|¡èÁÞ‹Ìäàï±î‡úUÙ(´Ó·:×›B²ÀÓa‚B @;«˜ˆ¼.U ܱ?¡Sóïªúä2z𳿠ph‡Ù0 B¨.Ú3Ü:¶¶OMù®à‚<%ø”•ÃÖ'Vú¬ ÆWÆB€° Y~QE—þ@¡Ñá÷{¿W;:*äð¸tÅH ¶fécÕ@y`¾H@’`ˆŠà4m^2çÈýyyhWùÛà`¿>’]%“ÀaAˆ°@úÝøºœhv¶:¹|kÚ6x ØP:kVD*À´6 ñEÙ@ W‚bF;>f¿Áú®EûßÉnøÇ÷pÛˆÂzøcAº„@—×=µ °C€Ã 0€w»gFïÆä«ÚÚ µyß¾ï;ë!Q“MdT€@“Uk"”¿/ÚþWóGä~GåøËÑztïð¿ÓŒÇU3c£ÏHÞ-Ä _zgýuž¿5ÿx×}?“ùÏQ28çøò—î5]& Cb ôžB…'®:@¸ŒÐúÛwχW/#Ä·¼%ÿ]UƒM–˜%V@a’$R;ô¶œúX¼yù:Ÿйîb߯À¸{wˆ!¼×X8 øPŒ| `¾}/ ÓùQ-_ÕóCù-ªOÃüò‰r§‘5ßâÎBz tº0¿à]}é47÷õªmÒiOš@6÷ÀûlOL/ L †ý„‚@F¹~ÏãYÿGòv*ø²;Öé$+Ì¥afA®@mh¼]Ïz^_ìxš›Ÿ4‡Ðû*zË5Àf\"6ÄŠ S;îõüm,¾ç–çø»Îdï²[PÃÀió8¬Õ¨û²¸£h¨¥] “õ¾vë>Î×ùt5?+‘'S¦¢‡âç€6† 6|¨=u™ûmhÅçz£pé1Õ8NÃ(þLŠøHY‰k¯³èuËä¿‘“«ê÷8áÝ ¦» ýìˆû~ùWáÕ=*º>;ðßQkþ ð.Íž·Ö×>„Àzžøy`ú¸WdFç`–QÜ Ò«‹Œ×q€U)\—MGY âªd¿9º7cåY€°¬š;Õ]GN$JQö"Ëç6´°+Æ)a+(·&ÀNG^>þ|øø¼©àqe¯]II"ƒ—xÄaÒ)v@Ì(ayKQ3‘QÎP“ ËL¦b}þd#Øz×ÐO‰CCµQ '"÷ˆÿs¬¾Ü¶| àÈ\ã%‚9XÜÍeR™k¶<«+Zex"0­Æz!KŽ÷=mÖú\·6å=Ã×Ñ. ? Œ|“èóÄ#GîbÛõ>¶Â0}èWmÚ’ŸËœŠ°;]cgWK2ì¨~„d£e¤v3ŽËÑÆ>„^AW0Ácȳhbl;M%€ý>ïÄñ²5¬ßCʶ›‰ýEXIÝ쪻û$à1Š5ùÚqWc½Þ]Öé"èÎQÝ0¨½>vÈBS½‘äwªWÅ’89X}ƒ… É•»#Òe´~Ø‘EÕ’-€’g*¬ y¢˜ŽÜ‰Š¼pnÌ•+>[¡7,òy­”— Yڌȸ/2”W‹d1\‘î|‘¸ëRp§Ç ¬‹½à'v¬ÁBU´¤fšÖIÃݬ„4­NL”£JÀÁ·Ì£Ÿ¬²ïù÷œ–gÙ‘gÅ"K©K„³"£W™›¶qAd'°ç›²!3ÑÈ\'ñ—––uѼSÙ¸ m9‡¼AÂ6¯™Ù©€Ø­+ëŸ@¥Þ¸þØÀ7_€¤ˆ}¶3²Ú´ñÈ“`›Ùà8Rdq5M´oE‰»0HQtòÅ$ª\ÔmH¢5!ÄÈ{ÁŒ {Ñî„R¢J²™tá ¯†ýT5µˆ¥œ¦uìÈÚ9ŽHßÐWŠ×X¼ @È84&’%a¡™*ãÉRñUËZ6ù¥Ó•Î1fÀ)Y:ñB2Ï«@Z5N`ßM0ˆÞ ÌnšŸBiM³™Ñ ¥¹Ê.~:Ò¡"—+[\fR^ÔSö¡P¹ò.­ y2GÑÁ·ÄÞÎLáÊÇ.X¼ª8òtcÊ›©è[‚Ãjl›Ó‡,[4†wæûí—s)ÐËá;Þ¶¬€sŸÝ<©z"TàánÊ[™‰#N’)ùmxˆLÚHÁšÖÞ€ÿú=Ô=è`fPRy¨a=ÕÚtcÌ㚸!+i‘³ÄéN¿%~^BïŽ4¢º¾A,ÂÏ `DÈs,T3¶¾@µºc<§}„J‚ñ©ó®©\7ÎÇõœëÌ®o8 )C ¡@ dj ‘Vôzî*ºóФëÅŸ§§X‹Öð€Ì³<©p>LË­g0ÐÀ+aaZ¾uJCÕLÑ-—TlÐÀLDêäÀIÇ\w"Uã>Ðêšì\ŒG½f%ËäçÍ.°ˆøDì&HEsmFÆ-êz‰NìåÉÝ4×tŽð¡+N„*æTØdÐPn#&¢sæ“7Z¸” ÚŸuà`•ŒÏñP…៚7`Û¯ÐCÎζMĭ@z--€º(xKFÀǓӂáûÞz0 Œ5–4Vˆ ä`hý-ȺVJ×öë¬5쭇‰[…«—[¶Ì£¢À/^äI_i´ÃW) *G´³-*Ë›uiÄcÚqt‰^*ä® K',©¾¨wl4ŽÍ›¾‹¼æH¦Ì)FÑ@eb‹HHÌžBèÌ66.!¯%PùUûyÌSNL 0äßì–\jx•0©s­~Y¿#n 3ÊØRïŠè ôÎÓ*ª)´~s[€=Øv•g¦ *æGJ«„ɘÖc̽I·1—§r¦¾I^±¤giloÜ™@ÊÈþÔÛªìôÝ —…«jôÍ–òð² ó{„oÌ!‘…LÿÓFÛ`qÆuµõÀ|ydCàGˆ>¯0fª å]Y]ô…3ŽwÛ-}øU‹RäM¡&ü€-¹”5èf‘D_Øx‰_Ô¨l0€±€8Tä™wFñì;r7…$¼W¯)rÞ“bþ~(¨ûÊO2)‡uL„›Ñ<…Œ„‹2Ö94²åLºŒ, &% ÔJiV”úјEÝÒ‘Ë?Ý)bp“ˆN© ¥ˆ$Û‹|AÅÖg ¸å¹zs¬ ÑT2LSì5SÇ/êèéic\`jM«D.Ðô9‘#äõú‡‘Ê€€}S¾g©2Äù‘ñ´“îþ¢âïr»ØÃ—¤d²€/ˆ3 dC0|=j‹b§£ègI!Ç>Ÿ(>ÿ‹Æ²C‹äÙßÚçOqÓ•ÄF´ÕFu€ñà!]ÃÒ¬ªvBÀ ëb;U.õWå3‚Áe,×\ÉæÒÉŽ„›×3wô±¡¯;Z0Wƒo“°B €Zºõ·µþGÁÆü³ÛüÛ<¨Œ=œ¼õ-$¡0ì xM—^>În½ðdPë‘=Z…ª:ÇÂó ¯±®<ó}ÄeOjJÍ+6î}2N®µJî #%XUÐCë¾>ÌùÓVdötÛ0Ð6ü)á‰`• oÅ¥Šã6eUñ²i—JÁ¿câäï“é\÷Æ¿…ý”³C‘%tÍ<Þà} {6%" "H¸IÊuç×3Vž2`2œEöÏD›zMEï‚„áŠáßFP>œÙeÈ"oIÚŽªx1!l<ºA¡b|D4ŸuX|³eˆ¥ªÍ%˜íq.­Ó"äJp“€EÜS³f¿ì7:¥˜v¶ì¢:~ ¨(¹Î(zUgqÊÁ™hyF>H$œ¥*¤+0€‰Üt"Þ~ØpZgImÊ¢ÌÒ“C—+­—gäªs …=€Á™¯Œì ! ¬$ù-uÛv8Ù:‘°tãvã ©Uô¬¹4AÆ–¢îVÐöФw§œ4˜Þ’O] ¸b†·N0Pêþ¸yŒ\Ñe01Û š¨\JÒ öÖYjÀ¥‰V_}Œ‰G†ðp˜ŠfAP­e@·ä¯²h¸2¾y–G7x]¸¸Ó ‰ÁŠ3h FÀ„ˆñ´2蘆CŽãÄ©v•ùàÏ(#ŒzËl{´g¯9Gßš”ž{X¤Œxg›‚QÇ¡Ýg[×ç^ð¯ÓâÅôàn; pË®OCB |Ü(‚ÌöÌ"ž† »¢¨ž}PôR¨—YÊMðS#jvÄÈŸ2æf³ƒ( ¿VbZ„ÄjÙ%MíA[× ¯ƒ£’ˆ‡“йߔ´«¶·K$¿(öX‰†ËfÀVZœ^&ÏØZ*Q•ifH»¢sgŽ/ DVf(÷% {¤³/¦ñyÃ`‚ñÆÖ²Õ¯OBPÒôÐE·U‡ñuô×±‹˜H7¦¯¿¥O– ð´3ªŸ•.ϧLé\° BÀb« ¨ŒXá¼=­aÚ½]Œ}ߎLüãó{;ÁÂjГʔV¾,+±Àpƒ“€ d(ÀÌq4‹¶"Ê*è–v4QšõäÖÌs7XìÙ<ätR³MRåN¶²‡XNŠXÀGéV%¥æaÆyó \^%V£.âÎÇYîVC²~bjÓ ™ãRËB­JΞT IFW0€ÌÏ‹ ­yj)¼eXp€¢ãGC¯sü®+‡g,Ö¸:´ŒgJ™:(2éTIæ o¬ó9S/Nůß+Ïh‡WqEpõ`ù§Â-K¥:¼è¼'~MÙõ‚¿FÃNË[ `\éWf;(‡WZb…LNh ~ó<âAQâÅÆLo¥TTÐŽCy°4`Laʼb½Nϼ Ê®˜Æ™—×ú\äm“09ÛRp¡ÒWcæVG®T6º‡Þ¿^š^WÃl8Iq5Ѱ+Eez…žÍ½W#]Íí–®&±9Hš9g7æû¹96Óï”ïs!¶QÜHÓÈZMn$2c›s8IÚÄ1œE¦µfœ^ÜÒ",â ¹ô,œ…˜apmŠ)+I¼–ƤðhyÜðf´µ4yD¡æ=<™³U@TÖ….¢PÓ3WÊY1Ã`XÿǃIš‡Or©*„2w¦d™až(=ýCMZêÏBXVª'™÷=6ÎV÷K7ÖÀ(ư¬se©­Ú×Õ[Þ¿Ø{V^ÈØ·=H²#G 01¸Ëûl$,³œþÞcÔ–äò—ÂN„ˆSJ#)j5^œ^˜Æ8pGÅ,+ƒ åØY%&*<×Z?qÆš:cLÊòÑÔÈ<0B²@Å^ó•ÓÐ`ñ°€]$Jl0°3À¤]¨v“‰ßÏbj˜Þ€j ˆ¸çGBѦPõT Á¥O|nMÔ#âsÓr,ïîÙã’`)c‚º““ŽŬ¶á—OW„%L͵ýprGS,k@0¹¶j¿´ \ˆ€Xa¨£Ž JyH\ÉÅçW®‡›¯~Þ¡<cëY´.ÉñNŧ¼«[×ßevµœVYÓE‰@7$ÊÄ[¹¬YŠØpA’ÑíYPHo)êÞd¦Ô#–º)œÌ§¡‘°¬ó¦¶¬Ã2›¢ m¶æ |ÖÅFÞe¯ÆÀ?ØÉž\«¬ MÕÛ"P”‹°«æiÝCÚY…h²0Ò³ËF1+®y‘‹n‹`í”G(9ñ×›1€5-L=.×n¹`%Ë{!þ¤SÅ{m´7CA½r¶Önà©xÃÔ*]έ6 vDÚÎzQ! ‹@H@HÁGm!Pô _°j¬l祪ºX¬‚¦f{¾@žT Ò ÇqCo’µúƒ4]7}ºì<¢&Ì»*œ0z-ë&ĸY¤Ò4{²­ C­NÙ×»Øw® fó ƒµÖG)Þ Õã‹‹Ëò;DÖš9"Ç ÈQ×ê ³œÇq N‚meù5ûݧ^Cûvö\¸.Ì»E²_ðŒ7i µ(h`.å@>ÁñÔFA¢4Ð_©R¾ióæoèŠC’m ib·Z6ˆVœ–Ñ4=Œÿmèõ>û Sê ʹh÷8+G*¤‚ÏÊ»«) ÇÓμUä‹ 6ïO‚|tÛmó̵b«7„¦€RÅËATàÆ¨9,E Ƙ•v¦ÔÀäÀ½¼‚r¼&°BXðWÎé_@SÖ¹Ž`¤jõ*š.+ÔàœdÀ˺~„)Æf’EÂ2sxã˳ÉþìùºÔ³3LÇO9Ó‹‹a 4³£G¢­ØÖÂ\ÐX¬œ ï–²fæ­þÇG’ò eû®.$o –Bj•ØË!ks“e‚7 ÉqÆ”0Ô{ÕQ–7 8ä-¥ètÊ|K¯GañZôÂaBÙª,•Ò‚)÷žS…ªã,*IY‚0räÃq@KRôbñA±Jn³‡>·v U6m&.~ðÒðx’·ä«¡§P:ÒN죓aé±pͨ)1Ñ“PÎÈAû1¤ärqdÆmÆ[f-Õ“jrIW^ËjÞóÅ~ç…´ÿØfvÇ8c0#ý°t±s ¸Åtúsï¦å9h:Ui¨¼2f“S'¨£x”í¸Á"¾/ ÃÚ,5üP‚ÆÛí89ŸÌñðîeuã­烷‹ðàyÄUæ¥2Jb>m:¶8¸æ¯iN¾ùD9 ´ds@çGì,[`Ñõè=y¦CõçFæ¨Ô½ipU×Ç6"Kìlî·BÀ"¹1• °Ù‹¨g«'_PdØ+DÞ•ðOØM½³U!tºÍJÎen¹ië]½å­m’’¬÷Ëëyà%!˜%iÂJjg“¶ôi°% ÞºKèEëG»Fž‡ÍàšÒ¸›2 éS­Á‚V’ƒq¥i¥BBF­^ÆÕ>²´§!)Óf"Öhm·'2*L‡V1¸äð¹Eˆ©­á²®­k6,.¤ xçûP²§Ajú½ „vc?CN~Ú"XÊ䄤Q‰'9 ÝVV ¡- •6®à¹u¹ Œ;°:nñh‡Ìx]ç#ÎKûF"Ô×7±:$M@ÕVôòÐ㺎hðŸm*føz@œÃQJ"|ù+^ÎüŠ^6n—Er¦:’LC¬h©Ý+¯JgAnÿn)b‰¿UJ K…YOâÚ} Ôäé( ²qó²¶!Ü-¬wÕvKÞáÐEO«µ–A1¤±ÉÓ•ÑH$”T“À×%ƒÖda©Â.ðÌèy—yLñ¯0‡ZŠ匸FÚmLJ‰ÇKåÇòìSëŽRlV´,Ltì&DåÇZ=K/£k*A¤ì\üT-‚VÒp{ûH¦)•Õ"•r|¾ðh½K‚f`„¼ÔM|ZáÉEÃä< ²b™&Û’kÏ'V²Ø»?‚Œv\$gŸ¹/u[ÎýV×+–¶ò†*q±Y …lî…è«·…Žu¬¬oõݼø‚ÛZ+¶©"Zl…sÃ?p¹Ç´žåR ômM‡+Ž«&"Õ%U «ð*¡ï™i÷³¯ˆÁ[žå¼¸þ×ÙÒ¯cï6A;^‹dx_~]²ÔU̳óžxQmF‰ñ¯\„oEÚT¬™nÃxy–Úb#:"™')¬1 !°Í˜1NUýnÁœê}‹›TÕ3Õð@f|¡ë[ºÎ¶8|Ž®¶õOÜW0ò‘:€^´—Á)l)qÒÒƒ/Èó,K|ÛÆ÷ èvCUy4“`:HÍtÄ;3ä“`%âxì÷,5ýU†ÙïjËíÅndÃà˜‰Ã¬ZÝ,xdH .p[‹AÀuת(Vò"£š“¶0S)ÞÄgKEÃOËDb˜ ¡U²¦,yàï°'Õt¼‡¦B«†b}Ô“ú']Ý÷D1‚MßË” úÓ>ê t#£…¡`–ִ茭&bêº$gˆ•ö}ÕÞ Êsmƒ®¶Ôöex´*Ø4­ÎË=ºF6”¥ðË*é9¼YµÇh:‰qfk£“’š¿€Éjm„!RÞÆôõX°N‰ ¾4TÆW×Ë!Ê¢g މh¯±%3ù!7+Îetż+9ÈNŸwsÈÌÈйV*I8ÇIÚìãfÔÆ•|e=¿S˜>8‘²ÆË›@ÜÄÊý‰ýe`@(@±Ç4I‡_¯"ºp5{U!(î-_¯fý†(J>Žâu‰²]´VàhK&ç<ƒb…RêAÄ\æâD`ÓóçpF×6!ê±É«Ù@ó³"õÕdl½¹àíU𢿉°¸õÅOžÏœº@D.|ØW¶“.Ëo0Ú TÞÆÆØþkŽ‚Úp>8ÒN€Úå2VÃ÷'ÛBÎÆœ¨O6°þ®p.ÙD´ÊZ·IÏ•H;JòõÙ·u‹Ý–à]‘iZîLËNºáŠˆù¸9)¦·ˆó­y¨&—£¥¶ÒbïK÷/@~-Sò‘Õ-Îj…˜téL$mJJ² ™–² GÙÅ«ïY.tí5<È5ò{Q\2vÚ m‹tM)hÐ p„®|^ŠXÓ€·GÑr…‹A\Ó1q{5”cTI"x } +¤µÚ§¬¦v‚u~õ2†ˆ.L£ó²q™Ð\ÍlSbÊp!6&^¥{¨q Ó78Â+%œ¥1³ ´ síÒC=/v‘`‹6ßD²AxúÎE:Íl«¦#—ù­Ý­Òí²ìf‚Df°ä³‡”Œ#BÄæØ¨‹HGçsL…P •awP1e”6m¹7pЏôi%˜®æÚ¡!ž¾|ÜUÛæ¥É Ä›+V‚œ!È€Ø?RadD÷OSŒù- üªkf‘$0¥—Véˆp¾§ƒG}¢L'7åº&S̾¼°lêÕrje\`ß»Ì×5æÄØ“Zþž®ã¸V0sÎÌ`ž½&Rç'œ3ˆú¬{“ ëÔ±ä°Ys™p`—©bšYËÙÎÞÁ¹v»:lóvAÎ2¥f}ž¡¢z ²2°›ÕT1௴¢ºó3©ö,OÞÀ²+M>?°ñ~]b¬Ê-M·sønélRìÑ*˜;GÁÖdnhz—¦ xý˜ë¥-STóÄ(¹£s¾>ÂÖËîÓ/i:­f%ͬcjSª‰ôíÖ‘m'šJÛÙÏo15Q$äF‰p|m(u'‘6W ¤¯ ]^ìœÀ8Of];AcÝsOl©¨‘4FP!tb0­“ÕÒh’ÜÀÁqa°ætØ’5‰¡@_hSÜÒËœ–gr5RüY&fè¨$¢IM4ÙÌl4 Øc³ÂY«dL0®Äå^L¹ÊîQÃðÒ;g¹!•åêJ`Ë1 †?µ:Õ.ãwr ¸†'–Vå, å¢QmÓr¶â à€ei ×s'ýE}"ÐÍIãŸQ° ë5S]òwó¬ø¯}› Æ.6òû3Ö>\ï’:nÄŸ0Z4¢ÖšOBM/Ë`²Ï-Ê]H¥±ØÓYƒ¤•ãV«‹¢µQ"•¹ÇÛÝùUª{G»k…~i‰vWfTSàe²©£Q`½ºa°  ƒ XZ‚MC}à«al¤»Ñ†£Ì­Ôê/gì[H¢X%;Sm„·ð²ä8 è–x=‰Í®Kç.{÷7S²6#1Kgì X¨? úÜr)®Ìt—@ròÔÓÞ ¾ç‡³ä—±3tE|‹ãi° ÑW elo¡VGbdJ¡±¡×Ó¶aæNËg3 )ѰÀ‚¢:$ÃàJ÷żh?Í•%ˆ‘µ‰v|¬JƤMŽàxz‰‰&ŽÄ]ßO†œ’·Í*ì>jƒ„`5Â4Û± ¸^¶lKmÉB·!¹ ËŸos% ÷;¯Âõ%v GêX€»d\b"G1Ô`·Ü)l ½fo‚Ùé¼y& Ìê&ÅN‹›'aZ ‹²·Zhù³¥hÐ@³üæ"úø¿$ý.£ ñÊ5{'•y 8Î’$Ðp»cÌf#0Måýš[‡D d?”2Ôü"¼@E‚c˜ ÀèÁ|¾È‘ùæ:4?#=/…„]Vd¨HΠ=6èwA¼TZ¡ÀV ¬”¶’aã<‚Ö³À·=7bŠo21¡^;‚ŠÑàÄUädâ.å›â6¨­ Äë¿>¸ eHµÕ4ÄÃÅqL*²‚èÔéA}=NÝt¶\ö7ø¬}»ı,˜3Î…™œšm^X·étZ˜ð3€ƒÐ²„ic*ÑE&Çi\n-Ý\ìéúùè·ææòÎ,]ï«´¿W°Æúä¢qÔsÍ[l==ʨ‹´ÊÔ ¡L1ĸÙàá‡ÌnW«Ñ¦¬_{èó{Nuù‡ŽNéÏ!N³›Œd›e2ÚÇRÀ;ž3ÿIÀ %(âðB¥ŒqsM4}}š6}œ¿L3L*Â4øioZ; ó/­ö/Ÿ'Þ]ç¢l.]@Xˆ³•Ó‚ìÏYÕPG1y¬&ðOeп× íSYª»ª4ì˜O¶®²Ð=Ɖc.cŒÆQ6røÓ””Œæ”´Öm‡êñ¡ ½8,"w+iL†SY.1ð8ww,44OSøÐ±€ÚS7æmê?;ÔõS½Ñ…ëJU ãæe âñÜÂÓR1îÊv¶ƒÎ?I1ä/‚4úbÓ1 "¾C±&PíHŸ¦¿e½‡˜sy6É "¯«©×t/g$‘­¼tôˆÀE±ïlÜÄj5®ZI ¬ßTÎ9"¦v УR,Þ¬O ±Ç£‰ 0u¢Î5vÆf†i¹È³õ”˾qÈ›´mÅr¤pyè‚{=4•,÷aio‹M–qð+ UŒs3tìí³Mü°|YGHkÄkž|œr‚qDjs¿é¶4?(ߖ为Èû—q”»xwkú Œ ÈØ¹¨ —oŸ4®÷üDƒØkÉ ¸˜²ïñ81 [}ÍÐdÞÁFÕÕS”4BÐk2tÍ@úìÎî tÛÇ¥up¿Mÿ‹MìÜú,cÁÚ»H'Ô„G((Í;uÙ5–ãFO¼X+OºÊʇ{^g\xÌ«1A„[±Šrcž†_ c%4K6¦‰J,Е yˆ:^DÌŽ†”Êü3•CîÐðœÒ,rTD„bÉÁ&WèÑÙßZÉžÛ(Òf›F¶qÊOdKê—':zw`HÜîùÏso˜Yì-S‚é,„ê²È¦\°¯±J8“#»õøÈJìÙØ°“š’b;UÃ[XÜãÇÍ€YV 1ê‡d°šyClRIVì æœâßj€—ÑK#?ix‘‹*žŠõƒ4•+M¿nð”‘RTé§NHêQ.U'–]s0=’çùðoò G^ò1Y¦y“Þ´¡Wu.è"y¨;YK%"…­c¿^íO=3Ò7tô¦]~$S2æ*ëP2h^—€–a^^´¤~„ .14•FˆGȶN}ôW:R×<µ¥Þ¥$é²ÀQy#ù{bb<ð÷øÓ‹•ѺFDI@ØvD.N®Óg²´ÙX{1%Ÿ'eÏf¶-ž¿–⢶ï)©?0u·ê©©5ðP@BÞeÙ½7ìÜ^]Há`u‰êö`–c2—ß&ž#ÃÅ7¾.M^i ²…‰0: öp5ñgzEœØÛQ¯† ]m×UZÃEâ›ÀP‹U× ÐÕ3´s§ÛÏ։π`’ cp^™ñÙaáh ¥ïX¶¯ ^BÙ[jà[è”h-¤·vu³R8{é–©Ú'Ùt÷ÈBÈs7’ݲ¸œÐv´Ê6*k.B8\-. V«í0·Õ3DÍȃAB¡€ä”-NºÕŠÓ’•`¸æ)‰5©A Y{)Ó«‘#PnΈvÉæ:ôåh­ê&2BÊG+EápÚ®¾VÇN EØ æ^ð…,ë­¾M5öÎÅÒfp¦Q;"nN«‘°•%7F”yÎØj @®å„hì¶äÅ96»ñ.ûÖ»47 ‚p1“[eá4VYéeëRîîRm…~”œ”Èxô×í(“»ÙÂäÖG4Æ­·[@aD¹Ïèµn´¢‘s á~¬ÕÛ›fÛt»dEœÕm ´‹ú^¦<½ *´^DÝ'#'+=»Î‘¦+.,ˆØÒç°2 ÂN-¼O ýÿLK–ÑV¢‹é’ï^ÈÔgŒ- ôLDŒÚÁáúêD!lhЦâëT„öï/euqyd!0 X⪜>)‹ K,õ xê×ñË0LÞÖtî8º¶ì»Ô¦fé–lt%«ÉV~›U!à ç:ª¸UœEñŠÛuÚÍ ÖŽµÞJä»94ëÛt„HiÖÒ±ù¡y2£²:C̸¯óÁõÅ_Hôò¡KŽR ¸m¥F ‰Û—›Ù›"wÄ·WÆWBÔ+pñûÌ{Œ63 A3Øóœ`^Yª€;òOr¦%Õ’BñbdJË«!´9j‘‚yújX¹Ixãc,Þ‚¡<Çe­:ï­Nwa2a-•Ã$Rq¯Aº ‚]¨É5f÷XÉ­Võê«æ¨ÄRJi¶æ!)+:T¾«óüº¤k¯ŠtgC­û­ÉhKÊ(e#Ø› ÍŠ?Ö’Û†Ÿ[&s*s2. °Îs3[¶LXØü,x¥Ýf›mù ë‚?¡½4“ó@ZìûT*i²Êb[{ijtóP“4Ž+ÂüvnaÒ¦àa´+ûPi™ãjéÊ4lI¸'ë©ôÏ["¾Û”¾,)Äx}rrŒö¹qºR$*6‹ÇSÐÝÞNò±Qs\Ù=ócoOÖ%  G#BdÛHWmìGIÜÙdâœ)Ê,ËŽ¶Œì -Üþ¾çlýNWAùt â«Þ7û™Û‡‰fM‚ns0Zæàv't¶Õ÷†úëÞñ¼s1ÓOeÑ8¼ãœ„•›rœ€Ëóv$}[ËXËÄïMÅEÛ6êîAºJÉ#º¾’æ;1KÕwÝå¡qšðךÖi0]ì9g€ëUæK¹®ÕP|˜–UíaRNÿFÒh‰XÙÅâKæh‚Ò°€NéO 0ɳm⢦=Á£Í¦”5¤«BÃÀˆçÇ0±eÕµœ·¬]ŠÿnyYÛ í*D‡¢y´k”h€×!Tø& ôš¿pÛò²ÖóÃf –2‰ÒÛ[Rw¡nP†4 ¨”M³/@"³ž„¶HÐxtéóñE/½.öèaíƒöYHÃS›h\ˆZßÅn¬=¾l ¥>Ø¡´0ôëUíìŽK’yj…½­_ôÁmcEºA9¶0/G©ÛÜ߆®Óm’á`ƒ~ã—Xü_.Õ”aÖ9ê%=,Ò©Y‡Ù@¼ÑÈËÁr@×t”¢G”b7°0­ ›Ã»lüL]Žk¾–ëec€Ö´¯¸ì$U9@É!&ê«uN}WeŒê`@’9jY„gÍz\dÁ>¿@NE FüM âµj¨À3Ô×l4öŽØ01ç?ý:˜ÿyð˜{ˆ´ ²pÒÂt§sw¸=ÒTÉsÂrpC—.ú±–·Ù¶×Œå؅棧mß@–´ç?Øè ‹¬éN¹È’Wn4Cm9AÖÀ©[V‰G±-P²óÐba+ %~†X¾ÄíFëÀX ’¢¶é„Þ).‡©¹ŽçUý V[1˜Z7:X&]`# Ùx‰WW8Þêâž¿¥W*&FÛ™¹b•µpÛ:šFðÕåA³¦/´°Âk%õ]Z‚¾QØ©ÅËá®ã¢ÇÄ ,•â^y‹yɾ~eÐ=mØ[V!I _7NÀ§ãžÃKUkÑi‰b†1Ò­å­!³~ ÅGjç†cR&˜m[‰1¥Úh²¡dümE•ÂÌøhÂI$áÞÝó G<"tÌŽ¿<ózRíâz+ ¹%!Ò*Ô–®EAµ8²¯«;[Àiæjômp™ÕÉÉ€’-!Á+§ €r/ ²fÝ-Ë|*ël„Ã[R6B݈kt”*õj,¾Œ˜*A›Q2ˆã¸2ÄgóåÚø¢Ùk%Ý`Á33ÁÕ‘òAÉÅFNÔsSElnl2æU½ÔÖRèTòžZåO«'’AÔºjŸ³kw©_«ß„Ah|„°ò76ˆ]6í¼I÷•iÚiOiÑ[À@»0hbÞYÒDZaØ2ÁZÕ ˜ã…7 ¬gtKÒòæt”È=™n¼Ãq)lŽô%&# :ÕÉ‹ìwO!æKÀu0èÆ«ˆXQ]'‹‘²Û´.N-ÚeÓ"´@¤[mhèâbÆb7ß쌇Œ˜³iEZJ3/µ5ל›7c¡8µhn2Y0êH“1Îæß˜Ÿô¤ˆâ‹šèϓՔíË-ƒSj¼ÈçJ·€Är™ã¸Ö=!Ó’„µV¤Âý„ƒÞÀùYs½K´?/ûêY়ùÛ ;)ŸXÀ´±« DÏ@ÔÍ|éQn7mY]Ydb-¦ñK…~”3žd.Ô \©LeÉÆ¸c;Üp"€E@.G»A£Çt¸—ª©Ž²æ–Á‰ëVÝ€ß'[ˆã&éÐCb½‚\(…ÕØuÕ÷Vãó×òîJÆûH%ö¶£Pœ$z§u¶õæ‚w©–Zšúâñ4¹ºr•ZÁlÜH¸“ÍtfÈÅéÇAM£0õÓv‡ÃŸîAnçÆB:‡¿´¤¸’Ía¾,ÑÁš~¾ ùµ ö^´`÷«FØ%²ŽÔ÷ BϳÜEÖ"Ðâx‚z]m¹!Jr•õÈØÃ…6ïè1ŽÍquLÉLÙ5}eÒÑ]†NÀx D¡¤{ÈVŸÑ¢SÁ8^ÊIT 91Š|ÊØMIlÐÏÈÁ±ZÅá‘|•¨Æ““óñBBì6Ž—°TD ~*…Ô9ãaž,Ñ5•ÝDÿ;ÂQ/<ï6‘CÒH¬XÀÆUÀZä7NìÐ,N°A¤XôBÂP6v¬¡®?R[Vg±­`ÐkŠ,Ý`†‹Æ`Ì+#´À7“–fµÅý¾úÞÖò[ä, s±´Ö1HÒŸ5©· xæ´òÉOO¬H§ÆŠ×稛¾«qN¾´Ÿ‚‰àÁ8[…Tƒ(ewñ07´¤wøYN²N,E>»žZTüiò™ÏDý K2Wþ5ñ¥Ö°Qi4õrv±€à“Á¦>Ÿ °³TüzA!çûÎOQ©¤ ¹Ï ›þ¿àg‚AŽÆèÙø¦Y9äd¨¯P4QØn°¢¿Æ¿°fÚ m¾vì±8 +ÚÞz<Ñq.CÏÞFÁkgæt'*Ê *sŽédßå•îî×{¿pÈ’5ÖÙÆ(w0X²V„À¹ˆž±yUX´õÿ¹u'Úà•6eEBJN‡[‹[øÛX»ÎyoðÐQ[xÑjœÞ¬<ä¶nú0b»¢.ø:ŒRˆzmxÙJÞ@jÇ>±ÎñMp3Ò ¥˜;U›Á$eÞ“ØÛW VO±ÆñR¹”·àUI¯ÙÍmµŸu¹u.Ûq§¦}ù©f_`Ä^uë8ÊXÏ…âàþ¢~ §Ú6¤äß@@ Úòë7Ñûp5{fíézv¥ÈÑŒ£xœ)8²àÿfwÍfÁȵÁ"wdv£ÕŒÇj\·2ë½4y.wqx–Ý|˜Pu5­×ôº+ªÍÆ[Q8N¬Ãän‰èÕõ¤Ø4²8Tj³O¡Àß«}†ï[Vã1iËIu¿o:­1m—€Jf¢;-ËFÜ¥ƒœÑ þË Ši©!Fe®.›]{K02~÷1VÈä_Ýr&V»yëVAÚ~½z¾©¾´W‹°‰Ã©Ñ­E(ïaÍY¸Y‘Ãv‰©lQxÁý~ì6d¶½(ØÞ«T^Fƒ©IikLUþžz𬹲épíÚO`xJ^„7¡‹ãÚ ópLI”ë‘+СðÕðêìIɷذWé4ÈÑèW®qå+ 蔕þ# ‘8êÇ`]Û3°ù{¢@…dŠÉQ~²ðF³'.T’öþ@)¡¦¼ÂÚ?T§H|I¨ðG­5ÆíEG>AØjˆ'ϳä#\„ªç—„¾ÖSÒñ\>¥=k©›ZfþŒ&bÛ¼9|ÅÓÌÅR>R×´iVèÆkt&¸œøÈÒå:Ë«© 'qÑ~€>jBs¼õ„¿¾Ô…îWÔÄELåÀB£€p¯ggÕ®›Ù¦­fÀŽÞb´å7¬Û°îë‹…·NtùIÅ6"¨#P€ÅÇWo²þi4˜d¶Ø¬é˜iãËËC®eï3ŒK1¨AöB”kPàG k½ìÝRMŽú-Z`è>‡mË“õ {äÚåw”Fg3ƒßÊyF¬CÉZ=ò2Ôn†h–Ÿt µZ éÐrF š’ÿ¿ÓF²­Ôû)k\¦ Q±HÚ1D^E칸ãŠñ>E¿9Jì@Ai~Â[Ù†ÆAÃa;ÜF´\ôU.”,£ûü—½î¦±ÐßøýaOÚ”µ~PBc.§PUá”35ŽÉ'åâFlp_$Göª0¢¤´œ1ûöŠžk2΃ ÿÉmäÏàp˜ì‘g½yàÐÕŠ±NcÕ÷¤ÁÐU‰¨NUÖ¤ƒ`å‡üÐÜ¥¦0+N^ÐËErŽFÒòδ$fÛ)BzÔfj’êݳæÂãZif“hë<ìv[‘^ 'Þ?9téÊËÅÅF(”ëÍô'V6ÚÞMõã(´¢Ó‡“f•C€T 8Ôçí È?H/íô×Ek¡`¥>5Ù+[ÊU='ñBþUŽ=(:õ¬0 \Œvøû~'ú9·33™³;µòáú³q®[*dü2ù:áPAäUr •ãÕÉ0,z‰—õ=EôU’)O-Wƒð6¡âåõ³RLã³pjݱ˜fkž'IL¼s˜U¨T o.Ľf¦Á ë.†#œã /€Ï&(|è#,¢\ÞhEggÕ"h¤õ»>âÖÜ&›Fã:îÏ®¶&¡a̧Áwf.B‚ÁÌ޵ èUP—“´“´k] F™.MëëmkOóýØM,gó_ ¹Ï$7Ù>+¾vac9+ a¿çY-ã°lˆÖ|» JÂek=T«†™ñ–°lz©/¼ýl¸¾ïE²y¬–ŽÜ!éÉTu§ý[Q¬ ¶ve]›œ†s÷MCel¶®ˆÿ²¾VÜtõ|ð“̓®À§ˆðž†”±xǼ© íNÐË ‰(ŽéE*ýgv²ìH‰‰ÃO# r¤“Uûs!„ïwmxÁ (¿É”ìµî©„5?ËYã=" I#ƒrçW?úeº„r±ÇVR[¢ñߤ ¿vëÙ, .×=qw+™YÎôø”:—‹n±aôN‡X‚¾©j-²¥ã¾'?6’Ú*\Ctx6×m5¡6þ¦—*I¾žöÌûêh BtZ¤d=+§˜jð0úTt\È^ ª†È’·¿££OÝX‰ÆÐjÍÿã¼í[£ÒF[%Ò{!¢(èí¨ >HÍf÷£³§U‰s)áLñcÁõwz9<ü¶6Áï³K°zž–°¢)œ/sÛ•Oî“ݱºFUj㆕Òú¡vrmj^â(IÍeÐsV`ì5Ç-ÈD_ám>u*f Éã «Ã æm’›´‡ºÐ“ÖVc¿•‡rF$(8' ó°[‰Cr@r}‰vc’ÆSV¶pñê4j„ÀáCšLj@ï×mŽ]Û"nxuÐ*%²ã×GÒAQ_¹€‹Øè)€C`ÓÑŒeúþVõ±äëÉ3‘³b¨‹r•e¼‘NšÔ;àÂRUÀ—Ÿ2Æ*œØ †>¤OIòxs[œ’HÍdÍwøb¨–°u!DQˆfDð¶©ÐT)σöÍ…‚4÷"ÈLOŠÒõÞCÈ¥ì ½ÍWžÄ7ê=«h«ù»}|NLËÒ;|W®XLÊîÕ{ÓŽþœóš‚7;Rp0× J͹gtê¹Ê4AЦUéj‡rØ¡ÌîÓ™PTæ¬É~ªáu©`EÔ˸3h§õÞZçV„¾÷Ô`ÞÚèu²®Y%¤Ø®E\5dœNQJÜ’©ÀPVÚÌH¬qRü·=vžâ‘1ÒóQÉjœêà‡ûùÀÖ02À­lÆB36çJÄ“ï ?ƒ‹ÌÐÌ¢‘¯¥yŽz¯TCMþ×W9^(~gtË6ö™n÷Öco9:ÎÜIËÿÙäS65Mo‘mÈäÃ1ÃYÂÖŸkÂàj5¬ôt…>"Ï•Î3sÎꆸ:MOÔTÒ£ná/x Y+3£]ôpµ“òÚÐ=¤Ûë‚MÙžõ"Õ Jç#ÃÖÜÈ:"ìlû+äcÒ‹ÛŒ¨œfwŽÓåBÄ ¥)NK9Þ§S'rx.µNDP­d;6GûU+·´”W¢»²ëR‰¯©1En@››è lG·„Ï¥™;úVg+yXàà<ö–8’¨;óÍ ±’´?¹CÏ­Ê8&=ÿ±WQ~…] ±®“qVÒU°…ÔH®h´Ùꪥ‹°¥ç±3u-áIj˜„kªÌãÚpåg[•š)ðs$°6ºÎ`_2d%\i)WÝØY)ìý0öéDƸ!˜·e5U.#Ó`Ó|Á™½Í j±!o…N8ZYŠ9»ãmϬ ,ï’ŽÙˆew à™]Cù.Éè& çÆÆŽóñþ(ê ¾qü*euõf[–»ýZ,‚?\‹eÛK¥ˆ;NÚã™ÚóÚØubN4f·óh^¬>4d:O²P-×dLê¥çÿcw}œó´ ? ºÞUCIhwË7a 0D\nÿ¦h½”}¦ÆUêôcv¶É禴&òit¼öçÙoîWt ʤd"c;·•rr.ÁBÒ=ºØ±›ä Õ­ ºýÊ pd&¸n<@V7s˲¿EÄúTh¹P*ú)Lçr+´æÕøB"#—8sûnb¯³Õ¬\qcçBÓ6¼¡½]-Húþ×b’÷ËçvXÎ ôƒw˜ƒÕ¾ · õ©X¼ ž‡1s}ð2¡)÷í;œO[ªp§PµBŽIo«Jèó{“ÉC±ÆÓÀ™¨5ü«×fh5ÍþsÍ&¼ëñµÌJ¬ºö'@o)„¥­’ô~i-§ddϲ ¢í4 GYXOÚBÙ¨–&—/}¨ pV.톃$+ÏiÂíÍ"Ï (À?þßgÄÜö£ëï}ð/²+Úˆlr‹n‡Ç{ûàúà®æ[ÐWÙ™–O±\Áö8¿!ZËgãrË©î}X0þ¨Ž¿ h’cį‡î¤³f’ $ÿâg Wþ+ç–Kö¾ŽW"ÂÄc‚o5ço]™ʪ‹FØ+¬#ý‹­(±d [ð®‘>D[6öúä·eœ¥eɶë’é@>ÎwŸ:ÿ·A™‹hdMò«f+sµ…%µ÷ïz‹%œÎþ{Ý¢ø†5Š­âÇm<*½hűj˦!»Æ/ÓÓ‡²Ðü|1~A Æ€óiM4Nj S#–°–›Ýë%Ñ:Ùp¸I'¸—ξ¯qÊ›·×¦r‡Z…ªBoÃÄ’üTà'…·ª<£1QÏð®± Á*ëHj¢G'6ôõL(ù2g§¢ÉÊŸµû~܆žŽ)•ï¶ŽkëŒ;{L%„Œ¡ê¹û5¶Œ÷ÍÉ.ÕÄ—1¶t¨ë´œVÇGõŒ&E”Ú ©ÔýÓ¤TßÔ°r›ƒ\sǽ\²YŸT@¾ˆl¿~„ž'6Ð&¦WþäBÔ\ßGlnÄK/¢¯«(BDPåáq}?»¿Q¿­ˆ%Íž[óu¯­«¶ä»!ôLFÞþHžÜ Lïc³O½aÚ®kŠĪ®Éàû' &äµ,S_0)§ÊŒøÙ,ò ²Gõ»û 8¹sk&ìp ©[º+Zòó=OE?À©?ñ\ È¹tÿ[™§bÚ#%áەùMËÇŠeÞéMÙ‘Pûhšžçr¥c9ázÒB“*`‚GeâÓ´J¯t»»« <—O×ý[…¼5 ÍÍÔ5‹±½ª3Ò³§u}ÆŽù²®ý¹PÄʽ`"ÍGf‚ŽÑZëÝ^(ÎßE•ÛK%•O†¥¯Ñš'æ£4/UKn©7ÜÙu>Õ§ç« dMÌíÔIZ˯۵(É¢Üè®8ŽŠ_n¶¥ŸYÔæÿÌç®ÞìÔÏ?ÞcP‹÷>Ãdƒšˆ¶Š=»üó!q<èDÅÉ3΀!׫"ÿd~d¤Å'6Ç,lmÕ\QÖìF{Œ:yUç{gºÔ ¢fµÛ%쑃À‰0%Ÿ Šû/‘3]•Fsö0Xü?Ñ»åqéji+ʹš©ÀH‡jUL‡¤ ))£¯G eb9ß o˜wvÏã zT†èc³´ç·{Ò]6u‹–8¢ ’Z¿Gù‚k4$pè¬X—÷¸Ã˜Uµ1)þ™û˘kÒ„É÷pP­ø¿OúÀ؉ïWYùg5(u¦™WgÐݱ×K"Û‚õ¹J¨%hoésŒ¯ß›P‚?» åááÕÃOo¿`ÂàóŸ zlTaõÑ(¤w u»qoMYvÙ·9ÌÚÛ„>=¤ªÐ@>:.×\w5±µÈéßA²¥,M³—'ÖX®å<²YiVp¢³Gg@5úÞ쯑ۤ~±Öìv>r‹ÛN·ª¿ '²¯=n^,µ€ÎÌ€;–vÒmÛ^±°)ó=ó¸õxÄã™é,yGy†ÈÁÏkyb ÌVçW1ªûØÅ߯óøo†äc´¨~u‚`ü¾]£I„ Õï>Dä t9Ìkô\&¦p"âz† .£äGgV{™êæU¾¬—{€pžtV¢\¶ƒ«ì­û^e)­äVÿæOwT«‹ %ÓÉ ~«®?¥§ x”V»êÏõÙü ¼—o­œ3gCUÿ=:½ž·Ž€#ŸcSíìÐ9W&*+OÎj eÒ¨þ’iin÷Íýë›Ç¥é/Úˆƒ_BËÚ¥Žz—(,3ŽªÄ{¡DAŽëå0sýŒòûôßñÔ`ÿ ñ( Ô+lî%1øË´Åi[ý±±÷=‘ õ‚Âî¬ÿ™¯3 Á¥Y*òk!š Ã¥¨—ã½!¡ßp×>cƒ’öÎqʘܷ»»’…¯°Ý#À7I‚ Ùañ,cÜ¡€py‚œ‰èAèˆ‹Ç z y1Š0;Ìb§;·×oßâ‚ÕiÍ峕«ÑÑDC[©ÂÛ&®ì>^›Ój?™¤,&f?‡C’§Ä½ ªª)vB]Ä«ì@Ow# ;¾ —ͧUÏÝa>éË;Ý*¯Ó19«gª„]:ð¿O'’vád}o}ÇÇ»î¯'–®ÛåÐkìaÃwãka•lƒ¼êÙÞ10Iñ7€&Ùx~ˈúÛû(Uo^Oš ©'y>o²¢A× ÅtGëî@î/,k!ìÖ~×ÂÝq{²¡ãƒ{Ö^" »ËÍy %˜4’]úÔ”P©àÛÓi¦tÔ¯]–îÝ÷êÂæoñÏV*ìr-[ª0^¶nN˜ØVv+[>&|_Ç×’­þzW€üçe»ÀÎ02vP7IBtÀ¶MˆU ä-‹"ÜóºôÒ#œNÒ{jžö˜Wék:½f Ç̇·•w¬w6HÅÎÜÌõãÝwýͨ¥˜­•Vœ}½¾Q•§v—õ…µÍš.ûƒ1AÁ"^¶zbÚÑ!¥§xl QéGéªàκk°g´ÞðkT-åÏTX3t"#Î0yÁfäàíøÐïA'Vv…eäiÃÀÌy¿j1mÜ=Óbam·ïÌk(UPÓõæOCžGFArÅVq€*ó¼¶~ÚÍT‘~jÙé òU¯qCÿorÂÛ„ÞaÕì!ôóÚNïb!ŽˆvM~¿ö°Ñ¼¯iJcU±yþÁ]¡¿q\>2­l¬¾ ßÛûxQK]­E=ü¯s¶wì-5çÿ—×_.Þ®¡îqâ®=z ¾£Wl0ÓqZ}„Lµ¹ñPöÚ¥59¨è÷œß{ˆÙ/¼«À„ ¶·Òÿp'µ+z¤lý3£µ,[ÝîÛ_ˆìNô8Ùº’Ñm8ç/wo×ïYR¶”\úa®mQšîK²#4˜V/EáÏç„c¾—X¤¥S—r8L2dÿe‹”SÐ*Ÿe´ï9YŠgìvʬ”(ìù¸ô§‚ÍÒPt„§))Ç¡±?›ÛÁÕÑØ<øÓ§¥ vÔ¨ŸQÖþ4} üÇæ†'÷rÛÔ¶Ép´îg…½†Õ›=÷Ê1¹ÁŒúP¶ëÆÀ)®†$ÿɷщ)áºÒüU+º’ι=*åÁ¬È{ÛÁßñý£(j@ÝÌÑÚb6CD7 ?Ðr½îD·*üvî„«µ+줢âöÉüVŸ%íZüß_o•Çäk‹¦ÞÈÌÿ¨Ù&õ0Å÷­u©7ê²ðÜd!t=´E¼Âþppnß+Zê矩åg­5ÜÝœo\Ê g¡;1ôh?nÈI_cúbôý,mïİCÅ|ùÑXÌð{YàõTÚEÔ„Ë©¯äîýýb°Ø Qܵ[àðH"]ºÆú¾ã:ó¸ šZ[^&ü²uvãx¤vyû>¯S­x'/ì®ÁÓuÉîÇÃýpõÌet~zOÔtCGãþ®xùv|ôÛ›lÝ,;ô‹½  ÞŽT–\$2Pp`ݪ"aúçÿâöWJž^«>²G»S<¸Ñ!–SË”OužCÑi=à}Jî;àù2׫ŠË>ÆùåÛ£»Ø®Åª³¤>Kʾòö½òä‹XcÅŒøCô#GÿˆéP.ÕîÍe2}YË6?}¹«óv¼k~¿Û*8  ÅºYmpý`žP[í¾ö©Âʉþ¯Ó®ó?wf Bq»d»ì ©¶­ú=|Xy>äÕÓí¥Û*½/Ž‚‹îgšÄr«™KùWìG)ÂX¶I ¤†öÙåvêWÿëõ!k'’“Èk:ÍÑ5q0X ’Ù0 º½Ñ.°ŸC±jŒ9ðý˜ÿ®ÈöÒ¥D ÑæCx+€Sí••Mho¹Ôƒ~ý™·@(-{ÙÎžÏÆg¶ªÞ*®·]¼óêê5Uxµ¥[ÞÜþi›)ú6hµo©÷#þÌåIUîž]šmô¦ü íÉXyÙÙ 4°½›à«§Á¤ ȳË1´Ã+q¿ËgJ[cŠoTtǧ(>J_ëMoIÕ¬µ¿·™öÝÀî¦w]ljºÖðùÚ¬[ÌU±´kD|ýwV¯#9¬ž^„è·)—\‹~O‡zÿ2Фq¾«æoì|W«‡k8ý ¹ ´XG÷dHÆü®>Õ<½Î.’¦çêUæ·å?ŸÌüIàQî>õTP]K Ûÿ‘#^/…B<ŽÁ¿ð”‚µ²,¬¨eù®ÿbÑt!rW—Û-®sû’çŸ)kµ“ÓÈ9evÄ@ZòÜS0µÙ+2?_‡ž[s«0ÕÞC2›–™¦ÆFñoðŽ97UÜͽa@’c7ÕûI¶@§í|2~ûP̽엥œ!$æûæÛ÷¡³ŠúO¨Nü€–ãTYŽxàXÔÓF hžx-<Ù¼×kD¦Â÷°^ %yëÓfsší$X%wœ;˜•Žç™ :6’›Ë¥•™•%WË#Ü̽íýkÖWäX•¼ÖÔ­ó7 $³4=q1§üç ¼|ã¨ì··|·†©Ó|²ØÄ¸ BÊYðtØŸü«–‚*åJÝês 8÷ìC>ÃQ‹e~’J$åëDÛ]¿g»9ò¢ž›Ø²‰xÍ>ï7aү؊w7ý_K}œh7~œ­–QÙ ¶]S´+zó%÷G%ãÕ\þL´Â””³aΣ’Isä|Ï2Ú9jïöY³®’”Ÿ™ÄìkÒé²NTÜÒåqFQƒú<ŠñÆ)ÝÒŠùœS êEŽg ×£®+zëìïf¨ú]A |Ïõ»‘Íül½žPÈsUþÒøþ+ÞÈ'Ê%§Ó¼%ûhýWÇh_+«xßaØE2Tœò&:îðÔÚ?Vä,Þ‡äÒ›îú£@öc²è|]?ËŽ/ÿ~åž7þ•ª$ݯÇ=Ïݙտþ`\ÅCÉå6Í5™KxÑ»4¢‹É(L ¯‘§ú4®Å‚¸kîZ€™¯ éÇ^ïGi\¾%V²C~ˆú¿ÌîÅ—{za›îiúתžTˆ–d{ë'rö<ê&‚¯BZþ>äÐU~³YŽæ"¹xOf1+Ø Ço|Ú JeëyÙ8¦X_#ÕjÞÿ¾ß_A®­Þ-ùz®–ñkJ!œPÅ@ªîz_…Ä ¿YÓêF·6Ë­È 9I[6‰¾Žñ×¥|ÊïŽÇö3Q¾T­@œ`Ç—ÂáÈf§qÀÝÿ‘P°Rßì_ξãW.„CàXYÔ¦òãò<Ž€§>úâÁg5X³|\a k÷[bKO¸ëïQ.Ó™­õôäíÊe1±ÈÍ |m9qÞÔ!´;0r ¦Mš/t¢Õ—³öqÿwìcŸ·³¯@Õq]®2¯ ‹zÈFý ;½šïIþ—ïge¥Ž-êñ7fø]X¹àNdý ïgÀÂyüPW ðO, åˈôÜ<º¬ÕŽ*!„›—ôE!ßüÉ-qн,õa9çìJ)Ž˜Šzc.œŒ+ˆÙdýÛÚÁîxÔ×\xK.p=´äWúþÁ^k7µ²>מ…:ܵÑhÊ`_®j.̘mî°ÁZÅ;Ó3¼~Ø‚ã`,ºaênŸç†Âw”R•ø¦Áæ“ëWЯÖ‰‹Ó‡`cMýÃùÍã~¸éƒu™ñ<Ⱦ‚ØvnåŽVЧççéÖ.±ú½=扡Ú©œôzþÈL6eñr«ñf¼1ŸKü™W]¯M¯û Ú~ùPám0Œ‡zTBõ$à_M) ¿ÙI…‹GH§—;©;6b+«@ "{¹œ+}9u³¥cÝê<“s–óKµû᤿FÏ ‚\ðþI¦öNóGÍ«»·G “>Μ ÀC –ÜÂÞˆzf߀·8—3ÿ¡ÛJböY{ÎBãzø½èôò¹Õ©Iwº^+âZoMÑuD¯0¹¡¿wñ]±ôia‰3Q}žå9j<ã—Éz_›ÎžÁ>ÙlóA0íG !ü¹4ýy|\"hec—Ý_¹~Ë/ œŸlKº³4LUN3=Âò Jn·/*Â6ý˜¥çíV{îl¡j¿Ûÿ›ûï/éùþj°léµ)á¿î:”·t¶s/öÚîlõtp®Æ«ÿ{.wÛÎ bšDw,ÿES3Ôß¿õ€éz´Ø´h/~6ÑŸçù.:¡Ó ™uæ¡C*3Ng%6 /'£§³JÑ 0ùUŠžÅ©§ÄŒ¥°j_Ǽäz“òÔ¡ü=žöNý‹Ô¦…ÙMßÁi÷bØDm’&Ñ~ë/¿ÛÇÞP£ç-~‹K—ùžÌÕ©±3uÑüYÇdý§z˜R˜O¿H + µ¡àêp S?]^…Y ù­Öm}YÿÎ?Fÿ-ÖÊ9ÃÉôbÝßwÔлåü5¹1ž¥6±çTПåO߯ÄeÚ÷Õ¡riQYG“Иÿ2[‚Q­©Dx÷4ήùÝN8ˆ>JìG_»óžžŒÿÞÈw¡¾· 9ä{eŒh‹@Ì’h Dw…NÀEÎýè¥ê_òQ<¶Â‚Î%É%Aè^²ÝQ×ðÛÓðxÖÒ`ÇO«†ºUJ¶»ß86¾’ñìÏRÂlU„ì£1Ó1þÑì™™~=éSnÛ‘á+ËÞì¢n¯ÂQ¸'ÛÁEûw>ŸÆ“òA½¦G-â”JêåCá·K+§.‹‡ú¯2ÊÈXˆ´‚| G½qLÎd±A¦ר(5¹ÿ±aN˜ØÀßͤoöi¢þƒH½sŠ„.ïƒm}‡3êõ“è5„Ž”·öY`º‘®n]ƒ#ídyc+–vG`\ÍRéÿ—ˆQÝ1å~“ž­!e‰ $Ýs,IvÖpNj|Lý&o·¥›Öi õãòþÑôð½èùDSºLÞY¬ÎGû´F>Ùò¶©ÝëÏ€¿ÚþþÌfOˆw5[7ŸÌ3;wŸÕ‰ý7ƒ¹o(öÃûÊ»åfû>%Ö‹½&ý×}þOC¡R}¾Ç—¦ççûb² gî¿óâz-Q©…¨˜?0Ó_ctS¸¹žñ›ë©Iü‚Y½iñtX^ºÈÆ´“•ÌO.õwÐw;L97ýwFPÙŽ-j]ƒÓËÖw¼ßÚTÝPi}›ˆógúíô¼+ÿ}GþeikKYÿ°uœa禰º?çןîY÷ñý˜«Nˆè˜è~}X7gÓŽm±ËÏ“á{<.!{ê¾5;H²þ¬Ïø¹þŽöªº½ÄW|ÌáZ¶ÈÞ×F'óûk27{8Ž éÑŸçYƒÂb°tÀ_õÖ,¹›O¥ÚíC$Óge K÷CëeéùéÙ®¤¼ƒ%ØžÜ&C*Þjk¦þy_BçYíãþRb^ö– S¸ÀS– ñƒXcþ·¾í _£‡±ó…°ÒZ#0Cb¥%4îa‡µ§úõ LxûZÃ'œzÏÆç?oæŽ+ª$—˜âµäNÀ<ù-Z §yü¥µüíÐgÛiÕ›® 0íÄGuònÐT35ûw¬¼=~Ç«.½ˆNáˆ\˜œ!ÚíÌÞúkwß׌jYç¢zÁÌeæ_ÏÓóñ31ØùsSæØÞþŸÌ~@¶Ò¯ŒCk`š2·dIÌ'_þ?¬„¿Ú è¨Ð²¶S²ä~)¯hjünÏ1êäæN |ÿé«ÙêÓ¤!mû¯5ßè ̾ӭÃÿ·oyúëš ©Ó~1é:K¥tYz@YV9íþK²ÇûP,­4ðŒÑ]~Ðüio÷·Á\Eo/ÖUž2ѾÝûíÅJ=úo"ÚM—ÏöÈÂK0sÿ’ “y–Þ>ö¬ ª÷«Ô¬5oðßý"Ö\SçFöHú98UhG%µÇ”âVÇÒÝ\¥·Î‹ÉymЀôÿw ¨Ÿ‡ñvÍ UŸŸjZÿ¿ïöbRî³zZ‹DS·“«Æab†Ô”ŠuÐÏ®ùÓøf襭éo$wGí3üÀÜœ€¿§ùJD—KÝ×)ßô.™;À­úð(Ô×|Z½»è.u圫šãñ¤ÿŒ…´_Ïá,©ýd…_K·­­u¦8 kž‰I§œÃÃσš×f†&Ϻ/¯˜9¹)>?uàs­oµù¶Ñî”ÒµÝI {©OüñT³9xùð|úBûq¡i¶³îï |ã¹]‹Š¹þkõVŸ'¾ ¾ÀÓ…Ÿ6%T ïö-þ›Ú›AïŽ*ó…Ø4ñ]!è#Ñè¹ÕÙM!lb¾øöh4¿Óÿ,õ!Z’~+€¨¾¯Åc´^ʹê¾[ÔYו©®¬ÏSü1¿¿ý˟صÅÿ{¶;v7;µñ=¸~Þ:ͳÏHc<ïF‰Elž¼'ÛsÜI·ªÞß)¢óýþ0λ_–Ówþ¥”W Eq¥ß`Ñ[>yZÁÿV£…'{ô¿$ÏH¹¹¥Ú„$6øiÙÊ_ÄD5øV¶•eÿoî0Ëí½·ëwɥݻVEüâX[{ôi!޽3Xû­5ó LTØTiWA%ëí]’Vl‚ý»‘k}9!MUP=€Õž1ø—»yÅŽ6‰Š/+¢˜ƒF½N>¯hU‡µíÉ/e”¥ö×1ü†>˜Þo˜CyÁšûßâOùufvWÓ¯Uþ¿Œü>GÉï¾"·ìÅŸ<Òëú¯éw{ª x–»"£Z”ÚÓ¢³ýÀýµ™§›¯û×»™wmvq:éß”~ÙC¢˜PÕÍh?ý¯ÕüY¸Ü,OчŠûw×w&IÏôæÖ¢ì\R³yo×Ìú:_ýèóª¢òÿÞDjÝŸÕŠ÷ã‰ñYÃ`7¦‡«omë{‡3ìB¶aíö×¶oôxp©vyðorGþm°ÜOýZuÃîÔdR@#A ž–·jè›2Ë ÷ =š°6Zߺ<§Ž%w­ús‘óOû óÞÕ©´/…·Od¯‘½´‡¿ö}â>‰þ®ƒVAÈ î1T–†Ù øFÇKÍ"¶+Þ]dz°\ òd_¾U]~†€ä¸^ë-¼+šË σeBXÌ4¦Ôÿ€Ë¯Ôl{Œì‹†v»þuC™í£f›W¿Wyi¼Á=/`þw[&8žVÒo¶}»íë!à=ý=µé‚X3Ük¿¸?¦ªÐ _q÷–¯”Yß¼öbÕŦeÏòj•Ëcû†ojõ³~ ÿRÍ^•hX#¾õë‚æ…"œóä†ôê­‘Ä]üká2Á3ÿ`Ýžnæ}[ªYþT^ú¯‡G!]‘’GŠÆb½— ßÖÇ“Us§·MG¦¨¼kïã0H/l寫tùפþ¥pê`„ãÊI3ñ‘°òêÜSºÆy`µgTé`¬Õœ‡=dÁ¹Õ“áqY¤Œjì7j>Ý^&]çöXÿWq'Ï>ËTß«S‰Žïm¯—Ë<ËfËêëÒJ-éG/²ˆ°1Q •ð°Ï˜þÚ>ëÝ£~K˜z¿¾E\ä­¼Ì5ƒ¨‘/²öpÝß{zÕ¾§…\ÏP\‡ýqäÍÜ,6§-ÛÜìßÓö¿ÙÊ‚ž8î\ö¨Þ«ê³õ?Ãa‚Þ ÁÄšÿl—ß!ÍsæÄÆIÜÓúØ(oVQõ´ÓDþ ôöýüø9ë¨ÎtÖߤ×<_ ÐÊÕ:¨o+t©ßh¨ºŽÃ] ×C\s|² †L‡ñâïï]Üû<ÙvsÒ{¡ê7ÿ†€`¿jÿª>žý3Æ8Á†|b$üç??þqVnú;|y•mï³%ðCŽ<ªµ+ã/[‡º˜”™RÛ.«ü\ðkѵ'@Ä8y^Ÿ2ÿ“¦:þþ’ø&¦ÙY‰ì笚ýJü{¼ö…;O-w7ž?Cíþ«âŠ´¬}°õ¼í#9lp~˯Ÿqë´ë´ß!¢¿kô~Ðq5X¯òÒû¿WßµòÓÕã%ŸV{†Jn~¡MnBo´\SØîe RËäû{\î]¯´ÎÛ«¹ÖÈóSõ§\¾‹L·—M~<î|‚FE¯ðn’ÓÍ÷w§ðìó®-F.Ëê}RU1<źðzkž=‚ò=\úò`{îŸj¿);Ï“Ù[#¿”WÖ¸V» ·Ûi¡A‚ð»Ík½ÜÛþ‚‚½ÆèÇ­9ÙàÂcì­?©Á5»ŠÉ¨Zð\$Oá½?|ýÜôµb¤Zg¨ìHÑkm®‚úXù»ÖxמÞÎßF)eâ?éO:ø[ÃcÈ{¾©Æì.Ù €Èé0?ÿk¥u¥‘x˜© N^MòU ÷Þ[ü‡ÿẞí‰Z\€@Ðx0¼=ñ~?ÿ_ey¾ç‡Cà0Ð-½»™ÄÉü> šÖsXkò}ú‰Ö!.ÝßXõ¢€ŠÏêeRØkýâjês@£€p?3ÿ_nÊWE‘sƒhã/£ê•«ðýŠ„q-{ÿë_ñ·±Ï?ý¡1‚l†‰ë=a/®€[ÔìV>‰ik5®‰üœµj2Àõ€q ¸¦FXàRtô3þ›ÝÇl0ܽþøØ;ß¶¶Ç~TT:Ì]Û DCEáA²€=2€ä=ºËî•{ó^­üw“­!5[cä~Qð š ¨3½~ÓwV‡7C¥Ìâ÷•Œº¿¯°ÙYroÆGåû·YíOHßÅdš§Y‰_ŠÑ?ñ å—Îrâ/â7êm™! <»m/7{zÕ;æFSûÅ«ºÅ]åâj;<Í'K²«\C5CIÔT€h«ƒ‹`oI•M^ò{°±÷^·1[zöÖ; 'ø]9<=/îîþLôÅ…+x]VkPZþ:’]v×X]P˜'Y}iÜëž0JP´ÿGò-/Ì æ4Gy,iŸånv£¿…ñ”úk ­~t+E´'q»-P1aød%Q8¶x?h†>È—åB50ßã!c®4 úÿÏ @ÖË¿ëÆ§às`òŒ¸wuíF²Å¤eš0ÿöt€Y0Àv2~.ËpârÈEûF&‡À/GìsÑÖ c·Jу·ùJ^­1Ȱ4"_ÜSÕ¬`¿.3Kœ¶££þÊ|V {ð‚Sóçi­û)<%Ž%Ø{¯Éi…‚dø‹ûv'¾µƒ$kr–ÙÙX!)»›è|Q/cr`Ê\1:Õºô'áS׬ðÌ× ¿h ÿ{ìQŽPºž@Âm–ÝæF,•êiÓDšH%âSí½Po+çI¨>W"i­·©êè@F-–±1 é…cÔŒq|®»µÈÁqtÕ?|žw&“òF{=Ÿßû°üþžÏ:*óuÅk*beJ”ùd¨‘é7;ŸUŸ‘ 4&šP?yª_w‘×…#¥vÍœŽñKêv­ÜÑ[|Ù,Pàn+¾¿ß¡ås±ä‡°Š«’jbβâü/ÒvÛì…‘a©þ?vP”ï|k]}þ!“½.¿¾— ÞË¢ž˜–LUz™³#üûÇ£jÃþÍlKÕ{ß§ÿ¢ªŸÂ¹.2qª†LLÜ7¾?|^I˜úZ)å›=ºOõúÊÌ«ýK®týZ‘MS¬gmÒ°iô}š’¬˜õ¥Ñ?<¶ÖVuØ·j–WI ùñ}ècñþ¯×ÚïüÙÐw×j3ÝÐ`MÀ]솳}2yÌ0Jè&˜Ÿ,Ðÿ:²Åº*ð\Ð&Ú‡_M-Âãµ ÉJ/¹ö÷ÍÙ{à(:˜Ôó¿Ñ"kwô‹Ž‰€Ùƒ5–qø?.çE}ÜšŠº eÇA.É?ž>Œ.{„µ]OÛ/ÕnWüj#ÛNy¦ä± ð¸S R°ÇbhøÞ;ÚQiuýˆ_×éÃüiÜ©¼~UË!}i:­£ÇÄÉ/%Ãyàèì(“oݘ4݆Ít‡zéê×û~³&Z“ÅýèKè˜mA®k?Ĥl^{Wñ.ì‡5ÿ¯NÝéÑ­ Ìçõãöº}r@sÛ^ÌŠä®Ã³Bè [Æü-]²â ûM¾ØÁ+÷H}±æ|Á¦žh !ŽšÍ…¹­?šÚ+êmS‹¶÷4ŠŒy—C$CbIƳlî-®;C¨Ý“âÝV\ÌèÃA¹üªü;x#¯–ܸëAr9ä?iŸ#W×1¯Mz™HRh”Wñx¡ÿ4ã¢Û6*b¨”GNA>úß ãÿ~•Ùï’Óû­û$,K5¯0ð!fò¼øc©šîûÙаýÉpk:X…)ðµFNîBLµ³v§¹>Ô}§ÛÓ7kYÉ;™¼üThÆ|v«?ÅÓ‡JþvÒ%+·¯uo¤‚I‘ÒëíÈGOMÎ…Û¤µ?ú]|'§¾Qyˆ™äkUhX)d|û¹äm¡Ú—V5Ú|ò¿¯ð¾]ýÚÄI^ô-Õóüí/'z0S‡§Žþ$´”ô°u.‰›7{Ü’ñvöñ=MÂ[ycò¾jýæ³§µa—evÖ`cé[áÃû´ð%4áÔè’e¬g_@l´K‚ØÍÌ—š§Ï`WzÃo~yjoîÝóÜE?÷1“–Û™°î~Ž®rÛ¡óÊ#·\íM99ëo",°îãK:Æñp ë Ÿô›@CµÙ=÷Áõ¼žïY#¤ns±òÞšo»Åð¡ºxâì^ÔHŠòüQéêè“SPÏÜ{`Áùæú;Pü®îÿnšõ¯¹í¢ óK£Ú§¤ÍÂr`oßì³=z¾Gñckô]oT²_ÛÚý½ÿTÁ“µöSæí齯vôþy5käp%‡þ$RïFÅAÙÝú~¾ˆÖXžÿe{ôAÑc™Æ]ÃÄÑFì5Yœ×ƒÕqÍ+wƒ·V&K¥ã²½’³r¡Ä²l9-—ÚÙÖvEüàxèšôö’¢ï“1©÷9ÿ)Þ†Öú©yZÿ\S? æÄýþ»þ›?''©¥’sL·ØäT«½á'æ yË©:黟Œ²‰‰ýÜ0>NÖóláƒü_ûìz”ô~ަ¼ìa¸Xza¼ËÔ ^‘Q5\Ô¢˜¥]¾bzøÇqzÐl]ÊW:¹p’Þï/‚Vßw–6Aÿ"sÜôÃárÛú©J×ygìèf.z Y4G?ðµŠ;ö°ò0}ú3àO÷ž›¢ü//`Ų%¢]a}Ãíî€ÞY†óKCxéu |YNÇ ¬ îÃu#è>*}4Àø·ctñ(=šß @ŠÅ̸¬Q]l'‹Ïn  '&.F`^¾å: ï]‘»¹»Êé;jd‡j;Í'éÖä@ýý† ç!^'¾¯‡éõ¿›¯N»¿ŠA¡Ë“ür©u–u4S>è/ÏÕµÿÂû ®žßkì/ao÷qTè†ù˜ö‹s>@d غµÍÍ·•w­f7×%â|Âñ° ×kýuÙÖ!¢á?°5Â&ÍAÄüá{Ñ[X^f ø´”Y)ò}øˆ]à$:–0¿×óškðÚP™ãýzœ¢Æ9ôAŸñ4•ôñùN¢Ëîþš>f’8=(Ÿìr¯¸Ëq ËÓä^¿ÜÃ…ÔÀ–«ß”XÂþ¬.KÝ_ƦÙñ^@­ŸWûýÄ:渾»µˆwÑØ\(h/d-Îzä¤Qi«[P8ÍŸñTfüÿÒÍŠÿ½^Îíd›¼>=æÛ4ó}GÒ£Vof’ÁÁ(ûÝók€Χ#—Ó¿\’W~SGÃôaœþ‘o²s®6i }ÝÊöîgùím‚Ô²ÁáÃÞØ8ÌZ}šû¤¼Kù„ß´ú¬}NŒT¿ÜY÷løˆQÞ÷ÝÓK¶ŸÇ!uÚõC˜Ãú²¸k¾ZSú\­ÒNŽŸ²˜ ÑþïÁଠŸb®šò_óëó¼ý:ñMŸ·àÕäwäj€~’w×ü ´£ÏùG·«¸äÕøö…r†í÷8º`pˆÃfú¸v=•X}ŧΦåãíüìP‹q³ýYUÿ0ò†TÓ“ã/;’tå®UšÅ4¥-‹^ý5½Ä6™ÿŒ‡§o9Þã†R…c{ ˆ¡i•`Wä_­ÕÃë3ðíX±{úW…E×Àa›õEfBSíælYSß㜻òWè|ßÊÒÇ -$£S#tk.å'»×Yé¶‚þ¤k»*t¤•˜›·‹ƒnäË×ÿÁÞÑ4ëËœþ“¥˜•_uoÐÈòÃÉ-¾t÷U²ùÚ–Xÿ+mNßËÖìO¤&Ó¿ä‘éÆF>TÚ½ÚWÀLM¢ûx(;`ÓÝ„h€Ùëtƒ+þƒÂ…—|Æñü); ,Ÿ~,_?Œ·êê¯ ¿¾ôuk#ô[l¯Î[åéëÔrr9¡|Šd¡ÆgZ{®–ù£½Éì4R‡!Øédë öŠõs{ª.hª—ÝÛZOìä·pÁ-›öÓØ×äºÌwl´Õüü>/ÙY ¥?CÞ˜NlÇV¨²óvY¢ÙŸÿFŽðNÏI‰£¦W[úd”HZ—ÃÙÚúüuéÛݸüLz^ÉŽYlGkZ(A‡6AH|ª.½þí}C³ÂùüÐþ(öÜ è‹;ë:^üŸc¢.ýÖRÔiê|ɦ´®‘±kÓZ[–TŒÖÚßÝò¬ÅE@£ãvº÷-!|ôZMǪ­n«­±Ñül éøæ¾¯ËCÆÍü•d–UÜ÷ªzë¹Uøù~ž-Eêl\é½äÆ’oÀ2³ãÕ¿[³ è¯‡Q^¥ˆXh¿™ª™›~åÜ›àE Nu¢àä§£ãêÞÔÄ`ù ú|=~hx“=9 Sï;sξzωPÜXxChýlJsê§%=Åw¥¾€r“Ô~¥*j•‰}eKp_ü–O³è‰hFšð ·cÿ«Û¥| >´ñ KÖé½3¹>Çì"Nõ¶ßæAÃ÷Ø#A;Ff€OH~»—®»›w®Ï]ß™Ki‹M'ÕKõå«xñA-\’7S!u†asÙ§' Êš]:õ ÁXÇëXc©>=lö³V·¹QN2trl½¼p½?wä$>s÷7ƒ[w¿Žåã#1ÑÔþŽž ?MMÉÓýIÙ6·¹L,¯ÂÞÇ„!Wܶÿ¯í~GOqU+Ž$ µ6 Ó./½|n¿Gÿ{à ¬ ã%EçæÉ„K ×ñ“aêVÏí¥íÍ€ÓYøzýO}šQ|žµE«J¤ô?Håô²‚£K+íÝc¾Ø¡²؆ŠQ†É0Ç›NÁBNÏŒÿý²³ÝR´lôú((>Ô«‘lÿXÙà˜ì‰æY# ª8Fôô_ƒZ@8óyµ)ë y’açúþFýä…ø²ž,¸ØC1³Z}|R@+¼}ÌtÜ} Äf–ÈW4:¬01¿¿ÂÁ{7‰íוU%¼°¶ßÒ îNeŠŸ έ²«RÞÚîNæq¦\ÞgÁó‹óžz?7ð~ægÊÝo–ÎñEü1Ð"Œ(µW‹'"¼"ÔÙ& ³e2}Ëÿž}OÆö©Ž‚s3oš õhÈÏÍ)6šp-;ïJcjŽD37KPEwÉš”úÐGŒ#õ~9 Ò÷îähèÛí²À­<¤Ë#ÑŒ€ª²ÙœŽrêLkuü[„…ôæ×NB‡Õ™ô‡xšŸ×ÕôÒ&úQõïÖÖƒIç±MsÍí3ú颼c”ÏæŒZ—÷RÍzòbä»,PYk|KªŠö·9¼×ÂÄå_Yôðb*l‚™ êÃ¥$?máSÉÏÅ÷a ÏóŠEå×Áv‹+o¥ÓºlmGEzr‹Êc•YÖ›žÆÙfäšèxrÁ}Ó¬nÏÔèŠÏ…}ŒÔø1‰:tùþOs%ìÙ¼íºz‡ *®§õC"É_ WUà,–gõ@ëØŒö¦ùGHÈæIÕ{h¹/’ª^ŽrÉœv Ön³¬geö¬…#[1ÝbÙ;®E ±Ü[ ÊCR·"[ŒÔ|öñßßw-¤ËóF/ø ‘$ ­5™+tE"äŽ_í`ÀÖ±_´ÚtähÈø¨¹ö¬^5ˉà’Zë÷öKÚõÀŠA õý>CŒòþ}¼>#“Ú?3$dmôU…s'ÿAnÖ*ï‘îöª¼7g™ºÙRhı-æûô*½è.zÙ7ýn­Ï×ONæÔ‹G°E×B­øˆCé/1],Ö+i™•ëUWã•ktû»Ëɬ|¬u±Ø+$2˜·b¦f%áZŠÝë;5‘Vô»º••—{ýq 7O½•ƒŸ³P‡ìtÍÿô”"ðѲ'–Ù(i‚y¼x¾–ÒèÜM¤öíÈÈcä,'٬ರ¸È¨qœýˆÂü˜µS4zŽ °Ùê¿z"Ý-ZÌÍ-ONE ǹ “…‹ëM¸+¤˜£SOlªë/vèdÞ4´Ë´‡áó‡ðžÚÀÚG°µz®ÆÃø !­è\éЗëÍÞÚ)‰ ;Ý¡toŸÐýæâÑÁôî½óH>¡‹Êλ~·Ö&âsvQö&Åæøøkv0¿G®á ž{8tp» 8Xzq2É- ¯ ,­ÑÕ5FvLŸ­0Å €c&‰ñƒÈéÊ:\úÈøò¦º‘btyП©‡ëåzè}N4SóÀ.;ÇGImº&ÉF‘е îÍŽšý¾Œ…¥QÙÄt¨“ýR Ü´6TôÞ«´¦æo]°kd)…N5EWgdgLÚ£ve‡Ïâc7ìt B¹%푊K@’6q–~ê§Ìÿÿ¡8kåµpG÷™äªÅØkìÐB<š¢´Q ‚hdîóæ—7{c73 Š£ûÆó¿6ÖõXØ0öÔ¨ 5/qýÚÃÝãÉlÃìŠä*òc‰Ê&¹EŸÕøjIflaƒåq*Â.:Nõr® yg>No¨‚Ì QÙÞñ»Á|ÓÜlè_1XØþ‡]ð|~`/œÕ*~ùüvf-ø÷\­UTE²{f‚š÷ªÃý;éIP9þ‹E¾oØ÷ÔvÒê Ù¼Ø"~õÏ“³:•ÿ.]àÝ@²íý²¨-JÐòÏe÷öç™™ýJºÓ<ùHòõdá%ñ©:ÉVlÏÐq bm¹/÷Ï(M(à÷FA¥  wÿ½v)‘¦¢ÉF¹£KÛ‘¨¢ºRÆ9˜ß4$ˆ™.É_g¦\~^‚u 1eÜ‹2ÒNŽ”Œ“4óÓp1ý¨ WØajw2,xE’t•=õØÐbÄ\ãLgÊÉÔ½²Üñöð‰n ¶Í–KQ›ý4Cøß&ñ\>ÿ?²6%ì¡©¢øûöInÎFꪕ;1ß?îMÚÛ¤àe[Ú³' ò3õtùXNñrÜg×9˳ú-î_^)½ïŠ*JgæÅ÷?Ã|k«kíû”åFÒ•fF>ï&˜ãwk¶ÙÌí‹ÇÝ žh¬*ŸÌׂÓK¼³†–•ëÚª\k¯µA¯°Ÿ¯Ç{Ò×iÖ4ÅŠt¿ôÄÊÊ—õ-âty&;™þ>~” ½•(ÕoFµªnwÌØ€YHPõ_lue=k¨l R>A™ãlëù¼ÐÖAŸ˜þ~žm®v.µŠlL/.TøÍæn†¯æî´rÚ©.«—4F±˜½«©Â=G@Làæl&f,ÐZ3Pñ-j”v¤_Ú{{}:ÿŽ¬Â„–c{¹y‹S ±Í—ýºˆ<Í7Èã Mújõc…¤iz…·BR«3£aÞ=Fh>´mÔ ¥ójæ7-£BE–Ѥ¸¦B–ÿ´ƒ©î­æÇõqDyM6ÿÙœ%¶,ÂE•±CŒµ¥ÃÈi65žTW·¢8¿³ Ë)ÜèÚmZ¹Î\÷ê ô9嚣ÆpÇœê€r|r:ùû¹~Ì=©49uݯw°DÓwcšђ6}œ¹ç 9jû÷S”M±}V H7~ý‡ãoT¬O¥Ô„¦@®w¤Å¦çJK@Qß³¹ËïÔà¾Ò|lÐö¹ß[Xôžæ@?Ãmó‡aØ`pÆØ[¤=óPs,˦‡²lk:rÄ6ï.)(Ç/Ö*ŠZ·¢êa÷´ÐÓPé­Éûaèø~®ƒ6þãý$÷¬Ü™ÌÈõž“ëB …uίÒB¦³ÖÏu“šÓìë2ƒb¬Ö¦ÕWc2±PKñ«¸ýŽÇ.ã{žœ ú™„8ÁOØ‚æ@JŠO¾­ðY­Î>³?oŽžg쯴jàö’oyë²D¬k¤W{¬?èçéªUøyé6W ½Ó='oVÙ* ¿ß|êïËöùøþí~Í-]¡¶GR oôl‚®²\¦Zr­V»Qƒºä3Cÿ!5²º´)—Ö„§œÁÇût äÒí\ó34‡”Ëôª‹ÓüOÉ^çÓÛzü"zý<ù,Ʀ÷¢òø=wÿRë!/}Np3Fþ?¹Þj€¦#êµ´›¢£¾<ÛV{ÿŠÒçRŽ„¼¬6ŒJ3k®;=XܱyËúÐmôß³‡,k²œÐ'àŒ©“^ nÿ ÿ n{ëNÆãø¾»ì'PR^¸,ÿ Z8Kïãè„\¾^7Còh 2¤èhí/šUÁNÿ¢r  ­¥ÝRî-”ÍïWÓËëh§)¥bÝ~\ï{Ò-)ýç†Ë—ÚÛ ?ÕäôPðøX6õFKÁVAÖøj|E¢:z}ÕsÜqÈîÐ,Âw'úÜû͵Xû¨[x¯WåbCuT’§ß><µÍ6ôM¶·êÑÄCúœò>Õ.^ù<ž8œEÜ/ìÂ…šç]²ö¹Ž $ÏŸãÛ‘®Ô:ãY£×Báayû;=Ç`PÈæÍùPdÑïŠülk6äÕCC?åìñ+gúUDBmØ9PšŒ iüë_‡ó:m—qÿúu4æPCÓë¢ëA IÜìk.Ô6ŒøX²—Õ=¶¦B죢º¦V5¡ºÿÆ¥ÇÓùîû¬µŠ«;ÓýØ'±dlP¼r2¤—¹y’QnŒóW’—¾³µ¥Ó°þ$AÇ7dïX°,²vªº¨U Ct¡¿†1ÙýpIö¼>ù=YN‡T‘B{pY%,Qvþ‹Û>(A,_]yfë ûš <ósNÆëø{ovÞ&N|mü¦Õû6Nwpºß£Rl¾Ž…Ô[9®+„¿ðï5Ô4Õ÷1¯Ï«KV7KDfe-µ”ÜýÊ¿{¯dŸkê}bèiÄÆø6uV?L>AÈàê›KF3,’D½  ºz6òJ¸Áøi´¶ÒÿÕÛ+<‡£¸…ÒðçUy¢]ˆ¼(ϦÀ88£ä7ûúeìmq˜—S?kZ‡Ìýjî¿éÐûº7.ŸüøûãV›ó;G~x;—[¨Š%$µ$ºùõÛý¨(¿hÚâQOŽDþhíµ=j8(gõhï92§|Q™Ö,5þ*o|”_Í…-ûAº÷ùa'+Zæg~ŸŽ¯r@7ú¥ú[~Y (eE¢o³ v½Ûwáj5sþBQPAp-ï™yÛF9鋳Y)ðí%‡×ðGßÍïøs."Ë}Q]¹'»œ«)bü¿ ï]ÞPò–Q¶~P&òÜâ8sÃ],uæ‘Â[muG]í¨Ã¹“ÔÁ}•Þ¼_r¼3ŠSC¡< g¨ïjĹÇH»\÷}ŒEòë†)å§;âMX³Úë÷  bRÉ6v&ÿµ'ö- Q„[úT˘Ã_õ·%çû$䔨ÕÑûŸÿ-Žn¶'\Ôº´š‡;/ ù#‚zçÜ ·Íþ~vS'ç ƒÄêò<ôë­ñïôšùüÒÇ2ðsåvNkg¿µ6£e*nñ^!r©˜½°u<× ?.Oø¯Š¾ÚžøS‚^ÆÖ7ÒKO«ÿa¾Û§ŸÍŒ¿É¦Ã$$GïÛ¯“™ñÁd–ZpZ]pÓ‚?gS熈Až¬vdH<-$zèW¦²3{¬ÞâÓ=æ§$ï©m0ë8B+¦þ’ýiú¦ñ¡p›*Á‹âÔÂ,‡†}VMO‰K¹Ú5hՋ믎¶¸NÙ6¯³üÐÆÙ^—t= ÑÝ?Ãõ‡à fµÔöîö¬×GrÔ‚ÑLÕoeLŠòøo!¥½ž1j; Y8ÆÀ{B®#ÊO3?zK#ŽÊ¢òe» ÎÆþ/Mý¯ò~§ÈóÔ÷§Éý‰þ§7ì|ŸYÜýn÷¶ÿ‡É{~ÿêÇò¡â3jýN8Œ¼8más«šð“xî?ítCy^áP=±/ƒøQôÇù/Gú% ¼ÓicQm‹E¢¤Š1A™A ØÉ±hÕh­OC¹Ë¹ËNí;§G1­ÆåråQ\Ö«’Û¤e= m“¾ZƒhØQm"fÓÞþ#-»¾ë¨Þ9x^ÝÃxáu㺂òåöUm¶÷›å—é™ýN8×ÙI{ˆQâJ þçø¯Qÿǵª¼ú5cXÄÓ@1­6+ʶìÇój«Kll§ûë\Ø’2íÒæSÇayy~¾µª¿³õ8›m¡lm@Ú§H_øÑãêŸÔ‰: ÿâ?|]Û`_ôc6Ú…Û¯ =üGá ýûÙå[R­ƒM„ø©_ùUSø#æî4TÊ]¹¹‹r´UUÍcû cUvÕ¿Sª¿ðíà~Coö[™®AÑË“ºä×MóIW³&õ²i~Þ¹8Ûrq‹»íkm·Ñ-ç6墣mrÔk•¸V‰1±±¦S8h&&E@V nUʹcs¥Ë†åÝÜŒ‘%‚F—wcDi"(Õ%LÛº]Nçt]Üvå·h®hµÝr4EnS×XÛ4K»šånç’"Ä[»±4”læî]¹»ŠéÝÄNnšwkΔ›¹_·ç¯ëéfϱÅÃqµÆçsÙî/±ZŸbN¤/éÔøïÉû”_¡Õ){R]ýVæGÍ#úê|;oÇÎ2¶—¾xSº\™‹Ç]ÎkÚK»Çèr­mµËÿ E_È6.É;ØKÙ<×›Û d4£%›b*ɽ°ææ6¹s»¥¹sF®YM» ŠŠîèårà]ݺè\×HÅ%Ë´‚’Úmm[Ñ×£@=ëoîD~ì¿÷ѳk6¿æ[>îÞŽzIì^Äö>j'¯¡|õ~eW…¦Þ”y ¦s;mýƒúuㆭ“i›+m¢›.~£üéGü7ø56CbVʶÿM(ýlÄëUù¸ÇöxÜZý_y¯›M Ù ´Lµ#V%¨Ñ’6¤>ènîÈŠ—DIM—ÆI'µÕ¯éí­¯m¯lÖ¶äÓ¹¿yÝÙ;»Åó•D¹aÓ¥Ó¥ýÅ?*/Þí8¸qœp¿ù}?Å@:pèÇ™Ntk£®_Éi¼wÙŠÚ7utDЏs—ÑÎ’»¸ŽUÌWwPË·5®s¸Û–Ý«‘ºîÎèZÑ1h¤ÐѨJ&ˆƒF0BMâ6Ü}(çÎmÏ¿+×ÿ†ƒ÷ê¿Èšm6¸Í²ã£bIjÿq^Eq•á·üg¯"aGò…ýx£33gù\kþ]üÿÕ9Øt⸅ä4ÚU´Ú›mQˆ ”L$Äh4j1¢Ø¶MŠ"dM£-ÛFÙŒ[„h´–H4F±1Hh ±3“)HLÍSj¿Ä¡|ò~Þµ´›8Í.5kgôý€¢úþMíƒÿÕ/ñªëN—WÍUõ¥ûˆûâv4ºä?õ“ç«öá/éÑüDt:ÛV\oÈriòB«÷Ôñ²bºÊu‰ÖÒG”••zÿ#Ç Ç g&6¸ä7˜/œçîë´cËÅs®~E¢¯]mu³­:Ó›‰^?naMÆ'qnMÝT ­¡QFÚ¹ªÖ¶²Ø}ܯYÆ;I_®Íõñ­©½£û[[ýÄŠí)æ¨ó¾:^µ]a_/Ž'ÇQñè|z_‡ÇUÏÒøô»€¿‘¶ù¦6¯˜©®Q­Ë\ò"fm§%¾þpr¹8gš¨><_ˆN*òM±¦Ú3LT‘CI#L‚ kø:ÛUÿ¶¿§¶üDa )øŸ¸os¶µW†çÊ} FÍ™mVÛý*¼©3h¿W-NߨÚr?×ᤞ†Uï/ñU{áx(þ°üi¶6¿~ØãŽ>M­ªÿ{ÞÞßx"·½TQW –æÖåЋw\-ÜÙwZ5È–#cm%Ý»r¹Cš ‘͵ËN£lH‹Ö"14ȧvÝæ1WRAwi×Ns››“lÚÖÕ›[fαON^^ŒvÒí§®]_Š«Ôž—U+´Ã3N0¸Î-«i³IÇk}ÕüIµWjí{[óGŠ«ìÆd‰j oZ«ÖÏ[½fñÅq­¹'9A<©<çòzU±FÊ6ÅEɶƠœ‘S*"ÄV5EF£F%5Fj€Ÿ<×5§:哦!qÎ;…ÎríÜwwì®ns»‰ÍÆ9Ò˜Ñ2 1\µr‘?¥mo5UzÖ£Q30m_RÓn¾K¤[·‹ÿ…«V ÐȽ Þµ‡Vî[ý¢IËÕvhó(ìåϲ—?î¤ï"w¦ÆÆÚÙ›wuÛ|›å(ÕÂQ£F›å^„‘^ÉOG<—£«£\¿-­†Ñ™‹Hk$)f¤"Pl¾rœêw/µÚßU_kj¼Û_j§Pö…:Ÿi+§]L§Pö„º—´CªæÖÅ{)WðIÍSš\ߎ6qÍã‹û‚¢òy€§ÞÛke;ÔÙˆÛ‚p8ã·ñÞ;‡¦ÙëZÛ϶ڌ«à¶Üë­¹»†‹N-¹¨ÖL›0h@±­ÖýæÛVù&­õ=¢¥!Ý’î» }ï8ãêÄ<¤/ ðüEVÙNfU­œšäÚÜpãiÉÄ¡:Ñu„ëæ$ºZy!ç×N~çÇÃÚyH¼=a´çR½­.›3b»;ŒmÉÇq›—¨.~‹Æ‡š«Ý×y‹^úâÞ6·ëRÐÆ"¢€*b©µïµr·6u6MŒÉ!“0fÆÏ ©à‰à)¯G7ƒÉ¹J_&¡^9WºCÝÝ(÷D÷Rs’¬ûÆË6xÚã\}Ç/ÿÒ™GR:ºytéç×6=9ž†0¿Ròíµb,LÚ5Œ” fT›¨ÔX±X£%XÚÅcQ¬šCº¤¹¹·wEW+šæäI@ÅwZæ4ræPÈ­Íp# íp¬î–ºÛ¶ÖäT…0bH±I[·§j¾%|KâkåÚ¯™{ ±¦Ø×ÍmnîœÐ¶Û}' Éç‚«ÒhžŸ¥ï“ßUï“>M=W€‰þ ðfkkÒø†Òi}ºÒFĶ乷°lùþ—Ûëm«ÚÛZJiIkßµÝØ¨ÕŠÕÌ›&ŠL2i(¢,j R[˜Õc§wr‹‘;ÑÝÛ»ª0PP¤@dÂIÄD[•›ÐîºîMÝnUÊ‚îìF»´«»·GwFÛ­‘mpZ-‰+ ÊR&Š"ÆnNÝ]*åÓî¢#iwD.va¥îçNNî®\¨G¡[_.­·´Ú÷ª}°†¿bwõµµ£˜K¢ž6]wÊG@®ùûqœq¸Í­¼1àÆ5ÊA«ÆHùãVµO GN1Ò$òs žÃ˜¡ÌÏ+¼~Wj»h««ÑEÍk› hÙ i(ÆbÚå0Lï—}‹m›ko-G|=õ!= N¸ºê\ñ ^œÆÚÎ2¶kiÞf¹Ç‹ûòJåà¾;Áþ‰>;ØKÖ-ëI~.ü›VÕ½Û[ÓkF‹Dر°XWvéS»ΔÒvˆ®n\9ÁÔÌ'vêÃ^•­zºÖ¯[kÖÛÖZ±SEpž¼7wquz×í5¶Êçâs%îsu´¶bé¶¼Þã8Þ߆Û÷ÔU퇪äñmd–ÏvÜ…FѶ)7.nWG]¸Fƈ(¹s]'w;´[š)NEt»ƒikã·5påÝÝÝ89n¢wÝBw¸n\î:î®2㻳fÖÍ­m¢êèíί”§p>Ý>T^ޝSë¡ìƒÑÃê¥ØÁר«×ìNÊxµ\â«Æl®2ÍÍâ¹8·78Ez¡v ôÓô ìˆõÍÈüÁzò¼0ú!ÙªõƒÇRø^µü2|; ²££*ð%îʽú{ÈyZ«ÀªîCšÑÍ\ÝYÍ[þÊJ¹éK¢!Ʋl[M«[AFˆÑ£)1%“´Eб´ÍlXÑ0­6‹FÆÑ` F6’ÄDCŠd„a„d¿øí½mWë66ù `Ü£7«›rlÍ}ÞuIO GšÛ‡ÛÌw:ã‡öÛ?§*¼'Û‹þ´Ù û™Ámưá›kºÜÛù´’z’zu=*ºâñÞ‘Z¹|Y'Š£….)Æm6³µ›-µè©âÁÕÓ©ž^tÝ%Ñ^½Ìá“·^[[x;‡ƒÉx\U*==%ÑJý)­îµrHû Åñ_MU­Wµg¡—¾S«•\ZíÜ]ª¸Ódf4k[HãO¹UìÛЄ·Ç§Çì¾?ömmkyúÖ¶øè¶Æ–¤Ø&×ÇM¬k”l¶ìûçVé‰rä>=÷v¶ÕþF½Ú9….Ø:zgmN†Om.ŠP®ˆ{X®†;2^nz¡Cí÷KٶׇuÁÝ5%=ª]Híi:©Ú¨êçt¹†¶”VßBÖÂÖ2˜66Ø«FÚÁlšˆÄb‚"ˆÆ2&`“IŒE¢*-ÒZ5EQ ¨±I¿,¹(Û•E›hÍÖæÉŽ»šÎÙÖÝÉÜ\›nnj1Œ-rÍÍÝ× åØ«•Âäîr5%A·76¹]Û®îK ÃC! EE"ŽÛq¸òñ]cÚJu½¢]ÎW’K™#åŸã+æl™qªØÛæî6×'jž;3Ç]Î’ä¯$ònZÖÛÍ­·îÒîIûÔè]Òûzͯޥ ˜¡¿¶·kj¯~ôŽë»¶ãQíÕ»µ®cÖ5Ì\¤îá\9p9ØÁîѸ͸Ç›#f9QêöåëkhZ‘m|FþûÇ‹©^:í¸ºr+œgƒ»]Íêí6­kжÓÒ»˜Ä¥ý•/òÂ;Ê\ýè3àçk7]©ËÔUÑG2R裡<[Ï/h~£àê«äVõoWšÆ·(EkÝøì’N\£Šòï+Âñßù6ÖÖÞÖÕ·½ã{„ck;¹»¹X-st®UËWN53Nèܹ‹ºéÎçrÝréwN—vîêâHd†ž¦OQW¨‡.ôáæKÒμÃÞI_Ï‹½»ÜšÍÞ·òxg.¼DRë¤%««|¶¤FÜš/—¼wq_GH´+rå†Ëe­› ‘B2jÅŠVKŒQOzDS"7ÊÚÕ¾S½ïZ™šwºÌÆïN÷98qÇÚ©%â¾¼²Ÿ¿U_´Û`Ú[$7Ùàm’ÛÜÃÞªêaûHOµ™µOm,¯nWë"~u´SÁÜn5¤÷"ñÑOGSòaCíašd{¸¼öE¶ù‚+ºæÄUÒ!ÆÛjÚ¹7¸q»â”ñ¥÷Äüܵ6FÌVÂ}XÛàÞEÛªý©/»¦©ðTöhø"y0_"~³lÒ6>õŸ9 WY#Þ#áÃÃRÅNâ§V<Öűm›kU´Ù¥I1¤Ñ‰‹AF4I„¢J3A‚J0üKkñ5¿WâE¯×0ûG77õõj"…È]˜vqÙÓ”RìÇ»Žf¹*—»žî÷g»r‰=H\æ-[OE$}údLkE ¶bù¥ìí¶­çhKë‚út»ÈúzËéêÛ9ÏÝ„§:«Wß]¯ ÑŒEšÙ4X«àvåW5[µ›6Kʈ|šT¾’¶×äµ5±,VÇó"þcrñbrNGèˆ\²%~Í%ä7£m‰¯¤Kœ%ûÞ2ëZ¶µ÷¶Û[ÛÛó×çW½­­oÝ­¶ÞóÜz2f; *å\µÃcsnh K¹×)hÜ×"±wsníÖ»ºÑ³»‹ºé×"´E˜+“i&C¦PŒIHh¦88ÕÔS§«– vâJ¥û"¯+ü£¯ÉB6åb˜Ñ^<)¿'YØ'`.Á; â$ŽÀvì.J¢~ÍW×>¶¾»YµÆÛë¿b‘\âDø´x•<í’©áÉç*¾þç×£fUõ¸&ÖUÕù+±£bíápâ¿%¼’þvrxÕ$xr£ëî\ ÆmU¸ãrDZ5,„B"R‰2æ¸mÉÜZ$©Î¨ÅRZ*4mss5Ê-¢Û[–ÛÛ–-\ÕÍP;­ÒÅKwb„27ut’.WJ¢4·.`.ç]T®VîÚîâ¹¶æä‚5!ÝÐî×TTNc¤ptîÉ;®î—.œîw:éºNNB.íÍuÒ\pèvºîs"Bõ*ßOUøu~×S™$}´µýQwš_³Wì³_[Œ¾¾Ù¿eR9ê”xÂ>’¯Ûl›I¥ÍÓ‹›sö»mø‚64oÁ¿(%sÊ@ʆž^ˆ~ʵùͯsém(±ðšÙ2"Ñh©Ý©ÝŠäÂs³$²M¦Ðñ G¾¡Ö|‡[W¾¨ô ßAèg2 ëbôUîèÇ€”xÖe¶ÍËÍ·@肪÷wÛ©zûÉÊW·‡°¯nK¹ª¹B/lé^‚ÑóUj5¹bš¾Ã,ä·Ïô2R¹qD÷”.6ñØ1g v dŒAŠc036Õ£6ÎEIßÑôÚf}ÆÖ¸3;ýÌÅ)øis ìPý ±$•:Ú”ï•ß6ÍlW€lÙàc“³q· rgÃrÕ(rò¢ëa…Nµ\Òº¹{:< wýãqœn3gxŸü¨/@ºÑâ`]`êã¥\”¥ã¹‹^[qL²wUww]W1¥tºmtUÎs»79­:êëŽë»©9ÍÄîÆáÝwQÓrÛ1Y0ç.[hÁ$É ÝÛ››\kµ³l×StµÒ:>`…÷ª­¶¾NÛ-\± ÕM¿ƒ"着\²ˆæC™Ne–Ö¹›ÃaÝ»ÏîÒ ˜ŠGá¼7ŒbâÚrÇ.¶ê-$±EŠŒdFéÒ—w.éÜq×(àp—:ãK»'qUËr·{z·ÐÅoÒ+ “›FƒFR7EœiµpÛ“eØël®x ¼Z:û¹—y>ëü°QË¥OH@rP]’wd§°\Ïškk2Á‰¢h#E¶÷*76¹‹QXÚ‹m„ѤÁ¶,ljfH“4´kE6ɱ[hÚ“.…XîŠÅ®YƹªhÖ܈ÍR‰FǺŠ]Ê5(éaÙ'eK’„ì•×zÔª€†ÔTƱ~¯’¬Í±÷±¦Ï½íó_áUG¦<@ û^µW«·«(¶äç7¬æ¹¬¹8Î9N1ÿi åå'3¨¦¨à­Š½íSZå‹jB™FÛ6\‰‹*ñ[ê\ÛM³fkîñŸu¿ôJ1P§ÜNVØÖ‡2ã+VæqÇ“k¢®X~¼”}Òs·W©¶:í¶~ŸÏrrsdUç…á­[oJÛÜÞ[iÜÆ-ÊÇwCåÝÛ›Û•ÆL—.Q¢]Û°sàGwHw×nçwn㻙Ȯ»¹ÑN;ºhÛg \6Öl×òjSžŽzŸ9HåÑÌ@®}?pUÍξ?p£¯}ÌIS÷*yןº/ä•z'û>ôPï˾©ì "îºUw±×QxñG—r—wÛå$ôÞ.R¿p/M~šNH…àÀž x;5žÑ㎠~ëo–„\¨5ÞÔ´@±L¶Q4jŠÊ6MŒÓ32dKrËkm¶œ•)õ¡]íDwå³m4-O_±9 /•uãåÛo6­«yÚÉ:B4¶ƒ±IÚ*~%ü5}ÌÍ›Gw¶ÜgwkxvÿÞ ]²ŽÙz9;Zœ ^†e\E'YO(œ"\º¤üÕAÞë ŒLÚ»w[šÄfÞ¬Jèøyì¦Ãchl­‘²Í¢*@‹"SbK*-cXµ^Ùr¦dÌ»ÊÛ–(Ѩ¨Õ¨Ñ%FÇ9@%¹ºåÚW)×.éÜ%±nXÕÍL¹Ž[»« ˜M,4R$¦E&Æ+s]Ý–éÕ‰\³¤lkuÝÝ×u\·9«™Ä‘@‰ƒ$´0¤·wNuË—Ñ®îwNíÓr7f\p¦Wykkjö=’›SQ±+%^ÆÛÙ/aI7²ž­æ*ä)ÿ)/ÔÓm6lð¾am2Œ˜Ø¶•ó]rÔ Ë•GO&¡tÈéeÁ‡[܊ŤfIA‰¤‚‘ Ó" 󙾦·¢W.IÔºƒè¢z;´½/qÞWùÕ ž èïF¸¢vS»®%ªõUÀÖTW«[WîoÓ5bÅûvE®^ÍxsfÜMÞv"ƒ—¢'wWà.ñ«ki gªkÕ½]þí[V¾sÑ-*’a§'w:g9×\wwpçws9Χrn\L‘£[koSZõVmg©Ì–\©™;̶´ÛnNñêB£—PV'°UèIÉ"æ)s§ÖÆÌÙs8ËŒï?ðBWØ+ÚUÔIîàè)u%âdŸ]W¦S.J‡ÔÛ$êéõÕvÒ:ÑõáíÑzxjGÂ_ûcfÚM‘ö%{Pë—ñev"ìòUæý[Q¶ËkÄUµlfbM1¦L¢(-¨µ¨Š‡Ù+nWZ»…;·u×L‹b¹r£‹Ñc`& fçc»[…¹ÝÙ]Îå¹wu)HlbH ºëÖÊ|´{¤:ã—T|Ò{¹^—ìäÓ½@x¢=G†AõÊüd;µGy÷dbslÒâÜœZãrfÛÖÅvó!Û©x²§Í‹ø‰\±#ÅHñOlÛm³èqÁÅÆy©þjRrôRû¢zmRÌj£mTÖ4Lm¾­Ýk•s_NîéÝÎéusF¼wI¢Äƒ¯….çzÇŠó[¾ókkzµ¯våÍÍ«µ2íéM·\·-ˆš5CFAb1¢(ÌXÓ0†ÄÄÀ¤3má’+»Âï5a·Ìñwvþ¡sª’ë&§^–¸C¡s#ä_!V ØÖ7);±Þ¯DÞ36mr¶Û•¶yGMÌPt³£p¥Ð¿Êý·ª½ {™¢¨>wtTWªfí»[¹m£VLJÌÆ«”I¦"ƒ7ŠÕ_i¶–ÛvÖKã«»Ó35§wm¶îÜfäãÉÒƒØS™Ø,®_’K…DþéWÒÁ´5³d›$mWÚ‡tÙ[5£ƒµÃ×1zãzŸ±’«™3ÉéJñy[&Ûm äJìUÔ»½šîöÌ>wɹ=Ī\À…ÖJÉ;´é#í¥ü<6qŽ5¶Uƶ—S²Ûî¹O÷ ‡vWw*ò9”?Gué0¯nÚSÚÊrR¼D]¨9!{D±.ÒGMì¢wd÷îó]Þ7Ü?¯P§† ³† Å+œÃ1T«ˆš/&.YÅj-Qrîw%Ër¹Ã•Üêé\\sW9GlWwF8ë­Òë»·;;¹· Ë¡;¸îíÒvâs“®n»t‹¥Ôfwp¡ËïmùËW›m_Uªú«\ItÞ®y£Ó¸E×Ô¡èáwMk1¶Äêq‹³_s“:ôÓ™CÕ/Uq §¬"è WD‰xv-ˆ…£·©µzž¢…ê~UÿÏVÖ½Uû±_øëåÇ qÂ&ãqÊ…xI¶–Õæ×Ñ6µ{¶H„ÌCj°Õ4m›i-‹bÊÿÂGösQ´)µ8RùzÕë)o–¹­sbgtÆù{¾~£m6ƒãfŽ6®ýÉ·ü¤åéF9ŒŠÆ¢lX­QA¦Z4&ƒ F$Ñ%&LDÍŒj#FÐÊPµ±´¬l­„DTJ$$©0°–Œc%è%‰÷6Õ¿¤ÍTØ®ëT´ÙMœ½O°Âv¢`rHýJGo?S62ðuú›\fÛü¨%ëÅs²_\½†[fÐÙUtk5µIµŸ­6äÂîâvp®íµ.`r(Uôô“T7¶ãm›m–ÂåDüÚZ«Ìˆút}¸¹û~Ø¢¢E¶ü -µb¿Zèx…‡…+œGäª|ºŸ)W´£ô¢¨A£mû–/ëuÎ"m2L«Ãs “·Qwò9ÝÛy'?‘~Iÿñþ *ì)9˜ˆ÷wÅU…³ËkºÔLU4X£"$Æ™ fDjJf´T›‰C$Ã$ŒD‚L'ø¾[U}Ò­µ÷ÖÌÎV•ëQ¤º)ú›J_«þ8`Z¯š¹¸æØ"Uà1ŠñgßãfÎ9\œÐ…ÌU>>„œ)>… GЃèPá#ÚPÑ>‚Œ +)ñC ø¨Ô¯Š•¤þ1>ñ‹é[5÷þ~ò€.pk£Þ[)k®ÚÜî·4VäwN¶EmÊ¢cF±Ww¹b©¶ÒœˆO_I`Ø[*Í…‡»×1\Û†kìo »}Þ­­^mªËêÅ- ÿKÿͶÖ[³÷6·W+›_ìcD[E¶ßõVœ­UÂý€WGÔpõÙ[<|pqÆ{¥ãÜñ)x©è…b¿°ýíPjØÙg¯*°Ÿ¼¡Ö\ÖXõ'ö´M³kh©ý(6Zå%J¥è.?¬Rz`p—ÖñÅæ± ØÍ¦ÕRj’!Šd˜P‘J FßΫ[~Wó ¶¿œÖk–ç6*d«À˜ñ·Ÿ}H“ÈB»˜´;’Å]É`îFƒ²ÊšÈa;)¨œÂ¶«ü’ÚÿŸ¯Êcb5/ÊŸ•Îÿ§V#™*/'D_µ-¶dqÄn-¿l´ý¿ìÔN^¢rüÇ&MŠIa¯zæÆª6¢ÔmF×*á»·˜+œ±…ήîÌEs[›»®îÜfs«œÜäîÝ@Ñ ¹rÁ±DDîÜ×:î7•r¸à±\¸£lQ“¤XåÍs•ÝÓº\ˆ©Ý»»˜ˆ’wuÓG.X¥w;sÜ·wMÉÙÝ×w ì“»™$Ëmk?[ùûodß•¿w?îUEË¢/²‡˜‘í3fm[y^\8Ùìý‘råCÕC”Ž*~:¼Â8¥ûU}ŒfbÙз»“œ«”[ÛÕéQ´B&b! Œ`²FH“ H4m›Å/o+Ù_ÈSåÓê­gÉß;qÉœrò”E…<8®ÒˆqG«’;JVrîÄén*{ºOR¸ÝÁêW_Ã¥Øo±À™°ØVжQq’ãÒCµ®Z_~+ïé<õÄ^òSÕpµ%O:£Š’–¥ûp}Ic|î#dmlÔã-‹f[!ÆŽMŽ€æ•)ËÒSòd ýµ¶ý5Ãôn.5ûÀW8¦¥qÏb’XÕY4…•ÓˆGuÜæqw’<[[oÇÕ~§%¢Æ¯ÈD¢æ«™ÝùÝÔx¿ÇÏêRåÊ'þð¯Ø/ØË_±³÷·*rÀìRÅzŠ­_Jëj°uCC¨2:a¤éVSÅøsfÛkUlÙi,ÖƒQ¬˜6IY™m™ŒÆËeø½$å*èìO?a~¾ü„”–£McXÈeajü|\µ“;º£hêK_‘·ãò?«?$æ*t«Òd'°ÿ1[M´¢Z]V×äoýЦmEJ ¶Smmœz-cñi%Ë?Ê+%N¬UõãùaãlO£­\­É8¹6ߪÕyÚªzmèÍ«®ÜÁu\æNéY¹\µÍ:\­Êé\cæ).ë•ÍÝÛE»¸Ì2×.næçråÍÓsœ©˜®‹®åÝ×w];»„ÈŽî¼Zª¿—¶þ] k[_Zžª¾·êýYHç@{1ìÇöBÊ¥ »tK•UÞ£¾#-“êìwǽ©!ËQíÔWv”º™Â¤§”(ó±:s„»D:…Å]™MK³QÒW»:®—Š9¿+e‹&ÛE21±QDcI ‘ Äj-lm¶4F[çÛSÍË••·-ÝÕ œ·.nî°¹·&¸Ç¯á ôœ¸u Z«øA’¿ŽNúöÕÞ÷Î1õ"UËÄõ"Èõ*Ô®ÌjIáPñ|\­µ\Ì-–Ün-¶Ù-\mZÜ­Ç'"’W-Hê‰×¶Cð”ä—äÁ¤~2>äí#ïW{6mw»7žzĤsyÀÁâÓm{ݵåZ7WY2cd&`Ä£$ƒò-^Zß‘¶–ß¾ÛömcCfÍ…µðÔäÑNþWìQ•}Ti_U1L uÍÚ›/›ÄšÖš¸«æ¾XHåâ¦IâwÜl¥´–ƶ6ŠŠ5£Q¬”’-ˆÁ@‚$¡$S%DT¨“jTXÁj6ˆjͲ„ÛU%€¨Y‘¯ñ­U¾7ñðifîvÙœqÒNY}‰÷Ýέm#¹¶m²l,·rt‘\¸—óN‰NÑ#Ãÿ²TtråPèå‘ôŠ=q+ÐËUõ±ÒÔ«Žaáó9"W0N›#ù’Nœâ9ãéN%¶­Wœ§½ën˜Æ‚æínÒUÎ깬m\jN5gwqQ¹«›šh¨w`çHt¹sbæåαDwrh¡)ŒUÍMI;£“ws.¹wiÜ\ŽîsK· ¹uÝÆã7Ö¨å•Ô2:d®˜â_‘üµ_„WwCÝ&•÷33\g6ã8ÔnïŒâîóô'.E}‡ªÚÛ_rGûQ 笥Îí’Ö[dÛfØÕ=ókDTDI˜Ûq8ä‘ÏßÉ·Šð¶Ù›j›'Dã5á³rÒ œR<“⮵­m_Ê¢•ʤtŒKÏLU禥tx!Òýª„ûZVmmf+lŸiq¾×3ŽRE9b/U¤[+×ìl¹T=€žfTëC’«ø•Cê‹cÙI諔ΥØÁé)Èl‹øylÛUïA×Ë”O¥#Ý‘×ÜîHf}›ín™"¹h#ô•zZ\„~”:º(þ(Ÿ/Cl¯#OáÉðR¸Uû0>²»……}b|2œEýµOÂ¥ò©wÊ®R>»Bp5RùQµ{Ôr¯Pí“Ķ£Äkm´rW…Ç;JI9uJëx-–ÖÍ­¶6¨ª 1(A‰Û%‚¨TQ­ElDbŸAÛ"Æ+¦66®kœÚéX¨¦Ql`ˆÐl8#Hhœ2rŠºW §vá"î·3œî® Ki4dÑUpÚæ¦®¶ PEW3œw%¹Ý×6»ºîàÎäæY9v¹3º™Ë“.‚éÍ'WwbÕ× ŽBòIWˆ½³ü‰•(] Eé$:v´Myž6~ê)\°”òIjsæ'1ðm³k™moô œá¿C©µíí½(ÅQ¤¤Ö‚™JKbe¡C,˜HŒÙH $&º·ø{R«Ñ“*ôQ’ëV¡ÕŒ«²šGdÊ”À»R{¬Wsö×s”Åp¶cäNTT¼šñò«ÁWƒµàíä+–‚¾5ÆÅJó<†¦ÕÑU×"”çW9¹¢Ñ‘Ί)š ym¶9TSåS.§lM³åùƒ—(§Ù û'Ù½]"åBO=p8J{TxõqíAæË„—iœW»D<츑{9\ÐáIÙIÍ×y,­=Í[kÞ-¦²@ÉTVØËMmµ¶6mG°Cœ9j§ÄƒÈmµG3m›;!RrŠö(sÇzõ^np¯¨÷—NÀ¦PêäjNÒE•ë°ž¬e ÿ+ïž÷mŸ›¿«@rÊ´– /ÓŠ¾¨j°µü(´m~¦¿ûvÈœº”s‡“98Ü*ãqŽ8¸ÙªîëœêÑÛcW -!w6ææ¹ÝÝ®lWtîÄî6 ×s\ç.”QnÎŠs¨'.iÜîµÈæÝÜ\Ɔ¡ÎLˆ²ænèîÝâÖÕ?Àúe~™ú_÷UIËÊ’úÄúÛõ³fSjaõ¶»•å¨uaW¥U‘^‘XF¬©z§a\ñˆy锹ÛR½]©] Çx¢ŠkI™©­‘¶½ò[š4PÄlËx­jÿ‡ô¿On•ȺBjG ©ˆWÔQù]ûnÄR\ª ûé~FÙ±5±[5/O>È å$9w?«ee§Ž…Ýrëºw4EÝ.îÂÉÂgWqn¹Ðîä@9 Iô >ÍF¥ôölm¹6¤U"¹I\µ\%_ §h\AÕQÚRáðTív NíO[G/€NØœAðë¥\Hí”õ´®¯G˜G|e~?Æšÿ1IÊJøöâ#ߣ± ŠGËC² ¤¹|µ=œ]3”NÎWgÉåIÚRáCä£Ú%ÄRñüñfÊÖÊmµ™†Ûâ9¹×8äìîÝÝîëwqvæ.lì·w\Ú‹W­·ÖZ‘/LVzª¾²—ƶŒØ¶·²›m‘àZÞÈ‚¹Â—h5*íz»õfTz¹€õkHzµz³UEó)~èë{OþâC–(ô«/ÏKæPù©~}²µÿh!ËÕçí­ï hQÎîçÌZç,Áîí@‰HTE2ID)‹ hÚI0Œe(­«mµmµ¹…ÏH|xŸ ðó•°S§Ú6Âõ:Óh¯K¾¬¤®Zª®jV ÍQˆsBÔ4­^oÚJ(ÌØªcQC¯t‰Ë²"®Zîêæîë9wVÆlmF¡™1H‚Bj»»q$¹TWFÉ.YÑ™ŽüôÌ|ݾ˜”å¨eRÉ9½Pêµ#©Ô¨¿ ó~fFÖkM”ø_OŽ-l½¢TœàT{Ûàíý’‘Ñr©^mm¯ 4½¿ZÎêŠÉBbÆÆ1Q¶6»»1Œ™3&˜HÂEŠåÊM¿ñ·1QxiÝ%¹Žî´kF Äœºæëråi$X*(æåËp±XÖ¹tº‘ÎrëºãXÎèÈÆ-ËËW:[‘9Yh%±²8ÅlÛM”å*QË•|*2­û³kƒigÍ«kW”!éh`uÒ´©é¥7SÍÉËð7&Usuÿ-'ÍCæ\¿úÑË•s°Â9Ùj«¡Î­Κ¥ÎœÍ̲¶­ƒjlÌÛÆªj·1¶4Þý±\»Q·Öë¶®nç\tmʸL!Ž ¹ÝÝÜŠƒ—ws;ÎaÄ.K§î¹ÎîºáÁwp2å×"æ Ð`”›º¹˜–’i‰3®J:C!Òb:F¯Â¢¯ûªäØ]¼žòåU\â#¥¤º‚¸ƒ»ªÅ/jM#Ú øžÖ§æCÜHÒžÞ ªüš”öò8Rô`Å_é%WÍ`G¶C‘Gu ð%bK‚ª^^*–¯;h¬UˆÅ5•¤ËZFѨ¦(³¨˜ØÖ¥À¯›KÆÁ¶–Ô|ß~TŽUUKøR|Í‹æ3-é¡,y‘€çæÏÖ©sö¥~wËù’Ûl›æf¦ÊäP®UÐ5Koiy{–«šæ¹Qj4•×v®ÖܹQ·"—väÖ¢Å5sgvÛt»¶®¶$\‘އkº#¥ÝtÝw7Û’ é‰¢uC$èi¥.ª4?²ªQøŸÿ$W*+«-%uk–J¿„Cm+ÕADG©a<2‹ßc-¢ÙqQï‘©>çñÁ´•fh‡æªäIÚîÉ>^ +‰O–¦‰þòžÇ±°m«üÃj/V÷žçm ˆÛFÁ "*H1#cD#(‹M±b¢Å¨Ú0(Ö)FXÖ¶ÆÍ­›VÌŸ.J§0•ßÉ•íCû ŸJüi]…z¾š¨œèT…ÍÓÕWÃÍ+—Ó(¾ìOχ?:V$ÿyòtl[1_Ÿ.I"ïÉs”}ì3fm¶Ê¶«ñ¾z Î$“ã#ìÔøÞnå %2Rö°ëep)Ì’®[páÇuÊ‹®9Ô\ÚÜ®íÙ*Á%T\®Gw@Äˤîàs»·]s·Üî¹ÇuÚë†4ˆ D“xÕ:Ù\)^j޵W .éNº8"î’ûЏ‰wDëN%WuÕ\AwTžµ8¥9Õ¶à£Ú”õÇ NÔNÖ¸‰R¾!WòŸªiË©¥I¤{ˆž^p”öâ~?Ÿ–U>WËáIðbĤ¥=8[V›[Ú)µðñµ¸–ƒcE›5¦c4ÙNJÀ’|ø>sm¦ÉlýT¢¹R°•Š>µQaª‰õò¶,QµUR |5JððÊ-ξ­QНé = m¨mÆÎ"¼*n„œ"»ØX ¯¥™µµG‹­–©:µhŽª0L² 5'k%OCh›Mš\b¶jWq~@IrÃÓÓº³5÷Þ^è‘TUùîíŠÜîwZ2«ªÁ5ÓJL±#¢Âƒykkëf«_X™bW¥µ¡ª:(_ð_•KýIAÉ"O …Ç/¦W¶ÛM­™M—§¥K–†¥ ÇñVÚôÛEèQFÇUquÝË\ä¬çs¥ÜÆ6,ƒrä\ãºÝ×;»Ní;®:×6áÓWqÛ»’:×u×+’SºÑ…"“L^[[Uîv¯žÒ«é_Kýq,TjŠ<4ô[cCX›mü…mɾoÔÛR9jGš¦ ûiW`¯ˆ¼`¹Èá+×*éW=u4q%ãJ;u:Xä*íÅtÊâK·G™«…½S¦\UtTö9÷%'°ªtzÙO>ྪR}VÁ“k5õ{4IÍrÊ­¯ ðÖÖÜ_F®«pãÖŒNwrG-u¹kÅÊ·б–Ñb¦£šM£@“EDb·–­ñjßSt—ì”^¾.*^½,K¸©¤.´¬Dü‹ÔÁÉfÙ¬[Kòé ÊH;û)J¸¤žSW('”ÂâuÖŠîÚÜ…ÆQ°@ŒDÑ3¯U·ïë_À­µ†Ç³(9 'ãÉøõµ/‹yªÊ«)-ÍÚ/6Ò}«@¹SW "ƒb¦N"}õ$ú4}kcj¾Ž5¬.Dƒ•MK%ø’d:…h:rÅtËÒ¬ޱ]¢èMQçæ+ŸÄŸ ?ãR¤ä|õßÑ©e/ˆ+±¢ªåd1ZÓðÅsrËUË™ÝÎØç+¸n˻®W:f’ç uÎîDë®;FÑ:»‡w7.»¸nîÉ™³»q$¹]Ç]pÎ%Üç\î¹ÎîӹȺâì¹×9Ü)ÝÝHuÝÌÏZ·ÞkKö‘®¼­G^-K®£Të’ÉzX„–‹Ð‰è*˜O8FS©C>bÌ.áî0ÙlÆÛ%°âþЖ´–©Ö•“î ¥.•V,dºQ‘Ò¦¯1[^‹ZÖ4-ðF×61£a$…‹Qîv±»¨ÙÎÝÝÕ9ÝNêâm\jÞ4s²ÄçcTçGP_ áI.PÕU5új®~ÄçÚ,ÔéZN••î¥øYc+ÒëVÁÁ²^QP®U’<¹O[K’ŸEW­‹‚}½pp¯ÑU¡îj2¾z1sˆÒýa|é4¾X=ÚY_4XŸ6L¾5NH~Åäš*o…Uª|!hø++ôþnß—¸¶***ƱcL5€ÄÑEïÜÚŒjÅE‹s‘aÛœ­ÊÚ¹mÊ·6؉"‰‰50šHÑrÜB‚۹ƮNîli(¹Šé$Ò†HDXDÛr¹Íq4VsvwGNâZç$Ì[–ç)TãºK—%+t[W3v’4FI“@R‚2Eâ¶µëê×Þk[ï[Uyˆ©9TKÑ6©ÞIþ™åœš95:´¼Rhé#¤¥WÓÙµ}>W»÷~ãÚ‰m6÷H©Ü쬒-bX»±v%&1»®]ÜîL$Wv“F­Ë^Zú{+}<¶è¬]—>‘Ö«lW;­±³j¶mÜŠG)!ð ?½/ rI^Ô“ÝûÉ­ƒÞn7ÊÚ_ØE\»BµWœËmÏE¹´Yª wsXÛ”\çvWœºUs«uÜÛ\¢V$‘“X¤EI0É¢4cclcm¶Ú¶fS‘¡ŽW/3,<¢Óɤ|dm-¾ ¶ \¬2Äp¼¹‡”µyKQäÙ^1â¬ÛcHºíq myüâ eîºÔÈÛb²h(ÑPX¬ˆ‹$ j ÉYMj‹hŵŠƒ‡]5wv¸t¶wZämwdÄÂbÅ“–år;¸ŠmŒc\³Îî¸Bé±RNjìêÆÅ[¹F£aÌ£LÑR¼mW˜S¤S…î¡ø4ÖÃuÜRûxåÇ[W;+²'žWì¢ç“…ÙPò‹•F’Œ;$3²I®ÈYÓÒ½€®?VQø yÌÁæufÒmr”K—{µ{d9Ô_…ŠÐ˜¤V6¯kr¹sµF±E"$¨ÓºÜdÉS7+§ Ù¹EÉ7']A¢æÑ´[9p¨Üå¡]ØémF´Z5º\…m¡$hÚ¹;È¥þ€ÿ¹\Prˆî ¯Go+fÖ¢ëÔ“”>È,~9 =ì–?MFø)|sÉDä{bò$ño2¶œ±m[\fgLræ®ssºuÇWMÃs\±ÍÌî]ä]uÄI:îìÇ9wKº7'\îîî®c§Üît®Nëœà£²éÎpîÆëºdìì]“»…×wv}&ÚüΫóÎC™ëX¸êWJKàm›e_í”§WÕÜ¿W=Gä¥áES†\ÁFqÛƒàU¤|›kdº”QÛ¤ÿ%檞ÛDe.ÀyÁ{j; ~þ—,?™²_FBŠ]|<Ü¿!J¯:\ÄC±‹gUÍSòôåsäbO‰“ó›s™;Ží¹nsSæÜ‰j.táÓ§wrvv¹»«•ÝÝ 5Îs.¹-§Ñ¤½åOS={½TŽ€}§äƒÖòbõ²:ôT=îÛØ*tL…šüÉ/|Á'®{â{]èÔ~R½”_W¸+ÿ¥Hø ÙÅðb.â­™–ÆÚ¬Žãn3ŒN0Ù¥üx¢åå¬ÅWÒ³­;µ.ÑFî´Bƨs\¨ÅL.h¹mpè.]×9Óº"»œÜÄ›rä”[WÐÛ[þ>ÚÅÑl²”/ʤ«ö‹½£ØVÕ´ zi:øôtô#­N¬tÕÒžÃú2‹ðÂóÈ“©tï´¹-fÑq·\Um¸»º6-Ûݬ´»ºÑKÕÊ‹šèÒî®mÂ$ î¹¹¤ÕqÇs;§WK»¸ Ѷd!a1‘€0Ë~bøCzûm«é5µz¹0m¶Ól¥þýP»ò‡ |¯ë a+ýÎá6MÒÜ:7;(ÒÍÍ6hQCNçWsº»\K…ËÜ£œ”²s¹ºî×1j7wW,Zrîtç;»ï6Ú«öö¥²Ú¿W­ª¯¹§¢Þšå¨Ù‚æÜ»W+c“ܰ„X`ü+[~Þ_ >F6,Ûcaò•O'´«³G8#Í•ýºPìÕìªv2=…'O#×!ëBç/V';êÒz»ÎÕs§–#ÓRëÑæiW˜Ú›OͶÆm©=È%Ç›©Ð¡³m®/3.¬ujê˪Qy•Õ/Žïm‘¶—„¥GüAkï-W¾Ö½º˜aØÙèëV«ÓÚ·œqXÖÆZK "`³£sni®\Çré îœ›ŽÅtƒ¹Ø \Ý5%ÜåÝÝquÙÎåwrn\ Ns”î»»¦vK¹».¸nêá¤M ºãsr1³>7ÆÑ¶¨ð‘Sã’?%OŽ˜¸¶£Œµ™[FÊö“ŸBWB¯?ÊÅ¢Ö+4 š‹h±¶!FÙ&ÅDÚK¡—z#ðâÛQö@—™^f^6ò‹ÊO=9×9äÿÆ*ø±|VÆÂ瑱jüHµ_àµjÞäy@ÛšéDb¨¶Åµç4h“NîXØ£%(—wPĘF+ºáÎ6ŽsnÈ·2tÜæ`ˆÌDt¹wuÄk›nW9°líÙæÛ–3cXàeˆ»·KJ;.œ‹—]ܺK®']ÝÚW\în³Ž8áÃŽ78Îà‡#áÐødæ…ñI¶¦ÛSâéqœfÙó?‘'|.öŽö.ðá=໵]W»§¨#ðÊ]Ä:ð|*½-WÁG¦•ùˆþE²4^”uEuPê¥Ô˧§N<éíùkÑ}#¶¥q­Ý×m¹¥¹ªä@ÔZ$Ìš&M±­mUÓÇNû <™sñòµ[4êªN«ªê¿!ÚGh®Ð®Ñ+ýDsQIv¤v©;Z¨;Y¬§k#ãÀøømª¿¡^äuÆÙ,Ìm¸ërÑ;¹–+Ö®WNíÍ«®[͹iwîÛ\´™㸷ps®bÎãºînb»®\¸K»]ÜDkÊRad4B@ž…[þu[:xŸÅ¢‡ãÔçgĵš'ý‰UÐ.ƒ ^zyç5bUÌ^C^/C…W4rå¢1wq5Ëœã»\¶éÎW5Ó››s»m¹ËšuÝÕ‹•r.9®hÜØ±PÁId‚(4?óE}œÛJ|qp¨—O'N:ºxçªD¶KÜ¢GnTøÛRÔ:Å({ÞUTã3hÛfËÄ5\¨Õr¹mˆÛ&0˜¢2˜Á4@eݺ–笚®[›¦±®E¹£´D¦»»wv ÎÓJÑX 1±rå”çnc[6Û„Õ\È&i1 뤼Ä>jŸZ.‚Uÿÿ:<»-oV¯ÈXØÄÃI{N¸FL1$†!&M30™¤˜¦dÅwnlk•n£hV)ífw\Ú4îºî¸…]ÜÎ]¹s.G7F;·n\èFG]v\utNr$W7뫦H‘„S1··Ö÷uo¬­ï-u¼‰ÄËË-¥l‰ÕIäÕÔ"óåå$ïU¥]å"ë臧@yP½ÇçRW¢£¢.±+кÂ]Dë(ºŸñ®›6ªMž¾—]t5€=tŸõÂîæô³j_„%üî™/Ѩ¦+cW[[mà6Q´a6M„ µgÏjEEh£A4jM£`L˜1¢F(Ø´U_Æø`øzlÛJþRùt+áË~^U…ÆllÚ´ØÙ7ýqTô”z1蓨§¡9o!šÈÛm­U³f°‰ªÚ["fq3®îœî:)ÓœIWæv¾ßG¾‹}Âû”~YZ6‹ÌRªò¿ø ž0¾3iúk8Ô&Þ]%ý‹•¶“âé³6“ýü¤“ëæ¶©6‡× ÿª£ùy¦ÒgH0¶%òÒ{‰—•6K-‘²ü¼ŠBè¶L–­†ÒÉlÛY¨Ì¶16Ô1¢k˜ét[i6­ŸqI_" òJùA¶ÖÖGÕ²~Ì”®ÜuvŸ|迃‡#{oeGN§²GP^ÆWR½‰]R½xº‘ܪïc6•D¢õ©BöºÙëå]uzñ:õëáv¯ê>Ú"çì´ºLîwuÓ»‹guÇVå®åÑ¥P¶íÌܲWtE%2®îîÝ$‰Ü]Ó®åλˆÜ)Ý·5%1E\è s¤†DkÝAHÜîçN»%p’çN»ºîî\†’&HÍfÁWbîÔ]Â]ÅBžð½àvml­•~€EöEw‚ïÓnœµGøEü­i´¨}¬FãpŲ•m_Ø«âCæ|\‘¡Ýù!7¥OÚ-ºµÝ˜ÓœíÙXÛ5\k6Í#èEü¢—rªØèÒùi_,ŽjŠ§Ñ£õ>–`}*>Åà퉲Զ6Š^6m­Š|r|qØ"ùÛTó…ü˜è4#[Dú ú‘ô ê¶Ñ3Z,Mš¶\Æ8áN> UBê.Ÿ¥w¢¾‡ÑÙ-µ±_GlÌÛVÓkhyY{ÿ .$ÏÆËm È¢&cHÐÄÆì¤ì)ë¥ëië#Õ×§¼'ýúÎ-¡›’’«Õž*¡Ú“Ó¥µ¬Í›Z6a÷UUkͬ’™TPµ"^뻹É.çtÝÝÝÝ£®ì— ‰×]±Ýu\×.—r »ƒ.Gîæ3®—;Æ?o«ZýþÛíH¶’R_Wè­ªØÚÉml¢ÙÝ'uSºU<ˆŽéÒ>î‡Ñªú4>ê\ü.§ô°ÛR.اlGm¶QýB“Ê•í¢öÔ{dºè 'Ó.k1l^™6-–Ó —*™’¯!šÌÌÙ6VÍŠ"ÁˆÄQ±åu·;¶£RŽaÝÓ®Û§wXÔnèÜ¢ÒlH CD ,E¢Æ%­ªtUtIÑDº!â  [«uo*›6Å},m2lÙµ?Y%}­*ž’ŸAñµj«½Hlf’¶,lQd´˜´‰<Îa•&ÁQbÛ6ÅlÅËšénk+E£fn[rÄdØÅ£sD¦™(Äh»º+†ŒWIwlr¹¨ÝÜ!‰I„…6MœºæÜJeF6»º#±«•M±„ѱ¡@@H4¦:\''ÊÛm«ø5kö:ÆÖý ªŠõ xÛQÛ@«ÎÑæ•昗˜^`yƒàÒŸËÙmSeæ£[}D–͵õ¥p£[—#4l[Á¶Õ«ÛïMʹ°¨4˃k¶£k‘Û\¡# 5‚3ºã»»»Òí×8B3›‹1·mqœ×4sNiäüÌSöÔ¾¦ÔŸP/ó¢L¾T§œg ¢ÚÚ޵­y-[Ûb’{Žê6‰ ¬LÇuYW6»®çÝv±+5W7dv'wQY—;.Qn[qÝtéuîîW9"é—]ÝÛp$ç.çuÒWuˤä9r·rí.îäuwc.u×v»º$ºîíÍwN;®ë¹Üw>âÚµúÊ·ß5(ÈðŠCó¨üñlÓi^’Uq<áyÈó‹ÍO*ò§•yWMáá+[CbÚÛFÚmI¢È$¨¨¬P*(Ѫ¥¯¡Û~ì5/™›mªÍáŸ.‡Q.€¼”;|´tñ{è®á.  «×•{Õ=€¾$ˆ_ÁJ½°½œÚ‡ÃdSßÊüM†Ê|Þ7m¶¥õU â ˤî%{H;Š;Z¹]^Õ/ì‘wí‰ÙS¶“ÂAó„í¶kmf«ujÛoyù¦Üµ´]ۙΦE«–×-F¨µ±m£Ec¹Ë¢Ä”ÈwWHî¹2’C—1ÕÝÚ.UÎGK•$9Úî»A&ÀÝÝ.\DNvØ¢¨¶4¦s¥ÅJ¥)Ö®î.äbJI$L"æã[e›iÿd+åBù[6¡ï“ËÅïvªÂè#cmj6í…C¸öeΛʳÉID”Ú`b,±‰Jjů«ªú™wÉw×}ŠÙ­¦Õ³––;2ìêìÎÌ»5Ù»7fìûäü>ú¸Åq˜›+÷Ä£Õ”ç´VÖM¥µm†Û`Ùçí©mÅ™Wc 9IQã´ã‚Æk;®Êæ®m¹DÆ¢¤¬X±‚Di"‘ ˜l¢†C$ˆï(®öÙeµ°¼ä¡|èW›S¼¥´¿Ú’“þ‚‹ŸpvÒòRõ¢òéëæ«™œ×‰¶QãuZmk^òªl‰rŠIŒdÙ±¶cÕUyµê󋟠󫯔óljÉÞÍ©‰z‹[2Ú›+Dô²žy×ÁÏ9`s×9S£ô„tžŠCmE>O,V‰¶Ì§Ãk,ŶÔïQîê—m+§-øŒl³6¨ÓFÅ1LÌÖîêîíÚÒlRbÖfÄRŠ ¢Ö6Ôj-Üå´îíaÕ\í­\ÉE‹IdA«¿Ú—ÃÆ[MŠòEçêtÏÓ¿*|:§ÃÙ/ï‹ýrPè‹¡Nz¼õsSœ9§¸ùÇ£Ù\¢Û»¡Ek¸VÎqÎæ±k—bÖ嫜kÌåÊ75È(sÜÌ®ÜÝvºs®‘H3—\¸ºî»³ºvêqÝ.îF“œFC—K&]Ý ‰Ž¹Ý.—åëü߉H|M&Õ¤viU EÜe¶U´m¤j(Wè¹Âæ¨ÔZãEá W(34Øl›4­¢gÃ‡Ã•ÕæØ¶¶—z”>|-Sc6Iá*Cñê=.i}a'¿Û6Û%éÇ¿CÔ6•õŠ»}Ul5TÝG«¥õE>ZOV«·KÖJúˆŸ4^ºG?´ózâ: é…/\+¨wÉïpÒ¶Í›FÕ±íÅ)ðƒÙJénltŠ®žøPìª>Wqš³KáQÙ¥Ñ]&&lml¢†aZ{×IÂáÍÝ×g;»0:H˜JJ&øù=Þ¶ÔöBí”í©vÅë%ß%ïbÙ›ßv)ÝÀ&*¿ÈÕV¾Ï_go³žJ§£‹¨ØfÁ²~Ø0˜6ˆƒ ”QM&B˜&1PCµþþ·Ýßw¥[dÚ«±¡ô^gY‘wª½¼T:ˆ\æ±°½R¨¯d¥<®Ûçv¼ï/Kº0h±«EIÑc4a(×w\¹Îh¹.tÌæêQG6Ñ·.Yw\çítÜ©.Ö¸­F’v(Ú-Îw7,W.»®wq$™£·"sd¢ë£‡1t„“.î  „$È'³«m|¯ƒª÷zÔy5äËãT¯(]dðUXêü«¥¿NJ/Ì#ãìÌÚSŠ¥]5ßÐï¢~ Sß*÷Õ/}k-›%û…!Ïe5FÔj5б‰#F60eI ”!E¢±±Qj(ˆÔl,lV¯ƒ`Å€RAX·LÍ)ˆ‰}vÕµîT¶¾Ö’5Œ¬q«¶Š¯^¶—¦#®“å  £óu¶ Å flØ[}™Q=Py «Ôñ¹<ðyèçKóeùº[1­'R‹žzxÎFÁ²mM†Ê¶2ŒVH”ÃJlLŠBdòqªQ×7.æå·'5\Ü6Ù‰sk–×0fÄ长:[Ïu‘å!rÕÐe4m[/³%'–“¢«Û‹ÛAíi{Av‰:ºNÉ­}m­¯½µ¯½w:±µÑQEñvÕkÛ-PÛiª6ËQdƒß8 £F9Ê»®îîºrrr¹në¢w:é»Ó;œ—gnë®»»ºçp;wwÛ.ët0É¡!Œ[|/’6Õ|œ³i³bã…TSô’_%/“›ZÙŸ \ê9Ús£›§6¼ÅçW=á•§˜ØÅ~mOÍØm'„UKžy³LmÍ«&"4¤"ØÔ¦™–É51[#ThbÔD1©1¼'ww9¸±›Û6ÛfüþŽø|’©ë Ú£6¦ÆÛ[W÷êòŠWÊØ/Ü2³j(×bŠÜª44M¦Êòa)íñ‘ñ©|Z¯‹Kâ çzI=×vwnmб¢µÊæ"¢ÄQlš$(ÒZ&îå)”ÆåÒ1±±‹‡+›råÝÅ;®Ha§wE"¢C.íÓs\£i›»¶Æ±nî(× ¶ÑS¹wu\ŠçcFˆŽnJ×mm$£»¤Ç7çwNìw.Ë­¸ã‹ZâãŽ7qøaÞ•w¡ÞR÷e}à{¤—É/“>N[8Í•ÆÍ­‘±ÿæ(_Īïc¼„ J}¤~W³×q$¶ÅxµkWÑýWzZ¡±¶J#Q²I(ÛõÍ\Í2åÐ× Î™ÝËšwuÛ_ìU«>:OŽZ…záç“×SžW®W[²zå]vÑuÉÛ%uõÛ*vÛõm*ìWÞÔ»UWeÛÑÞô[ ¶•zÚŠ{U=©^ÖGµ‡CKѳmÉáªÞ}ªüº¹S¤£\;r¹G;ºíÚ®lwgwI\N\ÌîëÎÁ»®\·.Frœìgq¨s®##uÎÌFÈ!)‘Ÿs­}ξåªÛ8Äã/z)O>WÃ’ø{i¥°q¯<®v£œ‡6œ©sMM+mÒ+ÏNn+fµ¶U~t‡I^uçmâ?«àìÌ6ÚŽ…;qÛã[*íõ£aþ`ƒñùj”ã7‹Ëa;r³ªk¦(ÚD(É©2\·Dˆ0ØÛê½³j’E¨Ò‹cáê6˜®òQ.Þo²¶GoÿÎE.X<ʺ²óDþ0“¬£Î'YUçjë çeÖ!Ím܃óQW ©siΨçAjß;¾sçØ5ó½n!“]×J.\É0E(¶M±e6LQ‹‰Ò9±]¹×s±!”Ì HJ63òÝ«‘¬V­ŒovDÕ(Öd¶5˜5QbX1¹·kŠIEÍwuÝÝwKÝʹ wur86îåÐî¹D ‰ˆ’•õõWLüÚ\ªô\§e]%NŸòŠ®õ{­6¦ýÚzŠ?8TìaØ©íª/Ë“Ê6ا…UCÉ‹â6£i›«êªöˆ«lk6¨ šHÌ¢‹E%j"Š‹6òªE°Œlj V(¤›XÄhiJ1FÉ £" YŒV¯Ðm}Âmš«î$ › yÓ¸ªò9µ¥µJž*žvó//¾ó¼íèûŽ.U×[pw EqµÓE)€„ÎîË9Ç‹[páÂã§KéT§é þø~Y_—fVÛ ”_š)™•K¬GWÓÇWO®‰ù:­“jÚÒl#k«VIû ©úZl6Tüa·þÝúub¬VKƈ¶™­´š" ØÌ¡"ÈY˜ÕÚ6ÅŠ+hնФ>e¹µZü1´j¸‘^ÿ3b{`'È'U/~6Ôm]ûŒ«el¶Í…÷bK–’è¶$”h1Š!Ýq!Id…w\”ÍÜèu×S5´Úöÿ|•|5?<¢v%ìŠóÒ½’^Ê©ì%=€½€žº[CÖ¤õ¤zª/ðKÍlÙM¯ƒ›j¶‡"(»Bv‚ôÂõ|©æukFŬ­–Ö6(ª5cAïUÃ2ÄRd+A¨µEQ«–®ZÕÎ.UråØÜ¹Q„„;®rîíÈ’.îѲnEŽc“Eëcnî×:ë·MÑg.Av ×Nº®X£cœŠ;ºêèe7:œ¹C%ÓK¹ÑÜd.îÜîÎNëœæ);‹œÜçvîäœåÄ.ºí×uÁ®îîÆc63lã8jÛ¤+¤—F]t1×xòžtÿevób6ÆÄäDy×^ëýoû"]6ØÔ†Á´¶Gåf–ÔíÑð66C¯"¯ƒ ä¥O„§Â*ëe$EðóðÑòH¾nÀè*~2%ôXÛÛó¸qƳe?9Y+à“âû*Së›mC3å«ÈмæIµM–Å´Øl¶‰eLˆ¤™+‰h64–“E`²Qllh°3ÚUcjI6©|4ç‰h4¨¿-OÅÚ?W£æ¶Kæåµ™ƒjxBK­£©¥ðå/‡³kZŵù”GX]bu”ë+Ñ^8”åõOÇãN4n8e³hN‹rÑ×FØÖÝÎåDi„ 22%CO®××kª®©Õ]OSâ©ê‰yÍ2¯ D|’?òíRùôŸ=M®R*N[m,Ã6 È£b-ÕF£d½7H”fP¹Ýtn:㺸î'sºwNÝË®ë·uÙÝÆQÆ[mŸ?Ó6£l£ñe!ý/é»â©åÅz Wô«×)/8—šW‘—š«Ä/åÕú7ÏÄckôpâ[Ž4q«m¬M»%_hÅ.Žt{ô›èýÖµ[Ì£Úλ¸(«š«”FÍ(ÙÕÜÜ‘Nêỹ·.®D5E\ÐmvEÜì¹[•\Tí‹ríné´P6ÐZRF“%’B1fÚúÖê¾’ÕöÔø*øZjÚ5©öQK»ŽîNí+»#»‡¡vK»£»”îÑÒ)ÝÈüj¹¸¡óhyÉm —Å@=ÕW§j×*¢¤˜Û$clmZ* Š+›$dÆ‚6ÄC" D™` d5£lZKQ’–±VfVšÂ2‘Q™,È ¤bùëûm¶¬cj…X±d_ºAù’«á!WQU¶…‡qm›-“ÂPW8çõ(~uG7›6bx Ž]¬Û`Ûdñ8f@ѵsPD ßG±ø„é¡ÓS¦Ž}tÓÉÝî$—Í‹æ•ØæÍUȨ§Oìé|/wŠÌÙ–ˆ¿U¶ÖÕæKdôúæØÎ\ˆ.cG ×’p4n\wn"sG9ÎS†è:çæÇêåp®\ÈîîuÆs®.è bu×H™.»»¸»ÈÝ÷{[}Ú–K[ì*«_s°ý¶ÊÚ}4öÕ‰<©;r=^^O~/ESÌ—„W.ù1|j¯U†³DXÑyZÚ×¹­«ÞÝUÍκÃmnka&ÅÑ·ÙV¯ÐTæåÛÑé’çS·+Ӓ燿‹ÔÐWŽ£Õ•tóðÙ‡P¿¡Qî’í"º‰î”õ’=ÛIëhtˆõ²=ô½t¯z]:zŽÂ_ ãmAmؾ2ŒÛlÁØ‚ž%|Ed|^8áNn4Ù«¥º"a%÷ºÖ¯§[`­QFűd ”HdŠKXÄj-cD…ˆÛŒ^gãTŠÝUÌç#QZÝgv“4ŒÛm­\Ñ‚Wù#áEÿJ;ŠÆmµ¶ÚÙl—N½D]….¹=1zDéGHtCϧ‡ž3*ɵ[[lÈmcab¬iŠMbŒQ&R´DÐcHiY¹ÿ¿*>_áEÎì•u56V±·ÄÇ"Å Šýý*xD|üímM­³jÙ´Ü[{"µzZðÚÇ.Öçn5JÀ[¦ÜãW8ë•2'sDgvCº¹k’suŒW4ëºWná·s·4TÑ!†#IbL€2¬Íciïýþ-´›÷ªQëåëÔì(õ1xUM]×ÐÌÔä ½`y¢¯àK³GÛWDl¾ä«ŸvAѽHº÷^—œ¼u/9éøÏ W™Ú«`­å[R´`0Ö¥‰BÄM/ðµ_žÖß´ª¿Ëm¡²´ª¿LšŠ79ÅÝqÖKŒÈÌÊŸííV«êµtÁÓ…4~ò]ÕGqSÑmšÚ6—”O-J¿éï,™6'Øãl[6Úž4HrÚMk 536¬ÛazRršÚÖeýÉNâ‡>WR‹Þ—_QðbøT¶m¶Séê[^-m^LǶîcZ6Ñb‰ËpåÍŠ6¹Ë„‹F -Üœ‹a“TF ûSº1wu.îr\æuÛºíÎ+¹ÓœneÄîÅwuÂŽbís‡uÜç]»§n“\àٱÉð5¾·Àµð5¾·ím¯âécm‘ýeR®œéžMÒtwEÐy—sJî6á°¶»¦Ëhã6ÖÔð…E÷jßq¿¡ (ЊŒ–?ÄÛmUä/tÛ[–(ˆÅ­”I a‰NíÌîÝ.W(ÕÍ£™–éhÛ\Úá¨-Ít±c!Q¤ i&4d¶*î⢱UÍÀwuÝÅ©¶6&¨ ÌF¨Åˆ·-mM¹b²#·+ê¾Ò¶žþ/©U¾­µ´Ÿ¨|LÓ`~Ú<¢ øT¾ªSÜi îëT}J‡ÃlW®*÷ƒ·U|dæÅmzðö…{tñ_^ʇÇbYUü4¿,ž­†§b—…U>¾ÊSå(ùVÍŽB¥zXzTzYzRô£®N_›Ñkc¥×’í[œš¹X¢BI)É8îÝ]Û»9Üá9ÝœuËq×W]sð¯&’yê26m†×Ê“åe´f›6ÔÙr¤¯nÉ—¸/p^áá/oRüñü…Wñõ‰ñ5«0ä »B=éNK‘ž'‰Æ&fÙ“»nI ;£UÊâç1¨»¸FJݦ«¹t´Us¨¢Ô ÔÑp79n¹×: guÙs”mͯÖm_ Ú¦Ú"©ËW‰‰ê‡àÆÊÙµ³Mÿ6¸¸­þ€ç툜íN–;Ø¥Ó1ýÕýý²Ì›ͧøvåDF‚î®LÚå±£%Ž3iÆã_=TéÏJ^Ô¯«TÙq™¶ÒxB«¢ž'F:3¿U_›·æïÙz¿›çûµÊë»\×N˜ØÑlci&(B·69r¨Ðû\Üé´N㋹˗wrØ:ínWwtjº®-c»¸Ü×-ê1\¤2ì”Šææ®n”ÎîNºé»;ºCº3®¹u:îvcrA ³ºåÍΑ˜† 1™¶èé]»w¨|Ê]H_úé³²Ói³m?Ó;"¼Ê˜mëpØÛ»šF‹WdB*þݶÕ^å¼ËmÑQ£Q¢£X#Ld%de`‰6$¨ØØ´V £ÅˆIlm5F”[Óf;qx|Õ´õ)ú‰Z¿ðk÷µ_½V€ÝÖƒûMxÆÓ\ª^Uåú$öH§™F¤ãÁ jùÛì}ç¥îXÙB™²“[‚¨¶¶­yš¢j±ªåŠ&îÜ¢®î×&Õ}‰táéêéÑÖUu éÅåêôâu#Ò‘Ó/B¿AWèa¶ÙmC‰°ŠäY¯½;«§ ]x^Áã®îÛcxDJõRº™Ï¥ÔUægãAî¾Úµ¿¯¶«ÿÓT†1dJ3jÚg5¸¥ÛÛQÿ•_EZ"¼umXh­(Äj1±Hƒ Å‹ƒ"Ä[BH˜d‚AdžOž —ŽÑ¸×¶ªã2Û“npÄÕZÿ¥}/ùómChÔV½Ì¨¯ŸrÒY†›lÛr¤¥|ôOÑTÍ›FÕØìÚP”çÔçªóÑâj\Èim­²Ú"cE¢‘6Io2„„‰$M­±™nv¹Äç#ÍÇO5:Ž£¨éûÊÑ––ϲª§ë¨æ¶–Éw4^*¶ß¾¶¿€Ëø ÓúÐ]ÜÑ]ÜåÚ6¹8pmÇÆq‡å‰E锽l_;tzTñn_Ìdqš‡n3‹qjHJÌ‚€KºtŽwÜk_ÁÛ[_¾Õ+_Á€Œlcgú]ÝséöªÕ÷ú·Õ–Ãk~ó·.V³-¶þMJyˆS¶¡+¶.¢´]õÒº*õÒ:3«#¤=R§J>ò*>EµÒ3Y¯þ鿤u+Ñyb©ï¼ÁË–’nUqN\º;ËS$Vêwv¢s$[EM0ØÛ¥rHF³9S¹tîè(‹»™ÎÚˆkìõWlÛë;žKµ’ë{U;Y;TxÖýoÞÚÀHª*ú±‰E]ƒ;EH|€'ñÕï“cŸ¡Oˆ­ï®Õ"¢¢£cccE f‰’PÙ,–¶+±`yЪ%£´ws¬X»lm]ÝÂRîånY¢£»®“»w9×eÊhK¦îësº»ºáÓ:îNîw]‘\¹wv ”ÝÜÈgw»gNŠS^•ªþΫøF¶þ«ÀÄGäRïÄ«¿ÂÛ[&Í/ÄG j} ¹6ãµ·îEJòÁàRð"ö—ÉËjl¶ÄÚ6ž®~.Ú[&6|í¶Í¶×Ò©)ÕŽªº™ÒŸ¬ß}5~k_ñoE‚¢©±KÝõ ‡:;¶±v´«_}U}õ¶-¥ùÍœm£Y æÑé¨ô¥×ïòÃå‡Ë/ðªIéZ¶Õ¬¶b‹JaMkUE¶6ÓIš=¬Ž½NgbÚÊØ¸f߉Æ9¹DD#X xüêñ˼x<95á%0€ñ‰Â áf¶mm•$‚) Eûªûõ°7Øí·„W±—Tý ¶6­Þî ²Øl†“Ô»­7 \·6ߎY†ÎL§£k²WeUâ{*ŽÉæ‰{8žÎ%Uÿx?!_;j›o²Óº ïúápCožÕµ·øÛ[ûTž»j”í$v„y›—ÛM›6Ù³"XM 2‰ˆÑ¢›VÕ¶Ã1v‚í~è¥ú­¶ýVÚóüøA™’4Da&ÅfDXEJ jA5b-H¢ÚŠ,Q¡FmŬ’ZIA’°˜´Z61b±cF‰1²h™™BÉH 4-±¶Qµ£hß@¸îº×ؤ¹©+D•Í]×N\k»®Z¹¸X£5béÕ¸¶5ˆP˜Ú4`¤ÂjL0 ÓK&1‰)ˆi£3SFMtu:5:°º;ŒÛm‡ü~l@éá«ÒOH= ô—‡^,ôùú-fضWãimhálÝ´H¼¼ý>î;QºîܹÎîÝÝÈ®îçvì7©m_Ñ×ùʈÀÄ€/+[Z¼ÞtÝEiºk·-t,…wtã®l.ºä¹ÈK’\ì9ÝÕÝ˵ÔéÈîtA'w ÝÕÝrκéB;¹2îÝR[»€.t•Ír“&îì§N\îí×#¥Ýs DeÕ݃Ž7w[¤w]ÝÝ×p;£®ëŽ'a‘¹&¡Ý¹gvµmr¹Ënuh‹h¶)Ý\´Z ZˆÚ‰š¹ºIƒ ’š×1!¢2‘d´W1be]ݳºÝ“#˜é†šD˜Æ3»r"©-Ê®dÄÎí·kDI#jKÐQd4„̈Ò`±†ÐI%«÷:Öÿ:Õþ~Ú÷J4*5ÈÂb_¼îæWÕm­Vóµ·è5¯†Æ, ˆ}_XÜq|k~Ò‘zº¶Ã3l§æjãQ86‚qª6¹Èçú…ÍKš§Èµmó³jÕðêö—º‹E‰QM’PfJR"RÄÂ^þî >¾fÚ׿*÷õúoè­WãJƨ±Œ‹•Íþ§s»ÆÛšð·…^QmVð×â$Z[™Ó®bKäJù*lk6͵¢Ù}lËZ=(…Òþ:eît$Ù³m ózÇ‘ÿªö ö –Üj¿‰k_…Wàµfe¹IŒ4ßc‡ëÔxQ)ËЛFÉãô¸ÌËF¢îۚƺéWH­ÁimË»¶A’E¬˜"wI×pFN;±`¾&­_ë×àµD"ü#g»!´]5.™WKOÿæ(+$Êk"8<ò€thoÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüAK€ú Ÿ ´Bf*‚DÔ²1…4Ù› 0 “l0D¶0-Œ„†­‚Ó–šÀÛ#mHÚ[fÅŒ2j›`”S1¶@&Æ‚5¶5›C•H¢U-i°4ÀM›k06Ò!­ó¶QB€ â ‡ÀèP¨ª%k*  /]Ç8ûiÆuÞò”¥PR©T¥)IRŠR‚”¥(*” i¢ŠRTR’U¥(¢’RŠR”QJ)!"””’RJ”¢I% LŠJ*H¥ŠH¢€QI%I)AEŠ)@ªPRRP$ H¥R”¥)@¥)JU(U PR•B©*U)R ÛRª¥RªRJ¥Dª¥Q*R¥TŠˆUUR¥UUUUEE*¡U¥UTUT¢ŠH(Ph €¢¡B€PÐÕj©EP U) ¡@$¥EUU T T²0€UJBUBª"€• š!B€U"’@Ô*%R„ØÕMë•4…PPHU(UD €@ž}5[5-¨b°+@ØhÖ›ÂSc6 m‹-€…[1€RÖ¶4`MM¬Tk!mŒƒMdÓ6£2Ú0T¨5›MÆ5‚ÛM6*˜l¨©3h›fÌÖ Ú°+X­)‚m¦ÖÐ6°XšÚ&hÆÙ5bÃb˜™!¦l–&X›6Å`fÁ4Á" ŒÙ‘³ j°ÆØ–AÌZÀ´³6ÅLCL ScÕ£hk5‚ €6Ű(£¬#l–š–a’ص¶`[ "¬²%¬¶Ek ¶Í™#a`4´ÆÀal -Q³m˜¬31µ†Ö0dÓ,D 1•Km­¦mK Û"ÖÓÙÙ%bÙ5bÀ6ÀZ©›`UhB´ÛUKM[Pkm“-™@ hÚ˜luUOÿÀÁ44˜˜CCA 1 2h˜FF†™4 „4˜2ªà&&€€ÐbdÀ˜ƒ@F$𚙩‰¦†i6Q©´h#Ó&ÔÓFCORSð@&€ hLš`U?O@šbžF™OB`&šSôšOÕ=©á)“ÔÏT?TzFOÕ='¨ÐÐÈhÓÔô†š2mA£ÔÈ“A'ªT’hji£&DŸ”ÃL24Lm)£ÄÑ£S=MC2šzL4Èe0›zi„150“&&!êh0†˜€=CÒ h6¡ =M4Ѩ&¥JS$šišLŒ*{SOdÐhjf§ bM¤iéˆ §£CS)í M #Òf“Âm˜BišF§¤ÃBO&)ú¦ÔzjhÚž“544 ¢C@z=G”d~ ÙP)*Rši ÔÍ20&†††F ÈLÒi<“OM0b&še=0 ˜šdÐÔÊžÁ4Ð5Mé4ØSCÔÀOJx51šÒi…§ö‘>›¿Èl­m6©àm\kMœ?¾D=^‹mó:ß3Wº¯u_)¾OÖú;Ø­p#p Û¹´Q®î´JC»njå®\¨Žb®Qt¹Ítîä’fJéºX‰Ý»»ärê7Z‰“mޤÅhëXÑdš¢·);\ÚæÉ]\寿îè×.pÝ)†È¯mzWÏ­HüŸ9¿=ÿ0ß”újlÿÖÚ—Ë2¸Ù¶Êæ·&Îtª—çºpsG7›Ç?\ î¯ª³X§q Ó\©éúîÜ„Ù1Z5®mÍT[¨éµÍ‚IBœæˆ®¸ësEsc»ÝÔ[—.î£$'9Ë™²n]2w]&»º¢µNê¹Îk—.—#wtêæä-Ën\Û”æ®nKwnÄXÐKdÚ6IbÖˆªí -ö%GÐÆ¶KcçIùéG¯lŽâ>Cµ•ÜìÒõqy< m´w4|5+ãªøÉ|²_íá¨zê;ü6µ\m­66õ6Úr;R/ÏHùjùèùÎQ¢ùî³lßfåDOï%uË_;­zß'²ë˜Ü®ËW5±lDc‘ì»®IÝÔS»r¹F:k»µÍrêGuÉ.më´\Ç,l\Šææâæ¢ÃEªK \ínr£¸mÌp3;·(ÔFîuŒ®îåÎb  \ÕËOÆUó›_9·|Ç·Ø}¨<;íîEáÕ+ëEõ›7uÁ@-ÝÖë:«m¾ª·ÂfÙð³ÂÖ¼+|¿ïˆ\í'Š•ªpP+Êû”#éÏU+ÊÛ%±³6Fѽ#ת¤íTèEÚCïû/}‹›mœ±“ÎÃØÊ裯ã^Æìa{cZ¾^úŠß!^µb¶L€5Q«lX"¶*‚ÚM°[dª ¶" 1±q­ÝÛr"QŠÂuÍ‹º5]ÜÉsˆîíTmˆÚ+G\á çH7ÀÛoeV¾ZüÆ­ÚÑÚÅÚ‹µ'š‹Á£ÂÊÁá³C‡„ KñʯùçòÜ|¿Þ„«ÛPµ Ñ Uš"a¢™™ Ëd˜o[jû‹[Ý•¥¶è°\f}\­}_Š*_V‡ðƒÃŸW6ÞÿŽ$:et£Ð½çÏ:ðê¼=­¦Õ}jãï•Z½­ùÞ³1ƒX«mñŠ5+Hܸl$ˆR¦1I%Q3Í£¤Øˆ1 4› g\/MG[O«&G Øë7ÿ*!u”ž}ئÓjf-šF­ðŠ·ëüv»¨ ±I©ÅÌïƒxWÜm¶Õyì^¾UsÜ6×7-q£k®iFLh¨Ø5('ÞjÛáíð￵«œþøP.²:Å^¦K»‘sylîÕ-Ú }·v¹ãŽîy}îÚÛó:·æm/Y*û…/XK­Uu´u°ëJçÅÖ‡±•Ù¥ßâéaD;ý›O½×›­m^ÃlZª0Ä•Q¢±Æ™Aƒ *Kb6“VƒdÑl^ÕÕh·vÑ­‚åÜ»»› Q ŽîIE0¹°‹•tÔhΡWQK§G©_|¼ëç_:þ¿ÛÑôi5µ´]ãipù?×*O¼ý?f•xaxar"ïöÝÓŸ£óh){ò?&§ä©ïäüŠxóé{"¾á<ŸU÷–¾ãm÷{W±ÄŽº/ØmSÃml—¶šÉËk‘攣ÀªG€;lÇéü•Jtõ:zºutõùâu“½Á± ïkŒÎõûØ’ºÃ“Ç)m¹lÛY—XuޱÖ~÷ÔÒ.ñ]áÞmÔ¨ýw’­,ͯšã¼¥ôªmnÊ s4M‘³ ¤Ç«È£\ŽWv¶ÑNSoy]ÝÞ?è”ûÔ~åAýú¨çdòPï¥vûf§™qÉ8ÖÍ m\ÑHBßFÛŽî\x>m%<ÊžfW™ft1rÝè.Ð:U_lØ[kzŠÔU‹ @£6ÆÉª-ÄhÄ ±ˆÚ‹$¬—ôû•¢nY9­Õ\©­¹W"&),Z’;¹E@š,PØ«§]«š®dOÇk}Ë7g³—=à{À÷‰{²»é#¾Qßé±™™”âpͶ³ûàG¨¤êd»*.È?–+²‡d§eÉ.ÊH]úwÚÛmßìš•G•Ã6Æc0CJ¬Z·¯Z¸XÎísC®¤™×sFÝݹ£\娊ÚL*îè7uÆE;µÊ2åÎí·-%±\±ªæ¹r¹ gwlTpªäF¹W",ZáqÝ×4wFæ­Ñwsºés[Ž6å‹#«%lh’b·v-®mÈÈÛD‘”UI‘EbI)4h¤k{ݵöº² ×½[ù®É´x}·xñÝwxcåöÞ–ÚÖ¿aV¿0)E£VÛúú­¯®úfFf,i>íÜU¿w!X¨ÛV6·¾Öæªæ÷Ûyå*_Q¯Ö »½6ZÍfͱ²l­•]ç%:þöˆë4ÉUáý¶Ú¯Ž½(¬#Xa Ðb0±™ŒÉ%)𤿦Ïckêá8n%ÆÔ}]¶¹¹¨NΗfGfœvK²vS§.U½/Ä<º•Ù´ÙM²ãMyãr~´å!`Ùm[3jÙ±lšÙ¯WKs™\Ä 3‰´ÆlÛ6ËÁ¡Õ*ðgƒŸSù²•}=µ| ·Íkપæç27Á7'ÿȤvŶµO5#ê¯¢Ø«Ú ï*yoÌM¤Ú–ȶ dÒÉ£i6¢­&Ô[ÔQŠ*ë]¦åps·]ݺmÝÜ«¥sTQwtQ¥»·&ŒTh ®Z廜Y,Nî‹ r×J»®ÜÆN P¹k)5Aƒ(´[•ÈŒˆÙ;«˜Ü‚Ý×+uÍ˕Ӝ`f6ÖÙðâ¿°^R®IÛj¦ÚØØƒæè6Íd½°º8ù´=®Ô=Åzÿ±c¶ÔDQF6š¶0<¨™{®8ãóP§æ%^{5}öFªuÝ)è„ê]‚#ó5›B¶îêýäOOóîï?0“ÚÀK²ï ûÔ»?å£öa´‹ó²M¶fÆÃh­¥»àü)þ¯[Gçß¾õ>¿d‰ùûflCo§°|Z>ÂSìm±´l[TÛM‘ô›[>Ç#ã•Ψ¾±~“ëÿÚRŽZ—RŒÒáéy‘¨Š"oŒ¶Ú¾RÕ}Zk]Û5õ¡Ü×ÖÖ}gÿ…B{*žÂÉ=:º“Ò^ŠçJñXmM«Ë}«\cœr6+›Vº6æùïyµ¾oæ¾ïƶû¢›hX>Çìmñ¨ü"út’~Ò¯²¾Î½ëý$Gõj¡<ȇø¢/·Aóàüf²Úl} q¹8oè©!V×®›dÍE䫟Ú5ŠQ´h$PE$ÕÒ“•ÍÊco»ÕµCÐþ)îÅÙÔ½É<ÔvEtUÒ*y¾À®˜ëJ§¶ ²œ¥\lظm¼ÿ5šá³¡"Os)Ô¹ˆô2sdvþØG§ªí”{»Ÿ¤ž2¶ÙÐäã&’JÅv6å¥ÑݵÒA®í\¨,’ÕsW*5ÔuÝ\1.êåÊí9sº®®Ý–åÝØÜëdccnmrØÙ’šW¬“Õ Õº]K÷í[Y­Hi_€.ÆîûyJ]L:‘]Ô~J>~Åm]&+?%ÚO®:¿E[Uçí¨• i‘ŠLT‰­™³ý}ÂúY¶Øè%}Ï‚!>´¯º¶³¯Ù4r»~Êl]ÜÆ¼7w'…:4½—t¼7ù"¥ÎÓh·Ÿ¶,´kIJÆÆ±±‘F¢6't¶å{-Uì­WãÅèkîçK<ýx¿…àæM—Á¿µÇìT¥éOIæ8âçº JæE{“f›G8q*kù뜲"ؼ1vréÕµ«ôׯ¶Þ²ÙcxêÄ HqƸeêÅÓ*õhz*=Y:xõquêQsÇ· Ï×¶Jì%_»J=R•×;,¶ÍÌ¥þá%äÃÚ“ÒÉí%^ЯgG³(»É ¼§Z¥Ìmµµ\K“q¸\~WUj½F *,šI˜"¤Ð‚É ²bH(Ê QEEŒEbŒZa2!Tj(£Rdü]cNÑ­¢Ù#e#l3,cn¯{¶Õ^à­¡ý]ómó¾Ïð¥QTúTw°-^øµÃïËÇÌÖµmó6´Þ~QLhű¶1±i2K‚*ClZŠ-X˜¨  Œ‘1²°KȰ͘þ£©.û&]önûÄTNªMuO^žôïNy§Ý“¾fE»ãŒ\cöfä¾½R§püÄ“À…~aKðbðñ—‘Ëc.“KÇÿ¥ͤ¾aÛÔþrÈÌOVÆy©UÍËÈípÕ³FÆÖ[hÒU‰ ¢¤¢5[²ZÏÅU_!W½Uôä¯ÇØs!߉àm²Ú_5ÆÛÀ”‡¥‘ß]þͱmm;÷~~Žþõ ziW]!GºŠ=Ô^’^ê‹ÒÏt“Ó.’y3KbXLeL©¾_V½5î×>ø®ß]öƒjÛf6–k¿Üm— ›úJEv0ìRìTô1v2v5]ˆz5Wû£¿Û5·è¾Í@èªwªùZE¶2j-FVZ7¿ìGqµlœVðnOoRbLòv×-v×m¸µÔj6u®Zæ€Jf$\¶-É+®íÅÓ]Ý‹‹»ºs»º¹®íÜêÆå"42ÆÆ_imm¾Ù ª¶ù„}Ýw¸ÄØ|Ê?Rƒ¦ÍU|Ú9¥ª­ò#¨ª<Ý“Ám[ÂöF¢üú‹ÔPê éË×¢½<»|M Ó ¹üB;'_©uצž—ð|rySc3kM–Ò` £6-1­Ñ£ÍS1MŒ¾T¹Ürìç8q38šO®¯1:=[5õ¿ë ¶úM¶½]·åÕµ|+ðÆŠŽ\m±±rm}g)ºR¸‡ýðžO…¾¾"¼í­më% ¬m©k~æµo…Zû˜ÆÆµð×uÎk›‹j}k“Y·)ç‚SÛ¨öñ{r½½O>nG¶ÛHöÀõ•CÃ>ކ’Tl—¶¡æŠöÔ{ayºžLµ_O­z:ÚæÆÑ@ر£$8º9™‘éõBž”Ú«ÃÖ›UÆn³=’‘r‡\ëž™é¯ QxZSm'œãi´í+¾yjžŸWm’ð’(¶ï¹î-\^ ÷ú­µè5­©XÆ*™AI4Y„O=ÉÜ[h`.î£Qi6å\ÆÕrÕpÚénn]×ZMIuÑÝs(c6Š‹E­ÈÛwqÝÔD#ŠW8³w\˜ÐîÜÛ•Í¢(Õf[›kºë…RlƱ¶-&Їu¹;±Ö»\µÃ§\fÞ¯§…/ 5àø_à(¡ãj¿Êô´k Õ|#šÛš®×,CfÙq©á幆Ùɼ?ìÒS¢ƒ¢zU½†J°£FÛ$5%ˆ¦K*"¢Þo“ÚöÚöÛÛ_O^Åï"ðÑácþ­UO*—’ù(/&‹clð¶ý_,¾f†µ•læ@GWœæµ&m[#A™PŒc4}Åmó–ù_"*^ü'ÂÚŒ«èæÆØq¸Ó–ÉïgmT£ÕHõJz©=UNŒŽŒ^(ò!ÐUÐ.ê—ôåÝa«gssô%æ6ùjùoeå쑈µE£Qh´›hت4R6Ö5¢ÔmGƹ$QŽîgw.çV-¢Æ¹i+ºa1±;¶á\55ÍtÒA›œ(©wnnUÊÝÎÑEÊ7s¶éFµswv¢×!ª:,W;£sm;¦64m—wm®kƒ•ÌÝÛ†× ]ÜVÍ'q§Ž“æT>j>~6†¶Ušùôéyq¸üТôõpÙNØ_Ž‹ï¡òdvzÈù2¾þWFGßÅvÁìí‚ëcÙª»a{B¯…Gc%ÿÈ<ÍOÀÃW» »´îõ2îýO姆^óh½Õ.²©•/:.nFmª¢¶hÔ`1¢*a ,Q±$mØ“ccHƒFÑEH¢ªQFŒUdLlotÛ±·wk¥ræäwtœ¹Ñ'wnr»»˜L±-̈3ÞÕ_lk ·½1jrض¸mßqÅÆÍÉÆzú(~áS½Ň{¬5D¼uONzw§z{®w.¥zê½m¤óÛ)qÐq®/'µçÈ.¼wr¹ZéÝÊîí®¬W6Úå´àAI•ç[WÑV¾Š×Ñmô[Ú+èÓ軲#úå ËT Ø­­SºÖÌq¶Ür¤Eð)pWVª0j‹Z,ت[ZÞºÛoî õ©*ÿwl–ÝÏu¿Ë ;‰)í_BO¢6¸6ŽM¶fúÔˆ9{ž÷í¥ý(»½§ðŸã¥h9½T’ QE­©J€ÒV‹hÉXÖPThÔTmQTH·.îÛsE\×2*æÜ:®–Ü­ÎnB1j% ‹—r¹§0PîÛˆÙ4]ÆÜB½å­í­¯Íë{zÏ+SÎUíQçgHS¢^ÌNªíŠu}©©]g²‘Ô•ë”îʹÚäÜq³='ö#ÞÉïT÷©tÒtH¹wšúJ>–¬ÚÚ᯾¼tÍi‹›Û[ ¦fÚHˆÑ˜¨µ£b1¢£U£j,D”HÉ )ŠB6Ũ¬TmQ‚kÂÕ4”lD$ªäm-²SI&„œº¥Cl¿)/¥ ïjw»×3m'“7ùBƒöT¿ñ¡íõmšÓ4“bWõª+šëiͧ7m¹¿œòT¯ðM¤ÛQ¦¬VÛ~ÝZ«ñ´ºÊºÀêçŸ:›Ì¿xx½fTÛ5¶^S9k”-¦Å£I#“1%ðmU¯‚Ø›T­|ÝqÃoC˜ z9î]gQæ(ïË¿ïúïP»àw­©´;ûiÆÓ“rq°TyªNXòy6Q9îVjqšN6ÎësYÆÜ72Û ÝÝ „k‘!ˆŠ#B ÁÝÈÉ#›—w]Ýt·5̘wt¡"÷µ¯ÀÖ½rÈÛÚ~„|Xò[j[MlUß[öÞ1×.ñ~+VÖ¯ªÖ¶¾Í1ESg²¥ç…Û÷ÏþÏóÿ¿þ_ìû®o›æù[“šüïËñN]÷y¾G«é¸æs;‚\¢0F_+TO츰!¡Óã'ï ("ˆ„.4F"@ƒöÓ DI0®âJWD•'ÿ«ýS〪½úÿ/äõÿØýãþ†ü‰Uï#Ôa?WJÛ6R[K»Æ¥´üurôâçþVòžS;䮇ËôOè]1ÒäŒ\"#B²‰¿¢XJ?@Cžkì'ïdPâñ“ÒAŸú|@ââúá‹×£®4` €& ÷JQ„H ¹^ó“Êò¼w'YÖr¼_”x¿ãyœ®s ç?±ÎužTz‘µM¾-»Ä¿öYSÿÉ4$‹ø ÂHŠaˆ@Y›þ£¸P¿Lßú»œ±É÷AÄ |âZགྷ’;D!%ÍMê4u"” %Ía@çO\Ñÿ ,ùÆ&¸§@ùI" 9‘ú°ùHÀ±Ýßö8€€AÅÅÄ„ ú™\h¸j͉´FÃâ¶qqïñÅħ¨É „(å°¼H þ•_¦;ªt¥D X!g7ûFu‰òE€‚z}¯ž_ò=q-|Ž˜Á`HÐ Ò‹î|?ÞÊ..,€â8ŸÄÙR¦Áj¡L`”YàVD €¤Î$Ãã)lA ×L2èk¯¶GN ­…¡Pßs46ˆ‡ r‰+p=Êܯýü¿’ñ\îè=ßï _fm-¯ ‡#Ìy_-ã7ñ\x¾{Ër1 ã¨Ã“û‡Þ¬šÍW¡ IEQ"(l*KRAÇy]êêIWÚ{ºÏËÿŒàà¦"–(ˆ ƒÉ¤h"|ãHù¡Œª+B­¦p$]Du]ßöḔ‚²Y#—L«‚DðGýqqÎaÿF¤Äô@š`šB? \’OÆ¡eÒó8Á'ÿ(§JF•FÄ€\,°žÌ ôŒóˆN@MrA¼sL4þ€ÊÀÁq"é}ðNÇߢ[Yh3ª,ê¿ ¹õ¿¨u0·2 ™Êñ1Ž OrB‚'U`€˜tK i–áIJyÞq¢„ûîXTTò•Ÿ¨äxÝäyï%å{~9œÿ3Ëy~sÇóŸ´üÁµ)úDðU|×é°ÅVÁ¾ Šg¢ˆrËÛb22§ÕË8ÿqŸð"û–Xª¾g.\B˜Ç\‰³&# !R2#œd ÎeÿÆ1¢Qq*D ¬‡eN …þÆ”Œ¨¤Â@WÓÐ"tªÚ¬„o†qÑLËâ¢I°pK(Œö˜‚ÊBùµC=æÐ§BKŸÝ8?Àv:§ŸÃëû?˸@>@Ë3 ¶Kõ5þ¹oÿå•ÛUÄ¥W4Á8‚‡ˆ. 5±5 ¨²Ú6F±D’64LTš˜lQFÆKÒùaÿ/¡òåì;Õòù¿WÜ^=ŸËq`õ‘,OŽØs3qWàÁzý‚œ t3¿pá£UEÊ—"µy)]Õq)»× `ex•‘‹[Óà°e†›Y;3%ÉþÅ—îÌÍbSMbËvä–á%췆ʡª[Y/?ø?çˆñqÒăE±^|·d=Ç ³VÔ™qÍñadÇ`V˜!q¯å¸Y ¯»âdr(žô&y¯¸é>=dg¿ÍzÔàúÐôUc•· wï=<¹nÙÅeᣨ:`ÐCXRhÄ”@ÿ|{T™ù©8IS#7^ø•ÐU‚œÌé-[è´ã‰[ÿ  ÁûÚ‘¢8ž#ͶôiÏ<Ç®·œK#Úi?ùçvzß ˆc:È Ë½Üû_ûÐè±>‡qà¸Û-»'1ÔrˆÐ Â'±‹ ¨ÿQŸš9Vð¹¤\æ‡8Ñ¡C7ÿ“HñÆh7Az]­íމë:>æJßr.…{¨9Ñ.jlA±Ø5\À DU2ñ¸¸Åþˆ8¸´ƒþ_ûà8Ä<·#¬|Ý^·™_dê ´qžñ°Úwìxúcâ8¸€ÿ7ß,¾w”ørú2½|T€”Qáʉ«ð<þ··m|Ü²ŠŸ~¨‰l&ÃZºt¯îU6.]Œ1³s‚‰E-'Q´yFãCŽ˜CBv$è¥ïé+¾M*pŸô‹èƒÌ-¢Î.ˆ²yxû7Ó%°.zG8MÈÈÓÖЬŽY&n‚^ÿG.›UDôO&Ѻ¸šåü¾•î<;Úu>;“ËùYÆ91¼çÉhådñZ¯)”rñ èñ.^šÒ¶ªåèsš£Êè®wTé1+Is˜:¾‰mDç13Pã¤É[9–ÊæµmUêw^{ž]לÞ%Ýé7äª×²W¢ôÝ|Ÿ§âóÞ‹òPi=~ÿW¦O4& í°I¡ÞÌÕÆƒ<Á€òJì“°>V bxÁ?\†žg;,ÿQÁâƒJ»º—žLÐ$=x‡ l6y‚e€ÛÈpC>[RqÞGÓµ‹¢Pcòf4=3‘§M©&œ  @t¢‚ñÛ¨‚tcÃÛCqgÀõ›¼@âˆlÔ 0¦h¼IQŠYH ’5Ũd#wû¾.óž»sŸ©Ø öÿy†,™hã'†ð—:A‹ùŠ%ˆÙú—ß·û¨õŠÛœÑ÷ÞŽ9R<¼—É™-ôÍ«ƒÙ1ZɆ (¬¤@!A'MAtm—Çýv‚0 Œµà\n¸m™,§Ÿ¦sg$ Ãk½ÝQ@@Æt¨Íå‘%îú¯]¿¦w°ŽÙØÝ¸÷kt]r—Œ>òÄbŠš2ŒØ:º¸C¯µú¬ÿø2v» η¢Í„2ß~ÞWé°W&™…Y¼®½vÞC‹5cŸ C¬Ž˜ëåûǹˆôw»O›úÙZ^0ùîHQAºõû;|ZÝŠßÑÑoFO`üÜd ó˜|WË¿> äX÷¼ à¡F}ªþÊ"vx^@F6FE¬ ÂVÔ4ñÂÊ€µüˆ¤6‚QÜ–.©ðmrEs¡ú ;ÔØ+3n— €4âmŸ ¤è#¶'±MW¢çÁwfTlNK6O‡Y`Î6EQz`Ì<c…ܱ¼ƒ¾Âw;Õ=ÏÂhòÝDï'¦÷­gODXÿ˽¬‘Ô`–Þ›Z nJ /RåöŸçÀ2}EÍÁÉÏ©ìAóaÆ[K™RäÌ!¢{w¥A+@Ï*ß@Ê Æ° ”[c®vè9’E[Ùdéy”= w3ÕáúvàMqï×"Ú1¤\ÄùÛ_VH/w™ÏJ ãë§GYzv9ýòê°ÎŒo¨:/ĉá¹TûbìÜÈüA›«”‡*ûE_““zåÈ·Áº#LR&¡7B[« Iµ0 ‘‹ÜÂÀ ‰„¨ÖŠŒµ{¸87òô°ÙæÕ#Aä—…*Ѱ…¢ %°ë°N†T‘FEi5ê4D€žD±¬g 1—Qû•Š•¾¿ý&Êo7j±[V/¼°nõ°ÙM`´sóž}˜”eÞ¿7Eøè›1B®¨›ê6_/›^i¿Füþ7 } ™º6aÆ©@z¢Ä·¶¤Ë/ßž.¬;ð?â `1¦Bª€Ð¨Í Ú ô(é»õ8ÝI³i¾ ÓB>èõ!òDÌ“8âF”Í5á³ïÖMµ„ÏYøE}W¢Î«¥ôekg1–¡Xl9cWŒD®¬*ÄEþ6;ù9w[ÇÚHMް}-íæa§P€‹ Ì{$GZE!BQîmÍË[ºj]|¼ûAä 0¤ÕpÀŒZ/ËŠá¾+€¦·Æ|kð>Q6!“#ɯª·S ²§õZî'Eèß.? !-"²¬Vü¼¼‚Gôã‹}ïåÏ Ï‚£}^ÄhààŸdpþîcEW’0«-Ýò¸/8ûŠ ò¤ÿæ7§ŸÚ jðÙ•;D)À¨ía³¤ž@‘Üýý4§åLF^š·¡×F»ð)ŠD@øëÔÒÌÌë Hô¶6}üv½ØßD€Ý´_Ëáì%ÏY^~X5«_Úö/6G;eÿT\_ç„Fc~ýZ®mVæÊCV¤‡ˆ<@?l@âÿ_ÓÉotÇÑ–|Ÿ;ÏzÜW-ƒˆ"²–˜Ymw7'¸?gy= :cÍ«ñàBå±·%jg` XíÍäxö ed¿`–Ê{ôÄѹýÄ»<ñàè…Ðv’}··%[‘ÛÙg‘¸vœ‡o5 ümlPQýõZÂ.ü骠@\é¾ðÑ>†“7D¥‘#$$8¦õÊœUx¤s›±ØÍª’÷§Fwi‡––"‡IH€ã }Y‘•$;C?ÇÌŒ-ýxnêc,$5f,(*¸s=-;›.õÀsêóÞÛ¼™‹vIÁ“VV¼ö‰i¦wçfçÛOS¼A•0,x§s¦¹Â”úÁ7­›tÎùt!Sš<[ºÓˆfåñgûq§,ü“ØÚæk¿ÿ2åkUª>ê™ »71ï—±#ÍÜÑ…á2 Ø<»9Wd‘¨b›püvvÈh¡ „ÉÌޤm«ze’Wf°òl#¨v!ÁLœø>Œ•ëéÉgW¼ÓÙË+j–̧ϗÐÉi†k0”¥o*)ÈaºzÒÆÐèR?³f´/ôN4^ö®Ÿ)«pºOÃ4¯I+µ%€O¶Æ0BòEÚÎB2gzY“ì""ª[ÜÖŽš¨Òï½QSj`zäùÓÅl‚eÙÛjž/<ø D`\ô´µqVj?É‘(Áw(íб¹ØQØÁvþ”nd2Ðjz\ð¡VN¿ÒôŸ?ŸÁσ® æJ 85tåÉùª¹ò÷—?kp%„×Bë›~ýóø)?.v y|øþwб¥¹¦Ô“¼â ø“ ®@Æyhqå厄ë)7KXz2{FT°Xrå‹9øäyßþ}[Naìës¯Ëð"¡}ÜW±Â/9û[ßЦ5Î õ+ËÔ[J¢Öïì%Ÿ©ö¦èÑäÅ6YRd抮¸ÊÿNÓo=°`kGŽ;¹·`S-άίJ»$¦Vr'¶%!&… ¥è”9Nc½ÒtOàÇ)›0î͵›F†³µ¡naU¼PýMôŒ,ƒóèvù“ÐXâu¬´é!j9Rû»«oQîîLÖŸÓ«UÝáv©Ü´„%—f¥+–p§]Ҩͷ‚ѵ›J iÞ©¹k׈÷çù=¿çýg!ž›ÃÖó,¼ôõ£ŒÒ.$½Ý—î¬ðU˜2šbÙàc}üýR·N•ùÓô¥Â>¯YžËx'zpƒi)Æyц‘º îµ[u²óËÚÝgŠô¬¹¯>3Rõrœ2'ƒN^ “9’ üާv×Ó§7¨)Ö;š›”à@4=)e>öÓ‹ïeLbK¥ÚF@`Œ” ¯ÖÃBD:<æ÷6ó{Ô¬òhrç‚ÄaòyEzÔÿ ˆ¬ó3aºÌ<¹oÆQoéè€=…—ž¦}õÒ›—¬0Wv.kñÚU ¸îg\¦¼KÏçæêìБÍÂÝ º9ùððk>ˆ‚ckW5mð¡G&¾›Pz/b–¥„š "1™iqë7œ Wªds6ºX>€0úA»‡™‘ÜŸ•+‚ÓŽyì_ƒrv-в³Ê™?f]J}}èøÒ—"¨Ÿ Ð ƒÎ6@»Ú¶ˆÊŒã" Ž7&œ>€±Ñq ÷½íΓÊ÷ݣ빷ßä¾þ7­ƒwËËßèü=ï¯ÓsÊà|§Q1cA— ZF.üwxù‡Ë7©èyx¯2½z¼ËÓl¯%jð·§ç÷Ñùv½›Ýµé5èY×мåW¹Uæ`÷M­ç4÷™Uâ°½GÝ‹Îø¾òxxü繿Àäñš«—§5•ÆO%¥äõ·æ{q§ìÞµüQ˜2ÿkc:L¸d·Ík*µ½ ›˜,¨¸ô€ G{R•A'P7â²Æk ÍœZe ¦; èKÅ Mó´æ zð8n%q<‡kH+Ö¡˜Cu°¡*Î_aå ØO˜Æûâ§7»ñuý{< Á .K’Џx™ó‘¾Y±ç„9÷ª })`+,päÉá‚X`žÈ‰½‰ Š –ÚΜa<ãfƒ bRdÒÈY@‘!5Êb¨@_À´ÞwºúåÆJ¯ÊHþÅÈ'p÷.wùº}ƒý$yøº;Ü ùAöá%nD!¡7(÷‹ñ¦(x¢Hðœq`†’„zs¨…h‚¨N\.D$ cCD„AOØ !IuœÈ È[bÈq‰‰ØðÌgeöq­ög íN†øñB~q<¥øL! "ð»«Ñû?Ðöÿ„@(øÞÉøg:>«Þ·Ã/Å~à(é*±v¹à“ȵ„bÈ –sˆ–ñ k e¬æ…eH¤b`Éì[‚Ć&ö̆'¾'\P5 á€ÚÎÈÐWû†ö´/¥ K«µ †ÛÑæÜG€žGo¯¾Ðé¬TKø±ËDÀ—¯Š¿ýj¹5¿²g?aëöc7³`™;–g$̯.Žøm:LA‘3èÎa¯“ ¢"/Š1½`És!ÀÕ"uÓ† ètêˆ1Ä­Ê@‡ÌL‰ÅïçQh^Hÿ Ç}Ø{]vyÆùô%3Òk°JT;Bö¾ß¯ˆšçH…ÿ£ïw38…·º\1é,ðìÎüöa† JúO§<#ä(Ài*æIØî¦¼iƒ ì {ÎÇÒð ¸Ýé¥Õ†3ºF2`•NBâþ¡Ê¢9–d¡YÁ|9ÿ˜è+î’bÔ3hti?WŽÅ¨¤F»òÑ&¡$7=©Ç›àŒ.Õ†å&B{¸l"…ד‡#éCøñ>b Ù’Ò-®äN%G©)1+v´–)`yж1<–Ÿ (t”)·@VE„ H\Ø›]c#͆wÜâüëtÍé‰qÏ3ß:sàAŠL!ŒE;ðBÓé3eØ+ͬ&½~š±b$(  ¼pÑŽ‹ä† t‰,Eì¤cD'„¢!`¸ój*î ñ% Kt(XgíˆÖŽt)Àëå7™ÂÏíü[†ÿ½,¦ñ)°_~º;ršuŽ\Ìæ¤jÐíöpDöÖómì—í”  N’—Ÿý*‘%d%Õå=Iq±ÉB"úîgûß…C;´Ü—´[× =ÝEÄQ`•N~¾nÝEQ„ 8M›J EÆ™H*± (“d< P 4±­Ô;ºõ*­)IaŽ€%e`^—p|¿g:ÿC¦§¯lÛNnV '¼üÌ¡‚2L‹†#àA ³î3e¾Æ«é‰ v‘@^4± xŠ! 4„I§Æß ®|ò‰q7g„2iÃ@3³¯*>òïûu#EìôËÐÅîwkðÆ„Êoóü;ýD—^žî^;£ˆ/•D.¦“„ÙS x``ùr¥«y3F#,°nFrEž¿‘@RÖÃ>R±>Þ÷¾·ß_E}_»õWŽQPñjæúÑ—¨ü/OÖ[lÏ –.ôº»Hƒ*¯U9Òv ‚$Þú"‰@Ц-!Ï}—bù82 „!Øò…n:„ˆ¨ Ððj›ñ N- 8!ËŒŒYïÀ†'ÒfdýÄ)ÝÒ¸ÂÈáÊ7ÈOñ¿'ÜçÊ7àÙr¬!¸=ò‰åÒ›d½fKïq%ÓUL¯;èJæPÏ•# Í‚ú€PÑ ÷߬Jñ‰c”"ENs0&Ì2*AM×ÀÆ¢Àú e€èÄ×PG#»‚HF«¿@ä>3rLIÖÇÛ5u’<‰P”J¨$†Òã­{4¶4w©¦ ÌžÜ ‰ë0Ùºg‰ˆîœq ž®ïn'p^ÅÜ Ã•!"Ä,¡ŠX¬Ða{Û$1A(!™"æüp]„¶6.ðÎ3Ž1"ž£î…ü*ön\YÞ|x]Ž-ZÐ'ëù'3 )†Y‹—a|4_–ì)½ûjöñ;Fµ =èQ1gÕé2<Ë5ºx7‡U›ÁÉI‹ïgvþ•—L¸I± Ä_3DÁK·Z¼ëÇȲkD Aä$!S#›*BûyËÁ:]‘× áx4óáŠ6Á¦—óNÊXÀjJœ)h™Ì‡æÓÛåøòeSðq?"Ô!Ä2&' dü­šó¯Ò"û ±Ö I …ew¼©ÏÃ\0(¤ Úš" h¶xxÈzud+ìÊ0€!u­~Ç(œ0–Qsz¤×,­qÉr·Lµ.’.z¡*!V  fŒÉ5—hv®í32ðž½D²sJK­±ãÇ÷VìOÂ9y9S*èNɳ—ÝÁՃȀuâ€w:Zî(Z°õ`àMyõ?tfŸLQp0r°$uÀ™ò>R"w9Å¥@è4ªÁA†5ÿ&óq•'zeTÐ,b[kÝ–Ò‡ŒŠÈÕF ‰; azë皪†O¤‚^ÞÝÛ¾VþäO‡õ4G‹÷rŠð2Á«+ô¯–ÈùID œYccN¸2JNØL’ïbìÅ1¯\@˜Ñ@U:Qƒ}ÆŒ ÖÁ÷£_åBæa!cˆi:€·Ùx{ÌÀÁï#q¸%Ûï<¿Š8ˆ)©ßTþ?úÓýnß6Û0¶îzOu±“‘s»ÍZLؾtB×Èr²  e†Üóêņ ©Wô&›£EjNFì ˆ(Qˆ'’-Œ² 4¤æ[9„¨`¾ÔrÀ^eH¶è“eÍ#†/ „ÏÈPËx#蘘›LãÈŠfEЯö2Î¥_§¡õ ¹ï!~K@Î^¿>Ho;)`Üô~`ñ÷oæÎj§+ŽãCB°j{fפÎ1«>šë©Ø”·Æá­&7<Ðp´fK‘9+B'x—h¢ ù–3±£xÉû.,ÄBœQÄñ‡>!ª…礆Šý!¥Rh"T‹ŒÏ—j`¶Ï¼Œñ„èÛà|I¡`ÙÍgëe¡`NRÑ“ì (í ?QVTåŽ@sœæ0 Ù1¬¢}ãï`yh&1}õBU]|c ÅêŠ ª-|o~?{|%ÍX­·v*Ÿ’±õ¿Šô\aËÏt¶ƒFñÕµ\÷à÷Š2éïØ9ŽÚ#!¬ ¿ ý ŒQ&6Ép‹F4FÒÁ˜ÀÎ5œ¥€½~è§ 8éJè‰ð¸­ ÈõÈœ‘Ú’QÍÖiÛŠxzi'WV[¤Ææ]¾þÃö},~c%!ƒ‹{éJ`(ï}‹×Ç??†›@ôá§)BcÕ¥“>Àtîʤ:³€¶]lU#Œ¡‘·±åöá¹Æ*$8ÏE‡Õ;ès Ċ¡u(Í Ý è HÑlaÊøP ÉurÄhZ¹œt¼‹Wch Ƕ d-ä C³ }:£M+IŽJOOmß«—•Zº£r˜ 8ràO·<;¹÷ ™u6(<5"Ѷ:tA.Ý@XH ‚v_vaÇïsÊ4ÂE¨Î¢Ú…Fö0¾î÷;#bö©[^ü äi]üTz¢`cÁØ]±ˆD1*ÔŽI٣攤^ïŒò¸nZ+âO7áŽ|¼§åìdã†åðm¦ê‡›õˆ‘^Å›&x«ÑïÙßÔév;¡Øкõ˜·À­"FA|-‹ŒÇkÑ,ÇW„"älE­‚$ä‰UXŽ©LNiú 'Ðr§zµµ}$±«bÀ|^V©Uú÷ ÏrÀ])3: ¡@xÀ ½WB<ˆ‘@y ³§:—34H‡á6F:“ å:ÕŸ·jwZuDz^Ù d–)àðÏ€ã@æÏuC ±#¼¤ÆmLmýË„–ïx¾Ãå]¤v¿Ò™?§‡Ùø|´R½õ´=¾ ³„Æs—ŸGJl™ =W…84bHÁ«(CFé`œahH0Ý6Ö/¢ÉÉ­aZ+¡K'×ÔéD°[6µDPDR¥ØH `C_*G¨|}dOã™ÈQ~Sf‰û¯Â¶G¢Ì„-½ÜyÝ€`cÙú÷_†l}žt߆|õ÷ž%’åi#W*{~LޏÑEÕy"f­²­,€ÐŠâ{$w.Î$ÐUD`ÒûëPNû€  0Bè€Á!”¹ºd#Ùpi~.àI¿°¬»dÀއ!sƒp"™¬F/qF¯‘‡%ÈçÀ¶Ä«&Ä’ÇJÙžTÐjè±Ô³Sb~îÀÓ\Ÿ­ºBjFQøÊ[™¸g¾öÙH(±x”©o;£`TöPA½Z4G” 341ì™ÔZÕì-Õ­„åªÄmòœ¬Q L°÷Š‚»u;^_‘:ª+‡9oðéaIÓ&XÆ;(5¼xj¨åù `ˆ ‹oº`aqò ó§DrÙµ–f‡›?W¨á ¦y–ä}}ýZû|yÜç_Œ¿Aåéúñì]é7NZrÆ„hÒB9Ìk½z$×wÌk2S‰ÀEÌYx¿A (dòìŸøMÕDÛ«§ôÉ•ú“Ï\ý“Ù}‹¥š‡À¡OÙë™ÉmNXz·[Jh<_¦«ÃÅÆî£ŒN\YElÞw‡b+÷s‰¢sbÉ›‰!Ði¦ZDç„J´)£È'ñ ÿxø\ˆÕ¸›‡n [ýèŽÊVO_ä:^9ïmõå …ŠÝÒöE–RÁ°GzrV²¬ö $¤" „Œ;󫘋šMj^•ÂzEÒ" nC׈Õ.,Â'Åèsþly áÊþ±ü®³D¥y—æ8¼ºº”£Ae>úÇÐÊÞ4¬rÍ\X…à?Ì"ʵ-W'¨Lbg”,7Ã?=¡O,¦`"°ô<‘µN }>K C@—–O‹˜ø¹045Á E†°Ç£Áa Ø Í ÈØÞÞndÐsñYF?wÝ¢÷h˜Á{œtr ^ÝÊüW¼¸ýHáÀ©t>œø"g2%çôo/d¾YCÇÈŽ^‘ŽŽ•mÙ¿~ï_p¬:ëÓ¸¡Ù0Ù3ÞÒ>‰€´Øt vS" y9ƃ¼æÕ1SýˆÓtîÙ `‹áu†ša~ëk,^b=ÔÃa_M~’‹½`hdù’:„îg—ãÚùv`“ær¸x!×ÿ@U@;»c‚ŒÌUj?*{R­SÌ$…ÁTmƒ¬rOÆ…èà ©Ñ儃3½À®xýe)‹õ5â›7ký†â}_SÊÛ/Êâ‚ÉX:#MsŠh¯‘1ï}§§½ìw ×SÅÈ÷#ƒGå͈–ž©Ã'YÞï+ÓìB 4^üîcôÁ•„bªgÏ é¬ÎªÉËÏx­ëÜÇyˆ”÷ Ÿ]ý®Bñø“/êx\+«ŽKp9 l(™àˆQ@ô“ šÌ¨C šà1…C&LU$aœÉ{,N¾Ù"m ÃÄkrô"SXFÏ,CTÀ±th+:¶à5Ò1hvs­ïEÛ“â¼wŶæTÑe‘@&¸×+¯Ï­’ «f1"œæV¦EWqi_0wPŠ}´ #Nµ½ˆS _ƒžÿŒ—ã(@5Æ4Ïý£ßçµf2ú¹fuËË !^\»ŠB¸ è‘ ¼Dñ?3=ù@á˜yþw^ÒË×٨ʠ“Ý÷$x».Ð{>(äs¶ØHš|ÖŸÚ ,a&ø-øý¯êÔRdÁ¢Ë>y¨ÁÆ>@ÒVšèw¥Ó:|ÉzêMŸl-ëDRÿlä'PpšëÎ|RyˆB”Ec^.’òB~ÙŒÁho2°Ñx)–—`·d ¡¯‘ŸÉ§Ë±+2ÆR}ß–„ƒ&Êìã³$Ý\qx7—Á¥l†)° >>…~~ÝÿO&™Z÷ƒ¨¤[Ãx|¡†ª$eŒ J(õ²Ë„'\Ï£œjöa…øš}ôV——j­ƒ ù‡‘þ8cžä.)„‚È|[èÅwú×±pçÙ»;—µsW8m( t>ÂpèUí·‘GjÅúÒ‹›¥f´ð3 3€šú†4wÖúáNº ?1Ý)w™ *v ÉÊüÓÅn/ªz%KËd`}N>Êä¾ìü¯Ü­Ÿä¿M8›<Ìåäa*ÞuÎã§ó÷F‹E¿ëX½Ó”j—mÁÚ9ýj®íÀñd_ÊŠŸÔNä “jª77<ºhÙšBT0ÂiE"Ó·÷YÒÖ$‹¶_aó™0›cìó'Dr¬‘–dŠ2¢ ÷P*}¸d*ÅK C Òa|2bñŸbqŸvg¼üc\S¯Õ×ià ó‰a¤2d]…ZÖ¤‡òéší^fvqê=×ìú2z¶ú½mm)¼­öûùþH8ñÇ©¹ï\¹(AtR‡‘PäºdØàÞDVýÂx­qíœ4 „å”nIƒ{nì,Æd  €1kÇ <å§Î¯;ï? Ú{?Ѷ8ü×–5L¶¾¹aÎék¬øIË×,NÐxnäPö1؉HC50‡ºé¥D+Å)€`Úƒ·©ä¬r;ÝøÌÌÑÛŒô!N?FÄæ…r™l‰¬˜-’Ôþ`ƘÕLÏŽÃ  BÓÐf”Fp``Qv\øep<¹ ůAâñz¹­ôÎágÒ†Û)§ž7ʸÍI ‚ŒdØóÇ·iÚãC+xŸ)¡IJ°YCu%8[£ëç±LuÚíÏ‚Ô| JÁ=aÞ;Ùë£NÞ„öp”3ÜéR ÑUØÃFqH©óc&7ÀÚ{ÀÑ¥ÈÓˆpù·Kk ¯2C Þ€ªÈ²&k›Á¾8Z^±1Ë>V…YÎc‰õ“ßòBÔ*•<Tˆ¤µlÒ³[’§l®4q¸v¾›W¬æ~*ã)N`Ê 01¿39Ç 'ûcž;þùY¢èh«Û;±¯ ÛDtä¢ô~oƒ,nn®ÕV€Š•$QÆRäV©iJí Ûà›øù,–Ýîp éÖ<( Fk+ÚZkæœ}»w0 ôá²@ÄÃm+,9R' -#=´„Ú0A çk’#Åan£póÍB‰û21R‰(„¡Åá˜Àº Ü&ê!@·õlz)r¹žjºþΤ-¢¼765äÿÃÏ…Ÿ?zë:'µ;yš%H­<Ú·djôCÛÕ:yt¸æò—oL¿ â'ãÀDLÔÅ«¹#‚òYïuªˆ¡ç¬Óç?;Ø©RÙ,À^.:¼\éÜ+—dƒ¦a;•ƒÅG–dÃÈVFÃÁ&›ß Й6 ¯NÏò†Ðe©×»è†"œ^—‹ÌÓÎåà«ö»6íSšÔÙž±Ýs91+¬Vú6¹ëèÛ±”pæ°yþÜozv/ª®péÉ=9zQÅ`<S‘´7 ;ŸI9a9ß<ç•®ÖÎ.èJ™°v,Êt@~ÐÇŸ¤D1 "ÔUP3ÁçÅÃi#ÇgA‹"ßÝ—¤”hß'vôè|H4¸}Ú?+|hÇ‹Ÿkh×ËwMå}¿ZßJ©ªhöc“ƒ3jÙ *“á¡<FrYŒ­3oŸ<_¨# »]ŒeéßšÔ@E€K¹Œ¬%üê{ÒáôeÄQñ!dí?kñ¶ü·SHo–'=©óAæC?·Íòêsú¿ìò¼™&üYCƒ_ЧbG4¶aqèg_âŽÞ@•®ãˆeÂH<6í×ֽǿ®ïoxtMEÚžX³'2(qƒˆyäýŠÚ7ŽÆVÇ=¢? …CaRt:ÛÝÅ4K #Žš·|‡wõZ鄵Ÿá3š9#îfcJÇ‚1¼Œ‚ì›ü“s},á84÷~ŸDUV™Mú&Ëå¥%—.Å,еBIÀ - léá …kB×5Ù {ú]jËJ!å"³j©ú'ö\®ÓÔ§†OH¢ŸH3¼£!Šõ ôzQÈûˆª©NJÇþïÄ{ {’-]±¹»S|8†è¥ÈÛÞBVºMà`t# Aއ†Lý秦¶“õò¡ 49´óášè˦6àô§”´»Ï<û94ËðóoPN…oσÖÇc•ÔJK%…ÐͶeoæ~NY·Ý»C˜è„\…ŸÖà…Àò¥êvƒ>5+4v§_¨x`¼èÆ7XXŒŸ¦r{˜í& /3i[< G =«.süë·frûº}}ŽmÐþ1ÞE¬‡æÁüýšóã>Í¥ÅÈŸ¡ÇS<›£kÔ/FÔé7 F¡pÏBƒŒí/O?á=5°mÞ÷EÅÙ1h®?Gy²‡³óÖýè}ÛkðDBÅÐø`“-F˜Ù`wÄk .;.ñ]Ä'ìy;ã’¦© €&ä_¥Odc ˜šû=þZ—5.O€ÏS®¹Ý.quqk†þWViH¹@:„ï·4»Ær çüŸGAÂèto‹ÉÓ”‚°ë›” ŒVÎÍ©ÇííÆô‰Ïàj>ú¹¹„L+&Ü©=˜iPvÚ‚Ü(Iø$låÙYJ{ u˜r”(_„ÚqéQEÕŸŽP sDÍ»ø<_,©ïkq¨CCñ”Õ'ÚLˆ7ñä1Ç.îkîÊœ™nR§MÌŸg‚‚`Ížòd<Ö7Yu¨‘ýø}²¬¬(S×H‚z£ƒø’4„0_Þ©#ûÊPS™€ ¡&…ÂÎ}'r0¯Ÿe|X·#KšõJÓÇg׬ÔfÛ¤\·¦r¶v•0NûU{‘´káö.Ìvü½X0¹)¬ B@¤Ë §O@õón©¿'¶íx²º®A»ÉÞtfÞ^Çu)"N«L¯ð¥|ˆ+‰F/p£5]ÞA³náìGD,¥îæc¾å.¦2BŽjÖ÷ÓzwÔx«qÁ5¤(s˜8ÐV{ç,5¶ÞS2ŠíÏ]Ž[£Ø“å·ñCÝç]QÚ‹Ìf4[$°|ë²¥´EK)[È¨Ëø=ÞWÉŸä…¸|8€¡õ5¢ðVn|µhé÷á9þTÞ/T‡†pXX\ƈÈ»EŒ8ÐK2߸òmíLL¤°ã ;6%Æ ¼{ëÁF~”´æd÷…¾=`ü¸²È¢~vB“‹ñ1ý 6„\eO#žÅ|§Ø®/?5Õì)ù:yÛ×íÄæcCÖì©69¯ÒP3eJµrH×­ZÓŠ‹Fp´­߬ðÙ¡øí\î4+»•½wá%[/,ë ”ã³*~™aª—±õ ÛNÙmH7°ÆŠÿœYToÌf:¤ ðµ·G‚¥& ‹æv¹`H„Þ’(·ž1f»aC(—u1(Ð߀p½0ÀÑŠcœ¤.Þ˜’Q®Á]Ì‘@€Û&Cµ—F÷V!µ,ø êvs>;0bÈ‚¬|`ožôµƒýKÈ‘knm½Îlhf;#u•ƒ•X¶±©KmŽqk@|Õ’õ6"™­ BŒæÑÈ5£ Ñ2}¦@)¤€ gÏIV7¤Z#+\냽H`^– >'.8ƒ™Áy[³çvÅw¬tƒâõ%/8†÷_ëôJòEX;Š™(ûùý%ÊÚ{Ê­ýÑQõ˳×Ã; ¯X_®ÕŽ‘”b¢,a® PĬ–Æ­áMÉâê³n•Sôe8Çôù%=xÓ4dÝÖ€ ÏÚçï¼Xç—Lp-Ñ…2ovª¯Pæ ærW|îLâÝ9üÅJáZhLŽbÄnÊ1õFeÜ·q’‡êwj±ÓÎËSÙ}â{CÒÕ’Æc²kŽ:© ËŽ$žTš‘û~yÐ0ì)ÂtÃÇ{øŸ¦˜DίÕ"° D„‰Qn֥Ž8n.ꌮ°ñäÊ‘IW —“ àÛÐ’äž´a'õü &E~=,ìõ#çE7³f¾0BÉš{F-1`ÜÏÜ™í \r%Ayÿ/)4? ¸cßïÚΈЋ´ˆÅwÛgÑê§[CµJfþ b‚ïªÓöz× o|¡pZŽ×T&“Ú³àïÇgèØ©·0¸žÇžïQWŒY|¸Ue„¢Á;/…ÂÈùÏΛã ã-ù@"óå‰3ÊÖÛͯâéØœ³ŒY€ˆúFx~̾.Go¶¿zó’l» ÙÑ©‹&/§S.ÈÊîåW{« Ï{rw]}ÞyûD)碭õÅq~èâ¦@$*….Rú’tð É»5ƒµç‚üÐ>·YÕl]}6%vý.\YvÐj³ýÕs„_Ì /”vªšÍRvÕL-hS–àG–÷Á‘ õGïXyž¨ÿ.לªPþöFý~–N_HU£q>FÈÓ‹«¹G·&{ó´åÁ¨ñ¸æÎ•?¸”èè³s€‡Nú¤W–7œæ©>ÓÓ»eàñú¹=7Ž¡Ï{±I±ƒV\s#òj ÅÃx&/—>DVEÀÜÓ/k,k­©aã0è Ó"¾˜zÛªÂPÙÈm9;Žæî{w~ÒùÈîëvâW½ÏævX¥Q*ƵÀOlÝØ«—póæQ²‹½k¼²÷yt"¥«^Qr²ÛF Ú¦Ô3¤¦<¨Þ¬ee˜e|DìA_Ð!’ûpÊí%…R Ä¬»8Éã$lÌtÍT´ðy[y„&ºQl½BD=d©Ü(ôk³óÕþNç¿ÛÌK˜µp¶NëJ‰)å³ÚÉæg0í:_÷)ue E!ßÑtÜÖöˆ›”Œfçèå#|1«vΆðÏY–3@’¸&¢ß=„'c¨¢@|à‰‹Rc˘c‚€'4Í–ælTJ£¨†®œGsÁ˜›œ„ç.fS 5‡•V/6Pôfúu3š{2Òæµ¯µD2®pÚÐŒËÜTfX[«×ädK¬XQTdïÏÌ´j=¿‰_deÌIjò9ÆîåËÍÉP²9,Œe¼ó,ÞÉìºø÷o7¨cÃÊ=Üw¨¥ß >2Z jö³iÒ4×g³¶ôÚ½1QaHeõ¯!|…»àä(‰~ ɧâO·sO;€oÖ3¤˜—z×>”lú¦Pã…ŪôBÓ éM¤d¥lËR£"<òÅ1Q¨3N`0’.œÓ!sFÀººà¦¦Ëï$ÿù“»L_gÇtnx®¿^†¬PŽ =š‡®ñ¥SÚ¯Úik#ÖFëØ® ¢±Êü¸/¹Éô,<ãØ½‰šTAÆr ²%KÌ!¡fgæú5Óéú1kþNwz·?!Vx?ü¡¡¬7l‡@Õ¿¥O$[g¿F ¬8@Ï>dPé~ÒGU+]Æì܃°DÛma`+Ü=–r]tqKÆ~5Îè_®DòTï$V¹{`°€=;¢Ž `÷ì|û)ž* `Š^Hí¹î#º˜ ù»Å¬Þ£ÆQ`¢Ü{^z ´%µUX}ÍlÃÉKýèFĶqH±¯6|~µ}öÝËçn™“»ûº‡Õ ‹PC‹Úv%¸–KN"q4S׆¿ëÁ¾ÿÈö½ôhmÙÇ÷púxµU‘úfp‹¥TÚ)^ é­¼ŽK'—®ÍVÊŠ„çh±@zÌI‚>># C€ñq¸.(u:e0îB¤E2ì Œ¥Š~ÿ€Í…È‚ø… a†áVØ }é˜sŠÇ3NÔ‹/p*¸õ˜HÖR†>}®äâCß,3È&0®¬êEìÄ×LBiÞbý®o“™¥CÕçΣ>„ÞÂLÉ 8Én¼¶`¶œä—ÕPzOl‘òcú|¹Gge ǽ͌§­"€<ۻƸ> ‰M— ™Ñ(8Þå‡×_z쮚†t´–L(ÓÇÍg© .Fªã[=U$)½E‰Á-æK'[Hàbs½lüä+hS£†Š™*ˆH}w™I½“P†Ú¦Z$U§£z;ùr¬o¥% Â3ܹj´>Ó2ÕÔëer\™4Ø|lh;`¬ë¸"hƒAUiˆ#ÛIÅ©Ñ]·àC ÿ·Êwùµ±Ÿ9Ø%Tâñ#ª) Ïgº %͵E‹C!çv€¬RXI»¿p}ä5+¡üΟƺ\éƒé Ð^`§ÄK7LB àr483zÚŒä×¶Û’Mz(| •JsO®˜ðOéz8¤Ø¯rÏÃú:Ú‚^s.µ¬]Är;”7?ùµ©S4rœW_„ŒR¡U:š?b$÷ê¹vPOcJ.ÿ±ËAÕ‘|2.4ëd&9Æßh£ßyB30­šãåèpQKì4-p'úH~%=i|/¬Â}Fvi ‚ùí¨LÖž@º¾ŠEA¦§ˆ!À3“L( ¦*¬ì†Ã“e@¸¨…¿Õþ®lOiGÐ…n&ý-qú^»¶ñY¥ø¼É¶.¥*Å¥ 1¶8$±<¨5VÉ*@P¡P$!Ö‰GøA7?9*6úßÌ·VÍ´BÕ­ê#<Ðsy‚¥ó?8@WÌû‘º[”¶=y,W +°¦¬vÌ…©¾ÌCàÕ,XšCÌÃkXHÏ_©±àú°.Zûª=f ²5FÃæÙçõd™+ÏkY‰Zƒ%´^¥^F‹&eúªšð#-UÉ9 ýv+?"L êy£b":õ˜ˆíŽ#p¤Uᣬê†GÁFÔ›¡%–?UÉqÏܺL~ÞµIǹ@¾Æ‚¹|[Ñty­Ýí›éäã\¬¢ª¹&<ˆ’!_Ecš]½zJíŸWŸôè×ÕeÚO©»^hôÓgJ¸/mZcÛÁ @µk÷º6òñðÓi9¸Ï¡ë²á|kÑB”+mòyÍ"œ@Ý[)¬ë¿¸ðjq}èY) ªÃ^§ÓU¨‚vÁðgцlÁì0¤+P$œðh \8—çÔVŽöŒË•i™ª¶M ’¨ÕÔ[éô¥Ñ`š™”òKÁr¹K´ñúâ%˱€ÜÅK`aÀ•¹‚¾‘J­8ˆÓ~³r§Ø/›¯@'hNûƒs°“Ç Ñ‹´ýþl3ªiH¾ä8’õt¦fM®›óÔKå3]íûÇ´y\žÀò^½B¾¦ Ì»#•CXKÉ9ž5ø ìªyçÁE°ÃaLÓ3U9–Ìw¢»‡NßEa/¸þ3}˜|Ø9¾äcÝ•j>=ýG“ØœZïK’vmhâg½;vãK‰ôe[˜7LkdQ…fË;Bj$ç,­_8QÕuÒìHž^®«2çl.Çf¶æq½û°:”ˆqì×O¿ÕÏ®ô<æ2âªp:0»åTì·rMj±ÝäϤ¶oC¾i"~öiM¿•ÆùϪ®š\àpD] …Am~Ÿ6ÞH¼Á3´ðhS’®Üp±ù-gñOÌ¨í´¾Q=¯Ð74 A·r™óGÕîϾòŽéWs?ZWËÁûeÓÃV†°tc«¶9¢ÞPaq`è[M|Ôtwá·‡§ nÀ‡íwÜèA®@ÐÂ$S? #ë,î٘ӵߥm7ï9 =æƒË!ôØí®Vï¢Ú]ýNÛ›å£%ðîïëÍE®.ô óܼ÷ö^SÄvï+Ùi•µndÌæ•·g¬û¸êã߀Û1%ÂS‰ö!ˆ´«J÷Žî‡Õ ÐãÁUÚú|‡÷áh­'MÒÁm¹QJÎÊXƒªÖG²¤D³a2s½ÕÎN‡ãR¬‘B®•$}'ψÊÑ%Ûq[#­ˆÁTuHTŠËëD\£x³º­Íãâ£í†Vs‘Ê}îL—žÙÜÎÍ ”W}éu5¬‰ü#9ö9 ÚÇœœÑœy÷òÞ´ëÓË·z©³æøTË>>Ž—É ß¨þUÇL¾ì‚†ô‘Axô½ô Sñ,Ëi3˜½k3c»œ&UÙðÌžä~ æ“Ø'X¼ÿGá{œÙð"aÑàÅx…0“ß>úš~/¥ŸƒÚ¥=Zžçì9̲’%U³&c'vƒ²-;íú,>ÃèÔ^‚knV°W<\&÷•f/ròô1R¿ÎX™Å÷>ëÍÓÇ”Ýj”üã+(7|Md,œo±pÿù§Îí “­C—½º'rQqA¾{c E`o$xgºkE•*âA!&@”•ÖïeÔ!B-m:ܺ*ÆW§„…òB䙥þŽgdcZÇá« }–(:`­{ÝR a*)1?†ò%š5êzK½zñ)ãÉÄ =ë4W*~ïмPëî×D<ܱ{×Ý n?H'_)û!™û¿j£ŠbÚhœ쟷⺗ùn<ßpÀåÉgOç+ãî<+’ö¦ÿ!%Ö=t[ÕóðÃà—MǸ>üéÆ"Àчcóú™¼’;7ûh+Ë^ 7suÁKŒ9]§F ÁC‡éž®Z™ñ -+?-x‹4eî~!àDë9ÏDòOS0‡="r\Vn, —\ƒ]¸ŸÊã3Ü9#MñÞ¹¶ß"‡¸<(%äøñŸ|)A@³Á¥.k SÆó…±ve¼ÿ† ¼a@Õpcð9›”ÍÀ¾?e‹ žéÖË’z0nªÁe.S°H … ƒŽÌR|O ,6GàšC–S——èÝqÉÚü¡óÈj›ÚÉlöÇò¶L­i*á„­–6çp¿±K[àšc”6–çn5–È0ìˆtPdG,îíå&²»«¶­.f—uN¿d"šçê¼™58°1ÍÅUáKRLi®‡ÐI1T&|~sU5æ ¨NŽ1¶a‰“PªÛh¿¢ÎT|oŠL}–ëºí¾®Ÿ{w]{ ê-"2¸âؾõþ»‚mÞŠµÁ ¨òÂ?‚†Š>7Úg$sžö,R¾˜àæè1Ÿ±eû9îBÓö„u ›PJx–ÎÄáÝœNvì‡uUK„4:xÁªŠ¥»iï3§‹lfy÷°Lˆµk‚6Ý(D*ÎpÀdÅËypÜQ"®Ø«eA:™|½E2”;F0 ÎÔÓXrpX¦'°DÖuïš]x ¢Q†Ò²’šNù8!âï”õÓDøC>÷Aå!™-?kêËÇø».T¥¬ÎFˆ D²öKÝ©Ac|hñÙ’ù¾ã³‘™Àé¼­x“ŠX^Ç2;f¹mЋ+7͉÷çå¯ímߺ,Òõl"A4aœH”ñšexÔ ˆÀ 8©hˆûDŒìpÊH‘9ÌÖïØ%HðÉ­PXȼ¼ê+" /RÅ0Mçá&㬛j¸ìªð¹œ´ûêxÉKÞ }|ö(ÈÎ$‹×aëb¸<”Ù«¶a×—4¦ïc‹®ÂtA‡öS¬iåC‰ž\š$’ÜÖ)è4)Ï^’äsw÷®>—§×ñ_¿;oÐk·CaèÀA5¬nU Ô]L –‹3CA»¯àVÞVrq‹¨È@9x7‡UÁÞ5Ÿ*¼–Ïâª$ü?ƒ `¡62®°&Y²dClí$м$r¾D}afKk¿cE£±aÁŽl½<ºDF{É#п\$p}M0ì5CqÆÏ˃µ9î¼I -Ál ˆ9Ä)Ye@çD×blJöñ¥Ð×å¾òqú- þ/ÚÔø0S‚g®aùz²®Ðu=knTnÎLùÜ`Ò4q‡a5¥Ìºvï–«ów¦=â˜* ‚ËkµâÙ–©ÂUÙIÆz¥±„ãìTsŠq ·ó õèíâ[.Í‚®S½;аíkNëÎŽ·‡ <ø š9uÌb4„ÙBõ¢Nµž;ûvZóþÏŸ›Þшq‰V}©<òB5l£E•óäÑÛÑ}ô2~H`öÜ«€H7w)Çù«éSü¡ã,Üæe¹ °lÐUÊìÔ¼0¹Û¨OÞ¦#™ÈúDøDµ06.WÆÚ pSÌ9#˜ÜMUOàÒwb“÷ß,çIM…Gn¨­›ü®¾ïs‹Èß²ŽÎ½³>ƈً, ÛWÞ£žI¼Xî· šŸî÷¥Ò&8ðhÞà ¯êäÃcA]Èë®ÊíXæFʱ`wdLñ3 "šËk]z®Ó2m3èB[­u]"¯j­4wL”"ÑÕ5Ç­í…ö¦Ç/êÙ~lÕÇxX±>o‘¨“œ¬¤^lWÆ.+‚Š®€³¥ ˆúa­ÎþÿQ)LjÖ›ôêЮ(ÆQ‡¯ Œî¯Ë«bºô©;¸o¹d‹½«MÄ8ÜuЬÀ‚ ³ ÊûäÎ×Tá$èîž«l ®õÔma]¡Â—Þ¯6t‚õ ™Ô[=T‹Éૹ.šªE4¹Eg<…‹œûÌoPûÊø&+ï ’R>åæ°TéJŠœ›°“v¬ÕÌÄm¹.‡t.è|²û Ânz©9!HTqÞðLÑ»qü;6Ü0ßéG nÉÚÏ ¶K‘š‚…l5{ˆ›$Ó;á[&&ö°Jˆe61™À$/œVi"Ç3FXLóÃ] šƘmDAÝAÜáÝmñ½þÞ²*ª!ô>[-ôò;ßñåh[¤¤V2N˜ ""k¡>Póâ´BEjÅÜâLJJg;& îè°A~,‰íFŽé…,ÙJ‹ƒv]!x_°¹¤ µàµÂ'µé%JGõX*0’DU6ÈìÏ턽§« -g®$/ ³¶GÅ<¥L—K‰GD/Ø;º\™Úí"ä um"Ê-Ò‡0rðaÎ=˜Æ1³®šüöVÀÓÛo¶J\Ž:–Aò ú(• ž÷öo¿¾nÅkÅkõ©+ÕäÔê…ì_[9žëË^Y¢ýø¶äžv콜ÖñP‚Óº©¢ƒ[ò~`©y“Ù°é Á“ñé>n;1Ôû§Ÿ¦Åcæ´…ÝDÕð9DS_Ÿ =àÎ÷l™GŠ® 'ïE!ÿ™ÆGn][’|ú4’¬š3|$EƒÞ¥áßR4Ã)¡±`Y‡xç%Ói¼‡\~ €: (ª¸Ø¬=d~4>XÚŽ« Bt‘Íúªry剰5ˆ•óXœo±0NÁÔàÌåÇ&.9ÞšðÏ^ Œÿ—ñþ[Þx>ÇÍìþÝQ[£Æ¬iÇ;n$Å’ãÙ‹t¸évŸ7Ry“J)è†1OŒ‘ÑáP¢Ø¼ºà8J ©’„…ä4à~¤Cbw!#ðµLݪ*Lã¢6!Œ&¹ôQap“Õj°Õ]…leÜ0Y?ED£Ôöùôý/Aˆ}ÈQ%4 ƒ>jÿ£Šã™]Bæm‰ºN˜>MOi‰f·»4GL¶•.ÜiÔ‡fÓ³0œÙqð\2ŸÒ¿fÖÎÉ] ÛŒ¿L6G.2œšnD)È,ÈjÛ9Ëq¯q²›ŒLé­né(N7hHÞ¤¾ÿíÝÉ»÷ ºkHã–ß“àûzs]è&ëâÑSëL¥\ƒëz½ƒbä‡칕ÂíÄ<,ûpãÔL¸ìAN‚áÁœÎ¶nMHx »©ËဒˆK€3Ø\¬!CÚ©H֔뤜avÚ›…Îf׃Ó]ÏWÌ´|µóOv›à.¤aõœ•ì· ûÍ¢õ¯­IŒ©Žè²Ìe)_î‘EfÆ^ˆž)¢Ð«"›r©9à•·å=š·I;sÙ^I([ª°œ¼®vŠ¡’…Ú.>šåMp ®S?Є5b¯×52ã!!aÚd£Ûz)”§VŒ´u‰Ÿ$·bÃÈ–Rg{Öó¹wý~¿áÕ qÜz4ÙÆ v'¶dhªìæE,_zrû‘í–&‡'%ée-Ýá\zðÔ›ªP´¼GõJdg01»¹Æ× –)#Í5nD¢ÇrâR’jÚ!ÃX[×!¾ò/æÕ~HEâ‡É’,eh?(Ÿ¦ç·çÛ Ps~/ƒÂì³â‡æ{ú{ÙàÌ–^Éœ–ɤ©Ó41–õÜÖ—·¸ö9½OÔïïhéTüz¸NŠ_û¤§ŒÏ•˜ž±(Ü;V8%Ù"™ó¿vú©œ5]å„í>ÊpÕÆã7•”± Y c’9®É-±]Èÿr@|_þø!ßÁ¯)î˜RÒbÀSæèóéÀ —mæx¥PÑe¢Ò3qbýtW$¹B]PÞÃ"~ú(°‡êkÊO’ÇÎçƒ+švXuG¥Ø|§ÎZå;”°™ï²$'†‹PÈ `#²sÆ<W¥‰BOzˆó¥í‰„ÄhcæÒÝWæ«ùûMzÃGçöPƒÕ‚ LæªÚ&ð’ñ’Üà¶[ Ô˜ ^ªÕ™“;•ïÁeõ+>Ũ=´-Ñ YlŸ €T»§•¼êR¯Ê TKdÄ€bÀ´ÇeEàÕ ˆ Ǥª*Žê%š“l]òÖd”ã^ðveôÚ†§‹=°¼Õ¿º/4”ÀʜЂJCÃÅngGuá\ê‘‚Uü9÷Ü•,Áø{p8æ¬Ð´œ‰æÜW ¢0YKŸlÐçÔ×zöèŠô¶VAHK Þ+Ü„¤‰Àúpß/+"eM·OceKöÈôä&–ât/kª§¦"[ %5Þy+þþŽæ+Pxmã·^«žˆä[âÿOíý]*§pc‹-—¥m £½ÛÛË@ ݢƀ˜Á©ÕQÔK ™Ë8—_²J Y…%8‰xy²YX\Ð žšmæ„·“8Ü:\ÇÍhr5ö™Ö â´#×1¤º‡\‡\®; Rl¼|1F6”1ÌS£¾ËÐÀV#G¸¨À‹ :æ"¹ @ÎÇ•Z ëÊ~ y:>þ/F•tZí§ÉÂmÜ ­6<÷cíé5NKò•m5& ÔÞ R@&š°g›z­ùÜQU ËvSÔŽ‚£[Ž‚Ìãðìàî<‚JR(TWï7T±N•`Ž…ét‰Kp>QþvÔ'rDZÊbÈü±:}5¡qsÌuA$¯rCE¹æÅM¨7ÔuâSg=¢ú| Û… ¢}x:oÍ¢¢Èk’s×6ÞÆ§ž¹ièû‰æœí]6–Þ­ðÀßÒKdG>‰¦-ûÏ.ZcòWSÁ‘b#Ú-&ËmRÕI+~5´®Ô”8k…y<£µ¨L˜ûðÌï÷+ÌGB[´í’¼ 0¬Cfî"cj;Qá™ò¬Â=a›3]øSuJÔ'hùj«:dÑ…B#·MXïØÍ.®[.728¶Qqq§N†6  Ä0gu±‹\L«aAa¡NeOA  ìÎ:¢Ý#ˆfh'•SáÅ!rŒ#}ˆ†Ü)‡k¶e¥œCŒIA“mG]p9TF>1"Úë¤êéj}ÂY´¦4 »@vá×Ü^£.*¶ù1âÆ9{*2–•(D,V¨uŠ ’…Õœ²¿½]y^àþW·ç;DþÈŒ½ÐÝqQJVÎ÷Ý’o´½ÑXĈnZ㢪RŒ˜v‰iµjÌV&²tŃƒáƒ ãÃS‹÷„êÄd5"àE­yãÁ†@¤ô8 ~ª^ï7ôCAëûY-|RLëÈRà¨nIÞ§¸`¬÷l¯(Sj㊊¶&˜.™#¾VâºâÖæ¦ÔVåQ5VùÃ";¨§1œïºî(-$£Èäµ>ü”¢ý¢Ã+§·¿2«³Àüí¦}.@ý¹g%jtp­7(¥úa»†\ø,ÎI šœí¡„n1¦‹@ *ÎQ‡3zá1jkµŠè–°¤\戣ñ•.TSc.EY->Äâ†üç|[ȸ’ôr]Ýûs5Þ]…lÂêïÛ¶ d3¯kFªÍgdЩŪQ-.å>¹rÇã’eÜd2]v‹nT¼÷:MX „RP@Þcüùþ×äó} Ìjû.((z4„ŸxÒV§kõ+Ö4!‰~€oå¹°ðX^x¾.X‡xéEòGavFSbY¤Ì¹M ZU¼C¼=Ö¸Áºe½mìò˜‡#Ò?VˆÐ]ÎǬ÷éfiþ‘ÖóªËÿι4Aøûš«?Ø¿buj1ðÄz¢$íj³?¥MfOœ3i½Bql£UFh¤µPËFSíbª.C¼ú•’Š NNMŸG“g!ïÃyëÑ |6¤0Žì0FR$H¤2M´)ðÓ`Fà*Ùõ”‚¯HY­BóÔðÁÞ(6¼¹ Þø;¦Ž®Šk­ Y%»d©*Õ„˜°YÂvúð®<Øáa\uó‘Ü!&ªòzcÓ:]1šÚ¡B>º&ŽÀôu*Kig€¹ˆÌöl‘ùm”Gb43£´À®ž %QR$b‰8©WÿäìŽWÚµk.2H‹eÈW ë)]6C†þ›aY/6¦ßŸ(l–ÝÅ·üC>|€bJ—jÍOº)q½ÒóŽäfHïK‡òä& uÚKç‡LönëØ ÑÈDŒ0îs ËšÝØB»uÖMTX¡”éæ%!à!ÍU3Í™…6_ioµý„Lo£´nÔyß­e:<¨qšˆÄFKv欸^lÛ±h±Ž|š³Q…èçÚhµÄF §»P!ÅR2UIž XžÑžÕ)mF¤Ñnî3V²ª3?ˆ`mªMnüSIT´ÊÝñàõï¶ZqŠ~¦×G0ÔÜ¿'¬—+¤÷ùö?.²º ƒà•Ât<·aAE¹®àf¤È/¯… òÐdؤ¡óEeP‘ƒ-ˆ6ÎÖ}SxÎXYyØ[œ`c‘Ö¤Ù¨trµÙ*àˆc ½úa¦Ý‡ÝžÍ"*¦lèÕìªBÓ±-”5fó-pÅô~ÿq™-ÅZ/jHøËAlQÛ,I'aˆb ’6tm .ˆ(ˆÕœWl§]Y]{?#ŒË¦”9 ©ŽfŠhÂ;D~Å6#–Ë¥ãe†Ë÷r’ie’Rø?ñýé%ð©³/ø%ÏAj³‚õ?O©yp6”ûºrÛ_ÏB1’^¥§$« ߤ—E‚ì ?iõë‰(Š*ˆKIå0pŸEFÑäœq__6`BGji­B4¨LAi#Û ëV™q“'9C’xÇ!Z‰tR®FR¹‹láµ÷KÞ¿ÙR®}^ÿåL»L4ä&ÍÉXgFcœºlŠë§R‘:…IÊÎT±g ª‚P„¾ÕæÓ¡ŽDë—»³ãäÌ%œp 8øØŸŒkž1L¤uön 3ŽÜ¯ «±ÿ’óïäã½5ʯ®Å÷_K#ƒµŠ>Oó©ùþ-º“4’Ü¡ ¢s´‰„ÞDˆÊ =T@f'E8—–ðê0¥ö¿®&án=X£/É…l¥I’";S]uÏ„G€ùÕ…D‰3ñø•;P7[‹|·fâi‘È@Ž?BÝ–âmVG‡Ó5õð|]6<цYÆ’õˆ¼¨§ézµBEà§×öZ@é;ï²¢²£ y&Ö„ 8LU÷l 'û«žÝö˜ú4'.LÙ0@âo o!Ççh@2ªÜš¸KŽW uᨠVÜQͨpi¶©X…ZRX·ýˆK‚w2ÇiÐÖªíå\0`Ø_œ ¨É’Î.[y­5-¢™Ž;U}·Æâk± ³~‹r誯ܵ{ôrÔ‹òÛÁwÝ3çÆÊiç53Ú•Hn^#Î##„÷þ‘7‰eÕduFY¸ŽN³‰zâNB@d·å!Œ„¥·Î7„L#£IÊCºýC‹LNÙÑ;--NÅ P¸úà…0RÕs_¶DdžæÛß“íÔ59”@Á…ø7âÔù9ó./‚dÈ3Xš²º‹‰§óI-òñË6=nžÓx©^¸ëŽÖþ“¬&tî»Òù„ý5˜±Äîø ¶Ê JAS€oGrx¯ÑÍ:ÅÞä%|p#C\fÍ}‡†òiçį¿%›¡x¤@‹é‹lÿM Ñ^„¸ãÇÕuæQ0¶ÃËž[¶‹¦µè‘îë¸á…¬Ï Hm%,™à§ŠJi§,¶0Ä ¬:hd¨”™ä·œDÑbj(‹ÎDûôÜVcÝî«ð€kg`•Ö³˜‹õwôPµÁE«Í‡"$W%ëà ¨±Ð8 †¹hi eJJÇ’¦i>Ï·QBG#3Žh§$9Á÷Ð/É:Ö&wUîºg…fàMÁîq¹æ.Ñ5H§M …ó½lYí¹B.8Ö'øþgUrÞåÃw7n7_eõ=žMHìlÐxéB¡HQþ‹ñDÅ ¶jD¨8*^¸ €jUb½^1bC­>S£6Ü ÓtjÕ(šáGuº"xCkb%l ¯Ú5T÷ÍM‰€I†Røf¬ºí‡wX{ §cRÃ;¹& \&Èã¦ÜÐ×ü%ê-iq¢'%W÷z[òÙœA‹š…c4j³hˆ,ID)d†üÐ òIšõ91¸ZJ4Bƒèǧ&„ÊægÖ´Âlã"M¦‘ßš ²ä)Õ4!±L£”¡{]D˜-6-b{ ˆõ~»ÒÿDãÔg|z))›¹œž˜rr…ÔìÄAáÅh,Ÿ"É¢ŒÙПB²rüºš¢M®BP|Aæ&÷“Â,Ó¤³íïÚx/ÀßVënë|sfÅl2Lñ=‘£4a¨FJ¢zäÞÔíHòQc¬¯œ’R O*$´Î/ÐgDó]éDJѬØdîìVãÎL¦Šµ¨º(v©]zD±V‹Ý¸ûJ‰z·c˜³@*DÆRâÖÀöG¯AÌË—®Ùý™ÑÂÅ#ÞÏÚo—Ã’-T¾Ð±¦Wñô×ÆßŽ÷£, MÇ 9ñ_f‘7ê-‚DÓ'l[š|ˆ¨7VÖbxc6„ÿšcG¢]À‹tA¥éÚá¦ÊeÊ#l³\×oCeˆg{…ÈZµÌË îª9í6)ÉË¿¡üŸÏÚ»êìPAr äåš~ÅJ\mÈÉÅ5›–•RÃ{ý(0lü’æyý9shÔ4çmgaåëÏz ¿zê ¦˜F“LÀê W$lJ@®Ž§5T_»~oUº*zDâX¢hsZ„\ÑÞúr\ggÔ‚!‹àpEÓÉ"… ¡„ž¥ôÎ@ ª¹‡6._H]Q žÅ¤ñ äÚí'xG•zL·€q8ûºžFÜãÔ éêN¤¡g[Qb$cL=GÆÊM¿`Œlj|ﲺ¼2˜]|Æ ÖaT·pVùh4¬2]¶äÉ+ï¿)°L[Í€OèÕ¬˜¥—]OF¦Q0ñhZ³Ú°Ê,a 28¸éjñ‹Ê`ÑfÇt¹àf±eþ‡,W¾ejþ ²UüBD‚îKY^šÝñà¿Îôù>`Ö{¡GSŒZ°5@ì°âà^€¼†s· 1ù@Ø›:ì+Ö0ÖÓ¶Ô|"…F °€\ç® Y'¦:K™»»;èç+÷#mÐ[ïø¬=›â§¯ªUè8Ï,ÄGå±-uë}©ÉNa%Ç<Ê$Í•8̸Ua¢M«¦j(¥!:±MÄ¿´6Äu`gà4A¼ø×,²ÔQ—„Í–ž<+p|̸€¢0èE­È#€l!ßìãŒ]“JAd´§.—±_—éÀíœÔM6²ä¢¬vãÙ»‡!<t³>ÝØO%Þ6Ãå˧wy ÆMg+ VI¨J4úq e#8ó¹8í Á_-^ È…ý)–Ù¢Úá¬n1öüxžÊbË= •sOËuÂÂVN$c`ÏöfrºÌá÷«~¥$‰ñÿÕý“Ð_ßö}Þ=]¸­àoìl³k^—¸ÁY LÚ“‹Aq"&»‘ë÷;s¹Ë² ‘êCægÔ€ZáKõ˦0Ë•¹Æ§0>u}ëÞv‡š*%M-rG»y‹ˆQA1P¡Í›h‘›˜ÿ &³†`òwR¶Çâç»l›Ü7÷Áw?£41Áv[c"ªÇ˜1’Æýì wøöɾ[wÚÔíÞ4ÙywîÖ¦P'Z•bÜp#jÏw|v×j6/ô@ÜÊ$rI‘S‹˜ïEßʸ D…IF°¿¯%¹»#x!¤[èjQõ¥M×¢¾ô®­DfCô3òä ¦ :Œé—Ò'µ‚Ö¥†*ù®ï!_Ï­zã”cðoÒ29ɶMcw‚I_',µ¨T$râ¸#®>È)mŽ4„T%PÌŽZÁoßáý¯â•ëx1ûVuÆ?ð}Üe “ ó!Šåb=ã PLi M}U[—…úòU&!’˜XÕžî)з º ß…øÍÌÑÆ—,cn©nýÂÕÖaÙSž×ÛYïLœ0–4—öya:¤…¢Dc9hrðJÎHÐìÄÒY5©™M[ð¨o#Œw™ÍIëTêÑC†¿y›s| ¦@x®2ÓÕCW6C;p Rì¡Ô‰ÛÓkð  o\:T ðÐosß¿–¯Äî^Óô~ÿø×GÅ£då6‘iä Õ^Þ¸sVíW8µ ïnø£{x“ÇC” ¥r¯,ÅYõŠSíYIã¬ÿ8^3¿De3hÍ"§U«åÑêÀQ%c’LÖØ 8ä&Q¯J~Ò=8^òh [É3Ý1O¯$dPÑšTA®Õ3ã°•r0£nÐôª­ŠW ‡”Ê >MÍ+%Wx†&âÈ…ïº-ÐúPš¤ß,—¡vÖ?ZXmá.çéÙ—ð]q•ß‹'w¢ýObÁä¬1?ia(pè¡e4˜O‰åUGaòŽw5Y";èis¸Ë,'0:BEÅM3&ŒÁc™Žl)b.³ŠŽ:”Cu.·+ª×ËXésõ¯?6Kr“¹]9/]›Ð™~ÿØz•e'œýª˜ ï« ¢(K©Z 9ÁPÓ Ü;vë‹Î"€¹à½mzÄnš ­…‘QQÄÿ.ÆsèÚ3UV\X}\ªè_ŽðóY©‘ÎcÖ•Û>„Ëðy×ÿ¿ëœws°²˜íÀ™exÚißßOsV‰¥ÎG¥™`Ob„†âÅÆYÜÁ»/ò|lÌ9X1×Èü…†QÙ`Eûc´4ŠÄb'×é…àz*ë¡ú–Õ<¶<¸¦û8¹?;BX§ãŒPa·D6äJÇÁ07©Ïn0‘#QóBy¨œ<¹FŠ#î¡EM·6Õº7iKÏ,à7Û|mŽÚòg#¦×1ˆw˜¦³ª¨„’šë’ˆØZR*-#Kc†}Äîߤ̨7Jì*¤e¡ð¼)ç qP¦¬ £¿‡=ÜÀƒ+ƒ\—Zˆoõ»€‰o< ìxâÍ^¶ÏfBd er¶jM ”vËQkf†×(ßZy©ÓizO­ n ±¥4Ú9GfTœâ(;y:…Xòl™#¥«o `„mx(ÖÛ™Ž]SÀzÂŸŽØîãÖã·oØ¡~Ä`Y&ä’WTÔ¡WUâ)9¾}üVçš yb±¯—¦Å§×Ý9¼—‚êzûÜ’å);†‹`Á/â„‚4G„Ã!3-…ºtÓ'_fYú×ÚL°dˆ“Jö©adž×…úš †—E9Žá„†q(ØJF(x¢AÀKZ‘$Ô!ŒøLÅ9“ 5Ÿ®í~¢× [ü~ߣÒêx¾lI=¯Í’®:Ø3 ÊÝ\ðK¾$Ê´dÈ£ŒNAgÈ]y`Ú³YBI*¥ä×»]nz*%ENÈ‹˜§Ë/uõ¡»£”Ïi²8_Ä$B<ÐLec[©a³S4,(tqÛ Bèe=Ê1Wó‹Ó…Ík¨³1ÐN|¶Cg.‹NÚ‘%lº‘^ŽçsìDš›OFC2øZÍ Iô0Æ”SÕÊ£¨  ·É.X¹aϤzúk{ª* ðÌÊ,+®EBfR1!ÌëXÃCb•„‚fwõý|oCB\rbQ> —ü˜0ï–L^®LxtëoîúÑh §Š/ß‘ÒJu)p):­ì2GXX1w·ÖN†}³Ì`°ï+9êùśͣ¸y~§g ´+írW¢Åb“alŸ’­¾¢X×þEdñE‚¹¥ìÃóiUÇ\» éˆd†dGYÄ$›xëN÷ûGwªƒew@âÊõýjÍ-¾‰Ñ1Z9ýÇî]¿5tÝ+YaË– {ÀOc™Ö„,6ªõr²–ʯ.ðÛXñ;M, Æn*)Hm:mèÓ­ÄkÊsÅ‘½ öLck®w ÞÓÍwqÒ] º:*9MѼTÑ4ÔÙ@ó5è+7 –JÑ6zñ‡Òâ_ɵÙ;)3¨Âª¸üE^Ög›6üê¾WiôÄóÍ•¢æ4¸ñCŽ…1gBURþËÂ¥,ˆ¡Zеl¹:É¡ég«OÙL:“ö÷!¹m÷Tp-tsýK×Å¢p@Rs·¼í‰œ I ݰT­†õofÃ*dƒVÖ ÑNÎb™œÝ(³ ÓËN6‡GßNjA¹Z`ý¸-Ũçé¯Çãäw~>Á·p ü4ðàÂ=•&Ñc„°5%NoHn—ÁÜñ›tqÜ`^~Ž«pšMà‡ŸâÖÈ_eL-û¶"¾/‡:_U¬3‹Î>‰ €>Ü’»Ùô~Ž_³ù¸ñí«.jt'AЍ†Ëc–4€ªdÒèÓk¢òo¿Œ¹–ægJͧ>‡,’‹Ü+Û¯¿*tÁ¶iôÇ@oØ«|/¹ÎkÂ(Bÿ|u¾üšå™ûŒ³¼M&¿x°ÕÍV>_7ö¼(èÓ–œÿyÐoâh4û¿k'݃)…é?"ÎxÐĹ ¬¥²½Ù6ÈŒHUØ.­ñU“V­Y3ÈGZ¼ e8™›.@ÜU%!5Õ 5‡€p«wᬋÍ&v«fgpµ˜þ,@¿`0½¬ÛÔrX"ÝAuïœä¤ù’½z‘ÈTdÝK”C;ñ²¨GI)‰#Ù:½cÓ%0Â!ýR3 Ë.5³ìuƒß]ƒ×6 W2ˆ¹ ‹ (¥鎂Nq3 »13Õ»Ò¢0"­êß÷ÿᡊ+÷lÃéXïÉMuâªo=|™”á6w–ñ’a"!xØF™8kJeh³ØVèõÖU m–*ÉžRŠGÃQ¡¦ÃnK@ÃßÔ"ÄrDAXI6°™Ž@LÀÕZ+â,±O¢ Í~õXSÁËXWã•i8ì0u•@•G@±ÓàÑŠ]”ëîï.,wã½¾ýͤÙ'6:žùRkMÓ’ÄeÀ˜ ÌU¨f½ŒŠÊPò¾‰…úè‘ðµÀ?Ægê¿uIñß$pE½YÖ›‘¶îRÿ—ˆÝ¦Ê³r¯¼PŒ[Lp$åGÒlІqá€n;ñט<ÓÆ*¤7Ñ·|Ðra\ñBMFÚÆ¾×‡„&к]/¸Ñ“¶+5!–-&ª?@Gàž›€ €íEÊ@› Ù¿FÔ¥du¯ý©%ebYXr('ƒ—u±gõÆçÆ}·™K,¶Ô—šºªÖµc…ˆ”-ó‹_3±±JcÛIŸÛ œƒTqó|¿›¢Û¸Ã쟺¦E¯íLÛ^+´²Ñ¬&¬×ž¼Šç*v`CW¶¹ºI ôö;Äðs/²Ä°i&&spÒw>ã œì™×¨/BmêB˜› €efÔûCƒ4üÕsÊbä ³Ôä«9ïš/,†ù¤úGƒ!•¯UqFk3xx¹V£šiÎoD1+›•Øò„m¯ah ¥s„HeäÊ~ôvgМœˆ»”%ª UÓ&ÁÒìJ *ãÁ¬€Ç˰É_@U¢µxúž´Š€·Ý©Q†;eÁ•tΛ«qeΰî•$ÊÛVÖ¿ÎNÆg…ukBl™ )a‚ÓŸNQ,¸®¿8KéÆþ‹ýç­3Á„îóŠžKºz\®ëpª¡`t³èˆ«x> ‹:úlÅÏóåÁUßgšsW<4C­†oØ5 ŠM)±ÇNÔF™¬fx³ÍâZ$Õ=69šùMk,Í_}ëóp§Üå†'ôu¿5ÂCi¶ˆÈ±r<}3!±oËÝŒ|Ïe‡{– $cÌ@ ww0±•ŽË_½óèÍ›7n(-—^3{a¸AFZy£f3xËjUñcq¡íæxYw½P€8|墻°Â,ûS¾bªmÒ¿Bë5Ék»Eo^ù936¯1­L¯0¨<+1‡ ¿Ç™Ï·¹Þèz‘³A±ÛÈùéÂV<éY¢b|:­»asgZI~þpÞÞ~>n ¥àæMd‘:L÷±ÂU‘‹KÜw§«–Ò¥eZ‰µî†ÞùŽÁÞŸ¼¶6L‚#$ é%ëÆyØ!Y`“Ywp_É{äkÉÑ|ú 1Ó” : +“lÇ •KáÌ·r[·ó‹¬ƒ°XÉ|ÞÓ¥Ûw 8'e¿ïÇ,}c)lðÂsB„ÿkù¼¿n÷—kþìœ^üuc¯›ªê8wÞ¤w³×ÀzWÝË2=ž`¥ÖC€Ös“É&‡M±¦€¤KÀE%aÒAJS„Ùle*©å¢”ÎzTjヴkd{Gï3ªHgÅbüdmò}æpüÉ×mŽ'ªÑ‰/SÄ*T=Cnƒ¦I¼Q'©YN4kjA(ùúör^+¬°ô5ðƒ½ÌC4³3áå»]T­»\͹ˆñ"SÙI¡F$4”;z©ãÇà¿K°eÜwÜiŒë|¥€~߸ _“#@˜Áj\»#ɲ;(žÑaW“¥ÁLÍaCnêÆd ¸÷oƒüæ·•NI&ù]5+A"àH)/8°7“Ãø¼Ò&ΟrØíÅO“Ìãpô:b·'Ùó‚´F/fSà{/V¼:f-<ä¾–>8æÑÌ”%IüþÁç¢Z‡ ÀÌ|І;‚qL:çÐÙ0 ÆX†o»oÀâ³Kžv•‚{ï$ÀÅ„4̶ª+ÎX)§•OxñÃÚhcäþwŸÈ M¿zzxµúc9íþ,?ü.T˜‘rÃÒeò#òÞ 4#‰‡íeZUH63.W@‚ÆÉõ]šBb=ŒggˆÜÄ€t1ˆ¸­“ ´qý[ÑúFCq¤à­ã¾#±†Oë2¹„–˜.l%<+µ‘|’îI*?\À¦n“²~BêŸÙá ë¤÷„.f×1ì|¢Ì—¯Qªµb‘æR“BlůBJI9ÞÙ«±H²‡O Jôvdà ôrÞ”iè3Vðß%ŒG‹²<Ù\©É§€´åŠ€»dÚ,}<ü ˜ƒ(üQØ¢?ᥭøñ,üŽ;ÝVÇÁãY²@BP¥Vwö;}~·ƒeys¢Èû;ñg¨·ùmnîÍ`è\14mÒ–XÒE¬r |QÐ IH!_¢À:ß e!Ê¥ËÞÆ¿qÛ°ê³…ö"z°Ïäšã³m7×g X'\šõÁìÝØÅ}RŠ’rDá¬Ý¸]âšö‰¼ òÅ–?ä(ƒr†®û¹ãßù\¹Üž†Í܈ëæéœÕ›˜ÙBÅTr4L•æèØ tëóç —‚€ì H–)‚èµD¦m+pA P*Û%…7“VÌ@îŬµÊø;ˆýv)Yß µW¹C‡"‡±š}že¯•gàiHN…k™@\‚%@0T7õÅ«•©TPî3äæÝùQƒ[óÂ^žªè’¬1Wàž³) 25QÃlŠUx5VákØu®iš÷ÌÍ2uàê7Ù›~lÑèi¹¯ ®Æ+ƒ´üdÎÓ ÇkÜ5/÷öÓâO6yQèP)‰æO^Â:{ÙÏ–y÷ß„ aÕ°é'Òz À CЦ·Q¯R:yîõâÁ¹|Ršr9+¶õéÌCÁ§º„¯n"éºLˆÍuõphy¡êÍ.Èöݺ¬¶7¡‰Ô3F¦Z\ºn_aöL€rŽ•whÖŸÜè » ¥Ò¾Hôcs¾çwûŸ{LÃËVÜ ²¢(;ò䳨v±ž½Ýˆ;»²þ•é1öŽâ/XR¼ê̽ï_D@‹Xu¡´Id mwg=ìC òkGLWE2¤7ª D Å”ýO>™ÛØh|ÐÓï(Xîô&9#ðê/J¥X{oÓHAgý#Q“*aÏte´úÑ ÅqÕæã¢Kƒ Èdƒ–W8&™â¢ŒO€{é{tQMÊ–çù“ ÞmNcÖtkˆ³ó$7¦Ñr\Q„«ž˜?JöœWM£MÚ³C‡ ˆÈkîÑ ]·‘z!röq‚öÍÊyqB»B|é­zI±;b"¿:/_ä…dLQ³%N_™ªõ¨-]ABÝÖðëÔ«)êá1ó•9s‰Ï»³2¤_NhF•êÙqØväFˆ¸Ézzñ™N0†å¢ÊN6 …•\ÍÙœ¹aø'MÅ.zÌ7G‘MÒ™Ð)%³n7Ÿ²—hÄ×[~/gú½@‰„¿Ée²Ô€Œ½7J‹&9pá‹-VSDçˆX—€–7œ—.£)o¿Îîsȳàv!æ•é€îjw šN;4¦1¸‡×5§‰r&é{~©þÆiP«Áƒˆ)áC ¹Qn@VZ‰6I›IÄ€†@‚Šñ8ý·.L¶`¾É‰¦V=f•ª‘–¢äL¡±d4jÎ×íõQŸmq2aRB832ìn¯EŽc“ð¸z‘P‡+ö­~Uç(†’–¨Í$P­ â ‘8ïá7”xéÁÌæL¬Ìl²—Å*Pþ»„ʱH¦×ôQ¤uYFjLÀTøM|“Œ,Âäíw~›Ò¤¨ ×I’ìqdÍ_eiqå’=„eý )añ‘…š+ñF¼Ì™ô¹ªÐÛ×U§C$leBCò»c±¡á6Eèóõbviu?ƒÕ˜G®z*ÿq˜ƒµ¦…f” $à XÚdªTs%Ú¥³¤Q8O±O:`cÕNSQ1%@×ö¢nI¦Í«ÜýTìÛ‹&&|ð»l§w¶„4›\í åðãÊŽ:±¦>ÉÃ-4<D\‘}*;„#½¸õ4çj%6¡–E’Ð+¹qˆMƒ9—Ö‡w{|›­;ïÞ ú~δÁÜúß‹¯B,âV| ƒ5yŽaé½ú«ø vHj†“ÒD±#òàäNÚª‰û%YõU||¤ß¿•Õg²˜€ìîày•@´†æö`_÷Áå~Ô&`ö¨jä}/vÿu¡Í É r´Þ#¤Pº-ä$ͲZ6/\Òôœ;aT ¸6-’òM»º'£ŒÝßlr ¡W¡ï¡^k¦˜Z%]Óvàt‡ÙfÁúp"'%˜áØ|VîºSɶñ§¡â l4Q`Á,¦ö‘å»3d`5…”(0Ì›@„Ï_p¬ÉåÎZ3"øKÖõBª=µÓ§÷M° ¦”$ž¤FáƒÉ™!ÚæÄ‘[–# ãÍž˜Ï£¢ ÿ¤÷ ¬o1L¥FÈQÏ”övÍ©E²®l¯Îß¶²˜aaàã°‘r"5÷ýGµl ¸‰Ì‰ê·“q/2-8²´oËŽÊ‘BM-h“a’ØcbÉÚ4<Û^¾7ÄdB•UÏ4d3gª×OM߯ÃNK`”0ë¢1éµÇf‹J_vCÚÂGæ5r|K‰6ã½ùüŒ’ˆÁ'ñbärûÑ|wíÈ,X£+„%¾œ±¹(J+÷cÍ8Àìx¥,Psž'íiŒ’&cÇYïQŸ0)®8àÁÄ^4i¹ "'ÜJ=2¤ÇéB^R Ò€ßwC톀=@4m4`ž(tsÝÌKîšÍëángs®ÃlgÑ•ÛO2fB7¥M¨fé:®ì‡v:æ‚Ñ>É3V^¢Œ¸mçš5åÝã?«½ÿs\Y²¹4ßCêäe†ÿf$`8’JÇ»¹•l†zi@ɉàÔ1‡˜¼¶P£ðߦ٘oÑ šnS$ùoäh¤Á¦‹ª“ùuØw·‡3§ðºËðú{,VŒ¾ÓïQ‡M… >8ó å„GWå&eœOÓøÇhê@\pª0 Æ­B‹A¼¥«sųôæ]ך8öbdɃ}h7 ‚“e/`¬õow/,ÞmŽøŠ· Ç3Dæ#ͰmL<ª-u‹W|´'6¢%ÊYÅÏ1ñiõ ‰ûò¥Ð¡?È!³.¤Œ%Ê“‰ ©ŒÌ'¡(7gÃÜÜâlaOà²('KMšíØ…«"‘0–ŽrM ’ ºˆJ‘9GgÌ’G€ Y(=P[!R…3Lá ð0"G¦B+¡04œçHœü7b]ö(å¥Íÿž Ïô?wû £'ò×>Y>m>gëË5œN«c™Åˬ ÌO:È2;àä˜è0!¦Óµ(Ñ©;Dý ‡¦1%’ÙcM}sÿK‡š5£ÆÜ’ô¾×7ÚÁƒâì/EûD¶Þ|¼¦¾ËùUÍ9ï\‚Åš°8<¹#.U—7ÛùÒÂÌ‘>5|àÃìY+×rŠ‚û†v;ƒ`…ω¿³„÷£v¡®É#â›êfªðF3ƒÆç&‚Òæ»ŒPÎ^ømÂÉ]-Œ¼ó|Ãf) ,­Âá_ßXJ¤ýMdãÖÀïT= Š0AӢX戜s_ êk¾‚ã§J¡Ë´s½‚cÑ ߯Á<,ÆïÅùM£e!öIü"6ñæÅ„HÓ¶§ˆÌ /‘zùdÏ<˜ƒHÙ·Yih+Tù\!$È5šr¥ÿs«N*#è#j”!¥ì¶‰éÒ8-KŒ<Þ=¿eßwõñ#êŸÕøò›éOFQP7Qš[Î…£!fŒ&„ôÐ ¡LvtK¼‰1Ì-Î. ¢fB2‡%ùU†\¦à éÀz) €}n]>³G-¶ë‚ÿ\|oWÃ+›«é²â1vcé*ÈǽdHåÐßmË…•¯Ç£¼=õ•¥ý’a Mª(6#y¶Ð%¡Ð:kWÂpÌóW(B¢$0Ùkå +vüå¬WüqféL.ŸÝØåáG³mž—ÙÝb¸ Åyi‘ƒæ4N%YÃ:ÈØÀUœRBLP+UȶBkjP¢ìKjd%""u›ƒðÙ0™{ÚZ#Ä&&ô3E—Éòþ-ŒÄh_¯çMÒ½Ÿ Îð©cæN©x¯Ò§¬É=ÃB¢XM£V´ùªƒDÉP)@jC˜ Õ²dVé^]‡§3bHniÄM[õKéx|τŎÇâÁÓò!ëØÍ«\V1Þ¿yý‰‹-ãZaö^ÓG¦;Ê©!wEâi-2Y·ž 2M„MÔÙoêúp6ˆÈ.Ý5óŠø¦ÂŒ ži=xÎÛ­ÆÅä3Üí´îlùºSD”o ÃýÝ<µ|øÆ.éÂ!3P™Ï6PrT|š3¤ ¿H÷]ßi^Ξ4Xàå•{7ùFÁÒ¤máMï ‡œsòy“çZûìüÝöt¦ÿ±ÖdôÌZ*Qõ> ,¾‰”$*!DAä=Â1bX"u–t#>²ZAÝTfþbÛmý®jFõëߊëÞÄ/o °»÷äKp ÄGuÞE ¾ÃgK{§/a¿»—î|˜êÙ'¯Ù÷Ë›7ú¦ÉPA â’Ûoˆ<™uƒ6!`ç+]Ƚüqì„ó•óÇBþþy8däºìOS­ÓIÇʰ|Z‘UNºñѹnunU¾Ü®ÇÎÁ]ýŽŽ'ɼ¾ô9Ž“”aÇ~¾1#Dø œHƒÂ]-|í¾.FÝnÏûð¶ò{¤I?‹ê ýœœ§\.Y5Wt£ME_nÔ^жždMh^r_‚eŠ4msú1¥Ô: ÑÃYÕf"á*Ï"-²¹¯œ3¿»ˆï“ÞÃf÷€9K¶rƯ6bÓýU².>G¹ ¾G­ÚݵðGÞ¿bßð3ûØãüˆ‚ob«h–º 7¹e ¿&9ód$ñ~õ«~‘jšãŽÜì§ùpžÜucvXÜ ¶NƒV >OÄ7BÆB J+UÒÀ݉²‡Ú¿úJ[èÛù@÷>j…‘^](žeXM³Jo¢ì’’aÃÆ5þžKŸµ¢aâévuÁ¹ f–á÷ó•çÒ&Ú-‡Ú<ïh‚†÷ŸP-BEvª" RyÅù:ùÉ{ŽŸË;·íI%½r@…íØí…¹éŽa›.±ëÇØæXrö™7£pt`|8såüóM7íP}'À(Zçm¹ð8Jmªl÷9?÷ðþÀì¿'hSÀ~ rG E_Üv b’¹ÎžôPC7ÝÛ<Š¡ê6?Èm¯dªœøúaÉ­5FàÉÄ3¿çø5¯ÐÅu<‰þ§öüµ¥ZÜL×[‘ÅuQ6È}ÚÀË|¢w¥o#òš“î:ø†h >AXêù¥ E†¦žÄ˜pjÀi(ÉØ­/°²;ÆÊ‚2:?”s#íQäñçg7ñ¿C¬?$<}’I2.èÑó;¹@ÒZ‘h¥ï‘ìÆÍæ±ën4\ð3ÃÞŠ¨”¨0‡€Y, `Ø\ÒGƒt¤,÷ÇØÞ¯ÔñAÞêlõ¸VÏÍï¬ö™{ïÈyÜ䯠Å÷ÿÄ1äª[¹„À©ˆâDìÀ~¼¤Ö/  žÊ@µFŒQÚ®ÊÒs)iVLLi3¿Y~èð×?o$Ù:êd¨-ãà¼Ê.D›}—‚‡ì‹ÙÄ+º»™ŽüÏúU¥€§-KW‘mÍ ÐÞµºé»Ì ¡¹ï–ÏeHÔêDýx¶¿ßh?¨§ гt‹®Ë®å¾ ³˜pý¹pÈ”@!gT#Õ=](1*RïaZg:AÃÆ¤]ll§4N¹p»`E¥+É.É%ge'~º4zË_¥Ï]W”æjÛ’ãO†½ÂÆ5M#f-Nx•TˆJ?4’Ÿ2­O¾IÆ) ¨J¥E—(´zûév »E‘`êÑjä:q?„ÃÛ¶Á_L$8Ü;Ìç2ÂKáµ!©6"’ôRJ¼3@$Ú˜Ù£aÄŠ@c@Zç€yø(¶2´Ñ„J‹)O 3!7Wi’æ}à9y]o3SÞùáÙOõ`î?rdç¯H·Lÿ&°bÚ l]âìÙ›d=êŸr6Q†6kÒüOSøó’O&„¼Ç£Øˆ­GBCa±2ädõé»þ·òÚú_É÷¿)ôöšÿP¡™GÙ’”žÈ÷ñÜÀ¾Þ2 €ðˆqÔ¢= #cIÓ­¦!€C“ûµL$« xêMZk,Áù«u>pÙ>±+g—©N†Oìñ݉ÛÛ]H× 8±j¶.F„…?Æp¹EGÊ5) œe òÙxeÓ8`xÈú‹‰ #ú3Ìà¦6gsþWº8¡~O“ì ‚N4¯§¯Žm¦Dš:Úù´¦ƒZŒFKªË%úæ—˜Ù*DÖúi„C¥[´@±óËõKü;f7”ŽõlÙ’f*ïå¿åìôæºË7,þΜ¨Vèqæ#Þi¶{UH} ÖJ÷<§W+¥Njr ÏUvéL‡j4”zµoËæïë{¿˜"¢lX]KÏÅx;“_Ö¾t¸dÀ xrhV$´3Ê2y„BÇ> 2åma¥NžhqY'`|ßor/¡~´?‡Ú"9¼üDJ¾b>„Í>Ê<<φjà•™š®KæR$ R€4ÓÚ`£h,Pñåäƒj®Y9õÔ~ª3Ê\«bÃ×½‘t$4çîÂËÏýÍüksSƒ…ûæáÁØçÜK÷SÚÍ=` 6qæ½]†¼YôõEÙh­g~õ·àïq×å‰\Ê}Ó<çÀÉúŸ;gm¨›7~½‹­<›@*$$ö‚}÷«*4eCôe‡%gDž:à~~ºÌ[¿ ÐfŸQ$ý~ˆµ V|zqÙ&«˜ñ©øàÐ>â¥jH¾$¾~X¾‰Ž'·Šì¾V9Ø‹ToÚ—OBc#“B/rçå©…?ŒgÝ Ð?˜)·¢9$ |t†-y fJ Œñc%xoÙ»—õ9pƒ&‡xNÔÙ+œÆÜAW½©ûka2Ü8ï×£‘‡ ÷o{ÈS>Ñh“ŸÎÓˆ}ÙlmÔÌÅ“5 ŒµmÏ&Á;™ÙŒmç*$g8-s3r¶>X‹Å„«º÷ŸDY½Á¦# `úŒNO%éVDeÀ˜ÃPLy¤GWœ.6y¼4¥r¢Ï‘Áîµ¹ö÷åìu0X/åŸô¯öR~¶µÚÛ>£Yµ` 1ïL£»±.ʆ‘x8Ö¦qËé"Ÿ–‡/¼u½û€ WB7ɯW ôæÎÁµ½ßØh'ƒµ<úyjiüEÏÅ736§âÞ­N¸ÌZ£Bç[k´-[KíièBÔéj/{_·€?3µñ¨dùQ²:Ÿ—¯é£è—ì[óî«eÆ+ºyóÄ@Bè‚hRå¢úY÷r÷ “i!‹h]‹P“5Ùÿ'-±çü…šØðõË­¨‰ÌovU¦<!çL‰Àe¿>$íNÎÊJ–]9§ó\ ’3<ât²W¢£…Øë ¬âsÀÒ ÜÞ^y–À“%8 Ž~0t6]"Dá›ôO…Õ!Ù¡ŸO#ÔÀ †4†-v‹€‹¨VZmwÔi¯uš7ú55&Õ¡`Ð,f$U7]XBzÙÕ5nHñ³ÏÔƒ›æAáX~¢^ÖæQø4!³µÎ*sÓKœwö/Ô–(Õ %–,¨QÓM‰¶CR„2{únçžÆŒ¿Š,¯UezÂ)³VÝŽõ¥ó¿ˆ¶2ô°Ð”| AXÛŒð4I „÷g‡ɲžW™ÁÙ.œ6¸JÍra ! ö6ÄÒ¤ J¿VM$ýá§vÏ=÷/)ûBÛΑ½Ï篓Ï?¿œs™M˜ËMã˜MØ—ñäc>Õº>¥7)Þ=«úÚÇè¶ô<>8Mú5 - ’-WÝÚ™8ü”ÃBµÿ™WåìýˆÃIN,)Ü™/ìÁé$ÐÙY²Õt±nÍˆÝ GħÀò€2´5P"êÍ“Ÿ·î/ëqpÝÈëäøRÆê˜>™#Äâ4˜(e¤$Ô´¢Z›ˆ…f/Ê¢(P‘(a ¨’Òˆ§žåÈ!C5© Ûc/5ÓÏŠ>òl팞ÎÑ ìNе¤¾f”+ò±I³½zz“xÍ[ ·n–c–½PAàà…%à;y‡–…f¸}ß•èï3Óß–Åü¢AúGø¹^I¹1¢3­î‹ó7ã»wd}"aL +AAW–1àV§Ô©sEr3­qyÕ¥ÃßPûž^‚¿bŽ8àÍk©/X GvU“H“¿³26TgFW74<雈‡[95gŒôŽ£ü0=œ<èsõ±õŸú1.r•„¯Bnð´Õ &õæÄœYÙ+ 8WR7Ð_K8á”Ì;®ß–¯Üз¯÷+Vû·Pÿ—aäTš\uš@þ=væèÝQ¹/>Œ }‘‚LVŽ+EáÁ›L#¥-É„3N€aݲXlœI䱕šÏÙ»Ù?CÝß|Iì9¥?Á1ñ_údyS'}? yî:†Œac™AKèä@¦ýÆ2«ãÏP0§?œó®U‹¤úVηŸ_ê][©F•©Q}¦ )õqhò873v‡Îô3YÃ/~Ž]0r¶¦Ï² ’ÍËÑMO»GNŸ*ˆƒb‰v)GAm!øéG#á#Ÿ÷b÷XïO??Øêgâü»Žd¿~΀ zff}¬V*7;™õÃæ«$MÙ8§{NPN‹sPY8 øN>YýÄäzÚR2Ò¶KF^^"øšoª¾êÙìYF™J~˜ê ÊD»®ÚP¾¦ŒÏ7 %b`Óè3Ý× @ç÷ó¹ÓÌ“SVË•§lèVÔ« Ãõæf‰„U -Фháè‹££½ Ü2FºíWR)Âv¢SNÖ Yx0(žB.ÌX&ˆIgÏ8saï{jøu3‘Éò¿;>A€bï2ÛÙ¬ûˆ ³ØÛt1®PŸ@'p’üÓ‡ç þzÃM dT˜ûäf ½®õÍMÐû!»þº™×løŒë]ÖdnIÓ­«€ÓàìÎ}’a,j²ºî8æ]g tNÓê⯉»Á®£P‰³âåìï¾æêZb̳Â7(½"þQ­Œîô㲡§Å ›µê‡¦vi¡¥C™\µ}%Ãþ>c'Ú6ƨ7Ö3 u‘5“Ï\ÄZpÑÆ2žTº‡ Å€G¾yZƒ™‘%>Vž2ñèE¨²@‚žgTØê×c …²õÀb•8EZ.‡ìŸæThüjÁÃmó%ª»¸¨ 2™4n¾“Ü#¦Þ<˜f“Å~+ñ묔y[~•¤¢pö:ýÿí_f&‘{šÛàq4išÜÒŒ>AóuÄ™‰9E ê¸zYò±,Ѥ1‘ˆÁ Nˆ)6³RÄdÜž•¦¥Ø™Hƪ|ɸìÅ*ÕOÄñ‹!‘´?¹«#Íè¶ô‹YÉØïC©˜þIúT2¬Ò©m—ô¨ €X»Æ`žM’¥$«aCº¡æsrJH§ïŸÝ3ñòøþÆgecê÷-Ø+Ç-¼ø·9àRÃWJDpàQà‰%RzÃ.%:¬çÈ©À·fßz<­[NÃÛÉœgµÃ·ï½Ô³ç"ùô ¾šÍ‘º˜þ‘¯iKs¹šÇmx´· Ýð™;ú6 (¢Ø9fp£=‚`êSDv¯“4n¿ðßÔøO¿üV°«‹ÁqÔó°åŸ§§*j3Ë}oC±4z壖¦'”µÙ¶èÔ1˜ˆˆ#[­#&ÝtùãÞ²dðëñٛ΅æè•Ú»ÎÝ ‚•Nìþå «ûPßÍ*ì„'Ô…qD降zÚZ0-!kÍÕtùn^ÚžñÏ£ùÑÁgSí÷ùUÐî›U§M>s¹ÚìíµbvgMÙE.ˆèÄI'œ5â`HæÎ¢V.–ÿx™ÝYÇü#|•_ñ*b…·us¾;ù<ªi áb7+ƒ4«âUP™Óa#§Y[S‰„ÕÄÆ™ “**…$â•N@†Àºõëõ7üûyËê÷¤ƒîú¾Ì¯FÎýª?°í—8¹³ˆù,ɸáYÁJ5îŸC¨üÃètÈRìpM"ÅJ±ñ¯ÕÈÄ?Ng_+þq{¦SþKGõ1+çj3{/t–†’ôS;3GX¡¬g6]"åmʪ¹× U‚ ´„ÍÞN3}~n‘ÿ€š½ž?Ì©igÄÚ»áðãD'I7O\éÒK“A :tÞž„4£5ŒC/H#àͯàwòjY­ŸÕÚ,¯`ÿ=™}guöÀæq\ƒÍ#&L ™ p©Ï<+êM—FKá<á0 o>-8*FyÆ‘†›ñFœ5“á*\,°àºŒžRZE;?Kcé÷ÿ3nýÒ®¨3'cb‰ Wnê1y™$ø/‹˜µVwòéÙï)øÂìés`OéÂÚc^½Lñø‹ÝÕ±—¦Þ,{7¢½¦™ÊÄIêQço8+å³qrŒ,3,dqˆ" ¸6¡Óó(·âã5 žáð\œ”¸Z’ÁyÜãröpå6-x€W”Zœ #áTͤÀ4uJ”zYó|uÓªÕ¿"¾·ŸbN®¥m/RÞͧ¾ãø–ö#&'¨LZþWj/6 êØ-È8&P§‘D¾]CïK6 #UT/~[¤‰g˜,0a\>"¬ü?»ì•ðÓyÕý/ìéû`csz f—ÏXÑUŒBF‘’sb‹**¤G¶±h³'‰±U€l™^ Õ12´•% “Ó©¶ý_1 òñ^:Û¼TŽž,,Õ²zÖ!aô<ñ³ Ù´j•³aíG Ù¨‹âû~J}BcÃü[YXœê5å+ìßBNaS(>5xœ˜ÓÓ®f 0,™x• ‘]ò…È>5ï.Í2lü‹¦ÄÍJ·ß+ ¹–ÅÀvƶ÷wú¨Äq[êvò¢sŽyñ!øè S,3Xl™Í«Ð2­ Ž}äãµÒu@s¥ÊËÚˆ«xp!H—j(‚–Eqlhà%f ¸Ö8FÆ0p ú&YÅ aÍ]›(à3§/M0æefÕ°fÒ§‰ÅPxrå îß%iÔšÃ)Örþ*žÛ5“ù^ït.ÕùLêpu¼[ŒHtò¦äëäDLòOùÛ—P薕ݼ³7·Ïa~¹ý"0SýålÖûغ=X×}iv¦æéÕ™LöuXŽgÁ¢Ê^Ïöà?²H©Q É¥ÎêÍ…˜FQñ]U° 3N‘©Ø’VpΧ'!àøcÀêñ¢ÌÇo[åôòv9jç¯+@3äÈ5kdÆÉ­T§NðÙ4\sµå”†n0ìÊÛ'Ë›Y^W¡çîcøgoõ I`Pí^ðÐìð_Ç)²Dœ³³ÃŠ~JŸíó|…÷376U¥§vŽtàèï~èŽ~ïÃäa;\9Q½v5ÓËŠ:kµˆòãu™F)ÎöóùˆùãXW’¡ý,Y5\ÑÀþ=»aRœj[Gõ¥“’SãÌÓïÔ¥é´ûù9Ÿ· _9*ÿ¯Õ¿‹:‹èùïVºV+ã{Ïá?¤72†»ÌËY˜ü0l‘™uÙg™¸3®$Ô#«˜_$º<­Šv ð†Ã ©êg#^6ŸƒÖ¿’õoëìÕ%b~‘R)d¯6Œ‰YŸÁ›ˆPó&D`Ø^6U|WvF£ÀÂßy_ȃµîÓØú>«V“óhjjØáÊÞxˆ>ygHhL|±f#§É6J;Ë•CPÖoÞ›Ýï îü“Ø»GæÐûNÌ‚±} kD£+ XIï)7˜“K"5ÜŸ£5Û‚÷oøÒú_>qdÃÒ+wFͳsµóÃDF ±cLЖc¥'9‘äEywîëŒÜ×ýþºK"§¡Juæÿ^ÆGU.Ó½GOvòNüAghÔ(M%½ÜBs¢ "ˆ[s›óJ›l!ü8lŸ×ðÂîÂ9E4ݶº¤-›€øVf„½(^îJ[»¨âçÐG»¼ª"ý`—œ\/zÛÑ¿i~9ø©1[éÜûÔr;W…¼Äa/ï¶t‚ÀìîÐ"ëç ?ƒmˆ1[¼’ñÇÖk¹/.M5»º2€'¤ ŸshŸ>„ÐÔ­ÔÝÕN#Úðï—„Ìèó-þ]ÈôçýÔOSõ¼f8yZU:#ô'çñé`føËç' |$Å&.Þ8ƒ¾>8%h ÷î~¾è‹Ï»“™ål®…OzN½Î<ï0ØHîÜà”æB•#)N8èD#±íЦçKõü½5¼'ù²ÿøKsoÌ•¤¿5G±®‰KžI6}!iPOV™ê †U8A{àf{ØPÿvÜÊñò%‚H‡jÐ(NÇ“§ÌÚ™à„™:1ÀÞ+Pü%šPoüvä³´¾F‰K§héGØD;yÁWŸ6ºÜ®²ÝïWüå vgy ?N´:â.@—`úß‘9›nµÏVòê‚UcxPni—zš˜W z™ßé­ý‡¬jÚÑ÷ݯd¹.Ý%áÑ|X±`²±+Æå÷ßÁêÍç¸øþÓi+ظ³ÍÛ6~F.Ö2[ mý¼ô§~טÇÉü sP¯Å`;[rxa‰5¼¸ãˆO¶M.(ž‡Ëêgã8ïLS©¥Tçrt1ÕÕëg Ú$‰CXð8 ©Û.ZR.Íãª"$€À¤HÆ.Îe6Ž… ó‚À= Ÿ0‚qUë`Ìï·†{¨èް›üVX+ÏÕèsÉôgMÚÛg ·ùx3£Ø»'²Û=,¡z3(uç9@2ÒÎßÃè”›œåsDà) Ül¢•¥-}eljû}÷¡ÂÄ|ÍK’â LTuºò<øu1ñßÑAÞw/z—‰B©ñ±†—i«4T©—}hÁ¿ØYÎskÜ8¹¥ëõÚ˜5…( pPæP/Q xd¢ø¹T‘£~Ö;KìÅHüJñÅ;_E…‚C&O5N¾DHŒß‹OCµÝø>mà .†Ç•Ç…†øi„Üüù,Oh[è.¨Ú£6·òï,äÕL¬¦dë‡Û6kªA†j,2º–’òEÇr€”N>í? d<÷=ò;–y¢É^†ß›?H­è+3rS2e ¤¢3%ÒD@~.MM|¹»>ó_0yRÆËCQEåô³ƒU|‡ÞtrÒÔbÀºñéóõ2aÇ‹öUúà ÖÕ“GÛ¹*7âmá–§ áëH©ÆY/ŸôÅpB¸z¨›ðûüÅ»_vGá cu¯2`¼×HÇÌoñе.?÷«±“ÞÊìk:öâ=}+J÷t2$T>©v5dµ4”“Á(HPù0¬›Ð{ÌfNaõôJxª|˜¨8¤ï]¥Ô?”yÊÌÅ…í,möªcó«ËÈÜ@w¦‘ûàúìüðò´îñ( ˜<`.Ky꘱¢ëéV̽žWGë‰&Ýu¥AÇíÍ å§RñCf{lõ8_w”CxÇ·¹WgGÓÿ^§Y¸Ü;E!cæÅb8ïRØŽ±ËÀ8¸ÒP³Ù :…š-­*~Ë¢^ÂÊœ+áãÅŲ̂ô©(lÕÖOo}éúx;}§SwDßôGÖá+µßNPþQA¬Ýš6òw&öªŠ€•óo¹ û^\©ÝàÖÏ|K›}­¬[Ýè]Ÿ‹¢ëT›v¼k¯@ý…­¡œö¿20eR(BÍay¶?’/§­ç™u‹ãn¯Wž¤Ñ›å9­±.™™ütº¤^Hzïæ÷0|ß7àÍi5®•ôàæ«™Õ§ÚdíÑ0B­¢×.¾Ñžu$Âg”—Þ7}_&Uø+ {Ë(Êäsžº<ÌÞ°7!ötHnØbJ8¹Ø4{Ó´9™ údó¶käR<˜ò6la3bN1Ô&³Çf'ë§Ù‘ªæ–}QÔùi•0õì­K|¡È“‘†µ­^^|*š¥~ñ@¯ü} \Ͷ}ø¶Ù±©Q©ÚóÃű.»-ü0"6-‹r8¶¬KØ“ÏïDö¾¢U4t¯hNpºìejñæb"ð,²Dœ¬« Îå¡ý~ß(Ýs|°2‹nWqKPäÄJ>Pµ©jGÊÞÝ»‘ýž¹O©†à 77¥$9t¨Ò©3sŸÝDÂ~3˜_•ÈÒŽÇ3ÂI–4;ðÊhörÜs…%ðeþa¶ÓEzJA[ê{½Q=ÞÑܘtY b6o±ŸÙµ¯BnîB’;7xQjãugСI+W#:¬ôÚ2 Ë!<´Ú… RÂS·:~šÓôfŒX[I ºh0!Ó³¾P:ÓË÷Á^‡ó¾Á¾Æ,d}ý ôgÆ*–µÏ½ÏI!3"W2YDöÄ#aï´î\Sõ"®ã˜77lX·ÒèÎùÿ[òìŽ 5z´cÍ©`vÓLÞ8ÿ7Ð8KEßäòãc¡Å{xñ­º«@’X ‰»ñò’‹7³4quÐèÿ‹÷—ƒÍÑnòúXì§Sã~ÅüépC/9/c³ž„ÑêVš6] PÈ2fk÷a‹,1•ézÀþÖÃ÷ìòbëÞ]ƨyÐîR Cw.÷ͥü<öþ³.÷eJÖjœÝev Y¿k¤öðoü^!õ¡@å–\-¹“&¬ðÄøÂ{9WsÕ•-_0UºMÐ[b®¯<œ<;n5yñ…ªíüþéß‹ôÿâ>mjùEÀ•FUÉ¡=e»1giŒvà{=Lé3(ÿE,nÍÑ?3“nðTt3^#± ¬[‘¡ØT.Oܶ¥±»*ÅÐb2°¡Í#’kwt™´@ýßïpgâ<ÌnÎÅ­óûÄ;ãq¹÷|tï„êì­-ßí½(]ÜÝOüð6-Ñ'ß ýˆ™ yDæ)šSHŠ¿–P»é/f8Ã[æVoK¯ Ÿjì‰0,e4þ;R³ö"{AÂý}>{G“ù”ëY³z@žâ™g[kÙòÊf{ŸG:«ãõŽ»ÃKc”ð°Oܤàc ®°•„ú}réLçX4X?ÏëMÞ0§¼¶åA‰ÆdûcµC{2øÑq‘ ÁR‹W•ô¦—0®åÀv—¢MÕgüÅgGæ4®Ù`ZoNªÀ í^pÚjs2l¹p¢·~I»Ò0Ë }`gB»ÞE¬}i?É—£*F5N×GMõ«Í%è%MvF*6_ùÝ¥Ñ?&ïÎ$ÇæCÙr‚y/1›¨øn¡«Ã÷/æpõȼü˜Ù/Kµ¿?gž™p-ïgnñkoÚšeeY*!hKN¸yP€HÏ_Ñü^`^‘×WÚÊ}wS³ìLÖÇšðæQ´KT/ÒR n˜¦P^†šþiÿ¦»¶§ÅƒB=yƒäcëõh®þö_¾üwù+OmŽx;IWo¬ÚÓ/ª”NW(ƒcDt¼‚ªª†Ãñ#Ž4Št>/oõéíRsg“SB£$v>,j6ã¦KÏ1YEÒš&2âc “›˜Ít¤ Ø  [¤#¾pCnŒ‚23"#ÍÝwúKéæ9EŠºüö@÷]YŒáÈøÃ¥ûÆ•SS—60vZñ+LØS˜Å7Aêo‹/D)= q3¶ç`]ÆØZæ,#¥8ÅÍÑeéyO¡7pq  A‚ 9ô$0[ƒÄaR]îȵ»-yó2ij%ʘDçÅì=ÞnDõs vìyÁªÌÇ*R®MY¥ÓÇ& Cm*)¾#g´âo¹XI®ÂEÁ¨YBäÁµæë¦‰„>6W÷ócwKCç±›æ çðb¹×¸â•,dè ”Z’ìjƃBÏq±çý~t?GóëQ½$uf$,¾ä]*ƒlx Ö†œ$º<Èú ã~ÄÈð¸-ÅògÜ |åK‡VÉâ¡ :mÙ×êë_dUñ¥ƒÐÜõÙ°ÖžZ39 XW9m4™ºô:ò½ØÕWÔŸ[úU¥ÚgG:Þ]xlÝç *Ì{sÑm¼ÏðtŸDn¢ãÐNdÁ4•Ia8¼ß}ÏÁO§O–øV÷,Ùµ¤ö™›¹{¸UypfcuÊ{ëýü!‰²#ùðîaÚ{bôýKóäÏ;ÈÏ[þ¯½Ù @ŽëÛ@d'z¨?„mÿ?~éuJÇÿ_0m³ê¯“Õ‘Ctر.СCƒ$Ò³¶ú£|º†S¹s‡Z„”VÜh ¢#‚v|Kß´ñ¯1 LÉ—÷±©åŽÔµQö´5ítL©²Q4V¦Ùà¿àÊÎNƒÛö²~Ò37Ká|G¿oÁ§")ø•EÃå~ÏÚÔ•ý£‘“‚ˆQ¥™›æØ§³=mOz-,t¬ù¼?˜ónY…kkŸ›H9<¥îqýSBµx’΋±;’š=Ágg¶hý„òßáù·ÜóÐhåÓŸeR<Þä-Lîòÿq’}y]\øë¥¨€+H¯«G‡ 9:ü¨9äôPøá®v¯(¯ÓP¤­s5ß^HÔ¶Í.¦¡$=9ƒãg5‘I¨yVo¨–¢wQ» %$FÍR©`¼Ù«ägnèì#xæÈS?’´fl væ]Â6fÇ ª? öjÏpARI ©¨^nć´A×ðLD¨ËpÌ”%ÂXZm¯+V•²hrÌ.Ç`¢„è«DÓn†A7Ñ/¤àÓV‚2©vN”ƒkçÿ/>ué‰W›µ/.®Ü€¯ #ÉSS­7 žî°PçA›¼# ÂT›”'ëU–GôúýÙ±NF¼¨}D²¬Œv,×ÁlK.þÍzZ>ª[úVz-êʗͤ™õß›UUÅü!}BÆ»1ÔèX«"ˆ`I ƒ|„E­_búM`žÃï/ºýúsFŽˆjL‰½Ž’¾Ì—"«œhÕç…¸81uê‚* nMëy?{_Òëߨ%*hʉX¬2«œoB Ñ€'<ó"Ñ‘£,|®l9§“r¸3Ñ®-AE¢d¨L‹“j×A—a­£$à…Žn\𠋆 ð"«:UIÇÎû3}µå½¦Qxľ1_¡  egIr, çqò£ƒ^10ÿeoÏ0ª¤?¯ &†@'b¬ížßü•‰çS敚Í[Ï"­Ô„^$­ª3ÝÑ—Oû_ûa~¢P¹=49ßÑGxnÑÚÐñ±6ܰfò¾·+YHµ®Ï$쿾¥ö°4ÍÙÙq*ÇXÂB\ozúÅñõþh[›©eÝBb]B&¹kÿë™.:@;ô‰“£®ËÌn¼_dϹØ.‚‰|¼É¹Pú;Ö¿ŸXìþU_9(Ñ ĺ§š—Bn,€Š–%¥k 2ÚdÂu7fÆd½!ÂçQË$çõ캌H€¾0(—´HñŽÍ¦ ¿ƒð$_ÓöÈo/Ö/ñëù{âS‹œ 1¹ìÎâ“«T&dFŒ®þϧ§›på]ÔW²×¶‡§IÎgKM½™·¹Ló²òqgce¿¢®—­‡?ï-ÕÓé)ª1üB›‚߬•^7/ƒ „TA.‹MS(2Œ‘ywĦ¿/ÿQ¦ÖYFzRy˜äìu1̇„g~Í–Ïùº:~Ó’ 3ý”Yà»™›þ¨ vÐüÊPKwžy–Û¡ k[‡f‘Iv¯Ë_lX“SʆIZçDIÇ« NlêÞHýíÎ6SÔÙ|SÑÿ?×çæô>âeNy®€> HâŒ1Éä¦*¼"zÜ(úr¦i]sÚ”¸ºU3ƒ mð§õI2µÞÞìFîZ±S†>ÜÜ I«zcç½ø'êfÔ_ï]°…Üjå…ÊfE) yúGÅÿ¹(EéRI8Ŧ”f­;SC·—5{yã—M%´y"s]þaŒ±íÍM¹|T + !îÏdÒ¨:öÞ²KsÔAŠ’ P(7¦AOk·Ù í¿SÌÌÖñ\lZƒ>Ï ¾üíhUL)ï j·/"F3ŸÐìj‘¨9z)tnýdò»ÂÀÎÃF© få Ló³& ª/úëž¹æâòÎß>—úˆRGýnß½T"iÙ$YdCÄÜ;ãñšÈµ©PȨ—i? n®×ŒÝy,\YpEa*åh5§½'B ;˜sÙÞþ†LÑS|y±½„ÕPDè² ‘ДWìRüR‰à`Mn¯Š’à:Qf0™õ§ó$ÎmðÝ ïí)ù((#’ï©4¶JÛ39†TçsVÙ›J·@36“Í i]*‘ Ñ–8P€›3ï1©ÍÒ„pâ‹+NÞWŽž5LŸÖ¤Mý-7Á†êƒ<úoÿ§Y˜é¾ìŒ›AúýÕ¿2ÇPƒ$:\7ÛôéeþO­c$$qI‘›/Dpúmûœ¯‡¼éñ5V”ªò€YÌEþ/Ëóð±çžÁ'~ ñ§÷fá GÌߊ5É£{*¹¬3õ7 PK!h²±Ì€ autøhîB/µ¡+ƒA€³7˜ŽŠ2ÄÜåòCƒ~k·!9/ÿ£ëyÿ,.z’id0™]Í:÷ Ó…ö§ Â`"Ë;ÃÛrPemž ÉÞèÆå)€nLFK„*ÿ}‹1&f A¸ÉTÒL–¢ÊBXÊ.Ó˜[Bþ¹Œ-â!Ç`˜a Î QP*Šz\ .K~Ây² ç­É¥ä=1&uþ+ÿz!@ø]H€™7_Ûé×øcŽ‘këi*YýÀÞ0 ©Eúñ5{%~mš¿BŽ(Wí'8M`õ.ûÚ0Ñ̳,ù%Ö$dÂòo?ć‹ÿ3¥{Ž­²«/õ|©î²å¼I²*ýÌloê=ÝÀè׊ªì0§q\Ïèÿv;cúØK‡ðW¯L ïâ°þ“µÎ)Lãxò8 ¦Q2Ô±¹d©”£ä²¦)Xi`ªQÆuø¹Qs56˜]‰ÞTØ0¹_äüÛ?(Çt/o•ÂΜ@ª"þ•Z€ã üÄ ™ös»×8È¡µL\…í¢}iL»hFBkÀbŽ6ºqñ^9ò0Íg€ÃÖÒ;w°µZ§ÁoOÉçs:lN‰`ʼn”¼³©·Q¸fips)ÃQ+H7…‹ÛY?ÀuÅÖã@>Œ›ô•D¬œÇçs-Zš`+èš¼ªˆït?·{Þùï=ÛÊR²9¡¨«@Ì‘üŸ ½s$ ŸÌB@¨"̤žÇ¡š¸Ô‡"v‰sjѣ⠡í(+Vܤ¤œÑ‘‹74‰_ïw¿†$ãY7Ó:WžŸ…ŽÂ²£½oWÔªv7`E`a”ƒ‡RÍâ5º{T7 Æ›a Fº!ÃÀòA“Ïk¦Æ}M® %\âYÖ®[4pZ8V-—Ò·Á2¥ó9NZÑSH)kÕGÅH9¢ËŽÉË“¥äû`²Ÿ¨Zg㇈§¯NHëã¨cv+ÊÏ s™aÔ›'’+ ~ 4 Šòl–<%áUv•mŒÉÐŒƒJ:*„Ò–/!˜òÂþ@’×|“üõCºætâvt¼0Vƒ¤i¨‹lKP=i0´Cï é'q¥+g½H=Êå“ß:§t2™†µ+såØÊŒbPeô]ÆB¥º°^“y-¡è™b>^-dïBøÄ²­vŒ€ß ÍÈ1s1¤æ¤;â ¾ tU2#àT·|2ùÌÝì$ù¿™Ï¬ ]˜ˆríb—®2£s¡\¡¬Ø[þ\Jy$ed=­ƒ«¡;\c^T)S âk=ò>¾Öw餎KYã  hþ÷‹”#2aˆ±ñ,ÄŸ%”ÿ¨Ôj4B1¯œÑ­kCL/ µBý\¬‡ BHÅØ@rÍ{—DŽS»}M.Â>²Ž*žgò{óöetÕÙäôoSÇï®VyÍÊž¾É!â 2ë‡4z!M0†'+ôÅpµ 1äèTÉx8 C©™·EëSk\ï˜ í5qȱ-¢I•àù¿0d¶‚Š+1…q’Æú9¡Ðø\ä¿´·$ÜšÎÂá” ¿«^—Ž†Ò¡Qƒ7™`áò`.BФÿ/î³³Ç\b¬l •&£_fR=¾Šß1}³U«ìÙ&jö‰H‰ÌÆÊ†‰C¥El„HSîd ß·^T3ÈŠ#ð…ó3]Ú×N´ª*ƒ²‹ øö!ܚʚ㩌ÉÚ5Z|+¿×VDx¶õTwVå03LóNËåúxÈû¯aUe»'%.Käš?ósà7zîU^«0#^6§îÌ¥–±ÛC£ÎF6¢sÀÿó"6`¨Ê–Φ•ÿÀÕM/l®ËFS™ÅÄûH£ÿѶÊîM}ä*ëte-¥¥—&‡{ãÿNN® 9aä X‘Gýtv­*XPÛêÅ(]©”ªMG³0 Qô“Z¢f¬”\2@/’cʨ Ýí÷9ûTúªga·ºLŽÆw.ÌDüø =€?µ„|²:»sBÆJ §–½%p+5P2ñ3<Ö™ÙYè‹Z)ÝK!ÃÁ ‹HwÚ¿/ª=Þ)KÜÒPT“šÐ|éÝÒ8&–~¯KeÑA_ç2G¥Rñå œP»ò1†‹™/Îæ~O{õÏ嬩‚¦êYҪτ¼?¤&)à;è‘Éòò”H ®¤y8Ô Bƒ 9´–¡ €ðOp£Õå×þþW÷w|^í¢/elgÓ©X Ž±"‹¿• X5j·-zèk>A4A–-ª&TnHÈiPDW¿ÂËD‚ÇÉý\¾ô÷}·ÿoA¥|Õ=nˆÑMªÎ:•æ·Pô­F32çôÐ6zðÇ¥â(iãynÄ$2ÍC8 bl²\~*T`VÇ™{ýfoúkõÇjôà}ð¥¥zË-îàg8ÿò1Úòh&6?k1<¡és›þ‹™7âw˜Ý›dföôºUÚ“c/!>RW•*V6—•F>}|¹0XÜÆp ?î%æ´Ê+ƒ*¸¹ÇXÞéÿáÄÛ8Ç3(Bƒ8Ñ‘¡xðŸ"GÓPƒÍ.#A6bíÄU¯P¼¢ÖDoYMC³¼”asƒS¡(b¨à3¸Vo–/ÀjùØ{Ÿ¼Ä9|u”‡«\‡2/m—Š„­èê 8Ý·æJõÜ‚P~è”Í$Ù5’‚5µiãÿG¤D yóÞV«“ðƒˆy“íô£ ?¥¾uÍ©N‚£ Õ¢p}Þ•ñ ‘H•,•)ˆRF!HY1‡Š‡ïFÍh«šI‚ðÓçÁð7*}M“HŠ–î~ýݤ¿nqok)ÙólêšJ-œé±äé²Wú†¦¦½,w@9(¸¸â̈îö„dÆuœ¸vNŠ™‚Œ˜¡" û»jŠn11 ”Ò¼í”A_%ae‹#Ä¢¤,_2ƒ(R¾:5ëñF|ü¨ñc¨ ®@Ô`Kz¨¯@@ÅStœ£ø‘»¦]8à6älÃàp²ãÁóðèÞ#v!7¥P26@z?±¿¬ g¯I¦¦žb<äáôIùªxª›ý¼>/úÆÿeà9F¾²bä'¶y[ò¼KW„[ǽbs¨)­”`A1yÀNŸ¦xa‹É?Ûúø¿oä]{JÐÒægÏ`“Î.’_rÙ4‘7‰Çƒfl‚#büÜÊä-À 4¬þúÏÕå“"YƒÄ7øêb«Y F½™™Ô­ûã÷]õ:pª( ÅR&X­$§÷?Ë,±=Ð\3b¿ÈxnéXâd˜¡E á;›þÀ«)Ú¼W;hü¹}ßÚïËÓþ?çýØÞÂkaN­€}á£U^/ÓÃ\ñ“y‡‹éˆ¼$ä¡Ûræcî>æßDHý0‡°(Ä{™:§_†šìõ ‚™&P›“$çÏE‰Úy$½SãQÂV‰€)aÚñ2|¤|>8Ššy ®¦hmžÂ[óNͪ¼$)þFÆR.h‹ÿy/ôhÙµ†gÿ³zÜ$ç0à¢H4tP\ˆà=Ã÷DS)$r5&éÂÔ¤*ˆï Ç8Á¢¢*8»6ƒ• oŽå±£Ð‰Oô!$2wUÃ,(<¯t¼ŸÆwÊÓR¢•íÖ¯óÇài£¥ óÓ_ñ‚=âÏÐþ·íö£ŸÇЪM±•_²‹øy”^ ûkÎX7D›‹‹ûY÷ÑíÓoöÌ¡ât4|ãÕµwùe5üÕ‰•H2:m›ãÒnVTÍå{^ͱ} ¦O¿Ò{g^Ù#[#>°Ú À¿V×8ÖÀöbñ}Döµ!º}æ‚Ô ^ofß9Y¶w²Å:• E3šó3·˜ñ7+w¿Æ÷Ùɬ<‡ïéŸ_‡—×EÐD»qAÒúÝ7jt¦ˆQî…PÈ =ÞµìÉÐz`†&þ ÕöK$€VyBŸËç æ& ñ¹™÷e}®]i¿z~Uö‚¸í<ï±5r¤.|¡¥;$Ì—‰fâÏS‚ašhHsªy ¼z®j#y£©DPD…2ÎÂáó¬üšv«©V[h’'ÔBǤ/Úˆíÿ,!{³ÎÔ3øâR€‘H N 7úurKf¢Åɺ$U¨\ÆÚßÉÛòôþbçæ¥šš6V½?ÎWÌ‘ZC0h,@MÐx=Z7d÷1ªÖ¹,… $“¼Ö¢©`X|22æÑÇŸ­ÕžÑŽ2µðÆð%-N;d¯8Ö!$E$Ñq¯<ÒHî×}¥Q,0Cý?ìðèf÷¸`e¨?®~ô8nL3Óôù7*è\†-Qp-ËŠ>ýKÀ'0iÖ‹‚İ#«Ä~©G“[åZLx9'õº™$ËŒZ–¯$èYP¯Cyƒ´\áåãÉuó'õ«‰ÆBI·tjoÔVÖÀ3ë™ØU"nûîP“•6Õé ™'Ý™®1ןóÎ'ë¼½€9TŒr V ¼LyFßÀ»¡£ 'MY“F…?á 8©ãXÅ”VŸ‰tµÙÅÅB©d¢#‰bþ&Âg­ l àè¢ÎRœk½‘øo ”ˆú\,ív‚÷SÓŠÖß\ óµDÐÊý˜^ãF5ÿ¯ôFÅôã[YvSÍdU&Àç4 ž˜u ¡Ž¿)€Ð†þă«" —4mËcËÁ²gä/Zû|x ¸Mg½M‰ÞhSgJ„õJNY¶TVsÖ2}08Jg‘³AX¼å(k¤£Ó`ìÒKÓ€`Råìh_¾u\Æy@ýË?Šq ejç©j|Ñ'CÐ }ÈÉÇ{Í èéW9»2aŒK£\é98Œ×¬+æ¾ :DS5©½71¸Zë™îÇYT‘öãÿ¶tÜZŸµ¥›ä ×”êgº•è„ŹÁè}‰q=<ÃÔ RšÐ÷ÂËYÓ~çÇs/±Ñ×þ÷èÞÏ9¨f&òï äJVã0[¡—6F¬Áêêƒ*„€^³ýÓU 2£h5`REN©jôþÏðx?™·Ž«<'žÊM‚>1 T=¢ìf#a‰ Œ½ßlÍLo:4h4£èÎ†Žø+„æÜKV™¹ˆŠhóë‚(ÑYýÇE6ËþýÈ¿ðbKA«„0Ê(Ìæº-O55KC¥Á\– 3ªwënÒÂG<Ì*üÜ ,x.AÙ焆9 Ip8ücm²± E ƒ¤éM¢¬·¸í9»Ë6!óÿ°zDˆzâcûK «KÑ:eè£jˆ9 ŠIŠI ð¹wOìf3lTraU¿0°“3Mt!ÕŽ ¦Db7¡`d¶¡½t‘ò!Ï`FF D&²çÀÇý<æ£9~‚g)%Àè畱ÞÉý²P}³Ç§Ë(·œ€‹ù;6êÜêJåÕ^± 8#É€IÖºD‚° éÆ/¸ê1@²Ÿ/ }oo+XüÂŒc8übL¯oÃv>7wþŸ¬D"cá`(Õ“K%›ÜÌØ+Bæƒ4qr¿*K¡%tŒk k–9”µëõ|(7‘âÃ8L2áó³žFÁ#óy9@7F…çE*jS³ô¸«\ûz ÍÄ«N¡ &}A.uIÿ—Óþïç Š• tÎx0?¾´B¹i­Ÿý*bwÿ&F`“¬†ÌÁ¦uÙ& üP½úÜΣ²Ç/|'AW¶8àÖ„ÈÁNl"2p»ÌÑìüÉô §êyø‰ì|Ð}8,¨þ"j‰¶ YñXùPÕAÈßÌz¼Ê¹°%ͬ2]]ðÁ ˜Ð&•ŸФI ¶G³!Ž­ØË§ÕSF?™Ÿ- ?7„·õ¸ÒçÕq›R8‰WRC@ÈhƒÓ_ $JÅ2Ÿ'7ÿUÅ;Ê®+¸²€ƒ…„’2$Úãó(ÖãS@‘1?Z7M9_ÎEÕi´èÄAÀô`áü[Œd<'ˆŽ—–L=-q&s€«'’ˆP|¡‚÷çS¨Þ >ŠÕ]’ºNT(Ö·6(HàâC±4j©ø'—Ž5Ô¦@Ž¾Ìžù7?ºd*ÑR‘˜ÈaÕ‰ Ÿ²DîŽÜ‡†¨á‚ îäz@¿a)tÏO‰5E*Æá©òä!)çjÞÈ}ßx_¯ß°@‰iB€î$X½¬~üLŲøóÕàz#(šÏßÎ[·+:@i^vŽ.AJ—â3ʇ?™½Š ö¯ÓôQ|+Ùv«&·À eÐ@+ìÇnÔ@§,@­1ð0®¬¼î¹$™á/RF˜æo ñ€Ð$†?ö€èWÝ|5’—ûsàÏV?J¦ù( ­ÛÊFìDØV@ëy«_zE¹S¦j0S‚ûwÈ*+r #_R8)ÍÿP …"ÊÐ&3JÐr†b~JÈž°è·íí«cžL¬#ЬQQùûÅõªÂïO[Íÿ¢Æ9±bˆ ÆV¿ ¨üôt¿õ™<ÁjLÉ hŒz¾~ý?ò…F¨I@ÎÂh2Ðè}.sù~úòªi(%™Z45Ç {rAÇv¶…L%A%. PÈ÷%!ÌŒH£UdB9æïÙºõ—Jû>/ô(DͨWœ2–À¯Z¼1a¨†RºéMqá¡ ë —ÚÀ»=¿þõ:×ø·ž‡U)`²êœqìjÜIHŠè9¿2™¯­ÖìÇq£*£¨xðÃî{ æÚöš…’¡ò ¹Ïˆ¾ÿŸüÃ{ ql9%ç@ÏÊÈÍ~+vXþKNºzQüèȤ‘BC0 Å›èë(rž”`K 0¢›6B¼AB,U®§÷v¶©QYb™(5Ð ¤óÕµ=2Òëü™òüÔßí E”’© e‚ÀË•0á=Ò†m;2Z¼£AÎB8ú\ÀDó:Æ õ¡|MþGîýÕ)€?Yùâü]–½_cÖÏù$ðQD9)€‚À—®ƒþYÜ>«æ·ùÅÒdKú¶²ÐƒXÀU rzºO}üo‹Õò¾öJ5-[ZG5ðú** DøýÅÚ<Çû\wãŽÌ;J¸²bRãûÜ?–WG&‚ˆúAnOpzdl4ºXÅ+ÊØ;LGÿ¨ˆ£Ì“ø®|¬oøº°ýœ¤¼Hí¤ú˜¢U 5ë{‚ÌH!†ô¬G}pŒ¥†tsȰO*Ú›¸…HX¾/{[sþïû .;W¬Ì dþ(B3Ï€ŸäŪ€ØÖ§›Éøô¼ÞJçà×6nðvÖ^DÆE­ß&Q|íBŒ_0Áå{]º¨Ëüc¸‡ýŸ×ù¿ñ¤[Ø?ÂÈ¿$a-A4ÖÐ;ÂÇ+?(އAÆ’£Þ£F”\N“…E†:s³úĬÅ-9 x3<ÿµÙ!ÿ­iH\CÒ³„¿ÿî!=d|:™ùÃG«û5¬^ô%$+æâµLˆt:$ Å~8eñZ—[(ñm‹•…ˆ'¶•ߘ&;Ј.=fC¦±"òO5@Û{öì* ’Ä$¢£®DXCÔg‡µQŒ¯Áâ«a ž–w21C¹¿Ä,·v¾­—…ôwlR²€NK#'6d |T?ø?«›x“¡ô´j:Ÿ1 µÎÕ­Ì‚ƒ‘â‰ØÑáu “AëñÊýX,4ÈØ"Â,P÷ë^4†\ŽðgÏôßUߨ•‹«@ÿbfäˆ!†Ø–Â\­‹ YMzâ4LÉcÄ;jƨßÕbñ·åßøJÕŒ¢1ùZ(zPè—ÇÌÎ*‘: p,À˜JMýæÀSyÀj‘1‡ð‰¿¡ç/ŒÀÔÄïí…`€¸Âcÿi¤QÈ·÷R¾ªoÌCÔ$&ê‹‚toóØG4E¨ÊÄ$J^›3`ʤA‚£«LX1H!ÁÍ'~¿+gü[Ų<}’ÃÏ€ÃôúŸcüð°Ûüf c xcÇë«råɱÐÀL•¿—öõ<µ‡zÀX‹9n‚oüá}[aÿ×/’Th4”Qµþ’­×‡B2ëÏüÂ@C'|á­`P©nü–®*'OÔl°i$ hN”=ͯlm–'øËi ƒâV ³ï0þ·,ž´ëàmªÃH43ý*$:‚?\JÓSùöoôÂ$ƒ,C›-•å±sÑ0Ìê^£#ﳋŒn*ûLp©T‡ Ïÿ~—é‰ÿ4‘ONÂE.6нÔU‘`¸È×ñ™n9Á+NO±¶q”ì4q—a±iöã2;‹Õób-5üàRËÛ“Ë«»9",ãUm÷2p.Û>2 %•| zôIºÿ#à Æ` h<æ°›ø¨|Élú‚Ç*xìdKˆñ…_>{þýˆðëþYÕþS!q J¡\(8±ÉcAôw¥ìµ2…æN¸>œoex(h £DÅrvÜâWl ®ºÐ}`3 @w;vqEå(0 ®²<û­Uæz®nW;±YHßì “ÿo& m«”£÷ze[b¡åx Ì,Sþ—€6+ÿ*À$¹‘ÁÙ]]@ˆÐ5C,µŽ\u0P‰<–ur ’3ç/öº÷µˆõ0¡î¥‡„íNyÕ$^,ˆ EOŸØD# „¯¯#ÂFÉî¿û‡»ªdñ§¤4Üö jUö@Êåå1Ë >ð£1ïÐ…K³ñe”f¤ÈÄ8»nTuno-ÚÃô•E·;·=éMZDPVÐÑ€ã?šro'§á“È,¹÷ý4£cÖ¿>™$õLº?±úcøÿ]ùs/©€–.H³)š7®*e#†ÁAl鑪FEÓ~û/íÝÝs6†Éx‘u†›†dÏGu…§éo×,µM_Ë^6Þœœ-õ:Shz‡|‡%UÉ­‰iÕ¢IG8@v`î=>¼ÿç¤ý‰m=TˆÖÄxRÄ5kV …5yDõ…è66\8¡@â|ˆ<æË‹KÕk9âÛ¿grc†˳LGX$a0½7HÍwãÀÚÜùyÑ„t¢m·ÄAÒÍ3ú­ØAÅo¬‰)E2ŒZî8ï.AYÀÇ9aûƒå|ËàÓj¿Øžm_S6ÂjHIÒñ *3íšùlíÝ% üP!òÆT­sZr 7€¾ö¦¡÷’*Ss©Ûé~›ôî¼ôIP1ŽØ?Ùh ë·‘5ò5d¢\Á™X |Ÿ‡ØóñŸ‰r¤`Õ‚ V„æ“@÷š]$ÕÀ±¼mh¢@Rö+!(‰bH¹rá9b†®}UÒA 'vb“ ú(§.Pàyz ûáôû•¸HˆKw — ©%Ħõ Ëñ‡”Ár¯ÿ*"’åÝ#žÆ±ìÁ<¹Í‘DùÙ7e³Pü–æ€ $¥ˆ `h" ¦¦Ì õ¯þ%õÁCÏ3ãÑßZ_©ø„I:Õ?G^\LLf|¶ÖJ³ò Ü'whLPÃè€Â<¹¿VÜ(Š‚Ô¼¬I&ãZ#œ.¾ÃçÅÅéNúŒ¼Ÿ#‘¼/ìe.öN? °ó"œý“nÆ; MHFñ„„SL³Ëa¥_dkùg'®ÁŠê=Qeïfï8ùAò2zYÓÇ‘ðDáI“0Pz¨‚šjÞ`9c…@—‰ù‰j‡L¸QÔZ€"›½-.»±CÙó®’{]Ep¸™-¥“@a€¯d­ú ÂÍÎÍË÷w®g¥â^(Üü•§é`M:]¸Z¹í­(B/ÇA¿Â%UŽñÅÝ?Ü×m9±'OB8UtåùYRòV¢ÇެP¨£ÿºÜýÉÞÀ•só0„N m-@ †3âÆçv1ïÎ?—x ;Bl# /ÖŸÙûº`7xé`˜J›q/ÍܱÿZ‹óÃ…)h–á,ŒŸ]E¿’`ÆÕ©'kŸ³}>·U1b?Ô˜µæÄ«JBO ¼ãB-_6(4£®)Aëo¹ÝýS¥@ULH:«¢¶³+¶¯üÿ,“Â¥Û’È«!k2–åÔŸ NAie¬b˜Å0€hI¹ÏLŽN˜`7>=/¶óum©´FXh@‘F¡£*爦5u혇dR€žJ]ß\A` ºчkÃ¥Ci- ,r!Ò ñ®ÃL?Ïf)GË„ÁôB}CGciT’ÓÓ)µN&=rˆ" B•gHpG ÁkJ´ÿ/ýÚÜCþEn ‹½û_2þdþK½º¬êò0÷Ÿ’U­gà)”J«§`ª±edC ¶†`Ñ't8Óxùã”àô,928^œÕíµ‚šQþ" ‰¢ùdš¶ÐòÃóT,ø i5e?}[ÔIÆÙ»Þ§ÝN…š@[£ÝÄ.YâÞ›FPÅð:5×ç£üòéËíR-6))Ä— å÷•áùNÕ‰0§|_wJ>ìý-:²ªô®èÊ€S¶®øfrÔG³þw™Ð†þ‚ ëˆ+X®erãuOÞí•tߢ6¦z^Œ«ø&!B0þ¹U—S2¯a lã9Å$¶aÛÝL-„è‘è"¬® OÔLX 6™Mjê¥cö〣X0“€%Ù a!/µðR±éu Z6æ{Éâí#ˆ¨$±š´—´z£þ„\9`¢n°1 2aÁTº;x¹nÝŽâë¯E¢§Ä&VFx^™*Ì ðsF…5NWð XTÖíÖüsO|ÚvÆþ ˜"zÂúk- d~’=ЀòŽ$B¹„j[ÿ#:Œ—I…–àž'hœ$§[æ¾—é¯ÈÎßÃM¯±£Ÿöy ªˆèš;#HÍ "I(ÌŽÿŸäœâ*¾Àç²2\2‘r/û^Ngæf:.hžP¢9 ïcEìÂÔé¨ÏûÒ«XJÇNâ¹8urS$žŽA‰Ž2P `ÔW›69q Úþ0oõc€/É>A„€ »±;Rý¿“ôû¶=]“ -© ÓbëÓâùJ†K%¥Éš¹öðBQ Š¯¼ÿ‡¯ób=|?ta™3L‹’'TKžå¿Ý‘ÒIKÐ<ý$æ³.ÐYtù|q ¹£FcÂè>Ç;óïû‰lèoÇüŒCN°P³.‹~²ÒmÌ­‡!&U¤JÉ()‘Ϫ]*hÖ‘s·ªÙ6²ËY[f—yÍw}a,f}~%°k˜x®O]_’²šFFq5Ó&iÝh‰Ÿ¨‹ge/³ó o`|ЗAÃA“§ƒ ì#±òÈQIS÷ò~¥Œá‚1njK#uâ‘Ua€:Õ˜Uöf7;Ô\¨œðæ°Î×8žk½ä.@8©ªŒ"0Nªß =>™ðq€&A¸ÓÊýJ(¦s|„ü\«C5@ûÙÆI2½’bªŸÊž8ªæcОôì2¯ÿaBYÕQøqùŠgxh;9 ´bª€4Š †AfŽ¡ðÜ›×̦ÛÿlÀ£‚­÷ŠÊ®¨ŠTG$¤£F¡ÚÞµÍVyìOüŒƒ8T¦ q_ ï‰Õ|0Ø ¾ÇØÎò÷Çæh}¾u¬¯ÕÌϯ¦ÒyLúðÆhŸ¤`ΨÍh‚© -y>u²'Ü“‡„ÏíwsêaHÆTøŽPpP×Θ7ñŒµYq»Rgô ‘ |S²êÌ_M›Dh¿/ÛI3üb !Kþ…+gm´eHúÃÇè†$qÊÂèÓ£L¦à+úé¨#Sc¢ `RʃíVNðÄ¢çâ*QSYTVYg…ýþÎP«ždï×0u\Õ()%é}ý5 Ûu@j½¡ [½‘DöþÝÂû¢É–Ÿu³å÷ËvŠppu'鲕;B|l²â ­®µ‘é‡L 6Ñ=Þ¹˜q±<ÂiFÅ`Smú…ÀP‡ûé[).·?&òhxÙVý,(ï0`ðÙù+6——?§èqýO˜&â¸î=¬?’_N)ëåü$†èÀ»ºV(x3œpí0*"|ÁX;©zˆŒ­f½¼qSSm/Ž;öó&2×Öܘ a­ô\þP}ßrŽ`6AÒ&FJ`œÌüdjaËY¸mÊùy1é6hQ¢yb˜Uº]½÷]Oë©xØÜ KrïµÓ¸C«Ê ÒÁû>çRʘ…7 ¯z¨µ ˆ’„ô ºë8™ëÑM|¶ˆÆ9[ Ì÷ˆT©|H´@ë‰åLFÐ.ôX0è} BDfd (o· WƒGt’<¹d¡ŸGÃ+c.v<4®¼}† WÊðÍàéäÔ1Ë(ˆ…k2 ³‘­ #RqV§S/ƒÑ¢¢E™Gh¨’ 4RšDùA ۜǑ‹ØG±hûÀ²›Q¤@à^D6j.¬ðçS §§Ð–â°¾—çUê½t+-ŽìE5ÿöãÖÁ]pȤ"Øè„j> ¼½‘yDsjÈ~œä~Ƀ‡ùû眣b&9_8sRëz+ä‹oêÓûÚ+«DžlÝêÅ8}‹+rŽ1†,Ž /_ÞéGö>ß›Sû¾ÿÓýµªoµjuÆÊ{Äê6$>²fz¥Òšð­u*d£à¡’$$HB¦PàÍÉ ¥×¤‰¦ÎìÞÉõ¦ý «ãª0LÐ!×+Æ@û)»¶†üž²°))MÐ5_š2zÑã;6¬ e ¦Ÿ¥î®¶Íl7Âx±oï°¨XXµ“3X3ê¨8Ií,li4‘ S4#R¾NRÜ©E$ÉÎL wvVƒ‹L@5ÏÜábÖ>TºGhÏ ;ôôý~ŒVü= âD‰*WÉJäam:M»ñõ["<¥j¢¥g ×Ï2¦¤±Þ®6ÁüVãll*_LèÃ)†âzW“Ô½îë;òã”…ÍuÔÆÍ¥÷òiùzvþæ|Á4þ²;{n3U «[Æ×ÜÅèJcxÔ È~Ùy“mË_eÆBçPGrpêL¯‘˜9„€®àOOÕ ã›‘ÁQÿ®€(J •—þÖ6¾&ÿÃdpp“¡¶!Àg´Àì»Ä6iZ4‰L€†»ìH NV\C@‚{=NîüŸ;IÔp¯cÎñqºý9ïÌáÕoy¼þ?ÏöÝ·c„Üåú)'Îê°ÿÝôj'ÍOÁG>/Ù¡é„ yŠR°P>áep„.Où>¯òúÚ;žNÞ•kumóèç´Ç<”TAOž@@l ›Ó¤"Š6yúwzäÓ¶¡Jøs1¢ ¨‰Õ‚;!rŸ58_+æÿW¥ ±»ùpk_ÖkK—×°ä77‚KÅ‹B]Üvph¦Ï™©üfqô"Éq”ä)õÓÒ¡›:# ü—mã`Ô`–£Ú:x˜Ñ°×0ÀM­¤—öþ¿„}ëYßX&ºUôf!7㙇LÚ®<Ç®C… Jô@Ø×òH¯N¤]W4õ,­LaDM•oX4w ÛIA0(¢B#MUË=¨Õ¦´Ü/ÝÒa¶Öþ÷èÃwòƒ þß™@3TB² Z­ŒÞ5j¬Ì†',¦¹m g}#×%Y„|»ž—¿æ÷ÿ´xýVEý*ÚY7T2c\ð !/¡$‡Ì»ìêöR:§KÃ&Sý¼!ÁÚfXa`³ÿE0Š€5î««hò´v6IW‚om‘ð#R‚Âûƒ§H€g:‡ô‡&B„rÄÚ¯>Bú¯~Wýê_Óˆ~çž©þ_K¦=O”ëqá±¶L}ÚcÀŒÕùÍé2ݸL1JÕü\Ï îÑ ©¡8ÂØ%%ê¡›(6Ì bûï âÍô ìtC-‚ïyÞ9ý#Λ=òýïÇvİþ·Úî}>Ì~z‹À»îØ:@#¤Àñw¿±ŠâÖµ4sùŸyÀ%' ¨¡Œ 8*@ç7|꾇_§7#%øG÷~ón/Žõ¨t7{~§/aŒ:oÐ줿úĺÿ®þ¤wÜèúªð¼ !Ý !8@ÐCôÞ+=JIçŸ1~ì‚ÀWÃt§ÇëTd¬lÅßtûAi}[qÙß}.§ø{íâ;Ô OËNT%¼ùÕNO‰f¼ùÛM—4mçû`Ÿì  ",hÑgÈ N="©Ã;ª*iò'É£Ô•µÒ1ш•xx¥x{ïáU¡ì2·†_J¢x‰¦ÈtàZ>o5sÊ{Úm“¡Eˆ-ѯøiiaQ å×ü ÈÕú°¿N;¡ƒÌùæç !È V°÷«õåPg x9œ5µ¨Ë&èêÍBJtywè˜k Cj(â0D͆ƒ2ç UVOr&FxXë}šS™3Íe ">Z %íöR‹›4(€ Š×ogßÐ,Ÿb´ ¡ V‹îY¸¬ ²5;NpV+!÷bj‚)Z›UýÊACü#‘ ¹œ…|†°Zea<Û*‹ÔQ™G.¢8§«Mù±c€BF€%\uÔì’„(ÓÀ²RŒÌaáˆ|“0(l'íê×…¿aŒÖdzº¬¼ªžx„4P"MHR ~+”väèë¾×ÓÇëf¿•c¬õüçYÈd¹pnÌK<.¥þ\B퇬h˜ßÖ°‹×dˆôýaKÀíKÖµ#›’êTÌ`Èlà¡Ê̦÷Öet-¥ßñÞÈ—%1[Ík2å’›‘9ò¾[ót­Œ#p¨š§ÏÖŸTÃ牵á΂ˆ^·é+ÞÏ4i„‡©c#¬†HBâçÉ[CߣA„Sɪ(+!¯Û¸éˆ’sÈu„lée™áÃR1,Ú)l »éë¡á•š — øl£Š—¥ø¤æ³Fh3?dz®]TÐ!±²Îj¥ á!NuzZU0œ Sì†0rtdX1<¼Óð¡Ã@¶DÁù÷¾špžh{ !íolà…>VG7—ª2åµCÀÚ'®y5ý!M‹@q¬Nñ¿HùŽŠ‰]*¾6ÀÑ•™oûH&ÒF®íL¸cG¤y=Q£ó蛼#qX‚‰é‰Kœt çW8.w ãôÆþ$fCüt˜ÿNRú<×ø¤¢Èžu7Ua’Ön2ï4ñì©C{g‚p‡IéZ8þ’I{òö·KŸôdeÖ0@zq¸óñÉ.L¹¯D*f®O{¿Û¿ÀkAòì¹®TV½ýê'4v§ GÑt㻉ˆ«¿nE(ÉLµåç« DAÕ5»’ÜDõ-¢ÔÔ'°è°_×Ju¶6­•°e3€‹§V:„S¨HÆ[UGÌ/$`ié,c !•±A:ÊÙ@+¢.6Æ #.i-2g!îŒÔu1€9Ì h#7ë^‹5lÍ„ÉðÕÑÄ˽z¡Çtñ–‰IÉÖ2‚tCVâáo>4Fl­cÙ›þÝQþ€¨F¯fBšÔª~-Y°›æ…ÀO”TåQ¶"á"ÑÍ!üÖXhZ”K*¦X4ÂA÷”ÉÁ¹„¿)Rk”7bÖ¼Ã)-›q-²¦N%ø,¨Èt@žˆ³~—h<Ð$Ë‘K‡»­ö~®·_ä‰9ƒ-VH(Äzû3  éKèçtç‘eJꈀõÚ™¼5ò³ó o1÷“8é±°ã·×ç%Ql²J" _êÄ®$B½É»Ÿ <_v"(ú˜Q¸§›ÅX2F¥Na8âÇse&1²Ù_­ñê:£Ë3áðþ^Ô‰|šxó8μB†ãl§ þT÷Ž«>q»xˆ1pàK?Ý¡W¦Ù-ºp *È ’œ—ŽüSƒï!‘cK“+«YC1Ó¢‚ÉØ§„šžA ?h° ü© rFó° ¬ÚŒ©´çÝÌlââ+?hDûŇ®2©«G¿ŽÇ„ãyiv8ÓA•~gg1ÏAŸnüVô”`íÜŠkƒ@!zám빨c„ÇÈ•g#µË’RØî†*¤s+KY) y‰k…ñÏØÂN”VJi:jø:8Îð3‰À¯4„å.<9ñ„-GAÞ*›Ìè£èó†JËu˜ JùHì Sö!~$¶§ æ†ßwª”ÀwPR]cä«}!Òs]8š¼ÉâÀ•¤²Š€®` €y¦QòoWWßÇp2ýæ`è  ‰=Ж‡g6\Íånóš Æ ˜êöÒ¼§©%ic$Á+Sñ/n«±N©âY6ØÝK†Vw•Çã…Ì©8´ØuQ€ð'‚°3¾º!Ü‘‹ W.±à|ÂÔݦ]ÏPEʘ„$"åAZS,à0›°’ç ¨zÖF| ‹Y‹g.² ?…lòÐH7*@¸‘–Ç5ùzš Eµhš~[ÙÕÚì±ÈDÄ¿AÚB¹Nž!ø®ƒÜŠròhÝ Õ])Ò~,êÅø°.VÏ2 ~§ç}ãì5ꂼ·+ñçI‹ŽP «…AV†Ç&mŠ2Ò+ÝϾônC#KYÚO&”ê–sɺ¥€;\\1Э'¶ ^8š¸:¶N‹R`ì·Îºˆo¤„àØ¡é%Ÿ³þ žD2AèSª½?V !SÉúÍãÇЋ¦ƒhIÛüû•å™vÙN5«Tw½=#¹W^”çÊ_µx’ЬD_ÿ9€”`lXe2©—ß"¥ã•%Ʋµª²dGZƘt b°ák>¢«”O¸ÈÜVøEsÁ™zoá‹ËŽÖ9ÚñÓ˜IC¦°zÙçÀµ‰ `]ö…U<ìçÚ…L¯PAƒ4zY‰ã§nÄY5$­™·\ ,Y««õ£B°ÐS?0E|kËñQCÄÕ¸#›¦þ6†‰ψAŽ«2aäæŸ£&:±Íޡċ˜¸ÆªX04 / CÕ¿°‹ .¦ ðb›æå0SǼ‘¡Ž`œHÝê™Çƒޏ+‚fÙ-•ÂÖí/i“ Lhrý•U¶g"óPÍRÜŠžgȵ”8RCRAòëQZ¸ªªî]sjÒÍØ!¡j€´‚9šÉö ´ê€{ È™ügú°¸ot4õË|Ï-eöÚ±J FÖ½g mµ ü6¶AŒ] (°ëª€§g³52)_qÕ1œ%6ëö—a<Ðl4–ü–±âm­ËåøHÁ½HB‹wÖF¹0~òÄ ›´̰¾‡$œH`È(KIàë¸`€ŽçßÁHAC#ÄP:œ~¢/löz ¡•SÍûÞ·Ux""éŒ ÒÙ9$îV ‚Z#Ñ 6€-<œD!Y_tw¡TËTÂL‘éƒ{, Hà£ç,_W`Ê Û8Jƾ– @žÊê,¢GÈßJ¡©–¤Án8_nR=ä¹$̥鱱Ý\:}ìj'Ž(Ÿ $&ÄLEIàŽ,x1 Õ%%(b;˜ã«@Ín÷)KèdÙʤÖKTã¢UOVò;¬¤©”d¤_=L¬‘ã•Õoª‹rm{¼s`'™Æš|;TE¨Ð³yÊ'L ܨ&O7¬àÝyL6XñòˆMƒ­á§L`À¸[HÁùA¬Â-Îê¬4f§Ãäk] ‹Øåáb K_G= žˆËIé©Áè:ރЪ·'SE9ÞVo»0éqD¨ÞNHnºlO%ïDÎå`H>€b#%ר`.Z.Wn‰ó”‡F2aЊç¦RÉШÉ>Ì‹ðvSâÂPqñ"¹꼷t÷«ûÅäx•ÐÇoòÎ %?©³È 3{“‘*!˜–•½z°šÝDo‰pÖ÷ä2k­PG`YeƒŠœ(ñ…t`k¾…¢­ß¶É)`±¾EZ‹‹ÊË,qè/ƦK?s¸Rµ9<«9´pÓªmcÃ_ ËK>ܸ貈ZeÛ žÑ:5BZ¡W’A4øBŠ`éj®ú&׿€²·¿NAxí6ý¼×Ön.Õbs¯1Z)2­ž¬“¿†¼-‘Fºø÷݈Ì7ÐÚÌõyOª9˜ ÛÊ›‘CGk¡Êv£vÃïTÕËÑÇ€U£pàZÆ Õ—=þŠ@”Ôí©¦ÔYXÕº»Æ³/ûû&é-Z2á¥Ò  Füu:·”>¡PëtôØ7]Na ÿ¿T¼ÍL™Žæˆ0‚ 9~Z¡”¾ŒËòÁÜ+-`în Bx9Ú¹+Ø:½½Tb»ØëZïØÎàûO6Àʽ”ÆåNÄY|XuÁ–H&ëÃM½”…©G•[‰RlØÝÙ)œZ¬Mà³ œ[©/As;jã½lÔ}å¢òøï©ørάÓÓñᦠBlX ú£pGî'¬‰·ª“ z‚äÜuVfÙ[7íQâ…ŸÀ·ê½wÐFm+JÑñˆãºîšb+„ . S"&¾{ šBôC^ïÞ¯¿Ký¦Ê޲%Ê᪞(ÔR $–ÑÉ[B.ÃfHø†Iépóq¤îâ"ulêˆR&ÙždGIC³ZJ´«E;ŽoLb7e2릙Ž÷h˜Åg³láH­£©z‰íÜ\ ‰ÈÅ“"Ò‘`§VÓÁr–MÄöbDäHTPVàen½ºZ5›è,ظ-’'æ‡b ^ºco¨‡ ¯(ù6\~¼Ö[ ¸žZ`dV¯Ëxœ{$]n®qt)ÁàhÓ„Dÿ[«¯Ï—>=¶À=ýˆô9](ƒOðÓŠì:ä,'¥Z E„Õà2‚ÈJSžn³v²¿œ\´2˜BZƒ, ­ò(¾Û©îi‘çqړ͈/Y°ç£*a@+y\Hi‡Z€Æ+6ÊʾBžˆX`Î’ð=xð&ë–éÞ¦c!CªAÍ)F@ÇA"˜ÇD‘-K)ÔM—X%¢ +Ï—q3Wƒ ƒ0Ìñ¥xŒ@ëøŒ8p˜&«Ûœ³"V³X‡OÈÀ¤Háh f¸*ˆ¿‰¾èÕÀ©ß×Á (ï/*¾¡ù Âå’ÏöÚ'­"6n:3>íºëÙ!"–ÌrWFÄAdQ_¹h®/8´Õ:'bû@³·+¯ªëìŒC•ž ™žÔ´yíµ±@ìÂéFëºMŸ¥¸ÇàQ}9[G_Fàhàs`Lº n2sÁD5þÈUø™tüë…ø .s‘†!’õ¨ Åe þ!‚Vï‡XY–Xf¾‚ô‹ýŽØ00<æ¼Ó¥ª”š‡4œÍݰ€´2£lÁ½»]¦îî§³¯ì1nSùNlJצ ¨®G×TJÆs;¦²® (:;wבXÞq•pÛ´äºnweäCEÚåiÊÎâàÅ3‚¨áh{Ø8É‘ÙÇÓHúöêy®¡yÒs&ÿþš‚D¬ù;Ã2éãØ`®éP9´ ¦:hÎÓô.UŒn4²t›˜m,¤ ‰)oúâ¹Ê½cARđɗ¬ˆy…Dîe«‹hçóaDS¡%19 6|Ò( kŠÛí³Û럃?Ñ“«—‹pó,€$€õµhŸU¡WÖp.Aý(VW!b¶ ǘ‹ˆ®M{>’@`@i ã?Ž5vîÔÑ—ß}ØøÇ,YE]cOàŽ—6>ŠØÄ2P ¤+VR •y:¶†f­ü¤ÕM ÷S—˶Á‘˜^ΰÌ"¦L媡À/·™F)Í%¼R—Ô…@ë8Žw.-östù ÍæìÚÀÊst¹zÈÈÚ°DE˜O‚zç”G*úR]Ä3ƒŠÚËágJÌК7h¼7± â1ÝXJÃnŒžfh Î/ô¦†]ÉV³™µD{\*v+§í'°] ze[¶°$7<¾æïlN,Ï€ôÖTûöJaõ)ßeíNJÅÚŠ`™2DªÀa†ðaŽCÚy|øœ¸q4Ž2}qféûÜÂ[Êæzy=‡U¨¦,‡ãùS_ÞOnjM‘5/ñ Ê”+ky+q˱ éWJpÑ êèŠÇôh2ƒ\@A+…,_·0ÿLëŸ11y#O‹Q™¶Ð¾“ü¸ü:Ô[ÎKH ¬pEK!r­u[N{üæ bEw;{½ zÅ›ÒÝZ@&ÑiøªÕl å@n2OД< ™”:Š#Ø©­ñ…ª|°—s!± ÍÛÊUkq¢þ}b#ôèJb„b:8#Ãàòx|Â×-¯¹ÕFŠ ë*£rev±v(Ñ7ŒÔ…tö¿zUT Q¢Ç²j2|ˆœØ¡/Uº•ºˆ1bºØãq•P=Z׎5LÙuÎŽ v]S˜Àá•!–9­¥s/Xj$©TÉÉ¢/‡1ÿ%Íyܬ¨7Ã58±ð&:„Duä`©0ÀÆD|j“5hà!Îì¤Â©Ñ¿9ú8emµ ¸þâ> ‡Ÿcªùd4!¸xÓi¢!S>î g›ˆê\“]2 ¨®–%§“ªÃK.pª89fˆÊá»Lëà “2HU4$ §¹¹SºV;Sô]/wOS•àÙëcHw'w=#§ùQÌ7|Ü‘ª„àíde Ëó´Õ,ò³šŸˆ¼6t ’ :)áu,_I…|ÐEo‹/ˆxk!-lR’[pT"QõO"2Ðâꯞ†`æ1ê=4j½4ÀÒk`Bø‚H!•×åä„=­¦wLoA`¸: È›JéS@ŠLGN‹Rà/w1¯ß+ë€zÏÈ\?[ˆI3Dô»2 (­­ô1¬¼H €!÷¨àÅÛÄ ñ:¨ÉddDÕT?xdEjž~›$ä;þR2¹;чý‰' ÎŒñNZc;Õï2Á±«¹X$¥+<¸œ4<Ÿ7׳ÖÓýÊpíg…KL¨.²'é,é¾È‚Áa€ Q 9Nì%^«Z7ì°ÿnÍTŽ¥Ç-ÕÍ58r'2㦊 ÚKZB ]( ·’=" ¹LSGa,–ñ’o€Ë7¥4ôâJ#E¡U±©ôqVöBIÀq~T”ì¯wBÌR®}èLôœœY,I @¼g×1Ò05ظÙ#fÀçmÆINšißQÁ§0»/Ø Å™>¼XUÈË#Û¥ /EäCHù˜Kkä[aó2ØÈ7ž?СØ*ƒ”%'&¬æñ/ ¢dÕqÔ¯ ÒàèÖ7"½´T¨ VܱýŽÈ>Üý¾%e—Ì+ŽZöyZÇ –I.žeø2ï½ì¼5t–ØØEŸ!ëÖôD±˜€=%b3ärCVnƒ,E£¯³QD3›Ë0>¤¾I}’é'ºæAìëuÕÄíNR¸¡iå²,²QìáÕÑÇŸœ£‡œã¸˜'½¾;"îJZQû‚Áó­+ .å )e÷æ A¢.ò¶T xJ£ÊLº{‡0æ‹<«‘Ýó ©ãˆÓ<†:bµÉöÚ©æå*rh)¦Ó\×ÄtILñóñ¬'-hsy¼4 ùxOº©KkGRx Ggêç»­{Ve³èvÞ'õ•¶Túž~VžÝZ8Ø¥¾ j™©J»›˜ J,åÒ1”-’XÝã+ª ¬ ¯Xyó32û*9yÉÐs'Ϫ9O ¹~Ί f¬í„$”È\KP%²ù(ùìY>ËŽ{sæ¯dÊ‹8ZZÔ"Óéá ®K@ºæqÄ63jãSÃùöçíáˆA8%öþ‰ëpƒ«* ÷›@æoB5 a3À±aÝ’q®y`ÄN5Ž=sнL›jaÿÁ§ –ªSñ¾pp¯ºÊÈo‘/9,iˆøDÖ¡¨y0d/ß5àTÊv*çônwhà[w¹)iUµ½A¤Ý°bJf©ßŒè>[½É†µ€ñÎÝÅ çÚÌ.ÁÉùS'jÁ¸£Ÿ/Þ‘@44&C±)°(dÂU=š yœ—±9( ¡CyÏÌêö®¸4I@ó³€™8_à˜ÈoYe’ §Cå.Ybúpþ›m`ôÖ³«Å3 =l¬S¦‘»¹-iaŸo+9É–ËBD§R–¢ÍhpÇaÁ> æì,gbêø”ñGÉ©¥+ÚöQÛà'Y(H1ÄÈ—® ;¤¢g©G6ô97 Q"i‰Ì–bâ#e${§ü†Øõv1ðqÁj“bí#ϵ~à³Âr×õ)0»ÆN…}Ì£4ŽŽÕ${úÙ#,C@B?‚Nt.~+z­ê`rÑ,ˆ¾\ëTŸìºTá¤m¡)ˆòu¬Mc꟤ýlJéý¬ö!v‰bdú²>² X^dß6«of„ͺRìE‰e>D¦QóBz@c%#?õ+ÔíÖ„¦›·³ˆŠ‚*@×¹á¯fCR@Úk+j/.£¦ÂûrüÊ(;¡ô q6]9âÒSo9!Óõ923!”¾MÙ(#i$æÚd*W#ž‡DïNñʶ¢V8«bÖ#…"gÐv‰oÒ8u](Šîeüõ¼L,Õ}r`¥óî äÅ =•]­¿â|Ë㧦x¯E¡*…°‹4âRY µT>´š¾´¬„ÛìôåQjm8Ž…p¤ÒÌ3¡¾©¬Ö-0ôA³rÏB1ƒXfçk Úl¿EBÞÔÍqk¾ªW†èDvNU(8 ÈnÅþ—ž8Ÿú÷H1¦7N’d³}é|éçb…Òž$ÎÂ*˜¹=XpqýÉHøçráƒf ÔlÍ%Hi·±6ütÍß" Þ~ô]ÇÅ0<ÔÌ$5m~ÀD 0Œ¹*—èDMÙ5vä> ÈçiÞœG*¦æ¸¼Ô “çpÃe«°J"ut d˜„i(§y!’ž$ LëCÈÌâ‹IL0{;mþîêâú¼Î&æQ*=ÜdÂÃn#C,•`‘i\4é[J¢ã²Ø0 ·~õKa7—ÈM\ȂڌdÍÎ_ nw…¼œp{Ñúе_SŒ4­W‚ ªÔz´ì뮢æc0BÚÞª²™æÉ´ñðŸmtƒä#U6—ÞŒíT*@ — 8¼¨ÚÇ ç:¿Þ¨¸Ëµºæ ³<¹@x•!RÆ4R¶"zbÒ)R`` ¢ÆmC;Å™·Ø‰ËY¹„?×zmõ/ĉ9ÍË SB0œü;  *dð†Rž8;Ï/~ƒŸ 2 eûwƒ']…‚Ñþ®Ð :Š( .b ˜ ¾½Ø&R빂1)èÔѾ{x³Éž°š®©sTŠàöÛv—ÐRÚʪ-!ÜŒgCH‰Õ‘‘(iÆDÅEê—»l ]i ˜(°ï€"I]%¼}¾„g(E‘—ÃÍ ¼dËð‡÷ 6å>£2ö¼Ð\VªoÖÞ²ŸK u†ónwRfþ23FŽÄÑ ŠV;]JZ~Õ³žº¡©€¿?Ç„:àí¼}ýrãzƵ”EÙ=iå ©¶:pÎu¥w òißO=Oh]Œ5p4r4ÈpnešW•š€´$>Á´£E(eNE¼@Ñ賓Òqáb¡+TòèÉÄ5ï~,7EÛ—Sp|–ÉXÆ• x2ªUŒ%B90­õquŽZÌÞÕÑgcR×ÞYu9Ó$t…¼kÕ¦¯ÙÎ kPœ*ïö?8ÿà °ºQŸ"ç÷èÜÒiÿ€YÃwê?£N±CYKû Lù‚,É—©÷7nžéÀüȹ Ê:´…’é± '}ÛúE0ŠD¡>z’µoc¤r>î|ø;“IÕ‹™J–@$õ'Ù(‹Îxý£|“¥(™:œ­ü§ó0Û|Œ»@ˆ`,õœ(½—SÉ•ÉÑý22û?[Kn'©¨Ÿ'ÖÍ(׎ ÀíQl~:ÇÀÝÓ¬7™¢ùä_ž¼[˜8i„×@»BÏ-dî´2Éh’ÙAéž0`RæÏ©¯rØ;>±­óõ6„ÞøòJËíowÚõy럥Û_4ü’Ðx†qÑdÏ¥NýÞ4‡jApF®×ç§$‘È2b'\²rƒp…mÿ®)µLŒé iKÃÉÚ7Fµógˆð’ÝÉXˆ¬QA× µõøTvÀl*¡©T¾JÌ šó!ŒwìÑ»‡/D1V1m9*fg(ai§Ñ ë[â0fœeÐKúS‹›>FfÕè•ÀØÂ¸Ä©¨“µl¶ÚòJì;7‚G`~i`¡7æ2£ج3Ž ³ÊBÓÛ7p…'Uð4·’h8´œ{ëïv!©…¼=ýÉç­ íË_¢~<·• Q¥CMsÓ°®é=B¾d9'Å¢Ë/±Õ˜Ý;…¥O@L„$½ÏL¤ʵ½bŒÐÙWÓñ¶hõ%Ê®¢›H1/¢>lmz†NŒ¤#Ðõ%—à:Ï›ó& O°%‹)u<“®b )¹÷d µ%i"9ÉÒµõ\Q!2]f7tÔ­ÂA⺮3Q§ÓÜêu-g,¥Ž»ÜÏ—‚ÒX<[:}BÎwß}(FAPYq—Fo"º§{<×L~:ÿó'tñ Û™6ô 6B'5Ç„ˆ†‰u~„\S©|œ]Æe^ ­²¬|Œ ›íÁrEY°ìmaÙ ¨Èñ÷iv½c‘H§â§yù]OJ‹¦I¯»“‹O˜Öy*®8z  ¢P_”ðƒMP ô(H@oQ—&î±á|åk¤*ê9çQó*ã¢qjÀ‚Ð+ o‹£„ ¢<Î)JÇIÉ=´xèÍ;w^KˆaÒ,©Âê-Ë€¤VÞšs`n†*ÌapÀ¹Ur˹F 'KÒ!S9–3–ðÒM@O4¤áq/Êɘ¤3Ø>B[ø!ËÏi.0®ùk‚’ÑOÓx!6¼a΄¼À®Ž`BqݲùÆugH°}Н4øpgWX„«ËÇà K.ùHf‘>õâñ73Ø|®Úu’ÑVÈcé(e/ êlò«Ó$„ÜÕ=%ê€WZ€p÷4¶±ÉŸu)³BÜ'@I,܇Ob÷eÍM'¯vNPXÐwèK—³ëaU–×€¥! a$î½6³ÃWs,öñ ‡îXˆu®’Äcí=ltò ¨LP}ñ”±%=d®äkÐ2T€eÑ뜂ĒfÿÀb虌ù.p¹¿·"ˆ‰GÈc}$XÈi«šèß‘Eš ¡àC¸”°¡¡Ê÷ f1BÍ;© Nì8«Qp' Í…¦""ºŠs«ÅoK»Î(O•æ”…ÊâWà¯MÅ™™¢—\ ]^žìkÔjÏ(ën—‹ˆ§¿ò¢Å’årëɶ}E8桪iO—á.ü]Ó:[ç«î[mÛǽP§[û Ž@V¸øE'A`‘:·ú˜ÝiQf°Rî7Çšùg3zYŸÃÈ›(7?7~v“q5]öeµ¥œÑ¤kpR7·tL±ßÌRs˜áÓÑõGð! t0)À4ÔöWÔ”@™Â¥¢Tx›ÌcÜn£Þ‰!  ¯¾/;ŸjPŒ’gè‹#úJÑ`­ÉS™šQ7Q:@%TÄ©‚ä Ç… 袹•U_BÙ¾&ŸÛÔ“31¥«ìÆCõ÷_F-ÄÀ$’¶œðôª»àˆN³ ‡?_µU$üˆt´©æÏ¤ðeQ†GäÕÖB‰Tn–à2™¹j¡«Š@íçÆ‡˜¾LÈcÂPß?ÏO¹„e+bð#ã†PâtVàRO¦[ }ž×,6\8`“îè2°‡Doø"Ž’Å¿–>$•mÔ0—`5㫇)'¶b`1¨ú¼&Š@¹ÈšââTñ› 4p‚O€ˆN<´N®X¤SPôúÄ*æf"u æ…;7÷î±T·Ñä!ÁäI"? … Ú„>Ë’Ó5¨E ÈZg*zpÞ9J“Q½Ø=¸³kÄ•4#¹_Užé$lbõØoï¾!g—Œ¤ŠÅQ¤ÁƒKN´I˜ÍžDÊA²‹*ÈæG‹h8S¼™U×R”UêbÅ#¹Û§g.O ™(.;{˜©Ú¤V'§ ¦•*Ä€MŠF³Û΀äFþE¢’&‹`ƒ.bF:–ê¶‘Qˆ›êÖÐÆP²7y1<êhËi»Ðlw¾‡ê.ÙØU÷ {áJŸ3.{PÕ® ìU8«ÉçTT²ÜÌÕttÚ²ÖK'bm·*«, ±I‹@ÐyÁ`H•¥ö?/U½¯iEŒù}5h…;ÛHØê¡{U’ ’©·¬5'ÌœŠ‰…m:Ùà^\MˆbUÕŽ¥÷Á&@j}¤¾¢ù)›áoÇuKI*×±hûWQS€ïkòº÷¦2=^°ü«zGSRíbÁîyŸn{*¶\¬A¸gê„or•¼BVð¡"HƒmVÆ0Ò.…€+£s}8–•%Òƒº' ôT£cº(Äj³¯GHާR[¢ÞIó$ï¿E'co6`˜KsËx€åß™ðøA»šÖFã[Ç—{#]Ü,NRØÔÚ, ûÁ&&ªCÖ$×|büœeø¼Èø¬ RÐI軎’3$ZD™;vm˜¤lA¶r*dzC®à2í\#È.n"¸=¬ÌN(›ÙÔ•ó½nrӇꃄšž›"*¨U'jø”ùuHnžEl)ÂÑ”D:vÅØ…vmÛz¯k#H‚Çš°mEöÓ˜<îÁÙœqÞKÂYLó!ö_:¸¬³C“U©#°a½Óê‚aUí&£æpoï`P¦Ò‡w _‰ÙˆBm„*jƒtš: ‚c¦Â@*¹ßú–vo¤®pžæµ8Ú¯j+-÷ZóW^­:¥8YÎÓÓwB̃N nT4"¥¶äÚZçPC׺ŒØb”E†kËFòE?góäðï÷€€›èõ°±–a4¤Òeªà Ü?<Ø2Ej/£zî[aÔ*ÃÙÄ!š×{d—k%\å’ù¨{’Ëb¨'f7L+~Ï qtNSÝÖ¨ìJ6œØ©L&Bh×¶+šÃ¢ÿÎ[Ù:Ú ÓX- µ „;‰ æÝÊ׌GßZƒ+•òkñldR3' -Ýü™&—`aDÉÑéžG…ŽL9©mN¢zM˜±J_Q­ž-aI±guަÀ×XÍ7 òJáÅÓ/ïec4ž¶3{_ „LD0ê+tZ9mf.U`Ñé:ÏÊZ/:–=ý£òHuŠÁ¾€KyÊð œz8Dð¢1â2#­‹îN¯•U6_6'®3ƒ• }¢jƒ*¢?'+®éÀ3LSÚA6á ˜²¨¶dq:öÉâE`*µR{é®|=UYJ0œÝXçÇ7kòÇðMu3b[; (‹2þiá7 XªZ² ÀÑX__#+j ñLb¸SUB€BV°®’~]þc#5ÙfLš24~ŒlqôôóÚ73#«‡^‹™˜–A¨ØvYdPZƒï½H> õs×¹ûÚ(á&°x29¶«á ¿ R âÈWè(r7.¦}}ŸÇ“ ¢¦ˆ¢zžåØ +Ø«Ë˪T>c’ÆÈ¯Û—`–-ñ%ûÕä&†y8C”mWu‹˜êLçÄê:œº4’^4m…CÝ;Z7Yš‰{(Ë» ×[Q—8ú®gpêœJóoäŽÙ¢Á„ðÍ_dÂ%Z’Öbÿ5`¼$Þ®ø(iø“ˆƒÛ·.LCkã9Õ™ƒ™KO¸{uÆsËù.ŠãmÞÆÎ ¶Æ“1k6+=ótáGÍ6,ÕÏFRr§‚~~êDx&0á÷u,du ³]?!´:çÜŒå`ŠÄçFsSÞmÓiU;#2Á¹Vô›h‡BLл­Š^°cÐ…P®Jšf6pXN=G—†–±\«F ¼óëïhòè‡*Ph_ã´ƒ 2¢[;^<©”ëgc¼SG-XAáXw3‘¬<«ƒÈA¦F„wP%n|”™.$6rEÞP2íÁ¼s m2Óûi>3¢Ê~þ(6T&“ÆG áb¹ŽmSIY*Ì¿ Ñé­©>5m¯FÙOÐóó'‹m5®ˆ‹J‘&7c€òLÙ¸¾ÊºýCO«ºù/Ç ˆ®Äúãn[NÖÑg¾îÞÌ.•Ùv°661ޤ sND)»£Þû›ZCÃ}H¢ ™¤gïüàM–cï±×H˜¿åîcrC[²+¯ÛÊ¥™ŠÒ~mW*É/h+$ÚÒoóšæÄ(Ñ(jÖ=~e°šƒÕîæ‰;©œ ›ÖknÍüj4ôñ,„çÀmqFÇ2çž*ìSgçÑÕ"ŸŠ=FadH·5WÒ<C1%ÂËÊŸ`¼=—g(W~Z 4ûEe¢ñœñùžÆ|¬à¬pVP¦óR€á€#ós˜ÞQQìX8ÛGPÛ Ŧ NH†\¼pÄæ§|7 ‹÷.$ö ‘øÄ³¯G „t›œ'rm€4€´5I©ûu̹[PÓ“ì¬T¯\¹Túì˜Ç;eäKHй%OÍN‰4œTÛ©JÝ% lÀSÐÆÑUa#ct£¾DÐã‘2e\|#<Ì) e ljn„ªAhÍ`ÞÓ—Fü=Ôãz@ÉËÓrÓ±ŸV¾-‡2^I`tªæŽ)':©]¤iwÜ8Ì„¢ME¨¸Ê /qHøA¼ÓúÀ,é­·-M• _kh™Ò2`­8úÜ•'þS> ŒZÇTÊ“@ì©«I2JEAÒ9à%Ò³7¾ ìÆÄmÇ1T±Ðeø4W¥&ŽÔl½ZSÓaÓ̃…Ä耟Y>ÒMâ;©[Xž '°‘UPbuÁðy_µÔytñ™6•Š—Jph*¨€Y¶àb-å&ât'œ½Îí&bXȤ‡°ÖÁÓe],5Žã÷þ§¡v£tµž,yM? ¼Â ›l#‘•’µ23xôšdD2ž_ »ðìÏÓl§œ!¤B1Î 19»‰´pOºW8‘ž r%?ðƒÎT.ç6©vÎP¶ håMêGâ™Âˆ µVê¹¥|Í…×_E@ ƒíúP-û·.žfê²F0ºø×)—°±æUYÈžPxÀ½ý¬¡½nj’TòQTx²©z<ùké}Ži †|»£Úå)ï'÷ÄcmEAô¼üy›ó²ÚjìÃöOr†Ê¦+u uœ‹Ù5[ìU8Õ‡»V4µ†‚ÜêEÆ6`Ó¬£ï`@J:퀖}4 b” è¾áÈÆa¼ `ÁÛ Êdx‰«ÍÜ]ñúƒWdÍ‚©­ÇvåL×™Áƒ…ÓÅMƒn+&R$œ„“64ÞçXéð<%ÜmlÉrç§²Â㊚«"àÎxÍhüÑBÐY`.zçY§O?õæ„Í·6Ø¡´¤!//+ö»7:Ó”ˆ;+Ô®&Ç.ÅKÎr(_#$édŸAt$ßT[Ù¼0¹IªHÂöˆ%(°²æ«×lr¯8× §Fâx±ËX.ð¹FVÅ€cÙ_°ßs½3O*dÿÕæ4imæwDlAdjË?# ÔÜ´/8¨XD¾sLt:(º ¹X0œì ÜiQpwH«rk|éÚ©Tè8Äô’ÿ=Ä.½ƒÙ´qÜ<B†C?õC')„ MééÉVC$¶ô».åµ×3s39žÚjÚh«z¨×hTdiÀ‘õø¹^/'>_f:b9ðAGH:°Ç±¬E¿ZÞxcn»ì+!§Í¿1yV"Ã3o³êÓU_ÇáS¤ú–]×{7F|«ŒqIeM> ÿ^Ò²\ó[OjsQÄÝí§g©ºýú+²AËn?J€ü%¤yLHNU@ '<)›"ËèòLl^un¦KQ9;¥O$N·ÍÒi3CÔ{'™-mƒL*õë¬;Lþz •GLL©‡Úk ‚ù¶â>!~tUÆ,——vF¬ÆÞŠ3†®Pq¬×(XË£•/§“ôðØ79Élâ¯N2Ñ~þIYhž½Ô”\çJ«_ñÃ:ž]× 7I«¯{ðn•ù„ýþR[0w„Ì,¥ h˪ÉeWsajÉû«ÜÚ¯àsHîË¥´ädÈȦ“6{Õ.ÉÏÑÍYCÊX—:.‰üº ¸šeà Êy%ÊÓÒ(¨^8]YÖѳ·¡·´o™€ËÐÌv‡+§¾/Ý«¼iŽ—ÍÿŒ4Æe6§Ø@)†ž²~‹~ã RŠ”*XÙ¤¿[«ÖË5@e``ÝDg>ôÁaÖK&a;} ߬™=Y%T âW¤…€ » ÚY B”\Ò5›B“@©ÆæF¨ „qBpÔ#m{©>±*©#(ÍÖ¶*“DLæqÑÑZ º¼r’0 i¢«—©„ãZQ¸wBŒÔåïÐóžÌYN&«8Vƒÿ?g ¸ÉÏ_[ —.Óƒ¿âæõ¦HÊßM ±Îˆ«ašižsøÓ W ±ê°ƒnÅï¦NC­Ä­[µ²Ò8€0ÏXixì8v- ©ÿ…êÛGTœ#GE¤|Å@ ¦"9VôB{òŒsBE¬u :êo&›ÉbqòÊ>®a >犛ô¤QRÀs‰Ã__A/Y„²¶ÛøÕêŽ ó×F¾ó:qJáÅŒ¶ŸÇyyß‘µ«vºæ3­.}lÚãr&2á•úËqj+‘ 韶ÎÉUê¥Òñî†Ö4E 3Õ|Ý¢˜Ñú 6á{ãÂQâÆóïµ£+ *. -Õ–>ø¯A›P!ºÔ‹=nû4Ñ‘ &Ì,ádžÐ I¿Düý|EŽõC‚î.ÆL]Hlr¼Î…=47œÊï…„‹hW_B±ì™}ëª ¹(½œi[ Ie/ON­fqaéÕ@Á¬ r>™Ív¾7u¨Ø­‰ƒ‘õP/†Ó|ÝjÌ ÷uÈHÒ!}È’am¸ÃÙé2[yÙ1Rß*ÞÛEŸ%==%S…¡gbr$]¡ÎˆÍ¿V¥$>_®àÒ 4,Öì•T;—¥ ߎBmd :{·D˜¼3¢c§æ®››¾°Œ‡”Àˆ?a7k,ÕW<PJTƒâoÙBNà‰Ù½(ˆ— ôáæµŠ€§šâ:^ժæz•.FÜΜW‚pÕ}ƒàû¢Z¨„•‰'S&þJÐ…ù:)Šn´`ÆüBÍæcµ x9fÝGóxMGó„ZuOdRñû6D@“ÂâÂÃGMqxÖd^KÐMðtÍ5ä0—/«=# ŒM_€Úe1<‡¨ýÓ/®‹Hdîø b#¬ d~\é¦ðÕÞE:k[Y0|£Êe\ñùm²Ï¢'z570_a¾¬Ìf!ä…÷èÒ›¿¦­ DŠÀ˜X¢ß¤DCe»'z¶[€Z8‘«Îg|$/¤äý ÕBÞÚ*Š8Ši„ ŒD,¿iÊCD»·nAQí˜ £ˆ¶B}ºsžá€8[tëàCKä}Óî#é $×É#Œ ÉÊJ];»Dm ,9ÐOÌ6 ’jTѸÙÜxY\Àòê‹/\ V,†WÁêa»)G‰aäÖã~=+{íri×è9àãÁÂaÄÇJu*Št^Oj-”jóÞ^À_‚9Ìá(LEG9hû9ö¶¢˜¦% f}a%g7 ÅWªJX"\óéŒ,èÖŒ“±´`âœä@‹ªÏÕè"¾º!ž¯œü. O_|¶þ‚Ás¨îç -S8¤|$ô–ÎX¦.z™‹¾6Iû&n'xèQWÓåß´±»#f“¦XýTbP.ì=)ã¨oí7…ÂÆqQ¬Œ¸‚-•S¦ŒTyí„^SSî<–YODV›£J»•ÌŒ¯Wzü f}Q—=í¸êÚ]©®4Ù#îùLȱ!¥+ƒžÛ‹=xÈš2ÐÒo•zùИ½çÁ2î´‘ÏÞ|¦¥…«v!ôÕ3Ìx£¯=Ýøò VËÚîÖGÖR† UVtÄy¯„¦ví§'dè-¢+ºð‰óf@ÔíÐá Ž¦± ,ŸHuý;'Žb²&⣟ɑ®Á«G"§Ș^]£è²ì6¹¤¥ŒÌݪ ÔÌÒ¬êØšn«³¸øÙo…ú!DÂÙ…`O|ÈÙµÒ¶éû<‹úÜÙ2ò @¦–a@õ‹‹$çŸ@â¿!FÖÇä@ÈØMâ.FeITL÷dgïñRnQîkÉBŸ|ùEÕáât©†#:ÿI~ÎPÆŽËYkTwšú.B_sͦ1 /¸áœÄØšÄø&¢$0žì° aw)!¸™ÙCŒìóñ™§Ñ,k^9‰c‡ÙaÆ›mc 9Ð5þe”Kü#+‡Ý<{µÚê;_;n6k à)ÍóŽ5)¥ L¼Iì…ç1Š.Í¿9Wna¤S}'—FfÜŸñ'‘%®Ì Ú^-úCn3ÎA&‡Â3脘hdù¹â±lÆ*•˜ñçÍ7€jƒWõ»B—N„×ôpIט1µ»£3P‘ðNaî+‡Ýal ¹Òfˆò’ñGëÝw¦W7’94¨ ‘[à˜1HQ÷Ày¸0Áú60«ˆ¢Ü•›9Þ{Ø6ÚÉzÚù¹ú<@™%T†Ñsi0M±Ld+µ|Á%yÔ¸ÓL0i*mxZ»ÜCœmt˜a@‡vzýÇXd")°ò6:ófÙïp,¥ÖýÆß+Ø(­S _ ›ôÍús/‹ÙcµÚêWÏxÉÉ+ü°¸„i!¥YÒð¾RX¿Z̈¾9n¬œã$o0+hõûÐ3fºç‘\)ÂŽf$l)KWíJר˜D‘– éo7mȹéHÛÜôþ×5»PÄ5Í×[f@¨‘ÜaV¾¢ç1ëâ¦fÑÜœS’Ï!AÏánoU¢@#± ?ÞR…¢£ýmí (6Pïý%gnPeÎ÷õ6Ü2i Ç̘΃©Äáà9}9ßa©gÔ’§}RÌ«õuó®uµ9«XÍ‹x’±Q<Å…«¨äšÑø î;Ú{úŒùÄh§u»k¹im¤êÅëÙðÇÚÒdÙt*øÀó©¶LóPêËe.Må¶ú;dùÈàf5ÍÏ: aöBùÏK© ×°7{nÆöÁ"\f+~LX“²tüÃÔ–ŽÝFôa–d Ì@E¨‡éÀ‹Û‘cŒ*öÓny¬‰¢åßÂ_r_‰×9³ŸÑ+…Z—œÏ{¬"ÿÝv›J/2¶/jgµ™ÓŠ‚¹^ÜÝòÚ  @ñÓ sÊ/FFÂSzÿPF÷?›ZK£ÞQ w©‡yªž—_kO,M!k¨¾‘‡6©-ÅÃn.OÓYꡪϚƒ™B XK}#G½|ׄ€Þçž¶«zŽï›!—[oBÑ® ¸Ð|œ¦.2ï¾'üóyPú“—Ü%àï8CØÏwó!y9·<7zÔWScè§®à2ó]F´Ñº´»áÄîBϧ²@_;ŽÒ¸ÖX‰0x4+ËœÒêHÊT«.”-§A~<íYY®šcµw‚1!_v^*)X¼ãšâÒbg”ª§‚u$¾¶ô¿jÍ Ë×…ñaÃP—i¥n^;TÓ^7ØìÚ²4ÝŠ°­š‘JV‡(Šhn˜dð ;ú'Ìu³ÂSÍ÷Ö¸ŠÎzm\cý'òÔ öˆPÛõB‚”!¤ž¤ÝÁjS´ÄuÞÀÁµ°IpæTEEÖÕlÍS£Ò7sܦC¿òÇ(‰¨­i'‚Ç|¯>wÇ(ÚSw²dpNÏuö Lõ; þK0JØ È/ÌÛI¾DkëügöaÞ•bÖ¹b¿{ÚMÌû˜ëñΚ_'†NAe­ÆHo6ÁW<+ó’Ò?`PZL’ª.M—fþ) ä;ï–8µJôõ%'xm²`··›QàðeRCÖ`@ò³ ]ö8ð÷L6¦³¡)sm/œ-—vhÚ¹Øåóš {f×{G³>›h;@‘š¤yw(’¨•v-¯wG¿¯½øÈöïÛ¼O3Û±áÓ|òùÊçíµ»µ,Ÿ:‚Z×ç­]ƒ¦wɼÿñÔ¦ôû«:s·|]^„qìžÀªº+X¡DÙ ùÈp ë©¾=+;³UcßÓ2`Ä3xEÁ¾$o–žzâcyËMo•îÏVï9Ê{ÚiMyˆ&÷?çuÕø¶vè Ö]k¸”î‚"ao0¦d•æGRÐî¤EêÐa`²à&_ôñu¢Õ$SÚ«ÌËGº?›50>’©%˜}:ÿP}zØ`ÀzÜß, s®bRÓW”ËÐZbŽåÿT©Òetó@Ÿ²øþ‚±!°q_Oö°ZÎY^š°Òxê‹(_µ®ÌΤ¶WRã£ušÇÎóiÕÎÆÎÜàhƒèòä3ð}]N”J¤ˆw.¹22«=ÌE^§O5Ý©-û¥üË++|®êJ7oätRžÎ¡tT1Þi/"š_éÇvp"•{ H<|+â-Šö`³˜Š:ìà°9†æ¬‘BÞäg‘ùùñ5›5‰.y9î´%=ÖLéwËØ=ñ©¼tm' M™É‡2³éEÅfô"?a?w®.3ó5yòyÎt·ø½‘ŸP®Xaº(!FhÇíÕ£wfÀ‰ œMGQiI=eö'¾J”u/5” ëì)ÂXxÒýïŽYnsÕˆ‡Q¡ó‹ð*U¢œ lÜ×È\úùÌš¾§ÍX?•ï}×éOЀßé¬;S=¯67§ðŸ‰Uáæ_Œ€„*ù‰×GœÄ>¤Tw+C-OÁª´Ðv0-_û‹ð ÎÔeý•àÂíXÙ·°ûµ™¹±J‚c_i0;ZÐÒQ`vøhyG»¸6æõ‡oƒvtnsL0|ÇÛƒ'à€ª¢œ 0ö`À$øbSí ¦G@C¨4ðÕwà¥þü¤Î_y—ñü̸k×H"˜‡‘Öø!´X“«†ŽÑº›“£òëÒÆ€ç¹Û´¤Z£üþýĬxMø_~Ÿ•q\ìl¾„ùtVµ0Â#OÄ>×ñôÇ6ðʶ´µÙ©ðoCÓebÍÆ4•Š•#ðõ¼:Ö“4h¦á µÄòVWJ‚íIô·BœígZZë«‚…°´Ü³Ùo-€½0Ø,¯a3Ÿ?cÈâÐ2kœxÂs£Ûên`–³²h©†¬;žlN`>ˆÁºýšßg3$MÁkbTô÷ý±ôz„„ Ä—\_ÅYM/À/ F×j “H¾Ëymƒ;ŒX%3ѦÇʰãjB#˜Ê¾JC´Y£ŠrãúGúð2¬ð*&ùîbiö÷êΔ;AgNe6yœ¼S•é ~®o¡\—ÙºõþùÆ#ûå >p-\ÓžàOÂ%vI˜ÉøžRGüBwQ ¿æ ºžûgÒ"…ò"¹ÿ=šŽçÉ-°Ñswf¢ÿÒÚdÑsŸ£Á­ˆÁµP Z—®Ðxæè>Íá(¥yÑwÛìïRx4ÜØš¼âw Ã/Ã5ŠÌ}~ƒ)¼±õs²š*4ý! ßÝî- °ßK5F]rÀÜp:3/Ù§)aÿ 7µëŸtäJ,d5sAcƒæÄüL\| ½r-(3Ê|j4½=­J…'9_ÄL$‘5›Ì;š`¯9¶UX¬p°åÙqØ@*hC‰`&¥ ΈŒù…˜ŒØÚóÄ;“9äf®æ ç3Êï*ÓÏÚEÇË_¢ä»4‘\:±Þn¤Ï=Ïê}F°Ïœ:Ä0ÙüKøõ?N>h¹‘ý!´žœ| a®Ê›>ýœ¦"è!¿o,¥Þ _Ò2[û¹Ï»õpÏͯ©Š~õ½¦É€ìu®UYðO•œö¦/JVŽ K(µçéé<•iFºNûŠboWí1™yk7(ݼEƒƒdØwpgޏ¯I2)¥‰'ó?IÎoòõô”ŽñòÊ⫺Áî­bó³ÐjϬÍPÍf?à…òóûÝ?ÏR~)'+.˼x²p 5´r_ŽþCŠQê.óñü`·¦^÷>k´ú ¡›$sS™bî|¬9òSËò´2wÄÁÂ-Múˆ¡Å- |åd,¿Ÿ3I®…µwlÕ&eåÑ4Ëçà?Í}ÄW[~ßÝ:ºp(ò‰ìð“aK6‹!cmöFšçöW%Ѝ>î××çß¾ÏÊ9AÖ[Bª.¦bú‰ŸL©¢Ép&“JØ_?!Wќƥwú·jàëä}02*<¥"ãÓFÜ÷©B³© ÿ†­“iEÉ÷ƒÀO[ çþñ Öä—;Î-/ZªÉ™\Î)i›ýìï’ÑÏ'ÿÞOÙõz«_>Bîg›0n›ÀØZí{ |QÙ𻸹¢É⟱ЧÏo‚þJCÍÿC‹„œñªr¨}ØÚÏTÝ%\À/÷€í×Ô&¸QN˜ñpSj —uK²6¶~¸ä².Wû‰}‡nH ho?Å×ôcìpíj^tÿiO—3Í$Ÿ3ÔÊñXü“‰ !:áHŸl@ØWâñ~h½B0v’Pàžq,‹ÖÖ,€¾Õ°HAo’fôž÷§£ßG~__‡8ÿ7¹ÌVÿgwJÿãw)'ÍÂ+Q 9Ámóès6e-ó6g8ÓõOk2IMGÉYuE%áËþÒK>9yÚPû„À?ÓåWÄS‰ç—"9¯»Ýû쀨T}<1U«WÙëk’ÎFâvÁÑŒÕÁ”­•+ä§œU=)ªr,š>+~ ù©¸¼½ÎŸÒKáÊ4­|ÈÝ Ho“à†_E}cGF‹+6³ÿÇÒø§¿oýNØ­÷fF§$‡5%Ei;, °3GøŸt g·…×ΨݢͿôÃå­ Ó‚%“„QÆ®ßtÖF×ÚÒÊt&5ÎÑr_­(l ŠÅŸ›5Ç…Óêøî?ÌÂN.Õ‘›§XÕÑUP}ˆˆíMæáz5KE•”w—~º»ÇΫ[9ß9P¯ïn²?øL·Ðåi±\Æíû- ÜM–ÄÇ,?oxß‘€<`Ú¤?4§Õ×ô3ƒ­B£õáoÀ°CôrIÐ/½ S±Dù#¸¿>-ÿ.fJƶ°—³¨˜ön¬¡Í{ô{1~y+~yÿù¨ê^F6åáÕ‡ð€dã#ñ–ÏÖµvuuíwÝ6!ûb4¹¶ãOVEPøåÅÿH_¡º0/¬@#ƒü:ýØ?BzíñLÒŒ£,Rw9Ï¡; ?JÏ™L?g §cÿlpM|M>Oñúñ{¢º¢;°À.´‹Ãý.`àú=nÑÞËô(P põVõ5pân«<øJóäáËŒ}Ü©€ùqÙ ”'“hµTÍ ~dž˭Àᇨ–6OéºÖuƒ—ÎÝ7ïÚ˜ð¾ÑÚsd³9+§Ïvêbå3Ùõb36<°D÷í¢­à¤©Éè‘Wse¾qÑ|ÆqMú·Ñ¦’½@æÙw›7)«?=¬’þëîƒu2q ²…ÀÇTæäNeì½£o ý´ÇO$©J~Õãžw „³Áqÿ!ÖªGE­Qðõ{Wî§=ý#ŽìÓ|áðï/< ßrÖ¢<|ˆh‹â0Ð8¦Ÿ¼š.T})U}88m>õëÈÜxy?“«ðzH`°UNO¥Ô™ —(ã™ïXWyÍKZ0Ù­„ådA@Öq˜ø¾¦,;ÏUiÂÇb'8orsÐaö*Gðñ™Ò*ku"d/$áÓµ×&VÑw·õ"§’·©ÖI%éo‚c87,µÛÇ¥ø*±Šƒ,b2+› ãн9½jþlñŠŽ=_¿ô©ÙɈɸN~©|H;¿x¤ô¶÷ˆhx.á•iê?´xuD tèk EF¿H•…  ‘d_s0íä›K²'óÎ-ËO™Ž­ˆ½a²¥½ù¡È?`ÑýتqºDÖ ÀøëÕ}·Ib˜P_“µH!ùµ•_ä¨ û‰xÑÃá'šÊ°6Mñý¦}{ÊL4&SÕ£Gçè£q O³SB.Æî’²ñðe_>ÃÛ;ãXóÔ©Âïe¢@¦§Óö-¡ºÚ\õÍSÿµ´q5™m¥“~Òá1ãØú´¯‰&Å|¯’K 5l_4Œby|þýIïž2¬sŒáÔf‹¾¬ãš=Ž% ̃íl2B"!:õÏ“^dê·  êwx,ÈU‚æöl²È/é„â¾@²¨Ÿ…—¿¥O˜´ðßàTîs ÑøÃÙ·`‹Ìx,€˜ùG«õo¯½µ7ÙÊ—M]¿8bPÖ½ã>Øh´Ýçô¨ êa@ž 2!¤C#jh©pÁDc‹$ƒ®@ñˆNá›\ ,À,±+RÿLus`~»?Ã×7MLxP}ÊœÙûÍ’²ãCE#-¯¢Š×ÙÝia7:–‹À{€¾€¾oÈͼ¬XuŽ‹¡#òk séóÂØ;½²œ‡¿-öuô¾…^{†š ”Íàà99¤LyŸŒn´ël–7ãl> Q‰ËhP¬/ì¼C²Ë{=ÉhïHçòÆ0Z^Q­ f*÷Á#ÿ¿Á©ÈŽŒ9>¯ÃxP.ÿéFøZˆâ‰¨adƒ¦•$&ò×ñ·’oiH†óÚ‡êµæp¨È<H`½SY¡·¹Ö˜™{‡)'%ŽfÂDÕeTíÈGJzÚ…NÖöjn ¤ŽH{ü?X@a@L6AÞ^ÉÏèaöÙÌCs>²÷b‚êûvêI´˜øÌiL¢P(£"·ä<ºr¦IqGÎð±SÜìûÑ® ‰ByÉdsˆý>AjçðIyLq!@uòéÃFRJù FP·A)ïw¿ËÊWÿªS•I­é —œ"F^ªÌÃdRŽÅ1çoê&S”Æ88Œ ó”UðܺÐòÿ¿ä©Õ°KÂMgmí ‚k¤³íÊ\ÄnG Úòr ^KöÎá³s›ì-4Ïöÿôþõ<&“6>ùû®WmšˆUHå³ü\'îÃK}ß»~ÖÇw?Þ±VšÏp_KxÀóEü­°e>Ö³1Jž WG³ôÄ#9åéBB$êðv \Ö%àèCÉ@@›”]½üÿÆ?ÙÓêVÔtÎ3hµàmÅÅŠ “'•ü¤u¸q.™¸ñÈEðþÃ8ÿp±äœ‚”17…JÞÁÈ ÛëØ{°õñXý»¯&sä]&§´ª2E›òÒ¹èУå6wþ¬ <û"LvD”SÌà`¯‰¼Àïõ+¡ØE•ïðuËþ™›Ú…ò¨§`m¨£®¹QƒÑÂý vö>+Gn qƒgüX; öé§ ä4êu*¼¿[œºi[Tðj‰éúŒ€>#m¹­$;T¦§¬ oV7ÓýÛ¡hb='¯nj¾«ÁÀã!’ZÖ=1 YW7àÙ‰06¹Îm$J¢Zn ë;ºÄÜŽ÷}fïXìWqH€zHÛ™_ɬÏðgçNÐÜPÊsw¨êñ¥ÁòNã&Uqêçf⬮¶¾›æuúZÙŸvR~íÜÑà*ퟛ°³Ý$Ä[‘„yϬ¯L‡¶bÑä uŸ9%}¤ñS÷²™áнô±†!ãù9¿PH',†>TvàlÌc738Ù_g|L èŽ z“ti„¢aÕ°2K¯Ðì7¿t¯•î±4Óf×ïÑ;îú÷‘|’8]¯ìÆ9V4ÝFy©?Æ{ ãÑ0ýÎHN¤—Ç} Þ”ýTß=L ˆúö ‚#N%݃U3ÿ^ΖÑj7ȉ ý 42Ç“I×\<}§S! >VŒ‘P Õ<ûmý¿-ïŠý¶2)¶ïKÿ寕ÔÔ½*ÛË}d•7z™]ÕCÁÇy)aŒçÇOdë·Ú%ödtH¨Û‹ýßæ#3Ý"ã*Û«økJ_ «®'1i€× JÝgç¦j‚«‰ã™¿ŒO‡ÿ?àc;Y<Àdá §T˜è @H°¿z &FDþÒºÌû?.ɨ0Q²Õßy£M•ê{Ïoiê/ùbçÝ ëÏ‘,F¤F¨ÂPAp2^Ù’åÔ‡ ùº:ú?ýö—íO¦¥ÔUKùù»?]d a` …8ÞÂH®ý_è³îH‡þi?íóá×éºY½åô¸BÇcJ×CH…KRЂÕÌÁíýÒ†«6ýu÷~.àëÌõȘ¤^š/õ‘þSn^—VbTý’Ù@+–b/—X"x¸`FïE€Äó®üQ%´”¶çÜæuiËÉ”p{­+]*îàS®,†=»²„AïzýõflëõOÿ_ÃØ‚6ĉbr•&%U‰Gb:›æfÕý E.ê刨*:i4‘·.;²bÆq¬ ´uiPþÄ×kÿÏÉ u¹VãìȗӬѲ:$l;|dÜ£gbîJ¬bÿÂÇ|à3 ÷‡{¬à »?Bèw îxÇ‘þ³ö~·µ(à+#@h_x^\çJÊÐZ_—â¦!_¯¹ù.iSÔ«ºÓy‹½aìÁYôaÅ›¢²L¢1Ý(Ä "©Ãj/û-·)sçJ÷’ƒ$Üß…Eœ«ÆØ&]„ŸÕÍ‹Ìäï)áâ—°ÿ@)O=5W÷Ê3Rð|÷ûxøEéêa¸ºã0¤ù7]Ï>KË£ûbõ=ZÀ+÷Š®ò-ˈ¨>”Mµðë¨ÛðªÌ*Š3Q¿4ÔδeéˆþB1X¡×wÞS_J’C¢ÅædmQs*륫úðõ˘اÝÒv~Îcr¿žòn•HwÙ…5T¨º~å0¼ó¤-i;ß¿j|†M†d0 y¹ÖO&ã­Ó`kóêtÑaKP¤µß—­'G°3±J¿O+{’ºÿÃ+èYQ3R.êà^4a)ž)Ïݯ'äý·þïèÊÔRÀ%ÁÐŽŒâ s³Ù­ÿ_åøí!Tž`w9Æ5¤€ªùu³W‚ŽÁªûO~<¿ë=Žc®úŒç ó4ÝÛïßXtÇê&ÄEsDÜ⿕挶Ábú÷Öo/Ø™…G<}÷pé>¶0}‹Í“ŠêÛ7o¡_+9“q,^úaŽ¥ïÆ¾þZ²(,ûG.Kµ }Ë÷ÈêvìV×>–${q!Ñø*V2£rýf#÷ü¿®Ä¤€Ês\âÖ.;Åž?¡8ÞϦî#×E’”0© |A¢eÊéãükú¨6XFNL‘<éçÞRãàG¬«ÿUÁIÿ¢€øQÁ!È>Ûæ|­Æz02ií\ùèáýôÚµÿ‡/‹+Þ£øT”…Ê‘Š³„j[Ó—L£"rvzÜßÑ'~Ô·°Å_šÎ0B^ù>m,“är÷(^ÌÉôQ"Ôv!kÜ‹žÎ[¿´*ض×@ˆyÔçëFSÉÞGLOèoc+ï‚WDœÃ«¥û’D=’YuÀ;0¯­(a'/èç ¸äÊ}(QÊ;ð“`à]0¸ÿhÆ;X~¨;|—ˆ«{ekëût:ÐF,Ç|\•ÿ¡<¦ÜÐl—y²° kPàÛåŠêÝg ùcYvýß—2§*Q*¥,fÚ>ý¤.)DÔ+¢-£J ŠX ¯ºM ðïèS{ÙèéC=ËHÛíéŸõdz¾ÍÉŸ—àpŠ·Á:jo¨[V3¸„”MsÖï¯eCäÅ< 7ë°êf‰PtØùæm#Ê~ʲ_'ì óÁ×­üÙt¥ z~æ§¶¢Ýî´Àš{K’Ïæ±¼)Äó>ŠÒOõk,}‚W亰娞é&ýÒp“1 βizöÖ‰`qÛ_=QЂj¨('! jÁàAã ì”A§ vqÚ£ö}ÄÂB`ys®_ §W$ Ù¸QeA—Šé B8p éG‰†0”ÑåʺgáNO´PŽvPŸ¢ÿ#WžÆ²3véös¤GbÂÔg7à}¥‡Øƒ]/e¼ØÇÔû>ZÏf„1ÇPrÚd”tH¿˜°øÿî.NÑLí³¼u wZ©k’AˆFÑâ.Uvµ¿ïè²'ùýD›@Y2Å ”3ªœ2Ü®ƒz‡[í 8Йßâoì2´ìwi=Ãe¤cÞ“²œ¶©"袘¢2áI¶#ù­rR@\P Pïã±è;¥ÐhH"º›»/§Ÿ\ èZsÝg&1"'÷-°ìc¿É¦ÍVšªµc©AÍrSÝEúb>’Rhéãvcœ¤™‚âå‹hš}9:ÒÚô_›åäþ?§*¨vBY &¼ŸŒð£‚¦Æá‰V9¦Ú¸:—.·½¡'ùµ|S´‰÷i/ŠlYMȨ̀stw×Ò™Ãt¼ÃÐq*f€S¦Z£L¤ôP’º½–1Y E’:…ë¥x™ëØÞ–`¦Cý=ò1/ rü#J b ÇT÷ý,m¹Ùÿ!šÛ¦Ý¢A0iLIA¶—l^ý]EHUØie¡ƒ'°ù!ǶÿcIØ…r },ÏGÕ·kžïœm‡G [0ÊZž–˜oèü ¦8ñζy€fqÌÃ#‚Iã4ÅýhèB8-RºòwDlP…ùý=? “›ÚbÙvVl›)J°Sÿ ÿ?eòru —9cGtPÁ†Ã™éÂü*_'ýCvMwÇžŽæ¬Ü°Ýjì¾k˜ ÄÖØ“ˆ$† fÈZ_ ÝòEI–%×Aë¦þ”_‘Üi9);±5a‚î¶£Šn<Û$_KrÓ{óù¼êm®Y)âãõ,=^^YWFX«+`ÿ¼ëý¹þ¦¯4ˆjºeüé 5¥8Du†lB³Ñì¿÷é÷GÒÌ [Éù)‚!R¿WpyÆéê)õ£pÙk " ûqLø|f¥ÄNx'_ÿ.~(NfEÉ~L‰ii› „# X=2G+¤Äg˜ÐÓO0tJ?X‚¿ç´Paõ´l#¿ànóÊI6ç@ÓÒŒª¬AùIô2ëFÿ÷^çÃíl匮»Ò>ϰF‹ÇÁüZi.46…'B,Å+DlhÉ !ãYФ„Ð 1]_#>8ŒlY8ÅœFîþÎZákc*2£Ÿ9Eµ`h|̧R¼Õ‰PMã„ëÊkx Ï‚¨õº!T0ÓàãØC´gj+à‚|¤ o(¬÷?G‰Ž7×CEWÑÞ©øñ¦ï]ŘFFAý¸ãÓ zÚ9±Ta¤èÿŽQ,ê/àŸ3Lõ±"§Áß¡¬pEn¢ŸS]\lÄÖƒ$êåi&6U]'eùj޵óÊÓJûÀ¦VÝí—µ¯1;ß¶ÿtgj mŒð ëÆ¨‡‘ÁÆA”{I¬[«NÒ±ÚÛ¥ ¯•$ÝßÎ@â)YúQ±QÑe” W3?•€Uûàšެ˜R›¿Ù[yæî±bO¸AÐÁD¦r»KDËïÿƒˆ¹ý“¤ }£ŸŸÝ‹+.v?çæÊb i(³¿óCœmüLÚDŽ7B³qt`Épç´†ÕAk‚ÝóFŠê¾¨ˆ7Ó.°B)écÆ|÷^§ †~‚˜Dœ©ÓœIqŽèéï]Ë@8º"àú‡â}lís¦ tâ} ¨ŸŸµ0ãš™è“Ù¼ùê<°0BWt¸ žÁ¢ Ë0œK†qXØžC¦{eùFÛÍq‚.n€•«—s|ú™¿óÛñÑÏ—'÷¥®†øt‘ s…É£vm~d+6ð&GDÝ.³¤–Xº÷.wVb>X¸à,´¬ÀÀ£+_0 ë R¾z¿dKDqóóæÄ*}½_ë5#R‚ü¬÷=NW¬d'ùSl·–ü9jÖÑæ2‹OS@34º ûOÁÒ› @o}zhüÿ4¤#ád¿‘¿gø 8çå¼·5 _úŸo!“س„öIóõ|ãôî¬a¾¦óW_«sÈ2ô¢¯Î›÷Mtƒü¦,W~ƒCK·—ù#¶¼ý?·þÿOBr¥ð\£ɾOð;êÓ¾ø¤š¢{漣~%tD]4ê´Ñ‹2·#'––=%aä×3¾6Sõ’ð]ÓwŽéòf~_oÛs–³V¹vª;5,9—EtRKý|¯æs©Æ…•ïk{λ%7V+á©Éîá4¼ì¦7óÔ%ÎØ!Û뙣¦æžý*%MS|RîwS"šQ€/߇òoaUûP­·¤ý^/Ó[W›à†‡Ä³ÀUòëµ Æ2æ6xwPE}²Zbë¡kÄZÐ{dícËi<éÇ[بìy°(˜y»½|ÞĪgWêa5Y÷|V8òöÓÏ¡j—Ä÷:•Ÿ±`er_yj3;è+o¢¿‚9þ!&ÔKðÛ¯æŸ÷âëØIÒ!W^†v"A`!—Y`ææÏ§2›ù^KÐt @//³¯ÿâKïbÿù)¡óíZ}x¢÷izM{zè-¬5¡í¯Cr9çãÕmMxF ª¿ô%}pu<ž<0‘ó€›DÆœKsnó¨V#ó¥¦ù ~oN§ì¹YÛìJü@r!/¾lí˜$†%‰á™QQuZ^¾›r±÷K©~>¶÷³òÀs]örèTöâæ°è«Â;ãíÁdüЬù釺wª8Ô¶ž@²TpèZV&—ÇNã[–`ïi?r ßK«/^ü²sÖƒcô|^«…¼¿’»æ¶¡ŒÚ¹yÆâ·‡7ßûç岜©B%ŽOýBTS]ðU–Þ«¿lÒg…¿/ÅÞŒè½Qd$1^åÑZ»É}™Ë’ÿ45}PÍl?ÝIá»ÔçðºëðÄúýÊëÊ›ûïù3û¨Ě/rGÓÕÏÒßË;Šº&Ó¿2b÷Ûªô`/ßY ½öêv~#¡E`A?}ÕUB1-«:AHzájŸ~_Õm­¥õIÜ%›¡‚ú$xà³µ=%l¹µÿôgª¸ŽºqÛþ¶Hß}ˆº­6/ç?h\ol›9õíô£ÂÂþò²‰” (Á¹º@uwYõÝLÌÿ¢hx FÛŒ®_éÛ–æ¦ûj~kë¯ßWÝ‚FÛpÈL>¨]ж~¾»æ†[`P1Â:ß±Ú­-Îx©Ÿ2B=oÛ}µòØVÓœņt—POˆÙŸÉÁo/B%)€\A:ûÿ}>DU¼Oî:—17xêCr§êéúÀ™-{*Dt1aýÍÉSF>ðŠÀ|qÎ?ï[Wü{ú^ßϺkg÷„¸,RªmOwïǾìü]÷¶¥ZHß¾á;ú·%;.¡Åˆ%0 "#ˆþÇZ¶xj!‹NÅ¿ÔÏÔþÖü¶lt>"Átz [ÎÚëqá±²tjÿÜ—ùßúDƒý²°ýoÍ çñêyû¬eÆ­°€þ\­¬ú8ôï¾8!?:÷z(†—ãàdÇ­ÒZªhª&‚Qûl³-g¯*' TƒîñÉì}ús;ùyà™wÈÍÉôrÖnq1ô>¡õ}Ÿ,hüô~>¦î>ãy{r½7 û¶\p^x/[qé ižîÇâÚý=~|y?¸W³½ Úè|OIuÙŸ~ε_x,r«w¾‘â!µ›|Té‘'Ëõ}öß­úqñqÄ ó)¡ú…hžî¨²BËs ^à÷~Â]͜Ѽ$È(÷óʉ^N`^ŸÏiÉÍO€ùßö{–Ʊ² >Nuó›oK{åÿ>°÷¿wýózŸWçÿ3¬jOû®ÝúÖä~Ÿ–ÞæK³ôòÆ[P¨ˆ‘‹þò)77&Ä7%Èÿ?..96=Œ ¿Ë&–ÆŒgïæädå§•¿gYîGÍßæÖ]ÀRA“œNGùÖÿ•¿€.¡­Úy‡ÅйÊjaÒù›~Ž¥Ÿ‹ÑDç¥ÜÑj‡í-V[¡ŸÏý—ÿÛ겕™'¾ùo§Q—¿ä—1,÷JaŸtå·*Þ7Í÷– Þñbû˜™D'Káøè‚çóÏÿãmù‹8)1úû·~Ϋ±í 5!4ûÓïý(‰kMÿŸT¶Æ–×Ûýíô3®ëçòÇþ_œ8s7¼Á–žo§ôóyrÚM|Qú›Ù$к6“‘¾³ÐLþïÞ5µšN¿à’F4ýè…¯íïöØEüþûïwðS]öìfKÓý¼ÚÏUO•jX}hÏk–€_ì²Oró›‰ÄZâσÇ^Oø ”Ó˜à‰î®GŠKóc„'5qê x?ÖŮҷžY%=†¸gï`M±¡V_¾2º3¨/<7„ŸCz ×)[Œë÷ç~åÄÜFëÖ)WrPž×ëÅÄ\èAä”ö?mlåê;ä4gÙÄRµÁAT3‰û ›A—Ù½¼ß¡bY޶†½—ÐBQîçÑÕyúþ§ÿ $5]Ù7¢c»Oœ‡öþ‡! ¯…î5ÝÑÿl>-¢ º?MæªësÁCH¿¡•“_ÛødþNúh?1CßÖРà3Û€œÆ@æÅÎÈþÈ&Û]—Ïl§êÊ0…ÕõVjÀÜïñ“ÏØþQ[•²š¿¥³H¯Ë÷rB}ŸÄ à§(»Y1¾Ìç.!þ¾ÞŸéU«B‰ò 죊~`ÕZ¼ ³ ôxcOÒ)…Ï C…éòu¼¾™ŸQÅøÏdTkPýöòLÃØm]޾‡Å~÷sù~:Q즶û4xƒdÿ„ÂŽwóZrBe|ÞØ'íos©.Ï7ôGx›'ü`µ%íª1)ë²Y÷œþD(­'ùY<ÜDþª†Á-vIþŠÙ½_ãü¼‹÷¿>¦Óø;m³û» M|5_¤ç;GÞšT·Åë‚Y{t¬íú³Ïè¤+‚xðûu6Ÿ;¶Óì5âÜŸñ›B„ôcO©G@éCcÈe3cÝg®é§Á¹uß–³JÓ´aÔ?U oõð¯¤êÿ– ³xŸãU#SÞåb~ΓOâùÅ32;Çù…| õ÷<ÝŸ¥¿rWÝÞ%àáž<¢ÀDì§Ñ7ÊM÷S _¹öOKß`ôí¯Q•ÏZvÃ/õ,ÎYƒgú•´Ÿ ðWÏ&Œ¯Ó“õ tü.§‡aþ¿óì˜M•ú;ÛÃÒøªâ_x·þÜë»ø¿¦¿Ð?öý„–ˆ¯ãUØb®ñH*gÁ_rè"]²ó?‡ÝP+Ä——4“çG'A{«ëGýµþ•~Ç¿_Câ¶Œ§KJg³åÞ©ýeþóëáƒïu|O½€~?³ò–‰èÜ^¢²ïÕ}|¢$û“z]æ7Fwøw½n¿lÂéœKYM¹ŸÆWé•r+•˜IWÅ+ãÞÂþ¬Õg‘†nxE{îÓ©zÉeOïñFW{íTP¬æüвô×§aW§#Nwk搜=ŸÅãøüE“©å €óq<&”?V·Úÿ±úW&“éóÿ8’Tó R[ư}™¾÷¸/F€ãbŽÛêÄÒ’êØv#Õ¦ü¬íèúÿž òMÂý=v…fâö© 4™Õ-µþ#H¬ßñ¾]÷<ÚÉô‰ØûVÜ‹ÆOgöûm>úžÿËIÊ÷^òɹ‰×€[íkeÓhóëÿ~6÷|1>/|Ç>kÐçg×õOÒFJI>?#óü{±¿'~6óÍÝå¡ï'=í¹™]ò®ÌÑãœMeuW°ìÄÌÆcýÎ7~Vm2WbÔtþ_g?¿Ó ý–¥'ô"|7ßÁA¬¹Ùe@ﮩ’¾AêG¸, ìЙ …ßoê3ý)~ -¤2~­ÎWKO‚ñ\¸»Ÿ‡î?È‹™Ü«n+Åt›žÝ׬è0)…—ø#ËEÂé3& ŽÑ ‡"C“qÄ[F<,ÛÝšá½ú9Ú=ûà ¹´µù8üìê²|óoŸ€„>TݯF'ó‡ý\z;ßÙÍ—þ“ÕÍAñÆ4ÅþÉL€òePår£‹èÎö*ô‰ÜPÒVÿ> 5}À‘N0¹e·÷‚›ç|·®­E¿ ÇV'¿ÌÃpŒ¯³ñi>Sí®ø%-ßþmËolXvï…<.P:‹J]\’ÌreìO¼Q”–¾ÙnÖ~ Î•~KÛ! m¡÷ìï‘6s+] –KñÒ£MéÌÖ_­jL¯ê=ìÝþ˜L$¦f¿»þcr/ÑðmüA™’å@bt®Õc3ûú˜’? ïÐáš´àŽå‘‰7 ý#¾*‘ÿnŒ`§Ì`$þÙ%–¬×ÛC>?Ï.‡äœ»óD`_P¡MÁ‚ïô"™+å¤] /£Ö«mßÚdÓ#’2biÕ'—ý?ó•Îc k­ðZdÿ/¼¥ç‡õò§¾tñ6ׯ¿é¥•øôšO‹ÍCÃÇÜ‚fßjzÍïjr|Oâ)Íÿ©ÇÐx™ã}u÷Å(r-éw&Jý°FíÇð§,ƒåîRyÿÕîåÇExhWõ¢÷ÿß¡HúùÉK÷`PÜÏõ|:TÜݧ¤M¶êÃí¸ëXýU9ð~Œéýng_¯•åÆ_ öSNM ¯åÏì[>Ÿ¡ý¶{„E-ý\¬+O?ñÐîxÿˆýÁ3?­áæÚh*/®ûØõ¶ìrû7ƪ¸{½¾ÓÒÚÆz_¦õåpJû¿'Ä>1dø¾wù*ɘ‡Üx9ÈÁˆ³íRïÎXLóÿNj¼Çx ø |ž¿ÂóÕÙÝǤà䌥è<\íêς˼SìXr´Z˜ç•ß…´-÷êðu½Û ÇF®_ðK†MUq!ICoOJçÅìèÓ]}6»5ÿ5¤û¿GƒbçÊ#õ|v&u@“'î->§t>Z¿:gg{-ˆalþмsµÓtùŘªïø?}Äq9í@f¼/M‰ªƒ¥cž›¡Xß[¿¢úÕú_š“H¬l£}£0="Ì–3W@h»^þ¹Ñ6Qð<; ˜êW° ûŒäî@#Ðý>¾¥.ÂUR?eÖe‹È‡´ û+’÷×ìi‰ ‡Š÷=&ãD^ 5:2&ò3åUø4HLUôúü7G?Ho¬Á}»^gVåüÖoÕÜ´ôq“Áü¼3hh¼Ó6«ü˜KÃÒ<è. ï¢0£»/üîYÔ×c !‡ˆ±—Ö†Ö2ÿµ“ƒ6ud´7¹S8Z!(´kg»¥KÿX"`oíñd_h{á¶Ý·ßÂâbeGöføØb—Òù9ù·®~œ ½9½^:^¥š¶6žoG.š½ó¿A¡YÌõîL/‡¥…a w­Ï©‚åñù£ÄÏ¢øõ9•ò(ý¶V‹í  –‹{†“Zw…¯Ý5õ#ó2²é1êUZW€Tp¾vWû§% û߯±øõúàÓyãÙ1ÎqY]õçà_þ=_S¯ÇЦ† ^§Ùì‘Ö¿šÃȶˆ­úz©+ ãø¯ÒúP}?ÓåŒ ÒÏãÇ^RÂÓÖïkTÌÜÔÞ@ÿgÓ^©)Ÿ)÷éÉ<}‰aÍ·ö^{ÓÅþIï­{Ó rsC^†×€}¨3¸‹vgÉ“O¾*RRVÎB[¸ÜÄÍ#Ü^> û>po›ùO³FŠÿó•á¯suÙèË|ÒFràÇÝq' S7ø}ûýþ§á/IeÙÏ[xnÅ í%)b×ÖlømŽý„›—î¯VkÉÇðÒ]y~#ÄÂ6»í¶¬9hÓð îiµåÿ÷Ù þ¨þj½ÌèQ–k÷eΘõmˆ÷‹ÓéÚ¨ße‹cY¿tcFŽÛÁ‚®žï¥4Z—\K¾8/cO½[(+=]åýöÄ)ácq!)–"“Jf0«×/¹éñ›C¸ þïÏsý?G­·Ï ì‰÷š#èö£Ð·òøk ùÑ¿v¾`«ãx‘4ö+¸˜[@—£C©4ñ¯¥òJ?îös§?âJGŪu­ÐýâüHÖþ¤ø¾ ¦Ût§© ¼ŠswQMè쥄˜±|gõÿÏŸ»ýU?½À> ½ø‚Æû¹ˆ SÑ»¶{ñ‰$,ï›Ê_¸.¥ôxj60Woüìðçp5t*pòƒš-Íøk"Ÿæ¨¸û/$tà1]ôºL?EoÛû¼œÉ^o±óômìèonu~^ß”çßF6ݧ{ãü¶ÅQÿ=ÚÝ’£ûØÞZºXÒ»S µ(‚„ðÝêQÜÒr—’±øÁt8¨faDþÿ›ÙõÇ¥òû~˜ÕZ:1jN/ÍË9WÿÙôWàäpÔ·°ý~?gW' ‡ŒW;Mbḿ×ñœs)·Ä¿h·éËý^/¯ß6½5|ìyžo éx)im¸Ã¥®0ï*ów} J[1vFÚœÎú±µÁüòæ9;´_¯B¯DOË3ý1¿Ús¾-9HYp¿(™ÆT<‚;ÿÝß¿õËH¾¤éÝájþ_c¿çßëhC×þþ¨Ùþ=ÚhžÏ¹O(±™‰v. ùa–Ñ\ãÒnE¼Îq0‡óý´GóéÚqùŒ2…ý|—|¬Lº_¸›`=¹¯ Î•Ž£jjÌ~nS“§ÿ5[÷®jrCèØši§1óÛUÍ×öf€}C)kŽ„_ƶ9íI†dŒÄèÉÏRSüdÏ_ íà8ô ‘Å][óÆ·3õ$ÒîÿzK±‘’%ê¾×^…z¡ÁP$÷y«¬q߃ÓPsýš´}oÅwKð}ýl>a}«EPP Uü´ÂÚwTìýIcEõRï2ER}óÓõ}(ù´ÕxD>ƒD/~iFZ4íõx”~þfWÁaòèþÿ¢Îr _ìã~öÞêÿï%Oê}ÃÅ%нÐLY¿ð{Åç³íÐØF\RþËØžß6ϧY7“O¿àê˜ïÿßÍÔÇî"ôígJÿ•bºu?ÊØ.Æá£»»éOHB–÷%îM¿ßÊçÎUA·¼¿€ÇкÎýW~‘²^ݧ3Æeìæÿg킚ý"o¡þWVÃ캀ãõV{sn;°qÿͬê³bû’ÓWø„þz/—Mž½‡Õ´³÷Tæê‚ÿ®×oÐt]‘‹ø¶Àëñ›[QÃj¿'°äý†± ÄË«GñoûIEîllˆ± Z«QZ5£k6+c[ ç­Ã•Ü&×6¦Ójl©Ásµ/ª~N¶-†ÛQbb´@¶l[c¶Ù¶¹´B/ÒdMxû6ž_=­Aú„¿î¿Geÿ‘ Ūôþ£œ“ʱ¬QLc0¤¶f6^ÌŸÒ¡b½NÏQ•ÆWÒq·à75ؼo´ÕUo}­}€Ñf&ÚP¯^/v^,¯¤í×î/Û¢õ¶Ûki=NWÄCØ?ß;¸—ï~ÒC®ÆÍš¶óéOÊ”;½†Å¿¢NîdÛmÕÊ×»x\ZÕâO¥öÃÿèõY·ðõÅÃkñ¿ÉûqŸU~~+h–4kð7%)¼|ZÖ«Ìöè슢*JæÖå´lmbÚ,k®»QÝÅÝÚf†Ü£»ªå«›•rÝ7NVŒS+šé¹È78C h¹;­r×wnm±F’ÜÕ͹Ħ´»«•ÑmNís—uÒÚå]ÖèÛG8M2I)3s˜ä2îëœ-w ‘2Dã[x•PüýM›õ3øTñôô)>ô§ú ¿I¸OoUyåW÷CÝÔçŠþ» [_W­¿¥ª¿¿j+õ®\î;jãm®OØÕqÅÅ—9ñdªÿÌ^J:€é‡MJù#LLD‰´a,) o>+c\Û«®»r×6É]¹Ê.kŽê“w\npRYÜbΙ(JlXDšÅ·\uÑéIÖž U|ÿ_ÛuÊ‚ÿ¯´èÙødøò?ÓlwU)ãµ³!ýÔýÀÿ4=6¶ÛlÚ.v—øë—úôÆ6Dª*£Z-­üÝj·ïm_ŽÛð«ú¥õZÕ«z&B4HÚŠ¢‚ƒDV%ˆÉ±533 S#eF¢(¤ß2ÜëÓÖß½¶µzÊõ´$âl8Í›kÿ=¼•TŽY]!:J_û òcüÛZû×ü›ÀP<í]¿”è§Dåx»í¸\ƒh­Š*Ç4î.s2˜Žî®‘Ýܬr£bKréÕræˆJîîX®Q—5Îw+–å •t®‚±qEc\m‹b¨Qk”b3 EQ¢e´Ö⮇¡öÿD?¿ùÛlm[j.1m‹v·)&ÿÒ.ú-kZ¾?jÿ\?Q»™ÿ&µþ¹DåÉ÷ Ÿ¿rs{lÆ´UE±m0D”bÄRf,‘ª6ÔTFŠ&LI­ihÖ*š¢¶*L• LŠ%£HBˆ)1"™ŸÒ­oðv«_Åü¶±qVÕÆúß•¾D§ú¢x0ŸÛ£©SõÔññ|x}!}¹}•^¼ž•î£åIþÊDûþJtŸA~ʼi:‰ÔEí)þ„mj­¶Áë¶ØyØM¡³S6×!¿±ýe ñW±t)m¼–Q[×…UÉÓº6×8ÜmÚ³0›"â;e=Y^ʯYùQ{Dÿ>Ïfõ¬]‚òõ;„v7X“¸¸%Üîî%wî!Ü ´Ì¥áß?GÑØlã[ZWF¾ŽãH;‚y$q<®!°Ûll ($ †c`Í †|à.¹ãKîí­}Ý6×í{/Н'É©ó6™‰¾Ô”û•FÓa¶KÃÜq^ĉ+ˇˆ¥ûb¾·TÛÿ¶¯Ù´Ûïâü:Ö·¤+ÕnQDZ6¹¶5ËWw[ŒÈiE±cwnîŽë"Ý×XÅÝÖK–¹r¹£VåÝÖànèÛtXÜ’;¹£–äm¨Ü7.;®gqÜØ£D ­‰ ¹pœºWMÍÑ Û„€XÝd:º:tôKÖÞ¶ìg«¯siu[nÛŽ3kQÆfÏE&UOê“ÃÕÃeXY¶aáÃÃÆ<>]¼\Y#šÈØlfU´VÊb*,S2h¤TH£fZÆ*ÉX©(ÄZ–Š"7°º4W(رww0Šè€sŒÆé¹ÎW"uÝË›`h ÔËý\ªGÕ¨Ù•ç¶®kÃñ%•S©J:—‡£WøR‹”Wg'’£³—š[›OUx[R>¬šá·ÕSÃÛ1^áötgœƒ£½#–ò M£lmÚˆ6¤Ðh$ck4Ûlo)ìyñìr§°’ô>À—K{½­ÓØÅìTódê…ìEÑJð…à¼mm§ƒû% ñ^H¢ðdð›FËs[FЏµöa¼_ú­j­çí­ì¹+si«™UÍŽí¹µ¹Ô(ŠÌEÝöÖ¯¸ÔòÒzà3ö…‡~I>GÔÖ[&Ëêf. ¹(¨ë$êÉÕ§5RóŠû{Ì^7Ëwð(ïåßæÍµ¬ù[ƯÏa=zÙ6®m\ÕÁb ‹tçshé×DjF¢®aNîmb¢ÀÉTlCI;·!»®Ñr+»tîêÈîsw\‘)’^¥Uý†Ð¾C¿¤Oe±³#éí±Çüuã®î1F±^oyöýñ+ÕR>QþiSÖ…r¨ø!?¨ x+ªð¯ üÙQzÞn’pÞW€ ÝŒ[„1r×QEµA ²£hÙÉ' 4¾ëWÛšÚû„™˜¸,Ñá.OÜIÕO½£ïIÔêÑÝ‘ç;¥æ¶ã»—¨ïø½m­ëd¼`ºr^&õˆõž°¯YGŠ£ÖËõªx¢{1sòG6ÖÍ ÚÓ* 2£hÒ2¾^ªúKFK»lœkfn‘;vÏ×a…vŒµ}?TÛkâíÆî÷þòÍTû4¬—éROµŒ[}š¯Ò*>ËmQ­{ûkßclQ¯bßÇ·r?•¿F•}­µfÐûPý+íÉã…ò¥Ðó†hµf¶µEjøÕp×*s¹ŒŒá‹b¨Û—-ʹj´ÑQ¢¦ÌÄ’h‹»³(“XÄj6*ån–B±rÒÅÈ“ÜŹ%k”»\¢×4‚víÐÉWI'w)9rF-»ºçqY¸pá› ôH¼,Ù¤óª~=IöÑøQxp=j¾Ý­Uöó9õê}}³¼áÆã>¿ì)É%x`>¼m_\Úq¶Ï¯¾ •Ë‹­©ÖÓ›NS@Q¶Ìš-Ð@ŠIµ6Ù‹m¶llå¥ÖË­¾µKëXbÚ5±¢˜ÔZlŸ2|ÌÏ™â~­ tóẅսO‹¥ïï§,[m—›Döit¦Û#m§°´Tst•\§×—áÇ¿|Gø(Cš[´X¬bÆÄH“EXØIF‹d m{ÚîÄ™"‚@ô-µ¾U|#c2M­³ŽIÕI“Æ%Û•ÛÉÛ¥íéíèæU1OüˆúÛëp·ÛþÂAЦ–ºZéO=>ñÝ9½º;U<¾­ª"´C4am|r¸jM«IˆÛd„+ºìîëÓ‘D#»]-p¹­IÊ‚§wMÝvZKܱۖF‚J\ç79]*-ÍܱNvîçrîœrÛ ²Qk£UΘèÚ嵊€Â’ÓVÛ.Œèÿ‡ö%}}Y³d}›g}žO6ªÌÊäŽê§uSºW"NéGN'׉þ©öÙ³¿UGèôR>Sá¨øj<]‡úâÇœÔ0*ŽÓâs&ñýµmµzz5·±\Ö3ºîÉwI`¬î¹‹EFÕ2“œíŠÅ ™D(ÅÂ(夣˜¬Z¹±W-5ÙPî«©w\’å®QQ±¹¹Uʺp¶æçK·]—]œ·whÅP`®kœ@ZœW6hÕÝÃE\L¢Ú6e$-"hØ—8î“Xу4‰!ˆ¤hç3çíZø[mkÒÛãVµíú…åÄóëÆ^~}YD/ªðócS†¹0¬UxwW‡Žø?öU«àž‰Ó\U9CUã3U۸pÜh¹qÑX¬wUËÁ(°S»ˆ­Â|:¾ªøUDNqKѫї¨¡õ[FÓÁÛ`á·ƒ} Š®U)ÙDð"ÙþQ|Áð¿5¹°‡ŽÆÙmY¶mâwt¤Guuw!˦îmÓœ‘à }I}M¯mEŽ5±mi¶Ü‹óý´P¹t/àm§…¶Û/Ê›ÙÿF­¶Þ~Ú½ \6ÕO_Úç8BÅ5F’Ú76Ñ«¤¹u庈Üîî´j.îŽnî1'vìÖ9Nê(¹tÑ·9'+–îân hØÜ®•Ým£nwrmÊ ÈeË»»§kƒºì›VËnn6;éWc˜<л螵.…êŽ/WÒ¤ìªëGÑg+ÒÍ/¾)é+Á\6VÖS·Úq\y©ôhìöÓ}ízwš¥|»œáò¥ì ñ±ïî~l^ö_{WÍ'á쯇Kßm'Ž‘óhö xAààþu5«ÏÖ«ØÖæÖ-$ ‚Ô[b-Ij6 iK!„S-¢Å¶6Š ¢4m"5F6b¨Æˆ,b0Q›@DÙ_Å­| ·æˆ­íÙhÝ‚ó”JsbtßC½»ì܉*9råOêÓMŠm-­.û[c·~¬”.¢1^Žô5xÇ 0Šåël¥âçm¶¶ŠàpÍÖ^2«©:uåÿî¿o™ ¿§dó¾ï¿º¹”¼š¬¶WÌ-¸flz>MÑ(+—S™Â<Žq¦‘mͪç$iqVˆ4@µ-©Ç$;äz‰;ݧ{«_ó…V­µ{ÕÖ6ŠZ6“©j5ïR«t†ÚêÜýZk¿v÷É ÚQãÅÍBöeÑCÙ©ç‡mUÑÏ ªòïVS¡h}Â銥ޗ{Ž÷‹w»ÓB§lSµ¢;Q;ç-¬O7™° ¢4”ŒQjZ‹E–iK ²[&´X­°X„Ö4&{EÝÛœ­I‘®T£›7Í\Æm—,ÎnÑÃÍr©M,T[QcG0ç\œbˆ®k€©+”\Zá¢ÜÜ„EŠš0ݽž­|µ­ù}[òÚ=z;By¹’>Œ$þªä§yš£]3iö½;®1^/%mª¼ÚÚýHJ?Xªï¢ï®ùúĉsD|ô;V·¢½ŠÅn«¤º¹‹ŽåÛ\Û¹µpL幈Ò]Û”ln  Â,XÓÊ¥ìh;ä—zL-–_ó7ÛŽ9"ØÊ‰˜+ÅÊ÷ï'wå­jÎjSõ¤Nþ¤8IÿìKûx*º1è÷¼åÒ‹¶sD½ïlò’—ÔØ¾¦ÛJ¾Ü74”BƽnßïUZ·¡k^—ªñ±%®[•¢Å–5EEÌÁWw]ÚÎr®kºguÜ;ºî]rîÜ‘>‡j÷z¯wkεµôÏÏQ==à*¼-M–ÙýqTåƒd"WêIóÛ: %9Àúž2¦›Y¤§žS•GêI 9ˆt1õ+àå6ÚÚlM’[qyÉçäuçÖÞ¯§ˆ‚ɱ±¶I£X6QŠ£Dl•°X F ͨ–¢(Ò™I$Å«ñwï½Yd‹S I$‚I$‡Ö;­¬mm{u cV£Uùüî5ŵS‹dâØ~NÇxTOÈñˆ~¢¥üÊIõólm¶Ô[oCAÊ(üš?¤_w7ÝÓ}ßP’\À޼•ÏûLUµ‡úY£¼h…Ê ¹d‹'«q¹¡#lk×5nZ-X­æÜŠQ“wsDb(ܺåsFˆÝ-+t0;®U¨ÛI£Dî×2hetÁÑÁŽîæÆÚ*"ˆä·.hè.ZãºîrHÔasW"ºØ× §m\ŽëjŒstB‹r ÉÑÊäp)×åÓ»¬a\‹hØÚf`Ð03—0`¼UkïmoÐUz­|“t~%sº1÷¢_‘IÉ ²l¾îþ2ð­]EF‰ão¾g*劎•rèz èJä›wÉ‘ÎSžX›XãWÝ­ràŤ´2j‚î¹ åsnî×rÜâwrîîtçwZähÛés¡ü*?)ùZµ¶Î¶ªü¯ê’‹—%ÕÜ¥ÄWÀUÒÃàüJ^ý.R.†ÈÄ—Ê | ½ò§ñÀéhû­‘}Þ0lm‰ü%æ’¤ñuGÀ‡ôUfêŽROpžà?ñT_ÊJç6¶¾³ö–¨ÛA6ŒU‚˜Û&Çå§åß—ïŠ#Çw›[%d ’bi1„ $ä\¹4­i!bîìTT1FÍ;­shåN¶¹NçNw^"*¾ˆ+òʶ¯¥Â6ÇT9Hˆ?$¡ãªyŒÛòÿ =õ 檡=Šï•#œB~=uÈ糎8ãŽ6Ùµ»rŠ#lm²mŠ ÂQ·96-9v$M7.ÐÂîÕ×u¹ÜÔ\»ºÜÜ·]ÕÇvÛpÖæÑ‘›r» »º"‚Îv [clWwmŠ+†MŠ‰ÖŠì]Ý·m¤¹Ý¹ÊÑj”me˰7:‘”qÝ9‡s®©hîvs®ãw]s7].ºÜ[wŠ»ÀîÔöÂñUÝ£WËK²§KQá—†ýúBå…OU^È¿±K7ow^Ù&Á÷ñJ]„tªvôôbô)~ Nû(¯_ª+Ú¨Öɲ5L\ÆÐçQ±„QXÆÛÓ¶Õi¶ß=¯rSÑÏr“­{™Nj(õU^ÙKõ»ó¿­ßÞ@DëÔënºO³U.º.¸^‰GoU„ %øûm--½^ÍÆáN#Æ8]nÜŽ´’\µ ûâ®Ú½n-¹œµ8,hÔ`FÖl¶Ù®J#À'È‹µÛk}/ã›JSò`sJ'Üñ”}Ä9G£ »újžÑÆÎEåRGWK$:²uJêG¯'ÓÒÆ¿üÝ)\ê®tC©´#ƹzËkdØ £iñÝÛš EWA¬RéŽZ5³¸Û»»»ºeŒÅ&ÑnîwÜì§wNÉÊîís¹°îäºpË GMi±£“|Ï–µkíµZwÝý¦Ù±\lÚŽ“›‘ïT•r¤™2®fæk¸ÿêPr’F^sD¨õ(Mœä¨ ˜µƒSTS;«šéW8w\ÉFíÎAu×;F×Øê½¡µ¯w³Â8ÆÚ¶+kÈW[DÚ•]è¼é}+½l¤9dN®:í(ä©¡^0¯\®%ãyr£×J÷ý’Ù(ŠñÄûÞð§ÉÚ¦Ç0pÚÜÇôñTìê»9;:;5=o/cËíŒm¶ 1ˆÑQ±¬[Ö)J+\ÖåX¢ÚÉdÌÒ¢ [E$•h­"Æ"£ˆ»+rÚºjåÎ]ÝÇQZ±Ò"6Ù¶ffÞ2JvqŠ}á]u^‘\ˆ’®–¹gyªÙ°ÚÛ6Ô[`4[ÿ}½ë[1õ˜ßÚTNºç #øÒ/¤.ó½ÅlceÆ–N÷rq¿ô¢W0¢s~SIɶÀòTkeN3hÈÚØ§(‰ÞÈïi°ýXï±4ï¿qK˜ ;Ú:êmFÔdwºËôó“mÆäääò•ËQèÒWWtúIÆt4 óªÞ~ª·¡¶½O$Tm§QŒ]¹ÍµË$,F¢„PQŠ„›ÎsŽ»»¹¨Nãq’qtëŽäî":WwøJGDމ_AÌ\ÕHyêý #Ÿ^ƒô*UÒ¹h§èzËÐ_¨/¨¢ú)~¨G€O áiq©qSpãUÇ…ìÔ‰âÒ§ð•.‘Ä$ðàO¼;ãüQ9d©W7³U¶‡—Êmµ†Õ‰¤–Šƒo)û»ø¡õ3JÂkÀų6Üqõ ʹr¨óèaSÙJõÑv•^=J¿,»Í·y³qÇñ¿Î»Z;Rs´“¬KØÈáUN²—RœJ¥<¬â•]Béß ïU;Í›*á™n÷ý•(¹ /_ãÄY¦ÛmFF*ÁH˜’C$ѱ£IccDlÄÆ˜µi´‚kacmk-t³¯åN–À]&!.îÖ•Ýçx怿0Ióµ†ÖÒžú®p)è ÷Í•óü&ÈNãb»J9‘'Ï“áUz”—{´À\´ä¹ ßR<8»P¹UEá‹ßÉ~©áì\¨vZ‘{(/¨«í‹ŸšJÚÚÊ9ëŒl–Õ‰Àç7'çöЇȤ}ÌÊo$¾äZJ¹d_pp®@—Žomµ66uƳ8q\H£nsb‹Ecm.î¤ÐY$¤R…sn†„¹\ÉUÈÛnQ«¦«–å¹[–¹ÃŽäb×+›45¹Zæ¹·âQºìî¹±\×#E$¤µÍ¦«œëshQ.]#dU·+bÕÎÃrå\Å‹&‚ºRF856#g9£ræw]ÛšçDîmWvãLÛW$„¾l|ß›¦ÆÚù«åR*Küñ|Ò_‘´qklÚØäÇÙÆÏÓç7(©\´‹HôôqBvì.Àì.^`§M^ø\•âkžÔa³Q›&Ê´m`± m mfÑΊŸe:(>Ì÷7|H®n)¥V‘T[VŠÍ’úûþÎ.8qÝÚ‰ ¤ŠBñ_u_£¶­¼íTjØSìbû¢¡*å­µ¯:­«‡¨·JÅA%$ÀT–-bM[™»º--Ι, Ñ­ÔèLÙ³m¶c7%I_ГJ‡G\”[_“TKWµí‘x¿…²¥ËQKœ/I'cµzž­¿½PœÂ)æõ*^×sˆr°&ʳ^;pD×6鹫›chÚ6Å”R—5ÝÖ+sVæ.îÆNtÉ,jîãb¹¸Wwi;¸ÜfÉÆœcIpÙ[C’¤}zŠ…oŠË»­ÇÅ/óêÕkòuoVÔöA烜ö2ééì ê)ʤ¼½'QÚ"êk•Dv`ó.;!:¿€WÀ©Îîè÷j¸(÷ùÔ~±_:;Œ±ó¸Þ<©W:¡ÙÅÙÑΒ䊓æÕ¾›[ðþ/9Ûº¼7$Ô´åÑ_g‘l×+â"‡2Òñ•âõv’dš“m¨Æ1Ew]ÑæÝÝk•·+sk–®jÆ£lœºã¶í3 Üäguk–£ÆÝÝÝÅ™¦E¹¶¹F£rÖ¸î­Ó%Ì9rë–6“f±]EÝÔQsS®‹‹»mÍÝÖ¸+DR R ¤ÎéE\¢Ý褓L]×Nã¡Õåmmkâ|J6Å´lmµ)­ñ/ˆÚ%ñ>Qs$*â‡ý!_ce³ìD¾Â¦ÖM«cO°åÉéÊÄžt¯8\x‘^7 [6mZÉ™PM¢Ð|Žּ«[{›å÷ÄÖÕæ‡Ÿ_¾ÿ`¤æ¤+Û8%z†‘GÓîvZÛËàm\eÃôä+—DNjŸA/•lsøBW™s´ñšš¢Ñx\·å׎¹WuÙÉÎå×puÜîéIOGmmkßÛ| ©­´>›m”áàjÇ&늡˪…øò¸º*œ¯¼í·€ÞûUBùÕN·dócØÑz¤óµ^*CäM´rP¾L®Û4‡S>i^̧W>mOiEøÛz5[}]¯ç 4F&£|ê=²w'¥Ú£­sJW—é±t¬ÙJ¦²kcV±ThØ«ˆ gÊuw\E ‰×#ré²c ’®¹­š±*h¬n\Û–uË”F®8º\R»®«•ÈÚiv…{-’åÕ­U×ñï£öþòìÔKçC·W€ ðRxM¦Åá+ŽK©s²§t¥Õ#À »‹±U>¤ƒÀ_PúŸâœºDx=VÍÛV†Ô*6¾lÅ_.®mÍãh·4’M¢Jð{U;ޝî5µo>Ö½Til9ÝÌuŠæ¨»&‹¢Á˜“FÄU$ɲɊŒf™L ÐÕ­µýMm¶÷Õ{è?ÿè~ì ¹¤ªºÆ’uosÅIÞË{ûo}­GÀÕÃÀêÒ¼«Er¤_3¸WŽû>Õ[lq® "îæÇ\¨Úb4.®Bã ³fÈÚq³%ÛI »5uUÊ^< Á· Ï v‘ÍvU¨^º=Ú—AþD{¬Û6h)AmEµ{ÝW¾Æ‹U’ßNœov*Ž`¥hG;¶dpEÕªúã››Z»ï_JŽR¢®ˆ²'o'}+ŸƒÛ[C¶·EÃnGüR*÷{ŠœÚ'5JíÄá#«"õô¯À£Õ‡"‹ÕÉÏ=Q9 ]`h_­‘ßÉís›1ÿ= 9”]”XSÅ{}!ÁV+ɦÕËá³bØb‰.dåu’·2qÝÜ×]0W;»»±¢EÎçXéÝÝ×QÝw¤î‚ŽÄR,‡,Z*+»„¹ÌeñÖß5­y¶Ú½Î¯sµÒ¯B¼í£̲‡o~À:Ä»ÜVÕ‘Ó3\w½"ÍJ+ž‘•N÷E©lmm6ÉÞ+¼·2âÿÈ‚ç`gáÕ1a%b/À[šëšå£Zå}$FËžcKcÆjÙ6Öš,j#cDÖÙlilmX³V6*5W©å[WùÚü›K3lЏ*¾T.kb¶wåÆ3øÐ«Â©îjK˜B¹¹êS73oñ….Pªyt°«Ë§—§4GÛ˜Ûoƒ´YcnÛWI“lr”ðv·!Ý])Í•t³¥¸¢x÷-ã‹Úäc]78EW.mrÚ-sX²Tš1—:j0˜ÜÕrMFºës§»¹Š65%£›œÇ‘+”]Üáµ”k˜æínrÉÂéÝ]Ñ×îrq×9Î{¯,¥ÍÅW¿Å£ßÑâIè+nŸÓßZ"œÒ¤¿BƒÁ Á¶Kßfãm5³Áf)W. tN«elÚmbÖÅdÖÆ"²b hŠ#cl`±²Y1 mŒFÃcF•FÔ™Qj* &˜ÚKA°Sh(”Ê+~‡U~â&²Uw¹lÖÛ ±ËU]Пš”v¹(ŸZ%îŸ[VÛlÛóøcýH‰ÙÅ̤D“cm³‘ÛmlfËcjKe>=qÇ·àT_Ohça]ð¼šøÕ¬mG­ÚW9I{ÚZ(Rüm£˜.Džº¯ÒhTI‹¿_ÝtZ‹Z×íVM™µµmm[$óÁßRåÄúŠKmˆï$öҾ̕ö”Ù¶Uüþ.nSmb‹Çw8î[îÆåo™éª9(½"š.¶¦'Y-'SN™’÷Zj¾_-½ÆU½ëÚ„bÅ“m±RM²£E|¶ñµ·ß_zµd‚EIJ5bÕ÷©ÝÖÛ” }ó\ñlreµ®Kø(‰Ê•ép+ï~°ÚÖØ€‘L±a][Wòþ÷Y*,AmB˜1ª-¶Í¥¶fØ=窅ʩOò‰‘N–”ûtxÆ‹e°ð4Û8ÍÎ\ü¨rÒ¾öÐϲäsØ8ÙÆã.1-;®;[—r¹s\×ÑG5¹&crähLI´ni'7MÍh§uÆ‹fälTFJ-(’áݺ:™ÝÝ]#ymªßkâ—ìµoI~B¥9@i]l\Uu‘uhè©ÙDóÇ(»Ä},ÕMŸ'q¸»z¢9ÁuŠ]‚ub¼ÚâWWRòue^nâ:±^íÅN¬?¡ÂaZ`'=t:­¤f‹hͳ4E‹IhØÕbÑ´PdÖ+IFÆ2ÞÑ´Vƒ+D6Ò¶æ5Ąկœ1Æ6Êq§žÁ.T=Z^ÂVQïjw³½Ù¬øåJåÔ©”ê*Åu ¨À.軽j“¬>K¹Â"å<íUè(}\’uôYG܃wzÞÇ{ù}PœÊ¯‘«-^¥U{måj;0ˆb$R@d”E÷{W•[îíMµõû_R"¤Ôc«ôoø¡ƒéÈÈûDÅö`Äû5ŸbL`0‚”òš²Øm-{NBͩһçáíõ«®åÚ¿˜­¶ô+y «=››¥¹«§7,‚®•¡DFÄîíÎç\i×[©†£›»®Ù°¸Ö¹¢K¢•Ä]”ꕨì™WaüŠ Ì#çQô1mfÛ)µÃ}òÁSš®Z¯[’½f%|ÿŸ¿ÚQ¤”ÞÕm‹kQA˜Ú( Èf[l¶fÆÒÙ±uÕ+ÓîîAû>nª.mBvÊ>|¾mÿÁåQíhb{PjžÖ hVG´U•ìàÊöjhvÔ±;j2?b§³‡?‰ èå:%µVÊÍí)%ÎÕtµ0t©ƒ¥¦¥ÒžHâ¦ÖמڣU‹’ö]pmÎXª-FƒW9[»‚Ä¢"(ÑQl[–LWwc nîˆL[u#»r¨£\»¶Äƒi*¹J¢ÆîÆou¯+WÊÍ[åZ¯c¨¯©¡Ü!õ—Uz)^Ø\)푤½°¬«Û”ûå?­Üe6fÐùù¸ÌÛ÷!QËJšÛÓv²è­ˆÒh™&LR¢“Dhµ¶ŠÑlk%ED5@–5¶KhÔmE¨)£h¤[Aµ¨£U³`ÚâŸç×H’‘üxõ̃åím°Ú¶›|Ïòª©s?JBèÀºú5JòÇ$<³G¨<òâ¯8Éü俇²Dþ»¶”\¹:=ᢺGõ×>õx—"2¤sE½Š±§4Zîå®guË»»­»®mW4Û»†j0NíÓJf§w3¸Ñ;›¹pÒîÝ»®sj£»®¦×sˆîî¹×NŸ®Ú­åV½ê&%ú$5(îàöjfÛBÙôj8Õœg wqüíø¢aJîáz‡w'æÊ¨åxù‰Ã™¤6eIŠ4¨ÔÛW¯ZÉ ¤1w‹m~ªÕò;?¼í¶lÃeä6wnzNeH}Å¡º )åØ%ô ©¤iô=%9ANq(æñµ¶km5b¬R“DE¢bÔlÍÄÉ“Pƶ‹ ¢JfëU¯[¶^§M°rää‹óèO“²^¨žˆr…òDõ{EtáÈGäJ¦Ú…N¨r¨wv4:ÉÉUæß# ±_|ÚGZåøÒ{ŠNµÈ¯¡R‚Š\Cø5KäfÖ£­Ù' >EÌ8¨üÀ]™[;®JWl—µª¸'óH¾)^Þ„ø´«²‡/î*öl¡ò‰·½S•p«ÕIÀ¼©'Ê«ðÊäÝ=eNïlwœmÆ›m´rfp{*å¥&z=6‘£c+m¬`¬?êåÉE3wu\‹F±‹sUͱcX¶$®]6‚ ANq£œ]Ýjå[•ss]s·*ãºáÂåÇ.Â6æ·6ÜØ‚Æ+ºëæ®vvµÎêåhÛBŠ*+»®uØcb«…-ÝÉr.ë:çEÖ6åÝvRTÜm— KûQ;»ø¤'$ ñô=W¢ÓlM¦óøÕrć:GÑ•ôUÜß»9U==4<\9¼ÖØ1¶5±$"Å‹$ Ñ™´QEH6Û6meÂ=5d]jÈz3U:¬£¨2NÊÈ;vT•ùj>ncj68ü9E9Pô…ªSž í׈¤UÉ$Z*r²±±xÞ&µ6¹\Ž˜XDfmZüåjÛõél˜jÚùWpWlm¶V¾lR¹Dò‘|«Ô¥Š’y•y‘p…ì(ç¥Â¯¥åÉÅQÙªè˜^ap ×Pó."=j¯4qTsÔ£ÈjJØ[V «Ø™6,Ùƒ±¡æîRO’“Èm±[9¯èP)'­‰Š;ZC°•õxª½`²Šê"ÊŽœYTô…aRÿ0·ó ‡"L•¨ òd¿5-Óâ£â¿† \¨)ËRyŽ2™­šeÃ0ÐçtNës[„väIEŠa Ís&ºk–w#;®k†®\åWr¹%(®©.W5q5ŠcM&9®Žç€Kü>*_Nú¬Jœ¤¨¯Uñ¥_-ñ¸îè©Ê›–覅y£ó6ª^Ua/-d—»É/C”>óUSÅsÙm&Æ6–›¶TÛÉj6ÌÙ£iÈ$ü¿ö•K…Qt…iª¬J+ãMŠøIQ')*'Æösm¦ÕlØ›RU%fØŸ5ý]­m^UZÞîZ²ó½b¢ÂÐåÜ£êîwWs"îº<«[m~¦«;@ø$ø{UrJ¨ç(‹œ)W]ÍWS…S§¡êÈâŠî"zÂp!í¢ì8’¾NÄJŸ O[IÅ)ëTìPâCàÐòÕ8¤øTù÷×*\„»Bº©W/f¤8•^õ].W½‡X)^ìh®*È\ ÷äídâ‚è”ñÌÚÆÅžã»h£FÎë’‹I×›‘–йs»® –Ã’¨u2hN¦LQ×ÇåT>>ɶ Ÿ㎠ãd|wmEeC±ZbÊ®Åbލ^³QzÍ$]É?Üp¥„StKîT»’¾ÊoÝ\´£š*àÕ±ë·+;¹˜Å\ÕÅ×I×mËgvˆ±ÝÌ®ë›Qsp0*„˜Ôµ£F„ÆÚ¶m·!TœØSäŠqEKÓˆyËblÖÇ£h6ÛJØü¤•º 5K †ªtÒ¯+–¶ó\zÞèEÝš.V-s\Ôm(HåÍÝѹ]®èæ¤ ÊÝuÜ‘b,Zîí&ÉDkœŒë®EÎ:Úíj61°–kײ·–¬ò,SÈ­TõVD÷ÔSÃí¢¥ÈM%2ˆ¾ÒC¹s¶m‘ÛPG)PŸ…üùää†Ífj8!*"ˆ­Š×-r 5\«”h¨Œ¤†Ä.îÜç9´É¢-;­¹AåhÄQ¹tØÄ;ºw\™\× bÆÅ´Ti+’]к[»«œ®›W5HÚæ®îÕրͶ.lKŒ4¶œ”DñÅ¿JÒ+¶¿J¢mnÜÛšßÇ­TrªSª&'S&ˆê"Ô“Ë£"òr°^LÊ^M~𗽕üTåÐLS ´§@Át Eymyí%HŠ/¦á­¯cÜm‘«²&ÅvÑ\×tk•·*îë@®¢®\¥FÌ«Žî9t(ÚîÅÜD ¹ÜåÝÜÈÆçQY"‹ Ìh ‰ ׋U|FÖÖüöÛUüâî|†Ki¶f¶¶W\´UûaydàÀ“JzåV%ëCJw2žÐ*öi1NئÚÄÄ»t£µ+€uJ°Ÿý G°#….­U©]±¥©À”ñÀÕfÛyÍš*ÔFŠÑ¥¢•ª$X‹h ¢Qª3,f›Jà†9íŠÖÄ÷1(ä! Nâ§qzJ¢9R)Ñeî²QhžõO{xÜpâÖÅÚÔkykk^åkz^·Ë]Ýr¹¦£›nm¹rä\±;®.sr¹;·(ØBW9¬•Ì*æÒS»:ºA¢HÔ[“»X¹ckE‹cnrLs\î¶àÆ s˜î»8n8qq¸äP¼êZ£©“)y‘^yd¿pJ½þeErŸ™Ÿ°CÞ=îÑ6M©«h½(ƒ£í‰s(—ºÌmM¦ÒÙp£ßPÕOÎG}©±› ­©M”÷k\pNJWX–Rïeó6Û× _L©û¦4ÙÒ_ j¹$ó5ã¸&<™£2lŒ¶(¶5I¢Ë ™”FŠ"Û@hÔQM¢ÐTblkÆÆŒ6™³fËY³áUȇ~ø:–Ò-±8ðJ: üOÄSjÁé{(©sý‰/R[i³b§Ã"ä¥|0iCéÒ>"¸‘ñ$ÅOõê+³6Ið5‡%RžN„_±;-’ÿ •9i øê^ ydUÈ«BdÚÑÖÉÂ¥ÌòmhUy±mwF¥¹Xnj"ÙX4sq2Ý×;´t\ææ"DCœÎÜ¡$ž+_š¶ß?µuU¿5ªô³Š“ÚÅ釽­J8¥=ªLâª{Z¦ ö²=s„—C×8Dö¨v\Q=ª¯‡Å'âÒŸŠ‡â•?§W*M ™'¸¡véh/“„ŒøQd¡z _U '7³`ûÆi8ɘ"ÄVF‹ãmµ_sjÇÆââÙ¢ýŠ„r¨Ò&H~P©”®GåæÛm›U*ø_JÀlµU\¿.¨ÈŸë®—6Ù¶m ·|™_Û© ‚ŸJRÅNê"ðöm´†ÑŠôj`ºª4WR#îªÅ:3Rõè§¡'•8ãTÙÆÍ›Kbû…PåIÔ˜/{¥ÏrªJ5WÈM·4k'wh4æîNr»S»€æÍX¤\ÌÕ$Ø0a¶ ñ­W°yÌUæòþ°•ÙCù%C‘J>zöÛÊ{†Ë¨QUÊMQ¥ H¼^Sq‹mmµ ܺ%G;m#\]Û¶å²\wS»¢™²\×Nê]΋›€îàs»¦îç]Œrâ’ %ÝM2OãÔòÕ!ó¹B²©ÆÚãÔv™-¸¨³wE‹6ÖÖµÉPøêvñ[a³ÖÒG$%Û£·©öê*¹,"Å=T¸.Vµ¥±8§ÎJvòvûl.ß-›V[BSœZ¼b2¼ê¬]0hék+Э/>ˤh:ü—½{QŒ¨ùÍ‹*|e=5¼©­eªùSέm½{i0òç.Qss£[]Û‡vÜî㻢¸w#»wsQ¥Ë»®pæ+‹®Ë¸tÝÝÎȉW*é\×3%û®»·Léݹr蓈gtbì\òÛmú}­¿“VÖÜ ­SN¶FFz8Z½ ]`0êÔeÕ¤ËÍÒÇO'ƨ{¡læ•ìvÚOíH—,髤&º±j 4è£.‰<Ç,Oiéõ[TF—v¹'7DræÎê5ÌdÕr¹¨,À¢4 H*wpÛš5³º“\®l)åél›ww5ÝÜäíήîkUÊË^/“mòr:#©'‰"rÓÓ·HÑìqOyÞVÚéô¸qƥŶÉΊ,I؃˜|ÉŽÅÄùŠ=j8¯•#W¶?,ó•cäÅßɯ| ûú ~4XüiYÜ)ÈØê*#H›âE—Ä‹/‡MyK•[5–ÆËeñëqªÕ«srwtE±±ÈÅÌVáTsk–‹wv¨¨Á±®lr PHˆ®›˜¶æ®jîëmÈ4X¡‰;ªæˆ±ƒÄmͪå®UÒÑcDwnÎîs¹qÝÝÖåƒFËœÜÚå\Í·9ΙÎPQ£¶ÛuË)²FLbãXúä;§u•µKmµ/(œªN–S¨»9>ÀÎtbÎ[£Z¼RÏs¦÷ Ü/WÑÕz•w-rŽ­ub©sscE«»ª)!sPÜœã9Ò“9Ö»Ü^WÒªùMkoA6+e¹ýqœj6ÛG5Q.p^æÿ§bñ ’Ÿ{R?OÃlÚè‘CjÿËZÖó¯9m¹TmŒRhÒ&H‰,mèõÄ`"+DÕÁNh¬ŒlwU]Ýd–W5w8%Rb²’!55†ŒVñkØkò ^O^žÞí'·ª+˜h<—•éz˜"f@ÆÖòuÝg;(£i-±¬–ØÑ DÂ2ThÖ-´mlUcX6ÈU]ÛŽ$ˆ®T\¢åV1b×9ÄÅ!uÝ0†Òîîì]**æ’»®ÎsLˆÜ×(±srÜéuÝ\¢î—w1³æÕ6¸Û8Ô8”á6³9§G›‰íÊ»)[YmhÒÒò´ºTsõv´žvs®Ô—Ev²ªŽÔ.ÕGk5ÚÐíRáÑ—±‡ëÒ¼0Á?Sm²ýµ\©J{9=œ\åÈ¡G?ž÷0CdÀnî¶(ÅQkF(¢´h³#nrÆ(3 ’ "‹0¬Zæ¹µGwk¥Dºë™Î†1nUÓbÕÆåÌnç]s±j­›[GÕµ_¶©Ë©C˜÷ép«Ü”ÚÑÔR¥ßEW´„ì‘;ÄO}ï±b£ÐUDö^LÛæý-^ºós±‚w]årÛ—%wu\µr×4©Ümî»]Ý)»eÒcÈÜî×.Y9…¥ÜÛ»¹suÜÜrë£>]<úé#£ºÃïÝgUQï­a²ŸýÕ[ä¤ñ)TñͲå%3ß ß­†–Ò›O~6.®B{é/ò$ I{]2Ú¶ ‘ÓJòdö¡ÓG’©æ¯Ñ¶°c_eZÚßLÖª0ѰëÅæeø5©µW›®jŠöDò :ðIëó‡˜ò’‡=ÍpãÃmUµ KErUk Ë’C¸ÜèåÑN¹Œ¾`ýö*²Œ{÷ÅzØ#æ{É>þK®ü"zš§›¾8q´WXI]a;¿˜Iørvª~;h¾aW¾ÚNÔ>O÷"/h«àªNãElmfÌ5DMSm~‰E«ƒb×çB.d§G¸-™l[\W™QLwtk•ȱ¢Qc\Ç.ë¹Ý¢pÇ“C6l¯6´¥“¡â*ªwWù+ßÖelÛm±´ý*¢^™•WMOF¯CÒ¼åæ¾©IÚÉ}ÉìíµÏj\k$P£Xwvîk·-Í®‘*Z,wqÐFwN]Ýb°—9t™9‹›ºK•r¤Š,Q[6Lm³¢ûr£ÎÊzØli[emô)'ܪl#ùÿjm°þÃŽ7lÎèëºîd㸹r‘k¹Û®çwGq¹Ü'.~«k[õv²ÔafÒ{pƒ›ÒbÜõ-³jœm¦ïéOÅ—â¶CñRýЇ=WµKÙÊóa]_Õ$=G°’öH»B4OZ‡bcëùÀ] \ý¤žž§kªµí¨¨°úõ¹«sYXÛó¢>‡’Ù#m™[Kª+ÊÑÕ«ª:£Ùy‡Å‘=æĻˆ’ñI/„Sá%ö›mVÃx€•sßk©9ÞK›–4QZ6LcQM-Ðd™¹©\É®kš@”E®jîêîì€,jÆ‚¸\íÇvŽÌ,`¹Nººäîåƒ\váʹ\«©79]ݹ„QRP~¦ˆ&Éâ—âP=áˆ[lm¶›[…Æe8Å¿Tž,R«ãªõ=1¤Ú‹FÚ"’ØÉ‚3L0hÑcEcb "1ª¦¦Õ¶ÚF±O)]ÈÐ5SÄI'?9úñîÆèÞSýH|5ðô6†6§ÛuÄü¦Àñ .Mä|o“[mUËG$·5ËZŒ4‘b„‰ îí\9¢‹\ÎíNêåF\ΑÍÈîäK9Íîâ,UÍEr¦Z;¸EÝÜd;º¨¢·ÍÍÄÍšuË`ºs¹Ë Û8³qÜEw4]Ì®æGÞAñʵÇćÈ?‰â º“º“¹•ܨîîÉéê|$zŠ¿A'qW^§Â'ª‡ÁªõdüXVËf‹aâ(]eWY.²:¹Ôõ=O™æöyí³j¸Ûa;˜ÕÎëFI¢¢‹EQ6ØÈ”!µ|߃Hòˆé*¾>™lOØR;?ÁöÅí‰í•{ŸúîbTöB½•²…ì’»r;y.Ü£âíùä‰äyÞM¶ŠÄEF•ɃhÜW+–åH­Ü[M•;µHÆæÚ6´˜.tD‰¹QØn@î»mul‚Ú‘fˆ)†^…¾µ[1¬M«æ—w!õ%µ’çêíEÚÅv»²úÈŽtwšý™NWŠñÜ8ÓkqÁƸÂÍG k–Ü)2m"`»¹‹š¹s]×h»»rîuã• (Òk»¹·e¥ÝÄ»³ssR¹¹]¹QcXѪÿÏZÞƒEÂHº0èçG]ºODØYM—º‰GÀðQ²fÉ_=¶Ú«ÅZH‘z[Ž¢Ñ±E·*®lZ*65£Iºæ+— Ó1±¶1«›[îêåÙ¡qw3\w±F¤­ÍW6²Erå®Få«­kšºê²Š6%$ɶÊðI\ýƒ¬§Á͵±¶ÔèÅRý«Ž;8Ø«&ÚÚ¶ÍšI‘Q&ÖÆËe±¬ b,Qé9wwÜåpŒQÇK¹×]wNUÌSœ¢Ð‚ì´™.îI–^1@Iyu"òCú ¿OFÌØ¶K«+ÊŽ¦£ÏÞ.è2ml«º‚ô¥ÑÂé/#EÒOÒŠ½O,u¥?éëÞ–üj=fÓi´Ci{½ ^¼¤=ЩÚTîb¼Ò_ºz…Œ‡îU*äÙ¶µ›cBÄeòÐØÖ¤†BÖB(š$ÐRÐk_sU«º‰ÝÔ"J_ QwY±“dÈø|lÔ›bù(® 9z(év÷:ô|ä*¢ D0¢Öª3P#ED¢#zîºîù]¾Rü_·öß[õ«PÕ¤E±¯i¡/!x§ÂÉÚ›VÓi³i¯´acU’¨Ú¢µ&Û<´Uýpø˜ÈÚ SÄU+ôãÀÐVm¶ÓaO*¿ëý}Sm´Tð©O Jöá<- m²‘ïªz‰ÎÂ^I‰«khÆÂÚÛQETP¤£h&QX‹~º«æ”fÖøºÙOŒ*~5O¬'Æã„ã'¶£úÒ¨zøô*zòt²õêtÑÚè—hK§’‹Ø÷9MSl‡òª£±RS×Âê×h‹´’ë.ЧiUîžX¡Î`ŒTU¢L4Vö­nck]sh”‘:î»W:Îê5¹iq¤±F²îÝ©…qQ¦k›¹Ù+™n›¨3H¢åÆ9£… Êc»®WwnCºä]’:pá™›v•v”v‰vŠtJ¾Ÿ ºÕ?ð ž!S¸¤îUqB\°¿rû†Øÿ!J ®QM£h¶Ë¸Õ\i\M–Ñ]Ä<(Ε£z{jôm%±ëh2 “U8Øqkkl§Ð©ÿÝxx¶ÌÓi[U-ôxÔ¾@O‘´l’>Œ?.Rîêwd¼ü¬Mš¶ƒjSòÚÌÛ6l¶ÙÞÈïbõŸ3e:¿N¼þ¨›3m¬Ñ_Ch{ÚßÝí­óŠÑchÖÁA´ÙÛ6ÚW5¸ÜmUïPÀê? UÝEÝ[m°w[j¶²l¼ŠPòDkkй¨‚Id¦ßIk}¯\^¶;°}ÿr>u-—ÕÛj"*¯~ñd®Ô‡ª¨ÚÛmK¸),Ú°¢ÁQ¢õ[‰ɭʹ;Ãb;º›»¬ísŽtºé+˜[ºê5¢éq¥¶|:IóÑôBmëÒ?WîØH† E«Þm¯yV÷–ÛW¥ŠöOa ×)w%]Îm’ÛçÁ'¸Ú·×ßÂU"I¨Öص¨Ü«·¢íÒöðÿ•*tíêíâíÅèJô5IwqyÝ¥sšÍ†Ñâ ¶¼«_#µm|`ÔŒ˜£hÖŒj6MA1£Y ´›cF’Ñ“E!¥´ðÚÝÜu¹·$éÚçwW*¹ChØ¡F’‰Iiµ¶Ãm¢é«¦Ž˜é3Å=¼J¢KºÍµl«óR“΋¹JÎ Öý-¶¶Þ¨Õ Š"2lZ£hج†6uÀÑ®j¹¬b×7wksZŠçeHRîéw]r¹º,Wtëæ«–ç9œé*åÒ…Î\ˆà&Ñ«šw&ÅFÆÑQË—6å.Gu×v9k–;»b©¨,ZhÕhÑÐþ÷[[ZûJÚûK/û —ùåQ× »6C³QW™“ .~¹ùϹûŸ|~¦­™²m%Ð>zž†Øh¶yý¶­¶‡A_jñ“Vé#K¶7uªeh­’bBesrîv#3gŒ8×›õÞOÌ)!+¼‰ÞAû°“è‹èÅôrÁÿ‚¨ºMI9yµ³h¨±™›’h+’6ÍEIDT„ÄŠ/]ÝÎŽ®–¹s¸š¢î銘®Wk”nm®[»¬Nî¶åÊŽKI\‚‹¸™r.EËn@º]u×.É2ιpÜ廮ر 1Bî¸ã\q¸Ùø”žâ+äæˆ•’«ñö¨Ú1=<ª:¡º¡<ÓŸ{~iT½&É3FØŠŠŠ‚ˆ´F‘¡ TE%¶+R!¶2Ö·¶«~»k&“âí±_`Qø¢®’[iOUÖUèUñö-…ÓâÁìª_Wk+ºK¶©Ž‘î*=¤.â/fáÊòAøøj¶/¤‚»¨<ȯ„—¶ªöò{ä{2s°öâø2íéEÂWß+Ú'_²>®»·´ÒÙ8§£¢ÕÌçœë•ÒÄj6µDjåk–ÑNíÊw\"AÍÂwk›ÍÙnmÒ¸nšÝÝK¸£wr¡76æ6Ö5ŠŠXÛœEŽnmE-NÖ¹ŽäÅB?â­o°Ö¯°l6ÁûåJyˆŸL&Ù²œf6ü®ÛV·åüÖ®‹F€ F£`Á#&Š2ƒ2ÚÍ£c©OSáü<–[#ÿ"PóÒêN¥Ô×SÔûú¯kllW¿‹í§^£Öâ6£clcY©´5N‚ÑÆ•³µR§(PñºÛ®Žm[s›—5×rå±±\¹$ j‹W-Å  bÍF¤Ò f7ÖZø´Ù°ò4…ô*"+ðÕß /ú‚œê<¸½u^.½mN|v2^]vtΫžÆÙ´ ò;*ÕÆØÚÛk3kmkÖ"óª‹ÌôB½9.ú]Ò^™¼âl®1Ç2Ù´rJ'¨ƒµzŠª<åN¸=*=%O6 w2½Ä[fÊ6ÆÕË6Ô¼_n?•Ý6Ûhx’9|¶Û3kXC—±ç'qwtECœCÅIËÖæÆÐR'FÍRWsRw[nm5‰lZþ6µõ‘¨Þ“„Û'á/ASÏ«¤¯È€îhw;5«a­ò‹ë¢ntUåÝ•¯åÞuëU1°6øÞísi;·J»N— k—.jTbÅåÉ.‹šÅHÁ% ØæÝ"ººp¹®äuÚé;±Ò—7wuˬGMÈ6ê"i¬dM*1$—ëõÚÎ鬖ÞÑUÁÂÆÆlØ$¬ EùKZäPŠ_‰Vª½£Zó F5‹*1h›b6#¸©Õ÷l±_n¢Ÿ£àìb ^З¥(ŠþfMfË[eêÕødzÈx|­‹±¡ï¤õ¡s«³­…÷Û÷I^¡'2…{ý„ìÂtžbÎ'gÞR^ü¡]7ÃGĉ±›Cð"¤ø4{"¼ìG»Ø;]Šø1vÒ»ÊW«ÚQðCÚ©èºbÅ iëTtÐ\í³Ž,ö ÷…{ ®®:ºuuê'j«ß¥¶ØžÿkdÛ¯¡.­un­ätÊ]«a? s[Q¶l¶“elÆÒÁŠIX&R‚…ev¿âL'¿ãq©ÔT)øbòQ›Saw%v”AÕtZ4Ú§­]ª ˪òñÌñMËÛpãŽ8q‘´œÛ”T›QQ$l ‘2b§vª7HÜÔÌ©*-“jæäXÙ¹Ç]Èr¹×mt”j¸¹¢5΃ré\ÈZw\\í۬»®9Ó²]ÑØ+—î¹tä9EÇͱ°‰¹ØŠM $ÄDÌ›îкäP<´òφϺߺ¥]-çü0\Ô’ø$|0¸¢§†Ü!ú¢ŒŒ³U>2lm_ø Õ¼ôZ1cmm‹lb¥1£ŠJhØÅ‹ZˆÌm¢ªöab ƒAh¤(äoŸ´W‹ŠöÛVÅÆãk‰2Ú<:ƒÓPªø„I]¶Ô?-¶µV–ÜÆ`ñ)Qz¸¹Åuô½J^š??z¼ñѳho:?AÇ<К64l› P”dYD$mR£kãWu´´nî®ZŠŠÅ*ŠÂÖcm8Ó†.†ò€WÚJ\’xì¶Z§ˆ¡N}]0{™âS·…í‚õàédzÚ§ÚÉ>&Êš>"[yú­WMV½F£`Ê Ä#X¬eF£CEÒk{ÚååÀw\§$Ü®p8nwNkœ… "‰šúý¥~6li~76Û ªñ!PøŠ>&Õ_Ž¢: òµÓO)ü¾›ôbŸOMTŸ !f£ÄU)ã?[6¶ŠY,F4 d¢Éª6ƱŠ&Ú65&iØÑ¨²IhÒIh„3¸R)¶ÛÍÒòê¾%ê3¬d~øT|b‹ñ†Å~1²´¶n\j.5­‹ÉÕ÷±_‡Ä‰ðÁðÉ绫[Õô(õ•Ó£j5«”Ësk¹­sš!£'wUÎî¶ÜÖM´U¡rÅÑ2âtѱ­Ít×7-¹WÇwåÝvìéÇs˜ÖŠ†Æ·2]Ô\ÎÅWUÍt’bîîî‹õ­õ–×ÖUv’{Ê^Ê;T¾_a²|=‡×’SÞC¸©ÜQðåR£ÆÃºÚl7¼Š£ÅUªô´lm’BQAlZPmDHƒêu´qœ\qÁ´lÎ?öüJ«ñ"rʇfšºDìêu±ÙÑy«³ Òöt^ª•^“ª#¦º¥.ž½’:¿'V¤;’¶´›;%öèöñ{y=¼^‚“Óæ•ž$sBº,q­¸âáUÍ\®;»&¬t±» ®rwtœëºæpìîárAÔ&‚cQ®î¤¶¶³lîaÜÒw6dl½à’{*¤ŽÓK[Ü). å§A9Èœîbµ+Ÿòªû‘z-6S6£ß"UÏ×?y_»ÓlÛe]0Eî¨÷Cb÷Íkce *¹R“i›ÅqeÒ×w-¸VÓ—6¹X¦PCɾnÕ½ÑcQ E…··Ð[HªØ}¥A{ê}š–ËßD¿Ë N\:=bœ¯Ò­¡æ«­…æÎ¶SÍ]i/6ÿx¾;5RzZK¡¼åSï=,OޯȷÈwPî¹s¤ÊlRkr‹•Ís;¸rŠ‹(-s\Ú-sVÚåtD–ÒRSYUƒhÍ-ŒÉcZ(˜Œr³º¹s˜îî¹£»¹Ë¦DŽë£-›zZKúRSÓ%é¡Ð‡~…Ü*w;Gþô'L?ž¨ºxºu?z*½ñO¶[I±}„U]}.ÖÙÖ‹gÖצ­MIFFa´h4äZ3cŒ cLEƒ["MRPŠ lÚÈõS¹e©´Í…ÜÓ¤RžnôýÀÚ¦Ù™lØëJSÆt>cñš­èEŽØ´ë³Væd‘'wnáÆqÔ•ÞP^EûrwM¶©ÝbÍ£bו¶­_¼Ö‹ŒÈšÅTlëdë¾¥u‡é »ù²ÚRÚŽïÑÃR>žÌciGº-¯Ä¯¦[)4Ðc$̳[}9´ ”wúÒÚVԯĀøúlØ4l­¿•‘VµýÌF´2F6¢ýc(¶¦âÓ ž¾’\¢/#¦Õ²Ø61ª,5Ë– wr+3†ØÁìCö‚]Ì_0ŠvÄíEåÑzº/W ­QÖÂëQêhê…ÕIÙ‹ÖÕðg›Á­ðIæê’zèzäºÄ¼³•<žãIµm kifÒbE!Dl\Öܶ-¨¬VKAIM9Îî*665ºnTÚ§;ºNÝ]Ý.îB(Ô[;¨Ç9€’»•ÍW )× •¡ÒÆ®îÙÊåW6wgsœ.˜ÕÝÓ®î7vé‘Ýw9×v뻸»º¹vÛ\Í‹¤Ñ.äë·tâì[æ­|Õ_3¯™Þë~KúßWj¼­'ºÛiv{QlšNJ"éî‹ôA¥'¾Õl÷ô¾¶Âë¥)ï"wêÆÙ+ãI÷aßé²fÛ[R/jŸ.WÔ’>T{ªNï Ú‹e³[6©6|¼Õ_.Pó%fÊ»Xý%àc5Т߭ս­{V)(Æ*  ¬[F©–(±¨#IRI31hƪ-Eh¤‹Ö)¶¤“m–Úý„9¸«ËÒÒRð`|Áó%ò”ù[kRùIx”«GQ/–‰òðÚÙ³6Uùô‡Ht•tŽ‘sÑ*ñ8W/c¶®e¢¹hk#ŠÜÖ®âÙ¶Í›][«uؽ\«Ì3Shñ$'ã þ„X‡Ïªùù6³lÔr‘mk̬j!m2G­[\&´A6ˆ#Ec&ÊæË—wg];¥Ý×bšŠ.5Æl®2lõ>{m•xõD~¸¿e¾¹êžZ•ü…PI}ļ™y3Ë®uå,ú >{dj6>…-“®µkoÔz›^ƒxV¬ZÑ£»³‰nNëQ¬›\Û–6Æ9Ñ×p•Ís•;¬•EÍ®Wa ŒníÌj-s9ØŽc—\ë“»9wgK¤Õu®]Ñ·K—7Zv¹ZîV¹’´XbŠˆÑbd©#1­šl½ÈyÒ{‰|©+jÂÖÚ÷Ycd,*¬m%ŠZžnÝ9qª%Ü­nm‡33ïô±¦¾Oîø'hÖÛj<ÕAÓæ<ý_utwºçEö^µ²KFŒµX•Yb2jY1̵¯Üm.åGþ*ìùÚT™µj^}¦ÙÆ“+»… ùyi™¶Q¢vÚÛmãmzʪæÅuÍÝѭ˵•\¶œÛwU×LåÒ¹Ý×wE»µÍtäîs;ŽuÝÅw:ŒmÎÝÊæâLI‰€˜¥HMˆ£DDFHIX‰'é*¯Ò50ÐÚ?傞½^¾¢]„O©äâêÕý<6›,ˆS±’òµWA; §˜¼¬1êÊçzòºÿR§¨G=.¸¹ê\FÚ6¶Æßë·vÚ騱5ƒMµR1òÛÑC³£Ý´Ú6%²Û[E±µ¶m–Ô_‰ùm\Ö»Çu×s«…wkfÚÖͶþõ"¯::<éæ¿n_:¨î ô»lf.z•Sì*_ÛÔØ5›iq¦mG<‚>”æk-¨ØlÚ^; '«„ÚNæ¥æ%ÎÉ~TzZ½NÓ14\Í1mãj­ä³ÖuÙsshÚ"Ôb¬T™ ˆ¢™7MÙ¹¹EéZwnÉ.ë‚V(Îw9™\ºi®sÛ®Uv6-“j6(°‹*ææg]\Ü×4çnœEwNS»»ºE“ÝJJÝÅsr9ÎL5Þεìõìö½^Ï_¦Öß¼´m_Ò$.¡ÓÞ‡ëŠw4»•]ÎÔÙ²¸Öµ‹ì!¾ ï«¶lm&’Ùô•Z«É$XÓº×6ÜÕŽm¹ª-ƒ1ˆ’åܺ˜R‡v¤5;­®îÕEã»Ts¥®nî6‘+˜´UÝ»EhwWM£IHÛwIÔ\á˜Ú°Å©-Œ0mµ7&Éªå ½^Ù¤vj]ðƒ¤­ŒÚ‡¾•ß¡=úNé)v£õõ§œ’ª÷°æÊ; Y.ПQßÕN䨮ÒGqGiCéRÎX§aK­Uç¤v•=P»D½ZzŠ;ÒÎÁØ)Ü˵ˆ“Âl$øçÇŶÆW$(zõ2õ5êcÔÏOÌtL¶hÄÖ¾s]Ý­s–ê«–s•ÅÓ®Ç79Ýùëê>Zµ¾:ÖÚùMlÚ†Ù_ˆˆ•ÎROl½°½²žÙµ…údøÒ~.m`}±·%ö‚ß ÛkǧårFQ’Æ5‹MFÅs Q.ë ®î´jåÇ]ݪæäîçnks’¤îºwv*71 ¢±¢©m1ŒÄZ]Ô]w:áÍp뜬Š* ¿9µ²e|d9QQâÅØ?;/íaËCQ«Š ó5¶«{mWç6¤óç)ÜÕG^v‹û÷ú3iÃf›¦Êîé1bã¹Cö㊊ó©{4Ÿ.6¶O°‚¼ÕüѶ÷7í+Vú›ÍìouÎPbØÑеbæäŠ£h·pT¸XîìDæâ%¹¨Üîºf+tÎî$×5 —6冹·v MªJºææá¢É.w7¸jMÒÄíŠëºáиîº)9úqqNì¹tˆÛE¸k,ÃlÛcoAû±_$¢‡þy¶Ú[5¿ø Ê}™,§­VWE¿êªÖÞMF6) FÚŠ5!V"Œ`Y¥±LÅE£F´m Ö4QF¢ÑÔQ6©%ß2ç6e¶×ª)OàÔ‡õÑóq·Ù*ÜÎæ£WF×òû‹kñ6¢}½ÜXDôÃTúaJå}¦¶ÉK21m3IŠŠÖѶەHÖ×,V&JÀÛgŽ#duòôHëÉè‹«K§]}'^•î—Nœ»qKäfÚ/‘š[mkt®ýVEH–É^3눧RSî¯,K£vüW]\—÷›M%FŤ‰¨¤¬_%[û,^ÆÂ/±Kº,H~5…^5V¶‹QhÊSIEE†1Í$d¨1¥ F@™?Ö¾ÎÕû^ª®W*(mÍ“<8[ŠªßeçØ¬hÚQÕŠ6)UzëkÚ¸ÖýaE|ÙÎÌ“i‘ì©åª>§Ix¸Nm˜Ù6ÊÚlÖ 6!cbÑ) ‹E€bLÄ·™c‡Ê[ä÷EæÞ‹¨û’/¡«" ½$üœm6Û-…µ^¬«ÃAÜwYVmuý»‹ƒ†Øi³ifm®C–€ºø^¹É?§©WŒ9‰åsŽ8á³hã7qQiÅXÙÒFéúkWÚUm|ý©ˆîéü­ÇÂ>\Ž¢-'ÊÛcå¥/*T»%t‰vAçÇeKÐGe*óçdCÐH^†ì$t§übO‹¬ÆÚ¿Á¿Þ!<Ý'>ŠpÛ{¨ÒlÙÝpŠ"ãºë»µÝÜ®¹Ð¹Í®aQÎÚ“WAkLchÄ£F€ŒBG]Q9ÒJ&×ÒQu]œ]˜¾ï¨Sì”ì¢ì¢ìªw¥+âT»Ù/ºã‡¯¯‡*?^§eš_+µ[_[VËob0AÔ%kIl&Å®['qn8lw\bÔGQ[‘$µF¹W2wv¹\ÜâÉ$i-»£·ws…¹\ººìs·(9sœç!×.¹w)»¨¹tÙH!Ýrž–­*Ú»àwÅ;Ù_¿Ké äŸ#!¶‰E~´«r2Mn$Å¿kûÉ%ã©ÌK˜W³K¿Ûki²síŸ#‹6Oš;ÁTuŽ­Õ½:W ñÜ׉µ·*ÎæÅ0«‘œ9·:ÚÉZm+ãì¸ÖÛm¹E~/¼/K.¡ýò;b~*vÖßá¤ÝjÄ™[XÚ¶$}FÚú W¡£TbcFÚãêÈZ„–‹VÓrq¸×cÒxUÍsÁÅUœiÇ)¶f›3oßüÝ[°CÄ —k7ãwÙÍ÷Ãww3G>ýá¯qÝÝÙmÇâäÛi±[=p½r=u%ë þ¡RGµUíPò¤†«÷Åïþj6FƶqŒØ¶|Û ¯½C÷´Õ­Œm«=åkÞZ¼×É`É¢3McF±jJ1½æÚüÙ?\¨óŠ{e{hsÖ[k3Y‘ Å4Dh‰d¤ i1B#bÔ¶*4Ê¢Š‹[â–æ®]¢µ¢ÔZ4î×51œ:ç.U¹ÕÄé­ÊÁµd1cpÜÜØÖ‹—(¹ÔéÜ:\×,Z,î¹¹œìi׺ГZ†Š#[0H ÁFÍjÃk3i®œ:ëbþryšþ¶ÚÖù ugM=MêORù’'ÏGΗ·Òí­Zô˳»*éºE_j×ðm_±lU]ÓËm­kÎó¸®îîìîÝ7wgr룺ërç]Îçu]vítŠGws7r.ë©»’ìÎÖw ÜI$.º•ww];»¹Ý ¦îîÝåk•sclW5r°œ€˜±&ŠæÕË›sT[E´[»«W-Ê¢*)`]ÚÜ3º¹¦UÜ´éÛ–¢æŒÊëˆ×(ª®UÑ®[ˆ&9تQ¬–"5’,ª J*!h¤­û„O£ôTÐzøpÙ¾oÚêiU9”=Y°º,cdê¬Û|\ÏäQdOâ@Z7×÷]Ýr•Uojöúß¶ª§ÜŸr|0üÌ›6jlm²UíµêÞ³PLVŒEÉ&¦’JM‚ÐJAíªýµ¶ÛÛïúm·î…Šˆ§ðvåEÍ?ãã‡ÒÙ*ÙoΜjSaҾীªÚÙ6¶ÛG€q½4R~rשƒk ¶Qµê#ýE²ָUÊ…àí¶Âðsl<.N8}J¥ö$.Im³hÚ¶Z˜™H”•“Y˜ÀA^£n„Ûr&(´ir-ÆÒÚ4mp*¢Šç%×WS:ç;tgnÒ¸áÁÇf㪯ë¥à¶mà½Ü•]”^l^nÿüÅd™Mgì±¢Ðéåÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‡V}÷ÝÝÀX Œ¶Ðͬ "´Ñ[ 6Âl †³ @«VI 6¬-0lZÚƒf&˜€6Ö•L‰I¶Hm¶ÓZÖ[6°$#l)(ŒÆ4˜µ³´`“e`ÆDÚú©Ðvú©JD.À2ˆPP÷´KiáèU[Î<Þ”ª€¾À5@†š @4hU*J¥Rª©UU*”ªUJ…R©JR•@Pª•P•*ŠU)B”¡JB”¥ ©R¥(R¥)R”•*"’’…(TT©% T€¥RŠ(¡E )E)E (¡@€(¡J)A*U)T¥(ªªR”¡JQ%*¡J P JT Ò¨Ó@P€*ƒ@ €Ê€d@ÐP ˆ B@B€ETR*  R@PP€ ¨•¡J€€€ˆ€ Þú«À±[ ZŒE°E!¶cckZÆØlÑ@Z¬iI­ 2KEMf&˜X¶,Œ d«¢Ó¥ÓMXcM 5£f£-lÛa‚-†Vƒ6Ù¨ ƒ-š5&X¬S2Ãkh ›,Q ØÃ0‹3eªÀHFLDÐL¶µšÕakbFZ³dØ2±„k$Ñ‹JÅ£L– ™†Hlb Æ"B€¬-c2Ö˜$6£ ‹X$ ‰¬m•6 ™-´lÙ-€Ä(  © @FVÊ@"ÐHˆk@Ú͘ÂFÀÚÁh5¬M,µ™-€ «Q¶†ÆÙ Í–Û`6À°d‚MPÉ6m¶ªÌ[µJ€$Jˆ‚:ªŸþ ‘“4É“0# ‘‘£Mh €&L˜¡0 hЙ4†UOüŒFši¦Fš@Œ#@d ihhÀ#CM4BjcM4i¦M&ɤÏE=O&)¦mSÔò‚©à€Ñ‚ zž£`©ú7èÕOÓTɧ§¨BzOMM¨õ G¤Í¦ŒÑ¨õÓM4Új24õ0 =R¥ `"mÐÅ<„b5=5§¦€O#$Éé6=M ‘èÒzFÑ“M=)äô’bz‡”ѦÐ!ê6ІƒMiˆ4Ѐ €dR¥ OÄM6™ &›Jy1)øhÔðL <"z$ÓiO6„ô˜ÄŒb¦Òžžžªa¨ô ¤ÆjzSÓ#M2šzž$ý zžB=CÒzž ö©ê=M¨Ú†š†a¦¨•(“A &hÐÑ„È&™ˆL4LÒmÒf0ž‰£M¦À!¢›Ñ1=M=L™£S Œ¤ýF#M'“25LÔf ¡‰¦Ò‡ÕSýŠŠ¡ýš ÷6FÍ/ÙÍ8Ìq¿ëù·Íý.Ûq¹8ÜÛ‹à|ÞNNËù¼¼Ç/¥á×s¼´(*è¹y=.ñáMÞÓë|^M䟯ñx/îý?'y|—yfϱñàö+~º§7³öKDü߃óó>z+?ëÿ¾*áà°¡§¼eUö=°Ý™É÷Ø82ÞB¼äïB?—<(¿4UÒzŽƒöþŒëº_Ùø?ü¯QÕõÞŸÓó]vºí˾蒪—ôŒ¯÷¬«ûùN–+íÀïvÖÆÕl6¶ŠÅj+Pˆ†(ѵ´XÚ$¤°±¬UhЭˆ‰l’2 bRÉ¢»_…­ZûMZ¯õ5ü3ö¶«myu}÷ÝÆŠ(Q&!šb·àÊ‹QC]ÝŒEÜý³~ï­¶…k‡­»øÑ:BÚ8ü)ì%_™­Jä~|*ý'óM…É?|ó˜VÚ­¦Ò¿‘Ã(8®9J•çEÁüwüÚÁl~¥\…ü©Oú&Ôâ_¿âh¶Ùh›Aµïñ¶Î3†ÐË ùåÌ—éÊxú¿l#ùâ®y/@m³ŒãqÇ_â$ßÓUôl£úVÑÛT~ª¸{*A¦ÛfÊ趪vK•ý)ÉÑñFÒ?Z9“õ©Odë`ÿ$—øÕóóõ–Ö«éÔX¢ !”6=·pi ç󯹼CĹW4çm£DEË¢—vÓÇo[ÃmÍxo <:)wrñÝÝÉÃdѪ¸\7 Žmáìh©wZ¹VJ¼MsFØÏÕÞ;;¡+ÇowŽëÅ\Û•‹\‹»w޹¬VðªwW‹ÇÎÇxíÍxUÓLUsUrÓ:är«‘ÈÂåqÝniÇ 6;·#òN’‘\¼Ýɼ.ðºîé+±çU¯ÙmEbT?kÄ·>Ï®.èñÙm¸ßÕr[·(ºX_þuïR££¶Ù6“™Ã7ë×ì>\ÿ¦ýÙÿÎVÖí°ãŽqfÎNM¼èPö¯kÿWé¿ñ7Í”ûUT>/Óým9Úáµ±²Ž3 ¢µ±­¼–µ½ÛFj,h’MõÛzL+bhþ¶µÅ×J+ú`¼çôTÍjÛ6U²¦Åv“ê¶¿ù(_.ðg³Æ51oˆÉ™x5jÛôvÛÝÕú/4{š]4u’¹­­¶)ã2›Sm–£j"ŒÒh¶5AJŒZž—uÝwAHµE‹XÛE´š‹h¢ÂXƒ1Šf‹6+E´cˆ´—7Dˆ\¹XŽq;“2Át7w]ÅBa 9ÔI³Llm­Oqœ]¢¯!í¨éžÖO6öƒ©§u/Õúé8ùÇù…T»’õÅÛÓµŸQ«öuWÛ¶‰h¶Šß©¤uÒ߆wvü¾ÛZ¯t­«ÑHª6Ñi³kffkÊ/.Só§÷dþù³/Ø_ÌÖÖ¶9DŸ-?KPÚ­fÓFhØü\œjÌuçÕç«ÄWœ~„—¸ßŒIö–µW¿÷÷^¢5£Q´o;®æ«»«&\Öܹs\Ünv´ÐW.0Ë•ƒ6&Y£R\Äw!|U½ëZ5lh±lHÁTm†µ¤v-®QuÕ‡-ö®íüº­UÿÕ©ã¿§¶lþÝ ‡E–Äç´l5¬®V+4ë·.\®ètÜ.WM´ R‰:.ºî»îèg.¸É/Þj­¿½¿x´†ÑüÇÛÙ 6¨ªN*þºá§&¶ß—¾¥*=h]Œ]Wc²]ÔWKºõt;¢¯YKΟ¿þƒY–Ùúünf9¶®Žcºé²gv¹m¥µnñG°ÌO=Ù”êvÚÙ”¯©ÜíWÀ¨î‹Ã)ÝÓÃ…Üç(ü5-« kÐãŽ3. ú³INîGÝm¡IÞ*í+§¢sÛf3)´0¾Œë›nk]Ûª6Äæ­ËY6‡ ûQîv«Ü§ÍSا±¯bõÇç*}YõtßÂ’‡¡•N¯Ía°m[;ùű´ñmÉÒ”W=ã[cjPB$£FÆ´ºÐ×­J\å߸”öÕñÑ‘¨½a‘\\qß<ö»NüW†”ÿêù…ko2öótÑ´Q­,ÄZ%Žë´W*¹tÚ娮d¦”[»¥¢5\æ“›b¹¨µÓŒc•Ë ºå£XspŠã—1Í8W7ww] ‡;¡Ì’a‘úiªß”Ö³ŠÉo9)U9ݤviΗd;(õ©ÖŸT½»×­Ù¥+Ô§ÝGŸNž:xó·Žm‡w¸ãŒÍÆkݸþÅUv0v2v0ì¥ÙUvØK°§ax»°—Z|(õÙï5˜Íã£P6–Õ6–ÔÚ# ¤¶£lhª Ø6ÆÉŒPj6ѶŠJÖ,X¶+‹lÄ_46åÎ w%:î)7Kœ7kÆqÃYœiÔP^~=öj½#ÒOgÙöêžµ6o.3«‹~p¥wd¾ÅCðDŸöÑ;ÌÛDü8ï]¼ªñ+ìÈû}å'àª}<Ò§×#붯˜Úô%Q”ƒ‚¨‚ب¨ FXÉ‘hÚÉZƒch£X,XŦÁß9vávºîéÛ£ŽÝŽK²fë®çrú½k~»j½h®z<нIWF|M¶Ûmg«›ÍT'{w±ëßJºuÓ×OûÕyRËgr½Â¢]IÐRx­› “\8ÛN¥Ô¾'¤Š_6¼ð‹Òÿ½)|ÅZ3å|ÃßZÆÎjRsµÅ[VÁÒep»®hÛ…¹n1E·.“ŒUÅ­8Þ .–õïvý‡Ì©|“÷ xÁóä{,Ú­¦ÖV6öâltËr÷Õ[Wå6÷uèû·™:U]Êü»ž‚è16¦Ù­šÍ¬XªÅª5E`ŒTb6B‘2Š1TšÔEY-(±´F³%£h´eüºåW4Žcw:Ý;®`Ü»F]×ÄàÎ8ÜkÓUÕ×(¤ú¯¬GÖ#ÙEû^Uóã¹Ì\fNE*½=<=Ù=Ýpwî^î=Ú{²ý‡·ª} ú›~û”¥«ÛV+JˆˆÃa!$LˆLP[h­ŠŒc²î3 ¹ÇFì—9cb¹«•sWw[r¤îît¢åÓ—Fg+šîëbÜ×7Kr¤§tœÇ(Âҹ̈±±ŠÆÜ«wv®Vdnë’H®d˹ÑÊàX«–Ñ®mÝmÊ.E¦R\ªæÅ¹Çj,XØ””ÌI65ˆÉΧ\W.¸k¶ ɱ1}Õk}ÉFŠÙEÝ»qÍ\÷ÊW­³$¿"±ð¾阢 Ö×ö†eN5ŽèîÄóê(ü„ úƶÕãTž«[³C|ñO7³lmcHØÖÂb õ¶ªüÃüª®>õiÈLŸ{ÑÝÇïö].¹]rëkDžȽÒûzT餾ÛÕ-Çÿ–¶­äÕXÄ£QfJ‰©=>îâ.í—7Pß¶ßA|lgæß©P½bÚ<ÞeÞc· ­®¼áoó)#¸ õ´l(;Ò«çjÒ—¯+ËÎNkÆá¶ÖËjfŒÌ4b°¥4cL†Q¹¤ÖåÚ¹ÜírŒk»µ&Ñ´clîÛ•9]Ü%;ºXãºáÒ; Ê-Ë\ɹ¹bÅcZå£(#.㤹Ɋ[›rHÅ(ØåÍÎj*æ¸%ÝÒ»®×#bÆh¤dˆ`ÔŽºî'îê-mzìÛEu3‘+¿Ûµ¶Ka±GÌŲ6Yd§š¾b—°›ñ/ÀÔÕ%‹T ’Õï6ûÁíÿxŠ?x¨y½ª6ŸwKâ¡N¥ ?Ûee\\I{]eïR½•¼Bxãd=Ä} ä¿Dͤü\¥³ Ùy­)ï%ïé=R~,j/®ØøHï¶ÎI|…^>´>,¾š¨útͶÙá¯Q;‚KÀ?`Šrô‰\m³é•y«fÖÙåJO0½ÞÙ›\WÒIÚŸKõ£֞¬zªõZïú7£ÖÊq‘²m¦Å³‹wr‹nX¶Õ;©fî×5EŠ-¹‹"üå¶ù+X›XcM< qÛÞ*¥óyp¿Xúvßè©OØH¼x§ÿ¥'Ô¤<}_ªãY›~…@çÊöKÝ©æá–tévŽÌ:i÷T ×Q›mm6™\fÇ Ÿ”ÛrNÎ?eWeæèçÃØKÐËÕ«Û^JÚÑmµ²´m|Ú×5¹guw5FîíÜvUͨ$ÄPDDщb" wváwQ…ÝË»\‰rw:éÇ: Ķ6¬õiØ'`¼ý½KþöÑ6#j¶&Ðj\öׂJxŸJ¾wƒª¢k/_$_MÞ;Ç_¢Öª¼ê¶UˆË& Ö6ˆ¡%)¶Í¶m³ÿ9JøÐ}jö²Ÿm&¶_S{qÆãŽ5ÉÇé^T<ÔŸ^ó¹ó6µ½Z4ÕmÕ&Y#abI4ˆ2" wy"ò4ôKÐÞÖûK6l;üqœ\lÛ¿‘UWÒCþaж?‡%W.–Ͱ¨Ö,–-±£Qdh¬jJŶ*6I¨ 6Ò1b“¤!ˆ)%ɵ¯Ìškâí³‹ËJ+—áAð¢_ +èõm¨îõ‰Ö*ìaèÿ6}=U6­ Ú-F؆¬VÀùVùUò¼ºÕO ÓIú‹·O+×SÄ%õ ‡pK²Šž¾|ÕÀûø½ŠüósÎþÚÚÖù5o¾*ý×wz÷ŽëÅÞ/ÂÜ»×㋹œðª½Du¡ê…]%ÑeÆq”Öj[q¤Ç¨z‡»îé_`}-m¢nï“÷¢Eí)^ÑÑ+Ú%ûß VRfÍ¥²Ûwzn¼¥{´Pè5X­¬bØQcFÚÛme–eŸüwª®öüݹ ‰ØJôû+étÓÆˆ<âóÅçžzó·¾ÅãD_…ôvËçßR^¡ÓÅ›6Ú6ËE¤ÛI[h£ Da!&€É¬kEFƶ-X¢Æ‘6$›Q±MYäí¶ç*wk“rÜÚêd&‹$¤;¸®RA™ÞMZ¯»mXjc.ïmn6ÛmŽñÖQKÐ’Ÿ)^®¶Ö¼ŒhÁ%O?¨¹QQ\¶wXÂFGuÉ.];ºN]Ýt£Zæ×7wk–¹]32]×Ýh×+­ÊwW6ÜÛš¢,sh¹g\×5æ×*+s]­ÌîÜ«&4¹Ín’ÛÉ£EÝÑ–íqÓfíÓ;’;»®—\â\ßumµ~â¶ø¯‹W,ré¶q­rkï*OèH;ºŽï»ÏÎ/9Îó yÙSÅÝÉ›' ­¸ÖßÂìdNñÞ&侦ò^…µ[|KyÚÚô jccQ±Z"—ˆ•ßÏ[kçãÓDóצƒÏžšWQÑ.¦%÷”uW»‡·¡ìõ6´Uìgðª_,“ÍÓêÇ¥/qá;Höë­Žù.îJw‘ëq—{›1rñÜt~ÿ˶շ™ŒÄ("@d‰$Êd)b )E3a6“d35{å®nnš²lmM£G.Uj65ÖѨ·W"Ñ !D„£T‘FÇôu¿j¥/@>ú=ô¦ØÙM±wÍŽvåQ+«¬æØmmcEh±[Q¨­¥*5£HP1ˆ1­Qj,XÙ…$IXÖ‘‹ FhIbSmº¤ç$ë!ÎÛÃ(dôT:—¥}>Ë»‡zïpÙ£…õa#ï¨ïâ‹J=Ý'|©ÐÞ/~íøÔSâAóAýUïõ‚ëU]@ÚòÜ6ª¸ZãsjIF6ˆBÖ®2lÛ3fÙñ‚»ˆÄ/ÞùÔ½÷{CéU< m¦ÛOšÛßó—X§8çjW8çm~Ô@ôºØ÷U]l÷RºQî©u•îhëos'¡xˆ§Í…’ÓÑPR ZÈ­¶ÙîcÑ{š½²;Ú9ÅÎn8¬çB‡¹W¹Osæ=È÷%îG£Eüòü¬ÝöÜt+m¶÷Ú·Þ^´Ñ[E£I †Ml`͵&kÃÖìÛ¸pÇ ®>î$¹ŠXÛ2m&µ¯d£nXpYwhÙw9¨×3ºuÝNÐk»«¦w]F8ŽÝ×i';Ä]ÝÝØøš“ÁÆÆDÞ ®Uw¹›R¼ŸŸ@ô™’gÕƒœHí¶’îBô¥G*Ÿ¨¾žßOÚJ‘ùê‡äˆuè¯YW«®Ð#«»ÍÛkm¶ô»8þEWTXë=g³æ^WHÛQ›Eyý.¥ÜÀˆË»®›‡]ÝqÎÜwW˵¯q¯w_/ø•kUùjÞžÕ¿$cTŸÈëå©\îæ”ôZm—òöm[‡®¡.=WD¾««ò`žJ<òïµü5Ê]0¼™>6ׯÖÖq­|gøÄ§;6¶Ò±ØÈDLAÁ¸( C.î¤åë\Ú6ÑTd®Ýܱͷ6ºk™Ý®˜µÓ#]ÝÝÝÝ2Œ]Ü’ÆÆ1­Î»­tµwmsk–än”hØ™KE#P]Ý9:]ÆNã„LO•«o”mgɾT¿âÛb®Ž§î«¶Äi´›m¶Sy<6³2ã\qÆpÖ5õ8qýrEÒ£¥Ž–ñ} 65@ر XBÆÑÒ®’yo|©)õ'ôOSŨüX§Å†Ûm¿üUN{Ÿ¦µš²¹Âª¯9[hÖŒ*mE‹5&EZa“$ƒ>ú£ê–¾ SáêZ¦Žë3go}r{RôÕzezeé¯0<ÅæH^òçuEÿ"î­ŽëÌRÛ&i²Ù6›[FÄ[ÄQ±ŒÄQ%X6Hˆ,XƒEIOdîqÌåÎpÜÓº*-®î"×5r¢'uÒlE¹Ë.í¢·LrÖéµÊÍp“E¸æ#nWQ¢]:e¸\6ÔTZw[®í],mÍÍ®—.hÚ¹­Î]»†Å[8¤Å¹¢®S©6æÆÑEÍrë¹jç;ªæ’1P‘%×]»¹Ük¹Í~Ò­¯º¾*Ñ`Ã7u·Íÿf…ˆ‡´IëÒ;‚¯j|S¯Ø^ù'±Õ©z —±‹Þ…ì”ù{‹bù‘=ÍO‘KÝ/ýâyiOw^ïŽB;¹Þí¬ütˆð”½êv”Q¯§)Ü*x9 ¼Ö–ÛI‹%PmQ¬Z4Éh*ÆÔZMb‚ŠJ1a™&Ú‹#b¬bm©,’ÍôºÄà‹º\Ý\Ó1—Þë[Ö­^²×wwns ±Ãg«¢—/í*¹Ð|~sõ.ŽWß½©ëÝB¨ëÇO“fÚ6ó.3fmo.u:µªöKÑh­\¢µÅ2ÕÊIDmaÝÕÝÊ£»»¥g5;v5Ø»ýj„¼P¦ ¾|Dî[¶l»¦Î4Ýì‚vÊœ áDs4lÍ¢ÚX3öEwªÿ3àæß÷ÄOë|À©Ýël_m¸ËR©s5%†1”0 û¯×èþê:Õ"*kJá?Ì¿¿ýCýhÇôxÇü‰~åˇ×ì=m~sTÙmšÔ&bžÆ.Öàø..ê㬖 ×6ñºLØ©RÅ^<¾áˆãüÿå\.뀺žËøGOÑù~“Òòø¾kÁåóSÖu›ß*¡Ë¥¨Ù_Kp8³úô;ý„±ïô"à—’.„Ê8GÏ|x?·p|¸€÷#ܱè ð.õÊ©#Ä`žÄf ¢:Ä0Žù¤IóÑ?ÏŶ)ò:ík»­V8"Ôû€†àCp¸ã\CräŸß"Q±Çíáä$†±ÞÉþ#î¡.Ô” :ûÈ€„}´?û¤¼áÂ#i£šPAýÈ €þEÀ\ÿˆ:dr£d7ù‚0<Ю…)€`Š} ¼±—/bƬôYD€!Ã>!W¼¶Nfq:‡<¢¦‘¡è/hpð\¸\ü·.>½.DûóŒ!paAãê ö 7ø`h"C¢‰ªpT×ý-K=ùÂ+®˜b µ‘Ó\ËR£”†ÒÁR’¼õ'"`ÇH鈄 äR &:æ9u ¨_ñp¹ú‚\— RJ `lÏ)ï(©!Ý Óvádk]a¬”Õ“üSQ#˜·¢@ÍéGmz&¨$ ”~À\Ô4`¦hh+¨—ù÷šlÁS¥•-Ô„ßêcømmMÿ¾¹eªÂ9.¢Ø˜( Ë}/÷±‘q ÑÜX‚㥵ò_ý4d¹ú…wýŸùr"$”‘O þ‡¥ù¯;Ú|Ïã½O7ÐùÞ=?aãÞxòþ7Óþúÿ«Y10†­Ÿ¬mIö%Íè<§w…(JáÒh(w8ðtÏ´=BÉ„É- ê1­¦Œ ×ýSâh7RÕÔ”DBûzÕ1zxý­fðåËžµÀ\Š:r'¾‰Žjµ‡aâŽYÖCÊ¢Àƒ0iÈåÒÓ‡x‡•~Ùˆøs8‚€ˆŠHæ&ÞÂË·ˆŽ‚²ûÂ(\½Ô4£x(ŸRZXŒ)¡Œö•ëÿí•q‚{ÈÞ!b88.áóÎD˜É$ë@¨ï°¥hDÈaƒäÔ#B×VGv—¬.ä±Ü6Gâ‡Åxñ^lÂ$–ÁÍHˆùL’Œ´_V“¢ËÎvœÔd¢bb@˜k`Æ8`nè „ÿ¸B½ ØGÿÚäüôÖ¢wÂöMãdsBè”F¾'ǹ×ÞììÀìǰÂѸb£²xÝ!¶?ÆtñšP–"<*HY®°k!.m¿;-0;ŒltÔCDUA\®¢@X€D½mÀ(c÷öiþŸÊâ&lÿלxˆ€ 5 j2@XC4MŽkAoí ±”TøÿÛÍòÃyB˜yŒXÉ͈_’Lˆ¿Ògæ Á¿–9í ¢DTøhAû•Bb¯´^ÈüOæ4G{72ô¥@@ëØq,!CpÒ”8¤€‰£ìînºâ=aˆ$AÉ¥1†`A4‹1`_9ŽäFÁ<Œ›ì(»C-åc»@Ü çf’`x„#†P°*Û÷k‘v÷‹Þì†à.°!. ¸“ÿäϵï:b~’O&Nš³—5d¶’%¢ ܚЕë¼öÊðP8è¹âÒþhœ›Å pSLþLâÙ2:aEH«‡(ۛȸA2w]ôÛÕªr3ZAµcœ5ê(HªpXèç‘Þ4 uBð ¢àŒïŠT\o]é‚H¡}9 ™×Ôýö{A`":‰0dë#§Ä"ªƒ¢µô÷Ðé“þ½è‡dÕš$·‘¯6‹û$m3/úðXé'ªP¢mwZZƨXse4WL‡„ÊÐÇ"Ý\‹:gQ¨5²Ñ¼'\XIdrøé ÊÅ•å ê<Œž% ꑽÆbÂi‹>-”Å20¨U WQÄ<ÊËj.`$˜ׯ¿9Mº´RcŽìbr蟱Á‚áB ‚ø@ ¡hÍ,O‹œ!…Hf(~?%ƒ($°‘Æ-B€äu ! uáx MzãÕ{6YÐ :a00„ä±õ‰Ãgƒ.ŸÀ_9„ÿÿ(¶â¹råË—ã‹uõXî=Ýáy U¯&Ž—Ãn¡Ø±+ý´˜¾ð°!Á^ƒ ßÙækÆ„È`»¹'!6æóíÃ|v½†¬L¿h¥x~rxZÞ¾Á6ðTõ9Ó9ãæÕ—¥ú´¢Þ9ðÓ°þë`ÀY©¯µ7ë¹n+p_¿}:E0%ƒÎêU};œ£g)ïÕè¨þ1Nû§Æ}ÒQÛVcÇy¯ELtŽlX¹‘9Vêø|VÑÓG 5؇ [½^õ7Ex¢-ðÅeNŠL” ŽT–dÈÍ(á*;C lMõñw>:òEo¥ñ¥œl}Úý7eÂð±á-ùî†ü]ƒ¢—‚ؤÝ.y°]° ÿ5·¯Û3ÉÐ ÂÊF\>þ¯-EwPZ²FE2Ÿ#Ð_Í6ÉTø/¬ßdUKÒN{¡x*<ÖŸ&ÓÛÏþB+yR]ÇÿïCNI®Û%à^M–¥unÂK‘QU§ý"âÅ‹f6,ôdïÅ‹¤B–9»âúhèºÑxÄâäÝ"~1CfÏ«ßèïÏèmrXQûvdmÞ`5°[{ ÑØ&¼OÜÔx|eÎåŒî”M(¼ßùg4Óè`ºtS/¢ñÉãÍJ=™Ç³Ç=@¼¡ òÚ…D8y„#PkYG4ƒÇ«”6H‡«€N#ÿW°x¬¦Þ󘺡ÅS'¯Á^;½ÖÇ+8ÇÓ‰‚Ï…ü ®u‘ŒOt–^NݬÞòwó°æÂOGˆ“Âæ.° æftÓTÌ.‹-4%KFz¹3âóï©?nOM›²jñwQaòo°`Csp5º!€|7ÝŸéà¢],f•]SÉlÄæìý59½9ßù±@Xk£z‡ì±ßÉžßFÁ!é'X,Ž+3žíyÌî¹+tC,–œðÆ…ÂÊx0ÙW ÓÝ&Â/fåË€põhF:¼z«n+×ä¶{ú#D±**¢œ[N©Œn6ì—>VWº—n$µ„Ή(H“í¯$²QŒ [¢ —ÉQW›1ÇÉ‘s&Ÿ?S• u¾$}›¶·LŸ+ ½(c†JöÍF‹#KÿhÝ(²OlçªÄ@è‹0_>»Ò•Š@oUjN!? ̵þYœâÅm`¿» §Ð%mœƒ§†‰©†¸ñ…pjH8õW®œtå!ê$|3X(p?å}»P,+–³SÙ]žë_ Ò-µ,óÐ,WÌ»·ì¡ïR²&ø²`o¹CºÑz$*6ˆù/r•p®–δÞÎI W”Ñ_×8ì—W2®÷kÜÏ—êœLü¾õï³>w¿;ýUÏwm/ˆW­žåDi@ž¼av½È±Y~üú3úÙ¶vú5‰o«xöeϲÌóÔÈ]b,Ô#¯P8ãšcr÷‡~ÑÂÿêxÒV¸sOYÙÝJm/Võ’”=r­Øßq8žC¦Š¢Tcx•œXµs,ñ¶$¢-’ï°Žà A}6 +Œ@ÓZ}†„,掌 Ì}Æ]ü\º›û÷žJÅÌYœ!«( —pÉ&ð€ @¶ 0§2áô(^r|ú-gº½›Ø‰'y ÆÉ•wp€ ç¢»O¶SúáÈy ¤ Â„ƒ6‚œ7¤7Pô°X2BÿÏ œé‡ŠE”"0‚iåˆÄ„ÝQÅÒ@>ŒC ƒ$30´¾P¦ðºõÕ«ç ±7„Ž‹iqDK6ÌõÙüÓª@ÁA$ê-³0‡]h‰Æ¿³µ_Á›Ä¥ªƒ6¶Ú‘®¬µææ3'Øf¡,ÆiÂdæKyý ›GaÞÊïa`Uׇ!['2æÑìì ª,øÜ”r+P_L-`£°jQ ~ÜT(ކoŠç;ýY4Ñœ1Å¢ µ ¤äx·¨°O†ò¡I_è0³Ô«M%ê‚­ –/6[FˆˆC¤ ñœ ¤!¬¦ …ÞöEsFì ’xøñtäÿGNþ¤{=›o«UŽ€F™ª¸Q‚eø!Ña{HGWÑOPøût\‚šÇ/µ¨Öƒ%§d „uâèÃ/6 è—)ž–°‰Ä1"2à·WDÆ ïââ¢+ ;ÅGÉ|Z|Þªl=¬ïñLÏŒž)|ƒì=ÒCêx}q½T#¹€ËkæGœëëµåœÔ3L·ˆx”•¯ÿ[Ï‘K{bæØÝû_F~Z4XÑw¼åðïûX¯öiOFc cÓÎïž®a¹=ß}þ¿#×H®\Ô!`*Ѫîü°æé9”¦õ䈩PþÝ|+2y4"ñ¿ hÕІtž·^‡ÍZžªéÆ-á¥<’¡Jƒ½QÁx,mèAÏ´<&Jƒ" j}v'ÀlAÁ|Ôžd· »3á_Qy £Ïû‘ž•Èï ðÅ6 gÛ¸êLÐ:©9î9(i2ƒ–Ѐʻ`ú!ÑÀË^؇ɈxÇ9µˆ Ô`<²,R”“Šx€ËŸÊg[¨-/–¡ºv+‡»è|C7›Ü”¾{î'8:8tÿX¹pÿ˜ÜBŒ³*ØM‹òh›¤…ú4çýïÞôÞ®õñù‰ðZV!i ÀíB‚#éav/ÓÅŒlÔ‚Âó«[@á‰D ˜5lF¬V¯þ®GüHöÆn*ª„Ș]¡ì/  ª«œ!#t%kÚãÌú4ÌÏ3cF§€f2Ù†ïXöÔ|ÌF¡?@V²c?›¡N–ÍCiÜkRºÌUZO%ž ¤=ð:…˜•Àbd‡¸?xËŠ^êU«fK'Te~Mz©OìOs¢‚Áä”úì 4ú™Ñx[FnUÝš2tº)kY\]€£ÝÄ`sëJ©nfbQ@‹>¤Nâ> ‚”®¼ƒàh"êÂ. Þ(£Æ©]ÛŠb5iS†²ÑíR¢fˆñ¥lƒô¹yÔžÖƒgÍž€fÁX½µ¾'á'ÅÕs \$“­È/b²)‡5¯XL%jâÇhb´U§»5¨ãX¾ŸZµR_xDòx›K{š©œ®nžªQ9¥L—ý¡á’>ëðü6ÖÈÄÃi¶ð.°$1Œ‡hwúMG÷bx½œÌ˜±“ûô2ÿÜ? ‚l|†³XÝkÕ„,˜T-dÀxZkÉ%e„–¾fXÏ'¬@ÐJ´Tі׊YÜ‹©NšùÇë-è„@#Xµ8 c?¾AÏÐ/åzZÞùE²nÒm¯°§Œgâ‘öÝþ¨W—¢Ÿ‚uÌ0š0èxXo!P™"= £ÓÜk(¨¹½‚„,#BÈOnz.´|}ïÞõ>ÏÁ¡Ìå÷ñ>•.Izì°¶f†}5+º†Àˆ¥×¯Q+Õ“ƒÆÚ& õ<,TÙPÜåVFÇP )h®–¨¶Ü$ãï¤ã"¢ú!‹Òn±RÔ$+yb §žå‰hhRD×¶öt·´éC–ÆœtáÅuXö4¶…ˆÓ”…Dg«$V’Ôí¸äÂð˧Xtθã Ť÷aèUíÀ§ ŒGÅÇ3³º¬iØ™[˜\³|›<—¹ÑTŸÅÁêL¾} ‡õô$^äR vB@¦’"p“Úñ)½!©áÔÜà 22—f̵NŽÂ´ *YÆ*§¡ˆmÒw‘¼K>¶cÅ” ”MîåºÞEœzWö«°›±bˆ­ñ á @ãv\Tû R¸@lP±4Rì’½¦Å{’#!‘tb#_ÏÍÑ×/KW³ÅªH™ÙR"•`Üév‰‹uÿ&„L§g._N¹‘1ïS! 2&U¥¡Cý•ÌÃ:ëû}"B‹¶sf=1àH`m?ó­`µ«åëV+ŠüZDð]倽çUÿ&.Z÷ƒÍBÁË£r¬­YÏJ³ á2Y6ìõ¢$ ¯ÐíYìök"âÎ(Û|!um”ð(Õì‘F£â³ÒhNÌ£7n÷ª$¸E©^ àÈX•Óá®VÕµ;ã»ú¢Š«î¼,›<v¡çÅ`$k_¡8Î;sÔㄼ†CEüò·¢k`-k¥®XΠl³ îÊëÿûÞB\ä˜UÇ2Ð’ñZ sk¡Z»Šò3«tpÅ0þ{xØ—»ñÛ[e£4²léõ¦¥ÁÖ¾ûjvœ.sR…2‘õ0¤õîÞðZÓ©2q„ƒKд÷ëkÅn&î!M3ÃÖæ^ÕÕ5awµ`Ù·#gº€ô<¹¬ˆÕ‘vк¦RÕÑòáDAýƒ™¨ž…JÏ`Ý]3PJ¢¡Æ‹7õ :šlý«\Ò¢ž«Ö1Ï©óÏZ4öz׺Ía”)«÷y« ÕLÁÁp/g—zÐ+êEonkÑ!T錛…epð+‹M,›=r‹©';ÿ­`$æÂŠxÂ’\w!Æ­1õBS.fæU:*YŸ’ô›Ù†Ä†_¾øJY4ÐÕ¦å|íä›Îñ àwß´˜j2: Ú4ÄÃxùÉ¢0 GñçËÞÞu†åý‚šÈþOÓnÞ)™²í-ÃB%a†ÇÓéå‚)°~gëÈõÏ$˜”_•¤}EÒŠ‰Õ…âT€Ñ›2˜ì̆*¡ì哃vµöÑ0C9pùž3îmDô"\Ó¸Á¨Ïe|^…¨ÕùÆH Z^¦ƒW©â »üýçºl!Û:¸¸-¬v%ªÛÈŠÅ6‹A™4¨æd‰@¯_-+‚/y2µåó§G»À2‘®ó7øyŸ‘‡;]úæÛÙ~AÜ !•t„ Wb¶Ôç-`‚ø=Ue u[“ðü^ˆ«nX¾&ŸBï‹\–úÖ᢭é>€7ˆ5Kníùtå×:¸Ó{ײÐ)=rá&©óú‰.{ƒ¦¶KŽ™Á0ì{~æ½Þ\ÀÚ›×ÓÂk£—ý=EõíKƒË;gÍ[Vp;Tk}I]#¿ü¦e«±ÞøÀøßã~à‹µ§«¨‚¶²Õ´ÊÙ5ÿS+?Üå°£ë÷ã£>˜Úšb˜NüØzѯ‚Œð»IþRl÷„ _Ãîjšè'uÿ•ã1(ÐIRÂÐìKõÇ–<šzì‚*÷º…c£|³ñ$\9T °ço„ãØÔ´/&ÃÉ4¨ (a)}»ÛBé n…näo“¬^]IÀÍ¥x{*bKŸªJMB¹w3BÚhÝ|î‰ÄRèDé~û¸7œš´­Áê?š×#3…ÈIƈċ·µÎسHs¾Yoýv¶žêK8ð%­æÁ“¤+¢a¦FÅ»¥¶U+†ùuÞjÍÑååHŸkçG!ݧ“¨ò=;$xtÀÔ¥i[°ühY2òä²dCùÚ«·f¢Zâ@Ýp»þ=êmruvåEXZ¼òw¿Ëg,ú‹!¥3 É0ŸO¸¡ë'ºzËpV«\µ€ÕTÜP»>[Ý-ïtvÖW£Ñ‡ü’T!I4Bëõ;S-Ä|A‰Mèv¼±:ZùÑ~‹Ê§øØiøvªOTœŽö Ep ¨y¾€IšKVÇ¥ït‹0¹æ÷¬#( ²ÙC-•½]ýú[%Ö;W¡­ýSyIஜ]@ýÄV)S¤Ö`¹jq<‰Qõu¸ÏÈ^¹»²xäRXÕmË#̵—½ ë,ê ª `Èð ÞœŸTÎÛ5tî¼ÝÜ~gÀÁn{ôñƒ³þ+*¨Ióøƒ]Ó;Þþt©]Wv5Ò;ªõp{¼|·¾9ö,¦wjº[¬B´Å¾ÁTŒ`ãïI`C°@Â1\F­_6ö^ùõy¶_DÕæ^úG…æ^z+mùeµíÖ5¯E¯MrÞU·+À®lW&—ÓåÑê®óR®ŸÛ¡ÎvCbäÊñYN]#“UÔiÉŽf:ÍL=ÓÎk×=5oMTjöm¶ó½Úæ¯bIɆÔxŒØœ¹rhsÚS9šN0q¹98'?ÉÅ[WC…ÍÇ3rj®]NLm#ÅiW®‹Hs1ã2IˆÊ6#gÐÜ1&ñœKŒ>ë*sø^;*9ýfWMr`mrëÅdœš“—ât££ÓÄêG. ÙÏåâ±=Þ\šG.‹Ôx¬—CƒkÄcxŒ‹Œæj—Eƒçë—FÐ貺¼KŒ¥Í¥µ<¦æÔé2¸ÔräåÕɇ•ÂãS Êt9ÑäåÒrj92ºm.—?Çã19šNÇñ9u+—z9µµräÙ:.v—G¹3ë98ÎÌÕ½ϘZæ¼õ­ô/ Ñ[š5{VÇÖzn/Wì8xÌœÝv¹ã5âq»,t9yêù—…ofÚô=Ç[y[˜%Ëjv>3þÈ8Ñ3¯—6ŸÀa8œ:/`»ºOv‚q÷Sãà°-ÀœP$F¤Ü{—vMSo,J÷…@@’xziõW½¥39ñœžx…æsVÿt—»Âª0¸O4%Cøþ!üñ>D§¼éБڌ‘¢‘kÆÊ‘'Bd˜Dü¨$…¨´ˆ†¾ƒÏm_[ìÛè‘.çì‘Ͷ”{hÒ¶¤gtµ,8¤{y¢Çm(ÅYBX,Í› Ÿ Q8 Jùûšç‡æûHrÍwkç2ŒÖÞ+6/LΫº ïîÛ)ücÿNdmöZïNÜ.…oA·YmíG¡ÆU¹©¢Ö,ºð»ñ†œ®Ë÷«ðzÐ1áýÔkè DèÄïXéq÷ĉv#©îd “€ÇÎd €ÔJ&y² &Td5{ %.ÀÎIFkeñªB qCœ)RA—È1lEY-ÿôÒœbiÐ ¡õ£ñ"XêÍÀàÒìðUиbÚjÒ»î¦Ðcш;BßP Ý·6{34xò„š‘Ó(¤g$áEç8þĈlr¼¹¸£COpHoߺü@^»KÁJUý©µPqÑùá' H¶ÿ×­§“5%°ŒèâMÍ}#{3êS6¸Q³PÚ!‚‘¨^t —û¥¬Ÿ‰à‡Ì¤Ë/–•5bÍî×wº€=69>޲šú—õ:ËnúËLKV& Ë^¢Ê+ ýõãn'HWéúYU×$ý–w‹¥8qj«ÝàDÁìþjß)oN-ré‰] …xáRU9°7Efä`Œ¸[P™ä<†Å‹È"'ÜŸ…@¼² ü¡)&$bªR @C=­@þp_`Vy™ ·" .åÈßyªh^=þÕë‹äèâè‡Ä¸“5“¤xƒG3É`èH˜1̦„ûå0 ¥%7g">.óž·â"– ¿œôõ•‰öv¬ €ËBõ —»›Ï {YšÝ„¿QZl‰“Ob°¢CšØv Üñh·|i’¨¶ä¦¦^yDÜŠNÛà#y°CL£²¬&þ„qÌí:b×áRåvpîát©·žãÅžà>õTËÚ-ümÕñ20`6œJ7±Ÿnf  '@G\º#´"÷1 4Œ ÍdÉP÷E$gýݘÀ ´_[ºùšÕ4Xñ61CÜ×õ‡¼«q#¥š~Ç ù¥ÅÎhc£ã2M@¸Ê¶ù84Þx ÖFL«y¬¢bÚ­iõx*T×k´9U/ÓzäD@¬~¹ÜÛ ¸tÕÍr.V=ötôÉÎêTÛ«—¦ÿã„ç$ÐÔ›ð憓ø#ê !î‘å92R Ã*;ùX¾ÎcƒhÆfLI*£cŸKèµFñ¬z‘h‡gÁ™ÿGò"*`ÍùøÓ?À®ÏMR£š{£ò9}=[RÛñ_Ð9½&QxµÕÌ]ôKqž] 0…déÀ‡ZÑ3T§R 4cƒÙ]¸|ô¼¯§÷üXéL­ò$‡¢þ`z™ ÌõdKb´ÅEx¸l ¿Sáü‰xÿ¢?¥9¨¯.Ôneù_¤íõJÑ6_Ž­H±»S$ÖtúzÕãó M(­Øõ ’œU^D,ÞŸ—Á¾Cÿ?¯®9iÃÑÔ·ÕÖaîÚvá0Ìþ©ÆÃ­˜ [ !¿®ûR¥«FV@\üFÅ¥S‚`M„Á…½­cL­äR£ ‚4]r.Âç!º†õŽ‹³î^ôøç=µžONdC†¤«ëH§!¼¨q›D4Èð3÷͵ê°òúJ´Û„*OÔ/ÑqÝL0-ßXŽ]ÝÑœ¾3yX_æ%ÇÅ¡3gDI Í HJ¥*½û°o1=–ˆÑ”çÛ/X’ä.ù¸nk¿Å³(±ð¥Pq™<JÆýxsèAy? A¾´|\p‚“¯7ÒÖƒQôŠ2®†nŸr5Á)‚¹Û„3Ñ•Ú!A@ãä¼óõç Ï3Ð\x¤ƒ‚.©O±\óée˜DÜB‡š»Ç‚PÔølPjËŠ&fš´¨`î¿&¥ÄpÈ6” ÝNŒ;€·7²Eöé}|3æŽ)G‡j§aìÝ3 =2$³Ùõ¶ÐråÙ™A\ü€*s˜ರ5í„-Q(¢+¶4’òRP Þ¹ `<ç®>| -íRP* —à÷-3‹}J24êø½àðox¢]i޼Üò‰û/´×v² ߇/B˜ym c+0Ó.Ñý…ô·Ú…ϱµN^Í.ÝÄýc÷˜`ÔZÅohßkWã¾Õ r¡'Ñq*}^‹ø:¦HáÜq4áÊ€7°DËÒ8̳©Ž!h¸áÓõSΉô= ¸ý´P±ÑWGCSp¢üÁÐÛ|[ËAíóûï[õ7°=4ýuŽmý·TB¶÷’/¬%(ôÞ­M,iè­áð_©×§÷™éyºê>rÁḚ̈>Y¥»hx”Ô”³÷,Yx_ǯ—[L!¿üêSïié=º·“¦±[p>š-13HÈ eº-”Ë\*L”ò1zŽ% EK*—ű2èÀ7ɺµÎcA\‡½ûÖ†`¯d˜——/ŠHV*A:ó:¾uîCQPzÖe­s³¨lÐS}/B FŠB—ª„”¿wèÏ¿;­¾g-z’Ö·½Ø?…VâZ]»7—_йµAB« °×²4,ĦEh5j‹D ]mèº ûÙDÝ9å=­cÊÍø®ÝNDdÆ‘;c®`T±V(+CœõŒA„vkñ²=HyÏ­å8ó«%C=¼Ç^ˆ¤ÝVw¥E?ìóÁÿžß_O›ÉÜ §;Ô³’$°w`£>¡8TõÚZ•T)`€ƒÍK»YoR…¡#hS)@Â@ô%¦<åGÐ2„'èœ7ÁÞfî(;ͳ ‰¶1\g«°‘PVyÓ%VáŠTˆP0Κ ©¼rø=}üš-ÏÝz„È?-Æ´+%€ Í+vÃBÏš¤{öbÜ׋“8=˜•6¨™p-Z®Ñœâ;²ü 9u°•¼'콂™‡CjSJÇ0ñåY|7¿É¤}šu-y¶¡ªë]ZÜ}‘sÞãï#I\¾l³üþ¶…¨s)õ–µÙožY°q´ú]FÙõ°N¨UŠ`Vª ²”ø*¼ªþÙ{H†#/iÀÖfùÛJ1޶°Ý‚èSDÞ<žOÈWpî¸lêË4#á åIY£F2Ñ–ìŽÂÒy àŸZ@UÄxž‘óG'°aq(õÆï^ïˆB¯­ªŶF|»ÞÊýÚQÎ7€·Þ¶¬O½¿mÊÙ‡Ú½rè™ê'H@sN…,tç‚p&¥?rÔÔ¤ž¨üU¢V2:²D@U.PÎ¥.Á•›0JµÅBà¬6 @;¶S †v^Ö¬ÄYà ]N=+ïnnü6G6O ÷‰i˜ÁR¤÷BtWÔ‚…P5´À'0âpÒ ü*îicŽÿcâd(äÍ &›r$Z Ý`þÙW³r ‰^ó{S9e{ÖË’L/&Æ¥Š2¼UdhmWà¢á}‡öÏv v»y)—|( {‚yâPÕêïTE±x·!(1!BÂ[7ëÕïñõ{†J‡ºu½zË~ý<úFÉä{®NÉçUäªÊ '†hÌ·íͯ¢pòDÒ×r‹y§‡Ú®êúuÄêF-yuÜï *ÖšÂp{`@[¸°O‡íÖ£7Òjµ©frçt80>‹š!¿ÒövãÔïzaxÇMW°ŒèŸNUÆnÍCœ{CÓÀÐ*[‹€ÆÕ ïoICQÃ` €;XSdÍ1 <æB,¤ðaPñ¹<¶p ­‹eC;š(öï“{_Ú/{Ë«Bumáàâ«gÑíâÙÿã¬ÍÌײÔCØ}‡9¶žé=|½&ch÷‡êK}‘Á·UâÔ9ÕÇЖ.Dï“Pnß¶ù-O³ÑÕòCºôÙìî¹®ùmNÄ= ž‘<õ- †$ºOsʲ; ò剧Hhó¢ˆbj­¿Úò8ÉWEø> jq¿ow_;[¸5ö©†þ“;—të){ž¯Ž‹ÉÒ–ÝwUã¢fÚÅsõÞEB@aÒBHÛ†'Ë·æ®Ù©?^ËᇯqFv̬µåÖg‡dG õûDE0{žJ§:¾>ûЮò+Û„í,7#uü o‡õÝÖu‰ÁólÓ^å¹yxîΠ°Í´å ©"žãÚ“pÙÜ¥Ëθ@ëSÌdÝd¼5ŸÀQô F¨î&mÛáF7“K7c²øž¯ƒ®<“âZñ½ßOÏØ+Á*o˜ÌãµéÙâp’É(F˜ ÚãŒ`B½éÕá•ET ¨v €†Tþ}tëàä“êNöqçêʱáäs½ãI–¡§Å}8½ˆY¶>$FhBp…{;(G#_^«aÛ3är\Û»¹KùG·S¨JÁâ×Ð"AÌÀr]ø!]åÓvöX@ôŒøÐyé |=YzB<Ïèß­š±RŽ™›TK꾞š—;+ki÷‹™F4öz¨dˆvÝ|]Ü!CA¦I/¡`wú*ld)9zlؤd­‘Èá,¨AâÙx¨¢:¡Ws5È÷ù᩵;ŒX6ai"ú£DiÍáX>C-¼R y­m® >O$?>‰ Þ¡;lNNÐ}5úrô½R/Qäû¹cC»0—…Ð8iögÁ­‰Z§kf™0x‰ÜP ‡ ´þ4VTJ¤emXܬu”ì’½>– + töµ¥AÆ8Nô¨ôåöÜ‘/Ó+îÎÍ1™u1˜à4xêèlVÙ×+Ø IÍÚ/NäÇâ]ˆ;Mœîî«aµB½¯Åæcô4îw×è~]j v$Î!´4åËô†y.žÂÍÔd«@;Js{ä½%Š+• ]þ¨’²„ú¬´Æ˜ ýûà‹ ­­¶ž-ÔuögOéŸO/v)9C¨ÇóAV¥©¡ô‚/¡½lP$ðÔ” @Ðd_‡U3'>Ÿ‹˜]L‚­¦ð¥Ì^U(˜§UòX¢ér3në+«G¾Juöy²Hú`¹ƒ æ>\‰«;cwgB8#v¥žnðïÄ%:5„8"¨4¬hѵ¡ý³À³WOy¬߀ÿDÔû FIûZO¡tj F×>¶ ënd_8z”?Õììp9¯+Ì®Ý)ç0÷,‰•“ ØÖ£˜”‚µbžlì™PPÁ°™xib–Y[•[°SlÏ&aaÆßfÇ{j6n¾öǨwm.ÌaÂUïmmùüÎLr¤ø<Á§ÉS­ÁƒBÍ&®Ä“·Íd¾``Û¶¸—zÎîÛʧ© R#V~Yut¡Áí fÑd-1–Ž/TÙf%ŠLš#XfÒ’ðø+¯“”4+a…NéûÛäGat¶i&übtFºëwpÂ0óEÚ7j ¶»¸c——W=^Œß¿èý:¼Ð„ÕͯۓYWî t²1pM«¢´j4$ìÔ<©ïç C¦UªìNÁ&‚ é³ÅKf™aÙ„Óçs?µºrrôí+Óx"¯NÜðÃB<¹Ë°O¡T{1Äé;¡àÁ±=£ØÏN•Xi.ÚStì˜EÀ~4º0¥Ä2ŠÒá!J¦¯m}±¹tð%C ¶5 NnÄ^ÒíZˆ×1ÿSc¢Wxi/Ô°—½>Ë}è;ÖoN“+·"XøoEÔì§KcPN¯ô†–¶¢*N‚ÈÓPÆ<ÌOn'Ï«”S=’nt1ù¾lTçûy@& ÙJûNCjK‚mõâC'CXöêcUПæ…:?š6ž– Ïë¿‘dÝH#é5Î5c<Ìæ¯Ûî½ää©Ç’Q5áÔWº®FïzêOÁÈó¯ªe¾¡½µ@ DëuÈ× P8P¬Z³Ÿ k®‚žÖ¦¿1…ÉŒJ¶Æ®¬æE–"=;Cñ©PÝÌ{¸–ÈÀù]o¶Ì\ý]Q7’Ã{m¬âñ‘_±^¿=MZ.sê(iÏjΛS†»V¸oJ (W´6…”$k{ðº.OÆÙp9š·w·Œ2´Í@u:Ï_™½´C¾Z–‰6‡×ù²øö:ú1ÏÍn,ͼRD‰2,þŽîáI*®tЈ—‚›@ÛGŒ¢}#)霳 “¾k=ô1ó‹”záöôÓ9+U}‡Á·+»EŒ·›ÑTÿ mé\Jþ4âpnBÖ©‰Éz,øct‡—¨2d¹>x(‚pœ¥AbœÁD—D Fèí÷Ê0¢ô/䘖”*·Ê|j0|¸ñS¾‚wú•õ°ÃÈó7+g_±+ »Bb¯ª{&gª¸ø¤`(úN–­ )¾±>CÁvÖ9ïÏPŽØÝ¬ˆ÷‰aMŒCÕÓ^î¨ÃézWˆ›Ž´°ka¼éq…û;Û[<ŠÅaóìÞFNëÓ©^C]/[WŸiK£Ö#±È`{v¬QÓ>«Ë/é^(›å¢°—êß|]§ôÈ ¶Þ™æµcjDEzÈ-·a)˜û.Çê«;_¼ÿÑîÌÜ ø)fæóŸ…Èúåš”»ª=áÿ@îÛs+ã¥MóÑGë=ËKrn€Q¬Ä˜5riéYÇr°½%AP¬sðôˬ@G‹ÖÃT1wŒ ‡«À€¥Þ¿õBôs3¯à¹À*ô|jWoæ!àÉV}§©°%bÂÀ•³iñ6ë@¼Žnžç„ÖkÃÁJß#QN¬ÓLQ’íʧ ãyƒg“€dìR›&±N@äözÿPáZÃj·)l6Ÿ²ºT^âð’’EŠ–ú¼êé¯^ˆVQ#Ô#x‚€И#ÅçKŸ6|šÖ&Ý›mXr¹ºÅÊÁƒõÌ]nÅäSÙy2Ë×ÒyCícòíj¹i '*´ÄÞÝ«°Á´4½‰91éÙ2•],L €þÍr¯Ÿ–ÝàD€ žÉ4Úa™¿‚cÇn ýý"t´ Ó™ OÕÒrÑæVú!Ÿ–ëÌZ”‚™IFT4eƒ6M0Ô Öìv‘kuêrí 8\êgFEª ð/–çбۂޜ Au>e´ÛRŽƒùŽí¿½–ÓJͱ®åÊPàcójÁ·59ÂT›Ý×tÓ Ãú’2苨ç ÏÅÀxŠr»üëŽ ¦,v4J!Ãèb~B¦¼-(§zõ=.fø:Š|~ž ?z ;q´Ð¹#VI“"·*¨“Òb<²ê'Õ>F€ÇŸÎRC@s’©Æ6†`´°§=4 µ„‡GãXD³A‘öĆÈ_pú’Ušø–˃¼U«¢9,Sqïlöt®ïá·ËŠ| Ÿ4ëÿ&jèoÄ׆Ъò=š ‘D©`qqD•iô[+œD,pY¥‰Cý58C¼ Þ”õÐ$â ô…?cY-ü¾!VÀ}ô‹Ûµç\ ÷ex¼ø_‡çGÇÜN ø n+"x9Ð"¹ˆ¼I§ÈZYŸO¡ßaäC2ýÃÜ4_¯T÷MYÊ1Ç23)™1ñ"Âw¶ à¨Öùñ8D¤XVØd1-_Gν`íW<­­¢·}QƒêM—Öú•MÊáÃï“?]9ÿ<È? šO«Å„DXC‰Aú<Äå–ÄÈ”$`—vé‰*'O áˆNg4ê!. 0Ç¢tÀáóÝ6¤›õÉYß—’ÖEŒ üUÓ]j®¼>õx4—»óeh£PÈÂb7j<[yøjÅF笓/‡E °0ÖÚ(Ê¡™ÍãJ:\¹SƒÙ†–‹çéR{>áœú¯ë?²¤âRÒày´œ­`¡ð¼ÐpuŠÜ•®'i o¤§te”ÒåÄ–üßpÆ£E§P.¢æ aMÐûÄëXŸÊáuÈ-†À´Î÷€\ƒ:bA¥W¨ýíñÅ~3SÌœ xI§²nâ}}ÂEÜ£_ÎÓÕFx…jûͨõÔwç§rÆЖù”š{rã÷`uæ•L¹ÎA8•{¬(§‚3>ÒÂS±ôP¸®Þ¹†šð Ï…Ö"UY5À°ø^væ¿}²ë½~1×»<·Ï~šŠ¦Wk«iûއXu#G›5…5KGlÅRb@ÒúatåGžbi,r§—ëàdJ~¤»;A™«ì<©z|Wk—ýwÿ+œ£«šVÖ´ûvB¿=Ÿ¤R·7¡1óÙ7ˆùø‘ÉkbÒ®%ž‰Sb~ÎΉµ8ì1ÃÏ5ö¬@G¨Ä]Á"º&ót¦®<Ö)w7O³N”h–ðs‘(RŒd×ëD`c–W} @ÝMò9wX"VÓÄ=5ý%BºšÐ¨hÔµ<ü™¨EÌ®E|PãU–¨TiW°=bÉ]þ'/‚E†’P`Ñ9Ìùv±=Á(@s€n ¨YFöWñwúª£8]ëñ÷ÍÒka "74Ðù‹€»r~ø«/ kËCKæÛ{Ôî¬uk$M–:é>~ lÛïrö~Å·þ¶Žöícè™ë„Ýø¸‰ÐN ]=HB@‚¥RÄ ÈŠÓˆ‚í ë§,7cfÖ‹l`‡'†u$Êo:fBøt³+#ÃŒù2ØT ÓN‘MkHLvÖù=wŽ‚Q“„2'Mž™!`ªâ* 1Ap$.ú>ýxâ‹b† ¹žR÷VàOKЪñY<ŸvN©§Ü™^¹í§Ö„r¸‘|Sƒw ¾[C"ò@Ï>Ä·ÿArù‘µ›ÀTy#6lžÌ¾~•SñﮎÁ@G|'Ä}p øC1Τœ~œˆQÙóvÈm½Z'Ç]LJH—»5NããkÏq`Ð@)­õ6#ÆÏáø%ÇüL9c½i=}ÌÊÎõ“KÜ\ÊI_|¶Ž¡hhIoÖ®È"„p/ÅTÐ$]ZSò¯Ë@˜#öŸk—Ò8˜ž(ò6Q¨k|¢ë {†{vÊ&Ò“úq:žÇ¥’ú'rHÌåIoúë~b$±–Á>_— =ºžZwcà+¡×ýøàN½â¦±­’Ç¥;9™õ[^B_Oz 7fàv•‰amG£ŠŒZK`Hâ™(ËQ@^â¹»˜ˆft¸e¥PEó¤ŽUÝ×¼póaôQZ>M“·'ò{¾v^ûŸ]ä1ì¾mùN;¸*‚Ü©]Í·îN“ F €½+Zdc6 1AI²J(wásîw5ÑbØçΟ)µÅz­{‡e7Ñ€<6Ñ4JWeüx¥ÁúC–ÿ¯œ.ù¨}¹¾ƒËIúÜ2þxŸ6ŸÈ·FbQ‚‘Y‡ätGgçÅ’Ù^*ô)W-rx0T°‹{ñXÐs Õž»XÞ’qر½æ‰ªE1Ϧoèãv[ÎwrW^®·»È/²W^<õP™¼0lø ô ƒ~Dɽ¸°ÀЃ¡ï; ûùuŽhfÐMÕmi Û'Ö~¹ÓÈ¥í` €ašž]`'¢„CM˜ ™rè£:1‚~)È{á¡;\(.¢u“|ÐËö%’Üé1ŒÁ!/²y‚@þ Ú-.gÜ¥¤å÷D}ßÿº¨¡:B@‡bU?GLúôèl׃ÅÛ6Å81áBuý!›ã}Üh6–=ºä ƒy3ö£Ñ*à…ùŸU" N‹ðs…z~õ8–ýë§÷žFǤ˜ÚÕcºž(ìG‰VFø8Ü´ï—ŸA,6,ßb~ÃÒûÇæùzÌë›L0 +¢“u*ÅJ :› ŠK,h ®—q$ÐàŽ‚‚¦zÛfËn[OGx ‹a^ν¨±œ“žïR¦N W ]£¾£¡Ô‰* ³FlØÊ=+ ……™ýÁz)Ür|z„`@_á ¾9dÆ„'k°„è£ÇàÖ—êoèp9œ£õÃ_ؘkþ΄{ °¼hœBÒbÄÿŸxȘٮß/Y!£Ì{Urç\½íNºç‚Z&á^?œ¸· ¦L%#Qòk«vø³auœHwãûHOºAo?èCÇ šP~¹—‚WúäGI6™»Ïü²?ú9 w` oïÑw2þÒ>»¥ ÛëéŒ_½h>8’Á|9`·{Z=(×Ff€¥ƒB¤‰HM c”aŠëGÅÇcò 9ÂAõŸ+G ¡×úu2¨DuQHèHè$Ùg S0›—h« «^%Í}Ó;½’Y²Þ>m”Âx@Û¹™àùs4=zþ[Ì—€Y×&fæ[¼[gÅ”yi=QÄ×ÝÊÍ Šð”ásÚ ½¬‰F*…c“å€3÷$‰ù¦ø4¹ü-îržàé1W&eCôCȧ¤M ;ñ4ª¬Z·†G%q'9ø§Æ‘@yæàÇ.ß¿Q4ï)D$ŒbBÄÚÄhA[|;d"Ñ6ÕêØ ¸nÃ-4dòÞƒÂJq³dá7¹Ç꾓[æ©«Kãw¨¶‚û@†ÐþMWÒ!ÛÞ§ ZO…ݺ¨bÎ ˆ‰Î_ IÁYÍœbº9hJ°¼öÔñ…ƒ¿<ŠÓÕ@M"J%3…3Žõ©ª·¤]`­¼Ð:Dl+Ã{œr¡èù±ú‹|,…!‚ÿ¡¾½Ò=ѽufÅŽp`¦,ᨒqO™„d¹h‹8ÌsÔ‚¡‡`ö,êFW­ NfPÁCöÈ‘¿ªÊb$˜@*dxõ„P‡=Sl˜qéÃ í£“Õ®O¸Rñ6[ëD>Ç$Œý³.3.<¹ÓrïêÕa±Y©íkÒ#ýz-Ù¾h‰H äžrÍžH2ß!Tà1òFA¸´Æ¡0¿Ž˜·ÈÎ5ûc©ë ùœ¾¯9œ`˜ä€E [žs?¡þ©ÕgN|XÉþE²Þÿj,¥ÂlÇ=ñB!á `Zê¼êˆ# B–2• B@ê¿&ŒfÇö &ê'f8íÿ£Æ[ÿOÔjß§öÅ ¦ôh4–„ûá©Ûf†Œã%Ã’¯|ð¨¤7?Mw½x)ÑBY´øòÏOxg6ö–m|8=(9™æ3yŸÜD´\ÃYþáÎëâñ1óÂõûG‰(šáLX¯& *ÀðŠcè ÓôåRŽMOÏ8YÍ»—W^ ijøúüd£VŸ~aÜîmor=[qÕá‘ñTg+†0.=‰®pk68ÔÚ€àĶ{ί2…wú´¯pf®4Ÿœ¸”DÆýeÍ`a¹faïb­ËvÝ–[ã`w¾,ð šjp»‡¼˜iˆùÏgL…+-ºÿÝfÑÈ˺HÝAï5®b‹Q·7@;ø¤&ý‹ØÎ»ï€±¥ž„¹¥âŒâoXYì˜ãê3K9x_d¨ÌwÝ™+6Ï!¡‡ ¡T»>?ã—çÿ‡vkìÂGJûð[²)µ¢J¶o|Œ6#ÚÁ!™¡É¹m<Á³9 x˨ã§Ä0ÈAé˜R<ÔS¾˜vž-‡Hä(`܇‰oøNÎ ^›ÞnHÙO¹øâs¿¥èÞ=Âß߀rÅz!²b$*dÐŽp‚N”Ž^õÎçäÚ‡T¯%q<$‹F­plÝ¡`Ü:aÃ_”hܾ†2Ï2|£@Õ~'Œ+Ä×:`¦jŸ¾•9í“Ç4\ùÓø_ëÙC#NìÜNE¶ Ã÷Ñ "±ÈTSèý'룕öª•Pç¼TÑÕÊ20R¸T¹ÅµHƒëyVgµñ‚?#Hz¯±¸46IÖ K(Ä7â9\†×@†DcBK\»t¡ÙÈé#q’_ÑÕT¢jk?鼯3_³÷v5n™¡ÌlHáâ}¼¨IO1nÀž$8®O_49Ùg´Ù³e :qÞ©TÊ`[ÜsG¸˜âý8:õì]RøG0Ýç…ô ³‘’!Ï5Ö‘Ï>)å¢kÂYÀ‹¢sa"OAä×”WH²f`Ož|þîDª·vÏã<.ÂpRj¾Ï1¥‰'xvzI®HÂášSÙðà¤{#†?}¨92l1ŠÂÓ^·9¨Ï@aØdRn5äœMýúªÓÂþÇ]œºÀó÷§qÙd5Œ¿n]Ùæw Œ[¶G…"«N%]£1~íßVINû„¨ÛO׌ýä?Ú@òÛ§œ*â‚O*°ÝdY: ÇáPdFXûN(ƒßÁQÖãZ¼R´»Ü´FP+Õš³±Ô$¾ÂªàqR­¸èÍ¡>ÒŸh 6 *¬ˆ Â9õ×¥Ï2à3Xx 'X“+ÑÙÙ‰ì;fÜ œà²~æÓ!´¯0:“‡=ÜÎ#sîÀ6<ù¤Á j2½åRZà›‹,È€‘SBnQ4ºA ºØ“5Z3Ž> †é;:掜†–`t^'6¦ÍPž`bìçðä~“ãòÝ7c¿ÉÁwàIÞ&LÚÅu¢ü¡óåÛÑÓ€Ûn這܆]ÌnXÉó®«9G<úÅ>™jnâ)` “iÂT†z}óžB`Ÿæh‚À:ع fk$‹°GÈ[djdù¡IdGPG¸ßÍÒ‰êmhÉ“è8ô6ç x_É®»øGäÌò4hƒEŽM@•Ê(’¨æ¹¨ê 9mƊ놭uΆi’:U)]Ư·µ >i™MdÑÓUåSQ]ôÞï¥mÄØG<$»1_KþÊ\õP ƒª€g.£GD·dÏû=©shÕöèûÓåàB@ P'eòÏž7ŠãÕ§Ñ(²? A×.W“°ÛCx‚Œîi_á¼– Má"£ý_›óôã?Áú;ûd=XÂ?ŠÁÝ ÛE³1ó`V÷C^­Ü2 RË“,$aQºH•‡;(Á÷3ÍîuüÑB¶Ì:|çyôþ‰¹êhfW÷Ÿ‰ÿœùƒ„uêSà ^Ô&äùµ„Aš²R‡?1åš¼ÁÒnD Bâš4ˆR 08ÅØÁŠÝ‚<°Ó£­;Ôt¹ä‚—~>–RòjãIßNr‡j®1Ä=%Èl±Xi|Ïaø`™3Á4†Ôüž¢Õ*eA¸p=@÷ìÞƒ¶ÎÑfÁ‹^Ý:\€ùRÌ_v§…± Aˆ[´nŒúÁƒ6Ë!€„œè¯8â‚9¢%>*SX\€ Cû± qÈ~Ÿ¶ÞY²Ñ*_>ù~ÞïŒh1ú†M^UÃ6D‰@2H¢6rG}:cá༢M¨‘Ït˜¨pÓptñï–-‚ '¨"M™@QFù_‹ºžªµ¦œEGF-NûOÕh‰Sœîšþá @×ã æb1ÎÓaYWEÑ›=Knlš±ŸK¬küÐ2eéKÍ3©#у%7å{=Ùp}”utå7¶±Á£wk«ò|ý¸æ?™ÔvwMÑic¶™"¸Þ­g@gF‚ÞÍÞ àÇÂL)ÿ—^dïÉ·YI†MŸÿqÝ21ÀU—R<鍯MI0\>‚UjNDðÝ¢:™š9胡‘¨ƒç[ÓÉ ]<0¿ "M0‰}-ú‚®Ö<9Ïá~øû»í,¤oö@×=´ÎX”ýGš×ÎNp°z‡M–¤£Ý0ù";•ÌÊ,´J:4)š_æÔP“£q=Fõ}BÆÖSð Ϋ® @L€7ë‘Èš}{gSªj$ÅÊÙ²±§0CàÔØõ‰_l)¢ÎC^¹çÀ}½Ü¢·wØŒ6¹žŸ2à%€•ÕL¤áŠò"X*¹*2è D>‡ðÂqðÉ¥\K6‘¬i„ÀQ€P—\†xÐïØ7ø(=¬ ðѺ)$',lø$2už¼xb‡@{}æÁìÀzŸªp;{\n{¼'rž(²/8¾®Y–I3ëf19Â85`ÕªéϼCÌbϽiÛÆFi4,=b @ƒ—V¬ˆ9A@70VAW‘p’úƒz_¥‰ö·p• ‡DpÞ½Të¤WLO‹âG‡—ÛšÙh5Øêù ,øðûžðÿe¥y±ãCª$üÀ‘äª'ƒEˆ€6Ø2çÌK;0Ž&xŽ4øàˆI¤Ÿ»ŽÙ mêy{L¸+L€%‡R P,bö¤ gý°” šÄŠxÊ x¡“!×o•çÝàîpʪ î¹:“Vò¡¿àMò˜ó‡š™~Ü©ÀT7áüÄD²tÂ<©†d¬Rmr݃¡:ÊTdHUd®nÂ’°õW¤Y#‚© K§u3Ôjµœå…Õîó¡»] òk™YâC.ÔCM&´ÁIô?«ø½×ú®÷šòúK[úß9zøm‰%™xøW—~æí3¨rd¸¾®,˜á[ò«jŰdÚ<§ÎöÐj˜KaÑA¬ @'̲:^Õ¼ÕZÓd›dØô¶ HaPøXÁ`p1!& ã*¥¸«áûÔ_öbtWß¾Èù£Å:Z ‘Þ.JÐÎâ 4Ÿ6 @ƒ’=Zõî‡4ÛÏå>´ìö›+)¯.Ë£P”·Æ¤»nš‘Ü${ vúœúc[¨†Þ.0—‡N Q·ò¾8o²b{@þš¡ûüò»ƒ4‡T³='åÒó°Ç›zæ«Fd›¡É4蔤øÛA"•P39Æç  `nÔ7B¸€¼¡! p.᪴ŸPr¯ËF©ãr96]*è’½û«Lë·Ú ]€«¸$ý÷A*Mq=Kãí>Þ¸Ÿ„?³¯÷«ôïaìið齇=5‘sŽ7¢û,€¸…¬ê¤SHG'n††MP‚‹ÂXÀP¾Ž dA‹±ƒlnXämTfv´Ò)Âé2U€ì®‚&¥¸ÂýlÇJ—^S*ÆêÐm€[AŒ1Q¯5ÙqÔ§12ÁôuƒFè¿gEQi„ •3vèLÔ›fׇ}Ó6øå$äCBq¤Ç#…ÕK`VÑá%ƒTˆÖôŽé¿.·å‹p劯¾n-¬—,±µXgÄWÕR|c;ƒPƒn¶ßùж;ÿÏQ¥/(|¶`âš®wË8@©¢çÅ.>80îÓ‡Yöáኜ<~¨¾»¸ZÔ<6´¦ÀPYã»Ç’}qÄñ€zùõ¥îd¶‹ÕÛR²¨-vuMÑ¿ )«½b^‡ŒÃ=ÛÑ\6«ÁËÁ¬ËÎ,·üÎÍ,ÿZ~&¼ˆ´¦Ž ÁžÆƒe‚'CbSK´zá)\Ä-¹ílÙ°/Êòõlq­8+À*usŒsÑSîCDšŒÂ¢ðkš˜ú†Q 8ƒdÒFì*ŸpzKºôwúxw«‹ÿaäsô~.ï›Ûµ0­sù—“aý|´Î4»ìàÙš¡U¡÷ËŒfÕ]í!zö]<ÜÖWa£kíp“P®¼!äLD¸é]ÊQyƒÉ›A…7}*¡(v[º ÁÄ*àŽñ—!@&)B…OŽÇq§ùõý¬ámz2å',犮eKÝ጑zR:­Ö²D(ïèVüû‹4Ο:šðG´ʱ!ýxò²½kke‰º(cg}e™‚ ÝkkwR¥¢ìš;0¬ÿ³´NᆭKÂżm(ƒ®†œ‘,&L¯Ì{ kìýNMÚ°HËäŸDd†a&ÕÁI|Ž_˜¯ï»6—‹Iæß½úg|KÞ?xÑʈ:‹»LŒa… Õ9œKR7V'fÜû—à¬Ëh®E^¾µGΨŒYýŸÃµµÿ³êÈù±tvPâÒ »ýAv,¾Î9gx¼±|ÿ k14\¸'œ³fùƒÎ¿tútF„ä©ÀÉ–ÕÂLZxè:!¥Ky¨n0è¤,ݪÚ'°fvÃ’J¥–8¶¼…¸s@K¹¼ PwÀôË&ûðÎë´!”]ÝÜ2FÉ«r þi!7]9ÚÅÙgøì1ñu/Íøe{&˜ùÞý„®ž_.d6›Rìž¾#…Xá3/µqV&LvwOŽ+ð Ùä4r'\çUcÑ™Qžw„£ŒäÍ¡3'ˆÀ‚ïvâ}—£Nš‰‰´3õŒbbTqg…"Š"Ñz°IˆÕ e!߲뿤ç¹%¿0ðB_»9ˆt!Â+Œ°yü{˜5t´Ž,³†Ë»°«»šz t$“ÊX37Ól1ʹ{>ÿUè­5>ú-Eì~,Û,f:AJð”õU.6—”5„DmY8$mL&aI§ª)c½#7Ô‰A—é친Ga§•z”ìŠé}/¿º°WŸcR_Æ ÎöYoõ8ŸŽ'À¢yO§…u«‚¡:+F2$M…~‘–&Be²¦*ê;÷ðä[±–Ö‘É?•é§-ÿªmÕðf1Ê äëeÛséäþÔð'„+§,• ‹Š"_׌Îv¬  íÿ¸. ¯’AAH}É>“ݦ‡½QòNIïŽ$±k¿Uu®5X»é„th©Içv­Ñ.Q/’žË÷>Qû (\Ç$t”¯cØ_-{SŸ™7ǶÇ6ØÍN‚ÕïÁæ_ ÷8— æYÈFTTb/6Æ_ÐPp©˜ áÏ’0:áݼԸa¡¾—Jƒ/ k¨õ.%*Fфڋl°A×z r5• îEµÁµÅ¸õ‹ÖØO×îÜÕí>„p¯Îj¦ß0êÁSÈø:ž0I£Â%ì׿d‰?I$ÿ'¾ïÁRz·òâ½;Ê9 ó—ŒKµ"Æ¿ÌÊ4‡F!n¼ç¿9|'éf–)ÿ :ëcRüèéJ" w'L¿6øcÂzÔy=Ÿ&ã4♇´°˜{;°f—Q¾£è“£À¾L[zÂí8øµ3!¯¥ÏD‡B4GÆ#ÕÑØ[¯#ÀÌÌê„`S÷©Úsu~@Æ0y‘æC†‘~ê€Þÿ;0øô!žE3¼ï^ «? ¿Öˆ˜gÝ›¡—ø¿-özâtj\w”V,Z‚ Rõ¥iÕ|lAÅ‹P ü¼zº„– „¸âÞʬ3I“ªl‚À Ï}Ò”§ðqõ_$¡žE>õv 3PÒÝ΢ÛSWdbôÚ‚$M MšîúIëÍ® »xÃÚ‡.d ‘†$\Tȳ´ý0Š™¸ƒ)žö°Fv#Ô›ˆ‚!tÔó<Kè2œÀè5À\äÑò|qpuØØ^)uª'Z+>£ÿg?ÎÓîëjõ§8lŠZSµª¾:hôcÇÒ’j Q^ÀRDN(J »âQåSלêÁ_bf‘ÑU°4 c3Nû:¼1¿|½þ—ð÷ýhëúOߌ7ziï<³¸ÂÔ&ÃFžöB¢¥z Hkû³|‘FëÆ—CxG P°„EÌÏlÜÙÒAœyïÑa鑿£ó HE‘ȈFŒõ9‘!»éê?„Ú>%r4€é qÿît¹WÅJ7kcý‡žý¯£½áœóH“’ÏN¿lùº©\f Ö mÇ2йËíÍÑ*]Ú+Üë‚r1å^ 2äñ¿Ö}Ëó#CMæœÓF»KVj|;%Gô݈r¥!ìräcwvÇô~Æùß°Ã ¹…;ö.‹î¥£{bƒíwÆ–Ý^hzNÖ"Ê*Àêuiв§b¶ßK°3{ßœþAzú³ ÅÄ87ïhÆN>«ÚH'øãÃ%hÒ }Sè‚…'p\Å›fÔ´´'ºé+T0ôʬø†0D]«k•+'U;1ç¿ š•>Yz…¸¨Ï_¨”ôÙÚ÷Ôz(駈ÌðƱéï©Ø€{€ƒò“cÁn^¹“íbçìçxrœÛ؇p Ì¿<ↅtIx8^'¬éó'‡Ååì-Zà†tÐë,‹z*Ñ×xWûBÁšù'ªçŠ+_2§‚ª[À©žsOuN¸ZäŸ×¶¿ üsÒNu}:²P £÷¿ ªj±|5øÏ/¹;¶©ì(Ñ’á%Þ[ø{ûzsÔ§qä[ ‡•ó•ùZ{{dÃßN“Sâ(A…DÈ+,8Hå,u׊ G£7b©0Ë”á®[¯Þ/’B­ôq>ãìEŒñS™‚¹æH`-[ IÑ€ª“CpÓPâ´Šã;¦}£V`õ§Ñ ‘ýgJiÆGüØ G…ÓÍH? ÝÓžpTŠD×Rj´¨Í'*r5Áä?!¹$›óòÈÿGè“/ÛÇ0AÕ$²úQOZzwoï3ä0M8 pøÊäÎìX¯‹bbg="jr‰ÏŽV‡<g³Y7æ¡£t‹:ï§›óÐÐKšéa€åD¥Í3Ã|ò„ þÌmS´-ÚÜ:„Â!ùgnËѾŠýh£¾¨˜2¿V'ávjðPüPö&ñDPô>Jêï‚ab“×^ˆæðH–®ìõí¯±v›¤z §Âx1ßG• º£¤´#¤ ä[æÍóiǪW´\¿z¡O.'ŒMpìÒV&sçUˆ.S“6ûí&%J G-×’m4äuE ׌‡q#ç;¸S|,lPÆâÁE(š2¬=†(íI1RIh¦žÃ×0ÐÃBÉ/ðŸ«Nlj˜Ù ^KÛlÒ/®]¤ ÏÑ-­”,-ðŸ.Úo˜ÉT:…2cÐBÐN!q×a˜vã,‚IÔsÀÛ0)fl?!µÙ÷-hênŠ&¯»HvIEÃtÝ“=%¢ 2Í "¬71`H¹Z®*;' Ï/x<Öéïí£}B`Ób|OÖ×ÑzO3Óöt`Ca?ýŽÜ’_¥/k î%D˜üFÒ>à1Á_Nƒ÷âY*…´òO ‡öäL‘Ù¬¿„${$ÂÊ ®ß,f­Ìù-=î÷2s'+AeÚG½¢)¨?4˜û!³äczbà’,Í9ÅÇ67áy߇&§Rô»yy­1ù)tõqh! À¼ $#Ã¥óŒÀ+B9 HÇÄDbG„X Qw&w¶iÒ*5ƒ†á"»ª**%˜$´¥…¶ÈhóǬz’‡íqÒ±G8ÔH×p¤^ž¼cgº¾•)î„„è9»r;Õn¬D¼'èöfÉ0ªeÉzcË5ÇгPfŸÓN+ýžíøQ/³ÉoCÆ¥XÈB€’8ÀäFä$5Jˆ6jjl=(Ó £Õ3pô-P±WWÞ/ ³à<ÏB§Mi£ìßû™¿Æ4þp°u`xù3Æ9„Ô£‘äÆUŒdrb‡X5Ý!…²Dœ×&>LËÓƒ€4z$˜BÄQì-O€ž²w$8_ƒðb½^èÊ®à-\|"®ôR؄՛ÆýŸcÄÝœ£oV.xžõ{ÃÕõËyyÚJªý>?{DïAŸµ·oWì õàLökßž’Ÿ?ƒ`˜ÆÍ&§g‹’äG¼×Ö4 w$?)-tLÂr‡ÆnÃK˜OH¬àre0•ƒªÖfIpÊÔ"É–2[dºeàÿ«ØÔ R*Ï ä0´.üt(¬ã«ü:O"Ë:è(põMiZ/‡…-“oÔr)\Ý»uØËpi×é´EçE¾ H7FäÌH¤CïÏ V‰BÝ×,T•$Ðò^ßïÇZ›j½ÐÓšI²^ã˃—â˜@hÈßz'is>Q'0•,—nî>,5K~Ù°ý)ÑÌÔz1È%HL‚ æ:);4öÂí„«PPöNg3J„ˆeŠÅ\ ‚F4Èìç¼Þu$ÝÑø :³Q³÷œl¡òq¿µeÈ™Ad0 ²ÅŒô¯:8NŽãÿ„váÍ|hŠ=qÙÐ ‡.Ä©'Yî³Ï¢Ÿ<ÇüJÌDUíPàꕇ¸¼¢†Íûè‘Ê«à >(·ñâ?…ƒ4›ïprh¾µvFÐ&ö5žˆò‡í_ƒe9=’‚È?ð'ùµrèÕ…ÆS™Ñ¯„ŸÕ6PÒ©PndºcRc$dÓ'°‘ë*DžÄ§K rl0©> Ø0“l`îq Ê^¥^3AåÄHŠƒzÍ`§UádœUÅ­n zG…co!ËEtµ%—Ï_rŽÈ!eŽ—ÝÀ'8·;µ€6Ç_v ázÌkãKÄøóµ‡×\®SãVÜâñ¡InóZÏðˆ€& H׿¨†ÃH‰ǫ̀{Ý”lÄ ¦ñ Fp4Ë&T¨‹íáEë:Á#»øZŸýumè¿¢¡O˜Zol#;2õþ>ú‡Ó»^}¸±«dv„† ÔzÒ°O"ö]&j™çAÞÞ§7À¶tK4¨¥¼'™"“%€Ê~¹Fïb“;íô¦›E-o Œ~ÆI¹~èØ³µL'—‘?<\=ÿyξ© ê/åÕÝõE~,û¯»ÇF"cç¡ÖZÝ)ˆk Ù5çÌ|Mi!oçËSA¿bÞÜÝ<ëèÞ蔦rYd"ôãqƒ‰óÄùÀà =QÈgJw^bßbkC¯ŒÍ*0Á:+R‡DñðÐç$ò2 ²sZªlFßÔ`s¡>L‘‹Ç~y§59éð¶?köýÈ~qÝr|Ywžc(Íp¦ϛÏ$”+0$éBTôŽšm=$çÏ#"© nkñAß_>bx©&ôGw…,Д¾˜éŒ$\H  ¢*WƒŠ4bÃse|d,ä 9• ”°GwŸÄ¦¦ÒºL!A zõ‘ÁÏLÄ,“Š7£‚6¾)±Jü(,Åß ÀW„PÎÈóYÌÂ8HWû/8¼2@†»@ƒ‘—î[üäÒ-¨Ï·ˆ™Û·•‰»+§»îO¯1y! q„¾ÖPkŠ–ÏÇ+u²&Bl‡àQTÝ>Û¥slR„ Øðm$Îä8X˸Šâ&!TQ……‘Þ8aõÑ •Y×v)òŒ,$ŠR¡ÀÇŸÅrRìÁ¡âýdi›ÁÊ…­öS‚y¸“gö& ¸Ù~}]‹úÙu64Ö|\‘¦a•/ØŸ¤ï-ÿ̇¡%„l”^‹2êXŠ`åv_¡bh«Kª1Ùѽ|Œoì¸PóEÿs¯­f¯O>ÜS›ë’µ}WÄx& ¢º”Á y¼70@`øjž’Õ B(b]k† /Hì´ÄŠ ÙÓPØ‘0,š( r7Ä”Âq ‹î®NEî‹¶",‡×ûÓ¼A ½Óï¦KGA5eµÃîyû{ž»çq±š‹T¥ö¡M1¸²ßLfÔ׌(ã×Ó_½¥ÜÚŠ@ÕŽƒYjÜš8+s\'r”!稒ª¼š€08Rb¤°–/J˜™8ÂÒÀ„ô”ƒp«-$€ðm0GRÄp^eô\ŒÔ „‘XS`–¥Œωtol8â3Æ ŒT®™' èÑäB—`ÌÆÈé9&¬T¥‘WÊC^­â&LˆŒ]E¿®bK»áùì z‰G¤£'Šl`¿yìKSŽÊМ{5Ÿ$ÄŽ¢)Í[ñð™`ŠüЕ"wë*¼“cÃ=ÊÂáú ‚ô7òWUzð¢H#(ã&Äb„ Éšy6=Å'Í:Qš×Á È–(ÄLGZIˆh BCXÒo!vC€€4ŒŠ˜Ñ*i '9ÑÂ}à’áf÷îôO;мàPu¾‹¦Áš°×3î0(vvøNÇ^‚A«ÈBû¬ëˆEÀu8ˇ‚È_@A˜„[òoF ª¹8V‹}}6…ínaý ÀÞ5r9¬µuæ¥ÛÙÙªîLÚ7A…Ž,qjt€1Žwe6m:f¥Z#ž MDû\dJR¥ì;æ 'tIÿŠV¸z䎛¬ xXX'-41Ù•o:ÔÒ IÊ—;·cߢ)fV_Õ€^ý„^|k–$4¢Ô_OhĵjMLÝ„Vù§a¨<·Žäßî6¬)7fNmàÔ„R¼5kG<¼;ǽ¥Ç¹ŒƒÔn9vË“íQ¨‹ÕtÏb„Øø¶&›’–‘ ‚Šú–*¡$p14G艄:$~f4oꜧž Li)º9ÄÃÂ$`QP"™ÙØ.crW•òŠà6zš) úó²ì;ç×g©¾ûÒ»¯¾é(Û 9xuÌ÷³è„ ÜÅ(ѵÐgüÕ׸¬ŠÕ¼öáãòmlöH°lKÂ|¤Lt]2©×£ÚÜDÏj±CDø›5¾ü€à×…œ # gcÒ:+¥¼âõþøÿË‚­ØÐµ\4'5C•ÿŸgÿÈ'È. h»ûƒÝ“(óžÀ˜NF”!!2%_òC¸…¤9ƒê^r€â6ò}¥J?"ãdŽQ±öVçG(î‚3•-°eNñ€¶s.Å[&’Y93èv~o@!/í=ÑDUƒÌU3òñ˜áØŒcñêÕ>Õò½RàB¸òÑ I)-‡äʈþM?éë“Ø–M6Ðé&-oÛ¬äÜïÔ"t׿_"BrÔ)daœ÷í…¼®0™÷&Íb­Äöî$‘FÕ{1Q!äXŒ–ö`¶ ãc˜Â@ ‚2L§µŽ2§Y[ ƒ!hBô~ÿípè~˜;·½vhقͽ›´m§ß§W§ÖªþÛ67±nÞé_‹Ç¡Ôî§‚ÅYÙÄyÞȳ„¨nòså ù $^ÉWdUJú„w™ÝUŽ TFA|#4ÄI‚T½,Rÿ‚ñÚa¥Áħ™xõŽ:¦PZüÓRáèM‹­ö‹ÅØ;`Û8è{¾út_¡Ò>"ã' kÀ'G¯ÄêÀyã±DÕ8Ñ«3Äpøïh"™Y[×’^9Eûž­ $:©¨uêRoÑ\'Òæ—rLtôTôÏ9ZÌ æ¢ÀÖN×T¤Á8•ÌH)‚…ÌåãKRW40e™2M)`—ær' ‹äöÚçNnŒé59D|ªçF¶ðüð~ñ>Lk—‚pçÑ¥¶øÁÀ–Ý6{îKØ lhÍzÐå ÙoѤ<Ù¼d¸ÑNǰ†H”z¬Hì_‘mpŒ–ç±(ácóȧ4‹8ãSrGïÙ;ᮩiRÉû Òdç²÷Ý,׫կOîÄl[ïÙg¶þH%“KÜoa™ÇßûømlºðF,õçÒÅæÎGµ*SáÀ}Ùˆî¢åw& at:%QxÃjÆ‚õ1ÓÊšcËÖŽÅØ7Σ6Z7ä+$ŒÃ#ü#$qUlƒ|îŽ µ8ððžyb/7i*Ó¦AÑ5=s{˜D2o¿ÌÿŒß°81xÿùºPú[†÷žXùj;ÊŸúCQ“Ú:‡…fÑÎȃǞ©a{µyÖÇaÀôt—h&“©?P,‚øí"çzÉ#ŸJºßê5° ¥“˜»úo¸]ê'ÚwŠÉ‹(ªI©²° Á|Šír(>:DK6MÛH™0—eU|ÝÝÖÙ‚W×ýÑxóA>VpUF}o 2P_&^7’¯öèX¸Þ%YÀlìdš…™‚„5ßÜúbEGÐÕì7 *=ó`CdÌØiÇFì >ÍgˆÔžðd¬A8$ §¶²I¢%ß¡¦_OC"£Œ²;AÖËÊ7í7o{NO.œx¹‘ê$à«£ö{ñþIã{G„FäƒG£~ 3Þx¨Ñ…(å^¬êÓšÀëÇù&ã*L#ѱ¹ 5"T˜6JøY Ó€àŒ/X"©1ÍŸ[ Léi/ŠWìP×k‚à¶·‹q—Ì@H=(â¢g;‰ßí ÊåAÕyË)¿öªꕾʫ+¢È¦½ý0É*­‡uÈq{0¸å4ÔØ9a 7Â=DOÚ­EÈqF] eHêË: TFMÄÊDWÐÖØHŽÿé—–ÜK‡>¸oí7´‰kYL»Çp†!uLÒæ9;£ÐiÎL­'À«ÏªLJ0ë1êºURX‡<! &sû²ÊcR¶ô6¨iʆÌXÈnDAM ·u‰Lኡè~%hÖû‹ŠB£µÝÑ„‚+Ç" §Î‡Ì'Ðf=[yßÅù6¿u6Ê-ú¸)2$ÈŇÖÑcYÓ¥‰rÊöC¥ S2j\ç × [ãv¿Þýwê´73ô¡,F!3¡tÄÑ‚'U,T×9ÂêT¾Mƒ *3Á¾eÅjêL-Shgœ{–x *?z—(§J®ëåèro Yb^žç/1³¨Ui û»ßlÔ®[ë*tÈ4~˜‹Ôò“äþ‡Pw۩̹³þO#¼µ¦ã®Þ¤ŒNÌ¥Xɶ$¥MºÓèã> !™Iå‰È]1aE(TE$Êë`%X…GÁÖSÙN§2)}Hl‰B ÔÒ8jo'GbÉÈ%3CeU­7œXáaŠggZ±Ë¨åO Ó×{ñÿ„,/Se÷Û=ÙÚ—oNr|tf»u•túSã:{•ü¯ýín_¦‡«^BKIŸ¨º)íz1yœšÌÙÞ¼Ã6àƒ¼I™‹Ô 1hÈ%‚}‘éʈó¹zF)kG¸ø¡Êš ±#v å(‚ä¼ôð-·¨dSPZÜ ¶•Ò‘vÃÁšo)øÄÇZL%}g‘Ñ:¶ 2*MÕBŠ…ö,áó9fÅ!ƒË‰µ÷±üFeëŸïòû‡-"‹1²òÍ–ÇUcÎ?b°•„–gÌ]­Ì‰+5aëÑJÌMg» /G†fÓ $¤^…Ç™xlx.Ös¶Š×* é Ç´ŽžÃ^É‚ƒ+_ ±Ð\вÅN;"¥ÈÏXI§¨ª]X+Ô‚]ÎPp+9fËüJÍŽŽ¿gHwôâH<æo™"ÜJÖ‹ïë i°NmÕ‘ŸN¨õï̵ƒ‡K\{me4 »v…¥ƒ¥Me`v€wŒ²^ƒW""ÖÅ ækÝ $­b——8ìåíé^_Ùy° Êÿf©g£Uï(°ÏXšK5}MS:œûdúoU&Í(ÞÄØ|ɪvC¦8Èi»bà˜ìzbˆÐibLÈ€¾§bÕ®hX»”kÁÇ'·¦Ö ðÓF¹méݧ$Ò¬è¼gÃÐaè¢j×nêO¤–¿Î@tŒ í•Ù‹+H¯çkD—¦ÉvS÷(L8Ž‹ØI¡a†Ñ¹û¸4š¶X¦j°WÞ°€|ãÌ !+4œ‹¦mo*dAB¸5H_MþL±Ô1ÙWv(„–H™› DºÅ$œF]×ix \1;;“Õt"ÔhÃ+«ïýïÿ3Ôæ¨··ºîoŸ7M=®KNtßéßw7îÕ(ø#ˆ6¹2åsë4se=)w´ä|'Ð*–Xóœ k…RAgJ_$Ìp¿ËuCq°ìDuÎëygÚS#ûì‘Õ88o658HäˆmnßÝà6¯ùßåÅü¯·\ 5ræ?o±)ì4íÔÑàßt™ #¨C)õ{ÔÛ) »Œž§P]hrè¬Ê( Þ#«D28›Ñ—6í ³3žZµnT‘!&©²%°”TôOhC‰Øå6»¼q;sé7P߬uÖD…z‡št–mB0§¥¾‰Hø¨!ðµ «NÌ©w… wœÛ°Õƒvíê%ÇÜÖ -® ‡8ô™lsè:] Í%#+•ù*Ôñj™b>š¬äËnèaÚ=6á×L)º¢Q"f¾™è"$’;ÑV/@Fq ¸ñ`#Ê‚+ixê²#óîÿãôðŸ_½ë”ïüyP=s_Òètf–~õûßŶ«Ý×tIÞjö:£Ò)?¶L¸Šœ —#²D×ÎD´êÐfuø’Wìn§»Yc‰Týë°®]±ö ¡äÝÕÖ— 4§©áLØ0ZuO^ñø>Ūe,ëú¯Í3,éñjÿiúŸãªÏN¬5½£<×éuþC(œlQyof6C˜©Y\½fé^ áicZÄïv¬Dd9ƒª’¾$tq¨¨ÒñŠ!F14â ›× h¿d²2´;³.¿íü±\rƒ¥Ã↜[Êò×[Ÿ¢ƒ3^°Ê 6šíF¶†HÏx~»ž”Ï?Ðïy÷õÜ.Da›ôRlip©›ø3ãúãÚëÛá Îw䘛!Êèr‰v ”›†S—:®#‰Ã#™Øå¯•™åÃ9Ÿ&%DÈ¥Ø×å‚(ã å•:j£Û×ÓÍ7°IDDˆÂmņŽD¤œ0}š Wgõ~XñNàƒ£ùæÜÙïQ{åÐ?L.e»[§^ •v ÄA—§Oó{Tƒú õ™#Ñ¼Ž‚Ž­;š×mD¥;²­qìzŸÎ‹Z)ö@ÇŠX®™ÆÙdWéZñ"9ÌרÀ)ñ”%L7m„˽”5ÆV:wÃóI ¼ûß°wnœ)ûdOÔ¿îQ ßFŒw_ñ Ħ}ÿ¹§¾U&d4è«¶Sô¤°¿c¬T†¤¡Ô‚(q¥ŽX^G‹âT†‡,ÁtÌД9©P>HoŠÆ%1Nªd#ºg†e¹B^¶(%…Lqë\ºöì |‰t®ÊðÊ*ȧÄ|W:_<·òÒýg¯ÕQ¸P ì= ¡&T3à U}„÷÷Såï%ûl¬I×=/£ÿýEíãÌ ‰Ñl·q5Agn]À*n‘¿Ésn\‚Ú§w;ŸZ“· A®÷€ìâK¤!-F4pŒEç¨Jµ×-Ô¼›j\ÀÓ¹ R…‰¡\ª`(Õ ˆÛÄ[…‡ ˜·$t€”%käØP_‰ÃMë©Å&) %åºÙS:ïp} ®J`”4»îÄg‘•¬¿~>F´óÿh3º×V1OwX¹vêäfìÏiH[‡_”ñÑã(ÌÇQ_è1(a®˜rP;Ä ácÛ°޽ŠËâÚë‹ãS¼n]Ü­PqâNuÆA¼’F– Ý|¶¥2( Î9ë–öùßxœBÐÀÇ–ü:c|.TЂ#„;7 éŒœU‰ І‚Hp‚€€ú±¢ºñ+}ûÝuãøÿ.ʾñûQ/á‚bÓ‚]ä×À÷¶¢øÊ5ýãqÿ%üûr9¨{¬ÌÌÛ6å’-ó²JÈyèF¹Zò…ZþI!Ù ðÏB¡ÙþTSÈèÐȱ¬Û™\çÙZŒ T)kÀîh³8$¡Q UKA)ѯ#$8QYÒ!U¤ Jƒp“~¹j U" Ofµ~rܑі½òžz±Œû}–²¼Š+`© Q¶É±Lj¬Áøá8ÈïíÑdͶUÇ™÷hƒrgžŠ7Û!ÞiA¤ÛU,œmIK)ôß%–WT¯-вã#ÝQÆüƒ€Ž¹ËÃL”`ªc@ƒ0°]5g^œàβآth›ôy*ò;1¦§ý––Ý»2°ý‚|û0¯=F³MïžöˆS£ 5Éyç€d+qÝìÖÓ¹gÇ O¶}à!3ɯSW›¤álñHeÆ"3vÊ«®õù[9qÇ`+„ÓÁ¹Ûl!æm«—¥×8_¯Âüøì›9`ÆYVCá0áîï§õäÉùc¸¨Ã\ßÞü™2È:Ü ìç×4çÈȳ"6dVI×¢{É>—ÝÊM‡’ϼÆÂƒÏ ŒçÒá©XÖÉÒ,€þ‰6Ñãw¼ƒ{Å -x¸Šªµò ¢=Xj/ÉiÇxë¡qèÄ”ýg¤ö}׿Qð}EÜ¿:wǵò!\üyWÌÅ9Î@pŒ$èQÒt¢34úté´Üû©j–YÅ]é·l½…UÒ­ñt÷ª”ÞèyÄõ“,sáÀ¸e|ýî+Ä$|a^(á혭_¢"á¢ô¥Ú± œ Ç••QâFŠŸÈm2ÌéqÒ–rÀ*4“ËF# ˜é͚˫ŽbÏF ãÏ„Õèw#˜oF³è‡ñ¸SQv‚ 5®Ï>‹_‚LT«Ò6ÊëÄî>^ý?­í¿†oËV²ð'ʨlÍ{=¤ºH.û«íìô}÷Ï~WX¤a²µ·‚e‡°åÍmš !ƒ•Dv .‰@ÌŸR¡ÄÕccT…(qî$yaã/AÚpÃÞ/fh {¢t:™1oj§›JƒÚB¨‚M3 iŠæŒ8ð0ÞžÆ,éI÷0zº±Ÿ~'ß*\eæ¦~œ’í‡FþüÑ¿ìF‚©Yr_y3ä',ý;{ô9d‹K>—Ÿ.ÕÁþRºß´öÈxu><ûCöwÍ–Ö`]‰-5ç‹B¯Í‚/@+ò¿*$ãÜùZ*C.D"=+ýÉ°ÈØëÕ1üå£',i“à 5'¨yïDôTëJ ðg·Æãÿ€n)òMvPþGa»Š €V•EÁû²y˜Øá:’þ¼5•¡¾ÃYMÕÈb8ó›çŸ©ä±Ç!(ü?Wö¼tAûyüÔ;'ª %Þ&bŽ¿jG]ä2cjÖ… úÑÆêÑ0Ä#=x¤@"8ʆˆ!ÜôŒ™µÉ‘TgGÊ„!ø7LÏŸ`n®øºT;Ïîm[Ø1VÆßˆޤ½^Â}ÙV1~:^sQ˜kÛÑÐNB1r µa´XB»§6­)K±Çñ D¯Ñ¨Ä°ˆÉy„hÀ¨ðRЬº±êq¡‰͘Sݺü3݈eŸFpHËDÎ Ó_È Êü£ùål¢Æ"’Ñ¥ÏÝä“Ãøþƒ}Ó&œEo.¼ç(FxÐ¥Iv|:Ñ‘pi‰é4¸ñæIÛ·¼K$¼^kTüÃ0¨]èͪÓg>š0£“ÀàHÕ7_yŠû0º¥ÝÇp´Øo®îxì÷/w`¢…U÷Ï{ |‰T‹’)†¡ˆb®ì(Êž™›¡„Çï~ÅëL;ÉR‚ùm(‡Îf‹(H´"Pˤv¼L±Že¯¿Œ‡ñ~àÔûÁràICêóÉ»0´kkÏ÷Ÿ–51D4ï´m ™Ê%ÉMU ›ä¾#¾#Ýj0FäœænNLºØT·Bz¹‰&£ûôb|¯£çËYôÿŠØí-²d òVrCÕà¸|†£Ïb/ßÇzøŽƒáÆåW_[*j6ˆ]•Ø\ƒä|h 2¨0Õ„¶ó)ÁéJ,×n-t¼iuê„Lª/1ìjÛóc’[Yé–¹Ïwîã†HMc®ánƒ%èºI˹÷¡\—¯Ååøßד?Ëgg ßÐÀýOXÙ/[µ®ÌW¶ß6å·m¢º\öãÒëØþøé¬¬UÝ;p’OµÒ„j…ãR€0:m¦ Q¶Ø—@YD7g:È Œ(d§i5$+H&Ÿ¢ó '¡x DÚûÙg“îÌ% Á›³Æ9ýé)™ wyRlvª<œÊÏãq®äý©ä”u½¢;48Û>ä}î?íÌ2?~Ó…nxl$,‘ÝZÕDû\¾…ÉY™IÇ?¿‘‘°±ƒ.‹c·Ýs³\ñ}4@ÖÞ£óÎöògø²<Çã+^÷ñÿwÛõ .ð®Ëû€úñ~ï44d³aûæ!&Œxµe<bGlÓõÇŸ>CŽs5äÀ V™ÂÑgЉκ¤áÚpð‹Õ1J9£çáùgþsÚæ¼FÑâ–;55ªç|{Á›…_­]~Ñß ÿ¡¿ðhø‘ŒœF!«5¡–î¬9¾ö &û"×§(07'(Í7(3 Î»<$~`óP<ša‰àòqÉznï…þÊž´"Ú·¹9¦ï’²a4¸ÉvΓ’TU*Lœ½ß¼j#›ßF—B¿ø)Téë´ àúØ‘C;âý ðŸñ¬–Îé U “YÅÂþ*Ü]z<"?'´uB§–`Õ÷€°èÖåO½£sªb‚ëäÀóÉuAŒõ5€{IUUDÞÚ’4gïž»-í{¾êwcAù~~Ã3‚§vèfǃN¸DÚ3³~–ã—NE¤1n> ; p?©CV |æùQ@FÇö¼=ã‹Råy,3õTR®È;7ò¾…o޼Ûï:¥xál÷o®Ÿ?üª­ÿ+è‹\üÊÿ¸XõžMð¦j¨¶˜N,áç+ñÝŒdÖœ4„sÎP„×AÙÚ(i®(â½â&¹r@^_Çèy/r_­zJ]¡IØuå¢écV'Î+r4ÍVš†@¾ÑGŒ“H”°“‘“êÜë¶ËüϱÕü÷G»r_H(©ök}À¦U½jìX|ÛödnªŸ þ -üZ"†¤ÂÔîÖ×ÜÓ·EØ&@8nZ çX='ÜÊÁc«)aAÄglqìø9çè`Bíí¯÷ÚÚ¢ÃíúF’®.åÇö}ãó!‘àÌ>x˜RºoäAÓìû¹8žËá Ã^Êræúøó~ÿPŒÎäÕ«ou ÍÝ·†Øy‘Î,¼x› ú_ÒÈÕ 9L‘^8^° åL€ô“¿ÞR}s‘áÑÍˆŠ·:²´7¢²T¥ù,rêØ±ág”Ö›ïyˆßùÞ‡ÿ[Ÿ®ªi©WËŽŒZc;±Ü‘VD¤–4àÓ§)èóy }.';ûxñq»  ˆ4‘Q.`Ó4{VïÉ·å3ÎB5þdÍwÞ=0å7³Ù\? ^ï”6+Bs?1;Ø•EºìéþŒ÷°þ ÛÔ~¯»oå3ìžýH3Ÿ@¬w¶¼Žýj+«#RtW¬—Jˆ/Š'Õ#¾ëá¿V>{ဠô ¡˜@åÊïIc²ïEŸÕÐÝ @ö‹àÃuÙÒâøÐ,]•v^Ø¿vC0_Ë×›œß ÇÚÙv&›>„Å&%x§A„b&Uª;b®j?««²–M~¶Ùÿ¸Ÿ.¥ø#9çȉKÇKrWÊB^ß$Õ;÷– °:ÿ‘¿t@ïlwkXøö|›ÊÔûž*¢`ã:šPt§©!&K4$‘÷°¸9yJž]ÒxŽkÿ4áÁô7æ_fL²£câßS1£òGßÍ‚6 ·“õÏå”KÉ«ÓȘ³Ït8>kadKf©ñúE’hENÛ£t9!|ËÏc±c–ë€^„ ÿ“$\g)]ùh;öÎÕ¤9ŒTóKïîÞìý´µבæâIb"ÂòŸÛU°Å‡ö, Ũ¡ü°> §¿Ü°dt½ !e‡äòW°ê4ÔÖYè(ºˆ+†´"Ú(éK39<ôÁŽET@@N¡ãŒ§SœØs*ë³f÷âË%A(ÿÛ÷Mr%0r£[»l•KCþ›?ô³­ÁSg?qîËraMY©‰›.|@bÎlb×ÙäÔ’”"çÁ2…Nœ„£§rGÚo• æøÜ™…•bg5u2qÅö„Û "Ýô«¶gÒµ]—FØïißíf `ÐÈžÏÚf³)21eÇ8Gû±ÖÃQ±˜A`ùø×Á„üw ÜœzgYvcŽ¿eÝQãÓ»£ø· Âƒ1~˧†ƒžÄŠþçˆ`‡1 -¤Å hFõ—Œ”6†Ä$Nƒc ¨ï„¢uD\i€ÆZ³Œb†“9W †_uê%‘}ŠEO îòË5µÊÿ³Ç^nñÂ=€OIjv†Ih^UëõÄ´rÏf‚/]é è*üùJZfH y¾×{ùèA‹ãû@"ß[{¿çh@¢ÿBôÙÇIJ05MiÙŒ8ÎPj‘Xhðƒ\Ñîæwvouþ¤õ8¿Õ@œg.*x¡SGL…­.) Ìs÷€ˆ¢pnäqÒpa@¼£w©Ú~™…™Izi³ñÞûvx%!ð¬²jÔ Y/©a‹¨&j“îœf ØäD©^oö¥Â6#Är )/'©ò”XŠÌߥê€m+ÙÒR^Ç–k¡¹µ·¥T¹n"l%bsôe@L~€º\(VÜõÙGŸFˆsËóŒCìSøð*v)7#Aà@}¹B¤(#¶"u\¨r­ZJ»x ï¹åv“|);áy@“ ‰ŠÓCÒ’|;³=ÛU·Ñ#Ò`%¤$‘ð6ª*, á5a·³j2ÒЮ²vöçÒx³Íüþ´»Š 1™'$xýßÏÛ*lfž|§“¹ ñ“(¿Ó&@­”ªóq½¡0ÄM8Ø«Q¥G6Nëpý‚7P¦èL–è89˜ýNqõ¤Ù邟&iܘ¿yF&~RU4ŒÁ‡ìÂ÷cñn3mþï»Á–<1B½ˆ,WînÅ®±˜n½ ™”«¶‰Xy1+–x›N×9H&јÇõpõ§é‹»,ħhªme ž½pDfhüÉ'7g…C7Î×Qx’w›åæò}(ìÔ½ð䔼­E»òßcx¨Û$òrFgT:ö±ÆâéºN^‘»’ì={Yií·[) û9ùJÇúWßš„>Éé÷_¢àáz©Oïêüæ-1ŒÖb3·¸>§ÍÒÅàž¼µV±óT¿7p¹QvÐvû‚.Ë÷Iñðê6]„›6§·sâ­Š„}{F?:Ne2¡TŒ*f¿Væ·ùÉŸ¼Ã{Ûû_ÖÜõ¿Tƒå!ýÄv¿é¿DÖ[;Åb3|¡tï4§±±©—^<Ä䃅'gé-h†L ³%d*º…æL9f§®¼’“¶sÄ®¢Z>©ì:!¥˜é¡j»²¥äŒ¹‰ýW—åüY 'CëLˆü••EÅYH…<üIˆ,÷"~Œ©¯&—´HÈõ}çóé^ôì÷ºÄÚýñ'1^ì½ù?G’º\ eˆó*´?Š`gëòóÿ&ºr úg»ØyÔg‡¯VÅŒŽFÚŠ‹V·a»¼¾’cVŠÂWªfP/!¨Pª1âùÂ7Vrµw+ PþÉ! áX§™áC|ñã§&Í"Çb žéT²x’P™ËéÝi$P>4íkÂ}9°è‰=$vzds¤¶fùë’#6Yi+¸ôj²x£ßoV¿„Þ~4âŸìÕ—$q~`Ñ^cì½»ùé3UÓÉr.r™{4W‰KˆËÏ$,3×*xŒ’—i1@%òö…Z$±S 9åÙ!ÿrˆû ³ÕhHÂò?àZæƒfëùëVA¸kSlFØéàü”¿˜½OŸøÛA^J5’“¤Ú²}û.À±± æf9Úãæ0ŠnÎ…jG¸Sƒ •' tË‹IåRÔÁö$TaØÄa¢Š°Ì±gTUt¥‘âòìûÚ+ãºôĵX»OÉ’ÏT}zÛM|Ê17âL]! ‘RirgÖ”äL¨9±Q!’~°ïdœJ _^xõ‰N”jnjÞûû¼>Ëß¹>.Î>ÚÖY¯FÃk‰l)ŸeÎöÞ[º±Kê$0ÆËEÚÓX Hòh«Q%ŒêÐb°->y€Í7ñ)ïÍ´ÝZÛœ#×Q3ÆîÎ·Þø »öZÇ¥¹O¥Áœ›z~9J‚4aÌ= ‹…ܸ¹úA¬lPÉ™Þ&]©@0AŽgäê–ó€Ý[•§·k A…oàñ¯sê‹ú>duk^©¿QTî¯jû¸éF^–jÁ³O7V`Ôâ^Ý9OhèLõ±ÞŒS6ƒ)Ó´©¹„÷nâZÓÒyZ´­ð:9}F¤±P_!£Šª™Ÿ—Á gdSy†±ï(¹6 ÌUìÔ H6,Y  € ™b¤m¢ƒžHè=v×¹a‘Ä'f mùmKdšY¶ÿ!Ñmhÿ»V«]y&ô (1¤ÄX•k΄î èšÊž˜:Ó,¨twã@Iê\§À’Þ*p(Ž9—$;Ä(záZ¥¾úvÈ‹‡JT•Ûá çÈu”´õ mÆàÊiuíQJ¼ëêMº`˜'q<L ò— ‡çžôs H¶­à9Ùý±Za4êìcßêxº_*èɃ£÷$9§4>²©ý——»8cIJú.Ö\R±_Ú”ÕÊ#•hI#ˆ¾–ëvÚs9_.©«U* x4& ‚¨N‚b#qv’0-ÎOz®h˜—ÏýzÝÏ[C.î7½˜-ú3®éS¾ð-ÐA}žž ëQFO^§ÍR÷’ŸX.,j—VXEÐZ6c”ÂE>zU¯‹ãá½øo~llsÈŽ?ËY >h$³B¤uïÏdæO<™ˆÝ]YK¥yBµøD£½Üç’uÍ/OnnCGG±ýO²áZC²…þ½E#j®©qÐIӽ鄅ÀmÌX€¥(™#V(d_±00O •Þ†CBž]ÁU”s,ƒÐÙ¾8Úþâ町=ŽˆZ†;ðDù®Š*œY-·>ìÖ»ŠšŒs¥ b/øÐ@ y›‘늉ò£”B "IH „Ù‘(E ˜ ŠkŸaðÑ£9‹l,g‹sŠ×éXê>V䞟ˆ¥ú;СfÜÑ¥°S]ðõC˜P^ 1ˆ"Ä žÓ£BSî猘 ‚Ú£Š„°Q7Ø M­®D"ï·tZêxààùoDñuþ+‹¡æKñG#<— «(dm¿µçůvPFNå!éèw‰1l' CŠ–_Ì Ï°û–™üpyFQ”[ˆ&8‹HVsIÐ ˆúCî©£…˜³«šŒ…4š&Yª@‘)A5~(ü‹¡D’<‹&63[}/ òvJ0;]ù~¯·ÇiLŸ!ϰúDÈ<•Ëém;¶‘d,kP¯P¹—âX©3*S“Å a‚Š# ŽBÙĶ}!¨o0¯ïuG÷zéR½ÉûUÃûò{ µÝæd»š\ݦ‹c½J`®ÜÛòþ«÷sœèEÒОZuÞpie>Ò zpaQð}=X^„/Êø¿•sòúNj]Œ¯Ã®ûSÀ›Ï/rlí‰~Hk”éP *HÉ À;­=L.UZDïíKý ¦Â,ôרT„üYœÿåúóöXégÉûäÞì¢ Ê7†‡ 8>¼×QËZ幡ã54G„lÐ0LD’p’TlÔ_’ƒÃ1Y®w~„jŸ?÷h@ä‡è—í£‡Å÷ö¼q~dÁXË=a¨}}¯™Cíàìcž >\š=’é"RŸžNjÅG_çU Šˆ½ÿŠ#Ù´8wÈy·éþ' ëõ|Ϧ†²Ê¾±eÉ©`†@àÒÌ},Kä,<¾ùãíÎáeFlºƒb™yCI7Ð:k;:a\zžKì÷¸Z—Ÿ0ç>®w{{êazûÓªŽçíã‰kT0O¸4äM>AƒåHHSœjÓÁ¹Ü)dA1ѪO¸üÕ3ÓѾ%>“ v\ÕÏM_Š&–¼g¼y!³FVÕù૎KR¥¸w  B6älr˜Z"å°,À=Kž:fƒŽÙ@lín¦;Ïñ4€¤rMßᜠYú¨6°€á(|†V)ïVÜ5ëvâE#b{Èìõ ¿Sá]áÐÉz«¯ãÞy¡K¿Í¥äé¶¡=¡'M8t@ŠSúÁˆû¿Å%=”t{h«€/=f+­c‚7…ðÅ·£hØ}R”æ žxŸDJÑ­Óîø}÷ðpÇÇ;†4ýv‘Ä\+ÁiÛØtô 5ß\›W${jIrI& ½ÉÖœ‘Ä›¤" ÅüÅ.…°:¾öý?³¯[9¥}þd{}–kJö÷Iqýå*ëô €‹C tÀN¥°ì*·˜•θpÅ?("ø†9ZR°Ð÷‚Ž~<ïòç]3¡§Ô2€~T6h2:ÒhZn<èÛ;/щ@.ÉBmšb¤{£i'îtˆÄ³ZçßM<ïpƒÝ…¸i>¥ªèe €I‚‚8BöLÑ(MŒ·Èñpj_‹Ô¢tñ> ÀÒžúà:\Ú¡‚9Ã@¨ú“Åù³º¬_îú›®Ó›:_¿¸ÈDf<íès€}cºWR¸Û™Ä®þ)9¡¯`0%Õó¸(\Ž]þÛ õÌãö<ú®ð|›^%‘Úµ`+hvÖ_ãµ;gOg¦þ²SdÌšé²WøâŒdÙm—¡c×3_ù~lû¿µÈÒØ&ä&G˜fðð×dÊa¡¸¤1>0¦É+‚/láÁílUQƒ6¥h,<–ù›¹Æ÷ÍÞ¡ì3þ‘1\“âc4¨CM‡Ö¾œ«ÃT‘ŒD“ëЄ¨ñˆ^Z £†:µ@óÙ©"óž…•”CäÚaÔ „#!À>>$“6\”&/:âf ñåc ƒf^Ž9ƒ™"j}¯Ñ÷¿Ùäë¿ñzÚ´q÷~¬¸7WyÏ¿‚lx¼†‰<È10eÛ*Œ„¶<»y ƒÍLBÈ^vÐ’É_E4™åЯTR5ÉÒŠ|@\؉¤çS¶!š3Þ?7}ú̦a`oããpsÊíßðëù?FG¦Î¿œß±%/‡â²0m6zË"É0'ŠßKý>É‘±_WÉžÿGèÆ`Ù)v·ìF~’àçÜS€íÛ%ÅxLWú\(`(ÄÝ6OÖwÌàÑ“ðwÎÑœæ…cIu4À‰×Uƒ;ôކ£V`²$~¥b¦j ± %üêGfJöÿ‹Ñÿ|Þ¶_MV²Ö{µ»ÕËkÝь䷋F’d€†ôùÞòøÓBv žñûBy7C¥-Áªûnê~êz~’oPR›!w±HCI“] d»v õGþ‰™ÅYo &Ѷv‹ru&à‰KÌ<´<I@-…/Ut‰bS¾>-4õg}?ÁøL gû©ø=}¥øv½- ÒÁÖì†Ôkã62\aÀÐ)ÒAÆdÉi£Ë¥­íë¹ìI•R?פO`Ÿªnb_›»¶Ñ©tŠF~–;ÜÓ&cK¸)ï% $ßÊf–÷7ýºÝ‡héüÚ1?ŒÝ+½åØ°Óø÷Í[å ÆŒ |­`im…4KÀ'b¼Hï… \à¾Ç=¯•)äê.`rÅ,Ì``JœâÌ9U´#÷‡ ]ÇŸ‚ ??#jz>¥¶ÛÆÔ'*{B†›Wæ,X#QaSs e½¨F{ÑÎBaÑ«ÕÃ^g­V¼Ùä~ö²úÞ-7«eg®”ò…æ]¶Þi_p¸ .%-ÊŠìOh‚+¤¨rW†`߃Éü»Ñ/g„J{Š£æŸóxú~~åŸh;…háH·)ä8Q‹¿éŽ7™à¬AKi¿üÜß×SÒù;ÏHÔg½E­ÌfÂähÖîWÀãô³èžb@5ðŽK¿ˆ1ëá%@ "Ý“ú"©ÉÝýÞ45¿=äöw±ãñF©1ˆÊ <^€âËA;ëýŸ¯fÇãÚžóYúº¬ß`{½Â7¢%‰«„µ¥¥´`1xÎî¡BêgÔùÄt’Ê«Ü#þÆjÂ$³ZÕ^Ð2iv8ˆ×pè‡0+Ä!Ü-»Ü<‘wdrã fòÓ ÜÞvdZfतŒ¾?´¸ƒ u¥ééRb/ EÉïµ!ú`˜¸ hB®âÇL§eiV-(7SÑ80åý¾ÏÈ•Å_ãÃ.ðrLÛ‹¹M°i¦`¯Éb-u—žp‘ç°™‹½ä2T™e ù¤vþ]iþµÄ¥Z?Rr·#W…¹Ú¶3:ÆydÁ©ú~ê}}›ô'ØøYõ½ôô6xàè+–³[‹i3 êÒâiy cEw̬)$Ö!Ÿ2CAØÒmý*|ŽÛ Ø«m7YZ|Ä6–Ð=É]ˆ¡7›j‘Áxʼ¤-߆¿€~í‰Ý=ÿΙ½½¼/Ÿ›nu˜|­ä¸VA¶øq8$ÒÏ­…V‘Žo -º¯ºóûÿèb>'Ê( z!ty°*¼šá¾3—RüÒʇÐÔÿ¸N%™×ə˔ûØ6€ÊƒA·–ë@§úJŽo†ÚGu5!uÇÞÇÒe¢*yùœEC8}›£!vþúayÉu¿êCÃô2­ûþ¯m»kb}É0XöúÙìKºîÓ*~‰²á.#½jã9Á"•íII P _ÄñHNaª'üÎpoãòtm·×~=ïR„ƒêèö7}<¶ƒãú¦üø¼Öó´µt[ƒ€heÒ[tÑù0V%—!àQÓÔ:`ûÔ }8"ä†-™^?ÙyÜ;IÃnöáÓ»ÂÑ\ôàí9VòVqÝ—|çÀ!4]¶©fçÕйËð}ÎÿÁSûÛŸœšý™1…&XŒ°Á=M†¬A›S¨ôúöº“G&J7o'¹Vx—&¬RèÜäø}ð~e˜»üÑ£Âym8âÆçŽÀÚãØðEd:4`¥8. T0±´ Yr V™î°Ñ¢ÄN ƒ,CÂþepÉÔ>¦²Â#yó´” »F0/ÅÔjÊ:úðžú‚ãë%'rÎʤ­„L‘&{8?2†Wšßû‰ Fz6Ê´œ­éq¦2iäG@¢Êòoð‘.„ºo¨˜­¨è“¾žc”¡êõÑþ?seˆ2ÈMô=áȈ˜æœh†sFzJï¢u4žŠÙÃX øϼpÖ»ò“á²DØþŸ!äÜÔ÷=XÎ+ÅGó¾­m9Aœò%¡#À[C³r6Ø/…#Ja³P?3üŸØ–o_(G¼ºniæÕ}j¯€ š›@‘´40³p`º©ÀªÔ(ŒP)ªø¯ ñ)*Ž˜:¬ö(õ<º/ Ma¿[ Ç@ ªl¡ŠÓ‘ö÷ÓvBìÅt „MŸD¬ŽMÃÔ®^§¡A~·ém{²«'Féñbèá@R©çºSm±“e³NwYÚÁå’[/ž¢ü\°·`°öEE}G£Îš•;Ö‹m-‡výKªiúuÀ³Àù>6¬xaæ`>-ÌŒ¹=¹ Dž…Á*|wp8mñÎç©{3@ >Ü?õúŸg|äþ÷„­Îœ:²gþÅí+ŸÆJ>1=+*VCfX™Þg´kÙ± ãÒ‘< I• úªºG«@ œ‰L);'|9-~Obâõ™òuú=,Òär-4ô¼Zè>fh/{wž ~0gù‘°+ Ãèõôˆj"ö7P­L÷¢Ì_|š°©a¸P˜‚Î!xP€AHU€§%Ã8 ͤЗŠ0.„7`¨dœn<„šæ2Œ>"FÀã kp´G_Œý‘Ê÷õK'î}7ƒ\ªÓˆƒ]Lj%ðÅÙ›¶SAñ„9A;³öŒ“tfkÙÒ§™ÓAï‘G—;"X'2ÂI‘Uå÷£ z|H<5¼‹)ý˜(ü0ã†|G W•»*ã"·£×vÁè#—Jù`W öòºýO´RŠWSâÐý.•»[´k)YÜ­žK-‡CAìÏBæ{'I–Ž{ÅŒŒ0F ãEi8úT'RÉ¥…ùØiÈÍë~>3 G1À€€p)÷|oöŸ×O¶YÔ‚‰—«ƒ>tÃÂÉ’^æÄ—K_Öû½R†øzš=Ã*NÖ¥Rº е“·Cµ$‘¹›+"WQA.é¥#©F”n2;Ó>è·Ñ«z :QÚVÎHä-7óÓ$¹‹\7 a±œEå\ÚúŸî_Ë'ujœå°–—+[ÜJD«>·¡¿’)-üFº1UPô©>^ۂǺãt#ÖcV9àŽòDGÕ¼zs¦m&[±õáó«þš>´|ý­Î«òz6è(Ð\7õ¨Dn ý›Ðc”€æ*p¥ê˜1ÒôÁ®Î”›ôõùüºy‡þ+pÀ¹eî®X°ù‚ÅAŒ%-ÐllÓo_ÓÞŒtB>rÚÞi?vÇÝÞÿíÁúü=[–™¡@{5îÛÏ"×5‘…hØÁuàãlMKÏ WÏ„I>H[÷vþ<»KªÄ¦%”$ç«Ì íå°–0½«5 DÀ¹d]1â˱øø?¦àúFFWWëì/¡‰ª|ê? ºuùp¯«—BΟ@Ž`™«2<²QÐ3Gƒ3»ùÄ{Õ Í7ÅÑÀÖK-d†‰ I|aÇlPµŒÍ/ÅðœKÉŸ):Œ‡#n…gò¨Ð„³qP9®ø·5Æ*‚|L“]ïÜ—Ïáž,GõSI´ªìH²¯ …Œ­éŠ B©>g”×µD~ñÈ;ÏAXX“¡qz~å)XÑÚnŽ©Æ?XÓ/m$•¤Ž0‡ý¯#Ö,÷g5 v¿uæ¯ý‹}ŽS<8B(ìW ¹Q¥Qêp-—è§R l`N™J=„t¯ss÷>õëÑí}¶ö –aÃfÔ´©Êë ñëp9(ðÝù> ñ¸ðS´w Èï;J·ÌüiWŠa;uƒ¦VÔ9ßøÏâtdФºÅ˜w€èÛzbœz?V^â¹Ê÷OKüÃþ¿Ï¸<Åè×Íj<;Öm\Çp˜ÈMJV¾¯Ó«ojÍ‹xÅ}QÆÜù™ü‘wíã·\1Xñœ…ž÷fÿ%v<Îi‡B.Y3oM£ˆ6>K¥ =ÀyöñÿêhH7üßÑc~O‹DÝûžp `AÙæÉÓ!¡™Ì"Ws²uèà‡Q-q4ɳ»D8tãwe,ü~Z?/ÛÅ^ ×:õ¢5¤ Ppô€YÙ>w0‚}õËJÒB.àºعTM š?ø 'tpÿñÕØü;ˆÿ+Ót´oy ÉÚ]@èâ×¥°l®ì0ÆÛ¢­Í„Û=7´¥æ3éqDwD®µWÇö>dO!d&»âJx tnXéÚJ¬ÖuîØBdgHŒ‘F¿´„4ᤇ¬Wíö¿ªuWwo¢yÛe¼:D+>S«>ü«&Ë›t§:Øm펤‘|ŒÔƒ=MYF$ýñ2íÍߣ†kã³^ ð’»³„ '!@@×¥±¶Áb`—ª|‘N±HQ!ð$PbÙÓ{÷±ä.…ð¾$jÀ{$ñËx.Œ$Fh`]“*ÙÏòÿöEó©®–w(j¬ ²F (B£ÐaøÈ)@wþCÛ$ lójj¨KpLY÷<£‰ÄõþIX¿h>aõÖDCÐj$}µÂÐP‚<‘úèæ‘ù©£¢®™bÇÒ¼¸sÛ„›oSU>ϪpS_‚ªâpnåŽ÷{¾ŒOfÒñ–ðv"yt ´ø³ý¶ÒŽ™³Éî%/‚¬²®Àðþ ¿ÕÌl- ˜úénƒE)·Àl±w÷e¥P&‚Eú Ê(Wj=ÄöeÑk§ãúe\ü$¾¹fªï>uï¨Ôº‹‘jìóàL¸Á¥ŒŽ5ߺQöÆòâ`ê A&Q¨‡ÃSˆnŸïa93¥ã«ñPýgÅÅÆ8kÀ“á®z¬Z®³_¯É¯}ëÓÒÑ›¼³ÉSg½Ù£j,'í01”âÑ’G˜9bWP(;ÑýtŒúŸíN“/ðîë©çDÊ7²\Ì\k$µµãE›†¾N1hÔÑMÇjá}zÎœÉ ônû¹·RW¹ÓzCróD’dYs$ù¸¶-—Õ0×½kƒì¼Øöøóìmÿ Š]Õì#ìì?HCíÝ0úOlÒZ®Öxà°¾±pŸx‡ %­¼È³"v(«c®t©{4aí®óÍ%(Q€ÔKåÂO$!Öe"ßžSÏžöíqþ?ëk† ÈùŒ‚n›ÝÜ,à7öŽŸkÈÓ§;1 J…ßWÜu}À¨ÅÚ.ö9ÛŒ|HËõõ3áú°£ÚVš5•,õµ¤“©‚æÆ‚y^ë?¸g“BµÐ¯2l4æU!¼p ¿½ÄlËP^×Ñ*¡94 n=¨ïÏ»FßÌ>Á_“®åˆçž­?­lnjéäÇ! ‹mþn"¹ Ùiì‰!2@M‡ønþUê¯^<àX Jb‹“ñ|éô[bœ³’«×u  ³cõ4³X{øïÁ]ÉÊ÷pD»µT{³„JwÂgê‹›g–ç§ïþ^¯Þ¥×Nç d¨Ç‘©‰¦?¿¹6ì|våä vn]ײ¡‚ô}©pŸ_{£Ÿ<˜ŒM…7µ§¯ˆ@‚;U`v³ eçY´SÜÙרT¿Õ4÷ßç‘=£CÈÄô(|ŽX\’OaÀ•ûðv;aözµ'÷åà Êß¶G´N¦X#)XÄ&€£A ¨¤“‚—Z¨ƒ Lt!ßj„S‘˜ÙÝF%yáµÎïk`â鄹¼;«6¥ÔóÌË‹‹ì}êÄ#m¾_äâþºÍåoÇ?Qò¢­e=ÚBq¿[p¥E&¶Ž‘!ò£p§ˆõzž|yêG‚m ¬°8ð§RZœž šŠ¤SØ×»?=ã)å¯ìmr룃 óɵ!ÉþÔhQàfk¢žFÁ7ò‰þ?i?âþU¬“F‘þ{/CTV/mã1h5 Ô*Eíùô“jû"”‹›0ÿªñ³N§T©(îŒpj'í›Ñ¹Û‡Ç´á†kd‘Û(HMÅ™”êÛ—ÖY®§#?³®é/|Å¡­1ªÏÔ¡«í„ÍÙD…Þ3’¼Jƒ>Ö«“-ÛrûËmÛjI/`¾­A ÷hæhÛà‡)òr¦ÖÇW@Áj:ó¡ŒN&žz>YËtÅšTÀiY„×+Ão«g|å #Ñ´E‰ Sÿ?íÜö~9Ü*ëéà릲.Â| v†Ñ à n´p»q[)Î@’¡¼uqHºeç²ýzâ™ïj¤¯šöøTáÈ¡omòÈn¬XF A÷»ycCÉŸG$#qýkÑ?_øuæ¾cï)ü˜\Û¦ƒ N…CE¼ QÈtˆB»tÓg—¥(õ~ß¿ý‚S>fÒö Ž+ÔÉ^Bðö+l…mI'äÈz=3³ŒaÞ?!V‰&H+š†.:…³‰#"˜ þâµp‡ÿÀIÁ“H©ÈEÌ×Sc$Å¥ö±õ6h ¯Õ Ç„€[º·^Ñz}›ö£Þ¤à©¡ú³lzŸòþH³Rê«Tabã÷39ô‡Üø«Tv_Ñi½å£iH±­©yåpQêŒ!`rü­¯Å±ÔŽ=˜Òþ$†d<ÉqÂÛŽþÖÉ0üxd$!A3v¡"þþL°P®«/_·ømh-ÔÕsÀ¿¡7=¹èƒîïñÛDÜjJXðKÒàfU?%!"˜áò&gÇóEu~ê~î æOj¬Ñ+T’ ¸Ì,o¨à‡–B¿%~Ìù–ïR°ñ‚G‰©3+t´ì°SuÍÔÜ)Å6§ÚZ ÷.Ú2j.­aº"ÃÓ}Š ¬r [‰œ|$VéÅÄU®—éÀ½2ÜŠÀVÊNPR¥5{Dã;“¹ܪðLÒ’ˆ˜'Îu+Ø5iúòcæì(¡ dȳsË¢jÕtã`™ƒD4¶Ð¿pY߯ù¼ŸùˬŒm)%D'†t]ŒÚfÁé˜Bó½Rœ³«OäCÃöcÓèé§ÌÕNsûz"%Š»b¯±vœØ,J£ÉOŒnïùºûÙD.?¡WªÊÈ?ÙÔÈ[G/IÊ£˜Žh0N€á¢Æy»‹¿¸­yRI}45nd…s5N6;í=6J ؈E`hã?Kp<Éîq>„ôd%v¦ÃÜõ/I…¦,:6€Øç¬C)7;£Î\ˆ„w¬q¦"³i¦Ój¡IîšÃïÄSú¨ZÝØº/ÏríÖ*¹#Ø0l  4ôâ˜ËöC©´ô&E x8 õXxåöê=Xmù±T8Ó©óœY¤Àݾàá—oÌ­Yys²ê)þÄh“m§s[0â55Òkÿ8tÆ«7F8tŒÕÕ¤÷¿2Pÿïçx´¯ ù$ŠuÌQ*E›ª”g*ÄÌ·ûl ”(|ƒîõ‘ƒlôß=÷}O•ý>Ð7ÂþýÆwÔ«3ˆUÆâ{œ#àìC¯¿á6*úmò‚ìhjméþIßÇ—àíçJvݹ³Æ%ùâò>EÑ[¡ÊÛn1a "·çˆŠ]2%ÎXCôÁ›mõ-àÖùÍNË–=Y'á ÎA.V(.À‰1êʃbŒ]üŸ*‹W‰0‚CT=ÕvãmÑSp§ðbÎÖ÷‹î%üÿ`m¯½^3áЖ¿68R‹+¦ÀaÕñæ;Û-ø¿¢¦–š}¯Ì‘Ô¿ó™T†€„ÜFídÈnL:õ#g{‘¼S¦aÑ®;ïôy‡{UMËàzŪPt:á{¢p¬â+@7 û›îƒzDêZ$W›£ê>E8 ÿàþÈB_ëQZVePÝÿFR-áyèIp“`OÞ+¼Åc¦pEû‚Óÿ¶¯4êÞKàám‡ÁIqõ.\Yý2¶¬×xûQÞŒ T1^ÛÞôýƒÿ‡äýg­ƒ&M)kk™t4z1¥ÉÏÔ¸"ÓÏË€y|ô‚´ßîpȰZŽóÆÔ«ÓOqæì?¨*?2Jw¤ÏÃȮ®öNR9ɯBÒÌ> ×féÙÏ:¤7KW–{u¤ú’,§æpú¾7£D_Î㣠­†c§¹Úª† íŠKy«Lýn//ã†Un­82kò±rµKRÞàæ¿$ˆñ$¬8‘ªsÈVœÙK:¼½Œ€°ñ:XM̃»IZ7$„˜™]ŠðÄÅ¿â×…vš7º^piæSkí>Á”éÅ6äíÍëãÝ&cˆþ›X½’3îêùoÅ#ø©±‚jCêô¦þ–pòÌÐÜã·´µbvtt;è Õûž‡E_àý¤¯ŽuµhrMÕ³ÝÈ&‡ÕH @ݸ¾çHO jDtP´/Íô>==©~æçèõTÍËÚ²Òô¬šwííˆÚ&š3>J•sÓÕfzÛ¥“t“<á1DÌSЇ:ŠjTí­xXS%¨ðªXlMŠ›Çó§éóúŒ À!ªó˜¥,×–ìö;<”º’pˆ>˜úZbd…£ze¢Õáv±0Ç-óë±Ôr'o3Sÿskƒ­ÞÿÕ(þ='½luy L¢±½ÂqÉæ©ÆÓºAëÈ}Ú} rl«s¼2%U{¨Ž±šŸ¾þøã`ÚèƒC{Îþ98Ë6†„™1™Ý¡>^„CôýA1yïƒÌ>ßdz`d“׾æWÌhóæºÁ\ŸÝWé*ù¯7h‘ªIxè7ćSáùlaƒ­ƒï® Ö+oACÞmöÀN ’Y£¡$t:ÌŠž•x‰–ËSÆB©J”Ì‚QJ˜TÀPsEeÁ0,x4<*ôç½´4½’{“‘ò‰MX8ˆG`,ÀÿøÔœ*—Å ÜvÁê^Äú½m†¯‡døÂ- UICÖ–‘r0ñÁ¢Ã2¦_Œ ~BØ„Œ£ŠL÷C!L]||…€v¼ƒCåÃÆuD®‰= ªÚíLZæ¦Ð[ˆ]-+èsõj‹¨›X ü>½ûˆ{S+l`Öz NÄ[·9b¿ñÉÁ4Zf’¤${¬‹Œÿ,«î£RWý}l§ÌìûGZ箬èRãÄ©CVÍÁ §e»ît¾t P&üf—ÐÉœSã÷ð{¾#sL±Õe3n)Ö¨kì\¶î °Èù#@2Ðû=$4â„o03dcоdŠ–$âûØ:2yè‡Ûó@è…V`I¨”;Aí…j\»ä€!kŒ^„¹2£Õû…à1ŸçqŽ÷§‘ðR[¬ z(ÝX!«Çëd*¾û!N—)i#ÉL²ž[“êyrGßǸÏÓùÄÕî~¦õ¬Úlò@Œ„Ï´³Ë ˜ÙÚåלI÷“‘Ýz E$hZÈmíÒr@>âéJ p$v8qÓℸx±˜& P(w @¾‘ XW&íy—¿ò¨ÿûstü~ 6ÞÖä‚ꃅVË’ ²¼>òC.ÀhÆ«÷Šü¼u%“Ϭ/÷Ù•rw£/¢ºÎÀînV¡Içàâ·ÿ’±ß{¼q —øí~c?([O ×ÏÇ(ž°R¾ ó[“„‰õeÒ¶—…î8@'ÅP…'PlFé0ÈŸA î‹>è1'–,芔A~ŽhIYs3Ï(]­AEiº¡… ÷Nñ]Ì3%€0üáa ˜V¡Tóôà¼:¥fÙä6õ–2‚2@¨®W,ì =‘…ÑH#,“5XiU"Îéül@¨u)ƒ¡,¦˜·o«9Ž)à °Å@§]~øVf c³qÍÈ À7»žºt?$\X‚§ï¤\;;Ì«Ïþm‰ÞìûgñéÌÝy4Lî8ùñ‡oã‘ û>¹”?aEŽ¢‹Ê¬;ÖîŒØ› ^Ÿ‰²õy‹÷~Τ-sÉJÓªš”q†°!;Û&ÀPF'ZÉÎ<0L'é{D·ãÙ#nr.!–O:®Ìºƒéî£ Sº‘J]ã¯Ó™ìòׯKE@¶ H°¬¨)ÄÌû•8èJ…¡æX6}«OküÛ]xÆ‘q~Þtƒ$qTkáDà1ÁiVñ³‚ã\¾ìhï§dÏ«}h…ñpŸáÎ$›dr-Cê Qí^Ï×rƒ† µTè(l#Bè˽HJ9¼@ÖËš@ L˜‘QùÙyêQ=UOUÃ.Ád˜¥´1:¤ˆ??tü G.ö ; '·t¡—''4Ïr­Õ½&í2Sa'ʾŸ±ÇeYš¹9yýu5,çT”ÕÌãþ’„Ï_±üqeècÚýpÁo'>`e¯zûß[ò ã "w+h¦c 1Ñ(râZêRŒ;¨á>´‹«íGš^lU˵1R68ù‘Á~õy¤Ïý1÷²³ÄÍŸ‰Ë?¢f¿³c?§¡^f˜fÃôèÊP€ˆOˆótU¾GXL£0&ÀCBwaÿå«S“Œ"útLMxz¼aÐE?°¯âù¯Ü‚bü8‰I› <€;Lû”‰„¸¡€/]Zv,W3ñ0ü4¸¹©³]ôЕéyGçãÆRä)£ºáæíÏO-¥ô?ð‹©fÝL›p!§Ju:(×"rî{¦ÄZkÛ$òèÖ䘾9²Àþ÷²”I S+æ±{n¹ä[ŸæF$™6G˵h®ð{á*ªøÊEO}î½v¦Ým¤±”Æ -O§+€­“„SŠG&«ãž – Ó Y.¾ \5ø>~Zôt=]íÛ¸N?låvï'?¸ª®¡fvÅ­++ÞP8 ú2¾AÍúûø¿M½lT^%ÜUãKC"$-|Ĉ‚¥ßՆ̟͆wC{ÝØžÉ‘Fèôl‚±ŽÉO~kr6,ÉGɦѲ´DWMѺÂ@s r‹WI;Z p*€th FK@¹™ôœ.•¿„zvŽÑê¿/îYÙÝÉ„ u°£IòkÂ\+”ç@0:C†<˜ê]Ì "å¤"jˆœÅîÑ;—E6$Ìaf%lW¢C6â¤Ã8+Ñ¡gy>8–Ë÷ìÍÒÞkö l[)æðõ÷ûËA׃æÎZ8 — aw;// ¢a/ó!Çg;ò®*=4iàËC–r¥Ä$Ð ü sãÑÓ¼¸B»^MÞv^@©q°èyùê2@ºZBêÄ¢ÔM&P}ÞÜÓ¼®ªHxÒäiàÖžÛžJ/ñOê'¢þƒe"Íh¯{y;ëÁ°³Liá".—õg±ïÃÞ¨XxîF¡[Þªübñ^i§5§Ñ[ªÉÏFr*óhlIe°Æyn«ß‚Ȳ<ñ=ïÉ'èYsñOü~ÔÏ–÷ƒç¦O^.ƒN×±b'«8i™z×€§0вf Äá§k³0”@´ë€Ï€tQ p±Ô•$Yëéù¿s¡–^qvà€ð½7½Ê/ÅNi¦ž?ó|¸`등¡¢B½€ÞŒï -X½NcÔûªôÀ“Ïsõû4³qQü½KµÍø–ŽÖYð·B)pE¦7y³v‚^õSJ O|5ÐIïÁ.øñ%þ÷ñì}þ ]߯ÕÌM† U2B³’nÎ÷,è äñIadÂ-zéž/P2õLø¼ÝÎ#ÑÎvh¸;ÿB³ìo³#̹h2dL'p.Õ‰ž.Æm*é}œˆ¯hßá½¥'«n;5\eyƒÃ…ÇkucíolGêc·3dôøºAKäÞýž¨¼ž_Ÿ3éóOôZßásCLB-e[|¼q`ŒÄMbÀÓ]p…@ äM´©r®½ýžo6_¹ýœù{R\™QíÔ¬û¸) ö…MZÁà òÊ¡@ä{ËÏZP}`{Q?oÁ{F -HеÅT›š(öjWóî?¾¾-ˆÑpã6×|=8„ÿ·ü?{‡žë†#àR&M! H‘“N~‚üÀ qŽ­pÙTNKø{ǧ“ÃQÏ;=2-8ø3BB¥Cˆ½âl÷È­8/Fia ¨›´gŒdÄ—ŠHÇsª °Tui&AÑRkK¹^„Ig{Ù¸(<3Æ©Ú\-zû^¼‹xìJæÜÚ3ô ÒK Ý±±8«„~(âÚ¡Õb¡?¿amì&lßì/¡9ÏÜù~K½ß‰l-ÒÓ‚DZššåd­\íÈü½·Ÿ½1*œƧ'uOš°­Nóïý˜œÿÜj£‡Á´ý=véßx^#UíŽcξÖ+Uôb¥Ÿù¨ÿØ`º]yS)>bD™Ún%¢­r•ñ™ä†:"n=kTdvmü<Þ‡±÷&þ—̈Ñ`åkr–RG ^=PŒ)`±Eø\ íÊøyÅÜ™òþûˆéj_ŠñAϸiªùc…§;Ù;€hÔûì¬4u1nïØâöm<•ívœ/Çà÷GÅ\ 1#*h¡1óo9’ï × 0МßÇÃéŽïjjvékÙF=Bшۇw#ÄZ%f’´áå¢ I ñ8çVIðè× d¾X¨& ™'²ä¹;F‘õü©y׬¶%sÖœ/¨ò‚»¶&Š՚YÙ{¬{=è-ûÞå‹Ù±NêàjäÆ*ªF ÐØð£[+/©9BZëû_sÜܩ؟ÜÔøgR¸Öº:›£ ¬ÈÖ«¬‡fËüùwÿ7EH¹F׎$Š—¦<aK&‡RzxòûUe<èu¯x€¿Ù sÏÎøõ>J<™EûW·*ÀPß5@ä%A‹K.!Wxîa­'´åPz‡´ÌE4qQ®‘ŒóüÏBÅʘb(à|6—rñÁaú¤mkþ®µôÿÂ?ßÛüb¯®ÚºÝmÿ9£aÎ…sšuë#ÛŒò¥üêù†Ë$\’‡Ü£ùëÀ0üå 1[$@©ÆÃéØèÆ„ez« †V.‰÷9ý9L}c¼WƒRCáöt60FËJè8VyH#*Åç‘K.KV<Û ß|ä¦"€Æ7x$MõŒêk÷;=%C»zVFÍÚøƒ¶Ý_$çüñÿW¯Ø—ar™dgÃé¿Õ X<@÷4†éÊÙ4(˜+sÚ{{«>#ÇeÿCùС#:ÓéŽÌ\ªÉRCòô££ åÆìïEºäYÚ·­;¬»y¯yy´û.}¿ï^^£êÅ‚'ÛÑñ?í_ r[—0BçÏêrx¹Ì‰îŸíhuoüô,"ù­J={ÂQ±=¿ÄæwÅ«e‰òóði×¥³çf'xÏõr~Ôßi³;\¾u:áê³Ù­šuX¶ê̆Zé²Xšƒèòþʆéÿsðü¨Æ?‘ãõ"óøŸÕg˜g︨”KC»x‡Ø7‰˜ ò[ÇÉ“-¿w÷Êýõ|óÞÍ?•vÕžEZ—{± «e:"—“rÒáHív»ûÇÈör¨Çï=Øô|ÂGêÏ1Ší?À+|AokѬyâP0'¦ó¼ôÿ{áë;ô´² ýw7¢Žú_ ŒšE}ø6XŽL[m—‘£‡±}’Iú9]çÿ‚j⿤ÛSÒˆ |=v8HgXªÙº›QâdX¨Ä„  ®Z½ñ£!%PÀÅ6rvÞ)Mþ1þAê|¤?»"v·–[}˜mçÖ‰¿_Uf¤¥­ãhÁ½T)’pP’ uÇ$ŽöÔ'ÀßÊgÑ}ˆ¿ðJ¡¡¥[B5ÀwÇc™hq7‘–WìLJW‚uìòeé@9Yúv'_›J;¾âÇ2ýh±5ªÚ @U$ÚÖÓÚ ü(™g¶q}ïsÁ[¯ìú¯ô!½ìd:;m²™¼:47£A‘f–Å’Oƒ(;ÎИyEp¶îÔ³Œ }6?ó}ÕÑÞ¡O,²l@î!}!kw¤LBcZLVÜç·=KR©­2ŸçàJo> Xôìk{Ml Ý$ÆMZ²€èb-¾@ 4ߣ¶ùyú»·fO…nãp¾ØZo5LC–L6jà¹Õ"'ÙÌÿæÎOe´ÊÏ8®/Öœ*G¾>ãÞ7æ­oÍ…bFŸ¾dßæüZ¿§?Ê+%;JðyÓ¡YõˆÙÄd›ÌiiXÀ©Œ\.ñ‘ø·¶^h¿í§´"m¶]Š:f~rLµï2 8Ú9°6Õ)`Ë‘DN/úþˆ_(¿5hÇú×W~ŒÛÛn3ÒÏJÖ8¤g'ñuík~ž~ïŠm2¨ kù’å{¿žI Q¥J•…`atðaWìvÿeo(–mhËÐtÕ9¹!L‡xa!>lÜØöBå“`ð§Ù«¹¹B¨13‡/ÉQž¦½IÀÉeì Ôê¾ìmƒÙÐ}m¤$ãrì}:QUæA¢¦ 5(Ó‰õ.Äm`1׉¥9#ìTÔ½,ˆ˜öÊŽùûqabþ ýçe1ò=ܺDÇo „a­óx_žÄZÅ-€ùÝÝÌ^¿á¿æsî:Ëêéc•¿¥MGÌ›‚éph‡uÖ}dÁ žLÚîã³·²W¥üýAuw&ýËò[>·P GU–ÃÉ£¬Iã쇀¸×@›?VÿTÈR#ÿ6´~_EÏóíÿ}©k`Ù‡–Ûæ¼”_Ú·z-j׆añmèíÝö>€?o,.·×/sŽOoÁX‚TiÑ7ªâTtL"6Wm­þ hÃÄ·{ø(‹I²éÐ"lrOnÉ¿Ѿq²¾çÞÍG©ÂßfKpîÜ ™¶½]eÄ—1ŠÆDŸX?„0“…'§no¯Åþ~/«´­>¯woޝ;põÈzxõ6÷gß \M ^ù]BÛ€wúß“åú“ØEnUë9 œ‹O†eª'õî̬2ìR4‘„ä#•Ÿqõ>RiHÅ^qÀ{ yÿ@«‹Q=±e]Mºþ¯ ‰–¤u0Z0H†™"1 2LÍsŒy2Ï"i—Œƒ/ÆÊ÷BÎþ?ÒØ5>þ¯WÁÔÆ_m[î/ÏIµ'Dë‘–»êR–ÝXEŠþõÉæ{_ÎLÊ}‹Vl·ÐŒŸõƒê»d‚{Ç–‘å¼ça5¯°nÖy~ϧùìz_‡ª%ë"ââ­:CrŒ˜;<—¯°Ñ­@×®Ä,r‰*w³n[ÎMJZ¡óíЈ2‹ [S8tá7Ú…üz¿ô{š! *®àDäfj§¼î]ìÕmЇ†0F :8‘„¼mDðÊ’Fºf{7ê·’ÊÑ0þ …~ǽæýŸŠZ*J—m%åvšÿOOµã¶ûgûr®/ é“‚‰Ah´W!îF^^K—<É÷—­oSß‚§ƒÖä§ ÷¬éÉ2 ¬NƒùçE6ZÚ°R™ÏíÀ4v`û~Gà✨雓?ÓCü8M'>ÌÝüu‚|ÐcÏáe“Wq])¦ ÈÜÔâ 4úÚÞ­J«HËøÿÅ([;ëqZ¬ åx gLÛ^cá„EZ4̸Ä/Cç;ƒ)f~ ½þÂtõ:ŸÝôÞsò@¦„1M/th™,ÞÈ(®®lbs¡#‘/~w z2yù‚†ÉVrÔ~žîL¯I˜¸·ÉÅ”‹ KGPÁ‡%½Î/áó‡ûŸëéÊ'£j4‘í)%ð1¯N…Ež8qJ˜¢Í) ŒsëÉù}Ÿù5%OÓ•Oºª€y?Ý»yáT©Î ŽcƒÕ1>½ º¶n‡œ¯x¿éÙó?q©Z¥f ­›v€±P¶e¹¢:]W:¶á§B»ž€&ÍfRéÿDïñâøW* š3éÑ ­rI(~ã4£¸h=(½"€Ð ‹½þ×óH…! (¼wX[L"vt5Î’X¥[Ô»JöÓŽxIÊÛºU»|Ýï·^ä—Ï“±ÿ‘î÷jq!àɲꬎá¸òu4I}¹¹W”Á>™­Oy­ VóÍŸ>ˆÊ:&eÊßwÍŠç„Tv‰¢¬aˆdYpú߯בB½÷^±€–#0µ"82b–EøÏ•.4ƒCÉ6”"Ÿ?z`·'[q¸b[]ÿT"GY÷–£¡  ˜ZÒlæ‰- ²úÇÛq7^·/> " Tïb•_‘TêiÓôØ?G`Ñju v!Pî9ãá'CbØ|F@”ýOÝå½)æžOïÀÏ‘Ë?½¿ ‚bÄj'©V'Ç[nµç}?`ïÞü’º%I³O“vôýQ9eKj¸«ó"¶Jùò¸ÛÇB¤EVIùa/Áš¥2,ü?ÂÐî}ýY”?p« :³fF¯Ò*qŸ !@Ðâ‘) ë×ú9Wìí+¶í¤œ…ô¾g ˆ½“pR›b@‰¦÷p 0sÈÓ¦>ôjpö Óè*T*s{”þûpHþ¿ÉNÊä?Óp›òéåá9ÿ"3xØ»yk em&os©Oï¨KïàÕÈe;Êœú’=k;Ð=Ô¼öµœ«h©Iâ hÊJçNõbÿÿnŸæ`ïôTüëì ~êøkú1àÎX sO¬E–Ξ`mÂýJô¾ÒÑÿ†Èžô¿¦ Ô ÕÖP<ÝÌÝè6á4žV»#NvÃ"mÅcrKœû¥1ÿ&ƒÏ£ùnñj¿ðïðóOÒ%CÓ’L2žsà(«¤f!U–B<xØãËëï{ÿ3bƒR:”™ŒýׄÎ/¦¼PìÜ05g–SÃIã`$}R#r‡Éù׺~ÇÖöïio`†7©šGm¯y›;c¹ƒn:"-HUúÁ#Ô„e)"–î¾…J•iT|™Õ@l_¹% ,3 ‡tŽDy^$¨û8?ø¾5’÷c2­èHG³HQkÓÐa‚‚I Xæ¤*2xè £殿-AŽ'¬O ”ÜÕË¿B0n¿|6û=Wà5ÀËÛ‚³CËa>t©>Qêþÿ‹ê±Þ=ýáG¹óö|;ES›‰DŸ*㾨uˆË7s\‚çs–äÁe ÑñÎ}Fý`ûo|ÿGóú; ǧ3áw‹†~r“4Ê\¾A9Gð¹¡à:í{R‰[Ðê ÅEèzÿYØX¢6©ÉëL§Éˆ)ÒÅýãÞWØÐ½dmuÛO­aÜ<ð(#dà‚7Qþ rb¾ûÀ‹ºO.lr)Tþõ6è—X™Ô¯ÕÞ¯¡ ‰Aö¸îroçy¿ ­«àê*Ýîah‹Þ†Ô‹•¹¬™í^|DE êéª ¿SÐw«­‡¡«º"ÓÕÖ…o 0Ï«PõÝ7¯{ˆò¬üª¢ˆ9À9Cco{™ØÎüQ`®ÿNfË~Yר`•X­¼Ò)5¬T yÙ/¬GÑo¸Žçø£~ñ><•¼àfCÌå¨SăfSܲ~8E«´ï¹¶æEú¯à‡8ö,ðÙzgÉ€†æƒÇ  $L¢Ç*Y ¸G£ð2Íu¶µ"±)8õ1ë[—jiú“aã NÞ}âºü S«&Èšz1ܧv!ÈUÖÚ [‚{ÿÿ)í«ý¼¹jzÚþõÃ¥ÂcF¥lC#8(")’#‡G” ªX±3_Ýf“u TI¸IÂI‚wK>I|¶PúÚHxA¨ÜEQ/Š~gbsF=¤ø²!I^)rzÖ›¤A^tkTp°ÏJ¯‘\ã¤Êq…B»C¾¸cãû^»Ï g'˜¬´b6tãA#ɘ ôa8!O¯>H_.÷»œHï×ûĤ+¸öæ¤÷vµ ×~¯•ûT$WrofwŠeÒ¤ckï…³zåݹäüÇe‹]G7³x}Pwê3cæ‚Òmæ³zP°!çÓ©Nbuø:Úš8uyk™`ý±Á‹Ñ2KëÌ ³2ŸÙêk¦'QšîÛVx/Gâû=å \böê ÉyßêG?»°Rø)ÃÓÛÚ“v|¿Ü€? (*P2"Rw©žDP윒ñ‘trÈjÙ¸{6«zjCså‚^ŽØ,Ö[rðf‹„Ö(HU±µ"­ÅŠŽ9$¸Od(?‹(͵HÑŸ•A-¤ÂO¼¾×ÈÍ0bE„íj¡aƒ Ipu$&;ò#7Ýçd¯$¨¥§§ŸyXجP(“œ¶Qbo‹(¢m·N­‡§A´5‚XY`&*‡œZñ;`ÆXjh. à€fœ…šŸ9*æâD:\—`¤íT"®½—×ÎãÃÅ«Iòf¥²ä“Õæ Ü^€ €6 , àI£5‰Q¡± [ír°ÇÖ#²ö½ÈY²¤ˆ&ïD²é­¥j‚…À€ ˜j&oàõ*ß³:v>xZº’·¿ÛõöPý(Ùn~(Ñ¡-°³5)xÄm…YˆæŒO¢1ß[Cœã‰FkŠQs¨äø–66Äľ{ÃUu'Ê,•vx¼ ¸4³ p~kÞ2h›ŠR» ,=ÙÏ÷D–§°,pç£õ»}ïGƒùéC¿ùþ ˜¿¤$“jTÙÇ jd¶Ãy„S¶6³²¡Ø$txýw›Ï÷jd-³k#ì\,ÌáÎR¢ôÔv¥Ú~7XKÙ«PÜ{)é Á/uànî )>ÊšxöÿDh ¡ªåM)Qú?«Ü ·ð+û¥hÁÇ»$nÅ?À bR£¿¬iM½'kéLÏ)Í„-jj¯1‰Ólœžt•ÀXFñœl sò ™÷WŽnAB"6±èÇC¨p7ùjIñ ŽOi¨ñp”iñ=«ßLëÙ&)®9ø<¤Îö/Ù×K¯3éÄt?‹‚ÙÞ¦{îžùÆUÀ7^ïlƒ¤Èp†úQ¬3… /÷—þŸjyJhFÜ{Úê®*1vÏõêÈN|S+Å*XiP€ªe©^4QeíုbN°Xj˜húb$)+æ ™‡=FG™SHö£ù ÙFÉŸ¿ôʯ…Ò¹èÓðû´§7@!P%E«ÂïÚ!pÈá >öèÓs‘ ‹{ŒÌBñGVÊ|ìAÝÏ£’\F òtàÊCÄ¡“>v¥kò2P€sV˜z}4ŒÊk5oÐ!•lå…–1¯Ÿ4©G¯–lP†”ÔçÒl™òÆÄØOÑ¡eé¢QT@~ð»øU¨ÁqØÉÍ+»ÿ> ñ¸¯#( *Ö‚ “ºŠèPŽ4^l±ùßÂìèœýXiiZ5¯>‰wìælgƒ}ŽZ•  ÌYJÑrl×HI£yk”V÷*¤Ãl±kÛP…Btôäó•*Å• à“L–YÃH'gE$4<}ˆ5t˜K©”üqqkœœŽ`‰¯Ë›D$J—ë ^YVd¨*ª¤#btåeöô×eHÓ)‹ýX œ©Œ‡v-*ùQ£E;Õƒc!,³4t„ F ½9µr£“úâé픊JCÁØÝwÝ(5N÷3¥±¤Ùœˆ.àõCœ*/‹÷`óAH‹Òì¨yÓê >'™4Q8;¡¯†À’ް|—=…Ñg¸RZˆÕGôcXœRq𲇩fOpÒS`Ѓ©‹i…ÞÆ¥–Ô÷±àßUXꮨL0<˜Ñ¢BP°­:6ŸH)8‡›„`ŸÂédñ1AÒ´i|²pU$ÕL™çóD8kÔ×F¸ÇNÄÆ/ÈÃ1q9/îêðïÃñh"Z¯)‹•‚n:6o$9¦ZiªÀ¾ÕM® töä±X¦@‘q^¤jÔ¯¯†„#½Úyx7X¢V4WV7£X;ËLŒp»¶œ›€­IŒŠv“R¢„£¬l¢A(Ýø;„çaÝC7ñ¡Ö¢é´‘r}C½ÙÒ Ô©{EMÓ+Sn„ëÕ­@€æ#çPA°§v~LFv#F—subψ\'t¬x«Mw‹¸; ÂöŠ›…`Q¼‰§ÔÌ‚¤2?Â=ì.tžypá!ËÂOtpºŸœÔ¨,7§ u©øFÊgNEu°@À<=ÙÔbÄ`lXHÿ &ËvÀ'íÎîÁ‡Ålw¯9–U±²/Áuš*ä ¬íÈœ)ùSçŸÉÈ®º-„¢aQ&Ám,®.Là|£N¿BúUœ…+áÂþx¨†Èƒ -Šð@’³ïƦɣjî#õÇú¹¨Jw™yaÆ8 ŒÂqeU„Í.½Hš N%ØÎR¥Þ×4ʸÌN¨Ø‡<´Ø"…þ* é_­ÓÀ§¶»S{¶—¯Ÿ8ð¾8ÚL ¼¯Ö‚TV} ÂVt*hªŽÆµÿÏ?ly^is$ÿðWÑkâø4W¯¢É;V€ :d˜ ÷¶~'LZmKïìäòé!™Sïußé`C®–À˵ÅçJÒsD‚AcŠy6V6ÞµïNÌd<ò㛼´[$n7,beË&‹6– 4P‚ jtÅÀqÇøÖB“„ Éâ Åo5:Ùáåv©‚·+UFžKµSøŸä{4Àva„NÔ“˜C¤H‡£gI)é…VÑd­ÍqiTëpY kÇ:å2›¦àQüa #¾ùî²®„S¾¹Â<Ÿ²cOÇ£± 4&šR"O6ª”‚È­tŒ›ÙáF-X®ŸSì±OØ&ï]'UBÞ°4æÑYÚHÙ„±€…äÄÝ÷@ÎR;3xãOòÚ%þp?rÙ I…ÞWú-¥?='b$™¹ÎŽð#9N©DáX¸wà2'ÊL„ø3+éæWÞ,Z¼y‡Û‹Y¢óµn‚gjSáA‹oYYJ;«âjñIè+„b«D‹Íº àê“)N n19ù¾J9¸#ÿåë¿O°'œïŠû@ènŠœ‹·|Ð œË¢2¼ƒ…êŤi×?…§3é}rs;³ ðRì Gtëé…Ì’JûLmÛ¨rL´ƒ˜Aʤ¼ûªRªmÒòf<ª× >Çÿ"ü‹‘‡¦¼¡ÉtŠŸjd!~n`͹Šúfsrù˜j»TNKªPk·ÂŠŒ”d,D2Ä´§ÚªÞÑ#Äí~È]¿êùEé‘íPÄ͵¨ˆ¶ò !öR9ƒOÒJ`ˆ×*šT'AÞØrw³+è”*âa €"ëCFõ”ëÄ5-qŽE4Y±ªîöe¢Ž:öfÁ³¸â ‹.jì|K‡)v;Ùä)¿¸½dˤùè!¹w”’» qdŽF&šâ@šbyÕ#nÈ9/rþ„ž©bð©ÒSh7Ût}Cg`áž#€fÁĨ4JR62QÅF”µ žaé1Ì'÷…îýb’¦z-VM½g:Íen¿¢$wæîà­{D ƒ)ž´½Ôà©Z6ø(D¼w+›*iRò?ÈåÈD° «'=F•¤+º+Üÿ^¤+ÊNêg(ºRY‚㬶VèTx¢Óæår¶¹U¦9ÙÝÞVNtz¤.cÙhkMÞLf¥ààƒÚ4Æ<7±6æükTNþØ5#p¶ÿ9%ïDÝŒÇMR5~¢¯‡À³g£:“,Ìle:8ÀõÕra\ÿ»¥0üÄXï³P’ÂáØÕ ”ŒÂ±Õy„[p°›X]¨H%×j_Mµv/«oQñ6YòÞ Œàç¦tƃЫ€Ãè8^D玥ࢦÆôÏsCÔº8½r©š¿r.÷¯8Åîéµé¯ºh&-N¦¤†Ód0 ´ 4¨Ý /[?‹z}0ß~ÅÖYÜI$R!^—•­¥[…,ÊcÉ ‡JTV?‚^ݰ˜‡à= Ð©q!¢KÊí–»Éfv˜ÙJzºÂïU±þÿä1E²õ0†àŠ!s.¤5Òú÷wCï#¸ Z{<Ì·7ÁW‡y©Mj•µÃáéæE—ug^è‡;*„MOš¡ÈAé5T9äužBaºœçZ¨˜ÛE{ÓŒ2rÒ*aåØÕøÅÊÖ“ÔjÓŒ]^þøíó%€¨‹“Ö“!]dp’ô¶±“*‹ ¿óìŸz)*ò^ ÛúfÍ€Nx¬eg—DÛÁlG8I–b7(àœ¹!îŒà,C½±—–›— ©Â@L Ò`' â Ô9‚¼”¤:ÆÃ* ‹.Üóï-cHçE/?ËKÖöõs.TYË*»ÑÝ ¶·øÐø{u™Òe(Ó„†HEÒæxÍ•$öD4… ÎâyKÉ“šókš#*U¸ãÅcY=ÃÓM2™A ›4/­ 2ÿìyKnƒò"“†u¦Kˆ_„èäÀ ³Ý~ÏÓÒÎaMjp¡TO–e0{¯kåéÀã3°Zîm”¦rË«‡è¯f…3èJb9B[:øídágI$¨åØ )‚²¯Ñ»ÙöÖ[ñ‚Geï…oSã. “ºáå´4WAèE†!ÿHCœ{uížÂœ %1]Á[©¤§Z9Z씦)ÔÙ›ƒAf÷»}XJˬ û”ÏJ¢%êJ–õ˜¦ôïMÝGmt1Ї1…¡T3¯m~pÁ¸ÕĻҸžÀ¥‰—ŸŽgL;²ƒ4Cš» /3S yO÷—ãtFÈJÇJžYXzk F°«bn¥Yw%0-󾺡ñ}î%Z¨ ”€(ª²sKŸ)_'_Ç7™Mz˜h(¥»³³rQ !Ýb|yóR«ûþgEÞr?}‡¦lò€? $Ù®6IµÅÅ;ƒQLL˜ –ÍA¹¶ÕòW…Î×9צÅí꼑0ը塟^md܉kAýS¢«§À°yf!Á Ú”õ!˜€ý5üyey¤ìíHŠ¿R®÷Ò¼ð_ŠÃÊ^ó.ŒKJáYõ E€SHíÒÜ=~ÆWJ]dÜmO™<.v‚mú`"ë4JÿIÄ@rÂB~@tÃN"zD+ÄgÌ‚xt&ü?+è–”¡“25 ­ÝâÆ§€Ù5å~/ÇE=‹!Søúî–Í4l*8'Z!­œkâ–Tìӷ×Ü~I9bä36=ë’‡}|Èl1ZtnUt¬ún§Á›÷oíW-öO˼W‘€R DS¦©C€ÿŒb'O2­ãìu»ŽQþ»Îª0#ãTA˜àƯY¼dKírÀ‘Ü¡ŒOޤwqÑo­Odóž¡Z A ’x:*eH¶!œeƒ®‚<Θ<#F&é¬ña‰ðBåÖÊ?3z±˜ž zp» ®ý#«ÅÇÌgô:¯×ú¥ž&MÒ‘p‘8éâþo]éEýëö î (X éÜð«6D#íH«óýqåp SBBúÈÅõîTn˜ñ>=¯A'€]ÑDßÙüR·n'oÖÆ&‡¨U%ä°[z¢øecµ‡”‹ôb„÷8¾à€L!Úq¥»zPdÂÿy¿õg.AK*Úטb:2âU„åvUù¢bvñÁ‡û9÷E¤Kp «Â„¤¸…7Ù‰WæñÑŒtb„4%Ë1J`¼Tàí¦ÐOkñqB¼,af¯¦Ûeùp#êÝfž_Õòù㛇E"þÎ+l0¤€?òã~MÙ eqˆ@DÇ;C…íU6Vâ‘u É%Wœ-€§‹üûŽÊÖ@ò¨z$|¢`E>yäö$ ?{莙›BÜù'A„” $×ó(¿ ì7Z6.ØÒî5;ÐÒÅwÈD”I§‘Wµ9…á©›¿,¡/Œ¹™× ÞßJ’HÌ4ŒžT4ýçÑ:•êIœ-ß]co ´-߬´Rsòá€Ó‚w¤á¤>\'ËØr›ll OŽºµiú½¿.ÕÓ¯ëF!DG¢áõ\˜É‰Ö•QAÊpÌ‘Фr½œ8gáŸùÓĪ&¡@= yð”¹1„RY¸z)E—ÕeSTî. ¬õì‹ájÅXâŸ3hÎj¼%´“ìá³2¾Oùàœ uAu%ûÌõÚRÿ)Pdœ¾J´3À.îY€ÞÐë%Õ63å‰'QœY)]˜–¼Uå'5útþÖÃùX¢AÛ?òS»AP`.Õ€- pŸ÷ä¯õ<ʆ)F^j¼ù«`! Xñ$s°b[ɧ¶ºù7ˆyîv.¶ÿÚL>Žô$3ؼ©¢A[ Îó\R¨¿Í©Ñð¤íGGŸ‹äÜ ×™b)ùã¹Ú’rx‰ë“–ÆØr1ó~rtáHÅ)ÔlN]d^rK'›×ó/òÆõŽIHFw^[ÌàbOÕÔ¢1Cš-’Î|¯š©÷†‡êú~Øû5u4¤!÷ˆÚ‘Š…@žw{úq†^Hwë-9q É8Æ©ºý×ñÏTQ*÷ )[<ö‹mE³ &ù8r4jÍÅo%Ætdí=Â$.\k™w¥—`0+€f€Cì´«Ân¥’F6YØÖQßÎÉñÏG‘v¦ÌÑgí¿Ž×™¦;ÑÜùàÝÊY®ùX6'p™=(˜ûG àðIÃ,¯{¯9_^8l>î ¤KOw±ÜÊ’ÿsYúqâ°â=èçúLØ vR4‹]ï`9ެ‡ì0Ü…Á—¤¢Ø°‡‹€Úi=φ8à¾;(Šqޏ:wq'gÐÃ8Ï:¯ß™qH‘3ãŠÞoÁ;þK1Òw¼ÃmÿÆ:íÆ‘ÏTóW«“&^<Æô}N?º3!x'¿ß‚\©‚cm Úâ…ÙŒ{¼¡QÅ’°é{j9°(Wáïs`ÌÇüÎþàòÔóÚ9[;›!ÿ€[¹·å÷~ãæbf·¬C mT:Oòq£3ȵqp0œT(;pÅóìÊÛÝ—tgÞ[SCcðfùÖMd·3õÂEM1™&rQ3R•*†Z¦”u¹x!?wwýƒ?ñ«‹zkŠè{™/ðvþÇÇ6ïI`iƒ4~Bâ¬\5Y1EÏ”ôpÎp‚]ܶª9ŸdAr(»»·p/°ncPÖ¸´øåÞÄÇÉÿudc3~Y_‰âŸ‘Û%€®¥¨}‡[/¾!RuïbJŒTà—ïÚ JëšÜÁL‚v¦f @ï…NSï|¿ÎéÍ‘¡¸X¥r#ÿÖ w—òŒþÔê¯å©­’óÙÞFBöÊ"6CNÁ¼jn Ý òRÿ’Xƒžv ¤b"ð¦8K'§»ÓöÖéØì°÷¬¹—ñ#öS/¾`q»QG<;ô®Þ5çwÓÃzµ#9X±C5–6vøˆñQ'{õ•;}Óµ?MQv€¬\loˆ ˜ò8ᔨŽwô…WÕ– !g+¥öm7¬Ù¨U]\¼)i¹ûÿçÕ¿Êšå~J7­RMÃÕLœÊäèÖÙ«þK9ݳ¥ÑVJÄ2£>æü¶r7ßÞ9ó‘A·Õbo\ Y˜úióȤ¤M/'Ϻ‚i|jõÓç§5¾äâýŒXëŠ,îÏóf™ÛÊŠQuV mÒ»[rô}+1÷å ÿdû%Rë´ç°>^ƒ^ÀM¼×ÌY—Yøt\Ýó kйÛp†7r¯C®b $Fà`µ,(LC "Ëq";› Ï‘K0h•Gº>]…=ÛöeµŸ”¾Œ/ùšÚO™‚)Ö62Éòæå±,ñÆÀ]TÑ¥nnäMf.® –mÇÁ9ÓŽÊh ›ÔÑ7 bö–3`ãÍñ±o´¯¦8€q)ü©±øôVsŠà|œ*lF3(ëT ½”ojèñéÖNHFcVä[“tãhå»­¶Ø;¹bZE¨JÙ÷þ}?Ȼڻâ¶ã3t±×Ó³MƒRç·-áDC¿7*BsQ‹¡céÓÛP´C›ph€´À±ÔðƦñ!nwï²mk?ôÞáâ}^¤ùãÀ±[:ÒyKØe}pÒÂ'\Þòj( HýAˆªÌ’ø]¥ËùŽýî·0¹êôEæey¡:ÎÌ[Ø™,÷iý+ÝrààIi~-P8>dòiëy%Ì× !ßgç`ýýZ'íÕ¨þ_Î;nÛßõ”Bw×G¶ç´Ã><´µÜ,íÞOnÒc4Ó~ï+Rk.’;LøÅ‚¢6s¯ÃjDâÚìtÐŽË`º%ÿ¯Øt”ÁMmcA!½¦/@xWؾÄE•ÐÀüH‘×,š¢wÖJþ5%Ÿ’îWVNŽF+Å•¯5qåë׋J2¿Àá‚ÌØ_»Š’þ²n°®´‘"—¡ô¿¼ !´?aWø6aâÀ$Ïo ‰É™Åz8°åM¼\¿5k—3:cm‰Ši3ºT'€=Üÿ)i‹ ïïº>÷^(‰î˜üGe„{âUf²XtsWNŠÒÓïoºµ¶‘s|Ç|ïâÚU0S—-ý­ÑÎX§Ì/ÕÆ¢û-òÓaCìÜòB™‚Aò™s×µu“¾Ýb*Ãk÷Å ß`ÖAÅ'çžL´L8Ê àü¢Øáœú/ô=`slœ à¨ã¨©6¸ðÜŸçS ’ŒÂ>‹8â.œ¸-±)èö7¿Ñ˜ÑÖšMÆ7ö¹ºHZÐcå õPFi”Â;_‹s0K—´È¾¥Ñ—óøœYuDõ_Öó22"ÛzDê€P§3búÞФèÁjúuðh§öé÷ɰª{ÑÍy½&Y+Ì Núwưª@Î@¿¯Ép•âÊ‘~kMmPòŠøv¨JÑÖW u¢Ïš“†ÇüÕãÛHTáœY6¯aÆ–¿ ŒŸ3&ä¦4uõhÐ"Ãzþ»E—= –àå–‰ X¿5=¨1€Ä;Rn’­å҄펢ûÂg1y¬JÐØÐ,X¦ƒI—rʱ.«û˜M,]ÈÛËÏjOÞ,—O”æ)„˜Æ%Ôåq(˜[ d²úÚ}Ôuëñš>L™n”ÚÝÜ}3•á6uZ5ýäø¨¿ä8Ú©ëÜvImïgü,))Ë€vkU@°Wò3ðm­Fmƒ”»’í·Öu¾X…˜aKyRà ²Ûô1D®Þzê É Vm6Lc¼² –ðZƒ£” >/¿Èµ’€Ï“V”ÏBtNÏK4ý¹Šÿnf~Vò™¯îKìÅÖešn*|ÖÁpVjz®šo›çRÛÍÆéq€0ávÓZÊŠ®v˜˜ÿ““ÒÒlû'ÔêïÝÖ§Î’r¯Ã¿I§âsyvD½Þg\GéˆVq,/ç; Þäd#ÓÞ¢U €|%~ùm­$y#†I¡Ã—ÿu!ÓH!°<ܻϚ¸óRŽ>×~­@ÿêÁÜ X „E(IUU%£ÌŠyð«ö¡"è!í½¿Œ7(Cˆ;›JnYte퉶|‚ÈÅš‹­æ­W¸¥Þ8ÅÊ€¹†nå™8FÇjt+ïgæ OÍïÒ¼iä¶”‡Ót®´W ¦Nfü-³O¿:³“!%Æ+: X}Ÿ¥>îóµ?þ%³âàMi?ØßiƒT‡¸ãqÛtiÆ|Ù)‰˜ckÂ2)¡ÈQM Æ„”!ß­°S @ÕŒq™J8RÕùabáË~É™Ã~ö $qBàåax°îÊo9{Á—æ çTdðÁÍÉî/R©KÂZÂN¾ØNƒÛWê+¯;ÉT6kŸ´Cñ_Á\Ò“¢sM]‰R‹Ý|TŒ„§î>üÓZå æïŒîqðkÆ4ë+Dy0ð@qÖ‘í´WýE^]ãd]¨ÞMÊݬ^ÍðjŒ¤ÍE¡ï/N¹ØsUÒK„®O'™°õ¾’i&4Î Ù jß\Â2L‹ÍQ1 º‡êš_°¹ó"ª±pž€0}SÝíÚÅY»O¥!)Pôÿ¶G†H1' ¾o®™Aq‹ùïó陿Ã݇ï$0(´(OÐg‘1ƕʂ^º€6Q9{‰±l„ß" üvC(ù [ÝeGœR|P˜'¼rC=‚ßÄǨ&=ø~º|™;aÒÄn£a•5”¡ÙpÎý‰`wá ™TEúõù5J£ù×pJba©ãg8"ÒœjÚæ›'4¨`±ŽHˆl¾>k­…9l\jµ»ò½B0µäE;ŽÁ@4$EGFºm.ã7š§ó=ºSôÝ® Ü*ë Qw›ì#“&ræ(ÈÂ&-a³2f9ú„À­«‚øu{³¾ˆÒ/Ðâò±Ágˆâ44Z(²¼siø©?Ž}T ¬"ñ9ÜIjÊ5Çu¨tˆ.èÿ/;9dJa´Á´Ä:{‡tÌoO°Ø® ìõ†ÿLä:T†)»]°we€Z sĦB‡žŠ¬ø©=xŸS%ª¹†xÆjñ0°rÉΧ HêÇ »&±ùit®³–h¿EßuWîJƒŠj)ÈM™[JºB®ó ô¦³DKÜ „;ª5s¹SÓÏÞ"éÑ3Ò3C¡çsÖ$d´ôß1.{ø~4$toLÀ]–ž1Ò†R2 š“æÚ^¼³eµHYÛ9.¥…ûÔÉ 8E™ÕÏpÏÐ$v4N\5³½*ýŠÏ[A'™”díxú8„0õW\bP½Êwûµd4Ÿ×½ëÄ)Â"ò:¤{Äó@|YÃü4vËT3Ÿeá¤ÁYŽi'f:ú”DUæqœ^káÛœNÙsÍCP“Åë©y7æ“i ï««"anC®=W?˜“ÆJY¾mfVfê,„kƒée61? c»SÜwqDÞçõû$«Ó¥u‚~±wIX¾Qx8z²sÎð¿ ý<>&ˆ ‡„G²}éì9Ûžca‹÷0-Ã38—çø°n¦†·µ+’Öˆ45ûL¯lÑ4 r“òίØãÓ)žDú:O<!9oCéä«5|)ÈÑËÔaÇ`ê½ÂnEQ;RÝø5àD¶då%€‹ÏuÄžâñC[x }åêe”JÌÙD&Ï4 èÙ'D?"®!Éõ˜É(K˜.ýJ¶}Ê×®÷sRcEnpÞà«ÒPןx¨8ÍmÌDú)šgiÒ¸|yaÖKVÿ§Ã—³^Î哨#“ ® ÁAZ\G'Ì\¯á묯ሠë/5MÂ4Xâ ȸœµ"ÒY »ò0²Û\gÓÕê/¢>½…0ÙjíL&nÊLžˆ‹;h-w§›7ž,ÁzêÁŸ¼Óñ©e´uxÈÒËÂ]¬63BxP³J\‰¹‹Ôæ»Ãœ€ž¼T#'°µ®¶ l[©U,†,¦˜8¦óUtõô5Èϱ«èÙ>çzH,…h[U.0’Î` Ÿ!mGůu¨ª/€ñÅ#Yÿ{h‘Њ ‚qÄõÐÌÔÔ܈~Â}Õšà⇭o¼ãGl%û‘(»_‘:‹\Ž~–çŸ!#Õgwßà`Rê»>=5ZšÂÆ¢nÓ˜ùx ͬJ¥V/îTL“¬?^$ÇuMý¶tŠ—S@Ç#hWj87D/}¥}v? >AéZÓÿÓð£’n·Òħ1IÔrièZøù"Û:\?95o]ec¤‘[h:«š2« ö+{~Ó%Îî,¼Ó j7‡…t®Çê‡Z7 Z—Œ‘éb7´ó➦å9ðÁDÄHˆk¼6ˆ$OK3C¾êIΞ±’yÁã[>W’ó³iÞ±è§Bþ·j£0²E‡šlQ=½EKÌ£RvµØ’f`»kÒð9å.@aͶ{aRÆoj¿Öìþ:˜z-r7®¶rëdh¢¦UH£wxÓMJeÕ2üÙTœþBÐLcñ²åÔ7_geÇ(仃˜¶ rµu’¼þõ(>ëɶ…ÀÑñûЙxOvD´@¾\Z} €^yÌX>ÜÄè=¦Qo×5ÑQ`êéG@Ó-ÜœâŠûíã÷kæ²£©ìO@ãò¥dS/™iWi )îà:‰û*–øÇEPÚi¶ŒØ›.øëë=GgªËsÈ*¬¢A/Ä}‘io ÈšŠižYþ¶z“Œ†¶ïY– ‡Œg7Y¯H”Gqtìl+Z&dìîl=e"ú7€šÂÅÉA,¯%Ø µ5Ú>FÔþˆyï‰,ßh’[½*»w°’B-ï³Íê§€8ä™Ü&{ÌC6tÖ‘w ÕÖó›õ=Nn&ò<ƒöèÝRØÍJðD¦¡ŒK7~ ^è¹=Ôùòa§à*tÄ@Ö×v^ìñ_E+šŒnc.R²½ÑÚò/r>›9Ï» Šz7!ô«µ‚*œöáêiçôà\¦ŽR1¬I÷6ÕSôjtùâ»4µ‚¹{Tõ{4¨ù6QJ©ì¿ÅÓòí’<ÍÒŽY?Ïu]øÆ,Fº\)W3}Ú½ºK¥TìóW¾8Ó ü0Ч6øÇƒ‡X–”wºt›„ÏyΖ_…ûÌ24φ–ˆ-ëÎÐÚQ$Ihårq*ßkœn=E2XH-‘˜ä•1K}G*&­Î6 ¢¯läò46ÃJMë§ZVØ9 ¡̃˜Io çi&%H[j¦þK Àñ”ó©‚®ÐìÒáAŽsY*34 ü¥ûû5-ö`T´/7*Ý/ý¬Ÿz”æPqoû£úµ³ w|ÝžE)é†=uÞ¢S7ó‰Hâ¯8C Bo[|+ß»ö¹1”ü݇Ÿ`4uT_®Ö×¢£i•]ý­cí/ß6C@ѵ²Ã4ü™ Me—~uRpŽ#çÜa1P n3•7ˆS!µFœ}áÆÓøèv2åV, ‘Ö9wQJ_™Ý}œÙ$JF&B'½µqÑÈ3~öº*À~/wÕb3:Yâ{>N®'=;à]ŒØ‡=/…K¿ÒLAKÏ0äó@ï´—_’ºÜ=£å-F —MU\û‡Vï¼ái\—Ä“RUý“e'ö_ð+^JQrÜöKKÞå agE<À/ÁWèŠÉ jo"ûš†Š–[MeµsôŒ‡ÛÉ´”Õ›å[»_Epå i8,??†6ú3‹uâ÷€1Éâ^Q}3L~q,4wæ¦Êâh*½Šn!IœƒÂ`û´$ärGq1Rûc&%F'šªRëŠã匇s³Vâð Ùþ.ë<`^‡^(ïå¥>’§¥Ã½Çš¬_Ñ~—Æø$ëïo#­HBÚ×f_¸ƒÔ«¸„O SæÒz ±Çöf¢+øa£a ëU9±áÜýGT Ì ? fYÕ—3=­ªèg†à8M1Œ·w?O‚geªº¹8(ÿ6;¦öãé0Œ="h`OB¯l6úS/ZÜ­OùÕÚ©g}z»± ø/‚c¹’o|¬¥†ûôãÕ}> ËìK…Íó\g±?ŽO6}~dÜ5TE]‹n$å¥Å;~]Ç5ï•]Ì6Ë*&Ñ„ÔCWÓÊÈ5“‚î@$Ï Âµ³§%·øîY¶Î•èt<`§0 <p‚<øàêð­AáÇDMVeF¹0ú­0ÌÑ­CP ›ùjPƒÁjk»å®ÌÍÕî\îÞ õå‹PÛ³€)…‹ïV—$ A »E·òÏ{má0`«)Qã~êÂñw.¹,¢¯ñ¶ ­ªíVñ…i],8üÅqRB×g-¸³*X|7¤ç´+뛨¨,a!nŸ·:~†«x«E˜«nA=ŒÿÜ„þ³ájŒž‹K‰ÕìôRõœˆ'´ »MÒJiœ€æ½%É6¦€Û3¸ç•‘|~°‚7¹žå~¼ZrRt¯Ùö9FûÒqÔå[ëT?=\™GP£yõ‹$ñ¦_Þ×ìRÒtéý¢mhp‹ªymÑ‚ý“Vd²kIºÊSUAËP]s¡ª¬±û:û®frþ/}1Xµõw’CÈ1Ín‘°6°3¹Gž.„‰çÇdNð(¡– 䫨å10—ÌÊ Ü3ÕAßõÙ’ë¦xqÿ6ìZqÒÒ2°Ndž-·¨zz28]涤z”V=ý\ö(¯?dó³mÂÚÕÀÙEáæ×â9ÅꈘGÇœ-9¸xD½åoÁ޸ƌGU"-t%Gï;ü¡´¼îÅ–{¶fvs•.N~dMRÍ` ;Cº(†Úˆ:`ÚÖÞM•¼®GEåµ8E]èÑc&ó¬øú¯}+ªGÒ‹ +Õ S)tú®)þH™.Ÿqé8 k®8ܡо*ìÙr¡„v{7£†v>@ì½~¬]Çâ3„†å=ìøäòƒ0Ú†i­è[Ž4LÛIté^»P„â—||![‰§ïMa›ôc¾\Îñâê(*ŠŸŒø;@‰~]e÷;r zTZ§ð~n;öO§ð"F½ò¤Ï ’'qwŽaÛæÁ: ¤YÉt3ùHÀ€x¢ãÞǤ_»] ÷þ‹áX뜙±®e\¦ß¯cη ç«YÀÉ5â*+¸ù´ú¨úkX tYm4@CéöÎûö~˜3_-Ä̶vTû^$¿íñ–šœ+NËfú‚ê¯æ¯ïW°‹s©£c›ËÕÚÇêJ†r¨o¥ ħ~¢ó“C0ñêý©ð9DVyª|8µnôé+=Ô;>8þÿªwÉ •v²lƒZ¶JVDTòW¯›VÒ½ Þ¨³½z½n®ví‡%ÅäÜEº°T°Ü&9l/ dVƒVÍâ7-Ú:A½“­½;ÜZI% œk'³ê‡Q}ƒé²!¶—)‡6õËælf ¼B2ˆžµj÷Hyrìtù7ûJŠñ#ÄI´ÚÂéM"z.æÔKx*æT2¹‰=|$e`^üT=asilËÅÎäbž¦Ó$æU.²;†µ7).¢ãKk¥Ði+ÀøëàS‰5UcL¡Ø\KêjÊ”ï&‰¶bƒ‘Iîº,>eÚ45„ LCtý*«j«SvwÔ\˜¹ëÄ¿>ª¸Wk„² è©_T[¢>È—gŽº)$œ¹“,_Mè{Ê¥dÙšºœ7?ˆ.ÌR—¡Ú?c.K‘±V›|ZÖ)íãƒ\ûI‡—“WöÆ,°°mSÛí -uãéKøg±³*‰N‹b$î½ÖA*o5¬\„ž>®!$”gF*Có!4`“Ãì¦|ÔÁ˜xŸ)­N†vjbåÝ40ë{|WjzMwú=·I}I^D/½ÌZóC^qâ‚M4ˆå²ño×\mN¤sz÷­¹K'GŽ¿Á…-¥Êæ,“剺oW/É$†§u´ÿaû“{Dg1“ŸŠŸšË麈Ƒ:ˆ¬~¾ÍºÖýù¸Ì¨!£6é/ÅÙúâ%©­à Fl€Ö¬fŒÍ….…UMÝN…?J_ãvÇ(ëþA/NI—FîBqoE›!O¢X¸¯UÅõҬÈ.prÀégÀÎJÜ«¡÷XbÀÿ¯=ìe´ÓLJ)êèi®Yg®h+å¤3{6îŒ9Z{|q*d®5ÇØÚñø ú<̺Œ .=o#v %wý]QÞ®K"ï 5gCB–::Âlú”t¼®WW£§yN¤§8»ù”é°Ü×Öq3;¶—ôÐS…k_ i#j .v“¼ÎðH(”5/Êñ¿â…˱×s|'5 ~ßœíV–çj‹Å_mM`—ŠCy¯ØÚJÜÍmÍê®Ñ 3  =E7$påòÓÖ;Ïp2¶ÝíÑÖ­J$‹9Å$¡6í*§f€ÝÓ`¶ŒfjH$Lö–>4¨B™1Ï×}X–<1Gµ³óP†ëgr•ÓÂ~)Öž\UºÎ2b>r 1Wô½õö»Y$‚ØBŽÆŠþ£õ;ý•n ¾ ,Ò4]P˜}K†sÛ¯”㜠Âs°"Ö ç+o¯$Æ v?òÆ”kµ~¿ ¸~úFÅŒ-›Çø¡pR+£ÉítSse­9&sO.•pAÏ!C©[–ù7Ð?5õ¬NF3Mbü]žKÑýÞNÅü´ß.“œwçšâô¬Ñ㽆Ëö‚"»§©´º!“ïPRgîš šrø½`)Ú]SÎpr»mORç 1SÆ£˜µ°°3-QÅv¶å¸ÑL†æpðZí>âØåõ±r +<Ñ6ðÕpÜš]AÅUÉÕ`-¨gG7i\[ò” ›Êq/@d^Q\TNœïk¶8B€Ã³Yj×^Ç~ò³…KÃw8eÚÎYT$#ÀUcTÕª!È¡ñvγD}d -¶'½i?ˆ•æÅ]n˜é"Ro\B;Y‹äqv÷º‡Sš¶êæÀŽ*Cªšƒ|ƒ)vä-yá¡38·žû­ÛûÎ$³ÿü=&Ä.½@Âü˜‰ÿ•œ`€(ݹ#:¡ä)«KÑ%‚²„`éBA!.\f(=pÒsš7›Çnñ¬¯ž´Æœ™Kb¾÷ª EV,H–¤¾=µW“FòRËö:ØS:´÷1Ýfõ08¼1ÉL¼Jâq8Ó7þ ŠŽå´cḣ„¶røÃ˜ó9¯Ð—ïVÑYRfJ2“{ëg)k *^( ‹;÷oziâTN"OÍÁ»ŒÃ‘‚:þîZAªå(j›Äù‚èûÄ#È£7$z ¨ß9\vœ¯ÒÂ…²lO ¶z™ls\M’ VS»À½ÉÀÛg5œ««b¼Cí³þA™lÓäš‚Áêäʶ¿×ƒOŸ´ E7Š÷;¶ß·åÕa‡{#H7/0é9r ÿ_VZ‚ÍzN§g‚Î3GNº"šÓã‰ì›mд‹6÷5÷r^“Ê^ü®ÌâÜ:狤յ½sõTö³” ¸9>PtÂu¼rdxç…ß–â¿ëÔ‡äb{éú÷´Ó»Ë5 g tì7lOT†±›.tĹYY~<è9úÊÊ®3-Š- 9›hÑ=¦í«å0MIêK"sg‰mÍJ6¸úY•"UÙ(yWæöÛ¨™É:šC'‰ã»¾‰š”ŠëÛN-ݘuè¸v¹.4Ý­›å<©ü0tquÃæç?«¯glÜŒ“æ§gºk ûnö‡¬ ¸EC¯iFòÚ6è:ËCÙí9Y»¸SÛ³«¢{¥tðùæ.Eæ(s…KºÛ]CAôçi_l»<þ—1ððñÖ±‹élÑvM}¸€Ú¹h‘*ãBSt'ß/ÔP­æ³3¼ žóû{ò\ÔÓ×À^Kñâl=ìˆV&ÄX»°â]V¸‹n0ž.S[y É`RÕœ½®%Zº^ÔOFº€ÿz ßEå¦G) Š8ˆ›à £}1S‹Õìp? ÉiN5¸ÖÓ?ö²“ÉgýAx‹›ßÀyh7;>¿ÅjWKßäáá¼âëš’ë³g>ÈZnvRXÝiô¾¨˜ñ¸oý÷Sýá—Û„¶o‰ðxfaì%glû¡yó-B•ʱ%Ûõc“ C^¾´á‹ß&¶®_Žû·“Ú;&3]Öàâ÷W,!2tÅv_MÐÄŸ2E¸rª·øT·óÍ@¨ÅèÞÞlá¦{&S³ŠB5‘ß‚óG fØDÛ¦zLe9*•”ã‹5Ï/ÏÐ_ jªÙÝ–n‡{‚±úÌkÊ×òéÇ ñò°l#u”«î¬=Ø3‘Eõ3Í`@ìÈñ K̸q»Àq¶¨èÍö·¢”4Žè:omâó€DÝ*œ=TW·\s½¬¿(¬æûï,²a¤ÿ¦¿2µÚÛ3b·*‹áŒYíw…òß‚’Aîõû²¸%Vp œ´d³uO¼š"pÖê¥sö€ »ƒKϹ›_©×Íãná_›Ô1ëIEy‡wáA`ô΀5^‹~܃ŒüsGŠ*N@Š›jY/ywóèEmûaê»:ï|¥P[«7qe ³‡*Jœ±­z©=V=§Zy§ÃÁÓ¸O?xó2éÄ`„+‚rQ»@³÷éã­ºÞºOdtR\¹ŽëžÕ§½‰Ä¤àñ?ÛñmñÇKÖxÓÅh§¤’ïÒÝÜâéì,ª‡r€…ÃTðâW×Áõá/hw5Ð8å È/N+×b%Þukmož÷RB,õ¼ˆhL+š…2uœéÜn}×µ¦€»ì”'Ù«æ|’ï2á®fŠÿØ„œeƒ™-ɱ5Ø ç÷ØñöL±¸Š†HRÛ‡¬´Ž…uÜógfmœRJ˜PùŸßÚ?3 g1\û® e•¤›ˆ¥“ûâç:ÖñzScùh'RÏ:¥¨ÄU9¥œ8V(·O;õÏ_îps^c'©‚g÷]×ä,ÉAeÆÅ¼Ùz+³øðÈPkaÁñßPS‘~-7¼©®ãMû”•ïѲz(¯’+bÚ9&êe¤²ûb!ƒ8ö"¯?.†æ”;¬¿‰ÝOè"ã@ŠR¯›?³ÅÇòöðó[Ê °Ÿí}%U§ÏÏè JXTŽS¤ì²¬{Zúhˆcç?µü0¡¹ì¥í]7ÆZÑmL†áï’èˆ/ÛZ¦u㺯#)xïM¯Jãàn=z&ï9WkýÌ}”¸6÷Æi­¾`T<˜k¸“µ·²”R…Ej±ëØ‹šNo9}„5«ñ»]ÍŽ¼óØÛ!c‚,2¼ál¶ ÿƒš1Åñh2wšÞdPÎ'z/Þ°äüý€ëË©4K•òŒ(lÅæv•ùåœRhßhœ4íéÛ-^u«£%r°jYY¹’Öð¾X×ëÓšÑ ƒµ‚Û>HÎ1ÙŸ¾¿~Ö<å%oePvH\ù¾×9ʱ Sp`?ìB/ £E$eòЏ/ZQÞ«fK=þ[*—B‚WVûÙhÂä ‰ÛÚ·½Z0ŽHfA Rãox{†×ç[Ò&¯¿½›9|¬´ÎØk¨)(ûþrùým®Fè¤7b’ÍÔŒ€Ç ¬M'2àxãÐÕ;6-¶–î¹ë—~؀ǾŸY^…Õ^ý.»§AIO>ÍV¯ük©va‰èÝz²ºû9L5úIøbvè"{t%ùª=۹Ϝ…^*ŽŒ$Çþáå¤:&“‘Õâ‡2û×ñ?¶ÿ$~Ùc}f,½Þ›Å.}¢‰Y{_N²V¥­4t«éÏå²·ïézZ|2½*ä5y‘æè­¸¬é¦[£\çŸòÑ8Áëu]2o±ãìD²½íúyÖ>.ZööZ ûü¼Ž}GH&‹âW‘ÙØ)žÉØÚ[ú»ÝWa_)mYKfléѲÌ"1î6WÑœ¤º®ÝÔDŽ47AŠøÑ|X[¼Ã{îöÆ$n–ÎL35ð^û›Óbz…whŸn±vOÈ ä6^´Š`ppš‡áUy룙֣¼­¡ö­šÀ¾$f—Eql'%^5»½y*>D|ŸüºN§ðwJU˜(ݽ剮;µ+±Tºn-‡#ä7qáG-ËèGn3›qjó®=ÎÖÙ_÷hðž—æê2ßvúQÖæöä”NNdÞhð7G MÔìݹÂ@Tsj9ðÝÚ/Þq|ÈníøŸ,Ó-wäÒýÆÿ&óò("9íß¼ ’éü3 [†‘ŒO¥ÞæÓy–oÛã`ÔBP[cY‡G~·9Ìhô•GLQnŸoÿ÷úÌy'¯«Tö–Á<_-Øp²•ðÓJƒlÚæŽZ}fÐ|Ý×¶XèVÜiÒò8zsð&¶Þù½>.Ý88m'¬ Fݯ§²§œ¶U×x”z³ÚIÖ§ªgmô.îê—·9ÐŒãJš;eÃ^L;=bÒ;}™C V·u° «¤ÅªMNŽp·§Š`Ôbµ{ï-ÛGêÙ|K׿ôðçK®ÑñóÊ>ÞŽ`\õfeeî·]ý'ìM1^@Þ±!]'‹.ÕƒƒbBñ `·Ž>¨É¤!Š;èøìïù=‚¤ò&ãîÝùŒa)ß“dYÊ ÖËy Æ0ñý(½ÆQEgÎÏÙ±…öʯ‰ß¡Äµ•t³’Ê0üQ„Ôhíå4å¤ÃÙ¯¤½k=ö³»W#T•þ£ÞçK„Z眄õo"öβæ"q,0œÚû[‘|œ–?ÍßîvÛÈÜÇ \–aäÈ\¼î[¡0pÔHð‡†ƒpæSÀW?X »\fõ›AUºÔèôùýk/‹ nΆÑâ"—œ1Ó/:7Õ¾î‡~Ø}ó¯tn85ä 9xœþ$J ’Nñ NÈYñ ³<ˆŠÄ6ÒÜ…XxPv1©8ÚS<{½÷Ö¢AÎú]Ès6îöíáY;i¯Çw’ì¡$caÃaÑwZpàÇÈ„ù}nDvg³ÞŠûç;Xø¯ß’Þõ;'X¢ŒE“ð·¸ß°9u~X*˜Ú”[4c— Ü Mhäòà¼Ô~hÑý#ÏbB0Ž"å»Å™»/GsÈ?I\E)4›}º `W?$€:Ü»–O¤o!&…:aAsSÙÕtÎø1¶ÕÃbGaî(&‹¸NrÏ%7:R¦ÿ—„ôïä‚«!ç£GC#MQá¹Ñh„?b{²žÙzÇXy]D²ÿ•W.5+ãÈ™Þ){±î¹»Áî[·uëÕÓ3UβÇ?«³¢GÒ£§ÆÊÞ“¤=] Å0þ‹È#núº9â÷q¾÷^Q7î»^þÝÆå—÷éâýÜLQhßpûVjbÞ ôÕsûzü\¬ò]u4„‰úï[ØÖª¤Îÿa¾'Æ%ü“ Éi¦~÷­_Þ©Bü}eÐ)ŸEÈÒýÑõ›¶4þ­WÐÎu€v`$Vã;Fwש@ ƒ µÏs.\V®õI&ü˜¢æúȤ¯©ªní\»n—emsœÀ.‹™Í6ÏÚ“x|»RRš^fòæwÿob‹š«êú ÷3­±I?`SÆæüãò½1½oïd,§Õ­Ç ÛìA+g4m·½Þýªß »Ž3[®ÚµšàœaZn¬©l7ªÁÇÏÁ–Ç£îkÀƒ¦Y<"§Ü^ÂL±ÉŠ ‹›¿ÛæÞÿv¬×“­Í"ìÂ~óÞ­îAêt#º¶¾Â=g¼K­Bóâ ÚzÖŸë’£ÆÛ—ìmèäæå˜‘Ö·†;¿Ãc¬#Û}1¶u¬4Wî¤êdFöÛy¡šŽ’ê  ¾çÇÅÚ²3™ù¡sľ1¥Ðtq$Ö5Žôå£I'|>ž÷ÐÐç‘wÓç'&ãb“—ɲt-1õÓ'¹7£H /EWýúú#½ä­zý‡Fl?5σÁó±écVdÿÇ¡þŒ«€+ÇN³1ãÅŒuâ.›H;uæù_ùj¨n4 :Þ“N*ùØkâr.L½ çJ~02žãöÇüùѰ†w(à’· ZÌ"oø„xŠò‚W•›ù;<®Õ®Ó?+} ³ [–Kˆ5E°®Ë#ÎmÆ&™HŽ÷Ôp×ÁÞ§ÛkÃó։‘ñâ~·+«8´®39M ?2eaž”qk£Ïóî^ûNýªKÜMy¸þ´R}B›KªK[Y7ebÅÁ°@‚C·2×ÇÉÇ~øzÉës²³ìüf#Ï”ý‚Æu´^ñ·ýxM²À~j3|ñ¼ŸOÓÑ£aÝ|¯­ÆÿyÇVöÁ©*NòÏñ.GÏrg‡Úõ!=o ­È¼QÍâ®%ô‹<'/%*_ûQŒÜ–œÊZÛK>òzjü†Ð<Àœ‘ÿò‡^*”K÷ý±ÙÑ7~äœ~ÃßÇ‚ ÷à~q’ºeºp›õ¸—¿lµTÚÏðݨmTÐõ’X4¿“Dªt84Æ™“ÉâÖäâ=_Tã›×5 Dâ…|¸Çº5iE;óºj@é+³I‡+ã7¸)û¨á™ Èú¯¾ë9—ÖDfòÙC\Äÿ鯫ÛúRcl7IÄ¡¼€ ™ßÀgŽáÂù$Úà”%š·{nùeúö;p‹êU…+ƒ§{ ± =f`©Ñ„oߟæïî™àÒG\±øÚ†ª›çéL]øå¾DÚnUå?Ÿ¤,¿Ùö˜[:øç˜ó]­ÊYRõÌLþ1íNõœ‡å?jÝÃdE]#¡GçœéÇt÷žhþ·]ËêÔ¨º~ÙñÇZˆ+g«ß!­ë#wþ¯•ÓíµÐ·²‘E¬÷É»ù¢ëïr7úv?Rõ»Ïê¦-¦åz=•\ $ø±3Ä€Ýÿ¡OÞˆœǪ¿O»„ÍNÂ>†½mcçôåðžòmû£ÅHR}R[ºž«ûÚH$|ïzÝïÏ[EîÈD¯ªÈõð°ÖI7P¯­ s;ðp’_ó‰oâ–§Ñ—·DómÆýhêí#Øz±-YoËbBÞb$¼)¼êÌGâ#g}€7 ùuÌ©+ˆ7CÕúÈôä[ˆöòþZ¹()Ò8¿6ZÌÖs‹þ£a!þ‚a_òz8mÜJKòäÖÅß}Þ­zÉ矎¯=]ÛÎüfÊGXdv‡R'ïüêŸDüµ_B—öÁ%ÁÆ ù÷OÙz>~5½Nº0ñ·7± }À·üÐ_®§ž ?Ûiúqþ8Uoñõ2ïÜ¢!üÒ"}ýýüHûÄ~4}Œ·Í …îæí¡!ù®d=ŸìV’#—oî;Ê@ÿ•EÛk•µäÿ?•Y÷ØoÓåüý>U7½º>J~ì„õ+Œ{ÚN š–<·eÏBZ?nÕÓ–:„K˜Ü{í¨­kq´Ž×þ¿êÛþÌ}¾Ä¤i:Zþ•kÍoêÿâÒ’jš2•Eûv½¾Ä|͸L'jo}ü÷hÚ[ó»ÒúÊÿô)™ƒªOñÌrú8G|Þ¯ßÁÅr™óVË* àAÖ×î©Ðʈ³àœü‰2-çÛâ¨!v‚Æz¤-µ‡"9³WééÂÙoo•÷¤„ÊÓ¨+'’Cë_oôˆÎQíDï™z4Vö?/ÉkT°vÞZ”µ‡}2”Xõ¿Gã]z'IbûýÛø¡¦z¿Ç·Á'Us2Ï–é–o€ƒ}n–ä½…àã¿•½•Ò«ë¤'Öúoù$ÿ®¬“ vjg}¿íþ~(ZžŸ¿¸l¢šDi|Ï÷%ú‘~â ùÞm%ÓZ}IøÐ¨´½?®×úà j7ᮂñvàeQæbÇ'Êbˆn„&m@Ÿô?™Šþ^‹œk¾nÛ'cÝ9)\"³÷ÕáDõžª"øCºoö”?_)Û½ïn©ÀÁør»Ö]ÌïŒN§÷v)'R¤'ú‰°à€Þ?n‰Ÿ½ØÏMÓN•áwù§Œ»®Gð5¢TŽVÿ1 }A[…v¥r©ß èÖˆm)•û'òËuFû8ìFR,ïŠñ¶Ó4Î9?2ã,ìû½¶>;¿f5wGH365Åçrz:gÉ’wá­?÷^³‰¢þ{­Ì|ïÓ+¾ÝŒóNPQ‰Ë»›–B'ø“òNWøèNà]bÊáé‡Ç“Þ›ˆïm¼T¢çzSTÈñj}àô{Nò{΢Úr> P8—OÇÙÎìB*®Ò€ÞÎqµ¤Pͫߗ©/I{í{÷ «~Sv_Õrßø[‡õëz0¦ÂRz[&’–·ªû¡AÐ?ö34iÖmèêÛ}ÜS'M‹@ùÖ¨ˆ¹•¥˜³ŠË,ã›ßyÈÿM÷èq MüÐÿÂÚ•TŸ8}U“WŸÜ÷H‡å8ãžkßÅÈÙ[°ÁÒîs~n×ý˜yˆø»,% A÷Ésh i^e«±ÿÃ;ìÿörg^Àv>èÜ´}íݹŠ~Ý>Ÿ‚¡­ºx)”ùYA",ÜÃKâRñžËœ†ÿç9,>9„P· ‚ž²«ù~ÿBèijªóêØÞQ©{Þ¥¶Y+—ËXóþöÿv|aOø*/yáEe Ò½x€bT8 øBq~X$DsÌpQçŸ,¦>JÏÅýÕ «¢|9•Ç5gÑf¬ÑAô¤Ü.íyß~ñµ »Æ†,7Ü™ò:rY­Æ+EôùVgú‚Þ4a÷ÿRýî4ª¥þ„4ó?Äüå)Ó>;Yôñèsl>/‡õúxÿÛJѽY˜çtãå)6¡)øñŸÕ]N7*Á9™çÓ¢"’#ð!œëøÇ‡†pAòÍÃ;;»¾G6͘YÍ“ÿ­Rv]/;\*Z– m7ûÜ2R§#6 šÏ;ÜIâü841É!Lÿk¾i`_èeÇ÷á–È­¥ä]|‘VpÈÌNïÊ#ôu#b%¨æìð‡e¤;ç?é+ßC¿ùBì^ÿ_Ë¾í¤–0¿¥ÛýòâÈüp®ÍsðûtÅÈ+±Åæɽ?Žé” 7-¨I3µ¾9©Åã/¹Oþð˜ér=ìêW6æiŒ¤4ŸC,Ç`¿wÄÖKÕ‘¸ËO¸Ia -GM‘Kˆ/‡QÁ—È!rôsP,ú^mß-ZN[»4üîTåNßõøõOæ¡ÎeÁ·öçKÔԠؙř‚þР÷ð·!bèÞˆÊ4üç}óCp7!Üî–íþ%˲²þ¥§þ™w,P–%T·Kû?Ï{ý\}î–¯Š*²ºjnÁ¿Å…̃øJ'ŒrÔÏëyÔ0ú?·Ðñ wIT‡ÎHæ­tŒÔ¿¦Š°›ç”ûIœËÛòù~©XhU0ÎY{­‰Ê¯ ¶e¿¯Ëöå|Ù¬N?¾^³æøyuò¶lH’¡Ã™¦-ƒé³¶þš_ÙÇ—s÷xÙºªzâÂaÞ”aµ^¾âc\¨Lô­9N5¿;òÿ¹WD.Í=¿íÈnçÙÕ#øé´²ª'ðŸÌáöý<ÙPÞ!|²m&~/hþm‚¥ïtøµtR1KžÁÕ;óÔô´_¥ò9¿mB/Iüûÿße<—¿­GÓO¡Xª“ªƒÆ¦ ²ÿ5EÈOå#ñ<LnÖ+JœOÀtAö}Î4¿Ï7ЪC—ý¡"¦-;ósبïè¸mæóëõ´áúdœ$¸æa|žÿå¤ù“ÿs |l%몷«3˜þíêêRSB9ó=š. ®¥Þwx¸¨dîLªø4­~np2”еÃú>+8Þg½üãHûº¶G… ™À²l‡–ºÂ_N…yT+˦šý~®…ÄØ×ý|èªòá¥ü9¢>Ëý~‚©¡w6z#ëcyáüeçk½q¾îoº÷ E‘c{ûEgÑY~›Ìÿ·ìPù+¿óûÿ-Þë$tÚßGÙHkËœ¿Á7yϽ¯Êû=TÙ‡|¸~ðž‹ì·Lr³1¾g#r8ßfGq8.îÍ}V6¾t´-ZzûF„Ü9ÔN»zûQ"÷+Óûë:¿ÑÛå#÷—sû]}Ÿ:ž¯nû‰—æÜõÉ Òå”ÿÓQÛS©x½êKÞ¼gUõ'^i{2ú½{Jj$Ü íäÀ8jçnöSQN¢µ;_œp _|'Cç¥&ç»é€•˜¹‚û“ÙÁ¼ÿ‘ÙN—ÔDþm†Ó÷íeì<Ôɳä:Sy¹?Cí5§Ê늓ˆK³˜µPØŸðþzž·²ý½t_ž·Rì´DS*»‘s з»¡]öY/ûk³žcëÉæ"ZôšÓâ+ìé¨÷ž²T†µz)ûüK<,ÜãñIO2çïë Á€«ÓøJà}àt¾XIÞÄ™]Dô=x6¼dñ~«~ÅåÂéF3”ï}ÿwäFoü¼ºu¹¿­SW#©Ð<ËB÷¥}û›Â—kj#e{ê ÿ䘇ðÅøƒå-uERŸ‹ƒùÊ|¿Áô7þ²­:afÿj¡Á]ËëßøBëû&Ÿ¨ˆšð®“þÖ?Õ¹XâG+¥¡xÂ>:q2£¬äÀßzûÃg 1BJŽ@¬k¼ïJMï¯]3S»-)5éÊÿ¿ñz^œ€ ºÊÓïE7 §¥8WÏípï?Ô£æ±ø:‡yº»Ÿèàï÷AXäž`n; 7L0á%sÖ½¬-F;/ ]²î‡Ðí©6«ï×»ÖvL‡¡¾‘œ*. +]Ï$Kì-\ÿGàä‘Üù!{ÆY_œÓv”‡"n6ÔOНÑ÷ìzi<8P4¬ò>³tÛ?ÄvÙqß>-5¿k_Óá] øŸnÿ"hƒ­\¼ï5÷'ŸQiØhû» Z6ö‘™_3ò}œt°ú´Ñ-ð®:)J–«®ÑŽ÷™þ..~Æ·ôEØ“€]\p÷bYÜoooɤ´[øÚ¢(RsŸÉ“µíIü{?r-èrþ<\Óq§ü4;¿ÞxŸP d J©8©Ãë!s<âÏÊxkQœ¿,”¶b¬¤ãòp"þ|¯Ã‘ÎcÕs¯üÜ‘Œ;Ó8hŸÍ&>º*Ÿ•žGµ{“G”!„BÛö|â=­ßn›<Ö]'øŒp¾«Wõ…÷ü|¼ ïw8Ó4ÕsSŸ/2c½;ÏíI¸î¶“Á¸ßîûÿ|?6ºØœëô4GïÑ»Áõ§Å–ý$q‰b±¸m ýÑö’þs/[GÞ¿Eü¡Ä–«×ÑÎÐ]•6SÉ ˆÒ Uù>˜(~Õ»Ï4ÌRcœ§­ ýœÂÚ¡k‘™ÙÙ çþõÌ åÚÓò¾§Æt÷ko?Åÿ®§¹k¬^~C¶'¸½Hñrs?íú÷‚4‰´b)úsÅÍ䄚Îà»oïÕ¼I›© ôsqž{Âúª{Q í~ÌëwîÄ_‹Í%݈þ>_–„#ÖÍzÞlÆçÏÝ/Ц¶C"mÑî )dA öõ´|g-ß´)’û ‰-£ôsüůÃð¢´Ñí¾'(»J»ÅÚ¯ ÞyíQ™có‰ÓêiëÑÂé“?UµÑ¸øê‰o÷Z<{õ·>o\#ùÿdɌσ÷ /GÛ©wìåÝÖõêcÁñ‹'¼»ªœð'üÅÎM³@•vs÷¿*(ûÖ™×/jû;§ñ¶¼·º*ùT("°¸-ŸpüºT¬ÉÞ¹\GýÕ±Q5œF3(˜ýçñ¸¥ž|g ½öä×?x­hóisÄ]§±§æ”úï4—‹¤æc„-5%Yæðj^!Î[÷Û eÇwÃý# úøÎ¯G6.Þ{¡Ø.Ê´¨.9F¦»‚¯CX:s3ŒqÆu- é#1RÕ«`kR.¶*¾ç'G.Þ›ˆ‘ÝsÇË ì§à‰&®…6h™–3=>o‘ç~` ®“¢Qbã┆•¹é½Ž-ì;-ÎäTˆùÏÈì6så¯èKÇâ•«÷í6°ÙªŠ,ë.zè·ñ+»æú–€ÃôÚØp ¸ÿ¸Þ`ËQ… »ÐûO‹wqÜë¨û¬.·Ë:ìË?øÎÕÍtî{"[žöÿø q͵ÆãŽ zõÉü_"_ÜÿóQá]`=Gö¤Ú¼ªÄaJf"Ø”£j-j­¢Ø6¶ Ìêæ­s»¸ÛšÜ×,”ص».2«e9¿6ÝÒhÚlM4k cûžë¹F?æîgvî8}ŸÌ*؉õ«Ò?º¢¿}D¿ŒUþçAEÉMm¶Ï}4¿òÃóó‰Ã=&åî¥Pýoq•klÍ¡[;EûĨõýdý_iµ©6ÚlÍ›-©Üãm)± §áßéýhW¹þ’£øöÆÈ§×©^¨ý-¶l™¢øFÍŽ5Uq«ôBr ò‘s+[)úGúÌ„žf“ö´¶ÖÒ´Ùµ·ø\qÖëðõmoœQyyÙ*5ËrÕsnnW9‰¹t¶æ·1”kFårMÊîî7N¢ Üî®kŽ]´2¹p¢6®m\©W53suÝÎî•®W"\æìmŠ.î»nœéaFÙÆ×q™¹’¿xWâKµ¾LRHŸ O>.Ö÷+çñK¾N®ƒOp®ŒOùåú¯â»­…¶›?Cøí³“nÈä܇¶‰<ŸÂ§Ü'§Ÿr}ÌòŸ®æ¸Ù­f›lØ’iX‹¤¼å¹UшÈ'.É%Ç;wÝ×6gs®Î\Lоž¾žú_ïíªß¹¯ÝÚõ ¢¿+¨%ëBû`ç‡úv~–ôŒðöÚÚüZ·ì¿ŒlUm –×”…r¢ý?Ëm6 "þò%üuzqk2ÛšØË,’F ¬Z4bÒE(4Ñ£i‘Šd4¶ÆKªG«Þ}m~¯j«ÐÛz 5Î8ØãÅ«–&éc¥_ç)ûófλækmµïµîííþº÷—¥æÅmZ1¬oU¶å€ Î\»IÊ]Öç]ÖåÜ«”nsnî·,š:ZŽí:ì—9°XÜ\­\¶¹®XµË$Ç*.ìnnm£iݪ9®ê㻑£Dk]wk¹ÓråÍ%9®î¹±¨†D6a™œ_âoU?€Ø­›mÈr«Ù»»]Ô¿ÛîåõZ­­z´Ÿòü÷áí¯‹~Ý"¹Š¿^ƒ“ik,EŠ6©*Œ˜ÄEFÆ‹bÛŠÆ 5I† DJ±l2h5Š- ÒPVHID”L PÈHš 'õ–Öõõ[~%üUcMªá¿e>ÎSó*Ÿ¶ëCú¾iWë‰Ñ‰òx®î“ýJŸÕTëä¿h×Iø~¢‘øx[5Scñ—ýÜŸH¿Ø.K©:“©íÿòªy8uúq£fãŽ'«ã®äsr#?´ý–ÖÕ|îÖÔim½9¥SºÚˆMÝFäjìm¦"(Ú0É¢‚ÜaUê/\.¸~ÜGe~;­ëâû£ÈÒvÊz“­lµNÚ;bvöWl´vÅðWÛ“í —ámqŒÏŸ$øiã•]WÌ­¢ËQX„ÐlÙóŠs#öÿ 36ž%9²ŸáWpÚmš•öE>ÔFÓÚÙµøj’óJ;î}S÷E{°¾Ãm•?Äûz…yµjÞ¢óàÍ“b·+”‘±ŠÑ´QFŒkºè© Ý™‹sk›ŧvj«“ºæ.—#9»MŠ*5\ع¬Z*6Û‘r]6å\»9ÑÊÎë–Kº¹lv:IÝÈÈS™‚ä¶làÙ·T]Iç§O=G¨õ.i:†ÛÞÛfÎ+Ñ~\ û*þTOX6‹hY´Ú¶¶KhkZànT¢èVÒÛUæF,JÉm`¦dŒ1ÈˆØ¶ŠØ´lbŠ5¶’V#-{6îÑ]uÇÜá×s–üZ¶¼–Õo” ›5™´y‡‡H\T¼ñ§ŸMü$…ÊG©ƒÆÏSUåG]W–úC¿Uô£}1ôôͶºEØ)æ®”<Ó”ñ™Q­MX5&lØEÓ]„;; }ßc:v#±¯+%ÕÅ]-wê;þÿgö$Kš‹xðô§µ±©®ÑuêØ¾¾µZòëZmF´VŠö÷Q¶ ­ÝÕE\Ü‹L9ÍrÇMpŒ¦3ØÕ[ãÛ[Úþ1ý$üM¶•Ò*~¤Š¼Qãé–ËÇãŠÜg!*YÕT檞uxóÆÞ÷ü|á+èœç$½“ÓÍj" %¨Ú4–èå«”VåwuÜÅ¢$š¹ÂM‹sf9»¹ÜÔ‰œî\âîÝ×sƒråz¶¯âêÚý-¶]ÙAÞÃjiµ_Gþ}raɹ9&Û7&q›\îMÍ@¿ËH{ #âPŸ³I]ÄdW¸¢|З×Ēøá)­æÛm/k+\ÔQš³º‚DE¬V4‹&ÉŒE¤ÙI ±îíÔõë^±F¾AÝÁƳ3ïõŸçþ¸¥Ï•v`ìÔêTö |ôÍë>…í*fÊNÊ”×äñÇ뤗«z¿(G•“…lóHW®O9lv´Í*}_«•Z«ÞûöýÕ¶óh¤-bÉZEŠ6#L°Û–űmêRFÔ7ö[zöªõØFÍ­µä× žÝ”º4îjîS¹—r½’¹ä¬¡ú#Á3õªCî/9:k¦ºc¤_9ûo:«|ÌØ#%Áj4c&ŒÂ)¶+PYfšõ{u–år×+œÅ\Ú£Di-Rë®\1r5¹°XÔ— ÓZç5wu®I‰#d£6æçw[F¢ØÅspª9n™.XêçvMµÊˆ3Xس¸°LZå«—wvÇ6É´l Ô­_·ÚµëÞº¢Â6Tã[É…NdWÁUðCàÅÈ‹àÒôJ¾Ö‘~­äíšñ@w©zïUw³~›[ÑÛk×¶¶ß}Š Òß7ÎEÂ}†Ú­z¨Ö/UÉΉÎFŹVå"%ˆ)w[»¶æªæå\­Ë–7uΜiÛƒ3 Ý6×-͹j鈓Awm×JÜÛnhksF®mÍ·*âJ‰w[]t"“RhŠhŠäYÝÛ;¡¤°*\å×qr¹·Mwp]æÛk|›mµç׳½ö¥.Y.—¡? ó/Jé ÀÛMO§¸Î.1ãœç¦q³\5›ê| ”xè½]ÔU÷zll²³ÐãN*=òrs÷µ~1}T÷Õß ÷ûm<^Ä‹ŸŠÕ¶ÊØ+ÈÚ¥ÞËÈEíOõ¤¯ä…íNˆ§®=r½Róx¶k($É,É!4/¿­¯¿Öß~¹ößøIGDw]Ûë}(¯_ò~/$'­ æ^– –͛e¿“T.bQøj>º«á__ýJb¦sØØm6‹b,Z‹AAD(±!¶4€‘†Lh‹ØÆ¯g×`¢«›\Ô®Lq¸Ù±f6Ž5§%#¼U>¶fgÍœlÿEArʧZ“óo­œjâÚþgŸ®d]$WÊBÙz–_ý•WH›žIÒR_ÆØÚéN–󔇙æŠè^7kIl[VÈÚj)$Ò Ô&1AÚ5Š65²kAFÑ€!m3bjÆÄˆ³ckó$™ "2TCàQ´mZùÐ-¶Íúýû«)Q…ð®+ö+»ãÚÕkÑÚ_*ü¨OåÍŠ7á•9E>à—ç§á3? ÓÉK™ èp.¹%ï:Tm¶Ûm«¨Ìò «šIÐG-«: ¹¨±¸rÒbعkrÙ ]ÖæDÍstƒœÑ´iÝHÔ çc.t$ÓË\+–¹±h«š¹´š-Ê5Â+ºêLwt7VµÍnXsk˜ªä»®“¤ÚÕÜìwW$¦NA7\çnæÜ7$Ý.¸\àn軀wŒåɋݑ³ÅµºîÚ·àU·±ý4Óy_¹•M] §Û¢äÍKoÚám~×#\pã’ßs;‰Í ÐÞ‡ËÞ*¯eûÖ½‡¦æÚæÑ$´lmÍ´œ«­v\Î’æ£Qb®îÔd¦Å+‡G:‹n8Üpã\²Ÿ“úé>:øù½pœ°Šæ¡ØUyXà§ÉS«¾B_°¥ñã˜S¥ˆ§l¯œTøpûàüävWál?àÛYqqÇqÆ|wôäRèÒ»äû ~$+ÛžØæí)í%ÿ+Ϋ– ú¯s“cYj›ShȾDïb—ÏÙ²˜bŒÍ,Œ‚1"s—(±lZ5±C%ˆ£X5 +»«Eº QœºkÆ.ŽåæÛm~ ¶¶þ¶ Ò„µø<Ù{Šå¥û —K:«Îoîħ׭ZóZ«^Ãx¢ÆÐG¦åŠÅ“Ѷ‚¢‘i7NÅ·9Ñc[t¢‹¦:r Lªå­»#—+•::t›ÌÀcÉ5¾Šz%Ì¡Ö: )}Ò‡uÞKcV×Ýi¸Í·'u—Yu—YyIû”WÜO¸ÿƒ–ªTmU'8§8ND‡Ñ‘IÚÊ}’Ÿß¤ÚÃiøY³N5µ¶Í~Ïø '?*¿—‰äÚØmìrº]ÝhŒ[tµÍ,XÂEI‘\¹nW]Ûb×9®\ÜÛsj ’4&7uÎîe ÛIQTcr®jåpÄ]Ýnë£It¶:¹I‰Ã”κbÝή.çpÌQ—wwLœé$98øù/KÅ•}YN†…â‹¡¸9è¾ñWSí϶ÿâç•ÔD}Z_ÕÍ5{”ð³M¶?œ’®xS´¨ëi.¶ôt½ íÉÕº[FÁ´›ZYWÍ)wrÅ"ܦ Ñ«këõ¯¤öâë/oµíéÍõ ì×Ó }3éðò Iõ)ìCö öÚ$‹×Ö"ó¢WÙ•Öë8Å®6Ík=>äôô‰sÖ©Áâp¶Ù®88SkŽ8\qŠÜY–Ü;ñ>Jz÷ÐæÉ*ûªéÜ¡î’}ÂNEEôªNs¿ÃürPW,Eè¡z ÕŸHíò×ñ$WÒ_GÑT^•Ïâ‘Òsºn8+— Z;±[r¹eªnFÑFFܹ1kšç]¸q×wEwvë®éw;® Λ6Ül¹$]ÙGzm#½mM©°G]uÝ"ÅÛõG~–ÛkW—Uµ¾ïC»]Ûÿd*åJÎ)ÐàÛŒ›ŽQ`Ú¸t®r뻲X#]ÝYÄW**í@‰wrˆÜ9Î';rîîçNww:¯äUíÄÓg§ÛccƒgŒ×ZŠ®~ ïô>-âÿÑ—0W¦*ú:;8rBvjñ2uðëéÏú>z’ëï½\„ž1;È]îµµÞæ¶qŒçÄW^zºúë×§¿%æ«„&‘d‚d$˜$ÉH¢ÔUOC©1hµhÛD•3IŒ$E‰I6 J¤¬lQ;¹„Œb”¤ªä¶wTFEª"’cmtÌÛtR§_+˧¢=ÉôG2wm0ŒXµE¨ÊSDÚÙ¦m±ã.ï¼ßÛ„žÏÁ¾@îÕÝäw›6Øn&ÛgyþJRsÃjó¶ÕÂcZ½Z´ÚºDD—"'x‹¼ÖUü[½ÿÄs S¼Šôa˜Ù¶ãpâxåJ¹Hç;Ý„éSÊQKËÎd©Ç<èr6¸ÜqÇ9uݤÝÝ$®t;»»»±wt2ÄNë·gPNîws®ëÆÜfq³òè"é Jæ.j¯ü¨w­¾üGÔs¡>ü©~à‰ø¥ö÷áU+¿“éÛ7€ãN§·/â‚“ó;ˆN OAx+ÁݨÊ”Ú×°b)ÄhÞß" ¶¶Ë5¶›qÉ(ýuG >“2l¬ú[pð–*¹‰Sׯ!Û•Ø¡yd*þ}^6ÛxÜŸ2…/]=tº©ÖOZ¸ëc«Ž*—Vy' §T½¼ Æ3ŠâÖͶÿBæ¥oR«^Û(f±i1´ZØÕ“PkÂÆØÕQ„¤Ú4˜Å Ñ[HÕ±Ji&%Ö«iþ¿¡wü%¶Ü”’~YÎØG¿Ù.lMT÷ñ|Å–Að³lVÄûå²8ç>x]ª¶OEIw™1=¾Z.h§ÛÑ}‚wÁ/·+j=Ĺˆ¯µCâUï$OµCk”¡ÝQhW«„wù5ÚQ÷sm‹jBÊ’ÚöK—k™¼ž/ Ęñ~«U'ÊŠ>ÕK )}¢˜ƒòT·íÒrP9½0¶£l3[Ïî.1µ®Vå®Q‡tèë»r#%rÜåwq¹¹nh­ºmé¹ÝÛ:ìî2[•Í¢Š6-Q‚5jæîînkwt» ÒQh6ÂÜѬVŠŽ]™XÆÆÒeÎÕ\®îȱUÝÈ0h3bg]ÅÝÕÎç.»µÝœw7-kiÈŠ¯«êžÕ~„”æóÈ£ŠyÊúU}fÓëf®8ÎNMÊDæbzzàªô÷§8J½9ï¸@}æR«Óó­¨ÑZJQ´ª,BÂi3$šó­m¾ÿ_=‘ü¹ö„‰ÐQÆd£ž•sÒÆ(×ñß÷9ËÃľÇk[yuµKPÅQxBxW—E'$P婯ƒmD’LסÕr±hÒqÝ5®r®iœê®[ÕÍ&†36“l`ÑT쑵¹/ÎE¡ytym-­^«-´á³âq¸ÿJæ S  ¬§3©ÿÔª¹’ ÏqŸS‹eMœ™U‹Ô\FÛ¤Ék»µEXÖÅŠÕÒ™Ý;§vë2\µsr¹dÒcQTi6ÜÕÍ®hŠŠ(ɇP•Ë”QErÜ*9®l[snW7s£"XÕ\†«„å¤</ fÇ…°ãoÒT'£UóÇkSè'C)]©^‰Ù‹è—(:¯Zzªb‡©¥ïƒßG$¡ï‡¾Ž}äxE{½ ­ªxCçx\~ÇŒŠ—>ïÇ¿®~9’ðAá/üÛ}n6ÝÝÌÑ‚ñß®y;ìõµmæÕªùîÔZÑF±¨MD‰£4j zO\VÇö•O^§žºæG£Ÿ¹"2«ØÑÔ»’;!Õ¾z¯eS¬è yOÜÉkj¶6K¹Q÷rë}ÜOGNjCÊmô Ú$ѱb±%I2”hMRV±F%ï5«Ž›\Ö¸J¹­r¹ÎÛlm&™•‘$¥ã®uÎÊ¿§ÛkóÛ^]ª×Ùl^Ú]Ê/n_îsªª>™¢+ýÙ_ ¯#y¸£Ó¹Î7È‚òZÚ¯.ÛVÞà¬mì[WH [•n˜Û®jæ6®»¸j 4ac¹Î4æF Ý™SÁ*õãjæ®#h¸*8Û¹òÎýM yëŸ(óמ¸¢rÏcÅçcŽ:¶å¹c[%RQβWwsw::åFƱ5nk¦7+”îäî¹Í# Äs¡wlZ¹l¢Ôî×J;»»)wS8.û•kšË»µ¹¢·&äNê¹[›EÝ×:qл òZÛUømëå:O«lޱؖ!]ü§Æ/µf;ÝÆÛ‹ôJdTÜík-‘µ±‹@Jhƒ$‹ ØÅmŒlZ-ÆÛf5‹f@­F ÆÑ’‘’ă167év¯Ù¢`jØÑo½¬Õ9‚;Ê/ɪÅM°[‘#ë*Ot¾³üRס̄ýJ§af6Äofå¹jæåÝj¹ðuQSäþŠ¥|J: KÈÓƒê2>ÏlÙ¶f„mC‚å¢}úMJò‚OÀŠú"¹~ûÙŒÕ6-¶ÛAhµöë“»NîMrÛöM¼Mklá´6Ù*Ù:œÅ]õ'«ê•…xQ€ð†ñãT¿(/Ê_~é —-¬òÙl“j<様ÆahظvÝ7 »¹£W#h¶C¹š†Lc#»DÆ x¶Ö¯±ÛU½Ê´­6ÍóÛ…Ã[«Ùv"‡1J^žC[V¿“ÿeeFßá77ñæÊC_Hxï +bç<17wžFäm-¸ÙlSAû5'¤mAÖcøïtͶü×=!:%K®*´Gó=Š“i¶¶–Ä›pùˆ,•Wë#õ1š±ù¹G.*«aÈE~m%‘_ª‘÷$œèžK •µ¶‹FÕÖ6¨­ Ô[ÑŒ0Ñ ¨Ú4RmFÔTTPU¬i&%ý[[éí¿°“ñåÆ¸Í¹8Û“ŽæÐT—³« ìÌ“²È»U;‹±h]þIüLæ•/t©õÏ“šþÙ$æ@ŸÒ‰Wái,dªå¤ÀȘ«šç…q²üümÃŒäøW1sÃ!bͳn$\Ý*åÎ[•¶äUÂIÝÒŒPjé¹¹mrÕÍ‚0wv]w0‡uÒ¶´îÛ–"ç6 ææØœî»#›”áÃ.ÜÝÝb.î ìD»—eØî éÛ·hñ[V¿Ýý6Ö¾Kï6¹(G-%W_òjºˆí×MÊsD«ÒÊæ.)=¤^EÀŸƒÿTM†¶Í­6“aš¯lN‘ãùŠ:ŠFÒ%„6Â"-u¶úëUýb_ãfù //UÐHí#Ð\uj§f]?$—ÔEÁWÔËÔ¦RüŸòm¥ŠÆ‘XÚ¯À.îÅn[š¶¿?NT]¢h;IjŽÒ˜/ù•/(œ(ùã ÿ §…²6Û œéÃ6ú*Ê!=Ìþ×Ðÿæ(r¤]!NóaV+Rª#dJ9ÎAóªìc÷ÖÛ8¼€¤åIGîª;̤œJ]meN±dSRv)çl«Îi#›: M‘²i2ÒÛF©"Œ[µU}Ý«_‡)hÖ̆¬Y1$¿h®\Ì*;ºA~Ýÿ– œÊ á•ê³5¬Õ²¶mM§vùº¦Ñ6‰µM™ŒÄCF1i-F¢U¯¡üm©ª¡þ<Úò¶/ÄÓðµ×+—%¿yóvÕ[ͪ©êyîᨶåµÍ%±´kq»¸¢Ü­HÚé»»4lîÓ˜…×]s;vQww];Ý0¡.-ÝÇ+®çuÇYÜçwnæÜÞýî}ñO¼(®UTvÉ]²\ õŠecG˜^ª+”/µØÍV¬ö„Èc+Íñ °—a§`/-#°LSÕ¤õI©~N¦Õ½pHѬh´T+ #T›FÅQ¢I0Hmó=wqTjÃ%´f-´-nR[®Züžò[W`­%Ø‹ëExõãø NZ¥ÕË)uf”êëRGûDWÂØ^.Êñ±±³W{rÊ™E/=¬òÔ¹;8X£òÔh;´\â£ÎûªUÉO,F¢ñ¼zŽ\ÌÒٶᵌkòAËIù22§ÆKÛå±¶¶-›U²¯«’KìB¾,‹ïDÅ>ðŒódi/Ž©‚û¹Y*ºà—M.‡¹…\µUòC¾Ð6ĪErJG.ÕÊkֿɄîÑ.û»Ž»ºpn»—qx¶×¾ÙèeÄW¡aW_jN»RuÈQuÿRÇ…®7 n-¼-ÓA:u”}F%ùØ/èåytOðªÈ*l¥BÛ-k^t[HÈÉD˜lˆ,h±¾ m_S·Üë Í„O`¯ž©þr¨r ì“îTî#Bî‚î )w$ì£Dö%‰{’8«²Wô%…øÞœ$ˆòÅ^m8¢õÄéNíʺuÅm+¨\Ú渥vI{n»$ÉyŒšò°×³b¬ –"¬`M¤³Z½hå©á çªý˜ ÉK±V_L“¯†#ÔËHêi‚ëR½e5K«XIû”]×çÅKšƒ[B>r—ÍmµcßêÓÂÿø¹‘.tK盓pFÎ:·.îÛweÎF×1Våt­Íb7+n.ë±£nî)ÝwXλŽîæ:îwn9Ìîã¹À™Œc’wt<«æ ðÕ_*Šœ…¿SßkL×q­[ì©9jyÓJyÆAæ¬)ñ0΋UlMmmmmZÒhÑUcQ¦¯IA9ÝÇÖ5œ•öÔK$:K¨YBù"¾DÛj÷½bDrЗ¯Hùkl£mªÚÒ6?ÜD9¹zQµLcbÔðºàÇCÅ­jü[[ôö¯ƒl_JÚrH)C–‹šW >›d¸C¦)é¤âWäôèáGgQê  \ð’둞¢‡§Ì«‚^Ø—X8;õ/šª«íÉuÉÂ=’ªëÓ„½´NÂ\íŠv#ˆ> ‚q#àÔìG¾/VD½îÕì­ ²’^þ%ÒNæg8ã…ÉIè¥è /ÄU|œ¶Û &ß[• ì»­niùx)ÊUÖa:Æ+êÚ—?Ia%øé%qº˜U]õO¸î*í³ö W0§6#ÄãcjØŽM̱raݺZwW]pìîºMÝÑÜî»  ! ãeW>T?PâŠ>ä‰Ò4Û6[6²uŒcmĪ©ËJy!‰Óš.Ú°tÕ¡ÍÒjú®8\m«W*-sIiÝclU¢¨'uÓtæG+»—8¸i-Š.î«]wm]qÖ¸‰)Îí®š´mÆÜé±INíwtM[ Œ#(·è<›míš×¶DvÑ+·ˆ8Lª4(ûJ—ßÇßÛ;ÒÊþ¤*pâXW ¼ÝÈÆ*"ƒ†é¨·6¸l;®X¢.]ràmÍÍ®kEs¹çwT]2Q$É2Dبæ¹Ekš¢­ÊæÜŠ»®§]rçwwn\åÈ+æ®TY5(sjæØÜ‘¢Û„ uÊŒl”‘#bˆ™ Ãer%.0§IIw»I³m[Cï¸Ëe¬×ùiÊ¡ÕL]IŠê&Šy*Ôy%Ïq$´<“úÄŸ÷‚ŽZžOIäòG‹t3\ͲDT`¯¥smd#b«Õq´›W3†Ú(¥sš5TW#» ظîås«·sŽÝr¹ÒwAsŽD«Ü¿ÌøZ²Ûc£ã8Éâ¢K™Pþˆ-NöDÔvBÕ{Õ>NÊŽö!’öÅëÔÁì$]½8¦-ñRÕ\%Ú&KåÁu«€xæÁX2ò£m±¶¢Ø´ÁP[KE«‹2M"&â/†GG­MŒžÞ\WßÚ•Ö”‡"‰èp‡ð©|-›_ ¬rjÚÕä¶´ó(žkš¹¹i˨¢¹j+\®lZæJæÑ‹uƒNi*6æŽm¹£U®î«†£mŠ€ÇuÔ2Y»»›©#wwuÆÚMŒ[—-%nj¹rÕÉ5cUÜI¶66Ê,U;¹›Y¶8Ü•GHµ]JbñCIÔÍíýt,q"¾ú•vª[m³l½`È¥ühX¯Së蛊_^‹#ò§;CbmYµRÛàí²l‡$ž°-W: ûéN!÷Ò5_òÊž±¦Ûm¶¢»Y²Šè϶R±Š¨ÔF‹–`lI(ű¶-E£EDb"Æ™ šŠ[e›gkQÈNø’íBâWj¡ýIKÜÛç)¶•´¿Š(¹‹ò‰àh­–ÔÀ؃âÂã‘_¥”úU'Ƥá|e¤µÕ[iîŽIä¨ôàím]†³üô%ÍRŽÞƒÃÚ/$IrL¥•”Ÿ«­Wšò5íZÆ€ÆÂ×.nf‰¥%œî‡tȉÜîK—.î¹vtëÛ¢í1)ãWæõ=âWd§¢8#²KÑñeG¸â—²¥‘Ü–‡r™Næ«R»˜Ñ]Ìd~ÏÊ$|[,ll|¡'$ r­EUb{A…÷rÉ{øÊ=úÒ½újÍÁ^˜)qJ¬súÖ˜¶ù°­Ì20̯Õ¾^¨| ù:Ùmùa*aK$üT«T ÆÑ–ɱS€¼üª´OÈI}ÞU›@â+ädŸKù–ȶjÛb' ¾ÐŸªR ø¨JïI? °…GøÑÌá¶i:µªuSIÔ¬WQ©ëá=EWU”ÃfÍm±q¶Í—âÕm·’Öôu®•{‡/ItÝÇxF×9nbŠæ»Ç\»µÈÞW„¨ðå®r¹ÉË»¶Mݸi9¹RMr$I¥ä¥°Š†!új—½ ú…*ä‚¿ ýš;¬›b{VÑéªJòì­²«eµ¯7¥Õk¹Ô *å\¹;®¢Å[çssWnîîêç.îw]Ë—BGnÍ˧NáNë¤Ç:mÓÆÖ¯“jöš²¿Þ”¹“$7ÎE]Ó6e0%}ßsjá rk¼m¶ÖòV½®–÷U:ù]䎈<­Âuá帧^W—¸O± °‹»9ØÕòx®Xz¹eý‚§i-q¤²¯ZZñО8l¶Å´ÚlÛo¨ y¾_7ÈŠ²†Õ²½Ò×-W;Q­rµÝº0®î‹kœœ¨ÆånCb“Bawv·.nDÉ.¦Šmbh‚/~;e_ëUkó5p¯[½l´mjÜ]ÜäÌÛŒq»ø Ë*xuQ4§ 8Öl°M³Óê4b*MF+»œåÐxµo­ø›Zø¨F+#kd⨮HNêSº#ÈÁS,N[fdÜ/ì*®ì;¼ÛfØw{Hªåž(´êf]A£ÏçžkÎÚóš§Â#â‚EôO·±l¶Õ²Ú¾ zªªœº sº]kš’éŽâÆ®pÄK#37.îg]¢tC¤„C»8œî»§BEÝ;»¼Zø«û€§DEC.OBšô!½ ·¡–ëUå•ÇR>a'±íIíÇõ+¬Þ²9„ÒRgs|ú¿TùàrwOšªøÊ\f—õ .‚¾jOšWÌ#Éä«Ü“{ní2Pf‚&Qn«ºî])9n›•b´l[•;‚wrg7swwLÌFÜѶ)ÎÓ4Ç.båÊ9·EràÊ,[—6ÕÍhºP‹, ­Í£K\µØÚˆ¤¦¹­s[ A+“,—‹~Õ>A>C6fÓÈÕPåtõö><:ÔG<ê.žã§t<ß§[#m¦NÝÛr®ˆ¹h×wb5ͺuÜÚÓ%rÝË»¹²#qÝÝÆ:Zò^ò«mù‹DùÖ®nFf¼Håûå þãfÔ·‡UG´¤;PíNÕŒÚÿÜJç‘: Æ­±±¶ˆØÑ“ #E2 ¤ÃmX¶Æ«“b©+œÜ»sh;º"ÑT]×3ºìƒ&CFm}ô<2Eã¯kÏro{(írÇ,BüžKËåîuºL„ BcDF€±PZ<ˆ Ñ!$H²hÚ€Ú*&%Š£Z,EƒdRc¹uÊ®W-ƒ\¶5\¹Œ\¹Np»«‰4\á¸knjåk•®\ÜKgvêaÝv6hÛ¨¨·wsi.]ÝÇ.Zæe3W5ÎbA¶×.L5™¶^4¯.Ÿ—ÁÛ3eZ­›SѨSžž¥Bî£ÏÝÑ=ºSÙ«Ùdz§³žÎ=œyÕvKù"}•ÀOi]Fµ­¶·,ëׯ8öúžk%\gÔe˲ÂhØÛ•;´˜ØØÝÛ¥—.“w;¡Î•rÔVƒràË£$¦ lÍŠÉV¹·1Œj.mظ¸¶'[/¶%_è£õvµ‹Ž`¥Û$]ª„6™µ}ÕAxJSÞÊNô¥|U|‡}¦ÙŒ»ŠÕ{K^žñè£t’jæn»¸ÙÝwwwwW;¹sº8ѹu1ºî¹IÙw;·wÏÛßï}~3}/ÑíöKM­›ÿªQâÉáÐ.*Ÿ NÛ²Û+lÛhí›6:º*|5Oð¨J©õÂut¯2¾¹'W[ ¦æ.úÕPw{Ru‰yªäö‘_NWœ® ÙëTxÒykàHû¥t‡”s:(¸Áš²¹j ¹X«š*åL8)¸Û,Î7Àï[5KÕQðT»ãP^×6¶Ò”½­Gf«Åv»"õ°ë…zÚw‚„£×æÚ¾Àyñ)÷âzôø©~í$í”ì¶Ú·ÀUÔÈjÐQ¶‰¾·‹¥uÅýå¶¶¼ÖÚ÷n­Û—w9sI¶5.wwI\Û—MQ¢QƹÁ¹£·nt—w34æ×ÍêW¼†ixqAàUø•|ƒceë³68ÑûªõÓ/H=­z ôCkàÕ¾rÚ¶Þ¢ÅèwW61#mÍpÜ›F5rúU¸‘"JºæÆ·wpîIŠë¥Òè,›»‘F°LD£úíjÞî¶¿'m¢b±1gÿÄIø¥/ÅP~¯â?¬ÜfÛm¸âãfË“wl»§wHIöûmµöö5P¨¬Š5_Ûk[Î[z¹µH‰ÎÖ‹w8(±—1\©W¯¶¶øZß PM‡ÙVÓç@yZ«ºqRïü ²Uëäöë‰Ô«NÅ:õuõÒ'‘az±à”^olm2¶m[m•öZÖÛ^æ€â¼‘OV¶Ìº¸ò «:»«uwsòžýM³dxt*ÿÞ–vóÄ'5R^.+\ö6Ù³a¶ÊÅFØÔEPb$mˆ­˜¹\Õs\è‡tK›•ÎáÜeܺåήè8é×9ÎÀî®wt»¸>Û[í•H§‡D_(©ð*Ÿ(mceƦÜpÚ›5>ö¢?»Ñ <‚çÜÊÛfØ¢ÕŠ±«X2QdHÑ2#ØÄIY5¢ÈmfZˆ™ Ø­íkí5«íu¬ÏÕ(òOô¤ùò5­Ÿ‰s=-µûJæj­^A„Äy;t˜#•nmЧqnchåt£—$›œ’ç6,îµr(ÕÍ™Ó]% Nt‰šåÑ®k”hÚ+r®lXQhàÁ[–Æ+ÎíÍs»º7råÍ͵Ër®î&Öå]×rîwGêu§º#ÝB÷D¹¹ÝH«À³[SUàl¶¼x)Ó%|¤žwê®þw ÝÒ¯uÙ’õ“Ü¢ë)ø)=Ô«­_bU×NÚ—©O–«øUM°xt'Vº´êçT랓;yŠ·ºÜ#E®Ý¹vM$RTnt7#$å+›“dÍh mµ³ða5KÊæ,þm¯Æí|HÓþÛm¼ mQ¢2jöÜ’ÑjhÑ’‘Œ"‹_°­ªûKZ½Ú¶üiß‚{½…m…ßÛN5µaÇöBWUMužtîdè0ml¶¨%El%`Íl˜2a¨Ú%^Å×sº÷»ç¿“öÕk홳6Úò‘)Ñ x]¶6lÔ›p“»”Xlmµ=µV¯áÕú¦Ù³·âq‡gðÒ+øÐE}M¦Ù$û2‘ûdþ>•…²GÛ•Möè¯~Eö³ðêºKÇfÈ™-Q $¢ÀM”Ldd0mñ5ôM3/Þ>m ¸‰µó¤ÑÆaÿX’ö"óÃØÔó÷±S¨=‚Löu^´:—²¤ùÕ²›hØý%GcP/\½.Þ¸í˦"çiµæ¸¸Î1Æ·5cW$„hªæåÅW+–ˆØîN„¤!¡¶ ÜÜîtîÎt㥥.è»]wn».œÝÒNíÓ0FÃ2î8KÍÐOè-vö;dóåÍ{™^æÚžŸVÕ§úi܃ÝÓÝæk[8\Ò>aýœ›m3Y˜ÊûX·pl%ßUl†×}JûP®ÿCAº)n6Ͷ¬Z\å®jÜ×Û›¦æÜÎs‚«º–ùµûÍmø bÒ‰(¾ŸU+m‹þØðä¥çºs¦t\¾3\¢£k.p-‹ËAKÇmc‘»UsQ±“$ì䫹º»€k®ç:uÜĹ»»¸Ë»–ï¶«m}±«óµ¶«~¦¶ø ÐÀj¬ZØÓVE“ŒI_•JÝ$6Ûk^DmcX–Ųjˆj+ Û}¥6—[¶ÔüzñSâÓÃOx‹®Æ'؉}ùêp\já¶Ô¾þUêö(56n 'cKÂÜ[mEÙ)Ç}U]™\ôàØ­WgÔ¡ÚÓÉ{Š.Ú^ /yU³kM¶žú‹²§™ ÷ªžËcÜ”îªòB½Ô/^žä^ÂÚ¯£ô»²eÅ¢(ck7¨¸¹œ7Ù+âƒÛS×®^ºì{y¼¶liÛé›OrT^ºî¼™vûcl¿ŒQy¨¢°ÆÀÑD0E 3=/ùeòõ²o—§8\Š¡|˜žF,ØŸ&=Ü”½WL¶mv5*·ÖÛV÷î*óoAå£ré‡u[…X¬[&»º((Êè»®˜ÙÝt˜j¹nc\ÕAT¹\æ×w]wbæŠd®ë“DÆ6رræœÜk›®î9·wk•Í®‰$×w+•×9%s¡Ý78.Á;¥ÜDè‰;·nt#"3~+Ê å/ òOkòÑ—~QQø*Qóó-Ž/É©_‘DþR“¸“¸Nã8â} œÜÍ[FÖÖm¬¢Š±EJFL›Tlj £Icb¤’I¶Åj½®BQ%séµ­|6%­~|(ØÔmb$ÆqÁ¸ã‹km÷ÅS°j¼*H©¶×ÜìkEE Ø7muq—† žª\ý}ÑuÕéKÎ81æ§™ùßs¬6ö[[[{ÿSpP–‚J5µ£Rcci6B!Œ"LmQ ½^ºm¹UÝÊ1j-Ë;§:ëräh®ch¢jè1¯ç-·¡jÓ²O³3ä$§PO¼u'¹«Ü Û£Ñ+Ú!|æe°ÚÛm´ùÌ¿¶­oL(±ŒhÓZÆÔ¤MŠ"‰‚Ñ×8.ë»wc‡R3.íßq­ªøaVf_;6ccÃ">ÀGΣçlm»êT<ÍæG™õøbƒ¦6¥]ÎÅÜí¶dÿR€è“bm6¶¢lI’¢fmFØÄhÅ‹P–“FaŒÌÅEhŠD…l†‘³ ±° .•ô÷µ÷+´¨ÖËÿ*®—ßðµ¶ÂÓE¶lkq”erܺ ñkX{b_,«åÕ]½GoEÛÂè\ÓÅæË‡7fÜ»®äTAr·6Ç8V7.¹É)wnjæ.V·#²®QIŒFI!ˆÑlQ´En[G1ŽFÜ ÚwGucUŠÙÎÚ+I·2"4lCM[cm›kJðàBïà÷B{ˆžõ"î;Œ±Ügˆÿ-HžÔ«¥é{ô]üW¹2 ¼±àâkmìs†ñjª½ ØŒ#RCC&‘úK©H_ʶվÞÕöúË’zÅ<ázÂyÒõ’:ÛÖJñÕëêiORí"÷]­.ÖŸU.Ìíåß’ð%²´vd²ªöEì‹ÙUôQêõaó‚+Ø[Uî›CŽÂ” u:EÑÑ×ww]ºéÎw\N&sqÝsd_«àɱ|9rmÚÔQÙ òò6œR+¦jó+¥rŠæìÒm3j1æ.’òÒ_sšÙò¢Œ£âí6=<¡|0í´ÖÓ¶ÙþD‰Ë ©ÍÉÆ§8Í6-Ñ¢1ªç9E4[slirÆf‘3èµ_dÛh4#&±³Q±fé[ 6_/‡ÛdÍ›-ÛOý(QÌ“î)è¤ò‹ÄôÊôr¼±èÅåÞŽYèÃËß;ýµ0!]]N®óéßzº|õöòý;Ž7ÆÛh›bÅ2åsF¹rºw]Çu4‘&Hd˜X3º¸DIÎD"¹rwknUÍ[a«h…bQ[&ÑcTd’çC—uÕÚîwIÜ9ÆîíÜ®L“zi SÓÕéÕæëR’¯’Û4‘ Ö«ú讹7]_;ü¼N›-µ²Úr"—¨íÖÃe‹ýeUÑfʈ˜2PZ š(4亢ÒÒkmEa&™Ql#D×äí|ªÚ _¨œé½öÛm{¯µÚ¾¦ý6ÚÛ^F±«Hô¨ÙÝc`ÙmqÆlkYž}H§àÁ?aUàé­å‚_Œ‹m›[m–Í­¶ dz4Þ…xU¢zøq>¶ÛI^‰¾´¡ú¾¾TÚ¶m’½~o³ðÍfk6mmVÔmÉ´¶mpTû¶Ô§Ï¾{iïÕQø*Í$îrj›¹áÀ4îb.¾¿[VÞ[[^ÙPHÖµ­¶m¦áÙ%û•/¢AwjwRz(»©]Ô]®àw]¸í‹¶•õËÕ—<Ãñ¸âœ[67" ß™µùŠßM^ßÉ`6*‹ÐQ%†#Ʊ±´XÚ4TXÆ è.ms¹W,XÚŠ£H†çbŠC»Šë»csnmй¹FÆ5̓r»9wuÈÎë®…t)JÀhÑQm-\Ò\®\¸œjæ¹Rˆ£t.îs»» é×q9Òîí8É;ww]º ¾“_I}}êk{­­¾Î ߨjˆ¡âÚªó¿¶Õ_>Ñ”¾Rd_ÅÌlÌÛ[zYJ|yWØPw™m¶m˜Vïë û«fÂ[ ñж—Œ“í¨†ItÁu9l666¢ÖÙ–’4ȉ£&Òj±¶Æ“b–Ô›",Zر¶ÚÚxÔt$ªóq?œEãì<çy’Ͷ¶›;ÃfÞz uUÞ‰xÚ¶Xù >š¾™Ò‘\š«¡Óˆ[r±»¹W9´ks‡r®k—5Èᱺ0[Åašã3àqË©ÉíšØðÒGp£üh_†¡ß÷øÙ›m²å*•ÌÉQ«C¢)Q«E´ReP="\\­nmz>ÿ –m/z©Gó1EßÂy]R¿†*vÀ¼Ý:‡M^«›Èª¯oÖ¶¹T"ÚîsW4ÛÉmUè-[Ë}ÀÚæÔUF±{ጓÖ¹ªå¶M*Åms;®Nܦ”Q«•ÍÜíJ¹­rÖ-î]Ò"3d±Š5HQ­¹t) Çwk›ÝnŹNíÝ…E¤Æ¹Nêã.gW7+•¹ ;™,ÈiÝÙÍú-[ÝÕö·ÆÛã4)üÙR÷ïï÷‘{ÈyÄ÷÷‹ÞW¼O,^ðûÈòå'wÞÖÆËåT©ïiãmµsdŦ„ؤÛÆÆ¢±¶ “°b‹XÛcbÔ–ÅFJ[ªÅ±h[c *Æ 4bÚó„ŸæÓ5M•²[$Øj³[fVŵ6Ñ_æ äðßÁ‹¼U+ÑêŶÛiâì›”B½°"»Âï-åÙ³c[Sm¨Þ„wqAs=彞ßEo¢ú Ú~Õmñ~î¦Ô3mìøXrR‘÷r­Sßm·ç¶ÚÚ¼†*…ê5ÊŒ )ÒîŽîn»uÎ]Ë·.áÒŠwwÂÚ«á/§ª­|x&òiCê„êö3W|©êÕ]Bï’upò‡†'/Yê'­§N«Öì;Q=q}õG¯|^¾Iݱ±µdÚ¥‘µ]¼Ûf\wt*óýŒàk[&ÓÁØ· q«ZòJK&L„4UckL¨3Q¯*¢ÒÆ¢×1˜0m¢ÉVÝ]>r‡¢ Q_/îÇÆMm6¼êƒÕ¯PíÞ“—¢ÑZF"ØÛ5­µ™d ‘Uû‹k_iZßòÖÛmæÛkèuESÚ˜ {Á¶kggUŽññvÓ5Ä%o¶öÛwuÅÓ¥hÚJí‹g]Œ]ÝvéQ¹®FææŠç1nAeç+”r]w#Á¹Ü†ë«¹:í×'²ã®hÐɉF¿Oö[b¶Í—Ë„®Ð¥.È:Ù>tÝ+ÓKþjÙÉDuê¼ÈºŽº:ë§KéËÊzÁéiéjñ1é#Ä÷\b¸ÔØÒ=¯WmµÖÆÔ“F¶Š*‘×Ómö[m_f-V"¦ÚÔ@ÌL–ÃÖq£ÃÙ·ý©DyûÙΡt~‹Ç¾]?ŸÝ®¯Øò‡Ç)?bkà›EL»½•kUyVŒZ¶x¶lÃÔÔ?ïRù5:yZ—{"]tæª÷fɶ§’¶¹:<^W76(®nh£bØ·-«šÎp#‰ Æ·.˜¹‹\Õ¹P–%¹W("(!„"®\¶ŠŠÆåsnUÈMšîë¥P‚ÝÐ1Û•Üu×mÝÍÜ»¹Ó¹uÎ^ç{›{›{Š÷À·îâÿ?HO@ü9Cã“㙣ã¶q¼:"»ú)ßÿo+vÄ'.›-¶šÔh¬TmŠ‹²0ƒ7 éÝ˺è-t·)ݰ],Z-ÍF7+“¹ŽëuÍ,DV6&lX¨ØÈ\åTî£ww3m Ñ¢À1GåÕ¶úå£F5^ùJ碯±Ûb>“ŸwÚÂ>H‹äíã¨QGÅ ë}à›ã$õªxP§ÇÚS×ËãRzðúqŽ'±^ð—e.¨Çk •{ øàöië%T£ä%ØO‘K³ 'Ù¨;ƒ¸ÖÌÙÃ’¢]uuÇ\ëžšætÚëwض(s\Ôjé‘ŵ:Ä1»”~‚÷ÖÚ½¥[o{µ*ÁwNXƒàAðøø{ø¿€GÌÛal¶ŸKlÓ’’=¤ªz>6ÞE$”h¶@FÆ™ ¢`×5ÔZåhÄ‚¶åÇ."ØØÄ !,I:¹ÙÎÜí¹ Æ%”Œc® q§ ´!óqhcæ¤å*•ñ3l©—ŶÛoÉÌ㸠o»­·Ñ³hÙÄÅñ€™¾òÙ:t¯…]µ/D»e>‰Û#Ñë=r®ë¡ç½Š~˜§ÍŸ7[[ký[mþØ(óy5Gän816lÛKcE¨¶:[»›E¨ÔqQ¶„LÐIK7,»´vÊJ@Ü‚Qõv¾¯mõuzzzÒõ£Ö—­O©w½Ë6Úu[W±‘R½ñû3½ÖºªÁ¨Þ_!l2še)mb -$•7›§G6æ×-Ñ’µ;©FÖŽw\颷6ç8ÖS:»£²:n\ë¡ÍÝÑÍÐb$ô6Öþ5µ¾^ª¾^Ûo%£ÉƒÃT<2¶fÛG‰¸Ü[GÍÃùmþ‰ã‚ðU<Ox}µ€Äƒ%h´õë[ÚÛã“ã¸úqAÖ¸øÉÌt|CŒ­¤ÚÍ©œ­»vܵ–ÔÔÖøÕ_ Øï.70¥S>êë§þw4Ìw:ßડÛk34÷%]pœþm³S3Ž0ÿj›»³Çw䛫[o5m½UØÚN8Î4á»%κúxr"öpz>ù¿+m±rHEÈÛ››wqÝ¿ªð­ËxhéIáÙåG"¹7´´´‘íþP¥+ÚÓÚÓÉCü > Nvj|Mµ¶œcms¶·”ROj_ßa¶­­›Lªol½µ9#e¶ÕšlÏl=µ.RóQí緜ӛ¶Ö’$R4 M DÒ‰«FETˆ˜‚i"% ѰV ØÉ†ùÞãnh­ ÚLî®›îÜî§n°X5®›F«»µŽQÌbéW4nî@Ñ¡5s[˜¨"ØØÜåŠwv­Ø+0dˆÄC3¬Öo@½zHŸÒ].Û×ÜÄ—¢º³®|Ïâ.uQwìþÚãØÉQü“gEÇaO­­ûÝòó:òêÛjòù·rçÚíÝsw:íÍv9Ä“ºé4îwww]Ü]È;¸ã»Œ;º!tÝ·'aã®9Ý¥Ý"PÍwur*æs¹ÎhÑTm¹ÊÆ£k»³d[bƵÍt6H®íÈ‹Ý4j5ÍE¹‹t¹®Ý×(×;Ä„Ü×KQQlbˆæÅnd°jåÌf¬ 5…"›%m›&ýýô”ð#Ø6®wXH9±]{d:fÙ¯âÄ«ÖÇéäm-›F·ë66-Xª¶«ÌÇ™Ÿœª:K:O™Có›LɆz“F´ TXÆ"E/¿okUõ¿½¿ˆK69Ô3Q¹G7_¾îÞ–*¹¯ ØSø„ŸŽ ìR¾ÌfÛ_dõ*¡üÞURi+ïj§ÿ>ÙöÛ8•؇Úà ¯²8;ß𨯵my­£j¤Ñ‹cI±¨±£–£,b*zj†hªîê.ÝÔ\Ѷ$2±Dµp¤¢$ÇuÆNtÎuw({Í´_Õ±­÷´¤õqç^ty×ÿó’e5‘ Ë/`ùÏÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþî>>v"Á¶H©)”«&IA£*Û6d´ÒlÛ6›C!ha*È‘U¬P$T@J²ÂÕDH„º€ øÈ}£wßVùçʰ:h4 ˆ…D©( Qh4UPP ©AkU¨¡T*T¨((¤”P*ªJ…J)JJ¨*E ¥U ¥@B$ 5EE ‚ *š …(  ŠRAU+F‚‚%RA"Ù¥$)D*"’ˆ„$¡ ½}Le• -fÓÖY( Im¨m†°‹,•[3+dHQ‹$؄ٔŠYfØSMBV͵†#llÚÉZ,­˜É™@U°•6›-j¢h%mlcfµa© ÉŒƒb¤ÙdÈd‰"ÃF•­–eE¶B)MQ@i¤¢*´Û`("«6Ö2lÖÑ(¥ TZe+eÈ…RP¤²6Ù¨¤,km42¶­cfŠD¶4ضJ¡Vš+[L´ ‚qÕOð&i€&˜ “À £M @ 4˜0ŒC#FM4a4ÈÐ`&M4ÈÓ$À Ð'¢‚ªŸè@i¦€FÐhhM&ž14i„d'©é<š&L?IãIšžÉ“4i §´§„ÍMG¤ôÔýM©©êO  F€&A144C#CSÔÀŒh!6™¨h4Ó&§‰=5<¦'¥6§©êm†zˆÚG©èÓM5M 6¦(õÔmM©êSF€zˆz¥Q=MI´SLIúši‚=SÑš›)´Ÿ¨šié¡7£L ÓÔSÚM é=&¦ ÐÚ i£CA Èz€ FCª‚jT¤$S6™4õ&É@ýI´›G¥O(÷¤ô = ½#FšžÐ45Ff¤É@ò“ÔØš&F &š`™6¦¦€4Èd2hÐi¦MP h3Sõ@¤©DA ƒ"i¦bzi“ÓÀÔÈÀ0dÄ*Ÿ´É¤Ú™&ò5Ñ$?#FŒ†‚zSôž‘†Jx§ê©è&2&MOjž54Å=¡O4ÞªŸûR¯Ñ©?U²µ±¯ÍãŽn?fû«øãû_7óTöFó”„Ïïþ˜+õ[üÇÎ[¯.gqÀqÇ¿÷†' /$ŒþÐþú_Õ/ùÅ:Ù @j;„µ!FÀýÑ0,”.S)˜b&À @Drqg ã…º]Âròðã/JóÉWzß±ã’Fʇí>û‚«êò~Ç G¦Î2Žƒ%Yõ~ÿÖ¹jBC×L¿‰“ñ¨»IŠˆ‚)¶™-ŠIm@¢"dgZ¾ÿk[ô_™ïP\ª¾«©Ò[.8¾ºR}¤}éÊÉÍ^cð†Í™7ð$÷¨jr/úª¾¡øôä?ê´/ÄÖü]5rÝ…/ãlpýô©ø»øã‘ü!üŒ-lœ_WÔïÞ§ ÚU}ÿ&‡À?^@ý$Ÿ;%Ë/=™úЗš’ü-&‡âîf_Üýþ­Ë!üµÿdôç_Ý~àX7mµ1<ÒÜq»»k•œèj¹LAbÅËŸm¯È6Ñ&ÛRÙ ¨LklÙï.6qœn7û¤/íE~c©WžÚ¼\ç.Û\[•&] š¸;¸Üåݺ7n°î;øŸÜíµ~Âýr®DJøÐ…*öt¿*ïÁH½|¯8V³«<âºes¥Ó%ÎNô—_µl~%û‚Wï¡Ã"ÖúŠ‹}mm}N¢é“Ï)9êïhì'H«ÐUÒJì/wïv“jÓZÖµ½ï¼wÄýëo¬tÔù§É-çjê·r¹k•‰Ú¹Q˜µêÔù¹ßQó*§Ÿ^~ðËÚ}°‹®^]Såiå6GÛ«¥Øãæö¶·µóŒm¥lDÜq£Çÿè‘ìÏ8ãåЯ;*ùìÿ- ç¹i²6¦Í¶jÍQ[I‰@2AŽî»ÛÛÛü¿èÿc~#?oÒéw?v¹àºìç‚ë¼>àö3èüp§=ŽÑ{ŠÚÿ]þSÇê—•ESNí‹g-ÌFÅl[QhÕ¹¸•:ë»—s»ÝÝÔ×Jùm­|Œf=ÍQ99{ëë™]pë—ZöGí{.Ö"u]BôëÙ{ÍøïÊ[ÂUç)JqÝÔHR¬m› •±£ú`x~-³ZÞ+é©/ôŠîd÷Š÷•6yŠuƒÜéâl*=Z÷µjÞ‚ö=Í`ÊHÔÛsF¸îUsn»³¤KJ+Ã-›(?¡(zôE>;Åшkþm¶ªõÏ*Š1±¨-Š„™Î¹\Ú¹d¢´bÛbwnîrÚ69µ\˜ÖŽ9¹Ë›%ÝÒîìîø»ow~¿U­êU[Ô’Õñzw»ºã‡ÉÂ;oߤÑ}È¥ÛÒúÔ»kWê¼}ŸØ­Öìjîíµ®ÄˆÔjØî뫜è±[ŠÑ“t¹låÕ4Uø;jô­Sá!÷¡^Ç5¿Cͪ>Ö§+ú+éã[J¾Õ°q©Î‹áß6¥Þ‹Èk–j«òëäu;º.›ZÚüß ¬šW't—GG° ÿbì¹ÿGm¶¢°¶ˆ‡…ùН¢Þ­m^©²wÛqï +žWÐöŸ+ŸN}=5^˜ôǦÍ;“§½åû„—ø³¾Íé‘.ˆ}ŽM‰½x_ºÛm¼íUîZéŠv¹Ô]ˆœtÓ¿[þƒ?uÕwvœêîâ ¥w8»¹ùª¼õmo«ÿvÙÁ¡ÿŒ“ÿ!Á…ú>#àNW“e¶ï9¿ó¥ö'Ø9i¶VɲÊѽ¿r*ºîÚ9i,ÅÝÆÓ»rÛm.ëŽ.í»ºê\滮cà{ºÕö¶µø{Vß_UÐãjã\k\‰'|£¾ÆØ_ž‘ÉJç¡¶àSΣÿJGL£ÅÆšººDëªé²/õºÙ:ÙtÅÖ—Z:ݽý{Fy凰m5®âMW7\µr»XÝÛ¹v4Ùfúƒ£}uå×®¼ëç\ðÞ%mâðïÄž§ÄER~d)Ë•´ØÙ›3F؆ˆ!ŒcEêúµ¥O˜­hÛ[8ãŽ-½D£½ï’Ž™ÓÌ›ö[k^_¨…n-¨³@D2`T@D‰-MšÙ¶u/«˜%è׊§w¶ÄÈ–A‰þ«kÌž^¹QÁ´V®Ø·•×ý.ß©ýUk_Ý@æõ)Ô±‡Ô¼Úêïsn8ÛÎ¥urêë—VZºƒ¨]DuDuP{ð¯Ql•ð- xéµ¥²m-¢Ê‹cLˆ‰ÆÚ1Q¯™èèÈݺ'u׿?1^ÿk~^wYMŒÍ6ÍÄ@ùiòêùQ_›GnV×SŽÌ)óŠwõ=˜öaì‰Ò©î¶«îu·ÜÖÞÎóXÕ-¶€M=×lîi—vÝs¸ëº'77µØÊòAâEòU犽ng™dÚۧƸÏùP®N•ë$—•_P^U î6ÌÛì”>楶³CöJ%üZNóhÝàï7L(ækŸÉN2Î8n5ræ¹×5LGNj¹¹«|y¢ü"£~1ð ̯íÔ¼ì›[mÛñ\k‡]'N{ªÖÞæúJ÷:¯…ìD·‘¬lkDA¥2’-±¶cFÂaZ1åQ]qkC`¹µ¶úý·×í¾¾§kW{IßfõÃúò+ÔÑÓp]ÀéqÄî+¸®áßÁß¿÷PºVݸÌ8Ðå£E$$»»jÑnssM°u]Ý·&6®\éÝ‹UÝÑ#Dd»c“ŽèIÂZÈ*ý÷k¾xDôëm=âuPo¢«ß]^m›lÛZϺßÊá''wÒ‡é$ŸR…õéÝJ¯UweÍÙè©<ï?°lÆÊ¶·òþM“е´ñÍÇH‹«¼z_ÑTy¦Óm­ÿ¡È ›&¶¶Í[›Ç_O¯~AU×Ãç¡Ìoœq·óUC¿«²‹Í¼Bô–ÚOªÚž[{6kC®V¹‹n\É£%,…Š‹–Ñ·"çvá¬VZ;¨² 4Awvéú Uõ{n×ÁßXªåºrmµµvõ; ¶.Û«´˜Wƒx+㲓lOEƸÅÜ¥z6Êð~aV̺Jô‡jOšx4ž1KæÝØžßiøGñãÃú%[`mîö^ñôi.ô==Þ‹ÖëWñÔ]÷ÔIq¸Üp­ìJŸG³[;b’îÊŸÖB®<°|¢y+ÅŠz;ì™™³…Ž—Ú~bÖ¼ÇæpL—ã”Ù<ý^ÇRɳ5›^õÛP;ˤ‡åÿ¤ù/¹/îU}àO—ÚÚ­ym­æ¹ÝÝ´XF¹nWs»§vÅÈnIÝÝÛ“]ÜXÁfÛÉ”?ö)>ÊNáÚ=¢½]’zacjš¶f>OmÇÎ/=J®Êºôô!Ìlõ1Ô»óÎt¹m:›CWãcktTm]ÝGt5±³1‹»snuÝÝ×bâë»rú]}}ãkùÇõ3"ØXm'FRž²þ?xò5²mäqgE3U•µ6ßûÕä¡í¯ÇÐm«mšñ¶ÍþÅ#ÑCÜÅúrmçT5EkoîÔScJbïeéS¿cÀÜ6ãeÿ쪹Âü©ø Qɳm‚6£jÄI‹ ÅFlo CmIÞÉÞÓ»+ãEñªy­ŽÒO™Úv…^e^è:X-TÛ7K”‚»Pù"ù |õç1ZÚ¯\ŽtøÒu¸ÇÃC®Ÿ Ž­|*]e{ÄºÚøu××ý$—„žðþ¯%ɸñÕÏÜöÚ ž‹cŽ7ÚØm8Þ}ÞŒ§…'Óÿ}Q=à{Â÷’÷•wÂû³-­wå=ÄŠÉ-„Û-ÖÛlÝÄ?à„uRަû 5½WÓéAߊô}­[èmyo^­ lcm¤kdØkD³¶á—uÒL‡<5¶ôV؆‰¡èïÇåUê¯Ô•\›ŸÕÆ Ø`Æ%¢‹kE£ºé¬Dju¹W4m¦£WC§N¹vë®]×N]™Üù{[~¡-ö­@ùpD\îðþu¶­ûM«ímøkUì«z5è¨V¾¡¸ÒlÉ\7uÎcøýu߉¶Ö¾æ$óöÒˆÚ›.OZW×¶=lÓë¡ê%ÜÜv©üB:ª¶ü¯á¢é+·¾½´v£ÚžÒ¿òvµ¾&¯|Eé ÈwOUoB”ù¾¸Bhƒ%­A”ZùªæÚwn¹QBâZ·½-¦¿hRçU/ ̶ٽ=R^Ÿo(ÔXÔjÉX–$ŒETÚ–Û&ÌmšÖc®ðdõ^\Rð!ßøkÇ }>O Tú /m'‡CÃý§Ü û=›RßWÜÝA»¤žv”ç•t|4fËn5ÄÚÛf¶ãŽ¿¢w@î’û…Ww-¹Žrž,Ok7½•/SNq< l·;ôWª!êÎܽ[·Wo»ríåÛ§AlØll2šÎÞvçk.uÎÕ›fŸÝ@vó·ŽÜíçovçÁ>Ä?ŒsâG£—}[WëL¡FÔMé6wuº;ºú«[W“ Yìz豭̪à圱9ÑÝ7wpî.ºéwéëo•Sos¿l†CäÑõ"W¯ªò ñ"ž@6®q:/Ž…øîÔRú•¢¢òhzG¯;}k?á$«Ñ§?ÃeMhÃQ´lØ"64Šò þx•ÕÜÉ:}6Ãü|8ò7NNNKrtr+’_¡J½dNB9ý¶ÒÙ6af›gÑã«äã[o#• ì˳—eNÉ](ì‡b®Ä»é׎UiE;ØÎÆ}av.Æô.êºM“6‘Ð3S±é^ÑòT'fjù·þIKÍÃÆ¾EoÅ—ÿ”K™ÐpƒÎqÆ×vè«^ ‹–×9W#cZ¢é›4 õ~=Y'ö£¡Ý«·llÚ­¬Ú#‡¹Îw;üê«W¹½i&i16löéò"ýAB_…OÀ’ñöZýWɾNÖÕË$WU¤Ä½z=YJùµ|þUµlÕ›è\7ÃyØ4æ®ms|ëo<;¨?y³ÏtY63lÛk4¯^Ö*ØÒR@ 5 ÒràMs²TlljÆ¢ ÙÎÓ®—5S—wm¹ÛW4ÎìÅÝÑD\ŒÝ:ÇußÙ}®’hîŸí©¨žÁ³«Ÿ ;MkaÙ•Öì®Ì^‚ÚuAŠÇ«C²½R¬lø{fÕïbíÔž†§nž9]ÆÓ’WF÷OcGÎÏ¢“ËUÓ'¬‹¾SªùhÚÆÁS!‹FÚÑ ´¨¤F£k4gÏÝvn]Λ»w¥éëMŒÆ×§×ô;V§/õåߤüx+Í'©%Ô[G×ë[OE³‰áóÕV¯*Öšó6¹ni5qs?:]âIüȤèUæ¶FlÌÙ¼Z$û:pp”0¿2ëÅ_ãÿz)ûES¼«°m7yÆÍÿ’æÿ¸_ý=j«Íå|Û’mÊf±FÅa„m°dbÅáÆî®nÅ×.sœ×G:ݯ©Õ½ÏÔ[|ήÀzJ룭§YfëXꫨ»ÂöÖkgõ$p{Š÷Ó^Š9ŸY®øï´Z6mº_2¶ÚñÛȲX£QµI"ÐckE´PÜŠ“Bî¹»#—]ܜܾòü VÞ–½$+òRúmµ‹ý£²MÅ^…ª¦Ø¶~ÌQç‡è¿ÙGÑÖªõ“â9¾kÛ' ±p¶“Ž6“‡Š#ÅÄÛMñ깊‰ÑÒój#úÔs¼6Íšá*¼Úå7rf”DÌÔmNí£c-Ì]Û¹Ú w¥[~×ýýZÛÉö{z{h±Ìžzä'j£½»17 äë„ü׸ýŸÙüÞqA¿µ8*÷Þ¡¼ô,ß+å¯öèI¿Ùûš’BJ÷‡‰ß¨¨|ɶ§Óv9#ºqª{HÙµëÓ£óÜù¯­ý/²ã¤J%Û)ùÕþ½êô…¡‘6¸ÏZ°õ–Ÿ½p58àäÿsÊž%þƳ} Ð…¯QÔ4ßncàëÅ)ççñ—5G÷¾×<Ž8ãƒx¸à¸~Ôô|ïò¨›ñáëGªÙýd6˜vÙ¿ ÇÏv .9oß!=‚˜ó "´÷Å'ú»ø”¿*‘²yâB9]?¸[äþcŽ8ภàˆz·ç}wwêë“=ñK?&ËÞÕWÞ` òR@-o)‹‹ç”q’ù?ûùŽ÷`à® OK—š•m³êiæó¹+û/7º1äùÀò+TsMçڣ迡ýÿð™<í/jã€ãŸ(À\3b¤\<ݧŽíÝË÷SC)žgËá8%öm§‰@•žRq~F#<_½GUôpüf§ä5š cñÁû¥R<)Ò,‡ÏÙÿü¿Y'Ø)×^#Û-Ç­]Œ_ š=—›äKéø§ýy7;3&y ²Ÿcc#û0yV^ÇAñö£õÜËqÇå¸õK—ú"›ç] }޲I,v¿~ý;pÇ»è2!ŸÛ䃼~ßò^×é~ËòZ÷~ËÙþÿæ<?åû[m¡‹lÁ±² ÉI‘<Þ¼ó»×wå¼…ô^×ø¿¿ù¯¡ú(ˆ€lâø%Cø!În‚cPK ë$ØHH}ŠÆ~ÇpÒ¼FÛÎz–ínNqÚ6Θ=CPEœy…Ó‰ô,_D¿ëa°{Š“íŽAßñkíí1ªYŠ3Õåî""V­D—xBÚ.‰ÖŸaQYa•ð¹#“‹û÷8ÈYd@cŽzºMŽ`èpÌÙ1㘻…-€ƒR/ìÍêDl õ;ú5jË©ý÷q}ܘ‘ÑüïÓý?á¯ã¨Î8à-Ƈ…ŠTw;Î ™b{¤L7Æ·³—JŽ?0¸òÒ>÷öñülÔiÔtWáÎÖè¬Úï:zÚª™ë:ñwR;[ÎäÁø¡æ±á³èË*ΧÅÍl¡~®k“¨PC€p3‚Zƒ‘hïå› äÕÍ’I&ûK O6.结Åÿ¦MŠ,v¿[¾ Ï!‹ž¾?€ŽÑ¤¬-™ öo˺Œ|Ø0?äê/…Þ•ö©77`øÈ¦^Ñ>¢ ÇÃ`–}m­ƒ%`²ÀQ ‘•=LU;»ì”ˆŽ˜ä±_ðcÕ×òÑp>¸8ã€Øprç•æ»ñþ6/Ü÷šÿ_¹ß쉿b¿™Ø‡ÚCÃñ=aÙ‚õÃù“·r"£ÞÑ(h6„CT«˜!n¹í¤ËÕ«”Öèk…v± ; 9Š8¹ŠGm€%àJé“lºHX¹K¬UœÿèÊ Zå1•ÍN8º§K@à)ñ•Îî(»áN¼¶Iù‹YT˜½³åÀp¨?‚°kˆSãPzKм|ïòþ@%3‹*Ò]¯pâ(ü}v»ÿû}"úüŸã±½/É1ܯ½/ˆc‚àW¹Æ£µ³Ê0£7C €!X¢(Äh±ÔUª„Ú¹øª¼vG—Àr³½ÂãT»ìœ™?m‘ÆGÂÙ¶§K®f7·ö¾›ž˸ëðñX6K'˜Ê|Vªñ¹W/>·.oÚðœîN*é2:Lu]¼÷GÉÊÔè°ç›Ì¼Šþ•~^ x«Íí;zöóû·ç~oÈ­zqæõþšC9ð ™ OY/¨œ¤C º. äBå>tF0‡!nb'.ñóÿã­.Ê0u.‰Wv48¼û]«Ïì¥rüœÆòÞ+ãBñp<0¨vÿc„?sšIAËn'Ù 10;ã„ Öåµ:QüV©æãáó”^ÏmÎt ¢¹LÜgô#Æ3¿Éd˜9_wå•,žÓ²D²L_5Îe*xš,6®ŒðUäòk‡B¢T’MŽçŠú{JÑî_Äøj’W¢&þÁ(0 ±ë$5BúÕdò‚½ Ä> ÉÓìzÞ-Ðê3? aE©I•Ÿm>૤z«".nÜb#ÒÎL¤„HyfU¹~…ITäÐö¿â‰ 6±jÙÛš ®z“[Gr®F¶|‰ç2„!j9=Q«Û&i+à÷ÖQÝüHM:€“ë1=¾.„¨Ã…‡+^È#µpúõ%´ßÓÙÏ5ݬa½µ¬Ü~ï=ë€z>ªÛ“|B €º¦°î6{ z%¤x$¯ ï~’ÏmÑ,¯ˆ’ŒõDkMèßSØ/™¯™Ðï;åÅè§°ÈÞ‹dêÙ/¹öêHv†¦´Û,‚_¿óø”Ï,´ Î$æAQiœM¥-f0±$ 2pùú}{áÄ– buÔÔ£¤F"€AJ@€ˆ²Þ“þST/ÉŒ2`2"´ûú$RÕ‹Z'#? VŒòð¼ï™Üÿ -sXƒÃíâ+^’#uKØíöµôü~¶¯ –­Gˆé˜% ¢÷Ê_Z/¸x‚é‚ à¼&qËÎj¹WÊjñùï'†ñö=«æQw…ÞãËx<<¾y8cˆ †„$Nã5©†!‰`€ Arc¤àCÌ!²B}©3—†¿3éy1L€BwcÚ O~ç·áw;}t»G£ëϲ³5û\é|–ã@éâ "!$6-þ¯kÖ0f•¢à€\0'ã;î|ˆøC ø€íÉðýd" !"p~Þ0"8N é€`åù¿ãéÚë¢/ hD=2ØxJœEJœ@ï¤ÄãBAŒc9Î's±ê)‚ýÂ~|îHŽ/ NoTŒH:¯ñõ$\tº~›íHˆ €ÂFH¼ðj››Ÿø{ý¯HÞ")Lj¡(I¢1j>f’üNûÀ航û†€Ž/˜AÐ"`gÈ‚ƒ-$P€ú²ÿ7·%…¢|ø±9QÂXì«Èö£èóÉ» !=„²ˆ€˜DÀnè˜ýBsl„à'@œåÚP ¬F<´n  äj¹ßJ´¿.ògø_JϹÃÍûß6?2×›¸RF±Ã˜‹Ù ¬Bd#l ²¾NnïÏÇùÐI¸ #BãÁB;cÑz¶{¬±E¼Œ pF®9 ÌNì·ˆÞïâ7¼ˆâŒ"I9ŸÈ(„€ å’¿çêïê–ØB!Œ@¸ý=×{àyÝ?K PCqwº9Ä}]¡.‚ÄOäÒxíx#ð¹Âñ«¼^*9ÈÜ5Ë}qÇ4‹„ñ9Ýohê8ˆöDé7˜5šíÇ…Y- ¢1ï$¨Š±Ø¢èÎ" ühÍÁÓ'×ç×݇ÝA_tDà8„´r „bÃïˆûÊs_xÌ=Vkß"Ú.z-îyä g&xhÄi¹WØDér Ú©8 ~âþÿëÐÀã¶ƒŽ§œš(Íô#w!uýiÙý¹nć¤tœ¨8H *¼ƒÐÊ÷#Õwί_5þW´ÂYŽwMæü!ìì%'­åø¬ºc®3GÌTqRƒ*’„è2w¿÷”u+,”F…ЖPÇ»Ñ9RÆrþ^ÖúØÝHÐÐY§³0X´ÀÍöÙHÀå, Íä¿ 2ämÝi %<ÒÈð R&DÊt/ˆ1ØÑ4\«¬yý>Ÿq&G)y4 „… …*Kv ͉Uºª‰Ú…ygóñ?³à铽$^0ö¯ÀfшØçÁ }Žq °~à hƒ£ž×üïgÓþœoí—ײ,õ­´:æ ®)¦Ö•Öè¼P”±¡,vx©¤(Ñ÷y.6²¡â¶§EG| «Ùº`èÈ1áK${¿ÿ¦ãæ B ³d¶J¤,%ÏUYrfPâW6úýFáÑùÞVÒ£ó ~èvvË„x³È-Dö¸E¤K]äªý¸¦ïÏŸaôgZ«¿:“ØÑyýð{¸-:"6žl.}$ŒØñã·ëFRè9§ç¢¥¶È͵ Â{Ýt…¦WßÍè ž¦š»¬cÊÜAñ šU§ŒO fWáþL—¿iŠÆ*³B÷UK&R(Q“Ñ‚sÍ 5_âœïU,ä"Bµ[®ðF°!­ 6Ÿ¨‰†Ò7ÄA­ïg ËMzÁR ¡:`bFDžC¢²,4 Aÿ7Ôÿ«èú½öÉe>ØLid ;‡¶ŠäÚlÍJÕEðp¨/ .ž¤ÚõäG# „âÄ%º‘›öÛÕ¶wôâ£lê6á]ÚÊËK»,¸S]ó¹Ë‘P§½ÅÅûîèÉ÷QEŽCCB™äÄ žž#9F: ƒf-Cç_ø²áûõú÷îwò3í¦¥RG7 µ£u;ë—ÚtÁŸ_åqMšgà‘‘mRjTé5 kw¾n“{ìœVšcAA¥^]Qh}O&§¡±ÂˆÀ¥hùh‚Så1Â]g1ĈºÈÆ2IÃtl\öYH Ó}¶Âöúbz¿:W¬œ(€l9aÞ]`gž@àï @'w äyT*Öo=¦@FRHk´§µÀ¹s–¸ .ÕÄ•†;:ùn4° âŠX&¹êÛãpIù´bá‡"Q]A˪U†BT‚°P£ °qóec IÔÅH Œ“Â8ш›?Ÿ¢ô¥J{I6íXµïò¤ ~$ î‹‰˜ !ìÆÇ Sˆ$­RP"IVŒ›’£!Zñ'G‘¢ÚõW£UÆÈìñ9$ÂÕäh9B„®KF•ÑWæð_œuá: ¢š (0¨Qˆ5Î’Üú‘Á†«Ké| _G|¾ÂhƦ§â<Âr[ßg£e=HàCîy*øfî»Y–K1Ô bQÓ•ãžÈ+QMþ!Õzâípà³àü*®O–:lbžŠOà Çá‚à³ÝvV$¹ HáDÓÓ¡oÎÐ}E".±ž¶ç—?÷´åˆmz‹˜Ú(fAÝ.I¼çJ—™nÑòòýYú2cVÎX}îcÁí]3ᨇ[ÚµÜcËšÁ$_>EæEZä›ý' ýjß™lËѼU«”H ©.8lÓIÁ™LÊAÌŽ”3jòˆKF2ª^sò-0-yºÐ7¾Í¤¢ÒÜ…W®g©zÐx*·u!ˆnÉ‹FnH^Äñgɬú­Ušèd–'‹¢£á áÊo̧µÙú±<ÜŽ¾N†«¨úX)ˆ-u‘‘«QލlÊé©Vïo½Œ§Ñe©ì‘h«²R€hÚ&…×dlÑ2aäÃÚ|*½.Çï7ÅL]Úë6]¼èÈ.hit;Ô$' ¢Öe©† „“¥ò%û“GÖùŸ£øšRÒN½¨‚Àá庀¼.ˆ8X;3-(Ó œÎj¯Ç7U^t¯XÈBâ”hG¶dñ[(ye$–ʤ Ê͇œI/¿iùÿZEu\6Óq«NˆÀ[!\b ¡‚¤ šhÝ€‹éÑnx–ÝII©ö]¢½JtW!ÆR…·á„Aé&s’ •1F˜%ÀC+p÷¾×áñÑåÇ £&ȶGn¦«íyiÉÙqîJÂpX„âÛÈõʽs^/¹_Wy;{¥yËyÊñZ¼áˆ À&8€Ã‹*n 2‰Çģ݄î àö¤ÇÏ EfC!×.ÐÛû¨¡ï™4·ý45ôÓ5õÒª `!z¦!ü û±$ñˆ¨‡c•‰!3 d‰Ž† P”¡õ£&6²%äîws¨â‚VUÃ~Óº8“¼%ò½¦ÿ¥ï¾ÿÝìîe’¸O|A&ɪ0’…¢`vÛ°FhàÇX²-ИAq´ÃÙNœáÎp>¤Dw©}ÓévÏ¡Q'“©®ÏðU½®ì}§ªÀ‰ˆ½ºDØd©©;¶v$ Lᜠt9anAX´ì'\;ni²CоÑnìÙGÇ„ŽÊ #0¾_×—¢J¢æ¾XC“,–&ˆ•QJ,ܧ€à1™‚¥P%iÖ 9šq|TåÇ|[{ɵ¨uzò@"Øq°.‹®ŽôRòÞÅ– "ƒwËeCãõ}Ö{cÍÇAVå5ÜF,¡"`Ïc ¥T²Êò«Ã4Jf `-£ÍC¯žOƒ3¡01pmLp´2.²´èÒÛT iòü?£¶ø¿‘å­¼³§u¹½7—vΞ‡ˆÜ¯_Q ¢è€%¢{R„ ´j;’ºÉ…6ÀóÇSUÆ1¿¬ÄãÊšs´A¢Ý¯¶$CB;€Ñh„BàM ˆžyõÓ]v:Ò ˆwÕ2—– xˆ–ð)$1 Ä{"iÅspÞÝG>Å¡¼.Òp®ˇë?Ûj²pñ{<؉/¯Y‹,âk¬îÚ”T•4âšÔv) Pi©Aú îXjp>R ±“cÕC©),c3I’£b*‘ÜÒ )1.<‡ÍRà8<4» U|÷htY= Ïöß#V¿öØ@ð¿Ô ²^ºYª›ÈŽqªÑРι^<1<)ÈÌÐ4ÕÆù&XŸ6½è:DS0Yž~³ç#<ÈÒ¿ÄF}¥PÔ—¶E7Wlþ³—’e›‡Ëb³ÉjÑQzrëê—„ rJ/¹Evrì9Û ¬@fD¬ ™Q‡]lˆÐkK3¤uãŽF1g†ùatäQ%¹ˆa'±!mÚô½LSíVßàT~g® ªj:ãÞŠvè*`£>q¦˜&‹>ŒS òfŠó¼g‰2O””ð¯.CÁBãk2f)¶Bèª$z@ƒGÔžñYÌä¯É¯†Ç…Uàbä§ÊYƒ¢-e\b6Ø`z”¦2ëÕÂݳ<î‚¢­iAÔcNùÂÕ¢Q×´¤Rµ‹ ‹×‹¶Ùf鷞ƽÖß*©Ûµ±Õ@çG@Fû“ 0´$,Hˆ4`E9IMlo½ y§Èú“6B„ú¡4™HÏ}-™«V¿–þUjza¯j³ÚmÓYák¤d·ï$wÂïåùAŽœ…‚…&ǧž0¥¢z±d,•ÏÖàÅT!«[ Úb‰¥¡mZîu65zbióï<2W±ìqè_Ãçÿ42Ùäçª~ö½Y`¿NÞç=¹åžg²ª¼ž™¤¼œ(™”ä„ J}1œîb¬ìZÂnvß­Q „í¡ÝSV%íbâ1žƒt1äã÷‘{þWÜ©~âØEóI›Ÿ›£?~¼ŽðWµ²ŸrLð†-Äé¯jSÊ„CAŽ9–Ñ6UH—ò®'¶ÁÀ΄è‚ÈéiYˆðp[TÚpßæ2d» ‡%ìN\GÌÛñYž.¬´›®ù¸mÞtb«9ÞˆW›áïδð  i-hCÒ”LâÅàw™©}³úwRqo4ѯ¿/ëÛ¥TBÞ{3o¬Úá‰ÑÑ g[ˆ ‹@¨áÀ“ êìéy¹³˜m3Bh!8gWÌzK§Ë+Ä‘ïÏóµþ‹ŽV^O³²NÄwÁ“{-õŒÌ3­™ÝȰà°Çï: ËàcM¹ñImiáHçÓÜ&µÞãfƒ¢BΟ‹î¯.RÜ]^5ùüë“Ó¼ö0e Ôò²AyLe*”¦Š0$ƒB‹ ÃnÇÞ;‹júŒ}+·°Ô×Fí¨=6B¨±E§«•í~‹Cüf}…y‡$Úª†#[ŸdÆþ+ˆ) hͪ Öz%øP2“M3 'ļ`9Ò³†a`Oæ&ÆüT–ˆHL H%ž=ßS®Ä—ršÇ‘_3È£LsÛ:Ö ·Ç¢^ýê"]Ý™'¿¢;·¤/VdFðÐ…xòöo=£‹ì³FbBPA?Sfjc 4±<ס( ¤ZSÆ$…òË,3Ƹ˜ÕŠ¦Æ Šé+š½l—þ¯%ÜÊÈj,N Ü;´k_»àz¶G±æW õfnÃ:cÌ5¶ÎóQCN½ÏÕ¥|K‡z¢Û©Ý±ñ{^+²u×Â9ÂõWÒ9M}üklÈ;¬½Ì†3)K­CË¿=W TìÀ¦¡+5Ï_¶œÇ§¾þ§ûz¥Ï ±ŠÇ ê*¡póö²>…;+"=ãéÄjìŒÎc^'<4€v«:ûT™)$d½{wH–nó`¸ €œ€€„@ Â8ðˆíEá>”]¯S-V¥QE¤·#êóÜ>HÛa%ˆQ’$ˆ"©7ChgnÝ—û'Ó×K¹êI›ÎzÔ(ðÅâbA اz%°õ™vïbu \ÁÜæÚ¸hÓyº´väÙl/3¢üͧKQY±âòñ¶LÉÞ1JUاñkÎéÂñ„fÃjf†U‹3Æ>Hà¼Óh›/Ùã(QnTû> 4*Ü^,¸¶tùÚ<ΩŸ5Ú;TmÓ‰“÷µÖ_ùv_«…{)ˆ@MMgåÔ­Ì =m¬ÇYËf¤èŒk6¬æò¦"Ïja£‚Kþ[“}b1‡@1@w&#Iˆ~mÞžµì÷j&ÀÞmФi™¥9{ ÒŒ&Š*„gÎÔô>“·È§„Ͳx(ñ`ü"«”^Ž-&F©là™¾«}_ç]·£U!ÒÆá+ÓÏÉÁ‹A ^‹s°iÉ‚¡­TE¾8›‰µ<ûUD ¤ÕD¯2AUwn $i ¯2ø•âé [ÏÒ¬j‰]—kãN¢ä”OžœQ -> îT±ÆÛa«KؽéÅ SÖ› Ç´õpŽØö ©ºöy4|B,|%û %yö@óò`Ï8µh™¦¨÷t¬x&¡©¯o³V‰3Å£>ßJñ£©7.î4ØÔvb¸°äE<&t ‹2 Jˆ¡ÞbuíÙ¡`ì-~U dñ„ÇF—Þ}"–¥,È’K±Û¾ÉèŠH¾S*Šß™ÿÓpÃré«­oóTþõœÞ+ÞǾ:ð;†ìÔ£ï(i,£œtömVn&„«–åâÏ Œ <,¯ÑؘtMSjwÈ…)IR%i`y¦«ÒÖ\KdcPLW 8Õ)º?JS ßò!¨èOi)ÕAFÐV²h’¡ ŽÝ‡W\§%²¤¦ý„Ñ:6s…iP§‹ ñf¬ýwë@’¦.yGä«m…Ír‰“›´ØTxSžd~Äç¶“b-1ã˜óÍÓúbb’8Ï÷õÚû)˜CXo¬ i8Vâ~ÁÑ0lËsì Ô¥…ÍP½ÕÞq4ôl”¥§'¼†éÒ¥ âf¨øã´µ¨ÅÛСgÆæš jÂ4rU‚6‰êÖgÌê¯EÃÌXæ,Y ƒÕvÎ**s&¦xÁ\¼TßG"¦2×ËO%};ϿϮÖéÇ´ |™ÕC# ²Ê±ÜÑMѓڋí\ôï#Í^·Õ“&dQ³]­µA]€!‚ ŒO‚ŒÔ.¸Ê­T¢ô@|2Ñ‘$Wëõ®4[PiÕ¥Ùbhß»cÆ4ÍÝ¿PUçO*Ý‚™|Y‘èŸ+.~eoÎÏì=¦­›«»ÉtáºÂºËZÿ*ΚTâjÓOƦ [:WŒöËîu)53èäÌ–¨OrQýƒÒv3µržüQÙŽצçî«*àÆÈL±ˆè#Œ÷¸“ É]²ë3—šUÒ‚|i÷µ„-Ø[TÄ”†ÆåŒÜ%4úß-X«¿é‡_ÁÕʉJÒ†çÅž\\ƒ¢Ñ½¼›®+ó²8µŒ|y¥Û|Ü_±ÝF­U]}¼j¢ÝÔ†à4?IßÌN»… r7(Ë%á…öɲˆcM3†í{áQ«’L†ÉíE4g‘wÿ/ä/ø1aàf܉©üe¡#¼zãaé*r¿R lŽÜîsE7—uŽÏJh©š£^Tþ{uì¼):ª>·¯žLÙ ¬E—Ûo±Ï¢j¢ƒ"“7òÉ!Y¢ˆ§€Zä:³äjé²SËëÙÊœ¨ûkiµlÝl2>:Ò¸ÂX`¤~ºØõ–$Lß6§è@?I8apâ  € á8b!kX‡S²²±:ééž³?dÉŒ1Š¡ðºGy†qü=;¾„Ȳ€âØ â$8ízMOm‡¨„Œ$]ŒÕ&L²ç[ûô‘š™%¬£Ùa¥µ#¶¿êm_s ±xæšh'ÁÞQºÿMþÞ$Ñšû¥á@f”‘‰üAÚFxÛzˆ¦Dù+½ìºQëÒ˜üÞO1(6=ôVfJ(åUÀ xÙ‘¹2ŸM@’pzQÌÓ2´+t*Ј—¯êMÁ|«7Çp}¾,t½dËäF«',جF|ü÷§–§ßÄiØHPðïè\\IŽ–R¯S'‡GtðQß§Ê‚ÓëzoP„åÐaæÁ-~ ¸çUYkI9(H3ç¶#µ‡B²Ðñ¾x¤4qUÉ[¸¤gŽçq·2Y¶n†ö[®ÝD¬4ø‚(aw°‡^y¶*MÝ”ŸÐ§…°®Ä]ËÔt‚``ÀyïQ6™ÒY¸$%F~1‰jψéíņ‹©Iibž ‹~Œèf ìêCšÌ(Ñ 4SÄqNŠìçý+Ipá´æ[±ÛyÑ# ]>›ÏÃãº-Û‘ÛG”2ÄÉŽ®i(ºxO! ½‰Î‚|ÅÍJ”òQ× ¹¹Û@hÍ#±Ÿ Õ»Íê³áüü””£É}Œ8 |%­0®Íˆ- ñDž2.”¨Ð–уn6R€|ièY=ŒµikÙ?a ]¦XLf?qö@…Ç—ó½‡óç•â¥Wÿ½ïŽýÆÕÑ`Q#‚<á3àÉmâ‘*•O58i„‚1èÉ©[skŽ–†Gâ<¥qrŠàœÇu[°CF¨é¡NÒ·ZFÇ—èø{Y+]ª? ~¨&D™ª•æzȃ ¶±AÛïëÊûï¡÷á92Z1 ñÜSz¦nv'+lhÌwÌ2Æ<>kÏüjµ¿_òO4ÖÏ\fÉ~ékt:.l~D™bO ½e“·"e»1÷ã›ÆS¿’º" wœ”¥”#nÍds\ 0ßa:’#~åï!ÇQÀ[5]–¼4fQíf+û"MiòŸ‘ëó#ß(cAVYT{Yã1Γ”›OŒÜŽmÑš”ô»µe¦åj¯%/‘hõ«bjâ¦~Yþ+.Ž¢Ná(èÒM6Çÿ—}ê }6ñ$Ÿq ®‡Z‹†e‡QÌ_Ï#yÑŽ=|4Ç&˜e,Öº¨aííI‚!k¡y‚t€¤Ba ÈQg¸K­Ô—½ÕˆÛ¤¶ÅÉvš¸2MØLvyû÷üßÉík¢{ü0éç?A³1«9„«Ök1.ÍT§…¥†0.H‚sƒ¨nsñFR1F'ˆ…ÉøH"pa'RKpî >Q@E ¤k9„DAÁ²5Èy1©Å Ʊ¯SÀfD@[ÔȪ ($†X¶ l ¤‘=,3†ô”o Õè-—7så|ßõ2§bQƒhjKnOÇ(Å R¯,”C2wŽS9")E“W0Úe]J¡“ÕmI¨ËpÇ0YüŠŸ©´0$Æ+ŸÁ4=U$ÏâS,q§ãÌz :†Dw ŠaáX&¨”Oævmùp“Ù˜~¾hÇ>ÊØ¦–)»+‚ ‰3zLp;x˜¡5 ÁóD‘Pf©G˜1¥2ï.‰ Ìÿ. §‚›Ðï,Ï»3Ñ¡sc$fN“U‰X8׈ØúfyÝ-ݯ#Yp¤û4äˆÍ 8‚àF^II¹Ì_§öSóVÿÛ=~lÖÒ¼wi[ ¾ŒÕæ\FRâÏCÊ£ZЋ3WÁü¯ýÝxxqº†AS¥-;µê.,ðjR'YÝÝÎZrò~pìàûŽÉ½nô5ÙGƒÕ¦ûev.Ö©“FEVíã,åo:s”°Ž“ŒR Tr˜‚-³ EQì”’j'.ºî{o¸ÁìŠ5!Wß¹Áßrí9’W²r*­ŠÂ~?-Î"èF6Éj-‰ž£f}  àcNN‘Õƒødfá7¼›é»·‘:³ 2L(ÏØV2â E8*À¤ã>"DmƒYõ¥ýQå^—ê-šhŸÏGŸ"%ÿñVõnŽ‘Òœ±#Ù*µñôÉÅÜïè À\=·ëSòb öPûBqÆ”.}ÑÏŽ5'Ô{öFvÅ Cþ‚ –µS+›"^7yV“ùÜZ@‚q€n€ÙtË—ŒRÂ7‡—–´x›VuCy¨y£W;1Èu•†._Òø³ °¨Cs µ³(ŽÎ1i­‹ŠŸ¸ùßqß–­sW¸ºÍ ƈtbîéàò¨ˆ\³ N%W÷{i/“^}ç/îVÝ ~BT¬êš­É–ïpø\ᜧ¯£“ãߘõ;Ü'aQå|qp*åYã <‡€Ê¨F¨ãºý£•޳)aeÜï±-ÇqöÇ*ó¢ 0ósÒ¦>~]×GŽâ#âÆð¢‡¸`O^FL=F†<ºŽ“ÀJg…2“vf(ú’j‡3éÕ1d]ÓÄè>%AVš²cgñÌó~¡^ÉëÅ::&åáxù²Ä¨Q†õ~&[~6·Ï”6êêïå°˜y D¤ÄŸ7Vj®Ü ríÒRU&…4[¦œËuº¾/©48Teá¡0YJ2G`ÁÌ©Ìv¡heΛpKs^ÊФW™ ±0&Œ}ÎvùŠ8.2myR×àÏÃÁìRäš} •s`Ô-Œºv†£°Q±]9$"è¶4ƒ¸F‹‘‹!:`S¼hÉ!8û_N#±–,»õÇß§mx‚ÀP_ï‹:‚%æ¾›ÍÛ`'\(‚(3jQ¤’yª>ÛZyêÓÍ!m˜=mëÏÕb~Ñ!è²Ý›Ó1è ¿jnL—=ŠÕA‘ìl1‘{cy¶©ËFÈükN-¹ñ¾R•ác½6£ 0>;hÃM—‡ÓP3»(äÂÜZ¦&<ˆd’dÍ1ÁP Á³;Ùàzƒ?ß#¦³Fp ' ”bv_;O‹éñ»_ÍßûP‹WeÈÄVÖ9lA3øðÏ´8 l‰éW;ä¹ô©{ ¯nýJwtÕ.¯›èbjÁÇÆ_3Râ}ïwÝž>:z¯»'{råExý¹7§> 8n4ê1P„HôOˆ³Ý¿¤Pö* YBàšrFÅ ƒ·¬]u’Щxhì”cœž*ËÑIãJt”Ä4 Y„T”,ožOÈÆîª^¯kî«6e¼Y¯á2œU3µÏ–ý7r2H›CQá9ðrÜmÄѦnß韧)£CêÌ` z€·`-éQœ º+¡if-%êÉ,“¢,¶ÖÑBÃZó’é(8]fêÝ5»hQz¶Á}M£|ÒÐý_éÐû¶ót¼Ž VX©ÄUË» öbÑ) Ë3™:±…rÊ”ÆmiS5ˆ–è;ìMm±â€™ð³á®>Âü•v5­³ðe›2%¿ ¸„2OA»‹’Ú. ÅÄ‹l’Kdl‡;c“*b˜RÃÀ6DÇÔ¥1ö´ÇS7ÙMëué›%uw7êwrå 1Æüú… zŠÛ$5©!Áÿ.™ªM+>­¾³@ƒ¤ïèišFUèloÐý¨;ûó.Ãó‡‡]”´F¹6Ä˨K&¡.ñ‰V¥š31>lèW µ,–8îK¯ÕÚ½0©Ž•g×5NÕ•ÃùÑ̯~lx˜ÀVJ(®Î™é b\èG+lÃ*Åõ°jK©#š”`€â—êz/LCOm JŠM1®Â"«Ùh‘Èì‹òJnk ´³Ö6É2‡îF.KV¾%ÝÁeóÁ$/AƒWÂÔšyãÊÆƒætÁç’Ã$:Õ´ÉuÝ©íÜ)PÏ<Îæ›©×“6:ˆC8Ê õ YÛà¸ë¾[/{sû ½÷u0˜â€i)dh'õ©@šh]¿º£ÛÊÜV/Y¤(x ZÛÕóÿ—ý+{>ޏÛdZK0Ÿ‰,ÏÆ¬Tlh(íi…U<§`+mÈfƒòLõUPT#ƒyr å #>„¢~ÉD¢„D ‹„/ÏÛ 3RAi2„" Q †ï„Ö.½ïâñþßê»¦Þ ñ_-´õ —:ÌêÓŸ.Y½«¯ñ wÏa¸Ê#å¹|·”Âò0„0¤\Œ€Ï°…ƒOu´Á›»ñKM::*Ýùž(¦ó&Ý30_Âd”º,hXëÄ~½1žC>\ÒF“¢q3SEYÁAš'I#¬¨Ð^w2(‘8§=Õ?®T|âÄ}­;°:áC*dÅu뽇,dpàAà ãZ±ÞÈ(9…KýKŠô¯ª/˶“W$$ãž™aÙ /¯:k6…[ åD?³ì1;èjz'2ovn}ÜRेì@P(ÉÑkS¨öÈ_.3â|ŽK;½oá¼ìêéÈ9ŽSávLy'·Ï¶ëüá'åaÁ0À`Èì PjNíˆHÓ’ðf1ò5º_‹ñu Y6_aTfݪ+ ”Öm⣴ø¹ð}…92+ªíä\Òø¢§´29CÔoî7ÑÞAüƺ–Y‡ „­L¼æ×o€Íe;kó¾šùƲöW8IQ‘„^­åwºfþO†µ˜Ô~âÕ„^B9ˆ(O”å\ÿÛxôZûyO½ïÿÛ÷¾ÃõüL÷ß5èj§›$û-þ_µ»·¢Š†¹ñÅ­j!BÅFDªaÞ·[É{p¡à£¹š®:u/ÆN ]1<gR~¸êõzÁÖãK°.Pï›6Ãދ̨_ëLo*ýô¡õ]@œ–¬Æ^þ¹Å¸x™3£‚ļ_ðþ.¯ï¸K5‘Û‰¤H««ŽöÿÙ¥´íÝsçüŸK´Ae5å^ܵOåRÝbž0Ò!œˆ¸ù¢ù e_UGö{nÚù~ëá·êÝÓÞÕu¹i‡>'?÷rqÁ&¾ºX=î„ö[\3¾?Á¼U æxèdêm_¦œ¢4­M¶(å{:¨ÿLftð,Lòâ5S'ãoø=wa`ÄÔᆀ)èâ8‘•yVTCV®mA:Í’øˆDK†xPñ®Ë¦.¦Bª^ Þ”@'Ú7.HFoöËΊG1PŽºNìn@«*û‘ÿÞ”Z´¾PaH@j£ªZeU£Æc—ûE6S䟴6IÝ}ÖcÜ•D ûUDŽ‹Î®X Qš)f|ïC÷7´¡ÂMÈL ®ÇÖcƒü”½.‰¬«-_—<….aÍapåP3gÛ’µƒ^[D¯ãEHSTÂL¨|\މ¼,$VA{±bòP“š7ÂúýË8šç†@&9qGE–—«'À]ƒÐD_ÙeÒÇIZ™ 0‚u~mšhHÜ‹wA.Æ\Ÿ”u`UHÿ…²9ºT76µ>Sûh«rC¤ïÖæÌßÙù]ªyÒJW"…PŒÓ;Ï¿gæq(r”AÕ ®.h±n7}ßZ‘N€²1‹,óH uØ«ü=Ÿ·¢§âåÑ%ÊNy3œë}ߊ¿OËÃ]Â×è {ñP“yq¶Þ¿ÿRß‘¹çúØŸ8³ôÍxgû¢:öŸëwòzä\Nš°BÏŒM ’8$áà*¡÷ b¾_šz~çÏúgù1D7Í8o—W¨’frxû‡oWìþ}šñ®ˆÒLû-Ÿ©UåW{èšÏA>-<ßÅ£'cêSN°Ÿé/µËáÂç‘cUGæš×²Õ% û­x®6¡.£C‘÷Ç °Çª'³ýÞïie(‘2»ÙÓ‚â%(M0 `ÃÀ%þÛ7ß}|Ï‚G{êæ}m– ÷Õ–ÉáܸlÒ{ÉIÒg…«“7¹ùß“ø_äóýŽÉéü#Jo+fÊæ!螪ñ_â×Ôe_h,1A:a£k¿)®äoO¡‘û›ÝÇ8œ' ˜Ò )Š¢Ÿ°lÿçöþ³<Ÿ#‘ÓÙ ì0”òL*™g§Ïé~o‹Ô‡‹‘>Íf”DDÞÄÒÑ‚ÎcÌFPNÖ¥H‡ª|>?âgýoØþ~(~G&]JI®ºˆÀ#BŽj)¢‡}÷¡î¼]Ï£K¾ÈE Q$‘Š/ vwÎȇÛü)²¹C†ºk¡clA‰Œ–[<,„þÿ“åP ò xâŸÞ†O‡—Éô+ðòêc— ±ZG}Æš8¿?N…ÿ±óë5' ÇÝ1á #'2‰ŽS[9€EÖ^¢jÈ=Åʪ*„¡ ;@2—2!_øFBrZ^À‰ðNi¿Þ÷òMýNåQ"¿6r³©C< ³HÑ »ã‹ûÜŸQ›Pºùã#ÀOKÙ%qÿj\P}Ÿ—ߎ/e _ˆ¸­IEŸlK6ë御çMê*2sFL…al‰´µJ "€ÀaRG€}™¥BZ@Óƒ’*3" ÚygM^T½Ì}¿§";ša ç&i›ôiTÉöÞ‹*ì;çÄÄ£'¶Eêš!f¿àä*Q.ÉF»û¼¸Ž{ƒ¿FÑydåBÙG²ým‡þíòžVæeüyM2Œõ¶oÝ¢-W{œŠ…‘°?ŒH "K€VI)½¥ŸÙõ^5~Í~šç0¸° DâìJ €œÅ^N0C鎡q¬Áþ0ÿíïzúáö’E.ø’ÔF™ž.F›÷Ý×8ÞEª $®Ò‹ Ú-zÏôTE)šžË,°°ªÔRßÝiÜ¢O@áN£ÉÚW‘Þò¾ÓPt‰D':Ö3å["ò6ë/áù}ß Ý<É…<’EŽ’ç>sr—A굃CHˆIZ:V-{ëòþ tæløO¤ù¤˜–G˜ "Q‰|¸?Á¯Ocþ³›ô}§äeÉMïÖcˆV¤ž,îýíÚüP0]Iõ®h Rp™þwëý·D’sÛ&øOqza–Rmù?Òþ®x:Ù…ãê‘›L¦BTrá:û2øüî>ÿÓìþPw;1O$pÒ‘¤„…¤5f:td וüßå~çë|oCy¼ÍððppÕ°“ègz•¶È9@ÇÉØì|h´ýÎtêôñ[qÈàiö|+&ŸÔ[êy™L¸ã…Xn¦?³CÝu¹÷¹šÂµjÔX²D\¢Rµý/V‘.P‚¢ÖìEUßµ±ÒïWæá9M#øú"6cÕù•ãpümV«Lõµàž5ƒô~×öpsPF G)¨E|Âö¯w÷ôí<Èô¬:ý¡ Æ÷ù½Q‰Æ'°)¸ü7h ¹Éô},V÷3,"â(ªø¸ä¼3ú¾5W„‡‡³@š ±šu©@*ô‘ÇË{¯3µÃ§Ö‹LîTx¨EJH°³v“¹'ÔɺòCŠo¿¾‘KÔ ±æ£yãxÑTût˨šV´›O¹Ã3ëódÉr:¸Ïöh/™+ Ð xSæ#åëèìóÇ( >(šVaÖ>ŸN+j${\Qú­éG\¸¦•ßö¿¥çq à¾4CO«›Uª é£Wºj2â=  E¯f$v_µx²¦B Wù|ÛrkÀ9ž§H¤±§'IÊ-]¿Ÿ x•;½çž_…’AÜ›°ð¶)U)쌵#S©’B&sÅìý[¶M¸•±9ÁÏ ŒË®‚Êäls¦¢¤Ù°‰øðgn®¡ùÔ¡~Ë ×”#J-,´ú—\ÞóùÇó{THÒÁ\UÊxNK‘öÿûzbóÄÃN«øÙBgXŽîÏbI¥˜s0~(òeýûò6:—#Ì“DyìfÖÆoZ´$®³¶…اõýÇ0ü:òUtZM“›˜Ê{èþßâûþ׶ȦŽ>;ò~2;âšýlÑ\àa *6(§ã‹ð¾>~_TדãÓÏÿ¿—«åSó¤»ÉÏ…ŸN\®‡&œ–(Š\ƒrŒÔ§nAqóM3‹´±¾aˆbR•–Sw <¡Å<³1d± jvM‘Aèyg : æÑî“J=ôŠ•—Çð|Ý„%MíZѼÅ/‚¸3b1]þ ÿ·íŠóÒ^çµ’ý;³ÌÇØbÔ°{JB¸½óý€™ZHn8£¥‰EŒ{ s¡ÁHþnú.ÎÏsÙ5|ÌÛhîÔÇt™­2?³ñü|—¼ åó¹Óªž0)õ#Z”Ÿ»[ Ú Á¥¦tòñ²ƒ3¢¤ E\òÛUù±?&iÏ(AòðDÇ¡/o#.”SÄ"¥Œ«Ùf†Àxƒ>(Ö$Ì=d}²ûH÷ýªidœ*S¯¦ŽÇÓý2Ê55A½ÅzÑøæ³ëÁ›G¶&ž8¬apË;3MÄ„â=;6, ,+Vìqq8SÂÓ„o&ÿ,­m2Úy@E>2D0ø‰6%fž¾«Ås¼»ŸÆ’ÈTÁ1ÿŽmâ‹§‚þƒ©ûÙÖxMñ(0†j¿Æ(AJƒââÐìË3ã-»LŒk¥¥îÌÑ3{G'„‚žÛIÞ\U¿÷þúwþW%£ÔAÕ€æú!ùep’¡Rv‡=ÂÉÈ¢™€¢¬‰ü€õ~Êçæ«½r—P‰¯q}Å0‰c¾ßìÍñûßÃ$öÎÊM ¦=.þo 宿mE½½UÓ©½ÝGui—]”œÒÈð'í噫K,L<^?ôúßFù9· ¾l¾¥LbHwj;í ƒøÅToðø¿Ïœ•훓¸+ôy½§øWf r4ã¢QæçãÎ'»’w;_]ú¿á?B¿“ÄÃ_C%ŒTe6žïœp ˜KЙ$‡÷PG›Ô¸ÞDZ÷½*™çû3\/pH¾”ª±‚äá‹o9Þ‘è–*×r"ù°ë`Û²wlîƒ-Ýêof…øì­[9Ø–ãƒþv]}!/§P-=8§®&Ô«£Su ÉCû£Š—7Ë#›4õJÜbš+¸}‹Žú>óúzû^çEäºgÐŒZr³Â˜¾öK¥òÇ“„v—Ùw)¢b74 Eßæ«{É‹àÿo¯Â¥øDÆ~ÆTø}£ž0ùU{¡îÎÔ™íà;Õ`ú‘ÉOÁæ( >aÃÛôÁRä¥ù­+–¬Mrüä¶$Œš—³lU¨Fd3«óÄRL8¸xâÀåvÔ©‰Á˜ÐÔ±Êf‘›AÁ‘·‰ÿC›ŒY5¸¡á‘†G¯±›A Ì.ÇV-Ä×zŸ37›Î‚µ(Õç PÙ®Kí…Ûgé‹bÃU;Œò/,ÔäâKbé\yC5ø( %mëÓF,uÑž"z,èϦ꼅~/"¶%çmSo3hZˆPµlsò~®ï{ÿ•÷œÐËÈ…:öºüŠÍ–Ù!O…T2k¡ ;™œÏöÒÐõtQÊ4ÞS7( h—×OÒ¨¡‚v“jÂ. ¯ ºs ËH"¡XQ²ÑjÈ“_;:…䃕±¶¥N1*ÿ ýæîMp£ ³çp¨—r ¹»ï~lüÇsl¬Ÿ ÆÿÑ•-abã)è+¹ÿâTf#xÑu|ÞãÁ¿ñƒ«¥Ž×>½Áx«gÜã+¶˜0°¼ã²9`âáàT9» Tò™¹hâq aeêt¿Ž¯ºY j•SĤæ‡Ðð*0[a±½í­êN†nYº¼[¹¿¨oñTÓ¿^-Ûk÷7®;,=þ Áo§ëÞAiï ¥ù¸8KàÓùê\Óóô)’?ÖSy[˜5³â:$ hÝ…>hy4ßü²Îâ–’ÔƒK­µgö¸>pFÞ»¯ýXbEå+ŽG_4íѨwüråF >±¥b’ œ—ì 4ºô$Æ‘Tí £VšPbËoúÑ >Üz§Ç¯ vA®?©„¬´=žÆ~בHäòy>W†ü¶û~Ãõ[-$‡¶.»fgîÖ"PÀò]Ýû‹wÿw…‹#k«þý=O™{u{/ ÔS¨EBÛåòO|1LX'b€%¬ñm ÇcáÜE¿Ö•GÆb ìwiˆAŲ§Äí*™Ïê@U¼wp̵hÜ[ ´Í GQÆP­‚¨îUuŸµÒÿE ªgŠò–Eäo—õ³[¿KLrãè¾eãˆs?MR2{_SOêŸãÝÙÉ¢}Õ9—ʹ“^«ä=öŒ•ûŠ àqàâŸVíD;É­?t’¨¬{¥ÞêRÉÕÁ‡S1²}—êñ^Ä”©Gww5q#ä&ƒGcë\‘#JàFl‚#Û-²CmWð£ô|{ÊR8•kcØêÞ6î»î5IõbK18!Y¥ùÌíè™y÷õ§Ú9j⃵³—ŠG½Â°B¸sÓÓF§ûfïh‰ÏЃÌuµ^ä iZš+Œ¼ÖÝæˆOîÆ0$$ŽWwó‰Ÿ"övÔT17TuŽGƒ2 †ç;MhÍ¢Þ6ÄsŽ·|LÐÒš×dXãÙ)o=±=+Såß'QÏ$`‘ ž@†+ÕÁéyÏóüQ¸¤ò;zSóf9±¿–ïÜu¨7JЗRÿ~ž²V?ÍËï0ôïŸ@a ÛgAÆlµYËÈèYVyCÎÏ©WÏ£ãa. NƃɮЏ¿…FtåX„H§€ù¨ñ9—½¹OqzKð6Œê§¯Ò°¹Ù&(¿Ry]wW¢,“dz²Ìï¿­òøø(&×lLŒ¨g±ª*urLõÒ',zç&·fû|¶Í›1/7MD¼Š¶ëLäЊ^¹¦t^Ea '”'Ÿ2‹o$Eø"ðkÁtT¬ÅJ¦§P—Ëæwº5ìcáøø­±hY¼£Îhì –í¿ã¡ú~ïä6ªˆwqÞ>Ä ˜ÌóL@ œœð;^OÊO0ÀÇó×ôVN~šÓµè h³*èŒ/Û<Õ=?ÛÉÒœ}þ!ß;ÀÉíü·€À÷xIφV]2ÔÛ/Ü—hfMÑ…Cê«!cX€j¹û»Üd«K¾h˜žkO èp²aBq#€"ïßèûï‡öØmo]XïwÊõ7tž²|¦oÖ$`‘èE\Pñ¢öco³hîóÊ»²_›^á Çù“YüJÖrãÊ“£vï v¡i;„-dº³r3 ½áÿ‡úënôep2Íz^Ó¥a½2^ƒi&(b„Ä0D÷ÎGá ñ7¾/Ûã>®—±gÝõ¬.Ö]•¸GTX  »QóŽ4= Y4Li'—Õ»Gúg½ëýó&½Nê°„haÔ ãæM}¦Bg¿Eq‡ GÑüì~U_©þ9ßÖ…¥ºìjó5z(èIÊ.G–:XóÁÛfຎ x)èr@2>AŠOÔàû¿½Æäz}„ÃÝ)r ”+¶J,U.ŽÑàC¯b‡2Ÿæ¥ê÷¨õ’Ó,½´jc'c%1q–ìt~ÔöVß/D@)• 4PË®qX0ÊwiÁ© Ið$¡DÁ€…õ[éÑÞÙ¨–ŽBÉ™U L8>+€í¯6í㙓&,§ ý#‘ì9ÔtrRu^^a„â¨{ê«GggOðzïsCS nvRÃHj RÞ“\nÀxß«­îÂ׸Ï*¬\è4¾…GÍlG² Ð|j¾f½mmÉÆLww‘w÷écpýz®ôÐÇ÷‹;‘û{µbG; O'ök1{k£ž#æˆ%xl«³¹a×ø´ljèÐÖÅs'\2±jðküþžBšððéŒu¨…]ÞZqe´}ûyô~»,Ê„d§£$Û£ÊrNmaî5iצmÓ™>‘Èw!ÀIê{1˜f™ÉŸ”ª$ZÍHѰ¶%» èO_ÇÁþØeŸÒ¯“+hùÒÜÂ]“ømÀìz– ï7?Ó3½–ògÇ¢EÒŒéöùfêJ»Ë&Ë–øŸá®‰c‚©kºD!¡¼TœÊ ‘s(²ÐæzÿQ,ÿãßï³rå¾êh©ÔÇc¿G£I¶Ï°™ÌõA ú¼*HP2§çš7Ð0Ç»àq:<Ñï² kšÜ;̇-& S©vþ/#oègiø|¾|ýþéÏÞM¶ù³>cüÞw ‰‡$q(Ò ^/6Lž©Îô33¤ÏQ¨5Ôø^ãù5z]ÊŽ•PÚZàÖ"ûlU`õïñ¶]{¼óÜgëâµÕJ@Ù—Ëðöä^$YCÍ0|ÜãÜ‹ŽG«{3 ––Ž t$ gÇ6>tÉ+<0#6û™Ñ5I_¨O;çaÚ•!cTð‹ïµféÍjÅqQQqÄà^ßA nYt¾¾wµÆ£EFœcÎ'ZIC€, ÜÐ.þ”yf±œÏ *þ‹2 m%ï[ eƒ—ەܘ#-PD[<2`§eÓj¦ù¸f`gã:³T|±#WO$ÀˆI†NK`ÁÉÿ|wÇ~ªl"¾-[=—ÍHKL²V”q2B™˜hªMÁ9…k®` ‡’‡'VÁÖ$aOAË}Û|{\œ¨—h!€­\d öæLÈ¡µ@¤ Ç{OÍ­Zè†yuR4Ò9éÄ€Rø˜›±xàôo:m"?Jªš¡ÄnX¬ytæY¤¦ˆ.Rx&ƒa§Þb€Âœ ±È=­´#ökak¨¸ Æ-pz4Ðò6¨>)%Ðâ÷~ôoOKŽú2S¢Júïs­K–q{isnnÏþl#›.Ûü±"z5q§rka,]5œí*|x¨KG]È><'q1èD+‰E–±D4?h9ÓaA¿¼%?Àz ‰Õ“Pµv$éGÚ9VH-Ð~¶< øE2âë󿨩(´rf.©“©*¾`¥JàLÇgqÔêZ€`¸ÇЋ՞}|rtrk„AÛt•ÙgÎ(My‰ØJØ}ÙT¡ÈŒ4̺Æ'@ –hÝK‹Kßîâ´‘EˆðéULÂù,x3ÒÈ(Få@IÀÛH>*ñÝžÀAÃÍ4xÍR=!PDÌ“ %\ƒ>Z\PÞ¡R ¬d§›g,—Fÿ­¯Äê³:¿$8½bŒ†5ró8f`l~ý´üÏϪ˜¤”ªä3Ä(–+©^œD¤+ôuèøù¸êi§YÁõ⣠Œ’2™k0«Ë5§ärû:ðèá߯¼—"•—­¬M½OÜ£±X}öaÌ Y z—Ýé;‡FG(äÜ€ÊãÈ˰^V €H ¦^Su“Š;³•?9,r‰J‘Q-P‡“ Hª&ôIJiÄ‘Ìg?Ûhù¿gkö97p²ÈD¿{r‹aˆÌ°bÛÇYáàÒ_|}7æö‘ªíícn¹S<Çó~_‘ú¹<NÓµ›¶(ã~öh£ßîsë3zL<,ÙÝÄCš‘Üÿôïõ€]0¹@–&ì‹;D˜p£‰w&*+åd7<Â\'ùYwÈ%Œº§5J…[w¿ãó38œCü••Í&jm¹(›y´u ÉɬEcëjl±sf‰ž_6ÑðüŸý]ퟠa³â—¨¯M =ìàqýÞáÚüŸ…I Û©˜#ôEæv„sk+hÎA™Ú:n&Giï#ôW¢dçù+Ÿu„gë`7ž(„Õ´féG.ÖÑv¦éböDÄîy€˜‚E ƒë•D¼ùùD¢®â¹®lÖuâÒ•w”D-T1<ÅD[êøÌ΋×ôùbJ¶j {ó3„a¡Ä (©1Ëʘ—C'Ïw=_dacJRw®®q\ª’)×­±­@r4Ä𽓡ÊËŒu¼÷ ~#߇ÿSásøP‡‘x-w-­N¢’·È 05¯¤£ËÔÈÕø{ú] e¿yÿ¡ (îãMf¼—ø.ùÊéÄ †g!ºnˆ&‚ý½ø+zðGû¦‰{RýÃø;Iepev€rþ—†Oúþnm5x㊠G`)ÑÑ«’OÐ¾Š—?$==h ;&{3Gg$¢2jxVÀ!cæå2"MD£çæåôbÑò½Ÿ–7ï|»íߣTŠÚ!p`D°NÊ„ ¬·¾#ïÿ©’%P6 ’8òá žå6™'áòHWpêéü™* $È;Ó‡5Å$" r*ß¡YöÒêö{Wi"Šrõ"6`€&¡‹H¬à„ÃDõpŸv ¦γÕ.Õ¡³ýýÏÝüÿc%w¸+.‰ Ž7Œ||"^t\ ?Ó?ã9­u.>]+Cù|¡²†­ÊKnŸmrÀâýÎÜ«o#œ\ìrKYUsF¯ØÕ0Ïqí;Ÿôl]1 ¨äf,D… E‘ï#…Ò$½£Ž1y”öyU« ±Ð ùŠwAÀ½/¢zi'­tÊÀùÚ• !û(X¸ ¢R‰>ð±èkÝGG³xJ}ÒÀZ0„Fø>¶Ä8 "?8œäi#Ó1¹јN‚cS¨ ^! €€ûÁBºñ;vw:‘êÕRÚ[sÐi³±UôCO¹(\¸i´Ø²sŠ")RåÔ`ŠT÷3úqÐýóžàЋ£8²ÅZ¿{h0C3å´’Q^X8G*Ì?ǰ婼"Çlâr®Š†QI2¸Ò@nÇQ9Ì€xÃê< öó¯O’¸àÃD“6Z±§%ñ$ Z1æüÇ7?^Çû±ÈžÖ©ò&Ú¨L%å·›…§£sÓðúøÖ÷üóµ­ZÑJ^±JÛÚLWžHoÆÄ¨ÏQ¶¥ÖaˆYŸê»¡ØûRÊ‘,n¸$ÀK$U×FcáSQ\¬ˆ!—LA…¥™D(ÚSN×Ѻë+Ø:y÷³¢2±Ä@Þ(Üâ±- ðý®)6¸qw¹;¹dì;Ìf U¡Z fЏ¹ê:±Û§DN%A]IJžžûý#S=ÌÀó3Ý›–XÍ_{Ö»1Òɽ.æ:ŠÄ*æ©`hÀ¥ÃOQ½ O½–·“¢µç¬õ’©M²v A(:LÛÞ s‡ÕU ˃XMè1"ë…(øÀ1i•áJý¶9Ÿ&ËvÑ\U”Yš¥ Ëo›) ñõs2×÷~äxy¼êgßš- Ã#ÖŠ/ e`î6¡,=«Ü^®2cºéÿ7â:ÅÝ+-ׯJ©Õ„<»ègm‘µ)eý\ô°÷„¯ÊȨś<á-•+W]™«òƒíç­jtý0‘Ò‰7:koP[ÀÑ‹w3JŸî Q+tØèNÕÛ!Á9z‚ìô(w”ÕÚ?ÉN¡6Žø°ç³ÎVpš²2f­ëM’]ÊJEíhPFè Á}DS¼ßnÀŒ?íZCäbE“IÇV``RÀj¿ÝU¢ò iÍNÚvIÓ” ã‰üú5zßóz£{Wr¾à©‘•—Ž·VårJ5ß ¿HžjF§€v•§2« ÅMM‡%ût?ÿ]?¹S™ÜrÍIž['!rY â&¢ƒÂŸUöà‘Už8Ro ä˜'`ìP"”KÕÉÂNpñ²S'™×G›’Ô³ŽùÔ|;JK<ÖÆ#!7?Œ}›G{/B||ƒ[£Ä®šÃ0 =7w‹Þ ¢ c­ˆú|G~½¯·ûiî§}Ž}`H»5uÌŒz®Œ%w©!•Ê´´8þ>ù_«©ø¾ØçC›„(©£[Ë8WFålXÙ‚HßkŠ5ìKûŒß¦O‚Úª…4µtDC²Å®âɉ<9ÞpQänÜÇϸÝ-$6R'Ñ+3¨–ÆÇMËhh)ôÎk^ˆ’¨jEtP„ K”y}B]ãÈ@6*±å‡"ωàO¿¼o/(oíŸÞÂ΀l°Ç}”e7(ž<þ¸ —Br~¯—U-ÉX„%bA;3\žRÅ“ë¥]å<ÀçßL»Ï…8ËhiS©Q ÀM¹ÑÏvt1·6OSŸ&ˆÒ¼ê }\àc"ÆžyÛ?7ðߛҩŒ¢loæË< dŠæcz!î³sÇJO²Ÿ§­€„8v“Ûsgl‡À¨ö‡ `ìÇÞcx¬`þ£ô_ž•A^l*¹Tö„ý‘·+çu¾ÆvHå›c`M+§§—®(`µµÛ÷´Ð_ßö¬!xüy¾MòÕŽËŽ¤ ½3»wó S‡)ˆÔÙ¡7jú¹¶´–ïÊš‰T“÷ãct0ŒV®CòاÉÓJŽ„›¦qêÞ­B.ì€ãH“r‚¶b=ÜŒ¬Í¬ÛôbuBêÇQ*2P…*p®ÈxtñÊÃÊï #ã³Å9ȵꥲPрX p‘©Rñ_ Wy߇Ssêúî^ªÇQó̵3ÔÎ^T‚(èù¾(ÞŸ¿¶ÊÖ€ì´P#«íruÈ%iÛ5ÆÉq9P)ÉÐÑÿÍa¹gq£o©¨Š)«L[Ãܹj"éßËá~:/ȸ³gÆ@ÃsMÝÏÚûÛegÔ€Q0Zœ°1:„\9š]?ƒÜÿÿ|g ;;ÇÀÙZ‰Ú¿#0P'j—­¨qœùb§»‡õ¯Ø–Á¹î_uèªÖb¨’eež»ïÇBïä1/Kß ©Ç4^¥õ5^d‰€R®òŒ@«Ù€µK.Ùgñ(^C _£êwëîþŽ'fŸEÞ÷E—­ ŠïÈdÁk,œËÝàà8zž« çVu‰„åòx‹†Æ&U"Qø]OÒx]0{pµþÜ‚ÖßÄŃ*1VèéŸ:ù鹨tC´ÊºP(™4,¾õQï¡o]ƒtÂõ¶*üÎózF¯QðynVÂP’x%D3×ÑècËnCûFs1û^nGÀô‰ªÔ´ëû L¯ö Ût‰Nc³zuú )+úëø>ßûý“æ§kB²™ª‘ xß“"µø¢â¶ævwOÁO¹ý~•üh®²vK¬ÕŒïէŤÝ7¬CÌS'ÏÆÀרZÿSêð©ýÝt­žà¢Ë­iÜëW_LÏØ—2=ø½Ÿírr"=†¨ÙV`ñÞx.¾6Ýêv.)Ù¡Ô^îï¼RÌåÁUCm^Ç sÚ3ó‘¿ †¾@æ±ëT{Ðû8!ìy>‡Ã4S鶪6H V ìT:¼I®Ù:j;!ïÁ¾Æ\2̤ê^À7O©b‡¢E㯅àߴ⨧ìv«À6!ŸZ€3Ýïà~G~o§øþbä‰ÒÍ e(Ê/±˜äRû¶ÅkƘ^¾íÂæ˜qtZ0J"›Å/®€ÿ‹š£®NðËsc‚ÖOD¾çÓ¹Œm\èÅû¾–ïwLúÑeñË©ÓnæwrϹü¾%% zwKY=N› 3 (8z|‰È„ñTlöN½: TzÜdfÝöäsÏïô—¼ö•Ü~¡ú±6±Á˜Ã\Ç‚[Zábg¾B`÷Þí>\ïÁR–dÁép¿X[.8ȱ¦ÛÚBXÞ•°z¼©^ß;c”«£Ob1~ã Ð?‘çù>ó0¸ã×äÜèu*n•;‚)‚]𼫺X€¥¥gæý~Ñ ü·~éÖíVë¤ëo¶½"\}ßÖ'ãÿ¿B©Ån$¢©e˜Ä3w¥D…lËÀß“oD4ÃQGŸ[fìï.&ÐTBaLíñ€[sjOº/Í©¤°ºs"{ ‚"—”Œx0=¢Û¸e˜Œ¤/ù½ƒåŠ2AÈÊ&&nIõÐRsmùhŠÞ,s8\ôonqÖ}œBGÉäVCà…Ž+.B¹æ#RŸ8`­´MNR{Ìîäbʶ²ûŽn¶‡æéäEÏ8"èŽÜ1èÙï8?±ÞIËñ½ŸGsì(Zío8xݰòØê.ãäjöß<ë¦ïÍÌ÷¢Îø¹ ¼?Ž?ð²¥N¢#ëå M ¤rþVm[ç§¹Üóû¢éTä·8ßÅ?ƒ4¿o‚*Y‘žu¸\ÅÂŽq×ï¸ÿجir9P ø­qa ¼é¨5žt4èJgðs„‹üx?eÎÛë³x®–ˆÕŠÂ[ ­îÀȈ—ä /eV Àñ‘±uLšdg)>…m†çz­%¤;ª^ÔR6AŸåÔq~94ËoÅ µ‘zw(Þt4çî«…à ž|äTia:K‡óàQ˰‘O6ÍÂW7ûf´™@I½ÂM+ösðb/"=Ò\A¨ú5ôëë$…Ó?/n)È‹ó¿ÉÊ~ ù*ÆuãVM@™ Œ äG–…T6`÷2 Ç´écŒ~h¬‹à†‹]ï¡Vó‡ V’ÇZ«*‡´ç¹b_]ä(nš¹óˆðvv«zC¤’…ëÅ_¨8žVŽ Ú»êçÒ÷žg}_îUþ >ž|û¡¨¾¦PÏTwÌ“MkƒL`!*Ï‚8Ú Óç_8S·'¸6 i öIš%’ÂL À²ž|~µz6iù¶]¿5%u8 XäTAªv7 |¦a%ÛéVÚÆ¥‘­T‚‰„ï™NÀ—1X¹âÐf2½¸º¹XøY f-ÈòY¯sr.n~ˆŸoôÞ—ž 7x–azu±ƒÊwߥÕ[…³ù~›49e·âª‡•‹…MøŸLAM•fÌQ¨ÓÅ`÷ð_gÀïî…z>D´;RNR3ÏꙈx×s5g:·I·+@Ù[ÙÂÎi!V²ЃÛAxàRÌç‘£qœFL#$Q‚¤¯÷]þ5?1¨öˆ8£ÀÀ*]Óqv¾ç²ßÁ6¤ð1äS3*å:Nʧ[ñÀ*ŸzjŒágíÐàŠßF VEȘPYÌ„+KŒÃÝÖß$ýþ6ÿ'õ<߇Æô-ìâHaŒœðzÞ/n?uáK€¬¤è˜y¹Ì`!xà_þä öBˆsóR BPN (ðbUy¨Ö"´¼xq$‚ rÜÕ‘öiðúI6+·%Ä. Ø3вu0ƒ` ‘Hm<ŸÝVc°ÉHL| DØyýFìÖÚ¼€ŽR±øàX×g¼˜€¾Ó'€áŽx Ÿ%Yl^ª‹iÓ1·½ÁcÏDa¡P®#ßEzøîž–mG:(`VÁj`‡’˜UÞÖi¢¦Ù‰Ÿé~ÅO߀ÇíTíÆpûÈ+Å8c¨¯þm}²M@¶x990chµý‚º¢‹ã%Rå8¥Ïo ö–;²W£tÿ1[–S×Çßvµue-lmýÓw ¾iô, óà߯Îîó=°V¤1$%@®ŸØX ¨îà”DßIý&ÿ e†…kv‰4ùIIÑK·}÷MºŒc§_‘EfIkà2XÝ GiÉ +»µPBÜŒcÊ1ÃX€ cž’ªÞ¬ün. $d§*õ£Ák’j0‰\ïžñz‡øA჈FF󚗸뭺´$ôŠë뺋 /é1_öÿY¹FàÒ…*MG‚B¶–óÔÁû- /·}ÏŠy™hœÔºs½»2Óc p6ýÓ¥ã D*ZÚ[ôõ4õA?êF;œ5Ä=ÏNÍÓ¤“{g”š.pC*³}T]>ÖYœ•PEïÿ~àϺþ³ÜIÖ‹ê¢ÍIÃ36U‹àù«Î43é)ÞZÕ\ o:´HL—ülE“^9P¹"¯]I1â‰A2wY‰)8ëÄ»Hóö?¹%ÎÆC ò'h…†ç…À¤³nâ²HìPŃ„™xßSÚXsŸ ,$!-ê5DEo½{'°øpBpÎð¢ÖÊv°¡ä“GQ¤Â·ý)'Pú·2áLžw)~e0¦,e’×GÁƒM5°PêcEùA†ù‡­þ‘!"õúRâ­kž=E]¹½¾‰îqXUú5U$sG“Û?j;ØÚñIg|Ÿ¤UŽõ²òõS®7 ÿubj½¦jën^.âV/Oþ LoÑÅ]žé¡Ök(ÇEô‹¢kê”òƒ\#'˜Š‚`šÓÍ8Ë ‘°U>¹ÔZòMg¢ósCJ`ò±díɺóàkJLsã³÷EŽ€ÁQè%1EúîÌ—<ÈÿÂÂ*C*§–·m8‘)x¼ä\ªtvF]"ç£r&^3¤Zƒ´åí¡€'[9[°¹áþ€’¡"ƒaßqŽ2¼ÒËËPYÇ—‹0†P—ô݇ðõc¾Š™¢À„”•P5ì13–¢™îý“•[*¤g?T žçïPp[ÈJQ%›Y¼„ Õ+Òi Îâ…E#ÿ<š|Ë}í> ûߟ٠7µ÷³É»„ žñQÄÄvÐ@„ƒ`ûíèDêàvQüLÿ£f¥‡ƒ\~ÿñˆ |ó ˜§ÀuœmUÄÖ¦ äž¸}øIåR/5»a,ô|FYÚzÛÇÁ­ÀŸ{©[Å0( 7²p `v› 6 ‡£ÛwdîÄ`’A]=rv-&œ.æ:FD4ø/elûˆÉÏ A¥ÌKiè…<ÇCÓÆññÁ'€YÀg³ÁœPÕzødV| ÊIŒsÌq8æHW”»Œ¦€ÃóÉË>F!AÀ‰>r%®¶ç³ñîyÆ5Uö'@ï>Ñ ¸3rÄÇ lcnÔäj¬¿Ê»\¯ÐmúV±«µÁc,ù\}¼\A‡Ú›Š‹³)† ,È¡rnQfz“ºÁ;…í”%àkúWóšQ`}Œ›.ÀgDJhïâã(ÝŸÀoÛéC·øe[>ðÄ]_ér—ÎNiZ×UT5{EgûëÑjw*j€¶ƒŒkufl¹YYqôH—žyì›ÿoæ³üÈzŠYÒbùüǽŸ×²ÞRG¯;v‰$Q(j„Y‡ÿjxÛD*{{ÙëfS>„‰ä<°ã1"ˈ•F#f•ªRÔŸ&ÄO^:‹À£ÐÓˆïö ß\××4g`³—q/çž6§I×”‡|¼.4ŬnŠgñ{òŸ‡.‰ôc ë3›ƒ?0»X˜ˆ¿NÃy›rßx]~kóWɨ¤NzÂO²±˜q¯ír°£š¼<5¥éÕ0/Cwæç=qwX{ñ¾hF”ÿ+H÷´N¤ìƒ  ?'n50W Öøæ¼#W"»{›K}Uì+Õw-¢ùô”ƒ˜V× ªO.x ¿“ï}—¸ZßêøM,þ“¨ô‡ß¡è …쎖øKð_ö¾ü¼ƒÖß§l˜™hü9fŽM¹”„yÿ§R“<ù%ÌàùÍÏW,Û¡¤ë±PK¼IðÅ™q+ÌÂÁ°H$ƒ-ÊxŽyÜ(éócuÕ¢š'–éû}ªÏÞa–ÃÇ EcÂ?ù0”UIsŸtPò°V$ç¦;·˜ÐlŒô;÷kÑcÅsžQÁÆ ñêâ¾ÛÒ‰Vev! ¨{{zy$MÂâ¤ô+ ¦¼xxôt¸ mV@þ-¢{ÞHK­kK€†muyL…±‰êX*EÕJ7´’)Ò,cÇɕϙµ+­Jf°”…á‘´‘«ÔbF´îüçLjO¦ªNß“Íx³’Ãm&•Ÿç1Ê“òþ\ZºŸ¢·éþ7Û3Kûõ8[–”M|Ún¼Œd”·P׺#îX;ƒ$¼SmÎd2‰kX ÑÑ£=‡«!óÏÇ“™‡¼û7»qÏ^ä&,Ì”=eþö,&SUïoûâ<)&l5…¼¯ßÑú¿Âœœû¶àLyÉtÕ‰ÇQ|üNü ?©ªûž§uïñìáoï҅ʱR@>Þ!ÿw‹öXî_(4‘nwy.uþ›f;¼~GùÏ šôGQEš®3Y¼JÄío³†Çš"«±j‡-Å^wµ«Û³ îû¿ÿsdó¡ë[΂ó¦èï³:›æBåŸ]FÖ²½¤|ª7°ê¢ë×…6ŽZNJL ÎáIaðRbš¥£$Fb¸á㺴] þÖ’ÓRr%óÈ}6Pž-C›÷óòüСÁR¥à¼üð%.µEúøRÐÒžÜYÀ‰®,,ÿ!ŒP dV£ˆþ„­¶ÐÚùJ ¼h2@8ToïxG2v'uô¶ÜÏÃôŒ†ÅÙ£ö¼oR¼00<|¯ÇGl}棕ÿaèéñd·b°1Ùx²‘öÿ>®#¦yU˼#4€aò¶¾=§ŽíÛ3ÒŘí‚*¶ÂûÓ;®à™{­7e˜|Xâ¼%½ÿ†ªdY}}Fdm>h<ÙUw Ë.ÿ‡ÌC9ŒM£:õ›Ìm@¼Mã­=+¿-ê²äR<šA¿ë÷ÞC\ðh3!ŠíÕòè}íyZÕ{&Çr‡:¯e†á?Ä$Ѫʑ÷c®äU_Šº­Ø3©i(‰zîŸTñ Ë Y/³ùû²ýa*[QdÂ]áúÌ”äÄåÒ›ùIHÕ\‡ üåç.jÆÖáö]öwhÕ–Ì—Höa_šÙ.ý6š-Íä±jK΃ÓÏúS{Dpãd’F\*ßrO¦ˆÕœKûÙôd] ¸ÊòÚ½ÏÁœˆ]G„ì¾xÜ*ïti-ŠØ»÷® ’?§;Sz:5>õêzˆ¹óUD§d©MR)8=¶ô-;¨Ÿ{ÈF2ÓÚ]íh§ÆÍS%…uçu]˜s¼þIn´ |Øõn®¢8 7‚e2,q¥©!ô NçäíUM¢ìíþ$w¡7O ,yèÉPºø•ÃS²ÆFy¢Œ¤$ Cã3i¤Dù[`}?‡ÓÜàÍ„õÐA¹L4¨-ì±L, xäçTÚ5ÑócM“ísÇTùÂYˆ? ò‡‰óâËû<¿ðÚ݆Á44Ÿtµ™ÄAC–Kù›àk¾J:I÷ÄùÃRñàphÓÆÐµÅ…&›ÑM¥Ú¨~¡¯Y;ƒ÷çO 8¾ó©Ü•4êè…¦7Ú3ÅÁ–’iÈ@O±á!aQG}ò¤î5 bç’Éèeí ¬Ð}_©;s Þzï_Ý×çM¿&«Ôy£¼[KRbÈU> ííG%`:Åq]B7½± ®‰ÎVå+« #Ú§ÌÁ5ãó¿Ð=Ñã“Ö~äôÉvž~uרá´%–_i]g³¦¥p3Vð@¬·wÎE2]÷áF|Ç% (¦¨•™TKY0"—÷© .l‡ƒjI¤Êö-¥¡~ÈzÇÉm<“õÏrwáó/g¹œ6:Ȩ¾€[àx<%ÓÜzj"‡å.OAn Ôª½ƒ"êù°\ŸÓ"E®uíX¬wGOûáÒDæF(¸n=¬z/†Tö 0ÜO7IðZ«îæk¹S¿¶~İ:â£5UN¾=¶½xvéŸm8ФÇNIϳÐá‚?F». æ"Í5m/ޏ^q¹Ôæu>¹‘ŠkRŠMƒàÔêœdÇÜFãêu§|³9|{ž§Æâû`g~Hs»»X˜e?ŒKÑ’4Ž%¢"5Ý¥uêm™(ØÎšÁ³ØCúy¥[ÇÁ;v:ùùp´4Ì-9ã[*}gK á?d^‹Ð ý·î_2²«+™PöR¦ç½![Ç«i}[Èlõoé@†²ÿI E:õ;ÞxL\(WtgÜÑr.!~žì{k¯øÛ”[£š¯9ÀðUìéE9›º¾3]çö£ ao?庻úòtúSWR–îÝ(W¢•ü|]ÚäJ(zÝSKRá:Ån£Yl[W¥~î`L…“RgMp®ßzv´q?!¤Ÿþû²sئíÄ]€öE¬Ý°}ŒH`†®nžO"«`ƒûÆíÝhì]# âWÙ„I8~W©`+“ÂbˆõÇ6ù(LsXð‹Í¦HËÕŒêÅnåÞUe¬²[Œé~ØÂoÃØd-¨$n-¼{ˆv`Sm—nZ¨»Q|HøaÛ/ƒÊSd×+Ú½VÇá[‡IÛ¬+ÒÕ+³T£Ä3a%Fíxç“ß÷-6}¥’¼ÐøÏߨC?ÚK<>æQ…ä*1Ûžç£ ¥ SbOø"$do_î5.öâ.›œèìi¦sCHk\ŠD>úÍä·v^f/³‡زçÈÓ.JĨ91ÑN”–OùÖeõ·ÙžüÛ¶ÒuV©«Ý¤Îxs.´K@úe [Q/àz"·åíµ›Ý~X·½*NR»Hjö¿Œ™´a|ÿEÚ>U7ÐånÏ"jšoå´[øi’ëXë-Öæ ˜­á…äVÑwØc{é“ᱎ/ÂT¡zGQõó›F@™k©ìÛ~µC³áOßí£°7¹û™FV¡£isEzô¤Ìy¾áÚÃÃA:Þîåêÿis“Þ_  »Û‘ÖÏKr«;ru’–»žßÙioÊ9{5Luî®û„tÒœ·²4ÔÖT &Ô OÌcOÂkÍÆ‰ãý¸…­"Fz{È¥kóù¼]µMÍeNãÎ÷è“ïÉÎLSËñìe± ½éhˆ²„Í…þ X(ÀwWÍËã—“# ã×­¯]#gà·¾ëC_,€ÆÇÕbž“«¦¢­¤“åžy¶òˆê~8Øý¦ÝÖÌG%¢tQíA7!ýÐȩ́ȟ×{wëˆÌ„%û~W«‰§4†ÒvAí„Æ‹ÀÉÙ;éÑôæå ¨ì?Á ïÅîUp(íŒE}Ñ<îæz‰™˜›»"ŽD,çÄ>ÕB·ž_‡èÀÞ'û\—çQup CIœzÄÅu#!YÄÛ¶ÃMÔåG&&‹Å «­9餈~‘Lb¹)æ@Y3óÈPØå:%3Aäîq7Ž~ç¹8ðTXËÉnà8 ·RS£èÔ†,Ÿ¡W‰l‘<Ÿoº!$8Éî{§Ÿ 3¸.׳ȩæè²3"ïDã%=iºíÚ‚Œž’|ño7Ý)ÝÙJ9»§›À–;¬ë*å•|.¤{¡ ôd`öð¿úuƒÜÂús½†fà¹oÓÆPÿ“‚©\¯¤7ÓC¬?gŸ\/-v€€Šóίäâòé<Å]å#‰ÇGIoðN@)xúuÒpýØïnôò“§Q|ó=Õðuaàñ¶r°åËÖ)²v¾“—“‘¸ÖPÐù«PS9HÌŒ÷ŸÒê@wŒ\ØŸ€à›æ*ÿ® ûnñCŒŒ¿ãæ²ìá7»&YTê­¼ŽBåš+×W)ïU# fî£ð4Ëàwì$¥ÃÜD¹sŽ@_˜„shù8wmØMè±Ê$÷ÔM<(Ém'3-c“†mZJÍn5šn!"D’ï‚úñó|?ÞœO(ve…[[N¡rk®ÝÇ!ƒ„1Jמ/´Íì[<Ú̹‡Œ$¥mô'ju¬Ý‰ÆåŽæ[n$McßZ¿ô#6ÙÆ7qW4ö=ŸDG7©ùGôæ:è87öxÍ&d[ßü^íP‡´aÛ·è€YÍœš¨¢¤rõMø9­‰Ë$ñáêw :UGU9­'Y©™*³ÇÐ²ÖØzím~%ôÝ—&Q#|±˜ú–=߃†ÛÍþKäèÔ"·žM²Ö]%4/m/„7ÅΩò}ö®Z©¯is¿ÅTí]-J7ìNB ÕønèÖÃbËÐ:€i/ŠÓwA»êFÔÖ cS/Rç³ÐíC–ÞdtàÙFßs²ÙÅvo¬ ×–ŸRï× TŽÛm¯ºQI…ìÓÊÂÄ[?«7ÿØG?*Òå³çxø{ÎfÔq R,`8eÞÁï·'D}æs ™ž$ñƒ&¬ÄB|,mÇQêýƒ\ÂÝ”„N“\×\%V‘C8=Dn–àg•cóÕQpw>•.ÞÈ{–Å´¶¬wµ¼±È7ŸÍ´˜¸r½Nš«0M÷‡¬:ÿ:K+÷¹ÑLBQRðÜôaw.÷Sª}~/¡†ª^O“™iÏÃÁ‹Á«Ý3d ‹—#]âÞ$Šüìj}âìeÛiz¨JÍÅ…¬çæ’¦…ºcä>mžÞ ÐÀAÃÚ5NÊ¿+*Å ÜŽ“ºËßp8ñûÀ¶ü¾© ¶Ã½už%ô†㵘Èùú˜C3.þw"ôÎ|,K­Ù›{.'Ný<¦£ÀòrÖv÷ÿˆ9Íî”…©2¥_.VG»BzÃ̺BuS%Hû“‚üYw£–,¨ƒxú¹;)Öi›ìjˆ–È áî_QGƒ#2f-nK®ü„ ´~=>ýÅ´Çòw × !ùþ2 ˆê=œð·š¤Wµà_‘‚ÞWËÚPvÎ,äÎRênvƒ.é…3_³à¤}!Mïí<&ˆÅà¢VO‘( ¼ÁKçc“§%ßéø95/Í6¿µÅ¾ñùÒòÏ»ÀUÏPØÎ]¸pì9Æ~áÓÏ´ÿQ¹ë ªUÜ3Ÿ3FˆF¯OÇ^§gÖÆ¤‹wÏ•ÓZ+’ŒFë^„ Ÿ‡™SÄ‘…gî¨jžíâïôã!¬^5ÁKVt0b1­h$_¨™§AÄ©f ºvÕaŠó£'èo[‡á†tÀyÁìod¯¤ª"•r¥á%í ]§‘«[øÙ®’·ùÆK¡ãqŸW`-Åw´¬|¡ˆ=”¤¼—½ËÓú·âðæÀBq{]œÚ´Ø¹C]ö@¿ðõ9®yÚàŽYÔ¦tÐÕßAc ð>¨­Æ>ÞM®Æž«ÔT~ëÇ>»Á,²«—¢ÏÍ?;‘öùýì_®Ô޼çŒm±œ‚>•¥v¯l©èÎnG†!Ô©hˆàŵà†+#²Lt)æi+,l ½]ïn?G¿ºkÕ:4íÇö*o¯}UÎìm`½Žúä¡/¿6ýf܆¼`Üõ=úÊ´hõ¸ðšR%·kúÙ¸PO/Òqe-‡ ëq©CAô³i—!3Àðy)<üú»ØOwKFÚ+üÊŒäç3,‘F5úwÏ ÿUíiçQ9<‹¦ý¯çõJ=/¼löëiâÜlû…-ƒ*¤+hH@ï?6^cŽ»¨¹ ù*Y5qA#)ËÕ m&{[Ì÷oÕ9YÉŒwÌ€¹!þ„ÌÌ>…äe¦l.65d^S'+M³(g|ò~á‘\°‰¡˜rÂ:}P{ç»ÛÑT_*?š'êg½«È¯}Si]ÅèO ©ªßʰ€þ]j=;Ë3í Ñ®‚¿¾/3@;Ÿ¹òdY¸ðüÖ¯DªY×Á—ŒúæïÒ‰ÛÔº·xïTô½?òGnÊ¡àYXêËR5ÉæiA)âî7~N¤¼Zª{çNph“Cb猇õ¯“ನðg t­ÿr•eJ¯†»çQj/´bëÒtœÙnCs aãÕÄOU¾ÆJâQgvMü\rhpaF¢á¾íøo+Vå-plFwŠL®>±ºš)=5Ê^,g+k’Üo‚ÝádÄm¼‹²[ýÌÒQ;})±1)g9uÝÿöÀ—+ßéèHð0ùùŸ*ż‹5NÞ5$(ä2p˜ ¼ôzŠ!8z—üZ´-CV×Hà½w]ÏÎø­zg{sl‘Ë—Ñ1-C¸Vn@D+ïB£*fedvW˜vª\Ë“˜H-÷ºç±[YÉV DNQÓçµSfôüÖÁÕ”‘V.–s3G³k²Ó«ûºõµ:òu›k:ç™ÌjŸ,¨¢ž÷K‡ˆ| ñØ[1ýñ»içß,c3òMZä^¸…ÄÛmâz\+ý+-f·•ù…'ׂ·üÊ*’8÷?“~ôNb–œ<8/[ì  >㈻Y¼0À7Úµ¯4"|°5~¡ä>¯LÛ ÿÍóø<ÿû„̤ÛÎÊêmo.Vñ¤ –³ÐyÔä-v÷0Ž8Úvî§qí!J}ô6X/1f_6Û±u‹qµQ#ޤä>äï¯\oîóý‚DÙ¤w&\óeËYû|Õr{˜¤»è„â}achúÖ8ð°ø¬Îg_¿¼ ì]³êÌ6riåi7»ÃlaˆfÝ05Uî ê]Ñ «õEÁÎJ1r*%gUՃЄLZÚ£]žƒò¼Lý$Ë §k—h´XVá:ع|n7RŠ2¯ýˆs­ÚŒð·Á°°cønuÌæjûÏò懎o¥K¨ïª;I#‡IFþõ?§s¿K`®£;üÃÉúŸä&F7Óžæ\xŸ]PV8'Þ%ñ{;uIúõS$>âÿ6&NXk›Kgãa/fXVñkL̓ƼÛs°™é©¢Œãv“h?û´jÓ½Ý'ÝuþœŒYuÛ–Ïx±¼!ªø2ííÜ_z]¸7A9oóôL±0‹åœ]ÃÕÚù½`ÜWöp„CÚÃÐ`ªúÇ*ÊÅJ‡4Ð?¸º«Úá”agôÆôÿÍ')G'‹Ão(ÍrRµØ†?½Hgü»]û',¸=2®‡~[ɪæK ÎCsÍßq¸R>=§ß!Ÿñ½Î³”zöù/‘¿u³Ùˆý" ñ-­¸¸gxÖ4jµÓGÅ‹½)kÖò·ßæÌæmÞ둎½‰”ßí¿[†S0€ ÷4ø£ÝŠ æ3i¼œÀàåfAÆõ8ô¾ F¡ß?‰aôÌP°”˜6£ÐÖGç¦Õ~¶ÍòÝ™ªZampû}þ·fÙÅØ<Ö´ ã˜EÈû®ðŽÚ¨'¹qÔ­ÓccPD 3`Ñ[==ÒêðFç'Ýñ/Øêz¬ë%Ô•;sëuÞãßüÁ¹ù9ôBúÕÜÏ[\8zOT•§á%(:½ê£—7ùmýQ=:ýQâ†ëL~1ohBZ ,íX°ËÁi¹RØÂÜåàº<ä?elµªÚŽq¨Ÿ]÷q×ÙýÇÕWûîA¶Óòبã öß'Œ¼ŸÜ|¿ÝªNE†äµLÐ^{·… –Õ£îÍßMQ¾O‰÷Vï­{G^ʸ<œÔ åÔ¾\mÕ2±¦î—ÎúÒ”³‘¥!b•Ç7†çÌOxŸds¼«æÆK|<Æ ¦¼Wà«ê)¤ÍwuÏΑ†Ý}‹yüHkex•_o~ö»ÖwÓúi¦)zñébÿ­œ²·{Üò¤ëïÀkp>§Î>ž{m¦:D“kÅÓ΃9V\ÛhÎÞöÑ7»TŽ¢=`æÏpá´å_©Ó2gþ¶Ê¢?ï †¸°ÇfY¿Âן,úêdëÙ¼a~¿0…|Y¥EßCÿ+ `±ú[”œ;ȵlkíôž/áJœ¢òTÿãÍ·y:š;Ú¹ýÃÖžÁɹmá.Ë7Ÿ}šÝËš{œZ§¬r×¼øŽCûZÚ9·¡ŠAÈÆ‘O¬÷¦»…)Uø»Úu#8w—ö|­÷Ê2(^ÍU¹tq5W}¬?Ý‹¼Àe%e`)ðÒ±ˆäC÷jêr&løHsè}Ž|Î!\äà8•ѹ(ÍñO½)Ö/Úoù£—ÄØÐ‘Ôe+T¾ÎȲFã¡©Ù‹„ãγ¥ß²=[ñ ùïZo*0’¢an=Üûiú4¨9ÜŒé~cïjè7®zä{Ús#¦ºH#iõ÷y²Gžç=¿¶y>kýÖ¸®Mš­²ŸÀbMûñ„aL@HcíµO" |þ¥Î+EAõá†ú•XG‘#µGRäíõ¤\Š‚’sÊ¢t•;¬ñîmÑ;ÄiRŸj¼­é“ÕJµ^0;ÓfojmY†3EŠæÝó¤áæŸýeüòRqZ‰½´[ËO&ópê>›uJ'¨ Ü„ì0¢Cåð;~XѶ¼@ ‘\.½zI=º…•žÈaÛóX=| è9#õjܸw «;¾w‡m ¸H WÃÁm6ø~ lYñšJ7/: /K6žu¼ësxl`&¶: 埆¾Á—1¦^iïAžg£ê»mülwnE¹óY_˺Ò@ðSŠ(üŸ9ýX0³RoŸ®Û #ç³æ|`«µê²¦SÞ3g軥C ÀSEÚ]ÌaÔÀrŒ™Fõ #måቮdv=Dsœ¥×[€\v;l †µ¤¤=ï¼ò=Þ=rGÂcý$ü={«'£dªº ¸×^¢s1½ñpO~œ†±¹6ºâ“¤ë>¼¬kxqçʹÿMþŸ°?‰nü‡üÑwyðÎM<æ(#m{áø·ðàý³Ù»Nðþ[î´ÿÕñÙòß÷˜‹ë‡¡]\‹Ýð~O3È%׿5 ÑÉý½ß‚€>êâõø¿m÷Eß~Ï}úNýÇYOz¼Ñ¿5™ÛϪ QÄN¤ä©,×|ÉÜŸ#¼XàÚ·R”Uß–c[Ò"‚û Nˆ/¯†“ÉÎúÍØ  ƒ¿Õ¡•ðo_ºëæÙóïÑëöšÍñǹª"IÀ%`Ðê@%¤ì,†²ÙåàÖð6ýX¹·Ì¯,}¤ó|4k-ÌKey§>sc”Ÿ-üÅd׊Ȕ§ÊÄkˆ¾Äµö“×7"WÕf ¤Ë×u¾¢ìyÏõ:jùƒ¿8ê÷Ik>bîÁÉmêµýWA}‡ÁMMÈ$þÑšâä·ÜzŒoe =-®vw}—Q·ݨ鮩¨¦ïÔÚ¨ñº¼Nÿµug\š8¸OÙ/fþn~þc»…óŸ±ÆÙð¥ýJ<{°™`羿URÿÓέ’q&2¬(]4=ýÆ=?“˜»ò¹Úñð;Aúâ:J6½yyY;øïNû…¶ÆíTA)pk6ƒaŸ_Vuóͪæä$ïWüå$ÿö~z*ð-_7áƒÊNû¾eüù}ß~_øÄ“’®7w®¦Ÿj+Ðy¿ ú¿ Væ\kqq¸þÔCóÇcúö´¥ÿôò9ι­Ú*æØPQ¶í«j8ÑrÓÃøÉX¬Yg ãŽÆþˆeGÕ¢¿)sñË&ϨùB4½Ófß]›ô‘+ϾU~_âõeû½µò¾šãŽ 7ûjåçBß«*þÉ/ÍÍð ºãdŽ7#þ9à›|§ñÅlNÕ±0ü>úºÚ÷QäíÕËXÉ ±W75ЛdµmÉ:érÒ×qÝÖì;º\û®s¼›_ãÚ¯ã~`Góeˆ¼¤ü©™zC·^ü¿V_8¯s^0¾ëÒ¯N»wÑkÄãŽ5ÆÏÚDÿóÈÞf~ƒÉ<žO/V—#ºç9ÎîÎçìµUë(G3£]Yñ›+þºø!O‰›oû•GâKú§‰Ð/ÛØþSïª?áѲíW™&Qµ™6kFÛÎÛä[WŸyÁ›Ž?ŸùY*æCí_•øoÕ¥¶y¬o=µ¢É‘„Åskšææˆæ¢DÈM¢Æ´kkš¹ÖäE©Ü¡¹£[19Ë78¥ŠýÍ_ÖZ§ËÕÌm–Ûg6Î.êi2WáP]¯»ÖñðÚ*ŠÉ¢ TkZÍEB¬µ‚BÊBa,$ÿojýum~ï}Ó'_q­¶Ô'üþ\Ÿ×øÔûá>Þ‡G_.Žç)÷ö•×CáÃì(èÑþ[éô¦ØŸMvJêS¢Ÿ€=š]GÚ㎋ö”‡¡©FjÅçšîëb¶6ëUÝÐZ,'wd4m}åê½ö·ó6ÚþFŽ^‘Ð.®å‹¡]t+ t'C¡tA齚¾cæ6ÛáQhyÃÏrE5 Û½¨õ¤ßsÕÁ\Åþ~Ûmkm·~»õMe«{ÕQðŽe>é6ª^ž¾ƒ«×U›¶±b£#\.[˜"P›nkrÛäIŒ\W !7AÜS»¶î;|öó­‹Ês¸p{zCðn›åõ‘¶¥­¥Ó¹\ýdæ1Zm-¢¦ÐØÙ„# Ï_t"å×/ò¶Õãmµò3lÙ§ù!¹_\…û‡%ÓÕã.´®‡˜/ ìªN°Û½Ý>›jû¹Gœ'.òñܪm¥m6W8sŽus•ÎsŽtëX<ÃԺǢx²¿œ(æÇ…*^Éx˜ ÜÖí­¼–G·U®5¹±–æÛ•ÊE\“"&÷sÂCÎÿ®EПœ áWƒ6q(=Yʼ‡äT.{˜â¬[‰q‹Ž-ÇÛ"®w9Îé܆á\ܱùDw¯SflLÚÛs¶œq¸ým*~µ)ûð{ñb;\ËøÑOǪ|q~²…Ë´[hyÝr¹lnFVÊC`ȯ¹Þ«løú¸Îqúè®bì¥Ùb]\wƒ¼}qu±ÖÇZ󫎵u³­ºÛ¬`ç©Ö^k¤›a´m,m²›[=*^Æ›Z~@jøÐ°þRä¯&ZúeyDÇ“Ó É–×:çdÕÎÓý%'›SéÕ/”«å*úBŸ/d:9ñ…Òùî„Ũq·+;‘ÀWIÀ]w+®¸çàm«Õµ¾V¶û_— bmòàñ©/KUòêuÿ+ [lŽSäŸí ¼â­ÿ­%È;ÞM¤ )‘H¾¾GÉl•­“ñÉNEÕG¬ñ¤O;:ͺê5¨§Y“UÓnŸ¸âÖ¾ ˵åõ×mu!¬n­ÍµË»º(ãaÅ®8ã[N†‹²!z‡6yM<4¼=[36ͧ’”9%ìü ̦£où_uUG0Cµk8Î9»öu';À¬ÙÎÍ·qmó9©àðE·â_‰¼w¡åÚð¶6¶æÝ AÔjéwuniQ„¨Ö©w;Š(î»s‡téÝÎ7;·zU_C­{‹Àö5^ß•Óí°u½ò:ˆw•:‘ÝÑó)Ò‡*Ûkm·ítIæöíƒÎƾz.v­.Ê}lí"¾m^¶_9ŠÇ­‡¸Ú|J¯r=ì^ën‰|Hºç†—ûœ«z Ú-¡*¶h†T–€ 7ñ¯So©7¨ošµ¶Þvyõ_Ü¥q]âÔͶc6ÚoÜR™ëýoA-sün8âlm©°çÓ»ðÒÖï>Þõ™1ú'´ÚÖ×½wyrÆÅ)q8Á´m— fmÈwe-U[­µ_h–ÙTƒWÚÎ˶p}‘Tu”ó;9+«z>ªžÈy±Ô¯b¾¾ª]­Õe:Ó­.IÚï!«h&¨K`™H½¯5†®mpµ»¹nT4ruc¡w'rÓ®»®í׳ßE¯Êmô5~O}½åÛ¡>ê÷jV|\XÙñŽ8øÜœËJœ×îéûÇwï"N[èñK›jm=ÃŒ§ 6Óº’k‹¸„R„MÒçx×é¯GoEBÖR+ÑßmK–ý%tR®ß ý9ÜʸHr/ îçUÜî+Ç«@åÎgWÉ Ù8Í›j·n+háì7aÍ<OûެDs°ÖÍë \–+kc6š¶Û6m›û Ià³#ÁqÈRœÛáÑ×l?î-¤Ú>*7cO‹S²î͉Úq«‹+ÙíOž€%Ù8ÎÕl<â÷BöÚËèDw{*Û¶¯GŒŒ›^3ùŠ“ŸGX©ÓyŒ6µ¶Úm¿†•.¢ö Ÿ£ r.^-¢›¶Ù°É¹üuY®îœé»»¢®mÞð>µ|‹|mÆ\%˧ɇÕ>2Dû«Þl&kx‹çî©Óõ3b§X¨äº»ªkFÑ[l6B%šŒd*Á˜ªT[Wê÷ß#`Ll¤²î”F†NÕó;W+[Ã÷èê^ËLÚfì¸\qÆqÝ€øŸw ûy©`žð“•^¿ò䕿$®mésm‚¿mj«Ço%èxt1Tj¡«š(ºîˆA£ln’æ×q¬9jåÜcs& ®äçfur71wpê7tîá¶ÛrreàBõ>‚äOH+¿•¬ˆ«þÇõNëÇVÖñÞ~ï(6’éº-ËrÜ[ ÜçgMÝtÑs˜î®€\ÜåÞ¶·¾¶¯×ÕUx_®ü­·â«ëþ)øø©Ì:Sீ]ú{ù{èúdôCæãklÖÙöߥA<Ãícíï×¾­ïnc¹¯x~¨>¸å>u%ðÓ júÍ(ôÝSFµ¹‰M±Ñ[·yuz_JÚÛ6­mnÖ¢¹¢SÆQôÄžç–øžQÕal«m¦ÜcŒµ¥¶æ±0‰c]Ýlm±­ÊuÎL‚e}5xÞ[k[óÕZüÓ6—ÒïEµÆÏÌ©)ÔCáT.§¬ªé‡N”»å=/2äV#M‹{–ÔTN[\ÛAmÍsÜ]‚ÐÅt—5׋œèw«­½Z·ÆÛ_aSŸOÿòpN²Û/檧(?näÓ¸òZlߌª9’íÃÔ»zvîÜvÃÌóùƒc/?“†¸œ6΀v˶´í—-;cÚGŽ ñú:¤íWk9äö¯jëM¯¬šùªû6´`ZÍAôwGtéùÛmãµõÍ›ŠÅô Uq¬[¸¸áȯaÙܲl\£Ú—sê’ù´¹aý┩ȓéDûåôÂoûj™<ƒÅÒ3cmløó’¢å ìƒ°žÉÖ¯ûú"£5Å%:úëÎ~—©dâ z¯Nâ¼Ò½éGέšÙ·õJ-G™¼ö–ŲM±³›b€ØÕDÛMF0º”»â¿tþÒPúpw±Ü¶£š'¥‡s[né{Ü}:qœamhNö§ÚmMÍ„îªècŽ8Éˉí$ì©îŠO›¯ƒÀ6Ç1SæÔø[WºDù²rÒs”j޾ƒæì‡ÍUèhsÖó|qi[•ÚιrdÑUµ|ºµ¾îµÐHûzûZ‘óª>tœ€õ>²¢Ô¨տ ŒmEÖ6´XÕê+s-­×+slŽéÊÜוÆ-wtç;·Pîîêìw<+hò•å~ªs9j+Îê)?V_)³gÊÛ8n-ʤæÔÅ+EÏf©•$ˆÂ–ßMZ÷Z­ñè+˜$êò‹É“š6C\|­î”ªåÄÑ2¡ö8«¿*ò Gµã­\¶ó9­ 5.Uç\ÕËiAd¦‡.±^ÛWí3yŽ’5¶õüqÃ~™IÊPsbõ_èPäDŸIrø(âá\™Õð¸ÆÕmH© h Ú J56¥mZ6UŽ5¸âåwèïðÍ™¾_ïԩ뢻ô<üK®µ\U/;NªAy®¤pIu ÜÓ¹®I#¹Näà+ÝûŸ—FÌÌÙ^jËE{ËÞ9yG”òqfg•¸qå!\ª´¼õ|Ì®U…Û®¢6·5ÍtÆés [Ò]ɹJçv ³®ÊP†ÞVÛíþá‹E¶©á¥9ýÉùj|˜W‘‰³3,rT§*¤z\æÓ Ûfm¶Ù›8ù4—ëp‚_X…غÜf×ÁT®UR§vÒøh›ÇVóÀ±V#KÉ­Z¯‰KÁÙ´Û^ K(9`—ÄGLýîJG‚O úÕ(îΧU³ ºžì²›\ú£ºKÔ.u_-6NêcjøÔ®qÌ”ôSûûµ©çuBx¹„|wÆU£1Ò·uËns­k©Ýª6i"‰Ç]Ýßcj¾¢ÞMU~r˲_«³>"ŽaÍHø•]¢út^w›:$W2RíE^Œé>†W¤®XEÒþjRâ"é²IÓøfÔ›,6-óýÍ:€| µ¼£Øv*ÝÚ×2é×UÒîÑwus‹wvŒj’­KìÐý%’ˆt9Aý˜ïNóF;Üg"¤å nn“iæ8jm\‰Önnl™£š;±Åœl䩯!éê{ËËE9%k4…~¡ê›no©fÆm·¢J\²’ÐÒ®¢//°¹%RôQ v…ݼÞjÙ»Â(;@í*çˆrÇgR;%’; ëÕÖœ’btiÕœ•+Í̪ºã­²>¤)Ê‚ëVŠx«z-«µ«-í©2o#]Ý;º:.våÚçG:圧rïo~fòk[NeîãäáѾ¶%rä%ñW%ÑÁ¥†Ø¿“[jñ«Zaü¯ÅD§Æé˼•)ßDæÇB͉1´m­³m›là+í~æÒ­® :S¼Õ›ovzüé+—QR¿Y"ਮõ;é^©dî±w\’íÛó»j׎ªÒ­¯#)€¼æŠ9åÓ(ƬV6‹w+hTàŽDÂòuM¿äIr%¼‰x™‹ÄÖlü…Jå!k™¥³5‘‹ZˆÔlJØ‘Y«2Å”Q$(3ö›ïQ®‘mË'u'¹JîõlÛ)nE=…Ié/÷y„¹Hü.nxïW«“6d¶â6£^!>èCÅ¡³g<—ˆ«¥|\l`¼LÅmnX½ò¬‡Å"éEºHä+Î?}¶mžâÙ_Q±’&ÇŠ“›GÑ•<5^;Ê¥yXÚ-›6ÔÛ?Šø{œQÐ%vßôA^NÙ"66‰.§M¢Cïö‹è±BëX ÜåVÉSÏcjUtšl…<þ¦ÀY’^ƒlQx›jáqÀ\þTH~»ÌSÖe'ð?£Á'ó/‡û•‘á~7~o?ÍÉÁíú¾ ê~=_UÄ“ÁþÇOú꤫ÇéÚ|.G›ò8#—“…Qçº ]EÅ{Ëß{È?Óáúï/ÊüŸsÄùoYÖî•Ç$œ)x¥ÆùÝmuÚ‹Qsºs›Üå€Ó¸ãlÎ8\ˆ¯š/@Y¶Œ¯ÔŸ‚&ý½Û ¶cï\n5Çè)W5/¡ 8¡ô KèO 8И¾€Õô#è]¡©ô—ÐZ]Þ‘ŠŽ*¬ÖÛÝ=“kríµÖ·r]Ú®bNíÜç;£›m_gWºfÖ(ÃM³3ÊQ’ªŠ¿Ãú·éñÁnnêîç¾ïÿÃÇÇÇÇ^ ­Ën¼{ý¿´QÓñ®1xœ´€‡ñjfþ&›iG OâBŸŸ9gN5rðXOÆ'[&àŸñUkU±´jÅFÅ¢'Þ:ÔôßÁÜqmð¨WT õºN¿".ïoºR\” ÞB>Ãm¥iµ>ÿqų×AË̸֭¢Äzå·9fîº(f6¢­gvë&ÄÝÝÝ(\qÜ“cŽ7’£Þ¥îÔ‡QøêÇY¶ó‡*¢¯—‹=Z/ξ®Ï@žC”O:¼ÍÐfÚÛfÌÛÈ_»ú¢Ž‰\²žÊ²®Î0vsfZ—f4¯ð/Óý«oiÆ\r‡´šW´4žÒ4¯¼’ø·ú=Uöhú}›62»ÍÇôIÊ’:\%Û*ÿ$ƒ„G%Àåɵ“`ÙŽE ê§QšÿSÏ\¡—(µ«iOa’—/*6Ö¡F¶6HLj·Çü0µ¥6aµŒËÆn85ÿÊ%ËQïtè‚ÖÖ×ü7ëJÛÙ‰;“’ ÿÖdƒÑDýÕ<¦¶bŸ.öÛZ¯&¶¦ó–6±Yè:X«—v¹µÂHÌ[»ŽK»ºîî—wwMww7+žkWáVŸP¤àTu•u”á.©¨êØ—~ɺ͵˜Ù›6vS’«ÙF“®,.º­S®Xr´^hÈê Q1/B´´óº KlÙ±m“fÇ ¶ê±u]C%w ½ú¢á'®ÒTüyéw–ÆÎñ¹) ”ª¿Äz|Å÷ôrPûúYCê‹*ïƒÀEìW%N‘—CÑÊåN?rNTžøšNÃÓ­­½ñW zxe>¸2žô–Šð•4«Á‡»•}Ib§±EyíÝ! ðª—Kb¿e")ÊqmžCqmq¸ÇGEÐåÇww†Ú÷¶Õû:ÕívûO´ÛlmÑ@sž—Ѩ-m^ ªjbd€Hh쪹ºm³Wjù$æUÎ+× ÄJ‘uµ¢ëf#­–“­,.´ÊëkAÖ˜dÉu+òZqR ç×Zm¶gĪª'Ÿ¼ã‚µÒjñîãEk–Û–77$É!”¦Ü±¦›¹71! ª¹µÊÙuÙËX’î×1mtçjä‘;H_ôQW̰凣—{a¨=²d=´i:ˆ¾,ÛfÙšÛâæßê@rж"²d¼Ç 0 ²MF¶Š‹iŠ›Xµ¬fÙÁ_“Ñ¢WNV’_ćÁv™[f³´~Ê Ì"~øOCÄ®éÐü´œŠ~Id?"½ùRƒ’“ßÉZ.©2YU·„õýl±·féDŠ6§]s»¢ÜÝ×IÝÓt;ºîîÜîcw;öjñÚ·§µµš­û Z›j·¥Uõ,FEŠô˜Ü_)Ë;úwâû‰RäI9u«ª­Í¬Š¢jÉ0zs­È¡ÿ/ƒ<ö™²ÝûŽD$å*]êUð"—S¼¤wº ›m³XôEªÞ­^>ZkE´‹ÖFÀ4V„Z"̸)t_¥m¶6*ý•'ÆGM.9*>7°Ðdx÷!_.Gv®£6Û\”¾Ð®§eq#Ðî䨻…³ŽE_Wp8‡~ ÒU' Ý|úFÛamëuŽ@wd÷#‰<}“fß?ZÎDvÈìn"½¬NÓ®J]/Q\TüÚöЮál—AÊ'fNË„¼”]ú½ÿ%U}Ú£«x|páŒlx™Ù„s«ÙpÙ”…épÚpm ŒpºI*wmFÛsk˜ »‰F­sX×6ºuÈ×5Ë,K¸ºã· Üé¯ ÛWïôÚÕ»aÊÄUñj¼Ô>[VÍ·Û¨«”$sùÖ„â'¨<Þ6a£=fæîuá­}CZ¿®¶¾­›DŸ Jíµû¸+”‚ìáöÔ¥q ä…XK³On¢ì׬ͶÚß±J9aÕQñÛ`”¼˜ã ã»¥v&q«IϪ C‚“ØÕ‡%±›Mg®8Óó©.UWe{íQÉÐû®¬X¢Ôl"ÑÍ\Úæ*!$Rlb£*µ‡\b✀õ±+¸ Áb5){q]›³¶ýJ‰ÊÉWݶ«+¼«ÂJÙŠéË”i"ÆNv¶5TwK [™E¹r‰ÔŽr®îæìl`V¼*Ú¼ßÓµRû'5Œ¨î»««þ!Z/WjõM'©a<ëGòùç"?§+áªå¤ŽHg™¹839Ž4è™cn Æ4í[‰ww%ØCKºävââîœèÍÍ×^­ö8?̇­µæ7.æR¹•t 'åýppµ2{jµ{`ÓážÙ\.Ö0ö­ÑhöôöƒŠzÖÌ*í³M?dc»kW·Ú™^RkhÕ6Ð4U’Æ!I Œ×[ìÐèõ±¶ÓÝU «×ü%ðô6dܯ†_ áñe¸_œ¤9i9œÿá£^ ŠØªr®@ îíssw9hˆÑÌÀX´Á©ÝZî:ãmÊØÌÜzL½fKþÙù•N*O†ˆ¥µeì9(èÓà|¨1´šá|3ïO…òé5.IÚCWË•>&Ãep|Hšýïi–m!ñHÍὕ{ULQQ¡[j¶f­v’®Ië| Uƒ‰ÚDþ|è÷ÇœÇë¡9Ã>h«¾‘´ä]òO¶•wûI´âwäÉøj<ènÑÈ©÷3Ô/ FÍ;ì 9Ч‡Gì+ÐD94Z§pÂàsyq´l„÷åÉ è¹ÝDpâÎGqV§p­°î á5;—p´îwÇq[ÁIζm<‡ðäå=Ìiî+/„høV_ļ©\à«^+E¶^GZÖVÜrÜðü,ÛmÇó9qKSé/ß¾™Wª’1ô¢­_JŸ‡W®HáßÊüµIÃÝ$kÀŠðµ¨p¿^ õí{ìþÿ¸‰ÓíG¥M¶ÙÇà η¯]ÝÉmÖ5t׸Å^¼×&ÆrksÔå¡" ÷õ/ØU Gä—²­«ç¶uÔ…ËÀœÏŠá.Ö‹pÊØ­¢wbº97.hEuÉvn9ܤýޝi¨~u#½¤{+kažÎÚn8ã†ýÅIt´~yØ#¡±.Ä;ìWb;óã².É:øù’_3Z6«f­½©;縈q^å^ àZ•¯ F©.â¼\x.ƒr!"3º7!?¿m¥Ùœìï&žVÙ³¦pm¾h—EMDÚ6˜Ú*½j5I3î6^K6Ö®Þ ò*¼‘ºZ©9?Γɼ¬<®.3mÇqŹ)O5ë¾$wªGí2i³M–òOaBr•Ïáqœ5ÃŽ*æîçs…¹ÕÎî»»º»« é¸ââÖqÇn•ù5\Òæ¹²æœÚ¾^=uè#Õ,;\ПÜònNIÅš~LTõ·½¯{½Þ½ß·ªòÑ[ †‰ ¶½ÒÔX¢]Ýh´mŠ©«z þ…T¾ ˜™êtÎ Ãqšÿ: £ëõZ2ëô6´>\£°W”Wº©äÁèJy>L®è%ò ùwüj[jü¨)òù |pä:_CÅÆ­µËsj«›]4]ݹrd´TUª1—\ªrZ,Û`§*åc¢¯—­·§kÓæ»Üml½?Þ(»ÊyiKÕnfº Wa¬hËn sk©;R èÑ''\|Þ­_A Z/Æ}íTŸýìmm¥åÒ§Ù%>2>+|gd¼=m­o%&Ö41cU}²\îm$Ò»,\é((Ù«5›mzÒþ‘EÙ#´Û1zZVºó¼abGƒ®wW·+«”œáQ£Z,DNWeÎmn ºêA-Tm®láTZ˜ªì››‘X¹Ý× Û»Ùm¾býõÚ[BÌùËV·L^‡¦'l;dí‡l»aÛ'l»iÛMÚþ”¾ò!ðWÁËYŽ—8áÊUwqpt¿ÃXÚ5Ýs¥¹¹È ©$fËd¶¥ÆN5pá\o»¡ýüØÜÅIÊîÀøŸ¬Ë[[«)?d‘öˆ>ž)ñ’»­«ÕJ­'EЯuºÉpœÝwÝÍ|íëNëSm›jòÔ2^XKŠ®î.ï l6î÷Î6qëPÒãU>³ßí¨m•™Ô+νüN ¼çuÍ­¬Ï˜¥NÙµPq|º¼Û5Ûkd–—›Ú8ø4:Ûhó‰Ï«˜¶M•²q¸Ö†Ûn8ù€>VÝ}|"vm£æv?Vm|2žËåñ6’ì+n¾§a³¿*v›Õèk´KÑwë×i¯kw£óÉ;¸v×xAß#5›lZ»î8p¸oÊ©.i¯M— N3‹hësUË»œlå\wwwŽ=»5)Ò6žZ ùÒ¯ðíNÿfm½¦¶ãpòÊ—Kü!x ‚¡Éµ¹ü83WkD»º+—79LC®·7;®Üë'uÊ ýUUøÊëém©¶ÛË”¯©Ôˆ}éýÌpq³™.étë—v㓾.Ûã6‘Y›ózÕW±jнvKnÇ5¹«ŽìË«ïu¶õu½T½Sl·–•tuvòídíàxwý¡;bö‰íeÚWª]‰Ø']uzIçDzExj§Öí¨Û+f³ÄâÖÏzDáèyÙµ·»º[ôþ·ÆÕWÁVŒ6’‰íµ[øuG‡Lñþ¶Ï÷JO50œÜF«ms\«:ÑvçwNs·gÝ×]ÄN¾7ÆÁ´Ç­¶Ö¾-_Û>7"ÖåεÔSô:ÛWšöåkUŠ’, ÔV‹ch±¶Ìœçƒ#mm?¬ÿâð¼&Úm>¢ïú©meû®M[Û­ö-ˆV#Z¤Ëª6–ŽmKŒqn8VÞ¹Àç +™èð¬Æ¶µ»Í½Ô‰ñpû‡yRîÑwrw@çR¼ T»ø:¿Áž]mß‹®ñ:÷Çü<†Ml¼¹G®õß\r=“6³Væ[]ÅÂfE…m³ož;X¾GZÚú/ý½(½-W¥æž$?±=ˆ÷r÷kݯw=Ú÷qî׊§ˆÓ!zÛU·›bKkÚkYcnÕݰFåËÏÛ^¥TiE>»»º?¼Öµ¯²Þ¦Þ¢õ:ȽmmoÜÞ_Aá¶,mr¹F¢¹\ Û™ *å®\ѰY) &E´X«c’®6-uAµ»®-Ïäk}þÕ¯Vמ­étú-k[5ö„ö ¾± ú ªÞyÝwusVÅîtm¹nb9Çu[š´m¹ÎîÕ»¬Ì»»/¾ªÕíoE_ «¹Ýøíµ¶ý¾ŸÉÖô±Fð¶«Âl‰D+Bç]ÉÑÆ{ {/{µïv¯ÙþóFo_¶ž œ†¦O.ItÉæ“ðåë5Éì°žÁêWõõlÞÒ½9ìÎÑï ð*¼þÌlÆ?ªz™xôaS‘¶”g¸ºj’Y"_/Z×¥½!m›_‹Uu#¬Žv¸l8Î0îwûm¶ùå«ÈUÛÆ[m¬Ù®p¹Í–^íPæ„è®óç\[Jñ¥ÏåÆlÙwoRŸVE¾¬ÜûÙxv´—‡IvAá”ßiµy«mílÑS&Y¾Þ·Î™³ï„¼P|ÅfÖk8þúU{4ò·`;A‚vçåèQÜmm´Í›[_ǥ׮̽ší¤íœŽoKÆàq¬\mBMŠÆÅ]ъ㻉ݷ —0è.Ä»ºGww'\º‘s¢ w8åï÷¿¯«ßÛæëÑ:6¶Ï˜Ö¼J©ú©ÜÆ¶× ‡,~ÞåµáÊØÚê©SÃöšJÚÅuwÄg¸Vå]×+•£H¬QG]«ƒ•ý^­÷ÿ½Q¶´}Ô[nk¯•UxøfÍ-ûz/·ýÛjV‹çJ¿Âcì†Ô{©^à<ñUàlUåi_}'ÊìU}.Âã{‚{XºÜ¶¤±X¬Tc'ÚîKs_­«õ–µ}â{i{g‘%W’Ù´-Mâ{Oî¦ðí¶mÈŠ.T;e'TÓ½QNZÛmÏî0»®`âNé>%­÷U·ÝÜ·)¾šûûðñ§¸/n=¸è^Þ=¸íßo>ßÛ‚="x³òf÷'¹^ä÷ùjôG¹žçܽëÞŠ|ïŸÆ®ÍÐmÃyu)öÞ’<ó4¶–4‚ÊVŠ¤×ƒ®Ví3nÇp¹tåtË» ¼5¶¾ñ±c5Œkç8Ïþ⧬—ÍR¾ß6C#ÑÛU^,ȶL+Ì5Z¹mnUÝÒiZƪ5·mËÕÍsMloÂÖ×Þ}äÄ×_ÁÛüHuß?Ž8ѳNÒRžƒ½ü|˜Ùó}F¨Û UÍB»ºáuÝ.Oáíko_ç›lÖÝw\µÝkœÙ%™ç—ã+î2Ù÷ŠùÃçk>u¿×o^Ö<ŽnmrÛsj6ˆ&£-–ŠŽÛr¹\n[–»A æë#nî=*ªüîû•ëm«o¹ª¿FÀ É#é¶µ·ˆˆÖ0hÙ(ÐfK²Tleˆ‹Fͪ%5^‚O'2Ï'pÍœk8ü¸/“²žæhöªê/1òµ/ŽOm˜¶^µ<).Ü~¤÷‚}”¼ ÀîºL³yNrJx*<ìïå{œÎþGºÚwdíÛO1ºmwÔ½ÙüùßìNå{e;¿É/˜½å8P:M–µ{ÖÅ ¦*1µ¨Öœå‹eF¡v/àë_'Vù9f¶ÇÁ }t<6m«cŽ—Ns®Í>®ªÕã¨5HxJð—ùP…•­ápÆê®¬ð™µZ†´Æ5K|ÛaÁs—æmVÞ:­"y÷u\î£s¸twvî—.—&réém¶øQ¶‰M‘ÑŠŸ·Ín<¸‰ùò^bŸeÅWž<ìê]¬aÃ÷"áÎÖÛ6gþ'–U9í#Álf±mÝÖ.mÅÎA “³.vpN»»ºkÓÚªôÛ˜Ùíä¥ßNý.Ã#†Û[ [ÒæµkkÄkf¶)C$NæîrÙ¶s\^ô”î;6µx„•ç=Lm¼‹ºFÝvÑÝTëå÷}Þ‘Øð¶Ë»#²6¯ÙJ;ÌÕ6]”wr<ú¼¶Ñ2§a.²ŽÃ5µîí¨Ùìç„ðñ3ÏJNøÚ½2G¿›QÛ.ú'o}’4¯²Øï‰íßa\[ l¶VÛf÷twÔ÷9ìÞÍᯠTÛ[M›¼¶Üzx>^jtµ÷hW)³LÂHF… þêßø´›òºª½':š5µsŽä‘Øúâ½3fáI;e.–è–Ç76«d,ƶn:«»µÊ+‘ææµƒn¸åËF;—væ]ÝÛ”:çvws®•Çs»Ÿ‡m¯i¶µñj¶ü=«~³!û:‹´<\ÎWîbŸ¹U%xÃä3[ÆÚý"¤ç™-¶lb †­’Ú—›ÚÞÂ<}¨÷Z+¶›mÆ8Î7[÷".k®Yã<˜|’´R6®»º¹ÍÁzÛU«éö¼ÕÖ.®ê^™ä/#Ly•TèÌÛ£ãƒhŒYÊå\š6îëF¹Ý®E¸ÖÙgqÇtÅ줯y¬Þ\Rt‰ê¡ï‹ìÓ¹'»^ê:aíéÓñÙ›^>ã~NÖÕ{ F‹)*£bö½ÄÁ–K–v|Z¾Sm†Òe¾ToYHûª+Æ<}öÅKðÓè”ò%ä<³[o&½pµ‹b¡16Š5±´dZͶ)‰"D¥O|}V6Ðl@Þµk[äí|Ÿ•m1¶IîÂrþ}jµý&Þ¬ž-ˆ§ˆ‡†‹›]›-«k[Ù·wEL¦aj5Z*KEj5Æ75g9ª»®fŽ3†ááÕ<(<$¼ž³WÁ|‡«fÛfÞ?8òê‰ñó/<wõ^ç[kÙVø§À^­¯]˜ÌhZÞ«‹‹6×qðÊ®š·L9ròòÜõsÓž\òç—=\ùsÓÓSÏW Ø»½fd_SµZøð5ð7¼ú0`cÖ¶¶ÞZ×¹wv®šîuÜéÓœ.+»Žº.Òsž¥z«Ôæ¾ÒÖÛ}v·§µ½3.M³j°Ìm)Ã2ðéVî_3%;jèímµ³£¸ßíåUB+aQhªyÛ•·FØ×6ï}Zš¦Ì̯Bß¶…èw«½ލ¹”z÷¯‹ø4ºitÔé§ëÓȶÚú-^î×Ñ{ŸmìþÍáð]ÜçkÊàëmÆÖ@¶B ”¥ÝÔÎWdôßké-ô—ö:µz{zcõ"^ÊKª¼N濦‘á3ËAÏšÛ|bÉÛm¯A^7J bÍEÄDЉŒ}?¨­†ÚxMÇ=0§‚u{måÕAƒrÜdÜt*×GÞÖ¯¾ÕoÅÛ|TH¾/w!Ê„ümšƒcè‰ôU‰û8ß§Ý’ø ÿŽß[1›mÿL?i²S<…Tò/€¡}åMG‘¨Û6 äã7ØÚ«y5UíšE#s‰õÖßêPð§ÛP®Ø;QõðíSµ^Ñ=£ÚGiNÌ»;Ü;ý=+k¿Ûg¥¢§e;/näé>·Ž0áRvÔX¹k•dÂAÜ[‰· Rh“s¦Z5¶5guÎîÝ;•¸ Üë¸äruÄC„];·š×Û~3m-¯FDÒrE_†õÞ)¨Ýì®ûlÛ[kgP¤wð©^b¯No„…ÔãN5WP«ÂTx||žã±mZަ…‰Ô“Âíõ Sk¼U}—ÒUlºÏ#VŒhØ•ZhÚ-¦Š¦Ï/ee©‘©ÔŽg.ÿkg¸ÎYKæ(ü%C¡E³lÍ\šh‹k¶‹s\çw.k—+•/»+¯*ø½m¶ÿà^_®^ëi[ÚÞ×M¼vÚ¶ò E©XÄ+ED‹ ¯2»¸®s}×åtͽmZÉŸ’9ÇΩèÇ능/›óèùß?C¬w.qËé¶ÚÞ_·»¬-cQªŠ‹{,¥Ý¹sY4%wWCÎêÚåÕ±µÚå\¹Eq´å¹ÉJåÇwz”ôW¨«ÀW¼EGA]è.t%ûšºèNƒ ¼Ðõ/ŽJwêïóM®ò¤½S~Ù³6,dšÆÖ¡k5¢Ãkm2ÝdKà«6Šñ$ržý=˜W–[6m³|¾8Ÿ°BøÔ ù‘ó/-–ÔÆb¼ÉÎI¯œþáUkôÛ~™£-¶ÛŽ9KÜ»±|<2÷rK—ʽämÔœëºîºç|z§}^lRï*½:y¥x÷F‹®Ù;e¯¥Mo[[Çmµöeê¶š{þç'wR+Ídó' M¶Óiv$ëW{Q×&Ó½Rëã¼QØGš¤ì3't.Ä¿%;ºž×v§i=ð=›ÓÅì×t§´=t^…zâ» nò»á[ÖÛa·}´3ì-µ_Oñ[k$ÖÂÓãu¹ÈæQ:ùU¶¾xkÈÅ·vÔ›SnµÀã èç°<µÀ«ûy¯‰ñŸ;k[éw—£U4mŠ66ÛˆXbf‹ûºôÊÕüMª¶ø•ùаÆÉ˜×¼åÎwéõ'—Nvª‡Íã+Ž6®4œ8cŒ.w\Ö*ç ÎshbIÝÝpÛ®îç.Ü\wt wv“½è¦f_˜¨vrìêvRë!å˽ƒ×'޵t’ë)çTL{çý…Ð^wh¼ß µl®4á˜]3ì]åÞê&-…BSs—CÖ¯áZ­_9|üÏÔÕ[áßB„ô-«oÁµWâޒО—MÜô6Ô9›fÛLÚÍ]R—õ§W¤è”|‹®NÙ£fà©ñ,¹Z+jÚmPÆ‘$çJ Û•Ì›¦Ü®X¡„ÕÖîÝ-Í‘wvî…¹Äö×Û_à$ŸšU_Mw[;·y3yp£½¨»ÓøÝµkÅŠÉ(õËG5¨1j‹m21PÈÐmzd––í{˜¬=l^æIÚT¶¾¿¾ª]öY³g‡uRû”/v£»C°AUÞf+k²Úã»+³móŠ»ÍfÊ;Áïö«Ö.óR3fjŽ×k¼¥èëÏ=¹WD®¾Ý½‰>¤—xn$.»ôŸ“÷š±¡lZê®kAfôÒtbzDÞ#ÄÌrÈ>Ökk/µWÚñž<=,­“ˆ§l|à§ÍÌW¯ëB*ŒluÝ9'wg"¸¡1·W9s´Šî׿ëzŠ0Û b™]ÿÙðZе|Öôk[þãßÅé\íÃ9Ÿ‡ª×ƒÃä‘ö~66ˌټ¸¥õB~êrJöMjåÙÕÈÜZæ A L5[Šw.›YmqˆÛ—Ô¹F滉»œîî¹ÜË®»—s¹Øçãõªýfµo“ÖJÿá­™ÿµ¥äí¶ÆY­Ø?赫x£Q¬¤Ê-¶lÚ´M#eªy\þuAŸcT¿0½™­ìÛqx‰JçŽü«egØ*SÁåèv[)f£“ ”ÐÚpヌÝRuEê}m]PuRêW<œòœd‚5gtîïçÖµ¯}·»Úüõ¾¯Îj÷KôoÖÛZØÞ‚½Ñî+Ûùh‡šÙš6ÌlÖÙåÞM^R÷7…?‘銞R–Ûj6º<ÛQ<™KÊÚÖ›m·Júß?W‘«b56H"D~ªòáG­_Q§´O§JyO+6Lþ—ÊáÇ·*å©KÌz;Tz¤y¤åÅâålyÖÍÆà†oŠ*«ÈlF; ¥½[Þ6ÚL,PDÒõm^âÚÛßá U׎¼çG:\ås•×/çFñ"Õ{‹^ÏØ+Âwsš®NÚÜîsµqÝËNJÁËœ—f쮜ãqÃm¬ãŽÆë#¬®°õëªêŽ©Õ\ÿ•$ïsÛñmXÛÓµý´U]è‡ð'S¾²¼d•{eͦ,b«¶åk•ws®î“rì²áÓw!“uÛÐn:îÝzíUø»ô©­~–µúJ;¨^ÈWt)ÜíS7uĸÜŠã_­RO=Ê•åí½»cmyPt—‹šÞEjµëVkÌÖ!`¶H[çÂ/ Ü´—¡¿F]ê]ï÷¨Nç5Ú¯`W}¶a¶?cq®K6~ÄJæ$ó2cjû ˉNÆ«ÃÛ7ßmgÇ Î8㳇f™viügh]¢ókûõî”ðwÚ]ܾb¶Õõ{ɽõÖo¬«ÝyY’"L"/¬ßY_âÖ¾¶¾¶ß[¼êó„a À± ’˜bf(ŒÛÕójÆ´EBd¢5ndÔ1©-¢ÛG0ŠåÔÂ%ñu«üÝöµ­¾&­¾#`D}=«jüCÆîîíÂçÞêÚý¶êÕµâñÍÉÜë»»³»¥×IÓ·1Îã¨79Ýt"ÝÛ—1¸¦Û»­B“rÑnjáRj-£i;ºR†)©±$¢)Žý]U|LzŠž§]Åó”‘ìyù6`ØØôðb«:«ù‡QÖý%WÒø¹#hsõæ5´cdlm™›lÝÒI~ë²ÙoÇÜ ûêWÜÈò`òMléåGßB>m'ß{…_ª¨¼Ÿ*¬yXýÄG–s%.4[J;µÖ×Qj)Î!µÝÝ QË»Š3s³§Í[Výô_aZ«é(ÏÿÅÜ‘N$¡Æ€fields/data/CO2.rda0000644000175100001440000157534414762765704013567 0ustar hornikusersý7zXZi"Þ6!ÏXÌç…åïþ])TW"änRÊŸ’Ù$ï‘ö¡¸¤w“TXšm…؈˂ôˆª“Ô싳ì$Ç‘ÝôR‚Z<¡q­— sà‘'*ÜQªy¦°[OW­5:†Ù ðõ9Ðù¹µ¬lû޽6±{UuDèѺإýþE,",uXBa©Á¬fÖ˜ûvQ£ß3õ'qƒ ªY.NˆõN²+6½‰gÎÈ5’Ô€)¬¨ÞBDpœ»:Êå <ì‡Û„} «‡¿ ¸àíYòÍ/ýh—±"[ÈZèzyU€A@¥ÒgïË j·;WvÛz‡Ûáúêù˜ŒP7ó’^‘Úžï9Ôï·®3JÖY^Æy5"ÈŸˆ"¥adÐI§'Z×ïTd\}°¥Ï#6Wu»kèi {¤,zIt¿ á&ÕNé#H¯{È\S{`sòi ²1ÿG.lÙ`6ŠÙ?PÓ¢—É%#\\ÒrΡ ÙˆÑ7ÚÈCj,‰ ¢¶Ö—ïÖ!\Ohú¢ðØÈøºs7ZݹC1à%îÛDff˜É¾Þ&'êÎI=âðZ¬H6@çêá\+5ƒ²^Sþ©‘b8ÚUï¦ÿbcu ÍÕvlèžÿ_„[ ªü?²÷ÚWeÁ‚ u9Ê„ŽÝ¸I€Ácçfm©ÏŒwòQÏá;ÎÆˆ³)“„æk5ì¢|3 Ÿ‡ÍÈ ;›eð("îþ£‚g#™bö%O Éîîq 4=‰MÂFVcÐܵ:c– Ë`§ N€h¾“¹™Àö®§îÝn[ê`wõ|Ý ¹Cø}WÔÏRÆÀ˜åå–’ŠAÞÂæ  Ç¸º\¤j—^©ã™¹=´æ·¹fRð¶žÃë E)ý©KЉ”w÷µ¥ÊA<;ñbFNx޹™Ð²Lf|Yð0“cXØnv}娩ñ*mLäsÙ …ùÕ_»`B<Îå¹À“ óÓ°‡CÁUH®-ਯ›w5ÑNŸÈ›ý)ÀØŽAkô£ùc:Mg GU$È‘•ÀYQÌ~&zè¹òüêèÚGsMHvXyz/Ý­)ÚiÃq ø>½v@†¿Æi•¿gó¡7‘ñÜ–ø¾¥½qóÚ?èÇY(TÒç“´v\tx× –o=„z­C—ÃrÜk{’Šífk1ÏÏîd°Ã…sã¯V‹bغT“Š·c:8˜”¼Ч?Œ];P8ùÓ×:’Üé†È°áæ' ð’ò¼ÛÊšÿúKk¿r¦±c1‚Ž™ÐßM ;K*^àš—näY¥'žÀuIèp€Þé-­M(ÂŒÎÎÈE5eâ¤êÚÊ:†~ÿ¿·ÉZ'¥¶lºÇÃ8&¼ŽÁÁâßm&™2¡¨îmø„¯/{9¢(¡…´ç?I˜RcÝ9Ý‘=˜¼KBs¨å%2à,˜FÊ`I|ÞRæý‚ &œ1Ïk%ÊþS§¦Þ,­RådÖ^šÏ÷Òt…ƒæUÁ¿³kôz’Ò”c¨ÇóUa¼1ãѬSÊh¡À! Ž3У†UÖþÁFOíýrQúÆr~¬Bò/ê¬O_êþ£ÅÕÜ·6¤ °_=Ðvæé#Ãy\®¹ðQði¾Ù^#ånJý“Sþß“¤H0!n 4& ².5OKlµö"Žƒ4õ€.~€‹äXͨ¢¸La1Äë¼×ÀwÓ›´ËØ6 %ßš·Ïââ ÆoýZ™‰N !X£õ{àñiŒ›²MБ[衹Ëï˜ç…ZIK¸Æ¸(Ä€j—:³¤6ÍlÀE¶žû*á»Wmd»àeƒ:…*ø?ÞÚ‹zºyå‚U)õ¥çJ^Ý`Ìtt®×¶Á‹+«S‚góõuäÁ¼Ô°Ÿq·f¦o&‡ËMâ@”ÎW qþ8óÛð “œfŒîÀ±u›:åGù'Þ”…ʢȗÑ,ÿ̘ ÉUèt/ìRUV§ÕSA_ä)×ÌŒئ5À³õŸ&\¶Ë™ÿÓvËé |æiWÇÒ2ÈÓMÏàÁ­ÐCŠ{é|»½ðüß-ß§&ÚéøsÚEB×&Mg-±.ž¯ Ûýfu1¶n-2{4~ÍÏsô»»ÝÆ”ì‡}:€Ç#ÎZ¬¿€åßó ):¨ ûŒsÊÿ:Q1Xѽbœƒ€a½Ë5Ô¶ÇóI/UÉqoªEyM»8è€-'f„ÃßÑÜ­jÜÞ`&ÿx+ÝDnœZpSÞý’,Dè)XwžÀßl)?ÀûåÿíiDµ‹|lëëöñìvZ‰¥§ÃF6Èð®Ú_˜V…rža»º”‚4þœaÂl˜½rj½$5 êó‡Ô&ôE›J¿´Ýض#0â†Ï Bt¨í /ö]¤›?¬Y{²ôºü˜Ô…önBFäç®Õÿ}HEaKó¯’Cñ%‹_d í‹¢ý?Ïò&0ŽdÁž7N?â™déõ,ŽD ¯P‘;fgÒäTŸs´_§}y¾‹-”û·g)Jµºs=é -IýÏrŠ2®{cZ|ô/&`žzºõj½&£Dó©öãØk]ôéHz_ìõÃ9#lÔCcÚ=‘=D5`ÛàmX鑤×W¶-áf‡!e?fÔSÍbsûÕ±­é!=AÔÁãhá“t톨¦}'Ä”%¡Ý’wñMϸ­Ÿ 'àƒÚlï*^„îú׊…öÀ~éðÁS›.|ý(*gÍü×8E/ñÓ(Ù¦ùñÓùG\yÊPâT ª“V_”èå;}o ^ÛhôÛåNücO‘ÐYôÅ͵î4³±0fõXH˜¡º@jJ^ü‹°[DªÓ4E×ø™6ÿì,­°à-ŸÒàÚ”wÎié`F5”ËãDÐA£/²Qoh‡ü0µ ¢àÙÿ#Q½èO­ÅüË2ˆÅÅç¾Æ+* ¥ÇhÔHÁ:àL&—kF&y:U¦Vœîá °Ó£©JÍý{™ö +‹¨Xú.¹ö ¦HLAb jƒŠï¦ü bÜ6ÛžBSÁVÜïA¥mamHA—f‹¬î‰’wѸ~¯t{€w1VÈ!ºð/² +3p£µmLVr¡®Õ1¤[ ­b¥Zl ØCÊ"¨8¬">èZÿ³mÏh=º‰?´nCSaÖ ­ÿ€nøuÎý*¡Æx ÎQ·Ì!M_¬öàRèó³¦#w³C­@ûÎÕ¤é1«AYnpdiéšâ¢ÔÝtLÑ8EL4›ý´4#œÛEý‘N­m{ÉGÅʺvoœ¹Drp„N;{gdËdŒ¡ êžÄÇÑÍ%©øGº íéîƒuki@¥v$U¿.ë°·fbQ[y®×0«¾°¢oãÖ3BØvÃg_WµEB¸%úŽMŠC-Kÿà@ iX£à¢&²Öѳ'Œ™0ð5WM@ !•v圜# „  ‚Ù Õèà\9êh„æ‡ö ð'Ö=Nc$ѳÚé„¥È}~‹¾îxL.NÉ)]6@Kjfí&Éf=ê*” c¯Ó÷VNÆI ™>èˆßÚ&“Oè7öë<³Üš³¶ïFÒyoDŒ»WxÁÇf^¹(÷‰ÛÏ‚»M£cïô¿Úåeá ªŽ;µSû'Wˆo„ÑÄ>2xÖäÏéÎü?§mîãL}cÉ7…w‰‚~3åQhOø»}ªhcç)Sâ ã=Ò÷ÿ³›WKíL©PÒ”“+UâÇe ƒýgÎ[˜%M>4a/8¤x q%&o~ètà6˜#´ªakZœ šãBV|ZÉKDK÷·®ÂÅ¥‡ })h«ÜÆÉaÁ"Q ›Ìˆ×‹Ê4òmG%ØI×îÙp¸GÄ“|.¸‡9)±­®KlFókîWÏ”ž(ÍÏ?¼Yˆ&i—cZʃ™ßØ >+ ’he´rõéÁU¤òPŽË+íyBç]ùTÏðï•c¯÷®T%9[¦›ÚIoë ?¢¹þ¨Pƒ'q…µ=+Äx”{;æÁ"e‹Ò#=ž®™¯¡ØØü—H1 àǓ϶ "IĘòúæø)—Š¯Ê¸Q?d–Ц‹6‘úVš—µðG`ú˜|`½­Äñ˜Þ.DZ÷Wc'lvzšRPl0邳½" a÷ˆMl=Íñ¼G,¡þ…òSgór+IçVHîýЧÄmHA!o£Œö&”i'ÇK,>Üóo0ÿÎLåþúõù)-ª=j›®µÒ'Œ`¦0ßåP¹Í[8 egíM7~å©tÞ Ï†ÕÕ±ÌoªÁÛq©c³W鹕Kåb†(êÞ˜ ö þNÆLU”û™dB‚@ D´¹Ðø‘íûÅR°`³íËk[²?¥Å„õ£Ù9*D‹+Ãk3Ç“7‘uÛü£Úëq¨ø‹„âuøö‚‰Ðy Uwþ¥ØÎ˜âµø&X<ƒ¶ÎÒšÖÀô~¼eóÝ).¡”Àì^ˆ5ö nÓ½»{{*6ÏtYÉ6¬éÈ ûÙ0MGT‰ŽÓ{>Ñ(78½ ÒüO%ÞwÎÊÉ€ØîªGls ’%Ž›Þ¸¸ØCN…×U&TÍñ‡£>Âf™)aЃÙCu¿$/ñ:eüq> Pñ€€†¹*ýè°ÅƶSÐÖ–f0FíS/*#ˆˆ©¦ËÝ¢©5'ž¯Ä†Vüy!à û°qA¤Ññ*o~ P¬^&Ù'?7 3¥rÛ‰3Ææ=¶—ÚŽ|rk–³©´o‡SÛTºWªìaxøý.-)Aþb]+®:×±=³hŸÙ÷Ÿ0‡íŽÖ\Žìmdò[åtÉÒ¹IÔ¦‘içnÚCïZŠÇ¨'S6Å\_> Î ªÃS™ "ÖÕå‡Üºk>Ã%XHðуµJÙFA¸aD·A››=õã9ˆâ˜¡ù[I6ÜÜæ'K’”ÌW¸Dëã1Jª•oržL€“S¦~tá¢75zxþcí[a/¹iI¶Oa. øû£ÿžƒë ¢“aرÁ%í}y1ßJD‹?»|)dn¥«çÿ U8Vü£Î™j·Nò¡'¡ZPeÉ÷{ؼÂaQŒ/¡hejd«a>ü-JØScÅc(ÉTïõªt-^&›“²R¹«. #:þ0‹ùÑcËÆÒáCâ´’}‚×¾(aÚ'NFKLÐÕÒ4ÕÓ>v_~¢@­–H ØÎ ®2qUl~ #¤ûxy€ÝÅV§}õ>—løáµij 59ìŸÍ¦Ö[g™=ÔH7ZÎݾ aNæÇà¢kvÙ."x–¶q (K^OÑÀÎ+á”ê¶æRÝÙG™à¾jw¾™äqÏ0,ÜsI†×ñ.LÝF檬H‰{!{açs•v*S ßÙžX»/i‡Ô>‚¤É@özÈ0…O‚8×¹\еT»¨…#ãξíñÔv•"mìm9'DàPŒ˜v<ÛÕþš§”ýá¥Aƒ¼ìFX¢£Ùã‘p“q+üd±^$ŽŽAPý|›ü¶Pêî„^­÷¯3 ·àŠbéŸZáÐ[·Eëº`Û sJ¾to•§Ô ÄPÌ£Þ{0¿ã&¡³QàOÉeNßFð`.•?ÚóÄ‚ªÎpxP$ÎoQVw~å||U²0Ûèp”áíŸ ¢q’ÜJŒÝÖ÷+¯n ÜYâ ¥nìs½äðÊÞ¦‘,† ¡q&eâF9álmÀº²‹xT€`6½n>hǵZ¾¢÷ë¸Îšpç¢cœ½’8?¡~T'‡o—ÁB â–SEÆ=À½¤È~è†:—=¿îéR³ïº¡=×K*]Ûógd76ÒßNùã 7Rò0;AuU¹0ò þ³Kq¶œÎòÚ][ÞN`Ô3ؘœ·‹{Y„%¿i´ÚÓEñc² t÷ö‡¼Wd"r)Å|¯Œ‹)E—JÜTäi."…½¦Ÿú¨CÐÄ÷ 'xUêTò½U§‚,cÙŸea`_‰G9Sß>ÒÅëà”3Š+ü=@Bo^%tvžT¤Eºª#¹ÆßŸã<˜[yØ‚ûÀOÜt—ou-g—ƒ¶Ë1 ˜|ŽCF„—búsS~m²TeýUÆ¿UþeˆÍ>xÄ1Þ‡¯|ÊâׂÎ:&òê6 f #¼ ½¨û#´uvn2Šسܨ%Þ³UÅ!3yœN«¾¾ôW iEâr¹¢æ Ë+fÓ–èÿ‰Þ¢ÇéˆtšIr+€‰pgÌÌ0ý¹ùZŠn1ð¬Q‚Aòð‡¶Ûfë©ÆŒ´më¦Nø.çj{~J°¸51•pþõ][¸ROãrÿ±—Yk”®ÅiÖŠ¨Z9È$ú5U9öe€ïâ‘%Wßϸ6R¸ö¢õ—™‹ÊA"§ŒJ%B€òá‚ù‘cy¼ü¸´Ù†²ë“ÎUcFÓØ[w ´¨Qü©Øµ<• ׳zº/†GUyùÎ>ƹ¿&y‚­t74¿p8VŸ2LGl5ƒB2ÐÔýGcµqÅaæPõƒ-TokìRïÔGWjSÚH§!1Ú”(éœ%脼Tçé£$bæ’Á“|I²›”{6'tŸ_EØÞ»@üµÚÜù™òY”bÛîål oAÉ‹˜z©WHÞ[¿×¬×+Ü273²Û¦êë) öý²rhhàÒ{qÓÕÑÁ†D–“šD (1ï,úxÔ¸­¢ÉP*ûðÿ½î«ÔÉ×a¯ÿÖ/œ«Îß'n‡¡Àß‘À!(~#RD-Ãýgñemˆz‘¬´-ÅÕ»XPÐ`þ@àOï¯u´V!€ÍõöÑ`Qm•”§žî[Ìz*xcnú²mwÚ`¥üãi+yàk,ñ=äǯ˜oãëü "¹ÜgÒž,¼è|by°_Üœæ` lª4^jXê.avÊD:úŒ…ñg½&É‹BÝB nŠea£D÷Í8?ö£‚žƒS|@Içvؽ«>F¿&œ´ãµ¶Îýû3â+N¥{]&°Á…rçš’©$l"¥ŠÅ5Ûcs¿Õ2Zw.¢ˆ¤[t€­[× ¤´~» 8Ó.´…wPÑŽƒÞYiÄÈÀ@þÐsQðJî#â»å¥•Ì]FúÏ5ÀîE* KJÀòõVñ ¹ÍEF±Bu0W¹D2±Zm`¦Ì ±@ >†+Y¹ˆË•ƒÁSš2Bü6 U),¤%b œúòô=Ç~[0ýÈñ<ÞxÍ7ëú¹'ÔcUÀP¶ùàeYûéjŸÐCà·HT0ŽÃ÷žHÖ™…%eó$sðµwî:÷‹òøµk±À2’£¬)À)š§µˆ2+µ;H%sn@J;²^4wÓe±‡œûþçºûP™Á±?†s]d÷Q„]sSX¡tÓÖžè7V)BY¼Ý®xZS~öTîêî{#‘ iˆ£W]Ð,×ÈÇô¡!µ‡xÈŽ wéú6ŒóSÔX¿®Oq­v—»®PtSâêŒrD?2¥Oì|ìéÍéìø" téW.ªP.öh•jñ=z?µzm‘k˜‡"Õñÿç§6žÚ €ñ3C‹„7£˜\ÖøZ ÛÙð-U“í/U™5UŽ¥ØqMù©¢wFß%­‰`ð\Ëü¢„y½;ùlË×ÄÊÀ={£¬:AŸñâ b €C6rSlHM,v¥àg¦ ¨éÀ=½ª«)±^bÕòí®v|Ô ™´²"Õ”ÅÙx1ÜZ†µ@Á­‰é¬-~0@ï¬Ïãû tQagÒ”¤b~}fÉL²Æh˜í˲ä´wJkVƒÂ Öœ‚öèÿë9×Wí%Ä[P²Ïœ­ðè2ûÀõmh·kÖü‹7jOHŸÝ7Ñ` øð²@ݮˠ§³Ø{ˆ¯n¶øG“ÈØ÷Q½ù*ÏoBjŠrJÃ=§³^4°l7ë™(²qÁs´Q®¢ÅÞöò5¯J&³*È5óM³GÖ¯4âÈ1ñÂúµåÏãñ›¯¢¼|j²¨øAhô‚£{š…ˆ' {™á+¬y6[nê#|û2ØNP I̳šó†§ÒDû{ÊT` OUœàǶ‹6ö¹/œª4Êíjªs"ªM™ðZ¼MUŠÍµ:¿9ªS:è×Ë›øa<®MnŸ•ÉNã6fÝùÔBG ÏÙFC¬öYPÌнðaW­8‚¸çg[ ü¡ ˜¶ß´Ê2–Ž vMq¨¢7Iœ*3^33 ñ%ë£*ÃÌ“I*˜ý$s—Øëùæí˜}:1 5E:²¸q{ò¡¶…4&D–Xvf2.妜î<û¯ó|Sád ¶Ù6˜tyi âñÙÇœªÖäÔ4û5ýt‚›‹ÿÀ‘¸I¹]¼¨, &C g"ÕAl•Ó=D!¯,ïJ]?Ü:¨z¸žà=U0YÞýO¯Å‹4J¥qÓòÆFbuL™Û«jÌø-zx÷{²²Û÷G„÷/ËîÑŽÛ¡ûȤVÇr+Sa&TŸxË8œ·\zÐ\©¦ŽÍ(Ûr.Œµêý;aÊÙhu«· ’wYõ~ÅŽåŠôÍdËbÓÞÒEìT¿¿•¯Qí{/¨Î¾&*ÜvZÚ'çD¿¬h,qZC~BZZ,mÁgò-;ÿœ_¿eŒ]Zï‚»aÊÔU’è®ær+Zå“Ã-W‘«Cö×j“œ ÚôÌOF«ât[gÜŒ€û~ðRö’¦›ëÐ5/n£%·%:DÞ·nuN{ íá@Û{›Æj“’²»Ó†V™s$AÍ‘¼"í\­%šr ™·þ§tÌ?€Ž\F.~ßÇpt…ûà{IÜúøk}³^ˆ ¯9„ Œ4säBCh>KÀd¬¹ÀS Œ9u¯¨°¶‹*˾ÎÄ6î:<þU>t´¯)ƒéR+‚3tjìÞµj¡Õލ¾^5ªI97¢ø˜j¯†£âcé(GɆ©4í] Ò .›ý®€âéÂJl6‰6±½ ]–… £¿Ï>öõlªP^øCǸ—c­¨ ÓTòòk=á€3`NqWžéÔ÷`]^×Op°ÅÂèûš<5T¤_õà“§4É“JIq«Æ½®ô9DÊJ¤j…C«ôNÁœkLr‚¶$¥1O9¤š‘&m1T9´ùÉÉC~: ]f[}ínÜâ€d¯M5Ù¡ÓÍÂ]SsYÝU”ð^i¨(Úï´H;aŒŸ"pÒ`S§‹ÍŠ@òBIC*x®Dç¹}òV(NΧõªbYAû¿ç¯]9LñÓ{Dø=¦#¬ ]^­I4»VS~ÉÒ­æìË<Óüþ½B1‡›Ç<-¸GñÉ_'ÏY|AVM]­ÃÔjÆÌ½bT½bóæ·áÓ€¯w,4BNs«ó<»‡`Ô Úiùn¼{11›*(+ØÈZ¢dùK±3É^ºÉÈÄu“b›pŸ c³p/©NTƪŠ=||©8[åÆ±Ç ÌUÚV©\?Í`²¹ë1È×)è«ô»ÅjN9r Èi׌Ž úr@,ŸÓE Ö§™XÈs˜–aOSO f<ÿûKº¾ +¡ð) —ýôù¿@y¢Ñq˜(Ú™©%ÁUŽGE,aà[¨äEùTúäW!ÐÇ'!~zt¢`Ô™ÞÒ'Á–gU5‚ ‘/÷ª÷b!|ÂÇ~â/ß:é¿ÖzV®:¦$î@]SŠáQt³StËìT¦ë†øOþYïgÀ/6[4}³è¼ˆ{gg›+ &iC$4Áõ\¢“ˆ[:ýó7.¬FpúªZš¬¾îñj@\^Šûò”à;Û…§é¼¬KÊÖkl§ºiÅJðQha±šé²]w½ç«0 ùèU¸˜¡Á†¬«ÓpÖ‹Ç[ °þâ¬PKh¨¬ Ûˆ_ì ¨VšŠ©—ò¯ÒîpBÕ^p²¥â@ÜGØcâ Z«v5IÐUЛlY-µër%¼ŸÏ¡QÌ/wÈW+[VŠ´‹Ð0Oëæ;þWUÕcÎÞBF%¨KÒ“÷nç”mGŸw§,â—¸jåˆä'&qqW§ûK›Ï0_©pÅ¥ëØ—;«ì­yâ9£CÆ*ÝçìDº{P{>YoVÛ¼#ˆTì{Ö:þ@d¾ç Ow_ƒ˜…™½ý  :ïä;q(Ÿ0h´ÄT«¯ÍK Ìâ>õ™8Bú4(k®Çò%]ëʨÙõi³sQT4'}çäœ y¸/zGòsro]™ ”öVMÚûq Ýy¯ÃCðsŒV.ö!:T/võÆÕIíÃâÛÏgrOiê¥þVH#SøA—ó@“sÂ"Π"+zŠh E)œ½0aíþšÄmS³„´¬óIÄšÖØæä4jhÑ[6a ‹œ€‚­ ÞÍÉÝDve‡]ÎõSXií/ÓTî¿AÀòï#£õìECð˜ÿ;§.ÊH^;4âÿaH*ÑO[a¨E‰+çÔæ¼a¼²Z•iµWÚâ"çwS‡ðKÌ™‘šð¯Nçº q‚úŒº—Ç5å>U‘Mòñ9ëñ³ ðÔ ” æå.Œfo\w>õÐoDP—œ·³ÝQE>üáìÅ I"œ¡¦ô°íÀ´Ëvå¡N‰L×#¥òƒf¤ ôSUÈëì$œ‘z ÿ(ª¸wË=›Þ93Ý £OjX¶:`áÒ ¥ý/ ùsÈã[Òöž$+Xf5ø-ãŒ(„„—*P¶EJ¬¯Ê}3i"…ażS£åóŒæÔMŸC¤ èMÿ¢Mˆ!¹} [×(s›Â49/~Üm'ò À:kQ-¾ÑŸ©ô0å2%Í@†9Ô›ÙjaaŒgV²·ÖVÄ-Æù©¦XûÍ<ÔççØù^ðK¸â$cW€¶Þ$³Ê°¥¼+ü…,ÿ·^Ÿðzm‡ç;]OÇi˜=oÆ+sÊ’}‹ÿ³FŒRûîZ¢já ‚äÀƒðõé>к¶Õ¯s)ÿ>Ô›’ž3sÃóF Šòö †õÔrÙ9\0#‘\4©dû´-/37[¨ÃÃ…ðü¨žl%5+Nú3°ïâÆ†u ­c=ó¥•iÀ'஑úÿÅïÄýפ½ ¨+KUjWÈJ Søï¯=#ÛªDÛŸŸ´ãõÕÙ‹¹F #ç&sö·tQÏ‹ó‚nJòqrµ¦†Û-ÒŠúoäê&3EJ/ºc‹&Æ›± ]@e ¾ôG´ecy®msén>ï¦Îi˜Õ×ù3žSorðŒý¤Lìep³­tRb=JOî‚ë¥[r#Õ¥Ÿ”l5h‘À‘Í‹ÝÍŸ£“ÑA†{FèH~ÎÈí¤gPj¿ ÀÄûôÛö-€ÙÓv»ÅÙxAȸ¿¨Ê<ÁÄ€ Ý¿·èëôfn|Á‰Ü,5Üï\ë¬ÑÎ5ႄتTv«a¸OOP0r]„ô?a–^Ĭÿ‚cgÀ“·1Þ‚Â0…8xQ±wãc <³_)®)ý¥ êÖñFhþ¢Q+CKH¨ÜJ~CÏ›Mºª^JPÙE£g§F#FuTƒ “” ¨'3y¬,_i[E È/.íD”öµ¡ô!Ñþ6‘#­„”S¨úQ:º<ÒI˜NüŸ–¯·¢[ ù»w¹¸öÇ–ñO^R4‰Óæ†ÉÔ@™!iTéXyæP©©q ´Uf¾mÑHBzµiBe@+循õ1€¡r~M~ >Ú|6¡Á-Ô&ÛøO/mêYqØ@Hr ™ÛÞìÖÃG•$NTf2+øËK»¬’;ãý>¥þ¹K‹f‘HŸÈ*Sìâ~ymŒ®Âx°ù"]ý7A¡X~“Ï÷î³'Ù¯¢u7B”=äo÷üF±æ,zà-ÓñŒ©+3Nô½2œò4¿¶WKz¿DÞ¿£dtK_°YHèªésÖDQò<´^0„9_{;ôÁ¥3Ü—_“ó¢.ì9×9oÙвcŸƒpTÍx½nl±= ®V¼$C€J¼Š5FÛNy˜M·vuÁÛßÉÓFÆ!/åÕ‚D íLLo3k“E¾C¤x‚WÏ­A#´š¬¢Öðk’õ/a4w©rÉ⮞ ë5JyȆ²=GrößåÔU4ÿzLüåH@SÖFëРR¬°€ö»]§O­‚9QÔíDÙ‚mâíc"m•õÛÌp¾†¯ÅÒ Ô({k„p©Bߋڱ²U!›¸d§Ôö[èÏ s¹$÷}wa„œ¦Ì—ŽA1OÓ‰LDkb©1un¯7”'Mø³òr‘l}†¸e¾kå–§ äS‘ÍÉ2=rQs’ºOçÿ×|B¯qò¾YãÎ~kCˆÁP¹¶•´g‘U(U‹×ˆèì"}žÓÚü»$ƒ…|å3@ ëŠ/€†‚"Iฑ “k9O²øä^X_ÒÃ)O¦õjØ á¯‰å}ËÁÐù÷[Nñ‚.Ú¬ÚÉuèr_mR¸£Ý(¯3–Æt¹†b§Ÿ·kÂÓdÝ‹õÒ¡vÒ‰Õ‹™W„Ê™®/«b€çÕžû,×!sÐv½?K⺠ފެo´ ²4ó’›sÑW´Œténr¯¹9KáÇ7Íí@+¨éЛƒ«ÞýrÏ‘Žèï¾mY-»`€}gh‡±­ÏÞL¥¼uwÿ…)&Ç‚µ¹(WÅ,í€K¦b›°u/s‘t1SÁÁw”¾w+3h2 Ý«ÞGÍF)HsïdÖ¥ÙêúÆà¶ïW¥›B7­Éd¤ñï=|¾ûá uù³!ÉÂÎÒ]­P—;Zå€6#‚”oàÉ !Ðjºi¡ïQÞôÈ…€ ¹8Þ赘„½›ÎúoUhç`˜9sÑ%f\ϵï mÓ’(ÇŸ£@jŸÌøðFBdÐÇ%=m×Ñ98)«±åØ2ª¡d j7€Î5gŒM!‹ÿÆn©Ÿ¼º`ß¼ÎBì¨òd2ãTÑîÐ`÷Z¬´Ê†"éÊ´_Ã^©hËòt¨Ï…×@ÜòLê®^Çet$7î{R*T—seQ_v¹óYxï·x¿‚Š×«öJ"ñ’®Åç"§È6™¼ i´õy_ùµa´¼‘sÑZ9\þëÚ ÔZiÈ`‘-2èd *öâö‚ŸÆ¿‹ÕñK‹È4عHÿiŒ^‘Âß»¢¬k­äGuXÉ9# Þ pvÞ•' ©.Þ êGÂze‘©|+n9cϘÛÙ3á©A“GÎåïŽ,ܳø©ñ”3 ໟH¡]Ÿn‰nEý ÷"ò'8oÉûoââ~±xèÓ7…¶˜£‰¬¶¾“Ì@ßí•Úa‰9–›Ñ£™5,HjEOm2>LZôÆH•À]~&á†Û¦=²W„·¢tuxÁ2ìOH}Ú±ƒ¬z$¥WØYÆ]´?ý†âÎ÷¥C£~Ùç.1ûVwWëšH‰O¬@_Eè¾÷ÔjÉWq^¨Îµ‡/I/KÛo÷Cž& ´¼<³¤TvNp2)ËÛ ï“ Ù€^ˆ„Áš¸c?©-«åCˆ2àY¾Ä4œLW¤S‚ê{îÙ¶ÞszQªë>}í )¹ñëgã2(Ú‹ï}´ÜÉž…౸/’ƒO}ø({P"j-ÍE›TZmPB‹’Wxçìgø–N г(uàwñ=4fOTod«¸Ü*òBØïd~ú²oIŽR2XžøvI¸#ËiõÔ¢ƒöqˆD70…8Ø2fü`×Áó}ÈV§{y^ú½1FÁrEÎPˆUcè›æÉªæ"üï®ÂrÏ)ô~¨÷E¤eY)Óº)˽vô£©%4+gÑ ¨‡2¥óüÃòýÄø¹¶ÅÅ#ÞT'º#š4·ZØÎD¨,ì¾7œnQ‘Z‚׌¢[èszåžSM½P«÷eôè­‡ƒ6_í¹2Y /p#6;xÎæ‡½ À÷ÇÓ,Ä¢Êì¿Ú`ó>Õ»Yd»¹ò Ž{OÖBTXÓ‡*ð±Óê‹ÞÙ‹F¾rñF–öº?·ĺ¯ãÍÓšÖNŠš«²`-kZñ«—(ÓÐJ>[AmØ7 .Ñx·áàæIpP$¥GÔ2µ£dÝÆÎ[»Åû†s>ívR­W¤;”•yÆžö‰xÚBøF¦­Nƒ•ÃàØíÎ!ÕÐîÎJ³¦ýÞ6žPúŠ‚4 à ÅÄRöåW4Áå²£=j“K€»Ê#o–ç˜Õªc­æå¡ktJ˜Ç³Áéàg"œ;HÚs:¾ÑË `¶Òâ%J¾€×‚cuã̺g|B¾C>:Oÿç~Q‘JcìÑËâWÕbÌxÑ«ÉT_k0ÓØõž½;'šnnÄM©ZuÿÙnžú1«6ZO¡™]p‘Ù¬$±2ùØþ:;ÓKäÌj–äÛµ+ÕM…qï°Kt?WnÆ©QZ›ÉK|4‡Ì8Åv7è-„özªV)¾`~§ûÚx£À˜ì†‹êp­Y$žˆè})‰¯Ì™8¯t‰ÌÕšZDƒ>0ð Ý?¯C1S”ëwÙ4¥p-ñHuc°vÃûU»x«Iy ½¡³–­5ÇËúp äîÎó“ Pÿ²Ýr½ÉÄÔà”4ô´8«Ð2Ucï™ÂVÔs²Ó²8†V@Y{s:ÝÙŒýÆqÌ$ïóNñå×aNN,Á‡°›8–Š{ú6hëf¸¸múᄸÝL˸Û±,ˆÒÛ“)ØßCLÉ¥]^,§„ì•ÍÆsû¯-[ËðB-Huòº7êª'ÕŒŠ0ä"ÎÑŠ·:'QA +fCrÃK÷§™ ¤3N‰ÂÍÓ‡ñB+Öß½å•j%hóõ7†ÚþÚ%³ï²æ–·}òš ûĆý6³…ZZ}³ÜÝ•>{NŒ—_^ÄA̺—ÆvEì­ ¬CᵓƒX™nw¼ï:ÓëQ‘€´Ç×±.‰Â9›äm€áÄV Ìyö¸&ñ˿ڮîPH$ÕÏyÞBùb3¿.Ã(9Ztè¹×/a«NÈVú~Ø($Mu!_G@{€Uç‡! zãÆ”ÝFNúnË`1f¶£eÎã·è£´–5²e<»ËÓ$;Ù°·—ÌÂU)VLkÛQFÀİ{Œ"ª¼¢8äøcq:‚õT™‰[‘,åÖ0`;|5¾fWÍúÇÚ†tá`äD2åÐ[Qب ã˶£LãØâ%S_Î-Mul.퀖Ýïa(Œ£Ñ¢UgŸ|,¤\FùnðèœÁùúÒ!Î×oœiÜÏ¿ä9ÿXJ²JÐ}h+@«ðŒ4_d;¶Žr¶©Þ«ÓÛirñïf£›ÚWГ 3|Ç6æ¶GKM·~q#’°OrÄ"ЛZS¹ ¢SN-è†5¦ºœøölßAþ=ë]“ùasÚ¿à·?(mÉä±4Â>fRTäkAìaÕÉ™Â_¦ø´e_ætQ¥ïD™g\x¹<¡©›–x&ÑCg,TurW_!¨Ý#ÏAQÀÁÒeX¸oè+²Ä„XÉšŠ aW+è Tû–ÈÍß®ŽhY>&†[ ½êFa9û*%ª[ ªá˜IÅ[߯žß݈s¿ Õb·þÝ æ›ç6©GU¥7-²“#a·ÓjQ´6ž–¢ðO ÔVø a"ùÄI·Œï8]ÎÓþô~ů>ÓÓ¯ï˜Èw}U™ŠÒؼ!t¦×Ò=2ˆ™ìÓá,1ü l‡NƤµ¥Â.Å{à0ÙÿÉâÌ G„* ÍÄ0)‚¯Ÿ2ŽrÿëBõ•ʺ¸«Èf ÄG¨J£î‚%>Û·æuQ~Q:0Ùë@ ³ ß¨ Ý:D‰ðñEf.cÄ;À%>­Vô\ÐŽ?Aì ¤Á#û¸vL3—Ymló O{í¼Í—6/éN9‡½ˆû-˜OÁ;ª6Ñü1:ÂTŒ-%ômïœO°^Ží çMS®QÙ`»å\ñ8MWl¶“5«²7âgrëXt‚2ä‘J"KS²Æè¯”ŠL‘_w˜{ô—z…åëKO†÷åánÆ9Š­ôAunOXy„N;Ö\]e^â Gè³ëÅ•j±(¾´”vmEJø {\9þ ÕT'à¹ÊéùTˆò‡(ßAžyÚØç0¡Žä@ñV3t»ËÇR!3´ã º–——š€\FÐR¯QÖúÜüx7Ú³óˆ]¨?Fišîó8ҺϩQñ$®Ží£Ë÷È&;a§&›Âcø®\0ÜZÈ›­Á×÷þÎsÍ®¨é4¸~ݬ¸¾zÌ+›)Ñpo”­ŠCÈ>èÑ}@Á™v m‡Ì°P~ ¾³æQ³»Ô®#Òù2,á,r»ìt€iYð|̇!uÕûšÚph1V|C‡†ÍÁ{è0høI¡J‡UÖp‹àÅ]~ 2¢ ’Ä]ðF¶&ç¶ykɤ‹©)øf°® œí£Qê†ÉUˆó©a’Êlþ¿8ɃÇ''Bšõ™ßÝL¿%ò¤«Í?.II»k¢&>œ.$#Ì“t3Ü:æhÑ5$š°üìÃhµqJ…Bá"0‰6·}ï0»Ç?:Z‡þiüïÛQ#»\a2ÿ±ÁË;Å}8]O¦;ó‹ÞêQb½=p.ÓK¹û­áíî"AGRÓÒU5: ›Cøq5•¨;>ˆag!«#°ñkˆîÜöÝŸáá Þþ)ÞhKîqzºdÀ¶ÅÍô‡_ §šåÓ_cQ')·‰&:ñœb–fªI³·ùÂN[˜ã ÛÅÚä}[8«ÌnVÇ“>í®ù0Ϥœõê&@Ú§ó×µµT¬ABF5eY;2çªyø‡å!üòÊGAö*¥Ìõ.ÊÃt0ôɳ!™^Æ‹À†Sa Š|Ü·q´·$Ã;¿4»Ä¤†ªÕþ`…Ò¥RaA‹ÿûúôØ>òcþ?“‹ÛqW@Æ0®<Wºoч9ì–Ùâ_1ú²Ò)«•8P«´ŸYu­“çáÙÒËךk#gA#Í“¹@úóº#•n†\Y¢ËàQ«Eu9ýÛÑ,œáó)™j‰œ`IFã,ÊÖÚÍb”ìgaU±“ðÇé™äÒe}Óÿ[êíQY†Ácw¦Õ¿72ÚÂÆÒI¸¼”×Qœ’(~ƒ¼8›ó$ [crBð‚³pIÁÁ}}ý“‰¿ }¸”&}a¤uÏ\óe®D+¹KÎg×Þ1¤q3€fÝž~ŸªfabrísRМD)ÄsøÚÞW Úf#ˆ’¨7®Á—Pv÷4U»­nÃ=øtßœx…(9ÍfÑþS€ËøùïÕÚH*æ‚p²Ñ–’DSl/~sÁ±;Ó¯ìgÔ®!7»RN½À(›:u¯^ÂlF´4¸ƒÔ…Ü<öé[QA¦¥…`»{žÕ‡q_ÊÅ\¬;-;þÂL[¡gþ;Ò׼Θ®>’«ºd|ˆ ŠÄºUÎÿjíÓ½IÏm<½šÅ!e¸¥å¬Ú•Ì™»§ôâ²+Ѭ¢‘dzâõÌë(tJ¦ÌFY>,ª­\yF~/—s×ÍeæôÁL?º4_#ÄwF Õh_\÷ÝÑÃÑg벂˜Ž^A¥j•°¼‘\ö(Úù‹Þ|D¼çtòòÆø ’4ž jÔó*(4ƒ &‹»D'Œú1­Üů"R_à¸gÛ­&A­fB|Ü×-XN¤¥YžÌ˜‰òÅN± 0 襃ãŒi2H[¤æ£Gѱ”ó-æíø üh±E\± åéö• ÌÒó£bú‘d4–ÉMƒ›#â;5CS½Iq**TBÔ„ŸË¥ã>ÃE=ñFQî‘„®¨ùý™w ›1[×ãዚ2ŒÖðZníÜé~ºÒ¤WheXÁ,„Ô» o€ŽèWàýU ¥}röÄy2 ù>ƒmÄÂÍž¢f ¦ ­ÈZ… üsK÷9ÞõÕ>Z>h‚ÛhϱÃE.F+]0hëywþcæVV‘ ŒÞ')a4[d8DM±-•6\íë‰N@»ÁâK¦ýgÅDTë¦Rãëó 6ém3°>€ÃûírzÆ\¨o×Eý6¿Ñb{HiUßÔ¼d;Ê$vûTÍ„¢8°6ÄBâΟ7é<+tíÎíÇ©ˆi¢cÓ–A†‹ŒR\Œ&¯ˆUäy?´é¾‡r‹Ô®ÆbJƒJ[©^ƒ@‹ làø3žlPY¯x§þ˜ìà¸#¿äKò $Ù ì³æ ­Å$jC)¬¶H¸}³û‘\'\_GÞõGg÷ß™ñ.Td¶5Õ1ª¨1m± 7U°} Áçw¯Ï›"î¾aûO«Èà#uG~¢ï\;ß´IÀäééÜ©_ê1t”ã A,#oú¸8ØGn$ÜÛR0õ„¼J ïa‘Ÿó«”Ü4¸s{äÀXÎeŸÛsfVÌžĤ6LHO*ÑóôBz›•D3®YôÖb åQtï뻘îkòäŽÃ´³ÌÆp‹B%tˆÏ̲È9ì`ͧێðJC³ è83½Ò\Ñ’øÿu!ÉŒa[7ºçyÜrÐl–ùÄܧïÝMú¥9b^äYƒKÃj.QN‰‰„‚R—dN ÊòðÇo§3ðjDÕ`-Ýe´]÷Ì3ùc2ÛGh24y^^ˆÌáå·G™ÅèET5Ï¿Ôä~½B=,:µÏ‘î¡aÎ@‘ÕŸ¹…ÏÇáJäÏ@²®L¦˜?5ÒYi×uïݘVÓåÁ,4ä~Q"Þ5§D,1p)© ö$üu›lײO'6lÕ¸áçFi•åV‚ãwT Ù„{O0ó>Ë„ÎÏ»û¸§‘ÎRp\\:‰J½\¬ú"þAªüˆ€ê kS>v{·ëª²h¸Æ&¦ú³àáA~îò; "\˜HîEyÅ$à´ì_𷌈ib\·øÍ™P /€x$I•i-w!X9 ^áá9R¬Özfðæfg°-™D3ºbʤ HkèyCjîÔâ³Ú€F&¢nºyR§_"C]ŽHE…°¶¾%õ™ÂîTû-©õ,,D[å&2‡ñ1iÀmæþ¹§úÅ•s´\D¥yø+–©ù™ÄÓì¥Íë3k_Šg#ßõÓË|açY€eP¶mGz߈´,Ë”ÅßÓ$½¯ç%JM¯?Á«T™KE÷”«k?†Ç8Ö°º´³(¾af¿©ÅOèáµïyUX«HFŽLÃA ù¦ÏîQ£¹»8vVf'‚aYáþñf„¾G0Ž”ÛwêɦöÏ!yk‘ÛKVÛå¦ñÛÈ‚I¤-À<£€Ÿ"C^´$*ì4»e™]–[¡…ä%’п…œk ²0+à Ú¼­Q¬5‰ ѵOÁzŸ¥*?#!—jÎIb®)¹WÛ.‡@›9 |îqðM“3ÛÈâ9D‚À²öL~ëÕödCp¢SWÞM$Ó(>áð¢Áë%Eƒ;=øË–i51# y¼ò ‡¬‘&³8¿ç`BA½¶»à”¢5Ðñ5Yß^ê Åöö%I­µìÌ [‰TièUjæ#ßÚA} ¢”.‘Þ·½ †;ˆ0¤ç/à)Q²%!Ûê+²ƒ0½u¹§m‚GÑy“do…?Û€ MòjT1¦cÿ¤ í<ó¼ÎGïëЊ÷˜Ê†ÒR}b£V¶Ë¦Uñ«=ÙH_Jòõ÷Û‹{]ÔÍ3ŽºI‚xÒ«^X×ÍML(Õëˆç³!¼ KC=ÂÁV-Ë•9êË'ºcÅ.²ïäøFš(ÃØšº)iÐŒ,@lO#_þ…›8¦ ~§È¸í¢»ñ#?ÎÛæfèûH*Ì4LjÌ7wBZ46„0˜$OJ ¡ª–lò·¡3‘dF’¯ù5 ê8ý-o4ÊŒ²ÎÈM.,–ÔZΉËz¼þŒX;\£—µæ  èZ>²Ó×<á½Å’úk%=£T¡`}ã!ã‹(ƒë$ÛÀ,+´ý<³—µ”·‚ÙÃ>*Oc³ 8”`f…qœ:ÖÑÇþéÉɬ—!Ó ÅìßA'«X wbã/]â<ЗOT¸¶ÜÑ.s`ǨÔï¦cp€4m[|1ž ²¾¹™z®¥lxº#×Yê÷~Pâi5=¶àƒ_7§°)¤,í2CPžš .^´«¼ª'Œ±°}z ,]ÔæG ï9e ¯èÌ"[…)“@1Ũ…£øòœrÇê‚è9Â’‹+íÇŠ"Bó3Û¯µøMêí·«œNàØXR®ˆ¦oi#ýèm.‘’‚«‰mðœ_ÄXÕòË–,0©ë‰ò¥½XÀTZ]»:ϸâ§tÕ’éŽàáΛ·É”¨è$Ñ‹"‘CþѱY^?7m8w\ä“<•¶íýœ‚Èieœ7Ï]‚_±qàIæ˜î~–Ò«'E.Ëi¥MC7†ŠØƒI½HÜsVªÏEϾ#âíùƦ¥,UŸÞ‚µÝû=¶müõTMêþïÒz*'0nK¦Õ¨Pz~8í¥D9«*³&–!€JS»GWÿY«oâbHìyï„m€Õ®=‘·H­ K¢˜2Ø&¾<0›I¦Y/x 5¾xŠM¸s½§‹ÔV;™Pû›#d¹RÞÐ5rß·ªX·¡G?½(!KÇqðÀ¦ksuˆ”Ô—7»Ïx¹[ºU êNݹ›è+ØNnŸÐ3Ø!l©[Ç:9}BçØöqÏ>¾@=«X¯ ôl£ma­ '³AAŠÍÀ”y¨ÈìŒv†*J,­Ãw¸N‡­˜¤î B»ÜuX{­-)ŽÞ(Ñ äü.mÞ5hk/íö<¸àh¸š‡'…êôaØYAyÚYº9d`>ä³x¿4ÄHqÎå‰Û6ª2ÞS0 w½¿¥>Ž'‚•*v f•[…ë¢Ðç±TµhÜÚ®å^Ð:Èn,õDúD$׸>q÷>Ê>Gÿ'7Õ„´úúüEt¿a$œì7Ècá¼ÿ<^º›ì,.þÆ8éüSx1µi=™3¥÷ïØkɽŠ÷*ïEídxíf¶³Ù\Òd·¥EÙ­8$N+MƒíêG«×B¶æU#cNºí[ömU«‡dãÜub×Õ=R\²¶üp³ÜTù#îØTÍÂ`¬užÐ[rJún’Ûæ/ÕÀNy³ „¸Õm5ܼû*iHƒìÄlË.Yþ´iK=±š6·*^*"ŒÎglÜðö(û³e÷~7¿w~ñT,Kѧ ×å A ÿèQôYP­cP˦À‡W!ýÑß±›b«û—ñª™óÒ ûc +4ÍåÎ5·Þ×î9G*Ä’Øáƒ€-¥ãü…—¨ð{T´™ÕHã,‘‘5ʆZÏDŠ=Æ/OÀ†¸pöL1gËkUŽ; ˜ëHú¢S'{µ; ÿqôb>Iczÿâ°S’róW2ØY »Y³©S ¬n®ÒÚ:smt °œéifl³a”]Š $4%Ì S«FqM•ûN/9r-òšh{ç~e+Ò0d`³PÉ5_†€Æ´î0)ªè/wŠt¾ÐÔ±Uõ³/v†¿d|>è†Da‚™!z§îîõù{Å…þüv³~ý)Ü…V{¼€uû{ ƒ[k­hÓ£hZͺúcS ¡É]l³í;É•F¥ÅQÊòÏA˜0ø‘>—°˜›TSåm|ˆ-µç8ÜPùnÚ Kâ7Q†Î—9<ÁÖ8ÙV 5 q„Dã.|ùDaº …7YûΙÜ´÷ÿWïé=ýæíÿ9M+î"XmPE»,{‚ßQÈv€xZ0짤Ž~¡–ü*æ˜Áõ,QïÊÊ$?æES¢]˸.épz#o•û#1P®}‚êå°:D eÌé(q¥Ñ­i–R“CÒŒþwNâ;äi(ߎՃX³ýmDôŠñÁn?¬oÈx°Ò ÓÖK‹†Va…`jö'Ô¾uŸC䯭t)°s†5ÙÕ¹È$pXà …*œ­×Ï/sÞe†a+×÷4#®q¼-OQ¾¿¯^RÉhssŒ—.¸W˜ý”ª›S³ÒÇ8Ѱ5Ä¢kuñ)©‚°÷†Éˆ0kD#f}ÓØÿYKdÛšŒ`: zRÍ„ù÷³ƒâVda9çyáQÞXÏ@¥®gEÞ>KõšÔtµ¬Ûà7°IÇ÷¢Þ…úÚÀÚ´Ñcù‚“XØoûëì$¬¦Ô‘#G̵ÂhµòO ~_ÚùR •Æ;‘]õ¥›“¼Ì#)d'‡úE˜q4ëLûGa‰ÓSy ±»Hlft®qØ@O™Ü±ÀE[X\ ¾y|]ú ³dÁ”ïñW¡©iÈÞxäÅGn¿È¤&DÐä_Íwr„Xm%ðñÀ oiœÛ/9÷VK´®x%‚'Òv$‡–HKiÆIGsŒ-EḎ|¹Kp5ñs™«ÕY–vv_õ=´D‚±Pôæ«uHÞNàÿUÂË‘‡Ä¾íì2öY•2ÖI׫(ÃèbsR›2B!rÃêä¨Úíï“Ý ©<‡y!fwå½Q£C7,ÀÕÐ{LË­Ëâ®0ÌÎVæ[ãØäœ*ÈÀ`žIcYßn+#HZbŠ)Nú ¥æ_ìè™e-0 dÕ»ÒÜ7eå¤>ñdE­â”Ïö«ì>ߊºVÿªƒîrX’xÀG#*N›gã„eòÍúå"yjôãüTµ ¡¡Ç{®ÄŒ…Úž€£Œ@+1F˜¾»Z¯ùO¥n ³cÓ¿5÷=qn€ÂBxMM÷-]…ÃÒ™ñŸI‹½¡â; ¾ä¥JjKà°o2׿Òpda»¥OØNH¢ô÷š›?øo>ÆÚ5çSˆò~ñÛx©N |§¥éI`$ ëãî#Ëž˜Q$Üê¼­)=Ý:ëTæä„¼æ\HÒy¢•éjÛHyR„uÔž™H‹$ò½»`f/΄K>LOËÙb^‰}«m×=‘¬Š%€Ûºs4ÂöÔ+tö€¿x;EU¢C4Í; ÇPþ!ôåè›PB‹ÓÄ¢ÓF¢oîù¯ÎXæÛÑØ]õ%\Ócqí³n‰Ò…xìTPé¼GÊ!­T4&ÊVH‹ðõ'uµv½šáÕ³[ ýŽÚ¢›äæÖGÁTÑ1••`Å‚& ŽVÒä±AñÔ|Æž¥ç·£ðAE]·‹}o2[Ô /ïJ_€×öx6 îEzÌùà/•6ê&»ŠçrvêàSwrˆ`Chkó"×Ç/×õ§'nÄóúKƒIœãÞÝ\ÊßÉvïI_jšØ L8,ý|б>sÑEºß™ø7cöK¢Ïñöf„sëVðPÅhú Lýf%Å!tž96w§PRaÏÕ˜ý\h|õ§Ãçw8Úõ;Y^µ´œÆWÊRÞ ›Š=ñÑã\ {€ÅCWÄ12 3òJ§ùkÇ)— ú2ʼôI¯–Ÿs^\à/¥AJY‹Lm®˜'¬›—‹¢L>ã7mÒä=ÐB²2‰|é“mŽ+lL$m±õ‡ƒG8¶ ˜Új3št .ì·æð|íŸ0 m“DûÉ·á×ÔF%×+-{\'c¹Äh”›D`^}ss ÒÆKÇÆ‘—¡^#Gúœ¶Éžuç0°Êm½A“·Ü4v[8vtR: `2ð¹ŠÓ²ICÇKO4 ãÀÆ/vJýÍhä‡0£HóÕйH¦½ÐdªlF[%„ Ä_ØÛUp—Äê̓}ö;Ýg¶îjÁÚÓ8ðíôÆZ¡šc¦f^ qï¼¹êœé³‘Xúß.^0*#ºK{KEFèmúL —ñÝcèysˆœ!öHì&| ›Ùi—¯WÃiCZ¨Ž 1ìwÎ:a”ìòN{z¤ÌÖp ;VLqýÜo‰FD–ºëáq×~Uùó¶x9Ö>á-òHà Ù)ÏY¶ŸKþؤ%Lï®õoÇ™¯Úç2-NqJ×”áR™‘:Çn*ÔWŒe>Ì‘&ì (IùéiDê7†‘ˆNÆ—¹—×aßFAê§(9£Ø‘"÷‘ô(ò¢ák*‚y$ÐõSiE©Á8Ú WÃÃAð#RXˆjwʮޖë‘À€º÷âãZwdð9×gC‡¨~_“ ܬ6ñ©Ì¿dø´kZ3¨³Rß ª óåµE²Ä‘›ýw÷‡·Ï\ÿÎúóÇà&™Rqò*Æ·ÃÅýÛî1”å#ëÿOxV¸i-t¥ Zdå¹åoÛkb[åšwu,Â<ŒØëØ›Éû¸“làÚHŒ h÷ð8Ün0q,:®ú†bÓEÏù®O¸¼l<¢Ë¥IU¨1îtcAAÑPD7yÊÛÕïèÄ¡UóÌúÇ"˜Äd3{R^‘"ÞGpK¹ˆ³ìÔ_qáxô¡[Iç_Ø2\ *–ªS:£dc =ÁݽéÐÖ&{š´„ið3¢á]$ ±øYqÙÜRÅMæ«3´”Ú^Vxhôƒ§ ntl2¶c_òšRñ·TÁM)Œ—­¯Z-#àCÁ _CÚÚfT‰äÕ¤£•àé™4ÝA&&ŸëèȲǿñÌ%¢Í)DâWÿÓà\ÝÛV ÔŠ ÔôÔ¦Þï¸~F,íÒsâò/V=ù¸Â©~ù¦/wÝ÷´Z! ,ü1"~£›2ðXL¹ªñPŸÕ;W¹¡J‹ —·¥UoKZoŸŸkÈZ剓¼ýKí‚DK–ˆñ£Ç I¶ÏÿÔ^DÈ¢šzH°Ö2ׇcL«ë/?Dxæ/9)•Á+ðÒ7*ÒsÕÄáG¤„SÔâ°8Tq™ýNœ<ÁÊÞeOõ=•#ö'œ¤^,` “äSÏ$Ô®}Ïã^V~Ó5n‹ØÛàÞ&àšó1Xµä`–™r§ÛM¦7þBמPs•5}¾È ÀèÌñÌш.Ù d¹iÌv–{‡Ó5ôå=NJLÛÎQ8šy8­Ü]ÅT–)_TØF¿^•“–y×úÊíê‘|˜»o¦æ˜](I ºé„´ïB²}yöqý‘lhê9ú“ÉØC®@dÄŠ²3ë×Ò-"ë¼ÙÊäüI9¢Ñ T¡/÷ ìh/öru•ØQt`B(¿€·OA6ËÃL¸ç† ƒ½wæHblµ9¡sˆ1"ÎxT}tæZåù:/‘æ¹½ÁÂÖ«?n¯ƒ„@–‚²P1T7ÑqWš*¤)Ô91÷Lýû›†¬¡&òGíf˜Ðä—Z{´Ö7šö]•ké°ÿé%oEÙÁw-7Ô ó~„RRR¡PO–ÇbyÛ°ÞnoSµWPN¤+TÞ@+Åô.ù†ÌWútSý”rù“ƒ$ãycó²§iP¶Çq¡ÝÓ^8ÀJïé±Ì Ýw#ynxãЖñÑ•žÆœ9ö{ öºa ÌϬ/2ëÇ’pÄʽ‰C_z`òÀ ­l4y9ëGBWo"ŒwWŠÇMÙ'½Nµ…yP®ÑˆÐ´…Ý– 6H¥"¦ÞH(ÉZÈ%/3ÝORL.Ó'Ãqs[Ÿ"¢8TÊ.­š÷]AîïU´W‡g¦þ4t®LŽ>ÿ+𙹸êvÌ­¼3éñìü7)6mkïÆBÐK¼K¨€¾‚wN–›˜4<Ïį¿L3LzˆóÀm–ü)2ù«'‹Å°ìh®WZŸ*æk@"s/ËŒ\®®ŸV ‹öcŽ^äRû WÐÛP›y/-³ôì…¶FÁ¯(ò– ÿ ž¼Oòçy;`•ê|ôcëò¿u/Iì×\rI2rhðGV&ÅôyvýA®xoé„ÁI¡P—_¡Yp3ø2–Ð AÊåç$ŸíÒæŸÉlâÝç‰ÖnRƒXEmD_# ÄúÆ ùµ$«n äÍ@yŠÊfu£œÈ>øB’Pнb~£%Ï(B”ˆ§Ðyz}åT ÇcQ¿W‘ ä<Š:ˆž‡5¢~½Ì7Þ•n…öåStµXÈßT2€%e°œ@F-º‚½KHc]I iG€2šÕê96¦DkÈ1«–G~"Ží~M&ºÚŸ5ãt³O5‡wÈÂ5àAÉù¸èLë¹m9 &ëåŒô.„,y-ª¿gáû®h¡gî£yi÷¤šPrFÖ„ê;$%'tâñ…—ú32ó³Q¶ÑJ÷d’çg•såæYœRÌ£ý?c¨\£º~”7NŽ©”jÆ­±'|3Ôå8,òäàÒ‡åvà<+ÄÄx  Nu“÷ÔF=1¦×§­b˜m \y“\‚¹£7kއÙ9æÃ‰â(s(ÝÕ• 7m‡5­âfû5â·‚_’{5”5Áჶω@¥N-ì±6Å¥ª.ÝûžwG3uZH¦ŠÈ ‹þ! 4Ù³ÕÏÀVŠ[[__€Jós/®EXíŒâxt‰Õ6ŽçžÑ‚ú]Èá·(ͬö»i)äLÜ}Öî‘ï¯8Àôåÿ¹ú͵J­òâQÝWöt¬mãÁ4˜ëàeÍFœG¯syêø&†‡®¶G˜_¾&"/rfXîÙ%wX“x>HñmÅ?¸}+)dGœ×ûf‡­¿Õ$á’Ç´!d&ä¤X]!@¯Ò-/7âT¢ írüÁÝÌŒe½#½,ôñÃ÷4¿Fœ_õMýïÖ[cÛ ¬‚åPi›Õ ò¥Ÿþ57’¦âøhË—¬"Dª›o!´1$¬ä}AåDçƒÙŽA|èÅT%vë¡Tä³ð-Ûäu×m2þí7cÀƒöBI%)ì­Eão"+¦¤òÿö>i¬_úŒ]‹WCoÕ*”÷¹G°LûëÇ•¼õÞ¸.ñAr+¿Täœ`§QdDOýç<ß|Hɡ8÷ëV¬´PÍREŒ8æPQK}$Îò(Ï•7¸×>.š2„Ó!ÃB&ÐPRÍy´¨7|Yñn~’“¯8ayßF2;˜N¯$#¼ßRÖi-âæ°ûG-"MÄ O‹ï*)7üÞøû¿ÎB®XÍ–+g (µÔË+¼j'ºÝ²HZwmÆ–ä¾ÌR'ÉZÑÙE#LqcÑ–ÜÔ á« íS<¯.ÃPx*— MÁnXÁư]wŒbÊ7 I;âè,a+ÞWRv¡ vIŸÀT¨ÅŽáO’Nµ‚¶ž“þ @8ÛQy»Iš}U­Ù̯#Õ|ÊX "$Ó©á‘ßè2¬ë6FØì»ˆ~ÝjÏ

7u¦¥ß|#Zx Iªs5YÅŒK]ñÇQžÞ,ZM6Z„ñ‹gF/ ýÜZ„~Á^–¼·zï ã‰©šÆ”jcv·Ó³!/–HÉŠ{!ßÝÈ+:Qlþ:çö»ð0cDO|fÇcÕáJqÖŽ»ãk?Mc‚š—u­G8äÞìø‹!†Ç½¾J~›}y³²4o†]|@û…Æ.:Ç®>9Sm+µ{ug·qFWËB\EÝæ“D]Ãð¬¾ú lˆë·*ô’ó¾÷â±Ï·z‘ÂØ`]¥×)Ü8ùm”Ŧž¨ñ`Ýuán…6ÑÌIG¥â¦ðæWŽÝ7Ó¸Õ¸rýæ·´èZr*gËÂ蛫aP Þ*ªŠSDgÍÙ3kcfŒ¿7>PÊ_Ãòï\Î ÎÔ…~|pŒËb¤QoòNb§œ¯ŒvVõjÑZ|#Ù]«Ÿ…lÉÆóN'ü¿Õó¬K£RJŠ—‘ÖQ`³“Ôýˆ$>³M·e!=âÌÆÖÄ03¶f® wúÛÆ“×TBN–·×Îz›AÅSå«ósbfS7?FU{žB~óZ¿¯ñ9+JöQæq¡»/®òÃ]úFýzÞ›Ž3õYq bs¶ÌÖ,;À¶äwZi·Sñðù–Ð ´Ä{}9â´Î+·‰N¶-bÿÇy>ð¯éÐÛÄôûÒu|œ¦:/Ï¿3¼Ÿçæ±¼^rïè’á—Ÿ|¸o½Ý "úÄÁß2Ñ ‡s Aò§Á"ɧ-ƒ§rôå¿H…F_Áf£ò÷;P<«ŒáR8£Jl‡¥õ¶•[ú”‡“Ê|> lŠÂL ´ìå]^äôH’3cÞG:ª /ÅR¶„ay)[×+6\•Ñ“†ÁPŒ²ÿÇmâÚ‘3†<2³ßm«²J›¯ôÃaß|üj€›íâ™K¡ïÞ“Ê¢óX€×sæ¿Qª ­()>̻¢JtX7£Æ …áHÏØAjfðús~ÙgÛÅÈÞý_¥oÔy{ H‚¸@…i•’›IÛC`…Ê ºHf O ÆK(ûäC"ò!„ý‹,y´™7D¼ê7÷ºáI%Ñiß5`½w•Y}J zÙ<TÕõŸ(Rä%ÕÑUá9§R¼ÍyûåÇ8d‹ SÁÚãT¢âWˆ(ArAA( WDD œ£Î惙¨RŠñãV¡;0×NÁAÆ!ÛÇzP^ x°eÝ™‹kÃCˆRn¹!Ñ4pdÈr¼(KJÜ4…vjw©.æÈ«s'¬ZHÂÅÆ•º{7›dîÛ›aÖIU@š~Š‹0C‚¡H<´A¤r¢Åi¶èÇݨij»¡y¥tOH¡ø7F…“çlŒ”<œi‡)™nD©"²®Ñ$†öQÙ‘pd;géÜÆü;ð¤ÔJÊ¥2 Ò*3z´ÜyEXuÊñ–ã¢Pza@YMžjÁm  r² 0/:X;hoUDH3±OšƒtiJÊ0Ý‚S¯XG.¨Ó/øH–-†S7ª–D*S†áT)•Oámâ#6Šshàªu~N&h…LbÑ (y²‡0Ze„’f8©p¿éƒ(ŠÈ¡PXÊrCdz*–É”Iga¨R¯:nؽíHÞ4*¾›À'›h‚©'…à½æêHnæÄ…±hqøfŠ£¹“É‚Å*äú»D½“Ž`+w8FGJkÛŸÃù0r4¿4÷•±o̶ååÒÔ5Ó²´MùwÏ5q“*¼,&<3²Q©»¥¼Ìõ<6!›^7GvÍíU©‚ÇAM”»/&ë­°‡d…¡AÌ%Š;´iL‹¨~gV’o–^Kç)݃ÓX6]ƒ(B|þ­Þ‹†Fï?ŽZ”L㟓 ìå×ãD&C4²bg8xÅïd»£7ÂÁzø_»!Ô`êmóÈ~Ò7`¡_%ßúr´ršHDí`«ˆ»,°]Ý1R<ICJ9ðã¶ô” eü¢õÝjÑ”˯É„E²(KC’Ì]L¯,Žå¤¨¤ˆˆ¬ØCÙ®¼-ŒR‹Úö‹›9› H1á)'5L­…Ë5HÂ<œquUHó­eÍîöQØ](ÌáoaIF59É7a5‰RQÑà/(­Å‘Ъ˜*Bu—i0/cŸÄ¤¾ -ïs%%9ËÑù.|â8çÓ¯KêÕóôãÀB|ãæÇ•beðÊ<÷Þªo:ש·¾|ØY>·ä´ùÎSÝS¦º©¥êžu 5Aã©ód/oå¯ ë'Xó={|Ë®¼j¦µ‰ÇL¬SÕ¯ íÔ6Ò=Ò­ÇPö4±œ«ä³9õíqÎ9)F™Åƒýiåß–«rÆQ¯{z¿wª{?®z§RI<Ü÷áüçÄezïò]ù$¢@ž¬–_Xº¼O¶þš A”»`éÎ3ö±—-àY2<ë·¶±çào.kˆ@™†ÇIäBG$…«q Q{Ô€‚F@^U0÷½v$ؽáŠ`V$sÔ‰"¾Ê IV#uçAÈ|À’×Éïf ˆZé\$ÊBL &2PÔ`Ù ŸÞîr‡ÒüíÏQy·XܱÍó7ò×hǺa£Ò3œz;¦ïÎùË5ÄësïÌÊo =û϶í^á‚ñh<—³By½ŒÓ¡-%)Ú ön]l¨µÃ€0/¶hp mæ¢r¼™Æ&ÅBðJ ªn!ÀpˆÈðdhÆ$¦%ärZÔÀ¤W9œtp‰KW*9¸œ¹9‘ˆÐàb$NáaàÙ!hSˆ}pæù°ìGQNxå!l:3`KšaP«g,Z’çclsA,AÍÚÓ1 Ž3ÅEÁhž1˜„HÕ)’ITÂëB2G‚ÝË®gURCICb‘q@âÒ•‘G`– é†6{)í‹þŽåµV’ ƒªÖDšEtáo{ÈÝ—)†£[¨ ´1Y„\A¿v†0¶”g‹ÁÍZ¹ 儌S¡(€æ¸ÁÌT/HÎÆd 'mØá¯ÏÁƒj’¦XŠøá;µ¯Æ0/Mä{"|nl Œ¥ÇòƳlH†W¨”\$7ÒcŒ¥”à bªî ð iÐ)ìÃ8¨ìß}(v˜)Í¡ntˆŽ½ñæZ €ÈŽ ±ð°–ã˜`‡Hâ"!êu²³T:Üy¯;¼ky@‘”ƒPXƒ×™Á°ŽÝšã¼¬"Ô bߘcl<†øAÚ™6aKÊfÈ-µïlV ¦8D E «NÁm,ÐØ¦yÁŸ›<Àt\«(L\dG„ÁS¯›6ÈÀó ,°Ô줠å%aG…Yìì½Á•€€tªXŠ#‰,K$#h™`w››…5‹Š÷®9½b&]…Qæàà1Ã+Ns Ø`¬ Sfì©­A@ý†”`p‘Nb8ÁͪCZ£1žⲦj È P€s5`†Ø"Š8FÅ¡°ïTä±3+ Fär.ä&úW:gqŒÂødÌzhçf €€¥á„ µ«¢²,ê½@e*P OEjŒˆ¶v—Û ‰5Í4Põ‰5Iè8“-Kœ:µ[ä‰eþ¯!Öù/ s”C\($HÃL=pF¬°*/®ÊÖðÐêë'$ç êI9s¸’`»¨ÈeÏÉ´F̲¦bD¦`)\žhêbFÖN%Š!ë°qcžæ`œž¦'^aà¤xzL^ÅÍü¿õ½È|t†@k  `XnZvž¬ÔîsYÓrÏP“¤ØJ 1¥hËZ Á¨º©É)ÁVÄî1bB51óÒy2ÁNYƒŠÚ%Î'B‹“]7Á͸ÚŽç&£Û… “¤…‘Ù“ÁŒÞæ]%°…Âü€fVºCÃ\Û´a¨F êÌ«6a¥÷`˜jû5b¾Â^oÃÚÅ=T¼Ú6æ k"á-z ɼ¬õ%Z…þ…‰‰·ë8‰ #;oâ,‹±<0›‡$:ð5°²i?ŽÞÍp†EØ)ã‘õ‹ÙBÙ{¨U 퀧bg-©q; ÑIP5Ð&Wg,W‘1¸ò4š?BÃyó¡7Ž7ÔÖcX8aO&3wØ—]õ'sb웼[ÑWµËÂÃÖå8^ú”5eü[1U“¬£Oµ7ýv;¹{…y¢@óAÃÍ ˜•Œ§‡œÜÃ|u ‘IàãóúýæÍ“ïY„‡Ÿ]ÊNÿ ë;%û9^£qprVAn$3;’uÁ3r\¶*'?X.0vôVà´Ü$ üs—n# vJö|ð{kdùf4Œiƒá°ÑÍvt—†œì°Qîž`'#ÖþÄB)Ölg”f­F`ÝÌjB–’zÀâÀ6Á‹Q›ÕÁ@Æš¢ ¢>“¤øð7hLÅ0á„ ØŠ>«m¸›a›Ý<'õõð«øý>ùƒ®›¥îMügŠ»çí†?¯ØáÆ1n¨€†?Wú9leó(Àíæ½ñÝŽêr¢4 ˆºÜ‡ÖŒƒ#W î8÷Ø+±iª8Üœûo™¹½Åµ2¯^1”‘ãÏ9®vÛÇ‘>ÚA (·>½¯†¶ë¸E±Þ¦¥|Ð>ûª£)ðX[¹Ïì{²àí¤³ùÅœló›Ãž‘’ƒÉ°¼%žü$½ŒÝü=ú¯UVA†ò¥·NƬÑk¾»ëÊ5ψ—J öâ[´zw9C˜l;€Àh{ïI lãrÐ+ ýÊwõî/ŽH…DÜÊ$”y*ÏawSßR ìâfÆ@[¥ùŠtÂcgb8dL.•’¸va;%Ü'á×÷ž>|R²õFh[i×\‰sqîÉ,(÷5f,º ©Æ›œ|Øj„Ÿ];ûèòL4hžÞ~‹)h3í°ä ŠTç$ü+|àaÆá»…Ø4j}ø‚wÑÓ ‰Ëøë;«êG’鞯-¤#™$c Ýtºœ.·sF*n,$üÚ KHž®ôØ8=aè™*ŒJq8uhmÒÐËcP¢RIZ†¨B 5 ò¬æ®´SËæPgˆbà ¬s›AŸÞN/#7Xæb8Lײhé¶Ší“B ßšqmó²j­Dxœ1kÅÊëé³cxtÓQ] Ö”ØYÐ9Àå Ë=Ĩ’;tU{Ål³‘Þ)‹!KßöÍtxÚ—Éz—‚ˆ‡jmhY+ãimWxÀ[í|’¥O’ªéÙˆeÕ)ÇM^Xùðÿ€!>Fý6Ó} à0„Ä'‹OCxU܆’^áýfB'äÂ_^B§wǃõûo ¬*\éwªb?#–ucÓ—(.O .ïJdî±"¦äÛ®ê œ¨M¼qü«àkF¥Î—W†Ô< Ýmè¡Çf¿;D™×íë€cÝž´"m}qöë¶¢òŸ$ðÅ«xK¼*ªõW HÏ=4ÝÃ6-…Ž6[Ý¿‹ÿeùnNë]NÔ€êì®1E ʃòž¹ó¦¾þ;ï‹¡\<ý&ÒU3î-Ý1¡nwÏÈPoËö*ø7Ôü9ÓŠñÑ" …Ž©i¼nÎ{âóöªý!Ä¡b¸D/Øâm‰8ÐE‹“"Ô»dêÁDËýª½< ƒˆ|1#îmiÁûm3ßc8Æu_nÿbr×î³ oŠ\y-ɆÁDKR óyÐ_¢Ó dL¯ìüzÛçìßžJÀÈ!JAcíõ=½¹x¡@hUÌÇɳ#ýök-cšËž¹u9bjM •QÛ\¹ ¢Ø•Ã$ª’×%žÃ™Ì)©Ôæ8r<×mi¤µ=³:UžDP…cE@Â݈¹bJ•˜EFdYU*”U\Ê™g[jÑFr(º-¶Ñ»\‹Ó Ï(’*ôÏ- ,KsmÓQª¦Ú]]®hu @Ñ$;Jgˆk]„γÙ( :ím“c9í¶®É"&é–™bhTå‘IÕÆghÂKO=LAZ†RÙbˆÅFlJ´–snÂ;&ÕmÙ6³YÈfb¶!ªE«Læƒö.qÇkÎkYÚ3"¢¨Ì3ý(ó  }£c+ê»ÕÇÔ¿÷ößoÔÞj/2YnïhX„w6.ÅÙÔ4@CëpózOÁ7û븤ïÈK3?QúƒõéY¢â⢪T;Œ;a+$Ê…­‡ÏÔ?>Ï¿£è+?K0ÁÂÀ´ œì -(ùùD;Ïà›Bs¼¤Ò Ù¸yÍžOv(—±8t¢Ä¨ .øP@ðì€€ä ¢/ge GFª^ÍAP÷©Që"©@«J¥|´QCìï…Rár É¢Iü&Âü·è|oRn_ŠãŽwcÌ»9}xD’ç6§žsv5Þ}®"º¤a©Šr;e³ÊDìo>4= ™,¶HDÝsK~àžG7´5·Ä÷†Ñsž¸¥b=¶Ã[Ùz4¨%½í9b¢²ä—4F°[tîäç5îDÖ{ϬmM©Ð#yÚTM.O{Ê}ƒlâèÃ…ÖÆkLhjÉ•ÊÈ%íìïЗsçn𙢍¯­.î°FЉ¡¬õ‘ë‡KÖ½•{löz«æÎªÌi*U|ìk#‘¶Ÿ{"WœQçÁKÏ{»¦^©”Fº"’êJ¹/69—¢ëc0TKr´#RÏ"äϘñtÍÈèÇg¨‰b©i‘ž… V†¥ïÌÈÛlU¬»¥š#­³¥ÛfµÝ*ó8M*9a ¥lFÔ‰R)íØÝDS0±"Š•!í/jõ¤ÉY0¯Ló]-IëhUŠºä¸¦å‰ä¹K;h¹]1vK]·t#–‘|ôâ!êªe­²‚äˆu‘q ·*™GTÌ;Jm)Œ¶{&Zö3ÆHaESZv„Ñ9¥_;{XV®ZªæDi¶q„r$ûoDW°Ë=Ñš§9/T’Ìã•HäÍK ÌfÞ¬Ãí·PÉ+DhÊè`¶3ê½"¤k׿|ÃÜqÝÏ>æÚÆÙrRÐL:· ´«rSEŸ{Ùó‡öÙ}m•Z ¤¶Üñ›æ›XUïù'æ~‡»€€Eí½“øwuG¨(+ÇŸáÙÈTDÔMÁE 0ÑSCT5EDDE2PÕRMQUI%D´”DTQE$„EAETE ÔE1DÑTÑMDögŽÖÙѳFÑVŽE“ 1uÑQ Œ,IQ/#]R0H­TLT²3QQ°¥+2Õr%R 3\4S #Ó ðDÊ#Er4©\¤ª’R-+"5«Å «4§'T¥„ TˆŠ¢©SA\·2JJ’-Ìñ ‹EPËK¨‘<²ÜÓ%Ê”“Ò“ÌMS$½'(WD×4BL71õC3ÌÅ- uРó*©2ò²—/(ŒñTT<ÔÂÐ$ÍP°ĒS-3У0D…p¼ŒRÑ5H£/*MÈÊÕ×-RDÔÂrA$ ò°ÔЈ•I0ܳÃ(Ì*UÑHŒ5)<ª@¬½+LóÍ$<“%ÐD$T3uÕ+Ê$ÒI ÔCÑ17rÈ\"¢¢D´Âs$ªþšÉš¤PDªZ&Uš‚h†¦„ª…†‰§ž.U¦¨T"…ž¤¡Wš¤Iš"e•äX‘‚®R.y¢è‘§šª…§ †¥)ê™U)j+¨¨¥U„dI ¹.B©^QA¹Šª*†dI‡Šèºâi¢GÅf(Z‰9†‡ž¦di媦Y›Š(„N¥i¹‰G…^‰¤˜h’)®¢„’d—¥’’¤™Ie›˜)Zº¹^¦ªe b‘å º• '–*¡ê¡ RQ©")…a¹Hi—¨jzºxV$a¦ŠV%!žˆš™"T‚" áX‚)§¦ªjBRn…eê‘bk’†Š*%†æ!æT”žˆåAyáŽ`šQ¥‰Vän‘’"QZ†F‘&K¤K’+Š`©ž†¦‚$dŠAeya¹dij¡fâUbèDU¤«©»˜êRXfJ®–¹%ê™V^âzVšZHFé&(Rxª©©&ŠK‘™¥^Aæ’™QâQæ•AYf¹%TZ‡š„¥än¨¨A‹©ä‰B*¹ë” ¡†K¥«™hºT‘‰†n’^†¢™jj‚z..¥ æX„n^a™…)E„y™¡Š†„fY`Á™af^V*–ë‘J»©ŽIå¹V„HVT¥.X¥–‚®Š™ye‰æ¡bèZ^Y"!ºç«‰+”(ºFVI¦¤–f‘”„¹¢¨¢$R”›®¥ †”R‘šTy.…h„X”RèeDji•–騚º‘z*R–äQHj§ª¦¤$jê[¢h¤iªª*RixD#¦©Yé*HRy"…„&z‚âF啸B!)D¤©J¹n‘‘«¥º[¡˜K›¥Zyä˜dAy„žbQ¢ŠiåfDŠD«¢¶ B܈$K3 CŠB-*CLõR=D{24¼ÔMÔ0J¥ÓqO$4EO(ÄQR…3C<Œ‚ÉW] 2ÓÔô­ ¼‹J×TÕÒ’Ï(ÀTÕíœ]4µ 14 ÌÜ4Í%- ’̳>¶ˆTJéDjU¢Qš)kžZ!äg¡Šzj¤ŠäQ`W•ŽZ(†%¢§–딊zêZa”inA©eHZxzPº‡‘¦eånªb¨b9J¦Bž¡H¹ERR%¨n)*RjTD™•&–*b¢ž©fTZšº*â¨Jišº‘šª¤U‘h¸FV%¦A¨fc9ìt6¬œ‘HTÜUÈÓÕ<¤D@¼Ì$ÊÍQ"ȱ=òŠ¢°Ir1L2$Ô¼¬ÈóÐËȯ(’5Tñ-]4ˆôŒ3)JRw±eóØUÃÒ¡-ÕÊÓ+ $ª³C/B3U Ñ$QH‚<•!It/4EÍBÌÍ,==,½Q#T=rÓUMÒ¨“K#%ESËÓIF§)$)ÌŠÅÅ17$Ó0вõP]\©"ÝHܲ"±PËÑ%2¬ˆ3DCË "¼T¥\ÖÑ™Db•„aj…’˜Š™©iå^Zˆ®R&¢FQ¦%YU…zEK†Š…¤…¹*Z–•˜hk‘Ež¦VžY£‘šä§•äz”VŠ®zab}gu³ÃC$ó ­RKBW#È]s#$0ôÝLŠô03J,²«DÃ$¼Å=%#ÒSD¤ª§70¡#+ÝLô#{9ÎÛmЕ æíR«ÌJB22‰(C4‹J(ÅÉ£ˆ¥=É0„%=< ¥ È«RECJ2S22Ü*õ×5ET4Â-‹1@­“`Df<ÊöšIRééŽf™è”ajFXg”DW”‚„©¢a—ÖDÒÓÅLõ ˆÐLH2K$Ò±Q#Etª‰’]sÒ\ôM"Ì©tÕÔ½sP¯WJ”è%{I+KT”²­Í"2B=Mt£%MÊ7<ôM ¬BUQt¥Ò‘2K,ÈÛ`q"JOIHÜ/)# ¢’)tÃ4ÃHõJŠB³r³ ÕR´³#CBÈIÂ"¢´Ã-œñ˜)†Ug]µÔ4¤“Ì’)U4 ÄM‚\Ĩ\ÝMļ”5 /3 LL¢Šó"$BR­ÕÈ5Ш¥BÐõ*dÔWPõ KA55\UW-D<£Ä¢ÄOR‰QRD¢ÐŠLd‡$/«´A 1QRÏB£O#ìI¡9Š陚!膙&˜F’¤‰¤ªd¢¸IêW®«•iV'‚©…ˆ˜ªG¨UaYZQz†DžHy¥’–)i.©,îÓr]g …2¬¤ÐT+%Hó(±s3ÐÄUB‹\2Ò*QDˆ(£JÉ4Š”¢0HŠ$ºœBUWRLõÑ2¼‚D¬O%B"°ŒÃ*Õ\¤ÄQ7"-TR ÊuÌOBË9-µÊæj`B¥a¥YJÖÅÔ(I3ESL*"{g"Å-IÓ PÕ%Í,ÀÊ—=<ŒÉJ·SUÈ¢2ÄDÓET¨¯$2+ EÍÒ«Å 0• \K/L¡ ‘0© ð²2*DZBÑ*(%D ¢‹$²ÐÉ Ì%3ÊJJC+Ó½L’£íbz%d(ž†!!ºz¢dj¹n©–ê©…‰zºb¦e’*U’$Fm©VºJh¥«Õ£E›ÑdQ}¶¡ÞÛÄŠIJ#"´«2ÐAT°Ô¥°MrÔŠ¼ò²RDO4P%ÐÔ‰K#ÅU\1„W4ŠòÉ-L3ÕQ$òQ5rÃÒ“$ž·iiyX…U‘§šs#ŠY¨¢è®ii)&zcm†’¦n®”–iåz(•j˜–Xç„¦åš { àzR†iÖØeZ¥„^jHfzHzÌi›†ªV¤B™‚ö(‰wžœ×E%×BBUM /R„µs3CÌK±:f¥fa$‘n¦žØˆ±-Ê‚D*,ó2]s$ª¨ÂÃÈÐ5ur­L7H°Àĉ]tŠ’Ü¢‹%ÑRCÉô¡ê2¥S>°¢Šåævµ3äݹI$®¨¹JFF–®•ŠnHYêX†'©‰á3„…µLÃW­…¤nbéç2i»Ú×%ÕT°Á#4*ÂL--V-IÉ9*QF¹âDÉrâ%b‰«‘FZ_;15È4Cç<¸ŠíBjë’äg®‘Gæ Fab)–}£3/› aDÔ¼{Ûu±—— ÒLÜÜ“u̽-,ÓT<ðŠ"‘SËH¥­ ©*æé‘Ø·E±é†URaž„".¸[žH©Q$¹b‰(‰ž¡^T„R‘讦xy¥b¹WQš¢^Tž•½‹Iu&Æ3U#ÏFÁŒR0Ò #ÂòBÊR²í8•g©„ž†™Jaìo^v`‰å¤…—ªx«‰”Q&i™anFæÑaÖ%QsJM,ù³Ôµ0”¤lc{g ŒžØÌ,ªgvìîÝ ]•‰$‹¤ÚEÏ*ª)ìU SSJLÊ™Àí¬Å"+MCC ÌTÒ¤¤43=*W rÓ òU1$"Ê´y“#ÕÌUE<ÒDŠš2âVèP„¢FK®‡¥©J˜¦•‰^ºZ¥’\rPeEeç·¦`œ• ¦´]˜„¤báªèHbxž¡E™ˆ¹ð›4ô+—/4¼Ñ¬B×QMT24³ ós3EWP™Æ^ž¤‘Óä±ç¯bu+ÓȧzÊ!©è–b.UF,–b +¦k^¸¹[nÌÂŒô’33ÛÜp««·8¼(Ò¤E6$Üž°ÁIÓ¤Dò1´jDz么ó êUaº¥D˜z•äd‡’.Yy©&}H&d¡.½ºTÂC^ÖFE•䈈…†Ö˨yЭ¶Ì‘B9Ùd„K¦•!efIV(^Zéé"«¢b¦z§’HÉjZ¡V Q)¨—©©¢ÖÌJÝD•HòÉÂ0¬¾LfÚØˆq!*yÚ¸Fk™Eê»;ÓyÙE(yæ‹§m©‘Rf=‹TñPµ9íY4ørŠ9)Q`©š‘§ªê:QaI.¨6Û&õ'…õ‘ÆsÚ䥪+šáª„b’Ìš!š®R¡®‘®ji'§›h¬z.læ’)®nŠRUKž•c¦a‰Š‰än†–¢(›½B™•妑ä¤jöܼ¸J뛞®D‹¨¬×£½êLݦ’jª.*½¶öÎTÔê†zdcά®8ÍQ=¶Â2CH™ëz´ ¥k­êܵÅ7HɉI-D­È—‡½ëÔW\ìR\ö÷¶Ô&¯m„ÚÅ/D)^ÆÕH2³mfQY‰‚‚¹#×ZÆ0h¤V†Ÿku‹9Ñ*‹Hõ£LÒ“É =uÑ7f"¬'“&;Ç»&JR‰É;ôö̉_6Èõʼ’m/v¹R•˜‰&d‰&v³œâJiZ˜Ä:í” ˆJx}Z"!–JHºH5&Ix™³[&›¦d%¹j%¢dºHiæ’FJbÎíÕ´ ¶2åEb©`ncÕ©RjÛb(G©y¶Ì˜ÅULçbÛ·8Új–V&Ž»‹RHˆ•Byf<ìIŒ ¥S*²“)5ÉèÓÆL¾g©\Ì%%æ{#5Ëœa¹fX§l£›¥ªF © y&9‚އ¤Nz—Õ‡’($X{iMq›ŒÕ0…ÌÌ9ë2I ()UL*ºÝJ#Ø— ç:«—2¹”¢`§¢–lË–f"*ë—¨˜zê"»Ñ½D™÷§×•ÃÓ…¨.„¢©k¦IFXŸháÃÒõCÓR‰sCÑ#¬«¤§¡êZÉ´Þx÷»ÛεˆI_Y2‹(ôÈÒÄ“Òõ%KZ\k¦!y¢IHô:ÈÈù²BÃ)I"Ò’ ÊFvÖìòH’ÒLCL³&Ù4ª¢¤Y%G[g´R·/© Ï[vNQÄ—±ã׉eõÖ©”©TRžªŠiç)BLÞ{ óZ­rÍ séñvR^Cž}ºMÍBÌÑ ¥’”*¡Lm/i¼çMÜm×,³s&”#°ÂTk°ÍP¥êÞ08ÎhO$öê˜ë^¸ÕV‹œ´‡dYQY«9ÒÌÆvìȽ–hb}Z¨Pa}U‘ÂÉ5ËròªcØÞyYòc*ÝO‡—¨Fb»9I¹E*rú2Z‘vÚòé3Þ÷/«’Jª¹®¹(¡uW"°ž|å4>ÉïB:—XCCSÙžÉETÀ I2­ÝætD,Hó<°ˆ•K\©tªÝ] $D‰O-¢ÒÊk9¢&‹¥I+—šJonó˜[Ìå”I¢•^®óŒí!¹£Ì&j.ÆŒ®Å¦Õ¢ÿFáGrDZ)b*F51g E?+=4òÈ­Põm¨Ûª®6‡:4V¸–’r)+„™£B^­U447¶G·$Oµ®%«Ìd¸FQ¼›,’{ul»D–³˜Ä¶ìŠÍÈ0Õç­0Ì4žlÊë…¥5½èMpÜÃu^eÍz² %Þò¾ÖwbF¹:&e×J9J„J}s§c3D¶VYR\Û4¸zË2ënŸ>{-L­(%3{Ñk¥fIäÄì$2õ<1^§…Êëiäf=g5 ÞØPŸ>) Å´Ó‹LU+",ùŒ¬×Y Ù(¨aö´m²½ ŠR]ȉD5)OQ+Ê4,¤ÛC’©ˆ…y9&ªY_A¶ÆÓ^‹²™×½·”f‹V–¢Vë †Z¤'õnÜ+Ú„¶Ù@"’(…BòÙW¨ñºÇD3~³$ÍÉ BüÙ~]ã\ÀJIMÍ®œ"ú!òYÍ"19l쩾Huš%Yˆ…R<ëvÛo>©X[*‰»øÞC&–Qé*Zåv—ãË‘éÌaçPå*Ëo&ÞÓ9=ï6ØšjŠ­²:OQ¼’"äȦ4½ ôË2W*û^¼ŠnÑhi¶.{¢Þ¶ç“^W\Õç«VÛ;U4"´¼÷„Îë•Eõ"¯<®!T¥e´N¸’é…ꉉHRöν¶%R¯V=.‡dI¥dr4öŠVŠgFC5jH²G£).<ÏyaQ=¥Ó#Él[›£Û®FKiG]= :—9Û8Ö6ÊhÝç>áóÅÔK{X£Dâ^[ÉW{J˜†{3’ˆr¨‰è EçƒnÎîãnî×v_'·>ÞÖñB°#)(ɪrYŒ¬"DÒR±$¡y3¥¬õ*õ&õ¼Y¢šˆk¦l’<á}®ÊŠûpjVh[žnÎÒ‘#RAè'"•vÝÛ«0E4 ¼îåws½©ÇZ.L¸Ñ""­»ºšZ>èÔ0“è‹g’%ŒP²©$¨Â°¬ð臷T$sÊñm ªóÝÏví ̱Ýk$SP³yì¹itNõ§Nå ˆW0庺«i´©z&Ýiͼْ-”Œ¥3"&Çt¼¨ç%Ó+-]Ñ£Ì@Ô)DÒ¤®né¥ô—ºØ¼Ó(‚­¦‰"ŽH¦0¶Ì¬±Æ¯ j.˜pÌE׬dÖSKçšYó3³Bço9ï{:†’F¦Ez²»°¤Ê°ílÞIðÉäc=ë¥òK$–€oYm® @™‰¦¶Ú÷>¹-²aé˜=·+š‰â¥i!;·x‰ZdiÉ–fE*‰Dº®EË‚¬Éy6yÑ5j©¢D£5ï{'†p†ó§ð{ î¶CCD5H/“¶Õ{¶Áš©õ³7.Iõì“Þ¢ÊZ©eÌkÛ®½×1U¶FŠËPö÷)rÌÞwž¼ôm¨!ö¬žÑ }§Ë0ºËå½¥V¶Êèöì ¦’V-‘YX¡¤š¶—{m+ {`G"<Ä¢ êÒЂ!{:{Q PÕw®Á9=³›2T/Ô]Ýk#Ú(`gÛ#ϼd{*í,ëuÛºy Za˜Z Û°°¢4¾Æ±æ^õgÏ«R îµéÊDW!–š²’c«¹!æâª•*:ÞéØhrb¥…ч2…¯{ÌbìµíaPöØeRä^W¤G½g2ÎÝeT”ê^«&s שG^ÑY7/Tmë+ªQ©Î*q"]KÐöDb']±á,Sb±wr¢rsŸ¶åMLC6õ½­‘‘ªºè¢º©Ÿ6*ÎÓçÚ1RÈÅ*0Êù-4Í PA.ƶÀÍÂu§Z,À¦LµKTÈ7d5Wd·“f&JZK–ocvŠä…m ²ÛÅïy7dXŠÌk’R U†n®ª‰=jŒJg¡Ñ©í5“:õÐ8Xb¹-Þ¼zŸsvl´­jÄ—kvªémgµ*ûtn©6E÷°>ͦªE£’ëlö&ï>w¡Ÿ9PDyÌöô)ï1aÞ‰ÔÜѺ‡(‘ËÐ*±Œíiò{xÊL¢¾dQG4{n{75",µœ˜óÑíì÷ª³¹pù#u Úzª¨}œ)&“m‡—Ìå¦áTðÚ/+œÚM‰Š®y&„+m¤–¢6ãQ(ä•y-£Sz“ÌyUa§1¹*ví›¤Û ‘h¦%«ÚEk :D$õaZ†ôy÷¹¶!ÈË\ŒúÝŸl¼Ø°ª7¨rõ­¼–ìáìO©÷·bÚ^F·Zç“ÉPCìæGÞðú2aÓ®Ùµ—*Q›K]BÉCr–Ó…3†reº”Ô+½F4iÊ¢ZΉsÜóÖí›Oéff~¶á˜þ—õ<{ï%¦…lr©«+F…jªbYêâäPI¨„–šj… ±¥‰&d~©$-Ñ ÄÂS,¬1*(ÊPöülxQ"¢—‘)š%f©IDtB*.©=f®Ð´¯JžÆºêHQA®™bëY èöSÈN×B¼µÊ235ËK£óý›?#ÄÚÕž‡Àç ç3q»mpðgŸ™h£‹Ý¨ÚQiASùH³¤ªNf—”Äüa–Ï*'Vœ²) n%‚Y‘‹Æ•aܳ˜$»®4íh«ûò«ý比†*‰VüœDW(Ìšp”ª"sp̈:=;Ó ŠºXkŒ2JMJ¥,´¨¦tôX2‰-S†…²¬L}¿sxt ©{+Cþ>œTIpÆ0Ö^¡ÉR³`²ªöce„ifµYŠ~¶CS+˜˜ý%õl ‹E=¼C˜CJì«8òÒý’DˆGÂòÄ„„ñ-çvÓÅžt§‹DµÌ´f;6Åt–!.,B…BÜÙD¥B~fç—…tf0.…ï#¦wî#å㘠™k«C¸Vc¼8b n–úý,¿]xrÜ'™.ÆhóßLMÁò¾Ë§M£áÕ0êNÍK5*żֆœstËr‘yjuD­e¼[Oœ^v1ËI±Á5PþGp80xàÇ]îPQû5ÑÁÇi’ëíÅUOWÿ“ ý¹AîܤA<Ù¢u‚§Ç‘N~ò4y¼Eóét( Ò’ ¡@}¨CÅV*€¡ÃGOŽ‘>T ‘Éò¼®º mxím¶S»6ÖWŽÖèøýÆ•7À£í¤P2Q\U÷’ª>Z@\‘ð„ ½S (þœ‚<0‚=/´qà |²T׊@ʉײøÝ÷>Þò\þaàñP>¤*¨'î’ìÿ·ì >¹ß‚!ò¥Tzó¤ýŒ4ЇD+æäWŽ @PC­ëà¥> ¹'#Ø×ã|7ßê •ýÎ0‰oØ?ªdfýž¿8Ïû'êíø¿«üsùO­û\ã®êݱpyžš”öHÿZ ýµküŸû£þ¶/K0I€Oúë`tÔê BÁ©ÃpßÑ`á›ÈT„Q‡|d z“,‹L¢§êŸÚi–(N˜iû˜FÏJÊå*‰„å…4Ìê\ð> j2G‘Izöòýº`çþã(ÔG¯[ø;À5»a”eÓP@£׋ø@ˆ/øe¿;R]ĿܖÄpºýÁçKçW—ÆHh`2êw¢%V ¦¡,ÁðñÃ8ç÷gÙï6LÓvë2’`’A&°€9–¼;„Å“)%CÒQÖ¸ÒZM­dWB¼D𬜺¨¦ªU)Ìä Š1ãu;ó¥MÆ„m`•"›U™áxª4¡#‚-,P£ðzTC{¨\†QC#¤H»ÆDõȀ£x¶Ì—¬VÞÁý»¿ÜZÕÖz9ˆÄò'j]¡Ó¼3:1å¢ÓÒÇ‚Öm[ A†ÍNM#ÓWOæ_B"H›—TÌPÍŽVBÄ‚› Ê M„²„€08Fwㆠé»2ˆWh= ƒî%-ɸa¹ë\,j÷°±º ¸,«ð±ïá‘Y6¯ª›z[f~ú3[GFÅéy§Š€È8j˜õÃ^Ö4ói`öˆ¢F„K"ÝåQlªm­UöDʯ[vëáu݇{ù°.ô7Ï ÷q½$/²£¦¸{ºÚtõ)”ñi¹$A䋎ÝÍ™~7K‹”{RYŽ»ÂkãÓ^2Éõ¢Bí)>áÕBá‘e¡rÍNŽV ˆJ›MbÑ›^T{Êæ’É‘hoË£¨ŸA´Y¹ïœ‚ÄÑŠaé—…Êź†V ÎóîV*&Z–ÜÓ²7.›Æš±Oùæïß>ºÕÆž¯÷K R¯À·öÅy:že­y$jÝ3}’­l•*ã–ùýg<Ž~25ñÕS³¯Uitõ°^ª¯žº–fÊ£füÀÒ»™·ÂEMRñ[”)+ðûom Œ`'ÉsfGöMÒ-•§TàŠñòû×ú– ¯R6U½ˆÜ¸0©¢†Q๙(°‡rÔÊü*|Þ°]'ÞbÚ§¬…håB$¬/»·³U=ý@Þˆ>sÅŽ¢HtpBßâ¡Î÷ ïœENüÛªBœ£g#nL]zUõëkM|–|yíy±ä!] ugçè —{¡ÏÊö IÇ”’“ÒîЮ€„?HVǃÇÑ»ÞMïlzß™ð ÍkPváî‰4E´É•a2ŒUÇbXÇ´§Œé |>>Îý°\8çœÃ/ŽÝp¢‚1ÅDJT ­Œ „´‚ÆDŒB$¦ZÆ2§Ã±Î†%>û-ºóáX5* Æ=}ÞiàÓ×¹ðÎ\ÇCÙÔ;M¾+ ï-ƒÎ Œó_ù±~p…OL¸.ü·ºrïÌ"¤Šé~c׬¯¬Y)ä|èÙŒçæ6Þ0rOwAëÛÚܲxå9I’5Õ— ­‰iÎìy*“‡Ê½Ž=búmgZÓ¦\kyå1Ï1wktcp3ί‚ò«RóG 5¯ZÁx@dîã&å’ƒ |aµë*>îw—ù¾¤äýÚö·„×^*öùåë®êºÍ{NZ-劧@‘öÌ`Óá|Û¬cÁÎIu„5*ŠIŠŒ2¤ŽŠd"é¡CSO‘% +×ÒV[¤ŸHÒᆫ;ºÆa»ÜESX—‡é8v"þÍätãÆ0£éòGzó®z·Æþ‹q·¾~=÷¾p‘´ðCI D!@H˜e¸R” ‚F-\fŸ²i£²Éž¯–VLWð=ªS¥R 0Œ#kPP Ѭ™@Án¤¨´£Â3XǽtíyЩi"aŽŒ…H¨‹êMLõ¼û²¶&7eä|† {´B(€ºtuuQôZ®i1ĉkùQ ^#æ"UAC#̇VBD HX»”F™Ì¹ÍzÛæ‹u ¸sm·s.fÞú\Íþ·Î×íî|¢Šp¤1ð@ OdÙ\—/™  cü\àÔDÐÀ‚CÔ<"Ò‰ê d>/x œ\5 .« vØòz*³Œpža)@Ük‹0DBPx´ Ä,ïà#ÊÞ ÷á“…'ˆZÜ€Ť°Œ6FI`ëÔh3}‚q²]X iV Æ‘;,èCª)h/Ã'£ÁÄ2F Ls RP"-£jî˜7`ÝG¯´Ý!ŽBè!‚¼álr€ÁjPÇØEl†ÓÎSQÒØÈC¦qÕÅfUÃ?ÊhŽ0çeiSÒ»Žµ--€©4äk{ˆ˜#Ç¡YfΧN¯$'PQ ‘!š‰R¡dÑ)è–rÏadd4kć1gS…¦ÈS¾®Ìå”ô…JâçÚ„í§&nc¬7£›îåTO¥VÈ v%š`ÈGmŒäjtn­£\ãÛˆö×Ò«HêÊÚüXØlš>åÁ5.Gíξ·é¶ŽØà[w™óÛ<Ø›âÍË¡#î8 E@6»óhÂëäM5³¶W ðï(ú¹·é*n¶šV&ÇŒ£ùˆ¹½Y6OŽý>bX‰ßðsͯŽf7¸Iï²á•%AâO£Â<îš ÕÅòwô ä`ûö÷5ö&³ˆŠD¼£¸ò÷ÓQ̨cšC‡&gî\~{Ð0Õz ÃnÆ+D>ê§Ž×Áš(ű½¾Ðõå-@27~ðØKË ÕÁtkÐ/ÝÛæž³×ç¿Zûý~FXëa·Ç¿íç£hjøûeá랯ö°€®Ù$˜V‰è±e…"ˆøë8î‹áÏêxø-øŽó}'Ø–¨XÉ7h},„_@£_É8iì>ž®Ë–õÏ 0ݧ¥=†'™7´ºØ—vàätµè­~Ùï\©Õ¨ª<ßyçôô¬S]Apsœ;YÝÍæØm~;îÒ=ŸÆ›Qw/ ±âó;ÝÕËQÒŒÖKŸ’“\yŠ­¬,߯I|¨¥6^°¬|å·(bEa¥’eqß;¾ÓŸd„ü ¥dŒ®ÞÌvbU¤ã¦dí®é?KžíóÓd ”XË~öÐÿWXÀºð¡ÖDùâ×Y×Ù•JÏm’Bì—'™¾ÂÞÏÑ{^åó*„¬Á>A‚. ©Yï“õ}¶wǺÁ/¢ 9ü…ø²Ñâ×v0²qê]œO%©¼L€®Ü§o*‹¾¨méãÊ݇Ô[^]Ï.¤õ„£âã À~- ŠYÉÏñÝ,âíl2ZS5%¤§¶ S¸ ?{‡âT®NìXÂP„Óå(ªkn+erü\ ßWWÏhg3¾ÖKI²’ |aû6ž èŸüy½1_7óW}éª(Ïk’ÇnE@€aüéLºÐlRGàÞ]Õ§¬d-_s–¦ª,·Û®X7Jþ;£ãí²8hóšt¯¿š÷ ݆!¦·€~}'Mñ®ËV¼Û¡ièåÇÖv]Ú¨D~=‘2÷'~þA¼‘{@!RñzÞ2ÃdL-ÿÙLnÇÎ(¼¯Žœ\—Œ X ׳'¶äVPX#/-2Ñ!­¬ncˆZþº¢ÐÇÓ}ÇŸÛiï[sÙ&‚þX ë¨ñO¡:úšÒžxÿ•6A!øø0¿¯I®ßÄÒÐÒÃñ’úV#'~ÿr Ó×»ËÜB:ýýa–a€åôqà“^ƒÀÇœN0½O õ@ýy.ãðIÐø¯—yì_"guÀßj}®U7çíù¬?£ïø Z„˜€CžÇà«*¨Ž ·ßµ#ºÔн¤Ô¸U™cöÑ1_ø®!ïj˜û)*?b~éh+Düׯ õJQÍÂþ AàÉæDK3š³Ñ¥üŠo¢Ñ•@ÔéH¡±Ï…R 0ôÚ±ÌBK¡/8áºÿ ‡4Ûæë¯ßB¯¢šxO¦`•ÿ£à¼ªˆd¯Éo`€~Kœ™ûïž(IO·X|Ó@yB䏸õØC;áò?A9tìå$)0rW'+ˆ ¾hGêzy ÜGš¨;•IºÆÐâ[=Eh2NAŸÀ”ü8 ÌŒÕìS¸§R§¬1Í÷ò‚6šäã¾ÖZü4 ÍÔâ/ÖZ¥9ïªUU[A>Á®Mµ¬@ÍÆjâÁYs·­{ìwöõŠx¶›á™3ê…ðyßïëìOÔÑ¥ &7ôi_ÑÜÇ8óµ\Ñm¯¨›~ÿ‘–ŒJoA åøzŒïç…é§_†œ& K]±ßvœ7ïÎáÚߙßXSÄB @t’¡•d(R”´­R´)CAKC™M4 ÓTIQHÉVÀ{¯õ˜~o¥ÄTôþûDéI@><(¡õYSõ%¶J üd)óa^RE:¹ENZcÁb‚{˜PÞeFëàÐ"aÌw|tü8:ψ!ÿÙD wÌ=¤ª´ ì«ðd_]˜ªO‡XJ¹÷‰ŠÜë=DZ?èq ßãh^âÒ}Ð+®HíóØ¥–={%•ÔHçɹ\Á kPQÍ£Š±&½Ç+§Öë×¶UDùpܵ?e(ë(Rj`Ä<ØlŠ“Ãm{QGD><Æ^ëÏ#±šÚ±¾­/›xY$õÀö<Dza×£ÎfOW/(”Cí’§¾W.WæŒÙèL²Š(IíºÎÔÛ!9Õpz×ã›ÖxWQ‡6…92È‹I<ÔCÏ‘~¯˜h^™*Úìo µ¨`/§íÍDêq}fåjh„ˆÃ’†¥‚˜¸}-ðÜâŠãˆ·ßχnŠÙ8yµˆðN·€ #ÇíµJ 8LH/Bt\&|V ŠÏnš(HJ|ˆOª^7BéD8¬ŸŸ/'5TL£‚ɬl#:Þ±yvÙWÔ›JÞíMNsíœîúÜÕù ¦¥U,/¶¾»;‘¸u1vº…H™ÇÌI¿_4=òð‹›Zïpn¸Xã”)-ñ!_r“ºAWêµ*‚‚aIòIžJeSÒùD,­@ƒCÊáÅ æö¨ºHe#2ÁDx}¶Nó œŒ)gNÊ÷1µ¤®Ûfª$D7;wΉ¶5¸˜ï–ªfÆ 9Ó«ÅE¬'¾q¯R‹DC3{nNÚß|ë£@1繓ÆÓØÈ§P ©´UC|Ü(:çÕ뽋2mð–’E=‰~=äÏyï9ÊrJáW3ôȧ?›'$—ËžyX‹­u ¡n°ÔAÒòIB)‹æ1ð4Àk×Zþ?}ã—ê™´mÏÅ«¸;w“Ôs‘·æûw˜SéË¡Ö7,ðÖΕ5.I+8DF~ôr™ÈÖU’H,ÂÓJy5øïÏh˜ö›UHÈRt#E§…¼RµƒíÜÖ>EìyX\‡ºî¬¡kÚ¹ªõkˆ…O:;*g6*e¼jÏ8{ozÃIéôx¸ÔÓMç7Fê@ëÝ`¢1Ë8Zbœú&Јd Ñl•ÈG¦5ß,¦I>>B×z[==«vžS @Àh •©éâ¨FnŪ<5eUÄsí'ïÖh‡¾ZŽÜÉØÖ¢}–@¼ƒDäæw¯¦yN†ÍËÝ(îF„UWé$s—Òaù¨Mã*ñ¥Pkl;|ÝktQ±ô›0½á!M}z9TðŠ(Ï]Ñ\(¤—QË×'­€¹äBöÊHlH–ƒoo¿KÞ«æ3™ëÁ·¬!ÆAkc¡aóHˆÝa´Ìe¡ú¶ŽJ=‹=œ=Pú5ºáûñ§äö«”4$¨ç½Ý‚í=bศ¤,ˆF‘Ÿnsøë~Ð( šóÀãÄ %‘ÕÏlm9òxMê¥â½­i»½êv“mÇt§ÎœxÙ,Y+{²xh»Ï [c¶½vµ˜3|9âT’óóyyÏÄÙ8ÐBEóg”´gŸ¶0ó\ë>ñ‘nd2¦{´|qΆòã$ç„Á<<óTSºfªÞ¶…’(Ôâl±0B)¥×«EE$¡Š 3Fktx"ú-èÞ,Åç9”éI9Øš†çž¹mŠŽÔ:6»³ËÛëÎå)ƒã¾^ÙÚe[E8Jø Tccáóxé šÈ^U}ëª(—låžä>Ý¥y5ju&|ƒMq (S;[ÏtÖ5”ÇœËY‹È{Ööì{éîè‹}Ö÷´Û3ÓÐìÝ´xöÏšeM]"Ø1fî»|¾•ø„ù%ÉÃâÚª)‹©'ÄÔ»æÞ~Ý+¢$µ…îUåâj~›$Õ2SÖw¯s¥‘Cîé_¤öúw9$‰LïYÙÖ*íùÉTÚ¢©O¥MtVË}9çY¼ÏLÈSœa’eöÚIdÙ%D#õ»Þöö0”Ð’Ü’ôÏž‡ïüÞ1ònkŸ«iDRuݤ+j{x½TèÙ"OÁ¥Qˆ1áÌ *F]e«œ‹ i¶47„C­Q»$xÀˆKØšC)œ™¦q²D¢×Ä™‘–ÓÓéFë’³co$!‘¯gFÓt‡(:ôw¸7'ÞÝåF¬öûn•ÝËi:È=-‚ž©/23’(¨ˆD¬¶Y¨»e÷Õžy²oƒ×IêøÎ|Ó!Š™ –ÅTq ÅTÆ:Þ¼iW=L¥óïxw¬¢R—,ˆŠ«5/:ÝGLæd„¢E+7|·½ƒëÆ÷…Q£;A·uÛÂêKЍμ{{ÔºÎ#ؾYÙç§«â.mŸžÆTn†¤™Ä’(l{N¸ÔTDîM4'l#æ<ä¢*H²áZËžÚååܪŠü².óÆ¢~mŠ()é»nŽMì"çwR¯A’òI<ŠõCD9'«“mX(Ò±È抱†[EEŽN»¹96Ùç9áÊcÕ…ÝkWY‹µPN>`'äÜ$†úwsž0™ÌÖtœ^‚5Þ{±®i˜ú¡s®ÜUwçw-„Ž5+¨(``A-Œ3<çÂ[“ç–¼oBhœóK_‚œg(“4y͈ ˆQ\TppT÷·^qEÖˆg5J:<cl¤TµÁÜô½Yà}lƒ‘½¤3`u \»lB¯<#±-PVÓÖ˜dvÃ[å›hˆª#ŸnJ‡g©~Êõ^L½ÙZW³»C—çkæ:sÌ‹ñ±ØÃKÞìáñN'“PؼïG:„ÃKÝÆò\ÆÑ,NÓØôNIâäÞöxð÷oØ}¹F¡ôñòí…vØm󵆯K“ŒjIò8Óž4µ´ ¥ {I§¾N`ÞÈ$iÉ#0Øò!;¶Ûšp¨8Ð{³w…Ú¢5ÑóÌ9bÝÝ1°Ž¦úÔ5ê=jùó›¤ghÖ¼ÔÛˆš€d’bŒ¤‰ðĉmW+{\{$×1±±Si¦RgmŒê-JÃöÃñóœäë‘íøš½ Ö(1UL̾}¸O8TŒäãèÔÔQUJÝß‘,ðï­pÑÉ&)Ë”Ȭ5õïHE#k Ïçvz‡µd‚’>²’zŸ‘xrt…7zQ.zx…%[Ï`P}v{L¯m í[Zvûl‰pÑP«¶Îá{gÔù$†kæûùÛÈ‘·:Ž|‹˜¡fjG$ˆ6›[³=p¨øÊ1.1Š€«ˆ5µH0<3Ë^ .ë”úKÔ‚†±ž¨’yy ”Î6“DÌQTQD_ÑçžCäÞwÆÈ¹­0l ÈÌŽ œ/b7ÉQúAú.ˆf¶1¦MJŽ×£HÃ>5àh{šEd'‚Qy¿(b ÅFt‘MqkhYLèð¢h¯f2XfoE¶xuGçGã{v¶¡>™^rl;`ó·KÄ“r¸M’—$#Yäâ£çÃõЊTOšØè™„Fï—)^ÇzÓ*“wcz•èX‘§¡âî –j°yƒò{o¤ß2ÈUt°ÏÄ»—W[­EÇišÈ’u>º_>p¨)lGž±èŽgŠI5Àä7NmïÖmUA|˜Æ„Ž™’^ÙIšæ4–À؉èÝIG¿OÁäÛ5 (´Ä•µÂí5ñÚ^WÚÜ ûç‡üSó]êù5/a×ÞÇ“åÛ*(kbE¶Ý%˜åcæ½t÷™R¶Ç¼j¢¼Âˆ¾CÓÛ3Ì¢kÅ%úTyk—9îÊœë”(º+¦ûúÙôÉfLoÒݼR _[(ïñÐO×§\ Ä-¶Õò‚ÆÔ}¦QrÅÊÕR,ÊýÄŽ›vÁ|üîDÖ‹Õ­ùéK¬ÑSÝç+Î…áV¦—©˜‘ãŠñCGÊÊ]f”5*f‹yõw*†I<º$ÔE|ÑfÇashóä7ˆYöʮÌ]J‰·5ÚÚðÒV™(¢}Ï¡B˜a¢Lc«Km£…tJ 2Èar»Iç¼·8®Fâ$öËç<“<§(¼½‡nÃ’¤™ïz7ˆ‘E‹Ñ…Q+|”3„^øî¦‡Óäp´Å­§Í'ò“!FlsÔNÍ#‡¤R²l¶~^ÍèSÞ¼Ï] ¦½Ž=@Š'»]Y³¡u„¯z7:¸ŒÊ‹‚ªæ‰8§cÃì§>¿,KÊf¤höàų¬¤9ðgA$Ÿ›mC—¬Þí÷EÜ¢¥Sö@KzMo.yK®9Ž1dŒí¹1tg²8ù§³Ý•œÉ±vBzSñîUÃÊ}WEÛ™#XÛ½ò×Í^*qfØJF+rëžsÅÈÒ,Õ 53 tÉØÊ#õŸ˜†ÝÂ’Ëü°’J=W/«’öËÞªâ5Ý3W¥*Ȳ"yÍÍ}§m‚ ¼äIf§ÄäÇÌ|±é!&‹‹„ž4O“òÝÜéA â"qõ•Ûs8ƒŽ4j/)©z«6J%G-"ëÏqcU=Nú0ãlåÙD˜ÖVJ¦‰×D~– óæçéŽÂwÊ1]3ÌA~7âãâRFü˜Ââå‰9+›ò¾“CÃŽšCîÕMÆ›.ePvœœšÉ):0¡Uú[o= Wd^É è>¯{Ù™h{Až×@/ãeÅ~ž5â”{ ×µ®úwË=½´£ý{ä0¯('·CŒ©œöKØnS¿gë¨Îóζ5›Öoåáé"¡AÇ!R¬DF×á ~8{cÇÕÈõQç!ÇblIhiÎ÷p(®<åY--{myÓ#aòsª¤ôí“΢z›Qʉ¿JÏȱQî (ò“·M³Ï*|ô13€#Æ`½‰•Ѽ,´kÞÏh©UyÕßi ‰i¹6^öò¦ôgu©8£Šª*>€ûsž»·Ä'ÑÛ fEGÚ\®z¬¦ŸDùñ… ò‹Ô“YžÏM>°«æô$ÕH×(½b$A(¥owuE8‘e#õݛ핓h^ï!;Ñ9 ”üý¸}í«µ6ÆÑ¾£¼ý¦ç/'yR’í¬«Pòý¡&›ŸXxÊ’ýmοKãшBoˆ"Olâa_½±4ûr8xm¥zýìobã ð¦r½© ´0¬ÐåK·gIž3Ï×·¼GJóN»²¤< הƈ%éÍu5$žyçôÝ/•™8u5’múÝβpåHQ8ˆä!RIÎ~+®Çjä#;H¦â›[1žCG™êǨuûõ½b3’|t:çǽš½6Ò"¬ý&§ ë©­Ì_,åEǬ‘rg&$>Q«”&V½¤ì*±öåp¸5˜þ#ë{~D);´P‰¯žÄ}g¢¸õ®¨XÐÓyá’H•vY×uo<øüâÃã=ò9'u'F"$Ÿ­rŸ—‰íõ²nfã=fÎÑ÷Öd’%,±² H3¤ Ê=<Ûtñm¢~[¾'œ“ù&ßZxÃ'/ÊåÍÏ“$ÎT&›¹¨dRØkëÐ>=X ¶üu‹Ã…÷°è#*%x£{t]øÇ׫¡~’SÊ£óXžRóµòÂ?"îÝÈÓ[²4d@”11¡ŠUˆ’¸#’zÞ‹¥A¬éƒvÇÆc–«c˜©‹àQÕ!gœZl—`Qf™«ç®iö蘜„À^F„ÚߣÌÍѵ®!×¶Cƒ×œt¿¨7eAJi‘AõÙb)2Á£òçOÊ¿6>Y"9ù¸qU¦sÅ>CJŽí¢©ã1z .M±ã¬·ôo…Dëš³6—"eǦè¡Iímú4wõdç2öL(Šg1‰ luùøÃ¢£•_“ÔO ¶S)H9#Á | *SáÇó°ôùurgh™ŠkÄpÚ3WHÈÃUr‹Ê¿Œ†ºœÓ‚x1OR×g\‘0Ä„½êº§AüߤçœEô ®’bsÊ›¿6uLömezA­ˆDpÕm÷»=`ó$ñôžÐ¾Å©‘dŽ |xÖ©¬Åðw§+Ç­C+8ɹáˇñîߊ½²4 ™—ä ëcRäË®¨.a¥sS\×Îv²kù{磠>-a$ÞØDÏ)zÌô÷.ä¾ï´7’'#¯i¦Ò}¦íƒóæòsñ0‘Sß’3z ¬Ju¥+³Rd–‰*"„Ãi”•Ï:q¬mõ»Ú/:Çœ†ñ ÂãôD¹•}¯·É—Pzó³qöËæ«ºW½¤I¤¬MIiG[èwe97D!ª¿ßkå‡g#¡üâÏçZ¨–¾F™2U͉³Í­!)¢Â/}'³uG¦u֬ği틨hm™XW=¡'c„c÷Öž‹×3Îk“’bâ4„š&Æ€Ö”3àÑf™¢Æ©LˆÃMáÒ"†Ð£ëë{qf¥P¬U9黯|ö5)œŽ¤<íjùl÷ÒLösŸz$—Ì#ÌÃìn,BÉL¿_#y!nªPûLˆý2Œñá{P}:³ˆ…|Ó“=7½¼‚ø²íÚèö·«·3Ë(œ®‚p¯Jõ<ÆÛ84¦eBèÇé­'8'ÏÑ4Ù&Ozó8£=\~OáaôBvD)îZÄ„Û1ˆV(ýGH`<¤’ôÎDöÃË’¡–%G]±|g³äÆ»ô÷œ#è!?N÷ZIŸ‹Mçfw­^fpó¾e1sâ¿7SfY ã~4÷òT‰ä¢5ê×Oã%P­áÄi ˜rTà‚å]± áb])øy\³œ×:…!bÛcˆ#Ùm®ãgarÖ±ƒ1¼dF!›x¤­8{÷%3Ý›uFÌM¼Â9Gvyá:OÍþÓVû× ü5 ×ÃÌÒÜâGп=  &ÅV¨§”’É'#˜b®M·i&xý&W 2|{hÔjå.E¿6\«5.u¨.ü¯¼°¿(w-Û4Š-õg/¶åG¹r<§©ïšìkÔð&1¡?-´L‰¢®J` j9cW<:ël§æÏ”öÂ.Xy¬¦ª“3&› –/ž»}n!õëm²‰÷{•tPÜDZ"¡¨”„“½c fw-ÖN¶'Õrõ«‡¨êF§§ërз¼o-WL‘{vr‰´â ‰Tû{E¾˜<¥$:ì‹"Ž‘µÈ£Ã÷wãëØQOªíA“e6É£‹©$ÏÓɯ98öù;‰½B"!ƒ@•ߊäWÔŽi“@ÓÌL‹›A}Ö­Þ³]NUÈvš‰Š%YçsÉÞNÕM[­ŒûaQñ]•к:l ÔšÛ<#ª‹(ãŸQŸŽŒå¯&Y¶d8¿†4W·­„¯oþÛh%QDf•h?'bYîSãÆv¥E1›¹ÜÄß•‡ŠØ&I$öÙ3ÎF!AíùØIÂH³"ÈóÔ’dä×.Bf$ ’IáucôÙ–¡ä3˜ä‰ŸMó¼†%ÃÖùß…)D†¬“#C4Š•Ëln2¢‹Ë²¼²l]äáM±‘VFS¶Åç.X¨®´ÔD†UqAÝÑ?çâîmôöËtaJFÇÖš2>ûT•z9=ë­=TU…WŸÏC·#í'ô=‹½ Šæ ùüü\Î^ŒÔúLäÕE(‰?;æ¼D’£Bí±BÝ“ߘSÃbxÌÆ‚rLO<Ú¯©¹Õä- «Õ>„Ù°MsI§H IÎÄ/?}Ίø§îí‘qp{­tžeöÁ¤U‰RI!¥Ø„qACðþ¾æ¾¥\QIÂi8®­‚VzÛèLU´ðáÔŸŽ u&ˆ,™øuõrúoÍO 8j[EõkÌ©$0ÆÁö÷MõEñ ôoõCÒBgZÜŠoŸEòBùËè‰Þ-¢qgÈpZ!´\Õûaèøûnß{x÷ó¿ú;”~¢D ó‚Ö—ó®ÛºLV»ëµêW?&ÁÕqjÉŽ­ŠŠ–õÇ“oY¼çZÛ¿$2dó"™Tah\fÏÉ9î§ÈwX/nîÏŸÜÛLtl~œù£yp¢%ØM\?š@¡‘^¯ª>Ÿo¬lôÕƒÐÚ~;5Qß^6àö“ÉÎ0Á™ Pø1Kb`"OŽ{¾Æ…’er²'¨w û¡æ òñ½S’)øÜ½©®_+‘_>Ë’G|Ó½²Ð½EóFäðèmÑS/ .Ié2òo¦ë¤’fTN`™Fg£7í S7\ÈOtŸü¶Ç…xÜÕ'"½*v¼¦aÞ‰äL­•Ôž¹ê4Pf‰A$ÛÈ.ßr‚ë6å Ø¥Ë/«’¶û}MÅô¹‰>}h—}¸ÜÄï½µ{”O0ñ©[¥½ÀS9$ãê=Ç´½IEÑʈ~Òt»s$×Èk¬UH€¹êòtóÉä¢ëæ´õêûo9…̈¯-nÝžÚ2¨Vwôo廬ࢄ‚¢%øM“k±øn¶vósê èõÆ8{ê$äP’s<£Y»šæºŠ6ɲŽy5ùèúë\%ÛáÐ{aO! V*ˆš™}Y’¹¬âÉÏ=!r7ID÷ÔÇCËÂþÏ;ýªBïéSþ­øBãõ¼mÕd¸æ¤ó„ œýìÕùVÒP)êùóÆž}±-Nù|¹“fÛ§¶œx­jg:¹¦F=%i­|.у×ÏÔŸi«@^«‚öêTTQ èICHJ»Y ©ø¯“Éù2Г.B‚n(™“æš(a^Ìa‘œRzà%ºåV-%;nv©5¦dßÍàÙæ•¯l÷áï&C%¡ez?$ƸVŽP_‰Î¹†{r«™ƒcq+ÏÜ{Rt'¶ìì¾n=ðÛˆv¿7½ê}®'nˆWòƒ=„ñB™Ã‡—¶‰R\—âÞìÚRü;+õÓ´%5Õê1ü9yÞƒçÈùr:Fß±wê»ÞIÄ2eXX¸eØÊ~wyåãn$ÆÚój™¾¤äÞ"”žÌÓE$™eЏd‚i/ÔѨ£±5^–%Σš<'žxVC~¥Ýøg¼¨{wL‰Zb?½ÞRE#ï{Žvˆm³›m3Œxä…—ÎÜöhÛï!VÉÇG¬Qå2”Ê(e-uŒ‘0e›ëëÓçâ²§ÃAh2gíœVdÎws˜Ô_lÏnøZÛvƒt¬IΡ(Þùî;›5\ãøÒ÷„"¹e¥å/¤Â£®S$~Xj LäŸ^°9ïcMçCPÞ‘(› ÉãÉÈ‘ŠuæqÚµ¿Ìý‡’‹Œ^[建`È` °d™›7l@šfÈA±‡¡:ó5’QÛ»OÞìZïsiÜ!Å®[d±¸ukƬµC^?…ž í°œ•,Iûwä³¼D Øà‚F4€-ÚZ PœrÒEÇê~x50¸~‡S\ùÓ.|TöF¹9IB“-Û™©Ï"‡Ï61A¦ ø"ê’Ÿ àÄûÔáp— –8(ÚÎPÓÕÊbAÀV8c8‚P±ÀƒA™åO"1Öãd†SŒR4BxKH›ØsÇsÊN|Ï9îþû~9¯kKŠ$ÁöÖ6§¾Ûãå2‚Üű¾]è†kÙ‘âöHì"5 …,žUå÷} ¿ÂWÇíéÉž0ÏIYÁŸ­ž„y× :¹ï”ޝh‹E=Fõ;¨[)çN—8Ú¯·Ï•æÛÆn¹Ò•aÍ5¥m6Å!4ÅŸœsæùîj¡aÁJË96-qÖÏ«w¡aÅW>ºSoVÈ.(ÑÛkDrE6m¼R4D6+²Q-1ta„±uj ˜Y`© &ÛG7©¯9ÐÓ‹$†ŒQ¬9º|îÄišŒÔbò82²Ä †¢éUU5 cE×EºÔÔ™ äiMx¤xI…øÏ¨Í¦ö G {óÆ ŠÝb¨H§ÞüûìóÕ„Ÿ(ÞNszôV:1‰pÌ} ®þÏø?­óOX{gñÖ¿uŸ•’þt:´Ú{chçgïJ"h2OeCô6e!>n|öŽ.k “ç»UÜÉ«ë£õ_´w]m1(@mB ú‰2Ù02AAa:rQu\lÏ%C¶Rü¶Pœ7«k@…Näï|uÊq³Cój½áfZåZ…ÉÓ¿;²e<-œ¿Pj™Æ$ ^mµ]t«gªÌâÍ‹8Ø'Vöò)±ÄÃÒ›½Ó—I'ÇœÏÃäò,8_DŸ8FgZ9OMª.v¤™dTøû§+Í#<಑’HS%b© ÷Ö§’¶ÎxSðåNÉäÏy9‚±¤!)– »D×m0o9] |Ю»'lU„ß=ˆH¼žÛW:?Oœ]yv}KqN\Bvèº9¨Ôùäç•P„!Ä®OœXô*±ïo“ò—TMiTT´iDG³–mN‰8í³Ý“=Þ|âŒjNQp…|±©zÊÀ·´èêõwB–ïÎïV¤lg{c}kŸG“³„žö»ÃÞIŸ¤#7cY^J“ÈJ‹Þfª=롚…©064#ÙáÂíèË1è5L„(k{²¢¤3»gjcX,ü¢sk5α=M"²zˆZï¶g=‹ïc`ù‰(}eq¸´9ÅÇÔÿÝé¡Eø}ÄY»lØ]O ÷÷|øÌÇ·Û™|IsÈz“8R´ óe躴sMR~W¿ Z¼ŸÁ ‹ ½ @Ám].”Àul¼4umþ;#k毴ªëæØ*ž{]í;S½DJ«0.¸¸¢1XÓyE–âf0Dm)ò¶ø&C‘‰‰Œ‚9·ä‚Ñ­é’<˜Í®ƒ^ÿÔúßÝýGÇ{XŸb¹nþ8îŽDÒ!Û·Á¹¶Øöµ³ç‰A)¯´Iޏó`Þµ ˜k¯•Z±§¬üÞÙå|ýwlžHÛ'›e]¼žô¹®y>›¬­¬ ôT³X€ÄEÍ­a³L …Öº6N"õ*kŠÐÞíÞz%‰ƒÚ)‡=Qèùä6é‘GcxaŠyò™€•bî芚ô26›¢™ÃÛlÐüŒ®Oi®óç%º/]æv¿™‹ynQð†Ðx{&O¯ljÂ㆔PZÙ¬1¡lV¨A/BfâT­³Þ={^¢DϵÉÿ§‹$’j&jÃÚ1>èÊ±ÖæêMN³Þƒ} N©§ºÚ„}zóit¸5DB%s’0x©¤î‘å”ÑApbKŒj/LÁ>¤ó:¯lg=ýSoFãb¨%„‡i>“é7½h¢Ã2E–O5¬&e ©Ä–«" ›Ô¨j·Zu?ŠÍqC>$Š|øÆ¡ç[`¾G“Ȫ.sŸà½Jœ–°ÊŒ¦&y­iš-Ø÷>Ÿë3¯^—ƒ|üÇ—”j‹‰'—ð™Â/IçfqJ€öcQéãLvÊÚŠ*DOÄý§Á¼÷ÎÖqš^éIÉ•fµ%&m;„üFTԳ̒£~PQ¡'"LBôÿÍøé§ˆÈ@ ˆÐB—ÞîÁèŸ^MTò±÷o¾´÷@´úÝÚchû“ÞýOoJ)÷mÕ‚f?JEDÊתÕÖ­š^„õÈÒÑX†“8Oùv«ãéOÅAcç5DÁ*1C‹gU9ÖÒzò cñÔ<ˆ“„éBᨧÿ—½|p¥5ìýéÜó„ʨ ¼mlÄèôµ¥bv&ä‰JÕoõ$1•)X5@Ú铌ØNÛO|Üí邌ÅÍ¥YšM±u8ä¨TzÔ*š}-ù£¸Ðb„Q³0ÊGµß]²î¼zkÃœÉøù9Š‹}9Íh¶µÄn GöF® ꘼‰‰”J!xcž;B B¶®íÜÕ¨}[Ú³JÚ`¶³ÊÙOL×=”ÄHã1Ç€¦Å$úÉn†j˜¨™A}ºæµ6é—Ûôï‘SÑ8)©÷²†çP§¯rºû»E\£Mìh+Qy÷é¢ä`‘¿$OéžGãÞÊj4Ù7rOÇ W¶;ò¬Ì>}±Èmk»”‹‹‡/Z¶Dã1Ö[±ˆPÀÇwjÐHú-^D8XÓûd€® 1àŠà‘E檛Ŏº8hÉ2±¬=ÛÝIÅE]vTÐТ„dÿW~³©«œØ¥ÊÇ䙪¨Ìr h˜¸Ý'ðÛ>efù®Vsïm±Ÿ8V¤r óÓˆQ‚CåíÊnžnÈH¾i©uµj]bmN9!ÿïÛ¯ÚóÅà…‰ün½e·l{Úo9(Cí’‹vß#Rc4ŶL·b?:<¢¦4(u°G9jø)F3ˆcŽ6mz-¤še׋`ª ¨ßЯÖ— ZsüÚ–D%Ïô‹µXË–Hb!6WÖÇósÈûtsaœÑEÚ¬=\䊕é ¾ZU”X#Î)|”»­AW–2‚%#T…êÄïÞ¹+DÌáh—•Y˜C_±^Ò>k+hQ¥®Hb±ë{²Ai”h¥\œS"ŒÅÀLÌ0Š3w£ç£^ÝôãLzÙ)œ\‰ÕJ‰ëÄvõÓ8Ð!ƒÎé.*¾—Nî \…Ÿ§Q3S_ŽÅ’ÅîíA4óJhkÔß±Å8å½ Ñ0×5ú–'œ'§0]6Ü:©J2HÐÐ ×` úϤ“)¢^Pë„3ÍØç:È97ÑÛzêÔý?o›Žˆ:[æßÁé½Òâ¬!ê>“ïoÅs$äiì^Qæ¶ÜëÆªñki4ÜçµæXôFuÚ¨m=P®è†À5ƒ|ß^¯ôJÝL ~Cë¥K¹ÎiVá€Ùà›¶Š]Œ5 ™±m¬ôìÍtZ"j›û¬ÿv¯G©bžç¹i¤BLfŒHvd8Љ•4ÀT`”N$÷g{1òÊPO+íò4‚ «Èî­È©š$Ûf1=½²£Wÿ‘øŒc ð˜V‡Tc}…ô {"º[ÛL =8§Ø!3‡„1+Fê5mOJ%榛…<ÜP’ÀÏÇë ò?9¥ª´ƃȠuo(4ò`˜šM‹ý©ézõ¦ITiÖÊ‹\1Öˈl$\¬µ¯§ü£Ä¼8f3èž;¦¢9=#/k¯<™³Â÷{ÞÁ9.Ehv¸//Í[dÑW\ÇÇiÉn–³wŠÙðL 5s~]ôï*(Í7ÖmŸ¦m†Ž('¾ìnÚiNqäÎ(ä¹&o·ní5På+¾œË øùÕ;bá8ŸPž&f˜ÅµG(=jhÍÛ#N-»ÓNøošOƧ דÛLͲDÅJbr¹ƒÞ¹ìZŸUôQNïÔ½1:ÈðÝÆ”ˆI‰”gšžóIŽM©õs›Ðh˜“Ýê¬|(Ž,j¨œ)9 #!6òp®y ë„ÑIQ„Ÿnî§»vWèpp˜ˆ&AsaŽŠfDÓc¨’!9úËøWƒ8ÆÌ²J—¶Úï^ι}æÍlöºxÏ…"*ë~^÷™§Oǰ¹ŒÙ¸øÉéÉ£Íçöþy¢×_–­Ý©¶¬N6‚1±‹ÄLm8›“¼õTÉ/à>×øoúï®^|_jîü7·nÇ`ˆÜ,“+a‚e¹^ˆN›¡ú>¸×>“$>ß±4pSµ7ê´HMW¶\Ó÷-¼õRT9±A§±ƒÔ.¤“'Ÿ'}¿>7^MÕþOþÞò}?HBZ]= £é‹!¶ÆÓøo#›#g8}ˆqªØ™(O˜µ‚›Î{&ä òDóûâóZ±dòY¥œºÍ½ÁsòÉá34Äâ‘)6$Û”xAÛ :¢ üµå½jÏÒ Ã[îž÷RÚÖܑйÒc=hÏÏAü‡¶úÖ¡3Ù5ò» Ìß…¯>ûê{ÐÜm¶¯&ß”‘ˆÍl{E¯¬€xElšÍ’vâ<ž5ñ¸å 7u:c[`+sÍ»§«²m‘ºÕísvH£ŸUTßM^`ùëF»Ol8‡ÝÞíÒ©ÛkSâ*%PÛ¥¬Ö –šg®zP”mY§ƒ!d\3XÍ™ S-skzÜßçÍ0]F²(tÇȆç§è†oŽ˜™Ï¢ZC‚±ì“ÍtÈê”RI5蔣IŒÀkGÖ©u6A¨ò†M˜5ü±½z œ 9²Dy¯Hž²:îZ&+ZeT‘£…iÓ‘¶èÊRW"±Adá9—lT»hJ£sccj­7Fðئæ÷œk†(Gƒâƒ‘ºýLÊ-æmé±â-“K´r-3ŠCL×¶ê|nñ²y’EÍó¾èÇêë.žLqÞ’ 4IÇ:wš§ Õ4ްµ”µxåÄüاkµŠF÷fK©ÅÔë^vù»É‰j¾Ybm'±Ìbe¾U»àЦõ¢* ÒTôn©Û޶ü‹Í{Ó¢`ÓKÁ£Ž\»j¼'”V3`Ú¢Š°{1Õ±²¦Ç\jI’8B¡Z&Úi^QˆÑoÝR]žD×#6>ש\[àß„S£q±ÔàäAŒR¹ÃmÔØÖðákÙ…•8F 1»¯1ëTU©¥ã…Û{º«ÖØ­Û‘¦ˆ¸±œ(&F6”Z7ÑT£{¢jsú(ËÄÉ“œ²9%!K¶\© ¨}d3tr²A‘ºÞJ"º¢jX¡xmoß5Ët8q6…¢fÛ\Žn´"1­šz5ë„æÅ>ÑR–%èPÈÚÑFðF‰IIDšVYM.ÝF0Vã¦I[Êl•Õ­` .Í1]LMMiÙ%ÑL/N» éF­¶úAˆç@" „I•ºPçÇ ÅsEÙ_ Ul`뉒(#¤­Y:H߃Š9¯)#ÛiÕ3]Ûµ®±¶ÔÛÞôçy«/z<Þ¼†Ž—kíɸª$h¹Vn³JI £TÈ*¥•ºÐñ¹µZ1kVn+£©Õ‘©]0ÈÚ蔤²Ä郠£‚˜›qìÝ’-»^:gÆ÷—ÓS·žÞÔlEhÞ¯0 ¤27!c©K!eªVæÖÙá’;Ž7±0uÃ¶Æ àÛëBs^NZç1q¼èµÊEÚê¬R&œað`SР†ä³…¯78n>rÇ1@‹USÊ6…ÕXÍÑX÷¥÷$›¡³–É3½]u}E¢Ý®ß_]¼‰T´±mç¹,޶…T`Zék”yD¼¨py\jngkw·žÁèÖí9ž:ÅÈæBEkJbƒ%thi¶‹l’Û#Æe<å«…G†Å’4šáé%˜(Â6–Ž=T„UÔÉX‰e¢¨È#šÙOž·ÕYYò`¥*/Œ:/&¶šæ¢1S*ó¤ܵͦyö!{5q:ôÃií¢UÃݨh$£U6ët”N[ãu=r1ªAŽ6˜†Õ-­s’°‹j¢‚­–ª€’F³{m§yÖ–ú`׋inß/5c…Ý’H6&'¤sÅØÕ4 ¢\Ö‘XõµtÊŽ3XÒ’L(¦ÄpŤqÝÆQÅC×<Úû½îòdkl›Ý+uÓ{Ø›>f¯{^ö#ÀwwV÷œ¥PRFÐjb­C©±i±ñÈï<–cóU·®=¯y]œµÈÞ».º"<7KÖÜ‚V4®¶PÚm·—8³b ɤÍÙìäM½YEõ{ÖÞ(—å+F`ÄÎ[ºV“yÓ[ZMDq ¯QZ„•b’B"(ÜÍ•îÄ£¨dp–5Eqôãwcêì¬ÖÚªH÷oÆì²†öŒé§ÎÚ¨Üç4SGhÖ¾1ØÍädoBݨ€´È+[H$J(VíQDúeŽ›[*hÛ4ów|ÜZ½¶«B¬d+P2ª$æs\ߊ›w7(¢¦QÈ¢„CG7+èíx©Ï*ÊVåGm¼Å OiwM²¶ã‹;îç¹H͉ˠTKœüoyÍÍE±[-cƒBŒ XÕŠmÚ0(#]ŠÄÁ¶Æ“IÙ$²JÔpŽ<µÛb´¾;ë›i=w';Û7f‰¥ƒšt²ØßµŠN;ÕÁôµ’¢iT¨zbi5/•m² Q6¡e[v»Tˆì‰u·½áY(÷µ¥ÅíSÞtT­®¨Õdu° „Äå´Ù+cÖ¶i7dÕM¹AF™c’ÅiY(!»»¨2o¤ê7Ì@)-±9+’ :ËrS =¶6Èñ׌Úwb7aÝŽ œ¹Ìì­ƒŽ½3nÅnYƒ*×#AÙp!»7îwnU<<"x~å8 yx˪!9ø˜)Ëtî|èèz1ä¥:»Äó<ΑNá˘¡úRWòÑês»Gs9ü~¨òšO)éð5£ÕkwÜ3û :8x¤ùÙõ??•òLzÝÕ3IÐzóØú½ù­¹ku§™¶Ýý+Ë¢~¦_ñ!+õHƒú6°·éq.’Sñ[òÉe`I/vE$­å1÷…ÿFB %(9¼æ¢YÂŒ3~e¢dwªHè‚Iý‰mË`",i¥ž2·–(ø b»U:ñ,ĤYŠeU³µå°….¨\» }´Ì¾"iÁ9xJÉg%Ùž±îÛkSï7ÆÚC‰þ‹!r¤Šb‚ißÅ„ÀI…Y O˜i´p«(^©æ"eP1]Qh(]Ù¦–™";‡Óæ­rŒi«=“µÓÃôóü|f¦• üá2&™¤/7HÇWéæ·%®êo€°¨P£½]Æ“oã@Äe‘Ý(-Ü∗NP÷ Y‘Wõ‹ 'ÔD¿ðJˆ—δYý@ÆCÔbLb„ ‘@‹Y *@¡–¬ÿx»ß<§Ã;a¨AßIÉï˧^‘¦D›÷ë¤uoÔŒid÷Ò}ÓŽÔ‘>#§ÏsÝFR›ÔNÞ’SÐæ#Ü£×>ŸBʽXk&Ï·­jT²„à û£X¨æ*õ„ø—¬~ûü¿çGñ‡X4·¼ówòLÝW›åçDùoÃá•çê`$}QôžH¾¨óý4¶oI¯Ù?ˆû$õ°Ü{Ø¥Z#Šû¦¼ËF~uX¡…' 4‘|<«M‰\*SmÝYíÙè¹#ê• WÚÒhGÛ¿Ï0c‡RÌŸ øCðK¢"(BBª*In2wXˆGd= Œy”dXÊÊyž¥–R¨iÓyÒȘ Ç»^ ñ„…”0²x7!Ëz¤=‚²eálZË7,°Õ‹Û7£ÓNOË(ºåJ£Y•Wç‰Mè¾ÙÂñóS¢zŽ·Ö¾{Ç]zˆˆ‘È]#ÛŠŒGwÍñ9A{_-pCÝ#§^ês¿ÂÛO{cø~þ{µ}œb@F*?V°ŽÆ¢cˆ|õ &w{ráu{to<H‚PŠEáWlîé&ð˜@…YIvTAŠ¥š•ÂC¥ ¤hs±ªï °mw~$Yó!¤U8 "£AÆd¼KÉGB„¤¬yåîê@ƒ—Á†ªkÂUáˆEedò*9eÔ¬D`5Ù,Q]X…iQ—Sé äiÂpcM#†’„à<óÛq÷h§-Xé`àe%qŠåç B¡WjCŸô•žE*ø}åù>ôŽ3àkäqôÏ1à™(P0X./,Õ½¬Ç¿™Å±nÖÖ\°ÆUãÀl-ËJSA@—P‘@”PT$pȇ|Í™%„á «[Kd6X}w›°3b쯜ÞÁ³šìÉhøÊƒx@VpÛ¼´$¬”{*°˜f»ÑR®B¶¹¥ßŰ&7UŸ:¥-sÊÙ|<—]XR¾•»—o(Š34¦K•¶ÞoY³pÁ£EîbgÃMDí2þÛóݨŽw努ªšDæ&Y^ _.Ìê6¡Å¶ ÞkˆD¹‚è:†¼Ã.T8Û¢æþ—|/Ñ×¾¼XHÏj£îçÇ¢£>T)åÙ’¬Ç®iF¬!ÁÛxçÖÍJÃÓ‘tÍœÆÝWVø¶üiåùÁ»1b/)’(ˆ”òS—W5Ó_G›MCZÍt†jʹ»œ,’!1˜hw>~ÛKñÏVdº(lJ9äv )‚*zfy©¼²D¡zöY!Ú”W3 `¼Q GèoXØ¿/feRà]áÕt¾Šž©¯¸»\äÁ ãÊ,Nx÷Õ†¼}Ì«cë[¬ëVËðʦÊðŒˆ˜,xFĵúz Æ©Á’(*‡iT{a<^Ä›aÚÔ· "VS ‰ek£e$:>ŸKí3 ò9Ñí^¤Å‹ÀÜ V¨SÛ¸ÈD¨ä@¹Vµi4g©û­àû¶H©ã¬ë>ë9øÝ2†N9eôQâjÛ·¤‹Ý;O+ŽQ¨ìw»xø¼š´†`ª— Œ‘u7§Ë¢4Ú1·i¨¶­®˜f¿)$5ÓäîÏ{60ž&!¯Ä+ã*q¬ÙªÖ .ÁdÈóš¯O¼µo‘ jûŒ\å¦Ïgff{¹7lË÷,Þ™(‰Ê°µÕlTúµé¦®ÎeuŒ×®¼îò#WÃá'Ÿš¹éŸÕ7 ½7K3ª{YP…xAÃC, †¤¦HtT.CÂíˆG›ßÏq7¥½bÊ¢ýÛæ]r‘¾aò›V ÊèÛÛêD-—íÙ¤šÏË9 ̱™ºÞa÷Õ 5`š¶ôX4[›[AàÓoé…F¬©þƒ•A>nôÿJÕã…„Ûµ Å"øJˆ ™V‡íž;¨®Û,ÑD%øn-'¾­—ǧ•–ïéN¹è¥*Sàeà:#Épïʺˆ¤DÍ‚½»ñà/ŒkßËÛxóÎÒáYúÁú–ìŽÆ•÷i¶#N³˜ë?e×Y8T[|ˆÝN|îØ·If~õzDHÁíÚ΄׿Ã^\Rx#»"í2ŠƒQÙˆ¼»T%±…ïq)/7M-=(ƞШÕµêŽ,ÖL^Ã;_ ̬Þé·êrù£lÓ„Š}ÇÍÖ¶Á=õˆÄeŠÅ0éüîêE±×9»s78¸ÖC®_qŸWƒr-è-­\Ûé¯Mûïã~Ï9ϯ+ëëš×žúÆUÐ''ÍÉÂ2,ú½¬7Ö2ƒÐUʘK‘ðxh>†÷ÝçÒ¥v-õìÑü+ZºÜwžúÅÆôT.ÓÌÆ$×qÆ9"H Q U qž¾N#ë§ŸFÏ>^ýyé"ý²=y/Ñš å®Vé)ìç8^såq{¾”Ú©>±Ê×Üym‹qÏÎk”â™ÏžtqÊôl"µé‹ã+¹»†Þ|ú0›^4yáÿëXN÷à6>6êM,ÓT 3Ô\¯„޾TÞVÿ3™¼]zx°ƒˆnàâÍÍ(Z-íÝ‹aCä[BÞÚú5ŸÂã- ׿áBuC»Ø·tZØÍ¹óœæT»öJ¼8UçËnsDn|zf²'X·/žµÆ½ zúò²Íd^oŽùÞü-xhÛ9Tô¾9­£ÊÓLèùSïÎÞ{Ò„®±Üô¿_Ÿªö^{ ¿V}ïI)Ë…õ…à]3JâÙîzGg…Bë8õ$ÛÍá(x8ñÙ£Ч Q’ÆtÆËܨ–Yà1¨Ý;Øc=­¡9è€(/³÷ФiU+«‘˜¾³‘ÎíÝ- ŽéØÛx·iö¶]w›ÒìÜÝqËè¢w:ÓAµWTúx_ªý>U Æ/ˆ}GÓõk¯;ÐÀøÚòž—*ž'žÑ}ˆ‹ÖôØlZò6·úSÕþÖã»ôî7–ÈÙ¿±( à$ÁëQälµ`ÓlpŒ9$Ó D$Š‚ÛiŽElˆ¶­ƒFX¸¢J6.@Ú>#8I‘ðx–*»ë»µJû÷¨OêÆ{·kYMŸAá¶7ꩽõ,T1 9aNÆVö›¥ØÆ(E V@§ƒ“ º…ÊVÅ0†–…3f ] %C<(pèà0x›ZÕ]ªlÓYb+ "½I|0¤_UÉí…Øk5â¥É<i¹ˆN¡6*`Xd¦A3Cr‹R'fã1a‰ÐâZ*‰ð É7H [«Æ ˆ³5W ˜‡ZÖ#Éaoyh«-sÒìœËUˆ­ÍÊrÅŽaÈ%¢Ž˜+”`f0Á&)çc…iW!´%!ˆ*0“$Ô@5`¢9L@–“' Æ.þóŸWðê‘VÆ¥ÁŒ@)S±J UcB3!¦:k2q’y«ø®$«ï†ã5n0 ŠãMîíu)œ… jᘬL‰bÄÄĦÂX9Ò88x åÆZæúÊ Ç@¦õa¶z›HG=-‹ÛX¤‡Â‰ÀȈ¢àHbʶdñNr£ 4„ð¶2uo‘ £¬ä’·bfì-ËñU(žen5¬Å Ü·³A<©W5( 9ôÁ°> Ju…Uð”áÔÈJKºÇ†ƒrAƒ´1FHÃI Kò›±brÅÉ}bt¬ ‚kSï±F‰+,„ö$–]kWaËW‘ê|vBØê†ÝkÕ.Á,à1øß‘è4¼Y©ïYd1ï´/+À^pzµÆÃ‹Vð á9ŠíZš©‡íå0wü¦BÑŠ~º¿4f‰)6nœg|í»¥¦`Ì ÀÀvÏ6°˜“ˆÀfÍ8Í0>M,•'0èA †áR+ž^iµ½EY‘EVÇ\¢”lCŸªÂ>Ü'PwÖüUyç‚Çl²Ú›âœŒâʼ %M^Iß‚fs ¹àäy·Ac­Êµ`@¸ó¾œ½Š‚WlÐ ¡Hê5Ãw›±(#‘PðÐ6ÅGxÐ)º;Á/¹ºÔž¥ìä X»–²);™`av:ôà›ÃckhW‡ ’ Qö™Nëyi{¹÷òx‰,\£•³(«ø„ÌÖMnë3sEë‹-û2ñÑà¼Hjׯ7× ŠnÓ&(S³ ÆühIÄ~ôb=b`MÚÀ:!R­7ÀLÕT²²²Ðˆ°oZ€RyìVï&’¸Ìa\ãІ„©Ô¹t²“|/Ÿ;²0 ·¼š-b<6ÇsàQÅÃç4ÜG˜'¿r×ñTŒµJ ×À¯œwTÂ;ç»e³®g¶ QƒÎ9¿SÑò½Š¢'¬lð+Í}?\'Aô²y÷ Ùno Í;…yhÖ·†d6$å³+õÈ ÎàPåÊäzº÷Ául  ˆÛ”x«ñ¯<îkÔЫÍT…g;ú6Ž.;ÆF¶^é:I­%Ð’2º’2›—Yˆ)0¾ æà~Ý|´ÀÈúÛ"€\dSÛƒ¥#Lo2+%¶žøg“ÖvQÿ(ý„ /lŽ•êmª'Q9X"=¯éi¶¡°d^kÄH<îb0:¯Ù­Àž5mµc¼vAmÎݯ¨µ¾Ú¬È{ð1ô…,»%'šL…ØP«Á„î|©‚‚£§”'f‡ Ùݼ'~ƒŸ€ö[,²Ékº£@_ 6céL0UÇ#{8­Yã^„ոѦ€àQÐÇóU4|â Î1,û¼ŒÓ"Ñ C¥PPk6ƒ ˜ÌaŽ~W¯«†I²Ï¯ xý»éwbÇaI D@¹˜l©}ê¼YÖ¢Wœ"sßgk‰Â¦!í,—îuʉ‚*dv´¡½ NRùÊýÂ|6uœ#ä´õÛJòÓ#¯‚€ÁYð³²Yk是~жGÑ^2áçQqÆ=ö29PÇ?†À©ò¾(käGÚËf&°¹¢x€Ff÷[‡y±7¹eü&ؘéZ8Æ6µ?…YÍû‚³„¼BsEòË  ÆŒ§Ã\|ŵˆS"Î+öá¨kšo§Îê<)–s£~pŽÊq¯~£›£ß³a•ÃȸÜÚi?‚³ðÂJ²Aª§!}) ¶ùÏÈñ‰~´B”/¦e2+»5Öã_¦+ãoCìGb ä/¯Ç›ž&’ÒñèG\ ñïñûC“ü;5|: æIÆùw× Ë·ßÎo kîÆ{a„AÛ 1ì#å@ªhý3æ~#Þe8ôVë‘m“DøóÙŠdèE rh… ŽüD2R!½'yH öý÷aâ^Òi_ÏÏÅsû\+*ü{ábs>Î×™û¢óÃׯª=ºò`?f4uÙH,P ‘?WQ²’`QDɹ¹½y¸ò’¯]d^ÿ*šM± aýzí(!1]²Ì¸Äø#ÔŠÀPJÏV·ŒÎ>ðº~›yl;ïh´Í¿A²ÿ Cuû¿«Æ¤ÎKü<|—j[c„3®¸¦—åZ™hðÛ3¯Æ1Ï×o]€‰fZÝÞúé¶"¶ê)¾"[ÌŒûcÉŸà+àjÐY-Í_Š$¿[ñE+³Æžüì¾0DþÝtì-Áà•ôöÇ<µ\âk‰¼¬Œúœœ1àØ$[¹-¹7Þí·> à·¸U6‹ÐpʆU2$J|âŒ×µAfׯ¶tyÂb´‹,Þh~'P1KHªÚ%ÛÆ‘£šlrà­9ôÍæ •#¤"`ÄÀh3ŸI´ˆÀãršÂÍ¥!®/Å}³®²Lø´…‰Û¹u"@õ•/>g@I Dq”tìrœ¥ºÈnþÙ[¼E(ÉÊÞ*ò4´h€¼ÄKð/’ °,›Sí¯F†pQWK1jþ7*Gž"40dü<ßôPdü?€#D"“òû?nŒµ÷DW×eT·ßË(JÖ~ÊE•7FUžßa“X[e×ïͺÜ~¾3 v¶rc×–!08Šä™V þNâ*‚cáðªÜØr÷e‡‚°£UY,ŸO¢‘<%Z´ø?ñ~ülÂn”?ƒœÊCòñû÷âUOÇßÛô{þåÓûu°» >Šqãà!,~$†ÕcKóføþ¿?dý§LpÀ"9Î]ûw'¢m-Z…Þ¸ÊQ–ÉJ/– -â"¨ÔP)ÇØæ=iÂÂö˜(ð¢mLÓü$‚¨ Uï(}(ËÏÜú,­ó®Î®²4²,VÛº ^¤äÓµê ñ. v1tpÛ¦¹”ô±3§cÖËú•w¶7sRG6c°³ü¸Ø†ÑrÜ·’$Š‚}\™™-“,Ä0N ÝïÏJÒ”4@ BP¡H””#EQHPR4P BÄ RÄÕ#H”4 !BÕQHPP”%)MKEƒÈý÷ÓüÓôûoõëº}{ÞÿgÕ÷üëû¼6½wÝ×eEñ{iÈÊ|ïuϾï=ªòÝ»×ó~“™ün{ ÝàlÛ‡ƒ~þ㮟îôSÚOÏízï?{Ùy¤þ*q?Ýö5àÿô¹ƒéÜéöÏxߢzùxØé¹c¢åÏcßò‰ŒôãÏòÝ þ¡µˆ×a°²ÿ1‚\ß}<èR^I%x­¤uÒ¼´oqggA8¸kEhÛ¹|»¥ÎÁåUíJ;;¤ý§Ût‚Ií=3ݯÍ-EÉEG¡j%OŒ¨¡Î)Ûl‡;ÖE»œtI#Aç}JúXÙÙ„Æ»ž×(}Aï}zW9 Œä“ã#òÏl¤òh©á¹§¾DJ%MIžóËQ;PÉ#öô*ž|º5$›‘EÉfPÌ=õ\.¯$ˆôŸIžž‘ùœÑE«½§]k]Z=ª¨Û À«Ëhe ’5˜›iN`¨ž|l‹êWR=s’s™¶Äí+HŸ4åþMžÃË ôò¢cê3†x%K WØÞNŸŸ =íÏ+‘äéÕÌÚÛña<÷TzÆkh±R_âý²½ñ>ofµ ìÛƒð–`kðüry»lnÏyÉçÚ£+3“m¤žÏT¾¸h=ѪâŽ&‰çS¨èÈh—ü‹Ç—×µ³eÍ õ\J‚?ݸjk‹ˆâuTŠOßFv8u.b*;ïd²×Iç‹;ñâ: ­"PÚ À¶{å¾Cȉ-ó\ðynµu¬&b¢Î54g9çœñµË±¶dx@TSÎÒ©vã«f²r_›=dÎCžB|áõèá: õW¨î%[\‹¶¯è¾ôã&AAOÙ޾㯕ϪÝ!T?C~ ýò|¬“Ïç+’¼V×íßõãºFsû—㜋•ËÂ$ÃÚ¿Ã[¯T~uË߯ÿ=ÿ;ýß•%_­&ÿ;ùîú~¶_Ÿ˜øšÈ#ɺÕÛn÷~ñÒ)œ‡RôX ݺŽÒ²4ŠöçùÈLáä×1CÔm’.Ëq~«wÌç™Epÿýú½ß?=ÍmœÎÓP//gônóýÃÞÈXŒɾvC@PÈdOü?+Éýʰø—üïorJB¸#·ÿ= WüNëDôKj>NEÏÿèñ#ËåÄDcMãyPQ¯ S@#>¸‘;ߪ«E4=ün÷Gêë=ø¾Ëçü&=Ò«_Mý%˜" 4›L¦¨ó¹ìýN¾mS>®8?Þxׯ£õØ´1/9¢Gý[$:SùN¹…¾!¹‹¾¿û¾ô( yÁrqqWüm´O&»V?(×½ù•<çžSÃóäiè´ùoS@ÇG[5ì[ÕYJ`+Ú¢ÓêO‰úëÚ_n¹÷ÇÖ‚ÕI vÃÊ횮:M5›q¦»Ôí/’W<ë=±”Ä.jåîé áö½æ=0)$ïR.xbšö7‹·†:däÔ!!\¬ÅÃéÔ3\$ê Y€”†§Ræc¨¤î°äŠ™áxóÝ+!Ü“œ$AoAØxÌ„õFÑÆx$?Ö2 žø†¬×2øÆ ‡!Ÿ¾¦«ês$<¥¦Q/d¯0”J4~(ÌögÜ \žDrL!úM~œ9ÄVsõ÷z̨ Ms™Â@󆚘yÇFja+†ëtd9)IBQ“’%­b¢(R†H44«Bº„(@¥ ¤313hJ• µ ä‘„È)JÉC!È*F…¡(UÔ« Y jP5%ÅÅ FÛb…ANB›àC* òPS´ŽéWR #KïøºÒ4PÒ9îÙ‡£hu d¡K!äe…¡A Úh2T7È& 5Ä«‘HÒ% ä´€jQ54#FB d4-JÒP™ HjrZ¡L…PšB´(ä4ƒ¨P:ZWPUQY-%Žù]r8¡¤Ý fd¡H•‘’%!´ d¡«$¥vÈ6ÁÕ¨ Bj’ƒ!u&Тv’€Ú5!¨¡2@¥¡  ‡0 H”CH;Hµ…/Ó¨r¤ÉQ¡7H‰ºDP»NB¦ˆ$u ;Éh8`ÐC´HnÂ5±H,ÈJ"Ò&¬”b Ь@)¢TÈD5M(´-9.¤)!L”ÉM@ J ’©Á ‚jAiQiMJ‰´¨™ ‰H:„ArJAi iRˆÐ‚ *ä )JP"P…:‘(UÉÝ(ä R)M”)¨ZQM …5 J‡Ž  Gi@Ý@B&¡\ƒP ©DÔ¦JÒƒ€ÚÔ‰´*ä-d‡È ¥6‚… ÉâHœ0jUE)h7@ 9 ¨Š :•L‘B+B¨™OÉTÚÈ2@ß ¹ š”C‚D2Aßp倆¡Ò&@9(ä¢Q´©)ÈÔ‰H&¤(L…iPx%U”U]J "dˆ.B‚ ®N@R‰@ÑHoÚ@5(ŠÐ(š”P „!D5(¢jQ5 ®B‰@jC A¥E P9¡B-*ª"4 R£J&ЊЈm Ђ¦¡St"™ ª;H¨P(!&J(…"P€#Á †B ºPÉj””6‘ DrA(¥†GkR(d䊔 #J¨m¥* RƒF¥Ô"d(ju*¥CiÔÒˆ” ‰´‚äd  -*Ä Ò&Ò€í B*%(-" ´™ :—Rdä©KBä.  ”Ô¢¢‡y<ðjãÏvxQÑÓÊtñ(ðJœTp)ž óKÁžåàÈ{!“¼ðd9!S—¹ JÚUÉJÔ›F ÔT[YRmQÄNÓ[J.éGlÁµŠmÓ=Í™µúg^‹ôXFñ3ÎFhž¢ˆ}³êEç;\öBeCŠÚrmaHm¬”Ú6¡]¢NUNˆ2P8Ë7¨n€ k“†@ÈiVCh%¤h2ßjJ(Ú6´™d´š”É]ÈH/vB“C§¤ã$ ­±+MYµ7”ôÞ9âíµZÐ<æÂù IL ÓB uý›ôo30ŒÏNÇ‚Gé¯B¦?F²Á™Ù„2¬õæ]ó ÙÌñÏÔ1¨),¦¡ìî?)—‡T®YBL/òg„mÐø…< ÿ"Ùà³-…X:­•[„ ݽꗵ¿+à@‹íW%תÕÎÔ«ëHïcFU·)3H«ÒôȪ‘Ú~žÓ˜ö­¶ãHª¶îã§‚"÷ Ù,O%'U–Ú~‚µÜÚ­f/‹‹ä @ê­.Äôаƒ¤«N'²‰ÝÑ'?hÌÑ߆ç)ãIdð,ÞzhÍbe7œ-tѵ°lu ‡mÐ>- ^üÀWëËiGï3kIó)'~=8S«yôÿÓÒùóeõ¾½9vvé¿Ëþèò¿üý:ü²á~ÿ“àÞÊ[Æúߦñ/Gó×ó&s\Îyï‰å~Ðú»Éà„}Îýë÷üŽÉq<êwî[ºçKœv¬Ú0¿7mw{ØÞ×ÙœÏeæ(õ¿•ÉwO·ÚÎÙ·»ßüzø''óú3¦§öü‰Ïý¥Uà~´êP)„ ‘J S%A¢—C¹+—†¸žé îRU‚£ #@Ê…—ÅC×zwºÎRýEøû¸ _ÎÒµÖ'àÊݔϯò¤UC¾!d<ʹ Óâ×íøæ ×’YªWÃÔüñßz¹ä=cåËÅ °þ 3ñ6*e­î­ÅéÁA)fŠ%ªÜÿi3f–Þ1ê/avý7ú—^¯«§Ö¬[òq›#¡~ÒĺxîY÷™¤ÂTJ¢(EeÙCÙ©í.‰ÄÚ‘QºdpšNX96tÂ;R¿VŠöíÝߎžµÈÿ—}té¾9wi—+®ažn–Q"­¥®MÞåî¼aCß tÍöZäâXC:_õ.“;óÖ7yYAdç+©¼ ™ † u|ª’Æâ×SZlÕlÃtÙtþ|Úd1º+ KºkÓ /eÍ‘Ì,^ý¬8©üäfóÏZWºÆ¹Ô‡Þé™Ñ…×ÑÞ:ÄtQíX&”bl´/u Õܲ¸UIÚ]ëÙeRñ`ÈŒÐ0¶‘ƒÁ@ê>]#·¼³#H l e-8¡7H]œ\¡iTº7I¸Ñ6Õ©ÅUбi:K°ÀkCxwMÙ•1Ѳ‹òœa‘&ŒÞ½_ŽÙĦ`ÃË«\‹ Cw*#‚,â¯L‰d$=0h%ŠZ’òešªx¥Kn¡›â9ºÒ fÓ"²T^ÅCš2·”Ä5×ít‹9¤Ek@@ÀTÌm·Üà”êÏ&Õívõž?…_-ƒözõ«ÛNŒµ½!)ŠrÒ´C¿”» So Æ–ñd˜Ó£:-†Z¡ÃPÓmÙ%¬ÊVÌÌQÖ*¨~[RÌRˆR(K—³+½Œ«Ì³ Ô°ˆà0Ú3¶©¸ÕIRÒ¨­‘Ïtƒ Y\ð¡4P$J`j>Úa캮aÝ)VZ¯ë™>"1aeA tV¡‹ÿbrfÔhJ4-­E˜ Ûâª÷9Jdæ1 Œ’A*ü1(ÝÄ*&U&l‹wª´Jc€[¢Ì¤Ê eº¤«ÙƒzæšR§j÷ÝôÙ=,ýßQ¾Çæ~7ñ¾¯Í›»¸C…~Ù4„ž0оÍO~9‹a+]]‚”DPž51™põY͢򼆯¸1†PMƒ¦Ù3SixiTWáá‘U/tŸ ­u¹+E†(¿Âþù¸#[_Æ?91çâÇž{_¯%CZP¨TBÍטX$BU)¥<ÒÔt¡ZÌ¡Ëf¡PÅŒ+Y8QåÂK-^»¿Ê’÷è‹¶"Ù=—™w5¬îØl¤?1 ²@WÅÕB¿¼ü3Uó w<¹L_I”î¾§÷Îÿc¶ñéè"¼gæm»;PR ¸DÒÃ+ ­³ Š 9FšN;ƒ•ÂFm9Y fùG­Þí 7´O/‘5jøÚ9”‘ï»è?Í,vùøçµÏ0ì”ä±¢ìG“Jèã*ó„Z«²ò¶¼´ªÓX"¼±²Hª ØyÝ·}FEÛq¯|o›O½yŠ®­ó£u¼Ûèmöpe}M¹¾%Œ°å,¾”–³wo+jîì/ËìÆ7hf/”úÓ9å/kkÌ Q&6ù8A7oTªízf+¿ŽðÕ»Ó3yôø,û#Ú7ÚßÖz†‡eΧƒ–ó¶ãзŽT69³1¾ØB±†pmW«Ç¼#ðøÀNjò‚ëŠË†KEÙæT;¯§ÏÇ®«Z¾¶…F¶­‘¡XÙVvÖ‹7+Þj÷ …S—œçŒ(²yV©Ò*_°~/ÏW¨té/ó2ômSI=§]µ½ç¬79›ó(3¯ÙcÅ|Wá¤Ö6­ÚuÒ[VPÞª¡‰§µYê× zz`Œ‰ tnžþ1™~ ƧAõ4§7v[Ìx¬g/Õ×Ù¶ugäyûUæ “âÚŒŽs¬¬ôÌY†Q.ÊòžHG¬ M«¾_Å<Hò¸úq|ÕëH¸U:»<¬ ºÙ;Kª|GÑŒÇ1zêÔ±º`©”}Ú¢¶HG¦ˆð–´pgƨúO—fÖ17CPoè›r‰Ùq޼[õþm=Úö9-l½µPέmœ½%uw‡1…WùÑñ§“^‡Ëxº}aôruÏÇ7çŸO¤úŸJìé<û|§ËÄúy£™|•Dåžt‰â¯Qt†Ë%º†óÈŸ ¶ÐÇ¥’ã‘ÒM0ÆŠ›×àb­ˆùšzGT[÷ç»ôXOµé™Ç<øÁ vɰöcÉð·Žy bð¨-óÙh곫›hÚèëwï<^#ië /–fæÓM[•ݯ:dï׬ßÇ4×\ Ó…)&•y/i‰/KÊ …|TÂÀöXb ¹ŠcR®ÅxÿiŽ­j '-nvOŽ®ÎÞª³>J±j¥sêˆùt”$‚¾ ÷( T"à| Ü´*Ë»ôŽ¿ º|Q»„³|ì›ßÆÙÒ ¾,õR9‹çÑG qVcŒWyº[“|å/Õh®1c•'QO4¯"Õ ~IØRqL¼N)Dgà…L¨'aëÞRoÙÙô)l6vS~³ž­Ž·¨õéj<}]µ–*NÄk—ZÖ94@ 9^3€‡a†³Rn -ÍRÑû5.[E(`HA[=%ª¡%%cXͱAP¦Û¡èþ<ÝÃý¶>W^Ù5dH諬ò=Wbþžéz¶PT”g&g"®z¹º‘°QTK)bDˆ•TÓ_ÙØÈÒ<#vm6…=ü‰ ñ¯k,âwŸXMi¾[ «N—6Ÿý·|I)(‹ˆEË@F[Ö±9ÆE$"œÍqf|ÅÙ€)Ì—(P Üáä5Eà ^SU£Ð‹²U†æMaÏÇaÔ:¡9ò<éÑU0¶7a¯|æuëäüþ¹¾)zÆΗ‘ȯ&¼ÏmÕ3lÊÞ6Ç·9[Êé9íD'´“‹©Š˜¡‹ÑD[´—óˆ4ÁÒ‰¢vv©‚“JM Hmš¬+—Ä#“Š€9h¢ÓÆÉQƒšR8çœÍ¦¥%(³Â ¡ü®yš5n+d‘H•¬Ú9„AÜ)dYÊ4b&Pâí„JÂi AˆŠR²ÄHƒ ]‹"cLî`Šd%P ¹ä´vS=‚²àÚ† `e ˜E]HƒBÝfŒ¨QÇC‡G¨…õHŠ(²q00™‹Ü ‘žŒ¨Ác]…¯Š™jRA….qUјH‰`Jm¬r “Æ8ˆÕ(%S$u‘(ƒ˜ P$˜ÀÞÕ«œ&)«XZ0FJ]Aѵ¶K€§¨€c¾®“Ž5U™ŠQTcÚÝÆ *{ÌUÒ ×·Õ”×‹ ïоâè¾âÃý(¾‡C¯—P!°µ¦+¥ö´Ã€õÎ$=òúðý|}so…Ð6ýŽ@›LÀ}‚UÐ ˜aÁ˜°8*1´â0¶‰a¸N -zqÐUÎr¨ëØ ©M*Aͯ(‰ÀË™XHDBÙ0€æì€ýEµ zó+Ø ¬TÞÇʱÁεØÒH(W<&¸¤)ÌpŠ– T ©)6‘Î:hvÉDZè0©8{¥SMøÊ¢Í&`¬CT¥#d„¥Õ|€”ŠŽ&'{ÑRúO‘§&BFG”¶\@Vöki¦Zj 0»ØÐ‰¯ª`L¨jµö*2¶™³F‡qG{T!µïÊk™4A³2®öàFð’{Žgš—|—tA©‹³ÛÆJJ„+ˆ¥ÎëÝXk,F&fÓkØ\g#J~ÜXW\]È1°­ŒögÎu^êŠUá‹8šO Ý ©޼öX ‡¸² í¤Á"ÝÑ–i)÷4 Ö€o.…ŒŽ$nk\Ò#ežëÒøºø!"„Ð pQ4Yn°WV¢äj]ZìlbåË*‹ÕŸ¥´8-c‰áÏpà—“ŠYã^_8îŒ1ÞØ 2oˆwã½m¦HÛ;j…¨…‰GlÛDŒd…ùg©6´&°ß¶ÀÌZn<¤@DF NiJgU(°à¦)ùÅ]°óXwš¹Á=K ح¤{H!½9p¶èUuž˜Öh~žÔ€Ç/CÐÏmÕ)\"åX@Û¤ñUC4@@VbÀQ„—diÍcÚ"˜K FœÝ0ßþ·ÖcðÇn™†Ã Ahª? ˆ;Fmm±@/™êÃÕôÎC…14R?6†±'Œ ÙÚ¸ô ¤cvEG", g@À€Ë)\iÅF(i}yRŠ—›t|?9©!†-¨ÎU–éAïÜ­Í™P/-jUÃ{ØÅ°A¦&>Ì}a¥ä*èo…fv®8âÂ牋š•¥)#,¹yKãþ &)ÈÕÚâLî-^;[+ ú9<Éž¦âåá¬å…³ô•ÇTk„Êåó-êb%1ÒˆÄ7›!$ÎX¶)9¡í"Ÿb¶ÂÚFä"F²s⸳3 H÷h%Üj– QÜbnGöiì~ù¬æì€_0WÁªì:l<ýô6¥°QÅG|q]uÕÄiJP@£Èx“i°s‰h­sR-Ñ“Š˜F‚{a;LJJqÞ1®#àêÈbÞò&—äÚö ;v»¦¡ªÝü~§í|yÉøøê sŸ¸Å…޾t"‡mÄv7socñ|{>ÂìJcñ‚)ÊÙ7L÷‘ñcµ³Ý€,rVy,1‡„ êSŸB/ ²GPÀôS€þ‡^ð嬴µŽ5x=¼øF81 {°Twvó ÁßMš8ÃÉ÷~š4ƒòA‡c„B ±ÀØ’¿-ß/¡3óè 50§x8냨 ÍØDrà{國¦B”€¦(µÅe¾Y>aƒÆEÒ‡1›ÝBÏã-Ý”a\&ª¯0œH2N¶ ¹¯žæ™End™cß~}Ú÷dû/7a ȵoã¹û EÊ(™ Ó¯5Ó?Z£À1îLSh¬îà¿A´‚DW¹.¶Å¸ kèÆi … £™&Åù»¼3m’9d™úUAbå;3æyIN=ÅÞ–c¼›·í¾²ÛÝÀGÑ/¶ÆxgÜféÖ&âç˜ý½ áù4J÷µW¯GßÞK…¾„'u _|Zy|~¹-¬°'º0˜6ÿ-þSð>Ëè§]¿ƒ÷Jñ멉AÛg@–ùþý €Þ 0– wŽ:Ìã߯ñÛŽåÎUêZñ C°N‹û”¡e``W0`K}Íl æY"ïõ¢ÃÈ¡‘Û¯ìîØ y·7ÔQ·Ü$µcx×ÈÆ]äÕ½·¥ªïy¾¾›ä¸Uß"«ÙòQ﬙¿¤ÔÚõ$Ûbóওu¯Öëoììšò¾t'›D_EQÙćù^ü·±Û\GÙ/jÌß”%ô™•ðì€,ÃFSŸÆNõ³ …ýy”Boæ[ße'ekÊ'´Ý·‡b °¢%JH®h¥‚8Áï<`3²b…šòŒ‡«}&%*oã1â³)ƒ5l™Ë¿bõOV®· D|Æú6ZRiÅì[äR+ÖPÌáh§©ŠPE$åØðÒÂÈ/œi+'ºÑ\Ö`}¯–u®ˆÝl-¶ª² ÀÔŒ~ŠBNx1蜪`iZÚ™*ÐÇB†äK÷ü¦zªq1+S7”²7åºX5á™*ñmÎpwbHíá:ôiäÛïš3ÐÛép;$ »ãu wÛkõ)ýåÈ[Ðt4Ò#ïMÑe¥ ‚ÜB¼ $ǶÃQx€B+ØQË´J@zð0dIjV$ ›iš`Z§ç, ôt[O\Oí½ Œâöã®]á'þ¿‡8ž(jù‡þz(Æ_Ε֌FXó‘¯Á¯nñ„>®ß’ÑQüƒöño§¿Î-õÝÞút!‰îBþ¿_õŒúþñð€ûÍ1þ?ì äøüÿOéÐCýX~ÿefû¨ŸÈB~´’Y#ðÒÁ,ÿ9‹ZmA¢\š˜¯¯MiûœE`¦)ì– Âá·¾µöDýûkß!åôhÊ%Hí@èðPÕ3Å]òå!-,‹ƒ6IJ`É-ù˜QñÎ&ý6|9¤IûÄú³Áý_áVú~t¦CýRV̾‘ÈC–ÿªÇôCô–s; @¸¿T|bNi¼ÃÜí'&9 ¯ÓùÀœ«Uü~ /å3G½ÁÉ|[˜Þ⤔¾ã¹GðdUmÎHà(G;ã¼_>Ý+Öy^8]î÷¬ÇÑQ†^sªUƒÓ0ÄVøÀvTðö'·æE•Á:ô„Ÿ'ÀJ|MŒ¤×¿ÖÇð~TÄ(oñmm‘âe‹š£ÅÔÃI:(æw;Ý+™Ï㯷Û&[™5ðɰ*¦ˆÚÉ;–œ.Cs85¢¿Ù`ú1iAyá"ÖK;Z>êŸôîÄV5…Ò8½¢ëûÏñUôûuƒ~Î:7üF`q°¾#û)îü;¿HPù—» 2C- hº† „5 ™b0„°Hˆp°Rm¾?r™µÇ'ü™àû}@qw<Я.¹Š«` „#¶}ÒPÖ­]Õ?å@@2Bf `—3îܳþQ ÏaÜÔn¡ ‘i 4€2`€Ëžòf¬˜ 9«\ÒKôUÖ¢Õç,Q,ÅÞ—™ œé8¦¹á +=pЦ£ëEð‡PüÄL—á§'VÁ¹N€?Œm™‹ÓÕð<;ÎØ}üT”óx qìNvo¡`q»pN-§û?QG ™„Se¶ÏyWƺd=õÇUlÊMD–z}5×Zï7fütû± jL[)sÊý½½‹mf-!sRâ²áì‘;6M[$/*{²9‰ðÄ–œ?«…±›~Fèãú<0øwN—¦VVôÿ@š,´µ 0,I~±œ{Üf§ëTÖþ,O†éß/zŒ¥oZé-ðD¼Ó\5ú·ìö;§juâæåXkƒ€{{{ï··°=½€PR…D(¥hUE)Q  R•V•P¥ih)FRT B„ A)BP¡)jФP¡€ ¡š¡¤)F**h¡„hJ(’…¡¢ (@¢*Fi  ‘¡ ZT¤P¤JQ¥H Š•¤Z)V€™¤J@Š––¨‰i‰¡ ¦„(@¤h‚(A¥)„¦šh¨‚•h¢" ¡  ¡" ¦ŠR‚• (Z¦%¤)ª¨ ¢’ŠB€b–š" ¥)*šX‚†Šh©¢Šš¦Š©X„ ¡"¤bJ*”¨‚‘¦ŠZ"h¢¨ª" (hi*ˆ‚Š’šFšhŠ¢j("Z*¨‰"¢‚&¨ Š)bªI‚–a¡¡ª¦ Š©(  ˆi¤¤(¢’¨™‚¢H*(ªbh*`¢ ’©ªdª$¤(JJŠª ª–d¢Š¢š¢jŠh"(¡‚"–¢")¡©Š ˜ª* ª ¦(ªj†©ªi™( Š&"š" ’™–j*("Ši&¦)ˆ’ˆ&&jš"ˆ¨ª("&ªJ¢™šjš(*&©*b¢&) ThiZˆJ (ª*†aŠ ª‰B)ˆ¥¤¡P™(ZTx‡dø§_ÁÅ=oΓØr\ßóŸC‚{IÜ®ªSÅ€‡ží¸ª¢§%±"* ƒ±ÕvÍyŸKþNÝ{Wý—Ó?‘Ó÷Ž{žºËƒÆaÑìnÖnÖ¼ÖÛ_žŽŸ•ùϦ“çë¸þ¹î ë9¾Ûà>·í/ç9ïÉ>‡SîWáñ}ã}žŸÿß‹Ðø¬3²çæ<÷'ýÛì©üú~ã'öÿóª#ó®@¸üo΢Éf*KqyüäDž:š]»3Ë–a¡ßîUñ.5I>mUQc(ø‚ÿ~ê)x‘cè|Ù•ûe’„3a”’C›ÓV›W¥àî ™ö¾¥¦M:²0Õ¥´‚òC0Y²‰urËá/dNì ÆPbž¿ù|TòˆÈR–ý·7(%ª Y*"˜:·2¼Y…+4@HÜaoxjïC4,™R²÷¹§°Â…†¥‡½Ñ˜O7Ÿ&gÂ=D:PÌÅU(†zI”Qh«ºâð©u_}ª³uQ®U¡ ÃQ”i•Kó´ký›³I*WK† BÍÍ»š™°…Ö™nARéÁ=5ìZaîQ‘mmûLm`NO×Ç•5ß]#ù ¨Do ­ FèP%tR<Ù?nþ¤~1}ú¤îÊþcûÖp?øÿéÞKý>âtÒ%*H‚P(G!ΜÏÙíñÅæ½ß3ÿdóמÑÐÝŠ{ï™å`ô›¡ê:…½tÔW™—V!m‡&QÇüØËc9U2CÈä‘d†»iav?oz}_¹ýýìyyÌ×QÜ3_‰ÍñœcÆá‡Qž>ÛFd¦ˆµ«3´fkGÍ{çrð_P;ù~7êÞsøŸ‹ûÞÛˆ››äO¥ë¯#ìÉ{N§=IÖó]6~ùÍiç· srR”*P¢Ð J•}W”û_m@zqA÷Òu°*@% î3C$ T) :‘TD$¢éîP^A¥å¢•–äxéáNéRÈ –‡3 Øóý3Ïì|UÔøm¶èøÞƒqø[bõà÷Ç·ò•êbyö·ÚŸ¸¶ £ù9=woÝÍ¥•k#_—³Ø-ñNŠðè~1¦Àq«ú_8¯8ÝýV„ê9GæÉð.â3m*×(g0ö‰0ª–ˆr‚éLþVÎâ*ÂÆÏt·9š•¦ŽkÚ#†¿]x׎ ] çÏ;JeC¦Õ)QºIÇn£Ä§šº¥b²²ØÒN=9äWœyøï w/éaÜDñKÊwÖyæžü¼ãǘŒ ™yüU§¿ºóo–'´ÂòÅT{îIŽü[ËÞ4‹‡òí¸î"êŸ-QÇ)·Œc(ú‹#7Û?Þ±Ëc@üMªT+nc;ê¢Û+›¡²îs³{ÛÁž7ñLÜ>B†;]õñn Kv)Êòœ·ŠÇ(o³Z ¹Ï•œ YqñùåašãÛ\šÂ×¢óF‘SÚWÍ›žgMCÝœçx²`F„ ‡WW¶}z|¹XÕÿCpñ›òŒç®º+ŸR Ê2˜£ ¤Ã=$s²˜Çjr2`² -„¡Y#/ÝZ+¥¡„íæ "ú` 4£<ÉpÞo$‚‰)È©yš®¶¡0xËý?>u¿¹¶`WFÛ¥”Š´E§Ò¹DøæN2þˆ1Òchý·¹äKì5ØÅJlHs âZ(Ô$<(bÍXÚmPž¼‹ùš¯Jã°S^—ñ ¾õè­i›ðqÚ€ iÂKY×J€ Èö›Dh)™@ÚÈ#›(Æ["Á§qu }}qFõËáµìº†ç¯§¥øP¸ôöQÛvé¬g¶é:÷}òFRn»`mº¯)o´?Xé°¸KÖÈ‚!¯&BH²Áâ*€H¬(}D â±ØáȰåmÈ HÖéTN‹ÿuˆ`’¬jÄ® )Îu¨Ôûçç¾ ÎÇ]í>ë?Š;ëkfÄ1Òݤ;«‚Ob$È(bPš!tHîI^ ên,ÜØ:HA Šr<(dÌK’Tš…†‚bBçsÁžƒh+±âãf íIEÀcl0Š :ßVž‘¼JVLÈUÐ,`ã“!¦ß8¤‚%1O3‚ÆMa:šÞÜ”f™™cÀGs[ê“è°S\jûØâ&8$”Ãs%( "4 V$êªaÚ E&°!hÉì0\3F0KÊÄI%k r¼©tÞ{‘4¸p•å9#N ìa¢oêüu†;úMY>ÂQ$ä¡‘d½#fÈX˜uñòŠN/U}õFÿ*ù?Ë)—Å,{>ÙLO2íséfÉf¹ éªÉ Oêt/-/(p4‚ Hq®€{R\3jð±ãÈ ˜!™3n9%Ì`„0cœL.aÖ ¿Ú¤@b3Ìr¡üLsB¯j‡Å©$ûé*4é*Ì\Ë58³«¢ØŠÆ÷#‡xTM9›®Š…Zå1E‰Zùe/)Õ·¥ê]‡ ݳ,àëªÊ›¯ ``-Êh£—8hÌË5°*LX‘“³Õ+"„CêÆ”g_1ÌÑØ œx[v`"ñfl¼R(\ê~¢¨ó@jQÎO£GwŠ‚%p$J³Øk#‰@B'’­#áD€F–h@¦%5s †@½)rÁÚâ0ì9´ÜØRù€ÅbÃÒ”„¾¸èaë=Òã=¡jFøG'”Áæ4{'Ïa²b;uþ)œ{m×M OJTÛ ±A¿ªéÝUʨL4l sf†žºÅ«ˆ5â±D@@Âa˜{cÍlµÅÍI4Œ®;“Šh’6¾DB?´¯  #¼(uðFi¯îˆÙe ÃìJ ©OOÄbZïS|Iax ÒÂåš°àIÄ ÜfÍë'¶X»'¬˜QÄlÀ,H(Ø"ÃN0ºèQ=³à'ýÛ†xháfÚ1ñoš9WÅ a1aÅ8€T²$ü1¹¦†ƒ…­£Þ ¸¶åŒ*ÑК5FÙëÒW‹­È`ÞÏkÓJB¯¸ `Öƒ—îøÞ‘QÌ.>u}T}r¦TÔnä“d5$Zo>ÚO^›„wÁ=TSh))ëä‡VNÐo0Â;½Ï’aaéÜ6‹ñÅiî|œô­bUbd´U˜{Vèê·¢…/Õk4ZCKŽOé{\HžãaVfå Å¢¶Ö~”VtxÛÆÕ±y/$žTÌ}-$4*÷æàÊ\ |!Ô* IðãM$[H…ÐøqºÁÂ-²AÔ¢N“MÜ™påpÆQ®N8iéÉÀ¢±²±;»É¶cY{˜šˆç)¡23ûìí/‹½n~'~R^1ÖãQÇh•}ðÎä?¤éàžã/…›4F§ãç(ôޤª±I-.$tsè ßÜ ÁzG©aßJ@‘‰”F›¨<¤­ûüq®Ó‡lñÒ÷Ëk銾(ºà,눛‹47äZ%bè0iélÄ#±~òY©i%p ¶.–:¢H“×+k-#ø· ¸:¥ø'uO³<fôk‘Üï>Ø[Z®.Bíšgeî¡ø×‘7@çeÕ¹@½ÇDF‚©Í¢ ­£mŸƒÅ(ë&…ÊM[_ ¥š¢)µˆ ·RJåwýf@ +¶½Ù‡ŽÇÓ=Þ,'€°J"ÞâØü,Iç²D×b=tQ¯»úz>¿[×È€¦±oꀪüŽû à |çÆ íD^šèÀÌë´ÔÝñ¿XWSß-ˤ©œ'%]Z§yÃ9xn* üç>\Ðo³ß¯xñaVLÌ¿¯§I¸ïl ¦û|ÃoOÞY}W>»fÚ®n·$ÄȲÚXùÃmÍ]gÛä0ÇzgòKá˜î­@_G÷%Ptâßß/"âÒ|£^èÊÏëžy Cv@ĸZ·Åï0~£Æ­„óbÁ\͈æDìd$³u ìk•qÓ«‘g€»GZMa9¡ÛõÝA¾:˜qý{¨ŸA¿MµØ.%¾B¾ʧM‰¿Í)«5X³èµ——QrÛ±4áÃ5›-Ìoò’Cçëg´í*é9ú>PZPKë¦áÒE=„™ÆÄ*QH¨Àj€•ìrýGÍ"pÁ‰¼^îÊ2œG÷eþ»ßaŒÈö) ŒÏ³YnM4§¾;ç¶k¥äûßHR¶<4Mvj³;Žž4óT,2–àQ˜¥ê书çˆÓ±_Ú…1“|‘?XÓ¨µ_]›ö)JÃÁo´´¸1ïpöÇ‹?­äßXº¼Ý¾‚Ö.fvý¬ý'b~ õ–l;µÇ°¾)]øó«3ÙáO9X%¯dýk3l¦e%óðsQ,®Hë^š"à4Cç†z áUþht`|+é€1~"ólvÌÑŸ¾… ždv¯&¦ÔVEˆi|‹Ø~Ï}þûpŸOxÒ§Â9úã¼o®™g215°Ð[»zì'FvîÏ΂ïf1˜º˜^î}pˆ»Ñ o*˜FNø¼æE~„J9Ъ;ض›´tЧ€‹¸“€b;š½]äB`º·3Ód}÷QŸ,ÃNœ™‹­‹¬‹O£ e҈ŕ’Šd¢eû[D¯H ž."¨Ö_HäŸÀsûX{kôú=9WðSþ›†X{Ìí!-Ãt92ö/1@+þ1TâoV_Ϻþ÷ÏO·Íö? ðAû?e¿ äJ:ýùDUWü—¤? #î.ö·œýçܽ&ªA›Þ>º»JÉn>÷î>ÎóXÒ ï¿ÇÁ`€DKô H ó—V¡fL$ú „>ãâ%£-)F¬ ãY½‰(eùàšÊH(6P!dÈQŇ/‰§¯åd‰˜q²×›¨Ð)w;³ü¿H½Òü‘cfŸÒ ü˜ÿ˜ ø~žØóƒ;èC$Îö¨T}P<u·Yôï§o^õÉøl-—OÒ{ßKa~`tre+TG A¼ =AÆäñ‘Œú–…˜,˜&Ób>Ïd3I²ý&bðL ˜}™Š<¸µÃÕ[·ÈWtÅÇÉZ!” ZÉh(»}’¾up‚K3>Rí14$ŵ¡Ðשí7¹]l!D8ê÷¾·B¸ e–ëm]øz”öX)ôòoá>g¡“G“ÈOÑbB`HI“YVŸœ æùqC¾ßéMD„ÍÞ™@ð‚æACëžÌϱžFövËËÙ^0¡öLåÛ&ÂPö«mg§ß‰Y¶èz×%˜£éVÅÃÀÅF[/É5„#.\±<¹nc¡=²ë¦Cdªî—¬YËÌñCâQª"¯\btIè&3œWú PfFˆâFéœ%q 8Uü4Ð<ò¿º#㧦ΟþÁn–ú*»)¼ý¦e\I»8®Õð57fĺ8ÅŠ@¡ŒŸd4?‰up_%À,¶Ý,Úú‡" ɨ2k°J.6ñÊ*Gà‚]µ–~iú^å˜ôæ—ï=.?ò©¢ºtmö_[ü³íâ~ë*ùŒV/­§§ã^xQyHDQ…P¥UJD(QR€‘E)QiDiR„ B„ JB„JB”( Uh’•B‘hT)(h„hJ…R$B” ¤P ¤()(¡*€h)R‘h¥‘h ) (B† B†„hBšQbD‰ €h J€ˆJ€‚‚šˆ š¢) ) R‚fˆ H‘ ª¤¥B„ª*©J • b ¥h%)ZJ)JiZZB¡ ˆZ¢š©¤ˆi¥"Š¥¥ b¢R‚¢ Š!¤ bB”h˜J‚„¤ ¢¢ J)¤ˆ¡)š¨bˆH†©©¦–˜‚šf)()‰"&˜‚‘©‚¢¨–©J) J‚j&€¡¨Š*f"˜‚$ˆ¢ŠZ ¢‚’šY ¢)¢¢’‚$¢š¡(X𠤂&©’¢((ª ˆ‚’ŠŠ&"Š˜J*–†$ˆˆ¤¦ j¢¨iš˜¨ ¨¤‚‚*" Š*(©bˆ&bŠŠ‰‚"ˆ*ˆš*’’b Š˜"‚ ©‰Š‚*¢jšb" *&ˆ¦ ªH¢JI’†HŠj"¨’¢b)š* *@B”‚fª*"¢¢ª•¥†–‘Y„¦‘B¥(B¢ „Lï]‡¯þCþ='ŠϾÿÃòçÓwÁ (Q‘i)•)“å®<#Þ;æxþ[ûÿñÜnK“õgûŽ/0xnñá´m´å™ç³´ ‰Ú&”hh„F•(€)B ¡IÙ?såúÁïgYß»¨ý_ðëxäA:TB‘ZU g±ø÷câÓ™Þ('ª#@-4Zü—nÖwk¾üÛ˜ý“xžK¼39Îáá7y ×\?æ)h™üÕ%[óØý¡ñáªÚü|k”¨ç(S‚k—t†ÒËÀ‡ÛîÛq²µf¥8…F—N 8q¦£Â*êé‘$ŒÍ4Û¤è%Ý”E‘éÈw,å–΀AÍk(ØÅ›oÂì-ÇS7Ù}=]óˆ†|}ÞÖq) “–*Ênx¬£³ílDß7*’/x—¡,ûHͲ1zµåf¦RÂÌ‹kYi‘É6C*Ê'ÂÏŠ…l.¥3(ØùÜwqñâb‚²L¦³¾GÂ< /ÿÿÿÿÿÿÿÿÿÿð@€`"A€L@’HÚÚÃ}÷ÇÍà>¢¨¼ú÷À•¥T@"PQ R©J P¢…Pª%I¬¤ª‰ªPQUUE( ”IRE)EªU%€U R”*@¢ET€D‚€ R’ ¨E@•RB©R¤REMvÉ(¢Š–ÄÛàòï=ÌÃëxHP^÷³j°ªéͲ¬]œ®¬Ûnƒœj¢[6ç99³%²Ú²¦ÚÖ¬–-µ‘vÊ©;4ÖTÚuÎîÊê±™6˜É²Ô¡¶‘[VÖkmÝnç:UºîìëníÖms’º¢E]ÎugwhÓ]ÊÛ¶Õµgf%lº¶—msgM:u×ZÛ¢ZÐP"V€Ð Д‚šP­@èéÐ:¡¦Ø ÓAVw€èuÖƒ›[ V‘tÒ‡M4 :€†• ¨ØEÐt‚vMjŠJ€ãœ¨ßáJ€ œɼ  pôˆª4€A!0i’!&)²ž&“ò4Í@a©ú¢Rš2h ÐÐòdÕI bѦ€iíT”¥HÀM14ÀÁ0 ˜š0)ú””©#)„õ ¦˜hÀ=OTbbd124õ4ÐÄÑ€ J%R4©è`†M¢0ƒL0BIIEOPh4Ä ! Ñ¦4›"=LŒ £Ôi“ù‰J’ü¥_c¿ó*¹ªºP¥ ) vÍP- Rt‡tgiQÔvÚìì®;ŒêœîÎŽŽ;ƒ #2ã„¡ÝigYÅe6ëWkjqÑ,L›’ÅÍ«Œ«¬«F¨´©¢Øã«d †Ø«9±+¦†‚OCÛÿÁsÿܾ҃ Wæ°ÔQ œÀ¢ª0 &pcOÙIˆ~_Ъ´VGJ#ƒU ¤&'ý0fš¥eR…X Å”iBXBDí••@ƒY* V P6x~âŸï"r™É³+YZ@Wa¤Ð‚h&#ýgúä’su&IÑš•#¼¿ð:3ÇÝ%›[þ0¼^"”;Ýj%¡ä/y´ qs m-7ûmKJTKZUÁ `†ÙÛOî´4×q çA©]LÊ“*À7j3Ñu„`?Úñ¼6´·DÚ°‰lˆø¹CJ+¢cQší¦i¶Ç,ƒ°ïѧÉœFÔhÒm‘4“5q¢Ip±¶×YÞxÒ©ýî@9À-q$G6w &Äö ´{“ï½)¸ÖŽ{Ð÷ÆÏ¤…ÔiÄ5méc:7¥pAPÂm¶¸†°Ë=¦”=ðð§RE]×s5›®”Cžô:q«`£t¶eq×îUMv*æÓÛT'†­¿îÚg%µ®+{XaÇ{…*ùm9¦Òà¸í°L[;Ë}¶¦y SŽ+mÆ·~ÕFÆ‹½¢Š|Ï­¡°ìÒÝïѡ̕±Ü”6XËM¥^ºxc2v¦©;¨î›]»ŽÙ+½eM:”"»ó>Égi-GŠì˜bÖ–ënþºê Ô¾afº¯:JX×c×ÑiÏnÈØã¡[„tÑô­´[îùÓ¾¡[i§Rzg¾m1a£ð›Å¬y‡E7#nËÀÆ41õ¾‚÷Æýìr_ö^\-4|ò"kjC»uïtÖmŠK¹·£qƸÇås&"i5ÕŽ¬›`³†Ý \ÄG@ž~På´ÍØ®4è/”¸‘u½ VüYö¾åËÇGD-uµ“•®i²ðSáyØfѽôÔ "«:U€xïºO]-b߉i ãC³f›Õ•mÄLuøši*ÃjÒ ›öøï»kPÓ¤¤©{ðaÔµÞNC‰É ˜GD)Ü3ÿN†7Ö|Km·þ®}¶Öã(椟±yÜí}6Aýžž‡:Ü‚$Ǿ \|¿íºl…+óÎ_¬šk.g§-Iìª^!(GÌv¡qóöW¶ ãꪡ}ý|^ÄrØtËm¦ÖÈgImùK¦ñ/|ÈÆ.3(¢Ní­€§Ä ¥£ŸYnÕË‘Ü宾óÚLen8IGÚU÷Ø´­&›ëU¼7Vè”qW4À¯tÛ#ÓΜ†±ÀHN¥X\¯°gxáÆü_É]÷(tÿ_}0Ò=¶r)N‹=tÙ Ñpʤٌš°®Ö?S·7 HQ@x©F£cÐ;¼6¦£@ž†0μüçˆÒqY´ÙÓók)k9h!xÀæ?JéÛ#<„ãCÆëÐÙè'QFÃVôï³âïšRTÁ J`nÁ šDäà-i¥[p­žg:Œ]’gIª³—¡ÈewˆÚP)š•šA‘¥†ë¹æè'*RâhaPl5!µ×3Öø¥ë8Ð1WuB :¾ƒ¶Èô*‰FZSUX3£áÈ Ës¦´X-+&­ë ñM™éÛŠ¥ãHâÝàóKšŠUÈR¤d‘Šçd³ 1IT’ms ÚʲŽNNV©\ Hâ p"‡!…Uô i”™ë% ©œÈŒ*ÔZ­ a\$Æ€¦Ï¤ØFQ\*¤oî¨ÓÖ«{@Úš’ Š!S#H!ŠJ6Ñ= àJФHñX2LÐZÄ+ˆ¦*!)4âèÐÎË1ÿe4BYŒãµmé*ÆóeC<{û÷>%|7ÿ‚þUæÓ6.¿xn—œþ½¢m5±´àR›ö6T%$Hݰ""™iøQ™üÉwÜßxfÇНç3~}y3ÙçÃî÷{\`æÈ¦LÇ2Ö'}vn_"“ï&¦Öy~{¾¿#mzý—Ówœ»óäç}k×ãù}Éž7Æž±ðYyÏ7¼k±e^<:šó|‡ ½s5¸Mó–oÙÓ»i½Lí\‹ †Û ¢¯Ù1Ø–Ãã”{»†±Yé“]”Ñ'˜ç*™vÄ.Ä^f+·VöøeiÒG ï°{íýŸ¿ÊûÔgÇŸa½O&^ÔÙïïŠ.mÄøókö~œ÷·ÌËW&ÉYØ:Æ¥• *ó—€€›åiݸýƒé”Y׫g š±ì[­™³y…^?<ïxÚoªù3ÞÉÂí9;‰¬óiïotÜl&Ns|ß.±å{D4ñ¦e¡O'vÙ”[`Ë¢YŠf2?ðÛÌIÆŸ\×hÔG-‘Õhs¶•½§´[¬<€·ŒÖÊuAñÜoÿ—6zX×›ŠÊkh.…‹fIShNÁ±`šf&ˆ!1·—&FÀ†»5cÑ­‚,q7D “{°ÈÙ5ÑqI£PØLÅLÀþÿŸÜþß¿ê‡çý?Ì?ÍRÀü~²úðÿq_ÒG/Òo®ß¬9Û÷ÇñûLîã¿ñûù¿é׿_ä_Bü?#-÷ãµ~Vúõû~—¡øóük"Ó‡Ì~_–ß·ëòë?£|ÏôúþÞ~ÏÚ û¥}¼‡Ò´Òÿ‡å}¾íO¼¿3ÛÉ>+ùëùKcü5øù|!87þ>´,ÿO‰÷éûÏ@‡lý¼üˆ¿#"=S0_áÉOìê:±ƒ[òœHš%8À þÊêŠ@¤Æ}•fArh(F ~†4Š©!˜›‡¼–6›¥RžÕù -"•{Ð ÄTccqJÏççËz9玂‰·ü73Ûæ9ó»ïç±™³ÃxÒ~ˆÄ‹y’b/{¼Ã´ÿZz5Ä„§xRà’/ÐH9TqÇÇwᔯñ_§ÿ¶Yßµ¬½¤³e¬¿©•%ýžßÚsãú=£{?G§P’¥?"“»ºß¹pG!ÇqDåÑÁÊ¡(¨™™–& ¯ùŠŽîíûïËûîY©I¢år¸ãQmQs ‚ÕÔ²¬r¬r´ÅZˉ§КêUM*Ö¸]fdš×YÃ\Åqp­S:ëDÒ‹MWSe\ÍKBªqLÓK5Õ—Z­«55$C:‹K ËR:mRÓG,XÌj5­Ž[IÚé–µšJE™­k70ÊrÉk\æšdâi&ÙN Û˜µ¦Ú±c°Ú ©´t‘ÖÄ0á d[W5¬:dpÔd«ˆá£¨Ti¦•¡ÍÄÜÕ'6æiɜض‹”]:à×2uÍe¥U«œœ7m̳#e¸œ.lÀ²Ýµ¬»ÃY2…­¸ÚÁk8‹9¬e­¬9m,PÒtV‹Z£. äfÉ.akfUEêl»ZfÃ,截'\ÓZ…4¶Y.F©%×YÍ“Œ”¥ ¶6ÛST™lX…Šèœu8!­kјkZµ %v¨„³f»I–È•£mc³6"åZ×ZÕØq›V¦+V¶’֒θ²ã¥¡› VѤ×ZÚ±ÓWN”uÌk;YÖ4ÌTµ²dÕ]VŠi‰¦S©aUÂT™ Qå“MJÒ¦dX48UŠÒ -:3B‰™Ä‹³n¶³ö“§cÅf3µ‹³qfmÖ±¬Œkë Ýc%”¥Z×MEeµ&2╬§5T×:ŠjX¹Õe¦»*­.g¹‰¦w&èlµ r×1Ñ+5²»Bœ©ÓYœÖZ×KbÉS%•PFr6¥Uµd1©šIŠË¬Å]Z)Œ¶—*àGDhu¶è:,dÖ·5£pÚíÖÆM©2ݱ%¡«ƒk-s3R´âZÂvp¤­f”Æ¥Z³šÉiZ,46±Ê2M1K: B+$©ËMLÖº´Ðè›)g0Ô“T#NMZÍVke¡«C9•Óœ‰Y4Z:Us)ÌX]p¦d“9k3!.Œ·KjҚɕÒâÍ®¬ªÇ8´±f×[cšZ4E…fvvUÑ]ÊZ:ÒÝ´nÒÄja.%‘fŒÕµ•jÖZ95£-¦&išãZ™-*Ëœ&µ™»-¢M™dÆXÖÁ¢lÜŽ›5’Ie6Ûc.ÎÂnÓ“gYÖš¸K+c¢µ hZ*ÍZ£ dÂk&i¶ÒÈ–p†©šÍ::§ S˜ê¬9›kVZ¶m]”˦,Ô%v‘¤vJã©,jÉf¦Zª,ÈZJÖŠZÖh³¥ªêÉ7L•k\È2­9\šÔÅfµY]:“qر‹i%U1­“ Ëd[Dm²Ù(*×hš´uÖk”c2êÖZMhíÚ:Æ‹XÜJ°tjªvu,­YM56ÁK ëGjÍ[MÈá¤Ñš¶èf6³V·Z‚kn"i¢ÀçdÑe.´ÄÌ4k2‰V¤L—%µFm5ËN´ÚÄ,¹k]h³L3²Ëµ ÖYuj&§-äë¬I’t-Êͳ—mm-,i2’i°éÁcM&d›¶LZ5®Ó¬i;IX]FUq¤dÎÊm»5­Yˆ¶DÔn“¥U-E\£c-,Ô­W.,«C®ËgjÉ(mÛs’Û5µ¦–-s3We*Í–ZÌLmf´#5m¸Í`à™Ím¥kêºjeÚ¥Ú0“VŒæ¶‹2Ëtq¶»NbZ…ã7,šÙ:0Ø.»UÕu]J1S5 ´¹¸•¸–eÍmƆe“Ý¹Š‹N­QƒºÊª3LÍVlb檦gV°Ý]fM2XÖ­É”9JLÍpé›Khá©ZGR±™”ä•dVUŒW6Ýl[[-hŒ LÕÇ8V&k65ZR®µªÚ35:3šÜÆÖd;K-“5±Û“1¥‰g.κºë\«™‰#™%Y«Úˆ«©ªVfµ´rëšš68)Ö­T–¬kTk9ÚMX×Vi5¤kE5§)ÛBc›2Z𵦳…É¢Ò —V’ÆIRÕdËd“›"k–Ë2—Q‰Ú.–æ dÐdm»pæcbamiÇVš¬rè—9¦´­IKZ–‚†ªÊ–Z¢Ã“«62í sZÎ..ѳ2k6UaµXNÎÓvS6Î2m[³D-\­r©r×R¥×(–pµ#F­fÖ ¶i7%Ôf˜Í‰šÖlÍ£CG:šÔÕ’4Ë“*ºÌÒ±HÆ´³Z²´Ô™™Õ™*®Xš “¥¬Õ¢2;L¦M#nƬ™3ZÅXI™‹•Ôu"rë-€¦™¦vÄ6Qf§l–­:3®&µYSE³3T²±•UÔfëYdÔdMv—J[¥ÈÉJÅ’Îm­°“‰aØ…­¤ç’&FƸÐ2ÖÖæØv«kµÆ¬«h- I±˜ÄÚ-Í´ËcDDbÃZÙfº¦²Õ'Tjˆ’­V®­1ÂÆ‰5ÁE³i¶Û5³ïÊ*:rîˆ+ŽŽ‹¸ëŽ¢©!.\8r¢¯¡éWè>ª*¨ÐîÒqËb]°ÑYmã­jÐŒæ­H‹«iÕªC5'j­vjÍu¨8ÖŒÅmˆÁ»#†¸P­*rÜÒ¤f&Ùm‡!–×RD“ Ø´«-² ckZU¦dBÚ&f4K+B'f8ÖÑ\\ÖjZU-† Ô¹–Z’Ö͆–­Ö›2rå‡7VŽ«(ÈAµJÊ&EºÆ­‹g,¶ZL`’²Ë’Påi976¹i …f®–ªÌ-ÅdešUÑ­4 Ö›*ʤÚÔ¤kLÉf,Êf´‡ rÄØìÍ-ºÜ3RÌ’Ùc©˜µujªRgIŒèÒƒ5i]¢Ík—Ee­3¡Ö…–p2ʵ(ºë¤F¦µZ‚U2m«±:êu­N³hjTY9jU’kIVGK—Á‹1XkFUŽ­‘ÕQÖ¨f"”ªÍ*ÖLR™Ng[TjÖšfZæYrY6ª—5ª­QYZºÍTÍHrÌÌ–ÐGr–¹“ZFG+™(ivi9N¦´íkRé¢Ö…t$cDç5fÍQ³V¬-˜¥®*¨uªYl«5†É¨¢›œŽRZŠÔ—F#YÁœ”µš®µ4¡UŒØËXÓ²šÕ[f±¬F$´ªÂ-ª­ih°F»Y˜Ì,°ëSMJN–kªZºV[¥3)ĺUV2¬›Ö1Z«£6­e9­j–ª±Iµ¡®•:Xb u…¦ÝŠ-‹Si´ÛL­ %«U›12»ilI«m‹&¸‘Ëk,k1Jª¨!¤®.Ëkª£&uÈ’²ÔÇ$ÒUÉÀ¬šÑvÛ[EÛk3ªÙpÐÖN¡k-irT6jÖ›T‡2ÑcfÍfã5­Å 6³$µUfÒ¦¬.G$j‰ZèÌMp´µReÙpÔUÖ-ZºY” d²®k†ËZNšÐb-ã$ÓLd¬utVÑÍj j­iË-¥L뉋 ëT6nÆl9±³FZ)ÝZ̦¬’+K]Ó«ivi©pÓfLF–ç'jªe­9”);®™œå°¢Öª™ÑÉf‡]V§:Õiv²Î’¥ÎÖ:%gÒÝ9¡·` nm–º5¬+™À¬ÒœÕ®“µefÚÓ4J,ìÙ§-*ªÖµ¢9QŒ4ÓiF FÚÍXnÛQN´Êšk­YÑ&¦‰£WÍ¦Ã‰Ä 3MÛgrÎjë[­AÉ5jÖ£XkœÌ8´³[&Á,ÆšÌRf\-YšÅµmjšãLÍl¨ur­MX6´¶]jJiXKmBFæÎK#lÚÎÆª´Ë +aR¥¬²šÎ¥#i¦Œµ†*d‹„K¬×4™h2ÖIãÊÌêÈ%Ö´4 âÍ[V,É×Z³]!œ)¶‚[[¢€‘šjn«;'UkÕÚÒ”m1¥ÎÍ\¶rÒ¦Z« s–q5¥¸m24ÜM!2Ó„ÔmjfX•Z²mfišÓ.d´–‰ ‘](jå£Y*u›‹YšÖin´¡ÆZcQÍZÙ¤±ÖY‰rÖk+ë¢ÕlHcPÎfKK””:­Y§dÖW%©6©6—s]W²¤Å®WZÖ³,ÕSGe®Ê]‘5j2¡R‰–ºVª®²j©0¢¦,ÖKE'sKYŠv´Õ©3¥°²ÖFÑ«5lk)e‘’î­,Ò-J´ªÉh50º,šëgm Åœ˜LŽ ™[mD¤Ö˜&5…ƒ4Ëm£8*B×Z¸´¥3C˜\-µ’–-¬Í«(I¶ãDvšf2ÌÖãkm‹¬Ò³+ iÍ$Üɵ*SF›5–Ö\«GEkššÆd5QÑläšÙËqf›k(ëÒ›´Ü¹F„dÙ;[:‹2´Ó­]X®Ë’–7YÍÌ£+vh¤Û²UkN]9¥3[VI™]&R–³I¥¤ÕdÒ«XÛ–ì#¤3væ%3m…&Ü·gbBd-µjAeY0UDPËiZ2¥«%k)Zâ³±H³Z6mRÖK52Ò0«8­ B!Ù¹6lÑ—u•©[,bkUŽÎ3RÍjªÍS˜8ÊÍ[A®È­ºË&sÊ×5,´s-8å«30«jÍeUJ»G ­pjÕ!šmC¥,¹:Ó“vA´™ŽÕ§5­\4š¶!‹•iI”›,®•Êi²hÙÒs1¥ÕjÖe2Фm4é–Û§,ÉfÉ&l¥YV˜è,fuZg ªMY±M(ÊZµ,×Q9•´ªkg"Ù¬Íj¡›&Ö2Ø5«:®lÅ5«U´èVi•W]«®´²6²£TêM¬jhhÂëPÌÙ ²+U"Å™tÌBÖЧ8S´±ÖÜsi'f‰¢´Ò¬%Ìj±d«Ç6C í-¦˜ »µ9®Y ŽdŒŽd¶¶–ÇF²1¤™Ë#¥kV¬ÕF³¦dê¨Th²Í«ZTÉ›YË6Œ2µ&3&-´Ìã¦M’ÚnM²ibÁ[YËnÂ8ãl×Mvqœ«U®5VÖ+®YØÊȪ±l­†RÂkbhÙ´±1Ùe›˜&–L0­hSXc¦¤ÊC’„V·Yf´ÙÛ›n´—XÕ̹¶­Q&]©*†š•kk­Mc2NÔ‘“Y±§2²Öœµr\[¤sr.™mXZ¬¤¬¦jÆŽ2´ºé‰Ø–Ôª¡ê¸KFU¬ÑF™±ÕcB\¹VI­¬t,³[ŽRsmÙÛ¤‹lKlaFš%E˜LE®™Ç]&Õ­¨]¡e(wNŒ“cZÉ––¶Ë9‡0­6ZM5&­8ÚíLV¶1,¦¬ª´Mg©KhÒ×2ÁiŽªÃIY±©kC£5BÖ[%#•Nƒ­W²'bÐêºbVE–Ë6`”$¦É¹ÚÎ+1±¶°à”àÒ³LÊft€ë3Fë4霳N»M¬+Q«kZ„®k¢Ê$ªÓ,ça4šÍIœë2ê¡©3AÙ%¢É3—,ªË¨¦nºLÕ)6c—UÕu1I’¹EªµtLÒÖŽ Zlªæa¬±«T¶\’%Vk#C¢m.¥Dh͹"5µ\mc²rÍ–gX#‡ ,I­K5@,Ë µ&–ÒÖ͹¹Ë3A YS³SÅZê\µ]wL#LË2€äËml°íd¹¬¢dK]mFÌ•k³q$„:V¶¶Õ³a5¶Ø‹X¡+;œ³CkVÌiÉ”b•\³kU&UÊÌK²u­1­eÕfÒY]ie\±dçS&b¤ÙZ†j[Vb°C(«…I æg:¶»[]Y@1«5‚•ª¶¹©šÛfÚ3E†‚#ƒ­Y+*ÂrDê´PµlJš5…V¥¥Y¬Ì4lél[³g&ÚpÚ²ËZ€é¨LgB²¹“¬å\kZº™dV¶D-‹l”™¬–2Ô*¶tG #Z5GPêk\]ÆkšYbu­ËVËkH¹„Fbì¬kSj8êådK.¦¥;$Œc,Óµ´%ÚÛ"Ì캵5au­3Zs;4²Û˜ÓAdŇiœÌ–e…¶ÎÙmŒš¢Ù$FÖYiJê6¬YÙ•²µÌÍLŒZ4—­Ušt è3”*9v+5­•Æ:åLº¬c­!©W4ÃZ±‹œëkY…X¹–€™Rnµ6´f7#›GK5‹-mˆM·9¦M–²pÖ¥Z®2•‹RÑNsYl©m5²8gZ¨æ´µ5«®*ÑVf²Ö%˜“,Ò2W«[šmu«k³EËK;,XvÖÆÙC4µi†¥‘¥u1Cp´ÅÊ5lԪĵ‚¬¢3+™!Ê[94»VF(eÙbͺHIAœ ‘­ÙœuŽM²q ¶ë&í­´Õ4KQ™gkbgZ)u1pÈÕË͇YZ–ÒYlÕ­¥jE×Fh\´ãa•±›vhÖ“p63šér­tªéfb*2ÒÁiÖ‰s•¤ÍS1¤&Ñ‘ª¹¤ºÖ«We±£ŽpÕ®¢c9°££©B¡‹DÚ«Vá–µ­"±¬EvE4ÁL Iœ ¥¡f¬dU4Ç]£Mt趪Â&BÕӉ̶Ó2‚ÛÙˆæØ5Ê©­Zíf¬4Á¤,Ûfd[ZIbu‡$6 M¸e‰ÙŽ6³Z@)‹ê4VÃ5ÑFK5²ժÈÚÕ©˜êœë“¦kX6šc­-T¥iU”¬Õ]Š)­Qjf™Õ¥V¬ÖD¬Â5Öj\µjÛW!8™°¶©(`–UZfÖ\UŒÂ¦¬ªêÆYMcÔÒ¤²-c¶3R’¶µ©‹ªšÐÑÉkfaU¦U®(T Ôj˧:Õ3©¹ W-kTʬ@ε´Í´%;´ZZ —Vk:‡kXåXé-6¬¶’Á¥¡ÎÜ–Öì+¦Øœš 6NÛvj̶F²M9Y²XЋ’ÔŹ5ƒ XbqNlm§3ZZVºeKY¥ËS&j‰5i™¦µfhµZlå+FM¨æŽ² Ö¬æVŠªjª&ÐZÕhYª¥×f‰©“rr]ˆY“k¶m5› Ñ›"4ËZÓ#Y––ÎÖ%§ZklKI;2Ì[5\Ö5ªÖ‘$ÆXÓ2íSV“LÉ­¸U´å§Z±sš¨fXÉØWFšè¶ª&©\e—jfNºaZµfmI›i›3n’±¬Ê©+.ÍK62Å•pèY)غ;¨ffºKRÕ̹ƒk,–ÕÖ¦´Åʸeku”ÌÚ©]fœÖ‹.jæ™-VÈ‘tºk”±W]8²¦Ê sQ²±S²-[[VÔÇk#%l“imp1T‘šÒEc«Ö—:£ZÕÊáÕe™ÉX‹°­WäâëY ‹V阖©f²"iUªÉVµH²:Õ(Õ*c˜V™šê]#YÓ%5Ñg+2±hÖv›l–µ!‰TPÓTf-v¬µÒ]fIÍ‹¢f¹2©n¦TÒªÈÖÖ¤§&;,MjÒTZSk§Ì4³V°›©”jµ‹™L¥› $²†Û6Âæ§·%lÖ8Fnlv艦R—pk´ÇJ; Ö®µÓ…2f6“X‰iÆ„ZKk5ª–‹,Pêg3kQ¤k[ZѲÁ¨éš´,Öfv:šÖXÊ­q‘H­Dk³™ZM+-[+[aËL³µ§S–º‚ †®®CYq]iˆ±tÖ¬)Z¹®RÈ&ËJ˜7&¦œ¥²Ätƒ“•*Ök) ³4ê3•LcA²‡'Z̆±Ü ¬¥T,UY2’ bË.¸Úª*´2˜SUÙF3$éZÕV¬UXªk3¬µf…M)‹R¤¸Ú’Ѧ««™©ug&Xš³*IPbä iÎV±¥¨£]Öƒ²¬Ö²–73VµV µ¶Å+[s´ÄrØ™È4YŒ«0¶´êÖµƒ].s›R­PÕp³¨Ú;Ó†µÆv¡ª5Xµ6œ²µjUS™¤µá Ö&MK­ƒW[£U¨k4Ùbí`L³‚;#›m°8lÙ’mÜ®rÅukp«W XÊã2²2е‹vM™¸™­dMT³š—XSa×T2Õ9¤Éj­K*±®vµ«t0Ʀ®6ir2Ès\̵­teCMÇ5lÓ;mfÉe¦³‘NEضì¶u¬Ý2IÈÚfÐÌc#mÃe­1n²§Y-eÍUai„²š» Äsš`ÒÍ­ˆÒG:æu- ak*NIhêÐkQ˜µ+JÔk¬™¤‚ëQšÇ)33‹6YÖ¥•¨Ó0±X:×,µ371†pRYæ­©­hWIuT(é­#(KN-³HŽÓ[Z–Í«blJÑÙ­e¶ÔÍ n541fÍš–®–µ¬i"´V ÍÛ±83Y`³:²F̵†ŠÉ¬#uŽÖ&DÛ‚#$µGSÎs ¥©£XºÒ¡ Õl•—ZÍÌlíZÙr!a¡¤ØktÍnsFÚÉ2ØÒq[nrc[*2Ê,eɵjVfVMšªMgK­DÔJ´Ðj³N§jqbZ¹pŠ+ŒØ™7éÝúj¢ê‹£¨¸¸î⣥ ›¶zß6WZˆ« jbѰ0…­©-·––[%j®3Z’SB—@r­ÃVº9t[1•š c3kI›s6›¤rZkn +ZMvµQak„¶k”nËVÆäm’ƒ¶æÙÙDÖ°6Êq s«­%Z×ZµKC),Ö™ÅYjÉÒíÌ\×-”®Q£˜º`¹f´ãU3!µl¤qœbåš'Yijæ–µ‹3&ã–UšË1I›Ulèj¹YlÊe¹!×9”ÀF–m1¶éa‘¨ÍÍrncTYšmi+­YnÆë¶‡IfæÚIÁÖbÒØ3IÙµ·-ʉÆ]­[U¦sYq™­”i#¢Ö¸ëª¢æ´PëVÈ£­EYUiSY5—7 nÛ4Ð8森LÌ]•aS #ŒYcjæc.ÎYiV²Œç#si¤v›!e³m•¶d˜åÌÀ²Ý:n#\i È©Šé.ªØK)ÅÒÊäëT°­š­]»`ÑΚÕÅ+:ê¹i¸„híµvÜtKS™®´Ã—;S¹¤º§%kWLÖq”µ F[Z˜ã$ØË«Z5Wh°Ë-"BtI¹Û¹µa¶ËGF…ʳ] éÖK\ss]8 ºÃIÖÕ¬³1µÖµÊ¦œÕRÖ¶QÊŒgÄM&×Û5§vkv}ô€Ž Š:Žî’;º:Ž"tDKLIáè&"„D™'ºÞ¢‚ŽsŠè¢Š.ŠêpQÚº©#’£Š:"Š  £º"îé!À‘ÅÉKŠ(ëŠ;¤ê98£ª¢”!ÜáÈ]îK¸Ž.+£Žèîî$‚8@„s‰AqÊèãŠãª8;£¢‰:Žë¢„ã§spJT—8­†Õ±±m ƒKPCIT-*RSÝEÜHäèŽp“§AIÐwGGwIEQ)J”ÔRL†[%$DB´*ÐPEH’­ÌP]qÝÉW]H@áÈŽÚÜ&R•¥ iª$€~ì Ñ%ÑqDDHAGÚÝ8E•¦Úg9ÄÛ‹½ÉÂ⢋ŽãŠê.‘˜&&*@”ª¤hê蓤àPtèà "¸¸:¸Š苸ºèŽNt%Dœ*¸ëº:KJ­KR5Ò«KIQ×tuEÕIpäŽIIquÔWw'r'%ÄqwwqÔ)¡ÄwT¡JƒKTT1J‹ABˆ…Òw]ÜwT!)Q¤¡ª"e¨¥¡i¤B” Ebd™(˜n êã’ ÅK‰8îèæÁl³i¡M™²Úͪ&ŠJ¢Q¥ TZXš¦ )*(‰ ¨¦Uš’¨–•V…ZX ŠR…°ØĶن¶[DÚ†ÒLÆ2K[ÙµMŠPNTU×C‘ ‘ÝUÃ?tû÷êZ¤þì¿ÄñoÞº×{>ö±ú6U‘ÂDÿÜ6 ÔCrÄ]¢F1¶7AmÝ7 ßùãÔUÿg%ywöï{$Ç`®£Í§ªQ¸ezÌqƲ™mEþ=îílq½ .êé¬3O"{RîºæMóœç:vôfXݯnâÍsý«ˆÛ6mÚÛ-¼.hsÝÎñï|¢L¸Y7µp291¼UîÍòEpÎd÷ýŽ÷‡Œ/~›c^žã–EÛžA"p[óÞÎðì9ç]êâ*«´ã´Þä+4Ù§²9·ÌO·ƒ"ædÞ÷”žð†<êvcßy¶>s)ÙÍï•ññèÃÔ۸뛸ù!œK›ã¹{µ×ìîo½ó­äµXàö MåVÌʽݘºGæ^Ì㯚‘ó={ÍzÙüâÀókg?ë ÖŸGèFØïø9êu áí¸\•\æ_¼½æE·Âs¼U>9÷Ëóï9ϻﳡǵžs:ñ_8N%™Éîk3œòSž»Ìò ç«sÑKÞuo&éçuºû+ò­ïÛ Òg‹%ãy™o<»ï½tÄO¯ŸcÅEç¿oÅxÔÏ9»‡{äÞ\iMøáæp+§:Iöpçrm&Ô»C¤Æà;¾Û«°n0 ¶»L˜¼”OÞgžµ7·¿¹‹½÷×ï›ñ†êç=T«íõD os–Å…~mï.?qï“ÎöÕ¾ïoÞ»Ï9Ý7£<Éi§½î#Ä{ï4ób›Æ·“%òz¡p;d§çX¿_ß¼]ôÎ]o!|kóœxëýcØÕ®½LÆþÿpîsœŸžòfòÉäÍôá ª/?Œü_ŸsšÏ>‹ÙÎoÜݪ8ïð=ÌPçÎâß^ñ^æ.Ô5ÛåTþß}ï›ç=óº«;X]òóÞ®Sø8-É/eœÈA Ns#¼ÑY¾l,„¥Hb rt½ÑânNc'sG@&íYQŸÒ /4(£IÙňP›¥ÈB°:âãŠr{µöf*rœMú÷ò{â±9§¸=msË®œç[žXüðäîR>þ=¬G³<1®9¾&™ÜŸoÍI/‰ý“¢{ùÂyß¼ßô«™ãjA}øçoµ]óʹ$Õ+—Î5¿»7Ìw>ÍûŽk×ïgSŸq­ï8ççlÙœ7åîø>¸º_<ÈrG<Îv~o~:ü¨EçƒMnç?3Ó87·éÜY5îÕ¡Ǜq高cÏmãæePûnyÝÁð›³Íïøï¼|;ùïsÕÇŇ+_sîõµÄ]õ¬ä@n\Š1G‘½Ã{͉¡Zoöì™2?¦ìäaä´G0³7w€¶˜ÄÔzŽÖ…3'ŠýÉ©åý»ë7œnÎÝÔ¼s.JËa bÞ¹îÖÅÆo½V¾õ«±ªk0Ä;–Á2nï,Ùùɳ{NñÉf¨ns3öC„[*Œ‹*iÜFó&ÄÈ·•n¬ÄÐ&Ej‘ï‡õ77ÈíNÈoO9Ý­ËÈ—z×G™Ä,ÁešMdR Ícî5x3ozʪ©§ÃOv‹Ìà³àãRÈ+"íÌ}k?—ƒ¶ ÌÌèÎTͬƤ/w–ǽƜ­ÄiÆÈtÖª5jlSPÞ,Ê=·6á¹-NÊJÔŠ"@ ÓòT1A0D(ÀÔX‹þŒ‰ hjÓЋC×S€†CLë8k©€ÀRþˆjƒ¬"PÅ/z &CS -®QU±„c«Tƒf“Xñb™Ø}Ð==@@=AÕ\JWuqÇ)ÝE­¬M’M³-ªm ¢-ZlØ¢Ë[lÛbŠQM2*Ò¨‘P”Ö¥-˜ÅجªY¡M³*‹2¡²”ØRÚ)Y¨RÙ*¦ÕR¶QE¯äJRUUüÍšk»+[v„%Ͳ¬é»(†áÌkœã6naR«¹W¨ÕIAOÍJù0-ÿ¼ Ð ¡¥WBdJÒ@%é§F¶²R”õÄw\Q\wQP•%¬Ý%ÝgqeÚCv¬êBvj;œÎÈBg,vÚâË3Ž9li \bÖ–µÖ´ÄÑMUisIcV™fRwqÚÛ$î± ”èM&ÿýÿáÿ·ÿ¾¿Ëø¾|?׿÷û}‡ØýϳïýÏ}Ïã øŒÐL'ÿ¶TÿÇþÈ*åþéVL¦ti°èŸî¤‰á(gõež®@2QÛ!®Í_ñŠ¥­W`­hfÊšK.ø”‚íÿ¨YAB´ˆÍa8"Ó¦Ó)…\™R2Mx’4„œE¡’H1Uˆ2×G®SªÂ“¹=F·)4&á ¸I†0K>ð&ç{Iš¦mèÐ*È5‘èé'¸hD¹¼V+ V 67 h28Æ ÿÂFÒ#­uYÒ‹èLhâ €bò,ÇŠVˆ¦Æ2ôXÒj,õSJ@"™KNñxè¶²pn–^kŠÖØ(; ë2Ü4ÒÌ‹£N¶9ð»°\í¥`*‰c½ïi´ŠI¢*_"f •æHÃ:kM験OÒ-'”£([`Ä)¼§zWOMÎÍÍk²4Ÿ þI;X+½ì\ ‡Š:3½.ÄôÞÀÎÒÖI`)Bïqå«sB ÌF7wÖ%ÊW€Åžz<HÄLg+ %ÄD¥ÂÊŽ¯i`ÆËÒIÒ"ÈN÷Z·à.nW-!4j¤-u×Ss¼¶“ÈdR„aÄ3v»EÑIçH¥'r8@m‘ÓlÒv«‰ž[`EØîÅKÞ 3¤A*L0ÔBñ̺Îg»Ï5†S®X}nG9d)¡<õz–wnè»ç$˜;e:ÆL‚±N•6|lçJgb&*íA2¤eX7¼ˆ'ס__¥âm¾$Lë="ÚuXê%¬ÎáTM«G¹h#w,ʲÝéJèY¶«„h¶ƒ}SZ ñ¡XRVž®’0ã¼$dýõ}ÿËŸùSMx\†ºk8·2Œ¢œ-¥N&Õ–¥ì·µgæ5æ¹ Í¡Óé˜K‚ÇH» G0ñêx%{\·(¾·Ž‰ßI„£ë]3]l,{ó¼™_¼l~=|ã¾®¬[[¡n½ûõÔÇÖáw‘ζÍd¬ðo+sí´¥Ö”zÚŠ•m/6ï#$ã€Ï¯0Ö»Yg Šé©¾ã_`¼)Þ­¥7Ñ-–l)x`Úœ‘ÜmŒžÁžz¿¯c¶›ÆÒ})ò’¦µ®‘ÜÕÕ†J[@ó̦D’h%É'…¦»íªéIûJ°îÑž$)¹Ð@Bìþ2¸¸òú´O_ù<]Vœp¸¿Ïrql¿YÖ]qÑñµ)ÏŸ=m‡{8÷ÕÈ=o×njðòœÎÐà8ïÞyâAöƒGªÙ.x;6 ;´}hGãoX`%>õÁ—cÞ<(ñß+EðXà¯5õµõÖGgsØðЙÜÇ+#›au¡Õ#}û²L;Ž%4NåIyîت+bå`лG›o¼m-Bý·òÜZ'¶‡[^äBÞ<ƒçÏ ,IÍ"Mî0(n‘â¨Dì)³x¢a¦Ûì]-¢fÞS•³AsätÎÑ2Ž:ø†ç(óÚåß!ã˜_cß™ÅàµgÈyŒ}¤S¡^Ik[׆:ç›Ò¾ž)v'âJHiÏ\ŠŽ'eŒrÆÂ{굉ùÖ[qÅ'¥–ˆÞ+ÔñëÚ@4õÆ´@ÚäºC£-]D‹¶Åº‰¸IT<±æb6­t9"yÊ –{Ý÷®Bç¤Óνñã­RÒâzÓ@4ÓJ{mçÛª8¹íÎ/_?ò]ß>; á-ëv÷0½µîš,Gz•³ ãCê :Yaæõ€—L›wÓã³Få©ð’çx¶tºû·Âûmáü6uhc%ÂÉÝâT¾”*wƒö-¤´¥\ù [ã&ÉD€"?s˜†ýÙ<Æoˆ‡CØüìÅ_†¾%Øþ5ÎúK”>:t²í.FR¤º¹ÊéFì³óÇ6¥;ím7_<TÑ’c«íº¥Þ~G‘¼¡ÒB{‡êa¶.ºA(±Ç÷ßxÓÌÎw:PøF­³ÂËÖ>9’Åf± ]sP€ºÕ=x¤)×CñIïcìzÇ=Øf#Ȧ”¯­®=ønѱgv×cbìò¦ÍZr%*õ®”…ÉÊ99,áÆýu}ú7˜ñ® yJì½kŒÁÙèg>Þý·3šc–2ÊïfÌds÷Iíy÷€ïç¶½ýñiF8ÉÏ~{?¼Oçɇ´|]Ë!åöKûV]ìZáéæИýa {ÈdAÆv@Lm.[…y¥!9 oÖÌ‚m—ç·8]ç)²VrK»®ú1¤œÝdüvÆZU¦±Ðiš„íýúÓ®¥*JÐ^ÇêM^”+6ëAè Z=Çʼ ;eÄÚv&€qÛ½qÙŠ«U–oøÎÑ~zé9ôkÓQäÂ×ã¼e¹;'#--FÒ1ßxÞ<·Ò”‚tPžs5o£ÈÙˆ§53ÇrŒ6ÉTX§®þ`‰ØC^m/•‚xTì­¯²ÓZ~T¦yü4}Pu…ëÚ|]6U–e‹ëË$à'BjÖ<„f<Ë0±LšX/sZEè~ ½b£…šïK]Yßq­b©ÝÁR×d´ã9°4ũԄÆûâÐŒ#2R™çh.œ #ˆNfQ<…p¿ÙKY„ Ž Áu/ä^ÒF”œe©$EPwˆdäüÎ[ÏÌ!6å8¬P{èï+q+Š[LŠZðŽºé@XFfŠªÆ÷&¬0!Šl/{¼ZP2¼Wè0ja"*ò€›ÐH]SRôSŒ¡‡a +É÷Y{<6XQœ)b!ÂaÒ"N65ž7Ô olØÔ@åcŸCm”ÆÒ×Yœ¦zÙ=ûÊ1B#?HÕ´PÐ`‡æ¦7„.²8:dRi$Œ.’+¿¡@ˆC™ÑJGwB8ÄP A¹Y/m#¦šiM)?CìD‚Bª“†D€Ð díM%u0že•*2@a„ž²tgQxDKÑh@^ƒVLS›‰TòƒL’bto½ ^tFy\ƒOì×A(-©zŽñu±ÄÐÏÂÀ,7…œ×væ [Iâ+a¤5¢Â†OrAÉ™ÉoáÈ‚¤'-´5Pg»mˆCÒ®g[¢ú%kâ.³„R5šŠÔi <‘àUU ñ¥=)¸ŒxtÄà}Èb6º™fÞƒdv‰˜ NFJ'i9;E5…᱘úGçHiOï5âwJÑ¢“ Í¢$)^ŠÐE8 àTˆA•„ÞÙ¨8<žÝoÎÌóùX®»<«™á®‹ ç7Ÿx q‹Än ²Qb 1ŠÊ ' rcwL—©QÖEQa:(@j ³ŒÒfÆH`ãy’á1J¦þK‚ØÊy0ÕãòiÇïîo¼O³ê“‰÷{=³AÅý?7ßõûæ×µ×fñ·&}Ÿ»þ'œùÛ·æL¹.=½þþEÇ› ¢õYW×ÛݜԹ¸ñrKv§=‹x›ÈA¼’Ñ1@¢ F¶„%a(8Èart)á âÍ÷ûé®®ü½M枣OèÛÅâ-ö3~8¶¾_Ë{îÍÙ¯¢|Ÿæ‡ÛáÏv¸ÙpüüB“¸âæKÌuض>n?ågàù÷|öçú¾IÌü˜zÛ#÷»ýU÷’}®—Çqõ¿ÍÞ\ýæÍìûßO|Ïâxc5g¹÷ػޭ‹_¸¿'¸ÅNù}=ükš qpmÏ•÷Õ—Ìþ C¦/kò´yþSùo|ñØ}–}÷söήg%ÞOÖüá7,cQ¯|Š_Øç®{¶»¿rαŸXªïgžf~›*üÅù{”ƒCßÙàÝ›÷‘½ï Þ# ó1MSŸ€ŸÊñpù8‚uß‹›zÞ;õüãÌGN7Uûbã ü伜Lﯓ’6üÜ«k”Ÿ½ú'sʧ¤ñ;íÛkÜj¦°›AÞMëcfm´áÆž+Ÿ²|>ù¾wÝV§2¿7öÕß>ò¦òKåÂLîûíó}ï<3<ÞöÑ´é›o 54ß6¦¦Õ”XÉäþ»“ž;Îû{‚Ù©3¯ü×%òJ^7–t¼.6B,¦ ™kÌw7…W ãç†sùáØœ¸Fob¦à¬Ög-"ᜃ—×ÚágNÅÞKÞïxÞ(Ýû®OœxbãÞó/µy½“ ŠJ7™³o¸ŽX…˜ÁBY a0yt#U2m6‚C oZdt#nÈÈ)BÜ“cË^[[ÁG^N˜-ÝÍè‘<N5ÃMW¡™º¶¬ÍÜØž¶&Ú“uÔÇ· 3_æpÞûó¸¤ê6c®')EJÔv‡ €³›jâ¶Z7 Œ/¤2!%0!ôíú~¿/§óø‡íù~áö~L ±}¿ˆ¿Ûí÷‡ó¬ôh[({µÔß÷½,øþcûêÿÌŸíÕ!‹ËŸãøz=mKùÎÿ~­ÏHH)ü¯'õ^ÿÇu?´þÓû¸ò87è(Ö1û1,‰üò_çÝÿ’þ*cG1ßùcq?¹°)—áíö/ËǯŸÛ÷úÅ8~_ÓÉ{x?|õÈö Üpÿ”áëçÇßõûþö=§øoZ9ç¿Ñ¾·èý½§øý½}ƒøJýzöüqõüƒïßNÿœõñ¶ç“#ž¾´ú|ã/?ÓØýuõõ•åù{Ø<õûþ°çøïםӸÇ¿[Ãðþ?AÏ·ü¿>Åïο«¿ÏÍ?íO¾‘–ÿ›ÿ·øñØþú}óAù~íóüÖ^÷ÔüF_«haù*—ì$±éÜÑJr%üÕ“ö)"Pâk– ’} ¬¬o'9‘Ú bv8Q §P$?"°s´ÕÚ„¬%év$“GÞЂ+ܬ͞íÑŒö÷’Gì{CÍ›?“Ê4ß–w{Çw¡ÌD71µ}[¢-@U ã²´6£A5Æ¡5\y#ÖÖ^×½vLk¼ï{\…”-í½dW™IÉ|ÇÇ&ºS5³¾½½–V6u´¦2¹o/{Þoo5ƒ7™½Y>½óç=ì{Þñ/™îÃqÍ·Ú·™o[*7¼åZï[Þü÷½¥7²tôkT4h){º;W›µI–Çãß|[ÒÍxi¤÷½á† ¸äÄ>ÛÞÔõU¦´m“Ë<ß7AåaYÍÙÙ6K3ç½¢meœœFÞõ{•*õïEš»ÓÆÐ½.Þ‰]ÔÓ5wqŽÉ«ÛÞñï>ö=Û£KË6a·5º,Ó³ŽzלqÞ¹Ujåm$ù÷Îß]«%Ô F˜Ð›z‚b" â 7€^»{Ù•ÚKPK™©U𙀼ñï+oi¯oTÞc1­ŠyëËVµfW>}}eö¼ë7¬½Þ}ç|ŒrÕ³éê«aÚõØ’U½¥Ì â×]véîjq”–ØŠµ­gOÚ€³Ýo]Œ:B6­)ºÝ ž÷¯fzzžÖIÙÙÌÖUí‹ÊC&´VÛ…ù¯½õîY­/;Ðñ-¶ÓR„m«[q•·¼õÍ[ç5wVòeҭŦ­´—lE¯2÷ÛÂóC4º²Ã~—½:pmZâ¾¹[q™§c-’=ì48âÙe©5—¬º½ ç{Ýíæ\×¼Ý[ЮZÏ\ªg{ÞóÍïV]Wt鱛̽g*³ 4+ÞÓÛ{Þ $¬ÞÞSo=3ójò;lwÌöÍŽ’óǧv¢¿Q-½ñw¼­×›ÖõÜìGѵÇÇvwjº8ª85´Q½ïRÇ[5lyîðÓ+C6ÖGd6í˜;Í+ÎÊz÷«Y·žòº÷·[Ù;m:Žî d‹Ý|ŸB èÁÈFäˆ5 +\£h"$bÁeeɧhL(Úƒ4ņö­{ ¶ÑÖ‘h¥qGg^{ÚŒ‹ÎÿÛíHâÛM«—ZËËc*ü÷»^²îkµ.üÆÖ÷½³^³T:ÆC²³¯ÞW½ïhœZÍKVÀ”ÚÎÑ»\Jö»Þ7io{ÝTÑAŠ,FîŽêîÛ‡wnÝuîêâÞÅk«Nu‹¥ÐôëbÊ˵®YïwµnóHä\Ë.›LÞyÕç «Om[e“Eçw´Ô5–¥¤5­ìYyT…vÅÙ5µÝÜÚu§nçGOG¨- ³Wwt÷c®·mÖè ùç×ÛHä³’:EšÂ‰¾öE}µòÎYk8Ë@·{½ëEC¨½Øæ+Z\uݺ;RÒr­*Ó.П¨.Þ¬vZv_/7Ú¾|ßkËÒÛ 6ŠÞ=뽘›6f†Z#Œµ·™x¯Ïoz“ŽI+¶]©j}QÌk»q¬lCÝn×qÝŠÏNò+3#³Ó°Îò=¶Mî4tfß7¡¯Mí§nܱÖ(-ˆ{vÚÁy­+Ï;ÌÏ{ÚÒíYaIù>·ÛØÔwÞo­šúº‡-IÀ‘¬—R¬“Ú›GšØÎlƉ[^wƒÞ÷«ÌÖ3•GQ'½§¼Ð3K‹{qÕåï/{"ɶïn²²¼ŽxׯkzÖ{vM8Ëm;ÒÕDôôvÚÑkê»gºyÍQv:¶^ÖöñilÓ¶·{{Úƒ/[yœ’wšKç>Í•Ž[Þo¾w…Õ½+Ú²½ØÖîãvÝŽîí5Ånça×NzÞô^½o\;ת¼ôzǽ‹Æ¼Og½¡íéäënf²ë(àæÑ¤me+Ût<Õ½zó5í¹­Y-¾eå”ÚÄ­$ï¶öÙ'@cEžj :Jó.;{g­kÛÞ‹Km9…¶NÊÒ›ï½÷Eú~/4´e÷²/Hã²±+L²Ï/+Ì'u­kW1½ìªÖðgž¹ªóžÍºÊN@óÞÃfnÏÍŸ}íÞó5­{!©Õ3IUÅ“zÓGCcQnîƒ[±é÷í±I×OZ18ftvÅTmßV=â¹­]WžÖÕy±³jheÞ8Vצ钳[Ó/]yk6ÚÏLFªŽµÝ‹w±ÇsÐ]ŠÉ:ö×»g½¼”œv’qž[ÚÑ›¢ÍZ±KkM´—–ö:2[G6èB¼×]šž3Ú²z¸ÝZsnÝÞ¸kÎõOfñU˜ÔÖ«ÇÞ}ôt[k;gn,ŽÌ¦dÉï]½½Æ#í]¦$ºËZ4Ū2ÜH/ÏhxhDâ÷µe=kά–ôÞu¼ö½-o­ëÕW¦¹c{Þ¼nË#ÏqïzÞîI1¶E¥m5’Û”ã:8ȼŒ¯f"Òó¼ãã 6Õ½ïCg¬÷­mçRÊ«Yv1%Yo3½fÍØ$¨ÛI†Þ¢ôñ§€ òöÞzd–áe÷µöµ¾Íµ'¸º3¡Õ‰µeSÞí]ëÖkòï­ï”;•Õ]&²åc“4czg–Fi[ofì^õìoyصz[¤ÏgªÜ¯2{]íÛK=0ïzÕáäÌA£V±L3™V&õ½z«Þ÷^hͳj÷±^e—kÞËÝzezZFycÚÙ›uø¾w>ùì½²ÞfA¬ÃÞÞïUV^=*κ³]UÃzðµzÚº9a¯cÞÔzt³d´DøÆhh-˜Þk Í%#KÓ¬ó2ão{ÈòìÉ Dm¯7^c’÷³Û,E3ªÖƋҼکwaïg=®Í8³‹õ™z—Ë/{Y–Y¶²i’â{yÞv²:áÝ©k˜»kmÆÇc¹{³]ؼ‚¬°ží݉½¬òŒÎEË*í\«º´W Œ½åí´›VÙFÍozïûžöÈW-«ïj<ìÉúÍqx6ÖÚ |ñæÈ±×CM¼¯nêÏ=¯cW´ (Ï[^Ù­…›{Þ”k¯ÑíéÅö÷².ÊËkYeQØnîƒÖ©èz ív)ìvîØ‹S«µË°áµPil©a©Û·wNŒÜvÎ*ë¢# ÖÕƒ¦Ø3hîùÇ{÷VR)8(Dh4Ù¦YÔ"5šzq·v::Év{vã¹Ð e¨žÞpósk:ó·:ð8¶ >yß4ã1·^ÛÌê]3Wj˵ÜjVu¯5 Ä†ÛpP‚Er1 »$ƒQ í×[±m¶˜§Ü{{®æshµ[ZŒÒvÍú^½šÐ&LÍK-—[ãYVZ¶ë»m§‰*º}³Ö-;·vvÝIwQMG­êò1Ó*íL¬[™±Í¸ {eå%›9d¶¬µ§V£XK¤Z¤ÇrYYm·µye;49¦»Uyž³®Î"Œk×tñh»i:£‰îÝ=Û¢´tvÉ‹›chífµq×AÐk¦#¶q²h)ÛdµÐqÛ®ÖyíSkÊÞÄåšw3Y„m¬-·ZZÚÎ<¬{^d¹^UŒ¡™æmUµo eÁï{ÈÞö÷±kÒó;£5Ð5gž^¶ìmƶã;^Þ$&eeåž§fGqØÚæÅ`X4½&ŽŠ±’»Œmƒnç\¥·3jѲ]U¯o{ŽhíÄtâ~G¸Þ6(ŠqA·Mtn’ŽÖÓŽ² 0Ùּѷ´2YÙk^ñyÖŒ¦o2¼š¬¶·–—¬´”I^šèw•\Y¨o[Þûܺ«o2h«LÝZÐË£ëÖïuÜR¬±¼—…¥»ËYå/míåy‡AQi6‹ÆóÔ™·½yî÷·žÕÄ×M1£inî z4šÖË×{G½][VUÎR—U*êË%Þ‰u°îŒ›u㎶mžíÑ»/AÑ®ëtuˆ<÷·aµ½íys[šÞt‚ÄÓv 'Gv°EN%¶Ml—·²{PkÈן/G­ÑbØË!)›íï›;ÛŽ‰¶r[h‹™Šù{Ó޳ċm—šYçy¶í½·¼šó×—§¶%­ÅY{ÛÚÜ}ÜѽŠèuZBmµÜâz¬öÒ3w¹M‰¬óyÙaÄT0µÒe´™æ[WoWo"²·¯HÞ¼mÛkƒ2m­ƒ}í>gÀm´"óÈÆßŒãÌÂ/‡¥{{Ý{k<·mo-õºðÞÏÏ·«4¬»L;¡ÒVØ)ñ·cE¬ìtoü»ïE£>-ãß>·­¾§¹^âËÞ÷žaxV^µ¢ÞÓÚŠèìN¯ª»Ú¬²·:¸I[Öiç®ÓÞ¼¼¢ÁÉrÁµhçnlòµ·^žQY—›ÓÞâÚÝï7ik¼âðL¼žÝ$_ŠÏ2NÛ|–¨<µËWEè¶Þò#ï¾û_y—§Fy¯+^Þw¤D#kK3¼ôÛ'GqVÄ÷`݆ڃ®®Öµv­Â9Bo{Ú׭ѵ}ç¤6ëp[:+íž·\EÁ£Y«Ö.[¿?O{òü—dõ«…ÚV™Üe­¯/#¼Í4ׯ{¼4êd§¸ŒÝ±Ö©‹3VÌ{^y^Þ½ƒšqjgžyhôíuâ…É«²–\rÞ»–[ôóæl/›ÚÞ†[dÆÊÔånîv·]ݸ:變]5Aˆfu-JóšñMÚMÒ¯{ÞɬæÔÌfEÖw–æ3®ëog¼zî;ÛV´ôb_{=ªŠ¾{x–Õ˹:YL1I#Xh*Š×X´¨Èt·½äwl×aZÚ²s7·µë“[ÏzYÒoëÏyl·¬¼{Ïiïz­nÞ¼oMqW®¤YãXhÝ¢:*íŽí×`îíÚ­{ÔÍYh¦E­ëgŠ(kÖ¼¬y³Ó»Î-6h3²)@D!¥ìPƒAdH!‹lO]ÝËF›¶!7jx&ìqVìvų‹^í³ãn§ªI6Y­«ï+N^÷ί¾î«ñïqe.UÉ«Y~[-{ gZ3o/ s··Ggz(yZ[òÞó[.jN-÷»ï}åVrɬùÊólšÉW\¶m[Í'±Ùoi¬çE–³Kj«2½löÌ–Á­k°{ÛÞw·»Ùˆs{^yDÓYÚ[lé¬c8Ù,1´û{«®êÆ›aá% Û ’„Œr% 뎖º'níE5q©§OvzÏd˜úõï½ëØó¥²ÚºôÞ÷º^™3K"Ï4îó+Ïy=0B@"½ÊA&›m=` äROkÚ•‹NF-ùçÒî«ç{ÞöÊ» uk%‰£©¬¡wcETiÍv³ÝÚ·mÛu£GG7]£•mYkZ0åѦ¥PÔn9µ= (õ©£jQ5dpÑØìwD[=w{ôñh}íÞÅ>[–öÙŸ¯YcñžY!‰´«G5¿'‰®[VG±îFí£¦m±­¹£»¹.õèÎ*eªg%¤_xí׫nã%²êÅÜLq“Ä­AY#`œ`&àåqDÓz²×)šÓmÐ’Õ¡FXÈ NГí»Ö´G9ØZ†¾wPFùƂ웋»s­¢ ÇgFÆÝ×Ô_#½“§½«vèG¥+P,R™Š·4˜œŠ‚cphŒhm+.£c’%#RiƒŠ4ÆV¬ÑM*"…QNî.ö¸Áu·n}.ö`î¶ ÛPn°WZNíÙÛdŸW½âöMµPÒ¸è EÝQéÍL4ƒÔVÙꩪiµíÝë¹»wÚŠûÙ{CÚûÍ…{ë}ö^ŽY -ŽUkŠ ¦”š€%¡×#Òc94˜h@âdQ¸ÓrË—-qÄA¼®ªk"˜T7¤ÀУÓÓ@˜Í#LÉMZšM’iÅi-z޶Ü&¡§^€ÄêqQJå®SR6àž«f”iªÚu6HõmŠÇ©iššå•eÁªÙòó{é®ôì´Eq6…©+N2´0LQH8HÄôõë^ŸI»¬d±®žš­«Z„oV:£R:L@ë„C + …"RL „™©)ƒFá"pP­…   P«Ó¦š*ªÆådº‚•EŒÔ"º¢°}k«ÝÞÆtúÅÖ±mŒ]òäü¾ß™–šÄ’ûÇž°µÝõÙw¼g¦§n“µmÛ\MXϯv‰Ú`"0i¶!äÓ#UÂ(¢,mÚ‚=í½QïULëÞ6ôÓ5®Z¢j ¶ÄÚ’V©iÍAQX“ƒ,Q FžE-„‰½"NõÚÐÍuk½ïx-YçWYøôû/½óǯ›ƒ­B=í85@Ž)H„åUHšu­LzŠòØ&×Vѹ_{{~_k|Sç¦ ²ÒM`±b+SMÂhClˆ#:c±½óº§äi‰ùc³Öº:lã¨ÛNì÷^÷¢öÛFÑyï™÷[ñ¿=²[Zöw{J²à«B`؉fZ[•FˆÍP(£$QG MR•§I,¶Ñ¥£lh 0õ²ù—ÛIÁÍ÷ß_#ÉçÔ‰A4()c+CL¶Tܰ(œ®:DìLUé·K ©¡½%E}1=mã}vúçÛï/°×µl‘¶ ×I[£M;T­–„C5+Rؘ ª‰Ûu`À 0@ÛQ1[m¥•Í`¥.1Õ[+J‰â‰Á@V“C5#mÒ´˜ÜŒƒdÁFWu$„¨‰Åk•©íïVy½½{ok§žó«ÏL>¤dlHC4õ–’ ÔQé“$A,PŠÊ( J±CŽ%â‰Ê»»¯\“§vhÒbó×­ë|ɼ{ËÄebn’ I 3M ‘7HVÝr¸¦7•½ÛR`È Æ©IÊ&V6%jetIÔÜhviH“Za$HŽMÂ’Å2á-ÉjXßkIÛÃccnòñ-é“ïoš ôÓµ›Ö9ìXîÞ»ÞÌûklÝÐ7Û×·©O‹Üç*Ÿ{#BŒ$Ó¦KiâÅ ⃒ê)U²Vœš¥®¤´mVËÓmµ‘Dä‰7&¬´ª!¢i¢ÄÔ" ô(1¬Æ²èM¦cM§1¨œÕÉ(8ÓQëÐjª²†“tŒK#ÕA±4‹b­‚´dJõƹM|ö¾ºïºú]#<^“+Þ\oOz{|Þ6®ß[ëO{¾¾ëç¯=Þz–yëÒ÷Oaf‹8ÈàFKmj¸ARŠ §¦Úluu¤ ¨9t*`‚5FEÈåxìf8¡®4ˆf²«*²afA¢!åiÈŠT7¨-Km²5ÂH " ‘Ìu9#Æñ¶ ¸)!"±¢"¢„’2Fp®'SUÖ™!0qF7õ$Dš‰¢*ìLhd¦Û JéRتˆ¢h+O&X`ª•YLmªa”B„R;%¯%£©DÆõ¯u¯už·¾ûÌ>{Ùåã{µˆ169…DM”.\KŠÖ6­eíÆÜn=Œtb/=Œ{Ö4QEZ¹IŠ F6àG¢  oN8@PMÄÙc„j°U»dMè¢nJcpÒh)$mCpˆLj4,*¶ crádvªÜnh€šŽ1ˆ$) ÆË˜#ŽE ,R¤Ø®j()5$VDªc©Ë$U–"ÑÔÔì)!\q6¢hÁ—Z&HѳÍío]ï@üo~Oο:pó¼š‚ŽÆ$HÓ‰»´ÔE$‰D솭…,U± (¥t ¹™ Ìm,ɬ²F6Ú5‚…V4Ô‘!RPP†›`BF£™UÆŒlQA;zƒC¡9„šÌu"Ën”²'4õŽ ÔÙ&2$ãelV°Ó¦„äakU…q¸G2iŽºX㤲ÆF ›¡&¢ŠA pLm ¤ Ò)—IÖšDÆó׫…^½å&¼ù{>ßkÌÓXé…I“+Â…ª5mЧ1X­ƒQ²iµ«pBTqŒzŠÕa¢ïI%¨°X«E(d`¶Xë[L‘8â‚x]F“5j6žšmE|½²ðf¼½½×½îòöô:ü÷«.ÒI–Gt If¨Ú„n”Êñ²ùªºÛ¸uÏºÚÄbÞxØÙq4À#ä–+R©Ûb H -ªäf„Gr¢6¬e’H1I¶Ë@Ò#cƘDÉ\CŽ]4ˆ6hq<ˆÈàñ2¶BÄ9ÓmÂcY!blBvŠ RÒ¶ê:âBnÅbjê 2Ê…Slh¶Ìm  QÔ˜®£’7‰–DI¢¶ÕAÓ Ü"bR(†49£‚€AÂ…sD.÷¼šúÏKïòǽìSžög©Ðä‘ÃLpD‚Q D`­˜íŠàêrRF(‹)F†‹S zŒc¦†Ô‘F8ôÝŽ0UšlV8á821¤äˆ ;¨Å\®¡¨‰È MÂ8ô 6É%ŠVE@²CQdQTš*n)K‰V²'€&Æ&®ISU 0СÓiŽ5c¬EN"X:±ÄÚ†”Bm6Ü’4òÙ&œI«Ü2*jãÑšb€ªŠ8È”š$ià¢2ë-Ô0¶Ð¤sJAG¢j£R‘µLXUG4á8¢x2OA\X<$ÆÆ¢QÇ4µ.V‘„ˆŒzk*šqÖŠÔ¢•6BŽHAÄÁ@Š9‘LÝcÅ$‰A9žôôÈli[aŒ–`bЬVǘš½ž^õ²$´¼óSÒö÷«˜÷10r(Éeµ[Væfbƒ›@jZ ­z€É#`ÞšMÀË¡©˜ œ&i ®5(TÐ8›z,Ò$’ØŠÑ¢Ibƒlv6œu©“SUˆ !87b‘ Ì‚\5HÞÁ:ã®6Ê ±Ùn˜V¥µº…PN2D FÊܵYCƒ•©!$i¸â‚$Ln5:Ó]'rZÈ'—Q@Ž#Qá!SLr=5#QÀD(X¨ô:Å"31§–õøúÖ¯«|Ïǵñ´Ó²9ªôâ-r©,mcÔ"µ1³Wu¸×7Q1ÙëlwgcÄiÙ¢ÛPYšÀ2‰“%QÊàëV•Š Ñ2»[UG¢(‚=3T¥*$Ž1!×,¥MÇ$’'bj–GrG¨0ÆfdQÙƒ Ø¢É]+41¬ Õn‰«FälLYdÖE ÓÇ 8˜äL‚‘¶8 B#‘F[#bdmAI<­Z ' £@â€ñË ¢ tdqFeË“&˜‡d¶€•» hTTqµÓ d•ÄWTl­m¶¸­D C$cnD®!M=0cŠ&£PÕËF5ƒk*e²7mE麲´CCn67 ËYÖkíãË[óÖrû_/4ãoxŒ"ÐäS"ÕUIZq¦‚‰© )Ð蜰›ÔdRWT+„²ZMYmÔzjMF’1¨JâǘªÂ²1¨á‘À‚’%#ˆ’FœrÆ6ª‚c,`›HRr·$c"eŠÊ"‚ö^ñóVœöe3¾ûßÏ F19)•dÆÂŠÚ&0‘BF£j‚)cbp„N’Ë%d8HØÀŽ=‚40’9!4G¦G’m°qéA Í ¨àä$cË‹¤ÚQŽF&G!H⪠e®ÇB=7$ †£Š20Pr  Æ·žãï¾úDq1UYõ6õ„`hˆLÔz¨±VÔ‰°r«h­FÍ ÉP‰´Ç‰$ÔRE${h×\sºíÝŠ7;¹ÛX"ÄuF)Cƒc@j6ÄGdÒ#H¤Ñ(ɨ…ˆv ©GD˜Û¢o{½·“g»5ç½’ù¼â[Y]&ª(:2Ðd9!DBm1É$’ÊCMÚ' ŒnD¨í‘‰ÂÝ04K5\J:äRºFXB61êhi–²1€Ý€‚Ùl%j ­’MZ´u¦Kh¯J•:ì £i6V£‚š²½îTúÃ_}íô¼Ö›Ò¹íòÔ+±EKµ’A6¢q¸Ô‰4Jí…•A6FI¦äl‚rƪNÁ¦"67lDu‚n0Q¸‡Hˆä@¡ Þ›RElºÈÔ@<še‚V z±ÄÓi•MX*Ûµ2¶Ô’1eT”cqÆHð¤z)z'¤Á±@r8”‰¡Æã‰´âŠD E5¥µÃF“eDˆ âB‘DÈ×µïÓËÛšÜ7xx´µ<ãÓ‘UªImAS@18„1±Á  È c“MG4Ü“N@RƈXe²ÖÉ8â‘ÁŠJYªØ¨F h„šr&¤Ž ímãÏcïzù7Ñ*E«Z÷šŠ1ŽF2 µeD´²ê(ÆÄÔoF¡ E†œ†W±Ék&¤NU¾ÄÞÒ-¼òyÙ;ÆÖ½o=¯{Rñ{,gªÑžòõ÷´ZPÒl$V²¸B% KY54€`Óƒj7 ˆ›Œ‰¨‘©QUS¯LŠÊåmŠGuY²ˆN!Äæ÷±ï®oßy+zöô/JÔ[WÕ‚i–B…C†£z­5 ¦è”œA¦)PÈ©hÔB¬m…r×F65[CQ¢¸U#šu8šeT 4V¡4CL#`ˆÜDj I±ˆDÓr65#)¢¡«\Tº¢RBê¸Æ10Ôz"‘4ƒž‰$DIfª¶ÝElPŠ! &%iéÖÌ®4fE@®©Š4*‹FF›T‚!5i’ƒVU«BÖRÅm•š††DÒš££X…\ŠEQb‹&¥n2]TŠš¶hA馄WªËJôÓM´7EÙ6èãtXãŽw®7¹í±µc$N6“$–"J­Œ®Á¨N N&È@R¶;c²Lˆ“²j·Õã­õïV×Ò½W¢:=ó=̓’±Ç-OU&X昜zˆÚq•ÐÄÛ¨M·1²8c•Ø8†cqI-"¢Ñ¦¥iÁ¢ ©[&˜Ú±êD&ÓnÇa$V½*œ€€HU©j„Ž(Ç]I×m5DìV >ß}ë}î5ìµ{Þ÷1èËØHHH@@†‰Q¶Y@µÑ“ZÞ÷º¾7×7Íï:ÞoO{X=Ñd¯^Ùënæ=Þíz{vœAwwn7[¸-؈Ōn»]Ú DBc=^M3ïµvkëiß5ô>rHì‚­¦Þª4Æ9¶DÄê„q²M‰È0OLNIhÓŒ‘JXÔNØCG]·QÈ›‘Á¨!š„&›±ÊQ[Ó‰2Õ6õ" QÛ#N4¨¥bŽ „Ù¨ÈØÚ$$tvÂ1艦B8¡‘Èᥩ ADRGE*®2:ª)j( ÉÃRN¶V&›mf˜Þ­¶0v9"z„+U`Hêhƒ°‰êÄÑk‰=FG"±Ä8ÑIn¤…˜åD=eç⦅jß%½^ð{êeŒ!"š0bCF›p9¢ˆ‚¢È“JY 8È›dÁÝRd¤©×#b#RDÜAkPB!`ìMm=6XÐ ÐܤµAµ¨ÜnT*ÔdM‘G„l^KyìǼ=ç½mg“Û½­hmD„ãŽÛ¢ÙlAZ©¶5[+#R¤Ž24쬕Í•€ˆ= Å ÐM8HÁ¦â#BƒÒ²Z‚4š’8Å Hi1£MFÝqY]—N Ñ&Z '"z³OVÈ*£T‘¹#G ÔHäÛr·DIzqÂA –[M¢b#u6¯vÇ­Üö=Ç«“ÎuÜhìØÅ­#Q6 CÔPƒr-jTJYI%ˆ„j=X¤جµš©¸A8é%ŒÐ7#‘4 Á’I„qŠ=HH„älm§jjêǽã$ßyñRßkãífûÞëÐÓj7vYT6ÚP‘p­<ÇœØyš+o2÷žÙoÓJVÕj¡HÈ!šŒ"Fˆ«OÞùçßO},U^¼ó{{Ò&˜›NŽG+@¥‚MVæ¢c(Ýn¨(ëÆœbqˆ„@ÐÈâµXJ ŠêŽ0dM ¥(Ä&‡Sˆ $R)k¶8šm4ÐDÔÓ¤)$êH Yjv ¸£CÑän94Øâç±Öë:;¸¸±]VímjÜh#lSÜsv+z8nÕEÖìײOÏ-å½éËמˆBvQVã°uXÑQPœq¶ØÍ9_^¼Ï™–·‹Ë|÷«˜™}ž÷\uÖŽ«ž-Æî;ޱºîÅÆnÂàÔ#e´­µ¦%ÈËJV­!‰Œ’8£Ôr@M¶„Ú–ÐQØÆÚ1Æ€ˆz’D9äNFõ!SŽÈ²4à #‘hM BŠÄÝ`Êêž‹Ž:ÕÜcÇØÕ®:ƃª!"‘BFˆÊÜ)ŠÉQF­t¤‚­5PªCcŒ#LÈӵʜÆìöã¶Ö"¸®îéç»Ûx=l–'a%mHÔPqiÈ0ÐÈ9½,òã×¾½×ßoLżWxõh$a§‘µAŠ8†4ZíqDD1ÈÕ²:‚¤QÑ‘§‡×ß/›Ç±f^ß×ÛåJ8ðÞñ£Øíæ¦%g»ÞÞמ»ÕUÌÑÉY|ÞõçÙö÷ÓfÖ|*ŠëPdcE´ÑShnÅ[PC–¾}ï<ÖÇ^<^o=²ö˜OZ`˜˜7‰ )4ãµMriÑÔàš­4A«hƒ†3Pr@‘Η=°ªzÓÏ=y³K=žSï•§EmŒRU"š®»ª¨žš’ ÚÕiR@š‰4Ô“P؄ƕš°+H*÷‹Íí½OKx’ʉ@#eª)d m (܉H'HZÔÔsBdÓ!$šr"9$AŽ)cŽ‘šqh‘6¤N)Z³Cj’ÆÛ¡SŒƒráF^·¸Ý;‹vŽí®×¨Çs‚;i‰4K]PC‘€b«²U\’6šŽš£ª´H4G"qLÖ/I½ß}¯=öKÏzïyᣈ‰¦¤ÓBbqÈÄÑlE+R“U1Öõ Õ£‰Ö‘ ԉǦ†õG'µ®,lÆŽv¸¹÷yöÎÖhôg  QµQ¤±ÆØ(Õ”d5’´4ªjӉ˥,â94 !ÑTTWcªˆm¦ÃR'T’´nÛXVí$eÕªÔÚ‰´hD ›Z¤‘QH†Q¨…N=ÅGn´æŽÆ.Æë=¼G¹nêÎÛn8Û‹=ÝÝ£®3]qÍQ°z$nH¤TQÈHAH‰Û·.ÎãÛÞôñEÚèѶ8èÉ‚pjʬtJ2‰¶„H(E4 r»“UD‘éÁ¨€‘€W"¬‘HVí@š£ƒ¨$m*Ô©Úëzˆ®ºÝÕ‰¸ämËHéª$ÕnÆ2&Š]F+Sq°±@4ÚPprTTSQIjŽ@! [‚#"tŠ&Ç%ãv¶ š‰@r6ps@ÁCV§¬%,GÑ^^œŠ÷ž=·9ñ¼|{ê+j®Ö­ÔjWi(#²ŠÇ+M1©&«%4XØô@PQÇE(ƒVĤbÚèÛsN!E œ#/[{^/zcƞƼŸ6ÞŸ S HšŒlvÆê• i2";PXã„Ç¡²  UªD"»HJXÑFFáIHÙ¡· ÐÔ6…b€‘@QÛFõ]¬b°q*AÊÚêj9UŒM‚,i»,m¶ë±ÆZ;[R8¢prAŽVæû{Ãx7§«O6µ¨öö×´6²]VDÓ‘6…IÇ[¥#D"lˆ@F›jA¸¥vº†ÊØ"²êÈ«º$Q8Ô„Q6j)©C@D$œµ2¦Úl,ˆPu«* l”Ô (ˆ ¢!‘¶FÛ„#‚²¦‡Qé¸ä’HÆ Tëªj‰ªÐi„L4ÈA8œ²*ÚVáŒQŠ–ê©䉓PB"ciÁ)FivGuQj‰Ôë¢v¸ê!)4КŒÄ!5¡¢Ž•BKB´6æšÏ^‹©õ⻎׮ìzw.»b&NR¡H›Q¡½=mJ©,lËK¥N–9 Há5$r(M2G¤’9Œj9Qj"&ì„#DMD!×`”•¸[ŽF6U“5éïLö=ì£ÁkÞKÙé&¡«UPDŠW#`6ɨQ=MDHH™M6v!°#wCqF+{ÅÓÞ|o¯]ëÊ÷{•azk A4X6+XM ãµ |¯=åïkA&öqÞž£ÅçÒõãïûÙRêÔ­æ-¼óÙì¼*äBš„RiÇZq«‘‚JÓ¬µ8ˆìD‘§ Ä F¡%jImoU9\j&ëjKb5%²Xåi;¨(äD G5ÊÕR»]N¶ÓQÆâ’24ÄjºF&Ñ¡Xã¢YnN&àÓpc’5) 5#ƒIÆ9$Db5$A’ ·k­PLÑ"jcšM…®–Ç© ¤JØD–¶œº­É Ó††ôÄÛˆ‘Å 8‚ŽƒuŒÓ‘FXíœÅëÛ±Ûê.mO»ºÌ‘1°ä#p$ D)mÇ¢ÝÄsÑg¸Ý¹ëºíÝlqÝZ "€š©°$„v§5SL  ›ÔŒ0z²D4䂚ª h%š¢¶Ç[ÓiÇQ‘A‘ê4ôÛ#€!BI§$dc‘0‚‘Çl”…ޤT4F)ƒ‘I¦:RéèhŒŠ¦¢Çdj7”$C{{nÓÏ{“X9;!¯e¼×»Ë|ßCzûÇTiíëo{V2i—Dcb4[#v Š;uulA»S#­JâM 4Â]EØÃNG5R i¨£rBJ9[D#¶„zu É­’´5£zh€©f&•5!$€ØœŠ euÒ&" š!c‰ØÙ$M'-²¶€n¦&ÄÛ+ôM7$N4FÍR²R¦)C,„¤AA¹R¦X0qÈ6Ò„Š¨È6T%› … ãQ9¹ªä‚¤R…ŽTÚ,Ô­òö³×ŒÊÞó=U¼ÞÔ=êˆ&ØXˆÜ¤@¤”hŽ@UFÆ…[•0Š9J«µØ«ŠCRHœq¥ b%²ÖàÈÈ(ÕÁ}óT{Õ½ó{Ý5qçÊ}™ìÓmÈÈÔré+±B1ÄÊ…J˜T@pNÉh'Ó‘‰ÇÍGa ‘‰‚­ ‚±±¡Ú­i‘tŠ%‰´ôÕp#¡L’=I§§# X7S¥‰1ZÙã’¤V¤MTi×"º$Ž8ˆÕ*’(D:%!Tz &DB@uØÊ ˆ…$dJ¸j:æˆFÆà•*(²šÃg¶Ÿ@çÖwרò÷Í|ù…jB6ôÂN4Q8à¤b¥U¦G-‰W4Õµ´Êém„ŠÖi§MY¦2HÅPˆŠËU’D9!- Z##+¢€èà68äPI©«,dm Ëj #RF™#ÑÔó½n'Z zÎØ»ÝÇlsÚqEÔ¬–²êGÁ A±8›j!j2F“Ó„À®j·Hè¬Ó4ãqÛ(VÊFÆ¢Ð)[¦ÙbM‘A8Ú‚Ñ e4)RŒm¨ÔRX69ElnB2H;\„Š‘4ÛiÛK§`ÛÓ ¸ÔJ!lP°Œޏ«v"j[ 4õX8äN6ÓTR:ZБ¦X䢮ÝÅw6#¬X°kvîÇú)lÓP&¡$ÇRµH ›`£pM’Æ(Ù «Ž7#pnÖKY5TiéBQ§n¦R9’(Ð41¸ãDbŠ ×(0UêÖJÚ`D(ÐÆÚåp© ¦ÜÔ…;Û8FÝ®:Û®Žä·wd»¹²tZ›Ž×®;Ù;m±Ý‹›­Îž}²ÓÒq‰{ë{oo­xÞK^ŸX]&:K¤¶*94äIµ 28Ùi-@ ÕbˆÔiÆä"‘Äôš¥"ª“qÒ”Ô)˜Ñ- BVšiÚ4˜†AZµ §€9!4桜F«ÈÆ' JiËY(ÐÍ'ƒŒ4€m%²B‚jŒŠÍ É6ô‘F4Óì×>:烶Äû³A[iâ¶bÛ+Q¹iÅ$iÆÈ «5AF˜Ð“zdr'ZиéƒIÂDÐ× ÷›×=æ÷·žòËbñ{;Õa±¶à AAN6é-„q Vájj'"—C‰¸ˆ©ÓAZpB„±Ë"ŽŠGl¡¨&ÐVBMB Ñ E&˜œÔLÔ¹mDаe²¨$ÒŽWº! ‘V¡P4ÍG@T$ˆ¶(‡#CVÓQº†Ú’H"= ©h9 $q0®Ššºn‘ØãR(œŽÚØ@pµX; ŒØØž£QŽ4DêXz}Rw±iâ×G¶½Þ×¹±Ò(”$m6BFЍØoQYÛÝg{{ÚéãŒ>‡]ë&íÛ`öØ K5JB­Õ[$i¡6ƒUÅN5›bQ•FQ HÅME @ˆŽ(ÉjuªÛÔÓÇDAkt6öïzëE‚žŒöëÖDÝN RĨµHécŒq¡ëƒ³V½4ÜD$¥QTˆÓi¨jtõǶzKÖÝ=ÛqÜ^1®#Tèµcº7kk½w¼¦ìÖÆîÊ1JXè È…\ÕUDáf­­´#ÆÆÜqñ@­úðþ1kA÷±¸üqÛÛm¢‚P`D+]nŒ@ÄÚuK¶áþ 1"0–(š4>6±¼OAuï"ºxðÙ9n¹ ’Ž[j„r·›‹{Üs‰ÄœÝ8Öm°†Íek ·™,ÊuîÝãX&î*óü›Õ¸¶ÿÏ™ë†Ç»‡‰æ+ˆŠ›Ì‹& AAÿg¾¾fÚoeŽ4vB³-©¾Dwx±)Œò`³ [Y•w-¯%¼91èØ˜=ó"«x ¶«RQWUµNûwž>+Å1È/*¹7<6ù¾]Î)y)Á›s›íœî.wb6ßož5‹ЉrywÞòå–ù|J«Ì]…YÊÕFÞÄ¿º^òo>ϼÎv/zž_2=ãÅUævm»ÍÛ7["–F|C ä½%ÖwÉ<.Å;Û‹ËÝâ;³Ë¿Ü噜ß/xEåusºâçsfžÚï^ pÇÕÆ<·{ÞÍí9}¯×þuÞv…ˆ„kÍæá‡$ç‘÷™7÷-X'«YÎõs¼“~ó϶½8aŠŠÁœÇ‡‚äàˆÏ3éÈßœ¼y)}~/W~çDN·Îý½m|y;á<ÏwžúMž£Ž½7¼óÃ{ç:Ù{“¯~6Çwǧ½ùÜ÷~”]è¶5?#¼ææF[j¤sŸ›ÙÆÿ»çµŸªï5ž¶Ó_ž‹>ï?{•uû³Ƭ«÷7Æp<½ÛßrCî3ì?=éï°ó×5lõy?m[0ïÛ²œ×רçwÖÊœ“ŠÈËc_‚÷«7×*‹àÈ^¦m19ùçú'ÞpÉìüýßæ4ðý•Qþû³o6&y身cÚO{?~Îç>»û&Š;ïn¡Ëœ[æ÷7žÜæbç×:ÍÅû:¦½ßEæä¹¾ùž^‹6 >y¾¿Ï;÷ï¼0k>â}]óö÷‡™Ö2 ÊïÙÍî> ¿Çï·l\Ÿ¾gÔD¼šÄ±ÇßÏÉï9Ë'ƒÙ7W’sÁ÷fjf5›½1çò÷¼;Þ^E]í]o<7çc¿UxÌåx¬5ƒ£Ç{¹›Æ±ZÉ1d-Kbç5:o<ïyïwSqã2uþq3|ç¯Õ7äÌÏzæÔ‹ËÎk“”^÷|ê.‡mw­~wìâ·É<ç‰ñ:·÷µE€%‰î º÷›ñÍ¡xùÇÆÕŠ \¯hoœä&÷;‰æ)ëíÇ2iŽIäP“•w.z™•%°„9µ1Vïd3"Ÿów3}o3ÞÌÉ‘Ï3'»û“½qÍ8ÛL;̹•Ôjuª°ŠL,Ì„F!¬Š©+ˆÕ2o;ͬ œÎM6ìÚ¨u„ì»ÆˆÜsYù^¦Ü­»‰Êü¬ Èu¥IÅÎ^•Vü›ë©¦³ÜöfÎgY‹Âon½¬LW!7w»1§”z6ೂl©;ˆÔ«%¼Ñɳ—OÇ 6$Dgú®%1>5ÆôÓ`ãd®•©‰Ò”{³ Èö[››ÌÑ)#o Á } Á‡ÐW@ðzhF$:zh…Ádý ²0QÑDD4V4ô,)[: ª!˜¢-qµñFÅ…-{ÒÎñ*Zè%*³Òx°¥¦vv5 ‚Þ¦.¸,VïÙu_³±BS—Nqœ§täã§Ú[i_Ø)Rï•úþo jsCšœÊºÛ @éiPÓHPº1+BQ¡t‰¦€¥5NV´.…¥(¶B© ZMilÔuÅY“f×vÒZl𡤧J: aÓ­6ÁCMmkº;“#c» Õ¹ÆZ«ŠËS4å¶u­cŽN´Åª–YdNЦ[$•\éA®2´£\eUÙm1XJÑi«#Y²N¶¦Í•i"Z :ñ¿øoÎ?„ùþ¯ø_íÿÃÿ‹±ŸüÒFqI?ÿ(ÿÔ a AŒ?õ+²J‹A¬]c*Ò3b”gTÿ¹ØZod$æ1ýshƒ–ŒŠ‹kœ˜c,i µïЂŽD€¨C… € /OõJ¢. Ô¤ÏX„邼RªÚ2”-5[¼c­˜ÖXF §4’å¯(,g¼á(M( €²€ž‹KÎxµízTi”ã%ºXBÿ5êF1U¬T ÷T ûkº îÒ½ ö{dðwœÛ*G ›ÅŠkšÉ¬¥ Ʀ`#þä&}°²¶Dœ™dh.­^lÕUœƒ8–gxÜ)Ý!LðBK;БŽOþ]%V6±* sµbòít®»ÿ£.£¥c]4+®®C(®¨·A-U»â—Ñ+0ào´én1<:-UT“%뱜ÛqOzâµPôÕvÅ0ýÒѤ6mN°”›Ê½k¾¾±`â³ÿ-õœ!}Så5“f8¶ô*î,´ö†Ð·[m=ñ¬1 Ò–9zíu:b³Ä#¾Œ))‚ft×BÖÒºËmãPœå'¼/Œ&ï…¥Út†5"’X—ŸL0{mK% v÷å|z5tâ#¶¥KñÎÑÊhåÆÝ³Í)¶w<ÊzÊU²£(P±$)zöÚðf–1vŽúŠp|G¯òÞCŽ:¾˜Ú'Â,9½ EÄ- @§4Í è/;EIm`ã^4Ä3o}ú‡U(ÝíÎ9ãSÏ$H!>hɶ!ÄUÊÔÏ& Hsµ³£U$p7.8Gƒi´ü5±©é$êgÙ ¤iÙM9è‡kVß5ZdÍèº"YZí(ve½ ™ n£áO™¥¤#gÞfÎÎç™ÉG\2 /Íëš4ê"…XnÉ6ÀÇX¾€ÔÄ,r·~µó– ÙñÎúžÖZ&¦a,ÛÜ\NAl;Òþ6ÁsÜ=X¬½¥žüéÛ‰ÆÕì#·¤çÆ%¡¤H¨£'·yŸ"ðã 2–‰m{Q5Ñë="=ˆûf$’‹Qó)ÓV}ÖyD´«ª/¢·å¹J^:x+kˆv]Щ©FĘ(§å'Q4µø:ZŽkÞxê“Ô+Ã&Vn»!wàß=OÍwiÏqïÍýÞz÷âšWâ±Ó°c·«»Ê=£î\öèäö={NZKhéIq XÃOá{syÈuŸÆ]¾ š¥m–~ÝÖ=ŠQï¬ümAÛ§ÕQù}CIw [_mZî3 Ê^ªXí© ÷W- h8j¸K³UtÔ=B‡i Q|{|S¹ö©ïN“IŽ‹¢zï¦(w¿os×7Ÿñ#B¤õÇq‡R«¡ö.ér”‚jsGz”F•†ëíp>1¬ëކœJ¦0ÐôwH<š7&!¢jÝBv_zSÞUô”a‰…qï®ÇÏ=ûoÕhORÒù~‚°@î“=‚›Y•é³Ó¶çç¢ TìŽqÁkŠé¯·‰tŽRÚѧ0*øÅ£¦m/7"›¦Ö$ ¸ÝœJhJ,1Ÿ¦¥JP7¹SŸw~”ád¹w"¢íÔ1â®þÆrؼ”Õ3¦Ô°<Ô9÷ô§¿ ÐÜ·BzZ™“X£Ï'˜öRŽuæÞ½ç 2yó̯ÌÛÚû\«5ßç|¿œÏÛ;ÄrÜF´.ËŠ1ŸwRõ‰í£“Á$Wœá³($(:®ÞÚ,ê\!ÛÌ9à_n½™õö¥ åÏž­Š‚ ôxS½V2N´õ®xézíÜežÉ‚‹j]s¯²R\«úΩVV]ï¯iÛx0:ò³“?x†é ¦½ü8L㬎ÚÖ¬½ë±{‹ð°=/¾6ÜÇ7Ê¡çÝý[ßÔ%‡ì ¥Ê¾1¿hiãÏ!WO°x kïï‰=`6Š(Ä6ýGdÆ=ž²ö¿nØšøÖA[G ƒŸ[xy`¥·‰Ïµ?(¿>wM¯¦©Û G¾±íÇÕ7ýüsÌ#ozÙŽ´Ñ›)òóÆö†µøGpó´/ÑTêñWù qÜo“ŠõÁª)‘Ä”ï¾Ý߯õ€àÎ3[mäz XLSåÉ[j@îäƒ9Ómè‚ üˆ«>¼ªP}~'<ëØgÖeÞ&d.&º§E§ÛŒk~Mµý55\Zøé¶n˲=K®>B¹†í‹FS·X}lÂë«âÒ„»ìcšîé¸Ó[`ô×޹Ɯ¤|DÄçŠÛ3ɳO›A%Ò›‚q¯5Ò‡>*óѷضËcÉÔiGëïßiÊA/–sUÆÓïÞ!¥jZv(šêÝu݇´ñ‡¤÷ŽÒ$eSÂëtM{-ëÙ†šü4'pþ#©Ö.^Êí“h*ö'Zo$\õC7¯ÐnÑ¿„Ò$.§“ˆÞ2Uk\˜À|¾‡]wOMTq²â}°Ý#„µIÎõ;aI®‘:zJ=â¼~16ñ¬ë¦±¸.=å¦Zrõ#u´çâeèÏAÞIšâýFCêQHÛ‘Ìj‹·:a·kbn¸Ä!Žg·4˜ FIUÒÏÆÓ³„¸‰„åPkÎÆõ;ΖC8FRä9%!¤5œaÕ'Ìh‹$ücF¿º%í´ü+ãÍå-·¤‡sƒ¨h­”¤ã²|÷¼‚5ÀWf?ž”ö—ŒöœFýè·Æ50‘´¸ž-fµî!E?1 ̴,dòèëG¬‘1¡SÇ sœ[xu85w’Ë&¨–0­)Óã¸hîAÁC®}£ëO]ÀLjRªµ×2iÎÆœiïÍ'{KZKy˜±,%˜xÅ ªÔDx´‡zãQ ÂXŽÃñªÂ¬>hÈ“Lë­ud|Ôa¥“yé0k“ßZ|êr'×°OÞ!–m«V¶Ú3^$Ñ?Œ šp[ìi3’Bv l”¼/š-±~”`X¬Ó°¼góŒß“œwŽKZ_dO>/8½óp¸!º™J*–àÌ$G’ï­Cš['¦ÕdS<“ˆëµï×`:Ç}Ër¦öæq 6¼:*ÌéÛ}÷õŒ&¡žWÅÐy.ï^'Ô—Î/Ef“•ÀjXoLmyóòÓÖwÊ ¨BLàtò:@£­'å<×/¾–T‰˜öäà×+É…_²ù£ÊÓ—®Lã kdIÌûA>øY|56“CvJžX­Qä\‰Ûðb‡®”Øf‘¤¹2à`´8YúY»jU™“Ô€$¨«âÒ…iW~¹oi`+OsXÇ“ó=hãYÄÉ=õ9¡3Ÿç/ˆBAÒ#rwiŽ &¿/Sn+£ÐµªÖ°«›†‚TKï^¼Jq…jµ¥¦:yËÏB¬0öå©`Üo,#P$2£ÌJŒ²Äl¼N—¤VåOϼFÏZP[Q«çXËzTu¬D/âšæ‡Ã¥u¹^rîi…†ôäwÆ‚èî4 Í®7]ÎÕ,ÒX Ë»PsùŒÞ×bÄ€Á£à‘‚1sÎO³`¯pÑ"â~º:(ƃma ®…+Æ/$ŠI¢¦¦Vhk&¯ú}%›Rؽ!"D¡¡Œˆr>lìÆ=”zW©# …3Dñ&ïïL¸¹ÞHb$—U—£úáìàHV1 DÜMÅÌ‘Œœì.̃–••*îÄ ñ%J §ë'²Ë†ÄÅ„¤oFëZÊ+a'Á è3ªKX5Ìj’†(VRAˆÀlM¾E2#3&÷ͼ þw•sÕ*Ïêü£þ$÷þ~_?Ùïzâþ<·ù~ÃÅ„]?xc^Ù¸P‘¹ÂS£VE ½fTYÍÞ(ºBQ ÔÒ” ˜(’¡AAc»j¥Q" ÄJD‰xE âh¥ €ÎJ‚‚u J… ŒÌˆ G“”£ý{Çû¦Y¾&üü¿åÏåÝvg¥µA~æTò F@£9¡@ÐTBdJÑ&ÄYWÒ(´/oÂÊÿ§Wnß!ø]äã¢÷}"6™èêâáêìN °ƒª¡4ÙŠ..Ââè>‚:`©8„”¢”U‘3²¨(™9!¸˜h÷ƒT`þ&1ü+äo¤U\œÎðßu7ÅÕc;6u‚>Ž^ƒªÊC6`W02"1 dcc‰J„ÜÎùôkþ­Úû­¡ÇëhÉýE?>%4üì*Iû3÷xßžIØù'ôË·@ÚéW½Ågóê·vKíÅÆœsº¤Ñ^çwùdâúžûç6½ï绽;®äŸ=ç|_]1¾{Üãçä½{kõ÷: ÚpEƒ¤\­ÜãÅ26˜íÓw<¼^÷Þøebþ9ßyÌ«µþ ¾û©Î­²uÍr¾G?d¯Hîxñr¡§¡;/üß‹Øux5qmïš1Û~ÄÿÍí|ß1óÜó'o{Ís£[çy¾ãåÇøõu~:.«ä<÷6,^Á‹øï*~ñ„âò[ûlëy7.eüÞF¶¤Ù ÿjžüø#çïŽñ¿FŸ½y„^9‡8ÊÁ0kšVYÆç"j>3Éμ̘ù½ð „Ú¾yÍsÌ[¯TEü¯Íîç{ÃÉ+ñšè÷Zo-±»y°ÅW$Æ5Tݺæjs;Éͺ0OhÐáŽ&á&ÞEgnå²n­›ÌŽ7G¸œ•nw70Yu¸ Æ@4Øsx®#F±7†so¼yÁ陿^ùµ5 4ÝÜæ,[jãGùyäÌìNéÉ Èú›4Dmv©ªùÛÃU2šãqª¶òb97h°Oc¨‡–ÜË9ŒQ;(ï3s&›Þܬ˜ôãI²74A< Y©’TÌyF8Ô‰Ëýئ4 ¨ov‘«maz€ÈI”ÄLŒÌˆI€Ð??§ò__Ûñý¾ß ÿ¹”rû3§ñ}ªöHËhðû-?Òšþö´žM&’mUW­>Á5¬[÷×_ºÕ÷ýó¸}átý¶û"k·b´¡õ>Ftþ>è`ÿnÿW‚o2„Ñ>»ö´d½µFì–Þ>¼]ºŽ£®}[­˜¨ ©Si×§#&é,q-±¦£PÔ5#DzP¦¥pNHÊ$ÕŽÆ‘XRY¥ Ü 5§w®=;wzÓ»kÝŽšØéÖ¼Ó¦iбmµ#¢h©•=E+R†›JK 6Ü(µJR”¦´¡\L÷œNõ ô¾Æ:ªèÞÞ½ŠW¦Ý4X¬°Ppz-”Ö¥zÐ*(Ûì°Çµ=&z.ÀxƒGOUÅad­(jF4¡cf¬i‘_7Ò[½ç”ÊY’ÞÆúîkXe…–M6·Q¥ („ (ÛîÇ®«×ov±i5í`__%4©òtÕ RDP•û|”éJ«åÕ•ÇyÙÜ…ye¥ëZ5¡ÔJD«AJè]¬‡CÝd:Û%)Ò‡¥ªtiLK¡Mt/B•ÐuO_[½õ^óYqçuÖsØ‹“@Ð:=!­°Pú¡N•:C½¶è:¡è¨”Ð(öÜm뤣ÑêƒB[ ¤kÖ•è)Ò4#½®À*z¤:®O^öŽ“®`(4vÁè4§¤ Ù])¥÷²‡CM:}t>“MzqtÒtz¤ ¡è ØDÒ©¥]*ôÜu’mFÅ´m „w´»†ÑÝ; ót2§3¹4†—HuÒ©¥ézW¤éJ®„ ^…tº¥F€Ò»¤î¡9­—t¼ÀwQzQЃ¤^…^… 4i} é:ôJR¯I@)ÒH4¢Ð‡Ô‚hi‚hD£äŠE(")>KÒ(t"iAôiè¡UЦ”ëO«¡h¡Ò¤4‹Ò é"È] =-æU´W2­’mJw ¤~J©Ð€:èCJ¾—Ðó'š¢æ¤Ú‡r/2®äyhH/B¦‡O¤(¤:PæÝWšª£j¥Ò–ÊœÊz\ŠzZ^a#ÍP6…éiIs@æHîÁl‘Ì"é@ètªôé  Ž„í‘D¡tth@¤QmJÚ º9‘s-‘s!ÍšæQÌ š»©]Ò¥ÍPæI/5PÚ‘wÝ;‚lªó*Ú…æEl‡t•²d押ÕImSÌ«º¢»’‹š*—r’î¨æU<ÈÙUy…6¤mS )@¥JúRˆm#iVÁÄssIs@ÙSas!ÜCe+dy©s5wPæE°¢^esH› Ù aÑNh»‰æ wu)æ­”î‘&Ñ*w9¡²-ª-ª‘æKš¢¯5"îJ‘ÝT6*î"Ù)wµHs%S˜¥/2 >ŠDЮ€ÐkJhJI éM^ÈtIA­#JRЃ´õv:жŸI× @% wdôúNƒJP‰è¤é:è닪½=ìƒÒ‡¤JS¦„:@éGØ(èôUyWåy}*È<»/œYi¥‘JÒ =GJR!¥ÑBèõAÒ +B)H†¤J‡@i¥CÒ6–ÖÑâ1˜Nê”Ú”sFÒ.êG1tjRó æM•Nd­ƒhRH"‘•Dô"tT›R\Õ'™"žj—ub'˜^iFÀæ)ÝVħ4–Ô­ŠØ«ºsEÜJæPó(w$sPÚ6’æ¥ÜwUÈÚl¡Ì‡5]ÁÍQÝ&ž•4ézW  (t…æÚ”s(NéLÂw(¶Ñs+a*î”ØóšNâ]ÒææØ•ÍyW1mw w@sAÝT–É;¤î¡s"»†Ô§™Tاu'š2ñ¡Na úEM£@.”¥AÒ”tŠöÚÒ%è½€èÒE!Ðj$²iOCGAAД Hš}/£ F‘:t"túAЋéR…4Òó)°9«¸ÒØî¦È( ¥)Fì•¡^”OO :ôª&”4¡¥A“¡¥ÒŽ”_B.½€¤Z•éB€£¶èÒšS¤ =(º4´$RއÐ-…zèZzQéZ@)éR–"~IéöEò”£BSKM P§J%èÐC¥ = úS EéAô‹Û>• ô‰M’w2ºœÊ暆Ҷ¨mhæ•<Ð9’^e-¨^h["wšŽdÓ hÐ !¥@§@zC¡=/J¡ÒB´¯¤Ò4 t©ÑЯBSE …:MúD (=ØÒ±- ”¡BP ”©(t«^‘¥(½ t!¤ô½t´4ÓJô-èzAô&“@= ¡)о€4*tÒ%¡OBú@¥i ))(i( ] @)¡t ÐèCJ´"{eô‹è:Ð[è &ƒ   M.‚R R”zQèC¤4´¢Ð¡ •Ò£¥é¤BéAsJsBy‰wwUÜsK˜†ŠUÒƒéRLCé]z  J”W£Ò%WJè=I‰tƒ Qô è #ÓJP=*ÑJz4 ¥é Ò ¸ÉHt”Š E=+'AëJôiè_Aи´ŠWÞÈxªôšN–(O@P… èC¯l.$kIG®—¡îÀé:è4´•CîÁÐ==T솼{%ìû·½c ð˜CJ¤cÖ¦fRµ RG#U°Öoë¹:= 4 @ž—®¶±¯mÛ¨ìV.ë5ÜõGÉôRÙ±wTM¡ãœÁ²›Q¤)аP“¤ÐuÝ ŠîŽaÌè't;”é4­ … iPÑ¥º¤ÉWq+ºI6•6b]Ás!NéÊs]Ç2nAÛ5œyÜóÙoY=fkF{ÅÆwk4uÖŽº~÷æýìLAWëû—½â½ãÝm¯ÓÎëåÇÓí/û㸊o›ô:<±ÚÖrSfôVÕ¾ mO=3•ïÓŸÅÈ7ͦúŸ|œ8wmmwéº Óˆ“îm[%;qã·Ú¢åt÷gr«Ïsìzóæ#íÞçDüîèTÚ;9ݬ_á÷»¾?N¡qno±=·žbúäÏöZôÝÅÏsÏ÷o›žHövÙ€¹ïÙ'¿Ÿ|óˆáÙpÖG‹G°õ¿½²óÇܘþ~å½~þg¢W}]óé7€=–Wy™ôÙµŽ¥—í½ï‹Ž¹Ä{¼Í¯–ø<™†è÷ŸÙv‚‚os²qÞíMõùVåz"³Ÿíoa|â°çRÞóÎ-ì8²øX]]l~OÞ­óŠH[‚‘Þþ>3¯­UÌà·´\?Æm~§»æ^òM¿1á„f>5r<˜ö„í ®[Íï6ÝÌDz6øó7¬K2ÍÁ·Ñ8±~™¹·ë›We{Ë[ŠAF½~Þ`/?Óù©ütâç¹L–ùg1Ø×æó,Ä-å³¾noþ‹ìõ~ÿ׿ÏïäóIx- Ö€4´„iIÉÓB_²´³»Q·lÇÈQPz°¢¿^©üu˜­€4¢Ð Hi+B6Êé )€ª)]+¤ªXªŠƒ‹¨âé,îìâNã¢â¸Œ³³Œ¨Ž:³ëJÙº.³¬‹2;[uVØ. ueÔ˜í[jÊJ&-ٜѮÂKŠ(+"+.qmfqgFY™ rå-]skA.\šÐ+hC«5´U¤Ö±³,AZ)¬Š£™®Ûº5¤I&$¿ãÿóÿ§þøÿû­ÿ'ü_c¿øüçþ^ÿÅßÉöGÁN0¿ó Ô ÿ¡5V±˜ÿåxιÒJ+Q³Oýgþ˜4b2e¼’ðoô%gAÿm™‘Wb0Ò«®"°Ö ѰIJŒÙ#ÄAªAˆÈ "`e`j5£²ÿÖôœ‚ôÁAhMBRš»ÑåZV¢:Ê2a1ÿng8ëkŸ£=EßíâËË|dV ^¶}E€º&åFµo B¥þÉ¥-—:ÐDNiª„gûõ°àND‰D+͚РæþøÆã¨®ð®¡Få•Í:* $ó¶#!5]#s´JÎPµN´gF*ûèóéy0æTMt\GHi`¤Ëžh”›¤ñ(&¤«ª¨rŽG \¤`Æ¥v]t,>`q!Æ%:›Vù’ƼX:”—ŒcZÜÃr•—\ÒhÈC ƒ^SÑw bR¡––ÛXK]VŽpj!–¦1Ð ‰BÓý{éyä%3©tV¦Ô˜iZÐÏ$z^8^1\0 žøå ã¤ã̆È0wÈVsÒ¯Y_Å¢ð—`õ¹eÐt)ÈKmuy@Ùa™geÙxÔÖÕÔõ\W)b|b6Úá–1蘦ºÙÕ¹Úµ‚ŽºïzËX—Y„ÑZ–'Y0Å6ne`¦÷ÖµÒJ•vÓããÕ/N妦ïÑ”#Gsž›\#Çj)±j貪NX¹·;êGzÆQšJh»Áy,Èc­Ÿy¯ùI—µ™ŽÖ0Ó—b¼Ñ#šb\šøàê„|ká%Y™Þ0cÑg¿xœ&βžþ-(sóm?à+@„¨:Ùj;OXóªåë±Fzñï-âÁ¼Hr¼³ž°ÓvNÉ«FªÆ¿ðžã¿µÃz_ØáBŽ§Æ´3¶û •z×ZX¸klôþ{i¡UöŽ =…žeUãžbñÞ´…?à•ñ“ ÌóØ2iñˆ&d»­/QÐÀâã°º >)¦¶´>.\ë ¡Ö¥¤ÃÂ/.ÏNo^DéÖý1J64Àßš…2IkJë#ç©O¤”5ðÉ]meµŠŽÑC”·£ÂÇgÅ&ÒôŽOyÐÕ"u=u»7¥G¾Ì-³çSãYìÔÌCßdm_kÛ]Ð…ç!º ñÞçkoñ£ÎZ•wMsÌzRHsˆSl>¼Eú1™8ÉÓ=G8 çXïNõ×®p°‘¬†]áZzëÍh¥]jc\è8O;A3TñuBâëç%²²Ó“ß®ŸÇr¼{o>7Êe…ñ xIÇ\÷ïa¼‹q^HF[uÈ—dãÌëºk¶¬O¦iÛ&ƒ¬µª®ƒãSy=w–^›&Ù3Q a!õúÅѯŸ[§{v®›ù}ïïçžÐÃÈ5œùc¿Ì½óBšï=õ-("‹÷eyk/Òœšzè‰-;sÛ]´Ó>*˜]»iÜ#êTdyàN% iÙûseäx6>QÙ7k¾ïÆ×á`Aà«ç×ìí¼´ï`÷ó|Rño]üúú§´S¶”/^ãåÅm+{K²´)µ|FZPtÒq¬þRtéô¤a³÷̸øÚù…g¤üÃâþ{ÚÚö}t’ i¿¶áÀÁéËY¡ÚÁ^péÚq§‰Wqç+¿}jvÅ«aîhOx^4×xô!¼«X*quÕ!.ÓµŽz'NÒ<øÍ;ã[n袄|SĵàûÇN{ÀaçoŠžø‘¾]ƒ[òdû7¯ÁiãZ§RíëKzþtŒûŒ§Çɶ€Ã†Ú²ùgàô÷˜„ŒqóŸ‡TÄÁH#ê4oŒæ·†²]_åºvö§…÷r}f|B~¤Ûí]fbózüš»qY%ù’ ^ÐÔõ“¼ìüKµgñÔöø¯^°ãÄú‚B9Â-þ…ßâ­íÞ~_ÏΗ{tµ»­½aêþ}tÏ[ЫPñêþ¼§šÙñòñTD)Ú3ï›Eu HÀkÍ-…Ø_ßܵç^w=èS¶<#ð×óUH÷NoÌcÿ kíÒÔ:Ò^Ã'_ljyqÚ÷Ö¨)¾M4Õá(iSÓÓç2<{ˆIðœæ9§=V¾;÷ë:íÀ~¿Ž~.ýÛå0î|¯¬QŸÒ]þXö×ÇÀ¯¾šð ‚ûu^:?n>ßKE“×OZîi¥äŽˆgË‚Ë^.4Ìl’ fOOM/ìóC˜jCÔtùû0i±E!TÚ°Æ»Rµ´ú¦ŒìÿcIi¡ åÄúîõ¦ ùóœ#L˜·Ê[_{RÐçZŸl–>žò—‚ŽÚ[~FáÛL¬W\Æ“ú4kÖÐñi £ß’‹‡½µ¯­’‘8#qœ5h¾}v§Âû)o:÷Æl‘_|é `^ù¶·Æºm‘쑊žA|ÊPñ¦4íC¾êe>ã<­ ˆñÖ† ´©uÚ6œù-=æÒù—­IߌÕ|iøßÏd¤_{oW*yº ˶UeÞãOA~»1úÆóÍ{m‹È·×Ö¨ó{Óœ61Ä.¾GªZ²­çòš8ìáµ-;­¢KãçÛÛÃø þ^‡ïñ¤oŸkÃ0ùÞ½¡^|æß×§Úè£|’_NýæžûË™×2׈kM½éU¦8 úâ4Ì>#¿Âéz½;VË÷Ÿf¼ÈeñEÏ•†º€ö28iÇ(º‡^c¬CxãhCØgxÁï×NÕü,ô_hôc‚¸¨ƒ|{eÛM•tŠ÷öoinOäMiíP‡ ñÛâÿ-"“ljyŨáÏ2ñÈóŽkÌÔ¥ö+†éO}¤ÅµhIÅ &Ñ ˜ÝÆÌ fƒ¡YMDÈÌŠ¦RUôb’Z4pS¡ÒMHÈT XFJ11ˆ)òò °^+ FGÒ)&k5 q^·‘FÝ£Sc¡ Õ±*ÂBEƒ`Jö´]AÚ'Ää®@¡*ãÞ°„'C0T58ÌÅVHCB‘’’„4h6òʸ@¦ÆR­2&`pòð°´H·rˆN¨Ë„v€ETÊdåp‰‚l+J‘ú ÅçdE ºµv`"0q3: ¨ÔD›²Õc³¸uµer E ‡‘¹”!'dPvZújJ9X¼ ”d*C±Vžk)?ö¬ÈÁ@ë3ô5bR¬XÖLDÐPCS §'Ä¥èð%ÅŽP КƒB/& ƒ¹—¶n ýœ–%×?|¸~ùçÛóK–œ™ÛVÅvÖ©Qa\bdS)“)ª0’)"@†jöÃã ¬Þð7; êß§“ycÔÅmŸÒ_·¿{m}äU´ÿ‘Øùëß~æoÄg1snNƒÝþOùÌè3ž«ç¿Ÿ@ë'u†l^gä[c2)íˆ\w8ïs&ÖWçð¾žu÷u£]2.õHŸÏ›Û÷¯qä­_O§ù ùÍÞòÏjÊžg(§d^÷·r¢ï=S"Ÿ-Üh¼».^Ëoï¹o7÷‹8./øýã;Tóçäjí½ä±Ï9ɱ\ ´öÖsðÞúy¶üþþpÛðcóü3Å{»Í^ÅÌmwü<îxwó¹;úævñ®ÿ=êbß¾<\»ã±ç7·Þ5ùÛ½Û ÝóïßÎf÷ÊüÂ5\b2E]ü¯Ü]îþóɳžvë£j¼Þyž,þ;ÈvzjÜ÷g>y¾¦þx®&ÌÁ‰gë}ë‡)ö Ⱦ›B&yÎgtï;=׎~{ÛqÍp玕f=ù¾Uç;¿Ïz½Y×ß ä=ÛáÒ;qM<‘ó1õípníÞB‚¬zç;/:5»¾C¶,F.ó9:|oç|gB)^ñ¹Í¸éCÉ9 ݼv'^ñ„M©·"¼Üàç-nÀ $MY]åäåWYw,g÷÷)™6³T~oœÏ9²mœzÅÅBmsèø¶Mœá®ñp[öËÜ,äÀŲ.æç7&LÞš:òv¸¸åÅ1¾d{o7Ò`ò ØäkvÇE0¦YÝÅ#UJ'6äµM×ÔÌyÔð?z·Í›5w™kk˜„7©®Ë㥫Q§ym{ 1ÝÀš¨›™^ùÍìyPcá™ʸ/ù[\ œwõ÷y¾ ú-à>ío‹ Ë=EË·\1’+uÛŒYLv°Ô=æ³o6îëx$Я33œæcæ]ÜPÅnV(ëm B+&¿Ã²9 ºÂŽº²JáDß¹Q5ØÛz%¶! ½ 4ì|¿åþóûÉýÿöîþßõ¿ÜþþyþÒ‹þ‡õoé‹}Ãû“øû)Jÿ]>³?OêQÕ4;Cï þðÛù|ÿlS‘ûØ:Qþ²ÂbêÂ4†œ û‡û7ö¬¬ý¾Ùæ:­D\PØ#2§õûKû"m?¨—Ü?¨7Ûú¸bú™! T¿©·õþI–°Sþ¤0äCÇéûoüüvý=~lÓŸPñ¨jýcûý¿OÛóBü|võó÷ñx]þD?ÌÌ~ŸOÃé·¶ã‡ï·ÞNiÕo÷÷ýs{ñõ}ÿ_Ãë·ãøÌG÷ïélü½¿_?ǾÖþïéÛoRïñêOýj“þÔü¬»çíò·áôoËWŸËòüúïëçí xúzüÏô ÓÍ-ý?¯Óòžt—ñøgßå`¯Ë9úâ\w¦¿ªÿdÓëÆž>??Ƹçôߟ×ú}{Wôã×éîŠðú-Ã\’„ó1‘hͶo–/W©Ù¾o „ÎL…k¤h£úqQAµ£5R'¥møR¼éY“N3mhÔH‚0”äòxF„K4(4H¬Õ™™Ô¤F¦Á î'™5hPJÈ–Hˆˆ…v”­A­ äó«”`)´u}c{H Hc3°ÑÖ&dxTàDQS63 ±á”š4Ug¢(¡IÒ‘7¡–Δ¡êç)Ìœ&H¥H9úTÈäfoKHŒ™í{Ha ‘D‰"eGQ2–$Y FgxL6*D‚n¥¹èÔÑëaŠÒ†4lºáÁÌ’@p2±þúÞR‹%S ª1Jn ᑼàתŒ*aV‚Ò·v‚0$TVÂü£ÚÈVÑl’ B–Ð`ŠI*ÊŒYw¾Ÿ¬ö>ËÖû-èõ=?G©R ôâ–‘°¥±6›I²†ÊØ­¤mPÙ´Ú["Ú‰°¦Í¤mµMƒe ª›RÚ6ÚØ›I°l¦ÁwTIT]Ñ×qЗt%ÅEGÕ%IqÒ]GQÇU@•ДwIÅÜ‘¦Š‚VŠ©š¤B¸º:î"ˆè;¨Ž8ä¢ã¢ŠŠ ;‚ŽâG㨎â.“¸¤âêŽ.¢N’èã©èê.8. ¸.ŠŽ:.ˆèàáˆîä"ÎŽ+ˆâHà*ˆŽ¨äê8î.S”‡"Ž"áи.ç8‰¢¤(ŠŠ"Ž*.ä#ˆR8ã¸páȈ.AqÑÊq9ˉèàèéÂ:(èâ ;9ÎŽI8é êIB“œîqHˆç#¤ŠHé$;ŠGC£ˆ#¹" ¸ˆ£“¥(‘:Ná#¤äJ$¹C£’"ŠN’N' ;§”å!8’$Nˆ;‘$#£Ž¡A.%:PqÀ§C„î8IÈ‚BC„‰£¡"à’èpã¥'N—NNäœ„Žˆ"(IÈåC¤â$Eä¡ÊR'‰À§9qÜàq(\ç8…:rGS’!ÎäR‡Dˆ’99GG ÎçIСÐ8”çGA:NQÄ$‰Â“…HrG.”HHqD§B‹œœ¤C¸NIS¹8E"C§”¡G'"Dé §Nä€pqrârŠJtp”\— rèˆ"Jpä'#‘ÎãƒÈ‘N\Bç9ˆG"Rt¸@§J’tpˆqNJ   Ð#œã’H‰@œ§qœtâB'ÄéDé‡ q䔊DHŽ)*Nãœ¡Ä”Ž ÁÎŽD¨ ‚I':RN RHéÊPãŠ"äpœqB”Rär8 (D‡"'I%‡'Éœç!DäœGB u$%Î9'„(ÉÓ’r‚¨$€Ž. A' $—.s¹tä¢âG")#‡ Q#¡:‰GC…"9És§9NAää9ŽtèBç9"))9Ó‡œˆ“”sƒ@qNs…É:ÅÊtà¥ÇH!'$$”$çAœ…(pˆEÅÉt)Dâr8äààœç!Á9C‰"%”Ž“¢H:GN„‘È'IÈ¥ÇJ:àŽqHç:qH8è@DsŠr(è‰èœ#¡Å8.”$Nç'NB)'IܧrIÇŽ:IC“äárDPwr’p‘ÑRå(s”‰Ð9rI\9ÀƒÂ„„D:r:8¥À9‰p‡àŽŠBP¡Hrpç%Ä\rwP8’G‘ÁÎ •!Ñ)E)GRD9À’táÄrGEIH‡rIÑp@9Äç9ÔEAqΜáÂ#§ qÜAqS’rtttU@8®ëƒ®ƒŽNN9ÁN"’Q(Ž%@t ¤.rœ¢ã¢(+¢Žâ¸èŠŽî“‚Ž§"..A;ŽîBJq¦`ØDØ”©/>~¤œwBDGt¿NÉ$ ùýn?·i­èÜþ—ozèâýHÍÞÏ|í¤ÿ3Ðì…銵b£ŠÊŒ4îdËE•íäÜšÌy'H¸Þ·žwtâfäaÞJ·9¾ë7Ý^_\Ù·ç&F¥½ÞEŽ÷pwk¢ÞMp}»8ì÷ëÎsg!Ý¿`ªa7—Øù³ |Å#›9Íó›^^÷{9™Ùb:ëmó«¯g ëî\æ*¶÷ÎK›^µNë“Û¸óf`{ñoª¼ÁœÅæ×fòâÞû_s~ØŸqusPç<إȤř(û·½oysTOéÈØÅ›|í›§·ñž7ï.çkh™·¹¿sã«y±¯»–»pôÜá¶ì´d|>Âs2lÞKMýº€ç³{hû~[“¦½ª›ÚÚû»ï7òë‡ÊòbÛðŸ @6}Æøýï¿åöwÉ9ï^g=òo›ã¿™4.ï&ß7“™Ë·É9Ûýüâ‹ð[‹Ø_;þOÛ÷‹ÏE:œ*¾©‘5˜áù6­ê’q«;—ó—ƒoÓëúgæygž›[ÎÉy»íy¼ùÚò;àî ùÙß'¼÷|“Σ—λÈs—¢ß¬fòòçñû¹Õß¿;‰{€ÚžÈ*ñ?ÏsÃðáüvæbž/àÖkx½ŒœÅ°ê{2ÃtÆW˜¾ãæòm¾5•…¹™>Ãq·ÁþÌ­­ïhŸáËãç‡y†o#èÏ;̹·ü_%‰÷ø—ƹÞЃ|Ä^ŠºS<ìÚâm´3Ù3Ö¦o‹<ìR‰Éîýžs<ª_3¹5âúÝûëò÷˿ˋ‡¿qNy>»=:³¸ö/oíÎsžœU>¯Z\O‚镽ÍãÍ]^ÎfñËmWÂyµ—ÁaçäÏ5½½ë‹ÛÃ6SwxÍׯ¹1\åotÞÝþ{b7x×yg˜ç‘µœï 1>*§¢Íèìç3f/6¸ª:Øno¹ç9±Ÿ7ÛÞ\Vu¼Î[Q{Ì—Tjû ýÍg»[Qo/}ž“7¹h{ÜD~qrædu.f@Ø–8¢ßÍ3»¢þ™Ý÷«èúû±nE8Þ5âÛÍÐç{$8rÚ÷ͳ¯›È!\k‹ˆæ<1˜2êduäKy¶mfª{ظ†¶Øó# ûÙÉŸoµ÷mlðNâ~ùÎÝ›¼®Û]¦D­â¬Û•Fº1ƒMÂÒ±fDòT[ŸHg?—y½£±Ëîòm‹¢â0~ÄÔmŽ5E*ºš|ÅóÌÆ˜,ŒÛšã—OgZåÒû›-deœÞª1‚ ŲᧆG"9ÅÎ.1‹nïŠcffæÐ=ªí1ÑFÔÞò¦l[Øšh{molQdÌœ¹¶À\‘\nVÙ?-îAÁÑÏDñäššä…¤Yy>2ØÀÚ,HcÓ¶Ÿ›L‹#ŒÕÂ4ÙN?éüåüÿ©?«VXGq@2`6 à21#Ä@D鱏ѮR ™RºXJò‹Æ÷ à"÷z³Ujô„Ptu”)X%æ†ò“ùûï7>ŸÇñçCß¼ä½ÿ4@"9p$PP99 ˆr)ÂDDäMWàþ6Áû;~ÌïvçÐy®Ç£t±±„ÿ»uEþû̪hPA  Ž4ÀlVfFO½é‹h^yÞc%­TŸ§›ÎnS]K[{zöñ~^Õ÷ݽz®U–if'žóÞÕí£¶óÄöˆ‚­¶단è8êų¶‰§®“Œ`Ù`œÖšl£²j !#†X‚,Ç@U¦Ä„6õ‘ш± I&“ M! &£E¯QM´h©¹Î·ÇlU8’©¶632Ë3,É?‹óïKoHݱÚ ãçÕÒÄîÎ::Xž¬ê´zÝóèÔzmÆã¢.\,ÓT,²C¡=ïLRj¼±“Ye¥–g•ïmµm›_£Þ÷ã{Xå%¤gâÊõ§VÍVO^¼LV¹cL½ëÞJ8ëÍæ™n̼Ë-{YÑ·®õÕÝkÙ2ËDZYz÷-yyæÞzóKC´”¶mö¯vmv¦·aæª×|ï{òOçIJR„çA?€ëGzï”…ùºn±Dh§BjœMög¾ÏtTÝwwii§œ´Ö—ÛDG½²öK¯§^‚ÃXËWcM{Ûßi©õ´dœâ3=´%zu”m‹–ß¶vž1;{ok8ùáåïom–ÖÞÛÎkåà’.ѫөxƽ´Qíg. ÏÛë_“åï2Þïuå%³Gç½ï¯-y »måóCÒ;-µߥí^uGV«Œ¿»×¯[Àë]økW•µ†´ Öø½ã̹fÒÎ*–­ùe÷Þ÷®÷eg,ÖV{Yëwdäôï=ì¶Ö“Y gŠêïh÷¶ÞñïzyaL¶mºÖ·åë{ÛÆ):½ïϾ­÷ʽ㷮Ô"4âà¶µË*Ysão¼¾g§]g¯=¶°?‘{}½äóIÉ=¶Ùå‘å­nµ²{o[u©~¿~Äp@âq%ÁÂ\Žrs‚$¢!r‘p’ Ž@$wùz®ëºòJ¢þ:ª›/ýʉµ2S@…RÒ±"iM:ÒPÐm“Fš !¡¡i(X4iJF‡l4•BQ­†Ë–®Û8ì–ìågu ’˹w*®-H›YŠšÖsc¹¦Žè»P«,³f;îÎ:#³M"-m¤eÕ…Íe­v :ê\¢šÔ…¥Í'˜‚iYŒK[Z´Õ¡‡æ¹…˜Œd´Õ\«5¬v"\­\˜µ¤ÓT¬ÁVŽîÜ’Šm6À4ºM ¡¤Õ?ÃÿïÿŸüÿç_üÿÿˆÿþ_Ô¿ñX“ &kþ%ÿSb„ÿÖ‹OD˜Ï?êÂΗ©Ê”’àƒ“SPVýñ‰Ý¦"sTYÑ ’¡,w¢½ÃÿrK­+I‹ÞíiÚ¥YbqKƒÅ .ñdb¬“þèÐF°|kÿy NÌf÷–JŽL#JÈLÆñþáŠV5°‰4áiQXggÃë(8Ô³…R «ØœÅ• £G&‚AY%|A`w9J3è€2s…ÌÈØáÿËþ@)9h¼¡QIùZly¸ÏiOT™Þ—am×!J&ÚR¯¥óIãM°œl ¦¼RƈnŠ»<":!¢z.ój¯¦Õ…h‰UH ¸_Ì. P¤2 CEÒŽg8 Œfv9Fz\ìUÆòA¡ŒäOT˜´§F}%4„ðôƒBk»>Œa¡Ôl7±(f9,î#Zñ¥§J=10Ž¼Ò˜®RõŽ1tWÞf³E)FY …‡´m¤L02š<Ê dØ40²R‹Ü$•iÑJkÑ[G¤EÍmQ©¢A?è–­t|€¬s­Ÿ)RÄ¢&ºVšé8Ï£%°ºY'"¦ª1Ò-Ú 7ØVˆ¥zÇ!4©Ò7ym7³kH¹¨3fF%6‰%‡„Ú6Kßü­Y«s`ÃXÜ´F宫¬l5©Ñêï"µtê 4âÍTP©ÄeºÓ—·\FO~`T˜ï‰Ï|`ï¶‘*®1EвՍ×-SIiaÌZ›ÖY“4[è?à·¤ëDš¶”°bzÆr°ç<âñ-ãÞ7°h¯¦9‡ Ñ ”†C}ô]¢% øÿÓ·…^­®ò5Z…÷aÎyeáÞ}eÊ´ÞӌϊY$•)V}ƼZ§èut×ÍœP!’‘&í…|Z¢h»­q¯o1ËÐK@Æ%Ê ÏpH•ïÝ¢ïEAÔZJ–§;”š6¥ªMÜSbh×}§/ùÈ;ÕâÒå;lÝí.qÞPÀ[ŠBœM±¾Ù*qÖÙ…ÚF:#6—åm¸• ÒbXã–¢vˆTa%¬ìéŽajâæ"ˆg{¼t•+'”ìÚ0è¶¼E‰ôz奃ë (Tíйø”zå,;ö°Ñž]cªÞ¸à#gÒà“îÝ5ômQÆ=©í,Ý”ð‘*6¼nEM Zš4³kºÌiIó >³ÊVôìù€¹cÌ+¶Óë|íÏXºÆñÏMã.OÄèýéÅ5Q¾½z u¨.ºsM­‘ÀÔàɬ÷:Dz©ðwsYáÈ+Ç­ì`ˆÍåÈËσS1Ï5™Ùju‚^ <Ü|B× ~5Ï©$a+j|W”.W);ù+b¶ô/+Í|ô?<øãMnþUÓnt=ð‹Ìèðu¿g¤©r‹±‚ÍB([ ⽄1\OÏ xç}"à=¦Ž½Z€+K_î{U-Ä“Ë&C¨q·ý…ï¶ÛЕèOR?ı„ä‚qkP®ûxŠÐŠ:HöIê p‹u׫»lh¼Eíu„øãAÀû6t ôHh^±¿y»9¼Š ¯mý7Ðõâùõ¶tÈk%kéÙSàñyÇ×,‹­7Øw1ÃnWÚ´4¤‘ç ½îc‹ÏØŸÏ0œ¶ìôKq²pMxîÚÚOÄmig<h:@mílžóÂ9ÛÆ~ß `µ¾Ý¹s†Ôé4éaNt÷]·œ«‘ïÏ¡´‘®‰Þ¾Ý€Æ'·u!±•·%17*mý!â“:sXB% VTÉŠw½xˆúË›Z­zÙ’·,àNW-ãÔ|f³¸ìP®ÂÉBÒQ¬å#faó€Äp½s®Ãœïð¯®Ô ¦×Ú–”Ÿ6'_>fÜÃnAozä^&QÄÀ’öÂ-N<}iá%mK,ô½ö¼£œùémZúç]£¬`ô×IW%Höϧ{F²§­›„ão:ÊU(Â& ¾jí­Bç@?÷ñĵ¼¸ ½/Im7ºÞrÀjRNnZ–-Úˆµß®a HvÄ™vacﳆ鸖 ¨PŽt´ˆ(¶ÔnQ…«˜©¬$’ëžX#òKYhqÌÒÐo›ÛLeKˆÊ÷Ñ ³ÍÃØtù:5Ï#©Ÿ¦×ü^·íÁÚµü%\^iiŸm›†ñã>hT®”Y‰…lå+ÎÚxZúM40 gÏÓhä ÆbK:µ²a·ÂL&ôh¸…ä: 9WæªõtŠ‚Âþ+N!µõ<ÙõrõÙŸ´7wÚz%GÍ {œ²‘³+^¸‚ÇSÞ7’ïˆÃÌW¼ ÂBY ¦±, iÁ§PKµšSŽ'¥õ•–%ë*šæ´8¡N{DI-OOó¯ùþsße¶æ¯·œä:œ¦1Ö]räjvs“ÎkïOÏ­{Ë¿8Y.=¼Í˜&Ã/Å#7ïTü§ t.&‡®ü#–§5ˆòOÚ“¾<†…­5P‹¯›k5â[›Œ-;=OF½œ6ž¿4óiå ƒK¸dD¤mmn.…¹¢T¦y@t@ÛU¸LkœfUÄ2Š*9„Y ¨ºfüä)YND`sžéþu®›ÓA¥²+q¨Tt§È¶Ø%3s¥”Іµ•VPU]ãˆÁZF"GJÑAX¡gF'Ú,áe¤¢KÍbHæ%1œ$âø¼t¢¨ÇÒA:J”XMâäÊ‘ufŠAò§‚ØÂ*Þ•bäJ+W¤@¶®‚€W™Ì–~ºÉR‹¸¡›Æ"'¬#;àž_•1yÖ$¡/vаO0Šˆä.Ë…y»@%Õg)ºMybx`h&§(ÝÀ˜ˆ7¬©Z5CæÙ,Þ–)0©R¤ˆ,  ¯HY$Èèç9I4+±#°V¨‰8XÝJ6å 1mfÃ-†F@±*šPd3\HœÅâ(̯6‹R™•$`g ƪ©  ¿¦ìN*Ìf"NF; !…bR1b9³´t#„¢3!KNå(Ê7ÄîÄN×P%! –j£m%cÔ[Òq­À†3‰z П"h)‘„NhêÀlÉ"„/$ˆ´a 2”"ÓpŒ+FCD4ßtÈѧJÌ#‘¤-(Þf¬S¬Æ"ôx™É‹,l^œÙ—YŸÀÍù6/83ùñp×ôîàwèíPïõ¾ôxÄ×ííÇûï»*ýo–pt³F ý/Vk­sœçs¿âöñpTWgŸÓ7ñÁ½ñÌÔÊÓ…3õó̇9Ƀd°Ço’!y§±?ô• äŽV[ÄDž®1/E¡£ÍF¥À;9Ï÷q{ßç~›ÄJùw\Ýyì›ê,«™9ä÷Úsxç§c9ÎqUE›Ì~3øñÑår&(ÀØJPœcaŠ°ÉŒÒ/2„e('“=“iã[û;>-Îw½Ûqn¦yÜØj¿\ÿt³ßÅÕOôžÔ¿>³ù~û½ñp8¯­ª¼Y×bv|ÿwšÚæ»ÒQ؆ùBÌ÷/»ªL{ýÞóã 哾{/vàwèþÎ*“s‹ž{KÞY¹¼þ?*ï;6Ù¯鵓ûfuþ |‘pY¾þÿ=ûþgßœUOªÊz~,¢wÜΧ¸_[\;¿<×6×?ú÷¾ýÞ çê>»û“¶î<üÏŒ[æþ©÷ë9õwï*¿¿fמöã`PsÉm+ß.yçyÏÝŶ¾ë6g³}2mænúê+‹dá‹å†l{6Lxõ5\L xq†ñ_å<[ÛʦÓîÚRLóÄöç߯ãß6ëûñ÷7¢ ×Î}~æôN• õelÉ6åmbÅνK“ÖÚÃÍ¿—›«™wTâlÃ5¹˜ßÙ¼8°Þ)Í×mu®žÎÎv9ÔÉZ»Š(7™®ò­«ˆàê~æW‘µÍãE¹Êù¹]Ëã–;ή¨©¡w}R¬S›tÀP\+#*8ðF™.YÍíÛU$JÏôb§Øðìãó›ÍžeÚ¸®Ì¼’>G±5’(Û\Å*Ìm fÅ›2Mí=¬N–&F‚i‘ ’ ·<xîs*–FàÛL×"j‰V íSBuL¹vá½¶·|ÊbÇÚàªÚ@(Uñ¨ÆTa'L‰©*“v`vkjm§e‹0ÎÕUOe7q6ü·ÞsœXüç·3yI 2 ê4ÄÓ ‚‘¡H~áéôû}Ãïü}Xþ¿¯Ü>ªœfáõƒÀŸïö9 üJ¿jEìs–&ßžfŸ¾.¤²Ÿ¾ß}S:âšIÿ€ûóõýÝpE…-¾ÿoЧücmðô¿ÛïÖEžaçÕó÷ßä³(àíûCï÷±/zÛîfÐ’Œ@«õýŠd7Üþî$?t/¹ñø{vo§ëø/åó‹'ÃüôöëmËmµýoôý!?—ç¾ÞÿŸà O{m?iþ>>ž|÷×Ü/ñùCO§ãÎ9üÅûR?_ÇëﯿôëòO_n?=¹Çl=»vê^ý,Ë?úíûÿO'Çj~¿/|óøõ§ž9ýصíû·æ´o4¯Ó×ú}=«³{ß™}OÓóßß?OoéãŸÙõý¼þŸéüÎÿ£{çßõÍ}µé§Ž+ëíÇsúþq ü¡ø‡ÓŸÖDÿoºèòR—ðœH¿o•¤ó™:ÑY^u2 -P„" /ãò‹RäõK%R%6œ‚’Š” A)“Œ”ð²•Ü”¦a(¼c¹zNK,ÞÍíGÏ¿|¸¼8ºiÚ#öïß×öô>ïwë#ÞhôŸáJRö*Æ@JéUV¨˜Þ‹´S¼fáP”°FŠ¥DÑL$²0‰’¥¢@å1@?$vͧ*ù•$1%±CI €Åç ,EBdqS01bŒÆvš*H§¸›Ef¨ATxUä‰D«†Â»Ò`­Z¥VÕd(© ëRˆcXÊ~ÇÓõŽ=¬)/1"mU6¦Ê¶Ú!±*›µ&Û(B” @J¥J)F…ih€j‘¥Z)ZQ¢” JB¨ (X‘ Q¦„h¡i(F…)*ª‚…j„ Z"¦€)bE)¡iFš ¡hj’`H†!¦¥HªP¢„‚YÕÒ\ÝÉwÑÅÒEqH\tuÒ]ÇER¥)¤iJ–a¢&–‚‚”¨–ˆšR*™‚˜–HŽ¢è’ã®rKŠ98¨ã‰JIÎî©*ƒŠ*Š ’IÜîî8Ž êIœ¢C¸î%ç"EˆCŽ„ã£¸¸ N€—%)€RK“‰#¢„èrâN(ˆä㻺H;¢" ÄHŽ”àCŽ'ãˆäƒ£§: AÎC… ˆãœêJrRpŽpGN @äà €R8¡"Žs¤'àœá8’â"—(”£€q 9)Q§§III@©$ésˆáN"œäè€9 Q‚“¤P¸u'ºDJ@’JN Ί"é $ ):B✎„ãGI#„¢BèŠHî8‡ Å Já8QIΊ (@䄜’Dƒ„9Åpr¤¸8É%::RŽsއ!Ž9G ˆ:"A#œî) Bw:(E"“”$'s‘È$”@J. Èçt"rIÇAÑ:t "èrRI¢’t9rtèDpHp€\.\BDƒœÀ$pB#Š’:C£€‡IS„îN#ˆ’9Èrr)pAÄ ‚9Ê\I$ˆ‰Ê"NNé”9Â$’\¡Îp’pNIÒäçAÐŽ'ʇ8è$ã‘¢H@œN)Êw‰Äp$œâN¡ Ò’‘ˆœ§NPIÒ„rRNI *‘GIÜ:;“¢$#§Nƒ¸HçD"E'9ΡIÇ$è'$‚t$éÅ.qrrpr”£„'G#‘ËœèŽB “‰É΄§ H’(' T¥ œáAÄ9$ã…Â(*Ž9N’”8è)BNA9ׂ*RŽ9É!”œœN‰$B œ¢s”ä$âDr\9@q(‰ÈN' pÎR8““‚:P£‰C€ˆR‰#®DN…Á(”‘Ç$ާs‡Nrp'sŽN‰:rJ98q)ŠRDB ”:RrâSˆ\äp\$EBƒ¡!Äà’〥 Î$„äqIqç;‘çÀˆ:œ“ÈäK€H”¢S„“‰rœIr‘t”GrRA9.QP€EHœ¥H\pqE8%Ã’IÇC„tà'$wIt‘ÂPrqÜGGR ‘ÉAÄ—RQÝ ÂRœp‰ÜIМ€w'$œ)AÔGEÁÉÇQÊpÐ]‘S«®.ãŠÉ":8B…9':Qq'DC£”ç%ÇqB¸ârtr‰£‚”êsŠ"äèî‹§J*§:*ã‚£ŽDãˆê"â¹8).º»¿Oð§IÎ%)ÈåD¥"8’!8ä8àâç$)rq"u._Ï»»ú"£º';«þ–¶Þø$èâ‘8 £“ŽD"s„r‘:QãˆâEÎ:P‰ÈP¸àé!"„åÉÇÎ’„'J:"P¢Ž"(’äâ è¹ r9É8† þ¯Ý©"?>­ToÏî=±·®-²þÁ/ìË „J Cþ©+`Šg I¸ «jÁè®G²&Ô¦ØjÇoúûx-ïxᘬq£¹•b15ŽjµfÿÙª!^’Ño›š¤»jq­§7[z^o39yÂã`&'›Tr4öf<ȱê ñV)sR]l»›¹†c¹¸ã Œ‘ÝXÕ‹ÒíÍïý³s|\¶LòUÛ¿ ‡bâ±HÖ 6Ub^y/jM—¯$‰ð»Ü­ØÖUËv(|–êç–çDH™¡ïrd|{Þö³0(¨7q»·œÃ6¡ÏyÙ³”W2N)»Îqrdý¼Ü»¬œê½ãÞä}·|Mw]Ã$|»ÎN{Ìë3ÙÕ—…<·*Êgù=¾a½åk/{ºcÄ·ŠN õ}ÞôL÷|Y-½Ï1y/v»>_{nzé‹Ëq׿³…â=ÚÎvŠS8·ö·Ñ›"{åÝDuêùžOó¶’O3[ÞJ³^mÏUÙž¼ñøž±J™›ÍµP¡^ »Ç9†J›¦ê•s1ùæk0›|LíOœSD;¶ã]}¹˜XQé€å›ß§—¥ä‡gž/|ß8Ü\´YÍÎÆN3oUg>ß7¸`é¾â›¯ë"æfiMü]²ò?¸VœÍ÷+ï$¾¾y\ÖO3êûaIŸ‹Ÿ9¹ËŠû”7ï(Øqóqdæö·®q•s‹Š½~nÖç’%ñ}îgj̾5û~ûÏø~¿{Ǜʋ3ª~^qìç¸É-œr^~y³˜yų»ùõË3nsƳ~®§ÇýÒ¢q{i¢û$B ž&1ç{ï;ÙÃ×÷š~No¸ºp-­æ{žgy±95çwÏ;® ŽCÌç›T]ê‡;o9Üͽtþ97¶ŸŠ&áùÍ®S×ÄúÖßc½—bÚ]ß3 ‰·üDZï ËE?\¦wsÓî=ìç.oçûÉÙuÞ?wæwîÕ2R~<êü/™Õ_è¿9²XÁ€ÂdB«jNõV £SJŽõŒ\½BJ‰&ã~œ‚­þ=Ë*³1ùlókyëY/,÷¯+èŸ'oœ“—‹…Ü“LÛÔ®&ù3|Ú¸‹¹gå{9çY; Jq8¸¡dÃA;6e¦ßñdá¹®+–,CwÏë‘w >»¦%Šoïy¾¬A×`sFw={çÙ9ÎòÉsŒ0L}ÞãÞN¿±à¶G¶A!ðÍBƒó<§1 ¸ö»–{™Î†Ø¹]Y–\̧L¾ (vߣˋÑz­É­žæOcÏ é¾·ò05ÌÈ(=©(äRÕÇ[èÅuG»ï–kb|ñÌFñR#3U•C&Ï1éeÆ ‰BDÓŠ Œm´œ„Ô ’šÞIȘmÝ;+Û¹wUí¹¤X¡©KT‹"#þ¦näÓ Mö^ñr˜4¹¸òF›‰Ä¦vìç84øš„E$Ñjâ¿¢¤Þ ¢†«jQäQTKjm(@?Åôþª×=C= At,(‘†ˆ NÓ"f 'e}QZ×*µ†Çm)¬&p³Vg N©YÌQVÿÏùO¯—Ï÷ó¿‹»Éûé³çýÄ—4ƒBˆ8D¡(¤¢@’J(¡ÈœPŽœ©‚#'#Ž;¢C¤$àH‹£®:G‡NIÀ¤G$p) (º@ˆî’*Dˆ€é:JèuS‘$)8‰Éè§êr:HI@$âN’C©J’¢N ®.D$D— ÎHwî*¼î;  ·‘8áÉœ:"¢äàˆ®"⃈¸¤”á'u$£¤Nà⣤ƒ’.*€(â„@ƒœî$…ÂsŽpâ)(¨$ê(à”îäâ芊#¡r"Dºëºªë¿S”J3µ¶lÙfM˜¸è¨œ’á!:!;¸(à 8®‚踸‰‰8ŠN\r$pR’¤äç:S¸î(î;€ä¡SÄP$G¤;Ž„r‚¸ã¡.;Š‹£¨Žâ"*DRT’8ês¡(‚"î;Žè(8£Š:"êQÐèœDr‘/êb‚²L¦²5(<UÆÿÿÿÿÿÿÿÿÿÿð@€`"A€L@’HÚÚÂO}àÀà wן…(¥E(H‰'XR(E @*J(¤”BJQB¤Q(P¡@E(( (¡$¤J…P(UJ ¢H@mAÖ’ ’gÀJP#¸{mûx@n¼Þãk­h]»9;®á›­],[¡Ü¦¶+¶®Mwwc3lvjuºgQ¶Åw3lGf¶ÝnÚ¢&Ûk•­­¶Ó-¤fÝÝ;bë¹»º»gM®lKrãZéšÓ]ÛU s­@è @€ P €4€]A@*€šPØ(:×l¨x{ç›á}ð(€ »Ì¶Ëe¥§šˆÓvjê) P¨ª! *ì(d=x}óØ}Þ@%( çÒ}àøó}g®ë§.ÝÛ·.}±ÕVøð  ¯žô €E p"©þA1$MTý=4OOSb£h€ÐŸ¡"H“J'©èŒÆÕ=ª{ "4ƒ@Àa§µRT” 2Ð €§êRT•4d4h ’‰R£z˜šd0&@4¦$”¤E2i„4“M©‘‰èOH=L€2zO( 4ÏüQRïÈ¥ùþï1&Ç5\wfvVWYÝVAÔVYvÙ·qEÛ3eÚî9´ÖN “Ml´æÉ'u-¬mm“mY­ Qf˜AU—p|€DÈ/þÍՔǟþd"Àž„}*³¾OfR³Ûå‚”¿Ùæ%8Îl(49ž‡Ñ~HŸúÞ¬Œ¢ÈsE›Åa¼&c’¼RIý¢÷ “…ÄÅüIù‹ÇõÞu}®¯?¢­‘Ó„¾¨Q‘-$T´ð–­•ö¬œÄš*¯ŒVÀÖô›¥:‹áx‹*ºSÕñ9F—¹²âw8‘-ï÷µlè åКÆTÅÄ4ƸŒÐm%£õ%p‘†(:‰ ÙÍ V±êú-jŒ·¸h¶”sGxÄKH&ç¾sŒ»JŒœ¿qV¥ô‹m¾ô7çbŽ,ÍæçaÔvÛUð „yÊØpUbû¥­½ +íÆ6¨Í¢jë8ÕߟìÆ7¶‰Î–LZ©•¨ih)2öSþ–µZ[¿‹œ>nå£ß-xÓ!¹v§~îáò´ÛÚ“B'}´¢sEšº8‡iió¼NÓ¿=p®YkÏ[òé 8îçs—ìèÝ<š6Ô±.ÖŽ·™HEólÚJäê‘jR| n”'=þµ®r £Ä’_ÝKaŸyŽÁP­‰‚Œe{Ä£8•ë½zDWéÞ€õ´'f~áÆk¶CT[oEŸyZ‰UôÑ®|·±Cv#cN žkœ¤¾KÆ7Âz¼ˆbF7îa@G™(;ÈÈŒ6!¬Vs † ³œÊd„þØ•¤oBõ“Æ$çR€_3gôe~–ÄÀ®õòXšT›D!F™ùt€Þú¿à>W±Ïó~æ~uw¹ûº¤øü¿{ÌS$óZÒ“þ9O˜ží¯+’ÅK?]_ð¿ã÷Îï;ðO£Ï-§ñüî_bí2ù¹|üï|;±Ð¿Ÿ¶³ïçÕóækù<ëÏZó½0YËæå«íC‘õžm7sš°Ï6æÒß۸ɹøUõÏ"JMDTA&øŸü#)1ÀJedÖjà™„ä'HïÊûói°Ô~Õü7áV¾öSÜ—uÜÉúÇ2vlî½Í?Y-›æ#æ¬nË’l²IZ¹žjîv=µS3;œ}Åò½[ç•_â5=ǯ!;ùæöïg\ä­êÇ#"dê{ i÷Ë~4Ìß! ÕtšÍòvºdÇW]úýêÅ«ú½Vó{g;Ü®÷‹¥^ëP¿‘ËìTêxäÉÕâßg˜Ö¬Sžs3%²©MV‘ÅäÈy]øb_ˆó׿ù6!£JÊÚ—«¶š…åîõ~xºg5àD¨šž!ÑI/qÖÝ@±0U×™fkˆ­lævãm_øüÉÿ•µÞu5ìçne!$ÈÜ F>O#!0€‰ù}¾ÿOã£ù~þ(_ }Ñ~nOØ‘ëü'ͧFOˆ«þU·ËéÚ/ ïõýö€þÿ?§ñüQ ?Ñÿ¸¸Ü~`%ôwÐÌ”¾ŸAù}8÷|»ü}~ãû}ý»u®à\ý©ð”»¹ðù~ÿ/—È7ûgåµô÷ûÜ?uý~ß¾Ÿ§ïú}>çüøú/÷õ=¶ó;vçãÂyúïùý¬þ8óÑÐŒÃO¿ñ¥<ÿ_[ÕsóÀEþ£ÔïòöÛüxWž=ÏCýZ?²˜4&]ŸôÙ Í5½ÛŸ¢¾‹ó=«îíý|«%Ëî‘N»9û^{Sa˜¢Ê@"qº(~Ê=Àõg²)MIàNø~w¿Ûé{_ë}sÒö¥óðÚ6¶f-†ÖÛS5E_¬þô—ý-E?‡º ÛöÝé9KÓªT=cÖëlî" Š:":Š“Žè:It#þÕÝÕ¢ýÉ&ÔíJÁ¤ÓYœÑeU¬Õµ,²fª–k4ª ÖÌèâVãg;][…ej; ÍØI·d´²ÊÖËYh±·qiÎAÜPœËk95ÑVtS`tÊS™¤™Y¬æ¦¡¦”4ÄJ-)ÚÀjêÓ3¢‹:Ù9•bÖÖiËf50)”uZ`KW9f¤È.̹ºF±vËkiig%¦Y¦Q ˆFibÚȶ¶š`NÎÆÚ Ù–é¡­g1qM•VK‡IK£©ÚªÔ©™4âÖSTç6«²ËšÙ@hìÕf™AÒ¥s¦k®TÕ­‡'6µ¶í¸ÉG! ­í­DÖmWMeŒušsI›.\«(2jm\ë-sVìÊÍfgdZÑ,hd1¹\F͇Ö­NA6ªÈ,Õ¢iK ÒÚÅÀTrN¹Vt¤5VLÕ¤´‡MlWr¡R¸Š#U®ZR×NµuPÄ6ºjµek‹˜U’´V˜UÓ.å[\s¥Ë *´®µƒ+36Uè•‹q Í¬vÚIÍ6²f4å4´²èe–Ki³Z¸ÌÔíMVº‚¬rÖm«‚Q«-F¦ë¬g`P°Ø˜I#I‰3¦Â8m›1¬­²0ëk]jÕ³ª•!˜,µ$Zd¶¶èÃf™-HÛY6ª¡RæÃ M`¹Í–¥Mj‡5š¬š±£‹¥³g5ŽÜå‰anÂP®’ÕjÍK5ajÚ3¨Ê£3NµªXÒØÅ¤ËjŒ5k:ÕÑ«ªhc1 –†JT1®lK+ZŽ,ÔÆŒk® ¹]\µÌå†-£,ºÖ*…“´U…JƵÆTs‡c ’Óq›MDÓ˜TuUVZÃt+„èbÊÚåZK²XË2]Z†¦­5‚ÌŲ;ç!¥£››I´í¬&f¹ZµF˜æRÊ'5k*JEMu¥ª-v¹YJ[5tS¬2ëK­2m K+k5ipµŽéš­-T¥Ê,ư9ªºc´ÒwS®¢ kh]®Ë•Zæ¦WF«hªåËW(k¦–®µG+¨ìÕ•ZŽÕ­VÊÔÑJáIªG1˜•×Z0äVj˳«¦»Y–&­ŽF¸¦,HViÖpÆËm9Ârp]\®qVg:Õ#3WY‰rγ]Zî¥ Í5Ô ìÙšµw1ÑM[E™ªÈÓ©‹`‰+XaΔªNµ6«-ŽZ¡±˜Fé­jÁµ¨3ZY5–´‰›`Vì4•µYÍeªvŽV¶¸Ú­Ö®Õ+M­Ç-†ÅNËh…êŠÓer.µ–œÇgmŠmÎ%¶N Ò-q§)9†itgYrfrÖ˜Z[:ÒjÉœk–5M-iNµM5¨ìµ¢sªk4·X¬&R†ÚÇfbÃY4ÆŒ¶¨vMFF%Ó.’éKVF±KSYk%ÂÕ¹«v9–¡ n`ÂÕ9u™4ÕujÖAËMa†Xᛕu™Vµ‚Ö0µg]”gI‡"Ûœ,mhvæ@Á‰“›I&1[lµ³3S²U,¬ZÁk¤²R"¬3iœ­9ŠšÑ¦qš’rŒ²êU,¦K1LÚ1•‹šš“Q«YœÖAlM[:º‘²É›#-EF™J¸œ˜ÚY¬Òªs˜Ë«K'Z«lƒ\ÖÒ Å§X–l°» 1͉±NV¦ƒ¶âgnf–¨Ú«¥jYb´àÔ–±”£]j°éŻ`«®Y³µ«´äˆÒêÙj™k£HgiͲ6Õ‘:IɶD#ZÝË4k96³‰´Â²*ÕÉd;I“5YkUjj $¹*UMm­µ‰¬É¸íÄ™eõ~ÝÐwGQE\w0ÅU4ÑèŠóåÈîòÛkdr¶tm¸ØZÍw\•VÑ’¶-.±6•¢ÒÊ:fƒ3SjUÖµRtÅ©;SY:YSW]˜µ¤J…Ô³ ®ª¬7#D¥ÅĵÖ&-6µ.eÙ&³«ZÂÕc&,³LÑr¹GYšËTª¸çXíšr‹.®5™Œ˜¤‘mAÙc’ÚÆ¶ÌY¦dí­Ù¡YcœÙªÛi%9Z×W(9%ÐU­™nцvPs‚LÖ–hZص­¥mj$¶›· µjhœÖF•Öjé°íW2±eÚã9d©\r ]5v9ÅìÙ­-e­¤µ­!ŒË,@D»­ua©ZåHZ4s†gYªt0ЭhåZeFÕc7]3;4Ò™3)BUrV ­M62Õq›+3¦©®º!lM ]RkkŽvµ« ¹%Z9[lcmÄ­`ÉÍŒ¶¢ÎKZÎÚÔššiŒÑX]rÚ(ä’k55sjbVÁÖêëkK,e´ ÎmKZÛ&fZ8”á´lµ(Í[j)j)–SìÑÖ✠ŒVJË+uÖÖµË` lT·¹‚Ûp‰ • é¶‹rÓ”›hM,–`¥¬[œ±©·$NN8¶­Nc¶ÂÐÓ›³¡ÉLíÈ*»V\ᵺu nŽUXÚdÀYkUk–É]4MZÙ&.Ó“;fÙ°âuµUÜeC!ÖigS[ šº­£:¬²á”Ó•F®hÃ:Öµ«™F5´WVèœØ¦VJ‹T×2ÍÔm`XÌÒ“XÙÝU–Wfƒ[#1Ô¶µUØj­uV“ Ö”h©ªe«¥ÙµÑÆ-ZÚêMc“fÆ[´†±a†5[!—.4g*êÀÛiÚËÛ–äíc)ÎXVâÖ×Vʼn§fídš.Ç5µr0Ö™ª2©%f®›Hµ«©$,ÐëZnÛf[i‹(–•„‘ ­)if¥2&Lº k)•Ø]­’Õ™Ùt3Q­#k*•§ NP4RÖ.ÉA­Û;;1Á¬[ÌŒít¤Ë jšEªZ´–µ„šÑF2¦Y¬š9Rv9ZÖµ&“iká›m!nÛ Û€[L#M2˜¦tÊÒå&”×]g.µläœpu7.Í;bÎÎ#L´ìжØÛ²k›ZvØh,¥Ù™ªäÑšÒ¤–¹Wc8UËŽ*—[+]ÆjÝ¢9Èí£A¶ènªY¥³*´XÖM6¥ÍYÒÙC$åic4euk93dqk«[©pV¡’æ2ª2tê´Ö[U…ºÔsc‘¥ª[¦ºÉbB-¹¹1Ù“­–ÆÙk´ËWWBÑi515¦ÎØf–¶·!»PŠÙ2ÙFJÕ:Õkp Ç+³]\]]P¹Z—:Mi̳Z¸*cB‚3–……'.”Ã%”¶[ƒlÈÙ kmÆÛÑm´#-‡0̵£M¬\J3VºÉuÇæµd­U®V¬X×Zue®­Q«œRj[l—6mÄË6­Ê$UiK Ò¶3:¦¡\dÌW+Håc;CQŠ©­ÓÖÄvªµN²EÆœª*ÊÖµµKm3Xl`DZÖ¶ÎÚÜ™Äu–Î%is)šÐ:™®,Ùe¤Ì¬€:è*É–k53YÙZE¢mm;@ƒvbi&ÖÖÙ6³[f]K¬º­# D†µµ”R6« Ë0êíZÌÍ–¸ÚJ¸¥E¥¬ÕV6³(ÌÚ´ëMAR5f£a%+FY)e4Ù•—KJÓ”LîÉ[9Ù!Ìͧ8Ó—%Ñ„²“IZ’›9­T]šÑ.M:Õf&ÕalfQE(å“­Å›œØI-&ݑۥ–::&Ö¬Ôk\Ö±jœ‹5Ú¦Z­•¤*ºÖµª¶tXسJêÃ[%\º‹&Žv¨[PNËciÎÙ³™¡Ùv4š‘k³LÖšYjÁ¦6–µ»l‡&‘ˆÎÀ”µ«r˜¬ÍºÑÄ‘­¶Åi-mF.3$Õ ª©˜)‚ËZV’¤°ëµ˜ÚÓ¦Éj2&µÎ¹5¨"tÑU3f«a»Fk!U­;­£\–1fÖ´gS«–ÑÚYÕI+[-«Zåœ3[ÂÖÍÆAµiÆÌ´Ù ÍÚÖËfÃ`²ÒΚv5ÚÖZsƒ±ÚÐÙe ¦l™Öº«f¨Ë®5‚mnµ´rᙺc2ÚI̓³(°56³˜†fÃdœI»\F«(e­k4Ò«k™m YgV5•±YtT¤Y˜ÙÛ†ìšÛv cTNÍUÕ]’–Tˆ•rQÍB´ÕDÈ«1›.ë™Ó+™­s£Y«™X—i“NÖ”9vr°©“MnV[”[M¬Œ4ì›eaµ­¡ÖÐÇjXa&¬‘“MV²®jÑd]16´.ËL¥kea­b5Õfº¥US1k¡¨í³mÛI54J²Öm‘*–­”­ÒÓ%šZš,4nªµÝj±ÍMq´ØÓd²Ž™¸ŠYM`*ÉÚÍÕ9²j³H›væÆfÑŨ5BJ–™°,hi4F¦ºéÍ ‰Æ’ÕcIwÒÓ¬:êº,]É“5Y5Ö†¬Í)¥©­ÊÙ­¬º¥a‚1erk,Öªê™Ã$—sXš„©Ælhg53º]f­Mœ¬ë*ÑXd£š1JÆ[U‹XÕ3C+bI–fv·FÛS+d× ¨É’«]SU2ÒYgndnbÖe+Y]×´Ók!huLUd©¬ZÝ\ÓS «œJU2å*Ý9HœlØnB™Ù•›#±–·3®‰-F¨:]Zf¬ŠÖ³ZK2©Ž±–v¨ì:gk0ÒÜæbÒ˜›Qck.69[ŽÖ‹gZ­ZÅÆË5u­ÕLÚ˜FYœÕ®ªÉ¤ee6š³K!—E´M[I£%–ÚWVÆÊÉkIµ¤°™¬aR£6î;vÜL×e²Ò:™4ŒÌ¬]k&‹ƒ«±¥u ­k­e#I- VuDêµ®­­`͘›F&¸íV4kZÑ•©ÎµeËaZd(ˆmFkUP²Z—R4ÒÅR² ëa©£ nVtÕI³!’i³6˜…¦¤ÛINqc.»ZÄ#lÒšÚ‹:bS]aVV®ŒìV1š³d…Òc\ŒÚ›ÆaÉÖ³ Ëu´Z.aÌêT+]ÖjÁʘé4Z¶¬•¥ƒ3FѬÎ.䦥ršœ§#LrmYØã³­dÚŠ• «ZäìëX ®&…ˆ¶lgq®L“]j«Y›+©¬–ÎVe®F.£f”é£K6¹mu±-Vh…¶1±0ÜÍ'6²K2•¶Í‹v ¶lÖ3².Ã5q¬ì(•¥´-+jì×19;­¬³P‰$mͧ!£Ú,·mháZk,9ÑÍ¢mÚfRÖ3*ÕeH&Ó›¦fm"&Ü›-&ÆF°æÅmHK1ÖÓ+f2×Hœ´çF•2ÚÚ‘Na®aWfÔÐjÖÄVË–jÌ’ZØ9Æ–ça·h„–µˆ8šÛƒhÜ­mµ¨ÂÖÖÀ,ÖFÌ6ŠJ¸‘·dv¶Ô5±$ivòåqU2Z•Â6]sRÇ-v\kM+˜jVj¡bt×0Ì\ÑÊÌr6«2 »ZR£©2a rF6Û6ÉÇTç-E¨¦²)ªÊ«:•Ò‘i•Ôf.n´mZµdeQPµIHd…YEj¤ÈŒœ×5¬i²ÑªéjíMiª‘'RK³,¨Ó˜Õ­ª5faši]mqš¨™R…–b´U%×UhÖVÊâæ¬±ÍZæq«Y­2eD´]‹'EÎMkuVÖ†ª68¨fjmdưN]5S7CšËlÚÊ×fÚ¬R³*ãªÖZç ÒÒgRreÕª¬[C‚\æY̳V%©ŠÍkP¥F:áÕE5®U2š®YMb c¢ºÖJ¹Ê&m#1«lgÆ¢l‰]˜¨êX¥ªE¥ZÖ²,°º6¦ v­J4bÒ‘Z,ES¢Ú³ [”kk§ZÔДâYthÃ[U–eÚÉŒíVhÒTTÕºY3V¥ÚLØçfáÄ · &Ü,è–SNYSɳ­Ê9WX™œj0Úu¥³LµÚV¡ ÍqÍWV…–uu˜Z*­Y’5]cVFu­&qR¹ƒ­hœ,ØÒC6©bÍwGfÖ¥$51rí:Å›Q0åUšˆÙ¦Ã-ÚYȬƖ¶É r¶Üfs™›!‹e‰Ê¥MU™l…†š–±šËhµ°Ñ¤ƒa”³c£5Ó1J:ÕXÆrt²šÙ‹n³Mm:Óf ªÔd—]“Œ©Ö,íZf;Z[dÛ­fÛsµ°¬²Ì”ÁŒ%Œ™kZëV»2°\› h,çcm#l˜±¹‹Q·&‰“Í`ä¦å50·ãòåÒQÔ ÝÇÄtuÜ! NŽá ÞÉßhÓ4áÓ––Ó¶lMœÖæÂYe¡ÅÂ3›´ ¦ÔÊrÙ¸BìÉH³ák]a”¬k›+ZÍ,‰97H·l¶µ›:g'v5Œ­†É¡†Öv´Í¶ÙÊg%ÚÚà×(cVP2Öµm Õ3š²³+ ÍNŽ¥ t1v[K6°DËpee·-‰DÛMÛmDdLdÜI–Š2îеTg4')d³ªi®×-6iœË’j¹†±:²keYkUÆaÚØ¦¬kU–¡b5u#Šçª¹'55MR %\ifhÊ­WbfËsZ듲¥­,Ù°­È"mµÂ;1–]*¬Ö‰Û‘#ZÐJ$% ®UªF‚ºìGWTve¦k¨ÍQ–il$¡ªª“Õ „ÓNt•"©Ñ#+ZÕ ÕÚ²Ú1eu²Ìu,¢¨u¦–Ö2Åf:§)«9Tƶ¥Ì*ÓZSH1ŒÅ]-F6Žªt„ªÓ#T.µŽ5«Åv-mBå”rd³v€Çm-»,ädÛd60œ›ƒGÙ¹–Á·ZdBâÛ¶FÁšAZÑ–˜Ç5[µU¶6ر«ÁèFš‘)N…]w}uNrt ÉÅKIT´4­A &º­eÔU%QÑ8ç ¨’tPQGDttqÕÎqH ŽœHQÝqÝÅÝ\ÅÔGUÅÅŽ'H©ÎdÚ†6m³f[TqÝÝÝq@$H’%ÒP4…+C@ E„¦·ewEEÑÝQtUÊ'6ëN¢¥¡J)X‰‚©i)"Abh(>Üý¸6²Õ Q$%Ä„NÛpVdæœÄßs°v `¤ôƒCAABB¢£«¸©Ê\*âî¸îº;ˆé.Š£ª¢àŽé;Š;®.ª!Î"ê:ê. “®£º®:¨®Ž¸î®œ¸@­- 5AURACB¥*$0Ð E*Õ5SEt]EÇ]\qÅÈQwq×] ÝP]Ô¨¥ Š)¡¤ˆB–…Q)¡¡¥()EffÚM¢Y™¶‹d ¤›*U´Q³h£m|Õô3êsŸ#?ñ6/µÑŠÑÁA’G"ŠDš‚hM°Ž¶"7þIa¤ÊÚvR þ±×LÒFm™™ª<&¼Íþ§8W^=ªÅn#7½ºö4Ñ:ÿ–|Üëb×ZêÉæe¢&yÝ%ÚêÚúf¯^íG|ç®y²p9Ü,¸¼Öno‘¬‡ò0÷½·½¼¢ôÌy®h|ùt'œò›ì•¤k„­Yö/‚ór÷Eyï}öü÷<ó1©W~lêwd-‹ÕH šMGƒÍμÍ{wþÝê=Èpj ½×î}]û&}Ͽڗ³Œà/GÓØÖßsÁPY5Wî)g»¯È´Ägs¬ß_ÏUŠ7\{ž6¾:·Îã‡Ïæ,«7ª/?o¾%¡çWØ|Ø®l(|x XwÙ½f.¾ó«3X9ãfgã¾^ùæ¦;çrjøþxë?7¿³{9‘|¨­vgÕ÷ÜEXؼ{…·ÑLdÃ(ÝÊâÉŽ×8ùÖ¦+•]y[b2Šùƒ³Ã˜ìÓ¹¹_XQ®÷ìÜÉ‹Wq­¶±Ô& GZÒ¤ËÇÆIP„#L¾E;¾w9K2Êíd áÙ#åsùÞ–¬È³ª;X§ ¼‘IDÈÈ@DBáŒàD@ŒòÈÔŒ0YAD<U„ÆÍ„ÎÔH™ Ëå—8X†ñgKcw…LFÄŽ{_¹9¨À1ÁSµ$èV8‘ãÈëxýŸ§¿=»ñ>}_Ѝ'ãÔ€”€%U 6£aFÍdFÉ% ªCdÙd†Å#i6P³JH–É)´¨Ù!6 —²fÕ™·IÄTDPÐÖ -» 5¢Ø¨ÙÆÙÀªØ@Jƒd%AúPIéä­‹¢‹ª*¹?ð®Ê¨¨î„)éR’¥ÒiZ ’’)¢ÙJNœNiÈæÝm²Ë,ì¤èî’âÈÊ:Ä,ë:,î–ÔœÖ5¶çE›N6ÄäíËLC-™È™edÖÖíÆ‚Xµu°©R*§[E6îä6Ô†ØWC¡—ÿ_ƒÇíß½÷¾ï}ïÜû{ëû?OŸòÿÑdŒ¦¬ ðB’ýë7:1”ÝÿU ÄŽs”ŽÏ“#€BT ˜Œ‘ÈqgQèõh™g=\CiºùRJX‰Q2‚9&Ö€€¹‚ J4ÿr8™Èn”H?¬J ;ÊÕå„È0(­³+¾NÄcKŽ+Ã^#ÅÊ8Žˆ±~lüx²¢ÆÃþU(¶7ÎÎ)W½Ú?ïK΋P+‰½/ÆÝ9ð*Œ\Ò B3ÇwZbün’‚£f„$„Ķ•¬™—ù^sàmÓß}nÚ„`U‚©MB;Ž÷ ÉØ×N'pµ–yÏù·<¿mŽ+pÓ3$Qìý\Ø}‘@-‹Y †ƒKÞ{Úô «Tç[©¬©ÁDš—.j< ÊÄìæÃ§H¶tmµ¨âb÷À¶›Oˆ ÷íH õÒ›™tÚ•ÔƒÊs[CIí:¬¹vúæ}± îñuY©+>¸”ycÜhtè‘ø‘ä%§Iä´ÔèþÞ5ñ»úÛ=Ë›é§E xšk>gØ5y¥BÎN­¤ ºY¡¹yO{XCþSì´ÛW–ðu€À90K§ïµªQ†¡k3F¯ÏžëÙð‰éÙ/¥v¬»s–xS Ù5Ê—ü‘êC"ˆWwdqVÍ3‡ Ÿ»^úbèt¾|üèÞºÔéÚÛd¥KXG­{vŒu'@!°ÀÑÞÚøS™kÝâÔ×›Ì\àGˆF™Û½{¯J´Ö³´»ïëåøõÖ2ÚÙÏ~òÍ»1y„¸gÍ·R#êÛ[Ä{CŽjýò7vú9*\x‰&)½æSßJè/§Ó>þtïܸ«Æ'‹Sò?Fz¯QÜ&í˜ )-–û&+ãÍõÝ6¤ô«»“Ή›_H–0äBN3Ïg‡]q)Øûðî „<üô/]ùÇûÎÞ4iû`-ísâÞ)µ'ƒäÇÇ„n]~y³“:º;BT\·47.½¥EØì!Ǫøá·¡m]1„Û·FR—žj|F­áÆ—§ŽÍN—éžq´8­ñGÖrÙÚi,óafbwFº ·˜_V½dìq´4ÕÚ_€ž›ÆÓõeZþqâ3씲ëóg²—[i·¯¯>¾‰:êÆ ƒç«6anÛÒ7ñÖª2—Ž˜†g6$‹d‡m¨ŽÇœ´×naŒÖ« ÁÛã)±V¾×Ñv5Úö‘ûBÄKÓa )”ºéº›F[àvêçlÊÓ üoß³h¤çz:ÞÑóðáåþ~8ïp[uéßM,…ìëÐw]ôjÁúðºp‘–Ôì%8óšµw/¾²½œ=õ×—ê|×­ú°Ã¯~ƒ›èEYø+s_dïÙ¶wCº¯Í¹õˆ·—ç0¸Ðt Œ[³²im†™Ö‚4„h†~ô¸·«‹lí*b’Ñ=¼wÈTØý¶ïéǺç7ʪº?éïçuöö¿²I©”ºønè3î½§Šu´¥aZÜ`–à—­ µ¸™#Æ.jψ“õG·w[Ï·žýõŒ;ùð˜-c­¡£Þ{„tÏ›åÆø·µ Ñ©y5"% òSîÝ?»½û_+&mV~&s/UÖª^6ô¢†…í»±Î„[ï/…{?®ž%I{ül”ÓÐî^'c°ú[J9»`1K@6ñM¹ô¬ÃÒ®¦§Ô‹¯:i,µeÌßLæýá‰zgÇ5ñçS¨Ž—ÆJðƒý——IdíÚ¡ßJN©íSñvñ«f¹¯i½ÓlÛâF¨öÕZ*ÍG:UN{õyT{Ž#zvS:Ÿ™7§`~»ÐϨS¡I?Wlj;î¼z6»%àr9»yðòèFà&‹Øö•Ç\ò Ô‚öî4= [^CPÙ7lm´V×Þ7XÌ•¢zÊ=ÇË…_|Ç8sHÄóZ¡÷º^«|¶ˆqŠ,ôvA¶ÝÙ8ânêΟ{*FyŒÇgA]ðÄ‘',Øx¤´0ÍiÇ>ÛM·†@ÛáíǧS¼v•C¡WCÀ!öû⣺?:vj-ÞGÁÒpU§SwšU{G^Æ”Žˆ4JüLJê)V“TU¶û_÷íj†ƒ»ŠO5ѯ‡çÛë¢ï{†*Ͷ°ôÈS:™l´ø:Ì!=Lw£q‡NÚ6¾"UšÃ¨á0ãÏØ’}§­Ã{˜íZW5;-E’ŠîzsµÒ«.3¨÷®o‰ñ$?ÆÚ»©½ù‹½6äöÙï²ocâE­ÄKHPðKçÉ–Ô.wqÎð㛯lœö<Û‰¸ù‡N;{ø+QÒ• kCÜúªl8bKË ¸íÖÖ¬  ³V VèZÌŽŸÝŽS>'}KšÊÍ-fÂ^ð>®íZ4ŒI†bl…Ç_knpV @h:rC­¦ÄkNrðàšGAËã‰lÓ •G°é¬w}ÙÚ< "k¨FHÙXÍ3T¿LïÊV’âæ„%|6£VÀè$æ‹Í)hÂ8«9&r¥^Ö/M‚„0hP-6>>Œ¯„¶çg¬§Fõ"’¸˜°)Ò2Qóñ¸?<‹Z௫åúç&!'ÍÑ"‹°÷’·ä˜Âwºº’*Ï’†ñG ‘°9_¹Ÿæ{ž,ÞÞ þ6ŸÕFœ÷ÉÕZí‡ßÞÏ7gòÆW\ÍýlÕ¾Wí^I¤ÇS¿¥ýÖçŸÅ¯_<¢jΪ‰'ùã£j¿§™ðò¾ÒúdŸ¨º":ûÝùÙ½‚äòtÕZ&Èñ˜©‚6²þýØ+Ä/ßóä[ïÇÕ,Wa_‚ùÖÎófïçux%îvz¦ÌÏwÙ™dÓ³Âw,ÍýÌööo#aúýîÞ/ž ß_.ä¾ü‰£¹>÷Î÷K×ß=ʽy,öç‹ÛW…áåY$LïËïvùᥣÏÖùs¯¸FövnìWö׿{ç/Ãß#ﯾõ_½ãÓ¸m?“ót ¯Ï39ã;Òwn4n&~>oæn‰u<‚ª¹>[§†äÁ陨ŒÓ›»5ÜjÑM{EÇÌcɽ6æjo«ÜÜX wºdI‰ïÎÕSëÉ9æd©×‡^cSÉ ²uuÔ-{‹;¢ÇÛ‡eÕE²ÉÍÉÉ HcæfBó:ñ€œÁž“ly»3^ô«¹Š¬ÎÁ[9‹“qækeV«©«$M´ªËTöæä¬o‘Fœhɬ7Ýæa«¯¤x%H2tu©™ÿg9AAˆ@Gßùþ|¿Ïóøûýÿ/ùœ û~~ÿÄÁÇ3#“˜þ_µdP›çEþa­4ÿ5ÓC¬þqúl•M¯üÞ;Ï?»mö-¸ß}6D2 S|¾ûrïÌ?’Ö=mö’ÂßÍ´ñ?ÄjC%Eæ˜}Õ “îmOì /!QüþN ü˜‘þñù7˜¡·Ûì¥÷ü¸@ÄÆÛíú|ËÝü|¼¿Boãßüú»ïèo÷¥}ý‡ÍGßín>Úuõ_ž)ñÏê_¯ëñøgðÅ~Eßëé›ýõy}_ƒ½þÂûý:øvï÷Œ]ü~¾=åóûþ’oÓn>š'Áݽÿ'-¯Ôß~ïÏ0øk÷?§]½Ìjλ{~ÙñOÿמÎ~îÿOHõñø÷ú}x§{}ôó÷òïwéùÊ|þÿ/wÇ×Þ6õ¿Î­,ŒkŸAߪü¿_8ý½ÿ¿ÅÜ»)/GæÊ¨£"Š']ŒmñP{§ßµÝóÚí‘[cÞÙÞ Íi4ä{g·Ÿ—×gÝ·[íÖx™ yàóÖhodzÌϼްQ×Uul M6 K A¸ ‰¡FÄŇ«ØÎ1[£|ÝÛÑ_ATE³¥ZãŽîs÷ãOTW¤¦ ×uŠèí×–Ž®1»»ƒoPTÛÖfwíé½1ß™ìÝé±Ö­ÐBE‘GljðL\@‰xÓ+®õž³~Wּ˾Ë=TmÈ› Ú›YçyyãÞôY‹Ûæup¹V'Zè]š&ž‘Lp#B›BrqH¯ãxÕë©§½ym-ïw%÷ãwÈJ>[e4¦ß‹Ú^ÂтԮµw¯]sO]7¼i{ã}ö÷^¶™”İüyÛ× ¦|j½µ´µv&ÓjÞ»ç]å™Jñ^éwVš[<¥4v¶»Ï{a^‘ÓñöŽÍMíÝÝŠµÆŽÜXÓ°i½jnôù÷§5WÎõëéroi4Ü’TPA&Ô·t"#4š6ôh£«zæîäê†6]Ûwzñ^ù¸»çÎÅï¨Ïš¤*’dýx¶§:̪¯¾Wé–¶å›É/XöözyÇXÖߘûϬҴ·×Ümu£ÒZ=É¢žƒG»Ú¤£µfͽq¹éëÓ^Éåïv¯KÕw•eˆPÂÊâ|`Ñ$hÔN lgáW­½z,ÃjógufoUïM¼É·EF­?+Ïqq=ÆíÜ\VèëX˜®ÆÁQc¸ìqÝw¸î1]¹‚öM×ÅÕ±®í­ˆ»s²ôè5 ªÞ÷zÄÓ‹Ý‹µwG+ZÕéyœÈÖ½ì÷4{ÞÕ½ç½fÏOc=”žõîE¥›ÞõëY¥ç†{Ö†Åïd½5 ŽÛÁ…qD2‰ã™âö<ó99›2òË7+åžû½ëÞ$¸Î–jÑÕ›½µ‡y%á7½cÙ­Þö+Ùæ÷½£zͬY2U³’e¼IUÛ[nÇ]î7MŒkÓÕ1²qk¹Ï6õzÁËW¨ö«)^=—¦ö«×½.ô·‹\gx×]8Ûmwwg£[ÚqÝ]ÇQUOv'µ¯k“½=.Þ´w[@›km/+{eøgÛðïÇÜe|¶Ö>÷¾¾ÒvóOd‚¼ÍŽ9ã è»: ò;£;bƒN5µmñ¿}Uó&®£¥ùmÜJÛ^»ZR1VÂ1±ƒÇÆø5ïs^²¥éoib5·xÖ^÷½eZž³eë!½jï/{Ýã©eYT,ÑÆÔkyÞö¿Îuí_x½jô²Í8KW)YÆ‹g“~=n;çi؉m“^ÝÚÅ­£{Ûƒ® îæ»¶‹»ØÓNލ:.´j×rhä…Û{z½n×`Þ{ÎÎ{XzÕW£¾ëÃA¦GÍŽÝ;´Û­×Xº:ãqÛ¸è¸ÈjcjuRÚóo[Í:µ.& Xô½lm%N g½{ŸlÖí\nç¸Ür^öãÊÜk4V,Ýyµ±ž½½æóg[-ãzå²Ëtiï-JÞw©‡_{=aÓlÐØÒ×…³Í뽓YëÚ½Wœöòòòó/=íå“xÞSlë©×:3«×rÖÞ%­ li#qFG(‡J”B©¦Å¦ÖÎDŸk^Ýçkæ:NûYzÏb­ëo{;y›ÂR½æô·5‹ÛËÂóÞÕ„®Æo=¤ö5-ªö½òׂÕé´ñ¦ clš):iÓÜgnÇcg³›²uvâ TnØè®õ£Ûß=éi5}ç®Yf/=kÙ&®J–¼ûìë_kG*Œ×…•óß–·Ã×Íë(ï<îñJ°»¡‹[i›Vã,N G#a8ø1©PRI#Ch!t÷wvÝÛªáÛ¤ùÚc-MÌšfÖ}ìö<³²Â¼÷µyn’Ñ yíåÕ²†6®÷šõ¬wm4=lbÛVîã­vî9î;·AA‹Œã¶8“mN©­‰£·sV²t÷µ®çtBu—¶Ï'·¶.<¬Ïoxæ¼½^Ok˼³,“=í¯nœžÓ¯·§½í¯ мV®×ºËDåâÏOUv[/&Y^wµ×8ë]S§N“uØíÜÕVÝ—Û=­_O{%¶`VžAëÒžô׽˼eÕ[Ç ²›ÞõëW2½{¼š—¬¯O¬ú²ëÛÔ%ØÈ[ž÷¼vU¯N÷Ž)$M‰¸ÓŒ´Å„×'5$yoµdU­¯™×—žy½µ¦§&m<¼èï&ÙÍ‹ÏNogkËz{º¦yx{Ú7µéZO%Ù:ÞÞuïkB7µæjõ½á¬á¿­õ—œ½SÞò½ãz“gž»oza« ÎÙ®¼{ÛÞ8 «]у¸Ý²k»wcIï^ºïMžW½žïðÓÛÞíå6ȯ3€‚ï{Øõ½æ G U9Z|£ Ùkb‚LM´&Ø{Õíö¼¯9¾z¶Ï=ï3ÉÃÊ<ÖfÇ^É€Ío¯f§fY…§j-Óšó.Òn®ð*Ã:·Ç®¢{eè(ÓÝXØëƒZÛwjNÞò½á¬»ÐÔf^ó^;Õ'T&“E8ãŽNí‹´ì[m[õ(„¯ß7®Çq;fŽ®Ž:‚×àëŽç’Ñ»p{{q—­ yÛÛ¸‡¶yXÕë°ô½5á^ôõrÚ¹U{îïEh÷GjÝ:^ìDj$(íí“Ú´öÕéÉ@Ø fëO½kÏžG-6q¢Ð‰m^yÞÚm×aÞÚ²›e·®ïsÕºzë®ÏvŽƒ”¨¼-ËËkd&µºöÅæBdPäD£àë…BnA„8\µæZ÷E«,…rì£w®÷¬bë —­j†µiU´^–Cnó{ÓÚÚ¯{¶£mÉåâEàGYzyíÛO3Š{˜„8£NG äLiÀ#8™Z\·ig 5¤µl¸¼£ÅìA­‹me5«mÉ7·®ÎžÝâMçŠ^Æö=ëxYhÍ­¯o&zµôñ¤ÝVרæµï[ÜÄešÚ÷½ozz"È›w%ïXó¬³ÛÞ±{YçfuæåáyïX»*maí½Ë)lr×½Ööâl–™yî$‰äsl4ó½/&öÞ¶=ëšÝíoxÏ-œï<žÓl7½Ï{˽¯yU$W³Ûx\›ZËÞxÜ–Ìㆷ–NÛ.o½étEæo^ÖÞ2¡Ç½½G¯ ÖV¯i§giØqžS{ÔpéÖ´xí{Ûוæ5Ét=7­3³mylмÓg=½í=ïx‰I{w½¯+ÞÜE§—¥{Û"¼ÆÙïvðÉ“V÷›Åçž^¶Z½rйï^íã½ujiæ^;ÓÆ²^¯+·†¶ôöñì;R³J‹Þmø³Ôúƙù‹;Ìß=mììí3ÂI™ e‰±{Ï yïmi¬2Zè—¥;aìê¨ãV±l»Ö]Uæ^ažjÁi—¶¥µíyyZi^{ËY5ÛVçSv+Ww/NíŽhØ‹W,5¯ {ͽïyéë¯7z¦Ûž6jë]k]ÙèíÕÀkl“²ó_ŒwnûÞõoo ÒÈâ¼¼^Ë7nÅ´± è±µž×½œLö·ªóÏ;Lh¥æšÖy·­^=kÒ–ÒÖdÙ·óÉ^j9÷½ãTTzʺޙfªó×W<Ïû_Möcc]°tô- îÔœíÍfÉU×Å[xѳJµyï¾R×½æÒÕf¦"Vô½³àêãëÞ¼÷²ô»<¹ï+y½oy˜Ïnàè8ºÛE¦Ÿc=±^6Õë£rÕÕ|ËxËqN'*ÜfuôlÖ±ZÖõÜžÛZì•Ñïf;m¨õÑÖ“§Œ[{ÞîéÇvwn´„ZÒÑE¦ÛÚîj÷¸‰ £êEd÷¬ž¶Å·w]ž´]«»ž;V:³&™ÇÌnØ$q‘Vë{·Êõλ®®èÃ]µXÉA§=±ä6ËIšÇ3ðìŠö7_{Þ¹(ÓÞyëÞ1³"¯Mçzfžf«Öôõ2õÛÃÚeF¸4žžhªîî=±î»¦¬P¢¢ÁQ Hœn‘f&4Ìó ïo—ÚÄVíö÷u½ëÛÖ[Uç¼ìšËbŠæ¾^ï|j1xX£íïgÞµçZË™ïoU·Ê»ÆðÞžÌæ´Õiêã4qi‰Òz÷gÞÆŠàöûÖ3[Xô’ɽï+ÜNÇW^öö®×§¬ï§ÄXµ{ßO¬’¬¯kž°ï¼ñ·Ò÷™<÷¢qðAÉ)±>R7G±€]ó5{"µr£HÚ¶¬Lï=˧}ï ½¥Þ{]ê×Ó¶Ë:-óËï¯KÓ[yzyoœjØç$–ò”uñÁ§Dš‘¦ˆ†Ý<^^÷™‡ŒÝÞö¨Ë+Ï^Ü‘kEq»»±‹£§ºÌv {j;w5Ý&ñÜGf&·n.Ž´ÐJF2DÓn8A„#àéËobÍ/¥aÈ~{6Ê=ëO–ûOšó[yœFϽ¾ûÁrXéŽß\·®YVÒb±ôÛ×®ß}XÄt;½Úí¨15îÅ‘¯ºÕ\º¾z^¤ö¦Zµ&ËénôµpêÑy¼zó5G¯^o=ÛÇ ÍsUÞô>÷«_&ËëÞç4o^½Œ¾½dï:_=ß\ûÉîö¦›Ç½eUëïXõÖ8ÚâH›±Õ_"ÙL@P‘éÑÕŒjùÆ>vkŽ·N©>{5¢¹'FÒ¥¬åLEuN4¬Nç­n¶¬g¯GˆõMzîÊH”Œ‰¦Ð'QÇFÒµÐJT8(¨å²ÉÈìud’bj!’(ÝÞíEˆëÑÑAîÞ—WºÏ^r3×LU–[Iôµ¼®ñWF^÷·ªÝ½$²o{ÛÇÏoŸojëêóÔd¶Q ¾ÏzÞ¹,c¸ëcD1ªk]ÜnzÝÖãtF&ÈùJ@m4ÆÓ’»J™Æá+Th²ÈŸ(ªn‰BPäŽ"&Ñ8ík>{ׯ|÷¦j×™ï{ËÈÓ7žôQß<éæïÆ÷­,dø²8hMðLÈ ÜŒ87#‚¤Q°^+¯8kU[éoW­÷–­¾F+é¯i³ÓŸiõ·Úö:äZÒåñ饽$½5)‘¸^{çÓÙG-÷Þøï¥m±®ÃXê³ç¯>½ìä’Ä[×´PQ eäÛµ»-R4ÇÁ‰[zÎóumm|{ï~ß|AË t|méšë#{%Ú®Ç\¶)—¤³k™ô÷­_{×ßMš¾^ö—½T¹&œÍó;VÞßÕÄŠWdvØGÉ!cQ¼Ì',C„ND4å#2FZøLåœj 8ƒY›®ç×v)ÓŒ{‹·¶»;¶oMvJ†˜V듇2fX Daˆ²rG=3Úñ¯#UW¯[Þ³|̉|¨V›NIiTÝ$MŸîŠÄ0pŒ\¨(Ú#xGbq…o”jǮֶÒs½Ôzwa«G­Æ«jŒˆˆ…®–ñ±%+µF> ï/mhóÇäò÷egm¸¶†\;ñø>ί“.|U¯gxiÞ­ÖœuÑÒ*“U¦Z›9@U…ç}õ—­y_>|ì;5ö;HPµ¹mE±B ´ß‘ñ¤m ¿^÷5·Ì<ÙoÆøÔå®FŠé$œB¶¡#i‰3V®ùæT•}d±çºõ7ÞÞ‰B%ŠÙ,L­8¤RºKT­[‘ÒÇÇ_(8¢•Øí|¢LVµ[LЊC„ㄨ+®Äìå®VÎ 2 ¡¸ä'+ËËÃ(…c–Hq1:ãŽ0ll8ÛC$•ñѶ4 A †íUV˜Ü¶¶#¼{“Ü`âÆØº{AèÑ»vÁîm¦÷»¦Az÷{½Î±³ÎÖi2ï¾Ýï´{Íåo ðÖÃØ¸ÛÙë­XÚžîzKok¸õé;Õ‡"•”ªñ´^Ž;-m:DFŸî(öűIˆ÷»ÍàØÇAÁÊ:4€@J”µJF 1Š[U(2”…MPMƒ„“‚¼‰\S%Ë+®²&ALµ´£FI+Q5Å#¤9 rë±XÅqÀä D6Ò¤®ƒ©¨Úa[‡$’·Å+j:,W9šWoO^·­÷Ÿ|ѽe‰¶ÆãŠº$8AARIeàHøR Ùe„”B81×Jq[mÄДŒä++¼u ƒm€B+PUY%Ëy¨x&lqD˜‚1Æè×%Ž&äi6lá+V¢¹Z“-M¹Âò&íVºÈHQ45Ç]œ|­´Ô%ËjhEÇxÛ¨I-LmÚËZ % $a;S%–@¥6È 6p|dCC8 ¡pLt„ Ô¼˜ìg1ƒÇvHãMÇdRƒ´;[²I) è›’ÈDìJ|b‘Ê8Î0ÆŒO’,®ÁÇÊVÂ…®”¶…J­MŠDÑDŃiÖE#||e­l¼u¹_#,0Ã/ 0NÖòX(Ü’Ë@6†XšC±¶'\Hêo-µ™m¤œr)d•WÊ6°ƒ)*ng#t`,‡e­N…£‚ˆL°@…mPe’(4Æ'–®,liãÅ ílåMÊ­C(£rÂG%R–¢_(Øc˜èª,Œ± ¦V¤I°v(ƒµqÆÆ7"™–q—¤ªÕN9˜¹´[omÙÓï{š§Íéè5G…KTR’Ô «JÕ+%¨²ÆÛ…9mTeYœª&ÀLæ)²ÁÕPM¢J+¥‘¡À®ÄXŸ$j ƒJ A2Ør1Äß+m–ÖùÈB¶†è '³‘·j$’ÞR–!ÆÀ…µZÁLÁ9Êš”à1FÒ#œ6Ð…ò6RFʪ„$‰ä FÒ`(òrg0Y +¼àFØÇqÔø6ÁEc²5la±7-Uh’@ªÔY8åu¤[ŠÇ9+ )HBRHµG-d‘©"µ„RÕN ƒQÂH0G#ŽËki¸5+“˜4^6DXÕ¬Ç-‰µ®ÛÁ±¦`›rÈæ£ £‘7g=ß6ö&6šÓèæ¾^õ‡¼Md’¶Õ–§]©É‘»kµ¹'"qØÐÚ-#­X€9U|A@m»etba#€ç"œpq¸Dª¶…Àtˆ¶B&ÛLË#Ì„T$¶W--¬M8ãd"Ž„vÖäDj"R‘¾ò R‘·$‘ðPª¤UÚªj¾:Óä•L‰…U¶²@i¾XøPj8!Ç%JB´äR(Šቊ ×UÉ‘£7"g2¨FäLrAº8ëdP¢|g&\¨cu88¤"i¸ÓCtVE(£8Û™Uu mR&8Éã¨6 ¦šM¼Š×ˉ" ß i…ÆÉ–DÕN V[h…‚µÕ39PdŠH"'aŽDÐȘ `W -e‰äPP°pƒxTÕ£nÄ䑌 6œ@‚¥|°LvÒ1ØH› ÜA 8Æš¥¨hdŽ)#i¶áÈ©nH Ö¤|v¬–d„ËLÆëœp8¯Z°YÃãµÆR»ÀµÈFá,hˆm5bTN¦“b+RÕI 5(ÒEew…jhW`âŒ8Ñ"Uª«`VäNQ9Sƒï9Ä”—ƒxŒ–2H0‰¢ÛlDQÁŽ5 ÔMmвhÅ$° 1qœ’#’5!“’$’7[ Æ“QE- œpãBU…M¨¨QaVS(*‹È+ÁXÀà†r¸Ú™"ŒÞ ©™'QËT¢°UnÕ@i [,8 4ÝA$œ<ÆÄñ¡ƒ˜š¸*b¸‘YHÆ›Œ`E€à8 á rAe˜‹@V5v6ŠHЙZTg"ºZ[yVÆÁØ„6Èãlr'¤9]Låw +‚n3"ª:ï!Ø›„H‰œ££­AåÃ8 e131Ó ò»])˜íÅ e¢|c0b™&X¥• ÒÈ•3µ§Ì£ ­‘ƒv¦årV«+‚N8Ó` Š" 1U¨Õc±EŒhHݩšÁ̶‰àb°.7Ü|‘±É!g%`AÇâ“R"G"m4&£œ®Á1­¼uF“n8 S·l'(‚"!¬¬¶Ú¡cDKMÓ€s‰¼dƒLhÚmµ…NȨݨn¶Ô"‘¦áG6Åd²Äß EGYFÀh‘…t$HʪµÚ £RYB‚j l wŽåUÄà h¨ëlLmËË@¶²WQ(Ëȇ$ñ§½,÷µÇÒû}Ú‹Ïz÷{bªX!N5#4Gë-€ÄT¤C­X‚4ë¬##Œ'$eFÛ`ÄЊ¬vŠrÔVUPäPœŒ^ÃÝ›ZÖô^ïof¾÷¯dàíMA²HÛŽ8ÈÛ ­58E ²ØíU'k–S•”iáÞvî^ÓKÔ²»ÙìĈ’IMVÐAFF˜Ð!¦Ü)k¬®Ñ‰JÝV"(ZÄëh9dlb€âl%’‰Ct¤‘´â„×Bƒ®YlU‘º‰-TQ) ‘Ý+vÇ™lGÂÉN>4H4Ò°Eª©X¤hrr¡”ªW-M¦Bà¢;e£Ž*&ã±ÈâÜ84ëŽÕ\*´§[,rPª R)mJªqDÐ*KARÛ[T+”vœ#R8âl$„|¤8­aZ¤’>6“‘ R€˜ï ¤à¤9\#C§ã8$H7"cã¶Tª•ÇT)F›ˆãŠ63Š' ÔbiÆIbˆ$®Q´H¡Dìƒu‚ ­«hB$L€S‘&¤ˆPe\vù^òú÷[ÞÏoEïKgH±òò ÑJ4ŠG¤-´­ N&QÓM2[hˆøß`BEIS„C9b PœŒ9Ô­ V2 "jBH±ŠµeCN:ÔV¶­uÔ4rm& ¤„Æ£eiÂ^@‚dv@UX¢ˆ` ä|r$É]NÈÓ Æ6È«j:8Ó„Šq!%$N¶YK’º†í·‚ê’Dä •£u² µÑ,iÈ[¥ŽÄÙãl„c#ä®Û@‚j‰¡QÖ#`#­ÚÎ1ÒòqÔKa_,‘Xë‚’Å"­ 4XŠXQ QÛÇ [vF€0P"c$8Ô²&š "vÜ$¹hÄÆª`¥V(#Žj€-±JãjXš£®X륕ÙÉÇÂ6šc…–W„­„U 8q¢"ÙÈ«#¶€…!:) +QPÉÆÐÑm¼°cpqF‹Hœ²¦ËMêÀ×µ¢šã<ËÞ>ŠDV'ˆV¤qÑ 'Shlp©dr4ÎFøGÂÆ­b–ÅK­Õbc9!"$å•7)gLiŠ5Ae‰ª¢’à!È •ÃNŽYGY¶ªÊ£B¢ ÄH”Œq–ñ©-vÖÁ1¨U±£F÷Ï·uŒîzžèÇ=z׬XÚr ¨Ü)Çb®¹$UDÂBºùEÈšCv²I[ˆ3’)jE-VÕ!Ë\|—ŒTåJI-r¶œtQU¤Q±@BIŽIÇ8(1¨¤R1ÉÈ"8GEY¤mÇÛoŽFÝ-§ GX0 paN:†'BDGd#ª8ùeR°ŠA8 Ȥg8¤+PQOŽŠ4ÓbjA¨ÑˆN&‹*°¤±¸œIÀNÆ´qJ›•‰¸(¢PM´+"-c"mB6œ‰ÎERÖŠ1Û#n§\EnWÆÅ@ŠÓ|L¢,ªÖãR ¸FÛ8ÚiÀi–¸š‘ ÇlT´Vâm–&â)JqºÔp¶¢6›ª!6ÄØèá_ŠK9 À`Ú(ÈìqVÐ(Úrª¥ÖÅ#¡m©ŽŠ“ƒ¢v¤lmZGkBDQ’(àäˆi¦"§Ð8FGì”vÇ]ƒErÚUEdA%hj(«U9(7c¥ªÆÔƒäCi¸ŽH ÔËPšƒpàr&‘¢ZÊ›TC„‚#QDÓŒ¹mä) ÜAS‚®ÕSDEr«#PuÈØÄ‚’G„‚4Ñ(Ek"¬´´ª5alR9cEU»AJìnP¼°ãäaÊ'T‰ñh2…8Új´—•(ë­RƒR»Àeœ‘- “‘¸››a8(Z™F¤ãƒ‚`Ðɰ£J„VØšUD:¨’²:ÁX)‡Æ™m‘ÊV5'Llƒ"‚‰A’)#N&œ‰¢E!"œœ¶ƒá9kT®Š (ÄIÅ$²;¾I) ”¬tVò×*–…d|9Œ`HÔi©‡i[iE(Ú|µ8Ó£m¨Û®ÔÇ+R´Øœ‚ (Ç"j22œ…M´*Ü9'&‘Z5kÝV³Û^ñqÜf¨¹ÝÑÛñ‚8ø¢‰ Å!Yª¸ ÙËæ'Ù­ñ{VóOg¼Þ^otq¡¢0jQÄÄìr»u ˆª‰À’ÛØ7 ,nG-Š*0M‰ñ¸DëRWpj)mT¨‘–1(ˆë"|—’F¢’A)IZmY£Ž:ã ­’B”rÁ c¤´Ž1ÙäëGWÃÃÒûŽ」{×½o6œ‘Q9FÈÔ§m®§\*tr§%p‘Çbhq"6!ƒ`7 F¥N>:àŠÛ²¾J1C•¡‚¤(ÑÉ(…b²´«C$£ˆÆb•¾DÛœœj22Ž+u[^fb=æ[ÎMíèo[ =‡ŽƒtJD ŒjË[tvª«CtUÎ;Jã`;cŠr‘¸'m¨'8ÓrŠÇ €L‚nGÀŽÂVälTbˆÚ`m´>Gm•¸¤„dˆc+ˆ êr @ŒqHœD#QcdLsƒ±[b$dl@ëŠVšœ¢’ ×(Vš|ŒQBйÄ7À!FÒuŒ‰×WQ«zšÎ}žºúß[Þ=[ÚÅàÅ79b•"È£Q¨ÈĆämï^ÞÞ{{›Îx-bkéöÌÖúZF $TÚ9d¨*²2K+a_%ev4 i[aDݯ+TQPLƒlL±&Ú"…”U;"µðŸ+h$Š•$T¶¶À±ZÔiÁÊHÉISUX­ŽÀe±1:ã¶•Øï+¨²¥Edâ8Ú$Q²r)Ê©IUŠZ:U@,–ƒ"Aš‘Š'–·cA"²¢V59"ƒ#•6@b²(€‘ ¸“Ž>A1¶ø¤„KQ"ª ˆMXYAAKc ,¤RËn·X:YQ#Ž B$M!ÊX*3”µTDäTv9D*14ØÓhuª8§'£‰Œ±¨Z­¡LRFÚc©Ð­ pµ°‰´ém8Øé# ŽT®¡6㱡’QHL‚ŠØÐ q9·Ž¾Vq¹bLQ¡¦¨ÈÑ,¨q‘qË"­º1µx œŽÙAŽ‰ÒÆ|9]qȉÁ RØ*7(:øÛD‰«µÈ›S’8†ÜNF79+¶;]N´øE-­‰+@ÇÉ ›cÈ›VpMD튌„–"…¥ŽTÁDÕm‰Ž¡ª¬pB’D*êµ9E9+­À¶’ÆÔs‚vHV픪Є83‚q¨ Ø|±¢ƒe8áÁZàr¨67bˆ®±:ꈱNDÒv¦¶àß(š–)#–Ù"q´9 2DåVFÚ±¡7#ŽVÕW(š-qVF‘m‚­mK/,B £ H)È1ÛhL¶D7dNE´%…¬v±³•ÞF™‹-C²KUµPÓXÁBÙŠ”,r’–>!Pù$R–جMèÏjêâ×wmǘˆìŠÇy5kvÄI$NŽ:7Èp*²RC¼edJÔŒjDäbc‘ Œ#N§<}ŒmkÞÞǽ1½ç§¼›ËÚïAØ™8Ý‘§d 4Üh)ãàÊTÕšakˆcáGBÅ[R67Íf÷Öjßxù|½{“3]{,œmº:ÆrN7‚‡ £v«NÒJÆ(HèEdå-ŒD‡ÂñÁ¶Ž |M²I‰’DHÔ®R„äe©’É"ln@–’²Hál‘ ×@u¨Î*Ø1JQÆDiÀ€ HVùYEc–KIÓ‘¡N61ªKT8V­j¹]u‚  $ˆ+‚¥q¨F  DL8GD‡“×¶ÖeíïyíáóyoœÊ½kòÝÝ–¡øü:Ðûå­Qí<5FZø¢,#I”±7b©ðŽI@ã*©¶Ðß:9b-’ÑUlG$m[ËTn´[Q@R>7k@)aÈQÅ%¼•+*P… yÁ´1©GjŒ®ÖïÐq¨Gᩎz–÷žùϘ¹éê·ÒÂ7"j»FÝm§%àìB…wŒcᨮ Lv>Hã"n•Œ*C…NÄ9(:Ô´Zã|rZÅ@¥­Br>FR²AiÊšV“eáB‘ò €Â6íã í=Ì×»'[¸êѽqŒÖ;Ú2B±¨È*'cRBÛT„­»]’Xâ‰òH6[b¶«$‚eB·‘7 ,ˆI¡W ›9ŠKcޏ>b'$b9%¶&U!ƒŠZ˜HèãP+q±R%]Ž&˜Ær¾UáÆŠDèÔ´r‰ÄD ƒœmY8Ê›¢¡ N E[%| äqÉÆ8r·j„nɯ’H¥©I]ƒh¢m° "+%q ‚ˆr?U¼·»ãí+í7´=ëÎ,òõy%•µ(MNÄ(IIh¶;Q›µ··†DÞ¶ôyäùæ}ï¡^³=ϼï­÷]c<Í=î{“%âÔ€ Å8Úµ;-¬¥DBm¥ZhP´Cà†:ìj¶'bjˈl­1Š’ ´â‰¸(ÛŒ!)U`W !bw‚,„pUEd¼jº[È‚ 4 NÆE±USO‘N>A2 ЉŽÇm†÷nˆÎÚ^³q»xݼzíÞªa#jZIÅ,‚9]œj±A]½½ÍSü¿âý\ÇùöŠ;~Åöªý¥­Þ ´0Z(Ú“’ÕÅ?²ÄF˜¯Çfå°yr˜÷pŸÑ;(óK|ò׳·@àÛĘ)ÊD×õÞYSfŒg,”“̨B3‡¯9”óÙ\”×wÇéˆìkr÷lÜÜŸeBÝ䌹ï|9|è-9رúÿ‘+oç—×ä{¾”/†Å¸âkà²_&»íÝñïó¹`¯òÓçŸ^`½ÔÓÚ©}™âømeyù³ð}ïßs??´Gs„úTÏ_ãùß;?&™ïÂú¼ó{ðÌû¨ÏpÁ©¬ËqTNw6%0©ùyÙÝ=ï™÷άîey±CÞÉŸâžû~^ý¾ûØú™‹!½[ÜS¿·÷:´ÍóóæZyäé¬5ž—©£²uüÇWÇú<:dí ¯¾K™éšþz牂zß‚¿«§-ôM6¾g߽νȦÜù¦¯µ¯'ÉÞæëÌò|Ö·çvžw30ùöO2lvzòz³pŽã¦{%¾ŠMˆS_ÞÝwnÅ]ùnݾcmÁ&ŽÛ‹O?c;çióàÙÛÒ¡”zvæ)ªÆç=d™g¾·€ß ™çqçð'3~ž,^äø(sÝOž*Ú¢öù—M–i×ý÷‰Eü>v`GØ"/•{4€> ­é;Õs¯ ª•nÎZ&ÅçÛìë>99¹WSÌøaneíÎ6ªûŒêÐôùX…ÜRÔß")TèsÛf4apÍ&ˆZÍq)cVûª¬+kNyAv»äƒ÷^\ç’œÄ^O׎WŽ(§’yÂä1†â͹vò±!¼kc¾gs10ƒ[W2Ú£P”uλ•Ê ЙëM0ÿ:&€ÇŒˆ„L '3/,äÄ$4;…T‹Æ^Êyr9ΘÀK $ ä MH2D„ã$ V²¡JQ–T.òYÐÄI*ÚÕ0Ò5 BP6~cJ6s¥®ËïYÂÆÿ+—ˆˆùˆ€ˆ¢'æ7!†þ¦¼=¶roöD(_ÅJ£•VÒÚ+ÔÉG03l› ²¶«š¦ŠiJªSN€Ò†€bi¥)°hv±¡¶h)#5ÅÅÇPwm».³´º&Y¤´FÙn3𯳒­µÕ²éE—&«+ÔÊL™R¡Qbs²`k©¥­u']jÉ–²s‹VÛwuÍ“2»NŠ®Î@¸ ÿïùëÿtgýVÿ¿ë<Êßý+ÿ—ÿ‚ª­_ä¾å4ÎÿšAÀ†kÿOüZ ©ü"J1EаŒ Jε¿ñgAñ¬žUgÅösëO÷Ñ•Ç+ å­©þ`x¿ÿ!ͤë•“³·ø+ \Háe€¥“åCÕLnÎ1b¿Üuj·S”AÑ hø Ž!QiÄ­ ;Êr‘I£ÿs‰Ë@iTìe!ƒ £5j“yB 7-¨…*Lßœ ¡‰£P…ÑZ@‚‡VÆî#Ó{¸(‚j]•²ù:ÁX±ƒôŒ/ „fÊFM†‹ô©¾{JSÕ%ÕÎVtɤvů šŒë´ÅÆŽº)JÖ…A]#[Z爐²xµ\t×Ii—Ã%<`óbg¤³UCA´fáPtx»*­¼];a6œ‚Ö¼ÑèøB“¶ñ—ýó¥ŠzB^E— 'n΢ü%žƒ¤Tu¢iz¿KN¹ˆL+‘É#ß9#\34ˆ#y¿/éçzÌMÏâÊ3°Búb*_ã³Nºd!}RóÈe›1ÕHå’yAõ‘¸Užs~'ÙÈrÒ¢éPewºî*ÚqrØ ž)sŒv‰á‚'Ö'¨Þó•˜fͽ#MëŠÒ(Tų]…‡ ¹â­*¡¤FYÒ[e]jYÓ™awÉb˜ ãMèªB{l“Ál†ÖCµ8Ì£zcçBÍvŽw2YF° ëØø’ÓŒ˜ð£¸vÕ_Ìx ë96¬aÊyk}ÅÍ!¼ ûF ÒŸØ»BuWˆÅÚŽÛY Ûçl®Û]°tž4Ε “òX³êé@c™UN3~p "Ò…¢½¨˜Û—ÇTpÌS‹ŒR˜ÎiH1=›U"â÷Ö¹‚DÉøË;â+¤ÛM+!J V5sµ}jûÚ‘úÖÃ.¯pì¼mZf…¨N´™›óq«i˜GIóxbؽ1=!,C^ºãta¸qzµi ÿÆænï¶¢upï×QÚ8ÿ,×§S›†+œ­7UÈs#Þ×GÎt.nGáì7Å/̺Ö6!Ã÷C<ù鼜íáX¯véæF!žmÙΪn²[ÊÖsØpŽÛâQ­+H³8‚y\ ™¨çI']g¤èèG)wQñ—÷èü¸ÇMËXU§†ñ5ÌÊøå©ÂÆxö.¡¯xŸ]g¢šq„ANμšŠ{öíÏöwmªí¹λ¹Y‘“kH¶ßGŸRÐ.ê‰]]C«ŽáÏóÈCºI²3«v‹Ì¯¾ú+°ûB.ß“·"ÚËh×ͧÖ|1«ít¿:ZÑXvlhæÝòÞ°ŒÖÛc„ó籆ïm’¨LÍÐéGos¶/×whë ¨ðÝïgfÚ q]ž-gÇ™ìš6󱂥"6©C×nó…Í«˜Ò%å-jz_­¦ñÒ^åß#­¯çß’m½ úø,‡fVò±W™Ï Ó=Íkm=–ÕK‹ë𒲇 ¶ñÚH ´tó†#];ÀNýëùϪ —Ûn±Úiܬô‡žÞÎF£"óã¸YŒo=±Æ{øQ¯ȇn«oGœ®Õ$|×›%´âß„qq1gœ\qršÍÙ„er='YÏGmXaúÒ𪶠x,h*Qòžû×J>}ÈBÑúÆ£$æ>”°êùâÆU³ž\•£Z#Ê%îØ€zÏ?hÆž¥ûË=È´­:*gf÷9)ôíeXJ4ÝÒ[Ztáí£É*Ýó€Õ~u¼È’pñ“ÝeO·®5Ùåk §½#®u7„MLJ-ÝÖ˜¼®ˆÕ©QKÝÖMƒqlX§W>Ì"†”éìÌ^ºï‚£Ú´Ýå¨NîCH^C³£hÅ«^æŽ+B„ªT;ÌO=êåšÏÊ‘2Òè Qf Ó¡6ƒŒ3@eXÁÎûýýw{Ü=#ÌŠc’I|$0Ü—ƒ9ó´½$éÌoT¡ÛÍ E}Å#ß·ŠRÙñȪ31«4¢@â(™9`2ÉVÎÐ…Á ,)gP DÈP\¡:ºÒƒ«$”ÆÏ£my¹‚r9ž†/¤±Y]ìØ­ABÛˆ@nÅÛxXBµ8D™Ñ{̶~cu`«%’šIáW´WG髞J¡žò Òe¾µh¬;P•(.“Üss€ˆ¸ˆlófQˆ%=î¡ @™œÊu`{„ø×AT>W‹ìb/$Z)²›†€êŠ%CesÚ‡‡„Z@´„¢ŠcWÌQT?=½{ßÌléÛ~~d3ò? üz~yù׿úv&$+…f“‰†K¦ÌÀù4NtÕä²À`¯™É(瑃 á&º.(ÞïÐÝv^Î •«kÉð³ÈLùZ ¡ƒxŠaÁ(ÉÁfrIÀòhzaÒìÎïÆH{½‹WÍ[¡™Ü ÅlÏ¿æy½Ã·ó¬{ÓϾÙaqÔº÷Á\¬îægLÊß?‹{+ÉÓæÍê§ÁfcÖ”%^Ïk¢ˆòÃÊ”ì÷Ò~½¿i¶užâèóW|ìqäGã_7'æÙáùûWØÜ~vo2|Ú/]˜Ù÷çŸ>6{ëR}Û»½žFãðùü¼üø¼s×ß+Öç̶ü=WÊïE¸®xäI¶ƒ«ÑÏ|eFCcŠÄEÑI¤ÜåHÉå%gõ{’çºÐ‰ïlô‹7ó΢ºü…s§w=_·È—žy…æò~wÌß,³ÅîÙ}ϳ§Ä߫׸ïægŒìùZ×Ù.çߤü¾wf#Îèÿ_ W¯ÍõóËPP]ý~½íûóß'Í}rsìÕX_ά3»?:ÒϙزLO«»ÊÄ`×Ê÷ ‘ß›-^k¬|}Š{~!e9—µ\}$Y¶eøsÁzÅžÅëý¼ÐîyÞ¬Ç<ôóËùgö{œ‚<:âíÏ[ù<żÔ'ÖãS«}=½Ò{î¬5i"òG/D-cÌsÌU}?=ç`fÕóß~R½<ñDמw.ÂË⫳>ÌlQ½u­_Ú:bG¶8djÂ*¢l°‘õä±8qlÔ(cpi¦"”¡Ëåpþ¿Ø·ãÇÓÓ÷POÙß_ßëõOÀ¡oÅÎ… ü+è³yGñóHÓíŠkÉépü‹hËz}¥]Η¶>ùÅ¡²ÿ}%¨Ý§ûcðØ·ÞÐü»çó}Pù.bòþ$ÜÐmøüî¢Eù¹}ÈWð`"hÁ§àTŒD >é÷CA/·áPƒöø}½þ¿¿ŸÛææøý¾¥û}ÓéðýþOa÷ú~~§éãÏÓ×ëöÔKöÓä4Çë¦áõÛ×ßÛø¹¶>ßFõñü~¿/ÄþÕûßåóQ€wøãõÛãúSÂ|~®ÖÿEù[7ùqïí÷þ>žÿ×ÎÜE:çí=ëzþ8ó–þôþ?UúñðùÛóßçÂÈ¿QùNŸ·ÏÝ÷?I~ßMrõãÏÝË"=ü}ù×Îßè/øïúüc€íûoúiê“ —ŸÛ·ïöíùÓéçóÕðíAyÛá.ýÈôÇèPÁû{ôQó~Uñq5.(ðõ¤¢÷8„P f]‰Ão0ABшƌ qî)Ì4,ÞTj Í—ö2“ŠHN ¼$(• Žt®ž +Er€¸@¢øçwƒÚ^îàÛb×Q¸ÕE¶í£¤ãqÔEWm»Ž¨ÝÁ¥ª^½åÚ»ÎoK½eé7HŽóNžÓY"÷»^‹il›`¸Œ›±ÇOuƒN.žºj«Öi)ãÝcÇw½ÏXuh˽kyšÄõ½g3G{8•ZÇOM4ôOQLvîÞî={¨Ðá-·¯kÈÒËíï ×ÞÝê¶õÞñT*ש‘ïf¹IÙvo<•šÞ=.]žzêלÐöï<’ôÑ=æË ,æÏYzè"5ÐÖ×\Ö»mÝÐm‡»Õèó Ï{vŵžÛÍ®JòóÉ2Œã¤ìë9·se½ë2Ûu[h’ªìtîs¢“‹»¯y<÷»ËÞÜÓ—Zʼ^÷½ªyï ìUm³: =ìô{·z}w[vÆ(¯w£q¦öôzx¨ô{Y5%%pBµ¥;bäm‰ÖR‘‰»(øÒcPdr0EŠ*+àqg(ë§#­« U|iœ‚PV>DT%XÊá¾A¢”­”’’‚L+‚…ƒŠùÚD Q"7©÷¾*‹ïgÏEš×ϼŸƒä;ƒ-…)GF3Œç!j*&9)U¥£œâµÑŠ W”áÓë>ljݽ>ž½ GCëÑ늬` ƒ’¶TF‹bŠÈ©TLT‚;ÐsvñhèÝ­Š§mïf'ÁÚìooG·±Äb.ùÏDGDlüŠ:o›]M{«S£Ût7·¯ª$ždàLy+N(5A«b‰n”V¶*Ü$Ž$™ÆÜŠÎJë#sA·ZŽ· âUÒ’ÐV¨28¥!o_[Åó“ϵŸ|xíëV÷Þö¢u’ )b‡+²0T*jIE]v'hJY)H08D8íRª‰Z㯚=^ÁâõÞšÍxŸIâq}3Î>}y[íYïo¥®Äè‘_U5BµË-°H’»ÎC—‡9Y%,²>U(A:ø¡D݇Xõë[Ùôã¸ÒzóQݺ4]ã…Ž>8ÅZ„+5H”Ei²Fm ÝÇumÖôoøERt¡¢»­Cç}zN‡IѤÐ)íº].hÕt††•é \Bh J4Nìè:+¤éâSZzz:]Ï`J¡´Ä%R… ]m“ ÛtP‘* ¦–†’Ö.Á@wa4ˆŽÙÒ/H|ž’ºîËéOHô€ÝcÐ'¢•:)é÷`ëÑG½“ØÈt®Ñ ¤¥é¤ôkJ Ý€õ³ºoe½hvTâOEÚÞïJP˜ƒAÓ¥)=m ôDº )ô&—Cí“Ò:SCHt»°!ÒHzÕ`i3£ÐŽƒÝ—v^‘Ò¿'¥¥_E&¢Û!BzT:Ò¯J:NŽ”-*”'JôJ… tÒ*P>]% B“^´½ ÐÒ¥1 —Òš¤é)4§¥:G¥ôô€uCÐEôhNŽ€è4è ÑЇAé}"iå9¡Ì.jM’ÙlNå*Ð…š@:èƒZ¡ÙVÉm)²‡q.å-¡Ü‹ÌœÊ惚‚lÕ¹¥s]Á6§™K¸Õt«º…y…z0‰Ýj…m*«aKÍQ°¨óIVÔžy…!æª-¥ÝElSÍ¡R‘zÒŠhAz}5Ý ‡0›+b6”ÚPÚ‡5mRy sšwCÌdawÜæ!\ÊHæ(6)ÝRNjGšªîH¼Éy¡Nd'0«¸#ÌAs$As+šHÚ2æ…m"s*­‘Ì•]Û.i]ÔNdJJ\œÅ%± ‰˜UW˜—uK™K˜RÚl[-ªy¢.‘¡HŽ”zz4Š%*¶Nhy‰ÐîQy§q]ÑUÐ]ÔGrG˜Ă‘ô„)JS¡héC¥¡1Aé5JSE)ÓAÑB””ô%*Ph4… >‡H£¥:” Ò{ØièÒP”è éB€ô¡¡ÙЧZHÕG¡=´èZ4û CG@t7³aMª¯4.i/42›\Ô9 »¶Pl«¸¶=¢œÂ]®hÕIèÕU²‹ÑªœÂ[Nh;ª—˜AÒ'B‰J:•hQJ‰ÜUW˜…°SÍU6¨Ú'tQ9s%s&ÔZD ›Ø¥Ð'¥= ª9¶¡Ý'˜imGr¼Õ;‡r£˜w悹‘æ(æ)lÌ«˜ÔÔw ˜sw9„§pØU´*…SÐ ú¡Ò£¥M)yˆªjMÝQæ©M(ž—¤EéèG@Ò£I¥D¥=èèG¤Qè@èÒ( '¥è:PÒ«i²Mƒd9¥.â®b;…*šD­B H&-²9Š\Êl©æPy†ÀOHú Ñ¥„FŽ…Ò/H… Ð ë¥t•=#¤èH…”)èSBõÒ”¥±ÒNè\Ñ9©´W4FÅO4#»ºJÙÕÌ™IÍI²Ø“ÌÙµ%Ü!ÍQsVÉ;£Ìæ*§qTiPè@…¥SÒ¦B"•:]: «H Öb4*û²´ ú¡H¡Ð ‹BéTЩ ]´(Õ&ÅW˜9¨mU.åFÉÌóJ¼È¦Îg2;¤›AHžh *ôž…+Ò¥)¤BÐ#H/KH†" @С¥B½-t*šJs  ØO5ܧš®gp»£°½"è ôš£ÒB¾…ÝÜ«ÍiyŽbØ<Ðî)æµw j/2æÀw.½ ¡_@/ ÐŠzT= SKbØG™M¼Á9Þ#jG0Š4>TèTwe‘é ]'¤CB´‰é—¥èH½=:O@zè» R•J” ÐB¾…=/µ]ÓÌW˜KÌ5El”sYZA=(+¥ô>™Ü” ˆØFĶ5 dów.hî#¸lŠ¼Ô¦É; ÚÌ“¸%lzè”CJÒ JºCI[KdÐ9”s;”æ£jsPw-ˆî£š2ÙÕá]—•ÅQUÜup7`J4:^‘§J½°ÐµÑÒ´iØÐP>†–€ô¥hèèDè^—¤®«­PQèvCA¤_vJTô iéSÖ]²žž”6È)@šJ@4ž…zé:P4R: ;a Õô iBJP BèTzè 4Ђ—K h(ZšOAÐu¤zBW¥£Ò‡§@ôºVÒïgBtК°PRÒtz_]!O¥}- Vã’íÒ:GÐôzGmÛë¤(»+å^I–¤6*ó¯‚ôºÛ>v)~NŠõòhG¯èëliÇwz—§ :¦Šb &l4v5®€õèkK@a7Œ tkÜî‚÷w¶;ooÉö¯X=}÷«ß5aCjóE‚·Y–}븺6÷¸;ÕÑÞÚŠ>GȯOÉÒçŽ{粚D¡XÙ¥D¶(SÒ£c B§lhMØzA;aD8–‘ÊÙM¡.àæCšÒ®äsm"m!s Ú›K¸(Ò*¦”J)Ò!¥)ZP¤B„4 t— è1tîÆ itš¥ tlV+V§®¶64V©8“\Õ]==^Æ~S^¾ÞåÒuàôó·é~‡éYk[‚ëjïÔs¼ûs·G®ì{Ño·“ g5Z–©ÁeÄæfe¼z»Vî÷®1vbnnÅ–cvL³,þí—GlÚÏîì•GÈyæ;™r> ã“;äÀÞïvéù/˜š=ï½~/ðü±¯3J¼š=¸¿Ã\õ†÷Gµ l,…§›Ü]S§káö¿LÇ­£È£l¹õ§™›ÏÍû/^{|­:O¸½™¦÷åÅÏfÛž,é娳'ª[âìjliùãù½¾ùGïK|¿7Íα¾|PC¹Þû‡TÎàÿ2üï7ïß¿Jo|7+ùfÏ›oæ šVxy™Öé¸}Å~—¶=ë¨ÆÉãšAy÷¶¶¶wó,^€í[ù$3›d¬[ówåç»z{îBhoø¼šx»sßÕÈ4y™óæþ½ì]Ö½÷2þG‡¦NÏ÷ÚjÈÞ=O#ð{†ÕÞµùý¿ï5žÏ‚÷ß³¹?o>`ºµv[Ìç¾ç]xÞÕçk¹vU·{úÙû9ïsäg=Ù=»n„_³Ê å{{´ó«B+!“š¾G³õï™W÷EåVpñÛb‹Ê®}}o˜a­­ïÆ÷ÎêÁxzý˜ÑÞq–•ÃÜñy™¿Þ÷½Ô½Þ’`ðÅ|³kχez/ü2Ä;Ž—srV±‹N÷m¢c9ñîUÞcçuÛÝZW›ÞäéÍ3L Ã5®Õa1w†%$x9qÈ”¤á&åYƒ¿ßjœü«ø/çAüüßÌçñ¨`BxÁ‘ê´²ãÂz3ŸQ¥é g'£œôü~oêÿ?ó¿NýWçW绣£¨¢¢JýbVf·9ËoÈJ•ý“ÔÐ[dl)´6GóÍ¥Ísj’©B‘Ú°ÀÖ%¤¤ ‹2¨î;¨œ(¦í•6msaœËBU¦eÅ®PpvÖãZÓ1[h2ÖÒgk[£³)©Í4˜´f²e]eŠÝ¸ÌÛ™3efMªz¾«ÿ½ÿ«ÿ~xÿÓüœïþ¡—úyIåÿðŸ+пíÿhT|§!›¤ÿÜZ'x«ÿÒE;±Ì•DÌܱ£ Ü÷Æ’¬§'=È€h«›MŠ,Rìê9Ó~%þïüÿß)B…"Á æU£ê ×t’PHa3‘9ñÿcÙ_|&z³ì{ÁKÈdKG‰³%E¤òœI\x“­ú95œ…#´ÝZ´œÖŠÈ‰¦ïøÿÇÿ>ew¾‡¿;r@羸U´7”ÀO>«»ŠóJë,¬²HZ6³«„KÃ(|ÑÊ/Ä+€!"Õ…Mƹ¤V1:…ju …J`Œäš¹áY¬"úÎ O,ÄqGÎOµVLûMŽŒ3Éîý ¿ðn ‹Àë3Ò]3fmƒ“ã‘£2¨¹ÉGE(þ¡5 GgÖØXiÿ±Ñò³ÈBÇ()'šì0¾µÌçGK]Éêí§~Ô<ëŠÞ£ÕB¶–€TS´g , fµ7ÝŸ®ºc:Òº•,Úê'®W¬Ðí-™&Æ”#¤Då¥'I˜PjÚ8ö|ç=ŸxQϧåÿ*Œt9ãÿÒpÅçþ}¦œ{D/8ÊÕQØÈç¢OZ®1˺iRD¸õ¢Òî¿2¨ÁÚ>¹`[½Ð›é5­QÐÁ½±ÛÅ+ÖÒ¼GüïI‡ŸfõÛŽ¶{äÝ ö2Kc‹Þ°‰çÞ@nu7Õ, ÿ}í\Jú[¼/kÍB3Ôµ_#꣰€§ªö"9­Lƒ–òËÜàˆ»‡ IœEà·Om ´–Ú˜<ùß±èiÏïé7ÂuØÎ{Úøvûœã½‰ƒ>½ C¨šUœ#BìÐW&…rB‹ÕÐåö‘§R}-¤Bz„´X/-Ÿ<ì²lûhW£-e¬± ¡-½Mê•ßm¥¹ïa¾¬ónø×üÈ6¿ÖeÙ-·KlïÓZpÐZ.kÌŒ*ðÔW¡|\•aPê>‹¡õNP³{•ö¿”[E¸ÛM;wã|“1Ód“‘³˜zó½Å!(ïâ¤ÔÃZ¶í«·óŽÞ¼Æ×í£Áo˜ì½¶Öø|{”åBðîpMqÍêmc¦øïkU¯öéÑÿ=²þÃÄ5j^›\Ëhd¥­×9Ç|z“¸|’¥Ícwiy[×]»ÒNíî‡a o~5ËiÚ´¯VÇ´%Û¡µµZ;aI½‰ÊdšDÆüÖ…_1^={têTôÛ²¥Ól™&UÒêáçgp~9Ý«6Y= º‰Y÷ñxPKXaçAö.ŠqÓd|½½Ë^Ùñã¼S¬eœ”Ù9”€ißl“sONvžµ§eh”öçˆ([‹ñ¹…YüUÞÞÍ®ç{ã>í¶ôõxóhÌih§gi­du»£Úç2ËhêÂý<¼rÞŽ¼;~Â|Ëx*⯗ÛÎåu±è4mó#ØUº=e¯œ3èÔž¹É<Žî”=3Ù,ìçX‘^”m!ÎUäKbmßj>c ÛóÄíeĹ(×MÉ-2ßfØs=œË/¿4Ǭüùìp³¨â¾ª?>¶çj&“R×=¼ø“Mü÷jEû ³ÈëS´]}#¾üO¸¹«8O®¥H¤¿Žš†ÈlTÑcšˆ-£\{ ½ßM$µáÕ=)K\}ÏÀkwvI[Ñ‹HèCjï%T‘K<ª]Dª¶YyýU‡˜ á°¦|ûi¿>+ ÌIÂZAQ¹÷«·t€G‡iw†¥Ilz:Ú¼5<íÓ´¸ôÚ«„¢ýRØsç¨÷Ýn€Ï-;ÆŠzŒwlZYÒ\Š_ÖyŒë"Ϙ+½ôµ)ÚkÄâò÷¾Y±Ø&„[N½:vW„F¼¹ÇŠË¹ûµãáéÆ%{yÀæøñïw¦Ð;iÇQ›Jûu¡i3׿¦Ðvmß*³•´²yói“þÜÌvzÑ'ŸKÑð¶š½!Ú»ÕòJ»p„¼l·€lâ…åm~!ãá{‚úÖ»óÅÏ‹×I®TkbåÉšž¾‹§>‡7'(B!ðÛ–¿ñ¬eªgS–ý¼{ö8+¡i$£µ:•o#å¹,ʦáÆ;[=lûˆŒ#+P±}9ÕÖ³¸ÛÝãmÎ@V¾o‡xíçñÞ\£ú:jNÖK¢gÈûð÷!]¹Á«/ï}úS*úé>½/ð» £E»›Þ¹:õ=!—5Ú´ÎÎÄ%ç=›»¥;Íu»ÿG|ZvmDï ë57í;9ç p>*óg…= šî´‘Ë;CÓ}ÇwDP\0Ç_JãGûç#K‡]™º‹ †¾ökÏ¿½8gL:ÛghPíß°‰|ÝÙCÌ{»~àó®<ü=oµ;ë3OOAu£ÆPù>%mz(Ê.®O[àüESIvpÖγpÇÄš3÷T¬¯Ñk’^öáü K/:m­b¡Íº2Û¶{©Q}J6¬aÆÕÂv0·9²ç‹5v<Üý2œ(Úk6ؤ‚(û‹íLûyö=®çfÚu]Üñ–ÓzsO¥¼û' Õt]AœZ¥…÷¹ë Ž^ùl4’ËCJæ¥â°u5ì§N2ëÙÐÑô¬ â gyhIxkW`!ñ½:•5î”6לþPmï¸ömñÌëé’°Ìz®æÒ+á§/w¹Îõvïà{KøÆÀ©Šl{ˉ¿X”ÌåÕíµö'ÓÍ,²òôGvËJ]µñªÜ/-'c•ûµdŽÉe÷¡;nÎä®íÛÖv`ÓÔ¯N¢°ãQÇ ÂÛ&{ªnø î¿]¯ÒbÑb·röׯÿ¿f¯yU¬aXG«Ä{¶Ö HñÕ7«õ£²>TÿIHÕj ä£NƺË2ðœ‡jöpJ¶7˜ZÊÒÓÂC>ïSð°é5Bó%¯>ÄWï¬ÚkQ Fˆ°àªuÙÍ^±0­½¥³m´®åZT¡64ó@j:éRŸ÷ma ðÑÓ;ëvÓœžfR¥öáÏ<2›4wÚ«ï)Œ®äËOÒçË:¹bĘõÃT$^øíÍ`!¬R3ÒÛ‹¸8oîÜ%5~ ts¢.ö‡/\èÂ1q»"¯:éIHj<¼æ²B 6Ñh0áÏ7'WŠíÛ‡ž»V›Ë1ØîEfŽ‘¾*> Ê1“CCQ µê·²¾áí˜ÐÉÚ$?[À&ØÐ…lÅv])"uê~L[ï¥0T€Iû F³…R–|ój0ÒÛ.‹"ƤAùBðœ!ù–C/:Õü);FŠžÖ€ºHW˜ƒÅ7²‚Î#¥fH¢Âz*·I­ñˆÝð|¶˜W±Rc)ês»pMt Ìæ|gVÓ1pÚø‰L®äF®Ž¢_Î阀b0¦07hÚ+›Ÿ,y¯ÅV.©>‰ÑáXwÅÊý·5çeÛ½×ûE¹Þì˜?nˆycLîèº+ªGSË%‹*èb5]†`™Ó2æÌ:ý÷÷Óß<ë¿<^-½ûðÜ÷×dÙØóâ“î>±<ë;x4ûŸwÉÒÅß|ÎE©ì¢Ï4ßÖ_‡cõ¹ñwɇç·7ÉÞ_Ö'™¿ž[¿dýgËÍ÷ÎõU¦@1K¦r4y™7ßßä¾.Å;SBôs/ÍQn·¿þå³RÜü&`ä—Ѹ¡Mk‹nûV\^9æÈù¾U{›ó3£Í}F· ›£ƒ{ÜÓ|ì!ãŽyn•ɪÁî˜`‰–mD;ÕòæR#c~?¦nûÖ£]à¦o‹l»¼ÌênGô¿>ü÷Ì nÄVYâŠÁLA',y8Þffzf§\F/mš¢6*ÇGÈZÚ² zåh®FÄñ£Æú(Óê/èÔ=>¡üŸõùÁûýÓòﳿŸ¸—òÿÿkƒçŠÛêM¶:D?0Þç§ç_ë _óý;']QçÖüOeXb¿›êŸxùk~¿§õØóý(/ë«ß]ÿ¯õö1¥4ö“W7Pþ°µ='õ(¶.­½?ÆN‰ 19ÀƒðñÛùOÈù 0ÿD&þ€¦­ü™ ~ °…ý¿"ã4qšÿE/èˆGüü¿oñøóø¸dôù˜þ|ÿi~Ÿ¯õ÷|móO‹½þŸRïëëç·à;~O¯–Ÿ~¿n~¶¿µþ©øýÿŸÇŸë/Æÿ?·Áîý^_‰}?œýia}{ü¿<Ûöü;5½ÓûöÛÇÞ}ÿ[fÿNþï‡×¾Ý¿Â|>ûý¤ž“çoÑ´Óóï/ÃÀû Þ~ß/¾ŽõŽÝW8ú}ý´¿ç·Ð£ßÛô÷|=ß_u]ûð—ë}|>±ÛéüãooÖ¿Ç·/ùÓÒÅü|?Ÿ—ñèyøŸš¾ý¿Ÿ´/åö¼ýÕ…Rv‘ 3þGú%­h DØb¤…{Dæ 9ƒÄ])¼Ð¢qGÈâ ËßßÓ`ð('‹UUÔêu«¯Y:ñGB~m>3r¼Œ”f´i"ä‘î“Î Dµi,Mlå5¬5|˜lÑ£Ü÷­ gr ¾"hc*"ÑŠ²«Ö³ˆ›žû8Yœ¬ˆ›«§5£ÌaÄ`ŠošÂ B³¤¤ˆds:%$dÀêgYMâ#&¸”`J¡²O[‚q‡1ûççíóö_~&yõi8—8¹ÎsþCœâD*­(!H…% …RªR BÒP«0-*Ò”ˆë¢îé:¸î¨ê*)B‚Ц Jiˆj•¦š𦀥¤¡J‰â¹ÊŽ)îà®N::¢ˆªH’êC‰*#®S¢ê:â©#¹:ã‰Î‹ˆä:s¥$Žâ‹ƒ‹Šrˆ:"Š;‚¹(‚Ž:’Ž¸Ž   à®ã¡ÉÈ(¸èŠ ã¹Àë‹':âáÎ;¢’Ž$è¤Dˆ£Š$:àrr8.(9(.Q"r ˆ@áB8sЇ%:%ÁÎs§9)€%©Ê‘9ÀäêttA"J‡)ÑNN"œãŽ$¢¸Ž’$…(ˆŽ€ã¢H\¹â„¡É98å:8'Nç8@ŽœR:Dœr‰Dä縉ÂQJN(¢áÜãŽH$¨Î#’'$ ¹'‚H$*$„â9%ÂAÈœœà‘"QÅÈçÉJHà È¥8 QÔ’Ž''pà¤Pî*r"NÂ99Ó”:S‡ (S¹Ä ‡)! åÜ’ˆD)%ÁÊ'Nˆ ‰D’rIÐ;œ$IĈàs¥)ÐR„áÂt8…ÊDG'Cƒ ‰ç%8¡#„¢qÊ ãƒˆpt’:r'„—¢Ç)Då §:"INqAÈ%Dç8£§ˆH!Î"':IN9'$ää':'q$%ÅD’\ç““„‚„C¡BŠqI H)œÉÂ¸ŽŠH¢q!@N:'8ã”t$„Ž’œ"N9$œ(DBää‚J‘"DpD)È”Pé.)9ÉNDs‰ r¥$¢ áÀå)Ô@„NNN‰ B„J%r ‡J$¸çG·B¥'QÐâGG#¢“‘ÎA:DPr\¹ÇHE9Ó¥ á9q‘p¢GqJq"$qAÈâqˆpHD¤wHCœE%ÈI(§!)Ô‡Ds€œ$åÈ”‡]HAtœ‚9%Nuq Ü\J9ÉÐàw9@$t‰GIÜ'@ICºêˆ£§$(£©)$œàJIÇ!8‰Ñ HAÇ!ÈGHî¹(áBHîˆäG.ˆ’ˆœî#„¨®+ŽŽ"áÉ#Š;ˆ8“‹‘8B8î.8ç.‹Š.•=9 >r¾Žµ­m›6mú%´²ªUŸÑÞç¿“ûËøß Þ÷èýõâŠÂò#ú SÅE8âTœ2³ûlŸã‰ÎÄÀB{•ŸÝpÌð俬Bo×ÛPòh³:Oézu qOsÃYyëJ#6Ì]ãÜCåÌ€ƒ)Œ¥ög*®íUÊ«ëu¸®²Å‘á[“†8!º-®Õ!ÛªR,¯mÇ"zÙîAu®âìqdZY&[ÌFæ¹^©^̎訮ß²…;VÌ:îfæ¡»4Â̳´ï6=xtÝu™; ··Ê·1öìYÚñÖi¸¯v yžyædÙ’rwgšüßž¿<óÞžxßÌùïTšˆ›@žø³:­y¼êÊd}–Oqy§W| ¥¿à~ßñ¨½}x«…hššùVçwÞø¢!‚ŸywLߎxû›çw®âðï´ÕíâÏ»‹4Í>}É+xÞgWÜ;ž/:ç||ôãÎÄÃÅáç}«ÜÕÙ›þ'W|Oº¯õk¹†LžõNçÙÔ5nd˜K»áÝZˆ¿Ìï†'ºorvh#¾Í;œ2£s’äŸ6îg‚”Û&vÅžgw¼ßš>õy5:…okÞõÆÉU‘Níµ£¿zîuù’+úò^a"ÛX‰¿¶À_£½ _¿#÷¸»ìÔßžT÷‡.›uÖóõ™»zùŸwÚhtwå†tž¾ÉYß|ÜñwõÕ=ûb ™}ñ<Þïí´3£]ôr ðS-¿¶gl~Éß*?3q¼öu ö~zúj›ñÜ’¡ÏENù“Þ»Ùåø³ÙʼdÒd³=ëÅVxñ~çÅÙçÆÞ?éø¤ñDׯþ5AnæÕ„R_¹Töv?gŸ™Ýù×Eò´,Üm1äÓ„ôo/ñ]Åó±jwaô×T•éîþgÌ×¼fIDùr<ãÈ`²¢?2Ìp3Ü¢Ê3ý¶Š¼œ¡«|]ɨç;ÝñÅvnÅG‰˜ì…O–+l+F+±ØÕWÇ1Ö'.R7E˜ÜàÌ™mv jÌ̱[ÌP8Ür7F¸îÄv8Üs^ÞãsZ£ýSŽÞ´)äqÇ8°@‘8ëpdpP‰ÁÉ“j×ãg†uŸ óKrÞµ¼½ëm<ÜžÉ+ƽmë{ z{Þö·¼Õ³lõ½ž‹×½àzÚL⣨›æ™b«×SpÁVÀñ‰M Œä9kEÉ.wËQMÇÎ.ÆíšµÑ£FîæØ™ª7v2מôÕ½my½çßuÜó66*Ö6Õ2{UAÓ·[u±Ú«{¹ž“AílQÖÔQ}öùço,äQ¾Ó{ÛÞžÈûï{ég^•ækk9}³‚ø^xâc×~Oõ¡(jŠ?¯kjQf´ÏÓ,Li‰¦XçVDˆl“æö-–ónbÏ8¬óÉïw·­KsÌYkkËÎê6Ïf.»Þàëؽܕ£ ¦í¦kë½èæû{{!KØÃ»ZXžÎq¸ÜÓƒâ (VМ”Q  ì݉ÖvÉòï„gÛí®Á‰(yÞ½ago]yyø³ÎúÞËތԹ‘lëkÇžü=õ–ûÞלõ¢í¤Å¢Ñƒ­vc5¤»t>íj~owæÒ‰””t$qJ 88qœ¤[3=J%!zªªé¨-E´¥"Ю¨CB!J4¥VwqÔ\™DtQ”]F`qwÛ£mÔguœ]¤sk°¬²µ´viurì#«IÚ×ZØ­‹œEa›mFÛ³ˆÊ:ÒŽ…1RÕ²Í.¦˜Õ¸—'"ØÒ3HÛ¶Ú¶Æ•U¤]1kKiW,ÈÓsp°uUaØ–ÚKe>ÿòÿþü?¿~½ôÿ¯}ƒçÿ¿í4}¯ðï§àùßW¹&30PÁ¡#jH÷ æõ÷º®iÊ/0u…ò /ö >ÿá0tÞgÏÿ|íä猹Y“ÿá˜>Oa*¬kR  èR–™žú=²GHÂX‹ãXŒës, ‘¬eB„Å"ü´of±ÔqL a1l ð‚ë9æ˜BNe':p©”ZHÑ œ‡0©À\ãG#(Ð@UÈSÉÑI>ñT¢B&sx³- é7;'¤œsyUŠtd;(Yï¸#Þø+³Åä0X£âê¹ï²Æ`KGU‚óq#âò„iþµ¤ÈÔ}œäÿže:•ÿæ”À@gdŒ«FÌÊ è—–Ô‹££ÝqÕì N±ÿΚë+ŒÝUnÖ ?¦˜âzjêœàÄV–k£ïh^0}èÒ«XL5«U¸y×€^{‰Cüg)>emˆª–΢Ž]á†{¸q²”ž–»ðÛÞ[f3&ÊõÞ'ãEv/ 3  £Ä+X“ÜùÂf€))¬Þ©=` rsh$ô~ÓDœY#¼ÚÎo”5G 1í}°áÆWaœÖáhr6ÁBp‚óT;Ã'[æï“ÆI„›ï®1T š¦‰jKG@ÂæO¬Þ:W›ÀêHñU¬/[B—PK.ºßbÍqK¾{56­Ãþ{é*aº]˦˜H1s?ú.w˜´´S6¦ÔƒË+ ˆb)UmréIõ™¼4[DäìÚÐJÅa½3NÆÑè¬ÔsÛt•Jù#u©ÕjP–ŽÞÖ.µuåG™ðÕâúeô”umvÕBÜ=é´tÄf£ @œUxÊÕ=UB1Vµ0ÿM“+’)ëV+0c†ª»pX· *ƒŸd™¨1´§Ó,zÒ—¦wIÒ¹ðŽáÇ:…åÁ6 Ö4&›vÄ”õ¼qK æ°¼.êI*íSåK_\йƒð픩‚zèº]ž:E$7…Ìì HzÑUœÉçºx‘Fw8ª#¶¼t¼ÐæwÎJ}WzÃ7Z\›?ŒvjǶð£imÛlϺîÃ:3ìÿ—4†Iã“LÏ~Õ CûµOfÅRr2»üW„#° ·ï;œŒ!HH|ðN¤ªŽíi•_Û‰9ÚöÓÝ1йÓxŠ®ŒWq¾s©ƒszœÕºà)ærÎûÛ«È£+&!‰oM6Ì|óç)uÎ’óÌ¡¢›Hõ]'Óöì›é.ßé+µÅ*œw†ºK̸¾Ký%Þ&ï=|õ~@õÏ®i³óÖè$þ0–FëÖP}dþ½'mÓßà/(=G¬>‘#ïë«@³n£Œí²܃¥Û¼{^¯Ùðæt <žŽ„¯(ò-Á¯«>±ú9¶œëªÐ»% ™sï;«¹¯v—¯dÚ»÷×vßÅ9Å6å]NÁ§[È«.˜h½nnÑÒ×fl(ÖîënYcÖÅp\ályІÝ‚ •Úeæêœm­ó6GËŠK7ËÑûK#éÃMá§{§yBŽ’óƒÝqæí-uÒtÖ‚w-‰ƴvÝÆ¢C·nËŸJ¯ð'Õ¼×^˜]¡ú6¶›wí©Œ,=Á:±y'n½)ç`m[“qß1Èéßx³§™Õ;£aï^v•6•ª[8A{Rîîô©z¿zÎ xà9Pž/Éñ¡ßNþšõ"´•Ò㇞ŒƒÙÇ}¹|Yl3‡{ÖmMž/晤K¬pËB(Ä€¶I3»fýY7Ó‹Ï•ˆOn/•@[kÑ£\ ™tÓmB}Ÿ5¥;”ƒyñª.Ó ß¶½ŸÖן©Ö;¾9)•´3ðww!“Ú¤ýö–ðÚõã«iÑ ‘nCÛÅ¥Ú% Jp¨çB¦°è¡ëYù‰YñÏe ¶N0°kªÞ¼øYÊx~ѯ”šàžw글6uKHÞâ¶××®všeb‚0óÈ»ÃÝKi4½KߌuÌÃ~;òQ¦™ T·+^¯æ›:ôâu,bò­¬çÈú9XŠùÚ²lS¾Û;ëÓ¨´ Æ/©ß„óÚZyï²:1íâ1]¿×Í×Ça)?¼¬Ì¯Ý<áNП)´®ÛAÐ?O;j¾Qv’C yà™·Û×Ä3Ì3ÙA!áìê™Ý%áá(é»V ”Ò—ou)GɬXªqêÓ¿÷ÏAõ­PÚZ¬©²e Ä"fw>ŽÈÆ:ÎäEªúkp±$tOF1ÂÖ‘­Jsœ“Fq¿HÇÓ·­ŸQÚ‰¶˜å]²ÂcÈqã—Ñ¡—ëÓ‘tÒâî>}¼ûïÆPÜøÔ§#ºk.DÉ7n›Nʰœ ŽÐœã6äÉïÌÕùv=Ae7ÀÌË»¡òê¤;çÜr »«e³ºÐ•–zÒȨ¾’¹–…ýŠ»ì‰ZÍ,Ŭñ©Ó?Çzwï<_M¼éÈë)Ž-_‰ O´/£üª~N}å(îä°X¯9Œâ eÜã»à°—k<±Õ5Í2B“Ô]^ò<7½Ôßò} ~ñkCËû¬§q1Þ`óZL8©O)œÛgKړ¬Qá³½âð˜ðÉÎÖ^%T6[4õeuOn÷ÍÛû4v¦åCaޝƒÞîËÌœ²žt÷pLE‚YÃŽXªÂ»Ì3Q_s©ºIª{â‘«CÞÒŒBÑ}°øD0°Ä%Äâük³¯50Ï•l³a¶/&“£Þ Z"”{`'—)Λ:U~^¾5}iŒªpwúšN±m>×¥)œjÙ½øLÈ$gÁ¤Å< ÁÚh%É^´®\±k‘ „ØZ‡yF…|gþ¦Ç2v!u¦UÒ©Ð֯˕ïef™¾lk MâÑ)8bWÖ4òsŽA!»Ò09Ì`.9ëö «G±>Δ_9ÿ¨Å‘¦òlÂÅjø­¢ð“Kj×*q急ʔi~ÖEÑžSpYM…ÏCš+4„–Wæn°FT2/#z%$Àêeù+ßXÁT”"ð:A ‚ÄÃZ¹Ÿ’G‘`Ì)Y £=üW+>®c‰ŠÊ‘‹%hݰ3Ú ¥&"Ä0aqº§š„X_dWUê|ÌÜó9({h夞┌Õ\Á3ìR'È4P¢ N/ Ÿ$÷9Ø´ÛGÚ%¬– "¤à^Í99™¨ ”@¬Jð)   ˆç¾qKÌÌe™•"r{ÄÐØ‰Òp#2 LÔEM ós¢Np>S‚ÄIÐI΋Ý(âfuPw”ŠäptŒT(” d0ˆˆ*|Q(¬$k ˆÀ¢fOz9e”€Þ„|&~–çæ|×ìù÷°±¾xû½ßÔaß™;Ï“¹dꇯVosôßæê#öa<ãóîü?UuB‰ÒË1vãV}øÖ\_åš_?á™k²u5)îùê ñwßö®|õüóOº<,Ì™ ù|îì]ùn[¿D·éáï}éìƒñËycy~ìB¦ëO÷x ¥b÷åé¸pßÇf¼´æ_Þ`¦¼R=Ìïë7 ï/^;ß¹Î÷ï¿&¿’;#s½k=ÝíM¾Hçõìg?€—|wyË»39¿7Ô{îuø´ý®Š|ñżŒø'îE.þy³'{ [Œ˜×Æ´µâ5íÖO½wººã¹‰ËÖJŽQ‚ RfIº´–—‰Å^û×9EÌwFb$C"$ 'EôòŠÀ™H’T;‹çSÙ÷×¾2lìsK2Ý™)‰µ´M|Ÿ/·çóù€ý“øI|ʆâƒGð!4B—Ïó}œ-I-oS<Óï¯Ó_¿âé:ZZÕÑwÙ9Â.ˆvùìiáé¨Lfܽa+ºƒ¾ÓûäÂ3ü/×ï÷ü¡AT9þȞ߀i“ ýþÆŸ„Àýþ¿X+39ðQ`û˜¢GðÃøù{¾ßÀþƒïù‡Çôý¡ù/Uý„ÝñOÓÛõBðƒéÛÀzoöÓ‘ýkot¼zþþ5úídûãõöëjúËì?kzPÚ?y~þÿ·Âß/ÓÎÿ±m9©'íöæ»ûýß·Õù×Çéóvï·xüð~¶ý”~\{ëì^> ã÷¦ßføŸnzº_·³¾Xý Týúüþ¿¿ßãûý½yñ¿¿ãóóÛ®.^®žrýnîûúWöçÒeô¯ðòø|Ü·0ø|¿FGIEW~‰`ŒGáô‚Iåñtái:ÊŸUcbœg«‚èùAF´¤p ­Cóô¤÷W~uy>þwBûë=U°nïô_sóÆ­ê¾{õ½ÃtOªäê<¦fÜßKüÕwÊ£øSCG!4J*TƒÝ\ÊO“P¦&¨02P_œŒýþµß“~yïäù ‡û«‰q.sŸĹÀç96©lI´–ÆÑ6­¤m-’Ú­ˆÚKjÍB«¢¨:¢î‚ãºäë¨T¤V’$ ) BŠªî*8î*„‰:*‹¸HƒºH»¤®Šê*$8¢ã¸*ƒ¡ ¢‚sºŠ èë¤îŠNR“º9N)*K¢ º"é$êN!¨ƒ¸îsŽœ¤qÒèH ’r.!(à¸Iâ ¨¨â î#Ž‹ ä‘8© „ˆáç(98Nç"ä+€êŽç$€8œS¤Ž:C“¸(JNH8ç 9)9ÈŠ„J@BŽqsˆ€9"pº*(¤à!!ÄSœãŽ:" C‘9NDé I(qÂB)8DމDîHHA#œŽ!'9Â8‡ œ8C¤H‚N'rB8NH£¸9$ˆŽÁÈ…9BA$é;Žs‰Ó)ÉȇqqÀàGIÁÉÇr)8Aî9$’ˆ”r"N@rDé t„9#¤'rp‘8’q9qD¤rr‚JKŠs©àŽpœ8 §Ç’%I:‰Ã£’$äs$ä‹’B9s èÜä”çC‘I%99ÑNpA%œ‘N‚$áÊ!:N¤çBäœ9t“‚‘… œèœÂÓ„Jœ H’‘МDçC  D”8â"䤑9É èD€œBRtpt\àIÉÀGD‰G;“‘Ëœã‚AA)t \‹‹œä¤$!ɧ)''’#¤âáÅw9:‹œáq”$\8rRRäD’tá'..Iœè‘Ü„‘Á*ˆÓŽHH‡9 ƒŽ$@ŽTtHrDG œ9ÊNƒœéÇHŽ\ã”pJw!$IqÈ$S¤â\pI%#‰ÊA"‰ÐI@r\.:D¤Ü„‡\J@¢tá8“’‰ÜR9#œî"*p¤R!ÈéÄ"sHJ!QNDs p%'$G!sœGQÇpâwRw…Ä‘ÈÅ%Nt‚IÅÇDGttqrtD99çIÎIqÊºŠº"‹Š:I#ŽJ9ÁÑÔèäI:q B§%Çr*¢tœî“¸è’Š(©%"ä¢Nà‰ IÎŽãŽD¡ ‚ "8(£Š9 r£ºê¯ç÷ï P¤è(#¥!P98t'9¤8ˆJ#è¿{ü·qRQÁ‘ üÍkߒЉ)$ˆ8ˆIÈàQÄ¡G”9’â ¡ Jä…($’ƒ…:‰É (¸œä” 9ÜG~úýü®ñåãoÌÜskùÕ¹ìžÚ;=îñ}¯žþõ¾ÇA65µf>guG:á:Œ‡ údÅ…m™TçcFf‘ãŸÙ ^ SÓÚ¯ŠÌE{&ئ‹û4z‚¿\[Ød•¶Û½¨ÜÏ1vwQ7¯IfBu…EéÝx³lÑ9]ÛŠMÈwmþE 1cCm±†S3›<˜õ‹¦¯')¹‹ÑoN©<{éæ3Üñy—Ûó¿5nûP/Jü‰Œ÷Ìugƒ¤äù°ÇØ`{™ç³%$¯ß.·'7Ó¢ó»Íõ­¬óØñT;'‡Vû“fn]Ïbð–l‡e}k¿ó¾|÷ÅîËÚ7©üx®)»:D |•i·Ç×·y Mßõ±_µ=^¬H_qlžËg“ºwnULWûq^åLSúdUäYÕËî½ðê>déŸ:¦ ñúý^bx}Ÿ7Ï8üîmAÝ„eyÆðø/0v°»ô/ß›«¿nà¾ÍMÇ?m~_r~~bÉ×çe_;»ï~Ny /:³Œ„^,ž#¾w±÷úbÏSWYôùòçv7˜âxÞ¿™æ|½ï|Ǧ|ÃéO/ÒÕ×÷çžyί§·Ò|û=k̼}=ó3ñ}~úüÑ®ûé&yh´°êƒä‚j2Å#‰”ÎEÐR372À]:ŒÖÃú¿>Ì:s½ý›û“4NËÛ’ÌüûQ®”=ò÷ÔyâtÝp÷?Q UùèDZ|Ô÷S9¯—›ãëucéÎÝŸqãxxþ“¯ñ½°èz¡ª½<‘â÷=TIàD¡4¸‚B” ‹Eb|½š±ÄòeÒDò¹¹ž™õd9ä‚™ë‘yBζ;r6x_;íeó³½üö¥žIçóyï½ÍGÝ]÷5»}[Üô]÷sÝêšf5é¥îÚ%çžC¯kŠìRG²òg’Ückr,¨†O˜ÞÚõVÛ*ï“ÂÌm‡2y(³òOEŸ—;W‹¯©¨vÌ—™— û·ýî1>¬R{”˜¶àçsSÍÝÙ¸›…³’eT¹Â¼fb‰¹"lL­Xœ}ž¹·›$³®=³+ʉÖŽE¯-¾ûfu© Ô×|eAŠû—|tο*n^`æ<}E2Æ”Š8™ÆINØIo—%pm /çÇù¿q12  d°dwe ÊÕDíŒdà Œ~XP! V!A´^ƒ§%pVñ”ïh:®º«æ÷LPã36±ªGõù×Ûß›¾§cõø~ÜŸ·ýø¿œâ8à.%R"]'""$ä\äCˆGDruÈÑ'qÂrQŽIÎEASœE'ä$GI‡9”S—NçIq(I8Q!GHGEÑqɉÝ8D¤ çë;õ®©¹J+ô•½_pŽèç)+¤¢’%ÇDIÉÓ¢£…Š‘8¨(’â8(áÇ8¸éÈ NCÀè‰Î*"‚£ƒ®:.BˆNsˆ¹%_Ì(* h¤ª‰‚(ã¢;Ž8‡9܃¢ˆŠã§"*ƒ£‹”èCœáGC‘è¢ã¢Hèª#’(¸¢èè‰ ˆ’Gr:8â ‚è”é.:*’î.‹€äˆã£ ‘ ¢¸è’⎣º º8ÿÌPVI”ÖOØTßÀç!ßÿÿÿÿÿÿÿÿÿþ@0 @0 ‚I&½ÜKïyò $ @¤%ÝÜ@¡P@ TUE „„JRBEUR¢ŠªªŠ(ª vD¨ ê¾ó¹D¾÷¨”¨÷úP   IA P ½÷ÏxJ‚¾ ÄIQ*VÌë‘̾ç€<ÙðH@D9óê¾ø]À÷ÙçÀH!÷¨(çÀû€ U?ÀM€#dÑIšSÅ=ð§”ôƒ@Õ?HŠ&’†Ä“&™²fŠi2dõ4iêhÓL‚SÉIR’¡ê=@4%?R©Jz€ Ñ ¡&¥" SÊ=M44Ð 5Dª‰00 &`L&¥$•KñÀŸoSZýœæÓnjæÈÁ:4ÎKcW G]é½wöõƒóçýçéy¶ìHr_èŽÛK2mÉ‚D?jI8ž{ØaÑiE'wpf’ÐýȪÇ/Ëá@µI¬HUùA„^ÃI½©ó‹AÚ ‚0Ÿ|ZLS€ª•©;Ž2­I6%d{QÜC¼(ÆpÓ©"Á(šR’XÑ_v0˜4CiUMžTXüßígŰ󋜦jÐä 3Ý%+é ÆÓ}³B´©÷Þ”Ô¬PÛÜi ú”´Yo7'×jéeÅöCGx²sƒ:þÖ Vkût¶Â20ÓžmÇ&Í Oxrç OWÚ×!¬¬š6›1ã–µi¥4±LqŒ§:ôØ ¸/æíŒ6ƒGã{I{a:ÿ%zÝëM7ìCޏëG:t"€2³hWmj†¥–V‰­¶é³-'c\—`ï9 ÊüÛqvñdã¶8ãùŸ·]˜OYúhÙÐÅ¥¾pÕªAQ¯Î+6â@>%Äì´ŽzóÞ^rlñçs ÿƒÙö‰WS€Ü—ʨùÖâÂ’mƒÜ6×é;®¸1 mç@Úúe“·…5! ªoÒkÒ/?ç\$иë*zÚ÷ãÕÃ{j 1qâ<[Û§.ø°(tÇ#ßú‘ÝúøÏž°©b³úpN•þžxÇŽNÓ‰mÓ½®Ók÷¿ŒÜ³ÅœMlãÃïØ ílµMA{=vKFÏ5i©[késź'/!£›])ç¬-å½ê‰Ðe.onš[‚÷K÷»"ƒzmÕç™KúŸÂÃۮݠ7G‘.·k̓‘7!…àæ³4êL¹‰í?A½‘ïÔçÓúñƒM#Ô¥‡"yQízIƒU$"vIXé;MäÍb™úÉÌeJz(®úÖÎçy¢I²nY¬Ã*Žºø¦›JEN÷y&Àr4 \œÜÜ_Yé9ÎÏ9§|”1íTÿsK“Ø z=M/ Ë4¿„aÁVe$b^ÈPæ¢â¢>T©pjèa:ÉAgž¯çÒsuE;Is¥¥32O‹ÏêæLÿ19ÀÖ£áå>–bãlR9;ñ²vÑðå&$§w¾ i_çø®ûCWïóÎó‡´ø)ûÑêõæ8»)Ü·¬DfcŠg›ûø°—S1ò9½Û ï½ËŒ`Ù/zÇ%z8ùþžûUÿ¬íó×|ë>¾^FžlBßpIi˜Ì²°ú€?vÚn« C¨Ûé©`öB*šê$–‹ÿ Võ~/¨wõýŸÃ~þßËóýžŸ—ÏãõüÓãïöú{KÓÓÙà‡Ÿ§ŸÂ”ékþRí»|/ÏŸ•½’•=~ÿžœó¯äuö[ÖßÛóôt˜ôÏåƒî¿±õä;nžìèüi¾¾˜0éÇ€8‡(¼Í( A>ÁÖ…H檡û#ÛšÀ ¿4O]§ÖK~¼†SîeÜì? Æ¶®Z§‰‹ÞÎwt]VûŸ ¢ “änÜøÄÕKÎöŠùÙV @¨É*B² ൓Öj”a Ïé—ÉÝ}×ËŠØ«ZÚ©¿ûóúôsWVï{ΩÏII%Rõž~E)(?YT<~D•ÄN‹‹’ îþ]uÝú>8'—YÍŽÝ„‡¦^•.ªîRbA+¤¡•J®aa¤e˜¡¨[dÛ6±Mgå²'m²5 6m­2ˆ¶Öe¡#mBF™d2,ÎÂ!2,+;sVÊͧkqÆ×;ZFIÆâ-˜íµ¬‹•›©©‡”’Dë«’™xfÕ¡²¶Æp“´2p“4…¬ÛvÛjm °ãŽ™Û1ÚÙMffÚ¡j!fd™–i*!¨•º¹%é©j©•‰ I¦³‹HÓ»n7diÛu‡5±ŒdœEiÙfpc¦Š©RH* Tºž)žm‘¶²Ë+q:µ¬ä²ÚÁd cVm¸í››²¤fÌÎÜ“&™[IkÍi‹Ûi¥hF&²mÎ&ÚÍšÁ·kbÉ–dѱ­BÖ–›¶X,Ù ´µ­Û›m&Ùµ¬DìÆ-ŠÛ6³õ¯MS7ERL¢-Ž&7dXÆÖÝ–™«%V¡¤"á覤w%°± ’!ŒÛm,Ù–Öh;, ƒ5™2»ma±“™lí±ˆNÃbv´Ù›ˆÍge¦[Ym£ŠjØsl"smÈXrÑmÍ­“Y#v‘mL2¼%”Ô´-P¯RE9,á;K,, Vݵ­m›h,ÖÖŒ·l ˆŽÜšX)U9â’š‰á)b‹˜Ti`jBê‰aYš˜”d!¦˜¡Všž¡z¨¥é”VDº¹¤¤¡…^Å›sµ´­bÙ·&²‚G&ÈÝclâÎÛlÙmºQDg¨„b‡‰d¯|2H„’ÊÔeRZ[6[Y­›SÃ"‘ᢢwá̤ò·3,´£lmÚ[v ™ªd’¤™jꤔйfyº‰‰¨„F˜©nZ"§‘eª…zHž!8±i­¬i &ÍÖŠ–išÚÙiXbvZRlÊÛ’ÆÅµ¦Ûµ­6²¥³Y¶&4d'f(,Îi›XŒÂÎe­µ¶çȰ+ZÜY!!bVež¦E«™ˆ¹ÖƒmÈÛ Í`µdÖÔ‚ÎKIƳvÚ·86Ü9e¢Ó´”ZÓcŒë$JÛ5œÌílqÍgh±¦ §‰ŠQQª™ºbE¤mf–¶²“#¶Ù$É:ܼ½73\ôOU „ÓÑBóÝR‚ôª…UÒƒP”‘B¢‹HÂ/0—=1UT×1KR Ãr¤ÃE“*%µk…""Zb“‚n#jÙ¶Ñ–IK&æn´ËLËn2 m˜³mX5›DM´´ÒÎc#Ü!­AÑ¥‡[œ¶ì³¶nÝ9jÛ .1© Ü£]3 ÒĽ<1]3 ¢ÀÉ­°áZÍ„]³†ŽhBÖm,‹hÙ¢m¸›d$¦ÛlN7#M[ii‹[S4Ù´í«ìÙ…¶%1­mc’KLœØÝ³¶gC, i¹­¶…´µ¬r3cS¶±)Ì­6ÒáƒMµvÚÙ¥šÉ¥‰ÐÚÌJSvMÌ%I †y¥éX§”ªŠy‡Zfé e£s A“Z6βÛn–,nJcXA¹é*Ngª¢¹j&”xz‡E¶ãfksŒÃrÍ¦Šªš"dyžžZ"꺆"yjdˆY®"¡¨ºU™‡¨ R(º‡¥««…)†E²‘ldNq·mÛHí°š¥¦¡YWª.‰Š¢âª34جȆ‘(J‰ qsÅÅ1MCR¯)Mk-›&íF±b66͆ IlصµÚlZfi°KlY«0ìšÍ‹l§Q4ÍÁ D“DM°ÒÖ›Ñ!“VÛt&Öl›m§dËs-N[l°FC RòS5 tÃCtBÉSC= ÏR3ES,\O!\ÓÏWRÅÕI’MÔ½(©Q\1,ƒ×/CBÁRµÌÔÜ(­R!7A<¥™i›Kd™†m»Cf²ÒÂmÛ™ÖîÎ[•†J®’™XXZb®DŠº©U醮™Q*jEšTª ¡…T¦%ŠЍ¥)Vèª`©hˆmÖ5brÃZÖ¡³)š2d“›i–ÍA­ÚÄ7D[2ÙDšÖZÚkP³D ±·dÖ²™¶V1J”¦å£š”šJ"Ž–•V(^ªåˆ”j™i¬Y M±-–mIs’m‹#s†Ei6íØÖ²Ó”çdím°–ÝcjËW';5f‰gbgmÛšnÆÖ ÅDÓÑ×(”“É*DDˆ•OTÜ!-w%×/H”õ]CÜ"‹ÒÍØm9›FÔ7kkvÖ•¥·²Û¶¦[ kvÔTCÉ+T”Üô]T]h¹nÛlÓ5¸pDÅ´³ŽXÉn3¶l’ÖŠRDªè¥ºIh’U˜ÚÇY‰hœNÚЉ­µ¹°Gg62mZmÛMtõt‚©,2Ñ‚ÓDÜ4’ÅÍt,Ó ÍQ6&ŽkNÙØ™Œ²6ÑÙ2d͆åÛ£,ÖÑe£e¦™Ú2[VݳŬ³†înnÙF¥-DÔ2‚Ñ7*!)Õ\«S ª‘ ÔµÍ4”ë²nÃIZ3XÙ¹¤Ûcl܇s@´æ’[smˆè6AhæÒ‘IYµ›§¦zŠº˜ºè§¦ «86ݶ³ˆ95¸Z•˜™F˜A¦f"æTÇÜmÒÖ†Û76¶Ú)e®ˆ%W¤ªV¥)£[l‘#vÑ¢¶Z;7NÊ’¤IFäDŠX˜¤–) ¶Ã2ÜÎ#§6É;e»Æ´åm¨²ÎŠ2nÛ*gˆ˜Zhšˆ”V¢ºçjl7mÄÓ£nÕµƒ‘]3×I •r RÄ04´PÊH'3T2µÕ´Ý\“ñ2 Ë #;–XÚÛÓE¸Í‰mŽfš.”„”y(ŽxH‘†º¦ºAê©¡k¤–¦(©QA[ªªç™AꡎÚÜŒ²e¤²Û·lÄÌéšé®xT¨b¤ªž”—¶–¢M¹»vÖ„ÒEš¥žºéá‰bˆjž®lØiºÈÍìÚÚu%ÌQ,±sM- SHîn)±fí­¤v¶§.[ G¢b®PG¨V…§šŽ&¶BM79kZn¶«–êhå(škˆab™è3LÑäMÚ²Ë3pKmnp¶ÒÜgKvvM‡'(–M–ÐiÛešGmÛ ºªâHºªšˆTx™h³&ݶØÓe——ÊpîŠ:¹Óˆ'ç<—“žI&vf"d¶²Û7dfe§vŪº*RJ¨'„„b™yZYca‹m£µfgvÖ)6seƒrRÑfÍ´6š‹;³M¦°7nÚ ˆ‘˜iº„š&ˆF—$gE-¬‡g6È7FœQªdZjz®•D”†¡—–Æ’Ö±DËNˆ¶Üä›™3Jq'iŒÍ·1¦vígck(œ6‹q™'Íkge¬ÒeËm¶ÚÒÓ2ÂD7fÓ6h,ØÎc9¥´ÐìémÇneO]ÍD‰ ÍsËÔ²’%Újh¶Ûf±‘¦bô[·ZÇ;,ŠÜ‹e³kb“g;³‰¶D¶Î›hÛ9I±–V[Yf³8bdIé˜$…ê„¥Š¶n‹rEäîP›¶Ú¶ZM˜²2kÙ™lnS‘ÆÜí©¦¡–jÌÓ# ²ÛL³–Òq‹k\塆â$ˆª&TIi› íÚVÚK 2ÉÛ6Nz‰ª¢*IíàxPå;y䤥 Ô:mæVŒîí"8ŽîNVºíÙ"\u'Wq9:Jœ$ ±T¤‘V­¶­´«ZY¤*Rµa[+l¥ªÒ©©¹ƒ6x`Ã7U\'\W®BuÇWÄà©(êEÄj3JÒjn9ËmY©©”#¸;€’]ÜU+"(-¶¤¢…Ÿ2TOŸÇ*åĹùyݼD…c(‘±Se0ª‰m•e]uê•Õ܈P¶¨J‰6¦T–iM¶´³J2†S-ik­2[VjlE6¶­¨Í)‰XVÉ-“ mJ56Ú©UU6ÔÍ(XÄ¥˜«6¶­VÅ[#[ ”­YcŠ1e”­¬Ú¬‹±­†Ð©«f²Ø&€¤ÐÁ˜±úÇñ~¼÷[èÒº$E2|ÄD†£u”'ÛóNâ-½_iéÒ%û*0Â…ž' ‚çðe»ù²HäÊøR±D«Fÿ êcF°ËÊvp¤ZÓœâA¸Ñ͈)TD?*ÎYE›7õ,¤î…SŸö9ØG.Ç|U4Kdo“"0þúÀŠÑ¨|ŠJäø”\Bx M¢AW£TjEtÿŒ †³™QȆΔl‰& ÐÆíHQvAÅç …ªÍâlûPZ%™ÔÒî{³µç¦+UËåf/„›E‡¡ÞîGwÑR«{´ë_ôàéL¶˜¬¿¦’v2±S~ŠšëÄÒS}϶«Ò+\kÆá¿ñ»°kn“Ûaò‹+Z«Ö#Ÿ¶(‘WÌY`ûºYc{…l#Q l´Ãõ&;¼×)5¸rX¾ Aâõç¡öÑ'i\îú±Nªø}2ÕçÍ4œè{m[@ÚYÉe¢VÓÓ¢*Ëøí0–…b2 ÷\L$ú«ôÂé[Fb‚™¬Ò;Æzí 4U¶ÃÐçÅbC=É5Û¦-8­18!êœ[‹ßŽú×µ|ÛÒ³¯}4k“ǰjÇ­Ù_™¸J“ç/ÇŸš7C?=TåÇc³_ÖkeßZí#ÚQ! oŒÿÎ5„”Ö:-4s‘ óµM¹^új[NP>|ùÉ&N}üwo<îwð¾4ß©®o]xljÒ\33Uøó§J½»i ×­Á:dk@QË[‰uHïà5¸ô‹ô§;KËnÛlÜuáŸÑŠ|µ“®×t¦®°3»×±¥ç´¥d xœ¡[¶+l¼ñÃÖwr+Ü+ݦ ¿HØ|xë¯×hÜVÒEØ•£¼ÏNe¿%¥¯Ž‹ÒcÄëHëÛ>{µ5+sžv/KØ÷ŠÈzr/>:EáÈièAE t¯]Ûœ;wª'Ðé‚ÿLßÝ…÷¹w’,Ë _ΓpÙ½$ÝE3ÄX+yá:_”¦ }œ—œ…­âxOÒûùvkCö‹¶œûç_O¶3Îo¡Þ XTÕ µ&¯8#m¥à³íà1~z/µ5¾wÁUÈÚDe»”w¯}=—öꥨP[aLnƒ{zû:ËÝ{ãc㯴ú÷í¶«{¬Ù“”mËH%¦ú[·(ÝÉû¬ކœ¶IÆÚvñ‹‡:énœK3جù³kžšr•Š…ôîÕš‚¿Q/eë_NÜÇLÖ[Ù·¼‘߈ß D€€ºœ‡—eè;ÏyibÅç²&dÐMÆÚò±ì€©…79qç˜nGíÆ¦¯}Ûr²^Ci‡´ûÃ$ä{Øn±Ö^ì.t½3qµ}óÔ8ëkŠùIúlŽX &²_!]E}$µßWˆwu~óÓ—¥jZ¿š„롈Sز‡Ð3ÕzL±p,]nL%­9‡¥í=—!dC!Ùõ¤Þ‘Žv£±z&´+ZÅêKÔ½ùG¡í‚êϰÊzPZ‡Nš†yßÑ4†W 1 î`àhû“‚š@•hvKchµ©É8ÐêÊ,™È¥Á æú*7E3ZBèX§éÈK¨¡±µøÓ]l'GÖÖ}É¢Ïl% Ôžü; ±­§FyãÎ&ÀÞD=›Ú¯'A’áÝŸzþ¢ô,bAlÿj¦‹¥¿XüyÈ"rÆ&2ŠÕuBž$!ˆ„1€ -¢Ï7žÏ@Fì3~–:>÷È•]˜¨¥ ²èÁ>–Ö€tàoPÖî¾R‘ €¡kb®jdÓi©ƒë„˜ñVN¢&$9 •JÇ,ö6C˜›ès›„2f0$KRà ڤbFð“†2°¼Vî “¾¤ì">–÷¨„‘÷òãì@¾œ×~䙇â‘óNA=‡ÃÖ·î]¦yÏG"š¹â¡Ž*%ä †;»˜8Ä‘ìÉbI ºZo9(TLdWHRI¿[h³=UÍ`ê,`øY@óæ#™ÜóÁÇ|®Åí2¼rma3X»öJIÑóæÞÏ{'Ÿ<q|”ßO§9ä877•›!0Ä05 A=¦)DNùBïc7²}~5ð´|š¬“Œ}Ë®øAŽÈÅËc,›íç§ÅÎûC\yÔc{‚ú¨]y´3N©Ü2uanÞõ“J™•-ÆéE)¹´¥Y±ëÚÂ۴ǰ1„„z ¢Á¨}Ïdg56A× –WÕ©-î@eåu&…ú¿âúÁ¿×öV×áú¿Í‰ÜËÙòvøGÙKéûüÓåùü>3Á:Àû¾ŸÆ󸀝»ó`ûCžÁ×Ðú~Ü~?K×öö‚~6øWë:kéøüm¤—ëo”ÿo×åŸÓOhéëô~¿>=ÛöŸî-iûûyÛîvë÷Ï×jíM<ñ÷ëßٯɥçõ˜öûüþÝ÷ë›íëë`uwÝý>ür¸×íã·Ë~'æ½—³Æþî¾½}Þÿ‡:}—Ÿ„ŸÇÓÒÚHËS¬DLiH6c)Íž…ÖžÑVzÚ=nB+Ã|sô¼m¿ùèGÛ\;¾¸FfX<’@Ïh/‡7[¶z‘åGúc oFP‡• ‰'#X‚ƒˆ2W92°$#yú9;<¢ØK˜(ôeÀ«À_«ø}G¤®d3!vj™3#¨Èìˆ'# ªÎŽì‹£i[³bõ¹ŒC…‰S\ÓΖKfÊExŠ“uÔše3•-;ïPœÒvLù3%¥<ík­‰·:¦ zy|^{ŸGÇ|’/±ö}=m[=>¶ÜmÖs[­­ ÎÛIs ¡ „Ùš$éLûƒ·±è´æ7UMNÒìbdñëÍlÄÅkf"­ZáEÕ«*dÎ{ ¶EŠ3ÅP‰®L‹sˆÖÅ Ï/,†]<ýÇÏøü}ï$f—ÎŒö/~=“ßJ/yÚ¼FL®ÖÚ´¢·­êñHÔXÉè—.™g‡nZ6츷e¡F¹.ûÞñîÌ™0ð¼hÛ³Ê)”nª.Ó¶G7)²óϓɹKômšc°„“U×± ï[¤Q£;J1(Îu·jå™9-Œ†AÎyG/3¶p¼á0mÙºï7†åê#7euÌÔO´º…agÌÐgbÈhôèxG{X3Ùúñ„¡I;/t“ÒH5…“9¢„ˆûCSë9ÚtO(1³Ã¬äñ±qv¥Í©¶w'‡z–¢Eã½¾EøÇäaÇ)/¶iío]z=®7++™"õÊŒ’¤8Åžžµ#‘í6˜$D÷³—k-L‚„#DŸZlô±u“[s•–eEc=dPRJ·&zLІ'Sʪ¸KGgPí» Tˆ”g¬Ðô´DÄÅ£dPjdÔd'—¢¡•'¦DHnD'Ÿ(‹W‘5œ#A±v(µ'erm‡¦åyí=˵Æ&$'‰áNk³Öƒ2¼®¦ YüÝ{ÞÜäΙxÖ1*©\:ë1’mg…GS1ʦfr,&F-£ èê[lj¶…É«”4Y7js×8eLÏZ ’t<ÄÖK1Dd30öAMA…)®LÙš.ÕWQ‡J6¶¥bÖäy]Ê×Oɸ_ ž²n‹!XÁg[³Ë(ªÌÃ2¢ÉÊ ì®ò¼¹'!U¶LW@££!!+ÓRfyy×r*Ô)$<ª5ÓÖÛ$²•<-\ÆÆM®Ô*=2Xب…‘DMH¯Etä«O/LôvI“°˜Ó]¡‹…3µu\¯-VNÍ¢¬'Ui5',‹Ê1˜¡j…³—RJò´ÏúJßcçÕÞJ‡-Òr´§džÎ¶P™5–Ý•{2T¹épÝ*ó2Jˆö2¹¬ìIÓ1ASfÁ(Ãæì0OämЊ!ÝE3ÊTªð«ó³BŒÒPËeí‹¥‹VUžå ¨*šn¨VIa‘Y•Ícg³–Ø\öº6q6™ˆ£–†MvN•‡2#<4T+\/V®ÝT©Ð³ûÛÃtÝ>®Û“•s‘~,bˆ¤ ó´/C:#1JˆSLÚY$ 2g ¢*g¦LŠò<Ÿy±{$<ª8U•jäS93Í5SmÙóç³çhGm½‰Ép‰=#0‰êìPŒ;G ¬’Š(bm¡5$ò‹ÒET/³·½êå§hœª¹áe‡c&­¶ò¼H§‡"“Ÿ'»{vG>×-vE‘®RxSÚâ˜7=Œ] žÌ=ç§¼žÑ†áªW¡åïoy(óžWÚÓÞQîÚ<ùìñäyPªzF¡US=²°ú<ñäoNž£ÛkË]™‘j<=Ò{ldóídol$¯/ &dDy™D2èÜ™ª$Wlh£^Møûö˜%ç™jÀµHó«ʆ´û{*ž"ˆóçyÎFaĤôkUë˽keIç\Ê®Íjµ'WX½{ÞðÞ=gϰ1Ë>EÈZtúâ÷‡&a2sBŠòEt¤ûÞ1‡Þõ6³”’T›A(ô¯T{G¢G—Ê‹ ëÞð£‰I-¦c"¼!è}»ÃOØßG”rÅóµL½Ò[`U_!)½]ï;Û¦‘ö$Dåœæž‰×m!¢ò2Pœ¾QïoxÞö.¦hDS=´éQ¨Þ·¬©z'0ù½túõ¸ÚŸQ)L/RÑ/¶\:÷¶ú1—¡}J¢æ âåÎM ù“Þõªã«1ç#³½ ±åô{{ÄzIï^EW7,ˆ”Ýäóéö,첊©(úÛ2â옘ÂC+Á8ˆyœ¹|çÐøÏm»p½’!«M½½šïnª½¤3<¼õ·¶óO½ëÎñìx".‰Áw½´NÛZ-£ÌyØ‘ïVIƒXóí)šôbõ‘zb­O «â‘îEÔž³eÛS½ç%cÛØumJØ’d·±yïlÞôò>ÚÊ=^sYMO›^Þ—iuŒyÛÑ ù192"™e±¦AÙ#I$ê1R óÄòPêÞË»1ê_R^4Ú«Ä&)‘\Ó“j|ùÏ|Ú«éŠùðúéSÞ¼<"làVÒiFté’H-[`[!¨½kêÑ8K×¥Ÿ7n\­9õ ªyLù=ë¶‹m祋ǥÈmÓ¢ÒžöϽy>÷ß0úXE\ýõçµ·¼G‹Ú›ÞñáÑqêŸ}×-æ~gн>‡gÛŸ]»Pës;©5¶<#ˆ½êßcï]âÙ4ûìøkãsõíÒ¢Jܺ%3^ÄN´&5rº$δäŸ^÷«ÖÒø¹ô¸T÷¢öÙåó¼j¾ú5?µïL’5X¯{:¯Þ|Ò¯§#Pº±ˆÖÕìmíTª8Û0Þ®GÈzÛm÷¡õ¥ú6R'XÊ|ï}óåÎôÙ<úÓ‹xö÷½ráÎóîó)^_´ûÎ1}#í°ò¨£è½¼ïKSw«Ìúž¨djšõe_x·ºÎD\úíï@­÷³¤÷«Ç°ì_V‘…·›*z+Å©ì/–ñïE7½íY;ÝŸS{{Ê/G¶ÞyygVd7¼{ÅHúÒgÛdóÖØzöð+SNÒZS<¶f6­¶²TnÓLH¤’&Ó& 1dÂä󽿔·¬¾öu´›$%ëüía}¼XÂûÓ÷³¼µÎ%Î(ÂØÏ9%GÎSO¢~ôoy–÷zß}ãGØ—ÛgäµJˆ_^Õ^ΚÚØ£Q,¢›7.Ñ—>¼žž÷nЖ‹k¶|»kÛÞεç>Í䃽·o2»Î¶ì¯œaèC9Í·½zéóíçÞ*Ø[½éõ_e}15W vÓ†{`œíôd(óãÌXööŸ]±ˆp™u¼Öò-½{Î[Î÷·›o{ÛXñ½ï^1œùL§Í˜{G“ ;m½ä÷–«ë|÷˜›gç2O½N§cföÎ/­ïVÛ‘I'ïcט̻NÀê<Ýõöèj©ù¶§{.>Iò•êGI8ûl¨a \ù˜ôNWÞóm{ByöIµç#fÁÇmäòÆ×âï=_^!{còK×Þ÷¾^³¼õ<…‹è|dwšÏ:›·‹¬Ú<Û¶_XÙ¶Ø´¤Ë´h½îÆô6õe»Ý“6Ö^«ïc;ëßRß_xÛϰÖÖôÞÄ5)›kMjooo&Ú»SÔo{hTû{Þ’Ò3’Ðy çÕ/eÖÏ‹{¦M¨ºL’ÃmtD†@#„"¬X¤@‘`U@"4âL&êTÚbe'lªXzEFÞÒRN‰„ØÑfôEõãçb>yá}Œ#•UûѹÛÞÛÞGÚw?[ÊÞßoxcÆnÚ˶m¥‘¸·^O'‰>M¦Ÿ‘}o#©ö}ï{Ù÷±‘‘=¥q·¯"ïo½>=•ßXÞ5´ëfнYwa*v¤ÞǵëÉño{>òç¶{ϰøŒkd]·6*Ög}õ_+/›ÛÐÞœ¿Qâï¼›½÷Ó†=‹gTXµ)[„äP¨Óp°N3Y()d@A@¸ÓU *ê–$j-dΔ÷Þôßbǵï}ïY…žš·Ú|fñìftŒe#j={ïï›|K˜YP0A}VXnÙ‘B!EQ!‚ç®Þ´}ïՇç½¼TáòúåÒTÊ7¶ž#lŽ7¼.1ojÍéÛ°¾_^}õ|ßjwÍçÆ,Ó¶Y2áÓn\:·ÞÛÆKNûÅî|IÞÞ}§/¯óµ®Ó±ˆ³ç e£:Œ( DºH†äÓ ¬8á…I 0ÄÌQ‚ú1 Œ–Š%„*5>ßcÙõy< Œ”‚eçmi0¹sVÉ©'b,°æÖé”ueõçXß2=žrß&ñE^Å2И÷»ÃÖ¼m˾}¯#´êÞן«)ƒ·YêµZœo 5°˜Öõz}ozÑ´0ê×&uk±¤¼é¬D9ÓWF~ÞwR¥¾X‹[1 Þre­NÂ¥žŸ{{–ñ{g¼ëÆÛxŒø­æÙæ!­Ûl.ˆ[×·5³vcÝãÃ¥Lb7©7«FÛ-8öÛ—Ñïo{¶Ú’6Û¼ÚûèÌù¬=ži¡Ê5&lĤ… |ù¡Iw²Ú؋ѬûÛÔØÛyó]„vbÆq½îÞE$Šäõ²•-­VÖvw“v"=¢] ïZ÷—Ú«xÞ¯=°ÚO{o.ÌlÞ÷¼¯­‹E¦l°¯›*ÎÚóÞ3˜Þ5N,;ÞÞcÖ=ÆOx[ÎÕì*>‹ÃæÑYM?>E“2y÷£Ç¶{Ðì›Þªr^.O(,ú®ËI&Û=†÷³çƳ,Ù´bvöÓíoIîô m³í á¸ÑçÐW"̳¾¾÷¾ì†Ë½—Ãæçrf‡×·ow³óòao,‘²+9?]ævñBZO{Ô— |^[°[zÚõ¶Ä¢’kyk {9³½6÷²i9¢r®<Ío4£¨ƒp!h¶Û ™a¸k…Ö¶K5¬ëm„~¥}»Én¹f›8¶Ÿ;Ó>DÒú+Û ½¼Q½ì·¶ÃÖ±P›:h˜Sɽíæ׊¨ÁaÆçĹÛÛE’¼âØÌeÑííæËD.ÎÕÖϽoqNö÷Ÿ\šòe¼eõB‘âO>ñ{ÞÝ{Ù¼)¨EÝŒkÑâ_CêöhÚ\Ú}ì¼§½=»/›Þ7k*2‚‘”@2$ @âŒÆé82êÆÎJl®×Þ½è÷|›QëÂgͽ²dÔ¾÷—ñ+ŸPìdªÖd¶vEÍíä÷½ï{ĶUícŸ1—·5§lç Û{oQí„a·´$™<{Îé66 Ô•¼†|Kí¦‹65§vÆÛzÚô%Š1Œ„FÍ›^smíûN¹Bf¨Ú¡Ê¼î³6§6ÄhyÉç²›Âm F¤ekså÷œEÍÊÅ9õ¶kÝíxóã×—ÝkBšÈjLg/E‹(gQµ›]žÓ—%Óçm¶Q¦òy\ø··¼ÇŠ jÅ5z÷„{ÖÐùñæ»×hÂ9l®[ª›&qtÌí“2j'&¡Lå6ÚŒXJ²bN7Ÿ:ε&êΔtCk.s¬cƽϲ48[lõ‹:ÞÒû“Ö¶°ŒN³'½vi´é–äű¥ØŒ[Xh²,GÀ¡Põ>÷•ô*3áYÓï%Zô— Ëá¸[P—ÞÞ«¶Eé{5ïODûKïy2>Ñæ÷•6Ié jj†"UfÆD›{ÛÓKxÞ½àð›i[1iÇ©ÞÌ«ï,V>¹¬ÈãÞÞ<±ìlm´»o^¶*/qç=éÏ­;½“gѼ[Ä:öi/oo{Ä>ÞÙžVö3¶ÅcÀqù¿–YüþKø[Êxþ„_ÉõΩÚ~Hü}kœûo‹Æ»¾É8{Û6Ï£:4X,`²RDIé0þ¼l“¬ä’ºbê9ûtÅ‚Šr=ƒ:·ÄÛU÷.$£ÀƒÊ`,•6¸!_‹ãÈ·‚&8sd"BhG€ðaƒŸ3áäÓÉÚ¯ÎóbÂ:ˆøfgYœÌ©B¸bääÌácuNcqC«)ÇNÞDŒ/2E§'* ƒMû[†”h1 è•«FrãÃóp„³lðg‰l$™KWÊ…y·-Ôd*°ýês2âM@J÷~K„{o“´ð4-ÎÓÍÌabãj †‚þüáëòsw˜¤T0ÁîýãHiíñÞ)œÚÅ/Én=fe!å‚ÎËp÷jïÞ×0¬Lí8*´.”»‘òx4¦Ü}žê“u†m$ºýÕÓ䯺Üd#YÀ‚$êX‘¦H@"#œ…]/œb·†“é7 6QiZJ²Jâ¹»ñøý ËׇμöÖ­­¦×ÚD¢ŸáŒÇdzøX¹Ì(ÔÕŽXç8ì²‹³¨mÝÙe¶îì®+L¦ÛdÙŠ¬è®‡úéÿÐþ‘Ò?ã?æ^éÀÿ’×[ùçûpçcÖúþOO8 ?õ pÿÂfþœÐdÎôòµæ‚b R§ýpî TsR2” ¼ÍBnhò(XÌIˆÚpR‘iY5Y&…ˆ›ihY”†á13v¤"±3½¤#-Û3¬¢oBj X\ÜÔY#|^Spxœ('÷-9{ ã'*Å*®¡"T8¥<¤»ZOZe!ë³`3`»Ðmg¨¨TðN)8y$;ÆÇl^PÿœO DA0¦¶k–W÷T²Š 0ÄgW¾.®I´ÃF3¤§X±Éà´¶ªU7 h4ÅÆ¶i›Nðt¶²ÿöKY^T)ÝmrιƶÕàŒÃl(Y+9é <ÒºRì˜hZ6#ÛCÚ õ3‰­@¶˜Ô*û'“¥'1’ñ¤¶ QM¥Å„n­¡æ(yÝ(/"a­)=&!®åŠíý›ÀékÛRUe5ÛsÎÚï'h;k3Å¡ûwà#–摾›c\êoY; í²+½v`ÝÙ1é>6µef&œ®[Ú}BƒeïëÒ¹ë;_8L ¼¡¦›²Ðˆ ½y¾$Û,ú4•´ôP—u¥­ŒK°áë[<½ éc§{Œµ{­ ša7xî’Àèù¢Jùß•N¯¼R{yOÏTøNR×ÌvlRZ]*ÇxЭq3"é ;kÝgIsÚù¥ôöß!Þ-Åå¶¶´‚«éõIòû4ºúVʽOq˜Ë9ÚCÉm–*”Šxè¨Ô¤‹yÀb*Òޗ뤯‘Æäš9^už'½«mZ762dñY»È4¬ò–Æ®ë®Ô´ötkk¦ñÄfšDïkç&r1lM+]²Æ&äÄ ©Ýƒ¥DdC­q¦³–µ‚¼Â3'g²<ît­Š ’w  ”Z®­+±Ü%°yÇl3Jæ5ýж 1½zOÒγˆÙ½iÒ0pûF¿£×¹•™R^—ŠD¤®'YyiÔÀxëixo[Q¦A–À]IÑ\A oÛN©ÅœG7.£møŸÂRì/*=ЦY× Î XÀÓÓxÍ+Rs3ûf­…H†Ê hpp!FÂåše Ÿ‡s“-Ô0Y1Àe&WxPãbZHÂè’X±Ë[Me|º¨ç%:Î7sg)º…myë0è8ЊzJÃ43¡2\ì^5¤BQHuªÍ óš*‰+•å½dóŸëF˜$;§4†Š Æ©‹ØÂÚ¼Úü Zåï‚iÐX!¦Ï©šKDWC_HZìø´NõŸ»Ø~2Ið¼Éç¿Ûî÷‰ù-ñˆ&íährwP% ÊR6ƒV©¸¡Z"Ÿ·âs¤zéù) Â…\ç$x‚W¶b{ƒx´¼æ*F³ o¥×‰agró-*iÜÞ¼íï}óŸG™“…ã#>6‡àP°‰Šp”㈗!„{äôøwJV-¢a#3Õ ÕöIîo9œ<"A?aÁÜ=ÃÞ§Y™©Œî£éqü9=÷}ò9ëÝàݰIi3d†=æQ Ææ‹!â‘N‰™¡0Œe$zÈm¶œÄ%(õX_ŒÍOœ³ì9½Ðâñ’Oqu5›}”ÁG8ሗ‘•þ¬ÆA&Òúògãöö—ïÛèKåïü¾C÷õ/‚~óú~‹ö’5‡È½ÿ*þtÆ¿/™I¥Ûâÿ¿àJˆ¯Å#áïýÿïN“§ï®úwúuõ§ŸãÝùþ;7QýþçòõßÏáúmóðŸ/ÄtÒþçøyü:þïñŸÖ>±/Ü}ÃÛòúúxöÔz}-ùx÷k§ߦ¿e ~BŸì?½¿^Åúèmõõè=ÿ§§ÜA=žíôäŸéìÞ8üÛ£{´özq?3ºûú)ªõ·Uªf³Dò‹0*'3ä—«Bõ8æ¾|;{Í#Éh/M­éGjtY0”)9ÚÏÁß9³ïÑ[ß')Åâï=öž4UÄ4¶h3|ê_oÑúäðÔÜŠ”H£Î>îsÚÜ›}ùF—߬îwœï·L„ˆ$ÎÌK©Jö”5Oß^èØ½ ’€SÌ^S–·”ô»«²hŠ' `62Zmm¤wÀZª§U1ßEèýUêãÖ=$ø¯ƒ T½üÛzËzâ»2¨jzrÐ~ƒÓŸ ½=Ívž^^á(Xyx9)g©6´7£¨AU®é5(ºšžÃƒ¶3žì™Ï›³žÂ‚ð.g=“…ç@”\ƒˆÎz˜d$žžAg»9éÌ$ô÷UÒI ¦q®^´™™U.{!ž—²@$ȧdÊ&s!ŸÐ|÷>¼žI è2rEž5ªEg²w‘eìô<5ܽ>{>{ÎIÉ·»zLóëÉ}íÇ©z{È¢†É¡“2^³ÆT\çÃ’sçŸ]œ9Ûp/OȲ¼„Š((»\.õÞדgº+onž VBÑzñí»ÏÏVÈؼù9|<ûbs„8Ïrð0ÊV+¶¡»l®[y6å±ÛV¶vÆíË–ì‡*wœ³;vmC+lݘíƒv3¶vÛ°äÍG,òy(¦yfíŽyÀòܱå›9m»a¼ƒCjÊ5m…3Ï&ÝŽÃo-›‘¼š™È¬Yå™›–7,Õ³Ve)»aAÙ…1å³nÃ<³Ëcg-‡måL¬ÃrvÛ;0ÕT­”]é2ëʶÙØj¡[H§zRæ[))sªºÔ¤ÔrÛf¬XQ˱»y‘™Ûly6£o mä6òÛ)™ËäÌvv̬¬ÉWXŠ¨æ¢®j[FÅwœÑu®b6²&×5s+kÈaË›–lVØjÆS1ÛcV![yc°Û„w¥NjKš—2ïEÞ¤.ñ\ÂsQNðتÚ›u¦Ñ.jÔWzK˜waÖ]c¼iJÙ.`«™l¥]âu‘w—2 »Ð[&Ô]ãXb¶6ìÕ›V<¶¡ËÞJ»Ä¶AÍ$Ø«eNeêb;È ½!#jW5Ì(ÙQsœ'1,±å¼¶¶S6v1·/%M—2K›h‘;ÇX“¬;Õ'0C¬ªëUÖ»×4«hŽ`»Ò›Nôw«®ºÝ#Xb¶Æò(Ü;Ʀm»(æUsIVÄ—YTW1\ÇZQÖë ¶%̦ÒM’®a̲'Y]âiW{½3VìÝY¶vÛ7lݘÙÈòØ9l<³XQF×YÒ6‡4Kdm˜›nÌܹç0òÞ@yl­¦Õs6¨Ø¥lbæ‡5\кÎ÷5Ö‰²zR¶s;Û®EN´ ­T;ÄEÌE²—ZVÁ[;É-„æ ÓË[7–c¡Ûs¼rrnLyVÕƒP£“9‘ŽL¡ÞC&C» ”ÇIÙ53jÛ<¶¦r7aË;Þ^q”lyéN2xí]Ò¹8îÏ6޵¬¹ŠæM‹g5'4ëfsœÃ–;mœB±»6åA©Ž[9B³˜gyNUÇÖ'…D¶Ä½­g"\“±›Š1¹ßEŠó ‰QR˲LýëUÑìæÊê†Î6¡uì¥7ŠkÏ×¶#WœO[wœà¹6”}R\¢ªl{Äû0õÐç¤OkÕ¬é<"¾¾O/Þ~òüû@¼ý¶ú2O)±±ç>×Ýw›{Xñ¡tYuK5doê{Âj/ ÞÛÉçÛJ5;P­kaS ROV1Ô‘¤ƒ2ÚHÚLHIŒµù½±eááAO ¬Ü“‚4ðåNiNµ"…l“\x:êêðõE;Âw¹Ì”m/Çct§µ¦pöÆÝs0½±ˆZ5²æs&Öäíˆ\ä%ç•NÍ:°/t„‚ídžé™ã¶¬ìNB±JÈÊÌå·&äÎEm»Î ¹Æ£‚ëU° h¨®jEÍ#j¥°”¶¨QÌ)lŠÚs ݘܰgl3³mF®¨ºì®;ÇÉEÜ[lìŽ"ó]Ë*p¼g¤3<.Ðdå&N3ß›÷Éùâ~ÿø–Ý ~ge6ǯ4l+ ¢ÚAû_5×2½|Š”7'†i¬Z›G2<Ø8òæC‡þõ‡³Ÿ«_zIªt“íPq¢Ž…˜Æ+¨<Éä˪ïÙWíœ .Þö‚íâîÏOí›êáSœS´±¢s9m=ãÉ’”eÖæ@V'ŒÍóMæfåß:ï2o忸^C^ù÷b=f6q*‹)&Órt–6Ö1N3÷ -^L)èо`Ó<ž³—0’q1#dD†'7œ»… M§ ‚A@M¬>ž¾‘ò=ûø|zõ}ùùמ‡/&ïÅäñz5æÕm^—9¿@• õd…þpßÒÜ6Ç5¬ÙµËlmÇI(…O<Ì, ÄM ‚]t_Íú‡ù¿_Êÿ£ùoÿ†îåûpç‰zíJ»ç}¡¹ä‡|ñ–Ìà\Ùß/e«Í=ÌÏËæ ÿ/øl²òŸô-ü™ÿáv@Q{â(ئ–q9ØÊqK#,!±\r䪨Ø!kRS’hùA‰Jø"´…Üñ#R£¥¼Šå4²Ýlï,U&kÝ'þhÄààê0Ó ˜8µŸFŠNHAœ«†‰aªF+{•âK[ Ì¢—:Åt¬[ö[ÐXÏL%æÌ¥ÿf4,çMLÍ JöºÖ”+æ¶ÖöºD³¤ÿÝØóÿJm½øÛ:R&yÀÖèT“[¥,uÛ¯MÿÉ/”i×™ãz(`œb’C`0Ö‰R»éÒ½wמ£(«"ùiÏ]&Ó}k¸k¬¸ìR냳ãM‡‚Îw ªž”EÇZÝzÖ¤é·8\/ø—Z­8ÿ+ß¶:oàW†Åß‘7.’Ýãp€GBÛ.qä]5Dõ“RÜé®WG¸o¿ñéDÓkSTmÊb– Ï4=õ8I€™Ÿ÷íÀ0¹(pg¹€0 •uTØø¢ù1~•žmŒRÖ}¶PÙ%jz+çE5ÆÃdæó5ë_›Øå¯2 yódËÈúÛy‚A1ÍøéZikõK ‡²Äâ{tá_}kÚ¶¡÷>‘Ó^Ù—çlï‹×ON…̸”TÕ{nãٻόïùµK™ŽyÅÇÆúб‡èm~¼ôˆÓ…ðùlM\À®Éƒeúóþ>1ž¾±Š÷n}1|ŒIõ‘>8œãÌöÌíÂé@by4ÞPS­›|âu½C'ccƱ|7‡–53·µÉMÒƒ_Rõþ;m¾(v3õlG¦ûh 2†èõÝ)Åiä>ïvxã²ùñ¿u û÷Ix¢¾%­èÝú·|odäR²5šÚ»ÊÅÝOJÆw½_e¯UŸ¤T7ãšx^tknÂÅÕ”.m®íлgÛF­»Z–kÔiã£ïÉïÚÜsÞy·®HÐ)ºWDèºë d'¯¹,¯ AÇ,fB6"™ú©tŒ`}œßLµ…=—í»³ ö»ñ+ù‘Wµ»-OÕl+ à}Ø×V ¦axØ‘¼Üñ,·„ØO«/œ™¤"•k— x#`Uàí7LÙM#¢Ey–*×àÍJ²wÉâVÙä±A–íÛD¿²=ý$X•)œÖzG1©së¶6½e¡F:QøIy¯[2é¶ /¾]§)iÖ”³Åö #Ù>èÔ!ÌŒâ¨4s?œx/;œ }Nù…«_ã<>– :O„‘Û§Ë‹×~½szc}w/wrœ?àÇéfv~Æ!é¬ žßŽŸ™EîûñyÕìü5éø9Ý}ß,mƒó¿E^°Ì^Š®z#¶qGë&óâå€ýñÜsãC›ñIü ¹ïã÷7y¬c}|97ÂÙûÚECÛ[Æ;ö•_1ó_Õúÿ«øâŸgØ_È¿uþ_§­=ì—ú¯çõo§æØƒ¯Ëê?9ýXÆ¿O¢|þ??gÇáûz~ ·ë®¡o·»—ãÙßj]¼ýíúü íòÓMS4p—íÛŸ¬ïñý{å=ÿŽ~^µþO·Åºÿ/Ïù}§?·ëî÷0[ÝíÇcJýý¿ ý¼ýѳRýwÇÙOáömúø¯€O—éíÞiò÷íÛLþ1·p¿ßÌ3ÊïòûïéþϧòûiÛ]DAK޼ûXöù»ñß©ö “bìÑ-kWµà§$O6“3·¿öOÏF¹Tt¯]ɪb3 (U!%U‘<z<)êku­x;U=ì€Ï{ÎD Iä%buâm¢Å2>69bÉÉð=ê&ûã3½îŸ¤wÛ0“É»ÙÙ|ÝæÀ¼„Goo™ƒpçHwç/}ó›NÎUæä{çqÎ<Í;<à+®Îk•‹5©©S¤Ù%A9—’[Û¬ŽðÒ,ˆÖm3j%Šõ’– Pjœ‰Þ€T¤•EÈ&.¥!J|Ê‘ŠR­Eƕƕv‰“ŠÍÅrSA}o¥žfÒ3 ¢½ª$nU–¤†E+R"o±Wž?'—Íæö{ÏäÞ/¬ç}ø>‹Áñ<~©?Ž[RÚFÑl-’­”ÙllUj°ըÅK Sj…jÛQ«m[j2•[§sÈ]EÇqÜŠ¥¬Ò¬ÔÕ¨–- 'D$Ewt9ÅÉÔD#¥!ÇqÜBDuĈ\pH“àçQÅÇ EÀDQr qt„@œ¤DŽrH88á‡@EÉRqJrD§N\ç8rPtœœŽHr¡rqÎÄrIrƒ‰Ç"t‰998’ŽEGâ8)É)"¢$RNAâA8„$„ç:t8%Àˆ‰.w E' B;‡"A(ˆ‚’Š9 %‚œ)ÑH'rE9Î$éJ@‰Á¥ÄAB‘É':R9!áÉND@¡É)Á(¡ÂNމÇ)8'98è ãŠBBI$D”ºpè@åsŽrps§8G9"$‚8r!ŽÈE8芈ŽJ"$‰Ê¹×E$¸Ž‚C‡qÁÝs É%ÒuPÕ- J-*™ùÙ™U×£^€â#àûŸ4¼Ö™âó¾O5é$mc]ÝüWe½C®}íé$÷ócçxµtŒ™[‚ª;‘HB1¸ý“ Âã!V(1H‰Å0\%äëê³1F_Ì+3ê3&ñjÄРòá°°kn<·1Ÿ6ëwšS.ì\Ï5†ûàpÞ Á™Æ„ ÇZ%Þ Í³ Z7Àh,óV„+ÒWЏúã1%:õã¢|}Ãö”פ¯{…¿¾8jmì½Ê½x‰‹Íís<—ƒÜS«2з=p¥ËÕ7›FwÉ3™À‚9Õ}¸IïnbךFŸävIðA:I\7CïtfÇ{:Ú¨‡iª`îgÁlœƒs4adTÂêX49‹1õm9o–œcç‚"ânÈ|» Ô¢…¡‰žrÏ3IŠëá†Éغ4¤>YlÉN\Í9Š"N5«i!@¬•мÊó£“!‰ª™’–‚‚`Lgä#Acòe‘š‰h_.š&–ÓâÖ¿/—!ôúëÓEN9>¿çž‰’D‚ ”' G.G"C§'õGôÒ™é×gÕÍ DÑmg¶¸s(ººOÓ×’U=ll]…ºk³•3™â}ëW™šu¡yfx_Pˆù=‹ß§}ãk‘>{Ö1ó ›#ÎŽ†bó9V"¨Î2«´“£9(í¡uTL…{Óåæ|ýïrðŸzSE$2*ôÓB¥ô§®v=æ{8†DØuÛ¦FnõcÙšŽv+5m’&ÖËÔ/Lêq ’•N"Érˆd‰r§eLša¬¨ª&,mºz©³N$)-O>cä÷ÑçFÍŠÊŠ™%^Y1Hõ Ô.»`QT3 –ZXƒWeBJ¦åå±–Bfý ÏÅrh»ätgÏKϼmµ=‡0±N»aRåˆa EãFÔQP¨§•Óí)®3V*’È=C1] u$=¨G”5#§[a5™1"FMF ØSÆÍm»ìgÉ׬ŠéW4”ÈY­~|Þ×E °l:•³yÔzå.…IeTeF5ÖÛžÅr+$½[cs´äº6Û2mgêÚC0 Î@$®ìSÿYCÊ…eþ²z^íø¥ér² ɬ¤d/ Ó”ަÃHŒIå`ŽE`5J‘JAç8t­F¢8J:(ïP½q1@D¸µ‡ÊC IMåýµPi”Šz^¬ÎÆb…!I°.‹ýÔ¡†sX²ZÄVÒ’@*WûuFQ²SYØåý×JdFõ¤ªC’× •d6Åä÷µÐb'`ÄØKLi&¥ruK™²j«üOJ B©¹ÝñL^óí§fN—[¨°r&¸4äR¸Û/…M‡d¬h8cs‹¤³-®aAQÅçb­Tˆÿ¼Ë|Q*FôÜ:`í=n¢×]BjÙ<Àà-©f|¯F-˜Ë˜cÔ‹AÞyÿÒ‹±X«·O¯p›@(ã1{–%®ª &U»çíÆ‹fReTƲé¶: t}ôs°äxÖÛ^œÆ´Õw\Küu£ó}im\¾¨¡+5æ6g;2 kžüÞòì9:K±D|ŠQFˆÔ^Ù4þ<áWªTámƒngKbÍ*×2JíÛ™\Z›ÖÏøèAß­!oÎKN¢´ ¼0ô±Ra07¤-‰T¢×âDŠáJÖm„ m®›ÛW¶¯×Uœèˆ2¾4µ[¶'¯/‹ì\mië:êÀÁ+ cº:¼ÊÔ[¥ë…bƒt-˜íAêgbztÕ¦¡Çý)¤WÍ5âòÔñ2kcüýa­¼Ð1Àwó¾òíÔµ+my/§}‚\7m“¼í1Z¥÷×+%[v›”ëJó]âs-wï¥ôg¢m”/=ŠmYCJ5§¯kc´åâTñ„2Ô8>1‹Šãr°sÓe‚ V˜ëô@ô>bºxØ©Uïçëà:BKœÍ©o2Æ}E­Ñzd¶ ö?4ñ^”ÍÆ‚þP^%Ñ-áƒm"Nù×jR »¯Qäò~¯S¢v=Þxi¥0jTó÷#ã479u ¥»¿(W [Í`ÿ€î.)æ!.ïtаwpuä+¦—yö¦Ø¦ROxûõnødÜ¡+2&±©w­Öüwt´é©×Q÷ÐæTˆ m-`†=ŒÄiüÕ©Ì-0Úmã ÉŸMïÛzù¤ÏÙp¯J[GÚvY.tæe¯”íâY ûë²A߸©ù•;õ Â:gGËÔ0a½žFûP‹`pl£Po†"Äbw¬å²{µxCñˆàÛ]'Ó)R{ìmUä4· [àŸÈq¿ZÉc˜÷cXJZ:Ü p,^ñ`ƒèïQYEªx§ëRiÆ)žÅjˆ&ògÅ7Ÿ®-Õ°cu;×[½Í™Î0¹5T°³»Z^^š…Îy—oÊÛŽÏ,OU‰U¨:fœ¶Ô|ÉÄ*º¶a.S¶Ñ2 Ö »×@¦ntö~ªµ) J÷k”’XﻂàÄsx»‘êÔkLKн—³ŸJÙ§&Y–Am©ªÒ%ª=u®”EM&”­Íñ—±N«<àÀž ôªÚÎݱq¼/›²—ï&2Hˆª]5Ó4MÝ/iîúÆëX¶oÅtß ŠÒgIžÕE"Ôë MXF_¹SJ2Nç'Ó±+áƒm#=äü1³ôjBŒœ(ð<>6©¾ô CÀI$äR2•Zfu“dsОð1£ $Ζ±Ñ4Aa«©‹Iº9(ÊrSLÂù(ÏdÈœòyrù–/"+Öt3;hó)¬d‚‡¾j¡1i^€ì,C‚·C4cI ¤¢„€Ù*÷%êͼ¼K ôëÜ<×>ÿŒ½gËjåÝÒ.‡eoº™%#¢ŒkÝíMKÛÅ…ƒ”× üb¡wò©‰€ä€JµV¸?ð¡’ JsªÉìue&;ÀX‚ÆH d>¶©„·y¨Ãïש˜ˆø°‹ïôDª–8C ¨çä“+u»&K1Ó–tã ‘,-﹃מæ>wr]skfRëýȹuÎsZÑ„$Ï´=ñÝÞ¼K²¨8MdâîŽ1r;ÇÍDÒjÝ"Á1Ë*t…« Ë ¹f(ìè&×I6õ“ ×J2©*®FŽ\rņ6\d¦Wk#ýOÇãÁý>…ðoÛçøŸÛåJþ>æ¥þV®¾ÿ…~á÷ãô×äÿ?¯Ûõè…÷3é÷û}~à%"ýëóüÿ/oÏÅ?>Ýÿ-¹éÏÏÅl?ŽÊ§O‡·ñˆö}ôüýµ¯³Õ?ÓòúÓ«ý|}õóo?û,Yü¿*ûþß`_ˆŸí×íO=m÷úkØKÏή~Ÿ]<øÔ>?O„ºuÚ¥ÕÿqÓ¯lŽŸ|m?X!æÃòq;ŽI â\äŽp…QJpIHBC¸^}wžëÀA¹È@ ¹8sœNp'8ÁÓ¤ã’ã‰9Ü*' Éq*D8œ‚q܉AÑRDDöžj#òÄ<ÿÂkøÉµtÞKE^¹jIŒµùl«Ë½^Öû5éô&½ µ®”ZòÃX@!0²)º†KD©~=ÆJÝËJ» 1cnX Ä© H®2x¦k{ÝJ*ŸS§R+³.l 5€Á¥e“MÓHP„7ìY Ôô®ÎL y Lþ#œó›Åß…uÃAÞ¯L´-PåLõ«XÞZ;!‘Ÿ·¾# â¾y¯aOªÜE²:ss¿R‡Ì'®Ä@‘‘Üñõ‡Ì|:kx²p,ú¤¤$&a]ìê½>ã‰!Ï«×ïb§˜³¶5g8¯GÑŒñSÁEÖü Òõ=v¦ÂÜ\÷ê8»ï¾ÔU /!‹ ¸Ùt±P 5z!ûAM/Å®&,$îd º"^ xÞgP¡•[ù6Ô›+‘Íü7;,^4×Ó D­= L0Tâ G"~í–±ø NP”¥ 5§}A°ÏD  :,dp*a3#R¥V!ª0þA¤\å[ÕÞ¼ä’ âptEӉʺtà‡DQÜtä‡ND’ޡĹÁDIE"‰D$IÜwD::AÝÐ!‘ÎN"r/2¯3›Â)Ä\qÁwtHœSˆã’‡9Ñ8å‡pqÅÜ¥!ŽèîœpuEqqÁÝ%JÒ•­TµU¬–ß뙪ºb+Žâ祜¸ä£¤î9Èêw:S‘ÎTA8éE"."Ф#œq#¸wÒ“Šœ¸Šâ¨çN€I!É'E”¢“Š(#ª(''I'DC§'_üÅd™Mga¥˜i­ÿÿÿÿÿÿÿÿÿÿà€ ÀD ƒ˜ $‘µµ…‰{ï•õ(ÞêªP}"%AAE  ¢€¥$ª ©   P QSX¢‘ H%J‘*QHTJP©(%J (…T)¥%U)E I$ ¢©AT¤Š*’PE ·ÖÄ;pð«Ÿ3çQÑU[¼”lçÕòÛR4;±r¶me5­McvÝk5³i¶ÝÝÚÝtêÍv˦ÒÖç*ljVΜ¨åM&Å­M¶ÒÚ’ÝÃŽÕ…Ve¶¶³+nW7f‰Ý¶íÖ´MÛ§vënÚi¶ÜéÔÕ©ë¯-SCy´k» šåÛ(t ÐtZ( ::h QèdöÀ  Ø€w`Õ4h5AÐåA@ Uh ÑééÑ ¡ï0>€&øöš „w€>”€ @ž¾Ù¶µ¨+ÛŒ€$íuQôPŠˆ%Q$¨¡IT¨B* ¤¡J$¢QT{xôŸñŸD‰MÞR€PPÀ‡Þ‹¯žíUË}™{"…Rï€õU(P 0@@\€ÁÐЧøš‚ LŒ 5?Tö¦¦Ú›MQ±@@§èHDI&J)ê{TÈ G´ôOD£õ {U%IH¡ #@4§êRU z€F)¡B…JL‰ê4É2b !¦ÐP4ŠSÈ Ê`BIRE€€PD_h@AÿYQ¥zA3,(iB Z (Э;“­9 Τ¸Î‹’Žäº’.⋎æj¬Ì´»’–„‰+JVaªB:YvÚÛsZˆˆDâfË+S‘ÆwEeÉnBÑ[–›šÃhâ‹;YˆÛt“¥Hn“qtÑ­iÔSV4µ–ØŠÕŠÍk:Àm[[E˜‹#9­ªÔ”³ jØhÆM+DÊ•4‰6µ•«ªgUC®…qÛv­kj1º€ÒSliÿ¡öÿl}*† aº¿ó×øXHßîùú­¡%ËîŠGú‚ÓïC—ѱ¢à?O²ãÄŽ-^ N( ”•P)5уzɺ|Ñ_Zd«j¦Í…–V¥„’:DÑMÊ唕cýŸøü¨s )à,-6‹ujÇF˜;- \ N,™ÎÇz‚Κ«VÏS§…Uˈ˜EUc³#ž“cbL>”*{>‰&40Aíu„Óû@Ÿ´Î ²_{²bˆ·}s’ÞM¦-C4Ja´ŠM¸²Æ5G &?®Èì°³ ÅYÐRg.í¹+û\¸%TÀnšAOkܘ(/J$¬ šáºQT(ReYt`ux@œ ³Þ$Ó \Ù$(&BMQLo5¾¬?M¢Ö*2Sœ êÕ/Ø\Ícˆ5RD“b1céQ£š GÌaÓgèzßž" ¥¢Fkl©Ò³ó$‘à·vßÚ|ß6Ž‘^LÁ–zÝg^°œRgVœ9Þ©ÕÍcǃÕî]WV®°c™èJŒhÅÚÓ‚®ý-ºWdÊDJ Åcz.ÒÛM±º[?.ô§o½fã›Ê.°nQâUzI6s%Qj]Wm¬g'•ºÝ³{s©šó„…muÅXJÝPçŒbM“ÃgQŒ-]ËݸŒa­u*ájšéB ÷§3ʱ-ç»PÓ€ Ä•¦¸ŒóLQØRšÓFBøoJ72°eÌuI šÉº½§CÇ×2i¦ìëgÓ ft2ÆÍ=ŽÛ²«Ú5%Ï~´Ò€rÌÒMUóÍ•“t”úƑڌ– ”KˆˆŽW5¹N¬É•H]šYÎT˜zÕÕfóS§¼Q.6Ûý“fR>ÊÎ:ÇB²3á|( e6°›!àšÆP¶ìnÆì…†a˜BNÙmI*Üø»uÈ\4‚/._…ï—BhJš»ÄÛÓ»L\|Úy-Ÿ§\·_ jüo¾¾`V.‚ÏéÒô]ïÏm0­¬þiéÙ½RÖ'ä†jãjÒùÕÁ×îÕoÕ4UN,=2Í Š<„ß /QÒ·äô£7æÁ-Àq;ïó³^ɤä©9úóÙ²>¶ã+¨lþ—E/a?1ìÚË©e‹Æ‘´†ûn:Éè7Ûù²*ʸAn¬¬ûŸú_=šÈ°!y]Hìs: Øy“{` þ:íÜõ͸ÉÛYh.ÒSõó§˜Í"P~Èx<8Ó[¨u2¥ôw …;ïPkx´ƒvm†Ž5–·ñiœ?¹fድž|Ó¶”s9zY çwÖ;N’¿¼ç­"¾ Í|·£ãÁk 2ßY¿}í!…úcºÚ;m@Æ‚ÝØ5G,vì¸ØSÂzù;á®ÕX³4aA½“®nèi/‘õbjÚ^ ¸øæðc6|²gwÓÓ(;äõòÍfa8iTscÇ„cxým²V{é°k½.ÒÞ‚ :·;ÏÎñv“Â[FÃO”ë†Å«}º¿’Ó?ìgšû; —ÔΩ@´ÙW«k…¼Ë}šù¾®"ÌÍX¢âLhIÏ“N‰ÖþXu¨4NÃXΞ î²3y95œ”.[åÑÐ…¶IM‹»‹ýz¯V¬zò|g&¶že°ÆÅ{6.9ݺ›ÁÆ;Ú`¯­…šàq Bç#ŸnZú–â³ö‹'¶¹´U=*ÊœŒ˜ò,9f€hºÕÍb2e§A_ì¿ú E ˜…J¡‹Þ7¶Žë}tšCѦª¬¬šÂÄûÿØ÷·ŸsNao‡Îâ«rÜ/¢)ú”=b®…]©ñ[w¬ÇÌWðT‹qضjYdö§ÿkô~‘süQ©``¼sfÙ·Î÷„p›N¶ì¸ 5 Šh–)¸kXÕu›ÀŸVjØÙ­úü‡à¨.èãZ›LìGª“K"âÒ#cÞ°³Ø †Ñ†x£qjñBªŠ«¡·i‘¡ Þ~¸—ާ¯j°g3\µN¹¼‹T³šCýýA7 ¿¾Ô¾Ì²æá¹±z6…‡d3©?oX·%½‡‰>‹ENÖ°së …™4æT¥-w¾«( û¾¡µ¯”ê G´R—g êlµe^·ƒÚ»;‚gÆtd5©š”SIù›d”kö`Õ—f8vcá£V>Oœª§0”Å • „Irb ßS[ÜÅnQ\¹IÏ3ÞTp´˜@×M\»´ È‹Ü²EGKªo[&O\‰ *c ŸŽu  ’Õÿµ’ ±¯tÆh±D(&¦Í& š@?Á@­Pj52©ŒZÞ•'T“gOôqÝ¿Ùw©ÔêÃRò~~;O×ê¯776Ó4Ú¢"}zj’OhøeôG-ÍT(µ)a ¢)­ÔÊXêþIÿ/rÙçþs?\‹… 7ü7EóÄ-hµ–j”Pk•Th-ú™E¯QJF ÑâñToóu¦þ"sõxfçHÄqðýO¢ç>|ßÛ åb‹µ} ƒé¤$‹Ab1æÆ0ÆLE>M§ìÚ~¿ûø¯dê:7ÍæoÙãá›îD/·æv×óoÍã:âù’æÇ~îCŸ®¥wÕÛœßÍ™ƒßASQÞ(bHåÅPBÞUZã7AQBºçí™7Éú>ñ«æ[ô]·éófú·‰ûãW Ês"Íåg½çÉ;îÑÎîfâÇÈû¿éwë¼íp‹'mýšÅÒxs½k{žNűNï‚Îïç.î]Clî|ô}AÝ÷îwÅɱl®^ÜÙÓ~û÷v{¹¹N}WËwv4g_~O_ß¶o:¿}¯=—5<ìßœêç|ßß7Ù‰è+í|绲î-«'?ï6—™:s{“ŸʇïÎê g™Þ?Læ{¾WÌ_¶îb™/FxOâÆDGÜf9—ƒ™™Z­Ú»h¹²ð½«çž7Ï"—Â+Ïûýî{¿%i®ääžûÏv¶žçkqÅâÚ³<[oËç7ÅâãW»qWW¶ýï–  Šõë šò¦\mÉ—u4mYå{ dóÇWW81õ̽•ŶQã ê‹aóvUäÝλ@[FU[Žê8Ôm]Õn³dƒÜcÄè£v¢¸°CQ]\ÛÂâ³" Ì­Q`ÖîÉM«qúsœ5ßü†®Ç•›j¬×‘Iª(•ȲYÈNÄž­ìk­\¿ïÿÆÿ•î/¯¸>ÞU÷_ãßãéó~ßO| ä§Ñ>?«Ïè×6KyÇ,9.ÐýÚ•‘]jr™ôR,ÿÛãóúþÂ¥ |ÿdý¾@aó/”~Dˆµ×åçëøçåÏ~ßmCõöëõíÔºü÷íðøøûoðV¾dﯴ§ôéMÏÛ–Íùkí·Ûq÷û}2¾b»¿æ|%vPü7ýûùöï,~4Ø}߯¾îïOÞØüËæÎSÉöÛÖ_lýûõÏÓN 2MùA@å~ëüaüü~â¢ÑÈš¿ÒjZÁð6LgAWP˜‚FñT­­>?©çôîCBÒ1L­îzì~C31Â=ÝÓØæ|SÔþTD}Ô@@} OJ@(È  Î|î†fMXÕ± –´kL®L«-b[6ÑpŠËG%-šZP¶¤ifF²êÑ“0™Ë¹©–«Tšç #³rÈXm¦Ûv›:rm¶Æ2[†bC7ihrCZ5Ö!–ÖÒ06hJl´3\í3--r–e¸]95Õj©!2V¦hÈÔÍŽ¥¢â«‹œÛ9ÌÖÈÎYÂLå±fBm¶ÄFÛ[V2j¸)³)L×cªÐ§MºÒ4ÛNÕ±»™Û¢Ä–ªÍ.l‚N×VmbeÖXV×4ššÁ¥Wv®RÙŒK¢*êfË.,6ºu˜¨êÔU]ÔÚuÃ2èÕ¦fkW*ÖÊÙ Ö’6³7BM j³S–­PÒ­4qš´Ý i5š\˲¶cM­™©‹Qbš¬c­4¨cS&®ÕÕEmijc rµ¢–e1®Id»W[-ÖÒÑ¢ÆÒÂɘjÙJL܈“­]rËU×\³6£ ª:¸e®“YQÆ·dեʭ*4]†Û%9µœdIJvë åÓ58Úê«)M9Lºµ¬i¨Ñ†«’¥N–Íe2¬ÚëLÎ'\+ZË•Z ³³%‚°Å»q¸3 [&%‘šÙee•®ik¬eu05©˜v­§f²Ô…­V\ÃtÖÕ™SWU:ë™ÚU–®jÉ!J…i¬ÈÎë[;V©…šÊ¹FÊë jJ­ER-˜Ó¬×T¹Ëˆ¶rµMN™¬Æ„§UÙf¨Ê¤ZsU2,çS‡6¤°ä–ÙJVÜPXÛ·gjÓUmjÔæÖ…(s6Œf­l:)KZºY–*&²XãK1¦œ—W$Å¥QP»­aœÊÒÌA—Y3eÅÊílCa’쬙™s3±[Å»YY@Ù©+p­4í´eœí­ÎÚ3•T•–ÙK]H›4„µfµÎ³,«–ŽVM’K£*iªXÄÈ0K¸Õ§GJP˜KꫵØÛÈ$mÖæI6ª´gLfË&c•hKU•-(²å*ìIaLTU*¸¤»P2JS4mik“³"ÊÜâC.E†&2¶«Z[*ÚÕSQ¥ ÕÖ2ÊÖ9j²u­,Žs­¬ÔÖ®s1ÍU1kU˜ë¦"©™œ]c] ˆ[W® ¶´ˆ¤šµ–•.r溘¡²BšL[2â6Ò,[.Él‰ÚÛFÈê’VÈPÖ5 ìpì+ë;.Ìk–°ëXcv‡-l'BslË6,ÖÔ¤–lŨ“Q’§IU¦¶s¦ª²3j³&Xq‘;YsvìÉl‹sJg%°Ž””ÌgiÖEs«2V4f%ÊœØGY9¢Ü ÕÖjšµ­‘ƒ8#fI´s¶7mKU]d]—ŒÈÖXµZÝ»j¶m´°‰’t«e2L[M9Æ‘!“MSJ¬ÄÑ–V¦kKeu„¤ék¨ÊÆL¥.jæŠ%Ñj–¦§Z³3\ÅÙi®QÒµ¬k¢µØDÖè·e‘–±Ì¶’²Ö[˜h0ÄÓPš°˜“%–[\äêêíZX.C5t9¬ÓU™%rk\³™1vg]jâbë\°Õ­ UV–[:°ºuË[@Æ9XëRÍ“’Ñ¥«lÅ¥…£k²I­ÑËZ¶fvŒÊf¤ÄÑ®¬­9Œ©Z¤l‘lJÖÙ-lLÜ‹¤ª¨µ’“­”ìåsIÁjÙ —¦¥¬j'6ÂÊÖ¢vÚ#kAK697fŽr2Ú)¬@å–⪗5sDÛ]š mX\Íe[UŠJµ‚4ÇUÖ¬†¦¶Kjé2YÚØ–¨ÓDÖmR«K–Š–µb¬›K,Â*3F5«)+l8J]fsUuÐë6.´eV­CIMGZ«\¶Z¹ËTr³´N2ÓYL¡­ZPÌÅtë)ªV£eV²4ÙÍŽkY1•+DgV­Zг.²IÚ 5ªY­uÖÓe©‘3¦mbÚÌ+$Ͳ˜æGi#6X+©$êË™®µ†3TZš CK5­ZlId‘eu…¦Œé*ë4 )Å-U’œYi0 ÀÔNMjjºfE 6³4®Æs*ÙeÙ%Ö2º“U®A¦²k)veaõ#T”iÐå¡SIV0š´gj»ZÖ&Mi6Ãc3i"ݵm&MXÓ6µ—:³µÖšVeÖ²VYÄX™ŠØf¸ÎÉÙaŠ&,Æ]YÖ³Uv³•eÈV˜+35s)l™³.„ÚÊšÓ«WZqµišÇIƒ©£&®’…«T¬E,elÖŽÂVÒmãYjÌêZ«µZf)X¦W]i—T5H6¶“]BÔ2V“VÉ5sY dÛJ¡g(Z%šYͳckµ¥·k 3N Y¶¸+RKk…¶@Êéʪ֭cDÔí6ØÆÍ&Ñ›BY+›iMK•!¤èÊMvkUe…šGf3Yª¥­5C’,Å2Ö¦X®´¤+[µÆXâ ­l;m­µe‹0Ë¡Ij©œ2µÑb4°Îã5¬[np­- 3;H™MÉhÌÑÇ‚P)h¤<ˆ€¾DZîºï«ñE~,™’Ö°ËB£;+9ÔÇTÊ™5U–ÕBÉ iuÖZæ­8rêd%šÈgW]1f¶m )´…­‹mйœiË.»Zë–ÃM•šb·R•iÊikF¢…V†­$$­TͦS5›Š‘#jÛã, 䳪°³äÕ«™‹4µWLÔ«UlÅMmh†Ú#°$¶kl'-šÎšÛ‘e––jÒ&‹g-±kZQY9¹ÕinVE³ ,±¦«2’±EÑ)sa¬ cZꔓBÖÃ-HµÓDµ¬°j¹ÙÌ˰URšš—;C%c´Ö³³DáÇMB9™Èv¶Y™kU¬Ò´Že¡U£f£“ Mgå¢ÆÙ†Ì´¶Ò̤víÅ„³NlÉ,Ý94ëGZëŠÚŒGW¶u,²«; k¨ZÖ»¥™œÖÙRÖ6]PãY*eÐ0ÍjÌÆ¥šÖ¹Ø"Y¡š’r̶MµšNÍ’YX;9lŇL34Ö´Û²”:;˜¦†«±l [šÌã¬Öcƒ·j0­4M´ šÅ™˜ÑTÒ´˜u†æ²!š4h¶QœkY[œIN4Ñšv4wJ̪q ucG]q“vµ¨ ­ÉmÃŒ›­µ5Dí¶&ÄeŒ¬ ¸Øµ®HËYUdNhäÓeЄf$°ºYJ´ë]dÓY—.¸åŽÚÅmÛ+%µdqvSNd›ÇYËjÔkÕÔÝYjFgflRJtM·RimÉ‘·´Ój£VÔì:Ö†œë%ZÔ¨d ¶®s5qÚ@ÉÚÛ ig[‚šÎ­e–Ñ¡UKj›Uk¤°„¥e¦.«–B[á\«–ÔtÓ9•™i²D¶sk&kb§S’°šW]s«9c1‡:DÍUVVõ#µ%Ž[m6ÒܶVkb[’µ³d˜³ZÚ[[gnÜ¢Ë4lí·,0ͦ[“lpœr.iGjÕÓ\κu˜-J[¶:ÆÛvœ˜Úcf2 k@³—B¬˜æ®)vI¦º2µQ˜'‘æ%Ƀ35jºŠ­U­VË0È‘Ó3X… ÑÍv“[«V– ’ÒŠÔ…ÓChK•m'twV¬›AUe¢mc•hF¹Ö iJÖ¬Í3)YWAMw3+5…i]–ik[µ#-7¶-:˜¨é3®¬Y¬Õ”¹¬s LTÅÙÔâjšfrÌ‹`nŒ1&ÙcZÃZÕX['YNH¥Š¬n±«Q:°mh„MÛIšÜjkÒÚÈ®š%¦5GUeZ•Qd²µa-—h,[K¦åŠ1F±©-\f¨f‘-†i¤YBÛ´+rÅ–ÚÒ#ku¬´ë­ Øä™`;'1Tµ›²ÙkBkk[I1Ùi™µ¡´Œ-l8æ—6š$ÖAšëeÕ««*š­sTã¤Õe\iЋŽY±9,¦ÝˆÒÉ­*a]ä†ZÖ“•[P;2LuSi¡®êS-¡K!Õ‚&±**× k\sJë%jm ¢åsZÖ°¶³’rbå¥Hµ,Ë0„Û6ÆÜ𔥦!:ÛÚkX“6í[µ”*Õ,ËRZÔÃEVnE99¥™­qNØÒºË±8èÌ5šÒËdÖÉ®ŠkDÔ1³92ͦ™6ÖÖéB26UÉ7*rÕÒ-K*ì•)LLº5k ™I©u¦¸•µ… $¹gYvZDÍ(»VYjé˜ÅÛFDš¶ÖfRÅhç ‘9k5‰I²ÍmGe­¬d$¶ÝÙ²ZiÌ„âÙ¬2ÛFØœ¸"IkN3¤s­hÙ«ZáVêÈvkUë:TEÚC5l‰…˜ª²ÕV4Y²µ­e,ÆMª¥[«jJ’Ée–Ì\M„ÐʰÓi™¬¹ Œ×]VsFi–Ì\ejS2®Tª•²ã*,9(…šÕ5‘ e®ºâ9ÌbNj:lµ×Tkˆu×]I¥­5®º–Š©[El-GH¶µ+)™­b²Mj4qˆ›kBá•”¹šjŒÔ°Ôд¥Z,:fEØÆÆÕ-KhŽA®ŒÌYjÄ¢²Î[™‡99Îq±…3;5 YajJj-U‘kNfYbÍ:0.C.bÙ`iZÍ‹Tº:ØÍLe®Vªé*šÖº­ÁͶÎÚËK-k!G9£(° •šjÕƒ©“¨È]Jµ“V4ÈsU5™uEG-ml3Fa&UV ÕeÓ­4V¬É©—4Ø©©XÔ£euc«RË`ƪ²Q.J86uBYV2quÙe©l²é’uÀu£«’Ã’µªfiZŠ(•ØFÌ—'UÆjjº”cU+˜±2.N6B[DÄ,e3‚ÒL±5£Y‹4Ãmm,FRK[™‘¦¶“5X2Ó]­jb“´”ì³ÝjãVkUj±¡d×;¦+ªM­9lëf4Ã3+PM¦UElä]jÚÕ êÊêˆhY®–lÔe©²v¥k–cYf†µk±šfU&¢P,Ö*ÁÈ bÕÕIV“Vƒ¬‘SkD‹Y®FKdhƵ!²k3,-‹X©j™.BK]­®ã,—mc’I­1IÖF,ËkM•c6]bL‰µª.ZÚêÍŽJÓ]š­.pKkch%PÎÅaª«–†¬aŒ×‚;vÅÆìsÙ£KgÙaid Ö³KTbÅ"׺­en¨t¸šik¤ÙTrj²Ì;TÓl³K«´ÎF£©jÄg‰±«M5¦‹a¹ÎiÍ22ê´6Š$Nm²KY›Y-lÌ\vM+ bêeÅÒª;HŒ·9mF\NÚ­f-»Z]¥¥¶-™Æ0Í‹±™feLÆ&qmlÕu«µ#\ª¹2Æ&•fÕ­ÓX62ÐÉi–´Z©4)™˜ÚÓL-Zˆ×LáÎZjåK5ªÑ¢ªíkVR¨œ¸%­ –Y£qmfÙ»DvÍl3³¶œÚSh³„±ºÁ“5š8m¬áȱÙÖ†ºJÍs4M©-UµRueÊ©A°Ô$àTé-Z‹4pë[Y;kiØ›+d­®3q$“ls¶m¬Û*ѧbV¬Î×P®LÌnÄ”s­²Ò3´Ük¬ÐnjÙ³Š36ÛKu“j\ÇZJŒ¹¥Ò´ª¶›I:—D íh@e,[IlehÊÔ©®d¤`M-”–,åXŠ“†kjVXÍ3X³®ÕPµ¬5VÕ†d­%1rêfV±:HÚÕF‰µÕTK3:ÒŒ!&µ$†Ù±™©˜é£­‰ F‹ªÆFkQYµiT YÙréIY2µhJÓCišNÒÛ³2Z±\—1•3f­Z¬H¶›\íjÚÖs¬ƒ£˜³04666dâÕ„£h[P›d·k-eœKU«:ÌmhZÕÃNkXY¦Ó›XÙ#u•¥6‹u™JªàÆ‹;U®IbÎZtÖ°8dãt¬ìËXNÌaf³-5hç56U•ŽvÒņ³lÚ̬â9"šU­ƒ[”SŽq8íÙmWY5eÙQ 2Lb²Õ¶Y6NY¦Æi¶²u‘l¦‘LFÙ6R\•d£N4›"êípËT5%š5Ø‹²Ö¦,ØÎ\ä»gQ¢Õ$ŠÅ3¬låu« ©h–kIÎÓ+T¢ÅsV–(©Nµª¦¸0»N3‘lk%™k6ËrH赤a–Û8›ZÌvZ‰‡.©0Íf1È6k–Ö)´Ù©ZŒÚ' ]­¦Ê;F¶ÆfQ©“K\ÛZÍÎnʤÍ$ ²%£j´Z¥Æ¨ªÎÑj§Ba³4œ»L0ê2Ô!i:cZµÝiršœÔê³UÒ,Zg9‹e­;v¦›k:ÎBJ‰šh©³4dåU85ŠÍišÒe-šè0´j—FYf’Äf(m¦.RF¶jšÊSC*®¬££–i™U,¶ÌÖµ ­ZÌÎK]:!л$’­• kKSi¬r0ËÉYšœ—Yc¶­lXÑ´4Ì“­V#I¨:è(—WK,E…™ˆlZ±tî1ØÈqÛÛmÙd¡-ÊÓ‡i†al²nrM̵·FYallØÉ«$¸*…Ùu«u©[:³ JkjÕ‡8fÍ(7KE¡dÊÖ†Ë&Üv-­©Ý®Ò3šÕ‚ËSLÚ%1 º\ÌUU\Ók&jË—KPÙe̹VN”ë™Y+kNTÈë­h¢µœ5—VZ[iª(fTg[m,Ò̺wHY­\kQ®g[ IØfÚÙL4XÍ+]F´µ´Æ3M'+É©Xe m«ma¶²2íF–,ÔZÒUšêÔ.7¥³Y4¦×-\º¸ê°ê¥*„ã%«IšÃfÉ6l"Ü"n;lU4u§+ :YÔ¹ªË¬Y¶›9XՌمcFb–6¶ªµ´•›Jhf™fKA¦Ž”H6i­µ­Û$Y5 uV¬\ ¬·.Š,º»%­Ji0ÖjAQ•ܪ-©:Ò­AumN“"κ•”×-+1 msjëiRgË´•ÌaªÂšm¬¬˜,±¢Ù¦ÇkƒYmZ´Åk‘š¨¬ËS,ݬ”§0ÛXQË Ö‹k†j­4­EMhê›-MF²ÔÖXX0]¤âÚvØ›3«MÓ ÖΩf9*ØéK²t¹.«V\TKZMf-­ÒK:Õ²c;NÓlVXµ6”œ;CÛM vši¬f³*sL«j–#G+[;-V:&¤X®YktU²Õ³“WR]C ¶Í·2Íbje…´NYPâ ¦]UCu¥YÓV`ª«—TGgTS.‰e†R4uV,β[I͹¥a‘díµ«@Ѳ±Ö®N&k&H»[Î PndÛEªµM:™¥kCXÅ«]:íuÖ]a«\¤†Sm²IkQfnÓNÁŽjÅ»FÜÓC12G+Y²ÍŒê¶MnHì¹Ò̤k]G51H]QeN,hæBÕV¡Yd5ÚÑLÌQÚ×R‘q‰ s4αk,eÔ,ÌkJضIF­•Y.BŒ›]Ff-›R‚®1YMhDÜsZ+ "2kV¶4[32‹f±IØÖîhDZÌÒÜrÖ´¦3“KŽYerÝÚa™-KnM5m¢KĶÑÉ`6µ9¶ß…~.’‚£ºã£¸ê8é!îðtH (úÙ­dæ×aÛ œSvìP•K2­¬Wj«ºÃVèšÈMi4Ü©­PÕr!§s83Ss2S›–ÙKcc7[œ‚ÛCI¢ÖÌrÝdÔš®)«­-d‰ƒj´³&•f$¹e«*Z×"åd‹s„¸´›hvÄ–æÙÙ£,‹kHæµn۲ح0‘Å·m¶e±h„„[RÚ¹d‹+ZS©5æ¨É‰hšÈušÂÃ:×VŽC#,‹*ëkWRB«iL’° ‰7VJ-kšÎTÙ%\YÜÆ¢Í2¤«ÖŠh”Ʊ'1i˜Ò°«+K1µºŒÜft³­¶í”¶Öc[©ZkX­q] ªÍVÒÓ”–Ó3&NK2ªSZÔ´5—H˜u–ªÉ´±jåjêk'EÙ­uÂãVªÔ“H×RË©Us­q#\5͑ݎÙÛ,¢4Éi2'ß.’ÑH¥"O Р,Dyg^÷‡6»¾l¼‡»yÉ{̯³|6Ù™³œÍ ïøn«ã~sûöòˆ_[UüÍoö9œÎ¯ü'66}ï‰sí÷‹¤}u½ûµÉÝæ^|çwçW¼“Îñ^îâéœE—زb~c“Îòù×yŠøû¨æöø®ãÖÖÑVæðž».÷uó¼½{ãÎë—/7ÞC\Ý\æ…“áó}ß{;Íœx|óÏ3çÏkÅ8åÅí1Ÿ;Þ-æ¹Ïv¶-Æ›Þ÷=êsrlÙÌîþ;ó»âüõïÌë¦;_6Œ¼ßg6÷ÜYNØÍ_ß=ûξñ›òÏXþî¬óƒß1ûõg…ðö?ÎO8dòÂ|^oîÖí„@žG.äðìK9r+øU|,ÜøQ¦¼{ÂÞ,…»Æ™~–þgá>{Îã=“·˜ìk×Z§¼ïæóÏ}ö‰ïãù8s¸»ïß=à³â9|Ÿ^?„}Îoääq4ËYo!ã_Ÿšùó§Ýûp²^I‘KLs<'œY ¿xþyçÇ{ãÎBzeÐÿFù±|ß½„g™³38Ç)¼¿ómÞ†ý{Å}smøæR®>c÷ÙO3Íç|÷o;8$ÓùÜéï=ê³ûÏ×åûçäùÇîý³Óó©=ó§Íû﻾ï•m6g'–ïãêýv/;=®qyá~lmÆ©¡gISó×u>eÅÍú^¿œ E–ï‹·æggÏ{éê=ñýö™Y¿!?’î,ûÙ*æ\pÇ~n,¾?¯ÞßvsÏÎwWy:óÂ:²<Ïh¬ûæy¼WÜY‹"©õïß»ß\sïÙ6}瓾{òôy»5Îç~ÛùNh]׋·†òÛîlïgní¶wœ«ÎÖ²®uÜ[!òï¿­ï½Oó×ß¾w‹flzÞöÝ~ø÷ |«r±—†¬O`æþÍo*¼“2q^†ÞË’fÌ;ÌçÅÅ1ÅT­fC?‰žzÊù;Pͬ«r)¹ÜŸÏ¹7Í’s?[ùžà×<ë7~WßN9çrc󜮈üÏÏ9ÝœÝojÛ[οmâM®t{æNâʶîsy¢s«–c&QÃßÚ¹vUÞ<¤šà¤kmºñC‰§­ìŠf÷ŠìNóy9ÝÌèÍÁ Dã}R•«&y™Íîݰ¡Ì9—{"ñ;Ìx•ÑUŽº±Œv°5 y&?ÉnGº!lª84àðNªäX¦©cŒjBMÌÛ«{6‘rØC ݵìB`KîA<öï:s¯rû–¶ÖûÜ[ hÄHîÝÑ'3L€ÛAfåÛôÔØ-²?ZpçgTÀ sˮŠÎäÔXš´m±ã‰¶…„U²•’ÓlMFF6 ¿î¿™!üõNþÿÆõüo“[̈QXq£Ó qÀ–÷½ª#X•LÁ1²*~ˆ %¶¸=ÿ þ!#ž5˜À ï?î/Çûø¾|5Tk†¬šìŽH¡ÚÅ QQSµ%) P½ä02µ‘ã{ÓózyæòüO?§ˆü‰D©R€T(D•@ Q(TP¡R„D‘ô*„;’䨤Žè§#¸9D8‹Žüެˆ¹.)Ë¥—c?eç©•²ó³oJ¸jÖi½`Þ˜DÉdº­k×L¶)Š&@T<À‚ª„( ª…T=ÙWõÀä!J‹Z PJš ”Ä%#KIJºu¶§BQ¥Šãº+.È¢"(º*¶Ë§M )¥ mšBª`iÊÈŽè¸èì®J°³((èã»3µIÜY6»ˆ;;»Cˆ0è­'wgjì ˶­Il¹kYÙÁ™Ö--Ûl°©´'±¤²Ù¹ÄäâÖÕ‘g8ìØSZK;mÉ ÝÆìm²G0Ñ–*l•g2Íf™ Dg6‘¶¦Ü×Y®]täì°º’̵äéaˆ6¬Ø†Ë3kYY¦rÅcm[U˜šV”\$fGmÖÛŽtÉLÖ×]ZmcZ ±l¦†•¥Ûht­ QNAìû^ÿÿþŽï'¹¿wÙñüåö<ž÷½âññg3ÉîGþ³GAaIÒ0ÿÄ(Tœ­STÿõ\ìöšV5ŽE¤Üs½ ûäú‚ÑŸå|Õȼa"kÖµ)J¨Pª6Ëc-hÙéF4|Úâ?÷N­IÙ«”¿Ê¶^¹ÅqUs\-ÿ+•¸”*ùRãMØ¥ç ¼C}e–dÆŽyªàëîDµ½w²Ê(Ù4¤©Þ¥É/MdÎD áVnØA4eW›Î.\±yUE9VÊÁkZÂŒ£S©Õ²×+‚ïXN°³E³gü+X,2å%žRedKkÚ•„’3…§}XåA›IÖ Á(꣋Tѹ±Y³£h¹¶ šÒ5?ü¥j¢¤ø!L4gT”’VS¯N»žËªîQ…Ì0»MûfÛgEù=/i±xÚ—)˜”’¶‹&*i-3C\逯Fq[mm‹‘ã e®¡pÔlA;ϼ,m=ˆóŒ%6Ûl<´»«CXaâ)çhLõÓ›fV¾Î›žÍc®°ÂÐXÔÂÚm¦ªŠ.²…%&è®Ö‚Ñ×Úr:2´; RÜ»™ñ¦òÞg‡Iç}ôª´].šÒi:8 ,P±3¨†Mn‚¸t¹»* £+ª($ç$5»È$M­É“ /jEŸjGWƒz*´‰œ´,w5ëA1hT«}/âP½™Õá¤y´ Ög RÔËF§ˆ m™Úê•÷•@{tÁA^ãÎÇié`dïlWF¤ë®â£v¦…×þ ڛߎêPÂAÀFžœê/iÐ’ ¼apãH‚nIëÉ{9¨úÛ/¯]V”×µV3-›³‘ºÓyv:w“c$ènÝmcŠåÏ:kn'‹_e°<ï¡1A5ekP´Ö|UÍkíÅí¥WµÄŸ]Þ•¼‡™+z5.<Ÿ\‚G5'f¹G½Èç.ðæ äož)Ô±1|ù•‡‡²›ea·}Bz»CyއÝFou:”vɵ¿n!'œEm¡u¬úîý:’.Ô§Ä` ñ3²¦ =»˜c#¿«k $œu\®È>ÛÂô˜S}’ f6V òA«Ÿ†x>O‹²'F¶Žjôÿޏ„— ’ëÊ1Øä*m´‡‚ÏÝvá¶;…x“ùÃe×i£û/Õ-¬ì鬑ìåÃFf7©o;)¬Wyö¾ãÕÒÞÈy[ÎÖ¬ÐÄæ¸ß¿yíºµåøÝ°ov3ºõ×·7ï¤õgCVX_ï'Wˆ]] ©ìR}µçƧž–Çbk7·Ž`ÇÝÂõ´öZ)qh3Ÿ\œ1b¯ëQ²ý47tõ²óå}«¶‚üÒ§*ëÑq¶]Þk톶.Ylþ¤K½&g}ÍÔ[üzöí™ä ï:bš†Ï³AüŒ—©¹x`–ºNêvéœÑÆc'4o&cëGéÙôã†8÷¬í«€íãÛH‚öt ãÎíá”n•#›qN<²ÒG¸™è`yއÇ7ÅὨ·XÒ…¦þ;îÆ?¡n'ëg×4Õ¥¨ï·®¯€ ×·SõmÒu>\%å3ÔuA½1¼TÂ'ô›i‹v—©u„ÙÝÊùÞªà¸L¶W{Ø}·Ö(Ö€{c½›ÊõgbÉŽ{âÓi„ÛHê]óÑS‚îóD•óÜS•ÇÌÉä¦KY2#ä°ºn<{?ÛO>Íï¥5Ò+WHÏ6NKjÍz­€pk¶`‹"¸Ÿá’³ôذŽáQ.îá½­q\±¬ÎAn©¥!›œm{¶Ì*stî̧¶ÚïÙëËŸ¹yEÇy·Ûµf\–ø¬R#Ï*Ÿ¯"¶S§¿J-qÆ•Ýp»ÓŸ^4šÇ™Ù{3jÇ~p1П âzÅ7ÚõÃößq¦Ó›¯r¦1á¡q9\Žû£ànZy 9;†¬ežÖ¶ðí¸´ï¤‹sãMâ)³ÕÙÆ&“¼‰UÝ‹„º9Œ} ùw—,C[mx¯N‰¥Ug{NXI딫<@©Ø;Éá¤B>50‡n AÞÔBf„ýàØi­%ß×Ác›Á·ÔÃmEEl¶îÁŽd¥ "S6g8YÍc«2Û;¼¹¢[À SÝ^/&F…-¡×X ÃbºTâ`L«}ÓwY‘ KÚ*H>4rž¾;“•¦Hý[hº³.ºç¶ïfÐpZ®ôì­k~hÞÔ—<ã<½þ[kæWõÖ[7ÉiRœmÛ¾–HÓ$ˆã›b£Ù$ø°¹ÐÒ Í¸õ:Øh¦¸Iä‡oñÝšh›:ÐiîzÊæžÛs¼ž^sÉ9§M&3 À?7nÍhtÛ¯[ëJ^{Ÿr´{Ywa8F™ª•£È{cêÍt÷õ¤´Ú.ê›¶®¯g BõY¢Ÿ«¡–1hæ4WEõŠók•=££s`sZß–roïZ¥™HIZ 2-ÛM+©@8s¶Ö•šÕ5Ä Ðpb²qké'L¨ª Äæ3\½õš— <•"…î•Ïw“E&ºÎhW §èì•fÍ¿s»Zá]6÷)MÎóéaaôÏT4<ÏÎûºïB=MLb0vV}Ò57ÆŒ‡biß·®²½í ÉæÞåZÈoáÊ[¸¢«¿ÌYÊIà[:’½&ïꩲìŠÎ3ÆÜÓœ^qmJÓÙ­^BÛ‘ÿtÎﮯÖÅvŽ)qSÜXl×}acõÕ†!Kf×V"ên´K ÆÊ@rEmöçÆ])ÊÕÒJêÝØ}wÅ Vogâ™›ÈÑ »÷+]˜{Ÿ””k[Ê«*1Ñ"jà•ÐÞ0ÙfcÁ»ˆÕøÕ~£ È•î&ˆ8¦³ÚÂìËÁQR»hµÛMŸ)Á~öðpÖwáþh®w¨à+Âã|LòÚº ÍWvíIE"”§NQÙr6&ä[¡µ•= =-÷§< 1t½åA–Ò]Ö–xÕõa½VV•_˜¬(üŠË.dø1^ùURI‘'BH©ÐêÄ(Œ·™Zs­!§h«ÃRÃ#ÁX`мîůÌ4 I8МÉrÃÔµ”ªtm~/šÉ—Óã:žœ44í…U1’PÕg-܈ƒ#þçlºèQV¢š+P¨2ëªfå¦ÂQ¡´û6<©«)¼±âeMÀ1CQŠv§íŒëi:¢¸“$¥ ìS—­WVK¿“w†K»km}Žf·j‚ÅbªìÌAë@ &ä`sé^bêÁŠ©¢šºU”¬Xí°‘¥7s¥!71ºÏLÈàºW[Ø—ÈÙW¾Ì”_£ÔN½Dw§Zd*¥gMF¦åÅΆºMmÝñ~t!(Á—t=+3a[VÉ6-M¨÷¹ÂÕ0IÏk5àÕ-õƒ]F›\Ââ¹EMS*;ŒŸªcš¨†&ºð’%Ò)¸áèk“ÑÛ,ÙwÄÁ'GAklÙîY³û¿£áu”­”Éå NÔsŠ/„0£¸¶ÞaµcÊÍQ±˜:[ U$åwM”ÄsõbRtÝÄÔ!g¨V¸ˆY‘Ršö­M'˜‘5H¦M`¶-æˆOi8Šðx=®XFëp>]ø¼ÍÎvøo¯6s$Lîö˜ÑÐÚ|³Îb÷Åw˜ÔàsŠzòNïYļÍç}ç6ÜÞ½í"½¼ç¾=nï£äó%a[ÿfõÝØŸ=~[çȹ5꽽DzsÌ~y3‡+†YS®6¤v¿w½qý÷«ÅôÝoÄýï˜ïîü0èó\ãµõ1gËÝ.úÙËåÉ<ÙÝç·ò3k~÷t™ØÍ®®fv`+Î=íâã³qÛkᙼÜjoy²‹o7æÕÎr°{¼ræn\47Vf å—o‡ÉŽÂÈs6V,Í¿ê/ÑrÆŠè寻”+ÜY½Â°ÃA’«.²¦«Ë!¼¸ßZn«ÄTÛ–puyÄŽjYàÌ\ŒB¢zãäÖÉ y¦ð.ÞDdÉhºÅ„±T¢lU»dбì›)rµ· ÿ ó6=U‹Rú, @cûiä¾_×ËïùFýD·×í÷þøý¾Íb]ŸÔ[k=ß­-¤EOª¤O8}™k>Îå¯óˆÍÛ+2`cô¤p6í^­qêÞ¿ÇóÅôVé–'òë$Ÿl}ï'v‘ÿ>­ô>×K'Sa‹+ïøS;ÆÿÓ¾ßÍuZÕ%1D2þV²Rþ…¡ü‡òZŒÿB ?ѱ ?$B!üˆ ‰_¥¯¯ÏçöûuüÇ÷öø?÷¿ßõþ>uúýB?·ñö÷|DCáð#÷û¾>ÞúéûvÏonmøæ_—Ó}ó•ý½¿`ÓøgßÝìÞšë­ÔΖñðóÚ_Æ¿¶rè¹…ïãÙ€Îõþ>ï¦úzþüƒ/xÿ}çð?ÛãõúüWññ^ÛäÓîF¿b—Ž<ðýÝôãçö’á+íÏÃÃõ‚³iÂD­úú÷þç‹|?>ý¿ßà©*º~ß%óøø|3ñé­õÕ»iëó\¿?{„>ß'||Ë÷ø~§ëÞkgÏŸƒœÇ˜aKŽ&~ƒð7 7±»ü_$øJba6}© ÚrF´o8œnÒ‰ëU-`ó%"OG)öRÏW&«Ö3P+Ö¶ƒ«ÃÔÙ6á‚wà===ÓÐ?¿ý¿Þ_Þ& cè‘N[íó§q`éD›W…AVÁ“@šmšiäbÓ3RÈA :å#®·\Ó‚pmƒÑ ·ªj†¸‚ì|m5Ýnƒ»$]¬ìtö>H¢q½´¶¨M%h˜îÉUÞ¹TWy½ì²õ¹%ï7ºò4ºK¬]U;mŠ =Î*¼gµ˜{_‹.Þ–úzÜ÷³ÕbžÞ;ÚÈ:É·ydqí¯/&ÚZ–Ö‹Ö¯8òã ¶)r^³Ó–•`Yv…¤AÛ3×bÕÛ¦íFìk«’öÇÛáåŸC½š'½ëÛv1‚]Mlg¼­õïš¹*ß %¶Š[g½ïO/'§˜ïw±é^ÖúkzãïsÚÎÈ/k<±’ÃZ=î÷‹o­ß|聯UZµž×Ÿ‡Wò\RUùvÊÎ2ëA#®.@‹m8H$q,ÔæÛ+på­—mØùžžfA[Q¢%ùƒåÊùûç›±è5Sc3×­^ûeå¶ùâZpvP•æsLœfCÛÖËo6ky½ÞkÖ4¯3Ìíç½qf•¢M£;KËË<ó7¶QÞ–@“oLNG) Ya¤6ÆxjO˜^v^¹«&êñžoN—¬óœï<(7á¾ûp_êzyø"=/"öü=aß$3çxöÓ‚à3¼¼ï"^ÞW›m,‰l{Û©å<ÛÖô¼-y²Úºñ{Æ„ü¡ôwºøÞ¯E&ƒb6Ú1·½ƒÐtíݧDN-¶º=>¶·›Þz{5v÷[š^½&·ƒa£E:-ÜöÕëbñÝwk&å‘dgÍí2Ýó½í¶r³£OžÕ»ë_=ç­ëoVr„ÔÞòÛVõäYïoiÂæµÕ•!ºtÑÎÆ¶Û[»ˆk]Æ::>úÖ>ÐY{ndîÞö½xbNìPhÖœÇv¯{'[`ô<ʻǓ*ÞÏkÙlg:Þš[ÞW®«~ ]zv_2µæ­f"®´SÄ|Ȩ]ûdrÙ.j÷{{Ï^×x6ŽMg¥Wjëð÷[{ëWV¼ïÁÞ‚Ü̾óÕÓR¡ÃÏmî­T—·¯Sbüë/LžÚ Û=zªòv¯Y[×4¶'-•í[Úí¼Þƒ9µK7½K×®¥§4u.ÂË;ÓÎ÷W˜ØÑNª3‚ۻݷ±ëc×½žì÷¸ëcGTwwhÐSјëv;cÞÖÞöZö²žÔqÙçZuå/¨´¦Çµºzmµ{jìζK» Û£OvëQ±Ó/yw¯O7Ö§Í–ÙrCW׺õ=ïCÖëY”¶³¬ï•ä>ؽ7c­·fÏqÙ­ؤáïkÓ¢[Þ‰ÎÍÕ§g=ïrŒ¼Þ{Uf+[ïžûK•=Žž›¾½ôûª®®ïc^ôö|Biˆ êšby-ÕC1呌QïKÒÕ[í{Ùµæ§Ô}î÷•™+én÷œµ[Ìg+±Þ7­\örÑ•kZ·Ì¯“0 Š‘6$ÀÒƒ„’½TZâ4F6R5\‰ÉE­‚ X–—“i·cÚò<ë;ío_;É;bqcFº­nwT»wtñR$,HqÅ"iF²e™`i?«¯fZ¶“%d­´h}å,VÝÐ(â 1¹$q½DÆi5Òv´Û„–Ð"!F#7Qç¹IEš·F+Ö’öÄxîæÇqˆÝÝ™)Ȭj 4 Z¢ŽZ¨Ec!qdéŸy«ÖÇV•H=í{ÚÕl†¤z„(¨Gª) $ßWvïv­8Ù1>žºøíÓ^…{Þöµ¿ÞøÞ1W «ëV ϾûÌùânûxöì£maÖyg‚ÝQšMoàŠ~>3Å·ÇhôÓéõ]]óÓÚÔBõ÷ß{™5|ocÒ•£Ä¼pÓÆî ØÍ]Žê'fœ]°q]»w¶ó ÷ƒÛ_^•,:ÆŽ¾.Þ0¦°Ï›Õæê“„J&õcÓ‘´Ô„Ž!BY Pš`h4š4c[ÄžãÅØ½]¸Þ:©F­Ó" ©* 9[mèJŒD‹5Xˆã7·[¸êw»»mÕºDëHŽG§JJqèƒLm88+!­·U3FcR¨†ÒŠcw{×ß}{cY5R÷½–eϘQ ÊURÉÉ ‚e r¬ÉI]¨ÇmmŒ#Êô«lJFœsVÄ¢‰¥ Z±G#‚µXص «TÕTñ1¡´À²M `Ê#jä#f&Çà7FÇ(@µÍW*XðR¥j(ëQ¼-E‚bŠ Ltv‚* ÓejBK@:Ó í®G–¢šÑbqH ÜÈã¹* #M¦åÔu²ÈiÖ­v9#hšš‘Í H2ª¢’Õ™™ Wbi¹YT´¡,TÀj"6T©]mRd£•´ØÆ¤miº:Ö7§’Õ 9o-ŽŽbŽ%j6¨ÍˆJDš@àáb²¶Ú‘LxˆŒ%qJž±§ôƈ™Ç’Õc¶«ˆLw+‚hU¦"ºˆÄ™¨ §M#r +ª¶Ð¬"d£i¨£Hj"5œièt²¥J£…©ª‚XA˜d¡Š!¦Ç¨Ý e®)hh ØÅb¶FŠÌ­K$Æä…‘Y$Ò¥!qä@i±1]FÇ‘„-±¶±Ä…4ñ287"mD"j‘M4:šDCnF6'"M¸íÓÕq’ ¨²Åp`bÆâJ‚VÛ­Ô!«™& áYdª+TnÛ1à­i¨ÙF!£-¬EG#ˆMÈÀQ7$Š 8Ôz6ë‘”@”4Š(4àn-$ššµ¼)2F£2*«U7eLMR4ãci cQ*a†€r¶Ý‰ŠhšƒŽ!Q:›Tj&Û¥M*AºœB–jäȳ ˆÔ°m‚‰Ç,€ cYÄÙydeЫ²‘'&à™H‹^"m±tíˆ÷hõ{\qw]±îhdV ‘È313šqư¡êêõ¯2õ¹ƒÞ¥[ñ.øß}ôQ´ôSI‚Ž U % SzMÈØÊ¬RÊÓƒEh‘ƒ±–½2F+*²ÈY4ãbÓŽ Ç©§<óï5[é>yïC×ÇyK{¦!´$(ѨڊYIfšŽH˜Äcr¹¡1šŽ XED°N èoA’L¶e¥w… n p##ÓŒR’E±‰ªšÇ™Œ‘åq8Ìrè®i°!C@âfŒŽ¢¢ ¢²”u ©‰¸(œ€G&“D¨SVÒÂ4§¾åíïg¥—±^[Ïoo!Þ©>èóNûí_Þ×Xsš÷«Ò«¦¢’(ÛliHÕjYÚ®Wa[PM4Ó ˆ«‰MP QX¦”b–U%€±È¤M“M A6 j N[%¢z‰³NG§[©³L¥´CuÂÄj¢ØÝmÂJÕYU¨e’ ÂjF1Yh­$C¸I“#°mE)VÄ(£94h‘ºVYX†ÝµŠ¶P–Ú¨†©3¹1+¶ØÂ)9!"c’Ú¥…rÂ)¡è-¥£¶&"º‘ÆÉEmPpÑPÛQË#V¦!&ÁSN’F*ԒبÕ"„ ÈÁ¨ÈˆÐÁ5"‘4„6VÙb¥R© œ …’)+TVÊ«-i Ld Èh#!¡ÉVAJ1H¤‘² Æà&"Dà ©Ž §tSUT¶ÈÉœb$ƒMǧ&£$ÓñꪈÖOU¼G­žïV1ZB4Ê8©&5n ½0Q1t¡AŽÈ¢’–‘¹EZ :Úµ„£*lOQ«B¡®¡»]d±Ñ:ÀµKDÂ6Óƒ‰Ö­¨ˆBM9‘B)N'¢’ºÓ’= ·MZé+piè¶Û«T´r&(Á¶RSMŒ°B‘'zŠ@–ºÝn(;ZN] 2TåÓp’7 ©qP’6ÆÉ []ºˆqDê©Wb–ZjêÉAd%š$Ñ©¤Úl¨`™ª‡¨åªM1V8ØÔMGdD¤„‰‰ÍH©U°A(' äQŠ4 Gd!-5hà(Ú–8¡ º)QFG©$Š$Üz„E–º*Ñ(Y$Ò,•‰ ׫[ Å$•„+‚+qEh&P ã‘5¡¦jY]Ô¶Ùš¢¶R¸MF¤¶ÚhiÅ âq1QQ·JV Ú7E,+`9‚Ž6 ˆ€˜5&šŒ ›¡©U¨¢ŠŠDä%,±¡ŠGª'UµB2FÓÓQÁ0B!"žõìFz/uï{^öµ½bH° L-NJœ² ¹k¥#£Ld-T+C²@‘KhÛª5a§h˜ÝUJQF ÈlŒ–B Æ è+MVÔUAÛULµÇjc‰¹©·5%4 bpLVÊÁZ*£ƒ”dÓu6šŽl’&È µ‚bDe°Tq´ã  Û5Ñ[D†¨ìn*5KUOMÈã’ÊŠ1 ±ÖãpC¶D:›£QÑ©©J68¥Ž4:Á„‚²·"vGk’¨Ú¢”Q84†ÓvªA0U¶›p`¡#ÁF:BXЄÜe’F¨ÝÒ#m‚C­¶˜­JAbh PuÐn®¡ª¦"×fŠ1«,•Í1ÊåQ©àô@±¢ŠºÕµÅQ%ChŒ œSPM@@2ÓTvP¤¥Ž68©m“DqŽHD@Ô ¡‘…”¥Pˆ M¡6„¬qj7Q"hµ¡JXè*jZHž‘5q"×*Ñ["‚uêÈÐD(ÔpŽJím¦Ù K5aj"Š8¤ª¢B5$Li7ÔSRŠŽA2HìLBª«nªÐÕmFH0Cl$eºmÆj"7%©Æ“®1¦I¢i·"nHÐȂؠM±¢È£¨¬’UJèÔ$„HãÓI¶âtU½1¹b–É`Ôš 4!¢È¯z=æ4Wƒ·mÆŽ|vìûÇrÞ9^o)ëkžôKÞ•æöïiÁ1ŽÈˆÐ²ƒvÈä‰ÑI»+R·(Ñ í–‰6†;Q¡»¡¢F‹lE‰¹§4E@"‘H4ÁB×Z¤@ÄÂj7)d#M·£q Š#R‰Ñ2©"@'"h+QUK@…‰ˆn•…@K©T¨heEDˆ,J RFŽG’ ºÕµA¬tN¶B ‚pMŒšµÊ$*^êßòz{Í™½{Åí __o„* 8‰%OMX;uH†']lj4&¤ÑQ4Ø€;`Ú°%©ËaH!D8„ÜBˆz‘À’&œz„ªê*Ó#–³TZ@‹B¦œ"·uI® +jj •:åŽÆÑ]p5JZ%hŽXÔBd®UFܲւ  $Çm•± 7S4¡\ˆ–ÔXà¢`ü^ÏK{4›s³Ìõ¼ÛzO½ôŽíSØ6ö·vãš‹¨M»GRLÐI§© Á8ÔˆŽFô;a±ÄÅ`ŠU( ‘¨9"I¸HG’5-µ¡ÔÓh²HXV‰Blm2AÁ &‡5 +K‹P*„Ô®Vì…ºjTÅHëÐH“dmÅmˆM :DÉFˆ‹›M‚CDR’! Ôähš¤V¶¤Ç‚$dLz!Q6£C„„+¼û®çFÚèÆ» º.f÷¸í ö  ­u¶ "ht@ãvØo´ßKBëÖ¾xÞûO¬­”44ÕRFô!ÅÄØ­€¢ªj½¤ÅϽ—©D3¯«MzŠ ˆ)QƒÉ @‰¡Hõl5´dl+‰2&¥¬H¯Qªh){Ïí»kG»:ÍÌEZôô{ÍÀ¬‚5Im!M22ɦT(ÕNȈ)­‚n·Æ!7ª‰ÑÊ'eQ‚*® È ¨Ð™‡5¾oµ—Ù¼û‡ÃÜñgÞûçÙ$NI§c®¢ 8£&œj)©q4ÆÜdqˆ§%€ªÕ¶«DÓ’%c›Òƒe$И¬D(ée²¶"؈ëqÊ«Hàœ’¨šf•%m‰•Ä0lU°Ñ„VÛ*,EiÆåu °d¥t JÒjÂJDÁ’QDjÙ)h›mÔ"F)#©¤£u×M‘1¡&††ÈÇ!5¤¶(8æ¤lÔQ A´MHÜL"q–ÚêV5cqÆÀ€ºV㌭ZÇPã£n ¶V'bvUj$ŽÉWD 88É&œˆ‘ !(Á–Ö㊷c‘±4àám%šŒm ‰DÜt•RI#r!1…vA++ £@87BƒRÊ岌C¬# lLÓ Ñ›v7, €%jFØTâ"`Ñ4˜‘(i·äte“J¡7-Ö‚A ¶6œ®ÆÍÚ¨hŒd²8jÊÔhcLBNM7¤¤š€Hˆ™iÄâ5[[bj-hö¬Åmï{ˆóº¶é·wó^÷­ï+éåT>7°œ¶OCR)LcѤ+d®K5YZ tÝ’FHäÓ„µ–7 =[E£šR(:(„¨V«P(Ûl¤lµÂ×Ur:ªtb”RWk4%cdE²ÐuÒéQÍ1É$qE8Ým:¥i»e© ’Ř446U#Ctˆ¬M´ëNIMÀbq¹#M0­Ž];k­ÚØ­U'TvèbƒV½;¦œdªHÙh¨P±J£rU ªvj%ªÕð›<{Yî‹Þùï¶ôß>©ídcvš"aÔ¶F« âm¡F!ƒÂÆÛŠ–;Y!Œ…$ª(@š"nDÓN&ëD¤a#¶ #‘¦Áƒ(2#Q¦©P©EUXEHÇ"I*Q¥[­ÈéKG¨A¨®D¨Ø:Ǧ3TpŽAÖö]­÷×Ï«Q}«Þg²ä|7 + 7«nFMÅu `ÓÔ¾½¾ò¯\øÎ{KG½sÆÑBQW%‰Û…i¶Üй%p;ŒwÏ[jãbÚ4zïIkÇŸ:âlT¢”)]z¬Mêše#••À"ÄÂ!R(æ¢z‘ÂJWa[ÓR9DÄI"*"Ž¶æ™¦«V6ÓÓÐT=‘%¶ª¢šhl’MD&„6ÓOMÙª'$*!)J&j¶hDHÚÆ„ÀÕ’ŠÄõdQ*+F9š•UaƒPuŒx·w¶ã·mÄô]ϼw‚(Þ̪©mµXÓªÇIdR0‘À¬ÐÄÍ莯›Úï_²Þ'ÞøÞÖúïˆÜE(ÜšT‚#A4”¶”Õª¶£†Ó’2V ¥jµ!`jÊœbvJ(A Q dQ½KìéÖrã2:îâÀ¬ììÞLj­Ô­ #4ä•Z‘,‘–ÚÄéj¹À­Ä(9kŽÚ Ý{z¾3döÎ ï·e¥í4§¾ûèPm„Õ A®Ú‰F£Õ–QRV+ ¢„J!ÒhÔØ—Xá_y¼ù½ã½”|ûïkÞ”š`…I«Š†ŽÀ‘¡X 1 R–¢£Qi–©[J¨8h„Šm‰¦•’+[&:¦ölúÍ÷¯Z÷Ðzõkšv¨½ã>/gƯ¯}òöó;]i=ãÜÓn'dšrK(ã5lm IˆQA@ 1mê¡¢É*­F PNÉ Ž:êˆB+‘M QéÉ(¡¶(j5¥#M®Ù§\U¸BÆèÓ¨q:åt‰¡RQ5ª¬(A4 H!Çr!17$Q¨3N0&‰ˆTMR€)IªTä‘=!"6¢’*iŵ›cupu²:5%š•281 ¦PsDl"#jÅh(r0ÀM­18Ý%¨ÛUEB‘ÀjhŠ60‰•Ž+S® jÅ+Òeq‚›*‘Qé5&++[×¼^ž´=ï¥Z=o´QIX"´ìeж94ÈÄ5J¬¶"Œ(« (D&" AHÜ–ê²&Z2¸“U©©c£C%jÔÇH£DN&„©"Cq¨¥´ñéª{jíw=W‰ô{wk¶|öæ éí³;]Šžì9ÞÝȜ询¨ý—éG­aáXnÑën6O‡Õ¾çaÝ&Ñ€¦‚=7qÆ2m˜ Ñz€9»)±ÆÛÎË,”’Õ #îLƒFg÷Û;SŒƒO‰Á¦×ôã—BÉ­õùÎN-¼Ž«äQH§8rnqÞq幸l^™ß7+n­¸Týfg‚²çÌW=¼SO.#»Ë…çf¶¦÷teÌÇ«íˆØ±N»Fs$¤OâŒS~vråzÙyÙ›FæåoÇ½Þ Þä·µÎ>¯xx·žœ6C«Ã›ð7Æ©Åܧ6ðÞÚ8p¼s‘¨É{;ç“«Îù·î÷Î fìö4wÅyžsÍܪ-¿Ác}‘7½ùìYÙ΋$/%¹9ä»[]'/Zßyç87×7Ýæ<ó¦vg‰Üç1^÷ŸÝÍS¾wyg|EÙO9Íó''ß~gfýáýó¾óÖSyäb¹å×›³|â›ìæ»¹ÛØç}YæñqZ;·×Üœó>íogØwÑg~|™<ì_9óž›QuçŸ~b÷OÈs9ÌÎs>w±ðÍVæôvùÝóÝgv.í蟸÷½ÉÏTösžy©éžÔóÞ(W¼L<‹“9¿}ó=Ý3{wç¿á}žõïȦîMÜê̇#üõf{ Í ¯‡»›È™^e=ßyÞskç“»s™ó{ßz½ï;¾ß:Z‰\ùd÷ë–í1{–¬|}í^eï>þ¿2ü^µùæë?.:öÖ"z›úŒ¿•ï{w¿·Ô^} çÞÊßAÉ­ª— ŠýÈ n ‹‚Aãè÷¾"|E=ÖÏÛwò?o·1{Ÿ±>“vžWÓsYúõß¾Y¿ÆÊ7áçqsšÃ¿—ÄF*¦y_ç|ïÄyçsšóiÞ?Áð͋φÕýx»œ÷Ž?Ó~šøg.X²ø {÷Ö³\æåóÍ×1ï³'ž~;øsi®0Rx{¬Ï\Qz~^á½í:¶HÎ?à fòÅ¿œægãïdª®hÚ¾î>«ùÍïßyñE¿Æï';s×çaÃÖÞyoí8¹SÉy\´OxÌ‘©eDõïçv¾>O<ëêùí½4ÌßgÏ^é¿Evû˜üÌ ß!ç\òúž_$êÂcÑÈÙ+oý-çg µÝ¸õdÛ°½„^ň+ëë-÷½8w|ï™Ï6ŽìÀêûÙÍü—o<øøy~Ê)XªyÆ\sm¦§l^o»§Ë¸»Îõo½ïžiç“OB/d¯srXä¾ÞÃinWÝâí›ÚÎ*ÎíXopßdË1m{[Ûuß3–¸d®‡Ì\Í©jYîù/_ç3¯UðW˜­^cƆÔ2²>dvA È«m§óÎo¦.öÉUí’¦ qQ¼ÆmäÜ’8õ¶X‰˜ê³ÑZƒz±»¼Ì­I!½äÂW6Ê,neµ†Žs&o3‹[{Q-ñÁÊá©WkV̱ÅùÖ©Ÿf×3±²)g™£1—nÌ‚¶fV õ§]r.NAbÁª\jI’³o3ýxALmuØÄßr¿$ëXdçeG5Ðýÿãù¦kùȧóxó[Ë—ùä¨ßóÍïð¿Ãþ|«½»gŸµ—ø²ŽE¥.£ ¤!8F#F1_&Ù+C*Î6hÑò…¥±ÖPªâå4E‹¤hÕàÔ¡¡Œ°vOKÊ©4ׯÂXš R".$üŽÎ.ÛEÄ’\QÁÖDYÖ—"ÍÊsXì3Dm“ZÜ™»qØì÷EmU~¸*‚"ÿ²ª‚{ò(T--HH¥ èhW@Òº(Ûè h H©"UѦ’´mÐ[Ûn8¬³;ˆºÊΉ¶qPìd)­ m¥ÓT9R뻲ìŽìç28ã:;HäîFji»; «.ÚÍn¬»¹¦ÆÚV‘mhÍÙua««a–Ãe£$šî¶Ý…Zuœµ«IÛYA–’tÚÛ]QˆÛ¶g(ÎÁ98Ž%·jÛ‰±•„¤‚Í‘dRÛ4îÃZÄØâγs–› 4jÚ» ihÙcS*Ô¶6’]•2µ&e,c@Â$éfV³®Ë«‹šÖÍ,5#M7lmM60ÎY’Ú9–ÖéeÈgUYÝ•“n²[[±K:¦ë¤r¨r2Wæü?;Û³ÿ~ßîöï/ÿyÀ?ù‡ÿFÿò?ïÿjß6ºö5æ0ÿ¡ý[;IÒWû¿æ·ý‡S¬‚î [-³%åö•O÷R1Ç9tpÆF¤FH˜ÿî¼â«žõºƒy©(€² kéWµ äWüDT£ƒÖ¹ç—p¼Îì½zk(™)ÚÅ¿÷ÎL ÐìÞOÿ…¡‡»þ‰í766[öÊÑZˆæ›l*(PVzlÖïS%Z˜6©Ý¢Ú¾2¥ì:J*Öî…ÖòmÅ”tÿÅY8 ¡Ý €Ú²à/$˜Ñ("@âh×yÑÀÀYФgé F#}]I¸ m²²iÏ)(cf½(Q+Wµ8[I „« Â{Xï+ÞÁ®g#ˆ˜áä¹½ —*‚Rm:AS•)µ•ŒwØSVFúºåx7’ôÅái³KÍÚÓ%<è¡ô¼]cün¸²Ç °_(&‹©ƒô-!yô’S0SBùjv¥ŠÖ†ë‡y5ĸE¦åÖòÉke!}Ö Â6 Ý‚•y®ðMûÔ†"¸ÓE‚>¬ 3šÒ#cq©–þ.,)ŽÆ”ÕV µZhìzF25=l-Me \U²¦ìjTeÄtˮꭖŠ3¨X! A&›<vŽ¢‡Œ¥G]õ´éY•‡±:H#mu°=Âî¦D¦Øf­à$8/¬>¾VÍjõ11bT&€Ø OJJ´íÑýùm¯ÙA¤ª¸Õ ì}óáŠåE¤‰¿ýê¼Éâ­wV•éGÍ4ÄB:¦§ŠC…OGEoìÏ uÙ;õxÏ· “ÉÔéjÜ3£gsÀz«lvå¦ÌGŽ §Û\¸ðAÚš˜ŒÍ7Ÿ}(àhÇE¼Cuñ_GKžŽ%(ɼ«Fre³ÛX”âæ™Ì\sÒ&ŽÝÔè­GŽÛvëM[^Τح”A›×š;N$D›Â¢ûÍý©jÍÍ”;m|· }7„Ó<Ô Mý;UÁ«óåñVÏÞ’8ð«K=Ö yæ1ä#]òÊ¢«Ý2'gÞ =³í5C@w™SXQÓ6*‡Í¹“/¼j"û¾¯ˆA‘åš­ÄÛ>’~Ø’±•7EPÜ¢a0سMMù'úÍxÝØªC%¶¨šƒ`®î…”ÔÖÇ)œ•㦯o[ŒAB—K2êÞCÞÇ8ØiÓŠô+–šwÍIÖ‹_¡ZüfE¾aU7´©¡‡5Çiq'••7½äLV9½ø.˜=¶ôÚÖK$»® -¸†ûrÙ™‹é‰T)°¶±¥Õ|;šÃ4âa$»X릻¹Ù:ÂË,õKá¼}Õ¸ó£Ù˜æ*³ë\ÁM¼âøLo–Ÿ”:‡7㜶Úׄ#ÃIfœg™ÄÞvÆ•º7¿fùç]áDžê•×»à®4ºÔH½a{]½rÀ½¸UÎ7pð©g`Î…á}õ‡EÚ&é÷“Cו%fA-Å}ÜŠn¦ó•ã¾³ÖôZôÕè"ìbÕWÓSáf”ß;Ò{®.–YC}öÜ· ˜1}ù&:1E+~æÜ¶vÍh2Ï]vºO§qoßM5Õ¦•8U§¦ãžëÁL7 tIˆ¨8+¶³Ëgs¹ %­»šæì\X¹kºCæÞ§¿‹¿¶¼nú‚ç¶,¦÷þÛ^¶|õUX¤o·;X8¦‘qÌyº¥¥«¢#Fd{²š{w­¾ÇÆ{{—¸öáðW]®ÂV˜çGÚ½¶ «Ï~%!ó|+T›ãL¼’ùz“OJ[Ý¿—2ÔßT׈Òܽo®uÙ=šÿtÈiYä§l„‚oWóåt–:R¢’p: Ðëo'£mzú¿[PšC•æÖ‰V#£…Gç¨j‹¸=ЀÝ%I£2²)d·ÇÅÉOñ{^æ'^z¨^^Ŧ1r¯kYcåÍ!ÉÁ· 5x³ÞZqXQtF<úã.¨jeE_™›L«*“0®õ\¶ÂʼZJo6ó‰-FÓqYTzHuY‘Q<ŽŽw ¤$¸E¾[HÛñØÑ§™Ces:eÌ(u.Èá TTí»vF¼]¬ûÇÚxHOnK…”®ëª”nã½E\ìÛõ$¥¯À·»hªõجU,ËF’B‰kÁ¯\Õ2bÊc©êœ‹úxØ=]¦ ê³+Dåzƒ&š\ùX/Z=oiµNÞ®Pæš1MW7xÛSY¶¹/l®ä Ý2ÿë"ºõ8©ùYé.ô„»=©Ä¡Bà¤5¥–Å›TBöжÑ—œ»[M·›ÁÖT·ÎàÕhó…G5ÕãÍÇZ¤I¾•ÛÞ£Ý2ÇÂÔ'é„ËâbO¬žO®\±B\\'Z«®4Òpgf @Ôó*JOŒ Ù[gˆó%©¹‹"úk™ï hûª T0<‘ ìséÑÖ4a2|‰ëˆQæFíàÖF;‚èåtI)‘çbÓqøíD+Þ?M*q¶{¦fÁ`\%'UÒ0V´ká¤âô–ž;F]Ä·¿¨¼d9N+6nŽ ¸¡KÄ¢½ZCkªô÷ðkl*K‡¦ê¿½é|;NDçêßlö@‡TÕ"/Ñ«ó݉Ƙ§ž(»4­SàðÙ{SÐ…tá&N²z{»-©£Î>)*a(¸|kxŒcCÐclµRž¹7\ªÓ„Ñ2û¯ÝfUñ›™ÛÉiÕG³B¶Ú*È©ܸÙÇ »V¥Ó¶EC¦¢‘{É -G’&ö”Íí¢Ï ·º^˜¼z|!<8‘²Â‚$Ö7àÖ…Ó¥)؈äT*¡›¤•ºj ãûU+±ËVÓLŸ6ZÃ% DCH†9{ÅuÓðm–ý»Iïà0í$¹èÏËÖØi·Æ{Ÿ{ƒº@h›Žð•P’9P¦‘å«°ÆÑOÑb¼<àšbý¤à.þ|0¹.ø c—_IÐ ºñ»_´qìMc¨*ŒRË„Ád“NqØØkw"Õkt›.{7‰@# †4Ÿìß~Ú€ãx<ò“ûÉÌ3Ëq)XTíIŽ=¬[šÿhï ¶==¹ÃuÚŽ‡·EÙZmƒbôj¶È—4"®*LZ ¹I6HÜå¸q£ž @„‚ŽÚm¢Q¨;:Ýä ³šÅ½}2ïX1V¦&Å#}LþK‰KIbJ¼ @ˆ ’ xfz®G· 9Lâæ0POû( Ë@ž(U)k@R£¾È…XŒÍ§TQzHPõÈGAMyæÒME`¯AÌbؘ=ÌPÇe%]þ×¥-¬â+”ʲ¢œÅƒÈEfÌÙs:É­&4‘p%Š­2TDCâLØ€ÑgGh“0p„é˜1u¡ªÂŸÙS 8YVÈ%:k{!™åŽûÖµPa˜É­|Ôñ^XŸð¾Ïoß/­¹½—oçÄäÊûëÜÕïTëþÁ~z&e m ä¹*ha2ðFašÞME ¬ÀŒ€²o%|ÐG°ÁA1ÃÀ؈Do•èÖrÆ‹ ?WÎ÷nØFožú‡þœþËÎxó¸íi볯çû¯è#ÚB*jDd@Få=k;ðM‰j²SBSáT5­t"r5ÄD cÉj!.˜l|AôR9fDDK72W›óÃwÁ¦â†õwÏß{ÍîþÛךó¯§qºÛþR,»÷Ÿ^~¾¯—sOgÎs<ÅÈs¯œ]„ètàú|9Íõ~¿[ôô;ó­yŸyxm6}ïùæ¼ó=|Ï¹äžæÍñï‚ÁIÄ~yšéÅ*þ]ó>¹¿ðçž#¶ß<{gðÌÇ5–O^F§ó”¶^™3óÆsIòô÷ÞwìÔïÅ$hîù¼Úw##`ù÷Ê—Ÿ|jÖÁ€¨Æà‹ÌÑ»º,[šô|ÐÎ0Y£&¢Óßî=úl?=~úý_g¹žÊ-á/Ç?3ëÅ|;†ÿ¿x,ç~ᔘy¼g]7ÌéD]vWlLâóç7ïð/§¯“†`ñçíÊþyú¸¢ô}‘6÷{Ý}ß…ÎúüY;çß/{˜MõBuÅ÷ÎLõôï†Kò|ç™iÌœ>làŽùÎ<›{hoç­gÇìç<ñîíÍ‘ŒŸ¯¼ç³›ãÏœÄ_ ǽÕþϾ™ÞÙ|·|æ­\Ì}k„ÛÜègç”Gy¥_fûÙΦ`ÕÏÃ{ãíˆw—¡‹¤‹œ²m òæjõÎr­›âæll&Ý'þgT|‰õ½Å‘vR™–µ§$k&å³å¼ÌŠ&¡5Ì–“ªoXñ®ï²öÌ]ǘc9×¶U÷­ó.ÏënÙîqp«Ùrû5ܳG%7r@ÇÍÅo3½î½òØBw—½|:ø0áïeX±ëɨó…Á µàÇwg›ÜÚ˜^;‘ +u b&qEµ»ó™ˆF5²qónÎr{½­iãQ"ï3{{ºÁI$r^NW [ƺ2 Ÿ6ö±E½º0´!&H‡?™“"€…ò5|Þ×ͮޚ) oyµY˜ùrhK7 ˆx(ÚÀœ¶cب5d6d˜åÀ“nT‹ß-¹0á Š`i¤ŽFͽB ±ÿ;éëôý¾Ÿ”ú3ðJþíùü»íûà¢Cù&Mÿ’JÀIé }èÆ(' ªŸÏñ?Å©óÈàã³>ìþtà#‡À×÷§Ô¨””"ÏÞ-?Æö‰§\1_§ºÊw邸¾ŠGÓW.ƒ£ú.Hµe_Áíø_ò¿¸~¢ña¾ÊԿȵ‚Ưõü­ ¦äÃòFÃOÓT+ZÐGùSIFJ0?чò@"ƒú 5ŸÓïûü„¾?aìŸÇ»óìïÏà=ïø|]ñýþ*ùWÝðŸÈþJøüGßñø|L½Kßúß_ã›ý7¼Æ²ù‡_Çï÷ý|­©VÞßÇ=}½{uÏÁùý£éðÊ¿¯†8úÚ{ý?6_o›O÷øuÖÞßî)_çüGëóßöwo?ÿ¢ûxö«¼|}Úk^G÷ý÷Ww{þ;?÷õíðøC–þÙŒ°Fïºý¶èzúý¿Û·×öÔõŠCåìWwÇ˳£ºñúþ «(ý)Á¸<@;ɇ!O3Gª£í ¼gþÐf'r g£`qýÁMx¢È6J)¬ ÝŽÑÒ×vÍĦ±‹Ú¥I-`tÅ öÙ”_OЀ§   GßÎV\!rp\pI$8Eqge60Û\twÉrj¸šÅKZ¦£1½æÚñìg»ÀîýÄNtX¢Ûk­ÙÌnÎ;¥.›{žŽÏvµ¢½¼ÞË©ë^oC†®·¬ä»Uy§÷½I=ïU{Z4óvV‰¦§{Û£fó¼ô“µ«w;w[Q»§ctb%éÓV°kyÞïgRá½­ê77š²]ÛÏ^Þ5˜uëÞõâ-¦Ékyïmé[Þ÷­ëÖ‘ê2UË»‹uˆ6z8íÐqÆ3¬kZ©w<æžzö»ÞÊMavyÞöB¶Ýçäi“o2ìK×¼íO6dµ-V²{Üõ¶ÒN:Ï=/O=¶l÷«Îæ›Ìöݽ¼±<ñ^·l; ;ÈÉkV×·®ñl|ë_}of²÷¼Ï{]i³V\YYÓåç­-#å½¢Jò{Yç‘¶¦eP§½æ—/^µãk{¿¦ïZêù{Ûè×ǬnÝën#Ïj H5#L Ü&T&‰$ÒÝŒ_U——ÞÛëo^ðo–o¥ë–ê ¯Fõ­î7±ïg¶3½»Ó ½Œ{G£»{b;ïAÖÎÍd7ãסµíºîê(Ñ£‹dJÈë•€&Ø“ ¢Q oV\ª‰*'XA rTr+drCd”€+ Z¤7`:EJV(ô“CHèzzDé} ¡ =+ÒšAè@  W!\— 6Eè•èL‡ CЀzE4"Ò:7az€ R*tÐ Ð="…”‹ N•¤R—¥T÷`S¥”ô¨i Ð… ”¨”ª4”"”…"‹Ò‚l ²«’ *lÀèJPôˆéÐ!J§¡CezÉ)¡M…È@¤T” ‘ñø‘Ä âD DrTÉÒiE£¡CJJ"ttŠÒ#ÐP¡ ¥4 ¥4-úC H)¢”€ ° )¥JU­ †JIé¥:C ¤zE:eD§ ”ØŠV¶Q]é6Se¥€P…N”èУé(P¡:t*” l…"ì#²”+Ð ‹Ðš:@éM ô hô :JPAèC!Az@JS¥DØèh¥hzS Mƒa:JE d” J""!J ¡i_M iQô(.…JT P ›(¨”‚;ä¡° (t¢ô.J Ð€Ò @ƒ‰¡4Š£ Ò ½" ´ˆP¨ô€ è@)(¥èd]”d:P(!G¤Ò¦”Qô*-(!Ò  ¢ d (™ B€D¹ @¢Ðt€™H J°«Ð¢lŠl ’'B®‘€ô¤èèv@¡r€ @N¶@ZM…ZvQ¤:QEèUzÈQN”¡ S`PÈ: ‡ zì!v K@U4Ð]… qh1·GWmØïo]>ÛÛCKÝÝ:N«JéÛ*P@Ð5ÑÝ·²:}"ô”¯€vâ%Ñ»-!Å@téô‚žƒÄ@i}o`ÞÚF»²tõ{i§I·qÓÓÓâÓè;c{%ìPt@ˆh@4 Ð ¤JJE=Øô=(iT *ÐŠì ˆ»¿ô6}7¿;ýOwëŠÇ¾œÞùæ>,ý{ï½íÄùÏvx÷*ÚÄY›íÞ_:ö…âäÖe]™ëòfÌÚí¡•«ˆîù›{ïæ?ñß3—Î/Ϙ¶¼^u…—åßM¯9ÇÞH'ŒÏǬëùcãÞÔïFøß3>õ1xìkÙݵw¾cÂ5Ä«7L~æLþ^v™æy)Ï7ãêÊ ùãÉœïz˜tó¹æ)竵wkf⪄"|çq\ÐäáÉãæöXï9¶½|¸oy}uã—w’£ÇeÛ9$|æ÷ªríqæËM¬nYGSúg¦. ͺø]ÝÝJŸ9¬Û3W"†»w¼™-J׫äåxÖ/*å×öG†þ¹*ùS­RHiš‡N¦ÊÓOBÆ“y1š!()É€ÂVà T¯r¸–ƒKŠÎ—J˜˜¬"€°À„iZ¹Ó]T$‹ØÖ-õ¬ÒB÷ œÂô:(º(ãŽ;‹¢„ïÈ»¨‹’sm×EÍœ…™2ÙÍ–Qi–ìÜhìVKî* ¯ßOÍ(-üH†—¥SK¢„ØÄJÐ4 BÐ!A‰]0iÛ ¤Ö˜†…*ŽÌ¢mvçiÝÄpu™Y¥›hî+:mÅÀ*¹vYm[—`³Knt»«¶ÆvHGeÓQYFYY‘&6™©mÙÇhs´ÕœMnÂâÎÔé4ÚÝLغÙÙWrË–Éut5Õº»ZÊ;–ÍRÑÄÍc]™ÙC`cl7œvÛ“¤çÖmˆ¦í6ík)akbÝ6$. kY2òÝZ5l:–32XäãjÝ:RH¤´™¨kS[囩›mÃ4è’eÍf«]:eªXi‰ÊËSZs35pàÖS¬‹U±%Œb²*Q£Bi4šØÈ˜´¨Rd†Yû=ŸîþÙðŸÍ÷ýïßoÏy|§íqÿ™ÿ£yIìOùÁÔWþ¿ôþ`šÙ Jgÿ_ï› Ñ÷ѵ´h@Èšö®‡ýÿïÕí\‹þ%¦6]Zl …o}2êÚÊÙ&1 M ÎN?÷îáS]ÄóYÿá=)ΫqFa¥ÕK9pµ1md´‹…#M%_tƒÞ2é}Ë­ö'ép\œ§“¦ý BàÝ+â!þ7^›xqj: hü”0ÕŹ…ÕŸ:Eù–f݇ü™ N%¼;ëÆ¼ÝÕÔö‰ž)XݰL4›rý2¨ ôSG «XÞ­[Ͳ꼿މ˜eÊœÑ}öÒÎea=å=©›¢$ºŽCui m•F±® ÍUF´ ^¬®ºf6©Œ˜NsšÕì-z>xÕl*eµžI¸BSt¹(A©r&e=ãT¤m¤ÖcX¹U²75Zê%Ïdn\, a ”X¥ä‰ú^¯ˆÿÁ˜Ê› õÛJ¹Ëš¶rÑÕï×7ú-aYÆem¶ÖŒsÏi=ŠÿŠ Ñ]®îT`‘¶Û>;ƒ,à~ZRÀM»ã¡Ïlž"@UŒ[©3AT\Ô¹ËíÏÎÛ[R‘«­´MÞ%žGjùï".žzØ'¿¯ ã·~IOðƹÎóî&û–óòA<1Q+ÄmN3“Qté|éÓ ”õ>ð”¢Í v·N\ñHÇ+ä;^‹®¶R·:ðãmo=—Vc[®v`WI fhå¨×,î6„9\Ö¼ºå¬q™=MÈG õ?Ya³‰ÖWäEZ«9”ó´ðÌ­t¢Yrä!µF[œÕikdë­pL»C†ZÑô}#“¹J´˜æƒ‰¢›Ìx\à%& ]Úé7÷ã¦ó+=X'3"¹ã'«ç+³t¥Íñ;ºÀùo=D5]V-Óq Ý~¾.³¶±Åi·wØïAÒ­§Uü2À®zË<õ%Ÿ²Zа²Árjûõ»â¾¾ß#»_1mb^%Ï-ÅDƒI³|»ú}‰íiÛR–›)t†ìyi5œQ«fk˜yPGF°uƒÐÏ éjé¦Ôâ=?âø;T‚PÔ0}ûcov ¶‹Ûçh̹kŠ×‹^6àºÔ<=‘Q‡oÇ®®ðWÓWN ¯(ªßÕ–G¼z¤ºÇQÍjx{8¾#X]“Þª7¢ê‹D$¨5´@±åY-{w¨ÅÙ=jz•­™œ]Õ›£XÅ}NP¼¼vVq¦,Jâ¯÷Æz_Žßz£¶Ð«*bÏØ7w”¸öÏUT³e-¯8¬Öò¯i¿ñÕ¤§Ã¶Úeý³·ž(¯óÜùå ®+ßvdÚ‘®þú;i31KòÕÓ»vli¿}5µhÙXzÜ8f×\÷v»¦‰OeÒͼ´óõN Æð>h«2ܳÛÛžë_B>vEÊ®ü¹®×Õ½ÓÖ½xœ¾¶»ñ-,åjë=wµvâú³±Œ^$oìa§bß°µfÿv‹š{œÚ/“m;ZŠu;cŸm²î½ùÑÞß¿»<8´Ó½xTÊ]ˆæ* Áƒ¶nîžT:9Sê/,Ì4ÊÒ]:ñèïŠB¦ó“VñzKªzÛ!¯öå÷Є;7›C‰fYµvÇ®­Œ)Ì£~”÷j}Öl¿#ž¹\÷¹P6æý÷u}3ï8ð¯¥wïk\½·U¹kjGÊtÅ›È{m 7ÍÕxs•y^¢ÛŠûJÛYy÷–ÌŸÒ´Úý´ÂõŸVZ¥uQªé=¼˜ä=ÖXû¢ï~ÉšÇÔ[|á0QS&ǯÝe²‚¾Å /s&†«îØïæßv¹°4âÌÛº’ ïfÚ°÷®˜{BaÜÆ>ò -y]%3©C…öcŸ^c˜ù01Ûk©•»=ËWWb¾ß+ßkFÂG´½C¾©~êÓ´ 8´<&±[ÕÇìÖ7Ô¯iÅs¬õÕ{ªþG¼Bt]ü;ãÌk ZÃëXùxaó—®_“§ gÇXNcÕáéz¨]ñ×á¢ám#HŠéðT4žþAöå•¡Ã;±× ü¿^nÔ>'³~Ž«Î0gí"õ,WMYËáí–ïZ7ܽ#í×y¸ýùÒ ··o¿1sæìÔp^q·C2ö‹ðß^ÃŽéè=Š1ÕèJÝS°ÉnîêiXlÎíæ…ÄOÌîwà³wÄÃÍåÐ^ïz¤Ýä0„ðšâlL­ýŸI)³bÊt#˜­‘eÒ‰orþ2Öµ,øÜò:éïRl¥¦Á§Y8Oã·\3i4uÀt:q£J?çj»A]‹9 †—¥¥bÄœlݘvWwDùœT©—®ÆHfØjX^˜Þµ#[²êuóMrùy? fc4Ý­gÞšä}üöãÙŽTù^駃ÃQôípá=UE¥)× ÓIxK°!nÚËLé|¬dØËa}ì¾úùrámKLÆ Ý<èvNž•ã…Çû±ß3}ÙÝÊÕ‹ºdá§7WH–ÓUÔ1®oý¶Ò¸¿Â“âÃæðx¯Þ36èóÆÿÿwטú2*]óÖ„¾–HåÓÖ$ß+ÚàÛIúú“ís];¡îK„f’B,P_‚àñÈÊÎxíe´×ÝJÃmòïÞ ëΡ~g ë'8œö‹c˽v=´ªŸØâe÷: ‡kþÏ}¨Íã½×“s×r™sxÅ‹1vò÷Ô4†RwíHùâ@®ÛAlNŶr»âçݳÑÍ :K?t1sÉûêåÆŸKòëÙºUx³žíë½eÙÑå7C‡7¢ó2\SQ†ÖÌÞéf«Î1À²s!xjH,,å_Zñ ]—³¡({¿\V…˜³JðÉGTÔ:ºúStkv¦éÇ/‰Uñ…ø–¹×—9lѭϘ×R”ðÁÓOY'5¦U0©°µ–Å9QMMãWQæ¦éLq #Ó”°ëg¯!ÂÍù|n«@ž“¦‰n.P¯›nÚL– ŽÀÆ B“XKqFÕ‹™Dž£_ô© ”£†.o~-þfýèöp©±{°2˜ ¯k­°¼.òП0'.q!ŸköŸ—R}÷­³ZÊÕ~¯ï¢ò϶k5)ÓcÁ/,&­Àìk¼žÑÑòèPÎŽ ÀmZ¹ÖZÁrM”‚Ø*³TcXÎ'†Š‚˜Fë¬&÷Ê€ÙE×rޱ°ŒXdè]VÔdzÖ6«ñ5ë= œ\ò°ú`¤•಑Û(dn·É̪˜õÅæš9NìKÍzYÔÁ)À³ToGÉR1R“/{©9Ù©Óû ¾“f¨zËa®ºªfZ°o¯ê~îÍñ؇‰o.—˜Hö=M ¤SÓLe§'Ï\I€ºYŽa_Øé`Uñ%¾U¬¸‘4bB`粟/wSòÆ,[_JFˆ©ÂÂó¡J8<¼¬c2&5Z:þÜÞ•MRÉ:y[‰Âm–Vf¥ëÉB±cº NA \†ã‚’Ä j‚µl&õ‚§¢¥AÁµh`ª=…ÄÖ¼½r“ Ù¬iw\‘ªÕuþÓN[¬1#JÆRF¹®4S„0Æ "ˆÞ婯Cv­Zs–O³¢ØbÌß=¼ýr>óžþ|ï翟*ÇŸŸ}ªçéþ|ÕókÌ’™W|6¯B#þ^s~?S¼Y·Wv!xß¿Æn^øýG‚óÎx¶~|±ß8/›<ïw?n;¸ó8âö0ÚÇ÷~j°”ãüÝõž,Ìú£„œ~¨ñˆ^ý¿®noȼ]¿3[‹Ó·xûñúóÔ-ë>U"íîÃÏTðÛ¶? ðƼݒy÷}gòý·»Öþ5î\X_Ú¯¥WäîÞï‡Ãï|Û×óÅgwîK÷Scó>^óì ªy ›çÅ7‹ÞjZ¨³1‰ â×¢Øsx‹™þ-M‡™®e¬ô|{;ÞýìÌÞù{šŠvì:{7—„¯Üô —íïa{w9:Þ lqokçwÁ>uøˆugxw¹½£—|ÛÚs5%Ùn}Ç=;R÷ïKnyæI¾r'ÇÌâ¡ß^¹yœ{»Ëîéè³;ÄöñÙLK×ì›yŽ ég{ÉÝñÅÑ3›²IÞí˜÷9ÍímbÝ&ví‡^ñmzùW†ïøóŵ秋ªâ³Ù}w¹\ÚžíߢÅÆM¿_7P¡þ½¯øUŠeÜžüæg¼¾gO_z™²äÚçÎçœÜÁ¨p-ß­g­wç|ŸŸ3ï>öߊ|1»íVÁ÷>ùÍñp>µo:rÞ4ãűs/Óçœ:ù»mê™ßžtëæý·§‡–ä|îå7Ïñî×Zï9 ÇU¢îêß—pÞ'ÅI‹+æ6g˜òBçhæmo±ùÔžÓ·»¼O˜Ù&ÆLâ%‚*…ó6¹½g{Pä‚(9;¾m§·1Ž^W.,·5=«³Ó²IÆ©<%ò<êywšÞÛ­-©]™„1ùŸ¬Ã|‹#œ×/qà Dv•]¬ÔÃïrd¦ÆÓ’O,’|ò¢½˜l4ãœn: îJ›ØÖbùÎbjÍÆùäÔ³>;•£¶1ò­Ò³$—ז䬻‹ “¡DËgKvŸ¥åjkqšÃ AK(ZRäÁMlÝwv‰xIú7W‘©Ñ5ÈG' ¿›óTØ  Òrű Q&Ù¹Òï!ú™ú€@T%øþ>ýû|öþßFþÈŸìÕ¿Õ@ß»ŸüGðï×ò·«à×õ§óý?PüBu4[Ù¿ô“^:-ArT¿™2ÛGšÏ/èµýKu‹u¦WŸÄ*“ýHIÕnŽã—Å-J30„ãàT¾ßÔ½Ç?çyì^rK’Þ×ÃÝÊUРçMþGúÿ:Èáÿ¯ßŸ×•³ý>µqEýej³&Ôð¸ÍñÏ꺿­óÏèÆz(ÅДaýT!ü¬ÑÿÑŠƒL¶‚–_oÐý¿/¿’ûýˆP}ÿÚ_°4>_Opü>ƒííðóÏoãÅzÔ¾]ùøý·¦Ÿ/…ÿŸ¯žß—ô |?"ËxïógËÀ{þïߟqé_¿·o¯¿ù£ÿšý|~3_>~Ïíú•>_¿Êß8ízíõã¯~O  w4üþ>}/ónôÀ}!õù÷µöýåàSäL>òù÷/ÔOãôüoý>ž´ùöÏ>qHOéç±]¸¤ýv×Ý÷­ýü+o=¾îÛøá¿Ç»ž¶¿¶ñÒÿéîâVl?ÇДàûãݵ ¼VMóÇŠÍ÷÷1J/5&ßEÆ0om–Í18E¿³®Ú=¶V^:Šl÷Ck§¸o%EqÊÛ½å9ÑÓÚ–E<ŠÆ’Ù}=øså¶š8ZØæË™ÄÅÌdóÂ]—I===Q?,4 H ”(¥P‘ Õ(!B‰H¥"”E(´-%B”R ­" UP”)J Ò% RД„ÕT©MSH4…#M-%HK¨ã¢¢Šãºèº:¨»N£Žà躊â.;îŽ#¢:¢9:ŠK¡;®(ˆî(îâ(Jª8î*JŽ£º;¢®N.Ž$ˆ‹©+§N¢à§#ª:“ºƒ B¤ˆŽ„‹Ž:¨@¸â’((„:N¢è‰N¸8¤;ޤè.. r:ãŽJ¨è'r¸(Hâˆ.$¨’メ':é “¢ä"äG#¹Óƒ„R8C¸àNpçIÁCŽ’àŽä‚S¨ "C$éÉÉÄ£œN‘  £ 9$är¤¥‚9ˆŽJtt€Žƒ“‚8tâA‚C”êrQJK9Ñ(œsˆAÊ8èDè:'B;”äáÉNH:"‘ÉHä¹Ä‚œ%"’B88¤â„‚'HIDç:8„$‘:IJ#”AÜt‘C¢êà.G( Η :ŽQJPŽNNœD‘I:ˆŽ È" r‹Š!!'#ˆç.tI$âJ$¢ p$¥Â… ‰ÑÈ:t9Ó‡T‰ÅŠ© ãœ“’ŽQÄ*!p”à‹”ä‰ÇIÎHqAE‘'!ÂNäH8's¤' HtèppIÄBDŽãœŽJHä…Éä“‘.H#$¢ƒ—(èr¤N9"¡ボ#œ‘ŽN“€”Ó‘Ç"$‰Ó ä¸r‹”‰8R’.C”¸è§DS„D"¤S‘qÈ”¥Î#„€á@’J@â:8‘9ÂŽ•äq$Ž¡Üèä:8r EÄp‘Ä8‘H£ $PŠRÉÂáEÈ$RuÉqN@èî)8r$JR¥à¢%‚’qÒ %%œœ‚)ê"rAs¤QÊ$è‡9Ü;„H”r!'Dq'C—@tŠqœ“ŽqÉ"S€œ¥çsˆ‘Дœˆ8DRˆ©ÄIN%8(’€ )‡qPàˆNâqrt¤Ž¹Ää鸹ÄâAQÄq‘'$q"$ q9Ñ(R"A8ˆ”T…:s‘Î"qQJIÐ@IDEÐNtäçHÈqEÇ' Ó‘E.CŽát Ç¢‡%QÜAA t'G#ÉrqqÁÐâP”IÔt‡qÇqÅÅÂ8„pDp$åÇÅ(qÄwAWIÑÜR$qÄœRGP]ÎruqE!PQÄçqÇ\!sœ œQÇT'9ÑwAqÒE\Q#‘E8®Šîî8îNâ€Jsˆ‘Àpq’‘NtqÊ"s‰:Ns‰(tRE99NIÄr.¸îRr“¸è¤s¤Š:ã‰.Nâލ8ˆJrä¢âŠ"C£„¥8éË8•PQITÑ@ª~!A~Øõý~U•”q ÙÙÖüÞ½9^Ö8çA%¶Q±§(mfµ™º‘;ó_—ôGñÛNÏJüÛyßÈÕ½šûÞ¯?–õá~,Ï1½ªóOÐ÷æv«~ƒ›òg+æFçô7ÄÓ2ä‚Ä4žhm!âáþ¬ÖÛ¯™ÞÝ‘œ2ª„MÄÙ%EqÉkP^àÖûÅLW}]ÞμlS½•2fÝÞi‰¦·7;½öÃ\o¼Åý/•êó¡œxºŸ}ÕMåSWŸß½îûõg·Ï3¦5Ó¨W0ðO{ó—moq³Ç‹Ç†k‹'ŒßÌÉîoz¼ß¾]ËI8¶«»M´Þ(üÍÍé†)É^vÛ×6¹½óœåŠ.®ó“e\Åâ;Óy<]IÃÜæxÓVYÛŽ¦Î¯;þ4.ÒvyXgÍûï{<çyæqî°g/ÓáÎ1pU©xüÏ;ëùì0oÏyd˜ Ìò#2ï½ï2ß97¿žsÈæ¸§ƒîÚ#ôâïg›àn=Ï“Ü}g÷½Ï-Y³VÅÍËÇßUãfãé^†¼·»ž·êîõh»ÄÌÍðOÍöv¶y²ïÂ_ï“NûñsÉósÏ!<÷÷Ûí~ ò·ë_‘ý™_Â?' 6üÛØ¹Ë'oUs¯ý­y‹Òsœøß·Ìüç½s}>ñ?quþbÏ͈ÝÞ#ÝI¸™½åGûGx/ÔVmwç7†œîüÞø#~þgœß=ÅäNÇöož¾ftîñwÙ;¾Ç·cýŽãÙ¨ýÜ<íµó~ý÷;ÎýLJ¿ á¿›3ká™âzÚå«1L½ßå ñ}j‹<^£ÇŸ> d^~bù¾#|ûï|óÏ¿;ð%[÷wñù×Ûé×kbÜ{ûÞd9¿9ðêíi{ùä>z»êß$Eö ^²ÌŸ)ËÅôßÍß6·rô甅ئè¦Y[xùµõ6³Üœ3†gy—wÖûÌ5Ýó]€›ÅuÜNsŸ›òwo¿Ÿ?Wï×Öâpüù39$ônO·3¸¯Öm¨\>µ÷vq¯I¼ÊÚ˜â'{‹h)SËþa¹ÔÞw»æ×·Ëk=÷Ïåæþz||åñ!ÜøjX\Vîr+³˜·{9‡9ß9±o<å•UˆSw»|Üä½n×מžç|óu¦ïîaúÆîüšwÍï[§¾LÍ)Ÿ—ßVÍgÞwὫ¿c¬YÃh©ûÞEÓ7Lîffþóˆø¸»ÙÔû»V×/ß îfK¼äæ÷Ê/UæÖeÅ›RVå©ôÃ+Áín<ÛæÓrØ[·w™¼Nn{"ñæãÜ­t:§Èžy3"o|x}õðÌèÎ0Õ¹eY^»næQù‡%ážç0Í>_cÕ}ÖíÔ«Ç/Ž¿/ɆßqFF‚ò&g¬ßwµÍà—ñ™ÚöÚ$U§t7¼±¡ä#Å{g™ ‰Ö£‹Q,S k‘ÎäDƒ§»µ¬r#»–½>n“ñïß'yÍùžA0n½<-oUI%‹%2\Ž×q§T˜ 0Y%i’¸®R9¥mRWbiªö'´îÆ"U·%NM¹×¬Ì3[ÞšVÇ–$Ј&eÅòä{7ïÇ«·àÉè¿þ_Ï!S¸c ^ k5•Δz…1Q­ƒPF1MC ™9@FŠR½%|ݸB}%) £E­RÅé'Øà–DR‚Hú¶8íbsŒ'hĤ-R3?7ñeã‡}êß?}Þþþûø A¡‹ŠRpœ(£ô¿Lý6ý5ý‰c@¬lB”Bƒ #4!=»¢µuÕ/AŽç?±Ç¹ô=Ù×EŒMŽ;ŒZâèèžµuZzöYëN*(¬¶žôzI›fš m9ÞdGmˆ½¯]£¶è»%5«wtb5uÇ3ËGlëfŒÀaÖEæíl˜½Þö-íwׇÓÊÐRTCI.(£¨çî7i¶’ )nÚ#cE»ß/‘Ç]®í&³'X‘ÐÜ“¥RÅ4šn(˜r!XÂQŽˆÐœpŒm¤àâQéöñèõÐ[g³¡ÛS1èO£ú2Š¢œäåÇäJ8Ì¢€ˆ¿Š¨~‰U¥>2)SBí„t(P4ˆPè HP ¶DÒPšV¥h«:£„*2Žé-fë;‹mÔd\vZTe-®ã JÒ4ıЄ¡#RŽYjîî ,¹mj¹-Q´-ºÎ‰bÝÙ$Æ8îÆnÉ*̬ˆÚk2miµ¬´íXuVI’Ö庵Çd—aË–­–¬²ÙÔd¹¥]•PÙV\•¬¡eSN–²Îf –Õ‰A‰nKF;–JëJ-q¹%£XÍw-­p]Yk ̪*ÚŽ•YSÕjc‚š­‘«8é̵+26µFÈZ9¶ ˜ˆ’¶5µÚ˰Ía+«¥¬Ñª¶fÝÙ-¶Çfš]EªÌ³i™Vj-´†hj±»n­Û]we¬ˆ6«¬¢Ž¬¢‹Ž:ÈÈfçúÿóûOúï€ô3}«÷w“ðooȯÃçàô|zUåñå?ñÿºkþƇÿêÖàêN‹ ÒÉH^f5­%9 $ุÁäÒrÕ%‹Øµ4˜€k»¦À’DVç¸åÿj# Èÿå³QhÚ“‚èßJ "1Òçÿ-!&ަZ<5Ö?÷ìÍôÐe)êC…3*ë«–@Q[Z¥ÎÃþjÜk Æ¥^hÖ³(µ˜ŠÖïó{©Î›º*« _äÚê8%Žc…"ŠËHáÌÿÉÇša‘H‹»i_þX‚ZL.œAÎv±6­2mJŠð.¦Š4¹ça§¤Û`v븈ân5؈³ÛJö…Üëe2 Y{ê(÷åÀJ]"îÛÓ\k:fPЦá´c&>B%¬†ó¶ª¤õ·Z^0f\F¡¬{’AÓÏu¸{é±ÇÄ8:šJ(l_ùš)¤¥¹WyÀ•)Ëø­†1îS’2Ï^¯ŠŽ¬½_0¥’:s'5Ý»D1¦›ÁJÞ¼ÃQ*ïÊìøMV¸Ç,îÑ^×ÑiÑkÌ€Ü1^¡ã|G¨ãǪfœõ}ºWP—X¬–ø£N"û¢—%Û»˜¸}ËáÀ÷Ñ­]u%bjXª™ƒ,«4Ï©°Nv›|Ft1]õ£ööÂÞí€D'W¾—0T˜³‹šö²‡¤jâú¥q$hH; <²[;ĵãf¦$ybtÁòÎÓÖ.Ï>¤ºúI“ººÊ±†]¤„ñ[÷îŠé“+ê¥LvC tc1ÆRG~Eívw*:øÉ摜AøŽ©Jº/yõ-„u›¦;¾©¿ŽÚ>Weñ²ü)|r›C<òÌ:æ¹o°œÚÂîZ˜;‡`Ȩ=¼…|.nåŠ\²Ow~Z®»ðõyrºOX¢ˆ±^ך™$µ¹T¹Ç6|ÞN˜ 5[øÉïµmàü/¿ WNcó*‹ärn‰{语’ïŒÔ<íS}®^eá˜åqvÇo[o¯<à/;ížxÌËऔ½ùíõ=NÓõNdéWs)òÒ¦]¥´¤šÉ”¤|2÷9]­¬m©²X¹Md®Rs AŠœ ‚ÅO,$Ç^7Ÿ Õ±{6Ùtôðس3Þvß0{²÷‡®Žv˜p#µ:qS~3ìz¿®©3 A@ÁÖùëVµÛŠWŒÅÅ´â«B“,Í`nàeŽašJJVNóÀ®‘¥B ·>=©¾Šñu^ÜV*Ùçžš—Uúd˜á¿ú;-Òlðš”b®ÞA~wר¼G³&'š‰è…žˆîO)ÔˆcN]žð…Æ…¨TÞ«ï-5v E9òŒyQœ¡Ó0: …™|+ÔqIMƒ$ ·^êœúÐBߨŸ[4Ìõ{ŸweÕv¼ûAÃ!`ú©xˆ`kCÛý{ŸN¦!½cë„ô¯Ã»ka–Í–hîæþxõÛÜìm[ï\šw™Û¾ôyë QNçÃç]Taßø*<Þ½®Ãzô»e·úˆÒƒ ‡¹¹IBÊ’—ªö£ ›XL6 ÖÚÚÛæ851¾õo¼( Úܪ\e6yfzdEÆî"/Æ6tñR0Ýc´êбµ¯¨ÌuÒÂØB¼:ÒøLŸ))º¤G@¤g΋åׇmX.ƒà(1wÓgK»ù» µô,3©­-nd¦>4)ËXÈ™Æ/˜Eê\ˆŸ ß]¸YôLY{?WnlŽQ&œdí¸”KS„¨\)Sšð7l©Ajž ôCeÌ`• Š´ÞpP4Š…³`”ƒ¥ ŽFAÍ!§Á[Ûß{çÏÞóÂ^¤Åh¿M°ÅÚþƒŸ0diÙÁLèýfµ2êðÕLS%8ʵgG4S&·8"‘t96õ&½‹)2?êÖ,â„/häœ ÓÚfÕ3VJÑR…&âý I|›‡¶ad"Z½Y Щ Ä8ó]Ùî˜wjM†y G7ˆ9vw[…¦š?šî>EcÊî.+‰âÄ!`÷3xé\ñ¡X'¤˜*LBc­æ SjÊÑ1‰ÙøÐ„Á&!*23¢Y×[0i´Éº¬ÍÍØÐô«É©Þa»e`ïˆ3yÁ£ õ)FD¬ûáaDØùÛKIöÁA­¥¥«Á½ú9>«) Ü‹GäÎ"±Ù׆{*aTbç«ÑYÀQ‘òñAÝÚå_ëtâ=ŽÆ¡vŸëöƒ"ãË ±–%Ö6ôò„7ÔÄ.a/ µZñe µ¨úršR²0p‚†`,k:6¢ý2¡m^µºv[T,Ϥ‘Rжo‡¬õËFOtËI¹¡1³ža ’ÁkE7ˆ)5‹IÄ­pJlæj¬ÞUa%• ‹r‡5šÆ[”ª×«Ò v¸(hðX dê=&+L ={.2d¤¢'RkŠÑlŒ| e˸ Ffrœ'&Äåãé³§(X¢ZAcv¬ê7 p˜1‚ªƒJ£ÄV–c$T„Ì© JN *ëõ½YªÌ#³+K‚–¢E0ɨ¬±P4±-ä±c&ó4b,ÔŒ‚Ö8!±A¬5¸X,!S^#_fµ)©¬Ë.dXü(à!¡ÄÉst¤n£V¨ˆEæ¨Ö¸,˜s5­^…Ca“Ü`@õFð‚ŒBf@æÊåºÕö8Å 6` Éw¿'íß¹è;ñÀ÷z^cìolÙ±zþ{¿vV€¤¤ÉCs‚/’¢ð%=Ñêp4Q.jP(¹3Þ'/,çÏøýùçÃÔ6½u:'?Ê{íÅñ¶™£QŠȰX¶.‚àÚ="òzœnô7…Û3ùoô»ÿ)þmû×¶ò~ößÙc:'Y¿ìù;¶ÂXâB²Ÿ"]ä@1qÌL\F&YµõÛNc]oõ¿—}é?SV?Eœˆ·“‹„•_1ªÆ·¨Ùö÷žožõš§ë’­˜·' ,„ÄÀp®O›}0ÙÉìp9ò0h¹€/ZÇÅñûã¾a2O3þgžó«ƒôó|ýMáÆÚ÷79ÅÂû»OO‚å÷¾÷ß×ä×gÎ'[x¼~ÆØÃÝüßÎl¯=ø?S»Ùôù¿¿÷ÝídÙû¼kÉßoÃÜÉïv²fÿ ¹Ü켟ÝyžŸŒ5£‰‚ÅPQO‚E¹*ŒMŒPÖÂRÞçMFð5¼W¼ðQ|¶½áÅ’I-Îfo6lØ&žóÛÞræö¼ßý{gUg| Þfç¾ô¹Ú»gž'àùÏ‚ÌKs·ÏäýošÌô¾dïø¯ç7?<{ôï;Í¥wÏjóáóƒôÄùß>I3î<ŸŸ›÷Ïž÷Ã3±óœ¢ãüëÏsgPu|jѲ¾jœ$Í}û¼úùÓKž9ÜÏ'wñçùo5œÜðÓ? -¨ß¿’Ôýó—ž“ÎçYãçæÏ1ørgó3}¹º¹âÌÞ÷Í£²sj0ÚóŽN®=¹Îs“{ż&U)©Ç¼Ã&óͥȮ^h±›ä}[›yÆìYœÍÝ÷ÞfdÞÚ^_ gŠûàö”âó9¦»8êËU¢æ¦ãÔ˲\3#îûÜì[yƦò¨C9ÚÞËçyw ×·'¹ÁZ¸Ý–ù<ó³fœäâwù‹¾nï8öê<ÌOl’äÛÚ²kweÿ'‚ ÚŒi±C"²=çÉ̳çmNKÆëgo*ÃýãîßicŒ§ ’Þs¸¦þE7°žQpnËÌ“a4¶!àã¯;`Þöñð^w¢è»ƒ>F/2O[|“•Ì£*Häó2k4ðBç¶+ÑHÞ»9ÔËÉbÛŽÉ"·¼¹ƒñ­Ü«qa¬¬‹6œXdcCMÉÜÖJEf3V« MÅ6'†ÓÓ.a»†•5þDÂÍ9¸ŠæäXÁ´0(ÖöîŽàèGš„‰;DÚõÑä“hcQï²ø\ØbwdŸð?ßÇÛùý½ÞŸßçøýã¡~cõûš¿§â²rRb öÅÑO•I±Å-ÓòöÂQ¢~_?µò÷)ÿWIºÕµü¹H•9›.L·ç?tí‰×ð˜“ôüÐÞ­g¡ ¯y˜Í>ÿ€üÌ®5™GìXýüþØ7ïÏí…þ‹jCýÓý\²¿ú/;‘SúIô"ûþ½~ówo‡÷#þß?‡ùöóçÔº^þ¾~{4sçð)ygßçññgÓoŸ™+éþÚvõúßáø÷ö‚qûñó÷GÏ^¶Ô§ãÃ>ÿ¯¯¯ðä–ÿ?â?¿~Åòøè]z® üë ~?§ÙA××^ÿ—¯ÙPývý§ä4ïöùû½þÞ[ {Ë·uùÓõãOظøý[ž¶ßßíêØ´:øI|ü~¹wo^;{|öø«É}¿}3ò¯×ãEkõøqðÄX߇ºŸŸ¿ÏøøùCµÔþU&¬?;ÅØ6¾>Ì—£X¤ªØå6Kp›Í+ö”*²5Ï<®‹¢é…C1Ý‹ªì¤šÛÞ§˜ôsÍçø÷É3ø?ÄPõ%P@¡ €D¡B‘h•@¢•¥ZD)A Q)¦€‘(F(¥¡J(’ŠF–%Z¡(‘j„hTˆ(Uª¢’`ªRŠQ)¤’ŠJ¢i¨‹¸ê;¹"î€î ¸#IB”­T4RP¥Ä]á×Ü]qÑqQÔ]ÑQD%ÑÅqÈs•uqqIÉÔ\tç%ÒuÁr”ttÅÇp\áÇrs…Ár8D9'GQE!qÈ…ÎÑÑBt]PQГˆ9ÔBTrtœŠ\œ$I‚DÐŽAÀrBåIÁˆ PéÒ\C“ EADtQà”RE"s‡'tt\R'€$Ó£¢r'Ds§„ã ‹‘ÑÝ$8„ƒœ JpR 9)å.q#“”„8)'9$ŽI')$⎒ԄAÑÉ9tHJ(…ÄN Å"8r"tW!$t ÔIN:AÄ$:‡q)Éœ…$IIÒå$““Žé:\’!ŽIG$8„NGAÉÓ¢“Îw#ÉÒ";’qÎs’œéÈ$‰ÂpD„8DBÎ% N’qÑ!Â'D D"H¸Žœ Q(ä’$: GŽ8H:Hr@QÀ:@èœ@.AÉ:Š)È„8§IÈqÎT"'(Ž%8r’NB€”ŽJqÊ…Î9ÇNHtJˆŽáœ”œî)""q'Š!Ô$s¹Àq I9ÉÉâ8N8t$\Žâ…tAœ:sÂQÎäéÒJ9"¨£œ”Iœ’$€"AÔ‹r'@Ž.q8…@!Áè: ä¹ÁÉ (çrRtPå!΀‡P…9I8â%ÇtIJ Gs$â: Rà圂Nt$’R„rJŠDÎqBCäA9s‰Üœ‰$„E(îNΔ¸œè”N‘)\s‰Ó¤áN"„q)9:8J"tŽs€éÁ'KÉÊN8éÑÓp8¸äRœœéÐŽ‚s’‹„Nˆ ÈJˆ‘Ê8œœE($ç"8”é ‰):Ë“…Χ: Q’‚q$:â89NêR¡ŽpçG9')8¸8Cœ‰NŽœ:.PŽ‚s¹IÈêÎ" ¸ƒ¸è£‹œ Cœé"§ 8©§:)‚“ƒœ'!:ˆ ¸ˆ¹'8”NJ(èîHàäî8Ž¥9éG$î‘8!΂ä„8Žä@çBˆBS¢£œŽƒ¢ç!Âår8¢Ž”’ëŽsêJ..“*„¤I.ä” ëˆâ 莈(:I#ˆ¥îŽ ¦¢ *‰•JT¤ª)cŽàè..’tN$‡'$’PéÐã„’NwHGtIÒè®8œRK î.Ž„§(JŽN㸠⸺BŽ;Š.s’Žãƒ‡ à¢rŠ©"bJ( ”¢ ¥QõÏYˆÃ’'')$Kœ¸óúïè ääN¢œH¢èäˆ#ô”ÉD¦ar‘ÉM-– sAÛdksX#×ÒœtGpp…áqÁD(“ÁNN‚àQ'TRÄ7Òú öpŸNîåô,Ó2«-FßûÏ+*iÂ<µf)­µ“K{ª‰æY2¨]ØžÖ÷†ÿßþÿù¹ÓðFºÌeó$Éx(Ó,<.×bÞUnó:;³•è X,QVaŽä²¡aAï³S8d†Ë­­ðþÝð9ÎmלíÎ1oÞ.n?wªmo‹îÌ{‰ÒЛ“Çç6sxù›cÿ^÷ÃÇ9»ß3ç¾Lêîy›Þ]KÌx3{Šë’ç ³j®[VãæŸ¥6÷°rºpñÜøû·ÖLÌÝÍï¬[!½³ÏZï=âàRñcÝók`sXŒ6¶ÞowÅ}Ú®ôFS¿%SÆ*fóŽÅ¿’ £¾?1q¸n9ËÞÛaóãDç÷E¼Mw„`/ñJ«ƒ^çÃ1ü³¡çÚ»òo¹Äü¾Ãœø¿6ïœÙŸ+'ÞÉ}ø•ðüÞFÞ=¸A‹×Ë»ñëdÞg9›ûˆ¥z Zävb9@¸9¡Œ"bQtä6²Fè lŽ=ü¹{Åmô½éiÖ¹q¬º›¿gž}ç-—ËÞoÉÏá„›æ2CÉåàŸ{<å]«_Ÿl÷}îpë÷5rnûæ[ {îKÄ׆m¬|½›ªã8ÚÚÍ“Ìjms˜¹ñò?Ìß™~nÏsÛó}ùÞq¬ï³m¦gbÝuòïÕüw&x¹-m:æòH¹œ÷-|íê70×s’ùÌÍíq<èö»¾/žý尿ÔUt~O<õ÷#Ý쯽ä‚Üš[æn˜A‹­@”ÇET*{&Ež6¦±Ë¬ß2<朒˛~mwu›½BYE[}Êo¸ ¸ìΦ¾fâìÖÛ@ë㘌‹³³œ|˜[ÍùÍç[·lÆ+‚½­>n¸ícÝÄÉ¢µäd¶îµˆY$ròÓojï3iͬé˜úò.®l­a˜íº”WnÝä¯B¨„ÛaÉM¸Š4=½Ì™›£•‰ª+S6Ø–7ªÓ˜Ù‘ŠäÖÍv<¢@DÃÚ´NÈ5&zU—’%Ú·X1ż37ûÿÁû''ï"vþñ¨ÒêXÌÐH„ˆ©c1¸Íj]ìsBÆj•ÈRƒQb‰ÀÒ¥[X!2œéB6ÂÌ)N†È¹ÔeXa¥(m•'¾ ÆA‘ôSMÉ!‚ÁvTATûßùß‘9Ç % wHDçˆ@Bpw!Ô Ä¢PrttDwNG)rTtuq'RÝ9ÓrqUyÕõ`¥X‚˜–’ˆV ÂîN æi›m­¸{î#©Î $$£¢;¸âB¢é;œƒƒ¨â踈¢èè;¹8ˆ(º?ßwW]W]Ë.*¢Ž’HàCŽN‚䣂ˆŽî*:¢ã èº8î"ŽŠ.‹ŠŽèé;¨âšB‚ŠV©) †—÷˜ ¬“)¬úU‹ÓZº¿ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿð®/¾óǪ@(„Ô0m`ÞO=RD€(ª$>4<î=ºKØP(©T• )@ÑTU=4¢Ö®± ›bÙJÖ¶–ÉmU³T¶…HJ¨ª! T B’‘@Àà=jï*ÐÙ® €@ òª¨s¬t%¾H'@óà>@ûoÝ :Üï=}wP€”!õÀ¡€<ç˜û‚€I@¡T ª€#êP)F€AÐéª(*šÐ)šQ¦Zm”4­²¥-²•¶R’Im–Ù)RQE(¶ilh4i6Sm&Ú™S@[R$J’hi@‘TkCM %­4jE²°©V²’ŠKfÐVÍ5Td)@Ç|¢Q3¼õ[9æA¾|1ÞûÚÁ‰R€ 5X0{Óï˜ñð„o‚{î€òv 5V= /`(N ·ƒÉ·ÞL{ mß ÷Œï‡Ð¤ @TÜÀ¢¾}@$÷Æ>|A|øø>¹å»êgx|ÛhP U’”‰¡E(*"©@EPRR€=Û‰[ãèD )¢j2@(¢÷Óryô‡«9à%ðð}û|}œ8 ¸JIKT¨ESü   @M&‰*x§êžšM¤ôx¤ýHÃQêi´É£COIçUMTêtÊ왼õE`‡ÑNMcÛ[`%¨´Tˆ2jJ›3Öçd੽ن‡QD)—HØæð]‹i„±…ª;Ì ä%³ÚÌó!HMdÒ&ɬtRæGœ‹yÒLC3¬d£BÏø©†Ô·ÞÇ*É/Lç{¾Üt£ øVëùW§9¶šSSŽ“µz°?iì\NáKx ¥¹È§á~ll§9a`E7. ·°8¡¿uüÌR=®Óð$´k”D¯0Žfɽ©Žga"H'p=º<Ç((›¨œ)"¾Èõ}æ4kE™J-"lBo¶Ä ¡õ4!"0c ­ Ð¥á W‡o»<××—7¥äl•¤.Ë¥â1T˜Ïƒ™ÖVï8¯JÚ«Û™â¼l¯n›>š¥º4A9µÍ]IÚSªïiØ?Q Þ¡Ó‘”ÈQPâ%‰®z± †•áƒöéªiÈó¬èϧM§=ëuÛ=nðå«6dŒ ©!”q´’r(ËÓz­­g­ÉD.@ó;ª²W"KJ‹ ËÏ¢x'®jõ !¸.÷µÖa±8L1 Rsï,ž¡zÖµ]­’É"<üᜬ©(àJ-!Iz)æó„èŒDïá:Gôá2^5Bɺx † a<ÉX\Y,í~me ²‘¬ºM:µoþ²òíÒ5ĸ¼'T‡>Åë‡é¬PƳ·m£‘6í´‡›¨N8Í¥â”b»k"’Q8VËÎJÕÝ6\÷ìŠáWÔJ9–vµÊë«ø.œ"‰ÆUf½H|…0SƒdÜÓ½l#”i 0J¥ †ˆJ9×Ú…E2´/”XÜ8›ËGÂf!~Mz3ŠT”s*YYˆKãj„âò¢¦ KHFGÀðÆÈÄœK¬ôŠnøZlú¢œÈDqÔ‘%H Ã+ZG%® ªÕtLÅ«oÕ æ!ÝiFšFa"Œ!àj€óÚîêP’EOš'i/ê\ÜåY–ýì \$Âî ´PTˆWžOqqèÊ~àVàŸW–{Áϵ½ç`–z¾LÉݰ†óïv—®*½ÌùãCéQc¾x¾äP}Ö /߈j#‰Â±ÐåXà0n2[³»‰ Pßä#ñ˜|—š­§fæú«G£Óëg•¸h Ð{0Ï¥“d÷32ŽïÒí<[¶ÍÅìÇʃGÉ}ßü¯-¹q¼Êòw·GÔÍ‚ÕÎÃ;àõhÃi"QÜM$•07*̪V6A¹ÌJ½Ð(#Y ÑÝm‹Ââb R5´”iY¡’$ø˜¬h¦€Sgd«KˆFäÇûùƒk hZÀIGH æ#[Ÿ˜R, ©#9ødvEc1ÊŽlhë­:¿}µ›ÎÈkqhK¼ý"Y×¥T"=ÌúqÃ6¢}»B óÓ û<†Ü ælÌÏ]†Ðx¡%äx[aîÈs›§ˆš|9eAÚÉ©JKs·üù—ü8f»hnSý–ˆ¥ãqÙùÆ_ˆÍSÉh\CD©Åµ]_-Ž„yÚ(Ÿi>Óæå=úL<^b(};Éá¨Í2üòùÌÆUG‹Æ"{ž¤4¡Ud†B$ÙòÂ#Ž&k€ÖOã¨õ1à &.•'ñèýÁýÄ1ôú?7äX}ÿ@|¾rý‚¿?¬~áûÇç÷}8x|ŒÍ×îOº'û‹á÷ý¨£ö}âwûÆ(Ãa€£ÇîEû>ÏÓåÓãßm»b–ûþ‡N>þ—ùœíí÷ü½ä¾šî^Ùy}òø” ÄGÃáÏÇí™÷zùÞ¿ KáÓ[õíæÛyHkéòÔz¯{¯#šGÑd5ò§“Š0lyS«/Bˆ}/$YY{ó #ø|+ »¡ñïÐh2çùô@5qú B`5©ûK” ý¢(þQë2Ó-SË‹&~è±ZûZ¾¤ÞXà&L+`øµQoß¾¨Àn¾¸f9í5±àB¡âN2˜¬§—Ú¯²}ñèVá䨧ÆÂ@ÂO%ÞL…³DÀ²NŒ§2Ôµˆ%zà³r€Šé1 µžk81­6Ž#DI ×dIÒHG!€„j`sa¢Vx¡–Ŷ½Mß#ñn’WTŽCݱꘒæR{˜F•μÚýs| ‡1Úc3|Y·vðÊx×8É:³.ž÷Œ\0©íLE^<>‘dFñò6Ë7¼Ò}"AµHmèÜ” S2øð9·i+PHÃ'ÇsL˜ '1ˆU§4$ØÎhÞF«ÖŽ ·{ª¯\ºPòxëòhõPòàš}ñÝ”B44§4EêÓÅ3“8…À©´w¦&…V÷sJͰ·‡(1Ö‹Äâ3!iH.ËF5díôA‡îï7/t-›u«ç ÝU¬;Q;5æŽÇ®9ʰ|£†Œ˜Hú¨ž²Û:yËL½UÏ#Þ.t´o- ©™V2eg‘sfáÉã·¬ÛC97sÀµǥˈú˜În“®ÑyÂ Š ïÊáËQlj®4ˆM÷w±ÀôwÌöO8²ÇKÕèÙÆx0È{H‹Qãë³w7†tc„˜ÑyD<¬ˆB(a˜X8;Z*Îc}.x‚îès†· ƒ›ÚÈmç9j î5&‘4xù$Ⳝfªë"kÄ/Xv¼¦Jî1¶»œ"ÎfŽ$=Úw[PY…5oU7Ut«²aÉ6éÔŠ2ˆÉD/3w¾'ÍÝÍkˆo\’–D¨¨•É5 r'Ú{q·æó.¡ÚÉỷ×s¾Ê6in¡á‰nÖ ÙÉi{Wù!ŒI’ëÈ^Œc-9 šA˜ów^o ƒÂ,JÅ%Æb¥ @îØ]©-»O¸¢À¹ÆÛ6ÕÞth…Œ×Dò¡¡%ß,È2» ='éÒøg¤s‚æÑ¼K€ˆx@q`ÖHáïn„I6Kh6(3 54ßq>»­îf®å’Ò«Ê·‚öÔR˜µ«—•«I )©;NÝ™,LÔã¶óˆ3”ÜÇa$IÑ%O.¼§)Pcï#YÑÓªÕ“WcHôX"÷ XqÇ:= ¹/®Y›bâ “âlf%Úêvôˆñ3 Æ¡â`‰ç½·Rí„Ñ"ØBg‰ Çèý|ëœé:¡„.k(e ¶nùc=)<å C•›!`AôK|ët/3`VO&Ù¦ pbg7¾ÎP:BFHCpì1)Ò+2ê¨E ’ 4fdS¾üí»Ò1H„¡Õ @†j(’pµ‘‰žm“bõÕÝÀ!Œ:öØhE =N¥ÝG& ‚EGŽ,XàEX¡˜ÂA÷Þì!¬-k Û­m>Š´G©‘­6lÚÛm¦lÖÖ2j4œÆL%«ZÛvÛhÉ5»MÖ·¦›S†Œ¦˜ÛSh&M4í5%»’vѱY–±±†òô÷M&ìëm»³¶ÃXpÛ[Y›NfŒ›9¦Û[i`îjkZ’X9,ÖÛm9mmcd˜ibm±Í™²ÛZËfÙiÚq;iØÑ›,lµ’[lÝÙˆÍLXãvÚjfY2Ü–ÖvMXšnvÁ–µµ‰vÈ´’àÛMŒ°ldÚ[bk7i¸#lÖvÓ³‡:!0´[KmmhŽrksg8aY59Y–À®àA|Ù¹AMÇPšÐÐ'CC_D#-_¥ÐøêEqëÅHØ8CÑF¦§!§‡h8ë8¸”fŠÄ±5Õd©:Xi±†TšÙŠŸ ˜`óÆZ)´ûמfßÂ8†ít‚EÂðõ ˜ù[ž¸Žo™á7‘»‹uˆ(œÇ0U@SMwÝ ×)Ô\pš&’†€ªJ¸€Ds³\’*É€ œ—%Èãm·%È´àFM™ŽQkM²Ë3V6Z·ÂÛY10Ù¬Ú°Å«-mØú¾îë¸ø]`ÿNlDçxC†"©b"ç$ôB~{¶ ÀW2&ŒP1S¶Ç1°Ì£+[­¶mÍdYm³;Véa¦Ý”8­µš6ÖÛ[F±nÌ‹¶ØY¶ˆÛU¡,-e¶È6ضÀ³-¬Í¶´mLÝ/©Ø½ƒvÚ&Û£këÞǶVbÍÂK`ÌÎekZÝõºÑzÚd–í­ƒ-6ÂÎLCBÕ²Ûs)³•¦ÝnÙX-jƶ#³´r[:[6ËL·egmi"Û6Ù•¥7YšÙ¥€Šâ"ˆ EmŒ£ÆDг3m)[(2[6XÅmXÖìævPVÛ´ÁÛmÄfmÙi‹bP›fv6³³S2;nÊÆ×c’Û­Íŵœ36·L¬ÈVó½ærmŒ±M·Ö­ë66aØkZÛQ³[m·%o°o%âÙ‹Ò6KfÚµßW³Í̳œ³Dds[rÉs´ÌÆÛ­lcr6lh²wkSfÁm› Ú>w§¦u½{Ï[v)%–-­ÌË0Ûkl؇֯y­³¸µ¬h±ŽÒÑ–·&µ­¦–n‘ì²á '›´M! -:ÜsœÚÉ»c¤GmšnM²›!»4M&äÝ!·7¬ÞS»ÌÛ3›1m–é‘¡‹sÕõ 8¢‹Ä€@V‚°‰ë7¾|ë³—¤ÍÃ&Í¡NdÙHNbËi‘¸A5‘2³q̵°g6Ѷ¸çÏëÞf$êÛNÛÙÆÜæC0œŠøóSp2&$"¨†*1a­Ëke`nFÚú{޴ߟ6iÅH@aô\†J@Œ W)*)D±Å#ïß>lêbH2 aÌ¿vׯf¹ËçÝžú­ã½"À€b"€‘$C_>·yˆ9e£c´ib|¶ƒÁMôwؤ jAˆÇ¸`˜€‡Ë””EŠ0 ‚|-„°dN¶öÖÄ;XcBÍ{×½6ëÍÛCn6kO¥ò÷{”q|&ëQ„X2ÆØŒ~Å¢¤Hd ­mYmf3KK]³€ÅY×mÂŽ"Œ€Â,N­°E€HÅ€‹–Š™X†A‚ # ~½îMäYÕ¶†Sé—*Æ$XÌ\IÅóºÇrö6YdÛnKNú ã0(½{Ï[Î!S‰Á¤½nËï¹½wÖP™Ñ€¢8ØY€â¬" Å‚Œ ï»±~ç¿°óÎáÃ2¹-bŒUXÄ‚i`ažýu;ï®»¹ "ŠÈ`’zÜ`D‹Š¬@:|6MÁG}˪E1„B=“ïïo]ùøuÔõéð…1EŠ„DB|±&ìç¾ï]p‹«1 `}—S@‰ŒBwÓyÁb"EùS(ÅÆ0*¬ñ¤("*çs}=uÑC„R$E0bŒ‚ª§Û¿©Ü꜒12 ©íË–0ag9¦îô|ï{õÞõê¾Ã#‰-Ù˸¤´tÁ*¢ü·i¥‚ŸCh„I6¸X"C<% !×SÄ÷ç¨E:B2SÀ€Ä‰=Ë!H€Sœë³®º‚8ãŽD Æ0ˆ¸âHºLIE"†32žEZìcIÃtÚ €%`'‹”¨¸Ï«L0¯2ÑYg0´ÄßmèÁÑ:”¦f „‚$ù÷Û €NY,/ÎàN9N(B31EHF ôP„ã9w«×8\L\„_^öh`}Ô„ñL éòs“™¢Ni0C…¡; T²j(‚,4¤1ž‡}p&Öl"DBX«™¨g ±á–Ýñ¯g-Áo´ž‚ÐÚS8M±e"qÛñ#ß]»Þû;ïÈ8À,# ÛBÐÄ€&ÀU‚[¼ÀÇžÒA:†„ @Þ?[µˆú© aζ.óÎsj|~S¬õÞ|% g¦„ ÄW‘”Ĉmm˜dÙjÝÕWU^°Ê!Œ° 0Šá‹ŨŽ<φüêuõ´,0ÄPŒH$bzòä föýE:“›ÆœA»Û;,Iinº,QáÒ2†<¾w;ïë{½Zw½8±AG…¸¢H¸2!á  ‘0~uÎ-œ¼'¿;󸳰Ùk(OU Ã…èÒúi”ç"¶..aßœc{€’E ’ ¤‰¤B$t†íg;zqÅÎíw í’E@f%‘AÕ;žº‚®”EPÛî#‹|ƒÑ=¯M%aZ §¶Ù§u›éI%–‘\ÛÇ/ÉÍ÷w—p L¦#¡ ôð°Õð¤±+Xõ-¢ËîùÞý×$ð/ ì¶‹adµ&›HÝôí>yͯ®÷·ÎËp‹5” +>›(ƒpÜ‹ºY, G." Ihž%±‰f6äpÓ:¤6|œ©(Š@¥ÒÌëk´Ð”Y¨³éÞ÷–#¶*Pï2§ÛI|!­lBqŠŒRt°£ì'’ü}ìôúÝ{“Åq­½T=8’Lé‹\%¡)KNÏCßG~Îøí·›ë™ê<# á{ÖsXyZ:†,;Ȳ2 åÙŽRå¶MAÅ©i)™i2"K•V£ô”Žwn¡ªÑ(‚Iºësæp|-ú$° !VžìÒ@œSYœ89ØíèKÇG„aôŽ0™D–ºmae¤D¾ÛËçzxqÆo‘üx7¨ Hz¬+$ꌅJÌëͦû©*F!›én¬³œÙ³ö=Ä8Hâ]&uÉ=±Zꇋ¥­­ÀSõo­µn‘7”°«‚ÆŒ#02x2ϦÎõù¦oµ¢\:ëÑ$6ù_L(!ƶ $ÈjUÜeá&p]@ê‰dÅtÉÃ%ŠÃ!¤ˆ™ÁæKVÎðlî9¼ÙÏD»[Ñp–}lÝV9@ô“Õ§d^ûšîswÜõÞ,HSÇk¸F3ÐÏ…{ݰÄ3ÍÇ·3Rñã³…Š)ì• 7*sìu|ä[§1yQQ<·¢Û•Ž",SÝBKáÆw»¦×¾ºõ¹\vØ»DIæÝ•V㓚 å·fVà ‚HMYXçN8÷³¾Þ‰×l{Ùi¢sèèo“zjÛ`Ù±9³§€B::$㹈€Èõtõ=NO;´#¯=ÎÖîéÛ%ͤZA± YZÓAi>ϸˆ™åAÑŤùσ“…ˆ¬Ç•-×í¹at´C;³=˜t–·é¯·4 \}ä5·F3Ćg·í{ëo½Áø|}l3¦FõiÅŠ¤evúñLÙGÃÔÖVÓ…2"ÚIÜúô˜_¯=²ç>¯Ãà™Õ²£„|´­LѤ'uúë¸ ˜ÂÐÝy‰8q“œ"p ÚDÑÉÁ GIn)ŘÑñI¡ wŠÞV:éÃs~zíåM“Í' 7KHÅ;(tÄЈ ìŒ!™›o­Öy™ÙŸ'‘×áÉ {1fCiê)a€¶d‹ÁŒãÊؼ4;ˆÌ!d ÐÍòªy Ñ' @’Š ¡Í»¼2,(òÛ®Læ,Í€·;!æû“|¼zÊ"§ <Û¼U$’R€’”Ì3 §&;”hC+’z”>8AË'âÙ9Ì-°D9Pd» Ì'¸›ÃvwÅ§Þæ¡MÖS¬ÞÛ)Tív¨Pá'LŽJ½ÄöÇh"aK®ÒÈ›)«ÏnTŠ·Yè…={˜Xô¼ï¢6Dr¸[êÈÃ2„0~ííÚOWqó#cµÏ4_1y^a¤, ENçn2%Ý6á­ÄÉžœ~M]­Ý3{omBùCÆÛwΉäbv!V‚PÌÌ´ç[}AÑbŠË}ž‹£_kÅåk9æ>yã½]Öz&¨†2åS€ÔÛXÌÞf3Ò ñ½äݪ[:c,0²žúÌÁ‰va;#Ç ²ìf>0šô†^ÐÌó¿xËÌÁ]mó³­x"§…“ÞÄsmBiÃæ—%f¼‰®ÊʼëÎ÷¸îKõœl†v£DKÂÅ­3h®)zŒ1‡¯ÒÓ‚1¨†jâØË/wÊžRR&%"³ÆftKnt¨¤¤G›eäf퉼ˆïœío6šVãh*âàznÈpH§Þ8a>T¨«‰â£¶¨ÝVÌT¼àò!z—™bhí¨b³·é'Þ®-b¿âʸ ›˜µ“ËMqËÜîÞ-iöÅJr2c•8ó"Î.Œ4sÇÂ÷»{ÃÊÛöw³™+£nÛÉXñn˜f$¤X[†a&%Cc)R–±ß™&¬å™7Н+ó{æ“ÌéHA9;}± chqـЂU,V(èó±QÞÐG°8bñ£R$€éa!Y ¶`[ ˜JŒºX$Ã^0Å&åîŸ/.ƒãÒ4Ñ걬& ÎŽ:&By²â&ªÚ1› –z-Õ«—l¬{žRš¥ùzo•ø…tá0ó¹Ë{ò²Ê½Æ¹¦ÞET­"<ÅG‚6MC(HBt™¹ yb¢·^Cµ¶§&vvA‘$6Ýš‰KŸÕrük-ÙÈ"aA îöŸ7h¶§|jeøÇ.è{¬L®ŽRC) ïwEYf,|vó¥‚yOqâ&ßM£ÙN(âF”îÔC™òÙâäµä¾gÉo/™Ê»íkÞ$aÖS‡Ü¢ÙHd"V‘eú+%ÄJ[Þ4ë{†¹¹AË©`£à»*ý Ú9 ŒÎáK Å“ºj¦S‡©Ý3›ÇɶâÄ¢Ÿ]·2ÖD=°–,v±Kœ0ugÈln¹IHA(m™ÛRnšŸÙ—æ7xÛ-túÝ…iÁv§ 9Br¶Z%ä\ l"Ì 0ÅA´AUój­Î µ…ç7ÌØA+Xî!Pã°«`«¾ó­j@Ò+G§Cnè GžlòëóÉ”øÎyŽ*A,Bz7™Å‹}wx‹Æo‡¹–DHs'¡#;0q¨èIÛxC36…³åLâ9<µ!9—²§¹£{¸$Tù6­Ë’ĵFwd‹{ÅsÎöð”ù!'нMåx9ÞS/T½E%f¬¨NŒO,è‡E$$ÔïŒÒ¯Ÿ2‹ìK˜;c I77T LÔ á‹Tr±6Üz¼NÏ|o½ÏE4AÃaâJRãù˜¢š¦L`‰¶ÃÁ›7N {|Íɧ‚˶dTÁŸYŒôq6™H­ÀxUËP͹DæØ]t1H¨/j-&cÓ ç² …ò$…`ÖB½âÕ™3œêQqFF`N3ÀÏîáIìð´ ÝêÊùÂÙð®)´‚(00Ò]ÙY{‡p·r÷¸ÝŒ+Èø«(ô¼§hm`¥†AÓlM;Js5¤‰;Œ1ç— ÈK¡%9Üäí„5°ù¸‰Ê„#£wU ³Ìo¡ÙÅz¤#É00rDbXn(rcîïLÔ˜ Žûà5i,„HD8rn¤a4y=wä{Þ÷NA3wHÑÆ3ÏÙ²*:©–,³)Ê“Ï,èÒDŒc|{îõ§JÆ›ÓÎ`ˆÈ[QU 8D… íÝÇpalabeÉè’—± @ß[45&·9±› 0ÂAG¦9QŠ)'K åSÙ}óm6íœÛZÛ$Vì5°Mr77lµ“³±›2Ê4‘ajN¶L¶Ël6Ü:mBÖgvìk6m³d83²Ø²›mòפ€yfÑ’ÀÙÓ–-®Æà˜Ö¡µc6M¨¡·f"ËX#ÙÃ6»­e¹æa+9e«miaŽÅ¨Mg5­¦é´‡6±8+nÜÜm†Û­anÐkklI©´œÚÝXn3“;2Ò,ÚË#¬Ö™–vÚ³·N±­ÎÆÜÖÒÖ',Ù3jܶŠf(¶a;l¾Ãûgè#:¼H”±P¥4"P´R"IÝßmù»æùØŒHà`üe†‹ú1Ȭ,ZjÆ· ·!ÚÚGÆÞÔÚr¦2µÂj?€óRXô·lœ7èǘÐÂ)­Ø¾ /Zô»©Ç Q®ÁùUŽI5s°eŽ£â” í¦2¶œ²P¡žH_FœšE¡Ú›u36e¾‘i¿IÜ¡5Çu ]i†—ªõ7<ÚÄãëÊ•¼Pž¹Íæ÷x"à¼4r`ˆØXÈ[ÖS‹òEWÎ^5ÓœËLõå°TûáÛŒ<äeTö˜'¬E1"¸Dpb€£;Þ\ÚnÂv¬â¹á§ÍfÎ!¡†øû²ãêôPQ¡„|ñ¹ÍFãBhäwhÆòN$h‚NÂ¥=Õ&+ÞU«p aû,z(pæc¼DÆAèÚùÛøõI v‚<Ô,%bX€ËI'J!<,’cm¨$7%‰fXo6o¿OZ„îz–i7Á– œféë½7K€¸êðŒ'ã²&v‰¨z@¢Ø?Q¥´‡x¯&NôPzɼÞý³Ë<ë¶³˜à89‘\œ´Å´·e³nËK.Ù ÄEáf†mV(D?n¥äi£¦Óg­­ÛYÎlµ­3–çYÎ5­šm–ÖM²-­e…Àì²–ÚÓbÍ»‡m-&¬Ó™™†]­“¶´Z_Oéÿ5øo—Íóc¢2vÖè­Ù¶Ö³j3Mm•’mmÊ1bÙ—73¶ÛsNÅ«ékÔm¤³&ZtÝfÍbÖ͵˜vÚs íÚrÍ,ê2 ²4&›Œ´m¬ÜbZ[s"¶GYÚ ¶g­;M³ZÊÖënÛ&Ý•±›YÔ´Û4ÛšÖZα8™¸ÓšÌÛ³²F±@ÍmÖå™hq¤ƒZ1¹»lÎÙ¶Ô‰™e‹7 íš‹m3E³¶Ìͬà[¶vYœÑXµ²œfd6ÚfÍg ·mm¥²C[fdd¶&µ6ÆÒŒš‘†hÓ5›·h“ˆáfí¬QMK-8",íÎÛHÛ ¶ZÊÝ­m©E¤km­³²Ñ²ÅŒ&ˆ‰2ÒÚY³NÁn²+;fÛ³“wm­É¦nlšlYŽ‹hÐÛ8;#dZ#-m¬9i£¶lÝnq&v´±76MÙ¶­£šÝ™¶Å™¨´1–ÈâÛl¶Óm†t-…µ¸Œ±Ûg 4@Û%­;mÖµ}¥½¨å›MºH¦Ý‚P™Í5¹¶³Œ`´m´mÛ[±‡bÚÛ;36V޵±©­íM·mbËLÖÝqijl–9¦fiØX7nv´»[2Å4îÉÖÛµ,6ÚvmfµiK ´¶¶6&Rã›–ìíÛeb‰É­sVœIµ³ŽÉ‹gfH–hl6E› E¶6ÖM»LË;³™jÛ³°ìN&bLÛ7(ÌKŠÑ–Ù8ÛM£km¦Í­66-³pÙͱÈ6ìÚf6ì ·6ÑvÇ7nÓ¶ÍlÖ͉Ö[[m†Ygb`ɵµFÍm›n–kÓ›°ÚÍ5³i™¹Ki¶Û4–·,íkbmËrm‹V‘šp¶“±[qe˜™v¬· ÖsChmËe4ÛsFËnµ‹v²Ôí™;lE­ÄÍifhÑ‹víš&ÖÙ)6ÄÜŒÓ;Zݤ5· C["&c‰ËkCd#)´Xa‘bª¬pPŒU@CnÜ…6´›Vvݬ´í9:c§ ­6Ý·6Û–ÛmL”ִر2¶ÁšÖ´Ýfi6哵©É–k“nÙ€–e ÛlÖFFÖØjÅ“rNccmi¦ÌèÒ†Ûsƒ¶Øå²M–²˜æÑ,ìÁn&í´h,’ÛcmfIÌE°Íb m³±ËnÃ5‘›VKsY¡Í³vÙ[;fµºMfå¡¶3KXÛVZViÚs6ÖBh²ÍÚÛle§'ÓÖæÍ–h@ÎÃ#XæÎÔfÙ6tZÌ[vÇXˆí´3†í-Íœ7jÉ©Œdç5¶7ešÌSIK[#–6m;VqI‡0Øri‰36Àr´¶Û³FÑnÖÖg,ÚÙm¶6ëf¦Y…­’Û`–¶“Kƒp4dLUU¨ ÈÌ *º´Í³f%nÛ–m´b¶´fJ-ØËœÓ¶³nص§m›n&ŽK:u¹•¦khB3På™¶‘ºÙM™ŒÚÚZÛf!·i8#³N63l¶ÚÆN-µÛ qmb¹–&ÖJÒku¡6Ù§j-©³¶ÖÖ˜Ýݙم¶ã‰;; ¶Ó2Äqe—fɶµ¤­¤UXâ` ¿Ø]ó÷Äá„΂Žá$’!¡ZZJMœ2ŽîS5EPèÉQ?Ǹô¿¼ño7·fmìÝà4¨mo¼nytœÝQÑÝ)È ‰$´R”»!×;ϯݰ~Ìý»?ðú 4ƒàüWd‹„êîâ;¸êH‚¢Š"Bš"B…¥ã~¯ðˆ{=ÿ¤ú[¯ .¢ºŠ¨ê”r*¨¦•)¨Lãܑըä´þ÷×ë„… wGQuD¤äëº~2ûÒû~—ÝvC‚b  š¡i(˜h†Š¤Jß·¢ .Æ_3ûN;³´EDHCH%IÒU!CB¾{ùMm>½|<Ô›ˆj– JV‘¥J"Š¢ˆ!¤¡sÏôÉßóù{‹K4!¿½ú?‚óög®àݹ|¼´×—8¬Ôq¥¢„i¥Zi¨"b¢‚(Pï¼»§©ÂÝ„@#B£J ‚#º¢ºƒüÇ{Öó¥5ª‰ªiF‚¤*–†$)JT:Ðsßé±±ÁzÙí¯ó0ÈR”„*Hj&…iB üƒÝýs­¤hiV‘*(fñxåH•EÑDtuÜ×J'D¢»©ÒDuQÕt©T”+B´¡w°T<¯Óí¹tþ_§î›ŸÕ ‡_£ø?“ûÕ÷ÿ½ý+¿n¾ßñŽþgízÇ9§'Ïô=G Ÿ›Ü5Hêw:ªÍ^++Ó÷vu¸@Îæb¡Š7#“äFÒj8sbË×4™Î‰0/[ÌÒw‘Q'„Ô‚H„f¥•Utì‘ÅáiÕ¥iþ¬`!{,äåWƒá9ذó6.ø©´æ6µ$SXX¥ ÿª $ Z¼ï“æú^Õ†ø Îî*³¿,«6ûü¼{zIg.þúª°Q˜$æ×Ô10WäË9À\–h°Ž­ ­¤ŠFÌN!üÕV%-“B Y4”UÛ$lx,‚Æ® cë¼—÷ïl6g´(+hfÚ<‡Ž6yoOÃÓôÅ̸mvvyBʼœµË°ù¶S¿>2ávø|ˆ°x–Ф*r'µ‹*âªt̽ÌÓ2Æ ˜™’Q«äEĸ䪅ú kj»‚üŸ¦Öqò­«1 >fqv7¶ªÌ¶‹rÙ3%$pƒ)±ÀTè5rŒB.%ÿýÿNýûõã·'®ü"r}Œñ·TA‰õ:{]>ø‡‡€ˆøx€xCLÉEQ+H´),Í"ÐÒ !HRP«Ó>ãA„óØÖ©&I()“˪æzþqvAá‡xHJ¤ª("Š"h8îªWÎê²èê+«œ€B½ü… …• ",OIñλ»`ìGÔë_OÖîwÊ4ƒ4E-!AH¯Ñü½¯°Ö8 7ÒD—ñÖ ùõ0‹º‚€N›³xüOç„pÓI@˜{X¿äaˆ«PRˆHt„ä­ $”(Ø8`Šålè³-Ye€ýUiqT¿×–hlÒÈþ™oK_ÛX—®YbÙtÝeGìҚ͖ÑébG¬Ç =)L´! [*¤Jû$Œ! Tèó:ä„;Ž2z-²7êÓ fí1PȆ#PvšìS(¼7¨á}MDÓ)Ìœš†fÞ·DÌ["ñ Éʃ8Yz€Ô0—1¶î%Üî^hÄrè&ª:?‹Ù“9y¤ÁRS· át¡/mÁºÊ𮞕™¸-&µLç61ÞCš`o_³›… å]Üs#[<㳋I D­\,-QÌ宪 :,’vÃûbï*”¥(Yb,Ì_Öܽþ¡Áˆúã/RêÎþtAzÁæ`°ÓžU1dÈ*¤çHùŒ  ¶°µˆYz‡»³KÁ«­³ dÔ&ú×ãôÍŽ.·ß“nE$âGÙ¢z"á*ü®g Jõ´3êðñRÒVÔ¬¡.û¶«ù~ÐfVãåNô¥.Ä„f‘…¤Í·J„(ˆ8ƒøßÙgC° €ø ñ”Ûm·‚`ás{Â[CÀh}ý<ú4‹^MfònÉóÄÄ‚C’’é—vDác‘†¤¦Ééãß6ìwkmvò¡–ná85k˜:°ŠÔ;z^@¡²-íÿLÒk‚ e€ÃHz?wЛ¤UÞ¢uáµöZ%úƒ„¥ñpQp ¤DFaP&•øùI¶Êù(wB«"°<̱b–…¡V›üÃÏØ*»¤Fòß«€‹¤‰TûãÒ}a{opß¶Àdª2¢@trºÿŽÁ›¶¡€¥UB À^ÕšÐ4¢Ç·ú˜¡èÈhdQEOgˆ€`”R€BüÌYD"“ÅB‹ˆ"~4!â!PÐ)(¡…ñdD0 PÌÈ’D]H ’”"È£ =(‚+ŠÀ‚+è?#Å7‚î~35Ô€ ü¾·ÕþžqùŽŸÅøO[¿ïó‹oºâþYFqQÜ™þä qH̘iúÍP<ÿrDÄæTm”ÒFi$Ã~LF:âŒÄÇ<û\¡9ÆÅ/ÆeMãð<»LÁ7ØVâ·†rGub„*“6ÓŽÑÆ/ú¹bªÅ«E¦ÇIe´Ü|&A8Mÿ?*¤Ê¼Q—öou|kÊ·<ï’ÊNñÞ]Y.0§Û\ȋ󵫯µÇò·Yg~8¼Uûv¯qÆàè>`¯ =G0ÜñT±¨÷»åÏ:Ûk;&§{¬Þ„°öe¥ã*c(´‹³MFê³+x™n?qѺ?º'ä_Ëíû> ûáš;¸£^T˜¯}îž1alðì¤ziíæ.D¾¹´é âå=Mõ·[Œ£)ª}p~4nLÛç&ˆ•™ÊÚCÑ n“ÔìUâùÌÆESyG&D—Rb‹8ôŠ÷ç âˆ/*âÉgO+)RQÍÜ«ŠÁ?½S ð@† Ç€ëL˜Ø5u–ccò–û3FÛw¦¹:ô‘$oå+ËoÕØ”Wž ‘QdPXb”HQ <ˆž¯@¸Î(.È Öp eO".H)4¢]zQ>Â(¾»Ð…B¬?óÒÁŠ ²KËB'Òßét ›‘}áÐâˆé¥Büœêt€¸ ª‘GC‚@ù)¦–‘I%•`óÉDq¹¾Íòô*x™¢Š/Uû˜hxIú*`+*zyT c¾Â«‚eþ ¤Ý"v)@ "§¢¸*H¢@¤žËÞ`…•þ DpT„P„ > ½¶D]’#íÒ A%RD8¢^ÇÛ–(‰¥R7Ê‹‚° §ØóJ½ŽÁ7*GÅt¢qå6 E C†þÓó¶ý28BÍ´)Š wøÞBí#š‚;S•t̃èªdÅO?ky3=!…¦™“- ´HLÊ·6îj ßÛÁcÕ³‹^ƒTå¶uZ!ž«@†"3cpÂoÖÛ÷ÛõÄŠ”D• %C³¸ (éEA€³’¢àŒ€„©*‡YG Üz@O²…GeXEIûô0õ’›*¨@@ Ê6}m=ºUCpŒlÂb$*™(.BöÒ‚`$(ž2»†Ø/a³Ó’Ë€ð ßÃTÁHü¹¨ÅT÷p‚l(¼Ü(¸¤"uR ‹"){E2A|Ü"Ÿwîý Ü© ©]ÅU0T{”¨hñ˜€»+ JˆÂÈ€ÀBˆÂ‚ º?Æ{PÐ(…A„^H"d* ¡ƒ) {ÃÁWGvÖ†Ã" !(?Ÿ!Š{Œ8!4Œªrÿ7þ@)°’ ‘ Ÿùðß«¥P6RF|€¸d˜ žö U`@ …€…’{: ˆ®!ƒ"& ‚"¿âQçù~Øûß¼ýØî=ïƒÄîµâff.éešþÙûçv¿Kü"yYû¹³\¦‘íaDœ:×âÜmÇÛŠ»~k¸s*"§ôÀ´… Tw_—uYÌÒ[ZÚ6¥=?nþN[Ëo<¿h×\ò—;× æû Ámœ%e±-¦Gö)µgÖ]ES«Íá.;täü?"Ð|_8±4QÐÙs-Æ ‘>ªj¢²6G&„ZJ7fᣒwUyíÏÍO­õÍï_õØÜó]™bã3.ƒê®Å^âÙxŸ•ÉŽ1ghw)—¹P\î*_9U¶š¯*c|¨*£›˜õé­í^;>ÌÄm7§·س[·ºñá®Û‘µø~Fs~öÑëËìpאָê„ÜŠ¸hÿ¢v£‘Ǹ¿*ÚHr}ÈvÆ4_Æ!aÔü%3‰¸} ì¤rãÔy-ÎøÁ¸ß†ÇXm" þYÝÊÞ®íùVÜ­òbé¯ÓÀÎä{Z‚ì!&û´OK³|ĉ{êM c¿UY±¶-næî×mãùÎUuçÙŠðŒŠ©ˆN3+C'=@"v9à õÄa»>×]=2¦ûT)( ‘­,B.4¤ÍzÂt„äŒsXBéZ#,h‘„Ýå²QÂU+$Y´VBôr“ÚÇ­hô…AÅ(°¦"’X@ËQM$âSÆ Ò¨[+[zW Ù%LØØOm™3)T2;^ÃBG¤Åî7½’ò•§¾FFÍiQ¤+›Y'ˆ*Mã!c$8ËvK¡„¨ ó3Žq%Øb ™æ™LÊ‘K µ!´cÙýÍ JÑ·"ËdÁ¦\biíGÈ5Óp-—Á)@É*Ú7­ƒg¤ÄLFzO5Å ¼ ɨnpcµ[sø-ºûÙ³*`#9Œ¸s¬ˆðg(Ðè atŒ`í@мÞ&èãQj ÃkÖу¸F@x"`¨guApr D´AL¹…Š(Lµvv[š àØF¥<îi1¾¤bòÅ~zõCÊLÅÅóú©¡|Œk#雑"žÚÙa’»¾uIè¥V½O[²Éž‘Šx‰–xìê¾é ©f4Óµ‘T©&ñ".|"‹î·IåÿVû‰£,·‚iê@\Ci=ÔÜ– œºïg‡£[ééöùv~¯— õÚg§ N[ÙöSá¯b÷öý¾ËPg/•úû{q¾?'³§_åov|ñöI|ý$o*ý§îø?¿ãéÿù%Ãä ’ÌÓGìÞ÷æ–ú|Cj|_é.Ûvré÷ykèçÝ9܇`†}o÷;štyîÿFÆôà=yØ9ïèžéò`̆bxÔ“É –r2ŒŸË­{ÐûËbïÒcÑ)”¤‹¹2øÄû"b™¸ØFäŽU÷X{û<Ì~>»óÐ<öôO38 * ™yÄ!¾áê0/ÀeYYvOÝ»â0`½}‹½ŸS~ª†Ûq7/‘-Ö $-vP³·£ls¯Þýd ]>. ˆãâî^ä3ùÈaRÜ®¼‚ØÔýÆÈŠâ #¹;q¾;ÔÞÛ„%*Suä‚a)\¹e-w„Ó—˜ ‚Ï0ñÕlbBÙ¯/Ûˆ‹m¦ ‘¦áâìµ…bz–«îcÒ¨zÆGÆç]p÷ãÏ?+¹-iW‘LŒV¯šÖQ³B"CÚi+Fjä@ë9ËPÍᎶAl1ÑkX5lïeõ•’Q”ã ”ÍShªùÀ…!†î™¹²âÒÚ.%-Ù#tæwΪÚGáXm²Üj4ÔÜ6­u ˜É•ÜéZ] `ï ¨µD-¶×˳¼H^v¶ ¡c™%Ò“½ðó … ãR ½N7ˆÆ3)J0˜Iì9¤¤”.NgL‘Ì%¾)zvÙ÷…©­Æá,§6›±áƒ}C5X:L° W¡`­*üØÞKlÇX~+˜ø®ør¬Žž˜¤îBæ‘Ú+ÉV8 v½’çZÆEóg‚aç+ˆîbi'– <%,I”ãÖ}'Y:oÌ{mš‘vÇMk·6Á¬öc=Ù%º%Í8gî´JB4`m—Ûß­C¶î[OBZÔ²Òt¾êr Â…Û˜Ënù O¿!§km>;o±âc ”DT™é×€ÐçV§fuWHΓÕýwwyÊTœëӘϷ^‹[ÈïkíÒŽXæcÏ7Ï1ëkYºµq”1Üðå4Š‘Lúó¾FžR.zÀ:yë~‚YîwßÉ\Ðkß´;vº˜Î] .4¥y†ëÛžU;Z+æ–vr:9'F:”U|Q[æÔåøy¸cÓ‚ïÝzQxÂÖûBbßu–ãmûÖͼ< :KÜxíXnµýý9·Ž+º²X”²Ì½šmœcËEk»“BÓé ÒN#,8 Û‚²ejAÖ~é›òXáG»'j@eÚÔ-‡{ôòŸ1,”³+‹X¨õ“•gÖ‘×1¼ßÛˆžrh׈@oï3l9ŒöÅu´£Cf ÍÁ»mI ¥X$´<5*¤¶é6„hÅxÎÝu(Tdh¡cX§9 Ç4«I<¨`ݨéaNxÒ†ô[ßm@7Lo ÷Úp¬º XÛq”ñ¾è…¹ó †Û !f,‹ée£D8Q¯¹mCÉWŒÉjSjm"MúÑX¥^¼wÞœB â¾VŒ¹Õ“øÐe™QeÌŠ‘Ý6®wôtâ|²„1l×yEDFå€\×™ú»ÄFÁ8ªÕ7,T+·8i×ÃPñXO+(y½Î¨× Hïêœq^z‰Z hTä‹z>š–Eì1´–µ}¶¡çzi bã¾fi`´|sc;m)3ØP;îÛnJ÷bX»N¡i&YJ!hB¹|¤I³Ø“ ùCh ÓÞ~.žáÄ;Ó|ÀÙóÅLZ\m]´›+óÆü_Å#½5*ªoˆ’’϶¯³ñL±ÊZ¥’aãÓnû¯š»|†ÉRâòÒ‹ãºmÑöHÉ)t¦¾ž:‹ñ»¦ñçs´1i–\êàS)O{êËsAø}áááঠUU $U’I d–EY `•„ïj÷é|+KMU^VÍfȃ¹$] a yèpÊ&žÃï4‹òA6ITa8ò*a"Œ’¿N eD¥ ˜d€ùï8*jWßÊJ  I|‰DÆQ ž‘CD("‡ââ+¦iEýï÷L lJ®˜D)O#Aê¡ì²£¢Pbbzüm €XŸ*8Aó!hêa“ûy©ÄQÔfëáéÙžó(™tð¦B$]$¸~Oø&MJÙyÜA4HŽÇ»J.У¡’«=«Ûêÿ;@£¸„ŠÀ£šÁ3º{m >RyÒT^‚P7üÜ|Ôªæ`‹Ùà@Âv‘G¶½«¢¯™™¤²Ì‚»&ÛiΊËVrÃŒØ~rrÃk*°œ\5\¶Ê•„eÂÁË8·kmœÙHlª,ìm?ŠK‹ ‰£=BdFœØm%ŠPÍu¹qкÍÎv:뮼 uÒ}‡Ÿò:£$<¤oø¸"Å%P¡ÏC¨4`ª}/ÒúzU}<(›H=j}¹û·ùË¥T//õ0І$ÑBÀæ§øŸÕߊKkòo^¹²g^}éññ³LK&k%2RRErÏöí?9&Ò%b 1¶Å#Ad¶K*Å„  à±0‹ë3?¨ÛygšÍHöR„8N]¸Â¤(ŒR²K²•µ ,rZ¹+hL¢Ž–Ög½ëÞæY<µ3¹vª’Ú¢E9²ìÂq`J@Í%)ȬI¬·"¡"ÿ9üÿó}þ×¾á;𯭦ZK(“JeŒZÓåÍ$L Fm¸¨’¨K­»'Ì™6RØ@Ĉ@SÒÐc"ªÈ. J´£ ©…j•‘ŒYúß«Éÿ?ÿ£:í„î6[FÁÊÈ”‚`’(‘r¬llSOV×Ã.øÖ°ó½ Ë=±z3r\G5¶[›{Þö`xonh9 ¶SÅùÏÞÿ¥ýÿ_ÁþC¯6$(@w=ìf Õl²¬?WýÇü¯îŸÈyÜó?EÏ^óÕåg>еæÍ ˜¶ü[Àù2&h‡PÆX(@Hä¡)úÌ;''$!LðÛ#¦mÓ) iŒ%_ó†M£§6M¡Žƒ Ë€5 aPŸò7?§æòAöÍ:䵋"ŽEÅ)aHAT‘q*¨©„( „ªYeþ+ú»É)NÙ4,`ŒN–˜ ‡-‹Å L–)# ±–b"@—+*ÁDŸØSÿkðîvg€¸{PžÆR$ak*Ì” §òU÷üu±!Æ’XIZe*–½®MY@H21`ØPݶC}¶îÅİÊJdTL<» ³l¤Ý·ÆFÔÄ–€‘*[,mʹ JIýÆs+”ËZIL (Äkâe„*±b& [v¡jÉûÏáß_éŸ:MÁ¦ÂwMØ©a‰ ‘#Ì¡„(!)r'\:LúÎc÷¹åóæ0gãÂñøÜŽ=«Y–dÏL pI®–ʘNÊÂ;¡OíW¨v!¤CãK ƒbH‘¶Ò¶ô¤,QgvîÒ§Û-Š“øA„ª©4ÿÓúߺýMÌë±'¨ÇËÛ×·»K; †±™tÓlŹl²WÔgåÁÉó^Þñyåµ1Ïn²ñ©d¹P‚Ï·ÿvrÀÄ‘½»6ÒÜU…²$%c)þoý§?ªúæIÙ™ØX§bÒ–Yn@@ˆe¥À¦Ö²8‚È-¦5íï©|=ñ˜ K£*ÊFŽ[0PEV ‰Ã)FQÊ ¿Ÿí¿Å×z&wÛTˆÁgˆ í@0¤)-ˆf&×(˜!0›*Ô(ÕRCýY’š°üçf$ÒBS±0½òݸ=Ûï…霽¯#¹*ˆ±ÿ>gæ0%ÀÍQŒ`O¿LÒæ¬ÒGel p¬Z•³û,É ±BÆfvÛuœŸEÞž‘V—Ìð”‘û­Šé(@Ê$ ÄÉy´#¿‡ÛdæÇ"².) @R¢JH@‘X 6Ûƒ6åT iÈ=mTdH4CŽá i4—kÛVÞ½YdMb›ÞÅy°%GÏÝT †o¦…¶@“ÛF[æ^öݨŠ-,ÆÖ[X¶„ÓÖA–0Ò0-sêüþ­*@ÄWŠNöÓ#+’4SŠ, @“á§ó?÷ÙÖk3¢X‘”eAE8ˆ1Q$‚G2×)ȉ"RRÇåÄ”Œ1€ÇOžŸß_,ÑÇ>°w…g{؋˶Š00 ‘L0ƒÆ^¬Û7Ï;<²ÌÔ+fâ=ï=…¶ÌÌþ­å'˜ÛãÖ8ŠV"ŠV‡æsÎæ†È#?0¨Ã·.XäBŽ$–®V2V²ÊB@U 2¿Ï¼9´°&z'@A£' IV~jÌ Lu¦^¶žÿÇu× …±Œ‚‹Kq Ž*F(ŒXd®ÈÃ*ÊÆ“bŒ–°*±!FN~›?þõ$pNY`’tLÓa¤@„. ! e*ãô[dVÒ®)lµŸ,~uÉgØ—¬pQILËm¼ŒH;/{=ŒÓfkÞÂv6ít–À@ˆ¢„112—òß^n¾¯(v .*EX‚‚ÀÈC€EXÏ•Œ ²Ü‰Æ¶>ö_|óó½ý®Ñz¬„Íp ci*dDfN×?´ú]?3õ?^÷èÇ2&&{w½»8¼×šœ³8äœZÁŒ 'ÕhGK(¢2Å*[nÊD–¹Zå‘,£ ! Œ•Ž$|Z­XÕ"@¤¦ý,ü>2tB6¡$£XÖÂPþ!fÁ„0fmŒ¤k”€CõlÓ +f­+RÂÝÑ´Ý„ LmDÚ"gg5¢¯’øùnù/1X˜‘À† Æ$µT•‰Š¥¾Ž¾Nôã¾5¢Ò¾Jñš=2…f$¦!e„k)c=“uùÝåí¬í>[W™ÄgÌvÒC2’RX‹ƒ„b±†$¤¨ÐÊYP3LœäünDá'D`‚Å`dH#‚ÒJV¦e¬ˆÑÌ%bB4¡)ŠÕ3íÍ|›t¦,RD ’$0`¯ …iŠ‚-´+n%„L”…Nš…# ,Xg 욬#zd¥1dF¢«"@–ÅÀ#Ö&@Xe6¸¬Ú3:-„`õçð¼õ¼+Õëæó<€tA@GB¸–ÀI—Õ³4 •ÄÈ×±ÛÅ™¤r” ÛdVB©"vD‰J"¢¤t#Iû3Iý¹I\|²þ;äëdè ДÉL–W%%1+H ”j£Á(TʾÈÔ+ èÎ \‡}Ήá‰Â€XÉ)¸Ä"8‘_òë½Û3ˆ£„‰4µ Xz©¬‰×®3ßowô²Hg¢zW•)+%+kd°È@2ж °%±ÄŒ[%ñI)¡c”Êw¯!9ôõ ÂM%$„"b ,"bŠÈ@1vÆW3£®'ÓðÎø1mÅÔz÷¼*Äï$™²²½Çµë-¶’8,ò½^ÝýSàÔüm±dü«%F0Ÿ å}<2tK!,jñdH֤ݷ12&$UšXƤµ˜ÊÄ… åÏ„“Å#÷¹Ï˜¶Th‚D”H C‰u¨‰0‘ bZ¤NÖpU@$!’Õ;-u¥¶€àðËVÛÎW¾6ÐÃÙhb±À$emb¸˜¸å)B*E ih–+‚ä Œ%\@/—Êøµôü:žFu}n¤ž"‘Žâ Bó¼ËÛÞžkÞö÷§ÏæÞ}ö öû½ÃÓ*¸†HÅÄI=¸Ù ¿¯YBA‰á ÊЊÛa ø5óÏW{ΫÝc©éHMf ÖA``¬12´ %ªH”³Á…RôK„•ŽDœ:õlßµûoÏ:LxZÉnYUÂR|7dÕÊÈàÇ‹#4¡±‰>>«§,L%e#é°Óð9>>ß«Írt@Îà1 Í`CP±Œ e]·)Vç_RÏfÓ¶ÚÖ´aM>¢Ï^[áÑ'„ÛâYW@–Ú”‘0j È‚K\øI¡X#šS#Ëfiá<$N¸ôgƒXÃ.D;(4ùÍ¡MZdŠ)#öbK:dµÖuãö5ßG\õå±9ñ–xâŒø5“k)ÐÔ•–Äû»â,–µåyå™YaÞyîs×( laòçžçWÑϾ½î÷ëIÐð‹n$a…+8°P!KX‰µ‘›f»é{AO6Û¬ìL³³$û×Ç×Óõâñ”èôH2Ã)ޱ¤"æŠÊ©’…(UiL¤Áf$R$H»ä¤Oû]¹æ'2;ê7OÁôXí½·N–-‘І?CÄev\‡LHZb@/Úû&qèsIyî\üLûú},ð è‚à¾Ô(ã"{#!KX‘)H¶[ÕÝ ™£HÀì PÑ‘Œó¢|æí|ó³®sÎü¿Z“¾ì¦J,C2+)ÅÇ"d"8,€±¤xÍ(à ᓮ½÷·Œ÷¬“‚¹åpªe€ ™J”›p›O¿á€N,=-ø&^úД1á¤ã6ä:~}É×Ð*ö2™B¸H÷-ŒC\Ip‘N6™ ±3Kï}ìÜb2e÷q”4ŠìÖµúÝ]p²(’J®ë³3Iˆ›yvý¯¾Üv<"i;3®öóDÓìÇÃèÎ~í|R&û;Ö @µpÉWKDZ62¬‰-p)ŠÂ™K ©Œmm¹LÝó¾·ˆíßwë¯/Ï'ú&P<‹ä$¤ m´ú<®—mÚùKÞ´Y–vvYà lºé*LI¤î÷»9ÔsÃ×Jdçö^9›®–ï ¤¯w)XB5r˜<®»p¶ÊDˆíeÓ8LÝ`9£Lž}w{%å9¹Àù[Ô9àÀ€¬VD5! ܉º•’×=‘ ³³LÏ:gD möî½™×oD¼?ÞY÷ç’¼ÑlváI)퉞÷æì¦I¶ÐŒ0„0øîõcyfîß Riœ¬v×,o7u"dü½;&„êå[%Êe%Ä2+"tKXð½ráËõ²x`e=ùgnÒtOFwã;2+˜‰0½G4Àúãs66\U\ IÊÉ¢~pÓÖ‰‘$ü>ìùíœ9}t|æg}³ÂvC«}CÉùÇY²jÊJqŒ%·I7X2܇Lj>ëö2p“ßÄ3²(`§Ôí_‹ÓÞ(h?$AÓŠÖ‰(¡:,#Y{i—\®Í–§ž¯5!_m¡‹:êÒk3<דc'5ÏýÜsñíÉÏ»ç^7áæ¼$á Pr1-Ÿ ëX dˆL%ßNÉÂDïhQ@+ãoëyW‘”nØjyüwé°(’I4‚AÑ œ"À/ä?bIÕœ¡ŸËã:J@œ2RHD’WÃZ ÂŒÆÅCg翽Z½nÏp‘üíIxä,ñÛ’‹¶‰(‚¹H({©¨³køóë›ìèû½Åê7›ô„hÌ·!‡D“¦:Ñ? kàè<P†oƒ‹K“u´Ž”õñ”ÉÈc—fmáÛgñÀŸ‹LÈ0ïHÎÚÅ50ˆ @Ç Ö¥#¤zêΌΉÂ@ Öy°S¢uλ†þôŸ€tøW×›'§åˆǺÊJB„öM¶„@D¿žÑhflqýû‹qÉÛ2ãÍA3Øôzã–Ž-·)A.‘ f"¶ùt'Šg8ôÛÎ&±C»#u~<'ΟôODì ”ü¬åèÉØŸsá3Ü'd¡ aÑ“k>ü³w)'“uÁ?šÚ ë›+²°‹m‹:¬‰ìŸ-Å«= €õÅG„a³¢F‰Ð † Ä周{3³æ½™Ñ„; M2RO-¸ƒ\‡g$èšd#HìÑ“©…>5X¬Èü ïÓ;ç–Sæóuñô@¢°0^–KÒ¸‰ó]6²´¹.ókL ~íªjly­ŽÈX¼#õ Õì‰U$½¥ƒ;Á¦ày¶Y!÷ú·> ‰ZÙE¶¤mÛ›C„UxÚÈ\Ì«×3ªˆ©ûzK뙤”“K “®&¹K£Œ$C§Lðá›ôæ|"b=o=s:=™>Äøx3·'pň`(ÒÀ–Ù‰œˆ~.À' 1ôh]¯Ow)Â{2’oàÎþ2p=¹7Óžep²À!6¤ôDìüŒM¯EûÖëný´>‡b]&pŸl>®®Õ5àÔ!Ï_ܧpx‰b®™?{2ðH”˜—Û=ÛsIb‹HµlŒ¬ûÖO6N»fËõ·=Ã7ð¬KÓcóüô€Ro"8C«&\"q>Ö¡d$èJRXaˆBתU¨JŠm9ýa¤|šgl4ë©Ý·õÄHá†ß—}.¬ÙÓxäHÃ>dÓhà ŒOf^Ç "”FŠ"}»òÄð‡ÏÁ6ßá°N†F¤ñÃ~©À@è<’åÇ¢ÃÍËd^\ˆ#XÉHÚZ˜ ëoÛxe$>6Œè·óÚ+ßßí~kÂxuôýÑ®ìšå“OFg¢]òÐ$¦|Ê0\Œô#ùX—…’j6AÈ @ò‹¾ãïÛ¦ööo¦ò!ž 'd èš|ë–!°:PÀ w­ÊOÅÝç$ºÍ:'GÂA  €@Éb5„SC"|H_½wqë»jKÃS Ð»Ô]9ùëÕÍzõ‹¡$èÁ"ÏFë™°‘ à+TXÈý¯˜<¡ÈºGÆÉ-~sq„èat)Ÿ>xYà’™;gB }’Z-û´Ù8ÒvHØ!ЦÇèf‘¾Ywëä¼$†CàɲsÜy:!k% <3âäg ãÍ´A˜xG‰ië­HD™Zo»­‰#¯V!Nw.ÝÅ;i•BÁ¤ûvç][œÞìð“צtã¤"9b똡éIßtpî µÎr ºå%'DNCÖÓ ¦%ï»3Á<§(xS4ˆž}ycÓ‡Ùç\ç8œÄï›g yo  MDÉݽnÊ”Vj„ÎëŸ\g ›>3Þ³Vyó­ä‘#:€¢%?§Ã¯ž­aÖy)‰;êÔ# =€BV3ÐŽ¹–¤0T–F+Úýo)±–w±Í M ÂOž5Ö˜!Z†YÍò›×œš3ÂLHŠäà$2©A·®îDóÕ§³I¤tõ„0ÂZ‡¬òˆ6Çdiè#ª!É:¹fˆH¬ôÁ£]HQÐD "$ {iIê¹j£V`RS%5·ï\ÚÂvï>ÝMZØ¥ÜÛ^»ãd÷ëÆÔO¯S«Û·a+4îÞº˜“`€YY =Þ ª “ÝNžÉ謆a)â)9sêV'›Í¸·a³fÏi%ãÞÔE:‚åË9bN³­gPÉûI®ÕŸs"a7Z©‘%qšœ/„µ§RÃ¥-RYÆÿc6eýRH!¡#Ñ!ŽBéÖ$ä9N Bé™÷YÑ ôç—®n"K”–t}%K¢c5‰ÇÏý<žp0FâEÃ6v`Ü©i²æ¦8.îŠß”Ú¾©ÿÝbû"³{f’h®>וÞA(¬!<.Å$TIz·Opj蓞2þ^›^^ý=sÆã¹b,ôáv߈ñ  íGèÌ]´éÛ‘\I" ‰‰%>Í!®007Ø“OÒêÜígzÏ´úcîþk¨N(Ððé•0ðÇòLÇ»îØ{Ÿ~ú­¼êŠ#CÍùgßð²äûóËoÙõãÉÁS1B0ü‚êÀyšÇ~üåpiʵž>¡÷­§Ç{v³Ô¯pPÙÑ—m ÚJÁZÀ`¶­Ó¢Në'»R:éa0a‘ù™lÜ eEƒú&zÖõyËrñÏ•˜ ƒ­‘‹ÚI"alŠ˜iMå æz:' {9Ï]œ„ øÆz#XÃÙƒîå0$¢û¶¹‰ŒáË&†³Ù/èÏËz«¡ iü`»–á¸pIA¥“¾s¹_íClß>Kè¾:}¾£ÊþFd¼ŽKŸÄØÜüYLôC]&åuS(œÚÁmdžšBFÊ<ï·éÔè…Hb† Èä/¨±"V„hDAÓ7ì)ܹáå¥kd˜ñT/ <=Ž~CÛÃï€`f©ãŸ9ÎkNXœ9Å<)†ýùn¤¤H™×u‡BÞiŽIÓ‚ k2R|/H9äK>Ö¬¹²MÂ;RnQ<*6Í6›õ=P)kÑkó×ÉÓ‘ïÖ[ç÷ørŸÁ¸¬û‘,T‡úêñUã>¨{mA~ËIÉërÏgË=N­Íú}TonÆXãÄ¥ä5n½T ô‰ H:Û­›ºÇ}}ëÓÔlûž~©Rã“Þ² ûAµÐFzpb`–VSFV0蔼ga£.K7ν{Ìó±ûžñ‘LÎÃù>¤”=­;~‘€Ùr1"G7øù¹Å‰ÂDB¿…Òýøé4™cð¡&j£ `Q$c]Îì ¯¿ÈÅÈ»>ˆ†»W¼Ã+Bhüe¿¼RopκE™Ø‡{´ü6™*È æ’ g ½>ѤËò3³{GÝÆ GdM;#æ›^‰*QÝåî@h_Þ»´–WnÊ,9Š?¯ôøš#H€N¶QI£¢IÖ,†“‡½»Îwc ô4Ú†r³wôéb‡]CU },.Â_7¡SHLÀa³¾Ùg"“ñÅ[³Ø‚ÄêËäQ@è)LQÕ8u N`ÓÑ![ÖÙ¦p}úó†ã*P´€,†¾-3nžFè÷ùM³O‰iJá¼+Ã;]=щ/Ý眾¿ºIó L'Êå~YÂo IÅîíß³4¬OJ˜F(0tÔïåŠ!Öd÷7årpêçg É1÷ãz•®º×J!q9ëfN¶G- :sçLžjÞ¥!¯SìöKÆA:í›6žÝÃ’Q0‰G_\´—s%ÈòEV¡°’ǥdz¸ñî0xÚV—‚Ž+åQÎó™”ö,·!Ëzï¡ÝÇ£]o}x!×zÑ'i¤˜Ñ/}´0œ øFÞVoVåjŸ޽qõ4„Ö4n¡Ä$˜dxG|ÆÐáÕ‘%¥:¹W®vZ@s¨” 8jTG¶öü~qØIIÙßÔ?^ÿ‹Z´…Í¢)i¬^ŸªôF¬>ŸíÝól}¯&ÒJÊ]Éúœ ºGH‡Ä9 ͧáSf)àcˆØr`rq¶‡ÿýï,¾ŒÚ²çÏYMM½Üw½¸˜ÑUÊgW-“»aõåæÂé\Zå¬#aj6u¿åRıúÛãוF;èžSO¤y>—x¤pžâŒúN CeŒmUºÛŽº®-Z~¸ªA\± ¤il„i´¶“Ñ@mNÐ’‡fø¹¼;]ï˜Ãk/Ñ‹Õ' Êë¨ÅÜ n/ÆžzñÐFªÒB0‡e¦:ú©iÿ¯–‹ôN•¯Ž«µè³ðxl`ôƒ+P ‡Ócéæ#"6B5"ÞÖ¬'D÷·!ê47mçW:ëÝ캋jP ÈQ…—ý¥G£mS á‡|ºÊ&y‹w✧,8E<±-,+YÒsoÊvl™ÉèÒãáNk IâñÕ±ëYNr\óc dá]]‘R‘ÃßÅcZ ð±‚cdz«¡Éckr˜”öî!M à¢µ“nøÑNþ*ëBdÖß§PÒ·2ê0µ8Göô#Hšã\bI‚ˆŸK¤7 -®b{– —o޼ÑwlßL៰S¦SÙêºï¯Ò`I_+„ ”ù@L‚‰Ñë’ÂGÝ[½ým^—Îrá(cÀÚƒì‚FÈXê$öÌI$’`)buŸ,!á÷2¶ê»Žë¬Ó¢^iÑŒ†¯qnHÒ£e…ýUÉ›»ÖEZ¼K:[‡³a»iø€µ$Ñó±4uॆöuÒ#AXT€!‚JH ñý4ØgZ@G]µ+Ö'EÌ›ÖF˜¥äÓQ‰CKÅpóI¦X BåÔ]ýÖÆý'ÛƒY×È'ä BT–?¾´½:øm}],t½ ÖçXÃr‘Zžåo²F÷ÇzR@÷®»gƒ÷=YÐ@7âì!=XÛÄÛ¸Hê-A’ÎéµÙ’2™ór±»:ŸA5ŒÅÏÎci—CùϾÙ÷ßZÉæ¶}ˆ Ÿœ%!>êsÛH’ßV†¸úg]Kæócîѫܥd>È›)‚x·çxÆÌn"zÏ~4<œp>wz¾Ùr°!q 4µ¦.HleÀìp)„=š<´Ž‘£­¶ñÀ¹–¯h1ÓârwÙ3$OÆúx}$”yDÛÙg@Ÿ¾8*çÈ\Oâ„&b:[‰uI–rugPI Ô¾CéS„ÜÚxWÜÓk§[:‚:ë\,ȬáàÖ},ùßÍÙžF1zõ¸’ž`[;³_ޤÜî-¯!n5¬®Ú²)êö\¸yEÄF¨œq—5º„vÔT3h¿¦RôÖÂ/€ ÑÉ 2à?#‘ F’P<:ÐÔÌ÷¨E‚$öZ,ðê]kÖ9ˆú˜e#xH%Fwl‹z.d’á aêª?¼ýï–>¯QñÞ³‘ öTûPdALØÞ‹@õή¦wb:üçãdùbNwgÇïv|z(õS,‚5±Êú,"ŽÐ€÷âý!ø³ä¬D ;È´!³}vÿ&­µdŬNÁÈ0‘ö@ìá4ê¯7ŠØ&”gEN5ˆ6Œ9G¶ ;‡'ÎKÈýrdlüstá#Ö A#£Åìé²&cÊ™ă¢|d$ã¥IbsjaðÊ}—4‘ël/vü|3£IÑ[z‚OÉ:fá úrìJpÑSm>;Æ>ç6òåxëÆ(^O·Þ¼*NΜˆ"æ|™þÁ=Å8µ§0†.r gSißê¿ßý­à µöº´ä øvÚ=//ä¦Ay´‚EƒLáãèêëÉ´µ¥XxG„PF_ʉg©cŸ.Ò§Ã ¶™LïÑ bÔ6s©âÔ‘!Ô¤/°¾ÌÜókò|·õ8WP{]5Ã¥¢CiÙŸ[¯1à&5Hd2 Y¹b:÷§ñ#ß•L_ µgd~#œ†àb8áÝ 8|1P,„””u¯õÄè2žÉ{Zó„$_ªˆs­m!°Êç†ZÈ’Öå“Ô)ájq–Æõ33Q6>¢·>H‰‡ܰªGQ ñ…{\:¿•<2@w›üÀ¿)Úèì°|BÁñ+éBæ-ÇHÛ-lñ"WÞ¡f·wú¶©@l„}nbzwiái‰ñÁ’fUÏ7*5],€¦‹52ÓR£fHm=S,¼»í»ÄjKÙ2K/œi#žÐžž°=" wéhîÓNçVƒé¾}¡·W;þMõ$;Ãú(¿‹>ïGÏ"}|¶zå‰GÛ÷Sœ¼fрĖތœÖElx`0™W­Æ.éúg7çh˜¯‚)0GRÚ˜0ŵŽíhЦÜîž1C|5•nÁôB/)ÿ¡¥uŸnÒç áßÀC2Fâžb|e[ƒ”ÐX³,0Ù£5,tAÈáñð›ÆÕÞ•; ï$#Æ`K{+dËCƇxµú çdyiŒµr©¶k¼æM=y<|]°Väuožw>‘žp0êŒCzÄfÛäõt¦8xw-XÔ ”3äTÂ0ÔÁ>Èê]p >z×á+£ÂÖÁ(£Ê–óíÆUI#,!¨.VÖœ¨§E;Mˆz!ƒ¡8sn76u11û>¬hâésùêH•LB‘Æ¡å] ]¹›Éw[”·p)Úyð4Å~λ‰°•xŽ ”9)Ãóm…„÷Û‰ª¢:þOa˜°,@›!Ù;ÆçQÉðݳÌ>é‰×‡åÛªlõ,~ÁÅ×ãŒx˜#€öÒ©ú|A{Vò4|* H6“=„ä\ïåt³| Z lÄqæϦ¦ñ!˜¥ÊôÎÙ íQgÜ”2-»k/ö™à6`ÖȰ賲PÐïÇ£§î0ÙÖÒ£˜€Ùëa„mÐòÃ*|Lw­’AÕŠ¨PP’Æ_NÅ䌑¥’kò÷áÎs®ßùiñSφãÛnÒêCÈ=·¨úUúOa°ìø\èëÂö– )DA™°B,R.¡>0µñŠ/FØ`¤"­Ú¢§DÑ)éMuŽ˜:éÜã :‡wqV’j{,L­²­²óúó¸äç>ÂM©Ñìé¤ÖZÒö‘#-ë1(ß¶%´¤}¨ú1FÁ‡®ò1”Xì£ï&"ê˜"Ç lJýóÚÜHc«,ÉêÛsTóäbÜ…jsqƒ}÷ Ž|§sY4ì–ˆ?Kô6w»¿—×1:JJz¶üYIÂý¶åRÍ·Vä…ép†/L™1„ÒâÄF_Ùj*nÐgC ÂÕ¿UUñPÌÈu)E+KV|<-™Êå0ˆ¤ÌB·¯öàå’o£fGޏ§^ê¤WS#PúTBr„­O¢ ©Ñ7X÷¶•ò6õ0ÛOz~wÄ•ënq~ &,7(­™ y03ïÚÜ ‰Î[qºŸäÖOwß °„µ÷Žƒ" û!Μɥ*"ô•ì4{#Ùnáï˜ñÙ ý€·|•âé[ÍIp‹8!1@—"¢Ò€rB*ÐLÅ’ruh'¹sWßx|ìc.4»m§Œ?ÔÃ(M"a€^KWgQé–šÜ2íq/LÃo©”Hh­×ÿ»+@âIÆxøÇnPÔAyD.„ŸK'YáÍTê ô`´A1ëm¤tüPD&®ÌϦ,+;N\d8öë*Ün(ërÒ²îöe|û§ÕXõ¸¶1Ï]þR áô ­ô²!…QwÉ} °á+'DHþ¬,X"ÎdÌNàe3)kߪšT%ßd1rU®ØˆÙ‹ÃÚvK¬©mc%²Ü¸qÂÔƒ´ˆxHŠWEvqÍ5ûoä?Rì2¹MÒ³D ƒdxÈèË…5h×™–Ð,û@lV T+éãÙ °âΰæÝš·{’qT»zˆ 'ô|x ]mªÙ©ðNgÜCž½! ù96]:l<Å H¹{¶;”L—»ˆÜ9YWóræ1ÃÊãE<ºÕWNc1IBDœM|_4Å&8ñõGo/ƒb=ù|Þg ày„ú=Uý©þ&±OöØ7µž”¤'=Mïï×%'!‚ˆ<¥ídËÓW×5+Ke°¹Ô7!´¶©ì½Hg¹)>»¬Ç>^\àdðÌToŒv¹ã»Ä8f3‹V@nöÚ<ôÁ‘å”þŸ£gSâ×…ŒbIkÑz¨§Ò2CåÛÓ¸Ç×÷U«}FÐ&RF[¥}¦…¬ùq'—Ïö¬pÉ#SëÀ{âÝ‹m+(‘FHGïôÐ'„ë»C5|zñšNÞ…•+ý)º³qÙe£†K/mn䊽™Ó×´ËÅÃÙ©ÙÞLT:P‘¹L’2…TAqi ƒ×f$4‰ñ̓PBãA—éåÌS€øk¼1˜¢zDT–ñ&–ëŽ=Cóê¯ÝrèV¬±ÆÇÙDDa`bRïõ¬ÇU;o‚Ïë¡8Ü B]A]!—PU¨qØM£…šÌŸ…Žûw½°ªâK/~ªKg,ˆg|äŽW$ì–›@œ6O-šÊt´ºõCÕÚÅ¡'z#¦áq[İM™Œzæ1ìû/·ÔÈËW¹êÂДx/ðÎüjô\š. ÅŒ³"çÿOõ”ÄŸ†¡fW¿(3zMá[¶bItôæ/¯ÚU6{aåC|Ÿœ¥>§”í:¯Lõl¤é C³³Âx޾·Èy üCžyœ7â>m²{×ã¯Z•môIȨy0Ý÷ï‚UÂ.•3Çtñ8ô™Ü½^+Š¥IHtˆ5(¥­™¹A‘Õ°J¸ŠüÃGâñÛý3î²au_PóMÀX˜Á‹l±vÕ÷ø&í›vù.r<‰&]IbzC ºmN‹ó äÂFöù™ x¢”!÷aN‘]ž@´6¡ŒoX+üŽ=o»ç®ßj5=²pÏÞ³zóÆ{C c4‘2TŠ)Ý'eN‰ §ØÞºi>‡Ž¡ãžœ~nãÀë}—ÙOŒÔÆ£dAb$ƒ8ÊžiÆíh°£®7£{ûBóMfw#*&Iè€Ë& ¡Ø9~~¾ÆÛ¥{´â¢oŠÉ¤Š>z·sköXä*¸–A½ž0ò;¡ÿ3ZT z½Ü>ã*›å÷z¹×݇~¦Ø*sp™•øˆ–$tá&'oìtp¼€ŸnYݱB£<ƒ™P-“|?0QÖQ2ÌEæäd{%‚+l% aÝéßä3.‘M¶ñìµb• ·‚ ¥(Σ ù ü+ïן ÛKkkwc¶â 4âF!?À‡oYËèî¬Ü( G»æFë^÷]މ^5ÅRëÌòÞW˜ù#ñÏ ÙGHR`Ÿ»9÷e—¬¤u‰:@€ûähŒvJˆ)˜¯/rÄ8nÌÀ¢1ã­ä²ë›+¼À†zÄ3[ û*.úСöeCç–ëv.˜(ãv !”G2HS>mÌ÷éOi 8±+Ìl ¾'Rȃ#šÇ³ Óò=ñ\ßpÏ/gÕ<}>Ê™¼Ò×aÂ6 k×Ç&{¤„!DI†¶G©ÜšPHÎ3mn¹x½<È]…¶FЬ^¸Ùm<)ªC œ$=&gÍ8ÐAï<.ußÍÏZêaÛo¼ztð‰ãŽ28’1ðÎòa´;f2h1âˉP’BTéBl@׫=ÌáõG=w=âÞ§k¤;‹eÑTU¥6ÙpÛ®;ƒH+oW>hœç¢g«]i1I ¤ÚéDJ¸ååpãòÆQ‡QsFÛ=îi}c:ó—Â9ëŸÜç®ì:â­Œê ÑÆì1Ÿ}Ld“ª§pP5Öõç˜ú0£hñ‰\~Ô±‘ëiÉJ®(ÄÚs¾)LÄ‚Éí$ "$ƒñ2É&š!1<Št$5š×!î |ó{ÝM³uüêóŒ(ù¹Ñaç ´¿9A„ÈñiÙ#pãÉ‚äâÿÍY9.Äz¨¶ ‡M´œ£x¿gŽ‹Ma?œÇÄ<°8£lR¬aÉ[DªK…²‘'¨$iõµÔY]0xÁØA¯¶ 2¤ÒBç´ý=¿dX!Ñya%!EŒƒÒ¨JQ‰D¢D@Cè¥ßˆd×8©»Ûò¸†VÖÿ0ùÆÈ‘ç¤~&Cqø˜s~F ”· I4ø˜iÄdh{KÁWøÙt„U8ŸîØ{®[zÞž»ßßg1\,¤@®‹p#˜°›ÃŽS $^3?MRô‡ÏrÊþþÂÕ–2~ =¡œfÝa_Kit´Ï1DK!>'!­Aï²UæÏÉr0³ííŒË½‚Ó¬0ȈuW¤@œE£V ×»œ˜{Ož¦á¤g½ïÂuÆßfÍÔ D8Í×BÇ%H†AúSد}†¥hÏ G’-±Šv Åd7÷¨#‰¶`x뙕^$h P^¯^622¶ÔÄ#×n`#°WçqÝ߃]¹5r€{8„|gFåÖ–6²³ß×9©6ô; ŒŽË27énS؃õ§–z÷æ Åñ–[צ<-¨›p¦Œî"LʨŸ0!cuïÊTI ;ž>$ªÌÆX°À‰$Ÿ*†&*} Šx™8P„»¡Š6®çY*BÈê0K„,VA[DQ'‘0W}¬xÆðqïÃÃ|õzƒÆéjî[e…¸²£,9º¯."¾t@ùåø—gKeK"}F—ŒÉ®Öᘴ)!t¿0Tvµ]KBˆ(š/ ï{äÝÖ’Â\ql¥ckO[圀ƒTÓÛÌ›}ru)ËÐñ›5ÙdˆÈ%&‰Lâ$IÕ‰{VO1g½~qw3fûœÝ›¬÷®¢ãjTä'£®3߃狧}¼ó¿/‹K*çLõt© ¤"Ú)Ùƒ4E¢×XdŽ—‡'é/Àø8wóœârÂݲª¡¹l'ÍyÄ §³12È"TZ’ ˜£¢NÎæ(¯*Em¦˜ÍGBº[ºªkëç, y"ýÔàyã0Ê3 H"SX (–PÔ…! 9~s”'E±ƒHz×c5–+X,)ÖåÑvó~¯ O¯œ¤éyÛ»>Y¥#ÉØì5'£nÁÑ•0Š&žü…úÏv‘âï'T:ˆ,ª(˜SŽcx*Ž="lDÐ(Ué 7l9¦Êu°¯=õ4×& ‡E"Y`Ö‹P"([Š¿Jhƒ›*Æ[cj°†&Ý#¼ŽÌ$ÁD‚Ëp ÍôsìN°,:…_mfÆCM‰äeOуuŒ‚APÀ`M!2ËEV:„œ7ìλãy:ÅÛº2ºH"ÙèšœÂÙÈË&"Á`’ !¾G˜O³ ÓZ €ÊѶ]ÝÝv·!`Ö;HZ1¥©¬#*½<…'G5 ÔJë· ),Ýç>‘3x# Np“祥ŽUï³ÛßBŽóÓy·-Ùlóîß|?ÙÀ¸ 1›ÒÎt‰I=DÝ¥i“}^‚̪°¢¿¡¢KûI+ZŒ2‰i‡o·„#fb™fð6rûŽØ«ÿg gþ‘U1TªVõP†+d”X•άmaQ1«\ŸD‹Žy¿+¸Š÷ß%LGÁ†T/Ͷ7¯]íyQPáãDžòG.9ä0^2‹}÷ζO í]JpdýE]DòtiC¾Áˆ€£aB«8M&L!1»NÆ"táÿi¢þeõc ËŠË£O”²CcN¨9ÖæZŒµvvóc~It O f,ùôyÇ‚j“lÒz0h–‡æà\~ºg›ª¤ Å…A˜˜™?S!?;ö3.»Z¹×†kÀ¶°mž3½{Lz1ÛyÇ^3ñ—øùÿ ïù ¾/ ³Ïã;Z}Ëâz×/ËmÍmž ³àøKô0ýž©#×»`ú@xk°ùIÆùÞ@ø?ˆz`ð]ï9#­öLk›í[k´f·SVÛ-…ƒýqkË,¨bp–XFšíܨ"?jHMÜ‚´º’Zœ.ŠÈ.7Z†V e)n¥ Ú+j^ ¥£.$ØÇt¤ÚþÌÝW!9n.^hæRcbºöT!ÉÆ/W ÄžR×âˆVoè·Èuc)k’ì ‚©ÅfN«¨÷¦lñ3•r§«h%.Ìá:üÙÖ²ÓÝãSOsüܦ ó|8ÚŸº|`δàðE¦ }?ŠrΧH1’W“4ž[¯BêŸy –˜`a»ÞæR…^šŸ ÷CDæ9]ãVTi4Qÿ ei?Üþ_—¿Íù¯æßËñ_Í5/ññã{ææ‡~ŒQŽ|­³ÁÝeŽí•oÓ1A7âec$‚V"2[˜›,Å¥¯ç}w–4|ÞÞòÖgòž«ù¾_-®{ºn6ò×÷ž?·ïßÝÿ´ê¿k½øwo÷ßèvä¼ÓÊzo=áVc÷9Îä~‡¹¿®þ?Oë=ûŠ)ùjòþç¿ø\÷P~‚~ûö?¾ÑÿŽýœ~µ/Ù¡þÑÿŽþ/ö†p”ܶtñRašëCøÃbÅÏíß¾Â_äfûXc6S¤ƒÝ?ÕB¯ršt§úë5pñ“´x£ßBïZ8r^òf™æº<^ÊTsÎDÛ8—ç¶Ök¡Ý¦UÐâ Ú?Ÿ6¿ o‰b¾ïîgìãd7®lFŸiøïðöþçö^ßÀØüB¯ïS¯Çâ 3øÄ>+º¢H×s\+L‚¦T@`‘)÷—ñIUvê2(|gãJFn`À…ðø$+&T¬kéq„=YÏ‚•©ñð„â~´c +lFË žÌ8gv_f1¼1¾Ð¦ë¶%ZPM¦Û L­dD’' A` N  µ¿ŒÝŠŒ÷Ÿ¾M¼$zðGÎËÁøæò¼ÝY˜<¹´hJïcu÷üoÛS7qo¾_<Lv.¢ùX§i¶ Ï8%Œ˜'QɹÁ!þc¾ª%áÇ®OàÇeî/IÝ)D+BhÅ`Ó{ý­›—䵨‰€P>MVå±³)˜Hgt‹h±9 ©™‰«ç’Þá«qLm–<+ ÆùÞÜ̹¯+Íuγý?ÇôŽO¦&M%ATEBENqGSˆqTQ4Q%,ÒTD»ôù“`6¨ªZN§”å9ßÐ{û¶3œÿtzCëÓõß­ÛÃÀÔÎû¬ÕÁÖ}×±þ_‹éýçªì~¶Ÿ›çnÄOÿÝçÎzŸ>}>ãÿÞû ÝØ=ŸãöÎÙäúnÅÈø¬îþ÷ýßí§¯Û­hKR¶%ŒŠ@Ç)j©þ-8›`°H0‘@ú•¹#n‡ïGìv‡w 2²(Ée•Õ  ¬µ¥+aQö¦ÄzÍÛs#Y…4è¡éÄÎ w4sstcø+ÿ)*Hä_¯YþyQ¿P>J1ÔGê™ãELéÈ‘?ž‡Ãû/WÝîÀ˜ÞûðÆ{þ7á\¬áù¯¿tß‚õ8ýšû8"Çý`œ±;]fcPõððøÓ§ù‡íU0ýy ™{¿¶ o?wûå.]–ŽÑñƳž]=W1C;#Uüï2nm𲊗‘øI‚YZA ÍÛ÷í¿áXŽo)Œq¹J öÙ~ä<´ÀqíØé"`)“è·²fÿËo\¾zŒn_¨‡uRêM‚;¢e¢VAøËÝà±ñç_ð"xû­óÇ«§].kŠ'$øùh¤Îâ£]|y¬fXÜu9šÏ—ªÅíQìb&¡ -mDµ¦u!JÏnY+À,èTSœ ‰‘ɬN/”u' Väg3S½¢ØÂ.nº¡„#-é ¡×¥ öŠYucxÅð8 ;÷XçxO>P— Ô¬óåÛÎy댄ûÚkž`3á9~ä.›#vÃ}Àï<½6qǃ÷ÏtÞ§+‚ì´¨âÁYÁd-ƒ,ä¥ Vaa¢€ÊHmµV°>|Øñ×UÏ=Ù¤'©” ú,9}Ÿ^W3ÁÊ[ÝV†0™¤ÐŽò­!€xÚC’*(kaº`$½Qªj/'»šBI4™Z…GG;Ò¯8xD¨*ö­Pš¼»œ`ÍÏQ?O]Nï¨úåŒõÞspg¸¬ HÔ$‘ Ò2/ MSãUŠÔ† s¤JÐ.˜”­ X"+BÚ’Š© ’èb©|ApO èÈÉ8‹í8›éJX ÖVœØ6œQdmGY˜‘]ü’U#-e_Må,Ñg²n3Ô!ˆŒæ€›Ác{ÒÕk(¸TÍIÔ¯©„¢ÁÅp“W&e¨0"¾oa‹´äô“p-Æ™cµ¯;«Ó‰ÏCŒh“€¾špF­NÕ¾×X=IÞÐf +Qñ¾t¥ñœbn´ÄEw…èªØ*™„© Ñ­f´JÅ@—N±#‹ ©Yt§HT/7yçw¼{ƺ²- ³T¤+IŒCb9ÜyÕõ:P‚eKbè!Ë^+VHÍ€*KZ0I¸|(ž 2ŸuÎæéĉñ3¥/<ßSTCÚ°£ZÊ“¢¥6¸¬Š”¬J#6Sèe®{æpœfâ@„ k±äA³|Ã0ñRy›ÀMÕgÌ'9¹êFmzàê¼tVIÇGH+Œ±Á,ÉŽzÍa¹$Vbð@¬Ç¬ÃFÔ§jRš ¢lxÁÙµØü…^îô¯Z®±àN4a¡P{zNT‰1ç)NÕ”KÆwZÚWqZú̓׸ËmT$cµ±£«3¯¢jn¥KanÏhÐè1—/áü‘¨ÐˆÞ•±šY¤ 3Œ¬y›•…Ì·«ìêÑÁË-Ú[ɥ楶vÒ(P ÷ðy_V¬¶„9Ø«n­ZRHöÕó­óM0Ê—'~‘¯—>‘Þ¢qb¨Æ©¼cÞÓ“‹ê®\ç…}¼·í&,ìi½¥qAä/Q‚áÚ¡2]ó`4”“¾æ–ÙÊ'N 2¼³Ì“Æ#6¹ˈ%Õ¸$•tÖ´á ÖÉâ±’Ö\"ÃÂwm«R¡fÖÒ±Ö æ5gD)xƶ}†Tòcí ÁÀ~„^œP#ÆrVyâq’Áuå6¢ÓPN¾¬­ZÚYS¿BmJW85.aQO±K‡·Ùƒ—Èz°ßÕBÝ)“ô¶¹­µNwî‹òiß®$ÄïÌ~zmüæšú•LE³.)3œnEãì=®z‡ûPbÚûOòQ•ê”Ô'nL¯ò"`æùhûìü³=çwh»dXg¢²ï¬¯R¬º‡*WøH:Q©‘`ºšôL›~ó`³eÛa@6zssŽDã)HUªÒQƒ²2O0;^‚Q¶gÓSdÔ“îÑ®¡3Š¿‡ ýu3èˆ}ÑÇzÜÎÔ Šüæ<ñ‹»Ù“%šHÍîïÎP¨[œýc¹„ã a„"Í=ÏTݸ­ªND»oz¯*}þ›Ðó)!œó±eJcb¬§Ø‹»i¥À[hm¬Ë´è:ï"i‚QFœ´‡×7_ç³ÊH9^GNÄN˜{÷”g3Ñû'Øxû›a››JõL8‚Фñ<,± NÀcV*›d8Õ¼’ò¦U`kntÆÇ®Œ†ÈRl}ß.aœX ÂŒe`SVd’¼mF8ºû¶ÄJÜâc†]"6Ã6¿ƒ(/ÌŸ¥ô¾—Ø/ I?Gì2°[WÍœü<·ô€ˆ FæÃöKíœV(qøý_3ù¯Ïíœi"üßî?šX>èÇëVØ›ïœ~fiõþK|þÒû“çóx»}îaŠä>`w×§ë‡Çè/¯Ãßøëâ:ÐûD7ÏáPãëçèûc°{=ß—_—>½sø¯_ª¿WÓìÑùõëçïÏÑ$ö}c<—œ½+ðÓû÷ôé£Þøb—­ô¾Z‚Þ;z{I׿›xÊŒ~Ï.ÿû Û¬ý©ÏHäËÒ,ú!õ×èöz|>S×TøìªÅgîcõù{¹®mk̹' `6¡WÝÕ™ÊÛTi!K”F0 ÷É÷–£èÍL@:Ê„‚(qÔõﯢ­*[Ä6ÓÜî{‡¡§—§±W“OQ%&7‚[É=fÂÁ'`¿—šDlÑ•d ÖÊÔ1!75xÃ&ôwâL=µÄùçï[ô|æâOAv^™Nqy;žD=MXÂIu„žR—75j1döŸîžÉÕòb(HEú¹ñžz•mO–Ça§‘Oâb<ê§8gëÆ“qžh4Ý Ûʼn=_yâºÍó8í˦õÜ6åݦöc±‘Á¾–»P÷ŽÈ.Ä<î¢úiøúv¹Í=n2X½¡ag(PÒ²ƒÅŠk!{Ú0@ñj¦2 %γqUc•Å%XÍ6R|Î fAc´Š®@m“Ê ˆ"8F›È¡(dæ™jŽÙzFС±WÐ÷ŠÇ<¥às~i)ŒgÅ«‰\§“M³­¦pÎ…«ŠV¾%h¥¡­…ƒ ³.E„¨•„Ëi»-4 bµ²'GÅ߈*ÍÍO4…NVÂhÃu¼gmJ+’“aKs™·¦qY.º2vر)Òr‰çk÷ç~uœd7L' UÁ‚û¢áÏMwÈoy®êý'†Ç\ï¾Ýwó®ÛRD>R|Ã)ÒþéG§3m¹­ì=q®lc µÛ>-€ã|¾ºš´»F×!;W~´œ 9’ цKÉçÓÖiQÈ‹KK+“{,3ö[®¯*ã–íeÉ£êG$òá´#–ôœ‡¥ø±ÂÔ·Œ×KFnâAa>ʉÄñÍ|¶Ì$wJA8‰ø©Ëê€þ0 mZÄR(GÇxté =\t¨â<Ss0€eë­[4çêµXiD¸ñSŠ™Ò‡G ²å¬ü.þ7­…<¯¥¨ã{2©@ÏšÒLÝ+Œ‰Ò¯GÌazªÆï¡BKG . ´ruglî cÝØã6ìgjDk©èb\Nv°Šˆ=sßÈ3^ÛùQq9BZÀ°=ú=‡+i!^Õ§AÊvž ΩB{Ä2•$)ô‘ŒY]ì¾XNÛ,ÂñbÁ q:Ò¤QR8æÕœ$ãŒÙjÔÇØº¿m㟄£lVýø»m¥vÅï85&7ÛˆrOÏŽAÛ2Ί±UZ¥ O£ßVÛ9 ¥Ï§†u08†eôÎV»Iç!½h6å¾–8‡Ç;ÃÊóHã¥Òü[ ,ÉÑ®^¼ZX§z½ƒÉžH÷dá߯˜ßE´—{<¹º^ŒQ‰ÎØú5sÂåÖm ñ‘˵ª’aïõ-¼‘èú^›À ;HÃ@ÐÒE)GIÜ ÐÒAõ_+ú_¡ñwÈ@u^kÙ>‹ý>ï™ì;ýÙúÇâu'uÿ­ÞÀ}Ãë¼åúŽ›ñû×Çn£±ÿgÃìýçIçd΃á>;ç˜{/‡ÓíÉ~OÃOÀÿIè~Û Iªê÷ØÚè絓ÈMšc† b‚,gñ ç"P?Pá$“‰P…’ ¦~0„^'™iÚÞ\V*\Š•j*]!ìBÍ@¦îFþÇx#cný­F×j¸ ¿_âß'Üz¿Ÿöþñßàw§ÈWÚxýžËÚÿ‡¾tû¯•×|PégÅÿ ï½(xÏúÓÂøùýGÍè?è‡NÝ—¨æ»¸ãæö»OÓó¼<€½ºU~gÝþÉßOØ+ëÝ7®+G ,ÌŒ¨Wn6¾wï…s®›u­°žâúʘym‘;­µûEO¦£zç¾úk™wm?ß~cÀï¶È¸‘蓇ßz—‚ f¸äÕv›y2‡&nWèvµË¶SO0ÑŽ"NVȳõõãšZø!Ì–€½ÞöÐÆ?×î÷ý_pÿ!íN!ðþ~=>îÂ#!Ûá“xÄš¢_ $"^ú|=pa¯¾Mð€½ÈYGØã’´] Îsf8 Ê~øƒü Ö.ÞÚQ©HR/—·ÚJÐ'G•ÅØ^ÞÈÀ=¬±*7¾•iš;X –‰¡D-wnvýóG*dð¶ì³{ ½úìÐi¬×éSS{fXÓW î-êŸé:ûxï-íc+œ“ ¼‹ªìÃd\~¼“ÓŠ(d乆üQ“oºSÆ„ÉÉ{3“âæøùÁ™Êo:Ç“¹:ëÝïȧ‘(¦«®Žî::©:‚äèà#ª.“££¸$‚q p’‚â89"ˆ à'"‹ŽPN(èä—@”Né+’¦¨øt'«wëðyŸúµèþOŒøÜ_SåúÝð^¡ì?ûø‹ûŸ¨áë¼÷”ýÿmè9÷ºéýœîú_ÉWŒ°h2™9¼ù݃6Û7iý+ÌÚÛû7Öÿø‹FÒ t{A?(Psð¿˜MLÖGî¼³ÿÃú>v]!Ÿïë4þT²³ù³£LÛaY»Ù´ˆàÛw—YÅ=¿ý—¿êø´ùIÿ¬‰ö_ñ„ÐÖ8U%mÊY*á +ƒ#`Ö%ªfX&[ÁˆIþCI¥$ý"GY¦”™Zåa‹ˆ2Zþr8ÏÈœ €C—øíÊhÄþ¦¼cloVšc?¤'*o_Þù/"C«éÚá–¹¾o6!¯ b&Dà ÷Q#€@œ?òVg÷ƒ•› — ¢¸_ï»rêÙàƒÑ­±hÉcy³w‡9gòDçH½IÙŒ×JKQ~ÂÂi"a€Hÿ²˜žíŸŸcßÝ d ÑáJÄ'—锞GõO­‘5gÕÏEŠºÔỌÿPDŸôw©Õr™-¶jÉü›>sd¤ÎþÄï~7ªÂIÙ3„"Mëfê@š'ç¬ëqs’ÇxÒÛÑlþEd$¯ýœiô„ ü9'D׊œàxú!áD”±A|½°rÜ\-Ž×+F'ÒFHv¹[¬z4§'ëÄ„Õñ’öð1®ZÌ à‡ÓŠ95åîºOï:ðÞ@Œ\•ùÍò×çÂ;4’@˜‚–C ÿàã˜V®¿†ör^™ 8dè|Y’~aˆ è± ôBb}¶! iDð”Ÿêî^©ƒ}. úäYÛoûÅòu스ˆ’Pý¨Úý'" •hxt0*wIÐZ2‰0¿õ„7Òœ•­° ‰<µ÷Hê(þ©gÄ@&üfܰ“‡@A¿Þ?Ám>Ò mcYc¤Éˆø:ÿªi•C‘ø_ê¨ÜcyŽýH-¨ùù…Ó‡&œªxðˆ×É™ûj ñ!~Ãõ­ÀGqe’¿Õñ¨ø`ߟpãÏÿÈH:6é´ZWÜ€?»í߆äYÓT}[óÝ×ï‰2ú¶mvvëÿ›_¹1†w6xxO¹Ý~ýóí¹Â‘ß ’’Afb@E¢bî@cù}Ï2Hõí´åôCKšcÏ¥ª©Õûï»7ëÆ‹ö%6u¶ iò4˜îg¨¹×èËhìc¾áuQGúftODχ`^íœ ¨V1°œ¿ãÊNçA…#‡¯óoÏÊ8\t÷¬>‹A¦ÙÔ¹ø2o'W¥È„3L5¦M6|r“@w—DJnì¡2ë-—7w[™ì™Âp1xg ¢bš BQ¦:³3i5™[A©5 謿?ÀîÐíÕf¡5A—êWR¼ä¯ûÀF ‹¢ù2‹¢»meÖWÔ»:Bš‡šƒ[²²QˬÀj Òd»­Ò§ir¤ääå. ° ú°úÁ)hò²rѪ® ‡AœYGX ?õ:“—ž· ¯³Çy¬)y°um ¾R:œÔi5\¼îƒsPqpeu¢Îr(ߘ¿å5…m=Z^D!´OÔ&èrhßI’Ó7d…ãIë. ßpf/wŠI>ÄøLá4LÌðφMý“$ÒIxÄý!¨r5k cWzÖVÆÚ´dÁmmL£?ŒP¢C‘J%ÛweÁeœ- XB‰4„IýÕ) q¼* #3ów)LJ fƒ-!í-¶N1%hÕl"¾ð) MaÂò§JH[‘c¥;RࣱÜz7ƒ‘Ó1Z$b\ÄQ{ÌCÕ©kĬ…!n“(a8Š ëe?¶ëz5ÛûÃöw•ý_Ë=Õ~G(r‡~ÏGݼ×Áaú½_Ÿõ^<÷'†ºOØíÒô>ß>ä?¯ºŠ¢«kEWϨ+íOâûö½¯¨õð• ú¿ÞÿW'‚~pþõ?Ùÿ/ùéU;Uh%“ÖßÔ»(Ç÷¿ÕÙZó—÷£ ³¿ôô¬šeý5l6* £3¡LÌ>R¢E‰1.¥WçýY½˜ŸIÒ07aíƒÞG !™¶y¸²Ì&èɘ٤ç÷ xâ‘I™†T/ÄüÓùÜðÎéüܦ§Ö߱ʨ§kñÙå—9Uûª¡ÝÝçhbÙ~ÞÄ•æÍÅ‹~Ë6æpaž"õ=oÑ%RÔîýv“c²w2w Ç×ËмýGöH?IIK¯¢uõö??ôkÏfߣ/¹üw(Ñ«ÌßÏ;I¤q–•$…8mH¦5ZQÁ×FÕí ¤Jb²òóÁÆÔ¤}Ù¥iíÚþpIÓ>)M` ‘ÃÔærŧ¥( ›©H§n—ªC­/ÒMÞs é²¾)œCa_Æ ¿J ô­Çä¥Jz_È©ßßzo ùÑç™´Ûç’­vß–½ù"°øË®þ^㟠 Ö%õb#ÈŠyÞÁ2°*²¨¬øø 6‘º%|û–æü•¥Èo*´©B!UaœÂ:zŒWô?­Û-—9II j‚xÈghÙ k´JBÓŠÌ㢛+1o×ïŒNï;U£Û¿=R¿B|ùý÷óuT³£;ß8¥|'³Ë¯TÆôËß§H"‹ŽSr bõá#) i%Œ>¯^«¦¤« ^Œ;Úñ~Nµ`1ñé6Gž¯jÁÐÝô_°j²fŸ±íª¬y8q¼î©ÅÜmÌú½Ž¶ÚЉÞ!º`¶·ZÌDˆ<æ6ÚUß’ãÄ®Øæ-¡ÞÕœ÷í8f Ñg½v¯¢ãͤsD@$:êwñÁÈFa*Ÿ¤{Àµˆf-ÐV†µŒBMFâ‘YuRƒºTÂÃÙ!·{jO‹L«45„Îê½ ³LË‘©ÌæJi¨ ¡ ²¹¥¤Ρ¬”©Ò¡Î»ïÑõ šé&Ý“Çc‹Cò³<ÝÁ·åR¡ƒÞÙxÛjÏGIÂ$Eu¢7ó›m9Û±k$e×– ÍÜé¨ìÛkj‡Œ•BcËÖ48jÖ@ˆâ#BÄe[šˆ;G9^çÂrèuô|´±2ÖÇ%÷f‡–°&óÄE4-~›uèÓØõM§}ºKeFb„û§‰…6›žŠhH„®ë s£Œ׌~Eºµ1E¼†=¡(beÜÝߺ¬úòõ_XÕ*dLÌå&íµ¶~Þ›[ËS ñ2ãYZèöúNtóhP|cp¥yŸªba qåꤵ¶ó¨nS…RHF:ìØÔ»§²KÉl"'@èNÓÞ;Õâm(öц‡lkµQgŠ`hÜ}1mdØ¢_£x{ô¨^AEö¬x¼8µó ®ûÆ•º€çGßWl¯µÀð%z‚1øÜ£WñIæM"tSB„êjO¤|¨ê$<ñ놊ó§ N~’8T†ï´=7š&×ÖTf…Ùó˜‘~ÚF+·„åSIS©=]±ž¯=qOnJûC¶å*>$‡åÓ­|ßyŽí{+hp3/5(KÈO .`/Fº)ä4”ÚÈôô=×ÓkY*ARÏðu0Þ1¶<ŒòÉÁ†÷YÈúŸ«–j1æ=ïÄ ÷n¼PâTðˆ\t»æz¥úž¡Ïyï*îi4Ü©á ”XÆçÓn°Œ})3ðéÒ¡ÔBÒpÚ¤òØ ÔW¬”PA7[¬›;ö²Ô—•-‘”UcÙÐF¢³‹©F©7@h“Íy0¨ÍJ0²Úi¬Uæ™Sœ£ù×9q§z‚6¼dÂJ·¾Ò‘7±ÉT;¡'­Ùi>Ó¯ F™óê%0£1ŒF-¨÷ÞIqyÕäA‘«z‰ðÂÇbÅŸ}g$Q²>Bü#ÂÑë± ¹ßU·b'”Ú³©! ²È _ó«‹SÓL‹•fwb v.DÀ¡›ÅlaÉ” ¢›…H¶™=.޲~û¹²ÈN ÐÔ'L:L± â°•HœÈ¡Sæt›ŠMU'-¸©¾Ÿ:TögæµØ¦º)Á|ø3øBBT'Ûs…-¹Ÿ 2Ä$5ªæœ¬È%´â‹?1!MÚ0Ô§ZáUfÖœª>R€h10(ùѯmÂXHØÎC%¼ÔÖp‰%ñz ·ÞÀóƒ‚è51 ¨u01;„hHÌÇóÞLZŠhK;ÉÊqZHVÉl^q Ý(J·b™JÍ<"Xwç9þ8·ëSWœð9¼ãÛqÐüSuòVuì!çì°öÑ<^ZPiöâB!úåÅšñçS6¸ßÃ’Žä›EÃ;; Ãú芮|o†0@›8 ЄXb ÔT/xN¬m“9TVâJµ3K-…ÅqvS˜² 1Y,ÛUß•edúuh*šV(H c:I¸åê·…+0¶Ä Ìt 3!È ã¯Åüf|A±WHqƒË±hxaãì•osEõòËÓ´Üj¶=mŇûoRAË<ÝÊ‘•Çœ{^Zm’ÙöDd·5—Üó¾ƒWÅz–»l†vÔÔKÖNênm¾S,7^™ƒ!ðn«s};È«ìBÑÈ,ðöŸtõR‰¼ª…Cþ[Ólp¼ÙSÅ’žÂ÷r%vZa¡¢çYÔ­­¤‹ïò,;“‹œrLüò aæú¢–PíqðÙ{Tû˜1ó>¹Ö•1Bä$aU!…ú8ÉkZønÖìXw®©ßÏn=áÀ¾<óC§3í ø{å\ˆ´^œRÔª-#I†;+\üµDɆcrtH€À°û!­Ö;iglW  ­ÖŽˆÞ¶Èu¤(ÍÙõ~_·ñü£àÌÍME?/Ëòû&óø}¿1oÇík~_Æ_oåJ-!OË”XXÄ,ç8„Hf¿–²™4CòüþßÇîüI%$ûÅÛðü𠀜½ñ¢MÊ3Bûþaq/Ãï/£åò/wOˆû}þ¾;ožsôJÿO‹Ö+ËÐ?¼þgL}tOÇêú÷ø÷÷m× aîû=/õ‡§o¯Ùãôs©õ?_4ñõCŸÇ²w–K§Ç½Ú¬¾½þQ†þïÌû#ïòû%w›ñí/æ¸û¥åìøý_g¿ð÷·ÒÓëp/3x{‡Î;ûškè¿ Pý¥>åè%ÆÐîŸ+GÊ{mÛíé(Gá¹Ï{{#ÓßîáêæÝÃdzp;v9ú tî\kÝZ m}uQ×{ž¥×îž¼¸Í¼½ÿoFôŠ»Ð[Æ•^O·VÑySêäÒ[_oÈß_Ž} ÏÐ=}eÏÓö+h"Øþ\ΧB>óü<4!›Æ„:ßÝ´ËNÏ‘³ÇEí–é³îrÌ›Ê|eááÚ_ou÷·/ž±¨g"Úð‰»>üÛ[e3îc̬¨b±9ûÅØ|vâäzÄ>ig3;Ço_÷Kz¡ØžýÑëÃ&ÛqºŠÜÆS †´æ<¶Ôl’7ãl縔¡ÚP~SS»ûÎvcxƒ“ å·Üߌ*‰*J@q„Ö®¬³FÅiHõ$ëc…æeÞ°´Æaiϱ÷£×Åü:Æ7[mùã1Ž·Ãf,˜A·)T5BTâ˜× M~W¼åÔªÞ›§ëîùôìpfÇXï4uU èùØo~L‘2þgº/œ»•pBܽ—’ Æ” S¤BÃ÷XOmS\bêqžØ7é)ï¥Îy.qÍøræ~1ÎxéZC˜ÈßC&JÏ*“50R¢W%=± YZ³ß–+‰@–$t\YfÝ2ÊÑ“Éu9ðÌÕ–ÞÃÝe`Ú[ÜY°'KæøjÙÊç±æ º.ç O¬çœ¸ñâé`Ý©Ž7Ö‡Ms­ã1]í k׃œet†×)¦y ]uæ}iqšÇ]ß©ó¸sÅäÀl Ó_U*ôàÔúʶ²ðݤH2m'iûøß¦ìcb— 9Ÿ6„ã¹iô|ý[øøæ»-­÷눧ێG'r*sd£ìgîx‡GÝñ¯2ì}cß 6`qN×~ªÊuŽÕ- ²©“Æ>¾—Š©cÒñƒ}^Ö;¾Z›'|BDÐ2)ÛjƒûK«MîR ˆÓGÄZ|à­6íic]%¢ÃÔ6´¯Æ²Û\|T.!ÞVÚòÚ:#Îó €É6øÒÌ1¸ÇÃbæE?lyê§ìj£~kcQ)^8ß}Jå+n1ºµüs«-hÉ.,в-â}Ù4“9=É›eø%Õ ‘ưÓ†úX×(µvš I¦LžÍž8ßZÂM¯C[ÃÙ›"-‡ ¼ ÷@,§›CåÜi£(Ëqì³Öû0ñÝ{[¾£Ï öàÔzrbéwº·©7'Øè̘9úòÃ;‘X›Êõ;‰|KÄkÉcÐk?(›„)€¿mÓÄ—Rö˧%yvF>ÐßWéCŽ0:Ú¹pÇyŸI¼`½áת…ÊÊ’ 4WèØîª×x†8g§sŽ+6 éçb†vÚ¹G¡q<¡Õü8’ã ék].5·iÂîÛ ÍTS˜³¾ÑUá'0…kÏŽœÇ=Îú’Ø$åÓ¶Ô–óIòf2¯Þ»Ë–$×#âÜ®õ@IGzócdR )M®µÙ ñxnvV|ᔣõ (=¦Y>HqI¬„¾”´¦S²å>›Ü»q“Þ” Mr“|¡‡Û—^½é=íCO ƒmÇÕôü}œ{}þ>ñO2Ø}‚=Ùܽ¼¿"úF=J·¶RçÚ§¿ßNÖ“÷öúÕ¶•WÚò­Q”àq$ÄÚKŸ?/}úšYº“è®BøòXÐl¨ C1/X µ›Ûî±DÐÛÀþÈ=Zb}ð[û!ÿÓÈ<QŽ iP¤(U¤)@¥iB€ Jª)Jz‹¨£®+Š‚º.¢ç%‰)V€( )R$ii)¢“®9θ® îJ+Фº’êB$º.NŽŠàèº$Šà‹ŽŽ9 ‚®.â„(é"áөȤ!.NââI9.q(‡:!îK¹H:8ä( ŽãŽ :"á)"‘9¤ã”éBœè“J.JDr‚#œCŽœèNBQS¢sºGN„ÎâN‘H®J(NIJtBHŠœà§ Î‘' ÜäN‘8:Hº¢sîAÁÑH¤Rp„BNàPéG‡A"t‘9%¹*%D¤N'%9$œ§„9\Dw'A9”î$"9ÂNp8N:"Q‡”Jr8$N\œ¡N…N:(!BŽ$’à‡8qJrBE!"!"$Ž9G)*Hˆç J(ƒ¤Hç$ç!@’‘Î8“:ЉQ#Ž”è’.w)ˈ9DGC„9ÜQ(qrHq$è\£œqr®è¤îäN’8èC‘DNs®"R䋺8êsŽŠN8¸£¤á¦–„ ¦‚€¢…hTˆU )¦üùîȈ´ŠR­+@%*QM"©@”4SH4*L­#IE"RGW‘EÅÑqÔ‰ÔätrTâD kì{çûþµœÏ/ÿNî.?Kô_èô>7èñ¶÷þÍõàõg+žoÝk§ëç¨9‹µç=ܾú|ŸÉëÿYzŸlyOYð½ñü?¹óWªúnéâKÙ{sјfvìb5% å4n„~Æódf«ú—.Ç£—”Ø%B¶.e&Z,]PCYHQŠ®¿%¸èG¢04±–Z QgäEy—©<ÙÓz‘0âÚb‹,xK*| € /æðAâíïÚðÿgpÎ{Ÿïßiÿ?KÄxS^‡=gª{Ϥáê>W^øýk—z””ª9=mØ?sîóßWþÞs¼z7óþŸ˜ö—·Û;7hö¿qúGrO[ü€(¯ŠâÖ€Wî”ru­kCóŸ­ýËû/âßúå¿Mÿn¿&?¤þ¨°ÏÓÃçåé¿äÝÝOm±ÏýqyŒs“ø„r;9-ce}Ç–úö,øì}z¶ÿ£‹{ƒ~ß0f£~à®Ð)€Â0•©V‰üæGC‰Í#jI+(Åÿ`_¬K ENy%°·z¹]lÿëå:Ê'hân·r€2²Ú0!5·LÂX ¡¼LìŠTmi¼©…Ø>³mx¥VÇÃ38Ëï“>ãxÍ1SÇÞÇ"Ôª®±9HWe ïÛEf`l¹ÅØã;jk{ÞàHüŽ^r]¯ñs5·¬‡¦•Xߑے/hH¾âºëá‹”o{žÆír $¦,­m›ýœåLþ_q·ìç3óŽÌi›„´7ç>‰ü]ÿ¦ ¶ÔÃm”„/u©7M‹çÓ›+OXô¹8Wóö­Oàž~«äH—š0‚§«ÀÕÉûxzݽ¹*øQa½¡ ®óµc)½&ò ŸZÁ‚[ò†!ð¿T¶¿hÐ%!œ™]gßmV\ÜÂïåZ&ÇÝS±F”"ÜáV¼jÖ5Ô°n ¶‡m½½ÊÁ-€ýî7SÛŸÊväø¹+vó9\לCÇÀ©””¡:.J ÉÊî8ºsˆ. çHŠ8®îJ8ç"r‰*s„@â„ ‹‰;œŽ‚r8$$NHH$€%…D€R@*rˆI:ˆ„ニ’)5E>Ëïþ×ÙÝN¿ä»Ÿq<ÿŠøžÛÔø-ØÿŸÊù¬×ƒõ_¿ãû7Š×géÝýëþo)õ×?=Pvžô½Wší%ßLþ§øû'Ëå“¢ãfvPÖi »FG4RM2áúÄØKÚçíÞnΉ:¬„€Bq¥XWøýlg F++;fï]K¹©Õ5³w¨Mœ0š…¯ b@ºápÕj¡1•˜(D¤Q"cé7ö8˜Äõ™Ê­a.¥ZF39yó^{[¥Áb,ˆ©2â–ö©²žÒÙfW©3Æ5´ÆÜ 7‹ZœuŒ¤qò *“HÆ5~æö¼âœñã}êÇÕoñÕuµ÷Ç ëò÷fñ_\”NȳÖà¾[Ûa>ذžàW½/<ï§oy˜¹G˜Ž³®zí~’s41HòQkðç e.²¡³—K¦'DÆIÎfd?† œªI Zj)¾)ÆøwRCœñ›µNâij„t~õ~’ Õ§H3mBÞf —[‚û=g¥Ñ鉚Éï’ËgYch¤¾˜Ô)Òœ±=:yuõçv½ù„†Ä3u‚"¦Q]bù ¹T¯à ª4ûÀUªŽ# 倌ÀÀ˾Œ!|M•ôÐX*å¿*Ó%Êü»úß“ýO_œô½^>¿ç÷oaÍ#ÕŽóòº øWZüïÙøŸÖuðëw\ðGyð7“¿ þƒÿÓáöžÕåÁïÏ,PÔSÕ3STÕÑN‘AÒ8D‰Î‰ r9“"J‚*h?©áäþûxoÑú€ª/MÿlT^ˆzûŸä¿@OèÊ?²ÿOmô~«îÏäšïë~ÑþOV£ßu¾<ß=ó}_Œ¤¿ØJ‹#)õµ\e(Ò¿®P°ÀùþJu4•o¥!ë?w>F»Êö§ÓÎ{NÍ]òýBâ–ç¼Ä?E[¬ˆß´i3Ê6’™ÿ%v §ûO½ñM×A¬šNÑq9ã¼ÁùÿΜŸ¥o­? ú»|Ãņ·Þžoí ïs¤Tt¶ûØçMsÍÇ|ïvtÞ¼ü<°ÝŸÍ²xý«uß„ 1ð|½Ï¢‰Ý6N™Ô+âl4=›œçKî4ÜmøþxFÄluŠ/¶O*™ Š"Jv Æa-ržö÷1peâ™ëñ[Ü¿Þ÷®óÎ3x—|+°MHŸ;Ï ]8îÃùÆâ¡ÅHbJ\Ѿ¶ßxU›ãÁ³|@›·ŠM­GŠûÉ0!ÞùëÈp{íe5õ/wª8ó-ªÂóð¸¿< Ÿ;öÖùÎGqhïéfz4¨;ç§ø„Þ[zyãïpýØ úû{‰]¯Déá·>¸ö7fêQ;wqíà&äNf·'ŵ¿u¿[Ϩ'Œ’–ª$ hiÇtÔ]À’tuÇ$tt”uAQqÁÓ…"tà\t\WÝ™ÂG\IHáptˆäNDG’)ÈrDqÐ Q:!Rœ s¡Ät¢„‘Ë‘Ç%"N' É (wü]øÏw_îI¤à¤ä‹¯÷+íÅ;ï‰ãOøéxާæ¿ÍÔóÞÀ‡Àÿ»ƒ êÞXåÞŒ½Öu6fe ½–£*„Ÿ[xnp‰9e¨Žœ#Qpe¶Ù©¬I³„虦Ö;Š«Þù>۷Ʋòóˆ99ÖñÕjðÿ'ø=Ü7LpÇ šÓ‘¨â¢¢  ÑÒ8Ã"éd®ÙþdÝŽ”¤³ú?Ëóœß*ô°á{Þ‹#Ïe¦Ñ„¤J±3­·RGÛ\Z@B”_ Àß?Õ[ 3¢$¤Ž#€¨”ÊFƨi)ˆW) Ý¥1¦ôîhr§ ¤ŒpBvdd{ô_Âëý§Íò¾`œ6¾ŽÉç6È’$‘Fz3…7 D+‹lvºhD’ÖX¡X’Ͱ‹[, ‰@¸~®³u”h«G¦Y+\H@?¬óù›¾l¹N‰+-¶RS@±VÙ!‚DŸÝ®Z‘G2*hÕ"‘¬¤²DÁf6ÙL¥ÿ]û‡†‡!)’'µ¤5aHE<9© 5!Ëg ŸÆqäæáÓ`jË”k:4À(€ lt°¿Ð¼”åžW u—&Ö /6ZH.D˜üŸ'8°„G6±\XäU!bgò?Ërò,09ã»k]$¡\rV”30’²Õ`ˆÛ-‘Ä´‹-ĊĈS„*‘ô¥PšU¥0ÃøÚÉûOõóþ72wãž=fíÊŽ Ÿzáªl`°c±:mgfó·yE{?ä÷£”øšãàv½a“¬{vèq{3ì?Êsã€pµ%£ *±!‘Ù–×ü-ñ_"/ÝéǧaÃh0”q(£=ëbbBÉ•¥ñì^Y¾5aâÍ–æ„u·n&7\L²±"@p‰Œ`Œ],«+JÆÛ„•r­X0ñÍ„šM#cOÆí•rÂl#•”a$Qè·0ŒR+ Ö“a‹‚ÑSþ·þ¯ëg}E^È’7¹fW[•Ç\šh‘ SËÇgsl¶Ýj÷¶-¤·2 € ÿé°il`©•Œ”Lje+RàD”?”?äߎ3z´ïnžõíï/ZͶ èä¶ß­Ú÷fÏ„óv{‘ʼnp5©ˆ@•˜-ÿ|g'RSª #„«\Éð” &ŽWÅ%k,*ˆ¬YªØØDCƒDbsŽÉ¥®P$¬q!YŒ ›v,!F%RaHÀ „¶¤hÛjS$*’oëÙë™D蔦YU´Jv:ÀÄȈÒ û·)pȪEй  û?Gùïè¹Ô2*ÑD–)dV[lgj1 D&´¬p%Ÿ¼¹(]nÒ"² 4¡XªB¬¸H„\¥%¬ŠÌI‰ÿÓtÄ„!@„˜áD!Jdµ @²ßøº’j»hP1F‹‰-aZL¦Š‚ÊÚÈ üÌrmä`BZØaW0Å# ¸Ö¸ –¸…µ¬’ÂDI–äi c F"gáS7ÆÉD‘"$áeSKXc° ¹PüÎëÿ'öûºtJV6Ù€WÊVË%leËOìN™B6±Ã0›m±åÄg½»+̇o\¢ˆADÈ+ å® Cÿ »¬‚ÄlBbB,´b±¬‰V„ëyg¬¶¼#;Äü‹ÓÒ|{×§m»Ì½:ÎŒ¶Ò6“yY,H„X¢d)l*‚‹e¦ï:Ï#Œ³+Þ·¶{yÙxzI“bÍ";ÎõæÖ¶Z¬–Ïè¶Íر%iR‰ e‚Q¬¥ÊÀ@F¿ÎËÛ8Dyl¦}ŠeI"m¡´†i"eTWö¿Ð4цÖÛvq“˜Ëg["ù–—¹ýK¼¹µ¶ïn+ÙŽÛEx ÉR[8!ø¹"Wl¤…rŽÁIÔ--"Œ„0QH$¨ ¶-À "ãI)Lµ„,ªSÛ´½‹Œs¶nÅçOdéL¦AýŽÝ ©+hËlJeª`+"feXe\–ŠÊKÌèìÖÚD‡fQok{HÇ(å¥e”J’à’L¥(’ERÁ?NÛ!±•-™@!&FTØÓ2Û²ŠÈÖS)K\«È¡*0UW2!e•dGyolàÖž7£Ö½´€¹ S@@-¦ J¹•C-p.±¦R{ûÞ/UK‚¼d¥ÅÈ1‘£kXA[½˜ï^ÓÍÚcÛ¥­y¬Æ$D£CEh.¶‰-n[d°‚¶tÙš°2"bM"Ú:+m'…ÛÖ¹;±½·»Ê¶2¬ª¨©–ÆHZÆÆ±3 ¦8c4´Um,6ÕBV`¹%"T±¹KGk”þM¼I¢ЂQÄØÂ5ªÈâ@) K‹’¸ú’i°Â¡$Í.‹ÞÙÅ™EiÑ–SžÞÞ”™¦d¶ßà,Òa© ­^ÌËLÛÛ<Í$êóÓ»ÛQÑ­¬í·ž¶óÎö;=n!lÍEïX¯vDEÙïz,RÆ…Š€™R˜™IÑA„+–å,Y”Y l 1!µ’± e2Ѥ0ÅHÛ—÷MÕÕ{KkŽæÕgÚc–ã‹i–°«1¶ÉVƘVA¶Ë½µÙ镞va{ØðëVD”‰‰$––VXJ-QD iYQÊ`JÇ-iccueæÙ'¶çYy^tjóÐÉaƒ 嬀–q0£ #P°<6¡„D$µ‘R Á-´Ê¥LIA¥" IþwP5&)€°¶Z [P‘––b¬ØÈ’Ö±–ÛA–¦e%Œ¶!LµQ¤ Ë.F €âZ æ$2ÖR*Ó÷Ö$!$ØÀÍ­1€e%VÇ-bFVAIYDÄ!˜ËXAªQµ²"!;vàÚÑH“ F‘)Š@ÍY5Jÿ]dB@TS1hÉEeXe  DZYhD•¤”––V(Ëå¹´u¤5éÛK.{mem"Z„‘bE1VŒ™ceÈF5²Ì/-.‘”†ŒJV¸Ä–•´U¯ú²nüzŽï¼Ç°¶§jÙiy½²‰% J$+H@¶¥m”aXT¼Õé'kY·“åïsãi2m¶r±%0Öi`ÀS4‰pa‘X’ ¦nͪ‚H£•«JÄBÜ¥ÅX–ܦA·%ɤ¿¿yÅ4BSq·+l’‘"KX¬€”¥ƒJD(ÂÙe‹˜qÌ øøÒE{ZÓ›v¶™¹±f”’ÂÌH# c’ŽZ­Œma 00»qªÛ’”Å”°nÓCR_÷š6Úy×——§•åëÍɵ­´›ÞôYX®\‚ãQd@4p&ö~]†×ž³šÜ^¥ç¶³¼zÚrÍ´ÙFÛ,;ÎõíØLÜCj`’¶ð›®ªBU…)VXD[i»µ4¤Y¤·mÍ&Ö Œd B.K¬Òl4a™¦¬VVц!RҺē`À‹‚†- la+¦™¤«)(8Õ®R¶âf®¬¤ nîÍĈŽ25¬r™U!"@«„)IA1pU²í·>5‡^‡O6Þõ¢†ë¥t t°!+-q ¶Ø­ºK+»²KV´…f™,%Â&#°Úê™e¬,a c¤ÒV28E@·køs8IB« „”–$å7]Ú‚R`R]6ÄHÑ™vÚ[̰Èj—v»¤[Hi¤›ÒR ŽÖÆ`ºIjFvíÒ˜ [cþEa@WlhpÐÙl›,m·V’Ö@Ñ4»6:Ä%e©H˜–Ý”ØÀ5IXÀI–í»´¬ Iº3M6˜(QA:´)N,¶å¸–Ç‹wnãÒw7w‚¤F±YY®ìË­Ö5«…²´`»Æìœáa¦È–2²°\â6€¯+Å6™JŠi‰¡®ìÝÜÅ#E—a«(Qµ×kµÅ1Í–Z‰*†ZÕK!+ELƒT &Sµ§:«£#P5†¾Óïÿ‹ïùÃä~¶ÿe÷_§}lŸŸúÝ÷²}·½Ù÷ß(Û½Ãè~¿Ð;nãå°Âý„?Ê(î»±R•¶œˆ´Ž@ÍýÍ©Ñt¬Àá &«-:n¶ Å[°aaÌŽì;°MŒá¤1”]"B'éù¹¸„º“‡¦YFœüŸ›íþ‡ç~ûò_´ÿ¾Ûñ?œýÓÿÒØ~,}wçGÌÝÙãÿ^ÿìžð·Ïv€å¿1š&&("ª™€H”¡'PBpI$¢Q$€¢%GIÊD‰"s¢‘q?_ôþÛ_žï~äíOIï¾Mõž§ôSä  ‚ö½¶Ð‚‚ ñÅòPŠ/ß@‚R- Ä KùýtvGqÙg[M¬Ç.I…*‡Tx»ùëÅû+øs²mæø·g «‡®í£‹€4Íâ²®XDSÐoú—œþÿ>ç¯!ˆøóƒdÇŽ Dd1ÛÅÞô˜R Y ƹ‚òõû<7+–¯»¯;OCq,#IMÅM܇¡$ÜÄüä¹ý=à†ëEè‚Þš]à³íùúÎÅ|Îùôᣤ"•Á¬ðA~Ÿ0ÉÄXp¥hY <ßN3Û³¥Om\;ø÷‚cÌÝJhvk®5rTdºåÞÄÍÃiZ2ó¶;Ô&pýjøÜE Dz_ëã¿UG/lÍÇÃñ]*`3º’~*oÑ\ùÊ•êÙûñ÷\ö­(düv3¸ñ–~¶Þëè‘óvKaÜU øïµ‘ŒÇ!°¤½Ø¹C™ãÜqóò»õ7ç!ê+—ÙÌy9úËÏQâævßf¾}3‡u AߢAÍüyxÛ•ﱦóHŠÙŒ4^PòqÙ6~Í.„œk™S%€b[â÷€o#ÈjI5hÑyýP:—3(´úÆH×cŸ)K–YZÔfÀq¿W~°pÈXÂ8S4Z†RBÉU <.³¤t»õµykÎ),cž‰ÛlDêUD¡ºîd±WŒzžèŒ¤R›ŽF€2”ŠL fŒòb?.Ï¢3¡tîöЏ™Í!B‹‹)Joå2†òÐð“a¶@±5N0Á…j÷NV0•(rB ñ¨ÅíÎÈúiŒi©Ä]Ü÷¥æC(^±=œåP¤f–ʵ)zÖX´ÈÃCh AËó´Ü6[Æ­ú¬ÔÆÛ™…å.•^hgÌxòò½e•£­VL T9²Ó|"´éçߤäUÐó@Ô)DÚdšaæàeè/¿e¸<‡\?…#™W”j~¯²£uÙs¼º«Ä yu„N¡¯SÈÙ;ÈÇ#â̤“êI«ª5O15Û…üøcžgv—¥kÅ©~q¢d‡qT´R¾%}ÑúéL°ç9Ò_x°y&†àëÍ +@¥­Û«/dVûCª¹xäÖ˜ÒvµuÜn±ÄŽxÂøVÜxµ³8‰UÜ”‚:2¸ N öXV{É^z¾ }¥íHe¥u iVºfûãNÑ0“k×…A1#+~„Ìß‘Þu9»Ë‡.ÈD…CØX°²Œô• ½ïwzRÓ–:GñkYÊ •È øC_JªÇˆ]18<‡cx4#3Œ0¾i:67ëœAƒP][~+ШO—¯è('{d$Y —'=Ρ~£5 Œ©7lR5”€›)-/´ÊíØóFhW}ŒYxˆ)æ|ÆiGH Då1=,Fv¢Ñ [Àã`1éV–p+)Æ¢!áQm zîÁ4€N²•&X‰q¬Ð–¯<Ù<++NIîO¡Ú 5#B¡#5½{V+&D¤×ñ‚îÐj®L6ÿYôÛÎÆ4€Ï(Ó)I§#„P%UŠÖ&Ñob½17»^ @ˆgj¬¥CZÍÅ€å¶WÂo2x­"%8]_r‹ÈÖ‚^•t+sˆ$Œa&îÉû2·‰-je¹ ;ðчØÎmψø/iûp{IÇÅɹἶ¾öù,ÙIãuõó{‡žÚ‡ØP½z•Oãh»ùŽ£ÁTT?e¨Äx8›‚»Jü{"侀œMd.åÚžpyG½º»äxûØùKƒ‰¸ËÇãµîE?…üwÚq“×Hçi…üŸ"4TˆFã,˜!—#éÎV¶¨¼!í1[oÌÀ“frbt!v`6hX+ÙbP‘6ƒ#\ç-£YY–º¡Ã]ÆÑRqꇔfT[.-Ípd­‡ª^¯F˜9!FDÞ{ÌÝóð> Ðüül€Ma¢x ¾ùüü>ï—á÷~zÏîh}®Â€·ÕózRŸƒFS[ï‡ÝyüÜ4²¥~Ùþ _Ãírû#´~Í|ôÿ‚ÿùýÖ³üÿ!ýÐ#·áÁ¾ôd(Z??ÀbfeöáÀ¾1òüŸ»|=Sºuñtß¶áY{zt×Ë×å ´ýCïçØÏç?ÉÏ]qé§Çþ4/5‡j|:{s-}?Všøöãðà=}ºôúíç.ìïë}lS欽ú¸™ñözQ<²ýã¹—O|Ä«f@Õ‡‘© ýÄà8¤t~%=¸}UzOHïPî„®2€qYfW´>?$DóMT…-9lKös ®}4?š.þ xå;ì.}Œˆâ^" ªaqþFÜæ6»³ê¼^M-tV}G,›žXéóSÙ™xp"Ê^H¨Èe{܇ƽ,©|97Z¶f ñËNaç¡ñ1<¹º^‰ÅJ‚°œ]ÕD²°„4z,a‹Z¯Eí—6œª!-®‰ð‘Ëj=$yiæ5)d-Rº¦]¢jE‰J°ÚÐÓ:mœP”hëv%qª* ˆƒ ¦«±`0p-èWiåŸ TzÍ:šïw„.5Ä*·‡}è4/ G,s 7ÊÔjoqçªBÓ¶+G¹%NJäð¶F®ïÖ,äm5Æ#S¥ÂÕŽÐ˹Åa[B)„´}!€ÌÈ%Ò[ÃÏSÇ1½»­Bò!Ô†èGRô†üN5n 25ld?äm ¥›u§:Ú5‡«M³Ú4×£Ã/³¯MŠYåà5‡ :ËaØ®w´ f¨ÉN’º™ÁÒc¶a5ìv­#S/XÞþ4e|IïRO“É­9åáy… Ñ4èªÏ8äæžÈ›Ð”.”áe]’äëkzSQÙÍUì;)7´vó°e¢#¨ävXÄŒÌ7cŠ kSÝ2ÖÔoZ¼eèÒè–¶fy©ÝõX‰Êñ­ÇiÁËD·Žè ¼Œ!Ê·‹ŽéI5Ñ&M–Â’»P«Cd„À}pÖ€åáCèL4Y¤-pÄá€ÅnR«½8‹:¶šòWTa+M¢>8Å1íåðñs‘ÞÐeo‘úã”­Ñ­µ{ßg;zÄSvëQHÍa1£ÑTŽBCÞáEw¹Éx•d”-AÍàÃ\ùöñyJŸ_j¸qLŸ»ðû”5Ùe͸R‡Fy)íŠÊm}Š3ÄBô•($7°e}üAiÃk9ÀUzy£À%èÈlpªÖ…°aiF[ˆi…?±::Û<©8ÎÓŽD‡¿’FuÛA£I-E¡ÖË‘ã°W0Æ×‚ï3Gû+n+.,ÁJ+…¯†}Q|Ÿµú¬ýs¯YìÚ;˳§ *­)Â%­ô6É›;w^lÚ;=¬TÈf3ù åår lÆb¤+}þ¦žóœrƒ „}¾Cß§™u/1ëéð?´ý ÃǸ8yoéá”æÉ¢”ÏxÏȼ3f$!0ni/Ùøxˆ¨ôˆ -  @­”ŠR%"4£IJPÐ*”P @´”4­#C5¥U#MÐÍ*MJÐ1D4”4wÑ×'B\HpTEÊDWEÅqÜu!t$$Tœ%ÄPN‰ÅwrtÑÜs‘Á$It”RRQÑÜáÔ—9ÁÑEÀ„G—!$C•(„\’!"NGAG$EÄ\’B’œQrq:EÒH”‰Du9\$DrsNRB“Ž'HRpp%R"#œ¹Êr Ä È¤”¹p䓜’‚ÄŽèHGqÎQqÒKŽH#¢E¹Î¡NAN%Dœ TéÓ…!©AÇ”q8I%%@C‰8$ˆçK„ç;„éÉr; 8A#œà‰ÀâHräRJ”œètQIä„s‡ ÉÐp¹ÄáR€)C„ç)r.'IÉ8”âS¤p!8¢ä“©ÄD#8áBNJ~%Õ]”U#œ¢W—IrQÑÝ$!qÑQÇS§!QÁIt•EWwJ…"P @ƒCH)QQ×q××T]Å%QÉÈIÇ—GqÇ%E'#¡ýïÿ7¥ÑîwÚŸéôO¡ê—ßýsÌy¡æ{/Iß3ÚçÊ?C²l~×êŸ×uî·Åúü>ßJHHî IÎ:Ž9Äáˆ$#‹œ‘D¢;””àèœ¢š‚Š žó_•ñ|oBpŸ‹ÝƒÐv®Oï¿/Ìë³CuìÌ)~Æ‚ü3eQf©Â2¬O ³p…‡§Š‚`Œqƒ Ag ‘€Ev•BÜ9Xꀣ@·X±i #A•©àtd.¤xàTçRGåuø/¼ìoÐýüŸ?üî³Î÷¿bz£ì|¡ÌP‘¸ ˆõÙŸHg®ôQMÙâ£huMží÷µXÇ< ¦=†<=ï/æxBcí? <Ò²™?e²š–-©ÞENØÄÛÏ&=žÕßý#ä÷(]¾Ó^6€säkßÚžç_k£¹!ÃÙsÝæ1¨fÊ.F0ub57x„¼Œ>8xò]mwÑlËÓn‡krÅ¢s%·jÀáµ: öµl·÷Ô:]øþ_õ%ž.74r‘rûm¶Ûr< >6h T) ¦–&!¥)JR$ƒŽ£‘ι8ââ¹ .R: (¤’áÎ.)¸)8Žè䤇"ç$¢œî)É :pî9N9%B)ħ'%B!9Ü\ "œqÎ#”'”I’C”¤î츎R"¢¨”¦ôÇtÎÕó<¤xï÷öFºMѾ ª*Jˆ‡8éÉ:ˆNA"¡¢‰f)$ð¯]þO&–ëqùÿÚq¼ß=×?Øö>_sù=7¿ì}“ƒšægd¢‚`ˆª ˜$ts•'ÎqA‘(:EÇ .U4GÕç|Òm»ùއ87gÖt{vÏõuá¾óÊžøíÜtë<¿EšlÕGù¯·ö^™§4'@Þ&ì¸Õ£üÕ˜åF<¯CÓÉ`éK„`m´A%i$¼¯9Í3…ªB¹kÌßÔ»¯ËúÛuÛhŒN¬×nš—l¤Ý›—i…ìã½3EÌ­ƒs1§–Ì5 S¹L[mÍ ÄLwN™f·¡]˜é}ï7‰Ñ•>¡g}»œ£˜ÛÜ5§šá|N#×sÌå·›³»{܃;aòÎwE¼È̉ڞ÷²w>ðù¤å#tr `m^èÎ0ö»ì™y,=—œMšÅW Ô®^åÇóΚ+[²u/±÷N± J¸§èŽ–õ–ûîQN8¹,ö“M®#¯QÀà¥d8Î6ð›!©áa¥(1áTÆÇu‡Õ)$o0—ÖÍvaÆä‘,\”P̶2"qLÕÐDC³¼­ÜY`w‰(Íö©caq"nÀ¡È‡&ílê}&Œ8ÃMý¸I8§Ü*ȈÿÖuÒ`MB—Æ,„ò7,¤Pƒ„G“MC£:Ü(ˆ‹¡C\.À‚€š¼¶ùûÀq%'@… DäTI’J:' çEè.’—ÏõœÖ¾ÛÜaÝÿD?Ï‹k^W½Z;-Ôö8ÏÉ?lû‹n‘Çé?ãÈy,ðD#¾ïŸÉºsŽŠ“’€(.CªG:s‘Ç9Ò¤PqÈ'GOÜ¿3÷¯é?·øþºÝÍußK侨|Óêz^µåÏhuo‡×¹W6j¢i"¦¡Ò.QÇEÇŇtRC‰Î¢`iá"—7þלû_ÂôÝÛƒõ?3?Oƒ\Ï…ßÅÙsÅš¯ÔähÃxÿ+᪡ûzÿ ÂuOÛQ†T`uš ‡V?¿ÞÕÕlÔDÿ\-w‚+A°õœƒ´ãÚD•1ŒôÑb¡hÆI%ö,D¬+‡Å! ËaY™,ÿlKÕÑãv­f?Ë”j±„ iEm˜%-$•Ñ‘tòV $ƒcÆx9¾¬£û™Û‚¬×[¿"®<ç;Øó9oG“JAx?IÏ{Yß'}hŽ67¶BÇã~5Ǭ!¦ž9’„™åUYFx=ÏrCt¡wƹuÚÙÈöü¬] ÈaÂ8ÑlÍWºüݱË­äG§ÍçäS¦òwÎ?o“2­¤¡_ÊO8&Þa&FᤲQŸ1-Î-œ†Cœ ÌÚWqïŽìžÝãfy‘kÛéÈ!øûšz,E‹¹¹'è‰*oÓÏÔü»‡;eïÁõÙxàÉ¥ƒƒƒî¶ß³ñ¼‡¢zEd~â>7¿¶pàzuô¿»Üþï?æ+ä½-äaËôåveQ:AªJT ¡iJ¸ç8£’ç:(룋‚Žr’ â ”£©.âs¸§8¢H‚:BGNR(éàœp“œ¹ "圮.t.#‡rI.p‘Kœ¹Ò.rGs’IË“Šé8’Žº*N(®ò_iQBDRqq9Ç9À" ¢þ7ö-lmÃ×=NŸ#óGœï´º‚Š)($äès‚⋎‹¤(„É9 @ä ATÓAç<É÷ÿ{õ±ßÁÏs;þäû[Âý7Ô_#“ƒˆî9*:àé.:HîC¸»„@(ª¨Šh™)ª ó\ïÖüÿ1ÒôÝ‹¥N7ün~Ã][ªñrí°A5M%SDîˆäJHîâ¢ît8 çI9Ðä¤Á_ñwn›wîîßëó¹†Åö×·hàßÕp10MQt¡q%G\wqDu'PN€’pB%D>ÛÏk]üîìÜÁSÎUÝëµ–Š´8DNkk6miM±fÓEÖ1Ý´/lj‚˜H‘’ÒªŽ4b¢˜ÕÓ…6¶)r ÈN)gUÒᣤh¯ ¼¿ë~½ÿP‚ €ºQLÔUTQG\—AQw+”PÐ5ëÚæ³©}n¾ësðµûz\Š ¨:ˆî ¢ã¸»ŽãŽé%€“¤”BIw}äø£šÝñûkŸñ»"„ªhJJ¹Î£ˆ¤‘DåÎ1KDICÕ~Ìå·wkÜüŽûþ®¶ãMRIqÐtwAEqÐ]Ñ J9 8ãŠ.Nâîû§öšì^_ƒwã?+Úw.ëyC£è6äêŠaª¡( ):’ê#ª)'8¹9 ÑKDE JVÿÄó«vî´~‘þ£åý_¬á< ¸ÒvÏuÿÌPVI”ÖGÁöAr€ÿÿÿÿÿÿÿÿÿð@0 0 ‚IW—°Š¥ D©AT(ù÷™ð! ë@P €Mh( eh@ÐRB€ÛfÊ+B€P4(UM A@€(€(Ø: ,ðûÀ€ªP@ P½x|€èB€ i£@ Іlhm@• ÓFlZ  lÓ@P¥)j"”Ph €@+@4( Á@ò¨¡@  ’P(@À=оÐD DU@b€Q@i€€«l0<¥T( J’EP@PJ €=PpÀ`ÐU Q@ ¬†€ U¡B…*€ h$€J ÐhP`{ÁÐÉR"(Jˆ©J‰ P*€Pw€=Ô`:Tÿš E)¦Á¤Ôzh€©ø€‘!E=•<§å6Šbf£Li2447¤Ò44OÒ¥*HžJJU@Ð44Ð 4RIR’P@= @“OPIê’• 6€0&#}i¡_ÐD¯o—?éï{»ßqï;áŒéQ­ÌAýAü†z"œôà‚‰ÌKDe®[ !²!ãÌž”‰’¦tØÒíd: HÄ,7PÒ,.šíÉ*"©Ô•I$H!]@iÀE"66%‰Hả…Õ°ØQE $ÄQQ…Íu'!’jK"]£Kjh®”™pVä¹xrÞ`œg!3-&Šœ‰Y£§o]¨Áfº†ËBj$—uˆªwýªâhã´‚ìÅÎdNa!/¢IÛ¾ªÌ‚ˆbpÙÆa¦ ñ[q®è>¡@°ú˜íuUT€Šgz™P)#¹uæ~ÏåS[˜B—¼åę曱¸O{›§,HÖ9;|‘º¡æ´f°S•x'Õ©±¡”h+»†ŸRjìvk/qpiäDæ\¸ñmUS€ÈÞÕŽåóÎpwuÜŽlõÍùUíÙÈ92®TU(%I—ä{¾ò8n´¹ãï ª¹žÖ'#ù×e¥Îî°C\±ÕÀFô Ž(NLf4”J¬Rª©fq;KºžwGÈK­ððÒ2XmyÂ=‘†»Å„ö{!,¢cŒVªö#c ½Alt£Ú•€¼Ä›RäVg¦n$Uµoy›V)(´92s §ùôj¡V² ÿäÁâ hH«b•µH°õ¤BÆèj®‘ä*‹?ÚV÷GnÇ仢>3àæsCCÏwÃêÙ ˆ* :Y·kX- `•­ŒIJ‹&[ í¬Õ¬m8¹L`b›:Ð `ÍihCpY‘\C8¦Ð! ¬{!&ÕypXEqXÕ&Ž$ðOª<µ’–[JKU D\\14´Qê`ù?b²••ÐRo%TűœV¶Ã Ñël™À˜a†„4kÍ"Ä¢,[#NÓ)c \Ö§v ˜X¡›ºÑn*¶»Œ”OÙ •½X+wõ`œ3¢„ÔÒL¬„ÆV“vŒˆQ3_óÖ°ÄãJûV• œR¦Ê¤±u:•˜dÕÄ `Ž¢¬M“S³X /g|Õœ®BáõRýøÎÞê_!ri+ï~è8N1új´QóËËv0x’"HÀ¼¥‚äƒqÿNé6QyáÍq£HVÕL1yË„H¡ é ì(Óaw¡0ºå2¤Öܸz¨w?§¼»o†ã q‘Ã8ó e)I’õ!Ì5ŽÐ’ƒ5U:ðUæ²”Á I`YzÔ]i¨ƒ­ÚÅ lëi¹aä a¦ÀéhtÂÍ^½QÂi¥3G¥f.$Ì¥,‚æÓšR0¥þÍB:„Ú ®Š¡‹’BЕ֙h—wª1N9#‚*[ÉÆÏ÷ÿNÿÂni!ïã·Ýø¯xÿl„ˆ(X §”ÕÒp¶«#ía¢]HÐ(‹B00¥/HU9Óèp”æ¸ ½+ 4˜~ýg—}Ìðo½æù¶>ª ïe¶þû¬ Íd÷øŠÐ¾²b9N¹Yâîþ>û)ÝÉ{­È–ò9–Ìo9¼T=WÞè²¹>Æ]òn*|Ü HT¬2Ö­öÆÃPŒåF…LN ”6*b’Æ+Q8³Ã.ÄF¶Ó6ÑŒ”hèì„t§'YºT+~„~‹ßó÷õú¬ŒÏݰ3ôž¿EÜÛÖ½ÛóF:ú/Ÿœþ>ÓÃ-|WŒ9|-‰ûÏby¦KoÏ×™s÷üOóÅ»çðN¿¥ Weâ)ï›Çëk›¢{üèÂÈ=~ ûc?˜óø^íœ6Þqì›zµySmkôD¹YÞÉbr‚­4Þv6m˜Îü]yo¾ç/ë¿pÑ · ×·ü¾ÿ÷¿ï—ëïô>ƒì‹òB$ ôF#ì(JíÃŒC¶Œ7P¨À`‰˜ˆ£$2 °ÿL 0mu"ˆTj«šä(Ý7ÏÎÈÄ©Y™ wȸ*ùÌ:î žò„©M2DjrL°š]»›åÙ0 ˜/ºÙ38–˜Âº¢;ý±•ÃàduÕ…M~¨qB}n%›h°Q¢÷œÌ*‡8MËKÉþY¤¾=ï•|É8¬«{o`j§öñ,±|3n÷—1séïÙïF?^ÅÉ„H†G›¹bæ^`#Ì¢'Úá5ýÞá àOž+íãšwyÖ(*.$åå¦XŠ^­SSª±’vð'“Q;Ø0¢<ój'›[ýê²°å>~Þö7µüçæ¿aÔÌA‚”µ®3ŠÔÁì¸Zßz…ÞžÚ©Ô2Zw(£WN¦1 ŠìV™áÒ×;ÚõR)f+jµzSt½gã!‡¿›(O²m61,EÎŒ0Nöß}𵼉0(€Ý Ü.Ù:´þ…²ùC›Pgñ/u´:™Ý‡'•_O¼£ýPv°°ó¼°ª{ý*?;)ÈÈ\‘X6êH!i½¥ÔÚØ:V"ÖGΨ†¢NiJ$Yb8B¿{¥™©cµ72ТõP8]¸ü“Ú„ùÀQ–ÙCÊ.}mÅ‘\h#w¼Lõ®ñZ~).Š#ÍÄ–ôMBPwÌÔl~£±^Ë›â¢Îü§œñ{yãœÊÝ`âø¯‡^iZ‰'Þ£>Lc¼/LIGz‡À‹qÅp àBÆ5ÜgTW­!ÍÏvUÒ¹ÇqV™®3{-XócYªM)Cd–ð8HIlÄúÙð»àãøÖÞ´BÍO910)¶Ž–õZA¥èô®Xlv -½êX¬é!rÆ*ìI‡ („rËÆ­,CòLïÃð·öž1í¾4·É„•m"´'Ža §'¸¢ ìÖ˜Äý/¬ÚÕ¼ÍFqÞß‚#ûÖ¨+dAð/zAÕIßMºê×OŽ: ¯Tº[ø´óMÿu÷©tõNµ³Ø•¶ª;¯«J‘´Ý/¯¿¿ªÆ«>kÐçEH[ë‰fúS“:ý¦nü˜xðÛìWù€.8“· ã\kÇ%Ã}íX‚Å!ê§C×ÊÖûF ÍxÞÕei¡Õé‚ÎûÄ¥ø=Áºßw½yÚYqõ@s½ÅÑ1.ݧԷx®ö‡pøškf¥Gn>¼½<@í­!ãý°{¬Ï… å4nX®5ÞsïÁoGÅ|’\&Öò6 ­GIÍJÔ¿¤+pödž¾G·s–òDk¥ÀÁH¸NøN}œé°Ûäò6Ϧ´>C)ËmZv²d”ËÇ8ó}_À´Åxß=4ˆe¢ÝÀ;íèíà©J¢ßU¨°ùÛ•/¥ØX|óã­ü‡‚¬ñ³½#»½¼‹^6è¤+±5"+ Û¦M¦ý®\,'ºV—«îÀjÎÔ¦ñä8~…;ë}¶Ë—mÏšHñOëÁo|bÓÙ•ùóN°™÷¯žvñ‚Õu磲yƒ<>g®k]¶–‘ûKî™×ß[L@ˆÏ6ùN[~Ðñ^H¨‡P¨qÌ{O»Þü m㬭yì/»·•ã¸ÜøóÒ—&žO«JúºåVõK¿Á_åqKx]&ï‚±Ú úÚ\›Æ4 p÷øV ß3EÔ—Àù1¦Õ¶ú†ÞíM“·?A»—Lh;ƒP¶ÑŠV£MPóov˜ç<µüÎ|k¯š®µïž6 ýn]W¬åúü¼xM³\ˆ¼£q¡™Ìøï»¨pèó¥uï܆7¥!§mo¹ƒxÚûhæl^EבçVç=Ç·(95D+]¶Ð볕+îwo JnŸÓª-úùÇÇW›Ýy°ÞÀ\+|¿·¼ÏSO!âÎíæ>Óù˜^3xï…‡?ž“Ä »÷€`±|r_)õÖÏ\î^¯Å¹Ù3¨òÂs4®Þ»éµ5l­XæLèÂöVXqlhmaó»ä¶øÛi²Ö…D¨j0ñº S4µ|q»óvä¨çH²0mŒÃÙÞÃ… ~-}öŠõí£}¶ß`ŽŽ¾qÀqu×›Þš²_¬W?‹ëÜPwÏÄ—Ä…¼™Ýz.é…¼bÐ]¥:r ®C‡ãÀÙñ¸oé—®™£5BiÜï· ýv½[¦¶ÃW¶Üy±%¸rÚŒ¡zÖðûG©oÆ/>â|FŒ'5êÇò®®7ø¿Ñ×ýã¢:$&l  ÖÂJƒ ¶5‹ZýþLþî®]Α?׉m…Õ*Ãt]t;Ý»uÌï¦D¨WÌù¯Ôý_o¥òýTUTþú¨·ÚOZͬ͛LÙ²¢ŠR„Š“m´ 3D%‚,fTUjÛü7wvÝïëo¸s*Ú‰U¢Ä¹R3™YÎY¬Š¥t¬ëiXN—a¦lÚËY*ÔÇZé-Ö\Ʊ2ã2–®K(Õ NÉQŠ&\ŒÇQ™š+•¦%[G#.îN'G1ô}±cV(6,‰£F£[¢ÖÆ´™L¤C)%%Š"À`Ö+V¢¯¥µm¶Ö¾_Cè:©ªšLæZØ]%A«VµªiLV+ZËI5eYJ†FUØÉelë–1 pÅÈj´Í-Ä¥TTÓŽ¤\k‚®kUÂSj‚“ ¤µ­j•¡ªŒg;\Õf,ºÕK¬´Ã«‡uÚë#LÆÕ×+bÊbYsPÉuY–m¬nµu$¹sFªqgrÖ…X°la)F:î¡6*ÖÕSS¢îë§/¥[U[RìÒBŒÁìë»®AªéšƒLÔ4ŒH쪹®K»±2nrç$È:ˆÊ´s]2ÙuÃ&2Ö ÍpU™ŠY&³Z¥\emTªUÙVN6Õ’°Ê–¢¶™Î´-1ÜÕZZ° ÑÓYL›Zàç*謖–«ÈÖ•§U"±Ò®¬Ó`–]cªÇk$µ‘¥¦›ZËS\ÃjÉ)\j“ ो«ªZZÔæ)\UZ²ê«JºÒjQLÖfêdvV³ S["%¢pZÅm!Ô²ª¶†R’YJ$^E–¤U8•m3£•Ò9ƒŽâéw;]¸›¤"&ë–Ðj\Ã55kWj”ÐÚ²ÌpªLÇiÚIÒÔ*Ú\&Â-A™fDØí›”ZµYV[ZØéRÑ5sªÖj°³”XÎӤˣ­+¨«U¬4TµËkXt$æjMM#%ÖºÎ)fEvšÑ­bº¹­'1¢kk“­•#—EU˜3µ[&Ê‹VpC˜6mWMÒ®™J&ÕNÉÄ fFª²†²ÚÛΚή«µ8×5Zk„»%›aU˳£ 7+µ[1µ•fIÖ•JºæQ©sSCu•YÕ£.Ñ‹5A˜Mi’×CCj©v“`©FtÓ1ZåVi5•1…®Ž•„veuA«4ÒÖ˜êÚg(°KMgc±«I‹³c®´ìÖ*kErQª e2Kkim'0älœÝÒ&èîí×Hväi–I³2”µÅ‘hª×U¬i¬s˜1-¦j²f©ªVµ'.¥9œæÊå×X¹YebNu–5lì³F£™«LºµiK˜lÕKj¬­Í ºgçA×Õs©Ž®µ“²å#¬šµv"µš×0Ó át »wg v\ºèŽ„L5–“³Hå]V)ÚºÔÔ­RVÖœ¬µÍYv¸æ¬Ö®DSfÊÜ•f¶g;ZÛZeQ•‡)Ι•LP³¨µk 1œjMK,0s¥™j³©TËFiŒ-5Õ\ËK¦Í:¨;F¢@Ù®»¬¹‹––ªšÅšš­c9VY*Õׯ®µD›,³–ci ÓjÓ„ÙT’[3A¥2kœÍ-48%®i¨h¹n¥v²ë­p“Me²´­YR«#ZækµÇ)©‰Z™¥LÍe­ZÒv¬·Z¹mIYŠ E›Nf«iMT3J)e]Xé‡+Z+9×-uP¬ 1Z­¦ª²³6¦®™:j»ŒÐ:4]jšÓR¬8êÔÕi¹“es0CfÖªÎfG&¹ÓV¹Õ̬†LεQlÓw»®².]Sº!Æ ˜eq ±•Ðg*•¨(µYeV[U+2*Ö]Up©¥c–µ4µ“•+µYtT¤±V‹$êu5–¶³%–´ÖX«:Ô¦S2qVÒl–tS+ 1™ŽVSV¶«Vé, ]kUU×MÚ-1ªhÍ5*×ii–euÕ¡­&V6•m:šfºÍrL“*º´ÓEÖ3GRŒ™TkC56q!Zj†;1šÒ³4ë4°aÊ5T:Ü艆®…M4“šYªÒ¸¢êЕ–ë(i¦«²™V«FÊÖ`Æ*š]ZiraÓÍd\ZÃ…ÕÅ,µ«QÕÎ-[ŽlÎ+†¥”ÖhÅ9Æ•â4ÇÖ–­«Jé«\c%ÙRÖ5G:µZÕ4jºÒÑST¬³$˜­k£–Æ[)ʦs’Ô°eš[Mf³«µ-fBÍUɬ²k­¢ÌdÌ©ÝÌMÎ×;)‘;°åh²²¢Õe‘²ÕANÝÎtŽ‘Û»œàìªÒ´ÎuÌç2i%iZáÌÎ)®´­]d•Ö”¢] D2±Ò*’,T%!šª±#Ë*.u•-u&JrÑ¢è¸&RK™Z#bªiÕÖuš¥l“1V&¬Úv¥­k©¬ÉÖLk2°UZ€YJ–¬®¬­:ÔƒZc3)klE`U-"V5U²ÔDev];-[2Ñ™›“ iêåLbbã«UÖ–BN‹3:ÜÆLTà­`U5¦]%†²*ÒëT×*e™¥ÙZجªÜÆ…•©YÅ­kJuYÖm$j–±µŠšc¦¹ªf’æ«u6tMªÕmu©†uSškcm„&±µ¬´3¤¢¹‹šÚ£2®tÓ(åVV4ëÖ#U ¹šS-˜Ã4Ò­‡%³«iP:B×fºjZ&Yv³aZirGV–¬eZÌRk4åi´Õ,Ê—BË+X5fX´²ë•‘–µKUX53lµ,AÖ¹¬²sÛ«§NºêN’dÅ×@k;]nª¥eL+f…]6“# ¸uS«D,ÌÓ1utYEe5©2̤£¬°ÖªÎ4¥–¦Öjj¸Òu´UQ3N0]Ô¹ÎîN×Ì]qÒÓšê4¸˜Ö‹2Õqe:²¹g)efv Ð­\ÖUÀÛ5­sÙc]­Zµek„1›K¬5-eNTLš­u«VNÉ¥£•¦´Ö1eÓ¦«•M4®¸ijn³ªÍfWVµ”¨Úš¨›].3¬éF²4©l›E²°šæŠÊî²)SZÀ,¬ÊÖºHÕ¦+Cjr”f££´15ªU¬´Ã+V›Z4Ö+dk"51«f¶U`©‹†²¶”Y¤ÕÙq«±§…B†^U ¸DdQ"K*…ej†ÌiÇ.«G[Z!ÆÍh .µ1L×f«\­¬ÒbÖšëW[M2MD²ËY¦UjYBÑ+yZbâY")E‹žŽÁ®â8„¸î.ë¹XqMÍjÕ:Ñ®VºÎÒ¦×]dÑ«L ‹T9G]Ô’NrDݘw ŽãU±®ÌVÓ§hk‹ ²&N‡¥%‰Adf"!±­jÈÙRÚrKk.â@ÊX³*©µUÇL«†‰­rib¸ÒlÎj ­ÆZ®™tcj‹kšÆÕb[2Èִ櫦¢]\ÖfÒe­ iª4Òf9©B.ËE®è–5¬À®lpËQÁØ­uc‹KÕ•µQÊ»EVk+,ÕiµÑRÔÈë ] ! ª"¢ÑH°ÈJ3HCªÕ£$Å$dKUjÉjebµ; ÕVk+e4«Yf´±PjËNhË+Zk$ëZ›еR¥…]¤ÒÌÄ»–²¶0µ¥i«[C¬¹f•hÖ[WuJæ±Î¤é@·&²´Ö„è•Öf®§ela2Ëeªj*âæ™"\ÓXæ,lé˜Õf³b¥tY£FÈU[,ã.²æ%˜ìŒj]X´¹VœÌÖCECZÍj5ÎJæÄ³4–©ÍZÕ–ZVˆêµ2©VÕRÙVvjmTºÈsk3Zbë;)šÊ&1‹ªv­ªÉ%jsRkK2º«”5«¹ªºC¤ÚèÔ×AÒÆ›NR¦­ejºº•­XÍZšuªåÒsZŠíl˜ÓMs4m5ÕY¥šk®³+,FÒUš(«5šf5¹«5iguÈÍ«idÚk¨Ýš¸d¥j¶¥i3+ Ì2ˆš¬3´æ©‚¬+jiš¬Ó¬×.U§EWJ‹šeÖÚ­˜šEÔ'\ÖN&´ÍsÐmfY ÂÍTU$£)Õ±w"M†;§q.9Ý ¹e')uVµM±VYe—H¬š¹,i‰ljáN uj¥XµdÍEUª(2ZÓ0µ”Š–vZÒM4ÊÊÃKšÕRŒl8f›Xì×ÚRµ”ê»™Ò­jk-kÕÔ+XÄv²fÌÅ[-uUk!¤êÔI)¢µ­vŽn›‰Óv ßKo¥&b4lQcFÖj-Š‹j™ŠBPjJÑmkæóå%d°®3$7\¶§Z]‡:ŽêëºI®츘'Jw .èáÝÙîQ¸´–«Zu4µW-ªbe[¶’fk52VfÒ4ÓZèe‡Pjeg'he‹ELÍZ¨4sX ³±s2T&­LèÓ5WfÔ«±Å™7LØ+¤±Õs3)A8éµIº%:ÜÉÉCŒÖæ.s';E;w9qÒÓuÑ©‚Z©Z±Õ£jé«LÊãeftÍk­e¦ª²íTÒ³2­2Mkk&̣ɔéURºÜÜçD‹˜ì¤ëÛ™VjšuYšvÇ*vc5ue¦FX¥Ú¸Y)ÔºAi•®v*Ʀ֕ØrÎ')Vw+[1À“VPdKµ*Ú“,›ZÁU¬­n˜3­j5hë˜Õ´f«[U˜ÕlËZ-TÈ/DP"’”Š*5 H—ItÉ:îQ;®æ8ÆRBËu,©ÓÕšÔÑ­bv6JËY²Ú­72–³ˆÓ!šÌ—TÒÆ–ÊãU˦­Z¶ÒšÕf¨]jÔ5u¥šªXIÜwNºF5ÑË‹ &,“KuÊš]49T’R¢édG˜„Xzb„Zd¹*E ^R$ä]Nîîí仵ZÍS tÕ5¦¶sZ©ÅÓ¤Í!¬3+T²l.çràêâg Û‚àm$­ÆÅ›-EªË–iÁŒ®‹f²‹RVÌNÖÕ¥®Ögd³«Y³“ª¶qŠt™Ž­g—W.×Q(âÔŬ–ÖlJºk*ÕfV“(f’Ö‰HµK LŠÊ±š®qªÕ;Œ­TœÍfEάÙsY­•TÀÑ©Ó[3XÑ‘Y­¦ËY‹IªÕÅÕÒkCikV4Ȧ•¸ÓRÔÚ–­lša­3®R›JÒi˜—JÒÈ8®MKAbÀ¬u‡ke­Šš¥–`3“-ZN™¨A«Kisª©¤›RjªYeU°£%);"Ë&ÓUI¬ÄÓ]"ÍU€ÕݤݒçIÝŠãºè4„’k#55LÎan™E"$DA®˜EQQª&»9dº»RÒÕjšj¶·8lÕMfbcZ´ 4ÍuÝ2TJ—æ¬LÔMt6aÑœ‹-Kªäu¦‚xJ%ä…”i„…áák­S0®²Qª)eŠÍY#V¢fK¦"Æ« Ni›'Y›UN\uqÖ¨ÌÊÚr¶kYW fmºbKK"âÎ0Í•ªfN˜ÒmZêj¨ÃTÕ5F¶Y…Lâ¢j³L™Ì­eXTÕÉ0N¥®i5šéIp¥­q£f¤Å£R4ÊÖic%‰©ª–Nšb–]e\¨$í&Ì•2iÉHÚš¸¬JRV“Yscb—Z¶R¸×L´ÃHÍ&gÕF»KW+ Ë#œŒÖ²–¬é•’j¹™R,»PÑÇ´µRkKD”Wjá"̵V™i²™ª×.iÑÝ—9 Ã2MYWjÚEUIc]Y2ŒêiC®Zº`‹…ÂÜî9Îàp˜35’¦¬2lµ0£:°ËB¢ÊË)ŠhËM-­š4“U;I6’ªÖci95¥\¥Ó2£:Úk-e©µØÁŽQUZ®ªÁ²uKQ•eQfšÎk25“*æ£:Å-jp#2GfÄS¬j]d9𶱬³4ëR1f¸ik¬Œ¹¨’ª˜ÂZµµZÖº‚3QXL´M&$Jª²Z•ªqQ®]Z9¦ÕVœi!:ZÊ᜖ª¬Lm2¢„òKÝ=(¢CزÖÓ$Ä9µ6…d¹©«µjÕÌŠVT‡T\µ-5Òc-YÖq2:Ó-jÂT˪̦ÊU‚&—„d”F$ë™’iÆ©n¥Úi%®5Ú®Õ’˜«fZ¹©%¨Ôk†u¥F³‘VZMZRê¨ÅZaUh¶e±t¢´ÌUÊm4¶©¬ŠSªXª¤µ³kRk,LÓV†fÕvÖ°­AZLv³M­Zs©ÌšÕ¦U¥Ä˜i3c1²ªÙ%-6•YMd⪭es–Åi0TÓ™š³ºkM™µ¨fUUK& “W]AkœŠ¦µ¦J±«+µT¶­6hÕÖ­Ê¥XœHÔE–ÂU8ä°ä)f³-r噚ªÝ šÖ«ª¦QÍ]cHå#ZfY1ÇtM“I×]»¹tœœ)¡Ø5«6»S]Z­ªsšÎ—Îá.Îç@®]º\³Y*ÍpmÂÆUe5P\:t.']Š3¹¹Š²1tèmgL–f;:ºš¨YÊ+Ql“*Ô6„E*U¢)Q„diAEDÕÔeØe°5 ²jºÂŒe—U«tŠ“¬Ž4¥šÕÕŽ³Zr]•§jA%Žf”ÍFb,­šË¡ItT°5f­-¥Õ±NªÖªÖ3QÍ,Ö*±º3MU1­VQˆ´†–Ë9ÔìÍZÙ]¨¶Uik¦«•IZ̲j䤴µ­j,˜K)kT%Éi$+uŒ"Ó]tì–+—,Ø®F¹iw]wpc]лÐt޶–¶–p&†µËY™Ê11Pi±j’ÐÅ*d„ä'k\I…×KejV¡Ý5k‘Zë+PâuªãUujÓ–i±k”µhšCuVaÉ²ŠŒÒek:º³ie5Å™HÊ–Dµ+&RÕ®%ήÎF²ÄF-Õ$fj‘54«6®4§\p™ÃR“6™ Í5ÆT‹GZÔk©k,2Ô:mQÍu¦Ms³R¦²çu–F©PìÍgY[LVÕUÆ»5R­­,³—) •™`t¤Ü·q ºéºæE¢¶Ã-œRÖKŠs‰šXÚšXÖÖµ2+Z3´Úã3¬ÖTE‹Ž®3MRÎÅ \BΆÙV”Ä­˜À;º$tíкs ÄÈEUÂÒl˜Å.K,¢Á¬‡[+­ZT[FgN›šZµ©M¬TWZ³±]RÌElf³ ³4š¥[7:±š'e[9gY±§f™!Ò¨liÔ´LµK•‘\Ù…Zª¹]›jÓ-2Í&™u2ÓdšdéZŒD,©Òs[TÕ‹jHMK4¬èLƒ"r©D±™Æq¸Ú†³:•šlÊŠ¸Åjëšê⢚YÎ5tÈmM6MÕNpÍe M6bK,Ys5N²”†Ö]) ÌÕcTf¬YVª·FlÍ2µÆu®M-YqkWfî)Z§5i±’ušÕª$ÒåvVabÑɦ¥(§A¥D–š¹ (¡5]¥YÍKj´"¸ÚŒ´ãa°ÑV±dêÃTÎbæ-*äŽÍn“X×k«Eb±5jʦŒ†Ö´fqª˜Z`âUZ[NÆÑT˜s+i¢ËU†­ÊN×AX—E¦XªÇ] Y²i¨ÈËhV¦VÓL¦Ñ9"²ŠÑÊ««©Öa¤UNÑk,ÈuiPVZTV* ÌN¡«VմᦵÕÍhÕ#Mf6¹u£–˜,2Zêµ—m ’Ë5.¤ÓWZuT73RT“.$-5XÍ9NTuLhÓShUÅh¥Åf¹[2tâ•Q*Ò-v5šÅF­™i5𯖲º­Ta-TI©šê”•2¸Ë®´5Æm]iªì®UV“TÔ’´âˆØ‰U«ªdê1®Êµj­k­-ª2®ÖJÇÕk®µk)×®êw àîÈŽì*µc1uÒÔ3±£ŒãXåN3©jËYÚU˜á²•jrºN2‹Zµ ÈÔ2’ªÍT*1²¢t‰©«%&UÖšmeaÌ­«–Õ§KU‘iÖ¬¡e«JÍY.J³J•Y«tŠ4å[&t夵Ugi¦2QJs©¤[K Ö·WJg55Ñ:bLÂê:åš+:×b2®«YsPê–2µ¬µ“$F)–›ÈèrÓ„£uÐAai š­Óš³³Z×5®.Îbc`²Ô©Æqªº.’î;G'n2’:NäSZÐ ŒZu¦ÍP•,Šf¹­MZ²³Y妰Æ0¬Ö¶Ë%hÕ1ªFN0­`Õ´i£U†´¦Õ©ÑΓKMZFfeMj©jÌ`á¦i«M”ä°­–£Q›5de4Ö“&™ÒÅeT¸‰ÙŒºá ºqÝÐá¤Jv™Ë+jRºœj“N¬Ék«U©‹6]SFÖik¦™U]l8 V8£UšYY*jÚ”2SR“\ÅjvFµV‚i0ç\®ã¹1"w;¦tÇq''7Qg;“¨ºntÔÑÓUÜšV«6(³¢Ó6&ZÆMfeVS]R³§ulÅL1«©‚šf¥2Ú«P £]s%¨™b3R]2ªÒ¦f‘edµfÖÑYUDÆâÕ•XÖ¶5iƒ–µRS\í:δµ3š-k*6uÅ[8•¢p›ZZ¬§fB3X­aÃ4ëª%8¹Ö®qE‘+Y´ Zjk"«;V 8¦%Ìí\å®jË’®VdãKiÕ-f›3Bº`PYYSVµÖ…¡5Zi…e´mVi8æ$Û)œ´Ôê£2ÔÄÌIf!vÂQË£œÇw.œì¶]¥¡§u¨V!®L´b­•ØlÙ¦jSšÉKºÐ["æU¥•Lb–WTÚJ#M2”ë]VbÖÖµ–¦2µZÚ’ZchhäÊÃ-£EUV޵s2Èä±É§T¦]«35¬,µ®] špQÕ9¦­$ëeV•tÅV­jѰáÔµi²f•m-&%§N±“2j­:ј”œ]W-Ð5Ê"*°Ãxðò¢ˆ“ Å¶-FÐlmÕÀ“M*5j+kå«o–¶¬‹k½UبÕFÙ¢˜B0F6­^­µÝ‰bŠAkFÖ6бb"Pš5’"Ñb«fH™‚Å™¨ØÆµ£d5"dŒ“,š,I¢Õ±5²Z-¢´VÔˆ¦2˜Z"£i"Ôj5mF ¨ ¨Z+jS#&)‘šÊ›"q¡]ÛeµµšÛª”ÍEm¥&V-«#M(ai+E¶Ù…X5m“)#Õ]gTc%‹Z¡PIA±Z5kuuËRU‹k¶0Ø#Di5Z¹ØjË‘QlmVFÖ£dE Œ%&ØÛZ•BÚ¤m¶–Õ´lU´©¬ÅVb-š¶Ò5F±mª!Q"Ö´¶¬L–-µ˜±ª©FÈm­¦mZÒmµ¥ZЊ&¬Zµ"6«Kj²Ú© ‹k`™+mFÊÂjÛHÅ­iµÑmZ%ZÑ‘TZ«¬mj‰Ahµ­¥±­h›Z¥i3e´Eª£R- fÒÙRjÚÛJ¦T°Ì!•&m±²Q±VH´Ú¤µ(Õª“°, Ò&¢¬TblQj”ÛZµ¾·Þë}Ï_t¯ ‘Ý;]Ý0Wë.Ϋ;—— ¬j»[?§dÄøM²lÈäý$û×ßYÅ(þîh\Ë*T˜ý÷Q©TC“ý“$‰õˆUA2t³%&LI¨ýfée[v™eY2ˆf˜•vQQl]S.ÔÐ2àI‚©aÊ;n/™üÕ8®T7oЍNQS*J×å-ôt ;,‰L{5É­-‚Z*3f öù…Vª™TdF¨ZÊ¥6Ê‹*6*YRÔ†• ÉF¤¬’e¥ ¦‘X+Ô†ÍJYA¨–¨™ ÊF$°–‚`MU-R2”ÉFiCHZ)”¬„Å”5„5*h†Ad,JÄ‚Âb‹T¢É Bi­•-J0в¤ÅVTšQbV ÁL¥j¤Õ#‘¥FA¢ZªµAˆ°mPjªÕR­T2£D°« 4•¢ ÄUZ”j†QiU¥ RÈAª ¨iQ”™Q‰XªÕ+X¥’­ ÉV(Ę‹-ª«UV)i Õ+UV!ª•j•ªV‚È­"Ò–©X¨jƒJZ$²•¢š’Y ÕUªMb¦"Ò- š‘‰d-JjŠj“U©b˜–’j£5)5RÊŒƒQhZ#I4 ƒQ5)©¥bšU€ÕV¨h¬+%dŒ‹RbZKÕVCHj–¥eXF ¨´UeL¥’Ò5SJeYF+Ib4¦L–K ”Ô˜´¦«Rhj1eZ†«(Ôh4jŸ$áÈr¢¤Ÿâ”Ÿïþß_~‡ñ}_“|¿Á Z ™’Ñ-ÿ7 þ¥ ON`CŒ¸pMLE$e?錉i_õ>¶TcÛ®¶‚‚&é\ÿSå¬ËM(ëN * ¤Ü¨ˆI=e´„>‘&61QSrªÚrÔÝ@_óȹFƒ—‘´³JÕ‡1Õ‘$±&ØÿS©—âLÃ.‰HÄCƒ³1 4 Ý*‹Néj1MÍK—2¥‰¥ ¢r{jfªf|l]Õ#2IHY! IvžÅxÅL1‰\‡› MV©"OF–÷T ZôéÓPU DÌS2)rb‹ȵWBŒ]2à\˜‘Žˆ&H‡g¨â%‘*úÇÙ§V*Ì,@@Ëu-L‘;4CF„TÐ"Lã2œ—*¸°Ýն裡3mŠ¢nù¹.i7†¦8€¯Âô‘C »aÌÉ!ͱ D ÉV™|¡xA À™I• ïK¼T(Š%ÚÅ5•UU5 %… Bƒ‘ÃÎûÎùż*E̽jœÕF_w‘ÖÉçúû x¬w³çpúäo£2£ŠpÍ{Í 4Åß}«ÑÊØ:¢ú:ý†nû.ã X£Çn*!|Þã›ÎgBÀ‰˜71#|^H¸Ë?\}›}ô|™¹®ÍrÍößö¸ÜˆÎ·•3°Ø¡óF€bƒˆs'ŠÛÅéùÅÑ…+•æBäUÒ±B²<ûËîø{÷ǼS⌫ÕÕ?wå!wäx_½Çn°¾©Ô \‘Üdü¬Ê„™å-=¿tG±BwÎyáñò;¾3 µË²§ŸGžùãÍñkæÒï%»nû æKeA=® ¿/vwˆžÌÏ(ÄL<#¼Õ>lÍJä_sHÁ§çÏ¿.3=à ¾1 ”"|ªáªÎù‚$ÿš¸ZB÷¬Î­uÙDjø°Qq(°A.í¨P0"‹ì[KTª$QÎ]oS9µïµnåŠ€Æ €ý’ðÈAoaÒQZî|R«’Ø£bØÎÅc —µX¬Ù#@Q+¨^bJçqKDäå e™åGóMab êö¡¥•É Ja¡eOÚ‡ûTÅjnCT–¦ÕøïM‡BÃg(`y¾)‚ŸùÅ1Cö[QÌv¾ ×*lìUZŒ“¢™ßTAĸ!Ü«•%.#HWBµE5ZAeÉD„`fšÍo¨­fÔ3fm¯®*&÷TÐÙäd· jØ­Ò“\®ïeÈìSb°a«.0®ÆrXdœ5Œàmœ+A6kÞè7cam¯†ê"6Ž0síµSò-fYeŽ.‚YtÅl`V Á- 'þn£°—ü ÊTmSÌL2KD‚4Q)gáˆQŽ‹@4ÝËhÓƒÚ†W±š¼¥× gÅêh%Q|^,6¢fï„Úo¤©r 8 ¨¹™ã héªJ8Ñ¡] f‹MÏbzV°%r²HЬ/cV<»˜Ò4rá\"^ˆ6‘fµ@ÒŸö>š—ÅnC{UV!ì9K0b.¡Y­Ê UuP©ªÔØEomëÁHXÌ3C1¾øu[]Ƀ†ºUß´½šèÆ¡F(^ÓàÔˆ3Fâ)`GlS5YÑ=-qÄ‘—µ «]å•w©!SUPÈÚ¨¦U#R¶oÑfýP˜Š™˜Â^Äg `0>ÊðÎù²Ñ!¦Me¥CaSKd † Z3W¢¨JkþÄq¨]žìD“eÕ Ù¬cuzÛ7Ê&¯s®Õ¾ÁÅ v€{¨\BÁf)9j…`—(ϧóгq³K}˜•YòWš/âò†úAJÀØÁY°H£[$Âè@/1dÄiô›]©…±‰__|>öjwŠjE|ú­¹J_(P­‹.Ôž/›T'0p‹[1­Þ[a`¥ßËëìãE¥Ê6ªºU wf\£­XªD(¤YBŒˆ´lRЂxDºÿ6¾/=_ Oe’¾wç~Ì1þLcò*çC( 4&5>%öK)gÜæ˜§[Ô3¨Ð•°H£ºÒ‰Ï²AíU‹Õ®J͹*1¶™ð¥V?c´VÙ\­êU± ’Ä!/›Î.³IÎ ÆøÅ9šLˆ°1Ãk@U±I»ˆ™²5f¥ªtkE`a‡v¥§05l3;ÞÉ¿ s ‡AK Áê4r‹ÝV£Ys½&º{@3Xf\¬‰“=>ùˆ´0’F­þLkr¤Ô ¶]”–ÞÌ`…l±Sþ/#òϬ Ì­¯ŠngeàùînÅ“qOÇ{Ÿ’ë‹~p)±Ž®;ÍšËXdólaS ‰fi.RB°Lê0_ò Kó2 sj8æ¨ aaaÿ™f:<æØk@‚ÊZ» LXeCûn« `è Ñ´½ÙMˆAÆC"F¨=^ƒJµ¤º‹Ñ_ G pIt:szPY¥&YVv=\qC(Ø«1M­µ ja@†ÌFµk‚ †Ó]³GDˆ¹›Ðj´É† Ó‰ÛX£-Öc¼2JY0e$Æn–¡ªc))¡MN÷5žÓÃëç(ÉúÃìLSèoüWÌZsÓkü¹_b|Ź{ë‰;ìT'Ó‰xcÏžœÃ#°'ß5yV×ÞJR(Ø¥Sí\i˜±RUGhwŦ?3»ê¶ýAÓí=̾8~WÍþ•þj®yÇ‘Ò1ÇÈJS­¡Sr•ãq"ëËîÂÑÉÒf~˜\sï䨡»¦B=B n²õf,]ÚÞ[7nüØg '˜K/Ó©11ÙP”Mx z0Åó°]ÝÂj4¦.4%b±`¨^16 ¥htc0kf”|oRXʼnýª®´5ˆµ ²g‡TEJ{G!÷ל~ùØçÎU²«ÃÛ–M+Ûˆƒ‘.l–n+÷of¿g0Zóșɣ0 Å&àM(¦òÄIæªçå´G+ªÒŽÄ›ïéÖYwr `øÎi¤E`Ìm…‰Ÿ2{‰‹°smд²Ù!+!¸Mže٫̬†/ñ 0qÒv¾ù.>y®"¼šä,°¥—±Žh¬Ld&Ž×:) ÉãäUÄpJR¾ÍMeo*ÇyX.«š)š`÷7“%¶jáÄZ™H…D\›L<¥éº‚#Ïv¦«£™br¹30¾ûˆ•Žáb E!”åB¢„W÷eîb  ”„°*¦ˆÃ-Y ²c¶ ˆîÊòþßÜ!ÇîþIý¦.»÷`¶(îPp#üþ~Êʇö¿ˆý²©‘úoã\ª?Á—OÛþ°F÷üÕÃõüüÿÿ`¯öŸ¡ßéþÿ?d_^~~'y¹õ?îŸ<³þ ãë•Û}k_É·ßÃs°úúüü™ŸÉýþzoÆô°u·Måz ù’OÏG׿GæãÈuÞᎾºñÙQ¸¤¶ªŸ_^“m/Ëúñü¿»lÑÙr«ù¿¯??²~k¿CÏóçãí¾½ýññøûvžƒßë”d^=î_þüm«ÿ_ŽíÎ5ó`÷üuó=—â[¿>s_‚2è·¯ŸŸŽGãwÍöKý¯]‹ÒÕú^?¾÷üf«ñ÷±~(9.| ^ÅÆì©ˆDc ¨só,²åÙù PȨEô¼‰øó¸}È3ª N˜>¼WT!Êc‰«Šƒ•¼}ÊZÅø­þ£€½¿Wï›^ñÂЃhûjÏõûЧæ#þŸïÚ›ú÷ùý~‹òÃAP þ™#1Šÿò@èäp9!&ÜŠQTëùd\”¢UF´LuŽ¡Â$Û¸©©_»œbORS 渤øúM†§u[Wãþ\ªEK€üÚù4>)üߺêôõÀhÃæÌô·NL5óóæyMñd¦ÐÙ5݄ב MÓ»'Wv«é>÷f“=s n ƾnKù÷Zr4Y„§n:¤ýu»$ÔËDx»C‘ù×"ºÜ¾fÇßmJJQªT†±´®Bô¼Ú,‰u'”òÿ«ÍtU0ú©éDò ¥/ÂÚ!äÁé,ês@©²5n+‘“†uQ²I Nn{l_ÏÎolé5¥1%ßI¥xKì².š;Z·’Ýlè*ÖD%[¢RVÐÈÀ&Ä.opA¨að»b—+\«‹«‘™ï&T·Ešƒ„ç7€(ZKV±CµŠ×Öµ©Û*°· Tv 6mjÍÌÍ™Ü0ÛÞLG!–Tbp¼54¤>EØ®åx¦³½àprØŠï|¸SMjT*e‰7ØôBöY2qa Ù·C©V Šé“Kí{a×j2‰íŒÙ}±b°%ƈsGºæçPÄ&”Ba‚ȦK*:¬^ƒZ8¨êÏÞ¸Ú˜Þ©´(éé¡+ÔÚ4CL²¡ÔA”®ÆºÜÂÇ«b'mGŒe0ã¤å/‹½¨éÐ脈žQJöÒmú84%}¢ù 2ã©3C0æ\^åFUÍQ ,”­vÅz{Ølz¹t£µ]6Õb»p>we\Ä%Ä7³.$Sç–K†ö¹iU“6ŽÔÃ}2(•)µ(lP”!œ¬ž«] öΣ/6Ñþ•0£\øò”¶·YMу€›s}'”MÞ&F߃õñ®cãm„€­Å_@£0›-¡7Öõg,Cí <ÓÅi¿kM–Ds¦TîåTaÏcS=¼¥}î¸Çì9­kLºhÌí²ðëœøÞûÖcß:|fGô¿ñªÈ§¼~ÝW4ËÅÙ…]4eÁËõ­öÀ¤Îõ0_¶C“õ³VF8 Wkø€ñbõ~¨޼ò ºI6¡ušw½q³±ökí›g#Ç$ L4½ æÖžMîG¥¾ñƒ­ï5뀻qMáv^¯ TD®&šì&òa5@ÜŒ¿ŽÊ$ÀåWÂ’Í[-—+Ôj5J]éš*ŽˆE€É¶0… pM«õl艞^öCatQ'aåjñ¸Z“'ÙÊqŒóo:Û<ǽx·˜Š`üg”Q×êМñÏís>œ7\cÊßæþk‚·¨êÿÏ5>„yP¸|¡R%)¾kÓêJ KNCiÂÖq6Rzd¾E*¬î7èÚM^9©­åkìœ 5šCOmí±ÐI½;U«péÙ0‰MèmïZi)¶aÔÒ¡æùm;æK¨ág{SW+ºH+U è¶ê÷¹Ú¦»-™XvO›É…›«žãòaŠé±%IÇÆùßÊÂÜôÀÞYBk¢ä<—_ÏGº»¶Ì?ºíØuäÈ=(­Jz»ú.UV±ú¶{kUf*öW ØxÖû7·’‹úÎf»¾ÛµŠ©XüÑ÷ð^_¹Â¡ž‚Ź÷Ãô>VŸ«ÛÍ7?žoiK¯글eZÔûÛЖýsŒ-@×ã8T.zë6]ºÛ ±ÞyðA’Ѩ¢hcx¸}¡‹É×yø_¬ü"ŽCÎÇ”µ&Çp}¤^Åjü±2SzoÆ Bê”lºõlñ‘qߘN[ >ZšùPüÙÝ>{ƒ¯]ÛuÖ¨iøU­reè»PI|þ} qSÚëTò¡ï6 ñ¿â:º ä«ZZÂÜyO}¿ÄþŽFþùÛ¾7½‹'T^±£î¸ïÞu` oŸJa}XŽäÉʃçbW¿ÝpýÆ–ŸÂx·Òýï¸Yn«ˆrÛð¢„i¹Sx÷]àºøÏ‡Z¢ôjµ¢\­½'> í9>kS¥nþ?‹·ÚÚÄÛ'˜k…FE½ºQ_o}Ö séRû[íÜŠé÷¥¾ˆü—6ÅÂxVÛì/§÷4«#{‚egÅüstƒ‰è.¯ R[“?|îP¶}ÁŸîo ×ß¼í¡¾L÷ߤ–ÏŠËdëOŸQnjɇ}ÛßS½uÆL,É¿¾ Ñøé—À¾)‹q|—Þæ‰C¤‡„®ÖÅkâD~·õµºí¥]±õç>ö-Q焯ñ!wV-d,`ºÛ !î®´)ø½¡‚/çjt¿‚Ã5§ß§dwÑV#[ì}”nűuHG_‹$¡{q¢¦Ï³çßu­ë[gÎ7ï[«¯Âue¼–¬IÆÍK'[uûkZ·0r7¼"ˆ…³¿Â:Eú‚ñh[{;¿Õh Ý67ZÖ˜§Ó-|ZYö³ûß™”ÌTƒ>1|8RE^Q3®ó ’Ù½}Qã½ø\W#›c é¶·ç¼-;퉵gÙmü%ýŸÖãCµí쫊äÂhK¶CÀ¼qµ&ñ’âÜoºÈá_ùʰ|fén¨õPóÍ'íJÓ:Ö—„ìp>Š<'ÓÞ´(Ô4lÅêí!Ÿ <¿¿‡ˆ¤ï:¬rÖn#¨N–ìn.]ÒÆb˳ow⡌{×H•X^e0{ðÃÐËéE3\ç›§4ïdί€tž6éù„Ö©]’è^zïަͽ}¼h‘1eâ®Ç :\ÏóL”wºxëhõOY®¶?PX¨[«W€N"þõR’íÔõ† ‹³ÓÍ`Ë/ríÏܧz‡{Þ¤æúî9(ó´Õ„¾z^POôNš¨xØSRï ˜c¿+Ëu·É‡7EO^H7]âäK™ÈW®qº´ R‹Åvj›Mf¹Z¾o<œ_3ò¹›âšß€é`ÌËi„Ìóü잃GÝùlj &¢vV²¡þ4ÛõÖó×V8ÎTGΗñ¾\F{â–¡KYôAçÂÉÏ Ãú7*¯¥ã\̫ͧT¥W¿óÂü4.÷ e~µq(ÆÔÞmʃôJæL›Óã·ÍLJ·G€ÏÞ¹hTñÁ—9ãksŠ™.ëO„øê®üžKSN£l¹öÄ€ôáÓ—§ Ii¢=×ãQ&‰ÙAùîúîJ3ŸÕXù¯×6ï~5^‡¬í×KùT§7©vÂ]y5?{{ÝÇÞ£>ïë¼.ÚëïÇÄâk×áºlž¸9~· üç½3¹†¯;g€ß½ w¶Üuò£†A#Ãnä‹ÁF-\#m»IØqµâ"ïVÅyñ%ö“‹aƒ²¥v©YØÏ©Lw¾ÎMךڵÕ>+¿[÷óz ªíÅ(½ß…¯¾Þš`>ïLçÝ¡!spñ¯Véýì³Ï¤ªs„æýwíP”ª>F†iÁeÄ|Ñi<ø{±î¥Ñ_‹ÄfS¹=¸i±ô¦>©­xñíˆkÞÖçnÒš¶Éï#@̶«µ&ôéփؽ¼V8 &ÀÈ)‘>ck;ØfjÌØà‰1¬…(:5_VÚyÚ•^dõ½ ¾7}¯¼@læLåóIaõrÍçÙ!6Ñà6«_\ž]¯4Ù}¤pa÷|뫀 ŠR1»Ãí²óZ¡ëJ3<ôGFç¥7b—·ÒÅT§jvåšS*¿ô"ó­ÿÒ@ž·ø+ G û¾L5ÒÖ…¿áË|_Å3’é2«8 ãeõÖÈž:ùÛnGÞ€{¿°±×þª†©•+·µŒ>qÍ!þ“ ÖÍ÷ô§ítÇh¯ãQDxBÿªþŸ¬Ÿ¯µŽÖ©á¿÷uu÷ðxÐR ±šdsV;|פ­=†^…Su®ôÃtßë4±ÌÂÙpKÉ.Ùø'¨Ð;ã¾dù’ƪÃ(Ì–µFce*¢ÕŠÑµLµIkFh¶’ÙR¶¢O©ü õ>—v·u¡b$3²Eýضßåsäå‡ÑjJ3Ût2J#Ê(¹¢”Ì.C!…å+8EãEke/³X}\å[Ù}‡ÞŸK½´Й}¾~>'¤Es÷ûO"•¹ružtefE‡m„ÚEå4 ^aä¨ÅÒµ·e]S¬.K®ÉµËȽ«²»5¦â[å£ÛCG”¥áC4’jEš…•coo‰`»§o'g”åõ½EQAi¸_0äÉd¸ªª.R…&)5 Â5°L<±±b‚åèÁsÞ3µ µÚ1³·E¬(¡­ºk½ån6µqØÉi‘U:¢('Hš&¥ä…•G2dm‰ås™ÖÛl~=½ Õ*ûlšØ’Y–V–iå‹aËÕ- Ä"tr •œÈAÐÌyz[ézãÜÖtª¨HxiaG‡ç¬‹Q&»§¦DI!ª„TM@˜…'²ìÏOÉ.(—Ñ9éžQe¯ ˆä†ŠÕÎu×&nQeˆj×Úåײß&{=šë’ˆ®eéjã̈ª*v½°öžÁ!ä ëm‰Vyú'õ‘!ë§òµøçœR¹‘ûH‰†Ïox”åívuSMM#®•D KÏÑó„|ûB»D®TäyKçíáÔÍåd]Ót„+ôÛe§rFf‹)_=ÞõÚmQª4¯XuÊ¢¢\ÂR3½ï<¼±{dܼ¯&Ëk`Ãõ8ªªg¾fÐ.eyNT}­]«sUGÐÙ2‘O ¯2/ô ¼²°¶Ù~¼©ç®ÎÓä#çcÚzóg”%|õåjé2¬õ±^nì)Dó=&ˆÜÂ'#ó Ë¥™$‡ŸDØl&{G­ÆAå'ØZ•ØõŒž}ˆL,IÊ"\‰J(KKL¼)5Kí¾dà ç–1>¼¹gäʦ‘É(†¦ šY©!*YûG¼N¹g•¶ÓÞ§¾®döé¥!2dEÊj\*35E“pƒÈ¹G•{%Þo<¯W#u´†õ:]ƒÖÞy*óbIjé;Ôd“”h±¤É¢M)OK„-J/mg;ËÖHD¯&Nù× agl­­óìyé S ?on½F³Ñ£L)(òŠkdóa»ìJ<æäjóÇÞ¼ídÔuJ¼ùì¤°× Ý {Y}£ — È¢¨jïbD÷¤rÖI^]¬"¿[§ÎÛкw¡Á1ç1ÏÞÙç‰ G¹<ûrç„Ç«y:CDZœ>LÊ/$Ü{|ïg0ìsºikT§C•Íòvд¡4EÉ ŽÑ”^&×NA­­Œ÷eÎp¬ÜdžuÖU¹beë`ÜäÎÈ̵Ñ4n˳h¯vêç.QÝwIšüÅ©¡üÒö¾ræ„‘áe“ÛsÙ¨k™¤UDÚ0ûIA•]kvIYQˆjZRW—ªÉžÏ4lXf™üg×yî¶ÜÒ‡ZîÛnžÄ—Ng¹Ätªôñ¶q*½‹bnxQW¥MmTŠ,¢ƒÒTrõEE£ZÁLB,Åö3á<9hãE ’“ÉQ $ÆOhxòŒzõd|k­Krñ&pº"«Ø»G,·_=èâG-Æ ¤íÜ7#25FÁŽVo;q ˆ”¦ê°šî$×Ñ{>“3×( Â°Žˆ^ËNÛ(òjQ2/*œ~9ôD¬ˆLJZiüŒå®=¹Wñ;>¯åºËKEv¶F‰åâs“*uŠxµ„ˆÛ!*Zte×/*A]*giDPDÉÙMR 6Ý<ÔºUëïnòwžy3:é‘Iˆ§W&Œ««@ˆ¢ä’oz‚íxÜCI<’ @¦‹Q$R÷B'g9¶îž^rí "öJ¥-³hZ:æILñ“(ÈT‰É‘&âx«!TÑ•Á<:•ÌQfMÂÕF­tªC9éG- IÔÖ» öd¶–ã3Æ$åå†e˜¶ì ¶¹NM ±A<ôgpg‰,»vö,O7±‘LmœÆLð¸§\e\]2B--ÂEÒ`UUì„Üé{²/I=$ç³Ï®G[åÁºUÐ5ëyÛØTå]p#„:–JœÎ‡!iÖÌtö¶š6RUÁP,›j¦6ZÝQ€Ú®Ñ[2U¤žÁ•ìÕæsÕnîrà`{¼{8o+Ï"’×MÊIœözxšXž“±C®$iK•ê‚Sm‰l…ÎByRj™hT{l8å³²KK/,"÷H¢Ât<ÝUµØ9x\ö|WtÊÓM™QWkV³GVÏL©ÛIA,HÓrÉ*<Šª*lC‹šJe¦yj· ÜQK·sœ.ï{ÌfeÑ.¯¢E2,ÏOQôÈ¡'³œH5"Š/g”é8V¹†F%"P^œç!/4Æ™YÌ´¦Ln]rZTÍPÖºw–:µ¦ª–H3sss—wFœ(G–$ä¶¶ª‰'¤Ÿ$ö¤)ABT$´f.U“”èd)F&m;n*^SZ¶!»=m‰Ù®2¦®É"™ÔªöHzNœñÒ‘.›7 g¹Évì!3ÆW®I™hHV J º U3>s¦fMjEнAè¹ÕU¸î=O*ÕFQÐéÞ£žtXšUž˜$™RyyzFîéÎëÈ]Ð&Œ<»; I˧HJ“»£Žã]9®.–ØÂ‰W19Ïvx•©¥«3 ©3©ˆ™…x‘çˆÎì¨^±jÎ×JƒæSL0ÙÂb”É9Vª!^clñæO'™ÎACr (d2d¦XX‚$2eEéâÕ=2]+3;C¤H˜*'a÷N‡"ÆeHUA¥Œ9Ï%UʽNŸ\{ʣ͘QE‘£PTšÊíyìL5<æ;]C$’({X©$%P®‡‘ïmžGšVY$©M®P^¦м3r󡣦J¥E“žFš'“Z$ɇ¶€ÛQ¤5ÒKxÚ ¢º—šÕÂ<"ˆáååçRmT)œÁ7Tš–¤q¯0”* Ò µw†Lò›–мS<–U1²ÍgVé’˜‹®K¡Ê“Ê^M^ö÷zV•Û –¤žS•yyjˆY!f¢5µ\g”•K˜\E±— ’Jó77EÎÛ,¹»"¨”O ªI´:=£ÞŒÉ‘Åq =Ï2,ÎL’e]\œB3tËV²d̈… •í¶'¦nz£©„gZvKm»{ðÕÔ,÷’ÑŠÀ½zµGXNÉ–šòáÑQPzŒ$ú°±gŒ¯ ö‹§"øÄÓ79¾{Šd¹âÔ$íj’eÄfì˜yIŠ‘E®Û(/ †äi‰yN3„MMQH±B=‰ÔÔŠçej…:*½ìgÈ×:´­röÔ™Üó¢K®ê§„Í’Byϑ֮Usw“ªæ’½ë®õÆMH“2[dGžçRuq¶Ý'j[Šº”Wm:Î:®ÊÚ smžÕÍ,䜲² ¢óµ¤J<Âö»Þ7Ÿrbë¨F¨D”žˆWŠ›iÊÂQ1 ULœhÚÍT´Úu]6#™«c™1^÷dȉ½ïysØSD7/ „2«ÜijÛ^ÏvCÕ ,G­¢iŽ¢ÐÛ2—®Æ®E‰¹Beda¦Ûq©[!!ì&ÓÅ¡VzÐJ™Ì“¬&¢©k†®c1¦ì=avÉ™ugVÒÑé¹ Q”i'¤R‹¹DõÙÕyéìÊ=* EËE+Í/œ«tE£Ë=¨DSMÙ\¹‰Yµç9_!‰WŸFC$«äÎ!$ŠèÖGÍ É,­£mºD\;lÂ’ŒÉÚ#XŸWaág¤”OobT=J:0©™UQ"EfWšå$Ûe½vÏQ„(1Ê5í²I!<£ãÃãż¦ç¼¨0ó1Ò *æÐÄoXÞÖϯ•tçk¡ˆ’®—Ø·±äÞ®'–æzIéRE ;Y«ÛÔn2:ÎeJ[‘¹ômy9g”Ékk„†nUE„癥6ÌÏ9…ž6³Î± ð©²D÷’|2*¨½½µ¶ÊÉÏ7µ‘*çØËˬØ^$æe’eZ^Š'§—6‹Ìz¼ûÑï]2ÆÆ5<{l­ç=ï]…IžGÞ[±è‘JnOY¼<ú5W·,íwèö j–ÓE¤ÅíÖX¯=¶Ý‚ÜÖ¶™^)öî½Ò¨'̳K^Œúo¨MU{YÕ^ÓÓ'©*¬U>D'†=ª½½µ‚fb}ãÞò(kn•0Þ³ÙðžÞ_yv‡VœÆdRÄŽClâÛÞ÷†F7½â=Œ·ŸsºWŸv>¶|{}ãÞžÚ…TtÆ×Ÿï+F-np¡="*Ø×·½á«¬Ö}î²¶'Y‡M½w¹ëšQû_zUæÛ&Ó©‰T¾oO¢C»íä6aš\Úõìf5Þu—{`|4õ[ÄoYµq±xÇ>½•ϾÞõV~ñú'îŸÛEÊ¡ÕòŠ~¢JsÝ%®…GôYÊ« í#iÞg­ûVíú:ß_Š›³ï^'”ž¯¶ìüd£‚P?$ TÄHˆƒMH@&Û¹Š™ê„6$ª ·Ñ&ÿ¢Ø¼2hˆúŒ¹ ä>Œ\I#iº=JéA”MR1vâTH¿Õu–[[üVøbc“™j7K»©ÄªóÙ§Þ ‰‹gûfb$^£Á{S~±äºuÁÝßöî8ÿØþÞÿò[¢M»{þ7ÖÇ×¾½þHe1õ¹ã Ñjäë¹$)¼AÙ ˆ†îT) ª,»p dY’LÄR$ÄÜ$ñ…0™“LPz¨ªfYÕþ˜¬$à’Lác& 1?×Q´ºRœ$”# Ê5”ªÔELÐHÊ 3T…ŽâC€‘A !Àqâ9ÍL ê¨0²ª¨JfèLÓ•‘Ù¢uNööRКuOõ]1ÝõDÜ0Rg• WÝFÒb šë‡A™QD>¨—´ƒDÞ`‰êoFLª"æ I‡ A rnÝ`ÒªòæÌÎ(Žö(¨§ŒË ,öpÆòºG‡9qNâ±HãUFq˜±11\Õy#3‘Mã•B)IŠªNî¦32òJÝU›Yõqwr|'SQq10ÜWcºÿÝŠ½’c û1ÓW0œÏõö8"/¬ÜqN ¥cfþ(u'{0PFC'³Uóz¾÷¡$×(ç –¢ê óÆéÍq,ÁÂ(¸#\ÄUȦ'¬¢Ë·Q:J)L@5Ëi‡›1Ë“ýïroù• Ou¹vØ›D’üU! “â›@ÑypÊ›—uŽ„+ ötÈûãžÇÃ>Ç=i¸æä4oÙõÜWy‘ësÜyC.ò©È†K}Ö&!Ã'XPQI­eˆÙÎÂÏgg†•»Þ^ÒPÕ £EØ’Á£aŠPÎBîUÁXÚ ÿ¯GÉÖyòÖÖRÝc_>]ŠŒµÜQÿÀœÇj;‚‰Í #*õŒ]Åv3PV£ˆÉU·Ïbp™8 kðùÁe>àG&Pþüwö~m{ï}VF…I(8i+¢oR|5hJQAÊÐë%²Ð⌵_ô¯¤ fMvÅJÙt…œS8Q©Õ ¶O÷¥ë,!G Ü–Á@|2sI*È$e*hEi–m{^b¾¸.bG??žz Þû;\7Tåpr RMA1à\aR)½*òþÕ:ØuKiÌÞ¸HcMïÐheÂjIˆÈÇ Ûe€ ·Ý¤´ô,Ü.°5Äì´©©_JF¢³V•E¹"¹#ÜÁlDOL“[tÌÎq;ß¶T8ª¡Šd(O¥Ò²b(ìÉj/°|Ï|=c3– qöIˆû+¾ÒŽn|8[èÁðϽ^F izÙl×|FQ¡‘¥ ž¨ë}ñÁëËÝ) bYdUÁ)©ˆÑñOdöa P¨”T lÍEœ¨•˜Cf­Blv“¼¨á/+ATQª€…¤ÂÁ I½‹\«æûZö=Ô@L4‘ ×T$Ê%F«WÓƒLÍ”…n>Ü\WWkñ†Zˆ„MÂãKÂ¥TP àÊ–(­ø;^Àƒ´Ë0⪠=`PjY:ÂV B9µ÷ÓQÑŠD0Ó[ÎiÇ3pæ— „ …®¬4Ѓ…Ù¢ØKÈD"š8š°CÒņGÙq4¨‚X¢˜v•Bö³¹D-ꔆ*ÖR,Ö— Ú†k­î*"ÇÚ*X˜ö5b"¹S *‡³´¿#œÜ¾ôÒŠµ%ÑÁœÌ´˜!˜h¢œ6íQH)YuZ%TJ±þä’VÆb¨!M=«dÑ…Ù°Îa \êH Ój¡¡%ö&u Å œÜå Å—Øý Ob\ €‚êÿñX¨øÒ^¼µB«9ÅIcþ/ÎÍx¥ÔÔ÷ ‹3,ÙÅ.‹`³a‰ïÅdŠþŸÒžŽwÊØ"'Ësôë;PcÍD|ðTê5F©2%Ug=ŠfpU0¿±9ÞvvQ³E¬J¤l¢ pã|Rlè1’¯œû&ë@ZhØ÷¶&’.ÆÆä¤^ßì€-Ç;Âðt­-Ùì±›‰m’Ã=æ•IeRâ&ææjÂ¥ŒY‡óH‚pƒ¥‹˜Àýì{ùðæ» §ßqÜSmJœ¿Áfo4¶*Yš\ ,ôÜÎD+1yª 2dVç[­ì› .¼EY°ð8Z\Å€pèHŠj®•ÅÄÚ‘ P24¾(×{ÞŠÎlÈç£wdß÷Ca°q[(¶ ãV*LYª –¦ó"³C)ÊE®×æ 3‡W(|:{* ªé¨Ïj8B!#Ýï“'KV­Z=X¡Ü¨¨„{¢¬i Y¶†¡m¿â/ž,[lV{3‘õ±°5Äõqw‡‘~vÃPa8 ƒ ÓxZZÄâ#F>Æò’ê§HU¥õõï„Vë^¸ SgU­>Rü†¢ï¹Ù{rÑ?¶Ôcs×~|¶8Õêu?=“¬ÍJeG 3©È1˜©|Ý݉±488"ÁÑ&ðWöA6™°šÜV?ÅÖ³A€\ ñþg1±“otræ/[œï|ø·†®~ÈãçoÂ¥ùZò{’¤¨·e…ù\³æù8 ðXGå_…¿V2‹ Øïq#4E5$ÆhuƒÄCV Øî¡ªÅÓÝà>ÞúB®”TS݃74B4\òB>à7w¹ÚÍ1ÏËø9Ë\7ÍãÖm¸®,d)sp%ÌÌ'Ž.I©ß³B¬^¿ªúØŽûÍo 5Ø,Ýxó(l#àñ÷Nbñò”Ê‚Ê+éò®–äaJ…#ÇnfŒªš¥R*b(™HͨàÄÏ­rÖúy ¸= ƬN¡Ì$ù—œÐFJä12œœ&rìÇJÙȲNÖß‹=¶ObÐóP‰†¤ÙýÇîaìÆŠ Sq“P©íÁÒ6W’¢"†{…›J»šÊm)š1±]ZÝ’,º›¬ÎéàP'TÆÓ<˜sAP–B]n*â¦,f?„SÕgÀ%GêMòêö­®;ª Y1ˆ±E—9*"ÝEÑ¥-· •üy3$&Çöc*)#B>8‰•oب>{ÞóþÛÄåÌ™˜ó×à1!U16¤Ê‘ê†\³Ú€é Ð“êQA•Å¿ŸÁý~ˆÿ$)ôž…ø¿¿Ø}0%(HAïøü~ãõû^ÿZ²›~ÿxüþ*‚Ð ÷øa?Ôþƒòeóñçpþ{ïÇa<û§í1¢ò–ónõä}móJýúùÛÏï)ùã°õmTý~­ëª·×4_-n ‚ÀÙOŠþg5UüüwùrûkZ½u¾†›§ëÇãoÖü—ßö^??–³ z÷ùhàõùh_ççã¼·Ì{pﻣcqÑ«1ﻩvRÍõY¥‚Ár(ûýpΕϲs|ûõí/¯J„U??œ{¯³ ÇÍoo~Ì6\÷ñä£ 5¹ýŠÎÊšˆ¿óøkÄ'à`CÞ?TÔvØ{¾wþ?¤Ï¿øx÷®áü¿ëùùýŸ‘»ötURè’>àÜÄšh’¿’2pÕ2É’(×î—x®1,R”6Y"¹ ÊlL"$ËHÕ¨&Í+#!ò%¼ÀdB•¦æORÂ8ã÷(z®H’Ýqäa¶­Æ)š¬ˆ›ýlv`Å¢°áÂðÁäÏL’_pæ¹|–Z(© v[ÀJBÝPêâ+f“3Bª"#\1IAÑ3»!ïEé¢ÔB ùÍW·B4NŽdÏì6jJ×[#6ì×!Leò®SŸÝqðöù–vc•";³Ñt=–Í&'eÃF™qô4ÙéG"ÌH”I(Š+PübŸ‘­ÀŠJ×X5½¯9¡V{ûewÈ þãÙÌóÜŸ‡¿)oäϾ¹êÁ(Hù({ïžh›Œ7•ÜÇy_*žèdðZÇ}Å‹FûT•…ƒºå^WÑâÓøì|óï9³Æ;ª ^NNŸ*~\ÎwÞÉEvZ•pRñš&˜f¼c0g2þØ YêYÞc"ß%a¿ÄØÙqPQš0érz‚ c2 £9:µ €daèÂÁ)ÖtKÐÍÁù½-!I Àr<ŠS4LF£n‡CKÐ÷’dŠ$TÔÈj-û­Ù€ÈÙëø»8C… ëÒÝß«#… ¼aq¦µ¬dyÊ„0Z2•­K-†¸¬rd’ÍéGF,•èÀâPNžÀÚÀÉÈîX¨¦0„w­I¬Hj=™ujEÝ-‚Ö³(9(°¶ã+[5%#|ç¦tºÑ1Uv‰:6i}2´%¹Šï‡‹®p†øxíX…$ÁeëI›PPì LI úÜè 5+Ñ.AÉŒžE„sI©©ç`¥v‘Çn!¿‚,_ùW¦2Ù° Rsu{ƒrJwRu¨õÂ_¬´`ÄX̯s¥Y䩘DÀ×õUñJÜï}õ]xT:Ú¾åPÛ›¦w[Ôž£×´/œiœ7œž=Žê(+‹Âaªg]š)3ÔûKR£Ù*‰‡§ R Ñ9,Ä­-ªÔ;…ç'¶ÁšØWélÑ2Û`‘JÛ®‚ÚÍŸˆ3ëjdh{~Ê^ù!2´ïmëèñï¬@½b¨!(‘]ñš#e| aÖU€k³Z7gȕʆe|äšÞñîÈ÷´M±z˜¸äPòò¤J¤)³hûsY6ª9Ò”’.¬˜ÙStð-6!¥óiË[r®I¦žô’2Åž÷ÊpÜ£ÇÁ2 Yiã-¬ÕÞ;;þîéÑß­9¾Ô–cNé ½ ­wͬò\Ýt.´Ôg’œÓ<Õ0CJk3·Äwx‡ Û«Æã¬oÍÖ¡ÞkÅpÞÖŽF£ŽB8øEÕJzMm;²©h)9Z™WNâÜÃ7‹¤üL‚O‹q}z=S<•EœlÚœ8J^®ÇÔ˜5WZ¿ÇYÄgÖÛqIµ'Ë‚%½gNÇ<å6:÷ ÊÔ;Çz³ÉÛ^~ÓÕdSƒšãEAÐŒ šQãÞ³Û•èP8ŽZY{zÓñ–ɵ_íŸ3¤ß > íű8Énû* œ‡Až©è‹`/µ-[c)pNøÛçs³™¦û› †ö')gänÿ,¾8ËÙ¨³’ä¶‚rïÊ¿2Ƕ&í€øc0÷ñ[/‡?ÎÆžøß`Y*g^æ[Ùü]è ´*P¼é,æô „.×~jº}“2›>qŒeÀÞžû†¹£ëÖ2á†å£_‚PS]¯|fÃWÏןŠÈñÞ0¹kÇ‘só°îm·|ù¥ÏâOÍ¿”4Ø8œmÇËz„ax­üY/ê1›Ÿ`µ2•læoëÂû+{cãjúÞöæmŸ;óOR1ð4£zÞQ¶WÄ@uAí¥ÀÆqZúYÇZéqoTáÜÂ/Ô‡5óŽaAB¾CæôRïº9•8RvlSú|ãËÒ–/ μÄ=Xè«Ï^KÒ){ (š–{AÕÕíL‹B¥ùDºÚ⨭#lyïâ×¥fÖÚºÙ9Õô(uDî³ïF?XËÔ‚8¾ªÕ‹µ{r#-›@›o=X¿uYU2 õ²ÜjÚX kšð“;Y)ËÏ+ ‹¹á‹¬$ÓorQ³«ò½^­Ù–û›¦u>8(Ë­?^úŸ#/Léò*¡ö¿\M·ò'N¾ZóÎ×ßÁø±cÝ+éJú!Žþ;Ž+·Xø‹d¾uòyØŸÊxíúãïºÙFݾÉï‹yJ߯´©ãßñ}X+· þå©×“þ©ïÅ8 ìp¨ò)vÏ[ G›[XŠ˜=éµu[Þ¢š©\‰G‹ãŒnûð<À‚&Þ vÙkϽ`Ø¢²8;i‡Ö"gÓ¦½-Ô|ÛñËSŸºoŹñÍ%÷Œ8ÛÓÅ‹çy[uRpó©,{›{øÖÓe`³ÂÜ=Òsêo¸ßsOu'ÜŠÞôá6~uÇâÖ.‹APýqnîA6'Ù³¶:ØìT/ˆ¿å(WÔr?,V€ði1û§ž¿¼~?é.¹·Žy¯k·€?ˆJÔ¾½÷ìmÃõLãà·=­;|nè 7 ájÁ‹Vˆ6|-Ö[ã‹ Uè§lm¦®s®ôÔ¦@vÙ—&ö¥ñªŸËå¶ûº‡“Ծʛr*øé)OÞå!—ëÆ3Ìs2´aé7 iÇ%ò_¥ ?‹Ú=wÍïâÅ·»5lÞ©Ç¥óÐLéõ9æ|<ì9ñ&yQÖV¾ =”£yIŸÆìü¿Ï¿<§%ï¥À ‡˜}“8ŸµNôï~®§%â÷9œ^-–zÝ·Þûx¶+ŠF¢›ê5%ŸÞ{N´§6èºc­º ¾Ô8n 1ÄsŽ[z”Û£~­«óv{R¿ä:Œ8AðÝçÅ;颥ëšñgZíâ£ÈÍr çÉö+¸îDQiã}º[SÌŸðÝo]ü:åõljËb2ÓÛõp§„WŸVœÎǽn-Ù2Ù~òÚhn“ozÞ×Û¬lÎy“„óžð1¢¬ =M¸ãÞØ÷ê^í¹K±±Y4¶Íy8·ÁDù­·3iZiÎ| Ãܱ¶'¬P<#ox¯ùu(´Üöë\Úûä'f²uÕA¤#+ê½»í\K[eÖµ…ççŽagÞûÿKZwÍ5ž&ƒHÐ…'ÙÃÈôI® ÇVÄ„}ùì3lmÆ“eÇ °üM{MV¼o yåEiÖ æÖ~ÐC®œ±Mˆ°¶«&²7ŠgÜ8Ò;ø{‚î/Zrÿ[øS˜otï§ÀÐQÞXuÏOµÿÈÅ¢ÅnHŠ«ïšýyñ] œXŠM6ü-hÁž=]lö…·À_ÛŸ‚!ί÷K‡:nËêßX¸6Ÿ×ùÝh[¯‚:ô+ÔŒ?¹Þü^¹(ºã|Ù ¼5žâcµ˜3ˆð ù§µ³êÝn†fÜ·­ïmú‹4óñnoÍ‘Â-®õ‰¥Œcòuº_”Oó'×=ÖÕçüø[·ùË:EØøF&2°Óýë`ÿ@—ú®µjÈeM0³•u´vÑ&Y§lå“6—‰S7Qr ½¶œ!’Z“‰í¸—š ¨ :åìÆHDu æ3Óž–ºxxGšÓT¼³W,™g—¨mtöG¦„¹V¥žåÚâ³YMQšLò®¶Û–¹¨•PÌò©™-pë” Èæ)yra)¢*5qA6ë•u2Z¢EçtRZ.DGŽ]¶PΘÎxt‡/(;»¥dÚ£bWš^^­c…á+™¸›—=‡ŒWW"(NE;3-úW“3祩á×Hâé9Ug9S¤„GPŒ¯tÉ&L¯¬\¼¼îž Ÿ=#ë‡Ìf«Ûd“Ïv-Éݶ6ðµÍ·®q~“y«ÍDmE±±¯ŽjÑyjò¨ªô·’^\ómÊܬhØÕÂNÏIÚ‰QÛqœ/G’¹¨ÜµÍ^nd5yËŠΈNS”Ï’u]›\mvŽÑ{[Wa{%ÙŽÕ=ªÁTU±µÊÞk“ÚÙVÕ;QvEìØ;Fʧh{UÚövFЂö[.ÔmJv/“'Æž×Æi°WimOd»%ÚGiU´®ÑدŒ«µFÊö%>2’d/jö•9¡&Õ[*6©í ²W²+d»KØ]‘mU´¡Úµ´Ø‰´-•^Ê—g²U6‰6Ù »RžÒv¨í] ªÙJö]•6´W°ÑFʧeZóZò¶£–וo*£jŠ‘SµGieÊö©Hæv¡S`*l©OiEv•[·]§odí²í.ÑåG–Þyµç.cw»h«Í·–òæ×6Ñsiîµä÷W4h®k•ÝÛÍyyªóy¯1„+˜×{¼Þj)îÅV®[j-Q ¶(;QÚ…l¢öªÚ;GiÒ—µ'´ªöKÚŠ»Ts*+ÚŽÅ[*ö«²‡µ%Ø]®ÑmmM©6‹Ú¦É6«µv«j‡kd;({QSÚ¤Ù´¨öBÚjžÊGd›=“µíM§j«µ(Ù‰]¡±+e¹cnUæÞ—.VŹʮjæ®ysUäFÑ­Ëbò·”v]£gµ²{;Jöª=¢»H{U;í;T¦ÕOh]ªöZ®ZÅ­b-ŒrÖä{º¹£EåWš·6ÆÚ9ª6®j¹ª‹E¶6òµ±«•¢ÙCkÚˆ½•vU{#ÚlÚÚ;ÝJÚ^Ð6UVjM¶+=ÕÚ j¯j;h=§´žÒ;ïu]­—`í[)»©ñ¯dØlW±;U i6‹²»)ñ•»mUí ¨Ú½ŠÚR{SfÕ´¶T»;CÚv§µGjØQÛVæ×+ÃkÝÕsl^måå\ª¹l6ÝÝŠW5®kËSµ]‡j6›F퉵íSÅo6¹sT•åãçz[o_{)ìØì]«´í+Ú=¯oo==ÊUÀ¦e˜Ñ(ÖÒ­):†²U:Ë(gùÏŒ\»;Žž'Ww÷óÝjI>ŽßËçkبƒrs­Â^Ìœd•ê»Rºìåp¬"ÌEÕ®k͹W5åsjócÎQQ¬jŸbŸ:Ûš£Xçūͫ•o-â­ÍjøÖ‹hÅr¢ÛãVžê¹jÏu^r¶å±¹UÂªŠ‹[W–¼µh£b«Z,U\¨Ök«–­nV¹UÚ—h;TÚ›Hö£±^Ô»šv*v]½•{±MŠ»(¶»KÚ^ÔlIÙ;.U±Q«yU®V¹ªŠÛCe°½¥Ø6+ÚKÚ/w]“j[Q6­£e=”ö…{%ílžÔ½¦Ô›/cØ.ÉÔ/aOimìQí=—cj^Ò£²¥í({B»*½‚¶–Õí%Ú§ke=¥mVÒ½£jÚ]§Æe²Ÿ‰µÚ¾5M½©ÚN÷;T¶¨£Q¼«bÕÍ Æ«–¥²›ÝGžäöEí!Ú•ì;"ö”vNÔ6£´ì[°ì®ÅmJøîØ©´‡Æ¨Ú[_ɵåʪM±Xؽ…ïw´oržÓjØ­ƒj»+i'i™Vл=’=«Ù/i]¡ÚŽÒ{+j½¢;Qñ¨í+ÚÕñî›øÏSãJvU²-Ší$íQÚ¥|e(öŠ­¤«hžÑ+µG´½ªW².Ô;Gj!ÙmU6‹±v£²ª-‰µ[Pö‚ÙCfÒ»NÕìˆv’Ú6¥ÚG´6y¥Ïdd6¤l)·µÚKi#éê—Æ•^ß ìE6”ö—²›EØÙ["¶¤ì‹Úö™m[ãͯ+•¢Ûâ-¨Õv $áåx5ñ56©^ÕØ[{´¶Eì ª;.ÊNÊ›Ü;$Ù;Zjómy^Wšò±£j¢Õ[-­‘Ô'µ]’{Qí¢HÙ%m&Ò'iWj-жCäÓãJ=„6Sã)í=…ì¥Ú†ÕSµvNÉvIíQmE{P¶ö“eUíCÙìK±¡°½¥=¢{j;mªí.×jm±nQb¶¹­ÊÕææ¯ ¹£j­l»(íÕÙl†mˆ­|k˹k|[â«•¹qSè2Oj'‚xÉÕåjì›Î^ËjöSÚ‹°ö®h£ž^jÍÍrÛso6¹\»Ý®Xóš¹y\ƫͱTl\µ£r5wuïuh¢ºjÜÕÊ®Xƪ4ùÛ} 寺O¾»”;ÏtœyÏw <™æ»&s,“«”r]“ÆÄ ¦eC$‚í64ÕœåE讓•dÆ%Sm¸R£k“.ÒCr Õ;BáTnÈeÌ Žzy$b˜D¨ij,Ø¥&L‹9ícuÖÝ¢áUWÈJ‹Ï½›9ÛúóÆGš‘ªVI_2d‡µj™âÍ“ ËH#; «—I °­…Âí±šÐâ!ÖwŸz¦öÆÍ‹Û¤õ ë=•eÎÊe…éÛ e4{{ Uë3Ê à[×Bz”RIêiOhœ¹–Œ»—Î-n}쨦A‚;hÉ«¯i=\ «>E4ô5=¢Ù.eYœÆKÚRÂjÅÞaâ7©ã*æ2É’=vÆsΧ‘––aóçzžž6—Ô(½Ó^í¨=â‹ÄûÓ«‘ñì«¿Cô…yTØ$I3úJˆ “þ„þÏǾO“ê<÷Ÿjߵׯ¨³ð{âŸÇ¤¿>…Ò?„(Ü4›b\Ó©›ª†äþ"¢r«‹TV`*RXe/Îf¦M˜Ù“-_ä±é;os.e¼q»f¢ /Þ:èuÐèÐüýu×]×ÿ#ÿßöøÛèý¤D¢«ý¨U¹„¦S$B´ 3ÿÄN;¿ßbÜåÇûþ8Þe¥i¬ ˜6…'’"èÌVKQT í£Ò€z£Ü.ærÕÛ˜FCiÈÒm ÙU`‹¨­"ßjMÍ(Îaå W" o\=é7ɯ8ùvP7v+n¨¡i?ê¹ä mq÷ØYï±Þâï½:”„+¤]ßR*D£n6ží ÊB†Šº‘wÇ'1s"®hˆMkÙˆ‰{3’’÷b]§2b ’¥Žd>ðà9€¾·I 8TbmÇ”ê](܉¶ÚUTó—f¯s9ÔŒB‚.m4 §UÔXË·–%”Xhî­§Úœ›«ƒ^¡²°=Ðî¦v5Ñ©³r%ÊS0æÑsûõ?]\¡€$ÙT!Ë¿nà¾þjœW˜£ƒ‚'/Ê—Üå¡Y@ÞDÊfÞ(¥”Ã<¬ýü';g› s] È5Ü ÉuuŽ¶ç “ݵ÷Zn–3jzÊŽæ¤É·a/®]¹^WÝvå ô¨A8b!‡ºe÷ÊÙ{î.†}˜–¹€ÇXxàŽýа)1mÂUî¨]ÁçÖiæ³Ó[ÜÞowW‡µ7µÃ ®Œü¸Tvmo63ªÚp6Î “½’& 9y^lõ#y™pö×›ç1ßR“±Ë¼Ì¨}úPÓ—Ès³DÎñöïº3æN¾y–çÂR1âsn0×kEî°¶v©Ô3zEm&Ë«h³‚ENæ>ówØu‘Zå~ò¸;}·jƒºìÄøâ5m}9çrAúƒƒb£kÞ¡Ê÷ôï¡Eº•àŸ©È×{?2D÷ ®²O{ï‚®”fï½ÊçÂòy¨®w3jŒÛ»ïøî÷$ù8j]¦2ñ v"Í, \YÑl”A94$HTr¹&Wz)û@P-b€©Õi,©§‰)n-T*Žò0••òHª–³u“ÐÑ0@@¡f5íU±Pë!4KÂ>ÔØ1£´Šf.C¦PÓÓ5®1UÈEˆÁ©hjœ=šÏ{¡–š¦US ½&ª?æ<à&0g ¸”aQ\Fnp‘d¹‰bÏR)ˆº(Èa¢J¢ki¹âƒ»W5‰5;5Ò¦(«RrÍ0+°è7\E'kiðó‹š’±*‘U•Ϧ§>FúO Œ«µêsç/½fù% G³¿rÉ‚º°Þ¯”KD…ÄÇrDC!!§k§BCOdJ¯€"º¨+ "(n™+ŒP$’ “Qz»)†SéýïÍ\6+F>u,ܹ•\®ò>@<ð:íø> ÌÛÚ*ĦFËzµz 4 ±¨Þ¸ÈûS9²šn&­ƒš ·%#Kme±Åê¥öMØ@vFLßw* ”ÛœŽô¸šVú›°›™ØM}‹\ûú!OçžLKqǪIA›£¿NÿE|µQÿ4Lqsü¶Ýë¹?T\Së`™ý5S"PÑ;ook`ä¤ÕÂlªÊ{)p˜0±N)LTÌMÚÌ0–PøvAþoøH8ѯ!u«g9r{€é¨Â¥DÓŠJØ&öœLø^ñ7ΣXlå„a|!Ñ5tz¸±– Ý|žkqF[,Dbµ1tˆ]ÀÙ h jYDZ"’!TJ·'1'^ЍÜUP¦À¦j¢,€j JÕÊhý¤C›ç¯]@¼tÈÖØ5ÖÛ¡ÕºGŽb¼I¸Íæîèu` vƒZy)nžÍ`5© •Ë/v-Å"© JO±‰ÂÔ±ã¯G™øø6Cð¼Gøkו™ç"¡.=!ÈÊÚi—TŠ^ˆ`øÅ…`”PR¥ÞNÐ{›Š¾öni·ÎåÄUAÃéý9°K“#¾ÊN¦ê65•àµg´Õ}QB­'mF`š(ÎP·µicI«eîG02o&—ÝIüQ(ì‡`ØìHzíb ³9ÚôYf%˜T#ÿ=÷µ”KefÛ[Ú<‹ ar%ͦ˜­Â’bR*Ó5ö]É=>È’£ˆ1•Ug3ó?ˆvìiúˆø>ò›Ê,qv‘‘ƒÞRBµ›5˜Wc”ØHcF÷ÍáMÓL:”#Ò›¸^º­`ŒÆû$4Ë#Œ=n€ëz'û(¸Ò©{’aˆïÄ"H\´tu´8&ôÊ8pqÅ‚ü&áñŽíÅg…X}íWã6c¾pHó,µ™K¤–ÒFõKÈZf¶­ÏrhÎf¤w:¥Ñ¨èßJY²µÈâ´Ù"÷мa ø"¼ÃÛi3…°\öeͬl Rt7A‘È¿hÕ­tOìØË$6 “›ÀƒåìD“ì9­ôaf"ö!½¯sÑ"ڱဋT>Ì#wÞ7½+›å(bT)Êà®—ÅV…Dô›ÀÚ´­fÕMد²enY¬÷âç€÷ç6wÍÓÜU‹5¸ähã}v¼[þ%ž/w$Ç{µõW? ²ƒ¸Ü#ùþà•}–´¤š6ñ*t{Ø-F«H(U ·:lWyö¿ªNsÒ3º'Ã&x;ùàÝRGIÕ‚yþ±JP79‹ím»FÞC;1šY&报AR¬&É(´!" ÓºË}‘Ôs{VçHGÂ^í*æã`­¸µî*•Óç~0£+â>ëÎ_µßwY>6(L÷-ÿIÞ.IÍH}ÌÅéò#ÙŸZ•lå™&RÏšA܈BÁ+[ ô”ñK\R…­³|æ)-”T` Uc šiÉôK #s¨€}p÷P0]`^Ý ‹6º]'ž_~ï¶ár„òÔú=NâøžÌ-€Ïh¯®D¾`ï£tc¼mP†Ïrg(w0ZƒövÊ䪛K¶p|‡75qÁ©3JQpðÀª:å*0AC©• ª¯¡˜C»Óö_•/ÁŒó;ÒøÁ0Úâ'jÚ¨S|b/>Æ4[Â)Šº:¾.”1••!Þ_ž]ÞCMj.¹6«Àcð²zÍïˆïiwCºöµË]“«¾\sÌŒó6e$^k×#“¡…®XÆ›ú©úøÇjÁ’>H÷¾WcaQ95¶è2aÜúÏŸ80Fi<Þ•v·Ëˆøâ;³M‡¡¿.ýhÛ<`)ï[T~sÚàìÖ.çäðÍ >UÆRмÇêŒ>’É{Y¡­'$åÀ0èù°M W°ŽY´àí¬´PÄ ²9:Ûœ&r22 «Tb¥†Cmˆ‡?Ú»7f9xWWs/'™*éÛœ¹Bf üƒw´ÈƒB"#¤i*¾Uˆ7d3›ŸQu q ª©Be& 4MÝD‡ìÉu_ܧ@“4[ŠWÉú¸Ã`÷sìӂȶÙ`¡å51_ܘ•=4‚$Žé‰0© Ê]"ö1‘,3ŸÇãûþ“ò_ØÿMýé(³(_Tþ&cú‚sì?cýÎùûØçøúü?öŸ—øýÇõýô÷5á7ô×ðŒ}ÿ9ûû?ŸŽ>¾:¦üŸ¹õJpýö×âøú…Ü»7ÄûÏÇ÷ãEÙ¯Õo×??E¾þÏçëõôåûÇôÜ}ùKñã¿‹_ß|ûëù¼|Râ¿góªÐþ¾†¼u_¯á}óÆùÛoZä>{}ö¾üúøýP1æ¿)÷ëÇÖ ï¿Á›ùݺޯöE÷Àn™ÇëúÛñÌÔ<ü|c¼’Í¿_{+K¤Þ?šÿ_oóýw~:·ð›ß¿Ž¾kÕ{þ°Á_ïßëÕÃçÿUçÍÿ¯¿•,gïû'íûÿÕ»Ñéúþi>–Þ3nñúþoüë!ö8ö§Œ~-ïé ý¯ß×Tûæ¸M ª/r ¼)Qév*o?ÙŸªS&çtò£éO]‰Ó­{ñ¾µ6 :ûsØa Å:þ¿±ïàºmíóçûÛR]§Ü¯Ò`Ü}+ ó}£û[c5ÛeÉi;Þ¸÷Ú}õ~:/é·ßÁÍÔÿ#ì¹þÎÜL”#çóùè¿€?×èÏø¦†¦``6-¨˜þ{mYÛŒt"Å8ˆF[è–Ë„?r²ÊPð[H(©¼È¼T?•Tf«þuÙÎõðp±Âã‰P$MÍ]Ñ…Ûu&Uò7ZvJD¹Øƒ™™ÊGQD75–nf&B®„\ò¤‹VÌÅï+™kUKr”C˜P·«BÂqdmá±*Š,‡tÄQr%Ùž[gAvK„(Úš%Â2•vÓ«¹—Mã#ޏµãyyNAEáÜ*"˜Ú•1[¿Ï¤è}y3¥ª–ç¡N‹‰âR É ª`¢±bø 3|Tª¤µŠ’ ¡¡+Z ¦ˆm˜@«ÁF.Y¨q.9QPQ=;ÎH|e^p;®³5LTÅ]K“*à|j7¾ÿjÏæóÈ=äùP*ìFÓQu uSA¶ÑŸ‘8 ‹ô®ˆ;0̤)3JEA­¸BîãžWk·›‰žKœZ¹y“5°ùÌuœØ¥7K­‹*ØQJX8@®`(QÚ£”•!U®!nï$6;…*ÿRY“¢UHI* Œ YR²s¡¶µ]µä:üœ?÷î—.Vy¨v¹.;-D´—³ÙÖHª™)ʉÚFèÿˆÞÏ`©³ÐÞæ‰T¨PwÌQEß9­WqIÁ6·B _Ij`w<™žÕ¦ËTKY©œ¾(G@@9½ÁX¡-,îÖ¾¯ ôÅÓ±±ÝÐÑ–Ä ŒºXã:’ Âµó[ ôAj”Y씄˜«e‚`(>Ò'Z"?8ik=øš°¾nØ)g¶P*¸ÛV‡ÖEpTÙ–"2¢auT0cPQi¸<_z@êõKÌÞà$Hléb3ÑSÇVSÓòZ¿o°¡Pøß”;ª öºÀZàÛ뢥ËhðÊyÉiN‘‚,€¬¢ò¢ÅAÉÒŽ=Z€57Í]{×W,Ôñµ_S2/ÓàEâø/c”WßÂsµp„:°GFµ®à"ã~€P-tÐrY€à*ã?ËÂÜ@mµ:Öü¼lIN(ÝÖéú¦ &Û í¹uÉ@Ø*µ¿4cŽiÕx2ì—;Ž÷ÙšÃvÍAº7Ð^Ä~ iÂ…Ë 7&^ÈüW‘Þ2bÞ‰4Ûî ø{ÒOq5 q‘Û*F¦£[Þ…m˜z (Êr5…°&7^ùاÖ8ܰՒKQ5HLz¥bš¤ßOÕïghb+b¤ ´!ا8PIrÍ7>µU‚¹{tu®üøÞõàkÎÁ|2')A L'µÖ9}˜‹ôëßÞ¼häBú³,ŒÁa”Þ…·GªyêW«bz'ã*ã:Ù@08É ª¢¾FÚO7Þ¾—ø4Åê]œ“QWUðÔkÖ‡ýÓWKqïŸ&5Æ4Tª‚„·$‚ì>í… „|%ùÎü'mP-²{W%Ìð2åCçlŽI|Õ—‡Åûž]ÇDAQ‡D‚b/–öÊªšŽ¿ŒRçì¡%[Q™ê2tK†ØÇIÏ8‡˜LTšºsókÑZPJ½WÂíJü¸’¸­˜sîÛÅÔË$#×o¬TµjÒ½R†ï~ÒŠ]>;~ò_ËðcÛ`å<-¬œå#~G|†\KXoj¨ƒýBs¿2 ‹gtÒÑñôKפ³{ê•*îyä“ W#ÒöXëÑÞ¦°íµ°Ã?<å#_ÑbFß§Ïa¦N}1“²ûõâŽù)9Æ_¿ NæœìÃÏ/+ÅïÝ."Yc¥=õ,YQž,þ#Ë0Òò!"“Á:•í\( ’ëAP>‡L\N¯¾ÖOtQ£èÃ,BKµÃQmdþ9çMÑמ­®¯DÆ Pu*k¢¯è„©{JQU(¯ÈXõ^píàL? ³at:+:©æZ‹²k¢ßØìÓúHêK‘gmò«ŽXíwÒi€ªþô_ìüêtD©iÖ¹“rzx©ðZ€ü^‡³GÕ¥Îò¬¦ÒáD6ï+‘Kƒ….5fàdPëŽ0Ww)½+ËðüT+DÎI«Zcß•¯š„îØmmÌÊÂlÖ¬ 2fLJNž¾95̿ӯíg¯’ˆÈë{oAä)²wÉ=FßE°§!Ós NWã©>7æ«›.Øçm¯$~ˆ¦š·Owy>:ì ~9­† ìCk« ç\;ýZÕ¶lž« CO—e]ÑÎQx®¸LjÕú„ø¨sõ£­óɇ›@ ‡¾Òº£NûÁdž¥¿t {ó‘ïXKÝeÌ¡j6¨Izâã©F¦7"tg]Š:V]­¶j¶añ²W§ÔÓ’ÍrL [ˆ"àðs¶1g£NËÉ€¦‹cæI1(ƒƒ»g]jb}¤7 È š¥K}·¦¸¼„xß^iõÊZ÷åî–ç}…+ň¥º»¶‰Šóá{§ýk2[ÕP|®ÌŸ0œ'Åö 6úÚz6.jVç{N×ã|…[4›¥tÏÂíÔßmÉT[\¦õø®C/ßøZËþñƒµ!G´©î›x#Õ<U5ZW)%ÿG÷Ó­Ç¿ŽŠÓzaK»øãÏ6"·ÊP“…«mzÓðI‘‡m|ÉDýoV^'óîÜïù=¾ë¶v÷âùÚéA%¢ˆ‡àyûç}k$T²eþ.÷ œþ6¼ÒôʼßäŸË9q®ïk6»‰»ÂyR·=ZËM‡¥áy¾ÎÚŠ¾í‚¢CàÝ |‡ù­Þª7N@¾H‡<)É JÞ©uO}SÇxÝg9êölì/ï$~oÇ=’„žY±;źԅ¾'½–±¾¶“mòTëÄkãߺ¾[h®kp‰Ö&kä8¯r¸Â;8y¯ÛexÙ {„>ËÈ×ñç„çnÜd~Jdrï’§Êy€ŠcÕ}è@Ñ“jò}åÚ‘ÚczcÖý3±¾r8Ǭ_މ´ñ~ó{F¸ÆÇ¿»üK*?ÞùíoÀ?·<{ðm>gk{›ær"Ödïw¾ûaÇmÞ1›åÈù%Û†áT¨øݽØ8ú¡,Þüõqª˜á"Á nú²¢¼YOHÏ&†lùèÓ‡çÎìá— l¤=R-Èð:ÁÛXÂîÑœ%¶OUßD;9î¶9+ÔßXƶà& «Ø/Æßg·m\er³y¿Ú7¤‰xìBp=ãc-Zš½áÛ¦ô‹Thê.ÐWìÂ9"ñÆô¥Üéwa6,dÑíMm¿–¾à”|,cmì~7$Ý#?VçÇ­² ÓBVËŽx0ÁsŽí³®­Ï]éŸjI…·Ìrr–ùÃ~ßÎs‰|`Ûàð{íHê›-½V,Ô¹H<õö1PJjÀ¸=ºùÆ©X ¤ëp!…9Ã_œ9÷ï!qßNå¶YËb¯x5‰}žlcaKôú³_|u¸»cU¯2]øBâ‰MW<64ÕúÖ`ÓJ­¶®Þ²`v&ÝH^÷Ÿ¾øh—xVã¼n GÂ㟰¾ºÚ{ïœãã-_~›¸~¡£e>™}­ÑQ ávòžõÑq·Aj¿< ¼6+H×ÊM»Òek·5ðI½SŽÖ´©1Ç}Å+“®ò[G gCÚQÓ©€Ô¨lí± Ž ;^mEb¬l'#N(ƒ‰–ó¸‚/"7dq®£Wm“qšRF}<±4x©ºÓFÁ$~¿Î—·ùñ¦m¯TŠoZ_MIeúƒŽwðoW‹;t—E:N}iiÇš7]#Ò"÷*(žþ£~ÿÐâÅÄž4[ú6kSqÿ%×<,ƒ|%©ìöÝÞh}lÞZírØè•+ø‡ïæÜPcx”èW÷æ±F£e7«Et› .+þ2ÑyŸ¯ª½¯ßóg|øúýU{ûü/¹‘I·ý¾‡C¡×]¿ò= VÐZ²U­ت+Fª5EѵɪLjÅ ¢£TƒQª66£bØÚME „¢"2ÑHcc& D™4„–33$„ˆH•%É4D$j)•UkV#[Q¨5Tm­SJ¶›!e ÙJ •V5VV6´TUlZ¢¨lU´•²U²VÒ¶6ª-ª5j+EµTkPZ+Qm±mQX¢µ‹¶"ª*Á¬j5±&© hÖ+dÅF¶µµb¬UFÖ*-±dÚب­¢KI¬˜¨Øª1¬Ã„¤…,Y 2cQ¢2h“RˆÒLŒLØÒm¡¦hÔ”R j!„b†L+0–6DA–LÄ“ a ˜’$"+@bI,‚ IÄ4PÔ?¦µkmVßeö˜´}U«“2 ÎéÊî.ë¾›´²:ÎDF¨‹¿O×ì’|üÊÌÔA(1Ûp@å(…ÑÒB ÂzMeHh›¤ò%ù^»ËFJ0R®zS8`œÏðÒÎW–¦ŒÆUóøÖѳwy.æÈrZéÙ'È»ŽÔW…¼:ÖcW*aD²S-R|úŸ?ÿ_ï „š ‰DD&`¢A2‰E4LÆQ‹)dÐ!±3lH)4ÂI@É‚" L “(¤C hÑ@1JÖ?®Š~£ß¨~«@±Í*óJ·°õªÈ?«õ'¥®W6ß^È’J¢ô·ϼS´÷H’· eq‡œîò{y0©–iá^ª’Jç&--4ŠŒÈyu P,sâ¦1êL¢‚3u×{®Fë…'¢M³Ýš"S1¡ ›$"®ÚÌ‘"$ßcv¹.ž$Pôí9\æ]"*š'6Š‚zäqpêÑ0Î4z.òt4@¢ª©;dÄÅZ!Þˤ™-u’©RKlkbÚ·'ÐZžòaQ£n³“23hÚk³&Î3,𨊽ֲùÚ›–öÙìüö| ¢R#ÞO}Ÿ­“›£È‰;YAÇч…W2$R£BCvÒy¾H>z½¸-N(r’|‡±Š¢¾Ö2ÅÌD^c½éNÍÌÃÉPõN֙Ѽ_YSÌ:“'—F¤TR†‰%![³µ­ÛŸ’TO0y^«+ÆyEϵ«ìeÀÍÊ¢÷!|9rNr>úÈ ?Q- Š¥NgsÒ,CöŒ#È‹50Ü–Ú¤10L¬¬ÉÏ6~Áà^qyé*1ö´ëç·$–¹½ÜÎíÆLÍr½›2‘]J0ýFác|™ ËVÖº”%<™Ê5'^Ò“ívòƽú^¼ûs¢“}ì9ï&–žÌdóTeéêºbü³Îª”.óÐçlº¹ÔhIÏH¿>= í7ö˜ÕŸ0ºÎï®_aºÎxPÈBHJ©,Äþ;=<бô%8»?>å3ç*UK3ÐáóDú—FcB²@´»BÏCÝ›¤»2ë¶œ;VÛ‘2,6/>|©í¹ö÷„TSÅb»$#ÎÌ,Ž­©úõÕÏÖ{kgž®’ÚLomʉó|ô©ÑU)¿[–v“Ȫº#©Tb”OPbe9ä³vªyJ¾L ÷½—Lf$E´*bêÆÜ‚£®…ã0ä’¯Íí»lã#®^Ryú쎺zº¨Ywç³ë˜šk˜„4ï‹ckt±Õa1Y„„U«„ªN•éüÞÂ{gºÃ2t'O5ÅÐ…©IØ”$n”e¶…ž²Äír¯ç‰×1$Qì.5V·#£êáÑߦ܎~r‹†Ev´Ûl¨«·Hy?"òBú!äxÈÑ“R¸…:Dzaï9ÏJ$ò¨O( ”žM¹¢i”k„(YQLÂæF@RÔƒ¡‹å7›¥iñ¦õl©¡s":~ˆõö%N^ùäml³•ŠâEV‚'6#Vj©<ñif¢VT+Î3ÊŒ¯OI}k`Úö[Êõ$O[œË纨ÖI÷¡0Ý×Í™™%Ek™ïC›ÅZùë<‹®„•MµÄŒl-A ’TfDMFfß{«œÀvUµN«åµY‡+´«Ø}½‹Ð(¼Ë\µójKï®ßR'Þ6CËD"òg²®Z„'–j蘥¡œô¯a‰¢µ8fQ•”›µ¥Í- BØ)w½nQsÝ´¢{ìNCØ æÐ¤<¦©$FzZ~õïvsÎiTÔf´ºò½_G´ôà䯖Jƒ§Œó– îSWa•I&+¦eMµ‰PD4;H&U‘åÈLÞâd$# mpiº¨mçOR§šx$EmºGRO·±>AYˆU{&|DõÓËËÊ»•fCWdhRd¶SÑ‘qíeU—]ÙáUËJ ¬‹Ó<²ØA\šÑÖw)ÙY™RAÍØ{3‰¸E¢xuÛó{Ýá’ÔôìHòÅjúð¹’'…ï3Þe}t¡Q<ó+í#ÛV‰!“9ìTôõ-mb¡åc7£YÉÆã óÊÃ,Í<ÕܨÎs‰Ó*ožööªL5aXV:ø¶óVõ^¼±Ó®£³G_—rÄù2XÛ¡W6{šê‰#êÃä å˜Q"i´Š:J˜y}·¼[giäj ¢w/hÉÙQA×HH¼yìíaìT©“meNÓ9œ„-3!êï2W±*ë‹=ÛÕʪùö<ôkª é ^„Ph‘o\g²\‹H±ÚÛ³Ä9ád%9yå¶I•†z‰yObt‰\¨ê ôÂ+ tÈ-JòJ‚Õ=P{kdU\%ECUj4Œ-l5ê‰ïµÎïFQL=òYïiÉÓ<²B¢%]=9¬¢¾ÑÚa¥W¡/lŽ”¸©VjJ\öxÙŒýG*<è º›ÎUr.ÐfVE¢ìí*ŸR¯“ÏjáÖW=µÚ…$‘~o'¹Ä=õB|ܶÁµÕWI* PJ™Öȵù T}{g35+SÜÔ9 äVZÚ²ªeNÃË´½/i2 SvI2ÆÓ‰¡)¥¡ÖE5D ÖLñ°¹(‰>Á:ö‰témºb*U­‰rÖc~2ªBy½‡RŠ¢¢ñvvyêвZµ'Vù«{Þ¼©$ìM$žÒè»Úï$¯NOxª†õ‘zLà®iy™’äG¶…ì³sÙ™âYbÑ•„È9ºxU›D¨"«„f”¡öÝêï%1U­ºžYçAµ gÛ¦HrtQ&E2g‹1“žAï’ÞeEMßY\$L¢$1,È/H½ÊBÑ/®ÚÏH¡J¤Qª*óÍë^YÞá)xJƒ*HŽv‰sa'—˜¡YwQ‚wb6æ)ÜFwn›™"wd‘îÚô½.]ÝŒN`U3ÙÛH(ªtç"Ì;Rçj…çHÓdá¶Î@•åâLä±¶Lñ—[C ÉB$’Og”RQäs“k2qïW®²´Rã‰1ÔÕsÐD42g²á…$^'²IÖ¤áNSk¤Ôg^öãÏQwO1Uä²M\-\¢¦H2J•±´]¶ “2H"¢ðè2¹ ´X†»mÚK«”R¥Qzz¡×eL„*(-@§/QTtr¤Y쪗P™¨zmrözÛ²PL¢fÕÏ/ q[Jš&‰_WgÈO¨.VB’%T¨^ Ö\ñ<¤óML<½Qµ•XÑÆw]38» Û ÒdŒ\êQìÚÆ Õ&Iìñ±ºe)‡˜zAx›Y (• I0™ãÌ™_hìôµ´¸©^Tq4zïzÚUާVu_õ&é‰áê'šQ_XLô„k¼ˆøUo&ÍC¨Hg­v3íd50ˆêÍdÎ[ÔvõY&ÕmR­u³2DU2Wh“<Ä/Jª‹Ä‚ðÄ-tk;¡^QX‰*Ι];õÕ[Ö¼Ú©Œ×eyxÉ !W I$ç9Y©S»ãÏ;X9©ËGHw­‰’k©Ò—s¶·d'r) Þ6Èòdì…K ‰!0÷J(ôñ$Üò±±k3Æ4)´õG(ËY'…7jàÏ$m=m;fÊðjWmž@jC!äÚö.ʼ‚ç."£8Ïç·Ÿw%M1 KF¡ê—ªÑËÊqmµIUЉGÖíæŒ‚ÏBÔÏ k"äPRæIU}¬ ñ1DD)zt¦ D%EŠäWñì)=×¶4í2tkž©žfî’ÛŽ[X¸ž4Õ®‘šUÆ¥Ï]ÞõŠË›Ôî›yå¦Ö˜«5jQ4ûÛLHy3;A­CØ^g6!ÑY ^&n£¡Ï+%i˜‘i†ƒ9ÌŽ,‰–!é-µ¨vÝ;¬ÃºHg¡…x\‡ZY-Ö²×fj®dydë™t©µÖ¥IîDTy©n^ÈNÑ"È/knkžxFhÌ¢"Õq"÷,Ê„Â3çlÍ\öJºÒö„œ×´öO<9Œ®[bW4›\¢¯#YMÊÉ5­—º(‰^EFK…yÔ9¨^]žÞ² ½–(|žÝŒ>ÛYЋ9—lˆ² Ú”*îÉ«Ù!R`VÄÚ¡[š«z˜s’Ù‹R+ÌQ+½íáó"Ƈ®hB©áç…¯Ÿ=¾VéÉZ¬|¤½YÔ´¨½ïK©J¸›œç³ÈÅ)ÈVaÉÓ(++)!+Âåra^ž´âU¨ž ¶h¨ÒR¢í°½2³‡DÓaÙ7QMÜŠjG2÷g§*,¯BícÖE-²ÃM²''Ïu£¶"{hÄ¢Âð²Ñ*1Äç¶…çÔö¡|ö1ÓÊ# ô†mrOB7Û"|ñ>~,â¬îg·"™áªbxUáU¥]£)J^³ž_ <¬ó’.P^÷zwº¼Á‡; Ëʆҋ‘êé**‘ÒîLÕ!ëc•©Ìj„-²‹ÚŽ”y¡z+¶nå3œÂ³ ©'žMgw*ñ“ÛÆSÔs˜QÖGµÕgVq=‹Þ=›¼MOd'e£'5N{VKKDL¯FrdÂN|÷½ Р¯†å‘uŒ%O:ʈ‹Ú£F{:ƒ!< WdXâE¯o2¾‹Ì3Æl´¬Ú¶&“§Z´ÁšŽ­rêÌKrˆ‹"ä™GŒœ¡“n¹…–‹2kšÙ]Ý8ÐIµ<è†vŽ2Bó2"HÔÅr"Ô/<”žÞyÖ|•op¢ªUk ¾=™ñáåÃz *ÄyóÂñç¦=%4å³Îµq³°B².ØÂò‡½aSÊhÉØ†rAš lò¢5½{œQÞ|ù=èÚ2C¹‘±*ÏB<ºŽG=sP$Â¥Z%­@a3Ò Úìh%–^È{G( ú%fA[Ù›­¬l¡Òi¸ÆŒò• 2°kbjuæht"é]¯6‹»Wf*º¥Ï) ¼×b{8Q*¶ØEZºGÚjÝ%Ê…g™ 0ù·± ±Û×’ôxdQx´ Zö! ÷1(ªtÏ3:Ì„ñ¸|øMD'žÅµ É#ï^ôñ;KÄ$úØ|R(« ¡QMg¥«g æ^|5çkFÍC7-CV¹¶á{:½ë¼¯I>dÏB9ë´Dæ¬c(ƒOI^Þ3z—³Ù$Y+lkµÂF­·½¼{h ž9¼Û&²/JõÚvÝ¥'F¸ÃŒktìm̪֭ ¤žÞÛÍŸ8è‰ÛvÖUÍ;°•P¼H« ¥DòȲ)z³4Ç›+vÐ¥V²dê¤>Ö‚õq–¸Uy:OŸ&öÆyKEJ*Ši¤¨Ì2êÕ%Ém{{ÅërÄO4y3ËêRo5rGNÛtµÄö{¡í>ÆÄ¢Êô’ˆ­Jò•s"—Jm³Êyâ5ÛJá‡@µq¨!Ù§!¨e¤¢T\—b`^(6“cyó纛šê¤QD®d¤Rs·±*L{ÞOIçVS]ÓÄ— ‡½ïx_X1MtÂ5#iw™.yz!ÑXÙF'V•Û."…»Øö!,Ú†»ÏBOPLJJ<¡=2<“ÔÜ¡ ì:ǙԾ{*.â{¥4†®1 Õ”¯¯gªÕÚ ¡èt|Š/¯F<— PR‹®Ro®ÏÞ‡ëÚJ!ïPëÄZ¤ö±[¶‰öŒf÷³–˜•e¤ Q’9=t¿kççë•‘˜Ð°ÎyÓÅH‘#æÞ‰–N¼û Í¢\¥í”s &¶ì¹75RíŒí¹]z,h$]£LdYZö³2À¹0zòfO=>}uº;Ï ì±\ µOH>¤5ûvvK íe{%©Ý^Bâñ²•žåj…!Vê´*Ų™ñë¯ùèU¨Bº½O'—ØÝž’gR‚#¡¶í§/GŸog½B¦ónA}]ËäókWHŠô±)ë¶|Â"Ú]/]ä=á_¯E¡IåÛ>kmë‡k$!f½»Ê©’&•^åÚ‘Ox½@%«tB*«]”öm•îœ>½¸ËDŽ‹ &Ø{Ñ y¨Š‚Øq¦ ØÄ>EçYÏx|†ky•ÃÑãÊDCçµ{^zC%¡z7Ÿ{ò{Þ¨6èW2êÞ÷¼¼¹½>ºçµ«–Ù÷ˆ}–Ñ‹Ây"§‰}¶×.A3ͽ¼<5xۜՈÎÑ—{{ÞÓÙtóº¦<ÆêæFšw¶d$÷®Úå™R8F–•cÑ)#Yé}·jó<§«Œût jqPÍtñ’ì2ÑJžI´‘ØÐãYÏ(¾ö)¦|˜ðß9Ô(Ô£Þ£ëØ^öÆãy[Ï ½è÷xïYýï{—µæ6Û8òa J,÷“%©™¬.òÒd0´¡žò×{løÞôû5ªóÛ&vöŸ3ãk97½ºˆñ>6Éìø÷Ž/Q O.m±ol{Îó”&z6êÊg9ò#æˆV$JOm¢)Kѵ“ÞñbÞʲ³Ðžˆ}ëm·lÂ:Îûן¾œ0žRÃ¢Š¶¢LúŸ"Éõv$™>Ëö‡ÎÙÞÄQ{Öyfu·R”õHÕ×µ‘ëŸ[TI½IåTð ¾Á:#Õ»n¹ìÞ7Lj öŒ5Ù!s!ä!÷²[½6÷ Ö¹Äª{lµì|äñU!5z’Zu#|ã]ï{ܦú2÷›èkì¦èÛZás>V|”·)êÆÆÍÉ‘Ä.¦²øöÂy³²ÕF}{ØdÉ3›^÷¼¾-#Êa„Q½¼¾s¸ò¯±éFeq>®÷˜jL–)Ûns²Óñz3³ce±²Rç½½Ÿ]jô^eϬFâLÏ´zdj\Å#W$Dð‰î÷¶ISnÃä•ÇŒùg"˜ÖÇ•ì<ž2šØ£QU+ç/aF#ßy·¤º‚g”^…¤Dð˾×jµžxòyóãNËÛÞ°3 ÔúÚ5Â)FUg^Ö–láÚ$Ý4Ú*cm¶R×:×}¼‰õfYo¼R{ÞÉ”ÙÚWÏŸEêÂë¬@Á½›ÖÞñ{”ó´„{Í{Ó²‘¶ÛÄ>ØÍ3ÍÂMïlz= [}·'‰yôjo½oFp–6|ã>§zìïË.¤õ{Ô3Þ|«ò_C(Îøöõ¾é¼hÆ£ëÆ|°UžgäÇ™Ú|¥Ó\³ž-…ùï;ɇê}P·²÷ãÌç9(óokÌù¥/+±íèvÓ}²>}®ûFKÙÊK“f·{ysÚÆñ…FÃï8»zÇœa½íåˆôÚ¯xfyšuлoQâ¯[¶è•'Þ—Ø\?V÷ÛÏ„sãÜQíµ´l츻­¬äÔ‘´M­©M×*{Ç„GÒÎ5g'cï{·…åÑ»ë=ämˆs„ÈÙse3¤’늭›ÛÆe¥õ zí™vívq·ÏÞ÷ÄûKLmSÙÑ„´9s±mF¬ûoéß^Þ±¿_߯yL‰…$À™LŒ¤”(‰$Ä‚%™(€"f31…%")(Ì(¢E&I$ $²“3$•"” ?ÆÕT¥}eQ}—ççÖùÞÛÛŸÛï¹Ùõ~=çÉÈJ:¯ë3H"Š©X.cþêL¸P(È",ƒ0¿íž¥¥(Q"£‰Â0C0Œ iDä… Q•Ô«/»²EZÆ S¾jg‹"yª'p2U‡0pÄ.¤_yžE Ôð HÖª ©Ê^Cº¶c‰¤ºÿ–BÐaÜÙ%öcyrÙ÷§%âïyœûKêäH,ôIɂ𙧲ÅȘqoÉ—ÞÆH‚¬¨8j¹Ę̈w[E+qpÎL4#ïä=šÓ‘E’ëiUM„Ó±QDÀH!G99î­Ù]D8""" éÄ£¥}K}§EBÃ2Þ›šÍ“§QŸ]W:4R=UµE4E—yßõ>qw¼'Oc¢ÆžJ•7BSñ¨~G!Ú°3 G!oÓÁ4ªÂáçvì]DI™¾=î9™o‹lÝÓfÔÉ»…\IGœT6ªxsÌ“îól;¸â]¼ùO~‹ËÃg„—]š|¡ÛÇ!žÛ:ÖIå¸#º%èL Øƒ”‚pC´y¸êÁUÚãVEµhL¾—)í×¾óü~¬÷…o¼ö¯*fŒu“ލÐXƒ¸“Ép}€ô$áW©}B½Šç+•°`˜æ¿•õç³[½÷>˜We´uZî²z岸W5@›%H‡/ÎÔÕïŽwe5´|¿5.ílü˜ò§¨t`¹ÃÝ‹|d$-Kú÷äŽþœB›ÈµË¸ölíªùß¾Ÿ.ó¿æ˜#æàÏ%Â\Ð(Aig2l »^ }¢÷Dw”¯ú+lЛOœFLÊÆ¥`FÌ"³3©ö¼9û FÈWB`r¥uª±OÖðãìóî,˜¤¤0²¤}Ço0ÛŸŸk9Û[A{¶ ‘r¨Ž!©ª;Š%J<"-13U1©.ô¨Ušó6'ÚoSzbʃIÝŠàŠ•,Æ^_ŽÄˆùõ° aïÑ“¾àô¢ÞPÞLÞÈI¡Ë¹%­ì£ð à>Ö§ûAsœMì9)­@ÇKÙ¤Õ#yx  "Ò‡›ÊóÉç“ÀfüLvF‘ÔòšùWç…ò%[y€ÔîTaÅiǧ‹-®—ôÇ>æ`íÂÇq èÄOÄ-Ìát˜3íCÜV!ý8Ocò﹪ü¾åRÚ§qذHØW@±š%‰À¤ð&)3©(6ÍäÂÖsd4#­ÁA7ÔQ6¬ÅŠ×¡3@ƒ(Όn°s'¤Ì¥gí*hâÍív)Ñ„ZŠSÞÙYrnЇsfÙ”RðÜpþpö;‡Éž.?•øª?[÷qqê”bR8)´^w0>óp4G=Ló‡IìÇ–íU•„<]}EB³}yt£‘IɆ–Ì©23­¦É5*5`”æ˜;%$M‘Hi¾)[yÞÍÛï7ëO}Ò±Áþ/B”5¡<ˆÆÊ #‘X§þMöEû÷±Üw塹÷œ—áw2åú~–ÌóÐc9OgÚyÝä@®‹ÙskÑÝæøo§SÎûØÕd¶\L¨)ͤ©Pÿ5Í·´Á©Z®7wL@‘ê[RRÏVQEpM©‘ ØlµªMŠ”9$Ëj=É÷s²¨ÔTŒ”û4üaÏ©ÇzUy ¸þÿ™ÅÛä.6Ú‘ßßåRÐWhÚê&+1}Û5v`´ §£HîwlO~ËBŽ>{NŠ~Ì£„]–æcìÙßɾàv{æü7ÎW0g|˜[Ù +‹ÁªѬ¼ü¸§v">;”jLë¾çÜŸŒ>Kܺ–!¶=²º¹Xg•´º7µ^ù")ÌfûÔ!Ôaê l¹Ÿž¶v ŽÄû·yœÌ“žŠÖŠ8i@Y†ö¡JƒÆÎºbð2…³:‹]Ä)]yÞoS2ÙwáÛ„_ÍõwS|ˆíÎÇ Øy­ÒµU‘¬xÿÕ.@LíDœ;6 @näiRC_Ž|ˆóƒ ìñL®¯Ê\õ)®%{HqK¡Ú¤ùOyß.çü|Õ—àòR¬à~°Úædm„®¹¸™ìÔt "5˜È’Â-X}£fÙ¥Æ\uj 竟ãÐI€×Ù›ã«ï‘„ý™ŽÜß)èÞws— w’†²T왿éïÝ{Ͼ}møŒ`k)zŒ©þ+Wöqadj EL7RÛg™Z^«·áøgÝåq“¢ŸçAÉ”ñ±ˆ@ãç¦yDÐFmy¤†$a1 gfJ­Swe/úê–)ÅàäÊà ($ÄpšAA,Æ¡–)¨¼ÁWÆÉxa¦D6еƳv @T4¢²Mžl´ ÐeÎHŒ£ìAÕ%ß³©&[ý7µ]>çÎwåÏç èWºþhE|ÃzS©ˆ÷¼ò–©yÌŸ‹{« ¸!eEUêj\ ‹Êá/"CR¨èYlUzBҠɱUØÖÊeJØåÙ?Ðä­Š­âÎY:›f^§Â>RN¨ÞkzŒ™7¢ÅØšþa±*Ín¦þü‰{Ý/Ãâ´-VúØ=eLgM‚U×Ùåsñd¢7k؈ùBo9óÎËÎô=sz«&{"9Ÿ;doi]Þ#ÀÁú>¨gãwu¾|´gn°¢0xWÈksby£7$éælÈ=GšÁ¬Ú»K›D3Å;ÉDƒêk®ŽŒ0ÒÌu¸&JQ¤è9sªÖ^\Í…©Nìß}åË…^}Ï{u×Âç‡ 8Ò™–àï½à¹e^yÕЗ’ÄT´’WÏmµ êÕ¦( ¹¦Ð™Wª¦ ¤¯¨õHŠs‡î$d[yúEh•]LSÐÅ>E1Í· <í̧Kc!Bjy!² JtG¼^S‹Ï=M³Ÿ »áìƒ(Å n«K8{3n`-ؤ=9ÒMÍ*‚[€B‘áBQÖ(›­´f„‘ŽÜGôuE3S( “! PA”JÛ2"Zÿ¬Çïð¿çð‰A?ˆkûá¢D~ýÿF?UüþTÿ^ÿºØbQ „?+R¯¯Ê¨©…<—ÔÞ>×ßç¯~l>?Sœ#úߪôßÉŸºÿ ëì? sßì mrZ:õÝ5ž>³µ«ÏJ^=þ®2¸¬r”ûO¿^¼õ¹¿Î=0‡Ÿºz÷óõßGï;û¼h–ŸŸ¿?Žéãçƒä¼þþýkÇÃõ?ž¡ªß›¸§€¦‰Ç;×~1Á…-9øO>µç¯ž/œ–Pm².YÁTHÂÚÑ…ïULºhÂcá‰áôhŠ{ýý7Ó^ªºëºG­õFTÚ{‚QÿvY¬+ð D™Û{OÓ—Ø£ãôâÞ+ªàpyþåÿº˜ÖG°üŸÙûk)°ÞeBl¿ÚSý—RLZE[n锘¥0-Ì@¤"a‘!¸êpÿh(¸E‘ £Ò ¼˜r#""j‡ò Í]q9Š) if+¦Yÿv!­¦,™jéáWó~»WDŸHyI5)¢ŽèÔÔ¥Ë"% l5b͘¡vA@’á»—1Q‰ˆÓª·6Œá¤¥i«a­ý“Y ŠyB%ƒ\r¡Ú ?\¦(LXŸ×Q;”<óîë7¾;oxë7@‡Ñ’ó«d²dí+¹ÝßAŒà+OÚüBy׫=ïÚÊ&¶’»Ã糓±üŸÃ‚ω˜½-ì¨<#Ÿ.i j›¨’°`²Ðþ8ª³„Sm9—÷U=Tï ‘Ù³×çã¢rŸØì_,¿±k‹œµ*ú(!tÅx¨Åõí{¿Â©Ï›d3ùDy¿2N÷Ýh‚!Q½à%>L& rA5±‹ºZh‚fÁ K‰MI”K2KSÝV’ZÕå©h!£¹9±«ñ[š*”Z(PøŠY‘¨ÊÝØ“d–¼dïz¶í):5«‹JÔ1t/‰~NSê=„+ÇSµ~—”…x±ÑÛMS]P*T¥R l•‘'¸TÆŠU؉éï†VßzóŸqçjÝ<Öww» …×fª(HÞº»Ú¢1h;”+Yá¯IB;¨Å6¶&ÓXÌfDÐ[ô™TÅÖèf^ÂCA“œº,C³ûS[ØÂ«aâØË…ñØî¶aØÕîg¦¥‰n†Ù½äk2"2зÃ]YE/W®uGÀ»Á¥ªí†4q À©áìøûÂ=–ë:Ëk/m.8°](¨Ô+î!‘kK^W@ÙÅd!ü*SgÈÉVtøÍk!2i_—än)c¨âÛ×c¼n@öt› öÒ€žŸ2VL·xA¸Ò±»§‡¢…ÑV…¥²÷ó›%bns²A8D$lÚ„d*ØŒ®)åx<0YÆâ {9£u†G°ž-BðvT(œ÷Om÷»±ÎÕðkœ6ë`Ûa)ßZÄlP*5£ë4 œX<@QCœDµ«qŠq{ë¾ë†ØMg>+œÇÑFí8b©Ø\lµÉvôÂs(¢^T|ÙxÑ„Â*OˆFê¯äRˆ4®ÙBry²¹6éHçón|Ö.4bЬ§%ضfÙ 5&éK^µSB{’Q„gœ83“ËíI<PYœd L˜|(ªáou*Þ•z”a X‰'8å—ægjn'ñü\ø±Ø>ùçêK¨¸w´ím°Q³¢,ÝUoú÷²oø>ð)¼A°!Ö4éF®„«î,|ò–ÅÜ RVø±]ÓÁ=ž25 y¼=›±­¯áp¸ØvÜë2:<ÅUÝWÑ-4/Øçŕ̞©C¡.ùô’sÖôNÁaù íA›sSÛèa}™1 {Œ¯½à/twv' Zׯ7½¢=‘Ä% ÓUž’Ž›n¸\r¤ ‘½³âµ»Éê¸ütüOŠÎxzµø5-¡\÷_@ðú-ArQ“i X–÷2Í9dŒ®y¬Ç5¥î»m—ºfÎèÜÞöE⊔¡ßqMÏK=¥ mì±ÉŒŠñçI_V¬ûs^#ļmh¼\âÀq´WDÚ€E¥U]W¤EûÓY|šv%Z’x¨ÅGDJavØ\§vƒÅã.t˜A\îÉTCÛæC0óSë‹@@帥:ç+îI’âƒõEP\Q^¸ÆgšmðïÚã}ĹN5ûmP*Ζ÷œË[óuÄmœi×»|V¢¿ÙNu::ðL§8ÓOžºh Y ©¹©H«UÅàý´ø¡Ú8‹ÑÎÿ9x‹[œeÆ9ã4 fª0ÒˆW1CâDO—ܫq[¯¢%øÀUY†ç˜osÚõzn$Åd£×Œ_3ë®i·6>ù/›` }õLÇ>6Z6×ÒH:Üóî,ßèýá/¿” \#5?$¶¥ÞÿW¿l;s8Øþ2 ßoh§ k³úÔX°$UA‡mˆƒ¡%.béhyÍ·îlEÞN„”½D¸½k(Ûj©Ô9àüprªŸ›Ôl}÷›säi3Mk'xQúÙ;KïÅ>½qÖ·î›®íÉÙƒRžmM—Î3„ÉZ±TÂãÂ}<|X•Gf•`Qb¢\©«ËøšÀ¬ša‰ïËÊ/d†.…W£º¬Šöªü3kGAÆ©x"°e#ñ&÷9Ô⡳<°÷¢ [>·ã“œÎt³»óŽ7æÊ¸çúýóŒ6«BÚÉDà–QåZóo@Ô‹)Ú–3f\ßܽÏOdòà^ùJÆ…ƒb°f&2Ç›-toQS¿»¨ü^¸ØtüY×ãu:>Ã?y_j![JŸï!¸%†ž]r„;ŽìÀßm¡v~_'É a IF/òЋNÆž«¿v‡­ÿ6ÜÐOú¨G_u‡üfOÇ"\p¶0.Ï‚³_Èý5f±Nñ뛹mÉìùõ+g>‡aºðX¥—€³Sm&¯½'zt™¬BÉ’ x¬¦öâ&I 9Û§g±¿· 6bsÄÝ ¥Çzø`LáÅ«X]²%ºNÁ¬þ­&Î|ý“Öƒ!Í»¿·‘¢z¦á£LM+[×s2ÊóV­nÙv¡c¬-pýNy³w~²]ïJá±çPC;±UÞ[ŠÅš…ÀöÜ¥“k¾w½š»þc-’½8 LÝG€[øÞÁß\“½ÌÀƹA³g’ÞŠö¢[Ãfoð¹þ8§¿¿ñ?ß3qµÕÁ¢CHÆ~Ó.û¦ŠêÚYò Üxuæ/°’‘÷^#ÞÓ­¨#ÕÎݧŽtœÇRƒ_’ÈDô$:†@ëP ¡šãuv¦7¶•Ññ²õE—>Üî DGXÓ*•¸$2y®iÒÃÈêØ۵ÏÖ»´±hg Øñ×Pݺä3â•( 210–³ÊÑÂz© †°»ÃÕh ¿¶ðoÅr¢Ó‹­÷ÈÞ«QƸKÈÉliª¯Zéö̽=çÆgnä96ò;¿5¬6ù­ÓmØsrIo|WWñD 1bšl«ÍËnb6o…šä×°ˆÿOw|_Þèt?œ€:ë :'®¤[(Ù-«dÙ-•´›PѱF£lX£XŠÆÚ(ÅAb £dª*,È©Xe)£EE*3)¥a$dh‘I¢’‰e¢*´LÖ-V5Ej“mFŠZ ±‚-XÕV«bªlª«emQ ¦Å+j«j‰³jMŠÚ4m¨Åch¢5bÛÔmIm£TZ),TZ£TQ­I¶¤¢*ŬcQ¨Ú1¬U‹ ÒXÔZ5£¢¶ÆŠŠÑ¨f¤b¢ÅIŠÁIdÛ‹E£QFJKF¡5%IQ‹*$Ø’’£Y1F(ØÐc d Š€Ì$ “h ØJD™‚ƒHhJ(¨™¬RZ6$6 TÊ$™"$2 C(š#DX$Å’)2”Ð4K _Ÿùì$ÄÓÊ ’Ɇši˜42¤‰1“"„±‹"@bÉ,ÑCF)Š&–I4šl¦c `ˆÐŒ$ˆQ@% ±”A ”h-!”!&a©!%(И2$Í E ÉŒ$b(L(šhi0S,02@CÀ‚Æ0Q !ŠH’d  3e ‰›I²ƒ ˆ°J(Àa3&ÌÁÉ,b#QSH¤iŒÉDÀÉD 0(`ˆRŠˆÀ!% ©˜ØÁI@L“³$dÒɤ,‰‹ŒZ4TM o³µõ}n»JºBŸÜPäVeE¥I$‚’ ¤OÒL LGµNr™ìõ»Ì"øSów˜]SÆwèzß­ßk«¥‰Â™$"`É€DL¸RÄ©])–$‚>±TU4LA- €ŒTÐüòìZqÆ3J©Éž%Ž«2H¨¸¡¡Oã8ã \ÓŒFyEHá°BúOêûçöc1A33Lf)Èh‚""DшeƒHQL€¬ ÂØ4 Š,&6Š$)c(‹@S$ †Ä[‹Dš€¤Ô„E‚¢¢I4bŠ,‰0„hÂbP2()¡¢‹$R…IŠ2TjI6$ÔÍ0X¡*) ™d†Ä†hi)‘ŒI±Š±`Jˆ£X#2Èi2i$¤I)(’$Æ 4™ bŠ$LA¢*1""`ÈQFÆ"dÍ%b0&LD…4‰°h¢¢“,ch˜RÀ”P‘E£Qf%%1ˆ1Š"¶1b™…4Í*"Œ‘²QfhÈh1,‰RhŬ’"),I`¨a*B‰,¢±hÚÅ 1€H¡(ÖiK%¤‰"Ah±hÅcL‰FLŒ…$`ˆ™$‚Â`ÐF£TjˆÙ™10 C&,XÑcc)a ŠMŠ‹%%A£ZRXHJ,Q‚“°Jf[&Ú4mƒF¬šLBIšLÊY’ Z‰‹fÍ©µ´­óÈ• Ý6¶hÄi™"ÑEˆÅEŠ3-¢°‰$‚%%ŒmEX11(I‘Š "1±clhÅ%£‹bÖ2cPlŠÌÀa†Lš‚4S ˆ*(Š£m6˜Š d¢Š4”Í’Âkb*‹L¬UE¥J–‰DÐÑ´lZ6±hÄ“F fM£IQE¶4m¬4™€¦e LŒ"b¢*#b¨¨Ôk $$2$Ö„±cPm%Å¢ÚÌc%%ƒFű%6ŠÆ5µÙŠ É2šÎiˆO»ïÿÿÿÿÿÿÿÿÿ €€A0AI#kk û©(P žö[f¢•J¥U)R@)*¨ªˆ)J¢©" HªE”UB$$RJ¨P U*"E%(¥)(U$Rª¢T¥UA@!Q© ¡*H¡R¥$H£’®˜Öض€;à÷QHA*S>¨ª@Q* €@ ð}(P¤€… ¢€ªE@<}°|P JQ  ’¹@+ÇѪ¢UTESŽƒ¬çJ”H„$¢¨U@­Ð@Àøˆ*Š *ª€JÞ_JÀùó€  @P  €@( ¨àõI*IJ‚€I@ CìwÓôTESü@B TôÈj™úM$ñ@@OÂIDÕ0Àe ‘šž§”ÓF€Óiè ÐÓ@”òRT¨ƒjzOSÔ4444@%?R”©DÁ0€jIR¤= 1@L†š 44h@’R¢FF2i€i“Á10h'©„ÇùÕ ü)°þï;î·ÖÏ·ú;æûN÷Ó}?G¾™>&3&¤LCþÛ¤æJÀºA@iBŠ0<¶Á& Aa´MÓDÓqý¥ DEJeÀhMÈ»v1VPŠlDĵ1d»¦­.$˜¯%Ü8¢R3(ÜÌä¸bUI§QQaŒ•_¼*âl*\î(ª1B«‹´pCC ¨Â•raBQ@†ÛySU˜Ua® ŒO þ-š³Š(ÞEÕH¤S›É݇UÇ. ]ÃMgÇVßT‰¥–n‘ë=˜˜»”ÇMˆsîMÎ%J¡(Å]LUuÆÊ9Û€Ì[Mä9Ì ×·È®žöLÿß[ë*FBú4IdmÅç†fîæ9RøÚÑü”³“ï;ÞÅUëÈ ]Ó±ó‘1¼Ôà8ÍTþ‰«ƒõ_ÉìÏßw¿:øl#^ª†DE3‘‹â ¯w!ÿAVÕ{ ª5«“IÊü–O¼ñ¯ä•“!@}׬=7zfÎ×ÒæAs‚», ?Ñ"2²Õ/#C76]¶¬   ¾5NW-¡ww+Ò/Û-fIà™±q"dXùsþêíPç·£òè/9¨ÑRSË3•ôŒ8ÊÄïšDÓÍ+W¥ÉVv©PÑÞiIJ’# :P"§þ¼žää4 /BE"j»Ê$6t:d;XÅéýî×Õ¯¯PŠà®Xȧõ}š¼|ŽU]‰‚.AUy‘ˆ]Aq/e7:ÔL4Å)l4½É½ˆmM=M³€‰F1þ¶²¼ÞaT&©eQÔ#Œ<·p•hUœª4qõ’ÒÊ–jU/A -âú Ò|Òì$„V„šJÄÏ”6 ƃ–¨RU$Å]ÞÚ½”ÌEÖHÑ{Ö }ŽFOkž^TT½$)Oñw…[ÔÁ°Õ&•¡ˆÜkI[ØÈò³w¬DL•&‚Ô:>¼Õb¶î’´ˆÊÔ5%ÿ¥ 59Q'AY·ýMQ«<Œ¢U9ƒã( S¤Øçvzƒ)P°CÉÄšå"LⳑÖ@ºœÃu½¤ÀI§Öã{IÜ‚r¼’2´öY ` „@h3bu"ø'ôó™ðÄø…üµúž+Ì‚N56—_o’#hvu108Bª]A‰ôàaþq*¥«s¥Uqi_ãù½ü­Îñð™îÔWN^{)æÜIΖ‰Qyœ3&ý&À¿âµ~Ÿub4|Á½›¦»µLg×IX˜Û͇›Nêæœ~{u¸ê  £( ±˜;¿&kusxùÄ£dÁ ÜÚÚ¸nZü>Kª·Ùáö¦¶ý›Z­T»ÄbŒi¨L†ú¤eˆoÚþ|™«"o÷/çëççëì…Hÿ?’7ûw¿ŠGßáòÿ2õùŸäcëÃÏ“rñ·B7â˜Õ¯ø§ZO£ü¤Â´Ï=Ðü'›K1÷ßÙøÄ|î[ûãÈ‹ù§¯šù¨yGÏÎ&×§Eé{ìöÍ= Ëߪ¦-š}ûþ5ã5óbøx®ÎïÕ-ÿ~k¸TD*1@¯¸~Š{üþ?ßÿ {T¶±åT†íö>ûoçõñLjÀ?ãë9ádÏ’ÜËñ(’x®w=Òx\.-6;—ÔfÿZøýr¯÷m}8à榓ûþ}{þÇìËdú?‚c4 špçøh²hqL„R¿Ý)ÑB)ÄU0å¨BŸ¢@˜°‚Š0(@Ù$öH¹þŸˆgËl‡™S(” Ã&@™ 9®…ýêl )ä· Ÿì¢šUe((—ßߺØnÄÿnøcj¦ H7 £Mí@³c**i3SðÒ~{z\fžm­¬§Ïì³¢ís\H½‹¥QôåOWXÇûÔÔw¦¾ç:bèòèK‰HÓ)Í„æçîȃZ™„ªP€6­ñK(±Ô‰§Cû4£‹¥›¤ëV1Q(¹sC0‚U È%ÌÎ,ò 6רÊñ¥g¥ åŠW0ÂB™…ijçG¤F Y’½Rl)¶vKAJ- 9îEv:È&Dgb9Wj-ΖšÒé]î­€,Gr[ Q­~ŠöVi/mÐ4ˆ‡ØÍ «Áã™+ÉIÍÀl’)0ïD2,”ÕØ”~§ÅfnÍÌŠÛeý•8$ÉJšf-àë²61µpg*€‰ØâlñT¶"HåN¨ÙÛJ.VŒ M 뉠¾Já:ðf`!YZtG4à‹¨¼d¥c8ªâ’[´EÚÆZM¾ŠBó³Íæù2Öä½ûÛsÍ ÜYQ¾ z¦ªya«"чޱ<‚™eº¹_%´ü®S6¼Œ ,œrì„Øß~i‘v×…Ê 3ÝŽ'©KÍ]0"ñ aïeîøµ ªI! c*a×r"÷ÔÚSÌ ¢c°Êܯ¹ËÔ—xD3—Âw[X[ºøÂ$›ˆ1º÷ŠN£¦—; j}ìÝxv<Éõc— ç1-buƒ9Þo9V¡Ûò9•S2¬¥-«¶&/N9=›Yd'=ò¶<sƒQ+b¡»³{H†œé§]Wš^ÑÈœKrnv97a Oß½ñÅú ¯-ïWïf¬&Æ6¾Ú”K U(ä8¡Yyã\n÷³´ "«1¸¶gÍݤ " t¬…El3)RQƒI¦ð/®/+î7eŠ:ÞóiÙˆkLo¾©¾u?I˶²ŹÀ@Kî7\‡#‘ŒbüÕž—–¯‹"uSªns¶…iA[ ©hz‚ÌŸ¬ìHÅËïH±çQJß>Ó—îOIqm–µ{êÆá­ŠªP¶¥‰ÞEm±´»Ï©Å¥,¢]Ñ'›KDô£Kê»­øzã¡?1q=ŽÄ6"UÖsfqA±_öÛzæè2¼O“P9:6ò{UÞç£ó}©—RÛ·…âºr¡½ëIqñiwú¹ð ô=„}ôwÞü5:æy‘ÕHAê"7Ö,»–*ɘ^>¹÷†¸õ)ú:¶k󽹞(£·¡×;?^ºÛ0©Þ)Ë…¡0Ã5MØo¡žž÷Ø"ø¯ž«üY·:×g®'šéÉ1)_™uiÞŸ~K‰•ò,kŠáûiñÚ‘é1‡ÞŸ(Óm®^!¬o½½ÛVÜ«¡Ø7ô8øŒÑes«w]ä’)¦Y6|AsPć ð›øåÆÖŽÖG-¯Ñæú޼DÈΖ™n3”ºl£5–S—rŽëïO¤íÔ‹Î7Ù‹\$ÁcMqâo) PHX¸ÍüÅößSnkY£JDó&nhT}ÊèRÛb~fÚÝâòÞ6[z¦¹y&8bÒsM¯ÂXN(a™Ỹ£ÜÄ ¼SjÝÛ¤$Ÿ~jÞw.ö{°Üô³ÆäÂM8Y&ÉÔ‚Õ’ÓnšÕÍŽ¶(•%t’x>\ƒiÍ%¶ûã5•éz¶J¸H4 ]­$¼ö’Žõ>èØ½Úvÿ°#hmÐþT]. 2²›­ØnvêÝY¿âh…9óv0ÿÀß7™Ë™ÖÂvÜ%Ÿùðï…òåóü7öNŽB(躨\É"wGUß›ßÐ?¾µ»X¹_Ø­œQœCvΙ"»7nïüU ù_¡ùŸŸù¿¡ö¯¨P ý]ÝÝÕ¯¬ç'$%Ôpt\quNÈ#¨®:e´™¥µ&Ê}tCîßÑôó³³=IKSL”I]LòÊ#Ccm3[vIĦn›Z"“>¢’$pGIÔÇTt]\G]èNŽSjÛi¶Ãil«`}¥ *ð||ÄÅ(ˆÒ·S%pŒ¯- 4/QDI$%+J+#]²N›&vÙ´lÔnÍ9)QR‘H”sSKÊ“5F¢ÑÓ6Õ´1Û°²ÄÊÖá¦ËIË9­ÉÑÆÛLÖ›mX!ÙÑ©R3ÐÈȳ/Mu\R0Ô›vq»é»«»ª«Ø\ˆ‡œï[I›“J4í›v“g9(fª©å—¨©DW6·adiÛZÍ+M ³EŠ+iå¡.ˆ¦’¡äÆ–°0í;[c5­6w[e–ÒM"nAÊs©¡š†I:Zêz™X·L´“Z-Â#ssE W*“$QLÈÝ$¼ô»g1ᜅ¶ÍÍ®ÍbβÒ&­ ZA·iÎÉH¨fŠh‹«¥'‰µ–m£ig±¹ÎÎ,¶lÛ[NIÎfÙ€2fÓ‚Ai›j6´N;XÖÚÑk2S56†…¢Ê Ù‰Î#fÛlÍ´u–!È&Ö톋 ªyFºN©'§¨™Dk˜j%‰aj“˜¹fëu“KI9­inÜØtÛµ\äˆW›ÄÄŠéƒnøèâ/‹l !B28æHÕ8Ÿjj<êJQ«°^L`‰¬SJƒp­Ñ»ñU]Flò.eJºƒzMU·ÉóB!Â8¨À­9¼jj.¦(•ÂôÜ{FNGýÔ离-I“Õ‘É©~â˜IМÀph’wÙÝÁ•²5ÎñfEV¹Ÿ™ß8ãÆ nzðpΘËJöŒ`ìv®jP¦Ê¬ÞÌÏ6C•mò¼&¯¡<Ž.ÎåßJÞ9ùòõíO4îùÁXÛC3b€¶,K·ï¼µ3S5Çÿ‡ùÏ7O­x`$Ç×hv*‰pÁ·þø”’0”‚P®r3„1rDàfâFHŠ‚3"†÷@W€~ÝÌøºþ@Ѧý;7R†³ÿÄØ XäR…³^*´2B4H’»*%Yc+y¾ 6ÒÓ`ùˆòýòåÎÙûiª“íj¾ýò}çߥ¹¿+öê6¨!ø%sFsP§‘wÉúHÃyiæý¨ôåôؽ&ŽeFD¼ê“1oúmVKNˉÂ×IUQŠ0.ØÌ ”9Í.´ÄÁ¥gÏ3Û…õÒoén*š•˜¾#Ú•ð *"8ÑMÞdû#êf3QÄÊãKk0«RÞR# Œ•î¨åò"ÖÞgÉ%¿_Ö?†«Ø˜Z£•¿¥PÚÆE¸A)ž|Ÿ:ãíEHŠã„ùæä¨JóÖž¢÷âÒÐT¯{Å1`*4‚s©AŒ• ‰`¸Ñ3pep U†ÈLR0†Ã%S{K/½A( u«ÃÉ +ÒZ-°[Îá«'a;B^*¤8¨=`ì6ÌÊ“&jŒš¬@i2 ’› LfZ¦G^ÑVDSA3 ›ÌÞD7X5>i8+áÏ9‰eŒäå˜m¤yI  &ä¸yE'Š ‰¤ŽÔkÉYkŠ•ZÕ éÍAXÙÐ` (­¶ø f‚A[¥¨(gjÂõCS˜R(@µž «=˜$! Œ9”Œ‹m°tX`êUe€Ã%ö”¨£KÉØXÊv•ãlR¢,v-¯[ƒ…Š /u3¥†“J Š(íhdS'=HJ1‰ 8È×yìÑß«œ‚¹?%#ñ7—wÓo#90ÎN(C’†#xͪö¡CÔeÊÌ’’3[*¾'€_¥Kõ-öÓߘyTîoªûë‰0‚ÿ±‰âtuÜíHBG°˜P¤Fñ˜Kr*ŠâÑYDíª=0%4³¬hóD[ÜV§V/n*LB è%ÿ4¿ü+íD¢¤¬Ñ -FOø>’"4!*#í½³å™ÞôÔ Ÿö1 !qj™r=äo=›w›<tôF;Výð?Ïüבï~¾FÅ­QžsÞ³óÕ%yžOzÔÙÚ*U`6µ‰!&‰j˜Ù êÑIEi>;Ù9Ϩ՟qòý¿dç$ç*€š=篟ò(RØj…‘*;lб‡X' ‚€ªÁˆß#:bî•7ˆhµi샴ç!°ÌŽ%,šZÔ:‹Ì¥kîö¥ÚW:´€YBnc»ÆU1™ àÿæä²€•˜oc+ZK&µÒ¶ùž.ƒ£¬¯B”¢«á! ¼¢o"#Pl9Édè0xˆq3=®S¦µ_ÕN˜J+òUJ÷fÎëÏs•3;Â%×¾ûŒGHW„>5ÏMǼކ™è¤7íÏ9œì¬ˆ&HÉ*ÈqY±Z •·7l íœMd ì4”šŒ!xT†–3¹¤MXŽCRpµªáí`¤ŠOÅ3sŸ2‰NäÀãÛpŽ#8"8¾=ŠÔQ PÎ#·,}T5«>‚Ñ‘—fk«œÎæ®ÏbÅÝ4¾Ú®|Ïg{çùÎGRGã\]¼~@¤pTr"#Êÿ©ñ&«{N@£Ã•^R-–w£Ih$-A;*ÇЪ6!-¶4¢ÍM "fæcò¹º§0j¡m×fêÇs&œß2²À*qXʰñc3>\R£+aÎ}¥yfós·¶ ô”Ç檑Tr¸á 6aThH“èžCw%…!™sUU~E×pä`Ãq)šê :$ÀÒ /se b;ÇÃ’ÄžZ0ܰÄ(¡-ð²áÑ0ïa%A–U•Aók2ùõ¼¨¾5Óy¢\¸¨“’’ œ¹º1E*|ƒ'ä¹s2“qjðË7EÆ`%@¡M¶< ’…M7bW”(òSdX4œ¹ÿ „P/ßý߯Éú#?À—ëò”oÐ0±´†? ?TF£Gé‚Pu6 C‚±y–o¤×çôPd›Á¸B~’¿„ø_“ü~`3c¼QTû:'ê_¯eŸÑ ƒ}ä&~ßDAõñÐoà|kÆ×ÏëÞÿŒÜ/`¼¶×ãâ_5üuOÇ×ÀúÛñaÚ×ùøáµÈÏß­þûSæãé9û_­¸ü_»g£žkëëÌ= ÞGdQ·Ÿ—­ý|GÕÊ+IW^/ëê²øûß{ëœSŒ¿Ï4?¯„ŸŸ½mâþuO®Õ¦=|ÎÒñ=¿¿ç?=ñ¾‹ý)ïŠý €þ}ú¤~¾?šømGé}ÿœ¯ÊM¿8üwëîØ3ù‡ÛÉó–õõû—ç`û¿Çó¸·]_ùü—~þ¾6s¿ÖÃЪâ~9M}ïŸ#ôWA+þ/Á¯áûùç}H}çøñ?¿¹þ>Çç’×FkÀ‚ô¤ëøຩõí‰/,toöÿ ³—Ù_Ý(ÿ† œCÚdÓŸ›OÃÊwÇÛ\Ò£ï5‡ùi±K¾¾Œv«×ñŸà[nŽ~ƒrÙú0«jj÷õ±oÕ+÷ ¥j½^_Õë,ùoÜ¿_Ÿ×ßïô"oøýgöLX7%„¿ŠæÁ¢*%¥ ÿyULKW2”7" D—–DL˜ªBÃjä±â怢C”ññK·Jâˆ0J¦jLI>y’Ê‚U.I‹‘¦`ˆ› Áª1"%¹NE˜½.2,²B¥âí(oyUVûû²¶ì6“ùpº+6s ÌÈ.„‚§·MØX¾Lˆë€7¦ö¶öA…N\HKo!•I×ì¨Þþ¿^ðƒŒBeIï}*:M~ÅÛùßãù ¿r„P¸Õ*eÅÆW’˜ÆäXW€XóWåœò·†Än•t®6£ëï³'v\&g³1Æk¢&2}ÙÁθq\QœŸapÂ4Ø>â˜USª2¹Ç³ø®_nxù?^„‘­0¨ª4ˆß¸™A^(A)û¼áI#ò+jm2ÐLe¢#œ+*<ÚZÍà5+XvUË‚®H€î– D…$4tz’Uæêu iᬫJµ“ !g8ƒ@›DGBlUaÁÑoz´šõ•䔂"öG»±m¨X½6ž!â ^„õªê¨œLájT±ÔN õÌë2B%™±[²TΉ+’µ)’¤¾›“Ë_ճ𠻡¤ÅA$ûÏVÛ\•Ä(…° Úmºe““á•GI ä²nQºÖ+ñG– 6•] § „,Pö¥r¹¦õ‘æö… 1QÞ}fÝÔrÞg…ö%-¶%ÜIocM( ‡³l;ézp»mko¦Y\3uð²Þ¹–ô(álõQ0z;~¯M€ZSÅÊw£5H$’ 4…nŠk‰I™°Ò(˜2ÚU’…%%å˜,¤Ò~EL:¾âçY +kãŒÎƒL#YPu|¦鵤Ìá N3›eL*»Ùì}æEÞô·FïycCÝ”ï¿&h.ibʑ̀Þ[”õ7v)Co§ŠP ,s°4ç k‚4D¢ÉÅ.â¤}fUj°Ü.in f²ðQ/y•;œ¢ÅjûDsÆÖŸDB:µ2¶É¡Iå 6.Cú^~á`*JV‡¦zŒd…öY ÄÛõð}âþn$(AïuäLñtí+]¦œÄ>Í2ì½p®Åh“Uó‹›~×[NÒ±Wеl a”@KZ´|¤¡ƒÅ½ú R½Àl¸œîgá&d+mÑúRà»<ãÑ$³=Û D±5LMÃyq·¾>*}qcãUqÜC¶cMD ÕÅt‹t¶î4^ iLJÑ À¼ê’›æWl¿ŠE®B^ÞP±s}xÉ^³wšJ¾µ¯MnÖú¤àŠu=PëøGžF¥ˆ²TÂò,&&Gb‚ OT{ nåK,ä—"˜-vÄâ×âhYHä’Ô¡ãœ-A_"KªïM 4"·¶CEx»‡L§äKÍë„¶®°¿¨êú&ÀO™wµ¸ W3:aˆ §yVY”î&n±µ¨ÖÈL¯<òœ¶lúˆÅBÊÙöA°>Éj~5&Ô«˜ÃÏõ2FßêðÙjx³a>Q°“ÈYÍëO‹yño?(í§»ÉœŒ #Áˆ6ÜéA©mçêín4”¾’Ó Âiæƒ+RH‹•æ²ÎÌ ÚV–.œèþq©[jP,Ãxäd7ésÇ•¯¨é á«Årù…uM€øZèŒGÉgG×vÚ6¢­D8Àüp¦Ø}x¼ |^˜·° óÞ&EŹ"‰é Ü4³—ˆ¸Z'uo?ƒ¶ùŸXØëÏzßfÏv¤Ø±¸¾éÏz„ùë†ã4Æ´Âz“¼¨/y‚JÑõ»b~©S5¥ y†SU.™¤ÉÔËnœÖShæ¾v×S¬8гñKôÚ/ç" Ô~¬·8ו,ƒ/'Â,üñ¸„ñ_ƒ­õñ>oVó+xžØ-š¹¢õ½`Ñl“dGŸF ïKÞÃYD£^ó{|iãá¹Ü¯šK%¢ïvxRîg¾½ë[[ÉúrQ¥‹iwíôôëÏ–î9ì½ñCjZE‹ ˜g~¬ŒÎ&~*dá]tç›jtÕƒ^q—¹(Ušo0ÖZ6Ù}T#ÎÄgöM§BžM¦&H( „ØØ÷{Q¤“±Ï(¹£tê„© kpR'–¸[@C°ÍÛ™–°Á*~øA´«|NA¶æÛEkñç°h·X§ÁwZ„_Á­†r×>£•yئ7>y}¼Í­óGóyÓ#Ç¿r¿ñFír“:p0 €¼{²Ë•´ÃqNf¸Þ“†ƒ®Ô+UÝmN1””„ÂZë:)Ô´¸oFƒíÆÏÍÍxÇ–´‹sv,;ûϼw»[ZÐÞÊEàMKÝwBêÝ课bÑ&ja}Pšª.[ÃÎEMëNâÚï![išN ¶”Ž4ykhj‹5‘ä˜:É7.säZ¨dX1AOµl 73 ±5¥pÞ¼K>P&¤ñržŽzî)ê×A¶ÜW9¹8–í¶ó^⇇ƒŠ8K](G¶Å,;ŸY7û–ÜòÛu¢Í–:ðþ:åÂô¢”q¿¼Ôåa¿TìzêSðòñK¼µ¹ÎHêÈÓ&¨Z­%#—›¸Z”“Ï£ÃuVßÍwǛʬßJ}g¯Ã\Þž7:PIÀ„úÉñ–tœ³ÙL.l7äì2ÎÖÌÇ8ï¦WÀ™ï°›cÅš:ε~ øN(Å5y*)ëFÎ÷ñ q)ȒЯ´Š“Þ¾"³‘•CüZÅ´·ˆžg9œœ[ŽÅl™äj•B«gÝåQÜd0§$ndjà£Áo¡–ÒµT(–9]ä+l ËPg;a¼Fg»Íz´§i1œCÒá?E™ëjÂÎNš’Tb1‘yN®5uìÎK[Î&Mœ1)XóiÌêæ½Ù±2QÃì›+‘o*é%F ½YYbl{b soõo¿(Óê‡m«ªU0¥ч¬$Dç*Óg˜MMQ’¯ü«•"kºË¢k§)Wlâ—±¯1œà‚P@{”b ÿ×=µÖ£š%9®øP4D½ï+äù;½ö¿{ò½÷ÿ'_/åüô+è$Ú†±6SeS`Ø„ýuõ¶ú×m·ïëoom½žÒYÛ¦ÆÂD#B»Hd˜Kù–ðÏ»Ñnbáy¨{Ì<&oSê’dðž£Õ DûjÆÆvt{H¹ëÖäÊ#êEBeó'© Ïvϵí6'oaà RJKëaØ%µ‘ÑUÜá«ÏŸ "£Ä=(’/ÄS]7rìJTfxË¥óå{Wµ{Îï¦6ÐûнäQYóÛ“DŠ!D¤›gwÕ=N¡µ&uvé$jS‘FRº ž³ç=$QQ—H›l‹¯hS5õ…qu}Œöx³fLW ¡›#ÖܲEæ6ѳCªðúzí…aƒ92dÛ— ‘fIé웇R.õ„}Ûs ®2Ë8É$¹Žd”’ovšµÆnMA«‘òO½e™¨©ò}bUsL.‰Q*DD¨~¸Ù"UADY ÐûcÅO½—ÝÙÀ\ǼĶnÜö÷³€o;²È³(ócJɨ9ïW˜„[Å(‰3$öz^i¤œ™Ô5½ìeAo7 ò#É$Ÿ°—×ÏÜùUÕ¡v}//y:æT½KÄlg°‹D:¯ç820¾v*¥fyK&ûÆypŠÒI}<¼òù…=cN®QÞØÌÑvû{Öº6Ý“—{Y=£Þ äµ¢ˆÚÊó¢óí"Ây´dŒI,æ±! #,ùÚZ(I(öûm+â¦y iªÛ³mÆ“Rö„²8—›a×sD'“ÏŸ<ÐÖVBz,Éa] *‡Ú¹ûÄy $¹]÷Œµr×°££&vÎÐí´+†´Bˆ‹÷è^O9“ä^ê§ÕÙ©¨W—o± âƒ^q䫹žü[uë!”+™Z{i—SÈ}Œéá½³…¦ïR™ëÅ/½”à ‰*©ä¸\ôÙ² ó»ëçž_G¶7aÌô"†v½½‘äò:Ý­©³™®Ö‘kÊÉ–öΦºLÎTŠªTbIØÎ^ˆ®eKfÒ,„Óœí¬lì9n戒M}G… _ž‘ Aä„¶À”ÒüÉÙ.K–%ÛnQnڼϙ¨Uå_J²*RäÏ/z¶ö_>gC­¹HØÏŸ³ÚR“ÕÊââ®éyjËmØ›ˆ4ÅÒ¼ŽLº -gÌR‹Æmw"­ \©v°‰›E=x÷Ùbî™¶Îx!ÌòizIyxå3‡œ°BdC£È5$£Äñ™âÄ¢IµÖ‰Â2Ool>¹U^W¥=HÛgAOH°ÏkDJæb¦J‘’†¡¡¯9\!<*¬{X.F×X*é“ñë±–¢ Ö 2 £oΤjy6KÃÚn—…^Ì:†”Ù¬õ'HTaËÏ "›;•AÑá…óѶ-ckvâ¥ò¹’0Ã771 m„ɘ«s½ãõ8i¤ŠjTº7B šíPâ[ÈQ½{urŠvMa^*ïVOa˜bISbuÙóïÝku¤JÛe½cBÛ\‰™Û{{Î÷\‰™SÕ‘W‹^yô«ÞgWdlöì-´äŸP£‰¶ò^³ì¥k×£{­Œ=áöö÷¶*÷­½ï>ö}YUömµí.öáIìÈ[Öõ(ž¬)¼÷¢Þ/7Vu1öY=í%Ž‘WsÛQcêG>ß6=çZÙ4gg•¾ÇÏnû9øR’ëÆ_vµ”—Îóøý.ÓTSòW(¥KË_—_Ÿß÷õ_Í]øÖûÞñù„Ê'oÄ(Šîöc߯½€T $D&"Æ94|L»“q6Õ‡–¡º †)w Â6ÌQD‰ÿÛ¸»•q•9Sú¥é½áƒINŒŸútŽî$7}_}“çϧí;êýO«ö?ô©/± ~6ÿLÌØ;~ïGÿ«þþñøü?ˆÅòm½½Þ)µWÞ‘Љ%4ÒýøªtTTwPjb¬äȨyKŨ›’Ë)ÊH ,ª—R"¢Sˆ©”«ÿE¹À…䃻vp_Õ¡bÅ(CmLÆ ˜ßê·†Ö6,§²«a S⬙`{)ä xWú„8‰/´¢ʈô˜Yf Ì\Q ¡]rRt¬¦…:R :ƒÒb¥¿Q€¨"¬©j >sœ«Õðò6a"†@!1é@9óÓðdVBPð¬ƒ9d¦’øá8‘BŠù(¯©.kÙÉàÜR¨VE n·Dƒ¯'r‡*¬€_1¦ 3 „Vª‘4T›•ʬ˜¡rˆnf\Ì‘éXg«Pß©àÜ ßKEí$®ºïÐo`Úöa†p"gÞ QfõîEEEóÔÇhs˜,Î#5~uÔN—“º‚!`pµ™Y{iÔÕ©‡^šä-øŒuÔV«…ÞEÎ8^½Ã¶ÎYhˌٸ¸f` ­½“25>Lç—µÈ{”³òvO¾¸ö&3ß`‡B.ü÷× Qv9À6þgo”&#§iL|W'«7\s*Éõ…³ÑŽJÙ•6ÕŽ=1ˆiçxªeýqw¢…©‚A†!D³€Œ§P§¼DKéŠ6ˆ¾¾žS˜ã±Ó$™ìô×ÏŸ^o¼ú޳ì)ùð/‡„$ m")ÊsP» ÿc+† ê4#)…hÖV{QQÍИ­þJ…B<±0Éib¶îâU‡ ›°ÎBàgí”ÿ\ðmóÚjïˆUE½Èg‰D‚Pº_Ï1–P¯Ç…ûë·íò}6W;%åÝÌ"{R»ù5YŪS˜Òåe˜A;ŠJŽcj±DÝi3Úu§µ!ˆFé|©ÆŠHù@+ÌLQ©„ZÙ¯†‡ÜÈËP ¥}2’uxdȹWpÈ…P`R„EI…ˆP‚ôÆIÚW+H ‚'W-7û-i09#ÔÔ$ØrT»l-va[ˆR„Ûn°-8¦•M oµÍ¤ Nz†­5Á,ÄO8"ZÝ#Ùh¤Iœc0*— Ö¸hY¦0¦µÊÚ“:6¦Jä¬Z¥˜+;(нYÍ´ÅRvy´)Sþ󧵚iéíQÀ‚ªGJmtÅjZ €„§P9MsfeH€”¥B˜¢KØ•lðöOu­äúú]9‘Ñ{ÏòzøÇ(Lg%ÖýüùÚ«¶YdQ†½ü˜÷Úôsôõet(At+Ÿ‰¡÷lw~¹±•©¾—çÙù_xù~übL«§ãIÏsK¸¢_òóô>ÄÃÒxZçár}ö?S¿Ã¸´txh…[OhOháë±`k‹ÝärãïWjø}µ÷ôUÑNpÌ/jd¢‰W”Þ¤V¼PˆÉD Ðt0³ÆyÆ1zt7C9Z0 *.ga:: D% S”É Ïv‰Zf–¢Áª’ªJFT ZÄý¨ËPš#ÓÃ4K›Éø*üßsÛê¼æ‚ßÁ½Ësš±>“Ñ@˜Í&é FyIÙîØ^Mjð‹ÓÒ ¥R@Pì%þRxJBI¤P›Co©‚—R€5¼ë-ì…zNkBP‚I¼®¸ÃØ6ÿeU £$ŒªÂe÷‡’µÔ@†"£§ÎÓ0{Q 4u³Ke8"¤4…JòD`™'jŒ…ž‚ø„¼ëjŠ)³åšÀ<ªu[½ ‚U¸¬C¨R(È2ö,"3<ê¤Î—3Îk™ßyµ>ÅÇo~V_eò2½ÇV€¯zý"–ÅŒ-8Lr•8¼í8pB6jU'Xœn×cÂE+ÉÔÿØqW‘ ÐFT'•>ó݃2=,ž¶¥ÿ4ÍÜ'2=Ù¸üAôCÀIõS?>+÷.;Œ±ïÚ_9†b”®J+õ<ä™ËØVJBˆ8'­ìa$*õf° „ÌXr–g÷7ë¹øÏ(wï°ªyJ¶‡žßµ¶ÙyM¸¾TNå’ϧ»ª]v§ÛïMˆÁÛ™ÕŠù“/¬¾!kç]J…Ï·ÈÓê‹tãµ’çÒG÷¦ÖSÃ…4ÕÊ Â ÄÓ,.S7ö ̇ U$ÝìÒqbt¨È,ÀÎÍe,©„€!E@í‡Ö+ÐyKëƒ}v!MÙp*…ĵ ¨ÔQ1›³ôdUÓɇÊ~^Ìs$0:ê‡Ô.œÚ®‚Œ‰ÀÞBlShåýnÆe£±À2¦ü®)CŒ½ÕÕÖ^f¿’÷J>\ä2WÉœ$ö=°¬Õ)˜bPÙQ?ß.¨FQ©Õ⩎ hÇø³(òß |³£ 65‘á… ÆŒdˆS›UårŸãLÐ$BßÁãƒDÉ^· A£þÙüqûe½ú`†‰üÂ˽³¼š‡‰u¿×lÖÈïãilð>’~6ú¥5×/¡O×W­¦ºê’ÏI6¾Þþþž—ã±ßDÓ÷ªþüÓ‰þ(AÚóøæ‰Î¿[ê§WÕº§ çé·:÷ë\oõoŸZzùKõßÝø4‹yú®¥Òü}eýÜ÷¼¥úængØÁù¶]ü|l9Ûó¹õ½Ÿïø~ý ˆ—¬{òû9'¤ô³!ufÕhšG’ò–Ù5\Ò–ù#5å&ªò¯öÙhT€|5Oµúw„ËrHç£{b†ç-)53—1\¤Ì3¦ èŒùlü£­ °³³…«eÙHÂÐð—©Ò,–±„§lSš²PŠhIY’›YÞ@ËàÞs ¬†žîeœ$Ùì(FüPRn+@ \$æàÕ&³!fBP«GIOÐÇ"¬RV²XÌ ‘mKN.Mìþš%*5«¾Í[.xÀtéh),£F­9$AŽn»½Zs²††,U(<ˆ·bŶ¤ÊÓPVÖŽeø lvKTìI´Ñ–M;H] –§M¬Øœˆ(Qd¤Ö»ZYÎ’<9 }¨SIa.˜ªá/;-‹ÒºËªJÕ½P….M4¥NÖTÆg™8„¥Í*çCÈ&¸´ã8Ä=À¢ {,·4a% ‹Š&’¶¯+ÙÛzÚyÍNÄ$CÏé§1µóic5y¾ÆZ½l 5+-¬5SÙP®Ó2PJ+ˆ^Ó\Ö„MNu³OQK©`ötBI+ÊïYªa,ø–$PeÉo~xzbs_&ó«}>%H`Ø-ù‘é+´àXꔸsÏýœïçÏ{Qg²H÷-öð‡Åï]í¼¢t’^7¡U¥ã¥i{9y^.‹8ì{u‡¥x¡™”ø#qÕŠß›n§¬Ä+wüÓw¿ òºqFŠŽ7Ú…Ç­· —O­ÊÒ賿²™&Š—9Ë‹®þ³)^Ž8Fk ‹€ƒ¤¼VÝ¿w££}”îÓßuîptïŽjÃÕaV˜*!À8“Jª=.²X¥f|Ó3”ŽÊG%0>)L t*õÌëñn¥­ó­qÏáž&7¡?Ü!—ÅøÛºÇ œuŽ¢–âÈ•3¯}hF\PÙglêÅ»eݤ›_zÐ5`3 5ôé«xMXe6T‰ÞÍÛ_[J˜d…~Uoâ¥d”¦wœ§¾Åç{_“ ±‚C!&S3$.œ"RIG±¾ZwEfànïÄÖ6ãI¯yâUl´ÓÖeØ¿ âµQ®·‘S¾zhy‹e(‰ÅíÜDa¶ <Çot×ÀÓ^xNm¦¹XñÂed;µƒ•Gøe¬ŸSE=RGŸ K&­ªIŸ^#ŒŠV[9tÞu<Þ¹Úµð1y±í(ôsîÔ*4¬{ãiwå³^‰§¢°]Ï, ¼–]pœÙuò¡ ±bàLÓM•¹WR „¡Àæ ìõˆwüwZ‰©…°`öæ—Ézõ´ø÷Õå+µÂ‡ïç¹r¡(É8JÍ÷çÔša;Â^j9éZ¤DQÕëDøçÃuBrCÅ6Ëéò…1áäÃ_š_µÇŽtG,Û•ã\Æe~–ÛcÃ~¥¼ò'`Êš¬Vd ¨.ò: ”|áµF¯¶á6Aµ.ÛNRígä¥âÉLâ}±!ÜÉË7ãQ×hÈL±i¼ëµå-I=¤5ºæÛtÙ¤NSUå>í ®g¸íâ˜~_Ê9ìu–j…Ï–ã±£=®“~1Þ5?ç5ë}ä–Âû¸áºÎ}m|ë‘1–(˜d¿d¡èî›X†Y¦o[eVø½`ù¡Ë$0 ¢¾V‡î¹åcoU¾ Ä$*8®Ü-Y5KÙiw´ñ=&Õ1‡yª$Ú€ÈÒý­u°î›HlÛz…ðúÙn:žÑußn¼,_uøà§bœ n²ºxÝyŸ~³±ÚéÎ?É­ÿ)åB;°/›X/Ë’ùë¯Ðó@–ôÃZ —Äõ+gß‹ÛIJŸ}=*œ@aå=±dÒ.«:%¼Ê¢;$PPŽ.Ù†²ÔÒçK"*¥ç¦ÙVàv8 P‡j[¢ªéާ6J‰‡¿­69zOÖ±ØÐn¼×ê×}»“¦ßyk9ú yÖ°^åRNs%LñÁMŸÌÉJ¼ ÖÝ<1n¹«ß¦š ›ÜÃ{ÓÞýmPð±mãÝ$è§–÷ÛGˆû‘Í­ÁË)ÝWLÃÁ¿¿ãVóµ¥vä¹²ûþ”ïÇ>=•eeÉÍïCxµ;G»+†…s®Ø¾òmÁU6þïÍg{Uo0]goޤÉ:­ýµã|ŠZ}¬´¸bŠÞÖ¡ ÏÒœ¤3 p ›Ï£üKi~Íõ¯W®Ì©?¯/½¸ó~¼ìýuÜqš ´Ùɤ=SäDvIb‘Vô\ú ÊNýR°ê‰Q@ƒm9ŠÜœï·SËrÛ½Ú¨•*‚ÙªoƒÃ Ã-ýà„Œ%(ƆžnÈ“øÉÓÂom7¶åÃäÇ`X OšÐ[;SC`“L´¼¨YÁxÉ„šSµ¶…«îö› f•2:¶Ïýdz}^ÉWâɲÌ8’<‹2un\–9c-ž•ò\@Wž(x¦,S)ÓÍë|l‘Ûê-ªëæ; í:S!¥, <æ€á4>Ö@)ÞÈü¿Û®Ø<Ó¹ªµ2Èaühá`ŸØLD2tK*EeÂÐf^'ÌÂÑ•Ñäê~=ëó'IkMßty&ƒ]PµqÙ=„t{"]ó¶§-qop5ÝÑ7¥¶ºxë0í-L7{K]>> {»ØbFÏ¢‹—Í‚X^ ¹íÍšK•ë/ß·ú¸»nIj¥„-‚xŸs­48õÅ«g½Õ³êؘXhö_2½ÜöOcš{&Ôì&î©íÕ´Ûj[-¶`ìOdö]¡ì›RضVÝ•ØVÒö;'´v-¤»ìí;[ Ú£Úd—b­”¶ Ù@ÚRvŠÅÔFÑ'²'±%ì °öOb¥ì—h©²£b{KÙPÙ+´-„;*^Ê«h«bÀ»¥J¶ Uìa%íQVÀ{Ð’l*;.ÉmeK²“²Sæ¯eO˜Òªù…{6žÅ±lYªÚ+Ý͔ضÙ6TìWµ6v¯iÝÖÉæ]§±; ¯aØ’^ОÒMdMª½‰Ù=‘v²lŽÊVÁôjªìUí>böžÉK²6;Sb£ØUØŽÔ d„½ª‰ì—hÚKiGc´¶B¯c²¥±´Øm+jö„›Úªop‡h;T»GµNÕPvSØ[PöUT;NÒhØ7qSj†Ê^Ñ•FÕ6E±M…¥; lˆÚ)´Oj=¨öEØUÍ%´OiImÚT½©ØB½¨»)Úv¦Á´½ˆö•ì©[ØÂm'µNÊmÒ=€ì½•6앱v6-¢Úì'´6'hžÒ›DÚS´½¥=•±^ÁÚ›*Ûbí©´NÅv«ÙW°ö;Qìö ´v’½—²Ma²ì«iSd­¤Ùi{ ØÑ6=ª6[&÷ íVÒ¯oiì µ#i[CÚ=6i-«b¶…ØUØ+°]¯jÚIv'´—d;EÚìv°[*ì!µW´lT¶RnèvÕl”íNÑÚVÓ´Ø÷¸l½›%íÙ/j«ÚOfÉšv;O`ÚmÓdö­¯o`øÕ/Œ6½ñÔÚí6ŠöÙ död»׳iµ6j&{ŒðHfg¡îÏt=“³ÙžÏtíaéâç,BœI“!žž;=Â÷q"œtô<ë4aéÛvÅ–gYlhwÏžò§» Íx8;gkdùƒæ{VÔFÄSwR¾jÔ½€ö'imE²l%²”“a[¶ k°• í@]ªöí-’;½”›*vª­±W²l•mSÝÔ¦Â{(öB¶¢{$ª=VÉ/h‡´–Å{EW`6 ­‚G²/e°mHlNÕvF®ǴHl’ì$» v%{B>H]”{H øÀvKhžÆÂ›h¯eSµ'jŽÎÇhžÃ°;R};>ešØÚjÚ‡b¼Ô½ÜžÔ=¯ay­­ƒÚ/j=‰Ú©ó'Íó.ÑOjžÛ'ÍUÙ/˜lªÙíGµ6mFÊö^ÓÚ^ÆhÛcµ6M…ÙJìvÙ6–ÑÚ•ì–Ï5^÷ ìÚØŸ4ì­ªmMˆî¼ù.¼î¢èÞÑWÑVqéO˜9Tìùí]Õ p¼†wŸÖwyGWÇyÇqz]åçœUÆV9ÑEÜwyYÙÝ”u˜NÙÝÞzt^uÝg{Û³‹¬mÙÐGQTwYÖw³q$•^tC"ðˆj^윧vIÏÔ†{k$Ô Â<ë=Ù3WpIÒfËÝ“§”åîÉÝ“²IÒ¹8$> >Hó?$šž‡¥aÏUÆG­“ 5$®F¿ ÷«ï]Ÿ9Ô¡ªÐ^‰ì2yÆŠ— žDUæŠ º£µrƒ‹«aE™u3™ëW"£ž)Ö^ÓQrõlÒDH¯9µÙÉ2£6b¥×mr[o6…òÒó¢aG»TW"ª;ÎìžeU^®‡mÆ]­$ÚáAÒ%1#’ÚȪ0ç·.9åT´[ϼûe_{{ÅmªgŒ’\Ý Ë–âé#RvØÎh­u[ªçˆadÓК‡29…DÔª“PèÊ®sÖ¹k­$mZÂ/ £J6&¥Úí]Tk3;žÏ()·jRe]Hb†®lá0æ¢Eì–A`’y{*aŠÀªš­d\¨FѲѵ9åÜ™ï`‘AÂJ%HET"¼ÑI›3<½"¼Õª¦BgºmrbtlI¶ãæ5"3gUm ¬ëQE«6zBÔ¨Ö¶Vn¡)Uj³E{du$í×½¸Õ‡ Ó›@Š:‡”déåéÏh´l/jì¯#¤ºQÏlDû4»Í¹än¸…mÆGD9暦U§Ö·½y<$™3!­»zÚï="–ªÔBgG´ŽôXi¶”xöGµä•òÖ|‡õ<ûò÷îž”Gö¨#ù?-çÉ)’Ëù¦ª\‚XLCH¨E`$¿†*b¿ö —Ÿ•²U\'û“&3Žb¹¿o‘yçžyäyÿ/žyçžDõÿÏ÷¿Ûÿäíÿm~âÿÞ¿ýÜì8¢ÚœiÕP* í°/•ÒçÌÈšLåmOúú†Ö'TÜæîÅ* »uCNV&A4¤FUç#;—ææ„n=ºJ˜Û˜¼Ì7VA×—ºÞ%c2]´¥Ô­±Ë¼½Ð6ƒ”\Ú,äNÙôß³Ñ#Ú;å­A•Çšå2º9îJÁᜇšÀR\Ü ,MovÓqBîdwDéZ\äštÅÂ[‘eÁwRõFgò{}1EÝõí¸\·]âW´1E ˜3G”íðÁÉ+xTðFLÊhZs|Õ¢ hn°Äi–¼4±¢1ÜNh˃‡ªùª«Ù ’æKàBöˆ¬1a(í1ÙºóEDƒ-G)=®®ß¥½À•p)ÃG5P9Ó8ñ¬ äaægMán VNÉaì:›VËš/ÀÞU¶Sƒm13&áTLÅ€è\9¹ÇòN_!wr:=“¬ÂAHÝ­4À®nBªË‹Œ1&ÑÑì}v‚,Sëé.Bé9R/Ú {\wÛ„¸c‹ÁØöµSÙ¾äöŒJVyR&ÎsH "^Y‡‡v|̯ø5̱{»yÊPÆÅgó¯;ÏKÙ•Vö‰]¸q4½Y©û1Ę̀$éTJ…kòpœPn&È‘Y`îå" 5fÿâ1ãB#¹™qï˙Þܚ'šb÷N;üf‹\ÏÓ¹òëÎBK~»|ù—.‘©öQüý(Îè÷cIøÝ¹‹;)‚ˆ¡¶0èàè0ÅÒ²¦Ë™Ô‚Á{f®¼¯C 3 Û $“JÊ-»Øè*Ö¬Mƒ@°¼5ŽUx IÒ­ºm¼­N£ªäkdQöYŽe6"|Éç²µU²P'T)ìˆC»ËxµVvÉÜF€"¤­Y‚µ|™¿Ï;6s!¡RI•¯µÂÍ5D ºŒáòÊ •ªQ˜ЄF@('e{” &ë ð0ûµca×<èv+Êïx-Q0YtØI£f´ìaLéu'5cÉߨÌf¹pÈ$î—Xå¨!¥íA"i0ZÕÉZmƒ’–Ó¦YIç] H©6Y‘“º=©¤0ˆGWÖz¡ Áª¶I¡$W­ $:8hl*Ì@‘-*4Rd¢ÊÌ%}…VêáX¶iv™ÔK¢©ƒž¥¹mD]N&S”òX•ëí5\Mufäé0˜a6¢ÌZ¡©,òÕ'jPÁñkt첪ìG?5ãªéøÔcmÝö? µ…šRâdþÃda¼«Õ$ °Šö‰¾(ô,6]•xÂïŒöL9¿Ê¿›Ì™P›ŠXçÓÁ8@ýÌ’<͉2ªOá/Õ˲/Ðÿ%_g86P2žý“ÊT¥È™\¿ÎÑXŽ2z-.1B¢›LðKiroy•Ú5ùUpìÃù¯ð2“bˆôé[ÉGÎ×¥Ž+U˜IÈxÁÚÎ5…©Vh괵㠦|¹üûù|üûœ$.|w3ÒfÑ“1€qÎ!@€ ,ÿ ƒ5¯¿Ç }Ñ6{s3{Ç»³‚ñN³º ;ìRäæïfÄ‘‘¹¹ ÍT¬”«ñ}»Ãi½‚y´£vkHÊÇÆnÔR@ +™¯Î½É*`Ì÷ï®èá½èÛ¥_›%upo:PäpˆÄÒhŽçH “N®¿ÛË´‚ªÔÅÌ-1ýäQt=©úà/‘óìpî.é¦Þ³ØC'êˆX`BVü=˜3‹tô_lª÷ßbþ“ì­Ô$ç.¹ÜÏ86ÃÁ9Ç2o`=üu¿(Šëï@æ©[˜eÕÝTœžfO/š &+,ÔŸòæ»ë¢äJÓjÈf1³újÝGêác}\áýÿ/G±÷|‰àõ3ªÅ.Ê\‰û¨3Óºœî]—oœ­ }wçßÅî ^þyÔDN‚=>ÖnU­aŒMF`ÕöC¡­ Œ¢TÄ@e@3¤ÁÉÁ|öz.lƒŸÍÃ(À]Gx(Bî%Ú6‡2ÿ&Cay íŒ"„R×F0”€v`ç,œ8þ3™Ó Ó°J¥h¸?Š·™y_¡zf£-ÎÍCü·X6ÃÙ¶Ù ¾-+æÔ8´³‰ÍèÔbdLâ,ûiˆ}:€¿A;ü®ò¾i•³vÂØÅÄ„…”£ ס¸§±ï™8ÉÄŒ_$D8nNŸ¶CË¢(²ÿ…|uÌø¢»Vº2!‹<Ãfúù„@äPü‡T61u^Ó¹XðâüéÆêùV>g‘ˉ×T&¦Ä> u4¹•<š ‡*ª„q˜T· ,âeÅ_ƒë³5q°6~¯ÜËØ݉Ɏº¶žFw•bq›—ïo£³Ây0·ÌÖ ‡¨àÑ3p¢FÅPÙè… Ï­Ë½Wœî<˹~⬀‰R  º©¡ULCu˜½ú¥±À6ø¥¡I©K…ÿﳋ”´á7FöÍ?¢ä(¸a8-òleUÚ3³k‰¡uÊläÑDå\Úö¦f&м— ˆ’Aÿ=~=ãçè:Ö/9^Ž2õõküÏœÿ.Ñù÷êd9~ýÎ_†ø KoŸè>~s’ˆÎ:¨ÓÌdë̼n±jÓÍs÷ÓZC—u'ü}6m_™cŠÍ*Ùå3× Fß ço{j<ÓæÇß©Së×t޽ñ…âs¯Ÿ¿Í>¶¯†oË·à(Ûßßë?˜çé9§Ïúªmñ½»ýx”S=ñ®øükŠûè)äÇ|üz_Ÿîãé:óú¡wëG?вU%÷O½íšc;íùÇ®kãõçò\Þ•ãí~‡¿Y¸ë\ïóïI}úªx÷åÖÿ= ¹Æu¤ ·õùóû߯¼ó>OØX”ø>™ 2C£÷ã̼{¥ü~«ùüÁîº}ý÷,ñ0ø>§½JqF)uZÛ7¥Š?™ã¶ uRúÈ{ê¦\tI/çîÆ¨32¯ó%lo”” ÿMQ© y?თï%O!MoýñÇ–ýÜ+Ìã—E¡GõÿF;ûý~ÿ_ŸáJ`¬Ó88û|)A#Š{"B† ‚`Àí¸¹ƒTfŸ)¡%à …¹¾iS2r&é,Õ! Ñ$Ìa×B X®MA‘—sŒ6Œ]s[Ÿî’×$8d€ Ldw»™/ÅWÒ õÏ0ÉŠ“8!ÀðäÀ[ ZR eRˆ•ûÊxs"œÑCZ©5wŒZ:2²,¹©0Lâ³æ`) ¢”àŒŸ_kœ~r(.bφ]Œ¨þæÜ´´FdÑz­EH‡¸èñ„:XŒŒ÷V“*NWÅ—9áøÅB#]'!ä˃L/o Áÿ‹~<ï&fTˆ 0½åwrý¨T࢖$†Ó4Çp¼ñKÞÝ÷ê>½ß{êô?Œ¸?Ò°ÌÁÜBS ÈÊ *4\Ùë7*Õ$62DkÅéy@)“0P@ô*0³™âpëW Œäôe´™Yð‡$ LT „Õ1ûs˜VDFX ݰÉ@ˬÒä],®=ìØšÏ­èÖÄ\S¿Sîlýú± ˜«À!ƒÑ%IQL¸ÄY½œdc5¡U íü¼ŒV×t0À{[îÄßmÕs%£ÊPã†$ºŸÇ9†§_~ 곑´£V¶q;Á,wÃÈBF‹¹^B¢/ÚJR I%4KQ/8¬€È¡ˆI*#•î€CeLç÷Jàj:ê=Ù†±A]å÷ûžÅ}¼yßoÓõO'P{$4Á5Z)ÖJ+jM(¨v§F<ç‘áç*âüo!0”kË[–úP´çkW­q¾,‘´¶„â¢Nš"ÃZs**MìJc'»ÚyD¾%AbXµ°`Jˆæ‰óµ·-iKC”±H‰%VVDÖTA}ê–´5}¨Ø?oÌ‚’¶gÀíÍeµßHP±ª=I1ÖªŠÒ⵺í<‡+óÄ^•5ƒë<;Ä‚R“Çic7ÁHè¥Çm댱O*btFyxJ­_'ÅUê³ –&‰~o꜋ ?>z< ëO8bc€Í/2Ô§AY9‚WŒßÇyç.%âp!nºp¿A¶çƒNüu¦ç(b)¬e cG„N[2=)Ò¡~3&½¶ÈÚ¢1;»._j÷”xV¤¦ÔÎï |ÎÃ$œöP!zÇV ¨5Ù̽×j®óÈãød…¬okI±µãT[¾dZ]Ý&8ýnGEÕÇ q´€CÄ¥­Jš2L 2P7:b~Ýð‚°Ž™£ö^¦ ð|úœ þèò >'J^áIÒ(é¹ói˜ñyÐÊŽt,òç¼@G¼|ïõF-±m™îC5£wÈ|Uy—õ+Í·^'S[!œ_e Ó2„ÌPµoT¯o)s5Éo94®\rûùIsÄq»íˆ½8)¯ÄÞ|عS¤óL RÌ=UÉÙX-¿‹Ýî9ÐÓ8–Mm’?´§‚–)lòiŠrû%@,8j¶ó4oiÆýû—bºzék£³Èå  8§É>¤[VŠ,½¥zrçõ5_L [›QÖG¡Wì¦UPçÔ-Û‡G#¡VR*Z–&â¥õRoî靿Á¹ßý}èïÀïÄ¡4Ïi [‡ùžJ¥,{\|k3L£.9¢OO‘¦Mž<¤Noa>.È sæXÞ’Z¬øeWàAÈx‹Éݳ*Ì67ñr”Áí]^ #·‡%¾‰ T«=r…#êÊ”U$7} ¤Æ{J[VvÚ¦©1±ÿ\ó°&sÁ××ÁT7uŒ.JÕ}óí*Ü©±Ò€ü⟮³|JàU5µ&Î}Ý“ãÖà×ÛÂÕ2`Ç0¹¢Ðq—HòÉÑUœ½úMéXΆCi-ã2hÄ¢¨}?4³1É ¦‹N°vO‡˜#„¶væˆÖ{HD7ŒF¡5?WÍg-T:ìè´ó·uYïŸqw÷ßeÎÝsOç;„Çn°\=Blñ^U-@b;&eEÛåö”}uMÖ÷^y¬ýua§KAàüaÛg {ûW¨æH8ƒ ì•loÓ†¨TÂnÊS ï¢YkØ•í÷a-ߛ߇âþR[bòžŠxÝËfå ~uå·ð,ýu&™52ú !ë~~-˜õ’ë‰ñZïŽ8¯€ÙKòr;ÑÃu–K•PؤK·©”¼k@—¨¿6ÜzÇzÅ9œë N)‰Ž(B`à¯ÌœØ6Fj”ÞÏRÅiVHãcÛ‡½é[rÇëPΕ« 8±ÊZóàç¿Z. Ã7|­VK·VÔ»Í6µëÄ×3 ŒbdÝ ¥—a"ä7ºõø¶©æu]ºÕ‚Ú4œ¶'qYÁ‚›zœ.x¥Õ)­`ëEµIPÏZ¥ßOÑEd¤}½3ž{¨Fçäõ½> ™vv÷„šg‡¿jA»`'qË„ñÔZa‰Ï›÷Úç¿›>_4,O~H´›–ÙÉÖ(ž7âlü,ÜG¸à%Å'$ó{q‚l|6¨ä$öð@Œ5ݘ+ÈøÞS3ôÅhÒìGS dãïTr§‰<{"¦¼·|JH³4ܲa]æ©ÖO.ešÅ©·þ>åq‡Ò° wTWfóÉï½Ô‹Åjd2%‚!¨xÿ¾7÷Mù!ÌGÎçmá}Öܧ}{ãL‘ÐڒبU‰ÈoIüñŪ-Þ§ÅU”Ç…7ð]¼„)´Ï›sõÐ(W\káɾ[žP¶Õ×ýX·øª×i·¯ÓuWÜ¡s· ŠÈüÆö(I5íNÓMT®:Ì_•DÆ’ÉM¡ér[„º—ØÇøÖéÑm5Ò0ôñxŽæ»sÞ¢î2ÞéÕ­`º£9æÍ&ÏÚö»·ókÏQiÝáæa¸µzçuΤkŸöþeI]<”›û€Ø=½½½ƒÛëå ©-–Û&ѵ&ËdÛ¢¨î:‹¸„£»Ž::ާ."â" "åVÄ[eÔ›M£j¶“fÀµ£j¶KhÛhÖ6ÚÙP ¨‹dQ´ alIµ+emi ¤mFÅl“fÀÚ¶6¶­ª¶I²mmU±´l¥´ÚÙ™tG]E\E\EÜÑTuÄPuwEÔ\Gqqq]D]Åp\WAÝIÔ]$GGQrÜtwÔuÉuÑÝÅqws”Ñ\I\DäÐäW PQ\TwÄ\rœâŽBq)'pÉrT§EDuIÄĉ#‰‡Pr”"ÛY›Lm¦36Ïæ X?d¯î^•’§ôæÝ§~Ž“Óùú_ŽÇÚï^Ûnœù6#]¬5×í/=ò{ˆþÍ8~{0­™-ÿÉÌa)©ÐaÌDÓKRRjŒÒTÙ†Ž;»2h/Ó·Ï|ß'¿ÿôûêŸQŸ]þÿawýpè‡   ‘)ÒS „„•’$’âGtQÀ:‰É#ç‘ÑGP$Kœèé!âr'/Ô¾•ôŸHÌ~»y»3$ª¢9É休 RÑSV·[Z®U„^ÕÖŒÉLHˆ™ØXTU"&gVˆVôeôyÊ 9ɘchÜí„K 6{t’(%?Úvóœ[X}ì.ñU´4mÍSP½$®× ‚~½®óÓ<¤3fDÚ‡L,’,öCÖ“oõÁ—½ \žy¬‘øü}ãßœ Ï Geßi=SéÙû<Õ*T·-,±st$H¦·ÞÊë7£À»bÓJ¤¥‚”ݵ˜I>ßiõÑ2ý[`Àç¤u„^œæ2I$æG‘éi>C&ó(L‰÷£L^ÝNºÔˆL<‰Îz˜yyE]l½œ8‘”0„ŽlURQ £rŽ®ëL*Úâu ÁSSª ½D>Æ7=5,ÚÏjÍ2)Dòme®ÙŽ›¨˜ªŸœî¦¡yåTóÓÍ·.ç‘h»Wº23u®•G4K"©(¯œ¸„¶—\B¶‰Â¼·±Šöö•|üûÑEò¥g|ñår{;eUAuÛ/8ó{ÏÜzE6ú¯­¡$å^åù3P‹äT…Ïvy¾Ý'(yïä/>Ûr,W4|kÌž<ì3 Ô+uë&èck¾e=1{^cÓC SjãÉç‹ÛzQŸ£»ç ?}¶o$¨ªæZÈe12^²9®Yéèz¡ôB¦+;#HމÊÕË ËJT¤:-G´óäž|Û'Ø>~=|™EzJ)RcAœ"š2e(Uæ.“hÎU7¬µz¾»áòRo2d‡Û®Î}¼ç¯hUÎÐ:6ñŽÎZu0÷Š­aì<5ÔBç¬15rb]®R¥¯ñ;% +/\U=ír‹ÎÖÌÊ:¹L29-#»Q–Á"Ó´â"OƇñk‹ï½î5r¬•tØÖ4L’ s×£b5í+æ™ë§¨PDhvq ò…Z.P¨½CÏaŠ…ó$Q’ØÚ¾‚Àò’¤5\ù„Õ3\¤¬•rQ{~7Ïá߂󍫿O“½’~züW–cÎ$4ÆMaÜ9,ÍBòM1P¨¢»ÛB_c9¥¤½bI|I¶ÑVrÉ=o·^„¯jx•2æ´è'0ù/JÀÕz7hZ…Ì™å*R f\öÖÁ²BÏ ë#ä¨óÍÛ:-òeryéÄô„¯rö5ÆWç=òHx~sYУI]ÎB,’¨¢(Õæ|Ây°%lG›^TE×3¶LÔÅÊ­g"+Šžv°(¶ÝnŠˆyÞE—ãVìÊ$}·="÷Fê=T¨‚«Ì„Ô—M/7·NÚq±(¦©#A—l¦Ûm.屚ÜåIftFzE¢&]IÞôyóØE ®ÂNr:Q³kF1lëtôQÍ—"‰ݯlŽ!yBd—¼ŒI´Z!‡’Lã±=/ïo›éù.’Ò •žÊå¤JŠz™6nÉÙæºW[w+C]œ†š¤ö=½¶žYNJìÃ&¢íëÏ–j¢TY6¤ÚíKܽ¡T‡I>dzrªHÌlAžÔ/eJX^Gš“¶”ÊûÛ½^vKä”מ2™“²_$B/ys¶ ÜȽMÍ*ô=¨TÐ×*ZÙ«µ1§ ó£ÃÎ)µžuÙ—D*”£GLk ‡…åÚåúÞ=„™„y©E¨$ êšU ìÚ SȺ^%mÊK†Ò[A˜zif%É}mìÄJtÖÌÃ;sÛiØgy,“ÓD"¢½W.¬5Æv"e¶âöL‹ÝWu\ŠðŠæq­®œö£g¨^yÔ¦ŒR†-BÔ¯; m•g…Þ>Ó£Èê–ƒ3‹9h3á›ÚÑDÄ“y÷kÔz½O­˜Ÿ7½}í–•cí·WO ®Œö(”Š‹”õ=k­,Ì=š¡Ï;·Þ÷&Z<š¡G‡SÄhú‘T»kØ¡†¨¢zÖ4š* ‚›ž'bÕÓ%Òôñ-d·.BÊTª±Lš¹yVkar¼Ó] “!µ&{žD˜“ ›SÄ)h§g…É“<)$ÕÓ;o^MA2ÙÖ’ ±Œk4™kf¯4dˆÂô*3ÒI.lœ³>­² èÚëFMbÖV*«=<¨÷jlç$‹Ùáˆ-KZÊ+FsŠ„G=¦³Â/¢L¢¾ByÃ2VÂÉòF*EÉH(vr±B’ 2 =[”U Žs’CWèö#ëW¦F4ßhÅæjáÕ +]'k:UHYXuŒÜÀ¹“$’¨†Õ¥á粪QÕC,‰0ÄæDFÌì†Ô…¡C-Ô2²×dÈèghL’d´;ÙDYžœÙ‘2•¦¹C ïÔÑêSÛ¥I1YâF¨ÆÊ£õ·œ¢u¾=ÊÚù2ð³lf!q2µJòRÁh6X™Y;/Wd%Ô=IH¹Ù‰k3œ™÷£ŒrН£Q$úŽÏ/›…×cM,ÓÙlg®Qfç^EíªÉfN3lØ-Ì´›jwHâ§RQVNÌŽ”‡¹æŠ‡n—K«—² <³2BU2ÒˆÔ¥Ó*ÍL]!´Zq1\¦DCZB Ȧº$­¸É¢\Ù¸m€ÈúÉÚnYFmÍÙNtú=n^åéåx–‡ÚSq”xk²g”Ô¤éÚžm°ñ;D8y¶S&™$^«¤Gˆ—c¡0L‰Ê<<14 \ð´*Óòõä—ÁV¸ådŠÊ˜s×¶Þ"w*2½Tö¢LägnPrA!¹0‚÷2mÞÛy5jEM\M2üù3äJ9ttºÊòÉ}v}í±©’°à¶rÖÝÛB<ÕEÈ30¯fzˆát­*ÍÖ†# OLÆÐ«›vÓÙÞaÄ>zLó©›—’¡A1E³h\†W¡*.ç]f«š2d-CÛ¡<¿90‡•uµÛ]©BTœô.ØR²±DŒ;.E…I‡©6”jPM¬¨ª›6îÎWY„U“T¨¸xb…xÎLܱY²CjÔQB#]åæžÑËÂêֱÈ&’jTXIuÓÆHeéÆâÒêâ{EÆNPUíDÏ)LÖ¬8AqºÕÏVsÛuXt+&(­ªÈb¶n^&D©ÚåQĤ“ÔÃuÝ’eÐ/ãPg•W‰E®˜{R´aPQWPÃu}¥{!›æ£0ÈòδšÆw–‡x{9Ú´S*®IÔ*‚ôºÏ% g&r9ùÜ*¼á¡Š„õÆÝ ÖÓm˜åàÚ ’{<Í­]+Ù6‚‹3Ú©µhÚ«"­7ZÙXnª99 ë¨S Ê&p©¡Œ®u@¦[¥9£µ;VÙœFUÚ1µÊ¹E XÈg½“¶¬kò"«FºQ{=ªé!³6.''3r™9{ &t](ȪF¬[Z†§gvåvҘɳ/í´EH×ÒÄ¢“ÒÖfRØäŽ"ŽÊÊ->m=æ5)žìó¨R¨iž2½#] ijJá¡•…NÉ:H™Eªn霆×dœ‹Âò´5®-ÛO%°IW;S™5ÐOjîqL£1•jÃ-0Q 5pó"%HôÙ”Dú™…ñÝ´ jžœ!b¢RÍ‘-°‹•6» •[,mÙ—!'VNÕ;–‰ÏB’I$‹’T\$äuÝ%˜‡µ*åC'I˜¤Mc g9´j®&²c&jìÉÙê4LZ1dÈJÚ™RZ§W4¹ÎV3ž´d A‘×,«¶PЬ1*:ÈèéË]G&–Zë’HU(Rzz}¬CÞ&z¹M)i%R›¢µå"†-¡Ò¼ŒAž5´›¨œí±ž];mέuFÍÙâBLñ$”‚‚Ïk¶Gª®ª*ÑKS&{µ¶Û)ËÅC®È²¥ÏNÉ º…ª®“"$®r»2ôŠ4ÐçIžÍM:3Èñž­¹ÔÎv²(Lœ³©W<™É¦D^a¦Ö0—H³!!*²õIh^Á•Í"›Y³pšsW\ŠE´¶³Å¶USfÊí¶ÔŠS,•KRUÑ6\°êyV¢§E†±tÂ*d[¢îÍL}‹ÍåCe5³R†ÖSZÛ(D¡k©Î1KÁ«“[mÄäÎg*4ÖÙLWg¶§¥EvÙ.y¬¨‰³ L¢ÆÆTœ›íïyì‹¢ìœc7Ÿz’U‰¥˜Hx¼Â9†‰åÌ#©*YÉfè×K«4ôÒ#Qì"ÍAµ©C”“µwd\ìlZç‘›²Hë†iå­¡×q#1 Žº×g-tîQÛ½ïn®½BÔ¥W*¹J#.ÛŒ+"Q=“WeKæIì<³±j3ܳѴƪÚ©u<í¦p®M;‘[NÑ“h5/g/9„xY³³Ëµ’ívCP¼¦Oh—Ñ4ÒÈ"O«É1±Œ›Q= ªÃí·lª]¶ks¶3h^ÃÆ­§œ¯H´Z³žê6ÎN^XC+–‰$uçÝæ<=1T…<øÆ×OHšèz–iIŒ›+œ¬"º—×[eÕ™ÎzfêrÞœ<’×Tù²^¶l…籯 ·vÛɜú´Hµhʺ^ëYÍCCHìJ ŽEDÉ­¤aɤÎq¶'›Zªi]§J¥ Éjq­.z\,’¼dµ ñ4GžÈ¢£Ç=è•Uï Ñy|›×ÐÝ$ù½ryƒ9žSÕæ=m–Ë‹iUÍIHˆ¤ñ%uØ¢òTöså¡{Û fíJ¥2¶·I3Õ¶¥¨3L“+Ùê¤&yõêåÚî‘qâ LöOœ„ù÷¡(n¤CÑ6ØŠ†ê LÐï=æì±í’6Òï!J!Tƒlúèô$E;áUOŠù<'93­³hí)²Æ¥”zA Â.‘cjÛ5<šY¶ÚÚª”Š­ëÂøj+ZÓÚnå(ŸXM5]W B(±Km·®ÎND}ÖuTFe%§¥y(Y3•æÓÞg)44a#"ª ÑŠŠª|]&£Û[>ông¦AzöÐö]rù ²^»2¹¼ï$ák²Õí"9ç{uq5L‹Ñ ÞTœˆš.ÞÆðú¶¤¬&•\$“ÖôcÉWŸ ù}]íïo¯oDöLê îö!yí ÉžÎE¢_½óï…îš:x®÷¼½{©‡½>Æ}ìîizjÛ:ºY<› "£(ÓrSzw´>ì3Ø}s¶˜C§xÚÝy-HmÖ¥T^AÌ›m'ŸzóÃ0«|Þ©<»ìg½A缉gg¬—LÈY§·½ƒïSï^äo²ñê÷˜™•d¯{Ùe=²¢3ËÛ6q+ ²^Û'„“Ï*ÞÛygP/w¢y«:ܤh} èïx…+©£>÷{•,¢çŒgǽ½¼måõl—\†Ä(’C oXA;ÓF=míÓéºõ †1ìeGÒ^¯^^ÒA±n϶±é%=Þo{xÅžd“ÉIåÄu{}¯¾û"«á½B¢Þúö}ßÛ°í±N× ” Þd^Ìã©âعògµí®óéõ·¡OR̦Ëè“I/œæY¤^‰ºô]^öÜ{ÙÄžT£&çÕs¯=áó>[aè´®cΧÕÙ!ó –Ɖ7½…^¡«µ½±¯c±x±>¼é^NXŠXQ^ûâ=äzm£+ìÍí*ÊÇŸ!½éçzÆÜع¹ZVæ½nÌhÉb^|”’yõíí"ˆJˆšvѬ£ïf+,L"=zû_zßmï[·¥œ‹è‡ÞÕÈ·¯iäÅ©ï£Î}ªØœ†„nø&ôiŒ™FÒŒÎ'Þ à¨ÉFô^ŸokÇͯj7;r‹ªyç™±[ïoUë}öÕóöÙ_Cëi4»l ëÆ7£Á;·¾ûî|[sª=ØÞ¼÷ÍzùòZÞ÷Ôuõ('';‚‡!ÀP" Èâ':)Ç"ä㈢#œ’I’RDÇGPœáÜŠr8¥$N#6Ó[[kmfÙýõB"ÿ8yëÿoÿÃáü1þÈÿ©9T )H©MR…TZ¦àÙiR•1 n)(š¥å10i ´?lÀ¦ÈÄfˆ„§-¦ †PKn!Kò¸‰„CƒuB„ù•u82òØD Hn­‡…qfJ!:£4X«2 m!ˆ!ʆ„¹,KO~Ú»ðOõð¶@´†\¥U@èS5f|°¹¥ÊÚÚ(±6ü­Ë?Ë5†Ed/ð™D°qãt'…S‚²áÁtäWõr6êÚÚ+j (t¼n²‹2)%BA"SpÕ×,ÊԲΠ¬—vŠ’UÒ N<èœÏ¢³6±Uì8¹.EÑyW†çØlFÁ¢aчWž]M=dÅ]@s·sµÆö¹R3·³*Nfrá¢êCsæ6+öé6\8 ®Ï6ðjÄ6æi3[Ä¢«Ày˜®´;‰ÍCš3`ÍV³+¥½äŒ‡ªë-Õcž‡Ë5ގŪ¢íuM/Dûûyè‹=Àâ`ûÑÊU=Ö¶ýÇf+–"\¹•1Èù12AŠà›=Ÿ(h.nqÍŽv‹ëRù=ùÞ:Žx£„£ÁÖã‚w}Š.UHëÚÓ6]ÆËô_§~F.(¾ó‘™Ý˜-Ìõ˜×=¨ àŒ‘ÉCÙâ‘FûJþ{¿Õ¸G·ëùíö³åŠyuè`ìªD]îh™zíIšÚ6®CqÈ⺑Xù|œqWqò¢4}W£4ÐŒí¨–cìÂÕó þ~ÃïB<©&s>ªÜÒ[ØÏúýñ`za¥=h‘ìºÈXT«wSrÅs‘¯ˆ“bœo/Ýç]ÌWÍ£*ò¿¢/Ÿ9òÌqÕ¯qµs7GÁEÊ}{ô‡¸°vïJ__æ8¿œ˜q"I(Ï”&—u©SSUbÉ@S7ªÔ`/uÎl´´LÀÁFZç@U¤7*„/5Y‡Ê›–¨Ûuí~Šê®Fç&oåxï]?Ürÿ¯ýä¯Ä ¦å£µ°Lò„;ž Çy»“bª5‰Û=ùtÇçÚB'qÊôõ¬5™uxý“³ƒþzó¼ìYý_.@Û‘ßpÄßÑF½¢B ;Š@dAPÞ {æ—{œX­;èÎ{@òÀô*Ò· Ð.‚÷AHš:Qi2˜4€fÈtž¬íü`Ì4h®g2¨õ=ô[ç{ÊÑß°ýûV7úþ<]´)“õEÓ‰‘:æ™É ¹œå»œHÂd$óa Qî†+yi-X†…3ÛUVÀWÂûŒtO!Àør½Î/?=ü+«TÚD 4ê¥Ã‚Ôiý¦ƒ;fžÕsJÞ–Y¤fÓ+3T$À$iØ”Ž••-7‘ÖHÖ{KWaAw„²DËñí?e/˜ß§‘èï}ä1 ¿Œ¬ ½HÊn«ÞDÝó.D|Œ×yêÁ¢·"â¹v‰ÜÉÛ.±©Y!Iá&T”BQ}¦ÿí“]©IÙÅXÁ2šÕœUêC éCOòŽáÞÐÛHÙ¨B;ò˜ÍŠr“t¡,Þõv²-þž×⢢éŒ;ÒkíOÆtåÌÒ-A;¡¡°À$$VpwwÀÖ$aIPÏ Î|1QŠ¢r\p‡¡ÅW µ±)9«„{+_åÓÏÕXþÀ]g.dÉú¼¯o#ó÷FLrÑV|==ŠÕ7´Hë¬è¦B(¡´ê©zPjõ1 ¹Ô“ïµu ûé‘g7Ýš[Qô·f¾¤¦¨[ ãƒ=ê"'årFê~TýçFûŸ9ò/ßo¼NÁõ.ÎW«†^hErëë2¢ÂãäNHÈ—éš,8§5:ŒPOôO¼Vªfë°áQõ²3BüCùö9ï¾YN>úâ»ý(ÅÒi†;H^Åc+ÒE:ruÞLv½(õ±Ãǵ!äÚFvOÕ˜£§cbQÕS^¯Ñ½Ëì÷~¿&`ö3®…µ·rûÔ ê°âïþ5?åú_9ê]Þlª z*æ>dçÁÄŸZ®J¼z·—dÁ»üQä¨<õiS\¡Ê9NÓ†.‡O[Òýêf”sƒ«¿Aî]ÌÌ2@™ùóØÌ_(à˜&Œ@“ò}QóO£NRq'bþOÖÑ®BÉåÅpðß"dFì©’tt¸“<ùkÚОyg߇UïÀ8EÔ 7»)“b"PÑð1ª'"džóµ<9Îr¦89¹Ÿ°f@Q1aź‰"CÕBj´eR‘(P¡”Äý8ÕR]iø§Í<€Ë‰qMöP׊ï bý{—Ÿ?ºOœúó~<+3µþ÷N³¯Zø2ôba¹y91*¢ ‹‰Iû‘.û©D*l&¤(TØèþ´ä¥­âW2™Æl€Å–h¼’‹ßòguN´žuò¯œÝåg͵WÉÕþ«õÐ >ñŒ|ü‰n!CËýPš·.9v½Û=¾ÃÁÒûŸÏ¯Ñ}}þHÛâŸãOõ“wU0Td+Ìœ$‚4=ö*¨L«ÛæÛ®êy`!¬¦V#"1IÛT­ÏŠÜ-š`2¤ÄbVqù¾Ôì­KX-¸…qgèøLòÕ=zñ ]§àºØ ´õoT—ŠéÀJŸ¼¬©Z•(JPñ~€‚¶ PŒ)Ħ2¨"Õ-"¯”\í?+VÁù P-d=—>ÐÐZ¥B Ö“„vÞ%:ò‰9ù€`ç6³©Ò¿+sˆôWÕ“K­¨”·[Ùé4Ü«5àÃc—do5¼Ï¤¸ûví+¯ÏŒ›|œå+…6Ëë~Ó™Îr–óŠì¸’ÝóÖêú¶*¹®Ñà8‘Ê”î_ Ë@ó.¹LT? šRVñVêå{çW|…*{¬¨ŸŠÆZó /ƒq+ m7ïͶ“¶ë“ñL,p$U–­¶¯DŠÎ8˜óB=¼ÖÖ“ü V·$/¼<ÜOj+àöN–(Ba)‹X®e­bÃ|[Æ×:×FoÝwÚ¦÷¸okBHöJDIcf¼å •Œ2¯D*HjÏ×&¡Æ4Jõ,Ÿ†sõÆÉ ;ïØ¤ø{EêŒ#cál¹~–»wªo=Vr·ÙÜŠðê˜Ï D…'ë1!Åw¢@I‹dä†:Ï6µYÀ©^Ê–Qd\oHš{ETƒ¢ÞÚŠô¥VBö•D8X}@ËY™gÁíÜÃɉÇò·ç2¼.Þøøòy{qÌ^þ×ï¿2? %•N%.oçÅò´+yä¨ÕæÅÖÙ“sµµï°~Ö©åKͳÏåz&ÌÕ{û¥¯¹ñ&jÏ—‡½’t*g0˜ü[Ë|ºü{‹:Ž`Šwj¦³ð7v™fúÓNu¬´UÇ‚î ]0§íyÍܘö Iî eÙr¾uŠñ9ñ¾oj¬KôÓlØðjpN|•œîö˜[àÖt¯2‚&|l5ñ·f´¥°%:XB¡ÔË%ªw´÷§rÓð\ÏlIõº-Ÿc)Ž>z­| çâY…µ$°‰-tÎiʔ•s±«9SW7§Ï{×¾)´y–ÚÏ’¥¸¡PuÆ]£¼ržlôÚú€ÞkÝUŸ!ªÞXà¶ÆÖêöâŠÏœ„áNÒ¨à'i1CÙ8ðØNìqEA™â£¾Uà¥äº £n7ßKE”±`. °u¢ÈW~DîÅ5pš«ÒR`OÚa!ãja›ß>{J ÈeKnk!ñ¦ÑÏBÓÔýçwÚôœý¹à7Jõµj€¼zå¬Um¥EAKùomõ·jI\ÖKªWT•9DHŠ *ôf©jËeœéPtS3Æ.³.* ø´ÙÔ_{…em«8Ôh6…öeƒÍ‘v2^,šÛšCî°ÊÕžÂG¨ HêSi€©‰;ÙR{RŠs ÃÖÆŽr*¡Ôߦ¬Þi˜:.‘,{_Œ%ܬo§Öëm‰F0SЇâ p¯€ž–öþ+Nöê²Ø£bÀÚ{#¦{6¯³ŸTÔ­¨§n¯PÂzÀ4˜¢‰-° ·€œÊž1ýú jùóï2Gè}qï{ïó©_âò<ˆò<óÈþðò<::î¨;Šè¸¢*¨§):èî‰";ŠŽrƒ»’fMjÒÛh­•M¦ÐºŽ;¸ è‚®¨.é‹jÌÚØIFÖÉVÊM•´£i6 Ûd6Dضl6‹d›)°6†i±Sj6JÚ&È6­mM«jÚŠÚ6Kb¶)lê;»ŽŠâî(:î8*+¸âŠç.î:8¸ŠHãŠ:ç8:#ŠŽN;Šƒ¨“«‚$âèéΊB:Nâsˆî*HHî9*(*J(Kƒ’")BJ8„I çês¤¢ˆ:#¥ã’’ràœIù–'¢I ’'BrI Š#œ„))(¥8îJˆ:DètqÎQ!ÜP¤—trQÉDpœ@”•(D%%899‘Ê"£Žç8îáNDºäã’:':9!Ç$NqI8“’×!HAÜ(€rqÝ #¹ sˆèêr£§"P‰Ä’”sÜ$…ÉÑÈà(é)Ñ'ŽN)IJ tƒ¸¸ãŠª"é9 … "t€œÉœ$S§ppåA@wqwÖÄh<§ÔG‚XH2P€<ûÎT m…3~HËÊž|çµú<ý¾6ŽŸRK%¯èNŠ£è1S x ºSô<`D‡Vœ¡&\ª¦4™Sö1 ¶Žœ™Wö€  ã 9H$ˆ§99ÂD"“»Žé8â‘¡Ä¡;’)Ðq”ÅÅ#…EÁqQÎ :NB‡N’‰8:ã¢èJ(ƒŠr¸îq"¢p¥ÜáÎî9C¸%'%Ò@\IGTˆqÈŽã§¹¨.ˆã (¸8: ’9N‰I!ÅÎ\tqJqÔEÑA!Ü—s€å8IÒŽâ8î.(¢â H'$‘Bs—ÜqÎ’t¤àJîK¹8âˆ:p訓Ž((:.ââ;‚$)$£œK—q' ç'U—:9¹;‹ŽäJ©:‹ŠBé)Ä„•$NRÇE%ÇIÑQQqs¡‘Ò;‹‚s©;£º#“‹¤®.$qE%ÎNtœœ€\DuÇQÝÔä¢è#”䈤éÄI;£®£¸¢ˆº.ޏ©Èá98sÇ9Ò—t’wÜ#0¿Ú¨P»YŒÆÓl§ ƒ¸¸º.ã¢:R\tˆRQD\Wq七œŽá(N⎫‹»‹®%"C“¥ÑNw"tT]ETW$+¢.N“ î;Ž‚;‹®.:ã‚"s‚ä%$GqEGGuÅwK‚ç;¸¢£Ž®(Ž.¨î£º‰Ð‘”JRqÉTwU)Îä8[-¦dÙ™¬6 ©±[W\$©Ã ¸r’£ ;fÄÚ6M ÚWû˜ ¬“)¬òï1³‚)P¾ÿÿÿÿÿÿÿÿð`€``$’6¶°H/°2Dv€ùð7Øh+@h PÀ)ÑRÜwH(DJðà*€DÞ}ªª)JŠ €¾"€€@€Žz”@À$Ýð-3_P (H»À>„`0 ç‚ù0ä×F­„"©þ€Ah“TŒ<ÈE202`4aª~@%$ {RM3J4òž ÈÓ)å@Jy)*P‰¡éz†Ô4hŸ¥J¥4š44d hÐÀAd š@R©)ú£ÒÐ4¦OP1@h4ÐÐ)$©%ÔhhÓOSOSè*ªB` ù¾ï¾÷ïºï7ãýYï—|½E(-õ™§`ÑF]ñA Z^˜C!*Ã;Ô=ЧüqÜ´^¾Š©ˆ™ŒwóJšS çHU8^fèÙÖ¹U‹+/¶ì˜BìjZÚáëo4l#²¤Ñµý‹f˜t˜sšaLð½ üisÇaÙùfŒ.«fÅOÚ Mv³T«['Þ}¿oOç¾{ÀûýWiu^?ÕZÜæåwõv}VXo4mC=—zàJ®´tZ•ÿÚ€ö¤ç%D½#û¡l‹YÀ¥ Œ|)ÔèQ5¹Ê°kÕFß/êÖMìCöj.êòñžeeçrŽö÷úÕüµýá³îÆ£¨Ó}E¢yÈššŠFb÷ï]¥#xL·Øx¾öÜRo6PA(ÖüãÑ… ÀÞ¯·¬±¸òU¶ÙêØNÖ’•'Ù¸·­ò Å­ çŒ¤–ùº–¨›ò$Ì^aõ¾µ£;±kŒkqU(3~|nï¥à±¸ús)¶ÞöØ3ׇ¥A-©Nl\FÍîÍ}{Q×TЦ§xåf L»òµÐ(@M^ná œÜïZ˼X¹­=°º\Ü\ñµ‚úEÑCƒ )ÒkØö©1©©ÚÍ“pÝ ¢îó« d6?Q­«`ÆZo7âRññ^µ[]ÂøhtÅohì”cXo— VêM^d +HÝ—}0tÍËl¤mk碖÷ ü\oe¥‹«0aêÒªZà(Yh£Ç6Û6›¯Z£‡…±ó1 cÃktÛn‹}ãü—Ú1yñ’âÀO›\ò–ã…Ìɸg¼tíŽbÂ7`tS%¡Ie~³zJ„˜+„´¼h£ókVf£ë*Tz¤K¯XkþfÓ•s+‰VŠˆ=jF?‘ÜÂã½=çŽEgÖ¯†ä}Úû±ÎÜ?ù£S¬é>à xI#Åà?áû?ëýËb”•Œ´à¿Hwwwp©z~¿/% BÌU\;6‚ÚÖÛ6¶kZÅ6í;î=žVš‹¡ª®¸Ú¬+–«[0kœÉ´³¢%aÈ8ÕUVŽ’ç™Qi–¬®†Ö šZ´ªT(¥Ó™fYPN1•e«¢¹³µu³%¥–& –Q…K3 R}ÇȪ+ÉÂñÀ/-¶¶FhŸ2*ƒß_-×mœÙrÉ­5E¬ÖmF¨ÖrCVÍY•i³‚P×s¯‹»wmÝÝîé¼Ê°«†•Ai2i‰¬9œÃ f9r .·'3¢®¢Ì8kXVUÔš :®I¤êÉqcªæ«:G;£Vª VªÓNÍQ¸¥´­,·T65.¦¹f´Ú”ŠÁ"æ¦5j*Ñ\Æ™Æu²Îu\ÂjÈ6fÓ¡†”Á…iÌi¢î„Z…(ˆXR!)ÖÁZi)u†­uI¦rusµTZìëG%Tu†˜0V&e™-id…š65µ§JXÒæ ä³5[&Ó VÒ«Ч(ŠàÍZÙ*ju‹M¤ÊÑ «F :Òi§N·ãŒgj¶1³ˆ®Àa5¦Òk «X©,å’qT,ª×\5šÖF—WC˜ÖA6ƒªÌ˹`Ó5dÑ’s4–iŽ¥´ÆÌZ¶ÂYjÌÎ:Ghj»KÎÖ`¢¤º’dDYQ‹„Bâ襡&eDaê ˜ucÖºM°-e:ÒÔË4æÎÖŽZi±59S\eÖc3qÎÎÔŠå•h×*ÙÕiV€æh¬fMe˜“Z´Ê…«Q3eÖÃZµAÕUªsbµƒN¡ V3™«¥h†ªY«LÎÃht´YÕÑÂviN1š±VlºÙœiªå•I™I3K¢­¥³”Ú1š±¬S5PhÉV¶M+F­Jåc8rµÓ¥tº²flÕbœœ—DeÉH­kUkUeT°–CZÖV¸«jµŠç:]²Ìc³ª¨aœÌ«fE`ªZÙjp!«[Vm[6„ãU¤äµlΙÇK¬ƒ6sVœ9ÁÚkVZ2k[æ•"²µÅ\Äêµ4lC®2±eÕL®VšµËFÌtéZç8\j­%•0ÔҨئŒ®º×Yk޹§B¹Vr-ŒÅs:çf®™œêÔ*×BM+*šÒªéR´–]Zçi.`­ bÚ‘¡ª›ZN¬Îg¤˜jí )¬Ú›F°îfYÓU"uÅTf+f2U‹œr²ÍN¬£ŒìØKY*:²³µk©\ ê,Ì:t.©X£²Î%]6µ¤v–¹i£1jKUkšìÍ0)VV,t°pÕÓ+µK–V™™®µj¡ªËŠY3(Ê ­Z‹´U#RsB4!\°ò„ªÚ¬åi[L´LÍJ»Ujªêt5Ràæ¨¶”×V«¹Âu¬&K«.ÄÈÕ[VfÆ`«œš¨™tU6,Ñ:Ô纭…©b⡳6®ªÎVµÂk–­–´éšÉ´¸Æ RÓª×LºJ­ k0UuµX5ÊVpÒèÔí1fpégIBID¢]-EÊŒ#Òj5CZ%5OßÌÜm¹ª¶ÌÙ­jÍlÙ´¶ªsÙ|SÉ—BGV©k«.6¹Õ+C9Ât®º•K­f6´šÔTkGZ¥mfZ+VlÅi1Ê´§8ÌÚu®§*•L±¬VœÁ®s,ÊP›QSF–9˜nµ¬V¬³giÖ0†bDK§ž•"êáD’ˆ„­lukÎjµ­-iD+k3SZªd;SegZâ¥sM:¶³ŒÙ«3PeTÎ8˜­6Šç#•ÖkUŽ ri«TiÚ­,UÖhì³XtέU5%ÂHek“µÌF­“V±‰:å†6gX.E X—Ep¦k­e’êäq­iN;S\ÕµÒØÊ™:54Îæµ˜a¦[Œe«&;R±³®–s±š²ŽF²æ¥V´µuEhÁ2ÖæÎ«‰3Š™’«85gY³d›*f¥‚X˦­-2´švpiŒhÅXÅ+ªá“jfM¹™:æbÁi™š3V¤5²éœ¶V0¦ÔΨ™.°ÇfÕÆŽÉ«-ØA£j™Òn—W«k3ceFæ­5´¢–´„Ù­iÚæ«Mq™]ÈÍk° YXbtV«+4ÜÅYÓ5+j†lK#2S]¬Åɦen™–¦¨–Hb a®¨„THIš¹–)ZT ±kÂuZbµSkX(è­–«T©;눹&f³YªÆiUU¨šÓe®•«X'Y*™Pfmr­×!­kL*2¬µu¥Sª9˜Õ­šA+ †.5šf¤Ù¬Ö°ÌÀc%j1+,s '+­‡-kc*ìå µœ0Ó%«¥+U;ʵ§hb´áÄumgâÌŽjeµjµkL.³´kY“2ëAS6$ã&VM;45Œ±fMV›MY,F3¸“©jÍv³-®*ig0­aŒÙTÚ–`³Z ¤ÕC\®œà殃.+–dÔ`r–tœu&­¤Q™5­*±f6jÕÈČٕ®•¬¹RŤ¡“¤fµjµak”´ÑƒQÙZJ—Q–¬ÙŒf¨¬:®ZUÎPÖlÔëš›]cÁ†Î]RØÑ¬‰Ì‰sL°0éjת4ëWk*º¹’ÚbÊÖtl¶iºË®Ò-5V(Ýdå&)ª™®«³¬ÂE›A“‚µÅiÉ–4¨íV:JÕvÅÒÇr‰¥¤šÃUÀg8œVl´ã³"¢Ò­VNfXš©Mf…˜šê¬»1†˜K*êÕ4Ó©­9–'[6KSiЬË]aePÄ+#J2j¦US]9ÂׯÊŘd­8‚鳫¢¦ f°éd†&‰ªjVÖ¥º–š¤Ö„V¬¡›’r¦2¬Õ™ ª hÔÍfl­6˜©ÓNŽ.®kW4µZ¬d´KMjØé ÖflÚ–ÅIum5.¦±5•Y,ÌÉ­4­K:§L$Î2Õ,sªÓiFi`dË5´k9–,Ê͵€5­jÖ‰¢¢ëp˜¥³V¸êé4Úä8ÖRëZjèiÒgF¶¦šèMUÕ¬¶XZ­¦¦.±]jƒ ÚvI“£›Xmg:Ñ“&Ä…«c˜Éq˜¬²Ö¥”bºç¨É­KG+’™.tXŠ×+4-9b­McS2™µÌš­SUÜj»¦e´¹™Õ%ª)«Z4Á1uÆXV²iÍÌ®˜\-#™™¹iMh±³$‘‚¦È“T«TµÙŽê‰Ó:uŠE5³œhÔÓN­L¹FpVšªŒjéVE5±$gaQfƒÕW´šk9,nµ¥ÖÓªM5‚[jcš­Š»T­2Ñš™ÎsW5ÔK«ººÍ–¤®¤¹â"P„Y* Ik³ ª–f4ì­“e¬áXƦR¬ÌlÖN¨Æ&4†šIZp–eðÛ|ƒc»°gc³IrO&ÚÌS{6­”fkb6'•nÛe&m¶Ûf¦ÀتY²ÚÚC6M¥6&Úm³h3Z–жÚÖÖÛMª›U!96I›[m±Fkcmmf”fÔÙU™­¶l¡Î”v2Û2“kf(Öšk6*î»Xí¸Ãa›nÎØíÛ`2Ú#6PÖÙ›6$Ð6cmµ¦Ñ[FÙ´&›Q¶­‘b6ÕSlJÄ›Zmm f›Ä2Íl  TfÑZ T´Ì…ŠmkhÙ%¶6¢Å²K%Y%…jmTÚVÙ)¢Í’´ŒÛbØ¥‰lÕƒP`ÐZÚTÊZ ÈZSüï·Ï­Ý9ÜÛ3mŒÊƒ0!|E¬ðÞofÞÒ‘V´.jul_®žÈ»Þ{É{o$›ÆvsùØø£ýƒÊïb’ç¿¥¯9vÛ]hcnÔhoÆñöO}Ë}šäãËÎ#P°µ²-)’š©¤Y …в&E¨±%¡X¦Emª›a,«6)¶%¶•20-)¶Ò0LL£*eF…”šFª˜M*ÀÒš+J4HÒ˜FJÉbZ“R04†¡¢´¦(Éa4- ”`ZK)Y©j02CDÂ4š“"Àb2V‘¤4Aªi¦¢hZKA’´F†KTdSÔ5SA Ô´1VBÒ0hšU ÅiV†©0XMFI”Òh™& Ô™Eª™L- $ÒY&•¨iLFS#*jL&*Ô4Œ%ªe0-)„Ò™+ÄiV HÅZ&’b##Q`iVƒ*0š¥ŠÈj2†¥…hµS”`j5+Pd±V+He5M4-+DÊj¦F…¨ÈÒÈi5FV¨Ðe¢ÓDÒÕ4²™X4´4Ñjʱd±b´c°ªU®§?Ì ì}Ÿ¬ß;§|||}O—ý{·Ëyÿd;àAh3I ˜¢KÁLmÑ—² ʼ§3 ij‰)~éAœµ58%X\³Šo^dÔ/àíb?‡#ÆÒþsÓH{ ü/f®à[(hÖfr‚Õšî&#’0W%ðY¶^UÎÎã_lrN¡Úç2&ðç°ÇgA˜NDÜWœÜ¹”Je”“@éË.^Ñ‹ˆf =ŠºÓ9US<È’^5‹˜›|·ÿÎM•^÷¯3¡»×Û¡!¨ÿ·²ÅËPò¤Aùþæ¿—&¯ßKàÊšÛïŽýeTd­ª—ÙL»óúÿ;c޲ ",fs“o:˜T®Cèóañw®Å\³´9 .xœ&€r`@Xʉ`@…dn&sq£…¨õXÍ_?×*™³ÚÀµ¶%…Ô5’«IÑÉ‘ Bi³çT6&¬/õn¶¦)ƒV„6ÙͨYcÿ6ñS¡Ô"›’½á©oìŽL6=UÄnMt¢Q°¦ˆ-¢‡#µ‡T9´,nX¥àˆ®[Clÿ²T@Çûk¾µ­,‰XMra­æ¡¼&ñÒÉ@ZÊ5NxmöÁ€°TiZͨõ¡AIÌÜ 䣖8ϧͯ[6*i»šéZÉy¬å“‚ó:Èä9Gó¨%âM®•WOíª3•gûnT EQ 3å&ö´Y^ê¾;^™Dmt7ÎdUÕ'1Êí>ÈzÄÆ¤:;Z–«.ôtg¢Ú.r@øÅ®ñVÂeã9œF¨;£8×öHÅn'JMí2³qI ¦]®Sˆ½n_н.÷ÇîšÓT‰¶óOæÅmÛdìõÎÖ¢nª—áÝ*$t¦ø©2 ÅI@é½C#E˜<"‚ŠÎØaáá’o ™‡5|!Û;&0-¢{Ž¡Ý°¯‘Á¬o³¶˜+p$½–2ã„Ä^‹ºœ^JÊy¥¦{ßÐh\KçÒ¾“¢ErdÝ¿æŒðŸ°æüíL}Vû||q^è©$¿”b.Ó`ß´!²)Þšòãe:•Qˬ™¸‹ÚÆsvðj ±½¶giHNñU@½¸épêXñvKªD5Úy‘¥“‹ý¡ ¬ŠÚª4䰸ʈò ì“4“ƒ‘›-fÝÃIœ\¸P ßDA0y#d3ÃC»™xrA(„B*çÆ›å' PÞ$R’˜‡Ú„E÷ùü~>Ãìÿ??Iør!ð¾ÿíçå~}{z³§·Á‹'¨{{×ÙW·Ú8ßöÍïãŒrö÷~R}h›ÆÐVk7ÆŸñ>ý_Ø=¨Eù°xá»þoùóG¡ÍOë ´é¿À÷çÜ­·çäÇ×ÏØ‡È¸Ù/…`û(SçÓÈëo ×m¾¼Mb¹¼ž}CÚ£o~½_·P8ÍÇÎÜxóíßS癵½~5⿃ö}»pKð¼½ æóuŠÅñÖíØaFll÷/}ö?~ž:_¥*‘Òo¯†ãß 8í_f§Jù„‹ò–ocà8ì#Ɉõ3’ÝYXˆÁŒ ºˆˆD!ðFãËË‹3vh˜ˆƒcao¶¥äÙo°¦8BÊØ‰¨%_Ù"â÷¶Ð²œKQ¡& RxñÜ 9ðÏÎZÙÆn} GžÌzõuŒÈìmyf­öUƒ6ÔÔ¸E¸‰ôArO¨ÑÎH2¢0Õ)#öL®vD½‡,•°½Ž(·À¦¨áµnÐävª+Æ!š¡y@¼4.é­T­27wmYuK“…2U w͵X-æ/yÁ=JÙ{Ÿ¡8«Ü¬`*ÇZ1P GTtŽ»½h@Yjµ\émõß;PGŒ¤8Ý1´£Åèü—¤´z4ZÜf°ô¸ßa>n½…‚ÔÞ£º~Ü+ÒðW«É-w¼ùëDHؤûÎ’Ù)èT;dßÊs|äU¢—߯i)+<…¶—wat|¨ã«R;s]P6Åxf#åÅ€ëÚ¶ŒÞ•®C±Ó{žÙ./š`Iýe#Ópèq–“Ù;îû Œ¡º4¶%/Qé‚%ჶæ9©ú g¹ Œr{ä­½kܤʢMaã±Uvvb˜ì:É[‹q8 {æý_¾é×^úÀè©éÓ¯ÖÚ· ›7…$¸æzÇíXúæ½1µ[à¹ÕØS[p,–ÑîT‘÷~§i¶ô¯:Ê/«|ìª#ãkOžn<äüÍdyðx÷féÎÝô¤ºûªüë°á®h#žß^V)äõ¿Ï{ŸŽ$n»œˆ ÇbF®Ìéd0jŒ©×i $¸£7 6ñžWµ3Û«UvP‚¿R ·Ž˜µg˜ßYlKC´W“œE¨‡fÌô­-VGíLÙèvÚù´À¸/¦´ÿáËN´z0ãMŸe³ã6«·T–ž¦tP–4€ Ž,ؤ6Ê’åÅo«>ÊIju¡iÅìx÷½Lkù£ì­¢jB¡JBØÓ¡†=v­mQå“Ó&í€Ãàò¸Ú´Q:gÔã3XJ«“°¨4Ú” ”²ä»R“›„>ñ g„@AÜ€ÄÆÌ±R7ÝêÓê4}ÎB…F:»~›fpp°„J$—FT_]=+[Rhã.T"B-ÍÇ›x<ÅÍ0ËK–MV­YeškhÖYŒÓ[5š³ƒÚý´?É~Ù“û[U&¿E‘p·ADˆ«7¬(šIt×9¨´mlêÔQíÑ*o±:‰|$ÑyãÇ®$ª«Ù(¯/Ceví¡IZR©ÔnسΧM/½ŸO”¢Z‘éɯ½ìžUÕS¾§„õ生oçѕؓ ´8±µ*´m¶q —klíLò“Ëóç»ÞÙZRê•=¾~÷ØÙK2ºØ…¢çµ[1JÞ‰3ç(4®Œ—¯w£Ú—S-p•3?läomlHE·gBÊ e˜Látm‡Gœ§Ÿa¡ZY ç²,>M†™}¥7(©~ä{Ä=élµ–EmØ0'áð"ª¨ºbzaâUo{Óø~†Ôž¶¹ð’¥|™\’òuâ:MM¢ñTÉŽk.›“*ºõìÓk›NÝ’»iÑÙì©$/0ô¾¯Eê£Öܬ’)@RÔB¾Û3ùiQ×·MúŸL½ì[UŒnPvKM¼Þ2en6*a¡‰ïbìÞ,¢j 9REñvÄð¦-¶ÈëèÚ=¶:§¡‘ÎÃÝ”•™<’:|E…êE¨Y-ŠÄ ¨ôÊê3ÙўƗiL©ö,Œ}‰\¯O'äÖçñ°T¼›l˜y¥9ªœÛb2ÀÜÑ4ÐkMÞLa¤Ú2H¢Ñ4O4PÊm„Ã,¢T“ÃmÙ™GMJB"0ðòâYØÚÐCk²í”È)èò>!O2 †`u…ó©+Î ½ãz©åžz†„W† õvHToPà·£ròž•hIl— ¨ž<îÜ*ž×£Í·¼S*âˆ3ØIŜ臮I-µF-›à‘QžÙÎÍ‹×v2X\[m‘ˆRÐf´1–gèƒ2 ¯I6e=7zÆQÐèÎ$–´5ºEÉ=fö…ì òõLµ{mvÏíe‡·Å//b*UK&Iˆ“Sε%%ÕY`š%®É=÷¶R=“>N‘Õ12(Iå] ¤mcIH÷ž³6ÄòöEï jFyaÙX³Úrº•±³†žÔ¶ÆyD¢W¨ZfœÊåATY2ÛÔlC£8Éjt4yuÞ|å¥R(JlÚ$*h…(#KÚ¶…T\k§*.‰!š­B¥´å’!šè™<Ê¡Ñ3r±}²†LÉhÒÅ S&Vùtè`õ.–&å’ÃÕé°š̵2Y^ö nW»´Í#©sЃ3D$Õm[â÷táåÊŒ²¾drí²UŒe1 ù2¾© ×äA]ql쨦Bnº2ˆÙy¶U3ÙÀ‹™×^z]>²/8¦WŠæ¹š¹¶57&aTÂÏt鳡•Sl â•Û<æ¸UìãK:»=œ¯„Ô:í“V%¦6³,´KuÄ5´äfIL‘nË$=£XÖÖª0œ ¹Á[Y]\”jÊõmV:FXv‡yà{4´ì:¶Ýž‘ž‰fÚqæÓ¼Ó¼éìÊÞ(ƒ´°=Úí¥ºK]¶·Lm¼är)5o^ñ ½ê\‹Òr{Þ÷žÒ\d5PŽpïe<ùðžôw«Ê¼̧·F{$õ¶¶È‹©}^‹Û>qá¥òÄûÉ#zÆõãï0\ööwaÊ÷´á²Ø4'›Ã*â!óìË&c$Bm/«Å•ðù|ܦx\O”AfQuï^Ðè<ùå1B©™åãÜñzæ±9¦Å8ÛÖ]í½tªåÔê:L“¼ûÆ}Êy™Uå¼í#yƒM¹64S“o]äDÞÆWhÜŽ§½í°ñï°#×·¼)íŠjtQIæKM^mf¬)´£ïNé6§›aGÕ[œô¾ÎÞ<ï>ô¤>q¸QÛhnÚ\¬š v]žWÕ‡Û´U"Vñ쫤=µ¼êW{Z¶µr½îñ¼«JûØÉbÏ>!É[ 5êÃ#^ÁËïoo6ÞUö“ÈBzXиÃÕ‘ˆFÜùÞoV¯l™½¤Þ‰<‘^3ÎÔË 9u¼ïMì8‹·¶žÈžÖ*ó!äܨ²¾O{ï¯{èÜm¯f5}ë!åKèž÷¯VÞ÷—‰=¼žöñåW$ÕIt*¯nwh›cu“d¶Ý.ÛRǶWÒPµçgïgÝ5íºú¹Þ÷¼i«Þöö½»`ÚÆ~}÷Ÿ¼æöbO#{³=éÙJ³Ö¶Mº‹aÞ±Ÿ9Ùê6Én»zž˜tKç{Åí‹Ä%ìl©>Mâ/UØõ¢½Ú–v3¡í‘+jìÔÑ0íœ7d›uÒȆjùŸeåR°¥Úu™ÜØÃ£ïaß?¼%¬í—Îñ{O*Ùж em§Y å†LMöëÞÙÇÍŠ•½^Ëï{œì¼ì¸’÷³½¢QãÛ9¡Ì—±z=Œ»/ÖdÛï¤ó½ï½¾}v5Z¬Y¾½ÞcÜÕ°ÚvùÏŸ—}y5º#Ò¹¦M†½£Ã¯;VhZ}:ëzÜ&üýßÂý{ˆT^¨©ý¤ˆÛŒKdÜ:èTPŠn¡bgclH횘N|Þ›ªÛäöSS·çqŸ¹¹åGÊÄÜþ#jÖÍÌÕœ||sÛÞïŸÞù·Ú{çùEõê“ï?¯ú|ú[ð›ú¿ä[þ ¿k]ˆ j•d<¦g æC (!ÒáI YI¦_°`pÁy50)ö•SRÆ¥Ã"œ¤è†È†ªjæÒB :%æ%Þà ¹Û§ŠòBqe£JbYH* ! øäšdÁãÃEñ+÷™y•! ˜S­ªf-[zïr?sFCiËÊ{—„üt¿vO'tc½Ýô–uê½æD ¡g›„m+z­+7MÞT±uÕ<ͧDAëùipíív*¤Ü{#83÷ç¥}Yì'|Fa›‘,: i{ùÌ’o~4p¡ëàì¼­¨ V˜X‘Ûœ»•Ž*©nÜ\‰Ì°ŸOªXçÂÞ™ƒ1Çôîß`EúÉÇóºžë0«âÙ] ‡·ÜGÙ™Çô¥kümdSÎÍ@%Û÷®obW •,šâX7f:GmÊEõ„†½ vÚÃÆi²Ñgj*aö€¬t€šÿ^£‹™ê(*§tJ…pë%6Tþ)gv~eªŸÐÌ‘²£½ @¬J)gZ6+ºQñƒ<Ù3kß4 ت"™Ê³FsL,l÷<ò®yœÚ˜µÊŸ´•Äë­K•ž» Œšòv¬TÎJfw­L-jÊÝ‚ÔÆY¥,ʬ€¹£ˆÌÔΊkØikdC#qþüTáéU JÕv >$ôR·Q(Ó2¢¼èèõOÜÞÏ\= †Ô{öÌ@¤‘êR©!´euRÛ¬"ÒH—°ž®7º–Ë4Á¬,ýE²wcSüþ¹oÃ3‡So÷è_̆¬r?_Dï9+#õ¾¶G/vx:×µ/ö¯ªï¾T}DÇÒ„‘ ÌÁÃÎÏ.,pL|µ}„ó!«Ÿ €ðh7=&.¬2¡“´,!8dŒ"B ¿’F´´ÚÀ˜Eä6ÇP€÷3ä¼eîÎ=èä»Ï ŸF¾ˆTA~Íò¸w/–[ˆ:åR‰-,êË6¤ìSñ4¹¡ßRÝn,~WÖ5RMK6•N‹L2òb!â0 8Ì”¸4Í–…¼Mý®. JrðÂCŽeÍÇ®M0˜sâ5¨L‰†¶N`<ºÞFHbÑEæI£9 e䑉— ûT˜€«ÏÉù>¿¿ž½~~_ÕúxöÇ Ó©÷ñÛ×Ãö¯ç¥>;±ê]L¶õõ þ=ºõµx§JÕCùü—ç·Èmñãê€ÔoÎJÜõùû÷”®¨Ðx¿nkõôó^”ä‡yûrû¾ËáQy>Þþ@|ˆôátúOPÐmKõíÏ¿çéz}x$?[?ξۿÈ}Vç¯+ÙS’Þ¥µ ® êËçÚ™ûîeçØŽ‚Ì2ù|O]÷G¸Ï½%ûS[N>ûã~#ÄJã¾AÚÛžÜhµÀµ¾Ò¾Ëq é ã§]{ÙC·ÞØO¿_Ï#øèGãÕLT½=wsòHdñ>¢Ê@­èhf"¾Š¢$f9ðf``ëì }=’E‚~ 9¾Õ²hbð¤M3OËkX†±ò—¦«;ï9äñ ¶YË~Cí6䩤KU4ؼ¸–÷.û óq§$8C‘§vÃ;ÝrðFI»¹ªÂi¯PlïC˜ÒÏ~¼Eþ?›Óï³b ˆï\fsä­ï¾»s&¯[ä·FžK9«ã˶ëbeíZ õ ª—Þþ$=ºSߟbçH~KŠ1:öÅÐÝñUŠå)¯­‡× ÖFHs¬¾ÃЄJ×3c4 Ö£X[´D„™På£&tV®,5Uf"[.ùà ÚÕ*jˆx¼B*òñ0ÛÕÇ"ˆÃð4 Ü©6ðË]Û1q U'B7­5(mN(Ÿ.mnhóÁ×-:¸gwØ\(­r²/hÄ{¿Ã* ÐÄÇ]–ž;i¹—ÒîL|Žû‡37¯m£xÅ7ÎËaÀ•zfB}.øÝvŽ»k‰ÚDH1jomîð‹Žw,Mj x}²,­xÀâ KÝJôë¾&í’µ1††"NK*76ŒŸ‹Îƒ<¦ÝKJÒþ„X9/Tõız|Ñ)JWã¯SÌ™;ã£ú˜6zŸ!Qo®p÷ë¾ÖJyºƒ51écÕЬºÉê¡í,è-$íaH‹8íì‚EõÒêEŠâ™Æú?:Û!lçŒó~ÝõQX]ÅÚÊ'6V›½çjG_9ÞñíP€ ä†9-Ä|A²ûv¸ÖlÝ:y}¥³A.Üd°Ü†ÝUr:°d^äÜ[×¶ýç­úm¿¿;g鶬K«n»¶•g¼/gÏàìx®Ýº Ó0f ±ïË"±f†z‹3¬Ìw0;ãuæûNÞaNæìIënÚà+JÕiYøÙ΋~ªU$zDpá^iÁQÃ^eL “ÆMŸ]½ËæŒg§iÞÙ$+[‹^÷§ ܧ=‘Û²6h{Gµ[+dv©µv½‘Þê6;Ú7:llZÕܼ¢!(Xn øIžÕ]±. ™íÙdŸ=‰Ý‘EUâO jîʨ¨I¦•Žñ£mókݸŜ¶‰Ð»WE'²Éá²[ú,{ yô=Ÿx±¯z¾§W²4lü½¹Îõ0#R|“uN73öµW½YôEUO9~ì­ãâˆw˜ÈyÆãèúcgG[zÒÔìqš ñŠ[ØÎÁ¬À„Ë|6KÆnÊÊæFW“B¨2Q£KAÑ¡ý#V³ÁÖBItÃ*«i#@=4ÒG"5#|ÆT+EbrþÆí(Št0ËÒ¢O’¥¹îMgÐŒ²•c—>?Md¯åª±üž ±tïéCï4Î!!¨vo¶iAT˜AQÙ„«i‰p¾U -ª¨è—© ;WÿZ«PõlMA‡uM8‹áïµn8£ÚÍ%`ŽC OãUÃÓxIÑÙ8ºiH±Çî°À®4 £GôÌLv~a6¥÷ªÐŠrBKš#ƒ”l8 Y˜uns%µ°:*MŒWgŠ)XÜàÿÍoœKdшbšHô‡Vý‹oÚÒƒWƒØèDRJ&k£²È°¦×6¥)e8‰ §Nlm5âPWKŒ zrA•VÎDý ŽÞ/©.z*þôÓÌrå.NCZ~M¯êMlÄùÚÕF–nÔ‹– âÒ¿³flây¤ú"΂hàÓ'‘ÞÌxÀØÐÄVG÷eó{6vÙ,ÆYmm@QDf[Š€¨XB¥ÿ³§1“¢ÕdJ€¥œÒ×ÍmXZÃçcÞjë÷»"bä4kØlõ[«Î“h T›hMÞûY;b¿Ç'5iűS-UÉ/ü‘©Gq±Xò_Ü HËB¼š Ò…:ÌçY­j p€oƒŠg#F„| "1¤fVÍp‰fÞÏT ìW)c3Îl‡Cï¸óö ÙLQ<*²í®g޼{¤X’é"a. ±›Njf{?–ͱâ¶ÉdJ¶Å÷ØìG–0^ƒãÓuœ¹iÄu”»äY’A¹¸^ÔM:fjoæ¯Ìá™™w. ÑLòð¿4kY2ˆ¸DºqÈ öâ”ñ@—̘²ÿž,Ô[mC0BÙÞ.aD)êLS…P Ž«’äF¤f$„`rÞ¿Ãð?¯ð/Çê†?À?)?aú~õøB þ}¶o__„÷/ofôö@ëÄ+]™ñ½±F¿ëO?Ÿ×z/Ó¯ Ùõ*ì? É{’7ÁÐæ‘híîtxö(½b僚|xïëúuÐ~¿¤¨ýßǽƒî¶óø÷$ù2Ûé&ßß=?_Ý}»{üsõ׳ƒ­÷oÆÿ"|ö/Ó×ú’~Ÿ—ÛøWoÎÔü/]¹Í½sùþ¾3GbWÏèeçì~8ù¿%ì~ýOó·ãžÐÇáu~¼oØUoÇ38_ªìCÏzQz»ý f5¾q…ÙmVøñÒ»~ëÇŽ¾{¢Ÿ±?×#î!üŸ¬¦%)üi52‡›#~Å+—B¡¶ŸªŠ&32ªc5‡ð9Ž0Z-Œ¡±ŒðCîýél7&ÖwX­³Çø¥‘rÖÓxÉéÜìªÏorA¯iðØ-áÍqtG>Ãì¿)[Ýðâ1ã6cU³$-¼Ž•î&ê jËÔj$Ê”´Dê„*ŽJ-r6‹BV(¡:ª]Fƒ‹—¶q7©Qreæ^º ¼ 1‘Éh%lô,ªXpöm Zß!Æ2Æ”2l£Áާ£+»ØÃ4°©ÒH49¹- RÉoBKºÜ3m•fõŠ;uƳ0R홦ˆmH臽s­¬ùéUEÎhÖ$äÈ.YÆ¡(£ ©³Rª¾8ƒJRAF h…«]'PÉMYëÃÖiN›Ç˜#i¦"urÙŠäËS~Jê–-Ž´ÒãU­BÔ4bô÷$±¹Qíƒmh7«dúãp]‚Jg«t@ß¡j˜PëB®}Þfº’TÓ°¯TåmŪj %䣵€¡Bú-h¡‰ê‡ž¢ÛwÕ-:$Ö‡=Yø,/~öÅËmþVh'¾Üˆö[óךj™¼…§ËTk½¸×JÝÆóG|5@⺇ÉñÄÕE‹k9•qzáü_» /bößhÞ žwÞßïëÔ­©¿SŸ”šê‘ s± ô4v² ºuÑö;ë "¶-·ØòT9B|ÁVƒ…go#Y£‡—ª»2q¥®ÖIò)*"{U´9 ¬ú$Û¹ZÃâBë>ƒ‹[lZ®+âºïí^µÜBfR´Õ·Ù¦fâ® Òm\páÂw·*LõOÍ4y{ÛÖ¾†›/ƒÜƒg@~6Õǽ7e¾ôÅ)Ž˜DÈÎuë¬KÐ9Y=]׃è.[0ë«q”ÆÅ^„® v¦‹ôíK§=G|#d„c¨U»kcì+®–ÓÍéÏl^š{öœÓ$cX.åÚÑ^Fü—±éú1À¬Ó[#z‘Ù-¯DUZFzJ1Ç1áÜNuÓluÎ8á¼áP)!’0AÇ‚À´Ó¯<Ì…¸lõ<ôÚ'¤åÿÞ}8·n'røº¯†næ—ÓìO„¥–q,»¡ù§­-„ñÒ¾^F"³,¡¶ì=ylo6•Æí–{ œ)ÍQc©Ú¶ëÆëªö¡8Û?Ütí¬Ì n‰½aБ[MæÊêH ãJ. ·pc u-&ÐT+{S DZ –P°CÁ?¥8·ê‹@Љ2ˆ]TECÜ…[Ivkºº=—gãaµO7qñü‹ñ—Ÿsó¬§ME¤é¸Ò`Ø*V’HMD‹CÌÏæÖ¯ÌΣÊΈóç#ßÈ{!÷†^¾M”'ª$¼„ÛcÛ}ú»ðþ ÿ¿ü£Âˆ¨«Ê¨'qØq™Æm†f8ãa™ÜlÆwØßc}Ÿ³é¶ö(±žYÖÝ16Äá+8º®–²gQ¢l¡ý“×½aËûlãÎU5£`\ʨַϑŸJ^¬É+žÚ©SϱçTºï;Dy”噤¸®ž˜Ú1¢UDLÒ|›×œ¢¯<æd²@'Ô½’ð–e¥ ¥cmÛ¢Ô•<‹µaƒkŒg°î¼Ü™—”}©Ý¢RSl#Ëkj±©Ùƶڜz…<›×‡ÈãíŸU37´ËY¾ûØùëêg#cw¶ÂWRÝço8S‘åì=/šeL’-u˜qö3®O;u]l¹ÛZ®Y™xR~s˜–SÉÙfSræÔª‚(¦·Þ3á=O*ò™Ê® “NÚ”QIM¶r5¨œ„*aSLm"óËÈ™ãÞ7)M>ØÐ›6ÐÈ‘v‰ÄÙݺôbñ¯€õ`–¨YÔÖâ©rÖ¥Û Ø]Zíšt½=6žy¶2Š š4]¨‰|[‡^‹‚¢Ä²;jb¤q¶åuÇÉjzZ<*†©ª5“;<±-³tõKmÍ‹s‡º¢g–¶ÈfjyÑóDšµ kÏ…ðŠ%\¢T,ûÔ1L’¡®‡,¢Ž¥\ÀŒómïG«”ó´g² v+=˜sÄðg¢X'ºNX‹"™åéÙ#&^ÚÚ¥JRç2¼ñiÖ¶ê²"¸uµ5£&¥\ôºO=í C±ù6ñ”[¨RzAåºé^R“Š:LVÕȲcGµÈå=‹w)<ëâf Qš§…ªEé*é6Î^äF)<át½>BÅw(­a¤ Û"tÌŠ>eåQ=ìaÚÈl)aãQ9¶3¨¶ìŒÐõD™'<ÊÖ‰“&yh‰’й^ÔÑ‚Q;B\$âåu (¹Øšêe5ž&AB¢IåP¶ÜºjJܵÆÎ\.39vg é‹æÛ‘“¤‘LðÖ×H I+ÕsÊÏSH]BõÊ•†5SÌðèïrZØÛ³M ØÖ‘y¥¡ënÊú÷½"èÚÚܪãZ\YžÌä‘zsry.}ϵÞo7Ö¥]¬ê9QÚ3‡’§˜‘³2¤[i™éb,AQ¦zG“9h'­/)»mhQÜûÛÁá ƒ´g—Li²º'³’B˜^•É+¥$Û £<¢È«´=Xjk”ÎÄ.ÛÁ çÚ5åÅœë7a:©Ñ nHI§¥5‡ö÷‡Í¸L‘ëlàÏ«¦}¶ò‹uØö·«Èé§>qW "ûѽ³rбmï;XDöä“Þ§+ÞeXƒ;b®–O×·ÏØ½r=‡ÚïL=J§Û|k–M7{Û%6uç^Þ½°û™ñç6×{Æ÷^÷7°¶]–±zN—{;3óÛÞ¶G}—ª èT·ŸÅ‰T!7½Iëç–ßañ§^Þž9×½ãË7C&]~_Ê/*¨Šò"Š Á˜Ç;› æ Øͳ6Ë}dE 褯èû¯õ~ÏÓñßF÷Ó¾=ó?‡÷·ØòõJDŠbˆ ‘¸ˆ‚ Hb«öäEÝy¥`Ê£+0ψ;—8ê¡S‰LÎBV¦f S,TJ/ DÌÛÉÊi¿ ¹…ûMFÝ4ïðzâ–æ£B|†i6ãœ×xÑŠÐ?»’òÒáD{ÞK¶ZCuæL˜B“ĺ|©,!›\¼ì}œ…Û*2btC *.q9 ¦ºw…Dz6áäT0÷„ž4‘&úðÓ€lÈzcu­i¿G_9œ#_¼Ñbiͳк6ì‚ÐQ*µÿádóþ "ÞNÉÕ%B×3" 2qÆŸ»Ö›Û¼FË+!UNúÌnd_‘5Ô½µ“™‚;É™AAƒþ3]ï)Z8EV x#Ÿ7!Ue(wxØ™®û*WN#N­êùó¯MyœYyY÷ü3ÁÔøü:uqÛÜ8ÁãtÁ:L™›"£W;3V±QQ€C¶“±y»Í†Äݪõ„@²ÜksTxÿ aí\˜ •gz)³ Äé IÅÞ–¨&%âoQRã|n²r"qÆÕw;¼hêèrÁˆ&ÃSöyˆÙžÜÁ^@¥Å0ök™ä §ÐO¡þi€1¦âø+]­”9‡%жb Ä„#g¬KJJcg¢HC+oåh¹+T6ZòÍá?lW,7ÜeÌ8¹ 9î,ðÎÎCŠ8¦m6¶—÷ºPX¨l›¦kV ¸ïŠU§6„•¢ ”ìæ˜H¬‘F {ò#¾‹«MµŒOëUoõ¬e¿Ë M‚WeG Ý‘±VQu%%+þÀ¿µ‹5©ÍÑaåÅê…#Ž´HÚúY¾.°¨€®r¶Š)j c7 "ÛÓúúŸbâÆFÒvÖyU¼¾òõ_²†dç ûï8tñ@;œi欸ÛÊ“¼££ Qv‡x!áÙl÷ÞÍÜÛ™ç`P¼jÊ”·õ-¯Z›õzîñ óO7Eº½4T*æ7uÞX¢êÛ5” ®\§»…—z0ñ\¥†q2èLÕPbîÒòê¥:-ö)ZŠsIܺ`¸b @äÝ¡úfñL[ªdØŒ~—v¨" ‹&Q%Ì· ;Üq=\|2él3ê\™V>ü¿'Þöí¾öùìé¡û’k0îF   ‰ý Ï×ß·±}ýá‘þÂ<·ßÊýyøø¿³¢~ÿ ?+ñïñð@!Ï¥yí­‡/ñßÍióŒoïÓºˆý-ñ‘ÛåAò»Ç¿a íØ¨ÿ‚ßOãí¾›Œ•év¢T²Úè?!;Ó‹¿=ÒÞD¸cÛñë圳çŸ~»·nÇšÇNU<‡ž¸¦¹Ø ¿Ñ§ÇŠ¥ß§Ô²íóÛ»|ßñµ§ã½;'ó˜ðÇÇ·´u%‡¦OoœSêžá±ÞUŸ|¯§œ!p3—~’GÅ'@¦ç®8_ “>Óò#‚úï×ÖcÇaÌÉØÀDø˜‹,eÄ8L˜» ÌÌÌA˜k¶”¦߈ˆküÕ†pÛµEеb­>²áyg•„n•Œ…²ê6”L4V4e»,h…GðäR¦;u³S!Óö5ÐüWn¶q·×U»—޾lÂf¨‡›z‰Ë©TiÎ#—¸Fk9b`Vɧl‰ÀèSÊ­Èü)|•Ë \ïHüM!§ÝÎÖÄ.mQ(%ì|}‹‹µù{ð÷x¾‹A±bªÐ¢e 5›Èµ«JqKØ©¦KÝ‚–Xp( b½tT7*ò0›‚ÈZùvcš°Üå^° Q^+5†6´ØÑ-°RÇ|¸í0 ­xÑ fÆÅ{Úò,µ±ª'0Ùƒz®†÷¤@-2l72Ïw£DŠW4Ëí¬ïlú:Ù3ˆsÆ¡^ÛâËl$MÖ€'C¹Ï ¹ÀP_Z¶XÒ yà$­M°§v¬Ù¤wæð²ÚsA(î(§g ­jåÞ¡¿1Áä2Æ#$ôǤ~’‘ªf¶OW1†ä`o§u¦å¾Y³MŒÔ% ©¦Ha°an¯ÄŽO±g—‹ozÏKˈì4¯Óºc¥o½—ѶNÚvã€a‘ lÔs]áÎMFBzy*åÛi­¶LD¦4`ÌåÖœ õV£µðÓ½šLcU‚®äUÏ3@Å‹œ)¦ûk›óœóVJžx¬uã6ãË^Ó¹bV˜WBvFä—¨Ì,ðˆFÒM”(‹ÛÙöjo, dÍ»¾8Š­Ã0b…Y,ü)…‰k¾-H‡ÓKxˆÅ’°Ôß>œ©]‡|¬R7|PƒšÔRÙ:†ãhFКf™¥7*xÈ%Û”¯Ž¦mãƒö.jî´ãmè]SÒþµŠ®DLÄ Ä ¯§«Ô÷&/S[Pq±Ð½«¬„/r_iZƒ§²ø´Ã(øP €P ‰P( @’¢@pE€…ö@èP ÎÀèæ¥h:ݺPrUMð€P’Š)  A>ï€#+k|0 @ E€QE*Š P@¨E(P  *€ J@((ð>(¨‘TTT$@U€û€}¨°(ò@ЊŸ€  @„Š‘“jdÒfÅ' ƒ 42`˜FU?ÄH‘!FÔò›Tòž¦šdÈ€z€4h=M6§’ A h)䤥$§”dõ C@ÓÔÐ @ ††Œ€%?R”¥M#M¤›P¡ € 2 5)Jh¦PhihÐРÐê$”¨© ™z˜0™ ddÑ‘ Ôÿ’Qù•ó$.ÍÓ¸Ý]\ç9¶ç:tç[Ån¡)$„ÌÌþ‘FCòK$HÈȲ°Ôú>¦CGõi0b‹`­¶b †Z„Óp¿…±Ò¡0ó PŸHTr)*Mªƒ‰;äBH´½%c‹ÕѯØtnM\XL®L–ß+Öª€c59;@šíÊFcñã7MU5"w+ÔƒªŸæçF¹ß×]Žº¸\àb,I´àYì17‡"éãóÎskYÓü\[Vß99u[yë‘>¶ÑT/CŒ‹ÒœË>•‰”ÉFê Ê­ÌÛ2ngÓ˼?¢«d¼d®+Ĩg£ªªj 1˜G ù2&¢eô™úÿÅòïÏ>Þõõy7U%¦7dήîrséÙÚŸ¨uËŸ&ûGG{ëžuoEÉqÈù Ρû2½Šåãúq~×¶ü'=êCÛyñH¸÷Ü>SÖfa¾çrûy!oM0%©ZÌÔˆ–Q˜Wü”${‡°ƒÖê‰dd¥;\ˆ{aÀR€Ä$Ó5‚Ú®‚ˆgÊ–°Ö² )hEK•îMgX]ÆÃÙb². h%ˆæ ü¤áô:lÙ÷R›“D“\ˆ¨²ââV¡¨KB ’™ÃÅ%”ÈÍ]–DóCÔ·i°MZÕÉ ð5Jªñcc%µijµÖQN€ì ÕB\šÞD}ã™ðÙ¿<‘iïQ„ïµy¡lvªw`_‘÷ö¶‰š!||²(ý²/¨Ë>+¾X€Ìí…²Õ¯w†;E”f¤J{a"]Í"ñ%CÀße,ÝfL„kH#€ŠÙ7¬œFXÇüö„.s¶ŠšŒÁìÖÈ¥‘ˆûPmV¿ Ž¢x,á¤"²”€- TSYj;‘"BÌ É„ÈsD¢j ¢Ô©ÏÆn·'­LDD@qX ¸ùt˜r|‚S(N‘ÊFÙ:f– ³Jvª€„•àvƒÙ Œ&"¬nËgî@«ËÐ¥)hº=Á[QŒí pÊÁ4Þçkb’ŒW$º¬X°­CPN/ÐŽØ2!w»È³Ç‚æÀ¿ÕŠ6®È»â¦•ÉHæ´1ŽÖ$¢d%ªCþ(Ìì+k•45•c¥­Å¥òòòDÁVí¥,(XÈÈ.O`[“(žÚ¹‚¥ñÙHN¬þj» ˆ¨Ò–Ó;1ètP#(Áµ'4q­&Ëed&Zm{%dzP4>øšJ ÆÕq¢#æBÙ2iA¾s `òøfW{¬­šP¡ÀÑ‚À'@wÿ2WiŠ„ÎR¸zS°Þ£yÁš¹Û+—>!\…±;Ï£ü~Ä¡ò}lûÜöq"-K¹Rb­Fd ÑØ$G+tvg¹MÄŸç*#<>ËÚ¦ôT{v½þF"#‚ÇÛç·ßhŒQ&? £#xŒÒP¤˜¨ CÚƒm`,öî¡-”nÖf¿µ'èìäæËSŸÉÉ[%{9¦Œ“ið—Ù¡TY»¾?SÀ– SjkìfÉç. ;¤ýÏn¹ž( ‘½ó2î\í‡î|äü(l¿ÃÌàûŠÁ)Éb•Í3iB$\°Â£sÿeTº8ŠMR'ß¾×¹{Ì¢ |õÞQz‹'qŠþ#ÆAc$ñòb¹ü¼Ñ»¹÷Ááž{òÒù£ÝÉ õw­¡õ}Š'92CêïÏU;äG9~qò.òïÊÄF"¾œ{÷UäŠb<R»ƒ^aïÈÞŽW¶»Ú7«Ù¥ît!×z€ÉˆÃ`–¨ç'ñ|X{vã¾™ÅÜLjËŠ..ýù(úËDö ïá:ò#¶¸¾šê屜¹~ûŠñ ‚3è»Kg‡æÑÖB£q+y±f^P‡2Ï—V„ÅdÞ %/Ó±“âSOÙæG9„㾦gåŸ9§wåù¨Ô5 „òisSŸ¿Á8áY¸O§µò;Ûô÷ì¿z6¦FBe;ìK(ð<«oŸ*œuï³Hž9pÅÁÓ‡Jº’Iƒ°D„òP›#`Jg—µbödL’¦ZšXj‰jIɆã*œÔ Ì©Š‘˜1Ñf-Ì!L4Ì•åÂ,*LHÿn2"&£#û…LÈÒAE…ŒN„>ÿÏáìCìÀÀöß‹ùüSBBûüüý'ë÷UT›ÇdüF7ýÔíÛ÷¿Øúh/ÏÑÊéS×ǯx߯ùþ#žyë÷\m°Û€ßâË»/ŸŸ_~ý—å m¶vúû˜ýªülóg¾8¹Šcò?Z¯ë¥ñùú í~©ïãnµ¿~ÿ]ýï¡Ñ`Å{ˆl‚|ZgˆÝ¶ûòí‡îªSwùûÛôÛÂîwøß*3ùãÇЙpAÁޝe¾Á×I[¥W¼ž=|íŠ÷äº[žÕîIóFðñÇǯ—¹×[½ãôÿ+<Ãø¬íâW?¿Œô_¯ úíð]rhAöbŠAö¨Â ÷ú˜#$*5"fƒBhÁa0÷ôùP$«/"c[™h¶À~§99…GäHV2즠…è«q¡ÙæFù-E#‘Žœa†h½¥ªR‹ Z~ŠQ6‘»—raG ˜|ëwè‘!"µÆ×ÕX$úÍ¿gœ\ðhÛUZgÝiUQù,žó2ž.ZA½¥ œ”òªxwC1D\¢žK%Œ< ãî3b ä}µê¿±U$`t%úpZ[‘ʃäôɹŠîêºS~²½ê™Å„¹×”eäs“Î{Ü`ö«œ“ד17fæNM,ÑW+Ôˆåd\M¨H¦¥¤iPâ®ã÷ÎO#꽘5ãÅ“åºéÈC% ¬c¼è÷—*àJRàUQžS5‚  ™$AÝ•ítCy¢ªôÝ™èc‚–÷KUWz©í :Îu$vk„@×Õôø¥* ¥õ*ê¼ß g°dÍrfxâ7°,êF€TM/ÆÝo{åsJ؇ÊФnäÔm¯“(}•óU®ÙÜõ¾ÆÛb`É9y@@+ŽÚP9š¦Ô¢×¶äˆ“°ÁÔÁ8o@^j‡šmέ‰©ƒ«+îm ^ÍB´ú£àè@N…Œ×9¾7ñc›s… Âˆ®ó }×6.õX|ÿ"ú§biÂX¶·òuàß»µ´•*ãc>õr®ÃM{ª%Z˾M³±éIï~NÕeÆŸœ1ã°…üÚ‰fª¥sÓ†à )©…†Ý\ qcy?M5UÞ†–¯¹Ò.x¯N™±`A©¹Ð/ Xaä=°2+ˆ·ÝŽÔ sÆ­uñ’@§ïÃ…Rûù©\iÄõu 5¼M><Ñ-²uF}agTäKjF{’òVã}YwâÕ= m½ÉoMKo÷ÎüHx󋶬•ÝðûJh~qÄïð7ô6^-Â?r ­u ;sJ¿¦+[ƒMk–W½T6™iµx /óS¾ãšœ^†ÚÃlwÁóM™ùŒç¾jc÷ð»[[è÷ÏÄc(©ße®÷­¿ ïiþC|¶á•ô_;àÜçÉíâà{þ§‚ž=²à9¢/Á¨øñrÛ·•ÄHÎÚ)ãSwëM‰­~†íJ itìf•Êã–Ðî›Ò®üX;—²¼Z­zóð×Ù.gÊXŸêkr^+JncŠrë«ErQk³ÍõD¸`˜Û³Á[ÇQo/ª„ã„ÝNÎN®§RxËû÷UïkuÓ1Ùu=?5Jh›}Ûåí‹TÔ"û:zÝü>öu ¶Æá Õ= &5[‰ óÕkñÊÁæ·Õ w'å´eß¾ûËôVÜý¥+Nµ^µâsŸ¾/·Ö 2. Ô¨wJº®ýüU=l¸Å]Ù‡ÀQK®wÃØ+ç¥Dxßïjùo\õ—]Øœ:Ë*¡oÑg¹Aenët ß/5[ú¥×tûÛƒ^õ;Zë‚óæ’Õ×%ßÞ ÷É×5ÚÛ{g\÷×S«ë½·8/ig“ìò,NjËc:Z” œ6¥ÏæÀöÎýn´L wÙ¸àã6ò;UKlp¡=±ùjy¼àu\c‰K·tÅ<–ωۤ=±­ó(dšæýk`œ'] Òˆ7D)¼Q’®‘Œ|.ùžÑS¢L¦ØÎtýíVí®é2ûÚ<9k1¶ŽùÐ[,«V+N(›šàø¬ÞMŸ} ïZ%Ûu1jTóW.¢È?ç;füËþxæ7²F^zF§‘Œ.¦´ßoAññÝÀ#ØD{`íwD¨.R$»¤“»Žýáþ ü_áP: pñ"ì;²óË1ËRÖTq“œXé{»¸ãŽõS~ÅûO©îöïØ>}o·æB_s‰IAê;þv÷§úAÙÊ«ái)IÛð¼Jl’a‰TOW…BQê´_œ~W]_=~v”N'HrJIÒrtGEÝ'twW'éJˆ¸¢ J9Nšk-•«[µ'â€ê½¦ié]åõ>_~ïq…²NܵœÛëHÀXÎÙÌâËd É­gÚ`ŒZÚlÍ`hm¶i¶†ÉÃDŒ1¹NØfÓNFfÚV-(ÙÛ0ºef‰!Fff^¤©––¦*¢F©ºEÿþêŸ/À§Ð5UL²B¿_ö@GPtTGt]Ñ×EÝÜ]NHˆ©ÇqÎ’€ä¸ã®9¸¹•W‡¤‚]§Ý«³v;Žâ¸ç9µÆÉMÔ²¨£5I5µ$Ñ4C \CÊ(ªLÔªô5S3ER¬óRR—D]9ŽÌîüõ”}gÕŸò¾JÚÛf‘ !Ï«ŸSêü¾ynZE:36ˆ´ƒY´è°°&íٺƦœ²s1p×K(²DLMÑKÍE³[lNåÛÚ “+6D¬2L„Ô‘#DL#E5sLWUKWCO7<ÈÝT³S0¥UUÒDK0½a³lZ6´³e‡kd쥭§´Ë[F³`1‘ƒ[:m­¶gUÝ Mд)UPòŠò̲T’ÜÝ/Kû}ÖPR¹¤FA®aR¹+ªäZe˜*¡l±3e7l·nvËnØà‡"dšhÔm64µJ‚!HÔËÕ)\©Re¤îË$kví·[Z6À„Ù°™1ÆÛ…­l¶e8…^^öšY-¢ÈLfÈÌÍvcu¬v13´ŒÆ™†ÖÂe§-¥­Ì°lÆs4ka8#[2íl¶ÝŒq±l[8hi µ»й‰)z¨“•JFæ{-e³F4-£šÖ„bFº?e6”E陸‰"¡X¸& ¥Uh‰$eb¦).•K—¨hF`„lSM’a–Øk`ÒkvÕ£‡:e«m,Õæ1¬âÆÙ“dv–Íœ³šš¤J‚–©áV¦‘‰ZºZ¥…ŠžA$¹ºJˆ™!š‹¢” [”ˆŠ&™F«”ˆI¨TdžF†&ÌÖmn$s[fëš6Y§b4“k¶•³³¶±´ØÉ›4ÉÖfY$—5ELÓô,ÅP­4M52\ÑEtÂ4WDKDÔèfÍm&Ò–ØN–i‰’6™™ƒE6µÛifä¦i6mÎf’“[L6glVû=ÛÚm3 Ù©k;cVJUéæêºªˆåE•šié†ÚÛ9:lµ±kF™…”³¡¶Æ›Zd6ì¥B4’0Ï]LÈQ-AWT,ª+S%JW =&´èZf’~ciÏmY…0HÈGK3C=„“UÔÕP³ÉD¢\­)µE$ÝE4ÉD”#×Q,Ê–mËjsµ°šI›lFÚyè~Ó a©‘’˜F)ê ¹˜"ýŒ¥!bD^šÕµ¢9 ´!>^µ¸†³cM¦0Ù»;pÍ%*-S× ©%Hý®Ê/-fÃ4˜Ù‡:[²m´Í®¤êš))¨§©" ®Iªh!&y»¡šJ „’¹VäDD)!æägmÐÃtÄŒ3SRO(Ï\$±4ÐK 1=H‘‘ <µ2@³°ÌÚÛlÂe­gg´éªDDETW…–ª&’†¢yDbè¡HY¨êk‘š(bdDb J¨¡-µœÆk;´ÚõÌÖ€HB¡ᔂ¿VÎnI¤i©–ª9¢!ëšZ–UfZvGfìÆÛI͉Ût³%j•+ˆ’…窹ZT¦d•ZVIé‰ ¨Š¦X©TŠ IªFiEW¤’­¶ÖYœFÍ “ d¨Uk† ŠyˆV©X”iÕ- É)SóUt ¬æÛAM­Æ¶íÛÛ»M10¶›C¶Ã%æXFF–¦nJ«•h©f•bi뫪†a©®ƒ§-¦Å™´ÃMÚÉl;[”šfŽTFªŠ¦)®¡ˆœÑ%²Û[M´š6Ü™š"VTÌô5 )A#Ivwe¤25¤¶[¶ã·i;S™fÚãl¬ŽÓªêª¡‘W•åZjêHw.6l™“•šÃf¬Z1:Ûm¬Ì²ìзn&›±nKYlØm69»Nlvå ”‰¹JꛩäIVb*"åé©a¦E.!åTª–*PJ.yB†åB”šR’x`®žë¢¢¢†Tj„–ºJêyå«„ÓaÛ´²ÈˆÚm» nÍ‹`–7ju›Y¨M¦Csk[n䈓Zf4bº¹æ‘?U·:ÄkS6Ä,Ú‘µIccm6¬Ö6¦m_YÊ£¦Õ¶Óbí âÚØƒ6Úl¢i´mµ²¤Ñ´‘šlÈV‰6Ų¨M°Uª,Ú›Ö°UšÃV‰0&6’ZRb›*¦Ù ¡I‚¬Rµ ‚­´Ù)`LÚ‰}²~ßKck?}Å0(¼ÑWMt$­EItSpÜC•Gõ¶xÝ(ÿ ö4$.Ûgk¥½äi_¥=ð{[C·Ÿà1ùóº€Ç¿L¿£y|“©v=ï$³Òm¸•"a XŸå(0‚‰ûqÐ×q­ƒa+Q[5±C²RÁÙIe#HYÖÀš-¢Vª,ˆÙ”ؤÖÐV”›0ÚŠµÃ`«B´5¢¦ªL”´Q”-Á2¥b©‘MP²‘¤-µ*dl*iiTÁL”µl6 j¢§g”©ÊI¤2¥wU?[Ò{ÎûÞnÁ%تUL’`– a+MRb%¡/ À޶b“%MjU•FI;¢Ž¦Ê†(aS"56ÉL…’L”jCP2ƒ) •F•4©¤©FÙ ‰¨d&¥¤Â1F"±RÂV7J9(Å&ˆb–‚Ò£)Y!‚5Pͨ­iKP°LÈ­Ò,ª±STÅ•‚2‹J¬©dM*a¢ÐX-%iF*²&•¢Ä1&#R¬+°M‰V‰¥V’Äš£e#UVPIJK)eUh®É/„œ¨ÑST¬&% ²–•2–U1-J°a,E¤ÔV£!d­Q¢ÄX4UƒR¬Œ† S&¨Åb12¦U©ZSC*di&£HÐÉeeL-F¥¤ÐhdƆS*Ôµ,–,iÜŠE.UÊ®B‘KóÿoÆ„Üÿ½úÿ»ùLÈýºŠC¯èÌ_ù‘fh‰õˆD §ú5sTnYŠpÿ …Ù²*æ[DC(1÷-E HTv2ªRÃqQ JC öP ™”p‹ I)R4b1FC"ªá@‡è¥ûŠÈ˜ÖµÎU´-›€Ô…"œ›¹“ŸI²Â¸²Ô;ÝK4Šƒfá (”6Ó¶¹Tsxø$I±ïÀ¢öfJ$ˆô†·qlí¿¹Žï|Pœàˆ 90¡@˜ŠåÙI±nØ€ŒDÝÕŠ—!¢Š"‚ãS*)4ˆ*Edaa”06Û&4«£¸ÛÉssQXßî×”;~py'Ï<¸—L)5¦¥2óD9¼ìÔˆ3£U.uí]w{½S}Úç„ÐW.{6y$;–/ýÝÈâù›‡½_-_É÷z•«ùâFkDä„Ý·-uݘ͸¬»Øø‘² ÊÕž{ÁÖmr<·8yä¾±î;=ï1FUÄlS½ïžù—pãßV,ì¬ó2NGª­~8숻R%že¢nÉ;LX%—¢¸^ð¼•îÝ©Þ#"4`¤ó™ñ¨N»x:w‹»~m^if­ î{ŒèféUý½ìÏ;ìbmEÔK>)='Áâì(ï¾§~vóÅÛ’:fª4'™l<¯™MßÒÞŽ V:`ϵÞÐ^O9 …}»>ùÎOœ øò®|Øpó«”k%Šxk^xó1ûïÎû¯~犊ìŒPØld¶t{HW+™">ÏR¨ºƒjÝh>†æï+PƒÉú*µûLÆè¼©>à9›¶w2a4P ¬&nB¶ýM&±±Õgþ>œé`(]³G¶k¤µC))Zn°V ½Âû•ø½™#f*¼„-JÕ²ãŠÝ òÌÀégz©¤™«À&¶‹ÀލS©7¹¡v¾Äâ·Ä,YÒ¤ðUlôdíTA• 9ª5Ëž—½ëbzw.Âa…¬ÈÖaQ¦) D2”Çh( d`ÄÝ%î©cÞ²÷Pjóh+;È@›(’A1Bî´ˆqÓíFd¡K5Ôac}ÈÏN&Г`ekV•“p³dÔ·‰–¨ÔMÍ þM(ÿñ´‡‡uÎw‹‚µØî Ü7L†Ú9à¶s.1p=Ì(&f:Úö 3cMšÅ^a•Ü]ÔÏ#X}Q+j €Ê…t4Ý{ "j.SJ\°bÈ× ÕPC /°D;Ëåä;Šaèi…ÿIMu£›BjÊY¥®R$rIÂ8Þ@ƚĕ×fEpï8Òää 30º½J@‚‘†Ùh32’8a ³Óœ˜1aÎhvBÕah =I…|6às'Åsµ÷ƒ”† Z¦IÁÃ\k:ŒÜ±Þ¹È¼Ö„mR K˜¹Àÿ¤,-|“Ó­"_»_°ßpáÊÄöÚ™Ã(Šiµ.¢\5ÇþélTñ“‘œ÷ëâ\ÔïðQ¿Ïjû9ìt|×]\ß¡¢C{Í1ì¾î=Éšë_+/IŸ“¿„ÉMô^¶7玬©¸ŸwÞíòj´›÷|ôj¿Oœ®* V'¿G ªåDç6"~–¼«%v‡Ì†yݯœ&iÂz¹øßÅ¿ŒçÛä»–§ÀÄRó¾í !¤ÍÂæ±4¼à±\ŽZ«¥£3•¬Í"~åŠŽŠ½®gÉb¢ÏÛ ¨v¬Õ…I&sMÖ¢$ œîÖ8ö±—‹70ú¹£dù´ZˆåK¼@DMªµ ’ ^ ÆåÄ-õZp0š‹kr4’„1ˆÑžh7éÔ½Š‹GZ1Èd/ƧJUŸ^òc¦ ‚é—ßtß^Èàç#z~_+-n²ƒšº¦x{·f†»VðWJ²˜Piš¢;ÿ§:G[+’ –œ(¢)ð%xÁÅ&t£ E#ÏeµCÁÛây²N@v`úÈzOí|Â*_š¤?a[“ pö¢8•LÊ#{  á¹)II‘ªÁ]**D "kDÂYàLødÑ>seÞï³®)zhéâ)`5l)hk,ÍX VƒK‹‹Æ/]¯sB3 ÑîK8'_/ˆÇø2Qs,™žRxÁ…HnD=TÖx1LµoHÑ£Ì×ßXO‹b’7u]–â²váïx wl›B'j\d_Ú}áBGÉìo¾Ïhû¨ìÎ)³pH¶yP$ìÝ®‚wr=ýº<7*¡ø#þlÕ/?&ò%S;¶)*'µn¶9µ"Ô{ÃN pEØB–iˆÏÅõî0?oö÷M8‰lN-¨žŠQïçJ*³aœ´è…pÖVšù“8c­óV†Rt¨Úà´¿n©ó<®soßÐù; ˆî $NfÐYÇîU,ûä@‘ç`_O§ä[¨ëÔG·£ñmn£ÈÅÚì1õQY7ø¬o:o‘B•¿6<·;ÅB„CVH­,ƒ‚5ÀNÍÈaA•——tp c ä_üÁ°˜¦¶¶¯.@Y¬Ù”ì²%µìC‘ˆ¸€¡ÙíÂ’•¨»àí#R¤$£ÀXãt¼ {ùãà 59sÎúœöqxï˜Ú¹¯9o(çº~½ß)A ŽœžÐóœ{ò¸\Ë÷㩞fa˜(n1EŽÄ`-•—Ý.’w‘äC,Öâ°nù¦Ýñ.â=#Y¢Ö…ii9 5S’RSGšHD©˜»ä©EMÕ¨÷e Iïcˆ*[+[“Mz" Â=±3²*90¹Õwo"Ϫϋ—Ùäë€&|ª=tá$sD¨Œ‚éÓB=57r½×yÌ;Ž£ß.ÔŒw ®ïß¹Lç®Î‘¶K÷äù§R¿OäDVö£Ø"¥sÄHïOËøX÷Êd.¹žU‚ù >@{*òú”9$k*ârJůٌÅçèúõåÙ²Þ^6ò½.Ÿr§}?|É2¹i¯Žxëä,«¼Û5Uú‡\v¾̉HEÊ[÷Ú¬ñ´fÁr Í•—9Ar~—£ã‹L,ÍÕÆÚˆ.â.üˆ‘Be‡r…¹‘†ÊuðK4P›TQ4˜I˜/¤`Ã- CU‹Ô)&êT`’t£p˜H‚fâ!ÍTÈ Ñ4%†A IDä°Ù^¦àdS‚‰ý¬:üÿš?8ýoÑOôHr½K QlI*± NÂß Jßñ`_ÊÇõÃÉÿ?–"ªQVˆÏè•¿¡À3Í*AûUÚ'ôý ™X®6þ›èƒú/ÔâY›øv¤È=¿¯ê£E¹¨Û÷Ðßàüü|ŠuñÏm|úóñ¿Çt=÷ý}ò;ª |~gÓ}ÀÛ‘æwŽ·o«’²çßAçpò?@õÞ43óö~¾,^~ ÷ÏœÔ+úÉÏÖ«jŸÇÊuõr\ýzýîçúû°}ýyúî~5÷ço^—Ç}p€ <óóú¹ìÅcû~ûRƒûý$x—ÃÃÛÏäPïí®ñ©ß>÷ôŸýž‡½ózlËç9@Ý<%Ð~kö7·.1ç{³O¡õ·ªókw uÌùõÍâ~ícüñIïýu›I\£‹ì­Ý³óî=}°ã¿Àÿoö° käs°ªô,8Ûå\ÿ"ˆhCG6úãbþ¿žu5­šÿ¨aó«Ç¹ *}ÿ)ÅßóoÐø\ïß½ÿ??Ÿy/ËíJŸÁxóqñÇär0?:¯±îT5râsŽ<|R™°>Ð=é\"«ÿ<µs(ÝV¾,·þãEïM]µ·I^”¾|‡Çᘈ|ŸoIø&?”§ú”. „-Ñp“˜FˆŸÌôªš€­7b0®¦/Õñ.ÐFqúry2¥SÃíÖ(ÈËlÛRšr7%‰ùl]² åQˆ MB*˜Íg B+RÄ™­oÔŽN¯Á—|~œ Тç€ÉqF¹")1¹wsÊ <8l5tëX«Û´öuL›ÖXPÖ —^ Ÿ;ÄñÁ#±Á-Á‡Å¤_»µ/Ý{§ÑtQóÃõ»k½ÁÔ’c¬>Ä/Çüƒ)><áU¥/¯kŸnÙ„:Kr2gy12ÿN¾Ó„=ËŽûñ¼]½ CðÆŽDGUq\UÀv>Ʋ}Ì}G³+®LœŠäÝÛ’üæ»oQå«PNÉ«*eŽ>L{_y·{¥“8|HÇ/œŒ‹\ÙQLꤲÒ6c«“â êrô%¥ìi2v&­–—§ºb±Ì¨X±ej#;©”š…Éûm“µ&­ ;©Ø$è´¬£“]ÖlCËÝ+Á°Õ–ÿJ©G!a)CHy6R‚ÙZÉ»%àÚÂD†EçÎQµªö—³!*>«‹v´YÄÁý£ZhèRˆš^)q¤Z´wF  Þ+ÂèF¸L^¸P\µ´KÍÄø¥Ë`®\Pµ¾õt%½#VÜÀôO²;X W™†v:¤hŠRlTÝiZÑx'¢Û7:ÊÅß öz¤ o“Êõ¶+%„És‚ϳ÷j.1»¦ë¼Æù×.ºäbkõ7»ëRúxÙFƒlØe Ô)«È$ɵöFX'®ä‡“Âxá_ÞÖTØ.xœkrSËüãÒ®m–…-˜„@Ùº×K5’®ºM—30`—a·ı‚º Ö¦;r4œ>v¢òÖÚ¹oUÎÁYÎ@íß5‚§;ä㲂¨Æ(&h}äïm4)AÖ–ÇPÑrÁ™ï›cPC68|Q"ÐØzÉwªUòA^Œ«WÛ$4ØëÛ’È i¨¦¯ˆ  w®Žt(]bPrU}9Ý ™sÜ—n¬7l—šÑQÂtÑe7ÞdÍ[­ª·!YÍN½Éoép™´Ñu¶ÓšS3$Tƒ;œzLÚòH½®ÝRª=ðõûÚ°š­eg{'ï^xl{ÍöÓ7:ß«þùáê6ó¾Ó)ð’œ{"÷•¤Àp£‰Ë‘7MÓÙP:Kk~3Å]R¥Cs\F^·î›VûêGŠî2*2uØ{w'§º¢¯ß2÷߈﮾;¤ßãÈSà×bÂk„–îïÏ|ùÐøîPÛ÷MóÅ×(áNÿÐ5›f÷ÖñÞ˜¼c½‰zÏ8¾=b†BV´©Êå.,ÇÙê1 «R»Hm»‡¶ŒÜ鯿¤ï¥)îbŠ~1~6 fóÂi32Ó[ÞѼ÷›qJØû m(êZÇ;Ú¾K¬`Á L@o£Æ’lÐ=k‡¡•#$0OâÛ/àò|Vñ>·ÍÁƒ~ –éu8äé"µôœI 1ùŒáډůùÍýø/ñ«*d€¸»sÎÇozK÷°÷î§@ze|íêºV_&õ¬¢²Ou~O«Ç7®/êžs»#@­j%ï]ºç5E9#䂺º¦H‘h|Ö@Nãq¶ª¾×ú;â­mÇÞ¦:ñ>ïc>kNWž§½³U&ߨ¾-Øî_%O¡NôõYßW x{0÷ -sG+M¨Ú†­}Ú"øÈ\‚sÃ_wã6áÞ¢H¦ÓùR/_/Š—Áfퟑ#Ö=tû{ç‹ò#Vèª?{zàE7­ZÁÅtâ8¥7ønxÚ´Ñݽ:`3ׯcp ûóC`Ÿ!tð$;-nG×¥­,þV±Ö#ޝÇDÎÓDé;ÛŽ7ÃΜÃaùs·µjÕ·¯¯ø;ƒ{¾?¶¼6ô}ÅE1ç7ã×ÅÁþ¯š•1ëݺMJëÊÇŽFÛ¸ÇI’yµˆi”ûÙï”UVªŒÖ/dPÔ{aË\uú1ÛmfÏ¿ìAxÌéðmã–rNcÇïâ̼òZ¶Äˆ‰wQußñ·ÕÂ||Ç=Y"£6±–}m¡jÙ;b+çºUXô<Ø1~ØSõE©;]Öè½üÒ&…—ºQÇÆ°¼ßGS¨Q£S³¶#‰æÙçþäúŽ7›6/Ÿ^ó“ MKš[n[½Å¶Ž/JìIÝŽº «í}€Zà—3ð”¦2/Çmئ:®ØðºKÉÉz±S¬e6ÝËxߪ›¦<×£ññNu¯5ÀmÞÖrFêM“£²V¶éõ'ÏE6g·–7M¹Œî}¬>È‘h×òã­Šºñ³ØôXBSó²_»OYÊpì•›Kõ‚ïUW¿»Xmz¡¸’f[Ïuîük4Ö+o$í†)ÛÙ!ãÌSSl=„4±#ëÁO·œ÷õÅvN¡qkÍ7õ%°Ç(Û%€Ïnv^x €•T`rÃs¶ÔvÀÒ%ha3·Lû/eήo7äD4¹°€ú·‘^ÿÖ÷ß×~ä×Ùf¡B#Å1aM¾D–.Þ¿¢ó‡lQ¶Þk6¤xœ6ëK9MªönWÀWÞxÍ+R“»æ‹Zé+4a€¤9 DW ¯)ý¯ž|ù¿:ÝöØð;øn¯ßÂ^N¡8¶ËÔ.Wfî+Þçb¯Ò%/ŠíÅvÇWÊ|jLkÄ!GYØ๽è]ë¶ÈƒßŒí²e…öÈMgç ÷{uŒ÷“¿¢Õ­®åf< vgFë›7¬å)¥HÛ×´Oxî+`o¶$_xнÚ!*uÁ‹^ܤÃ|–SsÛ2ò}L¥T‚Ýö»ÉŽùŽËà®>m\ÈÞCä®âO1|OÏ©Üi=GUÛRl‰¼Ð±ÊU„Öè©ã¯2CÐâx­®ŽÅã×X¼lYïK@Ýó+ÑR0¹¡ëlEÛâÝù¦uW"‰‚TöÜÚºÚØ G`‹çЇM‚jç¬\}«™îS·ªr7÷1¶,­CÛá"×cYÞnz/â>SÌÖÎÓâ Æ~gn§eÔß«>€—{'8Žõõ^-kÞ. ¼jwöôïjçzïæ[Æ»ŸÌí Óªm×sÖ0>K%jEçsÙzé:€¢Ž6F,C¬ªc–Šyƒß‰Ã ˜ÜC<'/¥:G¬ g‹Ð1óá·ò>Î)ºøÅ´à›S4„Z Äc›ßùn8kÞšÇK³[ÇéUˆB‘kx°öq듪á{½C«i+{W~mÒSœìŒbš.yàV†^E¾¸6Ê]xN/ïÆž¸o+¶]§à-ƒ³sd+Þû[;È_O½"‹ƒTú½o§ŽÙõnýcº/Ï ±°2–/j0æ²måSŸ:æ ±×ÑkwtÙy×Ç{}‡F¸xY¼W'Èê-A.LDG]v!Tª¢QÏL¥rö{ooÏ\ýô} Cλ'¯.ñ1g•FŽ‘T¯ámÞõ¯õýn“ÊokÏŒµ¥§®DÒÉva‹ÝXÙyåyäk”—_§ŸdGÔ!kÚ{9 RLåLþž¼øVV–%šûX{Ñ[>¶§¡Ô™ÉdHž³:º£ñÚjG—ÛaU糿äøï§oËÛܹG”öÎI'•Qu¨ùây±aò/^‹÷;þçï ¥Y…çPƒÔDó~ªL3ìY•å{Ve-¼ï'ëýízy]-ÂôÔ¤*)¨´~÷û¸3÷ëë¯åºJ–å»R5 ZÒ:Í3\)VNnž{ôcJO™AU×™Sm«ŸZHÔÑ…WU sÉäŒÖ‡&M¨AÔŠŠ"«†PG—Œ•73Fdy\•QvfÚq¦>¶öÖ¹‘–RE„IÛ.$‘“F*Km7_lž‘®}‡@“•åŸ'Ÿ>xu>{:”ž“Ô™‚Wí |ÞùÛ­S=•"þÛBŸFWGãÊ|ܬçný[+Êyï¾ñóì*]K üåEÂ?¸þ³ô—éç²)M=(Š¿›yÌÆYÐrv|ocã^ÖZ{žÃ›ÖóO¥­¬5COS"+=Ï êÂ5ŸÓ^{Ø„CW92¦ÌdÏ?^=ë³ëÙ›‘o${ÆUõϬ… Ÿ¯cÒm„Ïî©ù/®—ŸQ ȵœ»1¦“?”ø[ÉR"* *JÌS§nÉRzÊóóíõÛ›Svm߯öò~~F?(I*ºéU~NÈ¢¹¢‘©V áy_¾½î‘¾Æß=ö$òL0-!4$ÎÄkavšÛ!Ùɳ4þ²óÞÔd=øá'O(IÄTUϹÓJÅ+k¢¼æZц‹ÙM´jÊô™×K©y “Ú÷ U«”DdºÝ²ÈIÙ-vpÕD$QdÊ»8Uê—š.¹7ý7³'¶¾|>¸½ùñï7‰öØA{Õ´æ¹ èDd¤¾÷Œ¦òãD¬‹ïlyV¾§{y3åç¯á6o¬†e¨y®³©-°™³"öa'¦®[¿5§Ø¼þ?=òý&¦–h‘Z³…ÍJìC…?gþo¾«bV*"®›’DÌ:üÐó¦ê®j¦*y’!Š?LI‡½¶ùÊ™z‰âL™:vY’dŒžZ‚ÑöO}yÞdOVUùŒ'Îñ\ú§»kHyõ}mß+•~ö¨ßÄ¿‡¹EyTO¯ÌgÉï öùĬ¼óWÐNz"… ”‰œn³/¨Éã6¾Æw¶Î hšˆôyïÌ“çå|ªϳ‘£AíYŸgí…MtLšŸ½+ jlÎ%3´¹ D™œÉ9"”qèUx^Ô¯h…<ùýŸ£ç묵ß[*lÌ+«hUV”Ù©¢6”|ÈÏ&%S-R¥]ÚÙkÞ÷¥÷œ¢øò‘a QÛâæh™óïl¥LÂoAŒûÑ î®Vï6i¢xyÚÂLÏ\T0",ˆ­Rj A‡1½{Rz¥¨Y­¤UîÍP’ޏ²‹“¡N3R‚›]š«¨Tj‰|'ew­£¡.Ô+¢é‘)Јa0í ‚(š¨ã1Wm¯]º{ŸG/jÊ*á&rO-æ4{o\¾Å ,²Ób•ÆÒ Ÿ(ç‰=z÷Ÿ,i<›vC#¨O9QL…s½½êö$p,\¯'(CÆy¨zÀ‚ Ã-ô#•´œÂW-v®ÄªÄJ©œ…Wžxò8<ðp¬·=­ÆÿUhö!ÑUÛF±³ž¡TK[¤çl:’Ì µ#š©Ør»Û6Kn¶mÛC’y’Eì„óZÆ*^$ G%d‹\Š€ª™ KôKÑx-UdŠMI³wc,e~úÏÕÒBôý¸Î3¡íDZw—ѹt¡"ËGEçºHAJ‚f]¬(3HH4PìI‹¥^t4‚g§›e V/bç-ÞÓ®½{Ò{µÈ«´ »¦”a9 ™«•Ô‹‘Jv6kA¹ãL)ê]½²w“ÉÙÊ3ív¨÷£yìãTÅÔ¼4Í’µߟÌýŸÒ;ñîWô¸“ôr64‚©óÒdQ(YÚPÉ+Ë ÈOU%DçÆcÃÙfPD$ÚűžÌL‘+*C9{=¹Ì5pÖm $#,³·g³EÙÆ”7c ƒÑœêä{ êBÖE6œPðT/B LBÕÌ£5"mdÔ;iå ˜{$mŽfà«êó>(›$dJ™EGE;»"ýíZ„’G‰å§Û³¶ÆTŠJítdÈXذeÊjZæGYßlv™e=järÔñ=9»;%¤î.;ÞuŠ×&…¢‘dž’J(B{·Wñ\k¥òt–Û±¶2¼Bv¥Îü䪨ŸWdRªª!yAsšµtı—g’×1°Ár*½®ýΩê‘•fb&a“k—²/,µ# ÎNY‰X.NI®Yé™&L†Ûcsawl:bͬ‹ÊŠjDK“lçP:bfyjfy¶µ4ÊÔòí˜W¨Š¸Z Šê…„-xS"É$õÔº*ÕÐêÏ,2HH/ f¥¶MLSL.Glt¯IqW)ÛµÐ(B;aTR¥ÃžµÁTÔLˆä¦$Õ„6²¹¶•‚?SÞÈ=MuDõøìq ÍW|™ÊÏsEDöC%Œ=µí°¤rÑySbž[5\ó+¬ãFÄIW Ë0‹ÆÓ®•'¡ œ™3—,j:ªjJ¬›7g&¤yfÃ;WP½Ë1vs˹åRÎæ² …^Ы]T0°/E9œ5C "Å4m.c:(˧$íŒ/ ÎváEX©UíFC3ž ‰f„MFx%ˆPWͱ%¦åA­8ŒšDsräQj”§œ^qåééÖë6Ö‰·HRq.¹ÖÍÝë :7B©0žrgŽP‰%ö· ÒRòD¦v‹‘IáAB”iéë\m ʧ)'d!ìfœÚÏ*ó1Ë­=Æp‰KTºV†I…y¡FËÈL7«RIR„ƒDôžLŽ‘-g 2ô1%"ÂEt¯Z’Iç5¶œ2#³¸6Œö{ÌØ–Í‹&ÜÇ¥†gl®E¤TT%]UØVÄg‡FLö§J¥GSj6`hž "•Âj^ÕÓ:¹UU£S\HdS&+"»g=×éo£¼†©¾¤+\¤ö»Nçcg™çQÃËrvBEå¬ã"PŠÆ­·g=5 Ž{nf5cE[\¨êWEU]IA†& 5 k†‘^3ÈÕ± ‘H®¢•6» @·=6Ø2MHäÜ›8L j¶Á"ÊðŠöxÈfaÏg…å!’x±rö¬ìW0ŠŠÍ5«I9•Ûm$Iów‡œ[5…EÆon‚:©Y”í\«ŠMN{%®É ™ZrY’¦¦§Wt ë´…·jMc9b9QËJ#Ä-*öM–’h…®’™‘å%¡ÚÒg§$ÞØÂBB)¨ŒêzE %TYš¹Œ™í‹+Sʨè‘Í"ÏH(¤ò;]Îrªåž¡¤1jžÈlB‹ÑY3Ù촨ȫVE6—•E¨–gŠ"!gòݺô³¶Â¨ˆ¹¢§6s±¸±ÐZÛl:¥{«cNÕ Õ­šžâ’éÖQ´©%$åIµÓܹ—µ—³¹]Ï<©2dÔþQÔzí¤ZjÛ­µ­¥ÒÕqW(²)lN{‰Q˜JOu¬Ý‹sÓ 0Ý=5ÏEÜÛgÖ¤KJ4=“&E¨Q& H“=½åvëAK×)R3•‡'d¦ã&z˜ ±D™Ù êºY`ËEƒ&î^‘I¦4l,ÔMYé–+C²ÖnÄ÷»h‰6—2Â*¢ê:¬,Dé»bè¡’©AÎÜ»λ¢fhž*%º™'©%Eá¢TžÉE×h%eQfg=»³âøNó@í-"°ˆàÓ¦|÷½²8ÊfPY&Ô™ †r*=·A™(‚ EåI\™îóã^LëlªÏw¶BÐM BQÛf‘äz–…m¶i.’C&Ô#Mv‹k§Ð³ÐËÉš»hª`ž3±#Ê1-j3&"QШ‹2P–IâZ;Zã Âöz›$®ˆäg†•K]9^®vàÈ⫲è2 H[a¶1…™;Q0‹SB+!½yñïmâ%DW©¾=YíºÎ0ÈëÌã¦ØÂÜJÏU,­ÄŽªî‡ºÖ©<ÈéËÌò3Ï0½=±Æ³…g²Ué^^Ó ÕèÙóq¹dóÛ:Î¸ÊæFž©6“Md•!Û`‘xžœìDšw“o-#‹gh+mÙ«ˆxK8DRz#ËFE5íá!>zLŽƒ ²4P‰w4r#Ú“ CLÔð³#«µE4Ý3u sH’¹Ót‰NÙG\Õ)/DÒrʰžÙϵ’sØW3¨ÔO!K-®œ¯O­¡ $¹î”J—»ÎrºØ)­(ezg&Älôš¸R&Y*+¼ÉçÊí%Œa$Eï2æg½»9ž¨ÕÃË®ªåàÍ]´p¡ó"4)³62ÆË5ŽvGgÏië„¡½‡s·N@Dfî’T*]—`–.$Jæ‰znghÖÝ)ž&UÎÕIËp¢:ëGYi^2Hæ5¢Ý$¨DAEm{©îǬçÕÅ綸©J²ëËR§J—kŒáC”†c2¦Vâ!*çÕ SÉ=’6µ´#˜TZ$åhT“ÛU˜æ‰ó“‘°½íÞAäv²¯Ÿ&)E²í„aä¬ëcÞìž 0/4:÷žöpM²rÙØÎÊ.‚ÚÓÑí®¢ó‹\¤ûÆ÷Œ÷aYDÛnR^™<¸Æ=¶2dóÞr¤½âO>z)©!å<äÉ#B‹Ò­«Y${>ˆ÷£&Ðò™‡žrÛ¢±ïF4çÛ ¹ žk”’õãÇ»w#Íçf­íåï%*‹C¶Þ÷ŒÌ¼Í4ò½¶Óʶì«èò.=ÞÉ£²²ÞÞE2Qì½kläÔª1]˜Ï¹R×,ÈU o{Þzz £bÞÙÍ×ÏNDg.¹¤–`óæeñíçµgÞhZ¹:ôÁkn}dÔ׌{Bgy½\\÷¨˜zoSÛ×Ô²Û—±±x«Û#–z{ÚÂ$W(ò4Íí*ú óÖ=º*¬Ë*òí ˆÖ6Ã^}»ÎãZ ÊRÜ,ªUÑ%kÅ,Xó¼7“"³"y2+Ç“9çG±ëv‹§ª2ã8<õŠªŠ•o>ìú7·l¤Fѹàó+ïSÆÒ=<æ÷½…‘ó/g9š‚"TxXd³ï/Œ•/>ƒkzܸ¡òùÂ;¼˜AÕëÞo ý÷mòd5röDNúcÙØÞcÄ{NGlckfÐ¥ë¶8õ<ñ’I´/½ã5ÑÝ9ìÂn®O$ûÛ{Fº#4Y¶1°^|Ü‘ÞÛ…Ê¬Ï{ÛJxlo]ï'£!›Úw¦%{1¬!§Va/>{Þ–5Tï8ÖŠ°ó‰¼îÌôo{ϽoRžy›¼ö|í".¥ëÞ'×7œ3¼ž<žyÙ"½ãÞÛÆ¯:XQÞÝc=ïKïo{Òm†±•͘Ӡ^­Þ÷¶ÛÖÃÞo{x²[ÎÆ±hžk{oS™yKYS6½®ó–mov7­¢ã=ê|ï½oGo4“X”Ë¢t ·ŸxöÒìVfÖ’ö‘ú<óó*ù]‰¾.ûÇŸS÷[}²ÞL¢ÑsYG³Ùcrœ®²j-®Èk`ÆÃO'½îÎÃmŸohóïFÍäÑèòrëzO£>ËÓ¶c5ØE™IÞݽ"ûÞ7Ÿ(¤åÖ+ D¦CVÒê>qõ=ô#ö>Ðï|å÷G†Ù¡q>½ïNB"¯“¼xå'Êl’8›;q˜g‰.ÖU÷ÞÞpa*2¦Ø¸’R_z3!ëko{Ϊ|ìc—võ»wb2•sÃ{ï|ýý¦-•*õãÑ{VSHíæˆÈÖÝPëvv©‰ùöïaª«šÛ3Švɘ¶ÌêÆvÝ÷­â]•ÆÞÞöcÕåÐúpúßmô£ñô¾O´›âÝ=uó°üϦï–Ì翱ïµJêÿïþ?Éú/øûýŸ´¯¹Ný–´à¢ËBr¢ˆ‹øû·#ÛD´UҪČÑDÖ"ç´{Þ—ž„Þ®ÕÓÞ¼e£igÆðêËý}ï|ïáÖü»mWo©òW|ùñî\ëõs­uî«—ƒÞ÷}Íõ*~ÿçíw;w}×xêô¯áÿöû¿²ÿê?¾D¥%š¦ˆf”& —?”©¢*méJÉp*@pˆJ ¨p°È0P–$L$†šù›Ê§ªê]C é[¥ ¤•´º³“.îj ‰²Ý5S•2¨Ì‰œ‘~¦ ]…†1 Õ $8ä#·L‘ÿ?‹$XT8Äúˆéz¼xÜU’Iþ¦)”ÅÓÄt3î˜|Xf§"1S·S3"`’B;ƒ"îo¾Ü^]§ÁS‘Z­òËÎÒÕaÛÒb ³éA+ ¸¦ˆÍ¬"mš™JsRÆFŒÔ†›-ŸFvÈÙʽ¶L’­ˆ"]S€Q¯Zâ ID–*nð3\ºîG8O,=5:ɉ†+}L‰ô¡ „÷rªg-ì 7rD-BCbfæP¦jeG‡½¿Wë—G.g”º{~Ëç-½éʪ¢½ø.®}÷ÞÑëT¡s ¯Œö—¼éä1hú+Ï­ð-ÓÞD¾Zbk˜}}U=àØz"µã›ýM³¼Ì7±Ì1ß=çµµ]œèuÃkÈ©Âó A 2ÄÎñŽó×0U\ò«._s{} ökžwº³˜döƒHyy3\ž«3çŒrçÇ¢¼¾×¶óàÆßÂþ_†?¡¾ÎûÚ[;›Œ­×2Ç„ ½¤N‡i@S¡U… If‡Š?ü=ZùÇJ~»UJ‡¿‡×ÕgÂ3pê ÷ç3r¡Ló¢·+Võ¥ÉúJ=ÀAŠhøíÿÞÌ{MYFP0ó/ÖBr»ÙóH½2¦kµƒ #}U¬V ´R+X[ …)’•P#³½bÓÉÞ®{ rAW¥aËȃÊÝJé\«¹Cbßç›èpõt,)»³€åØLÈ0[‰Ô oT±)–5[› b–½ë¹¥×kQ.º;ælØÑ,÷¹äP*d¯ƒ U„W¨%nÄm"f¦5¦1JßXš läsbÃã+Œ¹öÅÊLÇ6 TRã0¡sYi°Õ‰ž}æ³´Ô`s+nîÞ÷iûšÔlYíЫp[ÈÞÖ©PÆ{Í’¬B{ÐÄh‡d쬔:pZ+1 R/W*V_JãZ¨¶ÿBÐŒ-ÆÛ +Äfú0s ÿÆêfÍÜ¢öØ›d––Áv oG+`]}¤-+“ìµ2AšÖh5­yNÇ4kʆ†×ãH‹jVÊF!{g‚zÙŽHBée#\&®c.bÔ¬:µœIU¿Po•çÞñÅ”;Wæ]È ‚“Ž wA$ˆ> \¶¥o”µNîdbãÄ*ʵ†P£áÌ6A1¥™ÛLtÖI‰K&V­Ž¶Cu 9‚eäkP°¥Ì³ hÙŽ€vÎkoôiÆÕ:¹F0wÆ…É÷0l’諲<ൊESpb7tc1otDqÞY/Rw9A«ˆÕß±œ.KzXjS›32‚1å@„²pi¼ö“ Ëd%¯§I Ž*fˆ„rl(zÙ#«1cw:XT•kÉMÚè)b‰©ûk‘¹Ÿ FßÞ=ÍoâM…ÄZ: `fè0fÝI{4šP?ßåßCC­è§Z™Ui*lMø.¡.Bðg³IÙAÛti oÙÕeÜŸ9cÍË9ÊZW õC02L›Uà\¡äÉp!%0ë*î'—`H]S7[«•f;\P Îà†gkªÌVÑÛOc­ºŸ MLd8”hÓ1­ò8šöµ€¨ÈòÖG:Ê+¡]¬¡gP¨¡™9­,ËKÀüEUî†Ü0ÖñZ½ÐstèN .%'º;ìÉMK¤Q k–E§c‡!ê·™?<Á”»'²¼¾‹åO&”‹Š<_t/H¡˜>ÃD°ëµ°Àw2U Ö÷Dlž"(Í'P\›aƒ ÚF*(ëL5ÊÒI|E€²W*ÆÁ¶ i0F½æât9U% TòJ¥G)e2­ŒaÑ,<*€Ê’æV.ݪIþŠ!¶,ÕªéÚÛRÙ”Î`-*v)»> ªŽ ΖZi Õ«˜D‚æX¯z»I)Zkjq[¸T‹HWËiøç8I]–ÉXc·c “Yìp09Ë®©S†Ò`èLäèBÊH‰`R>¶CÁ_<í6Jb·”ÁcÙùɦ0íµÜÙ,A’žÃþzçß9¿žmIX@áD‚”¶üžfµ1¡V¢Á©Û·/V©Ú|™?4ù5áÐq”š¤à´0æ^{³!îÿ_¼…¼ð³¹QkµÕê2. j¼õò/ðîf彨—(Ê9v/mjðn}ñü\ñç9öÞŠ$®—@Ã2@ºZ¦l `B%©8ÖûöÃ'–®Õ ÖÆÁ’©Þ¶kEy¸×°ÁE‰(mÕ_þ ‘ÓsöÔã;ÔÆµÈãÔuÌŠ&ˆw#Ùóϳ÷H·dw&Ф-QGºb•°´ÉP Ï&ØHº[ô‰ƒªèÏwYOøÕŸßwãkЧ¼9暪Ãçh_/ìºø÷ï1µåäÜz•Ÿ~+B]8D‡)Ž;õíùÚÞóxH‚¾ª¯·yžþ»c9=Œ¡‚…k£çÃW.Ã÷9·É*ì¨Eððöìm™wµ·^è2Y^tnžÔ8d§WÁ~ÿ$fhUÅ yç;«j)ÚðÌcòÖJAÑlÃEà ìò´pQ:gP`ªB¦× ;ÜuC¸wÙà¸Á.ÎL!&*~Ta¢Ú;ðlü#´y©ÅY>Óˆ¨?“|™ Îî7Þe¹¨¯jüòßz»’Éte{¢{¾{¾?mª¾ˆê5Ø<›1ã$=QëÇœ\æiÙð§Þ<¾9ˆ*ƒøEЀPº*K'“&'µ<œˆD ÄX±1UâªÍXuVþª„ˆÏOR;.S-Ct_•Ët¿Ìb˜|¸Ëç¹fB´ä¡¼àÙ‚¹Ê‚¶GÔWQ$-Ý̶”¶ †ƒQmÃ×r]ÜT+ µSˆö·ª¥EÚ^ø"'ÓT ësCK°®fò™7~®Å1WhÉ‚Òx–£(§rŸ«j”‡E…p®Y’†Â R¡L¸2aÑòl2!K2 CøÔ6…?í)¿Æa•&É"S!„Qþ'çýþ°¡Ê'ôD?â9¹W!C_×ðÃëúF “Ñ õÚß‚*ÿÐQ7@ùþ^¯Ô;ÿXÙŠ™[­þÍ4 ÃzíýF¦ë#º Óøÿƒ§' ×ôkü¸4·ìCúºî }¯ÕÂGôývR&çé=|~}þz/’ù÷÷çÉܸÛþ¶¦~'Çæß]{sÛïð¾e>·§Œx¼%ƒçÅ>ç^¦´ó€î]üq±¥¾ý…;íjóoômÇ_õ¿ßŸ­µúƹÛßן%OSá׎¾ò¾íß¼—Ç}Æ~-hùýNøîV·-¬{>P?xú¥‹é´¿~“ õÒ—\VÝãßçÊ•è{cŸOžû‡ªç›ýþ{äÏz¡xìßÃcׄîéù«TÇÛ|4WQòžžô0ÙwUÇ_×\yÞ¤}ç~¾»zÏ=- }×É‘¾ÙÆvå8$øõǾxUÜ·snöuÖÿÒÞéͶqŽióÃêŽ,Ÿ4ÛŸ9 È@?#©u;þò»ML¦­‡>ˆ"¸”·xýЄr…Ää÷¨£Ï¥2Ì@î+`22kµjÒôÑ `ûi“›•à /YZ!  8­ìrk´”.‘ᦻéI“;VÌʘÞèUx;°.oTƒ :…êÙDºµ¢|³xú3®®ÍÞL_ÒÏUÏž!õŸi­íó¹b§á$}[÷öN¯Ø·!Êc ¤å„QtÂ{cdÌ! ¾‹M‰O6uu½Õp|èbÍ„Í6?Ç»Ö1{S#R"ß,´¡ZØ›jç[pTæ®öµT3º,‰v×e¹jo¹¬¹ZÒÈÕÙŽ¬GJ]ÈH†Â!W øœºE­ 8ˆa˜ 5–ê£Ò¶½Åm¥8¦ÙZÜ©‚Ulˆ‹êà>)»qëx›Tç[Nh‹–œQµWT^P×¥@êÑ‹õpH{ƒ›Æ´U4Ú…’èY[¦®©…Ž´"˜¾3-D{× O²éÖçÂó€¨gSÏXÇ~Ã@ýaÓËŒ—OÕ²ÎyÖõÇ«•ó¶)\ÑN6cM„©Ÿ+-l·š3nzÃE¯Õ)²úÄmY=;Ž /53©B¨qÝüÔ¯Áãmm!·Àè(¹±Ž×mG––âþã´Í•U ! 9â#˜ŸMæ ´ŸUôÏÓç~çÞ|mñê,œ[·òñ¡õéùâ¢×-)ñýšðh~ßëÏ>ïsîSÏž:"‚®ÿtø–ZÖ¥]¢{ú`ÞžªÖŽÊOq·ë;7#ãö¼R¢1Mä>ðÉ@X1×~=$Ë ä³Ý}’kš—ªÇŒx¸¥jcL倅êÆËaüˆtXHn“ÅîôÞTµE÷«Ç­ƒ®7ç¥!ý6²R"ió¹gT",ÖÛ†'B‰E$ÈZÞ#´Ë •ù–n¢ßµoÑNáÉ“¶l>KÆázÏ×3#ˆ !¥¬5,*Û{öÓ#$‘h)(–Ü2!ßךc[Rà)ŽøÐc4/G¥¶ÍV=‘qŒqª½…®$qâ‘dó5÷¾;±pT¦7碡YèRï ù¨î4!¼¬m äㆈ¾ ÀcîøË·Q\êÛoÍnüí³;n‹|SaÈ>ÄÄGCGèbbÌ×´lf[ýc¬ÿ=Ý4Që~l›7Ìr¹ƒ×®8ä?>5O7­‹ïܱÆC3^’ Ï'ÉSzûÞ‹ík³w¥øè+ZGD§ãËŽxîöá ÌmáÇ8¼%Æ…Ì!…$­ë×7]º ãó!¾ýé”ç'D×ݹ|çªim§»x޳o#áæÕ2?Gמ`<íßÅå¿~eéîüíÞ›jq‘ƒFæ»/#-hâ=^sx¥_ÍÔö zÞ”_¹óßõÕ9­kìõn¼²öMc~nñJ+-‹‡Ð#CÇž[¯]e¸·®Û÷ïóŠOÆþ—'޶Ø3Omܦ•ê;Ä«¯áfUé™O8Û¬JœA¿>~¶÷ïw·¿ñ8Ò÷áÅaõçgš·é¾ 5Inü×µ||לÖ8M6Ir ûn—»óÔ½`Â%:¾+)xJ¸Ãà…ÏÀ˜¸w‘Ø1𙦉eB¥aÝ4Ú¦¼L‚­y9€×xŽ‘QL G¢Úv^.,;Âæ9óÅ.AßmÜbûÈd­^?ôµšãœ™ú_,J¸‹Éƒƒ‹¤ézâ¼Ó¼ó¦eV¹ømÑcSzSr{c”â`éµöñÇ;.É$6a½UkŠ•»â†ôƒRŨ¸Ö mè˜<'@|Û'Ü?ÍzÿÓëÙóÔµ?êÿîÿßÿ¿üþÝ»óÿéÿãþüöô?þ{ýævÚ“ûÚõÞÇRKD£+’)jâzçßÅl"}F¤IU)ºadiì×mØvÛ=ÛjÀ¡Díµg*æ3Q ¬ô&%œõ¡€ÌëcgV«8¬™éitÊ7)˪W‰“«s"‹ÙÔC5I¨ß¿£Dò­KÞ¦æ*å2͵Pín4@‘F»&QyYü§wóòpg–õ„É”‘ÎÔÌe…èz‰Õ¨A0Ï=ËʲHÛmvÕ¶“E˜È)•Gƒ%Q¨]F,úÙ ÚÛV3…y`’A™¨ÎCFÓš…‡‘ê$Òý¯Rˆ¢O]ít˜j£.‚­¥zi®œêê×ZVxÊô.)!‘Y%±elåÐg¬Í· ID')‘ŒµºLç¶¢‡lTYŒÊ‹AA„kjÈ‹ÛÞÞØOl¹èDÕÚ6!\CÚ;ÌôÈH pªm÷mÔÚà'Œ!«¸^ ‚„÷J†@T8µÝåÕåyÅyqݳuweÅÇwiGGA^u…uçOc§P.m ˆ /qWÊØ;7æÜ¡ÞIQ{ÉÒóÁ5\W•EÑÝegf]”w½ YîìñØ{=Ýv¾ÄúöVz²Ì¹ ó‚ÊÎÈîó¬£,m<¤2NCNÆLŽÛ*jD›5¥ ù®Ÿ(µ$«¦–xö÷ç°Š§×²´·n‡RµµL+ž!/YÕæ ‹¶¶š‡(„¨D—jâÛvÏd¹¢u<ÍÎcSDÑdv+" 5k”Qà YÌôÖœá襬–¦9#ÄðŽÒäØžI×Ru»=…UTv³^Ý¢Hˆ¹á§Ñ.ok̈’{KÓÆh…™3¡èTÖÑ<º¹AªºLí««HÛÉ·Œí°h…í‹2Ë:SóHžõƒ=rä‡L•Lr3¶Ù/>ÓçȦfu8dhFDDyæ§3›vÆæK%˜xpÜèÈCTEìë{hƇBn+¶7fT®“EZe—JãB÷dÜê2UœÂ2N¤R¥$¨œÆ¶,ô-B(L¤J*Lå¬äÊ2èì®×açSÆIhRj3ÙÐÆLœ¦3bžtŠ„&uq ó]œò=\ãvYöc$®¥TAQ3Ë<òmF¼–IuО£Æq­³«µ³#©W™µ JB2C‘®sÛfyÅÏ"‰«+VÛt,ÎE@Tš\l²ÔË@¿åê®JØõ|Ûr‘U(Q•2ESžÊueÓ‹ŸI†²Ä¶n‘È·3Š2—F2ÞJÉ jÌMBc/Ò¡Y°D‘s—Z¨-œ‚ÜEǾ]OÎuÎlˆWØ&%)4ú-U'᭽եʉò¤ÎðØÈK·pÉžG•ÓØf»È¨Oz Á92ºçJþœŽsC¬î±ˆõíG*ØU9¬Zo‹"VòxëN{›0+ŒÞK<¢Æ\Tó&G4w­êŽ ˆ•ÈÔ¬èµ>ù&©w{\ï~ww{i`rKqTõvqnv³Ô…:òDÛøùóª‡}ù)I”Ï®÷×|úêEÞRÝîê÷|=çžtŠ…“BL6ÓsÃ#zhÄ™t5{è×{çH#Já;˜ä“ÕäWžÊæ‹q&ñfÛä{+žê¯%y^g:V7cž½¾*êY€¢¡‰ã¸h‡Uʱ3Ñê¸Ì HHq%†”ÄÙ×4©ŽN !f½]J¶[<PèaAT¼V¡‹Dà.XNÅ6³œ¶"Êu;]²Ðnv$ŒcÅFè¢ck2¨P«ƒ›à¤.ŽNZW‡ ’ž6œÚö%Ø.ËJ¨»¼£*Ž£³mlÞÊ¢ѺXt`úcÖ¨ÐÛÕìë¤Y‚‘=5±ºžßáÌímePäVøa! fê”&Oñ1íNØ€à0ö lO­RaØ7kÄUš×¨”’/cj,%eÈX¯´”ÀÀñUl%؇4ÕBØzJž®P ØŠOà8¨'?ã­Á%Šš;»©ÀLKc5âV9ÚÅjïtkAÒä¦b]˜lHK 0-1qšÓ9º¨³L ®e0ŽKÒ•¨2[üdRÍua¶D]ib䮆UĵJz+íAÎ`ì”ÚÕg»¯ª Sl2éªE{ʬ•=­^É7ÝÞœb©ª2Ü­QB*J`@ÕHbèuHn8Þ˜wÂVk¾M2 CRß‚)àj2÷mŠh7Ì‹9Æ$*[8R­+AB(î0¬½ »üoÚì›O…ÍŠ½Å o—23$Ö÷æ‘§ÌB ‰µ‰–[LÍðtMÍ¢N¤uºJš6Ú«4Zäiá¨y…ȧq^O'mD\<ûC=âí}F,D ir:¤¸C ƒ-­³Hïb `@¦Âû盳A0ã+K„Àä ÀÇu”­QÖjj@,&äÔ>ëS¡³l'UœjÅÚÁZ/ºMµ4µ¯0Fת¥êdaÈ£8Ý”Á¾òËz¡¸‘‘…è 8œ Æço˜ÍÝê¾1UÊsò3ÉŸ&† ØD÷(>¤JðqW¦WbÁf¦L¡øön ú|ûß Èš€ˆ< ª´ >!ÄAÉÀõ‹á‰h5M%çXG>P.èjnMƒ ³Z•£ÕÐÑï‚{©¼/s«£8 «ó¤¸=­É¯Ò.N{GcùÓ|ð®{x~Ò…; ê°"‹\`ÛüfÂbÅt¸¤ ݨƒÉÿ¹¦ù¥FFëP ˜L4bš4Â0+,2»UiÚêMËïLŬi%:•²^L\B™sR¢UÊÈâ)“uµždÙÅíxZÙT½òóÃ+¥4aôôÓ¹ˆ†Cµ`)†'ä¸&M›6y%„½Å®ù‚§ø÷P8jæ›4æù¹ÈSài™;Ñ`02•p»Ýñ 46P”ƒ©Yx±K¢QFPóz[ à‘ˆ$¬%%±k‘È…¢àT6˜Äâûf,ŒÐôÍÅF@ßá@p% …Oƒˆ|«8=û´¶CõÑõkÝu뀱v”*á¦BÓC唂l›¤öF ¿ÛÊlXVRÖÉ¢©ÝHõÂl‹KïµÛ !`‚…† ‡;Ì¢‰kR¨ÁT+ŠGéŽÕ£Ð‡e:ÞE×IJ>ï³ÀÖ°("dD<ÝñS{¾²÷n|îDä‹Û¸ï‘¤w›!ò1otŠEž£V*ì–"r‚¢¤©ºŠ”BilŠ XT‚•TQ%!âÝ’ü–]È9:âÀîä$¨Ñ§,ñuŒEü™¾,tßÖt™EÔIòúA[k’£4¯Â#ÚåÇ{(Ÿ&23ð70Eò4ƒ´Á^(“ÕsÞÉ·d!Éõ%í4˜ëŸhÇ w›mlçßë¼s›ß K—ãùï®8ôÁLmŽjl˜A­L0t™¼‰³2Ѹ|fEZÓнnæ3J¬î­Õ%*#A†jöÝ íHŠYçì¿c´VÞúˆsÍÌ™ öFT\¹‘µ.öfŽ^GÌ~Œ^h™Irª£Š†«â‰•‚,fª>ýÄðr }»[b~ XÇ1wDæÎPï#LÄŽ‰f•‡2R².e5@£É¨˜\{D®kÍ—S5Äeóä‰ñ`âóû ¿Ã7·ç ìœß»š‡ëœ_JÂ94xðy?Ç`õ{=1çƒS˜ç‹x¨"RS°¾MÎKÌêÌu…ª˜Š,Ùç…PUPšeX–š-yd¦ 2™DÊõ¸Äw¹î2êîHŒ†f* ­±×@A;çoW×{ìr~MÝ\x˜(g“D-û§¯ïÏçõ㎱‹¿>ØiOãVÿßÖ9øÒ[oxûê~£ÇÖÙþ›ºúlXŒoï\}Û¬w¯ÏAæyßÏ,ÿ¥øôŸÍ[͹ÖPþ×èºç=øþß×qûøøõó+äqäÂù_ì¿=ô!óãø?~þ{ƳüÚÙæÖtTøýù{—Š_×›úèö•O¾Gúƾìù—§Ï_•ûëÊcwŸ^:¯´šÕ8¤"{öýøë¿Øà;ür.O×ǯ¥spùo…*†íš8Á*ùßÇÍàsÛ%%ÎÖo“Õ<©†7÷÷· KM¶Ãî¼»÷ L·ç¿7Õf29ýn_­~~‹|[}Ÿù×ÕöÕQà¥ë­£ÛoÕ?e‘Ÿ¯ƒ˜ñ°xþɃûÄÞQo›Ù·”~©Ñ`.„>­LÎušÏõý›†ãÓŽa¹þÿŸÏ¯íøbFŸ±ûþ˜Áˆ?±ŒR¨ª€Â(²8ÛYÓw¹³²œ ÕàæHU󙻇EÔGës;–P¸›Ó%1!΋&H›ÎVÌÓP"ow7oÆF¸˜8;ž¹¸#T¨$ê&!ís.¯º2#¹^F7{“‡X/\È4ꨨ܎ÀWrª¶kø{Ùñùƒ™Q}&å«8d³føœû_zÍÕ÷y|ŸgʇõSÜÚû°¾µç‰a%—õëlZM‹úŽóÎæÂà¥yÕ&s"²»¹kb<µj„G% ‡Í´‰nÕ‚+Ø!ÉYïbj…]¦¢X%;ØMJl ´Áà/h¸¡"_nþ´÷‚ÈX«bÈ ÜÄ[`\K0ÐÖfÔ2)A½]®“žð»w×9Ðí{ÊÖí¤,lò/²6Bœ^oP´…eõ:Œ¥ÌžðÄV•­czš j"Ëtx•JÙ¢ÎÀ%—©ÀïZ1t®]ÔU€‘Y.v ³.Áo•ÄÒƒ'{ªK–l¹bpÇMr'.¼:„)PŠƒ–.p¥VÉ‹Ý]P ByÙ¯›ã 7»…ÅÆN.yœGïhjyœ¢=÷æÉS PÌÛ }I`BÂÏtÙZÓ]iˆ=U±‹é© _ª:¥t$–vÆÓ·ÄKyù΃8èºèwl‚t˜§/·-À`XÝj[½u•oŠ]}\f:eë‹1¬èktk%8Bj[;^]üNiwƤ6§;”kŽq]àxÅìv°WÇ‚´2µú¹Ý1·õÞ+Ï5®h¬uÙºÒíÈŽÛ±bè ÌŸB€ç—Þ±5¶©/°r—²…5l¨E…R5€E¤Cº,Š ^¢¦±- øØÃƒÔo{þÍZ×Ôû»ÞÜÃæú˸‘Í÷OZKz'ïî%nÌ5ïckÁŸRwXN„MAÛ‹ï|FÝ^±m%ÿªwÛWÁXýl ]ür³Ÿ“a·r(ãÎo­/¥Æûì6Ä‘š!99À†ê ÅW0¤‘-(D°P9'ŸZmµ¶¸mrÇ‘Ûm)\>’éh#Í ‚5¸ãŒùé{õ ¹·:-aân »ˆT ÜaÜ]±•KÜ•jå}3¶3]™ó'd)Cì¶9áÚ¤ñmm[ä®{ÎÛá÷Z;³T)[»7 \üñLE·ç•øÛ¿ôÕ`ãdÆ.(ü¦M!í¶(äé±"ªæÂ·¯¼ Rz­i÷ÆÀ „UªX¬b5ª@V>X†*÷„Ϊ‘˜¥0ŒxðÇýÿ]ëÏÀùîbšø p§µÐƒ~_‘oõ¨H·uE(ønö¿ì_׫S=ãÑoáx°?¾þ"à®fë%ZFÀ¸ÚyñÝKƵÅ,€5}ÑiFÌ\épþýáˆê/NˆU Î7¡¯–ÏYw¬üE®¡#mçŸÒ–mSt…é¹ý'/dÆá{ns¸æ^m…Jô'Zãô!oB ?ºñ¿»X¢¯¨@íùÉ ßæ×£ütœi R7ƒ±"¨“}l†öýjdoHs”|¦g7’Ÿ4‰®·Š.šÚJMä#„‘õ¯Ö·ôåáµ|­Øº|@s¶ÙiL˙ں¼`b™’ã,X¢æÿ¨¬ì9ˆŠûq|ZûRüZÜO™°Ø¸çÎXpƒ°î«¡ /(‘GUùÁøkÛÛ«‚¦€xåSȲ#³$ò–dçnZd4Ab”YÝÎ>½¬Ç¬YPú aeÓ¼à7`ù«JòÂÃâP.?‡vþFƒ1Š…xòšŸm¦µ]ï5¯Æ>üƒÀqízâÄwõïAñªà®—¢u·¼ôö~Ë}ù¹i€t¦ÄFEÙ$cWõP–*míݯ2gnmhU«„ 0ƽµ«¸ QY6Åñ÷Tèø·xOsè×X©câoKwaM7~H7žÿÂþÉzo“4)®Ö£ˆØüõ/ìÑŽ3Lr]ë9Õªn~ìgœòßó}÷ p—¹_¤´†Ë+`P›ò5Äy¾'ëxζà|F«ÃÊ"€ƒðÛKiËxݳ’›Ë‰›Ìÿ_”Ù+Þ)ªò>yZþt¿[åXi8àöE ÔŠ8>b‚·÷ÎcêÁÄy¥pÉïˆ0Öí¿ºW<¦a‡JO%°,b"¦†5Fs~󣤦ÿK§ µ ê“ÝŒöƒ{ÏËíãÆkž­FîÁ]Pðlw}¨ôצùÕ¯CGÓxõÇÆð®¹5Ámø°¿[Ì#ñ—Ëç1‚ë‡àM ýÿº=ZjAEVÍ(í™!dô@zÛïU£Ü´MËclçQ̨Wñçç µ|âç¬ÜÁ‹v}\8VœÝ‚½d£ÍÍ¥ØãŽÈ¾£ûfÐ/ÖS4´¾iœ®ÛàøNôÉÇAN7~zH£l5Ê  7çúxõÜúÆ“TÆ»8iƒsО*ϽÐX|7V%Í™:ó½ã¬éi[ÚÓöïü,Í-‚´ÖÙhÄw^B¸¢ºŽ°ûßÌÙnÜ‚ižŸ{§5®Û†èM¶Bš¡Û›îq:–±áxÅ~vÑó$Z×\[}ûn|boŒdŠ›ç4K§ì‚ MGƺd+¸_ŸiË?<áªÕýgÓpyðsóÍ*×Õ–ÉÉIÆw€ÒoV¢ÐÙknœèE`¿ùiÍxâÖtæÂ-òƒŠoô4ž06¯Ìà›4ä#8 õœRÝ4l9<Y‰ÑO/èd ùßä3"O¢¶ö‘ÍZ&ùòa¥ï¹â” ½2Æ)…­ø»Sõ§çαÀŠî–ÇV¥¨§ílué¶ü«ßmëv¯wâå ß#Ôû&êô¬D¾³~e ¸¿/S |§+`鵿š¦pw=€‡Šb•Ç6õoêÛ|ÛÐìÇ”¯ :$T6öõš¥XêEŒÙgbCTÕ#ÇXÖ«½Ç§Øn?Z@Lîr€¾Êœ×>R‘_#ï]úϳgÀújkè(MWE§Ç!ÀŒçaS]lú¸ü·î¦ ж¬[K?oLéfP3#æÅ½÷ÞÛúN¸XA1wûMñlë}¾¶{ñùI£k¯Ÿ¶ÊÇŒmKCuIã'´³"Éç‚FÆGKô‹Îеwí;^Û#ߌ{О½ËÚö…Ò© äö$.±K&Óˆh^I)šºx$SžQy¿ŽÇ¿ô¼ü§¶ß«ô¼ž½²ó‹—¤¢KëyÉïHŠ(C<³t{{É>x•ìê6‰å%êï0饇ªð™[Z0¨ö¤&aOGÞðý¡DÈù”Gït¨¨¤Éõ9öU ‡ÚåWÛÞó!Tôô“Ó#Ô½žÛøýÙ=ì÷äøÛÖÅ3ß—·…í,">|§©¡‰žU~c”Wêòņõ/(ù!Uû}¼‰”k Y'¶SêÉ癋¢GŠ) ™J¶ºÛI¯ÚߟC÷=!0ûa}åé—ö{Ù?OYŸQ…‚R^TiA®©v%Ä,ÄZ…uãaTÓyq±ŒQºÃåÒñ†³…óìD•æÍ Oa\j‡liM°a †Ûe5(òÂf{"e»¬ìHˆ(çDè~z]ðM—®Ìˆµ”K¦Sç#‹–e|äÔ¼LÕ=R$ˆ•q#B„ ºŒŠ´FIkï{‘ÎM­¡ôW°¾ŽÏ›–ëlaÊÎø¼½#ˆvÎê%]vÖjì¨ eQæmÁŸÙxÜ窕û&Ûž<äY*^¾=ºKKÓÄ™>Ð*ˆöE/BóÔ&²r+BWbtUç·=‘êé&…»Õk³T ½ÊI<¿¥ÑÊyãÉ™aÅ·< ¨»nQ]w(èžÉMÕt"š¾‹Í-OyS/8gÓŠøÒÖ“¸³7©PUurRܾôyï Ùã<{Û×{aE³Â“*I$ÈjAEtHµ·k—2LÑœ5ÁmÛˆE^Èy-{–Û¢Û&ÕHµ QhÙyQdbM¬öy¶¥„ UaÓ²g­«ž^POCÌÍUq4Õ ]çª'—0¯G« ¶Ü¢ ü|ò ýuï³ÚéYò.ynQJ©½v’åå2 Ϊh•TÃv%‚5”LÊõȈæÑ™^Ï®ìö›èI>qó Êž-x‡z÷¡×dDTsrË1íÜ5Ù TÔ´¥Øö!tûaI6.§l¹µX°êDÉU%$d2nUAxŸŸ}ë×ÏznL³м+ÕÇ“"™^Y¢…V˜ö»…s4ò0õ¢ÊÀ´žctôƒèé¶I',2AfAAͶÊ*막à°0¥%v’ílkµÍ·JêºÛk§¨m¥Ê#µÎê2mˆs24Ý$¬QWu"ó\TÑä´LQ­kï¾÷§j4Õ2B3¶0ÇÅž””te’r|öo^Ξs4 § ÖI5(ªU9ìŠa(ªZ)ÈvKKÚªµÓXËÓÖÓ„džílB×iÆvk}àò¦(­ÞÙÈ9µœöeOgŒô„„•*92gœÄõº>Ñç¯0jéâzzxW3Ú6§­¶rdO¯ ö{¤›×ck¡dRz5b•½íäd&xºo-fζ곴g³–j…]ÄÌŒã5ªÆó8»—ñàÚ'‚üüËÞO&zrZuÙ¯ÍÞô™áR¤íëÜòóÏ™:é—Ûi>×:$ór :^â*{kI Õ¬´y ‰B‹¦©¦lÙ|z^˜^ÍÙyÀEg…9sž–eël¼½ªv¹y堶ݨešf®$ y‰ˆra8Qxtr+SF(Ï Q97>KÃçT¼ò¦VHlY\¥¢"È)¦Ú媧[³"EÕr ë‰Q–Ûis9æÛ‰QÑ“, "ȧZ×ÎóÂÉìT$ ¢ZØIì…BÖ7icVvƒ/9$å&×H¬c”í¶ ö™zQM·!hÌ÷" ¼½‘јAFè3´E,¯=Bù ‹7¾hï#Ç·Y^SbÎfΧ¦JŽ•áz^ÅçÞn*‡¥ˆ}`&L=ZÂä¦O=”GÉLIíM©âO&ÚâÊx¨RáLÍ­K™åÕt2BÉÉA ¢ÖB¬¨®ntaåÕÆj:géBHa.j™íFäÍk/!–Æ \êz¢FQ§­—+R½ŒÖüÆQìðHú Â(,ôò…UZ6—™ƒ“‘^RIâF%bÉ9î™ y’ªHUém2WmR™S=›SÄ’44,´4LlÖuZìKuÌGÎÐÞÝ!¨^<™Tô)ê%ÃRQÈ4µ- žUç1 ¡hÚé³Ý‚n56ŒTˆœÑmjg…½Œƒïn^\’*È‹ÌÑ­Æ¡JMntºŒç—­6#ezJºVHsÙ ½"óÎ"ó£ËNÛmïjÛXÞ Ì/ 2²ÛªöaufÖØI± ³ÒÐT(µOt2ÃvE⊛¯"óÊu鬳³;Èï<°Ô*LªfDyÖ¬É"£.¬òÊÌça§ŠY¢E™ †×CÈìÙÚXÑ«„IËí1ž÷´Ó¬°ï9CŽÈ¹µœ…1ËȮР¸lEË äžœºUÔéi"˜(’DB!*¢¢siؽ[&ÈšSQdKvœÆš†åf-±š$W”P¦îWj{TåÄsv»"tñ8ÙÛ›lG ÖFV–V[l†Q%T2ÖJ¥L‹Ñ óÜŽ ÃfѬgilÉyÒ"eXƒ0‰ MuÏU’W°¼:%™W¥ÑÓ³¥QIS¤’z© !µ:$zI„¶É¶–pt=míe–YR?]½D³DÝzS§*ØQmn.8©Eo7»k/HÉÉ·jNG¨¥‚™YsviYe{is­¶RÐë$&M ¾¶ªòl·OVwjh1\nz»9³"džËl"èëD«O”µ+ÆI3h•;— &Ûrðê¢yr+©®=ë¼… ¤=ÞÙpÉwL ÔRœº…Ê3éWdÊêF.$±Ye«¦EåŒÆäy†Wª6Œò‚[vС³‡mcMXÛ$¬òæÙÝÔ5u.v"Ц4s†Ï+ÕÝQ2%\¢ÊΦ"yå{=Øx—\¹ ð§jjAÖç³ÓYÒg&r¤át*"d°V[ïW™§IÅyU:ˆQÑ#;t²¶Ý**Šbªáh¹Šdìí"š'jAsÆl¬¤W52gƒ £Úå* "zꮉBq‰ásW*£Ë$ö¢ÖW­µ]’KëÚ<…$j–Ïg³¢âZÌ®fB™dÚét;®%&Ì¢G'›Þ•§.«­vzØÇ)Í1ËLg°ç"˜r0¶ˆ“b^˜{P¡™^c o-/KLÓ´Šó¼Ž8¢ëÏO"äˆ,÷{Þ‡ZîžìQjC2TȪlíÊ:å©aÛéï‡Ô(gW®» ¤˜%d3•‡ ¦ë$ˆ¬ík`Uåû]‘(y!*_!lî ¨Ï:0!E,¥Âðƒ $ª‹6²mD-2YÊ÷/†§]¶¨‚«š.f„|’9ó»$œíŒð),Y'=']NH]7SsYìêÉLôÒE¬Œ2¶ÞU v=¤ŠÌ´¸n¡ééã+•Èè“ =žžÊ5×hê9}oz*ÌrŽ—9*¨):bYdv±QBVžö¦õã›çX7½FCx’³[¶-G)¢PåPDu‘5 \¯6»²‹žš%›@ÍÒ²4*·1$$ÂÛNGšer;ž³ÙR{9m.ØÅˆìÚ-6 $2&‰ÎVtÚ—ŒÊƒ¬Ì–´Ùí’$•F(€”Öp—5N±¤žW}íêÎì*)Ḭ™®ÃÝ™*TLµ&q£¤%*äìñµÍÓA ÉÄk%¡ÌJ’sR*Rñœ&¶ ö)’ ¶êLóÒ/(“TS§UÕ¶ÖÝÆÏ9¤!Ô»bbj$§ †¢g¬ÝÕHBÅ2˜ØÃi4’¢¦ƒ™F¨”¤UbGL¬˜Ø×M“2¤‰UIhÆ…$&E5jUÉ79t¼*ãZÎÏJ¨µœcA‡—¥HG1‚!‹Î=í‚Â3=4Ý7(ÕÆ¤Å<ªš-d6º(S­­ÂÚ2Š‚œÉ5• k¶Æ’R‘ ðš.g³¦¹˜EvBôQ2½µ•„! ôfî‘I'³Ýš/E˵Æ={W¬™â}¶åœï^¯^7¹qa2¢¨ÖÚÙé 2³3ÆÑ&Eå ˆŒy» Þ\NaX2yËãbÞpi3;lrŽ»Q›]9æ.Ižv—Z:{ΑO—z”Ê*­J Îw òF.ÂZãÞƒÌ{3Âm9‹”–¢§{Ç{\+G#=2)¨FÐgÏN$”JéY¨êõ…<ø\0Eížì»3»3Šëçß|ڜۗ°÷H°¯ ÕÈ)‰Jò6v“¶»=žÉ™Z.Ï)´*šYNõfôq(öEã&í±žž&V zJL–"Q^­ºÐŠ6ؙխ‘hÉž^œ%KH®EéÌ£z ¾¹jéå4mä#ÞÝäók±JÝÂòöM+Ú›D³qeºò<Ík Þdñ¹¡!ºi¹d©|µ¹÷6‰´IµžÊÏJñµ˜ZEè÷·¼´g³lbEå„TyÛeY/6* Ï{ÞI%Üg²žÃ¶ÙÏg+Æy¡¼›=ž÷¡ÛÔ.½îóÞÞLJÖ®òBoXW§²dÈCÛC¶âys„ì®J‰OhÓį“QçÞ<ö<ØÍ6ã*ËS¢¶6ì:jé V×Ymè‘Þ쨓Å:ÎŽé’A×gz.{LO›¼ÂùùÃË‘®„õ|û0N®1ÕÒ¢öÛ ïl£èÙHAZ‹§˜zGyNÌåõ=¤ÖMïIg¥z]E5Rh4û;Þ›Á‘y5:'$Œ¯(¬KD0ñ¶[± è…“:óI-ézE$.MSÄ"ê“ÎA{=½d‡¼j“=Ù2ZhÂÒò“ÊÞÆÂÜ)1æ¶ÈÌœÓ ¢´¢õ¬îFZ`W#¶Îl+©s{Yõq=< ¡Iöµ 5ËKq2^v‘éé©xY™í+RyéQTŸ!ªzj<ê“)ÓÆm¤v½ïbŽ«nŽGÌWµeÓŒŠ¹š6 œÏÎÞÁj^{ÓöÀˆ¦›­]{:rvWugÕä}eª—¦÷³èW;v{9†ƒÌ"ñ•åJai iæé؇5º=°ù« æ±ÅiHŸ2g=e¥é'%‹­›¼÷“[föÂùO¾Þ‘ƒÉ#Ê“—ëÝ¢ñ+;^«‘-³®Õ«%R+¨Ñ!Š^ÖB®ÄœǪ́/{ö,‚žo ¹©É=¨U–””jh‘A©uv’íHîz%h®'§šRš†ˆK•\^=“-M *¨Å)]sµ“½^g{l†s;Ú7\ÞÓ¦·iîPs³t±­DöHLð½×“Ø&«FOzìöÑïmÕš÷—ÃF¼ÙUIk¶Û•õg½ïyæ¼&g”_W½<®}¢KÕè=$çÎôxF)í¥í+v¶KŸ$'™ô7JÛ°j꛲gÎűç>Hé%Ì>KÍ I)tùëׄ=Cë•BTF¶¬n×= dz¹°L«ªõŒbtŒ©;]&õ½ã"éÞÞ¯nvÙvš®ÙjŒV$QË©aŽSÉž÷&ÅÞO<"òég¹½»Ï¯:\W=ÓÊ©k<ñ½‡ÞÝ™YäÉ>mÞ¹pá=ë3çÚÞ•Bô±®h¦*ó´]B2t™É½½î$_U-6+ÏÞÅštÄžHDönÔ@«MÞ׫ºDTy娭²¹=ëÉçÕÊay‘60äóaf†è×¢É> ½hn½c[Y© çÞ=ïarO>ƒÏaéÔ§¢òH¤ŠVÛW “É äbåGÖ÷{X¢j¨M>äðíŒ+óí{í¸õ {Ô«k´ªùm¸EÍÞì[×y“Ôžê|ç7ÖÇÃ?]ov ïKÞ=´¶vúkÞúßZ8‰‚::‘pîr: Ž". 9Hˆ”@‡)Cœœ‘)È:Èœ¤‰I‘‚P$9ÅÒ»º®î»×ÿCׯ^½zÿo×Ïþ?ü¿ø¦~Òª‡1QB?T±6ê.Ý‚Dz õûßÓs!·HÝÄ~ï"f…G¨æ…r؃!é“&n+uUNäP€nbM–hÍD¢2âŒ:B'"'²mÜj¢J ¤•†&3ÖÉVr$‚ôИ³äqÛš0žÃ¥µTîÌ7Êuu5&® Vl·O)/F&2`TQÖ_›ÎnŒ†â-ÔEÌZƒ t„ÁìŤ«Ò*©òZr3ŽÁËÁU ¤%Xm OÌ“=ãËU„.kjY4ƒS% ™O¨‡HÐR³©‹Ypå†Ä~õKåëë[³ÔNÄD!2·Ó--c)O—’# ¬Qp¶8ã…\½ýîOís±ßL£ë­ÆG©ìÃï«€•C L3f6ϽBV¹îÕÉ-ÔÌ^Æ…˜ª»UFnæ¢Þ !@dW*ööØÞ¸õÞ¹¾ìúä¹™fªcÈ~?2u³ ˆ9Ï9=Éõ\¯§îŹÆ<O„}DÍœ °gÎ. ´¬Àm˜‘òð³ƒwœàåDlÛ¡¿>p¼Ç/GUaç"cœâª0ó³"6ü+½y‘žræ-$rÉÍÃs•ùóÛÕë³{Ø×sD›¢(e ù]·¸õly”Ê/[›<µ"ÆiŽæfª û¢ÏÏ>yáå|r~\ö|$| îs圽Òê¤ -«6|(Ç&:óš°µ›-Fku7³ Ü’ô,Ò‚•°ÍÖ¢=Ôx”!r4¸©âŽ8Ä›Â&.J¥SŠäˆnµÐÅèQ\•N™ÅèÃA*Ü,A¤3 ”ÅEŸ't‡5î¿2+ßÛAìÏ(ÅkÃ<ç4dtñÐ÷VÎ{ì2˜XZ¢×ÿ rªxÀ®+W'ž/Qª˜$ •õBÊN)„¥&ª˜¯h:#^¦ã0¦Ò M’LOcZÔ§U¬¥ž–ˆl[ vºê’þ‹ŠÞè{bŠª‰\+ÎFT¥d™TÊ„®ä»3Œ«ÈÁ#±I-Dd@“A1¨5Ù­¸®Å Ò8©‰Q·B*fUÜ¶Ú ɺ’PnQÅ.ŒQBJ¥Ï²Ô0ÅF| Ä1S:…lµ¨É¬ó0ú¼3;~9VßO¬Ë®gw¢Ü3Íü=‰#„ó¢#ÏÚï¾Mãø£5ÑŽLŸO)÷h¹{+ö¹Á‡ï|^:»òEž¾8¹üFc¤Òž–¿~u€j ž“ dSj3˜ç a2@;= ÂÇMU_̱Âr¼Lžºù7ð¯>™öêß9KÞñj ÖçlX£i1LŽÕ*æ^Õ¦H, mnå(Ej#U€Ö„•v…ZâcKg}V¯\mD¾ÐT«˜+é&jç’}ˆ˜wÞäÍrMwI¹TŒk„ʩͼ$‰ó8;ê¶(÷‰`Ùs)/Âúsz}uß¿•?i’ô^~ö¦„‚YŸÂxÑÏ£LÇ6ãf3ΩˆII™Ñ¥H†µU5mâ$ªÀÎ(,›¨¾\mœ³S&FtKîíjŠ¥ËAX±aTö)¥i±Ù…iZ³ƒ [»,4Þl[©Á`ï %ª¡òp+ðý¦£Î öŽIé“~p/͉¾¸RðÌ"- öٞBö‡³™# ÞÚ{=½Š±ˆ9æÌLÉ3-Lᚦ ›%Á«û^ýs>¶‡ u!RÇ`%+8!ú¥5ÎÆ2ÕF"ð²pšÑÐ)B:qÑ`hî}¯b¾.·Wé“>üÿ¾U¶AßN!ò9ïê5…xÝ%»¾Çã_GØ1æùʧo|¯0«p[‘ÁeîÒ[­Îlé…¦ÞRÔÊxEs0Yfn9®)Ϲ h9«Úwf;\Ê%me€j Îb•½„w˜»0<ó‘ÉÕUïÇâç4v¡ãëJùåÄ8µyï~·½ïs|&pÆÄýÉÏYÉädIû)0+ì5±$÷tÚ‘Ô¦h'{J#DÁ(‚ÑpOEÿxyn¶g«ØFýÔ S…j¨ îj< 5®•šœÎ£.v¼"Ùi@Œ‘ÙUk*gcµêð!•®$†ï˜—pxÒÈ{uþXµ›[ÇWókœæ_:G!¸á" oÕGÂÜÒŽ°¹œ©€I_n“Ó¼¯‹pôŽ;Ó @6-ÞBf݈[GaU£*q[âݯ ’Í‚ö»·ia[§‹&Î "PCA8ƒ VÚp‰k)R‚¨G¸‡/´OÜCíÞ5ä’ëJ3‰pIžç¯-Gé¹TĽ÷ST¼Â»âž)ì SŒjöb.ïñ Á~Ôyò+~¯•‰×ŒÁ0÷ÝE‘T‡Ô^dÍ÷é`—ÈÅi‘ÒO•ÞÞ)@îÀ­’ãm÷pCã± DÌk¬"ª¾y3ÊÜìErïÀHóY .Dä©äôE_ZÜ{YÍðûÜÈÞ­z¹ˆ#™=Xš‰wAœ´ÒîŽU: ±Þ_“äsÎv2³Õúšå“ìwg¨ÝQæV“º¨3¡ ÎHÃquf@9~Ù«Cc›T=?7˜³jw]×2™~¾•px½ùÀäèó±å‹º¸" ¥>.7üØúàŒ«:/y Áöfò2yçXëåO© ìóÊšf>>E"mØ…%.ÒV˜•QŽU#âp µÜ½1ËõÉ­t5Ö«æ!WÁ–ngÑôøÜqL ´Z•4P%;0ò²ÌfŠ~>=j´ÄöGáB M5¿f¼¯¨.¾FöÂør]ˆõXK¹c´ò†Ø®9¼ÛÒN2ßa#¨iR$ʈ¦MÝÏ2»ê=!%Îת¢@Ö1‰2›DŸLÅ" þnªQ1Rä–HRY©D¹a´µ&„$ÇR·®léb¢Ã€ÜX8vbíUz”± 4ò’ƒ…0™!‰ Dœ\ÔÙ@û'¿ÏÎ߯ØþÑ; —í?†B"¤¬D&¦ÏÜÿŸÆì¿ËÞì‹ ñ*_ƒúÏê>ÿXz+ì)V¹ÇðIöÄD!üOÈ—È%Cø %"‚è—?à [èMN߯hÅþ +¢ÿóóëóϯ¿zü¹ëm¹.u?C@ø§–ÏÖÁž}mñ<üWv¢ô‡ãïÍ8Ûuñå¬%:ãß+ñüçŠûÇz|õñ·ß?S>½y®{¾:Ÿ¾ñã??K×o×ÓzûûU‡ßŸ»~µ×|æ]÷ø©÷ðËÎùŽ:½wûõçãÏý}ýyDó”rûAûŸ_Q¶½,YÖÜ¿]ö´}AmÞ›I¼Ôxäîž®Ý[å|×\qé¿¿]mųÞùñµ¾y Z@_Rƒß\ùâ1ãïÍ!?)ìèûów¾Sõûüûüøø½Ä±žÿaóœø¸wÉbÿ‘ÄÙDÔÔvLöî-ño——TDñQïU|Vû_í­w5¯¬}…]tŒ¬˜‘VÕ=¯¿ÂgØóë='S•3•—ÓV߃Ã3‰hÌm€ vïø#ŽvÙ¹Áüí¾ýòÎ?ŸÌM±Îöýôȇ‹s‚ù?óûý~öŽÿ€Šˆ&hEØÉOÊ}wpxW€#jæ Mƒ,[“SyæmŒ_Ž,R&?I+K’ïd,‰JZ$ƒpê–$úe¿PiÊ’O©N«?–)ݨF\ù[b–-VcPFêH®Þ]ѹy;•êbË/ÎFÑ„&´;Zn­‘‡pEø!Œ4"%žVYJ#Dr†CíË˼-a‡}]q6 óð‚Õ?Q·|ìÙ¼¶&éòcÎ!—å©å—ÎÏMr'çÒ♯;uU]9<´Ò]—âöróß'>seLøx» ®x¹QöóÍÞ߇|ˆñùÇp¾Åp#ÜñÌœ[-Íþ™xyzÁÊÙjKÄ%éx¼"*#ö‹24iíòZmÊÊÓH‘P1g8°¹’e(j­½nªtª ¶‰‘Lêf)U$-R¶¸L¤…¯F¹•Œßt£Ç ɃZ¬V‘·%¢Ùæe¢‡7.Wæöâʃ¶Õí©&ân9a­Î刻 ™‘™wKS ÉAÚì.ŠL8ãôæ‹iŒ\nB5DNÎÑOÑMÄ*NÃR¼ƒOdüx‚£‹Ú¬asc˰ï`»Øå-ËÝ#Oc(àڧvkø©^µ¡'L`„Æ*w6u³÷鎛ŵ=<-í¼1¬åÊ—œ¼4˜Ÿ4óŽBœÝ€·M^åšv<•E]:+‚ÀˆêJvåøÌ ÍC‹.²Ü–"^îa-TÎxB%0ÃÏHcH^i6fˆ bñ´†›ÙL)m`ë[a33°e‰D‚¬Ò¸ž6 «¼tØÊ'œjúŽ–·ßVm“˜ ÓkmN)¸S}nœ_wŠ|é8Ú‰;“w‰Æ¯¤Üd7ç%3®½|T\3Êò,.AáÓ([ó®Â»í¦ëVí·_2rëÅP C7:Ïê¹±O½ï4»ì™:m¢œÎÝͪç½1¦¿©ƒÝÍÐ÷럄ì¥%c^‰¶µ_æÝnù?½Áˆ³XPhGÝ 2 ¸cš+cYåÚTW_·÷–]ùûÆÛMÊ€+¶N䌹Ù05˜?QMÎÅǺNj×#ˆm%²±¸:¥1)™XŒ9š¾ÿ¨ðÈÉehƒµ©)±‹WÅ ®0f;®:ÛkæšT Œ×Á<§Í¼šo(#E$ëÍ+‚µh•Ü:Å–ûAcµ1gïÐDRKWNô5ö4qù©o|°UWRs+²qŒWÖøµdÊb©zÂÕËãÏ:mÒUŒ)ÍŽüz—á€NCÖg¦»‹óBK.z牢hMïÏCî½\vè‡)|w5“®S¯{bw³æjuà¥DñÞDWŸ#ê~W— ëiQ¿VyAn60 ÈÒ>ðÛaB°|Jx&øI0öƒ&o÷›ÒGDiçLbàæ•-÷Eº»é‡k´” ¸Rpê¹;lv”§WÙÂðwM\ øiyót¦-¾É–÷¤…úÚŽª‹5Pm7ð\dœ|nAj·¬kͼfTñ09msþ&ÖÊø¬°SøÓ¯;:ð#ß‚‘­q†7=\kSËRµnŸºïߎx¥l¢3¹¡—†qÆÖÀø*ÑÏEµÊ£ÍåŽÑ™ÎI4½]¬`Ñœi=UÑi’t ×{ê•ÈÅs;T¯o'©‚p_œoÃ/øiðÉÕ©•¶×hz†7Û\÷ÚÉ%±1aOÚÜ¡ßhIîM÷Y؃jר¡|þ¿·ùAÛ·nÝ»vì¿¡À´«eÑl‹j–ÄÔwGtUÇEwq\qq$%Q'RR—D]IÝ%GQQBQ$rTuÄw:QÇ\tEGD‡É Ó”èqÔw\I'$”WNAÔqÑHã§w]Em´¶ÖFÔ6©m²†É²VÔ†ÑlM¤±B›[ ´’Ù*M€ØØ6$Ù[*6SbØM’¶‘²Ù&ĶFĶmFÛ"¶Uf ©²¦Ëki+eµl›Q±l-‹(:¢»Ž®‹‹‚룩*(¢îãºâ ”.Šé(è¡(Bâ8ãº;õWêÑPJ8BâIȈ’¡:I"!:S¹:NN Js¹rpHIÂT„œp@Žâ!Ó’q!È Dßq»C¸‘Ä„N NŠJH(àƒ¤DKˆD)$àç!*s’NâI @ ÎSŽJp‡tRB H2µ›lÛelÙ[ZÚþõ;]»¯Þöúý޵jÈ‘Q9HrG“¢”¸¹Š" ”‰ÐG8RGIÅÅõû´!Üç“‹‚ä‰! ã“’ŠŽç8àè„.'*'BHHPJ8…'I%!ÎIÐDRGtQ\¾Ûì¸â¾ªã±6¶YÀ]m5¦rÍmľÙ7¼ Cgn•0૳û±<ž} j4lÅÙ*-‡g±çÙKm{~ü"NN”’§r'''tQtrGAT!Ç.D‘Èçä‰Èœ‚ŽN9$¢"ràCŽN(Šrè8ŠúýjN‘EB%ÊtDpr\œ’DåÎ*wÇRQ 'Ââ‚ã‰Ó‰C¨‚Nƒ¸¸¤ ‰:€*;¥t¢‘qÇC‡AÜEtQÐ\uG$âN@HQ99ÊIÃŽƒ¨H[VÍ«m’ßäv»ÏµÕÕÙì9ÒÖÍ[Z!ÎI(."’.äîˆ ˆRs$“‰ÄpGGQHÜwòÐK’$’èè ÎN$¥$ˆä¡#¸ª(::ŠqP¢R$pG"8œwDRwqGqqw ÑÝ 9#““¨¹ÊRJ;).ºN$’îN.ã¢åw!#œ’w!Rpä’TqÜwQÔ Ü¸ è¢ ’Ž„å' “¢‹¤¤ãºàè 'ÄJåEÅÑÉÄDt\pruÇRN%9)ÓœœèJî‰.8º$¨¸ŽŽè¸ë¢‹®qÄr”ã‰ÉÉ:TàwqA t\Wml¶lØÿê©$VìØÙ¸DœQq×G9"JR SŠ8!äãº.*8©¢NrDqS%ÇAÑÕutuqÒ©q%"„¤9“®*".“¤;º.¸)GJrqDIpqEGqÁÅwC“§!É(‰"¢ˆ¤îŽãºˆ®è;”tD‡ D]ÇGQÝÑquAHD¤ƒÈ(‚îâ»§}£8¹)Î@Ž©::îN®ŽŽî.î€éȧNrs66›VÕ²¶ª¶Ù¿ÿsÙý_þb‚²L¦²=ɰê›èÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÀì~÷Žöu_Jà=*ˆ¾õH¹ ‡"¦tŽlcÞ)ÏwÜ|öc}ðt雑+vò‡¶ÂïO;Úöûlj=õ>õ)í˜ï/yê{Þ÷•¹à¬À@Vo=í›OzŸ_|}'Û½žëÞ|š÷Ï›fm«ï¥>ïŸ",O½ïu;62­£vä ÂR• à>ï/2¦ÓÏ@n=$¾ãçÐ(o«í˜gx@*°jz €šÄ`@&#b1yM0‡¡4Ð4òhô›@FÒi£)±4Ähô˜#'ªzŸ &“LÊy“ÊdÓhf£I¦!ý‘!M(=F†Fž¦ž Ó@dõ ©52@ ¡ h€¡  §àˆ’3DŒš0j £CF ha4 †LRB# hh1 ™2dÐ0ƒ4Ó™LÑ Âi¦ƒÓÑ „$hSjÈÐh  š ÐhhL†ƒ@hРÓ@Ó@hzªBHšjzj5&ƒG¨4У!hd4MhêÔ ƒÔõ=@€h ¨!I!!= ÈÈ52OM5OhSô<¦Âž£ÍCÚ§¤ÉädÚ¦ž˜£Ú4Œ)ê~©èÔñM=G”z›L§£Qš›IéQèÄ†šž‘„by5= M©â›)´ÔþTþø¸•ÊâÛhÛ5­t{ŒÍVÛ;bÆP€E&Ð1 9‹Uj_r_ Wþ²9½—¶jQ¹A?žP ›ÂŒAÄ…8`oJë*B°·DºI³FñcâÏÞ1W¢I«ŠVZ‹ÏRElFý,Õ‚ìÛ¤ O3!5 Úö¹`Ur²A4À®|b9´ZÝçRÒ§RhávÞy,H<ùNÀM¦"ynüº—Vw×`Ì´ŠžÈþ1U³À£5Ù~(Ê]N%% Ù0È@G±®EeáÀ ëºÍÑÐå<„R®«—Ͱ¼ßcËwŲ'Æ1é‡*gz¢/qlÒÊ'Âò>”æÆ‚³.íîû&m­Žaצ†™P¾PÐå Õ™dG§­7NªŽöͬ]7®‰fI6ûOx9ì„ÜïD¢µÍ5+²¼bà4#&‡‚2úM(R[O3&^Sâ_ÊWƒ;Ž 45G]ü9<¾ùûÓ«÷ñIB„EE*{ï×þ—‰¿ÏôžÞôý€ ªa*'}³ú>›¸Öýü>¢y߈€§gô~÷Br7žÐzEèý'¥ôßiö¾Ÿê=Oªþç?Õÿw¹þ÷¬õ¾»‡ëý‡±ö^ÏÚ{_míýÇé~Ÿ¹ñ=×;õ=ßêûÏÖý{ï¿ç±ûÿð>Owû%Œ`` cÆÂý¯‡ñ>/íþçÆýßÞñ~?ïü“ò¾_Ìþáù¿;ø¼oútþý|~ãè}¥ôþ§ÕúÞG×ûÇötXÆíˆT{’~åO;.ä4 ­ZˆXÚ¹\¹UrT RÆ´‰XìÐàjh¡ RHˆ`Ø7B  bj™)˜˜âµUäÅ(Z©6¢­üÜ– j)—î=°¨d¨ *œIÄBWÁ—·Œƒ$7°]„W”<¢"€ª  ¥Lû~ "'“L *k—É|h§ó$EŠeP9"r` j„ÁTB„ tÊš•„)TFëÀ8Šœ‰–z)Ž6ŽgE¶·pzpPã <·ŽiiiB0ù@ˆ'¢@9\|ó“GQÈä+AD ÓûhX¡Ž¨ÅËǃ¬5<ª¾± XÎMÈãMf{æ¦äçWÁ¢Y”ÞÏÏ·ú¬ºè뮈u®kÀß< ð®kŽW„w-[Dcbh–µ‚Û<°Ü»†ƒ”‰A¥7äëH»ŠCCmžT˘ÝÊ“¶¹v`„®×I¥,tÔÒ#†IˆÅ¨66) ÈÈ[K8Érn¯Ä Ž‡{¹‹Ð4Ì%ÞŽÔñsDÝ´«2#–*V¼ œ¸Úš“]€{%Eù·ma†¹."58%•'ÂÝ:xíÉsQ¼í[®›µ'¸#‰k¤»5¤~Ž©•ÅhJ­>*ä ½ƒÅ  ,õkÈÊ&qˆÛT·hÚ¤rL  Ê)Ù›Ækk%-Ö‘® ëV° 0R¥I&„OVLê¥IMg¹íç³fÕíÞ<–Þo`rÞ´´^—Òû4ŸJmrêK PÔÏheÝ¿lgÂbn껢´—¹^ȪÄ̓bNæ·ɪ㾎ÇpÓ“M¹ 9 ¹„‘³ÓOu±|äëF ¨ÑÑLBW YŒÅiŸhP—ÖW²ÎE¹òñ™2ÜáFbbÕè,Uc¨½A™…A>*4T•·ÂÞŠr­´¬T í¹ —‹#JÈs&¼9ñ¦:¾S£x‰îØøAvB¢¥Iç¾v›íìóJd˜TúÙÖv»TÓç{îŽ5ÂK39‚Œ„·AÅ*'îE.é âVZ]\€ûz^ã8b‹d{y…lÞjÙ–«;b9ƒË¶BQÍæõ¸lôiVÈuÒ4ï‘ãoÈÓ–‚êP©³7ŠÖå GaItJñp³^ÚÉ9|mYˆs£Cn3NAGZ îr„üÕ¤ø®î…¼0ZÛ!_a Z}6ÄŽóG®xÜ£ªE²g´7}’Ñv´VL•ÛK½RHlVƒDÛ³,)nëA»{H&í¡(ˆZ7ÔKï€V©Ìªth¤ E¾Û¾.u„v|®°¼}ÈÉ¢­ÑvœhÇï 3cE%ËDñ\b\™†Ø ÅEÇídÞ2ä¤×ÉFÞÎUvœr™™ïõÜ÷¬‰ˆ‚Ð[M‰(ƒ›¾/nvÆ9;‡ÌÇ'y* ¤¦@£!MV§hFåJéP§¼¨›©àt·ÖÎZÚÞ»ÜíkDÕ,¥vËFÚXw7˜ï\u=SéŠóD&©š=a^$¡sKªÓÃ+¤ÔÃ+2ðä9ÁL¥½@±,!£i–WSêjΠ×v{¢Öa‹꥚,Ñ^Î6aoœ=ž’ŠÉsƒrÑ@ÑQ G*fÒÅr 6ênQqÉ”;D5©tÊjûZBÃÜ4Þ@[Ö U7e ‘åVk mfª˜ôlÌ#pÍMw³«È†‰H­i™¸zZ­È,ÝaÜâR!±Eñ¡Ùµ5€ôîç-¤nñ+•v8܇’E HJú¤’å%(•€”Õy&'63Y„+N TÍUô4rn YâIôšx©Š™–ÙÑrf”)+ §ZÌÅã1E£9“5-–ÐÀc\!ËbG32Â8¶FÅjgí`?K¤;¥,uµï—EjîQ-ëK*±¥KyyYGÕ pó ¨&̶i‡TrðìNóÖ¡æ%Íi_hpvÓCb{z¼$¨½I͵Mµªž³èqnn6àÉK ³# ôuºV4ÏIŠfµÓÉ„e0í7£¡¥š]Ai˜ÁN¬®æÛm°YdÉiÚ¶cÄ$¸ ÷*ùÖ2¾4»\œ)YRi_Lrt`tÄÍ¥fâé*°ôŽ :1ª½Â0é]1l™›Ãê|nл¦ïHj{|iE&A§A„av$Â2°Mܾñ‘õMk¬ÁGEnâUéÓP3ꔳ0_B1±È[L4t°Ë7TZqjêN¬˜î†Pèrh„'&ˆTÓÍÚN³H@[¶ ¼ye´YÔÖYÁÅàêðìS˜»RÓl’w8VâäÂZ"™#)Ζ:vz+Ò#!!Ùé 5¥¤+N˜ Š8«1“ 0×uw‹¹Æ¡OLƒD¤´Ôéd®¹FdÑhÐI¯5%Jšq€€º…sðnºJ<@äÒÌÈm4¢iAMYÙ=« öå_"9™•«ìéµktðÉ5ÑÆ€Ñ sQÆTu˜§vì“ ÒPÉc"UÝÊ"Á($6ZH¸b¶U¥Y0£cI9X>'t)í4 "ÍИ‰H$€F ´Fõ½Ã|éU塺k(ÍB%¸ö6åsάÞÝe[´é(Eoj9ݾlݧxÆ„”ñÒ<„õš(éVŽ7¡ÂB¹Ñ+CnË’î,ÒNòÁ¤":^\±)3ÖS9ÕusŽá±•ep‚9YI=Ãmµ:g×Aíפf’—©Bš£F£ztj¥( tGFL7dU«KUjÅi«ÔC4kêªP ­†„«Z y sq%0ôÅÉÎyŽg4eàzèª+N‘B©Z˜lë!ÒHZˆ4AÒ!Ê,«f<“ë°dÒg7JÌ}›\y£:  "“7\2©{0öÉÓVá™Zë!+caJ «©fŠ€J†X3Y7\(WJ ·{æjæ®´´y ¶³PÄ͈‡#{¼¼»ÁÊ騎bÑ&–ïaÈ9µv±ó«DdÉ©Ý9—ËÎ\†mf^p+s.ÍÈÕ•F³·2Î# ©*…`éÕ hu–‡«Dš`ÛnI-39YÅñÀòõÇmçUªgŸ„’KÊ«ÕUU(*© † ÑQH9§t–E~˜ö((­0JÄÊ (¡FíDÒÔØXæQ”ë¹úc‹¬ !4!ÅÁÓcÇ ñ–ÞÄ!%B@ ©‘U6# hdB@›kRȈЄ$%q·‚tòUr0xž" UЉWzóˆ#@èûŒÅ ¤`<§–Ñ¿}G²Ð›àVR fU~£p~Y²m  ö;kP„R¤Œç£…‚†ÅÉ-"À„„ 4‰A2${³p)F‰½m€C4 *w ¹Z4€È úÞ¿TUSmªT”  MÖ uC,+ć_l»,©Æ ÈŠõ”.‡ïm¤H)RÅ û˜f€€„šWÙô3@ÀËÁ°D›ö# iDýï¤Ð$ÿ>Ôк…”©ˆ‰d‚F@à O¬‘©TÓŠ@2ÂkN¦„ _(BŸ'Å$%O3¼Ý°&À!‰‹ÂÔ©²ŸÍ,… @­# X!=Ž3HÀ2Û¬d@`â0HÉ+öš3ô6C&`ýòÆTØCÅe$ p%%,Ü~!§bP…aØD0(R©ae”•$$IdÀÀ$âq+ï@*÷…O0PÿBs0p,̬+2²0"œƒ*¬2rø¤cfaE–YXÙNaòs#ŠËZÂÖ`&Ó,c…Æ„ þ·ú¼ËpÈŸè´æ‰•C#•—C0Y!¥ô±ÆÖéÿSEÊšfD  ¤g!ðÜv4ª=´1ÖÉE¢ps±üÖ1…`ÜÙ{ù¼̱¸pP…bOd¶í¦äÜÎ’Éj3š_ºýï"ºk´]›‚8ØGR€4”Ï&î…8à!A1EQÓi§T cMДD51@Ò<·3yÃ\¾^MåŠM>"É+D¹ §+EÀiž%:BÑ¢‡Ñë——´Îåݼ57݆Í!mw:Í #2îJºj:@pÖ9¶uBðÞ©0M³&û’®wWOR’*‘Ú™u_!GêÊ‘°ˆƒóR„ R„™…»®|çozÊOuÂæ´WÆ^ó>§âÊ¥wf<þÞðîÏÕ>˜žÃONŒ¼™;„ð†h¦²ÄI»0Å%÷šÄ[}EÎVZ©bk*T D&­èê»ô†‘·¦õWŠ®®»ts ò“Z×`ÄY°×›V‰ÏŠÔ¢¬o€mí¾ÍÞÌÆˆ ²Ä ÊéBÉÏIrÞµçÓL´ nʶ+•ú£V¨Íä yuó-C`h +ý-ã!ûÇ&'£M.Î¥P›³ÁmPz)‹@qð!2›¬$°’–Ø¢{n¾m1&–áÖmîོ·¼äýù®O±^´‘•$ $%dd‘”„&ô™ü½!Ô°ŒŒ]ßð¹ÈýnîÞ²2 ÊHBâ˜BÀJH@CЦ. ÊÀ°0ð3B¼4š öNŸ4¤$0'ñüf˰2Cü?“ 4 rEäKõß?rîE€ d†À…ü e|î&# ¬; ˆB+d! %tƒ†/×à`1?‹²z­…=yˆ”ì­*tßÐh%%`H–€"EûãßNhd  H%J ]ÿ#N¤ %¡H>Ç1(dü tÀãƒ3¤_nÓ¤J˜Cñ1Ä@Ô’¹Rc˜¡øüz4©J÷q‰¨@ÿÎ`/å@šÖ+êŒÀH„;9]ê|³m é½,bë‘ùßg»m•¥…ê  ä/ƒú§ÛÈýd!¸%‡Ô÷¡ÕwmúPzµùö"ûÐnVAhOŠB†, ÷p Ñ@:Q•A% ðJŒ$( ?4|ŒEæØ6€!Še6w@iÒaD“åþ ¦µV5 U 2S6¿°ÌºÌÏ›øî8Á@´&›@Ù¶¥ë ›X„ U†éùí'c§¨ÐŠ1 qÛ’íŒ( Û4é]+ý2¥R…]è@¥#‰‡Aœxç Žñ—Wt°w86ò%Î:3š©ríGf°:Æìê‰T([‚+ýÆöéÖìi¥“…vg”fã'vnù0[Ùlh•6Ôë!ÙP2Û~ú;ŒÍÎfŠj=û=]Ë"òlycó]ü‚ðú>ÀÇÁ૞Q “©f|¼^H†Û´Éjês¬Õ^æ 誜ólʾ¤Òç’¯7\²¨éUÖ¦VX,¤i ¡G”ÝRkw8 š6ÅÊC›\ê„tŒÞ  ÏY;…p‡?F›'›Š‚i¼•ѦdZ6ÔãÓJÎF&A³Ñ3£KSå1LH•fR|ÆòkJ؇fÕæãâ_3Ž^@³u¶…t‡T?ˆ:^¯Þ(r<;ÔZġݤeÎk¡yXæ!„!) &è>4šRËAùòŸ±ÜÆ ðå7Ÿ:]ÿ³³ïéŠ>®ô>F}ìGä‘ÖÂý ÷Þ u~TüÉ?}í~³Ü:¯§ {LbIÝ&‘£Éf•¨dCr?T‡«l¤ŽŸ´gXОGó~z±‚/…å{}‡wqàUåùÔ<$èH¹TO¯Œ‚f&þ;/+Y­f±Ì›õs6õ–íXÅ ôæ{|U* (D•%¥Q8Lp*±ÞOÞ²ïôú›{ô6} ¥YX¹Šjº_ ÷öµ± îNˆ‰c‰Êhî+ƒ,»»}&¹& ¨¡cz8¬nM;ƒ¢9íJHG={ñc’† ¤AwÉ®0E‘UÇ{\¸\r».8>5:˳m´Ê³Ç…šWyÆc‹á®HV2̈*/„—„¦¥7’ÐðO5Q¾VA¡ÀLrÕY7GN–™szž(¦Ã …ŠË²¤æðŽMèzŠ<ÒkD Þ0á<ïà5ú³äyšÏ_„÷’^y‡¿$¹éb<{=y™ëN"/¨²!”ÝRÚ’K¶¢»ŽáFÓñr>EœæX¬—ᜧ®kO V'`E!–‚ÚR¹Ãz²vêÓ!’ö¾šç~QÖs`¯#èzde$g”ÒF‰i: }GaÞÞ†!7Tçz<¾Ç–E̘ÅdÛ‹4'?cšZ¼£GŠ%h¡JXOm-pæ…Q>Û,{4ÓZy)ˆ*ТtþÈ{¹›á§ˆjE®5?ÙØ~'ÝU%Kéëã$¼ÿ×û•ñò‡¤”&ô1ÛY·%ùy{¯ÝëöO°ø)ÿC¯õßSÞýW64N·sƒý:Z\LïØó± þuŸü}÷ÈsýHgDôÔ}¢ï?ÜwþÚO‰À²»Ï Á_âòõŸÐÖüÙmîëäxÑ}׊ ˆ‡mêþFÒÀ™ÐÔQ‘ô?/9î÷û©5ºÚžµß!«öú÷K[Aöæ}ö³åŸ û¨›~æm¹6?j@¶Q¤cRw}Om½Ûè(ŠTÇÆøÃ@KGãð¤ŒTȺ¿O|ùZÁ› ƒ ýr1Mù–»Ô´Wn 1ßô?:/Ší‰8 Z÷޼ÿ4œ'7ðMº_…H‰0òÒ_Pñõå]ÎLIþIqØù-Ýl{-µW0Ó¡¾¯Ïf_ÇôÏßs5æ–|D-÷úWc¿,–‰ñ“gnZc1‘¼zv' y§wÏkpë>¸Ñ÷j-n¥En5d°Ú/%‚„;ð£?Äöyéæ*„¯U'êÑ8þjŒmãÿ‹ hï:©Ñ„‹qNd|—&b ¡g-³çïíàJž6úL ¯+i¶æØ‡«"rTÒʆíÑzžo'¯£†aXóÍKu±k¹‘ ©³s7u°ýä6§b{KûíKä}¿(Ô­Àmy¿ô©r¢ŒXðÑF²2.=Aŵ³g~¹õ±©Ôp¥.·ö7oÕ.÷m—±­ÀÁ ViFØ9>Ѷ©–I阧»,^’L›v*OãNý:‹-ßÍy®ç\Z\Ç×r[´[xöÝNµùuO *m{2å·y…UÏž³@ ÁÓÿ?ÁÕÔ€ßÜ­r÷‰¯ ¾nSI\옭 ÂGÿxiù±ý„ã¼ÞVL¿)‚)Ùµ¼ƒ®æm´v®åë\™£¿êì©,è{¥nFKØÊZ¨=ŒéaÂNQu¨0öˆÎǵm”èbÐ_öé§VC«E¾òºuBææLôÑœ.6t¨¼ÞKЉNçkëš?¯áb)÷pxÅûGݦ½Èº‹9Õ2cw©Áh»œŸ‡µFE6:ÇÎÛ¨RÃI¸é7i.Váü[\9#.‚ÎÔúwvj3õŒ›ôäpqª7c=wù76`ð”¸êÖ²4‚Þä'JÈ¥ÔÙ—òÄ pʼÆÈRîÝDv £O¬£[[R'Pínå¯JôÁþU°WI$jRçúI›Ç.ËF"AËÕ7r+mŸWì—Þ¬ê\>jÞÉÊàöª@oE΢n³­r©tªË-âÒêÖ\®îh¤àZúmi`1”Ï@± Ò/&#q·‰†ãë‘ÙÄgÂYSVaõ5>aiËŽ^UG—Òå ¢Ÿ¦\“æ×øÝ³‘[.‰ºZ(ކ¾zÞ—t© %y +¡ß6}½… ƒ²ï¸\ÎëNL»wy:|¼Ynm»dߌ r*e¤Þ›K ŽëÑòâ±ÃL²%ÄŽ#ùüD\ ,âŽäIcb&ÄÜt±áÄ6OHòŽUJmhRQ§ÜQc¶ß?0•¥¿¶Òt.õïmŸ' Ú|íN£S¹ÒÔo™–úÕ ù’‰³&5¥E~騞CÉp´Fþ ¸1ŸÙ4éqÞý¯Øï¢³ª–èAdÉåt•fAÜ72ãØq#Ÿá*³°•)Ž„N{Ýmÿ«‹Ý ãç"±ciÁsØ¡žÞJcuqp£êw4»–Í5^ÕÝõøayyuý(]Xtz×eµ7XɋջÎ\O?XxYZ}å[¼‰)f|¦Ó!§ñÑÏßåk5šG\Ç2c×§ØcÛŠoâ¤G?K ï¼ÅxYÉàù}œP”oÕÜ÷ðm‹G¯T'‰è3uê¾3*›ë‘m«¡Q¶ê:i¸§,²´açw료‰¯Xl$¤r‹Û [‘•}y›«*› ^Ïai‘8ÚŘ×t“XŽ÷ÚûWc9œ›YÝæ*åí¼€Z0Ê@7hžnfÙVçŸãI}÷)ßdŒ/A¿Íã®mF¨ìÌ7ÓfÛÞò¡‚&y=s}ƒÓ<äœï%d,­†ò+/é$™u ØŽv2mo?uœ(¥!¶\?®—¾ŒhF"ÝùÉ—ªÉeqTÊ1”ÎÂ¥Ï2ŽmRÑây‰-Ø»;½G·ÑÁk™. §¨œ[yoÛ:žßÀÔ¸ææyËÍ&¾)½‹ªÜ݆Ú8'û¥ý›Mܸc1øˆÍ±ãM=DþOަúužÍ>ZrÎgãÔ\n‡E­ˆìH‚›:stú¯ª’»VDd Ü©Uûß5å]»<ӦɒUM׈݌ˇ<¡W?%¯v]lYo8·&X ŽÑOž”1¬Â¨#6d\ÚN±ú¿KÛ43i}â®NþœòÊ’T¥í'],›ZPn;­THsá±_Ë߆5´‡VR‘›e.±/ÛsüÓ¥“â´ s7ѬÁÑèSªÐÙŽ:ÖÀÕÕ*Üd¢›‡ ¼«É*EýŽŸ!DT‘ó HÚ%ä@6òãzw~G¯ì`2³r‰ÖÍN¾³™¹9MFsK6×tÌOÙ«½µðòã\ân6N û /àǨëošWgë¡ÖØÜìö9°dH–*O°›]šÏ†­I+6¾:Î;y‡]Åó5 &L‡&ô©Ž%Jq6ÿ)—”• oH¢Ë½R|¨@Ò dˆßŠUé]SµÑ¨¬þóuÉÙé§(ŒŠÈvRˆÊb¹FKmg†Jõ„rqäQpÙÜZ] †uå¯aÔ716Ë”]z[mâÛW¶ 6{B¢{+hÓyUVŒš¶ké<ÆXl‘¸j8‹ xX±ÆLøëØ©fˆ„wmRV˜u ²„B_µD> :„UÈmÓæ%*Ÿ™´ÉàA´ Œ²m”*lhÇšesÒ–Cm‘8,3" ÓH­Œ×>\Ö¹®½¡¯Ä±j{_¡+ Ø·ÃÆuÇ‹‘ÜÐÈv–’}ic‰rĽ-YѪÍÄRZ~¶þßÛ?¤YF’™öÉ1—UQFnÒÂÖ6ˆ]'ÿݯÎË™·Ó_dŸ Ñî‘—°ð$™× Ìm^E4Èu‰•íD„KmÑGÕÍ‹2-9<¯¥rw0Þn×°á¼b²€˜ˆ‚ÒËî·U\7|–ç¤ÉE ¢CImŒ|¦°v§aòkVs/kËe @8/}’ñ2ºØò(‹ ¹‰:ØEsmÄh6z2,gú/kË}Y’l¤ b¦””…j‘ißd/¥rÖÚ9Ô{•BYÑÊA,o{h°ÚMfÔŒ8»ÐX¾•¥‘ZúûÛ|Û0¬Ñ ML•®XZ·cVóz*êÚõ¥h‹7øqÉ4œ:V²Z2Ìœêéå3gç´h<2îÉ.–h–d»t³…H« ÅY\Ô,Vº2ÂÓW<†ßZªŒŽbŽì+DA ³K d‘LÙ(Gj{C=,ùàâYrh…w½R«y9­çA-Ë T:ª¥ˆb!«*¯¿¾¢úUYŠZ¾£ÑJÿÎFéLå©Ç³¢½x+ØùéèÇRÓƒŠrwPÀÅS1I¾‰Ê¥ó£¢¾f¤’djÑíçpª@ϒˢτ½r%ô©CZÖzÒ×U{z•UÚRŠzÛ}”ãËùýU œ£¯¯×.u+ÑZ@"1X´ö†<¥Ý [Àø-ô aweŽ,K넹’¨‘ö˜Àèˆm;\#nY´Úæù ˆÌ$ ´©Ö®¬Z¡´TßSu%¡µ % úW"G£FG ¥¹ƒ R!l´6<4c8W&ÔVFYbÅurÄßímîôãa,G%’ü”‘)WEv;¯êŸûEç‰FØÊFU¤£³GxñæK†±er*ï¬þZxD¢­tiHÍë·¢Ãn”SJF˜ŒˆŠ}’_ê v´êLæ5AEÔ˦ŽÓrµ•V ØÈÛU@bAqRz²µñgI&„±K5¡¥‚9 ¨YEDÇ2¹æ„Ò5Ê´Õæk)=¶Hæ& BUˆUæe`F,‚rIcõ호¶ZEa,è ¾K{ä{PþŽØ€÷ø¿¨#‚±?žŠ`ŸB“Ë*4oË¢º—\鈠‰ŠHǪ‘XÉYê"2*p»í2DDò&Í[•j\à¦åÔ›„Š†Ù¦_NÅgWBCM#ÝïÍG=yò1Æhíò+œêW[kÛpëÈ¥©Ä“+¨|`Ìä,Ž„­UªÈ^‚Še™WQä{éÒ¬ˆ-ÖMB*0‘XÄ^úM–²Vƒ#/´ÿÌ­¦BF„À*<ŠsÐÐ@/!Âl€£G’ zdôc¥êsÙ¯ !4e×+àZ­§³Úªü"uÁëÑõC`¾4̀ϩÕwmYVS+e/ûÄϤÄ\›VýM{Ò½¿—5’ë dO¡U%‰éÈy`¦YŽE š†Ù-#Ž­eYȈ©–Ä;S9Š’O‰ûwH_YÇE5¥qÚ¾E¢ÒÉH¬I²b7uë(Õ(_iMBiÓ@ʦg¥CŽlUj öΨ€‹G¦)Ù·\p|ó ÆG¯ºbh®)8é‚{spWgÓûJëØŠ<puy! ¬ü}IT†¬óÒð¸ökÜÏË‹ë—ç=^‡ã B^ @ªÎEx™ºcŸM¥¾X&Vb¸ø~C±Â©øô+£ê‡=¯boÁ–Wµ¿ê±/ D©(@ Þ´QÙÃúá¼¥!!!¨;µR S7møPF ˆ.Á¬"mÉ«Çÿ’X¨tçèvç°`ÜÛØþ~‡º‚ÀàÇ;uØÁb÷/n¼±zÙŽ« gÅu›¥fŽâã-<>HRãëOgÆ›äiyöâ÷Û8­ p^704 Bøƒ#FL=GÊW²LŸG/£amÉ aùtGÌSN“×SÝ6Gج‹“¶Ó\”| P‰$PQ¤D(û´_hŒ(+‘Oµü Ÿ Ê´y¿Kâ}Æ6B üŸ§Îÿ»øèˆ¨{0=Äw›¾ÚffFStÆ›BÛ¦Š²þ$Š0mÚ·hL¦Ct¢¨~¸Ú5vL©W~sN™U2g>×Èñ`ÝZ¬¡f…kaS8¨Â‘UÍ\WÃ_«·ó¾5¯†¹Ópöbm„ì–B€Uß覉 FNl§%P\……ؾ5Óö¨š•U%EMѼHEµ@%QÝ„;…2‹)žáË„=*ZRJáLíúbó&ðžíäàX4D1Y§ƒÁ,¬A*:¡Sû½D<Ǫ\õl²aå«ì(ø–²WÖjõ‡¦ {º61Ël^ÅÓ ùÿ>¾ “\qR± ºÈEîï¶1<•ŸÓÌý,ô¹ö¾‡Ö·eöï¦í‡²"×>äÄ=‡êVþÏþ/pÖm=^W¸ü̇³!îû­ˆ|ô ï|€í?È×+Ìl“Ê—ä]?öñ@É9ŸþOS²qü•y‡¡OÇ•¢ˆ ¨¨+ðìÌL>Y¦ Â˜œŠ bc“ó’à¢!HJÝ0HáKFŶ£õý¹XŒ9'aˆ§q}­ÐÊNòõzú¤÷ªÙWhîýn¾3¡ÓGô ,â¹Ô§p.oø¼ü2D)3NÐi ÙÆà>|^/QêJb•šùHÖÓyÓ[›ÙpÌÁá±v›¹ñ?ÏÅé|%"Ÿ¿ìÔ fÈ*"R2éz p>CÞæðc.¹8³q–/†Þ2ýw˜šm dn FY(=Ãp m@ mÚ`¦é1 ”O>ãŒ@¨ƒn.ËŸ#¿vœ¬Tõ¦ÁQZª48ž‰;«ý]Åš£d¥~?n0^#lŽwKMfÜ™ Î^ÞÅï„‚fØNžçfV,hŽmè]š¹G\ì':åäjŠã+M¡±)ÖÂ{^à:tR`ÍùõN{™:Í=x={¯ŽÝ%úoÓ\>=ïÜ_³½ê×]xn Ѱ/.Å ‰$$Ü™¸‰É"’·pÕ ·˜œ‰ºiæM+W¹@,9¶«A ‚EoÉguÒ±ÁÐ7hwI°ÅÖaxå½Û‚˜êˆÖ<ò½.›ËÉÂóx<»ê÷ö.7OÐs*Ùm¢& ƒ“s*dRîîlÌÅ-pK«0R,¯w.¹šï™•qtì¢ösz«!èñ{»¾á\óµXW'UýH—o%MAtjz]5›³±O˜uô”`¬bcq)0JìÍÈâ=ÜI׬i9PÚ½ªá¬ÂzôÕ*œ[Ð?{R¯§OfA_h3jþ FHBö£¿v¼¢Ÿo¥Z3•¿w¤;ïqâccÞhÈúÓ@ó\O¥z8ÿ¤Ìhú{ïÒÿÉë·}»aþZÄz^{¾Ÿw}øñÖ“Ûó¿XqüÙc½¾ù‹[àúÅÕþÖ<¿õ¯öº?Œò°î·*‡uÙðõ¯ãsÏŽÃ܈êbá.¤»Y¹ –ûMLžû«ˆwƒ•cDX8Òœ8o˶LÝ2k¼`îA pÛ)—LÁt§Yü#«ˆ8/0Õ\Þ•ËÞü‡6¥ê:ëÊzpƒ¬™#A4‘½FÂÊI @y)dV6€ °XLaÍÌš(©5™Pјdbžq‡®ýeûxPf¥ÌáKDG´+Ùs SÔ÷jí^ÂJ[1¹ÆAâã.´ÞS×SÅÕ-:1’²Û¬Ø•Ù¦ä£2D²1½3|gªÇ«¼²,²³4t4elJ„ݺ¹óŠBYeg¥¤;uMq ÷ ) ­“ Zj·4úk´D5·ð¥bÀTuLM(d!DÏ$æÃžYí4í­áùÃYÝgâ"àà´s¯aë—=lïÇÃnÒoÝE¿5¿n;ÒçÿuÝNlˆ§¹`U3ø±ÖvXŸ‡(~)ïŽ7p›ä7i>¶sö¾ûAöÞ—wÿ–îï·éŸ’;…÷ƒàün_ŽGŠqwÞÏã÷‡]{—ŃÐ"ôJ8Ž©ö|Ý+äËZ!éì ²šTTXÊEòz>ÉÌtÉ:ýÒ#P±m¥Ó4N¾¡P]¯ÇoÊ.ýïÕ¤Ÿ“®µùjáí/X¥>8‘ˆI ?Ú­ö6\=f'1Ig­8âkÎú®¬TH€L~D8¶Ýw*Œƒxx‡úŒÕömCµFlR²®aµø×».Š8Ò,ô­Lm oÉ»¦í4œÛÞî5ÐÛTñ×S­_Sºs¦Œ<sR,j'Εßy¨sȪ³"¨ ’cºƒÒµþ("Ù»ý‰_C<Ÿ+çƒÞ¾Ó"œ¿uôK‹ÝbJËC­(Åéº=ODó5å'ÁúÚ˜{÷©×ßÌ$u˜¢;àoð‘µß.;àËð#áÞòáîCÙkåf<È2)èí åí”x©²^|jìdí$ê¤:6ÒO:+".~ìMA’¹/a*tSÚ@n“Ž2β‘è‹t¸ @´´§TGÄÈÔ¢R wiWV¤äÊd!Ù ôè"+Ï€)C¦€$¡ZP¡EG¨”DÈQyP<™Q~mÚF}àdßmPðžd/}€;¼!’©©ÐH@£ß%çÈ=,ƒº{ü*tR © zŽéDäGY"r`G|©J Pt%@£! ¡|"sáG|ýT/6ð2ïOEœèTÔˆú¸ã„xåçB¯Q Çð¨hêääJe¨A*5"p%yÐÒ=,ä€ xx¦Ý ›T ÉÄrZTdžÔ½ îÖˆ)i31xà9òˆZ1E•A¥ frä „Ei” 8B¯ý¥2êeÈŽé`CR#ÒÂBÐ/¼J.Ý]wÃ@†Ý¶ D UFëg­°3~qa· 6ˆ–¨¤Vš¤…N\jZZ@¥]³þ|ª*PÔR´£BÒÒ …§*yP êUM‰É€ò𣺠 ^²¢DÔ‚Ò BÒ2hP¯ †ºlPñ’ê8A{ÄœØ{9…S¢•Š@‘hSŠL”u™î”r ¤Pì @Î ¢ùÞP)H®øyòóa¤ H¡ÜJ#¨õ ’ÇÕBѨ@r9³ÕB ÖîÅ< (=„¢ùIÚ{Ì…ó«„®jiª }d[f‹¥æ4A]  „°Œ ä|Õ ’*•ZÄn‹.C¿Iˆ‰Y`z\ :; 8‰H®F#S50Z5ÿ¹?„²Ëò¤h2 ¥‰v”«+ ¨M”fj§ŠŒd¤‘××]¯zÀâßÑhÈñ3¨ÚIª:Â8ó2å»9gØ`Ü.VÄ xŒŸ‹:Ù"cA4±¢ N¬­–¾le/‘ò((:ùΧhB²)¢ yJpM6ú!Hõwt½Ïκú¥½ž“¢pÒÄ÷ØÐ#y‘j- ¹k»h жØï¾;沌 ÇÃ÷—³<Ü¥¿1>ìoM‡À Ĺ£%/î˜èOòâgGb¸¿.½c)e䨠ŽÚ‘P°&É ¡(u¯'/óÇ̰W= ù±‹‰ô„BG:u(&&ÙŽ,(”•CA+eRË|üçô°_øûý Ý£¾'¨º<Þ–ïž¿8/Ñ«ï}½Ÿµ¹|¿¥ÃÈýÓú±~„L`nÝ c>†Ñÿ˜1Œ`;ø{˜í¡2lȾ·0øvÅšÍY¶³U‡ãJ)Ų9TxI{vE.ë.¢u!H28 VF~ØkVž¦|™ã`,%¸ƒ¹¢pe*kfmMŸŠËúü¾>Û#ã¸ß*©95ÝkÇeãÇUžŸ …Ž(ˆãGy ~1‚cÓb®˜Îà$§Ek ëg;[»¾tiÕº6$ÝíäÔÙšLÒ%Õ#¢œ°†ÓL÷©jžÐúã3a™Y¡L¯Ý³'óÓy’rœ/š:k)ŠÞóo¦ó‹ãb,öý zÒõW­$Ä yÖüŒ*¥AD F ŽÀ‰±D6I4| Ö6Ù¶‚lŒuw-›§JÏò34VG­Lº&4d„jBM½3uä°57iç”P®" ËÔ*Ę́bE^¯Cïæ´›Ùß-vI®Î½I£G–R ËJºÃB­¥:NÄC‚À¦Á4·«”¥ÖÚKm³2¬WÙ &ºrâ^I€ëPAuAs VÖþ¥¢;'õÉg¯uš£#„‹=ïFê“.’Ä¡ÏÙM|Å¢—'NÇ!·©Üp£°ðøŸ*D„ú’Ó›0xýjmuG™]ľŒ`3„>¾ #ØbÜx§é›`û{¶ºîi¿Fw­}ÏuÜýûÌ â?é0yÓy~Ã<_©»·H©ý?%FW ÃË+)qýí!åˆõûnwÒùÌM¶öž o¯:ïpà'e'8çÐB`¦Ï°óþôÛÁ^/~ ¼ÉS®ú¿ ¤M¾r¢=®«ºY"•}3‚‡ Ç"šLÉ;ö~±&ª¶Œ_ñƒ-fY–Iˆ ƒOèÜMeµ#±Ç.Û&nË»Uü¥ÄBa 0ñÝ |«¼Q`ßu¬‚'CM³ %élêkWœ¶Í.@nÞgÐ3OC ÚF©$ƒ‘*'¦ji¾@ O;ŸÝ|Wëî›ýnWÃfíŽkNUµ£ äÍ1¢ $_EðÀà: (‘C•e…Ó µ¢K“÷f:tæÀÎ’—>;ÇBvB”«*騴•tbÉSkÁmt>@>@HŠ)ôõDJ¯èBi çÊVL[[έ‰‚£-­ŠLQ— ÂÅ—¯U£-A¦B Œt±„a„ƒµ bÄØÌ‘C8»è*µùÏm>©ISe>ÛÈ{ ÉÊœ‘‘â›O*k^ÍÎGƒ{¶ŸŸ9¿~Ö}¯÷_wPRH)*•Em ÖŠ Ám­ów¤xg5ŒÚkÀ¿cúTý{gÜ쿳mN7M˜›ÿÂr+ ,È01P”¢ÑŠ#A³"L ¦{•é¼úÞFí»÷>õÛñë?<¶åÿçßèb‹ö|OÚm‘/ÝÒ V ¦Ø£üGÒV3è{ïSÎ åãŠLcHÂ@¦LbX€Xà $ÄE¿ së»;¶>r‚‹öP ¢ú4=•Mûyú: 4Û‘LÜ ¾Qx–Ì5… ,w! ?9iÊBcWÃj­‹@Q• DÒ7‚y5 ¤@›xéаCI›Ñ¾_¬ašÓ]$ËAÈ/—™sósUÊð§ hí>T'S––®‹ã#à£ÈJ'â”Óx†…0¤¤ÆÓ`³ïû/‹ösß]{'¶Š^4¨z¦©D“êOmœy3ƒv#B‚`${²Ô¢mA$;‰nd*÷n³5¨5z㌽ٳ—Æ$¤¬MR]Þ(®ós ˆ`ŽsåÑ]èQ")K§—•Åzš•ô{’ª›¿H{W3Àî²­§ŽðÙsý\œSJ{¾´¸ÐØdð§RÑèO[ˆ’äÄF­­Dg¾ÓÞŸŽ|¾š¯(öþ¥÷¾íòj¶Ó­ÀÚö\"Ê Ïjw•ß+|¾7ò¸=¿oØc¨ØW¨R®Ü¨ØB“§j+’”( ) Am\žÇb0& { FQmjGq§·=‰ÈòdÖfhT1+sÍVŸ™£Xxk”³“ƒ›t4šÆáFpx<–ô¨Ò4Œ=Sa¶|Ý‘·BRø<Äl,nT‘¢Ôé¶¼rÔŽ6IjìåŒcÁã÷ˆ½ŸÝxÓÛG®í7ýÞÛ¯mÍâÐ{ÿûçø{uÊTä¼ïÝæw;ÝÆNßUó?]Ì ÈôéÄ,úq~¿Ç $Vù~~ýßMƒåøßAÿ"Am%lKù!ó”|þWÒìµx¡þ†¼­ù”ô'Ë|Ô.i_ÝèùçSÊøj<áfï'{íê|¯ä€Ûœóû¹Ú Æ8, qÆ/þ4[­ Si§¯+ß™qTì'éò í¬&9é'ñÚ‡(ïzTkϨƒjëOÓÃ}ß–Hïhm”T5=* ¹3Våÿ·FW_†óçç#ñ ÷y½‡ºáOo=KÙT$¹±Œ‰Sû“®?zú÷¼8qšüYþ>;Wù“’ØÁ#sj¦Oôeç÷;ž:3^¤t´`ÓÅå£2àílÎó |>q÷è­¡­=ï¡E.~Ö‘›8ŽCçàã&Û×Aå”<ŽÙ3¼Wñy®æþuNFÉbD›Ì-ð2tÔFíü+pD·\ƒã Úóáé¶´(ÿÆ·³±Mÿ óXûܾ9¸ñ˜q-tòpVýë\(úÏ“—>ãÛYáoúÜÞ¨Ží(Ö(}ÿÞ\ÒÞIÜÇÀ•(A»é'ér÷ô¦t„iÃ÷)¿®/;‹hŽ7ƒÈXò’‰Œ‚ƒ \8µ¸îë8V# ¤]´Wegĉ²d¨‹ÁÞ(®EIeMÌ3ɤþzÉÆß®¥((ÏZ¨hÍVµ TÆïN®Å\ÌërüßÂâ£#]{ÐkÜÚ­m¤fžÚÛÏJY9k¸ASB¢×9¸’¦ŽªocrÓBYý#TéÕÈ“…Fßf!ü¸£útr7^{ß{'ók¢ú9ý¦sf9g÷ˆïs’ñ—: û-=—dkB¿Vwü¦Pæª É<Æ‹{o-E ´lo{-y]Ì·Ö(¤kÚö 6†výkbŽ \…1ì&Øî¸‰AÐìr7”Ùµ58¹¹°ÐzZ@3®…[Usµx¶žãïthZË#]]”ýÌVõZýbÎ!¥ù3tÛ\‹üä™yŽ»¸ÓÊü¹7`8Ó¦RÕÓ—F³^À=’ÖSî$Ü·mçFgz ›íøÆbÍôº4nmÏs¯p¦áÚõ•¹û]XdN• }Œšš0¸–xéæ Þê-µ*^G6³Ó`Ò2&ùªä Ü(ȃoÕH軟‹Oo21±@°7(&6'·™‡·~aqÈ= x²wØiž{õ®uq3wó/(Ü £¸óyvkÐ=^šfòb±©‚]¤"#6˜‘K~âk\AÞù¸í´jô’R~íîûÐ:Í-©P+ž–´ûºÎddnusù›Ýåúv#d§Zšù(Ñ iñÚÃQû6ë?J’<™=ÄlF¬\EÇþ\ÌÊy‘ÝЫ¼ÉγÅ¡+ˆ*+:RÔÆ¦Û¤v8¢^.<«¨YK/oÝB¶î=“[U26»‰Þ)cöJ"n†r˺nô·Ro¸(ꉦÆmef1ŒÜ7)Œ—ã»B»VŒ´ˆZD|Š HÑàòº0«UÚ$(x:( qѸ›Û8ílvz6$f¶zDDFL)Ž)ð–K­\c³Æã+„ˆ>¹EéaðËœfܯ…cΈX±¦£Ú>ùÎh—Vo/?/b'h£7ç­ª›šÈ$¦€G‘‚]O“Wo~\yÌF;1éúØXtÑy‹Q<¡µKN&±îJ»ýÒˆB÷ ±I$V ñùÝ%oU6ªt×zÚ¼Yá0­Ù™kÎôÅ&5&ÂÆÎí¡Ó—ðžæ[¥Ò0¹]wú:xwî†c)†íÕi,„<¥¶hS*m"le"­ØLÚïB9æ‘¢ºn‹$$ã‘Ä’ÿ*oQe šóWòŽÖ5§5çµ¹Y³Dœ{—”\+M&-!¦à 8«²×k®‚“ÑšÙ(%wYcG{™Z¤l›§ý\n¹Pà"ƒk`$ :ò]Å7IÈÚÆ—#Óci½Î¨é³ãVž³ªž<DÛø#i`6K,ž¸Ô7÷Ñ)#6Ì©R|H¸±6>²´ži/ïüš!‘&áŠç¸†ÀШXfÅYºzì"3†¢J\ê­94>Õåb™Ì[‰mµ3àÓZÅÊM ¥ÂTf¡Ás¯¨þ“g…RÇNI¯Š ¬ƒP¥C-„¬xV“R$’IÔo¤IÿíYk2ºÓ‚ æµM5Î{ÖUÈVöõâV% ¢o–6T' 8×§hÌ3ËŠpGwkR:¦n£’$6$ÚbhÁ2Pf«Œö¿Q4»µ‰ºˆîšÈLiWã3bîêÝ(†¤ù‹·1è'$Ø"I JÖSY¸|Ô{±¢an6&±%E"ÃržÖG2hGeÁ¡nŠæ—̪B„sSMQ¨Ëø#«Iˈ٥ Õ¡,ˆ~-<™\$óÉl$8²-b*Ÿå"–xMdR6Y¸-h¬@tP¡‹”o­Nä„·,ÚKCDî,ž¤¿ÎLêtèhÍ•bnA±´­’ŸTŠçÊL—sá+d"±Žt®ûM£eÚqÆ€Brë¹B‘›2<Û0æ Ú!B]1™%Fµ8-®d㪔³J'JTŒ^i'åÌ£œY¹^-¶Ù¯:Šê‰I·ZÅlS,ªäÛÛ"Ìà¨{EUû·qÐ-•È®äLb^ððW'°«³½IåúNìñ‡ØÅUà9ð S¬²kÇ“Ä iuÛXܸBcUéÁW‘´÷`¨!˜ëáå1OÖ³v95£€š$·•Ï„ÐVŠD ²%(°­RnI0£#èŒóٞǩø_U3‚/>vžJ|HåYxðó÷"yEIW–¬&¡ DŸÛ"Æ–TW_ŽºQµf¸‚¡¤jIUg«bÕšPH[#¢f³*Œ&­TÎQð{ZôanéCËBÅêÃ}ÚõcpÃ\Ÿi«>«SfDû´žÚÏQR:a×Lø{lýŠV ç¤I7âJ¨ÑÂ.£ F6š;ñ$u o§ ú1'ùÍlPgíÃ;YÓÑe‹ÆlX×lëh®›ÎÚàVV†ÎÒ%„+½ÎrÖ@q¬”䥯´ÞÚ\ÁXœÄ°ŒÏÏÍ ß-ÖÛaA†Ÿp_%׎»Z°(ËV+·f;¹B¾´¦´ðpY¼¿jïØLôÒàYãq`]Ç•<í&Uiפä ïÒŒ@ôGlï‹Ï»ð­ZœsèÛpp|,6B„ÝFŽylßw]»„k•­šÃN—¦Þ…¢*üß ¬G’wïÖwž<š–nLsð×nÒdPm×%оx¿ƒÏ~÷Ž⓺”¹ôj-,¹ ytµ ’›a”9¹Ñŵ5ªs¸·zÔõÑVޝjŸ}ªéä}Ê(õ8ƒ„¸ðÑ1+¹²¶.¼³7†±2@XoȬi§ç©]Šì?C½ê%9yOzï+“%ðm¸ ‰¼<¬ÙΧž§ HrcªÝ6*Ѳjv.÷“¾šØ¬ÎÝ1•ÁÃjã1¼'U”¸Ç|8º›•–ý飹\ ;Ýu‡†œ7Î<õ… xiO=D¼Å¢az{Z]Çwͯ/ˆ£¹¬â(-e­iø/,é×Xu áÒëmwÛJr%ž¹çàZ|¿“µe%¸Ï{ê<5YáÃbòëm Š…©ŒœQ2Ÿ³+Ö¤‚‘kf…U¥¾Á².…Cƒ"|d"QaÐRp£|oò˜ª€ˆºiÆp§ˆ|GÁñhN ÈàC¯“ º@3b#ÎZO ËAø-ãeïD¬TáàP¥hèW–¸)NEÆ—žW\k9:·I•+µ AI·¦ë‚‘oŸA¨ƒ=jCË»»g1ÎÇû#%<ö‡YO›ï†¯¦,”Ñ{¾Bìàf~y½é¥‘wņø"ËPÈ Äm¬•±v+bÈŸ½c¸F“+Ó™Õ’eb+%W ”H<“°]Mmè¢X„ª†#Iޢص—g]a¥Ø{¹ZEk»Oo9 'ÐðdZXzööpl¬ª•Ð"=N‘ú5ÍïZˆñql­ÌWŒg¾%,_få1wa‰`V&,têß°²ºl;X¼;ë욳I½‹Yí2k³±qÙä AàJÉÎâÐ »â-x/³·g#[uÎk»«*÷„BZͲÞã¬Ó€R²õĬ ŸÕËìùŒbõ5™¬HÂ::½Äm7Šº(Ž%Ý"8—Ë žG‘¬‘­ ¿.¶-¸ë¶lpA-‰h“y1á°ÚŽíqêu½fd]WGŒ¾®EÕî+øîewD‰®àE`ØÄ@×a솯fÉtCU¨jñå9ÆÖ𘱹a sÝ®M”³Y‡¬´ä:% Ú¬‡ŒÛÝãö <Ÿ FÌЀëC¨Ã"NT³P¬T"Øl(B( ‰èãŽH±¤ðaPÁt²TÈöÚ^K gœc"«ÃA‰§’Úø±ôt.å×f‚—ETÛª !ÛF±quÓzѾø®`í÷Zµ®X„&ìÕ—ò¶¬Æ¤{Ò[\ ˜ÒbɤdИµÍ÷º\ôÞ¦ô×qdRÎ{k ö‹¦ìÉ£':ºç/GG9a†šËirY¬yD¡ŽÙ¡ Özœk±Y/œÊ‚M »qg‹—oùR¹ž]®v+;Ž×Kƒ‘g/{į^¼c¿š ±/ çŽÂdùÆqeÂâ–Á)AÊenï „`ºåpίåÇiw~ ¨î»ÿÚÞ¶iD€&MˆH)Œ™Ąԉ¢JBãËYñ]¯”ÞÝÏåç¢yN}Ï>;Ï!ÙqÙ÷=ëÌøN^7¾ÿWov=˜˜É3X!’$LB0ŠBÓ†ÿõGW¶ËäüÆ{BM¿ˆ@è@€#ð_UüÑüKd¢ëå[0]à0KjÚµ,V†Ï …R—ì}<€ X®²J4"…¤óÆË*Û*°ãŽ„Ñ¿J“bŠÂkQº!ŽÔæñ„Dê&›•òã3œ›PÖd÷3®o¯¸ð£®u8ZzTLeutëÞ¦V’‚o¢OÁðÆD%úíÓ&÷…û'ö_G’^WÏh‰ˆŽzS0 šM§šÕT ð4å¸3³-“ª+ 0PM­I}øNåÐhÖíêë“–î†õÂnœsTâÀ9+š`efQ¿-Þ× •\~h\¦Uhî¶On=ä…C…S³•†ªxGã…öD•éÙÉEž‡×¡7òŽIÈB´®'Zugds®BЇ‚3]QÉ¿P¢‹ ‚Ï®h?^\$)¹z½°öÄmºöš„ÛL¦*¢*(ÔF9鱿E›‚Ž’)+UVYµBüÏ/Â=]ê’:Ëy|y=ï'/œ\Ƽ¶‡OP(KN¤-HoÎûX,zÚ×ð®•0¾=p㹎è.Ó~¾<ó¿ö•mjð~ 0#&,ÀHJY&`Æb…†HÃSTô¶WýWƒ£ï=Q‚|¯³? Ý®ÁúŸ3·ÓÛÒt”`c0Œ ŒH‰“0R2dƒÇšóßœ¹}§/‚åÕ4D4Ê‹ …d‘†“G²÷~?Ïî—¦\þSÄùÇK¯ƒdÐHM DÆJ!˜ÆI”²IB ü=ÇÈôð_¼‡•î/Sì.Àl‰2bš4,0H ×| ËŠÏÁþÏÜåß:qÖ‰˜C%%ФÌDbl%&‚l•ÅÉy'/Íï.Vèoíë¿Âñ·_˜„BJ˜Å" ¤@PÝ:Ч¬1¨’˜š>€«Ð€WÉ"L!÷dÚþ(þ«æ[ùòŒ%’'—N]µ‹mˆ,Q(¨Ñ§æÊpJ¨ÊtFÓ†*±iÄ=I»¸ ¢îŠLðé]«u—’[ÏÚÅ*¤Íᆺu­nž#» »TU|}Jâ²æ>e’T~‚óa µê¶‹±ìŸÑü•¤J _}(–/¥ýEg}æ³zK±õäÎâéÎôÆQÕN.NŒxÆ+C3 JvìãÊ\˜05£ÖÜ, !<©;°R¾´ŒHz³ZšZõ©™c2õQ[©h9+,ð2¸z¿Y£Å”ãˆ|pËtîÈUŽèÆ×’ÐÙǘè)c ëºÔ®–j'7¥þ.š•¾G‹ïWr{R[Õ ÛG=]o3@ r r»¬”‹VHö®Ñ׳öÊÄÙµgr¦cA`|›äiùª ÒÉfÍ„Ë,K͉Éã}v‡ËråÂÆq¡Ú1 Xé6â§UU'î.Ô,öбwÀSH{á±"Ô¹­?|"ÞÞ£M (êGƒsWb±ÙVǃãÛ¹“w?g¼¥ï²cHEDÌ$+˜’v7€m¢±ck[TsdÙȺ‚€™hD7yŸs1¢ÒIcu›‰„©#W>] 4’`£M1³"!±’ ån}1Û5í\·ŽX±I`1 Q”T„Ó‹–~ß/`{Ÿ>‘ʺ©ŠVI‚%ŒÒ4di dª´ëÏùïæû-ï/ ŽAMQ+fCc)(²L]zååüw•®®•Öú^.µÍQY FÉ…š&’E”B4E/]óî\Á &±)!XÒhc ÇûO;ÉN}%0 ‰”HJi 2¡B4QLÝ·N7:çq#6)²ÔLÌ4H“`l…!Éâ›±ÿn;›ý.åÏ«­u#$ÚL¶E%hŒa˜¤Bžï|GŠâÝ8dD¨ÖhÌe%22I$Ñ^—ý=¯.{fJ4 hhŒÓ —uè}ŸóþEÒê64h ÍŠ˜".—›ð¼¾†êï¿!Å]q1¶ I,˜”X’%ÕvŽ;?ÒæRĨÌÊ%KQA#DÕþ2Ö„’¯’øÐØÃÝ7Cû„M• mGc»±AƒN™¯„eCÀIdp•±Ä 6‹ /i¦}LX9`I¬V2ŸÙ³´h  y¢uïª=ƒ7V¿€öþ– $·¥¶HÖtÛÌ»Õ.I W—žûß k "¯ëêX™ó˜è,³>HòÛd a‘Ñî…ÅœI0ž­‡£Øæµ iãÔ«…phcÔaßNì×#2õ\É{šÖ[€%È»¼´èóq9Dò}ˆR¬ÚC œS>Í—†aÐìZÑ–# %å­Y„VBg±*H3º9“—·åBIØHREòÕé%`o&·ãã§›ËÚc¶¾AäqJ䨾§øÁø:*QØ3ªu fJ‡Öµº²Éoò!‡µ?ysz©{bö%í•'²'~Äñ.*°)‹¸½e eµ‘û-žY(F±˜Jyµ¬¸kU&³yÕ`DUPT…24J5 dOAÛ½€²(ÉEh-E±hÚ(ÛF«ŠÅµp¸2$´”I™bÑ´cj¢¶¶åÈ( ɱ Fš1T0BjöObãŸI£‹tn ½rÜÔŒ–A¡…„I¶DjsÜÊIFÜ^ÿÏq¢”ņ10Qjad²çsñ{—<Ú…£d̦§=xïŹóÚ% *I…&¤Ö* !–_—¸á(Æ¢D†š"--uqp¦`ÚDixÎ8*(´ÉE-è\M’a„5¤ˆd6*^¯áû?Õ×Jºi°‰*³gì®?ÏqÆ`,QhF©¤ÒmµÜxÏ:è¾çª×RÒ 5I Øåv»•Ék5A‹`IЉ©á?ãëyk6"ÓF”&6ГbÀ¬mf@¬Vv-® Rl׆¾“•É –„™³`£Q&I“SdC造ª¦C DS u¹œ£ÞkTÀÒSJEņÅ1‘†¤¤¡ˆ›aVÔaT0hÚ4™µàW†5•"¡6ŒFIkËËôyn"Qlm™(6Ê¡mñ—·k1T[(¢Õó^#è¹ÜڊƤË&Øšž輸ÌJ,¬¤²F°6ßGùßÑqιËjHE©™i·ãªšä¬ fŒe&5^×~?Õùž­un©A¶Šˆd)"—•šVM5)HZ4-“ ·‹[ùyóX1ViT)µ.ï)ûJ v»•71 µTåmj¼¶¯®¦0L’x–ÛhÐ:m¦4 ¡³»¯Áüº´|Bvñ™i»A1 `±Œ«ËSiW—ÿÅÜ‘N$<áyë@fields/data/US.dat.rda0000644000175100001440000012773414762765721014274 0ustar hornikusersý7zXZi"Þ6!ÏXÌâÛ¯Ÿ])TW"änRÊŸ’Ù$ï‘ö¡¸¤w“TXšm…î¯dl瀧¾PÅõ³&µÂ³£Ý8w[!€©Ö"¬ êÐjn •v%܈v  a¹é“µ)`éëÞ6þZÙž!œE,Ño¦°e>AŸÜLÀxÈ?1=¦ÇžbÕ:#âëÝàQ)¼C¥¿R³ýô?  LWÝÏý\*ššžÔ›™ÖF‡ã‡D‹ZT5=ü^ ˆ®R;m¢ñ{áÑÖxÑûvF[{º•“õºe2ˆØ*²CSÒ’“ÛüSLÓâJŠ8)£œ£—K0ŠÀSÉÍ' ™{¾ç‘_Q5š eÀÌnjz?;AJ´Èåi|F(WÏ»e¤…LÑv’½dˆ]B(’÷ÀN?hE–Äm~£<æbÔÛS°&ýìßÏáP¼QK}ÃwEé˜,]hå[~˜¼w"ê$‹†à«K;l‡C[F*~†…D$;0B ®ã;5Ëvéòp>8&™`Pdõæ!H,¯ý$`_+ ª¬âõNc›mèN·@wn×ÊôðsÿUÆŽ ÌÕ¹!böèßúåh¿ñèJ\ëÇØÝ ¾MX—¼;`ÞVå©ò¡ü£š AºîD—å[øAR¬“Ìøìàt¤š?@N|%¤µÌû$ìˆg+áá®î(ôߨ¦æYéßû7Ž…«*¯‹ÝdM;eVãû(KÛ¯­®ow§ž 0~ªýóNV?õ“ÌŽ"Ú†nS‘”tˆGææ! å.è”ÏLòæWÿ¢ë€˜L{ß)ó¯8a³Šžú}ÃÉ•b<ý»™ÄUhÑÀuú'üèþb wVãçañ3(~u‰x½=Ó÷ü^ÿ~…ÙGû #²!RCk›qûZ Œo¬:Zt¬ Â^oV‘ÓĵÿËIˆX9¸³dùëP³I/"èJ¹  »Ë3A!ž«þ‡¯ð:MŠÐ˜8`÷±ãû¬Ò¦ ‚¶ïs0Ús}þ!²…ö£5õäÌùÌúò/5<Û¾ûÙ^ŽúqÞä ìŠ0-ð&ÑÙ ‘XÚÕLÔoâI åã`5Øy#4ÊçBd¼äy ÉUSó)é²B2 sqÈ“QÉRCÞ–! Rº)þ~¾Í;èš÷°ܸUâ–ß?xéÕÒÀ†ïmä“)¸Dæ[šù¥M±ì̱Yx"Ì6š†çú4^𵣨ïÌ}bÕ³Íl½û¤!²2Ÿ –kèz­À,}"î‹ó»å‚‰Š™üï*føìý¥ÄîâdQ/ü²¶)°\/óáö´v’ð¢$y*"Ä?Â÷x/ƒ‚(ïØo$ã‹þ¾¨„©³gÕÚÔ¬;=€øºîFSe1kIŸ´/¿®ø{€Ý¬£QûZ&jSPBÆv¡c2öÞ5bCuDú„ç_f­J·4ó±nÿð¼Õ=V¸h}÷("J¦O¾Ín뾂ººlOjÕh…6YÍÍ’õŠzJ6j¼± ²Å á)PO U§­—"#D,êc¡¥_ñÙÇ5`AÞ#ùOekDá/½*5ŸÏöËèùCñâvÏJQ³³¸¬ê©©ë))OuI¹*Å;†=vÅ>WrvÇÕí?.ÕC{ïÄZª¤EØz¿]§zëã¥õ©£¤?‘x×f[¸ÆÄ«a/_ïÕ¤. 3‹ <.Yøïý4'"Õଦ~8¢„t’êø»Ï5šf¨Be š~ïR3ãMEØ»‘Ëè¼j*F—Œc×<p$óK3€6v·ÒNð'üÐn¾I\Yç@Ì/CÙ ×`å.éJ’fTNdÒÀIœ"D3Jb [Ô¼ÀZD’YSG#}¦Ä%z ú0YúhÎnþÔªÿîž„¬dÍÅ?× º?Sª9pWú_¶hà3\_îZ…Ã@ö”½!ùÕSz¢9‰Ïó=.W3^—`.4}CÛš9’…:io›^§R$ÀÞÂ?7JlZQügzz÷êáR¥‰š~âbŠâ4YÈLéäE6Øá¾ø+ñ lMK#—©{ckm€3®„B#÷7åISªèUn'•K—q üÐäú–Ü^î—ùÛ6/œGqóJb´ÿ/ÎÛ-?w"{X“(cëÔßkNW0Å¢2géàM«-5ÂÞÔ©uÞÙM/iç?;ÂæüÅ.ò#A^¤'>•´Ù¿—D)Øi—cŠÃгÖÍR £MävoÐÉãm ‚¶E‘·ï†Ív‰!ö± \HŽÇÜéø¾Çm5Fí&›7&ˆŒU.þÄÀ¸H¥~ц ¡ »ªe‚‡¦ªñ§òh֎Ëú…}x½ú ¡½ "7ÃͰ̋ª9ælRe^¾H˜€y[È«EAᣌhŽWý'ý7#³*êS„à=Ì´ ªw+ew]<¯íc%ÿ÷Î OÄaM´;åËÃJ°Üþ‹nN¥‡3‰4Æ™û{<2ã?^(!lý‰H6‚ãü!ÄxÆÆ¡/QðBµ™÷ºK—"ƒsçyìwlWja›iáØ'­ö}(Ìr±3X-g  qØUÔxâ/õ™LÂtõ4ô¸ï¥0—Tñ”'B(Q'‚G€)5Y¯Áð«´Ç3šu—w3*ÎcÝÖ­}Tæc`UÐ×d¸Hf{Ÿžú¥–”%¿ù¢D)ô2of% •sÖ¾ ù‰²’,»mfâ 9j¢xåjä”jMpÇU% +»ƒvc°ôjyß ßÖóö4s¸ÑçƒýyA(Ì–„™¸å¾mã´2k`2¯=`mg]×”ÖRú͆ ƒÄ10•(ôÕ}:ÏÆŽôªzhÀÄW±$ö(| Öþå¡°08/qm¾í”2Ë]jÖ:Åæ$^Q-Q°‘ÆIûC(»úŸóï§ï:¯pËðŠ ½è¹h'÷ÜB ÍËäu)Ç™yÃë*!e¹ÁêX•Ò’ƒ_ÿcùGc_Dn1yñÍQŒaÇ¥ìe²Ø© üÑSÅ£î\ÿ*«‘]T(Ù,ùä9+!$•Øb"D¸á2‡òÃô5*nÿ¼¸žv |m’vµùèt¹Vð°ŒÅtP(B(—o˜wœ–9Þáé‚~E¹ý±¥Qv0?ÿ³I<4t¯wÀ,V>]gŸÄ ±¢öÎ$sc ÉEÁÁ·‚JEG¹<¬Â‹3©)ÑvûÌ£6æùá¬ÍWÎ W̬ihúáÝTW8 òï<®K4­·÷@ºuŒpŽOO¯f¶¨)8‚‰ke2k‡: .®÷åÝm2Ôª¯A¬²˜Zmàëãg_®Û̶c½±×äËŠ?6-rÀ2@6Ú5q…Òg'%ƒÒwžSp¤+p‡õO¶içœö³,e p·|Ç^œòþ$N5}ø~5xÝ•È ãY«ú…ÝO]TFŠ&ð&¶ 鎵«ãbO :ÿl5×GbO^aû¢ôîø]VžÃZ¯Û‹-E£–2êÙBšã·šo$ÎH«Hx`ŒËþƒÀ])ý¢TBëßú„üÞ 1þ÷ØãP&Ù‹]»þ~¾K¶b¨òÿ™‘ž‚^O‚hDu?ô7É¥±+(ìÚB^Û-ƒÕ ££"ޤhCÙ‘iY:›Ê¿{…ûü6BþÞæ˜x„X ˜Ã Ýx¢)Ä«¾ ¶Ñ’¸,vKTWF¤ ¦Àß0 ËÃ>‰Ïh`€;ÀR §§¯ÿ/QXÉ·s÷W„æz7¬ÀhÙ]‘]¨(ˆ¨LÄÓSŠÝ}NНò4yÑó`mcûD+X”ä4hv;‡Hft MþÉׯë½6¨MåÚ UY7s_ÖŸµÀþïh–^ÿ†…±rËhfþUž^Ç$ã Üõë¹óS^C ½â‰Pfj<Êëi}G$*`O c$M…*ϽúÒŸ‘Ž3߸Ӟûéx¬z*'Ÿ.‚”?÷,[ÏËXMŠÙZá#熭pþF3eoéúbæ$‚É,“šeÁ"‚†–k{¬ý‰fêµ}76V'öº¶ò¼˜Ù‘S˜£BB«êa«DÈ’Ê/Á!;6Êp]û–pÆèC‚{,oý¬1]:!±]mÖ–iFƒÙUž ñ”t Ƽ,öm[Rþ‚t*;?ˆÉBçw蘆W8ª¼š]¢×¹•P:€ /ÅðÞ²QÕd¾b„z¥²³ ?ŸbÖ{ 1ñ¡½åD¤z;Ú«ë²#þW4ýCF»ˆžþZ«WÕtcá›{HjÒé½Äû¥ Š¾”1 ÔþàRÈlÍ!oä2µj á%¡QR†õ)k)»Ï¼H§R•#J:wžÒÃúï+26ìr¾·‹!Rk¶e;º^ž¶¤?Á:@K¦ÍÂu–Ú9k°@ƒ·,q¬‘À?p0ÖHõ%–× Ô ä›+InP-`¨ˆýtÄôÛþ‚û&nX½¾b„ú{ŽÇµÃt›² ‘q×|G:7oº±>@D3U¤ÚÆúVüøš»âÂZz°î 7Rhœ5J›Àq­I°âóÃÆî:_¾TŒÜÃ1w’…ã%ŽÑågºüB6‘É÷ÄE‰èëÓc$oìéôkô ¡ÿlé/OÄz=eZ|< 5í¾è®UWu'†ÿ5êba/º´¿éâÞ»r(¯Ã„ÐBC*ÿ&yvž(Õh6ÛÃ4UWµA*¸‰%xp„CV‰^³ðªÕÍ„Ky¿¾’6rÁ‡:¿<¿"Æ?ÚvBÓ©.ƒ¨êOÜ—måëÅ.1µa:Êstæý„‹5uü¸3qº¼·Ù…çô6ý— &*Æj¨¨£Îœ7þaRfÞÁÌó+¾é§¾Ä5—Ö/À“"—±½Ú‰Û/\˜­g}pzh¨øh­7µ«¡Þ²ÕsÔÎ[CT£f<µ­ÿû3 îºÏó¿š}œßbuñ®Š3eˬ ¹Æìº•Zýûk:|Ø!/-×Êyš_>ØöÈO‰±*çpa¾õ}¼]®žtÖXÀ@‹·)¹èN“§.rÓ·xÆö2’²Þ)žÛ½™›ŒwÇ]œOX<¬Âà!Í×páq}zˆØ4LØV Wk$®(²ºœ ³‘tZ®^°àÖ ô°ÉlT%Bš¤ _¶â`äA al&íþ‘q oÞü¡]IûÆl—=ûö vÌGN<”Go/ž±Çe®­Î ¿‰«\TÐ.ïä0âPКF…Ã1¤Õ(¼ï|ÓS*h޶l›QN_;úa³g-ªÂ³ Ìë| ¬0ÇМB'…l@®¥o0HN'˜ç›îq½³*Îjó‹ëÏo4ƒ¯ŽÖºÛ Ë#Ôμ]mžn4âÍJÎ`ExÚÔ‹“×ÓŠÕ!ÃÌewü"Á¡ÛS×wnjOnæ›Þ=,*©¥Èh2É ‹³ïÁäªÝÁ¨~” ´ëSׂë 1¢}àƒŒë^ÌyæD]Ô,OèýJ@žT©ííy5'ÖóÝb­ÍîX£/¾¸?uý¶íŒ# €Ó÷~¯Ë~>j^÷ñ²Ô ãNœ½nà ’¤4§ÞY™c+ÙÑÃÕW¯u0/04Q¡ÀÈð÷% +Šî{›Å3üéï"à£K×Ý,wÿ$mÔ, šý€½7R´ºéIŸ.6Ç¿ÿˆ»Û)c¨ßíͪX#äž&Yq™|…®mì*¨Æ1_+š„c¿v©ñÅiÈâýg7rÏîš©‚+¡J¨,Hóúä¸BÚ?ŠÝpHòa}D:¾á÷â~a6ÐìXÜôª.ÑS}MVÇÖl:ÂþÖâ.;1l:Å­Z’ø¥È8~ž£PÈ+íÊšntÐ dÛi=MÇŒ®­vy2äË£jç?œ¼› „Ó€fBÔ£%[Ó|$ðÂp »s;Ùý©òwÙÓÈÊë<ýlU++ ÌcEÈ7ìXv£Ú½¯k¦¨³ŸuÆ¢5p*Âù’[Ç4x½í Z#a Ð)»”m%Ll¸VSnÂ1Tfbf2ÀvpZcÀZÿ…ÊCȱg«¦ÚØ>s —”Áé¶Z¢ú§Èk‰{Á‘±á.—ÛF{?P-ðx«¿NVŠ+bŸ—ÊTçTÇdü9¼þP«{ÅôÚbõ3y’ëz…'õ"~¬¤$«µp9A2CÉœ‹•ÌskêÝ` Pªþ÷òŽ òÂõ fh‚ü—Bº,`2`nÔ4­Ør@ö<·‰|À+PŽ>$@ì°—Hvfê/Š klKz4™Û‰b·™¦€þΣØ#qгýlWà€hùð±ÝÖ~û¤/; > r?êØð2l@Ñè`³B’3õÇ{Öùy¦WC~["w ¹¿hdÍz‡c*(@Ñro¯Zm×ï“Ó3õŽeÌT‚9QÓ`¼'ghMñøb1s7f]Ý¥âuè9-µ·5ÖsdDç¿ÍzdŒVP’õä8?köSßéâ ߟ8Þ"^ =uæ§^ó=pi ŽËn¿Üö­ŽtVu¨HŠ":7mÓ(>¤[ˆ@l³_-žŽõ}ç¯u³³ ³ZKeu{/ˆÔõõIÒô¦Ë‡æ[¿¶ß«¢»d%é¸fõ ÃÍÊØœ³°'(ßãN¤ [ÃHÆ@O¬da~yä'n¯åï§1ßÜ'äÒ @­R}†ïö>YˆâIc§ÎØ#ëE],GJÄÈÊų‚÷=Ø£ÜýMM)‘0¡s†€é«âà¶Gj8¶ƒ”×iUÄÇò§Í}]/ ^_Wú'ÄD¦´.±ý‡t)™¾9k囿͟kÈ9ÙúŸkq€-µ9Dó¨`7Ä‘ Hkmlôýöéz5»8Gɨ뱦.u^ #Î{ÇQijݠÑ$ã˜ALEÖÀ›¬Hè(¿-”µ¼åœü]éÝö~ç÷.5û•…ô§Ð"§¬tôÚ+±šìÇþ2¿Ca±ÀÃÓSx¨B9j{ñKAäùܹЃáR¸¹)¯õ>lÈT&j×")ÉfÝÓP²áN ;XáÙ*2šDí9ê¦{Ó Á«ÛÆ>•Aâ-Úry´7 ÿaJà» µÎÖéØœzàudï¤úË23¿n® ÒMÇo&á`Ov;×,h÷&jƒ“,…`•ôF`%?¢ëVdbÉx,±á–øÎ•ñ’Ô‡…q©ÅIêœyËîÓ*N“³Ä îû/ÄI³–R¸ùG`N+«£6Ö†²¥Ÿ[-nbG(äuÆÖž¶,«@ѬÃ.ÂG@VÁóïMÍêVd%‚y¸;Þz¦bkMÏ OV#ƒâW‘[ÔÝݲýV7êkL©Žà3ÅÈûc샄 7ßYDþˆ†:ëW ôæX…žâ\èÍè¤b\ªÆÁ@}ŸƒCî2ðín.l"Γa¹ƒ&ÍŸ§*±Ñî_æ«ý ÄŒ¬BEдN®[½ÎJØ6 Vݰ†Íëû¿ˆHÐzäÇJz)$Åa©ÉÃG)™(¨LÑÒ(võg7% #NK—Û;ì¾݂ף;Xõ rücNÒØ/¸ƒH‡E ´fÌåø«áªq3Ñ»)!Ù•ÝÉŽÜÎåaDa¾ ÁØ ºàÉB`nécH±¿&/â`ˈ4ñõhœ§PÀ PâÃb)´âpÖ v9±Â©žêÝ„j\¾e´*&3f´ý GÚ}–õ¡ã£3C&H@H·JoØGœ{&afRˆÒ¾3˜^@œ´?zg*Kȉ˜½ý,Ö=ýS´BS)Q´V&Ÿ¢™•Aþºþ¦žÔt½7 5pÅÔž5¾ìÃ06O^ÞîÔgyûXgÇÿ.ˆ´ëµÊ•ï¶æ3²™(_÷½©©ìŒa–Ý~Q¼Y%üªŸþíüXZZrÆÎ…>é'"¢XQï£<ý|±ñP!YÕ½¬¢q°~ýƒ"®Ïu&oö•nynG MžœŸ+J#C%@bòœ‘Óo£^?Sz_-^Ȱ9Äq¸v´kB“_pv=œËnFS!GLnÓ^f ïL&IdEiKíè„5Bßíé¿‘÷²¦q§e¹¶/NØRys‘)D𲨠≲ünì§N5árz|¤ ßg¹ö¢:z´¥YAfÖÂω¹A©D’‘ÌÃr µúI<6×ki…eZrB*«¡I^¥MÑ-úÑh8ˉwŽYâ©Yà€ÃaaìxxòµZŒž«$H’¬…ydz-®Kjþ“FTS}D|APΫþœWÃÖÅ×Ô÷îÏÀ”(]µ8Åór#Œ‚Â?–ÜÆSý\çnµz‚½>WµõF2Eódµ«Õc©™ V&õÛ7’»XW™9¤1zÏØÇÖ;{J9&Ó]CãMô¬Ì\¯Íô¹á5¤N|íÅÞ¡˜Â-›´yR ³A©VÑM?^“Qd¸C¾¬itÁwJzMÞÌ9vn¡+ŒfÄé,_SÂFQœ@Iýn®«Ç\I~|r E¾•Ê&ñ‰/J9Ž#„¶XïƲmÕw,ÞÓ+%„q"´}6erÐ:¹Á¶(Žá,@„Ÿ&kñˆu…YCçb£zåmRånÒ9önîüg…Àl2à–vP]¹üîÑœª´»º©ãáÚ°lSeÍÒ&Ô„£‘owgúi1ò±–%¾!r#†ç•û!ïUgb…Ò:,.Wù 2é Ü’b`vå/ÛtÌxÔdÍ¯Žµ…Á×'*"†­ÉÓ(pùu=÷°Ãä&éO#¯Vßæp‘|àDTg];—L¤É<,³Ž^3}E¼·2 hÏÈ8C ö`®n¦ ÔñŸ.Fbú ñ„D°Áìf¡¿00F¬ÿÍp]ÈOëVµKÚŒ‚´€~ÃX#ŸNa.Æií6s¢M—;äwÔu±K0×F5Œ.¶/ǘnŸY“‡ÿçäøØ÷Ý»\‹˜é­àkг£´FT‚.zÖÑêX¶ ábt&9Âyd^øÌªDO¯c„5ü>PKIÄá<ØÖè>TE¢Ø§Ò<£á* ¾ÛCb]sgñgsßtèf(4–»D"R' vêh_›Ì·åŠí'¥’2µŸ0¦Í+æiHÉhéëCî©ÅíÒA‡%¹aǶÈûâØÝÃV°ˆ>E]¹ÆdÛ ¶Bˆ Éo¨Y±,À@«óµ JX˜·ã©[pz^kÛ¾"ÝÇÝ>è¿nÈ“¨Gõñ¨˜·È$„»p7óŽ*CWò]ê$”kç©À­‹r2I‚Êiºr^ÛØ¸U·ÙÖ’›Ð€—þ{îC4ä¦ôµ ¤Þ¨·‡ˆp݌՘ê_OÛe¤¨½ÎÕã>XTtužp9“ªf»Är|{ú ûU×·¨:‹=†ÑJÀä4XWà D¬€8+7óŸ+ý“6_p’V³‚°l§ «M.wê¬ñPõç(Ïv¿Å:^ß ¤œ£þhwN'GáC!xè"ª!ª_À xelj01Ý™QDúïËúôïëˆïoD‡5ÈJƒÆÒ°¦ûI˳®ØvéÈ ~sÏQ®Û#Naèµ@nCG}¢¿÷P©Œ©w‡Óµ'Bé€Ã Z^3§\3$®Êtw¥ûhþé‡üXaÎü¬þ²°û!Ç+n'N? ¨(ámÂBÆñ†7Í´ÓØ³Öãä•ô_Ä8lÅxÙî[ºäÅpŽÎx»%.Øþ‚)#í•bÑBÚO²Vùõ.<µ€¥?Là§R*A/èEY8ëœÝ­üÎâä½Qg°dŸ¶Æ³ù™ŸHÂ:?B}-UÖp€ ô bõ  !¿œ—]…Ç<†þ„g¯ù`ÿÑf“ îÚÙ£Xœ .Ù:2ýq¸%¢fVPj6Qb‰w3Ým¹¢9ÜP£KSb;ÛPeÍFrè[#ªj¨¨Ã ‘ »ÝãI‹†ARAÕ˜"Èâç mªJ€]y¾…ðÏã^lÉVª‚!”‚†‰v£û•²×žˆæGDǽâ#¡m‘é0i8Îc¬Ù ºR÷Ü+'_qèìÔPª·œ\u©Ñðè‘*‚Ýã ¯'TxÕ'a¯xv„G!ÿ~°dðÐÈ€wì£â‹Rfùøñáã$èiNðÓ „%Ó(I{¯!”IàùŸfN8:Ò´:8'.C3ÐP =:Žcº&š“t&§¸B Ö¤†?‰û¨ °Êk;ð¯‹û\äY<‘Ç&S8æ‡éêÊDð¦wod÷ÏKN׌|Ó­mÀñöjz½¡ƒç+üðÁáo{Ã\ª? –(ðëRAȾ¹àʈFœZzÛðûÿ¹®Av81#*©xÙ@àwüÜø‰G÷6ÃX¿3¡s¤Cˆdí-…½^«"DGFèú+P›ö"œíF5™&s÷Ö¯œ¼¤œÜq?‚ñ]×FWÜ:ñX‚8…¢ž=L¿Q7ín¼ª×“‡Kô|Ëzžg‡;N#¬f¬¦ÀyÌÓqFÕ±ÎdÙ˜“}?sDPw8u˜Ck»¯“Pññ!7ÛááºÔÔ™íˆyF1ˆ—¹Iä¬Éjòr/€îÕœ¾µSQÄ"gý‡äž2•Î.lT@NÙ –„d²;WkËö!'쪓jJÁ‡€¹]˜7Ä{Ίb€îžØ1/3:ò¡~±a]‹0öT×1åM|F€íî§Tþì9ûû#‰i¸ëo²Gez©Jηƒp™¯²Ñ¾cæ»ÂüRcâîëô9”}2@ú/à홦&ò·£V—ÿÎúIF}\(¢ä@b¶Ò£8ÒIÔêÂdê„¿¢Ò!â4¥Lk=3æE“­‹Ú¹ÛðËÍ ÈUdí,|F€r¶ åÉÀ9Tݵ³§âÖ~ âVºç7þ"¡Üq>ǘt²µÑX”ü÷Ê“" žs0,&Q½,£kŽó q»±[[û{]Y'”ì¸jò ,Ö©ääÛ -ß]û†t!¶X…‹tŒ1lNdðxìld99ó'q)n}Œç¯@Fm×™}4rî¹L‘P­:Ñ«ö7¬e2¼›½½9ÓÖ¨F’7åÑ)Þ}GÜLËøŒÂÕzn´äÉ>s~¬V°H‰r>º2Näœ4›‹ƒW9Ö©„ì;U%òºÐ°Õâ4Ÿyh®U£‹ª´9Ò:ŸkT–³4—‹°ÅQf˜ø·Ë¸€<k"~ý†¶òM4”»¤ˆ je¼ÒW­šÒ4‰‡–zöÖÞ4©ä¿û×øšuÿ©Ñ´ C"±›Œf f’.”ÒLøÜ飩›ßÐhcZ4Œ;—PBo ëFQ›Ï¥€ „ÃKì*·B û‚°¶E°q{¾’í¸µ&è‘ ßþµïÎ;þMUÏPý¨÷4YM;Ðmg|¹øÌy“˲/Z±¢1®,ȉâM×H})ÌWcâš9Øùåp .‰Ô¯¢qC—ßÍãžLalºº­š¤Ò¨Ì<®0=yµþÎÎgWY7ŸCÆº× ÞoU+À dÌJ;_?*¾}{¹éqOˆ=ë ƒv”ÍÉ/¥ÁcC‹=oñv’%ò¥\l›7ˆ¹Ƈ=E[CŠq¯‰ÔΞc,]IT–d‘E7¥è°4ÆP÷¾fø ®_-xË]UE •êHÿ§K”!nàëoɹb žPf×3Ó¯&yd$…´iµÿ‚edʥ䛤e%à†eÞ<Ð{¡—МlcdêôOQÞ ïïÔ*“á¢ÃVž*¥ÚÜNÍ«h OpÊÔæ©¬OÖ$ÝúNð-1Ýs†o<Ì©7ë~,e¸è ¶…4ÿõ¶ˆìV¾‡~oAÀ7‡/ëÇK¥R„¦´=Ô)Ôºæ=ú²'èýU€;êEöm\$S‡ÕþT£Í¥Ý””1—óÞr þª©¶” ÆcÁ=E|Ýj¤¶z‘1ùdå Då#&MñÌ-(ÿ¯Î’B+~¶Ê=\­v×ùµi>/Ø’ÂútÞ”¯9OO‚¡ÈšÌDf‚][]ÀÙD.Ji e›Ïx¦³…‚½!\‰ª<¾àà Ñ´uá4»pî·jw–æÛî¾bܦþ•Cƒ±ž.|ÖGæôU00œ±›L;ß7¶¢´{)®´¸­E èı±eSĉäZ,/Ý_2YZðÄ"o”ŒtÇã“H‰-%¦kÌEˆ 8ÃB¶ÂØÕq±oÒ «ø~)©LÏèÌE–Šx?.‘i@~ÞKhp‰ÙßàC1%$….»x Ÿí'ÿ›ì?ª¹*·`Yrø;׌ĻÄG6ÿÂÛ‡€H 2’ÕQe,]}± ºli÷Ìåà( ¸}Nï^V ”­½à @|P42w¿³Rvµ*¦~ÿdB81B[Ê,¤úñ¤¢b›V{\Gm†Ša¹ q©^Ú\Wó£“\îÔè^êÌþqøûõ¾æ§üš‰MGµ˜ $Ò›Žý{P¿~ ˆÝ<›¬ à¯"ÕJÂ@y»µ,?¶€„0L5uAÎWHE¦a󒦨ŸÍ·ô;è ÙÆ±m­aGÕAx¦Ãei›ß®õ…‡Ð|Ðõø"RâqÇßGCÅš©X†¿£³ÌGŒY;ïaŸV²‘M‘Ÿ—Œ¹Ègjf÷×ù:–“åBò…£Ø5à1.$ùV¿›dÁ†hQŽæu­àc!ñe(…L¸³™ñ¶‰Ú{€Hí¢¢Ÿ ¹]ýÁÍQ¥ÄM¦û”ñYvUºZš ü† 0„/QQhà'<¾ÖõC!F4¼>˨ë=2X/V‹(B«ÍVI39{Ҟőºaš ·Dè\äëÊ@½ `q­¨žX‡þ´4"?—ϤYÂ6϶Y‘€ÅwZ4ßf~²]S¦‰Ž¿9î¹Â™—¾ª{´È¯@´à¼VÆãA§ÔÚäC¥d[µg믷HÈ—¾ˆ ¥!]ZÀ,°N²È…úl¸ï®›)üQ3s¿$ί* 8i"WVe%nFsâg‹uØî®f_pû…î=D\û½Å˜¯Çq¡ôwì@w·:(_—ó>2+÷¸Ò–xè¤Ð]Àj–б>·‰ñ~‰¯"‘.záá&„uŸ–%[1[”ð¡ ý†(¶û@o¦ÐÜ£UõuöÏì|Ñ É`J£ƒÛ{ú»ªM‡aΉ2Z¿€k÷Ÿ›/ȰøA¶'¹¯k•Þ"8ÍkÇÙI]ü©)Œ0‹¨Èå39/ºŠ˜Mšì:’Øa’ý!ÓU% PoR6ƒLÜ¿m®GÜVÇb;ùL ;ê;ñLM]"ždÉ.ŽG…2šÄ•B¶É|äšÙh ÃY*µ]Ít#`êZª)¦Üá×s»1ð€F-˜ÝZM9(ê—nbAÔrþ„LðþHAÍ•r'Š¿ÑCg?þ¹ÿï"y…ÎV18]p)å/éÁøô’‡ÊôG‰kË ÎùÜlÄ9;ôJí>’VE9IüP éB{ÄÆÂm¦Sؼ«Ý@´|Ž•”kï9æû¦Š‰ìíÔVœR¨'ªú,kQ±#óð¾Ë<Èß›UÚW’ƒåÕ•F`"·Èú“+! ¦¦&‰9q°¤Yÿöˆ)ÕÁvÏ^ú÷nn5ÒUic½â4ç =(y©BÂ~÷ –Uz3­ÓdËÞ `~îÚ¿ùñ±ÈWI—Š'ŸOðŠœ/žÓ%I-½ƒÄ´ y*«äfTÅ*ÂÆ¦›UžBô)â©ýŠ"™ìÀ3Ð ¶4íTS ÆÅIù¬._9¦)!nëõ1(ôûΠ|?uòÁàßÎcÖx·«ß¸H×—R>€'¶þé5Îï‡,"£kŒZO³`ä“›Õu÷¯OèÜClÌ gS ÄÜÜø,ÎâZzO›f1°×|œâ~0çÊPžBüHß–w’›™Z¶Dt†Dmxѵ~É {ˆŸö¿Þ`¹ÉÓ¿3[bD`2¨ÆHH¾#?Œs±8YÃ26¨B½¶Š}Zl eyê2¸õöºÞâ¾úÒSõäþ'¬•…Y¨6³ç¾-5Ï“øÙ).øÔòa83»‡\‘ð”Ì£ŽS@ºú¤v M[H]…µz‰¡wâ¸[“~UM¯ßsBY;R(h-ù¼±åfSîgà&Ló¾Ä‡åZ¶î /ñgl;JªøGå:åQsŒïä›%EÕ[ozXó¤lõ5²<ó‡sÔ‚‘ͧYïÚ‡Ó÷Å âS â Ül&FÝcÂ;”­Ñ¾âx º€º]§Nб„q (+. ˜*¡S)UC“úú«JFèPüS= ] ÊpË…H"-<ªÐÉËé]ì^˜x=™ƒÛ¹Á8-‡MÉÂ}Ãoƒ‘lŠeg—FÏ£b“=Óüä£T—¶2‚žï¡Øž“éΙ=0½œÓ;œ(#JXêS¥-{ k ³îF—Úíñþ[~¼¦Ð­ -Sñ“4!™PáaÆ©$F ‚tQ¤%å—nhŸO¹½$©–ÄìÍtT‡_óÇ5C‡õ•´ŠsÔ·™ñ>äÇ`ž²êô^dæ*3&×Wu±#¡A•Ñî¶A‚'ŽN²õ|•ÏòàQ»,ÑX¦Æhò‡¾eƒõŽ¡z2›@I0Q •×oC¾Ü¬J‘[×"¶±óvò8áÿ¼iú5ÌÖP>~Ù7æC­Mô)êú*%ˆ›ÊœìÿM¨¼èè°)å¥sj®Ûä7ãáÊe´R¤ÝL’€¯Á]hÿömìõ6ÝÔóž0o\IfÎ×Fø &óHÄï (› ø\÷ úÎÚ£ˆD3£OÞ€ÈÓK³Õ=:¸nϧ™iܼê‹t:žz±âb»"„ywŽI;:3 Ð3Þú5ΉþúŠZGrúf†×L4˜(ÙWWóŸNŽKz+¾¡$²¥› ©îk8Õ¿µüE0wg”úT‰ ƒ‰ð¬J`7Ç‹¹\–aɨóøB`6&òÚ±?D'»bÀÚ6†Ó›í·.‰…ʪ¥¼[ß'FË@34ûeÄnC!.×jàR?㨞¼üCV<›B?KÍœŸò=7ùC4ù®¨òeñÈœ×ó.~^ÚXñјü‘_f¡4LÁ/áZ $Ã>®©H˜Ê#ﵺs fp²,Úz#†DXoÈGÚiøê3.?»82ÊKVb){7á⨡tIíáz…¼„&ûz¥Ük4ãÒ’çÛL/µLÏLMk’,‰i#ùÈø`vÿ»)c”/Úâaðöߦ¹˜Jèóß0‰So™{›_í6†!ú¤ZŒE_¦¤Æ,ÐÒÅé:åh•V‰ 2,˜4ܯÙ^YRr¬_²CR-eš­-z9SóaûF[q7·'ii޶LDVX¼pWhÉëÍs.÷Šñ’dôU¥EZP¸0S¥¤70É‘]‰=Âì`òî…ÙÇaiâ9y¦gŸY@^-î3×í¹JW5w‚˜06£ F0ð1‘«ú a•“Ô ëCÓ~±ü±ÛOMÕñºÁölYüö{€%€vñV*’ —”€äÔ$À¥m¼`©­˜,º"ÃöÛ;ýD;äí ô4Å¥* ¯0ŒìB%0›Xý ãº#›l9•´âh‘ @ʾ}Èe’ÐæÑWµbyƒ¤@ÎUfòõ\ȸÄ’âiBî¯kæäeÞ‡›Æ5e¬& _ è|½_K °é.Œ9ŸËçÖÙýÛwp´ Q ó™ìnsô‘RŽƒVœ¾K¤³¡©kÚõmC%ñ³‘‰+Šyc1íhÛ° &WQý|,s³gz^nͤ¶CÇ¡Îb¥¢âLë¶ò×)Màôõ©‰×«JðW•Ö ôµÄ¸ˆ¼Ÿ ]e~¯†¬’ð*/Ã3kôù(û0 Ð2 ÎëŸ;£„®Š—£’Ñ2r#ÐÏë`žÔ9D·xŸ€D`A½®BoÄP€JJ_T{»æ)‡ÕŸýô|œx vàbd@R$ç…¤®ùµòÎÝ‘±lÀ¥öºÏ„ö1E+ d¶† ¬yEë%‘Äc.¯ÖR$ˆâð÷WþæL(¦gÝ2”„UMØ4ˆ¾†ÏXdJñÏŸ¬pe|ò¯´sX>~nÝ‚•§לUËoJ×ãÑi>ÜöKM;ÍÈ#…×P,Î )tj§y’0Tª¦XÁèëO*tÕí]"ƒDVeò6,tßLÜÔHéýhúˆ›½YǽNïv.•~hz;n¿:üQ<Ç„%¨™’ây?PC»BáÕŽv•r½É¼é5¹“„¦¿0Ák¯Æ·Þõéeë)ÿ² ­ÊI´1«Û|/!ÀÈ‚›¾XêðÝæ_²†AÁ2 @×I= Ý·Høvšö¤ÃÞ\·ôîù.¿Z¶ QvVœ¸y‰¢HD}*(„ÿ*Ïé›àŽU÷…4å‚)mÈm²üe°fj MA¥zâÃ+/NȯÎSpÌU“™1ж¥q!m>ö]D:œLÏó[sŸZ"æjÇt¨¡L³>Ùáši¨¼jÁüÎÚT‹bï]ûO2) ”–°Ðêõª`ÃN"´8Zñ †”"ªúº¹4}. Å=n¤|ËÔúNMjfå*Ofz#ùz$PØá«@é)àNn'ðUí‘ßÓ´,Îóõmí’í1¯`å"!{v²•®%+ŠÔYótã'¤¿oTåŠQ¡«š9LÌÇ Ò¬´/;ÃcKA5=8øDJŸií* xwµ´œÐû¿u«n8G[!ö7ré ñ)p 2p(Ay«>þ‘ÇÈHÂlÜJf¯Þ‡§|ÐϰjK‚\3âÈ Av VË1޽Ä‚1L¿ð=5Bàhš‘…(÷hïØÔŽÌGO´H¿žOô„ÄAaûšÇá>¥Äò·l¶t®d³!}Õ¨gîÜq[ò ÿYˆ]—‹CmAq ¹ ².¯6+_Û”ÿ‰{=ؾ̎Á3A¶é\‰§…ÍÖ r¸+ú›„éo—`°äƒ’…Uï¶ ç^ “§+ôõHÍX}³ÝËŠRÈ6’É´L°÷õÏ5~œÀ´ø=„—g½Î_VJº ƦçŸuûøørô‡ÄGÁ§tPÅw\ÎûЖá¾/§¨Ü àÔ gž‘6@6± ¢®9%4d-ò÷=ž[yXE\“—æµZTŒ'´ÿŒ^oè[S)Ås$ô)Ò_J¸ÀÚØ¯YÜr3v«`·gþ0ÅHÌ{É|˺Îo­ôCxüG32ã쿆/“ݨ½½=€Ê–,Œºâv…H(@Îc¯¼Lz`Ú‰ç!.vû‘Yq‚©Õ¿u\•³çôn–=t Ïm›Ï€znµ¸0Åñ¦øàÜ”2eXk¾” WßR7O™ç­õo ¬|n´=G’½Ó]b¶Ü¯é©U›yÂôŒYtûí Š´¨;Ç[ÿ ô­möfpJ‹?E3Á{@MÈq|`b¯pa›ãH"}ØàÅ£ÑÈ\”r EobµËÕmg?™gÂ0ÜÕ¹4ßQªdIˆ°7ÖßÉ2(X½$†iИÂUf'ÞeE9ð”Ü,ØÕ͵䚅òdeN”´x±Öª1kfôX¥Bk ¥_îm›ß¤†ë€G‡¥Ÿþûe#ÇX¨¿Ùÿ#ã‰, ô¹npÖ¾.j–™H0Ð8÷p‡dÖä?l à!¸!ÛuMœ3X#wcu·ÑÐUÙ:ä/ƒÂÇ•ý=x'9Ù:è>‚ Ûø0ÚÎñêç1õ6Á…—ß1þô±5¸Òûü“h€x µWnJžæiš7H¥ äM3…´BP6Ôz!›GÒš°´#Sæƒÿ&yï?·ï@"F¹”~¿Ýx~x½·NkÜÿÓ2—¾œ×T•›Ê“¨ùÆÁ¦®¡<¡™ÞÁ˜ì„§’:©ö¹VrÎîšõ½Âx‰@%®hîò—‰¬{(Z…°¶’¥wž õøŸlîaRõ ôÂÔo0" ¾pª\¥yµEa'\u"E^|pYц^g¬ØY"ßÞÃ/Õ{.©Cþ;y%Ïœét^äònš†HϨAÎ*Ô"¡’g3CýØJEVü±ò=Üv‡,+z¬b¡xZ«uN-ãþ£Íåsß×Y^$H±ÑûÉäuÏs7|T¶Öߢ–à9ùMH3#ÁÝËÛèÚ iª"œÉVNÙ$E£«Šæâ²Ä|d¹ñƒvëBjÏUÕs«„°£ATÍàÌ›i ¼Ôq< ݾÒîÕ@8»ÔŸS(©µ¿ÉKDo±I‚³×•™ÜÍAïÌÿu䪑´‘ ¼Æé23ìi]3J²Ìï}Ì'ýs`©ï×Mø"©ß+æçE·—~( Fă•JU—3 ¡I0ív™1Üå¬ OÁWX¹‰ZgTvy˜~½¨V͸–#! }iòTµé³ýèD çûv5ÁCÚ¢68²/A‘½í¾€Isòª9{«*ÑÖ˜ÙÊO4œB“#µù)¢zp6_æá¥šß?çíhñ{̺°”Be¿´!÷§š{¹¿ï#¼óßW¯_ôÊMÖKµ V|ņB3fsC’üwLÖlÁ½Áý[•dX8¶¾ T™àr'ÚK ´’‡æJ[0F7 É$ÈÞæØr1%©M²¥vŒCSlÙ„Z©ãVf&r}$Ÿ]I½¦@VÃé:šéž€>G)iÀW ­¦sbi£},‰§¼3>èðHzsk3uø$ÎÜ—Õ´=ðÓ-ðø ¤{Ò-|cLÛŸœ}´ÙWÆq—<õZ1Áˆ®òÒ¿‚®pM¾P"f"jÛK=æZ³ƒ¼åö­Bîºy= bQ{²|‚Rß$)Ž´äˆñCq»‹¤Mw*Ã+¼³Ûk« ™è~¿»è¾8ØJ¦eæ­þ¤Ç–‚€LSÁr-ùöåòÚ&Ø _®k3È`þ^ÝÎèƒ;»¨ Oi²Ü» 6 /@_bøNt¯V>cÅ&ßb:ÎÛ¨È#úVy Á©›#¿`©¥œž»öù5Å)pá¦%ćt¿"Æà±à-ÕÿqC-fð<ÁÛl2t4År¤œ¿jò"ÿúÀÝaö@˜œ¯Q¯¸“Ñ(&Ùåâ<¤ú÷c€wKÝ6ŒÌªe]\.ƒôiÝP‡(³·mÖÙÿV&† ¶3}MÓo¿ÿûÚÖs¡ŒÍž:ʧeðXW³×Ir–Q¾•& Îšzóšä^¡ˆ–¹rÿ¦9ñ´œs²'æ§àGŸåÜëàèÅwvãònúAÌE^&°£K ªá 3UeØ19¦Œ€&ûý)²rc½S åñ~ /¢Эe™g&¤Ü¬oÒš`¦³uAG§"÷&4ïý N½§ÿ™Bð¢0‰ÄéÆ÷Ÿw¡áÊú`Šê+OXI™±Gñôì¶ix`Ï@ð±ˆJ'a¯™rxVl1®ù?#¼‘²ÿ‰dûöå á×úKdH½›¹€Œ.8l¼4o2¿x_˜ëßwˆ+unZˆ'Ž>TïUußÁw 5_ÂB0sá3¹^,s ‰“ŠGuS³9 $'Àª..E¨A b„ßSΖQ Ò>ºªÚã3­³ño 5³ËÃïN*c—dàþ*]LhFïù¦ß¯2XìêO6œÛýðÈ\h‰ë<9,-´ø.0^¡Æ³û1‰ÄÖ—cÚÖ8pà¨Ðv'þ¿¤ó3òLŽà³wör3ú³I])E-Ló=d¥kª~ã 8É®‰Ðˆ¨é9ò¶'é'îkí_”IÐý¯"€(êáØ\†OXÛÖ) hŒ†úðîÆAo±*ôð_~!(Y©8å°kš‚¢}‰ÖE¥e¸ï÷¼_àì…AXÜE‡!Ró•Ô™ÊÇë`Œ;4YЯңÑá¥ûs!e#ª{m`Fȧ¶S»#”sm/G90XÀ–ò?ÂÉZØàƒ* ª6-9à|çZM)K4k¯ºÍäYÚÑJøÃÛ} “£’~‹Íú ®ü"× Â¬+fRço1“÷D÷NšHáÛ_C².>t\¶i]/K%[¼±Zyמ§³¶JŒûd1‘mr©÷þa´®ø.Õõ·â!{ 3§ DËÏí~sÚÁT‹8®·¼ê¦ÌV…4*Ä’óu ÓÆÞþ·sa¢°³±Ð:Ii‚Øì,±Áï)½šãnÖdðb¼n.1öaûÏ]šƒÏDÂ}–¼ä7QcÛ #²á`hÜÅE4·ø’<ï<{%´º3ÊFý®\Ú<'eŠT§p9öí) tqÂSëiÉåÇ7L§XõÜ×Ty’e¿ÿµ„±˜É0I‰¹C¬Ã;‹.îB€F?(ܲy~Ô¢{ îܘ± ¦ê7Ìü7®\CG ^šgèInÜÀâX@êžMí¸ž—“û”Và{ø|Ò ýâ[h+x<åI¡ÆÐ—½†6£6÷¾Œ0Å÷ß‘Á_zÉ“.sG½ ·R¬LôxîW}ç—d¥:x¸Pª#=æ'uÓ:¨šwNëþ€Ì3L=;¬oxU¥ Í)€-Ì!ÀÕ‰s® [0è:‹h6io¬?Ö9ÿŒàô¨/U…ö#W`Ê/–µo¡Qt~c›M¶zE˜8¶µékøÀp˜Üω\×G–ô~Án xÚ„¢}6K–ÇÆšÃš^WHþÚ*ц翣ÈÿŸê–OÜ~¹"¼?žªUebGêÀ†#G†¡Ñw:‚5[ËÏ0ÚéëóÕÅ®MPΖN3A½ò|L¹9Eˆ=27ûÚ>ö‰§søF,ÃYS€œËÂ2²„C ¤Ê«E[„Îf%AœiZd“‘]ß™Uc‚H!Ù wdª) M§ÍÖt‡ì ÙÑä\ùá`®ïèšà*ño–†áïk™ l= ¹<œGÒ‡Ýð2bߢ3:)€ú“!»‘ÏÅÒÅ8/=9öU1øŽKjýw tS'µ ´¡!õÞ9j¾¯®§Û80¸Å´ d\ïóR˜©o×q.\n׎Ìy!RPþ-ŸZRòÄþIU ÇŽmµ¹¡À1 yæÖ…î;õ%Ý|ØB-Ôw9µ´}ª]Iž–@2¯¹¿¾<::ȶ÷{Âã!ü½àòÊL ¯|f§1úÿõÚ25…] ˜¨¾Âéû/sÓÅ8ÞÖË*÷&u,´ÂÚ[˜*’E]@,¡fÙ-~$:ô˜h…*`]ë©GM7’Û“Äôïa™ #åO1_ÖPn?ò§Ôêöø`fëN´ôÓ¾ëz¸®>î!ß—KXÁ7®ŒuÆE”«ðßÃØÃ«þT,Š<²öµ<ŠÇf$SÈ<ªÈAëG/c¿¸¦RÞ¸´ÍK!aÜsyßz÷õ¤˜å +ówT9;Àï´ˆ&œÙ ]—ÓèŸ]`.XvÒùcãÏ“*úÔ?ƒÝØ·¤Õ¥·=܉D|ú§vÃ&Ť£Æ?;?xŽïp4ä SI>é²O»wUqåÐ;/†‘ÎB´5xþq-r6ÁÎ6ËØNИ‘Ó[³6KH¤Ø¯ºhg‚<ß’>!/î]œøªhîïŸ3ÙKµQVÉëï$‚<àLÒ¡tCÒ Õ¶¾¤“î³:¹V7#?.ÂîK–“.ÕÜp~{¤r²jÞQD✱rõ»Ç¤¬UdÁú û»(”²«‰´½´y€ƒŸ \“D“_Wç¡f'ܯ:‚øø*Z—0l ßÏ «’¤Ës.˜³Œ×ÖÚêˆMVt:¦¬U.´›º |nx<õÄÃO€íÊL„¸"wûüwåZÍǘCðfÔŸT^ࢮØÍ×¢¼ý.—X6 ô‰A2HÇ×EJ<ÎâSnË`¹Ö‰tWÑ+AXi¹œÖ°ƒ:î½ËäueµtlvÝ飼¡©xAn 4H@âî**>Ö¬±üȪü©Â£µ‘íUä7`yÿÃ=ÞePo¯ÄFÜåãs:¨é^Š™s53ß÷7tR+dëj(mKt€RÛ¾hÿ:&ùØž¬œÞ˜ æå@ ò`í ¬W9ååÑ_á-¿áÑô@¦:·Rh%6Šk꜄ú7ºVØ (@[µ‡IŒ K©ê"ß…ðåJC›[V!`„ú–#­YøAxr%ü™ÝØêVøIÓKÊ'Ãùe*j Càw„ ¸Ùx.¶Êü$ÔD0ŒvírmzŽ;ŧ\ß#sî µ‹Ü‚5¼Í<‡ýÎÆJuÎ𴃘GÈwˆ5ÑÙ®,êxã½ÆÕ»pÉ6o2Dl“Ä)2±2å8Ü×>¬"欢âöÅÔæE>¥4ÚK~à ì›x½ŪêtU)®ÆÄ¢È-Чá!QAua¾’0QÞ¤oq%ìÜÚ@‚Ø ¢§E£f¶cÑwã]ƒeT•‚Ê3Ç*­‘Ö‚øf/¯Í’x£/Ë`ôæþ„‡Ø¯¦<&g©âÀµ9ZïÁG»Ëí[*>Â\^Ü^`­…-ƒ²p¬gk ž°>4TÌ ëî•‚æFï‰Ò$*g¾jâ°F¨£e"+té›|`ÞA{™®q÷ b%Lg¡m ])VF×qT^3§¬ ZLÜa£b3kmq‰¯W¯ûÇËǨçbO ?üO&a v¬¸z"'y;Á * ¬BØ2œêv¯s¶„ŸÒé—öÖqýaæìõ{„a0¡x®.Â>3Oå¢ÄÎ[ÄxE¦B-þFŽ2˜wò0Ñù¼SDcÅ_³S ¬ ­år‹V‘‰\ƒ}ø”“at–tË„®`ÄMJ$‹‹u$ß ›ú÷¹QsÜðë­ÊëüH¶O A.÷)ů!A¥Æð;Õ/:÷Ì7 ïÊR•ƒ+jË À‚Ë´ 0¼wœ œã¤5r:‘t‚+ÆNY¯%jON]³žYÀNß%yÏ>[œš—8Îm.{¢°5‰ ‹‰–lpK'Û9¾~"²•Ñ9ŠY+ܨU²9¶›ojjú41L³þ–o¬š¬[ÛÙ½q„•2 ä€N ¼ª(ɯ“rïSR@Çl §:ŒÊ_¡ßòü(/ÝšNqbçÜ [!UÂR•÷vû6»­Y­¡b)8ïói ÑXt¢tÛÒ`KÑmÔ"kg„lX,…ïϤWß’&ˆ{Ã19~äZ’(ÌxÒç½Ìeq –Íj¸²YñrJ-Ï4êRžH;"ßê&åàK}Ê€É!›Ì˜¹;:›—<¸ To­ï+öÓFØ“§ý,w`¯*2üL^;'ì8ªh•»Ó®²„›*8|î*¢0™æïtÎûsRšð£5=ž [ØTŽRi@ùѾ’XPü]„?ìëPÖxN£è³êo‡L uZ²ZD£ ÜØ‘ëXßGÛöJñÆŠçÊ{sáLP™g©tjÉ©½WP zý? Ç9_œWn=æ.{ü’íÀ¸òŒŸîcµ¹º†„TÉ¢Ñã}kÉÒs3fÑ£áëé|Îü®Ä¡Ü°ƒ¨±ªjT²üÀ²–vî4ÛêhZ›–òèÞ 9D•…„\ æß+eþ+Þ°Y%& 7tf Ör}ìØ|2Òï!"nVJ¨2³Ù ï2~ÔX,-b'@J ë¢u?÷æ|‚Žu?ÅS/'A}9h}Wó˜~g|­¿òÜt5S±Ð5Æ´YÕz>ž~ÉºŽ¤®VÂUãlXšÈ!1ì4…êìN–}p#¬ÁI p½* @ßÊ‚®CcUjŒÆ>£õWQR'Í@b;3¨ jVË„ö/Ëúh«çÐÜ7.¬›æAëëžßbäÿî‡àÁƒÅýê§KâM`˜ÍWˇžýJ\ñ•³Ô¯6“ ‚dôš^Þæí¾Ñb¡o–Üä¢rIs8Ò±:/ù­+/?µÒü¤Ò[Ï1Ñ'=”9XœŒGÆ4O}Ÿ”»ïe®w=Ê=òÖÑïÂ.{`Ð2ÌcýŽ€^¬Á9«B§€BÌ&óËåìwwɤGY³–Íëü/ˆèÎM0»|º².(€A°àE¤URnš>ÎÅ­»rÛù1¨õg iÃ. Œ8.*ÉÖT©c&rèz”F%ÞJôu¹zCÁ©ä‘€¢¾\²JÔ¶=HLQÎtvOøšx(Ã8>´|%èÑ9Çw¤rQ ×=×­úL"Yq¨Õæ§¡.ÏÈÅ›!Ši 4#°5ÆkçhLàÖ°Ji¾ØŸ›ó'+9[п¸ñKˆ°Y„'L©˜kA·jÛJ.J&þÚ¬žŸƒ"*.è 7úZ‚F®{Þ7ádGÉèÓZ¿[¸gj/‡¶Õ8(ÝY¨PÕXh±ü4˜NÚ•Ž¨CrsŽw÷ƒÇ¶iìãµÖu•ø `Nþ#›#Ô+ðüj,ãX5ËMq¬ƒ¦j¯ôæ¡´Qâš~ýáîÏâ5PïÈ%Ht€•«Yêû -¥<ôW©!¯™åÙÛSmÓÖí:8´áçyÂæžÐáÃé™ËÛ·rýµC§*eV:uÖ0 k]<[ ;ý¡³ž7‘6TþQ¬ÞÉf:Êp Ê@Oäˆ aeIÿ[M(«¬Æ_lTXÚ·Y«ƒù-Ðlcì ù²_ÉÁlQÝi[Š)eY±8}Û¼yu¿ï]™jì@ ôa·…È%L²‘¾EùδùÉÖ/œä[8—ãë^¶À¦ú#¬uQ(¡ùÒ•VMN`p µO»Ó)e½Q,¸=*ŒùÓ ϵö'¢„R5 ê>|Ïï -­¶»‚å´=?ò kEÜÇqU‘ïV”-y1Ù}Í"<NþÉ´ìk{˜=+T½ñrÇ ³èDêÂ×^éZ¡^Qd†fÍßZî¥hmõ~åv D2øÆœXö¾C?8ZC4l|=ÌH‹Æµú.⺃6úG.âî¾&ª•ž$ÁÜ@„I¸j!1””Ÿ×R/µi3ª¬½Ó6¦¨¡ ´LÌ ÍΧîXó|TP]mÓÛS‰\BI9ùš=,Òúˆ¬ Sœ! -M£³lí+õÓ;¯#‰´Þu-I'¾‰P=7{ïÔ‘°åi'Ñq̾.]ˆÞ÷èÍE“µUÊK¬’d]¸%°¸ÚÆ›Àmþ_Õš“ƒL2BË(ùã£Õ¦åyÿhX-Ûµ‰•vV§k8.eÝ«Ëïu—Ò]šMIžn¡€’Úd'cĆºÂÄ1ÆÑ<#sl6d¾=¶õZ/AâJª7\"ýîºßlâI œ³ƒ¬gã¡i›DªRîeg7;Í‹7¬Ѫ¤h¤©jÛ7Ût5RŒà?®l½w ò8R7‰³Œ½ÄŸ/NÈ)Í­ ¨Ä£â«¨‚š›bhNÖÿÃâ¼–gŸîrÑZA9 ï0y·È_Wé\ÑP¸×ž–¶䫤¬S -Û>Çr‡­Ù%ºŒ|RsNY[›²ïž{öF åìDx@(x¤IÍå@Ã¥´þ“f´µÏzkæ»t„,@°yXTïgeØÄî6Í•;Z,êMœ*Ó¯ ºÊpZÄN/•Ò^lO9•„I™…RÔ%‹"vêï=w{èìþóF°u1ê]=‹Œ0 ºÖ“'"•ÏAU§xç0a;1<Þ¨ÃOÇŠ2-J™Ô-ïà‘âè ’nb•š”®Ö1¨Ô?i?Šø VÞ]Èaø¤Îü‚Z•Q0'$!|$²Ò3ŠS¾œ\ :ÃàL×þrs3e"Œ}"5›ÃRï>ïãÛl§doö—›¥<êÄÅ/Äg3…²!Rf—˜æ5)Ϋv ö ¶™")ãÛ½Gñùµ&w±1r™ ÁnuÉoÈÛHèúeSÝ ®QS7­od½ãNˆ©>X³DÖM ¶+r`ز³DjŠê:bmVP_mŸã°,Ê9&b F£Éýš·£ íŽfj©:üóŽ5Ý!|úy©â³{Þà°šžÊ(íÄK,íS3J–bàp q"¡ví*;}Sâ/£Âk\êš\¼a–’/Ó¡ÃTï1Ñ·`>ÜÍü Äþ k°M<bn&ÁŸš~JÒÞà1„]Idmxé¯ ƒfÀ†® ©XÞ™Á#+шãÓYùWåæC ú@åÕýcqä¤Ç´Û$ŸøÈ㑟¼É-ÍÞûîVá¬5|nXÛ0r­U†g%ÞEP:ý¶\áÀ©Ó†ó¹{´°ÃxükQy}un­ž|Éßm¨—•ÉÝŒ>™˜É¢_ PdfuÀÆ­¼¤YÃû x§äPá(õ8EÇ‘N/ƒP—ÝkjžÚ9t¯ó8º—Œ"ÑÏuwSfÀ)a÷^”×+V¨‰N¥—Í›œ&CC3-üÕÓnî´ê ¶º©‹ b‚²t-w‚‡çÕ¥âR™æ¦ôãú2›© QIC]Ê#Ò8¯úå_Óñ7|ÂwœY ³<,û/U‚¢û¯MäûïŸ<ûÏ·ªq^q9ÆQtÃ]ô)–õeñ=÷„®qUöDo¯ú°(°ýF±ß×aöŒšÑ‚ôÖ¬tÏгú„ÛÄ[ŠK|ü6[I±[µd ¶ÛT΢ö3°t«“Í•?¾t v9²„©¨9ä¢,rTÌd1ƒo…îÎfwÀ{uÀ,Ͳ÷OLV?ˆ¿°ìÜ3q¾ÑmŒÑÒv´v`T6Q*$ÇÕeŒß a÷(”Ÿ³Ï }W%–½Žæræ½tØf+<ʆ€KÝ}éä©<¡øìn kÜŵ…7 Ÿ.Çõÿ¿ÕÖÛÖìÆ¦­Ø]G)O Ï3£=3–)öþWÉ iòš—ñöˆÎqZÔM=VCø„EÒØ³Á€Êy‹ñÑlÅ+" 7Tªd"4‚ÆÖØÏ)„Îý ì 0záÔôBL-OWŽ€òvÀ´W¸±8“ú­? ˜½õÀSÿ/Êñ焪®Òl¹˜™b= o`²Äq §ˆ‰Ü£D×—£WP0 6…çGa~Oø²õ½œ ÜÔ#²„ÛÆ?¿+`é|á¨;T‡åsXq«,m²©Û’ÈÓËl 1"À“$suB=­Îyò_Ùøf©Îèjõþ¨èØÒßSRW ‡E\~Š›P´8ã¦TSd9Çàj ›£W_ÀÔYà]ÝeÉÔ†÷ ÞUyKtÜ'„+Ê<î Ö~yؾéŸ%¡ˆ7\MùÿÑt[0Àƒ˜6$w8á$ ½¿Â>+„ö&zM<Ñ/Á¯*ZF`úa »^±.<¹»©Sú­Ö)úØÿ JS”©Géô•°P\Ìq_ƒBûÃr²gEÏÖÒˆ^‚YðÓè„ :Šþ Ù,ÕéìyÀûÏrÕ§1Èãyà‚Y0±2 ûwÎí(æô2t‚Æ^îa=Hªœ.ƒºr%àÚ£¬^¼…ƒ­Îy§’bÖ^5jmʾ }”Zžª¥¸ Ã{ •¨ðé’íçEÃt]VO{phé…mÍ*?P…Ì·—»Ð¦L¹§¦ú-4Óm6©¿þú3Ù¶<‰æ)Ê‹ó.2ÍìÃßĹ’´]‹Û™h¸*/1zZ‡¹¤bÜNqó¥œïÊŒxók½Ê$R=ý@~L”PpÒŽN»yk÷ïàaÆTâ›xärÁßgï–œÛ/2•!vO-eŠÖÿQ‹A§‚œ\³á¯>p³2ᬥ>‹¹}¼•xÌ–7"¿ í“wâ0òq虌’ÄA€†mx}çq`òßé Õç`®?©–«Üþ¹´)ƒÒ»VÄ’)më,¶^2Úá²Å™,š WÆ“¾4Lüa®ÙáÃìrñÎ/ 4ë¼ñA½ÂtÛÒø+’ãAÅÙ„Ä/½·i™ˆòfÍ»„8«–îA€§‚]lŽÏÑi£–„Èú6ÛÑN  ï‹´~Í%#&ôÒÖM¸žÿBhòBæ:ä ÷/Ò[Ðé)\Ù=þ¤²X6ð\0i¥!{°âóV`Ûöª‰Rt€ÑKJIò›Æo³o/ÁQEÌ4â4¿‚ððé™j:”ž°Óÿ÷/úPm£»š$7#s;v–Lq0èàà0 ž3ݘî[’ùªÌZљ٫ZDz¶ð_²&ªöäÁu°®àUº#¨¹RX™ &¡•øü™a9ˆAIÓà½sfb©{Fšýg2ÒÊNd#5'{ÓDô~Ñ/ƒEä:ßÑÛŸDéj"Q$<4ôáÇFõSÍÏwäàr¯¨(m`uqf¡T–F6Щûm÷™ÂBѸîH7tPœzfTDnÂ*;âÓºÑ³Ž Ø“ÖÅ)Í]I¼à£Ì›#º}Øá±5·ž»îù bÃ/ìy9ŠBt&9(Y “¢aƒ'PQ]Þú&…‰æ—à™`0ûí¬‹$>¢ò/o’L¼Vá]T!7¨u†„k‚JB) ]ÑøIœæ(B²0£$_/b¸Šû#tî ¼ÑÚ,•cû¢Ÿ" ÚÎúœ1÷øAœO‚UlÇÍ<”&ã®èFÔ±ÙņiXDÓNv$áÃÁ|—+ãÉGÝ®Èâ–3D†í¦ÎQnü˜ŸÉ‡1¶U”¹®9¨x𨸂™ÿ‰±S±*ªwo_EOØ•h“ǸïPj;•„­lôXhªâ8·dÝÀt,fš‡·Ë½‘>Ì÷ÚS”NZåê2‚Æ3SjºŒcûÐvø˜f8Mpª@É,·µÚè`ÀTV|ˆÕÇ춉Àá¬õÖrÂð˜ùëm>±æé_’ (÷´ou)÷º(që1‡_0­«U À-T˜S¨Ç¡ÔÿŒ Û*ítÞÚO©Þ eÏGV?¥nI´@vÐÓÚH™z›/¬³S>Ýï*‡ZÖ ö«.{ÿјaw¿?ƒ*Ð6ìʈ“Î&äçØæVƒ+8µ#@ByJŒ¦¢ÆÐMuòsI#ŠŸ|P`„°´ ¬I2•­²O;•ùÜPL·ÙNø+ÏßX[Eûî1¸Áã{‚weÀösŽèz‡2¡`[Py$Ï÷÷õV3݃03z"´€†µ§Þ2ŒgП·pP*¨§eéËkSÿ“¹¹îgÖGŸ“ôœvø¨Ü0>—ÑÀdi54ŒFŠQëb0£‰æbn¡t‘çŸëƒWÀNâŽp}9Ý3©ëcÞœ…‹ŸÒî®WA²é-x[žêçÎ"­ ó;*vÝG Q1~Þ×:–%€îµ²Èˆ¨ìÕìÿÆ„`§YõPó×Û&èMcØ•Æ æÓí2§Iïªç»î6k%ÿJéb®Àn!=`¾½;Ò˜…wÑ4«U®ÍLGÎØ_î3|¤±±†((#H¹c} y'šÏÙªu„Cõ2©ª‰ Bдï¸n7á#d׉" ÔPíg$t† ÎÆ@Y.ãä}W\³Î·s³\Q|ÓÁþñÀ S+;ºÉÐB*©b,t}[Tt9ñã†ÚâJ*ZC[·&¥6šÒ·v ÍJ8~'Ò)…Ì„ /Enz8Æ6œÈÒðØ ÂN@ÍíúE¤\R¬Ü2¢PöGX—èc ²ü¡Åš.d Ü*°<>ôõw´ 4ÎâÜ…6ÙÈEÎYÝ›L¦^[ e­Þ×Íxɰâéy[] xO¿X„…[þµƒsµà‡YÌ™„mŽKý?úâ ý%X¾ 6îøqMþ®æô€÷ëpÕëÉHg$ì6×lµRUJÆBÝü9a=ù?;£®ŒëWR¼8† y‰u³ò`°ïÁBÔ+,*?‡G°Ñ½eC­ÇLaPç·gvh”+˜ó‚'Þ1igÀKÖO »n»¸„ÊV²×”²wÒd¹#ù¢vy—pJIÊø)8SúÜh“È¥†hfC¢šÀâmSö¦yäé!‹ä’ÛÝoM°³üÁÿþo<¨}¨pó)ÙGŒ@ÅÓ›Š]›vbŶLq€A]2b]ØLŠ]Åú V•uU÷'°ØÙ‡\¯žÚÓa"BŒÐÒóó³ˆw;ždŠ%eÞqôPTrnŸsew[ͼ[¨îZ´Ðd´×ÔcØ&‡{pÛ¢© K ÙQ£4€ÐædJç9ÁÞŒ¼Iï I‹;?®´øPú¶Ú¸â«lqVÚ«ù" õY€Å*—%y&Å$Ñ™#s3ËsVä m|¸H4Öi ˆÓéøÈŠ%ëa~ÃmW»Ï]W>B ²ýáå¡ÏxíhYGÛìB˜²£# uà?Ú6ô> ªœ[È«VlW†}n$J´äÅöy•¶sºBZl² <$¶=Ù³4¿¥LM1bAÊŇ{¶ó÷qŠSÒ’|¢‘¯Ã÷Ÿ ¿«Õ^ ‹ã…¶©k`Àì‘$=×Äk„µ:m8º=Kó%—l9Ý/¢²ê„l4€¬d‰FDì‹y°‡oA*„…{N–÷ÖŒYµ¯Ð×Ò¡y?Ý´Ïͦº¦¾ŒiÕ1~²%4££7 üZ7NåM| …;ihüú¯›-àláþP1õ},#”FÒà+ÒÙ»ºÎ?[b«ÁØnòÝx5@>eš0Š=¨s$nØ­òWݤpÐ!Û£/(CïÂI87µ2ÅG>hN"ñÉKbË|êûö¾ønaþ x¢i g‡Á’ÖíÇáÅý ÏÛ‚È"þPÉs³5[Þ§J¦ÑGж!+á.qëš*µ­ú†³ÁË6˜µ2È¥VU%h Ä<æ¦!휦xp*DlæØßø0€¼Gy9œ´vIÍ_úÞØYp½tܾûÝ,1«KJH(R!è’ÂÞÐI’€1á˜+ç©ÝŠ)IÍ9ÉI`k¸}²ßxǤ©&Uÿ†Ä[†¬ç…eˆjµóc‘ïTh|ÍO6ÊUñ7c~oTåÖËâS^™Pö8õâÊa?bK#žæÞ¡á±JY¥rj¬ä]~׽Ͷ?µB’Äè0[ǶßN9=¤–0uܤfÕðP°©Èî236ÅAU]Os<ïÌK¼£ûnŽ›¿R·Ë¬»…ÐÁêù±ÈjdzgÔü[@fzÒÄÛϹF’`Š\ÿŦslÝ-”ÿsR0‚+Œ æctCJ|³WhR¢ƒœƒˆ¹¡ß „Þìg0Öȶ`<±–3mTÚ‰ú·ÑО ÂÿÐá‰Ñ£š¦X© û%z$û),l]&Wè¤t.zIH8Õ<Ø;‘«,þ•ËA¡5#Ô|1™;ÄN%ÄÑøÁ(Od|G´X,Aò{þK¢GÃ*Ùâ–!7“8ÇEköH4wÞó’û}gT¢_“¦.Êßà Âr€{àÖ™ [%fvá{Q}Uz[Ø› ’ZHFÆIûÕ4@®æ© {uîÙ¯¢ÁaÛÓ½ôéškJüYb¿ŠP¢}h˜¥bß5òLø …§^ t`LÝw¿ÉœÄx¼’Å~†¥²ÍRhö mÔ/7±0ñ1¸­µŸØ·þ1›Ä•Ú A[^ŸÍ\8ýa¥Ä¦A’„ܤŽÙ¯Za0úun—ë²Ã¨¿}ØØ·ÈÞ>¥²\ÄÿVrQ·Â&=˜À3 g@zp.A”v÷ª”w‰"ijª¿„>o"klîÚO¸¾ëp“•Ø?e³ ^Þx™c=ýQìË™Y ~¯4o°9pHOÿû.©‹u0[ç–Tê3Q%›Ð–ƒä“í¡À1Dé½>=³«Ø´Ó&$ÂÖK2Ó$UB²o' >™GÀiO‹°PZÆåþ`· (%ÿ”’¼0íxCÍ™  ¤ Sº·ùÖå,tÇ>XP‹¦ðªv[0²ó®•0¿c˜k*íi8™ >s‘¹+Aá {{ô¼³ÚäÝ ]™lb»—lq½T÷27¹ÊDHS‰Æ3€¡òüúè–ðŸ¥ðúŒ]¿ø~ k$«lôw¾õ KLD¥ùŸglA²¦Ë÷íPG…ÆŠy{tw  RÆd«÷ÝXñ"ƒ]©£­Ä¾…÷á™2h®Ë@÷»9W×½ $|//·Mˆ!6RX$lοáð‰7f$F.*6”«N€ãÿ0\¸wj¡Ð3C˜LƉs™fà ]Ë©в\©$W'w2Ô«»ý~ñ‡å«O08,•+amuð{Ù®+ 5~·Üá>ĆQß=<‚‡ü,8uµIÉHœ?€ÁWÜs³¹nÚBj2Çà4~¥½%—ia›•d ûU†f¤jlôñZ^)ê¾.uðÅkËö º4N)w=¬•¡±c&˜vy€;¿ì»=mˆÿq&ÙùÈxÛ¼ÓP¿‡)™2Ϥ žíIÿ¬%©Ê’¸hß!Ÿáã,ŠüÔ,+*‹ïŒÖèòƒI£a\¢à«nmá¢ê×íÓ‰@3áÏH8Û`Bޢȸ³úØPr;ÐPÏ.˜àø^9,šHTAƒ‘9blÈdžŒ®žáBÄBýèú! g«2å¦ûf’nÀ[Þµ–økGSBMÚ*ku¡Ó‚MßG.VûH)d‹RUî‹[Y{;íÕ“ðÍbëÂß_9îEÂ>ÎTúË’¥“œÊ:à*ç‰ýš“ 7ž¯rWÕ·Àøcô¼cìHhPèí7¤kgI”Ñ`!I/½‘£øŸ,°6mœK)WÖý0ØCð¾Åî¿Æ‡, Á9²Ð ö3î>Wè7BWŠQ´ZéÛѲÛn‘Ë<6‡¥.N÷†#«Rl™‰»­Ư>«ž3ÊDâïgjÝÍò¿ÛÃ*–34)È]WÞa#ý¶Ï\“´¿¹·Œñõq梩cŒ-!ý’ÏðôàX´n_‡½á/½z Ç„Üá5ïUŽ8)àÚµÕÎâ-T hÉÒ·ò¬ÿ÷·;¬DŠ8k/.]y\L\k/›¶KóÙ¹YÓXKûOSì¸E‹ÌyÆ´þKv æP™GCéOZíÜdÍR•‡¸%$ddë¬Ff³hA–‹3Õµ¥GQ¦®gÔhÖª£¯4]ƒ#Ø]Þ×?µŽYéiÕo»)!|Öõ3ÀP$HBJñ·²¤lÆ‚m²Ï‰]{NdD`g WýÂ=/F} ½áçy4èq hàêz{"÷V~§ôçþH ­$ê‚vþ@K¾p¹„ÜXqOì>'ÐÙ¼º$:²ÁËÐ×í'S"‘Иó)Ùý³úoíÕ®ÚCtÝ„ÆnÞ\®‚ëÌI4[×>™G.´ŒN€ñÑœó)ã#®œ,Šj‡Ëz“û^ì_0‹cýø(1½´ÆØzVâxïâ’Cf½6£=”¦¢X<CÛÀ¨csê3wO_ì~Úfœ]öᮬPݳ Ù|Ü>íC­á[À&@a¿²ÍV*02J-§¢©|¥J0aÞQå*&}»³ãô°¼šQ¦Ò°³¸†¯à ©'Û1Є'Û³==×Ñca/ŒdPÄ+PÞ5`!ýšГÌ`ÃÛÜ4W¡ó!âöù0¸½Uš‡z¦ù˜S±ê£rí¿§ˆ˜´'i‘´º6^#=j¦´‘é¶ñ3;’¼«,µ—Š!4¦À¿¡&mß<èïäŽW÷þŽ×;ȵkš3FLçùô8çü¸)‰²¥¸¹á•$gÒ§0@™-W¹ð,b[}ÅN¶b&Fíù.‚S$áY£E‰í­Ñ{-¦ÁĽ~º OI©bp E 1<»“OU÷²ÜŒÃ†„(ÕEk Ë©Ì:'ë“nú¨‡ö4Jf‚Ó2V¦í¸¢N>X|îDµwf¿4¦â•.–"˜ïÄþ›õ¡ÿ"¦¥O¶Êä;\Y”€ý5ú\–¦­¥Ç©éÎñ„d6JHüPÅ@~äÑøç5›Iku^ˆ!I81q—ÇÊkÀö^ó!/C^7èK2ÀTÆke#¹ÕÀ-‰u1ˆ !6›˜t+µÍÁS囫‘å¼bE–çÿI8ÅÇ gUÚí.b‡L%Ò0_8 8+ $ “.c7,ëŠÏð:“v¤EÜ}úœ¡“ JGÕˆ±ùk켃“Ç~d§Á5uP>ËjíÌýA  3Þ”×{.Ó’²JoìE 5g¥c= 6°$½x7˜Œkþn“EÝþëˆyJB$f¾†ý4j¹Ó¼hÖWÑçȼ‰LÆ›)øÁٌؖ³½öë@Çî:h%>]sÍp$˜ò$&>ÉþÏ7;ž0q×P{Rž{]ë¾+&ÄN=äPS„  ùL^Œ¢Ç<Ô¨÷Ƚ çîë–,®ubôÙíy–äp)ÔkXð9!˜!fx4j¾wˆüëÚ#´o£…ÇÏùBžïbQ%«‚®9ì= œC¾Ä~î $Ë(T˜ïZß¡ã&š7Sô«‰p&“’QÝnålœá0|%PN %ªn›ûJ¡*¶9Š6n\Ð0xÿZ`¿î‚/Ï’,£Œ?ÆÀÂׂó4hð~¤@ƒà2&÷^<ùÀ®š/þ+~ZH¶ÃüèšÓh#™án­"”Z-Güðý‹{äïù" g –.ÉÒªí¥Ð4Ī¡deâË×$ Å$B ¤n×i3âjŠÞIÛOÙ·ÇN8I\¹èÍÛÚm5ËŽtë›:lþ7J¨^vS2IäþF^"»Ÿ@dnê +S"vQ§G`-r·¬Çí–8†¥ø5×$†gó)Ká„I!1o]\!_˜bÈdòI³¨±ði»R¼ªÉ FsVC=ŒÎ DáÍéK)+å½V‰¾ÐœMe“c\ÙxªÓÂB,ÏËÝdR¤ü>7ô9:,<ô<÷»®¹#eêòÝ´{ ¦fÓr%ʦ“U‹iÓjÿÛÌù.Q6…STåËlÏÑ4Jñº¤¦ƒšºÈÕ^ ö¿Âz=òBÂQšUÖˆ`ƒ`v©ÖឣÎ{ÅN3¦ »Å®<ÝK˜\M.q{$çb&䪅¿•aŒšV®z†”ÐEŸÃÊj¼ÄŸ]ßçPxªÿeDÓ”]ÏA•šMÞ%¦?9’Œ•âF-S¿ ƒ}Áš ^-¡–”F1·4Ñ$-4$<Ó{æ‰ÙÁO¹÷töâΧo³v›‡h¥sFÄ"ž%zù ÜÁEÐ…TìZ1Îqܶ3“_K¯¶z­lç.O‰õu™ÄòЊÉgIÑ$^@àðñw±îï4t€×ê•‹˜­Ãк¼ÖpsàB³}“Röïj¶p\éy 1ÁU2ׇ4„Íšý˜ð¼Òw%°ÿàá`§Êï"ŸÐâįo­„žaçÌ~Ì5Ô0+V™Ù4©€Í/@Yd0¢v¥ãw-*ÐÀäxú±ÛˆÔߨe£Ý4ïà;ÑÿåÞ.$T¾ßg[ô%Œ=º–}íóÚ8ÔF:R+>aû.å± ¡ÐOÕ¨ú,>[³°éÛ ]mV©Îæ•å«$ç®®É&o­Ð²bEy65ü"ÐÝ–ÎpZãQœä‚@œ ²}¨‘,>Óâȸ»¹;µÐÅ"ha›‡;'ÄhäÅ,ãÝP‰”ŇN1 ( °*¬ïÝXnµüȤÞç$mÑAÄ‘%0Œ¢UeýžµÆvëâôÙ¿LZð">§ûJÛûJ>ë…ÏòÅ•l=vt¤fê¥TG—üTu«yük‚NÑüx*FA¤Ï|×ïùNúXÃôÅs*ô`Ò/»RìÜ*ÈÐpºr3( 9E¬$mó¬¨wšéηE×í©ŸE—ž˜Qu†tÞJj±'_jh¤ÛÊ4kŽëj§]ív«Dxn‹ó[æŸö;f­ˆºùº¿wãf\õ‘\†HòŽ)kãØðÄêóxƒs Ú?1 ùÍFÙƒ;i›½›w‰Jü¯”c,«[ç3]ézz=w‚}¢—ç7§Êü6H½RÂù¨ƒóíuñR’gåø5ú"ñwÆ5椞ÀÁÏxº+hÀ£ž\+¶°Ýwƿψõþx67¬È{£”váyHÔ-4vëùs*î³ÇÚÆÍÔV³v1‡ ¶Ì™‘óD¹jŠTB¸ñìœë®»&Õï9ÜE_ì“vWGôGõD§+o!¾ŸC$1”4ƒ“9‰Îì ¬‹˜ñ©äÜÇ»5Ïò3î'ƬRŽC³ÃŠh÷á=¾ó´%—¹AÜ“W®°×lÝx{î}]Žãé?¬ò¾£å_kR‹û– ÷ˆ¤dþóëg(¶hQ‘*îØ%ª¨£Í¶È˜{utµß##@Ī®ø:„¥ÔÈ€U œÄ•ëý*xI5ò%‹¶s)3{ËÛOÏÉ­«@ì¯÷K ‡T2ª˜Ê3çÕôÄÊHÌ“'RÕ|Ê·‘,Ÿäs2Óš;8òä®6’vQ3™‘£¨YûhqÙ5"ÿ Ê z2„½Ì|¿³žq§DA7?º’¥à}8¨* Pà„¨+ù‡p‘™Ñc ;Yå^2Ç•\høÿ*·ŠQÿŸ¼f^Kz"¸Ê‹eæU,L„ ¥Öçl1‘~CЂ¸b÷\Ãr â5j¶Ö ÁL¨Ô‚ÙŸÝìÓò¢¤G;ˆ|æÍi„8ÐO¢*^2:×ZÀ¢Ò(>c «Žr–úü‰ bL´Åêý¾›ù³¤«Äz@ŠðvÂ,Ê·S+ÙÐÔ6ߟ;d[;ãiûÜËÁ-X|˜Épñgòœ)—+’—OŠä%ÌL– ð²ò/S~$ ¶l§dÓÕ¦]„KZ",e0úÍ![Š“¶1^ˆ–qÞ]Qs(sëVtÞÚ šÛ@9=¯ F¥°ÜÃSï6o¿`LÈUZF’ºDù{ã» ÏX“˜ú²`Ø òQ"ÂqHå£ÙèO[ÌÝç8¨£áQ–ê°DSŠ)ñ¢,R™…"¤-«4lv¦óêiØ\¨on¹øÏ¤àçYÎw3ù¥,Á Y_Säy·ËžŒÄCMÈ<@вzn¬ ‹á$JÁ,y§¸÷Hë|àÃTÿªb}×ûáñ1+µÛ %œ6'#Éòëc :n’&²É0HïúžRëãÑñZ7ÖÊgF‘á¬lX<õ6‰·XÅÏ‚U‚] ¸¥Þ˜Úð øZð‘ðÃOTÆ-¦E<¨¥ò£x¯7Ù }q°²µ¨~ïÊl½» Ÿœì—ÙŒòäú!µj"¦±°ÝyfClt3"Ýîi†q˜;JYÛÞÄ ë·ºèXä^v r‰øÖAXOC±;„Ó9® ¼ª1bÃU“a<½ÓÂ-¤®í„Ô7|œŽ®ªhB+{/Ãùp_þ²+ï°ý‚°ÇŸç$ ÚP‹Å(—) '>*+Ïxšj¾:\K-âÔýÖø sèd-"{ñ±ù| U*Ú±—ŒkÓ`暦˜WøèႈTm½ÐÔ#Õ6†óüGqvf{ãô‰ü8,{}ýþŸf¤x*‘ÿÑNÅx™få‘&`èvîöSÑÝšüü›÷1‰á8þÂaR?cÝ#ó§Ý«þ0µüJ%®úûÑ”ŽSR„V2:ð‚„êä¬Îóz@Î;S´uJçH×ù¬*ùv}Ød¦Ï`¤5“„D©án¢m¬5ó£ôBWã%xQQT‹’:—š&¤½B&¾ {Ù¾Lœ¹’-.F&ÿÖ ôw\?XûÓVGà)š ´)©5èž4À”6 þOŠéL¬Èê…™–ñÿÖêAB¨ñÌëò<¡PCʵƦŠz©_nä6Ä:'•ºy;Yžpýž§~þQH7.®‹dc·½)Qš [·+ÁF—Tx³Hoš¿!˜púæXfê´ BÑ)ÿÕ¿u–öþÛË,¦®§c_ºKÃï¹dßm"_ç—Œ–Àênôs¢× 9,ÔØqß'›”~Š¢’Ý­ý íSVíüÈÝëÐ&&ÎÆ÷¡€EgÈ$Ž!“ÉÆ®™ UÌSö}Æ/`¥Ææ;õ—ñPbÊ5½o®8&­ 9‰ôù™ƒ\‘ëÍYŒïSDÿ8úñ§GC3K‰Å HÐð7Àz^g7<5{G÷¾U'È£Þ·ÀmñÓâAh ”²b×$Áëj[û@­AêEëcŸªlïU ¿šu -vkô­+á^ü‚1þ8hnn~1ëÒXO©j³PáÒИ;vz#X‡Ø¥¹‘Bò'ädÀŠ=~ qàÐÏF;3ßTì ·(n¹+jÕ+µÜH~‹‚¤¶çBU¯yTQîõ"2Þœ}3"s…‡g' X_‡X‚!jù #Ú>¢8fzdYœúØ_ÜÓå„C]œ3¶ôd çG>»ì¸yýކÞemBcùݹvÒÇOØ1“_Ù‡Öo›~ï<´š ÒÅ3B»¡Jz£óþxB ºß¯Ã…UwÿϺãa¡o }€§-ù¤$mY"Ï$ GûÉ£Šàì!ø¤Ä0õƒ”w õty \ë…aWÞ&D¾]VÎæøº¡†N²F2ÜîÜkW îÐb`éÀ/æÍmCü×rGí²l« ÙҋúØOz?ÔÿÎêt\•p8ÓŒ“‡ioJþ_¤ª)W—uôU(0¿„£-‡ƒ]Ã?MòE£pKíyè»g¿>=ÄùÐ’6:Õ¡w§¸nê!ÂÓC½È“#f¯Gðf`ß„õ£b]¾)©½R¤²9²P÷C>.ÒÙ<þ:?LhŒ,s¢ÇKºòJ¿’Fµh‚Sƒ0ûÛŸòxBjà†!_u'6ÿ¯äè .Ótf~s¸bYmö¿o¥²áÔ£‡ÓÂõÒÁ'ìÉ!o5&pߊPªøõ2°m“ÙŸmPeÞyWAÈ’Í¡ µ±J­œLÁÂ©è› ™ð|”ðÄÑúÌîrº”ó•1¾UZÓÙ±^²½0íaë'ÕYq]çJ®õé 4DË]TRfͺ…«ÐO?nÒ—MëqÜL&ž¶ø`‚¬N„£íÉsP¥åYò:ê¯Õ·ODjPûmQW΀ùÁz¢¬“¯47ZÊQ‘0¤Ôí:ÅcÞ_öSt“è…j+Ç”¶Hžƒž)“¸ÇŒùkؼŒш±µÁ»lJN/0_ûòlÉLr¨ñ޾Æe'®Ze48‹»ñÖgRõÚâÅÖ¾šÐ¶Cá™D3<÷è ¯Œrs_¥.‘hÙ³”aNs„Éÿ¼ght¾æø1$}}âéšžN†1Ô÷й@ú•Su·cˆ@{Ë«ˆóOç0D óÿWðã‹:b×é>¾ó ÌÀÒ’y›oòÓnBܳÝH§¼$T¡Œßª„Óý$Œ?:”ÈŒÿÍ"%|Xiè›EWÓ$ž8!ë²:ÂùÃãÙK5.ƒkËzkœkœ~¼¹q%3TªîºqûÃHž&$ÈòȸVºFÅ/S¤³…B$å©P1ÝAë+³ªÂ¸©t¿vǺ™;6o:Ìemï1Xù/\>àö7/j6XÉ-gŒxÕ.sþd§;'¯™w›KcøÙ ¨Øì¢`PÏd!®¶?à€(w :0·/bºg¬€O‘gÚܧvß·µîsËóV¡+Ä0üè¾Û¸²óòe*=&ð{`E¾É°Ê[{u ©‹ѰËÕ „W|êØÑ{³ˆV²Mô¿ð¦øËîøtŸÉ“èL眯txV•£=læ-"úî(_M²ª˜&Ìd/ä&„*€ø*ºë´³aã |1• \{âÀÝäR­øA²P¸¿ÊHuvFNoÜn¾«1¯6@wl¹R—ˆß›E-Ù¾(ÓRTÊh‘T á*Kÿ:nZðtèæ­Î£\ÞÜ€ÊL?²+§ÝþB£Z˜²Žã™Ç ¢Mú²Ûà•켜·šên‹ø} N©å-u¾žþÁ#àb.ƒÈØ!vž®ï`ÛJݯñj¡Ó¦°gíª†¿_}/}Œ Ò¯O‰`Êî‚íeJÐûœa=Iìÿ¤õz£;ÊÂâO·†“R–…áŠXV¯^ĽÁ[åoÞ9ÇÕ¨v ¾šÅiÚý‹ùÍÆ¬X‡D¥£#øŸvçÞXÕRö‰»ª“•R¯{¾Þš²¨NHELèp,¬fq/"ô¨ÂͰQ‚I[Faªƒ À)êVétšûßü hyfÀð…ž]öM¹Á·2áu¾¿œÂN”š>¸!‹9OoÜÍThzüa*­šÃæ$–gLÀ3ÛGÎÚòcÊha1˜|¶^gÿÍßtïng„–®ìéñÉ<ýa*éae°·J@eÊÐp2S‰^"¥áÒú?´˜ I¹Ùüì¿3´ÛŒØ–€ãt°±Œ#3M´Uد‘"ç­iµ‡Ysi±¥øRyO ñehÿJ@S¡Šïÿ–q3å…Ów”JI9ƒOòŒ/±½XÛ¤ÿHÖWt%ă‡½‘{¤|ü ËA» 2˜º­vø!»½dP’æ;Êwrq™»d5‹R2`ïûÔ#x $-j<釨{=Þ§D·äÕÁ²)&8jY$»~·Ø0B['®¡!˜çì\ègï׈‰U½€­¥|¦}Ý£æŸ=XÖÀÈ‹D4FÜÚJšý‹Ù2‡ÙÁ L{„ZOÞhœM¼c•–a9MK<ø8ôhG1¥ ޝ=egú>2™Üªòðä4÷³¨ó’±ð /Z(øDFÓ Õc&³;GŠƒ×†Ñ¸@Éc.; hÔ@\ïh›®4ðeEaL°m©ù—šO,dòÁkn’n(Û™Y¡€JHQ"—Ù°§cÓj˜üÑ ”q²hÿ%7uø&WÄIW¢Ó?‚ѦˆÆ°~éìÔ΃¡~ -͹?Ø#Üí‰Ê¯ÎlZ/è zSKÙmfìAŠpÕ¤g†™AR¿½Þé$ÊÒ2Víɾ8þ4àÖI®8_¶¬æ¢s›)” á‘î?Öé˜k(•éî_÷‡ ‹:㥆mè_=EÆ E_>â¹xxÚïîkà Mˆ<ã]):ÎzÛ“,è/‘|í2ÎbeA®ãƒHþ]OTJ“BÚ#Æv¡¼¢üüj˜— ¬}dA²"Ÿ¨J¡‹Òf=•d p]®dÝÌŠTã;í¿\4¸a_ÊÉ`Lܯ®üàåâä ã)K£Á$$Šq_º@£Á4s‡ëx1rÒë>i1ŸÑfÿ¿6Áô§°\`0´öØ©\9W »ãÔއȪNÉÍE/÷A+˜%4Y/1ó‹÷GIÇLå‹%žÀ™Ûp1ýˆ2-&8L zñä ~m°‰‰ÒŒ tHù^)¸]þ:\íW/‰qÖŠ«„P ù«”'$OhHOüÊÍÕ"|ØÃ%0©È6xÀ½0‡u³] åYÞ¢Û¾ò¤sã_îíŸX_BlÅ2Ëp¢#ñ¶/M$OÞ1døm`ã¨]Þ€·ÈŒÃi¹{rͼ%æHbv ºìaË à >7‘|ìhÐ9ùL€ÎP=œ·ñ@§Sïçœ^¨¾³$¡+Úº:¿ÅäëžÈîöt«'º ƒ1š²¼dÆqÁÒ€‘àH…„n=!gg]5Ïè8:“p ³Çñ½!V7“߇ eæQ‘}’®cÓ†ƒ2Û×aï¾f` ¡DZº–êðj\,,o‹SäîLè,Ç2‚ª€1çÆá¹ˆ:CV9Ø /à³§ˆôÆ.@'"$!4V{Ýþ.{áV?ì~£åº÷*Ý6Ür,ÕOý¿+»+JF]jØŽFl Ň¥7ïÇÙ¯¡Ä2¾G:aΛX‰O~‚EkÖ‹•X·h9[¸Œñ@tÇ£=Ï |a'¬Ndá—¤~7 _"H¶=Š…¡Ñ*ó·ßŽZ íÐYDÜ_¨äInÙ“l_©>ÄHܬ ¾´ÝðÜ"5Gá.|°D®²¸/}aÊ,àr—*(Ð<Ì4ŠiâŽ2Šºù-åÉûÓ*×Ú)f´]¨[öî$óïUsŠ©¢Æï{`©pÑ,K=¦¥ÚFF—z]À&lµ:-Ô=HZ-à>±üB¥J€uÎvÕ£Õ~:ð97Ñé“Û»—õ?=íGA|™®Ó}ð«¸L™M’Å‚ §ÙâÑÇÒ®ŸkRæ¬¿Ô ¬ñ r¦›F0I( £æØîõcÆîÆ ·£»X5hîÖÝâýYM¨ß:¶i:„gk’âš$“ƒ~À/<'_šlvÊñ“‘öZH ]”Òà‹õÁù´»’Hô9dD×­£¯Þ"Ö 7³†æ…*Ç2 #k7é¾E)öBý¥pzEI9¿¥Ú]>m[§ç (mý•onáßCÕXM"È1ŠYÒ…·#Šó_Œ+ ¦f¯ ^³„Ò¹Öiæ¦6 Ó¹Âï„Aïâî·;$#¡Ußn†\ˆìðÂcÛœ-{òR@Í5"Ü&XNL_à›H¿wMOS¾þv†F*¹¥‡@tì´à ršž@’Œë‰”bqÁb´”€¾’2Zq®ß ß#Ä›%¨m1á€cyÆü«›ëPXXaÆõü—põQ‚£h–þt»áe>£šåütM,;Ãp#*;+=@Âu]Cp{Þb—ûíÐß~:¬-œÓ•¹1wªÝËq\ü°;­ÿ^Y¾nÊLâ ÀyÑr Ý_b(M¶WAU°;R]æ"Y–€™o¤OHV™©gˆ‚Ü»}E×öò›ù û¿²!#µk¿ŸHcÄWÙ¦œ}ed"ùÉL]YÑíÚÔ¥2†‚Àq^ãÆÐ¥ ¾hj!Z—îQí)g€x(c¡ .މs}ný$Wº&LS#qá4æ ~Ȳ%îzª[Ú?“ 0%cõ›(µñüø«…N<ýÑÚzþShG33‘ÕKD:ƒ™DR‡¢¤©´¾3JsÁÎÊÅ ¶íj¨ÈœDÏÝyFƒ¾,аÏ4ܸºÉ:¯R\Íà7bŠƒé±Ë~¢TÏœ¾é¢gÂIJ×»žgøeÆT¹›ht=Ô¼øñܘÑõÙ[mFU÷¸TiÕ>/—Š‘Ð“4ÖXk¤–ž…|¯©ÑïõÑà&®÷aF™—ƒDû8­²yê –Ëc«xȸ!&Í#TÅGþáW(Á@T°Í­o‡J“iNÆ~¶-suH° X²xAaÝìʰƒÜþíûnd—*i›€Ö’µLñ¨Dº C ¶ÿõ{Ç7¼¼ϲî»?Ü_­ˆ#~h`œþ¸>ì\®Ï¶ÝÆfî÷ŒÄ÷~SâÁíÑÝ"nñêLHx~æ…÷ÿ\Cëªí~(_¹¸bÚƒG4ñ[Ÿ£X{Å>P¹rEëÃð´P_“²-;H«Ú\|f¬,7¼ÙÆ\ÍÖ$¶hVÈ#c6«‚R¦g¦% e˜Üç©^é nC ×‹õu|1y·‚âÉ Ô¢¦°‘âéØ?ƒÀÇëÆHSFŽHP(O,ˆS@¶&1§§Úð|8R †aݼDĵûnzo QJcâmƒøR.©£g(š{ûÉ3ºü…A‡þœ3¿¨2ÔÏÅfɇ5…›5*ð× Og }ÛìðA`<_’Íð|ÿÔéŸpóÀù‘´—J+œÆf(:Y+bà^@{%ÍȱŽÝãjXGdL†#öÏ$…ýÌßÕ`ûÈD½CÍÊ”ª‡&>éØºÃ9A3þyQšÚ[%o›Ào馒ON_³|ܤ†ˆ)]Q33ÑšF›èˆ«Öa§ &Šrpú-.ÀCAË=ò0Îäý¤Tó>ÌÅc‹E¡þ‚ö˜< Ö¤Œ>që7ø2IólYKk¤xQè>8Ñíö ¼¿Îc{KðLÂ.·âMjZ¯º®„£¯…†o½{7·7ÄIúáB¾—/Ó6òíÆ³Ó™›¬¿õÙrÑù ÓFP ‘þhºÕm)©„Z¨\ •¶ZÜî¦jjÆÐŽÍZÛ¢mQ½¨(5]ä·o {ÆÜàá~‘+:8šœ+͈öB¥hÓº÷ûrs@¾85HhS¨QÀV“Æ€Þý V2æm•×áU§ ñŽRЭx®í©ÈN;: öÛb­0¨áN ¯Æ¡þq#[¤ƒ ¶ï@1u–·Rõ9è¡R¹)qöH¯LÝ(BNÜ_õK§ »ð[¿À› ÞE²Èp¦Ó¯L†÷q™íshyÀYÁÃHd2ù}m'2~ü!ÞÑŠ$¢xÊR-æ —^7bŒ[•}Ñáõé/Ðà7¨„ƒifkýƒQGˆº‹«Ô‘ð÷çÿŽ€M&Õf@¹lËDãB}õ£×ýÂ9ª:» UD¦œÍ;ѩŤÒÁÊ^«Âf7Þó{_ºÇX¹E¤˜þ(¶¹Ë ˜³ÉÇñ§jµä$OîöˆŒÎPÿ׫ !¸(žý/¯£ V’}èDËèË ¾1Ãdf Ç<*s,¾?õÛ­m­»ôyD M›Šó®d>n”öã,¼žUšy=’_Ì­•QE•ÆžQ±+kÀù°›ôV«â¤à=¯Ê»Ë˜ž¬j¥š¥uX‹}ûÌGR{Ôk¤Œ@mŠ –AvîWQ1-ì‚ähàV¥¹ŽÈ¬Í?VO”èF*§¥Øš®&¾¼]‘Þ_Ëgš-œÙ´íô¼[ä½C SŠY!©‹cø…$¿gOùƒ¥.GÈ®ë&Ô^È ™ÔÍXA£ž]Ø„`ŸÎ£)—Ñ?è ÓLŸ'Õ&T-ØAž Á)‚X/éA -Zl¸þBVï«©õ.9¦2·ß¶ ,°µ>0 ‹YZfields/data/NorthAmericanRainfall.rda0000644000175100001440000026035014762765714017373 0ustar hornikusersý7zXZi"Þ6!ÏXÌác ïþ])ThänRÊ 3Å$ï’³Tüe߬½–Ì»j;f›PèRߎ[_3`œª2!‡pw¸;¤±åó `'Z”†‘=ÏÒhZâ­Èû:9úÈ®ì™.%5šDúæù¯± [ks œ6‡»æZ†?–-Î]Ü`9ðÅûn2±ú7t ©DeèÇHˆå?³HKª!‰0’HŠâ üdì?ÄÄÅÂ&L@A_…NK¯gs µI븵< ŸÄ²*P¹ò7 f £HŸh|æøc5S­IÊG’F_·l³¡(ÕæŠŽYÁáÄá"PÌÈ…5#á5 ÓªÏióÜÄê•/+xò»ŒÂþR&ö´÷ ÓòH=.š7¹:òkÇ â™8Ûã«øq+´µ“ðB…ðn  0gÕ”ÑÆeÈ µmL˜bñ<ë ò®°%Ø(‰N\ ™k|ËŸ_ȯ½˜§–úƒ5eá¹’ß@í^ ·¦Oêp¾n4Fýt\‹úøåÑ~þ@ˆ¿u¤¼>çZYZÖ¼þuWém@y#Ff(Lƒm‡ùî÷³&=ø,ÝI1Íê½I¿´Þ‡!ò¢îyguÖe׎´ËÅËz$ÕÖê0æÎ“ 1gþ,?”W— øžÎ9X£k@޽D\+䤧®ÅŠ/Š !J±Î**YꪾÛuFóÃÐŽ–v\‡ïetP~ÒÊýàîUÇ\>Iä‘ÑCcÜé\»P‘R6ò_¤;$›öFñEqƒ³r],‹ã¢_…íYFv~Ìÿª<Ç™ÓõO¿vIÈàeBy—œqjFr§w6"‘£?% ²@˜NZ“[›å4oÈÀ¬ò‘…;œ­å/MBpÒ“Þ/'€¿Ró §ƒöôL*”§…éƒÐÓ^¼ìÛ/ö~è©ó½)ƒÇ‰:ÊLdá\mHl|Vø„ªP.4›Ñ${~XÛbE ø‘wçØÃ†ðm@¡L%Ž ÙûÕümÒÒtÍDxË ñ(ùUù‘‘Ž{%Üï´Ê“æeÁíÞ´µâSïébl M´UŠA:PœËRÌ{ë~aö±êŽ» Íæ–pÄ4ßÍ›íÿ¸¹ÿ³FE¨{Y!úÙÏI8j¨X½[ãÔ72‘Èÿâ³°5á|¦þϳéw"]JÅ™M:Pµ~'7 Ö݆N!RêÜ¢ÿXAçÙ!;ôÖ:[¹lÔ|´“5*ÉD4rB=¥U¿2úó2g`Ž´mÇNh~zh;Ï!Æäó"rmçÐz09ñ„1»«•ݹ€ƒá”¸Qi•ÚúKŒå€Û”†+ráé`Á¨2.ו¿ù›”,lœifƒYb !ód¹L(iz~Ô·**‡åB~Žò”è…5•žN$§€ ÕÃZûùn)­0PbâšÒàu{XÍTè¿øƒ÷•‰§æû]¸º¬rö¿9±Z¢î¯Ôy–£˜dùÒ¾¥€=†m®Ä&ËeÄ2Å0[åïW½æ7:è”±;´‘nƒõð:¸j_݈[bæ ös&Q„ìEVøº‡¾ØP6€r¿/?ü©¼‚¾Táãw çÅo²¨rÜ4sðj+žÐðx¸íP?äMò< 2D±ïJì#ír쬤ZarK ϳ}û£/QcPŠÔÈêŪ"I¼Ém„ÈyÚ;²±¾}^–mÈ]´± ! ©f¶ÒЗ(^8Lyà]{¯ZšJìrŒŠ¼“³Ûxu1­÷J†š!*æîcóC—ÀŒ6Î~³\ŒÇ-”ö‚­ÛÜXDÅ!D&Gþð¶[À ojÊO¿"ex³ågÍþøg±"³–k„>“0¸ç’C*%!˜¬½˜ÜÞËí·=ûBJÂ&š°*ô{š€wþ³ºvF;‹SœÀ °íŸÏïyvª’KŸÅ_Æ5z*:wo¡-†6”yp‹•œ\¹4vSŠÌêÔ$º¦´4¬4sõÎ<"êtH"ª%ÂçMú ³Ðì¯,Êäv]S £Ù·?B·ðˆ@òª]à¦ôf ×r‹8K¼{ê¯y8ùŠAr±*È¿ÅÚ.:qvÀuœôjéâttÂ2ýÜ*Îd|ewp(Œ´ ïŒ-:ę̂¥êvÍî§%ô hàH,µ>:Ð-ÛGVL?wWèGGÒÂŒ*´*`o±2ëåoä>ÎÅnšâï²s-]ŠÙ‘oo·®ÿ~0ZÞ°=ª¥•U‚ñÕ·Ê C1‡¦æô=Y7TM&B«äÐ7Â÷¬k™Í´þÈÐPÅEíº,A¾ÞÂWE Ž^¢v‹øV"Ë Ñ¥„…›~V ŒzmÚ3ø¯7£}¹·ÿ[KÂVrÀe—Çkö[‘ß8k©KHœ–œC£q_Àxß}B/W¢GV¸6-½ ûýOMÓ'.>â¿Ú „ äÀxÇØÒeiäSº@^‹bˆÁ;8$ùTœñhL…Jh"ý{’D×ÙE8ŒÊmü™=Ø3ѶLEþñ‚;˜4\›kŽ ,Rè=>X ÒÍÝùžK¥[wd–(ʉ AÚ¡„5ëÖ>wBm]YO–”úãFUÑ­33§à¦ºž6rÜlæ"Ö§e¾þêJ°ì³ÁC¶æÿnÑi;G…¹‘¬LvÖjÎÊJwÿ7ë³_¸ºTU¢±Y@X•û–äƒt-וðvpŽé‚b.¯­´XY´=è^çRJšvwÙêõ¦[©q*“tcÿSÖg %›•šž±Ÿµh½RGð©“ÿq÷% —Ÿ+óÀkFaðùŸÐ@ëù¨V9ƒØH¢ì{¨NÖ>B…m€AyÈqe[î>|¦-SªGÆÛ´‘j9MÉœÞü·¸™ÀRH‰ÿ/‡S™V» £’t) üuxrZ¢42ëûÛ0+7¬!2K)¶»¿¡PàéRò|ŸùDÉúEXxë $ƒf6tõi#‘,°2\g)9ò†fF4,·—ÏPynq:»r@¯dgß#” âœ+ú /9j®±MˆŠÖxðà7 ˜ŠâžríÔ|žw}öpܶæëÍ€C‘k"É¢—4B{Ð'´¼oϪ/Œ‘!¸€½Þ.ÀÍì¦äÀ8dH¯è­&zÈ„ëŠ0¥^GÇ8?a²Ú‰«-N)áÅì?{\HËòß{y#g²ø $dX %_Ï÷Ñw>ˈríËtbJãý%ž+¹8™ý凎£°.\»yzK¢ Ûä¢#Àðp¹R©#¤V°ß€ qý@ m¾žr×­~` ÷0LÖø"ǯ½†àªB`wJ ;SÒ´÷Û͉†.¯ï|˜¯ÔRw.å´n‚ ô±<_o׿IY„cø(vSw"˜æ‚Gþ™ûÔù)Ö•Ûl³â ЬjÖÛ`Ð39þ\ŸÍí½[Š<^ûlëšF¯iôÊ’%*àþŒréyϱ‹kU^+˜58ZÚ¬Ü=Ü#˸Ïܦ4¢T0ð<õåžÆÄbNlý0 øÑYý Ãu·‰Ò”o¡÷ß³"ºžŽìlej}»¿Ñ¸ ):¡wvþÜp_ûÅ›¿Òº|ÁEaGƒ‹ÄX>·îèß3PÝWÐíÒ$L9h†t]ÒµûƒÊ¸ê3ß5ä%)ÔRštâ,Ý‚e™égø>ûž‹±û÷[·°èÛžØõC¡Ò-w¦O>`ŽåL‰ö.+ š®ãѽ¼pç%?P'.n¥QJþw^íó&[âwi§ÊŽju:®Â àOåD2ÂNÄÔl Öœoxt†fël.x˜£‘ ŒA ¢aÂóÞoªl“c–ÌýPÓ ¢Fl™Ïe'va`À6 ”<UjUˆ8$2þ.½…ßUÅiO¤C·©‘X xÒÏåžÏ°,°·Á¤q#™_ÁF“b9QŸ[ èêÑûM¯+Í[õB-áX™Ò”œàù)VBgÒ2™e<ÐÛ†&£ƒeÝ8¡?›vI­ÞUwÏ8éHs­s«BÐIiÜý8·jâÎ+ø÷EuÞ²Œo:ŽÙAp 4ð“}´"^ ûÄk(û完úL鯂k¹îÎ.%¹[GËo=¼¡)ò6a<תjÓOÜÏì 'œ×Mn݇ÁA½{ì4#¸ù’ UÑû%$k›<û)8v{è­.Ê ?Q†áè2•öc¥§{³Z­6OA^OF=eBv"cþû„Zû–¢‹ö †;µ/òK¨NïOµÓN=¿ ¾:?zÇÎ1#ÅV¶äµ|ù2X÷•Í]Â}}.æ(4 ÅËŽ4íºe"±|lýTÑ K’(gN-Á¢Z˜"RˆvæÓæ¦äô„xÞáª?ùÄZg–¤à‘»×š7PÐ jãi­ê&K _è vwà¶Qû4kÛ10›u~0IY¤hPf¬L} ‡éoàSݳ×ÔÛþ½I²±îÚå¿@ŒsùkWêÌ©7Î5òîX·Æ%‚^C€šÄŒ°î †mäØ_‹ˆ#Ù[º¹¤%}ˆ :®˜9=ºb)Ú9³ gfPV Tç³Ù ,YM‰S+f¾ªRðC1Š+ÂhË%%›obwˆy‡6" ½{„ݼ{}}ÊiŠr‚w’äÃC™*(n„þàM$£Ã4•*«vÇ{æh{Õ>¿ä²»Fç¡FHƒ'ÀÛó²‚;1:Uvâò¯íöM«ooȆ¢Â„Ñs’\q.dë’A¸ »‡þ}¶Á¥#vÙ·¥X1¶…ÛYÜ Ú]•y»1ð„!ÙzJ·È_ã Ôø:ÑU]ö‡U¶НC ÷e‡–üjÿíâ}. åÚ•sˆÖ z$ úºU<*û-ä9Ðû°MlÜ“^ ±]¤`‡­¸Ÿ¢2«;˜{á$DEl/‹^ùŒl Eöë_TÓ¾Ì!¤;Ö™ÄyoÆkx}5ø|mCßþŒi´™ÕùFÒ9L“¾ŸÊD¤Þ®¡6@ÒåîÂQÓe,ôç™ÅøL+þÙf½žEY>?üît›YÆõ@ivs[‹l=º1ó^ÍD7µÿÖ'¿©üѣܟàZüÔÙ^Ss`•K>l †ÏÇM…Ê(‡,Xé°@z$©GA‡ÂçŒçAø—ðûó ³.A¡¼ ¨6‡+ê ÅðŽþ~LEØj[©yÍ]¸.ª}Ä‹wk¡Í×ÀåØ ôã›Ür9IáÀç™UÕÒ¼”I i*™lù$š±{ŒkdsÿO¾ÞˆUyŠ‰Î —0¥´l‡8£ú Ž,Ý/Ft&¼&m åß&ÈïøkŸÒ’‹7»)~—ž·Æõñvf0o¦†©Z!}ió¦0‘S Œ²{àøÝ÷÷^p. •Ûó^” ½;ÛÅs*¨qj®–—>DzÃñA BÕeá«Å‰ãU§´:D+ œ5B9Þb­¡5ñhgÈ`[;{ÍKëG%Öc\iràñ¾2V™ý1 F¯’-B˜ßyþ=©Æ¶ZÉ«!Ž0N„5 Êÿ,YX.R:fEX[{€Â7¬d–æ âÎH‹élŸ[[¸iO«=ÒGnièOP¤Ôüš ËÔ8Ó2„Í7¤*kü#êŠÒ2þ'ïÖúßÐQõüÈy, '®†ë†ˆâ‰Crÿ§þ÷/4Žát˜!¸ÚF¢í¦Sm)UùIœ›Z[ ø1xÊØmÇ<ŽÜáVÛÕÌãjÃß“ÙíDD‹\ÿßÜIÄ,2øþä/>q^kß<¤Yk)öÿ_‘¯[ÝÕû-e³½[)Ãê$ˆØe7¾Ü Ìá«UÛyŒ(mN|Pv-ñNÑ$±_ iaN‘Ęþ¹­­zµY@jfÒ÷’¨‹õ=Õ›-`Àò²áÙŠó-ib‘rxnIGLʳwLíóäü ëôµ»Ó«%ÜŽÂþÓ·˜ ¢Mºå¢½BTÀ3%ª:¾DhR|º1f,(lB‘®S8±{ƒ· Uçç)E<Ø&?Ñ8—FÙî þ½™Â2ž¬ÞoÅ>«%çáNoÜu´"ÞC+ËÙ2Ãμ˜ÕZH öާôn@)Ÿjó³íÓ²ìû AüôÝ;Eæ¡íê*$þoôâ‹ÚšjP±¤,òÿð]ÝŸKÙÖIôäzJéµøV¤Õ*{fX»´Ûy‹)Ú 9ÂSE±üœ«êLžåÊò¡ªî;æágB$™LÆt«g}´6ý¹`Û¬§å|a嘼?„«Ò¸Œö9QÐ×kƒÈÂH >{^âLŽB¦1b\÷`›¸G÷ûIG—%.bé© NeÅÔwògãž½}ŽüµgLW½†¸H„^Ñzú-?L¨Á~|)û80˜¦2>ZøQ${ †ªÔÔS¶³ŒÕ¡ž—g“¬Ff~GmS þK#nÛÁs›KÇŸ£ó²Ñ‡.ô‘à°AD¸ËÖåÿ=¿V>öÙRÇÎGt &è§/­úCáƒBÀí^E»•Nå´FRÂ`4›þ`gÈEóÍþd.°ëér˜¯@:ï¤)¶Èƒ£c ¤¼úžN+ÏþƒsÂuò36S{궃YææeÜi+Ý… Áƒ™§›7•SåÜ´ØwĪê\Ù4¸›–¾^{+¸yŠÓýM*nS“‹BÁßÉ“Ì+Wͨ†6UŽ] s÷R§ åpF8ö n‰–›_ ‹¬Ûy7ÌèÆE×—…ešþËgðx>~­ä‡KÑÞäŽk“¸ÂÕƒ!7׿¨ÍsE}/RE$% ¥; @£դ·Åðè^o¯[= 8×nUÙ€O•%\‚IxÌàÅäþ0ùT(aÉy¬Ôuƒ‡wÀ'Ïýkh©žIZ=á¹ñ JÐŽM3Û ?¹ªd,º:m§È*v=yf¬l œWºí½æi±.y½æž5~‡÷¢¤w~)ëO/ZUYÐßÀ›ïÉ/¹¨tÞ£’OøŸa2™™ 1ßöúnL“Ü^Äý¹ì ýžVWÕõ ×í‰åc~ ¸]ØÁe}W$Ò}†B%ó´Ë–a¤¹lž­;†,lP®6¢ñA8{£“‡Y¬om Þ'x h!ÞÔ9K´;x=Žñ¤b Œ¤/ü‹R—þ³èç‘ï½ÏÉ)“þK*iE^³”BõKñL£•â°¥6魯üÈ3ݾ dÙE‹\ÝÝ#ÃSõÛF²c ~¤|Ã'Á³)¹0ålóƒ1‹Ý˜êÛdn¦2Ûñ¦ÃäÄ]„×ZÒ QÄe“Ñ"2Z7IBGo,ëöÞàÿˆ•õwÏ[Áå§žIb­_€ b-£SØD³”îu»·Ê4•Hµb›p;¡‡aªƒ¬kaòƒóªŒuœoXÐ »¤Þ¤ê,ú惭ÿÜA·¶ÕÏ..Õz‡Hcd~åL.Á ªêÎ"uϸr)çeª=[¸"ds!0uN¼]Ìp^ü“/ £§ŸhVÐ9š&XÛ!œbý‚ ¦¼i}+¸J´2ó½èžÈ8«ã¶’ñ„ÿ¾i£AÕLÀ >ž ÑÒ”p¼xxVØŠ‘”ò[Æ•±ÂhH± BKðGø96jˆÍ>Q'ED‘¹¢K„Jý¿Ås¡2ô +(p Ø°‘2OÉ;*h°•²[VÆÌÞÇ2¢ÔañçžÕÃÐ` Ã í «}(‰?ꛇÁZñ×ìPΡç:d’«ûÃ}'o&Ò(—¾uyÿ.”·ñÅ–b›DN´ò;^!T B®†Î@Cz¤ ‘þVÝC4fñll-ïÎéì“û 9…ñ­²–¬h.œA]¬¡³CÁöͭ覆I¹§Ÿdp'êmÛMtùë5Ñeó—Ö˜JnôŒó;ê‡"C÷;vAóÝp <½Âm±R?Pìg+B0{È «ð|þEmZ9BX`éHe·ùý)ZeÂÈ€T/Ääp2V_ìyðš¯=œ¿6öÿ’«2ÐiÖLç7îÒE¤m2ÔÝk·¸Ž„CýÖ­l,pÒB’˜Óï&×.•hÑnRUFqƒŒTB_äÈ<'k·Ž%û+ZxT©Ë÷‰÷Ø)Ë\Ó¿AÖ;pÈ÷;ò• 56I]FÝ ;¢Öò#˜?Z>¢ì?pˆÒ14éT#¸|áJr©è¤Dè1?ªt~H=xàJJš1R:凞4!^¸0R¼µå²R «b™ÀÇ] ËŽ—÷!©ÃžÚä?*û–g›sM0ޝö îä”V—~Ä><È"‘.àŽ™ 8T!|äöª÷¨Q;ÒY(h¤ú¦rQ—ÒîùX-zf8Ï%Ó“a䄿oËFP/„Il¾$›×”ž &¸wºFåK­0ŠÆ0ý$ö[ @^}$ÀH›ž¸½ kZÖ¨aµVŽ#”‹RIr$c³¼ÉÕç^/â–&„±‡g‰ùZß7ù™£¢±Ñšš²…\æÏšÜ8ï¾À ³,¥†r¡™·’«…G˜ê¢Ê«²@òà0ÚPÿÏ[í¢‚#Ý%€#ã¥P©fþ¼OFcD—¥`÷[¢~Ôíd6°1;¥_ ÐCtrP_ežSé’Å–!CT›´˜^‹´ó()îžÿñI^`=òD8xU…ì`rϪ&È«_“¨ÐR‘`Až#W6téÞ_1¶ S€};bY²ôÈTðíNQ—šÅ ¯·¦_K‹µMŒ’-èT‚èVd:-¼'½§§‡2"ûÈÑ8—»?$ úcT ÏùSí•çÂ× ¦Øpɘ¬¾6Ô¡e´Ðf­G°Öû‰¸9ô Ô%²x΢~ÍÈœÌÞÜ{LùÁÇpe¨‡L*råÚhf‚ªuì"ͪH³ 1èùsðb.gžÞŽðYŒ#C™¥š?*þ‡zCXj*&u¸#0ÐÇÞ?kÿ+?Ds1ô%d³m«ø»‚ø±¹ m´2¿¼4ŽÇ>.->‰…&“ œ(Æ#´&ŠÍlKž¸²O0ƙϞ˜À¹»A’Eü²3Ú‚LeÉÝ(vÝâ|®ô)Óþ€çGDÀ’æÉ6ÑÐù[pŽÄ!Æ bGÓM¬­A2ú¡ü…Aù¦B°X.d8nÓ¡0,1DÊ­e‹ÙñJ;T‰K_ÄßÚIšœzîXg8Fœ³([@ÙÎ1¨Ã:D‡% û_£të3Ô½ç¾oÔl6êôŸ£rIæØ=Ìf&óÆ-¢°‰:ˆl¶×q˜?yéÇ×íˆÇÛ8"l· çPª¦sÇ0ˆÅ_}x‚‰] œ/ûS€ªíд4¨½Ä›]@c¨Â®·0%àËÕ?ŽfÏÓÓèÃŽŽ&7Ð}Ü¢á)&¦ÞЛë§×TͦÕ3ë‘Ìè»FõQm5ÒŒ©"F› ä‘ –Ac»lø+>ò…hu„r£É-Ö… wZ„ ´Š¡ùç[9 ‘<q®W¸Ž}ôRÑ^•2Î_~š™få}à Š"@¡ æ_gÓ”¥È$Rô‹¨y‘ݼžƒ5jU­£uhÖi °f\È »çk¿í ÑI’z ½?è¬ípèCÍjmh™2ô0~E;᜹ì3ÄFÑ,„X‰vȵÄ*Ndj>0Iܶ„¤™Ù~Ia\¬ÿ~½Ñœ–1’ =þO|qÆû«a‘’O½ºôÒÛ øÊ”Äþ­¥“QñýAõ˜éÖ¤•OEÚÒ-,Æ!«O[é)fÖÏÇ † x–OÍ:Ùx`ÁÊD(ú#™,µM¦á‰èUàÊù)ж±KÇÚû¿—Ç_S%3ô;zòc3)HllåS!'Ð!Pj‰wDw€m7hÙcÚ­csI‡ÛÓ0X}t¾ªW8žàŒ›º²oº gt,æ8Gê ÷B^ÈvÀ³x³ùÇ·mÀT{€o¿¡ ÛÔç.‰¶Fìoœè/–Æz‘/)ü¹³§‚0Žü˜‘u,Ò¡ápj=ÊM«PѲ§:¦E'“™br"‚•T7¦E=9B™ 6mú|yz—‡ ÷$9I¯¾Æ¢7©Mˆ7¤]?H4/BNÖÓxô$$w?}ö[õ™å•¼ìE%@)yÍS¢5&ƒO`Ê.J\8žß’ª±…‘xUP:×{¼zd¬æmÕ6¶å YY,r›•‹Ÿ¦Äãvµ½Ë(ûGÈÞ¿½Ü-‰Q0õ³ ò€Í¦W2ጠqxÍ­§ ¥áý»ýZw‚[Üò ÄÌÛ®šxä×,²¸Yõ DgÄÞ!Ó »ôXQü5„®iò.IÿèȈŠHïgKÿÍŽÑÔ‰=É\`Ož×}‹4Æ35™ÎéûÏ-~];þn(Hº@./“¶·Jó{€¸C£9Øv²Ú8UÀPMª3ÍW|¥‰¥—ywJÉg¥¼<—xgÏøÓSâ“%H}ÜŒÓåØizÐy!ig{ú#P´WŠVÛNÙôeŠã—ãE‡dŸòWÎ/(Z…:ÛoýEy-Lèšéh2i:O«°²+"xp´ujT° GZ¦ž§4þæfÒ—µð°û»ç½QÓaõõÂÜãéž%_ØÇâ®O KùCr´c‰õ™Î[*l\–)éQÝstZ½uû°„¨Ëi¼7n>UÆ1¬ ‚SÈ·øå‘ò>inŒãÉ´2sõsOÓPº 0š8MŒ#Måù /Süœ+ºç!­×¬\öÚ‘à,Iáo¢ù¤KKÓó_v4øÁ2³6  >ÚÎè0ì—kñeÍÆÌ¨ïV¼”0NKéÑz-BÂ;à=øì Š®˜µW$)ëX¿ˆ¢u:erÄãa!|MŒ<ñbjJáãå¨Ü\G•Ë>Ñ ,Ze1ÊÎ;ÐjC/…Aª"ô#„³H^™¬ “ìãú}¥'ÄßÐHžVdhàæª¾?7}À€Ä3üÉ$Ç9@L;ˆ uU^´no¼„¶çBÜS‰TF- ¿Ï·ïPVÿô`÷Á%>ÏŠº£uüj$GŸ eV#Ý6wø?ÞµŠ‹¤yl4ýÛÄ_Ýr›óºzÌ6mðí3Årø„¤¸vßWˆ£-åb§‰'3'‚@‘Õ…EˆüÞqÙM)¤ü¬Ö§l²:™^¾¿.™| " è:!ÕåÒ‚½C&}–±f2 ßK—ª­2ÚË¢ûPt*Wn<¦/ÇO£H¤IjÐ&ÿ*öî-À˜UbX±kGBáÛC„Ö¸ö‹ål1sVîncþB#"FáÀ±%òúÃ|[“µ‰×#`>l0òßØÂ—Ó/|ï+"ú[ºô9‡Ûا½Ø-µÚû£ì^Šx~ \>ml2‰è€É‡@˜×OŠKkžDúÇ6ë’ÞÓÐ6Žß©ÀD¸»E`ß‘‘l$ü®Ç9K6×(‡Î Õ´t QïÀÁ6·÷+Úš+ôý²f½&&0Nèû©Æ`é @þjØMdÌ”éD™ á)?Æ D¸Òޞκ§w.`I27v{& “yH2Ħ¸( ‚†V«q’Ë}@a¾×œ¢¿/ü­<%@#휀ÿdüìÙìô"ô¨ ïŒxÿùÑÔ+àžß¾í"¢K3ù#Qôs‹°["N*˜oÜ'.‡ý¦K<;)lúh禞×êÌ¿r’]ÑœCðüTŸ’«û£-M|Ôæ„àÚ°¦tcVÔÉ‘:ኪ±½È¤]ÍÂÝò•¤­áFv>þ´ÿÇJ17肪¢ˆ¿ùŽ¶Ê†¨§ƒPÀlýÇYzG–£™¯  åæpðfŃG5[p_ùÍGŸì <ºLzðRª7RÐÈ_O¶ÅY“éýΰŒWÕ\ˆ¿½>‰Å¨*{ìFѪ»pÿYjÛh¯t ßóXîÁÒfÔjÇ&y9‚CzuZ‚ZW¬ca!`΋n~±Ø=Àã,”Äo¿&šÖ±ßSr½I*»’?¨¶i©P•0Vžàq ÒàÊIJ³Oóûàòlz.­E Søp–[÷×:Ž…©‘ôÊlü"4êž­•e‚‰±´izv|É„0“se)ÉœDŒVªú2Q2œaî߀Æ~_‚´:KWv²Ž’ÑnRÔ"ÉþeÝpȤk~0úÔHI™—ù¬ŽøÕ‘q²¯,%¤å\Ú“Ù%þ hýÌR¥5þÑ ˜ô2–É8ú’ü6›ˆ‚nÈÙ9Ô09/u¹6Þ2Ã1Ä¢qS{Ü{Êl5ôè$E‘ˆ»~ Åÿxe,˜‡sE®Ì…SK»]¸©G­à)ȶ½îß1JíkºÚüEIQhUe¤w,·ðöæ|é“>‰áK(«`•á¡REüKâ¤<ÃØŠ‡çT­>*5NÅ7väÌ®Lo&¨éÀÝ[·ÕCˆ£Àœyƒ&QÌügé sèNš”Ïë’í,ìEØÝ³­‰ø^647bÎø I8vZ ]ù)v*LQ‹S¼m¸A¦Þ^ºË‡Näßñ7ÆÖd|´Èûü]´Ýª·Å”Ð{ª!·xŠR£Þ[-kë9ÿWÂÔ“LœÁèÁ<¹oÔTÙ%d" =Êi>3¡~:Uañ{ebõV ;x;°(!R¥&r03Z@Lî,\?¢A8ÏYzvkíß…®w÷‘Õ!^4ò¹«÷j-ÒuáE«â4V˜á3ç°ÌiÞàÄ.{ªb¡â¢Ò’Ï–à¨&hWí°3àù\°\ ¨;UUx^ÝgFùwEv€„[¥•>Fl걪?²àÕð¿:P­ä–ùI÷¨ ×6b_løsîS‰coÙ‘-Áv€tÅ|B`wñѬ¸Uhú24†Á”Áб¤úÓ'ÝïÜÜ”‘™Ó€Üÿúál FqoA§¡moþyŽC–⾕]:“!Öj¬à:©q„}ÓN)UTäÙh—a Î Wz›†Ÿ«¬œI–ÃUDÎýî}1c‘–ú˜~ÎÁp¦–˜¬e‘vô¹–¬öêT“sŠ7dNZÜl?¡å]ôZæ†2=€sº°²–V½¨ Q'®Ç[ÂW¦órÖÙØ!6‚úÀ^|J&W…#ßXâïI.”ÝšH3ñ²A˜ 7»ö85K[fwžŠ-ß|£àð ßÄš˜€ùx÷r¨[dýŠdgP>2NÞùŠšgÕ‘½ÂèýÅÛa ž…€ní£àÝ‚uFÑÿûù,JÊšÞrg!MÑÍ‹ÛE¡K`"~jaýƒ™+$K-Á¯ÈçÓ-¹†$NxS€p  Y’±äfobq, ™)ˆßPÕ$ÿ…¹zõ&¥Á¹$š7ôüÌš¹CQpðò—­ó}Óe–$åîr—½¾÷y„*I ÆkñÜTæ`è8EŸU T¬ëì³îTÄ &ÿ 4F' _9A.·ª·üîtBl/Ìò‚!â£*vÑtÌX³ò)=ùZjûè—r>y+€p‰K¦e¿$—¡K2gäóW‘g›Žˆk/¿m.“…;ûZ¼[v+R\“ª–P=¯âm-ŒMk_šˆÉ ”2¶®ß<òÃ’Áœú«ÝyyˆÑÏé˜ýÒ㌰7¢l(‰åâ[š€ê6sW²ÈfP6Õû1£–¬Bƒ­‹)œVbÐÞ•àó¶KÀ ôÚ±³ÒO{cž=ß¾Ÿ£zÏ? - k77y’ ðÃê)ÅÏׯ½Ç¬^»¹¼âÁE›gR2L4G«>Š7šÔoà}‡ÇP«ù‚wY‰„VˆTêÇ®½¤¸|í¦Oz²_ã˾ð8„ä>;-ûCôÉ$3:òß:úâA^ôË¡??¾ÁžMÅèãoC·4JØ^>Ê.È Ø+lÌ"ÞÌŽ½!’]J_³÷Ü´Ï"»$ä¢Êkä‰ïwçe‹‰ê"] =ð¢{žuî€l  ‰ãæ·ÊÀ~ÅJ£‡4–òAœ¨¯œU'YÏd½!(í=6ý ` ƒØ¦—Ô³èÿW}B£ËãÍÏK2‰öVM–Å“¼MÚ€|‡FõüQ9¢;2µŒ‡ý’š Ó¬¾Ç;–Ì3PÐnñ暎!p%d yŒÝÈO®½Æ“aÐKvÀýìŽÞ*âøcHÙC1ɰ Àú"|•³÷|a5ÈøG6¤ ¾xÑOÙš^ž¡¼ŸêUhx\„åÆÃ9éáAQÚ#ÞZš‡)?²M2“_Ñþoîªùõè ›ˆ\dUÑ’]‚€¶‰Dz˜fTá¶Š²â×qÇwj›n÷+¾“Õ[¼‰Žê×[o5µ-Ò®‡#ÅÁ àge}HWÜiPÀe[[N çÓNpßÖ jW<éíL[iÇ£p7[?µÌ—WJØ,…+-)Á""åEšÚº›#‘<’SÈÌ̹üj6.ÜéI‹1Å®?d6 s7‰?›Ô%ˆÂÎ9×ÞØŠvÿlÃ=YMÃðm§±b½U·ÊS‡(~ÒžxFÑÙb)Ö˜n8êßµæ)4oðå­¾–;«ù]…£Ùp,¨ù¡lÊT Ë_â«©Ÿ ÿ¥.bxxÆÞëwð.Ø/hX»þp†;7ÌÜ^™¼}!Ck•%šöOS2Bg”4MöN®€®Ú‚‡‹XŽ65Í¥^;ƒ^“¨”yÁ~¨z°Í€c'*gÃÛ ™’q©ž —÷ƒ&± ‰ÛŠ5 øeáͶ¼õa9“/lÝ1•&‘c’óý 4àn2>/ÍÁ·¬Ï2è¶ö\ˆ¹è> æïŸà’Ëë”HHšPk\îóËäIËÿT~ý£^Z€ÊbÏÀbÃÕþ€Ú'rÐëð‡¦ö–áF4ÜñŒ‹¦ˆGiõ]iÂÕ$)Ñ€¡*å€Uù âyÕ²)‡E'`µÛ¡6®Ãžóºâ.1f@Ø7† |ØhºM"PŽ$-sˆxmþòÒo//ÿWf´µnÁFf¸ø¦µCì £ˆ›y @Ç(”IÒNn÷„„ DI¥6*ú<Á¸â$ÅÑÚ¨?¼ ˆB‹æY3û| R­Þô²P†ì—™ßg8ûª¸CjJ€¯\¾ˆ8ÍbõLoPŸ~핪ñÎô'Àr“¢+jH‰áw þ•ù™õÝû©óÉ WKb×ý^3…‹z ú,‚™Ë»8ºt’Ž ‚0…­G`(͵ÚBðVùenJ–š‡˜ fm†´¡ùšäµÐ{ìê6ñ‹€Å|n•5åÑdÙ©n §GKU“HævIάÝc<ò„¶Œûk Ò’ùÛ£•Qª4?M…ÌäFu«àyùܤ?ަjå¨Xë\¨‹ÛO¬û²_eÍlšz%GPy¢•Gù%X·F]±åÛÌÝuPœøÔCLû|ÿš´®x««¤zö±JåY,d ¯Ìî­Ë¿qÇ@W‡OUÞbøŠ0×ñ½âÚ ßnK”*xWÕøÐª3Ó^‹Š°rdÑ#ÖrÕµ†m:˜†×%Ú ÖIôg¶~ôáó€Kb‡éy°µ<„{5  K 7&2šÒ–¤Zü7.¸êÎÑ:Žtâ¤M{>é‡w£ôü{Mi…Lȳtb³™iÔâžápgÒù:0•²d”ÐФ/©N,œ‡4ó VXÇnê¾¼§¡D_P“ë\±Â—RœŒo9œ@FczKú‰=¿¾èV¢Ô™ªgj…Ñj"g-…s؉ձ)’Ïüçˆ#ºjû“î:2hÞ^3:\s‹&µw«šá\àί¨âL5eÃI•ÕPƒé­LÍQ©É1_êr»ﲎþZF’Æ“ µðk˜ 5×ÄAùŒa>3Î68_“o‡×ó,À{fP"ñ¢¨û&гK!Âk‡ÏöyóÈЦ1òñ/%H»¯6Ò…#g:R|%ÝvNS\‡…H(3X¾ðjCW^Ç«Œ¼šnãQrÂÒÀç¢mûQô'°õ·µ'Ð+¬j.ö8vgîúåè¤ðŒ0?öœ¤k[e aÿQ’:_ÞhúÜŸ×Û†dÅäkeIŠç“Úß8,Ïjvÿ¹ÈsÀeù<¦þ|Šs[àgr,*è@]óßD¾§{pg#=ß ¨EÒÚ^½aNº¯ù}ˆ>¿´ëÕ–¢L‰¿!O'(`´åÝl?N’9=¹Ò—]¶Â~\ÌñØr/¿u—‚›0ÚqÅYBüA†= ÒÖõþy®ü ™7,‹¯btiL´¼cŸ½“%ù¨òŒö=û uó¤|è´bß1gèoŸÉÊ9¼Ù/€u¿c E9"ÿAW˜úzÔÇ¿OÊ­æ3ð1ê  àpÙk­Ÿ¬ðÓ\C6׿äã ÖNáùÛõzuc¯ «³s¯Z%¼ 1¥'É7!­ô!”±}þçg¸šT2\+±m í¹¾."}*WæùrÃñ.3òV•7ФÐÊdªü*ÔQ¿Ô6Ž’f(’¦¶†ÎYѪñœSÒÝ—fe²e84Ù`FFa³T-W¾…1…±NøÚ!MÕàh'.è¼*Ì?Ñ £5…9W@'¡£F™/N€§ܶ®‡¬.1›Õ™A%GÜîÁ>ŽHúá#–‰VÙ„³©èWáؤsåË~W¤Ñ‚h¶ŒnÓ] NLžœHŠ‹ŒhYt• ;£¿Îâ˜Bb1?—ÏsÂÃÜkpÁ/™Mƒ@Vk}5SêÖCF ¢¬aÑ?ÞëÖégðV,g%ˆN‰,§iQf˜"ºÐ! Ø%ÑÒ&o‚;Œø  >´c/'¿ý 6wƒ†qŠá[VúC¤† ëG×§qÈg9Ð,¦S –}JÝ®U–løib¡ Ž<—Ò¬«×dL"¿ÎÓJ¯{×o-h>þ+òûÅÓƒH°žöAjW‘rR)ðr\ù>ègÏ¢ô3L¶sªcDPFóE Ô#*k¶,ö+jlwF¿ÁxrbßÑÈŒÁÏLF%JPçeN¬$”æR6Cñõ'Î)°\ª2’m®MÏnº¢-ûÀн:çຠyÒ3›Ùê¸vĺÔ܇ĈÚ&ðÕvWy{Æ~Ó!ªvú¯F´ zØwñzÍþW"œü„Û[´BxÝ9•ù-v•ï½&ÀM°èC­?Po¢ômmÛU–†`ÊÅÉÎÈ9\j“}sÌØ[¨Ã¬]«BƒyQаk-ë=’$‡“JìÆ@ ? Ï~ G/bväö¬AÀØÄ 78:ÌÚáwŽ÷وɜÂÂN0`Õ³¨®‡½¬¸~â^ÄDgçú›ˆäsÚ pé·˜Ã_Üpn(5-†Ê{Ôà–FRnfŠöµŽ-ÌýJ¿ŽVQMÄR×xh©’7¸0Š=-” NcªjÐÌ#(««iH”p'Ò! 3ä±ï/í8ÑÐ;Sâ¯(Üë|Œs|è3jÁÏ4­œ[¢,e¤ÇOź{eíáê3`\„%üˆ¤ æ³yXrL½/V e£s@ÛèÂÍ}ÊÉmcþÀÿë­ßiu€—¥ry1õÙÄðˆ9ˆ©fâ§RŸ³‘Lq,1ÑA2ïˆÆ,)2±ÄŒiMµöKä£4VÍ`°”j"»À·Ì|Á«ÔŽE¤Hž Ì½­çò“y¢pFTâ@Ù“)—gÞ‘hŽÐõ'‡ ië||þ1Y*÷NU‹ÝÜ­–{íhøË›^ÿ¦©ÞÖ8Ô¨í[„YiëÍË’¬+Ç"EM[/6€&àCJîtáóƒÛ4¯«æ±¡z^ê/j“ðÉg8Sݲ¾N#Ý• oä+vp6,žéME‹ÖªE0À³}Ú`ìE@ !{X[X¥á‹nç›·2v9Šˆ5óšŸ=v”]ŽÆÞ7¤ÒÛ·²H5“b2¤A-x?N¤yü»(éò¼š Þ±M¹6ÒîD™Ü *}ãÇKÆÉ` ضBÁbH‘Æqœ1-ðÈ#Õ›@ñiÈËqU›áŸQUi¼Ê¹ Ãýç[ßö ?;ÅÈ&7 ½¥Ê< ³6c·&ÐåFÀ·¹ø¤Ô…‡ážãå:µvªoäãIA‘²÷Bmf¸)0\Ó¬h`^ò^PÝ(#ÙÅœ’ü ‹?žáæ2mc´ò…óêa¤à˜™Çb”¿Ö¸ÆEÇ!ÐÂx§Éb•¦ü.^ŽTJ(¯Ëh|¬Ù€[>.M? 3î%.ê{¤jxê‘$éûh`'7Ðóæ’$ %"{ÿ‰?µ^;3r¦3±ß6?%mä$lbe‰^ëÖf³¯22'ú>ûèМŸküуp~*.䯿‹½° ŸeA3ØÇFýG©7BÃñ6â<%5„þOSDe1Þ=Žªš›´;¯.9Âd˸»$l0¨Õ¤r¹¾ÞÆÐ/ecÅÆÔùõ·rÇpÕ¾×ìcꟳ¿#òÆàŒu6Ä”ö¸Îe/Ï8znT }õd"ÙÇ~Ëë>) ñ\ ·ñLC¡š€³‰íÅ_}‚=þÿð×¶âeçq-ž´¦uЇdäÓ"´ÍØ îæSa&ɹիC °1Çs"–hs6m=Ô?ÿWBe‡5i÷ؿʬƒrŠ D^å˶R:ÚÒzS6.ÉÄwvOñÂÓhäsh. ŽNMÅOÖ¯âÛ¦‡otg_4cy«iLÓÆ§YÔU®o}‹ˆ È5ãçå vÆ}zZiç-Òqò1«Bd^ЇMõ ­ZVü¶þ@ìY{­!€ááðóÙ›Þw_†3G)ÛF”jžôÚÊR˜ã᧦Le”¾¿]H[ÂM2üiZ¤¿gA-ôøôIdù”ZJi«ÞQü÷³Ö‡¤jk’¢Â‹ 8b:Üvã;èi°Â¯lõÆIÁÏßp•“¬KH¸äýHªê®©/†û•(pA–Ìú¿>ü¬Ð¡ª³ú«Ye/®Îš/úA7©$wó¼S{\¡z)ÛÉ$O°WÙFBgG†lŸÏLØÐ ki|˜êãóÒ¦Ú»·­C"UX"±ë÷øXú©8jÉž& B5™p!#¹?ì'Ý”­hì¾vd`¢Õ =¿2ÚúÉF1Gëâ·µ’g/2}Ê~¦doØ‚Z¤ÍÜÜÐGÉ4WžÌr¡çÐfØ[ËÓº›rsºvøLh<·ÖH}Í9Èꆙ t:–¶qƒ Šìµ—0F“P#‰3Œ›×žÈ7H¬Ðœ‹'¦·Á>ä7PÑ‹—™0` jLèhd¢/5žýö÷˜=PoÐNáw’¯sx=1œß2ÄÌjy%2”à±êOöTbћӊøG>¤mÎ?DÒ‹Éök£ÇÏ´y´æp#]/á €©naÔ.É/K¼O󢪿’[ïZ—Œ³|Άm]j½vgí1{±øÁ’椄7œ’<Úx”™?0öþºè´,µ_2´ÿǨ=¡ Ñþ{ ²ùéµ\µé#J3Ƶ-gñÌ»Aïì%H)63:º)I¼”/j¯¿Â"›`6Š!u€áÇcEîX}}Òù }ÆPÜWd¡àò­J`üÔ¯·„’R0†ãÿ£9é~æîÌ ì4ßÙôl$’¤eE+o›Ï¨N=ëxðû0À<¦ÁóŸ!W; þ3hñw¸âß—üV»õBk„b-ßÎ|fâUYÚ0)H'tdÚ˜yÀô»¼ŠábÓá™ç¾ # mͪµhl{ÑÔüð{Š+z“ 3d9žÖµk ”¯ †ù‹!s ´ê.<µ«ÈæÜÔX¨·ik2fЗ>î„øR,Û ÁjCí?&¢¹ks)î/4º„‚²yž£Pä©kq²‰raÒtÄÍÉD¦w¤,ï7»Þ¨6,Ï?öÄÁ˜™#lÑv¬hAa£p¯…›`÷ð%À~hBá]Kü@á úÀjØJ?ä.MÔùÞàC´fu)~gx#¡ž mÕž«x‹‡Ú€ì‚sªb Õ›’n§¾< ð^”g…[+á³JM¤ %Ú2TɇÎyÍd2çõ׫øþªiÓ ?QÇ2Nö³ûä´©£ NVSª¾¹\RV]BDÊãorU]v\æÑ!†”•ÄAñþð«z"î)*}X¯.Rù/Ÿ è¯oÉú‰"Í’šJå kD•2.‚7TŸóÄÈEíÿ ÷Îo¼4´EÔì7üPëö{o&‡ý5´˜ÅçRbÑ =TíügÒóI²WU|¨@ân~3B’zV*>ÃC¿Û³*½G0 ©Œ¹ˆ¾æ¡qßF'Z³E%MŽÇc/»Ù—”¬¤n³mÄ) ˦€qpm} ’‰íŸ_½‡bµÔØšš“È#}*‚íÇWäNŠX£Õ—!IV‘ö‰…ñ±A¡Í72áµ´ ËÁÙ,6Cjn٠̢¬§Ô„£Yç±~”L踖~Á œþ‰êq1ãÇy4û0=CA?Å:Ê\s™–!¾ôÓwì*G 9àvF%—Ù:Õ±7MÅx~_+¼md¤ŸeW_.Ö¢s( ‰ú÷š=~ÝF ˆ¦…öôgÂõYœ¦åÛßÞ],@N˜r¸=–¥3´‘Ãsê1âN‘Íò„á¸3çgÆ)éXðBBô׌šr ÂM7OšÌI ‰f¬{¼=æ×isÔÕ¶ÚG ›ÛeÜV‘ DF·N -øãÈ7‘8£³ÀÔ¸Œí¸Ñzupª^ÅK“.¬.kàM"ôZÑͺ×WlûåYÎ6ºÏUŽh‡Öo®œœŒK/³P÷b[ÙŽ°{»J'&ÁX#²ƒ0éäï‚7L³¸àË´+Q^ÃÛߌ0xdé::•ùôÇ¡¿{3?á%n›PÃýŒ‘ ‚;÷¹3«,$·­ÔÊj÷òœAf qGM–ÌDž"mªJ2[(fR{)öšPnæÿÁÞwë³}„›oÃÓ‚ðV~Êá_Qꃔ’§Öìâóâ^`Ôf4qø§þ‚›('ëœPô<W®Ë``_œ!ÆWŒ {ª€`ëÙþÆ}Úz/‘„ÔL:ë‰=Á'›œ®T!^O0ŒB\ð@,müF{ò˜Ï}5SR15AU[„‡P¿`Ý|·´IØ€ÝÞ¤`Ö'» o²šJao´dÑÔ7¹0z?8Äï±23Ò—Ó†6ßë;¸d7Db’šIs„£Âd”ÞúBt`éÒ®8ín]f#@ÈóùE!Ö}§PR"ºÑÒïNÏéý¡1~z_úï?ùœ\OûH{Ä ÃF¯¡†•Ë{;R¨/²c­éë<{Fº§†*ö!¼è©.ëv…SŸÐK‹$­&Î,JŽ"lõ²^¢Ü}y±d4°–ލkbi‹K²o¾@rF$bÙ.»ü§ü™ë™ñùpÍØØñd+,%Å7#T-'äñîEvÒ–Ÿ@ 8Wî¦I]pY® ch¨ÙUñëY¦$ ˜úñÑÁÂóà»/ÉzðÝ.Žƒü¿Bíè?×<ø‚ò µ­çИì»BIŸ9i¿ÁAps#ÿÛ„ç¼xÍo›Ý‡oo'£Šú7³æQ!šZƒ$¶ØŸÜÑW] 0ƒfg¹ ¹mµY]ï/í8ÒŠÆž]ý-«åœ}¯žø>¢rû¹Ñ™Zmbª_â“•“tŽâ#ÌCàs¦o®ðIÚÇA…JHøª‚QaV “`$…xUûÜéçÎ=ì‹a˨µ.F!,w‡›ÿ™ ¥ÁÔùJ±x»áøg"¼ji8(¤1+mž)ðÉ¢Ÿ‹®8ùñ9Esx6µÞ ï!_lMÂPgŠ…qQªè“y@Ý©×Ó4CmHbáeg%x~ËÈ«xP-ZYô=¿+ƒ/ý¬‘4€¾ +œ‘¶¯qΛådÚÊ(Õ8€¤·ˆ3&k„`‹·K¾¢D‡›NËÇh]X^è<£¶®¡åYm”ä.ÅÞ£b„ò[j²ÁMâoÚù¤àÆ~+9KJvnðÇéSþ™žø^4´öË@ý|L'8 O9Ù©³þÔ8-(8q\lAö–$kœ†æÓ‹5‹ó¯’2ʪWÖ[ME#vGUí(hîåe\&yãÕŽ>AÅ8äÀ£º·¯¦ë•n(Îó·»ñSE#ªóÚÆ¬ïÙP4€Mádr¨²ú¤´¦ÃOMnùé&ª—Æg‰l%5ÜVÈæ¥ÛLú7#Zc#­Ýû—aw±xÇD™¢}„cæÁ•ýÀz% °!wõB?±¯åc®Ð¬ÑJròÔò`˜ÂSÉÕ§:¦VhZPxǬ]àdÃO5|gTs] _ëÆ+¾“0r½2ÅUΘÀWØT>Xá@ÎZ ÓͶÞ-ãXD9ÄÔ=™~½¾–OZ•\\jâS)ÜSÑÊà#ÉYìîÃò,uûž¥£öçFÉ<Üa¥z>8~4Í6¼™ój¬_0Ù¿ 2ÍÕM\¬Aõ"ÕÛ ~Ñ#‹È š b¢/5´àl>\Þ0&ÕD>ZËg\×Á(P^IwÓx c”^?a,Ú´ ÉP…æœ""êþ¤äG5_åï‡ÿ£ÐÙ$¥ÍJ÷Æô߬¿˜?¶ã°„w½.bÑñ6Æ}í¡a?ÑgÆÙF9>=0Àƒ?Êh–ì¹od<‡\ÌZ[0Û98/Ò-#›áí«Q‚ïT¯q%¸t”5Po‹¡Ï¨ÎB†ÈÙ[>÷öpà‡ìæ 0Ñž©á”ØÅE|½`KlŠ—?`m¹óš.¶„ŠÝs®ëÜ>JTú\¿¶´! ¸²%ísì”·æ˜5ØÓl†æbo®m4 >w=èdÖƒˆƒg±›ºhOC´Ý“ÚÜeZŒ¹k6ÆàrÌ.GÃ0m£y°OKg—eö0ùå·lIÇ ö’1 -uÒ}€ÕaiR§k ñ)ôÅfFqˆâÆ—4R_ðˆ ¨×ü MÆ…±Û FHr<1÷×cšÊx†Da2ë’Êðú(ƒW@Mä ›D×`:Í30à4 ¥aÊN~Ar¦ÊÛ†k8s¹u¦­Ó Ê»¢Ž7‡%nzù§ÞŒyÕOG’07óÁ•èº?®"ö¹Ÿæ –†;¬Ð¸µ¥€÷¯¿×x=t¥åöPS/¢ùµJ”Gï/]3󵹫‚}‹î¢ºA}Ëj ÎtÀ0^J"ÖûPløB-Ê|“"qMŠ ]¡ä¹È:A¡<Òn»´ŒŸ ^7Zº›ÛŽÆßŒìD¥¡†uTÈS¨,1Þ%¡Ól.cª˜™æü‘ÊЀrpØs0í"%¶Ùw„Þß\¯EèöÔBÈÿ+B*2©üÕcë Uð, Ìæ:b_ÙÍ÷d–“Ñ´ÎŽ‰Ë,´È}eu=¤(Gyk…ŽÏòè(yNý!þÒ‰Ä|&h“ÑÏç$GS1ÏJK‘eÏdƒœ Q¬17žþ¢jÐe±‡NƵþ"~µOsC…Ñq`—3“p²Wöå.X7¥è\%)i5k-K=äSši5“q]ä…¯„[nèr]ß œ~SË3€ÀCž¹ ›$¡ÑIÉlô¹äÓéÓá ÿ·¼äÿäݯ’êÛbFMŽÖþ†\1í® d§Ø:G•õL&– Áww3éÄÉßósèýŒ†çUžBc×÷uLÅî¢JšEàxøñbgPçKO/ÖR•*&úš¢£;É瀟ʶMÕí©¤¤º£$L}!€‡ÅÙ9ld~zI I7è8 k©9ŠÞDól9–&¤[ º|¥‚ŠW&#lM®?Ú¬|m€ùbZ>ÊØÂ6“YRØŽ.4Ië¹ô[+É‚È5ŽO­g¤Hä;Æ2:b1#'€´){vÅŠ¼OàS“ «äòÆ<È2'H¸›=f}?‹¶q‘æ´ž¨Š Åtlmü—Z³û?ųÉì¥cê„2¦O‡ë·ÄÑ$ïÒØhŠÞ“S]Ñ™Q΀pøx¡”‰e% 0ô7Å2ûûöVH!pbcS¦ñ0ÖšÐú ýOÌ™âK¾w£ 'ч;/ZjØw ÙVÒå'Ïë’¼2Ÿ¸JJÖ 5 伞‘°mYR™2ŠÉñ2ͶŠBkøÇ7±oEÌ«®ëÝ8Ôhù£U¼¼~.Ïœ¡Ò*-*||¼…tã侕”!“Õšqg“/‰¦²5_?¬/nÏ1ËX´ûcíF+«ýŠ}â½û;ß#¢›m¤‹Å.Fó’0ÆÀáŽÿ•6sü"Ú× %®0-FÝ/zdé3ΆB'Ϋæ¥Î1é\XóR dBM„öäiy®Ðd×Yp®m þvÕ&õÞÇn!Xà»U´ÞEo8ûµY#¸µŸã#a¶ŒT¨Ë$)Õ~bè–'õÃXêÂo³Q6Ä·²µ•Ó³’Ü%¦2 P{Þ?ÚȺÞ8c\s¦ø/,ß'ø¬Ñ&†ÃžCtÃÁ=—s(•òÊÁÇ H*7ÞàF7>á÷×{ŒMMáïÉXD,‚ÚªB§Kµ§¼öÜT=z8ƒ˜çüëhëÙî'+4*vUŸdѾuXñb<–i |ku2N¬®”#Á‹0Xë!ô-ÿ¿9=7*ƒÛçž1ü(ÖZ0ˆbç%H©)•û7š;vÃ’ö[Kêìðø¬™ºeÞ˜ï¬@ÅëÍ:šÙ¨HaÃïÍmÎÏr·ŸBÅŽ‘¾Óý‚¦M€,°ŸƒQ6/ÒÜ!<¯§9œ£/¹š/w|J唦vÚç­¶o "ŽŸoQA0ä°LŸÄN9ÛM‰“Y^›¤ïS¯½°ì!!T !³O›¢Ntû_êÊÚþl ÒU‘(ê>Ç-rj8¥t†éÌôÃÚqÁ‰Êʈɜ¶ó¯ Æê]òH(Ï{ÁsŒÞûü¿oŠ÷'MUsQð$Fs0ûÚÄ1qÆ 2‚@öÅÜ™©q­_X'9$Âü­À‘[%¥s„ §—ˆÄ´q]z»P¸:ék¯‚ýÿÓÿåÉc€ Ó€[ tŸçìÙÒß$NqÖÜÐÇílaÝž²UÕÔIgó òï×("‹Åwè{ž…|ºv4 ”ÑLeBÿ]êÄA™“hiŒÞÊÔpÉ5˜4é÷—¼dP¡Ì…a4ª¦æjöXÔð=ƒÂfÿâÁpä‹‚ íRN»ß.f5œ€åE¹wù5¢z4Üm2¹³&Ÿß©ˆ:Ë8tMwáïžíZ™Ëÿ† 4‰ÙO«§XÌ5ÚT¡›áœRøY¦D“­ùÖ·7ÃÍ–£©HE.Q²™‰ÝcÇîp5/ý @Ò²¤½ù€ˆÊÎI5ËxÒÂÚ>Òà˼ŸIÈ^[žˆ™WÔoñÄØ‹,¶—È|V@Þ2×$öXЫÙÂ^i e²³F„®ò~ô’öU/±¿Ù]]¤@@4±ÜAÛ·eÒ½ìrúÍ¿§@t%'ê®hŠGlŒË|[„™Š5ÃpÁÝZßd}h¶qéS]|ÎÖ'ÔÐx?O½Mšš¦òy³1¤i¢1:Þ ¢/í²4Ó¸ê±aÅ}«^ë‹ÊìóÐ]E¿RögE²à^a~aˆù¢™ +š¨ï§|º|üx«.N‡M]ù@5šÍ¶÷•h›Yw½ ÞºÎïE@í›®¾­Q<`ó=]Ø;yͲ{xS)®‘DÒ Gaâέô&Ûµp%(|…& ÌëVJå +§ÄŠSÄ)R®ïif×âIW<8,Å÷¥Çàfû®À ¡ÇbM&ñÃ÷?/à™y[ ðÌæ»Ý8w3þ(-+•·{@SÑ$¿˜7sµõœ\dÅjïE£W5K¢>X耘ԥȅ6²ó‘ç«ÿÌßb—{—éû’ŽÔ´˜`óúýcøÑ°í;ç¶íöMý*á¯QqùÞ@7ú_¸¢EPj²¡ï¤" U:ç/Ö÷½ˆò·ÖP_šÖó§rfí4Ì¿úÞŸ8¨¬w¶ ¢‘Nk‚3+¢¯Ås¥/>ù¸¡]Xö6ƒÊR"ÄÞ­¬ZÜýá;¾£på7šu]H"ßÎXj d:™Â$ɬî¾`ˆž—~={%SJ%€ó”_W/ŠÂ£‰Šzô­6ŽÐnc£fröe¼cœZLJ¹{Àoš$äô.²5dtXÇ¢¢¨y®^¾ø í0Õ3­wÒ–x¥îI±ö0FMÔPvÙwX¬ÑæpðSà•}ǃ^ÚoÇ"ëÆô@±Zt{mc…í/tÖ +y†0üÝÌÉt[ñÓ Ý Ÿ/ÙTqg¦–d\ ëÜ„r2Û™™Æˆˆ:Pf¸»7Á9<Ùv ™b=Å„ ϾÈñ_ÞÅ@•/sc¡vXÀ$07CCº˜X¢Æà·<¥Ñyk™Rs’tpdS¤ýSz«aIxXö°ÀÿPå‘HâÏT|Jé«üiÍ ¹¢¥«+¥FÌyíé}UA*¨~8XLH¥„`z}ðá4a XN¢¹ÒM3ôù N +Ó2[¬ä#ëã$±’Ê(r¬\q­™ÀEbdkWL:²å'(ƒ âà c–;bCä“hÍ ”xœý¤ñ¸°’°þlÚ KÊ;)nµ§ÄdÎJåÙ7œ ›ª˜¬’÷‰Zþi*S•Ö=Èx½9¦ÕÉÛl¼iBIN·®ŽCbXfÎEƔԤLáØÁV÷[% ß(qÌjA Š}ç·¤…¸QÚË)!¾;CÊ·:“„Y¹xPÒÌÐÖD&í¸)ì1M¶W­Ù(¹zJµ-‡·¹?WvÜR%…`ŠB8ÌšÀíWwáª_½ÑüÑrdŽæýƒxN^í½›ë'‹t²Ø³E°é”íl-œˆæ„º‘›»V–K¯[C€‚øØû”,ín²oœs^f,Q&˜Úq5êb^ a<•¶°Ã\æhðªÁbVoê-4ü!«-]ÜÇÖd²ÈÝ@Ó„ù%†t åé¶EÌ‘ÓÁZtzÄQ0EÊÚi¸CÂâ쥘‹mñ¯nZŸ dž©àm8n*»aNÈ#.MÄÛì¨.Š‘®GÚ /çø É×ðÒ–éØ:iþk(´ðÃ!hYw¹qí• } ÙìP• ¢ 9¾7oõ÷8W*"âÒv†ùŸ)<Ÿ p“Å_ŽˆëEC…GqÖV®Ô“ctU~Sûg¿þç€êé\¿¶™‰ía ¡&X@k¯y8§€PRÇI[gÞší:†ß >X€l©6§-lQÛ_A=#¯9ü ÈBbSä{êJ¨ÊlËU¶ÈûDAé©!AÞ€ÊâaVˆöÓ©qæÞ&@ª¨–ñØ'lë‘ÔÍËækZÅö›YEJܦ܀JA\ðpÝD|–ŽV¹tñIè´—ÖV¡d‰Y5¸½Êw#^ûùßR•ßdUØvÝ7+HT1³ ìH|®”—hJG*êJOðgÙó€ºo»Õ îѲâ2‘5ë#64±ÿ¥oÏ•E8ËצpŠÂúBÑ–‘ü{;¼ó¸ò§=Ðû}?¾éLÛÊK=Ü2¹ðäÊa.%vv„‰qW¼!04úã‘Ü[wÂgc…vÇ! >VU\Ï*2™8¸ "Ö回úS³¬b”Z])zH’V€î/©aVzÀ_'‘Çή6&t“ébß™>Õšãp±tXDD« ,•S‡WÊ59‡óe“b9'èò(Ù¥üX—[*Rdxšž ºB7çSíKQ}B‡y‚ŒNá)` æ7˜Æê *Æb2:|À‚¯¨¬Bå<³-m?7IŠžqb·lŸ™—”†¹-Ñï0Àÿ—€—5ź*ËV9HV·À̲šSˆdeEè¤L¬ßÙ¤˜ï–«ŠPüzF†®*è» ±Út¦ Nýd>Jzÿ?ý \Û {h_rF›Ï‘Øçq&áx­&Ïèö’У\x†¯"M3gZõ¢(8ÂÃý;ÜbhèiìŒôøg²Ê(Gó¨2¨ºŠ,™ÅÞ`z›ÕþR•Óå÷çbݧeá×qÕ·ùíxçb\.”GÓ–¯ Ðõ‘ì[÷‰ÝÝ6ÕˆÖƒZ®F_ÖÓÄ Ðªqjq eôÛìõ|7e¹)g Ã:Å´LÌJ*I s3!°FJÞCŠ UÅ-kºT?‹:¸ 2´ ôíÐú®­®ºäDaÒg¹«èÚh¨œËQ—ÑB½fÁÆ} ê J¦Ã¨WÊÓ¬àÎI#‡ô¥º¥ò¦)¥úÏŠ Ø ¤8èÎLJ¨“øÒVk «ç¶bkÚ¥ûþe[‚‡¸€õúXÖΣ;9õs"Ü\hòضVè,O¾ÕçR­Èø§ggëe](HŒ¸nÊ«~7| %¾ÇAjb†é¨¦ùõ›ZÛéåÂHe¹ú`JY†Ä&1HS©!Aµ[wò^¤ç?–H d»­SI[—4v²%¯‚¨÷[¢“ï©x¥Ÿ.¯µvz/NËIjµ[ë¡‚*BNd™˜¯#}D –¢í‹QÍKɼFŠÑë`.dòë2ñ·cßœøè ³²¿J/:ƒ¢õG!À?«qîQbŽ¡—=äoè;ÖÃXŒÓÍÞzJº•l%ú[ôYHãj‘”l.°·à{Å÷L`M£}!yÍo h‡ Il÷.Š} ¥íäe^xËëô3†hœôð÷v/s ËÖênDÏ+K™ìíqÇÂÓ*œí‹ŸÈ…ðܤOü»J~ CÅ,‡È÷Ô²ùnT Ca]Ò›‘ƒÃ³”EeÛ—ª1'vÞô÷JE ÁѪ߅\ž7ü+±ª¢e>J㣫:2ºE\ÄÐË®¨‡G홑t/?ŘÇÙL~5°…ˆ<@2sÇ®íˆd)ÈA»lc­P½ô’Ûº5¨¶„aº³šßÌe$Dþ½gؼ6GJŽ|€öã첩ׄ*!£k&%ç t•ÈS¥õYÊy6$ß$ªäo†Zp#‚%öÉBÃŽâð§Lx2zá(WZQ³ÊÒ&Úe¨ÊŽ”t„ŠÆ%\”1d®:¨î?ݦ³ lÓ Lä`ò¢_fá¶rȘòíîáeøqÚ= ݾת-#ÆFŒxªÔˆ­aÊ©-öˆ?Fï¸J9šÝœ¶Äd°µÕ$˜c [Èî1Ò^TÚKŠ0¤òCr®ˆ{ödl}ÐXŒ,ùÝH…ÚRIÔ¤e’»©ƒ´}â#ü& 5’_­É¡Œ Ô£º·»RF,è + –¾Øà\i£û!Q´PÀ31z#6m®ÛLľ’À$uS7ûÌÑòX<$‘’KRm%«–/(9Eæâ $·éH壯|&gœÎâ—öñÌVUí«?P^)ðà˜ÕHNû_ôE?Ò†O& Þ]}št3úyT›{Û['ª0š÷Åd¶iÔ&À¥lC¢¾§Ü ýL¹i1kíäAý®g‰:uØÃe-4&éÉL…?‚ªòIªtùz/è1›œ¯4…3|‹GÉñ+g îÞu¯Û#Ðþ¢õfYg¥ ´ï»S–ömN[Üãñ;=ã_¦qðF”ÿþIލ¿_²G±Ý@ñ¯q;%?µYÍwŸí‘‹!D^£ ;¶ÕFUlrÊÓ+ªÜ:À \@ü]«-ý–t&‘ŠXtVCjò½¸~þ“¿c¼–IKÆó8Y´½Ø%ðxzê#îŸßU…á³ÿ8ùÖûqn9'ÞýÉ!š¸ž€ž—ðd…J99_ÌÜ2MÅ $Ÿr“­ae †Ãœ5iHqƒ98¢¼[ÝQ¹vXº†„nhVLæÇ°g:[ÝòÇ"Øã·¡ãtNýjy{•€6Mªs˜P{0NÓÞ 5õn>çåŸVÌ8ÍOÒjŠŠg‡*Ïß•qÁœÛ(8|s+Zµ’»-[J&…ÕY W_à$¥M¡†¥I0¦Z̆jcdD¨›—DEEQæ,ÀÄ©‚âãK7bŽRx½9ÛÙPèð4Ñ0íÎÌ16`µú*í|­З@‹áœP6lËËbȇt-{I•ÍÉ?9k be´„Z.(IøÛó9Jd‹i£8á4—æþ¦õÖj¬4ŒM°ÆS]b¯ÿ¼zN.°×Rš- Òʦj¿-Dœ?È4ÊæÆ~³Ñ™‚Aøiã ø“&— `Ûšõ —ËS7Pq¶5üÚuvºiL¹c’ïa3  %¨¤.×`Èõ«º>:H›ç‚Šç¥ ñXd•¢¥ŽYXõåÚGÂã2Í0«Î?{E[IèD}²³´×†Ø_Ž>¨ÇÑ'ÉM‹ù¢PØujæO¡K÷¨­ƒ×™W˜©± ½µ->ýSlX7Ä™€>³èFüÇàõ(®SÉÐû'GEáËbŸáìäªaAè4¡œ_ÖËÇÀ¶;ý¾î%é¸TÕ­p‡cº÷·õÏ٠݇qZqfB„i˜íQ5Êà3Ÿ©'%˜J–mqˆŽü=9m¨1W 3äÇûñeê‘GúßÁDÙ¯7ÔØt<9³H1áˆÙÓÂB¹Ç|‰º¡/w'4˜ÄŒ‚ÿl—S5#xÄp³öKAYN"¹õCäÃ3Þ¶rd¯åÇ]@we/h4’·! lñAB5É>qÞ.Í[ÓȸPO²òí„´à>;0#+п°;Á@}àˆÈ­ü¬(=ÉÑFœn•Êõ(¼[½¯Ý&”KÀÞsí¢i,î§wkDŽS ErÝËÞ Ô"/Õ–<-}j×ÓȵãrÌIÈ’e ¿gg„[?§Ýè±­CVÈÀ@È.õÛ|¼d³/¯Œ‘ã¬ù=@ø;qvaè|léDš·£vŒ‚£Ä:ƒËãÎvÈ+³Ø÷À^ ¨¨ic—Wµ­¬5‚\ÖàZžˆö®=W®_èЃDÔ%€mV?wª¢!QUPwÒ6 üCy…‘¥ µÓIdßX´ÁØÄ¾bâ67®ç[<‚°p6[€‚¯f¹oW†Ù=Yªha‚á.¡*oRBY‰c\1™7múœPg&´]B~t²u·›D-÷…TL-yòTÈd&Ž¢z¿'kè-ŽSЧ´öš²Y×  ìŒ8³A~¤î¾y¤å0è£×‚ý Ǹ.³Ì/[î EгeçQ·¼Áb&WqgÙšTHiìÂîö˜$®ß‘WX´'&ÍÞìÜø¶éòÍA|]eŒL²’L l`¨ü?fiRmø‰RF«GBr—<'ÈôõwŽ‘72O¹CDQï ÍtŒÈ‡2~é*ç=Êy?“éÖ=(1ùœú ¯6œqì~ˆ–½ÔݸôgÑ¥tªäo™ð-aëèwYú…OèèŸÖÍŒÜÍ¢º„‹¨ÈË’+šï_”i¿6Ž¢ö¢FÒy$Á‘=ÔzŽ*¨@€b"iËJJåÈym²` …®!ð0j-£Ìo]H>Gãkš F¯"Ð`Vþ´8«BP[ ‹ÆþŸ/6¬+ªà'âÿIôEã³MÖÃ#¬> ýïûøç0úYï¦rydM#Àè•bDïÓ‘Û ,ô¡IWþ5iv)À%,(‡1µolU`6ã¹äF&—-y,/IÊ8 ´ü_‡±ï'Ãç×}Ô^CÞÚ7ž:|3PÆ#fóŽ É_ëv‹’J Õõbƒ†£ÿ•ªf²ýªÙšÒâ}ºÞ¶Á®„Ü’üμkÓ"r%ýf*]–Èo0îeÌÆ¾ ¾—~¼Ã¼înî=6ÞÛÍõÄè($¢Ù$™;¹_/Éa¸{dé÷ílX&VÀ§n?µlÏ·aÆÃîvheï Æø‰å£ÌߥkYý D‰¡2Ú(’•fý¢÷®†sÄ!€å¦.¡ÎUx i› ¨N QòÏå徑Æ!]%¿CI¥¤­¶ý(î~š`“í¯8@a¨> ²ãѰzU õùQfe$6P+íIFmº¿5´„vPµTXÁ"–~^„é´º(#èœ5ØÆp-ö_œRüŸ Dã*±@‚©á¨'ãxíñ™GÁnÜYÁÚ±À î:},«'ÇÆçcá±NTeÍ(Iq¹4~7TItagÜLÍ8®`ÊG+ÆÂ2$¨ \1aD¶ÝÄ@‹i‹1@­šVUÿ?Ù» XqÖk÷ëiZiN>ÛØZÃDu‹ÈƒÇJ㟒ŸíÕxN<Û$Qwù\ô0(©€(Jo wÍ5,È“!ѽ«Ÿ‡hô„µh7)ø ¬öØÁ"{3Œ €2B_€EÙñ¹›AÓG}0ÈÅBÙÞh¤£¬ AÈòq¯ƒZMSÖ‘ó€5WGÁ:Ã~Ù%5ÅÓ_½Þ\8¤ÀiWI×ã§n&Þ[ò޵Zxh õ£2ŽÜÅöø‰gI¢©5Ú?ï¥8˜Ñ"ZYÁádˆž¢ÅýÞ3 yx…"*]Œà}ýÚ"ǽɡ‰ÐèôHĆ ßÒêèd÷ºP\§ ×ø´ûsäTÙ~ÚÈ|ùF‹FÊ3.6èP¼+`Tet¢È·-âØ÷«gÌ12ñSá‹ñoz®#Ú¥öG•Š~G[UìéÿÞ:ÉŸ]F®¿£GÐ*)ÜߌnW'JÉ€|S]Cb#×H I+•ú™4Ý-æ6iÅПéªP@êR×¥sç´¤eYudFl³QcO¦×]KÖì¯Ðáx¤7¾qk‰ZPa#É•p‚ ”çîEÿã)â*£»r©B;["K%ß”úk-ûªz"I Ï:q4àT,P±dÓ쿳’‰Â*™}ZÒåV¾SnXk A Ï,y~[ñD -U9¤ôW†/l?´ì¢ˆ9VwÄ\œð—ÚÖþ‘c ßG‰Hÿåª8炃Q–뼓¥¤UÀX˜»[è-3\ÐåÞBÅîàþ)›xéÅëÈѵ¶Ds{EÞ(b¢ºë®Vq¸ÞÙ£Z™KÈ%+¡5È›îgzXEÞÀLú“Ÿ…aô’Lvá?T1л¬yøjì¾f™d2æÿ´sfÀ| ’¾@ jœä pPß5"­x$Ò7*Ô%îŽ?|ò:ÀˆWæÙV±z¥‘íÖÛ,sæ̺B@”­óÈ%#tO´ƒ,EKØ7 D¹éštêнOoµûÙgS ‹Ïø-&3ñ¹¬_wÿy“Óê‘:(äê~‘7¦Ü&ƒ%ðÞv£_»·[&CK Nºã釠¹ð’¯…ØADÔ=7•€jN`ÉdgFq^§‚PÎNîf_í}¬ ÄÜ)Íæ¡?× ú—RÉï-ÝC⬠Xžíd'L%»p£™Ö·Å–Ô÷~ë¤Á’4#¡h¢òÐgMÏþŸçZ”­§nèYÅt,’}Ø ¦bnß3â¿Ý¹q¹·,uÈÁËg˜âøFÕ‘(›V„ý²¤¸@‘é¸3/Jé:= X xÉBÚ Ëô\˜£^bÙ1>@zÎWôÜ:îØYÍ‹Y”èi ( „†[Ø:Ca$&3 ¹Òn^—tíßοb¶¬«×TøN`TÜ–_vÉ]BTt:{3‘?(Ÿdíç¬wÀ_¶JÏZ›´¦—áßM> "`Á²ð€Ï!Ä»ÃCçúW»Œ¾L =„[œ â 5§½Œ¡; ±…HeKJG`œ#I¡´Üf¬¡?ÝI®\¦V²ÂŽ•,ô™‡±ÐÇi¹Ùs 2õßgüG|A˜nb'Ɉ IhM lÞ(>+Ôï!Bk]^@ïÓ;Œ‰ˆ%n‰fî¶Zú–Õ?½Zõ`W;ÍN2G·  JC'¬ü·y$xÓ_Ëg’—H`CÖªÂß&\W±úß÷9Ï’Ð(\!Ý¥ö:@ÑÎr4®'¡#‡ÓGsˆòõiôºÉ;ÎΙw‡¤ÿ¸e§ l*Êo×–Â̳Qc°ÿ¤¤2¬ÆmÝÓ ¾Ùm‡¯î`ù¨oÂ>X!¹Ì^e²5ŸÈÞÀ3£ ìJ¦×v&nÍ~…ýÜò+¬?c'‘wìFžÁ§È[dÅUQ†Ï-mZ1ë½=† `*ù¾ƒ=·©Ks%áû[_Åq*ƒØ ¶=$ÞL$ åì¤i: Ð+Nš£àÀ®‚Þ¤’%¡Í ï_ ÇÖ¡^›çª#%¬¹Ü"R§^é_"™{‹™/Ú¨È7§BbåÔ$‘Ù³ lÉ›uhQ"=œ*µÔ¶;VÂ>ËoÉžàøôðj%áÞ´Œvcö»Iôô›:¸>õ ”Åx}¿§‘ÝÑÊNk&Is¢vG4^;Ÿà7> †»%N‘°­Úî^PÎÔièv)cL‡&r÷;¸*¸@^aò Ï ÍÔ³ ãŸnû\GQˆi\ÊŸS§/Ï”£8UxXÆ\]z9/ãðM ”VBÌÛ­µ—‘zMüo~Óôv²Ñ¥²½·²)¤5 B!UÎŽ &1Ô½ð1˜k F–™[g´ÊȬ±·yIŸm˜ÍÞ|D®è ß±â›sÒ®æ%Ê&‡C$ša„vðgœ8Côp,Ï"àl :©JZL1f!éâ]Êâ¼-‚j¬°%^aˆ‰ÿ4öÚ¶F¥6ý"h˜ÁÆ<‘¿Û’ijÃuÍ£ÌÒ.TMU’!cqsŸ”o‘7§{ÒR-Ð09È‹3¥°EPìb8O·×EøâN‘ n$<²7@*úù/Š’1GÎZ8ãAÙ”FJÄÆ´NÙÝK†bnb‘ò@]tv¯¾¬á¨fgÕSÒÄ)â)dÅßb)ŠLã×Ô š#õ%¾øÔw69>›®k.gäè«GsÂQº·?d}ô@÷ôïݼ¬µä,¥#féѨ-÷<½3-w^whÝßå¤âŠ;[óŒ]8ܿ܉wá N…+’À6‹>³þ“¢¸mÚ¶ ®_,ØÂzSw“4º‘Iu ³ÙÞ]§š½%±¶#‰hÖµœ÷û2²YýÉÖ5^›²Ú®Ry¿ñqœCž£f@à³]åè`?÷EkVG—×ùÙ7MÔnZ» ŒÒoT?y=þ©“×)—up¾2®ð“ç[Ý}šõ“Å1 g±J0›¢nÜ0ãÞŸ˜È\Ú×ø’Šù‡@Ѹh·ãó†•[€³¾šdÓÍò-ê†á/öòˆÿêûBRvyžö‘ÂÚ1ßÌÜÊžÅ/†^ãíˆ%} 4é:T¨™d\æi€Ãì>ŽôÂ&øÉW.×£' !B-FUÜoo|Ø´rRÊM còz… Èݬ'ˆ«p”­þ9ƒ|ŽáÈcû*)¹=ž¦X“$ûLÉ&èûBN×k£¨š¼“ô“7qØúÊ&[„¡>Â:—«ÀŒ"%3ǯèålØŸ …àQË8ã7Z”drqÚÔÕ¼×Îpúë':B­íZ>ås¨…œ óÁÉAŽb jLÇ2Ƽh,]7wÞØ&ÀÀçy’GtÊV>d·ŒUø«Ò¯*U~:Ù“ ”HìëÉm(qÇÙ’BáP4;zF·`¥bÊa–!³$*öï¡Ün¬]ù%È}k¸*é¢s¾£(=4À™Ji7Zí®ÀãAY¥N$:Á¼|#ñš­ùž{ú>1@‘îÔ-0ê±?Ôe;’õ ï—½íœÏƒ×Y1çÿš$"ÈÆ W»$ŽvOÇ!6sKš1Õz~+ê‘àdÖ·çAWM‡¹â*/<ÌVûºº¦Aš}Hñþ×¼Ë2m:v?-¿s’b'–“]™n©¯{Ï‹¤Eç^¥ØºŠÜªH±”Ž•CՊ內“Ýà<d’˜WÔÛ‚bŽÔí¤…ÈîQáÖƒƒ®\Í„ g)yüý|ÈXsZu¶Ä1JJ›£‡þÿÖòƒJ5GR\—¢#O§¼ÂŽj½Ó‚#=à-‹ÑM),þjË>Fä,áYÌz¢¦%(ÓÕ3‡§nà¸e ‰s‹B#;¾ô”ÇšÚ2[î‰þ3“ƒqƒ·EóÛk“Ùîjx–‰mÐó8Òb¿ ÜPÍž†ïõ@à©‚¸C9üÝe&O5qJE¹ŒÑg!© xC²& K×/ 7ÏOÔ’ ŠÐ@­p3èI³lèׇvêñ~Y;C±2çCOn=oLÝ ÙËï=£wÅYï2ºKAˇ9ÛX)‡mwo>³ ƒ˜›Îº¸0ü ÛÎŒ3ù©ƒX¶å‘:a»)'ÐÛ)íQtØvˆÃrCàeŽ®Q`òlžÏí‹«%¿Õ‘ì–šC¤ý‰hfç·×#ÄÙ›çjå¢xtÉ@E„5T¶xG¾h Ó#&Ø ‚Ì"X3eõë)µŸ&«ÖÔÍW!;O”ú ‰³o,ë]Û.eXJFo΂þ3zb< WŽœF¦x,w\rqëâC^Uó]Sa"‹ðÔ€Z§ðbwÎ×·ø•òõ Æ;…Ë^a~î6¢g&ös$4Ù«õJ-â¿çЗ®X¥ÄÞm´U°”‚×þz_„6nÞ„Ÿ®j#ßÚŒâü/Þþ‘¡B[R”z q^v4ûCH¿\Ñböœ0§š¬[Ì›i¹¶v[’¼4GX9–špÃ73¦n^oVûbgtSã÷v;Üñ„;åsÃÜÔdg ¹­ÆV 8v¿áFm}0.z ~Í8c ÀRyݽ¦‚åñû=ˆc'G€bò]£cÛJ¹ZÇ6Ákjê„ÄâÅ_cëb$6 £cáwJ ´«Í„.Å}‹}îý·ei¨¿‡ F£9mì:åq>YÌÁèßPv:‹‡í™ ÉþÎ)øÏ38÷$ÉLÅ©ž1EŠÅ\gWñzâa<1«ùªzÁެþÞ˜~).ôS«®P‘`rè"µ[nžœ£äIE§ÐÀböaøÃé0|O&b—nPß_®z+Zs™ø×+a±Eîë~2:³1Ðÿëe#M©úV›±>ÄR5š\m8ÅÆE}/ëbZåÿƒÖýæE8`ÿëž`N©,Ñĉ 믻º—E Ý:ÓÝ ’s5jÍ“¸£ÃQ’Ƶ‘¨"âÇ'úf•àÖrø®þ45­˜O süý ¯J!/H½Ñ›¾87‡Éòˆ…žºy+N¿}*ù¹T ½¶ÖùK7)ß Ñ”y”›Nfî[('yþ÷óÒj¼iÒA9š¤š2S“†ÔX ¬VÆf2Œ—ÜŠq D9À¥ ®Œ£Iëªìf<€Yƒ`h íŸ ÷hÓJõda×à×#PL]‹¬HZŒŠ´îßç%lÏ9ªð¡ÖIBrúôzê(yoÀoüš·WO3¨õ¦ïÖ¹òuÑ´nkVù{ &Túßü‚|Ü•yvŸ_r'v&ò<*îFèWp$½ºÊQH‚’Î%Þ“ÆBÆMt`…†ÃÓE—Z}Èx.êA |´6QC•éßöƒ_]ÎhÑÍzél ¿ÓpûŠÑÚå³Ïä.8à¹ùö™>\è²Ï6OƒÑ˜´H¢4töù¢Ó¨ÕãƒòµNÒ}gÞ£©h.gpø;Ãk”¥Ì;!v±™sÐ)rªX‘=7¾ïR.DϺúI-¾¼\&d ¯Î^Ö½w½v¸¤~ùÚ[ÑFHDÚ—„4 x+&/ –Àa©ïdî^×ѻ껟F¿#ŠÅ©ë7¨R±„ý(ÍŸç¢Ä¼‰ñõð:oóGrwÓ‹öب@ºkÖ,潘à:³w]*Y¼—ß_Š“'@$TÑÁfªÌ8ý˜ø ²ÿ@O#r—KҚư}¥Î]û+Ä9ÖH¢¦‰ò§Wïuü3E&º{n:\Y‘#׫=¸îµIïhU¨!ÞÍ)«Ì~¾n; PYòËÁAÃ\W\õÔf©#J~¯OˆÕ €Z€Ìà v®û¾“~‰’GÎB¢¸¬8|šÖü4X+@zH é×¹¸`<Ǧ­ÔXZ9¿¡ýXXh® †å׋(M™ÀØó¹ãÕcß;>ß°P^t£•©¹á¦îÒ¬¢ †0}cLs´ XžZ 9:ÞŽ—;êsß¿ííÛ›õ0ò2‚ó¡Q)ÎÎ^,Óf¼¤ú‚JÈÇeÓ7€—ŠeÄÒ!. œ³uÀÞÈëÝÊ.óŽ%Îì­Ï±UO¥O †LÃ²Ý¿Ú y+ úä݇¶‰‚¿vãrm˜ãËiX@þtð9ê¦èߦ6hƒ>(þ=|“'þ8¢N`E³»fG°´ˆ×S!`nÚë>9çs2üÞ`RŠ#•NQâ!è e"Tµò©•n¼šEÞàb½Ø<ö¼où[]Á |¢að5=qän Ú ØH…S|ž¿‡ŒmÓ†,~Ü®žíìDÒäc+¨+&]Y-ª± R,‡M©¿5"~D5©l¡Š)høs0yç-õxòèr[:k2äÙ´—ùb"u[9 ±™i®ŒB —àºbûûÖxS°¥G%aÞäÉNŽ™T·*²@3Œ*¾sW¸ÊÕ>zã¡påìÔ/íVêþã‡Cì®&©‘†(­¬â¡:6Ù²çP™Xsc®‰…Oô Èõ S†ÿ dÎX`…Fb¤˜ k” ØCv†aà%0^±3ž¤¨=Ž´ït@ÁšfP–[*öLÊÙ'G!÷\ ÖUƒ5nf#¶ ΋oðu j¹!ÁFê EP)Ö0Áyp>„}fÎódÀôúS:ƒÿUo.é59 ˜Äؽø¼';^ƒþ¨kUŸ‚†]QyÑ€3¬‹Õ+.júǂԢœº‰‘ÅlóO»a¦•¢šÍ@›½õÉ÷œ¯9ĦÛh±}6ãngßÑ-h )”,Táž!‘¾™¯nÙÜÒûÜcß-¥ÝKxT—EãÐM®L*Ñi6Ç» _ª÷è׈Ä7HÔÜ8X™"9X(Æ?áŸÕQËr©úÖ š\~¼‡pÎó|.Åa¾Ù‹À   XgYAC¦I¢æ—_$¸d1äÆù0âP·µ†`S0Bï?v<›ÿBxÙåËऑ´Hï%´ss=Qk­:vÌeá]íxWœ”Àýþc­?)ƒ‡]æ³pzÛÙ^¬æöYµÙ-B8ïTï,¿Ù¨z¬QÅäi¾÷æú™¹­’«ï¸J;ûûj {ú–d0Üôúr_­Ü»:»/¼ïy+»lÀÛ•–Ø€çW±ÛŒóQgJ zÅ>ˆÞ§º ‰5u¯Æzh ¬s”Änàb†@Œ¡u„¡KË|¼Ÿ0Ô¶¶¸D¾‘qïÞZ„¯•­z£®e3ÞgFývµ::ù=òˆ¹v ­Z «Ã“ÚÝãà¹PN˜/%Ê(ˆŠS™í†,ÈÆZðqZëä=Ã)دh‹¾™ó™ÅhJ¢‰î¢qXùÛÓ=âgÖTé¿!°•d³S¹]ÙN•¢ {…KnË¢!·ç¿¦»£{PäîÁ@‚;}G1L,¸8-`y %iLº$îÝåÖ O¿h²ŽaOeþ‘ró§rw¡ñÓÔTËI&C“ãV©Ž‡•šÝÛœÖ呃 /âUÕ@Ý:ÆÈŽq3"³÷tÇU-Œ°Þ&¸;;£“ûþž:´€n,[X_ÝC0´‡H*²W ?uã[Ì÷Â!ìs*˜9æÒÝŠ‚‰¹ß à|Φ7Ë*® »¡×Gé»<|;±7㪗Ênìl(¦òÖ¤¥ÚMøö ½ëÙ'ê2 ¸ÎFä¢NºxXTA3ch Lg²™o÷*[ˆëê»ê’1Õîo®^PÆ—féöINM½†È¿Qjå¯íºzs`@‹%nx½— 5ÿT0EO,š1ó’T´ÜM³.p%3zµÔý p*3G²±ÊŸ·° ¹Ë@’¿gUåø‹†!ƒò- ÍÆûÓ_úÿ7ntù“¾Ì˜æÏ¯á÷b—^4DôÐRÂoSÅù­£S‹‰+œ T0ÊŽÅè'tñ#`£ìúF_Üj§és]O•T¸&n‡Õ‰&冉k·#bîNtú%)Û‚_ g-VQ‘ʺ~Æ6¨ß`ï­[ˆð¿’½ÙB%®Ü)þ™%ApÎx léwŽÄûÚq´£‡?ÿêÀIŒ°!5ûÍÌF6)ªéÙãåPæ‡Cÿ{àÝ+i—JĽ9J`‰¸ý´N}i€úí«9ùlnt¨ï"²’ÁŽ®HÑæŽëh….y€+L1ý.… tšÎ;Ï:xKïœ+™)t£où• ÂOx3Ú(®+KQ¯)ÙO¼gJ^¤#ÍŠáÇ@ˆiðiqôÉ! ¥$Ý^¡”•æ7×Ë4qª˜ÉUGtlPúÔ»ÌáL¨¿(Î9*C˜ôFÛ6çg'ßâ¿‘2ÓXÔTÔsÞ ¸S#¶Ua’¦fwS l þ÷ ÔŸ!xhm¯[e¢ŽíÌ õG趤ÞÓê ¸ï-Él…bÖ­¨£Öþ+Áä Æcè5Oy-«Á­‚“N ûíâ*ß>­K‚ª|Ó²ÉöŠ, ºsfî§*ÃYÖY¾õ§‘¾Ø¢M.ÏXßvjCúŠ@%•öyº˜ƒ‚Ng§¿Ò"LúÆ~Ä}åñã~!¯)™ Å•zÕWkͱÌ.Ö;£ åT<ß­éLÏU¦mU¡ÿúT6Ò/*tš]'Ù¿ÍJ¶ûqS Hi³0C–M«n€ÎÞ®2__Yá&ßOV´'ü»jÿ ŒóØ­ˆ¨D*åÁp]-63eËçлݓޯvÂ…DÀzK4]¹Oæ?ô¿ÑFíÿ¤˜áo€Î;úBñ­„ù©¨XÖY¦|-M‰¾´P)mÏ ÔzÏÜæq$Ô&ŸÔ-8¯æ{a©=Öìs7'5ÕU²‹È¬ Ÿ‚>L²é•°ºóî隯ÿ$%m¨XáIq¥ìe}OïRùž·XMÃĖ㘴¿ÏŠ!Kµìîž0а)â=ýôÌ;–ïû¬”FsÆý}øÔc›²vÉ" G¡¨ËLÖíý&ð*$†…Šs,í>˜`Uf±×`á˶kè[ÇÌX‹ÃÓl9φÝB”HºôÁ_bß{DC‘ˆ£9¤E½“d#Ìb0NŸ]AåýÉf40+&¿/ì´ÛhlŽPBkSÄØïKb ò+ù—Ióvt™éhì? ¾ÄqAÙAÛ¶™sLöœô«R±è®cÈûÙ¬!d<Ì Â:ÞI$=nÄã°-+?ulÒ8`!Tœ¿UmM0² ‹úiFŒ™KgÛsêM…ÒÍSÐÅ?‡:ú÷ˆða¸]ÿS|VñŠΔenëΞ^Î'š¯s’ F9÷¡ m ¨®ßnå:oÔŤâg;Á¼3 DEx…ìdWbÄùþ2­†_ÍðD)¨ú'ÇÌ|¨nU;¨ùPŸm@›$'þˆOš-!Ãfˆ¾°Ý©”ësTÒçæcsËi˜t™…2å!šå‰IYA ),¶îþ¹\w«‚³M¦jK‹ Æü5Ë]tµù•ôG'¨¡tXÌ™ò!{UT¢p°È.rF›Y=çqc STòt=tØ_1}Ú»‹½Xô•»i­íMm|“ŠUn‚IÏÿG|Ñ ?yÕJta…3—"×ç“EùÞØŸãÖÕ “Ÿ]«Ý?î<Ðvë_ŽÖah¹®ý ;Yí×¾]¸¶%5_´– ãD"ˬÆFPj—‡®¹ÝY†Ddrêóf#¼âÍ(¬×Höœµ+½vª|'¸~W¶W (KaqŸ©™ý)ƒxaQ‡ù¢O;YF×y+Þå°Vצäg@zß°g1övBÀB¯D°ÕÞzéÝ\;•h‚ÿštøqE옦¦™'Q*©ö·á„Çñ".gŒBå»ÌòC7¼Ô¤I)½œL¨‚ŠLHžïGµ>콈éÇM–ARMfYïÄ Ô¿臿ˆR[Ê›ÏoSɤÀWL XpÈÂÔVÇËœ_îp“åEÉÿZÙЩ?CW?à4Ón£}¼á¡'þSFÚËüpàÌœ;`jÏ—”µÜe7è#q˜Ÿá$©¡®ƒ†t/UîCþÏvûe«t\Í"9ôJõáÂÔÊs1íD0 à/ýÜë¼½”ûYîùQ‚ô‚` gq¦Î#ŽnxÀ!€§\ÃN~á¡åØ- ‘ô¹9;–b®üsãôˆxÆ‚;U;!’H©,h;´Ùt–9 ;»ƒòó­x_ sœhwÙ%7WFWCrl)ÅfA\ÆŽï)yV$zöÉ;ZŽL U EâI¨…ܹ³Â3™‹ºæ¸°(ù9^8ÍÇ›’‘]¹Tu,}hl/'á,'cèO6w2!­€ëùÆ\\Qêô=í²Cc¸J~+2)}ï[*6wˆ›š­{æó]@¨¯8ã…!\`°s\Q¹FÓH*¿‘Ó§oi@*Ä©lÆÄÉÓÊßͺŽÊ”3¿~MUûQ^­Mâê6”gë4vþ›‰cô~sÓ…Ô êÔ7þ’‰EÜ7xMùÑ3`Ìn¼Ñò+O˜BpZФ†Ô®]P'gTWtò…††X yL£Mo…€àók®ÄLn÷ô}+#×<ñhN)Ʊ·¤îo?bbyËBë½Òò¾.ERнgÖÑ_ž ÍCü‰âóµ-M‚ÿfÀË¿5sážh¸{r¶­ô“©{‹)—6(Éh/VvØ5'Q=8¿ñÉKÑâ|º®°…?¡ž')ŒåO»Ê.X¡: “j½¸‡úî¬ó““øåìàq¥Ý*<<¢àS~Ù.Pyd„B¥bÖLŪôÁÛöÅCrÕ T”Sƒ›§ySsóaÆ×eËÜ)Vëìf¦A úNìGýj—ŒÜP±8Ñ}oOYE;ÒÔaÇÅï›1d*þRNïÑ€Oªz'ˆŸhס¨óÓ«¼ §—´Y¨`³Ñ›k:Å_ÚkÉ/éä §ä´WÇ› —|ƒ|.ÏÔõíX‹‰4‰Ù±¸£7AÐ|d´kãM´§Ü ¸ÌûÔݽ`ÑgþDŸÙb0Ü7§®ÌØ´`ýÉž—é!EÁÐç‰èDѰodŠ^¤/óÍ5åè*¥­›´¿Û9äæA(ß›'wK÷vK›¦ˆ©W<‘ø#ußò÷Î÷ßÕMDLg<Á™Fx€¼dpî%éäFÿ”Í£÷ÒÝì-8–8S o¶ºÚ,h4N~@Ó7&U,!R s½GŒ{ ƽ¿Qí8ƒ·ÊñLCQ™Êq/tö:ëàÕåC…ü ñõr‹þìP×mÕÜ~œ1DqK¥1‰Ó2dz¹õº¨n>œ[Õäû@ BNÿ¾Y5úáæõ°Ãg¶³AJ‡‰êJ•Žü«ÊÒ†·)O,ÈÚ‘,ê>×n!¤vø4X kaD8¿¢Ë¦`oÌà7nÞó„ú¿Q¿Dq…µ6c>&—\ôÊ!…J®::)k¸‘eP3ó\ÍQŒ^•U’¢þ&„R{ŽÑw¯@¾äÖ==àB 8¬¡2)¬*\á°†sZ@<À…P·gqÙÄÊ¡çaOð»ÃßËÑÈó<1CVéea,‹Fï ÖØG`ÃN€ˆ0·äÎQßj¥rå–¬GkvŒߪ P»ÍŠyÜHɇ͉9ã>àÞh¤³KÙýÿø,ŠÜtœ}òN!Op4yOO9ѹIr«(Ø÷D ‚ ”>×9•ÁŽs[Ì ÎUü~Rnd‹HL¥Ã tÌ%³ÖIÊï¤D—Åõ%§AýÜGžÖ¶††f»ý8Ï4wÜ":«[·®Z}ªá7 {€Æ£×Ã"‘I­­›×(ñ׌Z„Â*Ž,îDÀ„¨/Í}¶N4 ¼cz' «Vdb©¦ EDòlˆ`8‚Û½ˆ4æ0©S1Ó„Õå5wåÆÃ‘¼\§!ƒf§5:jÆ] ¼Ë…×ävQ¤w3ËŸ¹xú†: ÃD›ô­ Ë¥Jç¶Y ¸î³©Ý*æ$GIÓÊat!uKíý};Z”ÖÌÏ·\ƒµÑ­dîðn¼ùݲƒb¶N@[©1 §è±\gúº]’"ç ³¤­·e3] Ó” ‚ņÊî¦ðÌüFm‘¼Ÿm‹ŸŒÜX{>¤²ÉîbGçµo=Hì†ÿëÖ!ÛÖ‹ôlÉ_„fÍ£7h¾Ä¯Ÿ´g‡· ìqF=Ý—‡šãËhx«')‘²²4ÇÌÉgz÷{ù£ï<Ø¥sYtk/ƒåe±ãý8V^±(¢•Ý#P¹X’ëÊn7œC «˜Ê ;aÇÝÊ¥›•&ciÊÖÜ£ô F¬-ݳ¿»ìpq æ÷2|ç× N\y'›²Ž« Tƒ=9=A×÷E]¸À½¿]u·ÏLóŒýv”xB>|r„¨„¨x#êÈåÍÔÓaYwZ!r†dq¿'² ’•zŽ]Uã‹…¹8Y«Mú3È.r#û"²`çË¡#'×.Îvžs«NŹÄωѭñ+›º2ïÇ6|{¯äy姇­Þ&¤&æÁ={úú´¢j NèT«ª-aêŸ=Aö%¦ š·|vóàf-d¸Â‹Ó8CŽt!7÷^~6Jüri›.W¾ÇQ†–™ŸúRZ}¬AÞgåÏØHŒµràë¯æ–G{¤è ” Õûéš¿Ž2ˆJ†iÏÀµ™S½^pòDÄpüÕlgØp¸5ùè±Ô98Pf-M««uÕ’éè¥vÖYÊõ“DÙrÜ—æÄ©_L84Á`ˆsÃ..ÙÐ’Yd·êÐIG‹Hu›L{–p±vÚÀ­^C£”¡ïTÎkL+à€ºÂr­ÀúaFå8O´îÃX¿Ç@q`ÚÜ8¨BÓ¬ó|ão±sÅóZÌ×ý B„þ0/"¼¾ó7<Œ œÉŽóF¨ öÍu³ Ï °¢è<–ÚõçÒÍjHùT,ùïsœ[Næó q±TÄ Óœ–˜>­aOn~È»q$­ð6®®ª?¾ýÑn ÈÒpÝÍüH”€¾Få¸2¿ží¡©ÖÄ;òq†WÂ!a«ipÏsLSËrP‘“œýö£|‡çFMg~Ùþ’~+cዃ+/kÆSLn´.u2CuŸZáö¤C¿hôc/g:}¸à‚îP§¸À¼… (®ì®‡s8Qptã²}B¿Ì!¾åizÄXñŠ ÍÇëÕÅûRž6<Òž[ÑdÇp5;`ϳ×dwjdHv…üŒ¿!Yömnñ#@p}A`ˆ®âå0Vz4à»Ó7†{ꜫ#mêUÅýSÔõ}ž€$à¤ç”ú—xè§HŠa4øAñ¨Écórð˜‡õ0FG{Àá¤õªÒaœº“VÄ•š)ˆ‹õ]þŽæ¤[žˆ‰fspæ:Få½Bçý‰|¼a`¦ãµ…¼'Û^Æp 6CÓÈ:y‘×µš¾ÅmÐ|©fîd·lýÀ£øÛF Õ.*Ë¡ Òôî&Vk©ØÕÏn±5vuƒ¹‹É7O·'G‰bz‡¦KV&tÑÿ“±àa‚±ÒÇ QN¦ c¹&¢ÈhÓH…Ë#P€/QôX[µo6;FeXó?yÀdðC=üߥ„~ùÝÝôÀ.T­¦ðKY2ò–š'”Òœ*,Âì^¸E)ŠTÕÙiY|©‘lÉ£âÑi878W¾·".>1>šf†bÚõ­Xém$Íó©ÊøÖ­P§;ÁåB<§˜< r¶dìž”‘Øø>õÜ(ú!®&nòè±>Ÿõ³g·?©Ñ]Ë…†çÖ=m7€Çï¸*ñ…mœ'‘Á/ÅîX5kŒ¸¤¤y7,kŠ+•ÿص–г4VkXQŠ(ß§2o¿Þ‘îÈÏ©²dᵓr’mÑe$`Wõ Vb9î(…ç©ÒŽŠ‘‰&¶ml•<<šŸÎËõ8žu¬ßpÌ”lÂß»X_‹ OðýOþúó!à«ã·Û¼Vç¯q÷J,4Øí¡æE=o{÷…i«\HLø7Bõ?+ª*gr®5ú 5øo2m '5Q:z¾7'bºÆ|sðn#³úÜÑ×€ÜWïQøW_篪ú”òLbÏÜˈ•&o &Á9${ië ÅatðOçFÚ3È÷Ñ.äN%•$5q‡‰òSé›Àä¡OÇö°$óðCBWø¢£ˆ/p7âš)/Ã×ÚÓËÞ·ÿÀÒ„ݹÿå¦E—Ô Ð)Äþ£:,\A]ŒÞ8+™©• ™uÎâZ’â>`ØõÓ…½ìÔ©¸®¦PÀ÷€Ôä´}²þÏ­RO‹úz }$f¤ëS„œª\ž£?Õ3£Yˆ£ìeá$Zj®ì²¬ù"C_jšH¼¨¥;µlHgVÚ‘Ý–¡˜&3åù"¹5öVô¿ïUþÉ 2 "è-2æU½»7{éÓWV=«2 Ä:Ŷ¿¶æ!ÏXDù´7Å;Qb£‘Ðòޏu'Ù¤(%ÔUíF‚vv?Ó,>ÃHû^„µ¹uJÅk’éäõ²”¯{¸YÊ”„ÖìAhù¯­~ƒäT ?rºè>ú ö+†¹…¿nüöê+DÁQaiî%ëc„ÿˆ°\Ó6qQjù²Ë“ïŽñk·7­Kz"5³|MWwÒMh#A—د?z¬‰ Í\Çi_õwÆlÌçÈmoü,ofÊ'#Íê”J›.¡pߥ}ÌMŽM’M¸ yÙŒÝLÆG™!è—°•Jû§¼Ñg7Ó¥™Ï¨\͵EŠÞØSì)ãÿ 0¢q¾¡Ó“¯Aµ3ÌN¹.]Ò\ù3Ò±úƒ:UïXc2Œi¡«DÊå¬Ñ†òXD´ò»mü•NA ë¡ ¿o/«#BvaØ-Ì: &ŒáÊx"Q§€ÔÚ,!a \×Gô{¼·ØÐfLo­Bºv"À€ÎÉÏ“riH:5„c‘Ï3‹«Ê3¼É^š|ô¢çΡY‰gu 9•OÂðð'ífoŸ6`×åénËvy)…7ÚU÷-VîUT6Ú@ûÛè€ Ð(¾ÚǸfw±Zà0Ò4,ê7/WÞ[zÜ $,î\«o8Á†À)u\ªf˜ì½}Ó‘Ó Íš·8ܤ¯6GE¨’É›‹à9§Zoö¿TÌJ [öyO?2ÍæôÎ@ƒü:¹—áOÒ³H ÏÆzzÔ,¤p?™Ùêù‡¥ƒÇoØÆ;†rìŒ ¬îÓs±º±×t,+á¾Zò6¾4½pæ`“╇§Ëe„ùýÜ”¸}ˆµætŽÖÿq»¼>Š7~J•i5Ÿœ^x—k?=س®©ÂÈfØY×ÅWè‚ÍiÎ^ªÀZ#À)œl üOkYÞ;øçÉ:·çËòbúmøß|äRɪ(b—8>zÁðš©Ê§“†[ê.ž¯ ÿ¢ÿ-9½JïÐÛ<‹® r3ˆLò ©¢~«ÿ(úF `×N éëy[}6 _‘4®¾§­¬YMÈÛôèìXéÒ¨x9%•ç›|É)(ô³_\ţѬþY6k÷£·ú#}cþeîçghlãî©G#îžàâaÛoÆÈÅÏtEà„ åjÌPŒÈ6Å#>\äŽã¿ú0UK¥XqBT±§[|R É£1„ªP/ Üj5EÕ Ÿe÷óžEGÍ˧Tk¼Ål˜Š×5¥Ì;ì/Ê;Ž»ü 0¿>¯ãOKåá²|]5ZØ¡‚q¦™Y7?8)Y$ k»¿Òù<€$ö–ì”{ŽˆƒïÛ=WbÍK:Q Ì=šì’}PM:-ìÝôböÖÈ÷FÕËKé/e’ï@ QVŽtøøzã}ìdÒ6#IdüÞB:´˜{qøØôCH›¯=šð´ :K6I…”Hš”f]@5÷'EÅëjÏÝÑxÜ9¶¸öõ®ä|ÐT\Li”¿Áqu†S²†ÄšåÀÀñ°3öÕnõQaæ\<¼;¹^‡»ÈeÌ ÅßMsí·kž¨rèÏn3ø2Ô¤pUwKš--ºÐ?(hµôB¾8ïS¾ü ò³ù ¾òÖÃÿ|E¹Ô¸®'K¬Ø–5<çKž 5ÍK<šŒ™¦âŽ¿eð{¡Ñ Ú®É.F…Œþ§K!ÿI9†8ÀŽ­ó™Âñ›Õ± †§ KŒ:×=&ë-ßëÁšÊ÷†§STÞMã6ªÒÙó¾"ieí’%+9tß±–O†Rô©CžçÚ´‹p²| |§ _ÓçäôªB 5L¡ƒ}N´ŒJÔgÏôÖzÌl¢~ ¦æ¯Öåä<}Ø1J^°²­ Ÿ:YÍ>!äÉŒ½_\_-Ÿä">¡³WB±6˜@÷B=l&½ør˜áJß"ÃK&(Öklai]•nÿãjzBÉ‘Å61®×xOC ¯2FxU¼B¥¾p—ïÊMBg®k5ã"¥*ù›¤šÓÛà5iä§þ’¿Ï|Ñl¼QÄU*Õç5±º¶¼éÑÁOìC·l®HV S\µ#Öj¼êÕôf?î& Ê]–ž|4ËÍëu(ÃÅ@Ž'I¶åCj[9—u¤¼4*¬  &0WQU¦¨Yj²$Î}´„¹s€HŽÓ>¶Ê÷ÎØÈÏŽ¨ ”§|¿ž'£ ÔíßþQ~B!*Ç 8;¤¿bë[@Ù®ÁŠW/ƺ ïÞ÷z‹ËPYog#laæû»1#}œ x¬¡ Ó‡Õïcaãpè€"U)kÙ˜ŸY)ÏDCÖòÄðróCþبS ÿ|šù€vXUËó ;­:ëNf«ë±•Ló“ ¼;¶AÝ`Ò“S/ôÀ4‚ϲ œâ+1û)0·áwüÞ >Ÿµü§E¯PTô§É€Ç2£Œ³6„Ù×»­àŠe]Ĉ½vbþÂÜBÜOœjœÜûªjëRÀ-–Zl‘ãuOT Ý¼ƒõ°\(Õ°«3WÝR4‰Fß±Žƒ3#ÂJ7vªŒ“ópö²ÿœÿ V±¼éæî\^Kõ­¹•ñ‰ýš rGE‰hºìyј1ÿÅoD«Ñ"dï­‰‡}û¨R¤Uƒ®õ±ï"…ðÒpp&9ÉäÊWMÎ@ë—j €€‘å¾Ö'fcÜ›t¨$IwC¬1æñqkÈÅôŽý9á—¶¢ÛäŒèØÄKw3vʳÐ(ƒ¤Ø7ºô&Á6[äRQu‡zû‚ò¹ó›Üé¬H^.sß ÇmOƒ¾xuêqžqóTrÇÔO]W*‚P%»Û Ku&;9>ÊE‘Ú¯"Ó>G éÛ¸¿qõžÒçìõÃL =ÄA~ÙX×§Û“¶k_¾3¯¾îÏãEp*óg‘ÂÇۥŲ „{Í>Ƨp/ HÄí\]ÒéøLo?Aü¶ÀàTséjŽ#¶&nDÐÚ~+&Fz>«c@»,3:brgE†0llÆ\æ\ñîñ4yÜg1B­àjç½³ËÜëŠÜ쪦§—a=ⵘ‘dšßIvdN5ÍË ,«O[²þÕ¹?ô„$Ñäg_Š*àÀXäÕ¥  ó,Ü ´mxé׋1OSjHL–tƶ=Ü«¬~sØ7xÕâµp¼÷Ì1ñè¥?Cx_¯f<×Mo﫳¿cLDÙ·‚dï8¸2¡ô0#±Y÷„;x1 äq·½¨©j"‚ºéA´ʬœo »ß=ªã]w/›¶Ùšõ Äà و4ÑT $4¹ß~R:5´îrDºPlù ‘ׂ5óoξûï±_ɢμ £ˆpÓá<üÆ’ŒÜš`®¥(™í1¸¾zìŠ-‚)¢–de’ÊM’‡’¡¼óGàßnue•®pNÕfqÚÄz`úÈ"Úí†À”}eâêk}ºwÊJjÃÞ„ñly,Ýí+jE• +“´X“´1¢%¢Š¤:¬óaY-¿üÿø—÷Ã"ýªíFÚ\S'[pø`¯k.€q‰a2Ïj7œ8äŸLB]N¶™Žî½ö s‘Óˆq–:ÀáÆ¬£E (5‡`zÆxmTG~>ì)©.é§Ñ³”=«tâ3„ÿ^®9)Ñ<WÏH™¨k,Û‚tjp³îFÜịU9ô–av±[ÖI‚ò":ÂÖ&~møJÓFAm3‰Ü(ÉŽØ#^f¡o¼ªi€êØò³7­sá‘"\âL»i—c8ÖÓØ#/¨©Æ!¨Â¡¦NṦCôÏPŠM$œg: 팟¢o]æõ©2¥¢ £?”ß‘¶IyƒsÔ`¥UEs¯xYXðeGüɦU;»§U¢7 뵑±Ãwñ–*çÐ,^­.aöJEfXò pºEç¼Ñ8tOfÖ‘ 5 ÞwÓDG¦Ûffÿr²ÿ\YR§«¥[Ý@ø ÚècúÓí¶¡°ÜÐù@CMÝ‘KÚj³´õ\˜ÓL§;¨Èå&¸ØPK?’UÌ”@YT Ÿg rƒâº^ãêÿeîgn«5™-JŽþFI{[,V…†ÐÂá”/#™®Ø}CÞ¹ur5{¦G‰çUl! gaä_õ ‘?ÉLøõ†!«­Ø爛÷ESÏûÅÿ` Á— Ð}&°{ ¿Æ…Ý''Ž[…Ç'ÍP!ÒÓ|2À˜Âäë†+÷hnã¡à”±+e-{ÓW"!ªý¨1IZ$ÉCtM'!nXîî×Õ¶tËxŸò[€1ö]4B Ü\óæg ‚vF:YÖU…duœÌ¥VCU…líD†ç¦]–îm2ÙÊ.þq`ÁåšëssžB˜’=åŽâ×g‰V¨bï› :œ­Þ mÔ×ÖÊÝè»C¿L/©¼,\EàhÉ\­ÙJx;^¾´ÂSMàÒ>ø_'°1Ä xoŸnÞªq?;žf¦a¨ìZ” Òæî7ÛŽÕT.ƒû–‰ê“ "Sì<±—Háv ž„¼U¨Åè.6h3NÁõ\(¼ï“¥Elhk«&ÕÔ>Òì>Ëk¸íÇŸ{áóYšŒ³µ®ú‡Š—¨ÅÇÙßR$PÇnȬ¼òYh…GÌÚ¬%ûzh`HŸf_oQHkµ GW%î·÷ƒ‘!VaÈ|à}"Ü™˜©A[ KvâL2Ÿ‘\Ĭ>d®×&ÆM­Š‡i+Ôg¦DIÿún0÷ÈX&‰¤%Õ.?røYŽñ-Ñ?s@Çš„c²ß üެâ°+N¯;R®«ÂõJn…⸦xZ} ^’ÍÛçZQ³x›o•¿i_kË·O'_tû&È;z†b¶“iÞ‘ØW~_C)¸¥pk"*÷{—œ0GGäóÜ®/”B5ïªAÓ›éL}ˆç¶î¾l€—Úml´8(kÀ¤sw¤M9r"TrÌÍ›²>Õ’„‰Â£ýE¥ŒüâNÕžÙªðÉ#xyÄËüÚÀ|¾q1ŠNœ‚æQ3Qnx½É`‹ÔOëBF%æ*A#2qŸ`Ãû¦D‘µyíI—·-J‰ÛΤœ'³â´Dõ;éÂ{Tî=vß¾¾¨‚Üõü¡TãEèvçf~§ëÂço =ˆOóþ“Âwÿ¸ÉcZÅ.*¾–.ó´¨XEÁ#èÒNÍjðះýQŽF“¾]xÕÓd|»î ­½*‰yò¨…MÜq§‘™»VÒ ꉓ˜æpÃ3þ£˜WÚÈ;D›dúü®¬>RERË 8|ëÖÐŽ ¥ÐFIX¾±˘©´-óK{ÐߨˆÿK±ÐéQ€ÇúÇŒL ´ ã~Åp/Qþ†&a%›lëÿX†€òá;.~ÄÀönÿü ÇZ·0—Ɉu<ŸSLà&Wõ êr;+=0&¸ ßGf8¯#@Šiì`ÛÄ]ÓU ™:’îI{ŒWF.܇…© TADÝSün”‰íwà×)Ò5óÃ,Á0ÀÌ ¡K›žš{AŸ¸uW¤vœJ%6¼…M’×"‹ddÅEÀmàYZŸ\59{4¬ .F­¾ÇÃ{rNÊ  xQÍX5YÚU^h‘–݉»¢´v6;kqZj=˽œ‰aDU›ðMíýÖÑp¿{1Žøæ°»¤êo4 à‹¹~QŒ!“¥ƒŠ«sçŽXü‚–ŽõémñXtü¬Ý"Äk´çò[ÄàÓâoI1+ö±,}éeŸÊkX¬jÐÓÑHo¡§™Œà*—[*:XíAálcíÏРãIB/û~YOO§Å,¡½]¡ˆdkÂÆÞ–ˆÉ~UÕ ý¸À€ÿ0;UŒ€#:॓2™ÑÖz³“É`¼‹ÃÂûwDñ¥Š™Ç¥XúÆ;¡±ßÕáÏ2Á2´}º&“ ½ž#ÌcÈ!lÔ/i#Ì—D³, ­™%$Ç~+»ÝaØ, #°5\µÌYØÁŸ×j¸*,šÿ ‘±¡ò1óµQÿ!2·`–!QF'ý'øS“‰ðµ»¼„ŒÐ=_\b ›ºÎ.l‘–±3lîZYßU£ ùÚôD—üR‚û¬ˆÍ4F7Px¸^n2™H¬Áäø1§VPCô‰¾¯ [û†Lé‚®jCñ³Çµ—{)³Ã¥ÌZ/r#íºKSQ‡Ë—¾æ_7j+´‰‹L¨Ë Qåú˜yaө̱mœ³øœŽÄfä=õÆÞõJŨÜÞK@“ügŽÇ•9\¶ÙHÈ¿9Çí1æÛ̯„W&¦‹ÙüتÒ³‚‰`„t±]z…IÁÙªÛ=êO;B>Ù»Œ,ü‰äøe]uè…F&¾éQ÷0¡÷€4k£Jc0Œ±ˆ¼Bº74äe-ÈË;BÂ+Ä@«¥,ÿ¡f5¶L×B|#ë¢0ïžálÉûÝ~›Ð¾èy»¾†Âlp±û[Ž1çhýÜ”¥t©:žLÿ½¬uŒx¯ *‘5Iòn'Ûù‰)ñôbBü‚Í`"µaìú÷h±W©¶ˆmq"H­Õ“1|”nÇ>×uÊ¥.V½¤ÏÅSCƒhLM qAØÄV¨!œH©6ó=>ÉÉ ®òCØb<. 4"S楉¼ °•п♪²m¥»ý.;8I£/8÷A†çÏ@‘`7*žŸë£Ù˜í#ÄÄK”?Ï$O žÂ˜™#¥„<64¹–RH¶©ÒJm(.¹°¨ñ…ÜÚh{ŸlMùœò‘÷ éĺÔbçÛf?``Ä V((è4Äú)Gt¥+ºŽJˆq!˜•Ôý/ N»CÑ£µÑÁµ:qoíê]Ô ´݆ìmLZéÖ=ÖP¼¾™ ÔÄueô5,ûJ9Éy\ŒMÉ\ð>#ÅŒ¨¦@q ‚Œ„®Ú¼ÞDø†ØKMóe¬¦÷°-4‹rÛçlò*=ñmâÀ›ßS’Š^{C ­éLÎ!´R§¸¹üSü"Ÿ7óøÔšŽ—‘]xT‡m…-^±øŽ×ïýZ˜H‡3M`ŽÍ4~É黥st-kNÿ-³íg£_¢Ó:y |²G‚L¡ófgÄ{Lƒ?¢¢ý§ånžçv¦bûŠÉ $\±N-#5O˦yØ‘Lˆ¢ÛÃÔFF¹Ë«” 'tYpKQ£lJÚKÒ¦»^ï¾ñĦ «â4öÞÚ?=¶‹8F陬1f/má$j!~b“ ^€{ñAœÇÚ­¸ÍžƒÚQÚZ1ïPV<^ ,ð•çÞ5KI¥îÑÛÉT¢Ý˜ˆP.ÆXQ·Œ‡OÚWÙ`%q¯ª'èÆÐÞ7¾¾‚SvE0¡³ ý¼-`‰Y-^œNÜîöκ”J?ˆ¢J~F_›}%›1¡ºÖp¡×sJ·ˆÈ¬R‰?-‚Sø£e_d¯„g‘Ëx d+Ià,‹šYœô²&’ÔJÇøÐ®Ì8ø0ÛXJˆª¯6y ]ÐxaÄ-¤añÏ/CØ^£Í5'ÂɆÌ0f€Z™¼·ám <ý T@ù|Éävo¤-|(›T&ÏÇ^¹ç¯mmWU‚5Q g…H ŠÌi•*êó>)Îó\๸ívj ./²„.à„°ò{t¾X¨ç}÷Ùu?¹|6ííÚæöÒbÌ$3ån–¿$qBÈØn°½‚²I¾Þ ¸,+œ²Èo̯·©J@¶.åÐЄò =©2`’þXAF40êøu*÷¸î+.ò½’ËÑ ¯Ð£Ÿ%› YÆ:ßȼ^t`“戟TIRì*—Ì‹FQ²;Aܾ@ŧS ÛYî SU~ßNŒªÃHÚç´v q7MììQe[µ–L`B3†íø S‹élTÚßÒkœÑнTa»µÕZ®Ãü=\6 ø2´¹wìƒÐ/!ëTåi]>ß«]‡^2Í?6–WÓFâÁÄïõë3v”Ú7Õ ÈV¤•;꧸¹+óÔœÞÅ-„‘•Ø.{xJ±Ï’ é÷øl×{æÿÁ¢/n¦åSŸN Ø•…¢[[ãg’æ¯URGÜTÔC«L¨„#14ý–ù5ªáa˜åkƒ–ILQRe¥ÜáJÜ8ÀY7´þg¸ú-Æp=fÛ ·äU'?¯Œy#h©Ðü ¾=´ÊÉžx¿Ÿ.î/ƒr‰’Š|Ä¢nÜêÛ5ËdÒc7À¯ |ôе…z%%šÏÈIï`‘ÂÓ‡ø§œ"êU§ÈÍÉ;Ò¶¶âI›\ñQ& ŒÃWÀxkK20®P%fβêÆ|:w™ôbÛµéÕí[¿J²UíLy-]6Pµð#µÅÂSΨ‹–âe’0³Øðß>wõ×+ä¤QÉH¸'Ò‰í{«Ëö÷¶9²ÊSd Ô¶`q”8Ò>€£á¿TZ3ÕÝOtð}Ÿ<‡Îi“õ‹ÊvD^Ó\à‹Ÿq[žÑŠ¿Â'¸T¶,8‰"p† 1e¬äúíõø&iðBCmoê«H5D”h„_º7M¢ÅÃßÇ5^ï©Je‰–Âe¦$¨QX“ܵl (yíg°B= ¸A8)b»ö„e¿jMç÷áZÄê¬ï¢#UÓ,¨tƒ`”/ÄÔ¤"Ãz˜|ý.ø5b«éª$ Q ë7úd°¥³­§‘¯L–Ö²9=xžóó 5q|=·µ„¸M=­ˆFêUØÞãÖPis¦9ž®ˆ>‡ )/SRò¡Ü—´ÖôOŸža®¥†¯Lx Æ3tÿ] ‰ØI©›lVTœo”W§<3^€EqgÇDÛæ+uô.¸âñ¾€®!n@f–Rj‹*µ;.îÔÓÒ¾7V{lŒ@”©lɺ\åÁÝ‚BÞÃEð%οÇ0˜8A!¨bO´ÿžèt/i¼qˆº¶Eü»ªÂø ãf_ œöäšhúІ•«â‡­º´Ž÷ræÇBamAÛ°Êö¬Ìð†õëš=ÆÀG‡iý&`“ó•E¸GšnJ9-Œ»úøÒâY…% ìUâçÀRÑü•›:õ¶‘Öƒ¯»º±17¯€cÿ8ª zdĪþD n«Þçßwñ•6f!+™åðÒ—%óÎËC“˜®£Ä{?Eä ÜvöL÷“ÃÍ)'Oˆ²`oFéêê©"™oðåÞƒÈp{öîÜ’ýºJh‘`¿‡Á&©Ϩ¿t;·6™,ˆ\ÐNµ"ŒD¯E¼½bžx0–êúä»9O¬6 1–º¿`t¼ñE3%6;¸-™í|ª;ïÑéºDv%wò aÚ °ª>»àØ »tßõÈàú°C÷â‡àl°‚ Œá¤Q(Å,,9³§3Â’›mí ófU>S6ü&Ÿ£ü{š]ƒ!!EWÄW<Ÿ¨‹jÏõÖñVdðür|§ù@™$E¿¥Ö’€vÅÓ9ü¤HÉÉ• R.<³/€œ:.:AØÆFžC†<Æè·…}®;£þ©™wz[LVg ³þtõÐèøÿAÐþG§éÙù_Ó똛N§;oIhFY…:(Õyb›HÑ ³GhºX´Õ Ƀ'E|Åš‘ïK²ïG‚» ñ“ÀhìǨ¥tÝgN¦‘A¥Øqæ¨ÙW&e†Å2$d:lTåœ<µü5>ù{ Ôí ­º:G¹Ñ:´uP>»’*ºÔ™,^ÒÐD\7­› ´¿0ΜE„Pu«·Wë-u·uy$“«¡uÙ´J~gC<Q—œfU¹¿+eœÛ<öÙ¶XícNæ>Ó~‘Gθ©H©äÄ­fÁêÜ;j…£¼žÕ#k”£¾¥€¦ûÉã/}èÈI3mn@»_èߢ:Â’b%ÃYGe~ †! $>l~LJ¡V{OOYzËóù9Éh‹Æ ÿLJÁ©ÆEà$BRA>2â½qdä›Ð­¸)ÕØoëZ%Î$gÚyòR—¦Cë9,i³›;‡kl%‘?F\*޼KÁ& ³‘fþA‚â%„F§½³Xt ¸Ì#º¸`+„zÊñ§èý›=6­+%·[cï.;?ÖpŽýèƒã¿ò/(@oÅWµ£›*Çw.¹ÐuµÈpú\£Š^1INù&Ž@µ'+yìúv¼S¬Ä–û§Â汪à UTñuîÄþº¦áLÆÏ-áüâ-wP©‹³A͹̆{qÕ7(Éu$µï#Yt‘[–_®#PÚ1Yª®Ü:š±.x~`„ï-x]ÛÑaM¿µî ó ì5¡?Ê£DPw)Û?Ílµj· ÷˜à±›^×®=Ú"Œ§cC“°·>ž"I¿±©œ"¶W#Ë’H¯X5Õ&!ãL7¶£é­Õ¼4.™oò›ÉÜ/Ñ“Ròö\¹ GÈi1¯T{gQ¯YmfG—A7£˜5?‹ œ“!r4kÙ¢•Þ3ó,’ZzC§ºá?ö¾¡ç0Yµ§fu˜µÙ\ÏJè XìÖB>Yª:q2zþTR¯ñÄDCmk÷AD`Îù®Œ$Ìçò_ô†™i®¨žÂ(2EŠl%Žè@ßH"‹VM1³€ä%×kf¹Û_I‘ .e®<¢ gM@Pg‚röË_QË(à Š^ß¿Üì!%hï¿›>c¡jìáá@YW`"Zº¶lëë'Â}=ƒ•â½Â±dzh}aÊÛ1Ð{dãáìÄmhîÀ‰I8&§p@³¢ÎºÈTˆê8Ñò³ªl±‰©íѰ<"ßÜ9cBåJØÒçƒ^…AÏù—ƒùÄX®C¸K3æ×Q*ÀÞr@oT-ôš[möêÉcÓQÜ/9|%ScŠ€Øn.7r>¨®˜_⪉TôTôB¢I"i @…+S÷Y!Êâ÷e‹žc“FE+¯6Ðx#sÄÛw…To»“¯£›@!惗t¸ o†F“Åþ×cÉîWðÙx­Klîx-Ý'?‘֮ߗº¿\Ä<îÿ6Øœºß·Ü̳ˆôq­Bl¨"©hÇ\£Ü}nø!†§±®Ù»œŠ©ÞÌÕ,Cp”Óò­Ü ¥†"ñœîã;êe’=ÞV iRËèC*^õQ¦X(6¬ÔÌš…–z"±–S=¢T¦o5;Euò¼øÀK>z•Kvç̾ž;飘](…Ãjó³_®õ‚NO-PAœƒßcËã´" ÅYìà ‹ët1Jþ˜Ñuñê{Î$$©¥îÇ>$Ïn60…¸é'ZC{ã=åB‰Fé|ª¿CeèrÝU:ƒÐß7U#4†¦¿P§Yõm<&-€Àdµ0Ò¢9­å}<ëèA,¹H¢»ÛIKØ Kéaöœã VÐJy}$¦ñ<¦Üј¼ùJ—ÂZûÉC’<Ä7è¬Ò³zì>{~¹ê£q§M°d{N©C8"ò^v¥¨sß 8{1}&vëܨŸ@™î‰5Å'CV¤Õvjñ¹`Óiø™«±X§à?·!jfBU'ìS­lÕA%îZœŒ¾‡‡…úáƒF«ÅXGÜWx(D?ô­eÞ9JŒN£¡° =cÀ¨Àx—Asõ‰ïœÔ/ábiß/r+Šá ’×<2  ´!Ôé:kdKŽŸ¢ÿ¡ƒ:^SQéºÆuó¤ëSºß–ãAi<ôIowü™XÄMrlod¥ùÂw¹¬‡ö5€ùîò£ÖTÛ¢Ó*S>P»Ü¦m€I$ØW¨)§·ßK6×𕲟º ü¢`ÇFEbæµ*¢ýj—xyw¾y±9†ÆÑϹžÏI5ÆM·Fl Èå¨ZØ!å§cÿ!;ÝÉPs¦É¢Â†3wÀi1xÂÚò]cȨÑF²TÙ«ÚÌ#v¼œDKa“Ù¡A‚Qæ=CM˜öfdî(©0_Z€ìïRÛß±JjÆÛrÛ*9`L”pž¸9öÐàDÞœY°`ñžÍŽ`0­&ÿ.åZ)4áBÌ“ðl­Cl+ús¡èÈÔèmAQòÝ«‘øŸN”‚ñ˜Ý6±¯À³ftð£³WãRCN:œµI×°;º`€y¡»öú“ 6sÒÞ:ÐæžOÒå£÷úÐÜ% T~"(éÚ~ÒÚŽGlLýÇ­ëR ðGWÝ6~ù¥tUO´“x«õ° ˜f² ¶‡±3ê­4«â×-Ÿ)2 ›¨2 díˆ4sêâœÒPé¯Yû‘*t¹ùs9ìâ§£ðã07móо?Ìeš¤-x®ÜCˆêç†-ˆ9'÷yè1Æ:à ;¦£ê—Õn•Qš:¢¯ÙG<ÅpN›óž°Q­i‡Mf{Éêvï‹çñ<>èÒ®EZdH¼dR‚©XN*çjÍI„ßËû›’¥¨ã“Ø4¼; çä’5 h]‚¦ £!u9[Úuõ™ ÌïjiZí ›9Z¿zDª Þ©ôß=]«bÈè'Év-j¼£0R G«ÆÀŽ=÷¦xÁîéw3ßlv6%¢j’°œáÖí©pp¿7ªT«4ÇÙËÃÏomý.€®ç曩 ª×w Ø ‰µž<˜~9(C<û_ÖtO9ù"¬%ËĤÌñêûMRFc³Ê*dèm÷Hº•™é츦å\ú ~î70®§ ‡4mHƒ\ñu}í¸p-`õG•Ô$­4¿8,gÄ~“i"ãcËC¨‰zTD‡WëƒNa g¢Î–ˆâË&8ZªÖö‰Ù’P!˜°‚oºÆÇ^Õ¬¹ûIYÑç Í–ãLµu…Ísum»Dª^5Ù‚.Ùs$?ÐYõ{Á’8Ðàºxi훈¯Àÿ¾³×f”~ºH~_¿íìkqò˜[”ùwKWö4ßzésðl­ÚÌeÚ¬O4iã9¿é¦à˜.ì³ÅRÒH±±Š Tôó ø&³Vob^ÍÍ&‚óÿ‡÷±Ðì×-ÌÒxuv~ ã>¯LwÖ-•. q=ËvC·§P½áaY ݈½ó…Dê³»$¦4%‘{N«µH… §üÃùâ¹F«õ!|CA1³ZL¨(¦¼29Ã&‚A±ÖßZðópFL#7ZîÈÏRy—L·”líôâéÔa¿4¨ÂýHˆ^oЊRU}uòݸi¯ÿ£÷áõ³ˆêZÿ‚ Tê9UnØŠIÚüÂñä‹åuvü€ËÌpWQoËñè]«Ê˜Kšë‹·¿¹cŒVÚú ~ì{º ¦y Yä"X_ßÁÈlê†àz y‰‚##˜NœÁ™=ÛŠa®Y‚@;DÆÖT»çv«ƒÓãÍ\èÕ•h‰ÌT¾jRF±+H ÅŒHæ’W¦=Ö™MÁªg+o˜ÿèËò^[\½R¨Jn™ õFôHÜÀ»[¤lqÉ–‹…þíqô‹˜˜„‘ù#+÷j6ã.1÷Iî#ù}@@²é^wø³bÿoZÂq¦ì×GïyØ«CV òì Bû€‹žÎ›ÕG(½ÍþZ°nSåÒ&AspÖ™gö<@ø"º.„11ÆøÓ4tÝ¥Ó”Œ4è²b`ú¥¼öÌ­ÒÇ Brh-b Õûç+º‚%¿FHlßG]þƒŠˆµCä¨çÛÌGVPW¾U`ÛwWù—h7¸îàD“ç*À6Äǖ앦¼ÝýÈÔè7KQJ´ÒËì37S`©¨\Z·™“(AبN”ü#q&é´¢Û£H¨Ù¼—àÚÅÐË1—•Œ/Ü%‰¦nê$gÕUwõaM@½ŸíhDQ¬Pnna%d×ÎÏ=AXCñc³W·c¾ÙhôÉÔ/ŸÙj&c‚`¡ãÁ»äÂ@ŒbR¬½üœJ‡ö‚LÞK92-q=`šAçéΪ7Þ}óëúŸ7<×.g!U––ø¤ÂM¢(„õ¦ººÞsUèE*¶U4gJ áÑ’º&89â$A; »ÛO¹}ºJÐ;„Š¢b/sZòB†Ë%¥’aV ½ Öï·0C²ø4¾ï¥S»¿8‚' ÏÓD»e˜5ÞI¡öc‡‰[ ÌöEhøÛ! TÝCBÍÙ¤ÑyÉÉr…ÄEw¿õÐø.¢ ‘G C\tmêà óUºp øx?ÓIonº ¶º¿» ŸÝßÝè37lr–… ü¼lÅI1›`Ž:vÕÓ¢ ’¹„G%_¨’ù8¤˜Gø.%ŸÕB5Õqqö>Îc­ã¬h ¤ý²Jš‡¸Â‰iáW„–êR¡'ÿ¬¤=…a «™-K†å…‡>¿ëdxTM ESXÎf~κ‘Ű´—)Ü£½v5Ñr@¨™ÎùçæïjåNÞäÁ©á\ΗˆfÔ€%c¨{"s_o*$d§@†ë3;ŸÑä¾\[õã­â‡. ÍÃ"R4X”XñuMüü†O܈҄g-8GjV:¦²Úζ^Š€k»—å×°„K'^.\ÚVÇÈν|Ϊ4¼øÍ‡@Ôz°5= ÏíO.¾Ñ0R)eÇ»Ñç}á®ÉlÓ)¸#‰iSá2Á¸Y ó2¸s ¾ñÎâ§MxÛè˜o„e¬%Ý’‚ayÙpNˆ…T¸«è©‚Ì¿r¢4AðDÖrÀ ráÍÚ8¬Uqqá¢ò·<¤ŸdÊhþ€îK|2X“]Üg`oy´äÍ©OèJðŤ)Ý*GaÓ>•ß%3Íüù´ÏC¢8î'©_ÿžp3¥ÿþ$±”ÝÐZqµ¼ÏàÛjž¬æ:š:g™'o`}:›M<ÖPD1|À,ÚH´ÙVZÑv0Mò;,Ú£þˆºÅåp!뺒“ˆäú.à¡ý£Ø]![R`vã×8´ÝëÀ³o˜“ÈýÈàŒ&é©v¦Ü¡tWÕ–TÍ™³âÑñ3Ì’N=¥‡â*þ¾3üYCil~D yKŽN®ŠÏ+";Y;ˆq×Ç¿ m5ÛçpçzÎrw×ͼ'µUb&1“¤" f!µX6™ãñh½g„[‹D ³¬VTGü$tkÃí¶ì30¾XàfkCDZçÌ–ÿ¯ÜœFÕ0Øê•%þ{œ·?•™¹g,¥„‹·Å@÷ªS&S70ˆ—½×QÓ…ÿ’w ýO¥´Äpn:?‘—É“´XÅÔ1<Ö/Ë©Où¿ Ûç„$ÅkÈ.°¾É…ۆؒBÑChÔ”=þË=˜ýˆUbéŽ2ÖÄûRü5@úÑhàtú>q £žR"m›D– Ÿs5Ž.e×e¬ú¼ëzÀ"Yo,|7šeXU7$Ôfq¶4a?‚Ü®ê\}Zý›¿å¿•© ˆG9£F7”übsa§IPòÙªà]%iïnÛÚú¡æÖKxÎ^¦O9æä€¿T—–£.íè»lo`…8×Mw‰Ù›$ŸR_¦áˆäú¶;F†‚K~+’0~ûÙ;oµÿÒ/ò#-YèÖ¢/=†r–å>„«qùjØG&?÷Bªó]6»ô‚H¤¹£9êÀH»œúàäØGn‚ü;e¢úÔ;GÛl$œÄH-Z¨×:J}….2QÅžƒß­¤ª vy3môtûÝ뤢F0ÿò}’i©btáƒZò¶ºïê‰Vºuss€â†u.ÊBŽðä˜|z±²x{¨ß¨­°äRÜÆ1Øé|bqܽŠæ€ã+5_Q¼èîÛMAÕýQêô[s8·…,Š*ïViõœ™ƒ™7›¨åNç´—†s¡º|ܬ;@Ã|O†pp£ØRDÂÔ®ž£¨¥ÅÅ›ôû"l/$æo0XkSR‰$¹%öb<™ësâCè Fÿ?” À„nññ“ž;øÅʨ¦ ¢X%Sìý‚Hé;ÓÍ{(ùá¤×ÝDc«ÿYÖšð‹õñHÙPˆÃ•Èè¨!¡4ØÖÄs!Ì­?͂ǸîÜ<†¢¯ówÝ|æxNW,iÚì_´Æeö_ϬGÞ»0NŸ Cr>ów Å‚äQ64÷Dí a cÊÇ8hÞÎùisê„dŒúüødbëÍš¥Ê(jýä7 _‚â>"0Ôˆ&„Àΰ÷Ï ÏTàñVqêÏ“œ©ü¨vÇèꀈڪG÷ô| œ?{Cë4 #£¥%YÄä[tû^­ý? ¢*µ oW£ûAÅ­ùN‡Ø™œÄ«¶µ(IDB½Y÷ðªf\äJ…ÐúM2Ô:õYÑ[‰¾Q¹kˆüçÊóûnŒ ¬ì)^‹'‡ºQ?Y"Ö#D»áÁ!™Mœ¦ãh)'Wò½Ô Hsßå›KÛiéÛ€h3𠯀Mò‰Â[ lz­ ïO¯Ðí¿Ö›0Íñe‚‹&µe§WD”_ªD§íašúÿòh/C°V2ä¶”Í×JUî«uHò¾1»ûæA˜ÓF"2c¾Ï2)äl3(üûu?vô;÷ Õø³3´"]’§<¯pû·L Ôy û¨•(\ŸÉ^í9ƒÊ9#ö>@ðø×fZ$yR²TæÉ,dI¨ü¼ ø¤p-ÂBè5h×àZm5.*Ãù#Yk¢Çôt4Qm«gw`ƒ“å“o @ß6ïù¨BIS¼Tžv|/÷= ym_´.®´B&ökÀOeFlÍ̵Òí”J¾@r»·LÜ/°á~_=/—+1å<0¨€R$çßn|„Ú+²L^Ãi_ãžØb° Åè,UJ[©×^ý¸áèÿüQD±vÔ„å,,ªeO‰«‘é¥Ú±gPÂÞè@¸ô~0äáæïT‘š­UÉ‘ÞÓ)¿ÛbH–¡Ž`jóÎÁ*KDÇ#Åv¢É¯• <©ùyF¯ãÓ3ƒYM2"„b8|j‰Øia6b {éHʉúÄã8§ÌhŽÄ.ÜPse8›$ Ñmb›ãdñ­ÚØ€Œ¾£®pƒdBšõÓ¥¨Þ•Rcùƒ·[ßbÆM ¼º0ê=Aˆ¥$®·DÀÖ׬ãhÏ*r„ô4Èõ.Xæþ„67àkHÆÀР¶™6‚³µ¹5à¥>i…rÉîT”~ì‹5! ]cºÇεŸŽlf,ØI&Ü.z\YÚ|vÕ§'z»;‚Ss*]»÷ 3 Alà^9ad§p*unm‰x#3,j¸‹”U… ¦âôXíÁ‘’ŽGõ¶´f }/Âh.éXvò(É@ㄚdj+ƒ nžYéÛËG¡?³ìRëq1m5ö8ã8?P{âÂ#Õ¶ê»yÆò¯q'9œ-—–uÖëæyŒg¬o‡Ú<™ 刺áf6ñ¨à RŽS­d»ÐÇ)á ±äQo!ÈÇÍÓ4aͯޮY²ås˜yj¨`d¥äÓ I  bAþË{að‹[6Ñv›Ñh¨!âФošó5s{Ún¯ØPì¦V÷ã²ôz&Û73Ø(8×CQ,øBÙª{¯°>l=¼¯o´¤½búŸq”ÿºçÊ`X$¾J-Û†.ÚŸÈ#uÄô´‰àÃ'»=ƒÙ\µuêˬo£SÈÏ ›Em| KEÝC?'|nã‰9êjxä¿uî¾%Ø‘! žzﳃéÊA d#‹p쎪óÃߊÕngIÕeIb¯w 8ëÆÂG Ž’D ïàÓJªˆ[wycq4g$ð/k¹Ë~å—°!”[¼÷Há逫GjØ8€¼Úl« ÊbA¾=#HòÒâKÌ yú¡ÁëPAû{¢FÁ ýˆÐBA*¹ ìÐI 7Ƕÿ•‰h³Ä;±#2ìÄcÜØ ^È #y}‘ mQ5Æ€þ Feéé‡öëRÄLv\{@*j%‘$Zâ”QÜŸß͵pt#;0ÿgêÍüIÕ ³·’*%°NÌWæ3v€–ÈóÌØTÝ›nuQf§¾£OÙ áÄRÆÁB|kvŒ©ÿˆ>y)óˆq®‚»ì“‡¦$KË×o:íNõp¶bŸ*²âUleªÀ‡`Ðñè¹ë2šŸ¿ñ䃰†;—.k'»¾0›h‰*ºª/œðä:gg=;o”Q$ÿƒnÇCJb+bEØ|Ã466D©LjœÊùåeÍfÅUæ‡íƒ»óÜñ— ¨ˆÓ—ò%Efñ•Âgÿ¸Mœµ^«µ9Ò.Ó;KtQ°BÑ>uƒC‡‡}‡,bà16ô»ªOLJí$cQS,ØòæFºÅ{‹Õ‘¹ëÚ @K Í3º¹’MúíðYh(½ôC¼¦ID$FúSB™A2æpkB,dØPôÞùÜâ½ô!‘cO:¼ŠŒÌM¤H~'s´ó(\Ï&!«ÀžÁðÜ C¬gÔð»%ˆÆ¸dIÞXÀ#g_‘··ÅkÆZ€‡¾ÃRØ»©¹¥eºrr‘õ¤±nöç \÷Ôs_éqÙ:œÐüÊ[ã±Wù"çšä×?œ»¢¢ê•ßþG‹Ú¡-L#á­Õúhü†œšï}_X]ª…(Æ­Ä  _Ìw53TðªøZ ÆW@HÛGMŽá $(OõZ>R àw›C³¾ Q±¦.ñÓ8ü®€\nq$—2L)m¼rck5» »ßÌæ -$!6™ËÆD8ä{Ãq‹,åAÿߟ†.ïH(%e¡fB·âˆ”eaµÅæg(°GnîT‘=S“§rB˜ç÷¢¿@O £t€³tRñ€Ë/Aè˜1A¡Ï ®>í—Ýü¬m í¡'ýY†?m_ñ_¹ ßUþgå(–F°öò4’ýYœ~ãèU êA­§ºéQ<¶@Éfê'¡Ó i÷‘…Y}ýñJIVD®34ÆÛ<7xùuÉ“W•˦&€f7¾…èà[½­QX^% ÄdeJÔáj% õ[~>CŽÿÏ º§ÙìÊË‚çÇ0êLnü<ä[oôž¬ZÖ®¯‚g–-)hF²¼ói îÒ+¾B8§f­2–ª¸ó)û¶â^ãÖºô"2ÄÌæ¾à¶@õÐ8xÇ9 ?µ^q¹L¥…µwÝ<ìÅZ—ŽpUZ›y!8œjáÉ© ¥Úõ™ûɬ8j²‘¢p³=k†Bõô=ü@ö×Vu†8ŸJ7q­…Ö«¾¦ã¾ Ù˜PÔDÙ°øÔ¡Ó\IüHvV”>FEô…¨Y‡}VšCÁrÓ¾Š(x’üÈUlu¿JIÀ ¾Ý9òû²ˆôZ©Ü¾Âxç&Êìrëæz¨}îÐ…1@¡(#î},.’1H¥mÀÀïÏ´s€EÞ>Nö”€ËdÆ`ñøxJ!!ȱנ&ײq¸åúî×'¸óíÅâr,ݬɖÄÅ cº’´w:\ Ï·;¿Ü^ÑÍEöUE²‰àÿ¦[Ô«ì—¦òÈ|m :Hpáßê 麦0ä÷Ç 8?a†š¹–‡‚ !ýa©ÿúíSºDÇí}—xx™ÔEÊà Y¸hOåk8|íÑ×v¤ÞÔžØpa*óÑnZ*†?ÕB¢K65MA£d¾ªG.f±[sy`Áaþž÷&Gè`8>E5~ºª>>É»¬Øk#°vBi­)µ¹tmpŸíÍÁ¸ ‚‘Õ .ß’9ÍËÎU ¢j¨hyƒƒ¨öD³ÁYÔŠNŽÞ7FÒ<øKž0µæ®/¡Uîâ:ùAœï·0’˜¨Áàì‚5ñ.,NãmB&…úÓæCÏ‚¯ÅþLh#ù#Ðß¶óñÎã™ O\¨r*Á†w9!0dÀS«lÁÈÉåìÒpý ·-Úº†C‰êX·kÅõ÷볯äNÞŒ2qðëî~QÃ¥ðG¯T 5|ž‚«‚«ƒÃì‚4¥H‚í€û«×ëß5|*doÕïX¾ùIi)»ä˜s©7Ý\Þº¹·ùý¡V–ýƈº.¹tF£@œø3Þ·ÛK(–ýEt®/ˆöÞ»e†¢Çònl´2©Ø7Š‹Óp=ë*žvx›Ì‘ï+mÜq®åËgHu½%ÐÎÄ3ƒa=éT” Äï9æ6 YlECfL+±…+ðòø>=£#þ…Î ŒAÿNH‚{9æyxت“4—õƒ%Æ1¨˜eó‡Èt…è åªUñã|dJ¸»þF±Ä¨êÀM»OÍšíG#{Ã|“†)ÒfÄvà-u}ÜZ>øÎ~Ý,œEÀy¢ŸuÊ/Q~ˆˆÈ#y{Îgh3¦žô'÷‘V€`ÝÝl§YýVÁ¢nùÙ°˜}'04{<ª‰Ýu£y ™·ïG~bÙáš¼±S{?¿ì‡ÇêÛU Â(r² /ˆ|»¯H¬sjö-–Ø’ÎÃEŸû°¢£‹Pp˜}I±‘òiŠ«W-=¥‰L¥¡óµET8‚å•R6ÚMEÇOyg;RqY‹Î¦p輯ô]Øê‰œÒ‚­(Ÿ™€ƒQÕŠq6Y ¸‘oGwgdïåž!HÆ%ÿ&k fúÛR{èdjó¨Àe¬+gí#ú/]gðwúq½ëùÈóœ¼ kŸ0ç`»Ýgè¸;.]•¬ˆYpµWËü–“A£H:å3kN,”;‡Yuapγ#³'„õ˜È8‡ð"ãIœ(ûƒŒvŽ0 7?v`¶˜e>˜»ªhIrFÇ×åÝ Ü‰ØkgµšC(ø€UáÃHè‡bº;sŒê¯XL7µåuw³kïíÀ};%üMV–áÍL•lÉSzL›‹Ž@Sµª^äUñÿ)D®Fdè9+Æ´ø%Ñ9m7܉˜‘4ŠJÁéä"³%¿Y¿®íÚ¢?5Ü`¹~ô /Ð̪¶UØü&úm^Ä<¤<ë/ü>É‹;Cíî°ˆú§E‰`¿U‹¢þÿÞ¼Y½¸6($üYÈ^ƒq×Ò……ȤÎ õ„’Tƒ&©Ð=¥²LȰ˜VJ¨ Žw€ÅvÇ\Ö©¦Ï¥q b¦8ï·šWYÿírIRZ-’ïa¸áÿ5 † | XŸ¥ؘDƦGÙš¶çöEh)êJ'Ķêc‘èšæ.‡Ûå7oG‘¶ •…‡tPãHa8²ß¥’Àe*À± é!£ZĉsÜaà`×Í“¸4Î~50£T•,«ß% /RÒ«;A嘹Ì]}ø%DCí"-GÇ& Ü(H-¥¼lž_nÝ&–ÿyràYËÝùžÞ¨ÐQrõ|ô¸”¦Cy[Ÿ‡náb÷öM†Öb4®wî¹h}£Û©À n­ŒŠñÊÜ>õ5dõ)èÅáQhDؼJ0ú¦Ôàó%Ùó,¼,;âhüˆjË%E:x,ßÙ¨Ö¥÷.8?d#xrü"O¤‘™Á¶·Æ9|qI'ÆÄ’!êý,R9"’´U4 ·e²Åš8Éû êÿP7žé­ D>õZt •ÿÏ‚^Ôƒ–qáü_Y?¬°‚Ìðöë…_™²J*›W‘ö11Ìßiû*&ˆ>ÞŒ †ß?y"àÔE«ðŠý³B;ë¡)>°Amö}s™[ØmØ3wZ£C¶Cnþ eØ+t lNñSÉGŸº“•Ä• œñ ›J4äf*{+ÊÛ$¤r3uØ ¬j¤ÅÒ}wücè„ü;‚®o†y½LP‰öè»í 8X?„zÔŽyxûìQ“ÂÔI„¿”ö˜&OP”NrŸðÅcÚ¦|™¹ËtËPâ(ybnióv¹to,Dñsë>íÁ­›Gô%*ÜÍá×¹%½s_¶Sf‚V4MÇi[hð1®„Œ²4õLW¥Àt#wù1úò»l™]I“6$ˬfÎ`‹«fˆW¤LåË:Y¬I_%è×_ÔG¨Éµ’‰½ÛÜ­/·¶ò¶ë@«Eª¯òöÍRÓ«EÙŒ*<”y(ºKZ “ȶ¬VÄ‘$^r¥†êñš‰DžËîž\¸u”fZÈC°Gœ„SPFëRôG!Êšú‹¬M të ®ªÜ4º0çÿw¾ÅšùÑNÏ(Ó‘>˜b l,sðø’§”êäk Ÿ§‡„H‘7«B…œåéžC‡9£0¯€ˆˆyã– £q~=ÿVÃA:?ú`º~JW䲊F™tˆ7n]©0éá[É Q½ÊŠÊ$³§ETßgzõã³L(ý,¹ü’[Rgeà¸`nÄkîo­•-2hDñèݰÄÐÃר×Á—¥Q1ŽôÏO’_̺þ%wÊnÞjë‹°›¾qÞhN,ëÜpŒ:挈˜áôßÎÔ6Ò>‹4]/ÅÒ+2nF¸.Ô•ß³ ñáò!æÔ€(p¨‰Õ`—ÿò—ŸO˜Ä5<ƒÆAXó-|­)¤žz¿N½ô÷cß'ǨÀtYì뀊§ØñêÉ4CõgÚqUßÉ‚d”GE§†ÏÓ=< µ—$O¿®:¢¥m´šìŒ¨ËdK¬Øövùs>-‚OUAã"¿û¶‘h™Õì`ãL±#ìx@7È)«[WÙ½‚Á¸2§=Ò=‚DŒ¯Ì‚+šÐÖl™K[3ò…é{òDž[·?ÈA{Çe]L™®ž[ˆ"SU¨¸~K¢ÃMRJU:ê¡…dEÐÈŸ¬«õãî™êxc¦­ÒƆgNà‹ñªŽÙH5IN4(L¢ûÅýí3‚ÊYDËYÒ—]|o|h/çrA6ÝŒ–†D_yÅ®‹þÛÎ42SuN¬„†^îèOÏ‹`%ó¤ Fé€ÇÈ{ØB¿ýLP¡ngÚl@Þ2¤*| Wîø±ë§‘ΊtpÊa§Ñ›Ø#äqô ÜîVbvÕR@¤ÂqxwˆL TÎ`ÃG¤ê9K)ÔrÝõ¡¶ª½ÒòG¬áŸ‰X²øŸ^ùå~‚úó?ñéòŠ7ÐÔ•'¢§µÈcÐ_‘ý¼öúbfíú5ô\Úe5–üäú"|^}–¤rƒËÅø&y‡R?(6ñ.Þ|æ±Ü.4Ÿ§¹ë¼2>œ›‹©ÕZ8Áù7Å{¯X`àfôÓ /ŠÒÒ< %í̈á !½«ïø&êI- ¢õ C¬@‚š<W›{½ù/Ѱ·2¢ÿ'ä6ö²¢;ý)XñïÄý–©áÂ][Ð…‰SòiV1lGòÜ(…PyÂÀÚpÎx]d±|¯â²·¼Ìž~£‰9ž÷˜ŠÂìôn_3PGlÛbôÞÿcxkXœ°?ÅïµÛç-_'÷¨Aº"ëç‹ö7gÜ%ËkKkv1 PmH/¯ÕüO}dÿîïiË)ûÎÌ«˜@°4™FAwÂy+¿B<Ö¢i0Pàåjõ[áÛø¶yªOÊ2T7š.¿ Ä=ÌüðÚØÒèXµ¦ïv•§ã¶ÄaEkK,EõÌ»Îå~ï¥4¢^|©¶ O xÕ¾~sµÌpåN‡Ýô6Âo›aû êu—‹2VÜ[䢿IUÒ13F 3=˜“Å©Ì~ƒ³¡µ‚Àl ÂWuØ…å)GÂ+\Ëj„ /D"»§P½¤ÁqãŠyü:¢+.Gú÷äByî"÷Z³¾bXrTï¸gÌÓŒª*V·úºL.ÛM#…–F[ø€ÃMÓñ”ü¤¤S¯•0IºBXIþÆaaM›]~ƒ”Qñ&–,§ÚW%’NboÑTtY‹òý7áRæÊÿî6dž{¥(Ò6jœQ5G_ÀÅŠ6àcå0ó8ª~6i+KóaÞ)ãÓø+uƒÓ˜¼äBE¦ñUø4⢒Ž*æ†á¿´¡G. îƒÊj­ášR?GŠ–<*rž¾ 8Y‘dZUX.ów‘}ØÐ Uä|ÍÆÐƒ §´~)üë1\Ú4DÙ…ꬵ°„¬·J 3+MšÀi9æûNVû¨² Üó«vKðÑfÃsÚpü9àǃ¡‘Ê7Jê\ˆaÓ1ã'9”Ó®öN-çecë%¿$Di1 ?ÄVš/ÈoüŤj™'u]ª°I±:øj`¢y@2"0¼è?5ý&PMzð™Ï k"Ã"¸žâ‘zDØÍ<Ãü‡›˜‰ ¿ÞÇ–ñ8’qâµý®25“^@Úd÷@/‘Tº|*½e•v’à Q‡‰Ó¶"nTHÚ“®™q®ëƒ¯71‹ÚNg\àrlŽÔU¤šÂ—º±ýU¤ƒn0ëèÔÝl;ü9}Ž®,u`o®çåvJUoa¯±ê Á «45ÇI…V À´õלø¥Ò'ŸúÕlǸìÖYµ w¤„3¸gP ¸Ó¶öH3rOû¦’„‘Kù)Ü+ñ© ;YñKxFûoMÉòõ#cœ)Ú—¦, r±Þ[ØÄØWl´ÑZ‘ލCÑû…DC‘–ÖŒDù-ƒži\ .”Ï Ú% A5J@†ñÎg-|B'5`ÎK~ˆ»Ò/S{ôø|–¡i3wÉŦ.‹:~!ÒâþZÀ$h¸*˜EêâêáŽZU?¦©h[`§ÌÓû©Ú*\3ªe'»ë|ÙÌdž5àtÏ[\û™µ•3?F1U(ä0uÛ}ÅXi¼”kµÐ€±‘c4ÄuéùaÕÊRØ€OlœI)˜D©ÒÍKíÓµY›÷¯†¯¾kMá~î¿™ŠÔ¾ãö@¹ÁÕ¡ß·ºM9_ª{°¶ì¦Àîá¤ï•ø£ühìKL¿Ÿ¹µ±ìt…(”–£»‹«Œö’¾âüs; ¢?Q.F¥$¹Y?Àø:W ‚\ã”-“Ç!šBÐüœA²s2“²`[K!æ=É4ùß]†L_ƒZ²¶X xêåJîÁ†X_׫MŽ„ì˜c¼ ‡Ëe2è‘/Ü`0jôâ„ܱ‚ÉØ/ÒÑÅ„ö×»‡IqoÊ(b$ÜõM鳊8×ð„oÕ…BÚhø¨æEÑ `ƒ$?¬¶XÛÀƒ 4ôÁK¾²]±Þ=‰4IJU -dƒÉ~K¨Wk§?°2qr U\Œ¯ VBS³E0s‚LÄBœ³ ßcO>i˜nXðäMâ ×¢)ž±^\”Tä>±]ÈeÚÒ6Æ^‹Gø»le6RóÈúÓÜ3$‹“Þ\êðÞÂó£îÞàßÚVLÝaâ¬õÚ\«Û·¶â“ßOΊJ¾8l‡ÚÎÙj½^‹Æïâ_$¼n,{Mã1$‚BòißxªÂfeôXLLú¸s|œ—UŸs¬ÓèhX{ÊF²ÿø°¶÷Û¼ämûÛ¿Z¸YåWoõòs$p"Ž©ƒº/tQ¬ý-† üC…U ,!½¥’tÁÑ:Ów Tøo„ëq «=Ê‹4RH¿Þ“ç@“† ±3ºÑ L²ùCÈK,dÖÛ*•weºŠ—ŠæÄP$³PÍc”XeËÖôÚ*†ÁíÞHZ¿DQ”o¹Žé©è[î±jG°cR¨|„m#vÁ?ÿí÷¼è @äPÜN×?×t³ïÑ×öö*cˆY© .щŽäzÆs§}C§|*"Ðsf-+gÔÒárR6èB,Ê ‡O®ÿ¯1ÿ‰®l{å‚­½š5ÚP´W6Ô³i£ÏBš¨Ëá¾#W±Ë6+³%wÉŽTdÖz·€G¾¡Ä”Š‘Î»—Ém)5gTÔ³$. ÒÑðé/NsKré¼ÀŽdßõVñÒíÊB3J2‹)z›ÑÑ·&‡üô C€`K=w^ûj/ªx «Ïµ %°JeªIlÃàØËž%¤™]eõµµ»KP, ¶dÛhx˜í3ö$h ½›¸‚ûTs~U(—¿BDÃçßùM’%ù"R 6²ÕŒc¦0^æ¨âÁµ -øê]ËmDImzG,6/ÿÅÄ:‘Q¸Or²E£þÊ ‘!üÚ„ºípjÜÙ2 ÖÞ¢ð”Κô+ctÚ Ø7`|V³1<Jjòp^i…Ä̘À‰3£U­y½[4À×q2Ï×€±ã’+ÿ,EÜg+ SÍäP[W>ºN}…rÉÐÆ¼L0›:ꂜ—¤4ȶÂvÌG+°‰ëÔ:J¬N§Z,44.Ÿ0SRï«×s¢¿i$0A:'FD"®¬D.²wØÔ6\#Kb6J`Ë37p »†R´î$Q)˜B|…GÛ·Ê‚Tp'¶~+-Míâ›é:üßqªn>t~±lXŸ.ºÌÎ=2Ê©(üýxNMm‘9ƒÀؤ Bk„۩س€üîŒXùÝûÅé8g'+’¤È¸„€ Ém,Ž¢™aDÅ}ßê0²ŒP\X¯e³ ¶Œªg4¥I&Iþ…Vϧ1îÎ$n·Jôüx¥6‹ð¦­Ã„3>¢Ê½É»¬•íôÿ' ¿&¸I%U¨Î òx((¤s–K+êk¨»hJ{Ô\î“Á鵨Oœ9±4ûªæÄ?-Î[è.Ý@'œñOMUo#1”úºH—æð°7P˯RÀ6@rÿNL©Íà‘ŠBH2EüGGÉ"YÙîàÚ8a2bëNJ›1útV@ùìŒfgkcIêÈÊÏ·Ë€TïôàÖ׃âD ` ÌÆ©è#Ÿ¸”êvþ¹¢çr¦Ý5xÞ©.†[y°ÈD½ô…4s@DDâ`4Új9’ß»"ÊBˆ×E. )‰¦E’zªŸgãÌ’KQäÈØ`¦¸V=œ…ÃýÓ´-û„†¬W§b)?dÈi™?h‹jCRß)Zf§ú-MaÈ)“HÛ g9dC5ÜáÔ^¹÷¦gŽÏDL"û¦ˆfú÷èacAç µ’‹¡°)zÉÕá—Y´SÈiwðµ¤^”@æãFèúÁ)÷AqMZE¬ôM›(€Á?±¼JòPP†„“:>eDB¿†`Guy;.£6Ÿ 4r›É}e¯* CChg>ÈtSÁåuÇl¼'œö}SnA¦ÒSV:jóͰuGkE3¶ça²Uý [Ç6B©Ñä°ø»]Xîxš!ñ¢M· ~Á_ƒd.]Õ}d| ›¿¹ âÿÎoÆú‹ÂÈ/ô#…’‹žyIšá{ÿË« [îc¯6|ëd³¥Ð=@×Éç’Inß ÿ«p߽Іû]­_/ü€ŒPi€Áî»E'ø3ýM õ™ ŠžY¶>{ ÌKrOôM×nƒ ÞçªÍÓ:ž@šÈĈTÀëh |#¦O¿Uûi©úð±ÿ¸.ÝtBÉ‚{’@â³ØRDÛÓ&.šö:þ©— bØÜç°l…õJd ¤w(º:kù3»<{KËARwŠm#o[ØÏÛ=Â¥£ÅÇ@hùÔ¤.ÎГU0 ÿ¨³æo½5"€&$‡x%1' «î†}€Oä=ì3m¤mxó‡1¼%í—·ÎÔç7sÿmP™Lò">œÕ΂˜ð‘] â£ëïI¶{þáÓ6C`"yË4/¿3·d/ìÄ:*KÞç¤ÿ+ãf¸¾òg‰øDûŠÅ:ûÝ:לö7¤g×<ÉæÜöJº¸‘žE^£'d–›j möÞÆý´Ëš]Îuªþžˆ2…¹øÇ¶òc%h²œ æùÃÀ\!­óh¸7Ü[LYcˆÿUø«|j7e?“$ü™ÃÈá’/lùn¹¢ý­n±Æ ™¯´G´N0úyÏÊ_ kXÖ¶m4=°*zá°tº‡¯È€¶øßÌ–EGÁáÌæl,#@Q÷5­\òÁl [ÉÔk$ˈ"ÍäÖ€ƒÆd¼B‰ñ\ oýJQçKÊb¨j™ç‚üÛGѪ%&ò·pF’ê"%ÙA⎣ž9Aó¬ý¾ŠJØ’sF Ùžb–l ~»g“·¾qî&h€Ëzeè/åHà”áT€fÍîŒ![ÊŽîÊÂV§ûÚéÂ#¨2pŒ"¾îŽó/WW–'ø°ša²œ›XJïá‘t”¹@/5Á´õy‹‡Í¡Å+ØLoÍêþ­w(ÐäÊ!qkau=uÏÒFfñ‰ì_0’}3’Yãô„ˆ¦‘=ýt>º´•Q“—Êã£L2px’æ÷ýVÇ>ʼn0•ä×zJú}9\Ý¢akL/¤ûÆ Ó—ÿ³jéã¯ÿ0ÐÑd5~Ë“y¹Â)–BU;å®ëÝ]N´THvGk2ªèˆÇ‰#†ã ¤ÀÍMƒY«­½§÷ ( =3Oì"›³F7Ô_} [¯É:×)sþ­ÚJP¸.¤÷]Jéc®áï£ÌF1}r‘d|ζ ô¤>RÐç€ÐÕTuÝ2•AòˆS#´óâ+柉F¯­ÍÎs³(ÐØ¤!ŒAArnÿ‘²·îç›TòRS„~4‚õz.ì¼™bƒ¿T~ªX`…a™5Zð@Ø*R\"°iäf®°`Ÿ"¾¶û+| `6£CœŒd(|À£ªƒžFdöD£7«||9_£¶)ýÙÀ2X†¶¾û%pùOô®ð€4Óž7ïr½¤ GF#¨º>Ñ(q„üÁÈBa³Iïá€F›æÜr×Ðú2¢k¯Ëv»vØÜS»÷ºþÐ",¹ÚF€Cn¼Ë±4›±}âeíFËÿeØ_[@+žMfèÍö׋¦è4ány.)êg/<çq°5÷ýn’yV{ŽgVÖ73Cçç4íë`å WTÑ|Ѥ/[â‡z v =‹Qç"@¨q´- ’*B#ñÅoŸSÒyÇÝîÕ™b3Ž Tj­‰IÍÆ•­çR´¨~Á Ÿ]s“c+°//“ÂdÖX‚ßåm¬g ÄþÞŠÙÈiªLp,¿FÐÍ€L’<‰ÿÙ–(ë)<»ê{ϲ”†]÷2B‹ ¸ȶ˜ß—®þHÈs´bޝ]µô<%O¥þI7¸uV 4ÇÓ­} G€¥LÜ©w[೎…WŸ ú§"SŒ}¦!¯·íEÕýr0pbÅV-È@8È-4µž`GÔÿu«)½zM„.ŠG@‡÷Þ¡×È(RB<{ G¾"¦ÙØé/qڱʧÀŸŸâºxõ#ª*ôKæ”><ô‡5P;#☶ºÃQä^+vžõÜJ¥ÚM·Ù¶Iš6-`Úp‹zÝ+´×áîè049TƒgºÞ¤h‚d[Êj(]| ]† ?Zï8¬óý³ï„°Žä½Ø gEÏš¬U°Âì ¨Ì£ÙÁÞ^ºýl:DŒ äì£e/Üœ'’Ñ.¶úl_Ä>™ÈÒ\wôñùÜè0ÒCƒ’w„óJ–§â—†ÕòLÃH%¦Kjqg‹uqÙõ1ÿÀ·)ÅãPP%Ï·†¤Œ!žú)3Õm°4ÎP'`½±N}EÿÀU87u¼9bdNî–˜ƒòMÊÚ $²ÔÔ3Áœ?•—%»Ÿ sˆ¶!xFõv•~ÔIŽõá:‚™œo¯åàê¤|çŸ0³¡IaµŽiT4;|Œ“à ‰ãÀÛöß#¢ããSùm\G’ŒòSéa!Ä©g%a £YŠÁ¥šŸ;Ûœ¤=K¼VЂø }mEJºÅ—!ÃeeË‚·‹RšÓXñ¡x?¾ªaÚ+c-VÁÈDïîsظS¡…¢S&‹š)ñ<5ª¬[¯´’Tï÷a ³$·<¥hµØ·ÿîvKø‚¦Ä[úÒü¦™}uøD¡$EÊåäåÈ¢m[ ÇŒœdŽrNûöe0CÖ0aª·šLœ–ÉÖœ(:Gè¯W÷à¢R½˜§LȉZÌu~aê0À%ÙË”‚^jàŒowAÞX! œï”;ÛA™ßvD¢hÆþYÜöAóôtQ͋Ӯ„b· ¸•¶³ _Q%7}¥þ"ЬÃ>\Êo ï¥Ë€ï>-M›¸M1ÄAž ¨§ð ‡–õŶ“Iˆ¶ÐCß<ï^%¦ÍãW´ÈëüXÒÁ–„ n‡!}ìÄ$/yôj·*©DL)üfVƒM*¯Â‰¥Ñ­ãPÊ¢Ú&†N'Ä£I9e’zzѳ@ªÓö²!÷ Ñ~6»HïW.fcÊšûÖfB #Ù ¦ï½Ü-¤@I¨-²zõ÷Ž ÖUí ÅØQœ±çí÷ _@¥î}Zéƒy-js^yß©n ]| ÊöÊUtM'v¦•ûTHÌ”FÊÑÖ€FšœmÅ»`Å•¨µÌLüy’o¢Š°£ÕâGïYÈ0}ûqÙ"¯ç=‘u~€û…l5i OÔ_)êcú›ÿ;V½oØMØEhµ¶¼¾ªú9T…ðù Óɽª³²b¦a<ÚÈ«oôÐq5Œ@IŸŠJše"§n”ï<Ï+¯+ÌW~«a˜Øþ¡ 8V^=c<è,$cŠ#® X!ÞYü­sÎûZ]8ßõNŸäñ^ú׆»ôœw•6JxoÙ6Íj¦«žUˆŽ©)ª#Âjà"3 ‹ñ›DXGÇ)F’ëëú‘[pê[s KùV`†Á'´T~–tW<²Þ±r·~kòqG¶„Ö%µj^+TýrËž‡EXÀOŽu5¾isEyÆq:1j`Y7 ¸HÉê¨ú_¾ü *«1;G›Í†]ÝL èy5ʾ1«¦5;¸|ó—¡íŒÍ)–å³üàçžÌ5”7˜ ÍPy~®Ë~‚hŸŠ:½àÎÒ÷¹š+%l ãäy2 'C“½rD¥¦P‡iñ\ŒÖé;ìœä޵1•dRàB‘@‰ ì4B½,—kçÅû² è Ø!o@EÁNËûb‡0aôl»„}Ú6‹ÊB¡ÕXžî©ÐË¢ÝÎâ f²3!êÆ¸k›tb^ö†­¡R+°ý0¤)úÛÛ9”dõA\ù•õ‘y¹Üûv^Q+%ZMLM½Àl\è–y¥É,gpžÇ!RzU£% bø*Ë~>F«À!wlc´R8ºmî¹ÖÅ'¿Ï¡“¾_Ì;KP8ñªž¢nÒ@”3ßX€úNÜÒÞå¡ô5°„ÞS^s|ª„êÖ‰•JdòkÐMø[¹ï¢|Õ,ÃΫóU¾¼ô$]M½ñj™ÏR[¼P1Cn¡­ œhBãŠET„Q7’Æs=aŸÒX_”NMJ›R 8Ó³ém{î8$qÔgÎ"к)”É#ÞyÜÞê¼÷>Î ¹¡`Wî$Î/£lÍ–ÿO>ºùyÖ½š§/ïñ+Àh]ïÃø4Æ‹»B$”ÆŒ¤`²ññ\ïnݶøw.$q÷ P®/Ã4¡¡m[• +êxÒæ‘OHoøµ–}¡c‰íj3E“•(~ðhÏB—Å ðñ’˜Pó-—çyÀ–wöa$ZÖ²ä¶ý&tÁÜý_¶ìgî:vß3#x€‡ê{œ’@ †X“=Îþ£³ ¨R…e&ÖÌ0 °®Ü“YÔ²s}±€çJF¶ú ^˜’Ên@•à2p8N· Êa>õ0¦Y•fenI"Ï«¢Ñ2Á¼œƨ[{åô{©s¦ÎåâûŸæ†Éõ݈Âsù‰ò•²tÄT(i0.”™ÛßiI‰;ƒlQ6R6nâFð ñÇö÷ÖÙ9EÊüž±ÒŸø?¿™Üæy\ÙEÕ ŽåO)ަl~¾ÆîïÂtÓµLɇÆq§rA87Ê"ECêf ’T@q£À‘avãÖ©‚#þ—I"ž°lî’s%ÓI_C$"–®Uê;~É $ÇÕþžqú}t Ï+óùìs;þ®JWƒh,¸Í;ŒŸÎ¸4$¼‘¼kWUHðØÏVÝ+XQè`½pfN2Ó5S”c2òZ†Pú_«LsçZj01m±.ÆZî'“Béð©„Í+Õ¶mV€0R §Lsæº8è{/žR;²Élðÿ @…Ç@—@öE¯Ÿ"P„p¬æ¬Á逜 ܘ"Y{abxjÎF½rÿçz¿&ÙMLâ4¬B Óâ"Ì…òX¶{=ú;‡í*Ÿ‡•öHY(×óíH`Eªg…˜slήzåG Ñ ÚçW¡„; |bN¾s$?ý[Éu'ͼr¾~¬zÅjy3ú©¤JêÚ]±@oBÙž «àH™q„‹ ưٗòRDwÏðä?>{é#³â÷³‰<#eÁÛSe JL€–¿ò¥Fâpé<`ЫÍÄT#-îô®|Ê”iŸbrtt îNˆOŒùÕGvÿYÏÚ6½Ú¾¨áÓEÔZÝÇz‰’>hœ{Q–†(d Ê!nm3…F§P?mÑ{µ &mÎðË@âͼa`L¹v¼jÓÚcÄߨ* _›wþŒ®DÁæÇ[«¬Ç´ƒ“±Ì '9×pü @ô`Њ!ÂÙÝnxØv|¤ñ¼»"ˆ&HŒ‹÷Pl¤ß7®¶‰[Ǭ±ÁZªÍ€¬Oª³DúY‰‹ëñº'| À=8£E*ÈiYsX±Ë k""•[­£ëXkZ`“#óm7„8ÔA’û¦]…æ·3üÓ4ü[Í%rSÝd• >.I¿`ŽîÉ¢®z•åmÞfàIœZ¢Z †Ôî’¦3ÏiÛÃãêiÈ»÷ ¾Ë@sOcÍœ÷ÃÕ)¥Ækæp‹€·¤•sÝ ºJ ú¢"¼Zw’ÙŠ¸´è¤Õð¯)ß<¢:”ûþ[PA¨Bûá«ÜøÂn¥Í¢ÙsˆÅM6ãŠøÏΰ±Ïâu´nê$V}íRá)]©}@ÒÍÀ³J=N‹Ö”DF3Ô=Fa*Ôâ¹á$»Až›ñ©(x°fˆí>Z Ÿ˜üìÂ=µÄ‡¶~ïù§ –;”¢G[£ß" áx¼«Ë+¡~±–¿µp¹/¶¥~J$O~Z¡§ga¯aÉÈ9ÆøžÉËj`‚ÿÌhàÆÓ©°hánèp­ï“ð9…Þ#,Œ€û`Ä¥Ü{¢¹3L;Û|ÍS3üóü¿YµQÖ$ZÝ \£¯ ç»´õy_AªH^¶I½Q˜Ùá—Y%r§Fuú sjPh]“ ¥ïê¥ – ?5*Ï: œ '¶¯ã†KÀh~øœ~ƒp·U·gô×gÓ8ü’OZÈõWÅ)O1N,akž õÙ¯í·Ú3Ñs\ƈ*²Tº½ÞaUšË¢Àw^ðŠ)M¹#5æÍB_¸xSûß•¹z¦ÀhŽþjí‹Üjˆ-®õ]B½ôª/+&[¬¡JŠ9”ïçÚÄU$Ö„eôø¡Izæñ„D”æxŸ4ø8r6jpº8rvÐhð–ÞAšAÍ?vGµ&,׭Яڢ*ä;#¢šlÞ`wÖwŒ¥ ±Êú ¬žœnŒê ÛD ·ÚW{Ô»€ÛèÐ7²ª*¢UVjÓG‹g™ºÂý… ‹ñ„ýN¾&¬uË/o;ús{[o#-uŒ‚¡l¿ì”ìËJ¬â‘¤Ö9JCkOûëÊ'8É÷´y`T€TÜ‹db,'Šà¤U×J6V úŸ0N÷ú4A z<')zAÂÍ_»„Ò&Q"#gå7{º‰ŸÆ†÷/ŠÎôÞDàó?ÿD–= 1š¬†@õ“ ef¯nXñiºŒoãtkÑË£cIˆ¬[Ó…“ޏcºÚr£ú•Ò>Ô·YaÐþÑÔhˆzŒÚ Q³«‡xO<Áä 3Äm=ªåε€í6©59>08ÍÂ<Ðo½éläa…¥Õ-¶ÙB–ˆ¢½{¿-…2J ɬ%â¹^tPªRÈÇò`ج%¬¡Žðãvm²³j¼ƒ¤[hNª@·¿¹2Ë”r7‡m»Jèî ¸ÿ$ªD?,û½õZåîŽ|¥9ò†³èûP 6éê­Z¯¿¥®~ó)\»A±rŸpQ3Ä{IÕH#çÔÒk—(”¶Œ]ït OŽú¬ÞĪûóÿ”áeŠö+n½ Çá5Ñ P¸è“Ò=^d"ÀÁ_½°3"Y;7_ý†ÎùZ0?c«Æ5eÊ8YáôN‚n%»çÒ E»Ÿêqp™O¿j2(ÙWÁÇ·¾EiKiÉp±”FûVÁ&«>™T÷JníiÃgЮ-Æ)¾¬įª™È´R©ý¿E©úó9ÉmÓ‘Væf7“ MÖRö¯ÍúþDèÑÍÕL’¿5Z]ÌþMÖ‹ÅGßDen(r7#Ãë)…Ù¡6º›¶­T·Ye>ß•ÀÃß•y.¯0Nânóu{Ž˜J¯NgúB0TŽ/e‰,ª8õÄÑð¬V-æ_„°2-P£w!–˜Ãs¤G®Ç”ÛÞ‰_ØÜÞ¯è.Ž/.éÇ*™døžÈ};ïP=ÚK.JlàÉaKYü凚:Õ‡V"‰©êKÔëÊswºÅÌì•9bÇ7ÝÍ™ýŽ/F®Q¶S•Dd¶HItvè |”Mý¯ø›ã¸©x›úN|²etähmÃÝ'Ï|Z(ç\óÁfVÄänF!¾ÅqÜH2(ˆî$çÙáâEâ¸$™š5"îî7˜ç * ÛCÁäÅ4øteŸòQœäIž7 ÌjL½ÛAJ´@mEÔŒêjm¾a»á¬ÅŠ`ü|~<ŠaDNÈ-7»3nÃEM5»a޹©n’ò2Ù»°³L¾üã?}_e0/+}â²uîrm5pñ¡ è<ð¦DA6c×ÇQ©Ek| ã7»å€Z¥@ƒOÌ÷uÖßÞ—ùn÷à”¾Ñ[@𹿔ÙÓ-xDNÐÙÏ_®‹Ná‘ô„žŒm žÑlÍvb½¬ý¯â´ýNNbZ+OˆŽS"32 þrÐ^…êëâY“Ä‘†¹ðîÜgd;À ’Ð¥‹E:À3ä æËò8Ó$Q€ߊo?:\éÍaßÀû´¹Wüç§¡Mcý¬f)ü—ß>!ÆpMæ›ÜcžA\ë!ÉrƒõÁëDô´JšÊÉelÿ5•\Ê #SkäãÔfÅÛ@›m çÃø`´˜ —IªcUÄÎ̈ƒA‚Jžçùu»‹èó$ õJÿÛÖw ÄPŸŠ)Ù(­/_¯)åGRƒ¨ÚPMõ\ÿüŽ. }êdèOÞQp![>±>N1ñQˆô†–ÚLpuQ÷9‚ ðkéÑYU®I4Ë÷“ ‹Y›“¾©±î }#ø–Å-a¿·Œ¦ü‹„‹7#tr@0‡ÉöÜÑ«×_>Høu²VRmé¿°^Ò×A¢2]ªe]ÐàÉ þæ6LÓ¸k†ÇV1oá–sÛÏžayÀé|Ú/÷XÿAMÐ;Uï® qƒ¾—ªÚv@’”–ªZ¼+ºéŸ%9žØø@~+PŸ„mEWŸ5r$ ñj‹¾ ªËL¢p{Þ÷?qR©­ö@À½ªe©Ò;®Á-ZÌÓ T‡)Üßç;£÷ã™_Ì·^íž¹§RɲMO`fV(à„¢ª96#@ã53P¿ãéŸE:Æ?Ó »ë³ãsJ˜UÑ%—B¢Èa»Œˆ ê$¹ßà ï_öàñ úý8{KÁ_‹ÀôÙŸòè‡ñKô=A‚´Àüó0U5À©û|?d8GëDsjL’6ãÚøjT­|¿”=z|¹†Ûç&ñ¨é§Ó‚¾gì5o"Ñm9ÁáéeU;v[1öÖÍ{‡Ä轡¨¹«„)•+}oÃU€.%óš÷*Å¢ÂSÖË©êz¿1ÉOÒFB×|Ìb=˜Ç‹¨ô4-ÑvÒ«5µ„ y¡×∀’9íf“­“[î!4~Wr°}\ß ÿ½œ|’M7Q» †¾Ô49ªéCý¢]ÔM’eê³t*‰"ÅrbÎé>DªgNqþZ‘×h9|ùm¿WòÐçUd VάåÅ ¤å¬$Rµé’ÌJ–ÚØ‡P±¢5÷?{tgR­*e¯f³T/ð†¢Ô€ÑlÈDÈAß WËÝ@¤â'ÆÅ|šŠ$I9xò—«0:jÅ'dÝµÇ ¡/±–Ñ TeÅ-Ad±Ò¬1#²–×îËäCm}YØ „ª•6Øåƒ q/ct-›g}õ¥±ñÆÃ@ÒÜÆI»AbY.Äg‡~kÕG+í„é³ÞdߣŒÃð…­¦°‚´&ó!(+\OªÞŒ¡ÿJÇ^éÚÐã¸âÿqÉ.2?rÑðYt/.½!%lÒiøAÿÁïH]ˆµ”¿PvÒ=ßC°×ªh&¨Iþ†Ü¯›Ý3†7«Lð¨ò„X6·\®“U%ôse(-*Ì^*FÞ Å5W$Uw§¬ý·MT¸ñÁ"îéT©£ÜrHT–j“ç:šÕ\Ýï…›Éɤiäãiª„}DY©Ÿh¼Úšbk*»fŒcr*Ü(éDRЗÃ-Ø*· x ÍÑ~ŒxÙvÆä[t,\Ùzë[Ý­5Fñþ5QÞÑ#[çeI j$ö ðâ›ÙÛ(˜\vÝIôžA²Ç56›¡mì–„·{Óƒd‰1BVýˆ%_0Ä«I¿¹2˜p1@—rË}N‚¼¼¶¾}òLH‘°ÛàóàO\‰°ÛæŽdyµÌʉš``3ÏuJ®š†€71Ê5œ/Ót¡Ä£g‡¡t?‹¾²‡­2›Ö*=V4AœLYÄ$~M—LèOg%ã²à5_Î~¸<`Wú”ä hÒ›âÙƒgªI~3ÑG´EÄœTø ¥ÀAc•‰Þâ'Q2ß¿s¬ À­•fß+Õ RŸÁÂÒº(@ÉpP ñ¥2u\öÊì825Ô1*¤Þrw&Ó"²òoºkпV‘P]õ ð›%ƒ®u!eäÇ=ÝÛ¨D¨«ÏJ).¤Õ·Ä»#v»C¹ gZŒplBu^Jï$ýÀü<8Fd‡k±3]SFͬ0Ì ®¬â›w¡æâzÇÇí-oìZô_ß.eòÈš ˆúÏ[w±Ô•Z´šw8?ûo„X™i—H/2 ‹ŸÐ)lPßì~ðý³¦‡rAû”RSúêåOZYÞ‡só1©XJu*¹HæÂÓ÷c¬³ñ1üµùF¯šx«1>U¬R‰>ÞË… |ú `÷'BäoY´ªJFNS˜˜>%Ð.¬»Ö#ºTËpÙ›ÞVf÷WJÁOþÍçe=mÓ¹`Oû^(­}Én‡F‡†8œuMí*+•¿ÁÐßóÐMOèê·Žñ<ãØßJàCq „/÷àÍZ~ä*X¾-¯N•/ì±Xä ~︯yæŠ~FTµlŸdQ³­7n·Ä>gÚôüP÷'Þb*Œò'€íg÷uô‘‘KÔÒÛã{Ev©q–°¶ ÔÀDë/V`=ß AO­!7gf‘q¾|#ñ$V¨_hÃ+·à5”ã ˆç3Îñ`bïg(D¼ešþŽœ`ôFùÕ^Ò¸Úm¥Pu«Sµ¯tÊ íÝóSeg¯×;¢ðò÷!Îb˜>䪱‚£™zµ¹yÄ#UâÜjsq…ĆepS‰xãSªÑËe[ƒ3ÌŽ†›¬ü¹¯Â­–›ǃ3a=|"ÿ´q´SEú­r§L‹gÿ¦3¥ÅÏ ‡íJNA«J Þ’¾hÍ`ƒxD‡\g僃"öóÇ€ô}@ 6ÑŽóS:ë5}ž‹@^ MÌTtƶç Á+÷±¾"=à yõR½ôÔQÝ»:pq%;9S–s%¯Zàñ)›óÉP²’Ñ%!Z-¦dênù•U\`ËoöåY”oå"Ù’ô`@0E R¼ÃßMaÂö3- ŠR7—QTP<"RŠjô^=ï7*`ñàÑ{„SàñÕ™\÷BY±Á©H!kUÔ °¤/¤Æ ªÀYìšd>œ°1]™{°ŠH”œùlƒàü`–&ÁÀåLsà)|ƒK«‚Ì&‚¸\ôíÛ–¸1=ÜGOA®Ú Æú Ýý)I@­îrKˆŠ Óœ‹úÊܧÝô¾Õ(£ð€îN‰DWð¡….K:3r'rÙ»ÐÜÄËŽÿJ×.¶='~~‹Žª™DÒ‘?tžj‡på½oö-Æ B6„ùÚcëÿ1¤Ì1msLKëA8+\1Þ®x¾¹ÿË@ü&×£%"ø×†M‰Eh£›j¨A®”=ƒçªÁÉ®¤»1Uų&vøý!¼5‰k² uþ`(ŽŒ20¦CÞ¥SŠN¥\Ç3ÃKJkÄœGx'’Q¾[ÃK;0ÁA8£­S>àTðdbëõ?ÝÀw³q\¡s ÙŽë!„$ý¾±•;8O…Bj©Ï Ç©ù¸ØD ´VÎm‘)j±(Ü­ZÈ3^ònö·[Ësâ®kËa%[†krð”'aó—áºß™ã›<- (a¼Å5;t/¦ïýq­.p¢‹ NÎF_ö[ZV»brkrÒUœº(<Åj›´ËPý[Š÷°Ä á»_Œ?N·…³ã›Ëë„æ¤ëqé«'þz—ìÕþºEWJj–<6ÂÂ@õœE-Ô2T„ÖŸ 0Qð²_•\ˆcQ«˜Á‹ÞòÄ Ôfã|ò:Z~âÎ2ï“Ï’šÆßÇ}ob‹ê@)òÌ-öË·ÂÌÈ«AišMç¤ ñ«{g ÞÀ¢žBauüâŒGð”úì.a@•‘$Ï*™@‚-ZÁQ È„õwR£KÊ)Ú\ÄB( ‹Õû¥!4Óx¯Wö iÛ:ö²Á@áÉE†Ó©s÷ µãÑOù}£sæ{ÿi»­¿Õ)°¬¢ N:€;úu8>9$¢Q9í,HQ¼sŒÆ·ÂÆf^„r¬7bmu6ùå|È´«øÇÔ®ô±òE>Nk“œ×¢Úx±½~×N÷hä°þ¤¥]†½ ðlqÀ=ðrKÕk;¤dŸ¶m¸Pæï+צc¾/Ãj›ÎˆåàÆR¾vœ¤ÕÍ=î¥ü:œwRÎÐ ÀÝûsÊ”œ¹´Þd0}ü-n=ä\„pógÇh£‡[*‹høc³L/*M*@H‹­PpŠ©ÝÓò“¨ŒFÅÙÜ2˜‰ ;;/žùç¶¶å«Z>b+Õ:Ë”G õtÅÅN}vW¡Ylš¸™ê«QYÁ“sà˜sÿ®¯‹9­£ÓauŒ&ódN È#Ve}Ž×?AcÚÔÍ7h2v"ôKóƒÎõÓŽù ÈlD)Vbç­—=íý‚úšÏ("Gž¼ãñ ;£ "GQ™ÉÛþ}-Dé™Ék¨ÓÆ¥h7ôRZД˜çä`"fÖ½]Œ»0ôŽÛeZO/¸ŸE„Æ# éI~Í)e™CLòmÐ{JðGÛîùÆL¢;;o­â¥¬½„Œý’¢»¬0Æi¦ðbeô+vîeq]Ë-Á¡×º%­)º"ÈKq\>,ñÊX“gølÇOçfÍÞUÙð?éý´[ÞÿÑìX,·ÌñÙ¯•…§³|‰l«\¦2 ø>ú]—•GëBMÖ$Ýlb$–}–Ó£¨ÏHL |Ugåwû@Þƒ Zˆ† —+mç04K*^D;IIS9XkDUæ>?Ä0Ä5ˆœüü‘”†Wr“¸WŽ;,#]#*Þ'ÕóÙç½ðÃòkÎuÇö•e Ò‹5óÿ˜`Óbîýê ¿S':Ê]3¢QâÎ]¼D‡4+p·*bÖL{« ð‚—É!T€6¹Ë׋˜©Qî;´‹gI3>$szÐrn„t/^ùj‰ÖAñÊëxß›À¾áŽ¿fn\Ìñ1,)br×oæ V ÿZžýâîœöæ<Î]\©Ü„`jÒ@²|.éDd ¿ú0!Eª°…8AßA—míó­ø]µCç êã&vã„ rƒ@áä&\8@¯• äOA© “a±ØÕÝ"2¡w³ú `š Ñ‘ í—‡M¨ª¥8 ‹‚À:z¬¦ ¼N[Ôm˜JÏRÙ')êNÇJb}2€á±~iü«ºQsõñx¡R‡„¥‚_-«=÷/™º®ã ñ¨uË ÚÜ ëDœÉ>ŽMÓN MÛt»¯ù§Û ÏUݤkg Ò”økZŬ_ÞŠ·ÚëÕª²Ù½©¨Ü“wÀ4úp_$M¬GgQ¨§Á+NãJÐ7·—V×áe<ævÏ+©åwªÉÒ¢å¨Ý‹Ò½Û,ß·lnȼܽ­{U Í{5ÔÖR RY!qþ¨ÀäÈÎâf»šR§P9fAkMò“ý$€Z¸ÔTb w,¿vءЫ4µ„À:¸òèN|>©47ë‹{T¼rU‘Ÿïx}lë²ZE y¥`deÇþ¼ÿ¬;F­ßä‘­ÛbàÂZY•"²‹nœpV Æš´.ø~Ò)ôµu6›\;£÷¥ˆZuCD×Ýœ`d-2“Çm6×Òœ¿Ùk¥rV:¿Gñ%° Nì Ž¼"3„ ê,ø¬nÑÚ ¼ C·hß|Jï²ïvËÓ *hÿSíÌúÉTŠ"Ò¬²Š§ ”uDe0$¥6óÎ{¤"*×dÄYæ¾Y’(%*õPõM^l/£&Ô§£\ºžT÷5ÔEwÀ9r !cGùd”ì^.»ÎÿK3ˆûë¯Ðò^rÔè/vô`º°Ì7¶•Úb<—îÖÅÛ³üSðNGB-2×v9Kkô@Ð éiX—YÇ¥\vÖ•Ë©\ˆ›K ŽžfÈW…Ï  ý´D3t벩“’l!}G@‘×Ý^7˜(\Îb¸hv`9F;vHÉuÞPv*¨½Jà„€Ž`·°)¢–e…ñj§1é¿P¼BG_÷.õ•JŠaT·´$.P¶·Nž“êQ×€3TÂ÷˜4!wlãj¸p„¡{˜¨Aøå‡‚[íJ§›ö0„늉 BOâMòaÇÊ*þ¬«±ƒ¦Á ì 0r$J(Ç+m.E&è ” ußB;"v U~µ'õD|Šm²‡Jw2ª!$S?Rг0 "]eëàÁRØé†k1­¨`û”ÒqrÛ`0o‚kfÂ}ÚL_rht))ºÞæ±á†/·úcú+Ï$,–¹ƒOs‰?êî S­õõÎU°3ÕE¿¨£‚‚vócÜSj€O¢¸áQý‡IL¡Åé=É„Yöë(-V½ƒG¬/sÚ^y Œº}ä—J4½ÏÛÕ×›í[Ïdµ+PL²ÎŽ@¯Öäo‹“TÞØ4u ·³JìN„n· ÅþîŽP†‘ˆž=`ÅÂV'öUTc+fÒ&}Õ“Š ó.T*feÛÓSB®í²ÕUèFOÌȽÄ÷p~``5ÔšÌsð8Ï ¼bÌ àð5Ì7+ðâr슓Ir& P'èPc» o2x âÚªLPø”FÿI®¦—NŸ=zç_1{:% }îB«?   SûàÄ­K1ˆI¶“’$¥æct÷$†‘0¹ÛŒ—¹×@‡¼äé :;]Z|î{Ud^M”+œ 0¡ƒÑ¥ÉÍÖìÖìNr—LnšêÐ^-²š¶ÉKÄÝ{µq4­çC€ ì|+PZõVw0ã<æR*ÔЭû³E ýêÇ )tV([fÆš ®\(V›½}I½š½¤ù¡ÔKfLIµTQy”úeçƒ]P!천S¨à³ÜfL$,ó:î4 Ú”~û©Ô(P«ïÿP¼{ž¹Âà(–Dò[8ÖÏÛ&’šî -_!Óúsc)僚&ÕªË{ObÄþí ”% ~ÇADX aiÌ ¢…Z Ä‘uöó Õè8b'DÏú@xu{R.¹¦Æš1ÁZ±&8xتÝÕ6™ìG¼š§õŒ–DX® |Gf·EÃk¶PÎ3%™ú ¯ú´+*¦¸lTÖ.ñKtEbÓWÄ’ãͺZE¥­.–Ç'ËÀc“ñlZEÿ¤Ût¦/`í˜Dpêtî»I1Ôû±-a’y‘¿rîå9o-ñU¼ _ÐÒÎÊeÕt§Ëa<4š§}Š,'JÜsPlåOÍ*o2ûÜ(š¸ÉŽPëÆ”Ø‰ÝE²Ô° pÂÌŸË/^@ºzüiz?O=Õ_óH1ºrNË»¿·Žå9R¯˜€Nî@W‚Ömà ¦ª`‡áCÖûÞ² °¡¤ MSÆJ3¨V=E݇r¡1ÌmXÕ¾ÿ’«ÑÀ¸gÒHd¶¸p  ¡bÚ¶ÍCko¡QƒDRa\¸8t o'ôËËì&~È¡kí`ð fþ=jN l‹³Y­w¼ ŸM±놉õ3ŽþÒ#@*>P‹ bbåbÔŸš''mÞ¬P ½9Lûµ«KõÑœcýI¾Œê*¤ …e`–¶öï0æz¶}8Ää‘Íáb²w5Ý0â(. µ“}(Ë‚m¦Œt¹¸÷5;?ÃyïD¡E¼0H¢ÿ«¹ÌzÆÃKÒxÅ’4\!ÁÙ™ÉçÂÑ ºo7|ü„Èl=X9ÔÊÐàd–^ñ&ß÷žÉM¾V\Šê±?+µû /Ò<¥qé\èÝW•5Q{QJ~¤4\v¤¸÷]ùÑ š0“¢vàÐyIö Å¿£ù‹]‚\0Óä¸bK&餋Û°Á6–ê§‘%´à±B`M±‡¡VüÂýÒâ‘Æ@>À­Ï„à°_ÉvÕ:MBòrt²ý.Ϥ~ ÔèÝ~ô°I€Aø`c„-·ÈŽÂ7 "Șì£þ·LÄ”pc$*“‚t§Úo„;ýóÕU PÆ3¸B¸Êâ´8D;/NH˜Û]î̘dæ6ÐøQ¥úÙ&îU}Šä_³Å‚rØ"•nOßÀÊOÓÀ_=dú㇈=¸ƒ:ròž\2`@©òéРœ%3é §Š7Š$Ï𦽢KáèÖû%Ðþ¯Vê{B¢ Äwq3L8ƒ9ùÐÇ<„Ý×~7Þ® ?L*3ã…Y5QýqK=FÜ Ý1]™HúwŸÊ‡¥¶VÏI.=Š?n¿C~x_ R]ýêJ!)bÓƒeà”×Ì,(Þj’šuçŠ- $û!{¶ø6„O{â+Òòž²ºýÍõn–wýGfµ Û’ÆÍ–j³æÒ25¡ å ¿y¡Ú y–.äÆðX—”ý Aœ8Õ›ƒ…{˜~¢¦ö#–°½Ëb[ôYMˆ•‚ª&²ªP"T¶’¼üwëã¡,~z 8Ó!Ϊ×jëÓW~~0) ¹fqÜ9ž£ÓL ï¤}ÞhË/²ÏEƱQ9¥‘ršv¡‰Åi~KÌDypw† 4ŒŒN´@öº –¶vŽ›$ŸhZÓ=• JÃæè‘™Œß&° ~ŠY[²<ï$AÒ‰õÉË‚/ãòR:¶¢ï¥4Á̶ùF]™ :qã|Ò’–oÏñ‹-ôÒÍ>1Xßó£UÛÿ™ÄöVBõÄ4OâHh^f'í&µñ]m›ÜyÄätI‹^Ýè Üsï¹*Ò.ö=ûx°.âŠÃDl< R6œ8c-ûÖs¼6uê~ª"y܆B›0÷O¤ŒîYIçõh^.bqËpq+ù ´ß€¤Šîø/~Tò+¾)HK Ιù×Ð8kú=âÒ¤9XSïH¤9TÀ’›þ[ehR!ž„â ¹’ÃP¾r±uBÞZ —£&'äžµùµÞ‹hîèò5–- Š.Jž¾ŸBûTgÔ¬XÇ]x }fIEÜPãÑò;'B A•LYïô¿Õ2§é©¥ÔbxÎ+X2Ÿ.´ÿê„6^ Ë“ÛA¿AôõÚVóë‹hЬwãìÑïIÀlÜ¥Ó=¦¹ê%械FXÁ”MˬIÒvxþ•EáaÔÁAS tO÷àžSã.‚.Š50¾} ¨ô¢Õ ï9¿:Ƴìp.\Éþ+‘€þü³xo̧=l×’^H1~Ÿ¦Ó]l©9î6×=¨ ‚Ö¯ÊEã\·fñ{’Jø&Ä`xŠÏï1Ö@»a¡¶-¤±_lܧ±;–è\‹V¨ùc2FY…Æû€uº’1OÁ[)Ø,Ã,%¹ŸŠ±f”¸À^HÈØÑ¨òÒSQ!‘‡”¸RÈÙö%ë•ùŠsŸ/k¨hÖS=afá>¡› «oj¦™ØóîoL_ÜųIÝX(ï+b)¥éLÂÝá ÙzÅŽ÷swuÏ6ad©9ÎÊìz÷ÙÔ¬ôÕ; ©j—e#*ú8LÞÒ‘áõ+²Š/ø,æ~g£Ä¿êœdlàûp:£t·M¶Aù(ž¤ô¦µFÝüH& ]mÃÙÊÎÖÍ@«„ßϰŧWùn|^šéÝÅÕ”@I!çV˜âÛyÍu°‹Ïü…£ã†m¡g9p;ºÖ˜}àˠ&) v]ûÓ­—j2‹afÆn7Ù¾>Mæã))âU®0û_±¸ÊØ5f:=±½àÝ÷É“¿×ráSxJë®0c?8MUI]'Óü݈o2”!¾nŸ¿ô@Xüd!s­Ê“—BºVWļۘ¿_Ýa{±£kÖq}N—ä›û,ZýóE0“Ÿ„¿ñI~MÖ÷ÕÄJôð¦Sèdº’çOßoþºâŽøölzù³¢9ƒ´¹À„b…W• :‚ŠŽ”4ÚÐϼ|çOüFyá‹ÒÅé\JWt[qblj^À¥ñÿо#y/}·Lðé«|zéœßj©]?¿“\j« Q"âÛ<ßñl}ƒ^+|ÉíaP‰3¢Úñ“£2¸ÉâÎú˜Ûçí}ç32‘ÓÈ@Ÿ`Úª`"”M•ÚCû¢\ò^¡N{§ŠðKêðóXüŸüà*Ýœä`R‡I®Óñ<û:˜ApQšÈêñÀb9=Ì“äõ>žvVJõ^kë ô¼<æórNó «ô ¬'KóÐ^t€X Ö`ÙüH®Sýó P½òÑ«uFdšÁp®âË{6 xû€Z±ýfÚœ³ Îf»N6JÛë¬6!Å˼l­öêÆíEJ§nü//C¦Žs[1gÕ"Íxš_$ò…!=næÐÆÜ"+9Ø–·ž`¨#ÐûÀA­ƒ¬ìm±ó=°GÒZÔÉGιâêMHQÔþjÕÆåcp.žýÛÞ±ÁÝÒ¹õ¯/†ÈCk&c#EÙô–=Å“/£žHÀY´B‡Ø†Ò:nM¾äJ˜©­DÌ–ÊäÆ$ëÒFø=‘µ8$cÆï%$:+I’”º£Åuâñ‚à™ê¶ªÔ+6!„Š=qbqb‘œUý[|çn8ÿe*•®óhc¼ŽÉ™nä#0Kqõ!}ÀæôÎïP*í"A&ñ§è¯ÅSÇG"¢ý8‡r¡$:£¤} ‡LØA¾«ré8†OBËÕ‰½´cÝ8éÁDNex’Ò~íÄìñÝ]ìQCÜ0æ‡?âýÃR<‰ß™"µLÙGÕéãlm|oážzNR¥¬çí‚Ø_Ϙ[&ÏdBg’K¢ÒøË‚ævÊ$9pû³’¶ß7…ò¹1ŒBóñ€iTáÓ’½y„L`©î}ÙpÂ' ÷`$ÏûI¯’ç†hLÓÇ; Üx ôŠ×טÚ/¸¬rþ‚‚`íÁV{RÔTW"ÁxǪa$Àgažn;þ=Nií5–Ë9˜‡x¹Ý çBv Ê©0ŠÁÚ%¤4ð¾;dc +ösÄ«4”â'É–·®ësO`À +ñÝ’káØ‘†•ÈŸ-Á„»…‡ñtÐ á‡%*øŸ2’›2„PÝQ³jˆ=x¹ãkðpG“8‚©pØ?’”Ê7ý”è´CØ¥×e{nE ÿÚl wm¢\ Š¬o%°‘*J;£÷œ¨¨÷aËc—šÚaz¿ÍÙÏ¢ Ô,}t+QóáDUÝ¡éM…|7B“ 8‘ÂâëÑ7ÿS¤Ši4ºõ¸üŽíôVÿ'n¶A&Ý~ ˜Ô/wj´f¡ê*…i¤±ãó½'Ž[Wæá‘?œ²$Îõͪ:ãÎ!ô–Q¸œÎäé®skßZÏG gu)-ØÊqðJÑiú±rmOåöÑò3|èo>ÚyØ:Uë¡%ú”u¹l¨ƒÏ->§À¥…U̺7 ¥´áŒˆ„ƒO&±<ÝQT^eá9|Z¢ ;ß‚quS8%H&u‘:CŽxo ÉY LÕK·ÖXÑðܱŽÝ-¬‡¡N±­8£Ñàäª*èvtÐ9!XêtJbTðýùFsÂk•V®eº­zš3LÐOcåÐÞD%n Vn"<¿î>º‘]&øó«(”Ì  š=ƒx<èø,¡|~‡,…ï$×AÞË>+ùœ¼Ç†$¦)hÚùULŽÃ£æŠ© ö§C©Gø çâoÃeíŽÎmuC³ü.†‘§)Vd­Æ”ioÃUršÞwšÊOõ@}£•|ýb>ØN˜!Œéת.7 ȵs•öãu—¹^ø@4.݆øÊöað/_31 C²¨`pœâ2lØ[~œqO\3!öY€ƒù?¢Ñå_V¿ÈŽyl÷t«&çõ¬(ïWK3”á9¤˜gESŠ¿V˜³ Àhü›áÉ¢éþU_~K¢Ï€([O¿þù0µ½0àÛT]ÂнÉö½v!ˆKTB_ t*®#*±3Èw™úäu4yá)Ò'‡njð­·næ«ÛY%fSª%!¾U0Ìj\àÌŽ;´è#¶ëRDÓa.m…Ô±rˆº«pÅ&G·Áp)øGެ•æªJøeÌ«“4M²¹4e¸nÏ‘u1Óíÿ_ŽÍÝx£É(ˆ„Š;¨9"åÛñ•ësH ÖÜ(ö°±&e ­µ/A»ækÁßü“@)§oð–*±>baÚ éã»ÑŽŒ4O÷5¯'t|®5|¨¶b‘ŬiGjE¶ñàm’кò2.—×—2æ.:ÈTð¡uû‹%þn˜ä¶ ÝôÒ° >3«K)²žÌ…쀲|T¼¿aÍ®)r¶ÄW‹$‡)ý!ͶJ{ ®]3¯å 7‘ÑÃáð²] ÁׄNJ¥ŸGÍ<¬3Ü"2›*4H?hYêά¨ÌYÀW'úð¼ ™ÌD¢½¡öQìfþÉ UZ6KîR…BáåâU§›¹0q\úÄcï{2] !¦í²f ¼íRˆˆð\ÝQ1I_˜‡*ÌÝ]„HW%Ù }ïé†{~ø€·]LOßÂJ9۔ͶIyÖ?Ü!»_üµ§`ælXtùz„…xnÃ1VõÌ+\A K'ß<0/xœÆ.ƒáò×úIå´½À@!éDЫn)GÑÝ If•î}ecªŒX†ãáO0~¶AwšË=±pÊëåÅ+„ªr€aÞ&óùÕëeñi§)j;Ctyû"•ŽupôAÙJ·Ö9ê–ܦ¦³µj~i|ü£Û‰EžB?£9‰ê\ÎÒ¬¶#üeè÷~ÃFÿãÆxv仨v,ŒPT‰PÜ™X`-;c¿” t=ôÑ~ô$H±"ZN|€Ù졦Xz_¼~mIzÕ ,òAºeÔâ76Í'¤ZHÓž÷( /¯‰õ?Ø%Wß°Baé:r°¨ ñÿFdyÃtm[ò²–¿ã¤+„BñG#‡^¼Ÿ¤Nœ2šÅ%ôßG”^\?•Þ=ºËYRÀüú0¤½Þµ¡oúØm’¶t(!ñÐÞ˜n”782/·3ÓˆävAZ]™h©¥óýC4^€² ðE¤?ýS†É/U*Phž@Jõó€& BBu¶)*9=ÏÒ "#†½I]Ù[WëØ±³tù"ˆ”V<(0¢PÎϳ6cã®(SdŽ^ày)ágã¬J©ú&0ËTG6½©ª%ž²x Q~¦&3žÝ™º@ýJj«›³¨Km=V‡•á¥øˆ#ú+Þn%™ŸM¿;]DÇHºŒ]:îÐ_é&~fÈkÚhQ! »:SE€h ‚¼ÊB<“×h$c›’Øwk¯¡ÅÒ–Üõ©n‰E91CP”Ûi%póè·–ûÔlR †ä–®wùcNk”ŽS§žÙ°T‹ŠB¨F‡+¾à¬+ A.G…i].‹‹]7¯…¡~ZW«Fh¿ 2ykLyÑ ³/]dx-÷¬mSãgo²Ý›Aêspi=F”ÆNÏ ç}…a‹‡×,ñ 8L×x£¡‡I>ƒH³j+(ÒÖ¡ËÙ Ž5¿_‹¨üž˜‚¦£sïœÓùnv¥à¦j´—Úø‰;SI~4ɘ»³G®Ilð}¬–™øW"“w çŠT›iRß¡¹¿64 7>æÇaλ …Z"ø½â- m× ï9ÆF"0—uiÞâBíñU8„æs=µémÕbòØûzã²òØÁQwÚ»ÆÄ…í3øöbצˆIw2B>x@t§µ£™˜=_ãì±Sð.ðkD(ˆjjIW21ùfÕ –x‹TM!2ð‹j’ØOIM!Q8‰kÿÙÀYô–ÃX ´@ØÐ~¦Ã2’1Gt •`xI—b¹éì2×Ï7Ù «¿f5¬ö¶ ¿Ë ó1â-¥°xíBtÒ,7øÁóᆤüMh"™6›böPE))ŠcãI'’× ±úÀ:€­H@4;}_ŽW¶æIS}ø0Ն̨{È2TýŒŽ6žž3Þ–õ ›.0êÞÛp<›øU‹°ôÜ=›‰ÓÇ.7OXž Á:8úBÀ›•*›Z‚àuuF6wÀ!Äf°þ4!_ffcÆJô ×Ü…¤”>Š&LdwÓoB³µofL¸ý]YÞ ©´S ;5øÔé%7S’=]¯)0\òàZú‹@ûYS |ÀNš6xÕ_ETŠ XÑ@·É, ´a'|ªîüg€TÃXç8&Ä_FXˆ‚Ä“bÉÞB¦p{;ß ¼ :Kö™$u¬â2ˆå)«“s{œÑ× ŸU ƒìç]^ç?” ¨ØÏ ~¿ëm°òl\+!¤nvH?Âé³hÈ"Žš{Åõr'•"Ut{$ «m6¦Ðn¨å9ŽÄ3CøT¨0¼@™æ “% â'h–¢Ê#¿xöà(YD”‹®úÓåÈßÚ®ÀfžXTÉ !)l¿Ed¸ñy26‹?JŽ\0 WàF£´ Ò-%_A\¶ÒS|ÏXHAÀë®]±dt‚ü\ž$÷ p­0íœÂ¨H©é—¬¸*[éÿÃý Íg¨ÚÜZ‚©dÑ,§nñøÚÐ'ú2JÏ?¤$„puæÀ™‹³²H#µÛJµ{í\4 !³úÔߟåÌ>g±b0Æl”ÇÙJ…³7í’8EA’KŸ-òV9nßh5Æý"úhiräBÜ(PõQ¯šŽ>)‹CûmÕë©Zàh±®øèûR\ѼüÕs–7-’óéTy%ÛŸÓÒBÙ΄éUJ<á_0bÈÙIŠ©ØµX4š ÍGNO¯uíÃÓ%Ö]ÿà¯]„嗇F‹ÇŸOHÞ5µ5Uüˆ ×#$£`„㮢¡ôBÁ¤å>@Ø”0‹K–“DçùˆÔ>ðóý­‘SÇiÅÕ:îYª/ ¡b-¿J룥rbßž¦-6šOÖn­‘ ûåúš %ØD*þjÆ/*$6Š`/ V[ˆý†8þ·tÔ¯:wü"Qñ{ÈYº¨BË ‹ƒA*¥À”ÿXM—fƒ¦óì—¦Ïlžxî´JžYŒt`ùZjNöÑ›éàX7´´ÔÚxG×.»È`°e’j/lÅ{2Tw´E]²A½ÝŠudá÷sd÷÷3íÐg-=öêtpHÞf\ifa{,÷/#O Ìæ§V5¿#ÏÚMXÕ‡ú)+ªº•Ù{×O‚p€Ì"5É;>/ë*Ûoº®œÃ¾jêü*Ð,¶pø¯îŽè+í™–EÅé¹[óÞ¦Z%ÓéÜï‚k?ü¨]1EbTõYÇ`ÒI–ûÎÛÜkÝù’hŸu.>º­nsž¾)/êA ô´Û…†mB3êªÒ‰T–ªÜ­YÑ¡}Ŧ·”m[{Hí‚kœ£n¶= ^¢…=Mte~µ]!Š÷Â4Fÿ˜K‹:DÜDV÷럵 á׃[·Žc/âûù]9ïwG× Ík‚n6À²-®ji»ž·Kàx…g7úü ˆu 5¡RFVÙäæmxƒØ©ö¯4ëï R› 6Wo¤åYýµNkô°×èŠÕÁ©ð_U‹'/…t»ï#?ò+Î} M…>ŽÂqycAiþƒ¸ä—._¹¼zÄ_ß4.¹ª ·?T½Îš3ºe-chH’}’Zö¨§5ÙãâÄ=Ø~[1³œÕ ÿG=ís‘² ;ë¡çÝã¦ÓyNÆÜ#è>Ò²š½lþ·S¨ý–~ýGê¯<äÓ^V¿ªHê'[ »GªêmÉÚæŠk„,œ#9c4ì'L±ÐÅõûù£"Sô–Y^Zßý¾M «é1õE‰_«ÍèÿÖ8°/·{NÜ@¡u$äŒò↴w^³et܇œŠk (œ'¸ÓÖP…~ùªMè½-¤±ßïJ„ÔK€ú‰Â+S»†k”¡¸÷_ÓE`0ÌM‰ Ì/0 Ïîp„ÜFC¼k¨Ù$° ÛXJ¢’¬7|5VsK;×ô¤¶•Å··P뿹áV’‚Œ§žïÖsÂg+â,Æqœëì”C’”Ùf&¨AuÕÀÜ1äoHšpKH®Lg×Uä½F(ê^à?ë¾ó8«s¬ÁÎ 7›P ‰¹TM¢®vðœB%®HñP>NÈÙôIaNæ÷ØÉ¡Z˜‚$b Ù8¾²"C·±B F6’!LÃY÷²·e1Ô„—Ĭüú-¬ã‚9°ñÅ™*¸“´KJƒõ¬²Óuž¤´Ç[!G\+ºòüÉËÞãWÁ;éç—s¦¾Fñ0Ú‰çwý¸Fù¡EBW¸r¿B (­4làu-®ûù×cˆvŒÑú•¾Ðà¡|^®Ô놳SÔõ‚ÏÞ)b&¹×ȸuêP€ç5xYÊ ”š<0ÝКœ#ÐȬeÔÿ|gßý;‚s«u©Bn” ‡d;膭#ÈFìÂçìöAátÛAó,u+>è[P {Þ3ùQûHM¦Èo9¹dÿñ,¹H®ÓsM/ñÞÆíHÌ» D!>¹õàþÔâ×›º= eXéÈ⨠ØfTôŸg`ºÑÄôHôÓѪ°’9‰T÷Ò«Juò¹«Ðú‹d3î€ØDRéGŽÛ£‡à PÎ{Þ~]º¨ç½á_p¸  5‹ãÙA[¼ (r䧦, <óœïsJÅ`Øy(µýœÃ?·dÍ2µÐQ¼‰9oÝ'»*ÝM»qoîx ˆ}ÎÈ|gÚ1q{ö*yê$§ð™öHã›!»âîî®W+¡wsVC¿8Ç\~¨uÌ‹‹#6ìÎY›WŽLñÖP&Øcƒ³Ðá®ü(…r±âà8IZ» Ï@xö«r!*ÇM$|¨R·Ž8IÏ?fr—Ù%æ.mgg}ëÊü †Mr<ÇjùM„3kËè…Ù]@íËfMe€5ýz¤Q ¾Ý¤æ«ÄxéÅY¡Ä ­¼Ò;ãØ6‡Í4?ð„OE”IW•7—~7û<¦ŠÒã'æçMï dÝÓ¡:— äêx€„ˆëÐåǬ$Σà³÷e8ÌD‚„rF“O¾!îŽ, •¾‹#йL­¦Ý(¬{ Þã-ª3¾6{›}$óó´û³U¡±xÀG«Îz›]Ã:5…Öæ*Jhjbý÷v”SÝ>$¨Ù3ÔÔP—D*8T~m€FßÚÏ5ÞÞ‘d”æua ¡Ã _˜CªàT0£‘¬×!ןÅçÝ{Hð¥þÞ }ù¦ùw£Ÿšƒƒ©±¾ü®NŒá™î—gêb,dugtÓxûÎ4´ãnëö×Yc‰¨*Ž`ƒ®fØ™ó¦|´¼¥ù²˜âÔÛ›ø5K’P­§×` Ô° ŸôÐIv2T˜Ø'–Ƴn¼wãHvG7T6((ñ W¸îˆwðÆÔ&÷5W ¿˜9+Yâx-%<´jIŠ|SÆ%þ³tþûºUÑŠÚ£gQ€pû9%ʨ |h“Lý^? ã"Y3‰NY]þÒ0ƒ*÷=ué+W¡V¾æc$¡_kœœ _˜bãí…n‘^CZÿ Ç6yªG6åE£Xd‡Ñ@kÍ]V_->Y…æ²ks¾büö_ÇcÒ$Ï»å4_/£†5ô·Ž-Ù¼¸$ÊeIˆ÷BŸÔ¢lô²¾ ¡²öI‚ÝÕuÏpã-:Ãðùlh”‚‹9­¶`·æ–ß¹¥¯°ºýÕ†õ°ÞYj[ú—¦0GÄB¦@àYëþFoá«”¢ÕÒplD¢a¡3\µá!¨4 gI ×­·¯„mãkÌ}Ä,w… Í1Ót¸ß¼­À)ûä‚jF1éZpt ÷h{ `sa3”ãK8NycíM^—îv-h¶À«lq¹?¿Äû8ü`u;n+¥qh7Z£6¯@†ÿP_£'Õ•ÊÒ *iÌ{ÆHŽ´kñËnq ˆJgB*¬KÞŽ'z/ggÐ>uˆˆÅWuÐT)Á zz@²‰ôíëÎ×=éÿÊuAÔÊœ1# é$ÔîÖ K°Ö3 ÇsKÏ üËð¸Wä Ö°ƒÏƒ¸j‰©+öC»Ìùo@ø¥)øí½ôª(ÓK»¤¶èxMŸKÝÀjy’Q"×#BFÄÛ•æv¾¢8þ(›.Ü`g~‚ªn_Ú'^NÉýžõðoŒ0a5/Cr¡Òœ³6‡ÌÅ¢–üm/J:à{éÙ—Ô¤2`pÚk૦Ûm} é\suÇ-ØUZ‚gmáïX‹j²šªüµ Áœ/ŸbKÊóñµž biÿëÀ$}+°Â$ˆÄÄãSß䃋V…ÌÅN^ÁùZ€ tL8ò-¿™«#T‡ªiÖ÷ç›iZ1¸±¡¬†]¼½\Ú$RLõÂ.È7¤þ±œ÷œEäÒœ³¯Ä$Ý_JiôÏAs™ È;¶sy p;U§0 …)O eR"g¬ÅŒržn)[åðØØ™îÐ}oµ40šE±Rûs}ºp˜™âY££]ú? ¥N5Ö˜ÒqÀvøåìBEÖönÏý¹ë!¢û@ '‰ÐU,,Âôl ÚîED"&àÅNV¬¤ŸrØÃ®¢Peu¾Ã÷¸îQ°Ùb{«K}ëi¹ñW?ÏþÞàSq¤::Â%{ßõzFl $ÂS¯_Çɶúôt¥èWn^™ýª~Š¿OÃ:½ ó°AP\l.6´”Ò7øºVÁ@hP¢©ê àùò8–ÉègÂÐî×¥é 6ÐY£sé_ìÒ_Îóûi2ññó](¥´2£7œû>㱊œ‰”N‚²ÒÿŒÏÜ„ã4 ­Fó¢ßIr<Ü%.˜%ÛŠ¿¥ö4&ó=a½©î1!óÆ ì—r“®Iá8ÔG<^U±›ë¼±¤+ÝQ2ýœ­Û.«\Çìn^Ãbê:¬½†Â7§ÿ¤RrékQüºŸ¨d‘^Ž»[Šßx-/<€[µÙÊ­ÛkS£Ì£St_IEÃSIfÎÖövJhÓ jìRæcKÑŸÉ›€q¸½>HWÒJÉ0¡ ‹ÃÎ%x…ç®gô T/iCã£ç†:ÛÀj›ã]C²ÖŒÜ®œ_2ù}©¹*YÒd¥ żƒ/ªÚð0K{ܼú»8÷„ŽOi†E³úaçUa¬Æ}U]€Ò±Åú`HBAw Xkˆn!vØ‘O’;;±å¥i…¬¦ÏÌqçxÜö;tr½BLþ¨íß4FûèøáÈ 9¨óŸè5PWd–)} WÔŸC>Úp¸qoç€DѬÄz ƒÖFsÛr†Ê—éFxBSÆîÄ^½)gâ丅„!a| þLPØ+±ð‘e“mªÞKá·¦Òæ>'áD–'uÉw©GØÌÞñ °÷ínå‡F”Jž{Õ#ly¢ë<çQÄÁcCì~Q‘:͸FÍ1ž+ï±9&âARõÙøƒêñ'¶ôjו¯BÁ[jyó{YÁ>JÕµpâšê\u—ÂÅïí¬(ݨWʦ.k$Nb7㲃ˆ*Ž¡tPŠ3ª×¼‡‚Œ¾7>®q‹’P…¸~$ (r1¿qTA‹»ýœ¡c%ŒÂü"ÐÃÄ¿`Ç\ú+îþB™‡t™úlcƒ °´ôŒåò),Ú¾µwÜÿwsSZGµ)O'< ÀÅšN>.ÔÄ{kÊ6 üö*é>lÑ4ÀÊHïο$žéï˜ïf€Ž°Ð¯Ö¨Ü‘*R£p®FC¬Ý5ÆfU÷— ñoëµYö¡ÌÜÈNåßHqš W(¸ðÉŽWiyð!µèûã„ 877ŸQA5ˆ®MI½Â¤†¨y~åÁ\O h[Ò%–° öFˆîösyûÜÄ¢©ÇbJÉûÕ³n†±®Bšž¹/ V.¥ú¨Ó‚rÜõe±þ_ºŠÄÁʈ‹ü>0 ‹YZfields/src/0000755000175100001440000000000014627432021012326 5ustar hornikusersfields/src/ExponentialUpperC.c0000644000175100001440000000322213754255070016105 0ustar hornikusers/* c**** # fields is a package for analysis of spatial data written for c**** # the R software environment . c**** # Copyright (C) 2018 c**** # University Corporation for Atmospheric Research (UCAR) c**** # Contact: Douglas Nychka, nychka@ucar.edu, c**** # National Center for Atmospheric Research, c**** # PO Box 3000, Boulder, CO 80307-3000 c**** # c**** # This program is free software; you can redistribute it and/or modify c**** # it under the terms of the GNU General Public License as published by c**** # the Free Software Foundation; either version 2 of the License, or c**** # (at your option) any later version. c**** # This program is distributed in the hope that it will be useful, c**** # but WITHOUT ANY WARRANTY; without even the implied warranty of c**** # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the c**** # GNU General Public License for more details. */ #include #include #include #include #include SEXP ExponentialUpperC(SEXP distMat, SEXP n, SEXP alpha) { int In, i, j; double dAlpha; double *dMat, *cans; //cast R variables to C variables In = INTEGER(n)[0]; dAlpha = REAL(alpha)[0]; dMat = REAL(distMat); SEXP ans = PROTECT(allocMatrix(REALSXP, In, In)); cans = REAL(ans); //intialize entire array to zero DWN May-4-2016 for(i = 0; i < (In*In); i++) { cans[i]= 0.0; } //set upper triangle of output matrix for(i = 0; i < In; i++) { for(j=0; j<= i; j++) { if(i == j) cans[i*In+j] = 1.0; else cans[i*In+j] = exp(-1*dMat[i*In+j]*dAlpha); } } UNPROTECT(1); return ans; } fields/src/addToDiagC.c0000644000175100001440000000247013754255070014427 0ustar hornikusers/* c**** # fields is a package for analysis of spatial data written for c**** # the R software environment . c**** # Copyright (C) 2018 c**** # University Corporation for Atmospheric Research (UCAR) c**** # Contact: Douglas Nychka, nychka@ucar.edu, c**** # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 c**** # c**** # This program is free software; you can redistribute it and/or modify c**** # it under the terms of the GNU General Public License as published by c**** # the Free Software Foundation; either version 2 of the License, or c**** # (at your option) any later version. c**** # This program is distributed in the hope that it will be useful, c**** # but WITHOUT ANY WARRANTY; without even the implied warranty of c**** # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the c**** # GNU General Public License for more details. */ #include #include #include #include #include SEXP addToDiagC(SEXP mat, SEXP numsToAdd, SEXP n) { int In, i; double *cMat, *addVals; //cast R variables to C variables In = INTEGER(n)[0]; cMat = REAL(mat); addVals = REAL(numsToAdd); //Add number to diagonal for(i = 0; i < In; i++) { cMat[i*In+i] = cMat[i*In+i] + addVals[i]; } return R_NilValue; } fields/src/compactToMatC.c0000644000175100001440000000377413754255070015212 0ustar hornikusers/* c**** # fields is a package for analysis of spatial data written for c**** # the R software environment . c**** # Copyright (C) 2017 c**** # University Corporation for Atmospheric Research (UCAR) c**** # Contact: Douglas Nychka, nychka@ucar.edu, c**** # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 c**** # c**** # This program is free software; you can redistribute it and/or modify c**** # it under the terms of the GNU General Public License as published by c**** # the Free Software Foundation; either version 2 of the License, or c**** # (at your option) any later version. c**** # This program is distributed in the hope that it will be useful, c**** # but WITHOUT ANY WARRANTY; without even the implied warranty of c**** # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the c**** # GNU General Public License for more details. */ #include #include #include #include #include SEXP compactToMatC(SEXP compactMat, SEXP len, SEXP n, SEXP diagVal, SEXP lowerTri, SEXP upperTri) { int In, lTri, uTri, i, j, index; double dVal; double *cMat, *cans; //cast R variables to C variables In = INTEGER(n)[0]; lTri = INTEGER(lowerTri)[0]; uTri = INTEGER(upperTri)[0]; dVal = REAL(diagVal)[0]; cMat = REAL(compactMat); SEXP ans = PROTECT(allocMatrix(REALSXP, In, In)); cans = REAL(ans); //intialize entire array to zero DWN May-1-2016 for(i = 0; i < (In*In); i++) { cans[i]= 0.0; } //set upper or lower triangle of output matrix index = 0; if(lTri) { for(i = 0; i < In; i++) { for(j=i+1; j < In; j++) { cans[i*In+j] = cMat[index]; index++; } } } index = 0; if(uTri) { for(i = 0; i < In; i++) { for(j=i+1; j < In; j++) { cans[j*In+i] = cMat[index]; index++; } } } //set diagonal values of output matrix for(i = 0; i < In; i++) { cans[i*In + i] = dVal; } UNPROTECT(1); return ans; } fields/src/init.c0000644000175100001440000001037314627432021013441 0ustar hornikusers/* c**** # fields is a package for analysis of spatial data written for c**** # the R software environment . c**** # Copyright (C) 2018 c**** # University Corporation for Atmospheric Research (UCAR) c**** # Contact: Douglas Nychka, nychka@ucar.edu, c**** # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 c**** # c**** # This program is free software; you can redistribute it and/or modify c**** # it under the terms of the GNU General Public License as published by c**** # the Free Software Foundation; either version 2 of the License, or c**** # (at your option) any later version. c**** # This program is distributed in the hope that it will be useful, c**** # but WITHOUT ANY WARRANTY; without even the implied warranty of c**** # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the c**** # GNU General Public License for more details. */ #include #include #include // for NULL #include /* FIXME: Check these declarations against the C/Fortran source code. */ /* .Call calls */ extern SEXP addToDiagC(SEXP, SEXP, SEXP); extern SEXP compactToMatC(SEXP, SEXP, SEXP, SEXP, SEXP, SEXP); extern SEXP ExponentialUpperC(SEXP, SEXP, SEXP); extern SEXP multebC(SEXP, SEXP, SEXP, SEXP, SEXP, SEXP, SEXP, SEXP); extern SEXP RdistC(SEXP, SEXP); extern SEXP distMatHaversin(SEXP, SEXP, SEXP); extern SEXP distMatHaversin2(SEXP, SEXP, SEXP, SEXP); /* extern SEXP calcTraceC(SEXP, SEXP, SEXP); */ /* .Fortran calls */ extern void F77_NAME(css)(void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *); extern void F77_NAME(ddfind)(void *, void *, void *, void *, void *, void *, void *, void *, void *, void *); extern void F77_NAME(dmaket)(void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *); extern void F77_NAME(evlpoly)(void *, void *, void *, void *, void *); extern void F77_NAME(evlpoly2)(void *, void *, void *, void *, void *, void *, void *); extern void F77_NAME(igpoly)(void *, void *, void *, void *, void *, void *, void *, void *); extern void F77_NAME(inpoly)(void *, void *, void *, void *, void *, void *, void *); extern void F77_NAME(mltdrb)(void *, void *, void *, void *, void *, void *, void *, void *, void *); extern void F77_NAME(multrb)(void *, void *, void *, void *, void *, void *, void *, void *, void *, void *); extern void F77_NAME(multwendlandg)(void *, void *, void *, void *, void *, void *, void *, void *, void *); extern void F77_NAME(radbas)(void *, void *, void *, void *, void *, void *, void *); extern void F77_NAME(rcss)(void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *); static const R_CallMethodDef CallEntries[] = { {"addToDiagC", (DL_FUNC) &addToDiagC, 3}, {"compactToMatC", (DL_FUNC) &compactToMatC, 6}, {"ExponentialUpperC", (DL_FUNC) &ExponentialUpperC, 3}, {"multebC", (DL_FUNC) &multebC, 8}, {"RdistC", (DL_FUNC) &RdistC, 2}, {"distMatHaversin", (DL_FUNC) &distMatHaversin, 3}, {"distMatHaversin2", (DL_FUNC) &distMatHaversin, 4}, /*{"calcTraceC", (DL_FUNC) &calcTraceC, 3},*/ {NULL, NULL, 0} }; static const R_FortranMethodDef FortranEntries[] = { {"css", (DL_FUNC) &F77_NAME(css), 15}, {"ddfind", (DL_FUNC) &F77_NAME(ddfind), 10}, {"dmaket", (DL_FUNC) &F77_NAME(dmaket), 12}, {"evlpoly", (DL_FUNC) &F77_NAME(evlpoly), 5}, {"evlpoly2", (DL_FUNC) &F77_NAME(evlpoly2), 7}, {"igpoly", (DL_FUNC) &F77_NAME(igpoly), 8}, {"inpoly", (DL_FUNC) &F77_NAME(inpoly), 7}, {"mltdrb", (DL_FUNC) &F77_NAME(mltdrb), 9}, {"multrb", (DL_FUNC) &F77_NAME(multrb), 10}, {"multwendlandg", (DL_FUNC) &F77_NAME(multwendlandg), 9}, {"radbas", (DL_FUNC) &F77_NAME(radbas), 7}, {"rcss", (DL_FUNC) &F77_NAME(rcss), 17}, {NULL, NULL, 0} }; void R_init_fields(DllInfo *dll) { R_registerRoutines(dll, NULL, CallEntries, FortranEntries, NULL); R_useDynamicSymbols(dll, FALSE); } fields/src/expfnC.c0000644000175100001440000000247313754255070013732 0ustar hornikusers/* c**** # fields is a package for analysis of spatial data written for c**** # the R software environment . c**** # Copyright (C) 2018 c**** # University Corporation for Atmospheric Research (UCAR) c**** # Contact: Douglas Nychka, nychka@ucar.edu, c**** # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 c**** # c**** # This program is free software; you can redistribute it and/or modify c**** # it under the terms of the GNU General Public License as published by c**** # the Free Software Foundation; either version 2 of the License, or c**** # (at your option) any later version. c**** # This program is distributed in the hope that it will be useful, c**** # but WITHOUT ANY WARRANTY; without even the implied warranty of c**** # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the c**** # GNU General Public License for more details. */ #include #include #include #include #include SEXP expfnC(SEXP n, SEXP d2, SEXP par) { int In, i; double Dpar, par2; double *Pd2; //caste R variables to C variables, allocate answer vector In = INTEGER(n)[0]; Dpar = REAL(par)[0]; par2 = Dpar/2; Pd2 = REAL(d2); for(i = 0; i < In; i++) { Pd2[i] = exp(-1*pow(Pd2[i], par2)); } return(R_NilValue); } fields/src/fieldsF77Code.f0000644000175100001440000016521014625710517015036 0ustar hornikusersc**** # fields is a package for analysis of spatial data written for c**** # the R software environment . c**** # Copyright (C) 2018 c**** # University Corporation for Atmospheric Research (UCAR) c**** # Contact: Douglas Nychka, nychka@ucar.edu, c**** # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 c**** # c**** # This program is free software; you can redistribute it and/or modify c**** # it under the terms of the GNU General Public License as published by c**** # the Free Software Foundation; either version 2 of the License, or c**** # (at your option) any later version. c**** # This program is distributed in the hope that it will be useful, c**** # but WITHOUT ANY WARRANTY; without even the implied warranty of c**** # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the c**** # GNU General Public License for more details. subroutine css(h,npoint,x,y,wght,sy,trace,diag,vlam, + ngrid,xg,yg,job,ideriv,ierr) C COMPUTES A CUBIC SMOOTHING SPLINE FIT TO A SET OF DATA GIVEN C NPOINT(=NUMBER OF DATA VALUES) AND LAMBDA(=VALUE OF C THE SMOOTHING parameter). THE CODE IS ADAPTED FROM A C PROGRAM IN DEBOOR,C.(1978).A PRACTICAL GUIDE TO SPLINES. C SPRINGER-VERLAG : NEW YORK. AN O(NPOINT) ALGORITHM C SUGGESTED BY HUTCHINSON AND DEHOOG IS USED TO COMPUTE C LVRAGE VALUES AND CONSTRUCT CONFIDENCE INTERVALS. c Adapted from Randy Eubank Texas A&M , Arizona State c c c this subroutine solves the problem: c c minimize (1/n) sum(i=1,n) [ (y(i) - f(x(i)))/wght(i) ]**2 + lambda*J(f) c over f c The solution will always be a piecewise cubic polynomial with join c points at the x values. Natural boundary conditions are assumed: at the c x(1) and x(npoints) the second and third derivatives of the slotuion c will be zero c All matrix calculations are done in double precision c c Arguments of evss: c h : natural log of lambda ( more convenient scale whepassing a c real*4) c if h is passed with a value less than or equal -1000 no smoothing will c be done and the spline will interploate the data points c npoint: number of observations c (x,y) : pairs of data points to be smoothed c sy : on return predicted values of f at x c wght : weights used in sum of squares. If the y have unequal c variance then an appropriate choice for wght is the standard deviation c (These weights are not normalized so multiplying by a constant c will imply solving the minimization problem with a different smoothing c parameter) c trace: in matrix from Yhat= A(lambda)Y with A(lambda) an nxn matrix c trace= tr(A(lambda)) = " effective number of paramters" c diag: diagonal elements of A(lambda) ( this is the mostt c computationally intetnsive opertation in this subroutine.) c vlam: value of the generalized cross-validation functyion (Used to c select an appropriate value for lambda based on the data.) c ngrid,xg,yg : on return, the ith deriv of the spline estimate is c evaluated on a grid, xg, with ngrid points. The c values are returned in yg c c ideriv: 0 = evaluate the function according to the job code c 1 = evaluate the first derivative of the function according c to the job code c 2 = evaluate the second derivative of the function according c to the job code c c job: is a vector of three integers c (a,b,c) (a=igcv, b=igrid, c=sorting) c a=0 evaluate spline at x values, return predicted values in sy c a=1 same as a=0 plus returning values of trace, diag and vlam c a=2 do no smoothing, interpolate the data c a=3 same as a=1 but use the passed value invlam argument as c a cost an offset factors in the diag vector c c b=0 do not evaluate the spline at any grid points c b=1 evaluate the spline (ideriv=0) or the ith deriv (i=ideriv) c of the spline at the (unique) sorted,data points, xg, return yg c b=2 evaluate the spline (ideriv=0) or the ith deriv (i=ideriv) c of the spline at ngrid equally spaced points between x(1) c and x(npoints) c b=3 evaluate the spline (ideriv=0) or the ith deriv (i=ideriv) c of the spline at ngrid points on grid passed in xg. c NOTE: extrapolation of the estimate beyond the range of c the x's will just be a linear function. c c c c c=0 X's may not be in sorted order c c=1 Assume that the X's are in sorted order c c=2 Do not sort the X's use the current set of keys c Should only be used on a second call to smooth c same design c c ierr : on return ierr>0 indicates all is not well :-( c parameter (NMAX=80000) implicit double precision (a-h,o-z) double precision h,trace,vlam double precision wght(npoint),X(npoint),Y(npoint) double precision sy(npoint),diag(npoint) double precision xg(ngrid),yg(ngrid) double precision A(NMAX,4),V(NMAX,7) double precision P,SIXP,SIX1MP,cost double precision ux(NMAX),uy(NMAX), uw(NMAX),ud(NMAX),utr integer imx(NMAX) integer idx(NMAX) integer npoint,igcv,igrid, isort, job(3) eps= 1d-7 cost=1.0 offset= 0 igcv= job(1) igrid=job(2) isort=job(3) c if( npoint.gt.NMAX) then ierr=1 return endif c initialize unique vector and two pointers do 5 k=1,npoint ux(k)=x(k) idx(k)=k 5 continue c sort vector X along with the keys in imx c c initialize the indices imx c if( isort.le.1) then do 6 k=1,npoint imx(k)=k 6 continue endif c c sort the X's permuting the indices c if(isort.eq.0) then call sortm( ux, imx,npoint) c the rank of the value x( imx(k)) is k endif c put y and the weights in the sorted order c C**** construct vector consisting of unique observations. jj=1 ind= imx(1) ux(jj)= x(ind) uy(jj)= y(ind) uw(jj)= wght(ind) idx(1)=jj c normalize eps by the range of the X values eps= eps/( x( imx(npoint)) - x( imx(1)) ) c c do 10 k=2,npoint c we are looping through ranks but this is not how the c order of the X are stored. The location of the kth smallest c is at idx(k) kshuf= imx(k) if( abs( ux(jj)-x(kshuf)).lt.eps) then c**** we have a repeat observation, update weight and the weighted c***** average at this point temp1= 1.0d0/uw(jj)**2 temp2= 1.0d0/wght(kshuf)**2 temp3 = (temp1 + temp2) uy(jj)= ( uy(jj)*temp1 + y(kshuf)*temp2)/temp3 uw(jj)= 1.0d0/dsqrt(temp3) else jj= jj+1 ux(jj)= x(kshuf) uy(jj)= y(kshuf) uw(jj)= wght(kshuf) endif c save the value that indexes unique values to repliacted ones. c x(k) corresponds to the unique X at idx(k) idx(k)=jj 10 continue nunq= jj itp=0 if(igcv.eq.2) itp=1 c handle condition for interpolation if(itp.eq.0) then P=1.d0/(npoint*dexp(h)+ 1.d0) else P=1.d0 endif call dSETUP(uX,uW,uY,nunq,V,A(1,4),NMAX,itp,ierr) C**** check for duplicate X's if so exit if(ierr.gt.0) then return endif call dCHOLD(P,V,A(1,4),nunq,A(1,3),A(1,1),NMAX) c compute predicted values SIX1MP=6.d0*(1.d0-P) if(itp.eq.0) then DO 61 I=1,Nunq a(i,1)=uY(I) - SIX1MP*(uW(I)**2)*A(I,1) 61 continue c fill in predicted values taking into account repeated data do 70 k=1,npoint jj= idx(k) sytemp= a(jj,1) c c unscramble the smoothed Y's kshuf= imx(k) sy(kshuf)=sytemp 70 continue else do 60 i=1,nunq a(i,1)=uy(i) 60 continue endif c return estimates on unique x's if igrid =1 if(igrid.eq.1) then do 65 i=1,nunq xg(i)=ux(i) yg(i)=a(i,1) 65 continue ngrid=nunq endif if(igrid.ge.1) then c c********* evaluate spline on grid C piecewise cubic COEFFICIENTS ARE STORED IN A(.,2-4). SIXP=6.d0*P DO 62 I=1,nunq A(I,3)=A(I,3)*SIXP 62 continue NPM1=nunq - 1 DO 63 I=1,NPM1 A(I,4)=(A(I+1,3)-A(I,3))/V(I,4) A(I,2)=(A(I+1,1)-A(I,1))/V(I,4) * -(A(I,3)+A(I,4)/3.*V(I,4))/2.*V(I,4) 63 continue c c create equally spaced x's if asked for ( igrid=2) c if( igrid.eq.2) then step= (ux(nunq)-ux(1))/(ngrid-1) xg(1)=ux(1) do 190 j=2,ngrid-1 xg(j)= xg(j-1)+step 190 continue xg(ngrid)=ux(nunq) endif uxmin= ux(1) uxmax= ux(nunq) a1= a(1,1) an= a(nunq,1) b1= a(1,2) d= ux(nunq)- ux(nunq-1) ind= nunq-1 bn= a(ind,2) + a(ind,3)*d + a(ind,4)*(d**2)/2.d0 c evalute spline by finding the interval containing the evaluation c point and applying the cubic formula for the curve estiamte c finding the interval such that ux(ind) <=xg(j) < ux( ind+1) c is done using a bisection search do 195 j=1,ngrid lint= ifind(xg(j),ux,nunq) if( lint.eq.0) then d= xg(j)-uxmin if (ideriv .eq. 0) - yg(j)= a1 + b1*d if (ideriv .eq. 1) - yg(j)= b1 if (ideriv .eq. 2) - yg(j)= 0.0 endif if( lint.eq.nunq) then d= xg(j)-uxmax if (ideriv .eq. 0) - yg(j)= an + bn*d if (ideriv .eq. 1) - yg(j)= bn if (ideriv .eq. 2) - yg(j)= 0.0 endif if( ((lint.ge.1 ) .and.( lint.lt.nunq))) then ind=lint c a1=a(ind,1) c a2=a(ind,2) c b=a(ind,3)/2.d0 c c=a(ind,4)/6.d0 c d= xg(j)-ux(ind) if (ideriv .eq. 0) - yg(j)= a(ind,1) + a(ind,2)*d + a(ind,3)*(d**2)/2.d0 - + a(ind,4)*(d**3)/6.d0 if (ideriv .eq. 1) - yg(j)= a(ind,2) + a(ind,3)*d + a(ind,4)*(d**2)/2.d0 if (ideriv .eq. 2) - yg(j)= a(ind,3) + a(ind,4)*d endif c 195 continue endif c****end of evaluation block if((igcv.eq.1).or.( igcv.eq.3)) then if( igcv.eq.3) then cost= diag(1) offset=diag(2) endif c***** begin computing gcv and trace C COMPUTE LVRAGE VALUES ,THE VARIANCE ESTIMATE C SGHAT2 AND CONFIDENCE INTERVALS. c call dLV(nunq,V,uw,SIX1MP,utr,ud,NMAX) rss=0.d0 trace=0.d0 vlam=0.d0 do 100 i=1,nunq c rss= rss + ((uy(i)-a(i,1))/uw(i))**2 trace= trace +ud(i) 100 continue do 110 k=1,npoint kshuf= imx(k) jj= idx(k) diag(kshuf)= ud(jj) rss= rss + ( (y(kshuf)- sy(kshuf))/wght(kshuf) )**2 110 continue ctrace= 2+ cost*( trace-2) if( (npoint -ctrace -offset) .gt. 0.d0) then vlam= (rss/npoint)/( 1- (ctrace-offset)/npoint)**2 else vlam=1e20 endif endif return END c fields, Tools for spatial data c Copyright (C) 2017, Institute for Mathematics Applied Geosciences c University Corporation for Atmospheric Research c Licensed under the GPL -- www.gpl.org/licenses/gpl.html subroutine csstr(h,nobs,x,y,wght,c,offset,trace,vlam,work,ierr) parameter(mxM=20000) implicit double precision (a-h,o-z) double precision h,trace, vlam,c,offset double precision x(nobs),y(nobs),wght(nobs) double precision work(nobs),diag(mxM),dumm1(1),dumm2(1) integer job(3),ideriv,ierr, ndum data ideriv/0/ job(1)=3 job(2)=0 job(3)=0 diag(1)=c diag(2)=offset ndum=1 call css(h,nobs,x,y,wght,work,trace,diag,vlam,ndum,dumm1,dumm2, - job,ideriv,ierr) return end c fields, Tools for spatial data c Copyright (C) 2017, Institute for Mathematics Applied Geosciences c University Corporation for Atmospheric Research c Licensed under the GPL -- www.gpl.org/licenses/gpl.html c** finds value of h minimizing the generalized cross-validation subroutine cvrf * (h,nobs,x,y,wt,sy,trace,diag,din,dout,cv,ierr) implicit double precision (a-h,o-z) double precision h,trace,cv double precision x(nobs),y(nobs),wt(nobs) double precision sy(nobs),diag(nobs),dumm1(1),dumm2(1) double precision din(10), dout(10) integer ngrid, ierr, job(3),ideriv data job/3,0,0/ data ideriv,ngrid/0,1/ call rcss(h,nobs,x,y,wt,sy,trace,diag,cv, + ngrid,dumm1,dumm2,job,ideriv,din,dout,ierr) nit= int( dout(1)) trace=dout(3) c return end c fields, Tools for spatial data c Copyright (C) 2017, Institute for Mathematics Applied Geosciences c University Corporation for Atmospheric Research c Licensed under the GPL -- www.gpl.org/licenses/gpl.html SUBROUTINE dCHOLD(P,V,QTY,NPOINT,U,QU,NMAX) c CONSTRUCTS THE UPPER THREE DIAGONALS IN V(I,J),I=2, C NPOINT-1,J=1,3 OF THE MATRIX 6*(1-P)*Q-TRANSP* C (D**2)*Q + P*R . (HERE R IS THE MATRIX PROPORTIONAL C TO Q-TRANSP*KSUBN*Q , WHERE KSUBN IS THE MATRIX C WITH ELEMENTS K(X(I),X(J)) AND K IS THE USUAL C KERNEL ASSOCIATED WITH CUBIC SPLINE SMOOTHING.) C THE CHOLESKY DECOMPOSITION OF THIS MATRIX IS COMPUTED C AND STORED IN V(.,1-3) AND THE EQUATION SYSTEM FOR C THE QUADRATIC COEFFICIENTS OF THE SPLINE IN ITS C PIECEWISE POLYNOMIAL REPRESENTATION IS SOLVED . THE C SOLUTION IS RETURNED IN U. c double precision P,QTY(NMAX),QU(NMAX),U(NMAX),V(NMAX,7) double precision SIX1MP,TWOP,RATIO,PREV INTEGER NPOINT,I,NPM1,NPM2 c NPM1=NPOINT - 1 C**** CONSTRUCT 6*(1-P)*Q-TRANSP.*(D**2)*Q + P*R SIX1MP=6.d0*(1.d0 - P) TWOP=2.d0*P DO 2 I=2,NPM1 V(I,1)=SIX1MP*V(I,5) + TWOP*(V(I-1,4)+V(I,4)) V(I,2)=SIX1MP*V(I,6) + P*V(I,4) V(I,3)=SIX1MP*V(I,7) 2 continue NPM2=NPOINT - 2 IF(NPM2 .GE. 2)GO TO 10 U(1)=0.d0 U(2)=QTY(2)/V(2,1) U(3)=0.d0 GO TO 41 C FACTORIZATION : FACTORIZE THE MATRIX AS L*B-INV* C L-TRANSP , WHERE B IS A DIAGONAL MATRIX AND L C IS UPPER TRIANGULAR. 10 DO 20 I=2,NPM2 RATIO=V(I,2)/V(I,1) V(I+1,1)=V(I+1,1) - RATIO*V(I,2) V(I+1,2)=V(I+1,2) - RATIO*V(I,3) V(I,2)=RATIO RATIO=V(I,3)/V(I,1) V(I+2,1)=V(I+2,1) - RATIO*V(I,3) V(I,3)=RATIO 20 continue C FORWARD SUBSTITUTION U(1)=0.d0 V(1,3)=0.d0 U(2)=QTY(2) DO 30 I=2,NPM2 U(I+1)=QTY(I+1) - V(I,2)*U(I) -V(I-1,3)*U(I-1) 30 continue C BACK SUBSTITUTION U(NPOINT)=0.d0 U(NPM1)=U(NPM1)/V(NPM1,1) DO 40 I=NPM2,2,-1 U(I)=U(I)/V(I,1) - U(I+1)*V(I,2) - U(I+2)*V(I,3) 40 continue C CONSTRUCT Q*U 41 PREV=0.d0 DO 50 I=2,NPOINT QU(I)=(U(I)-U(I-1))/V(I-1,4) QU(I-1)=QU(I) - PREV PREV=QU(I) 50 continue QU(NPOINT)=-QU(NPOINT) c RETURN END c fields, Tools for spatial data c Copyright (C) 2017, Institute for Mathematics Applied Geosciences c University Corporation for Atmospheric Research c Licensed under the GPL -- www.gpl.org/licenses/gpl.html c subroutine ddfind( nd,x1,n1, x2,n2, D0,ind,rd,Nmax, iflag) integer nd,n1,n2, ind(nmax,2) integer kk, i,j, ic double precision x1(n1,nd), x2(n2,nd), D0, rd(Nmax), D02, dtemp c**** counter for accumulating close points kk=0 D02= D0**2 do 15 i= 1, n1 do 10 j =1,n2 c c** accumulate squared differences c dtemp= 0.0 do 5 ic= 1, nd dtemp= dtemp + (x1(i,ic) - x2(j,ic))**2 if( dtemp.gt.D02) goto 10 5 continue c**** dtemp is less than D0 so save it as a close point kk=kk+1 c**** check if there is still space if( kk .gt. Nmax) then iflag= -1 goto 20 else ind(kk,1)= i ind(kk,2)= j rd(kk)= sqrt( dtemp) endif 10 continue 15 continue Nmax=kk 20 continue return end c fields, Tools for spatial data c Copyright (C) 2017, Institute for Mathematics Applied Geosciences c University Corporation for Atmospheric Research c Licensed under the GPL -- www.gpl.org/licenses/gpl.html SUBROUTINE dLV(NPOINT,V,WGHT,SIX1MP,TR,LEV,NMAX) c CONSTRUCTS THE UPPER THREE DIAGONALS OF (6*(1-P)* C Q-TRANSP*(D**2)*Q + P*R)-INV USING THE RECURSION C FORMULA IN HUTCHINSON,M.F. AND DEHOOG,F.R.(1985). C NUMER. MATH. 47,99-106, AND STORES THEM IN V(.,5-7). C THESE ARE USED IN POST AND PRE MULTIPLICATION BY C Q-TRANSP AND Q TO OBTAIN THE DIAGONAL ELEMENTS OF C THE HAT MATRIX WHICH ARE STORED IN THE VECTOR LEV. C THE TRACE OF THE HAT MATRIX IS RETURNED IN TR. c double precision V(NMAX,7),TR,W1,W2,W3,SIX1MP double precision wght(NMAX) double precision LEV(npoint) INTEGER NPM1,NPM2,NPM3,NPOINT c NPM1=NPOINT - 1 NPM2=NPOINT - 2 NPM3=NPOINT - 3 C RECURSION FOR DIAGONALS OF INVERSE MATRIX V(NPM1,5)=1/V(NPM1,1) V(NPM2,6)=-V(NPM2,2)*V(NPM1,5) V(NPM2,5)=(1/V(NPM2,1)) - V(NPM2,6)*V(NPM2,2) DO 10 I=NPM3,2,-1 V(I,7)=-V(I,2)*V(I+1,6) - V(I,3)*V(I+2,5) V(I,6)=-V(I,2)*V(I+1,5) - V(I,3)*V(I+1,6) V(I,5)=(1/V(I,1))- V(I,2)*V(I,6) - V(I,3)*V(I,7) 10 CONTINUE C POSTMULTIPLY BY (D**2)*Q-TRANSP AND PREMULTIPLY BY Q TO C OBTAIN DIAGONALS OF MATRIX PROPORTIONAL TO THE C IDENTITY MINUS THE HAT MATRIX. W1=1.d0/V(1,4) W2= -1.d0/V(2,4) - 1.d0/V(1,4) W3=1.d0/V(2,4) V(1,1)=V(2,5)*W1 V(2,1)=W2*V(2,5) + W3*V(2,6) V(2,2)=W2*V(2,6) + W3*V(3,5) LEV(1)=1.d0 - (WGHT(1)**2)*SIX1MP*W1*V(1,1) LEV(2)=1.d0 - (WGHT(2)**2)*SIX1MP*(W2*V(2,1) + W3*V(2,2)) TR=LEV(1) + LEV(2) DO 20 I=4,NPM1 W1=1.d0/V(I-2,4) W2= -1.d0/V(I-1,4) - 1.d0/V(I-2,4) W3=1.d0/V(I-1,4) V(I-1,1)=V(I-2,5)*W1 + V(I-2,6)*W2 + V(I-2,7)*W3 V(I-1,2)=V(I-2,6)*W1 + V(I-1,5)*W2 + V(I-1,6)*W3 V(I-1,3)=V(I-2,7)*W1 + V(I-1,6)*W2 + V(I,5)*W3 LEV(I-1)=1.d0 - (WGHT(I-1)**2)*SIX1MP*(W1*V(I-1,1) . + W2*V(I-1,2) + W3*V(I-1,3)) TR= TR + LEV(I-1) 20 CONTINUE W1=1.d0/V(NPM2,4) W2= -1.d0/V(NPM1,4) - 1.d0/V(NPM2,4) W3=1.d0/V(NPM1,4) V(NPOINT,1)=V(NPM1,5)*W3 V(NPM1,1)=V(NPM2,5)*W1 + V(NPM2,6)*W2 V(NPM1,2)=V(NPM2,6)*W1 + V(NPM1,5)*W2 LEV(NPM1)=1.d0 - (WGHT(NPM1)**2)*SIX1MP*(W1*V(NPM1,1) . + W2*V(NPM1,2)) LEV(NPOINT)=1.d0 - (WGHT(NPOINT)**2)*SIX1MP*W3*V(NPOINT,1) TR= TR + LEV(NPM1) + LEV(NPOINT) RETURN END c fields, Tools for spatial data c Copyright (C) 2017, Institute for Mathematics Applied Geosciences c University Corporation for Atmospheric Research c Licensed under the GPL -- www.gpl.org/licenses/gpl.html subroutine dmaket(m,n,dim,des,lddes,npoly,t,ldt, * wptr,info,ptab,ldptab) integer m,n,dim,lddes,npoly,ldt,wptr(dim),info,ptab(ldptab,dim) double precision des(lddes,dim),t(ldt,npoly) c c Purpose: create t matrix and append s1 to it. c c On Entry: c m order of the derivatives in the penalty c n number of rows in des c dim number of columns in des c des(lddes,dim) variables to be splined c lddes leading dimension of des as declared in the c calling program c ldt leading dimension of t as declared in the c calling program c c npoly dimension of polynomial part of spline c On Exit: c t(ldt,npoly+ncov1) [t:s1] c info error indication c 0 : successful completion c 1 : error in creation of t c Work Arrays: c wptr(dim) integer work vector c c Subprograms Called Directly: c Other - mkpoly c c integer i,j,k,kk,tt,nt,bptr,eptr c info = 0 c npoly = mkpoly(m,dim) do 5 j=1,n t(j,1)=1.0 5 continue nt = 1 if (npoly .gt. 1) then do 10 j=1,dim nt = j + 1 wptr(j) = nt ptab(nt,j)= ptab(nt,j) +1 do 15 kk = 1, n t(kk,nt)= des(kk,j) 15 continue c call dcopy(n,des(1,j),1,t(1,nt),1) 10 continue c c get cross products of x's in null space for m>2 c c WARNING: do NOT change next do loop unless you fully understand: c This first gets x1*x1, x1*x2, x1*x3, then c x2*x2, x2*x3, and finally x3*x3 for dim=3,n=3 c wptr(1) is always at the beginning of the current c level of cross products, hence the end of the c previous level which is used for the next. c wptr(j) is at the start of xj * (previous level) c do 50 k=2,m-1 do 40 j=1,dim bptr = wptr(j) wptr(j) = nt + 1 eptr = wptr(1) - 1 do 30 tt=bptr,eptr nt = nt + 1 do 21 jj= 1,dim ptab(nt,jj)= ptab(tt,jj) 21 continue ptab( nt,j)= 1+ ptab( nt,j) do 20 i=1,n t(i,nt) = des(i,j) * t(i,tt) 20 continue 30 continue 40 continue 50 continue if (nt .ne. npoly) then info = 1 return endif endif c end c fields, Tools for spatial data c Copyright (C) 2017, Institute for Mathematics Applied Geosciences c University Corporation for Atmospheric Research c Licensed under the GPL -- www.gpl.org/licenses/gpl.html subroutine drdfun(n, d2, par) double precision d2(n), par(2), dtemp integer n if( int(par(2)).eq.0) then do 5 k =1,n d2(k)= par(1)*(d2(k))**( par(1)-1) 5 continue else do 6 k=1,n dtemp= d2(k) if( dtemp.GE.1e-35) then c c NOTE factor of 2 adjusts for log being applied to c distance rather than squared distance d2(k)= (par(1)*log(dtemp) +1)*(dtemp)**( par(1)-1)/2 else d2(k)=0.0 endif 6 continue endif return end c fields, Tools for spatial data c Copyright (C) 2017, Institute for Mathematics Applied Geosciences c University Corporation for Atmospheric Research c Licensed under the GPL -- www.gpl.org/licenses/gpl.html SUBROUTINE dSETUP(X,WGHT,Y,NPOINT,V,QTY,NMAX,itp,ierr) C PUT DELX=X(.+1)-X(.) INTO V(.,4) C PUT THE THREE BANDS OF THE MATRIX Q-TRANSP*D INTO C V(.,1-3) C PUT THE THREE BANDS OF (D*Q)-TRANSP*(D*Q) AT AND C ABOVE THE DIAGONAL INTO V(.,5-7) C HERE Q IS THE TRIDIAGONAL MATRIX OF ORDER (NPOINT C -2,NPOINT) THAT SATISFIES Q-TRANSP*T=0 AND WGHT C IS THE DIAGONAL MATRIX WHOSE DIAGONAL ENTRIES C ARE THE SQUARE ROOTS OF THE WEIGHTS USED IN THE C PENALIZED LEAST-SQUARES CRITERION c implicit double precision (a-h,o-z) double precision WGHT(NMAX),X(NMAX),y(NMAX) double precision QTY(NMAX),V(NMAX,7) double precision DIFF,PREV INTEGER NPOINT,I,NPM1 c NPM1=NPOINT -1 V(1,4)=X(2)-X(1) if(v(1,4).eq.0.d0) then ierr=5 return endif DO 11 I=2,NPM1 V(I,4)=X(I+1) - X(I) if(v(I,4).eq.0.d0) then ierr=5 return endif if(itp.eq.0) then V(I,1)=WGHT(I-1)/V(I-1,4) V(I,2)=-WGHT(I)/V(I,4) - WGHT(I)/V(I-1,4) V(I,3)=WGHT(I+1)/V(I,4) else V(I,1)=1.d0/V(I-1,4) V(I,2)=-1.d0/V(I,4) - 1.0/V(I-1,4) V(I,3)=1.d0/V(I,4) endif 11 continue c V(NPOINT,1)=0.d0 DO 12 I=2,NPM1 V(I,5)=V(I,1)**2 + V(I,2)**2 + V(I,3)**2 12 continue IF(NPM1 .LT. 3)GO TO 14 DO 13 I=3,NPM1 V(I-1,6)=V(I-1,2)*V(I,1) + V(I-1,3)*V(I,2) 13 continue 14 V(NPM1,6)=0.d0 IF(NPM1 .LT. 4)GO TO 16 DO 15 I=4,NPM1 V(I-2,7)=V(I-2,3)*V(I,1) 15 continue 16 V(NPM1-1,7)=0.d0 V(NPM1,7)=0.d0 c C CONSTRUCT Q-TRANSP. * Y IN QTY PREV=(Y(2) - Y(1))/V(1,4) DO 21 I=2,NPM1 DIFF=(Y(I+1)-Y(I))/V(I,4) QTY(I)=DIFF - PREV PREV=DIFF 21 continue c RETURN END c fields, Tools for spatial data c Copyright (C) 2017, Institute for Mathematics Applied Geosciences c University Corporation for Atmospheric Research c Licensed under the GPL -- www.gpl.org/licenses/gpl.html subroutine evlpoly(x,n,coef,j,result) c evaluates a polynomial: coef(1) + sum_i= 2,j coef(i)x**i integer j,n, i double precision x(n), result(n), coef(j) double precision temp, tempx, temp2 do 10 i = 1,n temp= coef(1) tempx= x(i) temp2= tempx c temp is set to constant now loop over powers do 20 kk= 2, j temp= temp + coef(kk)* temp2 temp2= temp2*tempx 20 continue result(i)= temp 10 continue return end c fields, Tools for spatial data c Copyright (C) 2017, Institute for Mathematics Applied Geosciences c University Corporation for Atmospheric Research c Licensed under the GPL -- www.gpl.org/licenses/gpl.html subroutine evlpoly2(x,n,nd,ptab,j,coef,result) c evaluates a polynomial: coef(1) + sum_i= 2,j coef(i)x**i integer j,n, i, nd double precision x(n,nd), result(n), coef(j) integer ptab(j,nd) double precision temp, temp2 do 10 i = 1,n temp= 0 c for a given vector accumlate the polynomial terms do 20 kk= 1, j temp2 =1.0 do 30 l=1, nd if( ptab(kk,l).ne.0) then temp2= temp2* (x(i,l)**ptab(kk,l)) endif 30 continue temp = temp + temp2*coef(kk) 20 continue result(i)= temp 10 continue return end c fields, Tools for spatial data c Copyright (C) 2017, Institute for Mathematics Applied Geosciences c University Corporation for Atmospheric Research c Licensed under the GPL -- www.gpl.org/licenses/gpl.html subroutine expfn(n,d2, par) double precision d2(n), par(1) integer n do 5 k =1,n d2(k)= exp(-1*d2(k)**(par( 1)/2)) 5 continue return end c fields, Tools for spatial data c Copyright (C) 2017, Institute for Mathematics Applied Geosciences c University Corporation for Atmospheric Research c Licensed under the GPL -- www.gpl.org/licenses/gpl.html INTEGER FUNCTION IFIND(X,XK,N) C FIND I SUCH THAT XK(I) LE X LT XK(I+1) C IFIND=0 IF X LT XK(1) C IFIND=N IF X GT XK(N) C J F MONAHAN JAN 1982 DEPT OF STAT, N C S U, RALEIGH, NC 27650 double precision X,XK(N) IFIND=0 IF(X.LT.XK(1)) RETURN IFIND=N IF(X.GE.XK(N)) RETURN IL=1 IU=N 1 IF(IU-IL.LE.1) GO TO 4 I=(IU+IL)/2 C IF(X-XK(I)) 2,5,3 IF( (X-XK(I)).eq.0) go to 5 IF( (X-XK(I)).gt.0) go to 3 C following used to have line number 2 IU=I GO TO 1 3 IL=I GO TO 1 4 IFIND=IL RETURN 5 IFIND=I RETURN END c fields, Tools for spatial data c Copyright (C) 2017, Institute for Mathematics Applied Geosciences c University Corporation for Atmospheric Research c Licensed under the GPL -- www.gpl.org/licenses/gpl.html subroutine igpoly(nx, xg,ny,yg,np,xp,yp,ind) !---------------------------------------------------------------------- ! This subroutine determines whether or not an 2-d point (xg(i),yg(j)) ! element is inside a (closed) set of points xp,yp that ! are assumed to form polygon. ! result is an matrix indicating comparision for all ! combinations of xg and yg !---------------------------------------------------------------------- integer np ! # of points in polygon integer nx,ny ! # points to check real xg(nx) ! x grid values to check real yg(ny) ! y grid values to check real xp(np) ! 2d-locations of polygon real yp(np) real x1, x2, y1,y2 ! min and max of x and y real temp, xt, yt integer ind(nx,ny) ! THE ANSWER : ind(i)=1 if point xd(i),yd(i) is ! in polygon 0 otherwise integer in x1= xp(1) x2= xp(2) y1= yp(1) y2= yp(1) ! ! find the minima and maxima of the polygon coordinates ! i.e. the smallest rectangle containing the polygon. do j = 1,np temp= xp(j) if( temp.lt.x1) then x1 = temp endif if( temp.gt.x2) then x2 = temp endif temp= yp(j) if( temp.lt.y1) then y1 = temp endif if( temp.gt.y2) then y2 = temp endif enddo ! loop over all ! grid points do i = 1, nx do j = 1,ny xt= xg(i) yt= yg(j) ! quick test that point is inside the bounding rectangle ! of the polygon if( (xt.le. x2).and. (xt.ge.x1).and. * (yt.le.y2).and.(yt.ge.y1) ) then call inpoly2(xt,yt,np,xp,yp, in) ind(i,j)=in else ind(i,j)= 0 endif enddo enddo return end c fields, Tools for spatial data c Copyright (C) 2017, Institute for Mathematics Applied Geosciences c University Corporation for Atmospheric Research c Licensed under the GPL -- www.gpl.org/licenses/gpl.html subroutine inpoly(nd, xd,yd,np,xp,yp,ind) !---------------------------------------------------------------------- ! This subroutine determines whether or not an 2-d point (xd(j),yd(j)) ! element is inside a (closed) set of points xp,yp that ! are assumed to form polygon. !---------------------------------------------------------------------- integer np ! # of points in polygon integer nd ! # points to check real xd(nd) ! 2d-locations to check real yd(nd) real xp(np) ! 2d-locations of polygon real yp(np) real x1, x2, y1,y2 ! min and max of x and y real temp, xt, yt integer ind(nd) ! THE ANSWER : ind(i)=1 if point xd(i),yd(i) is ! in polygon 0 otherwise integer in x1= xp(1) x2= xp(2) y1= yp(1) y2= yp(1) ! ! find the minima and maxima of the polygon coordinates ! i.e. the smallest rectangle containing the polygon. do j = 1,np temp= xp(j) if( temp.lt.x1) then x1 = temp endif if( temp.gt.x2) then x2 = temp endif temp= yp(j) if( temp.lt.y1) then y1 = temp endif if( temp.gt.y2) then y2 = temp endif enddo do j = 1,nd xt= xd(j) yt= yd(j) ! quick test that point is inside the bounding rectangle ! if not it is not inside polygon if( (xt.le. x2).and. (xt.ge.x1).and. * (yt.le.y2).and.(yt.ge.y1) ) then call inpoly2(xt,yt,np,xp,yp, in) ind(j)=in else ind(j)= 0 endif enddo return end subroutine inpoly2(xpnt,ypnt,np,xp,yp,in) C parameter (pi=3.14159265358979,ttpi=2.*pi) C dimension xp(np),yp(np) real xpnt, ypnt integer in C C---------------------------------------------------------------------- C C THE VALUE OF THIS FUNCTION IS NON-ZERO IF AND ONLY IF (XPNT,YPNT) C IS INSIDE OR *ON* THE POLYGON DEFINED BY THE POINTS (XP(I),YP(I)), C FOR I FROM 1 TO NP. C C THE INPUT POLYGON DOES NOT HAVE TO BE A CLOSED POLYGON, THAT IS C IT DOES NOT HAVE TO BE THAT (XP(1),YP(1) = (XP(NP,YP(NP)). C C---------------------------------------------------------------------- C C DETERMINE THE NUMBER OF POINTS TO LOOK AT (DEPENDING ON WHETHER THE C CALLER MADE THE LAST POINT A DUPLICATE OF THE FIRST OR NOT). C if (xp(np).eq.xp(1) .and. yp(np).eq.yp(1)) then npts = np-1 else npts = np end if in = 0 ! ASSUME POINT IS OUTSIDE C --- ------------------------------------------------------------------ C --- CHECK TO SEE IF THE POINT IS ON THE POLYGON. C --- ------------------------------------------------------------------ do ipnt = 1,npts if (xpnt .eq. xp(ipnt) .and. ypnt .eq. yp(ipnt) ) then in = 1 goto 999 ! EARLY EXIT endif enddo C --- ------------------------------------------------------------------ C --- COMPUTE THE TOTAL ANGULAR CHANGE DESCRIBED BY A RAY EMANATING C --- FROM THE POINT (XPNT,YPNT) AND PASSING THROUGH A POINT THAT C --- MOVES AROUND THE POLYGON. C --- ------------------------------------------------------------------ anch = 0. inxt = npts xnxt = xp(npts) ynxt = yp(npts) anxt = atan2(ynxt-ypnt, xnxt-xpnt) do 100 ipnt=1,npts ilst = inxt xlst = xnxt ylst = ynxt alst = anxt inxt = ipnt xnxt = xp(inxt) ynxt = yp(inxt) anxt = atan2(ynxt-ypnt, xnxt-xpnt) adif = anxt-alst if (abs(adif) .gt. pi) adif = adif - sign(ttpi,adif) anch = anch + adif 100 continue C --- ------------------------------------------------------------------ C --- IF THE POINT IS OUTSIDE THE POLYGON, THE TOTAL ANGULAR CHANGE C --- SHOULD BE EXACTLY ZERO, WHILE IF THE POINT IS INSIDE THE POLYGON, C --- THE TOTAL ANGULAR CHANGE SHOULD BE EXACTLY PLUS OR MINUS TWO PI. C --- WE JUST TEST FOR THE ABSOLUTE VALUE OF THE CHANGE BEING LESS C --- THAN OR EQUAL TO PI. C --- ------------------------------------------------------------------ if (abs(anch) .ge. pi) in = 1 999 continue return end c fields, Tools for spatial data c Copyright (C) 2017, Institute for Mathematics Applied Geosciences c University Corporation for Atmospheric Research c Licensed under the GPL -- www.gpl.org/licenses/gpl.html C** evaluates partial derivatives of radial basis functions with c** nodes at x2 and at the points x1 c subroutine mltdrb( nd,x1,n1, x2, n2, par, c,h,work) implicit double precision (a-h,o-z) integer nd,n1,n2,ic, ivar, ir, j double precision par(2), x1(n1,nd) double precision x2(n2,nd), c(n2), h(n1, nd) double precision sum, sum2 double precision work( n2) c double precision ddot do 1000 ivar=1, nd c****** work aray must be dimensioned to size n2 c **** loop through columns of output matrix K c*** outermost loop over columns of x1 and x2 should c*** help to access adjacent values in memory. do 5 ir= 1, n1 c evaluate all basis functions at x1(j,.) do 10 j =1,n2 c zero out sum accumulator sum=0.0 do 15 ic=1,nd c** accumulate squared differences sum= sum+ (x1(ir,ic)- x2(j,ic))**2 15 continue work(j)=sum 10 continue C**** evaluate squared distances with basis functions. call drdfun( n2,work(1) ,par(1) ) do 11 j= 1, n2 work( j)= 2.0*work(j)*(x1(ir,ivar)- x2(j,ivar)) 11 continue c*****now the dot product you have all been waiting for! sum2= 0.0 do 12 j = 1, n2 sum2 = sum2 + work(j)*c(j) 12 continue c h(ir,ivar)= ddot( n2, work(1), 1, c(1),1) h(ir,ivar) = sum2 5 continue 1000 continue return end c fields, Tools for spatial data c Copyright (C) 2017, Institute for Mathematics Applied Geosciences c University Corporation for Atmospheric Research c Licensed under the GPL -- www.gpl.org/licenses/gpl.html subroutine mltdtd( nd,x1,n1,np,ptab, d,h) implicit double precision (a-h,o-z) integer nd,n1,np, ivar double precision x1(n1,nd) double precision d(np), h(n1, nd) double precision work, prod, xp,xx integer ptab(np,nd) c outer most loop is over the variables w/r partial derivative do 1000 ivar=1, nd c****** work aray must be dimensioned to size np do 5 ir= 1, n1 c next loop is over rows of x1 c c evaluate all partials of polynomials at x1(j,.) c take ddot product of this vector with d c this is the element to return in h(ir,ivar) work=0.0 do 10 j =1,np prod=0.0 ipv= ptab( j,ivar) if( ipv.gt.0) then prod=1.0 do 11 k= 1, nd ip= ptab(j,k) c ip is the power of the kth variable in the jth poly if( ip.eq.0) goto 11 xx= x1(ir,k) c** if( k.eq.ivar) then if( ip.eq.1) then xp=1.0 else xp= (ip)* xx**(ip-1) endif else xp= xx**(ip) endif prod=prod*xp 11 continue endif work= work + prod* d(j) 10 continue c h(ir,ivar)=work 5 continue 1000 continue return end c fields, Tools for spatial data c Copyright (C) 2017, Institute for Mathematics Applied Geosciences c University Corporation for Atmospheric Research c Licensed under the GPL -- www.gpl.org/licenses/gpl.html subroutine multWendlandG( mx, my, deltaX, deltaY, * nc, center, coef, h, flag) integer mx, my, nc, flag double precision deltaX, deltaY, center(nc,2), coef(nc) double precision h(mx,my) c integer j, k, l, m1, m2, n1, n2 double precision kstar, lstar, d, wendlandFunction do j = 1, nc kStar= center(j,1) lStar= center(j,2) m1 = max( ceiling(-deltaX + kStar), 1) m2 = min( floor( deltaX + kStar), mx) n1 = max( ceiling(-deltaY + lStar), 1) n2 = min( floor( deltaY + lStar), my) do l = n1, n2 do k = m1, m2 d = dsqrt( ((k-kStar)/deltaX)**2 + ((l- lStar)/deltaY)**2) h(k,l) = h(k,l) + wendlandFunction( d)* coef(j) c h(k,l) = h(k,l) + 2 enddo enddo enddo flag=0 return end double precision function wendlandFunction(d) double precision d if( d.GE.1) then wendlandFunction = 0 else wendlandFunction = ((1-d)**6) * (35*d**2 + 18*d + 3)/3 endif return end c fields, Tools for spatial data c Copyright (C) 2017, Institute for Mathematics Applied Geosciences c University Corporation for Atmospheric Research c Licensed under the GPL -- www.gpl.org/licenses/gpl.html C** evaluates radial basis functions c**** K_ij= radfun( distance( x1_i, x2_j)) c**** and does the multplication h= Kc c**** K is n1Xn2 c**** h is n1Xn3 c***** c is n2xn3 subroutine multrb( nd,x1,n1, x2,n2, par, c,n3,h,work) implicit double precision (a-h,o-z) integer nd,n1,n2,n3,ic, jc,j double precision par(2),x1(n1,nd), x2(n2,nd), c(n2,n3), h(n1,n3) double precision work( n2) c double precision ddot double precision sum, sum2 double precision radfun c****** work aray must be dimensioned to size n1 c **** loop through columns of output matrix K do 5 ir= 1, n1 do 10 j =1,n2 sum=0.0 do 15 ic=1,nd c** accumulate squared differences sum= sum+ (x1(ir,ic)- x2(j,ic))**2 15 continue work(j)=radfun( sum, par(1), par(2)) 10 continue c***** dot product for matrix multiplication do 30 jc=1,n3 sum2= 0.0 do 12 j = 1, n2 sum2 = sum2 + work(j)*c(j, jc) 12 continue h(ir,jc) = sum2 c h(ir,jc)= ddot( n2, work, 1, c(1,jc),1) 30 continue 5 continue return end c fields, Tools for spatial data c Copyright (C) 2017, Institute for Mathematics Applied Geosciences c University Corporation for Atmospheric Research c Licensed under the GPL -- www.gpl.org/licenses/gpl.html c**** subroutine to fill in the omega ( or K) matrix for c**** ridge regression S funcion c**** K_ij= radfun( distance( x1_i, x2_j)) c subroutine radbas( nd,x1,n1, x2,n2, par, k) integer nd,n1,n2,ic double precision par(2), x1(n1,nd), x2(n2,nd), k(n1,n2) double precision xtemp, radfun c **** loop through columns of output matrix K c*** outer most loop over columns of x1 and x2 should reduce memory swaps do ic= 1, nd do j =1,n2 xtemp= x2(j,ic) do i= 1, n1 c** accumulate squared differences k(i,j)= (x1(i,ic)- xtemp)**2 + k(i,j) enddo enddo enddo c**** at this point k( i,j) is the squared distance between x1_i and x2_j c*** now evaluate radial basis functions do j =1,n2 do i= 1, n1 k(i,j)= radfun( k(i,j), par(1), par(2) ) enddo enddo return end c fields, Tools for spatial data c Copyright (C) 2017, Institute for Mathematics Applied Geosciences c University Corporation for Atmospheric Research c Licensed under the GPL -- www.gpl.org/licenses/gpl.html c evaluates thin plate spline radial basis function double precision function radfun(d2, par1, par2) double precision d2, par1, par2 if( d2.lt.1e-20) then d2= 1e-20 endif if( int(par2).eq.0) then radfun= (d2)**( par1) else c note: d2 is squared distance c divide by 2 to have log evaluated on distance c as opposed to squared distance. radfun= (log(d2)/2) * ((d2)**( par1)) endif return end c fields, Tools for spatial data c Copyright (C) 2017, Institute for Mathematics Applied Geosciences c University Corporation for Atmospheric Research c Licensed under the GPL -- www.gpl.org/licenses/gpl.html subroutine rcss(h,npoint,x,y,wt,sy,trace,diag,cv, + ngrid,xg,yg,job,ideriv,din,dout,ierr) c This a program to compute a robust univariate spline according to the c model: c minimize (1/n) sum(i=1,n)[rho( y(i)-f(x(i) )] + lambda*J(f) c over f c definition of the rho function and its derivative are in rcsswt c and rcssr c c One way of speeding convergence is to use the results from a previous c estimate as the starting values for the another estimate. This is c particulary appropriate when lambda or a parameter in the rho function c is being varied. Moderate changes in lambda will often yield similar c estimates. The way to take advantage of this is to pass the weights c from the previous fit as teh starting values for the next estimate c c Arguments of rcss: c h : natural log of lambda c c if h is passed with a value less than or equal -1000 no smoothing will c be done and the spline will interploate the data points c npoint: number of observations c (x,y) : pairs of data points to be smoothed c x(i) are assumed to be increasing. Repeated c observations at the same x are not handled by this routine. c sy : on return predicted values of f at x c wt : weights used in the iterivatively reweighted least c squares algorithm to compute robust spline. Vector c passed are used as the starting values. Subsequent c iterations compute the weights by a call to the c subroutine rcsswt c c that is the linear approximation of teh estimator at c convergence. c trace= tr(A(lambda)) = " effective number of paramters" c diag: diagonal elements of A(lambda) ( this is the most c computationally intetnsive opertation in this subroutine.) c cv: approximate cross-validation function c using the linear approximation at convergence c c ngrid,xg,yg : on return, the ith deriv of the spline estimate is c evaluated on a grid, xg, with ngrid points. The c values are returned in yg c c ideriv: 0 = evaluate the function according to the job code c 1 = evaluate the first derivative of the function according c to the job code c 2 = evaluate the second derivative of the function according c to the job code c c din: Vector of input parameters c din(1)= cost for cv c din(2)= offset for cv c din(3)= max number of iterations c din(4)= tolerance criterion for convergence c c din(5)= C scale parameter in robust function (transition from c quadratic to linear. c din(6)= alpha 1/2 slope of rho function for large, positive c residuals slope for residuals <0 : is 1/2 (1-alpha) c see comments in rcsswt for defintion of the rho and psi c functions c c job: in decimal job=(a,b,c) (a=igcv, b=igrid) c a=0 evaluate spline at x values, return predicted values in sy c a=1 same as a=0 plus returning values of trace, diag and cv c a=2 do no smoothing, interpolate the data c a=3 same as a=1 but use the passed values in din(1) din(2) c for computing cv function c c b=0 do not evaluate the spline at any grid points c b=1 evaluate the spline (ideriv=0) or the ith deriv (i=ideriv) c of the spline at the (unique) sorted,data points, xg, return yg c b=2 evaluate the spline (ideriv=0) or the ith deriv (i=ideriv) c of the spline at ngrid equally spaced points between x(1) c and x(npoints) c b=3 evaluate the spline (ideriv=0) or the ith deriv (i=ideriv) c of the spline at ngrid points on grid passed in xg. c NOTE: extrapolation of the estimate beyond the range of c the x's will just be a linear function. c c c c c=1 Assume that the X's are in sorted order c c=2 Do not sort the X's use the current set of keys c Should only be used on a second call to smooth c same design c Arguments of subroutine: c dout(1)= numit c dout(2)=tstop c dout(3) = trace c dout(4)= cv c numit: actual number of iterations for convergence c tstop: value of convergence criterion at finish. c c ierr: if ierr>0 something bad has happened c ierr>10 indicates problems in the call to the cubic spline c routine. c parameter(NMAX=20000) implicit double precision (a-h,o-z) double precision h,trace,cv double precision wt(npoint),X(npoint),Y(npoint) double precision sy(npoint),diag(npoint) double precision xg(ngrid),yg(ngrid) double precision din(10), dout(10),cost, offset, dum1, dum2 integer npoint,ngrid ,itj(3), job(3) if(npoint.gt.NMAX) then ierr=1 return endif maxit= int(din(3)) tstop=din(4) ybar=0.0 ysd=0.0 do 10 k=1,npoint diag(k) = y(k) ybar= ybar+ y(k) ysd= ysd+ y(k)**2 10 continue ybar= ybar/npoint ysd= sqrt( ysd/npoint - ybar**2) c Start iterating test=0.0 itj(1)= 0 itj(2)=0 itj(3)=0 do 500 it=1,maxit if( it.gt.1) then itj(3)=2 endif c fit a weighted least squares cubic smoothing spline call css(h,npoint,x,y,wt,sy, * dum1,diag,dum2,ngrid,xg,yg, * itj,ideriv,ierr) c check for an error returned by spline routine if(ierr.gt.0) then c add 10 so these can be distinguished from errors in this routine ierr= 10 + ierr return endif c compute convergence criterion c The intent of this criterion is to find out when successive iterations c produce changes that are small do 25 i=1,npoint test=(diag(i)-sy(i))**2 + test diag(i)= sy(i) 25 continue test=sqrt(test/npoint)/ysd if( test.lt.tstop ) then c * exit loop * numit=it goto 1000 endif c c make up new set of weights c call rcsswt( npoint, y,sy,wt, din(5)) c reinitialize test criterion for convergence c test=0.0 500 continue numit= maxit 1000 continue c One last call if job code is not 0 if( (job(1).ne.0).or.(job(2).ne.0)) then c call css(h,npoint,x,y,wt,sy, * trace,diag,cv,ngrid,xg,yg, * job,ideriv,ierr) ia= job(1) ig= job(2) c if(ig.gt.0) then c endif c calculate cv value if asked for if( (ia.eq.1) .or.( ia.eq.3) ) then if(ia.eq.3) then cost= din(1) offset= din(2)/npoint else cost=1 offset= 0 endif cv=0.0 do 1500 k=1,npoint c compute approx. cross-validated residual c plug cv residual into rho function, din(5) is the begining of parameter c vector for the rho function (scale and alpha) c c but only do this if the leverage is away from one. c this prevents the numerical problems with quantile splein of a zero c residual and c a zero denominator. if(1- diag(k).gt.1e-7) then resid= (y(k)- sy(k))/( 1- cost*(diag(k)+offset)) cv= cv + rcssr(resid, din(5)) endif 1500 continue cv= cv/npoint endif endif dout(1)=numit dout(2)=test dout(3)=trace dout(4)=cv return end c fields, Tools for spatial data c Copyright (C) 2017, Institute for Mathematics Applied Geosciences c University Corporation for Atmospheric Research c Licensed under the GPL -- www.gpl.org/licenses/gpl.html double precision function rcssr(r,par) c c robust rho function: c This is a peicewise polynomial with knots at -C , 0 and C c the function is quadratic for -CC c rho is continuous for all u aqnd differentiable for all points c except u=0 when a != 1/2 c c c rho(u) = 2*a*u - a*c for u>C c a*u**2/C for 0 goes to here 8 X(I)=XX ki(I)=kki GO TO 2 9 X(1)=XX ki(1)=kki RETURN END fields/src/multebC.c0000644000175100001440000000516714557772426014120 0ustar hornikusers/* c**** # fields is a package for analysis of spatial data written for c**** # the R software environment . c**** # Copyright (C) 2018 c**** # University Corporation for Atmospheric Research (UCAR) c**** # Contact: Douglas Nychka, nychka@ucar.edu, c**** # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 c**** # c**** # This program is free software; you can redistribute it and/or modify c**** # it under the terms of the GNU General Public License as published by c**** # the Free Software Foundation; either version 2 of the License, or c**** # (at your option) any later version. c**** # This program is distributed in the hope that it will be useful, c**** # but WITHOUT ANY WARRANTY; without even the implied warranty of c**** # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the c**** # GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include SEXP multebC(SEXP nd, SEXP x1, SEXP n1, SEXP x2, SEXP n2, SEXP par, SEXP c, SEXP work) { // NOTE: in original multeb function in fields, "h" was passed but not used and returned as an answer. // h is not an argument to this function, but "ans" is equivalent to h and is allocated in C and returned. int Ind, In1, In2, r1, r2, d; double sum; double *Px1, *Px2, *Pc, *Pwork, *cans; SEXP ans; void expfnC( SEXP, SEXP, SEXP); // cast R variables to C variables Ind = INTEGER(nd)[0]; In1 = INTEGER(n1)[0]; In2 = INTEGER(n2)[0]; Px1 = REAL(x1); Px2 = REAL(x2); Pc = REAL(c); Pwork = REAL(work); // const int tmp = 1; const int cn2 = In2; // allocate answer vector (corresponds to h in fields' multeb) ans = PROTECT(allocVector(REALSXP, In1)); cans = REAL(ans); // work aray must be dimensioned to size n2 // outer most loop over columns of x1 and x2 should reduce paging for(r1 = 0; r1 < In1; r1++) { // evaluate all basis functions at x1[r2,.] for(r2 = 0; r2 < In2; r2++) { // zero out sum accumulator sum=0.0; for(d = 0; d < Ind; d++) { sum += pow(fabs(Px1[In1*d+r1] - Px2[In2*d+r2]), 2.0); } Pwork[r2]=sum; } // evaluate squared distances with basis functions. expfnC(n2, work, par); // now the dot product you have all been waiting for! sum=0.0; for(d = 0; d < cn2; d++) { sum += Pwork[d]*Pc[d] ; } // cans[r1] = ddot_(&cn2, Pwork, &tmp, Pc, &tmp); cans[r1] = sum; } UNPROTECT(1); return(ans); } fields/src/rdistC.c0000644000175100001440000000341313754255070013732 0ustar hornikusers /* c**** # fields is a package for analysis of spatial data written for c**** # the R software environment . c**** # Copyright (C) 2018 c**** # University Corporation for Atmospheric Research (UCAR) c**** # Contact: Douglas Nychka, nychka@ucar.edu, c**** # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 c**** # c**** # This program is free software; you can redistribute it and/or modify c**** # it under the terms of the GNU General Public License as published by c**** # the Free Software Foundation; either version 2 of the License, or c**** # (at your option) any later version. c**** # This program is distributed in the hope that it will be useful, c**** # but WITHOUT ANY WARRANTY; without even the implied warranty of c**** # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the c**** # GNU General Public License for more details. */ #include #include #include #include #include SEXP Rdist1C(SEXP x) { int nx = nrows(x); int dim = ncols(x); void F77_CALL(rdist1)(int *, double *, int *, double *); SEXP ans = PROTECT(allocMatrix(REALSXP, nx, nx)); double *rx = REAL(x), *rans = REAL(ans); /* rdist1_( &dim, rx, &nx, rans); */ F77_CALL(rdist1)( &dim, rx, &nx, rans); UNPROTECT(1); return ans; } SEXP RdistC(SEXP x1, SEXP x2) { int n1 = nrows(x1); int n2 = nrows(x2); int dim = ncols(x1); void F77_CALL(rdist)(int *, double *, int *, double *, int *, double *); SEXP ans = PROTECT(allocMatrix(REALSXP, n1, n2)); double *rx1 = REAL(x1),*rx2 = REAL(x2), *rans = REAL(ans); F77_CALL(rdist)( &dim, rx1, &n1, rx2, &n2, rans); UNPROTECT(1); return ans; } fields/src/RdistEarth.c0000644000175100001440000000500013754255070014545 0ustar hornikusers #include #include #include #include #include #include #define min(a,b) (a a 89X153 matrix of ozone values. Rows are days and columns are the sites. Site locations in longitude and latitude as a 153X2 table Logical vector indicating stations that form teh smaller Chicagoland subset. (see FIELDS ozone data set) Nychka, D., Cox, L., Piegorsch, W. (1998) Case Studies in Environmental Statistics Lecture Notes in Statistics, Springer Verlag, New York } \examples{ data( ozone2) # pairwise correlation among all stations # ( See cover.design to continue this example) cor.mat<- cor( ozone2$y, use="pairwise") #raw data image for day number 16 good<- !is.na( ozone2$y[16,]) out<- as.image( ozone2$y[16,good], x=ozone2$lon.lat[good,]) image.plot( out) } \keyword{datasets} % docclass is data % Converted by Sd2Rd version 1.21. fields/man/mKrigMLE.Rd0000644000175100001440000003622714627454002014225 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{mKrigMLE} \alias{mKrigMLEJoint} \alias{mKrigMLEGrid} \alias{mKrigJointTemp.fn} \alias{profileCI} %- Also NEED an '\alias' for EACH other topic documented here. \title{ Maximizes likelihood for the process marginal variance (sigma) and nugget standard deviation (tau) parameters (e.g. lambda) over a many covariance models or covariance parameter values. } \description{ These function are designed to explore the likelihood surface for different covariance parameters with the option of maximizing over tau and sigma. They used the \code{mKrig} base are designed for computational efficiency. } \usage{ mKrigMLEGrid(x, y, weights = rep(1, nrow(x)), Z = NULL,ZCommon=NULL, mKrig.args = NULL, cov.function = "stationary.cov", cov.args = NULL, na.rm = TRUE, par.grid = NULL, reltol = 1e-06, REML = FALSE, GCV = FALSE, optim.args = NULL, cov.params.start = NULL, verbose = FALSE, iseed = NA) mKrigMLEJoint(x, y, weights = rep(1, nrow(x)), Z = NULL,ZCommon=NULL, mKrig.args = NULL, na.rm = TRUE, cov.function = "stationary.cov", cov.args = NULL, cov.params.start = NULL, optim.args = NULL, reltol = 1e-06, parTransform = NULL, REML = FALSE, GCV = FALSE, hessian = FALSE, iseed = 303, verbose = FALSE) profileCI(obj, parName, CIlevel = 0.95, REML = FALSE) mKrigJointTemp.fn(parameters, mKrig.args, cov.args, parTransform, parNames, REML = FALSE, GCV = FALSE, verbose = verbose, capture.env) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{capture.env}{For the ML objective function the frame to save the results of the evaluation. This should be the environment of the function calling optim.} \item{CIlevel}{ Confidence level.} \item{cov.function}{ The name, a text string, of the covariance function. } \item{cov.args}{ The arguments that would also be included in calls to the covariance function to specify the fixed part of the covariance model. This is the form of a list E.g.\code{cov.args= list( aRange = 3.5)} } \item{cov.params.start}{ A list of initial starts for covariance parameters to perform likelihood maximization. The list contains the names of the parameters as well as the values. It usually makes sense to optimize over the important lambda parameter (tau^2/ sigma^2) is most spatial applications and so if \code{lambda} is omitted then the component \code{lambda = .5} is added to this list. } \item{hessian}{If TRUE return the BFGS approximation to the hessian matrix at convergence.} \item{iseed}{ Sets the random seed in finding the approximate Monte Carlo based GCV function and the effective degrees of freedom. This will not effect random number generation outside these functions. } \item{mKrig.args}{A list of additional parameters to supply to the \code{mKrig} function. E.g.\code{ mKrig.args= list( m=1) }to set the regression function to be a constant function. \code{mKrig} function that are distinct from the covariance model. For example \code{mKrig.args= list( m=1 )} will set the polynomial to be just a constant term (degree = m - 1 = 0). Use \code{mKrig.args= list( m = 0 )} to omit a fixed model and assume the observations have an expectation of zero. } \item{na.rm}{Remove NAs from data.} \item{optim.args}{ Additional arguments that would also be included in calls to the optim function in joint likelihood maximization. If \code{NULL}, this will be set to use the "BFGS-" optimization method. See \code{\link{optim}} for more details. The default value is: \code{optim.args = list(method = "BFGS", control=list(fnscale = -1, ndeps = rep(log(1.1), length(cov.params.start)+1), abstol=1e-04, maxit=20))} Note that the first parameter is lambda and the others are the covariance parameters in the order they are given in \code{cov.params.start}. Also note that the optimization is performed on a transformed scale (based on the function \code{parTransform} ), and this should be taken into consideration when passing arguments to \code{optim}. } \item{parameters}{The parameter values for evaluate the likelihood.} \item{par.grid}{ A list or data frame with components being parameters for different covariance models. A typical component is "aRange" comprising a vector of scale parameters to try. If par.grid is "NULL" then the covariance model is fixed at values that are given in \dots. } \item{obj}{ List returnerd from \code{mKrigMLEGrid}} \item{parName}{Name of parameter to find confidence interval.} \item{parNames}{Names of the parameters to optimize over.} \item{parTransform}{A function that maps the parameters to a scale for optimization or effects the inverse map from the transformed scale into the original values. See below for more details. } \item{reltol}{Optim BFGS comvergence criterion.} \item{REML}{If TRUE use REML instead of the full log likelihood.} \item{GCV}{NOT IMPLEMENTED YET! A placeholder to implement optimization using an approximate cross-validation criterion. } \item{verbose}{If \code{TRUE} print out interesting intermediate results. } \item{weights}{ Precision ( 1/variance) of each observation } \item{x}{ Matrix of unique spatial locations (or in print or surface the returned mKrig object.) } \item{y}{ Vector or matrix of observations at spatial locations, missing values are not allowed! Or in mKrig.coef a new vector of observations. If y is a matrix the columns are assumed to be independent observations vectors generated from the same covariance and measurment error model. } \item{Z}{ Linear covariates to be included in fixed part of the model that are distinct from the default low order polynomial in \code{x} } \item{ZCommon}{ Linear covariates to be included in fixed part of the model where a common parameter is estimated across all realizations. This option only makes sense for multiple realizations ( y is a matrix). } } \details{ The observational model follows the same as that described in the \code{Krig} function and thus the two primary covariance parameters for a stationary model are the nugget standard deviation (tau) and the marginal variance of the process (sigma). It is useful to reparametrize as \code{sigma} and \code{ lambda = tau^2/sigma}. The likelihood can be maximized analytically over sigma and the parameters in the fixed part of the model, this estimate of sigma can be substituted back into the likelihood to give a expression that is just a function of lambda and the remaining covariance parameters. This operation is called concentrating the likelhood by maximizing over a subset of parameters For these kind of computations there has to be some device to identify parameters that are fixed and those that are optimized. For \code{mKrigMLEGrid} and \code{mKrigMLEJoint} the list \code{cov.args} should have the fixed parameters. For example this is how to fix a lambda value in the model. The list \code{cov.params.start} should be list with all parameters to optimize. The values for each component are use as the starting values. This is how the \link{optim} function works. These functions may compute the effective degrees of freedomn ( see \code{ \link{mKrig.trace}} ) using the random tace method and so need to generate some random normals. The \code{iseed} arguement can be used to set the seed for this with the default being the seed \code{303}. Note that the random number generation internal to these functions is coded so that it does not effect the random number stream outside these function calls. For \code{mKrigMLEJoint} the default transformation of the parameters is set up for a log/exp transformation: \preformatted{ parTransform <- function(ptemp, inv = FALSE) { if (!inv) { log(ptemp) } else { exp(ptemp) } } } } \value{ \strong{\code{mKrigMLEGrid}} returns a list with the components: \item{summary}{A matrix with each row giving the results of evaluating the likelihood for each covariance model.} \item{par.grid}{The par.grid argument used. A matrix where rows are the combination of parameters considered.} \item{call}{The calling arguments to this function.} \strong{\code{mKrigMLEJoint}} returns a list with components: \item{summary}{A vector giving the MLEs and the log likelihood at the maximum} \item{lnLike.eval}{ A table containing information on all likelihood evaluations performed in the maximization process. } \item{optimResults}{The list returned from the optim function. Note that the parameters may be transformed values. } \item{par.MLE}{The maximum likelihood estimates.} \item{parTransform}{The transformation of the parameters used in the optimziation.} } \references{ \url{https://github.com/dnychka/fieldsRPackage} } \author{ %% ~~who you are~~ Douglas W. Nychka, John Paige } \seealso{ %% ~~objects to See Also as \code{\link{help}}, ~~~ \code{\link{mKrig}} \code{\link{Krig}} \code{\link{stationary.cov}} \code{\link{optim}} } \examples{ \dontrun{ #perform joint likelihood maximization over lambda and aRange. # NOTE: optim can get a bad answer with poor initial starts. data(ozone2) s<- ozone2$lon.lat z<- ozone2$y[16,] gridList<- list( aRange = seq( .4,1.0,length.out=20), lambda = 10**seq( -1.5,0,length.out=20) ) par.grid<- make.surface.grid( gridList) out<- mKrigMLEGrid( s,z, par.grid=par.grid, cov.args= list(smoothness=1.0, Covariance="Matern" ) ) outP<- as.surface( par.grid, out$summary[,"lnProfileLike.FULL"]) image.plot( outP$x, log10(outP$y),outP$z, xlab="aRange", ylab="log10 lambda") } \dontrun{ N<- 50 set.seed(123) x<- matrix(runif(2*N), N,2) aRange<- .2 Sigma<- Matern( rdist(x,x)/aRange , smoothness=1.0) Sigma.5<- chol( Sigma) tau<- .1 # 250 independent spatial data sets but a common covariance function # -- there is little overhead in # MLE across independent realizations and a good test of code validity. M<-250 F.true<- t( Sigma.5) \%*\% matrix( rnorm(N*M), N,M) Y<- F.true + tau* matrix( rnorm(N*M), N,M) # find MLE for lambda with grid of ranges # and smoothness fixed in Matern par.grid<- list( aRange= seq( .1,.35,,8)) obj1b<- mKrigMLEGrid( x,Y, cov.args = list(Covariance="Matern", smoothness=1.0), cov.params.start=list( lambda = .5), par.grid = par.grid ) obj1b$summary # take a look # profile over aRange plot( par.grid$aRange, obj1b$summary[,"lnProfileLike.FULL"], type="b", log="x") } \dontrun{ # m=0 is a simple switch to indicate _no_ fixed spatial drift # (the default and highly recommended is linear drift, m=2). # However, m=0 results in MLEs that are less biased, being the correct model # -- in fact it nails it ! obj1a<- mKrigMLEJoint(x,Y, cov.args=list(Covariance="Matern", smoothness=1.0), cov.params.start=list(aRange =.5, lambda = .5), mKrig.args= list( m=0)) test.for.zero( obj1a$summary["tau"], tau, tol=.007) test.for.zero( obj1a$summary["aRange"], aRange, tol=.015) } ########################################################################## # A bootstrap example # Here is a example of a more efficient (but less robust) bootstrap using # mKrigMLEJoint and tuned starting values ########################################################################## \dontrun{ data( ozone2) obj<- spatialProcess( ozone2$lon.lat,ozone2$y[16,] ) ######### boot strap set.seed(123) M<- 25 # create M indepedent copies of the observation vector ySynthetic<- simSpatialData( obj, M) bootSummary<- NULL aRangeMLE<- obj$summary["aRange"] lambdaMLE<- obj$summary["lambda"] for( k in 1:M){ cat( k, " " ) # here the MLEs are found using the easy top level level wrapper # see mKrigMLEJoint for a more efficient strategy out <- mKrigMLEJoint(obj$x, ySynthetic[,k], weights = obj$weights, mKrig.args = obj$mKrig.args, cov.function = obj$cov.function.name, cov.args = obj$cov.args, cov.params.start = list( aRange = aRangeMLE, lambda = lambdaMLE) ) newSummary<- out$summary bootSummary<- rbind( bootSummary, newSummary) } cat( " ", fill=TRUE ) obj$summary stats( bootSummary) } \dontrun{ #perform joint likelihood maximization over lambda, aRange, and smoothness. #note: finding smoothness is not a robust optimiztion # can get a bad answer with poor initial guesses. obj2<- mKrigMLEJoint(x,Y, cov.args=list(Covariance="Matern"), cov.params.start=list( aRange = .18, smoothness = 1.1, lambda = .08), ) #look at lnLikelihood evaluations obj2$summary #compare to REML obj3<- mKrigMLEJoint(x,Y, cov.args=list(Covariance="Matern"), cov.params.start=list(aRange = .18, smoothness = 1.1, lambda = .08), , REML=TRUE) obj3$summary } \dontrun{ #look at lnLikelihood evaluations # check convergence of MLE to true fit with no fixed part # obj4<- mKrigMLEJoint(x,Y, mKrig.args= list( m=0), cov.args=list(Covariance="Matern", smoothness=1), cov.params.start=list(aRange=.2, lambda=.1), REML=TRUE) #look at lnLikelihood evaluations obj4$summary # nails it! } } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{spatial} fields/man/bplot.Rd0000644000175100001440000001113414627454002013724 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{bplot} \alias{bplot} \title{ boxplot } \description{ Plots boxplots of several groups of data and allows for placement at different horizontal or vertical positions or colors. It is also flexible in the input object, accepting either a list or matrix. } \usage{ bplot(x, by, pos=NULL, at = pos, add = FALSE, boxwex = 0.8,xlim=NULL, ...) } \arguments{ \item{x}{ Vector, matrix, list or data frame. A vector may be divided according to the by argument. Matrices and data frames are separated by columns and lists by components. } \item{by}{ If x is a vector, an optional vector (either character or numerical) specifying the categories to divide x into separate data sets. Boxplots are then made for each group. } \item{pos}{ The boxplots will be plotted vertically (horizontally) and pos gives the x (y) locations for their centers. If omitted the boxes are equally spaced at integer values. This is the same as \code{at} in the \code{boxplot} function } \item{at}{Same as \code{pos} this is the name for this argument in the standard \code{boxplot} function.} \item{add}{ If true, do not create a new plots just add the boxplots to a current plot. Note that the pos argument may be useful in this case and should be in the user coordinates of the parent plot.} \item{boxwex}{A boxplot argument to control the width of the boxplot. It behaves a little different than as an argumetn passed directly to \code{boxplot}. To make this a general function it is useful to scale this according to size of positions. Within bplot this happens as \code{boxwex<- boxwex* min(diff( sort( at)))}. and then the scaled version of \code{boxwex} is now passed to \code{boxplot}.} \item{xlim}{ Same as the usual argument used in plotting. The plotting limits for the x axis. } \item{\dots}{ Other arguments to be passed to the boxplot function some handy favorites are: \code{names} Labels for each boxplot. \code{horizontal}If TRUE draw boxplots horizontally the default is false, produce vertical box plots. \code{lwd}Width(s) of lines in box plots. \code{col}Color(s) of bplots. See \code{colors()} for some choices.} } \details{ This function was created as a complement to the usual S/R function for boxplots. The current function makes it possible to put the boxplots at unequal x or y positions in a rational way using the \code{at} or \code{pos} arguments. This is useful for visually grouping a large set of boxplots into several groups. Also placement of the boxplots with respect to the axis can add information to the plot. Another aspect is the emphasis on data structures for groups of data. One useful feature is the by option to break up the x vector into distinct groups. Use \code{axis(3)} (\code{axis(4)}) to add an axis along the top (right side) or omit the category names and draw on the bottom \code{axis(1)} (left side \code{axis(2)}). The older \code{bplot} function drew the boxplots from scratch and if one needs to do this refer to the old functions: \code{ describe.bplot, draw.bplot.obj, bplot.xy, bplot.obj} Finally to bin data into groups based on a continuous variable and to make bplots of each group see \code{bplot.xy}. } \seealso{ bplot.xy } \examples{ # set.seed(123) temp<- matrix( rnorm(12*8), ncol=12) pos<- c(1:6,9, 12:16)*100 bplot(temp) # par(las=2) bplot( temp, pos=pos, names=paste( "Data",1:12, sep="")) # add an axis along top for reference axis(3) # # Xmas boxplots in pleasing red and green bplot( temp, pos=pos, col=c("red4", "green4")) # add an axis on top axis( 3) } \keyword{hplot} % docclass is function % Converted by Sd2Rd version 1.21. fields/man/summary.Krig.Rd0000644000175100001440000000441714627454002015202 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{summary.Krig} \alias{summary.Krig} \title{ Summary for Krig or spatialProcess estimated models. } \description{ Creates a list of summary results including estimates for the nugget variance (tau) and the smoothing parameter (lambda). This list is usually printed using a "print.summary" function for nice formatting. } \usage{ \method{summary}{Krig}(object, digits=4,...) } \arguments{ \item{object}{ A Krig or spatialProcess object. } \item{digits}{ Number of significant digits in summary. } \item{\dots}{Other arguments to summary} } \value{ Gives a summary of the Krig object. The components include the function call, number of observations, effective degrees of freedom, residual degrees of freedom, root mean squared error, R-squared and adjusted R-squared, log10(lambda), cost, GCV minimum and a summary of the residuals. } \details{ This function is a method for the generic function summary for class Krig. The results are formatted and printed using print.summary.Krig. } \seealso{ Krig, summary, print.summary.Krig, summary.spatialProcess } \examples{ fit<- Krig(ChicagoO3$x, ChicagoO3$y, aRange=100) summary(fit) # summary of fit } \keyword{spatial} % docclass is function % Converted by Sd2Rd version 1.21. fields/man/Krig.Amatrix.Rd0000644000175100001440000001065414627454002015112 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{Krig.Amatrix} \alias{Krig.Amatrix} \title{ Smoother (or "hat") matrix relating predicted values to the dependent (Y) values. } \description{ For a fixed value of the smoothing parameter or the covariance function some nonparametric curve estimates are linear functions of the observed data. This is a intermediate level function that computes the linear weights to be applied to the observations to estimate the curve at a particular point. For example the predicted values can be represented as Ay where A is an N X N matrix of coefficients and Y is the vector of observed dependent variables. For linear smoothers the matrix A may depend on the smoothing parameter ( or covariance function and the independent variables (X) but NOT on Y. } \usage{ Krig.Amatrix(object, x0 = object$x, lambda=NULL, eval.correlation.model = FALSE,...) } \arguments{ Output object from fitting a data set using a FIELD regression method. Currently this is supported only for Krig ( and Tps) functions. \item{object}{ A Krig object produced by the Krig ( or Tps) function. } \item{x0}{ Locations for prediction default is the observation locations. } \item{lambda}{ Value of the smoothing parameter. } \item{eval.correlation.model}{This applies to a correlation model where the observations have been standardized -- e.g. y standardized = (yraw - mean) / (standard deviation). If TRUE the prediction in the correlation scale is transformed by the standard deviation and mean to give a prediction in the raw scale. If FALSE predictions are left in the correlation scale.} \item{\dots}{ Other arguments that can used by predict.Krig.} } \value{ A matrix where the number of rows is equal to the number of predicted points and the number of columns is equal to the length of the Y vector. } \details{ The main use of this function is in finding prediction standard errors. For the Krig ( and Tps) functions the A matrix is constructed based on the representation of the estimate as a generalized ridge regression. The matrix expressions are explained in the references from the FIELDS manual. For linear regression the matrix that gives predicted values is often referred to as the "hat" matrix and is useful for regression diagnostics. For smoothing problems the effective number of parameters in the fit is usually taken to be the trace of the A matrix. Note that while the A matrix is usually constructed to predict the estimated curve at the data points Amatrix.Krig does not have such restrictions. This is possible because any value of the estimated curve will be a linear function of Y. The actual calculation in this function is simple. It invovles loop through the unit vectors at each observation and computation of the prediction for each of these delta functions. This approach makes it easy to handle different options such as including covariates. } \section{References}{ Nychka (2000) "Spatial process estimates as smoothers." } \seealso{ Krig, Tps, predict.Krig } \examples{ # Compute the A matrix or "hat" matrix for a thin plate spline # check that this gives the same predicted values tps.out<-Tps( ChicagoO3$x, ChicagoO3$y) A<-Krig.Amatrix( tps.out, ChicagoO3$x) test<- A\%*\%ChicagoO3$y # now compare this to predict( tps.out) or tps.out$fitted.values # they should be the same stats( test- tps.out$fitted.values) } \keyword{spatial} % docclass is function % Converted by Sd2Rd version 1.21. fields/man/set.panel.Rd0000644000175100001440000000517414627454002014504 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{set.panel} \alias{set.panel} \title{ Specify a panel of plots } \description{ Divides up the graphics window into a matrix of plots. } \usage{ set.panel(m=1, n=1, relax=FALSE) } \arguments{ \item{m}{ Number of rows in the panel of plots } \item{n}{ Number of columns in the panel. } \item{relax}{ If true and the par command is already set for multiple plots, then the set.panel command is ignored. The default is relax set to false. } } \details{ After set.panel is called, the graphics screen is reset to put plots according to a m x n table. Plotting starts in the upper left hand corner and proceeds row by row. After m x n plots have been drawn, the next plot will erase the window and start in the 1,1 position again. This function is just a repackaging for specifying the mfrow argument to par. Setting up a panel of plots is a quick way to change the aspect ratio of the graph (ratio of height to width) or the size. For example, plotting 2 plots to a page produces a useful size graph for including in a report. You can print out the graphs at any stage without having to fill up the entire window with plots. This function, except for the "relax" option is equivalent to the S sequence: par( mfrow=c(m,n)). } \section{Side Effects}{ The function will echo your choice of m and n to the terminal. } \seealso{ \code{par} } \examples{ set.panel(5,2) #divide screen to hold 10 plots where there are 5 rows #and 2 columns plot( 1:10) plot( 2:8) set.panel() #reset screen to one plot per screen } \keyword{hplot} % docclass is function % Converted by Sd2Rd version 1.21. fields/man/KrigFindLambda.Rd0000644000175100001440000001322214627454002015402 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{KrigFindLambda} \alias{KrigFindLambda} \alias{gcv.sreg} \title{Finds profile likelihood and GCV estimates of smoothing parameters for splines and Kriging.} \description{ This is a secondary function that will use the computed Krig object and find various estimates of the smoothing parameter lambda. These are several different flavors of cross-validation, a moment matching strategy and the profile likelihood. This function can also be used independently with different data sets (the y's) if the covariates ( the x's) are the same and thus reduce the computation. } \usage{ KrigFindLambda( out, lambda.grid = NA, cost = 1, nstep.cv = 200, rmse = NA, verbose = FALSE, tol = 1e-05, offset = 0, y = NULL, give.warnings = TRUE) gcv.sreg ( out, lambda.grid = NA, cost = 1, nstep.cv = 80, rmse = NA, offset = 0, trmin = NA, trmax = NA, verbose = FALSE, tol = 1e-05, give.warnings = TRUE) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{out}{ A Krig or sreg object.} \item{lambda.grid}{ Grid of lambdas for coarse search. The default is equally spaced on effective degree of freedom scale. } \item{cost}{ Cost used in GCV denominator } \item{nstep.cv}{ Number of grid points in coarse search. } \item{rmse}{ Target root mean squared error to match with the estimate of tau**2 } \item{verbose}{ If true prints intermediate results. } \item{tol}{ Tolerance in delcaring convergence of golden section search or bisection search. } \item{offset}{ Additional degrees of freedom to be added into the GCV denominator. } \item{y}{A new data vector to be used in place of the one associated with the Krig object (obj) } \item{give.warnings}{ If FALSE will suppress warnings about grid search being out of range for various estimates based on GCV and REML.} \item{trmin}{Minimum value of lambda for grid search specified in terms of effective degrees of freedom.} \item{trmax}{Maximum value for grid search.} } \details{ This function finds several estimates of the smoothing parameter using first a coarse grid search followed by a refinement using a minimization ( in the case of GCV or maximum likelihood) or bisection in the case of mathcing the rmse. Details of the estimators can be found in the help file for the Krig function. The Krig object passed to this function has some matrix decompostions that facilitate rapid computation of the GCV and ML functions and do not depend on the independent variable. This makes it possible to compute the Krig object once and to reuse the decompostions for multiple data sets. (But keep in mind if the x values change then the object must be recalculated.) The example below show show this can be used for a simulation study on the variability for estimating the smoothing parameter. } \value{A list giving a summary of estimates and diagonostic details with the following components: \item{gcv.grid }{ A matrix describing results of the coarse search rows are values of lambda and the columns are lambda= value of smoothing parameter, trA=effective degrees of freedom, GCV=Usual GCV criterion, GCV.one=GCV criterion leave-one-out, GCV.model= GCV based on average response in the case of replicates, tauHat= Implied estimate of tau , -Log Profile= negative log of profiel likelihood for the lambda. } \item{lambda.est}{Summary table of all estimates Rows index different types of estimates: GCV, GCV.model, GCV.one, RMSE, pure error, -Log Profile and the columns are the estimated values for lambda, trA, GCV, tauHat. } } \author{Doug Nychka} \seealso{ \code{\link{Krig}}, \code{\link{Tps}}, \code{\link{predict.Krig}} } \examples{ # Tps( ChicagoO3$x, ChicagoO3$y)-> obj # default is to find lambda by GCV summary( obj) KrigFindLambda( obj)-> out print( out$lambda.est) # results agree with Tps summary sreg( rat.diet$t, rat.diet$trt)-> out gcv.sreg( out, tol=1e-10) # higher tolerance search for minimum \dontrun{ # a simulation example x<- seq( 0,1,,150) f<- x**2*( 1-x) f<- f/sqrt( var( f)) set.seed(123) # let's all use the same seed tau<- .1 y<- f + rnorm( 150)*tau Tps( x,y)-> obj # create Krig object hold<- hold2<- matrix( NA, ncol=6, nrow=200) for( k in 1:200){ # look at GCV estimates of lambda # new data simulated y<- f + rnorm(150)*tau # save GCV estimates lambdaTable<- KrigFindLambda(obj, y=y, give.warnings=FALSE)$lambda.est hold[k,]<- lambdaTable[1,] hold2[k,]<- lambdaTable[6,] } matplot( cbind(hold[,2], hold2[,2]),cbind( hold[,4],hold2[,4]), xlab="estimated eff. df", ylab="tau hat", pch=16, col=c("orange3", "green2"), type="p") yline( tau, col="grey", lwd=2) } } \keyword{spatial} fields/man/ribbon.plot.Rd0000644000175100001440000000567414627454002015050 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{ribbon.plot} \alias{ribbon.plot} %- Also NEED an '\alias' for EACH other topic documented here. \title{ Adds to an existing plot, a ribbon of color, based on values from a color scale, along a sequence of line segments.} \description{ Given a series of 2-d points and values at these segments, the function colors the segments according to a color scale and the segment values. This is essentially an image plot restricted to line segments. } \usage{ ribbon.plot(x,y,z,zlim=NULL, col=tim.colors(256), transparent.color="white",...) } \arguments{ \item{x}{x locations of line segments} \item{y}{y locations of line segments} \item{z}{ Values associated with each segment.} \item{zlim}{Range for z values to determine color scale. } \item{col}{Color table used for strip. Default is our favorite tim.colors being a scale from a dark blue to dark red.} \item{transparent.color}{Color used for missing values. Default is that missing values make the ribbon transparent.} \item{\dots}{Optional graphical arguments that are passed to the \code{segment} plotting function. A favorite is lwd to make a broad ribbon. } } \details{ Besides possible 2-d applications, this function is useful to annotate a curve on a surface using colors. The values mapped to acolor scheme could indicate a feature other than the height of the surface. For example, this function could indicate the slope of the surface. } \author{Doug Nychka} \seealso{ image.plot, arrow.plot, add.image, colorbar.plot} \examples{ plot( c(-1.5,1.5),c(-1.5,1.5), type="n") temp<- list( x= seq( -1,1,,40), y= seq( -1,1,,40)) temp$z <- outer( temp$x, temp$y, "+") contour( temp, add=TRUE) t<- seq( 0,.5,,50) y<- sin( 2*pi*t) x<- cos( pi*t) z<- x + y ribbon.plot( x,y,z, lwd=10) persp( temp, phi=15, shade=.8, col="grey")-> pm trans3d( x,y,z,pm)-> uv ribbon.plot( uv$x, uv$y, z**2,lwd=5) } \keyword{ hplot }% at least one, from doc/KEYWORDS fields/man/image2lz.Rd0000644000175100001440000001467514627454002014333 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{image2lz} \alias{image2lz} \alias{crop.image} \alias{in.poly} \alias{in.poly.grid} \alias{half.image} \alias{get.rectangle} \alias{average.image} \alias{which.max.matrix} \alias{which.max.image} \title{Some simple functions for subsetting images} \description{These function help in subsetting images or reducing its size by averaging adjecent cells.} \usage{ crop.image(obj, loc=NULL,...) which.max.matrix(z) which.max.image(obj) get.rectangle() average.image(obj, Q=2) half.image(obj) in.poly( xd, xp, convex.hull=FALSE, inflation=1e-07) in.poly.grid( grid.list,xp, convex.hull=FALSE, inflation=1e-07) } \arguments{ \item{obj}{A list in image format with the usual x,y defining the grid and z a matrix of image values.} \item{loc}{A 2 column matrix of locations within the image region that define the subset. If not specified then the image is plotted and the rectangle can be specified interactively.} \item{Q}{Number of pixels to average.} \item{xd}{ A 2 column matrix of locations that are the points to check for being inside a polygon.} \item{xp}{ A 2 column matrix of locations that are vertices of a polygon. The last point is assumed to be connected to the first.} \item{convex.hull}{If TRUE then the convex hull of \code{xp} is used instead of the polygon.} \item{grid.list}{A list with components x and y specifing the 2-d grid values. (See help( grid.list) for more details.)} \item{inflation}{A small expansion factor to insure that points precisely on the boundaries and vertices of the convex hull are included as members.} \item{z}{ A matrix of numerical values} \item{\dots}{ Graphics arguments passed to image.plot. This is only relevant when loc is NULL and the locator function is called via \code{get.rectangle}. } } \details{ If \code{loc} has more than 2 rows then the largest rectangle containing the locations is used. \describe{ \item{crop.image}{Creates a subset of the image \code{obj} by taking using the largest rectangle in the locations \code{loc}. This is useful if one needs to extract a image that is no bigger in extant than som edata location. If locations are omitted the parent image is plotted and the locations from two mouse clicks on the image. Returned value is an image with appropriate \code{x,y} and \code{z} components.} \item{get.rectangle}{Given an image plots and waits for two mouse clicks that are returned.} \item{which.max.image}{Returns a list with components \code{x, y, z} , and \code{ind} giving the location of the maximun and value of the maximum in the image based on the grid values and also on the indicies of the image matrix.} \item{average.image, half.image}{Takes passed image and averages the pixel values and adjusts the grid to create an image that has a smaller number of elements. If \code{Q=2} in \code{average.image} it has the same effect as \code{half.image} but might be slower -- if the original image is mXn then half image will be an image (m/2)X(n/2). This begs the question what happens when m or n is odd or when (m/Q) or (n/Q) are not integers. In either case the largest rows or columns are dropped. (For large \code{Q} the function might be modified to drop about half the pixels at both edges.) } \item{in.poly, in.poly.grid}{Determines whether the points xd,yd are inside a polygon or outside. Return value is a logical vector with TRUE being inside or on boundary of polygon. The test expands the polygon slightly in size (on the order of single precision zero) to include points that are at the vertices. \code{in.poly} does not really depend on an image format however the grid version \code{in.poly.grid} is more efficient for considering the locations on a regular grid See also \code{in.land.grid} that is hard coded to work with the fields world map.} } } \author{Doug Nychka} \seealso{ drape.plot, image.plot, interp.surface, interp.surface.grid, in.land.grid} \examples{ data(RMelevation) # region defining Colorado Front Range loc<- rbind( c(-106.5, 40.8), c(-103.9, 37.5)) # extract elevations for just CO frontrange. FR<- crop.image(RMelevation, loc) image.plot( FR, col=terrain.colors(256)) which.max.image( FR) # average cells 4 to 1 by doing this twice! temp<- half.image( RMelevation) temp<- half.image( temp) # or in one step temp<- average.image( RMelevation, Q=4)-> temp image.plot( temp, col=terrain.colors(256)) # a polygon (no special meaning entered with just locator) x1p<- c( -106.2017, -104.2418, -102.9182, -102.8163, -102.8927, -103.3254, -104.7763, -106.5581, -108.2889, -109.1035, -109.3325, -108.7980) x2p<- c( 43.02978, 42.80732, 41.89727, 40.84566, 39.81427, 38.17618, 36.53810, 36.29542, 36.90211, 38.29752, 39.45025, 41.02767) xp<- cbind( x1p,x2p) image.plot( temp) polygon( xp[,1], xp[,2], lwd=2) # find all grid points inside poly fullset<- make.surface.grid( list( x= temp$x, y= temp$y)) ind<- in.poly( fullset,xp) # take a look plot( fullset, pch=".") polygon( xp[,1], xp[,2], lwd=2) points( fullset[ind,], pch="o", col="red", cex=.5) # masking out the image NA == white in the image plot temp$z[!ind] <- NA image.plot( temp) polygon( xp[,1], xp[,2], lwd=2) # This is more efficient for large grids: # because the large number of grid location ( xg above) is # never explicitly created. ind<- in.poly.grid( list( x= temp$x, y= temp$y), xp) # now use ind in the same way as above to mask points outside of polygon } \keyword{ hplot }% at least one, from doc/KEYWORDS fields/man/FORTRAN.internal.Rd0000644000175100001440000000514514627454002015537 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{fields exported FORTRAN} \alias{css} \alias{ddfind} \alias{dmaket} \alias{evlpoly} \alias{evlpoly2} \alias{igpoly} \alias{inpoly} \alias{multeb} \alias{multrb} \alias{radbas} \alias{rcss} \title{ FORTRAN subroutines used in fields functions } \description{ These functions implement cubic smoothing splines and also provide some basic computations for radial basis functions. All are called using the \code{.FORTRAN} interface. } \details{ For these low level FORTRAN subroutines refer to the R functions for the calling sequence and to the src subdirectory of the fields package for the source code. \describe{ \item{css}{Computes a cubic smoothing spline see \code{sreg} and \code{splint}} \item{ddfind}{Finds nearest neighbor points within a fixed distance. See \code{fields.rdist.near}} \item{dmaket}{Creates matrix of all polynomial terms up to fixed order. See \code{fields.mkpoly}} \item{evlpoly}{Evaluates a univariate polynomial. See \code{fields.evlpoly}} \item{evlpoly2}{Evaluates a multivariate polynomial. See \code{fields.evlpoly2}} \item{inpoly}{Determine which 2-d locations are within a polynomial. see \code{in.poly}} \item{igpoly}{Determine which 2-d grid points locations are within a polynomial. see \code{in.poly.grid}} \item{multeb}{Multiply an exponential cross covariance matrix by another matrix. See \code{exp.cov}} \item{multrb}{Multiply an radial basis function matrix by another matrix. See \code{rad.cov}} \item{radbas}{Evaluates radial basis functions. See \code{rdist.R}} \item{rcss}{Robust cubic smoothing spline. See \code{qsreg}} } } \keyword{internal} fields/man/interp.surface.Rd0000644000175100001440000001352714635144275015553 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{interp.surface} \alias{interp.surface} \alias{interp.surface.grid} \alias{interp.surface.FFT} \alias{fillGrid} \title{ Fast bilinear interpolator from a grid. } \description{ Uses bilinear weights to interpolate values on a rectangular grid to arbitrary locations or to another grid. } \usage{ interp.surface(obj, loc) interp.surface.grid(obj, grid.list) interp.surface.FFT(obj, M) fillGrid( gridList, M) } \arguments{ \item{obj}{ A list with components x,y, and z in the same style as used by contour, persp, image etc. x and y are the X and Y grid values and z is a matrix with the corresponding values of the surface. For the FFT method there must be an odd number of grid points. } \item{loc}{ A matrix of (irregular) locations to interpolate. First column of loc isthe X coordinates and second is the Y's. } \item{grid.list}{ A list with components x and y describing the grid to interpolate. The grids do not need to be equally spaced.} \item{gridList}{Just a newer name for a grid list object.} \item{M}{ A muliple of the source grid to interpolate to create the target grid. E.g. if M=5 then a 10X20 source grid in \code{obj} will give an interpolated grid of (10*5)X(20*5). See the \code{fillGrid} function that creates the larger grid.} } \value{ \strong{ interp.surface} An vector of interpolated values. NA are returned for regions of the z matrix that are NA and also for locations outside of the range of the parent grid. \strong{ interp.surface.grid} Interpolated values using bilinear interpolation in the list/image format with comonents: \code{x}, \code{y}, \code{z}. \strong{ interp.surface.FFT} Interpolated values using the FFT method in an image format with the grid refined by the factor \code{M}. } \details{ \strong{ interp.surface} Here is a brief explanation of the interpolation: Suppose that the location, (locx, locy) lies in between the first two grid points in both x an y. That is locx is between x1 and x2 and locy is between y1 and y2. Let ex= (l1-x1)/(x2-x1) ey= (l2-y1)/(y2-y1). The interpolant is ( 1-ex)(1-ey)*z11 + (1- ex)(ey)*z12 + ( ex)(1-ey)*z21 + ( ex)(ey)*z22 Where the z's are the corresponding elements of the Z matrix. Note that bilinear interpolation can produce some artifacts related to the grid and not reproduce higher behavior in the surface. For, example the extrema of the interpolated surface will always be at the parent grid locations. There is nothing special about about interpolating to another grid, this function just includes a \code{for} loop over one dimension and a call to the function for irregular locations. It was included in fields for convenience. since the grid format is so common. See also the akima package for fast interpolation from irrgeular locations. Many thanks to Jean-Olivier Irisson for making this code more efficient and concise. \strong{ interp.surface.FFT} This version does the interpolation via the usual sin /cosine basis and the FFT. This method only makes sense for interpolating to a target grid that is a refinement of the source grid. E.g. if M=5 then a 10X20 source grid in \code{obj} will give an interpolated grid of (10*5)X(20*5) = 50X200. endpoints of this grid match the endpoints of the source. Note the FFT interpolation is "C infinity " accurate which means in practice that this method will do well for smooth fields. Sharp changes will induce the usual Gibbs oscillations around large the changes. The interpolation is also peridic in both dimensions ( a torus) and so might give strange results for non-periodic fields. Pad the edges to mitigate this artifact. The algorithm in brief is 1) FFT of the source image/matrix. 2) Stuff this into corners of a larger matrix of zeroes and of the size of the refined grid. 3) Inverse FFT of stuffed matrix. } \seealso{ image.smooth, as.surface, as.image, imagePlot, image.plot fastTps } \examples{ # # evaluate an image object at a finer grid # data( lennon) # create an example in the right list format like image or contour or persp. obj<- list( x= 1:21, y=1:21, z= lennon[ 201:221, 201:221]) set.seed( 123) # lots of random points N<- 500 loc<- cbind( runif(N)*20, runif(N)*20) z.new<- interp.surface( obj, loc) # compare the image with bilinear interpolation at scattered points set.panel(2,2) image.plot( obj) quilt.plot( loc, z.new) # sample at 100X100 equally spaced points on a grid grid.list<- list( x= seq( 1,20,,100), y= seq( 1,20,,100)) interp.surface.grid( obj, grid.list)-> look # this will give an error in the FFT version because # there are an even number of grid points for x. # objTest<- list( x= 1:20, y=1:21, z= lennon[ 201:220, 201:221]) # look2<- interp.surface.FFT( objTest, M=10) look2<- interp.surface.FFT( obj, M=20)-> look2 # take a look set.panel(2,2) image.plot( obj) image.plot( look) image.plot( look2) } \keyword{spatial} % docclass is function % Converted by Sd2Rd version 1.21. fields/man/stats.bin.Rd0000644000175100001440000000532714627454002014520 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{stats.bin} \alias{stats.bin} \title{ Bins data and finds some summary statistics. } \description{ Cuts up a numeric vector based on binning by a covariate and applies the fields stats function to each group } \usage{ stats.bin(x, y, N = 10, breaks = NULL,prettyBins=FALSE) } \arguments{ \item{x}{ Values to use to decide bin membership } \item{y}{ A vector of data } \item{N}{ Number of bins. If the breaks is missing there are N bins equally spaced on the range of x. } \item{breaks}{ The bin boundaries. If there are N+1 of these there will be N bins. The bin widths can be unequal. } \item{prettyBins}{If FALSE creates exactly N-1 bins. If TRUE the number of bins is determined by N and the pretty function.} } \value{ A list with several components. stats is a matrix with columns indexing the bins and rows being summary statistics found by the stats function. These are: number of obs, mean, sd, min, quartiles, max and number of NA's. (If there is no data for a given bin, NA's are filled in. ) breaks are the breaks passed to the function and centers are the bin centers. } \seealso{ bplot, stats } \examples{ u<- rnorm( 2000) v<- rnorm( 2000) x<- u y<- .7*u + sqrt(1-.7**2)*v look<- stats.bin( x,y) look$stats["Std.Dev.",] data( ozone2) # make up a variogram day 16 of Midwest daily ozone ... look<- vgram( ozone2$lon.lat, c(ozone2$y[16,]), lon.lat=TRUE) # break points brk<- seq( 0, 250,,40) out<-stats.bin( look$d, look$vgram, breaks=brk) # plot bin means, and some quantiles Q1, median, Q3 matplot( out$centers, t(out$stats[ c("mean", "median","Q1", "Q3"),]), type="l",lty=c(1,2,2,2), col=c(3,4,3,4), ylab="ozone PPB") } \keyword{univar} % docclass is function % Converted by Sd2Rd version 1.21. fields/man/fields-stuff.Rd0000644000175100001440000001113014627454002015173 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{fields-stuff} \alias{fields.duplicated.matrix} \alias{fields.mkpoly} \alias{fields.derivative.poly} \alias{fields.evlpoly} \alias{fields.evlpoly2} \title{Fields supporting functions} \description{ Some supporting functions that are internal to fields top level methods. Variants of these might be found in the R base but these have been written for cleaner code or efficiency. } \usage{ fields.duplicated.matrix(mat, digits = 8) fields.mkpoly(x, m = 2, tag = "term") fields.derivative.poly(x, m,dcoef) fields.evlpoly( x, coef) fields.evlpoly2( x, coef, ptab) } \arguments{ \item{mat}{Arbitrary matrix for examining rows} \item{digits}{Number of significant digits to use for comparing elements to determine duplciate values. } \item{x}{Arbitrary matrix where rows are components of a multidimensional vector} \item{m}{ The null space degree -- results in a polynomial of degree (m-1) } \item{dcoef}{ Coefficients of a multidimensional polynomial} \item{coef}{Polynomial coefficients.} \item{ptab}{Table of powers of different polnomial terms.} \item{tag}{ \code{mkpoly} fills in as columns names the higher order terms of the polynomial terms. The tag is the text string prefix for thes column names and the powers of the individual variables are appended. Default is just "terms".} } \details{ \code{fields.duplicated} finds duplicate rows in a matrix. The digits arguments is the number of digits that are considered in the comparison. The returned value is an array of integers from 1:M where M is the number of unique rows and duplicate rows are referenced in the same order that they appear as the rows of \code{mat}. \code{fields.mkpoly} computes the complete matrix of all monomial terms up to degree (m-1). Each row of \code{x} is are the componets of a vector. (The fields function mkpoly returns the number of these terms.) In 2 dimensions with m=3 there 6 polynomial terms up to quadratic ( 3-1 =2) order and will be returned as the matrix: cbind( 1 , x[,1], x[,2], x[,1]**2, x[,1]*x[,2], x[,2]**2 ) This function is used for the fixed effects polynomial or spatial drift used in spatial estimating functions Krig, Tps and mKrig. The matrix ptab is a table of the powers in each term for each variable and is included as an attribute to the matrix returned by this function. See the \code{attr} function for extracting an attribute from an object. \code{ptab} for the example above is \preformatted{ [,1] [,2] [1,] 0 0 [2,] 1 0 [3,] 0 1 [4,] 2 0 [5,] 1 1 [6,] 0 2 } This information is used in finding derivatives of the polynomial is also used to create column names for the terms that are of higher order than linear. \code{fields.deriviative.poly} finds the partial derivative matrix of a multidimensional polynomial of degree (m-1) at different vector values and with coefficients \code{dcoef}. This function has been orgainzed to be a clean utility for the predicting the derivative of the estimated function from Krig or mKrig. Within the fields context the polynomial itself would be evaluated as fields.mkpoly( x,m)\%*\%dcoef. If x has d columns ( also the dimension of the polynomial) and n rows the partial derivatives of this polynomial at the locations x can be organized in a nXd matrix. This is the object returned by ths function. \code{evlpoly} and \code{evlpoly2} are FORTRAN based functions for evaluating univariate polynomials and multivariate polynomials. The table of powers (ptab) needed for evlpoly2 is the same format as that returned my the fields.mkpoly function. } \author{Doug Nychka} \keyword{spatial} fields/man/fields.hints.Rd0000644000175100001440000001114314627454002015176 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{fields.hints} \alias{fields.hints} \alias{fields.style} \alias{fields.color.picker} \title{ fields - graphics hints } \description{ Here are some technical hints for assembling multiple plots with common legends or axes and setting the graphics parameters to make more readable figures. Also we an index to the defaultcolors in R graphics and setting their definitions in LaTeX. All these hints use the standard graphics environment. } \usage{ fields.style() fields.color.picker() } \details{ \code{fields.style} is a simple function to enlarge the characters in a plot and set the colors. List this out to modify the choices. \preformatted{ ##Two examples of concentrating a panel of plots together ## to conserve the white space. ## see also the example in image.plot using split.screen. ## The basic trick is to use the oma option to reserve some space around the ## plots. Then unset the outer margins to use that room. library( fields) # some hokey image data x<- 1:20 y<- 1:15 z<- outer( x,y,"+") zr<- range( c(z)) # add common legend to 3X2 panel par( oma=c(4,0,0,0)) set.panel( 3,2) par( mar=c(1,1,0,0)) # squish plots together with just 1 space between for ( k in 1:6){ image( x,y,z, axes=FALSE, xlab="", ylab="", zlim=zr) } par( oma=c(0,0,0,0)) image.plot( zlim=zr, legend.only=TRUE, horizontal=TRUE, legend.mar=5) # you may have to play around with legend.mar and the oma settings to # get enough space. ## ### also add some axes on the sides. in a lattice style ## note oma adds some more room at bottom. par( oma=c(8,6,1,1)) set.panel( 3,2) par( mar=c(1,1,0,0)) ## for ( k in 1:6){ image( x,y,z, axes=FALSE, xlab="", ylab="", zlim=zr) box() # box around figure # maybe draw an x axis if( k \%in\% c(5,6) ){ axis( 1, cex.axis=1.5) mtext( line=4, side=1, "Xstuff")} # maybe draw a y axis if( k \%in\% c(1,3,5) ){ axis( 2, cex.axis=1.5) mtext( line=4, side=2, "Ystuff")} } # same trick of adding a legend strip. par( oma=c(0,0,0,0)) image.plot( zlim=zr, legend.only=TRUE, horizontal=TRUE, legend.mar=5) # reset panel set.panel() #### # show colors ## the factory colors: clab<- colors() n<- length( clab) N<- ceiling( sqrt(n) ) M<- N temp<- rep( NA,M*N) temp[1:n] <- 1:n z<- matrix(temp, M,N) image(seq(.5,M+.5,,M+1), seq(.5,N+.5,,N+1) , z, col=clab, axes=FALSE, xlab="", ylab="") # see the function fields.color.picker() to locate colors # dumping out colors by name for a latex document # this creates text strings that are the LaTeX color definitions # using the definecolor function. # grab all of the R default colors clab<- colors() for( nn in clab){ temp<- signif(col2rgb(nn)/256, 3) cat( "\\definecolor{", nn, "}", "{rgb}{", temp[1], ",", temp[2], ",", temp[3], "}", fill=TRUE , sep="") } # this loop prints out definitions such as # \definecolor{yellowgreen}{rgb}{0.602,0.801,0.195} # having loaded the color package in LaTeX # defining this color # use the construction {\color{yellowgreen} THIS IS A COLOR} # to use this color in a talk or document. # this loop prints out all the colors in LaTeX language # as their names and can be converted to a pdf for handy reference. sink( "showcolors.tex") clab<- colors() for( nn in clab){ temp<- signif(col2rgb(nn)/256, 3) cat( "\\definecolor{", nn, "}", "{rgb}{", temp[1], ",", temp[2], ",", temp[3], "}", fill=TRUE , sep="") cat( paste("{ \\color{",nn,"} ", nn," $\\bullet$ \\\\ }", sep=""), fill=TRUE) } sink() } %end preformatted } \keyword{hplot} fields/man/registeredC.Rd0000644000175100001440000000722014627454002015045 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{registeringCode} \alias{addToDiagC} \alias{ExponentialUpperC} \alias{compactToMatC} \alias{multebC} \alias{multwendlandg} \alias{mltdrb} \alias{RdistC} \alias{distMatHaversin} \alias{distMatHaversin2} % \docType{data} \title{Information objects that register C and FORTRAN functions. } \description{ These are objects of class \code{CallRoutine} or \code{FortranRoutine} and also \code{\link{NativeSymbolInfo}} They provide information for compiledfunctions called with \code{.Call}, or \code{.Fortran}. Ordinarily one would not need to consult these and they are used to make the search among dynamically loaded libraries ( in particular the fields library) have less ambiguity and also be faster. These are created when the package/library is loaded are have their definitions from the compliation of \code{init.c} in the package source (src) directory. } %ExponentialUpperC.Rd compactToMatC.Rd multebC.Rd %RdistC.Rd mltdrb.Rd multwendlandg.Rd %%\usage{ %data(addToDiagC) %data(ExponentialUpperC) %data(compactToMatC) %data(multebC) %data(multwendlandg) %data(mltdrb) %data(RdistC) %} \format{ The format is a list with components: \describe{ \item{name}{The (registration ?) name of the C function.} \item{address}{See \link{NativeSymbolInfo}. } \item{dll}{Dynamically linked library information.} \item{numParameters}{Number of calling arguments in function.} } } \details{ \describe{ \item{addToDiagC}{ adds diagonal elements to a matrix. See \code{mKrig}.} \item{ExponentialUpperC}{Fills in upper triangle of a matrix with the exponential covariance function. See \code{ExponentialUpper}} \item{compactToMatC}{ Converts compact format to full matrix format. See \code{compactToMat}.} \item{multebC}{Mulitplies a vector/matrix with an exponential covariance function. See \code{exp.cov}} \item{multwendlandg}{This has been mysteriously included but it is not a function! } \item{mltdrb}{Evaluates the derivatives of thin plate sline radial basis functions. See \code{rad.cov}. } \item{RdistC}{ Euclidean distance function between sets of coordinates. See \code{rdist}.} \item{distMatHaversin}{ Used in \code{RdistEarth}.} \item{distMatHaversin2}{ Used in \code{RdistEarth}.} } See \code{package_native_routine_registration_skeleton} for the utility used to create these data objects. It is not clear why these routines have been flagged as needing documentation while other routines have not. } \references{ For background on registering C, C++ and Fortran functions see 5.4 of Writing R Extensions. For this package refer to the C code in \code{ src/intit.c} as an example. } \examples{ print(addToDiagC) } \keyword{datasets} fields/man/surface.Krig.Rd0000644000175100001440000001001014627454002015117 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{surface.Krig} \alias{surface.Krig} \alias{surface.mKrig} \title{ Plots a surface and contours } \description{ Creates different plots of the fitted surface of a Krig object. This is a quick way to look at the fitted function over reasonable default ranges. } \usage{ \method{surface}{Krig}(object, grid.list = NULL, extrap = FALSE, graphics.reset = NULL, xlab = NULL, ylab = NULL, main = NULL, zlab = NULL, zlim = NULL, levels = NULL, type = "C", nx = 80, ny = 80, col = viridisLite::viridis(256), ...) \method{surface}{mKrig}( object, grid.list = NULL, extrap = FALSE, graphics.reset = NULL, xlab = NULL, ylab = NULL, main = NULL, zlab = NULL, zlim = NULL, levels = NULL, type = "C", nx = 80, ny = 80, col = viridisLite::viridis(256), ...) } \arguments{ \item{object}{ A Krig object or an mKrig object. } \item{grid.list}{ A list with as many components as variables describing the surface. All components should have a single value except the two that give the grid points for evaluation. If the matrix or data frame has column names, these must appear in the grid list. If grid.list is missing an the surface has just two dimensions the grid is based on the ranges of the observed data. } \item{extrap}{ Extrapolation beyond the range of the data. If false only the convex hull of the observations is plotted. Default is false. } \item{graphics.reset}{ Reset to original graphics parameters after function plotting. } \item{type}{ Type of plot as a character. "p" perspective plot (persp). "c" contour plot (contour). "b" a two panel figure with perspective and contour plots. "I" image plot with legend strip (image.plot). "C" image plot with contours overlaid. Image with contour is the default. } \item{main}{ Title of plot} \item{xlab}{ x axis label} \item{ylab}{ y axis label} \item{zlab}{ z axis label if "p" or "b" type is used.} \item{zlim}{ Z limits passed to persp} \item{levels}{ Contour levels passed to contour. } \item{nx}{ Number of grid points to evaluate surface on the horizontal axis (the x-axis). } \item{ny}{ Number of grid points to evaluate surface on the vertical axis (the y-axis). } \item{col}{Color scale.} \item{\dots}{ Any other plotting options. } } \details{ This function is essentially a combination of predictSurface and plot.surface. It may not always give a great rendition but is easy to use for checking the fitted surface. The default of extrap=F is designed to discourage looking at the estimated surface outside the range of the observations. NOTE: that any Z covariates will b edropped and only the spatial part of the model will be evaluated. } \seealso{ \code{\link{Krig}} predictSurface, plot.surface, image.plot } \examples{ fit<- Krig(ChicagoO3$x,ChicagoO3$y, aRange=30) # krig fit #Image plot of surface with nice, smooth contours and shading surface(fit, type="C", nx=128, ny=128) } \keyword{spatial} % docclass is function % Converted by Sd2Rd version 1.21. fields/man/BD.Rd0000644000175100001440000000435514627454002013100 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{BD} \alias{BD} \title{ Data frame of the effect of buffer compositions on DNA strand displacement amplification. A 4-d regression data set with with replication. This is a useful test data set for exercising function fitting methods. } \description{ The \code{BD} data frame has 89 rows and 5 columns. There are 89 runs with four buffer components (KCL, MgCl2, KP04, dnTP) systematically varied in a space-filliing design. The response is the DNA amplification rate. } \format{ This data frame contains the following columns: \describe{ \item{KCl}{ Buffer component. } \item{MgCl2}{ Buffer component. } \item{KPO4}{ Buffer component. } \item{dNTP}{ Buffer component, deoxyribonucleotides. } \item{lnya}{ Exponential amplification rate on a log scale, i.e. the actual amplification rate. } } } \source{ Thanks to Perry Haaland and Michael OConnell. Becton Dickinson Research Center Research Triangle Park, NC } \seealso{ Tps } \examples{ # fitting a DNA strand # displacement amplification surface to various buffer compositions fit<- Tps(BD[,1:4],BD$lnya,scale.type="range") surface(fit) # plots fitted surface and contours } \keyword{datasets} % docclass is function % Converted by Sd2Rd version 1.21. fields/man/splint.Rd0000644000175100001440000000711714627454002014123 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{splint} \alias{splint} \title{ Cubic spline interpolation } \description{ A fast, FORTRAN based function for cubic spline interpolation. } \usage{ splint(x, y, xgrid, wt = NULL, derivative = 0, lam = 0, df = NA, lambda = NULL, nx = NULL, digits = 8) } \arguments{ \item{x}{ The x values that define the curve or a two column matrix of x and y values. } \item{y}{ The y values that are paired with the x's. } \item{xgrid}{ The grid to evaluate the fitted cubic interpolating curve. } \item{derivative}{ Indicates whether the function or a a first or second derivative should be evaluated. } \item{wt}{Weights for different obsrevations in the scale of reciprocal variance.} \item{lam}{ Value for smoothing parameter. Default value is zero giving interpolation.} \item{lambda}{Same as \code{lam} just to make this easier to remember.} \item{df}{ Effective degrees of freedom. Default is to use lambda =0 or a df equal to the number of observations.} \item{nx}{If not NULL this should be the number of points to evaluate on an equally spaced grid in the range of \code{x}} \item{digits}{Number of significant digits uused to determine what is a replicate x value.} } \value{ A vector consisting of the spline evaluated at the grid values in \code{xgrid}. } \details{ Fits a piecewise interpolating or smoothing cubic polynomial to the x and y values. This code is designed to be fast but does not many options in \code{sreg} or other more statistical implementations. To make the solution well posed the the second and third derivatives are set to zero at the limits of the x values. Extrapolation outside the range of the x values will be a linear function. It is assumed that there are no repeated x values; use sreg followed by predict if you do have replicated data. } \section{References}{ See Additive Models by Hastie and Tibshriani. } \seealso{ sreg, Tps } \examples{ x<- seq( 0, 120,,200) # an interpolation splint(rat.diet$t, rat.diet$trt,x )-> y plot( rat.diet$t, rat.diet$trt) lines( x,y) #( this is weird and not appropriate!) # the following two smooths should be the same splint( rat.diet$t, rat.diet$con,x, df= 7)-> y1 # sreg function has more flexibility than splint but will # be slower for larger data sets. sreg( rat.diet$t, rat.diet$con, df= 7)-> obj predict(obj, x)-> y2 # in fact predict.sreg interpolates the predicted values using splint! # the two predicted lines (should) coincide lines( x,y1, col="red",lwd=2) lines(x,y2, col="blue", lty=2,lwd=2) } \keyword{smooth} % docclass is function % Converted by Sd2Rd version 1.21. fields/man/glacier.Rd0000644000175100001440000001157714627454002014225 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{glacier} \alias{glacier} \docType{data} \title{Franke's Glacier Elevation Data} \description{ A moderate size (about 8400 locations) spatial dataset that is well-known in the applied mathematics approximation literature for testing interpolation methods. } \usage{data(glacier)} \format{ The format of \code{glacier} is a list with two components: \describe{ \item{loc:}{8338x2 matrix of the locations (meters??).} \item{y:}{A vector of elevations (meters ??).} } } \details{ This data set appears in papers that develop interpolation methods for scattered data and serves as an interesting bridge to the examples in applied math that develop radial basis function surface fitting. The data was originally used by R. Franke. Unfortunately at this time we can not find any background on where these data were collected or indeed even the location of this glacier. However, it is an interesting data set in that it appears that the elevations are reported along lnes of equal elevation, i.e. contours, perhaps from a digitization of a topographic map or survey. It is important to estimate the surface in a way that the artifacts from discretization are not present. In the example below the compactly supported kernel interpolation still has some artifacts. The glacier data set is available at this website \url{https://oleg-davydov.de/scat_data.html} The examples below are useful for comparing different approximations to a Gaussian spatial process estimate for the elevation surface. Of course in using a stationary covariance ( e.g. the Matern or Wendland) these are also radial basis smoothing or interpolation of the data. } \examples{ data( glacier ) # EDA for raw obs: bubblePlot( glacier$loc, glacier$y, highlight=FALSE, size=.5) # identifying contour levels. Note this is reported at regular levels # (Every 25m ???) table( glacier$y) # find sigma and rho by maximum likelihood # for a fixed range # the default is the Wendland covariance with k=2 # See help(Wendland) # this takes about 5 minutes # macbook pro Quad-Core Intel Core i5 8 GB #options(spam.nearestdistnnz=c(5e7,1e3)) #system.time( # obj0<- fastTps(glacier$loc, glacier$y, # theta=2, # profileLambda=TRUE) #) # set.panel(2,2) # plot( obj0) # set.panel() # just evaluate at MLE # reset default matrix size that the spam pacakge will use. \dontrun{ options(spam.nearestdistnnz=c(5e7,1e3)) system.time( obj1<- fastTps(glacier$loc, glacier$y, theta=2, lambda= 7.58e-5 ) ) system.time( look1<- predictSurface( obj1, nx=150, ny=150) ) imagePlot( look1) system.time( out<- simLocal.spatialProcess(obj1, M=3, nx=150, ny=150) ) set.panel( 2,2) imagePlot( look1) zlim<- range( out$z, na.rm=TRUE) for( k in 1:3){ imagePlot(out$x, out$y, out$z[,,k], zlim=zlim) } # near interpolation surface using Matern smoothness .5 system.time( obj2<- spatialProcess(glacier$loc, glacier$y, aRange = 1.5, lambda = 1e-5, smoothness = .5) ) system.time( out<- simLocal.spatialProcess(obj2, M=3, nx=150, ny=150, fast=TRUE) ) set.panel( 2,2) imagePlot( look1) zlim<- range( out$z, na.rm=TRUE) for( k in 1:3){ imagePlot(out$x, out$y, out$z[,,k], zlim=zlim) } % test out fast predict algorithm verses exact % note speedup of about 15 times system.time( look2<- predictSurface.mKrig( obj2, nx=150, ny=150, fast=TRUE, NNSize=5) ) system.time( look2B<- predictSurface( obj2, nx=150, ny=150, fast=FALSE) ) err<- c((look2$z - look2B$z)/look2B$z) stats( log10( abs(err) ) ) # some error plots ( percent relative error) imagePlot(look2$x, look2$y, 100*(look2$z - look2B$z)/look2B$z ) imagePlot(look2$x, look2$y, 100*(look1$z - look2B$z)/look2B$z ) } % end do not run } % end examples \keyword{datasets} fields/man/RCMexample.Rd0000644000175100001440000000663114627454002014607 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{RCMexample} \alias{RCMexample} \docType{data} \title{3-hour precipitation fields from a regional climate model} \description{ These are few model output fields from the North American Regional Climate Change and Assessment Program (NARCCAP). The images are transformed surface precipitation fields simulated by the WRFP regional climate model (RCM) over North Amreica forced by observation data. The fields are 3 hour precipitation for 8 time periods in January 1, 1979. The grid is unequally spaced in longitude and latitude appropriate projection centered on the model domain.The grid points are nearly equally spaced in great circle distance due to this projection. Precipitation is in a log 10 scale where values smaller than 4.39e-5 ( the .87 quantile) have been been set to this value. Longitudes have been shifted from the original coordinates (0-360) to the range (-180-180) that is assumed by the R \code{map} function. } \usage{data(RCMexample)} \format{ The format is a list of three arrays: \itemize{ \item x: 123X101 matrix of the longitude locations \item y: 123X101 matrix of the latitude locations \item z: 123X101X8 transformed matrix of precipitation } Spatial units are degrees with longitude being -180,180 with the prime meridian at 0. Precipitation is log 10 of cm / 3 hour period. } \details{ This is primarily an example of a regular grid that is not equally spaced and is due to transforming an equally spaced grid from one map projection into longitude latitude coordinates. This model is one small part of an extension series of numerical experiments the North American Regional Climate Change and Assessment Program (NARCCAP). NARCCAP has used 4 global climate models and observational data to supply the atmospheric boundery conditions for 6 different regional climate models. In the current data the forcing is the observations derived from the NCEP reanalysis data and is for Janurary 1, 1979. The full simulation runs for 20 years from this starting date. See the NARCCAP web page for more information about these data. To facilatate a better representation of these fields the raw precipitation values have been transformed to the log scale with all values below 4.39E-5 cm/3 hours set to this lower bound. } \examples{ data(RCMexample) # second time period image.plot( RCMexample$x, RCMexample$y, RCMexample$z[,,2]) world( add=TRUE, lwd=2, col="grey") } \keyword{datasets} fields/man/exp.cov.Rd0000644000175100001440000005476114627454002014203 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{Covariance functions} \alias{Exp.cov} \alias{Exp.simple.cov} \alias{Rad.cov} \alias{Rad.simple.cov} \alias{stationary.cov} \alias{stationary.taper.cov} \alias{wendland.cov} \alias{cubic.cov} \alias{Tps.cov} \alias{Paciorek.cov} \title{ Exponential family, radial basis functions,cubic spline, compactly supported Wendland family, stationary covariances and non-stationary covariances. } \description{ Given two sets of locations these functions compute the cross covariance matrix for some covariance families. In addition these functions can take advantage of spareness, implement more efficient multiplcation of the cross covariance by a vector or matrix and also return a marginal variance to be consistent with calls by the Krig function. \code{stationary.cov} and \code{Exp.cov} have additional arguments for precomputed distance matrices and for calculating only the upper triangle and diagonal of the output covariance matrix to save time. Also, they support using the \code{rdist} function with \code{compact=TRUE} or input distance matrices in compact form, where only the upper triangle of the distance matrix is used to save time. Note: These functions have been been renamed from the previous fields functions using 'Exp' in place of 'exp' to avoid conflict with the generic exponential function (\code{exp(...)})in R. } \usage{ Exp.cov(x1, x2 = NULL, aRange = 1, p = 1, distMat = NA, C = NA, marginal = FALSE, onlyUpper = FALSE, theta = NULL, ...) Exp.simple.cov(x1, x2, aRange =1, C=NA,marginal=FALSE, theta=NULL) Rad.cov(x1, x2, p = 1, m=NA, with.log = TRUE, with.constant = TRUE, C=NA,marginal=FALSE, derivative=0) cubic.cov(x1, x2, aRange = 1, C=NA, marginal=FALSE, theta=NULL) Rad.simple.cov(x1, x2, p=1, with.log = TRUE, with.constant = TRUE, C = NA, marginal=FALSE) stationary.cov(x1, x2=NULL, Covariance = "Exponential", Distance = "rdist", Dist.args = NULL, aRange = 1, V = NULL, C = NA, marginal = FALSE, derivative = 0, distMat = NA, onlyUpper = FALSE, theta=NULL, ...) stationary.taper.cov(x1, x2, Covariance="Exponential", Taper="Wendland", Dist.args=NULL, Taper.args=NULL, aRange=1.0,V=NULL, C=NA, marginal=FALSE, spam.format=TRUE,verbose=FALSE, theta=NULL,...) Tps.cov(x1, x2 = NULL, cardinalX, m=2, C = NA, aRange=NA, marginal = FALSE ) wendland.cov(x1, x2, aRange = 1, V=NULL, k = 2, C = NA, marginal =FALSE,Dist.args = list(method = "euclidean"), spam.format = TRUE, derivative = 0, verbose=FALSE, theta=NULL) Paciorek.cov(x1, x2 = NULL, Distance = "rdist", Dist.args = NULL, aRangeObj = 1, rhoObj = NULL, C = NA, marginal = FALSE, smoothness = .5) } \arguments{ \item{x1}{ Matrix of first set of locations where each row gives the coordinates of a particular point.} \item{x2}{ Matrix of second set of locations where each row gives the coordinatesof a particular point. If this is missing x1 is used. } \item{aRange}{ Range (or scale) parameter. This should be a scalar (use the V argument for other scaling options). Any distance calculated for a covariance function is divided by aRange before the covariance function is evaluated. For \code{Tps.cov} this argument is ignored.} \item{aRangeObj}{ A fit object that defines the Range (or scale) parameter for arbitray locations using the generic \code{predict} function.} \item{theta}{ Old version of the aRange parameter. If passed will be copied to aRange.} \item{ cardinalX}{Locations added to the thin plate plate radial function to make it positive definite (See Details below). } \item{C}{ A vector or matrix with the same rows as the number of rows of x2. If specified the covariance matrix will be multiplied by this vector/matrix.} \item{Covariance}{Character string that is the name of the covariance shape function for the distance between locations. Choices in fields are \code{Exponential}, \code{Matern}} \item{derivative}{ If nonzero evaluates the partials of the covariance function at locations x1. This must be used with the "C" option and is mainly called from within a predict function. The partial derivative is taken with respect to \code{x1}. } \item{Distance}{Character string that is the name of the distance function to use. Choices in fields are \code{rdist}, \code{rdist.earth}} \item{distMat}{ If the distance matrix between \code{x1} and \code{x2} has already been computed, it can be passed via this argument so it won't need to be recomputed. } \item{Dist.args}{ A list of optional arguments to pass to the Distance function.} \item{k}{The order of the Wendland covariance function. See help on Wendland.} \item{marginal}{If TRUE returns just the diagonal elements of the covariance matrix using the \code{x1} locations. In this case this is just 1.0. The marginal argument will trivial for this function is a required argument and capability for all covariance functions used with Krig.} \item{m}{For the radial basis function p = 2m-d, with d being the dimension of the locations, is the exponent applied to the distance between locations. (m is a common way of parametrizing this exponent.) Equivalently in Tps.cov the order of the spline. (See Details section below).} \item{onlyUpper}{ For internal use only, not meant to be set by the user. Automatically set to \code{TRUE} by \code{mKrigMLEJoint} or \code{mKrigMLEGrid} if \code{lambda.profile} is set to \code{TRUE}, but set to \code{FALSE} for the final parameter fit so output is compatible with rest of \code{fields}. If \code{TRUE}, only the upper triangle and diagonal of the covariance matrix is computed to save time (although if a non-compact distance matrix is used, the onlyUpper argument is set to FALSE). If \code{FALSE}, the entire covariance matrix is computed. In general, it should only be set to \code{TRUE} for \code{mKrigMLEJoint} and \code{mKrigMLEGrid}, and the default is set to \code{FALSE} so it is compatible with all of \code{fields}. } \item{p}{ Exponent in the exponential covariance family. p=1 gives an exponential and p=2 gives a Gaussian. Default is the exponential form. For the radial basis function this is the exponent applied to the distance between locations. } \item{rhoObj}{ A fit object that defines a component of the marginal variance (rho) parameter for arbitray locations using the generic \code{predict} function. Note that in fields the complete marginal variance is \code{sigma2*rho} where \code{sigma2} can be estimated in \code{spatialProcess}. } \item{smoothness}{For the Matern family the smoothnes of the process (aka "nu" in formulas). } \item{spam.format}{If TRUE returns matrix in sparse matrix format implemented in the spam package. If FALSE just returns a full matrix. } \item{Taper}{Character string that is the name of the taper function to use. Choices in fields are listed in help(taper).} \item{Taper.args}{ A list of optional arguments to pass to the Taper function. \code{aRange} should always be the name for the range (or scale) paremeter.} \item{V}{ A matrix that describes the inverse linear transformation of the coordinates before distances are found. In R code this transformation is: \code{x1 \%*\% t(solve(V))} Default is NULL, that is the transformation is just dividing distance by the scalar value \code{aRange}. See Details below. If one has a vector of "aRange's" that are the scaling for each coordinate then just express this as \code{V = diag(aRange)} in the call to this function.} \item{verbose}{If TRUE prints out some useful information for debugging.} \item{with.constant}{ If TRUE includes complicated constant for radial basis functions. See the function \code{radbad.constant} for more details. The default is TRUE, include the constant. Without the usual constant the lambda used here will differ by a constant from spline estimators ( e.g. cubic smoothing splines) that use the constant. Also a negative value for the constant may be necessary to make the radial basis positive definite as opposed to negative definite. } \item{with.log}{If TRUE include a log term for even dimensions. This is needed to be a thin plate spline of integer order. } \item{\dots}{ Any other arguments that will be passed to the covariance function. e.g. \code{smoothness} for the Matern.} } \value{ If the argument C is NULL the cross covariance matrix is returned. In general if nrow(x1)=m and nrow(x2)=n then the returned matrix will be mXn. Moreover, if x1 is equal to x2 then this is the covariance matrix for this set of locations. If C is a vector of length n, then returned value is the multiplication of the cross covariance matrix with this vector. } \details{ For purposes of illustration, the function \code{Exp.cov.simple} is provided in fields as a simple example and implements the R code discussed below. List this function out as a way to see the standard set of arguments that fields uses to define a covariance function. It can also serve as a template for creating new covariance functions for the \code{Krig} and \code{mKrig} functions. Also see the higher level function \code{stationary.cov} to mix and match different covariance shapes and distance functions. A common scaling for stationary covariances: If \code{x1} and \code{x2} are matrices where \code{nrow(x1)=m} and \code{nrow(x2)=n} then this function will return a mXn matrix where the (i,j) element is the covariance between the locations \code{x1[i,]} and \code{x2[j,]}. The exponential covariance function is computed as exp( -(D.ij)) where D.ij is a distance between \code{x1[i,]} and \code{x2[j,]} but having first been scaled by aRange. Specifically if \code{aRange} is a matrix to represent a linear transformation of the coordinates, then let \code{u= x1\%*\% t(solve( aRange))} and \code{v= x2\%*\% t(solve(aRange))}. Form the mXn distance matrix with elements: \code{D[i,j] = sqrt( sum( ( u[i,] - v[j,])**2 ) )}. and the cross covariance matrix is found by \code{exp(-D)}. The tapered form (ignoring scaling parameters) is a matrix with i,j entry \code{exp(-D[i,j])*T(D[i,j])}. With T being a positive definite tapering function that is also assumed to be zero beyond 1. Note that if aRange is a scalar then this defines an isotropic covariance function and the functional form is essentially \code{exp(-D/aRange)}. Implementation: The function \code{r.dist} is a useful FIELDS function that finds the cross Euclidean distance matrix (D defined above) for two sets of locations. Thus in compact R code we have exp(-rdist(u, v)) Note that this function must also support two other kinds of calls: If marginal is TRUE then just the diagonal elements are returned (in R code \code{diag( exp(-rdist(u,u)) )}). If C is passed then the returned value is \code{ exp(-rdist(u, v)) \%*\% C}. Some details on particular covariance functions: \describe{ \item{Stationary covariance \code{stationary.cov}:}{Here the computation is to apply the function Covariance to the distances found by the Distance function. For example \code{Exp.cov(x1,x2, aRange=MyTheta)} and \code{stationary.cov( x1,x2, aRange=MyTheta, Distance= "rdist", Covariance="Exponential")} are the same. This also the same as \code{stationary.cov( x1,x2, aRange=MyTheta, Distance= "rdist", Covariance="Matern",smoothness=.5)}. } \item{Radial basis functions (\code{Rad.cov}:}{The functional form is Constant* rdist(u, v)**p for odd dimensions and Constant* rdist(u,v)**p * log( rdist(u,v) ) For an m th order thin plate spline in d dimensions p= 2*m-d and must be positive. The constant, depending on m and d, is coded in the fields function \code{radbas.constant}. This form is only a generalized covariance function -- it is only positive definite when restricted to linear subspace. See \code{Rad.simple.cov} for a coding of the radial basis functions in R code.} \item{Tps.cov}{This covariance can be used in a standard "Kriging" computation to give a thin-plate spline (TPS). This is useful because one can use the high level function \code{spatialProcess} and supporting functions for the returned object, including conditional simulation. The standard computation for a TPS uses the radial basis functions as given in \code{Rad.cov} and uses a QR decomposition based a polynoimial matrix to reduce the dimension of the radial basis function and yield a positive definite matrix. This reduced matrix is then used in the regular compuations to find the spatial estimate. The function \code{Krig} and specifically \code{Tps} implements this algoritm. The interested reader should look at \code{Krig.engine.default} and specifically at the \code{TMatrix} polynomial matrix and resulting reduced positive definite matrix \code{tempM}. The difficulty with this approach is that is not amenable to taking advantage of sparsity in the covariance matrix. An alternative that is suggested by Grace Wahba in \emph{Spline models for observational data} is to augment the radial basis functions with a low rank set of functions based on a low order polynomial evaluated at a set of points. The set of locatios for this modifications are called \emph{cardinal point}s due the to property mentioned below. This is implemented in \code{Tps.cov} leading to a full rank (non-stationary!) covariance function. If the fixed part of the spatial model also includes this same order polynomial then the final result gives a TPS and is invariant to the choice of cardinal points. To streamline using this covariance when it isspecified in the \code{spatialProcess} function the cardinal points will choosen automaitcally based on the observation locations and the spline order, \code{m} using a space filling design. A simple example with fixed smoothing parameter, \code{lambda <- .1} may help \preformatted{ data( "ozone2") s<- ozone2$lon.lat y<- ozone2$y[16,] fitTps1<- spatialProcess( s,y, cov.function= "Tps.cov", lambda=.1) } and compare the results to the standard algorithm. \preformatted{ fitTps2<- Tps( s,y, scale.type ="unscaled", lambda=.1) stats( abs(fitTps2$fitted.values - fitTps1$fitted.values)) } Here the default choice for the order is 2 and in two dimensions implies a linear polynomial. The arguments filled in by default are shown below \preformatted{ fitTps1$args $cardinalX [,1] [,2] [1,] -85.289 40.981 [2,] -90.160 38.330 [3,] -91.229 43.812 attr(,"scaled:scale") [1] 1 1 attr(,"scaled:center") [1] 0 0 $aRange [1] NA fitTps1$mKrig.args [[1]] NULL $m [1] 2 $collapseFixedEffect [1] TRUE $find.trA [1] TRUE } \code{ cardinalX} are the cardinal points chosen using a space filling criterion. These are attached to the covariance arguments list so they are used in the subsequent computations for this fit (such as predict, predictSE, sim.spatialProcess). In general, if \code{d} is the dimension of the locations and \code{m} the order of the spline one must have \code{2*m-d >0}. The polynomial will have \code{ choose( m+d-1,d)} terms and so this many cardinal points need to be specified. As mentioned above these are chosen in a reasonable way if \code{spatialProcess} is used. } \item{Stationary tapered covariance \code{stationary.taper.cov} :}{The resulting cross covariance is the direct or Shure product of the tapering function and the covariance. In R code given location matrices, \code{x1} and \code{x2} and using Euclidean distance. \code{Covariance(rdist( x1, x2)/aRange)*Taper( rdist( x1, x2)/Taper.args$aRange)} By convention, the \code{Taper} function is assumed to be identically zero outside the interval [0,1]. Some efficiency is introduced within the function to search for pairs of locations that are nonzero with respect to the Taper. This is done by the SPAM function \code{nearest.dist}. This search may find more nonzero pairs than dimensioned internally and SPAM will try to increase the space. One can also reset the SPAM options to avoid these warnings. For spam.format TRUE the multiplication with the \code{C} argument is done with the spam sparse multiplication routines through the "overloading" of the \code{\%*\%} operator. } \item{Nonstationary covariance function, Paciorek.cov}{ This implements the nonstationary model developed by Chris Paciorek and Mark Schervish that allows for a varying range parameter over space and also a varying marginal variance. This is still experimental and spatialProcess has not been generalized to fit the parameter surfaces. It can, however, be used to evaluate the model at fixed parameter surfaces. See the last example below. This covariance works by specifying a object aRangeObj such that the generic call \code{predict(aRangeObj, loc)} will evaluate the aRange function at the locations \code{loc}. This object can be as simple a fit to local estimated aRange parameters using a fields function such as Tps or spatialProcess. More specific applications one can create a special predict function. For example suppose log aRange follows a linear model in the spatial coordinates and these coefficients are the vector \code{Afit}. Define a class and a predict function. \preformatted{ aRangeObj<- list(coef=Afit) class(aRangeObj)<- "myclass" predict.myclass<- function( aRangeObj, x){ aRange<- exp(cbind( 1,x) \%*\% aRangeObj$coef) return( aRange) } } Now use \code{spatialProcess} with this object and make sure \code{predict.myclass} is also loaded. } A similar strategy will also work for a varying marginal variance by creating \code{sigmaObj} and if needed a companion predict method. } About the FORTRAN: The actual function \code{Exp.cov} and \code{Rad.cov} call FORTRAN to make the evaluation more efficient this is especially important when the C argument is supplied. So unfortunately the actual production code in Exp.cov is not as crisp as the R code sketched above. See \code{Rad.simple.cov} for a R coding of the radial basis functions. } \seealso{ Krig, rdist, rdist.earth, gauss.cov, Exp.image.cov, Exponential, Matern, Wendland.cov, mKrig} \examples{ # exponential covariance matrix ( marginal variance =1) for the ozone #locations out<- Exp.cov( ChicagoO3$x, aRange=100) # out is a 20X20 matrix out2<- Exp.cov( ChicagoO3$x[6:20,],ChicagoO3$x[1:2,], aRange=100) # out2 is 15X2 matrix # Kriging fit where the nugget variance is found by GCV # Matern covariance shape with range of 100. # fit<- Krig( ChicagoO3$x, ChicagoO3$y, Covariance="Matern", aRange=100,smoothness=2) data( ozone2) x<- ozone2$lon.lat y<- ozone2$y[16,] # Omit the NAs good<- !is.na( y) x<- x[good,] y<- y[good] # example of calling the taper version directly # Note that default covariance is exponential and default taper is # Wendland (k=2). stationary.taper.cov( x[1:3,],x[1:10,] , aRange=1.5, Taper.args= list(k=2,aRange=2.0, dimension=2) )-> temp # temp is now a tapered 3X10 cross covariance matrix in sparse format. is.spam( temp) # evaluates to TRUE # should be identical to # the direct matrix product temp2<- Exp.cov( x[1:3,],x[1:10,], aRange=1.5) * Wendland(rdist(x[1:3,],x[1:10,]), aRange= 2.0, k=2, dimension=2) test.for.zero( as.matrix(temp), temp2) # Testing that the "V" option works as advertized ... x1<- x[1:20,] x2<- x[1:10,] V<- matrix( c(2,1,0,4), 2,2) Vi<- solve( V) u1<- t(Vi\%*\% t(x1)) u2<- t(Vi\%*\% t(x2)) look<- exp(-1*rdist(u1,u2)) look2<- stationary.cov( x1,x2, V= V) test.for.zero( look, look2) # Here is an example of how the cross covariance multiply works # and lots of options on the arguments Ctest<- rnorm(10) temp<- stationary.cov( x,x[1:10,], C= Ctest, Covariance= "Wendland", k=2, dimension=2, aRange=1.5 ) # do multiply explicitly temp2<- stationary.cov( x,x[1:10,], Covariance= "Wendland", k=2, dimension=2, aRange=1.5 )\%*\% Ctest test.for.zero( temp, temp2) # use the tapered stationary version # cov.args is part of the argument list passed to stationary.taper.cov # within Krig. # This example needs the spam package. # \dontrun{ Krig(x,y, cov.function = "stationary.taper.cov", aRange=1.5, cov.args= list(Taper.args= list(k=2, dimension=2,aRange=2.0) ) ) -> out2 # NOTE: Wendland is the default taper here. } # BTW this is very similar to \dontrun{ Krig(x,y, aRange= 1.5)-> out } ################################################## #### nonstationary covariance Paciorek.cov ################################################## \dontrun{ M<- 20 gridList<- list(x=seq( 0,1,length.out=M), y=seq( 0,1,length.out=M)) sGrid<- make.surface.grid(gridList ) # An aRange surface aRangeObj<- list(coef= c( 1,4,0)) class(aRangeObj)<- "myclass" predict.myclass<- function( aRangeObj, x){ aRange<- exp(cbind( 1,x) \%*\% aRangeObj$coef) return( aRange) } covMatrix<- Paciorek.cov( sGrid, sGrid, aRangeObj=aRangeObj) # examine correlation surface between selected locations and the full grid. set.panel( 2,2) { imagePlot( as.surface(sGrid, covMatrix[,10])) imagePlot( as.surface(sGrid, covMatrix[,205])) imagePlot( as.surface(sGrid, covMatrix[,305])) imagePlot( as.surface(sGrid, covMatrix[,390])) } # simulation of the field set.seed(222) n<- nrow( sGrid) f<- t(chol(covMatrix)) \%*\% rnorm(M^2) set.panel() imagePlot( as.surface(sGrid,f)) y<- f + .05*rnorm(n) fitP<- spatialProcess( sGrid, y, cov.function="Paciorek.cov", cov.args= list(aRangeObj = aRangeObj ) ) # check estimated tau and sigma fitP$summary # fitted surface surface( fitP) } } \keyword{spatial} % docclass is function fields/man/vgram.matrix.Rd0000644000175100001440000001022514627454002015223 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{vgram.matrix} \alias{vgram.matrix} \alias{plot.vgram.matrix} \title{ Computes a variogram from an image } \description{ Computes a variogram for an image taking into account different directions and returning summary information about the differences in each of these directions. } \usage{ vgram.matrix(dat, R = NULL, dx = NULL, dy = NULL) \method{plot}{vgram.matrix}(x,...) } \arguments{ \item{dat}{ Either a matrix spacing of rows and columns are assumed to have the same distance or a list in image format with components x, y and z. } \item{R}{ Maximum radius for finding variogram differences assuming that the grid points are spaced one unit a part. Default is go out to a radius of \code{5*max( c(dx, dy) )}. } \item{dx}{ The spacing of grid points on the X axis. This is used to calculate the correct distance between grid points. If dx is not equal to dy then the collapse argument must be FALSE. If an image object is passed and dx and dy are not specified they will be calculated from the x and y components of the image list. } \item{dy}{ The spacing of grid points on the Y axis. See additional notes for dx.} \item{x}{Returned object from vgram.matrix} \item{\dots}{ Arguments for image.plot} } \value{ An object of class vgram.matrix with the following components: d, a vector of distances for the differences, and vgram, the variogram values. This is the traditional variogram ignoring direction. d.full, a vector of distances for all possible shifts up distance R, ind, a two column matrix giving the x and y increment used to compute the shifts, and vgram.full, the variogram at each of these separations. Also computed is vgram.robust, Cressie's version of a robust variogram statistic. Also returned is the component N the number of differences found for each separation csae. } \details{ For the "full" case the statistics can summarize departures from isotropy by separating the variogram differences according to orientation. For small R this runs efficiently because the differences are found by sub-setting the image matrix. For example, suppose that a row of the ind matrix is (2,3). The variogram value associated with this row is the mean of the differences (1/2)*(X(i,j)- X( i+2,j+3))**2 for all i and j. (Here X(.,.) are the values for the spatial field.) In this example d= sqrt(13) and there will be another entry with the same distance but corresponding to the direction (3,2). plot.vgram.matrix attempts to organize all the different directions into a coherent image plot. } \seealso{ \code{\link{vgram}} } \examples{ # variogram for Lennon image. data(lennon) out<-vgram.matrix( lennon) plot( out$d, out$vgram, xlab="separation distance", ylab="variogram") # image plot of vgram values by direction. # look at different directions out<-vgram.matrix( lennon, R=8) plot( out$d, out$vgram) # add in different orientations points( out$d.full, out$vgram.full, col="red") #image plot of variogram values for different directions. set.panel(1,1) plot.vgram.matrix( out) # John Lennon appears remarkably isotropic! } \keyword{spatial} % docclass is function % Converted by Sd2Rd version 1.21. fields/man/sim.rf.Rd0000644000175100001440000002062514627454002014007 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{circulantEmbedding} \alias{sim.rf} \alias{circulantEmbedding} \alias{circulantEmbeddingSetup} \title{ Efficiently Simulates a Stationary 1 and 2D Gaussian random fields } \description{ Simulates a stationary Gaussian random field on a regular grid with unit marginal variance. Makes use of the efficient algorithm based on the FFT know as circulant embedding. } \usage{ sim.rf(obj) circulantEmbedding(obj) circulantEmbeddingSetup(grid, M = NULL, mKrigObject = NULL, cov.function = "stationary.cov", cov.args = NULL, delta = NULL, ...) } \arguments{ \item{obj}{A list (aka covariance object) that includes information about the covariance function and the grid for evaluation. Usually this is created by a setup call to Exp.image.cov, stationary.image.cov, matern.image.cov or other related covariance functions for \code{sim.rf} (See details below.) or to \code{circulantEmbeddingSetup} for \code{circulantEmbedding} } \item{grid}{A list describing the regular grid. \code{length(grid)} is the dimension of the field (1D 2D etc) and each component are the regular locations in that dimension. } \item{M}{A vector of dimensions to embed the field. Simulation will be exact if each \code{M[i]} is larger than \code{2*length(grid)}. The default is to choose a power of 2 larger than this minima bound.} \item{cov.function}{A text string with the name of the stationary covariance function to use. Default is \code{stationary.cov} and general function that takes advantage of some efficiency in finding distances.} \item{cov.args}{A list of arguments to include with the covariance function, Eg. aRange and smoothness for the Matern.} \item{delta}{If NULL the spatial domain is artifically doubled in size in all dimensions to account for the periodic wrapping of the fft. If passed this is the amount to extend the domain and can be less than double if a compact covariance function is used. } \item{mKrigObject}{Object from fitting surface using the mKrig or spatialProcess functions.} \item{\dots}{For convenience any other arguments to pass to the covariance function. } } \value{ \strong{sim.rf}: A matrix with the random field values. \strong{circulantEmbedding}: An array according to the grid values specified in the setup. \strong{circulantEmbeddingetup}: A list with components \code{ "m" "grid" "dx" "M" "wght" "call"} With the information needed to simulate the field. } \details{ The functions \code{circulantEmbedding} and \code{circulantEmbeddingSetup} are more recent \code{fields} functions, more easy to read, and recommended over \code{sim.rf}. \code{sim.rf} is limited to 2D fields while \code{circulantEmbedding} can handle any number of dimensions and has some shortcuts to be efficient for the 2D case. The simulated field has the marginal variance that is determined by the covariance function for zero distance. Within fields the exponential and matern set this equal to one ( e.g. Matern(0) ==1) so that one simulates a random field with a marginal variance of one. For stationary.cov the marginal variance is whatever \code{Covariance(0)} evaluates to and we recommend that alternative covariance functions also be normalized so that this is one. Of course if one requires a Gaussian field with different marginal variance one can simply scale the result of this function. See the third example below. Both \code{sim.rf} and \code{circulantEmbedding} take an object that includes some preliminary calculations and so is more efficient for simulating more than one field from the same covariance. The algorithm using an FFT known as circulant embedding, may not always work if the correlation range is large. Specifically the weight function obtained from the FFT of the covariance field will have some negative values. A simple fix is to increase the size of the domain so that the correlation scale becomes smaller relative to the extent of the domain. Increasing the size can be computationally expensive, however, and so this method has some limitations. But when it works it is an exact simulation of the random field. For a stationary model the covariance object ( or list) for \code{circulantEmbedding} should have minmally, the components: That is \code{names( obj)} should give \code{ "m" "grid" "M" "wght" } where \code{m} is the number of grid points in each dimension, \code{grid} is a list with components giving the grid points in each coordinate. \code{M} is the size of the larger grid that is used for "embedding" and simulation. Usually \code{M = 2*m} and results in an exact simulation of the stationary Gaussian field. The default if \code{M} is not passed is to find the smallest power of 2 greater than 2*m. \code{wght} is an array from the FFT of the covariance function with dimensions \code{M}. Keep in mind that for the final results only the array that is within the indices \code{1: m[i]} for each dimension \code{i} is retained. This can give a much larger intermediate array, however, in the computation. E.g. if \code{m[1] = 100} and \code{m[2]=200} by default then \code{M[1] = 256} and \code{M[2] = 512}. A 256 X 512 array is simluated with to get the 100 by 200 result. The easiest way to create the object for simulation is to use \code{circulantEmbeddingSetup}. For the older function \code{sim.rf} one uses the image based covariance functions with \code{setup=TRUE} to create the list for simulation. See the example below for this usage. The classic reference for this algorithm is Wood, A.T.A. and Chan, G. (1994). Simulation of Stationary Gaussian Processes in [0,1]^d . Journal of Computational and Graphical Statistics, 3, 409-432. Micheal Stein and Tilman Gneiting have also made some additional contributions to the algortihms and theory. } \seealso{ \link{stationary.cov}, \link{stationary.image.cov} } \examples{ #Simulate a Gaussian random field with an exponential covariance function, #range parameter = 2.0 and the domain is [0,5]X [0,5] evaluating the #field at a 100X100 grid. grid<- list( x= seq( 0,5,,100), y= seq(0,5,,100)) obj<- circulantEmbeddingSetup( grid, Covariance="Exponential", aRange=.5) set.seed( 223) look<- circulantEmbedding( obj) # Now simulate another ... look2<- circulantEmbedding( obj) # take a look at first two set.panel(2,1) image.plot( grid[[1]], grid[[2]], look) title("simulated gaussian fields") image.plot( grid[[1]], grid[[2]], look2) title("another realization ...") # Suppose one requires an exponential, range = 2 # but marginal variance = 10 ( sigma in fields notation) look3<- sqrt( 10)*circulantEmbedding( obj) \dontrun{ # an interesting 3D field grid<- list( 1:40, 1:40, 1:16 ) obj<- circulantEmbeddingSetup( grid, cov.args=list( Covariance="Matern", aRange=2, smoothness=1.0) ) # NOTE: choice of aRange is close to giving a negative weight array set.seed( 122) look<- circulantEmbedding( obj ) # look at slices in the 3rd dimension set.panel( 4,4) zr<- range( look) par( mar=c(1,1,0,0)) for( k in 1:16){ image( grid[[1]], grid[[2]], look[,,k], zlim= zr, col=tim.colors(256), axes=FALSE, xlab="", ylab="") } } # same as first example using the older sim.rf grid<- list( x= seq( 0,10,length.out=100) , y= seq( 0,10,length.out=100) ) obj<-Exp.image.cov( grid=grid, aRange=.75, setup=TRUE) set.seed( 223) look<- sim.rf( obj) # Now simulate another ... look2<- sim.rf( obj) } \keyword{spatial} % docclass is function % Converted by Sd2Rd version 1.21. fields/man/fields-internal.Rd0000644000175100001440000001433014627454002015665 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{fields internal } \alias{[.spatialDesign} \alias{COR} \alias{D4transform.image} \alias{Krig.df.to.lambda} \alias{Krig.fdf} \alias{Krig.fgcv} \alias{Krig.fgcv.model} \alias{Krig.fgcv.one} \alias{Krig.flplike} \alias{Krig.fs2hat} \alias{Krig.ftrace} \alias{Krig.parameters} \alias{Krig.updateY} \alias{Krig.which.lambda} \alias{Krig.ynew} \alias{bisection.search} \alias{cat.matrix} \alias{cat.to.list} \alias{ceiling2} \alias{describe} \alias{dyadic.2check} \alias{dyadic.check} \alias{double.exp} \alias{Exp.earth.cov} \alias{fast.1way} \alias{find.upcross} \alias{gauss.cov} \alias{golden.section.search} \alias{imageplot.info} \alias{imagePlotInfo} \alias{imageplot.setup} \alias{krig.image.parameters} \alias{multWendlandGrid} \alias{minimax.crit} \alias{plot.krig.image} \alias{plot.sim.krig.image} \alias{plot.spatialDesign} \alias{predict.interp.surface} \alias{predict.krig.image} \alias{predict.surface} \alias{predict.surface.default} \alias{print.krig.image} \alias{print.spatialDesign} \alias{print.sreg} \alias{print.summary.Krig} \alias{print.summary.krig.image} \alias{print.summarySpatialDesign} \alias{print.summary.sreg} \alias{printGCVWarnings} \alias{qr.q2ty} \alias{qr.yq2} \alias{plot.qsreg} \alias{predict.qsreg} \alias{print.qsreg} \alias{qsreg.fit} \alias{qsreg.psi} \alias{qsreg.sigma} \alias{qsreg.psi.OLD} \alias{qsreg.sigma.OLD} \alias{qsreg.trace} \alias{quickPrint} \alias{summary.qsreg} \alias{radbas.constant} \alias{sim.krig.image} \alias{sreg.df.to.lambda} \alias{sreg.fdf} \alias{sreg.fgcv} \alias{sreg.fgcv.model} \alias{sreg.fgcv.one} \alias{sreg.fit} \alias{sreg.fs2hat} \alias{sreg.trace} \alias{stats.sim.krig.image} \alias{summaryGCV.Krig} \alias{summaryGCV.sreg} \alias{summary.krig.image} \alias{summary.spatialDesign} \alias{summary.sreg} \alias{surface} \alias{surface.default} \alias{surface.krig.image} \alias{unscale} \alias{world.dat} \alias{compactTOMatOLD} \title{ Fields internal and secondary functions } \description{ Listed below are supporting functions for the major methods in fields. } \usage{ \method{[}{spatialDesign}(x, ...) Krig.df.to.lambda(df, D, guess = 1, tol = 1e-05) Krig.fdf (llam, info) Krig.fgcv (lam, obj) Krig.fgcv.model (lam, obj) Krig.fgcv.one (lam, obj) Krig.flplike (lambda, obj) Krig.fs2hat (lam, obj) Krig.ftrace (lam, D) Krig.parameters (obj, mle.calc=obj$mle.calc) Krig.updateY (out, Y, verbose = FALSE, yM=NA) Krig.which.lambda(out) Krig.ynew (out, y=NULL, yM=NULL ) bisection.search (x1, x2, f, tol = 1e-07, niter = 25, f.extra = NA, upcross.level = 0) cat.matrix (mat, digits = 8) cat.to.list (x, a) ceiling2 (m) describe (x) double.exp(x) dyadic.2check( m,n,cut.p=2) dyadic.check( n,cut.p=2) Exp.earth.cov (x1, x2, aRange = 1, theta=NULL) fast.1way (lev, y, w = rep(1, length(y))) find.upcross (fun, fun.info, upcross.level = 0, guess = 1, tol = 1e-05) gauss.cov (...) golden.section.search (ax, bx, cx, f, niter = 25, f.extra = NA, tol = 1e-05, gridx=NA) %fastTps.MLE(...) imagePlotInfo (...,breaks, nlevel) imageplot.info(...) imageplot.setup(x, add=FALSE, legend.shrink = 0.9, legend.width = 1, horizontal = FALSE, legend.mar=NULL, bigplot = NULL, smallplot = NULL,...) minimax.crit (obj, des = TRUE, R) \method{plot}{spatialDesign}(x,...) \method{predict}{interp.surface}(object, loc,...) \method{predict}{surface}(object, ...) \method{predict}{surface.default}(object, ...) \method{print}{spatialDesign} (x,...) \method{print}{sreg}(x, ...) \method{print}{summary.Krig} (x, ...) \method{print}{summarySpatialDesign} (x, digits = 4,...) \method{print}{summary.sreg} (x, ...) printGCVWarnings( Table, method = "all") multWendlandGrid( grid.list,center, delta, coef, xy = c(1, 2)) qr.q2ty (qr, y) qr.yq2 (qr, y) \method{plot}{qsreg}(x, pch = "*", main = NA,...) \method{predict}{qsreg}(object, x, derivative = 0, model = object$ind.cv.ps,...) \method{print}{qsreg} (x, ...) qsreg.fit (x, y, lam, maxit = 50, maxit.cv = 10, tol = 1e-04, offset = 0, sc = sqrt(var(y)) * 1e-07, alpha = 0.5, wt = rep(1, length(x)), cost = 1) qsreg.psi( r,alpha=.5,C=1) qsreg.sigma( r,alpha=.5,C=1) qsreg.trace(x, y, lam, maxit = 50, maxit.cv = 10, tol = 1e-04, offset = 0, sc = sqrt(var(y)) * 1e-07, alpha = 0.5, wt = rep(1, length(x)), cost = 1) qsreg.sigma.OLD(r, alpha = 0.5, C = 1) qsreg.psi.OLD(r, alpha = 0.5, C = 1) quickPrint(obj, max.values = 10) radbas.constant (m, d) sreg.df.to.lambda (df, x, wt, guess = 1, tol = 1e-05) sreg.fdf (h, info) sreg.fgcv (lam, obj) sreg.fgcv.model (lam, obj) sreg.fgcv.one (lam, obj) sreg.fit (lam, obj, verbose=FALSE) sreg.fs2hat (lam, obj) sreg.trace (h, info) summaryGCV.Krig(object, lambda, cost = 1, verbose = FALSE, offset = 0, y = NULL, ...) summaryGCV.sreg (object, lambda, cost = 1, nstep.cv = 20, offset = 0, verbose = TRUE,...) \method{summary}{qsreg} (object, ...) \method{summary}{spatialDesign} (object, digits = 4, ...) \method{summary}{sreg} (object, digits = 4, ...) surface(object , ...) \method{surface}{default}(object, col = viridis(256), ...) unscale (x, x.center, x.scale) } \keyword{internal} % docclass is function % Converted by Sd2Rd version 1.21. fields/man/CO2.Rd0000644000175100001440000000704414627454002013174 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{CO2} \alias{CO2} \alias{CO2.true} \docType{data} \title{Simulated global CO2 observations} \description{ This is an example of moderately large spatial data set and consists of simulated CO2 concentrations that are irregularly sampled from a lon/lat grid. Also included is the complete CO2 field (CO2.true) used to generate the synthetic observations.} \usage{data(CO2) } \format{ The format of \code{CO2} is a list with two components: \itemize{ \item lon.lat: 26633x2 matrix of the longitude/latitude locations. These are a subset of a larger lon/lat grid (see example below). \item y: 26633 CO2 concentrations in parts per million. } The format of \code{CO2.true} is a list in "image" format with components: \itemize{ \item x longitude grid values. \item y latitude grid values. \item z an image matrix with CO2 concentration in parts per million \item mask a logical image that indicates with grid locations were selected for the synthetic data set \code{CO2}. } } \details{ This data was generously provided by Dorit Hammerling and Randy Kawa as a test example for the spatial analysis of remotely sensed (i.e. satellite) and irregular observations. The synthetic data is based on a true CO2 field simulated from a geophysical, numerical model. } \examples{ \dontrun{ data(CO2) # # A quick look at the observations with world map quilt.plot( CO2$lon.lat, CO2$y) world( add=TRUE) # Note high concentrations in Borneo (biomass burning), Amazonia and # ... Michigan (???). # spatial smoothing using the wendland compactly supported covariance # see help( fastTps) for details # First smooth using locations and Euclidean distances # note taper is in units of degrees out<-fastTps( CO2$lon.lat, CO2$y, aRange=4, lambda=2.0) #summary of fit note about 7300 degrees of freedom # associated with fitted surface print( out) # image plot on a grid (this takes a while) surface( out, type="I", nx=300, ny=150) # smooth with respect to great circle distance out2<-fastTps( CO2$lon.lat, CO2$y, lon.lat=TRUE,lambda=1.5, aRange=4*68) print(out2) #surface( out2, type="I", nx=300, ny=150) # these data are actually subsampled from a grid. # create the image object that holds the data # temp<- matrix( NA, ncol=ncol(CO2.true$z), nrow=nrow(CO2.true$z)) temp[ CO2.true$mask] <- CO2$y # look at gridded object. image.plot(CO2.true$x,CO2.true$y, temp) # to predict _exactly_ on this grid for the second fit; # (this takes a while) look<- predictSurface( out2, list( x=CO2.true$x, y=CO2.true$y) ) image.plot(look) } } \keyword{datasets} fields/man/RMprecip.Rd0000644000175100001440000001225314627454002014330 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{RMprecip} \alias{RMprecip} \alias{RMelevation} \alias{PRISMelevation} \title{ Monthly total precipitation (mm) for August 1997 in the Rocky Mountain Region and some gridded 4km elevation data sets (m). } \description{ \code{RMprecip} is a useful spatial data set of moderate size consisting of 806 locations. \code{PRISMelevation} and \code{RMelevation} are gridded elevations for the continental US and Rocky Mountain region at 4km resolution. Note that the gridded elevations from the PRISM data product are different than the exact station elevations. (See example below.) } \format{ The data set \code{RMprecip} is a list containing the following components: \describe{ \item{x}{ Longitude-latitude position of monitoring stations. Rows names are station id codes consistent with the US Cooperative observer network. The ranges for these coordinates are [-111, -99] for longitude and [35,45] for latitude. } \item{elev}{ Station elevation in meters. } \item{y}{ Monthly total precipitation in millimeters. for August, 1997 } } The data sets \code{PRISMelevation} and \code{RMelevation} are lists in the usual R grid format for images and contouring They have the following components: \describe{ \item{x}{ Longitude grid at approximately 4km resolution} \item{y}{ Latitude grid at approximately 4km resolution} \item{z}{ Average elevation for grid cell in meters } } These elevations and the companion grid formed the basis for the 103-Year High-Resolution Precipitation Climate Data Set for the Conterminous United States ( see \url{https://prism.oregonstate.edu/documents/PRISM_downloads_FTP.pdf} and also archived at the National Climate Data Center. This work is authored by Chris Daly \url{https://prism.oregonstate.edu} and his PRISM group but had some contribution from the Geophysical Statistics Project at NCAR and is an interpolation of the observational data to a 4km grid that takes into account topography such as elevation and aspect. } \details{ Contact Doug Nychka for the binary file \code{RData.USmonthlyMet.bin} and information on its source. \preformatted{ # explicit source code to create the RMprecip data dir <- "" # include path to data file load(paste(dir, "RData.USmonthlyMet.bin", sep="/") #year.id<- 1963- 1895 year.id<- 103 #pptAUG63<- USppt[ year.id,8,] loc<- cbind(USpinfo$lon, USpinfo$lat) xr<- c(-111, -99) yr<- c( 35, 45) station.subset<- (loc[,1]>= xr[1]) & (loc[,1] <= xr[2]) & (loc[,2]>= yr[1]) & (loc[,2]<= yr[2]) ydata<- USppt[ year.id,8,station.subset] ydata <- ydata*10 # cm -> mm conversion xdata<- loc[station.subset,] dimnames(xdata)<- list( USpinfo$station.id[station.subset], c( "lon", "lat")) xdata<- data.frame( xdata) good<- !is.na(ydata) ydata<- ydata[good] xdata<- xdata[good,] test.for.zero.flag<- 1 test.for.zero( unlist(RMprecip$x), unlist(xdata), tag="locations") test.for.zero( ydata, RMprecip$y, "values") } } \examples{ # this data set was created the # historical data taken from # Observed monthly precipitation, min and max temperatures for the coterminous US # 1895-1997 # NCAR_pinfill # see the Geophysical Statistics Project datasets page for the supporting functions # and details. # plot quilt.plot(RMprecip$x, RMprecip$y) US( add=TRUE, col=2, lty=2) # comparison of station elevations with PRISM gridded values data(RMelevation) interp.surface( RMelevation, RMprecip$x)-> test.elev plot( RMprecip$elev, test.elev, xlab="Station elevation", ylab="Interpolation from PRISM grid") abline( 0,1,col="blue") # some differences with high elevations probably due to complex # topography! # # view of Rockies looking from theSoutheast save.par<- par(no.readonly=TRUE) par( mar=c(0,0,0,0)) # fancy use of persp with shading and lighting. persp( RMelevation, theta=75, phi= 15, box=FALSE, axes=FALSE, xlab="", ylab="", border=NA, shade=.95, lphi= 10, ltheta=80, col= "wheat4", scale=FALSE, expand=.00025) # reset graphics parameters and a more conventional image plot. par( save.par) image.plot(RMelevation, col=topo.colors(256)) US( add=TRUE, col="grey", lwd=2) title("PRISM elevations (m)") } \keyword{datasets} % docclass is data % Converted by Sd2Rd version 1.21. fields/man/image.smooth.Rd0000644000175100001440000001500214627454002015174 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{image.smooth} \alias{image.smooth} \alias{setup.image.smooth} \title{ Kernel smoother for irregular 2-d data } \description{ Takes an image matrix and applies a kernel smoother to it. Missing values are handled using the Nadaraya/Watson normalization of the kernel. } \usage{ \method{image}{smooth}(x, wght = NULL, dx = 1, dy = 1, kernel.function = double.exp, aRange = 1, grid = NULL, tol = 1e-08, xwidth = NULL, ywidth = NULL, weights = NULL, theta=NULL, ...) setup.image.smooth(nrow = 64, ncol = 64, dx = 1, dy = 1, kernel.function = double.exp, aRange = 1, xwidth = nrow * dx, ywidth = ncol * dx, lambda=NULL,theta=NULL, ...)} \arguments{ \item{x}{ A matrix image. Missing values can be indicated by NAs. } \item{wght}{ FFT of smoothing kernel. If this is NULL the default is to compute this object. } \item{grid}{ A list with x and y components. Each are equally spaced and define the rectangular. ( see grid.list)} \item{dx}{ Grid spacing in x direction } \item{dy}{ Grid spacing in x direction } \item{kernel.function}{ An R function that takes as its argument the \emph{squared} distance between two points divided by the bandwidth. The default is exp( -abs(x)) yielding a normal kernel} \item{aRange}{the bandwidth or scale parameter.} \item{theta}{Same as aRange.} \item{xwidth}{ Amount of zero padding in horizontal dimension in units of the grid spacing. If NULL the default value is equal to the width of the image the most conservative value but possibly inefficient for computation. Set this equal to zero to get periodic wrapping of the smoother. This is useful to smooth a Mercator map projection. } \item{ywidth}{ Same as xwidth but for the vertical dimension. } \item{weights}{ Weights to apply when smoothing.} \item{tol}{ Tolerance for the weights of the N-W kernel. This avoids kernel estimates that are "far" away from data. Grid points with weights less than tol are set to NA.} \item{nrow}{X dimension of image in setting up smoother weights} \item{ncol}{Y dimension of image} \item{lambda}{Smoothing parameter if smoother is interpreted in a spline-like way.} \item{\dots}{ Other arguments to be passed to the kernel function} } \value{ The smoothed image in R image format. ( A list with components x, y and z.) \code{setup.image.smooth} returns a list with components W a matrix being the FFT of the kernel, dx, dy, xwidth and ywidth.} \details{ The function works by taking convolutions using an FFT. The missing pixels are taken into account and the kernel smoothing is correctly normalized for the edge effects following the classical Nadaraya-Watson estimator. For this reason the kernel doe snot have to be a desity as it is automatically normalized when the kernel weight function is found for the data. If the kernel has limited support then the width arguments can be set to reduce the amount of computation. (See example below.) For multiple smoothing compute the fft of the kernel just once using \code{setup.image.smooth} and pass this as the wght argument to image.smooth. this will save an FFT in computations. } \seealso{ as.image, sim.rf, image.plot} \examples{ # first convert precip data to the 128X128 discretized image format ( with # missing values to indicate where data is not observed) # out<- as.image( RMprecip$y, x= RMprecip$x, nx=128, ny=128) # out$z is the image matrix dx<- out$x[2]- out$x[1] dy<- out$y[2] - out$y[1] # # grid scale in degrees and choose kernel bandwidth to be .25 degrees. look<- image.smooth( out, aRange= .25) # pass in a tophat kernel topHat<- function( dd, h ){ ifelse( dd <= h^2, 1, 0)} ## dd is the distance squared look2<- image.smooth( out, kernel.function=topHat, h=.8) image.plot(look) points( RMprecip$x) US( add=TRUE, col="grey", lwd=2) # to save on computation, decrease the padding with zeroes # only pad 32 grid points around the margins ofthe image. look<- image.smooth(out$z, dx=dx, dy=dy, aRange= .25, xwidth=32*dx,ywidth=32*dy) # the range of these data is ~ 10 degrees and so # with a padding of 32 grid points 32*( 10/128) = 2.5 # about 10 standard deviations of the normal kernel so there is still # lots of room for padding # a minimal choice might be xwidth = 4*(.25)= 1 4 SD for the normal kernel # creating weighting object outside the call # this is useful when one wants to smooth different data sets but on the # same grid with the same kernel function # # # random fields from smoothing white noise with this filter. # set.seed(123) test.image<- matrix( rnorm(128**2),128,128) dx<- .1 dy<- .8 wght<- setup.image.smooth( nrow=128, ncol=128, dx=dx, dy=dy, aRange=.25, xwidth=2.5, ywidth=2.5) # look<- image.smooth( test.image, dx=dx, dy=dy, wght) # NOTE: this is the same as using # # image.smooth( test.image , 128,128), xwidth=2.5, # ywidth=2.5, dx=dx,dy=dy, aRange=.25) # # but the call to image.smooth is faster because the fft of kernel # has been precomputed. # periodic smoothing in the horizontal dimension look<- image.smooth( test.image , xwidth=1.5, ywidth=2.5, dx=dx,dy=dy, aRange=1.5) look2<- image.smooth( test.image , xwidth=0, ywidth=2.5, dx=dx,dy=dy, aRange=1.5) # compare these two set.panel( 1,2) image.plot( look, legend.mar=7.1) title("free boundaries") image.plot( look2, legend.mar=7.1) # look for periodic continuity at edges! title("periodic boundary in horizontal") set.panel(1,1) } \keyword{smooth} % docclass is function % Converted by Sd2Rd version 1.21. fields/man/flame.Rd0000644000175100001440000000355314627454002013676 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{flame} \alias{flame} \title{ Response surface experiment ionizing a reagent } \description{ The characteristics of an ionizing flame are varied with the intent of maximizing the intensity of emitted light for lithuim in solution. Areas outside of the measurements are where the mixture may explode! Note that the optimum is close to the boundary. Source of data is from a master's level lab experiment in analytical chemistry from Chuck Boss's course at NCSU. This is list with the following components } \arguments{ \item{x}{ x is a 2 column matrix with the different Fuel and oxygen flow rates for the burner. } \item{y}{ y is the response. The intensity of light at a particular wavelength indicative of Lithium ions. } } \keyword{datasets} % docclass is data % Converted by Sd2Rd version 1.21. fields/man/bplot.xy.Rd0000644000175100001440000000463514627454002014373 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{bplot.xy} \alias{bplot.xy} \title{ Boxplots for conditional distribution } \description{ Draws boxplots for y by binning on x. This gives a coarse, but quick, representation of the conditional distrubtion of [Y|X] in terms of boxplots. } \usage{ bplot.xy(x, y, N = 10, breaks = pretty(x, N, eps.correct = 1), plot = TRUE, axes = TRUE, ...) } \arguments{ \item{x}{ Vector to use for bin membership } \item{y}{ Vector to use for constructing boxplot statistics. } \item{N}{ Number of bins on x. Default is 10. } \item{breaks}{ Break points defining bin boundaries. These can be unequally spaced. } \item{plot}{ If FALSE just returns a list with the statistics used for plotting the box plots, bin centers, etc. -- More stuff than you can imagine! } \item{axes}{The usual plotting argument -- If TRUE then axes are plotted.} \item{\dots }{ Any other optional arguments passed to the standard \code{boxplot} function. } } \seealso{ bplot, draw.bplot } \examples{ # condition on swim times to see how run times vary bplot.xy( minitri$swim, minitri$run, N=5) # bivariate normal corr= .8 set.seed( 123) x<-rnorm( 2000) y<- .8*x + sqrt( 1- .8**2)*rnorm( 200) # bplot.xy(x,y) # bplot.xy( x,y, breaks=seq( -3, 3,,25) , xlim =c(-4,4), ylim =c(-4,4), col="grey80", lwd=2) points( x,y,col=3, cex=.5) } \keyword{hplot} % docclass is function % Converted by Sd2Rd version 1.21. fields/man/QTps.Rd0000644000175100001440000002642614627454002013505 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{QTps} \alias{QSreg} \alias{QTps} %- Also NEED an '\alias' for EACH other topic documented here. \title{ %% ~~function to do ... ~~ Robust and Quantile smoothing using a thin-plate spline } \description{ %% ~~ A concise (1-5 lines) description of what the function does. ~~ This function uses the standard thin plate spline function \code{Tps} and a algorithm based on psuedo data to compute robust smoothers based on the Huber weight function. By modifying the symmetry of the Huber function and changing the scale one can also approximate a quantile smoother. This function is experimental in that is not clear how efficient the psuedo-data algorithm is acheiving convergence to a solution. } \usage{ QTps(x, Y, ..., f.start = NULL, psi.scale = NULL, C = 1, alpha = 0.5, Niterations = 100, tolerance = 0.001, verbose = FALSE) QSreg(x, Y, lambda = NA, f.start = NULL, psi.scale = NULL, C = 1, alpha = 0.5, Niterations = 100, tolerance = 0.001, verbose = FALSE) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{x}{ Locations of observations. } \item{Y}{ Observations } \item{lambda}{Value of the smoothing parameter. If NA found by an approximate corss-validation criterion.} \item{\dots}{ Any other arguments to pass to the Tps function, which are then passed to the Krig function. \code{ give.warnings =FALSE} can be used to turn off pesky warnings when not important (see example below). } \item{C}{Scaling for huber robust weighting function. (See below.) Usually it is better to leave this at 1 and just modify the scale \code{psi.scale} according to the size of the residuals. } \item{f.start}{ The initial value for the estimated function. If NULL then the constant function at the median of \code{Y} will be used. NOTE: This may not be a very good starting vector and a more robust method would be to use a local robust smoother. } \item{psi.scale}{ The scale value for the Huber function. When C=1, this is the point where the Huber weight function will change from quadratic to linear. Default is to use the scale \code{.05*mad(Y)} and \code{C=1} . Very small scales relative to the size of the residuals will cause the estimate to approximate a quantile spline. Very large scales will yield the ordinary least squares spline. } \item{alpha}{ The quantile that is estimated by the spline. Default is .5 giving a median. Equivalently this parameter controls the slope of the linear wings in the Huber function \code{2*alpha} for the positive wing and \code{2*(1-alpha)} for the negative wing. } \item{Niterations}{ Maximum number of interations of the psuedo data algorithm } \item{tolerance}{ Convergence criterion based on the relative change in the predicted values of the function estimate. Specifically if the criterion \code{mean(abs(f.hat.new - f.hat))/mean(abs(f.hat))} is less than \code{tolerance} the iterations re stopped. } \item{verbose}{ If TRUE intermediate results are printed out. } } \details{ These are experimental functions that use the psuedo-value algorithm to compute a class of robust and quantile problems. \code{QTps} use the \code{Tps} function as its least squares base smoother while \code{QSreg} uses the efficient \code{sreg} for 1-D cubic smoothing spline models. Currently for the 1-d spline problem we recommend using the (or at least comparing to ) the old \code{qsreg} function. \code{QSreg} was created to produce a more readable version of the 1-d method that follows the thin plate spline format. The Thin Plate Spline/ Kriging model through fields is: Y.k= f(x.k) = P(x.k) + Z(x.k) + e.k with the goal of estimating the smooth function: f(x)= P(x) + Z(x) The extension in this function is that e.k can be heavy tailed or have outliers and one would still like a robust estimate of f(x). In the quantile approximation (very small scale parameter) f(x) is an estimate of the alpha quantile of the conditional distribution of Y given x. The algorithm is iterative and involves at each step tapering the residuals in a nonlinear way. Let psi.wght be this tapering function then given an initial estimate of f, f.hat the new data for smoothing is \code{ Y.psuedo<- f.hat + psi.scale* psi.wght( Y - f.hat, psi.scale=psi.scale, alpha=alpha)} A thin plate spline is now estimated for these data and a new prediction for f is found. This new vector is used to define new psuedo values. Convergence is achieved when the the subsequent estimates of f.hat do not change between interations. The advantage of this algorithm is at every step a standard "least squares" thin plate spline is fit to the psuedo data. Because only the observation vector is changing at each iteration Some matrix decompositions need only be found once and the computations at each subsequent iteration are efficient. At convergence there is some asymptotic theory to suggest that the psuedo data can be fit using the least squares spline and the standard smoothing techinques are valid. For example one can consider looking at the cross-validation function for the psuedo-data as a robust version to select a smoothing parameter. This approach is different from the weighted least squared algorithm used in the \code{qsreg} function. Also \code{qsreg} is only designed to work with 1-d cubic smoothing splines. The "sigma" function indicating the departure from a pure quadratic loss function has the definition \preformatted{ qsreg.sigma<-function(r, alpha = 0.5, C = 1) temp<- ifelse( r< 0, ((1 - alpha) * r^2)/C , (alpha * r^2)/C) temp<- ifelse( r >C, 2 * alpha * r - alpha * C, temp) temp<- ifelse( r < -C, -2 * (1 - alpha) * r - (1 - alpha) * C, temp) temp } The derivative of this function "psi" is \preformatted{ qsreg.psi<- function(r, alpha = 0.5, C = 1) temp <- ifelse( r < 0, 2*(1-alpha)* r/C, 2*alpha * r/C ) temp <- ifelse( temp > 2*alpha, 2*alpha, temp) temp <- ifelse( temp < -2*(1-alpha), -2*(1-alpha), temp) temp } Note that if C is very small and if alpha = .5 then psi will essentially be 1 for r > 0 and -1 for r < 0. The key feature here is that outside a ceratin range the residual is truncated to a constant value. This is similar to the Windsorizing operation in classical robust statistics. Another advantage of the psuedo data algotrithm is that at convergence one can just apply all the usual generic functions from Tps to the psuedo data fit. For example, predict, surface, print, etc. Some additional components are added to the Krig/Tps object, however, for information about the iterations and original data. Note that currently these are not reported in the summaries and printing of the output object. } \value{ A \code{Krig} object with additional components: \item{yraw}{ Original Y values} \item{conv.info}{A vector giving the convergence criterion at each iteration.} \item{conv.flag}{If TRUE then convergence criterion was less than the tolerance value.} \item{psi.scale}{Scaling factor used for the psi.wght function.} \item{value}{Value of alpha.} } \references{ Oh, Hee-Seok, Thomas CM Lee, and Douglas W. Nychka. "Fast nonparametric quantile regression with arbitrary smoothing methods." Journal of Computational and Graphical Statistics 20.2 (2011): 510-526. } \author{ Doug Nychka } \seealso{ qsreg } \examples{ data(ozone2) x<- ozone2$lon.lat y<- ozone2$y[16,] # Smoothing fixed at 50 df look1<- QTps( x,y, psi.scale= 15, df= 50) \dontrun{ # Least squares spline (because scale is so large) look2<- QTps( x,y, psi.scale= 100, df= 50) # y.outlier<- y # add in a huge outlier. y.outlier[58]<- 1e5 look.outlier1<- QTps( x,y.outlier, psi.scale= 15, df= 50, give.warnings= FALSE) # least squares spline. look.outlier2<- QTps( x,y.outlier, psi.scale=100 , df= 50, give.warnings= FALSE) # set.panel(2,2) surface( look1) title("robust spline") surface( look2) title("least squares spline") surface( look.outlier1, zlim=c(0,250)) title("robust spline w/outlier") points( rbind(x[58,]), pch="+") surface( look.outlier2, zlim=c(0,250)) title("least squares spline w/outlier") points( rbind(x[58,]), pch="+") set.panel() } # some quantiles look50 <- QTps( x,y, psi.scale=.5,) look75 <- QTps( x,y,f.start= look50$fitted.values, alpha=.75) # a simulated example that finds some different quantiles. \dontrun{ set.seed(123) N<- 400 x<- matrix(runif( N), ncol=1) true.g<- x *(1-x)*2 true.g<- true.g/ mean( abs( true.g)) y<- true.g + .2*rnorm( N ) look0 <- QTps( x,y, psi.scale=10, df= 15) look50 <- QTps( x,y, df=15) look75 <- QTps( x,y,f.start= look50$fitted.values, df=15, alpha=.75) } \dontrun{ # this example tests the quantile estimate by Monte Carlo # by creating many replicate points to increase the sample size. # Replicate points are used because the computations for the # spline are dominated by the number of unique locations not the # total number of points. set.seed(123) N<- 80 M<- 200 x<- matrix( sort(runif( N)), ncol=1) x<- matrix( rep( x[,1],M), ncol=1) true.g<- x *(1-x)*2 true.g<- true.g/ mean( abs( true.g)) errors<- .2*(rexp( N*M) -1) y<- c(matrix(true.g, ncol=M, nrow=N) + .2 * matrix( errors, ncol=M, nrow=N)) look0 <- QTps( x,y, psi.scale=10, df= 15) look50 <- QTps( x,y, df=15) look75 <- QTps( x,y, df=15, alpha=.75) bplot.xy(x,y, N=25) xg<- seq(0,1,,200) lines( xg, predict( look0, x=xg), col="red") lines( xg, predict( look50, x=xg), col="blue") lines( xg, predict( look75, x=xg), col="green") } \dontrun{ # A comparison with qsreg qsreg.fit50<- qsreg(rat.diet$t,rat.diet$con, sc=.5) lam<- qsreg.fit50$cv.grid[,1] df<- qsreg.fit50$cv.grid[,2] M<- length(lam) CV<-rep( NA, M) M<- length( df) fhat.old<- NULL for ( k in M:1){ temp.obj<- QTps(rat.diet$t,rat.diet$con, f.start=fhat.old, psi.scale=.5, tolerance=1e-6, verbose=FALSE, df= df[k], give.warnings=FALSE) # avoids warnings from Krig search on lambda cat(k, " ") CV[k] <- temp.obj$Qinfo$CV.psuedo fhat.old<- temp.obj$fitted.values } plot( df, CV, type="l", lwd=2) # psuedo data estimate points( qsreg.fit50$cv.grid[,c(5,6)], col="blue") # alternative CV estimate via reweighted LS points( qsreg.fit50$cv.grid[,c(2,3)], col="red") } } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{spatial} fields/man/Krig.replicates.Rd0000644000175100001440000000653614627454002015644 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{Krig.replicates} \alias{Krig.replicates} %- Also NEED an '\alias' for EACH other topic documented here. \title{ Collapse repeated spatial locations into unique locations } \description{ In case that several observations are available for a single spatial location find the group means and replicate variability } \usage{ Krig.replicates(out = NULL, x, y, Z = NULL, weights = rep(1, length(y)), digits = 8, verbose = FALSE) } \arguments{ \item{out}{ A list with components \code{x}, \code{y}, \code{weights}, and possibily \code{Z}.} \item{x}{Spatial locations.} \item{y}{Spatial observations} \item{Z}{Spatial covariates.} \item{weights}{Weights proportional to reciprocal varainces of observations.} \item{digits}{Number of significant digits to consider in determing a replicate location.} \item{verbose}{If TRUE print out details for debugging. } } \details{ This function figures out which locations are the same and within the function fast.1way use \code{tapply} to find replicate group means and standard deviations. NOTE: it is assumed the Z covariates are unique at the locations. Currently these functions can not handle a model with common spatial locations but different values for the Z covariates. } \value{ A list with components: \item{yM }{Data at unique locations and where more than one observation is available this is the mean of the replicates.} \item{xM }{Unique spatial locations.} \item{weightsM}{Weights matching the unique lcoations proportional to reciprocal variances This is found as a combination of the original weights at each location.} \item{ZM}{Values of the covariates at the unique lcoations.} \item{uniquerows}{Index for unique rows of \code{x}.} \item{tauHat.rep, tauHat.pure.error}{Standard deviation of pure error estimate based on replicate groups (and adjusting for possibly different weights.)} \item{rep.info}{Integer tags indicating replicate groups.} } \author{ Douglas Nychka } \examples{ #create some spatial replicates set.seed( 123) x0<- matrix( runif(10*2), 10,2) x<- x0[ c(rep(1,3), 2:8, rep( 9,5),10) , ] y<- rnorm( 16) out<- Krig.replicates( x=x, y=y) # compare # out$yM[1] ; mean( y[1:3]) # out$yM[9] ; mean( y[11:15]) # mean( y[ out$rep.info==9]) } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{spatial} fields/man/world.Rd0000644000175100001440000000372114627454002013736 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{world} \alias{world} \alias{world.color} \alias{in.land.grid} \alias{world.land} \title{Plot of the world} \description{ Plots quickly, medium resolution outlines of large land masses. This is a simple wrapper for the map function from the maps package. } \usage{ world(...) world.land( ...) world.color( ... ) in.land.grid(...) } \arguments{ \item{\dots}{Same arguments used by the \code{map} function from the maps package.} } \details{ See the longstanding \code{maps} package for documentation on this function. The functions world.land, world.color and in.land.grid have been depreciated but can be recovered from versions of fields 6.7.1 or older. } \seealso{US, in.poly, in.poly.grid} \examples{ \dontrun{ world() # add the US US( add=TRUE,col="blue") world( fill=TRUE) # land filled in black ## Western Europe world( xlim=c(-10,18),ylim=c(36,60),fill=TRUE, col="darkgreen", border="green1") } } \keyword{hplot} % docclass is function fields/man/as.image.Rd0000644000175100001440000001055214627454002014273 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{as.image} \alias{as.image} \title{ Creates image from irregular x,y,z } \description{ Discretizes a set of 2-d locations to a grid and produces a image object with the z values in the right cells. For cells with more than one Z value the average is used. } \usage{ as.image(Z, ind=NULL, grid=NULL, x=NULL,weights=rep(1, length(Z)), na.rm=FALSE, nx=64, ny=64, boundary.grid=FALSE, nrow=NULL, ncol=NULL, FUN = NULL) } \arguments{ \item{Z}{ Values of image. } \item{ind}{ A matrix giving the row and column subscripts for each image value in Z. (Not needed if x is specified.) } \item{grid}{ A list with components x and y of equally spaced values describing the centers of the grid points. The default is to use nrow and ncol and the ranges of the data locations (x) to construct a grid. } \item{x}{ Locations of image values. Not needed if ind is specified. } \item{nrow}{ Same as nx this is depreciated. } \item{ncol}{ Same as ny this is depreciated. } \item{weights}{ If two or more values fall into the same pixel a weighted average is used to represent the pixel value. Default is equal weights. } \item{na.rm}{ If true NA's are removed from the Z vector.} \item{nx}{Number of grid point in X coordinate.} \item{ny}{Number of grid points in Y coordinate.} \item{boundary.grid}{If FALSE grid points are assumed to be the grid midpoints. If TRUE they are the grid box boundaries.} \item{FUN}{The function to apply to common values in a grid box. The default is a mean (or weighted mean). If FUN is specified the weights are not used. } } \value{ An list in image format with a few more components. Components x and y are the grid values , z is a nrow X ncol matrix with the Z values. NA's are placed at cell locations where Z data has not been supplied. Component ind is a 2 column matrix with subscripts for the locations of the values in the image matrix. Component weights is an image matrix with the sum of the individual weights for each cell. If no weights are specified the default for each observation is one and so the weights will be the number of observations in each bin. } \details{ The discretization is straightforward once the grid is determined. If two or more Z values have locations in the same cell the weighted average value is taken as the value. The weights component that is returned can be used to account for means that have different numbers (or precisions) of observations contributing to the grid point averages. The default weights are taken to be one for each observation. See the source code to modify this to get more information about coincident locations. (See the call to fast.1way) } \seealso{ image.smooth, image.plot, Krig.discretize, Krig.replicates } \examples{ # convert precip data to 50X50 image look<- as.image( RMprecip$y, x= RMprecip$x, nx=50, ny=50) image.plot( look) # reduced grid extent compared to the domain gridList<- list( x = seq(-105,-101,length.out=10), y = seq( 38, 42,length.out=10) ) look2<- as.image( RMprecip$y, x= RMprecip$x,grid=gridList) image.plot( look2) # number of obs in each cell -- in this case equal to the # aggregated weights because each obs had equal weight in the call image.plot( look$x ,look$y, look$weights, col=terrain.colors(50)) # hot spot is around Denver } \keyword{manip} % docclass is function % Converted by Sd2Rd version 1.21. fields/man/US.Rd0000644000175100001440000000332014627454002013131 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{US} \alias{US} \title{ Plot of the US with state boundaries } \description{ Plots quickly, medium resolution outlines of the US with the states and bodies of water. A simple wrapper for the map function from the maps package. } \usage{ US( ...) } \arguments{ \item{\dots}{ These are the arguments that are passed to the map function from the maps package. } } \details{ The older version of this function (fields < 6.7.2) used the FIELDS dataset US.dat for the coordinates. Currenty this has been switched to use the maps package. } \seealso{ world } \examples{ # Draw map in device color # 3 US( col=3) } \keyword{hplot} % docclass is function % Converted by Sd2Rd version 1.21. fields/man/rat.diet.Rd0000644000175100001440000000333014627454002014315 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{rat.diet} \alias{rat.diet} \title{ Experiment studying an appetite supressant in rats. } \description{ The `rat.diet' data frame has 39 rows and 3 columns. These are data from a study of an appetite supressant given to young rats. The suppressant was removed from the treatment group at around 60 days. The responses are the median food intake and each group had approximately 10 animals. } \usage{ data(rat.diet) } \format{ This data frame contains the following columns: \describe{ \item{t}{ Time in days} \item{con}{ Median food intake of the control group } \item{trt}{ Median food intake of the treatment group} } } \keyword{datasets} % docclass is data % Converted by Sd2Rd version 1.21. fields/man/fields.tests.Rd0000644000175100001440000001113214627454002015211 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{fields testing scripts} \alias{fields.tests} \alias{test.for.zero} \title{ Testing fields functions } \description{ Some of the basic methods in fields can be tested by directly implementing the linear algebra using matrix expressions and other functions can be cross checked within fields. These comparisons are done in the the R source code test files in the tests subdirectory of fields. The function \code{test.for.zero} is useful for comparing the tests in a meaninful and documented way. } \usage{ test.for.zero( xtest, xtrue, tol= 1.0e-8, relative=TRUE, tag=NULL) } \arguments{ \item{xtest}{Vector of target values} \item{xtrue}{Vector of reference values} \item{tol}{Tolerance to judge whether the test passes.} \item{relative}{If true a relative error comparison is used. (See details below.)} \item{tag}{ A text string to be printed out with the test results as a reference} } \details{ IMPORTANT: If the R object \code{test.for.zero.flag} exists with any value ( e.g. \code{test.for.zero.flag <- 1} ) then when the test fails this function will also generate an error in addition to printing a message. This option is added to insure that any test scripts will generate an error when any individual test fails. An example: \preformatted{ > test.for.zero( 1:10, 1:10 + 1e-10, tag="First test") Testing: First test PASSED test at tolerance 1e-08 } \preformatted{ > test.for.zero( 1:10, 1:10 + 1e-10, tag="First test", tol=1e-12) Testing: First test FAILED test value = 1.818182e-10 at tolerance 1e-12 } \preformatted{ > test.for.zero.flag <- 1 Testing: First test FAILED test value = 1.818182e-10 at tolerance 1e-12 Error in test.for.zero(1:10, 1:10 + 1e-10, tag = "First test", tol = 1e-12) : } The scripts in the \code{tests} subdirectory are \describe{ \item{Krig.test.R:}{Tests basic parts of the Krig and Tps functions including replicated and weighted observations. } \item{Krig.se.test.R:}{Tests computations of standard errors for the Kriging estimate.} \item{Krig.se.grid.test.R}{Tests approximate standard errors for the Krig function found by Monte Carlo conditional simulation.} \item{Krig.test.W.R}{Tests predictions and A matrix when an off diagonal observation weight matrix is used.} \item{Krig.se.W.R}{Tests standard errors when an off diagonal observation weight matrix is used.} \item{spam.test.R}{Tests sparse matrix formats and linear algebra.} \item{Wend.test.R}{Tests form for Wendland covariance family and its use of sparse matrix formats.} \item{diag.multiply.test.R}{Tests special (efficient) version of matrix multiply for diagonal matrices.} \item{ evlpoly.test.R}{Tests evaluation of univariate and multivariate polynomial evaluation.} \item{mKrig.test.R}{Tests the micro Krig function with and without sparse matrix methods. } } To run the tests just attach the fields library and source the testing file. In the fields source code these are in a subdirectory "tests". Compare the output to the "XXX.Rout.save" text file. \code{test.for.zero} is used to print out the result for each individual comparison. Failed tests are potentially bad and are reported with a string beginning "FAILED test value = ... " If the object test.for.zero.flag exists then an error is also generated when the test fails. FORM OF COMPARISON: The actual test done is the sum of absolute differnces: test value = \code{ sum( abs(c(xtest) - c( xtrue) ) ) /denom} Where \code{denom} is either \code{ mean( abs(c(xtrue)))} for relative error or 1.0 otherwise. Note the use of "c" here to stack any structure in xtest and xtrue into a vector. } \keyword{misc} fields/man/plot.Krig.Rd0000644000175100001440000000677114627454002014470 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{plot.Krig} \alias{plot.Krig} \alias{plot.sreg} \title{ Diagnostic and summary plots of a Kriging, spatialProcess or spline object. } \description{ Plots a series of four diagnostic plots that summarize the fit. } \usage{ \method{plot}{Krig}(x, digits=4, which= 1:4,...) \method{plot}{sreg}(x, digits = 4, which = 1:4, ...) } \arguments{ \item{x}{ A Krig or an sreg object} \item{digits}{ Number of significant digits for the RMSE label. } \item{which}{ A vector specifying by number which of the four plots to draw. 1:4 plots all four. } \item{\dots}{ Optional graphics arguments to pass to each plot. } } \details{ This function creates four summary plots of the Krig or sreg object. The default is to put these on separate pages. However if the screen is already divided in some other fashion the plots will just be added according to that scheme. This option is useful to compare to compare several different model fits. The first is a scatterplot of predicted value against observed. The second plot is "standardized" residuals against predicted value. Here we mean that the residuals are divided by the GCV estimate for tau and multiplied by the square root of any weights that have been specified. In the case of a "correlation model" the residuals are also divided by the marginal standard deviation from this model. The third plot are the values of the GCV function against the effective degrees of freedom. When there are replicate points several versions of the GCV function may be plotted. GCV function is with respect to the standardized data if a correlation model is specified. A vertical line indicates the minimium found. For \code{Krig} and \code{sreg} objects the fourth plot is a histogram of the standardized residuals. For sreg if multiple lambdas are given plotted are boxplots of the residuals for each fit. For \code{spatialProcess} object the fourth plot is the profile likelihood for the aRange parameter. Points are the actual evaluated log likelihoods and the dashed line is just a spline interpolation to help with visualization. } \seealso{ Krig, spatialProcess, summary.Krig, Tps, set.panel } \examples{ data( ozone2) x<- ozone2$lon.lat y<- ozone2$y[16,] fit1<-Krig(x,y, aRange=200) # fitting a surface to ozone # measurements set.panel( 2,2) plot(fit1) # fit rat data fit3<-sreg(rat.diet$t,rat.diet$con) set.panel(2,2) plot(fit3) set.panel(1,1) # reset graphics window. } \keyword{spatial} % docclass is function % Converted by Sd2Rd version 1.21. fields/man/cover.design.Rd0000644000175100001440000003333714637266067015220 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{cover.design} \alias{cover.design} \title{ Computes Space-Filling "Coverage" designs using Swapping Algorithm } \description{ Finds the set of points on a discrete grid (Candidate Set) which minimize a geometric space-filling criterion. The strength of this method is that the candidate set can satisfy whatever constraints are important for the problem. } \usage{ cover.design(R, nd, nruns = 1, nn = TRUE, num.nn = 100, fixed = NULL, scale.type = "unscaled", R.center, R.scale, P = -20, Q = 20, start = NULL, DIST = NULL, return.grid = TRUE, return.transform = TRUE, max.loop=20, verbose=FALSE) } \arguments{ \item{R}{ A matrix of candidate points to be considered in the design. Each row is a separate point. } \item{nd}{ Number of points to add to the design. If points exist and are to remain in the design (see "fixed" option), nd is the number of points to add. If no points are fixed, nd is the design size. } \item{nruns}{ The number of random starts to be optimized. Uses random starts unless "start" is specified. If nruns is great than 1, the final results are the minimum. } \item{nn}{ Logical value specifying whether or not to consider only nearest neighbors in the swapping algorithm. When nn=FALSE, then the swapping algorithm will consider all points in the candidate space. When nn=TRUE, then the swapping algorithm will consider only the num.nn closest points for possible swapping. The default is to use nearest neighbors only (nn=TRUE). } \item{num.nn}{ Number of nearest-neighbors to search over. The default number is 100. If nn=F then this argument will be ignore. } \item{fixed}{ A matrix or vector specifying points to be forced into the experimental design. If fixed is a matrix, it gives coordinates of the fixed points in the design. In this case fixed must be a subset of R. If fixed is a vector, then fixed gives the row numbers from the candidate matrix R that identify the fixed points. The number of points to be generated, nd, is in addition to the number of points specified by fixed. } \item{scale.type}{ A character string that tells how to scale the candidate matrix, R, before calculating distances. The default is "unscaled", no transformation is done. Another option is "range" in which case variables are scaled to a [0,1] range before applying any distance functions. Use "unscaled" when all of the columns of R are commensurate; for example, when R gives x and y in spatial coordinates. When the columns of R are not in the same units, then it is generally thought that an appropriate choice of scaling will provide a better design. This would be the case, for example, for a typical process optimization. Other choices for scale.type are "unit.sd", which scales all columns of R to have 0 mean and unit standard deviation, and "user", which allows a user specified scaling (see R.center and R.scale arguments). } \item{R.center}{ A vector giving the centering values if scale.type=\code{user}. } \item{R.scale}{ A vector giving the scale values if scale.type=\code{user}. } \item{P}{ The "p" exponent of the coverage criterion (see below). It affects how the distance from a point x to a set of design points D is calculated. P=1 gives average distance. P=-1 gives harmonic mean distance. P=-Inf would give minimum distance (not available as a value). As P gets large and negative, points will tend to be more spread out. } \item{Q}{ The "q" exponent of the coverage criterion (see below).It affects how distances from all points not in the design to points in the design are averaged. When Q=1, simple averaging of the distances is employed. Q=Inf (not available as a value) in combination with P=-Inf would give a classical minimax design. } \item{start}{ A matrix or vector giving the initial design from which to start optimization. If start is a matrix, it gives the coordinates of the design points. In this case start must be a subset of the candidate set , R matrix. If start is a vector, then start gives the row numbers of the initial design based on the rows of the candidate matrix rows. The default is to use a random starting design. } \item{DIST}{ This argument is only for cover.design.S. A distance metric in the form of an S function. Default is Euclidean distance (FIELDS rdist function) See details and example below for the correct form. } \item{return.grid}{ Logical value that tells whether or not to return the candidate matrix as an attribute of the computed design. The default is return.grid=T. If false this just reduces the returned object size. The candidate matrix is used by plot.spatial.design if it is available. } \item{return.transform}{ Logical value that tells whether or not to return the transformation attributes of candidate set. The default is return.transform=T. } \item{max.loop}{ Maximum number of outer loops in algorithm. This is the maximum number of passes through the design testing for swaps. } \item{verbose}{ If TRUE prints out debugging information. } } \value{ Returns a design object of class \code{spatialDesign}. Subscripting this object has the same effect as subscripting the first component (the design). The returned list has the following components: \item{design}{ The best design in the form of a matrix. } \item{best.id}{ Row numbers of the final design from the original candidate matrix, R. } \item{fixed}{ Row numbers of the fixed points from the original candidate matrix, R. } \item{opt.crit}{ Value of the optimality criterion for the final design. } \item{start.design}{ Row numbers of the starting design from the original candidate matrix, R. } \item{start.crit}{ Value of the optimality criterion for the starting design. } \item{history}{ The swapping history and corresponding values of the optimality criterion for the best design. } \item{other.designs}{ The designs other than the best design generated when nruns is greater than 1. } \item{other.crit}{ The optimality criteria for the other designs when nrun is greate than 1. } \item{DIST}{ The distance function used in calculating the design criterion. } \item{nn}{ Logical value for nearest-neighbor search or not. } \item{num.nn}{ The number of nearest neighbor set. } \item{grid}{ The matrix R is returned if the argument return.grid=T. } \item{transform}{ The type of transformation used in scaling the data and the values of the centering and scaling constants if the argument return.transform=T. } \item{call}{ The calling sequence. } \item{P}{ The parameter value for calculating criterion. } \item{Q}{ The parameter value for calculating criterion. } \item{nhist}{ The number of swaps performed. } \item{nloop}{ The number of outer loops required to reach convergence if nloop is less the max.loop. } \item{minimax.crit}{ The minimax design criterion using DIST. } \item{max.loop}{ The maximum number of outer loops. } } \details{ OTHER DISTANCE FUNCTIONS: You can supply an R/S-function to be used as the distance metric. The expected calling sequence for this distance function is function( X1,X2)\{....\} where X1 and X2 are matrices with coordinates as the rows. The returned value of this function should be the pairwise distance matrix. If nrow( X1)=m and nrow( X2)=n then the function should return an m by n matrix of all distances between these two sets of points. See the example for Manhattan distance below. The candidate set and DIST function can be flexible and the last example below using sample correlation matrices is an example. COVERAGE CRITERION: For nd design points in the set D and nc candidate points ci in the set C, the coverage criteria is defined as: M(D,C) = [sum(ci in C) [sum(di in D) (dist(di,ci)**P]**(Q/P)]**(1/Q) Where P, less than 0, and Q, greater than 0, are parameters. The algorithm used in "cover.design" to find the set of nd points in C that minimize this criterion is an iterative swapping algorithm which will be described briefly. The resulting design is referred to as a "coverage design" from among the class of space-filling designs. If fixed points are specified they are simply fixed in the design set and are not allowed to be swapped out. ALGORITHM: An initial set of nd points is chosen randomly if no starting configuration is provided. The nc x nd distance matrix between the points in C and the points in D is computed, and raised to the power P. The "row sums" of this matrix are computed. Denote these as rs.i and the vector of row sums as rs. Using rs, M(D,C) is computed as: [sum i (rs.i)**(Q/P)]**(1/Q) Note that if point d.i is "swapped" for point c.j, one must only recompute 1 column of the original distance matrix, and 1 row. The row elements not in the ith column will be the same for all j and so only need computing when the first swapping occurs for each d.i . Denote the sum of these off-i elements as "newrow(i)". The index is i here since this is the same for all rows (j=1,...nc). Thus, for each swap, the row sums vector is updated as rs(new) = rs(old) - column(i,old) + column(i,new) And the jth element of rs(new) is replaced by: rs(new)[j] = column(i,new)[k] + newrow(i) Finally, M(D,C) is computed for this swap of the ith design point for the jth candidate point using [2]. The point in C that when swapped produces the minimum value of M(D,C) replaces d.i. This is done for all nd points in the design, and is iterated until M(D,C) does not change. When the nearest neighbor option is selected, then the points considered for swapping are limited to the num.nn nearest neighbors of the current design point. STABILITY The algorithm described above is guaranteed to converge. However, upon convergence, the solution is sensitive to the initial configuration of points. Thus, it is recommended that multiple optimizations be done (i.e. set nruns greater than 1 ). Also, the quality of the solution depends on the density of the points on the region. At the same time, for large regions , optimization can be computationally prohibitive unless the nearest neighbor option is employed. } \section{References}{ Johnson, M.E., Moore, L.M., and Ylvisaker, D. (1990). Minimax and maximin distance designs. Journal of Statistical Planning and Inference 26, 131-148. SAS/QC Software. Volume 2: Usage and Reference. Version 6. First Edition (1995). "Proc Optex". SAS Institute Inc. SAS Campus Drive, } \seealso{ rdist, rdist.earth } \examples{ ## ## # first generate candidate set set.seed(123) # setting seed so that you get the same thing I do! test.df <- matrix( runif( 600), ncol=3) test1.des<-cover.design(R=test.df,nd=10) summary( test1.des) plot( test1.des) # \dontrun{ candidates<- make.surface.grid( list( seq( 0,5,,20), seq(0,5,,20))) out<- cover.design( candidates, 15) # find 10 more points keeping this original design fixed out3<-cover.design( candidates, 10,fixed=out$best.id) # see what happened plot( candidates[,1:2], pch=".") points( out$design, pch="x") points( out3$design, pch="o") # here is a strange graph illustrating the swapping history for the # the first design. Arrows show the swap done # at each pass through the design. h<- out$history cd<- candidates plot( cd[,1:2], pch=".") points( out$design, pch="O", col=2) points( out$start.design, pch="x", col=5) arrows( cd[h[,2],1], cd[h[,2],2], cd[h[,3],1], cd[h[,3],2],length=.1) text( cd[h[,2],1], cd[h[,2],2], h[,1], cex=1.0 ) # # try this out using "Manhattan distance" # ( distance following a grid of city streets) dist.man<- function(x1,x2) { d<- ncol( x1) temp<- abs(outer( x1[,1], x2[,1],'-')) for ( k in 2:d){ temp<- temp+abs(outer( x1[,k], x2[,k],'-')) } temp } # use the design from the Euclidean distance as the starting #configuration. cover.design( candidates, 15, DIST=dist.man, start= out3$best.id)-> out2 # this takes a while ... plot( out2$design) points( out3$design, col=2) # find a design on the sphere # candidates<- make.surface.grid( list( x=seq( -180,180,,20), y= seq( -85, 85,,20))) out4<-cover.design( candidates, 15, DIST=rdist.earth) # this takes a while plot( candidates, pch="+", cex=2) points(out4$design, pch="o", cex=2, col="blue") # covering based on correlation for 153 ozone stations # data( ozone2) cor.mat<-cor( ozone2$y, use="pairwise") cor.dist<- function( x1,x2) {matrix( 1-cor.mat[ x1,x2], ncol=length(x2))} # # find 25 points out of the 153 # here the "locations" are just the index but the distance is # determined by the correlation function. # out5<-cover.design(cbind(1:153),25, DIST= cor.dist, scale.type="unscaled") plot( ozone2$lon.lat, pch=".") points( ozone2$lon.lat[out5$best.id,],pch="O", col=4) # # this seems a bit strange probably due some funny correlation values # # reset panel set.panel(1,1) } } \keyword{spatial} % docclass is function % Converted by Sd2Rd version 1.21. fields/man/US.dat.Rd0000644000175100001440000000253014627454002013702 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{US.dat} \alias{US.dat} \title{ Outline of coterminous US and states. } \description{ This data set is used by the fields function US to draw a map. It is the medium resolution outline that is produced by drawing the US from the maps package. } \keyword{datasets} % docclass is data % Converted by Sd2Rd version 1.21. fields/man/sim.Krig.Rd0000644000175100001440000004237414645221440014277 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{sim.spatialProcess} \alias{sim.Krig} \alias{simSpatialData} \alias{sim.spatialProcess} \alias{simLocal.spatialProcess} \alias{checkPredictGrid} \alias{makePredictionGridList} \alias{makeSimulationGrid} \title{Unconditional and conditional simulation of a spatial process} \description{ Generates exact (or approximate) random draws from the unconditional or conditional distribution of a spatial process given specific observations. Draws from the conditional distribution, known as conditional simulation in geostatistics, is a useful way to characterize the uncertainty in the predicted process from data. Note that exact simulation is limted by the number of locations but there are approximate strategies to handle simulation for large grids of locations. } \usage{ simSpatialData(object, M = 1, verbose = FALSE) sim.spatialProcess(object, xp, M = 1, verbose = FALSE, ...) sim.Krig(object, xp, M = 1, verbose = FALSE, ...) simLocal.spatialProcess(mKrigObject, predictionGridList = NULL, simulationGridList = NULL, gridRefinement = 1, np = 2, M = 1, nx = 80, ny = 80, verbose = FALSE, delta = NULL, giveWarnings = TRUE, fast = FALSE, NNSize = 5, ...) checkPredictGrid(predictionGridList) makePredictionGridList(mKrigObject, nx, ny, np) makeSimulationGrid(predictionGridList, gridRefinement) } \arguments{ \item{delta}{If the covariance has compact support the simulation method can take advantage of this. This is the amount of buffer added for the simulation domain in the circulant embedding method. A minimum size would be \code{aRange} for the Wendland but a multiple of this maybe needed to obtain a positive definite circulant covariance function. } \item{fast}{ If TRUE will use approximate, fast spatial prediction on grids. } \item{gridRefinement}{Amount to increase the number of grid points for the simulation grid.} \item{giveWarnings}{If true will warn when more than one observation is in a grid box. This is instead of giving an error and stopping.} \item{mKrigObject}{An mKrig Object (or spatialProcess object)} \item{M}{Number of draws from conditional distribution.} \item{np}{Degree of nearest neighbors to use. In the 2D case, the default \code{np=2} uses 16 points in a 4X4 grid for prediction of the off grid point. } \item{NNSize}{Degree of neighborhood use for fast prediction. ( See \code{ predictSurface.mKrig} with \code{fast= TRUE} ) } \item{nx}{ Number of grid points in prediction locations for x coordinate.} \item{ny}{ Number of grid points in prediction locations for y coordinate.} \item{object}{The spatial fit object.} \item{predictionGridList}{A grid list specifying the grid locations for the conditional samples. } \item{simulationGridList}{ A \code{gridlist} describing grid for simulation. If missing this is created from the range of the locations, \code{nx}, \code{ny}, \code{gridRefinement}, and \code{gridExpansion} or from the range and and \code{nxSimulation}, \code{nySimulation}.} \item{xp}{Same as predictionPoints above.} \item{\dots}{Any other arguments to be passed to the predict function. Usually this is the \code{Z} or \code{drop.Z} argument when there are additional covariates in the fixed part of the model. (See example below.) } \item{verbose}{If true prints out intermediate information. } } \details{ These functions generate samples from an unconditional or conditional multivariate (spatial) distribution, or an approximate one. The \strong{unconditional} simulation function, \code{simSpatialData}, is a handy way to generate synthetic observations from a fitted model. Typically one would use these for a parametric bootstrap. The functions that simulate \strong{conditional} distributions are much more involved in their coding. They are useful for describing the uncertainty in predictions using the estimated spatial process under Gaussian assumptions. An important assumption throughout these functions is that all covariance parameters are fixed at their estimated or prescribed values from the passed object. Although these functions might be coded up easily by the users these versions have the advantage that they take the \code{mKrig}, \code{spatialProcess} or \code{Krig} objects as a way to specify the model in an unambiguous way. Given a spatial process h(x)= P(x) + g(x) observed at Y.k = Z(x.k)d + P(x.k) + g(x.k) + e.k where P(x) is a low order, fixed polynomial and g(x) a Gaussian spatial process and Z(x.k) is a vector of covariates that are also indexed by space (such as elevation). Z(x.k)d is a linear combination of the covariates with the parameter vector d being a component of the fixed part of the model and estimated in the usual way by generalized least squares. With Y= Y.1, ..., Y.N, the goal is to sample the conditional distribution of the process. [h(x) | Y ] or the full prediction Z(x)d + h(x) For fixed a covariance this is just a multivariate normal sampling problem. \code{sim.spatialProcess} samples this conditional process at the points \code{xp} and is exact for fixed covariance parameters. The outline of the conditional simulation algorithm is given below and has the advantage that is only depends on the unconditional simulation of the spatial process and being able to make a spatial prediction - the conditional mean of the process given the observations and covariance function. \strong{ Conditional Simulation Algorithm: } 0) Find the spatial prediction at the unobserved locations based on the actual data. Call this h.hat(x) and this is also the conditional mean. 1) Generate a realization that includes both prediction and observation locations from the unconditional spatial process and from this process simluate synthetic observations. 2) Use the spatial prediction model ( using the true covariance) to estimate the spatial process at unobserved locations. 3) Find the difference between the simulated process and its prediction based on synthetic observations. Call this e(x). 4) h.hat(x) + e(x) is a draw from [h(x) | Y ]. The approximations for this simulation come in at step 1). Here the field at the observation locations is approximated using a local conditional simulation from the nearest grid points. NOTE: A fixed part in the model is handled easily by simply making the prediction from the synthetic observations that have mean zero but include estimation of the fixed part as part of the prediction. Because the regression estimates are unbaised, this gives a valid draw from the correct mulitvariate distribution even though the synthetic observations do not include a fixed part. \code{sim.spatialProcess} Follows this algorithm exactly. For the case of an addtional covariate this of course needs to be included. For a model with covariates use \code{drop.Z=TRUE} for the function to ignore prediction using the covariate and generate conditional samples for just the spatial process and any low order polynomial. Finally, it should be noted that this function will also work with an \code{mKrig} object because the essential prediction information in the mKrig and spatialProcess objects are the same. The naming is through convenience. \code{sim.Krig} Also follows this algorithm exactly but for the older \code{Krig} object. Note that the inclusion of drop.Z=TRUE or FALSE will determine whether the conditional simulation includes the covariates Z or not. (See example below.) \code{simLocal.spatialProcess} This function is designed for conditional simulation for a large prediction grid and for a large number of observation s. The approximation will be accurate for fine grids that separate clusters of observation locations. E.g. multiple observations in a single gridbox are treated exactly. If observation location are separated by a grid box then due to the screening effect the approximation error will be negliable, especially if a nugget component (tau ) is present. The 1D version of this function will not be much more efficient than an exact computation. However, it is included as easy to read source code and for checking (see examples.) See the utility function \code{\link{offGridWeights}} for the function that creates weights used to generate the (approximate) conditional sample. The functions \code{checkPredictGrid}, \code{makePredictionGridList} and \code{makeSimulationGrid} are utilities to setup the grids when not specified. } \value{ \code{sim.Krig and sim.spatialProcess} a matrix with rows indexed by the locations in \code{xp} and columns being the \code{M} independent draws. \code{simLocal.spatialProcess} a list with components \code{x}, \code{y} and \code{z} being the simulations at the prediction grid. The x and y are the typical image format specifying a regular grid. If \code{nx} and \code{ny} are the lengths of the grid values in X and Y then \code{z} is a array with dimension \code{ c(nx, ny, M)}. For the 1D case ny is set to 1. The component \code{hHat} is the conditional mean ( as an \code{nx} X \code{ny} matrix) and the remaining arguments are various timing results for parts of the computation. } \author{Doug Nychka} \seealso{ sim.rf, Krig, spatialProcess} \examples{ ## 10 member ensemble for the O3 data \dontrun{ data( "ozone2") fitObject<- spatialProcess( ozone2$lon.lat, ozone2$y[16,], smoothness=.5) nx<- 65 ny<- 55 xGridList<- fields.x.to.grid( fitObject$x, nx=nx, ny=ny) xGrid<- make.surface.grid( xGridList) allTime0<- system.time( look0<- sim.spatialProcess(fitObject, xp=xGrid, M=5) ) print( allTime0) # for M=5 this does not make much sense ... however here are the # Monte Carlo based prediction standard deviations. predictSE<- apply( look0, 1, sd) # compare to predictSE(fitObject, xp=xGrid) ## Local simulation with extra refinement of the grid for embedding ## and same grid size for prediction ## this runs much faster compared to exact method above ## as nx, ny are increased e.g. nx= 128, ny=128 is dramatic difference allTime1<- system.time( look<- simLocal.spatialProcess(fitObject, M=5,nx=nx, ny=ny, gridRefinement = 3, np=3) ) print( allTime1) print( look$timing) allTime2<- system.time( look<- simLocal.spatialProcess(fitObject, M=5,nx=nx, ny=ny, gridRefinement = 3, np=3, fast=TRUE) ) print( allTime2) print( look$timing) } \dontrun{ ## A simple example for setting up a bootstrap ## M below should be ## set to a much larger sample size, however, ( e.g. M <- 200) for better ## statistics data( ozone2) obj<- spatialProcess( ozone2$lon.lat,ozone2$y[16,] ) aHat<- obj$summary["aRange"] lambdaHat<- obj$summary["lambda"] ######### boot strap # create M independent copies of the observation vector # here we just grab the model information from the # spatialProcess object above. # # However, one could just create the list # obj<- list( x= ozone2$lon.lat, # cov.function.name="stationary.cov", # summary= c( tau= 9.47, sigma2= 499.79, aRange= .700), # cov.args= list( Covariance="Matern", smoothness=1.0), # weights= rep( 1, nrow(ozone2$lon.lat) ) # ) # Here summary component has the parameters # tau, sigma2 and aRange # and cov.args component has the remaining ones. set.seed(223) M<- 25 ySynthetic<- simSpatialData( obj, M) bootSummary<- NULL for( k in 1:M){ cat( k, " ") # here the MLEs are found using the easy top level level wrapper # see mKrigMLEJoint for a more efficient strategy newSummary<- spatialProcess(obj$x,ySynthetic[,k], cov.params.start= list( aRange = aHat, lambda = lambdaHat) )$summary bootSummary<- rbind( bootSummary, newSummary) } cat( fill= TRUE) # the results and 95% confidence interval stats( bootSummary ) obj$summary tmpBoot<- bootSummary[,c("lambda", "aRange") ] confidenceInterval <- apply(tmpBoot, 2, quantile, probs=c(0.025,0.975) ) # compare to estimates used as the "true" parameters obj$summary[2:5] print( t(confidenceInterval) ) # compare to confidence interval using large sample theory print( obj$CITable) } \dontrun{ # conditional simulation with covariates # colorado climate example data(COmonthlyMet) fit1E<- spatialProcess(CO.loc,CO.tmin.MAM.climate, Z=CO.elev ) # conditional simulation at missing data good<- !is.na(CO.tmin.MAM.climate ) infill<- sim.spatialProcess( fit1E, xp=CO.loc[!good,], Z= CO.elev[!good], M= 10) # get an elevation grid ... NGRID<- 50 gives a nicer image but takes longer NGRID <- 25 # get elevations on a grid COGrid<- list( x=seq( -109.5, -100.5, ,NGRID), y= seq(36, 41.75,,NGRID) ) COGridPoints<- make.surface.grid( COGrid) # elevations are a bilinear interpolation from the 4km # Rocky Mountain elevation fields data set. data( RMelevation) COElevGrid<- interp.surface( RMelevation, COGridPoints ) # NOTE call to sim.spatialProcess treats the grid points as just a matrix # of locations the plot has to "reshape" these into a grid # to use with image.plot SEout<- sim.spatialProcess( fit1E, xp=COGridPoints, Z= COElevGrid, M= 30) # for just the smooth surface in lon/lat # SEout<- sim.spatialProcess( fit1E, xp=COGridPoints, drop.Z=TRUE, M= 30) # in practice M should be larger to reduce Monte Carlo error. surSE<- apply( SEout, 1, sd ) image.plot( as.surface( COGridPoints, surSE)) points( fit1E$x, col="magenta", pch=16) } ### Approximate conditional simulation \dontrun{ # create larger lon/lat grid NGRID <- 200 COGrid<- list( x=seq( -109.7, -100.5, ,NGRID), y= seq(36, 41.75,,NGRID) ) # interpolation elevations to this grid. # This took about 40 seconds COElevGrid<- interp.surface.grid( RMelevation, COGrid ) system.time( SEout0<- simLocal.spatialProcess( fit1E,COGrid , ZGrid= COElevGrid$z, M= 10) ) } ### Approximate conditional simulation and with approximate prediction ### increase np and NNSize to improve approximations ### This takes about 8 seconds of course one would want more thatn 10 reps ### to estimate the SE. Use drop.Z=TRUE to just get the spatial surface without ### the fixed part \dontrun{ system.time( SEout2<- simLocal.spatialProcess( fit1E, COGrid , ZGrid= COElevGrid$z, np = 2, fast= TRUE, NNSize=5, M= 10) ) look <- apply( SEout2$z,c(1,2), sd) imagePlot(SEout2$x, SEout2$y, look, col=viridis(256) ) points( fit1E$x, pch=16, cex=.5, col="magenta") title("Monte Carlo prediction SE") } #### example using Krig object and exact conditional simulation. \dontrun{ data( ozone2) set.seed( 399) # fit to day 16 from Midwest ozone data set. out<- Krig( ozone2$lon.lat, ozone2$y[16,], Covariance="Matern", aRange=1.0,smoothness=1.0, na.rm=TRUE) # NOTE aRange =1.0 is not the best choice but # the six missing data locations xp<- ozone2$lon.lat[ is.na(ozone2$y[16,]),] # 30 draws from process at xp given the data sim.out<- sim.Krig( out,xp, M=30) } \dontrun{ ## testing the local method on a 1D case. set.seed(124) # 10 observations -- massive dataset! s<- cbind(runif( 10, 5,45)) y<- cbind(runif( 10)) aRange<- 10 obj<- mKrig( s, y, aRange=aRange,Covariance="Matern", smoothness=1.0, lambda=.01,tau=sqrt(.01), m=0) # # M should be much larger for an accurate check on code # gridList<- list( x= seq(0,50, length.out=15)) look<- simLocal.spatialProcess(obj, np=3, predictionGridList = gridList, gridRefinement = 3, M=50, extrap=TRUE) simSE<- apply(look$z, 1, sd ) checkSE<- predictSE( obj, xnew= cbind(look$x ), drop.Z=TRUE ) # percentage error from true SE at each location. stats( 100*abs(1- simSE/checkSE) ) # Maggie plot plot( look$x, checkSE, type="b", col="blue", xlab="Location", ylab="Prediction SE") rug( look$x, col="blue", lwd=3) points( look$x, simSE, col="orange3", pch=16) xline( s, col="grey", lwd=2) title("Exact (blue) and Monte Carlo (orange) for the prediction SE based on observations (grey) ") } } \keyword{spatial} % at least one, from doc/KEYWORDS fields/man/offGridWeights.Rd0000644000175100001440000002264214627454002015525 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{offGridWeights} \alias{offGridWeights} \alias{addMarginsGridList} \alias{mKrigFastPredictSetup} \alias{offGridWeights1D} \alias{offGridWeights2D} \alias{findGridBox} \title{ Utilities for fast spatial prediction. } \description{ Based on a stationary Gaussian process model these functions support fast prediction onto a grid using a sparse matrix approximation. They also allow for fast prediction to off-grid values (aka interpoltation) from an equally spaced rectangular grid and using a spatial model. The sparsity comes about because only a fixed number of neighboring grid points (NNSize) are used in the prediction. The prediction variance for off-grid location is also give in the returned object. These function are used as the basis for approximate conditional simulation for large spatial datasets asnd also for fast spatial prediction from irregular locations onto a grid. } \usage{ offGridWeights(s, gridList, np = 2, mKrigObject = NULL, Covariance = NULL, covArgs = NULL, aRange = NULL, sigma2 = NULL, giveWarnings = TRUE, debug=FALSE) offGridWeights1D(s, gridList, np = 2, mKrigObject = NULL, Covariance = NULL, covArgs = NULL, aRange = NULL, sigma2 = NULL, giveWarnings = TRUE, debug=FALSE ) offGridWeights2D(s, gridList, np = 2, mKrigObject = NULL, Covariance = NULL, covArgs = NULL, aRange = NULL, sigma2 = NULL, giveWarnings = TRUE, debug = FALSE,findCov = TRUE) addMarginsGridList( xObs, gridList, NNSize) findGridBox(s, gridList) mKrigFastPredictSetup(mKrigObject, gridList, NNSize, giveWarnings = TRUE) } \arguments{ \item{aRange}{ The range parameter.} \item{covArgs}{ If \code{mKrigObject} is not specified a list giving any additional arguments for the covariance function. } \item{Covariance}{ The stationary covariance function (taking pairwise distances as its first argument.) } \item{debug}{If TRUE returns intermediate calculations and structures for debugging and checking.} \item{findCov}{If TRUE the prediction variances (via the Kriging model and assumed covariance function) for the offgrid locations are found. If FALSE just the prediction weights are returned. This option is a bit faster. This switch only is implemented for the 2 D case since the extra computational demands for 1 D are modest.} \item{giveWarnings}{If TRUE will warn if two or more observations are in the same grid box. See details below.} \item{gridList}{ A list as the gridList format ( x and y components) that describes the rectagular grid. The grid must have at least np extra grid points beyond the range of the points in \code{s}. See \code{\link{grid.list}}. } \item{mKrigObject}{ The output object (Aka a list with some specfic components.) from either mKrig or spatialProcess. This has the information about the covariance function used to do the Kriging. The following items are coded in place of not supplying this object. See the example below for more details. } \item{np}{ Number of nearest neighbor grid points to use for prediction. \code{np = 1} will use the 4 grid points that bound the off grid point. \code{np = 2} will be a 4X4 subgrid with the middle grid box containing the off grid point. In general there will be \code{(2*np)^2} neighboring points uses. } \item{NNSize}{Same as \code{np}. } \item{s}{ Off grid spatial locations } \item{sigma2}{ Marginal variance of the process. } \item{xObs}{ Off grid spatial locations} } \details{ \strong{offGridWeights} This function creates the interpolation weights taking advantage of some efficiency in the covariance function being stationary, use of a fixed configuration of nearest neighbors, and Kriging predictions from a rectangular grid. The returned matrix is in spam sparse matrix format. See example below for the "one-liner" to make the prediction once the weights are computed. Although created primarily for (approximate) conditional simulation of a spatial process this function is also useful for interpolating to off grid locations from a rectangular field. It is also used for fast, but approximate prediction for Kriging with a stationary covariance. The function \code{offGridWeights} is a simple wrapper to call either the 1D or 2D functions In most cases one would not use these approximations for a 1D problem. However, the 1D algorithm is included as a separate function for testing and also because this is easier to read and understand the conversion between the Kriging weights for each point and the sparse matrix encoding of them. The interpolation errors are also computed based on the nearest neighbor predictions. This is returned as a sparse matrix in the component SE. If all observations are in different grid boxes then \code{SE} is diagonal and agrees with the square root of the component \code{predctionVariance} but if multiple observations are in the same grid box then SE has blocks of upper triangular matrices that can be used to simulate the prediction error dependence among observations in the same grid box. Explicitly if \code{obj} is the output object and there are \code{nObs} observations then \preformatted{error <- obj$SE\%*\% rnorm( nObs)} will simulate a prediction error that includes the dependence. Note that in the case that there all observations are in separate grid boxes this code line is the same as \preformatted{error <- sqrt(obj$predictionVariance)*rnorm( nObs)} It is always true that the prediction variance is given by \code{ diag( obj$SE\%*\% t( obj$SE))}. The user is also referred to the testing scripts \code{offGridWeights.test.R} and \code{offGridWeights.testNEW.R}in \code{tests} where the Kriging predictions and standard errors are computed explicitly and tested against the sparse matrix computation. This is helpful in defining exactly what is being computed. Returned value below pertains to the offGridWeights function. \strong{addMarginsGridList} This is a supporting function that adds extra grid points for a gridList so that every irregular point has a complete number of nearest neighbors. \strong{findGridBox}This is a handy function that finds the indices of the lower left grid box that contains the points in \code{s}. If the point is not contained within the range of the grid and NA is returned fo the index. This function assumes that the grid points are equally spaced.} \value{ \item{B}{A sparse matrix that is of dimension mXn with m the number of locations (rows) in \code{s} and n being the total number of grid points. \code{n = length(gridList$x)*length(gridList$y) } } \item{predictionVariance}{A vector of length as the rows of \code{s} with the Kriging prediction variance based on the nearest neighbor prediction and the specified covariance function. } \item{SE}{A sparse matrix that can be used to simulate dependence among prediction errors for observations in the same grid box. (See explanation above.)} } \references{ Bailey, Maggie D., Soutir Bandyopadhyay, and Douglas Nychka. "Adapting conditional simulation using circulant embedding for irregularly spaced spatial data." Stat 11.1 (2022): e446. } \author{ Douglas Nychka and Maggie Bailey } \seealso{ \link{interp.surface} , \link{mKrigFastPredict} } \examples{ # an M by M grid M<- 400 xGrid<- seq( -1, 1, length.out=M) gridList<- list( x= xGrid, y= xGrid ) np<- 3 n<- 100 # sample n locations but avoid margins set.seed(123) s<- matrix( runif(n*2, xGrid[(np+1)],xGrid[(M-np)]), n, 2 ) obj<- offGridWeights( s, gridList, np=3, Covariance="Matern", aRange = .1, sigma2= 1.0, covArgs= list( smoothness=1.0) ) # make the predictions by obj$B%*%c(y) # where y is the matrix of values on the grid # try it out on a simulated Matern field CEobj<- circulantEmbeddingSetup( gridList, cov.args=list( Covariance="Matern", aRange = .1, smoothness=1.0) ) set.seed( 333) Z<- circulantEmbedding(CEobj) # # Note that grid values are "unrolled" as a vector # for multiplication # predOffGrid<- obj$B%*% c( Z) predOffGrid<- obj$B\%*\% c( Z) set.panel( 1,2) zr<- range( c(Z)) image.plot(gridList$x, gridList$y, Z, zlim=zr) bubblePlot( s[,1],s[,2], z= predOffGrid , size=.5, highlight=FALSE, zlim=zr) set.panel() } \keyword{spatial} fields/man/minitri.Rd0000644000175100001440000000320014627454002014252 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{minitri} \alias{minitri} \title{ Mini triathlon results } \description{ Results from a mini triathlon sponsored by Bud Lite, held in Cary, NC, June 1990. Times are in minutes for the male 30-34 group. Man was it hot and humid! (DN) The events in order were swim: (1/2 mile) bike: (15 miles) run: (4 miles) This is a dataframe. Row names are the place within this age group based on total time. } \arguments{ \item{swim}{ swim times } \item{bike}{ bike times } \item{run}{ run times } } \keyword{datasets} % docclass is data % Converted by Sd2Rd version 1.21. fields/man/NorthAmericanRainfall.Rd0000644000175100001440000001303514637304031017006 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{NorthAmericanRainfall} \alias{NorthAmericanRainfall} \alias{NorthAmericanRainfall2} \docType{data} \title{ Observed North American summer precipitation from the historical climate network. } \description{ Average rainfall in tenths of millimeters for the months of June, July and August (JJA) for the period 1950-2010 (old version, 1700+ locations) or 1971-2023 (new version, 4800+ locations) and for North America. The old version uses monthly data from the Global Historical Climate Network (GHCN) version 2 and the new version uses Version 4. } %\usage{data(NorthAmericanRainfall)} \format{ For both versions the format is a list with components: "longitude" "latitude" "precip" "elevation" "precipSE" "trend" "trendSE" "type" "x.s" "sProjection" with elevation in meters, longitude as (-180,180), latitude as (-90, 90) and precipitaion in 1/10 mm ( precip/254 converts to inches of rainfall). Note that the usual convention is to report a total amount of rainfall over the season. Divide by 3 to get the mean. \code{precip} is the intercept for 1980.5 (1997 for new version) when a straight line least squares regression is fit to each station's record. SE is the companion standard error from the least squares fit. If the station is complete, then \code{precip} and \code{precipSE} will just be the mean and standard deviation adjusted for a linear trend. The estimated trend \code{trend} and and its standard error \code{trendSE} are also included. Also due to the centering, for complete data the intercept and trend estimate will be uncorrelated. The component \code{type} indicates whether the station has been "adjusted" (see below) or is still in "unadjusted" form. \code{x.s} is a useful transformation of locations into stereographic coordinates that reduces the inflation of North Canada due to the usual lon/lat coordinates. Specifically it is found by: \preformatted{ library(mapproj) xStereo<- mapproject( NorthAmericanRainfall$lon,NorthAmericanRainfall$lat, projection="stereographic") NorthAmericanRainfall$x.s<- cbind( xStereo$x, xStereo$y) hold<- .Last.projection() NorthAmericanRainfall$orientation<- hold$orientation NorthAmericanRainfall$projection <- hold$projection } } \source{ The monthly data used to construct \code{NorthAmericanRainfall} this summary was generously provided by Xuebin Zhang, however, the orignal source is freely available as the Global Historical Climate Network Version 2 Precipitation quality controlled, curated and served by the US National Center for Environmental Information. The adjusted data from this archive has been modified from its raw form to make the record more homogenous. Heterogenities can come from a variety of sources such as a moving the station a short distance or changes in instruments. See the National Centers for Envrionmental Information then Access Data and then GHCN. The new version \code{NorthAmericanRainfall2} uses the GHCN "Version 4" data product. There are substantially more stations reported in this data set. To reduce the size the stations for this R data set stations were selected if they had more than 80 percent of the months reported over the period 1971-2023. This subset amounts to 4893 locations. A simple linear regression was fit to each station record and the OLS trend, trend SE, trend line at 1997 is evaluated to get a "mean" rainfall estimate for this location. See the fields github repository for the source code and source data to create this data set. } \examples{ data(NorthAmericanRainfall) x<- cbind(NorthAmericanRainfall$longitude, NorthAmericanRainfall$latitude) y<- NorthAmericanRainfall$precip quilt.plot( x,y) world( add=TRUE) Zstat<- NorthAmericanRainfall$trend / NorthAmericanRainfall$trendSE quilt.plot( x, Zstat) \dontrun{ # with a better projection library( maps) library( mapproj) bubblePlot( NorthAmericanRainfall$x.s, NorthAmericanRainfall$precip, size=.3, col=rev(tim.colors()) ) map("world", projection=NorthAmericanRainfall$projection, orientation= NorthAmericanRainfall$orientation, add=TRUE, col="grey30") } # note station sparsity outside CONUS and lower CA. # comparing older and newer versions data(NorthAmericanRainfall) bubblePlot( NorthAmericanRainfall$lon, NorthAmericanRainfall$lat, NorthAmericanRainfall$precip, size=.3, col=rev(tim.colors()) ) world( add=TRUE, col="grey30") data(NorthAmericanRainfall2) bubblePlot( NorthAmericanRainfall2$lon,NorthAmericanRainfall2$lat, NorthAmericanRainfall2$precip, size=.3, col=rev(tim.colors()), xlim= c(-130,-50)) world( add=TRUE, col="grey30") } \keyword{datasets} fields/man/predictSE.Krig.Rd0000644000175100001440000001262014627454002015362 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{predictSE} \alias{predictSE} \alias{predictSE.Krig} \alias{predictSE.mKrig} \alias{predictSEUsingKrigA} \title{ Standard errors of predictions for Krig spatial process estimate } \description{ Finds the standard error ( or covariance) of prediction based on a linear combination of the observed data. The linear combination is usually the "Best Linear Unbiased Estimate" (BLUE) found from the Kriging equations. This statistical computation is done under the assumption that the covariance function is known. } \usage{ predictSE(object, ...) \method{predictSE}{Krig}(object, x = NULL, cov = FALSE, verbose = FALSE,...) \method{predictSE}{mKrig}(object, xnew = NULL, Z = NULL, verbose = FALSE, drop.Z = FALSE, ...) } \arguments{ \item{drop.Z}{If FALSE find standard error without including the additional spatial covariates described by \code{Z}. If TRUE find full standard error with spatial covariates if they are part of the model.} \item{object}{ A fitted object that can be used to find prediction standard errors. This is usually from fitting a spatial model to data. e.g. a Krig or mKrig object. } \item{xnew}{ Points to compute the predict standard error or the prediction cross covariance matrix. } \item{x}{ Same as \code{xnew} -- points to compute the predict standard error or the prediction cross covariance matrix. } \item{cov}{ If TRUE the full covariance matrix for the predicted values is returned. Make sure this will not be big if this option is used. ( e.g. 50X50 grid will return a matrix that is 2500X2500!) If FALSE just the marginal standard deviations of the predicted values are returned. Default is FALSE -- of course. } \item{verbose}{If TRUE will print out various information for debugging.} \item{\dots}{ These additional arguments passed to the predictSE function. } \item{Z}{Additional matrix of spatial covariates used for prediction. These are used to determine the additional covariance contributed in teh fixed part of the model.} } \value{ A vector of standard errors for the predicted values of the Kriging fit. } \details{ The predictions are represented as a linear combination of the dependent variable, Y. Call this LY. Based on this representation the conditional variance is the same as the expected value of (P(x) + Z(X) - LY)**2. where P(x)+Z(x) is the value of the surface at x and LY is the linear combination that estimates this point. Finding this expected value is straight forward given the unbiasedness of LY for P(x) and the covariance for Z and Y. In these calculations it is assumed that the covariance parameters are fixed. This is an approximation since in most cases they have been estimated from the data. It should also be noted that if one assumes a Gaussian field and known parameters in the covariance, the usual Kriging estimate is the conditional mean of the field given the data. This function finds the conditional standard deviations (or full covariance matrix) of the fields given the data. There are two useful extensions supported by this function. Adding the variance to the estimate of the spatial mean if this is a correlation model. (See help file for Krig) and calculating the variances under covariance misspecification. The function \code{predictSE.KrigA} uses the smoother matrix ( A(lambda) ) to find the standard errors or covariances directly from the linear combination of the spatial predictor. Currently this is also the calculation in \code{predictSE.Krig} although a shortcut is used \code{predictSE.mKrig} for mKrig objects. } \seealso{ Krig, predict.Krig, predictSurfaceSE } \examples{ # # Note: in these examples predictSE will default to predictSE.Krig using # a Krig object fit<- Krig(ChicagoO3$x,ChicagoO3$y,cov.function="Exp.cov", aRange=10) # Krig fit predictSE.Krig(fit) # std errors of predictions at obs. # make a grid of X's xg<-make.surface.grid( list(East.West=seq(-27,34,,20),North.South=seq(-20,35,,20))) out<- predictSE(fit,xg) # std errors of predictions #at the grid points out is a vector of length 400 #reshape the grid points into a 20X20 matrix etc. out.p<-as.surface( xg, out) surface( out.p, type="C") # this is equivalent to the single step function # (but default is not to extrapolation beyond data # out<- predictSurfaceSE( fit) # image.plot( out) } \keyword{spatial} % docclass is function % Converted by Sd2Rd version 1.21. fields/man/colorbar.plot.Rd0000644000175100001440000001221514627454002015365 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{colorbar.plot} \alias{colorbar.plot} %- Also NEED an '\alias' for EACH other topic documented here. \title{ Adds color scale strips to an existing plot.} \description{ Adds one or more color scales in a horizontal orientation, vertical orientation to an existing plot. } \usage{ colorbar.plot(x, y, strip, strip.width = 0.1, strip.length = 4 * strip.width, zrange = NULL, adj.x = 0.5, adj.y = 0.5, col = tim.colors(256), horizontal = TRUE, ...) } \arguments{ \item{x}{x position of strip in user coordinates } \item{y}{y position of strip in user coordinates} \item{strip}{ Either a vector or matrix giving the values of the color strip(s). If a matrix then strips are assumed to be the columns. } \item{strip.width}{ Width of strip as a fraction of the plotting region. } \item{strip.length}{ Length of strip as a function of the plotting region. Default is a pleasing 8 times width. } \item{zrange}{If a vector these are the common limits used for assigning the color scale. Default is to use the range of values in strip. If a two column matrix, rows are used as the limits for each strip.} \item{adj.x}{ Location of strip relative to x coordinate. Most common values are .5 (centered), 0 (right end at x) and 1 (left end of at x). These are the same conventions that are used for \code{adj} in positioning text.} \item{adj.y}{Location of strip relative to y coordinate. Same rules as \code{adj.x} } \item{col}{ Color table used for strip. Default is our favorite tim.colors being a scale from a dark blue to dark red.} \item{horizontal}{ If TRUE draws strips horizontally. If FALSE strips are drawn vertically } \item{\dots}{ optional graphical arguments that are passed to the \code{image} function. } } \details{ This function draws the strips as a sequence of image plots added to the existing plot. The main work is in creating a grid ( x,y) for the image that makes sense when superimposed on the plot. Note that although the columns of strip are considered as separate strips these can be oriented either horizontally or vertically based on the value of \code{horizontal}. The rows of zrange are essentially the \code{zlim} argument passed to the \code{image} function when each strip is drawn. Don't forget to use \code{locator} to interactively determine positions. \code{text} can be used to label points neatly in conjunction with setting adj.x and adj.y. Although this function is inefficient for placing images at arbitrary locations on a plot the code can be easily adapted to do this. This function was created to depict univariate posterior distribution on a map. The values are quantiles of the distribution and the strips when added under a common color scale give an overall impression of location and scale for several distributions. } \author{Doug Nychka} \seealso{ image.plot, arrow.plot, add.image} \examples{ # set up a plot but don't plot points and no "box" plot( 1:10, (1:10)*10, type="n", bty="n") # of course this could be anything y<- cbind( 1:15, (1:15)+25) colorbar.plot( 2.5, 30, y) points( 2.5,30, pch="+", cex=2, adj=.5) # note that strip is still in 1:8 aspect even though plot has very # different ranges for x and y. # adding legend using image.plot zr<- range( c( y)) image.plot( legend.only=TRUE, zlim= zr) # see help(image.plot) to create more room in margin etc. zr<- rbind( c(1,20), c(1,100)) # separate ranges for columns of y. colorbar.plot( 5, 70, y, adj.x=0, zrange= zr) # some reference lines to show placement xline( 5, lty=2) # strip starts at x=5 yline(70, lty=2) # strip is centered around y=7 (because adj.y=.5 by default) # many strips on common scale. y<- matrix( 1:200, ncol=10) colorbar.plot( 2, 75, y, horizontal=FALSE, col=rainbow(256)) # Xmas strip y<- cbind( rep( c(1,2),10)) y[15] <- NA # NA's should work colorbar.plot( 6, 45, y, adj.y=1,col=c("red", "green")) text(6,48,"Christmas strip", cex=2) # lennon thumbnail # there are better ways to this ... see add.image for example. data( lennon) colorbar.plot( 7.5,22, lennon, strip.width=.25, strip.length=.25, col=grey(seq( 0,1,,256))) } \keyword{ hplot }% at least one, from doc/KEYWORDS fields/man/qsreg.Rd0000644000175100001440000001471514637343706013746 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{qsreg} \alias{qsreg} \title{ Quantile or Robust spline regression } \description{ Uses a penalized likelihood approach to estimate the conditional quantile function for regression data. This method is only implemented for univariate data. For the pairs (X,Y) the conditional quantile, f(x), is P( Y=6]) fit50.subjective<-qsreg(rat.diet$t,rat.diet$con, lam= lambda.good) fit10<-qsreg(rat.diet$t,rat.diet$con, alpha=.1, nstep.cv=200) fit90<-qsreg(rat.diet$t,rat.diet$con, alpha=.9, nstep.cv=200) # spline fits at 50 equally spaced points sm<- cbind( predict( fit10, xg), predict( fit50.subjective, xg),predict( fit50, xg), predict( fit90, xg)) # and now zee data ... plot( fit50$x, fit50$y) # and now zee quantile splines at 10% 50% and 90%. # matlines( xg, sm, col=c( 3,3,2,3), lty=1) # the spline } } \keyword{smooth} % docclass is function % Converted by Sd2Rd version 1.21. fields/man/print.Krig.Rd0000644000175100001440000000325614627454002014641 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{print.Krig} \alias{print.Krig} \title{ Print kriging fit results. } \description{ Prints the results from a fitting a spatial process estimate (Krig) } \usage{ \method{print}{Krig}(x,digits=4,...) } \arguments{ \item{x}{ Object from Krig function. } \item{digits}{ Number of significant digits in printed output. Default is 4. } \item{\dots}{ Other arguments to print.} } \value{ Selected summary results from Krig. } \seealso{ print, summary.Krig, Krig } \examples{ fit<- Krig(ChicagoO3$x,ChicagoO3$y, aRange=100) print(fit) # print the summary fit # this will work too } \keyword{spatial} % docclass is function % Converted by Sd2Rd version 1.21. fields/man/rdist.Rd0000644000175100001440000001213014627454002013726 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{rdist} \alias{rdist} \alias{fields.rdist.near} \alias{rdist.vec} \title{ Euclidean distance matrix or vector } \description{ Given two sets of locations \code{rdist} and \code{fields.rdist.near} computes the full Euclidean distance matrix among all pairings or a sparse version for points within a fixed threshhold distance. \code{rdist.vec} computes a vector of pairwise distances between corresponding elements of the input locations and is used in empirical variogram calculations. } \usage{ rdist(x1, x2 = NULL, compact = FALSE) fields.rdist.near(x1,x2, delta, max.points= NULL, mean.neighbor = 50) rdist.vec(x1, x2) } \arguments{ \item{x1}{ Matrix of first set of locations where each row gives the coordinates of a particular point. } \item{x2}{ Matrix of second set of locations where each row gives the coordinates of a particular point. If this is not passed or given as NULL x1 is used. } \item{compact}{ Whether or not to return a distance matrix in compact form inheriting class ``dist'' (as returned by the \code{dist} function in base R). Only values for one triangle of the symmetric distance matrix are returned. This saves time evaluating the returned matrix and the covariance. Note that this option is ignored when \code{x2} is not NULL. } \item{delta}{ Threshhold distance. All pairs of points that separated by more than delta in distance are ignored. } \item{max.points}{Size of the expected number of pairs less than or equal to delta. The default is set to the nrow(x1)*mean.neighbor. } \item{mean.neighbor}{ Sets the temp space for max.points} } \section{Returned values}{ Let D be the mXn distance matrix, with m= nrow(x1) and n=nrow( x2). The elements are the Euclidean distances between the all locations x1[i,] and x2[j,]. That is, D.ij = sqrt( sum.k (( x1[i,k] - x2[j,k]) **2 ). \code{rdist} The distance matrix D is returned. \code{fields.rdist.near} The elements of D that are less than or equal to delta are returned in the form of a list. List components: \describe{ \item{ind}{ Row and column indices of elements } \item{ra}{ (Distances ( D.ij)} \item{da}{ Dimensions of full distance matrix. } } This is a simple sparse format that can be manipulated by several fields functions. E.g. ind2spam will convert this list to the format used by the spam sparse matrix package. ind2full will convert this to an ordinary matrix with zeroes. } \details{ More about fields.rdist.near: The sparse version is designed to work with the sparse covariance functions in fields and anticipates that the full matrix, D is too large to store. The argument max.points is set as a default to nrow( x1)*100 and allocates the space to hold the sparse elements. In case that there are more points that are within delta the function stops with an error but lists the offending rows. Just rerun the function with a larger choice for max.points It possible that for certain x1 points there are no x2 points within a distance delta. This situation will cause an error if the list is converted to spam format. } \author{Doug Nychka, John Paige} \seealso{ \link{stationary.cov}, \link{Exp.cov}, \link{rdist.earth}, \link{dist}, ind2spam, ind2full } \examples{ out<- rdist( ChicagoO3$x) # out is a 20X20 matrix. out2<- rdist( ChicagoO3$x[1:5,], ChicagoO3$x[11:20,]) #out2 is a 5X10 matrix set.seed(123) x1<- matrix( runif( 20*2), 20,2) x2<- matrix( runif( 15*2), 15,2) out3<- fields.rdist.near( x1,x2, delta=.5) # out3 is a sparse structure in list format # or to "save" work space decrease size of temp array out3<- fields.rdist.near( x1,x2, delta=.5,max.points=20*15) # explicitly reforming as a full matrix temp<- matrix( NA, nrow=out3$da[1], ncol= out3$da[2]) temp[ out3$ind] <- out3$ra # or justuse temp<- spind2full( out3) image( temp) # this is identical to temp2<- rdist( x1,x2) temp2[ temp2<= .5] <- NA #compute pairwise distance vector x1 = 1:10 x2 = seq(from=10, to=1) rdist.vec(x1, x2) #calculate output matrix in compact form: distOut = rdist(1:10, compact=TRUE) distOut as.vector(distOut) } \keyword{spatial} % docclass is function % Converted by Sd2Rd version 1.21. fields/man/grid.list.Rd0000644000175100001440000002332314627454002014506 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{grid list} \alias{grid list} \alias{grid.list} \alias{fields.x.to.grid} \alias{parse.grid.list} \alias{fields.convert.grid} \alias{discretize.image} \alias{make.surface.grid} \alias{unrollZGrid} \alias{makeMultiIndex} \title{ Some simple functions for working with gridded data and the grid format (grid.list) used in fields. } \description{ The object grid.list refers to a list that contains information for evaluating a function on a 2-dimensional grid of points. If a function has more than two independent variables then one also needs to specify the constant levels for the variables that are not being varied. This format is used in several places in fields for functions that evaluate function estimates and plot surfaces. These functions provide some default conversions among information and the gird.list. The function \code{discretize.image} is a useful tool for "registering" irregular 2-d points to a grid. } \usage{ makeMultiIndex(M) parse.grid.list( grid.list, order.variables="xy") fields.x.to.grid(x,nx=80, ny=80, xy=c(1,2)) fields.convert.grid( midpoint.grid ) discretize.image(x, m = 64, n = 64, grid = NULL, expand = c(1 + 1e-08, 1 + 1e-08), boundary.grid = FALSE, na.rm = TRUE) make.surface.grid( grid.list) unrollZGrid( grid.list, ZGrid) } \arguments{ \item{M}{An vector of integers.} \item{grid.list}{ No surprises here -- a grid list! These can be unequally spaced.} \item{order.variables}{ If "xy" the x variable will be subsequently plotted as the horizontal variable. If "yx" the x variable will be on the vertical axis.} \item{x}{ A matrix of independent variables such as the locations of observations given to Krig.} \item{nx}{Number of grid points for x variable.} \item{ny}{Number of grid points for y variable.} \item{m}{Number of grid points for x variable.} \item{n}{Number of grid points for y variable.} \item{na.rm}{Remove missing values if TRUE} \item{xy}{The column positions that locate the x and y variables for the grid.} \item{grid}{ A grid list!} \item{expand}{ A scalar or two column vector that will expand the grid beyond the range of the observations.} \item{midpoint.grid}{ Grid midpoints to convert to grid boundaries.} \item{boundary.grid}{ If TRUE interpret grid points as boundaries of grid boxes. If FALSE interpret as the midpoints of the boxes. } \item{ZGrid}{An array or list form of covariates to use for prediction. This must match the \code{grid.list} argument. e.g. ZGrid and grid.list describe the same grid. If ZGrid is an array then the first two indices are the x and y locations in the grid. The third index, if present, indexes the covariates. e.g. For evaluation on a 10X15 grid and with 2 covariates. \code{ dim( ZGrid) == c(10,15, 2)}. If ZGrid is a list then the components x and y shold match those of grid.list and the z component follows the shape described above for the no list case. } } \details{ \code{makeMultiIndex} creates an expanded set of indices to referencce a regular grid. M are L integers with product prodM Will create a prodM by L matrix that is all combinations of (1:M[i]) for i =1,2, ...L This is organized in the standard array ordering where the first column varies the fastest for M = c( 3,2,4) the result will be a 24X3 matrix with the entries: \preformatted{ 1,1,1 2,1,1 3,1,1 1,2,1 2,2,1 3,2,1 etc ... ... and ending with 2,2,4 3,2,4 } \strong{All about grid lists:} The form of a grid.list is \code{list( var.name1= what1 , var.name2=what2 , ... var.nameN=what3)} Here var.names are the names of the independent variables. The what options describe what should be done with this variable when generating the grid. These should either an increasing sequence of points or a single vaules. Obviously there should be only be two variables with sequences to define a grid for a surface. Most of time the gridding sequences are equally spaced and are easily generated using the \code{seq} function. Also throughout fields the grid points are typically the midpoints of the grid rather the grid box boundaries. However, these functions can handle unequally spaced grids and the logical boundary.grid can indicate a grid being the box boundaries. The variables in the list components are assumed to be in the same order as they appear in the data matrix. A useful function that expands the grid from the grid.list description into a full set of locations is \code{make.surface.grid} and is just a wrapper around the R base function \code{expand.grid}. A typical operation is to go from a grid.list to the set of grid locations. Evaluate a fucntion at these lcoations and then reformat this as an image for plotting. Here is how to do this cleanly: \preformatted{ grid.list<- list( x= 1:10, y=1:15) xg<- make.surface.grid(grid.list) # look at a surface dependin on xg locations z<- xg[,1] + 2*xg[,2] out<- list( x=grid.list$x, y= grid.list$y, z=matrix( z, nrow=10, ncol=15)) # now for example image.plot( out) } The key here is that \code{xg} and \code{matrix} both organize the grid in the same order. Some fields internal functions that support interpreting grid list format are: \code{fields.x.to.grid}: Takes an "x" matrix of locations or independent variables and creates a reasonable grid list. This is used to evaluate predicted surfaces when a grid list is not explicited given to predictSurface. The variables (i.e. columns of x) that are not part of the grid are set to the median values. The x grid values are \code{nx} equally spaced points in the range \code{x[, xy[1]]}. The y grid values are \code{ny} equally spaced points in the range \code{x[, xy[2]]}. \code{parse.grid.list}: Takes a grid list and returns the information in a more expanded list form that is easy to use. This is used, for example, by predictSurface to figure out what to do! \code{fields.convert.grid}: Takes a vector of n values assumed to be midpoints of a grid and returns the n+1 boundaries. See how this is used in discretize.image with the cut function. This function will handle unequally spaced grid values. \code{discretize.image}: Takes a vector of locations and a 2-d grid and figures out to which boxes they belong. The output matrix ind has the grid locations. If boundary.grid is FALSE then the grid list (grid) is assumed to be grid midpoints. The grid boundaries are taken to be the point half way between these midpoints. The first and last boundaries points are determined by extrapolating so that the first and last box has the midpoint in its center. (See the code in fields.convert.grid for details.) If grid is NULL then midpoints are found from m and n and the range of the x matrix. \code{unrollZGrid} Checks that the ZGrid object is compatible with th e grid.list and concatenates the grid arrays into vectors. This version of the covariates are used the usual predict function. } \seealso{ as.surface, predictSurface, plot.surface, surface, expand.grid, as.image } \examples{ #Given below are some examples of grid.list objects and the results #when they are used with make.surface.grid. Note that #make.surface.grid returns a matrix that retains the grid.list #information as an attribute. grid.l<- list( 1:3, 2:5) make.surface.grid(grid.l) grid.l <- list( 1:3, 10, 1:3) make.surface.grid(grid.l) #The next example shows how the grid.list can be used to #control surface plotting and evaluation of an estimated function. # first create a test function set.seed( 124) X<- 2*cbind( runif(30), runif(30), runif(30)) -1 dimnames( X)<- list(NULL, c("X1","X2","X3")) y<- X[,1]**2 + X[,2]**2 + exp(X[,3]) # fit an interpolating thin plate spline out<- Tps( X,y) grid.l<- list( X1= seq( 0,1,,20), X2=.5, X3=seq(0,1,,25)) surface( out, grid.list=grid.l) # surface plot based on a 20X25 grid in X1 an X3 # over the square [0,2] and [0,2] # holding X2 equal to 1.0. # # test of discretize to make sure points on boundaries are counted right set.seed(123) x<- matrix( runif(200), 100,2) look<- discretize.image( x, m=2,n=2) xc<- seq(min(x[,1]), max(x[,1]),,5) xc<- xc[2:4] yc<- seq(min(x[,2]), max(x[,2]),,5) yc<- yc[2:4] grid <- list( x= xc, y= yc) look2<- discretize.image( x, m=2,n=2) table( look$index ) table( look2$index ) # indicator image of discretized locations look<- discretize.image( RMprecip$x, m=15, n=15) image.plot( look$grid$x, look$grid$y,look$hist ) # actual locations points( RMprecip$x,col="magenta", pch=".") } \keyword{misc} % docclass is function % Converted by Sd2Rd version 1.21. fields/man/as.surface.Rd0000644000175100001440000000754714627454002014653 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{as.surface} \alias{as.surface} \title{ Creates an "surface" object from grid values. } \description{ Reformats the vector from evaluating a function on a grid of points into a list for use with surface plotting function. The list has the usual components x,y and z and is suitable for use with persp, contour, image and image.plot. } \usage{ as.surface(obj, z, location=NULL, order.variables="xy") } \arguments{ \item{obj}{ A description of the grid used to evaluate the function. This can either be in the form of a grid.list ( see help file for grid.list) or the matrix of grid of points produced by make.surface.grid. In the later case obj is a matrix with the grid.list as an attribute. } \item{z}{ The value of the function evaluated at the gridded points. } \item{location}{A logical or two column matrix of indices indicating the location of the z values within the image matrix.} \item{order.variables}{ Either "xy" or "yx" specifies how the x and y variables used to evaluate the function are matched with the x and y grids in the surface object. } } \value{ A list of class surface. This object is a modest generalization of the list input format (x,y,z,) for the S functions contour, image or persp. \item{x}{ The grid values in the X-axis } \item{y}{ The grid values in the Y-axis } \item{z}{ A matrix of dimensions nrow= length of x and ncol= length of y with entries being the grid point value reformatted from z. } } \details{ This function was written to simply to go back and forth between a matrix of gridded values and the stacked vector obtained by stacking columns. The main application is evaluating a function at each grid point and then reforming the results for plotting. (See example below.) If zimage is matrix of values then the input vector is c( zimage). To go from the stacked vector to the matrix one needs the the nrow ncol and explains why grid information must also be specified. Note that the z input argument must be in the order values in order of stacking columns of the image. This is also the order of the grid points generated by make.surface.grid. To convert irregular 2-d data to a surface object where there are missing cells see the function as.image. } \seealso{ grid.list, make.surface.grid, surface, contour, image.plot, as.image } \examples{ # Make a perspective of the surface Z= X**2 -Y**2 # Do this by evaluating quadratic function on a 25 X 25 grid grid.l<-list( abcissa= seq( -2,2,,15), ordinate= seq( -2,2,,20)) xg<-make.surface.grid( grid.l) # xg is a 300X2 matrix that has all pairs of X and Y grid values z<- xg[,1]**2 - xg[,2]**2 # now fold z in the matrix format needed for persp out.p<-as.surface( xg, z) persp( out.p) # also try plot( out.p) to see the default plot for a surface object } \keyword{manip} % docclass is function % Converted by Sd2Rd version 1.21. fields/man/CovarianceUpper.Rd0000644000175100001440000000434314627454002015676 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{CovarianceUpper} \alias{ExponentialUpper} \title{ Evaluate covariance over upper triangle of distance matrix } \description{ Evaluates the covariance over the upper triangle of a distance matrix rather than over the entire matrix to reduce computation time. Note that the \code{chol} function only requires the upper triangle of the covariance matrix to perform the Cholesky decomposition. } \usage{ ExponentialUpper(distMat, range = 1, alpha = 1/range, theta = NULL) } \arguments{ \item{distMat}{ The distance matrix to evaluate the covariance over. } \item{range}{ Range parameter default is one. Note that the scale can also be specified through the "aRange" scaling argument used in fields covariance functions) } \item{alpha}{ 1/range} \item{theta}{ Also the range parameter.} } \value{ The covariance matrix, where only the upper triangle is calculated. } \author{ John Paige } \seealso{ \code{\link[fields]{Exponential}} } \examples{ set.seed(123) #a distance matrix coords = matrix(runif(10), ncol=2) distMat = rdist(coords) #compute covariance matrix, but only over the upper triangle upperCov = ExponentialUpper(distMat, range=.1) print(distMat) print(upperCov) } \keyword{ covariance } fields/man/xline.Rd0000644000175100001440000000307514663716700013736 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{xline} \alias{xline} \title{ Draw a vertical line } \description{ Adds vertical lines in the plot region. } \usage{ xline(x, ...) } \arguments{ \item{x}{ Values on x axis specifying location of vertical lines. } \item{\dots}{ Any ploting options for abline. } } \seealso{ \link{yline}, \link{abline} } \examples{ plot( 1:10) xline( 6.5, col=2) world( col=3) yline( seq( -80,80,10),col=4, lty=2) xline( seq( -180,180,10),col=4,lty=2) yline( 0, lwd=2, col=4) } \keyword{aplot} % docclass is function % Converted by Sd2Rd version 1.21. fields/man/stats.Rd0000644000175100001440000000506314627454002013746 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{stats} \alias{stats} \title{ Calculate summary statistics } \description{ Various summary statistics are calculated for different types of data. } \usage{ stats(x, by) } \arguments{ \item{x}{ The data structure to compute the statistics. This can either be a vector, matrix (data sets are the columns), or a list (data sets are the components). } \item{by}{ If x is a vector, an optional vector (either character or numerical) specifying the categories to divide x into separate data sets. } } \value{ A matrix where rows index the summary statistics and the columns index the separate data sets. } \details{ Stats breaks x up into separate data sets and then calls describe to calculate the statistics. Statistics are found by columns for matrices, by components for a list and by the relevent groups when a numeric vector and a by vector are given. The default set of statistics are the number of (nonmissing) observations, mean, standard deviation, minimum, lower quartile, median, upper quartile, maximum, and number of missing observations. If any data set is nonnumeric, missing values are returned for the statistics. The by argument is a useful way to calculate statistics on parts of a data set according to different cases. } \seealso{ stats.bin, stats.bplot, describe } \examples{ #Statistics for 8 normal random samples: zork<- matrix( rnorm(200), ncol=8) stats(zork) zork<- rnorm( 200) id<- sample( 1:8, 200, replace=TRUE) stats( zork, by=id) } \keyword{univar} % docclass is function % Converted by Sd2Rd version 1.21. fields/man/image.cov.Rd0000644000175100001440000002177414627454002014467 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{image.cov} \alias{stationary.image.cov} \alias{Exp.image.cov} \alias{Rad.image.cov} \alias{wendland.image.cov} \alias{matern.image.cov} \title{ Exponential, Matern and general covariance functions for 2-d gridded locations. } \description{ Given two sets of locations defined on a 2-d grid efficiently multiplies a cross covariance with a vector. The intermediate compuations (the setup) can also be used for fast simulation of the processes on a grid using the circulant embedding technique. } \usage{ stationary.image.cov(ind1, ind2, Y, cov.obj = NULL, setup = FALSE, grid, M=NULL,N=NULL,cov.function="stationary.cov", delta = NULL, cov.args = NULL, ...) Exp.image.cov(ind1, ind2, Y, cov.obj = NULL, setup = FALSE, grid, ...) Rad.image.cov(ind1, ind2, Y, cov.obj = NULL, setup = FALSE, grid, ...) matern.image.cov(ind1, ind2, Y, cov.obj = NULL, setup = FALSE, grid, M=NULL,N=NULL,aRange= 1.0, smoothness=.5, theta=NULL) wendland.image.cov(ind1, ind2, Y, cov.obj = NULL, setup = FALSE, grid, M = NULL, N = NULL, cov.args=NULL, ...) } \arguments{ \item{ind1}{ Matrix of indices for first set of locations this is a two column matrix where each row is the row/column index of the image element. If missing the default is to use all grid locations. } \item{ind2}{ Matrix of indices for second set of locations. If missing this is taken to be ind2. If ind1 is missing ind2 is coerced to be all grid locations. } \item{Y}{ Vector to multiply by the cross covariance matrix. Y must be the same locations as those referred to by ind2. } \item{cov.args}{Any additional arguments or parameters to the covariance function.} \item{cov.obj}{ A list with the information needed to do the multiplication by convolutions. This is usually found by using the returned list when setup=T. } \item{cov.function}{Name of the (stationary) covariance function.} \item{setup}{ If true do not do the multiplication but just return the covariance object required by this function. } \item{delta}{A distance that indicates the range of the covariance when it has compact support. For example this is the aRange parameter in the Wendland covariance.} \item{grid}{ A grid list giving the X and Y grids for the image. (See example below.) This is only required if setup is true. } \item{M}{ Size of x-grid used to compute multiplication (see notes on image.smooth for details) by the FFT. If NULL, the default for M is the largest power of 2 greater than or equal to 2*m where m is the length of the x component of the grid. This will give an exact result but smaller values of M will yield an approximate, faster result. } \item{N}{Size of y-grid used to compute multiplication by the FFT.} \item{aRange}{Scale parameter for Matern.} \item{theta}{Same as aRange.} \item{smoothness}{Smoothness parameter for Matern (.5=Exponential)} \item{\dots}{ Any arguments to pass to the covariance function in setting up the covariance object. This is only required if setup is TRUE. For \code{stationary.image.cov} one can include \code{V} a matrix reflecting a rotation and scaling of coordinates. See stationary.cov for details. } } \value{ A vector that is the multiplication of the cross covariance matrix with the vector Y. } \details{ This function was provided to do fast computations for large numbers of spatial locations and supports the conjugate gradient solution in krig.image. In doing so the observations can be irregular spaced but their coordinates must be 2-dimensional and be restricted to grid points. (The function as.image will take irregular, continuous coordinates and overlay a grid on them.) Returned value: If ind1 and ind2 are matrices where nrow(ind1)=m and nrow(ind2)=n then the cross covariance matrix, Sigma, is an mXn matrix (i,j) element is the covariance between the grid locations indexed at ind1[i,] and ind2[j,]. The returned result is Sigma multiplied by Y. Note that one can always recover the coordinates themselves by evaluating the grid list at the indices. E.g. If \code{x} and \code{y} are the grids for the X and Y dimensions, \code{cbind( x[ind1[,1]], y[ind1[,2]))} will give the coordinates associated with ind1. Clearly it is better just to work with ind1! Functional Form: Following the same form as Exp.cov stationary.cov for irregular locations, the covariance is defined as phi( D.ij) where D.ij is the Euclidean distance between x1[i,] and x2[j,] but having first been scaled by aRange. Specifically, D.ij = sqrt( sum.k (( x1[i,k] - x2[j,k]) /aRange[k])**2 ). See \code{Matern} for the version of phi for the Matern family. Note that if aRange is a scalar then this defines an isotropic covariance function. Implementation: This function does the multiplication on the full grid efficiently by a 2-d FFT. The irregular pattern in Y is handled by padding with zeroes and once that multiplication is done only the appropriate subset is returned. As an example assume that the grid is 100X100 let big.Sigma denote the big covariance matrix among all grid points ( If the parent grid is 100x100 then big.Sigma is 10K by 10K !) Here are the computing steps: temp<- matrix( 0, 100,100) temp[ ind2] <- Y temp2<- big.Sigma\%*\% temp temp2[ind1] Notice how much we pad with zeroes or at the end throw away! Here the matrix multiplication is effected through convolution/FFT tricks to avoid creating and multiplying big.Sigma explicitly. It is often faster to multiply the regular grid and throw away the parts we do not need then to deal directly with the irregular set of locations. Note: In this entire discussion Y is treated as vector. However if one has complete data then Y can also be interpreted as a image matrix conformed to correspond to spatial locations. See the last example for this distinction. } \seealso{ smooth.2d, as.image, krig.image, stationary.cov } \examples{ # multiply 2-d isotropic exponential with aRange=4 by a random vector junk<- matrix(rnorm(100*100), 100,100) cov.obj<- stationary.image.cov( setup=TRUE, grid=list(x=1:100,y=1:100),aRange=8) result<- stationary.image.cov(Y=junk,cov.obj=cov.obj) image( matrix( result, 100,100)) # NOTE that is also a smoother! # to do it again, no setup is needed # e.g. # junk2<- matrix(rnorm(100**2, 100,100)) # result2<- stationary.image.cov(Y=junk2, cov.obj=cov.obj) # generate a grid and set of indices based on discretizing the locations # in the precip dataset out<-as.image( RMprecip$y, x= RMprecip$x) ind1<- out$ind grid<- list( x= out$x, y=out$y) # # discretized x locations to use for comparison xd<- cbind( out$x[ out$ind[,1]], out$y[ out$ind[,2]] ) # setup to create cov.obj for exponential covariance with range= 1.25 cov.obj<- stationary.image.cov( setup=TRUE, grid=grid, aRange=1.25) # multiply covariance matrix by an arbitrary vector junk<- rnorm(nrow( ind1)) result<- stationary.image.cov( ind1, ind1, Y= junk,cov.obj=cov.obj) # The brute force way would be # result<- stationary.cov( xd, xd, aRange=1.25, C=junk) # or # result<- stationary.cov( xd, xd, aRange=1.25) %*% junk # both of these take much longer # evaluate the covariance between all grid points and the center grid point Y<- matrix(0,cov.obj$m, cov.obj$n) Y[32,32]<- 1 result<- stationary.image.cov( Y= Y,cov.obj=cov.obj) # covariance surface with respect to the grid point at (32,32) # # reshape "vector" as an image temp<- matrix( result, cov.obj$m,cov.obj$n) image.plot(cov.obj$grid$x,cov.obj$grid$y, temp) # or persp( cov.obj$grid$x,cov.obj$grid$y, temp) # check out the Matern grid<- list( x= seq(-105,-99,,64), y= seq( 40,45,,64)) cov.obj<- matern.image.cov( setup=TRUE, grid=grid, aRange=.55, smoothness=1.0) Y<- matrix(0,64,64) Y[16,16]<- 1 result<- matern.image.cov( Y= Y,cov.obj=cov.obj) temp<- matrix( result, cov.obj$m,cov.obj$n) image.plot( cov.obj$grid$x,cov.obj$grid$y, temp) # Note we have centered at the location (grid$x[16],grid$y[16]) for this case # using sim.rf to simulate an Matern field look<- sim.rf( cov.obj) image.plot( grid$x, grid$y, look) } \keyword{spatial} % docclass is function % Converted by Sd2Rd version 1.21. fields/man/summary.ncdf.Rd0000644000175100001440000000402514627454002015213 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{summary.ncdf} \alias{summary.ncdf} %- Also NEED an '\alias' for EACH other topic documented here. \title{Summarizes a netCDF file handle} \description{ Provides a summary of the variable names and sizes from the handle returned from netCDF file. } \usage{ \method{summary}{ncdf}(object,...) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{object}{ The "handle" returned by the \code{read.ncdf} function from the ncdf package. } \item{\dots}{ Other arguments to pass to this function. Currently, no other arguments are used. } } \details{ This function is out of place in fields but was included because often large geophysical data sets are in netCDF format and the ncdf R package is also needed. To date the summary capability in the ncdf package is limited and this function is used to supplement it use. The function is also a a useful device to see how the ncdf object is structured. } \author{ D. Nychka } \seealso{ ncdf} \keyword{ IO }% at least one, from doc/KEYWORDS fields/man/pushpin.Rd0000644000175100001440000000463414627454002014301 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{pushpin} \alias{pushpin} \title{ Adds a "push pin" to an existing 3-d plot} \description{Adds to an existing 3-d perspective plot a push pin to locate a specific point.} \usage{ pushpin( x,y,z,p.out, height=.05,col="black",text=NULL,adj=-.1,cex=1.0,...) } \arguments{ \item{x}{x location} \item{y}{y location} \item{z}{z location} \item{p.out}{Projection information returned by persp} \item{height}{Height of pin in device coordinates (default is about 5\% of the vertical distance ). } \item{col}{Color of pin head.} \item{text}{Optional text to go next to pin head.} \item{adj}{Position of text relative to pin head.} \item{cex}{Character size for pin head and/or text} \item{\dots}{Additional graphics arguments that are passed to the text function.} } \details{ See the help(text) for the conventions on the \code{adj} argument and other options for placing text. } \author{Doug Nychka} \seealso{drape.plot,persp} \examples{ # Dr. R's favorite New Zealand Volcano! data( volcano) M<- nrow( volcano) N<- ncol( volcano) x<- seq( 0,1,,M) y<- seq( 0,1,,N) drape.plot( x,y,volcano, col=terrain.colors(128))-> pm max( volcano)-> zsummit xsummit<- x[ row( volcano)[volcano==zsummit]] ysummit<- y[ col( volcano)[volcano==zsummit]] pushpin( xsummit,ysummit,zsummit,pm, text="Summit") } \keyword{hplot} fields/man/compactToMat.Rd0000644000175100001440000001014514627454002015200 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{compactToMat} \alias{compactToMat} %- Also NEED an '\alias' for EACH other topic documented here. \title{ %% ~~function to do ... ~~ Convert Matrix from Compact Vector to Standard Form } \description{ %% ~~ A concise (1-5 lines) description of what the function does. ~~ \code{compactToMat} transforms a matrix from compact, vector form to a standard matrix. Only symmetric matrices can be stored in this form, since a compact matrix is stored as a vector with elements representing the upper triangle of the matrix. This function assumes the vector does not contain diagonal elements of the matrix. An example of a matrix stored in compact form is any matrix generated from the \code{rdist} function with \code{compact=TRUE}. } \usage{ compactToMat(compactMat, diagVal=0, lower.tri=FALSE, upper.tri=TRUE) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{compactMat}{ %% ~~Describe \code{compactMat} here~~ A symmetric matrix stored as a vector containing elements for the lower-triangular portion of the true matrix (and none of the diagonal elements), as returned by \code{rdist} with \code{compact=TRUE}. } \item{diagVal}{ %% ~~Describe \code{diagVal} here~~ A number to put in the diagonal entries of the output matrix. } \item{lower.tri}{ %% ~~Describe \code{diagVal} here~~ Whether or not to fill in the upper triangle of the output matrix } \item{upper.tri}{ %% ~~Describe \code{diagVal} here~~ Whether or not to fill in the lower triangle of the output matrix } } \value{ %% ~Describe the value returned %% If it is a LIST, use %% \item{comp1 }{Description of 'comp1'} %% \item{comp2 }{Description of 'comp2'} %% ... The standard form matrix represented by the input compact matrix } \author{ %% ~~who you are~~ John Paige } %% ~Make other sections like Warning with \section{Warning }{....} ~ \seealso{ %% ~~objects to See Also as \code{\link{help}}, ~~~ \code{\link{rdist}}, \code{link{dist}} } \examples{ ################ #Calculate distance matrix from compact form: ################ #make a distance matrix distOut = rdist(1:5, compact=TRUE) print(distOut) #note that distOut is in compact form: print(c(distOut)) #convert to standard matrix form: distMat = compactToMat(distOut) ################ #fast computation of covariance matrix: ################ #generate 5 random points on [0,1]x[0,1] square x = matrix(runif(10), nrow=5) #get compact distance matrix distOut = rdist(x, compact=TRUE) #evaluate Exponential covariance with range=1. Note that #Covariance function is only evaluated over upper triangle #so time is saved. diagVal = Exponential(0, range=1) compactCovMat = Exponential(distOut, range=1) upperCovMat = compactToMat(compactCovMat, diagVal) lowerCovMat = compactToMat(compactCovMat, diagVal, lower.tri=TRUE, upper.tri=FALSE) fullCovMat = compactToMat(compactCovMat, diagVal, lower.tri=TRUE, upper.tri=TRUE) compactCovMat lowerCovMat upperCovMat fullCovMat } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{ compact } \keyword{ matrix }% __ONLY ONE__ keyword per line fields/man/spatialProcess.Rd0000644000175100001440000005426114627454002015610 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{spatialProcess} \alias{spatialProcess} \alias{spatialProcessSetDefaults} \alias{plot.spatialProcess} \alias{print.spatialProcess} \alias{print.spatialProcessSummary} \alias{summary.spatialProcess} \alias{profileMLE} \alias{confidenceIntervalMLE} %- Also NEED an '\alias' for EACH other topic documented here. \title{ Estimates a spatial process model. %% ~~function to do ... ~~ } \description{ For a given covariance function estimates the covariance parameters by maximum likelihood and then evaluates the spatial model with these estimated parameters. The returned object can be used for spatial prediction, conditional simulation, and profiling the likelihood function. For fixed values of the covariance parameters this process estimate is also known as Kriging. %% ~~ A concise (1-5 lines) description of what the function does. ~~ } \usage{ spatialProcess(x, y, weights = rep(1, nrow(x)), Z = NULL, ZCommon=NULL, mKrig.args = NULL, cov.function = NULL, cov.args = NULL, parGrid = NULL, reltol = 1e-4, na.rm = TRUE, verbose = FALSE, REML = FALSE, cov.params.start = NULL, gridN = 5, profileLambda = FALSE, profileARange = FALSE, profileGridN = 15, gridARange = NULL, gridLambda = NULL, CILevel = .95, iseed = 303, collapseFixedEffect = TRUE, ...) \method{summary}{spatialProcess}(object, ...) \method{print}{spatialProcess}(x, digits = 4, ...) \method{print}{spatialProcessSummary}(x, digits = 4, ...) \method{plot}{spatialProcess}(x, digits = 4, which = 1:4, ...) spatialProcessSetDefaults(x, cov.function, cov.args, cov.params.start, parGrid, mKrig.args, extraArgs = NULL, gridN = 5, collapseFixedEffect = TRUE, verbose = FALSE) confidenceIntervalMLE( obj, CILevel, verbose=FALSE) profileMLE (obj, parName, parGrid=NULL, gridN=15, cov.params.start=NULL, GCV=FALSE, REML=FALSE, verbose=FALSE) } \arguments{ \item{x}{Observation locations} \item{y}{Observation values} \item{weights}{Weights for the error term (nugget) in units of reciprocal variance.} \item{Z}{A matrix of extra covariates for the fixed part of spatial model. E.g. elevation for fitting climate data over space. } \item{ZCommon}{ A matrix of extra covariates for the fixed part of spatial model that pertain to parameters that hold across all realizations. This covariates only makes sense for multiple realizations (i.e. y is a matrix with more than one column). } \item{CILevel}{Confidence level for intervals for the estimated parameters.} \item{collapseFixedEffect}{ If TRUE a single vector of parameters are found in the fixed part for all realizations. E.g. if the fixed part includes a linear function of the locations. The parmeters for the linear function are the same for all realizations. If FALSE parameters are estimated separately for each realization. This option only makes sense for multiple realizations of the field. I.e. y is a matrix with more than one column. } \item{cov.args}{ A list specifying parameters and other components of the covariance function. Default is not extra arguments required.] (But see the next item.). } \item{cov.function}{A character string giving the name of the covariance function for the spatial component. If NULL, the default, this is filled in as \code{stationary.cov} and then if \code{cov.args} is also NULL this is filled in as \code{ list(Covariance = "Matern", smoothness = 1.0)} by the spatialProcessSetDefaults function. } \item{cov.params.start}{ A list where the names are parameter names that appear in the covariance function. The values of each component are assumed to be the starting values when optimizing to find MLEs. If lambda does not appear as additional argument when calling spatialProcess it is added internally to this list with the starting value .5.} \item{digits}{Number of significant digits in printed summary} \item{extraArgs}{Extra arguments passed using the \dots device in R. Typically these are extra covariance parameters specified in \code{spatialProcess} and then passed to \code{spatialProcessSetDefaults} } \item{GCV}{A future argument not currently implemented. If TRUE will find parameters by minimizing an approximate generalized cross-validation function. } \item{gridARange}{A grid for profiling over the range parameter. If omitted, default is based on a grid of profileGridN points centered at the MLE. } \item{gridLambda}{A grid for profiling over lambda. } \item{gridN}{Number of grid points for intital fgrid search to find starting values. } \item{na.rm}{If TRUE NAs are removed from the data.} \item{mKrig.args}{Arguments as a list passed to the mKrig function. For example use mKrig.args=list( m = 1) to set the fixed part of the model to just a constant function , or 0 to omit any fixed part. (The default is m=2 a linear function, which is recommend for most data analysis.) See \code{\link{mKrig}} for more details. } \item{obj}{A spatialProcess object returned from the spatialProcess function.} \item{object}{ See \code{obj}.} \item{parGrid}{ A data frame with the values of covariance parameters to use as an initial grid search for starting values.} \item{parName}{Text string that is the name of the parameter to profile .} \item{profileARange}{If TRUE profile likelihood on aRange. Default is TRUE if aRange is omitted.} \item{profileGridN}{Number of grid points to use for profiling.} \item{profileLambda}{If TRUE profile likelihood on lambda. This takes extra time and is not necessary so the default is FALSE. } \item{reltol}{ Relative tolerance used in optim for convergence.} \item{REML}{ If TRUE the parameters are found by restricted maximum likelihood.} \item{verbose}{If TRUE print out intermediate information for debugging.} \item{iseed}{A seed to fix the random number stream used to compute the effective degrees of freedom using the random trace method. Setting this seed will not affect any random numnber generation outside this function. } \item{\dots}{ Any other arguments that will be passed to the \code{mKrig} function and interpreted as additional arguments to the covariance function. This is a lazy way of specifying these. E.g. \code{aRange =.1} will set the covariance argument aRange to .1. } \item{which}{The vector 1:4 or any subset of 1:4, giving the plots to draw. See the description of these plots below.} } \details{ This function makes many choices for the user in terms of defaults and it is important to be aware of these. The spatial model is Y.k= P(x.k) + Z(x.k)\%*\%beta2 + g(x.k) + e.k where ".k" means subscripted by k, Y.k is the dependent variable observed at location x.k. P is a low degree polynomial (default is a linear function in the spatial coordinates, m=2 ) and Z is a matrix of covariates (optional) that enter as a linear model the fixed part. g is a mean zero, Gaussian stochastic process with a marginal variance of sigma and a scale (or range) parameter, aRange. The measurement errors, e.k, are assumed to be uncorrelated, normally distributed with mean zero and standard deviation tau. If weights are supplied then the variance of e is assumed to be \code{tau^2/ weights}. The polynomial if specified and extra covariates define the fixed part of this spatial model and the coefficients are found by generalized least squares (GLS). Perhaps the most important aspect of this function is that the range parameter (aRange), nugget (tau**2) and process variance (sigma) parameters for the covariance are estimated by maximum likelihood and this is the model that is then used for spatial prediction. Geostatistics usually refers to tau^2 + sigma^2 as the "sill" and often these parameters are estimated by variogram fitting rather than maximum likelihood. To be consistent with spline models and to focus on the key part of model we reparametrize as lambda= tau**2/ sigma^2 and sigma. Thinking about h as the spatial signal and e as the noise 1/lambda can be interpreted as the "signal to noise " ratio in this spatial context.(See also the comparison with fitting the geoR model in the examples section.) For an isotropic covariance function, the likelihood and the cross-validation function can be concentrated to only depend on lambda and aRange and so in reporting the optimization of these two criterion we focus on this form of the parameters. Once lambda and aRange are found, the MLE for sigma has a closed form and of course then tau is then determined from lambda and sigma. The estimates of the coefficients for the fixed part of the model, determined by GLS, will also be the MLEs. Often the lambda parameter is difficult to interpret when covariates and a linear function of the coordinates is included and also when the range becomes large relative to the size of the spatial domain. For this reason it is convenient to report the effective degrees of freedom (also referred to trA in R code and the output summaries) associated with the predicted surface or curve. This measure has a one-to-one relationship with lambda and is easier to interpret. For example an eff degrees of freedom that is very small suggests that the surface is well represented by a low order polynomial. Degrees of freedom close to the number of locations indicates a surface that is close to interpolating the observations and suggests a small or zero value for the nugget variance. The default covariance model is assumed to follow a Matern with smoothness set to 1.0. This is implemented using the \code{stationary.cov} covariance that can take a argument for the form of the covariance, a sill and range parameters and possibly additional parameter might control the shape. See the example below how to switch to another model. (Note that the exponential is also part of the Matern family with smoothness set to .5. ) The parameter estimation is done by \code{MLESpatialProcess} and the returned list from this function is added to the Krig output object that is returned by this function. The estimate is a version of maximum likelihood where the observations are transformed to remove the fixed linear part of the model. If the user just wants to fix the range parameter aRange then \code{Krig} can be used. NOTE: The defaults for the \code{optim} function used in MLESpatialProcess are: \preformatted{ list(method = "BFGS", control=list(fnscale = -1, ndeps = rep(log(1.1),length(cov.params.start)+1), reltol = reltol, maxit = 20)) } There is always a hazard in providing a simple to use method that makes many default choices for the spatial model. As in any analysis be aware of these choices and try alternative models and parameter values to assess the robustness of your conclusions. Also examine the residuals to check the adequacy of the fit. See the examples below for some help in how to do this easily in fields. Also see quilt.plot to get an quick plot of a spatial field to discern obvious spatial patterns. \strong{summary} method forms a list of class \code{spatialProcessSummary} that has a subset of information from the output object and also creates a table of the estimates of the linear parameters in the fixed part of the model. With replicated fields there is an option to estimate different linear parameters for each field ( \code{ collapseFixedEffect = FALSE } ) and in this case a table is not created because there is more than one estimate. See (\code{Omega} and \code{fixedEffectsCov}) in the \code{mKrig} object to build the standard errors. \strong{plot} method provides potentially four diagnostic plots of the fit.Use the \code{which} to pick and choose among them or use \code{set.panel} to see them all. The third and fourth plots, however, are only available if the profile computations been done. If lambda is profiled (\code{lambdaProfile} is not \code{NULL} ) the third plot is the profile log likelihood for lambda and with the GCV function on a second vertical scale. This is based on the grid evaluations in the component \code{ lambdaProfile\$MLEProfileLambda} . The fourth plot is a profile log likelihood trace for aRange based on \code{ aRangeProfile\$MLEProfileLambda}. \strong{print} method prints the \code{spatialProcessSummary} object of the fit, adding some details and explanations. \strong{spatialProcessSetDefaults} This is a useful way to fill in defaults for the function in one place. The main choices are choosing the Matern family, smoothness and a default fixed model (aka spatial drift). The grids for profiling are also created if they have not been supplied. %% ~~ If necessary, more details than the description above ~~ } \value{ An object of classes \code{mKrig} and \code{SpatialProcess}. The difference from mKrig are some extra components. The more useful ones are listed below \strong{MLESummary} A named array that has the fixed and estimated parameters along with likelihood values and some optim info. \strong{profileSummaryLambda and profileSummaryARange} The output list from mKrigMLEGrid for searching over over a grid of lambda and aRange. \strong{CITable} Approximate confidence intervals based on the inverse hessian of the log likelihood function. \strong{MLEInfo} A list that has a full documentation of the maximization including all parameters and likelihood values that were tried by the optim function. \strong{InitialGridSearch} Results from initial grid search to get good starting values for lambda and/or aRange. } \author{ Doug Nychka%% ~~who you are~~ } \seealso{ \link{Tps}, \link{mKrigMLEGrid}, \link{mKrigMLEJoint}, \link{plot.Krig}, \link{predict.mKrig}, \link{predictSE.mKrig} } \examples{ data( ozone2) # x is a two column matrix where each row is a location in lon/lat # coordinates x<- ozone2$lon.lat # y is a vector of ozone measurements at day 16. Note some missing values. y<- ozone2$y[16,] # artifically reduce size of data for a quick example to pass CRAN ... # x<- x[1:75,] # y<- y[1:75] # lots of default choices made here -- see gridN to increase # the number of points in grid searches for MLEs # without specifying lambda or aRange both are found in a robust # way uses grid searches # the covariance is assumed to be stationary Matern with a smoothness of # 1.0 (aka Whittle). # profiling over lambda and aRange is not required but completes the full # example. Omit this for a faster computation. obj<- spatialProcess( x, y, profileLambda=TRUE, profileARange=TRUE) # summary of model summary( obj) # diagnostic plots set.panel(2,2) plot(obj) # plot 1 data vs. predicted values # plot 2 residuals vs. predicted # plot 3 criteria to select the smoothing # parameter lambda = tau^2 / sigma # the x axis has log10 lambda # Note that here the GCV function is minimized # while the log profile likelihood is maximzed. # plot 4 the log profile likelihood used to # determine range parameter aRange. # set.panel() # predictions on a grid surface( obj, xlab="longitude", ylab="latitude") US( add=TRUE, col="grey", lwd=2) title("Predicted ozone (in PPB) June 18, 1987 ") #(see also predictSurface for more control on evaluation grid, predicting # outside convex hull of the data. and plotting) # prediction standard errors, note two steps now to generate # and then plot surface look<- predictSurfaceSE( obj) surface( look, xlab="longitude", ylab="latitude") points( x, col="magenta") title("prediction standard errors (PPB)") # here is a sanity check -- call spatialProcess with the MLEs found # above, better get the same predictions! objTest<- spatialProcess( x, y, lambda=obj$MLESummary["lambda"], aRange=obj$MLESummary["aRange"] ) test.for.zero(objTest$fitted.values, obj$fitted.values, tag="sanity check" ) # swtiching to an exponential function # See Exponential for the definition. # objExponential <- spatialProcess( x, y, Covariance="Exponential" ) objExponential$summary \dontrun{ ################################## # working with covariates and filling in missing station data # using an ensemble method # see the example under help(sim.spatialProcess) to see how to # handle a conditional simulation on a grid of predictions with # covariates. data(COmonthlyMet) fit1E<- spatialProcess(CO.loc,CO.tmin.MAM.climate, Z=CO.elev, profileLambda=TRUE, profileARange=TRUE ) set.panel( 2,2) plot( fit1E) set.panel(1,2) # plots of the fitted surface and surface of prediction standard errors out.p<-predictSurface( fit1E,CO.Grid, ZGrid= CO.elevGrid, extrap=TRUE) imagePlot( out.p, col=larry.colors()) US(add=TRUE, col="grey") contour( CO.elevGrid, add=TRUE, levels=seq(1000,3000,,5), col="black") title("Average Spring daily min. temp in CO") out.p2<-predictSurfaceSE( fit1E,CO.Grid, ZGrid= CO.elevGrid, extrap=TRUE, verbose=FALSE) imagePlot( out.p2, col=larry.colors()) US(add=TRUE, col="grey") points( fit1E$x, pch=".") title("Prediction SE") set.panel() } \dontrun{ ################################### # conditional simulation ################################### # first a small application at missing data notThere<- is.na(CO.tmin.MAM.climate ) xp <- CO.loc[notThere,] Zp <- CO.elev[notThere] infill<- sim.spatialProcess( fit1E, xp=xp, Z= Zp, M= 10) dim( infill) # # interpretation is that these infilled values are all equally plausible # given the observations and also given the estimated covariance model # # EXTRA CREDIT: standardize the infilled values to have # conditional mean and variance from the exact computations # e.g. predict( fit1E, xp=CO.loc[!good,], Z= CO.elev[!good]) # and predictSE(fit1E, xp=CO.loc[!good,], Z= CO.elev[!good]) # with these standardization one would still preserve the correlations # among the infilled values that is also important for considering them as a # multivariate prediction. # conditional simulation on a grid but not using the covariate of elevation fit2<- spatialProcess(CO.loc,CO.tmin.MAM.climate, gridARange= seq(.25, 2.0, length.out=10) ) # note larger range parameter # create 2500 grid points using a handy fields function gridList <- fields.x.to.grid( fit2$x, nx=50,ny=50) xGrid<- make.surface.grid( gridList) ensemble<- sim.spatialProcess( fit2, xp=xGrid, M = 6) # this is an "n^3" computation so increasing the grid size # can slow things down for computation # The 6 ensemble members set.panel( 3,2) for( k in 1:6){ imagePlot( as.surface( xGrid, ensemble[,k])) } set.panel() } \dontrun{ ## changing the covariance model. data(ozone2) x<- ozone2$lon.lat y<- ozone2$y[16,] # a comparison to using an exponential and Wendland covariance function # and great circle distance -- just to make range easier to interpret. obj <- spatialProcess( x, y, Distance = "rdist.earth") obj2<- spatialProcess( x, y, cov.args = list(Covariance = "Exponential"), Distance = "rdist.earth" ) obj3<- spatialProcess( x, y, cov.args = list(Covariance = "Wendland", dimension = 2, k = 2), Distance = "rdist.earth") # obj2 could be also be fit using the argument: # cov.args = list(Covariance = "Matern", smoothness=.5) # # Note very different range parameters - BTW these are in miles # but similar nugget variances. rbind( Whittle= obj$summary, Exp= obj2$summary, Wendland= obj3$summary ) # since the exponential is Matern with smoothness == .5 the first two # fits can be compared in terms of their likelihoods # the ln likelihood value is slightly higher for obj verses obj2 (-613.9 > -614.9) # these are the _negative_ log likelihoods so suggests a preference for the # smoothness = 1.0 (Whittle) model # # does it really matter in terms of spatial prediction? set.panel( 3,1) surface( obj) US( add=TRUE) title("Matern sm= 1.0") surface( obj2) US( add=TRUE) title("Matern sm= .5") surface( obj3) US( add=TRUE) title("Wendland k =2") # prediction standard errors # these take a while because prediction errors are based # directly on the Kriging weight matrix # see mKrig for an alternative. set.panel( 2,1) out.p<- predictSurfaceSE( obj, nx=40,ny=40) surface( out.p) US( add=TRUE) title("Matern sm= 1.0") points( x, col="magenta") # out.p<- predictSurfaceSE( obj, nx=40,ny=40) surface( out.p) US( add=TRUE) points( x, col="magenta") title("Matern sm= .5") set.panel(1,1) } } \keyword{ spatial} % __ONLY ONE__ keyword per line fields/man/Krig.Rd0000644000175100001440000005025514627454002013507 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{Krig} \alias{Krig} \alias{resid.Krig} \alias{fitted.Krig} \alias{coef.Krig} \title{ Kriging surface estimate } \description{ Fits a surface to irregularly spaced data. The Kriging model assumes that the unknown function is a realization of a Gaussian random spatial processes. The assumed model is additive Y = P(x) + Z(X) + e, where P is a low order polynomial and Z is a mean zero, Gaussian stochastic process with a covariance that is unknown up to a scale constant. The main advantages of this function are the flexibility in specifying the covariance as an R language function and also the supporting functions plot, predict, predictSE, surface for subsequent analysis. Krig also supports a correlation model where the mean and marginal variances are supplied. } \usage{ Krig(x, Y, cov.function = "stationary.cov", lambda = NA, df = NA, GCV = FALSE, Z = NULL, cost = 1, weights = NULL, m = 2, nstep.cv = 200, scale.type = "user", x.center = rep(0, ncol(x)), x.scale = rep(1, ncol(x)), sigma = NA, tau2 = NA, method = "REML", verbose = FALSE, null.function = "Krig.null.function", wght.function = NULL, offset = 0, na.rm = TRUE, cov.args = NULL, chol.args = NULL, null.args = NULL, wght.args = NULL, W = NULL, give.warnings = TRUE, mean.obj = NA, sd.obj = NA, ...) \method{fitted}{Krig}(object,...) \method{coef}{Krig}(object,...) resid.Krig(object,...) } \arguments{ \item{chol.args}{ Arguments to be passed to the cholesky decomposition in Krig.engine.fixed. The default if NULL, assigned at the top level of this function, is list( pivot=FALSE). This argument is useful when working with the sparse matrix package. } \item{cov.args}{ A list with the arguments to call the covariance function. (in addition to the locations) } \item{cov.function}{ Covariance function for data in the form of an R function (see Exp.simple.cov as an example). Default assumes that correlation is an exponential function of distance. See also \code{stationary.cov} for more general choice of covariance shapes. \code{exponential.cov} will be faster if only the exponential covariance form is needed. } \item{cost}{ Cost value used in GCV criterion. Corresponds to a penalty for increased number of parameters. The default is 1.0 and corresponds to the usual GCV function. } \item{df}{ The effective number of parameters for the fitted surface. Conversely, N- df, where N is the total number of observations is the degrees of freedom associated with the residuals. This is an alternative to specifying lambda and much more interpretable. NOTE: GCV argument defaults to TRUE if this argument is used. } \item{GCV}{ If TRUE matrix decompositions are done to allow estimating lambda by GCV or REML and specifying smoothness by the effective degrees of freedom. So the GCV switch does more than just supply a GCV estimate. Also if lambda or df are passed the estimate will be evaluated at those values, not at the GCV/REML estimates of lambda. If FALSE Kriging estimate is found under a fixed lambda model. } \item{give.warnings}{ If TRUE warnings are given in gcv grid search limits. If FALSE warnings are not given. Best to leave this TRUE! This argument is set ot FALSE if warn is less than zero in the top level, R options function. See options()$warn} \item{lambda}{ Smoothing parameter that is the ratio of the error variance (tau**2) to the scale parameter of the covariance function (sigma). If omitted this is estimated by GCV ( see method below). } \item{method}{ Determines what "smoothing" parameter should be used. The default is to estimate standard GCV Other choices are: GCV.model, GCV.one, RMSE, pure error and REML. The differences are explained below. } \item{mean.obj}{ Object to predict the mean of the spatial process. This used in when fitting a correlation model with varying spatial means and varying marginal variances. (See details.) } \item{m}{ A polynomial function of degree (m-1) will be included in the model as the drift (or spatial trend) component. The "m" notation is from thin-plate splines where m is the derivative in the penalty function. With m=2 as the default a linear model in the locations will be fit a fixed part of the model. } \item{na.rm}{If TRUE NAs will be removed from the \code{y} vector and the corresponding rows of \code{x} -- with a warning. If FALSE Krig will just stop with a message. Once NAs are removed all subsequent analysis in fields does not use those data. } \item{nstep.cv}{ Number of grid points for the coarse grid search to minimize the GCV RMLE and other related criteria for finding lambda, the smoothing parameter. Default is 200, fairly large to avoid some cases of closely spaced local minima. Evaluations of the GCV and related objective functions are cheap given the matrix decompositions described below. } \item{null.args}{ Extra arguments for the null space function \code{null.function}. If \code{fields.mkpoly} is passed as \code{null.function} then this is set to a list with the value of \code{m}. So the default is use a polynomial of degree m-1 for the null space (fixed part) of the model. } \item{null.function}{ An R function that creates the matrices for the null space model. The default is fields.mkpoly, an R function that creates a polynomial regression matrix with all terms up to degree m-1. (See Details) } \item{offset}{ The offset to be used in the GCV criterion. Default is 0. This would be used when Krig is part of a backfitting algorithm and the offset is other model degrees of freedom from other regression components. } \item{sigma}{ Scale factor for covariance. } \item{scale.type}{ This is a character string among: "range", "unit.sd", "user", "unscaled". The independent variables and knots are scaled to the specified scale.type. By default no scaling is done. This usuall makes sense for spatial locations. Scale type of "range" scales the data to the interval (0,1) by forming (x-min(x))/range(x) for each x. Scale type of "unit.sd" Scale type of "user" allows specification of an x.center and x.scale by the user. The default for "user" is mean 0 and standard deviation 1. Scale type of "unscaled" does not scale the data. } \item{sd.obj}{ Object to predict the marginal standard deviation of the spatial process. } \item{tau2}{ Variance of the errors, often called the nugget variance. If weights are specified then the error variance is tau2 divided by weights. Note that lambda is defined as the ratio tau2/sigma. } \item{verbose}{ If true will print out all kinds of intermediate stuff. Default is false, of course as this is used mainly for debugging. } \item{weights}{ Weights are proportional to the reciprocal variance of the measurement error. The default is equal weighting i.e. vector of unit weights. } \item{wght.function}{ An R function that creates a weights matrix to the observations. This is only needed if the weight matirx has off diagonal elements. The default is NULL indicating that the weight matrix is a diagonal, based on the weights argument. (See details) } \item{W}{The observation weight matrix.} \item{wght.args}{ Optional arguments to be passed to the weight function (wght.function) used to create the observation weight matrix.} \item{x}{ Matrix of independent variables. These could the locations for spatial data or the indepedent variables in a regression. } \item{x.center}{ Centering values to be subtracted from each column of the x matrix. } \item{x.scale}{ Scale values that are divided into each column after centering. } \item{Y}{ Vector of dependent variables. These are the values of the surface (perhaps with measurement error) at the locations or the dependent response in a regression. } \item{Z}{ A vector of matrix of covariates to be include in the fixed part of the model. If NULL (default) no addtional covariates are included.} \item{\dots}{ Optional arguments that appear are assumed to be additional arguments to the covariance function. Or are included in methods functions (resid, fitted, coef) as a required argument.} \item{object}{ A Krig object} } \value{ A object of class Krig. This includes the predicted values in fitted.values and the residuals in residuals. The results of the grid search to minimize the generalized cross validation function are returned in gcv.grid. The coef.Krig function only returns the coefficients, "d", associated with the fixed part of the model (also known as the null space or spatial drift). \item{call}{ Call to the function } \item{y}{ Vector of dependent variables. } \item{x}{ Matrix of independent variables. } \item{weights}{ Vector of weights. } \item{knots}{ Locations used to define the basis functions. } \item{transform}{ List of components used in centering and scaling data. } \item{np}{ Total number of parameters in the model. } \item{nt}{ Number of parameters in the null space. } \item{matrices}{ List of matrices from the decompositions (D, G, u, X, qr.T). } \item{gcv.grid}{ Matrix of values from the GCV grid search. The first column is the grid of lambda values used in the search, the second column is the trace of the A matrix, the third column is the GCV values and the fourth column is the estimated value of tau conditional on the vlaue of lambda. } \item{lambda.est}{ A table of estimated smoothing parameters with corresponding degrees of freedom and estimates of tau found by different methods. } \item{cost}{ Cost value used in GCV criterion. } \item{m}{ Order of the polynomial space: highest degree polynomial is (m-1). This is a fixed part of the surface often referred to as the drift or spatial trend. } \item{eff.df}{ Effective degrees of freedom of the model. } \item{fitted.values}{ Predicted values from the fit. } \item{residuals}{ Residuals from the fit. } \item{lambda}{ Value of the smoothing parameter used in the fit. Lambda is defined as tau**2/sigma. See discussion in details. } \item{yname}{ Name of the response. } \item{cov.function}{ Covariance function of the model. } \item{beta}{ Estimated coefficients in the ridge regression format } \item{d}{ Estimated coefficients for the polynomial basis functions that span the null space } \item{fitted.values.null}{ Fitted values for just the polynomial part of the estimate } \item{trace}{ Effective number of parameters in model. } \item{c}{ Estimated coefficients for the basis functions derived from the covariance. } \item{coefficients}{ Same as the beta vector. } \item{just.solve}{ Logical describing if the data has been interpolated using the basis functions. } \item{tauHat}{ Estimated standard deviation of the measurement error (nugget effect). } \item{tau2}{ Estimated variance of the measurement error (tauHat**2). } \item{sigma}{ Scale factor for covariance. COV(h(x),h(x\code{)) = sigma*cov.function(x,x}) If the covariance is actually a correlation function then sigma is also the "sill". } \item{mean.var}{ Normalization of the covariance function used to find sigma. } \item{best.model}{ Vector containing the value of lambda, the estimated variance of the measurement error and the scale factor for covariance used in the fit. } } \details{ This function produces a object of class Krig. With this object it is easy to subsequently predict with this fitted surface, find standard errors, alter the y data ( but not x), etc. The Kriging model is: Y.k= f(x.k) = P(x.k) + Z(x.k) + e.k where ".k" means subscripted by k, Y is the dependent variable observed at location x.k, P is a low order polynomial, Z is a mean zero, Gaussian field with covariance function K and e is assumed to be independent normal errors. The estimated surface is the best linear unbiased estimate (BLUE) of f(x)= P(x) + Z(x) given the observed data. For this estimate K, is taken to be sigma*cov.function and the errors have variance tau**2. In more conventional geostatistical terms sigma is the "sill" if the covariance function is actually a correlation function and tau**2 is the nugget variance or measure error variance (the two are confounded in this model.) If the weights are given then the variance of e.k is tau**2/ weights.k . In the case that the weights are specified as a matrix, W, using the wght.function option then the assumed covariance matrix for the errors is tau**2 Wi, where Wi is the inverse of W. It is straightforward to show that the estimate of f only depends on tau and sigma through the ratio lambda = tau**2/ sigma. This parameter, termed the smoothing parameter plays a central role in the statistical computations within \code{Krig}. See also the help for thin plate splines, (\code{Tps}) to get another perspective on the smoothing parameter. This function also supports a modest extension of the Generalized Kriging model to include other covariates as fixed regression type components. In matrix form Y = Zb + F + E where Z is a matrix of covariates and b a fixed parameter vector, F the vector of function values at the observations and E a vector of errors. The The \code{Z} argument in the function is the way to specify this additional component. If the parameters sigma and tau2 are omitted in the call, then they are estimated in the following way. If lambda is given, then tau2 is estimated from the residual sum of squares divided by the degrees of freedom associated with the residuals. Rho is found as the difference between the sums of squares of the predicted values having subtracted off the polynomial part and tau2. These estimates are the MLE's under Gaussian assumptions on the process and errors. If lambda is also omitted is it estimated from the data using a variety of approaches and then the values for tau and sigma are found in the same way from the estimated lambda. A useful extension of a stationary correlation to a nonstationary covariance is what we term a correlation model. If mean and marginal standard deviation objects are included in the call. Then the observed data is standardized based on these functions. The spatial process is then estimated with respect to the standardized scale. However for predictions and standard errors the mean and standard deviation surfaces are used to produce results in the original scale of the observations. The GCV function has several alternative definitions when replicate observations are present or if one uses a reduced set knots. Here are the choices based on the method argument: GCV: leave-one-out GCV. But if there are replicates it is leave one group out. (Wendy and Doug prefer this one.) GCV.one: Really leave-one-out GCV even if there are replicate points. This what the old tps function used in FUNFITS. rmse: Match the estimate of tau**2 to a external value ( called rmse) pure error: Match the estimate of tau**2 to the estimate based on replicated data (pure error estimate in ANOVA language). GCV.model: Only considers the residual sums of squares explained by the basis functions. REML: The process and errors are assumed to the Gaussian and the likelihood is concentrated (or profiled) with respect to lambda. The MLE of lambda is found from this criterion. Restricted means that the likelihood is formed from a linear transformation of the observations that is orthogonal to the column space of P(x). WARNING: The covariance functions often have a nonlinear parameter(s) that often control the strength of the correlations as a function of separation, usually referred to as the range parameter. This parameter must be specified in the call to Krig and will not be estimated. } \section{References}{ See "Additive Models" by Hastie and Tibshirani, "Spatial Statistics" by Cressie and the FIELDS manual. } \seealso{ summary.Krig, predict.Krig, predictSE.Krig, predictSurfaceSE, predictSurface, plot.Krig, surface.Krig } \examples{ # a 2-d example # fitting a surface to ozone # measurements. Exponential covariance, range parameter is 20 (in miles) fit <- Krig(ChicagoO3$x, ChicagoO3$y, aRange=20) summary( fit) # summary of fit set.panel( 2,2) plot(fit) # four diagnostic plots of fit set.panel() surface( fit, type="C") # look at the surface # predict at data predict( fit) # predict using 7.5 effective degrees of freedom: predict( fit, df=7.5) # predict on a grid ( grid chosen here by defaults) out<- predictSurface( fit) surface( out, type="C") # option "C" our favorite # predict at arbitrary points (10,-10) and (20, 15) xnew<- rbind( c( 10, -10), c( 20, 15)) predict( fit, xnew) # standard errors of prediction based on covariance model. predictSE( fit, xnew) # surface of standard errors on a default grid predictSurfaceSE( fit)-> out.p # this takes some time! surface( out.p, type="C") points( fit$x) \dontrun{ # Using another stationary covariance. # smoothness is the shape parameter for the Matern. fit <- Krig(ChicagoO3$x, ChicagoO3$y, Covariance="Matern", aRange=10, smoothness=1.0) summary( fit) # # Roll your own: creating very simple user defined Gaussian covariance # test.cov <- function(x1,x2,aRange,marginal=FALSE,C=NA){ # return marginal variance if( marginal) { return(rep( 1, nrow( x1)))} # find cross covariance matrix temp<- exp(-(rdist(x1,x2)/aRange)**2) if( is.na(C[1])){ return( temp)} else{ return( temp\%*\%C)} } # # use this and put in quadratic polynomial fixed function fit.flame<- Krig(flame$x, flame$y, cov.function="test.cov", m=3, aRange=.5) # # note how range parameter is passed to Krig. # BTW: GCV indicates an interpolating model (nugget variance is zero) # This is the content of the warning message. # take a look ... surface(fit.flame, type="I") } # # Thin plate spline fit to ozone data using the radial # basis function as a generalized covariance function # # p=2 is the power in the radial basis function (with a log term added for # even dimensions) # If m is the degree of derivative in penalty then p=2m-d # where d is the dimension of x. p must be greater than 0. # In the example below p = 2*2 - 2 = 2 # out<- Krig( ChicagoO3$x, ChicagoO3$y,cov.function="Rad.cov", m=2,p=2,scale.type="range") # See also the Fields function Tps # out should be identical to Tps( ChicagoO3$x, ChicagoO3$y) # \dontrun{ # # # explore some different values for the range and lambda using GCV data(ozone2) aRange <- seq(200,600,,40) GCV<- matrix( NA, 40,80) # the loop for( k in 1:40){ # call to Krig with different ranges # also turn off warnings for GCV search # to avoid lots of messages. (not recommended in general!) obj<-Krig( ozone2$lon.lat,ozone2$y[16,], cov.function="stationary.cov", aRange=aRange[k], Covariance="Matern",smoothness=1.0, Distance="rdist.earth", nstep.cv=80, give.warnings=FALSE, na.rm=TRUE) GCV[k,]<-obj$gcv.grid[,3] } # get lambda grid from looping k<- 1 lam<- Krig( ozone2$lon.lat,ozone2$y[16,], cov.function="stationary.cov", aRange=aRange[k], Covariance="Matern",smoothness=.5, Distance="rdist.earth", nstep.cv=80, give.warnings=FALSE, na.rm=TRUE)$gcv.grid[,1] matplot( log10(lam), t(GCV),type="l",lty=1) } } \keyword{spatial} % docclass is function fields/man/Tps.Rd0000644000175100001440000005210414627454002013354 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{Tps} \alias{Tps} \alias{fastTps} \title{ Thin plate spline regression } \description{ Fits a thin plate spline surface to irregularly spaced data. The smoothing parameter is chosen as a default by generalized cross-validation. The assumed model is additive Y = f(X) +e where f(X) is a d dimensional surface. } \usage{ Tps(x, Y, m = NULL, p = NULL, scale.type = "range", lon.lat = FALSE, miles = TRUE, method = "GCV", GCV = TRUE, ...) fastTps(x, Y, m = NULL, p = NULL, aRange, lon.lat = FALSE, find.trA = FALSE, REML = FALSE,theta=NULL, ...) } \arguments{ %To be helpful, a more complete list of arguments are described that are the %same as those for the Krig function. \item{x}{ Matrix of independent variables. Each row is a location or a set of independent covariates. } \item{Y}{ Vector of dependent variables. } \item{m}{ A polynomial function of degree (m-1) will be included in the model as the drift (or spatial trend) component. Default is the value such that 2m-d is greater than zero where d is the dimension of x. } \item{p}{ Polynomial power for Wendland radial basis functions. Default is 2m-d where d is the dimension of x. } \item{scale.type}{ The independent variables and knots are scaled to the specified scale.type. By default the scale type is "range", whereby the locations are transformed to the interval (0,1) by forming (x-min(x))/range(x) for each x. Scale type of "user" allows specification of an x.center and x.scale by the user. The default for "user" is mean 0 and standard deviation 1. Scale type of "unscaled" does not scale the data. } \item{aRange}{The tapering range that is passed to the Wendland compactly supported covariance. The covariance (i.e. the radial basis function) is zero beyond range aRange. The larger aRange the closer this model will approximate the standard thin plate spline.} \item{lon.lat}{If TRUE locations are interpreted as lognitude and latitude and great circle distance is used to find distances among locations. The aRange scale parameter for \code{fast.Tps} (setting the compact support of the Wendland function) in this case is in units of miles (see example and caution below). } \item{method}{ Determines what "smoothing" parameter should be used. The default is to estimate standard GCV Other choices are: GCV.model, GCV.one, RMSE, pure error and REML. The differences are explained in the Krig help file.} \item{GCV}{If TRUE the decompositions are done to efficiently evaluate the estimate, GCV function and likelihood at multiple values of lambda. } \item{miles}{If TRUE great circle distances are in miles if FALSE distances are in kilometers} \item{find.trA}{If TRUE will estimate the effective degrees of freedom using a simple Monte Carlo method (random trace). This will add to the computational burden by approximately \code{NtrA} solutions of the linear system but the cholesky decomposition is reused.} \item{REML}{If TRUE find the MLE for lambda using restricted maximum likelihood instead of the full version. } \item{theta}{ Same as aRange.} \item{\dots}{For \code{Tps} any argument that is valid for the \code{Krig} function. Some of the main ones are listed below. For \code{fastTps} any argument that is suitable for the \code{mKrig} function see help on mKrig for these choices. The most common would be \code{lambda} fixing the value of this parameter (tau^2/sigma^2), \code{Z} linear covariates or \code{ mKrig.args= list( m=1)} setting the regression model to be just a constant function. Arguments for Tps: \describe{ \item{lambda}{ Smoothing parameter that is the ratio of the error variance (tau**2) to the scale parameter of the covariance function. If omitted this is estimated by GCV. } \item{Z}{Linear covariates to be included in fixed part of the model that are distinct from the default low order polynomial in \code{x}} \item{df}{ The effective number of parameters for the fitted surface. Conversely, N- df, where N is the total number of observations is the degrees of freedom associated with the residuals. This is an alternative to specifying lambda and much more interpretable.} \item{cost}{ Cost value used in GCV criterion. Corresponds to a penalty for increased number of parameters. The default is 1.0 and corresponds to the usual GCV.} \item{weights}{ Weights are proportional to the reciprocal variance of the measurement error. The default is no weighting i.e. vector of unit weights. } \item{nstep.cv}{ Number of grid points for minimum GCV search. } \item{x.center}{ Centering values are subtracted from each column of the x matrix. Must have scale.type="user".} \item{x.scale}{ Scale values that divided into each column after centering. Must have scale.type="user".} \item{sigma}{Scale factor for covariance. } \item{tau2}{ Variance of errors or if weights are not equal to 1 the variance is tau**2/weight.} \item{verbose}{ If true will print out all kinds of intermediate stuff. } \item{mean.obj}{ Object to predict the mean of the spatial process. } \item{sd.obj}{ Object to predict the marginal standard deviation of the spatial process. } \item{null.function}{An R function that creates the matrices for the null space model. The default is fields.mkpoly, an R function that creates a polynomial regression matrix with all terms up to degree m-1. (See Details) } \item{offset}{ The offset to be used in the GCV criterion. Default is 0. This would be used when Krig/Tps is part of a backfitting algorithm and the offset has to be included to reflect other model degrees of freedom. } } } } \value{ A list of class Krig. This includes the fitted values, the predicted surface evaluated at the observation locations, and the residuals. The results of the grid search minimizing the generalized cross validation function are returned in gcv.grid. Note that the GCV/REML optimization is done even if lambda or df is given. Please see the documentation on Krig for details of the returned arguments. } \details{ \strong{Overview} This is the classic nonparametric curve/surface estimate pioneered in statistics by Grace Wahba. The computational algorithm is based around a QR decomposition followed by an eigen decomposition on a reduced matrix derived from the spline radial basis functions. This insures a stable computation -- basically bombproof -- but is not the fastest. See the function \link{mKrig} and examples for fitting a thin plate spline using \link{spatialProcess} that uses a different linear algebra approach. This is implemented in the "fast" version albeit approximate version to exploit sparse matrices. This function also works for just a single dimension and reproduces the well known cubic smoothing spline for \code{ m ==2} Finally we note that a thin plate spline is a limiting case of a Gaussian process estimate as the range parameter in the Matern family increases to infinity. (Kriging). A "fast" version of this function uses a compactly supported Wendland covariance and sparse linear algebra for handling larger datta sets. Although a good approximation to Tps for sufficiently large aRange its actual form is very different from the textbook thin-plate definition. The user will see that \code{fastTps} is largely a wrapper for a call to \code{spatialProcess} with the Wendland covariance function. \strong{Background on the thin plate spline function, Tps} A thin plate spline is the result of minimizing the residual sum of squares subject to a constraint that the function have a certain level of smoothness (or roughness penalty). Roughness is quantified by the integral of squared m-th order derivatives. For one dimension and m=2 the roughness penalty is the integrated square of the second derivative of the function. For two dimensions the roughness penalty is the integral of (Dxx(f))**22 + 2(Dxy(f))**2 + (Dyy(f))**22 (where Duv denotes the second partial derivative with respect to u and v.) Besides controlling the order of the derivatives, the value of m also determines the base polynomial that is fit to the data. The degree of this polynomial is (m-1). The smoothing parameter controls the amount that the data is smoothed. In the usual form this is denoted by lambda, the Lagrange multiplier of the minimization problem. Although this is an awkward scale, lambda = 0 corresponds to no smoothness constraints and the data is interpolated. lambda=infinity corresponds to just fitting the polynomial base model by ordinary least squares. This estimator is implemented by passing the right generalized covariance function based on radial basis functions to the more general function Krig. One advantage of this implementation is that once a Tps/Krig object is created the estimator can be found rapidly for other data and smoothing parameters provided the locations remain unchanged. This makes simulation within R efficient (see example below). Tps does not currently support the knots argument where one can use a reduced set of basis functions. This is mainly to simplify the code and a good alternative using knots would be to use a valid covariance from the Matern family and a large range parameter. \strong{Using a great circle distance function} The option to use great circle distance to define the radial basis functions (\code{lon.lat=TRUE}) is very useful for small geographic domains where the spherical geometry is well approximated by a plane. However, for large domains the spherical distortion be large enough that the radial basis functions no longer define a positive definite system and Tps will report a numerical error. An alternative is to switch to a three dimensional thin plate spline with the locations being the direction cosines. This will give approximate great circle distances for locations that are close and also the numerical methods will always have a positive definite matrices. There are other radial basis functions that are specific to a spherical geometry but these are not implemented in fields. Here is an example using this idea for \code{RMprecip} and also some examples of building grids and evaluating the Tps results on them: \preformatted{ # a useful function: dircos<- function(x1){ coslat1 <- cos((x1[, 2] * pi)/180) sinlat1 <- sin((x1[, 2] * pi)/180) coslon1 <- cos((x1[, 1] * pi)/180) sinlon1 <- sin((x1[, 1] * pi)/180) cbind(coslon1*coslat1, sinlon1*coslat1, sinlat1)} # fit in 3-d to direction cosines out<- Tps(dircos(RMprecip$x),RMprecip$y) xg<-make.surface.grid(fields.x.to.grid(RMprecip$x)) fhat<- predict( out, dircos(xg)) # coerce to image format from prediction vector and grid points. out.p<- as.surface( xg, fhat) surface( out.p) # compare to the automatic out0<- Tps(RMprecip$x,RMprecip$y, lon.lat=TRUE) surface(out0) } The function \code{fastTps} is really a convenient wrapper function that calls \code{spatialProcess} with a suitable Wendland covariance function. This means one can use all the additional functions for prediction and simulation built for the \code{spatialProcess} and \code{mKrig} objects. Some care needs to exercised in specifying the support \code{aRange} -- a Goldilocks problem -- where aRange is large enough so that every location has a reasonable number (say 10 or more ) of neighboring locations that have non-zero covariances but also the number of neighbors is not so large that the sparsity of the covariance matrix is compromised. To figure out the neighborhood pattern are the spatial locations one can use the function \code{nearest.dist}, sparse matrix format, and \code{table} function. \preformatted{ set.seed(222) s<- cbind( runif(1e4),runif(1e4)) look<- nearest.dist(s,s, delta = .03) look<- spam2spind(look) stats( table( look$ind[,1])) } Here one has asummary of the number of nearest neighbors within a distance of .03 for these (randomly generated) locations. I see a minimum of 7 for at least one location so aRange should be larger than .03. Trial and error with different deltas can lead to a better choice. Note that unlike Tps the locations are not scaled to unit range and this can cause havoc in smoothing problems with variables in very different units. So rescaling the locations \code{ x<- scale(x)} is a good idea for putting the variables on a common scale for smoothing. A conservative rule of thumb is to make \code{aRange} large enough so that about 50 nearest neighbors are within this distance for every observation location. This function does have the potential to approximate estimates of Tps for very large spatial data sets. See \code{wendland.cov} and help on the SPAM package, and the friendly spind format for more background. Also, the function \code{predictSurface.fastTps} has been made more efficient for the case of k=2 and m=2 -- a common choice for parameters. } \section{References}{ See "Nonparametric Regression and Generalized Linear Models" by Green and Silverman. See "Additive Models" by Hastie and Tibshirani. See Wahba, Grace. "Spline models for observational data." Society for industrial and applied mathematics, 1990. } \seealso{ \code{\link{Krig}}, \code{\link{mKrig}}, \code{\link{spatialProcess}}, \code{\link{Tps.cov}} \code{\link{sim.spatialProcess}}, \code{\link{summary.Krig}}, \code{\link{predict.Krig}}, \code{\link{predictSE.Krig}}, \code{\link{predictSurface}}, \code{\link{predictSurface.fastTps}}, \code{\link{plot.Krig}}, \code{\link{surface.Krig}}, \code{\link{sreg}} } \examples{ #2-d example data(ozone2) x<- ozone2$lon.lat y<- ozone2$y[16,] fit<- Tps(x,y) # fits a surface to ozone measurements. set.panel(2,2) plot(fit) # four diagnostic plots of fit and residuals. set.panel() # summary of fit and estiamtes of lambda the smoothing parameter summary(fit) surface( fit) # Quick image/contour plot of GCV surface. # NOTE: the predict function is quite flexible: look<- predict( fit, lambda=2.0) # evaluates the estimate at lambda =2.0 _not_ the GCV estimate # it does so very efficiently from the Krig fit object. look<- predict( fit, df=7.5) # evaluates the estimate at the lambda values such that # the effective degrees of freedom is 7.5 # compare this to fitting a thin plate spline with # lambda chosen so that there are 7.5 effective # degrees of freedom in estimate # Note that the GCV function is still computed and minimized # but the lambda values used correpsonds to 7.5 df. fit1<- Tps(x, y,df=7.5) set.panel(2,2) plot(fit1) # four diagnostic plots of fit and residuals. # GCV function (lower left) has vertical line at 7.5 df. set.panel() # The basic matrix decompositions are the same for # both fit and fit1 objects. # predict( fit1) is the same as predict( fit, df=7.5) # predict( fit1, lambda= fit$lambda) is the same as predict(fit) # predict onto a grid that matches the ranges of the data. out.p<-predictSurface( fit) imagePlot( out.p) # the surface function (e.g. surface( fit)) essentially combines # the two steps above # predict at different effective # number of parameters out.p<-predictSurface( fit, df=10) \dontrun{ # predicting on a grid along with a covariate data( COmonthlyMet) # predicting average daily minimum temps for spring in Colorado # NOTE to create an 4km elevation grid: # data(PRISMelevation); CO.elev1 <- crop.image(PRISMelevation, CO.loc ) # then use same grid for the predictions: CO.Grid1<- CO.elev1[c("x","y")] obj<- Tps( CO.loc, CO.tmin.MAM.climate, Z= CO.elev) out.p<-predictSurface( obj, CO.Grid, ZGrid= CO.elevGrid) imagePlot( out.p) US(add=TRUE, col="grey") contour( CO.elevGrid, add=TRUE, levels=c(2000), col="black") } \dontrun{ #A 1-d example with confidence intervals out<-Tps( rat.diet$t, rat.diet$trt) # lambda found by GCV out plot( out$x, out$y) xgrid<- seq( min( out$x), max( out$x),,100) fhat<- predict( out,xgrid) lines( xgrid, fhat,) SE<- predictSE( out, xgrid) lines( xgrid,fhat + 1.96* SE, col="red", lty=2) lines(xgrid, fhat - 1.96*SE, col="red", lty=2) # # compare to the ( much faster) B spline algorithm # sreg(rat.diet$t, rat.diet$trt) # Here is a 1-d example with 95 percent CIs where sreg would not # work: # sreg would give the right estimate here but not the right CI's x<- seq( 0,1,,8) y<- sin(3*x) out<-Tps( x, y) # lambda found by GCV plot( out$x, out$y) xgrid<- seq( min( out$x), max( out$x),,100) fhat<- predict( out,xgrid) lines( xgrid, fhat, lwd=2) SE<- predictSE( out, xgrid) lines( xgrid,fhat + 1.96* SE, col="red", lty=2) lines(xgrid, fhat - 1.96*SE, col="red", lty=2) } # More involved example adding a covariate to the fixed part of model \dontrun{ set.panel( 1,3) # without elevation covariate out0<-Tps( RMprecip$x,RMprecip$y) surface( out0) US( add=TRUE, col="grey") # with elevation covariate out<- Tps( RMprecip$x,RMprecip$y, Z=RMprecip$elev) # NOTE: out$d[4] is the estimated elevation coefficient # it is easy to get the smooth surface separate from the elevation. out.p<-predictSurface( out, drop.Z=TRUE) surface( out.p) US( add=TRUE, col="grey") # and if the estimate is of high resolution and you get by with # a simple discretizing -- does not work in this case! quilt.plot( out$x, out$fitted.values) # # the exact way to do this is evaluate the estimate # on a grid where you also have elevations # An elevation DEM from the PRISM climate data product (4km resolution) data(RMelevation) grid.list<- list( x=RMelevation$x, y= RMelevation$y) fit.full<- predictSurface( out, grid.list, ZGrid= RMelevation) # this is the linear fixed part of the second spatial model: # lon,lat and elevation fit.fixed<- predictSurface( out, grid.list, just.fixed=TRUE, ZGrid= RMelevation) # This is the smooth part but also with the linear lon lat terms. fit.smooth<-predictSurface( out, grid.list, drop.Z=TRUE) # set.panel( 3,1) fit0<- predictSurface( out0, grid.list) image.plot( fit0) title(" first spatial model (w/o elevation)") image.plot( fit.fixed) title(" fixed part of second model (lon,lat,elev linear model)") US( add=TRUE) image.plot( fit.full) title("full prediction second model") set.panel() } ### ### fast Tps # m=2 p= 2m-d= 2 # # Note: aRange = 3 degrees is a very generous taper range. # Use some trial aRange value with rdist.nearest to determine a # a useful taper. Some empirical studies suggest that in the # interpolation case in 2 d the taper should be large enough to # about 20 non zero nearest neighbors for every location. out2<- fastTps( RMprecip$x,RMprecip$y,m=2, aRange=3.0, profileLambda=FALSE) # note that fastTps produces a object of classes spatialProcess and mKrig # so one can use all the # the overloaded functions that are defined for these classes. # predict, predictSE, plot, sim.spatialProcess # summary of what happened note estimate of effective degrees of # freedom # profiling on lambda has been turned off to make this run quickly # but it is suggested that one examines the the profile likelihood over lambda print( out2) \dontrun{ set.panel( 1,2) surface( out2) # # now use great circle distance for this smooth # Here "aRange" for the taper support is the great circle distance in degrees latitude. # Typically for data analysis it more convenient to think in degrees. A degree of # latitude is about 68 miles (111 km). # fastTps( RMprecip$x,RMprecip$y,m=2, lon.lat=TRUE, aRange= 210 ) -> out3 print( out3) # note the effective degrees of freedom is different. surface(out3) set.panel() } \dontrun{ # # simulation reusing Tps/Krig object # fit<- Tps( rat.diet$t, rat.diet$trt) true<- fit$fitted.values N<- length( fit$y) temp<- matrix( NA, ncol=50, nrow=N) tau<- fit$tauHat.GCV for ( k in 1:50){ ysim<- true + tau* rnorm(N) temp[,k]<- predict(fit, y= ysim) } matplot( fit$x, temp, type="l") } # #4-d example fit<- Tps(BD[,1:4],BD$lnya,scale.type="range") # plots fitted surface and contours # default is to hold 3rd and 4th fixed at median values surface(fit) } \keyword{smooth} % docclass is function % Converted by Sd2Rd version 1.21. fields/man/smooth.2d.Rd0000644000175100001440000001340714627454002014426 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{smooth.2d} \alias{smooth.2d} \title{ Kernel smoother for irregular 2-d data } \description{ An approximate Nadaraya Watson kernel smoother is obtained by first discretizing the locations to a grid and then using convolutions to find and to apply the kernel weights. The main advantage of this function is a smoother that avoids explicit looping. } \usage{ smooth.2d(Y, ind = NULL, weight.obj = NULL, setup = FALSE, grid = NULL, x = NULL, nrow = 64, ncol = 64, surface = TRUE, cov.function = gauss.cov, Mwidth = NULL, Nwidth = NULL, ...) } \arguments{ \item{Y}{ A vector of data to be smoothed } \item{ind}{ Row and column indices that correspond to the locations of the data on regular grid. This is most useful when smoothing the same locations many times. (See also the x argument.) } \item{weight.obj }{ An object that has the FFT of the convolution kernel and other information ( i.e. the result from calling this with setup=TRUE). } \item{setup}{ If true creates a list that includes the FFT of the convolution kernel. In this case the function will return this list. Default is false. } \item{grid}{ A list with components x and y being equally spaced values that define the grid. Default are integers 1:nrow, 1:ncol. If x is given the ranges will be used to define the grid. } \item{x}{ Actual locations of the Y values. Not needed if ind is specified. } \item{nrow}{ Number of points in the horizontal (x) axis of the grid. Not needed if grid is specified the default is 64 } \item{ncol}{ Number of points in the vertical (y) axis of the grid. Not needed if grid list is specified the default is 64 } \item{surface}{ If true (the default) a surface object is returned suitable for use by image, persp or contour functions. If false then just the nrowXncol matrix of smoothed values is returned. } \item{cov.function}{ S function describing the kernel function. To be consistent with the other spatial function this is in the form of a covariance function. The only assumption is that this be stationary. Default is the (isotropic) Gaussian. } \item{Nwidth}{ The size of the padding regions of zeroes when computing the (exact) convolution of the kernel with the data. The most conservative values are 2*nrow and 2*ncol, the default. If the kernel has support of say 2L+1 grid points then the padding region need only be of size L+1. } \item{Mwidth}{ See Nwidth. } \item{\dots}{ Parameters that are passed to the smoothing kernel. ( e.g. the scale parameter aRange for the exponential or gaussian) } } \value{ Either a matrix of smoothed values or a surface object. The surface object also has a component 'ind' that gives the subscripts of the image matrix where the data is present. } \details{ The irregular locations are first discretized to a regular grid ( using as.image) then a 2d- FFT is used to compute a Nadaraya-Watson type kernel estimator. Here we take advantage of two features. The kernel estimator is a convolution and by padding the regular by zeroes where data is not obsevred one can sum the kernel over irregular sets of locations. A second convolutions to find the normalization of the kernel weights. The kernel function is specified by an function that should evaluate with the kernel for two matrices of locations. Assume that the kernel has the form: K( u-v) for two locations u and v. The function given as the argument to cov.function should have the call myfun( x1,x2) where x1 and x2 are matrices of 2-d locations if nrow(x1)=m and nrow( x2)=n then this function should return a mXn matrix where the (i,j) element is K( x1[i,]- x2[j,]). Optional arguments that are included in the ... arguments are passed to this function when it is used. The default kernel is the Gaussian and the argument aRange is the bandwidth. It is easy to write other other kernels, just use Exp.cov.simple as a template. } \examples{ # Normal kernel smooth of the precip data with bandwidth of .5 ( degree) # look<- smooth.2d( RMprecip$y, x=RMprecip$x, aRange=.25) # finer resolution used in computing the smooth look3<-smooth.2d( RMprecip$y, x=RMprecip$x, aRange=.25, nrow=256, ncol=256,Nwidth=32, Mwidth=32) # if the width arguments were omitted the padding would create a # 512X 512 matrix with the data filled in the upper 256X256 part. # with a bandwidth of .25 degrees the normal kernel is essentially zero # beyond 32 grid points from its center ( about 6 standard deviations) # # take a look: #set.panel(2,1) #image( look3, zlim=c(-8,12)) #points( RMprecip$x, pch=".") #image( look, zlim =c(-8,12)) #points( RMprecip$x, pch=".") # bandwidth changed to .25, exponential kernel look2<- smooth.2d( RMprecip$y, x=RMprecip$x, cov.function=Exp.cov,aRange=.25) # } \keyword{smooth} % docclass is function % Converted by Sd2Rd version 1.21. fields/man/Krig.null.function.Rd0000644000175100001440000000406314627454002016300 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{Krig.null.function} \alias{Krig.null.function} \title{Default function to create fixed matrix part of spatial process model.} \description{ Constructs a matrix of terms representing a low order polynomial and binds additional columns due to covariates ( the Z matrix) } \usage{ Krig.null.function(x, Z = NULL, drop.Z = FALSE, m) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{x}{Spatial locations } \item{Z}{ Other covariates to be associated with each location.} \item{drop.Z}{If TRUE only the low order polynomial part is created. } \item{m}{ The polynomial order is (m-1). } } \value{ A matrix where the first columns are the polynomial terms and the following columns are from Z. } \details{ This function can be modified to produce a different fixed part of the spatial model. The arguments x, Z and drop.Z are required but other arguments can be passed as part of a list in null.args in the call to Krig. } \author{Doug Nychka } \seealso{Krig} \keyword{ spatial}% at least one, from doc/KEYWORDS fields/man/mKrig.Rd0000644000175100001440000005073114627454002013663 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{mKrig} \alias{mKrig} \alias{predict.mKrig} \alias{mKrig.coef} \alias{mKrig.trace} \alias{print.mKrig} \alias{print.mKrigSummary} \alias{summary.mKrig} \alias{mKrigCheckXY} \title{"micro Krig" Spatial process estimate of a curve or surface, "kriging" with a known covariance function. } \description{ This is a simple version of the Krig function that is optimized for large data sets, sparse linear algebra, and a clear exposition of the computations. Lambda, the smoothing parameter must be fixed. This function is called higher level functions for maximum likelihood estimates of covariance paramters. } \usage{ mKrig(x, y, weights = rep(1, nrow(x)), Z = NULL, ZCommon = NULL, cov.function = "stationary.cov", cov.args = NULL, lambda = NA, m = 2, chol.args = NULL, find.trA = TRUE, NtrA = 20, iseed = NA, na.rm = FALSE, collapseFixedEffect = TRUE, tau = NA, sigma2 = NA, verbose = FALSE, ...) \method{predict}{mKrig}( object, xnew=NULL,ynew=NULL, grid.list = NULL, derivative=0, Z=NULL,drop.Z=FALSE,just.fixed=FALSE, collapseFixedEffect = object$collapseFixedEffect, ...) \method{summary}{mKrig}(object, ...) \method{print}{mKrig}( x, digits=4,... ) \method{print}{mKrigSummary}( x, digits=4,... ) mKrig.coef(object, y, collapseFixedEffect=TRUE) mKrig.trace( object, iseed, NtrA) mKrigCheckXY(x, y, weights, Z, ZCommon, na.rm) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{collapseFixedEffect}{ If replicated fields are given to mKrig (i.e. \code{y} has more than one column) there is the choice of estimating the fixed effect coefficients (\code{d} in the returned object) separately for each replicate or pooling across replicates and deriving a single estimate. If \code{collapseFixedEffect} is TRUE (default) the estimates are pooled. } \item{chol.args}{A list of optional arguments (pivot, nnzR) that will be used with the call to the cholesky decomposition. Pivoting is done by default to make use of sparse matrices when they are generated. This argument is useful in some cases for sparse covariance functions to reset the memory parameter nnzR. (See example below.)} \item{cov.args}{A list of optional arguments that will be used in calls to the covariance function.} \item{cov.function}{The name, a text string of the covariance function.} \item{derivative}{If zero the surface will be evaluated. If not zero the matrix of partial derivatives will be computed.} \item{digits}{Number of significant digits used in printed output.} \item{drop.Z}{If true the fixed part will only be evaluated at the polynomial part of the fixed model. The contribution from the other covariates will be omitted.} \item{find.trA}{ If TRUE will estimate the effective degrees of freedom using a simple Monte Carlo method. This will add to the computational burden by approximately NtrA solutions of the linear system but the cholesky decomposition is reused.} \item{grid.list}{A grid.list to evaluate the surface in place of specifying arbitrary locations.} \item{iseed}{Random seed ( using \code{set.seed(iseed)}) used to generate iid normals for Monte Carlo estimate of the trace. Set this to an integer to insure the same random draws are used to compute the approximate trace and be consistent across different values of the covariance parameters. } \item{just.fixed}{If TRUE only the predictions for the fixed part of the model will be evaluted.} \item{lambda}{ Smoothing parameter or equivalently the ratio between the nugget and process varainces.} \item{m}{ The degree of the polynomial used in the fixed part. This is follows the thin plate spline convention that the degree is m-1. Default is m=2 for a linear function, m=1 a constant and, as an quick logical switch, m=0 will result in no fixed part in the spatial model. } \item{na.rm}{If TRUE NAs in y are omitted along with corresonding rows of x.} \item{NtrA}{Number of Monte Carlo samples for the trace. But if NtrA is greater than or equal to the number of observations the trace is computed exactly.} \item{object}{Object returned by mKrig. (Same as "x" in the print function.)} \item{sigma2}{Value of the process variance.} \item{tau}{ Value of the measurment error (aka nugget) standard deviation.} \item{verbose}{If TRUE prints out intermediate values of objsects for debugging.} \item{weights}{Precision ( 1/variance) of each observation} \item{x}{Matrix of unique spatial locations (or in print or surface the returned mKrig object.)} \item{xnew}{Locations for predictions.} \item{y}{ Vector or matrix of observations at spatial locations, missing values are not allowed! Or in mKrig.coef a new vector of observations. If y is a matrix the columns are assumed to be independent replicates of the spatial field. I.e. observation vectors generated from the same covariance and measurment error model but independent from each other. } \item{ynew}{New observation vector. \code{mKrig} will reuse matrix decompositions and find the new fit to these data.} \item{Z}{ Linear covariates to be included in fixed part of the model that are distinct from the default low order polynomial in \code{x}. (NOTE the order of the polynomial determined by \code{m})} \item{ZCommon}{ Linear covariates to be included in fixed part of the model. This option is only relevant for independent realizations of the fields (i.e. y is a matrix). The number of rows of \code{ZCommon} should be equal to the number of observations times the number of realizations. } \item{\dots}{ In \code{mKrig} and \code{predict} additional arguments that will be passed to the covariance function.} } \details{ This function is an abridged version of Krig and uses a more direct computation for the linear algebra that faciliates compactly supported covariance functions. The m stand for micro and done for a fixed lambda parameter and other covariance parameters (e.g. aRange) and for unique spatial locations. This is also the basic computational element of the top level \code{\link{spatialProcess} } function for finding MLEs. See the source code for a commented version that described the computation. These restrictions simplify the code for reading. Note that also little checking is done and the spatial locations are not transformed before the estimation. \strong{Repeated locations} To keep the coding simple \code{x} must be a set of unique locations. When there are multiple observations at a location -- also known as replicated locations -- one strategy is to use the average spatial value for this location in place of mulitple observations. One can also adjust the weights accordingly for this location if that makes sense. To do this use the function \code{\link{Krig.replicates}}. For example \preformatted{ out<- Krig.replicates( x=x, y=y) } and \code{out$xM, out$yM, out$weightsM} will be the unique locations with averaged values and the number of observations. \preformatted{ out<- Krig.replicates( x=x, y=y, weights= weights) } will also combine the weight vector based on the replications and be returned as \code{out$weightsM}. \strong{Multiple fields} Because most of the operations are linear algebra this code has been written to handle multiple data sets. Specifically, if the spatial model is the same except for different observed values (the y's), one can pass \code{y} as a matrix and the computations are done efficiently for each set. The likelihood across all replicates is combined and denoted with \code{FULL} at the end. Also note the \code{collapseFixedEffects} switch to determine if the regression part is found seperately for each replicate or combined into a single model. Note that this is not a multivariate spatial model -- just an efficient computation over several data vectors without explicit looping. A big difference in the computations is that an exact expression for the trace of the smoothing matrix is (trace A(lambda)) is computationally expensive and a Monte Carlo approximation is supplied instead. \strong{Supporting functions} See \code{predictSE.mKrig} for prediction standard errors and \code{sim.mKrig.approx} to quantify the uncertainty in the estimated function using conditional simulation. \code{predict.mKrig} will evaluate the derivatives of the estimated function if derivatives are supported in the covariance function. For example the wendland.cov function supports derivatives. \code{summary.mKrig} creates a list of class \code{mKrigSummary} along with a table of standard errors for the fixed linear parameters. \code{print.mKrigSummary} prints the \code{mKrigSummary} object and adds some more explanation about the model and results \code{print.mKrig} prints a summary for the \code{mKrig} object that the combines the summary and print methods. \code{mKrig.coef} finds "beta"" and "c" coefficients representing the solution using the previous cholesky decomposition but for a new data vector. This is used in computing the prediction standard error in predictSE.mKrig and can also be used to evalute the estimate efficiently at new vectors of observations provided the locations, fixed part, and the covariance matrix all remain the same . \strong{Sparse covariance functions} Sparse matrix methods are handled through overloading the usual linear algebra functions with sparse versions. But to take advantage of some additional options in the sparse methods the list argument chol.args is a device for changing some default values. The most important of these is \code{nnzR}, the number of nonzero elements anticipated in the Cholesky factorization of the postive definite linear system used to solve for the basis coefficients. The sparse of this system is essentially the same as the covariance matrix evalauted at the observed locations. As an example of resetting \code{nzR} to 450000 one would use the following argument for chol.args in mKrig: \code{ chol.args=list(pivot=TRUE,memory=list(nnzR= 450000))} \strong{Approximation trace estimate} \code{mKrig.trace} This is an internal function called by \code{mKrig} to estimate the effective degrees of freedom. The Kriging surface estimate at the data locations is a linear function of the data and can be represented as A(lambda)y. The trace of A is one useful measure of the effective degrees of freedom used in the surface representation. In particular this figures into the GCV estimate of the smoothing parameter. It is computationally intensive to find the trace explicitly but there is a simple Monte Carlo estimate that is often very useful. If E is a vector of iid N(0,1) random variables then the trace of A is the expected value of t(E)AE. Note that AE is simply predicting a surface at the data location using the synthetic observation vector E. This is done for \code{NtrA} independent N(0,1) vectors and the mean and standard deviation are reported in the \code{mKrig} summary. Typically as the number of observations is increased this estimate becomse more accurate. If NtrA is as large as the number of observations (\code{np}) then the algorithm switches to finding the trace exactly based on applying A to \code{np} unit vectors. } \value{ \item{summary}{A named array with the values of covariance parameters and log likelihoods.} \item{beta}{Coefficients of the polynomial fixed part and if present the covariates (Z).To determine which is which the logical vector ind.drift also part of this object is TRUE for the polynomial part. } \item{c.coef}{ Coefficients of the nonparametric part.} \item{nt}{ Dimension of fixed part.} \item{np}{ Dimension of c.coef.} \item{nZ}{Number of columns of Z covariate matrix (can be zero).} \item{ind.drift}{Logical vector that indicates polynomial coefficients in the \code{d} coefficients vector. This is helpful to distguish between polynomial part and the extra covariates coefficients associated with Z. } \item{lambda.fixed}{The fixed lambda value} \item{x}{Spatial locations used for fitting.} \item{knots}{The same as x} \item{cov.function.name}{Name of covariance function used.} \item{args}{ A list with all the covariance arguments that were specified in the call.} \item{m}{Order of fixed part polynomial.} \item{chol.args}{ A list with all the cholesky arguments that were specified in the call.} \item{call}{ A copy of the call to mKrig.} \item{non.zero.entries}{ Number of nonzero entries in the covariance matrix for the process at the observation locations.} \item{lnDetCov}{Log determinant of the covariance matrix for the observations having factored out sigma.} \item{Omega}{GLS covariance for the estimated parameters in the fixed part of the model (d coefficients0.} \item{qr.VT, Mc}{QR and cholesky matrix decompositions needed to recompute the estimate for new observation vectors.} \item{fitted.values, residuals}{Usual predictions from fit.} \item{eff.df}{Estimate of effective degrees of freedom. Either the mean of the Monte Carlo sample or the exact value. } \item{trA.info}{If NtrA ids less than \code{np} then the individual members of the Monte Carlo sample and \code{sd(trA.info)/ sqrt(NtrA)} is an estimate of the standard error. If NtrA is greater than or equal to \code{np} then these are the diagonal elements of A(lamdba).} \item{GCV}{Estimated value of the GCV function.} \item{GCV.info}{Monte Carlo sample of GCV functions} } \author{Doug Nychka, Reinhard Furrer, John Paige} \seealso{ Krig, surface.mKrig, Tps, fastTps, predictSurface, predictSE.mKrig, sim.mKrig.approx, \code{ \link{mKrig.grid}}} \examples{ # # Midwest ozone data 'day 16' stripped of missings data( ozone2) y<- ozone2$y[16,] good<- !is.na( y) y<-y[good] x<- ozone2$lon.lat[good,] # nearly interpolate using defaults (Exponential covariance range = 2.0) # see also mKrigMLEGrid to choose lambda by maxmimum likelihood out<- mKrig( x,y, aRange = 2.0, lambda=.01) out.p<- predictSurface( out) surface( out.p) # # NOTE this should be identical to # Krig( x,y, aRange=2.0, lambda=.01) ############################################################################## # an example using a "Z" covariate and the Matern family # again see mKrigMLEGrid to choose parameters by MLE. data(COmonthlyMet) yCO<- CO.tmin.MAM.climate good<- !is.na( yCO) yCO<-yCO[good] xCO<- CO.loc[good,] Z<- CO.elev[good] out<- mKrig( xCO,yCO, Z=Z, cov.function="stationary.cov", Covariance="Matern", aRange=4.0, smoothness=1.0, lambda=.1) set.panel(2,1) # quilt.plot with elevations quilt.plot( xCO, predict(out)) # Smooth surface without elevation linear term included surface( out) set.panel() ######################################################################### # here is a series of examples with bigger datasets # using a compactly supported covariance directly set.seed( 334) N<- 1000 x<- matrix( 2*(runif(2*N)-.5),ncol=2) y<- sin( 1.8*pi*x[,1])*sin( 2.5*pi*x[,2]) + rnorm( 1000)*.1 look2<-mKrig( x,y, cov.function="wendland.cov",k=2, aRange=.2, lambda=.1) # take a look at fitted surface predictSurface(look2)-> out.p surface( out.p) # this works because the number of nonzero elements within distance aRange # are less than the default maximum allocated size of the # sparse covariance matrix. # see options() for the default values. The names follow the convention # spam.arg where arg is the name of the spam component # e.g. spam.nearestdistnnz # The following will give a warning for aRange=.9 because # allocation for the covariance matirx storage is too small. # Here aRange controls the support of the covariance and so # indirectly the number of nonzero elements in the sparse matrix \dontrun{ look2<- mKrig( x,y, cov.function="wendland.cov",k=2, aRange=.9, lambda=.1) } # The warning resets the memory allocation for the covariance matrix # according the to values options(spam.nearestdistnnz=c(416052,400))' # this is inefficient becuase the preliminary pass failed. # the following call completes the computation in "one pass" # without a warning and without having to reallocate more memory. options( spam.nearestdistnnz=c(416052,400)) look2<- mKrig( x,y, cov.function="wendland.cov",k=2, aRange=.9, lambda=1e-2) # as a check notice that # print( look2) # reports the number of nonzero elements consistent with the specifc allocation # increase in spam.options # new data set of 1500 locations set.seed( 234) N<- 1500 x<- matrix( 2*(runif(2*N)-.5),ncol=2) y<- sin( 1.8*pi*x[,1])*sin( 2.5*pi*x[,2]) + rnorm( N)*.01 \dontrun{ # the following is an example of where the allocation (for nnzR) # for the cholesky factor is too small. A warning is issued and # the allocation is increased by 25% in this example # look2<- mKrig( x,y, cov.function="wendland.cov",k=2, aRange=.1, lambda=1e2 ) } # to avoid the warning look2<-mKrig( x,y, cov.function="wendland.cov", k=2, aRange=.1, lambda=1e2, chol.args=list(pivot=TRUE, memory=list(nnzR= 450000))) ############################################################################### # fiting multiple data sets # #\dontrun{ y1<- sin( 1.8*pi*x[,1])*sin( 2.5*pi*x[,2]) + rnorm( N)*.01 y2<- sin( 1.8*pi*x[,1])*sin( 2.5*pi*x[,2]) + rnorm( N)*.01 Y<- cbind(y1,y2) look3<- mKrig( x,Y,cov.function="wendland.cov",k=2, aRange=.1, lambda=1e2 ) # note slight difference in summary because two data sets have been fit. print( look3) #} \dontrun{ ################################################################## # finding a good choice for aRange as a taper # Suppose the target is a spatial prediction using roughly 50 nearest neighbors # (tapering covariances is effective for roughly 20 or more in the situation of # interpolation) see Furrer, Genton and Nychka (2006). # take a look at a random set of 100 points to get idea of scale # and saving computation time by not looking at the complete set # of points # NOTE: This could also be done directly using the FNN package for finding nearest # neighbors set.seed(223) ind<- sample( 1:N,100) hold<- rdist( x[ind,], x) dd<- apply( hold, 1, quantile, p= 50/N ) dguess<- max(dd) # dguess is now a reasonable guess at finding cutoff distance for # 50 or so neighbors # full distance matrix excluding distances greater than dguess hold2<- nearest.dist( x, x, delta= dguess ) # here is trick to find the number of nonsero rows for a matrix in spam format. hold3<- diff( hold2@rowpointers) # min( hold3) = 43 which we declare close enough. This also counts the diagonal # So there are a minimum of 42 nearest neighbors ( median is 136) # see table( hold3) for the distribution # now the following will use no less than 43 - 1 nearest neighbors # due to the tapering. mKrig( x,y, cov.function="wendland.cov",k=2, aRange=dguess, lambda=1e2) -> look2 } ############################################################################### # use precomputed distance matrix # \dontrun{ y1<- sin( 1.8*pi*x[,1])*sin( 2.5*pi*x[,2]) + rnorm( N)*.01 y2<- sin( 1.8*pi*x[,1])*sin( 2.5*pi*x[,2]) + rnorm( N)*.01 Y<- cbind(y1,y2) #precompute distance matrix in compact form distMat = rdist(x, compact=TRUE) look3<- mKrig( x,Y,cov.function="stationary.cov", aRange=.1, lambda=1e2, distMat=distMat ) #precompute distance matrix in standard form distMat = rdist(x) look3<- mKrig( x,Y,cov.function="stationary.cov", aRange=.1, lambda=1e2, distMat=distMat ) } } \references{ \url{https://github.com/dnychka/fieldsRPackage} } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{spatial } fields/man/arrow.plot.Rd0000644000175100001440000001004014627454002014706 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{arrow.plot} \alias{arrow.plot} \title{ Adds arrows to a plot } \description{ Adds arrows at specified points where the arrow lengths are scaled to fit on the plot in a reasonable manner. A classic use of this function is to depict a vector field. At each point (x,y) we have a vector with components (u,v). Like the arrows function this adds arrows to an existing plot. } \usage{ arrow.plot(a1, a2, u = NA, v = NA, arrow.ex = 0.05, xpd = TRUE, true.angle = FALSE, arrowfun=arrows,...) } \arguments{ \item{a1}{ The x locations of the tails of the arrows or a 2 column matrix giving the x and y coordinates of the arrow tails. } \item{a2}{ The y locations of the tails of the arrows or a 2 column matrix giving the u and v coordinates of the arrows. } \item{u}{ The u components of the direction vectors if they are not specified in the a1 argument } \item{v}{ The v components of the direction vectors if they are not specified in the a2 argument } \item{arrow.ex}{ Controls the length of the arrows. The length is in terms of the fraction of the shorter axis in the plot. So with a default of .05 20 arrows of maximum length can line up end to end along the shorter axis. } \item{xpd}{ If true does not clip arrows to fit inside the plot region, default is not to clip. } \item{true.angle}{ If true preserves the true angle of the (u,v) pair on the plot. E.g. if (u,v)=(1,1) then the arrow will be drawn at 45 degrees. } \item{arrowfun}{ The actual arrow function to use. The default is standard R \code{arrows}. However, Tamas K Papp suggests \code{p.arrows} from sfsmisc which makes prettier arrows. } \item{\dots}{ Graphics arguments passed to the arrows function that can can change the color or arrow sizes. See help on this for details. } } \details{ This function is useful because (u,v) may be in very different scales from the locations (x,y). So some careful scaling is needed to plot the arrows. The only tricky thing about this function is whether you want the true angles on the plot. For overlaying a vector field on top of contours that are the streamlines true.angle should be false. In this case you want u and v to be scaled in the same way as the x and y variables. If the scaling is not the same then the arrows will not look like tangent vectors to the streamlines. An application where the absolute angles are meaningful might be the hands of a clock showing different times zones on a world map. Here true.angle=T is appropriate, the clock hands should preserve the right angles. } \seealso{arrows} \examples{ # # 20 random directions at 20 random points x<- runif( 20) y<- runif( 20) u<- rnorm( 20) v<- rnorm( 20) plot( x,y) arrow.plot( x,y,u,v) # a default that is unattractive plot( x,y, type="n") arrow.plot( x,y,u,v, arrow.ex=.2, length=.1, col='green', lwd=2) # thicker lines in green, smaller heads and longer tails. Note length, col and lwd are # options that the arrows function itself knows about. } \keyword{aplot} % docclass is function % Converted by Sd2Rd version 1.21. fields/man/drape.plot.Rd0000644000175100001440000001612614627454002014662 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{drape.plot} \alias{drape.color} \alias{drape.plot} %- Also NEED an '\alias' for EACH other topic documented here. \title{Perspective plot draped with colors in the facets.} \description{ Function to produce the usual wireframe perspective plot with the facets being filled with different colors. By default the colors are assigned from a color bar based on the z values. \code{drape.color} can be used to create a color matrix different from the z matrix used for the wireframe.} \usage{ drape.plot(x, y, z, z2=NULL, col = tim.colors(64), zlim = range(z, na.rm=TRUE), zlim2 = NULL, add.legend = TRUE, horizontal = TRUE, theta = 30, phi = 20, breaks=NA, ...) drape.color(z, col = tim.colors(64), zlim = NULL,breaks, transparent.color = "white", midpoint=TRUE, eps=1e-8) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{x}{ grid values for x coordinate (or if x is a list the components x y and z are used.)} \item{y}{grid values for y coordinate} \item{z}{A matrix of z heights } \item{z2}{ A matrix of z values to use for coloring facets. If NULL then z is used for this purpose} \item{col}{ A color table for the z values that will be used for draping} \item{zlim}{the z limits for \code{z} these are used to set up the scale of the persp plot. This defaults to range(z, na.rm=TRUE) as in persp} \item{zlim2}{the z limits for \code{z2} these are used to set up the color scale. This defaults to } \item{add.legend}{ If true a color strip is added as a legend.} \item{horizontal}{ If true color strip is put at bottom of the plot, if FALSE it is placed vertically on the right side. } \item{theta}{ x-y rotation angle for perspective. } \item{phi}{ z-angle for perspective. } \item{transparent.color}{ Color to use when given an NA in z} \item{midpoint}{ If TRUE color scale is formed for midpoints of z obtained by averaging 4 corners.} \item{breaks}{Numerical divisions for the color scale. If the default (NA) is N+1 equally spaced points in the range \code{zlim} where N is the number of colors in \code{col}. This is the argument has the same effect as used in the \code{image} and \code{image.plot} functions.} \item{eps}{Amount to inflate the range (1+/- eps) to inlude points on break endpoints.} \item{\dots}{ Other arguments that will be passed to the persp function. The most common is zlim the z limits for the 3-d plot and also the limits to set up the color scale. The default for zlim is the range of z.} } \value{ \code{drape.plot} If an assignment is made the projection matrix from persp is returned. This information can be used to add additional 3-d features to the plot. See the \code{persp} help file for an example how to add additional points and lines using the \code{trans3d} function and also the example below. \code{drape.color} If dim( z) = M,N this function returns a list with components: \item{color.index}{An (M-1)X(N-1) matrix (midpoint= TRUE) or MXN matrx (midpoint=FALSE) where each element is a text string specifying the color. } \item{breaks}{The breaks used to assign the numerical values in z to color categories.} } \details{ The legend strip may obscure part of the plot. If so, add this as another step using image.plot. When using \code{drape.color} just drop the results into the \code{col} argument of \code{persp}. Given this function there are no surprises how the higher level \code{drape.plot} works: it calls \code{drape.color} followed by \code{persp} and finally the legend strip is added with \code{image.plot}. The color scales essentially default to the ranges of the z values. However, by specifying zlim and/or zlim2 one has more control of how the perspective plot is scaled and the limits of the color scale used to fill the facets. The color assignments are done by dividing up the zlim2 interval into equally spaced bins and adding a very small inflation to these limits. The mean z2 values, comprising an (M-1)X(N-1) matrix, for each facet are discretized to the bins. The bin numbers then become the indices used for the color scale. If zlim2 is not specified it is the range of the z2 matrix is used to generate the ranges of the color bar. Note that this may be different than the range of the mean facets. If z2 is not passed then z is used in its place and in this case the zlim2 or zlim argument can used to define the color scale. This kind of plot is also supported through the wireframe function in the \code{lattice} package. The advantage of the fields version is that it uses the standard R graphics functions -- and is written in R code. The drape plot is also drawn by the fields \code{surface} function with \code{type="P"}. } \author{D. Nychka } \seealso{ image.plot, quilt.plot, persp, plot.surface, surface, lattice, trans3d} \examples{ # an obvious choice: # Dr. R's favorite New Zealand Volcano! data( volcano) M<- nrow( volcano) N<- ncol( volcano) x<- seq( 0,1,,M) y<- seq( 0,1,,N) pm<- drape.plot( x,y,volcano, col=terrain.colors(128)) # use different range for color scale and persp plot # setting of border omits the mesh lines drape.plot( x,y,volcano, col=topo.colors(128),zlim=c(0,300), zlim2=c( 120,200), border=NA) # note tranparent color for facets outside the zlim2 range #The projection has been saved in pm # add a point marking the summit zsummit <- max( volcano) ix<- row( volcano)[volcano==zsummit] iy <- col( volcano)[volcano==zsummit] uv <- trans3d( x[ix], y[iy],zsummit,pm) points( uv, col="magenta", pch="+", cex=2) # overlay volcano wireframe with gradient in x direction. dz<- ( volcano[1:(M-1), 1:(N-1)] - volcano[2:(M), 1:(N-1)] + volcano[1:(M-1), 2:(N)] - volcano[2:(M), 2:(N)] )/2 # convert dz to a color scale: zlim<- range( c( dz), na.rm=TRUE) zcol<-drape.color( dz, zlim =zlim, col = viridis(64) )$color.index # with these colors persp( volcano, col=zcol, theta=30, phi=20, border=NA,expand=.3 ) # add legend using image.plot function image.plot( zlim=zlim, legend.only =TRUE, horizontal =TRUE, col= viridis(64)) } \keyword{hplot}% at least one, from doc/KEYWORDS fields/man/predict.Krig.Rd0000644000175100001440000001545614627454002015144 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{predict.Krig} \alias{predict.Krig} \alias{predict.Tps} \alias{predictDerivative.Krig} \alias{predict.fastTps} \title{ Evaluation of Krig spatial process estimate. } \description{ Provides predictions from the Krig spatial process estimate at arbitrary points, new data (Y) or other values of the smoothing parameter (lambda) including a GCV estimate. } \usage{ \method{predict}{Krig}( object, x = NULL, Z = NULL, drop.Z = FALSE, just.fixed = FALSE, lambda = NA, df = NA, model = NA, eval.correlation.model = TRUE, y = NULL, yM = NULL, verbose = FALSE, ...) predictDerivative.Krig(object, x = NULL, verbose = FALSE,...) \method{predict}{Tps}(object, ... ) \method{predict}{fastTps}(object, xnew = NULL, grid.list = NULL, ynew = NULL, derivative = 0, Z = NULL, drop.Z = FALSE, just.fixed = FALSE, xy = c(1, 2), ...) } \arguments{ \item{derivative}{The degree of the derivative to be evauated. Default is 0 (evaluate the function itself), 1 is supported by some covariance functions, Higher derivatives are not supported in this version and for mKrig.} \item{df}{ Effective degrees of freedom for the predicted surface. This can be used in place of lambda ( see the function Krig.df.to.lambda) } \item{eval.correlation.model}{ If true ( the default) will multiply the predicted function by marginal sd's and add the mean function. This usually what one wants. If false will return predicted surface in the standardized scale. The main use of this option is a call from Krig to find MLE's of sigma and tau2 } \item{grid.list}{A \code{grid.list} specfiying a grid of locations to evaluate the fitted surface.} \item{just.fixed}{ Only fixed part of model is evaluated} \item{lambda}{ Smoothing parameter. If omitted, the value in the \code{lambda} of the object will be used. (See also df and gcv arguments) } \item{model}{ Generic argument that may be used to pass a different lambda. } \item{object}{ Fit object from the Krig, Tps, mKrig, or fastTps functions. } \item{verbose}{ Print out all kinds of intermediate stuff for debugging } \item{xy}{The column positions that locate the x and y variables for evaluating on a grid. This is mainly useful if the surface has more than 2 dimensions.} \item{y}{ Evaluate the estimate using the new data vector y (in the same order as the old data). This is equivalent to recomputing the Krig object with this new data but is more efficient because many pieces can be reused. Note that the x values are assumed to be the same. } \item{x}{ Matrix of x values on which to evaluate the kriging surface. If omitted, the data x values will be used. } \item{xnew}{Same as x above.} \item{ynew}{Same as y above.} \item{yM}{ If not NULL evaluate the estimate using this vector as the replicate mean data. That is, assume the full data has been collapsed into replicate means in the same order as xM. The replicate weights are assumed to be the same as the original data. (weightsM) } \item{Z}{ Vector/Matrix of additional covariates to be included in fixed part of spatial model} \item{drop.Z}{ If TRUE only spatial fixed part of model is evaluated. i.e. Z covariates are not used. } \item{\dots}{Other arguments passed to covariance function. In the case of \code{fastTps} these are the same arguments as \code{predict.mKrig}. This argument is usually not needed. } } \value{ Vector of predicted responses or a matrix of the partial derivatives. } \details{ The main goal in this function is to reuse the Krig object to rapidly evaluate different estimates. Thus there is flexibility in changing the value of lambda and also the independent data without having to recompute the matrices associated with the Krig object. The reason this is possible is that most on the calculations depend on the observed locations not on lambda or the observed data. Note the version for evaluating partial derivatives does not provide the same flexibility as \code{predict.Krig} and makes some assumptions about the null model (as a low order polynomial) and can not handle the correlation model form. } \seealso{ Krig, predictSurface gcv.Krig } \examples{ Krig(ChicagoO3$x,ChicagoO3$y, aRange=50) ->fit predict( fit) # gives predicted values at data points should agree with fitted.values # in fit object # predict at the coordinate (-5,10) x0<- cbind( -5,10) # has to be a 1X2 matrix predict( fit,x= x0) # redoing predictions at data locations: predict( fit, x=ChicagoO3$x) # only the fixed part of the model predict( fit, just.fixed=TRUE) # evaluating estimate at a grid of points grid<- make.surface.grid( list( seq( -40,40,,15), seq( -40,40,,15))) look<- predict(fit,grid) # evaluate on a grid of points # some useful graphing functions for these gridded predicted values out.p<- as.surface( grid, look) # reformat into $x $y $z image-type object contour( out.p) # see also the functions predictSurface and surface # for functions that combine these steps # refit with 10 degrees of freedom in surface look<- predict(fit,grid, df=15) # refit with random data look<- predict( fit, grid, y= rnorm( 20)) # finding partial derivatives of the estimate # # find the partial derivatives at observation locations # returned object is a two column matrix. # this does not make sense for the exponential covariance # but can illustrate this with a thin plate spline with # a high enough order ( i.e. need m=3 or greater) # data(ozone2) # the 16th day of this ozone spatial dataset fit0<- Tps( ozone2$lon.lat, ozone2$y[16,], m=3) look1<- predictDerivative.Krig( fit0) # for extra credit compare this to look2<- predictDerivative.Krig( fit0, x=ozone2$lon.lat) # (why are there more values in look2) } \keyword{spatial} % docclass is function % Converted by Sd2Rd version 1.21. fields/man/supportsArg.Rd0000644000175100001440000000566114627454002015145 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{supportsArg} \alias{supportsArg} %- Also NEED an '\alias' for EACH other topic documented here. \title{ Tests if function supports a given argument } \description{ %% ~~ A concise (1-5 lines) description of what the function does. ~~ Tests if the given function supports the given argument. Commonly used in fields code for determining if a covariance function supports precomputation of the distance matrix and evaluation of the covariance matrix over only the upper triangle. } \usage{ supportsArg(fun=stationary.cov, arg) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{fun}{ The function tested for support for whether it supports the argument \code{arg} as input } \item{arg}{ The argument to check if \code{fun} supports using as input } } \details{ Currently only \code{stationary.cov} and \code{Exp.cov} support evaluation of the covariance matrix over the upper triangle (and diagonal) only via the onlyUpper argument and distance matrix precomputation via the distMat argument. } \value{ A logical indicating whether the given function supports use of the given argument } \author{ %% ~~who you are~~ John Paige } %% ~Make other sections like Warning with \section{Warning }{....} ~ \seealso{ %% ~~objects to See Also as \code{\link{help}}, ~~~ \code{\link{stationary.cov}}, \code{\link{Exp.cov}} These covariance functions have the \code{onlyUpper} option allowing the user to evaluate the covariance matrix over the upper triangle and diagonal only and to pass a precomputed distance matrix } \examples{ ################ #Test covariance function to see if it supports evaluation of #covariance matrix over upper triangle only ################ supportsArg(Rad.cov, "distMat") supportsArg(Rad.cov, "onlyUpper") supportsArg(stationary.cov, "distMat") supportsArg(stationary.cov, "onlyUpper") supportsArg(Exp.cov, "distMat") supportsArg(Exp.cov, "onlyUpper") } fields/man/fields.grid.Rd0000644000175100001440000000537014627454002015003 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{fields.grid} \alias{mKrig.grid} \title{ Using MKrig for predicting on a grid. } \description{ This is an extended example for using the sparse/fast interpolation methods in mKrig to evaluate a Kriging estimate on a large grid. } \details{ \code{mKrig} is a flexible function for surface fitting using a spatial process model. It can also exploit sparse matrix methods forlarge data sets by using a compactly supported covariance. The example below shows how ot evaluate a solution on a big grid. (Thanks to Jan Klennin for this example.) } \examples{ x<- RMprecip$x y<- RMprecip$y Tps( x,y)-> obj # make up an 80X80 grid that has ranges of observations # use same coordinate names as the x matrix glist<- fields.x.to.grid(x, nx=80, ny=80) # this is a cute way to get a default grid that covers x # convert grid list to actual x and y values ( try plot( Bigx, pch=".")) make.surface.grid(glist)-> Bigx # include actual x locations along with grid. Bigx<- rbind( x, Bigx) # evaluate the surface on this set of points (exactly) predict(obj, x= Bigx)-> Bigy # set the range for the compact covariance function # this will involve less than 20 nearest neighbors that have # nonzero covariance # V<- diag(c( 2.5*(glist$lon[2]-glist$lon[1]), 2.5*(glist$lat[2]-glist$lat[1]))) \dontrun{ # this is an interplotation of the values using a compact # but thin plate spline like covariance. mKrig( Bigx,Bigy, cov.function="wendland.cov",k=4, V=V, lambda=0)->out2 # the big evaluation this takes about 45 seconds on a Mac G4 latop predictSurface( out2, nx=400, ny=400)-> look } # the nice surface \dontrun{ surface( look) US( add=TRUE, col="white") } } \keyword{hplot} fields/man/Krig.engine.default.Rd0000644000175100001440000002235514627454002016376 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{The Engines:} \alias{Krig.engine.default} \alias{Krig.engine.fixed} \alias{Krig.coef} \alias{Krig.check.xY} \alias{Krig.transform.xY} \alias{Krig.make.u} \alias{Krig.make.W} \alias{Krig.make.Wi} \alias{\%d*\%} \title{ Basic linear algebra utilities and other computations supporting the Krig function. } \description{ These are internal functions to Krig that compute the basic matrix decompositions or solve the linear systems needed to evaluate the Krig/Tps estimate. Others listed below do some simple housekeeping and formatting. Typically they are called from within Krig but can also be used directly if passed a Krig object list. } \usage{ Krig.engine.default(out, verbose = FALSE) Krig.engine.fixed( out, verbose=FALSE, lambda=NA) Krig.coef(out, lambda = out$lambda, y = NULL, yM = NULL, verbose = FALSE) Krig.make.u(out, y = NULL, yM = NULL, verbose = FALSE) Krig.check.xY(x, Y,Z, weights, na.rm, verbose = FALSE) Krig.transform.xY(obj, knots, verbose = FALSE) Krig.make.W( out, verbose=FALSE) Krig.make.Wi ( out, verbose=FALSE) } \arguments{ \item{out}{ A complete or partial Krig object. If partial it must have all the information accumulated to this calling point within the Krig function. } \item{obj}{Same as \code{out}. } \item{verbose}{If TRUE prints out intermediate results for debugging.} \item{lambda}{Value of smoothing parameter "hard wired" into decompositions. Default is NA, i.e. use the value in \code{out\$lambda}. } \item{y}{New y vector for recomputing coefficients. OR for \%d*\% a vector or matrix. } \item{yM}{New y vector for recomputing coefficients but the values have already been collapsed into replicate group means.} \item{Y}{raw data Y vector} \item{x}{raw x matrix of spatial locations OR In the case of \%d*\%, y is either a matrix or a vector. As a vector, y, is interpreted to be the elements of a digaonal matrix. } \item{weights}{ Raw \code{weights} vector passed to Krig} \item{Z}{ Raw vector or matrix of additional covariates.} \item{na.rm}{ NA action logical values passed to Krig} \item{knots}{Raw \code{knots} matrix passed to Krig} } \details{ ENGINES: The engines are the code modules that handle the basic linear algebra needed to computed the estimated curve or surface coefficients. All the engine work on the data that has been reduced to unique locations and possibly replicate group means with the weights adjusted accordingly. All information needed for the decomposition are components in the Krig object passed to these functions. \code{Krig.engine.default} finds the decompositions for a Universal Kriging estimator by simultaneously diagonalizing the linear system system for the coefficients of the estimator. The main advantage of this form is that it is fairly stable numerically, even with ill-conditioned covariance matrices with lambda > 0. (i.e. provided there is a "nugget" or measure measurement error. Also the eigendecomposition allows for rapid evaluation of the likelihood, GCV and coefficients for new data vectors under different values of the smoothing parameter, lambda. \code{Krig.engine.knots} This code has been omitted from verisions >= 12.0. See 11.6 too recover this functionality. \strong{Finds the decompositions in the case that the covariance is evaluated at arbitrary locations possibly different than the data locations (called knots). The intent of these decompositions is to facilitate the evaluation at different values for lambda. } \code{Krig.engine.fixed} are specific decomposition based on the Cholesky factorization assuming that the smoothing parameter is fixed. This is the only case that works in the sparse matrix. Both knots and the full set of locations can be handled by this case. The difference between the "knots" engine above is that only a single value of lambda is considered in the fixed engine. OTHER FUNCTIONS: \code{Krig.coef} Computes the "c" and "d" coefficients to represent the estimated curve. These coefficients are used by the predict functions for evaluations. Krig.coef can be used outside of the call to Krig to recompute the fit with different Y values and possibly with different lambda values. If new y values are not passed to this function then the yM vector in the Krig object is used. The internal function \code{Krig.ynew} sorts out the logic of what to do and use based on the passed arguments. \code{Krig.make.u} Computes the "u" vector, a transformation of the collapsed observations that allows for rapid evaluation of the GCV function and prediction. This only makes sense when the decomposition is WBW or DR, i.e. an eigen decomposition. If the decompostion is the Cholesky based then this function returns NA for the u component in the list. \code{Krig.check.xY} Checks for removes missing values (NAs). \code{Krig.cor.Y} This code has been omitted from verisions >= 12.0. See 11.6 too recover this functionality. \code{Krig.transform.xY} Finds all replicates and collapse to unique locations and mean response and pooled variances and weights. These are the xM, yM and weightsM used in the engines. Also scales the x locations and the knots according to the transformation. \code{Krig.make.W} and \code{Krig.make.Wi} These functions create an off-diagonal weight matrix and its symmetric square root or the inverse of the weight matrix based on the information passed to Krig. If \code{out$nondiag} is TRUE W is constructed based on a call to the passed function wght.function along with additional arguments. If this flag is FALSE then W is just \code{diag(out$weightsM)} and the square root and inverse are computed directly. \code{\%d*\%} Is a simple way to implement efficient diagonal multiplications. x\%d*\%y is interpreted to mean diag(x)\%*\% y if x is a vector. If x is a matrix then this becomes the same as the usual matrix multiplication. } \section{Returned Values}{ ENGINES: The returned value is a list with the matrix decompositions and other information. These are incorporated into the complete Krig object. Common to all engines: \describe{ \item{decomp}{Type of decomposition} \item{nt}{dimension of T matrix} \item{np}{number of knots} } \code{Krig.engine.default}: \describe{ \item{u}{Transformed data using eigenvectors.} \item{D}{Eigenvalues} \item{G}{Reduced and weighted matrix of the eigenvectors} \item{qr.T}{QR decomposition of fixed regression matrix} \item{V}{The eigenvectors} } \code{Krig.engine.fixed}: \describe{ \item{d}{estimated coefficients for the fixed part of model} \item{c}{estimated coefficients for the basis functions derived from the covariance function.} } Using all data locations \describe{ \item{qr.VT}{QR decomposition of the inverse Cholesky factor times the T matrix. } \item{MC}{Cholesky factor} } Using knot locations \describe{ \item{qr.Treg}{QR decomposition of regression matrix modified by the estimate of the nonparametric ( or spatial) component.} \item{lambda.fixed}{Value of lambda used in the decompositions} } OTHER FUNCTIONS: \code{Krig.coef} \describe{ \item{yM}{Y values as replicate group means} \item{tauHat.rep}{Sample standard deviation of replicates} \item{tauHat.pure.error}{Same as tauHat.rep} \item{pure.ss}{Pure error sums of squares based on replicates} \item{c}{The "c" basis coefficients associated with the covariance or radial basis functions.} \item{d}{The "d" regression type coefficients that are from the fixed part of the model or the linear null space.} \item{u}{When the default decomposition is used the data vector transformed by the orthogonal matrices. This facilitates evaluating the GCV function at different values of the smoothing parameter.} } \code{Krig.make.W} \describe{ \item{W}{The weight matrix} \item{W2}{ Symmetric square root of weight matrix} } \code{Krig.make.Wi} \describe{ \item{ Wi}{The inverse weight matrix} \item{W2i}{ Symmetric square root of inverse weight matrix} } } \author{Doug Nychka } \seealso{ \code{\link{Krig}}, \code{\link{Tps}} } \examples{ Krig( ChicagoO3$x, ChicagoO3$y, aRange=100)-> out Krig.engine.default( out)-> stuff # compare "stuff" to components in out$matrices look1<- Krig.coef( out) look1$c # compare to out$c look2<- Krig.coef( out, yM = ChicagoO3$y) look2$c # better be the same even though we pass as new data! } \keyword{ spatial } fields/man/imagePlot.Rd0000644000175100001440000007571114627454002014540 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{imagePlot} \alias{imagePlot} \alias{plotMatrix} \alias{colorBar} \alias{setupLegend} \alias{addLegend} \alias{addColorBarTriangle} \title{ Draws an image plot with a legend strip for the color scale based on either a regular grid or a grid of quadrilaterals. } \description{ These functions combines the R image function with some automatic placement of a colorbar legend. \code{imagePlot} is backwardly compatible with the older function \code{\link{image.plot}}. \code{plotMatrix} gives an image plot but shuffles the matrix so that it is in its usual tabular order. There are also some supporting functions to place color bars on other kinds of plots. } \usage{ imagePlot(..., add = FALSE, breaks = NULL, nlevel = 64, col = NULL, horizontal = FALSE, legend.shrink = 0.9, legend.width = 1.2, legend.mar = ifelse(horizontal, 3.1, 5.1), legend.lab = NULL, legend.line = 2, graphics.reset = FALSE, bigplot = NULL, smallplot = NULL, legend.only = FALSE, lab.breaks = NULL, axis.args = NULL, legend.args = NULL, legend.cex = 1, midpoint = FALSE, border = NA, lwd = 1, lowerTriangle = FALSE, upperTriangle = FALSE, asp = NA, verbose = FALSE) colorBar(breaks, smallplot, colorTable, horizontal = FALSE, lab.breaks, axis.args, legend.lab, legend.line = 2, legend.args, legend.cex = 1, lowerTriangle = FALSE, upperTriangle = NULL) setupLegend( horizontal = FALSE, legend.shrink = 0.9, legend.width = 1.2, legend.mar = ifelse(horizontal, 3.1, 5.1) ) addLegend(legendLayout, col, zlim, axis.args = NULL, legend.args = NULL, legend.cex = 1, legend.lab = NULL, legend.line = 2) addColorBarTriangle(lowerColor=NULL, upperColor=NULL, horizontal=TRUE) plotMatrix(A, M = 5, N = 5, ...) } \arguments{ \item{\dots}{ The usual arguments to the \code{image} function as x,y,or z or as a list with x,y,z as components. One can also include a \code{breaks} argument for an unequal spaced color scale with color scale boundaries at the breaks (see example below). If a "quadrilateral grid", arguments must be explicitly x,y and z with x, and y being matrices of dimensions equal to, or one more than, z giving the grid locations. The basic concept is that the coordinates of x and y still define a grid but the image cells are quadrilaterals rather than being restricted to rectangles. NOTE: graphical argruments passed here will only have impact on the image plot. To change the graphical defaults for the legend use the individual legend arguments, \code{axis.args}, or \code{legend.arg} listed below. } \item{add}{ If true add image and a legend strip to the existing plot. } \item{asp}{ Plot aspect. The same function as in the \code{plot} or \code{image} functions.} \item{axis.args}{A list giving additional arguments for the axis function used to create the legend axis. Some typicalones are \code{at} and \code{labels} and specify \code{cex} to control the size of the labels. (See example below adding a log scaling.)} \item{A}{Matrix to plot as an image.} \item{bigplot}{ Plot coordinates for image plot. If not passed these will be determined within the function. } \item{border}{This only works if x and y are matrices -- if NA the quadralaterals will have a border color that is the same as the interior color. Otherwise this specifies the color to use.} \item{breaks}{Break points in sorted order to indicate the intervals for assigning the colors. Note that if there are nlevel colors there should be (nlevel+1) breakpoints. If \code{breaks} is not specified (nlevel+1) equally spaced breaks are created where the first and last bin have their midpoints at the minimum and maximum values in \code{z} or at \code{zlim}.} \item{col}{Color table to use for image (See help file on image for details.). Default is a pleasing range of 64 divisions suggested by Tim Hoar and is similar to the MATLAB (TM) jet color scheme. Note that if \code{breaks} is specified there must be one less color specified than the number of breaks. Or use \code{viridisLite::rocket}. } \item{colorTable}{The colors for the color scale -- the same as col.} \item{graphics.reset}{ If FALSE (default) the plotting region ( plt in par) will not be reset and one can add more information onto the image plot. (e.g. using functions such as points or lines.) If TRUE will reset plot parameters to the values before entering the function. } \item{horizontal}{ If FALSE (default) legend will be a vertical strip on the right side. If TRUE the legend strip will be along the bottom. } \item{lab.breaks}{If breaks are supplied these are text string labels to put at each break value. This feature is useful, for example, to label the legend axis on a transformed scale such as logs. It is also used in the \code{bubblePlot} function to label the colors when z is categorical.} \item{legend.only}{ If TRUE just add the legend to a the plot in the plot region defined by the coordinates in smallplot. In the absence of other information the range for the legend is determined from the \code{zlim} argument. } \item{legend.args}{Arguments for a complete specification of the legend label, e.g. if you need to the rotate text or other details. This is in the form of list and is just passed to the mtext function and you will need to give both the side and line arguments for positioning. This usually will not be needed. (See example below.)} \item{legend.cex}{Character expansion to change size of the legend label.} \item{legend.line}{Distance in units of character height (as in \code{mtext}) of the legend label from the color bar. Make this larger if the label collides with the color axis labels.} \item{legend.mar}{ Width in characters of legend margin that has the axis. Default is 5.1 for a vertical legend and 3.1 for a horizontal legend.} \item{legend.lab}{ Label for the axis of the color legend. Default is no label as this is usual evident from the plot title.} \item{legend.shrink}{ Amount to shrink the size of legend relative to the full height or width of the plot. } \item{legend.width}{ Width in characters of the legend strip. Default is 1.2, a little bigger that the width of a character. } \item{legendLayout}{The list returned by \code{setupLegend} used to layout the legend after a plot is drawn. } \item{lowerColor}{The name of a color for the triangle added to the upper end of the color bar.} \item{lowerTriangle}{If TRUE a triangle will be added to the lower end of the color bar using the first color in the color table. ( i.e. the color of \code{col[1]}). If FALSE a normal color strip will be drawn. } \item{lwd}{Line width of bordering lines around pixels. This might need to be set less than 1.0 to avoid visible rounding of the pixel corners.} \item{M}{Number of rows to label in \code{plotMatrix}} \item{midpoint}{ This option is for the case of unequally spaced grids with x and y being matrices of grid point locations. If FALSE (default) the quadralaterals will be extended to surround the z locations as their midpoints. If TRUE z values will be averaged to yield a midpoint value and the original grid points be used to define the quadralaterals. (See help on poly.image for details). In most cases midpoint should be FALSE to preserve exact values for z and let the grid polygons be modified.} \item{N}{Number of columns to label in \code{plotMatrix}} \item{nlevel}{ Number of color levels used in legend strip } \item{smallplot}{ Plot coordinates for legend strip. If not passed these will be determined within the function. Be sure to leave room for the axis labels. For example, if the legend is on the right side \code{smallplot= c(.85,.9,0,1) } will leave (.1 in plot coordinates) for the axis labels to the right of the color strip. This argument is useful for drawing a plot with the legend that is the same size as the plots without legends. } \item{upperColor}{The color for the triangle added to the upper end of the color bar.} \item{upperTriangle}{If TRUE a triangle added to the upper end of the color bar using the last color in the color table. ( i.e. the \code{col} argument). If FALSE a normal color strip will be drawn. } \item{verbose}{If TRUE prints intermediate information about setting up plots (for debugging). } \item{zlim}{For \code{addLegend}, the range of color scale. Default is to use range set by most recent call to \code{color.scale}} } \section{Side Effects}{ After exiting, the plotting region may be changed to make it possible to add more features to the plot. To be explicit, \code{par()\$plt} may be changed to reflect a smaller plotting region that has accommodated room for the legend subplot. If \code{xlim} and \code{ylim} are specified the pixels may overplot the axis lines. Just use the \code{box} function to redraw them. } \details{ This is a function using base R graphics. The coding was done to make it easier for users to see how this function works and to modify. This will have the same functionaity as the older \code{image.plot} but calls the \code{colorBar} function in place of direct coding in the main function. The functions \code{colorBar} and \code{addColorBarTriangle} are used internally and included for completeness. \strong{How this function works:} This function works by splitting the plotting region into two parts. Putting the image in one and the legend in the other. After the legend is added the plot region is reset to the main image plot. This function also allows for plotting quadrilateral cells in the image format that often arise from regular grids transformed with a map projection or a scaling and rotation of coordinates. Finally, see the last example where this function can create a similar graphic to the ggplot package but using all base R graphics. Two additional functions are provided to add a color scale to other kinds of figures. The strategy for \code{imagePlot} is simple: divide the plotting region into two smaller regions \code{bigplot} and \code{smallplot}. The image goes in one and the legend in the other. This way there is always room for the legend. Some adjustments are made to this rule by not shrinking the \code{bigplot} if there is already room for the legend strip and also sticking the legend strip close to the image plot. The functionality has evolved over many uses of image plots for geophysical data and the examples given below show the flexibility of this function. Also this function is backwardly compatible with the older \code{image.plot} but includes adding endcap trianglesto the color bar to indicate values beyond the range of the color scale. Also the function uses \code{colorBar} to add the legend strip a function that is useful on its own in other applictions. \strong{Figure real estate} One can specify the plot regions explicitly by \code{bigplot} and \code{smallplot} if the default choices do not work.(Note that these in figure coordinates. ) There may be problems with small plotting regions in fitting both of these elements into the plot region and one may have to change the default character sizes or margins to make things fit. Sometimes this function will not reset the type of margins correctly and the "null" call \code{par(mar = par("mar"))} may help to fix this issue. \strong{The text is too small!} This always seems to happen as one is rushing to finish a talk and the figures have tiny default axis labels. Try just calling the function \code{fields.style} before plotting and list out this function to see how to make further changes. \strong{Why ``imagePlot" and not ``image"?} The R Base function \code{image} is very useful but it is awkward to place a legend quickly. However, that said if you are drawing several image plots and want a common legend use the \code{image} function and just just use \code{imagePlot} to add the legend. See the example in the help file. Note that you can use \code{image} to draw a bunch of images and then follow with \code{imagePlot} and \code{legend.only=TRUE} to add a common legend. (See examples below.) \strong{Almost cloropleths too!} This image function is slightly different than a cloropleth map because the legend is assuming that a continous scale has been discretized into a series of colors. To use the imagePlot function to create a cloropleth graphic involves an extra step of first recoding the image matrix into a set of integers that correspond to the colors in the color table. With this new matrix as the image plot use the \code{legend.args} list to place labels for each of the colors beside the color strip. For example, if one has used \code{N} colors in \code{col} then the locations of the color strip run from 1 to N and one could place the \code{N} color labels at the positions \code{(1:N)} along the axis. Note that this two step technique could also one adpated if one had a nonlinear color scale and wanted to identify the values. \strong{Relationship of x, y and z:} If the z component is a matrix then the user should be aware that this function locates the matrix element z[i,j] at the grid locations (x[i], y[j]) this is very different than simply listing out the matrix in the usual row column tabular form. See the example below for details on the difference in formatting. What does one do if you do not really have the "z" values on a regular grid? See the functions \code{quilt.plot.Rd} and \code{as.image} to discretise irregular observations to a grid. If the values makes sense as points on a smooth surface see \code{Tps} and \code{fastTps} for surface interpolation. \strong{Adding separate color to indicate the grid box boundaries.} Sometimes you want to show to the grid box borders to emphasize this is not a smooth surface. To our knowledge there is no easy way to do this as an option in \code{image}. But if your image is formatted in the "poly image" style where x and y are also matrices you can use the polyimage (see the \code{border} argument above) option to draw in boundaries. \strong{Grids with unequally spacing -- quadrialteral pixels:} If x and y are matrices that are a smooth transformation of a regular grid then z[i,j] can be interperted as representing the average value in a quadrilateral that is centered at x[i,j] and y[i,j] (\code{midpoint} TRUE). The details of how this cell is found are buried in \code{poly.image} but it it essentially found using midpoints between the centers. If \code{midpoint} is FALSE then x and y are interpreted as the corners of the quadrilateral cells. But what about z? The four values of z are now averaged to represent a value at the midpoint of the cell and this is what is used for plotting. Quadrilateral grids were added to help with plotting the gridded output of geophysical models where the regular grid is defined according to one map projection but the image plotting is required in another projection. Typically the regular grid becomes distorted in a smooth way when this happens. See the regional climate example for a illustration of this application. One can add border colors in this case easily because these choices are just passed onto the polygon function. \strong{Adding the pixel grid for rectangular images:} For adding the grid of pixel borders to a rectangular image try this example after calling \code{imagePlot}. \preformatted{ dx <- x[2] - x[1] dy <- y[2] - y[1] xtemp<- seq( min( x)- dx/2, max(x)+ dx/2, length.out = length(x) +1) ytemp<- seq( min( y)- dy/2, max(y)+ dy/2, length.out = length(y) +1) xline( xtemp, col="grey", lwd=2) yline( ytemp, col="grey", lwd=2) } Here \code{x} and \code{y} here are the x and y grid values from the image list. \strong{Fine tuning color scales:} This function gives some flexibility in tuning the color scale to fit the rendering of z values. This can either be specially designed color scale with specific colors ( see help on \code{designer.colors}), positioning the colors at specific points on the [0,1] scale, or mapping distinct colors to intervals of z. The examples below show how to do each of these. In addition, by supplying \code{lab.break} strings or axis parameters one can annotate the legend axis in an informative matter. \strong{Adding just a legend strip/ color bar:} Note that to add just the legend strip all the numerical information one needs is the \code{zlim} argument and the color table! See examples for tricks in positioning. \strong{About color tables:} We like \code{tim.colors}(the default) as default color scales and so if this what you use this can be omitted. Unfortunately this is not the default for the \code{image} function. Another important color scale is \code{ viridis() } from the viridis package. It seems that by and large everyone seems to react positively to viridis -- guess that is the point! The topographic color scale (\code{\link{topo.colors}}) is also a close second and also see \code{\link{snow.colors} } showing our geophysical bias. Users may find \code{larry.colors} useful for coding distinct regions in the style of a cloropleith map. See also \code{terrain.colors} for a subset of the topo ones and \code{designer.colors} to "roll your own" color table. One nice option in this last function is to fix color transitions at particular quantiles of the data rather than at equally spaced intervals. For color choices see how the \code{nlevels} argument figures into the legend and main plot number of colors. Also see the \code{colors} function for a listing of all the colors that come with the R base environment. \strong{The details of placing the legend and dividing up the plotting real estate:} It is surprising how hard it is to automatically add the legend! All "plotting coordinates" mentioned here are in device coordinates. The plot region is assumed to be [0,1]X[0,1] and plotting regions are defined as rectangles within this square. We found these easier to work with than user coordinates. \code{legend.width} and \code{legend.mar} are in units of character spaces. These units are helpful in thinking about axis labels that will be put into these areas. To add more or less space between the legend and the image plot alter the mar parameters. The default mar settings (5.1,5.1,5.1,2.1) leaves 2.1 spaces for vertical legends and 5.1 spaces for horizontal legends. There are always problems with default solutions to placing information on graphs but the choices made here may be useful for most cases. The most annoying thing is that after using imagePlot and adding information the next plot that is made may have the slightly smaller plotting region set by the image plotting. The user should set \code{reset.graphics=TRUE} to avoid the plotting size from changing. The disadvantage, however, of resetting the graphics is that one can no longer add additional graphics elements to the image plot. Note that filled.contour always resets the graphics but provides another mechanism to pass through plotting commands. Apparently \code{filled.contour}, while very pretty, does not work for multiple plots. \strong{About setup and add legend functions} These came about to create a scatterplot in Base R Graphics where the points are colored with a color scale and the scale can be plotted as part of the figure See \code{ \link{bubblePlot} } for a version of this kind of figure. The function \code{setupLegend} should be used first to create enough space to add a color scale later. After plotting then \code{addLegend} will add the color scale. Note that if the color scale has been created by the \code{color.scale} function the last call to this function will use the color scale and limits created in \code{color.scale}. In summary here is an example of using these functions with the colors in mind: \preformatted{ info<- setupLegend() colTab<- rainbow(10) plot( 1:10, 201:210, col=colTab, pch=16) addLegend(info, col=colTab, zlim = c(1,10)) } Here is one where four colors are mapped to specific values (ala image). \preformatted{ info<-setupLegend() colTab= color.scale(201:210, rainbow(4)) plot( 1:10, 201:210, col=colTab, pch=16 ) addLegend(info, col=colTab, zlim = c(201,210) ) } More complete graphics languages, such as that in ggplot, do not need such functions because the entire graphics segment is parsed to create the complete figure. In this way room for a color scale can be created automatically. The functions proposed here are a simple work around to create these figures using base R graphics. \strong{Other packages} \code{levelplot} that is part of the lattice package has a very similar function to imagePlot and a formula syntax in the call. The \code{geom_raster} for setting up a graphics object within \code{ggplot} is another alternative for image plots with legends. See the last example to compare the steps in creating an image plot using \code{imagePlot} that is close to the ggplot version. Mostly this involves resetting base graphics parameters using the {\code{par}} function but gives an appreciate of the complexity built in the ggplot default graphic choices. \strong{Multiple images single color bar:} By keeping the \code{zlim} argument the same across images one can generate the same color scale. (See the \code{image} help file.) One useful technique for a panel of images is to just draw the images with good old \code{image} and then use imagePlot to add a legend to the last plot. (See example below for messing with the outer margins to also make this work.) Moreover, a square plot (\code{pty="s"}) done in a rectangular plot region will have room for the legend stuck to the right side without any other adjustments. See the examples below for more complicated arrangements of multiple image plots and a summary color bar. The reader is also referred to the package \code{autoimage} as a set of functions in base to help with drawing multiple images and also more support for geographic coordinates. } \seealso{ image, poly.image, filled.contour, quilt.plot, plot.surface, add.image, colorbar.plot, tim.colors, designer.colors } \examples{ x<- 1:10 y<- 1:15 z<- outer( x,y,"+") imagePlot(x,y,z) # to view z in the usual matrix indexing: plotMatrix( z) # or obj<- list( x=x,y=y,z=z) imagePlot(obj, legend.lab="Sverdrups") # to test add some points on diagonal using standard plot function # (with some clipping beyond 10 anticipated) points( 5:12, 5:12, pch="X", cex=3) # in general imagePlot will reset the plot window so you # can add any feature that normally works in base R # e.g. lines, text, contour, boxplots, .... # ################################################################ # the next sequence of examples explain how to quickly # adapt this basic plot to include more features ############################################################### # # adding explicit breaks and distinct colors for intervals of z brk<- quantile(c(z), c(0, .1,.25, .5, .75, .9, 1.0)) imagePlot(x,y,z, breaks=brk, col=topo.colors(6)) # last bins are depicted as end triangles on the color bar. imagePlot(x,y,z, breaks=brk, col=topo.colors(6), lowerTriangle=TRUE, upperTriangle=TRUE) # NOTE: the image function does not use -Inf and Inf for the breaks argument # and so if one wants the triangles at ends to indicate values beyond the # range of the color bar one has to create the breaks "by hand" when the # two outer bins will define the values for the triangles. # annotate legend strip with the break point values and add a label imagePlot(x,y,z, breaks=brk, col=rainbow(6), lab.breaks=names(brk)) # # compare to default color scale and special labels on color bar zp <-quantile(c(z), c( .05, .1,.25, .5,.75, .9,.95)) imagePlot(x,y,z, axis.args=list( at=zp, labels=names(zp) ) ) # a log scaling for the colors ticks<- c( 1, 2,4,8,16,32) imagePlot(x,y,log(z), axis.args=list( at=log(ticks), labels=ticks)) # see help(designer.colors) to generate a color scale that adapts to # quantiles of z. # Add some color scales together here is an example of5 blues to white to 5 reds # with white being a specific size. colorTable<- designer.colors(11, c( "blue","white", "red") ) # breaks with a gap of 10 to 17 assigned the white color brks<- c(seq( 1, 10,,6), seq( 17, 25,,6)) imagePlot( x,y,z,breaks=brks, col=colorTable) # #fat (5 characters wide) and short (50\% of figure) color bar on the bottom imagePlot( x,y,z,legend.width=5, legend.shrink=.5, horizontal=TRUE) # adding a label and all kinds of additional arguments to color bar # use side=4 for vertical legend and side= 1 for horizontal legend # to be parallel to axes. See help(mtext). imagePlot(x,y,z, legend.args=list( text="unknown units", col="magenta", cex=1.5, side=4, line=2)) # and finally add some grid lines dx <- x[2] - x[1] dy <- y[2] - y[1] xtemp<- seq( min( x)- dx/2, max(x)+ dx/2, length.out = length(x) +1) ytemp<- seq( min( y)- dy/2, max(y)+ dy/2, length.out = length(y) +1) xline( xtemp, col="grey", lwd=2) yline( ytemp, col="grey", lwd=2) ############################################################### #### example using an irregular quadrilateral grid ############################################################### data( RCMexample) imagePlot( RCMexample$x, RCMexample$y, RCMexample$z[,,1]) ind<- 50:75 # make a smaller image to show bordering lines imagePlot( RCMexample$x[ind,ind], RCMexample$y[ind,ind], RCMexample$z[ind,ind,1], border="grey50", lwd=2) ############################################################### #### multiple images with a common legend ############################################################### set.panel() # Here is quick but quirky way to add a common legend to several plots. # The idea is leave some room in the margin and then at the end # overplot the legend in this margin par(oma=c( 0,0,0,4)) # margin of 4 spaces width at right hand side set.panel( 2,2) # 2X2 matrix of plots # now draw all your plots using usual image command for ( k in 1:4){ data<- matrix( rnorm(150), 10,15) image( data, zlim=c(-4,4), col=tim.colors()) # and just for fun add a contour plot contour( data, add=TRUE) } par(oma=c( 0,0,0,1))# reset margin to be much smaller. imagePlot( legend.only=TRUE, zlim=c(-4,4)) # imagePlot tricked into plotting in margin of old setting set.panel() # reset plotting device # # Here is a more learned strategy to add a common legend to a panel of # plots. Consult the split.screen help file for more explanations. # For this example we draw two # images top and bottom and add a single legend color bar on the right side # first divide screen into the figure region (left) and legend region (right) split.screen( rbind(c(0, .8,0,1), c(.8,1,0,1))) # now subdivide up the figure region into two parts split.screen(c(2,1), screen=1)-> ind zr<- range( 2,35) # first image screen( ind[1]) image( x,y,z, col=tim.colors(), zlim=zr) # second image screen( ind[2]) image( x,y,z+10, col=tim.colors(), zlim =zr) # move to skinny region on right and draw the legend strip screen( 2) imagePlot( zlim=zr,legend.only=TRUE, smallplot=c(.1,.2, .3,.7), col=tim.colors()) close.screen( all=TRUE) # you can always add a legend arbitrarily to any plot; # note that here the plot by default is too big for the vertical strip # or horizontal strip. # just increase the margin size to accomodate # this fix will be graphics device dependent so I recommend # using the pdf function and saving to a pdf file to get consistent results plot( 1:10, 1:10) imagePlot( zlim=c(0,25), legend.only=TRUE) imagePlot( zlim=c(0,25), legend.only=TRUE, horizontal =TRUE) par( mar=c( 10,5,2,2)) plot( 1:10, 1:10) imagePlot( zlim=c(0,25), legend.only=TRUE, horizontal = TRUE) \dontrun{ # drawing and saving the plot to a pdf file. pdf("test.pdf", width=6, height=4) par( mar=c( 10,5,2,2) ) # you may have to adjust these. plot( 1:10, 1:10) imagePlot( zlim=c(0,25), legend.only=TRUE, horizontal = TRUE) dev.off() } # combining the usual image function and adding a legend # first change margin for some more room \dontrun{ par( mar=c(10,5,5,5)) image( x,y,z, col=topo.colors(64)) imagePlot( zlim=c(0,25), nlevel=64,legend.only=TRUE, horizontal=TRUE, col=topo.colors(64)) } # # adding a legend by automatically making room. # and coloring points info<- setupLegend() colTab<- rainbow(10) plot( 201:210, 201:210, col=colTab, pch=16) addLegend(info, col=colTab, zlim = c(201,210)) # ####################################################### ##### Comparison to ggplot ####################################################### # The following example was created as way avoid doing more important # things # Note how close base graphics can get to reproducing the ggplot style. # and how a first cut imagePlot(x,y,z, col = viridis(128) ) is probably # acceptable in most cases for fast EDA # Surprisingly the hardest feature is to add the grey gird lines behind # the image. I (DWN) don't know how to do it! \dontrun{ library( viridis) library( ggplot2) x<- 1:20 y<- 1:24 z<- outer( x, y, "+") # ggplot version mesh<- expand.grid( x= x, y=y) mesh$z <- c(z) ggplot( data=mesh, aes( x=x, y=y, fill=z)) + geom_raster(interpolate= FALSE) + scale_fill_continuous(type = "viridis") + theme_bw() # reset to a single plot set.panel() # inflate range to give a margin around image xr<- range(x) + c(-.08, .08)* diff( range(x)) yr<- range(y) + c(-.08, .08)* diff( range(y)) # changing these graphics parameters tends to push # text closer to the axes. par( mgp=c(1.5,.5,0), mar=c(2.5,2.5,.5,1), cex=.8) imagePlot(x,y,z, col = viridis(128), legend.shrink = .27, xlim = xr, ylim = yr, legend.width = 1.5, legend.mar = 3, legend.args = list( text = "z", cex = .8, side = 3, line = .5) ) } } \keyword{hplot} % docclass is function fields/man/Wendland.Rd0000644000175100001440000001444514627454002014350 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{Wendland} \alias{Wendland} \alias{Wendland.beta} \alias{Wendland2.2} \alias{fields.D} \alias{fields.pochdown} \alias{fields.pochup} \alias{wendland.eval} %\alias{Wendland.father} %\alias{Wendland.mother} %\alias{wendland.basis} \title{Wendland family of covariance functions and supporting numerical functions} \description{ Computes the compactly supported, stationatry Wendland covariance function as a function ofdistance. This family is useful for creating sparse covariance matrices. } \usage{ Wendland(d, aRange = 1, dimension, k,derivative=0, phi=NA, theta=NULL) Wendland2.2(d, aRange=1, theta=NULL) Wendland.beta(n,k) wendland.eval(r, n, k, derivative = 0) fields.pochup(q, k) fields.pochdown(q, k) fields.D(f,name,order = 1) %Wendland.father(x, aRange = 1, dimension = 1, k=3) %Wendland.mother(x, aRange = 1, dimension = 1, k=3) %wendland.basis(x1, x2, aRange = 1, V=NULL, % k = 3, C = NA, Dist.args = list(method = "euclidean"), % spam.format = TRUE, verbose = FALSE, flavor=0) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{d}{Distances between locations. Or for wendland.coef the dimension of the locations.} \item{aRange}{Scale for distances. This is the same as the range parameter.} \item{theta}{Same as aRange.} \item{dimension}{Dimension of the locations} \item{n}{Dimension for computing Wendland polynomial coefficients} \item{k}{Order of covariance function.} \item{derivative}{Indicates derivative of covariance function} \item{phi}{Depreciated argument will give stop if not an NA. (Formerly the scale factor to multiply the function. Equivalent to the marginal variance or sill if viewed as a covariance function.) } \item{r}{ Real value in [0,1] to evaluate Wendland function.} \item{q}{Order of Pochhammer symbol} \item{f}{Numerical expression to differentiate.} \item{name}{Variable with which to take derivative.} \item{order}{Order of derivative.} %\item{x}{Argument for one dimensional basis function} %\item{x1}{Two dimensional locations to evaluate the basis functions} %\item{x2}{Two dimensional centers that define the basis} %\item{C}{Vector or matrix of coefficients to multiply with basis functions} %\item{Dist.args}{Arguments to distance function} %\item{V}{See explantion in help for \code{Exp.cov}} %\item{spam.format}{If TRUE return result in sparse format} %\item{verbose}{If TRUE prints out intermediate steps for debugging.} %\item{flavor}{Takes values 0:3. Controls type of tensor product: %father*father=0, father*mother =1, mother*father = 2, mother*mother =3 } } \details{ This is the basic function applied to distances and called by the \code{wendland.cov} function. It can also be used as the Covariance or Taper specifications in the more general stationary.cov and station.taper.cov functions. The proofs and construction of the Wendland family of positive definite functions can be found in the work of Wendland(1995). ( H. Wendland. Piecewise polynomial , positive definite and compactly supported radial functions of minimal degree. AICM 4(1995), pp 389-396.) The Wendland covariance function is a positive polynomial on [0,aRange] and zero beyond aRange. It is further normalized in these fields functions to be 1 at 0. The parameter \code{k} detemines the smoothness of the covariance at zero. The additional parameter \code{n} or \code{dimension} is needed because the property of positive definitness for radial functions depends on the dimension being considered. The polynomial terms of the Wenland function. are computed recursively based on the values of \code{k} and \code{dimension} in the function \code{wendland.eval}. The matrix of coefficients found by \code{Wendland.beta} is used to weight each polynomial term and follows Wendland's original construction of these functions. The recursive definition of the Wendland coefficients depends on Pochhammer symbols akin to binomial coefficients: \code{fields.pochup(q, k)} calculates the Pochhammer symbol for rising factorial q(q+1)(q+2)...(q+k-1) and \code{fields.pochdown(q, k)} calculates the Pochhammer symbol for falling factorial q(q-1)(q-2)...(q-k+1). Derivatives are found symbolically using a recursive modification of the base function \code{D} (\code{fields.D}) and then evaluated numerically based on the polynomial form. A specific example of the Wendland family is \code{Wendland2.2} (k=2, dimension=2). This is included mainly for testing but the explicit formula may also be enlightening. } \value{ A vector of the covariances or its derivative. } \author{Doug Nychka, Ling Shen} \seealso{ wendland.cov, stationary.taper.cov} \examples{ dt<- seq( 0,1.5,, 200) y<- Wendland( dt, k=2, dimension=2) plot( dt, y, type="l") # should agree with y.test<- Wendland2.2( dt) points( dt, y.test) # second derivative plot( dt, Wendland( dt, k=4, dimension=2, derivative=2), type="l") # a radial basis function using the Wendland the "knot" is at (.25,.25) gl<- list( x= seq( -1,1,,60), y = seq( -1,1,,60) ) bigD<- rdist( make.surface.grid( gl), matrix( c(.25,.25), nrow=1)) RBF<- matrix(Wendland( bigD, k=2, dimension=2), 60,60) # perspective with some useful settings for shading. persp( gl$x, gl$y, RBF, theta =30, phi=20, shade=.3, border=NA, col="grey90") } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{spatial} fields/man/yline.Rd0000644000175100001440000000301714627454002013725 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{yline} \alias{yline} \title{ Draw horizontal lines } \description{ Adds horizontal lines in the plot region. } \usage{ yline(y, ...) } \arguments{ \item{y}{ Values on y axis specifying location of vertical lines. } \item{\dots}{ Any ploting options for abline. } } \seealso{ xline, abline } \examples{ world( col=3) yline( seq( -80,80,10),col=4, lty=2) xline( seq( -180,180,10),col=4,lty=2) yline( 0, lwd=2, col=4) } \keyword{aplot} % docclass is function % Converted by Sd2Rd version 1.21. fields/man/spam2lz.Rd0000644000175100001440000000611514627454002014177 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{spam2lz} \alias{spind2spam} \alias{spam2spind} \alias{spind2full} \alias{spam2full} \title{Conversion of formats for sparse matrices} \description{ Some supporting functions that are internal to fields top level methods. These are used to convert between the efficient but opaque format used by spam and more easily checked format based directly on the row and column indices of non zero elements. } \usage{ spind2full(obj) spam2full(obj) spind2spam(obj, add.zero.rows=TRUE) spam2spind(obj) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{obj}{ Either a list with the sparse index components (spind) or an obj of class spam.} \item{add.zero.rows}{If TRUE an entire row is zero add a hard zero value to the element in the first column for each zero row. The spam format requires at least one element in each row to have an explicit value. It is OK if this value is zero but one must be specified. } } \details{ The differencee in formats is best illustarted by an example: A 4X5 sparse matrix: \preformatted{ [,1] [,2] [,3] [,4] [,5] [1,] 1 9 0 0 33 [2,] 0 0 0 26 34 [3,] 3 11 0 27 35 [4,] 0 12 20 0 36 } spind format is a list with components "ind", "ra" and "da" here is how the matrix above would be encoded: \preformatted{ ind I [1,] 1 1 [2,] 1 2 [3,] 1 5 [4,] 2 4 [5,] 2 5 [6,] 3 1 [7,] 3 2 [8,] 3 4 [9,] 3 5 [10,] 4 2 [11,] 4 3 [12,] 4 5 da [1] 4 5 ra [1] 1 9 33 26 34 3 11 27 35 12 20 36 } spam format is an S4 class with slot names "entries", "colindices", "rowpointers" and "dimension". entries [1] 1 9 33 26 34 3 11 27 35 12 20 36 colindices [1] 1 2 5 4 5 1 2 4 5 2 3 5 rowpointers [1] 1 4 6 10 13 dimension [1] 4 5 The row pointers are the position in the array of entries where the next row starts. NOTE: It is possible for the spind format to have a missing row of all zeroes but this not allowed in spam format and produces an error message. } \author{Doug Nychka} \seealso{as.spam} \keyword{spatial} % at least one, from doc/KEYWORDS fields/man/fields.Rd0000644000175100001440000002425314627461447014073 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{fields} \alias{fields-package} \alias{fields} \title{ fields - tools for spatial data } \description{ \code{fields} is a collection of functions for curve and function fitting with an emphasis on spatial data and spatial statistics. It was developed over 20+ years to provide easy to use but sophisticated tools for analyzing spatial data, particularly that encountered in the environmental sciences. For the impatient users, jump to the examples below to see how easy this is use. Please send bugs and questions to Doug Nychka, nychka@mines.edu. Positive comments are also welcome! The major methods implemented include cubic and thin plate splines, universal Kriging and Kriging for large data sets. A more modern framework for Kriging is spatial process estimation with covariance parameters determined by maximum likelihood and the uncertainty derived from assumptions of a Gaussian process. Throughout we try to include reasonable defaults in functions that reflect our experience with analyzing spatial data. For example, the Matern covariance function is the default choice for the main spatial method. A key feature of this package is any covariance function implemented in R code can be used for spatial prediction through the spatial functions. Another important feature is that fields will take advantage of compactly supported covariance functions in a seamless way through the spam package. See \code{library( help=fields)} for a listing of all the fields contents. We also recommend the thoughtful vignette created by Ashton Weins, Mitchell Krock, and Emma Lilly (\code{fieldsVignette.pdf}) in the \href{https://github.com/dnychka/fieldsRPackage}{fields github repository}. \code{fields} strives to have readable and tutorial code. Take a look at the source code for \code{mKrig} to see how things work "under the hood". E.g. how a linear algebra computation is overloaded to handle sparse matrices and how an output object is built up sequentially throughout a computation. The \code{fields} source code is liberally commented. Unfortunately on loading this package, R will strip comments from the source for efficiency. You can go to \href{https://cran.r-project.org/package=fields}{CRAN fields page} to download the latest "tarball" ( aka Package Source) and unzip to get code with comments. We also keep the most recent version of this package at the \href{https://github.com/dnychka/fieldsRPackage}{fields github repository}. and for commented source go to the the subdirectory \code{fields/R}. This may be a more recent version, however, than what is posted to CRAN. } \details{ \strong{Major methods} \itemize{ \item \code{\link{spatialProcess}} An easy to use method that fits a spatial process model ( e.g. Kriging) but also estimates the key spatial parameters: nugget variance, sill variance and range parameter by maximum likelihood. The default covariance model is a Matern covariance. This function and related functions called by this are the core methods in fields and have much flexibility. \code{\link{spatialProcess}} allows one to supply a covariance function that is written in native R code. See (\code{\link{stationary.cov}}) that includes several families of covariances including the Matern and several distance metrics including great circle distance . \code{\link{sim.spatialProcess}} and \code{\link{simLocal.spatialProcess}} provide "one liners" for conditional simulation of the fitted surface. \item \code{\link{Tps}} Thin Plate spline regression including GCV and REML estimates for the smoothing parameter. For moderate size data sets as a first look we use \code{Tps} all the time. See also \code{\link{fastTps}} for an approximate method to handle very large numbers of spatial locations. Also see the help file for \code{spatialProcess} to see how to fit a thin plate plate using the more extensive set of spatial stats functions. \item \code{\link{sreg}} , \code{\link{splint}} Fast 1-D cubic smoothing splines and interpolating splines, a workhorse algorithm for more EDA and more complicated methods. \item \code{\link{mKrig}} (micro Krig) Efficient Universal Kriging and Gaussian process function, that can take advantage of sparse covariance functions and is the core algorithm called by optimization functions and for spatial predictio. \item \code{\link{QTps}} A easy to use extension of thin plate splines for quantile and robust surface fitting. \item \code{\link{mKrigMLEGrid}} and \code{\link{mKrigMLEJoint}} for maximum likelihood estimates of covariance parameters. These functions also handle replicate fields, assumed to be independent realizations, at the same locations and can also take any covariate function function written in R following the \code{fields} format } % end itemize \strong{Other noteworthy functions} \itemize{ \item \code{\link{vgram}} and \code{\link{vgram.matrix}} find variograms for spatial data (and with temporal replications. \item \code{\link{cover.design}} Generates space-filling designs where the distance function is expresed in R code. \item There are many convenient functions for working with image data and rationally (well, maybe reasonably) creating and placing a color scale on plots. This suite of tools are for the users who want to extend the "base R grahics" and retain control over details. See the last amusing example in help(imagePlot) for an example. \code{\link{as.image}}, \code{\link{imagePlot}}, \code{bubblePlot}, \code{ \link{drape.plot}}, \code{\link{quilt.plot}} \code{\link{add.image}}, \code{\link{crop.image}}, \code{\link{half.image}}, \code{\link{average.image}}, \code{\link{designer.colors}}, \code{\link{color.scale}}, \code{\link{in.poly}} See also \code{\link{grid.list}} for how fields works with grids and \code{\link{US}} and \code{\link{world}} for adding a map quickly. } \strong{ Generic functions that support the methods} \code{plot} - diagnostic plots of fit \cr \code{summary}- statistical summary of fit \cr \code{print}- shorter version of summary \cr \code{\link{surface}}- graphical display of fitted surface \cr \code{predict}- evaluation fit at arbitrary points \cr \code{\link{predictSE}}- prediction standard errors at arbitrary points. \cr \code{\link{sim.rf}}- Simulate a random fields on a 2-d grid. } % end details \section{Getting Started}{ Try some of the examples from help files for \code{\link{spatialProcess}} or \code{\link{Tps}}. } \section{\strong{Some fields datasets}}{ \itemize{ \item \code{\link{CO2}} Global satelite CO2 concentrations (simulated field) \item \code{\link{COmonthlyMet}} Monthly mean temperatures and precip for Colorado \item \code{\link{glacier}} An elevation dataset of a glacier also used by the applied math community to test interpolation methods. \item \code{\link{lennon}} Image of John Lennon \item \code{\link{NorthAmericanRainfall}} 50+ year average and trend for summer rainfall at 1700+ stations. \item \code{\link{ozone2}} Daily max 8 hour ozone concentrations for the US midwest for summer 1987. \item \code{\link{PRISMelevation}} Digital elevations for the continental US at approximately 4km resolution \item \code{\link{rat.diet}} Small paired study on rat food intake over time. \item \code{\link{RCMexample}} Regional climate model output \item \code{\link{RMelevation}} Digital elevations for the Rocky Mountain Empire \item \code{\link{WorldBankCO2}} Demographic and carbon emission data for 75 countries and for 1999. } } \section{\strong{DISCLAIMER:}}{ The authors can not guarantee the correctness of any function or program in this package. } \examples{ # some air quality data, daily surface ozone measurements for # the Midwest: data(ozone2) s<-ozone2$lon.lat y<- ozone2$y[16,] # June 18, 1987 # quick plot of spatial data with map bubblePlot( s,y) US( add=TRUE) # add US map # fitting a thin plate spline surface (always a good place to # start). Here the default smoothing (aka lambda) found by cross-validation fit0<- Tps(s,y) # fits a GCV thin plate smoothing spline surface to ozone measurements. # Hey, it does not get any easier than this! summary(fit0) #diagnostic summary of the fit set.panel(2,2) plot(fit0) # four diagnostic plots of fit and residuals. # quick plot of predicted surface set.panel() surface(fit0) # contour/image plot of the fitted surface # see also predictSurface for more control over the evaluation grid # US( add=TRUE, col="magenta", lwd=2) # US map overlaid title("Daily max 8 hour ozone in PPB, June 18th, 1987") #### fit2<- spatialProcess( s,y) # a "Kriging" model. The covariance defaults to a Matern # with smoothness 1.0. # the nugget, sill and range parameters are found by maximum likelihood # summary, plot, and surface also work for \code{fit2} ! surface(fit2) # contour/image plot of the fitted surface US( add=TRUE, col="magenta", lwd=2) # US map overlaid title("Daily max 8 hour ozone in PPB, June 18th, 1987") \dontrun{ # And 20 approximate conditional draws of the spatial field on a grid # with uncertainty in the 120PPB contour look<- simLocal.spatialProcess(fit2, M=20) for( k in 1:20){ contour( look$x, look$y, look$z[,,k], add=TRUE, level=c(120), col="white", drawlabels=FALSE) } } } \keyword{datasets} fields/man/lennon.Rd0000644000175100001440000000241014627454002014072 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{lennon} \alias{lennon} \title{ Gray image of John Lennon. } \description{ A 256X256 image of John Lennon. Try: \code{image(lennon, col=grey(seq(0,1,,256)) )} } \keyword{datasets} % docclass is data % Converted by Sd2Rd version 1.21. fields/man/sreg.Rd0000644000175100001440000002642714627454002013557 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{sreg} \alias{sreg} \alias{predict.sreg} \title{ Cubic smoothing spline regression } \description{ Fits a cubic smoothing spline to univariate data. The amount of smoothness can be specified or estimated from the data by GCV. } \usage{ sreg(x, y, lambda = NA, df = NA, offset = 0, weights = rep(1, length(x)), cost = 1, nstep.cv = 80, tol = 1e-05, find.diagA = TRUE, trmin = 2.01, trmax = NA, lammin = NA, lammax = NA, verbose = FALSE, do.cv = TRUE, method = "GCV", rmse = NA, na.rm = TRUE, digits = 8) \method{predict}{sreg}(object, x, derivative = 0, model = 1,...) } \arguments{ \item{x}{ Vector of x value} \item{y}{ Vector of y values} \item{lambda}{ Single smoothing parameter or a vector of values . If omitted smoothing parameter estimated by GCV. NOTE: lam here is equivalent to the value lambda*N in Tps/Krig where N is the number of unique observations. See example below.} \item{object}{An sreg object.} \item{derivative}{Order of deriviatve to evaluate. Must be 0,1, or 2.} \item{df}{ Amount of smoothing in term of effective degrees of freedom for the spline} \item{offset}{ an offset added to the term cost*degrees of freedom in the denominator of the GCV function. (This would be used for adjusting the df from fitting other models such as in back-fitting additive models.)} \item{model}{Specifies which model parameters to use.} \item{weights}{ A vector that is proportional to the reciprocal variances of the errors.} \item{cost}{ Cost value to be used in the GCV criterion.} \item{nstep.cv }{ Number of grid points of smoothing parameter for GCV grid search.} \item{tol}{Tolerance for convergence in minimizing the GCV or other criteria to estimate the smoothing parameter.} \item{find.diagA}{ If TRUE calculates the diagonal elements of the smoothing matrix. The effective number of degrees of freedom is the sum of these diagonal elements. Default is true. This requires more stores if a grid of smoothing parameters is passed. ( See returned values below.)} \item{trmin}{ Sets the minimum of the smoothing parameter range for the GCV grid search in terms of effective degrees of freedom.} \item{trmax}{ Sets the maximum of the smoothing parameter range for the GCV grid search in terms of effective degrees of freedom. If NA the range is set to .99 of number of unique locations.} \item{lammin}{ Same function as trmin but in the lambda scale.} \item{lammax}{ Same function as trmax but in the lambda scale.} \item{verbose}{ Print out all sorts of debugging info. Default is falseof course!} \item{do.cv}{ Evaluate the spline at the GCV minimum. Default is true.} \item{method}{ A character string giving the method for determining the smoothing parameter. Choices are "GCV", "GCV.one", "GCV.model", "pure error", "RMSE". Default is "GCV". } \item{rmse}{ Value of the root mean square error to match by varying lambda.} \item{na.rm}{If TRUE NA's are removed from y before analysis.} \item{digits}{Number of significant digits used to determine replicate x values.} \item{\dots}{Other optional arguments to pass to the predict function.} } \value{ Returns a list of class sreg. Some of the returned components are \item{call}{ Call to the function } \item{yM}{ Vector of dependent variables. If replicated data is given these are the replicate group means. } \item{xM}{ Unique x values matching the y's. } \item{weights}{ Proportional to reciprocal variance of each data point. } \item{weightsM}{ Proportional to reciprocal pooled variance of each replicated mean data value (xM).} \item{x}{ Original x data. } \item{y}{ Original y data. } \item{method}{ Method used to find the smoothing parameter.} \item{pure.ss}{ Pure error sum of squares from replicate groups. } \item{tauHat.pure.error}{ Estimate of tau from replicate groups.} \item{tauHat.GCV}{ Estimate of tau using estimated lambda from GCV minimization } \item{trace}{ Effective degrees of freedom for the spline estimate(s)} \item{gcv.grid}{ Values of trace, GCV, tauHat. etc. for a grid of smoothing parameters. If lambda ( or df) is specified those values are used. } \item{lambda.est}{ Summary of various estimates of the smoothing parameter} \item{lambda}{ If lambda is specified the passed vector, if missing the estimated value.} \item{residuals}{ Residuals from spline(s). If lambda or df is specified the residuals from these values. If lambda and df are omitted then the spline having estimated lambda. This will be a matrix with as many columns as the values of lambda. } \item{fitted.values}{ Matrix of fitted values. See notes on residuals. } \item{predicted}{ A list with components x and y. x is the unique values of xraw in sorted order. y is a matrix of the spline estimates at these values. } \item{eff.df}{ Same as trace.} \item{diagA}{ Matrix containing diagonal elements of the smoothing matrix. Number of columns is the number of lambda values. WARNING: If there is replicated data the diagonal elements are those for the smoothing the group means at the unique x locations. } } \details{ MODEL: The assumed model is Y.k=f(x.k) +e.k where e.k should be approximately normal and independent errors with variances tau**2/w.k ESTIMATE: A smoothing spline is a locally weighted average of the y's based on the relative locations of the x values. Formally the estimate is the curve that minimizes the criterion: (1/n) sum(k=1,n) w.k( Y.k - f( X.k))**2 + lambda R(f) where R(f) is the integral of the squared second derivative of f over the range of the X values. Because of the inclusion of the (1/n) in the sum of squares the lambda parameter in sreg corresponds to the a value of lambda*n in the Tps function and in the Krig function. The solution to this minimization is a piecewise cubic polynomial with the join points at the unique set of X values. The polynomial segments are constructed so that the entire curve has continuous first and second derivatives and the second and third derivatives are zero at the boundaries. The smoothing has the range [0,infinity]. Lambda equal to zero gives a cubic spline interpolation of the data. As lambda diverges to infinity ( e.g lambda =1e20) the estimate will converge to the straight line estimated by least squares. The values of the estimated function at the data points can be expressed in the matrix form: predicted values= A(lambda)Y where A is an nXn symmetric matrix that does NOT depend on Y. The diagonal elements are the leverage values for the estimate and the sum of these (trace(A(lambda)) can be interpreted as the effective number of parameters that are used to define the spline function. IF there are replicate points the A matrix is the result of finding group averages and applying a weighted spline to the means. The A matrix is also used to find "Bayesian" confidence intervals for the estimate, see the example below. CROSS-VALIDATION:The GCV criterion with no replicate points for a fixed value of lambda is (1/n)(Residual sum of squares)/((1-(tr(A)-offset)*cost + offset)/n)**2, Usually offset =0 and cost =1. Variations on GCV with replicate points are described in the documentation help file for Krig. With an appropriate choice for the smoothing parameter, the estimate of tau**2 is found by (Residual sum of squares)/tr(A). COMPUTATIONS: The computations for 1-d splines exploit the banded structure of the matrices needed to solve for the spline coefficients. Banded structure also makes it possible to get the diagonal elements of A quickly. This approach is different from the algorithms in Tps and tremendously more efficient for larger numbers of unique x values ( say > 200). The advantage of Tps is getting "Bayesian" standard errors at predictions different from the observed x values. This function is similar to the S-Plus smooth.spline. The main advantages are more information and control over the choice of lambda and also the FORTRAN source code is available (css.f). See also the function \code{splint} which is designed to be a bare bones but fast smoothing spline. } \seealso{ Krig, Tps, splint } \examples{ # fit a GCV spline to # control group of rats. fit<- sreg(rat.diet$t,rat.diet$con) summary( fit) set.panel(2,2) plot(fit) # four diagnostic plots of fit set.panel() predict( fit) # predicted values at data points xg<- seq(0,110,,50) sm<-predict( fit, xg) # spline fit at 50 equally spaced points der.sm<- predict( fit, xg, deriv=1) # derivative of spline fit set.panel( 2,1) plot( fit$x, fit$y) # the data lines( xg, sm) # the spline plot( xg,der.sm, type="l") # plot of estimated derivative set.panel() # reset panel to 1 plot # the same fit using the thin plate spline numerical algorithms # sreg does not scale the obs so instruct Tps not to sacel either # this will make lambda comparable within factor of n. fit.tps<-Tps( rat.diet$t,rat.diet$con, scale="unscaled") summary( fit.tps) # compare sreg and Tps results to show the adjustment to lambda. predict( fit)-> look predict( fit.tps, lambda=fit$lambda*fit$N)-> look2 test.for.zero( look, look2) # silence means it checks to 1e-8 # finding approximate standard errors at observations SE<- fit$tauHat.GCV*sqrt(fit$diagA) # compare to predictSE( fit.tps) differences are due to # slightly different lambda values and using tauHat.MLE instad of tauHat.GCV # # 95% pointwise prediction intervals Zvalue<- qnorm(.0975) upper<- fit$fitted.values + Zvalue* SE lower<- fit$fitted.values - Zvalue* SE # # conservative, simultaneous Bonferroni bounds # ZBvalue<- qnorm(1- .025/fit$N) upperB<- fit$fitted.values + ZBvalue* SE lowerB<- fit$fitted.values - ZBvalue* SE # # take a look plot( fit$x, fit$y, type="n") envelopePlot(fit$x, lowerB,fit$x, upperB, col = "grey90", lineCol="grey") envelopePlot(fit$x, lower,fit$x, upper, lineCol="grey") lines( fit$predicted, col="red",lwd=2) points( fit$x, fit$y,pch=16) title( "95 pct pointwise and simultaneous intervals") # or try the more visually honest not connecting points plot( fit$x, fit$y, type="n") segments( fit$x, lowerB, fit$x, upperB, col="grey",lwd=3) segments( fit$x, lower, fit$x, upper, col="thistle3", lwd=6) lines( fit$predicted, lwd=2,col="red") points( fit$x, fit$y,pch=16) title( "95 pct pointwise and simultaneous intervals") set.panel( 1,1) } \keyword{smooth} fields/man/quilt.plot.Rd0000644000175100001440000002405314676551701014733 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{quilt.plot} \alias{quilt.plot} \alias{bubblePlot} %- Also NEED an '\alias' for EACH other topic documented here. \title{Useful plots for visualizing irregular spatial data. } \description{ Given a vector of z values associated with 2-d locations this function produces an image-like plot where the locations are discretized to a grid and the z values are coded as a color level from a color scale. } \usage{ quilt.plot(x, y, z, nx = 64, ny = 64, grid = NULL, add.legend=TRUE,add=FALSE, nlevel=64, col = tim.colors(nlevel), nrow=NULL, ncol=NULL,FUN = NULL, plot=TRUE, na.rm=FALSE, boundary.grid = FALSE, ...) bubblePlot(x, y, z, col = viridisLite::viridis(256), zlim = NULL, noLegend = FALSE, horizontal = FALSE, legend.cex = 1, legend.lab = NULL, legend.line = 2, legend.shrink = 0.9, legend.width = 1.2, legend.mar = ifelse(horizontal, 3.1, 5.1), axis.args = NULL, legend.args = NULL, size = 1, add = FALSE, legendLayout = NULL, highlight = FALSE, highlight.color = "grey30", bubbleType = "circle", ...) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{x}{A vector of the x coordinates of the locations -or- a a 2 column matrix of the x-y coordinates. } \item{y}{A vector of the y coordinates -or- if the locations are passed in x the z vector } \item{z}{Values of the variable to be plotted. For bubblePlot if a character or factor will be assigned colors based on the order of appearance.} \item{nlevel}{Number of color levels.} \item{nx}{Number of grid boxes in x if a grid is not specified.} \item{ny}{Number of grid boxes in y. } \item{nrow}{Depreciated, same as nx.} \item{ncol}{Depreciated same as ny. } \item{grid}{A grid in the form of a \code{grid list}. } \item{add.legend}{If TRUE a legend color strip is added} \item{add}{If FALSE add to existing plot.} \item{col}{Color function or the color scale for the image, the default is the tim.colors function -- a pleasing spectrum for quilt.plot and the modern and versitle viridis for bubblePlot } \item{boundary.grid}{If FALSE the passed grid is considered to be the midpoints of the grid cells. If TRUE then these are assumed to define corners and the number of boxes is one less in each dimension.} \item{plot}{If FALSE just returns the image object instead of plotting it.} \item{FUN}{The function to apply to values that are common to a grid box. The default is to find the mean. (see \code{as.image}).} \item{na.rm}{If FALSE NAs are not removed from zand so a grid box even one of these values may be an NA. (See details below.)} \item{size}{Size of bubble dots in cex units. Can be a vector to procduce different size points in the scatterplot.} \item{zlim}{Numerical range to determine the colorscale. If omitted the range of z is used. } \item{\dots}{ for quilt.plot arguments to be passed to the \code{image.plot} function. For bubblePlot arguments to be passed to the \code{plot} function if \code{add=FALSE}, the default and to the \code{points} function if \code{add=TRUE}. } \item{horizontal}{ If false (default) legend will be a vertical strip on the right side. If true the legend strip will be along the bottom. } \item{bubbleType}{Symbol for the bubble as a text string. Either "circle" (default) or "square".} \item{highlight}{If TRUE will add an outline color around the "bubble" with the color \code{highlight.color}. This is useful when the bubbles are distinct. } \item{highlight.color}{ Color of circle, default is a darker grey.} \item{legend.cex}{Character expansion to change size of the legend label.} \item{legend.lab}{ Label for the axis of the color legend. Default is no label as this is usual evident from the plot title.} \item{legend.line}{Distance in units of character height (same as in \code{mtext}) of the legend label from the color bar. Make this larger if the label collides with the color axis labels.} \item{legend.mar}{ Width in characters of legend margin that has the axis. Default is 5.1 for a vertical legend and 3.1 for a horizontal legend.} \item{legend.shrink}{ Amount to shrink the size of legend relative to the full height or width of the plot. } \item{legend.width}{ Width in characters of the legend strip. Default is 1.2, a little bigger that the width of a character. } \item{axis.args}{A list giving additional arguments for the \code{axis} function used to create the legend axis. (See examples in \code{\link{image.plot}}.)} \item{legend.args}{The nuclear option: arguments for a complete specification of the legend label, e.g. if you need to the rotate text or other details. This is in the form of a list and is just passed to the mtext function and you will need to give both the side and line arguments for positioning. This usually will not be needed. (See examples in \code{\link{image.plot}} .)} \item{legendLayout}{The list returned by \code{setupLegend} that has the legend information about positioning.} \item{noLegend}{If FALSE just the bubble plot is drawn without adding a legend strip for the color bar. Useful if multiple plots are drawn with a common legend.} } \details{ \strong{quilt.plot} This function combines the discretization to an image by the function \code{as.image} and is then graphed by \code{image.plot}. By default, locations that fall into the same grid box will have their z values averaged. This also means that observations that are NA will result in the grid box average also being NA and can produce unexpected results because the NA patterns can dominate the figure. If you are unsure of the effect try \code{na.rm = TRUE} for a comparison. A similar function exists in the lattice package and produces spiffy looking plots. The advantage of this fields version is that it uses the standard R graphics functions and is written in R code. Also, the aggregation to average values for z values in the same grid box allows for different choices of grids. If two locations are very close, separating them could result in very small boxes. Legend placement is never completely automatic. Place the legend independently for more control, perhaps using \code{image.plot} in tandem with \code{split.screen} or enlarging the plot margin See \code{help(image.plot)} for examples of this function and these strategies. \strong{bubblePlot} Why was this function was written for fields? Certainly ggplot has many options for this kind of figure. To quote Tim Hoar a gifted data scientist and software engineer at NCAR: "because we could". It is a crisp implementation of this type of plot using lower level fields functions. The user may choose simply to use the source code as the basis for a more detailed function. However, this is also a quick plot to introduce in teaching. This function is experimental in the sense it explores setting out a plotting region in advance of the actual plotting using R base graphics. See the functions \code{\link{setupLegend}} and \code{\link{addLegend}} for more details. Other graphics approaches in R such as ggplot determine the plotting regions and layout based on having the entire figure specification at hand. Although this a comprehensive solution it also seems overkill to just add a lone color bar to annotate a plot. Moreover, and the graphics lower level functions to add the color bar legend are already available from the image.plot functio. } \author{D.Nychka} \seealso{ as.image, discretize.image, image.plot, lattice, persp, drape.plot, } \examples{ data( ozone2) # plot 16 day of ozone data set quilt.plot( ozone2$lon.lat, ozone2$y[16,]) US( add=TRUE, col="grey", lwd=2) bubblePlot( ozone2$lon.lat, ozone2$y[16,] ) US( add=TRUE, col="magenta", lwd=2) # colors based on a factor or character vector O3Levels<- cut( ozone2$y[16,], c( 0,40,60,80,Inf), labels=c("low","bckgrd","med", "high")) table( O3Levels) bubblePlot( ozone2$lon.lat, O3Levels ) US( add=TRUE, col="magenta", lwd=2) ### adding a common legend strip "by hand" ## to a panel of plots ## and a custom color table coltab<- two.colors( 256, middle="grey50" ) par( oma=c( 0,0,0,5)) # save some room for the legend set.panel(2,2) zr<- range( ozone2$y, na.rm=TRUE) for( k in 1:4){ quilt.plot( ozone2$lon.lat, ozone2$y[15+k,], add.legend=FALSE, zlim=zr, col=coltab, nx=40, ny=40) US( add=TRUE) } par( oma=c(0,0,0,1)) image.plot(zlim=zr,legend.only=TRUE, col=coltab) # may have to adjust number of spaces in oma to make this work. # adding some grid lines and using the boundary.grid option # note that in this case grid boxes drawn to match lon/lats data( ozone2) lon<- ozone2$lon.lat[,1] lat<- ozone2$lon.lat[,2] z<- ozone2$y[16,] gridList<- list( x=-94 :-81, y= 36:45 ) quilt.plot( lon, lat, z, grid= gridList, boundary.grid = TRUE, col=viridis(256) ) # add some gird lines xline( gridList$x , col="grey", lwd=1, lty=1) yline( gridList$y, col="grey", lwd=1, lty=2) } \keyword{hplot}% at least one, from doc/KEYWORDS fields/man/Exponential.Rd0000644000175100001440000001324714627454002015101 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{Exponential, Matern, Radial Basis} \alias{Exponential} \alias{Matern} \alias{Matern.cor.to.range} \alias{RadialBasis} \title{Covariance functions} \description{ Functional form of covariance function assuming the argument is a distance between locations. As they are defined here, they are in fact correlation functions. To set the marginal variance (sill) parameter, use the \code{sigma} argument in \code{mKrig} or \code{Krig}. To set the nugget variance, use the \code{tau2} argument in \code{mKrig} or \code{Krig}. } \usage{ Exponential(d, aRange = 1, phi = 1, theta = NULL, range = NULL) Matern(d , range = 1,alpha=1/range, smoothness = 0.5, nu= smoothness, phi=1.0) Matern.cor.to.range(d, nu, cor.target=.5, guess=NULL,...) RadialBasis(d,M,dimension, derivative = 0) } \arguments{ \item{aRange}{The usual range parameter for a covariance function. We use this names to be distinct from the "range"" function and the generic parameter name "theta"."} \item{d}{ Vector of distances or for \code{Matern.cor.to.range} just a single distance. } \item{range}{ Range parameter default is one. Note that the scale can also be specified through the "aRange" scaling argument used in fields covariance functions) } \item{alpha}{1/range } \item{theta}{Same as alpha} \item{phi}{This parameter option is added to be compatible with older versions of fields and refers to the marginal variance of the process. e.g. \code{phi* exp( -d/aRange)} is the exponential covariance for points separated by distance and range aRange. Throughout fields this parameter is equivalent to sigma and it recommended that sigma be used. If one is simulating random fields. See the help on \code{\link{sim.rf}} for more details. } \item{smoothness}{ Smoothness parameter in Matern. Controls the number of derivatives in the process. Default is 1/2 corresponding to an exponential covariance.} \item{nu}{ Same as smoothness} \item{M}{Interpreted as a spline M is the order of the derivatives in the penalty.} \item{dimension}{Dimension of function} \item{cor.target}{Correlation used to match the range parameter. Default is .5.} \item{guess}{An optional starting guess for solution. This should not be needed.} \item{derivative}{If greater than zero finds the first derivative of this function.} \item{\dots}{Additional arguments to pass to the bisection search function.} } \details{ Exponential: exp( -d/aRange) Matern: con*(d**nu) * besselK(d , nu ) Matern covariance function transcribed from Stein's book page 31 nu==smoothness, alpha == 1/range GeoR parameters map to kappa==smoothness and phi == range check for negative distances \code{con} is a constant that normalizes the expression to be 1.0 when d=0. Matern.cor.to.range: This function is useful to find Matern covariance parameters that are comparable for different smoothness parameters. Given a distance \code{d}, smoothness \code{nu}, target correlation \code{cor.target} and range \code{aRange}, this function determines numerically the value of aRange so that \code{Matern( d, range=aRange, nu=nu) == cor.target} See the example for how this might be used. Radial basis functions: \preformatted{ C.m,d r**(2m-d) d- odd C.m,d r**(2m-d)ln(r) d-even } where C.m.d is a constant based on spline theory and r is the radial distance between points. See \code{radbas.constant} for the computation of the constant. } \value{ For the covariance functions: a vector of covariances. For Matern.cor.to.range: the value of the range parameter. } \references{ Stein, M.L. (1999) Statistical Interpolation of Spatial Data: Some Theory for Kriging. Springer, New York.} \author{Doug Nychka} \seealso{stationary.cov, stationary.image.cov, Wendland,stationary.taper.cov rad.cov} \examples{ # a Matern correlation function d<- seq( 0,10,,200) y<- Matern( d, range=1.5, smoothness=1.0) plot( d,y, type="l") # Several Materns of different smoothness with a similar correlation # range # find ranges for nu = .5, 1.0 and 2.0 # where the correlation drops to .1 at a distance of 10 units. r1<- Matern.cor.to.range( 10, nu=.5, cor.target=.1) r2<- Matern.cor.to.range( 10, nu=1.0, cor.target=.1) r3<- Matern.cor.to.range( 10, nu=2.0, cor.target=.1) # note that these equivalent ranges # with respect to this correlation length are quite different # due the different smoothness parameters. d<- seq( 0, 15,,200) y<- cbind( Matern( d, range=r1, nu=.5), Matern( d, range=r2, nu=1.0), Matern( d, range=r3, nu=2.0)) matplot( d, y, type="l", lty=1, lwd=2) xline( 10) yline( .1) } \keyword{spatial}% at least one, from doc/KEYWORDS fields/man/CO.Rd0000644000175100001440000002031514627454002013106 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{Colorado Monthly Meteorological Data} \alias{COmonthlyMet} \alias{CO.elev} \alias{CO.id} \alias{CO.loc} \alias{CO.names} \alias{CO.ppt} \alias{CO.ppt.MAM} \alias{CO.tmax} \alias{CO.tmax.MAM} \alias{CO.tmin} \alias{CO.tmin.MAM} \alias{CO.years} \alias{CO.ppt.MAM.climate} \alias{CO.tmax.MAM.climate} \alias{CO.tmean.MAM.climate} \alias{CO.tmin.MAM.climate} \alias{CO.elevGrid} \alias{CO.Grid} \title{Monthly surface meterology for Colorado 1895-1997} \description{ Source: These is a group of R data sets for monthly min/max temperatures and precipitation over the period 1895-1997. It is a subset extracted from the more extensive US data record. Temperature is in degrees C and precipitation is total monthly accumulation in millimeters. Note that minimum (maximum) monthly tempertuare is the mean of the daily minimum (maximum) temperatures. Data domain: A rectagular lon/lat region [-109.5,-101]x [36.5,41.5] larger than the boundary of Colorado comprises approximately 400 stations. Although there are additional stations reported in this domain, stations that only report preicipitation or only report temperatures have been excluded. In addition stations that have mismatches between locations and elevations from the two meta data files have also been excluded. The net result is 367 stations that have colocated temperatures and precipitation. } \format{ This group of data sets is organized with the following objects: \describe{ \item{CO.info}{A data frame with columns: station id, elev, lon, lat, station name} \item{CO.elev}{elevation in meters} \item{CO.elevGrid}{An image object being elevation in meters on a 4 km grid covering Colorado. } \item{CO.id}{ alphanumeric station id codes} \item{CO.loc}{locations in lon/lat} \item{CO.Grid}{Just the grid.list used in the CO.elevGrid.} \item{CO.ppt CO.tmax CO.tmin}{Monthly means as three dimensional arrays ( Year, Month, Station). Temperature is in degrees C and precipitation in total monthly accumulation in millimeters.} \item{CO.ppt.MAM CO.tmax.MAM CO.tmin.MAM}{Spring seasonal means (March, April,May) as two dimensional arrays (Year, Station).} \item{CO.MAM.ppt.climate CO.MAM.tmax.climate CO.MAM.tmin.climate}{Spring seasonal means (March, April,May) means by station for the period 1960-1990. If less than 15 years are present over this period an NA is recorded. No detreding or other adjustments have been made for these mean estimates. } } } \examples{ data(COmonthlyMet) #Spatial plot of 1997 Spring average daily maximum temps quilt.plot( CO.loc,CO.tmax.MAM[103,] ) US( add=TRUE) title( "Recorded MAM max temperatures (1997)") # min and max temperatures against elevation matplot( CO.elev, cbind( CO.tmax.MAM[103,], CO.tmin.MAM[103,]), pch="o", type="p", col=c("red", "blue"), xlab="Elevation (m)", ylab="Temperature (C)") title("Recorded MAM max (red) and min (blue) temperatures 1997") #Fitting a spatial model: obj<- Tps(CO.loc,CO.tmax.MAM.climate, Z= CO.elev ) \dontrun{ out<- spatialProcess(CO.loc,CO.tmax.MAM.climate, smoothness=1.0, Z= CO.elev) surface( out) } } \section{Creation of data subset}{ Here is the precise R script used to create this data subset from the larger US monthly data set. This parent, R binary file can be obtained by contacting Doug Nychka (nychka@mines.edu). These technical details are not needed for casual use of the data -- skip down to examples for some R code that summarizes these data. \preformatted{ attach("RData.USmonthlyMet.bin") #To find a subset that covers Colorado (with a bit extra): indt<- UStinfo$lon< -101 & UStinfo$lon > -109.5 indt<- indt & UStinfo$lat<41.5 & UStinfo$lat>36.5 # check US(); points( UStinfo[indt,3:4]) #find common names restricting choices to the temperature names tn<- match( UStinfo$station.id, USpinfo$station.id) indt<- !is.na(tn) & indt # compare metadata locations and elevations. # initial matches to precip stations CO.id<- UStinfo[indt,1] CO.names<- as.character(UStinfo[indt,5]) pn<- match( CO.id, USpinfo$station.id) loc1<- cbind( UStinfo$lon[indt], UStinfo$lat[indt], UStinfo$elev[indt]) loc2<- cbind( USpinfo$lon[pn], USpinfo$lat[pn], USpinfo$elev[pn]) abs(loc1- loc2) -> temp indbad<- temp[,1] > .02 | temp[,2]> .02 | temp[,3] > 100 # tolerance at 100 meters set mainly to include the CLIMAX station # a high altitude station. data.frame(CO.names[ indbad], loc1[indbad,], loc2[indbad,], temp[indbad,] ) # CO.names.indbad. X1 X2 X3 X1.1 X2.1 X3.1 X1.2 X2.2 X3.2 #1 ALTENBERN -108.38 39.50 1734 -108.53 39.58 2074 0.15 0.08 340 #2 CAMPO 7 S -102.57 37.02 1311 -102.68 37.08 1312 0.11 0.06 1 #3 FLAGLER 2 NW -103.08 39.32 1519 -103.07 39.28 1525 0.01 0.04 6 #4 GATEWAY 1 SE -108.98 38.68 1391 -108.93 38.70 1495 0.05 0.02 104 #5 IDALIA -102.27 39.77 1211 -102.28 39.70 1208 0.01 0.07 3 #6 KARVAL -103.53 38.73 1549 -103.52 38.80 1559 0.01 0.07 10 #7 NEW RAYMER -103.85 40.60 1458 -103.83 40.58 1510 0.02 0.02 52 # modify the indt list to exclude these mismatches (there are 7 here) badones<- match( CO.id[indbad], UStinfo$station.id) indt[ badones] <- FALSE ###### now have working set of CO stations have both temp and precip ##### and are reasonably close to each other. N<- sum( indt) # put data in time series order instead of table of year by month. CO.tmax<- UStmax[,,indt] CO.tmin<- UStmin[,,indt] CO.id<- as.character(UStinfo[indt,1]) CO.elev<- UStinfo[indt,2] CO.loc <- UStinfo[indt,3:4] CO.names<- as.character(UStinfo[indt,5]) CO.years<- 1895:1997 # now find precip stations that match temp stations pn<- match( CO.id, USpinfo$station.id) # number of orphans sum( is.na( pn)) pn<- pn[ !is.na( pn)] CO.ppt<- USppt[,,pn] # checks --- all should zero ind<- match( CO.id[45], USpinfo$station.id) mean( abs( c(USppt[,,ind]) - c(CO.ppt[,,45]) ) , na.rm=TRUE) ind<- match( CO.id[45], UStinfo$station.id) mean( abs(c((UStmax[,,ind])) - c(CO.tmax[,,45])), na.rm=TRUE) mean( abs(c((UStmin[,,ind])) - c(CO.tmin[,,45])), na.rm=TRUE) # check order ind<- match( CO.id, USpinfo$station.id) sum( CO.id != USpinfo$station.id[ind]) ind<- match( CO.id, UStinfo$station.id) sum( CO.id != UStinfo$station.id[ind]) # (3 4 5) (6 7 8) (9 10 11) (12 1 2) N<- ncol( CO.tmax) CO.tmax.MAM<- apply( CO.tmax[,3:5,],c(1,3), "mean") CO.tmin.MAM<- apply( CO.tmin[,3:5,],c(1,3), "mean") CO.ppt.MAM<- apply( CO.ppt[,3:5,],c(1,3), "sum") # Now average over 1961-1990 ind<- CO.years>=1960 & CO.years < 1990 temp<- stats( CO.tmax.MAM[ind,]) CO.tmax.MAM.climate<- ifelse( temp[1,] >= 15, temp[2,], NA) temp<- stats( CO.tmin.MAM[ind,]) CO.tmin.MAM.climate<- ifelse( temp[1,] >= 15, temp[2,], NA) CO.tmean.MAM.climate<- (CO.tmin.MAM.climate + CO.tmin.MAM.climate)/2 temp<- stats( CO.ppt.MAM[ind,]) CO.ppt.MAM.climate<- ifelse( temp[1,] >= 15, temp[2,], NA) save( list=c( "CO.tmax", "CO.tmin", "CO.ppt", "CO.id", "CO.loc","CO.years", "CO.names","CO.elev", "CO.tmin.MAM", "CO.tmax.MAM", "CO.ppt.MAM", "CO.tmin.MAM.climate", "CO.tmax.MAM.climate", "CO.ppt.MAM.climate", "CO.tmean.MAM.climate"), file="COmonthlyMet.rda") } } \keyword{datasets} % docclass is data % Converted by Sd2Rd version 1.21. fields/man/transformx.Rd0000644000175100001440000000467414627454002015022 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{transformx} \alias{transformx} \title{ Linear transformation } \description{ Linear transformation of each column of a matrix. There are several choices of the type of centering and scaling. } \usage{ transformx (x, scale.type = "unit.sd", x.center, x.scale) } \arguments{ \item{x}{ Matrix with columns to be transformed. } \item{scale.type}{ Type of transformation the default is "unit.sd": subtract the mean and divide by the standard deviation. Other choices are "unscaled" (do nothing), "range" (transform to [0,1]),"user" (subtract a supplied location and divide by a scale). } \item{x.center}{ A vector of centering values to subtract from each column. } \item{x.scale}{ A vector of scaling values to subtract from each column. } } \value{ A matrix whose columns have between transformed. This matrix also has the attributes: scale.type, x.center and y.center with the transformation information. } \details{ After deciding what the centering and scaling values should be for each column of x, this function just calls the standard utility scale. This function was created partly to attach the transformation information as attributes to the transformed matrix. It is used in Krig, cover.design, krig.image etc. to transform the independent variables. } \seealso{ scale } \examples{ # newx<-transformx( ChicagoO3$x, scale.type="range") } \keyword{manip} % docclass is function % Converted by Sd2Rd version 1.21. fields/man/WorldBank.Rd0000644000175100001440000001016414627454002014471 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{WorldBankCO2} \alias{WorldBankCO2} \docType{data} \title{Carbon emissions and demographic covariables by country for 1999.} \description{ These data are a small subset of the demographic data compiled by the World Bank. The data has been restricted to 1999 and to countries with a population larger than 1 million. Also, only countries reporting all the covariables are included. } \usage{ data(WorldBankCO2)} \format{ This a 75X5 matrix with the row names identifying countries and columns the covariables: \code{ "GDP.cap" "Pop.mid" "Pop.urb" "CO2.cap" "Pop"} \itemize{ \item GDP.cap: Gross domestic product (in US dollars) per capita. \item Pop.mid: percentage of the population within the ages of 15 through 65. \item Pop.urb: Precentage of the population living in an urban environment \item CO2.cap: Equivalent CO2 emmissions per capita \item Pop: Population } } \section{Reference}{ Romero-Lankao, P., J. L. Tribbia and D. Nychka (2008) Development and greenhouse gas emissions deviate from the modernization theory and convergence hypothesis. Cli- mate Research 38, 17-29. } \examples{ data(WorldBankCO2) plot( WorldBankCO2[,"GDP.cap"], WorldBankCO2[,"CO2.cap"], log="xy") } \section{Creating dataset}{ Listed below are scripts to create this data set from spread sheet on the World Bank CDs: \preformatted{ ## read in comma delimited spread sheet read.csv("climatedemo.csv", stringsAsFactors=FALSE)->hold ## convert numbers to matrix of data Ddata<- as.matrix( hold[,5:51] ) Ddata[Ddata==".."] <- NA ## still in character form parse as numeric Ddata<- matrix( as.numeric( Ddata), nrow=1248, ncol=ncol( Ddata), dimnames=list( NULL, format( 1960:2006) )) ## these are the factors indicating the different variables ### unique( Fac) gives the names of factors Fac<- as.character( hold[,1]) years<- 1960:2006 # create separate tables of data for each factor temp<- unique( Fac) ## also subset Country id and name Country.id<- as.character( hold[Fac== temp[1],3]) Country<- as.character( hold[Fac== temp[1],4]) Pop<- Ddata[ Fac== temp[2],] CO2<- Ddata[ Fac== temp[1],] Pop.mid<- Ddata[ Fac== temp[3],] GDP.cap<- Ddata[ Fac== temp[4],] Pop.urb<- Ddata[ Fac== temp[5],] CO2.cap<- CO2/Pop dimnames( Pop)<- list( Country.id,format(years)) dimnames( CO2)<- list( Country.id,format(years)) dimnames( Pop.mid)<- list( Country.id,format(years)) dimnames( Pop.urb)<- list( Country.id,format(years)) dimnames( CO2.cap)<- list( Country.id,format(years)) # delete temp data sets rm( temp) rm( hold) rm( Fac) # define year to do clustering. yr<- "1999" # variables for clustering combined as columns in a matrix temp<-cbind( GDP.cap[,yr], Pop.mid[,yr], Pop.urb[,yr],CO2[,yr],Pop[,yr]) # add column names and figure how many good data rows there are. dimnames( temp)<-list( Country, c("GDP.cap","Pop.mid","Pop.urb", "CO2.cap", "Pop")) good<-complete.cases(temp) good<- good & Pop[,yr] > 10e6 # subset with only the complete data rows WorldBankCO2<- temp[good,] save(WorldBankCO2, file="WorldBankCO2.rda") } } \keyword{datasets} fields/man/ozone.Rd0000644000175100001440000000437514627454002013747 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{Chicago ozone test data} \alias{ChicagoO3} \alias{ozone} \title{ Data set of ozone measurements at 20 Chicago monitoring stations. } \description{ This data set used be named \code{ozone} but was changed to avoid conflict with other packages. The \code{ChicagoO3} data is a list of components, x and y. x component is longitude and latitude position of each of the 20 Chicago monitoring stations, y is the average daily ozone values over the time period 6/3/87-8/30/87. These data are used extensively for the test scripts and simple examples. The lasting scientific value is probably minimal. } \format{ This data set is a list containing the following components: \describe{ \item{lon.lat}{ Longitude-latitude positions of monitoring stations. } \item{x}{An approximate Cartesian set of coordinates for the locations where the units are in miles. The origin is in the center of the locations. } \item{y}{ Average daily ozone values over 1987 summer. } } } \source{ AIRS, the EPA air quality data base. } \seealso{ Tps, Krig } \examples{ fit<- Tps(ChicagoO3$x, ChicagoO3$y) # fitting a surface to ozone measurements. surface( fit, type="I") } \keyword{datasets} % docclass is function % Converted by Sd2Rd version 1.21. fields/man/tim.colors.Rd0000644000175100001440000001671214637265636014722 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{tim.colors} \alias{tim.colors} \alias{larry.colors} \alias{two.colors} \alias{designer.colors} \alias{color.scale} \alias{snow.colors} \alias{fieldsPlotColors} \title{ Some useful color tables for images and tools to handle them. } \description{ Several color scales useful for image plots: a pleasing rainbow style color table patterned after that used in Matlab by Tim Hoar and also some simple color interpolation schemes between two or more colors. There is also a function that converts between colors and a real valued vector. } \usage{ tim.colors(n = 64, alpha=1.0) larry.colors() snow.colors(n=256, alpha=1) two.colors(n=256, start="darkgreen", end="red", middle="white", alpha=1.0) designer.colors( n=256, col= c("darkgreen", "white", "darkred"), x= seq(0,1,, length(col)) ,alpha=1.0) color.scale(z, col = tim.colors, NC = 256, zlim = NULL, transparent.color = "white", eps = 1e-08) fieldsPlotColors( col,...) } \arguments{ \item{alpha}{The transparency of the color -- 1.0 is opaque and 0 is transparent. This is useful for overlays of color and still being able to view the graphics that is covered. } \item{n}{ Number of color levels. The setting \code{n}=64 is the orignal definition.} \item{start}{Starting color for lowest values in color scale} \item{end}{ Ending color.} \item{middle}{Color scale passes through this color at halfway} \item{col}{A list of colors (names or hex values) to interpolate. But for the \code{color.scale} function this can be also be a function that returns \code{NC} colors when called with just the \code{NC} argument.} \item{x}{Positions of colors on a [0,1] scale. Default is to assume that the x values are equally spacesd from 0 to 1.} \item{z}{Real vector to encode in a color table.} \item{zlim}{Range to use for color scale. Default is the \code{range(z)} inflated by 1- eps and 1+eps.} \item{transparent.color}{Color value to use for NA's or values outside \code{zlim}} \item{eps}{A small inflation of the range to avoid the boundary values of \code{z} being coded as NAs.} \item{NC}{The number of colors to return from calling the function passed in the \code{col} argument. This is only used if \code{col} is a function.} \item{\dots}{Additional plotting arguments that are passed to \code{image.plot}. } } \details{ The color in R can be represented as three vectors in RGB coordinates and these coordinates are interpolated separately using a cubic spline to give color values that intermediate to the specified colors. Ask Tim Hoar about \code{tim.colors}! He is a Mattlab black belt and this is his favorite scale in that system. \code{two.colors} is really about three different colors. For other colors try \code{fields.color.picker} to view possible choices. \code{start="darkgreen", end="azure4"} are the options used to get a nice color scale for rendering aerial photos of ski trails. (See \url{https://github.com/dnychka/MJProject}.) \code{larry.colors} is a 13 color palette used by Larry McDaniel (retired software engineer from NCAR) and is particularly useful for visualizing fields of climate variables. \code{snow.colors} is the scale used by Will Klieber's team for visualizing snow cover from remotely sensed data products. See the commented code for the script as to how how this was formed from an orignal raw 256 level scale. Note the that first color in this table is grey and is desigend to represent the minimum value of the range ( e.g. 0). If the image in in percent snow cover then \code{zlim=c(0,100)} would make sense as a range to fit grey pixels to zero and white to 100 percent. \code{designer.color} is the master function for the other scales. It can be useful if one wants to customize the color table to match quantiles of a distribution. e.g. if the median of the data is at .3 with respect to the range then set \code{x} equal to c(0,.3,1) and specify two colors to provide a transtion that matches the median value. In fields language this function interpolates between a set of colors at locations x. While you can be creative about these colors just using another color scale as the basis is easy. For example \code{designer.color( 256, rainbow(4), x= c( 0,.2,.8,1.0))} leaves the choice of the colors to Dr. R after a thunderstorm. See also colorBrewer to choose sequences of colors that form a good palette. \code{color.scale} assigns colors to a numerical vector in the same way as the \code{image} function. This is useful to kept the assigment of colors consistent across several vectors by specifiying a common \code{zlim} range. \code{plotColorScale} A simple function to plot a vector of colors to examine their values. } \value{ A vector giving the colors in a hexadecimal format, two extra hex digits are added for the alpha channel. } \seealso{ topo.colors, terrain.colors, image.plot, quilt.plot, grey.scale, fields.color.picker } \examples{ tim.colors(10) # returns an array of 10 character strings encoding colors in hex format # e.g. (red, green, blue) values of (16,255, 239) # translates to "#10FFEF" # rgb( 16/255, 255/255, 239/255, alpha=.5) # gives "#10FFEF80" note extra "alpha channel" # view some color table choices set.panel( 4,1) fieldsPlotColors( tim.colors()) title("tim.colors") fieldsPlotColors( larry.colors()) title("larry.colors") fieldsPlotColors( two.colors()) title("two.colors") fieldsPlotColors( snow.colors()) title("snow.colors") # a bubble plot with some transparency for overlapping dots set.seed(123) loc<- matrix( rnorm( 200), 100,2) Z<- loc[,1] + loc[,2] colorMap<- color.scale( Z, col=tim.colors(10, alpha=.8)) par( mar=c(5,5,5,5)) # extra room on right for color bar plot( loc, col=colorMap, pch=16, cex=2) # add a color scale image.plot(legend.only=TRUE, zlim=range( Z), col=tim.colors(10)) # using tranparency without alpha the image plot would cover points obj<- list( x= 1:8, y=1:10, z= outer( 1:8, 1:10, "+") ) plot( 1:10,1:10) image(obj, col=two.colors(alpha=.5), add=TRUE) coltab<- designer.colors(col=c("blue", "grey", "green"), x= c( 0,.3,1) ) image( obj, col= coltab ) # peg colors at some desired quantiles of data. # NOTE need 0 and 1 for the color scale to make sense x<- quantile( c(obj$z), c(0,.25,.5,.75,1.0) ) # scale these to [0,1] zr<- range( c(obj$z)) x<- (x-zr[1])/ (zr[2] - zr[1]) coltab<- designer.colors(256,rainbow(5), x) image( obj$z, col= coltab ) # see image.plot for adding all kinds of legends set.panel() } \keyword{ aplot} fields/man/image.plot.Rd0000644000175100001440000006361314627454002014654 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{image.plot} \alias{image.plot} \title{ Draws an image plot with a legend strip for the color scale based on either a regular grid or a grid of quadrilaterals. } \description{ This function combines the R image function with some automatic placement of a legend. This is done by splitting the plotting region into two parts. Putting the image in one and the legend in the other. After the legend is added the plot region is reset to the image plot. This function also allows for plotting quadrilateral cells in the image format that often arise from regular grids transformed with a map projection or a scaling and rotation of coordinates. See the example where this function can create a similar graphic to the ggplot package. \code{image.plot} functionality has been frozen, see the more recent function \code{\link{imagePlot}} which is backwardly compatible with this function. } \usage{ \method{image}{plot}(..., add = FALSE, breaks= NULL, nlevel = 64, col = NULL, horizontal = FALSE, legend.shrink = 0.9, legend.width = 1.2, legend.mar = ifelse(horizontal, 3.1, 5.1), legend.lab = NULL, legend.line= 2, graphics.reset = FALSE, bigplot = NULL, smallplot = NULL, legend.only = FALSE, lab.breaks = NULL, axis.args = NULL, legend.args = NULL, legend.cex=1.0, midpoint = FALSE, border = NA, lwd = 1,verbose = FALSE ) } \arguments{ \item{\dots}{ The usual arguments to the \code{image} function as x,y,or z or as a list with x,y,z as components. One can also include a \code{breaks} argument for an unequal spaced color scale with color scale boundaries at the breaks (see example below). If a "quadrilateral grid", arguments must be explicitly x,y and z with x, and y being matrices of dimensions equal to, or one more than, z giving the grid locations. The basic concept is that the coordinates of x and y still define a grid but the image cells are quadrilaterals rather than being restricted to rectangles. NOTE: graphical argruments passed here will only have impact on the image plot. To change the graphical defaults for the legend use the individual legend arguments and/or \code{legend.arg} listed below. } \item{add}{ If true add image and a legend strip to the existing plot. } \item{bigplot}{ Plot coordinates for image plot. If not passed these will be determined within the function. } \item{border}{This only works if x and y are matrices -- if NA the quadralaterals will have a border color that is the same as the interior color. Otherwise this specifies the color to use.} \item{breaks}{Break points in sorted order to indicate the intervals for assigning the colors. Note that if there are nlevel colors there should be (nlevel+1) breakpoints. If \code{breaks} is not specified (nlevel+1) equally spaced breaks are created where the first and last bin have their midpoints at the minimum and maximum values in \code{z} or at \code{zlim}.} \item{col}{ Color table to use for image (See help file on image for details.). Default is a pleasing range of 64 divisions suggested by Tim Hoar and is similar to the MATLAB (TM) jet color scheme. Note that if \code{breaks} is specified there must be one less color specified than the number of breaks. } \item{graphics.reset}{ If FALSE (default) the plotting region ( plt in par) will not be reset and one can add more information onto the image plot. (e.g. using functions such as points or lines.) If TRUE will reset plot parameters to the values before entering the function. } \item{horizontal}{ If false (default) legend will be a vertical strip on the right side. If true the legend strip will be along the bottom. } \item{lab.breaks}{ If breaks are supplied these are text string labels to put at each break value. This is intended to label axis on a transformed scale such as logs.} \item{axis.args}{Additional arguments for the axis function used to create the legend axis. (See example below adding a log scaling.)} \item{legend.only}{ If TRUE just add the legend to a the plot in the plot region defined by the coordinates in smallplot. In the absence of other information the range for the legend is determined from the \code{zlim} argument. } \item{legend.args}{Arguments for a complete specification of the legend label, e.g. if you need to the rotate text or other details. This is in the form of list and is just passed to the mtext function and you will need to give both the side and line arguments for positioning. This usually will not be needed. (See example below.)} \item{legend.cex}{Character expansion to change size of the legend label.} \item{legend.line}{Distance in units of character height (as in \code{mtext}) of the legend label from the color bar. Make this larger if the label collides with the color axis labels.} \item{legend.mar}{ Width in characters of legend margin that has the axis. Default is 5.1 for a vertical legend and 3.1 for a horizontal legend.} \item{legend.lab}{ Label for the axis of the color legend. Default is no label as this is usual evident from the plot title.} \item{legend.shrink}{ Amount to shrink the size of legend relative to the full height or width of the plot. } \item{legend.width}{ Width in characters of the legend strip. Default is 1.2, a little bigger that the width of a character. } \item{lwd}{Line width of bordering lines around pixels. This might need to be set less than 1.0 to avoid visible rounding of the pixel corners.} \item{midpoint}{ This option for the case of unequally spaced grids with x and y being matrices of grid point locations. If FALSE (default) the quadralaterals will be extended to surround the z locations as midpoints. If TRUE z values will be averaged to yield a midpoint value and the original grid points be used to define the quadralaterals. (See help on poly.image for details). In most cases midpoint should be FALSE to preserve exact values for z and let the grid polygons be modified.} \item{nlevel}{ Number of color levels used in legend strip } \item{smallplot}{ Plot coordinates for legend strip. If not passed these will be determined within the function. Be sure to leave room for the axis labels. For example, if the legend is on the right side \code{smallplot= c(.85,.9,0,1) } will leave (.1 in plot coordinates) for the axis labels to the right of the color strip. This argument is useful for drawing a plot with the legend that is the same size as the plots without legends. } \item{verbose}{If TRUE prints intermediate information about setting up plots (for debugging). } } \section{Side Effects}{ After exiting, the plotting region may be changed to make it possible to add more features to the plot. To be explicit, \code{par()\$plt} may be changed to reflect a smaller plotting region that has accommodated room for the legend subplot. If \code{xlim} and \code{ylim} are specified the pixels may overplot the axis lines. Just use the \code{box} function to redraw them. } \details{ This is a function using the basic R graphics. The coding was done to make it easier for users to see how this function works and to modify. \strong{How this function works:} The strategy for \code{image.plot} is simple, divide the plotting region into two smaller regions \code{bigplot} and \code{smallplot}. The image goes in one and the legend in the other. This way there is always room for the legend. Some adjustments are made to this rule by not shrinking the \code{bigplot} if there is already room for the legend strip and also sticking the legend strip close to the image plot. One can specify the plot regions explicitly by \code{bigplot} and \code{smallplot} if the default choices do not work.(Note that these in figure coordinates. ) There may be problems with small plotting regions in fitting both of these elements into the plot region and one may have to change the default character sizes or margins to make things fit. Sometimes this function will not reset the type of margins correctly and the "null" call \code{par(mar = par("mar"))} may help to fix this issue. \strong{The text is too small!} This always seems to happen as one is rushing to finish a talk and the figures have tiny default axis labels. Try just calling the function \code{fields.style} before plotting. List out this function to see what is changed, however, all text is increased by 20\% in size. \strong{Why ``image.plot" and not ``image"?} The R Base function \code{image} is very useful but it is awkward to place a legend quickly. However, that said if you are drawing several image plots and want a common legend use the \code{image} function and just just use \code{image.plot} to add the legend. See the example in the help file. Note that you can use \code{image} to draw a bunch of images and then follow with \code{image.plot} and \code{legend.only=TRUE} to add a common legend. (See examples below.) \strong{Almost cloropleths too:} It should be noted that this image function is slightly different than a cloropleth map because the legend is assuming that a continous scale has been discretized into a series of colors. To make the image.plot function as a cloropleth graphic one would of course use the \code{breaks} option and for clarity perhaps code the different regions as different integer values. In addition, for publication quality one would want to use the \code{legend.args} to add more descriptive labels at the midpoints in the color strip. \strong{Relationship of x, y and z:} If the z component is a matrix then the user should be aware that this function locates the matrix element z[i,j] at the grid locations (x[i], y[j]) this is very different than simply listing out the matrix in the usual row column tabular form. See the example below for details on the difference in formatting. What does one do if you do not really have the "z" values on a regular grid? See the functions \code{quilt.plot.Rd} and \code{as.image} to discretise irregular observations to a grid. If the values makes sense as points on a smooth surface see \code{Tps} and \code{fastTps} for surface interpolation. \strong{Adding separate color to indicate the grid box boundaries.} Sometimes you want to show to the grid box borders to emphasize this is not a smooth surface. To our knowledge there is no easy way to do this as an option in \code{image}. But if your image is formatted in the "poly image" style where x and y are also matrices you can use the polyimage (see the \code{border} argument above) option to draw in boundaries. \strong{Grids with unequally spacing -- quadrialteral pixels:} If x and y are matrices that are a smooth transformation of a regular grid then z[i,j] can be interperted as representing the average value in a quadrilateral that is centered at x[i,j] and y[i,j] (\code{midpoint} TRUE). The details of how this cell is found are buried in \code{poly.image} but it it essentially found using midpoints between the centers. If \code{midpoint} is FALSE then x and y are interpreted as the corners of the quadrilateral cells. But what about z? The four values of z are now averaged to represent a value at the midpoint of the cell and this is what is used for plotting. Quadrilateral grids were added to help with plotting the gridded output of geophysical models where the regular grid is defined according to one map projection but the image plotting is required in another projection. Typically the regular grid becomes distorted in a smooth way when this happens. See the regional climate example for a illustration of this application. One can add border colors in this case easily because these choices are just passed onto the polygon function. \strong{Adding the pixel grid for rectangular images:} For adding the grid of pixel borders to a rectangular image try this example after calling \code{image.plot}. \preformatted{ dx <- x[2] - x[1] dy <- y[2] - y[1] xtemp<- seq( min( x)- dx/2, max(x)+ dx/2, length.out = length(x) +1) ytemp<- seq( min( y)- dy/2, max(y)+ dy/2, length.out = length(y) +1) xline( xtemp, col="grey", lwd=2) yline( ytemp, col="grey", lwd=2) } Here \code{x} and \code{y} here are the x and y grid values from the image list. \strong{Fine tuning color scales:} This function gives some flexibility in tuning the color scale to fit the rendering of z values. This can either be specially designed color scale with specific colors ( see help on \code{designer.colors}), positioning the colors at specific points on the [0,1] scale, or mapping distinct colors to intervals of z. The examples below show how to do each of these. In addition, by supplying \code{lab.break} strings or axis parameters one can annotate the legend axis in an informative matter. \strong{Adding just the legend strip:} Note that to add just the legend strip all the numerical information one needs is the \code{zlim} argument and the color table! See examples for tricks in positioning. \strong{About color tables:} We like \code{tim.colors} as a default color scale and so if this what you use this can be omitted. Unfortunately this is not the default for the \code{image} function. Another important color scale is \code{ viridis() } from the viridis package. It seems that by and large everyone seems to react postively to viridis -- guess that is the point! The topographic color scale (\code{topo.colors}) is also a close second showing our geophysical bias. Users may find \code{larry.colors} useful for coding distinct regions in the style of a cloropleith map. See also \code{terrain.colors} for a subset of the topo ones and \code{designer.colors} to "roll your own" color table. One nice option in this last function is to fix color transitions at particular quantiles of the data rather than at equally spaced intervals. For color choices see how the \code{nlevels} argument figures into the legend and main plot number of colors. Also see the \code{colors} function for a listing of all the colors that come with the R base environment. \strong{The details of placing the legend and dividing up the plotting real estate:} It is surprising how hard it is to automatically add the legend! All "plotting coordinates" mentioned here are in device coordinates. The plot region is assumed to be [0,1]X[0,1] and plotting regions are defined as rectangles within this square. We found these easier to work with than user coordinates. \code{legend.width} and \code{legend.mar} are in units of character spaces. These units are helpful in thinking about axis labels that will be put into these areas. To add more or less space between the legend and the image plot alter the mar parameters. The default mar settings (5.1,5.1,5.1,2.1) leaves 2.1 spaces for vertical legends and 5.1 spaces for horizontal legends. There are always problems with default solutions to placing information on graphs but the choices made here may be useful for most cases. The most annoying thing is that after using image.plot and adding information the next plot that is made may have the slightly smaller plotting region set by the image plotting. The user should set \code{reset.graphics=TRUE} to avoid the plotting size from changing. The disadvantage, however, of resetting the graphics is that one can no longer add additional graphics elements to the image plot. Note that filled.contour always resets the graphics but provides another mechanism to pass through plotting commands. Apparently \code{filled.contour}, while very pretty, does not work for multiple plots. \strong{About setup and add legend functions} These came about to create a scatterplot in Base R Graphics where the points are colored with a color scale and the scale can be plotted as part of the figure See \code{ \link{bubblePlot} } for a version of this kind of figure. The function \code{setupLegend} should be used first to create enough space to add a color scale later. After plotting then \code{addLegend} will add the color scale. Note that if the color scale has been created by the \code{color.scale} function the last call to this function will use the color scale and limits created in \code{color.scale}. In summary here is an example of using these functions with the colors in mind: \preformatted{ info<- setupLegend() colTab<- rainbow(10) plot( 1:10, 201:210, col=colTab, pch=16) addLegend(info, col=colTab, zlim = c(1,10)) } Here is one where four colors are mapped to specific values (ala image). \preformatted{ info<-setupLegend() colTab= color.scale(201:210, rainbow(4)) plot( 1:10, 201:210, col=colTab, pch=16 ) addLegend(info, col=colTab, zlim = c(201,210) ) } More complete graphics languages, such as that in ggplot, do not need such functions because the entire graphics segment is parsed to create the complete figure. In this way room for a color scale can be created automatically. The functions proposed here are a simple work around to create these figures using base R graphics. \strong{Other packages} \code{levelplot} that is part of the lattice package has a very similar function to image.plot and a formula syntax in the call. The \code{geom_raster} for setting up a graphics object within \code{ggplot} is another alternative forr image plots with legends. See the last example to compare the steps in creating an image plot using \code{image.plot} that is close to the ggplot version. Mostly this involves resetting base graphics parameters using the {\code{par}} function. \strong{Multiple images:} By keeping the \code{zlim} argument the same across images one can generate the same color scale. (See the \code{image} help file.) One useful technique for a panel of images is to just draw the images with good old \code{image} and then use image.plot to add a legend to the last plot. (See example below for messing with the outer margins to make this work.) Usually a square plot (\code{pty="s"}) done in a rectangular plot region will have room for the legend stuck to the right side without any other adjustments. See the examples below for more complicated arrangements of multiple image plots and a summary legend. The reader is also referred to the package \code{autoimage} as a set of functions in base to help with drawing multiple images and also more support for geographic coordinates. } \seealso{ \link{imagePlot}, \link{image},\link{poly.image}, \link{filled.contour}, \link{quilt.plot}, \link{bubblePlot}, \link{plot.surface}, \link{add.image}, \link{colorBar}, \link{tim.colors}, \link{designer.colors} } \examples{ x<- 1:10 y<- 1:15 z<- outer( x,y,"+") image.plot(x,y,z) # or obj<- list( x=x,y=y,z=z) image.plot(obj, legend.lab="Sverdrups") ################################################################ # the next sequence of examples explain how to quickly # adpat this basic plot to include morre features # In another direction see the very last example where # we use many of the setting in base R graphic to mimic a # (beautiful) ggplot version. ############################################################### # # add some points on diagonal using standard plot function #(with some clipping beyond 10 anticipated) points( 5:12, 5:12, pch="X", cex=3) # in general image.plot will reset the plot window so you # can add any feature that normally works in base R # e.g. lines, text, contour, boxplots, .... # # adding breaks and distinct colors for intervals of z # with and without lab.breaks brk<- quantile( c(z)) image.plot(x,y,z, breaks=brk, col=rainbow(4)) # annotate legend strip with the break point values and add a label image.plot(x,y,z, breaks=brk, col=rainbow(4), lab.breaks=names(brk)) # # compare to zp <-quantile(c(z), c( .05, .1,.5, .9,.95)) image.plot(x,y,z, axis.args=list( at=zp, labels=names(zp) ) ) # a log scaling for the colors ticks<- c( 1, 2,4,8,16,32) image.plot(x,y,log(z), axis.args=list( at=log(ticks), labels=ticks)) # see help file for designer.colors to generate a color scale that adapts to # quantiles of z. # Add some color scales together here is an example of 5 blues to white to 5 reds # with white being a specific size. colorTable<- designer.colors(11, c( "blue","white", "red") ) # breaks with a gap of 10 to 17 assigned the white color brks<- c(seq( 1, 10,,6), seq( 17, 25,,6)) image.plot( x,y,z,breaks=brks, col=colorTable) # #fat (5 characters wide) and short (50\% of figure) color bar on the bottom image.plot( x,y,z,legend.width=5, legend.shrink=.5, horizontal=TRUE) # adding a label with all kinds of additional arguments. # use side=4 for vertical legend and side= 1 for horizontal legend # to be parallel to axes. See help(mtext). image.plot(x,y,z, legend.args=list( text="unknown units", col="magenta", cex=1.5, side=4, line=2)) # and finally add some grid lines dx <- x[2] - x[1] dy <- y[2] - y[1] xtemp<- seq( min( x)- dx/2, max(x)+ dx/2, length.out = length(x) +1) ytemp<- seq( min( y)- dy/2, max(y)+ dy/2, length.out = length(y) +1) xline( xtemp, col="grey", lwd=2) yline( ytemp, col="grey", lwd=2) ############################################################### #### example using an irregular quadrilateral grid ############################################################### data( RCMexample) image.plot( RCMexample$x, RCMexample$y, RCMexample$z[,,1]) ind<- 50:75 # make a smaller image to show bordering lines image.plot( RCMexample$x[ind,ind], RCMexample$y[ind,ind], RCMexample$z[ind,ind,1], border="grey50", lwd=2) ############################################################### #### multiple images with a common legend ############################################################### set.panel() # Here is quick but quirky way to add a common legend to several plots. # The idea is leave some room in the margin and then at the end # overplot the legend in this margin par(oma=c( 0,0,0,4)) # margin of 4 spaces width at right hand side set.panel( 2,2) # 2X2 matrix of plots # now draw all your plots using usual image command for ( k in 1:4){ data<- matrix( rnorm(150), 10,15) image( data, zlim=c(-4,4), col=tim.colors()) # and just for fun add a contour plot contour( data, add=TRUE) } par(oma=c( 0,0,0,1))# reset margin to be much smaller. image.plot( legend.only=TRUE, zlim=c(-4,4)) # image.plot tricked into plotting in margin of old setting set.panel() # reset plotting device # # Here is a more learned strategy to add a common legend to a panel of # plots consult the split.screen help file for more explanations. # For this example we draw two # images top and bottom and add a single legend color bar on the right side # first divide screen into the figure region (left) and legend region (right) split.screen( rbind(c(0, .8,0,1), c(.8,1,0,1))) # now subdivide up the figure region into two parts split.screen(c(2,1), screen=1)-> ind zr<- range( 2,35) # first image screen( ind[1]) image( x,y,z, col=tim.colors(), zlim=zr) # second image screen( ind[2]) image( x,y,z+10, col=tim.colors(), zlim =zr) # move to skinny region on right and draw the legend strip screen( 2) image.plot( zlim=zr,legend.only=TRUE, smallplot=c(.1,.2, .3,.7), col=tim.colors()) close.screen( all=TRUE) # you can always add a legend arbitrarily to any plot; # note that here the plot is too big for the vertical strip but the # horizontal fits nicely. plot( 1:10, 1:10) image.plot( zlim=c(0,25), legend.only=TRUE) image.plot( zlim=c(0,25), legend.only=TRUE, horizontal =TRUE) # combining the usual image function and adding a legend # first change margin for some more room \dontrun{ par( mar=c(10,5,5,5)) image( x,y,z, col=topo.colors(64)) image.plot( zlim=c(0,25), nlevel=64,legend.only=TRUE, horizontal=TRUE, col=topo.colors(64)) } # # adding a legend by automatically making room. # and coloring points info<- setupLegend() colTab<- rainbow(10) plot( 201:210, 201:210, col=colTab, pch=16) addLegend(info, col=colTab, zlim = c(201,210)) # ####################################################### ##### Comparison to ggplot ####################################################### # the following example was created as way avoid doing more important # things # Note how close base graphics can get to reproducing the ggplot style. \dontrun{ library( viridis) library(ggplot2) x<- 1:20 y<- 1:24 z<- outer( x, y, "+") # ggplot version mesh<- expand.grid( x= x, y=y) mesh$z <- c(z) ggplot( data=mesh, aes( x=x, y=y, fill=z)) + geom_raster(interpolate= FALSE) + scale_fill_continuous(type = "viridis") + theme_bw() # inflate range to give a margin around image xr<- range(x) + c(-.08, .08)* diff( range(x)) yr<- range(y) + c(-.08, .08)* diff( range(y)) # changing these graphics parameters tends to push # text closer to the axes. par( mgp=c(1.5,.5,0),mar=c(2.5,2.5,.5,1), cex=.8) image.plot(x,y,z, col = viridis(128), legend.shrink = .27, xlim = xr, ylim = yr, legend.width = 1.5, legend.mar = 3, legend.args = list( text = "z", cex = .8, side = 3, line = .5) ) } } \keyword{hplot} % docclass is function fields/man/add.image.Rd0000644000175100001440000000543114627454002014420 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{add.image} \alias{add.image} %- Also NEED an '\alias' for EACH other topic documented here. \title{ Adds an image to an existing plot.} \description{ Adds an image to an existing plot. Simple arguments control the location and size. } \usage{ add.image(xpos, ypos, z, adj.x = 0.5, adj.y = 0.5, image.width = 0.15, image.height = NULL, col = tim.colors(256), ...) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{xpos}{X position of image in user coordinates } \item{ypos}{ Y position of image in user coordinates } \item{z}{ Matrix of intensities comprising the image. } \item{adj.x}{ Location of image relative to x coordinate. Most common values are .5 (centered), 0 (right side of image at x) and 1 (left side of image at x). These are the same conventions that are used for \code{adj} in positioning text.} \item{adj.y}{Location of image relative to y coordinate. Same rules as \code{adj.x} } \item{image.width}{ Width of image as a fraction of the plotting region in horizontal direction. } \item{image.height}{ Height of image as a fraction of the plotting region in horizontal direction. If NULL height is scaled to make image pixels square.} \item{col}{ Color table for image. Default is tim.colors.} \item{\dots}{Any other plotting arguments that are passed to the image function } } \seealso{ image.plot, colorbar.plot, image, tim.colors } \examples{ plot( 1:10, 1:10, type="n") data( lennon) add.image( 5,4,lennon, col=grey( (0:256)/256)) # reference lines xline( 5, col=2) yline( 4,col=2) # # add lennon right in the corner beyond the plotting region # par(new=TRUE, plt=c(0,1,0,1), mar=c(0,0,0,0), usr=c(0,1,0,1)) add.image( 0,0, lennon, adj.x=0, adj.y=0) } \keyword{ hplot }% at least one, from doc/KEYWORDS fields/man/poly.image.Rd0000644000175100001440000001317614627454002014660 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER \name{poly.image} \alias{poly.image} \alias{poly.image.regrid} \title{Image plot for cells that are irregular quadrilaterals.} \description{ Creates an image using polygon filling based on a grid of irregular quadrilaterals. This function is useful for a regular grid that has been transformed to another nonlinear or rotated coordinate system. This situation comes up in lon-lat grids created under different map projections. Unlike the usual image format this function requires the grid to be specified as two matrices x and y that given the grid x and y coordinates explicitly for every grid point. } \usage{ poly.image(x, y, z, col = tim.colors(64), breaks, transparent.color = "white", midpoint = FALSE, zlim = range(z, na.rm = TRUE), xlim = range(x), ylim = range(y), add = FALSE, border = NA, lwd.poly = 1, asp = NA, ...) poly.image.regrid(x) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{x}{A matrix of the x locations of the grid. } \item{y}{A matrix of the y locations of the grid. } \item{z}{Values for each grid cell. Can either be the value at the grid points or interpreted as the midpoint of the grid cell. } \item{col}{ Color scale for plotting. } \item{breaks}{Numerical breaks to match to the colors. If missing breaks are equally spaced on the range \code{zlim}.} \item{transparent.color}{ Color to plot cells that are outside the range specified in the function call. } \item{midpoint}{ Only relevant if the dimensions of x,y, and z are the same. If TRUE the z values will be averaged and then used as the cell midpoints. If FALSE the x/y grid will be expanded and shifted to represent grid cells corners. (See poly.image.regrid.) } \item{zlim}{ Plotting limits for z. } \item{xlim}{Plotting limits for x. } \item{ylim}{Plotting limits for y.} \item{add}{ If TRUE will add image onto current plot. } \item{border}{Color of the edges of the quadrilaterals, the default is no color.} \item{lwd.poly}{Line width for the mesh surface. i.e. the outlines of the quadrilateral facets. This might have to be set smaller than one if rounded corners on the facets are visible. } \item{asp}{The plot aspect with similar function to that in the \code{plot} function. } \item{\dots}{ If add is FALSE, additional graphical arguments that will be supplied to the plot function. } } \details{ This function is straightforward except in the case when the dimensions of x,y, and z are equal. In this case the relationship of the values to the grid cells is ambigious and the switch midpoint gives two possible solutions. The z values at 4 neighboring grid cells can be averaged to estimate a new value interpreted to be at the center of the grid. This is done when midpoint is TRUE. Alternatively the full set of z values can be retained by redefining the grid. This is accomplisehd by finding the midpoints of x and y grid points and adding two outside rows and cols to complete the grid. The new result is a new grid that is is (M+1)X (N+1) if z is MXN. These new grid points define cells that contain each of the original grid points as their midpoints. Of course the advantage of this alternative is that the values of z are preserved in the image plot; a feature that may be important for some uses. The function image.plot uses this function internally when image information is passed in this format and can add a legend. In most cases just use image.plot. The function \code{poly.image.regrid} does a simple averaging and extrapolation of the grid locations to shift from midpoints to corners. In the interior grid corners are found by the average of the 4 closest midpoints. For the edges the corners are just extrapolated based on the separation of nieghboring grid cells. } \author{Doug Nychka } \seealso{image.plot} \examples{ data(RCMexample) set.panel( 1,2) par(pty="s") # plot with grid modified poly.image( RCMexample$x, RCMexample$y, RCMexample$z[,,1]) # use midpoints of z poly.image( RCMexample$x, RCMexample$y, RCMexample$z[,,1],midpoint=TRUE) set.panel() # an example with quantile breaks brk<- quantile( RCMexample$z[,,1], c( 0, .9,.95,.99,1.0) ) poly.image( RCMexample$x, RCMexample$y, RCMexample$z[,,1], breaks=brk, col= rainbow(4)) # images are very similar. set.panel() # Regridding of x and y l1<- poly.image.regrid( RCMexample$x) l2<- poly.image.regrid( RCMexample$y) # test that this works i<- 1:10 plot( l1[i,i], l2[i,i]) points( RCMexample$x[i,i], RCMexample$y[i,i],col="red") } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{spatial} fields/man/rdist.earth.Rd0000644000175100001440000000754214627454002015043 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{rdist.earth} \alias{rdist.earth} \alias{rdist.earth.vec} \alias{RdistEarth} \title{ Great circle distance matrix or vector } \description{ Given two sets of longitude/latitude locations, \code{rdist.earth} computes the Great circle (geographic) distance matrix among all pairings and \code{rdist.earth.vec} computes a vector of pairwise great circle distances between corresponding elements of the input locations using the Haversine method and is used in empirical variogram calculations. } \usage{ rdist.earth(x1, x2, miles = TRUE, R = NULL) RdistEarth(x1, x2=NULL, miles=TRUE, R=NULL) rdist.earth.vec(x1, x2, miles = TRUE, R = NULL) } \arguments{ \item{x1}{ Matrix of first set of lon/lat coordinates first column is the longitudes and second is the latitudes. } \item{x2}{ Matrix of second set of lon/lat coordinates first column is the longitudes and second is the latitudes. If missing or NULL x1 is used. } \item{miles}{ If true distances are in statute miles if false distances in kilometers. } \item{R}{ Radius to use for sphere to find spherical distances. If NULL the radius is either in miles or kilometers depending on the values of the miles argument. If R=1 then distances are of course in radians. } } \value{ The great circle distance matrix if nrow(x1)=m and nrow( x2)=n then the returned matrix will be mXn. } \details{ Surprisingly the distance matrix is computed efficiently in R by dot products of the direction cosines. This is the calculation in \code{rdist.earth}. Thanks to Qing Yang for pointing this out a long time ago. A more efficient version has been implemented in C with the R function \code{RdistEarth} by Florian Gerber who has also experimented with parallel versions of fields functions. The main advantage of \code{RdistEarth} is the largely reduce memory usage. The speed seems simillar to \code{rdist.earth}. As Florian writes: "The current fields::rdist.earth() is surprisingly fast. In the case where only the argument 'x1' is specified, the new C implementation is faster. In the case where 'x1' and 'x2' are given, fields::rdist.earth() is a bit faster. This might be because fields::rdist.earth() does not check its input arguments and uses a less complicated (probably numerically less stable) formula." } \author{Doug Nychka, John Paige, Florian Gerber} \seealso{ \link{rdist}, \link{stationary.cov}, \link{fields.rdist.near} } \examples{ data(ozone2) out<- rdist.earth ( ozone2$lon.lat) #out is a 153X153 distance matrix out2<- RdistEarth ( ozone2$lon.lat) all.equal(out, out2) upper<- col(out)> row( out) # histogram of all pairwise distances. hist( out[upper]) #get pairwise distances between first 10 and second 10 lon/lat points x1 = ozone2$lon.lat[1:10,] x2 = ozone2$lon.lat[11:20,] dists = rdist.earth.vec(x1, x2) print(dists) } \keyword{spatial} % docclass is function % Converted by Sd2Rd version 1.21. fields/man/vgram.Rd0000644000175100001440000001512114627454002013720 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{vgram} \alias{vgram} \alias{crossCoVGram} \alias{plot.vgram} \alias{boxplotVGram} \alias{getVGMean} \title{ Traditional or robust variogram methods for spatial data } \description{ \code{vgram} computes pairwise squared differences as a function of distance. Returns an S3 object of class "vgram" with either raw values or statistics from binning. \code{crossCoVGram} is the same as \code{vgram} but differences are taken across different variables rather than the same variable. \code{plot.vgram} and \code{boxplotVGram} create lineplots and boxplots of vgram objects output by the \code{vgram} function. \code{boxplotVGram} plots the base R boxplot function, and plots estimates of the mean over the boxplot. The \code{getVGMean} function returns the bin centers and means of the \code{vgram} object based on the bin breaks provided by the user. } \usage{ vgram(loc, y, id = NULL, d = NULL, lon.lat = FALSE, dmax = NULL, N = NULL, breaks = NULL, prettyBins = FALSE, type=c("variogram", "covariogram", "correlogram")) crossCoVGram(loc1, loc2, y1, y2, id = NULL, d = NULL, lon.lat = FALSE, dmax = NULL, N = NULL, breaks = NULL, type=c("cross-covariogram", "cross-correlogram"), prettyBins = FALSE) boxplotVGram(x, N=10, breaks = pretty(x$d, N, eps.correct = 1), plot=TRUE, plot.args, ...) \method{plot}{vgram}(x, N=10, breaks = pretty(x$d, N, eps.correct = 1), add=FALSE, ...) getVGMean(x, N = 10, breaks = pretty(x$d, N, eps.correct = 1)) } \arguments{ \item{loc}{ Matrix where each row is the coordinates of an observed point of the field } \item{y}{ Value of the field at locations } \item{loc1}{ Matrix where each row is the coordinates of an observed point of field 1 } \item{loc2}{ Matrix where each row is the coordinates of an observed point of field 2 } \item{y1}{ Value of field 1 at locations } \item{y2}{ Value of field 2 at locations } \item{id}{ A 2 column matrix that specifies which variogram differnces to find. If omitted all possible pairing are found. This can used if the data has an additional covariate that determines proximity, for example a time window. } \item{d}{ Distances among pairs indexed by id. If not included distances from from directly from loc. } \item{lon.lat }{ If true, locations are assumed to be longitudes and latitudes and distances found are great circle distances (in miles see \link{rdist.earth}). Default is FALSE. } \item{dmax}{ Maximum distance to compute variogram. } \item{N}{ Number of bins to use. The break points are found by the \code{pretty} function and so ther may not be exactly N bins. Specify the breaks explicity if you want excalty N bins. } \item{breaks}{ Bin boundaries for binning variogram values. Need not be equally spaced but must be ordered. } \item{x}{ An object of class "vgram" (an object returned by \code{vgram}) } \item{add}{ If \code{TRUE}, adds empirical variogram lineplot to current plot. Otherwise creates new plot with empirical variogram lineplot. } \item{plot}{ If \code{TRUE}, creates a plot, otherwise returns variogram statistics output by \code{bplot.xy}. } \item{plot.args}{ Additional arguments to be passed to \code{plot.vgram}. } \item{prettyBins}{If FALSE creates exactly N-1 bins. If TRUE you are at the mercy of giving N to the pretty function! } \item{type}{ One of "variogram", "covariogram", "correlogram", "cross-covariogram", and "cross-correlogram". \code{vgram} supports the first three of these and \code{crossCoVGram} supports the last two. } \item{...}{ Additional argument passed to \code{plot} for \code{plot.vgram} or to \code{bplot.xy} for \code{boxplotVGram}. } } \value{ \code{vgram} and \code{crossCoVGram} return a "vgram" object containing the following values: \item{vgram}{Variogram or covariogram values} \item{d}{Pairwise distances} \item{call}{Calling string} \item{stats}{Matrix of statistics for values in each bin. Rows are the summaries returned by the stats function or describe. If not either breaks or N arguments are not supplied then this component is not computed.} \item{centers}{Bin centers.} If \code{boxplotVGram} is called with \code{plot=FALSE}, it returns a list with the same components as returned by \code{bplot.xy} } \section{References}{ See any standard reference on spatial statistics. For example Cressie, Spatial Statistics } \author{John Paige, Doug Nychka} \seealso{ \link{vgram.matrix}, \link{bplot.xy}, \link{bplot} } \examples{ # # compute variogram for the midwest ozone field day 16 # (BTW this looks a bit strange!) # data( ozone2) good<- !is.na(ozone2$y[16,]) x<- ozone2$lon.lat[good,] y<- ozone2$y[16,good] look<-vgram( x,y, N=15, lon.lat=TRUE) # locations are in lon/lat so use right #distance # take a look: plot(look, pch=19) #lines(look$centers, look$stats["mean",], col=4) brk<- seq( 0, 250,, (25 + 1) ) # will give 25 bins. ## or some boxplot bin summaries boxplotVGram(look, breaks=brk, plot.args=list(type="o")) plot(look, add=TRUE, breaks=brk, col=4) # # compute equivalent covariogram, but leave out the boxplots # look<-vgram( x,y, N=15, lon.lat=TRUE, type="covariogram") plot(look, breaks=brk, col=4) # # compute equivalent cross-covariogram of the data with itself #(it should look almost exactly the same as the covariogram of #the original data, except with a few more points in the #smallest distance boxplot and points are double counted) # look = crossCoVGram(x, x, y, y, N=15, lon.lat=TRUE, type="cross-covariogram") plot(look, breaks=brk, col=4) } \keyword{spatial} % docclass is function % Converted by Sd2Rd version 1.21. fields/man/predictSurface.Rd0000644000175100001440000003040114627454002015545 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{predictSurface} \alias{predictSurface} \alias{predictSurface.default} \alias{predictSurface.mKrig} \alias{predictSurface.Krig} \alias{predictSurface.fastTps} \alias{predictSurfaceSE} \alias{predictSurfaceSE.default} \alias{mKrigFastPredict} \title{ Evaluates a fitted function or the prediction error as a surface that is suitable for plotting with the image, persp, or contour functions. } \description{ Evaluates a a fitted model or the prediction error on a 2-D grid keeping any other variables constant. The resulting object is suitable for use with functions for viewing 3-d surfaces such as image, imagePlot and contour. } \usage{ \method{predictSurface}{default}(object, grid.list = NULL, extrap = FALSE, chull.mask = NA, nx = 80, ny = 80, xy = c(1,2), verbose = FALSE, ...) \method{predictSurface}{fastTps}(object, gridList = NULL, extrap = FALSE, chull.mask = NA, nx = 80, ny = 80, xy = c(1,2), verbose = FALSE, ...) \method{predictSurface}{Krig}(object, grid.list = NULL, extrap = FALSE, chull.mask = NA, nx = 80, ny = 80, xy = c(1, 2), verbose = FALSE, ZGrid = NULL, drop.Z = FALSE, just.fixed=FALSE, ...) \method{predictSurface}{mKrig}(object, gridList = NULL, grid.list = NULL, ynew = NULL, extrap = FALSE, chull.mask = NA, nx = 80, ny = 80, xy = c(1, 2), verbose = FALSE, ZGrid = NULL, drop.Z = FALSE, just.fixed = FALSE, fast = FALSE, NNSize = 4, giveWarnings = FALSE, derivative = 0, ...) mKrigFastPredict(object, gridList, ynew = NULL, derivative = 0, Z = NULL, drop.Z = FALSE, NNSize = 5, setupObject = NULL, giveWarnings = TRUE) \method{predictSurfaceSE}{default}(object, grid.list = NULL, extrap = FALSE, chull.mask = NA, nx = 80, ny = 80, xy = c(1, 2), verbose = FALSE, ZGrid = NULL, just.fixed = FALSE, ...) } \arguments{ \item{object}{ An object from fitting a function to data. In fields this is usually a Krig, mKrig, or fastTps object. } \item{gridList}{ A list with as many components as variables describing the surface. All components should have a single value except the two that give the grid points for evaluation. If the matrix or data frame has column names, these must appear in the grid list. See the grid.list help file for more details. If this is omitted and the fit just depends on two variables the grid will be made from the ranges of the observed variables. (See the function \code{fields.x.to.grid}.) } \item{grid.list}{Alternative to the \code{gridList} argument. } \item{giveWarnings}{If TRUE will warn when more than one observation is in a grid box. } \item{extrap}{ Extrapolation beyond the range of the data. If \code{FALSE} (the default) the predictions will be restricted to the convex hull of the observed data or the convex hull defined from the points from the argument chull.mask. This function may be slightly faster if this logical is set to \code{TRUE} to avoid checking the grid points for membership in the convex hull. For more complicated masking a low level creation of a bounding polygon and testing for membership with \code{in.poly} may be useful. } \item{chull.mask}{ Whether to restrict the fitted surface to be on a convex hull, NA's are assigned to values outside the convex hull. chull.mask should be a sequence of points defining a convex hull. Default is to form the convex hull from the observations if this argument is missing (and extrap is false). } \item{nx}{Number of grid points in X axis. } \item{ny}{Number of grid points in Y axis. } \item{xy}{ A two element vector giving the positions for the "X" and "Y" variables for the surface. The positions refer to the columns of the x matrix used to define the multidimensional surface. This argument is provided in lieu of generating the grid list. If a 4 dimensional surface is fit to data then \code{ xy= c(2,4)} will evaluate a surface using the second and fourth variables with variables 1 and 3 fixed at their median values. NOTE: this argument is ignored if a grid.list argument is passed. } \item{drop.Z}{If TRUE the fixed part of model depending on covariates is omitted.} \item{just.fixed}{If TRUE the nonparametric surface is omitted.} \item{fast}{If TRUE approximate predictions for stationary models are made using the FFT. For large grids( e.g. nx, ny > 200) this can be substantially faster and still accurate to several decimal places. } \item{NNSize}{Order of nearest neighborhood used for fast prediction. The default,\code{NSize = 5}, means an 11X11=121 set of grid points/covariance kernels are used to approximate the off-grid covariance kernel. } \item{setupObject}{The object created explicitly using \code{\link{mKrigFastPredictSetup}}. Useful for predicting multple surfaces with the same observation locations. } \item{derivative}{Predict the estimated derivatives of order \code{derivative}.} \item{ynew}{ New data to use to refit the spatial model. Locations must be the same but if so this is efficient because the matrix decompositions are reused. } \item{\dots}{ Any other arguments to pass to the predict function associated with the fit object. Some of the usual arguments for several of the fields fitted objects include: \describe{ \item{ynew}{ New values of y used to reestimate the surface.} \item{Z}{A matrix of covariates for the fixed part of model.} } } \item{ZGrid}{An array or list form of covariates to use for prediction. This must match the same dimensions from the \code{grid.list} / \code{gridList} argument. If ZGrid is an array then the first two indices are the x and y locations in the grid. The third index, if present, indexes the covariates. e.g. For evaluation on a 10X15 grid and with 2 covariates. \code{ dim( ZGrid) == c(10,15, 2)}. If ZGrid is a list then the components x and y shold match those of grid list and the z component follows the shape described above for the no list case. } \item{Z}{The covariates for the grid unrolled as a matrix. Columns index the variables and rows index the grid locations. E.g. For evaluation on a 10X15 grid and with 2 covariates. \code{ dim( ZGrid) == c(10,15, 2)}. and so \code{ dim( Z) = c(150, 2)} and \code{ Z[,1] <- c( ZGrid[,,1])} } \item{verbose}{If TRUE prints out some imtermediate results for debugging.} } \value{ The usual list components for making image, contour, and perspective plots (x,y,z) along with labels for the x and y variables. For \code{predictSurface.derivative} the component \code{z} is a three dimensional array with values( \code{nx}, \code{ny}, 2 ) } \details{ These function evaluate the spatial process or thin plate spline estimates on a regualr grid of points The grid can be specified using the grid.list/ gridList information or just the sizes. For the standard Krig and mKrig versions the steps are to create a matrix of locations the represent the grid, call the predict function for the object with these points and also adding any extra arguments passed in the ... section, and then reform the results as a surface object (as.surface). To determine the what parts of the prediction grid are in the convex hull of the data the function \code{in.poly} is used. The argument inflation in this function is used to include a small margin around the outside of the polygon so that point on convex hull are included. This potentially confusing modification is to prevent excluding grid points that fall exactly on the ranges of the data. Also note that as written there is no computational savings for evaluting only the convex subset compared to the full grid. For the "fast" option a stationary covariance function and resulting surface estimate is approximated by the covariance kernel restricted to the grid locations. In this way the approximate problem becomes a 2-d convolution. The evaluation of the approximate prediction surface uses a fast Fourier transform to compute the predicted values at the grid locations. The nearest neighbor argument \code{NNSize} controls the number of covariance kernels only evalauted at grid location used to approximate a covariance function at an off-grid location. We have found good results with \code{NNSize=5}. \code{predictSurface.fastTps} is a specific version ( m=2, and k=2) of Kriging with a compact covariance kernel (Wendland). that can be much more efficient because it takes advantage of a low level FORTRAN call to evaluate the covariance function. Use \code{predictSurface} or \code{predict} for other choices of m and k. \code{predictSurface.Krig} is designed to also include covariates for the fixed in terms of grids. \code{predictSurface.mKrig} Similar in function to the Krig prediction function but it more efficient using the \code{mKrig} fit object. \code{mKrigFastpredict} Although this function might be called at the top is it easier to use through the wrapper, \code{predictSurface.mKrig} and \code{fast=TRUE}. NOTE: \code{predict.surface} has been depreciated and just prints out a warning when called. } \seealso{ Tps, Krig, predict, grid.list, make.surface.grid, as.surface, surface, in.poly } \examples{ data( ozone2) x<- ozone2$lon.lat y<- ozone2$y[16,] obj<- Tps( x,y) # or try the alternative model: # obj<- spatialProcess(x,y) fit<- predictSurface( obj, nx=40, ny=40) imagePlot( fit) # predicting a 2d surface holding other variables fixed. fit<- Tps( BD[,1:4], BD$lnya) # fit surface to data # evaluate fitted surface for first two # variables holding other two fixed at median values out.p<- predictSurface(fit) surface(out.p, type="C") # # plot surface for second and fourth variables # on specific grid. glist<- list( KCL=29.77, MgCl2= seq(3,7,,25), KPO4=32.13, dNTP=seq( 250,1500,,25)) out.p<- predictSurface(fit, glist) surface(out.p, type="C") out.p<- predictSurfaceSE(fit, glist) surface(out.p, type="C") ## a test of the fast prediction algorithm for use with # mKrig/spatialProcess objects. \dontrun{ data(NorthAmericanRainfall) x<- cbind(NorthAmericanRainfall$longitude, NorthAmericanRainfall$latitude) y<- log10(NorthAmericanRainfall$precip) mKrigObject<- mKrig( x,log10(y), lambda=.024, cov.args= list( aRange= 5.87, Covariance="Matern", smoothness=1.0), sigma2=.157 ) gridList<- list( x = seq(-134, -51, length.out = 100), y = seq( 23, 57, length.out = 100)) # exact prediction system.time( gHat<- predictSurface( mKrigObject, gridList) ) # aproximate system.time( gHat1<- predictSurface( mKrigObject, gridList, fast = TRUE) ) # don't worry about the warning ... # just indicates some observation locations are located # in the same grid box. # approximation error omitting the NAs from outside the convex hull stats( log10(abs(c(gHat$z - gHat1$z))) ) image.plot(gHat$x, gHat$y, (gHat$z - gHat1$z) ) points( x, pch=".", cex=.5) world( add=TRUE ) } } \keyword{spatial} % docclass is function % Converted by Sd2Rd version 1.21. fields/man/plot.surface.Rd0000644000175100001440000000636114627454002015217 0ustar hornikusers%# %# fields is a package for analysis of spatial data written for %# the R software environment. %# Copyright (C) 2024 Colorado School of Mines %# 1500 Illinois St., Golden, CO 80401 %# Contact: Douglas Nychka, douglasnychka@gmail.edu, %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 %##END HEADER %##END HEADER \name{plot.surface} \alias{plot.surface} \title{ Plots a surface } \description{ Plots a surface object in several different ways to give 3-d information e.g. a contour plots, perspective plots. } \usage{ \method{plot}{surface}(x, main = NULL, type = "C", zlab = NULL, xlab = NULL, ylab = NULL, levels = NULL, zlim = NULL, graphics.reset = NULL, labcex = 0.6, add.legend=TRUE, ...) } \arguments{ \item{x}{ A surface object. At the minimum a list with components x,y and z in the same form as the input list for the standard contour, persp or image functions. This can also be an object from predictSurface. } \item{main}{ Title for plot. } \item{type}{ type="p" for a perspective/drape plot (see drape.plot), type="I" for an image plot with a legend strip (see image.plot), type="c" draws a contour plot, type="C" is the "I" option but with contours lines added. type="b" gives both "p" and "C" as a 2X1 panel } \item{zlab}{ z-axes label } \item{xlab}{ x-axes label } \item{ylab}{ y-axes labels } \item{levels}{ Vector of levels to be passed to contour function. } \item{graphics.reset}{ Reset to original graphics parameters after function plotting. Default is to reset if type ="b" but not for the single plot options. } \item{zlim}{ Sets z limits on perspective plot. } \item{labcex}{ Label sizes for axis labeling etc. } \item{add.legend}{ If TRUE adds a legend to the draped perspective plot} \item{\dots}{ Other graphical parameters that are passed along to either drape.persp or image.plot } } \seealso{ surface, predictSurface, as.surface, drape.plot, image.plot } \examples{ x<- seq( -2,2,,80) y<- seq( -2,2,,80) # a lazy way to create some test image z<- outer( x,y, "+") # create basic image/surface object obj<- list(x=x, y=y,z=z) # basic contour plot # note how graphical parameters appropriate to contour are passed plot.surface( obj, type="c", col="red") # using a fields function to fit a surface and evaluate as surface object. fit<- Tps( BD[,1:4], BD$lnya) # fit surface to data # surface of variables 2 and 3 holding 1 and 4 fixed at their median levels out.p<-predictSurface(fit, xy=c(2,3)) plot.surface(out.p) # surface plot } \keyword{hplot} % docclass is function % Converted by Sd2Rd version 1.21. fields/DESCRIPTION0000644000175100001440000000567314763003301013254 0ustar hornikusersPackage: fields Version: 16.3.1 Date: 2024-09-30 Title: Tools for Spatial Data Authors@R: c( person("Douglas", "Nychka", role = c("aut", "cre"), email = "douglasnychka@gmail.com"), person("Reinhard", "Furrer", role = c("aut"), email = "reinhard.furrer@math.uzh.ch"), person("John", "Paige", role = c("aut"), email = "paigejo@uw.edu"), person("Stephan", "Sain", role = "aut", email = "sainsr2@gmail.com"), person("Florian", "Gerber", role = "aut", email = "flora.fauna.gerber@gmail.com"), person("Matthew", "Iverson", role = "aut", email = "miverson@mines.edu"), person("Rider", "Johnson", role = "aut", email = "riderjohnson@mines.edu") ) Maintainer: Douglas Nychka Description: For curve, surface and function fitting with an emphasis on splines, spatial data, geostatistics, and spatial statistics. The major methods include cubic, and thin plate splines, Kriging, and compactly supported covariance functions for large data sets. The splines and Kriging methods are supported by functions that can determine the smoothing parameter (nugget and sill variance) and other covariance function parameters by cross validation and also by restricted maximum likelihood. For Kriging there is an easy to use function that also estimates the correlation scale (range parameter). A major feature is that any covariance function implemented in R and following a simple format can be used for spatial prediction. There are also many useful functions for plotting and working with spatial data as images. This package also contains an implementation of sparse matrix methods for large spatial data sets and currently requires the sparse matrix (spam) package. Use help(fields) to get started and for an overview. The fields source code is deliberately commented and provides useful explanations of numerical details as a companion to the manual pages. The commented source code can be viewed by expanding the source code version and looking in the R subdirectory. The reference for fields can be generated by the citation function in R and has DOI . Development of this package was supported in part by the National Science Foundation Grant 1417857, the National Center for Atmospheric Research, and Colorado School of Mines. See the Fields URL for a vignette on using this package and some background on spatial statistics. License: GPL (>= 2) URL: https://github.com/dnychka/fieldsRPackage Depends: R (>= 3.5.0), methods, spam, viridisLite Imports: maps Suggests: mapproj NeedsCompilation: yes Repository: CRAN Packaged: 2025-03-08 07:03:31 UTC; hornik Author: Douglas Nychka [aut, cre], Reinhard Furrer [aut], John Paige [aut], Stephan Sain [aut], Florian Gerber [aut], Matthew Iverson [aut], Rider Johnson [aut] Date/Publication: 2025-03-08 08:58:41 UTC

2Ù€ýZT°Hž¢ƒñ8œèä ’½ØÌ»a°ãÐæ³Ô)8„ʤψ‰§i[0°Û{;çæ(s–eÕx—Çú¥’ž·›Ý-=#ŸÕúñ°ÙECå°éãæ½÷Ø%vݽ%ÃyT’6Âàw¡è o[•r;ù×° !¡º8Þ¥Ç?|Püg<9re¾Až(À8 ”vH–{É·i6Ú…EÎBˆ¡Âýó¿ÂÌ Ù€F`Ø$JR•ûÿ|¯,ËîÛ¾ œQÄÌAzÜ-\»)îÐT3è~P²y'÷Ò§‡ÙšïŠzб ô~üóä8Á¥±€²ØKRnŠ>§h*f¯W—@Ú^²ÃË®™7%Œ#ÞÎcsKÖà§:o&íÍêÏ  ×¥LÍ×#¡X®n„·†ck v4eÅlƒØz¥X-ÃÕ¡å§÷ˆ:äççó¾úòÚóìk#Ä1³ë«(SkùQëûlÖÂy;íaIÞ~öž/NQMƒ“@²Vƒ…™TnåLy6.ï+9r—ë>ÞDÿÖ¼ûS `;Ac¤~®P­fûK~.Ïy)/^~Iôî…^3dÔi.4óD»µÎ§ðC/®ìãËrhÃd˜(7-7¿Z~¹–¡ÜtÂoT"K7˜=+ñ}›’®1X‚;‰ZLº‘ì1ÇkF5ÞÏ6mSÚ(îZÉj.ŠSöuœò*·ÀÜ2Ss¤Õ†êÙ´I rÃò÷”èR`#åIKTåáµÎÁ5䯍õ‚ÞÑ–˜ñq–¨ÁHViÚä.§åå ¹ÄýÖŒÑÉ7³µ•â:Ï¿=«þ8bn«¸PÙ~¦äù*YjEÕg‘–×uTe_—ŒjÆì}· b­3^*˜¹¿{ÑûXòo´*§,ß‹ðl!á.FH|rd^’#ÌÇ€é&Rø¨ýaíŽSÖ>Ö»\rˆÊå¡ýöò«ÌŠ3ņãK‰èÄsBßI};÷JGÿõ\äj”#gÖmßžo ÛJÆéÕe[©È¢ÅÒ¼ÅTã¶––4˜’,»t 'ÄÔR¬{­nš%^ëDîýM-¶®#<ÐT ²›_Èÿž@ÊyJ“ :?ûùÍÅHë:çú–îe¸<ù6KŒ ld!…»<X+}­°MrzñaÉÆGÈ G’&㟀CèB²bØÐ3Úuï[­ÕK—a_æ! Áí#T©þªE¿wßRfæ¶už¡»¨EÐþÅêÌ›ÿÉñ<§7¯h–ù7 “yóßI@.!&ü–ßÂQÒä=z¸ûËX˜…Ä~jD£´Ü•D%UðŸÛôÒÊç<%zŸÂ†OØš­ëÓ{ð¶;Z´Ù_|¸±%‹‹®É³/ì†ÛL ã/‰Ç_Eg)ø¬õãé ¸=˜|Su¼æ÷£Wð.®Í¯³=—­õ:ÄT5gLæÄÃfä£~Sv©aï¯ÐHmÀA7]Ôj-E“Õ’}–ÇQ’ÃÑ$8;Ýõlà_Ô[Œôíý`õ铉£|lƒhçÐõÑs°ltzÇæâÞ;?Åä!0Xûü¿Bì N­Ðä $|½Â UÔŠDX€R}€Žpô“Ýôæ`Ró!ÂJG5‘j&„bMD£U:L”C;Œyˆ®íÚöé´÷¤çÔ‚Õžåň!bñ^êð<̽·ÅísDì N?žÃQï9Ï}ÐÝúÅ0–©Ès)'Ü $I±XÿI+Ù©Ù|³›\/†—¯žvÔsÉÚìM,‹L­Å Xø°s’ «bµðë"[Ú2TþoRUºr,8<Ûø¼•—󑇌 Á+ëéð2_8&Rvkéa «.qžªÂÁbÖÜÕ(·Kp †®G5ô 6)чŒœè´0öpSêÊóð+|­,µ‰¿{W¦©Éèts²øZ*\Є7ö= ËùÅ:ƒÆpÁ¦—ºÿµH9À¿o<¯Ù²abøƒÊK$ÝýïÂ%©|O åÏñÉu¥' óÃ…u;Ó—ª›oÐŒ=8–Å3žè-{¡íÀ‚šq­óñzðÇÞ6t0ç(1Ñ p¼I=õBRtc´/Ä—–#Ý©%f+{ë=_ò3ÿ¢k—+{^5åŸé‘ýÎ@.2 ñ¬~ûßd M¾S£·|td$€¤“IÛá.Ö¹-г×2õÝw¼ª䊳]Íüt¤õi’8o{däÆ&HÌ^¬Šd³ÊÑô;„Ë´~`DbeTÕþÛÔÍmº“Kv Ž˜¢VâÉÒ&< •e7ˆ3ÐŒ&Aµ]Z³*#xùï/›Ý&ø›¶ qÏ,òŸÃh^ô•å«@èºÓ8r)½yÆ'²ŠÿY§‘¯À¸ª–“•â0¨¨F:´;ËJüBÆw•c2Д!P¿»°(zóÿìÅgpw£®G^Èú\¹yܦ÷î"©›`¬WÕW£ ãöÅꛣø·ë¶á €Ð…à³­°éf‘ ó}À>ˆµuñr 5Ëš¯šæwg\áÕTÏEéMw¶”uSG¶£gÙìv\yøÚÙÆŸ‚Té»õÈÃïZœ/(ä~÷XÎ%7)ãìDýnÖl©:Z¡›2ø’zû&ÌúéÙ¬€ËÏÍq{– è%mì’ I°È2Yb@¼ÏÖŠóÙ1|ô“`Ñçó9{¨8Éwò6KüŠÉÒÅ‹ô¤~o—ˆüýmþ¾‚Îsã9ÚÍ-FP®ÄÚwûBˆ(°iÈíÐ`uÉay¡¼h{Ð.Õr¶°s]vÓ&±Ÿrb 96S‚òô•´†aÄ}( q>OÊ=’/uÞÐXe @áõj£zT6)й° ÎûguAë¦,ènŒýÜ&Qꥦ$ÝÿNm÷ÆÐc­sMX²‡0ân.L>€ˆFT¶SÕ×úqù»ô‡hÝûz†…¾‚Of2ÏU¿m£íì¸Î@ÂÌÎæ—¢˜ );û¨—Ÿ¶U¸ÙCÍZN0fT=p`d8¿“ 7Ü %?mñå¢Ãå@þLJ¥ºÓÖ !p²òlõQw u–¯¶·€ 5$yÑâŽ!àPW‡“SÏø†\/ù/°qëêŽÞ~™Ãç:éÔÖ^†Ñú® YxO¦c„€7=0MƒVà†™2[·«ÓÐ.½ZóH=’3CÉáqÛSÉ ¼Rj¿<áÃqr™Vø™\ú[Ù3‚ð&šAúL3$jf„k>p.ÑÌ6ƒ ç ¤ËW¤¤¿NÓ9ß6ÿ|Vº*Bø,=àŠày¨KGeÈË”µ³B$øûI„GVÊ{!kÓ°›—]}¤ËW:º}ÇD ûhÐMÛ-†^Ù©,.¬¯³ f >ë]`E%Ë&¿ÔxÀq m!ùpÇÄÓ|,²q†Êy¶'d‡,M®Sž–÷CD”Ö¯„»vÌOÙÞý¾Sã¢NûŸ.Ä›Ÿ“±ÜöÛ4ßdé<ÇýNIKˆƒÀŸ4$æ*B´ªàŠ0»()«©i­."s\â{£wŠ(ù˜me*²Ë_uUÊmš¿0p`iQª¿GÕ±¾~!›¼RËþ5@eW•– äæŠa"#·|>Võ r÷\?Æ® c+…5n„åi¤%;cý—éô~sù_‰_Ô ôÒî:/u+/~ýÇlÓ#¥NgÛ XÚ†M¯¾«wAP7E`EJ,”¾íãÜgªj„Ïÿ‡Ï‹Rе´û°E)0Ç)æ»{¢®.VBg¼/€ëÎEÔL.*Œ!Ò¨†|bfpE?¦=‹øÙߣtˆO–û}3\8·•°€i:¥œ—̤ c1ÚSü)Zª3jZîÊv–œ‚&˜Vù `‰„8²Åü! ;ØõºK±û}ûZòÍdn3ZH0^§^ÒïY=Äk—pÎ Ü22£Óè‚™wŽ"÷¶o#/P}p;”îX[z G…Ù)¶‹D,åãϲ‘zôTÙ?lTu|Gÿå¢ñ'ñ§1Ë‹á ò^ðÝÝ–… ÿhæõ)å–É>X¸³7stK8!Ô—@âþc @³ˆÔfYÇÅç„ì|§©_¾ùÊz RA¨MOú9P>lö1Éì¸ë5ƒê?ùzÆ]›LÙAY ÿ}â¨jtTÉÍq’o…¶™åæÏ'`Žpݱ ;!ALy›H`Vš©ÒA6Ý]m€À$Ú.{Æ%à"ºÊm(-¯å:êì@É-”ª»L¾!*àæ¨¸MfÂ~qýƒÜ…“i-5¢~Cš´JE&œskB¸â¸Œø!ÎÁy ³BÆŠxXÎÕlü?[Ào2¦øv¹­ÏjP1W“ªÈ73£g[æ½€’wB ùçðñfú=Aþ:dó÷(XžÚÚ9.esã°Va“#†å#Z&&ÜþŠ*C‡c r$;XÖ#«’vIƒ™ÿç\÷N:éå<Í÷ Ÿø08h¹Þy¥ÑÎ¥¹‚Užlü½à÷ã ¹·¡‘"Ô©lönDZǶc•_·ó‡ï&fŸKzÆÔlFC,d¶®jœÐÒv¹0 >'Eg«öh­{œ )#áˆSv;?Æä-ªýÙ‚¾úœ( Ú ÷¨^ç1RÒ‰vFË…",{ÿWögZ©ÿŒyUŒw|Äà"”)`¶;“â…_ޏ,9Íx%/YÉ‘%ã fè£cš=w†‘¢@³ê€8y]Ï+µ£Ji–Kþ ­®áÑÍ \ç§òå­wC^¨4”çËÆ—6‹l Ý”ufÀ%ìi/SN8@8ET¼B–Šov⻡:KÂpÄPñÝÍŸo¤›Àõ%I“£/é©C2Ù r-ÚÎUs¹Xð¡& ¹—Ìdf†Æ@½Cv9 ØZuˆ@’7` þ*ªkvrO8fókêÆËû®[y~œâ\Z‹ìNR¶ÿNÜŒÞæAÏœ¡FM‘w,ù$[ÏØ5hBO2}k²3YÅE!Wè\zΤ[R¦a÷mÒ8TqcpŸñQ…jcŒn ¼¯=s¸¥a×ßeþԼǞr“\½M±»)¼ØS2Ä ØÈ4/‘S!6~ ©”éRüi‹×ËÒË%H›Æ1®'ãDïéu?Hd[F[+õÈMq×·p"ËEu° 2#îî -OI2ïÞ«SYÖí[7«{äæ;áp¦ÑkœSø‰€7°´ÆÍ¦ÆYÐA0^Pê¶Ì¦)FÙ=a1Uâç~:0ô$ECâ%”„”äCXzÐ2›­y ,=[wý‡@=Åóø”¶€(ΡÖuÔÖŒ¿Î¸ûk¿z#™épiÍŒ¡ —µùÐZŒæQ­ò¡£“¥åigF½÷#º[éñ00qȽËQœ}x~†òž$‰‘¦FpRt à ©ÏÛòʆ :›þ HëÇ)u‰\îsMÐDùK\Äs+f +³_»Û'N>[k (/‰Â0 ã±~vË#çÖõ76g$¸ò}šxKǰÆAþLÒó(0Á¦ìf4f šk5ÐpÈÍg5 -^™}Tƒ³P]™ïÇÖ–>UníE®“yMFµzaa¼Á†LÓWñÐŒ•í^#€1ǰxÑ6ˆÓ”Æ~ûü–ÊJ>ˆÁ0pÖ„_’+¤$½"pÊ=çìöâóìð¦ÿ©±½k ÜÑk:†\íi–24=D%un]ñìÕb:ØàÌßám f‰Mg>ÃA¦.GÅ™|mó+Ÿ =.“ƒ2(ðÝ*=Ù04ߦílZ{>3á :Z,%A=Ó½ªÐ”¢Ì²À\X't·­Ü‘B§†uàÅÀ ¸•«ãg©€é/äz i¿PÓÈG] 4¢Œó"Ðîô+ä4 ® *ë+P#&tÈNð $•ØKm bÆÀtäÄ1…jˆ°Bš­< “By Õ~›H‚¡…ˆl¨jœeNÈÇ€EoÄÍ©1Zdùç"0Æw;ÝJ÷~}Ä?x«úŠ¡¤>ª_oµZ¡ãwï>¦:”è¼Üôº!~¹xé5¶Cá…@RD|#Ux{Äû­ò\6ænn4àŽq•á±eÿE§‰QV'Þ¡¤÷=k&»K9¶zí‘d47,Fcø½˜:½çõ d-¿ç®§e:9ARu2+ÿšB2¾Èœ®,LáÞ5 '*—z³”1Ÿ2È”&•Õ%ÕE¿;k§ÜÊS‡Áþ1oô›¬$ßá•Ûá¸F_š Zu™Šª™îW¹äünǃÔx¢(©2#À)Š0ÄŽßs áóXWr„žÇZì—IMÃo©ò÷ÙμÁ£´ù/]°wç–R".V^& "qø×™©¸–ª¾éüÊÑþÆÇ)Áœff߃ã§MfgÙK@§‚Å:šü¥1ׅɺ›Ás‰ÊߦIßñƉphžÁǬuîÀ l&oïå9û±þ¸£˜…ßêøbŠ9¢F{©ÎA°:HÅ妜ffC²OUã%YóT oËSzþxNï?6Þ ìàôJQùÂÈ#‡ {kÆ›çÖaaÜ&§Ä±_ŠÈrQbvY-Î/ï§~33Ü©_á‰# &¤ÒmQÔF>R»õºf1»†dmºÒ¯â)->Þ á/è`5·kíÌSf XÊÅE=û=•HÄF(/eÇ ƒˆE6TZà  2ŒÔ VéµøÞ?ŒBY#Cføê™SZ—í o_WøìCú*E×Ê)Ç1\îD¿ñ×.§á)x¾H‰v Ž0 ¶Æ!==Í´Ÿ*[F,M*m¦w1a|ÓIJö~ÙêÒÓíLøÊ„ä‹|Ñ‚ïø[ŸPÔ©#ï„X}‰ç¶ìÊb2H9ÐJ ŽSõ—›}}Ët` Ö†5Ÿ (ˆGS!º LIŸ kÀŽÎ´H|ð·QÆóìè cËRRÛÉë’1þ¯?-!øz AsØVɹϧ´¤ol_ÅîåÈâ-kY•CiÖ¥þÝF.ÎwaD¹JqÖ#x)6„(08›®çª²¶N¥‹C4ã£à®¡ß3°ð0¥ÇÄú½0šÌG¿ÿ…ýšîܾ»@g €Fv"‘°e\égàÙR&‚rTÀÃÚ |óý“æ Ô)°Š6î‹§hŒoü%a&^°Ö€åVÚáE£øÿÁ[ / \:Y®îÌÁÓÁj5{cÕf¥¶Ž1xûŒr Bö˜[º¸àäZî? ÈQFn¶ü“×H«“_N@X~$'?:•î`6Rhl½±ÚDzT@òÞž¤ðhȧYói2<ŽfìÁÉ[ì†k!µ¿×BÎÉpÖs{·¥ÂÒ„2`Ê®€ööË‘Ö Î†òÅo tWÃ]½iã)GïhàŽº¢"–•qÈ¡#Ò5-Éf¬ÇÌn*ò!s*%Ø„æÛãDødíCÂà"Ëùª÷ÐPTò¡†CN½îÂD†1¨Ff\y+Xº’9‘¸ëÚuv$Ëå¡,.!S¶Qž ×ò¯àV×+z;š¿m—Ä4Ût¡c—Y\½=ØÏ­_Ö ¾r%fQèiÉÂÜAó{RU0$Žô oJûlKbJsÜq"$x'íÁ"/=Ï—Üdﮃµ±RJ«äÛÒºƒÌÒ¸L虚^Áõ=ŒKÛáà„²í á«ö˜YX"Ø€Ûo–fõ9ßIì ç) øº–¶­äsönÊGȖ̆"5Ö" ìO¬•ÛÞ£òØ—ÑHÝæa¦]KØe(cÍ- ã:Þ ;¶¢Z‚E—n¼K$5qEïc|(Ó*œFÊ9XÕ¦ 3²ª¡Iè,Úš]ÑaåÊapŸ#Œò•ÃË*Jµv=‘àJ4z-â0õ`:…?óTså•Ã8žVƒÈdÊÔ8?“p,ÅVµ]úqؽ¥ò{Ñ2@Eºq[2鎆)ÅtæÉñ€¾·ƒÚJþ±Ö®mjgŠ£ÐÇ2p¤Ìû¨„¿#›½Ë6S'°Ã`™ŸÄ- z†&Žq¶ÐÎbÐòƒ¢TÜR&oýÜ¡ãOâ§-)“IܸuE5«K?3³ð†ä @ Ûè½hž`rfh¼ëI³ïÙ '´vXïÖÆþ*ªàî œ7ð.îã q"1dòÍ1­&nªìãÉìv¨»¬ó@ÅÉwÞrs{lNuIDýÒOGÂ’(XçóO÷ûääiN0«v~Êýf­²Ç‚o3åŠÕšÌZs'j‡fMå{!ÿW‰FO=hH]N@Ò諾¶V®´IÂßst`+]©®™ë€X!#ÑÛ»ûÅâ‹™FðÀ§+­ÿ·4¹R:ùÔaÃ2£\LhøKàý!<›uÝ̨F&Ђí–ÒCy)"ÕA¿JÞ®ûÉ£=5Òô<*mVZ§ÕCÞü€ƒXÀ{±FVÕA1&JqÍ[ªv‰ùÚ8>Du<ƒû0½¥ºÆdŒa½[c³Ât"Ö¿~ÊÝ4±o Û8¦ð5&ÒæÍëè1ºÊà*æËý~IÄ7cžïÙ†®öSý(it¼uô æC×¼ì¥0æAÊt“ŸVÞwxE–š”Ð,1Sž¶¦œiE½ˆ/'@J{I¼D<<+2|°¹ï›Z‘Û‡zÞb[F¼âêD‘Ÿ>8©Þ‚¤¥´§ÙfUÛ{•Kû™FB¸ú\#.\ˆiîÄdÏ·³Ÿ)†"„Ÿ¥ý1+Äì'Cð•0 H=ÿ ©;fïÕVRgè»ìƒa–€ âÜŸvìéàýB·¥=öï(\*,-52R‘ÁÑ?„Hƒððü¤wlú£%I%Üôš!I%óËȶ§ ©n ¿|ÊÂÉ¿¯–MŸ3¤ëE(çZ4-ðç•ÒÅ-ü.6n˜yÞ1H¸ûÔúÉ2 ༹¤­îyCç#:OÇ* ÐXXryùŸ8‘öáHØzÈ=;—&Î; ÔoÂfs=1¸¥`_Mµ‘ÔkFR8ãÔOÐÆÅhRëO}ð~Í.²PK¡mƒ$\i0²KŽR!郄ö~ÀŽ—0"© úÀ4D'ÕÅÀ4®²— [ú+OxTÖ?\OHU¼×¸AŒj¿»R‰h-ŠuŒ§DéåÕ~W•vPÉn£™ú#Ä׬“:Xè¦lD†‘¬vÃJ{äçÔ—¾Èž ®™œáÌY(2@Uñlü®¤y@ ›->=u»Jau©ÌFংµ“´ÔŸÃÉs¾[þtB§úOs…g±Þ ¨|šg?Ò¦.Ȥ²u¢&…cÅP"׋Þ5MžŒ·ÎÚÆÔoæó?kR·Ká¬V/‘Z Õ–’¨1S‡R ó|ôW«bŒX&QA4ì6ø~vKÒûtÒ£½ˆhõu/‚ö©B9ÁN|Ë®U†*Óë6bö;Ò¦G$œÅ7ß]‚CàS˜B/Þ|êòi¨ÜWÙÛ-~ZoÖq@3?šþ‚G¶y)VÓ½UÑ!Ô™ä¼y¢WpKzqÏz(kcž¯îLz´wI”éÂØ~#Ïlz •<“ã_T+šlغ±ÜB:¯°˜b¸åËýÉáù,øöΜ;J:5ï²Ü3ú Ï"g)¸mÿ ap½ ]IR“;oYÀÕq5úÄ{©ËÐ+eÐpróO…ÁK×yÉæ$ðZÕÃÊGk€º?ïkn™…PvÄ/ ÷ÉÃ8ò~ŒŒ 6$OÝŠ†u3Ý\Ó³öy­È‘&X{äBAvNV`þ™;’ìEÇôò$_eSžhÁp ¦ðH²>„ì$6¾^Ù?Gw!ÝÍ,û’ÿ¦—UçAøÑìÀp“éþjuE*i^…;€YyNêÛ»¦W0ûÛ]Q¢ÒÚ–Ç '¦Î¿ïˆ 0«Î!ħ۸Úíækr.¦¢* ïØxó+b#Zêï…g¨½‚Âà ƥ/°˜Å]žI9ràÂx¸ãÓ}Ü~ç¬ÝžFÎs üVIKŠAÈÙ{PÈÅ&Pˆ8ûÛ519‰ï‘™³¥¶p(·»ÙîÑ3ª7JSBÖ×{rî¸gœ.Õ4Äj¶$€P‰kþŽFýâãY û&‰ÈdîPP¤rÃz®Œlײ$°¼\SE žœ»ôÌ1kØ™w8É«&ϱ^™ÐŽ÷t0»Ògú©7»ÎCÔãÑ«šó‰ˆÏü5±{#ë ÈUôÒÀjÎcG•ú~;»’GìRÀþª1ïêÇ ¿:ýOë)Túéûå,éî==¦£>®[txn+á·„Ôk¬níÞ–_zEµ”£óiQ o¹í]ðl:šDýá:.hŒ†FipAhÆC݃^ò¥øÇ>˜!ƒí¥¨ž„šõ÷ÿì© µËÊpA]¿á½6,)Ì AµÊÊ‘MåÒÁ¬îV>ù’¥K]gð!€)ð$—èáð^ÝÉKÇ×–Að8I±Žo¸%¹–È€ØesÓ,›ÜOry óÑŠ¥¤ ^vü="EZ°i#¢é^‡‹np‹;ùè¬òÞ%K)¥ËVè¨jŠ…7ÔºÄ÷,„>.ŒåÑ©î'ׯ|/ OÎ5•BÓfwTm/à”ó“d‹À)F˜œBø±Â}}à5gÛ ”ƒA"“rœ,å‡h‘b<8%·7+Ú*ˆ<÷Ü‘7®«—Õx¤qûâ½{±U;V á! ~CN ¸™äÚŠé“^dØ{OhÝù9±/Äx[Ck(zN tm®×Óm´lÉ×ä»0ÙyØ`•f¼{b¦*–¤˜XS8@öÁ_É2˜yy¾ËÖÈ„ú_H¶‡Üe…ßc¦nÊ,Á{Ÿ?ÕΛ´PJjnÅm¸RÖ~ð¶ºíä"}J"ü+r$íÌ ³ä¾vªä]?¶ÛõV@×ͦçbžBmÈŸu^–~£ZîÖFmb„`ò' †”¡Qéžd›&Žº5Èòýn#UA-ºfq™`èïX—¨/ñEÀEÜ`@”ò­Ù{Q[j7Inl]‘ßv‚@­_¿­èåÑ䆫 >A§Ô ŽBÄî߈鑺ù¥XdÝ`ã£K̲n¶"vWr@:®\tØæpU¸täº VÅÅ$bà¨äoÔšN=}7Å ^€¤R7Sub6†Û[<Ýì¤ç‡ZFò^Îl,ðÆæy€‰Sw¯-e˜€ÓMæÃu¦ŽË ΧCó½¾ÞÛ¾Å#œÄŽKåÁÄcz†)ûûã ‡ÄbÜfD0ŽÑ'“?%Z!H|ˆ¶(óeéz&8G:q‹Tˆ¿µ–e“¬síóçÍ[`.dµµT4?ğs>àãÅn¬Î³?Ò«Y0“û2\—~Õ3/“;Íÿ‘Çeþe*âYqŠ´§Ï/U 0¥ì¡Iûv÷*M¾Ú{ýZ"— ÞG^_eþ§“ŸV„/¤!ÿ_ŸcoäEо°ƒ'X˜~űxoO&ä|mÿ——Ï»" Þ²·®Ž8Åú’½MîæüÔðY¥—Òv þ!G—Iì†G#@ö.»õÊXu¹¾O„fûø2àÔ¹û ¼ÅÿTÉ«0@jy j…©[ä–0$¤Ët¾kßnIç0œ Ä"°øñ16s þ _$8z›’ɵVÁ$RTnx+W¥‡{ kï­°+¸g˜ÓjvCí‚ý·T¯Šiº>§wšw¤ð °¯ xYÚàý4ßü ï‡ p´ÈjŠ-ѧʖEîáý ‘~øm‹ï†fÕØ[—Q âÏ+ÕIóO©/&£SÎ¨†˜áˆƲ»LVÍÜêóWÖ•º#ùÓÚˆRËÛúˆ%œÝØ’‘Qñˆ (JÂâq†@¾Þ(ˆ—Ð}GÏÔò§ÔPúØ8|ø9£;)>Š8?þ½…Ñ ÂvZ û9^L ²ÿ—à"(ÆèƒË-놞ú«}uS/`[„±Ý¸ŽìèÊc‰|0áÀb$ªáè]yG‚nà» û¿fK‰|cvÿ®$EQ¶ë ¶‘Û¸lôŽªOyHÙs‡t´u›¿øóë  iò??X”2À6ÚƒpÃp†QÔ¨üÓ7û!>3pF„T•\ u€?i'‹ìZô±¹ì?fC2¢ÇÕ¾XŠËg.Œ_Á·Ò~ ±­êÚ†ÿ°Ÿ„̾“q-%òóKveVßíÛf’N€æ0 —$;i­Ne€d;G4ÎóÚôé÷ßyw‰^¬èÍ'È*³ó§ðþZ!gl‰ðTTixø:±ÂÃ_B*/|ߘáÅñ9q•½Ô0‹Ô ·b'äÅ)¬¢Ÿþ>6âÓÏ„ówÏÂÐ?X­rˆl˜Í>©_ã­öÏ‘¶^\ïwHè *÷õDÔ”"¾U‘e®‘¾²¼úçwCH~á·äUÚ1õK‘ÛÀH¯Œ6…g‰ýq™ûëCå˜ê —CoŽäà‡»$~߈wåãùe «JA¦ÑžÁåÝùß'Æ­bAºîްñ¯' ºõ³ªòÔÀƒ 3 ÿ¾.ÀÁæµ+<Ï}w-¶.\’Wa¤šÚ^TKf¯‰Y’=½Sø¡€8FòõŠ•}õRû›VÁÂÉÈw];"Ñ |ß`3Ùïóir¨¼Š‹Î‹v/þ ³ÙË‘ÕÊ|T䂪F»Ô^Wòy¡_Y š¡áºI‰ùùº´BU:=˾Þ~ì#‰ @o4›híN2ãâÝh"Ö¬âÍM°a…5±)K'Cnk±Æòµ-{ˆÎŸ-÷6B ©"tGò‹Xn/Ümú5–2À[ïÝot(AtEá:2É¥ð3Ä­#–gëÓ)Å—ílx7¢Eø _,ì›ZÖ/¶¡Pf.ÝO}°ï_3 :Àµì­€2:ó£²j8•Ú¼FUȾt«Ê 6–ñÍë3ò`™‹ÖÿnMî6gp†’¿³¯µìÞ\i›OÝÒeÉw{WÃw/ªÆíòòÄ• S™”µº)Œ8 NX•“aP>ó}x¢Wlç&)\õJœŸaζC­agmAÌ|C?`þ@DäwÈ<ýÏR0,ûkhwœ$vQHÛåCÂи=èö‡Ó·bb‹X¨×÷P–ŠÂ²˜§ÿÛçú•ñx×x›yØhÑPÞU7X²Нµ9yô;í­ÞhäGžFš~dfmEdý#çôÕbUº¡‰Á=ä˜y]!öBrÅ Éétñ¶j[åýwžØN˜ÒöÂoH«Ším»¾ÓÙÙ¼.A›«ÍhËú:íeú#ÁD½š Û ë×Á xñË æë„N ^¡ëÛà v9?Ï`®T^Ñ å`Žs1:Yí®äKë½By3ß½@³RjénŸ±b|D ¤îmÆð±ñréóëÒ¼ýÁB³Qˆ\@ éjGŸèÄ8ô£•š/Í*—ʹçK“É…~+#+Bl\K‰.˜E²,¬Ë@=VòC/³¥1!wJ»q`Ìgf³LYŽByˆ{œތt’RÃL[QL;9NŸ_»B^iÅÁŽ3¾d‰8K«)£‘— Å ¸Uå]ÂâA%IsÞ Ç³Ž$djÝ®·PiKicÕÎlÿKˆ{Ü!/Ö?UW’^T=qùš¦bª^cZ+ß0bs‰AÞ]êô•šhRÒlw«‘Ex( Å)×ö·¡¢è¡%)ž—¥ÀVký*˜ÃqŒ”kFë© ’úMÆsß7iRÔS3ojèMºÖt²¾NzøÇŽF¢r>póØ`S÷ O*üÜ·• ‰[°#ôükPµdÝÌ¿P…Æ¡/ˆÌô»a'tÑ£ "2{åDèã™Jl¢,,xzVª¬-Å“ñÑΙ}¶!Õí-¨Ý8/æÇ*gõL«·cüV” [MLc:ÓèØÐÄœGpÒ‡©]Ñý—·ÃŸäþìÏt{çb ¶>ßj’Z#>]|°Ì "ëôÉÞCW>JNÅÓ§ëDØ›#¼B˜Ö£ë00^èÀ=ëÔk§PÚUEN‰øL‡èÖÄG"î“ùæ‡ã–ámË>õSJàÒÂq²‡QQÓ{i\»ò‰mÙ[Ð Ë 8ìí¡ ³vöýIˆ§½æ“h ½µ]š&?xê¾<ñŠñYíqÍŽQ§`Æ8Ù=f)Hð”sŽ«HÚø «åP>±NnÀXvÞy õW»˜¡LWÞÄ}gÆ<ê!Ì÷½ò–ˆ©ñä›ÊŠ£[¤¯iø)O¬‹þçêÖkb}àb„±Š=6x¿ëÝ®*/0ñùþ á%5·*"ÜkKÚáh¢-·Ë„µic8€8\‰•ew~LAY ¦¿š6üJE\‰d̯f˜›„¿¡r vCÞ–°ÂyšecÝTzçÜ­¢VôÝ_uHÈãõàÕÚÛ1 ÿ4fnT% :±3ÐP\â4³}ƒ€tõ9âÿ“¸]81¡‡bPäÚkwä3$ýåËÇ·i«$=$„ä:u·ã´Ñ3'TÚ=pÙÿl{’¤í:quOú£¿¹0§(ÂM¯8i4ŸmøŒH›¢¯vW®H  ÞIï-¨*«ÁÏ‘Þ&-«ˆr&5„„}Úµ‹}\ÈŠeÙì$,×c+Ùo{_1‹€†Ñ3fÌö+JÇ›ùݳÌ…0±§wá©üŒ,ü‘å‰î3Ii)³” xZÀIéÝé0Éhð­+ÁÄXÜ][y9°Š¶%¹ïjó™%HpF¥d^Ųÿ64~AÓSY”Š"ôkÎ)f4š‚ÓùŠBÚM4è1WIêR¶¼b¥z\M©ù·•E´’Lšz0ùÕFƺ¢g\¨¢C846xÉ,á—™ÓúH†3W%58¿µ“u±¹Š h¤ ÑŸ¢sO²G#Œç´¬´»uµŒiÁ~¹`þÈÛÕ|är™èÁe ¨fxò°ò©¤çÓÇx ÖwŠ÷A!‡_-pGIAñ †6’+×ÏS¸8%ÝêÅeÔ¡ÌpÒ³45™Q¶ëY†4'ÐàåÁ‹¬-I¡>£öúueÊ UžÃü’ Èÿe]âÕ tFK¬¼©l ˆhÒÖà{L«ÝÌ>t˜Ç@AC1/ƒ]h’`üõ*­Á}¡!Óñg‹{Žn²|¬Žéð !ÖS"-æ€W+‰mq«9÷¾¤Þˆ+ U_‡©~kE71OLL5bœ-³¬±È#\íE¯uö¦ë¥²WŽøè3å7R7sNôUj‡r¥檃€Y›Á³Ñ¸J轩kAøÁ*\ÊæÏ°‚Í;ÆZ°–Õ†ˆrmÄqëÈ é7–ÄÒ`ÄÊ&x¶ñ§ƒ¨)HäPQïuÜ ˆ¿™ˆ®$&b“"éß´ÄËó‰iI[׎h²¼‚Øæwþi9¹ôweÛ1sý#å,“¡÷¯Î2â…¿HýF5É™³¨Œì¯‡pVDQúïï Ã§M~Àúo J¡‚;qX}$_?¦6«S!7ê‹¡²ô¸’³#wYí" þ\ÎÃå ‰YMÛ„ïc=×»ŠR½@„["e¥[Õå™»5i§¦¥ª$­ùÇå Ÿö¸¨›C2egÉ3Ú˜Èæà¸>–ž=u¶$~ %a€,ް­z€’fo¦`Bs*ÂÊÅ[Œ‹@¶êV7s eì~ÎáœpKâ Öú þDwI™) €ÿ=èé ïS<¨Ýĵ&iQQ¨ŒÔ VWÙî'NÉ1žÉ¯캮‚ô܈eáW+‹d•ížÍ[µ+EÛÇ× ßý'ƒ Ðî–¦ÓçMf²{–¥Ü8bº®©9µ…'Vˆp«T<î½åýrM6EØF‡J,€àäí9ö¬sÎjíq:ò¦HÎmr~¸4sL™„ žzÏùíÆ‚@¢¿‚N$yïò3ÛÎH”0ì ˆ6‘„uglL]ý”3 *g¯S¤•™cNÀýW"*ÀüÏ+.[ä¨ý‡¼ð1ÕJ´š@PIµV`¤èEó_S3¦¡}” jø»bñáµj`³Fœ ù§·q$^òð þ’«Ùð~¬/œX@áãÑ1"µÑ÷ô¬SìC§Ü ¶ktü竇 Xi"´Þèè¸Ù뀮Ï{?‹¿b  ë,õÉUPèhïŸõ@+8d(u×$`8î—^œ§z”©}XO+éî7 ÄŠã%vªt‡ îé(E`™§·(t+ù{FÕ–ªþšÜcK’`s C0òåIß„™sG Ž26’ïѤLœtߣ‰sÊéó3|‚ò6ý)¸Íæ#¡[sÒˆ±g÷©&êÏžJH¤üWÎÒL¦|µûçŒ8´r™îçHlËœ6+$¨&õ€k¦%…;·«¡¤—ôÀ9¸T’.º¿‰ÁÈ;¯SÌ­»Õ-ÞK›ç-¦e—BJ¡›¸Ž/tô‰JGOÁá„kœ¬3“’Br~¾zü!ctŒà2Cxqvv HŒ¿ Àó†¬É¶éõÀêYØØ7Éf”¢¬Bÿ¸öõlŽìlŒG”yø10*]XŸÊ^ééìJã²®µþBnåéÀÞfD6×;¡—ŠC5OâÁJ- _mÑïkkçÆF%.À˜¦ZøûØñNØ]¼08³VF·âtK!zÐÈÛúñÖ;l-js¥;FlgDoÚ€%Ín}á&‰ñãÌ›/Š^ØX7ÛØi®Ž‡Œ¡òéð ¥ÈaÏèQ}ÄX®|+NAÅF]³p[%ÅëbËšƒ %®‡œ*f-C¼ ¡»·)¾‚Ñ´`4sóêµÐ©æàÊKÆ Ó_Œé€Žn2,w¹Ð†kÐíD—=Ö…ÓFŽ‹˜ïqìp §ß@IW QÎøui™IÈkIx2º_JHªxx}å+ÓXº @v¥¤ížˆmÕÉÓøy[æÃàÓ]¤¦cCzÆIgß”i½ŠT¾Í µeÄÚœÕïõ0öÆÍoÊþìŽÈ)ŽÐc©­,°ßHµ[·õÙãCï½3ÞQq•åµyÀ´û öË(;/q“þTòfèRhÒø¬Ð.$=JûîòÀNO¡ßP‚|–h7)4ÃR¡ç¿s¥xîG_\µ}¨Hʘ¢ò­ÍŒ—:‚âô½p?>Ó?C¡t°ÓâçÙ¬,Sò|Ç}üÝ(”`G„sa‚"]ÅOžAmô{óš3Ö)ý’!É™6µPVjxjAŠÖ(š­<ä=„Ò- x#2d—’eÑ£+fÙÁ39-ÖU$RŠÜË2;ù˜.RëøÑA?‡ÍÞS"Ä mG£ &‰}®tñšk™ơݟV‹FðÙÎ7CÝ´Ò1HôFiåûµpHOBçîfÖae™<€Ì€ÿçRdõd¼§â‘}!®gøÂJ†åâkA}[ìvPùŒž€“øX)’N yô7¬‘¹‘+C<õcvRMp^yJ72=‰Rc¯?ˆ—ò‰Ž¥i²ØKȇÖP$rZDf„µVJv¨ŸþÈ´ô)>À/0h€úQ'Vô…˜~¼Û"UΨë°T8F¸Ð-ú¿IGuÓ–ƒ”MWº|U1î:ç¤uûà7³aå·ŽLtµh¤VNµmËœ¹”u@’Ehüüwʶ‡&¨fÓABÒF!Aj¤ýùÿW ¤Œ¯O [¦œå¬ºdXn¶ ÕZï‘ør+ËfÒ åX™vë‚rºÔånYF¸Þ˜'ü›#?w&Âׇr<ÔŸ (, èµ71^H÷­HYnƒõBpõ€Ü5|®wŠðÒ¶ú„2Tío#+0|cÉ?Z@¥`i¹ú É×âc¹ãÕ…¼03ܲv}ô„¹«T§y=Í·­;YÔƒë›8²C!ÅCH6îi=ý!„XÈ‹ë•ËáaVscš­.$©á‹_ µWþŽ_;ŽÈâ's”@ÎÀù•!”ݹVX!øm¶¦i<Ù*™{=u²E‹[ŽJÌ P=á;_àž¬.Ü+ѹ·ž`*wv[ö«¶BZ4ŽøJƒÖD.žCÞôÑÏý46å/}Q´Ý z$ƒ,‹:À&w`ÓJ2}ôj¦ê .«ºg‘qB½ƒ9ât çTkØ 3ño?¾6FÜ•(¡¦Þcú Böœ‰èå]ÿ҉̾ s"ši“3€Å&x'bsƒx£ù2žrDi?©¹²hUäcAðy-ÊÇzèÛE…§îƒ +ûëEAœ_¢˜ô-9îÁP£Ê¢àÜÈÉp¤ï¼êi‡N9Ì,ŒCIQ’tÊ„ù;Z]µÕÈf 3-ËÍçŽ,ÝúñFvxÃëç“Í Xù½OèðŸ5"m:ô äZipÙlXVÔݤF ŽÙ[!Àc{Oö¨oÔ3iáÍ.ãžwD‡iÈÆs4”uj@2„õG7@wëÁJO<‰ë›HÛùìîÞÐ nhL…¹Êç*Ì¥ûp5ÝžgU^{ÈÊò»o!l!Ì„Š,¾~ýYÌ Øå¡;ŸGorëK+pÑ䈔Ò켋 :„¬òˆÈ¸ñ¹jÜ«-Ùé}çac/?ÿ»nÈ;éçiíõŒÄœ ü ²„„RÞ•^ÞHâý6’ë›~MGuIÒËÉæÐ4qÕ*ÝÞ?`Ý`ìp·Zmg9Ëʤñ¤ùò³•šYwvÚe&£ðI¦Ëp.°òñÏÃÿ>‚"*E´;éšÄK%IíìFº¦:ÿXKK± ÉÎJ8N Kl,¯X™ì® 6Ÿß¤S´¹U?vÓâëýUüŒøÞ ø®7ëÍv‹ÛÆ0‹±*ª]B‰ aæÌs‘Æãh†³r˜ ¶ûŠsnug’Ñ”WÿÃQÔn?Í;מ»¹ÍÔ™ªQ»Wr!+îÄKþßêHõµ§{×Â}—ô½J>d´Å#fª÷xvµSMää5ÅRä=ìðÒ陵ú­Õ9˜™5ÄU lÌØ½ÙÌêúÑ%®¨ Ê=´[ã$Ø «ù-8«X³µüþ–EBX(tA1äñêo ÛE­‰T㬘®ìÛ[‚Y âžZ¦§%Yê£!iÇÃqÕ¿§{çÌn‡ù§€<$e,žŒKQ{ &mJïeMÚ[¤·IÑð6â»a·ó•ºZÕ$Ñ5ØémúûÔh(9_瘌Ë´›¨ã¶l6WÄW®îÃtd»7¬™î"twÔ¶¼áå¡ÀŠЊMð)lg»èz©4f µc±4–{¡'„øOA©sûÚ¨?í’j•¸üÍŒÖs`KÆë0˜SÏ+2 +³NÃË·ìw!SåšL#©$Œô%¯Çï÷m%Fˆñ…ò#©¥”žýGœ:a_S«awžVÖœZu+ÛôË ¬PŒ¹„´ùüÄœ¯O¶‡F¯&“L2RJô*ZŠ–•Îܳ”9Ï>™á¯4ß ‹ù#7ÐõþáÔ¡ÁFÈråµi´IMX ÅúJí£¯sÝ•-Âê”!žè×#“Š 9x7ìfT<ÿúŒ–N߯@@g[ 377%€ÝlxºAK¡Œé S†· 4˜dƒûŽò 7ë±äè|ÁßvðƒÎæí AQ׬)ƒÄÝ®<1+VæÎd{}0ý‰º%Ã?j¸,I¹U+‡¡ÿêv=Ù¥ZGÏÊ=œ‹±9¦0'K‹(îDåoËñPÔÝðÑIuÜpûó7WÃsòøÒý3™³øQX¬ýù(wœ3L ’w$ oŒaFŠ‹' ÷G§QùÑd>ï÷sÉ yB¨ÏÇ m1õ´bÙ,#üAkôEbå9ô„3ûK2?j—vŠ5 ti;Fp/|ü³=Y‡¥Ó‰þ[ÁƒÝW7kEÒý{謦°Ü‰£˜'tèÌw>³@‡Ôþɰ4öߪ¢¶ $×~§«á(‚•L2eë É@Æ)H–‡ÀÛx¼^÷éAK0 €3ß¹{úàÑ8uôSžôúWˆÇ"´µ(Àl XÀ&çš#7&™ö „é£w÷ßï_4 ðä‰,4¾’úê@Ö% ½Â¬¤q«Ï‘mnY†â–ž®IÀ-CßÉ>çƒÇù±*gM8$}ç?,D¹¡e}#¿£|~˜¡ Wnhµ.¶ðItÌì?íQaâû¶|/ý¼Âþ(¨âëit/©Êþùi|Ñf©S÷Æ ŠX²¬oS̤½ÁÒÛvVþŽ„'CHʲYRÈŠxçlpr`Íh'zÆÁ¤*VéG¯pÊÒd‡r8N Éã½kB™àÎ 2xUÒ„RfÆÄ‚N\™ÉáÈñä€2µC–™' þ9ÜõRüUrÚ!øj§s7¤®œÀ%³M_‡i•\˜ÔŠ{=»0ýC88ô‰ÓfJc]Ç‘!®Ç¤r 6ÙG*‰ÿÅ øŸ¼¿dœÚ¦ (£MÇ&lslƒ¸fß©{.Å•m³ÞŠé±ÃŒÚƒ‰¡.„ZánHF^ß Ü~'¢nî0[yåævþ—Î!Il”í戴& G©ßb½do”ÕǰvÆÚZë§,ARûP°Ì¸ Öà›Ã@¶(iÀŒe0pBM1·?÷—Ïõz†gÅ'£™_™)ZÀ².8“ÕÃúmß°Â×cäyaÆApG¨ÙöF§b? Ñ'¶–tË‚üÔu ¾³‚~”ÞX®²Tó†_¯v>uÅÚB‡ílMD~L%D’"ÕœÈTâR\Ðs ïÒo!XÈIkÔuŒùÁ¨IAî±Uþ@c?ñsï~ Ç¢ÏqþGßax¸Ìt†Êò`ôwâZ9‡I½Î›ó÷!1˜=¨*cý.]¿AbzÊÚŽ?ˆöÛ3Âç'whð›Š3ÓŽ=îµL)—4QÊm×¢@Ö¬]cúêÔŠ¾Ô0ŸþÀšŸÌKµ7¬ov©²å•@Y¿X²hQýQ#ÿÊŠ¿V¥'°Ü¨É傳@Ä‘¦'Y°ð|Û*!À­ì–ŠHV·TSæ_ì¾›üTÿô¢§… [‘x ½ÿOˆ§2Ûô¸»†…P¸dîjS‹L*Ì}’c;$Qš2Í -Êß’aÏñ 6˜Žê=é2•zË“qI-=Ž ¿@²dÔ1>)ëT5Pù£ðÈ#Ôç²cªŠ)¢ÞªpjT޹êd¦¦bõn;I²Ô-^q9¼ã % EÜѶ‡MêÔ&”:Åpí$¹+KšN.m¦ªM/ǘº!RÎjjž…¨… ?`¹ßîh- α¼.¸ÄýbÊŽüf¡\TqC[aƒÃ.J—f¸jÝ>*QǧþU›[ ÑðÅVMøÐ œ^mØ"àÄþÌ ˆÏBàt‹& Ñ÷êN¤v–Ω(ò½]½GÅõÉmð—·ßTûP*®ãŽ@&­ÜWÄžG##3I ! cþœÿÉ"Á“¹˜ØÔ†'-f*rg+¢«¹¦Ãª-bEùHªÓç4†ÝÚyŸ“î«0£øŠD?żTÿ0¼³¾p†ýJYŒyHîøñzAÎæSqqN,š ‡ws¥Ý/bo5ÅZ'•„©³µuÎõ²¬pÈX# þæ?5@uZ%híÁ=¶\Ò JW¹Í25²}òYâ]g+˜lbS÷¹«Î™›È4Bñ@×už´ž´j—I}¤¹‡§{*ÙP·ÜÕp%¥ED² 5_í2 ~)zK/ÒDY3%½¼PµIÀÆÁO¨åSzv9¸ ¯AHΞ½áVNy’9† ‡qù{õµÈ[¤YuæÎ1‡ÌÝy´éâ]ʃ¤Læžq³hfŠT!žæ„͵£ih²¥“!NE<¾c«I2€!k`¬mИ½pH 8—Ò³Ò6‚Q®¼^’¯Ï®§= ŒñX‡b¹2ãÎiP ÑeZº;Õ>÷q¢…#™!ý‰ïØÙ‡t” ²R’³P­^§W²n=«t ¢D§÷kâQ›Ò?ÄÊþ­ÑOCÇ3sD]3üÏmð{í¹?PGs½0µ¤0àS÷lÛÇmr)Dã-}üȪf^h ÝlBÇP"=a—‹c¦'oM÷kÍóüª/Åç¬$…^`ƒ a?šN:7f—û§úgÃ:[Þ’¸M±b7 Û$eÂƱôsö“TÜöU¦ðô™á;À@AƬáª÷òô›{øN®,O®RÒÖbʶ9ñTt3"ýÉã{Áf–ë#©Ú˜^W̦ðfñ/²=Äs£•1‰~|W>µÌ!Æ?'sg,÷Äòâ Å›õa­ÚÃ@0!6†Ký•X;qÁêÀ,nu;ÂðÕ×I!âlQ? ¯®¶¨¿Õv¥×kÀÃ÷œ=%mX IqÀ‘Š"¤tàž|ù†ëEÂߠا°¯ZßöNµ*|HeÂãÑ%S}DubÖi<_mrEGÝé m@ÈSÏÝ«ƒ‡66È4vå•~W®0}lœë½fÝ ë¦çiуeÓê÷$ŒàÞgž¼ûvP`z¿îñ²`]·äùñIqö;œsI1t5à垌{#¥ ­MUð´Çíét°bK@ëF`iÇïÐH( n0«ßcS•£^qÁ‡y­%]JFK°”±þ´,VôŸJlDØ€H3™’0Á§_LáÎuZŸ¿ØºBÙë4ɲÆ"E*Ñ&VîV†ýXY¼C2_Í÷â„;žÝêœçT‹µâ8„£+ëlH²lÄPÝr@MÈúcÌ›e¼_‘L¬ì  Њ1‘Å2Óý¸B`¥­'-CÀG#‘Ñ]nyöÅ`fá©Ú½mxW\ óè°}n!Ñ @› õ›NãæCµ22ˆµð2œúÎQ00­wŠv2;â_&l+1ö“vÔñ/LG󘣚ol}Ñ=¶ýxa£x,O¾m±NÏ&Ù³šVÛâ”e9D-×zUóÑYÌ‘¡-!Ÿh ÏÌæj#ð‡üëkHû—ô:ѵrøÉ{)ZVþmšNÉ÷æá"ˆG!…æ.¡yqCœÉ% b)ÏÜgö$!eýÊòÅò£È+}%àü®íxf£\‘ ÁEJa`§txT@ásž5QkI×[j!¾œÚÀmÓ×+«®Âó`cêš“»{áþHmŒG—)8ÇÌôÈÆ5ÛŠ‡½jð¥OÍ`‚ÞÔ&Kƒ ‹6òò>^$8òú:Ùÿ2_'–þS§í²Ô¢u¿1™û®) ÿl0 §¢{OäÈ:Õ<#¿ÜËŸrëý'צŸaé@HC&í)›ŒéÉ ¼Ýníc›Eá& $¸ÉM¸Oj1]˜íBA«d¹¶P€i†û>‡ñ¡ ÷E\ŸÝBDñeƒìÕs½wµ'¤ ­ã:®óŠeíº»u@ýµABUúè½Ü|Óðäù´üuœ-»j{\£\þµ˜>qŽw´ € â·?·ƒ™Ø`V¯Û9è­¯õ°É1±åösÖõ Å3㌎·¦Ê¥”À¾qÜYdu@)ø€‚Í#Gⵦ†Û8ÈšëBÊ /y¾SçŒP‡—ó—SË?úr¦ÆïêÝm=‰bF,ô_g2éDÇc FaÆö(ùçpm‡ÿ—Ól,dCE—~ôw¸ÂØ]rPÓy ÷í¬fˆüd»x˜€äW(ƒŠQU‡êy)wÑaÛ}`P³pÀ™E€wop*yqµÝä8Õ}e²^¶þîúB{.ñ“Ü–Ô@üŠ€·A„‡;É–ÙTÁ•d|Ëk,]ROßzT"±Èѱ)³'E¨ÎÚ-@R@.^À(Ú»gÏã›XR¶©³Ýfm ç!‹àkKRkgo‡_d}æð€C`£ˆÍíƒo”nMÐÅ nƒ$Ö[`â 饿'SêX$…Pî¶\Ù/¯÷©üÿ4Ìäz™¦6#•ÍÉÉ2\êðvy™Œª—Z¹ë„ðìó¥ j• %Vr…›r,_¦žØÕ´tc-ȸÁ$ÁL /OwlaÃu=3|£}æiÞ]Ë´²¤àk"3!Î-ðaÔv6öéÎz´n¥•Ðóg°Ù+«Ž”ƾ֚ä9Ä(Ú¶¸ùµÊb]ÈšªK®û¿5\¯û±ï”Ö~¸}¦F|Úî•Lï<¥&º tªnúwé<àCFG”ŽjÌu³ç\˜)Þ:}åv¶ê“iå «’Ù g7ü%[ŠôÅŒc—^*ÛàÐÐFQgR‘¥w£C\B-Wÿê„ûAÏNú–ÔÛ†ñZô„‚Ù¨ÿ²VKõ¯ß7¨þÑi‹ôoÒOa¨óÆqOÝ]e¾o83Ú†mOÛè…›»¸ç•G”·¡! L}p"µ( ÖAÁ¿‹–_aü(¤êÝXf;ò87ëý†2(wàôgOê{S"ð°š öÕî yƉ‚2R°´½÷é¹îWû†’ éœ_C˜*à1Vl¥¬ Íë ¹Y0\¯ºqI´e"ˆŽ™9¸s™~<“Rg} Æ‚»„g傇á5?ûp;ûz毼æë)ÏWK:NjVü3XW”Utù¶w”]ôÍØ’fïêH‡X±± A6Ô%Ã,Ð>š ž¸9a×F¨Ú%†E¹á>‰Û¡€Úˆ÷xÝ)ÒO®¹cáäÛ']#Ž?Cˆš Ó¥OMAŽ…ý'¢Iö=AÍ3x%¨Ê|{ãí$üíZÑ»ÐGp&*¿‡äbhž~áÄkéYI¦U9ÉRÙÇ6k•X_¨»ÚÃRS1xÇÕ—Æ€YÁ2þUÄz^cœ´Gow¨%ƒ ‡ŠÄDj1ý(1ÆcÈjMt öñ•@B7Ýâ‰:Ñþ´Nea ö{êÓTÆs²³˜Nmy®3¶Ñm=â xâç ‚¿mo@<ª¾ñ±é†cžM#Ò‰¼Ì2UÛa {I87øtS¸~ÌÆ§ t£é–«z‹mèƒ5´GãƒAf:3õí†ÖLË9P¸T0'k} g35˜:a“àFšqet„3r/ÂŽÈ.Ь½ÿjÓ~RPGØÄ/" ЦÛ"¡„Æú“ó˜XÝx¡ÒLÃÍÚs6/ËÅñ3œÈ ’‡Nõ„²çqLhˆÉBm]TÎØã쾄¨Aÿàî™´ðW4ìÆ©^(hïÞ·"Ð<¶/LS=Ÿ±{#æû”7{‡6Jþ c«[‡í7§tELèã8SÎj~ÙÌÛ%€6äŠ5”ŠHªÎNÿ“¬·ìótäµoúþšByÇõ–ŸEÆ MVéØ;œûi3[DØzDŒt {^&¬èw²–ÑxŽŒè@ä‹güÞéû¡ÍÆè^ü¾‚ÎîнntÔ= †)å7päÌ?ÏG#z©Ì 8ò;X€ä·dp Kb–@9JV ì:¥žÛïdÖ<™0ò˜Ìœ8²¡ð¾³glüdµynøÝauÌ !Ê+JØØŠœÒY_Ù3ra”tÎ=ùn§~ÔÍáz‘lëùçéüdÀõŒä¯ˆœã ìÚÁ¡›i݇Y-h«¿§«Úï$ãoMÀG,ç–««Lð¦gØ2HNg˜xcø@Æ\jaÑ¢>½V­‰5÷‚ágÈ"Ǩ›;-bÜ=m0ä,Ó°)ß¹n|AHdÃ-ú—Ãd% ųtoîŒÉ€ìbVrª[?£÷"HOÀcÐÿjÒ¸]ê‡Fí3%ñ0+ð±6CƒßìeÀÜÚ åW mÂä'ëQ“q$€°N“*ùÝ6œùðAjÒ&F×ï ¢ÄWØV8œ-Æ2s­Y¤Îá3åáüwk =xK²&‹•A뛈 ƒPyæð÷¬Íwó¼c21ÈÎ=pD*UÏm¡´qá­2Ö^38ÎR• ~«V€ÜÅ€= ªfm”PQÛ#ÏEÑë ³twÁ|“óâ2ÈæËÇ^/B\jÏ© SÑg°Ö€eêPÿ‰ã&o3Ò–YÞŠïœÎ›¨yu®-@ý¤SVmr¶ã£a´ÝœHsÊ LY tMgo‘Tû `õ ¦)ÐÆÇ!”D±@–RüÔe8¦6L0ø¦·W²Ä–{{" ªL – qbêÌœÖêµç#ì¨èGユë7Ùß—Z×[\‘‚Â0›sôm´¿øBø!ì‰Ùnk÷¡[Œëü‘ ›mÃê7õÎÚ»L×ö–de¿MFhîÌÅ™¸8ÑbkY$D¼ÏñPýÔ c‘§ž{È}2“h2K{Rkž„ <Þå:“¿#ÿ… I!Gc„–$Zk‡7í,ŽR2)!Æ—cë@ê½—¿$eâ£Xùž÷’MÏÜ©EØb™µ…S?Ô?)Q×ü+vï}3w·{‚âö IàÛc r¦æE•ëLí;4üºÙ追Í)>“@±Ñ¿‹ÑKÔln°øó8›0ˆ :§GúI÷¿¿+AÀE×;6Ózœù꣥0öê—?ÛÄþmÏÉx‚»™iÅ'·^½±öÓì´•Àáy7'!’qœµ>+òwÒn°ÓÔ8WŸSiÂ- xÚÿ³+­ô1$B8¦^ý0ÞE2PÕ-ø¼GYlÛâ­²ÒîL³Ç,º5k(qHþ„?T˜úoàneþwæ ãöºñƒªþ€Æ¢¡hd 39•ÑXÊÝ“È?Z©Jßn;|Ü›d7”-¦CR§Œ©CgœóìRzD…˜fáï!ÝGk±'bj¼CHž‡•Ip/k­f[|ýLmàè.³|gRÑm•êHÛáÛç´ÌØ@Ž$€‘TmŒ éKª&œ™ÈùÌ)m̳¼ ¶²†*ªò„%U¶ewݺÆ[¹h4Æ›}‚¼¾0á."> ÍÁ6?”¹*ÁPܽ°CâÏ*…*ö˜zi³vžráëêË??…¡Y«a1þê[+Òa5ÝÄU¡ yGÐN‘#Ò7.åà²&ó©9Å:TòL´uÝÉÌL䆊+\itOq’°£“Ò^¬~)’äÀúL쟈Ð^Á.¸GLÀå^£ó‚4ŸY±À¢7²ÏäìËÒv>Ýîƒúc,{Ä+Cøû®Ýš(L|Žƒçrªrå¾#çPY1`Œ†G_Þå&T¨%];=i¬WÔÆ“²nÀîsXºZ ÞNƒ7e 0”PZ§K"€´Ü¾»¯g­yë|…ƒ5p«Ÿ)®ýü§ŒÐs׿è8ÔoÖeÕv]ê¿Ôõߌ¶y} úƘ‡¡Ý'IŠU³Eš[ÇBTŒþŒhl?5Úã/ɯìsò-Ø%°'&]ö[k¿)d{_p–ôilü9„u7VAÓdV¡ž÷Ð#_™1âi}åÖn.}ýxÇö¡sìˆ(aª-€[²¼}X­¹ï…ü~s‘¿6ÀÓÐDÓ'>,Ãî8þ·;ö¥2ÐêÌÌO§$¥½D¨˜›f‚'lgC;X×%Dså‰H6XÜèUG[™b) ¤¨ãÏ'IUö¥<ùP ,Ì\<^ ­gñ*—'¸f| KW _Ê(ÂÉm¸ îÙ—æ ¡(UžMKo[¯e]£oøž ô»¥tNˆg¹@ª^£j]”÷,0Ûü([èàûóB¥Gõ€±¼”ek?öÞ^€4Q™8µÚ|ƒÔ‹ÒÄÒ°BaÀI§'Ë‘ªÉè·-&ÄÎ6¬eØÉ³8]ßvYeÃ=·!€üƒðaýέñã*+gµ åÎ/ö Àˆ\•lé¥\@%å/º(4¸»±×Ñ NÙ…>Ú@úÓ¿ü>…ã@ Û±+µTÈÊQ·ÅÃ`$®q.cepA9íàV9ùå4ü¢}ÂX­Pó–ø¹ 8Ž£Èßu¯tÌ ªÂvtϰâëi&øÚÈæ+ždVt½}òu ðz˜Í0_DDiýMQÚ}ä„é°ñê8ú˜èïåJFe¹Ô]þÍ1”…6C‹Øã ‰í¸ªX†ê±)¤1+kÆÇ× ‚àÿËø7Ÿ}ÇÖzåO™«TÖRó§‰.Å1 ¢U³~ïnÿ-+rP»BoZœ·z3Ò1IÙ\N¡²Ò+eŒôß?]ëbô½¸E;ƒÎK6"÷è¶ü³:ÌR@ïl¸‚9S¨5øþ«KD†]%µõ[#·Ò¥0ž<þOgkMý¶‚âž»}I¥4)úÜÇç¾Ùvq ˜˜Il$”^2Þ~7‰–Æ¿ ,×Õ¸ê€_[³02Œ,! üÿõÆ QH$½ͬ\fk~Zh©ú©B_öUÂ.©u4F¨¼|¹¾’¸¶‘àJè?¢nš¥hHz’HºÔ^aigm¸G«)“Zp!ܙLÛÙ¡ó½ÄkÄÞÉ.÷AkK’¯ëÄ'—OL¡ÍM®n~ÌH¹v¹œMàFr ôºr@=Xÿ± à&Šþ£ÕÖÏS¦÷’Ù[H|Ô¹¾¿uƒqÄ o[#µ¯šƒ<è?å|ç\ɳ*kÙS±-\T¤ž>7Ÿñ¤²:d­)Av°ÜJ–+µ¸cZ5­“D:ÜW X©`ø–ɤ°*D{\°ÔÁ5ißwvéâH¬ZÐŒ„Õuòã_£æ²òŠ¢K¹…™ù%àLý'÷—Ÿ¶df ævg¢¿kGè‘ å«~%pJ9+ä—*ÄŒ“¸0«ÉÈT \ŽkT”S».oî¢UAšÖÄÐPž=a1êJ(׿ȈÁ!aâà•F·~/gÃÆŽ3žœáÂu‘O$ðü9Q²  ”CûÙr~û¸‘G(ʪ¯;.<¾&/:ÙcV°ñfñ¬Lá®>JÕ_ñZšç6€ZMœú‡°¡@ûòh—ìn‹‚î÷1FÊNø*AÓppîCbG+”@[r/$rÏ+÷VIÔ”@‹HPGs®2¸ínq®à*ÇFÊPݨZuÙjªl¼ «í§ ̲dÜÙ62òžt‡[8á¿×’[•{¼˜"E·Îý] ä´P\GÁAÚípÿ>7@æbˆÉ×íÇ#Vƒ»îa Ïö.ùqó󌻿€uID¶³-±{Ù}°B¶gvi¯´ÝºÊs¾’fò£IQÑl¾32ê·È7ÄóY|yeú‘zY)R(±¤uÆ^«zÕ-W˜B¯Y.­V[árGårKÔÔÖQÅ´éÝ:Û¿É·Çm儨x<®`©bi?h†Giƒ”Ò&\ž}¯ŸÒ;x…ó%¼>_Ó–ê*{r©ÿÞ¶­iºqý´—Hý›¸ŒX&¹‹“\±¸[‘à£jôž¾aª#Ñ ŠÍLX,G,o¢¢î6!|f•Š.ù½BÐj q£”Z)Qb½'Z÷»¨ÂÁÚÉZïd4¤t£ÚÒ•÷²¨{²?yÖãC°©:e!›¯<>YÔ­)+žvCJ'gá%\„ëy!s³q†î@;à"ctñëÆ¿rÇ|?ôyc/cÚ1Õÿ.PL&§çň[KUeš@Cú/˜™X¤*Þk ‘þâÅ‹fü«÷ŒP׬7Ÿ ˜OÛâ½2ù¿úÖymq–Yž7{GÌDaJ8–¨8øØðÂíÚw¯ŠªÇ§ò*>òzÏ3Áí5ïò–[¿FQ;ÿœO¸§YâÜ'ß¡¥ãôÛ^•ÆŸd¹k~ƒ‰‘(kd‹ü}å{̹HïnÀ²LJåP`ßôšß‰®uà"@yämÏñóp¦þgTÙËÈÐÕuz‘H/=XYµëJêŒmå! ºg‘oB®kˆ…!éÍ®<@¼VTîáë|êë_Pz|Þ[!ëÑ¨ÓÆÇ¡_Î_Ž(}…ËÄ¨Ú –Î|ŽV‡Ž='@Ïù×J*Óƒ<˜wÕ¾×£PçMÖg†!¿T1í¿7p3¢Ö3Hr™NeÝf‹Û$:ùåD•AíÃofÈñÕǽþelÒÀ5,ØŠÈ”ì°ÖÑM”_n¯¢{L/NÒT4é*ÄB(&û]œþR´ß ÿ‚…ÔO‰¤¼ÇNÄ [ÔE¿µÒRq³½,TŒY²#J¡S–E+èé±4$1L„‹!Œ‚Év‚ÉÛÔÙ'b¶|É’ÂóÐÖÿh¹A=.p´˜vJð(qN Fµ®”¬ôÇ ‡qmAÿ n”Æ%LÎþ[`Œ>KyÔsœ²$9]på>å-kP{‹ƒºÚ9@¦ÂjÄùüCݱîÙuÇ®ʸA‡K ó;µûÓ`£Å”Y¬Ý{0CBD­¤]/²¯Ñ7mƒ\AHð9j~†txgFáêv]lXOÇ•ùCÂ6+53¸ŽÙõ‰ýLÈ­F„û¶¾¢s—à *ÌÜ®èY¢†ÒTl¨“ñÌ} Ãb?Ÿn&Û„¤gcÿUûãÇX§÷ëú£¾Ó…­s&þ<]V@cõ²Aªí¯à$š‘në¼²œÂ»äö*€¯Zë)‰º¦¯aÌѱI]ˆV^Y†ºjòûy<ª3>pa¶ÐÇÁiJ/óÏ…#ºÏ©a•±¹óNÊw¥‘‡½,üÓeËÞ4ˆéì?¹†[¹û²™ê^VâÒ×cö¯w½ÒÑ”­æÆN &PáÀV!vÀ`Ñd&5e#ÇìvŸãÑUÅ•?<¾#·ï…p…ÍgÖKšOñ*!éÓç½êaCYK±k’ÿY:iEà7þöp»í7ŸýPéë¡ÈNˈûbìÉyrøò$5ý¯‹gK Û* Usò¹ç†JŒû^7LÍý'gR£òJ«†Ãw2Àç^–åzÕúTý¯$Èï;gÉÂöâ–A· ¸p'(G‚›€báÕë§[f'=?› ¹e”cÒ˜î§'¤Ó§=p%àp S•¯;:õ—"!ë„i¯£—@=¨ 3žÍãøC>“à&@ôÿ³Ràç&àç‰|ñJÅ™ï·d#Õ™™<×,ÞF¬2B}—à¹ÕVÀW‡…þZˆ¦âe¨Íž˜À`Ý@oGšQ*µ…ÆFu!ëˆìMÇÁG0 ¼˜äŽ·1rÞ˜4!"€¹¬›…BÇsžoí@K)½f‚õ¶œˆÉz.ܰH…ɲÐó„ö-ÍÎ Û|Ù•`Wó†É< `"tCQPù[I:.[S»ÁnÄåáÂ]_ûõ¢Q]ÑÌ…¿ÿi†]1,®H¢Wö ‡ºƒŽíeUDúTæ­c—s1¦ÒÓ½GPëem'NÉ/ñ›ÞY£ƒûLWØ ˆÒY³½®gŠ«&Øì€ê÷G=…¥˜§&ê¦ßFD&¢]òJÓ…%m,µ7Kö²n^³uad&rËcër%Ô’q'éG“|¾„dUm¸6—°:2òè‹Q(#‡å­œ!F m‚\õëH=øT˜˜¡¹ç9ˆ,Î ¬[—œ>’Õ壨ۇ¯4{éG:µuÆÈš—+²Bïj™¦ÞSsç]ìäâ6/n¥ùÉo W“÷¼Q‡ ï™Ü$ïž›wTð†«ø^Æ‚ Fuê ÏŒ¼æŠnlµæ"ïb½Ù:é**ì¹ÿïWaUéoÓ碑Ñúðw!¸Ÿ KMÙÈ£”ÞW±£Zñ½QI!"¢Í¾áÎ×S‹R‘½vŸ/ù7+ùæ«×U+â7²0íJ$ØÕßÐñ¶ÎùT6ú—ÍÙÖ’Ä[Mqëñ‘-&´Èð4jJ4±`B™!«Ÿ9y™jŒD­ù{â~а†Ðµ¸”¥[pqjˆFŠàÞUlžÞ4ý½}²€ÇÕ˜ÏJnáã'òTcH1Òç®Å‚¶[ÙÀO·%ØÔ—u~lçꤘ™9!Î÷þÂÍßè0m´~Æ9p¾ÍPøÐ·5›%ŒÝ‚…6M¡«Ô€ˆã5-þ¥…€ŸVsVö‰À«nÈ;¸T#+rÈÜ/"uЯóŸ, }úâÉ›_\qäµjžÒîA¶œ_/^,„qˆJyürÓ©¹Lóé-èÑÞ™,·†ôy:x‹@P JŠI‚y D=…wo¸¿\ù¬˜ v/EX¶£Wô°…²–×çq_‘xKŸ-/Ú3á‚ÓÈÙÁæÉ9I.ç" Jò ]"€ó®©þ¢ž(ðmÐK1­Î“ î-úÕú¤¤ƒ‹.A´Fñ^ºË8Á‹©™Cc\›ƒ)ën E!0…ÿ%¯ÂeºÞTçDv’Ô=w´é'™”3ÊÂ5±86³ÙªH¶Ö#o;æÔŒÛ %¥£Ý£OINÉÁǃX ò"YàÏïš>ehÄ,IàFììòMhs¡™˜ á™Æ;MüXù¢šÆ6À$;ƒè÷×¼¢IîÌŸåLx†,ª!q¼¹T<ûMxØe—‘ •Ø?êŸæèopëîëß <í¥ „¿°·ÿCp£‡'²i¿&BméJ9@7%:£Ídnhn6#;ÓWƼ¨xõ8h(kφ²‘­³B‘jYp¦3´‚¶³“^¿ìZ÷nØ[Y¢ã¥—SÜ9s)OtÈ++H²í]> ÿ¸rxÔ·u3ESA˜–—L—á@q1KÈ,"1<‰íÉŽ‹g_Ü'ðr¡“‹&[ÖGÒû-ƒÃ‰ýEtÖ– ‡0&p é–û\¼’ÎÀZˆ‡V§FÄt oH±ånE[Ù½Õwåhei€[¾,“ÈãàsôÕǵ”½£ÚÐÉŠ EDHVìò3÷cpcÝ ŠSêzšà° êÜŸ°µAªÊô­<É7‰^Ìm•–FM¸î#Ù”dˆŒí[Šd®æ2CìÀžßp‰tÕgÚ¤ªWLØÂó¢L\>7·’Sä!ŽÄR¨îÇ߯©xLC ‰”m8‘ëÝaqPàÒ·`dN&¡äû’gÌ!æJÑܶuèB˸ð $ñtû%ÿ­.ÉqU¨%›ØÞ”732•B¥9LE*x—ï‹Û»hé÷6[u¿kä  øaú×t…ý²ü³ÊZ°ª÷Ò ;ެͼ›þF 8·´åMž0Cólx´œ„¹Ó¬Û!ïÌç SÆÖ¬Ì ˜l“[Ý—j»©q¥»ïcyleóò!øÄ¹8gßËúÐ¥'Ò)_ž‡ (¡šS9ÑšëBÜÏ0{à¬2ÕSºнpú@ŠbGзüvIÀ$}>õ($ÝþϾXc€áî OŒÛf´voŒ.åér¼‰|ºÏ›Í˜•L7™Hš+eÀˆ”ŒgKå<Ÿjdt²Lăê4“øBSÞÖKS@x®"ÅœÚu¹ |u¤™i„™A*>(óì2D4É=€L'és@§ò)JN'Å1]ðiÉ}ª>Á[3¸Œ9Òøý²M¿iõ&¾šu™$¿uÉð|QÝfÔ&¤3Ú.w‰¢ºFÌßSí!°Èäå—9PƒnÌtQ(`¦ϨnpÍÙŒ,m…NÛ“|ñO…©{0N7aP¢$ „ÃDN%P(- NeûAI1œz{•x&nµ&‰òÞÒ(ÖÀÜÀqˆª¾áÈ}–Á=ï>EaáæŠÔ‡¼#¬ÀN†ˆ)ä$1å üÉašôïª&' wQ§­ÍΛ’S…þ¤/”÷­*eJ6ƒÌ \ Ï(´(ˆ¤‘÷ÙM‘Ÿ§86¤®|™1Ùi øùpúºÉÊñVŸçˆ?ÃTk1hÔÝ™lè Ù¥ËJ1r¢ S%—Ã[À%ÖÆ±ñÌÂñú  G™\¹l[€¨ü+uÐsƒHh&qÆþÓ”Áíùb¶¼°[N%%C¬T^[á˜på¼ *Y7NeRÊmÙ o®¡4òÑ¢ÿX›o]¼wvÇ×ÒÕ (GðÞJŸE2%ÄwEx÷“*¹ãÕ9ŸVR&ùˆ²‰€¦µW ¼u9‚Ä·‡{ȃ‹#tEVX{u®ª kCûÖb –ã5ÿ,xÃþñû¢(Ë?º¾Òbý9Éω†öVÁOÜÅ—‡[¦ÍuÒ+Ÿçì!uzHGF)“÷c\"S¨cÏ•&ËI­´i¯øî–Ìà âkö¤¥.‘Ök1ÍŠ=P)ÿ.q¸íí bÿÚƒû–ÞÎ;kç´ +{•WèlI¨Ç‰ï‹änÙ‚HÓ7¬³Qd´¸Ü®‘lHØb{×Nœn ,Ø· QDK‰+¯=ÐÐM/ù,†±õÜLׂ¡r#çq14üÓUgeîDŸÙ¡îØñà_ .ÔÅŸû…rBgé š•ëÛÿ?|C؆¨÷á:sAE_ÝIÓ2Οaum9©¨ãÈóD9—Qô‹Þ N{ÀBoø› ^¡­uÌ0­£0,HSÅäÛÿÞïèŒ/)ùèè9Óµ5äpјQbäà6srçv›8(êõºL[ª'^kI^Ö`Bb×ãëEÞ\ñáûõæ!Ô%¯Ùú1Ú •wŸCÉèU'Òª¥®ƒKkwÍTÞ ±(HÖ+‹÷ßý–)âV¼’?n‡]? GþVKÕiɦuí%î+XJ=©]™ÑñÇ ƒÁÙ.„Ð_ÜýÖ´’«eÖž%©‘e[4­á®y°“'”’#;²v»Ž4™±±Cÿ‘ä”ܳ)W•7ð(}Zta´NçHÊ¡-Öš|n;ó#Å_Ù¼E®ŒË¢ßa2Q¬Ôq»V£ÑTš’½rrµp]¥>9ÓO.I2ïR-—ÙÜË‘/¯‡ÂŸRԽ˧9GNÔkíÈLw 'V«¼ì`˜8+”GÓCbF'íôé¡è!_»u`Z¼¹#c±£­œÕ/Æ|7!,-J9íà¤óñ´ ˜¸V›w>Å”ùë‘æÕÙö“yyP¿ÑV¸`*ßiLÐ<'ªg“ASð$e€ ZÃU†Î U7 Íu­z5‚§,Ú”ÝpÈ´%CÈß1Œ(ýéXeìµóO§á¶x]Eˆ Ixž—ÝÉKħÚêvµdyVœ{ŽÒ%PªE­¯Ég×Lˆ J7— `â –LâœÊ-g‡*޵¿Iò¤u¢‘àÒ<¿„á“_x»¦6i¹‘î¦ûE8ô‡È;™´°SƒY~ÕÈ™37àsv$-$ãÊX™¨o‘Q•‹ée¿.Ú;¶›-@³«°xb1RIÍ÷xcEþÝ.+E‘ÐRé]ÁÑ€j-^åú_ç>ÅáÍÿ¼] -U8Š\ÎŽïÒ‚;ìã»ø­a¾à\%ùT•,ìé £ª ³]Ðï¿OR>÷~@3ÎŒ—íkgÄëNµÇ»î‰瀽„Ÿ­ò0˪sE' Ÿ·¡:´“¶[«[\|ñ (,kr”Aà¿“PÓ_Ü„”Á´úhÑ`›ófÕ—¯ùp~Òþ—×Û"¼w†ÿ™GñȈñ{SûsT~£j—‘¶Äð—xo¸ç-“'¬y35/Diï¶âËN;#g .˜}FƒF4Þ™¼:ÐS鑞÷Iv' 4ÿ­è€YØùÜpQ@¡ÉrÑhݵ°ð SIÄ2ÓÇÁÑb‘ˆj‹•â:#U»À(*‘(òIÁùTi \°½÷ÜóŸ“ ìPîA¿*HkŒ!OÅ ð#ÝNé§¹zàב" ó´ûÖÒ^š cNs+ýNÞKR)ó 2Œÿ‰›vèŽÅÁ¥†®»žK{ë»§$™a³ã"k’¢ˆ‘Çr[ÉR£$ñ0Õ5uêwbcìóuíLO²¿Ëg‡æE㺠Õ!ø¾)|ÌÛ»«Aä~!‰¤;xŠÜ $CU©äõ"[éÕ­"l”ïë½Ñoè ïÎÑhóüX”˜ëè]©ÕË=NpOÁûêÇ?¨ê¿ îv'“l¿¤5v×2Ïÿ†C¬!èùY0¨7ˆ•Ö½”N×{D ÑëÚ-Ü~d8×Ö2Þ¾î ¸R2ñüÎI±ÖÿgÉ+Ÿ³øIØÙ°7á˜Âô›=c¤¿èfOÕýýOMQÅnͳøÓ±ü%ÉYþ9x4 x¼¶¡¹â`Ë`¬}ÿ&Vºa8Œ<1‚wÐT—¼…D÷² ìðªÝEˆ˜„íÚÂ\ðǶђrwùJzïŒW˜»Mc¼ºˆN[XÚ^ã _;pcšÀõâ;à¡­öþc:ä;?@x›o´m¸Aå€u-ðaäWô¯-I­N¸z`±Ð« z`&¶,°ØÅóçC‹]dßã£eƒ•nµ"¨+ƒ¡Ñmí[~h^|0ÿg_r¬ Ä ÏÝÔT&mŽNKþºÙ~org·0D¹5A™I»=Q|ÕAnA…êá1Æ0´GX>³œÚ¾%ãXÝžþ½B¯Ûô3Éj}©'Ä®Ól¡Õ×Ç\tÎD‰hW*’²ïTµ©"7SËÃ!—Ì:ð{¾ÌrTóJ¼KnïþGãˆÑ-”KV¸ÒlXÞG³íR0·0;`ŠDÏ& ºà‰N»: ¢)õ) Nª( éIYo(Îâr‘$žÂEðÏ÷`Ä{-ÕûkØë)ÅË.n†2Ýç3¥å£öô\t-ñf1`Œ5ÁÕC³š:]¿-®fðð`¿æÙZ ¹Ù“ßÙ§ûÏÛí­ù§JS­%2Ù«­ƒßÑšM2õ>­zbÁâ•æ_¤Ú@õÁtŸ§ýèÅÉæ];••Ñjº/±6ÌÌ&£m)üþÂûÉÕxãIsÌ6FlÀWÙ5?¹$Ä(QlF\ô×Òð“z¤È„ˆC9•ûé^8˜gÄ\¨=ÿ7øåŽÖ ôê8à)6RÁy àE!R3håÓR´YÒØ1«êâòm-zV ÉµïÏì{1ˆÑÕÇÝó.šë®‡Ò¹{¿Û‹Ëv']ð&ÿƒÈªöòg2üÙÁ¸Fzëì“ü˜š'‚“DwÚÁ$AwAwúwV7•hƒ5tÿf6Ô„êª0´Ú/Æ#¢\ö…KÍ 3#>»$ñ‘ëEæc &ê\˜3œÎ ¨”ó2Ð^8;Ò³-  ÆÊ#ê:R’ ¶›(’‹Šp(ÛTáÛ7”‹~ÕVŠü¿¼_Φ¤ôÉ| »*<‰·¶_Q»^¦mQ,NÛwû¬ ~;lÛI34Jw:ý"ãM[Ú»&!¥~$ñ9z*Ét¶ª…vâL:?8‡:Çxððz®jB|ì¡S#½3mû»¾æÆ±NûQÓ°lÖ`+.q£Š,Î#ÛI^Äü„Ôü¹'”Ä.ðÇ9¤&ø"Ñù㛡Ñޅ º§Rá7dׇâ»Yj¡³|®3#8a[µÛq¤ñÔ$B×9¢¸²uGò„ Ó‘êmÈýK¼Öº#>×Îû I×BM# Ï¡§pçᢠ¯6ä?⑪2>¸êÈïÓ¨kç ÊÁpËÑõYª:4L0ùªârG2i†.œubþ;Q'<ßjXÄK[РÎ`“ZV·ŠlÛè5`¥m$Wô|bøLº‘/QÓÓÿS»ZÜ ~Xßò`·þJnH[.ů;ÖVʇKŽÎzUf(Kw|Ĥ¯B$)õ²Fž^ÿ[¾&gu3pe0O“=ó†ÎŠLËÇD%»G2yl –+1²™F ¢Ch¯ƒ÷ˆ%¼ü€†]Ü,u´éh+µ .µJ×É‘9Œ[‰âê£ÌZÓè7Œ Æ=,RÂé5_€¦. ìtµYÕ]÷’ÎVñ´æ„?ò‚ÂÔÖ¥W¯ôéC¨ò9ùýà ¶±䟤|U”wЕ}B.îuSTD±V^ä ‡Kû]Å%!º§ZO¦%~ʙБœ¬ž¿óò%•UÐEe©øw3•|Ô1Ÿ`.=bF^Š%4[ ŒŒë«I¶Ÿ@1ê¯k䦮³ßÚòD??ˆÌi!o¤*€éé«Ú¸ŒR‰Ù­«™³ÒPsP´fÕ}C:O#¤°Þ S6ó¯õ0t†ð½ul+­â2¨ìUŠÌ» ’ê¹^Í ž-b_£–Pn/¶ºv£áî1‡—ïÄcQ7¡ÔŒ?³¬È÷;¡øè(IÁDÒï·ù QŸ°”ŠÀu¤eðA,×àîâñ°i·FÌRý2µ+ë#®”¼i,ñæƒ$™Šlù¼XÛ‹ïB5µsñ/㯖óÑÏ>,÷có¯Lg÷šÙ!ìcâÇR¿<%ÿS{›‚fMÊ1˜WN¶Îr:}6ÑÎkbåö~Ň ÛV*Nýq }Õ¶Ü¢n×ÀœŒÉPíË' B5BÖ8«Û¥%rtµ~¤!p-Žº½ s‘mí}Üý/Ä~D÷'¨ŒxðKáÍÖ™ÌÈÀUd&PÀÔ¨©< ï.i³mß\ðòvÏÇÆ2U{cµî ³õ›½lÜ–D«ÊæñÁÑ1Ϭ÷C‚ Š ‡û3ÿB­îGHÁ„b\KóV¨;½åwÿò¨wÆâ°¸æûKhtWM[ú¡/¼l˜µÚô‘)³ì†ûÍ·L:éOÖê’(¤¿RUu¤×pr–‡¹¬K%ÿjqRÐðªÉE†(¯¼¤¤k|3x¼È†÷Ü¢w—Ùì1ÉQµ³Ûô–ÂÇk•ì%ˆÓÓ¯XG´<–Pé@)ÝY²ç*ÉYGò\òá;Ê…úÒîMB½L÷s€ÓåŸ 4qs#vèP“ŽMsìxš…Û¡ÌJê/E‡#qŸ\K Öóã<ÍŽ=ŠVÒoÌ-Žè$SÅ|3Œ¯I¡ ¹â¥’cä¿+0ìrC‘Õå>ýé+k5ô¸Àf#ˆLkB­DÍÉ"©ç=f½'çU;æq0Â{àG$…áÌ/ Î-ºcÓà•¨ËÞØ ÂþåpüuÌà©ä¤Š­tpînîH‘P ÒmAnL/¤`\~Ða9Í'ÇqÁ+‹æ>Íerƒ¬h¶©Î D=þ ¤i¡0q‘ZU¯Ù·g«Å?`Œ}ôgyÀEû †+H«Íæd¸¥—3¹3å–›¯Õ%-òÅ£Åú„ÌMz ÑÛYÁqj€9a’¬C]þâ Õ4 "]†îJ§ëY9 .7Ì€Í EŒ )%l}Š›*|É5ÖîcDX˜ î ÍìùäÌ 8☕Õéâ4â…™a3]M‹>Ú½—Øk³oL $tnô ³æ“w³™ ž¹ùylC2&óö «Y‡éÛÔfjÆ TÖHëBÓK·9“Hô2WX_øf@ æ91QDþî(ÈÁä &ºþÿ/”JCŠ~é¬7™U‡Ó°Z–vTܧ&ãqtÙÓvYµbCºÛêåb`ðƒKq18ÝOÄâÑu‹¬7ml†ÙÄ=8-qn3[(Êßpqú÷–m$ItÈruL¤ÈMkñáNßDã§—Q pôž,&ì^róL¸Œ«Vº)LjP=5œèÞ|^¦Ùû™ÔµWÚí®Ï ñ ¼ :]a—»š]/ê Zt‹RkåšxjÃI¹AÚ&3š¡ÊÛ,•5]ýXNÈEéŸÝƒ‡ßÖ¿Pfÿ˜,Ü“ãÏ4øê*ÄY@õñ==êh_1ŸÈÐ,år¼ª~KbD/XºÁ¨¥e/ì*®çÅ ™†N’Ùpt­'8 Lu !äRÒðeNü\ˆe°˜ GG»X„GypÙxWú6ôviÕ¾j ÷I¢_þ‰ééî6EWc@½Ñ%>H[ºå#ÌÄ›66Øåú«KYAŽ]@¿Ëÿ–ijlU©UQö–á…6ªš¬a‹‚M¯ä4‡ì½éßUŠrõ/€uöœ™^ÊÉG³ÊuZjTN s‰„{¥ÁÞü¢¡aÌÛTŽe‰ä‹tsr­ÈÉÒ¸ zñ¥)}Ð3/s¶(ÿ¿ô |®ªà·Tφ !ÈÌäG½‰q• ™–B´y6}£•¦{ßÄM"ÚZ­¨¸TÒS:{qœ@ÍͪXm8€¡å@¥¤¬›yÏ'@`Ìl}û±†-ÁEúyaÔô <펭À]ùúÝœ“Ý“49] #Ìø‰4›aZ òmà=b*úµŠlUQ7Ð÷ò'ª$_Þzz°À–¡Ätîà :âÚóIzP£Ã´ÿödÒ60‚Ú¤0€€Òâi¤ªJ£5 –"Ñu×”…BÚQѶämq§Y®ˆÊÙ’béö8¬¼ÕÔÌÑ›ÛÐfá6Ä÷ìÇ¥e5ï‰U¬_Ýã®ï—ÛÛº´n¦º)0VÚ«©nb¯j2kƒË´]»æ±‘†Ø¯"þãÝWe¯Ëí®¹PµÞQh30@¯Må0ÕîðB‹‚ÅQ.͆+Â>˜ÓõmÃfù‡¶ñ€ï®ì7xCåqM¢O?îä¼×̬<¿òuË&È üD4‡5\û/9Ŧ¦òwϽ òè0¹¬ÎÇ_Ó—°—·"ni­7@6»ãþ¯Ž/Þ’×Åmö þ¢ 7îþV…¾õìÊb{Jê:ÿçæ?ðÍ´¦uÎõL”,c&£Ø(FIò5ň՞ŸòïÝiÕðI㟈úë_Ï?†à±édÙqÚÆ÷’«/ìs”ó@gyˆøp—N³ö†u¢Y3Q0‚’[ѯÒúÚ°t×°±•ݱʚúJ~ˆÕ¿Dð»–¯ÿ]†ó\»GŠ0Fçý‰­Z$Uñ'{%Ëß±/LJ;.L‡\µ×÷ZÆáóWM?HˆbdM¬v€4ýŒk!í̓±ªnÛÀšKtkÅ_¶ùß –¸Ù#ÌtØ[MÒ°uîÔÇ›ÏZtÙc—R‚yg0 € Rwž¦œШS4‚ñŸ!ÝÃÝ&ëq6™E6ú¤ö‹¿»äƒä;v,nÕ ©êŸÖtJU‹abÊÏ墿äºËugÙJJ¥ekô]ÁßÊH|·(˜XüuΠ˜¬‡¥ôo§ 7GßóK]$?3œ6+˜·Ig?¨ùw ¢²ñ‰/Ì:µõxáû¶)åí°Û‡õ¼$¬å±ûÅQJ-dÛäýªFõ4Ó› G’Ø· â(¡˜ð–ëH„¢-\ ¨Úó¬AçgÕ.ÂýviC:ƒIg DdžÅј‹ ø0 X5>{§…š,­AUª®àNqâŸõ°ŽÐJðœÌJ„¼…RTƒP'þ‘½¯@!;”‰³ÜÖr|ù¬ry:£D©‹ðß?µßU|T'<óNÕn¬ùþëæ‚)ý;wÇTï¢Ì§XÛQl¬µ‡©™WͳŸÙèLp1tfK9€ÅñÅ”U“œæÊ±P9dï¡éÎ$bÁ­¿yñÂÐ1q²³ýq΀t+«µÕ¼äB(‡4h6†×ž‡¯«Ž?DfÝÒqРÿðÿJTRŒ3±Yý2bo«à»ùQ ò«ÂwP$1ù‰„>ºÒ‡`þ¾¨Ö±¢åz± ¢¼uS»¯Ïcºê7Ÿ´µÙ¿öÅØ¿ûŒÙð­tÞP[‚ìk·p†Ûá‰vÜ÷-h œTwä b.è÷jFJ27ýiþ'{ 3Ap–XŽã†æY•鈠4…dN6 Àcu÷?ÊLèc€MÇNÈfí–:[àà4Ù¯t&ñÓ;ÝǤY›„C•BxERpiËñŒà³ëœg y4©aöú'q„DZ©Úýsïæk×Li[J` š³–{VQµ(Ør±ij Émˆ…‡}´å&@ºJø ›dÔÕ‘JÛ }ëR{‰«{sª¿n3ðÚÿ"²qÇÃm¡úƒ`yç$H¤!$ü·{©¤_Ø¢8WÂŒ…–…éÄV€ë !HùÈsÆ`PCÌŸ ¾á9×¥¾Ní;6¶|Ó*.YjYsâ\DuÍÙ¬@xEÞ£äÓþ\z‚ãZøÍÆ÷¸ÎÝYn¨?g~y /ö…@\»hFRUl©Óíh4÷T-Ï]…Ìç+ô„Zõ·ÁÕž¢÷örû£"åIö†R%0Xà @ƒwøÔÅÊë&ɘH®ø™õk¸V_¥ÄóU}VŠ€ÿRfÙᎠüFÁ¯›’!ÜâþÖb›l¯ïì%ä\ª–v+ø’À\XÉûø£,&½š û[;€Œ¥Ñ*’)!ÏFm‘ç/”¦BS@ÖKYº¯Õƒ“š}I•s¶ýÁX¼j…PSªôë“(úƒo¨1ZC#¹£D¢øîœù\.‘ˆ\iáSà÷‘ÌÉ ÛßϤ°-hɺpPп l :4êÖ»‹5½öS!ߊd÷ügX°70„§T@Œ‹ÃxbÀêÎÿµ†|¹M7´›†-:µw ù›h<ÌÆ‚Lãò»kçõÌ+:íD<—_e¨3£ yÞ%—URëæä6@(í7´¸£à)¶t­Ì3yꇈšé¨â€ZI/íO¿t©1nD ÷a³G3&ê­¸ßÌËóûÙ³‚LËÇéOÃIawå˜x»Çùv*Þ.]n˜¢è4¼®åöE§êט³ì8ÉnµŸ˜ÓJ¤#“P[C,ŸüÏP“<ÒÖi„½ßÃtcÆSmm¼ï¿~çM6ñüïjÙ)›f¿2¨µJðÿÁé€ZÑ--¿ðTsá°¾ËX6P)®ÉÈeÄï<Ž: c'vº¹–ÏŒŽTß̺BE¢d¿×.Åw¡:Çíȱ8Á:äZý¸&FóGG[!¤ª;tyºWA³g+yîÄ"8Àø®ó9>x=0_ˆæ‹_åÿQÌ'ê©PØ:L Ò£‹e†=¥À#î÷É÷b^ÉVcÜ}P—¾%Z-E6y¼L#Yª˜ÞdSO»‡êä¶c1ã÷*Õÿ¶§j®Û÷Ð)Á½qÔÃè#”ðb£®û õG:ÏÔbÐtèêžk¸o#ýä¡(|äÈ5Fë±\íÐ T0~$mCi¼g”ÇP×K–ýf.f ÊÚ© ÍZ|­wŒ^i¡Ô 1Ÿ)kèxç-z™BðK$†É¦Â…¹¹â]þ9=÷t©XŸVÏЋP呎u[xÎUÏaÙNòÊ@÷ò•¯ õÍ…<byj,Ä.QpgÔaøÅ]#P™ž uÚÑq‹Q,«÷{B,ætÛØº. U/€Þ~’5òèö»Hù6BjÝ‚µ\„V4xè¶(|­Ã1Z=ì°/¸wú§&j`]Âåf´B¶x¥CÌEïåATÿ.ÊóóEÐUÇöëc¸aºš^öƱÒJ¾Gè¹ETÆ<ù,¦ß‹b‰Ä©ÿãÑA‡WÖ8ñNb·Xzó S$Ä‹ýÐ º’[6—ƒw7šm®£Uò,çvõµÿÜ®¬6œH z Ž6PåZe¨ú~lRïØŠëÆ°á{&÷Õ&ÕbRrßeT[Öä©‚PXy>QÏp©¾ÇæÀêŽ?\µÖm‰gv‡¯6›´´ÃR^U ¹bRqMð»Ï;ðùHÉ1iïËtZúDQ.Ñœg¥HDIsŒhøµ×:ÏôšÛÆH46¾„£% ë4EŠù׻ɜÌmx7Ï¿VG" ê?þÅ0Ü•äáï{멉 <öëCYlÅYC(`Q¶]¨¬ êí'©®â’í€#f/~¬(ÒC…7å5â¿þÝ­L2¦mžöI)ƒ¬/–•ÐÁ ‚ V‰Zz¬.à »û& ïÚÁñõ²Å£nÂÒí ‰ûÙrd‰VÈ.r"׸cmzn((…¬ÑñF+¶{Î’!¼&¦?gsI1¸`EÅ‹zt›ùWÅ #oèÄz„ï ëá¼~!•Tcé#»ÙE³¦šÞ÷X8’´Ž Í‚®¸a mÍnþÔ^׆’/iò¼œÀÈ„²˜qÛÂ4oldœ„yÞíÛšKƒSMuÉ ¹]R1¥è]/ú¨:¶%*–U¼7FCÝÆÀøþïj’w ŒçIô‡‰›ø¾˜§=WÆè~ÒÂÑ8MòËC0:Å;™Ⱥ0w9„&¢¹Ù”ö_Š».êËwÈ}»Ï8ã]=`=xIAÏs&½^»¿]õ}‰±@¡ÔO•˜ ¹:Žm6CÜÿæ© 0pê:ß £ dÒÂÞ=!£:qgœŽrc1½ "¢M‹ näwXìß øí }â§ÆméÍ:";:š@SF^TJq†Ã …nbÚX¤ øßÅS¢¯z÷LT#š±ÎÕÕUh=9S©Ñ­£{)ÏJ~A%ÀÍ ¬†A&»"#€šüÔ͇Rf‰œI®­(²:É'¹IHdh­…õö6C‘ÿaQßj !éáL;ê¿Dº¸©ŸŸ éž@ÅeHö×íŠðD#u7ó3iEå–Q©b%о½Ø¹"×ΠILfÊ©bûœõêCÍÅ|v†~=¬™,'5Ï0xÚßdPÐmèt/¶¤ åëœG;H9L p aRsýæèQÿ­ïw]Ó ‡¤ûÌoe3‚cÌÓòiA(<%3þk²{–zÁB:òæŒÖ>€^9›æP fÛ Í×˰SƒZ?1O$‹;Gé5Ý‹9q+ã­`.y¾c6­IŠ2&ö°©ð^Ͻ¿bô’41bÇ‚ýü)ËĶø'´Šœ’Ö5yî‚»[ ?ÊFY"‡èºäd¶xÔx]Ÿçzg’Ãòh2œv¼ý+ TçÜ¥C”Ýg¨fkúÿíJõaøB.l¤ 3GŠWÐÎÖ ˜>@Tg÷ '9rÊàãËíæ{p…A§MMŸÉß1øy‚ÌQö™q½¸ÄZ×Å$`êÃî %x‹8u †i¸XâÙ"üØÜ·­¬XŒ˜- ^ZG}þÆö dÁƒ•%¸®Öý…C1œÙ ªTÇY}ë¥[V³Wˆ`+Sx§ƒ‡ò„Ñ$h޲€‰emÁz2]™=|Aˆ5rqmüž‘¤3ÊÓu¾aFwÝÓPžÌdˆQ–±?…H†ô¦kù+Àú¹U¿Û¥Ã52bÙØB÷à¹Lžý˜œÝåÁéMl12²ÃA£WLÞZGÀB(¾šï¹Ì’ØðÍpè§›òþÄØCò†FMÿHåspÁŶ}‚Rð-O\ectÐë¦À­¬‚z·kLúÿ1æEPYÕZeÚ‡_KJï™DÙ†.]·x~DefMDè? éÊÈÃw¡[Åï¹À@4wœÔZ8“º Ž³LCå‰Z²ØÔ+i°ëÕc Ô”å¥Â1ux[n¶ ŠþUÁ—ÖÐÁ½R–}B}@Žag/–ûËœ¬¢Çœ¿²0ß]"úKmfa§d1ÖäÛ«¸fQO—ª®H;°¸%s ed¡£‹;›÷<ÐÏ[Û -ЙX¹Â]ÚÅ0ˈôêì bÁé‘1éÞ+ê˜F–ÍXm¥l nPvhè „b™¥Þ ¬ƒ2U¤ÖâE%ÏYIå%xøÑ5¹°Ÿ$Zs©B˜¤·¡ói©ùñ”ýêÉØ¦Ø`Õ´j»\âw220©–¹R§a‹hc@È'Åš~YhsðöôN&?[n-á¥/;²äö¥u=ÆVá oG•4ÀVϺU‡IjN¢[´ºŽ6%Ä÷ö¿#]¥‰;ˆ;BLµ{Sôµ4€œ¼Å,-Iá„—èJ›mŒþÔ¼´Œã*ÉÅ«º°9d¥è„l7«ÅŸÍ¢ŠãT,+i!üØø˜¡¬û¯…é( PÑ‘`÷²ðdôØi9‹W1!ßs²VÙÓ^ßÕ”€­–çù©FßÌ$šE¿3:hâ¢rGY ©¢»$yPžu)7æþGôöTø?I'¾!$ˆ÷b1$éðqé|-úb5{¶ )8‚™ZA"u}„ôsc‰0ë`:wvçÔØ“¹ü¿Bøðüq®í†Tp!ÏšuG\Aå…ðžošH$÷ª–H6)ž„ té=HœºÝ`bÄæ3µÉþA ˆ0ö‚$Ÿxzxàb‡N™; njtûRåZœ·ÿÀ@@R\kE†è@Õ:‹Asdõ¬ò–‚†BŸüoãIðÔg'D„®§/07s¬[·=PðVsʪ2J7ŽžÓ€(s©j”þ(NA !‹Yu<ÜýÉ–Rzº=’õŒnȈSÏÎJ×^èšæocè0 Öyýüí‹°…Ô”@Íí\îWÖ¢>ZÃý§ÿÅáb „[aåò•ãå×5ÌØÊ0dP]™ÄQWÍErg ¾î:¨Xe3µuñ‹´;ȃˆxªÆocFŽœ«SãÊÅÍv9´–ÿ‰½Ú7¬Ç2Ü©:ý·‘‘·(€yEÎö÷OwžÑ’’(ñs·^ÞQkžÓÔQ>KÚƒ¤mÅW¹ Ìå긻p鸖à1GkÉÏŽÏΕœ¢ßú=&´?þká˜aælbïÏ—Qy(¬»?£ÛÞ¾/‰F²£ØîéñûGœ—æz•ºÿêþc–]èL]Fà7NTä§q ÿ­½lv‘êЄ„:H ”uQ ]7FÈ’îÌ!’u cH\­Z…4 (Ì­X ó}" »ÕqüÜŸË®þ¿Æé(¾”ü,Ìß^y?MC*DV[E±áz@ô¥¦û¢îSte°XP:ô7€4Íx´‡dµ¯ýVÁøÝö(_4ËŽàûć\Ñ{ú¦`Kgãÿ}Åz’. Ô¤qŽ@ïù]!Z‘¨ÜÓ¿5ôn\:ºFÌ3îÁæ™qצª-aðW@V…ì8 ÷=B’eèÖt$ˆýÿÏ´·Ÿ÷ŒTe›R¨~ÿ¥oùN¾äæ¾FZ¡~Ýú& ûÆ5 é2øËí¡Ø»Lå N—\nŠK­n„žù•Õ¡<ûÎS=EÅáDC•?2d?iqUÝZݽæDÃÄc¶½4xI‡@ã| :/ôÔnÝO‡Á4©] ¼T *vN#èN[ÕÃ{gúX°y ár|jÎÄÞIrcoòú8x}0åZ¤¾înbÆF÷žQhÅþKñîì'²œ•Æ®¼ÎÁáqñ@UhCë‚ĹÊú  ÎœÐª b·ÞŽØå¿B,>…£U5tjM_"¢æ0y[@–Z/½‘<þ°0ã¦y'½]ó8â˜bÂ>¡}X—ÜËܼNí“'¥ÃtÜ•P: Y]ÊÁ¥Ʌн·¥K#Ž ôä%ß%eÈyO›~CE™â2ߌ" Ù‹.`RNEgPoLî–XµÙ®’“?ËDÌ…$ÈÜŽúið8ßñ$ì)#ÕsBÏ@Vî/³œ:J”G9ÿÍF-§ÜµV8³{ÚO/úyö/às¶^GÿoeFá üìö×n˜¶átÀëA¿®¨ÍwO&ë¨Ô€Wòw2SKìOýl‘öé¦÷óàã«–ºBÃP€Äâë+À~KÏ<¡’nƒA…¿iálÃÍ-]å²gUL⻂`2^ç›à€ ‹Çsdâ_üWȪòuøFO É× q7Æc6øØ$['ÎrØ? … «&Mòþ¿¥šÖ,µ¯H«xlmÎÌ™ö6_Üý§ËTgY&p O™Ø…HïÁjâlý*rÜ {V'Š9|Øc}Pê·_‚\ *cŒÈ÷ŽŸí^¶”ÙËn´Q3Dפ‰}·v±™“¤j6,HV“qñ˜Ø–gÛݯ 爞i¶NW~k·ZA}iÉÙ5t;Ïnl¾äãÓÂGÌÎ.=ɾS‰âv&ôšÂñÒ¢9`­‘ÁñÖÀ3M{d<¢4b³ kVßs ºqšš¾ô|PÈmXtáÀ‹¦‡À`Tq,;\"'&jDË jšõ`³´}…ßbs…ò±ß£ˆnýtù™|C7Êî°]9dzº™Kd—Š’»T>õŽóCVzêoDÀì‚ö5ùö ‹U\EǰàðÓ€Vi2}þ$£ÈOçag_ ÝÓ¼FHrÉ€£«1ÐÑ’Myœ`8þå dá™×o ´&“äZšçPâ¡ bÞøCàÚ¡hžrAa´ˆ¿íšŸ‡L2ŽŸ$¯&ýðÖ=EåßÕTbe›ûÈ.ßBx|¯½$ÚÛº}±íK¿Fæ¹Ùâvƒ²u ‹Øn–1Wõï¾F4üR Êe f¯'NzîòéÉüßw®oÎæüŽØ{Y˜ÞÛQ¾5ª»÷_ØLorÊ蓺žC?)§`dQ‘Eb¶œýçBÜQV€/æPë`ùÏ®L«ß‚®‚a4a‰DÉ|ñu>´JÝN]Q¿¥šƒÊ6UŠé ’lZi-ñ=Xi8~Wäí1Ðó~, Ó?ª¨Opxo|ªÉËP@T­ëSV0¨¢J(’Tmöo”TýL<±Ó`* 3²£p!dc´#Áf.‰»øY³þIF}(w}_mßž–[ö2ciW÷›2Û"(º6›<îOcÝ¡¦îZ÷z*öã¿ç2›ùŠ”æ@ؼXƒ¡˜BIØ”ÂÙä¥ÍA›ˆxFÛ2O EX ØùK˜Ò“ ÑÁ“¨éæÏ„+´Y˜¥<ÖŸœZ™çÉ*¦–p?ý³& · î5Ñ4Y7ÒµVæRV ~ ã¼Ûð}‰ìõ޲Ô`f`ÄT„tÿÒ-)Mr•’”f6:íò¡!‰=> Ë”áׯã@ÇÂ?#:Ò’üß¶ÕŽ v„x­6A3«ñà;yùÁÜøþµš/-AÙL!¹¾ ¿8žB2ÈÿZ/–$DÖOŽ€†¦·ÆÃ í§y< ö‘a÷‹¥·œbQ¡fÆàh핌g'CãeÚÜX»ðqi ùš)Ôž÷ût^€Áø¨ Í•@4>ñÀå^Nn/gš‚"½R³ z`Ô–ç-Q™rïâ;J[ò)öEü˜ýwäàùe‰D!Å=¡Ò—¼ÆñIsI §›óðeïº8%Z7kô ?½œ8gÜ:‚h”3/A÷zgTâ¡vgsÄ)¸N¸é•ø¹~¸G6ã ³~Ý.­ž5>úŠd„Ìc4<Ã%‹¼‘°9QZ ¨]¹1^T‡lX¤ª %sôd/Ð(w{þ6Ë-¡SgŽgx—6 ?‰a{ä#ŸX¯iÀlJ4Œ~Nž2ox\ú |è}ì/€x†¨tÎ{þ ËB¡Œÿß¶FRr“UðÏ-Ž@Výä¶•|3@rÀíƒJ]L§oì¯&lÝ5¼±M­i£›™§W—d”^…FÛôn†¨¿/>n[ÿ40¹‡Gx·Ý ó¯è€Bì7´ÆÒ§)”hè,“å-gJ ’-0Ö¢âÕP} 5nO× -[ZÝ4c÷Õô¤Ï‚â^p Ö_B‚°/á¼6º¹_Œ\'GGá5úƒ®Y=›rÒªòH9x÷åÌuGŽôwßþ·j´M)çu4Û7Í»(6 2Ø0dk¥ò”ðÍ'æ)Ì¿ÜTßR’Ùý·`"÷8£S’€d»õ=ÚþˆùÆ÷5òšÉ1’ 5[ÚsJŸ#Þ"œ)DSœópy&éCw eÿÖ ¤ ¦>¡7i0QÕè¢Þá7‹…B¥v/¤çLÙÚ܆oà¨3h*̹¿à£ÐÅZ2ÌÔ›ëj˜¿ÌßÌöúŠ“Tξ®ÔEùù•ðÆ¼ø¸÷îLŒ›¯ÃIM÷Jª"{‰OЗí»Þ”8\é‘[kç® ¬‰m=¶\ Š_Œªnd>-h,ÏÜNÓÙ!"8Ö‘(Ü×g4,ç35hÜeVzBt`ùΪäãÄ*f»»xŸþÈKëÒ_àÊŠŒðös›ž*-øPÝjèysþ¥HÁîI5ñª€Úo]:³*ϾZE*B cÙÁäRó/-™:—;›¼ 2•-E žîÏ´§éÝ,ÎÿÝo—ò¨{q½oœ¸ýÈÙRÁ¡B°CÅÏs+×!PUò”zÆ)|ÓƒD­DˆÌŸŸ¨½ <Ùa#—=‰€k•n¢.ãA}C(ðµô–N ¬´/,ßVÈM#k—¤œ2üðP+âN;¯ž8ÓóZufëùnßøÆ_ÞºÖËã‚öaGòÃ9ù]ùGƒÜ£P£\5h"&÷Q—ã¥GÅJ}ІbÖÍJB…úILùmæñ²…̇èn¤!êh³qzŒ$¢\«Ëz Ù)}UHd’¯7VA  }¦äBùY¼)st#E vLßÓÊMûÌ[›±$ÕÇ)vš[E°»7dåœ ÷ ¤«©EØŽ³} -¯2{w÷½ÍqÖ©Ca´•(Γƒ1¦è|=§eáUZ(qC2›0ˆØº\äÛhi˜5žð‹EØ…™&eÏj|øwåäޏ/Ê)0ÑáÞ Ÿ8švÒ@])áì—!!Ê~UØ2á¬ÝR9yqÌ®+¸|OÈW Þ‘OѪÌ\e°/›_C}:+t˜~ZËœK!“€qs]zDÜ/~îîº2ÀäFtÓ9‹°úUµ³?Î]jºy.…¾åÛ$k#,¬ÄP$ßËÝÄ’ç7¦P²ìè0]‹Ö^ùÓq2>`ñÉSR:†¿.ca .$”Qn~&33²}ÔŠ:ç;¸¤@/¼VáÕR ©Î7†œFblù4뾇 ϧGÔ;€¤0Ï龟3 ùö6ݵ©m¥±8|m9gMVî-^ yò׬ں P^ÖtRŸ;ðÝa®ê¨Û«M㈭S*­–­+]’†(Å7“¸Í]¤=g)›ô§Ga¨»¥rHÛ¦‚¹ÕuË‹Ø%®÷H ˆEÊ÷—òZ©‘îoÅ<÷ Îv™úú à[M%5®ûÇïTÄî7L™›™Ü„ Õqg0b}\– [5îEÅo'R{Ë·«uôÛýywò”¿JýóÐõT[NƒÐ ]Lh5°[ᔈÎbñûFN–\¡ñWÝEß‚=<Ë8*¹ô2]§Å™Ý†ËH˜ôBI-€"¢½ÍK|]b†°ÊOTˆŽQ“5Çü@d¥Þ ÈrIóŸ×YÚ@·G˜/q¤A2ôPŸQ¸iY¢m†ºåäðp‹\bª7uŒžŒšÐʆ7È (k?E `LÖÄéoR‡Ñµ˜ÀnµÙc kýgÐoù”>ò”@k4”Æ9ûMõþµ ßX Ü»ë­$S¾˜]/Íyp‡®3‡Î’Ä…â8l-Šƒ2WS¹²lnÇ!lÞøÿ'ZŸ·9M¹ApŸó¡wÑêÐx‹ÙÌ¢É%§Êv»mmÉ£Ì1­ðýé`6IuP¨¸1¢¶Tt}¨Ð"pV,ÄÐ5ºØ6TÓ£‚¼³ËYiu»6žÈQãY2¡¾T'^]ãWµß\yoç_mîÝ«¯e8{ÉVE[j¥/˜Ò"©þ¸v¸*Š#̪ö‰ë§œUôqç˜xS»£Dfþþóz׺ ÅxF=5Èé+™ª7ð•%'© nÒí¤b±øŸÖþ¦)6‡Š¿ÐÔqUÉö;·&ÒeéÞ/ÁAmÅ•4ðË6¿{á· Û%ëUôm`èÕ-ðצN}÷᪮û:f±7!?êŸÁF|µÉï_*’Ÿr`²V¾(âþ=ÀwCàŠ¨©ñHøw4–¼Žƒ*þˆaÄ&BÚ\ô_ äwë³qÉ~û7è\z›–ã±Ûùbí}1ÔðF5 Àâ“st^?ð fÉG !'@ÃüvÜ÷ˆ”&0 Ï UO‚ÕOé/EôªtÊIÛß­ù_K¡½ 7¤W´°ì~Ù¹eLŽ£Ïáÿݽˆé’üãz‚Eÿ_ÿƒC&ËÎË& ïàqõqù\ò8;Šœ¦Æå)»7‡-^výƒc×2¨‡&¹#jª©=ŸÓóïÉ11 ¢­wåº{µU¾k;²åñåêMI ÎGm/ÜçP6!.ª8ÀUËàmÉ©2ü´Uµcú“]üuʘ€ž’QÅôœdʬçw>V(ØjÝUs€_%¾[°ai³¾u#OŽ‹¾SÖ W½-4 Ýo„|k2d£Ùû5Ø!„­A@Ûß}ðqÔD€hÊúwóž?n ]AýÉh/þÈíñøu‘@ãD˜MA5t·Òè<@Û­Nx ·‰dµ¸,‘Œ‰žsdƒ6D@/-Ù`³{Á/MÜÎ ø3úyO@v©zt޽§d“(DàçÝÚˆÞ%šÂnaÔóH M‹l0ûŒ\`/Â@r,‘_"9­2ÒO¥'/€K)»ü7Ü?â›»†é À­ .¦ᔤB¦…æ!íì6ÝîRüæÜ?6ÙI;ðÏâí2ßçËtŒ0ˆnSQÁUÜ^–pp‰¶H’kËuî’ Q°J&ÑΫzYÊ%-‚õƒµ)ÈI4ÕRY,…TØ »¶>éM5Ô3û:€ A* hs¨4~œ:ÉäÏ^Ú*æbøêwáç=Œ=!­Ý ï.¸ßhy¯âf—0Šã:/7b쟗†òsR´¶·Q*¢‰9AvØåšT®ÖS!¹‹}ÿ;#mÕ”TP7ßmòš³É–c| }àXåõ£®€ñî=íMTÌZ÷0Ñ_<9DDZE›_0ÚËØ®t…£=E“3;±@Þï‡;Jó3ZÌ÷œ7ù;ú­6“RV«Îä ? p“Èãåž:­ ·ÜP¸ø}šÉÏjb|•2éŽvpÔ]îéb|â= ~w¼8ÛÌ"BR3YÅâòaM?›ã%ë+½ØŒspyµVlkhÅ8c‘>¸ÈØoÜËí3‹$*pJt›KÁúòe-æÂ3_²½Ãiòê*@y+©º[)«âUô^_VÝ~içSÓ›ùw|ÿj–Ã6rg·þèu%üa¾½…ÐŒyhA¡|Bì: ï݉HÌ'{ m 3{ÚËÛTÓÂÍ\90—Ì2LNmLbß*?[˵B£cFÞl¬ñVçò°ßgùQ¶HÓP… è½’cº öQÃŒ1oD=½–¤‹8'Å%즡ϓí9Œ 9Úê´}}kØúsK `æ*fÈÉlФßJ9-áÏm³] }dh¾p¥2žÂ&¡  Ã¼Z‚g?°o€"ÍÇwkZt*y ÒAôø†Åv˜m¤¨#™í*c¬ž©#Lfþg-ÊñÞ ¢£päÕüÖVå“`TûÄËôÄp‚صÂÝq>­Cßç€S’ÏÎ^ «çç®2þ ‚GÏ{©å)Á¬þ¸‰Ù8}PÎ<‘2'À´-cç%ƒ6²V¹sâ`>Ý[,RãuuðW=\æÏ,º. cï:ÊñôGV8èw  5ǽ-õáÜ8Ó"`Qœ!ÿU\ îK?Ràš…ý»$ª'×±+‹t”Ëë_—*vUA å•Ù§ƒ/šÎ̺´ogn($½IFøŸ¹æX¨øñWÓÀ”⢠M;Ñ5–8px˺ƒhŠA±ß>C$ù!Òs¡Ñ­Ëš"#õY0s¾Ö–âË ÚO¨:Ò¢-`Õ¡+àûT–‹Ä=”S´ïºf­€B¿Yˆã÷x). !Ñš2ÜÌÜ‘[–ÏUL#múd³ÕˆK_Üùi=Dhþ›ÀTÚ¨öÿð’÷kÓ 2D7r¹a9ôµ°<øGZ&!4®8žÄJÓ©(LrÎçQçݱJʇXQ5å3‰qÊ*ôM%^ç #UØú]vy!жþzÌU·ußFŽeº×éA¬ÿâ6”Èf¬Ï*J„ 4í¦zf]—™ÊQ—%Lsg¯èBìšÉñ»Ä' ôÁÁ`Cù5«²"ÞQD¡òcŠ•CÐí8n‹’i2ê•ÿJL0|lÈöu|œ˜(½Té{íºörÿ] á-ìÒœƒî’˜Ü ÌK¬Ýó² ¿/+¨Þøáý3‘_Èj Ô•Ö6¾“̧ˆŸ>V0Õ¡hS% çÃqv‡j tÅ~N*þÆÎòù^¯Ž"KÕžòãpêÍS^ÿJáüÙµÈé¡–dŽÓ&þ »"«®¹²-ä~&iqMådWiMPfC¡2.9ý™ÊÅßšÞr~d×^Z oJO•#Ⱦä±É} ùOD.\•󢡸xm×}‹i%þ‹lbw!- Yêž\8 ˆíç&µrÆÚ”È8h‚d ª˜Såí:’ÕòpI¨Lj^ºôã»X¦o· LÃèkùįp T+x¨JZt;uØd[5 œ í¿éyç§Åo¼±œœBs3kóKöce‹”EIä}HCÓ0|pw‹/5DÒ×9úƸay¼blU‘Ónmï+‰Ø·ÎhýŸÕN'ðrwÄ,ì°[/ÉÔ VÍ•¹Ãaר¯ 'l­< AOøš„·5»çe4V:]ÈgÒåÅËD³=3NÔQUðÄfvX)Tÿ%³I¦~YEhñ™Bg8p»@&ùæ'2t ºçœ‹‡AA9wÜâýc.§Úg#“‰E÷kºÄY=ä† %w ¡ ®Ù»ùHÜob=}‹qŽ2XXKk‚‹‚’ƪ“s ˜žùNa9'U¥¤È ¢â˜Êô ƧÍ šËP™ì8ûîòÙû{%fZ~å·†›^Wê;”S3‡blië0˺u:°¾1 ƘñæÄ«@82ú¨¬·:H«hš+WLÇíÞÛ|ŽíÞ#'ØÅZLvH ˆG¦nüÑà”±º¿Äæ`öÞ^‘’=_!G«íãúsæLÉ×rãcqz_¹ó@ ÒKŠìÒ%y»z5Z„±5týÝ\ùcº/å¸c"¤ T¢BôUÀ`ò‘ó]f|±C…;û :·K—ÕíLg¤å­Á{»_Jè Ù$­ÒŒ)Ì|2ü0úóæßÇÉæ[&ýeu´æM5‰L)«jòå£Åq—¤ã£N_Õx±¨‹ÀTü¬ÚŸ±o’¹Ñ)¢i/)³àžcj—Æ)Bº™k 39ûÏp Bï'a}àKLëGÝHØê,§ëÄŒê·è~ FÖ£6'“%Ý­åÉ®Ÿ`uï k¨£¬ø*Oï™Óvâc=[0Ì -ïºÂ’#Õ¸4öã–r…x4ƒbÞ¼°ˆ®ã½±0Hí!â~‡(é íF¤»ÙLJ2äx¦Am*šæ±çfˆMá„¡#m°æ"¼ÿœB‡)vœŠº|BPƒ^ÝêÁ¦ÉT阮ÐÙο@ÇÂM¬7[1‰Œoí8wåGžœ"<»ž»ðŒ¨Zñ3ïÒöRJœš¯‚’äZ*‹Tî°?­bFØ%Ñ÷/ž/u›¤yEºòpÍë{;i€Â€$J÷r¢U`Aíúa6/]V³Ö~ÃO9‰ÛäL %Õ ”:“v/7Ëï{ÊßRÒt¤&ÿ\2¦´ÕPòaûd@—øŒ£á¤Ýû"üfñÛ0kYÙ5÷½(ê–8¹V]*µ%Y†„ÖRgC9P'¿{榚w”ƒ‰Ì‚4×[$ñ¬ŠúÎÃMÚ–çg2g¿÷¹ òJzæ¨c;äÅxD7ê¢Ýg‡ÕQ“‚ùú ¯_¤6ƒI¯wë$Bzt½UÆ&Tþzïò¤vï¾:ã­hü¢‹,—¤‚ò}-]’^¡f =8˜ÛBjú% Ÿåç/b Í¶Ð"ÈŒöÆm²3Wf@»‡ÞüP6ÖEÂ!x«Ê±ééN]bϺøÞ]>j¯ f~yÙ‰ûH“i©Cˆ6kéñšKÅ'ógÇ…Óõø¦ÌÇgG>ê¹·µã5Ý2ã%qOÈ/†û†ìÚ¾ì~)SJi«¡÷Ab(U<âLEyƒU§Iaõ”µ{ÓVj›¸¬ûi';ð]³A`™Â#mèF±XMITB½Et[–¨¥fŒà ÚJJ¬kª2”Í®À"²G´Løh°±Ñ¦è}χtÓÇa2N…ULê»aöÕ¯ãûë@ú‰g ì2é±+–@íÈùG­b2}ÜóÔ9È/UR#»d=[¨ƒ±ìÝÀ²Þâ¦Ö7݃²ÉCu¼ÇçÍ“³ØW5¬òFÜ”Or¼S¶Ë$á05'“Ú–B¬mؤ ý™9é¼U%¾ì‰ï‹hoÇ?pÏd}M´ ´q*ÿÞï±IiÑî(8~þ@²Íâ¥âhõ§*ýxݘlL[cŽ3Û!¿ÃV™¡Îåd¼ŸáfW~BªÈÓ¼a…ß÷NOĬx»V.ÀPòXRäx!Çô—‰*²&§Ã˜â¡M¹ZÄ*ï™±½Âi#‘¿™6¥&x }òC¤ˆ_­Ñ\9Öîʮƃk3}výW¾KZ0FK[Ò­(æN– x†¤[¡ëbz™ÎHeüøµé³ó,à¿OhHÞ)c¾”µ™Ÿi4ÍÒŽQ2–ƒóà®OônàëE€ þˆËE ÖPäè"ñá-,<ácÔ„ÖoaÍÈQÚëuÝ ÈT|¦0°ü‘‡c~p!l„às:TmÛ-iø{Ž 8qwfâ>u´ h¶¶k°Q-a½ÝÉ·&X Ú8ªË®ê‘,¹Í"³dšL)(ëd–Ü?»šð°E®Ø›ÌãA7‹wÙ nG,@tèÍÒäpæUS˜L~ú§C˜æ/‡li¢Üluæ@«»½‹Ù8èà%€'|³ééH¶sõø•_oÚV$Yïßz+Ñ–·hЙðÛŽÈ}÷>|º¶ìñ¬¹Ä2¿·¯E÷NE_Eî¦#g©,`äµc>ð??köÝÝçÈ+vê˜báðÈ:a¦¬ VNÛúLýÆÆëÞžûžO¥äYݵ })–ƒÿ_Ë&;®1¯T[à„žó¤k]kÿ0à Iá¸&ìHߪ,gï ¯øx"ò8Ó„²L© ްôS¥t¬än+*ÿ1SÒgñ@›'øÁHY;Í—ÙdQ+²R0ƒ¦J8–Óß9î'û¶ÞU_cLv„Ù0 õE×îeˆÈ¬î^^o3©Áràc\DÆ—`]wÞvCì ˆå,ÔQå¿Ù¼OS¥„IZõðÙܵÀ¢ý`Ö{ã«ûqž>_FFÀ2»ù··†À:Ϊg¶¢ŠX'ĪXCy4ú+Ú¤€4O½ûþJrîb€ŒÍ7‘Šõ¼nÆ¡÷oe w;ò%©aê•‹‚b_ LÆöî·Ï$7çI ¬Ñ…¼½mÏdí¼_WT°ž†y·ã„þÅ%Jóµ¨ä`<¿gÚMoâ1vä €­ë°ÈÚ3†Rc»å{<¯]j3]Ÿ0俘Ç,âb–XøoöÅ(aÁcâB'ü,sgHT/¦£©—ÛŸSH–´e¢½bÁÇ­Ôt*ð ”«±“×(ª= OÌyÔE¶ãŽH}S˜ ×'³³zP€Êtùš"“êÁs¼o ;…àš×&Yá€èœlj1]§Ò0G9 –lJþ®ˆlQCÀ£ø”÷AÙÙkMâ<ð‡ÀúÑ÷žghòˆ&¨"ZÜä‹§ÒIéÕÙX PHI¢G“½råái“xiÆýÕÓ„Üd ásáöëã·ÝWRo î|ü5uÝ=ëûªztåòkU—§ð‚O%Ád®ôøù^tSâH?N©ô·×r$êµûˆÈ®·–2mˆW|ÆXŸfžhZ¤–ïÀ¾y¸–ÎïÌò$d&q „ðÀØÇ,ãvSQä—*Úô­Áª}¢àYR¦N‰œÝ\(ïSÌRÖz”hI.˜îyXlú°#ØçûÿDò™^Þjo‚Ái}>wÙCS¥l,qŠë…¦jÕù”æ˜"*ß Mj®•œ£¬ŸƒïÂz—ûäÄï>ÉõEñ«Ž˜¢+LáªÐéGÔ?dCÞp¹§Aùóѽ—7TKÆÇºÒ.i|/œÆ,òíœØ¢ KäMîÉÈ#É ¤´eªµuêpõú}Žï¤.Áé•ÅtPÜ÷<—âìf0mþ=zÕ·} kšòÜ1­ú…²ÓJŸ´ŽÔ³2ٱ˞*¿C„ÂzÙ X‚ètÌ)©“Zš·JT>E í#FÊ)ÎŒX¹D²*kÂ:€Î£Ð†“Wÿ‘´˜V™jR ~»xw.F“»X5lÞ%ÒΛ>Tϱ`ŽÊÊÊž:¡ÖYÐ5b‚ƒè¿´·–’oʶX§‚zûÚÚíq‚þúBº_'—épO|ñpyøª—uš$O•Ÿ ­æ;´y줗C+ÝõEùŽ^Q³³!#^Œ8Õ«1¸ãáb©õEÀ±å$jü*Þ@å)fío„2±ÒçµÄ¦9’1ŠwXG1su „Ièm vu j¼(“4lÆz&x%‡›¬,Öië]íY[[±'âv¤çV¨Ù&€M€tV§ë¸’¬å‰%hóWBÔÏF4nö¿—â Ð;ÄGêŸlR þÇ•³R‹š=uÏô2.¯ ~;È3{"ñ¥ f§ :1_´A¢40?~†/íÓ!!As«°ÜKvÎÊ ue˰ùFµ_|H6ÏlÅæ=¢PÉ B õÓKr}ªPнêceižðRsžú{2Yhèlã‘X¨ÜÜ^†lú,ƒo´¾{^é˜VY&@Z;š1§ÉÐ%K Ç_*ÏIüa!k$=”à™ْsYôegŒI\à<ˆ)ä‹7 *æ‡IôÐÜRÀtÉá³’*Êp3WÌÞæãìN, º­Ô Îûp;{R/á(—§y| ‘4o]]>Å"¢+I+UËG„ågoÚ²¯ã#ÍSÓ¼Sðq~Æ_š¬FhŽ Ng@‡oÜ?Dïq\±«;éÌFI¦r (£€Ê|1a²ïS• <<Þ‡ò¹0dØ),4÷e@Êv›ôëlÛ7V‡y9×Ú"ü«´JO( ¡/k±å&¹DO¬QÊKp0ÄžK{]ïw¥ôûðè‰1ÊJ/Óa“”ž†€rè¶!)¿goQ͈N¯ÇÐYSÅöµçU¡4ž+a¯!ËSÔ4†~x…B쉨 c¯16 ƒgÚÅÐÐÊLXG]²T®Ñ|p ÷‚³qhýyÕÒc¹]ZᡸԽu1,)Åo\-Âx±PEõw'"öeÌÌǹ¾.ó«ì \6tÈB£¨zˆFMÀFòœînù—B¾#©(CdD½5À‰íþ&ŽÇÉ1y>û°í<öíØ7:“ÿX "ƒË‹ª…¥ì•NB^fï/ϯE¼…‚FmEÈFLâÕôk Rr¢Eº§VzèÕžj€ÓöQì‚™GìÖ5£Å¸øÐ<æÀ$š³ ùë „Ìûò Åœ Kݹ{¸¼‰È/ÞJûØo‰m) ZJ —o‡!}AÒÊ]D5{íñUiNnësÓ2x?•”¥Ê€ÛT4H†÷ß5Ìf:®xÛRal‘ûÈÏMÙLêÌ!ÕNt ›¾\tHg"zcKT=Á‚NçPI벓[Ú»Î$ÃC¯Ù‰“=DetÛJù(&-Ùk³nM53‘NÐÞÍ¿ñ¼…9Omw9šé®Œ*¤âÌÅ ÊG1‰Ò$˜µfi[8·ól¾K„zù4ÊŽÞq‘yîYHjFÄõ:²'N)ºº0µ–2ië³õ½]÷ÆãÖä)yN>fÕk®û'T- >30’Ò¶ïþxSå€qI÷Á‰È:ìŽÐi0²G1mÙî~Æì$ÚþÁ·ÉÏ„c¯š¼Ü5bÂË&š?ÂÓ ¦q(zkú$ÐN“d+Yïï†]ÝÄÕmB%‹‰äwQ«“Ôí€T“N!<;×õT"κQšG™ÞŒÁ“][¤Vr£‘n†_Ú"ñÅ‚ƒÅГ1 ˆÔ)ÌîpÙû­ùÞ!˜Øö¢7#c«Óqk“GÃÿ„¬köÛœŒÏ‹߯þ¡H©¸¦øD}*¬ÓtÏ>+ˆ Ïà’bœ†ÿ Qˆ>æh ÝÐ1xµ±ú!bë°öf£Uâ¦bGT!+^åv.vŒ(ÑO”î!ÛZBVBåÕ *éË>Š3okŽ •Þé®õ†¶›¢ú]º !Á W˜Ê°äŸFg’gZ7Éw¬晵‹ãê€aeB¾×ÃD‚À!Ö‡f !#…ÐB"&pI¾á3LàAŽ—ûëNË?¶çÿ(Ê›*@¢xÌ@Î žl—ÈÈMœÛ|W€2ÁÑÐp® \éo|ÝöeM.»@C‘úqü&‡±;ß•=É`‚N•.Pµ=ue\zµÖ1ÜjÇšµ±Õwô¡„°‰¾€”aþ,±Â™ÇÚÍUÀPâÎ2±Áüt1©,ßivšL×5ŒõJL!c` E±âo.àô¯ÐGTÑê5ÉjøÂ¥—Žœpšñ~æ¸K¯]Åõ}ªÇ>¾Î\°ä6ÔOfÉ#ýB½î*i)P›CÚ l[êCZ`ï}θM8âhT*t´ƒxWUVñ]>lp_{S'½.†AˆÓ Ò©§I%6ÿþ«^‚~ŸÕçô hÿw톸ÞcP)ÅRÛ’ £Iî‚Ó¶€Ëžøýì;jš] Lÿ‚%{¾9’i@Ù£1ð9ú÷œ½ë»4ú.Í¢6g!þ×\ÙþÉo–'ܼ÷¼¢!UÄ{M}²oÿþº”´ñóÐÀfQ.€@N~O ]ó“Ò ´‹±”-f;CÙ(rð„ÎÔ¹_ ­[fHÝ 2Ä×–ÆÅ#ŽƒÒ¬K|}G”L4‹^ºäê§›A®n1ôÀR?CøR¬p—|‹C»Åš‚vg^µn^Oì#» s-Ë6¼ú;’•N#¡!QŒ/u³g‹±ÑætYK×h )‹OÈ_RIìû :ˆ| Ʋ‹Ù_3 vjè¤xÏÀt%$‰'¥Uü¶½gì©ì½gäTgOì?у×Ä)ÚV×á‡ôðþÕ—?ü2~鲉à¥0žüÄHõà'ÄwOÂ7¢`Œfì!~Œ= @mLYj¦}†EHy³s“ ð†‹áðájz¤ÔöM„çÍx%E[X³p®­”ÈøÏe®v5H8Ð2:·ãr|®ôáHºÅ%è˜èŸÙŠì<—Ì‚=ˆ¢ÄßîÜ:)QTì"nÝÛ¬œ®YÌŠÐÆ÷•¤¡¼„Þ’‚¥[ÙO1¯)ÄŠ’ˆÛL¡ý2œÍ®Å]ã÷ÇÅøï ad(zw-«¶æ3šõŸ›~lÜRæ¥oñ£ D!2y™^t¸ÈÊ«_ãV#T´H–WÚñ€~{v·Ñ<9 ÐÏðTNªãhý÷×zç†6m}_AH¤á—zX¢Ìd§8vùõÝ$V6Þ;)Ptc'Ë÷è÷~™+Í?¼Fx傞T*~±ÇóþÒHÓ181ZoLàÿu WK<šÁ´ þÍøY_¿iÃÆŒçø‡Ù{ùê6Uš2TqãË­`ž›9S¥×oß™aô„£@ë!oýrl¨Cßlä¨ÜyÀÐTñ¥!e2­Òá¢Óïÿ½£ëîÞµ±³9M'É÷ðDôåÚ¨0».#m¹tÒÇĺùOB´á£ÔH”Dd+ÍEîjX%#> ûô>"#j³2Ý„)C$5p¦RP°|lq—½4ÐwáœkøãDÏKº¬2ö÷Æêu€~× Ò> %ÉRÕîÆö™ö¿ÂG*êÐ|î$Rþ°ý)5ZÑãÿ80ñöV`+n*O£3À4è­Uë}ò„J68ÃM‘«g¥=qN8{‡ÂÔ™u¶^¨¯yæ·,!ГÊ1„ ur‡¸‰V[×J4C&% ™†ÒV,I0i[0 ðÓ€M’G”¾ VÐi.4.é9ÉQî#ðªÇãt'&¨ž<>Ìdë»;À_ÜvÀNâ‚ê7xšWõ`iqYeŠ„ÿœ„âHˆ2`Fó&(ãßm â)KþÜèXþ”¿±§¿¸qÊNŒM\$QÆIkkN™ÍÇôÈcÞ’FÀÓjS7ÒÞ™E$ë¹6—ì³VP g´ö%Tø<Òà †—±žZøbÈY*Kõš¼/òo-ÿ–U+Ówû\ÇÄ‘"BË%‰ØþëcwX±©FÈ $8ò­=Ãé¿à.0]jNXMÂeÆ]$ºÖ!­ÊqÑgiUê‚w®z’Nļð:‡5í u/ð¼áhаÄÞTÙÕÏ ò>žÍ²©ÛS­¶ÝÈߊ©©98åvÓ]–²ZXiàº{¼kk§Öþa®—TSŸñ+ׯBfjÆ¡É.Îé0¥Î¢ÔþÝaJȲæAÿ¬cR¡¥ÍI´î;wŸ%ænÌ3„{ùJã[>zàq#*^¿3–nz£m÷Tïæ\ƒ{±`‰ޏG¬&ûT•ÊuQ$òùu? 0wµL«…Æe~têÔ+®v çôNõjC@ú[ G£èúÔ†2Ž¢oä2h³]A÷F«èon<Þ\M¬ÐFi[ß(£ïâý¾Àª`d)‚ç3°6éñF©MN× WæÕn ¨,õ (ž3 —ÿˆ&xµgÆž: ©4Æ€ßûÚ”©Â%rö%·£¡¢÷# j¨¾gˆ Uï¸;ý0^EÞëD—½RW¹d,*‘þGê\á’¢Ÿmo«b+HuA—ŽSøo#9§9…5,ÏŒßF3´¤wŠòmÂE è˹öÇr®è°—dÝweùŒ­üŸÈ©µÕa韎Í7’9¸næ»?¹àÝ«< 3¬3iÀÇ(´š²;}á¶Xn}c”‹…ñô‹$[Ѫ«¾øîPsÐëyOÇ8›+¼ÜÍœÎ93ôçƒh´Z§¯xI(hW¹“b%1ÛÓœ“'#%“u”¡}¬¾üžŒÐ|ôçZÌ=ÌY2 ~æÜö(ƒÎ'òS Ü:nÂàö<ä ¶%ð¡æ€‡s†N÷3Œ|nÖ}³CÌn~¬ûÎEr«®Ðq8¹øœDó‚ð(Μ/ôÉõO¡ ÂåM=h* —ÿ‹™S³½)SÝVÂØ\}¸¢/(ntþN‘¼EyµS3þzÊÇ€‰éàTߘž7ùGÈ]ÑÙ3A‘-•}.ûè¿´Ãqým*€ð¡J/P%Ì­0~NQ¥Èb Ÿ|{š®2ûŒÐ<•Âdz8L¿H‰¼ú1LâD½ ŒáBbí/¹ù¼»„e¶&kÒ ô¾ÄAçË—*ñúŸ@® <›Ècòë›r7 vU¿’rï­kio¨‹Hp³!ØÕëË;õ–Îs'»ZT5Láåy€äÄÐu—2„€ùŠp[^h:€)å ªëf ˜Mèœý §ú¿%ÚÕ<Àã Ü…ÓÙK_u…ÈÅþš_ˆÒÄÒLæD²“z,í²®,d Dç–Q¶¨Cú­‘(—ÁLºË»¥Àz4ÿK[ô‚cúÙÛ\rñØúËÖ…Dz®s]Œ!fK>#Ì ¥€![¶gV†•N‘éUµK…¿N&3UNÀ$ˆÓÖÛˆ7Ÿt}”VÑ3ìy!8 G ÜíZ ÕƒÒ`škýuÖn^8‘ñþ÷✜b DâÓ 9¾,ç@‡×ºúüZˆ6í;REÔi?ö…Û~"š]'ç A³xø&#l|Ç–{hÍ͉¤P±(›Éʸ?ÉÑ(Åò@[ îNð‹mUaᩃ)üJiíUax„ýÜ}Á›;–¼nVÍu.ÏD ®›‚“`´噕½¼œpª]âø‚6lÌÊBaÛ&b´9-»øc§ft•¨³.©Ç£j@û/EJ2´B{é³gÄ ³ý6o¿Îs^ЊþG7()UN‰Ûr[¦ýG0†Ðk4аkñü-éCË\ÂÖijØÁ»,-Ô cqm·[ôÜ4ÙÍîF”á(‘ƒØUãU³8¼ƒÔÇ ÚÜ.È>PÎÃQýQÏlpƒ|0Zµ}»÷ç:Q8FO° +;^÷Qâ!ÎDÀäüð¶oÎÃôPP}EŠ .­•¢íúfδ ¶J‚âÉJ«¸‚Ã™ìµÆÚ¯÷ÅG0L;Åû1Tï `=ç…ËÖ¨]±kƒH„ ÀΠ¡e•¸FE3]ÿyi½€ÍkeB™ëšÕ`®Âí̦é|-¹øœÇpÑ$¾V†Éý´ç«¢œk:Utn¨•à\y›fŽl%™£„ ÓÍê„·¬¬ûSU\¨©Ðûmš@è-V‹g^î6ó bØ¬Šº—SûÞçù2z¾§ú Û²cg—>Èù'}ªFÙ³ö¼ór¤øÃëÌårZÙÎ{@¨dy³À¡žýþq5v8¾ß—×uy©³KŒ\ŽšÜªD\Ç'êÖèX£(,¯×#‡Ÿpe˜äb¾¡&‚7µÊÎ±Õ z }Œ…£óæZÈy¶¹LåüÒ•r}`Ó8zhÓˆó†,sκ¥T®áëoù.[-õ† µ—m y°-V*µ÷9Á)jŒ1ÉOFi ÑyȘ°–þÄtJ =ú/Æ€ r°-…IÁ¯*ï´ž MwìÆSDFy Æ þò…Â~¼%Þ/ç¬#MNá…RÛ¼¥Gࡎ?ØYHµS]¥gÛˆIÓs¤i:þÖ&ƶ¼H¤Ko<äɺÆòd‚Uó-(þK³lZÀöŸÁ«4_ÛØ´·˜ËÄ·‘6¸,¸övùÇä‚Gf©)%”C A¨ ùàó‚åoéqÚ -è°¯!5… ÎÈ7Í9MšÔµ<óµ³…I ÆWì¡Ýà H‡¶µ6q}¾M¤áG6È]õÊ;Ïq«×½a^P-ìÒí™'áUœÔå5 *—Ÿ7åÂuõÈçŸæá—÷ <¦¥>F¸û‰AŒWd'æÏ¡·‚ƒ~¸K4RÓi@ ¯HþU.\}{Ž­us¹:êE™™)¬çeœ:ç@qTi؃5Ý5²G@€Ëìò»-8Æ,uά$Ôu &k–®51Þñ¼å/œ_qP’þ–ø¤¸lãyõºJ‘•;”@IN»è¿¸#¶0s{Æ=”ˆv¤iŠx½}]r̆jLþîërÎ-—ÿ=‚õHÕ·ù)fØæ]Æ3Ç0ƒè )çö[ºMŸª&°HñÁ>ic©J®—Sâ1ïœùùG‚çÌ[øâG’êþ'¨ƒî”@â!v2wÔ6úH5­-a†+YÓ{_TÜ-qJ(.ÒÿõXkbãý®ùÁÃ9ñU{=ÍGùyUckò©¹¤«³½ÕH³Hü'>¤é}­+T!³š#LiÁìÕšè?ÖÆ÷I .Ï òdRìô›xvÚü2À’ñ—©Î ­šlÉÓfÜþ)h%$£Z‡“£Ë(û ®SR²z!x«ë’ÈüðS…e4°á’E |0ò)CøôrìdŸéj÷uñ^Ñ…m™É/+åSqô Ø£W²O…Heë”cT¬`×M…SÀ¹ÆïnÞgª¶”ÝÔ¶å×£mq¼šeébämÉm”„x ¢lC×C-¦Þ&pqºY²Õõ =…“šP9,ÍðaÚˆ¹NAfR*’wCÚõi bQ-¿$®ûø×ÔàZ³&YL\{tâÂ\Œ±=¶b iqøþ¡ÿ-¹¤†{ÝGÆzù#g°t*5ÐØ2¦h¾\øK~\Ýo¬´z<ç ' ¸N,ÍWE¼ÖÔ– r?‡x¿ÜÏ$KöTD€äë­ˆˆ®©6L.âk0ð^Q ¥Ü†p³],„s POøX™Qž sY+o*fRYþQkV=á1J ö@aÔ½æ_Ûr)úºwŒ”™·#¼/+¤ýa#< ²x¤¬ùq&†’d˜{6½K†O~âÁ§‰è=A¥·;b}ò«îNÎ:³é§ºßnÎ0óÃXÍ·K„gjWûkN©ªÇ´þêrË%Yo@6ü¾4Êq:`r i•{f½ÄØÁ¦ì¯ŒýÔ[ö¬XÄB'…Ro`ûâÜ"Õ}Øy 3üf9~VŸžNZÜQ¢‰Å·Ó¸²-ÑýätZo(æpËÎâ+öÛ‹¯»Ü¾J=¯zÖœhµ\K$éCI§wʈYŠ«CC7Nœö G4–Í<”Z=Ò}-n¬dNªY²þ¹*—ßàø£¸“PæòÌ{ÌE/§ñ`hÖbY„<16Á>˜§²ôƒy“@wW´RYȦ”ñè-†¬ü ãâBs}ÖË¥t£²‚5^Í ï#6'ò˜=lˆë¹€Kp9ƒpBçfYš ×@0|b[Õù; ¶Ü°îñ¼æÂ­pÜzD0eĢõ¦Õ”cnlR­™æ-,\j—±ò§µ^Ñd^Ö(ÜÚD€ù›ånt`SGX*zË5n [ÒÐ2R7‚zd ;£'>t²†RDXd”U]ŽÑïBR“ M_ý¡gY¾\µaWr-Kå&'«eÒçàJPÇYCLLÉÅíö¡‰³„96<_Ì#ûýp’1×þé×ã™6tü/¹Å}Ç£%bðçdÓ‡Š$­fƒ­O{'º†SÚû¬™$ huÑkª|ÈÛµ¶¢‹zØK7™üYF²hñ:ÓF½vµg‚Þ—Š4 èKbz”àdVyä8F Ÿs¯†‚'ÿ°Åו)†pÐ~þx´‹!áW*õ >L_@>uÐû”<>E«ÐŽÀÎ<:üÛIø@ì½Æ`N4÷?¬±Ü ,¯ð‘ÒÞSÚÂß›¹{+Ó¨˜ÞïǪ‡ÃuÄ ý$X¸Àónα܊Èiš«={ö0EŒ¹™ìeì= ðºMt±ô»›²a8gÒû3/:è‘8‚IÄ"Œkm¹Î “Ë3æÚ³!§™µ"#~/¬_ï,-(:²J­Ž@¸–…ޝÊÏÃTg*b¦Óa;õPpçø#Ý]÷Eœudz£=Ãã¢/Ä„|†ÀOM!Eqþç?šÐÜùŽžÄýÐDMfÙ2¾sM=ŸžMíÞCŸï:ª(ZOKGnŸe¯uú¸:“EcAêbɶ`¥“\q/”Ÿ9ó òÝÈ,‘ôˆ<7åsÒ³žðé-—–çTÞPç•7®TI <[ÆXSç£MSäQÞ?¢ólC±•¸b‘Ó­ ÷eÔm µ;z_Àg€•:0ÞÀ$³úÕUá·ÓÁÚg6ôs1+Šj×AóùÀ×ÅäR(~’v“€ 2Ø<84êL $Ÿ‹!úe.0ïk$`µîsŒ ÝZYg5¶¯y5a2‡`Kì¹ÛØõZ² Þ×Ì™–룥vüR&NRAõtéc)ÇÆóŒËT,ð8–Zmã±o‡oY%E»ÛÁÛÕB{/ý($BÑþž•Ð¥šÛkxŸ©nÆšQÏT,ÞdeªêH²Ä%çj"¸¬¯®ðKV‰ª¢>J§l§ô2,ì[ì!Vp™5xE4é…ñÓÞÑاõ&ƒ†0ƒb¾‚Ôuž/ Ås©{˜èÆÕ5O˜«:“´ø,Âé D#ѱ[ çÑ VEá³QežžÑ3ŽP´ìež[/¤ëHZ“9ó‰jNGÃK˜Ä C˜ŸÔ½0 äÖ ñÀúb?h`¾k…{4ãñ`í[vR]ãéýð>½à°ßl§v‡)¸¶,l X>H[§÷ÓÔ6>ûa›EƒçC¡´[).% è‡NÊ£|Aª¬ÌZ‘ ìú‘_)³RˆæïôdྋY l!me–…CFê‹w!·0šÆM½•ýëûŸâú6Ä ‰Su*_Zþ8£3c“›ÀÝedn´ïìÛà#Ѷ}•¸'|ö¿ö…‡\vìXyäÖÍ銔Α8°E夓³û§[ñÕ ~I´Vx±É‡‹6lgk†äÚˆxœûš>™êϽHƒîT Ú ²š¥ƒu€‡ïÒšÁv,Z.àDƒ{á†rqö6KŒÚìÖåJAOóÆc-ެGÑ’å­DÄt:PÛÐ舢ym·Ú…ÔMt¬ ÷‹±ý`'÷(?;"" zÔÚK<ÿž´¡ÇyË mËŒ‚Âà꯵H;¾Ã1Is:Ø zv§Q³£»Ðô‹½ÈHR–Ò¶g»à¸&j5ͪ6¶ˆÖ¹”éÐ1†µía æt_ ›ª'Ѳå~éûà¿y}Ìwùvôù‚U ÏŠ¶œ˜Š½ä…B¶sȺÁ€ñÃQšKG êð`·n¬ôÑh¢7É„ýÉdqÎÓÈâ=á¼u‚Ùº·ÊqTÌIÎ!ÉW.Ó·ñâ½X7Ÿîñ|«ÒÿKÜ.H+=ºšÇÌòm’wßÞYC¡÷r% ¹ç[»ˆ='tÜwI¹B±Oº@D¥©±œŒt`s–øïºtÑÓÖ…ÿŸËYÊ·3šö—eèùÉäxJšPAœâµÇ—ŠéÊfû+93W–ò…fcÍb>4¿@çd9©«mFð6™‡Ãø u˜~ç6áÃNiýÏ;®Å"UF»‡¢.cÑ=5D{«×pvJü]BcÚ?KíHeŠ_kî̤tU…cCmuõ f#\=‘¡ôLDS—DqÌŸwºI¹F6µàØK0çš¹èêÊ>U:`4%+h‹Òƽ‰-«"uç9 ’’›ú=Ýån|U²&X¨6IXª¶§Åà3eT§yqè â€tí"R}Uã‡H~éÁú`Ïæ¤o³E¢¥ÅÎgö$`åQ³4[}ç)³35Ž¯ã ¾ÊÍ€ ¶H›{î´~?Ïõ5Þš¢Å=ÊDp6-No—TX½·)ã#­Ï6i#¼s©Ù¢•ÓN릭aj+MEγ{|h0%«ß¼—†w|èïoxNôb“yªÛ Yu–R¢A=ÖùîJI>é>rFª“±aã5bjŒï€ùâ¶Åûæ:Q€a©"1g3éDke8óÆŸL­Oé7ïEé¦Ràfv¤)1Ïzqh"µý ¦pñánZ~ÄòŽ}÷# ÀºŸHÌýµðA94‘•>µ-& PNøÖO0ÌÈ»r{|þã‹Î\dª'½¤zŒñTæ HøÍí5we¨†«kÿz­&ÇØ›¨ÛÅîªñ‹—0ÓÂäG‚:évؾÝ{‹,Çe¼Ib^ÏÏ™ó„ü“)bë{⼌ÜÈyÃyÖ\)¿7óÙ™ã> p,0Ý£¢¾Xш9¬àîš7ü¬Öó\’Z#¤¶*ªÀ…Ô«RCÏÊÅʈ;-Øa¯#CèlÁ`--—± I¾’‹º1®>&]xïâÉÐè¢ôí÷Å–Û„›l˜ σcž‘MY\ÕºíäoQØ9¥ømúK ÛâÕ{ JNC£ƒI,×OWœ+Ÿ‹ü8•àÄkz!2&jþ±ÐŠï´h¸òáÍDËÂf^ÔiÄœ©ų̵<-5Mè"BÀ¯Çñ-¡›m ÆG̈Ac 3Vm Oë¡/i÷ø×÷æ::C{´ƒB'/Ñ~aˆ‚³¿Àùô{ª¦Å9«Ê=˜2]ÝŠã¦4~ÜÂJ4Zéœ}>$¼am†JFòH<%ê¸ß`æÊz–Z\Íë ÐâÖ0-’²0`‰J®„ÐÔ@!ÿÄxI¿|îJrÄEnµ ¬rAísÛÖ›lC=aãô˱»ƒ3׿t6M·¤Xèf€TrVs¨KÆ«©w¼màv¾VEèɇ÷ÌÈøµ0yÿm-lî•°˜§ Ûãü†æðÅ9ëîïNæ6—Š˜”ØpÝé=ì”ÿ øüý±~ÚÓúÜO^ikNÙ ót2@j¿Lóÿ¡èÒÙüàé­ÃÛºÈ7ª+ùìÐlwYS?­©4L¢!m#Ø¢Œ¿q\ÝùNÿ ˜±î%Z/¹Ž@:1ÀîÀ§0ð÷9Š:¹‘ï+hðñj>ÑôqdjÉ„ä˜.l¢šØÝ«Îû3]<É1 6Coˆv»`µ±ó˜]U£‘:"` ÖÛ$»¢èŒ©DävkÝŠ>ÒœŠ{Í2AêÇ!(“nÐj×R]n‚eùÿYFË­ÅF¯àZ#Üô é‰®¹†#É ?¸"ôÅ¢k˵¦_¦H-väV†+è*&ü‰ÙlÛu´ØrSÿy+èÝ‚ûÛ¡ g«-]Ù3oÇ #Qètp{›Ã“çp[O?'ÈÇ ôNÉbP)ëk8l}»/æòë¾OrÆ!ðœr9aP¸ì¢R®!ø9fX^jß—ô[æCXŽ'Kú®^ þÚ”QAü½dP’cü#f÷3yÆæía5† $ £?ºïЭZ1­8áÚΓº ÌÓ]øeõÝ¢$×µ_·M§²]ìHŒ‚»¯ˆN8‹˜N˜Ç̪¡wœÙI‹è±‹?'ÚÊü{B_ð0z†Q¾f38í2à µD'´Ž×&²Â¡âãD-»åmîÔ¡è;€{˜ÚÚ°ÚZ³±ýóþ`ôhÅš<5E4·/«ì¶:˜Å2"ŒcœåˆÈ®äûw¸¡Ìk¿ÊF‘„ê :ÆÖo¸jå³ÞªÈvqΞßÉ\ò¥ÐÊ! Ž«„A`Ló6ÙÀ¹`›k Íî$ Üx )x‹ó<î5aíqØsg3.ò?ñþ·’’\rT˜óÍçZq%Ú+¥ãÌo\‡Òž v@_£›oG™R©Aý³þ2¯þõP£ ¸KˆÚ’xòÕ\Ê'=Ù¯VýQᤳ{ÿ€$J}‹ÒHÆþ¬§´*_à¥#aœ‘9O†ƒ KTÓ‡±yj¹É¿;ºQ¦yÑ'÷î@z7R&†s“ÎÔuñŠmÿEoK­YIÐE-0hÂCß[ûϺj{+O…­ŠWò>WwÃ*_ 5áã(,AHÁ†G“‰ IÒ<ýë¨+d^ =9Ùc°€.²*ÌÉ4¸ûãƒídy÷{%#˜ƒ)uÂÌz[² ëÄWÑ"Uÿ¸Yƒk·ù}¿b¸2¿Mf÷µ¡jzáü[)`¢CÜj$$sε q>×ìÆÀÊ+~ÂÄɳ‡î^=+'.´ N3Yp'ŠN¨2?è\˜W‹§¿Dç\°½R¬éžÇS×’ªÍ´¤ßïîÈZÞ¾-4Ø㉚ZúÃìw6¹A̩Φz™hŸj˜´=T$Æm4qE÷çqÒvQ¦¾¦ÓhΟi@ïß–eâ¾f$Øêâî.ý–ž¢Úï`›wŒ¹7Se‚òò-ˆðœlLÞ3fÕ¸¶/ˆµä‘°02.."6œšBñé©ÍŒ¬ ›‡ïÿº¢ ®C¬¥4K¬Šôjpbô(”x¦g#rùì:î•ý.îõ¼KßtFİn ä:‰º˜ˆªÃȆh²åíŸáµÜ-àSõ¡ÊD Añ¶»äL˜-Oaù‚(9LŽõV=Äò¹xm-^€?ÒÊ då®ç3Wƒoj[¢í{…ÃæT7¼ŸÎ`&*‰f¥ήhÎ |¦î}ï ý˜ÄŽàa¡m‚FãýˆLÂöïE”忞™ ¯K{¨@á;ˆ92 Ä9«rîNL{n«wlÆTYàƒ¶§“ÜOŒØÁ±'p'¶—Ãù·µñšRêž*|®œYÓà‹@ò½v=âc¾ü*”R±w‚…š Μ²átÅ ê¦UãU)áÐj¼a,î7~½ÉçÇüGlQŽk?ìQåÔÂFx…ñG2:Ò^Mfç˜)h'¶ðiO¤œfæcš+E>f&A}[ºò†;ñ{ö›ÖÐ?}ÇdÁž#–ŸjÜܤ~Ÿº‰ì5_Lß¶¸¤jxν\J墫ܯ*ãúuƒž b{{,a‰„—Xhãü¹¥µf4¡ON\|dAAèç¦*V¤nž‹²4†úU`z]ÔBÓä(“Vö…8]³¿‹§Vıޤ7²c—¼–å#kEåÑé’{FÕxÉù¿5²ÀóÐã#&efÆ·qŸ]£¼qÙ\÷æ VΘP©JšN??0‹jœÇôkØÝôë1¿ëâ dJ…ôà3Z8Ë5uÌXÆ:µŒ¨B5$È›îWš©ÑµN)¡Y/r=½A‰}Ó/µɬnÆZê H=–bµÐF>gíø•¡mœ.®Ãã…·þk1p¦Œ²Ï̪$t1õÜo` ¢5“¾Áhœ‘î»paQ'$`‰1ÉË€‡¹³ÄHLpGGGµ“¤èÛ¼öºùÿ| ’øû)x9TÌ q»U$Ÿ1"P‹îÓ5E}¨Þƒ÷’:&Øé´>lª©¸9MjUà ×rè1¯m6³%¦)Vû䮉xMNw\wþÆaY2E‡K ¬ß±x!ïg_´úmÕPõ¬ì[Õ€E>¦LÂë†]Ö#BËäG¬_Á(®½·ý1¡‚ÐXí‡ÉÆÕ™Î=€Äø¼µB{,Yl€OïojNÿKOX©cß­‡¶CA^›+ÂÅÊN-æA]„Þ[†¯×@"íÒ@6ø}¡­-+äx½©èt^.±o=Z%3_[µ”I批Éè*—cµÌKîèw<í)_q<ä·ñ1„H·'•›6£W©7Y‚ÜÁ Ír¼…‚¾¿H«2ØÖ^£Ê{aD:Õ2ãÙÔÍ¿$Èlg[+`Á\ͰR:"SÎŽ’¹:â{nàg!±´ÀØO–>gª=ø~Ýû¬±ªoÐcÚì~b Är Ñ“ô’ù‡æayÑš©#Þl§;iÎaâÈê¡ce…iç0û°:ÞÚ‚DŒ·év|â’˜&a—…@’ hïÎ8*EÄXíØNˆb ëè¤SåǪ’ÛÀýWb¹z€«Ø*ÓÛ„¸¥’Oü/Ênç+{q€V»ÀY<_ÎÐÇoTΞ¢׎Þ8ØBÏy˜©ž?ÄK Ïiô稇Ž[ÜL»ÓN¶¢]¦€ùlµFñݲýššu1k‹ý4<0ÅyÈ»ÒýøkͰ›²²`ÑDB’B%ìðU#j²oX™žKéÛs0;]ÊÉúzw+Ùµ Iâ¤{ô©—>A~QÐÁ$K ƒ–Ù+hÀðÀ|÷¡ ^3âŽÙ•ï„Ê¢4¯€àBùë…±» &¿~|V—q[¦27Õ0òb¨`¥®B™ÿ2c’ÃÁ‚´¦9¢|ÒooX"Fü¿®OJZ =c$ ªˆÑJ²Ë¥r ¿¶K£ÝÌC_‘nX×´ÔƒŸëh¯Ýó¤ýQºÃ‡†dVmMLñ а"}&‘×Òäô³áî{âvϧlÍŽâ^å°ôàß‘ö鯗'_Ù$/Ï:z´¨ªix­ö2ã[K ˆÄYjl \cqj€3OöšÜrZîz%&V~â™#ybdŠx&Üutûáö·£2ÄÚÒñÇŸ^˜>Q)9ÄK,¯¼«$'¥9[w^×GƒþT{¾ ‡’ª:M°F²ðÉ&®ƒùb6¤ ‰DŠêcžwRdŠ! §×µ1þ] Ã_$g×ÄEIÖì¬]c6Bfp öÄ…b·ÑÝ\ÃbïÔ»eäjüö2A©Mþ6€rúýªŒì‰z]¦Ìb,¸‘òÙú€¥PØï>!(ÆšÔî§Aˆ”te9c¿=‰Æ ¶¥éAÅ߆ŒVÆãᤚŸÝÿtV´ŸŸ3’°oaO~MÏN¥xçŠxáZP²ÍÕ箲Ø/a¡ÁÍË*¿)Wz1Ç~ÊTß“²ê¨»gfÿ2˜ô.yÝ”,ÅsKÄÌZ,mx_ø»9{ãõœ2Ò‚U-kXóÅ7ô±óÄÎI×\A h.İÉÁfIâàhå©YI.{ ,ËÍgŸò*°´•žƒ\X…y¤5TÍu ΩžÍˆòD«Áˆ¡Ìʵ‰uÓ¯ãõîÞ?ôŸ¹›Ú9u§Œx¤ß¸q-&z§Â\RfùHòåôm qhÐÇ!a#%ñ:¯kèÿŽ{I•¨jêw‚#ì—[g ‰õšÉUXyI¼™ÉØp}óílÀ¢Ý€7Ò£G”n$Çú€íxpƒ\íVó4®r›&¶°5]râ3qà4»ÿ”ÈL!«Éãœ'4ÑïnðY3x…#¾I„Íjoj{¤Äì—,Š1Í)K¡Js!“$~bÑÈëþ'ãRµòŸe¡w…fm6 ¡~îÕ¤vf˜TmÏþñrü§à*÷ÔŒµ; e/«5‹x ¢:…ÑéÁã?n‚±g9©]fÿ”¡C(\ÖÎ ÞtäóäËúík˨˜z¨X ZNÒ9ó ¿éÀ”£Ñt©-šPÄ ¯s"m6e-Ò½½ÿ—û)>W;‹?1?ƒá'ŠïÆ«A@½)KñècŠ+ÄR/Fc”Je‰V|ˆ.ê­}gøÒ’CÇߨ œ·Ž~*f4ÿ$s»§jг¢Ç1¸Q“ž­$0Ç&ÙÕ?¸á¸ 2wåS‰Æ¼GN1òÞãŒn;±5<.%«èÙ!sHÅÉ^<ƒö͹ÏÏ@OmÞ´þ½ ¥+îkz±4Œü]r\qäpìIÓzÈÖl[9¿&x8î§3Çý”wN·y>šh1ÁÈÆ}^ ~ægR lõ“üyמhO6ö‚UŒ~§e1ùàcæ…R ë_à×¾OcÆz…ܘtÖýîî•óµqM÷ší4jS{hð®EVgëS™.ÚÈÃ!‚!æ_|w 8@T‚˜ô[ÇÀL$ß{ç¾*<m‹¥s"ƒ|§D§znfcôwAªâ›sj6¶|M¼-Ë¥‰$½ÖmX±2†õ3‹iÙí¼|T©\x<éÃ0{Ó!Œˆ2N,êp£Ú=¸Å÷ݺÂ,Ê"@×°;fȸê05 VŽJg÷à ©+˜5œ5fbàhñb¸bü(üK0ƒâ‘}PpxS Ów̨OÌA¹‘á:“óþ†¹Ö‰O.´÷À¦ƒo…ÇU½|ä©”c+AâãG´0ž-šIL¿ÝšÌÉ{êÞK†)a>œêÂ7QX.öP3dq™‚m,? ´8Æ•¾¢ðÆ%2l#Át°ÌbÛã¯êGŽÞ/{>=wç2õ’-S3ñ"Û\Ef ¥Ã%W@¦Ìñ€ •íe¨üFợo'ìÁv«-5è µó¶gܱ֜VÚ«Ûœ8C%;ÆÉ‚ŸØÝf};“šîQy  k7rª_ÇdW:ß ÈH>u×W·Í`RÐ`[†|ñšŸƒE(†ò©‰ ‚‰‹ÞOŠïF›Å7ÿp|M>ÄÐh¢»‰•~½+_®Ô_1!ôõЦ',FåÙ^BÖ)ìÕárv–éó‘í€ÆÁÙöÀÄýÑ„ýÈ:ÐÀöÜÜKÄ*´>Ší²&öb»3„1ÓûܹQœ(†¯Ob{—eÝ»LÔÝJ«‡÷¦8£ÕyŽÐ®,'5†(ù‡ždVD>IèÒ5wÕyx*zC›Í B V±¶}·÷‹º/&žU’}‡™iÑ´­?öt¾õÒä~,)so#î,säÂ(P~F2,’ƒYÏŒþ Ó7æÜ×å½Êá5¾½¨í"q˜ñ;¡N3·ô¶!ô¯‘z>‰÷\*ælË«·Ç N ‰,Qx zÈäëª=æG€cÕüŒøêÚÖ¿âÊIYáFxóz?˜Ä#ÒµÔ¤…¾]Ì9¾òŠ·x:rQŽÜ|2D^Á¦°BQ—­Q1A˜þbLÕŒäò´Geå8À¹®Jò·˜©RuÒêIlDÓ âªw왉±®páªtÍeˆõ;™äVÆ/¼¬W½e/»©s¯k7¨MÑ[¸IHò _OÝF@óýDa•õøØ•jåfÖÈ$Lµ ‰1Èí|€’iàÊ/Û†(šQ4,–² ê˜+õÁýÏ V³zñz¹Õýt¹´e­rƒEq³9¤ƒÑ•øoË Û ªL;¯'ÒÕê>?8å–D¾Bí¥(„°m‡r=B²=,·#Ü„xñí¥”¼ÀžKAl«âô€+ìâÿºU XÁP·«yÓ_ÏË?ü¥B–Û¡ODŸå–uá‚*ô²÷Ó‰áŒÞ˜]U1ÒPJùÖÇ—2ÄIÍKñƒ)8³Mþrw’ãXáNî Þ}%—°÷8PäBVh÷RµÉ¦xa²Ar²º’˜0Iè3+Í‚G>>&‹t8Á<鵜@˜º›÷œæqQîÀ?8äóH[8}N¼Dx³‘¡Á!ügä±r4® þ?m—±3¿S²X®4=_ûÃ)U‡œõ Ï «‹éy„ª`á-¸¹T2rnPç½!Z5.#ñÈQ"“(k¨*Ðò«Ñë½çrû™†nµˆQ_ö†nîfÆpd{ÌKàø{òQÛ»¬Ìú’Ñ„ä‘7žL­ý1§¨ l$àSLo(„7&|.Í.Ä. ^´¿‚ṈlðÌ™ Ûzyÿ_4` ž]¯ÈzB§{ Ž\“Þæ¤òíÂ^rfOQ¬<]jú¾ñ@ó0Ý¢­#ëžgŸl´hÑ¥šö»_^¬ÉOÄ—©1xÎã>…—¥´ëô47uâUçc#b’/Å=|à¼vd´Î‡š±µ|»žYVo ÝÃz¸¨«1ñ«½õ] £A™ñ F;]pFFk .$:ƒF"®åÀ¬61¤~ÞsE¿ä)§Á pÆSY¶eÆ£¥e›|qg]mbYk“[žb¼†¯ÂΦJÕÎ=¶Òuýý÷4-‰åÙ•øq ùcvdʵ©Rê$™'J»³lÅ1?¯lœéØoPÆ|¸â”䜕úß‚îõËàÄTæ¢Ë©oƒùØö0ÀÒâÇÊiédSXGÕc'♈wqsÖè6þÖŸ¿îŽ÷R3ãkUM¼#{¸/C˜­ òïOzÜÔ›½­Ì=¢†F–ãÂ?à.†*ø(¥,ÚÎÒXŽT|ØIüËÿk}cTÂ÷“6s¥<™š ò?Õ&«¬%·šFüb¨K.âÔ;Ýjày¢¡Œ ÀAM±œ˜6Ù] ‰Í( PÕŸ×ö S¨ ¸¢¦}ºP¸è9KKÍ¢ôøóœFdXh¡ öô„dœ+î4Ï(Ç1@rÂ:¬²±³Å î§vŠ!ÃH啉5^d58Ýã.«Õ‰(8’»´[<Äj±?wº”d?%™5ùßnà£ÇË)ç˜AFlKÜÿ\kraú2°¶Dvès3 þÇó £ù„(MC«wçž…jfŸ:k07m-¢ø QÛà³æ¼6z{a½o š'B‡|%ÙËÝ/,e%–wªšWì—XŸ4½±qSóK«‘dÔ2ù+­„òy†•5ÂÈÃjêŒoëô‰ÉM¯—*\Øs™¥:óUí—‘yÁËÜ«ýÙÏq*BëRVè{¯ ª–ª)+GJù%Tóê¨Ø³îuû.V؉Áñáe4ým|™K;YÈ™x£¯QÅ(¶—2ê‘Blg;LÏ‚š]Æ#ØBíÕ6WŽõp« û2n‚¬Ðâü«ÓÝ»IÃ¥fdÈ¿ºà©sèGUèGë»Ô²÷ÝÉëã¸á¢ £è}ë"uâ|G¶M%dóY~äø™ãªLç“wŒrdëw2~)^ßRbi¿@fÞ¨äEu+Õ–ë24<³¼#ŸKbódmÙº­3_x 2Ö½O÷CV•Àõªéw‡5dªt|øÕ_·~N/‹ ­ L2Nƒ _æŽýVdÒ‚c‚Mªp8fÆßBôA½¯óV‡9yÈ›RéŒ-ªGP奜ãüKá8°þ,æ‰C‰ Sdy-œR^]EyÁä«=s Êk<zLîИ¿ðªh¬²Yu˜&‡ÊiCxüܧrŽ'Ùˆú‰}ÅYZC,Tg lùÝfóœ­Üz1¤Xwb úÚºü iºø†aã„CzhÅda^ y´r˜ëš·ç$Ñ¢ÙV2&hw±[ Û®OÝ­âew=zû,3SmÁP9Ž´ð¼6ãæ'b³Nno—mÉãÓ½çG§àŠŽû \—ÿŒ«“¸-ÂnÖx²xß®7¬ÇŸßõžù$Úsíߣ8ÏE=-E_Ö@5íͳðßH¶á¾u·ˆ© µ3îo§ p´€ÎµªAþ²Iì²ÔšXï‹Yx»ì 9&JQFµôuù¿GN,‹#LˆÂ‡°­7ëÒ":ÐÚ)ŠÓêgNÓ» ‡S®ݹÄGïÌ2sЇ0Ò¨ü]Íþu}I/ #¬»ÂšcÉ%Àc„R#ÏÇNÒÏî®ñÚÞàùd_ìùd*åXˆ†êæ@Åÿƒ´!Çý )â8‹0Ö탒‡µ:Ë"0‘pïBŒ+á2¶*¡«~rÏý?M.Äw˜Qfê¿<œ4á0cû–GlcéªÊχͭž/»ZÎòm–A™\‰ë l4£x5è½±ìEüÿÔÙÛD„º´^2ŒÇý 27©†`¥PFA~“l”Y¹ãYÆP*xŽýU=»`RèqÝæw*A zGQ⌳Ò'²Ž&Q…0³q# …R̽ä!6Š©´Òwù¼¦‰$Ú’Y ¤BÆù‚ú°ÌC®íË9Zµb–Wä"Nþ‡ÑSçéý@ ×7…ÅZ‘iW‰‚”¹nÃfÁ’ú }Šxÿ,%bÕ#!ªV©!½*‚Ö»€)Lþ1ö—²|jljªHÉâõðŒý â árC›Y%þ~ ’Åñ;\t’bVxuer,ùÝ×3´Ö¥œ!à3#š²¥´ÍQêá ¼GUÛ‘«,NdÉ6º»ýÛE:}È·‡~Ôô‘ý§ŒÕù’ëgÚq(Ði£ ,¬Çï9™;z:!¦/w .R \9à=‚JŒQ+s:Ç€Èb°šo‡9/Єø-–Œu–O°Û¹ú/°¼(Â’Ì õzÕk@Ü..šœãé¬X•{?7u赞¶’‘,^ïûRyÔ–€îM©“ÛmåŒ5;©b¡y7Iì†.*·ø÷¥½kªÓÐ,k½‰A:Ì8´Šáƒ Ð2üiÚJƒ?Ýä^¤$c58Ìç.Jùög_7T¤Läý`ò Š¤‘P•F¥»¨¡2àhm#³:¬ß_›^Í•ÏMSpvùY+.÷í®¤ÈÁh θHr}Ý 0n}?ø‹ðuÃÁÐ8"—,Èâ`zöxFƒ«g? ¬‚j#š?‚×¹lâ¾#Š2Gr…*ˆâÐbr÷>ÝÛÖp}®vˆ@ϤˆÅÏŒfÇß5±n(¤»B æÑ«ì:ñc'.¥ÀT7(v]ˆéu ÛÔ¼8 ÅôWb0‚öÜ1¼_éýg™*0¥±"Þ-"&s«•r^RßÄ6Ú=`Õd³¢Ä‚#P§ãz½-e‹øÕ6Lã´´TöU#] ŸÈO2êDJù]\ÏÊ5ÄÖîx7&æ¸-‡%F@“S9In˜Úã•QMÆ9rBÉБDÆ@´ñ üËB\7˜W~F¶è@㛯îKãgJ4xÆp>|hëfÙfŠÇyyõ®ƒ‹JiWþ_ƒO[|“¤†A½·ß=&Ç9×Äx ©ñÖRçò° üU§r‡"Çà®äUsÈÛûFUZ þ!™õ·ÐZÂl\F|ÍÍÝ$òe¹Ê”‰ÅA‹ —þu#JM÷ .žŠÀ1ò‹3½E,ñí¯tžœ—p†Á—To"k5óváR 3Ô »µ~ÅÃ)û"ˆLóª>”HZ¹NGß“ÀÄXE Ûù’ÁrÈýò>í=hÎ +ºzújÚ‰ ÊSð3]I²6>ﯤÖÝ}Ö¨Ô×{‰$¸ÙÂxÆ¿ÿ®á4'Ð[€© g­ãjx2aù0ÓÞ;J üÀ~1ó;›ÿQ'ˆ¯xÚÃ$¥,Om‘X½¯¡ “70Õ¶Þ½V`l²Þô©o‚ý…53RÚ¹>êâmO¥°{‘gS„=ñHËÆ¤åk›…ÛH£Ó–Ã#=ÅwJ‹)aÐBjïå¦×:=ÐRç± §è=1«r˜t8{@#G÷º\J.Ä 3^Fàs:ªSâ]¥ÞùÈK°ápŸf?ø™±4³Ý‘W…1þ´ê-,ŨšŽØ0Ã"VL%i˘~‡öû›è˜ï½[[Ô±ÒYj®ÌQÈ6Èža6~Ñt®wö/Ä¥uüIšü¾ý"Nëv¤Žàvy^ÐÞŠ@}ü~ ÞüôÈœ@2ãOv±?"ÍY±ì —æ¥OÅÉ[ÃûνÛ`ÊŽë¼3”Ã.˜bIµÆ• ã¼f˜dBèú ñß}ü Úšô´1Ødù.tŒÄ^"\T`ÀîiN#2¸ÏñuìrÃVq¦ßŽ=ÿæåxW_H¥ò™êÁ?HA%^©Å‚ TPŽY  CõùÐPx‹–‹Ñl…ʶŠ8FR™¹§AXsã1¯¿ÉÏרÌͺÿ@ë@w¦´\ÐöjB)|-‚Äڱoö6Ó°žÆwnfÞN2§|î) ÃxT,Q.£h³Îž×`6ƒôÿ$hcîž&Ê„sKWë÷YÂUc r0Œ¥­?—æÇÍ´ÿ5wm79¾W1£0 tœ"ª»e.)ñ¤{ö )`Î(\#óâàfÌô«ÿï·º¹®ýs¯Ö »äqU2ËòÒZ‘Öú9†ïñ ¶mâM ÎEîI.?juºã+:ß-œjØ.`ˆ,^Wêð'ºk€{ª°5ì gšVœaý¡MwMF±$vTWrߺΈŸý¾Ïy]1ñê¢[zlhæ|.`†_fa) Üî–Y‰Øç'°)‚¨u—›2òœy0ïÊu{*^¯Ig5ž–*çûCòþa5ŽËGµŸfj¡' ±àïu K&D™ z­Æ ï¹Øß ðîDÿš¾…ÖI¾=[’@74»À§gM\¦²ÝWoöN’#•ŠUgé!Û׋‡Ñ÷ æùà ðåïMví¹¯I!ŸÍÖ!˜[°WR‹:øøP»‡H¸ß[ŸOBÁtÌ3·ô8â ú2ž éҡjõEù“Ès,¥ÛalFZ²ÏËGá„gÜ­5Šè'¸ „–çŒØ8Zñ]éG™–»EIYÒ…'ÈÓïyÿ|Ù¢ÃN4¦ºš8Í\0‡ ãNlXïç5Ù/[¼ ‹”}9#ðÕ£\(@‹V)تÕ~µÇ2¶­!]’€½+!Üä£0ë-jh“N’º“eü8ä\EG¢§‚̪­i"Ρýuk,à}ÑšhÅT¨þ[Üqw)…Ižßð¡äÍ WÚauXõmÃî{£/~Ær²„4ÌÑq®WŽ<rÜ}»6Ááîdn- mº\'þ­—?ÿloÈ"9dÙ:ÈGŸP7>ÒÛmQQ&üå%Ç4÷2Q€MîFËb‘Ö(ÌÙPO@E~¿>P¼^¬»œ),©žào¹YEXdr–Œ[AÔÄÑ•ëh#Ó­þàKTôÚ">Üýd³³ßw6‚E@Gîß¿Ÿx®Fa…΋ xPCš@Â$ïìibΣîtd‚ðø+§:žÌz õ56õàÑ{+<‰õâaÄ^å.NýîŽ~åý¿cˆÓ N8›~¶^ G'#÷!–ˆ¾ò3G ñ~œy¨ç/ Ó ž@dÉ ;éé¦ó@ŽÄ>ÈZâ¶Æ¬´ Æ› âèNÞ»:î©|ï/‘ÓÏû€Të 1,ºª¼Ú][¼b¦@¤Õ1\Ôy_a©Cú¬]%ÄÓ¾ÉT.·Sb¬—Øî$Uïæ&çé8å ÙíNç/ãˆÔA¤}<¼SóQ³A²½·wrv¿‘ëÂîSLE²§¤:äLb'%Ìrb‰'ÁòY ÂuÕû^ÿãTƒÎìKÁ³IN®~P‰{02°*«+NDl.säiaúÜQg6 `$h¬Â:9v|àZ•šUH`,*åðÞèë¦Áš[þaûPPØÒhÝT?MÀÚ¡’Z¡­¶B…¢¹—RÚ®»KÏt††–¶¦PËãcm©Ö—S›"m„¿Õ`)&Šåãé#à‡›nN,„Dî«¢Ó£ÐÊ ™ïª'cåÖçP³â.öÅØXt|Ct£yX†§ºÎÛ(=› º¾Ê68xÿ·¯U…;Í!Îåö­[WÕ…ËM¤œ`®:–‚ZSØhqY“ï»P±xIÁ$ŒTi/ H¯ÚûqœnZö[#V!ïÜR½[ÆeôÅ‹GÙ„æ¦ÕÍZt ú¿»ï¾¡.õkVn~¶*üö%öüÓñ<¡¨Ôçg)~?‡ûìÔ¶"§d¥ µé-9šè»ø:ã£=Òd#´Gd…å,û8Í#ƒºœj®ƒÔšë «Stò‚êÑ€ â¶YÞ?ú&\ ¦‹²×–b1&â?û͡ǓŒÏ~Ä£ÊE•‘RÇHk<{f—yοVG©žVYº µÜueï…­P8+çW¥–žU ÜÑìçÄ¡½ óY#iNn =Ùq¬è6|<ÅŒ}aK}P ‹x`‡Ä z`á³ß^íbÃHaˆºM%h†d1‘Ó{PJP³c_+nd’Êœà¢hµû!áæSˆs¬"Hm &,» &<Áo É„»2ÏÖÔ#RktNý¢ÑVX¨€‚ HOÔJIëiC¤mŠh·ñé‚ûᧃa±ï£ÐmŒhªÇ¢.‘‹’”8–É3 /!õ¡/#ÓÔ÷òí‚NÊ€î61ÞÍÊôfO7¯–›òIc^.fÅayl‡læÃ3ØF¥·bÒž€ðð)¡·•dk#Êô⟈ܽékQ¥gÑ#–y«²ç8Ig-¹žTÛëP½[ù¿n×’m!&ÝËùa¸þóÉyÃó6KqNÁz`Bp€õΕ´àí°79¶£ º £§/ âÒœ+™‡ è1É àæ*WÄ; åêÕì›_"¤@^9 ÂI·™êýozî¾Hˆªç÷B ××gM¬?yX^«Ùáª÷5:Î$èx)IŒÜa“‹Ðúße°£–Énai8(zw/½…pÍ‹f!KÆ‘Vˆ«žx6f0LòÇë³vž,ÔM+y·47yþ¯hÆß£Œ8|5 †1±fS÷JÜë ˜9hP1¿è^böJIÑð3äî=ªÎ˜õ¨O€/a‹tòCøµ˜ÉÜé•7í¢ûÛÿ {fý¨‘Ãð–áƒ\—©Žè…õZFJ5¾(Ý&,„ô@9zƒì†~ #»¨1Lߨi¯4Gþ°±á…Ïï‹°ÿ_šå÷Þ}Ö×Z?HéG8Šc³7Š´³W#¹¯z‰·N¶]?ó¥-Þ‘>(¬‚ÝŽê׆ûö>Ÿ5‡+sø¦ú+½ÕéF¸ZK ÐEʳ‘m½åÈZ"«SÌ%»CÖæ§æ(`{&•ÄöÁħFêõÛÐ2EP±ïm<ÈZ –[C9»LïÃæ?{òGäÏíB¬*>añ>L¶ø4ùt]ÈIOXþ?šUqPíª VLîè£Yy^/KC “¦p¨´§Qüéb~΂¨½çÄ:Öz\¤I"+Þ¡©dêPö[Aù@ üÕ÷ ¤¾ÕæœßzaP„¶‚Ä©…‡A»cq„/ü$mŽÁü%&§‹E¶ÂEGž›­x €KíYE¿ÀXDàÅRÁuo·j§¢ßËmÑ[L·œ# Ì4#ªN5ïä¶ =–/OÎ÷¨U¹tT£¯Ê™¨‚UmˆèPÏ¡VƒGÅIw³®)ùõçÇB" ±ßÅB½?P`^|}‹·B¸ÉVh¢jÂZäs·oøÝ-¸‘G©5I hÉ ˆå«ì o]‹|fÃÜ&ô:“-JŸS ÿ²ˆÞ»ýþ·gK»sXþÈ=œ÷ñ “ÛºXÛ7¢WÎ×hÈx¡—Ç~uC²yÙµIoñR ˜.ê œää þ]‰G̈́ԧ»G(°6UõÍB>3¼›zÁm©‰5ƒŒÃÚð ¿+-Æbœ TXL >›\ììÜqKaÌ„åfp(åêæ5YCZåÃ'æ`¡}©j¸#3´ÞR‘å«]yˆ>L%Wt N7Úwí½ž}Œ#­ ZÕº®W ïö„ú¼Á õÖÖtŸyðøN¬mÜ:Š —Œp8U.lqàCÈ—|Ú—3¥HÐCtÖpzÊ@Áç•GñAe%gÖ¦1ÛàûÒÍ2LΜøn§›KÄ-ËÀJd=Ÿ5šŒΉ;Þ¶IM-TçÁéô¥üqö€–ø4}“:©<÷{mr¸ùLê©¶š2èÕòaJ`‹ÆËò!ýpúM\Åñâklë.ß'SÛ žK^:D£cúÔï»Ê#O×_›Ù²ŸìvŽ&#DíÒ1¸©˜Z©¶è ÍMÓåŽ _wVkY¥üí¸#è“ÖDCkåÑ•íO‹Mè1ù--ÖýR°$—¥ØÔîêRX·ÖMZÞ¶,ÍtÞ’Ø™gé=ð“+ŒI³Ôo«o†JÒ¾Bذۮbá'º/=PaŽ©½ßßÁ“@YÿÖÙjb É* ìú|¡ðÙíÌ»›¿˜¥s7 Ÿ4øÁD”|rà?ñ,=±¡¿Æ¸)óíB'j=²Ë×2÷Ë—ßCÏ¢˜©]É1_ÔP‘Ñ¡L´Ùm÷I9t.<^—$`‘7 >wñ÷µ&ûÎwöÜ®Nøe^³’uþ qažš˜‘Ï—´;ðÄþË*£æüMLý³ö ëQ¬+vÙ7§ÌØ¿+’ÛU„+›4€m¹É<—/1œõ žõU†ø£zRÁ`Aˆ`±™±,ßutV¨7Ø›gŸ™4<,}Ÿß6ž4Ô“±ïd^ègÈÕ*•kÈÀk ã¥Q´iø@¡s¾NÈ.ç[¸«HÏ çÑzÑ Ó@F==|Ru"ý§ä·ÀæU:êÑÊõÚ³{a›1/×|ëx=kj»ýLÝUAñåwå©Ì4&ÔÔ‚þt…ã “„ë Øì 9kЊ—$Xý˜ CcŠkH´ž¥-™Ãb}±ÆøSöUÖRå°£½)!šfÙ𚯳BBWDòЬO½ììCZXˆæ$§ç>T{×¾Wˆ.W gç3’e·Ö;g¨Ðípðfå>WØŽ¸‰5— € "$ e‡Ô3£ ¾¹Ê¦|¿ý2åg2=uji¶Tõõ—ò¨éc`…f½²ÅÉåØºVÞyÙ «È´¶ƒ=äö°×žOÛ4e\6Ä"·kÿmr{ýeìÀ¥ø5Ù/› OZ9$þH¸bÏ”[Ö.…,—BÅ¡ul© œñÇ@†²Æ$ô;(fÛÖ˜²´òµt0¨ªâÑ! ¾T„KbSFSèÖ '¶fé1¶œÇxØm¼A¯þOJ“À–Až³ø K ‰¾©z%ØXºáÓ¼.x¡-ч‚`/»<`>U!ý œ3}±€s1×¶â_ãq¶/ÚŽ´°lë&: PÂ#}ÑBœˆ¾ÁŒÖd6Ã\uabû:Ó7ù:c`nŽ4Ï­r& lާ­œQóÏ»40µañƦ PÍP£Ó<´’Á«Ž9fÕD'|f£-ëÐ$. çÕ¨*’”´jð±&G\ù¸u?úb0%w5^•\±0'ïô"áNìÄ¥WGãp ×ÊÙ¡Þ.ÛK\ñï9g$C0g)˜–‰ÆÑ4€C.vC#Ž(ºu-o~o§ï*ôëëØuà¦"{µŒÒnNktr@'>AÀã‚Äáœû×Ã=ðÖ3b¼1`’Œd¯’ÿ+Ü'Átm¸”Oú¸ qI(º°‚>4txµ/âü°v¯k¼*Å2&¾rשÊ\Œ/Ä÷ë[m>ÅùŸguZ$ª!R°ŒVÝálé.+š²&ºÌ­S‘þ]5´t éq\¦½¬‘àÿU¤§ZÐBœÔáäW©õ4Ü“6’”¸Á•£¢H&æ.ãÄþVtÛ€¨ `KW8– Ë.u™‰q†ðySñù”¥~køL*ã‘7Àb…“FÆ+ Ÿø>§ õÿò8hÜjEºC ðTOÊìáý`ÞÉú˜UEF©Œ5«“=ájà~)Ãð% 4Ø•´vYæwn‹TëÓs×)Ü Ìôúµm+–,zkqÆ8ö"C.;yn>eJøti^´²ÐKë2,öôͯ à#9%^VLt;^êpŸoi#FJ¹úa… —ó—Øl¨Üs8à±§É ÜÏVý¡%lÜ&m‡Iº g<ŠIûB̲¡spC¿Cu‰ºF Nè¢Fðó$A4”ˆÂ÷%*Ù÷òÔÅ·ðÔnýªFâ ïn–ÈC=†wQïIÐ5+y ÷? \ŽoØ%™"9Þ¤ÿ.J‚8WÇ \…ÄB½Ö.qˆ«ýþŸaÈìñ>¥8'™ú+ÑaG‰IÚVÍíRAm4w? $§"œúªOäF5SG  ªaAâË­½J“ò%!/[åZÕúK ó§°h-:be9·})ájܪ½/QŸ0ÊNë°R¢ŸÉñwûTUVwK¼åU§1³m«*=M©†JøŽë%³U<U“ãh‘NóÄËö¥9ïoy¨‰¼çìx†ZÁH¯ï°Cö?U‹öû‹º®>õÉ Cï¯<…©çöOƒuÄâBrן¬þ{É,¸aZVÏ¿stgìÐg9Ñvo ô ¢UÔ¾§½$ëhQYtšªÂ:?BY¬s™›ÿ}3œº8²ßgß²rìõéZøW^+ý^,弓!,I‰“"½†Îš¡À‰¼ƒï|L„¥OöJžàJ‘üÅî/‰¯Oöq‘ö¸°ã/{D©u‰ñ½l6¢±”µ¸)^ iÇOínY)p¸þbË é8ÍzÊ¿ßÙz5Y§b’„—ëiÑö^˜Ú0j;#‘E´¼Us ÿoFMïL¦†T…[lU¢Q”ó˜Xþ˜èhÕ|¡Vˆí)AŒ|‘ÂßO—*2ÙÎí§®‘T… çÍCDî5œƒ’‚¡$BR›Àq§¾Ïp™…‡p¢bµÝÝŠ¥W@ï3™Ô€ýHkÑ„ý^–nÑ! âðM0“þŒÒ[€ èFó ­a²îgÇhŒ ãõÑá»]SIðõ~¤Íf•g–´¶v’Ͷ™¼’;qI+•¾¶ƒzÝ«ÿ,+]oD¹Ö“m~rrLêž‚iXvÕbƒ¶6äÅ·¶Ò¬ˆg{šaRO³XbwNûcßœòZ²Ø÷lÕ…H­M]ýµê˜Sçjê—Ñ”¡[/-ÝwìLÚbµW±ß(3eà€LS뇼Ч–œU¯¿øqšÍ†÷ülomyW¬ÄÖÑ7éИ¾Úøg´‚±q¾þÎ8Æt<¬ØÀw$´V…rz¢°L=éétFŸÍ5ê+ÉV™yCœ,`¾€œ%ᥩˆ‡÷æŠ5ûj¢zWñHÝå ß)ñþI”CÔê¾à7f½Áç#À?¯v¶Åj‘l òF|\¶ÑPé·¯]—y˜ÎJ7†:ípOÃ99€ ºS“ë`Ýoæ½ø>¨A!У§ï~]\æëÙuŠÆË¨f‹¬kÚ^`€=;’‚‡ï÷©{ÄZ 3ôÁ^wf)0wuÈO ÝÙ·æœUÈü-p6F­Tõú €½—gü·uÕe÷úB{üÙmo=¤º·’ûäXn”1Ý•­"t2øœF¡º3ÌÈ©å'ŒLwôãHÝÊ@ÖÙž}<„ê MsKƒÓ:_4Mùé’åÙð>õ@Xõ óHÓsè*éžÓ’wIº6ȉ»±’V+,Æ ÎòŒv¨Í’.#º£ð™ìa³ø­d]—BüÞX|R±^ ð=ÈH ÂQ˜Bbô³Ð·û  Š£»è‡ç‘îÉ/ê1¾ä) 1eŒÅ n·&u~K.”~®ñĽdÈ|¸-™Ü} ¯kÛ®ÅÖt b¯Ê °Pú¡!b5§Ó&Ác/ƒÆ„O”ØÙíx·@[È"{&¨BÜmUß„Áeh8§ºúãr¡á©¾ iE’–bœÂzµÅä¡°LÒƒ“7TDiXúÁzIÞܼ~SY¾°­Ü-}°®g\´ÍW;w“ˆYO/€Z<;P’7à|ªƒS :º4ŠMÏi;a÷‘ËÕö¸w¸½ÜÛâ ²‘Êç¼–-~rD²Ì±€#²J^–G™. -dç¿k"ôâÌõ’¨÷.Ú¶4Ð9Wu{⛊¤`¥% ã¿»ÂÙP9ójˆ&F 8à ¼t/Äî­F7Üa— D•Ü Ñ]Tå‡YŸäæ™{Œ‘;_ÜÉýA~/äÚÀØd«n]G~äü1Û[ j–+Ê{vøø-|ôaYÒø[z¥Ê: ‹ ßÛ€±b„[ŠC\lV ù=S—U's§r l^‘ë¸>B:GÇRbú¬à˜Ž«, ·˜Yû£Lä aÆ~ÂâŸI 7’ÞRÜU)NÔÕ+Ô…-@í{4.®;í$‡…VÇ£¸i%% fWgõÃùéò&cn­ûíü0òÕ]ÚmáX!a\g 3÷ÕØûü4‘öžÄÃ<»c&<û ìOí3¦Ö'ÿp¿¡2\vd±Ý¤x;Ç\˜²"X òµœ“ûEôˆ33‡m'1 þBy:Y€ko>-²üŒ}(}ô¿TC4¸¤Ì4nG§— ñÑ€Øéß Ì s’Hв|‹þ¶.•4ƒÚ¬ãÈùUÞº¶T©¢U”?ΉɂT¯ÛKgoWö,¥&zWA¾ÐÚÇe£K#UåïÁŒ¬@Þ‡¹ä• Å8ÝîݧOˤڌÔãcñ¯ 0qw&#©—ƒN¼Àæ€OC\@ßês€í<˧­²ÅÖé^¨*¡Ç¸Ð)é ôënœ¿4|æ0ݸ{­Rê¿^ÑfM®pØM«×wÛÍoEE›jÇIcPvûšYô1/tUVÛ#¨Ìa?»ÓŸ±Œñµ˜‡$07ì,s÷¹ú¨ø¼uß®â¼4[\û×êD{jXB\Aúƒ†’N™¡ ¬öÇÞ¦¯œº(³¦¶$4òŸ@Ûü÷Yûqˆ¦ûÀ[QÉ@Œ°P — ^™Ú˜ìý<~78Uì,@=Dê.L•,$A~>©A Fs‘Ø…¤f xQÊ÷JÀEóy¥ÏèÛÂѦ+À c3wVW¹ºY'N3R…Aý Í ~ô©[ÑLÎ{N½º›áZ?/8/\žŠÜÓÁ´zÛM¯j·9®Q.xˆ}ÎB%Ÿ‘ýx¤d8'ý Ø/(Ë`¼{'Cç"½Œ«Òo!êeG©*m’*]ž²SI(ÛQög£LX·Ó1n%r’Ü~bùší‰2»¹¤œÊ~RKÿü}ÿºJbD7Î;ŠpnÓÑGØÏ77: kQr–ѲÒM2]ö_Kë³ÜÐ.hP~¿?*L/ËŸýbçËÃv „¶©üMºYßI¬Qvç](ËMÒ#¿Ô³Âuœ€e€b[ rwÖHFÔ0‰ÁüGüÿVï¦FŽ;õ©ŠíG¶ j#iÕž›Óå~CýGÿãYéR½}1ˆ¸ò¸Ýüw¸ìwÀðÔQ¼” ¥H[»s|$iÃÛÍ|a ‡ã?0OãžݪŒofW_‹pdÏÒX,bès.¯‹£¤£ ´²”øº›d2háô§>lÚi¸|aÃô~noJÕ–ñª‚Æ`n­¼Hŵ>kr©š:ÞgÒŒ‚ÌÞNìzüŽ!Ùõçè¾I:Y¹e Ù*6´€&ÅÝ("|¬\Aê^í1ï@UiÜ€+;Wí\5h9”fS18þC6ѬB‘yOë¿àl¯o™€D/!%EOF “0ÏaÎWi¶mGÓV÷ͺmW#^D 3g…È;(â£Òº…‡‡Ûöõ÷§5~îRÀ\ «_ùïÌ8&½;6FÜÂh©!ž³á+Zû©'=k¤cõrtó(óJ«pÈ1Mÿ-±ˆA‹ØoLg·Æ,8»[’@+f³}UQâVÕŽÕqô .¾à97è˜ÔõF–z9íbùí²éãôÜ»`émþ/þ%Vô«±'×Qä_¯E’ÓO8JóhëÿÚ¿=7Ü‹ ä ³íÙ*×ñÞžÀ^â¸óÇÎ1³Yd¢å!;ïÖÈu{ŠWÖ†ü”èu0‰3­\^ýaqk°¿‰uEˆ<ËL&"ŸESðlÃ-ÄÈÂßg;éÀ;níxԾʔÆZ$ ™¥KËb?¤E…Ät.í¤±ïs,]7RÏ[¸9Iãi#@Ï´hï(»LßË8Z'ME¥…4öé®eAÅ;c"÷æòåÆ\%8ôdÂÒnÒOQÚʾ¥µÿR‘˜Î¨ß"uŒÆhAKž³š®cm‹9øSº¯:Ê*óc\ÕÍ¡cf†}A rG¨x…^^{ÙøŠÙñCK€Vu+Í‚†?qà õA³jCóÐÔ§žYÿÅ.ƒ§_Ù¦ËÉŒ^ôËšÇ÷1 ÌÒìuel'ì·cá¤}ã‰î@ÜOyÛŒ*rÀ¸´Â27¨“Á¥ô]ûòÛï¾q 4õæêÑAr v¾Ý€¯Jã°—®°ñkó=‹,¹ æÕò¥ÅÇK°@7*oðô!ÀvÕLáÑ+‹{=Nº›üÓ©§ÎÓØä Èüš«Þ^ô´58hÁ†éD×õ¿E!AÿÛ03ëRúîN Æ¢êͽ æIkö¤ZûwJ˜Å”uéüÉŒ‹/ØäÝboÀØ6KÚC¼8ac3J=þ2ÿku&öó¼Q{»VRó×Ü>¨ôIBh,+;>¡PÄg‘€¡ªUlE¯k•*A}Žß­Ó\¯u¸‘óÚ–#ùqK* ]L-*)®ñ5jƒÊŸg¢ sP”¡K& Š¶¯mnèmD Æhî{ø¶AdGÀ'±»¿ðí]Æëû3l‘ã˜þž>f¤½.±¨_kËk…â$y '«Íx5*ÁÅôÆÄZ¹y¼6LÌÓ{"–¾^ämöâa4£÷ý*H¡ñ <Û©àtEÎ n°fS+Mj°*¾)«Uu­¤–h|öŸ8JÄH§ûÐëq)÷øËn»$9‰A„7iÕ5ƒ¦þ@A[÷a·,@uŽrà)ûƒ´KÅl¾`e†^øðþއÔêµHýüÐIZÂ5­l5Â%ªjaºÅÙt~m…<}Ü+ÙrÔVuê6²Ý¤¤Né.¼¹ûy§ÿzN%õ‚[dÑ!+BPsÒpÚ¨­,脞mí_#)Ýé»·/Ãy¿‰÷Ë;à'κ=h©™9fˆ6~õ[ÿ|C¬º» ª»¼ì,)”¼6åÑT=ÃÏô߀«¾ñÁwÉÁÓñØÞâÊY‹k‰“´Àê —\ó3Ï{âí¹P$7ËFÇ®o®Û¿6ÁRÊU ežp*é/Õ-ŠFöc.s”3 Àû nej‰Áà÷¤{ÂÇNG왯Ÿ#TÖ\у˜ÕKðáPîFµòÝ—]ÌR8èßõàŽ:±èü²˜ã°± ]³ÉF-œŒó«á±èýDþ]Sx•,õ±ƒeò•u˜««¹ö}Þ¾ZQx‘´–Æ<Ù{ÁX #ŒB˜þøRYQ%ÖcÝàoô_ùP<¢÷Íụºa„V$’•1ø’R[7ä!½¥OÉR6ì0:›d èÊëþc¿˜aß~³<ñóŠ¡{-‰+9ÉäRÁë4ÀÀÚ%¦S*Ê_WƒÙ¯^oVU Æfý¨;‹Ó>F%YP2懇¹íröä'RŽ›Ë©•OwAñI)ÉÐZ决&EçM ‹"Å6-ž7Úí¶Ä&OŠjÆØõë!ƒ©Á%¬Êº™VÚ«¥i]¡u1è±üCNï"Àr\E‚ kbïשϩžŒ„ý{@üš E™‰E/É:nŽ£ â‹è·$ NǾ½ Óî9)jª}%í‘1ƒ¾¸È*Oébham)„U"sâSçÉ«ièTˆ½qÅ~€°ýæ3JN^@0hÂ…¦~Pv4Oæéœ/e§\í3…€†“Á5`ÎõoBµôþ˜`¨­6Fù?ãX+ðö~˜VøëÏNð„;ÛçŸà¨Etnó´ Ù¦ .ÈZ$P—¬!²Úè×#ÅLV26D@ÈÿËœ³~bÁRÙV¶ß‰¨ã?®‘=@áå‡=rao©HücHÛîÊq^€—¬·{µE¹LU·=Á•—bšàSì‚]â˶ é×{snq–A³Xûí%ä·! } K¨i}Uœº}÷×­Y” ZóÈPÓ#LH`ý®”¬×ñ+€4iÁL‚æÒŠ­áL·ÎÎF÷>šlV>ŒW![›Ç±<ŽÈç°-T/Û™I?L”cJçßKLûÚ„Ú%;°Ž¥×1ó&§Â»¤/jc4¤q=í– iû±«Ó’you®>À&þ„Rgl{KùÚ´¹S§˜ÅÚšÞeìrt¾ù˜”Q|C'Fèí9ñ…ØÞ¡¯µçHg0\›#SGŒøGRVC–¾‰ÀÈ2­`ˆÓ ¿ BEƨ Ìœ¥,Hü®HTŠÁ±#yÏÜ7cÚàú#¤ÏŠÝa¹‘ÆRcœ( ë•€o'ðÄ.—>mŠi1dk4z­B¸™l¤êÓ«\À@2ÉËdZ V/˜~>Ñvg{¼òª¯ö¢ {õ£:oµI¿,)Hƒ“)×n-#1)jD\çí«†'ÄúªÃûÀ(–]úöªn LDä˜×œC¥hcp·X‚‘ Oc°ýÏl;ħ8JXÕBqêIPÅèLÿð‡š|™(øí—pˆP ¤ŽE6üj)uÇ›f“#Ág< «¶O/æY[5*Za¹=$ä¹cf  *òtõûy.Ü"7ümgŸÓ’Û.4ýAD›Ñt•>™¤wU#~üÞ¥XÖfur¤,"G¯f{jÐ\œh—ÀÍáÕÔÚ#†k¦÷x.Ã2Ãзî÷GJþ2€ªaGe8<¸~Ðb¬|6îwêþ¦´ÜBO,WVÜÆ&õS}qð¤|{è‹ggãÄ®V° "_U˜êûÇÓ4ØÌú·»eâ×Oð“sÃR7Ó6•m„qYá+NgÀoõV<À»ßL޼×ãgõÑi³~ûäçüññ__~*R\àXLØ~f+$ÍÓT M­í¹©VÔIÄåÄ `²§úñw"l]_èDú¯¢^íƒt}òñlK{|¤®´®gRü¼[ U±ôO2<¾*hüˇµ›a¨_EGÛÿaúÃÁƒ) 6IQÄßH ªlGÙ ¸ ꓆ÐòŽpWo:iÆì0,¹øúË9”ÕrA¶Bþk7Ýò¼Þ:¢ÃU Á }…w*÷kÉo!‡M{Â1R?Ò˜C•‚MU sUž>(e¾û¬B¬æ¤²vÕKé4–t¤"Úžœ» ¸É~âPð?ÓâßTŽç„ñÌ›õÛ4€loZKO!1FÎ2e;äÞnȳ5»ü@±\{À‡º+ùCÐX§\i<¤‡ïÚˆê~ŸM—u"oí–å€ßCm?À±üZöþ²‘ÙMËøéÝã£ß¤QKûR¯kËŽôTMí÷àýÓò|á×›¼fÚ?"R†0nš"% V„Ùn°­`CvÅ.è›”¬T ïs¡ãºôWÿÿ|¬Ñ)ÿ¶&J"öÀ·† -ÞEÒP¨®GÂðgü4pÅåªpš PJRë‡ûÁ¦é‚ˆÅ] ²©ùרã·Eùãô?Ðf:åß ð,|(ÐôW3ßòÿD‘:Ô »V³$GýGoâCáÞldû ¼øúl‰['vgõ÷MˆŽˆ+™§ÃÆl"†ßéoÅtÓÃÆä áÃÜEÍXÀ¢ZMM#FàšÀ²éeóZ"@úBeNƒ©, HÙÑL› kTؙî:çÚþÒ÷úƒðÛxÀ6ñµEáé.Ò+_¨ù 6wúóÆçiÉuHoi‰ôþ«Óž}QÆ´ªV¡o"è|Àj¨7µ=€2ݼ¯à‘yŽ·=æ/K! G3z{+l…ŠˆÅ•w³Ç.@VS©®M??Ž­9.Í\YBZR"TžaM3õÏ*θé”å¢ ˜+c¼^1G,–Tú­µ8v¾j{>% ª…l"œö½«v¦ä-ýÞ¯¸e«ZÂý_iä¨9Öãm™oSrܶEó•qD[ašãˆ-®‹F‘»T;3Ú€ôr`3ºÞâÉÚHÊŸÌÝb©Cô§0U,Íé&áÊëÿpàÎIeßEJ/×1EÍÄC‰­Å`Ïa…*”RÁnj%¡Ù»]å÷5g¨òK¼këýŒ (¤Ò¼9Ó¡?{ô;!¢+$FËàÅâeVxrÖÝ0JÍç€M–팠¥gX8©dokÃs3ƒVÀ£°QÀêšåœ'ŽH"ü,rzl.Iw£º•9v”ˆ‹c Ù>T†.Õ,H·õ@tG%šˆÚ ;4—6@«éj‹Äí]ž»_y4qÅ`__¿}'<–Ð|Å «ÐY,aöôw°”è5C—ŒwS¨+pÍŠTº›jCÈþ#M.d$ë¾O+\ߞʕ³ÖÁÔ1R7Uju|RÆÈò.Fk§•òJM`#S̨A”u&Ò(ÞªýåMôÞ´s{ö±!a#¾L‚´~ò2à7P8V±©Ð²µ[³|š£Ë :­gW`¶×þ†_œ7àRŠGØÀ޵Ž@¥i×0‚‡@Váˆ|˜šƒV®~㸹5 ¿I|ݼJyÈ+2Yßäø‰JY>Ñ U,wrjžh¦±Oˆ+VWËÇoj‚ÑÞ!]% 8Ú‘jHÀmÈ~›ÍäÑ‚ âøÀ›Aέhf®»2KhGúXm׉çž"úCß@gOO Œ®Ö¼´ÿÅÂ|‡Ä25?‘+ÂBÓd—¿»ÓÀ0ò FÁÆ#ãAA¬ÛFàíz>ž˜vs€¸ÐÒÜgþM £†¬¶TG;cXáúmÐtcíÀ'v‘!ÚeŒ²ödtJ+“rËGÜ“H½“…ÈŠÛ½¶²>Œx?êam™X(LmÑËL / ‰¸¿®Å h°ÉïkÔRÐÇRÂËDlUáåZŸ}Y:)#è;+ü|©Ù£ÈÖ$»@E¬öÃŽÈÚ´ Ü[T r'3‡ýj,œt8m¿ÿ¼~Ý`›k?n5Þ0¼vÔ÷ šËK£â¶¡3 NIótÁ:ã<œ9p94àÙœâ5lÛHÀêëâñ¢)$<¹´Ë2JØQ` ¬Õ¡ð¨ËÇhtÔ7ÙÆÀ?d`+ÛnÌ.ò8 Ç”M§ù¢¼FöœUÆXÖï€è’©O€µ±¬¿ ’H¸*ÔæþNç³%¢!A¾+Ñt¶É(¸³!2e‰ÿƒ>˜å KàSXÛÓ S¹jã_ßÄÛ%¦/Â_O¯a.ùGÊ"·r ±vkeÍP ‡MÓWÔšG¾1f^@ …>X'ò²½c“”™X¼~û†_£ú¿•¿úøôˆsdÏZfñ1ÂøHH$FekZ¼WØÇ7þnN€Ë<Ž;,ö ê «Yå¸& í˜à®÷à¡­ô¡!¯Ú'q”ù¬kÆ”ðªÕHꦢäÑÓª¹?!hSnÍ¡l—º)üØ7¤µå XVÓ!u¢Â5±ZbŠs1míŽ.ó¹×ï·¡_a¢¸o'pü!ßÐc™’)®‡%n%M^¼…8ÑÅ¿£üaÜèß'—jÞ¢iKâ=‹l¥Oò"{þ˜Ü7òn—_¥ Mtá©‹˜'­%™Ñɱ:PïŠü”o¯Že6ÛîÖÖ¹X)¯z$Z•—œÍ Ь™íàQ¨¥‘êÞ¸Û>&ý‹”ªP¡´ÓmõÊ’Öèùº›Yô7ÒÇ£¸ót7í,Ë!N¼•ÐlL;`•aƒjæ/ÎÑëeÚXDÑ­RAk<›¹=ÅC§–ÄQÝZD¹1¼Üqu>Hf€œèÚôr´„ÜwÚÁ"_dôw›ûÙ¥äqÓ™üŽÐ6ž”Õ\@èÊùüÃê>|?£ Ÿ´¸t.1.úѶöyɻӃÚõô>ò䨄rz™,m§›Z¹ïivrbž—¦Jµ'¿3RŽ8æQLŸa7¤> [OiÞ K×帷݆Ç×owè’.±ª7¦&6C Š$—г üu2ž 3Pì+žX{Þ؉‹fË2\~·¾­Å>f,CîÖ¦[Ù}áÂ#§õ «>/qݲ^™f§Üë:¸B±¬Ú_v¶ëÔK§´Œ½˜HòìV2Ÿ[ôå\üpÒó,¤VwZÙ?'Jú•‰º0ìWd~»!6†=%x\ Ìsy$²-)W‹ÂCŸ_aEüù( ê¦”h«<Ë‚˜Lq X™¤‹¬Îû%Ÿÿ´T9r{‹¬<ßoìÔsˆtj\/<ã`0Ù¸¬íiÆšÛµxNÂÉË\Í'R‰s*Ô!Ò6鳇ô(Uú<$Nk© ýÎ0XŽ)}C(Œa¬ŽëókUj™hK‹6¡Ç×¢öÖs¯ºxpJ{[ôR‹ì¹iâ ‘Ý?3| ÙNË6U1Ü]ǃÿrÙ‚ÇR¨rÀµ,Œ¨(=\ñ§Æ‘(мš8“r†Çr$Ãð][ÖwèGÉgÏâôó›ÊþþÆMópXÁõÎ&R±‹Ð ~ÙY‰Uå΅ϤËiRPóÓa`G¦z;Ö úle\Ñ—;;ÄÎ]¡¢€¡6ž¨ ”¸ozÏ·BÃw–©lu(”djÐö¢ØY&.Ž‹$úø™C[|Ó¤“0èŒ|J/²(Vì,íoéôu{ƒj…dÏs'â}z¿°ª«%tÊ ,ƒ4³Â&·™­ÄWžqˆ<5¡ž³.=ÔþÒëlà;@K¸Û<Š+¨íõá~ŠaY=Ìq ³PdÓš¢*\š>‚tÿy6“¡JÂXŽ®>†“O¦^]·ÃïZÜìœÂ‹ã÷Á#c»2¼Ñ›À_ïrDNÚ*»{I¿@™¶3øˆ©¦-›ôGX¬NS?p‘$ yÍØx÷3ˆâƒÑIõìd·î8GÅAPBW«H¹{Þ0T’Hl&TÁânZ"‚æ¿ÈyßùÔYÈU$ÐÿÚCŽ0ÿâ6Z&#pŽ™«~GÇÏd.eÎ/w´b6WÀxDÿ© ‰1­’v—%ä ôÍ(ïf‚^x´² ŽØ–aŸ¯õ³#²¨¡×¡a¥.Á `(¥á(FÛ‚c¨ñôÆ£ò±Åêá6`ÖÄMeé[¨ht]XüФBÊ{SCv:»X®µ¾½[¨¾<öe:¾2ñÚfŽbv1Ä€ðÓ5”pü”ù¸ª>³æÛYÏ(_?­42™%#ᘠ” g+O¼E“C}ñô(– NtßõÄÊO,=ásG²žÓó¼ÁÎ?bžò&‰ðé¬:@3³ªƒ¥ÌÌʈêèà5.}‡2B=e® '+4tAź4fwœ}9Òéƒê$Ðӊ۪ɑ5™aå ¡^¦Ÿv|L„ÈNá¹ýi¸`;ªƒÇ¦vñåxröÝ6BÌ e‰/uÊ¡Ì8ÀàÎp†¡3µ$|¨óY=úSÃjBÆ…c«êäܩ՜¶¢ Ù&‹z¯d‚Åh!6ÆXF‘ÿ¬Ì²Öá?]ÒHfCŽ“ÃÑiPvdYäàƒ¿h,Û&O¿&ßÙ¡Ã;H’³$g¥Ù]ªzÂÿ:ô¶ys•µí~Ò¸mbÜ'^›Hhøaˆ'Lž8–Að`î½xáPh ç ²2éTt܉”ïk‹DB•41H—3宥K¿ÄB¸ÉËÅ~!—8ÍÓTvc¥mqJê­£†G¢C¿kÈòL*AIêÿÇŠ±1}‚ÂÉ'kâ JdWr8A1äœLµéÚ+äÑ`¹ô¯øB†cf²Ñ`.Käý»:” (…ÁÊËq¬+}Q:ò¬¼¾eÐ —RÚ` ·þKR‘úuOÚî~+¯ë¡wÓäS› xÉt»³ú> \HûÒz„Çc¬ Vðh|µ’àÜ >¯Ç‰/IÊÝ|l/Á•ÅÃý¼Z¸ʼqÆ“–¾`)«6Ýö‚Éñ×OI±ßü¦~ìh^×o·u¥_Ôv´¦/ûÕÈã$švÍ.ïTÂT†­e˜ƒì„þ”¾o>#.íRýÆ‘³ vmÜð0¹Å*ŽØ“ ä‰Èí"ÁדîàׂWéU¢OÒ……=¹ à 2¥´tßÁ·õºÑn¯Ff¡£ë%ŸÈ¸Ôö¾¯7q뇰¬!ü¼‘;1%ZH陃»ùò_‚NÇæ}¢#d¸@0ß´MF8Ç–c‰Ðý˜ê­d榢}ZGhO¶Y#‹ò®ê|¨¶EÈÿÃèÃø€raÚÆ•¼ÞU­‹&\9/0‰¾ÞrH)y®ëÿ ïTGÉÅæûÂ8_^ÀXý.5ý½“Ž‡Ñ«zEU‡[eÒ°a^Í¥·#ðô™L‰/çÎ9–*1Sœàj -½"u‚c)§F‘‚%÷ŽpÙp ÃЛ›i”xؼ¿Ïòóñì;PÜ‘fYÕh°³’ÑÓÊÔÍha‹V¨4¶^Ûó[A©ñ )q#@51@…òbeš—\9÷=bÕl&Çæj;,ÍžÀœA˜:3" —å°UÆPëÍÆå³e“RÙ.çþøÀ³Ø‹&ènÓC%:©ùñ-¢-éHÅ`Óå·””¾%X ýî²£»)‘ŒÉF“ÆüH S+µ`ÇMÚq›½,±ÿWHê÷7Pe‰¤äE¤áÛ¥´ÄŸGÉä22¨‚Aï{)¢ÿ…^@BÕ¼Møú>Eè‹öëæÔè¾öJ·AìQ´bdÜÕ0k w«BÞ›ìä̱óÕíüÀ8A.GȃÝe@+xm“ cI< ÏQíÔ(ˆ#§B.ovnî1zjÍfá,R©ÀóZ›'Ü¢n! îÐ]?ùð3„YBÿ Óž¡·,\—_NËæWv¹‹`‚þ.¸f1ÙwÍÃ€Þ òµ üâFÿ^ÅpÿÔ7õob›ã“6›Ï¿žF&†(³u¬ŸJü¾¢úý—ÍE†ÌRßf-+ÚgÍŠ#ÚyŠIáêVlÔk|©‰-šìŠTo3¯É)NðÝØ0Š=ãç’§UǬÄê´.ÞRD£CK;rï Z@5™° 5Íú@O'€Ò‹E•a¾± ÛS„€Æû•6ö“Iæñ7šM4a¶l±¨ŽÈ©­¹3ÑÓ],~Ý!Ì•ôˆ¯€Ú©g¸9¶è£]Ö˜©Å*qcáSǦ/õ~›äŸá÷Á¶J§@ £fÑ'W¡*WªNîïù÷ÏÕÇéC¬´É?Ƈ‡6¦Z´íHCpzÅÈLv¬ÜÞ]K+æoÚUˆüè´·¬¥•YsyLkeÁ„[ëq¾šö>R5/Ü-x›\Èua$L¼œ 2ÐE2¶Iå¸m#Á^½Ð÷i÷U™FÐhÙAnh€;Ög´Úëôäuþ‚OÔ‹Œá§ý ÿ_(hì®Äðl¿HÑ@wZGJ¢àv!Æö.$ic‚±àúÔ£Û>Âd'€!Ô„îh²â ¿ÌaÉ"ªdw~¡\¥ŒßåýÂ7xišLöPõíA‘®„5…†ó…Ùj– Ö &RAKÕjt±|. `|çÎ\Ö)¨Js¬Àª å-Y ::ɦZÛäpñ|íÉeý,šŒ@\§)08èÁÔH-<×ê©W²¯¨­ `3¦Ì`_¢pÎz!¿¨#[ßrðZ°“Ÿy &;N77þbˆ”¢¸HpcGfÚI•ђ׉*Ñ¿¦RxZTkmP±ï±Púؼ=¯‰Ì —oO±³@* D Q»ï•cßr2©iz¶b~YSÄô‰¿ƒÎïì),/ì\Éldòã1ši>Ç E“'uY½ûÓôgd $qœO(•åD|¯æÀŽ{ŽÑË à:Cu¸p9O™šÿ»å˜§çÔœôA]So\ææùìò åê(N¸ëL>Ѷªàcƒ.__LÇrÿb{ãs«[®®¹Ñšã³Ñ<å¹Ì£IÝ:*ÌA`nåI¡R*Q™C˶Q _È#3Ž%¿¨Sa›•½ *‹—jf’¨¾]óݱm¸µfÁpLºÉ>8•ìœGM¨)sÓF%{Q\ĸFŒ˜/ÇÒÞ2®…K™¯EE9,Ì ´`‡ÁÅçA²2Æ^OØQ$Úûûº—üÁìö0ÍŽ+ö2ØÞ*§'k²ñ$³çìý.ØjC7ìÑCnàóUÑ}e¢²¹‘‹Cæ±@´•_ÆUÍê* •âJʬTk©S‡ÐBCcØ®mÞ±OI{½ë¦^C,zO:—`ª¦JU§H©y !SŽ f&ßËÚ#i8$Eï~Z ?œÂ…½~˜®ófCÃ-fG‰šû|ëU¶JæÁ+”ô©/ `¯ÉÕ=)U{Ö\íyOD€mœI ‚ºå‚X'K‰´zo‹‰ñ $pðÿ“ZáOrãJ€35GtéÂçt̳¦„SæaøèçZ‹Rñ”08ÉR:x†ÿFNŸ™Û-Ú×UÓXŽ \÷zv•á*ý,Cê¬c6EÙl«’ "çK¶®µ56•k¾]NAEÈ=Ì\ŸøÖrÔ³Ëtn(†Ú¿µ ¼^R˜mêñ­@oðЕjëz»ÎÿŠÚÀSm/7$V’W®e©âµrýÛu CŠ,ÃhF¢ååIzöáÛÐpx¬âæäÒq¬ÿVtý釖3¶Hè9O´ôªû:XÞ#5ÙvA@âòƒKò#ONV?·š¶[mhÿ–äì ¾/„oôˆ 8ª1Å},甈˜òîz„å_1Fh+/˜Qu”âv-(ÙUn{@j!wp¾UdÀée²Ú7mw¨´`,"Rgü"‰¸ßqñÓù_v¢t$¼»‡vø×µÒ`:– Îþqê½%#[CZ0øÍ˜á2^STœŠ/ÚEi°ô^Ê`‹T`ˆÎO$Å”ýâÆ£ûïZ§1#T·Ž>ªÿ4æc/æË øGùŠWdbƒOœF„Ë*˜›3ºz5-HÅô¾T*z`ô„!†9l°dl€5q1уýk¤BÎ_ùM;eÚ¿ð/I-¥\“KßÛÊN3u‚þ~æ,_•¬Sݘ^Pã_Š(1j@¼ø`Ù‰¼Ünâ”V)wçržrþ¯=[ø½NyQ¾«¤réŽÄ®¨ÇpѰø†-®›sȲ}ZD¦PvC.‚N6ávìyeåÕz žg_Vêj5|yèAÆŒL ‡‚¬›•I³d«çœFŠy)¿ï#zE¥¹÷¡‰!§ßBÚô™K,d9έ ¶Á*¯ _ƒ%PŠÙOóH³†²ƒ$Á_eE5¡É|ÔÄ:ÙãÙãò)'K¦oõš7mµ#¶š‚ìÝ®¤‘¿º×øßø´j¢ôÔk¤Kv«aCP ³;¸u@³Ü¥Ò¾žÝû÷×ÿçÙ˜aZs‡17Ù=\2wñŒšVdœúm¨ìª ÜÔàzrPèïÒ9Ñ­Àãsº½oüï@zclj%»TÛ±ˆðíWf0 ËʃGÖøÿÃ_JsWEiÍ¿v¸o cðSר¼Å,þ…B‰o£Ù nxCÁ$zIØïÜd$-¨úøñÔB49ÙÜM°dyMë§ųQýáãŽ2ׯÌÖìœç‰DW ÂÀ‚¸Ì*0ZüB/¶‚ÔøÁçéž•vdn¾ ý”… ïP²Ç¯:ïg]ï|Æ„INËéá÷7daŒ;Ýç‘ÉÎ`<'.YJ‚GõרÁ|žK¦f!ÁçTÂ’6¤]c¯XG ‚PÑOÃ.ÁõÃîä&Û#Â:Ê@èÒ«1G,ŽEóg³ôíÖÝŸêµ4-­*8[2É…ö^]ÅKbìV}6ƒ¬òtÍË'ÓCäÃJ9úlS0{cðê{(_ÕÅYo†Ó<„–nòR{@_æ«øy²LS³"Ù åüEA½Œi»á¬p^õ…r¬~ÂË "O(âCÝæC&\Ð7 õ+'.›™j<ܲ{l/Mù6eüAúç×ÎÐË=/³å<Âp‰Ugû¥:ÀÿÎúe8%qrˆ^ÌR×6m#}†H…e[ùDÔ±«³ýW©ç0•ó©ôE¾Y«F‡Š).g@‡l¸ƒdïdÇf™U ŸØ¾ªfþØþ¸ÊŽy½À*¨Ž¯Bׂj÷£Å2NÎq(Þ»Ò öyâõÆxA‘_ÊH«9Å`ñ…¶ˆˆSæïw?TUòÓEg£næ$’ ¼ÅŒ¡E9WéY_ß øb*®¾À @|PæÓüÁeÚfp0¥<¤^¸õôsÓ5VªâP@V†.N²ŸYG׸šo}[VšÃç.ø“í€ñZ–½ÐJ2ý²þ¦Ón2¯ŠrÇ8Lq¹:z0sÅí=’~àªí½éѲ¼9U ä ú¯ƒsÿ!ªúcSôµ‘éãÈó”-K«(¬çÈ@@šÊ`ž1'tFÜ¡½ó¸±®ON¤|¶2>lºë@ Ê}Eþ§˜6/ vÞd¼BöÉõ‡ú”c.;§¯C8¨º0‚¤’tÞQ Úäì+¿IZíÁÈ …J~â}VGÁ¯]t¶‡½~[Dl]¥ÇóO¶Â$‚™„`‰ø?B#ƒäî÷œECÝœ]®Å¨Úú«êI‚Do]Ö©–&T¤?I]˜.­Ôÿ Ô ¾¼Ìt÷*Ù|³öy6ý©L;S´êïwKy;_í³ Ánã ös#‹KSú¹Õä}Z^×ZZSAžé Þ`X¿JÈhÌwjØ>Š¢ íÛ¬²?àU[”ØáeöñK˜ÙKo`ðV ‚äRm&oƪXªØt †*šcF§»ÓÎ<’ŽRt8TK@4EdOtEˆýb'0UüæXây]=MnjÎׇøÎeh3âúkÛgbDÊäLEóÑ'yéN˜ÍäÀÅþåÑ G… i¥Ò4õ`S\ÂIF€Dbmóû”ÿc1—«Vdùg<ì,?_ÑgI}Ÿ6:€ rè54ÑSà `0Q¸bÂ5@&䆯êZFG„‰rï+ó zvl½¹…ÃÔ÷Jضš*Ô<–•)ŸÉ%3¥¶ZQ‡.uˆñMô õ ˆØ·y€ùMyrk¾T3.©:Y .lšºêQ5RLhçÒÒçÎÍþÉÝݨ¨+Šó:âMT»ÀÞ WÜp–üS©­üMÊÎyzKÑêö×ÓÙC›­W¨Pܵ öÜ…‚'O+„± •g§»û¢OÖƒ.ýÓȆ@ð<»3nH§+÷÷o<3Í%0Ùñ²àà]lOþ(l cG^"6±!6ëzðŽ·‚ÙtØüî}#=]•yceå«¥ªL5G4Vä[®€?´ÔP'’>ëàŽOo~±•ݹªXçn0ú%›Ð˜¿»w%œ+ø,µŸ(‹—ÕvSÙšµ$ä6Nåi0ÚO|z)pÔ™Au‡„DZ»+ù.^äúˆÃgËeeü‹÷7™Û(Éý„>eüxíÿµ²ëÆðnèhòx½)‰.Žm¤uå÷ ÀDU_= R¢gîè ~Ø ëøa‚ñ]ø[â ‹V¢f·ŸG>é²äR­ŸÏÀ61@NÛ[m^Y˜<:~ùcþ0Æ—¶MñÅâä—)ˆU¸›Æ­y÷“jæŒNö$FßQÕG’צ·!ïë„úôº‚<r æ›càBn¦ëc)il\S·QC>‘Q¯˜äç·ÆË„‚ño ˜]5ȘÜí\Û4=bºw…ì »I•üœjYÀ+€ìû=lCÒ4Ü‹jÉk,Óê!H|¦´{ÞñxçsP@(¾z僯 ”°\ôþW­Që°Úù "xø™.ö£˜hÝ#1($Ðଳƒþ'Ó'íU âó!fDáÅN²æU¾ŽžiäìUq•©h“XùÝD–ÅZ{ àhÔ9{ø¨É=»Ó@u‹j£š’}ÿ'¢¼øŽßS¹ÁiD)0©â³ŽŠ[yM ¾{}¹º–Ù…ÒÉÄðu»—’±½t—Eâ´ë!^©©å¬æôâóFÉHú•ã —oÈyÙR í®˜‰h7Wä¥î_âaƒw›äÊm¸Îì†1`W¬Èúa7ëF:®í_¹_µ´®Ké´_½IÎ`ÈŸU` x^ SBd8'ÄÝ)¡öÜòp¥ò&þíRu% ˆ+ÊY!¼¿2AÏw(?š+C¨–’\N ­uQ3ìÆ†ZÅ}i­ŠVñ V­ÓˆþPõ ¾ËÙ]o½|ià„juøk›“KE¢pùö¯‹]N[i0M4ÍÄRð+9ùª¡âÉ£ Ôœéè*ÖRZ6¥½CcáÄóªl^“²‹Ã\C †¬³P¢îõ²kš(©?€†©!^^gÝ¢,³ïpÍ}›kL©æUÆH=û.UõÁ¢ÓÁä,«O‘ˆ&ü¡Ý7›级ôß(€Ú aÛ£†õ©õ"S4CšØçß )Z(~¢•ëŪUu â7¤xþ*_iþ5ö½·<{ÛN°5•8Uûva†µj<¤å ¸VFfÚEpÖÌä„j )ª¥ÓãV)¸ÏÛg›<”Ã<Ðß\x ²ÉûÙ–ÝFá~¤ìfN5Õ«Ó\¢7BA–u“¡XåwéÁòŸþ»O§4+»öº'î—•U¹&èhÄR,k±ÁG=×I0E‹rÍ ^$ý5=UpÊá;¼)¤§—.Å©®ŸR'Å;ï°iÖIð¡¥–H¡Q6‹ØyøÁxåÎ_‚k-_Á6x\|—è~öh¬x½ÏË+]éBÁ‘J&.§žÌX;š4omÞûÈ“E?Í3¥ý@®¼¾ÝÜ]Ó±`ã'xlPXæ¡B—½ù¸YJX¬}op)RÉÌÅÉ+ ì|f\Ø2 ¯Î=þìTl@`‘†Ì­'âP—±¼ì‹v±—vNÉAͶò"m¡²|1m)RO|\ŠDPëúóW «{êþyK‘سÝÒFÉœøõÒ¿ ]Ú•jÑix” ¦Ï˜”䲠뽬evM…¢¸@È1¹5=NA‚¬GÎ"êÍb¢Ì æÉ'ÈMœ›ŒÕØyñïV¢'Üq aŠÃì,â½V4ô¹1¾BDºÊtß„S7¬µÂÕ"šF4#?jqÿûÆæÚG¾l?B;t<$Jt5ЉÔU˜ @÷eX×Ã(c牢SFûVñû°œ¸¾Vd²Nç㈊4¿”ÉÙ›O39K>)’€X)*ÊÌ@Úh¨H«_~™W¢@rl/Ô‹Gz›--Y³e>9„„8ÊWVªøé¸A†—§fŽžqË7u˜muÜô”PõÏÞ*~ 9a’, S!»b*ú:Fu¨µ ’ȤÈLxv;5e„¬Æ£<™«ÃùÌ®7ƒCÞ¥Žö÷ܰ˜fm¶ µ]èÛ~Ú67CϬ oÞéä{€OErõ³Y9öQd@Æè8Ý'Ãò¦å‰ä«P-šßî­È0†Gw½UΈü´–w$HÕ”ôô¬¯é?å÷HDé3ªm,îsµZûB´íµ0Ì¢c/Aî¯ývŽÎDQÂÙ¢šM:¥d{›Žê{hÖÝ–ë<<,¨:BŽÙjµ‹ˆR–n%NE§yd "ŸðzýñÒ¿±¾P9ÆÐ *q÷Êï=4"öáê,‰ÿôòþÃ’|6ÌTä‘ììxüs WpWÛÌžß°jÌ÷ÄPâ­ã—0¡ª²¯¼aDkPÚ+ZL ‘m°/pÉ<ˆ¡sÞ4h,•³ÓΔ{UV–:0_îÓ|8¯^ ·{à-n8ñÚbMŸÜ(ÜrÑ1Ÿ·±Ë0ku˜]# þ.µ”ŠH ¨#ɬtÃõ[#æIµ}Œ( zêbiˆŽ¿y0¥…)ÍÿÐ »öNþìì2µeM=Ä"p.ß?͉¶;ºL$¨U"HXËqå-ø–öJs¨âo¯#ØdàÍj`uÜN'!ÂÓK!ôtˆï{æïÙ^ŸPgÿ=‘¯„Xd+ÿŠøþ¨i2ûBÔhÏ+6±Ëø÷G£_zî ׬!´máS=.„”àn•±¯PwëôŒG;iÇûXΪÆyÜÜÿɲ^… nmŽLÕ™¶¾ÂýR)_Waãá\зÝ\%Qúºs}ÔÔçF·ÝJ'Ú9 @èÒžù™®»yz®¬ÿ5¦`­ºF9ŒQú'-w¥{þ8'æOñ’€['›¼|?ïo·Œ}Úø×´ÑëRÅøâ§˜¡Ö”ŒâŒGZ2 ¼ø·dW56F¹€Aù6‘£‡‰s>ü ?Ê«ÄÖÏl»$ƒU¾Øc•tÑç-L¶dF5 uñŒ°öÆŒQ½ß9CëXâòåô HÅÉHf½<5Ik¸ é%´q‹Bìézf¾=KÁ/|ê}xœdßè‡X/gX¶ý. ‰x޽6…†[÷ÌCNêê’€4á‰;GioÙµC>Ã6óh>‰00Œƒ‘.{Åb!!ˆÂ¹^MŸå—î–›-u ì×’H€.XϵlÚ¾*ÉŽ×Ôø†íóy®ÿ›Ÿ§5(“9Ÿ÷.õù/ˆX릃…Zè¡ìÂí)ÆÏûíaŽ}R²›ÍR-Ò»Ì7, õD ’>î½ö‚ý2YÄ!t‡uõ¹ ûåôƛG¾VÕQ†õ®“}€Ùu¬Ö‚HN‡~èÏ\Y2ÿÞݰx= &Û]öÈó“Ð7 2ïÿUG~úè3wæUiÕíª.Ñx_ÙT¨lðìë☿î‰&`pÖÏåžÕO¡QÇéNÒG2Ù*¥í…u?äòEDÁ ”Kÿm>|Ux^"@æRèå^x—Éi~Cå¼¾ šÖsG¦,D‹öíÓ>Nô€÷Zñvÿ…/EøÁL”6Ì)ŠISŽšýV.Õ@±›æO³"•›ä%TôµO_üà4Z†sòbä·˜ŸÐÓñaØØšXÆæ2ê§UDî2ÃSØÈ‘0S[mA’žeÏ!ûÎ)Î[q‡ÓlE&äA«Þë ™žÃ—ôÓÞÙõˆèûãZÁ®³òìh>þéè2¨†XZIƤ³£I‡ËÌ­ôæŠc¿uñÕÞ¼jDôÓ’am§¢Òo jÕS^¦{¢¬äÏ”èÅTí¾>Ô%ø2¥«BìULW4¹€WžÒq›˜Vr‡0¤P ¹ëz9D{èHéåŒÈžŠáqC­Ÿ ùê’›Ž‡ÒnÃŽzDó0 ¶¢° ó¦ûžª§¬ƒ÷i^I3‹(s äaHR%zê±Ì»¯ÌØ¢í¥q6h3Ê6R€†X0ÒÞœ·Ð gÚ_38"™j|» 䢷3÷a.¯~ëC²ì¿ÇÅï4èåò™Ôfã^Þw{ Íëh© °`<6L•Ç ‚«ପK%ì5 ­ã©é&”:ô £Kì$HÏ£Ä>E#¸º°ÄýÑŒ}:¶„<| ¦m/øËG/Slí3ÓŽ îÌmaëV`}[¾þå†gݰ¸Ýç5#ÒL+ ,úÅ“\‰¦…gÆlk#&¤‡,p‹Pì\Pf|XÏ;ˆ;VÙàòë«ãámý·–:Dô[¦7©Ÿd“µ¡U¨&ŸíÕØÜ*ø?¾¼;Ÿk£õ$<Ý_Ú»¬º3æÓ$Äš±Â'l¾íóóÂNÎ×Ue9@Z€FtClgÛ•hÉj"p–Û²”—¯ÏôôT8ÁTé« g±É PŸ¬SðÕFïPg[s {hXÔþ®¼@XÓ)XY£sì¼4A*¦­¬0A§ö%‡˜m¼õâaÆñü빑Y¬1)@¢¹O„ÍYÅ#V-@ÏüC£îu´ë ˜Õ *ÏÓìžLì ùs&à·üÎÖ½êj~€#IŽâ^¾C‘ñ»u!Ò›dƒnèÚSß¡é~Ms4ð&3Lú›vXF7Õ#A<¾ï>×Gi×+cA–ptmŒ.âÂÓÍZô*{ï q°”àÁëµ%”Æõ¨5Á†$Š.Aá¦Nu.9R7Øß}ÁmÞ{Ý1VXˆÁ™°ÊzWóM/.-§¶/~Rx^´¸öÑIÄÏsM[›qüئŠzé[Iú Øú™› “ÞKÀ7úªö¡Š×w¿ØÖÖ]ÒìÁ§lD%Dá²ÊRÈœ§MålwÓÍV‘¸€˜AµÎkƒbªRÝé½î\žQùoŠnší&. †LÚ.^?— «-{ã ö¦j·Þ;c­­ìýº¦`<¢–nÏ⪗‘û³P¡8|Þ“m°:‘f/åo­Tà˜º_‡œ=IKj¼&Âf¡ 2¸“J7Ý„p`óú1à „O´gm¸A{Ñ7dûùƒÁLˆ™ñ”æâr°f]5õqî}æÞ0 Xã†Åm*^]+Å<Ì1òÝÙˆ.<0àÉ‚Žqž—A ñ¶û¾F, ÀÿÔ­Ö·öÒÍúZ‰Yã|`5¶“5:«ô®ƒ½QYoÉ`àÇk Ï4&+t†÷ ¤-œJ§"ø¿kEPïÎüÒ ’·›ÐÉÓÝÏòåkÚ¡Õásç'WHÃÇvƒá+A;íà°@;±*'ª„\@c®ø™*DÀu{.^¤”ô³ELvT;ª À#˜;RòÔQ½¢M¹ÉD}…C˜§]ûFŒÖÎùÍiŽs>ÞïN'º»Æ÷­BÏ9Á÷ñIëÕÞ¢•+‘¯Mj½í$À.}„ sç ¾º—jö»Ñ]"ø0\5l¿cb̘žu¯ «›ù^uNâZïë·~¾åUÀ¥ ~-ïEFåå™x”Ë téh{팢ùzÈ)ï°SLÝè‰>¾Ü˜Þ 3Û óJSËÂìÌEjÔ—?î}'°:2,¥æõ£÷NfføzÖw€MvÓÆ÷í.ò4w¼œâªÕñ Ø_A¶<µè¤Þvì o3­ÛWØ 0Bv1.+bâi›Çl1KÑ j§Ñc“M”NZòˆ¤«¨\’0p6q> ú„ô‘¼ ®zž&y±(®{iàÀ!<,ŠbùÉÊZ’×nÇ¿”°‰×Ã\Þ¿_Ï(bêŠs^4Q ×É ŽNK%’¨õ¼³rÝ6ÇÔ/ŸW[ÒfŽj}âÑoÙÇ;•’nǺ«Ä];¡zÀà™k=^‘‰a¬½VñtLö¶½ H…Ö¶Š’`·T‡ÕÝ”ß/’è¢ö<À§~ºf@ËÿÔÈ"O‹(µrö±ß!é>Kd¸~ˆ—-¢d–†ÐýeË+ò3$ŽÛôQ MM³xà`â~`5ǹًŠàûN­Á ò ïlÚ‡µäão0wv3Léžq!zÙ˜ùð|;¸´`ÍÐ^Î g8 O6ÖŸ«P2ƒƒ5&M!Ûs!)]Ȱç­u(‚íÒØ:‚ç†F¤Y@J›îl—ô$îSˆ”Hóå”túݬˆ|Œ<“ȵ 'žÛ\ߦhÌÑL4m©I5qZ™Êò)Ԁ±½ê«‡¡šæyZ¹ÇXÏs·1t^¦õòiª³b9»åÄÜåå=ø9.lúÓ¸Zðå—2Ó¤Š:a­‰>³ØÀ¦Ì®s èþâØC#Òv¤q’vÉp@úøLÔ‚%rLj!u›d.ý9ØŠÅÏÈäkc>ÂÊã‘21ŠÏ´çíb·‡GK¡q^…ȧ Ï$e‰ç©hçíT‘³4&¹ñË74Îñz'°&XÎÏwÆö)`Øœ]FןËõŠ¡©ï`ýfÑ™ ï?žf×›/í6úà«OæàR…p™Ði0T%-Ÿ Àè³%@Kï—&‹¨5ceja™—àÖÁ²7}ào¥Hê5/GZÓF€¼Èæw î9žõù­Þ:ß…-wPMm¸~ø$Ÿ"ŒwæzÚPÏ%¿\ÙkD쬋¯|&. Ø^Cú^jc|1e×¢L”^ ‰Ñ¶„Ì[õ11¸@†l›J ÃèÖT”§Y)¯¾} M9AdyMfö@Lw|3d¤}Âò®VG~)ÖY\-8yhPÛÚûóäï~íñu°ð›³g„Ë$UÑ×#¨{¼8ÞŸD¸Ö,RTE@d¹Ü·.ËúAQfº=¿ùôÀ,FäQ…+ÜKxóå5À¡Ä»‰Þ @·þ(Ôt­žQcøîpÜF—N—7¨AM‚jð‘”ô…<¼Uæ§_ù&“Œw¬±õɯ¿MÁÄïšÎòïTÉ'×Ä p$ø s³m ÚH){Õñ˜Å›XNŽ×a›ï˜\Ê—ðøÚÌs„ñE´!ýÿ§}¨ì=›(zbîrAƒŸ[< F¡ãž‡oö%³éq€¥½óêˆbBš‚o÷Œ›·7*y¬÷”Ul ݸ™`·(‡óí:„›ÒGU¢böÁnlŒŽ?”ÊñŽ'"iöU|ú©ïxÚ·ÿŒxñ³Ñ* ý²»¢Ö o¶ÍW?‡ä ú£ÇOï;¾ ,’È[ʉ“ËáØ¡¥”Ø-šÛqõ~SÌ(Õ‰Br{<$g{YÓIwåS´é« {9Æ—,@çæï-ggίi?òLÚªýÍ9E©]Çs ›üåù»ƒM4;ù%_Òþó|0(ÄÉþqèų~vO€‘üÔ˜´µ¸o/$}N€4ö7'Ù´‘|ÉN®Ó:Ã8ÕàH™ä˜bûž˜OÑÂ˾â‘*ªÑmEn>^`¿Ùbóž›èÎŒ°n±·~}».‡¿;q~«Ceü­_ÉJÍYÔÂÜÀÉø³R~Š”y)ñÇ•ï??¢qùë„gªªö#y‰ÄÆÑäÝÁPˆéö䈭ü?(Ix4‚æ‰åÐÎøs ð@žÊ«Ö\†Oó `Ïì%fÒ[·RzÏ—9ÿÃTÍĪWâ5Ôê=°‚¬*œØ¿³Ö#çÃaìê,‚£ýB9ð=^ì­Cs QÃB¯Q>P„p=.C(Nh¥\ÒÄÍÄbƒJ“)4³ºí´«ÁÉÖAâ×uÖ*:^˜Kâ8”&õÙ˜”td)ºoÙè\¨<Á¡éVg#¿fÎæƒIäÁ3t7ÓÆO…SÓcø$w@_ùê³$²Äû‹3÷ÈoÅíïâ5л˜]üwAëÖ`fÿª`þ€±§bqpLO‘sDr¡¶0ÈÉ'Sf(Ÿ!2×làÊúÚbDïZ:‹ñÏJ«…ɶ!‡Ž,Ú;¼ý%<,Á.§m9f'¤S“‡¢]xpø%²4§'QoÝaànâ"Ü Ú…\ê@’‡ÚÔ‘YQLR°©Ö/@ 6q˜G}~º ì§tBG’ -p§œ³ÿcLלgøŽh2¨¬—t7Ëe4‚ÒÇ&×ÐW12 !ëì¯9d™5¬ªYü[FIãK?üæjÓO­/Õ wˆ˜r·ëLªOVcãûúŒõn†äoí¾G—+¤o£~—žuîˆÇÄV Én ]Æšñ>LqH7×:…0”;íè"çeê2e×õÁÀR¶wãdÛ EÒÊ×ErL‘e¤2Þ̸„“Ÿ\‰„Œ“ìv¹Ñô$z;D™mJˆd9?ñ˜1ßµ8yÒ¿Õd"5hÚÈ; ¬ÔÄ=ÊBâùxV1¡ÊE)/iŽ7SíYŠ\pÛð¸…{.êT¥yÔŸù&zÅçóòYÖ+Ì2ö)s`šKŒ¢ÜRÖ{ /‹0 µ3JÚ„}¢ Â5Ó+Z—å¥Ö»èìã”íñeeÂÎÛ}3–åúÒPõ5sKòiØ.&Ö+Ëᥠ¡û.8è®üØÇà´^9Us[g›ü—fªtˆ¼‚IHóo?¯ž¦œÂ…!+Ìô•,+…žö+s} d¾N AŒ­pa18‘&êx‹ñ0QüÔr̪:Âv¨Reþϵѩ«&f<¼ªODJoS¯¦>6?$,+‹×QsRÇ.6 }xPà"à3#D–å/¹‘•­ù(qà;W2Ê;å`ŒËWgÍ>PV–$e%_Z'÷Ïô¡`Co‘ï`ú|ÀÎAõyé .–]µt•¹eõ•\ŒhSØŸ­OcåSOlÅB€“½TÒôÑjUÄQwÚ¨­P$h˜*ÛoÚ¬ f޾ؔ”Ñû¨¢ß@À8nþL­•LÊk¨…cãu©íœÙŸÅlV}õTƒE¡·ÏCÖÖKJ£émA÷õ7ÖSKCt‹%T|Êëƒëíô š 2¿/ÔdŒM¦ ¡M»e‹¦CÀÀáz*óËDa GPÿÈâu0IÎÂënÀ „ÁîÍs?´CzU¥øXzkâ¶›Ê{fé…àW{s×÷BmÝvUnT æ˜{©Ö[¾£ÎC³;WÏ4ÃÚ«sˆ¡µ äM •mÝ«UŠð㫲•ª‡ù¤þÑ(öäøÂJ¿(ûžÆ*dF\T1@"aˆD±&g³­ ØßDeo-~U|Áñø• 5.ú¤¦ÃÚmaä»Ww-Qè­©FsFDLw/@œæ=€öåEéE¤ŠÚ{ŇÑQ½Æx$·¦×—F»RÅ~é½½gWb¥€ Í„j}Š¢éuaêĤ:[£·YFƒÍa ï<¬ Ë–Ñ×ý²Ú1Á´‰TÕÿ+ü«mÌš=4mÌ ³Ùºæž?×°)yž×2ë&K²ʫ뷺ªhâNÒpžhÛ8®à˜Ò 2‰ é ʬóFS©a'.ÓMF‰Ñ}¿‹Ûï«awõ’sc‰|t‹‹åú ^œÇÊîY©Ó‰ŠN§†ŸÔÒOö¿‰·“!^Ã4…Êz¾J¼ïñ7UÝÎ2ŸªcæÉÔ2šÒði¤ªÒ¯/ìåY“[é’[ö&3•à"°ÝA A¿aJøî¦d!*…°^¹¹)ƒ0­rʌтX¾©Môèêƒ`ìW(œoAªû…Òľ+ÐS»Óî 34{¡^ñ -`¾ÙFÙµ !tJÉea”~õ–j„-ÿ`„BJu' ¼þgn¤øW gHb3ä ûÖ²™Ÿ1²,Ó 7Õ$2#ãévhãk “q¢ npFµáÁêŸc äê7íž®y ¼¬¡uàøÓ¡–œ,"ñ¢Nw»Ò¶¸äP„Š6 Þºk cp‰¯f­s52ÿ àoåÚqý:›ª¨ÚQl&¨ÂœRQsq}M'#ë«åS¸"gÂÙl¹–‚W9ç,Aÿ#ú¹¦O'ÓÚßÌcˆÝ…ú£Ç”%•«£ Wt'‘ò¢ ÷_/mYþÀè ÍäªÍA•@ûzŒìÕœ-ó*œ™Í\{vW>Cua´=îºZ® .ÒŠ|ñrCiÓmLf†§ÄÇŠ=!©Ý^(— zTÍ»½^qÞ YIÌ'tÛc\ºd¦|²¦w ðVkz4¦Á½šxzõ ñGâBGsåæX³lµŽÂÓܼ–\Lx¬³ÐdëbÔ š­tÙ¥D¬–Ë÷Ôé [Þ­^¡˜Xè"OÂãÔä?¿2²¨pUoªØË‡<íg7¹_–²î.ˆ~Þ8ï¯_¸zö÷ßëh˜ÞÈ ¬[겜ºE ç+¤ŸõÍΦ†´wZŽ·¿M'3y@1å.è1zpaå>-ëg¼SU=¹VJÞÒKRwð~lH‘À4ù]“µ¥³§r€Yî? œ~™Æ¥¼Í¹%BGó~.ê©p“¥]ê”蟽õ×q§„³tð`Ý–5-PYÒÒã.‘î‹'Ÿ/ÌÀ«*DYY*§6Í‹¹l$kàÚc¾¬‚¦ŸÜ'"‹œ%# êf¨ÝÃÍX|Øi‘¥¬‹í€Ó~0¹éšà©ç,n®é$wD.¤>œ:<¡¥¹•OtkMá”j¥Ž¦ €Ç)ðü³¡“ñM`yåW(Tƒê¯+édUú‘¬u·Kþ€@YšCÕ0>óQ›…>RêûZ9F¦©¯_Þ·üvLþB¼ßÌòO‘?,òw1s„ †Ìú6®YG?$§®¯1»Óšù,|+Ç»‚Ç\tî ÈaÛß‘srÅIÞ!>m¸ÐáÊ…ŠUúÌòë^િ™ìà~¢wR|ýõkÄ´ :ܺM¶üjãq<†€´ð£[ iô—9£kYï›Þò63ª) WÚtµWö(x†ß¿bžö@ƒ<÷iÂCÍZoB¶€‹”þÑNßG*ÐE‰Wcfžôt½>Î*"ŽÝJpŽ@08»¡® ÆÍDOHrгªýï ä–þ{?˜{À•PU‡J|)3^ÉŽ@—¶ËÕÔK¬Åˆa{êQF4È_²Ý$lYéRbOEÃÀum2-[‹lÛƒÜ@w‰[Ø” Q¯nóm .Ì ±ëüûThð*úµÒx¸ÖíxÕÖk:Šˆ!EÈÙvó:wkÃÕºmé¡;ÚÏ0Y+ ÃdØT[¨^‘HßñWšÖÆÓLÈ.)ò¥5.WÒ¦"QZ‡‰äHɧr2u>‡ÊsÅ¿ò'쨠îñÂú×+»€5ø,mfÚ¬´;²óÈÛ"R 2X®—{˜¾Ãäãvµ€‚æÒ]i!W¬ÿ˜Cžèx˜šÃNãLÞ@Q®œmê½íâ·‚Ñ È—»Â1ØÄ H¾Ðä ;lÌWÁ­‰ šç•GYàWÿ]h1И·Ž­Ò[½Ø³mÒµš´b^ŸEf=ø¾Ú ýÊÆ£äXjYÆïãô©äÒ¤oüž[ ¢_cwœ¬ qš@jºkBk |UÞ.§UB£‰ÆËǾg#…ÏÕsdÚ–ktÅ.Ýþù2E’V›E[¼%… ²u'ßÔBš¢ŸÀœ}jvËö|Ux0†.¬!½J?>þØ™ØÎï·Êk˜7WW3ˆhàU¢ÈNÛ0¶Õpª7+äbP¬§FP…ù6Ö¾!"¾¦é—“;“ðu@,é ¸é$K%ßt.}<2î½æ¢pVà mh71è,‡Iדc™bð´éÚ*õ_Gn/Kè®KÐíÛór:úCv˜ß‚Ï´ò—ºðÛ3O‘hM¼]šÆë?Ox`¦dSâ³2»¨Ó£­9œÄ*«™7áE8·Ã¤™ýáÍù"2b'_yK'7[?=К/Úk0„·çiÛûRuÏÌîÊ]v8®æÔ_“ìðÂ> Î5Å^Äê[ 6;Ï ØöÁ@Š_‹Þ8è·çºZÛe>éªqȇ½FºþÛCoÒ”‰£æ®×~e.bÏa{†Ì,ŠÀòçKœï]óqAS>J´š_SDºÝ0lKì H¬÷·&¬i2ùòBW{£ý™"û Í6SÅX¡¥|âÛÑ qR%r:2ìþ\¤K}T”ÄÕáð Î!´²ùfáÐŽ3ú™~¸…›û-÷‚ú\4|úЂ¥ :cØ‘™õèù+ !vÛ›ZÇ*Y¢I¼z6;t¦ˆìöÇV·0TÀDѦ""ûa®q ;9ÜQíOp4†•¡ŽÝTÂñIÉJ´à隥á€^Ýu"¹/Gµ[Ôk·¿cØÒm§›ge5ø.V[«ojéì’)=·kˆ¾ÔS÷\ëö~]%®µvÄò:àn0sN Ø<Þ1Œ{ ÓyšòL¶¹qЄ€âÅ“öÖÇ'²'¬WÍcE\,í„O3ÂP™ý¤âÆZƒZàá(î$:Ìâõ7ÓA¬7-˜jsbÿiœ©ú\U°ªo6*†ùf_¹€#U‰:³¶êÄά´ªh7¬7V"Áx¤Á¶1J·Àê›iY‹ýød—ìõî9º¥¥ïx"®ªÆ9ÔÜ<—t€#g€l¤òÖw㌘»I¼aΰcF×¥3ÕCÌ€"KO>Š ÙÒfïŽm„J¿Q_Ù[[ær@LkqÄJRXUïm[¥á¼BÕ¹DNÿÖ‘\òë(t´ç–ˆ«¹!]Z¾ÚF3œ™É%€]ñ-)®SŠe e&÷j{²Ö? ঞ|»º|~/KK:~*9Q+”­\<[+×`oVA¥¾`øú_Zl~,º1;”íÀѼºø€hób’u?t\­zøƒ—Ðe)õÅ9‡„Û׫“ª;êã÷ÌšxU ÄÏ,ï¬?”ÿ]Êlº°ß„ø°É\Žê÷¹‡ÅàÀ »û…ºµûß}VBN÷]x˘xŒ„!v\…N83·k”¤œ žKŸmUú x ÊrzÈ8?‹cÄwBu4èar …±—½ N~aé™PÔÁ¡øÅAžddXñ—] Ý÷æ‘@n³|aó‰pÿÀÚKAÌÁìš×e¡ÂýKYª‰ K²á4o.Ëkòn‹ÜéuF¼bè„DÓËÆWg?àñ[jÅYWúi w^`5, U¡ñ‹L²É–Þà ,H!û¶¦\zç>|Àjœϰ¬ÓáVaˆ‹ˆu×¼sJ¥‹}ŽFýSkU§ì¾hòýµº7ø\/ƒ?–]3¶t]Ò+¼<TXw °ñ„ŸÏ0¦XÀjݸòfŽn–جÔÅí/û4#Ž"ÑLJí*?¶Ð¬ÿ]RqëLÐu*(ŽÕ“ÏšŽÚÆÄ‘”ûnšÁ¼ ˜#·^†¦:úŽóD4 ¡º „1ÜöòøŽ}+­éL JíC/Ð7k“¤qƒ™¶ƒ¡'"êì:cKa óìx9!€ÆEdž«•œhm™}¡N¢Y¹µšÍé­óøûrÄu¥=µp<²¤Zšü€”D{î/<ÈjV,ª‚ôêüJöÓ˜û¿ó€ò®nEÖRþ\þ hz#hf¶-Ó­Ä÷­´¢A‚žXI¾HŸúN8”ÞŶð”OT0W³ËÔéþP*àGÄjBgÎàÑ«g-ÉèW£;}MžÄ£ß´F1¼)¹žÍ6OwoR¦xdŸ¦ß\Ä`b,æî1 ã8Í)¬*aƒA:¨ylCnÉ95ð·ÜÛ<æ6?3IóÕÖÐÑ Zþ]âÙ—Úz¹Åk0LBóM´Î_Ë–AÆrÀ<ƒC³j –rOºŸ”ôÙ»jg^|Øýx ñÌXvæ„9 o:–Há<§u¤òù™fÊtñU“.§«ÃüÕš“¢ˆäˆ „[D¹(ÚK6Äwy\\,E7×™…®5Ã(×ëÝ:ôíÿ™E9K7ŸÇ|Ü]z9vûܰÉV´“AÁë7Ø0„Œ³ƒQ!ŠyÎè\†Õ,þÚ rÎx~GÅQ½sçiP%W‡ ^ð~8h¢›™ÅjêÔö}Ä+ ô)~d\eÛ£óáôîöÒþ$ŸÌ,v¦Œû >yÄäóÏ€fèçY%ýÃÒþ@•a"7.~0zÒXGY‚·Ì6þâüÂÀ)#M)‰Ø~ÿƒå8û…¯£åz6®¾­F-–%:Z«†aõö·|—- œÅè´z‹`N'…‡>ž·áØY¶¼R%°¨²j˜õ3MµáYÖ'H.-é¾öŸ¨Ë´*µ tÎËПôKMÅÜF’@QN¹G„WÂâ‰Êèœe™umfü8ç×L jÑq‡{]#¡+Í3h^Þ(?±6ƒ,Q§o Ã(WNpê%ßÐ`«NÎCûÇd”DìLX¯‰ï*†á083Ww©„n„Á ¿·òŽ*¯RsÓ»ÁwjðS•ÂSc×hÇx–‰ãUÎzZšéBùtí®2?ÎÑ4‹m|M:’ìhšÑs-Ö¨4CKéDÅnìŒQ‘8íT˜mº:Îëÿ”|o¦ß#¡Â©OÌñ½]ˆÛÊ|Z“´ç† f_m¾…0IËÁžtÄd{sÅ¢ª6Ècª‘+eþd©Q=v¶ê#ê3“CI\3›ýÑÑ þB1NZ§ ³Ýê»ym¸klH²è$D,)1ˆ+´EDoGŽ»Ã£õ@Ó9$ïûÂ%Jís‡9ÝËp ¹[3QñùgC 9æÊBÈOßç›*îØƒ8rx.]ê éNjÈš†^”EÉ÷¡Îê–ÀonmbÖ©¹àgF)NËÈßÂÍú©Ö·{Ô¹²Ï/è$½±@1ò ê9OÓç1ö–v$Ô\1eG(Dч¢µËæDÐWPêykûcÞæ@aN´ÐÀ¨TšrÖc hö»ï&"Æé0].0õ<òÕÅÅÐßÏçòßÐÄ¥Àzs¯”üô¡rÓÚGâ–é%ŸãßV¿"?À…J  «®­ Jï­·ÆJ¨1öwÊqY×X‰Ô1!Q°½cÅ£¿©ó&‹¿$ØpÍ3ÜgÞØPDÊ 6Z v@AJzžé·„¶·8—8·y6|å[’áø)f­uʆO=ÎýŽÑøÐÊÀÓEvŒ¶› Ï0àS1ž<- >'ù|°–½ü˜l0_­âg˜†c@[()¡c‹›ˆ8[‹P`öÆ£­d±5S&·DªBI•$º`G¶…î~y©Þ1…FNÊ 7¡?ÚÒÓoÔ”€ò«Ò¯òÈ<êuo®Iâþú‘¹ Í®&*Ü|ý½ jZåŠ^5—g*Ó„ýAÝ&ƒ‘~as"²L„ùDÝ5Hu²¿Ýè­C<ûx …Ÿ¤ ÈëÓ1Ö—O?ÃTêcb%ñ½ à-ÿ0ï@޲V²åERù9®Êd™ç#rö@ìé¼ÛË2“n¹Ž7Ä·qå–8*AJ…l@ØÜü1t1 JÒ«-¾0<Ò¤¤ŒO —UÈþòVÖ>k'—1ãsî- D8…¬¾ðdŽ K©ƒÂ¿m☔øy( ª¥/qe>Öà‰ßÄh–Ì\s¿gojÀËd«9À$=»³ö=·"NåüE ßo¶aÃvÄô7YKãWÎϱPŽG+UÏH—Ta•îTsÊ…VG-)\÷̀ؠ:°ës–fD`b;wÞæCEUoƒé‚†ïKÛÖú y)94 ü xÕ\læBÅs,Ûò¿uxbž,å§1T°n¶“]HõÖˆoPχhoË”°ÉÜàXº;LjQ¢É ÖÖL÷µëIΠÁ­Õ},mp–÷-oló ¶þ粨¾OÖgL<°O7$kfõœÍ «b÷äzEñâ”b³¶À=–„AÔþ1AÑèLV£îÖ‘cM:rVås‰pÅoàKQ3{ÒLG)uûM‡E—ÉþB’.&Ö ® Îmh4VsѸa1”W,n²Þ8t" &ó7"cjŠ«|_ÖEþ´q|…Ë+óeK`¹{#韘y+âÛ\ñÚÇ:$åÏgþíW´ßTÀ€èÄàTÆ‘ks¨_‡H±uæBå}.:o4Û¤°.Ô†ÇWBòßå´m=18¸Æ–¸>¼5Ì#¥^ˆÃc-JRÊÿÒ¿¨8y&¢ˆféÞpàNÿı?’>PçI"K9ˆ¿&Cr“ïµï ÍiàhUÇ­‚ËÉ.£_%(b/¤ÑKôª‚óãmP¬¹óCêìÚT)^€Óµ¸·6<ÂHS3 ˜Ð_ÜîeõÞsšîâ[¸°gëÊçÏ Y5£w73x¬§Ú¸sã@ô$T=Ç©§p« ÓXŸ’Vÿ°w‘Ò”‰Kl×q£”Ó cKîåàX±YÄã)uWðœÈרìU ;ŽÕ¶É"{@~nµu«SGClP ãÚ\÷ˆú¶â˜Jq¾Œ!úa‹}ØvG5z¸¾Z$0F´Û°ïºàEå¼oh]¶»4½V³r9#+Ë$Ò=–Ú¶ã4m¥Œ+¼Ìô¸(ÑÙÚ_ }JT‚ÀSÉѦÍéN¾“å˜ÌÁ>͉€Ú‚àKüÉÐ]d~g±;>%KQû3Žœ¡¬.…¹â/v®áoÒȦÑï÷,vù¿•HµÓWFy¶UËM™æòk¸#n‘oº×fC€c‚bæEdb×–ìg*D4#ØVª˜ãè©æ+†>T`À§æ;6rú°Má³HQ˜˜Ù@Ë<2 ô õœ¹<å]^"ëL€Bålvܽ.1ÝÆ/§a…0ßá ‚M<ƒT¤´®×›? Bª¯å#ôAUú ØÉf?\V\â1° >°$›`²†íê_ß—¨¢Ù„ܘá!òÕŸndßZßÏ`øód_`Ïg$¸@ˆ.ÎqOx…ð&»ä‰ Y`ú4 7[ÓEh&¯«dõo^€À·þ 0Yp–ºÅ”P¾öHy3ñCF¶JYž¢“Æð:NOó– ¤&Gva()š é q8‡4ü"›øÄ¿NõÞv¢Ž"ŸTm 0Æ3KR; RFEbîŠñÉ&äh(e?¥4üró»ºt4>xâ3_×á^ˆÕ"ŽŸò©R´²RÖçqëÎ,£)gÛvI!JêQæHµ©¯3 UJEA ö«¹0à•oãÖfÑÆúÕ âÛ„GFaTWTp8&Z#ì D¨€t ’f$z&&— m.è„wÐr—C'7†0OA „Kþ©‘†" fÙŒæÁ—F¦ËÈm¨7ÎjL¥ýÿ"%‘¢sÔaë³ú|1‚Ó¡9çE"F5ùK{|èÛ…O›R§@¢Â¹Ù—ÛâJgÇQN€6˜u¹Ù,d<Ð|+›¢Ûú$w¯…”a'F€ _{†̽əMWšHD1<ö’Ú.­lmº§KÚ-Š(½lw†­ ü49Šç®¶ºóú}fËCØíÂЄ—Z6æú)Áhu€(}3z/&[_¬þ œ`B~àA§lˆ â`2}×mw(gƒ¼¤ÊH%¸öœ¼_.çlÞ\øöA~C|ªXâL7@}IZšÄE£Oï°Oæ9ÒEëŒhP8›‰—ÑÃ0““4æO>O€’Ö±N#ˆ& cÁü°Ìç‰N†Ø7±_Y ûF÷x9&ò)Á˜Wuˆ»FÄo~_GEⶸŒ‚rÝHFü¿lÛ°Û ìÍsV„[%F+~'¬×  &ÇŒ =Vð COþom6o‚á7ÍÈ1¢|Àn›å7œæ%ß»@Hkty&>·ö#/V®t±KûŠ IRìJ˜gEÆMv;’!1Í5Ð ˆ¶ Á¥!3F¨‡3‰8ˆÍ¼bçZ‹ýòˆ*Æ4ªë°0â®?§obÚ—™o¸1$/Ô¡Ú(‘Ú±»ƒ©µ¾ Ä¿(]TCa¯Ðw¨‰¯AOÙOj:±²²D á¦L$o¸lb –HxÙ‹Œ¿ü¿¢dC9IQ]>ü!†0ÐWÈ2Þ*„NyNX%K4FZ-AüÍæJÄë·ä§x ˆâ\x"ð7r0uáÇP/©,O«Pï…»6E¢9óãÙµÏFÿ#ÔM(œ¾þiuI¸–ª°ÄüSBDÐzjƒËJ]ádçéÇ€Äl"^Jz™m=*žÜ•˜Ã[¶À7?|¦Y|Oƒ¥x1ÙJl¦UO4ƒpè‘Sîå#aûK•ʯO³Sai`+I®–B¯Øpgp wÂ÷(ñj‡ïfy¨Ùšµjam£åV&G´Æ ‡q#Á. j‹¨A¡hÑ@eÐöYÁ%Âz÷ج›IÚŒ˜®õؤ’ŸèU„ãõ‘’ßQßš ý)ÂæE ˜ˆK_„&†¸ÞméË×Èw,-Ÿhí¢…XúDª ç9f,›¦lª¹Ä /uºà°7ÛéÊs%îiO+$ª…Fj7÷’îÁSK zôv˜_NÿW@„GÎ ¢ å ˜5©çò]o-¤‡^ZnŽšz°¤¼U†ÉEYã{'7˃øN÷M ÆÃ}¨xº_ý¿o¯68Úvïê?Ï¥r°•sAÎ>LœZ_œÒÀ@eìP·ŠSu·¶oÅ…G^¸Ÿ‘ÆÈ Ê XÊc:ÌuYÄJrÓY\èPÉ2‚§8}¤3ð['Ö4mòf#ÃFè(BÀdH1%œá»·`U9 c'™tAѼPŒFÇy Yâç1㬪ž¥éEl¼õ,B ú$ÿÜà®§4Ò'bÓd••í{5ZþÀ¦kh†²ù”¬Ná$¶ë®%‘õ!¦}ˆ…¸?è+¼ðŸe'_§ý›i: Ÿ%› ¹‘š«”$ˆÛêÀÌ`]Ú~.º˜Ã2Gír"ðl·™4Ë®®z+¤– 9wÖm¬ê´ C5u¡YQ˜CÖ|óÚÞÎz‚C‹À’¤5…¥Ýši‰yK!ݨcèÖ;P`âY‹Õ¾b*1 kçñʺØãÞ¾¯…£z¯Å–1û®›º¤¢‡„«;Œi¨ÆÉ_½VØ»pVÂÄÃX,¬g/5ñ§R îVYR¡ï^¾ÀH Ä„7l\}—äzÝ?F‰%¥}žÍ /e´ç¤œîÆBÓ @ GŒ›edÕ¬fRn×?I[:‘þœÜDï÷õ¯ÖwCDrûéá{…ãÇ8+*ÐêökÑc«^¿äTƒ':òâZs D­âìG­®¶Lî•vFgx)}’tÀõ©ÿ×´ž‘j%ÕN3ή]~‘–ânW>à.ÊÈ—<ò›VTí ÍbfšÄ²,û?½ÝC^Ê–—,ÌRÄ‹`ïàý.ªãÑÚÄ 6¼¼°Ùû£Ê„@ afI\'ªµq«\†í&-½é-ŒdÚ탸 hÛÿÄ!Îß±Y†ªÚøæî$\3§C&€»»öIiŒÝWv\|psêÛ®YÅíj&ºº‹ÛÌ‚$é 7ù;çX1'¡ };¸UjdÁ'éÔ!%?3èΕºÀ þßCƒ=V¦QF|¼» ÇNûÇن܇&‡¡Ë­['5Q˜ˆ]gK? ïÈ.ÿ@¶·1–¾×Œ°¢v*©šv®B¾r‚íÆ|·7…¨kÈùnP|î‘Oïc­æq&5Øã.í¿Ø¥±LÏètغqµñ’]žnºQ„—(À“ûŒMÿx{þ+¬¤½–¾µmvˆ;˜*n:7õ›Jßò˜âñE¥ev,ÇâMtºBóÑ+GÍùPå"×C•Ám/HF¢ºÙŸAuÉ.:ïô¡¾b“Ñc4“Nï‚{!êSD”®äËûÈz¯Øå3âm§¾¬ã Põ£J3iãôâ.û‚Þ‚‹¯ Â…DþÒWsלYÂÜeÐ~ÞhÌ_Ì3Á× c1Z˜‰¯›%õ´[öy)Ä r°/*'˜ÿøøßSy;`[>Ýc«K™æ¥ä5c÷Qîÿ±XJ#“¥\³²¬›ÏcË…ÁK ³|¶F…hàÑK ’¤<J^_9)]:G!Dž°ˆú69V‹R«+îÒ+y"Äåw5•<ƒfö#Ö@€J.ØàÀ&óHÖ©u¢dò7ÐÇ^ã>R]1Yè츧[¸tr¶ô=ù<=Ô¹,úöM:O®!+ñnéo:¤—2Á|n÷P´Ìõ¯ Éj ÆF"$W·o jï$íU|–û»Ö }û|c)ôP,·¥WÛ€É걑&0ëJ®F8ß,`|¹¹ˆ*v¥}|“¸…p;þí ¦”àQL_EéN°X;‡e¦JP¹8$­k}µ#úNæv¶¥ÁIƒë8_Õ³îmÿ  I.q¾nìÀ]nZøŽN÷±EpÉåèÂAÿ“JÛ_VšÎ ©Ììv ’;(¨—µ8((w°[¬4úÎÃû}Å/õ¦B`·½¨IlÔuWüÉl}´ç${µSiš†¼¼Êo@Ãe¯Dg¤6—Í&N]oÀ¡·­bŽ´ãd˜ý³¬Ì¸¦ÌwQû_𱓵tðÀ|S}%¨©¢i“Ö¦zDÏ”:PfÏ5­ÓŸÁªD‰zæ K€ð7(`A)Ïç+Ó`&â&ÁÖDþÄ%m9;錚Y|bgy” ü×Xz%Ðû3FºŠ,¨Ñ)ÂÃ\TK¤AGþæðŽwâ\æQ´"*qköIþ¶xy8ê!¶=^€ù¦•÷ÓÁ`nî2Mÿ&¡Ã¦úƒXÓ[ÊJ™/š=Õ«íJ<]Rz)JVŒhz›™ðRüs¨‡Bk›ƒÊ(â£z£¨‡?#ˆ|4­ôÅ·ÆF3Å^曂ð¬ûÆb†ÞWߟqsòéè>£oŸˆ±‡Q‡VÜÄÄb‚‘¸R% ¢Ïš¦sv;nibå¬òA—¦G=f†sÂSuZÝaÞ˶‰ú§PnX¬ä¿ÂôÒ íÏþ ¹:%˜#—CZšÚö‚;”@\™ç>ôä"Y÷áF³qu2ƒb ²v20,±[Ú˧]þý¿à(>«€-Y_Lt}c¾øõh€‡‚#]a>ŠÌ|`F”k^X÷ $8¬¨X÷R…¶WùYdêyƒX)ÿV…åÒ'GdI"žÀ³w~YîA'N‡¨=h & Á8 ¦Ó:˜x”v\.?âG£ÿgHØÿ€$EBÇY¯5Æœ„•¦’÷ZƒýÎ~Fõ[šõvO¬Ý9´ÆÙ“Ûª(" g^Û”jø’‰Jlš%&INú0?†í#êíO²Àþœ˜€«¼øm©¨ÈL…‹àv‚è^¾¦ƒQ¢Z2Dsé\€½Óñý÷™’:»%ººÊiéª!h»e\O@k¾c‹\l˜Ù®æÛÿ[ó__fš’E»ïç3½ë0zåßì˜ÿ¿üe¯Ö7€brÖ»BÔ<êÎi4äi{ø]ècÍâL* `­¦?s3#¥´5ªàõˆŒžŠ ~ˆ)„´Uòï7²Ø¤>%ÑæÉÙ uk #5=†ŸØ{{Æ1â‚ID.­Ç;p‚Õ*£›â!ì1rÛßû¨è;K*û%ª”šx»oˆ^ò/Sîº Z¹¿YRì[m÷_­‰¥º'rqnY H½ŽQ¿Û-gx¦ÆpA.¹ý½ïU+®¯µîÓOy .{>#×ôâCÒ"âõ8 ªy6´_"*&ZQ>?¦Ìè>q-ûR\JëÞæfr\z¨ë5O-jßV'èííª×ž°''º#åpg/RWW=ãÚ‡š¤Q-Û|Â9íCõSxRÈÉØ¦Ï,¼¢G»åsÂN9†ÇÐ ÈS‹¾'á\b…Ž v&Ò¤y˜é|JU5I˃ØÕzì6¹âpÏÖ‘ïa1ÂÞK<…/aÀ’Œˆ>ÙÍ)á`•þéR!7°v¶¼(5ëàwA tKQ<\ÔYê:kç³_¼TÅ}‰íý" mðåS>ã£Ôxœƒ-¾¡øl§Ÿâ:h£ƒq©!Š ;ü‹õQá9¡èŠÙ×a³/?}·ï„UïÖ—NÚ‰OäMà4Mp÷Cž" |/ˆx!~Ï~_‚îò£];HòïUsŠÒëüO:·¿ú!—éøwë.‹ Ì#þåJ©8iµ8=¸¡V¡šk8f9dÒCKr_+ʉôo1ÇáÇÂ:0ÕW³^•+²“Öø€Lr Œ¢B4=«GjØË|pk›õ†EÇ%?zòÊ ÓCUYëâ9v?¾¶.:Gy:æÝôSñá «ttŸ ÏA8MY}p¨W5'+äF¤ç8‘¦ y|e9ŽbèAhÒ„DRÕw%Î*÷¶_ºó“šH÷ËvÈ•%-^7ø%ßa,‘z}?ñ9çÁê."epÓªÅø^&=¶Ã9ø„wòs×P¼ÏËp¡Þà'Q7ÞyKF£¯…aí`Ôš7è-ñg02§YóY ÌFHa[þY}bTÝ Ú¸›oŸ$òdh9EOã×Âë·§ëó º“ʶ§ •ö¥u®Ræ È\å<:!Cµ'÷wæ°·%/9÷«BzeSë‚ÃÑcÖÂ/Qx§„Hd0ýÃ{€™Ùig¨Ëºo±û !Ö:3™Cº…–³z˜XVÑ~ rÐ4ÖᯅnáÚ­ãìZ1û·Ž×Ö¨)æà²÷:NQ>¢þú·ÄãmdʈßáËe×ñvŸÀûöU§ugÇa¸ð³ û¸X{8ðÔµ¿}€D¡wõiʉ\XbýgÅxï_ª?O_»f´9ý…V’Êzª€“LÂ>®á¿ä·¥x’ÁM$è»] ß$nž^MMÇXñ€¾m«W-á<Ä þ &æÃýîEÌ@äí|¶ñ7TSÛEKÀÐør —ûЭÛñÊ Œ²i6ìûäÌH‚¡ [À‹•¨'G!B”wM¯ßEŸ£¢©d˜júAD<.2á>/Æn:XPTÊ‘+¾Bq:· rnaŸ2¼F:0s¿­oÊD°&RC-ow£VUT†Z^ï)A¶YZ‚‹§´†V˜­j õÒ—Çò~ÍKK³™G"ÆmßQFؼ>%M`3½o›³H¹Î9¸wÆY„¥ü¦o‰u~:¢@Pö×É„§ n…Óòå{Ìhp´ó¦4ïçJ’4º %ÜÉ "Z„]NgQ@Ž>·è‹œ+»›£t0LŸØò^·­ÿœIXÄ”°T±èAŸIóø6²&ÝÇ´~Õ²)I.¬–µý2彬ÒdðùõÑ·"Îtº¤ êV ©˜Îÿ­ëí~Aø„*y ÷åÊ&¹U,â*ð@×Õ˜ñ-­2ÿfA–nWpã{K:©Èéíc¬Ç ¨Y©Ù—]w}Þ Áô>|ó‰¹fœÓòó¡µA¡1FJîñ!Ã\UŸÀÿ.ú•QÉ1YMùEoÒHǯ•Ú·Eq€v~ÆqH6«RY$w¦£–e$¨ñ` ØÅä±q 3Ý2ä‚ð>æjïêˆ)ö”€.EÚ=Ó5æ#©› tÓ.Û‹0Z–ýéòé{ã‡do/¨j` Å^Ö®(ÁB6¼;©Öñû"ÓC½/‰4Àâß¿áÅñù¥ô¶IÀ=‰X{ÉÞ¯kúç@Š7•|eÑ cíxßzD'¬âŸ‰„Ý궃$Qì„Õ½^Û`Þ³v"È7[!kä·@ÜÎfÈ Šjñ‡[: B7ŸLU‹€®ªÀžÛÊ4lfSwê÷F­–‰¡—´vÚs˜NþuÒhè|Œä.ÁM‹dõ8¸óÙå¹ïÜ þú ‰èžÚ§ºQ´"tÀã;v¹ã²éh,äušDÉ0D¸\<Ù›F §¢MD‹ÝDu´©°:jYòÅ©qN“,Ðö µ±2ÖÁ¤M¾é•åK¡>‹(d/{`ðãJY÷OävT¤å`Ýá‘ÚS¾ò¬Ñí ûL%%ÌOF$Ò«¢žc4àûv»êNFòù*ÑÆo¶‰ãÅ£YÁ[q!{Jn¿ÆñþØ3½uŸÄ¨1á¶³Ù÷ ̲º½æü[&l®k×»îLEœa'úŒ§9Á¸ß/ -R?åtÁªÂÝÆôû^ᬣ"BÁR´zéáŒÂ‡JÅ–6õà³ÄøÈ‘³'«Oyª«[褱ʠ*P.¹>„Œø€v èòT] k¥·  Ê·åKPÕ u·‰}hÌæuT¢ÈÝĶKC¦éóª¤v]عéàó¯gl\w­–cxy-×Z­…Þ½:è™øö®}ò¸ÍOÁ‹¨^nÙ%¯::gÿhïš÷»µ·¹²” -1Û3m ÍlX锯<æGŸ 3/«^iÁW‚IçÜ£&™P7(\“Œñiìãu¤ä¹µ>;û³{gÝv VõT:ílàû@~sì¼¹lµntãë ˆ‹k’U¡"êý'ª|瘩<4Ç„f† &ÔUoJMŽÝ@¸‘ÈŒôëœn¨äYhOú>>Æ?-bZUù묶ÜhjC‹€$Ë\92Bù3¦·„uåæ&×hKð ÃsÜÂå[ê^+~ñâ*ÉÞ–a» ãµl<Πçx&»A¨˜+ƒèIrQYàRÑ;õ‰H^b`MϬŸ6*´ÔzBã=ùŠ# Î5"L5w]zãm îP¶¼XôÙ-65´¢œw¸×‹ CM/Ëó/ãéGÃ…j")Ž…gŠŸ™K#qê§¥Å眢T>P©Àî±=Œ¦oÁÆ2¹§g+ ‡NêÊtÕ­àœ2Eicp¤¿ #¼è—OŸ™N0gKÞŒ» ¼†Ißh Ôbßîzww_˜ÍÔ†=j(Æ6P•%ÚXÁÐÄ@”pß;r^Ý#Lh$#R*l²[m-é|‡f*2ѱÎŽé6^ÔHDl¾éó²ÌpŽƒËØûâôÚ½CwV•!JÔë<µäH¤s¾©BÎ=‘¢z-®ütòüov’¼~éî0*m¾P­3”1ã)…ëþÁ$©7— ¸ö¦°N¦â±“qjîÑ!^,´Ô3bè5bOSm“ 'Ñ·î ‚Eý‚æfæ¤@7÷Õ=Æš»ÆlØfÜMt1¨¼L(èé°QŽòY}ßü¼±âôŒîÐY º9+Û¹VP%(×$eùÍaR+L56³—¤£½‡ž¢;ù¬Ì``Õ.&ä!È€2öì¾Ã÷ØxCr/WüÙºó # ¥ µ)¯OÇT‹ëLê»3´¨}£î¥Ñq{Fq3ÛkAÑ:"¢ÂX7@†ÍBÊvØ)m¤>…W323²îR3Öu²@‰å£ƒ”H£Á.§š>° íEÏדQA5nV7õé¤ýߊV¥h‚0²(ó†ýü£· þËô 0ˆõïïS?à‚ ²Åt(­SäȪ¯Ûhllš©š›”(+­$S…Oé2` U9äXhô^{¬žæ$2x´ûtûçEìL§?Ý1¶}ôWcÊ3;Pžß÷uqеCÜ?HjòÈI‰^…žM”ÄÏvcWÆwèUÖÎy@dI\ÛêÕÆP—=ï¡H˜ØÓôÈÒ Vúÿc¤Ñ{”žPÞj!aIÑ|Ð'Í:â”}(H)ÔŠ¨_þ#z^n:…ˬhkW¦§O_„éjvvä"DÙLPè}R¹Ù¹Fæ¢-ñÜ™à9á,p×óßâ·ÐƒýÛ%È °[)s"¬Ç`.›¬&4ÒïøÑµÀàµJ'+8JP‹Ñµ.öÂö»=hh‹—|ëç4…ÇÄëÄX–%‘†°…2fLËd80uXŒU= Zx0ÉÖû@*™(–QÒWô½øÂ”»¿ Þ–ìäÚ:ÒH$Ø{oÛSŒÖô\uØyíSöÒ´$Šk ä×&@í£Pyü«@xº<¤o²ñ‡¹ÖwOûúÒI6 Îby¸Ûè+Ô\¡ö’Üo€è·”…ƒ<1+%é&GE–(Hæ ö±ðÒ<º|ÊÝÜZÝþÿ¥Àš¤X>"ï%AkB}ü™8L£Ãýᑘ<ˆ¸… öèìÍhJ…Š­É¹Ù²—-Sûc¨ÈÕlu åò†ÜéhÚ‚û-*ÜýPdM”ס$¸aZ°®àVµH ̤‘€Fy*×À¾}'KÁ=„ç'V1ãt~GzÛ¥ŒÙç xˆP÷‘õ˜,ñe0KÄzOIY±z¡c‡2@ÌÚàziŒ‚úp¨FrfµÈßgg \¹x}ïÊdQ?ÄU»l°^Ùðï­à}šIÅ:ex”¨,wPÁwÕY3e ?.my±øñeh¢h|hÇÕJ“Ýßjr¦› –úG¥ëDB/C+Ôï0´ÈÛùjœûp‚®®Ñ¢¾¸r“dŸOAÿ^\‰Dç‰ßÿôj ºÍÌ 7ÈòŽÒŒÚÉF;ýÒÊR@q²;ªjŠö0F>ƒ0ù„Tù¡ôãUþÖèÃÎv¨¦ŠšÜŸW(鯴T´0Å?ìï™.Þô´ Ô‹æõûôV³Ãº*6š³™êo›¾)‘¿½@¾ t™TL‚¸ÐðÞOy—U«[ ú3Ä ¡›sñüñHAµðDÃt×êäNöß½×€ Q’AîHe]¢ê0ÓïÏÿ⃠1 Ì«Š~ ”wDÕ=ÛHìè/çü±ðÀ?‹™á¿1wúw´Á÷FW­Åçœè¿D쪧ߙî«n:…ËÔ·7)Ä-KoV!(†Å'’z½»#øðÄ™2ÒêÄ©S°³RôÙæñR?h8/¸:,#ûw-u•Ë'ñn¡ m²” Å%®¹`ÛÍ]zUá,Ö}çP2ˆß©ðÓó{¼Šæà‰*_ͳw¥‡~xÄMþovò©F{PY¬ Ò…^A5NSí rîXWÑÞû±1†ñIba#ÉØºud´Ëy‚ϾL¼¬Ý.@ä‚UK>¬­Ë™R™Î_%V“qª™âoª³M‡Ãhq‚!„D~Êëf:Ãás³‰G혗È.ÕìÆo0e^²³©â á³Q²3qi\%ÇAûûwJpfµü:'¤Û®¿Iöœ1>‘›y4;ÅfCF~q­ î9ÿwAN›ö3;I›TÝ«Ž“Ó*²]ƒHR{Õçµ.¢ª›Ñ‘<—?¡f\M~ØR8!v‚íÝñâ¨ôx>›¡¦#nFmÒ&ßµª™2³O‡¥ÕzËUF ”G®Ðÿ÷î QòZQÒ[±ŸÞ ÛRóæðaˆ2(¾|õx?IßÅ׺Y*HbPÍÆá° ‚µ¿c'>±S0MÈé‰çOÚ¸¾"ÿóF kŽ}ê‘xsW ¬g§¿¥8?wzµ˜^¹ñF†¢R°A1—Æ îI² Ëb:`úoð,Nf¥C4†úK ×+¢kcbàxõ¹ºsQ¡ma¶:+ bªsׯPy¬AµPü{AõlàmU£äÔ­é!/C©ß//¸Š¸‡ê9¶,#˜•ç7*=o¤¸åMƒŽZ*šÖù{ð†¦'#1šv¼ÃÐg'â¤D«ÿd ñ f',6Ö…|í|Z‘9.y°ªcÆH q¡Èx59 A½¶é=_f®¾†¬•pU0˜h²7Ì/²ñDy¢Ûª‹Kü^]ŒÂß¿3½S@pK­eÅZØ›fÎH·ƒ_¨¹2ŸFþ§žé;P9Œ ƒs˜wìYÕ‘Â%—ƒ° =©Zx­=â}6ŸaKƒºS€ÖÚ·08Œ¸û™KbNŒŽ—6X(œ}Ècã»Â¦ò[·€ËÍ}/zŒ:¼¬'F\ìØfhˆ¹±Cí‹[¡. ò­”Úý°LmG‹°ùù‰xµy`7 Y ú¯i €*–ïmÇG╟QÜeQ%µ%»²^ tGƒØB(Íøƒ/a–ùÚÆ| º×d¥(ŸÓºmë’ Iõ¤uŒy<=Ê ·`@aVçÞA/Ä/U®FÏ1.”ßLûÒÀ¦ßñŽº©Ê–§§¿72Ä;¶õ=;$„óxÃ;‡øÅüoµ`²‘b ý_vˆ8JÔ2áàGmê®[Œ.Mfl±<À$Hà_3(N¹l±L®êæ@ž«ÎÏ)¶k:8ÕB¾hsKâç*vÁ-·„í#•ðkÓ SuE§3ߟñ!³DˆÎ™9Ô•&k ©×‡ÿÒLjU;Z‹„÷Ês“ý¥ùzK‰îa‘°ê6ÌŸ38–§³ïULxùY—ÈélЧ¯X<)‰RØY?ãF­ïâ1·—‚Vd²à§;Cûè>²ŠÃ©p¥Çã‚Þá¥(þ)Ãgsǃqx6 Óƒ[˜ÎÙÐ"i¤~Û‘DrvëietØt«kbµ;1;¾_÷‚Û˜ìØ¿þ"’Ð  ³]qöúíB¡˜âe¾XÖ)ÀÛ² Ù°{°€ÔÖ›œì‚¯—®X:•UL£–Jx%H¯íÅ)>ìjg#ßfÇ`âç©‹+Ò³oÛþS9‰Ž#]w‰mšÎLLt‰ýx™t%¥®ŠÎië°ëj#ŠDÇôeï5þ“ºŸöºOûCC¹K!×ÞOf©,´Ö¶÷²áb4E³iÃBÇô—©©õ꘬³W ûÏX‚Ù#Xm;¿¢xÜFe=‹T•=Íü¯dSPžý~F#9¼£‡tma=m‹ìÇ|šL'û,h.µª9k, >=ެ¶ô.íF ÀQ²£½ÂV­)õ…–tËú éËTDVýZ³jöªGìY:"˜MëlâÁÈ^È ý^‡%VóDëõÅióýâóBòÖøËFí¬Bš‰ÆÉ€,¦ýÖý+àj¾)ˆ€9ŽA«]ÒÊb‰Íþ+û¾\_ø¸Ç¼ãñv°sí ÑQëÒJ\Œs%jµ6Á ÷1ÔKþÉÅá Ç3‰ %™…Š œú„ÚÆ¼ÌÛ)5% =éü=4–²¢Eo«i`-¸ q£2q–eÓÀë!5ó`õ]Ô³×2¾ù¥ÑJ+"·è¦†W´ã=¸s)"ÖwÏ\cR"òR8%y»tãÌþç:¸ò~¤eG¡eó&6!­%t3 ÖµY¦Ö1Œ´J<8²á[Ži‰¢yq߀öR\Fb#ÀêP%ô\†q×6H„fÇúË»3¼##üÅ"½÷n_‚Õc&§KiEBØç ùK0â¤r”e;2ØÞæ±P1¥>RÒPíË…‡â`ü FQv/.•ÑÐû 2xv›-$DÐsxD_ÀtÍþ¦GØ^â0o š½»ñK0Á,kOsJe£.t¤µ,Ÿð_ê-õ0þ•¸›[ÃíQ,ºÇ=™²25C‡PF>o<¾ Yzß”QVôZ5Èîø ÞlUÂìåŽô=Õ>Å^oU”¼z(¸Üõˆ»Þzh»¬eÝSxöbç'64¾ˆU¡O"ÉCΧÕ÷7@¨Œëmþ¥\1$Êç°Øw6Ñ…[oKæ=œKiZ²ÓÒ¹K%Qz§Ω0É/7y$WSÍûÚü£›n/«¡Ôe x—9é€Ñi椟„"ö¦¸ãÓ[äÜxL†~—/ã{¿>ZÛ¶$A¼ßužZ“óiË£ Rlà¨ü&‘ÉIÚçbìd¤¾xÿ=r©Êª_„EÖ¯13•DÓ>æ£×¡SiéõZˆ¸/ SËèMÔnÎÐý²9Æ-[¢éMŽ ˜0¨u¼tµÇ`Ô÷KSÌ64ãqMl¯rÈ(îàYë‹»'£#ˬ¾6êëÚ"tÝÚó›ηETê¦ËôK·ý’ÀíTØK¨¡`ïþçükB ¶»wð‘á{Œ úF¢¹“Ÿøa$ã›-Ö"®4‡VñªO·£©òQ1”ÍGnt>iÓ‡œÐ&¤™|†D.t´˜Vsßwoñœ'-£_–ÌT—4TX±Hðô2˾9Šé¹CæãdÐÔèIûþ ¾G<ûÃmÁC@Gz¾ön¥G„’ð¥|¸)ØÚ´Zd6ZWZ¬¸I( åow`{f9¶àfËYóH^2ŸÕ‰é94H¬ïz_ÍgËcØYé„Ýð,}júv@›Õ¾­ 7¦(·šîãEÊ~ëý}æžÅDãå«ÿ&]:ЩÝ[eúÊÑx[õ-]ñd=?ªÍ­ù^Sf®!éj;× 8lp¹`ÁánQßã>0»eHðW_ïHy åpÔÀ»Ž´ô †;Ë©pç6bŽ<_ž€a“Z׋S bÆ<ãKýô-v¦n5±‡—(ÞŸaÖÔm†Á…+gRÏòVulÏû¥ÆŒ&UË`WÿÄáŽd/}¶þjOóŠéçÁ}a9"^¡àÒnC’uTyÌC ;“"¸à95"hœ±•ày¶.k§(ÏÔFœÂ FŒ&6P89mpµ\¡tÆýð1üá/úqš¡úüõâ¶Ép^]Ùì{0»ʺªÉޱOASÎv/—>ÆgÀIÖ»˜Ž3ßË›^ÙcÌ׋î×ãëÕ4Îeúæ1 1#•øgªþÍ;\¦/.óF!ÇÉÙh¿õÓÖé×i:J#}$ËWD#^x‹@ÔæÑwšhPÀõ#Iz"}Ú»ê^ &a¬N›;«¼5§˜Ö'PPjoÂ"8#¬\·®nÜEÞUm¼‹ÄûðñÄsÑôáq ýW4KJj˜ßê¿2¹‚WL¥;×ÿô7¢£FÍbl]ôA’PV?B'«¨u©Û$à|bÌ‘¡æØˆcù ª~¤ÏØð<”‡[ ºŠÍLÝíé¤g 7:t“ÑÆlÙÆÖ¼Ð³æ¥Vê Nçt*]˜…oŸ×Ÿ×¢eŸ“ƒèÝ¿3T %ä¾Ë~‚A 5ÁʳŸ´L’ÞæÊíV”huU}°b4"Ý6(˱ÇÛ×4¹‡ÔL‘ÿuå\4" ‹ËY‡óÕSšK¨]úßyIè \5s—Êr™ Š3“Üçhƒ”M׃)½ˆ­çj_¥—úV_åQÿ$¸øîzCï*ì˜u× Ò-4úÞîe¦jÎÎí[Þ“Ñ­Þ³=Õ6@žèn3'ƒIÄÿº°öJbž•žÜòÔ$ƒUÄë=S >ìø—*AQL¥H~åôöp³)%uÅì(nîùP"f³”yñcŽm-ÚYd—‘C©É’=A¡+ {Çw«¸ã„Œ3ãm6Y>ŠsÙÕ¯6 ËQ?”,ቭˆT?€ÃÎ[‹ü~Òªƒ°7U35ûà;÷°¬rÙÚ¼CˆN™£åGr¼jçA¼Yt”›Æí°­Ö ïuç¢ÛQ}ÒdÎŒV<Ðúër¶´¯•€iú ä"Ý Îsyž¡ÿÆ{úÆ.ÿm¨ç·ÍbUMþmc›ŒõÈ‚i`6±Y˦ڶF½>w¯¡k°ù‰…|À›1å)h·²Úe*å¶óŠÂ%`O=]Í|ÍðVª]ílÂ|j[ÏY¬Á‘“uôx_[ À­.!1h•U–³PPœi?¶-I™ë¡¤Â?î±ÈXOø-ñ3…a,ßâ'À`cÂXÚ[è„2!kðœôpü«Ä%ÕbŽžnåJ¹Ÿ¿ÍÉ¥`iv¿w}Í`¬róçÝÇ»iiÀ6‚¢ûž«ž/=þœÒ*ML±ø•b‰öOIõ_$UVÁ©’lç?ú^;-3©|™å=[…P¹âBòHt¡]ö×%9ôäÖ}«ûn Ùxu²–Ä(—*6ÿû+se)—­ÁÛÍ!}uë”6 ’ƒ¶fß¼ õIcJÈQ‰ÜéOwi2!”©ÒÎéå*aE2”Ð[þ’¹ÜŸ×@EާéŠæßoqÎ™Î‡È ÇÁPga¤©S$¬È‹ ± úa?ôIé—J‰‰3 *ýäÏ™K%~/GbîÕbÿ2Ž3ç·½!\'SÑb&8 ЬÁYôÑ'-Í6F =“Ò·zJ°~°T/¢Ï’ðÿjf% PG°ÞEóC]~ýÁGÅúïwŸO×38-tä3Ma·!_¥;„6½¢9n7Ž“"–F ¸1hÐÍTˆ.#ýN¢ ‡È%Ì+쮑Ò\v{—š8»âYÛµ<°2”Z0C6Åä¬ S pPŽ0Ù‰Êj’Õ½¨mû¯ÙÝ U‚â/Hyyjõ1³)ر)ª†”ÀóàÇZîßXQªTóƒ÷"eUÀ  ¹#hºÈkýÚà†‘*uÅŒ¾ Ã&å„aʺ”~÷ÔYB–ò®ÀY|­—œõ»Çö£_V\¹Í™y Ác‘v[êFÚ¥ÝF€½ÚE]L¥q¿ïÄŠ² „ŠÈGÂ=›¹¶i‹ÁçØ”cÅõ0½Ç‡¯3åŒÇ__Œ»ªšëßz7 ÞÉÅ–ê^ØT>rß*Dû7ßR,²žœޏ:ò ËŸƒ±‘ěݷA˜þ›Á¹cÙÞØìÊFevKW:ç#šÍÏèȉF¡WÔ¢Lˆ#8[ ²YsWØ\ËÚ¬¯*¦¯ükªã̱vð胳Z¶á!Rç[¾yõô Ÿ¶jÎ&ã•Ên”›œÿaƒ •3…Hí‚NµøÅn²°ïòµ î‘@¾Ö!!©<㙤N™ýÑè!GëÉ}¾d³/¹áa ¡ØõÊv#§y³6M ¥ŸÜrÚ~ÓÎl;QéÿÏäÛÓÎøV´‰„¾&ó'{nèÀ«ØAFa¡rvà+Ы'¸wDÏÛ•ß°xÒ±FÏÑØõÚYeCÝQES áÚ&·à…o:†9ߖ¸ßúßiÞØ£¡å¾[&ñŒEàÇ‹i•ãTœ£Ìáö@ìuOJœÊÑP;*\pDz‘% âõ| ¦³÷ÛãWxš5$J Ã×$.LÇ]{r—8ŠXC²øêH(^Ö0 ¨Èæ°±.„7ÞTã|¹E³¢Yö‹‚,)9Yéņôö¦ÜÊö_Ùá¼/›±Ñ§¾* õ«‚«¬þž­lãFÌ”zø `ÐG±lÐu³¦$<–ÍW NãQtÊ-Uö©ÁŸDánGyÛ=crúÓ³‹™7ÐFüŸ¬Ãÿà•|ë LÆdœ0;Ò‰´Në.±UžßÅsJšÝÀ‹8h,øöR¸Å—´ Ñ]94ÌÎ[ Áн;gPÛCÓ¤/ÐåÎË…£†ŠWõ±êt~w€•V/øõåH iñÜàcõ@­kv&pâT^$ÚÌê÷ÚŽ¡¯XW_´lp:bd‘ÃZÌ#h“‘W¿ŠÉvj<è«æ¹°¡^‚å-IOD4$C¿·3>É?õ*Z€ƒ`®–sì¦t_´¶Þ¶x*…éý-ý,p:›WZ`—EdiäÛøÐg½’ç÷àŠ¥Õ0ŒŽÏ×wwډǾYÃñÙ4”m8ô2^>™ø¹Ëo?s$À9–ìR)ÛÝò†#Ø{l%’{?Ggh‘h(0 zrv&œ…h,u"ojÍ(lÄFõÁ~Qò d¹[§ï<š C£˜h_`œ€Ýðiôâ–—Vn9|lhx6ê¶Ù<a ®>$äiÂÝeÞ"¸7lhÌRaQ}®bOæÑh•mm¥ ˆ×—Åô¯ 7|7*®ôÖW~•=l†‹Óû`´BÏu¢zfµóé>{çàó*AD:Cà Ä'šTeE l(€íZ³3üy×ËFm¸¤|§l) äXGÈËf;(S–3Ë`ÚOsF$Én1Ä%ÆšSZ"8¹Y)ÿûñ)?¤†á)|ªéa†s}äð[t›8qëK®NZeQ‰áFìŠN_´ÛKæ%ð ºIòM#C)Ô•Âoø"4Ú¸O¹B…ÛVòºçV!Mp ©"ÍÈ…öFÛEN2~GÊ<‚3+OD”0è ¬wQœË½s¡fc°`pžqÀìf‘ã%@­–†Ðô¢ ¥‰móÝÕç×£–4c/©,´UÄykíRƒ´ßlQS±æjƒè~5Q颱µBÈ4–Y ‹Zü³fÔŸ'ÓPW^Ì=“›°)Ñ&·­—VTs±{²¥EÊúkáV¥s7½*ÕÕèKºŒhG†Ê²—bó>’"£š`×s}Õ鈲öxdòŠ–›°‹Ì™XE®A8òŠGÆZöaBÌ3Òø¯òëØ’Žmš¥ö/¥wKš&DåÓzølÁ7L"Û*ú0Õp`fw*Ë@Þ„Y6¨ÛÔÓËÆ¹L’@<§úVéVk±~¯'5WrÎË-FÛn|]7¯jùƒÛ¡cØé¢èf‚Éa„fà«tÛ!údÐ"&ðUÏ6¿¤š\$C&^ûmÎc'´ÆÎù|@ ìXä£mÖ¨dbŒìRHª|$ŒU. B“Ì_úÚù–%ñxëðº¨èȪAN·>:w5Ö“]~Z55¸[y·Ç­ ¸f8dŒb:3ú`dß(îq‚‘Ôm‹?01c‹[ÊóZ\Æ¡)+£›rë.kòRJO¾ì9y¶x–†D3pÖâV¯Éb{*€Ð Åç=½œÂ!Ò…FÁãJ—C9ÀëñhÅ *ñl·3„A ‘êF'@BwòVUÚ®Yô†øE—ó¬Å9Ÿðìr’)¬a³6¼"§;æ­B(˜ t*è ¥~qJ2#(PS9Àöç°lTבÕ)š8Æ÷gP c;>%ᇒӬ\(4‹7Q¡w‹D6v`Ô' QA³µ”œåKž;ªPRa g¸š ,&†ãr¸oSÒvtŠtgqK—cAª|ù›¼ ó ‹Xz Ê/]MÝHˆãìáÁø”€MnÏt˜™Ê™Ò2^Dç~»«oùþ2.¤·JŒÏi,äÄ&Æ] ÊXå$Ï›¿µöf"lÍMsÂSîv§È¢:å䱂=LÆlhd DlÍìO—µñºáb¢ØY½"lΠ#NŸ8÷ݯlJ¶\L‡ú`z#ÍǸªŠq~°áÉ­3Ö…•ÉšÐmIò&NÂ(î¹ùÅ<Ó2µì²¦À7AˆÓÇ1ùtYIÿÓ5iª'KŒúõ_~¯ 4 ›"×ø°ê¦Ý¿, шÖ>V¿À™53ɫ㸯®©ÿjN žøqGãfeÄdŠ[-K,ÑÉ7SÂÓ-¿*Š—ã _ò¾(n„ÑÚ®1ÙßÌ5|Fss $UÂãjKtÕv‰´yi+ *FÀÆv£q&M]±ˆ¨ÞߣâI!WM˜®ÿ‡ ÍÃà® }e7Éžuj½Õ}ˆ;üš4½Ï'peµ¬4€Ovpð¶á{gdÇzœº±VÈq/ÀëÛ}G¤en‹!Žo[‘ôI9¶òŒ»xkÑ)QÄGŒñº]´/1xÝKCšÉ–ïJºtʱÿ qÏ|'Ë„ ± &ùú¹7¦+” ¢€¤;yrTþ?è^b˜…u/2LÖSkÁV…*áAwO„„á v½„ïþˆ†0µRºÑkÇA, r¿™ñS.Å%š_ípØxóÀˆÀŠ+7Ñ''¥ ¸a]à"âàdžÑ#Úˆ•K)1Ý¿AªEµÏO¹°³oYœ¦œb 3§‹g2×í)lʈq<T$ ½™m-)QX¨é:+E]º½ïC¯W’ê§vÒ’ƒ-§‚¼Ì‰¿\îêC½‘™ó´–“=TÓM»8½1>DQ•w`3r³äu<`Á×v>ÝNF~Jñ¸‘ÔMf}Ù3ÍÏ%'Äy~©¥×ŽþI÷âÄv/+Ù/™z¦¢¶ŠBö@xéåÉh*œgO Â3ü‚Bvfñuý¼£”qÊ;d?yÙ@EÙ.!‹²QæeÊŸ†“z.ê3þƒ±»m t¡G€•êv¢gE²¾Dpñ>£}ö ‰È×àóxj£†}VÕIsæ½–8;2àÑ1û*šÞh|*éâ+&âƒCϯh5·–%K¦›}£ÁéÔïˆbKOâ…²âcèÿ“EŽm)½m`ÆbÕ.ýŸ«Üpwƒà Öb´€û™PR3ÝÿBÀn2ÂóÚ¾3(иWkUsªÂ.»4šÄ¸œlé}võC;tå¢fÊy3æñÈò n/A1¶£¦ê®ž"{Ö*aƒÔÖWT'\°MüQÇ©=‰qñ[ Ë«‡üJe¡ÄP9Ôñ£”fwúãlõˆÂlAnT */ ÇÚäÙŠR¿B±Ï¶vRkɬúŽÐ0¦Y¼²;›&x>Ëkz¥º ñu¾…ráµ€2ž +NZ{)†YÆn&ð¶›¾¾v’¶4Ì@f½ÕÃ-ôo ¦üØÂ‰0Eq/‚;÷^㞥U(wÇL6ï8‰HÑ»ã.v¦ Sa f4q[¹¯•^‰úöû´íéÛkð¹'Ëi_˜ÓÛ¦çuÞCF:AD/†¼, ÄBÂð]Â…»´Ÿ‹`RÑ®míͱûٰ⯉@ •ÚÑ2™Öª“„ÍÏÔ“^¦V~hå•£¡ÎÆ4™¼˜§ý–‘š ”í1*Ül7ãõBŽ‚ÊÒMrˤZ3ˆ9ëþ´ú/\“ æ OŸ:·‘â§Ta¸cCÿåC¨%ÁýøzÁâJ)J°™z YK¾°Öm’@R·A’qh%³œLC½ëóú‚šùØóÍ%ˆúz¼r©´+(×òªl3ï/RË—íèM¾"ñþܧÝÂ`:\1·;è|“»€9 Ä*-Ш­ƒeÅo£†oM>ôÿ É_Þ8Jj¥’¦5±¾àøÀÚ‚vÓó¾smdkšÖŽÄ/Ç8íS…FÈ,DTú´l”uU‚S`™BE3 įîâ.EHE•ž"z¯ ¯ø ™9†ýBØ¿õS2êÜ»·ÜD´oôi<=@·ÓjÏtˆõkÕ}˜vM¶K‚>IX®ºoäh šl6Ö)Ϋ`±¢‘”KæÒe'ÝɧöVDƒFxàö‰ˆÙŸ7e\™ ú¯„GÌxôlL]Ñ“³œ1»‘¥f){›@ŽèQÊ¡ER¨C3…Ó¤» ÿºw”6¼¢H!¢:Ùºœ²é8î©'œ }4.¯VaP8Ú|åÏX<7úeWA8#ffîÍÞm¨z¯”õjgÁ]/@«’a70 ÔKMæÈçSwðqe¶¼&N· ¶@4á{óÓ\ƒ²é½lª~·y#Í,Pç? bpçñ.XäþÑ5ôŠ›#fqì¨ZÐÄlôÏg“¸B±mHú¶¨Qt!—‡.ªW´ûâeÏ-RèK¦‹šùM™¦•«'Þ|;dÍö9;'ºÙºMï ff‘—ÒåûîyåvuÚéÎ&@‡¤è¢…mXò„phSY1XX¶õ/õØìÐé23¦È}›)Yò ÝŸnKŸ[ýæw”[𾉾$] šƒΉ)Ï8R´¤éd…kRb­‡—pÛÁtÒ¬)q3´%ÝëC`Y¿ò°Iy³{ib$_* <Ë(:d¹ßYío¼¸Õài;Ú!¢ÜÛV)˜1áf9À>Ü»=›§Ý·`š¯†"‘ɇ*ö.YܺŽô…l$o«#°ñ¸b=“v hGô´ê÷¨ó8ÿi(³¬Hks™.¢KAm¡ú£N©Ñ0Ôb‚‡f­’éëÃõ0¶±ò«ë‚ï Š[NCnt(‘Ý{!)Î3¹!à‘ˆÇqÆ8ab¿õ>l¯_øVÏ!É·‰Õ¼ç,3…éËNµÐeWÒ3zÞàØ}™}å‚4½žûEÝà+ÒyÅ®Î]›À`ë‚2pFÐV_Í1È€¿þ]ñ8ý/Œ8ˆú¥%ʾ›?]šž_O¹j¶ŽˆÓÚÃÛ¦oÐÿ+1„à(s‘ë_ðnZá=¡R½U‘½Á¡²ÑD{{zORjiÝ·NYhù›Ü«ZxŽßÉÂ'1láÁ»,FqVÍõν&f¶ÊJEœæù ‚±«àÝAí²³ŠŸtfN90T‹ÿ>y’„y˜nã'ôp[ËÚOZFsyÕØg*]ÎÁÞ”lËĄѺÝcLÍ„ Q¥©¨6fB¤'Ç Ú$E×ý»‰³ž‡óØ8„V)$ÇÏ Áêòì# µ‹à{:o¤ïn'±1ÁÈ£iô¹=EñÜYÄ…>x‚` Ú0¦¶PµÝ´µh8^ª>øvê¡ H^+÷ËL’³B¯ í†{jA¨Z:!ØÃû½væàæ0·ÀžÇøó§iY#vbu9‡‹ÓâKã#‹2U!¤ßyJ•Äz‡áêÛ¡èn[¢,M…‘_ïLy· Ã<+íHAùÆýô‚jо$ßñ!u ^ƒP,¯ f¶{š³_WÒÒvd“ M]έœ¹ÉkþT½ñ¬¨sÆ»‰ì4Ër–ÿAøPª'¿hX;<^eÒ}#¼X‡4š~D„@ª^6¹â·;CÞ6n…ûf¥í¹Ø>øqhê¤êh,bŽÕ·§™×F®ÓT9±«öÔf¶ó×yZSèEßiA)_¤ûÃo“Nµ&RXCûóˆDÒž®¥™%n›™Æõ±RÔ”!kfá_½)*4¨hz{{©P^°WÃÂY:µÐS5¥ÓJåÉg¬£,›e.z5Ž–¯T_¶ÑíZÁ«£Fãm½U0I(/¡›HåßE…;¸O8?Ö÷ÏëËð]‰^uòݦ{„@ÝÌñ`Bt6ì€SõfŽxL{kìÆ.œHÍym0{±FФç·ÛvëÃ2gkôŽ ÅÜ 7c¯‹ªEB=‡ =٣̦L2¦o¶¤Îm9.dÏ@rÂ[UŸkò(THsBvï„{å’âùk*âzûoÒ‹å_ÏCÃâÎ:<Ǫ ·˜S¢ë›Új²«^J³üçÀ¡¹;‚.q¼Wó¼¦`\¶ã&.À'CèªoC¨ôQèšYí°1xQé1„TÚìÙä|â, ^Ö]“öDhXª†K¼M®NŠåžêÚ–©Îè õHPŸEÐVg(Ub¨?ܵÏ5l›ºìæèL_Oßx´7éµ€avuκÚñ%Ä.tÛ1¿ ÕÎ œJƒ©-·è$Š:6žÙÆ€és¯‹4.ÇŽ'f=Xˆ¦’ÕÓÅôXScƒ£ÖÁx Õ´àcv\wÑ?&‹¹hwº]%ãÐÍO‡éïËvwõ‚¬F1ÊdÜÀ® Ê6+<&ëùÃÙÍ£¢Þ²¿; ‰3vÍ[mÿ •Kh³<íã^cçœöOÊÉRîXu,õ¨‚ÚùÁEì2νyäZSêñý%G#‹-¥ä¾û3€²4¨¤~C,ˆvœ‘Aó>½“¡Ùâj„tü«_gKÚÝ›PÅGgɯ€È‚€eôocÙm§(Hé½è €®YÔÅDL ïýhn+Mÿ$ºÌ¦(å[.ˆÐj¯žvèùóÀžSCl„·CT†Š’Ô±nöA{£'EW=.ÜðMõTÀ‡Ô‡ƒ>\Gîî¤ê´EÂFíÜ >aí³¼©0Íô7H£œ#ÿ@©^¾ÿÈq˜ãÀØ­OWÒ\³Ö˜–x©Äd8èćî•ÓÍjä>†´âWûÌ‘€§ø~GlbÀe§êÎY À™‘*Ÿ_,Ð{¶­èXˆÃ-‘‰~Qò”O†NfðÛ›cN¬.‚0]¦Øç£BÁÞ[¾¼*rU¾EV&Dûö‡*K H)Ûƒwÿþz÷ëÞ?¶ô»êׂ;k§ƒAê©‘¬ *m0ˆ{-Œ+y¾Åû@ºû6Rçè"jgFrŒâb…*íž/]Ûî‚6¢š*¡![k,©cOžÆC±Ï'ákÛah&Ï·óø”ùÇ⨪¶CN›;(`CD™Œ¢•!måÔ~‘ò¬2S¶%Hû~*‹-ïò€ç‰ÆIP<×Ú¥»ÐÓn5E°¡x K#Ã/÷±á˜w¦={>3¬btÔS­Ò.NpÝÈWŒn2ve@1V[&Ørg,Q¯„’ïu¿ÁsAJ­x±ÕZtN¦ºb ¸‡l\¸Ï†¨mc²65œíÅP…-|¢ç3OþŸhaf5Z}éD²%ýÂX¿ã²ÊÐ>Ëâo›Ïè¶쫚œÕ(SUˆÔ r¨/ ~Òži«Ö@a¿£Ããû¬I}ŽšJåš g c’mƒð¦•×ÏöyÒMRm¿>6$_‹|Ïj` ZÀ7 t^Žñؘ•…+.64ËÓxphÌ¢‹ÞvŠpï°0½ùªöÔX^ƒêC… ™= ?‘ÔAq¦~«ƒZ‡p:3£ðj~Æ®ëðÝŽe‘8Km†šI$É%ÿüÙán"жº'5‹HÊ)YøŒo*0#yÅPg!­¦X¢D¸,sd¼ìýu Úz»Af4ꔼ¼Ræ^…Î*xµ°í»ÂÂÑCÜsî!¥c#Cµ¨IQ¾{+&ʳ5ñè[wšíQNÙK¿âÇy< !OßçïêL‚Òà ‰6Ó“Î7!ŠÙ¿­~¤u;ëÙ›I{•Åo¯ô&rq¹ôÙ®MæxJá 8T×"30W|hö~Ú€NHõ 1߯"ë á͸Ú}Æm1ßL,)ZMÜÂæu(~œ'ÌÊðC‹8D"Xí½ æc¢@E}—½)ÉŸ3̃ÉàÀÊ\LÊ\&Çò.~B#éhM¡ÿE¸DÒ&¡ð\ ¨ª’|ô•!©êž½`uËe¼V¶ŽòŸåðºMH{ŸŠµVWfƒ™óëÏyí”jR¨J5´Œ¬§1áž ªsA‡:~•–„/®l- áºí$hb¾G¡;èKü‡a’4~m{y±†swSßæ«Í¨á"vWd>þ§Kô/I­ºñd­°1ŸXR‡‚·A‰(o|å¤Uðs4 ©Éiíz0.3Â7É@ÈSÒ˜lÉž¨+â€M™íF’8½Ek5óâcPýJZF‰í£ø!,H› õÐ2É&H$=+…C#yÈŽëW%œáC…ŒDî¸`j‹ð0'Ê‹?@³óÿ­XA0[2ƒ*•jÅ<Ž›°É ¢¨sbA³‹г¶awN,ª¬ WàL‚€€ ¨¬„Z­MÉ¡´\¼o¨“ÖHsªZ§.oaãÐþÓÓaÀ¦–4¸â¸4/ÖÉ&Þª)…ó5µ×ø° s}õÐl¢äbG}îRKŽ[žg9/6Ó¡?­eѸ/6M#£t¾¡q|~Þ€ø«~äœëo øRóè±ú1E †{W6Â,ò©ç±ß˜Ã ‡P(QæÝUp0UÿίEåA|Ö5Fͨ³`.jCíÐqhËýú0ÆþÍͧœÇSC³QøèÒ~Ä=Eª[íÏ‚*XÏ—ÝG#ùøŒþ ú(Fn,»D΢¤.\Éü‡©ãuR×0Š鵦ä"Ñ•›­38I~¯…—¼Ým W‡X@ޏøá†ÙAC{ÈSác[/Ò¯ºãEx§:í‚ùp€Â –Þ4Ñ*ãeµ¢«ã‚XB,Q p[ç÷ÈÂQêç¤ØáÜðCöÚ(‹?‹­§Ò5ªp«¬ÀPm0^ÝÁ.Q»âë™äš†••¯ÅKêÉù™»ÕêHf¦pÇE5ŸÈ›1çy°€tÚ:}ÜË>Ftã• Xj&ØÎÊÀ€ …dgÝ2 ÞÜ3ÅÄʇ=uEaTw—Å!=Ã8A[ÕÙˆt9”?ƒÅô7#À}£Dkغ´ºƒÕCaäižûÂa ÍG]$‹ˆ O9¿mű/ŠOP¢´²ë*0sÃ4“¯†Û@êOP…Ÿá6q¬´ÆY‚7ã èÍçJ"ÝÓؽOiàfNDI&AÍb°Kk_©- bKO¹gÎYð6†žðØ Ë§ÿ÷9³ÀÀúˆ7Üø•.,ßKøZkŒÛUc5¼ÛýâAÌE^mæß+©C#à!L!"W|åêD},ïó!A˜äû*“×ÐêÝœ,ÿ ›[ûÖhŒFî:KJNAÝb¬t?Ê$tw¿œ£’tU‡¸Aæ,Ä(-æÄÊ"tûW׿Ê#²§&•¥û Áãí&û—Faý,°àѰâ rlÆô¡a7‘ý o|½ï–Á YgKÑ ;Λ6-ÇDíÚ*ŠëŒÈÏgŸd‘ž­mÉ8‰]s‚Ù0Ñßôw=hä£ð ÐïClpcD¬‰•îjp™¼„OP$SŽ)ç ôí÷#\ºŒjžÇOŽþæÇ°ˆ£kEÇïÉž*s½É•í÷E<™ [¸ã>gæËÎwÍÜý¯³¾Ûwûp5fôìýѨHöt´!Xf<­!3þbe)CWÒjk¿ñ©¨E_É¿µë["á<²–lk!KÀûg‚Æ!ówÍ p²`Reÿu$ ¼¸³#0Ž2õV÷Ö}[’‰£§OMÝ£–©u°“ ³QQÎß6E °F×~ønö*\$¡¯ñ²÷q¶„ôoÞ_––X»»…:ÀlËIÇR–‚/½d·ÆÄðZuÆF¡ÖŸ$ãš=b%ñktùùÂ.÷Ê ïWB¨rþU “-I¢$Ïy瑈꾆ˆH]ë¢é¨o0×óàªmh^ég:ç‹]ÒtjBEI.$ÄDñA¢p.é–šˆ­¸ñÑë@½uú3ëvÁÓf°ËÖa¦¥šÚ¡¡—Æs´«Œ%æEÎÅc/ X—)MV/ùrÆ)Ž8¾¡µxÙ_,*mÖ3«n,W1 t¢œ´µ½" /£AÉ9³äÄÜaáEhiàl,…nÊ'×úVÙAû·ˆ“AŸzJÖð:.`‘R‡W,ևߓ€]<º‡8¥"\ Eìúþj¥nd/`¼+‚ÛlÊ2ŒçÇø¤!än£ŠäƒW$/ç¦Ý–ráØ®UfåÊI7|–’Áìä8öš·9ÜXIß/ wmhÿbáý¨Õy|Yl ~ûƒÜÔùIgs+õCsæ©Z† :ÛIv• ÏT:\”w*?¡[¹X½KóªtrÌ3.¿!ÕôïPЧAꮣYì‹f¼-¬¸L2VE‰±€ÒÊÓðŽÂ]N?G)w(!& låûkÊ?G‘%¥‡Šæ(ˆqbÊðˆ;Me¹Îñ‰ç)ì7GyÄÎÀZ"RË,­×‡Àà!F¨¬ •»²¬ŸÈBÇv°'‘óÓ¼V„C4:Ì‹Â÷g® š·z…Y§ _^-B;ÅðìbPrÔøKAÖ¨’féÛíÀÄ{¥5«G2žÍ5lJ~ì¨~qŸsö›Ÿßð~%d‡ŸJß-ªCïÀñoëè`$Ò÷mK}«)Jõ¸Ûm}…ÖxƾÑGÃ=d‡Ë åDE;ç¢!ƒt Ä— r»$É30oô¼¦Kœ]û²kGµ}„æŽÏŽÂEÃ5øýÕŽØ ¨’5t¼ÛµÌ‡P¼RsšyCçÅú´4gIçŽðB‡‰áGæx¼Ó.¤ìîƒM5­­Q$!u‰%'.£W³ÿÌš/ÏO{âÝ‹kµ€ƒñ©J ØÍg=%=“YÅìj*ßéw¨¥BíÔÇjlö–“>Íñƒ£ æ®óö7¬rI¸æ îâþCŠYM&Û=cpª¾gla‚kµ¸ÓÀsvC˜ñæ[Ob—ù—¢ªˆ×g¶u—K¸öǸÍG|L+>ºwW./u¸ iìrP5DSÛ*ߪ+ÿêŒLº€½ËhÖ-(ÇRÁÈ8%í³ÊSâÕ%œž!¡™ô‹xÍ·u.ÐE±\ââü’ÙÁ-7_o3=!ë9@øløã÷R ¯)ʘ+³ò  óMšoºhk ´of+ èdú©˜™½jž ¶UÞ»khµÁ Œñ.Vש{BbD7ï§1~R8/õ‹Ù"Ž•ôÜ´–Y·ÃÇ€w﹩T‹á@›kÈÒ§¦åÈ|jo³f–Aö­|F7º¼1ŠÂ)_[ -N% Ÿ=¹àjƒ.>¿L‰´è(ÌûãuXJ­Ê  ì’+Ë À—2\kZ¤ŠÙàé”ÌÛg á8£E±¾©À6Ñ&çí-NO´„ußÉÓ=ð¢ºw^Ãfüº\s¬°Ñ’B€rÜZ.j^ÜI2¿— FœÂ¿ivéÝßD³]E¶¸Fb2ÝŸîìaäðµÈÈìOgÔ±i‹I¢ô%†­ŸOӸϣ"ŽÈ%¯½Á†ŸÑ=®è “(ôÒ4Ljú%!ƒšã––Bž,ã4ˆ¹ªW•6Η²©Yê7Xk’åׂÞO‘ºaª tnb&­ ¨ŸHx×fq¡˜ŒûqšÁCé61öð¦âUÅOšñêú¸P/ñ—þ_ZÐ<ÌDá ¿s9ºu.ªÙ*69’ÙŠ5ໂ*/£X]˲¡üVGó?@?1Ýq53ß:[På÷OÛ¦˜¾Ç†Œ±ó…oúרëˆ3÷ù~:Îù+T2ÜšêýA=¸ï_®Qxô´e@Æ: .F¬1,½[yègž‘ËZ»ww(ëUç˜fQ9—}â¬rÿ"HÊró A¨9î=1Óœ«$=¦æFÅØ¿xÆ >ëL /ö}p×›HrpÁm‡(©Ü](c› p’àˆsIÜ ß6ƒU®$½òsHª•ôkcæ–EdÔ`ABt’#üi¸»ÔQÂiáºö9cŽžœ{¹'Âé©bÊ •û.¾Gk#Š7Lb„êÎê"KÍeÏ ð³µöK˜‰ °iýOºQ¼_¸Û:é&ÁA}“óKyŠ ˜;YèÁñ1~8€k¾ºêˆÞ¯·˜à´ ªìVCÌØË;‚lYvë®,hÙ‘\•QÿãWb¦3‹X]° ŠY’F`óP œ¢”Ì>)G8(ž4I´ÃiCÍ£ç’OÂsªµÍ½½ýdÞ¨YÉ^rÅêÞ%¦®n8¥·8+5|kv[6£†)¯]--ZxØíñ u©‹Çñ$ EH­òa7=TÙ*÷åó_ä¥Å•#vJ£)®ŽÆB3ÑLûyùݤ,·œ2cB(_©Wù(ÑcX‹d lÝ5ôÆNØlîÑ‹lµÏÉÙ‚°KTʬ)$éý½¯ïȸ>+‹J´­­­øÂ«ÇP2z²Æqë{\}ô?ï–ÿY–\ «±úî^ñq>\Ì·æØ>yhM±ÁÍ‚>hTâþç7¬Öu*ÿx‘ºnH©\¾± ]㈰<ýÕB2ïOkíÍA(G•b±b»!u‹K7dž¯Gã¤;dÜrY`üŠ诶Ûå׫%8žÒõáŸèá©Í¹]–Єq¹}ë¶áéÀíÝUŸAÁÓ±L—d‹Ë>‹Äíà¾ÍÃØoíUÏ•Äþ÷S >‹o¦—Ü jµœ^MûÅâ>Ó2¥ }te+Ý…ÄH÷}H5_ǃ"ͦP³žýQJU±õë•ßêƒúȯ4ž2.)yQ#yÕMÁXk h+³Çºz>Ëçqqéó7>¥‘ØTjê˜Ø”2ÒíM s£@Ò(= 9Ì*-„ågVÓQ°ìûÓn…úH›ÿ”O¤©Sž]ëóM‘õ”ÜöN…1 È| ¿E§æy'MóbB #Ù&^F %eÒù¹Àð}´åÕZ2dZuÐAÉöËTÆ.yùÌUfµW˜MÀª:Azàê ÍïÃGeŠØY'™Ÿ(íªŽÆß6Éo« ÊÖ¾@-–[—éeL’SÆAâç³aÝ4€:¾fÙý%×s$ƹˆqÄ”ä¥kZ=h²˜¿Bø‚päûÕÊC†Ñxª.-,/Wœ4·b×(YµÃ>>::ÑD—å³2‹GTCÇžîÅÞÑS‘Eþ«æDë‚ï\ Ô%Üa~þãVYXÌ`SyË<³§ÅL§k‘¼JåθoÇÉö¡Á<W/¦ATœªò*xA€ð °¡7” Šd‰DÎöE0/‚F¡Ð×l}Hkv¿½z«èÁ7Ë)³¿/0È‹R“|Ê| ` l§>æ šáÄÛnÚURóVPª×­ä¢w;Ýògc¾W Y–§qfCQ¥ &7‡q›¬Mba»¸ã ´èÏp¢ß‡®4ï·E¸¾´‰®âOç­NÇÝ hàÌ67t<ãöQ#RãêÃZí‰ì)š±#Y“ÈTo{!Z‹CÃýѦÒ5>p5#ÂHý¿RgMxî<‘uEŸ€ñÕi‹¯ÐÁ¬ìHjÆ)€KçÙ¦}ǤEï|. Pmçá/*„áZ?qûÿyl˜Õ3…n/ª9P4zô5QÈsŽa>¹ ÀrÀúZ1c«iÛóî‘ůî©ö,‹(©éÕw=û‰Mfùi;Ÿ"Kêð´$.”—$ 0é slûþ`³tš¸ž‰#Š–I•*Öº GÕ2¯6Á`x±ýÝ’Enj ÔLÑ!¾¯1Á›“ÝÏ›–_æÀ…®[¸F²ožÅ@u]®+RÉŽ-YòÌ÷}Š4´‘ÌP›T<ßb°6nŽíQa:<ÿ_mã éÏÎk›Ðè`¡íüÍ â¸ÕoÅ:7#ÙÜȦsCÒÆÕ:\Y‹jðãMÑÇÐ+x¼ºüVÑ·U©¨$.’ßõèÆe.´bÖ¨F°4™ ýdM7o`Ðw¡õÕÉ Ò©¹Ò°žŒlò &8ÉÌõø¥ýÉàŽgPñàÑÔ‡ƒSêJcnSfÙ°:7ï #òû<—ãˆylJÄ0ðÅŠ;Ë탤?RHÁŒ‘RíA­ƒvc¥ÍÓ_ó} ÎIï–åõÓ‚„Ð+” \»:BL޹ÃÞ!L=˜§Õ‘ÝŽe .b†tÐíà†»Pb}H‹¥y‹ úõÌ™°(ÌýÍ5 úø ²¯ éNÅxÅdm«y~‹4j~MÔV–VÍÀyÊx’ð ©F4¦ZnËr~¼÷=¿ÜT5 Éæ5戬EÓfÏXûV¼¦~óª…6 ÓŠ±'2 è,Kþ¾j>ånR¢®O4¬LzïUèèGµ“ª¼0·2ö6®½1 L¥?ÄÁrv癎¸p³¨µ×ê.3|¯xlmQrŠ8åô®¢É¸x­ü7=ú#âÚý¡>zè§ÁE• £­ƒö”wÌñgNϼç×hùzÛ Z[‡œB¿{*K’)ogä_R"ä¶¡•ê„q qùÙiÞ*Q,—L¤’ͽž¶z¦» ×ø©™Òk>$.øŸ®ÆõªC9Ä ‘ƒ {«O}ë³¾ ·2È}#Ë3½v:ZæNEYîêïw¯J à79]ÔŠ!%+et!·µN‰5Π䄘dÕÆ¢_BáiR ÑéüGŸ=¹›ào¡"3Ñå*5³£Á>• ?Â&_QyÌ_Sÿ582zúšµ 0C‡{!pÄ¿,×Ôâ½ø…á ±Ošæli|öªýr¼'ؼîY˜Êã6ge~—añ«}4„¹žÁ‰1 QÀ¹jÉÇ‚HfmÈÜ—|—÷€UQ¥×€˜À¤)ù±KõǬöwãµeh«Gå‹´Z ”ÐݪDÎ$¤f8Ž óƒ+Ùâzs©SЧ¦Œf—gNÅÒˆG“¹-,B"ä8 OÌù5Jðc[Ï_g¶ùP޶À—`JK¼ù¢Ú†}ΦlIƬó­€Ö nW :f}ŸQª gKÉæõñÿOfR0Oœ†Väò ½ë±²ê3™ïY” ú%‘{‰Bs(UCÛ°9ûH`}ùCe¤EE9=K±l¶ïB À"¶KŸ šêMËÂÆ“/»Ùhk¨ÛòkÜo°'`íÕz‘ò׈b% ¾P¿sÔ~Y+ôŸ{᫚¢ì(ìÐ^¼“m2‹ˆÀvÚÖ_“²&¬]{h!W¼eÌôüW-x GänÍ–*¡Ë² ‚ÐLëUõ%qÎÎN¿^]@}¦RÙ ‡Bl”Ò7¶Úÿ “êȹÜó%ŒDiË׿mÜ„1¢žëk}0YëŸ`rf¸¡‡ <عÆb÷tMÅpÏ ¥×‹ .m W%¬7ô©ŒµµllÕWÞ®7 K–§>%àùégŒ’ßÊ2ÞÝš>ÇfPÿ7Kt€üx“ ö¢íé.Ú=\Ùåá®± š®ÚÄó©0/7ôÚ±`¡ ðI³ë ¥%_zH¤Õqƒ ø<¯ô¯ÚaK"+³ì€Î =¬²«²ÐañT%z¾’ZíFï¡ ©ë®±OÐÑVd%‰2úžÖîØÕÔÈP•¾ŽnjŒà9qK´\jÐ^¸”eÒN¡JÉèm-<È®z9ëÂdéÉ™#BkUÆŠÈŒìè«¿òÞûè`]…–þïÒnr2“:ÿ8়KíT ÖF²O¹F²_ü‚.tG÷~×RÂÁÒ‚¹¢l»æ[t;Âp¢†¦žY†º]êcðkºµ±fªd¨þ˜ùÄ ~#s¤m‰¶Ž1,?wEØ»n‰°‚| §â žƒùç ‚Ã°&Þ tâs$rê°–çŒ-5½04nóbpÍ{_^·™Bÿ1Ø?ˉ†:sâ®N¬“ŽEh€ÄÁ™Ð~‚:˜ e}`²¦Þ‡ã½-Ÿ»BN®?viñº‰RW™+£yD"w—ÍÐòí°3»5ªS4¨ähíÕ$n®fôâLžÖP‹ª<†"þcµ\vƒz ‡Uô“¨‹ü$‘a”Õ mßw›Å§^¨É ˜žûæT¼F¹{ôxfçiXQö9 9ÇWv1Â9•)ï/ëFžã-"”D˱c”¼£·@Òš²Hz©ƒM_]pÝ wž‹l;SûË˸&ê½OïÞ¨©øSœ³6?ɰ¬¢pð‚PòØE\½´¡‚ä‹ÀãÂù1Ûlݲï{!ä!:]¢Ô‹º[KbþЙ¸0 ­ÈÛ·û6Dƒ+T…HÑóõì6ø~!5ðX³å,/Ü4–N»‹þÞJKóOhdOP L“e]Ío&šÝDV ùÅn@…¯ç‘¹úÎ>3€Cżÿj^1)?^ù/½Æ~D8d£Ú¶O­4ŽÃœçè§§ó’ÅÁ?ñ#mòû ‹Ï"’E«ÿœ_œ8·ÜÊÜÊñˆ„ÓpÚ[¢®Y (Š971¡§Ê’YÀ­À%0Úwv+?oYÓOà|êÿÓ_†F†Z> )ˆO-â_²D‡fL¸.¶çŽO,°T¶X2€£–ýUbâH•_J*(›-ßßŬe Ö ?AëI€ãƒí?ó ¿îþ†‚Ù°””EYlóçÛ›9ò²DP‡9ð"!ØS­0h’ÀÒó»ÙŸwFc²˜8‘ÖôCjV·xÚx’ls]¥¶w@zFè8o<ç ô8žº>pøšaeb I|i!Lòð2%r<gÆ­UÞ|Ú[Ë}ª LaÌ*‡˜éY7vžþ î„Ù·æ:¥‹®A¥sYhï’V­ÿRÞÍgVæü:Ç"pz½ÕĈ´}ò*N“ÿ$É%Åö¤9eþæ\zˤ™¤Á8AqkE•ßt•Q¸—-‘…”"‚¶»Ž„Ç‚SU‚‚/£?A…ú4ÃË+è›%raBäÌ=]÷9eš]bNrÓK×ìãÞ¬9KÈdpªœÍUµéá´‡ô•Xü\1…C†?XprºêNÃSyÁ Z:|¹ÑšP\ËÀ‘WˆMMnIŽH+PÕÜ_T Jþ$Bó G ß|2.!Æ1ÔBRiiÚ6˜R‚bÊw÷qÞÎîÄÚjê½MÖáµ1dçŒÔ2a¯fåˆ å7ÑúzËN~ã™R´fÖý̬øê‚xH¡¶ ýÔçU$sÅ…û„2Þ˜zc.‚#wH¸ 7‘_h×’ È·î‰ì•ûÝ!«L¯A!»f[ êŠ]¥Úø :g¥}ù!©“¿Õ&¥¾¾ˆ´¼Ê¨Ç6SR.ÑvèT©—hÉãhXõ©A·©ÊSâ<›¦`Ãà•9 3è¢iUS¨•®ö«}R žÄ¤ÚoÒKÇš¡)ô0 Ã~”â>NÀZÄç¼Ökmã¢Q<Ë€vXtÝKì8f\“ ¦jùžÐ©ÿÞ6Ï– ’%¢ñ²4|¼,9î‹Ë®)…™P’¸YEû5æÊûà4eþ…wZìb«kÊî߳m°-Û@äFðßîò¿8ø¯¹J£qXºEÒgZ­Ì+"¶>}?NÃ>ÎQ³wÏ?ÿ7c´”¬dBcPGÉQQ½¡U×K¹ÌÔ©›ªû‘—ƈ0F€=ñ5È{±µdM‘ ·Æç< 4\Ô€‘Ì_|a]TbQÛþ†÷å j¸éMD‰×7c:‹ªðSèRiO›ôÁ¬Êù Õ}¸%Ë»%Læ±ò c„¸¸rCB½xÚ»g¬PHhöÔ''ŸÒI 3É@†Zb9"®ÓÇXæÈî õ•$·Á`x©‹²n`aܽ2IUüÁ÷>¤AÃTq4‹8%Õö%âÓN¨É¼¦è‡8ÊaѼÝ’ëÎk3¿pt(­+†óÜt˜ Ù.Èyž˜.W¯Z+Òr´º,æ¨GVXÄCÉ–.›^Åû5ˆ²¡û„ìDå)}yÃ$ö#h %¬0ì¢Ä.ì`Íæ{ÂàZj›s vZ@_·"€Ñ¦4dÂáÀôD­¢9Sà}ׇÖ²V÷;ñ½*4;®K{Š‘em’„‹›‡owßí;£»íøÂ¿—K£Îô#¥ËÊ‘†Ì@æíÂëPz$ Peß¿T‚Bž 8ñ#øÇ0JDyêk"ËR)­<â¾6q>‰ |} j N3ŽëorºMŸG,>nŽ^QÇíû»<Òbñ.¼z^b¦20_}[1¶`¶Ò‚¢8tUdÑBúÏ0‚øÏ·>¯*RNikÍ?›üÓf§Q$yF1Ùå¢ÌïÈI“Ç„”LvU)VN*…Ƙ¯üÁÕ{ÛoÚhdb­ Õ2u;ˆê×!âl8kPŸè‘oyN‡$·h±aÎÉáüQ ¬yŠ·…š ?frÆ÷32[j ×#¶.¤¡cIh¿SŸª¸GñÜÇ h×±\ŽW=¬‘þ) ²€ÒTh{C¤…l]”hZ ƒ>¨´VÁC`ä™v6?Ù50ÙÅ ‘zàÏ/æAòÃ%¯)éÞo¢S¢ÅŠpw ¬÷¡cÌUÏÙGPÅ)&!sÿrI(¤KðBi˜:è}¢‘Ó|Ó„L\ˆšöÖ ú÷ýÄsã–Æ&wïfF{­­`†¬óo@IšÝ'r»âOÈWäN‘IùÔ ÿ®vꦽw'<É3™LMþ™÷ŠQ»þV¶J¾ônhf<™:‚åüp¥÷СÊ*¿Ô½öÿLÇùþ˜¡<ž®°${ž=Ó_TYí†ìõx!`ÑÂg€ìoß–¾åÉ"AÆ@ë;k¬ÛÊoè'®\xûŽ5“2K)KÇ*Þ¾¶7ñÉÙÏqæ¡ÇÙ³DvF¡ÝÉ2‹UÊLÚSvóû"d£cï}{W7+ŠŸ‹ÀŠü+k({i}#F½°î¹óéÍå{olÿjÞ´I…™ð]¶á ,Q;›^*Ž–cì# ŸÈ„èÇÉtfÈúãoNÒ¶0íq¬›Bžc»&ºz(øÇ)ãˆ1"HsÞ@¦•Ƭ)=)&Ìÿ5Yž€ûô›|¬RÍópè|KbpK»Yõü22 ®z½0݇yb§¡æ¸†hìVž_MÈÁƒÑ¡ö2šâïUÒÅãŸ+,åEª_y‚ºôb…guˆ2Ñ›»Uz œƒDsÐ¿á ³¦›cåÒSô²M(ŽPĿԼ®©9Œ]IµA“j£ËÇc§¡ÄÓ{m~¨¡Œìœ“Å*Ÿ¥¤3j¨}:—Ýžx·U ¼ç· §;Ž‹¥8§P)·–Ü>¨¯ÔÁ®gPÖFÕˆñÃhš¥v ç]Ç,ÁiA'¿ ãM½â õ;™6äñÄ9JŽ@l>¹½Š¹œ¨½LÊÛôO/¹M¶6ö˜/c²Ê‘_[˜Õº?VÿbâE÷Og§Z7©8§Z¨˜ ªìË?ÅÁо¯HNú¸éìÕ¯m³^,éââ…‰lDŽªÀ­óPõFO,*ˆ3Ø•ÁÃÌ|5†?'´'®@ñ(íôÜ6d!7Æ= uXo¬–AçIJ?LâªÛ×y·îÚÇ^޾FÂq¼éLî8Ö~²p‘†%ŠM@¯kiä¾µM£ªo³·jÐPéB@={uÁ&xw>³ÍsÌoÇk½,ÈŽúÑ{õ [¼V‰^õÆ =ªÌîŒÂ‡8ý5šd5o„ ýëMkpÓñf$MädRÃ]ÓN˜z¤²QáUŸþ@f°•ÄV6¢g²sŠiY26 –+xWƒ² è×¼ë´e¿Tdñ›h>;‡ŸbyEæ…ÅÕ¯#Ò¥é}=m‘V<‚n¬¢ÚIÛZ„—AñÜ ;ž›u†ãSøzé1J[ÈiòY:Qp& =së[IA¼›Ø™yÁg…:Y’›C˜;KV@±P—!r® Ü«ñ©1A„VŒø^SœiÁ'(µI1 Õ.ÆEîMÜXgUŽ¡=g¤0í)o5C䟊+·×ß,À ”9m:s ©ÊÒxðåB¾1ÃHß* È.ÐZroº™òêN˸ªiB¡ùƒ­>¬…w¥ëå÷â1Ñ}<.A§"‹C6 n¯r€YíoÝCyãlFú¤gBOØ ßú>ktÈ‚`†¥wÆ”ÿn_I“d¢OÖ°',›!«Ð‘ÃȾ"ó„Ä¿85ð®J̱,--ó3Ùÿ‚QÆ>ª1oF£(×âŠ×¦9î%~Ð¥-ùÊ왫§«DÔ€CnyY Ör½Ï¤žÅ÷3ÀV<.Y_KGͪ è“ûíø5e¹Þ,Æî&(•¥`8­Ìb ÕEu¼xÃQÆÊí` ²˜¦:$å&¨¯Tn9Ï~aRCš„?‚•ÛÂIŸÓµN2ÎS‚Æ4Ì?rÈvÚ‡¾í-1‰MÄúӚ燥 +뵩†ugIþÇ>ðéP0é>Ú]­ßý…àáÄr箳 d²ŠáØÇfJ‰oV0LšÀd9 ÉÌÀ“«¿ˆñ~ù ‘"î²í|>¢*c dQÈò.tÒ,õîxïð/«´ )ü% tûî™X&ƒ<)¢ªBAh‹´]þ+øØeŒÊÁþÜuºYCÉ¥{"¹,ƒ/6­ªz“-²›Î dÐLv©ø4·K åÁ Vç:ÈÆ“ë!Œ%ÌJ­ªëÿ7À_¥’è0‡ñãns¨nIÈ„Ÿ6>LZ ¾¨LÉ·þX~þ€|S¬Î ’:U©ñX@ö¸D?¨jÕ ½`keÖÚ¾öÿ‹@ï_õ .ôÚ—œOÙ‰:z°yÍÉ*ºû ¸†™ãY s™íéÒŠáh„¢šë[ñHõÒP«¶Ü<|¨JFð1U‹³en$¼$#ÄItç(Æv‘h 䋚aÎNn!—tS0Ú¼v5jï…mdŸo Z õËÙ˲e°õ>¹‘Åú£ò‰è ˆïóøcà¯Ô~g aÀŽB€"+K›K‹%âY&‹Ð£½KÁZ~Þ·ƒ §.•úŠRÎÜIoqÔag6ñßG,”Vë/L‚ˆ€0øxð(P• ŽbT‚ÒdXeªv$_tÎûFo@¡&õ©ùŒxbížíI=™v€¼A>êÃàýè±"HóÛÙÈKŠÐ;1øÈá¢^O¾°Ä“K}!¢í{k8<7šl«v‹c|·Þ«ö´ açp†ù–¹xóýSA>_ ùû #×â)è›»C@Ãqé³抆#$RµôØák2–gݺ¦­™M©kñå%,OY OÌq:–ùò1Ò џ VÁ’TQ»=\všÅ™`xð6sòx9ÞR2ŒhM {Ó;<[ØåÝÖzXfaÅzSCËí‘ ôÔW¥#8zp=ÃS çÊ_b09å2—ã" [dzqœŽßˆÑ,T¹!K³ŠÁ ¢ 8[ˆœäc~ÞÝÅ}Ž{õyŽzEm8íi°ÄFtïCWÆÙÄEUßëëV¨¬ZWÜ„©‡\;ØÞRÀ¿l‰8°§JGxV4µ™žÆ­pÙQ6sݰ=‰N jDÏeƼ”–œW› dñÐ,ám&\ÿ ,ñ<· ?äù쿽-;Ê€§Tÿ~Iuf¢. «wíâh´ä…ìœ^0ÿ»šè3ÖSèÐøI*Ò‘(óð|&M>òyŸ}ù¬S¾ü?%bhÒ¢ÌôÊù4·#`wpŸú;— Þ†“T~úºD+ÄziÀ*f¤’;Ü„S—{ç 5j%³´1@ôôŸþb†*"[^ëø¹„Ýl„zÖ‹ê ûeÇ4RóÁiÒK¨KÍG¾j™É«@e'Cóv›Ë™Ö[ä3¦n¢y‚ŸcóœHžü킘‡õcŒ¥KŬ{Ö¯cf脪ž×ÚjHEzæ„FÃMUÀ‡»÷W™X5¾ö½xe„2˜R­Zx-h]æMÚb‘L{ ŒhL™1Qy§hgýðÞÍkÁލu ³¬/Ѹ²0î(×aþ%Õ täçõ—ÿ©›ö p×êtÐ 5hÀLwöÅ™ZXuÛCLXJ‚Ûx €ÄµÍàBo†˜m€ áHIÀÀ"(cccÑÝÄö·ðe…9Êþ²‰Ô©b!ã2m4ì‚`#(a"ÆÈHæ þèý ï@®Ìê£9`™.ÊC!'™·€¹öòÞâ¹ðŠ Z(RÿñôWr[Éßï=õÒF¡^ŸaV]_½•^‡—¤Y‘fƒ_f"¡wõ¸ˆÅ&ÐÏwÙ³ò õ?k`½| ±Éèd)ÀÀÀ-Ã|Ù˜…%–’Uxð¢"%ÿ!ƒÜ¢4SBBâOý¬K_`–ú[±M\=¿Moµ\­a{æîîMg÷êÇÙ8‰\(¡^ùîÖü—qmTkÞ®¯ÁŒW™‡ByAÍ . ‹ ˆ™\Ÿ¹?=Þ §È¦4Ræ“}C¸ì3™a¸¯ï_³€µuð®`yŸÝ§u›†¨2RÎL<®mݪÎ#†Tõ¯ 3©_ǽ…>Ùñæëd_*cÎÉøÛ8º|é÷¹ÁÑéT ð{@´Å›ta¯}X¡v’¯¤…BE•‰” ¸*þs—Û¶:¨+åèVIÉN½zQ'O©€lH¦½º{•Dä‰pÌ ½^}ÚxðZBJr ¾QãcdYT{švŽ—ÌM_À²Öæ¦,¡GJ "‰¼ ne,Q6d–εÐíx¾fJR;À|23=§æÌ®ž³%5B}¸µWZÍÒ­*Íœ!wØ»•ju€ªðs0‚2ä†L¢»& }‚ ™§jì7 »×S’ð™F2R|U‘fr¢õEˆ—+ÝZÒ|kú™Ua°+ÞÁùu›ºRô°žùùŸ±’›Âª ˆ™í‹c‚š±–6üËxþ\;¤NÎ:ÂR6ïl´šQ½áG¨Æ5w3ù¸qÅt­{f%?M39䆖u¸"0\)2™œ1%…Ur¾µd{hUuH—îd㛸ÃMÅôSBôö7j1þÉ´™DI3F]UTJDÉû¨~õpœè ;A ô©¼£ìë æ‡V_xÁáhhŸ6$Õ¨Ê\ÝðêÏ+Í:@nš©À¡$k&p>‚¹2|â=-!4a·_¬d[ŸðºÍ¹SÁ]ý•„…õl:Ŭ8¥‘÷Òø~r ”îžØ§>pب‚ “qG·à/ŸAaÅòúLŒuá#ž7Ù˜¢¯X*¡S(*È6·F¤×2ú24@® €“k” ¦e}i#g.#p†H@‚-Ÿ˜JöäÝú€…ž¥~®O"ÚõMšEáùzÞ[¯°]û»Œd½©,åB§Rœÿ¥ò¦+ðfbVí­™pX´l6¸›tr8ïv“ºXJšËÒrTØG,êþ»eþ‰®¸¬¤hÄ_c+XÚà|Ÿ#—woVÉ©»O‘!¨‰¨u@S.‘ˆ¬¯8ú‹ÊÁñ¨%JÇ,ÜÙûw>@MMõÿßP­RÆJ~ ø”äÑÙ Ô…µžî.’ªC oø%¨n¥;¾’ü°AK%>8ÂÖlkÔl“úš…#Q©†ÏM"(ìUéÍ¥À‘6Yý£äë&ÿκ¥ýüX¦òiÊÁì}î.eIþ½iÜDb‹(>Iu†µøeÃSÀ¤ošQÜüO¢‘ÿ-üÉåIÆècãY®H\:Âw€æõÅÁE¦SÔKÒmÌcL³´ðoÔ{t?×]|­ãUo΋¼hJ’(ÂÄ'¡‰þkYXŠÀ•¦GÓFÀë–Û(¾B·sƒƒ¨¡ŸøLú‰|z°ð9×C« øU!^Ã$K¾üÕ¢ÂnµÅó•€Tû÷+õI±E¸—æ.Èoã@ÊopöÐoyè‘ÙÜÄezʑÀ²P(EE¬VD,sfL¦~¦k–g4K£g(¢j]÷¯÷݆åÁñBüÁ›eL¢‹½EQ ªC lðdÂ.0Oµ u›EkK)/‰OÊOtëÿÀløÓ]¢ÊÈOg‘öùmÞ¿:÷7Ó[(º.ùÿä7*õŠãfñ¯ó­"/€¿¤£Ö¶¯¿¨á¸btÏ:É[‹Gïti3„î-^¶"ò. $ Ê,Ãô]ÿè ÆWKæ¨k~÷ª¡à¦•…Y¼§]md-µœÂÿÔÈ c†U€è–P{‹CuÞ1òXQŒÀpÃg§}í$([r ú‚&Å)EÔù¿`+!Lš!ëõùä–p›U[ìUöX¬´Ñ»ôSL £9ÒPâÆ<¦–ãõˆÒÞtÇÀÞ ©}-ëSŒ¢z ¨ÔÎr½¤¥©þ'†£1u±Š€L ¸X´tÏï/wË„`‘2_ôçÓäâ[~äêˆÄ…ÙæMÕzÌ‚e•'4$©(r°[ žš[o-šÆÔ2tˆÄ ƒfŠº¥ø\æc‚\î'y7)$>×w@é¸ËgèrwPÃÛý=4¤ ¯þ1>íz[)WäBsüU ÆÂMhoc[§cr ͆#zð`D¶—ºœÛæ@^åG7¤Þi¡á•ìsì¾Æ*>-˜ØÍŠ¥Ÿsó\ ka‘uÊE¯DúÐ<´èé:3 ^ƉH`¾Îß+,mTûysÿÍy¸¦Jçn#Ynvè#ŠÂcGÛ‘8Ór3ÔÆ†Êºïƒ¯ jÎîdF<%‘Ã<ûAjGœ{è°w&HÑ6 <Š<þÎîìÛÍQÜtÙ(L9YŠÏ+vÁ ÷_©û.P8ˆÝ• ]/uìÃ^6ZG]þoˆ#(Èñr;/(åX!6onÞ\àöë ݦHÚÑ@@O‹þ¢"ÌuÈ#8¥ÝåCúë4 Ehû¹üø ÂE¢ø¦TÊs»Ë`eNù…º|S*èXÃöcC(:ª>@Qy*H0–À@Ú…)tý©ø­®ž‡þY)³=uö¥*ºlIKÆñbàOìÞØ»š’€÷u¢×Wìþjΰ€÷ÆMPénšD»‰¤*®öö•XT*$¢„x±*Ô%Pà÷¤0IÓ*Õúåµ$½ÅÍÞ&~œA9í ¡Æy3ó^¾‡®Ÿdp—&äó s-7Gøµ=,J‚ÚA³#Dzéîeri˜œé.Ÿœ]´ ƒ*Ñ£òÒ1O8ã™`6 G Èstœ}EÁirÑ&&uaÔ2OäÄW«©|å~0/åAÇÌic‘dhy>KŠ+|Á–XÅ“ÉLó7®SiÍ-l^6ŒRðúŠË]ÂÏ’„B¸)¦¹äÐøxÙ–±Y$J¬Pê³ «,Km=N–'µ"u¨|ªz¢ßkI›+‘ÿµÞS÷T¢! qxÆPN… P:f%ž‰k%¸{³ô2²S±žî×°þ ‡síGµêkAjËgÈrsŸªb„ޏäg›•øEbgü‹Zc²¬ñìÚüºÅÏU)#8ÔLîd½&³Õ£šØ¿ ºµ¿-0¢ª*¯“pN¤} »Æ®JšÓƒÑ·úÀø}àÞ0=ìäUWÁ 4÷Ø+BS]fo²SøösÓ彴¼Àw‹ál L]'ä+…‰¤Y{TõÍl‚eÓö`8ûÉЩí­Rí–6™9A¢1Vt®zÂMÃçÈí1gƒ~`‹¢û³ÿ{ŒÁŽ?`Jû¸+ôë[¾¿?ÒŠ8$©D]•œ¹@Â[™Ô.hÆ?ÞüݰÚPüîÎKü€tqFýä¨ÒÚFü‰¿Äô—œ+ŽÖ||Ž,·s®/EKÆâ¹3§k¡âdzÅq\ɇ`¯1=*]}FTÌ ^DLAãa ÄRÔrؼP|””ÌxÉ©‡rØå7w'}ÏMd m¬µã?ð+Ufƒù=>”ÿ~zr^ɶF C7Ñ€w,ÞbÈ‹ÍùœÑŲ5É0 N(5E‘IËéó'¡(­$ñøß›ãöΫ‚A»6T.'Щb:un‰®ŽEÖЍX—e!~è„©â…–6eÏȜʥbIür«jbá¨)p,†¶4ŽåXtK‚±¦+TQa#irá+zI4ZûAŸœ&û‘Dy%ưvð‰WI÷mtòÂöÏ&Ä”„ž™•B;ÎÎ ¹° ÉÙ¾Ó¯ýË«‡Ã¿‘y*gbþ¿ ¡_Bpîjû¥öt­Ã¿ä ºäÏÉ® Å>ÂÃÕi‰û[‡D0„_ä¡‘P”ùÂd†»gWlá×*‹©ˆŽü¼'Ý¢µ€¬Êwe.\éCÀ‰x|Úp:±Œ‰ò¦÷…tÅr½uÁI²íJ%|&´ÚÌP¤’o )߼ѿ¬É[ÝéÕ—¹Äq ª¬ßGóh2ëõçêû‘¤Üæö€f‚`{7%¬vhÆä8¦¿3äC!Ä´¡ÅOå1 iâ™_<ëÙÒ’Î’î¾Z2˃H#ÓÜÀf',gtã±eŽ _ù5ï´ë{¿/Í/°¼35·’ñA­½h}6`¨„³†€£Si±DeªCh¢ò_//}ŸÆvÅ'›¨àš®8÷ž¦h+°r²Xyõ?¹ŽCÍk\•Ž×,&çÇŽË~ƒÁ£Ý4Bº•ëLŸœº¦2|b¸i›ô ä7B˜Ç7ëÛJW„Ûž½\Ï ¨Ì/1…OµÓ*Î'î…D”2â¢3q—ÞÄOÄ;G\˜¼Dëç,ð“€Ne—WîRa"1$ò ý}=OnòGðö‚nÓ¢‚_¡R'Ïv ,kˆ«·Õ°œÎóL%ci‘º²óc¼êjbULÊÐwœôçÉ'—&–-€DqNyuІëë¸Næ¬`–yAq*ž%ºnJKNÿD[¦›â÷eéeHÃÀ8Ú›ñ½æ{.õC%ÞÙ#èAÂ~öç 1(ã17/»`ÀÁ“ß‘†¥zØŒxl¦ï4vÀâúÜ€\g¤ÂUÈŸ ª®Ìw±F{Ž·žL‘ŒŒ„,hpn<ꛫ¨ T¿`:ÕR!vrˆ‘ØJ§Ÿ?¸Ø 8/¾*;¢‰®ÈϹ¼îxË¢Jå®®ó³àÙææÐm+Íò†Ì|YG GXîÇ`?Û ¸ûKÛ,Žj ¬ýÃûò¾Tƒ‹’;Oh=ëǹŽò­èÓ1Z î›’]8ãni‚Û ºJ/[Â5o{R×_<Âõ2| Ò–2tWU9gf]/jƒ³¡˜‚;Po ý _íEQc¶#s0üa hZ·üÒâWí`ÃŒTdJó­;4à›¼’3´î(Ï™p­ ž’9ÍËNôéAÄD$ÃζÆã¢G_bÝjµ—s";É’ @¬÷…lú×÷äDz ý›Ý‚ä2¯«Ê–…ƒ“oxÿÈ¿ÝýVe¸ëÚ'TšÞá©ô¿µ È/–ÿùý×*>uÛó7™ýÉÜÉ (á£âáÐ}pºã±|qT'Æ6Ë!= 8-ú%—ÆÀ¥Àõo §³cT-Híé=“Ž%úÙj˜ ¶>lg§õ€xƒ1õ‘p]ÖõêÎ\µžÿ3ˆ ¶Ì"¡õðx”?'¥ ±pwÇ[ˆá¥p`BH;ʱqÄ9dS÷ÝN2´­Ôº!T+@. j*sB˜ëfiDCÖw6U\ó±‰ä‰ó÷ãñiðÜ×÷9˜„Ø@·Ùµ< (ª‡ñzÉ`|eĺ9é!çLI;e÷Þ´«Ðƒ˜—ž1ì^›íƒGZ‰Çtkr“՜׎w’»‡jÄiY@ÿ£î„÷jï»8Lð ín¢°°kÄîLýSJB 4–ÔRFŽK]îfî7/\‚Èí¡5hü¿ô§¸ Îx’DJ2.I %€XÈ+°ƒS˜ú›¨%ü9™ùJ€—@&;ÖCœÍ-î›ê»IÊÏ{BšPCnsŽˆ5uß? ㊡aí¶=ñxY·::Òâ¿m*k¯D˜'7Ù«`2Ñ£ôëAŸä½t•ËLjÑ´¾9;l ?–¸DkSfY]”J÷$˜I{ß@tñÐáSwSzÖÆÂf‘**T…Ñ€-¦,ŒèÅ3F@”¾æ°C0'lÀ½ “zv=å_úPôƒU `5$—´è‰b˜ø“¬4d Ç;‡Ã Í^üQº+ÓcÞÝO¿iiîS¯Ÿ1»ÓWg›¸é='èï†Ö,Yñ|½†¬ãÙXÕ/“›ch0cÿ ?Í"#D;aAtIzTPóŠèJò`óâþ^rÍ€S9’ãÊš=|çE8ÔXúpD$Žu  Ç„_3sK÷³BÉrmÒ[xÒcÔ†w.ާ럷ˆJ— ©XuÙb¬ˆ?£°k¬©qqºjýÿ9·÷;O;ÍÛÊz§y°Ý§”\º½ä$0QÏ**s¥ON6ñ˜#6½%&õ8*Ìž‘Ø •úÏH– )𨊌!wÝ?û^öFÛã‘—pÞw±0C¤šUy€£#M²ŒÀëuц/‘Ûˆ®¹«ØÛ…]J<«¸yO†òfÿ*!3oá­G*NÝ_ßmªçÉ•€ÂøërXZ)JéCê*aÈúð'ó·"Û7YÁ¤‹ s,¹ÜÑ(àU³Çã4÷þ¹e°¹Ãó‰ä5Oºlf¤?á/ú]¤©“0$gûÓåiî®Å9ØZø]ëìó¢¼ÚÖ®¯ _|®ÿªŠ”´À1õ½Ý3ßuºoo‡9’wcXê ¸Æ6]o{ÑÿOUèkLã´÷0úeX7wÏ…rrPC}ûä»HJâÔå–èC*l˦íÁ§‡!Rá‰qJË GKrÙÉ«båukQ6"+ƒîx¡…¾ÿ*Ê8ô·Ǩ:3³ä•¼C­¼e24NEúݵq #X™½´s–Cû|®³o9žÎî;·¼‰JsèDäR¦o^Zößd‡nä$¼m™½š?ú;n«Tž‰3¾`Êàq±ßï!Âì쵇 ’ì*#9雯^oÂPe ý‘ ߥrpÒ÷Å?Djêpïg²6^4,“öµÑñNY…}%P¹øåÍjKš¤ÖtØ}Çú6Z—åTäÐÕÃÕ>N<™¤ü÷§óJ­¥¥— ®/Z„´0þm:ÚÁ/të+;âBá¯+.D«¯L›èBnÖR'Z€©›qr Ycn¸ÃV!L¾´È£©ŽâõoÎyé„FÓ Ê‡ìŸÏw'•æïÇ8‚ `Ë]:ÿ¨OK„ 1ä~ ¤*!i1Î~ª È äлüÄ;”ÕhL»E(JÍïwC¶>´:€\86 |\ œvƒ{øb²/Ï_› Áä³[ð2ÈÍö¸ð> ÐWR8:Zj%tdÍ[É eÝdÃ… ¿Ý’ŠÍÙˆ¢m( ý¤6¨3pþ3–¸ŠLË LÔÎØîM¯ t!§M§>ÝœÂÞZegc!M`>­7"D%™€­ì…=Ý=W*Ç®”ØÇÆò~¼ÙÕ”«¯@Ú¸fæ ! “#Ž]hû¡D0iEã#}oÞê¡þfãÛ>:ч6@Í?AFàßp£ÐØÏh_Á¹5 ¹zO°|-ë K5 Dtô¸q^ÅDxÉŸ™PiÇ9t§)ñ]BÌ9{dF$ q7øû5D V½ìð$ìÈOž+øöcÏO.k5˜¦ºàg´ZñxúÐ6¡qslŽÏÄÍÞPh¸ÚJ :“ï „iðK?òµvO€)Ø\H×é”ðz"}¯ jÆj(’Ô)zçtÎZ`b£’ÈiHÇ‹vˆ¾‚Õ.×Áª`ZÄkzΆ–>uàéÃü$@T´–r}Šôb/¤Û²ðüC^Su 0˜m õÞ§kWæT¿3Á° ìMrÔ¼ Vê¶€×=w¬0LN\ít Ù‘l¡@ )®SþÙ`0J%ÄAYô³`Õ’Ä ~Àèâ™ ðÒó¹¦;ô;piãµ'JŽ"ß¿Ù-›G컸ìW¶¢z`Š÷í^†]0j€´¯·uAn¨¤ÓSæåÉ— šXœµµqïþٙؿ7?ÓSr·úèÊ3ø‚²RåÈH/•séÔgé-CËYD›ÔjP=à‘\Ïã/!f15d®§]˜ç¤&84/É×ð°ÄRÆ‚(e#Æ—§Œ¯à·I-,­©Zv‰ÖšÁÂq(p÷Ÿ;d»7åhS3ó~1ä«ßtâ‹ìóm“;OXVØXs‹šßªÒ¾ƒD¸\EøJàR5/K¶-,—Ph÷¬ö½eòœZx¼ônEà¢[Bƒ“ÒÇA$µë’~PX\ ûÝjäŸîÓ[\¯õÐ̧S¼+¡RO‰©ÁÁgç}O„“#ßMˆÑkvH kÅ5gæÉ½? 7’½Y?Æ*X÷"Wí/AdßÅ-]—ÔqÃ*P/PçŠúW¼¼ÆøwZÞæÅá¿ mÂeÙtå­:ªuP§’äÙ"Á¾º%ïC4:÷s’⃡E‰Ãlÿ]7Ne&†çqÌÍ DyáÁ 'Û4ià‹\dØÔ,l ?3<È–M|ìÒèzWui[»0~Sh·žl,–a9SÜCÌA;zº|̉÷ý=w¯©æ\…èyÍÀ€È†ß EŒÎή µo%M©(–O šê cqÎ#k7qøÆ©Q;:^ÖÄèSvŒöé¼>´7`FŸ^ö`Wþü ¸ónS6gý©nŽåKÚ0ŽW›æ;XrUP8t)Ô¡^O7Ѷ36®õ¼ôq…¾l$”ü¾Ù`mxÓ»ñH°_¡Þ‘%ræG8æñ" zø¥Çvßg‰tvd\‘Ïاg;â (IbC°âýN›œ¥r­ oQåsç“ÖÝ ÷¢xÈ™šÿéù[Ãý£nÄdŽq|ô\³(o_|ƒcT¶Õ®i°Ž-OkŠÀÐ@b ³j†§Ij1ŒÈNajZ Èß20êŒ"§êñO"¯^ÞY™“=Y¨ +ŠØè 'ÐÙ´TÕq;í¶ÈËüõ³BÅŠcþÝRìLñ' ž­£ "D!¢vì’BB.߬f©!‰®±¬-Ãb'=MÈÊ6iư|†5!2h˜µo &¾ :<Ÿ ubW<˜ùe•¶N°ñÙ º¼r½ ?}|¤¨­Ç„–íÖØRhCò{ŒÎ°àÂrÒ¢ÉÛYiq f…ÏŽZ[á-õiTˆR¶-0$þ©ÆJƒùyæü~°™‡Õ? xv[¸œxiéÜK‰R1Ê-ð#V›=ý9Ê"víá¶Î²€hÁ ÿª¬FÕùAÕó÷h]•z~ÒVx½ÖVÝÌúÞgŲ®2JØÕ7ºÈÁ£ëà "òĬZ…‘“Ì?ùo›¯ÖäA{õ-¶7öxü8¿ý$аüW»¶)Þ~\ég5ÍøÈh0IP[‰ó¨ñuö^†«´6çTèÌ qÍÇÅ÷Ôr¶«Ü’ï«ôa¶¬’TÂü“t½æBgÉ„ Z´‚ùvÆ7D+² –Ι\·‚Â>ä‘5íô‘¯ÞÇý©‡˧I ‡õDQÞ°x®LÔP”RЇ ú€sÀ7%SE„K¼fÇÒ„(çgã¶‹Žþy8ø rCjš¿>¾¢É½ž½šXÜ“9°ä^ÄìZ×Â¡Ž“Y˜Þmb¶Õ¨j8ùé®Á ¿µ8jZ´ú`p1À¨xI¼øw2mñŠ .¨ÏU˜¥É—”Ã-¯·ÒòP7 ¢g³8›R ª*ìeRt;*_jFïÌ1ÛÉMˆNš#Rƒ:³ ÚÌ© ÎÂ’Œ$¬ó³òF­^#jI±MŠí äŠöÂÏc~n’ÝϦŸG3/ê¼é¼›×åZ(Ç 9Å‹2?艪nï7Á³KXq(bК.ãºxe[·2ݺTî^O—‚KÍòRªd…¼vÚù%Æ®5D•á_:N<åUÝÚØÕ‘Z‰ÄL.ŒÕÈ›UPÒ Ï–”„Gì0…UOÌ1DmÏr‘§þrÉ¡“•¸­š/VçµÓâ@E˜—¨Äzüø Þ9 ÊéðôB“³£†âFúüEöѨLwç®—©z=¤d"sV ÊÌÏHìæð|ššÀtQ™Ù|䕿Öw‡ÕáfŸ2ß :bÃT˜sÞ¢”¹„ûo.œd3bÙÜùüú%;œ¶&Pè銰=WíÌñŽvHìà¸ökÚ_§ÿ÷A˜ ù«Í€jéÏG+ ž`·PGXÎ’Áµ.ñ­žß ©Ó>ô.‘ÑÅ`¢{3«¯zœG÷¼¯Kt £ßåCþŠÝrB%”1=ŒÍ¶bkÚµí¦P(ªOCž%ð{0ójÁÓ¨EmÆñúL€á]st?Ùݵtx…Ë׿5 0AÞÎ+@ÍŽóG.l¦<ƒ˜°@Fiø˜‡nެ´à©ÕGÉù²6çÑÉ¡ƒÂMÆ8ú“ÖFZCÌÕ„tAUèÐzüWF5²LZ#íÜBÂû3z6[ýo˜»îlpjR|ØXcÄ“X½sÖ°/Lj*¡9µÉ4·æOŠ‚ßiëóR‚5>þZ·MLU¼Ø^^è~Š„ÿÏÄÚÙn€JÕãs-¾ªél®…€é¤ †ùHywþ´Œ?BAÒx¾RìIÚQ¦oD¸? ÂF\M°@Ü’uÌXvú^]Uê],Ù2¹/_)ì4±£‹›ÕY†Æ ˜’ix\šOïÀÍÈA ÒôA UòÎ^ ãÑlòS¬–¯cjð¾˜GèáƒØ7œMù„WùXmA®ñXûk~žÖöÐï¤ÿmðÌc+™X'Í+6#¦ ¯Ýõ×Ež—k(+÷d¦öXÍæÇ’…éD삱\‚3½è#žyÇ ~Æ25K\Š´-­7ØtìL®øQ­;—yÉb¦!ØjC$rÆ1뽟vryB½[X›ÿxrºôãÝeÔ£a0W‘ ¬ï"›Õó ‰3¡¡[nà×(ª7=ù¬’ /ƒTn§"ÿö‘½äõô“mî*†J£8ÿ«HÒ?A¿ºúa*‰ùZhF¿Ä&jìÞâ¦Eç?ÈÕX¢œêÜ—ÍÈ+2Swjëåó’¿ŠLꟸPmfï¨×úp¼ú.fõéÌQ3d}¤Ì8•.íû8Ã*NºU4´q›Ä{¢`@Ÿ51eåiÛ®eUM?òM 1q´yõœŽäɸEz*Æ h¨>^úyj¶9o([ðO—:*ÊN0ÖFµÿóBFƒ|b%2‰ID¿»£ncÄ{¬½+ïJº‚áRçÈÅj¹.s! d¿ŸMåÌ\ÞŸ->X§Þð±ó †‰P^ .¯n…xºims’pË`LýÒ21QJ úpq}Ê›B¸­¶Ñ"cyçŽÊÊ»ƒÑ²þ×$%ZöŒv˜Òp¨Žò‰‹ïüïúyéÅê!uÛiéÉü®Fů3Bjq¿“¼ÌÉ:&¯!x÷Öl*ÉÝ*ëLKsV^W'¸´Çb,.{N”[™jfX‰stŠw&²j»ä¬î5ü'FföL,M WñRVÁ£è=­nƒÁ#ä|Nì¦ÚWZø-T'Ih.—-y׸ê^rV1g:‡bR«q ¨*SoÍ€È:$h·¡ä‰ž ¤­3ßM+`<`ÇPÚ6Ë’H_ l¯Š,Ò$½Þ„ø…FYH·9¹XCÂÛw)—¨ %¿ xÿSb‚ºOÂY © ÕéŽUjýgØù€§ª)ÍÔ‰ EJqÆ -Ð÷o%·˜vÍ}›\WXŒÚ¤ëcHú3GB#)¿Í!¢¤ð sSG㑸%IOò›9Ü9 #žµ²=XzÎ2ú5ÄKðä,ÑÂÂe*ô`Ü%TÂe7PMK|4Ã\Þµ® t1Ž£ú¨™÷±6–[$všX`R.-â™ –ã¬Ò‘©2gju¼9ÛaÅT5g••TC©$r¶ùÁrú8A ,ÛºŒ*Šc¨c«O|8íšUQÚ„i{–„åzŠ2 ^fvÅ7;I¡m¹;$ö1ün¶™&¢u@Šë˜eoÐ ­,*Öc¹ÊŒôü-Úrð_è}¹ÿª û~-œŠ^²…zxtÚòÏ ÄŽoIÜÄF‹¤¤¶81›Œí\;-H£Ì…÷=!Ø|1Yta*$þm4r]ã·GÎU(-ŸÂÜF‘8©éÛúº fè¸CüRòåw{²Ihõ³ÌæMì¿GÇ.ŽÑ@éùøÕhbý|_GU`>Î ¹ýÒAe<4ÿXSá| *Ѳóppí3›°SÅ[茯ük6—%>yÕJ]¤b×yRÛ€å%ð›HŸ®uÙX •VÔª:J2)ék8°çâ7ýÿ•ß¾RU¿r§ÍÿûòIãDkÁÔm–qá÷d/jH†ý­’:¸eOjA?ºåÒ:ÍÓ¡ŸÛ}*$P0uþbÓ' Ù΢“”|=j`}èMìJLí³ì«¼ºlc ^*Âþóèn.Sçà ïr–åš>ƒÃ…òø£ü3‹æm»Bß·5î´# &ìAϹ£ÑJ5 ÙMTfОǔS¼:…ix0éBzl,<•ç&;µF”"Rf‘ÄYV”>¦ø³™š„¯ù|þÓ—ÿL¨ÈîAmÈ»^(å‡FÉ+¥ ‹9 æÜh6§ ÙȆñ— tê,~Ñ\ ¨¬:eĽ&JAÉóp#µ‡^6R5mŸ¡1Ò ÿ¶‰¬±½ËÕÞcm#kµª„maß û—d íFK­øÍßgé¿Á&ÿ"æ9À×dSÆW; zÞ׹ט§ -çÝ7ÈÔ0K¸ª €H"ù_»~Tcgí‡tß‚ó ŠàÓ›œef÷P?ž@¡^Æ´`oZóÝÉ)ñÑìøL´qn?¤Ou{™}ßHª3ü¡v ¸õ³‘ìŠgR5Mx•ìÛ{zèU–ÀŸÝGìïÀò•cŸÜZ']ì¢íö™täbÂ3ÐáùZb!ètZæS—Áæ™î¬GƒÇGaÜ'M¦£Z8'.ºo# 2ziJ× •tGÝ4н)€ýžˆU#]v¿ž§.P_1›(D¡Ï ~nͬTÖe0ÌëÖ”ržØ‚w¤¶íÎ mCMõDLPï>¼Z7P æã¬¦ÙBš¼mÇ3êMÅD*ž(é “Fu‰Œn“³Z±*'' MAâ&)p!câÁŽe¦~Pûå¸ðÕqC ÞËQ;Ž7x`AÅ(Ì‘?êyÿÉÍç«„CÐÖ“,ý 4ù‰«"PsRxÍš_#K0gª$áo"¿5;ù”O>8LÏø$þ–΀Q+SÒoÒÀ'ìåwY7§÷²1(Ï/˜J[;ðŠ f: ê—wq˜ô‹Ïª+™ÐÓ„ÙzÝɡ갚àT¬‰CçÜu·Ó”Êb.Å´^Ð:«"Žô (˜ò”Û?BËjaô8iÚHô‰–¦w/QÞØc9˜¸lªÅ”´Ï§ÃFž¦‡”ÁŽ“û}õ­vfû‚ƲU·ÙnÊUg¥ÁnÁÀ-°¬5ûBj_á6Z¬¼ÄV^y=?,ïHdI*âî™|~T]¬|j·T”ë_<¶Î] Ø÷x€w¦36e Üè÷Žz”0,zU鎞MÐhÌ0RÀ÷D図бg*ÖÅd«µQœ†³¡—Q|YBæ¸&’[Ÿ|Ô" RªFA~¾¹eæmv>_Y×ß³ª ×+succƒI,±cìÏÌÛ,–;MN•<‹§‚8˜¦€™×–q¿ ú‰W¹ÊB)£·‹ ÇÑÝ´0¡µKËVIij7}€Ú „nû[Zþ-mšÒI×ä¨nà\àÕ—¡q‰£Œ4¸ £àtí\é!¼ý&Õ•¿s&Æ5ÔŒ/ú úϾ¢°?=ÿ·í[ šOˆæî%mí6j®•¤ÑXåyU¬  ç#¡a¥gAž,ÁÈoFJ€r¶ ›ˆðé$äÒiIçs¥ä”\µ÷é1n·÷Kãæ¤҉_—ä>JW‹+Kˆò`™L|M»>`gµ½¶I^í" á=ðb"ê5½Æ¬šÚü.õ æ*Bx7b¯ë<\,³]Ûº_2ˆ¨“ œ{¼é&áÙ묅QêÑÆYÜ6=ª8N y²M ÇPÚù¨ܼòJ…„(ø»ekÔÚ>œ ñ˜]1ýQ¬°K:¥ccè\¯u'ab—ýc¯«é{„£.wZUl uÆG¶¸HøîÁ»ùªÿµèJ†§RûÓ°0)n,õJAQciiŠVßÃAÊ1_MµßFÙôP ÄžDù¿LÎd£¥É{;Ñ(ÏýЂ¥´ÉaØÚÁç÷7®iéuCðQÅS°•1Uz@Å’¼UÒ5ijð®ôw†AgÑ4å1ÇÀEPMf ;bZŠk=W+Yô·1vl2Õ à㉎JI"šÜ€ËJÎtñHÛôœzÚ¢£ë´äÒ™´³°–@ì4lÈÑÑÜjzD„gÅ^pç;\’‘x ™m4ncWôNþf¿²œóÔ±;ݯ#¢~m«a¼ùÇÿ Ý4-Åé‚Ö”ÛD U@ƒºŸ v,ûÙ\n?MRûî¬?3*ÒU~ÏÙ´ô›»VÅboðíÅí„«[X™Z §l±­Ÿ4ã±y}ePÂÓNé]D¾Ï;0Cþ(<ƺÇbÒõÖ< ±–¨;±êhnB‰6ó©ÇŽ»]–ÄÐûä['xjÙz Ú¸Ù,¾râÍ˳]ï}3Ь·G°»5Z^Ö~©êEZGÒ©7æ õG¤TÖî¹L”ÍÔäUôÓ57ÚqÉ rCi2 ¡Qöò¤ãU)oŸï¬TMb¤ëQ©/É9B„ ›‚-÷í¼ãÌîsjÀ¿#ÁÈÑZwCXá¨8žæê‘)}¶‘æ¸qJAp¶À drŸ¨å1ù³sVÄ>^…ªÁT’ D½o©æ»'™‘ÃJóþ¹£5/±Ÿ:AÅ8åÂf 5ų„„ÑUã¹¥¦Žïâ‚"Ãë:<\v¹¶¸>òÚùPÐO´Ý+Ø;K—÷ùü–´[»¯¡±6€òC׃f±[¼{w’¦M¦´'Ÿ\ép$ì@ÜÀűiW7Æ”EÒ¬ìžöDb™í{ÍØ\§ˆbEC< bIA“ªlu^SÑâ'.srƒ*@­9P >вfÒ0Ù²W†špçV«Üzõpïë–ø#­«ª_=ì?™]7ú”‹߉±´1Á(ý…_ZòÔ¡—ʾÜqMÀœOÞµY¶aßn=ç§yi*¾œn `Â0,=í·c£¸¿Ö€'Tiý©I›)ôE©7 Ý”e¬dqÃhlmàÃäfCümd~èbõ¡t÷ï–9+ãxdL·ÍkÒx¨P•þò`]Á‰­—;ªÕX±×‰p’éN%Å— 4 X¾Õe"ãDòXÌ®£é5kTh.%òž]+ùøb¼ÝíÓŠú¯›¬¼ÀöãÌí ¼%D |¼Ο}6©æ2\·¬:Êõ·›«,¿] Ð4\»º:¥‹G{TOFu¸äò …šZRôõ¼½$½êòë&ð P‘F·š<¥æÝŒRCË¢ª’hÍÓÜíTÙ³¢ÓÔš,1³Ñ«uVXÿåq¿9àÉ£þÝÉÔt ái#ŒP²áY°®:wdÌD%±ª¡:E´¹±ýF*ÐT/ õîJ‡qÀÖ+6Æ¥â!,!ÙªW¬E[#.õ·OF·"ËB5ÔW@>iÄÃaÅ"àï‰ÁA:ÉĹ³n|ŠÅPn/ˆ<Õ×[$4Z Ip1.‘à± ç³üšÛ2Ѷ¾»…éþ+{dÑÚ1!)GBT¦]&øÌGÏõõZnPO³âü¸COP•´‡—Ü?–u–ØÍÇEg S»ïû†{Fê³`–"Ðv߸—Öa%¬PžðÑëk ½¼T«PI !+cÈ_“ž·ò$Cà~ );:†¤ÔÀkJæ‹m{Ä—b%ÕÃ8‡ÿç­øÃŸ{G—ã½N-y…Sp¥&]i9E¾ôÚÄ ]jÓ² ¢/l ³øŽÆ*Íf®Úòz«á¯¢˜yB™xÎçÿm“FÃÚ?ZÛå”(»’’`¼â>ô7ㆬlCKû<+"î‚YV»¥)ÁbE‚ªð÷áfåNQ¥Ð³%»KKì’^;Ó2} tÛÛ ²™Ðÿc³aQ,'šFò͸J2¦:@rü,§¯,€.ëv³€]?‹´j/àŒ)ûxWÛâh¿'<«™:XI>û!*YR”ù±ÃˆÈµñ+g Òæ~㘨„!Ë“«œÍ»‡†¡DÉ6 e°õÚ„ûàGo»!6íÂp£Œ3˜ÍËŽ»Ú M/™»ÄR]hÿn=Ž-³M€É`ôÂoÖÕý9H¿”å¬éVÖ«UøE+EŸ´q»=¿ï©Î–å&ÎÕo'Lk°×‚n?¿1¯hR[JàÛVÉW+ÊdHîeõ€³é@Î8áˆË‚ v9M墿 ¨ZõRÍvu‰ ”.Èí¯± sÀR\’CÐa0y¾1¨ƒÛî¶B"Ë¢‡©Ñ°{¾:ûÍaQŸ4ë÷b^öøa CŒ9Øí‘Lñ©ØWÆ>î +9ÐfTl¯çg) ¬ÜSqìŽ#«?ÔR÷’€|A•T5Ž›Õ#`hÙ߆û³k‹@õíuSoØÁ‚ªŒnéè¢d}å7…uÕà3~oTcZ4   Jt¡ª³ÎÜìsê×)'r§vLTõpVŠzŒÄ,\À u[–u©Í¥ uÒJáXîpê>ûxß,6Î%ýè1m%HÎj&1ò…RCé–¦oz¸gE`Í RÚ,DéwY ‰÷-ŸèX °'Äÿ­=´y¢ódI5ì0ê³'uÐ;$4rÝÒW(`í¿lTÿê'ó£LˆRÆ„Héa”aZ òT®PlÀ°^’^‹,¶¯ëv' ¿àg1~ššù-t£qØÄÞñ±åãO  R(Ñ-Ÿƒ·ž ˆ¢÷Âg™ßÂsâ0p£Û:ç(`|Jó¶†ûô+}EµÆEfŸþ3íOºJ?¾i·H¸ÞPÑy?T á(e!Ãè;$‡¢ßsCß¿-ÕÄÂ܇ þq—vÍ;@®~²ýa|‚Ú>p$¬‹•Àîýݽ°6rz¡È!)»n9Y¬†ì)vÄ6è‘ÕâÆ—.²ŒÈö—nÚÚZ¥^î fÎãXnWYýëš÷¹ä`¶ß-Qð4Q‰޾òF¯‰œ·Ò72ž§Ý,ÝÒì8’>ŸÀÏd½ÅŒ¤ºp€Á‹æ&óHÕº¡(#CŒSSli-2Ý|Vp0<ÁÄ为""Ùb‰‚ å°“ËÁÌbiîªÊÍÓ.š©ËO’áçë&öÛû2=‘«Þ€/s)7|Buw–j×là¯mÁUÈ>†?WVª»P÷Øs/$'ð#â1ûZZ ô7mŤã®P¤þOáNûèEYÓûVƒ!³ZéXD´—ièÿ˜ƒ:¬¹DÀ‘3…‘x|û¹ ܺí¾ü?O×Á{ÎUvô³ á÷lŸ†ûÑË$F°"™¡ B…c]³Dÿ äj w̾×e«yàä=ꃻ`ëαvÿZ’íž:Ô||%&JÂø*h•=ýÛ‰A¨Q˃ÈI,ïT0¹™è[/õWÅn9Vº‚$ñ®€Š†íÎF¬ž’n KS†”€u@Óµ¢Õj2µß-ÿí"9¿Y)l>éO•·[ ÎMÚFœ…ñWzCV «®.?ñÍD·ànõÁ%ÄÁ U0È…öÑå£Br ºé[° ÙGæ¹>¤œ£*(zÙº$z'G-öã^îŸ0ÓÚP±FöP3Z¼ò7bõ3ÆSÓf)´zŸRGé!îûù›´+y’Àp˜d«8+4ÁÁë UêÁ=zAj¼(ö’‹Ó¬*ÅòJ”¥Ú›¢’ªv`‰œqb?kÀÖ>H¥áfðÜ6~%%r2 † ú»‰¼ãŸ6 ¡=˜_?6CâkÙ5ñE§êîÏòš¯#°'FÈÈMÝͲ•åÃçnÝ”rPêØ!˜lõÝÑZ â‘ –ñløÃ!W› 7¡ú{¤-Ç#lA•o“ãÿÆX="Až £’œÀ_ŠT›£à»åO8ñ¡eyç=c”’£ÇӦØÖê\âh‹T+¸ŠouV§/îAÝ¢J”²e`PtáéjÎÈÓ ™CÆ0Ær÷ùS=Ø€`^áUj•À/ÛÇ2Ü@¢vx¥Gƒ«ò)áŠa{ãÌ“OÖÜPÂÚ„75 £8ñ ¤ò•Ä»…ø<µ¥zÜ–ð¡®YUèT(|÷ö¸íÛ:¼ ÞÊi1Ù,fqkÚcÔd:4«} Óú>i0ÛÜËO5ÆE×¢”{,MâIñïNkÊÉ ³”MuYq)¸GùRQLí©%ĉW…Ⱦ×G¦˜É’f{ý½`\ïÿú­\` ¸ð4ø7à h˜©:*¸òY€}2Fm½3ëppžÞ'}Cô׌0|ã¤aœÆrsÑ…«=|˜yOˆß1(î‘è]¨øIPB»BdX‡ð`»;.«x©Óõ¼2@JQ¨ªˆÜ®fѳeõÕÑq%š)À#º¬€ˆÂ…å²}žm$7‘Ó¬”b$UGÚ&‚a‰{ºqãûEB÷¬½SˆK厢ƒ¡3^°°¶/<îaš­¡÷Gt倛O& Ê¡äPxãÌ úZK¹ÒätuoMòQÄ¥£õ‚‘L°çôZèµÝ ·®i÷ª?ÜÀ0ˆ¥[C‚xkÒeQ€½¦ßÉq+—7þÀÞ³b¨¢…ŸBš6eTÿ6ÅÊ…ÓØkÕÌ_J¤ÚÈõ_¬?å!äÖ’}¦–ÌîN‹âŠŽ‰‡ÆxîyÆR°FŠ¥R2ù­05“Ynªf Ž›.2*×ëÑ Dì2—*rÃêü”R©|¿wD?BÆ:Î¥øú6Œìc;5´ÆýÞWÁ.Ü'±y”p¦–¡‡ Œö°ðzÿ¡|Í8å1”Á#ÀºMÎÕîOeøÁph¶ja¥:qCEê˜>Ÿ¯Ï²ä°µ+ û}”^¯ÖYhXÒ÷uÁ6žÂ o¬½³¾-ôíP)¿¤À@·²ÔäÙÀê­ø‘Ñ壇„5ÁŸ:¿L=mÛ&ø—ùí’âB/‘(zY×M þ¬1A½dX åÁ°’ÆÜý¿‹Ìêˆ'ÈñßBÀ$Fì[[õ?¹˜,«]8Yˆ )u›šnU²1eëF±"[@<0½n ÂTŸÓN 7€‹©ƒñÍqõTÎ;ð”!Z§Ž8:¡*ëdœâórãDù¡F½3 F2ŽN}pÕ¿H*Ñ)#­3Æ©áøÕóXä"b®hÅÂÿáþ¿e+ýD‚Y…*ûh9) ¬ÎõˆxY¿uUwá@61ªFT±ƒÙ˜Ô‘tÜäD Ûè!<´Óm ÙÓa]'eäÎ'« [ÝÄS-{zýé;ü=0±ÔÁc-õjds¼–P;ø\¯æ7E¯ƒãÂõý Ö9 jÆl±¸K°Q?žETM¾ð´{®h È.PÅ 8‹ (Kõwƒ¯ À/”µ­>°ûxTÄë-z»%êï>|_¨†¡å—)³Áß~–42Ip^k5I>yFúÚþÂõ¡Ãqx½juaf]M£5cœ¹,­N±fÌš¯‹ð‘œx|›D(ãÔäÝÞù8dpqÁŽzÔ~Vm\gý%§žþA¸î5M€¡c7)l í·×ÖþüReɦHZ¶ê´¹š·#Á&Ö¡oº%‰Á[€—ò;4î·<¼@Uî‘ Z%“ ¥(|×É*ÆØ¢0ü¨ç{ûü„Í™ù/R¡ß´¶¾0ÆùŽtéYVà rp¤£òUôôž ³Ý¤1¿rãü[%IA5Ûÿžhc÷ºš~ÀkÝÓ³*óÇX2¿L´ÛýñcÈͬÜàËH èf‘‰Ù)šVòÄÞbr_‚är3Km€£9‡ÿ1|6ÃAboT)ý¬š·³U¸¼n¡µƒ9Ó%¤>—ŸÙCZGE;^.}eöü¡ÓENIˆÄZ=]àô¦l½¿˜_1y¸ÖI*¿‰©Öm}šå/Ó l£‚„ðß›¿ÿ†#dkÎíqª;@ñN¸XÙš/RþT…£žwЙcVL á>¦ºé&ñ½ØddÃ*[‚QHÆkô¶l‡íŒÓÒúÌ™4ÙßÙÉózÌ1Áâtö™Ô»­þ‰6?ñ콂»cZœÞ¯Ó“BöW'&ÕŠÓšÂg^ :Ð÷¶ØgêÔ#´ §—ÉŸU<Š?ÉnÿqÌ}ˆ¹€Ð­XËDI×ÅV?»ÿзÖLxp-†è’ÓÖ´ELA€³ÝVœ¥…ÑØd_Bý·­££%´WÓR(ŸšH´3jŽ…4òX`DÌ3óÅï)š%a…LìÅß’e5²c½ò§ræÒœ½\qÎyÜîž@~×\Y` —Iýei›ùŽ+«sÔ먚Ór(i%Vø¾‚ì³>‰Wq¤$c%& ‘mXee(/Œt[o'(L ïç¿fÂŽ6]5n°XGI¿Šx=4ZòÕOf]úû6ñ槉–à2“:=D²:Gˆ’IYÄ’’ô R™R?Å™×x¨Oæ{5 Ì*°Ö@IÊTÄvoeš :[R’F¬{6Û©~cº¥Þ•«BÍJî ëA¹¹?ÝX Áƒzâž„¯×¿Y‚KœÈJ¼^Í4嵘÷1l­*#ÖÀ‰k·¢ÜÌ i1}Êf›Ð’‡2X¸ÝË×+×c+mß’q%¸è3ôY!ç—´y)áȱ@5šxJ ˜>€%_±Vœ0f‰wªî,W×{KÈ;t„°ýg‡ óÑFÊ«³ W1î·ø-(¾ýñåG*¢éƬ\?Ä6ñ#‚!„ôëól]7—ñD¯‰kT¹¥4¾Ø"¥V'ûò¹Ðö—5+ñÏ·ÅŠyß–´à¸å7낵ÑôÜšþ5×"ÊÊz®VSEš¾k¤ËnÝÃ÷Þ †©¡P“UÃ.2ŽÜ`¸’¨½zO?Aœ*oßlÄ¡û²"Qè‡PáßK3W&…Lc+t•Ó7ß›”¨£ ß—uá3mwEǪ ‡Qw¦¦Þ ÞÊuêÏ@wª7 fÄåˆyóÖ¿¤l~E„œðK–ºimc‘æsî¾õ®Ða”çïˆyÑ"áÔ^¨Ç¿×ùìÄ¿¥ÀÅ€z9.ö J€ºŽ¿B øK$ÿÅì=‘rø«h}w>‰ÈߺЛ¶Ú/"ìBqTYòâ˜/ùÔ®vk+içïfÇKS€§yµQ—Åq„JÐîQþ ^”Òâfº¾¢€X)¸ >h³ƒì ýü–šC²H‚xm®uÿƒÙ‘C"ÅÓ—Ÿ¹GvH½ñæf(Wý·.ø…BÇЩ:cK:–té'-¼W;¬’¤øÒë—ØéߦºïwUòÆ—p I+`øÏ…ãrúÜ9êP†e·Þ\“Ë6y ó¯â^mv]ž£:„êW(9·Nx/ÜàQ‰ÇCgPCn\s~_¶';vøC†ÄïÝXþI '„C Œ9mçå\Ú§/ZW×,‰&)Þ·óI@+ÓÿêX£%&NâsªDJNívd6sÊÅw»Pªû…¾_âÀù#ð€Õt2:(gp0:† 7:? d±ùo°w Âß ¸«v±ˆÃ¿‰ç:Ù—Èjã;lH«‰ÞTOìI7Aö[ÿÝ››]]ºLåá ‰›b¥èÆÜ7ãYÐ^ºÀ…ÐÓ) ‚/iÝ2#Ù¸mÎeÞŽ¨ ·¿§áDXš¡9_>½¹ÆW‘™é5UÜ¢mTÖ‡Q¼ÞBþyàÁë rË:Q÷ãJÅ‚Tå{,ŸjèR¸LZŸÅ_æcï<ÉäÎê² “i=ÖÜ 'шûÈm(¤üèÍÏ*œÊ’ؾÃeMƒú¾›å¿&™i$} ¢®;³µåE^Éç)…sèûpÁቆäEð¯–ëé "ÞœØÂcÉqJûHmýÀ–ìà.û„…H”ŽiÃjrá{ŒÕþ[!ëuu³G{Ÿ)ÙUb§B|PêàÚ íÂ& 9æ+7 PõóuéH+6åE\õøéĈ‡ýÏ ¢ç¡¢æùã¿xÜßÅdI‚°>}æØjr¨À|^‹@z…RìºÃ¸è5y6 ô¾ÊNMü5’“ÒºmïÝM¹=êØKkŒ…9Dy|ÿðy/ϸR¸)”ae‡FÀBõyì£ýxúQòãýCå‹~BÇþMQœò…ôß§äÒ6¥îÜ ‰ÿ˜/ 1"6]. Â4ÒG8ޤ\C®ÚòóšFíŽSíè¡8Tõ;? 9âh»”y¢Ÿi—‚࡚ª©lNd>ié}5ù#nç ’ÀX°á5%ù·Íß5»G‰Ÿæ@g¯‹uë~—ŠéÄ|Úò ‚¦7ÑË–[bƒIÃÆ7.}×NÍ’ÕJ›åOC^kT…à©=§Út,æÐþ輦vvÔ¦$„´UëÅI»I‘‡ÏòNQŒÂrNg³[ߘø¥ZÔä£xßPÄ ½‘ø×ÜK7Ò±eÂ1Y:!œê[ÓrêÔ„ÇÓ@å` …5H ç|Õ{}W{›ÛNuwl§ØdÃ#̃[+ćq+77E”é¿ÄCË¿f½¤²Q4“×nÅ^¥ýüEa?:}‘³çz醱ñè;Û›ÞCVG:Ó‰ä>sÒd¾ {ÎÿÉ=U–ß×òéè 3Ï+À¿U4'ÛT䔤mÿþž½›« ߆•˜å.œ¹S"Ss•bw"ï €5Hãs>´k8áî˜Ñ–QØÏ¹¨±Ó<-DlÛ°?e»To¬wº"a=QaøX3ÇÙ:Gÿ_,#yLÈ P|è ùKb½™Të{yO»˜Úv÷Ù [ûhFzXìMˆÛ{í¿FÝߪ\^­ËKb³Ðî»q:£Ÿ‰,p¢ ã,d9ö‡„<48çìÃÓùÄâû竳–ÿE¦Ü+°\³ÎeÊÂЂ<»ûºÎ5ùvà`£‡d¤aêe( òÚšê Ÿ‘á²’Ç‘¬³øCæ7x%zÍ{`m0¯ƒùÙ–w†g‰Ç•nœÇ£«¨É˜ßj„TÒèv_øXj0Ÿ†SŸÜE¯b™ìT°\bT@×Ï0t¡¼¤tV³Håôãï`áSôuovbm;·Ú„´¿€²¦L3Yhþd[¸ÈLß Yð&Í=ß.”“ØMé°-ÇòÛøu]Ê^îÑM÷x๷Y*”rU¡õJØ õ!.}§%Æ­–ZñHØ´ýnÅ?/·ò±q_u9¹›÷’{è·à[bEeáéGî0<ï6ž¨€4RŸ©5‰}[Aõän®øJ×Lë>¢Oøí_*× B¿eD ŽkÌZ«qÅäŽ~¾ÀB ŸR[:Ý+òQšKpÞ.µðzñMÞ·:Ç Än/ߦS§EßaxwTUCën‘$,3Ó}è€!¨j+O&&éJQä÷å³°üëH̰•}ôat(Œf½‰ÊQ´ˆ7º×n.wf³i¶Œ¿„tÏ ùÃN§S"þ‹ûE˜“íÌ…"êŠæËcOÂß!ã}RnÜ\î’3§õ ŒÑ^‚*oZ,O^Ì[Ñ”Ú;@ìQɉ°Ͼç·!¶¸|Ùõ½º9 ë¬öÿ'™jýÁu×YTe7P|Èú“‚Õ¹4ñBåÔ¢[p\Ä.:§Ñ*¬:ã§^¿ ™kWÛ$ª¤¶eZ7Õr½†'xOcg9a[<§å0ífÁÄàÙ ÀUÁdLedíLÃ>å$Ž7§³xÆï\oª1´¯…_O¤„™ (r˜ÌAOëÒÙž-ÓýK N(ð¦òbX¶Ê‹.c8Hsãžks¢Xvu*‡™Ë>3¢Òý#§«6~üçlEÝ×ÿ;áÁߘ¼Ô4H[W e/q>Î*µb…àí|ð_~w ëkë ‰Ù‘i±ÁEÈ®áNçƒê‡'îy[f²ëœ¡VcË“r4W3A ©ÈÀ¤˜€µÕ(ÁHÊÍQ3oZ¥ÿ+ŠÑÚ à‰ßç´úþ^â8£y&ß1œ” Ú#ñ(ÂŽŠ/pÜRÅÊk² S©!V ŸÓB5µôN4cnö~Eñãøeužk훻툒¢ƒâÚtXñÖ£O¨ðG"É¢–íNAæ~Â)sE¤è÷+1lj—ÕV–!*tëîÒªUL«rLÉW½[n!ü¬‰æ¦aï¤6kïokÕ¹ >¨€ë©ÞÕ&M:–‰ þÇú\xöiGµ²èCàöŸ§=x‰]ÞgVÅY‚œýxo!8Ö¥Ì&6âï4P´ºk”Ä7ØdÇ€€Ýt‡€sÆ›ËÜiŸÞ }s5üD2^=˜(QS”`Df¼Ú<Í>h[²c æÚÚ Lböh^ökœ¦P9†Xœ¥çp55€ÈZo«O÷Z)˜g´¤ ØUž‚†J÷Y ®Òž’ì÷œ2?|Ñ´–¦œðÙ˰cÝ8ÄÿòiD¶ªà¸¨ûN¥n#0;9Ýy3¨éßù}þT×ù`¤Bù¿ÕèîTî¡MBÇ1°·‘öÃWc'ëÅv ùÁ†"ÝD=`’Äûý¨ô½šØ|nÉè#ÂUN*f|17oV²Ô¯û®OLAá¡CYJo •˜ÂàGÝëÎ5îôtþéssÜÒ˜¾ÌuÊ«Š3ê £ˆç™’©è*Šg?4ì4{8Õ¾JE¿‹MP×Tz_‹G&ŽÂö!7²„X&Fʱúš %„s °ÆDßËâšn÷˜°ÕÈ ñÜDmuPÁ@Ôù£´Ë2Gkß÷)BÄâT{é9Ì&«ÈíNÉ¡ZP“‹ºÃÖ‰—ŠndwÏî÷ñNAPÏBÒƒ2§y& ô2*£> ícž4zò¶Qd| ‡TâåÅ{êGŽõž|ý¤i< F঩LµŸÒçÂì¸bÏ Þ9ƒd1ô«5"Ízk¢íıd,.¦G¹õ.ïóŒ#ÛÅÜOÔÁþúà®r¢ÑË©³è1†Þ×ý¤UsÃk)J‹¸áN3«•ûÈ;·5~e,í†÷bsç£_¹í\•™mñ'Pi|Ò^€Ùý Ðëƒ KúÎÔ6 U‚ðúÈ.þœ½ÏÆg·n8ü…6½Ûg0ÿA.=€Ê´Е‘QBçû‹“ڈ僎ê,œ;üŽÖ–]ж9¤ æÆàK‹Çb¿â9BÙúÉpŽDÊ€ˆÚÓàEµQ¹¬y›6â ×j°R!Týj-ã…º¼ÏÊꛣ´+§Gl* ­d ŠÙß&d,X%-rÛ6üq);PþŽ´ãð©â3¿)ÅFä…\Øã_µŒoã(Ó þ»Ìˆ®Ÿ»> ߪé®ÎsxÈ!x”åƒÛ±+^þÅÒn4«DJÏ™¯R‰„ŸôÕÞÔNí¢–ú‚–j&¬aLÁÚÔQ"žß(>q¹X__ET¼á-œÙLúmœ<ß2bÜ:^î­e8÷Y^Zqà ÚjYtùëu9^òÌ,þZítû¢Ñ 5÷óéYÞŠi[ÁR‡δõ¸@•¹Š7îZŠ»Mžä{6v}é‰$1˜;Y6 h¼z‚œ”nUvI©|b4)t'€À.A¥Ûœ]ÖU#‡'²pZåâ:‘£ª‰?Hé:—Þ/kÈ`]É¡Û'Óýd¹ó²…C¡s¦$ÞÉ@kê&_ò² eö*wÓ·|lûÄõσ Ƹd”ufÌKìLýÇOl£Å¿gòÔÔkÁ<ånIÝŒ.ôd=÷,(F ©Xs†{×癥º~ÿ™—Û>¾ŠqÚ•‚’ÓŸJ#}4)‰¾qKÒ† ;6ÿ‡5Ú–ðá"+@åå·7Q¼P­€*½äêÔæÊD®‰+Ö3l%É%¼NgL86ûRoõ_YHÙ-6DþbÑZã@­v9v&;©?5ÿ¨äC×Ü/ž `€äfg¬&Ä÷¦‘úíY/.=Ô <ÖæØa Þ®ãDZWº JÊX_Ÿ ]ž®H¸èá•mŸaiÑð· Ïî꺖ÈÍžÝ&¸t¤¬àÚï 1r’¾`Þdµ™–º¼1j¶Xƒºµ®{?òÎÿÑ»G bòçì£R¡SÓ•9k/+:¾ÞtbÞO:Ûá%‹S¥€ð_ñ]dZYø*3uj¹Ï™šF–ë¼gIÊú‚ôlè`ÊŽ=tÆ\ż)9FäˆKqfz…Þnw8/u¨.I—aÌXåŽMqT&½ÍgEÖc[ÿë $¬òg0fø6ìPŒ¼ˆÊ#¶¢›MuØÜŒ"MR0åÖ\Õ^ɼXéÍ7al0¬Û ôa…Y”‚ª‡xÁ ‚W Ðè9CýåOÏz¨oâÀ¼ˆÔ ¹$6XÝŒ™i‹¤þíác€T;cËÓõk\Q¯ n¸ìß_+‚]&z±—ŒüC) }¡})…›Á%—ÎH7(~l‘õî³gaè=3³’‰¦Š²'8!üµ<Ô+|-~ò}’Ë%löz‘™˜ãªOÚ™RʱOĽÈÐóñ抩šh}PL@‹äqgBש¼¡,…¢;-iøõ:_£>|J&ÉS­3GõS*]Ñ+ÕûñÇ€=놼+#Eý„˜æêñ„׬(?Od¹öÐí×IsM 4sË+yWì>D£õ$Ò@ÈþNprn6ÄÖá3ûý|‡Ì[”œ÷}à‚ÀRuëIgÚÆ›ðæu(÷‹!ÏP>ZDJ!åñ[¦yŠEmevN[mÀ‚M'ÑÓ zI·$ÔmÜ RµÁìDj&7 ‰Ó !óŒÓ+8eîÅw N`Ý"iÉ" Oÿ*ˆÎ:NY.+Á׌™r²Ÿ™@¸t‘6:ƒúRÁµ„e}ÏýŸÐ:ûc›MSÃJ[eq²Ä"õ7aîml» ã>¡=ý„îÜUèÅYˆÚ“²«‘ UU|³•=º6tˆÅ¸À|nIÇ(@¦›|êË;Lêà.¨Ì`šèU‰q¡yA´bq_ËŠeK´ŒZj_ÖÂsÛî}[ªè4™_Ú$€)©1ßçK’¨V¸×¶9¬ÊͯÁR…`qñWðèÑg„ëP]ÂàWzû&oäOÃNŒ™Ud@±h:aÑâRönh=†Èç@wé—˜?ÝǼG…vw”ð&öf’.Â|1å¡ËŒ+œðoqG7híDd)·0Ȩ—Ù„˜N0Ü”ƒ+4Kv›.±5†j©ËhÅÊ%ƒ×µ–ŠÌEå8h=Ž~þÿ\ÅöñPù»j[Θ7<>ø ·…ë¦L%j…µì`¿êîÇó\NHWÌž$ 8–q¥/øÁÓI1~ƺc“£ëáÚËŠÏ<E$‡ƒ÷­"sXˆ*ScŽ©Q.åñµF$bžMÁ˜/#ìTþ ¼êòÎå! mOIN• ñÏGÌËFNòÀ5à (9 ­…×BÍ{íAÇŠï w[U;@hà-¹ÂƒÆïöB…µÙ$]å~ M].y"«@‘¦5xÛ ™l¾þä1:ŒÇSêƒÓûA«0j·#Å/Wºdl¡FšãÏ3';-E'RXúPâÏk›Úþ|ºŒÑZÿè…Øh¿SßÖö˜’5ç¡uý ÃÉŽRø ÛDô/Ói>ü²9‘$ÒY¹¥Ä–Gûì|‹Mf,‚` EìÌ÷ µæ¡Öówıþ\ ÞØP¢JÄúŒNàx³P ûÇ Møúu» ù­T•‡jÎ÷A>pÑrý+úP¯38ÁuuzÅù~áD(âãÅÐ[ë+ÛÞºA‘N­¬²T“ë«®”wz$Õˆe‚dvÈr“¡>®>Gðøg›ë,/ç`áÖ¬>ùÕÅtqkÈLåYµ­ÉÈjƒWè“.f®ñė鎯Fð«¡èáæ‰î2ÂÚ„°Q³©„Õén=Çf/Ú/ÓÔÌCVÇèˆi~_Á†.ŽJ"ՎϱBM?) ΄µvhùF²Æcñœ÷Ò˜ÙÞ?­¹ºÎô%Šz[\ákJìúLÉà Áϸ»+Š„ægc&ÉAèí)ã…¥ †Ž6£Nva×>¨r\ÿV7&;^°™ÑPÔTAïê±/ ¬I·Ì)™ê2N™¶L9k¨¯Ž’÷=ýT÷‡ ÚÊRÊŠ„7n±›gåë_³d>¸âgŒ.þ‰VÔ Êþ¨óÞ¨J½PŒëNJd8wµì±p·NEo„Ä GþÉVÈþþ¹¢uü–½Zàµç«m]%S'.bï£Ó>¶lÈAÙ-ð¦ÑÅE:‰ÂFµÑ³{îŽ}± ÙgݧvL#ÞZ„áóqb¨ñ¡¼§Ž‰šýín8ÅñJõ±tõîsxœ›±§M0GS¤4TöN΢ š.ª€©XwUoïWî‘=èþ Ü 4[]à ¶ªK±I•}-«kñ@dØš·ž—çRÍUõ»W”à s®6gyJiA)$šÎ«¥éD ¨â4§½›Ê¶Ll éÜÏGkTO,ï[ £+ánÓÝøÆ\"õµ›²kÕädGw´í­ûv Ì[7J`1}¡°ü¢”\ë*ÿݼB½!(¡ÉÜ-‹A'Œr:X¥£~½éõñ‡±Û®F2飯髥½¸W2®ä[Þ{"Æ{IBB»ê›<ÕËn4ÅBUš^2R6ÉÖñ“ ‹O5p>pƒÈ Tñšíÿ!4pÊa•ô~q6Œ8ÖÔP0uþ¨ÐHüëŽÃÇ2å ›Ÿ#S «H=è¶/ú. `ã$ps ßXžlù9þ-n´­&âws‹mÁØþg%ëhu‡à·¸žöó4)å1ÄÌþû‘²ÙsM¹Ð\Vî|YÑíz‰8ù ¸Âš¹•ƒ 3u™¹f±ÛÙù¨ÚA¤Ñ +ÛÉõ•œq&&¹Ò¬%Çj½H Y0xú ×5 R±©€¸SÆÓçOÆé'Zߦ…1q¸(‚ë6´G#XÏŸ‹ žÊlNRÍøQkýiä ›æ{7™E^Å̻ߦðkaâÞ>èͰA‚ÎR~¹4 ÑÄcäµ”d]¬–¢oPºÿ5hЄ·ZYµÙ[Á?{õÖY1âe 7Þ¼ð>¨˜úØj¥ú{¶ng qHÙm˜t®ìÇ<†Ža&\Á†J´UÛ8Rö",É»L·.‘ê¦Ï§‡àW`ðø^é“;û£ -‹jD¸Ág°ÃwÕÔLÎóxÜ´ÊùuoÄ8ÊxçV“mŒsŽqS…ÿ-yxkvg¿Í®ÃV#ŒÓS²+ü¿=¨ óG˜ö-Àsï€L»×ôŽûÝíe™Êfñðz’Ü!òµdÌê9nw—°Í€U³˜¹Æn‘Ñ@Æe|ÇJÌHKEºÂ#ã’°<Á‘P¦•gŠ©øê潎ØëN!Hj¶QB‘ˆG¨4Ã;H?èo†Ü¾jqö¦Ê°ïOÖƒ|^ÐvËÜN‡t«ç‰Ír¼V`|ú4nùzn$ ©½Íw¦{ùr‘>÷Z}UÅG:@d¨‰'˜µOBaõšæò–øÓÑS0œ”̈73)†ú>„ Z^PqE4çù%£â™{g{ÏèçÙxˆE‰lùšõ¥5Yn.~W’œn›iŠL½ˆ;U‚- K7«m;ŸF¼¤‡+ ” "B”]M’5ˆN[F`¨šó$g ïR¸—Lnš2•W”¯¢:Fab429ççšõ a˜ÅR`ÉE¾Šp§g¯AÏ’lB-ó¡ã{#‰'eàᲦÑ5|t*Ú8e¤ qÜ®Ú DTU €måK1ÄëÔO÷æ¯kYýQP>a– ^HJ…Æ~5ñÜÚ­3øˆíƒ·ú­9+N¥FÍ'm57)8÷º°\Ãå)äÅÕÝÖ¦x9߇0˜Ö¶ÒW3ToyâQ ½é¤ËÙâÿTŽ)·5kfÀL÷kðhv©y”Új&›•èI\‚]à™lUÈÙÞ)‡¾%ÛRQÚ9?q—).çî›Àj ,—#n^nwÚváúi-–NÐ5‰ïråÏnô%ô¯ò$ÎÞßgÖP2 Ä@¼)$~šDì£C ×8—¡kJ,å6}q5§M6çv‚†Çgëc-Kß'ß&gÒÜò)þi€cy7î½ ¬¤Ð÷ÃøðÇ¿)xê&ñ›?x$4™ûLª‘; £Z¾Û•¦ÉBdàÚȇÉU3õḛ̀ 2Á¦(ÃTË:Üüøö7»wž Fo ¦Ð_ql¿P‰ºPrd'ñÅ!ݕՋ÷CÊíË\“Õ6É=6-žÞpzóÆÕOnÓzd^uK«8àîlIR ¼GÎu1.SzŠ‹†+Y Q§†b^–Û\š‰Ým8eØ¥´FL›¶Šv—Ó£¬Æé“(‘-Y{á¹õÍXú\BÉDNO°»í?½ùG”ºrl3Wùê2|\8>ºR¾µ3GEê#ºF;<êÔìL}}ãeu÷f}M¬pÿÄL ¿qSµm¼P4ãÑkÇÅ~ñ¿T€$…!L{2IW††¯•+dLVÔñK=í&Gp®t”Û-¥"œ¬ K”ÛûÙ±œßÇ’¿¶ï’ØØí)‚Ãræn¦—j¿8aYã¿'¥|‰¿aÕâ@°¸ÓÜ ‹;y`»–©˜¸ÅQù´¿»ßù`É»ÑGªUœ&ΊÕ+É0KàœD&™È´Æ¡Õ‰RÅ}Îß © ò¤ `z¤ nKR)åÇÆ(NÈ»'Àt»8H¶^úD„ Y93È©$ùBµ=Ç?­zñÅ‘ ű”±·!8ÒBÆl)K[ŸL=…úÇývð_¿¡ºzDëÏ.Pe5§°a?V|`i…²GIÊrgúð ¥ü°ïf™Ë‚°Œ€5“™u4=[AÉ(HeeŸ&Èçz7]®¼É åÀ™ƒ "Ñ¢wª}O§±³Ñ¡ƒÄÀøhâUB½;£ÛÜ ëâ‰VyÌ ö"¶¡½ }Y²`W¸ïsýü«¶d²”] îÄ9¦p-Å2—ÀH¹lA‰SHñG/øC  Y;2ÔŒÇòžólêGÙËŠP.0€Ü³ÌH òft[:JXIrŸÞåÓð”ƒ5ÞSQè&Q’çüd’ªº‘$ÛÍà¯=ôB•Ïe†.,êÂÔéÿ»o¾—Ð\ïyÀ!2AÆœèrÝ˲Æ-WVÖô:þE=êýpÃÅæmÞR˜z=# „?Æ.g½¥Ú?Ù…  pðŸ7'vߪWuvÇ.“ˆá…X«µ"YÉHŒÙx„TOêoà_™ãçWš"7è™øðdž.~aš Â²úìa-Q«3yS¿—œjŽoÖS2ÉK2| &È\QÇùŶNrø³ÑáÔOBa9°ÞÒ õgmUQ6½ì§×=kReÊÑ3麿ôw̪3"€b¿qÍ´¶=šÃPJÐ%ñ*/*_Á0Q9_áYB@œ5þ×U‚1س(TNO]÷u¾g§nÝѳø0?ô°]Ø-YÕeŸ¦õnlضßMh‹÷y¹“Èõ¹i&G†²ãW¡Â¬Å'mK T<ûŸ ÊêAÕÑPŽþCß·Mžè[ ‘ Hbé°yéª × g¥JEœ‘Ýõâ²™†5±žUÕ4©µÍþ£Ýµ‰—Rì8âoUÙ¹"±ÑªENerŒ VÜj É9Œ¦›×‰ ZöâPN‡ù=€aÕsÇài2ÈñžM¢aŒrÚæ;„dÄÒS ÓE¾\Àt¯–£ØÊ½6L†oD1Ö` 5¾Û®Æ?ÕãtÚ{XTЂ–xTGu&c:–Za”ίá¹Ûš?€ ýP‡Äì­¿_š?ín$sæÑð :2¨LO¾FÇ—¿(óMS€K*ùÖ…/ s™w8|ðkôgЪ”°”Õ3{œé‰!¨.ÜhÍ–‰n¢ß‰¶n寠{ƒÉ±‘5 žpµÑJŸeÄc5h¯â kV1â¨Í®0XÜL|àt¦ù?¶ñhõs@Ò'€ØûØ]Úeãã@pþPAiÿ¸¦[ׄ˜uد?GµÂâ=¥ˆwHSÌÜ?ܲ¯÷ÁÖÑÅdy…r6Q¢öZIÆZ²&­ÒÕƒ‰u‚vîÛ_q-cÝEHÓ 8®OšoŠM/GëùgØ.æ™HJá÷±¦Âö§ƒB­"kŒ"›PzÆi'ŒôDÁͰg”%$à˜þÉ]97.æ!ØŒâÉá6_šOÙAÄJ®}ô¾q¢l,`ð(ë·rí‚ËÙÚóÁ‰*|©rXÓ£›ºv†Y Ž-ÁÀ¾9 üA +PB%öªýî Öã-µÔ8DËæLt‘¹no kaÕ·©’Ä;’žcqÆôM )¥ýc¹^柰„smûNZ*ÞqÒE‹~Nyw³÷Ï_ó4ÀÝéyX3=Ø‚ "d ‡±>ýå‚RZ[C©¬Wž˜H 2¨è3^m¸˜ˆÝâÝd&@xtj²ì\/£J/^Ùž3>l·-ZÒÃL 0M^O*´­OÝ {ÈÂ:Õ¦B×N²É»µ¦µV0± ©é‰D‰Á]#$F×NWHt eã/Õ™k‰“Uì9–Â¼È ;{n·ýè·§þšÌ^ÇÜ P…q½Ø­€æQ=I’ >ÛÄ¥ ϧêÉø›ÎHk5¯ê½~On#˪«¬ú‹ ȰÆó4à¦Ñ² ‹œÆ(f…ãB›VÔ]%NêÌÿ›Î-¿JõЃb,ß1r«}.¹žWgkň/ô-ŠG¡ (.‡ëÏ~'Ëî+_‚Œûg£º~ÂéJH´ÆüŽ•˜‘¬ìØ)á_‘ÙÙÁ¹/&W[$ª K”²ÓeÆZÞ3“Tnª;)ûõ_i*² ìµÍ^=£óta–¢pRP:\üì….ëµ÷ÜtŒ³$z®#ãX$Ã]G]‡ÜPŸ]¹eëƒgéŠÛ[Ê ÷»Ò/&GK†ïÃð¼¾ùìu(¬™îêY§a á puF#m¦ã[FÂŒCY£…Ýݵrq(¦„¹Vã¶«m.¬Ùw™ß; ]ÅÄ6± ÅÄ¢}@8#%}À5{$¡:@ 6¨L¹ö†2ðT{ù-r•Bp7G2MÍÿ–vRîaø~Yc!Ð<Ém‡õQ]Í2¨å[nE¬i¹¯f"^*cìJlO¡ [é‹QÄÃü·Jæ4j¹%jS~*YÚÈHU©º €ÔÛ2l ¥YìŽoÏÖÉìÒ¯ÄÒ [¿¤ñ”«³]öåÚ…²HÎY"Cúï8Ã^Wåé?Ð4[¼7vÝS‹VÆg#깬ŠetÅo¥«gm¦HÎE²–Òjm*ÁŽ—žÞøF³.€úÎkÞŽà%é­×ÚÂâ‚sŒçÐ:#¡÷Á‹«b샵½·$Ƈ%¬±VžˆˆTT‰$,ôs¶ˆï¬ °Tv,xÎÒå.xæ.Y©ô!ð—|ÿãµ[zÉñÏ\a߅Ѫ›@è“)«öµ!­kk6Y:‚ïÒ®µZ8˜ AùT}ÊÒÒ’õs?”5_b¸ýq@Ø…—¤…Oë‚=Á3ܯÚ'h\ÍP×Wc¢`À%wÙÄ„BÍØ8ú­pq‚’qsa¤àñ,EŽÊàÓ¼¨k’‚Äy †#Þ¹¸LdÈÕœ†g‰ý’äö…O›GÛÜyÇ=áÌÀ‰ƒß/²b+8Ÿ(÷ý4Q%X,¬›|X¦ê0<-ÎÁié…©ü®ÏüúïÁÑøŒØ÷·™Óº‰fµjöLÚ-GÆíá;4…)¾Ô|¹ÒùvQGcF]›vÂÝã¶ï”Cÿ:-§eþ±.]Z”mÙ2+‡šçç“ï»Ê_®ä¸Œ59å’nC¼?Ï;EøMÀÕ eF ½üjÀ90EoBR T™=§KˆŒ=Ç@Üzy½‰+þ´Cà º/(ÞKé,_#èðøbáyµ¿r W¼T¶Âs›»þ+aÐ’JKámi@ˆG²*–Ö° R×½îPš‚½‡æ˜‰kóÞœ‹†[ ‰Áo²ÑÜ8bò•ßnL9+ë|¿½r[Å`1Î" î-¢ ÿ$háà¥a2 ]uwÁâ²´»£ßáiG†è‹CQ&øÎ<:x²ÑÞ•‹-ãHTé\ˆ#Üçn´a=óÚ§‘·Gy™«”¦)QÄÿˆÛeæh`@yýйŽÁW+[“bH¬œ£+3ñ¶[ó 'àßYðCî‡Æ&ÂB8MKðQðê¿&ÐìÿÐΊ©Ï)ðY|ÅõñMë)çˆå<©šý9—³P0“±ÿwƒ‚žú›Æ*@¥,Ò¯`mÆîs¶²dýûC.;ãn€»é8ž¹m]‚ÓÓm' Æ3 K<2íÁÜò%À´g¨ &Ò8p†¢¹I}kˆiqW´ÄãÆM°uj” › 7 SAÀamßBFOÉ/}"BûímKØWgçÚÛù²*/ɈÛ]<³¶”?˜Ä‹Ÿ¶qŠvÀ/íB‚@(On„€sn®?UNIn¤ Áħʭ×Ú8Lúò—¢˜K5sókc¥3«†ò|–~ =Ì–Q¨"ÆÙÊ –ÒhoôÒ()vˆ£EÆa¨7ij ¦ wþS”1ÍÁò’´=«í‡… ‡ÜÅ?½ ó˜zôf/­º¤³—?ëf0K±W„ÄÎJü+Z€½ªî[¸ÿáäÑM²Ir —•ò¯ö-{íu¯™À`ÖxëÐö×êÛŽ6Š‚-òrž@|¼›$„曜ÜĬj£sXï…¸îçTñ¦4ï•ÚÍÿSþ…º&å¹M-oÇi²¿ÈÏ­•B™uÕ“ÇÜFšÚ$¦·NUZ´þòTû.çû\Pú­¨¨æ¿÷ôŒ³JÐ׸bôxxÇ©K^ÖÙCGâ]_à–Vü®ÂtjÉe2mJŽDO›;dÒAt²ô{Lc…¸9#6(džÓýª½¸,pGpA˜vâ\–uø„êcú-œ¾þCw-ÑöÎȳR2±4$Y¢p¿œV(›Á‹l‡F¥ðê@7üµsoÀ ±¡Øò5tÛE›«Æ:Bè4» ´!ýO›fà;AŸ¨1cj¶/¦¯y7ðvƬ\aÑŒ³¯e:PelÍgÄ‚ì3#²¤ UÝÛeY#¶N ÚÆ¾íIÎgêÒ‘âB¹¬Xapp'Z|^Û5x ü ä#äö^;Ê.òÞp½/Ùó4‡‚È8ãàŸÀµ,¡ÝÖ²0L>4=IÐ`Z“ãâS–ÿü_vRoOŸ{b[ÍÂH°ÂÌÐÏá²lº#=ÛÍDße¥.ß²&l^’^î¥tYGÜ5(ØSVybGë-Ö˜­à‚[Cg3ŸfoYàÎÈ×È4¹·?ñhh€²cÆ@CÙáž'ÜŽw ]ˆ=Yrm¡Ì6yšá… ›ÕD‹cR›ôTç‡IÌ% í»Úy&û:LÒBéºþZÙÝ&S+²¡¥‚OŠDQÊ[Œ&±`¦âIÀÝgÏ€.¡¢#UÇNÜüÓBPD›ÎᡳˆAÅWï„]žÓÃ€ÌøÿSuOIk›e=‡ârO&2{m.ï^õ¦š2w£ýÍEqCFè"Öô ™±þ-·ü™Øz|ÏâŸCV ßƒÕÞò"y´¼¬áª"š%qUÄ~ o¦ È[8Åï·ÜGð…¢òÉ“Ý×!²P³‡Å¨EÝ®ÎÛ?ÞgÁ~Š8د$|žìSËÑ[sõIÄÌôíQñÀÝi!:É2»ìYªßæ3—ÂWå Oß4Är~TqÃ.†_¤Óÿùá÷÷BwQÛ7–&J‰RµÊdJW¨b¥³E ‹c›B¦Ã' bøžã÷‹,g¥±Ûûßym`}“µ9Äs\ wîÔÛCIãŒQ?„4U?¸¶“™9?±.Ù΂[E}Þ–†vâá5Ãûw„Ùÿòç8£‹³hÊ×tu%í9z]+%éŽè[ Ôq>ÄööTw/ÙÞ ØIzî€.gÚæØJÇ'õî›îþºÆnñ–Ѹâöî@:ü„‘§ Ó¶•uQx•Ê wkï5vÐÔúª*npçÜá~cê;f_¹Ç%ï4ËBWb©&$Õcšâ|d aÇ3Û£ð”§o ({uCË? £ôïMƒ0]«ò)Qý“ÙT»ªŒ9äÝ*Ó ¬YuÄ~Ž}3Ô2Ú>tÙ¥$`ðOÞ+ŽCòš‹3³ zB:˦| Ã{¥åâüÄ€ö©áæÀð݇LTKïÑìÛ¼ûŠž 1»,}u¿Ÿ ( .–OBê,"D‡õyζM¾¤‰Éã~”ÜF€æà?¤‹y"’a™ xìÿ Wz-os­¢0>Æo äÅ;@ö@fxêÃb‚CÛðÜG¿rÒ-)Ú-¯€1;EÃú‹á·=ÐèS:ªâ‡L£x|*™A7ΑeöàtžS{°Ã jÒëÚøŸ…?¸1ÑhOt‡·Î}ÞwqÉÐî£À®×&Ôù~FCàÙM•ò·Je rº1¾×Wþ ¿¢Ô-ûH¶-}ùæÒ>H$ªñe.¼á#îR*¥ˆcñ „;–6ÊHÒÀãô¡Ûg 9žëV§ÅÞ/ÿóÓcíPƒvË8E’÷š>"1Qj•Ä̆öy¨ý¾BÐ$Ü«:‰·~Þü»Goô1b2tÏð7ðˆ,HöíDvR/‹µTÕ7Ûìö¾<ÃÞ™C*ž’ ž{¡…í—ÆÃŽÍOWµ'i°ïµ Þ¸6„±:û/ê|®'ô?•ž,˜1»Œÿ/â¦÷»ùT~|ƒ¢ U°@Ê¹Û šÝЧºRï,6E“ûd‚ÎŽwì]ÄÁ:e¢Zø¶î-‚ë Ó×nâ* eæ³(¶¦|ŽYléjîË0¨~BáònçÖÔk¼ôÕùE¨7©?Úqœ÷O¿c%ëìfÂçñc:Ÿòüº vL¶Þ½aT?Ô¢+ù‡Ô &>)œÛbìÇùÑi÷ÇûcÛPÇ©p ÎÄg2†ìƒÓ´àÔ¸d„Î3«Èî´Wüz@CõÆù*&ëÕb¯ñ5e¨*Í-Í}&‰í€cJ–ànè<À˜¹‹©iÑ™Ä~0æ–®üÒÓÕ¶õ‰5ÙÁJö ŒY¸Ä„_ ä ZÇ*?´Áq÷‚FÔÈp¨¡á)ʾm–‚Ô²ŽE³Q‚C üÑ’Æ7O•e“áQL`¿½º›®BfÅ'…òËÕ‰ïYQ˜Õ@B¢*“jÆÄIÃʸ…È㛉7þ jQa”7\òÔƒ³ˆ³âi, ® ¯H ·…xºÓè¿_Àî3ΎʽJ¯Š¼Ò{ï •¬e äú#f4Ýôc£ÇýµÊЙ¬ÅGAZö­.ܲO¨¿Ùp’f*Vž[Bzd» ™ötFŸÉNct¹yð²ü¦.Ý·ãsŽÊ&œ9«ú¨ZJ‘CM+âAg¾`64r‚‰‹ØÞŸ~( x[ˆ‡gTvI·M{Ì¡ðåLÕoW× oò4ë÷†§ f7ÁC€à˜8ãú†lYBo„®€Ã  —¼,‘ÈÂx£Õ8SMÍ[>~pÓ2cáqŸ;ÚÁªÆ‘^Ô¿jÂAÄ@}‹&)QYg ’~ý„!}Ìã‚~« ·¶¯Ft‡7% ÷mB«¹ûÿ*sØì]³Y¬1z¤¿Wg¦( ž¾í­µ‰nñáÇ ­!{óe4’rá¤$l§¨‘„GŠï˜ Ï™,~o8"áÖ3w&è á#NN-iÃæ$ N6c4RhãÉY+DîÁ®ãB¯Èjeøù&òš yè§]t_˜Þ²?³ŠÌªÒ«ûË`ç(ŸÄ¥vIš’t/šcWGH!1¾ò%G@˜ê ˜4yúábÖÅ‚gZ:b 5½’{ØŽ—“Œ±A=ɉ柲ïê±8àDÝ[¸þ`Fè2·óÄÄ’Ó®ÅG;œb¢•D¬–N¿ýpøÅµó0ÈÅ^¯@j˜,Rêµà#²|nkGìö?ºˆž‚äj|â}Ï™¬ÃöY³Õ ä"î螘¤%ØÍåV£FD‡ÂïFséL4ë+Üým÷aN—úQ»!æ£ ŸôsBvrgFØ+½‰î„¹4ù:aά‘ß¶"5å8…ª[å¿¶°håÒfîÛÊÀ‚„ì/n”Oÿ ˜e(>[Ÿ4’Gk”ÝbÀèHVgw¿uÀk5PN…£µèØú«|ªtŸØ§££Ï-> ¯xu¡#ûÅ»\×΂á±ýý™œ"Ž”UürÂA=SâZ"bËÃ!7ÂWç-åò¼–¹‘ùÙ²;3w›™,/ ¡|Ñ.$XW®MuN°Ø6à§ô~‚Šq‹}t‰†·7Ï.î Ý¨­u—~êNâ¨ïÿ yy¿zFõ:' F1T÷.—¢p`«:Í3{ "ŸpjK¦t-dI¾ù˜2@¬CfðæÃäÛÃ5qMmRñ¬nIAÕ1ž‹øÊ–NÔSµÑ¦šÅ4†hG¸|ó‹Kÿ‘ÜÑãec;º‘Rhg|Äþ7ÓÊ,ý”âáNãíFRëö°A¿ô0m‘…Â0R*Ζbw—&ï¬4Š{ÅnÛÄï L ¾`t 3@•œç"XqFh7!øLã‹§ÓÜ;SÕWY<8`¥-…f÷ÑϧE7Lús0r -_DI÷‚KHT:ýÕù|鈴™×v®Ejº^Ð%šä† Óéž·­Pt£nÇÎrî-ª(r Ù»C¶{èG 6Tût (çé4´Ó+˜ö*¼’ô±1ÂoÝ(»@ h Jm}Òqý¶ª”ÚÛpC^Ù[€¹;8^ñcÈKR¼žé n/ÐÎ#:le<µj,Ý&ºlê×étKwh'K<„ËG`9H Nšåå™ÄŸRâÞfÄ@y­~,‰¾žœwÌ"ƒ£“R|à–!ÈëäN#ñà8¦9|â¾<Þ}N€Ö¨ÈKÐxFùØ'Ì'*IPYЯ˜«PE•?ãà&‘ÈžsðÚŒªíý_–ÌõI»'J "þƒ§žQœø¢· & ×FvÀù¶ëýÓj ¥y¡Ô@¢yp‡ò²MþeÕÈ‚«"x/ÞuŽÄÑ>«¬Ï03½§EE YY‰¬ÿjŽÛ‚ãùw^Û¬·HwÄH˜+œY ­ÙIñå*ÁÈŸ'Aºã^ ØP÷‡ÑPÀî*ñ‡”Æ­‹ÿ¿ ÷ðlnSEi“òⳤɶßTöQu^Ŭt·=0ÆÌÑJ$€u^çé}^ —ªÙêïÔûPûHT¢õÈNù?fy]°ÊáâÆól­'½8x·ic4ÞìºU(¾!9¢§Ë XyížF3û¦.£êÛß„ñ… àUH»²5uÍ÷#TþúŸ¼L¾± ƒ€%å¦óæ ¸¿Ø ¹ID·ÌÑÕTF ó²‡ŸÔ¬ýT…€®¬ƒÆÄË`ÞØq웡GH÷E ü8Q¹¢¿Ú hJJ>þa™íð ì¸O?‡V>ßÄøª——À#5K™Kç~û:Ù*ôël–eRgêÆ 9~ºǽFŸTÆ2 ¢À!ÈX‹Uê{{Éê×¥ê÷üb%s6 Ê™$=åaRæbšŸ¯õôçÚ€-ùŒå½}‡çaûîu˃9ÚE‘«Žp[ºÙ8ú‘zýÛ‰sòðÌYFn^&?7e»Ç-š>|Q5 ÔëphJ\ý%•ñ žéìÁ@©_ÌeÐý;×Ãmù˜=bLÜ·½¨,t~8®eÌm‡Dréc*¼ŽÏºËË-†ë …ã§<­ç¯(ÔÝù;hè·àÏŒŸÙ'xk£Kv'°Ë6IëâÁg•ó<‘Ý6 z/%5•Eù æ°mó ÒyìÖš†£slîY& x¾-ò2µ?ãò\ú‘V`—¬ûÛ”Ž~3ì‘Á°ñ¨õ§Šªóæƒø€0‚bø'¦´Ü­Hd3Æô ŸÒ‘Tu#S'sÌÀ¸à ŽðŸhy]¦'#é¤ßÝ¥¼{K1Ûe”ðmزKy? §¯LÜ"0¤¾HVNs,Zâä çÿñ=œïZö§¼¹åœ½ã”`O˜`(§{V¥kªÞf77««K>û}~ìJ¨QÞ+Z‡fÑ‹ßÜEoq;ut:7iÔGØ¿vÝO>E#W弦»X~Öฃؤ%7ŸUÝ]M˜s‰‘ݦùhG,LÖƒÆØ[ÊP2Ÿå¯e?’ªIˆe$(E°c¦âÜ7A¡Ã¢ªBå¾Z2Ó7W7ig< ¶î,–hp±J,Æ>š/;Lç·y øx)Bé&}uF$10^‰á|ty-¼zëí…MXA /,ÈaÙ Š,þ]ÿœÝDÒtA³T;ÖYe&yî9´ä™=$®ÞÍB!¹AEÀGZÛ õi켺¤=aŽ£ÄôM‰ÿ‰ì ‰«ØËÕð àE[í)D©!/¸ó¦ßnÙΕ݅öÉŸ:(:ˆk†î¹ƒÒœfeWu•O)à‹—.."ñµ0›â²õIK12U(O+þ¨éÅ¥2)à%«âu±E°?Ó½“¢ MÏ̵2Ÿº?§ó³‹çzųÿXé@¢“Û7ZÔ{[NJɵ\öÀQŽK¯ JHµº%e%PD‚A£ê°ĵ"þݲ;?­x¿ÎšEÆSzο׵•D9õ­DÝ, uÁit ó—È´º¸Iv—îZÿ¿‘¡;jkáܤýÏ=÷¹¡óCN‡àD zWJiŒµHÜ~ÕcisN‚ȯì«g  G¦ÌÀßó¾å”ÝyÑÜZh˜G—Pìwåmü 9™®¹ùI·J‘Áq¶öƒ¹f¦ÄÐÓ–sFE…þŠïðë9¶¿ØìßÙÆé1u¦±ööd ×ØIó.Àãýo H­ŽÀÒ³e“=6rE—^ˆkðDõ½ TYÃu¡4[®¼1wÞƒX1ÕÈ꬗64oNGJv6è®åý ypø*íEsg€/™²h9 ßô×f7ž9í¹²‹¹Yg‡oB) Ý¡6 Lýg$Fxb¨Î, QH ÑÑOCmç?Ø€¸\l(Ô,®+À4"Þ†ÂÕkœc6?µ3ËÏ¿áÅx‹¨…!eŠJÛòÞÁšð3&”}yTϘŽêv6 7x±yõk×ÎYq»E _.tPêñ(ëùå‰n“Ó‰£Í ©ýtµ¡ãómqŒ  F¯d ÒÎÕVÖ?Þ&'!Ó3*µ†Z˜|€Êèüøó@7¸‹(½f-tµT)wÎ]ZÊtØ‹°I’äÁ]­r‚FÞM) [+,7v&ñ $^«K²Ú|Åý„Ú|ZZYû°d”Fûy2 À²ùYÏ+T —þ® w­=·7æå";Û2ó ÔUåÔi¸k‚ëÚtÚK&o×Â_ÀZ˶Ø2Þ‰lø$‹X[7aÃ!Uмátéò ñœDÈZÃÀF3$r3l^}•*R}%Ôz!XyTšÍJWíZóð"ŒÃ––䥉IVàØêüW¤]´PC´âÈÅîozÂ2þ\.-˜–r ¿®ˆåM {7îÎâÓ3ðÁð4Ì»=¢e3õiÜÿÐó6\“ÏA>ÂÏ®†—îåmyÀuQ¥2KÊ|rpÔS³±5稉¡ËpÛTˆœJ™9Êàú®ÅôQäïg3þþ¶jî?sßÜSåçKQjìdÂÛ¿ ’ò}•lÑ{EàFÒ?Fí6¶ûñùÕržb–7x¬×µ%N¼~‡G±§ËB7¹CD›zs¢5„+« «õXSÎkf’]öO¨9Ùr›úÜÁCyjb .Ý-7ÎÈï‘s7§â!v’ÂürQDÖªyr§‚ µ5¢dTÿ£‡BŠžŽ ­|°Q¢\ÚâiÆ-lœÁhlu¾Ô ˜MbÿˉØÓWÝÞ‚`*ó›G,”‹K¶„´JëSÕÇ¢­RhîT9½¤jIîâ‹ìh²•€qøOg ƒXHÚ2ÕLØö>5—ò„aµÉO§S-Ïþ{}QçðáíøSe­éM+E˜uH»u „?2“IûÏÖ:Öܹj½Vºƒ%ßnéÌ\â°óå÷VÑ|sQ=ÃD>vôÌ©Œ†êjŧé…ÝcQ ËpêÉŸ`ß×:`nñ’`„D¿D”y"9ØJ”1´V‘0,€†Ærvñü‰a| 憎jïøùd­:W­Ò_™kêß«2°Ð«ÝJPãaò]―VÂ&à^ЄV6óXý*­·¯‘»ÓÞã»m*Þgêí—Çå¡&_ÇK×;!“ rv í&§ÀÍÛõZŠŒîn21Rqß+6É H åVhB‹ âǪ’ú ä‰ AmsMOÍHk S2ø?ÝÀIKÁŒ*ÐÍ·®üe)N3 07[Äoô|n‡¥s(§-ä2ƒœzÄeØ’PuKkžÙ×°²AâG}3õµxÊî=õ§¾½†¨ü'~¼V¡‡X‚i– ' ô?×®Xux¤Jp»‹aص\µßCrhæøÌCyhÉdîyžÜˆGÖ[²“öKŒ ktš±T¨œØ·ýÁà•w*­ÁÎÓ{jCÊsìîDrÓ uJÏX¦„À{ºp¬w×o§ðó`ù} ¹àAÊŒÅ*V4\¤È¤f›VI¹˜Çù0.BzÒ•‡-±—ˆÅêCaä!Ta°8,|_ôzsR˜{+ê&ÿCìq 7ˆ7j”ö;‘û¢0챯;Ûà¦þ'1F±aÛÕi@Hµä?–”»3íÂ;_ÒµûÊA %l¾×Žÿ§†tEøyêHQööÜfBñª™ö©.ÉP°¢òm[XÝ-#Q*ódõ—dý4âã^_†)÷8Iì{o'öIÑ~@pɾþCX¯€„‡Àsí=Ð ;S ¾kG%•/¹çרúÿò9(-‹Òå/ 0‹ä®|´®š»lc“, ®Ï‚Ó¯•¦c"¿³QQ¬›ÕÔ,ÎA1’â<Ÿ|!"»'ÇÖ©÷$îºH¦n­×‚ŽÜ÷âø^í#g?ŠÊ|ÀUÚ|¢Îݧpî´î1vkG¥Ÿ]—#Šžñ1Gí¹sƒFš8³bpaz{³qêüOWvn6ñ…ÍSD¦îá¼ ÷6EÌ a«4>˧¬yÎÄDÎ÷ö<Û–Õ?B? œ¨Û*žùp¼ãëù¡°_]Wúgg>t}Ÿ€ºs朎í,XˆÙTu2‰VÞâ)й·ŽÚµ£%Þ³ˆŒùF ­czñ‡€Ü‹©ì«¥³®)v:@S¥œ¿Ëþçwʵhq!᤻éÊ»w:à"í«šb«S«–ˆŽ>‚UÄTŒ©ÜU°ªo©è‰ç‡Þ}‘ò6A|‡¹=Þ 3âaC ÏiW¼Y¬¥¹ß‰p¡–ÈH -ªn®ãRá2Ñòp×®Mýn5)†1$ÉDm¶îé… WXÕåü>·Ìús Ã5?ÞtøhÚŸ|e\½²†É>Nýv"7ÿý5·Ù3‘‹k Ïðê_I„s)«÷î\ó×lÏxÝ~Xút­Ù’)C©Q‡ÀrÊ¿Ç{[-,Ë-qtÌ œÌ"m}û–(^Û½ûÕœ7ÎüÂ_$®¼©wÚëx𬠑™ÄØ ò\¤A sR⻺£³qE*-Âá×ú‡s³%+*ͬÀ_¸—f"¨ã…¥ è€qÓK_‚×ûG›"Ô.^•;.Õžÿ‹;3ÝT/~æjØõ®6(ºð¶Ó0£f×´Â<*\ÈÛ2Zs”‚:s¯’˜7ËòE*ªØBHyÛN0½—§äUúgÎÕôª#Y¤}пü“ Ýux?2Ao¦«G矶8Їrãò®‚à~ô6bYÕ&|‚%ÚA\DË®+v;F¾Dß#z’Â}ÞõXc_öÄHc©–a‡þ¬Y¾¦Ì+<+ì ´Ñ]†%„|¹ôô†´‰Ìm¡éFâsš ó…Ød³sŸPôÅZ½³íH.S­$‡d&²Ì+³×½Çl¼a8ß 7Õýb¼‹–ðŸì[i#7Ë% ×´¼ý…$­u{n¢/Ÿ&o…™EH~¨…ˆý”Oš½äɤSÖŒ­M|Ä‹?¨¼D‹³첚y_(lÉÉœ¯x»Cäyõ{ÉŽ-ѵ‡4+ó5ñ 1êÃK–ÈdpÌ>âõ:ñæ Niú :‡´ïŠÒÉÈÚn¶6܇“šØ~Ù"u\Jþ°_Ô3cw?j˜:°Ñ--¶z¦’¼‰'¹èaûO£«¿ŽpœÂ"¸A¾}ºmò_ª,Àù  ±Ð§ˆâÄ>¢AÒÁoÎ_°Õb4±ŠX“0éð  )»á² îÎØrY ÁÖ›_´ºƒ|AÕߘCèæaÃ9;õÖm5ÿùš“›$¨(p5+‡ÞKö*?gžÔç$Û½šBùåâ) mJ^Ây8ãaY#¢º°Éö”ñ5P#îÞÑÑOªAï¾¶üÓØô =Š×ÏQèLêh+ÅÓGñŠØÕhB3Éy}¯Àœ±pL£Ú)‘­±'aEQá(ÍOÅáw¶¿Ä1£w7Õ)Œ7C-ö‰_ŠÝ&yýj©¬¡¦ˆÆB‡DITá]Â<3®Ä0(©Tïs›‹ú¡æƒÌe—xM’å@º§€Þ  ìëÀAú¤‡ZY5ꡈøvv³'=‹ã~äWÿ¿-O€²Ê¬ûà½_$G=µÑc3C¾Uõãò&É•žÏ÷"ã,¡N ƒŒI*“­šîÄÀü]ZŽÓU‘5(ƒ!ñõU uЗÍ(½A½,L,õA30QÌfcôØJƒÏ/š¸I+y•d›]ò)Ìz5éŠþ‚ì:zö 7  ¯(UhAä „iîº×\,+èÀoˆ¹WFIBoS®½.ª½MÑrÀXžµ=#ôDÚ²ãQ›v—rÝx,ÊÌpÆù çsOÛSGNÞ®ùÑ™xg`.W§*KöW }\˜_/² ü_ ©Cô:M|ÖI‚‘Y‹+º–R@bQ0lvÜšÐ!-Wþ™ägûe=„OÕ=Q9âL×?£F-f@ól˜iÑK5si±3Äús_“†–Œï’í gÑlãVa ¨á RÌ÷:¨I •¤¾ò ÚÖÊÇÇÛ]@?‘‹VÄ€¾Ts‡nWÊ‚M£Ò“O#ý\"w8y´Æ ‡zàƒ(Œkº«B÷wö#þgΜr ¼DS9*?ŠIç¹çÝ|A%ºi,<2IyªƒSGò¬M{k·³ çÐNX¥8…¬+Œàd«S+¦FÉsVI’¿Ÿ} ^Ù[ŸúÏç‡æ¨KR ÿŠ×tàd`(–õ 9÷4駺\tqp碛–KìÍ‘<ŽùÉQÅÂh_C¦Ð@†œ(›–ÃLü5WÃS\ƒ¯æuÝ…Ê=7E þϺˆ_e€fÌ:ÏãAÞj¸TÏO´;_äáH–I} ÿeHì®ñMX*È´göÝ"̧CÔ¶f5uÀ„<òœëÏRc¹ç5࢚1=ǯc‡Åâ*jØJJK„ñï’…ðÊþ·ãê+h•­ S(°gûiHÏŸ{ý%/ºÇ#ھȱCŸìZS;AøÓõž«F b2oðÒ­ÎI"ú˜^ê 6mYâ®àáŸwZ¸Ëá‰X«.>b›„àX/ƒ$ßÚÔ)w§’–¦– 5b+±8š¢7³óŽôŠð-Ñ¢óH¯ˆN)„æ)îâµ]QñëÑ»žäß`«ºc(qˆÚʇœ¶4÷„ò*b‚¹–UjõÁ4kíB=,õ¾˜Ì­³ÚLt%tùëÉÒyRiåW“ ‡-a;|DÔÝ\K<Í‘0)¢Ñ1Eh|Òɪٟ~¨Mø»ýÅ9Ì?Kë ¢MÔÏ*:I µ9·æ Fp#K>½yˆ4Lqh³-×Eݧ »íõñoé¯ÿ²—‰ýô[ŽPnÊtF?°oNIå¨]®·\lS‘n*7f•ÁŸvó {F‡ÀNç\ˆé¸í¶\…´ÿ¥Õß_T}kžÌDO›ï”!‘B!uœùÿ‚@ôIËœ8UŸ-¦d44GLùYý^m…>×a©ëßð>…¾™€%éHJççŠ3¯éîpæáK(À5:gý ½¦y«’Ã× _2¼¦\¶‘È»}çM_h!Îsã²9DÚêqrý°?i>|÷&­Ã–¥¦R[†µöjâ2£ß\~Š»F¶¯”ˆ0¼8Êúƒ }pRFîZy¡ýcE úÄŒ&.#²2ê9ÝN­.PÂ&nª¦÷\ꩯæÔÍ.Ìp[ô˜>:r“øndïŠÚzçóÆbã€zžº1lªoâÖ‹è%_ıqÄ8¬sÎ4'ÿ‹ŸÂ^ÊVBÌ…•O \?ì ÏVM¶ÖFiÞ}Ý0“ÑÃ` ”ýð«µ2­ l¶/×ÉN±µÞÖÎæüÕŽõ†Xf%‡J¯Z¨ÅG5KÄòrÑ%4}ømþLš…‡ý2eεS÷ 4(C¾c1ƒ,K:¢™ë¸‘Q@’µ Ò½öïAuÆ„»)›sîj·Ð< CÊ¡Í}‹{z¤oózñ ²¯òOæJr Õ«y’QåaÉ !@ŠŠÒk9 £ôú´­°¬6x~ÿ†!O&˱‚’û#z™à¸Ð›>)ôz²âÆP‰àKç%KÜXFã j«‰Wú'JFG¯ì÷—éz1•¥tQ ŒÌˆ®ÞE–ª¼6ÆÍ¥~§.‡xèÜË\‚c­þÛøõÛv3á-þäà ¹à%où¸qgé«v¬vÅÜ8#q'L·ÆžüoØ~>âgÿ–‘E2ËÆæ¼¶ò§V/ÃFœ§ÁË @ -YÏåÝ:ÎKÛ´nԟœ“œdBœq±Ëæ!5ôDZÑ®'ï$á oã,ÀœSß2{Ò•C#¬inv¦Wõéó†y£´[Ž}ÐàÃ¥ˆuzËNm®ü@6a‚@F里ޭ—‘rFu·¬>:¯¥Úòö…CŸ~Ð +¹à(¡²®S«ð¾À¥>adE2â›eu']Pã¿SËÛšæ›.6V|8ùfBC䋟ÆqKh‰Ý)öžGP±ô+½Ie)u|·ŒýžŒ brM4˜m\u,2wØnX‘šs:ª0â\@få8ð:cÚü•Xö@øU³¿x Ç_i‚;+ò é ®üwþ9?n†¢W?€Î" ŽÝqBé3ú8Þeøº·ëP-A6>i¨HCQÞz¢UânC"ö-½K¢gÎSæO=¿…þ#Ø´=1®Ç䦃&”¥F³A FÜc@v‡Úpì{º„0³[·ðOLr~7L‡ñ:“kS}/þ_!of[÷ï6}¸M—­ 9òq]÷Éu¤E(@GmÎð˜IðÆ)ʯZ‡/t6ßËÉOþgg5´·A"]9ª„çíáÙsdmX³ý «‰tm5ÞS̶‹:êÝj½QÄ7^¾W…„‘Ó·ÄŽZ©»ò/I„0“Ü”œÑî0ȲÑBúâ§%5}™Ó½Ä O)ƒÜÔ¾'ÕÇÝ=@%¸ €¨kW¿B–”qÑ쟌è#Û¥vÆ77ô?suAúE³R«÷ªŠªâyßO‰¶ót£˜º Ô6í/ÕܹuΆ­„¬Cô_Ò“v/½ÚbÐÆdm]*X–&õÆ'Pß¹ié÷²Ð}eŒ8F ædæöó‚vÀ‡ÕšŸ–@ÆÃ—ÇÓïðñx„hŽo{HAŸ˜T° =®l„ÚöOP9¥NzÛeIÑß4ÂóäyòÓŽ3Á0ä ?  ²Èãï"4`÷!•Ö€¼Fûsuc×ô:Úéež˜‡—ÒÍùÖU™,tÕ·Y‚isÕƲƒ Ý»ºfááÚ;_\´Â$Ñ¥5ÌÜyþ¿îq2£Ø¾Öb5}¼‡Íü ÷¦#÷éðù¨ß¦Æ¥UÙ†m‘Ï ò‰i×Hèí÷‰' ‰}‘™Äôº±rJÒ–ìd -¸\þL;²j· ºäL_b›¿ÍÝG£ÞÊ TB¾0þ¿vH8ÜØ­;“ÅŸ?(íÚW R¢§ã•÷Ës -oQ%­Nf–ã2Ž¥©Ý ËLN‡A@ ˜Œ‘qÍU¥ÞhHξ}>hšq8y¨‘td±7¤Úì¸BW<ÓóV¸JAþâ$iõÊH¢–^» ùw͉,IùSÒ[c\eMæ¸bÛ©ß¹8ŽþÛ)ÌîBß+êEœvŠZ——,ú)ïÏ;<µ ùÒ¬ðéVäh¿ñÚt±î½DÀU” Uä>jpп 4‰’FLõÆ~Dì·]s¥q…rŒ™wøL…Û¶Iª×иŸ¡Ô%ö‰^l‡bÿ&o化þž)ˆt–Báì£HjºdáEÚš1­:·]…;vq,¼=,íVy=Ð 6”xß[†Å<³VO|NôQ?û‘“²h5éúðÇGeñïÊ™/@EÍ—;ü”Ñ3ê=Ðyi/ü Lƒ®ô^4H„“H±`¶L@A±%“ ]Ç®O&ö½/™g+#SvðÄŸf™Ø‡ƒfÛýas¹bÈê4Rºïòè O÷hNýPwò­?ãÁ{“Zw §¬Ã~Èþ6çÃ/¦pØ¥‡±yÛ€c€¢ÿº5à/ÊsG7XQWNÑàÊ>ÚJ ?Šùü2ÿ¸žð&[‚©ßÛó’´)eéÏ`¡*Œ¡ª“i2Ô <#ŽhËR7V„뽂Íüé%l߇—‚Ÿrüëòâ?ê—LO92ÂJÒv–ÀZM£°å`vŸÕ·‡ÑÁ¾:,‹ÞŸðTÓ̇ò*±®\Èå6/ÆyDZө\{Ò£ ]ÉK: >7ßH{a'ŒüùJ×$Ý) :oD‡GCå0,kŸ·,«qã5mÔnþ“ǹ-6[b$'53âˆxØf¬ƒ×®PÝ(ä8u7Ið}h¢ Af„ª8¶ÄBîîM— ëì‹Á¿@°ÕÌú¯.º"ÅqÇS1AzÌQ@BÉ1BF®›¶ñùùœË9–ZbuÉ1K«aâ@Æð<©³øþ膌.±s­’ðà„ÍÒ–uwž¯WÁ ÁNƒ/É Àó †º\b(=ÅßLP»\*QDJsþô[bP¸¸Ü•ˆœj!îÑŸ„"žý]„ê"s¹)ºŸ}+8l˜•ðZPú‡v†à 8uólÕ˜y[6¦…o)ÉúITÜûxø/ 8üìøø?Ýfe]›×aŠ$ mŒ¶â F¢éæì]…Æí€Ž©mOk2ô”gZ}â«Ø)ÌI¬4Nzöì±çh(;æ—¿sfG¤ÐÇ«å¾+gà%)…$Æ=þº¨œ}KC5(Þ€6]jE !é+èì»Q³£Ì1ëz£ŸÛiî¥ý9˜–©¨BúÛÛSŽÙŒ‚/ìû*Ú^2It;¤{ˆ—×Ý"˜ŠÞs"ﳊΥÄ%n JEHRdRûWÝŒ ¢*ð¢õ ³—çê‘‘H§&ÃJé —¤„¸,m„ÏçäCÚ‘CppÑÂ0 GÜðˆ_s4(]VôŽ%é°Þhµïj‚ÑÁ`ÖÔ ?êAW^·_{ڈ‘ؘhûägN@™y«*)AlVñ`ÿa¬ãÏRâ…tõ6=?ü–£oú—ËoM óëAC!å5v–¨/ÈÁê·ô¤q?ijvïñ2ªg ¢™ˆRR¢×µøulK·¯Œ98§ý%þ©f0„—«Æº·.u¡²‡ºêm¥Ù<Øc þžæ#œði¤×atT«µðÍ?ú?"ųŠD8i@Žq.¼IŠîžÇ´‹ìA«™üîó@1D‘‹BÛýfÏ\mCÀG #æ1ü;½@I+pƒðÐ)ÓãñúGÂGÆRºÚÂ÷ð @âõ\»Bõ¤¡ûˤDYÈ ˜)²h>¯®ºÌBÿ SY´œÃ²þpÍå¿ÉµTÌThŸñë«8äψܞ€]Lû2èP‘fÕËa>® ‘Á}­Á¾ ½ŒXi4ÎA¹} (1&ëÕïŠL1K.4Aû«Ã¥Õó–Ë;¢~Qß–B”H|¦‰™uÆ×Qfäæ Ë9?ÿ]E7à ty{Ù:óÚÞ‰UÙÊÑEÀ²Ê€ ðÌÚEd !äÛ.ˆÃ…еӑL@ãÆ¾Ùj@ qÓРä‚È.–TûÛùŽç­‡PÍ5FÝ h0ÂXüÉéd¸Üˆ t¸H^}1ÔÇ ãÓ­ƒÛ¿x‚¹`ü ’óÕË8‰^„&½œ»‘¯ìÁ–tœj¢ßÂ$~ø?§]‰ªI1rˆàˆ}«áí~š)®”LÅ+[úN °ÿá¸Ð`íÉØFsú[èžûÇwñ8I![€Et”0Ju£9ÐÛЫn¢sp»æ’†ëë’Ó׬8Ÿ);ßQlîAw}…ÐS[öÅÍgHreíËÂþ+îôŸO¾:Z*s.J¡F¥^ÏYoÁø ~›ñ]«àÅ&*âëµ|Á»‚ÆM]´îåz󱯥ÏßÙsöÜœØÚÐ| M|u”ªb©éžM™‘Ø…wc]X¯›Ê#ê9õŞᨾžbâ(ˆ )ˆ`ó•QX¤T -à=×_ºâšHºÚ‹ø>«áhÏ‚c¬Oq‡IÛº¿Í“œfÿ’bE+Æ5”é$®ç¯ÏÃ?õ¬cw1s^VímÄQÖŠG£øƒ¡¥Z}3Æ­$–±ìpí¡Y‚è„Eë/èäbþVY%pD¾Hoˆ*æ²Rëký f̬ƟÅ{E¨ ~ÜÇ~}Tí£¯.6zuS4]ÂÝaL_7ˆº‡QD.J#\[%|xùö[ÜøïÚE;dù ›£8l ®nòÄtè™]&ާs x¢Í9…¥Z_Ÿñ·3>­‰«fss_üèpÄý_·ÉòR‚µ“×f'Kîmƒñd@#À´pî %K+Ñn†Ÿ—0zÉR!çêS’dQ ÂhûMmò2:¼W+ß`%\R#ÉYdnRà àhÈz›†€#‹6` kh¥Âs~£º™‚‹Â¦ØÄcogøUDÔÍÊ‹/¥{[ýÝ m¿Ä˜Â•Ò(ÑùàÝ )- åæ`¨³u‚\0œß”€Þ1 ¶íù`Á€zò‚’M¡´ –ÆRÀL*d¾¾ÀèôÁK,•¦±Ùjíšéò•žg‡9·Ä>^Ë@šLþ#Xek>¹Ü9=¦ÈÅòv«—Z]Å‹Ûè*Áô7ßèî¤Py‹‡ªÜDæs†Žœ°fü÷È»–‡÷a–Ébr´Øˆž»U°Xú÷e±ÜpòLˆYàÌó»o\à -J’LF}®ü%뫽mÍéM}cµËü@À]Kƒ…;O]SCz´d*²còfí½ô#mwäë¸LOœèäxoRP2n‘Ò2ª«òl»¹¨þAelèa [ZìBÈÚô~®àĤÎIš_vÃKšÉ w*D”tlÒ<Χ¥²+;aê«ZÝ1×OwÙ*fM‰ßä+^b"ê °7¿!ÁÛ‘;µ·Q¼•ü“•”#É&í¾}5à‚o…èqîöë¦ ükXÞlŽÑlJ]@mþn;_&Zj‚Q»¿RL•gž81¤àdƒQØŽ¬ˆ/þù彉*ñîiÕ¬õ„ß ;ÒcÊ;Šrœ+OEÁÌ ]ÒR›¿Gh¿IÂúc¦Æ‰ëÇô¾¨bìr9eðêÓš/´*S—ZJn|¢QÈ„D¡Z]*õ–\"ÒÝvhïÝY˜SWâOÛ-Ò:øI“-[“I¥IE¢?<‘b^ˆì 6##ÝG v‚×ü%85ßöGÚ6*€,Œò@Na|:Ð<Á ivùÔ8^¸ð'Ü» ­gÛ‡pÄ%g?—¸¢ÒŒ`ì©îÇÍkDÕñ»¦žµç䜇æôÖ\ÑIë‘=ç‘,¶ÂÛ›8–;89’žYªIÖ‘‚âca_’áДåÒo=¶£ÒÇÚö`wThbª_þÕšè`âôÕ “=·“ QPôþÊÁƒi¨õP›"‚êï¼ ÐèÏ¡3‹WFÑò‡„c``×adн@Òç•ëD4–Ðd˜P‚Ôn~>D&–‹ëÐÁÅ¿"‹wiù?µ ¥é×NŸ?| OˆÌ}ŸÐoŒ² ´ix^­Ãød :€õ)j:7ge`fVì«èG%áQ×Í,»ä0˜aw0"‡ÔÅÏ޲øfÓäâÒÝ_V5–Oâ¹ïœÎî …ñÚVf½p…ã—ýÑĶ@¶Â(qFoR>„óƒešÌedGiÕ´{€ˆ<–™Û†`<É®S8Ë<¹ê{Zõ¸£u÷§ÝMCl³7çèè8î¡ë <:Y"&˜¶Ñ”@^ŽK7Ërã YÈ:ë2ö÷`Ag˜Ìÿºâ†òñr÷?jÊÓž"è}A®ƒ¶ cúK8o4œ@‚B: ¹®BiØêlTä¶K£†}J…Ou—†4ÝΨÿdƒ3¶"(gèaSa ÊHs19©€!gá£[\rÛ=÷Ô63CƒúãÐì"Ú†BÀ2®z¬ñU:£€lÓ›ž¢‰è|]= Ë¢Ž¢›ÌùÚ­©¼WvL^Þ“ºÜ#W.¤î%:§JìÖ~p1Ϻ* õ‘±nñ ~A&j±"5ÎÙȳÎV÷_à,iè*+xý‡^žµäzÅsôÄ£Wzß&EW97ƺùín ë~¯³9¡ÅÕö§­ôX#}ºñÙ—CUá9ªeþ?5¥ú*î$½~^3¹æ^µº H+vêüIEKÿ›¥Ôˆ{ôð\6ý%Ç/Ÿ?"0¢ï<ØÚÇžñ§6ʸÙ ÇD'v€næIB¬-ÊìÓ»­+çVÿ‡Hþ%to*9hJ3ßÕ¯d^›Õ!>úŸ°s󇡧3òB´‘˹èm2³ÔácO§Ë%vâËI{ì²û5áE¤¤Œû„Á„Øñª.zñÓ!–™ŸÁ¹VÅÕã[>qPUuu‘5¶my€‡Šz×°“ÿ ‡“ú×èhÏd„‘ÔRI|xPòàÜ,rµ•^[8›G 6†·1—çŠúXK§:ñC¥Ø ä"’;¯7*\¤qŸ•Ɔ‘qµðæôæÒ™U/!8u—sÆ cæ!û†(k­^ö Uèñí¼1Í/U–Å#ôÌä“äNGÌC+gNarlL¡"†,Y€ñøðr_ïhNEÒ1o¦ÎÆz¯Â-¡,Œö–€ÔKÆN/qÚ€îcêk6}÷…°?ËkêN?|²0/fGoèZT…‚&×êViÉ·âƒÊžâò±|HÌ_D¬¼K#곇[Õ„mª…H¯à91lA!ht… â 'L¤P¢³–RàK]É"v¨µ å@âYË_ÛÇA\évÖÛÐuæ@)@Þn|„³‹ý­û4ùªÃMšõ¦ËÊ&cô¾»ØêÐ\KCº-€¨¥9Ìv„~Xåfæ~lµ¯gÉà·$Hód@9kf|To©Çnâ%¢Âwég·â‰6»´qe@ÖÀ¹•\â7täø)Ô¾ÅH}T‡ùY;ݵۑ'Uƒõð_¡¢WEÅV=}Ú04Š î¶C0Øt×Á˜÷·ÒÄpÖ(†8}•F-ÿÉÜÛy¾KÙo}ç5€60 h"6k‹Ñ,ÌGuå°ü<Òwã'sv7[”ÔÖZÂÄ?³ÅY=Ð)üC·ûsf€n›LC(F—èQdwŒo'MµèÖ]ÕAKçÝÂÁœøã¢å€12c?Þ%²VIú€¼¦*Lõãnå{ö®SÙ,XƒÒö£ÓqØÜöCƒ·ì9d5V".™Ï׆†HV¾q þxÔVç]Ų¬ö="›DÔ/ºVDëD̘££ó9}AtX/Tñ™Âðq}ëçÁýNp„×rÓ©Ùý6‰YfëO¶CMóº›pjÎo1'E£½^{”pLÝ.‰Ñ¸2è”:µú)»êd™T˜jüÜRMÓc)ß(YƒýaÊØgœ“{›šr†ü4צǒÙȱEØñR`—`›œ{#ÇÈ}ÏÓ#7°»ÝOÊæ¶Añ…9š—_¢Æu[^:ê3é¿®¨Ð6U‘öY†q‡vÞ9ûÐÖjAå$©¼ù¸ó³¨ð‡×Àkrˆ(;IÅò\ÿz«Í%ڇ彔8¦ŒáÂa)ýîZÅ‘òz4ì„SPóRNA«ußy–¤¢üÃ8W÷KÏ/I#!òºrµì‘×%3Ç»_¸UtR ²G§ûyçI³‡%„*ð7–®Õ‡îÓm]ÅòZÖ±s:¢Ff†7.A“­=L ø±©Iïn¬yÜ•ž¼ O©ÓÚ¦~‡¹¥öMÝܵq)R—uwe×5®)ŽíP³e_ÖtéúKìsâņðázç‘B4­#Ì÷bšjÌCù†…–÷Ì8³Þ ¥ê¾g$ .ovéžàä¢}ág`y1Y ý?0,‘ñQ©=ÉöOèÃS¤¦–Û6ØŠòªtç³ßË¢‡Cœ“ÝJ²=;*L r‘M‘/à̹pW[³¡º=©\%ž6sE³5È7 *¢{Ec“)(Epv?«½l ¥Ÿò„ë½ º˜ô\…Ê}Ýàüüº?>›œÕ‘͈³¹ù{†…(¿ÿŒµÄ.TÍIÝ­eÑzYo¥=ü3`_÷é"(שäh0¦ãý¿‰ÅDzý0¶-˜£º5’píÜê/ÆGPÇÍÌ¡³Ý‘ Р"k² GÏÊpµßó°Ý[]ü-b Üûm÷Á¢éØ©HQŽŠ&'xAئ‰ø {>šê̲ç·Â=v"];Æ€ ºõ¹³Ú3šÚ8ä´¿að·~'(-c´x‘\KòìYt_NñÑ ¡ÐÛ-ì{Š&ãX¹Y°—^ÓÄžŒÂGE°9Æ™Z*ź˧n™¨Ä0à!ý/*ûÚ°bŽ’‘%aãAÚqÿÕyûHó6ôÒ52ú wÅ àˆ…°þ¶ÝåHü.~bi±ñï‰2:ÖþCùIÏ5)‡!W¾2|WåØQÚšì`œ&Æ ¦] ”ú›qÑN|•‡Ùï!õ]ºÒÅyjWb6Åút7L¥CìÓëèBƒEÕŒhI>`‚ :¨²d‘ùk™àÊPˆi›Èb' È{BPKt7ni`œ‡Ì”õ¯eŒ4s· · ÝOòÕ(×j™F2ž +54ùú;F½Ñ;À Þ[¬½t˜ÿ¯½rÅßyáÉ/)ºoç–oã€BÑ.Ï& Ûp¾X€¦òä@(¾µ1¯™hY1ò~ž£ì¼Èe)Q±ÑÙšÙ÷f•>Úµ¾%—ÚÖUa+¼±ð‹ø¾l‹Ô‹¸ÖÇó›Í v»0¯lš>ñÆêä,ÝL}›!šß}mši‚ À[Ê¢|hœ?Y‹-Àª[ ®5 m§‡E]Å« 1¬W~Æ» žBFãÇÜý²iÇEƒÜ0±œ¹üÒŽÂ@ýü¤wéŒ<0¹ÕÐ_ëŸÌ_ãy Ù³K”¸a« Ð?›¾k¯õhÒüLžTë|µÃÒ¸Évã7Ý[ßêauŒê SýãGs¶YÁÒMák´ÑЄL51 Ô?Â@f®S'‰,]ÜuÕÚtÔöw¯>ïyâþã©!uÞòa<•'ä"¹÷kYTIÐ.û¸Qôna:ÂvK«Ó ýÕ›SšV³ÃÇZ݃JìÁwÕr*»êÏ4ê…Ù;x4¬f¼ 'Ë\ø¿aƒšäGlÉÇZNçáTïBŒâ- xiìT,¹°aÔù‹qìîKaão®ÚNóÿ™ƒÒI}ÿÍïM“¥ÕÀ§kVÓ3 î5G[gõ¡‡Ü{3[e»rúD\ÜÛK½õš?&¡¼ú”ê.gÓÜdLÄùÛ˜±Na:µ—}lþWó5‚¼÷òu.¨ÃÐx¢|%QZˆ½KÍFò` YÃ'› ›U(!RšŽ@÷ŸHyñ™½±ú1 Á{ä#¸·—øæ.–·£ÎÆN/~’Ö£+¦gòaÓÉyŒ¼/ƒ3ÿºúÏ«›uè§}öt±9°ÐN²uÑ¥sIÑîú@+6lPÆÔU6Î ÍêÙø½VJÎÏÛ$BLá‹z8Ÿp­ÎNi‹ÁÒc‡§ar “,îdY²‡Nš²£ÉùùÁÙÎ]ƒІ¥%ÚÄf<ø°3?ä²òû!lônÔg¼tî×z˜¢)lá§Å”~MZS Ÿ<á¤Ù8µÒôÕxö M²@ÛÙljûêåDa;•®:W—HÏBièeO/õøÖv5 xXùGXî$L?ÍÃö}S©¦Y«c‘_  « © 4|ä£?7·ˆ›³ò#ŠÈcáÉ|Ö½•tßDуa=K8HÝø4 ¥ƒ1Ƙ¦àá¤ce0¥ô­iÊ¥pkzïæ©µù¿r®ªÓ=‰$Æt·Ot \ʃh `|é1ÒàÙÄ"´oôH¬Ã½€€Â·õ¬¯\©Q`Q,ÐEGèÝã:a8—›jhâ‡vL/Ds^š§øKµ“>B¡'ò qð÷*çMˆIŸH.Zä°£C3oÇ”%ô¼W•¾I<[ã®o žžÃ§gRÜÜñú[Îè”ýn´b}CŠÖêEvÉpf•´ÍX˜¶ a3Œz‹â¿J**±Zþ‹diŸ7AK]‡\>"eœÒH`—Ñ&H id(»¸´y:ÖÀœ’)?(è+skÿ9x ôÖ¶6mhµ%#R@Os÷ˆpW{Œñ•”ÒJк¾xßž±ÆñÇT0jtÌ%IEöY÷Ásè$K<-=Œ=˜ËÜ)47…´4”OΙz–~‹Nó6µ#ý®w‰ÁŸ_zY.£ÂÝÍHDî¹›=÷A•ÄR„€\ÑÎÝß<÷ˆå‹Zy…°ç[;¨Ÿ\ï@ÀX¶ú’qçF³ ­Æú†Àø„`—sK÷Æ3P‡*÷vue̪g¼™úiL_ñ’‘FŒ ²ÛÁ…:wV ÏgÎÆÉúó~Á#ÝH6S»l.®’¬óÔë>ˆI¼è=—]”Õ ïÔ|Ð¯Ô™Š¹‚d”#Ú?àØØå±-RŸ¸DIáÔA8à—Ýñ”ì£Ö_ 0ûÏ‘ÛÃ-:÷¢ÆäNªrÄ5r¬p…x°Ã…bOö¢‡U<ÜÊœ!Ñ‘mì…K_Î<p!_cEóƒNê Ho´œG#M^ãóÄB ½z#¼®”W ^éÃ.vîxSsëêÎgÐ×î`ÑEž²Õ]ÛS0²dTzϲÜëÜ‹A Ë™˜¾IÚºx¼¯œêw¼ÿ©Ú¦Ú©¦2M'-Z±vÓ âR¤m-Û,¨eYG³E díômÛ‰òõ¦“$&ôQê1µkORÁ"Æ«‡&ã{B ¿t¯dÐßRÓ¡þHt¿ð¨¢s9iÇó­žÛ€jzq½ùdE†ß»±FÅõÉR±øµ=³¦{FÜ>£­:B&ßÈÀ(ªI3ÀÓæ.Œ™ØCí¼•ÒµÁMLb­š!MlEð’pù@»º\ee0^õDéfJq’îpÁ{î"óP•%y‡³7ý³Q=ˆ¦È_q¤pÄîÿዤ>•³XädþY²»x«Oœ(TÚXLÆ¡Z’)”K|Š6Y’ÀuvS$š°D" ¤œV!±_ðU™Â)H&9>":úàK™Øfå|uæ´ŸÅ]StpNöYmqT÷"M‡.ΨØ„¢WÊElè¥Û•Íå-iª(Ò8n•n^àÅŸ¨AÑnV÷®Zª“bÍÛIÞÜh †½ÒÌ5ñÍuDø”Ç÷šk’ô¤àfÖ-ªíÖ}‘ã Ø-^x„Iõ¬bWC{†H/Ôn\}1"îĵãè³à}þòáÔó«ôQ~*¿UW*8­ìíC{¢“³{Á¢ÆœÄ€vû;z€2^è|‹!a–Îö%óÚZ&sŸ,6z€V¨ƒ*Ýíý‰ý²÷¬y¶ƒ=<l""½Í¸¾«Xî¼㙆[éÚ#O!D_0$»-&OzZ­íÈݯP@~ÃׯS¡ew€",ÜÕ³Ú*ÞyŽHÄ XܶA"«?y´˜ZŒ AP#mWGå„ìUsçhýr/0 ±Üm¦SK0ñ³(DŸÛÌÝŒ¢ÙáJóx”3•úÕò°:“Õ@ ³]ƒ ¿ÿf–éò[Q±ŠzM©WyX œ»î®ÅÑœT©œkfÃ8Ïhø³í/-&)›sÁ¤#–aÔ¾§ÙñÊêb~ß±RšNC•» L•tZ¾.jv IÆy`í`\—ð¥27;×f.Bñmz†²ºT½ˆhŒ^ÇmïMëyùû»sc[PòA.¯0%g™tqNÿo…˽˜ÆµK¬{cÂŒÞË)Û`… *®>^Æþ• 6 }ö~o]ç«[£q sXMþÂ÷C ǦWêÎõµµ#¸&ý_;àƒv »Z°»Ëý€Rnò ¶ýñ‘9ù±]*áú c +iYˆÅ|RÅ U;ér¬ü– €¯¥ÆPÚr‚F"„$,÷.|ïéÌIE=;ÌÊ„lÂ(G¬[Ñ6‚1CýpÌÀ)y.vˆçw“'^ߤí+"jQb'd7·y¦(`Ó; §è>üF<™)Ì3лnø]vµ‰–¼CŽÃ³‘wÄM㬞nò𼲕J—C=S§ðQ‹Ä`4îã<Ñ*æš6 —P}æ4Ym'³†™/Þk•üWŸ¬ãc`)K-O“uªœ{£™ω\t¥MÍ5ØÛr9{i’Æš1:ª (`7þk,²T+úxÙ¦%²¢3ä‹‘[ß¼®N8ëÕ|X£ù’Îuiu±Š‘µ¼ò‰‚_ØòTþÈø?ÃèDàœátµ°Ê`âÄQe·Ã¸µ§lÿÆ`¸ö®ÊŒ.ÿDçj„嵩¸ô…ÀŒ(¥^òÛlã4 ²z£Ƙœon"ÇÏ °ëó‡\ÙFÀÝ÷Iâ§ÌœYCx÷sƒ^˾íªwÉôòvŒ‰3_šöïuÍß…½ÆÒÙÑI­çõÿrh.÷»fTG䤯õÚ¤—P‘¸Í©#²€qkfBˆ7xå÷‰•/Ï%‚ O‰Þ{;æ¹²æ”Úšd³GWkð +ômL½Nlö;ûMíFCa —ZÀÚÚ¶]uAº…Lþ0gã³dR’û(pІHìoD­ö¢ù¢gÚ~fà±Ù˜×¶Â{?Õ'ºKÁi¯ò{ÖAI‘f² ÂÉZ&³„ñǨÌ"]†RM±Ò¼ 7U&n"äþA=ü#̘”ð&Tçm‚×¥ bðmð4š|tƒ¸µ+-'•¢¸IbªG– ÒýÒ÷b 5uy|âºB[†Ø9Ë„u¤r]DËë§ZßÍ/Mró¦¨tÅèý÷°g†} BÓT)3( Œ¶£ðj™Ù—3#?þ!^w±\ÿ¸†R•N%ul[±´P”Í–Êyþ’Êf °ûpgÁáIRÄWÛáà0èñÝY)x9/c?×'&ŒÊ*´ ùúšêQ3ƒh¸®Æ“,xNÕ¾ðøÛë ŠÿJÃo‡›-™ÓšÝmð˜çÊí[1ê)—›„4¢{°=GgÕ`÷í`‰µJ¹@04K'q¶“.kÿPÿ5ï=ê±ðdÝ/b?,qSŽ9ºïª±é˜6‚–.l&SÄIˆfêmý­l„Qsí[0ÌÒ£ç–:¶ì ÌI‡þE£Ã0GÀíËFÇ÷øÌ¸­0hYwu™„ÉPk@+Ë]/© ä„qÿtúò‘>ÌO1,ÁÙ?³S¿K~sr§þAd~h q?ú×Q”2ȼ=vVéT*öˆº`N¾Æ5ôÈLÑxÉh5“Ò[XQÈ+?>Sãì”芑ˆÝúš›çÍJ'BU2«šòyöXûRìÏ+ju™wîÒ‡<«‘¡¬Ø£Ä$ïåVÔÍLâ².—jRìáÑéŽF Û%®.†l&}EWÏîʵèúÓ_ÇϬÛâ8ZtÒÍœ»€íŠ9¿ï¶™ÙȨCÖGl6<&¼Ø¸78±hxœÃwF¯!˜Î]™Žš:ØqÑ{ÑZÀ\i¸§ºŠYófX½MÀ’m>A,½X¨CxÌi‹êŒóÆâIkx¬^ñ]aO.Í/ :™Ϋ†DvÌdÍÀݸ“p€¨Ø¹ß¨5ü3â?£dRšÚg³kŒYÂYOìRÌñºji¶ÝÓÕ Y3=XTÄÚŽïŒÙY+1ÎÀ,J˜Î7±ˆég4~Ck•ÙÃ_ä?Z$ZÒþ•ïœtcqþñÆ×,ЭeùD^4Œjn[Dס9$\œâiyº{$ åÚT‚nð÷^|ÎxµæÅm—˜8뱬„×ÒÏæ™ìmêÙÐÄ“IK¹K;9«A¾éèdH®Y0¬Z>æ*ÈëIÓçÿcgÛXö_¾èHê¥Ö§Å´‘92ÍùLÙ˜A~/è–Ä×oe[aú `aö{Qƪ{[Õ4k±4=bÕ_¢±º`É´fÌÔ熚hf¯æ–²ìtxÒ»ÄB‡ò—Õ ‘©¤_$8ñÒÐßÙ@ ÚŠmí#å’" xŸ=· ÛÇN¬ö˜A"‚j˜3Ôø¡ˆ¦F¯IJw!`qERñÝ6Ÿ˜ý>—ƒDkÙ;Ò`³£wI{vÅC¥ ÞIë§›í0€ÊH…_®9òn©àÏwwÜoFT5$ ÈfÒJQÙöõç¼Ýrá•™êâ5‹0öJŸB­-èe5(¤É¡…ÉYMëi¥Ó&SSPÔ39æ\÷²ÄŽ|îiæ‚LYJIK9S±™'w¬0'6šn1"Ù8hç{N'” ›þxy¦ÅºÙ¤å#«³v–ŠŒ”êƒÎ¶4i Å¿€×`cX^ƒ÷"+ä7;×Áù„!jŽžùÔlðÍÜ‹›{]€¥ÿê[(v ÄÝÅn3êç ˆF÷¯áõVí²°ÀÛ q¾ ˆÅ¯±jÝT¬H¨˜~åkKcM$Š£;zv¨ÜøÖн%"F[Mñ‡Œ‡5 Wa*Ü÷Ù€]ôïF—®A¹rQœ[fcSá¿R؜鎳µ­“K\+¿ ™ð4æo+zO«Íwe؉:†E6üÇÆ|U† äÞ¥š êE»RßÏbãýå’ƒL½Õò™Ú‹|øY,ÓKT£Ï2Ò GK94²Éd?06Åti¨v!\Œ>zcþ–&öí ~(È‘$— :ñº[Öñ1¶‚Ñ¡Ü ~0z•ý# mQ”ËÊäs†ÓÖ|ÙulŒÃ1À%€¥ö;ð„±ÍäÊ!”{™&S v#Œe¸&qAÓÔ¬½­¥i«ìI-ùÐCw2{xü&Yt‚ä$iŒ‚àS×K[Ãå<°îtÚ V0w•ÈH“Ïäè?±Ís´rô#G\|q¶yy±ß¶WÔ.^úà!ñð{Lü«3z·æ/ý§z=¸ ÑäŽhïP•t/*v ÐÕs§Ø>p”ÅFSH~ÂÑûJ%¬‹½ cC-‘W‘i!ù2(Z,•ÃO4¢ji§/†Aú6,̰´ô“ù?NˆogbtãAwœl™÷@Ò &ÚŹ§Ÿ¢i7$…x/ØVDÍnD½‹ž*„úš»1hƒˆSãɲ²ìógÚn3>ë þÔ°. #ÍËå´›•." º{üz¹– 8²jæ–ÃÍ,õ‚v JœÂ`uŽÌÔ®ï¯õbm½a°q@¯år³aйnüzëâð7zl}N-Ö’Ðåu&ÈT=-hž$/½Lð¾5¾ãW½¥ï#ÓH:qìÜwDf~tM—òOfs>Y«jJ ÐlF¦¶Bº EC¥îêæ,æAÎã‚kİ!a»S›èP\.â׃F6V‘ÕŸâ{Bûà¾^sºã Ö;×ÞeÅÃh†´{?yy¤Õö<庻jñµ¾[SêN©Öx¼®,&EбB;¿g–T¿øÇ$DZ§(/Çãc©¿› ˆ¤-Û¨…—7]­U›Û3¼áÎ޽`ipMPƒwm å‡·Ï/±l“ÊÙDHòÂ#B&q…î‡S0!F.öºŸï¼q=fð>È4òËpµáuÁ˜íÎdd[*MZú¾žÏhȨҽX¯¨ U…‰;ü›ÝUéί²|Wïlg¿ =oxê¶“=†þ¶’^þDŒÿÜØ bO³žcS)üñÁÒºù9ñI ¾3UXÜ®àßA¿ó~Ø Iç=kØT›óÙVn€Öb…_1/&àê Ãp,Ílr+„+ßê¡EþI/ÓF®I¡ *øÃÙd ´6"ߨ5%\Lšèÿ å5‡”b‹ùþŽÝû€‹ÖzÿÁl·Ù¸ŸäÉhÐ:Zíä¬óF&.6ÄËRx+np0˜<«Q£8Àô°)ÎÄØÒlæÜS7ÅÐKoÙš§È°6|鬼ֆp“ëA:á\€: ÚËûi³¦p®0Z“ú|ÃE^S1S6™qB¨ŸHÛ3-ŠæÊðÝñR§³Lb6©º2µ6{Hõ;QÑ)ëì«°4t_…›)Jrãz„‹3Â(¢îçá´ ñ_¿`ìVšª\_õq P:)ê%o|®Vhméç’ÖØÞo(zÕ‚ö.ì1ŠëamY “Ä-¼¬]”wßš&ÔVk;ãè«ÈzÁÊœ'Ò·dtï{yW"µÞgÀ¸=_Î÷Kãkv`ÃôOïæqL?ü—몓8o£”0 MFÄrR+V‰lþ7k{¥÷?íIJыBߺu,ŽŠƒ@vÜYeÊ@lÇ~Be$+K-¸+‹%®O)¼;"爰ßü¨õ_qÙ¾²„ ±¢ìþ»g<Ý8ﳡ*ðž¦gŽ/Fø•H;Ó.ΑøK×@2'DËÙ¯”×-Ž•uòÐ |`jL6âuNïî¢Y6K͎߬ýHV²°p¨¹U) ´ùmê¸ ˆýCû> gZe…x[Êyìò,@¼ÊMí•w²ê2ØÒ‹‘f9,ò@'Κ7VÛÚÄõÚTo&.{-|,”duÚÖÿF(©L¦5¿‚Á²ƒžQE”IÔ~³ggÈËçdù"À5Ò^VßÄÑÂΓÒª|ìE°¼Új¤)kž}¨ì†ƒg`ŒÖ±½Ö5ò«€‚î—ñ-š(—œ&O Ãc°Ç“ßlš!MLWG—‹Öï…¿š?Å%õ+B ‰·N²|€üÊ…ÍÌZEß6Y VÛ&ñ~N {ýôêýîºçE½P´ò—ïnðâ÷ vGæcuÁC.Íùý¢ß/–ƒ²„Y±ÿlLº­oÚà‡UÁüœ µD‚­-3»ø÷­0…í?¡–ÐõiaPÚ»x 4Þ^ÆÝ¥8‰épH†Ú’‘õlëv%³8HédMö£ù¼3«-¬#¼’+^&ºzé[ô®äd´þÙ°lÒ3lu,>ë•èùJÊ$›Å òX¥ÊïþáL}§ÈúŠ?ËeL¯ÎÑÐuDúÐái;I¾éóãP /ü±Àlúéúⱉj á«°´mt[¬©r=«’H-õä|‹I{ÖñcÀ¡Ÿã‹ÚDŒªTlÌ_®=mÜÊ!ƒ# JDÕ,ߘ% ¼ªMË¿boP¥×.ì`ã'€gú¡¡pË›ÏE/èÈó‰YE¾öLt4T¥j€,z¬½å+¯ÚpËWsy^ÎFO”&È<³x€¢ W2„ê6|ƒ„¿#þG¦;³Scý­wÐë]Žl1?ÿ+™ë•ÀP¬÷–Tt Æ8i”µ÷i‡ÉF ;ø"8N'Æ‘ä›}i1h ùº0¯ÿÓL¶Á\,Ú}1>ùqvÕ¸çtÑ*IšÁ1ŽoáÏ=4‹´fz\ JSBÂ.·jµ¹ÛӼͩgq~[×§õk†ËÜç°„üÿPA‘¢¦[óp7‘²]*ŽlÕ [×QˆbvÜ?lL)†­½{8J½´}=7÷mÕ’“+¼Ü EºÄúJ'É®n‘9úxºÍç*fN¢¦ùáb• ½ Ð÷n±6l“oä…xHimM¤¨kþ csºÇ·0´}óùÿl¸Mªixz}m;à,–8º5Ÿâ—8·¡v×;óÝP6Þ¤¬2dúÈOüôÌÒ’#öt]µ¥ý|Þ+Ô2M¼—-g¢Íoèb_È"vS3ç‡]4)$qH>?opOÛ5w„ ­î§‘à¤*…“[+&Œ>vὡf [ÒÃ!…„¹8´‚í”} :cÂ|ªËr0ä»ý¿ž¨Cð› ¹]œNŽ‹° œj3 )$V@8”0±{F;$lCdÉ9f‰ÏOá/‚x„IÚDúñÆ×ÀXRñk—ot5àìg—Däv¨þ=Q 0¼ª 1m›¯QÑ Æ—î½3]&6ü|yÌØI- þ¸çÎö5e,ŠÑ®­}iàsø‰KÞÊfœ  …V`®ß`3ÒK[çöp‰•4nTf2·±±&åZìS.'ç Ô™«ï0sgD›!<Û‚=Å×cJ4œA…¡öêj_71¯6#(,$ äÞP-úC©Î^ ܧ¬n+DZ¥=Øà7½pu{ ;®ÁhÑ|&)´ÇØÏŒPDÑõi¿äÈ;Ǭµ+ïÞÆŠø/M|G.tLne-|°Û'†ˆÕiÈ H 0ÖyÙƒþT†‰ÅO`Ô£îc'r£Å5»lz3ÓÚ7È__j¦!êñjöžÿË,ÿÕïZ‘Ø\ mŸ–bVbmá¢JƒÄ®­r©WÝùöÛ‘>O:þåHlYKk““ñº˜Å&D¬áúÁ#H#ÒGg²Gd¼ñ”3ø¸U9zãBà}®¼£1g¤iÚü%¨ñM²ôŸù’­¡O¡™¹R'PØÓøåy!Ÿ«·VãW<ƒÐ'Ó ‡”v=SÇš–ü™pŽ ŠÎ¹X'kù2'+äˆ5ìz“"©³.ŠÁÔ =ù¬¶¡Úàaç‚©‚ %;f̦&ìq ÅYfSÉn6˜±¶‚RV肾"[ogü>þº^/õ-ÒÖšô¡óEjkщM¸+X”ÒÚ­— È2€Sröë?…ÜÈ[’‘¼Ûùtcxœ²öôqà~u\ìtNŒ´T²µË쟵I7’BæÇ5a'å8 ޳%iq+]1¿£…‹ãŠÙGÞˆ½Éy3›²ñp%þ©Ô,Ggd·Fw©°¢ ê LW>E·m|ÇT ÓhÂN·Œ‘^LŽM“¹Å—|l6éšà#¢!'·ÞEXÒˆ½Lç~‰«Å>:äNh[ ô”ŒÌ…(é£TD· ônÇÞä¿äÐÄI߇6µ½^DÊšò{‹!0¹IGbÌûn°7¤ðJ)I H‘Jíúr ÐÌ25†[皈ÍgoŽÍ#×.3<õ„;橃pT‘ÏÐõz㟮^zq޼§eYˆ;w .ñ¬ §¦hA¦sFŸZ t Çœ‘Ǭ„’µB„€•7ªCñIîžñóż’êCŽ_˜D)&r)@åçëŒ.dŠá÷'e¦34É%|†ô) Å4WoˆG®êK“Eu¤…ÂIueàsJ#„Ü' ¯Ý‰æ|¹`[mÝÐ$ÈOYúƹ2ºF{%Eæt|"M¦òÇ—~:•7ø Aò0Ù¤ÃjzšßGZ&gXkVÖY+ëó<®9#Èñ´£bâzí"+À.R<Ð÷ˆiv}ÀHDëá¨Ó…÷U¸=¹qzÑRr¡ì×7ñ…‰„X9Â$e¹ž‰â—ÈRU“¸w]rTx;´5ÝAv+u &Òòß “ñj­$s,y¢F_mÑFÙ˜dÃ…ÿªµhqkÿ6:íÄ\ „Ò\*¬.Ìþu˜Ü°AÆÌÎôw,U£Ž#„h%@ŸùÀ,í¢ª5rƒkùôä´ cù‡þÀ%`à}².ƒÕ#oßñȹVç·ú¥Ýk9Š‘¦R¸Ž`[4¯÷ÐuÑ3ÀÅy¦¢m=Û¾¼;"Z(¸ÓAÛ*mâÍËÍ>|ÆœüX’ÞuV&Ó¦œ©ÓÐ]qk”‚3µSéî?{¢…ñ(ïÿT²‚ÎÍRÛÆ¨=²g s…þÊQÛïc)š5dn/[%æf"ˆlI‘–]=…Ý>ÀtÝ‹gÌð?ÚIeájA^ïK—4P¨§;ìai¦#D/F;LÀZ¿UbÀckE-U‘*ŠDBÀ‚ÿ†¿QŸ;¶;ÿœ5j(ÎáµÁ÷ë²{„ Þ½<†[/çÖ¸ä[ú9ú²` …¸3iOk(®ßx4œ’±Æ0õ€z¶|—áùËP †ùǬº›AâÍù”Á50]å£ê°g1<ê’Ý· p„Hx侚ÍJc&}$Î0ƒ¥¶þsuöÜÊ{eÕ0å,é%j&&ù Às­Ë»”ª+0!­ÝM? N“ZÛÊ5G°ââﯶ8ÂBÁé„Ä_f?qÖ$vÐóf–p €`ÛèɺØg9<#í{º€²ŒÛßòÏô»yï|@̪új\çžV-ªiù™Ýß òƒ°mÉwÆÎ€ ¤¶>˜y†»ZFÞ{Ì:îÐO-Ñ„&,ë¸='ð¸pcSÜHÖLçÀLs¹róí³”×ᚈxŦ4½*H,¼&±£|'¶-w<«Y™?¸ÝœÚ«d 6.Ç`A½ÍˆûsÙ¾ÊͨžÞJgS–Ÿ„Ÿ¼R}3£ÑòzýБy=È>t«ÃÏ]º"•ëËwï˦J1|!ý\âÓ)E˜+Úp!Íê<}¯BÀ=ü¿Ÿ‚,²Iûçäh6±ì©7*þl¾c'Wýè`f²Á]ÃŇ•#¦%«®3áÆøDyVùÏîa—ÅÍHîë’tœdk>P?‹ÓLºÈÛBi}FsDMbžùå¦Hju8—Ÿ’µçÆïìamrzS·O¨¶”@^©(ÎmôáŸÞ€=Po˜Ùî\&Ïí'¡Où¨ê5½-8*ëI”D×:ñ‘Ô ÐqŠ@ßoXyC½TË‘"{‚Ü ö¼#-n6!û"”^êmôãÄ3]0Áu1æs2¼nWa¯CKd•Ùæ;.Lk|f¶ /²9f¾È9{ ŸµAÙËÁ“é¢Ëíwü¥}a¶§gb¶£è/)!,:Ñ\NŠIÐ%w‡åäé)?Ú•|v„½à=¬ ëKy骹À9™22pÆïO`qüù\¯æ‘Ü [uõ™ ÿ³ßfhûf>»™!¿Ï.Ý¢˜0}Y#Ù¡ D“/HŽÌàÌÆÞGÝ‘á´>0ÝÓ Ö…q ¥Åù~ÊêUwn>ϽêXÌOµÆŒžñee?Y×iü6AËjc}ˆUx‘?<ñ‹˜}Œ|¼P4zôhßõ”ñnH¼ãpº>jÚªJ$kjõ|–Ù¾dä ìÚU3Ì7h©¶ÿT Õ4/LÕ\nÏ[3gU¦HÔA4ÏÊŸ^¿K8Øx^~éì·î:ÐÿV|ÙƒˆND×~…Ú‘{±,\‘"´ï.h‡Y¡³“ªÆÕ‹ŸÊ'1Ê~dñ?%te éSLÖ²ûa]’*]†Q]r ýÛ+ˆ3 Wƒ´QA><¥ïÉÇÈy´?­šÀÍdÌQæ‹•›òý89ÏéÁå÷¥šÚ€4ȸ”(Õ¤•ãç\ð½ÂŒ™:¤²)>½f¢ÝÝt7•á6Pà`¯Ÿze"Qâ?š郓ˆaÂ"e”W¶(9<¿%Í7ºÌà÷ê¦qçD1ÎÓÀÀÄ¥Úe*ÏùDÆ[1ߨ¸Þ4±I‘ºó²Ÿpò”òz£|¡'{.&×nd¥LÜå[t‡µÝލӡw8Äf䡜aù´åQnŠâüæOW‰ßeII¨û,§0-êÒÎÊÐ~´úæÄ rÝø¢ÜùkŠR¨¬#„§ÈL÷õBqŸP°›>³Ž¨Pñ‰+å$›e Ää~-ÁwÙì8+¾¸yO3>o‰1'GÓ”ùþJ5þcÆIë%øÐ{Bæv2¾/'  êå Ù•ÝïYyf½û8gæ[¥_•{z+R+ØJŸz õÉDŠŠ\¹ ÆÚŸ"cÅ”€rJOùWXDò¢¾kàöÍ¢ÚDÉ<ëÌèúÛ˜¶w4èè–g ~¥Þ½™1j£Ù§úÊ¥4É‹¦çÛߘó~ó¬5!A{<¤Ó¢^]ˆ&âø½Ë÷]_ÿßë×LåW³)1€%¼½á™qû¹SPŒû?:GJòW¨ƒxJkÞ˜y «Àž[æênìÑÏ/·Þ›»_+ö ^%ÅÆ¨N\—Qõk4\¡›ù—5æOV«' –Z€á½œœséò©dÛäÍØÍs˶ <ðê@ýõô´qj±Óí=í.ˆÕî§ØÃ`X‘‰ÇìþÝõ2øk(~ÉPótXÎ7¹V,¥¡XÓd(ÏÚú¬w—N¿7; õý“µÔÂZÓÝ24AÿïN%€"blLj”™˜tÝQâ›Cr…¬ýsIÃï¬Ñ-)›Eõ޾r5Œj÷€˜htÝÈ¥ qZÐ+󦬌Ԗ\¬Ý{À$ÍѲ"b–ê@D÷`çxRþ¡£,ÿ?ωY›Ëª׌úÁ.yÙá›ÝÔš*Y (Q4H–Ë¡ïâ“,nU'mà¾r¸ÕµêGš]Pû·uUv4´ÂO/ý!mDçÜÞ€YëTØ/ìwLF³<·mþÓ:B©¡–N ØÐëÚ3&1ÀïfMV°gcÚ—ÉËï&~J"WS‘Kí“ÕTt¢YÎpyõj“Ý»GÁ]üźíÏÿ,¨·ŽPŠ*V3—Nس *225¶#-ùKÇçßj©äN€rd%MÞµŽ@U —ðNÑ­®-‚q(vC­AÎiçã*±QJ¶>{´o3tCƒwÁð´öWn·5aÈìE€U¢Xßf¦„=r„?%Q17A“VLbs(D1êù¿ßŸÉMlÍk·Õ²¶xùÓ*¡–K>Ì¡v–ŸØw÷A/ÍPY¾%ÆtJWeó6^â.¡çqKö¦âœæ^þÅ|—Á¡=˜ÅZ©º÷,TË7|'0ŠðäWÖb³ܺ~’ê¨ ì§(g{E‘xÀÅkË Ã8×Ï6~“²\ßK_°÷ñèhTðÇjpx»«Y”>x9àlËKÓþLú~ªŸöÜáLµÌó9âü^m^’ Öìä¼ç”bÓGxí w äÚpà„ ˆ$^ý¦Èi@ÖÁÿtýrò@T@?ý_§êšM¶È¦[ðDzf4·ó lŠÙ¤1*ÒⶬÁÞ*ÿWRT"Ìt)>¹ìP&Jkð¢Ðkà± ¡¹›2|&¯';N¦‰ïÖ–iRGÿ¼B®œnÐþ F¥Õb£¬Ã8W6îö丼¸Ô ÊzmqcBHb‡V²÷ÄlEˆ³ ž—¸&5ƒRàÐ=lÀ Ô°M­ó+mgGfš·?†%Cµç(ÛT^Ð$ʨ‘ŸÍGæ1$u Ä-X­Þú½ÕG_›A’jã î|®L•4&Ã2„pïß¡ä¼ëåÚ ßüec‘9…܆Óq—€/ö)_Å2Ÿ¸?¦Ï—q™½ûÎ.—òŽ´éÇTSâð)-D¾á ¤@SÏóoò½Ý·Ó¿Xàª@‚N ŠÚ¨â—Òê˜S›;¹ÍÁå ±º¼93¤Õˆ´$'®]'¥h (kÄ`δݡ¬zÝdD™|¡¤O®Íׯ¶ ^,l"qëVÀ9^ŸqNy̹=œ”ÀJ ÷ S¿RZ]úô‰¼°‡¯ùÊß ]ú2½ýè(—Iãxñ»‰ë}ÿÓQRñò»`e“`ü,S`ÃÁ“ºƒ'‡ødú‡xq:ÆF/Æ!xs‡ÇXxUpC¨ôqá‘ÖÁ©#ªE ‡(Š_ß?ÈÌ5!ðwr”Rãk^?¨”•ÀÃŽrˆÖßb¡`t~µž2ÞŒhéŽB^<ér¹6Z–³¯ã¶ÿÀëûßáj?ÉÁ Cž<‰3ìÚ[p&û| 7=›–5^zÏ%WøûrW±ß¢ŠkñóM8ªaDL"sr¤ . „²®›‹©G®¿©¹Åt%éƒÈw:ý’Ëñ/pͪ¡’baçûú‚*#Ù½k‡ÿ—Ÿ'Ö†üôÓ͈삢5•äô g˜{IÑ ÆP¹ºYcNZB¡JÔPä¡?$ ‘›©¾Å¹å°8a èêåþ̹§L™Á¢‚tê#TŠæ·–;M6\¦¦ao/±€}¾œŠË‘ÞüÃùò=8BÃ9Vªµ[eSö×+òºJÑÈK¦ãÄÕ ›š Œ.H'6¨SÆ "M©¬A¯yk^Ï ÕRŽIçPè¹ãj-bÒ‡}¨ ü•vkhîϲ²FHÅç•é˜h!&‡²Qb™ÌÝ„z±s0³ÄÉ ¬­-”äo’vêZËŒ{2Í“7ŸeŠdj¾™Í íy£¼÷k‘ 2?(P7?%µU+6z,¸wg¼áºCãK®äCÚÉåØÓ¶Dr˜Û*Å¡b¸ßý¡7_ªíê–šôéÉmim&…–{qäã“Y ¼)n\€}Z§ë£br°q%ò‘®A?c$(»NœE;y¹ï>„äÇ48‹Å3ÃøbZ±¦/‹jÿ‡Þ¼òjjü˜8Ê@|i(eΘU«¥÷ó6<A4øË‰Ü½ÒÆâhsœ­qs‡É;eüìO€›Î6ª½,Wé¨#êl §tû°µ¾Ô[²ÄóªTÔ¢‚³9Ï/% TGË+w7&…Y¿‰cq¤Ma‡³¾Ã7™”%i}dßä®”q)U 3©ÜøÌ³ðþ‰FÚäŠî÷,(÷ê5^ðê9Ç=¤OÝà‰ìž&>šßð:ý’ƒ8v{Wœg¤ê‡Fo¹õ²®BVêéÓróÄñŠÜÊ8Ï¡N£ýº`ŽùÄîóémúÌ0*8).ªWEy×z H/¬GGïT•Ü(KÛšÜðRõÔlGÞÔÄTV ñàʽ § „5õÙ¡Ý^6jÂt–«ÑÌ‘­†œhp;—aÃA'ppëãy’‚3êJ"ö¯ë`tÀâ݈ì.³ÿYtòdšd»þ7‘¯ãï$tïí“פYwgŸû©mðp •cç¨Õ`áJ¾ƒA¶ ɺ°<Êø+B @•š-ê§+ƒâ«ó¿ðÀW¹j`peÌbè˜ÄÁb~Ô<«|À¥-òœ5®’´ª÷@ÿDD:8*ë ÆlœÒ3Ï…2S¶¡ÐœQÄÒóæËÝ„Yú6ç¿ iþÝ…11wÉe$9·Ä+T ÄÌ“"%Èe4')ðZo_¸T\š¾/ËÁîº*‘=øu+xËäOÜŸDwZDĘ*)uæg#Øo;½µúІ(¢Â)­,BfOû^ ˜íªÖuËØOÿ½ÛùcŽ®~׺øë¦ûrf–ùbùy×Ë in.ŒXÍ;QÜ]IB‚Àóõ'Š˜¹ZˆX=Å-ÁwÑÞ”ñœ™]ŒÊå÷SóU~+tP„5yè@å:$÷uš†À·iËWÏ#[ @T’ƒ‡ €j…ÞÒjùXû¾öŒŒS›‹W“¿¨03‰öœ1ZmÙäû‘6GÎ%9ÑD‘âº&ÓU Ä,¤{w*À‹zÛ\2CÀ‰B_Ï5üÊjÀ‘$‚³¶lm!…ÅÖÌ–tüa÷öó5îæÁ­òW¨YØtÑ¡§«ƒ¸€u]91c\$zd !¤…góQöô3O>Þ±@µ?¯x{fu¹Èª­»([Vaû7l$Â)-ÿ+|Ž•[›?GÃQeCeA®W:©?¼AßxìŠkÇÔ¥` ¹§pHE@-- ÖUã§ãC V×6|S©‚Õi›À§iϰFN¿LðEœœF†»/©þb¬ð“ȵBzÉKx[¶™`CŠX 'ë½Ñ!ÊòGÂ…kÝÄeº–…Z=ÔSº[ ­†^Ï×2 ´ÃXšU#`×Ïa g›$̧KL’•úú€l ©/E$>m8¯„=(ûõ,tР Uæ?Œ!R è¹ägÂ|%aiÖmò-y3êÄ4äØÈýÿ¾(Ý™_yq± otœŽ@tÍêq£ï~°c¾Ý¼y¹N9>m¸-»¸jÐ4=ˆyÐ PqbŸ´hÄÅ¡ÜK¤O=¥0K.ã?»w©)œñc`nÚáYPUl´\¼dn3ÿ mm/ÅÞHêÞ‚4ß:'€εG€Âã³ÛNœ?ÃlàÃYa¸]¢àÓpå««TËìȾ €W^½$`"žt"Èi Zy¼°îµ×iÀâŸÙrë…¦"ÓLsǸ÷&µÃû¬¶ˆÛ=¤qn’Œùç¿øàëí·ób|¡  ¬¢)Å=£ºù¥*¾(`5[2ˎ㞌O©Êc*SS«•2cŸ£é?ˆ4ör#î 7:¹·‚Å%#Ü4Ä”i¹ÅyôDåÏN4tæÀy V½¯1ê©YBh§寽£ï!)Æ —då4¥¡aóaÖkw•b$ŸðXÅ4‹@ŒÏ°¢5õÙ;«úƒ°e .c†Ž;J‘$xΗ£ Ø-Þ®€Áðó»ÆÄäAWQ…h].r®ó:•‡ê%ûXÏ7@[{&y¶ÅÕ¦G;çŽùè šõЯÓ<¶Ã€ûٺǮ£0ÃtäbR¸w›3í~¦Ù?Kï«B#~‚ƒÖ»Âè€Ú1ð¼îÑž†.¤6i,‘ÃUVQÚÀ&Tôr“Õ2룵ø»­îoЋ¸Øœ©©ÝýñèüíÓô;ŽúV¸ÖF0TîÏ ÿy"ô(û±ž†”]ÂsªÑº”Ù¸—;%bÈ=Z¤uáU`Ÿœ!Ïåu‹`Ç=Fº œ<‡¢aš\[ýA“4ÿKÓ€¹x\ À²Ìc@­î¦ÏÚÔƒ=LI£tÚ ÍÛâ3žÂÅ2zuÓ룿]ø?‚6{0ÂYí×5|@ÔˆQçF("DI27EÎÏ Š¨½&°ÇèŠÐªÕ嬨rv¾˜… }¶3ÃúëûzðÉ &ñ6oÝm2ÕYI¯(èw ±x¾¨ÆÒút®<ÿÍîUèvM?¤ „Õï "ë{M"7rüY¾!oîâúVàôÆm¾i\¿|L@Š@ÇY} þnjm¯’’‘¼’MÛ“m4?|^HuoÛø'çß2B‹ ÝŸÄrS&âÙ®<¯`b2&T o]¶Sƒ‰H#·pXÌ)´ú[CÎù æ¯Tï3œÄVë[Û¨£´…DX*8…ø¤úVø ·Y:£€…+ÐÈp_½™Qé]¨2¶I }×”ALƒVbê€3ÌR…µé‰(Z¹Ëwªf;³ÍWw7Ìò0Qaú¨–Þ¹‹ø [‹Q.˜cß½S.7óƒ‘O7%CS6rÕLTÅk“ª5Þclç|¼‡Äör1“GðnŽ-~¤´•³w˜’ŠãQý@ÒøGkªy-£–üÓd¨$­ð9gÏÔ|‚Ý~HUnÓ—/âs@|£¾|Ú¿[ãÌ[•0õöÈS|øÐõÉ’Ä›… ÚyŸ¼Éš‹XûÀ.ÿ3V@’~¯8Œ‘Œš [É@‚(¾“8wû-khšþ„6ïßTmWݾ« ‰4Ò9A;´*‹N3EyuðŽð¦´|H[’=Y_ i¾ÓüQTäè‚g]»CÖ‡Ó6¾1CDù°7t ¹œ«¦áøk†Òh¨3 ÓðÕ¶g‚T§§3,™vËW(Ú¬Ž¿ Ê¥¡{ƒìdîFÐ ñ±ÙÎàr„¾]__Ùý‘áu“íNú%X†ær¸ý·£Ù<§Œ:qöErHð¤ÒØsÏÍ§Æ Ê–ž 8””‡çq¬˜©’Ö—¤mzÔí9„ŠQu€#>†‚S•},ê'SËKÖ×k·¨®XÔÔœ*s-ƒú@N„(ÙÊöèÇý¦ã½þ ,äú€ûŸx«2j(n\Eöÿ =àˆÁõ” =Ö«KˆÑýÛb×LÓî|WÊU‰‚Õ\hº®„–¥/±"t÷Ñk"l?qš]WdÍé—ßœ zµ•ÿÃ[ù+³êºÔ̼E¿7"YlH#ô.ÆÆ\*hÅ÷Ù¨›áìsÜëµmìÊè90pÔÒŠ/©Õ¶5ó”w€/À8_ÔqòsÅA6ÀiÕß_—q•r$}¼»S2ßp÷±Úѽ®²÷wâl&Ép,ªè’•í,óQȳEóá0|ȆGvÊ%YÀr§ëŠÖé¾k6+fc÷ñM ¾Ñ²y}h”å|ê?>¤(mY0$“ˆ<Ù8 ¶Àþ¹_]ˆˆvûÈÜ FÞÔ’úwï<6óEnü´Ò…Œvø®ySl¡½žbf‡•ñ,³ éS³œß$ jÁÑu~ÝñîI~•UP9Ãé"ºò>ª`Œœ|?¶Tô[\cò®“¾îLÖûø²ãýB³E¿‘dÕdï^T¹”)·‡¡®°ä°ïšj¹ÏuØÙOnádÀ÷ZE„Ž<&âv¶—òî¹RYÙÕ能!K¼CÒzz>ߨ³Ýi#ñÇÍà‚¶t²-+’Õڪ«ý±îñ÷z·Í¢ÚCA!ËËàžÑZC¨k?z%šˆ@¢Ô±céò(-C¿ %R?\eÐä--³q§ª¼½ ˆÎÀ‚ÿ̦7&oïÐG•»ê…ÑûòǪ¬…ê¯Õ0.„cQˆ°ÀßšpgŸkB÷Ý%„†ôÐ=ôVÈ4ëÔ4ah]윿›fŒ°@¸'QÜ%ÝW8ÕN¯óÜ܇xûÝn€%á¢ß×xî²8¬á ÿq_rIè>ÚÉßµì *ÛQG Þ>²þÑOGŒRi3ϽLj04µ-¹çÕáSiJÓoEÖ¼!ˆÕ©MÑ’¨c ck†¹²^ ±¬Æ"¨Öõö4ûq›oé¶ËÖü¢|ç¶Ù ®Ü(Ô8íÂJıËÓ´½3ºùA·Åyn|Yâ2<Êqpkj…ì¾ qû8‘[còKGèÃ)sYŸ`·P©Ø?úžâq°©%0Ó$ÖØ>í¼ s¡yj=ürñµ7¬É6¦gžç@!¨„P0o¢(“ ^ÌÝC¿{MÍtêq;[ÉÊt Nr¦¬èìo9øïß½ù%Iæ1)O“ö¸b¶å¾µ¶ï%è‹¢U¼4 º_Ef¦ÂØàx'&„ö0_‡€eXÁŒ Û÷åÎ êÅøÄÌ2ß[ÇÏ^‹GÌx8‚­ñÙZÞ,âèžÍ¼ס¥Àä°‡±>³ÂA)§Ý&*èú_¶DÜœÐÿߥèÜ îÑãØÈ=R=”ß2*þÿÔ„½ ZøxÍPrù ,Vš¤ÿé7x|3rÐW57äß<L(d‰š­ ÇÂüb´XiG€®1Ý”Cð8ôóJ+¥¥Íu^O)-Ûáî§[qx6™EuwŒ+1kÊoìw}à•Š,œ0' ·HÕUwÚ‹-*UrpJšÂõ êð"ìÑÐï@EÜÉŠ¾Åì“l}aÈhéÑîÜ♋yOè½² ²,[Îv-ZeeZp¶ý/ë) 5Ÿ.ß>:bÇ”™LИà?s\UcàgðŒ³µŽšE4,½òÿ«dþ¦ŒI4™bóV˜¸hD2keè*ˆ>ÊÚ¡§ÝŠEr4_‡i¨áÂ[1›$Þñ)—³—-«òIV//oÓËÖºéãŽ;*Z2>¶U-ÄÄih¹K#ÐzBN»ÅÚWŸo¨\>N#¶Ï†ÏI4¤Í$vlÕë…¢L=ØÈºDx¬I×q UT SÆ‹¯—€œtüT%íï0Äó]cùðÆÏÜ\·•Æä»vFšíÐ!oh[ÈX9 ŒŠeòè'é×½˜•}èr*–ï½×¤$½L»Gßܶþ\ˆE_cØ8\Ú ­¹Pdÿ/„T±Ž~±9feã£þ·ô§Š˜[PãDGKãPD«© yíëghAt<åÂL¸š ó|e¢M-'ÓŠ…ìbÖîê@¾×w$÷$\ÆnÁøCš+ÌBªL5Â-Xü¿ÐE/NrÆ€±ŠL|­ùX—¥¬p÷Ó¶ëGì”l‹[ˆ168ÿÁ§³LoTÄĶ"xgé*¡@ŠƒoýÍ‘WqlpÄz?°ÅAqz¨ æ°ƒÇ ÈÙÿÂWÉÄ'˜bâx/°‹¼ú$1T-«{D¾"]û竚Ôò[q˜¨ˆo„Ú+‚ìò˜ðÐæþwû°U'â²H ðÚ¼kð.YÚù'×ú¥xÁ*ksz;yá*k”Æ?¾¸«Ç±¼PÐÈ !në_,›#Ì»TWÁŠ>&Ù®ÑY1´ 9C›asnýJVå·ÇîZÈzϺæ\@Éÿîòrµ4s)¢9à¼gçÑ” .J¬tžÌ!%÷=©`T»ÞØ¡öí8Å :É¿[v%õ?ù›nî…ÍÎàczê ü5ù?žM"=aƒ.ᥠ¸¨ìSšuŒã”{iu½…HÂj=¹d[xü×=±À޵-ÕHŽ6äø ÍêŠå‘RgwÜ ‰i²Ó^§_iX†CöÓkž4è  ,A§.ªŸˆè‹žt :TõJœ{ÔÌ5´ä9úÌ-îˆ*Þ‰Šñõ8‰þ¤õŸ²búk "És^µãËxBÇo¶EV^g6¨A·ã‹Á-6…áϰ*í|Þ£ú($Kœ‡˜ ³Ògk`ÅÚðÑ©GÝ5 %áDZGö2}"‰®(…•+^ÞŠÂ"¾ÔU½žŒ,3àÚaÕÅ7'í[SYÚòØN¦4KÍ-4‰D -\I6=d‚p°†‚¡¬£zŒ¾p^D3-pþ²n«¯e’Yó¥ï··ŽÏñxN¡Ÿ¾2$aÐÛÍ5ˆŽ·´!”›ä¢Ò޶:RfLÍ`«m²¦XLµm–‘Bæ¦cmÓ“ aEyŽ—9f»ª·öCH?žy7¢IÆ¿ViûÌÓ”|^-ï®Ý–·à‡‹gõÄi‘e1:7%hå´«­ªçIÍúQz¦ö@üõX×…¤Ød‡y©ö£ÏYcý«Ž@ #“l¼]ð7¨ÆoÿµðülËó$ýÿúd‚cb©ñˆcBf˜êw6­™Cº´´€åª%‚‹±ù‚,½!–ÓU»HGb2]ëº;äm ÿpüí¨²„@X/«F´G>RØ ª”åש>p=ôƒÛ^æzòÌ“Æ Pî‹õ)½ä°f  ¿`X¤@9ËpLP‚M`$ïðc©Õ0˜&µÃô—{߆…¿”c‡þâ ¬ÒÎwx/Œkd®à]þ$¾Ï·¢Ç7é„%î˜æF•‚aoÀ/AõÃs¯¢âH®óAxÞº~#D¦ÈÇ‡Ç ªâ/”Du¦ Ïx[-Ô‡VCÊþ6®U®oÙ§ç{šBÚ%D•œ›7áóæÆ1¯„¤'%€ËtøZ:hèS«e\ RLógÍø”—ýjE Ock¼ùœ±‚“+²a¹ Ìï„ú6B0õ"yî#±0ŸË u®§@‘­Í¢9‘Ûè‡Äºçp I˜L=Òá)êB¡k RÉáÍO4Ã:x?Šƒ÷ŒGJ!2^zýެ%H„Qs|`êÙétcºž2¿æØdÿS}O ƒvÍÚà†Çº£´'V`¤|µÞéŸNðó)Ú¥°ˆÎhâQ.'ÛÕ9l(sw«w]zÂ%#õk´‰œ4ª|roƒ$Òâ¤nòR·ubm˜ìZb7Žˆ€5U\Á™@†’Çÿ[\cu(âJ>ªÞMÁUjiÓ߃cã´ÿÀNæ_^mLª±X"鉄Õw’ÖzݶlàéÀ¸/w:ÇÆ’ã~ÆØM#Ê ò ÷Eª¬E.<Ûf—Òo ~¸R6—öÖGéÚ%´ÓÌ(s¿!(Zœú -Ñ+€Äh°©)ü/Zåߌ2C OíÖÜ¥’•Ù~£ó’Âê°ÏZ·8$Ë¥@¸šå%ÕÌÌ ë5U$òƒÿ}Ъºb0‘u•jÓ©dþ²Bpb¥¤ë&4VgtŸ†ªYëT7]%ÕE‡·p¨ô€qš¨]&qä~Lí²K[ËMºû­o¬W=/l˜Ñv(úŒ([nQ¾!Ú¥l±VÃîïû2R”è«®œM—)p{¸•N‘ŸÓ‹çMd :dh3Äè³&Ê×~’µÜ],†ˆÝ’ÇV ÆL‡sgÎ^‡øÙ±ò³´ºä ðû BÒÞQy`†{Ú1ƒøBÜc5¤ 6–µÀÒF Q±l>Òì?¯ë9Céõ0,þèð k7–wã—"ž]µü`âˆæqÕFØxAŸXôÞoŒÛY©Œ®üzˆçEY[/)Ô×nù›h¨[Á¤„i3·ÎÀmýp•핤`kL¿'ëNbµ;q£”C?UÜ"ã> [#t†k AÊéÌ^3ò×s6´« +¥¿´öðл T0)ïç"õ*t\¯•{õnÐþ¸ ƒþ ×œïP¯˜èé+òrºäoê͹|Qb.Îô²iëä¸2t"šÙ1ãÐVp¦bàSo0‹žˆB-­ŒË3‘ ™Ø"fw ËKÄŽ#?P…²òõhœÉW¼ó¹0®sŒÊ%RqãõeVS‡dû±î–t×Pò™¸dÌT¿eÚ]ÊðÐbï|Gâœ)íËdógä-­ÑÀ ©faý#_‹±êtè’RI`ŽÚÜå\¿æƒ-ãïàðŒ›A´‚ùoЙÖ>}kO=‹&,V—)ƒÏý>t°Öfº ŠœÊn^\§WûÛ˶—áu+jV]:çÕ’¨ç@ùÜÍCó ÍU²S¹a)²Fõ2¹‘xíGMÅs8߆TåS°¸_ŸÅ²D=/Iä£^¡I¼ˆ³ÉyFDŽb¸(%¸s }‹Z.8ËWÍr%tÊ®â­r:PeEµ–Šç<$;°‡Åð5Êí²;vQ*+¶~áðk/Ö{×§‹gßÿ xF>Âmœ)É=ÌÏ ”ŒÊ?¼Š,£Š‹ë cNKø>räþOQJ±¡'˜Žßéã è>yLjAÖ­>·½|T9zÖ°¨À‰âC ë© kÀB žô¶ÏÚTWµ·|rc~š¸'ätíÎ}BBj-ô×^—J¥©º¶ò(×_†?>G Ã’ZWÞ D;BæÃ‹L’,ëéJFívLã¨Z„mÚ2ÔÑIX[ø%‡ukIDðí¦e$‘wÇ6¾AÑhéû kµXX‹S:i±û±Œ—b‰ô ÃÅ>uôË€@a?Ý`ÖÈÇÖÙ–WŒúž¢IZܰ éw‹›×ÂjœÓÑ e=RRI¥„ÄsKt3òÊ*ÓiÕ:c‹°‡ÉÉÌt d#O8åq åOD€~#\&+UèßC³ÔåèùV.N½¶0¿UÀ¦œFfÏ2BÙÞ¢ ë÷õÊQ4€ÊÛÇ°Æ P°lÕ~ÿùÑ:䥼:AŽíybPN”ƒj%ž°tlM°ý©3X'š2uDêú+ª"Ô@£2©Õ Õ4Y9çØ^‰ƒPÏgCÒÈÍ1•-Ä9o}Žœ¨qÇüž—¡vž#⻚6(K°kÕ ¼%ùå}ÊLÒÎIe£Õµ@šó‡ ýV“ü‰;vú37µÌҨ˙eM]{fî8¡èi)6`pµÛ$§:zV¹kýå¥$EyG¿_× [Vº†Kµ©ßWgTa†IæèÀ«Yl„ÏLØSÉìãêÀ¸ž-Ï¢(‘ƲòÁ"þ?ÅG.îX˜¾îÀ}ã¥q] Åy òxD·[n¢Và9‚#n<`>ÿ71cYn ¯à’lä4}8\ê|ÀÙF9>·FB9“Ëqm¶¥Î|lã&Ù¶d ªùž¥_CnHo=éss‡r‡„Á:į;è, ]Ö8ëVöiq²È™|”†"B Ô|‘6>¾f îÖ«eÅnÇ÷$Ðf¥»¦ð¹Í)EOT±ž†¿åP£5=°&Á9 0U¼ 5.`õ3 $UAxYõä¶“‹*¤Þ1xo­66ûÈÒð.>ôzúŒAwŸk[ZÏÓŒ¬Vk‡ýÏWî¥[ßîh vä0ñèÌîí)šv›¶²²žÔ¥°÷Ó\3"x =Ì©AHìL/ÁtyËt×'–ÖYÐl¦¼¥”.Б`Ôæ g‚ªâ–Õ£–dAI.ø›Óúƒú©v[ó➦ÁáFÕí…9ÜÎ|(õ::p—Á®Ž²"ÄÄmaP¤œÄ|DßU4¤0èd‹¿äd:t„—pÈI–Ÿ@²<¹îê̘îí‘)r¬ °mâhd‰TÆä;‘ËåȹlÊëŒÏÙ6M’ÙîZ€Ã¾QBgÏ;R‚{d! AyÆôu£_—¦B“ „½/z꥙Ú_à9Lœy£@¦)¿BÓ¢A:Éòý•S+]Fk©zƒ‚è+¦À¢Ö@|[|ôd ËÔÅZÏC~à¶ ëGnßš”'¥AAôgOùÃõÖc¹=â$ "A‘i‹G\E¬Më`›†i_§L¶0¼›Ã½‡åœm; AB°a%„"Š'd7Ånûqéc:·TÂè¹6ÛBÃ]ÖÂÕ…U}çž鿂?Fº‘¬ˆî:Š\$|Uio‚ú†HZS½ùÛ‘6SM¾'¼üdÚ¾´ÿ[®õ®ÙÕy‚Ë|cŸCòÌöÌú ö6þo ‰ããPF¢C–J$…‰ cz·ß¹¶mÈ(‚€ì“³‹BÈPUëÚóÇ{lŸS§ñ™ fÞ ƒY·’>…üãéX9Q3Ü*\U©öO2¢½+Ÿr×’ÖZ‹ ŒÉõ©nd˜öï¼£¢>^N€m¨ hÜ62Rœ…Æ/iký¦+O¡v+(Þ¤’uc4 jÐRÏ—x4BɨÏm–´¿êÙ刓З·Øýظðö>¬ Mn‡ò1‰µ'¥AÐC†ºB¼á°Ú ™u 1y€)V†¿o¨¡”jñTóWäÑ}C0…, a)†æ7sÏå¦Åäe¦øèÛ¦¯«Ä¡r©¯Òy«\™`z¿Pèxåw1F ŽL FßsGP’{Á\º-½‚ŠÕç*b¥UÀó& —úH£ì³VœÝ2J&¹­¾–¢éݬñõÍÄ¿qEL1i7 w-oÞ÷dí¹÷á¼±ÎÅIt ,„o`Ȱ­ùãýcÃ]ŠVÜ×sþ_[C$$¯›†Å§äçàq@çb1×g¿sܼ‘ìžÒ/ü¥”^0¢Å¾šìOÏ‚¹êÀd^xïààó+íqƒâÂ$U°9×á ¡O"+aÀ俍¸¨ú63‘‘c(æ+äî‹mP“»ªêÅÒñ.刮 õåø9?än¶‡NûWVDãsà&‚zR±Ûر|ÙF2‹\aoŠRÈn¥©W¤Û„½C®oNÕÄÝUæŽC¯ì§d²€%õÎQL› ˆðø®Y1>B&^pƆ»Ï?~qmÙBÙº&Q‹@˜Æ"Dšé„îN:A@q¹¤Å;ÊãT.´šµº›~–gD§ÐµP½£äxÛ²Y R€oÝ›ÑÒjŠÔcžØfî0mœØ„Þ_> eÖY³òÖ¦›ÐJ_óIÈêJ"Í,†­7ÁjÒÙ˜íðÒ¹Ð?|XôÄ÷t¢°n±|å²9÷‚w°vãÜ}tõGf¿ÔÊåû4ÿõ»~µbÁ(D“]ðÚh< âŽ_ÑWÊ®ðnx9\ŒÃáŸýiânŽ•4ÁãÃúd°f M„ü êSt–Ô)¯ÄXZ¤M(èÔpfôÀ­ÉÖ¼¬þ˨ù†ã4^TÔîÁA¬¶žÀhÐ&ùL¤ä‰¾•Kš.¥Y—ògxW‚ Ë©Ë:½p3÷-÷î¢úÛŠo¼jޏ¼2À™Å'ñÕ<7I›x¦Ê!p ¶Ï²k5µÂcþ›$®KåÖ®ÆÈ†Ñ蟧 í²n¥•X}°}’—Íà1`LFW›Ø€§Á'ϧúSgL¿‡¤}³d”±Æxê°eàs&úÚUŸx÷ÔödŸ)ý3É‹i1ÈÅo(sÌÜl¤ÂrZ`tÞa5„k§[^†¨Ç¹>hˆ55&UYxB°‘ŽönU9·°¡¯wõ¨ôÔ8|J‚ÖÅY¢å׃¨qx†ƒ¹×ðš;G·‘cKѤ=%Ë1$ÛÔxˆðÖ#;5]ïúPLÝ•¨¢E·ƒuµ(‡|0ˆ¤Ã|ˆ÷N:Á8iüÒUÖ¡8“z½¸Ÿ £Çyã"ifõìr*Òøh•Õ ¹ÝÅ^z¥“Í„phÔ7¿'󇨯…ÃÃîpvNtÈLǶTžôÛAß\óMÆÏM¦è ÕÊÙåǹž{uNn§xr»55F~¨ãk¼úy}2à 2ã[McÔónÌQ~ ù mèFˆîû;PsCŒO•àKÅèžÙﻓì˜Éˬ³ÀЊ…&HJb¼¤Æ` G6BŠÌ¦Ç_q)–e € |d°’3HÛo‡…å j£ÒÖ'ÓÚÐJ8Hl‚p°Ý¡’1ŸN˜ƒ¥Y{IDÒŒN ¦~"a²pBòé—N-츲zmNo+3~S'a±á#ãFH<ðê îw §zÕ,£+Úëòª$¢/®aSD|´‡¾ÉµK}}†ïÓ Ê¡¤e$' 6µ¡ó®¿ÉÖá*ò£õûÍFÅуÌÈÒ°1Ÿz±Õ2¥i <·ÿ"…ø®­nôôîKû‚NW‡ðT^|‚ÿ‘„R‰¨¾xãoè/¶Fø]èCÁŒn~»þ•ÆlR‘-“óŠ›ÀHĆ«7›®&.§5 t~7ú:GLøÆ*+@QšY¾’‘4íŽØ®ßE›}:¾ØÊg>ñB&˜ˆùZ';wï½nïÐÙttk0¨'ý%` Å€#å+1ƒAru¢¥ K[­0sµ¨êeú¾¦XMt•¤dìq£ã„Ö(,-›{4ÐvÄ¢6îÎݲ‡9>eƒÌÅ„bÜk@S9oR\ÙšíAˆäXœwÇ÷«`pô+|pTg­q%¬ï嵨ã™ôÒý=<ÉÅßi‹³ëМšíE¨˸y.u$ S.VÏÆV3BÜ~Jâ1R- 8My4àÒ :yÛè»Ír¸P꼆™J±‰ËN’bí^.ÅY÷9ÔþH"aõ÷ŠtAQQ-Š*’®"‰Ñú¶ ?³mÇzÄ&>C¡Sª%"'˜<ýóíþ·\Öì{l˜l•Ù#5سjšíŠùúÄöC¡a ¬ ú•¬ùH~±¬îÅã/2 ³øçÁ<2?ÜQ˜q‡þrX¬1·S¹”kY„9Tùs±ÞÔ©ê_¥;¼µDÜŠ wËU¥¸™9|ˆ QgÈœIª'6v{Ê\†ô®‚˜Ãíp/¨uyÓ‰wÐäÈ*ûÖó`±ßáoô1<éÜÁ.öºlºoe@ÖÄŒB?ŠòB;Rx0 n(rFm‰HèÿïRJs­«Éô³©ÉtD°Iÿ­ÌdEŽyþ Š÷âÛØGbDw!ihrÿìYËVûúÈðé~öF"ñE‡W€nÅ0rÅ[^AÀZ­í³m†t‡â Í)ì&‘•M„cÁî?DôœW7HAái’°n÷ñÝÔΛj¿@øógr¦¾Tv=˜DîÈÍÀT·& å 4XK59ß—¢X¦. a:8XÙlã†`¥¯|wìüí= 1Œzud”0{ù OgŽ û ð®[º˜ÍùDóÖ›Þ½  ¾Q¼˜ÚHŽÌˆ‰Vɇ×= 1K8 ~uƒH¦Y6n?’‹Þ«V¼&=.#IhÉd mme9R¾@EJ1ÐÔÿ õ†ã1.É„P£s‚'`cü¼ØsU^±̆‘Ì÷»”°øŒ3s•ñª=•!o‚¼v‹Sfc–†×˜AK£ö„Œ}m‹ °Pÿ î\O-ãñoí®ˆ’°ìëèbhbn¹¸ºÒ°‚øÒbáÉ!½j@ä¸aˆ¾e Œ±€ƒ»üâ$ã÷ÿñ¬_‚ÆA¨ÉŽÉ–«ýüPBâg1™Wv†TÒ¡:G çë5Ûaþ Ë8©¦hA(I¯rüò…ºÃû¸"¼Á׌5—±Ì<ÍdT  ç^.ë9;¨H¯``oÛ{¨›ÔÍOšR¾+WóÛ › zdþöÇðå’î²²Œo3RØŒ3NýÊ9óܯËV)½ƒ¹:b)Þ’LWÔôl=Ý#©;yÍzXxÚ¬eHC{š@¾fÑlñ¶Ù-o7¾W$¼¶` ͲÛ=-H·¾.¦-Ѷ†Üá….½¤“>œ£?XüA²tƒóËk_žLC`ƒQŒˆ¦ æ6DrÍi`œr!ÝiúMTØy˜+Zä¶ÁÐÎ(ƒrÎîÔÍ­†h.4©¶Â[R.oFTŽ2t=/x—û à _4­8%å¼2ŸÉŸ˜_$¶V »Ä´Âµ;fàæáɨµ C„Ò-îïF ËÙK+tUlöœË7d¬Eò¯þ´ÍT³"…àGÿU³×¦Õ©ÄLÁkúmGTOfÕZÝmÚD–ïòb.–bÇÈ>"ÎáÆ·–¥eY̸‰¥7¼ÉÆG Ã#Õƒ2' ,æžs‰A]…Ô#ô¸VëìüÌˬQ}úΫ*…=¦Ã—·ØºÂß² áäAõñëf‘‘ûÅr$e|±þÊs{é¦Y5X¨<û»ƒÈ‚ˆ9ÅKn¹À!xÇ8ÿˆŽ Jó#8êê¼}ÄF)äÂ3ïs¯¬þ–­þúKIÇø^ƒÚ;¯MQ­Ä¼ø?I@æ$ò£U¤W0'‹W¨¢BLÚ_Ž´;|ÝÃ1®p°EÎ]q1îä?V«¯âg ¬ÖSŒcäµTFƒç:XAGÒÌ B2i÷ùã’–——´”ÿƱôÅskõìãÓ$®0¯j.•Àd–䇭´Ao~(9^oPΧ‹KHBJ•‚8-b½X%‰–Â1Í i“§X`ãÒ‰ÎWد •uNäæ7FA²]ÍÔ0îÁ_–D î‹Pd ¥ŽŒ syÞ¬íKGŸ_“<¤ÈŸ¯±¹NblŠi'7½yOqŸ=Ïß4޲ݦòÞ@—´ztAº(†sgà+dÝű+ü_ÌU#XÿVç@eDŒ#GCÝö¤7‹ˆj@x@û³6C¶CFäf¡HršZWL *‡1£{v ªBM6„¥Z~Ö3 Äæpé«%L³ñBjúK U8d=â0cœwê@µ§¾¢Îʽõm¯ÔëDpõêÜnhïr*ÿŠˆüt>©–Nbb’ æú%ñ~wŒË Î;3ÿçððyëW(+ÒÎbL8°HÚÒO¥á¨¸¾ØÝ§ñ¡÷š6ýq7Õ ¿ëØ_ Y‚?<Ïh''ýýÝ• Àã&‡º±8æ€)b°MˆìÜ˳†Ÿ9ŸC>í•4ò§ÌÈ÷:h]ÀnqL IÝÍ6¼a dŽ.[Ëå­ÑLäΆØ·Cß}ñ5½¹c ˜€HRÄØ®Ev.WxR®i‰gñTÞØx{¶ìh~u‰-Y%^í]^á)´ ¸ÌúÙàïà?R¡Ÿ6ìKKûp꟪`á¸è¤ØA7‘Ú _P)®ô¡šzS¾KúJ‡éky¨A­£yVQRê)<šªŒψ- ¯]q²á ,ŒD5}4—ï”@s+%ϬÚ;sú,ÄÈ9dß@@´kÈ[7Iÿ=ÑãK“‚ráÜäœ0qëÅ#“K´ Â94¾•5•€¨`çhcÅ}c°ÆŠ.;ñÒ.Îs‡ZFÖRP_Ä::¼ûjó„A8œûÖáË’XÎç¼Ó0©Ö¡‘`ƒÚ-:™k¹yz|±ècBÒ7oŠE?jDë wQâ‚mpA±}£þèºYs ÷è>†L’2®*ö™< VÑü_Õ)ð/¿ülþãêÿá6f ñXÝê¿ÜD…–6ÖŸígÂ’&(=«8­ÃXðò˜1óY„zRóp=ÒŸ£z—% ²éð,ˆãWع×âš"qCësÂbAZ¶Á*\ÁEÉŽ"×þ,—ر˜N˜ˆE¿…?Gã±È/kŒ¤r…^„[†$4@òg(Ô! ëå'–ëF룹LîERß“(K®M›ÌÁø?‡Á3„pKݵ®>ÚlÌÅœâ—õƳ9ç°Ž;UaøGƒAJg/Ÿ±-ÊÝ^GÞ™¸`gkÍ®×jM"¾6o;“ ÉÖÕÂÕh+¸h…é!ÓGV !‰ÝN±ñŒBðîÀëèì)»JCp`ÌÍ£êg“•­¨‡AM™h‚ å–`0šBôÚ¥Öfy$V…£ˆ}Lmx¿ švV‰ &¨&¹ØÓXCÛ±Á‘9ÑN}ãHcrXWl <ó¨ÜnaµÐx–â%evã_ÄÏ{`›É¶{µèg¾¢VK|p‹œl›T\`ë KLœ°„’Ó‚4ÈèÁ2ÖÒ(½:á@§·IX€»£løög†,ãa‘â>ÌA¯Œƒ£YøåXn³Ààq/·‚5‚‰ `l™Ÿ5®£àGPoËñκFÿž8|?FhåF2˜0h¬™§xø èŸXØ`×äoÀ]ÍÈfðÜYB®TZZ÷Ú-\q—ÎÕo’Ž õw”8¶6æÕ½ITx~[Ç0“D¯iÖì ¯ºý H’µGÏÈY=•_f#ÏéšԸ“^ç—‰nïí˜Õur]ó(!$Û=SYÌò7dº~𫓤'Á7×–|ÇsüaBá·óûÙ)KïdÀ8óý¥^NaЮš¢vIfGK½yÆm2Õ<æx¼KÇÆòh6A§n/.,ilàqŽz ¯üˆÑ̉»5 Ú²3W©?‰‹“Lk©Haè½’÷©.±’Uè!H×M<£Py®}<éòaD_ú“´ÛŠ‘q<ëd$Ã>kt”[ƒ£%_¬4ŸSfÈ`¼ÊÙEá‹NÀ>W€xÜC8‡]mºxtü,!,eWzU^Œ[©^‹ou3€™wNCú2ûäSçÿx=Y›™z }=ÖïºÖl*„ ,%¯DÁi¼Ïä£'V–g”}üÌB ¯šú]ŽÑnów«‹Ý„½±á¤Ie¤ì~o‘Ók<ÎTι S¦p,WÝðçdEéZ\uzî4[Û÷n#-Ó=.+OŽm’ðØÙêÿÒËnŸ‚Ë<Þä#Jm!v«æOf#Zzß EÜG9?ï>¶(±5MdZ¢Œâ*ŸŒáBíÞpc¹Ì¬"PuÏöWviÉ·¤s„âõBiL†¶®£w#¼ì»‚ä˜tY.uôuú.Eã§ÌôÚ/ÿ#¡ï^½ÓÅæ•·Š@º\ÂK¶ÂîY†øÿ€"7ÙVC7€ÂÏ¿¸¯€ÁiK\+~ËÉBí#Ž´,B= è‘…–ôG¿–çD’Ä/úýÜŽbªÝžÜ7ìâ¶{°—&=Í cØG'k¨Oºo®hýÛ®¥7õÄÉàO ò²h‚,IW•,YÅ?œ*ÄØïpiÀÓ[åˆЧë "€¯8Æšâ†À'² 'Mø=ÏEYioïÞñQ„-ÔçElûóør+¨§p°Œ×é|#õÁ¤áªÂm3‰H‡yuÀW­o7kª^‡ž™%Å·[VǸPÖ„˜ÿ”¥ò}Ò|‘½Úm„ÃÇ¥h5?@sRUþ#äU§@¢›¥3=ÞNà¶çxFNh7„Ÿ|Ì eàÙ<‹½N68«ÂÀñõ}³;3Œ6^ä_CCkHE7 ¹íèj±ž÷òvá²g1U;*2: ¯^Õº¹´­ÛoÓŠæœXàŽÎwRÍ@Ù*“nÞb~%ŠÑí…ÇÎl$l ÎÂAº† ‰6±D‡¹:«b«øããnAÖAùûÔ9§J²~]Í|yâƒÜ6gö‹å²Ç<RB[±[ÌZîÉw+IØ:²É7‘n¿ØKÌs'ê±9ÎÓ!òŽÀÀ¯G,ˆ›J͉¬Qx|š)Œaò#›‰ÒÓD•^X’¸ºSÑÜ Þ!>Š0*ªéb×=ã4ä8ÜÝe\yf~yXÍ] ø[\D¿(”R|¸*6çÖ,|¢4ú†låÈî!¨ßá÷†’£N ‹WDäÑqK„èóR~Hõs¸#ÊŠðÉ–H ¡+Eâ²ÊŽ´dzûúùò“N‚›;B–è3‡ø°÷#70Ž¥z#‚~=,Mæc=‹ |(…r&[oc„NèkŒg¾qOl»êTÏm¢‘ür™›NUü´Ü ž–­HŽê%ä3ïkCIšWùNK zö³ z‹€#;UººÀ" £8`ÿä[ƒ³tË•PIÍ;†)¹N4šmx8œÙnŽLßJõ~»”‘¨³h  Ëý¬5ö›¥zI…âÒx¡BO’ˆl:^ÇÚB^mí%âˆÂŽ BˆséÅ6 ð~ˆqy=•.|ÍÞ‡¾ žÈÑn¹n×Ãüœ¢Ô;qz ÄÀpÛéÒÐŽ‹Àí!U¨(Q³ÈÒvQ#1b°Ó¼Ñß9Ô•ÝÝõNµíæ:9Ã×z¯k9Í;*õ{h“VV´uß1ìÒ'€kaüø˜ÉPèmðAOØ øÖw?žˆŸ}’½îç}KÉ<ŸPšµ‰pJYI=£ë‹Ä¥¾Áö“Ý’¦>BFd½¯–ZQേˆÀóTâHÊ”tâl˜¯±x‚WÜhywÉa‹¤ÛpŸtuÎÓÜjÑy§4®Àâ•üúyÀÙX<Áü‡na©É]Ñ¿„s9Úëd ëœÖýud²ûãڬɲÒW Žœjù¯Ðô#¯Sj´vÈ äÖïKú{jSX Ô£ '#þD€…ó7³ÿ¯ ‹d.È«¸¶”»( F¥Ñ4w¿ûæJ–™ŠRznâ”x'¬†ŽU:þgˆYH]·Ep(œ+Íâ’‰>o—«g?èÇêä6Øýˆ\ªÁ³¬>¨­Òv¬°Gs×l)ñ«HtÕ],?ªhûZ–æý"oIâ¼¥ð`»åä9ÑI¸;ƒS4.Éì`ûŒêäûè+>  ½÷c,¯=µèK ÉÏMé°Q¦§ñ•@±ç"0tD^ÑÛÿ28jºéÓ^£„+&ë³ œOãuhø„;ì¹:Êðçln0P'ïÑ Ôtá¿~2x8dH‹~±ÂU=µCc± »˜+¥Êm„‚M•ŠÑõ8Ø(±ÞBn%¹¨©F?¹þ‰ÈûÖŽó¨RmDC{‰*sŸÒ ]GĘÄ5m¡=Ò-S>¿âr»’6`(¢åCŽ > ÐÝ3ð/J;ÁÔ€ º’†ƒlÈva©q¥N+Nž?5#'d(TÅÚ‚dÚÌ*Žv²ì†¼hžì“u¹“„m“'8¬UÈ þs¯µÇÒyÇýHoóg’þßäÜŽc`2ôFq8¥¼,`˜}É$¦<ª+^(‚#´l~'•I¨îÒÀ SèÙ8Ò¥¥Ž‹Ô´m_£WW¬½G8SQ™?¬š<¯dïÜû׆ÅaûÖíš³²uafíffrµºØþÎİ5ÊuZYPÀj½•žÕ‹PõBÜíW¬{Cÿ·Û…ìãŒE¶áj’‚O´pRøPŠ^¾”öõ¸Ñ¼.­·Ê•çØu…ˈ¸ØÇDBø"`gŽÖý1د_Âé–ZCÀ+€Ümð“ñŸæ¦@Ëq)­Ñ‚6ÝXqŠ ×ã€?z9*×ü˜FÔ°¹ÊÉøŒ: ©eÙ|Ä¢+lùbò ¦»¸oeÓº…Kò‰]a×Y$ø¦@=RU¼µmHJÒva†Ô)wa,gαá[–¿î(¯óùÆûžÂÅ•RT™GñQ“‹/@yü7¾eÀo"é…¯V œÂ–S…¾ pe°c¶Ý³í2¶áqMj; lÚÐÄeR KxŸi­Ôo×ÐÀWm¹xýˆˆØ€‰%Þùâ¯Èãø@À±ó×!à>D{z}u¢Åæ”´ËŠ˜ ³^‹`+5Å<™=¤À¶ ÉQEt‡L¹§­ø5ø€ \È7¿QÁNÓ•Œg²&€š€Üáݹæ÷À*MTR¶H¤œX! ^3§s8Bì4SÎ %gI¸¥a#X÷O´+üÊ··R·Hù—ÍŠüQ´¹ÉÏf¤ïõd?T¶…f(öÕþzû7¿ÖnãLØShFãéŒæì>¥A½•£³°'ÛfŽáÓ|T++íé­âT8Msv1s~ÇV@³(,ëf`NTà– Ï×#öÑ•ŠÏ —é šºäE¯UYghÍ1û¸dõ¡ðcìeˆ¯…‡ 2CjKG¿á£»jiø‰€7Àò~°^÷2µ¯$£c%@üÒ‡&-ëÀ©9½Dl•Öpã”Ç~s躻dã®wàã|]ý6Y æ.ä6I’Ÿ7Äÿ{¾a›H æRi|Sà²ÿ`jh”rÈdß¼T¼¼”ÌÝaQâ$6vmÉÁ‡œð&·"¢;!ZbA+¯ò‚ÞðlSïûÈò pOpD8¨ãþA>À—‘\ìóƒ:\t¥®w)n7 ý´ÜŒ( ܽ¼ËÑË=SÄ“ÎDB{eÅHâï …ØŸ©+:½c'š›h+¬­Êî]\Ïk‡Åœ]h»ÍÏ–­¿ýD@8ââ¹ÍïcÔW~É»(´Br¸$ÇA¡ô÷}ú¶Ý`CØÐ’ç\iùöµ$ ïÅ5õî{6Ù'I-ù&pØÕ]ÝtØ×y§¶L1JM2¤[>íd5 %«n9hÔrd8¹R.aG} e¾êóQ]: ¥›°UuÂW T­ñަ¶±ä‹P¬7P‡ãC\‹‹d8d`ÎŽk&p Ѝgüþðév)"0«µ#B¼ÂwV÷vš8sŒû™£ [óô–› c®óMðLV]ó:]°êÖ5Ü?ŠAlBXytù§:ßôâaAœÊæ­èhXznj'Ú S@êP«º’R/[x⢑•¹ÿÂûkr¤<d—"@×ÏDÔøšÚ7Ȇ´[€ë¥¢ŽQðF&Ì®î±:°ž¿ÃEÁÖîdHåô䊆æå6mN[ç<›=l5sÍDz>…ÎŒBÖýDS¿qË5`’8ëÅÑ*üG©Ëëï4ï¬ëÚÕ>gÀ"€³ŸVlú¿)þ›V΋ pÃò”A6Šˆ…¢nbßîŽKÞÃ8r(nÙóûú£‹çY<²z8_îÈ~*Ç…ÓÝ«*€^{w\¶HÊÞ?”çÖžŒŽ7ò·D¬^bÄmL‰²¥S›we~‘'”Ç\M¢¼Õ5%èƶƒF}‘™j„¡/|06] ÞÓÕ¡âŸÍdâËFOQoŒÆ&¿¾ûÁÃN¸ªô˜Íw4×Â6æ¨UPIidíÄ%ZX¼Ù£×4Mîc½Ñ!ësziïWªÆOs$®OnÍõ»¿©è œ?hkdÞcÑ&»f]BF5¡òL3D‡‹Ï·fãŸðXo¾lôçÓ€km÷_&±©·ÚUßgÏU~œm¢uzýTõT=êCÀýbr™dçÛ8‡×ðSU6kM u‹æ;(½öÜþ¢ã:bsi*,ãû“"ÓKˆ«ÐR3¢8M-3ØŒG¿,à Û%sJÐÕô¹ÍðþÜk«²Úï™è½ß1Ð3ûå˜Ø®ã˜a[î F–©±.^mH8J#Š Â†ø) Êw<Ü£Q1!FqU¸ð¹TÌÕo&Ï+‚jŒ5.ò`!™?!sd-o_“qÿ00îÅÓã@ÈP,y6až³-þûN¶îETlÓÝ4¡šLJl¾3ãýËé²0\µýü?«Gýˆ4€hAXEÈ´= EXÔÆÎÒÄÚ¿+3ÄÏɸ+‚¬Š gÝ1;Hh]wO‡Óx®ö\$S/±VÌ˹ל*GRK·ßÆ5’ŠìlzûEw¡k-LÚVrŠŠdžåFÁeTÈŒ|ÖHÐÍ@(ɳ|Ȳí@¹5Ôy '«¬;eë•Á*kì›n8Å\e±8¹Ï ™(ÀÇÅ1 5¬î‚Hƒb˜X t®"5™MïC#l{Žš3Mé–î¡.©d úCÞ'rAÎÔµ¥¥:/F-Ê»}ìÄND´O{w5äì>gÂHp*ÄÏ@Ó ÍõŸsÀ íož'H¼9\qòq]í/çM´Ç¡XË©W!ebÅD&R„ ë1i*,¼Ø+N¤²}ðŸUë•qnWm- /DiþÅÖA2Éù…m„.›£I-ë zÓô¶%µÖx¨zWœ•AI=N½^ÏQ]Ö][áÅQ¤jS §$d)ved4 PމÅcþ—ý#Orñ©ÀtšŒM1A(áÜŠŒ½› ·;öB¾øY=QP쫽Ümˆ[ø¿˜0Ôuu©©XƒãS^r¸M^œl/IÑË×ÑFϼ*ø We@CcÎQkì›n;ˆôê,¥¼ßF†ãÕˆ¥©Îºð& KœÂ®Id+”ú.Ñ\Ï#9À–ï’OÔjCzQ²?¶$B [5•œé ¼Ì»PމÄdvI7òr+§Ç¶åLÙ 'jÅq$ž-rw½^õ)ZÚÊÏï–ÿÓF’¥òk–dv,X›·}Q(rZyâ‡-×ÊÏÚÃêX Zt½¶àÁzlÜþ>~Zw_[[Öï¡+Î.F­·« !)-«=ü Z TÖ7| ™^:¼`ìdÀÙ€üöþ©5 xöš&F¶+Z?ј„Õˆ ¼Pß<7í&Œkló(MõL˜áÉU…{0?{õR“̹ˆ±hO¯yÕÃmÕA·kåæ!1ÝŽ¦sÙ«öÌksçÓäëÊE¤CÞsý…“o©Å4“S‰Ð-œ9,äsz¼ÇN_+e -,'ti5hxBÒ¢9Øì$üwÁjpv¢cüZ”½œ°‘+éOÝÖ¢c»±³#¥ù¹Ô¨/¤+Êt•ÞáZeq(îR°ù3€0ääuláM¨Ölάœîßñk%‹N²`ûÝ4™±ˆª&UÞÒá˜KF@w QŠ KuöÈéóê”¶L¬Ú®ÝãðÚvÒIðUÔhÆpªÚ€ÐRnÕp݆´w¼¾» ;óp>ê_s8>ýD9nöX¥uB¹ì™ 2¿½«›6Õf½É »•5(&[ZF·Ã¨šd#µx·.Ÿ„}O–wQƒ¡‰Êûyü™1´• õW¶ VÿÙOþ·Qø÷l•ܸT‚ðCFÎSÙ³¶ÖÇHKµ†NŸ²Š·ÉgW‡î…Uú'Ø›£`=•ôÌá°ÊP}úo#7dj8#Twe$y]îmŽ;GxŠs3Ñ•ð ÝVžŽ2†áOUºÑ—h^'å|s{˜žtÒÅ]±×’X¥wUå2—×âû±Ï ;O 0!±Ò¤k”0 ®<5YïTÃÇc¾½å7­ú¡´b˜lØneñ¢âÆq®‘ƒ…>ì´*¤jØ—+ Òa?C”5þIÐ6wØA¿õ~ÖÖ›ãeEnML“¡„VTæ¿Y>7™ÙÝ—‰Ò›ANãÑ­ gÁ Î…ñRC^I«R+ãžôÍêŽt(õñ¶QìŸ}á”óëm™5ûUˆ_Êý1f ©s!B¼N~z‹E"é¶ ',.E97¹þá>6Ú°®«c ¦9%ËyŠUÏs=ÃQ'ömyÊQ<*o›ªèõ™"i3dS Ú]5C 2ŒÛŸÓb¡Šâ••ÓuWökCˆ5Þ¥“q—¯ÿ2ûÍÐTùü¯h…ÐÖFØÆG¤ø L$ï¾DEùÅmÑ#NÒ¯ý K®!›Þ[vÅÖ…'z±x1ïËð¦R]îe†v‡hºû‡‘4àeZ ”5)ëÕZ   +HËpŒ¼S¸Ç“"ÕÝΰ5<¶i§öR—Ïp‚|€½¯½,Ž25H`;˜zøˆH®+;3AaÅë{öûsS†èî-ð…[¼˜7ïNxc k‰ú6Ú­±´ m‰[«–!¦wÄÿ!LÎŒì·÷¼Êž‰•%Ÿn½0ë€{û îr¯œ—“hãÕQþÉ69ˆâü u\ ‰$ìö«ñgg)u…iÖÒ­¬Ë³|mcûܱìCÂâl#¤ôbÏ\?8Ù®•aµlœˆý¼˜Ì晪îM\n7=º¬ÜVR€4Ifü»!Ò_ Ø3 ¬ù°ê„åç®ÉmK6ÿѨ˜é†6Äã%&Ý‹,b³ËÒ<žawðIÑÊæ›{*Mü|ê3®¿^Ú4’Ýü‘ìÐ^é(í\Úõ‚‰ï˜À·!ÝŒã飺LÑÛÁ–¿˜rÛzN‰Îø&}÷´¿±}­û®ÿ×9FÕý[ ω?ïÎ ÖŒ×ÙmÓé;˜? ñßš~"d‚4ágƒ­•—ÉÙ‰)5vO¯v’×GŒƒ4‰ Äppâ(…ƒÚÎ=¬ ó@”DÆ[w¦Z—­ÚQ¸é]¾ù%~h_ý,d8öµÿ)Þ ˆ´ÕaÁÜ®‚r –>K¹3u‘måóQ~KlJ‰^…Ù¥D(Ò=«Ã¨õ€¤ &bô_玣´^…´„‹Š¯Ÿ3ÛhVüBÅkHAõr‹ÙH€¿R¦†Îc5Míæa_¤XG&b‰AâØ{~%w7[õsÃ#‹Âê¶m«!3E½!ƒe[‹yBu‘J"̉[E¢.²È/{^ÅG0{u3TÇ]K6©ûìjë¸E|Gÿ—hX Ñv¦’­†œ&ƒó*AøÊ\aäß5Üæïñ<˜Ç†ˆžÉþé&ó-^€ <ǤtÉhH‚(½Tÿ©‡™ÖqÛªi¿ëÒÄ®—®¿‰ìùûÂÂñiNF“ï§”ºÞ|¦Õf¸ìäyX¯pÆÅ5ïqåëKò–Œ¶:Ûçu.³lì!"ÆÕþ3r ™®6úµ>èÁ@õ’bi5y0óÒµ˜ªÔ©ðòdOJisCcI©1ë"‚E—˨Ìñ˜Øô1øŽíáÉ´Ó#µÕöÄ•:ÇcŒwxB`ZTÈÿƒ·ëfC/>ËÚxtkGpŠ•;û/ʪÚÉ•<˜ò‘ïO)‚+¿†JÅ` ]z1]š¹G®£i÷ÚM­­ö"œpà¤f.Ëi|\ÈÑ®B¡-ð&`¸px§îÔg1JNmˆ{gñÅ¥úó[_o£KG6*²…ùùjб8÷žÑšÉÏM¨ŒSN¬L¸¾ž·Ùƒ{ e• º6b|ßo°]'MüÀF~˜0}¤Q¾É²'§íŸï÷T¼ß«/ñkÆ ŸÀ¦à ˜„ZªÈàgËtñq¬»«º¿óDwñ©ÆÆÙä:²º(ä|;kG(Н×p—Í¿É*þAˆ@ÙŠØžŒ 1íô÷n^näÙoæá‘Aé!$8;)“Ò¸Á@!¿|(Ñ(Ã#ôÓ ~ö­_ªÏqs€–*t{N‰\å¸bO•GÓ*m;¡¢˜ñ—8PùßÈO˜½µ§àŠWCvãº¯ŠžÐ% &PÀöo 9ÀATÝ^‚)ù±ò‹IT‚zT‚#ì\øâ­Z@¡5¢]—=Ú7rH×!’ÞÉábʱuCœY¯1G) Ôýå`7éBÎ…uãéJ)BM¦Ö[´6ŠÃÄ•}¬_‡qj³ÿغ8<¤ÉQ“]UËÀŸ0„1»ä ™– hìžè‘¢ˆZù@:Ì\ךãñ¥¦L“ÏŠ”(IÐfáø®æLNŒ±Õ5ºs·ªÊ€À › jVí,D%\|‚J™¼4@Ÿ¿i;^ë–°‡OûcS¯d„½‹H9üÛâØ7;žõ!ÛÚ!ÓÿDü øIVPb}šH泎¾Ê ø—„;Z9¶ÏØøfµøE€ÔÈB—-«_Á˜í¤…eÌ->œŸƒE}¯Ž‰8~Ä}XËŒÙÛ5ØÄºÕy8_rm`v˜ÿ{‡±ßð^ÂÅ…gŽö¥gW]!ö‡ý(ç»ë}‚]Lt2B|þí€+Ôɦ>%¯@¾ÿ õŒÅTó%’HœøI¯¦ð€¤ QÍñQª"ÈY<`E+û‘¨ñ'ã˜ÓËÖ?4BÓÓ²yV t×¾gÆ–cÁ'XDi ‘$¸G"Ð I×ÌŸïp{ô¬âôQ?ÞÆæ´ޏïîù ¡›TMÝlwÿˆJKµ _)º«Fµ3Ýä;Yt½fÚmªÀ·8Ê’2ãªXƽTÞÛ1~G2saùDX B»±õÒ/[‡£²š§(.l¬*Èp‘Hä)©n—½àÄÂŒXÙ{aÒ!â2WÔ¦Ïh·ù­>«ê® É-#^³{ÚE5õFɱ­ÙÇžºdÒ>h?µ,x¬ c\Ò öUs|˜b¡ïúÓÖ¤>ƒó6Ó?‰¿BÛ!'k΀ûæVeúbS3ì'0ü±I¸ç­í ¹³n®š`¤7ÛBä$*ëîH›º·U†МùÞ¸Ùµ ­ÉqøÃè²é¦”ÛLç?|vœwñDRÅ~:ßÃHíÿ‘öÚ &¦M2¥ö ¼»kl]lòm{«ô_š³‰N3RÉ¢Êúϵ™ ÷úFžkå [3ôE'“Ò„ï¤Ú{ø±b‚*°ìêC¼/N#~Gðå_€ì¸kiÕJ÷yTÏ03=Þj>§0¿·gõ žü#q ßóiÈ8맬<ï1x—w¹?Ö/sWÆ £_¢¿Bï„cÅ|¶5‰DxØßNX¾¸6?pt•Ü‚õ¨³|ƒm._Y`#ŒÃ^õ6Ÿ\èãuÂ`‹ç²«e›ºN7yÂ:õˆ[¦ÈûÌΣ`—ò›&õÛ&¢¡fÎ|ÀÀ'ÖåYO<èè3½>¯ô§ì8Í*ÑÑî¨ÿû%ÉÈ㕹c{þÂ<À üP,pþ4ôJ‚6¨+ 0JʪÁßaáЭԘæåꚢ˜@ç„&^ШR|D×F Æh™ûLª@–özË<‡6]&]󡮿5~uè “Ó—£Ø«S¯wÉuïwéþá OïŽpû•‚Èä^qÂy$E„q.öðrê8’Gäùä9ÄÄõÀ…·­ú[¶ö½¦¦>ÀBôa³³häøQ}3@_ÁFº>¶L‘ ´)¼­¥x‹º~[{QˆvÎæÌ[g|BBPÄ䂸@êSJÎ5ã,,hoçÁg΢C1½ÆK/+Œèy°5…ÕO~$ê^dÒÊXß•¿š‹29Åðb)€†Ø-ónö Zý{9ǧt_-pörJ†)#çñÚ3ÑŸ/H3ÄÀ4 §B¾„`vÿ#èkœNÀy0m&%Þϲ_§kÝäË€ñt‘è—Âݤæ ÖÍ­FU¯4| '¶F3Þ‹ ˆR¬Ãˆ}nhZx(Jv9íK¨Å3÷Îxmz¸p~%w½¹mŠ<°,á'X޵…IƒÝò³ƒŠåJá¼×bWFÄu™( >µ¥ež%Èm÷ãÙ.ˆýŸ™²(×mvÓã°bYó}ã‚“OS[ÛóRÙù eM×ý}¥¸ŸL%l´¹2…m¬FK?ÃSB—jqÎNŽÙé=‹/Ø.ša9º%j¹G¢žgt- „vÃ0E÷C†É±)ùÙÒÅ@hgËV­0V]z’t"¤ïÙì-wA 3÷Ì,sÕ’JE1ží=¿îsàfD…É(ÂÈÁDfA,~A·2°+¼^åH |¾¾Ô9Ýј§ ßJÉQGƒ î›»Ù¦¦m1n¹Ý¼Ë Ù< LGÍÎ;œ {Ežž¤Å½d[8ñÙî³rP,\J[D*-‹MðK´¼¾ í$뺼Ÿë0q¡ÎvÒ{uÖže:Õ·iÇÄ[¶=ZÎ !»H‹ý¿8Ó¤ÌøòŽ0qkÆ`ô-ÅDç{4ÇØçGBø]áq©hX¹=ŽËMR½Ì,‡[‹Îš¥wžðfÞÅ%/ó¾/IE%-ö:É«i×¼¢ %öØ5¤|óà­t fëú‡”¢U»$÷Ø^ì¥IP•$2’¿ÜÔäðĶžê¼*Ü‘áéÛGP¡ÄX Ð.SY“·&è8b/eÆ‹T2DÖ¬5?׈æíXJ3õž(cúy¦Žk°lã=¨ÓPt¨ö䌯¥î*jõÄ€í‹åÂJb¾# Ç»Ï ½$~ä­æz  \¥Ž÷Ÿüß¿i“þ­Ew<õVè”4+ ·X\y|‰X‰Gß:¡&D”µäŸBè4Wg[‹ÄÁ©E}Á²ëâÚú÷îRϳR3¶ÓBD8±:Òݶ“cÏ CÀ!6h%~=°6¹‰Ì^ž^’€Éµœ\LPÜ Îv‚$_VLûw¶nR·vMZÒöÁOfê„xº¤²\ÍKKÄ«ö³ø«+ë… >;Àtã±$Ì5qõÀNí•ÅŠ­Áóø~…ÁJâÜg“FJ¹³*(d%ý¥°MÎËÚã ^±­ÃÊ5n½ãÔT_·_í:áÁÏ”Y#)àjŠ ç#ئyôøÑ%\¼àÐh‚…C!‘žrìÔ‹•¨|¥Ÿ­"š¦^ñòu¬–}§êK9>`ÞŽ6çŽâ©æ8µd–öw¨juÎBÿ`Q?Ôû œÀÍþúÃã¼'|I¥=Ýß±KÌõ–Åù[ï$ÑwRÉš~÷Óº5È‚¼E CE^¢Õoš&’ÙùݬËÊ–“ Åá†ol(”ÎmXP8Ð`•7\BýLRc$7¬û‰ª MoˆÞ)æQ/€+#Õõ§›wÑÜz¤»\%(úƒ% ¢5(>Ú:™™Òf€nbµži´F0´&ÉL`üêßüJ#06ò40Ùîzm)ïT¸†Ÿþçôÿ§°˜º5ï4ÙR™Ué׈ŽÔo¨ï-É„wNr¾ít+‹H¨…*zïálvŒy¢?P½±=IhMbzJX†1°>×"²×ÍÑÁéi“Ü“á‡óÁöÅÉd>èü þ¥‰­á‹îjÔqc_Ó%èÍåšto“.ZäZÉ¥3ÃFÄö‘ºà'ûí,{ZLB®v¥Dt.^óÅô›uÚϤïþ$óŸÍ–”‡Ußg@–ª³µ®ÿîÉíXØàõµŠÍÄ”qŸÓBI´þ{tˆÓw4˜zw¹s†®ÕóÙú›êüLŠ]>k ²:úNÕÝ*W4¹mç±Âÿ{lPŸŠ»Œ&m…S2ëÑÁÀ©I\+áŒI[Ü¿Ôfº ºî}›E¨µöŽˆ^meÆÏÂosãôÒhã¸av_¨ÆÀ6Ýñ>’Æî|hÕÚ€ú^NÍr([TO´+á1cĸÂ)ÑçÓÅÎH—€“/H‰«R®¶¤Å^Wÿ¡µ€!£sW¼ñya½iŽñ×¼RÂÉKYlØ{ĆJX3t,H÷_ìú%u‡0—n’ìøiñ-ˆï@ãÄâÄP:hËQO7ˆÀsH´âpŸKz!ÑmèŠpؾÊOÆ PŠíÀï­š5 zJMr aiHñq’ X9¤º­¼€ÖV:yOØwE‚Ö4µ-®Ýb,l uª&^„”Áy5æ.m=Îæu»8DâÖ;"ôNC3ð&Ïôà€ÕœãIP€iòˆ~’ŒúÃߺÍâ0œq]Îô…W›Þù8™«ÓvJJÛTë)ùÚ`/˜\[c¢N#Þ¤Š£ÊFtwž•×±µ³Rgˆ b â éµgÉK«Š@£½¹/—/p–e¥úy>™áÅUÑçÌžê/Â$òo;:»³x³ “¤ƒÔãhÜžfüZ+õ5žÄsu>Ï7†@ÕwäFA^Ýépoq·N޳¬5Ík¨æ7[‘Qü-ÈÍÓXytJè]\ÀzÝÅ&Dz0«ü«#*â݆K+Ê×8odà´«q×S˜ôÝžœvqýÕ £ß¸B°¥â¿Ì­¦Ø“ªñ×0]Ðуß}ñTÖçP6Ná¹`Xµ4xWñ`˜z…6Ä*‡Z”ʼDÿîòX ‡“U å,ÖW}ðœa®%LŸ×oLõDV¢o—D¾¡í%Æêþvú/¥þI¹XºÍΉxÆŠD_ÿ!lUsC þ·çäùDx¯ Û‘¥ïÌ\@ó&€˜}ž“qr "û­ ÓŒ¥Ó%æ««V¢h­­@fXÜüÝSå¶röù®¨^¸˜ÒçGXö\6,P> ­ I¯·{×*-PÎ+Ò xgPÐú2¦AGŒ±SV^΂òWþŒ½¨ß€¥.3ìÆš@3ˆÚƒìð×`5uðO‡»h Õfï1xuu<$ ®ÓÞµà3À¿ïðñ@"Wùw„mYîTÝ0—ؽïFó¢ÂÍqÓõž* ]aÛ6vWŸ‚€ÔÛ‚BÞúø}âIm÷•’'fö>Šà–¤›!G")›Q#–{†=+wƒÊ½ÉB‡>H¬cŠƒæR’gwö6“ƒÆm ×ú°<ÙĬëköâÄÿ®'uØôèc«Ðœ ëT8~— ïú¶wÊ”§Ù9oŽ »êщ1•™ï ðûT@„o#Òé2=ô^¤H I=‡TcU¾Îæxo0N S~l¥ðõñÍ7„Ðv9ñŽ  jü cxò?šn®x·êmøäW!-tΚJ¦PºŽï’Î&‘eZ—˜Æ¥¸¡ªs eŒÿvœ_”ƒy4XøBR%ïxÄ:ìd馯ù2b–øëHÀËÃý i’¹–7ççWÙ`‘êÙâây'ž8X¬6%Nm»‘Y¤ ¬½]û™©ŒÔºõ¸fôÌSÍ£±Î5Cð׊:ÝV:ÀŒ<þÐÄcÜ0ª&ÐèÏŸiâxòñÍÆ®Ùú†¡Î™RgC€;v²||l"oMTwˆá@öBpr!¹r޵vì¡™ähxj;LQ‚¤hÒü´þÇç‰Sü n!uø‡ÑésüÓf«æå5ZöRj °ßÿ—ºÞ¯ñnÚžHñÚü‰¾eÄM‹í†ÝሻÞѺE0ÛØ–¯ÿ{7w¬ßÉÑ_ü¿ÂûÁ“x•g¯hu­Þ¥·-ˆ§SÂ,Îᮕ‹4Ï o´¶.0¹cš½ÑaàÓ…à}t­„Ö £šê4bXJw)ktmžA }ùµ|‘§³+8OãëÂbH › |³:hÑŸuû± .íiÅpÔ\òÝVÌ›öUßë»j>—4Íém£¼-g¯h¿qŒQòY ïxZÔ=}ì­ ÷x¾ùY=”RÒ°4}ÂRÍ.RÚX0†°ÀzäÕ— ÐÜä‡ÒY†t9CÍ`ýaç®E)Ûɪð«Ánú3<²;!±–ÚàÐv842]Å]iå¯rû̌Ιyšhº»ûhá¡”qò€»ò ¬Ö:®ñ‚Ý&Éä?ÝÞr6Ë–c9Ñé`îP¬µmkÙ²…Ov7/1±œ4†ÅÅN*¿)ÀMa>ÅBô‘ãðèΚJ׉†¡ê'x·€ÝÚp ,LXÖ~†d©´<ŒêØÍYsúI£.èíóÊ~—Ž$h¤yìVÂyký¹'ž¼Ig%ßéH‚žõ L¶ÐÛ'{’ÕšIØ‘Ë1ÙRv_+Oopƒý߆·.-®t:¤à%Òé¤/úM•Q("":ÂÏÁýAi¥ÌÓ¹„3‹ßa4ä $¨s\â¨ËÃù ;ÁÒÝí¹Kßba]”tK¸ÅÊ q¼°ŒdêîÓi>¶[ú¡›j¬>¥ªb²‚ß`fÇEÛ›b ½ñs…@¾ÿ¤šÓ] ®£{S¦ï»Â#]v´²±Š5 ‰» ï.þmÿ ¥M4àN<‰ çE¶Ã¦e¯ªíb™¦h÷xжçê´ ¯6(ÀÈ[Z×DǼ@r°“ãcÓ]|Ú“Ö›oÓõU?öG^FTÇíÈ+ƒ]e]™\­Úã‹“ªÌ+¯áêø uÍ¡û‰ÔEìšõ2@}Oi°‹f ±G`d¶øŒX ÃR:ž•¬éùqóYœíØ„—ÃÜ$+Êì8üT ú£|Sòyt§Ü¤UW,/þ£¬õ±&˜ð†'ªtŽu‰áô û5 iy^D Lkà`p¦éýÝ4¯_ÍÄ͹) s—GTeb…w§XèP¬…rô8˜ÒOyáÁAêÿWgb#‹*5¿7cj3Hvv„ÄÚʱËî„jÍDoø¡/I|˜¹·&ÚOi W"ú&¤—rè ®Õ¸!° "sAm–ó}$ÚÈinïYÝî0¼¯ øb±õ{a~ÁÙ<´xG{6WäÙ㾺"m·Ž˜_P¾Æ‡GCsFt“àzå"е祾¥¯ r¶½Ï‰Ôëè鎫ާND$¤ð0Ö\hù²ùBþøEŽ/wÂHÊÃMõ¤”ÖA‘N ƒõ‘ˆ|wŠù0Ì›åG×t7Æk½íeÕü²{¼‰z%÷¶¼k{ÚVMÁ‘H®Êsè¦MáÐE'£(’tÎáóŸmÖ<±RصÞ#{ÃÈ"CÍ‹÷]Sß˧—ü5íˆý©&ØFïŒß·ãêsäÊ`¡‚_>ÐK~'ywïõÀ'ö~7VÎÁÁ:'hjý¤Ïf1V"tÉ{÷ ~ÕÛ»ÕiןÈDJAȨ̂%Ü—Ÿ´wŒ&ú(~¡ól]”¤ óU «%‡Ä™Þ1q„‰#¤^ ðL§ÛAU£®}Ö½Ìk鳕é»+<Ç%>FËȬQê_³uYë%×/ð xŠª`r‰yågÈzíâÓ·ûì·Ÿ•Ì,ÿçùq¾N£YdÉÈs’ ÙÚÖŸŸûG>96,°u•AÅl£d¬½9”š ô¬R®Ï¯òAØÉÛt€|âÕ· Hà ™Ò”XÐâ‹o¿Ï@ö:? Ûš„`ÆÕ¨àz?o0Òj›í*#C§ ü^X×Î’Äb‰m0¢È °hU™/Ö‘óÄ÷ò; Fè ”°ËÒl×ùz™aòþp¤b¤6eÔm‡³»‹aÏ7á3-o"kØð(c¶%CöxÇXqÎi0ú?Å&ãMúiÀƒ†ÎÈÄœ©ÕŒÁ¨ÉìÔ:^Hã…ØŽÆš÷jµ•aù¦G%Z¡¾SÉÞaÇ4S²æ HÚ-ö¥:þõˆ9Ôm.¤>"y'¨,µ®ç¸B‰‹½ ·•¾{¾éªï{¦H%åBgJ1ºM‡Ê“nJí YbXÝW5u¥¸M6îóœirzk‚VÁOì=ç Er¢ „O{¯+7º7ïP¹55㦄i¬™G«!¡èŸÍà¤àAÏøê²õ(%þ;Q$õ$z€£‘ŠˆG™ÙÕd¶C+ Þ`ì—î-â)NǬÑé±hk¡–‚0 ¼3‚Ÿ¬é°®Æ7©ÉŽ yýxF>¸6úªÉ2Z¥«Á åñK‹¢¥'B.N“sÝOaÕæ¢Xœ³ÍëEe=zúÀ°Û•Ï–l›~#(öX{ ù@ 6æî¦ ø–ä.JJÏ4´ì§-6%½Æ ¯¦›ç}÷ý ?röUá$@'TËòöŒn…êñ½d´w ò”þÂp<¢ %i^˜ÚeÔäžK»9dÖZÒžÛų„äÊ d0Û› o,Vž1Ňeô@ŒcðrÃèØ¡Õ7_üÈUsi ÔåÿÅï6“Iðâ=GçÝl]0GyÎ(ee—t‰tDåa!~¾~²'²Á:³6$£EÎ!Ou-;çÜ8ýÔ¨¯æp„wõåZ.ŠŠÊ5%­]ï7r§ò ¿Ùµ²©f¦Xãeèâ±ß"Db¶Z)„ãŽÿØøÿWÝ5ØYþ'ÖR>›lÌüÖ –Õ¾S«}|ôP0Þá¿MÍ"_›ÔñmzwÁËôüŠ®6D‹7 0`q,™ÅvÃQÙUsG´³yà ã¥ò jTÃï‚ót%Ù¯xäèäă\0‚WGÂfÝݱs”UšQ†¾ÉÐly㽼țÒ þ¡1Zìøž'+_I ÚM¾þ<#żɥ:N™6¢‰j €­PcLV°7~âú‚Æ2€“¬´ú¹Äí†÷ù$ÅÅ+_ièÑ¡~ +øÉ^0.ú¯pËê‰Gàœ,•Û™â[~›ív Œ+b~8'î³ð{5Äö©® *Z àbSËcho§’ÒÆK$êÀÏÊ¡k"ÖÎ~ZœvÑ#œ÷iAHwG»…#ç´eb¢7 ØÃ2ö‡ä›Bv? KÏðÿnM_͈’ ÒÊhl?¤§W 2s«M`Ís>ÁÂÊ‘Ýgɾ–ZÈÜÜn¯ù²õbßFaŠÔ_˜‘pÝT¾õ’_œ®<ë·PÅG\9zýùëkl‚5O‚LaQ Ø쀊óÑ jHèfÚ&À ‡ï´ Aêùÿ[Ÿ2ÑÊÍ,×®¼‚°Pã”[–ñÝ µj%ß×+x8…ƒªá{Ž2)„ÑšUƒ9…bù¯oóŠY—f kOЮV<—çH.¢$Ù)^A/ôÙ¸ìØI̾+¡š§(ŒàÏ Àr ¬?«WæÙS\ôÕkõ'Y“-Õ…fsßÍ WÖ^ýu†c÷٤ߩ6¸mG}àïgì³ “¬ö’g0(Ü5ÉIÄD€&€*侈üð5lëAgURð. 1$¢íþ¿Žv_rÊÙª§˜Å&õ¿×`l£”ÈÅÃdÏT®ØÚåñ8³ýªÐE3øÝÔwÿ7öâ“·ôcÝÒb~ù’SƒIë< cézàåT½¬‰:é¤qÄ ­ˆËÚŒuG±~ݵÛÆÚ¹ï]mwgÀ¶…?Q!qÔn#pCÅ>£" .H§ Ô„¬4­Äæ°”¢7)Åi—ù$Ã8í •˜ HÉÚuë¯7;„ų°m^ Ç” hœ 8°}åÙ熞.é­Ž¶ëI³´AI®Œ1ö® ðœdpmžc܈PÄ—ÇJdëêï+Ñ«28˜ˆ &z@„_Ê¿ª‚ Ìͦ|¯b0/ŸnrÞÄœÔ=qÀÞ Sÿ¶ô|˜7&NÌàÔ1d¾Fd\ ƒ<.Þm¹ÿ´ï(¡:xÂW£·Ú§i _lålV(VOI<"°µf§Ÿ‰µ*b¦£LRŽ®ÂÛ/|[E†##Þõí´ÝYÁš8¤Ù:ÉsP¾“;ÁIî73=·AêMI°ßÙ¼Ëz¬öÛ«_ÐPu¢ªMóuø6?.:Œ®ÙVÈqôÓbÂrA8FCµâ×uhwnu%\œ…§!æªÓJ< lhýîÑq —R|RF[W:ÙoÂK‘-‹ +ÜEæÅN;* À†w˜Ç®ÌÎJ$™„M-‡=\‡aÑ4fÌîî8Ö÷W¡„Ôߨõ]“âÑsñ»9Ž2¹ÙcТ޷k7<@¸7#óœBýÄPQ’Öþ.¨.ü3‡êoñõ-Lʵ²áçÏ v#+¹ø÷@{Q)"[2îÊ¢P÷sÜ‚zjLjz­ß ­ÃºK˜5î«ò°Eï©ò—ì3Yª[Myd³U¬U´k¬ÃLÄ9 èÏqCAfšæ|sÓ«÷|yŒáu~µq*/"™jÎGx ½ž¸t\š"ž_XÇ*»¼7Ô§”¤xп=Áö"JrÎbT/̪X½CÙ‘y&_W¶ï{æòœŒ†°[ƒo(‚ÛÃ-iø¡¼±×xaL£Öû)_Âë! á«UŠÓïë#ú*7±þ•· Õ¿‹qÖ„TusrêòG9¯ ˆ€;œªôMÅ,~áX‡gžgz<¡ïT‚Ý’§Ez¼:_I]Øœ×È·_µ^‹xö„_„Ì4M—9a˜­yÄéeôõèr;!í¥GÏ„˜ðlÀD"Íí1%BU•–èÝ!>™žSm»©`5n,Ò-‘äúøw‹·©Ãcä¼P27“¦aáµ!Ý „nõsýÔîÉ8ÒbÅØ$ÿÆAký]9÷[gS*„xé¯'y˜ßºe•(¤•Ìor]/~=[B®cŠ^ ?iÝ'9„èñf¡YMCfž8¥%Éo4GRbA²Ø÷lÔxÖgà¾õ¿!¤:6Qp…¯+–¦ôFÌÿçCv"ÁÒ5qEüðbëx?¡ Úä¼–ÑæwüÂãúަ1õS4Œ9xfš¯.*aëXtô$²=¦=2žâl?¬¿U…€_{´o‡êCј?›‡ì>“Í|­$‰ó„ÞY! v~Ø™«éV|à,º"ãÈc€gÉë{6vYàýÉëuÕZf,f¸ÑäK£çXÑ'*Ž‚!`@©oð燫Bµ¬¦W«MɈ~ÊÊcì#ÞÇ ‹•0Ìåð7áå°qbXçç÷mgÝr¸ŸóÁél®åÝ0¸z%”LÌ£ø}üNd[‚.¹‹üaö“}‡¨æß¯Û>‘7Ä-‹¤W>ç9ã»ø½aªG¹ƒš¡Ãäð“EÅ$û‰$ÑÉññt¥ÃÛ*€LJò1®#˜+çQ mh›ÓX—ÚXtj«V/ôV”˜•ê\õI•mÐö¾Ån­·bò¢eÄeâ9 ýÙ<^ ŒâqÜð" ‚.bùMùºÞpÍïBí¨šã:Eð”ÍP]¹…åò6#3Ö2­jh¤N/DÈ·»É›‹CaT’¼‘}û €µöËpT[¼ì{®rûOM—–pÃ+Þ%h´õ«:F+ z”êŽdiG Z—±&_K[…”aÖh¤èýž™á¶ý¬?£ IÉL𣖠“û¹Ýt=㟠Áºî`­™d­–¡ž‹ZGõ(¤ßû1Œ}õ{„ŠÓ`X¼¡³ê> Îg‘žÏ™w`Ùì¡$ißî\O2 JŒØtÎ ‘/uŽžoÖx¡ûÓ¹}‹j Vår—ä \ËWfq¹¯+Qû ¶“íZ_à˜ ‹ :° Á/‘íÝúFÈŽR)¨r©ÝJ›RQ |ÉM%ÁqaŽü”:=¼^ >ø7åõÈ4`D>1¢i1“wF#u0dÃwÜ[–r‹`[% 9Tmä%./|Í*VʘÿäD±[JLè* £eÔ>`1ÔÇ’/ÚŒ8–fc¬f¦»­‰…ÚÖ3(•ªlߎ "È ­‘ÌÁ½—'ûrÍm1|·H^?ûŒ¸ ™V[éøì¥Ói2¨ŸC»ùß›óè~šZþšœçBmnÉÊ!i™|/ðþ'rD*A4êÀÞŠéÓɲ*ÂTæÿ« ˆ™Þ]Ö›‹å}„ôâ !ÚužM ñDOoEW™ã¤æN6‹I ì—‰†Z)ôø8%Å€äR<Wœ¼¼@ÑÜ<Â1–Õ©Öcø¡Ú˜© *Y\,hûVLK‰Ž7ø7F¬ÞîâáF¢½®÷3®($äæÀ}s§ÙºOÞpéþÇ.± ¯ øs†CÛÆ¿œèTkAƒCiòhÄ}Ì…%²á%VXÞ!‹ðjÒÍ4ã¡Ñõ7Œ‹2«ý'Ÿ‡ p×sO"$'Ònwõ‰ŽÅ˜Áž={ä‘ ˜¿ñ+5–uTÁ¸¥2œê‰˜÷&~]ÕÐêL4³Ð¾q7ÿ3륦kÒm¢|†â˜$}XÏ_¾vi6ªÞ hÍ€B,yzÊ‘(þt‰/¿œçI”’¯¶Îá7\¿æÉ3vHoªÖˆþ¤’`ŸX5T²?k" &O€û<(XãwÊDôÛØ˜r>Æo|­fý÷ê¹âpÕ ¿*qwÌÇßÍD¹ºáÙÀ÷î“ÌíËù41rHC,ÖoÆO“­œ¨‰±/W÷µÚ‡lŸ.´>^½¿^'qN»ªˆ-•À4r™®pV…V6‰7G8rDEÄ+ÏíhÿtÉ.eñ¥ÛïkugХ䅡ˆ¡ï¢Tõ`écbCà(?‘uw“Lų˜O á6ú«¸ízÇ7±Ò‘ØÏºÜÐ#µÚqdñ†lh%ç¯cA^RÍŸ_¢ØŽ=ûMŒ`0Šo^ØF‡¹r¢œ€ª#që"ýwNž˜út]aÿªÕ3ûVØ´ÉÍâi¤¶µÖ‚ºž?·ÞÞ Øž›}Tñ,lžÍƒ2ºY`aà†årXÕž:w¿:3«èÌåšùw 7]ô>†'}5ÙH.‰dêD» Oé\V¡j÷ç7â€i¥“z,ÔÈR· wŒ’Åo9)²×¼“÷2çœbf9SµÁeËm¢ê¹m|L”YøYúaÍŒ©†Ø‘º!v³w’ü½lñȱa£ÍÇðæÉ`F±ùhIœñ«Å° Ü÷—3üŸ›]xbŸÅžÀfï¦Ü˜ÿ‘eE*Ù£ ®;c¼¸Y”BV»OíÀ^]¿^aOa?—–Þz{ˆÖŠÉ‰Ü•ÌWçj4³NR{þ™þÒÔ¶eÀ;ªÍjw>5k¡ðgk3‰îƒµ q<½ údf\ÔÒFè*Xݯ¢Á>yi9ð]M¥¡VQ÷žMŒ"¾–àqEHfhý%˜”ŸebúVhèEº¹á®°W»B º™ÓÍ.®0÷ÿ^[‚uºnWîzd+jØñsãlº3]s'B˜9}ïÜ °wê¤Ù<èšeBùŽ6êLùR› –ÄXyRbä¡2h¶ÓîаpÉgx9†B¤&²ß˜»hT9ÿäL_N2'0üè£Ëwˆg¯Ñ³‰èø<´8-±ØX`C9“H×?{OÐóÎâøIíí§/Ñ”÷f`”QÑ×¼E¥âî¥77±»Ü’¶u¼$•YÕÙÝ_‘xkŸ¹ÓöŸ#wuÆfò˜ð¡BP”iáŸrpHî\S˜çN_è»*o8’…`4gþ®Aã(°I#†:KÏLñëLC„Ú|˜†ú™‡<°F2ÞeË(m™»Çê¯ þ±û¤¼7Øç¿ªŒáÝ•‰”žÎØÌÝàÏl¾„ðvK•ÑÁQéå~=Ù¢|¿àÛĸw9Ä «E7. ïSb{Ü ã@ýF+‹VÉŠÞo*poí„ÿÛŠÕn^¬ë–¾8dÔ¤Ä` Ñ¢¹2Æ)ÒfÉfÀrfðÆP‡z%ÎãÀ[˜¿u¡4pe”šqë¹ÉtB·©ý=÷|FmLCtˆê•ñ‚×'̽Zÿdú7¼¡Ú‰2pd 0ï{ÂGë­¬±„È|cŸ“ïnF6âöq\câWh; ÞK±Ž¿-‹w(“ïìÁAkb&9ÓK™@òtÊ ÊϪ{¸d¥´.xoðÚ6(»9³KˆçEßrtëzäàJõkø¹iéöhSb-VîȵývP }m^ž±’÷ª¥ÇéíˆðW”˜.µóÀ&tdb–è£_ÆÔ¤{ýÖzgM]ÆŠ¦ZÚžPòÞ÷rh|*;Ý4ÉÈU€ò!‡+‹%= ÌæÊû¥…­ßÕ¾ž<Õ?!jÜþ‚jâ5CŽMâö`di6#Î…u´8y< $ÚŽ/Clõ²{ç`Τԅºø¸×~£!ÅsÃMñùôRÀ¶`³¯…Ü“²IµÏI™Æ?áÚ3nÒÍ6”¨NJ6¦,çEΛþÊè”–Ä[#§RT‘-åy k?ltÄ’¿^öæ¨OèÓÙImQÑ ïVÜwÁÙ'^ö»~w}-×r­ várVþ†ÂxŽØ]$ŒƒT+¶Þ ¢6CÝ ñ¯à"µÝㆵL¸îÿ\Ò)ü¹X¡Nu4t+å8ýÀsz•ФXSñZhö.â)¯§Ô7—KÐ'g5®o•,w)‚Cƒ”}ªC;•Ë,FîsÎv“vŠÞ¹V:ë)EÕè1,«:ŽM­c§wqgdï ;Û³5©Kð%•º°(ˆ¾4&GêiÞ#" íEµ†kÅñƒž/qŠ'‡*Äì²vLí¾¾Ægæª3í?ß1TmÉ&Om¬·*RDë^Îí)Ä/Ý‚Râ/¥¯µt™l@òE þ`fùñJ\>ªák(‰@ÝÿÇ =ìï‡Z~Ê{iSý.“n2’º¸è¦y/ ãu‰Ëh$‚mü ¶´áæ/Aw›UPÂ=}ú·ˆQ-ËxH´ådÅÙÉ:÷ø NóÜI ßÞIÎûÌÎ7S«7̃–G“Û1:o9ÙÒC”ö¯©cgD±Ÿ ÐVßAv¿ñG¿ *g\$ÎϽy€}G“”¡è^’Ç %Z–0çNIÎm°((Ý%b-¼e¨ìw²ï÷‹çPöéÌP=4ß8åá÷lð°ñ/EšT´î(ãÓ‡R¬LÃÙ8Ðäk´pq»ÏÓÉ)¾Â¦Í5Û¶wc ÿY¹Jèï£"¸¦»ˆy¯ŸÐ`á _`D¨‡¬znJÆ$áCt[R³®ñ¥éuf’ˆÌ£ŠHwKq–~J¹ ÀRZ]°°¸Q±­µ à<]ú1$)?N±WÝÑ&„AQûåvf¾;÷,RÃiyâ¤L>ƒšÓ_3svÇV«Y ®ûªi~ؘ០ Í0CkŸžBS­s —±§ÿeÖîù\僪V ŠÍïü³ÉËiã´Ê"¥.ŠŠ? ½ •í¨,<Ðî[¹´Ï`ÒŸPmD¡ÜÝ™‡ó3rBbþ¯åÄ=ŸêE ¼›†•óT»³êvÿ2êv›Ð¾¬ôOÈPÓ¡‘ÁŠÇ:n¤¢¯¸Zî¯Ê7iý™Y/òïÊüpjm—b%PãgŸúª¦¯ÓÍ··óË ˜ÓuˆÞǰnZ™àÖТE¤['.cšî@í\¥RŠ@µ(‘Ÿ¤QÚ&A‹j>ç–~Gšà”‘N|³6=ÆfJÃÑÃf6]1–õ¬Ì?ëü-ãyƒÉø­>CèÀüj&i@Äæ€¥­sFLö)¨žÁ÷>ìf8A±¨ÞÄ®ÏÌØã Üý5IÎ\u!8-DÀf\‘¨7цÆìÒפãÅ¿³dúõûÒ]´ æFî¬428Ð(‡ZV™J·ðJ\L]}¾¤È Ÿ‹ÑBÞYHdcLOz|ò”÷y>÷-5‡·½NVbâ¯#«ÉœÖw^±1*ÀFl´EBdHçóî¡ì«Ó…¹¡¢ô“įDÄ/|ú7'm6{Ö…³sÍÙ4£«kŸ?oÚ¦?V”èYp mùª]j¼ «otàYùJ’»»¼§È$ð•YÐF9$rŠ«~ñ%ùv£ýôÌÈÂð‰ úϵw6 K¤ô<úBÓ½QîVÖ*xTtu&8-á¿^ÐÁ–Ò'šó"òŽ`÷Xÿ‡¼Œe†ñLnRøHW…8ñ¸è_-meÇ-ÏýÍåö#U•#U¯t:=ÍP*º«Q0¢9/¬…•ûÿePE×sÑ8ø½¥™˜¡1¤¢,´:Lj¼¼A*„ïÊWÒasÝÕó¤.îÒÃ+{UoЪd<óÙ0Ì bã7Ö¼Gksƹ°NàKÑ ª0˜5‘‰é*–mBg5NÆUWf"´ßò dÖŠy6÷_Éooù¾m]¡·WhÉ·‚€‹Ÿ³áëÑÍ[ªÕ‚_²±šºë©dßËUÖ¡Ó‚I]lgZæÓ@<7•ç+æ ‘ìÞ åË‚“À¿A*2åˆIž¢Š<^YÍ ‘A›9¼kÈIñ'œ%ˆ€Ú‘k¾9î½mÂ*Yð­°b¸î™x¤E8âfU“JWÛ3‘ºÚG,=¬sÌÙ^:17ËoFâÑŸ°IhÐå+ÙA&š…¥\)ô¡1þµ+fÛž‰˜Âÿ9¥üåu#ó“ß/ ܶU$Ä›?LSE…ùØ=Ÿë{Å…ªËÚÏ;Ø 8Úr€§(¦ö)Xtcú©@Èñ;¯þT}S¸BÕ ‘Uaø¶ãè’•2oݶî¥êt“ ‘­6<·÷Ñ.‚eÎ%]¼ Mpôðt[ª IRÀD d÷Ô}t'ãÄV ÃDAlß*†‚þãÅÎ/ ¡Á>ñ»K–rq(¢€DƒŒö³äBvd‘Ÿ3râhWíkgsèªv<¥ $pS¸»^!K¤*Húá²'¢ôël·‘5¿I›ØZ\ދ˱…J•z¬õpµZYdLÿ÷´úÀ¦‰ù…•}^—^6¡P™ëk ’5smpkpó¢EødFÎsa!0, ŒJÕœgÂJõºÒ4.Ûº1¢'~[,0-km9„ÜÂó&oX©ÝgžîNïf°£á+s>8ÓP¦3¤ªÕ:|…(¬½—´bÁ£LäˌÜ»E\:,¯,ãRD˜\w‡¢‚BÒ5&à}Àþ{>'ELKóJ!'}¿ÿy$1ÐÒÙgžC”Ý–B[)?Ipx4…jbCÅ5 °ë õ0•70Àl‡Ÿì®†ÙË–î¡+2+¥1ˆpª £íç~+ϧ³O IÈÒJ!¸#èèŽÃq=ó-מ,2+£Óqän?ã Òsrq†dû+¿åuÌÓ/ShDxÀÛg ŒzTêãjñÖ5 TÿÄkÊÌKC Àpèô‘­äÚ}ºn3ô”`ÚOƒ9ÔLæàü„¼€>ÎlœÛrõþÏÜ *v(ÓX Df&Bt îÚø¤Ôéž¡©/<ÉI Áé&D²DÈTë£^ßÔn€–cN ŽUaìäø‡×3ñå´3¼1‘§›Y^ÙÅÖC.œ¬ª¿‘¨Ö äÐ@Ü€Îf`&vç Ï>òñÎw'9ÄkÌ¿/û®òÍÒÓÙwÁ#¢ã»B¸ŒÚbj©áHô]{4$ÌŒ3Iʲ w½òm®ôðÒmø/Rì:!ݧJm|öФ„oý§QŽXëå #÷ÔßjceSN")( ûŒ}Ä‚nk-iBÍH‰ I ÞVË^<ùX£B˜­ÁQ×qÇII½ÓXýs(©‘¦ô¤Ûä Õ¾öùøJ –Xç´Ø“´0¦Ás-¤uÜ~ºä a9ÿ|%®Õ™¶6Ìgæ\åÓ >cºeÆÄõ [À¢J-qvr媩arg›¦%{2¯B÷m©ƒ#ì_Ì¢ dѦ€J¬І¢ÔRp¶ÕTJº& ú S¶ŠÙ‚ýþpõú)³ß,øÙüÎ\rÔîØÐ– 51´¯i§,²m¡ÆO†"Âïñøl|%•úö<*þÁ Kã"À  4‚`5Nz&zÑNÖtqUÞru\ÃÛã}ÌÎé—û Q߇µ·Ž9ÔÚ"·žžŸ¿Üp~Hm‡íÏØ®_×C}4öµ½Fôjîk¤¾ÆÚâhé-©¯N‘Ökõ…Ý6®çlÎ;e½psõ©7¦(þ¤Í6w>yå\4PÑNÓ~Z|é—z™á”ß®A‰¡g\œßZÄC¶ÿ¤M AcõVZ§Ä“ •^c”öðtˆÑ`Úª3€/ó‘3é=ü"Oñ#!R~íÛA|A yÌ}ÚP¥œè QÍÌÿ9Mi[ÅEGV²VY›=ªÌí½m¤=[zŽxÀ°¦•jû]–öüNKÓoš)ùrHÕ,ñ^ Z‡-a¤äá²|ÃbŒÓóu[A]‰´+è(b. y+¼7צd¹tVæ+ºVdEÚº4oÙŒ<5;-øð“áPŒÕÉ™»)öÇ-ku¬’~´Çµ0H)Ö­lµ>Öñàîm¤™¹±™EÞ¤ùvf|÷BëQ%W@—êѲ=\»Âø4Y-Îï_¬ jHÃCk8äZŠãäÇÃò9²÷¡ƒò‹^|~xÿÞA7˜5Ð뀫eÃלYûg>BòêyžɦG|Ϥ‹Œ}ÚïâZwI6ÛU |œ`bO¢žSDVOÒı˜ ©vøÜâŸUe¥ƒ³Rkñr\ìì‡Ò‰jV6¡ªÐ ÛLªðƒ"‰ÒϸƜk”§àA¶øäj‡êÉD¬‚oƒ‡÷å~_}Èy”<ñˆUZ_öºêO*è{¼ÁÎ` –gc¯t<Ôˆ©,×j ¬‘ ( "ýSc ¥ ¬êÏÏνi¿ ±Ý’>CiBœAZˆµÙ"Å SÉØ0v”ú|öõ¬ß©SþÍã{üŠôá¡} çM¨ÿíY<ŠÁÑí‚_íú³ÑKNë–sñ‹ìÐê˜+ŸÁ?t°Ç5’1ÏäÄ¿}´UÇp¤ºƒ‰yM¬N£4+Úw·¡3í’*w•}¬SFÛŸ7ÿàã9DéM^üNõ¿ÊŸ6Z–^W~Œ³vàÚÍü¹OòV»hÍ€&Pî© bÿ„£ÚE Úpdz·þÞðÍåĹ'RØA¢ÔÆ…¹ÙÉ:Wí3Èý¾"ùôApÍxN;îßÈén¬L_„fXõïÈ‹–tÏ:ƒ6劃sø)ˆ"y_66Ek|WÃ[i™+b‰_"÷p&©½tž¨ª:=Hµ«àÁÔu™ÛîMÌ{­}ªq3Œ‚\$x!ã….œ¢³7Œ½°õ'Pè2x%€ðÊP'ãAÂÃF:ØÑð‹Sþ Xi¾üX -|6 xr€À°'!¼â·^ϼu›þOU…Pn¶¶aê1±³ÕÊ£."]" Á»åËÕØ( ¤©9SWSé!2Ìåäm|â0/wñ‹Šâm—QSuàeN[øD·ç~è<Ó'¯.ØD“Ku““‰oâ,eØ\þ›œ»îc ©—MzÛGZñ.‚‹)ý3¹¾BçDOçÛœŠ­çžóp€¾Ä›n<0v2†·CÛ_çéÇŸÆ"ÑPƒ3ËD#ç×Ë ôQà¨B~5ƒÆùë«æ¦Œb6â ÙyÅÉ›÷–Ï Ü'·ïéo€«i*×o»•Ù~ëý £{;±$a ¢·JÍï¯Uxüˆ€”à\´â· ñ™û$y+æÖ¦VRK'ÂÆ“™õÓßÝ}Ä:Fê˜ä\8Ú-«ÚÊ&†[Pïœêõ÷Ö­eGa½€›3NŸe® ¶F³‰“Nø&/â)p¢rº.‚Á­ Õ§ÈyßÕ½$’G7 w—Ø“#ƒ¼t¸ º ·kÅÜ͆ÿ•O‹K*_5ή‰XO€l0ª˜uéàÁøõtL=ãSÚ)‰C!%o’mïWq¿BÚ¬õ〹ÖãQ`|8OœFÜâä%¿#oÒýòœÁ†êAÌ,RË þ®«€÷Cöm:®,kØÄmDÅk36 %ÂÖ—oQ<•™Ê–€¦[);jØP¶dõ)>ã¨$ý/¸ôê\[¢˜†X)_ÖörÏèm[‚;ùò¶^د€¾­©Ýì錅oEÇy~r3ÚMúfRÚ²ÕQgÎkOúâÚÀûnð`ü5(glšÉÚUäˆ'¹‹2á– S—&R¶³ðƒ×¯ÝÀŸL-”,Ê9¬W}â mŸÞxH)u}ÙŒ8v„Û/Âίֈ³¡#˜õ3^/ˆQ¿“]=òåStή̃48~º£4ÚÉäDf¶e ž=A¹—5”z8¾l»§è‡OIâ8Z .¼›"8kÿÌ÷˜ÂŽzd³…¤X!™eI‡A“ÕÍ,gÀÍ«˜.&xB®aiÎ'êVvò0ÜäÐ ½±˜`æI§ÖâN„>@±V“ˆÎ+æ!ö ê®ü-™cg³…”;#+§‹hFLk{—ÁopPiÉEx …:ižv¯øÈRÑû¸þî%ø©¢1¨¥8¹i‘É%õü†æIebæJW¯N ‚Ó}´€·Ô ‘¡·ÐÖæ›§®±Cni7€Oà&(ïu·å¬±+™(×? ±F/¾€‹C/†¾Jgê’p‹T ±×½–äšhÇ0Z°¸'Om+mgu¦ÌÕnðÀbk´ÒOÞ®oÄTËGû;“h=§ÜÞÊ ÄË1Ñ›ë/›õ¯ÈI¾´Ú(MK¾¿Æ^×mv¢žíqq‚ÉÑwh¿“̧й–©FËðG˜ÚCªB™ïuœò=Ä ê–B«/£æ¢ÑNò}¬l–ã §ª9fh0räD Ç ¦rwhz\@ךßl¼N1‚G&t+*ª¡k{‘Ýþz3YÆ~²¯:4«ËÃåð”Ûp„@ ÚúþoIó-«±zãÚÎú>Œ}dów4!¡ws䨅qp½;™ä wlåË\®úiO§È„ üq}‘ºØ©ã‘hA¶áÄ×ø×B©<×Y²oå½4®û`‘'g¸süFæ§ïÎ@ %u¤ŽHåŸZ Må—¦it…w+Vcb#!QóF®ÆHQ5nÑž±G2…6»EŸâ–UÀM° ¬¥~‰!&ª+š’J•‘ìúHœ¸4JÒíÖa’Æ;=ãWî ¿髲F¢¼(é·ÿ±’Ôsp[´ A°@…ðàÍùý„ÏfǺd§_šâpª¶!lÃ,|ßé2ûUP'ä[ƒN •ˆÚ¼Ü1HýŸ,~•(ø1~>\ø¡jЇ•ç$a0©|P×LãÆâ ]¥±+Jc¨>Ä}ÌÚÉÚ¿”¼# I’»}{Ï­ÃÐFL ŸÔ ö& oØCPÎH™!Sc^G1 §O¹ Ž$ª%ê’ˆM~ÝUÛ\s˜<€/ÿ¨kT. ‚¨ n?ñ`GA6àã»bò–ß]?F 7*˜µ‹Ù¹ýrG44 qyËÅ¥ª\´3´p<AÄ1ÒÇQ#³˜+¦Á$+4Wxš¸à ³¬oSóME{'ú#oy‰!iÄñâø@Ë]ÙÝ/œëÿñÌA×ÓÀqTCÇÇèÜR!ÌÖáO÷]ÿ¦È0ñKÕ"¥\"„ÅyhÈ®°ÆÊwÃ#¢!¡náF f+SxŸ¹$(8žÓ+L÷§às‡k0¿ù¸rÉ´Ò½ê*vÑ•yÉ¥`šý/ β˜Aw×>@J WvIl /ær1ÏåXš¦=/°6‘ ~Q¥IõÿëÎéçUÖâEi™³¶øŸF^DÁƒbî¼~šìšMµ|PÂGˤ®=/žf¤¸[Ñ’½‡VÍÖPm‚á²kÍB6¿Ó7—ù_ðà+Î]KEreДGá£mu©üv(©RÈ›mG«‡"áƒJ}‰–¬.1‡PŸ°bë.„ªBÔª~ÖÔn O¨ ÇÉç„IY”_ ïl?Ú¹ku2αèÕ]:EDÊ=yƒžÔN7'¨À¢¿ŸÅƒó¾`ö®€wè½ë¿ŒÕþê½ìÍY#ýÊã¸Q ”EH¥jÑèÿÓ³YÚÊ·$?‚¯Ð/ o›ÇPîY+sL­·Rêª#A±¨œU·Âf(ù åúbU}ãLM7byŒï,6)䩬וlÇÀ_paL9¼¹Ò¿þÄøY‡Öì&Ûìc>tÛ- 6{¥7ÓîKE±ÞÎÝ—4¬HåÅ¥:%wÛlÒÉGI,)Ûzàžš˜—P¿ÇJD€à<K|ò¶NÒ<íRžNi!JàRï_^ ›$Z’B>œ îr×  R= svÁìçÆRÒù´ÜêØIš~íÙM f)ÛýûÏuÜŒ®_›Ù“bçGé5©+öxDûQ·ûSéw†˜íãÚܻ׿Ҙ²ú`è|AìÞ•(¬âm¤DÐ{Ûr;Óßi‰µmà>¤Žø‘,G+Qª‰çó£ˆ?ìšÅÄÜ%þ™ìӛʅ$?ÔmãêUÀ»Ð@ µ“ñúÆØë^ 5ë`yL¼:› c=€…Ûï§õ'Ég;UÃ/”ö“ÝûÉ“Yh½ ó+ˆqþl‰è– ”,¼ëž=ÂÙQ‰f(u ;¹š?z¡ç³¦‰];P $7"ÈiËKk !‰ÇÑ6%•x_ð¸²wÁç~—/Ã늠þ›¸(ÜÝ„eŠ 76fý,þä˜âôyBÙÊk?PC+kz¸)z)eö!«1—7|Õòé7s}(•¶=û3,Òo¯«ùyÑÕþ®w)¶Ú!OÛEs 3™hÜ(,[胫›Íò[Þ¿ÒW¦È4àâgX4]_º#iÉòIÙC8¦³9CLˆC]› ¹¢|Äøg˜ë#èÌd9ÁÓŠ£føÌÍÊýYµÚ"NQVðÈ;Òi>¾¢Pø©¶eµä=…V¯Þ{«n=7ñ<¬MòÉé€VŠ'mÓ4"µv¦~ÀµâôN‘L“J°p˜XýT«‘³{J5M¨»ܹŻ~5%YjYå,ïXé5T¹nN ¨àŸÂöŒt[LtïM^³«ÞÄíI³ˆ‘HLЯOíÄ ³j Wò3ÆlüQI#ã¹#—öpté«e1š^—Ø–y€ Ûi«ÚçªoˆQ^’6Æ'ˆL­K§2MÖfŽ¿Œ–íÊÓš¶Ć×j}‚êrƒûXZXÈ¢¥^@D£°qY5÷<‚ *=5Nø€Ibaÿ½hÀNˆÎüÉ7¹Ü61vpMÇoÍ},•«W(2¸ôî0Èxr|rèÍrq*CÞƒÝüÙ6 îf¡ž¥]¬Bû£©O@„d*¡h\.Q·€l,HŒú ú "éš ðãû©< 2½êž¤PPÇÁ?b‚ÄäMLbÈí ¼m\ê÷·M!õÎ,v*,m—´¹ÕzžËcî},xÄÛW<Ú–ÎY,žö¢¿N þŠ'!óÝ!y$g83;¡3‰d VÂÒ’Ó%¾"’e(ß¹¾ÑÆè¸£ñÏ@Ó2e õQ8ŸfƒÿQ–εJn|9m\óz¿ðRÏËTÕH£ !„wcv±2ŒÃÎÒ^¾¼ó3Ë\”^,Á ÓWõ† qá‡e™ä2L3WySË'|”{5,£soWt Œƒ™¼1(ö¸…É›IøñQíq\  ¢°)c¿ÄþpÑ¿pëõ ×ûÛhýØ“Œ>.f§C¦ù=¨-7Ö­C]ÔšfÇACx?q¹h¿\ ºÌïTá1ãu!@T 2±I±`Ð(¢PHCQ£>EœkyœhÓ+a©9ºÙ%óøTpáãý4£´WØ’TU“Ù€ÌÓ)rèbï&RCø ˆŽxXN™ú©ï³±‰ŒSמÜGCŠ• öIÉu@ùŒ9)Éþªôºìª„§c'ñ!ŽÐ¹¹}º§·~rŸWîcò‹‡æ«éëñ%T’JšÆŒSåð‹gíÖêO+¡¤‘Ú7|“\¡E0¼€ØnEFÏLÌûu„ózäWA …Öÿcyþ ×ë3þÒyÈü©™ÞY´làÖJì é=ê¡U‰>Qb(Jú}nF›ÂÆd3”Oñ[ÖRAÒXñíÀT¬'<¯ñ÷4;pø4G¦Å˜?ð%Îls÷­R·ÂV°vFÐ\ŽÕ1˜h÷`Ý_àüoU«2¾cû„²*æ5Gö•]ÂüDŠ•D]8yî÷¡¿Ä©–{ ÐZ72 iÓƒ?ùi“Æ+báG'%„«Iik­cr‹N à)Ø©ý½!#ñæ4#{.ÐÏ'ç*ÔêÀ RÕÐ{ðEPtQ}ŸòÈ,®kW¹vp½_©Š5ÕÏâ£?¸j^çÝnýüßôxE"–¯iç…£¶ðsÆ[÷Œ‰‘Ö{l¦• [Í÷›—ey°?©R%Ý:‡•ܼÂ@zOøÝÖ<„š ‰Ž²;ò“ÏjåY|(øˆwׂdJ¤5èH‹n„2CS,_›±2Zu‘„ŽéÊåKüöÜ}«²7ŒSQCº6?ªàeâ1™Ø)ÓmãX¾Æ L>ž¹®—>TâÖ·#þÓ>Yj.¶Öº²ãõƒ§/ãÎ[a—@ç]€Â4NÒÐñ­Í§]¯~ Ó@~9»QEàoúf¤Íq|gYÖ³ ~Ž@ANZæ]ê³ìI”bßLæb?pGJ„µ§¥ ^“FòyA2€vdeI&¥àû;øMÇÀ·ýꉭo þ– ¾´Rc”~hwm2$ÊËÆPªkØD Xý|åHÚ`!k2å]D³}?í$üåt þðitvQÿâÓ’ *ÎQ0•§}ÂðÓ¸h›y û[ì 9ËMæ/Ä»½Ùƒ;ýâHL@˜&…óTï¹">¿siÝ4Ú%ÀÎâ¼×ÿ¾Ðþ+4 gJGyü’H$[î§Á ?’ttz¬Ã.yÖ:+°ý,t…@‰ñu48Elw•÷#Ή}V—q]ž!,'}ù‘9 ±,ü'ÆP8·^‡‰“ë³íá±2&þeºŽ ´Y|Û±ÀøY 9a¦Z©ý†&õמXÁ.ŽJМ&câ¤íüÕs¾¯†"/_Â/?vJïß û¹;¶DF4|DThN±ÙÖ‰»ô”fûߦ†™‚ÁѤ<ê„O2sÉ˼ÆÚgÍûP„<M\ä¹KM߉†ÂŸóìrž"BÙq½^c¡Îø &ô´¹²J=ê¯N Ž6!êïó»’;HîY¾ñ¾­uO ;Q„œ÷8zÅï;89Ùá/nÞ.-õÂ`W·‘kÇÇͳ$ ‰"|‡¼{¥[6,!’6˜±úâ5/[RMSxšŸËÁø¸œu£ªÆS‘ .£žÔT­ c?äôåjæÑÿÇTòDfYôiL³Vö4a’r0 ü%Î>”˜ã¨dÆ—¹×|Íõ”ûiòÿƯÊk—UpIKÁÍOtà3ô1[v5$5ùð¥G³mÀ×GÞAåg O绡üpëà ”TÊᣋ”+âUŽGÒj ÕÃjì*¦—GW8rPãP1ÛHø•/IröK;¥/¥Î¾Ü‡kæäš 7#¹ŽþÎÅö¨{æ¦k_c4/)lh\n_ÆŽ/Ñê sém0]2:;8·?Óš¥ÿhÓð"pÀRþô‰Ä{ó¬­Ën¶&-0V½÷êþ¯&ù˜õ)¬Çj=ù‘Pø€ÌTI­<Œ蘓À¥‘}ð…Ù¡ŽG,}êI‹X™Ë¥ür‚Ã@Á‡ßP¼/gZ™¹xxû9…^ú7A¢Ù¤·3¨:-휋‡N/¬ÎÒïçVMÁ›Ûß‘sÒZ?XFÖëÔçÏÞ„Z¯lÆmù9™ï>ZEÇÛîHõ¦¿þÝû•Á#»àU%Zµæ»Œ cšõ$?ï2†¦že5å‘1‘žøû–ØóÙIå\tÒƒ1„…cüÇ5WTUñ™+*¾Öq˜ÛN7gïˆÂi`1ðíŠ*¥PvO‚®“H˜Ü„•§Wí’%Ûý‹ÙÇšÚ¨ÿ¤–%™É#ÛX[J…z¶7džßíÈž¶­œpçw)OXd­“‚O±¢·Ý¢^½k‹YVâêŠLã¨Is˺d"]+Ç¯šæ– Š Ý)šÄzÝ ½J Ùk–°~~J‹O @“¿Cq…‡"§«äéM ßΡ#~ïd./M&5ÖÁH¥Î¯ô‹Ø\B¤"Ö6DÇ(ƒ"†n‚­b[)•ãùózï4øòtˆå,ödßW“fÁôuÿŠ[ú]€©¤¹7¾ ¿c$Š4èM}°–³0 `o·ôÍ Š$KÍ5⑟¹˜‹!Ëz³›ŽñWjN(àl`CíÂ\«$ãj‚8òqºm˜u' w£-ïÕ^ÓòGƤ¨Ðü91ª{¾™Ð ¢s'À ÌœØk:á§âÙÞ ÏCóoÈmL>_Á$-Ú*@üò‹mÙï©E™áxÕÆšU´¨-q™×¸2j¹FÍŠ‰ñ”ÒÔ탺<6¦Þës‡t7ÀÒš=®K_w>2™ñDAœ~}Ú÷g.„1—Ø´gë"ì÷9wÞ#\6‹Xª®‚7ÅluÁ`ƒ‚¦QƒøZfu€*´—ˆY_nf¹uðâÃÈ¿b?6' Ü´fYÑ8¸ž™Î4Hiª¬ÕY™Ñh7œg¹†ƒÃ‰ÍÜm 'Ýæô{£ÌYê®óÇãrÑt—<¹n%ª ßUË9¢à@YÖw.‚¡ÃL]âO7ù+üÏE[\NßfÙ1Q¬f*Û†6ypÌ*ƒ)j <Ò!Ͽެ1ÎÛÛFúUí»~ׇÕeÄf[1« h8r?WCR<ÀËሔUa_¤Ä* +ƒ¡–á‚WÄzصi<£‘U¡²èF 5hè²yrdÛÝb´;™±Ç#y{9m|8Þ‹]Ãm¹ê¯™Ž e³Ç5gˆ^Šúf…nš9Ü;W,ðµQi@ÿêíÞ_?y‡YNù€˜ÞÀà=vX³gUV 0PÔÉãF;¶ÇžµN9 åáC1¾TS ]à¹nàoï¢h - ±âüT¹e`êÈ‘8AXÂþ³Ñ‹P†VçGµ8"©é#”\¬4ŠŽ óå 7r¾¨ìR•_H û˜CÉp ‘Ï„f†Ö\•t\䮑éžMÙš(þ‡J=÷a“£c¯ÖâV ýB:ó»¤my¢ør¨â n¯(wù‰hæÕ=Ȩ™BQøñ®@ÒŠý!‘½W„Að‹ÄÄRLµ.Cd.ø˜y­ïN쎄%‡ñ›7ÓR\%\^)L{1œAú%~vè2wŠbÁÙåÙ¬åôæÀmB!µoÔ VŽG¬P¸|râû«úë¶~/‰í‚|U´gA€YÅGawƒ lQùÌøkMzçNÙKÙUOwIÎè+YjѼÚô>ÖŒMc”³@âÐÚ3>ÂÙŽ»§bT×ÈmÝ÷B…¤ ‡L9zü6Ý=núݸá&=v Úå^C,0W‡S`αÇSáå—;êÍŒ#urÞÐØI’àò[!BÕ"9M9]Ι¼Ý¡ñ\œm¨¸Ì;LNìês&SÞy“_"¨u€Ƚt¯³Hçرü_òžÉ×ùG“=Ç,®•˜g³F¾}NâUDøøÔdªB« 5È™Óóé#Ͷ¼Bˆ4 ªÕ¤¸ø“àš0yÌF||óS>2J ,»ã')Ž/Ú›´uˆ0 9p®rñqµI¼“p·¡Î`kšwŒ7Åᑜûp}°œÿï7þ6~_tþÖl®–Ôoèq×î(/‹iC oe¶@4÷õ=ÿr«ã&°Ñ5;@:…®=a6/OL%î'{ˆ«ÀÖßá tš”[¶õNh›Ï6iúF4Dÿã“®­ÑÊô ¨Ò•’0'Áf=œùS@tZ¼~Ó¼IèIÞ"’ÿÏ‚3›‰µK>`×¢xxiì‡! ‘ö«À®ŒrwzÍÓ"o*‰û±ÁÔnôAlW&B'•šø9p4ÛÛãténÒÖy_sŒX”+=þ›r6M3¹¤Ý&!.ÌÓlØÑÞ%w+ûpý…B=Iµ­ŠÓÊ“žóÿˆjràõ⊃Ý=~³˜»h¸Ÿoè¿€št^oâúƳô±©•U³§ÐU"T´9F{&VÔðÃ,UÄ”H ‰°ñ’Í¥|£{x7ö§¹#ù3 þ‚ý%€HåCZâ»âŒèå&?ª:¦ÍõØ*µèì•b¸€\§‘£›!9nêÙ’¢`öZŒ>Ĭ…žû:祡ë‘P‹ÕdH¥•X£|,dÅŸ£ž+§Ü„ »ÉÿZËé›âô]~,ØxÛT‘¯MزéÜ¿œX|’êµ@š¼žrÝe',·HÝ@ý9Heì_šXx²Ì:Ÿ¿|FÑ:‘znYѵ»ñc÷å¤|¶SÛlDËØýw8H1ÇŠx1`.lBÅe_ߘ¿ g&üÈ[ÔLB7–¸ÍmùLÑÑ‹Ècsˆ:li˜’šÛµjVðÍsŸæ¨§op#xFÐ5J°Ä„eÔ˜êtY=žôbã;ê§ ¬7$œåO'…ý–0'š«aë÷:{\Ü,rñQîG³%åwæ÷àíJÊ'àTã¥p3ÁD¥Mþó…*Q¼—léÌï ·£½Œç«Ä ¬â<_—øî)[ #-ÌUÀ»õ¤ª­……3סEn&f,Cì…_Üõ['ÿ}DRŽèþàn¼‘ƒ¸ ’K¤‡öÛ}/ÖˆõXbRâ8a8ù¤Úª¯‘t¢:îƒÍh³ï›]ÍÁß áùÃåüÙ*WÓ?l:\ã7A¨´ &° Ìo’(æî’ÿjÁ¨¤é * SV>ïq à[¡}Ó\B@í'Ê„??T ‹›EY·1£ÛC÷Ö eC¤£¢Ï¤´ 2âi¢Éì|DÅfí‚èÊ/hJΚ’(eÃ¥š¢©`bbŸ[DGƒíw¼r)ÂÑëM®.œüTÎî†{æ4³tµ†·öî}V‰©e Mu"Ä5 ²èxóÈFh¿_ËÏ)ŵ`:)Þõèýó`dû}h¾î`dê…£¶ ˆPÃ9þùrÿªüC[ˆô™w`IAj åžKЃµ_”¹».â¾j@áÞÈ ˜.lQàý>P‚ø:ú>Ñë2B¨‡‘‡Òe¨t’’ª2A÷ý´"¹Ù'>óÅdè{¼ÏÊ÷~lÚ}å6ɲÿ™k²Šò^Š·&ޱ6>g-2å®Jôÿû”uCœã.Ùâè,÷†ø¾/5'MMyÊÎβG$š.Œò¦èÎ:o‚ø¯â¢þ¡¹Œ~êñ(ô<S³1`~ÁýéÝ*;É,y󲽈Ò¥ˆ!À—Ô /¹[ÌÏV§°ò¡°AêBåýL­Œ°Á¯¿ÊòJ€:gš+ùÂ8ÆD©Ñ‘š+­Ë@žù›¨G<¸¾SL 9Ô—$X¸, ß.,zÿ7•d¬%ÿX˜ÉCw&Þ”„|)Ñ ]z©µYáý[Vƒ˜žY»ô÷ãNº¹)χ·Ñÿ0ðÑ X‹,l»“X? ·îL6扖҂Z—Xæ$ÖωxµìIñ%ÖåµxÙ&öîk 4ÀFÿâ¤2Ê0±ùôå+\ð“Ј˜µG¨Œ‘âd&W@aÕ,xÎb¼å_ †ä3rKfùúm<¬®¤þݸ_+{™»òw.9aÐ0¼]j±€Ý†ã&=l¾/‘7Ô±‹4•^>„—–Ù¯dV¥aȦÁ &m‹½ìâU”à0@¶B¶Ï’4lÛùà÷"´H~€·%7Gú ûÏáß>È€ÚŸõ Dî ŽÎ [:Ðö>È"õ¬ý´/M1ñÿŒ›@ðnIZÔKßQA:ƒa:N§ß€YŠKž¼Ø$2*«õ(¯Uô)O\aÐü´cÁwÀºè)t_^Œí6[¾×[S7žü…¦C'-ô4‡u÷F¬uR?:ÕTSá ¿¦ ìMõ \äè\YÄx½ú«Ìv¯ “xnç02â¼óJæÎÐ\Pn^÷š˜³eÏZ"!®{Þ…èAzŒ >cm奌BÉÙè(¯pK´4Ž9Foh4ÈG£”Ì™s²¶™õÿÛ˜=¥××´Å&Gûæ5^2†Uç¦Þj¤lúé%t;«xߌ§^™PõÞcY#šzǵsHPÅóÕŠˆ ý0ƒy¹{HĪWÁQ6 çΊÃyõP&·˜«ö+}Ó]ž}÷áõ9èׯ¢ûfø23‰-†0žt©ˆû´þƒµý7Ì… gýÿZ5×JýLŒþ"Ì2¯s@ºÁ‡ó^Š Bbå_ó\±#eIÅ›üÖò:‡zðæ!!ÝCú¶FVýü¯î=®^ð~8œT§Ü»i'8ì#[¥œ,Œ´Ô`u¯–.WwfÀlZPÌÛXœu“ø%›ÒÀc7@ߪÚ¹TõœƒÚΠ„€BLúïO›ÂC“gÓÑõÅ×5À(š¯ù%|¯LÝÑ&…Þ/Ã×lö$ ;Y‘뻞3©3r"ÓÙ¾bA±E;ºû€MÕ±ËÏÐkü§ø¥A©)švõXD×6Òàhe?eà´2‰´:6Üÿ­:HgG—·Å@ÉRB¡¬PŒñƒ]„gÉ´,ÚhÛ:8„éÞvT.úSÏ*º020Q]2”)͸Ä3{³æúO¾øýZ¢OØçÅ—ŠäT;õØúªÅ¹”*ëË$Êø–^¯ëmý­wÌÉãi‡ñQy3ˆØV« ¸Áý¹:“•™X:|èe†<ØT|*.÷Wf,w<9ÀšìE©¥°ÂKwÏÜ=ÖÅac_;4‡RÊZ}Ùfè6z„VjLÜexé3`:už þ· ÄþvAÌJðŒ±ö]ˆ²dÿ,… sŒ5 ‹¬å>]ÙÖ°¥Zè°I{+LWÐ䄵²õº[|•£ŒK,èPc]G§ÄZë!†8ëâáÊ1¾¶kTøhþw½Ü”Ê2À %øñŸ²ø"voθÀó:z€ÎjðÜt¦4ÓÖÓÌõmJmß´h¬2 ÉÍø |ÂSºî¤Ç=ÊŠ˜Ç·ï )ÛS ^d´Y\ ðt"¶œ®Fâ†+¯«S)"sBñòî©êχ —ªF÷tMväœ.˜½"ù¬g(Í´¤a!M%Ű÷pPì/6Ý'BÀ¾PéPîl@ïBšb°dnO»‡óuN„×¹‚x›\^Õ•dU€òe0ˆæy1Ú6ÿC–vEl|òHM%Ú‘„ð,vh½{¢âW'ÈÖÿöeÙÚíø£Î‹o¬žY–3ó¢p/;= f‚Ò—?ÛÑü/I…ÝR‘ÅíÁ=¶¿ƒoÉÆåaì‡H8¯T.‡SúÓ&AµxNQ(5óKŠO|× ÷Ýå g¢7-MOÔvá}gB~BZXL¤¤”pfé¶ yWLéÂCe¿¸'¥ðî6G,]bªÛáðß(G†7Ó˜þ¾RéÎN Ý4»â²µžAØ8>þeB®¢ò ×ÅVÑ‹×&'˜\gÇir½å¼Æ2¥£öqúK þ&ÌäÊ y΄ð:5¤¡À%ð‰R¨÷#Áª3ÇloJЕŽe«h;ö Â!0ÎÎ=ø7Oú¨$aÕ¯¡lÿštŠ‹ž´)ná?ÂHï6Ù‹Yù ”:ÖφH^Γ»@:˜ÍÄ%£Ðèè§ÒA_06NõÇòcï“JC \²2v”ÕO²ÁÃæ [#j…äS¿{òÏý>Òü m9ï´[@Cd$ë\~g9£UƒÓçáï†ËóøflšŠϘ¼ð»Óáõ ÐíÚ±Œõž‡[½ ÙÒ(àV로ÕT~tÓS»[U4c³óRpŒB϶Ø[OèH¼V¢}F Îj•è´uÏy×ZÉÝÔ“¥[x°Ó#ò:ŒVÀD#TI‘”(m2ÂïýÙz~`¢\Uar¾ÆŽ±Ü5Td$Ä{d¥»Ö#[ô ö,×gýÁBr&·ÃC¤V­Ø¾»ëë.N Ü#_ïšN±YÓQDZ¾è’rv46ùh¥Äòìî,D³á¶¬½¼0憌ªÏÇfq~A¯ToØÐ¨ÑR3ßb^¼uPf¢xMÀV.¡„‡i}2„ÍWc¶¾å wþóÍ‹³p£M Ü/Ö’#Éï ³¸ýú´;Ô2—ÿëðÊÔãa³Yݼ[;)Ö8h ³³e¯®bºE9dÖbÐxöA¾²)†‹04´â†&!˜³tq nœê ‰Ã¥Ç¢™05b+ÄÅy®û*xŽûq¼±ƒ}Ú+ XÅŸ?6¤3û‰)1OP§¸pÀ­¼*€Aõ–°Œ—¨Ìñ)¹·’·²K²|)® l^JËæÕo.xJ ©’žÒ ¬îÇt(¯ºŠjL¿Ä?e<~vŸyô¨6qµVãºÍÏA •iñÁfq8ˆ¢Ɖ°ÛLÛÆËõèÜÊcRÅ—rUâSxkÒŽÌz> ·¹‡@fG€ºˆ+™´Qî"‘ó¬=Ã# ]%!ÁAX8¾úŠqrûêcÆ…^BŠ˜"+"8ýð5àØý3É.ûýõßT¬O›3&‡$%“+]¬>9òG~¬†Ã‘óŸ £ºŽ±²Ì;ºìÁ üõCô ¸ ÍY„÷×3˜¾e¿2ÝÌÄ\ßûI¿Á7@ üÉ^,°} ‰t@þM…únÉÄü€š,ƒZ}\¨Æ-S:@„›áûeä!„ t›/mÚÁ(k¾ ÷µ†9 „:že蔻Āw.ª>  …ö¨}µŽÓÒCŃàøSÊÆV\+‰#–8¯8 ªÆPþíË­=‚K+ ÇTä+߯Rì³þðù]e+Á€Íìô„ë›Æõ¤¨µ‹×?¨ºíB&©,þ 1ôo•…Ú S‹Ëù1væ¾ÎÁ!Ãÿ²Sã'?$Ü Þ1[ â€ÓC"âslßãs¹ßº'Ê®£ ²rNw‘ ²GÄÀº}ÏÈ8]¼ LFwØ`ÖÌïuqÕ{NíôíB{ÕÁÛÑ‚VWW¦žZ¶óJÓwoaÞ!Óžƒà•LI~Ü•Œc­Àª·­mØºŽ Òù6mâ¼d²†³ê†G `[{Ñ妃çßÂ1¦ïy¶¾f|¶±uqöÁ)lm(aR^¥Øiÿ>¿\ÌpíÏdGôº8i³ãÍcÔ{ümXYºê=q•5Ýúî"#³×_¾ƒ ÿܽ'ø…Ç ŸÚ[K!X‘t‚j;£UªCñ¾Æ¬Yuf§ûã¯ë‘ÕüÂm° ø­óó|EòFºñèt•Ï'¿ ª¤²óï°Zdi:†ñp¢_òÑ'ªE¥@·#…εìÂ%ã7ðB#畜&éÁ ™æ¸0Ë£ÃøÇô»m` t´iÉXIM2ýø‹¼ù òVÃ=ž¢É{÷QJÉÐúœk+å›H0–ëì]Ë&‡—X/œ)ØÒ§€Û@WµÚõä ;ÇÅÎ'F[îü“²¿”jþj2hÛ…à”«Ç$ëêçË"ˆØ³žÄheÃ[-b}J‡QÄkí2ÁlÔYÄIH7”™‰Å¾\“³ŒÒð=ωwÖì¶j&¹¨¢‰&QB‹Dh1)yÝá,~¸ÎÈ5ölådÃB«5v£x®P5€Èô,<¦¿ØyyI4ÓѼ¨] Z?ŠÊ*Œ›†«vMƒU±›ƒ¥j°ŒrgGNÖ»¥táÂÒu>«MÀñO³ÚP©ÚüM@˜(iÿ¹È_ Ì)2·­¼H8 8¬SxDº±·pÐÒ\§²ÒÚœ®÷‰iíW„ýn‹÷&·ºrøW¬þ„”h­þ &;ü.°aö: óbí÷!¬P– q`–þœ^¿|¦€[«.Aì’s FÇ7ýº¬«3Ät UùwÁjþ0"ôÝ¡ÿIärõó˜Ps½„Ó9¤ê¥„ºÓ†…©O¹¤>ÉxäÈÍþ"í»Äw4Qÿ’æ÷g¶Ý.š3‡QOåÆÌçan޶ Ï¨—úòòPÓ]¾#ÂõÑŽ[‘U«O͸-ç3Ù:æ‰AÌ܇^D|¥eŽ)ÔÅ¢é±Ó^žÝ-_×Ím}iv7ŸÅh”ÙØŸðÿ¯Ÿ¼ dòyQŠ3ôèEfçnúúYm²»×4^‡óF{ú}Š- ©…kB\À5»æ=¤ºm/.NF¥îjJÈ0o†Hºõ“>¤ZëXuE™¼ŸY3Øæ?º«6Â4{Ä-™oÈ"í•à/nµœ;ñù[‚’ßéû„—°&“¢SLŒ©)ßʼnDY€¼O Tl€¬ÿ:Å€¤óÓƒlx„K©'FЈ‡¯-6 Ç}gÍÅ`ÀdÐ0G Iå_à.Ýã˱´¤Ä꬇åR÷4|k …a‘¥kL;"\Xƒ¬µˆìÐð¨Iì9\RLCÝ:S¼K@-iÙÇ×cüYðÓA¨l 13Uuß«üº÷ŠÙAÕÙëÕnooHRŠ!ÍØ}ïÇDŽұZùÙ18ll ?˜äxk4NÁ=¨ukëÕ­´´°á-Ôžd8Q2 ÌóZR¾žl¬©‘_Ë¿·&Ünc`X^ÿӰ‘ êIRƒ^T¬EÉ»è2Î?@’¸¾þÆJÍ—Ôï2ÉÞzc1§s¦.Jš:à¿u-_—6ް“SšŸèy´Ç²¨e£âC†„;ôMË îÁI™Q+ N·^•tMdp/,Xl&B)Å’ëS¹qb3{°FåPMÈÓߥ‰¶ ¾’[”‹@:øVìBß äüYVǺ.ÄW«ðð3F¬µ{ôòG_+£..ú«uvå|§áÚQ‡+Lñޱá.tK2W5¨hš?Â:ßGUFä‰70G…VÐÛóQ,CoÊÂ#~ËtùazA(œÒ§Â$e¼7µªztòÏ-¸k“é&dÎmpäѯš± Dlü!Rê`¯¨Þ®Â‹S¨ •\35‡ó•E"*Ð×rƒ½²^¡çZ~Ä€wÍ?m{ë|øˆ©töx±¶ÄŸa.>6o}RuUoeÇòèÊH¤G]‹UÕ1©] ò›¾„ ýö „Øs0ÏöíñY5•)ئ"Vê}CxòPoz¿ùM0BÔŸŸRøcX‘ì©]¦u/PûCåÑã a&]›‹­Ð_Êw`3¥ÿäRá…j‘oª(® Kk š·í !ž¶zŽá0·§ª`xÊã½°¢ˆâ*™™_ôíÇC´ÿ £ bØš„¦îÿžU(zˆlþÑ¥ùVâå­tãIÂêÇuEêLümëôBµ›:ws>aº¡Ü•äo£@3wÌ鉬¡z-G6¤0¨€ HƒE5Í”~ZÛzÕ†ÂǛҭïvñêý¿Ÿ{…Ö{ j£FÞk•µ-¦ŒïUVFR¿b<úa$JNÅÂ_¶ÃT4Ir(JìÌ ²rÑ&Oí^@JÓû?L×+îìÍ­(ûC)“€áÄÃ~°RÀÄ€”kÓ¯âX;æ.]l0ka{›£\{@•a^ÈG6ïãl£\ù’Ûgp¡£,­l==]Ôa%¼éà4rŒ@;êþև͵¿ÊÓlŠI3!Í{ï%|SµwÀ´J™ž~ð0R]9! K8~Î`hh¹² ì,Òƒkò)79°n&å®Ðâð¶®J1TxB„ ­Ý ÎRõQBà%ÛJ«¸‘|±9h_Ö°Ñ@¯["ž*Ø`ÐaÑåìõí©ì¤=v_ɶM¥ýºœ‘où‡|epý•ðIÝ4&L,Ø HfîíÔûMÕ¤㹫±PN¬w·ê+°2ê5÷»S$š6œžjÐÛŒ€S¬˜X[áyÆíÌAq.ÓÍj)N|2£n)":;Žk™¸NpZ\Åć ÈÉ7kÁfžÙ„› ·f³,4æ¥ÎÙ0ŒxsÙ±zJϧƒDkÿ_s/n|uŸKèÚ”™ËÄn:e˜4 ¢êJU9!¾7BkÑì•Ù•í™ÆWž›>_'ãÖ‹-0Ê×8[°²Œ+¬oOŽ¥ÉëùN­Aè» ,ù%2™:ó)”ˈ Ìyâõ3¼®m |}¢²ûÖϵX:¡*¨sº÷B¦•Lt(“v”š÷8Ц³:æèqÐi©ç¢Â桾ÈÑÞáô8º!„˱[àa¢’üÑõC)”Åñf¡“o@*V” ¡ƒn€æ¯"ÿ;;µªì[iÐa“™³&÷ÛKðï“Ù1Šþ¬…JõdR E֊底6Žö³_R;›+wI <Î̬¡ßp²Ëž-l&ˆ0Dì¬À¥î7àV(Š“Ð¸Ê‘ÁŽ˜(@UÐïéú3ä“<1«Žafž8OKE¨nö÷ô/`îíÁÄ}Þs6ö\Ð.ÌQ3ù½×B)ÍíÂJÇLË_N®r^ÌÃUåG ßl ¢Ð9CÚl¤±­Â`õíÉÃýÐo ë5XÁE¡>˜åâeÓšˆÙ]ï"v.$´9³£½¯krK@dáSAc‘òòÑýTo '±ŒLàÔõÓAÕ3„%¶¬AQ×ýv„_ÍK8RlSê¾ãö7 Âɪ!YaÔ'µkuÏñòûîZä"ÉG­B½Äï 6/âψÀÙŽ™@åHem8ñ×c²åJ^”¨8@ ½h×gvˆ4Dô)Dï¦fYa¡ØÒ½ä„¥ëµ‘Ëâ'°¾æ}·¶Gͪ*ÄQy>q?újbû÷÷+"U‘§nå@r™S‘}Ò}éîê‚ ýësÅËXJºÖp ¸é´#™_ÌámõËR t.ŽI?-Ø0$éÆÛ=[ì„>çÖ1]Æ…X qÞá[Qñ® IóŒ¯8’lBD\hN³oµãÖ%>ÐÞU‡uªd-¯ÓFäö¬§$R>·æ˜ük‰„L„È»% âäø e$S?æí(d+;X冼çÉ0Ÿ4s¨ͱ!õ…„}üˆù?MV¹õy†¾åhý̹Ý÷œÝ¦}È×I‚ÉRM¼ T ÷Ù#¾$«rFŸµ\hᤆÆ&ù¬q„Ù¤¯´Ùíͤ\±[J:Æ"h´~ùY¼ ~mn«Eœö*àcµ?£jÂã Œ“ Í:·¤÷2+úåø…Ó,ðwÌ;Ëo×¹í÷…{+$ Ë#.KùÕ‰æk}Ö’ôÜF¥ß€7âÞ¥Þ¯/ò²›P³s6~ìpkUëó7ñ:l[UîsIÑõõHBÞ`¢y…ö¯Qð´öÉi¹(º^ã4ÿi |ÿ.W¡+°à3UÞc¦ç¼¯‰}Mc·L~VŠº¬aŒª.\§y„Αq¥âREƒqI!o£zhB*`ÞD1ïæâþãî“ÙX´×ØÖLˆõÑ‘Ù5yF+Ü2:ä!¢3â·ùÉúGDAêdBŽ®]·XÀtk8ó|nr ‘^žöÑ®® áî¦üWqxkê:oQ/lcªê&ºˆÏ—ÒìV×–n/ZKI‡dëÎòH €ý‰æ#EÓŽg Æo¨÷¼:]û—KˆV3j/…Ø€þxÄ“;*9}¼svà@e´‹š8 ,Wº¹¿¨VÔ–µ”]NB‡äý ª¬‚Þm 87”vÆ)z¾ãÙ¦8:"ØíÖ§-êuªÀ!0Ró~Þ† ½”…c8S:.­›„W ÓÈž ¦*ÁÝ3CáŠ_?ø$‚ÛP qi3eÍncŽt˜l'‘qA¶M èó»[¿#`~f€¿´1u›T(hÍ ½k÷Aú&ÿ~ÕâʤLe騩Fñ#H×04…È!ly„t÷Ñ›¹÷Ï­\Y7 Tœì!w>‰2¶X×WF_²úBòü4›Ý&ÿOš?E;Àó,ß?_UIxo±Sc4¹íUÜÖe„·¬\'TaùïzšÐõB…\ù.QðyaS¯ª§Dù'Ú"mï|Ãï0íîÆÐ Í's»J2/»¢ÓLA‘ž¬Ü tH-wŒÌølž|TøxŽ…‹ ü ÕxQÁê!Víñ'&8RŒß…²s¶~ç ÎÙ±R+¾½´E Ÿ©V–ø RŽÍyúöç½Lçâ-ЛR&`ÊM£“³¿4³ð”E9 G§¹EÎ8¤Ò¬“”Ña¹(’•éå«‚ÝÁ/i½€n8ÍŸSëÆ ÿgÛÊcûÏ»CÍfàËäê-Ïó @4ÄtF×_è¿xuÙža#g—¥Ü¿õc0Û0‘IJf',Ú—‡G6$I_äÜ…ðüÓçCÜ äîë&Áa?è&~ *R2&Yk'êáÜ —¯P·éà±s³ç©é^üäüø ô Å©ùÄ‘ˆ‘'0|íYtŸ 葇gd½Û.ï—=ßš;øHx2¾4¨TŒèŠ^Å‘»áÓ”ñ.¤×?l¿l²_ëd‡‚È:¡“šbÊâœqžgA#eÌ=´ãcûsI0[ðmN Šjõ¢fx™0C@ð&ÈÔ…LDäÔ-\þæí©ÿ}è´#‘3m`:†tAûïQ³Š«TÙÂ#èüïÄ[™õW¡®Y”iûû €Ê²¡² SZ?jÔ%h½Ó§Y—ú6=-¡sÖz§ä}Jªè†d+³‚šÝ¸UuÐBrпýøŒ5\âŽé=•ìÔŒÍ:xÓø7•£êN\[± ùðLt‰š…²¦.[«,êÓ± E&n±é¤ã(ò¹7¨c†7äáºèHš¯^DV1¬ÌҬ†-¤Úp¿aK÷ð—b}#vù«¿¶gNâð>Ь•­U'n–\1a¦S¾˜.ÎJÏ[¬Sä8Ìb’œN{ü”H³? Þ¦HoÁç‚ yÚÄYM6¿+ˆmÍ»þabÍe?­'VÇÑ´ A+òoŽÚu¾.±4nÕmoƒš7½Û*¼è—¶£uÅØ£—ñcN^3õò½‰€uŽê+.ËbÔß;üYßRi‰¾—µ‹Íž8‡à‘ æ£{ ÊY*/ïU_š-÷”q ^›i£×êá“Æå®D<,=ú°MO˜91ÓL¨‚'šÍûkõ$ Íhg T¯Ü:1³e™tº„Ü\ ´’ ¯ê¿½ày6úHÕ¿záceÞœ2`GsëÞ n©yòˆµ„vÓk™Ü÷SƒêCl˜1ëY~Ô×J ™yðYëÌ.ˆ `(`mÑÕ mN 6,u­c¶wpo“¥Âª.Nç&ßõ}eƒØÿ©Õdž»Ùqh%Ù´9u¥ïI•‘Ú¡» )«Plôì­¶m*å/%ImYöI‰#Ux/xëœçLöòѨìœ)ḴGmöÓê¥Ü‡«ÉÓ-ðŸJë]Ñ¡äöøTB›Ç3žÏÖ»9›½'vLÒ6yÁ†Ð¼5%Ó°?Šà"Ejið:AuJÕšA§G²¹ˆ«¬i(ýíÞ£õÕÚÉgA÷ѼْÑBÆö^éðÞØâò¡ÐÈØQ£›dRïþX{FWn¢@Øè±q•/GÅð¥.&_–ÏñC@ KNPØ =™ú¨ˆ³uIMš¬l™BþBÃXàzilQì@Ù zž\[b™UÀ™›­vÚ×j¥çnĵ_¡»-Px«WüdÁýYTHA˜˜˜·ðYÿÚö&Ö"|wVÑJš6*Nß{ÅÍÛ¯ïÜÖÚÍvËy«»S†±oÃ7‰NVÍý…yÅK‹QRro…²ªŸ½\Î]¹"BI"Æœ´IFa£¿qÆPt‰ˆ•Ϲô ŸÚÖ¼¸oW3Ñ/ɹʺìµu .µÍLÄaÊ5D §g r¢`ý÷àЃ¤WÊØ‘ ñ8Çúxžã„ƒèžõK¹á·È*#|Æ2c ¤ÝzÊ®4S¾1臱ˆ3áKÓyJ›-€‘ôëÒe¥Kh}ÁGbbê~SÈàn{ÝzFæÑ”Q•Þj(Ίl¦ÜÞ¥a !fé¤"ã¿9fºFUžF`—.ü—±„|Ò·´æB»cÐhM l,J_pH[6el™ÛÉ_ùcÎ}U–Œ DSGž‚A„±¬øh.½,‡œ,Qjúê瞅ºؾî)üwZ‘÷ÇÆ—4‰úæxíG?ßÜ7Rë0ÛžèŽ*Mò­Àâ{-žØV¦Ý{kK¬rDhÈÞmI?24¯~8ŒqB¸ RH„_Tkû‚xwy£+¨À¥×ôEPäÁ…‡ À±|¢³yQÊ”qÒgÐÖm²& )Ǭçoh{±ÿÉN7GŒ?<}ˆp5އZ)o>eFë¹.a-å ó¬øŸN‚¼Ž„7…0lgF¡Š dÁyw’ç;[~îU'÷Ö~cÀçU£X÷â»1]Ž3‹51ÆÄµ¦[ޏ^Yµ¬€ßÌ|š?`?‰"8ÐpKnI.Þã­Kê6€v¾Tö˜°üƒ¨kEMo¶”oW,E{px“1Mz[¹&@FTŒáã°lu’œ­oÁÓ´ ;$ã}‚¡T]HëÔ2}:2Ô$Ÿ0Ú@™Ø¼ e_àÔš1¾ªÖ$n¶Ëtè𴚌£zcOʺ?×в¯]_f†ÁèÎ] r*ú ùÿ¥ ø©ê®ñSX“¤/2´¥Å{‹”€€1ù©b¢=–Ãksѳ0Ý€Ñå”@ «¹ûs£tD¾òø×>@Uã¦É/êbEBTãÐ3C¥$ÊT—3r`´ë:J6¥ÊrBTT¢žvú¾wTÐÍEÿëWÿ§«Ù‚ôaÁ^0±1/»‰×Å`[]È’Qöù¬îº"1~¢† 3%93WYeiC»ò…ç ¬*EFÙˆÙ=­!CT¥ÁØ®ü#´öü^p1dM¹AÔm »Çõâ(˹÷ìü¼Or”Í=áw‘/À—ºÐ¨¢‘ Tˆ¡Í ?í<—#ÃøA¶Ÿhf<}¹~íö¥‘0Úi9KæÈ6?N`íëøÅp^RMUè¢g“B„:k(„&æ€ÛåYá;¶¨í¯~¶´Ÿøag¥@}¥ l¶\R_…——aÄÓñ 2†;mçO ñƒ•‰ º›šÍfºif«¹yxÓwµâÂ:7Ö©9nÓµYa¥ÍH㼦’m‰šGG}¢—ÀÇ\ßĘ ™ä¥{o&¨øädñËÔibò®Iêk‘'VJà •ìÌ¥±yÐä òhv©¿}¤×bY_Ëd%` Ò4²$ΤüâZo—FÖkå»»œ7t­¸ÌÐà {¾óÐKH&U1›¼_yÚ/*©wùùœøMò…vÁ§NQzO@M²laµ‚é<6™Ñ€+:mn6f@£$ËÈmò‚o©}5£¯çzÛí_ll X†uÑ•/…·ö ZïW,QB[ëG<αԓ-œ¤¾ •EX…_¥ÖÝ¥žX ஆ,±¨çstßü~¢ÑßQC\áóî7Ôü#Ó'i§ä@€ëp €íx‚›/Eïh¼ËölU!ÎÜi†•ËÈ"§ %ƒôí”=3÷(ÎK)4N-îi[ÁOìÔÖ§`Ä|;Òô¶Z}Ë"PÙS&¼Ù´s›€gÙw ˜¤ÜÇÞÿ]‹o“’Æ2n•w5øæØ{:[?ܘkJè:WÞr†{àê6¬âzæ·¶?„¾šM_I°×B™càâˆsË ¦’x—dçH +Ћ5ï¢Z|ïú=-nZ Ï'­¢Õpãqß`7mY5ˆ;Œ‰8éÚ4ùÎ$æÂ~‰Žé’˜ê²RïU8ëtXùó6UA9ß™‰>Ij=‰Œ°*Óc”ÐØ—m¤#á€D‡°Mo`¼”D Ù¹Îqè Zö‚ü†·Þ™ÎŽ¢D¡ˆr"æŠ(5à N¼¯ÿ\„{ûIõî@­o¡Kþh2!ª»<’¿Õ@¿Z~NÞ¯Õ':"'ÄÕxæyÄ“Ò)ŠFÓ X濚ÔÖ4{^5A©q°xÝçÌꑸ|žðÐóê@âwNëÂøÿÄÌ£|¥|Æ\¢Ü|kHˆf;ð­ÄŠJ9üï Ž¯]»ì_€g=yÕàw$¤ï ’½í2 EµsªR:ðèÒßk'´–nûFÇ8¯3ddߨ)‹Myí©5i;*à[#¿oT1ƒÁÊäõ›í‘Œ1/_†N?~׿TuÏ™}h³ê´¹ÆU_ å7J<#Áý¼ÁÛ%ÃOÏØáG˜4®,!„õ´r±ÅEÙëKÆáÌ¿ïÚ—]¿â;É#¯µ(Õ˜t Í«<€ì½xY‰’ÀcŽÎz[ ¢¶†ü×PUÑ‚5,OvÍׂromDþw‘.ðÞÝ)[tæ`*ë!Þ$ FçH2ŸeW¦†`ôžpË–&s3F‘‰O€(ü9¶§GKú½šs¢ý¥˜AÑkûW*x®KgÓ1ÆŸÚ†ÂgS6ÞU½lô§ò†«Ù˜5(xÔoMf2 Œ+µ×ªñWŠ“X!Œ½`Þ£Œ€¹Õ¦®†8‡·{'àrÞ…K9N YȾ_dâÆ]¿¤lf(àJjý!y¿Ð\Føú;íåá¹s²q Üz»Y`c±u1ðB~Ì®hæi—>Iì»Ý»Îqñc˜ãÄôð=h'§ØáŒ™/HÊ;‚»¾8f8O?Û´ `ŠÕ¨nÚôê%_-=‘拎mcn¯Êó@Ü©WB¡ ·h­ó†øŸd¿F#'¾`ÖÈ-Fp§1.ÖN‰9b}ãñ/f¤.ñ-pÈg2T¼Õ2þòy4@2FÒP²“«ôÆŠÀ‰Tù"üã B jòÐüÊ¢T'¸cá7&X2"™N1nög(¹´S™;\îab}™‹|Ñ¢ ãëÛn~ú„Ú¿b®2|z±0Ç h’ó2GÇ6¥È'¸c§Œ.ø»IC¶R~†9¤jæo `(e$¾LˆØëÄ;Æ'žÉò¨„KÃ&3øÛy N·\’Ñ‹{ñ«Xˆƒ?‹õj™µmêžO†ÃÎ_+»ReNÜ¿HEÓF›Â^µyG^Ob%£øÚ¢±EÂ)ݳԜ§Zf£²%$C!q(´H H¡Ú´8Q÷Ј“ v ÆŸW›½‹7¨g49U?uÐSù5us¿BLq0¸^Ã!ÁW´˜ øR5‰‡ … š³Ã_§Iì/ 4‰ÒQ'7¾¾YéBˆµ¸\éÜB!ÿŒ|PÂÇ<ßÈÆõ1ö4*¡^ÔtOS¡ÞâWftt-¹¹ÕÜ›|;îäÂÔá­!j̃Ÿ.þàãVe£ÖöŽÐMyÎ ËËã¸úˆå(oÚǺvƒ NÕxj3.J§:•­ÄÐf‡p!1c*„ˆ¯µd­R—k"²•òêh©\Õ± `~þ–Š¥I½"þ¸ nÿð¯¤åNZ®(™O(“V‰lgñj¾½R'LQÁÚ/*Â> pe%5õæMZN<óÒýìrSÛ²ð2Ž­¥ÏcFÕdFÆÏÈÛI›öH'B`K“£ð'²|Õø¿8ß´3ø¶ »`ïdŸ†®¨+#îwëÛQ¸°DIÒUÏý—õ•útŠíõ¿Tð©Ô¹xÃ:”šDÁíö,sÈþݬ¯­”Íôw›Áðè…åœT3»ô§—L˜<í|tC Á@\h†D÷J¼¹¾[¥nq–qv„¾¡1¢‰e1 q<‰ËXI{Ö-âH_àQ0Q¶´üؘx?ö>ÿæ‡õ°0~ÍŸsÞ¦µ®†ÏËÐ,PÝ"’¹`¼–tŸYâ-e–AÜÍ©¤ öfîx!.UgÏR_ÌÒÊ^©õ«?B¹yÝYÖ¸wÒÞLÓ? ¥¡Ö¯œfû`jýŒ/Õï¨÷²47îŽMö=§ivȤÆD„Mr“}X‡Ò«°tæèÆpÕ»D¯'õ}¨òØR¥Õ®¯Ñl½ýàÇϳçtCªû€îâ,¬6(ÕÊ’ú•X#åfàHaì~\¯bÛÇÁ˜¼òcâûçŒ÷ sjO…D`yŠb’Á`L«™ ÌÀMúí»Ž“¨úN º‘½Ïå¾Ê8€Ê lK”Ò[rI§êa=Çió@a Ýå¡)»¡ëýíP2™?x¯H6‚Ff1ïÿ­éx¾äåM+Z7/ãæÙì´FV»:v‰Á65|gká®C~Ž70ÃErù(<£N~·b+K9>ÙÑ\§FÁwzD̯˜˜÷sy`£V nÒ¾* ýâYê¾¢>¯µ"t/ëÒ“å¿XÙXϹ×]O3Èêd¿>È^ÊÅÝêž«»hEkaSÕ6ƒî€ R|æ¥Õ§/,–J‘Ï´/—r/(VA /5u>EÍù]†5n™5 uŸ¨¢¸ó³k5ŒžÚenÒ¹ïÞŸ{åF%Gä#k¤¼|ê>>…¢bÈ?²ÆG$ïÊŒoy6“Tr~ÑH÷Ðâ¿_£ct‚ ¬‡0]cÌq>6 «R1æEQOh òTºnʈ …©}yÁ¤),p­?"ÒŠÙAÀe[¨I°”º˜…•”­˜¬y?¶Kf¿Æªª‘Àp“9%@¬W~ò8i‰ÁtÿzݯZ5áMÜ]È%ú{h3¤¥&ll{m´X]ß2Â`‰ãÙŸw¨(§˜³‘‹n‚ÍHƒp7Ú°4@k—Aü@¾[ ­âêu*ÿ«å´¸k, Ém¼‡E”†Ž®˜\ì¼Y/þLKúÊQN/ž£ù N&’>ÊSZTó™ ¦së-øqݘåñi:N öŸ²Í¯–Ø~ &“ÎÞܨ°›1¥äÁø.Nÿ^²A ‡q`DÆÅa`·yÄØQ‚£óþ²Ë4y¤9íO®íÊf®Ðµê=ºgDOZWFÉE)´aPF¶,êJÛFFxˆÞ`.)ùKö—‘© Ú9À\þŽZ8"ö‚þ¬ãä0~‚¤w@éQüuD­ÁaÅs¶óÃå€Á õ¾g€â®ÈAèƒÐ}I° «1¢*uý<`øþȰßevsØQ­lÝÍÜÓ[/KÙCÊè(þÃÅÙ½6á—E¾`€†.ptœÉKšã:*#^us$¸ñÞìòø + ^"I ­b¡ÇeöàпkÖ ÍçÎÖ}9,Œ·²YP“>Ÿº×ø¨}4cC ƒëVé­8)%#Ã>f–žcíhÐjACÑŽ]æož«ie4–ÄgBIJÙ:5J‹Sïð©›wƒß$d ­ÑA¹U¶‹ÒT*·t ?÷ÃUuf”ú@ìOÊAèg4µÄE»Ÿ[vq1g¢:;Ö×áéï}¸q%Mq±r¥S¨w£þ¤Þˆ›¿T„!˰‘9ÅÆ©|D¥ªbÙéôÓxõß­vÄéϬ/(ŽSÊÌÑf§GÖ‚RRJe:ÊGñ2œb9•XdÓ(Á–y¥ã#¿Ûv°ú³xüÉiŸtuÅ(tñÙ˜ ÍΣõþïºó ó=l@;d5ˆUc óÑQð÷ˆ\u©1¦o^pƒ ¤²ïn¶þï/»ß‡b÷”NÞì7x}Ú½!(¤‡ºþܬ›;Ì1âŸP pˆ¢j=ݱÖÅÑÿçTcÍcK™ù·Æ¤d•@Þ·Þb2f™ˆeÈž´¼^Üi#Ço)3¡l) ‰Š7D{„Y~±!9©VÊmg»Øª%ãu6¤FͬA͹µö0Äôh6¤¸´ýžZDh~?!¨½–*‰QÍ}RtQÇðVˆQº‹šÇ^‰å®éŽkÎIÚÖg=€,—…3mñš†™/J;1ÆÙ²¡‰×ú3ëíJ8úkËêvH/ËóKŸR…`3.¬©ÑcuZ=Ne†…»/a›bypÍïÓùS©úËAHæÇ!Œ$V–ÉÎ@4Ikq°ÀÎì›FsúRGZ¤¡rŽÕvªáÌÌGjóÕ“ ø©}>å_= Ý+rL‹þÃOâ^§•ŽÞá‘åiÊ¡IYÉçiª¯Í]ÔŠÓ-|kw‹pF­Ð1b]@Ï 4XJô‹ùŠQŠˆjÙ »õñt%$êö2î kT嬷¼ö †&¤zs7šâ§Eo½*t®;O¸Äb!‹ß^MZ…ËÔ=! ¿ ÙË 5žåœëLw xìÄé²\mÜ”N-TUØ Ï¸ê¦¯fðKK=-Ë¢}ñq–A*YÀÊГ„ßçÌ—s>lQµá!tëýœZ“¾ÏzîÛýÀYýZÕùÍz’ËúHa( øö£}B‘ÆÚ(^ø,±Ë<‹Ôë8LÈOBËôÖ6^T9³c¢táç JàGì“ï*ê°&-ïc˜²¼âèí»¬Ç'q¦­ét=ÿO»'c½ï&NÅüreTÏ·½DÙDaiª,ãnwL¾Âîô·È®WG”¯bH`€ñ:L†¿ “xɽ“â&«Ê¶øÃ&é_íªX [!F”ÊöŒ$—¹p¤‘6ïð+eru^ÁMiÀ+i §'-ðåwìÌ¥«°’Wµ– >Ї©°™õE6l¤kŠøDE¦h¸ Ö 4sAÑ)ä§’ÉOéÎ e‚D~P—§à€?fºp¸Êù‘³ßÝIÅÕå1¯‚§ 4¶ÞSü‡Â7´üSßÿpß$Û¡M*Á# O¾W. !]±oRB_Nc_AŒÎãY8gÓRødÅnÐZR: témZÿxGÚ÷Úðl3¦AØ’ØŒÌ'ËU_ù%ÔÐc‡_ÕÌÐãÆ-±Õîæw21²~Œû™ÃõBGl×|M+œ~ýmŠŽäÿw™/ÈñcÐjî·×²T=6¨åØl§Gä†IPÿ¸¼_×›0Z_?*(28²EbFVÄ2*?¼‹(¤F>)±þÐó¹¿â·AZÏøA°AòɃÀös/s@ÿF¨¾tÿwi[ÝËàöÔñ½ËIJ^•àrÅÊ'¨…ú:{¤!Udãc¶Fµ›5f…bÄ<íýú¾gÆ´R —ùWÿmb:4¥U§}0ö}vðµv#gÊ­\j]¦´ˆ l’ƒ7‘Ð`Ð0sL(Šå,Hˆ<¹Ñ˜N>ßN-ãë¹:³Ø[býÑ¢àŸíê¶ß‡! ˆT¡žz›y š¡ÔgÔÉ'›‚õhNâ´JwáðúËHð¶Oº04y÷Ãu2‘_Éø©*´Ñ0»m-«åËËÊöï~íì·§‚Œ“aJå-,3½z#V•Äf>j=øòņ>(p:¤;J˜Ü(G²ÉÎ3€ÏçI$ÉàpÐ<”šÌu†%æ1g‡ ´üÁw@Máé²Èüµó;üæ-×uë‰÷¸¢Çš¾ß°xÎÍ@CŠ:£–]Už¹õUÁÃn!(Ë(r˜ˆMâü[„,’v)vtï îó%Û¸ÑxÐ%¤SqÙÿFáÆ-ã0HQ¼j-¸×5é‰h{–«ô’Û| ¡¯ErlH9Y¥#—.Uí`­€Æ×,›C}?¸ˆ3¬T…å(‘)ÏîÊÀ¼“I‚y•q aÀVOKqªçëMHdÇ~Ý%bßìæôwתÇâ±;W˜[åç&Þˆ¼<’,cw& '°‡ÐéÚ4Ëå}G-î3MjD€}þùˆµC“q&^z¿åØ™cíRMó!“OñegsDVÆ­pË|=]Kmr®BCR•ü1%¤5>ÆdBÄ*ŒsÚXhæö#Xf!ÿê088Š+ WMÝMd ç40d=jqûò õ»Kió® 3Û™8œç²‰Â³&ömŠH$¿Û“?ôãBŽMe6X’N6)7ÙÛgâ¿ÿ]EÉæô˜i™2çu2LΣ1ø*M]ý½3œá 2¦‹aÜîýdä$뀡þh“¤JÀpîÈZs¦Ñ:ª˜“–•Ö‚OÞ…`äH–ý“Ôš;°jÚñy¤Õd“þ³×A¢*ª# [‹B˜ñMù5N‹Ëf†Â4­™$Aoy`o*€¹Ÿ-Ö—Å®ˆkCg'’üÿ¸jç„ì$ñrŸp®aV*œô‹šà ¦SY?2­—áúFχí"TœziÁk¯†sÀ¶pHÿrôž5|%r¼±!>xj³lïË®Uæ‡çÝOÛ~¥1ÕØ4=Œ¡½¹DSƨ4°7×yå’ÏÄBµšžC>z¡¼ãò„Ðð“W¾í½Èk"Ä{µ$ Öá KÊ3ÕÎæ¿Õ@XòÀfJ÷§*‘ÚÐ- " le›ž§Ô©C¦ZyAå27%Î&Ù!p³“(ŒÞ¡Fÿ¥È[%[¸xKÅ%ÀòÒœ%»ÜðÕS©›[z!®†&‹Ž‰_»ì@¹|°#žM\D41,ÏY_Ÿ²¢$:ªå,ùd.­Íi`ÚTL‘’­£Ãp D•ž`…5 °äEù𠋨Bö Ìœ%ýg``_ÈÖš´‡Ùò×]%+ßXYú¢+Ý´+rÆàËËÚ¼·úuçu6.Xw§È'0²ÿœ—ï] Ÿ5åßÝú}{Û“Ú6Wêñ…“3JžÚÕÐÔ sJO¢t %ìÆâ¢É5øC€Oybnç:"XËP–*"qÙÓðôÿŒB7{™…;k¡A¥uðX~ÀEšú4.a`Fû÷¹« MãóOÀé¡Õ¬ó“r¼s\Âtoµ)…ýÙK´lÄCæ|kkÓäFBõÕ®,\™¯ËÚ‹?Ô׳±išÏlŠ$ YýTø·œ:±1–.¥Ø6SHÕ@]ÅU„¸<½ž–îÃñÑ 6ƒbjÌ1³¦Íü6mÌüf ™‰Â§uG:ûlÆR‡šfç¼Ù…2®´C/ƒáœÛ}Ž`fNÈ'ŽùÖå <ïXñò…”h +,‰Ë|;¹©Ú¦ ó¡‹p~¿GǃCI*>°G×òß9þÒmé}i.’aeB+=ˆÇ ¸À?•Çya­eÍ*+yr,#î·”Hõ®'kÞ5€ž¶¨RÆò#µ‰¹¤xqÂÙ{w{jWlì:ü Ë|$tÐ ÉÙt¦îÌ2e¶'@ë2ÒççHŠü. èì¾cÊRŠ‹ŸV21†Èh2ZuœXø# å=龃žùM*â>¶íøŒ¹ùé—ÆU 34[©}&éEÍ 0ÔV w„Oå¨-å‘@𬟅îôÄF¤Ö K‰÷/ËŒ ~=a –·ô´ü‚ÂÑ>Ô0&CÄã( þ•§jVœĪÓ+«3ö‹Ûº Ä4¿¢ºÚ(Ç˸YþJ4£¬9_ªN!$“Ÿóaöø ð"ëmÑèÙP„Ù˽ÔèÒÿR;ºdKø}mZ¬‘óp.Ài|ò®Ôt7~õŽ•—æpžjxæôg!û?¯^™Ìw· %qÇX¹qÖåº7šb§¾f—·ØhÔ$cÄ)ãòÌL?®“1Uaˆ%…¦j’JÍyòô@ õdàf\-ó¿+o“Ì‚ƒ­þYÆ5 "*,ÖÛåê¶ǹBÄŠ“»œ‘ ‰õØÎù³â‡©uŠV\ÉýF>Gb³Ìœl•3™rƒKßJ˜x=óÏ8i0’à¯7Ûx¯ùtUêÁËgȻϹÝ9qŒ¼Ÿ)}/î~÷×fšæ6ò1¯ÿ[-ñÁº‹6åå·I‹Êíå¬U“Ä;ÙÎÒ×/=î x5Ú5ýäSta盦¥êöI‹ wä.¡}|7›¯|¬:»3º]¦+£‘óùz­©© mæé²-ˆ¢¶î7Ø Aj—ÌRìMáð§#oÝ·zå^g@bÀSj¸LÈœ§I9âåšÒg?3]2KÑ”ÛBþÏ.Þ9σ˜.#ÎUˆ°IÀ9²û«Z)Q›”Û ûÉàjY+Š+”Ô×i|uÓSF¿%LlNà3`åºw'w1oE€p3G†\;fWÝÕã3!“Œû¬Äò¤È6–È&œŽœ×+^/ ¼¿Í—w憽>²õ×nÑMiz¶š?W"cwë ´0:@paÀí©ƒ—Aj­2í³n01ª¢4.–êÓT9ƒ¥ï×¼¿žà èïj×ÿ&EÇÏyŸ‘5Úì&òÓæè¸M›Ñx˜”˜4¥øÏJr5Dv|ùÌ•Ùoì“ùí™\ªÛÍfœEU=R®FyfÒPv »fÍÚ-Œ­.7‹è=¾…F|†U~jn4êC‡§–Œ‹ð^ÿ}ÈÚˆÊ/rñYo…ýfê+B¾ÿV²kã±ÓPRïn©Þ¯:uuáA{µ¡ùÏ\8§L6ê .Tã®&~WþäºÌF¬ÒžûòÒb [ËÜÔe÷9†cal’êèQäo±å7@埦ä¹0’…ˆzϪ5üGA!¨û‰0Ó$Ê­…Á?¥¨…¾ýÛŸmÔ”(~rê _¦š~ˆPëYIM–&1 bjj4è/qÓ¯ØPÇI,„Níèq”³íñs 6ólhk¨û²¡[µp³Ü݇à–ðIŽÃÌšNCÏ+rjæÏ‚9™º1g{5c¯y“‹âj$jþŽ '´â2:†n’«E¸Èð“‰ÝNŒ´ò58<¬ka^<‚ cipë8Ñ?É‹ºùc´}De"ÆñšŒˆrGb é”ÿb;US~#x2áfsõ6åG(/™º~ ‡“FØGbI½$«ïƒ°ÍV|Úë÷v7íl’7Š^åO±v¥r@ñò5×e <k,Ñz—2Êki/)#Z“3ƒÑ››%+Û•36ªTíÛaµq·uúêôÌäŽeâ´VTn=ñÎÞt)·:\ýÆE:TÙÿ¯ôÕK–«w &Ç|£Åàç‹‚_ƒ ƒ‰ñåÒŽ ѳ¾tI\ MŽc†[Òùz"¹àûêBK] ºÒhð-ûK¢– [çøøA üì@ …×½‰q^`öØ“Ã'„äSÛ.äõuˆ¡|z+ù²ÊÎ…÷-@Ú‹ð RòlЉ_T?sÚ‰‰%..WÓ*¿Êb9o/?Ž@#qh£Q¶š™d?ð+TÁ}\ˆ!,ÏEÔdü5WDè]çðÊr^ Kr°;)™·¯›ìd†»†ÝGâ|œz,/ÛÝš«¡ 2fÙ-'ÁPüîŽÌ_Úo×(™Aðãù™¶¸ÁTž[ÃH{Kl‰Q¤5&¢­“ºž½ÊÑ1ØºŽŠJÑFU­.V­Ý·\[7¹8<ñë²Ê0uŸh¾^LޝƒYr"l" Šçè07:ÝÏ•ÆW@έ$†X[Ü`D9Â~ðµ _¥q®ÿN¼—õiYK¤žþè¶B°ß-^§§f>"ˆ[.  /‰¡ŠÚ%¦?Ö›÷q´Jüû¢Dù$¶‹iÓd€¾í:wâYÖÛ&x™"DÞ)ÂG„»kÈ.­£ h9Dó§ÒÄ U]‘ÃÓsÉÑö·Hq&S¸þh-ÀRíþlÁÌŒy t5€‘:p±ô©Å©eBi)Ÿ;<Ð0B#Cþ Sˆ;†“^iB£ˆ|†ã‘CPð{ºé… à"G@†šž #?æõª½“.xË^´ £­¼oqÈ; ™¹w®Ýá艗¦ï–âÏ [„‰Ã®].ÌHÄ& ƒ02’ᶺçÚoòíôèS²;ªh»ÝÀgCáðþ¬çííql,BJ#îNSlÆuógOÎ[³Y˜6ÀÛž~ÃÚk­VÎ*gêÌ–—¡çÆüÛÚ*Éó˜Îœž×Ÿ ¾A§ŒêÐ0>%c' |‘›®£Vp1j ^ZÁÞ–OeÊq“Ie[þ«µì€yú£­J,å3ÌÿSÒ”ÅDù»²c§Æ×è$Z´ ?ÛÍ¥EÁ¢µšåÕ:y_Ü-A9 Ò4 6dýmðP Å`ÎÉÇ602%¸VÆæ¨BÄÚeYnmôRcÀ-R\Wí×Ú³ÄÇNj……Öúì*³ìÃ+™Öób;¡(#ÏmتW¸g©ó"pFòTeõß§À¶2ª wĦ”Ú,¡wa´]¢z­-ãuö0\zÔ•$õá\óÜÿµ‚ À¨ýß`?|™3H¦ƒ:nüwé·X)ž¡¼ 1¿þ €–Ò Î xÉ,¥ÑíÆæâÚо2ògÙ×§þS¹Þìé¼ïŒCT,byC[Î’ ¾b±±57JÓ¸è:wôí@syòü%ßµT¼»L«%œìOnÊïÿÃ3Ýî”H‰Ù(ªû:ú¿Äê`NHc:‹S “ßÂÓ륦†póÏ/TŽ"|†ÊB}N+8/‚8‚ÅÜåï’õõ¹çÂæ¦ÉÒ!Ç—´§É#¯‹V¥ÁHúÚW™sêöè›?v÷ªLÿJ¹y^ŸcäÅÝ‘ø­~ p^]FWFÍœ¡¢-Fu+½à¶—Â$T¢ï‘èŃË)<ÖÒx&çwèæA +š/ð&(,–½q)ÆHÅ V3Z£8õ/:œ°J:å¯mô>A.ß3VEÚŠ‹´?…Ñíi«>Ën c 1'sA²øê?†ŸZæZ·¢p€%òp¬|.b1ö¤úî™=æhÂMËâårFQáç{{áÄÙüØ›¸– àºäò9>d$Ó0xv}5ƺgŠ˜à'_)%’𤨌[8„ˆ6Æ U7TÜyoGj$'pl†²e®ùàœ‚UkÕœà=¾Ï—pµ @2’C“ûôLQº¸´ÍIŠ*4uá40‰Ýo@®G.ŸÏÊi.3 ê io®§í-ýü©¸¥Ýûîüt7GLÛÔ½Á Çf.t0Ñõ»°7H/ð8qr®4˜°Ë²ñ1ãwSkÜ<ùÌ#Ò d9—ƒ»Ü­#¯ú>½ e2œã†; Õëͬ€†¼çWFÅ1þƒñ¼=”ã ƒIƒ}“ °p¬{æò¿u‡[ù@Û=›}÷f:µ½ìô˜_ÃÄι\µ’€yC†«Û%úö¡TP¥{HB7<á¿™j€ä^´ÙüþÄ ¯¹»u–³l¹8mQ:ÛŒÚÆ\lµ¤ÆF¿OwÉ òƒà×Eïà‘ª•b—r“:bn¨K• ‡«pÑŒg«è;=¹½Xûžâ—è Avùën‡šÆ~Ÿ!\©—–K\:í«ŽF‚`u°Újå5ù¶î«’4‘a«H_ÀDü¶MÍí8?Âtß®ààï¤&~C¾.¦“wÞÌŒülÖçO¾â~ö³A¨cvMëPJÔ±QLú<ŠAÍ„¾ Ì4Çq³€ëÐtMæ¼Ö>dCÉgBF*üWÇjÿKdŽK_(Ñl&ÃÁ¿™…p‡gµÀ#Ûk±âWmƒYk»óמּ k”Yb¬¼¥°1º|ð„Ñ ûÌÉDMQJ€öŒåøÞJœƒÉ0Ìß`{ÐM€4ŸÅmóo?{ERÌvà´¥ ÆpÕ²>‚¶mÔSÛÚ¿D•¢¹*ýÀ.¡[odx5˜§5þ³œZ÷\UûÏpé#{´Ò%³Wá{LDøOçXA¹Ä«dÄ0à7Dr\`×7ï5ïËüaÏÅÐÆýâ—tᑳ‡rVó9yn¹¹neœJeÀ÷^Ág€,½ìú=,ltßO]ð)bõ‚!ãÙ¹xd(צh³ùöCËUp‡1kˆ3@Î|1´,÷s:{ÕȤÌùOð,œ5ùµÌy>Z³òãMjøž@|SÄ~.ïS¼AÐLãäP¤H—©.#í)ýÈã¾g8h‡ ¢µ‹AWmø#ÑNª·-™0#‹4ÆCÁïÀ“‡‘±$žŠtO?•‰“OXK,)mãv>^&š¶Vþtù]-®Á\tz¨rBtö:4áņ—´‡ÆDóÏÍ“[¢g%9ẘVŒN?!(qó¢ó(7ѳ®×û ?kœ‹þ¶î¾¾´Ûbɘ0/Eñ¦ƒ¥™Žñ·¼KÀŽEe9u&*~gÌcûYgóÒbšÉ…3CäL®@-ˆ>ER Ì@¤ßOVSs„*ìv‘NRt¨ÁÓ·øë7µ 2’sð}¦g'ð¦{~ˆØ£ð—`É `Ä47©vzµÓkÉC“—-sŸÊäÖ‹btýwºÃ;)ìÇãÊ„„§=ÚmÞVÅ–î{æ·Ç­Ê’iѼ cFc€›%ò X›üæ)-_Rj8¥õà|"&¨ÑÒè¤e$Ô8ÑBO]4aú†æ ¡zêAS§­¼‚›Í6ü,(À.,LÚl§Ï>ÝÚèÔƒôY]Ø—ˆú îX¿`t¢Â Ë›ëK¾&®ÊcBp¼nKüNÇ-¯S”"Ù .ÿqË7Xàä ­o0ˆqÒ¨{cܺ<"6)‡ ÎòêR¼A‡lýÁÛø ”©@À¤Ð2ÜÝʪ¿Õ‰L‰á '¼hnml>ó|r{"U•y zÜn,>¡W§±2 R¿ ¼ fªÇÃìÐð1sÑLS°-»DÚÅYâRä±oâŽëWy°Þí…Á™j?oÀÓýÖó 72pζ$ayµ75ÞrWiŸtØã‰>J?%pB­Ÿô`ùoå®^¹iÜÒAUvµö·žî¾'¶hzjØU.fc„ËÓéü¶BõX,˪»¨}q"O´ä9îƒbfM¥ú•ÁÈÐ/ÃZÙ-Q^®þéësJYÌB5þ7ž;H/1´]dw19Gä_½^Sw”,ÀñIy"W åë‰-Æwug€h×G‘J‹°‘½fz,ÐãÛj)Üë—[T/c"Ó236¶r›¢ÎÛ#0QaÇ_®ƒÆÉ¦]»®îÇ­™¥„^Á$ÕemfΞp{qTU­ÿõK¶.ªo'Û–ü­­öíßË%¹ÝŒA¼_¼Zt¦á!eMr)ª¨sá4`øqƒaYÀ¼CŠýËÅçROá»Ý„O7ƒÛ ìȬé-^Ì%ð±xg7ðWûJmŸ¶5®JÅ’×—ÅÎ}½À\ P7íÝ*É(Ô >rʸ‘mä¹°Âðö§¥Ï؆Úg-‡¥‚Œ Ê š°ù¿Š÷ló‚:fG9ŸîÄõ¡Íï›Ú4Ý7«zÖK"d©t¬kv!‰ ǽAˆÀ=õ,—Í1ê~g“• ¹ ]}™Iø²8ò ^™÷øtÔü×!TPνŒyÕ¿ïÙo8î>ÒÕõ¬Nœk¢°E9—??ÈsÝD( êI´iüöõÛžÀwÀû;sF¢¥Štו©õÊVùöº‰D/yúêÒÄ®5CO˜°ˆ.–kæ” _u9å¾§ÙMŸp¯k¨íœ‹HÒ‹—@wéýærò;¢RH3æørßHVHÞ:ö°ä˜»³jn”ܘo÷±Ó#fJé,ØB¡;YÅ’×qR'p0 åælvçmŽž¤ÕXì =˜¿8hŸÔñôËN¿»¨£CCG¦€b?Ô^ôÌ€öú3yhÎÅÇÒIª ¨£0(×ã¬ÇtT{q§Éì¼A€8¤¼Öªp8þCÀŽl7>í2k=ìê;Œ¬ÕËŽµ–ig¢~·¬:ÄK…ŠÉgž¡ÐƒZ[5Ó¶ø.âzÍj8ïªoåMB+k޶Jl}Ów’¨»¨(*«{aí3ØÎR#ºò¨¸\f£9£)…P Ç0í® F“üyE\ôa ¤Vxy»sÑ&Ž„8;cÖÎ+H£Gx¡ŽŒ÷69Grµ^Ædô®,#OÃ_uÎ"&Œ`‰Æ³öÕ³_['Ë`KÉe’*€…íÒ/h㕎Ñd\ZPŽÛÍ8½çøq¨…ÊÔê§gIÀl_È ™uÍ’lãQåËC}„D²ëГT“uÕ¹õðó†W©¦­1öö8ï0¶0&ßáÄofÂÝ4È­¯ÿ;z$¢0A;~Ìî!ML¶Úõð}°ª’£Ø»ípªB>r9ZbÝì¤2ÝDrlïC¼+`žô¡Êxü)ÒljÑÂ5ô~ŒNwÌ9]LTUx®©Pj|•l={¦N¾_´á®Í¨º Í#w¯¶kæS¶©?êLUmd9«îð¬…5d%§ø2?ß„#Æ~ùùÝýÀÎv¹Å'U^ñã—7ÐFBƒÍn0u÷QìõÈ3×R"/°ÐvlYÙåmÃtv;)Œ7ÖµÂó[+ÍW–KR¦®X-” ”,Ivxè…Œ“ΡwD;™ÖÀŒŽ‰ÎJâÌÆv,/yµ3&¬K¸œÝÅš–‘¾Ñ`ýŒ Ø nÄ\ÔÇ€Æeïø{æð†ýØuð¯u7õoOw2&ºø»÷t$`Ê©oúšt¤öDsRýCGI™º÷³€wÚ¸´0Ööx²ð‚“búùØÑøê~Rúp¶TS ÒÎËP€>Pëη~‹-¬“å)<ݤï@¿/ í3fJS>…QÊ'NØMÊŒ%ÕQÕ<0)2mJ%Ÿ÷·ZúaÂ<\l§H®úÛ6õ,9?Nû ôwW5_«;o†oêÐF3¾©1ÚÂX—€9ñ¥w@· Ë ï%H70¤ý, O]g]öÆðTGÉ÷°Ê㔂$—P}pº?ÖòU¢å2 ï.ÜêGù¼Û±"ÓàkWu¦ÝËu¾¬DKqº)‘i`ÎlÁC“ŠûWjkyë8g¶|ý˜QŒ³6›À‹OcŠÏ^¡b‘ÓÊv™¤hè‚wvšg$Ÿ~oLP1»0齯c-²0Ž·Œz¬Âù`Òü#ŽW&ïÏ%JW§†[SRâÎb%n¬}˜›PtÍçºEÿêÔmž¶SkÙ+#§ãÐŽÊ>ÖO f֮ǩ2•èag ˆ/ÂÑyºoXñÄŸ+Ü(—Qª?áG*ßïÖº‰@³ˆçª•‘”¸ õÖIx1œGË{?®Æ!êFSÂ2IUBŒÎúå]_¶ñg¨šá \æÿš š|#â ±¡÷»¿j´ØFb©_W¢äP¦Ÿè !ŸÙýi*Y;c¬nŸ³—_¸2UçGé5E+­öJÞéãÛæ%n}*̨Eyð°Ã3³Slpw²A»Lý†ü™Jhœ•½5ЗYö¢#ÜéN¦GåMFÕ;òKÛÇ‹+MysqG•‰šR‰UúŽàL]›zt—\öW÷lD¬{¶»¨wÈ.×QTtéÚËxÍ@z‡˜|&€NV.TEÜLa§j†X¤ÌZP®‰Å å°·ž]4K~ëj—ßv×y5ÿ¶)]ö qoC§@^N—leë©23‹,íïIž[ðeVïª\Hw±¼:‘íÛ:FVç ƒØL­4 .«bvk- 2®ØD8öƒ|lBOÆÒ/‚][Q¨X"¢*ïD8K¦ÎK§ò#)Á²Î%.ÇAw„†¾Ži¥>V,jãÔäüÉ(Ù†(nóz3ÏB<¨kœŸ<Ç6¹Î0›ªÜ=ÿõkt!®'&ñÿŸA¥BÃÙ–· r„2•)Û³n#rî#VF¦ˆ²vþh2WO„ìà,6Ä"³pwãßPF)™÷^ –•é»ÖÐp5R;KV: Iϰ9Á;a\ ÄåMR#`¡ô 6 YÜ™G+ý~>1†öÆŽ ÿñ£›\¿k×5“X‰Õ}8ÕŦ†`J†Èóñ¸¼¤åãâÚžm,%1³„¼¥ƒ<ËQTn¶1.XgE‰ÍP’ᢠꛡ¬7U‹2.÷ÇœÛéÔÏŸÃý6NÑûjìobûtÓéßh—­Sª9Ônzn )xóÂâÎV¢`ÌJ‹ 6u·Éhâ‰ËS§mqÓÊEÜ )4Ö wpWÈÓLÀº 9ö“Þ¤fè H×}Âi çsÝ38õ2ý¿s~eß®ˆÉl.Vc. ±ZŸñ@3²$žg/`ý¥ !m½LÁlö¶‚ÕÚùP€øS´-+޲ö¸ NMåþg3?»ªˆ–Å’<[®Ès®’šŒì u>µ8ó$uÙUܹ÷ËÖ>~<Mœk[’IhİΚžÝ¹ˆÃł͚ÀÎAÄî~öÎ_ñŒ¼êau–ª ;ÔrM|>#ŠçÚ­³d=žŒÁ¼’šªá-¹«™VüèÏö(Wê[‚1° \Gu4ÔFR$¥à RXÙ¨zÛ“û‡¤X?]X¹A÷¿ãõiÌ7Òê;ú†€ü)¥Ìóùú¶¡-ÉÿŒ´Çñ bÜàRŠõš\ÉSÉ¡¢ƒ3¯å—³¶N¸¬"G)é³®2 VÜsZùMJn„ÁÖï~ ‘eZ,u4›ùªv ¨9€’Fe.Tÿuz+u¥ÉâL¤e©ÿšeh­†°ÁAäA £±Ç’æÕ!³„L D½ üѶUa+íÅgî8㌙ˆÛ(4ïØ1U¦Æ†ý"õ½Ã- ::¶EÒÉ3E'¤*ûÇ+»œ¯ pw¥X*_Fp¡ÂвüQœ-™Ul]ãO³è¤{ÉŽŸt1åi7¼à†€"ÓW0¨&jDæ ~2¢¦$Bv…Š æJñsæ¾^MZsb²°PЧE?Oí!Ë¢zÒ´»J ߊ«Äv:½¦{ñ~d˜I€Í¯×à%Ò =ÍøÄ\\"o®Ù·¸ˆ?Ó€‹W–¦5æ I«Ío< Ñ` ¸îE§ bZÄ‚‰k_ÇÊ58ÁúVé}2´HŽÏ¹q ²¬IßZ×h÷Q8ì…*)3‹”¥J%Ñšn>›O(„ó!s[¾Ržs,Ñhô‹A›å\ÚÃPM²õ¬ ÷w±þZL%¢­\M Å¡¤uÊ&|ÌS­òÜâÒÇU¥‹ŠÃXj-´ÒlÅ9®üà ±Ü¹¿µOO™ w%MP–ÌÎ pÉ‹­àŸJ—ãêâ¦Ü)#¸Îž3Ÿ„û­ëûÉÈ„QD‘?ó+N[—H6t·x¢ªpseË}«‹0Р¡Ýp=ܽTé"×9)_ÞHX‰Ä<¬e~Þ’@CC´ÙbÝÉ›6G "&‰ÁÄÛ¾ˆÕzÔÕž Ÿº…Ô61ÝŽûÇÒ+FiŠ:åDÈ8HÆ 1Õ&s”›ef v-@É+!%(Hµ93”A_S¦»Miª…§[Ê\ëׯôœ<ÖÅÊÓ»³¨Â»ŠØwf§# K§Ëß©ýº^“}a¯Ö)LÄ)£½B«¿êÞož[œP‰‰æº©”}øù ìh÷-''ÿ^ajÕ¤#’!+qk‘(ª×Rs-};t=–~ÌäÕG’?a‡Œèí¶\Æ {†ã‘;]Ù©b+üÒN1Oÿ K:Mr˜ÃkSßz•×¥_;iɇHɽWôñVÅ|:˜ï>£Ô^xsTp¯fCÀø&b¾hæöÁÚm؆Á©Ïü6:7 ÊÁGîÏ]Àç@p—¾*ošÊRŠù‡=4è¹±æTnñRî÷ôô¦þÊ­^œ>Ö Ây¿Lf`Ô)Þ_ãåyþÜZùM…ÙþÂZRŸ§äèß©«„±gØï¸¶ÙA¡âv¸Y·Â9#§˜‡+-²`ýêŸ_^¤ÚH,‘»”`YÎWô‡Åê®·‹ <Š|gO™J»}\ºLÒî¢cŸ3Sϰ qε·äý0ËæhûϘŒoä~‚ó?mÆI£·\2ˆ­c2´µŽAþ³Un LsÞæ.™Æ6¬±B`wÕíÎõgjáhqãW—/ͺ9¯ìÒ_ö^òÀƒD1¿Ñ¿Ê@B¾¼WSÅ´‚ß (à!Jì 2¬h?ጺkzwÛð Gç ‰¬DúRA¿±ßXG7ô®0ÿÍB߆FêsƒÚŠÐÀ*҃˾X/qXQ–ypGeĬªpËb¦$%Ü`?³¼n9EØÚÈŒ)úøI $µ7Â7Mµ?ý ¦ƒUæÀ¯~â|:HÙðæôíIëŒRÄe¯C©R¹ N3éŠ Üµ&ÄÛkËŸ@e á *½ítâê¥uìµC¸µ«“!5÷H (×Ç®S$9“RÞ‹qï-£³X¹8ymS>ßEH&¤^õA=ýáÈ#9TkÜÀšDx>PBêLÐseuÊJ2™Mˆpm_ž½{ÉêÚT¶ÚvšÀ%™½+A´†Ž%\P€÷ïïsõ0_:|ä±@b/kºö{Jò¦˜´´öݶ GÊp¿¹ýô6µü;®U.Ž›}yRÈÊu!Œ(ª½«Ê9÷¿gDã|?æ@YÓék«â<õ¹¦·ÕSÌ5çüÏñÞ¤*’æ YÉh\ÉÊBÑo%p?E—Ù¦‚òà_j7Ûþ çÿ· l7 Im­3‚¤²éhÐç îÁ´£à;Q¿‰7:󦕶:Ç-ïäòx´1͹V.@*Ë×@Üì¥èX‹‡ÕgÅ9XÓœt 'q•`ÿ6ä´”rCH±“DæƒÖìÞ}~.$M;©*ŠTÎU‘¿ì Q¥6%¦Â³dK›Sã„•WGõÇtj°ä: ãÏäd³>CÕ®"ó=î)ã^Qú¹Hc»qw&Sð,e´Õn‚œ¹ÿâ:\’ev«{Â"¿¥’µEå–JXóeîµêW÷®ZòÍÙä Ö0'ùs×> Lø§&ÌWaFµ°ø÷ì/Ñ~B€èß^åx*¬žùµN>sõ9æbj‰w.;fÛrÅ'÷ÏÛ}Ë™Ü×Q.¼W­’±ÈÍÝjóŸã¯ÙsVNÞöq§ŠálmÆ—M[«fs/„f.yt;3¸80“­– ø~NÌ„ùúéúåà¬Éê]׃NÞ¼ ý;Lxdf£ó=>ÁêP”ÑêR@%ý^Ô»ßeÒŽ£,/qP¨µl} ÒÇ¿?L!Gm¯FnYêX•Ôá?¨Ù¿Ý’² ,Ð k^ˆ“UÁVÓY• .›U4'Nã¶òÍ_𦶩³b¾Ï€ )üè²Ñ·˜£ç‘È‘JØç;êï Rƒm‘W'5ÓÈÎ4‚«ru:lƒ—É$óc[þV:<×ß…õ„H„­>éKÉÛÅYú ï¯7?$IUtŠšAœy¦ôùØÍ}ÇÚ­16O!«N#'¬•zƒYe÷þÖƒ(s§ [Üúo¨Ö†cÉÞ|ßúKÙè H<¬xÌÛÈ'ï\jX^¦*£ -­D›ËËþy#•ij0|,=*’R‚—A|bb†¡ßÓ[\mtyì êÔŠpsEëšØ¯žz¶ïeñCºò\nÔAáà «s§2ºÎB.ª‰hê¼ *Ø pæà}8‡]‘ŒžZ?¢Buvèaµ‰&å)•£¦ å{š€}3†½´†¢[)cÐÌs›úùåè¶Çà‚ŽþˆcX®THŸØ.ieZr æ µf{ÎÏêùp¡®?líüÊ$uø÷°j%ÜåjDÇø)kó®¸{·»ˆüÎü}f¶Có —¶IŒcFªx–|ǃV¤D?nžlŸåèê ¦˜°ÓY¿|ÑI‡ù§ý&$ʼ!4¹_ˆ xêéëY7!*à‘ã:Wsv£çÃ4*¯rdÀ{©kå¶²_ªS««ÞØ6rÍŠiØP]Ñ‹—²m'’‹B­}7¹Pfp~¬½SV˪}ÕÄa€˜‡[WØq ò@éè\Åìl=0ªÃìréLF€ÙU¶³Þì'ü~šõÂ\UÞ*͆øÚ3£Ù n¢Ùþ“y+b½˜°[öÚ&Q×·Fh.x:Òˆ³˜Ø ;Ö®•Ûße|zˆ ðã&.Êw®k5/ù0$¤8¢—#_¸¼nïBZ5Ii5í ö0Tœ_Ì8_y¶la²èu„¸4IpXf`Þz±Ë~bÛ­ö´â‰œ·ªWFã Ð<ö©EÒ›n š|äÑå«É¬N= µ¦c䧵˛ñŽóÃý(ôæÄÛeGë—©`@/™É #å*†½Ëî™J.‘ʯfF³^€ÃšO%óÅùîÖÈ¢ˆ´9Ac$žpή"~Aì¤wéõ0 G€‰Gëù$í¶˜NÐäÁ=W’v¿RmÃP2§gké—…ÞËù\ 0hB'ƒIk´ÒwаVkž9/[n²ôoP$Ÿ&°1æ¥Â,oÏœÉ&dš@PÈ`r§ÜJ²UÝ/‘.™ mÁ6+hÉgƒÈ H¤~y”÷’¤EFÞˆÍr{.m¸À³Ô0ûÜÅ1H~c"o=nñp§’×šØæ®2,gó#¹ä…·NŸóhE(KÆÔóò¨Þ!CËcÅ]ì£Äõ/àÍ#‡6ŠŒˆ½HhO²¨Ái…ƒH¢ƒÆ=ªrÕôÆczšMgiA žLÒJ4Wä`9ƒllŠR,çu Ÿõz-(Ë¢ú¼ö~ÎÂPžU$ÑOp‘€0fÓ££æúÌàÎ,uÏu3j”ÓLŸwã”x‰Ëqªz¢™Í%xÄJ/ÅznUD2@§k4¿•c-»+…¢<ßùþlpmvÕêЫZ¯Ýœ­E ÷,0/µ¡ —×ÿõ»0I"ÿœ¦î}rÒd»!Yž4ØM˜Xu1jûí"æøtæaòRde­kï\tûÂp¿è%žÆñ¬"W’ú|d½C3«ßïp©—6†ûtÿ²‚¨¶×΄ñ0Ôm•°½‰#Œ;Ÿá»ƒ˜ÐôlßÒÁŽMR(Jú®Ó—+«Ë}ðl)ÕR™ø6]ÃôŒ@–s=~gwW Í·fßðB‚<œéræAH"zÈ%@òâ¢!–&k+7ˬ¬DÛ² |âþÅ:•\m{ýK$%Žj-‘“¾Ži*‰UF‘¬¨J²ʯö:æ³ï¿HÔª>O‹u„rg¹mYÔ£Xî{URޏ'ÿxlÝÇÞš+v9Ã$:~Ï!b¥HtÙµ˜½l™‹ŸS¸ÎzA)ûTµ-a$N>[GWîsq6Øb\Z)ÞcÇ÷té ”¡ŽÖ›ê”vÝ NÞ1â‘+Mµ± >6Z©¾Àн¨Ä9/ÿãÄåšäZäz©é‚Ö(~НŽUmÃòÔ>AÔvLB{³Ô*‚Ðì§5gœÞ¨ì9Å8tÖݘ k r7kÊzB8F·QûÓaÁó[å֥Ĺ'¥S-Ú‹¨PH7Iø©®Ó36WíÏ}?*Mák—MèB›ÚÀ•K·hü ‘‚Ÿ8ïF¾ï% ™2Ü»ˆÿÔG +K6)-Æ3jÈé~U:ê<l9¸),ÐI|*èÔ"L,”°Á9µUþˆ´NÐÛ *(.8$ÃQ!ªÿa­}¯ä‚”ç¿ÿqÁÀ¯è<-o½M‘<³¡)iÙÐï~–qÈ^Éøv1-Xk|q'b±^0ÿ»Zuþç;[Èfn6hæŒ@sõiœymžÔç²x×k‹ìËCù#N'?´œQ6Ùv5ʚƩ¼-.«Ã@d W–Å[§ØZï;EÊôÔmûMÀëSö‹™Æ«GRlpÞ,­P}š±FS{Û™#¾Õú¶RàƒÞŠ=¶R–´ª"åÃ*ù…ÔšÕqü!§ñFúáØÆY/è”Òq‡Amý7ãs›a¹` ŒT¬HîôÛ{fX‘\ÛÕDÓÁþðç È`‚¿¬E-6IÕì¶?1©XiŽýk¢-©Y‰µ›Š‰À#Ñù /:P‘ òS ¬+ªÑƒÉÔÚ‹îí)HÑHfªk‡ÞÂ)Ÿƒb'êLÆš4i¢+˜’™1\Ž—ñb Çžº•ž… œÌaf¸!ü{ý‰Òúš…2E^ÐTî©·ÝQ+þ3ÈN%˜Ôtió‰ú¹¬-3°NL«UÑ…Ö CÏ ðP+^.»©ðŽaßüo,B65´ËBŽSW]Z+±G†É±MÀÈa¶“¶óí»Kgµ1ñŸÍ%m×ñ‡¯}ûåög žUR"Ì69àv‚ìP{Ÿû‘¬øAQû8œ¦0‡Dl÷Jü|°akÅ¢/4.­óŽöÛóràmRRg—¬5D‰½"ůݠ:ë$ä|ŠÓ†_b·AÚ:£ªbkå¼ýmk=ûæ…ê™êœ­!rü58¿ˆnsÌ{­ë“õß3(Ò2leC=àMîš}JCy>~ø Þ̹NHÅF0<ݒ‚ “ÞýÌf’”“$ *³#ښ̶e‚ì tgVO9K6=0–²~=Kðôká8®ò·3eØ ù" NiÔ¤'X¨ÂÚf¡áýRfJ©o_°_'éß~ÞFv«Íe<ü„ è¬A>‡V4@»è¸Üñb[þ1f¨Ü»A­®ƒø¢z¸ ©?©?vT3ç°½Bú36žÝŒÓ˜ÍM#|;V²êg. 4õJ„yãK©ke>‚,î¬Q£ âþ¤Ð,ˆþa|®±%õÊÃØ/¢ËÀëF¾*Èü¶G?mZç"½ÙŠ¡{Å$ˆ€ŸÚ‘d¦4;é‰ñ”"êØ¬-lÁqq‰³¦ñ#…º+"X|†·U¢iN®¤Ä@Bz¼ž Œ6±ð‹‘b³)6ä¹ç¶- Êžc‰²—Å šÇjú¬Ì1V¤'è)U9ÜÄ2×()vâ™jç*žP¼°Æy Y#m¡”O–îz7PVŽT(8AeëJ’ûè[™¾½ÿp¬ø“õþOÞªrNL¸œAX… fQnº¹ >§bäßt#+ Ý9œv8ô3"ï ©äSY³|„¬žzSúBwŒÎ31\9Z_*ï—KhÎkèÈ¿A©ÚrF»LI!‡xàjÚ1õ=½Â‹Î"ʄ斃™U¤Ie¨ Mš…ÑÌ­ßu«¦cÞþ«×œqL1 #;?üiÑ-Ýq{TË 7¬-ààPµNØ‘gµ+ñœÿ5¹¥Ç²S¾W#æÉ™Š˜›_–¡zs ŸÙeøA9„­Ž·o ”EÂøD˜¢fòZn‡M˜êR‹š’¯ËM®ÜÇé1×2·=ת B°Œ\ð&ü‘µ &^*̪¿¨ó¯}>Ùžíî°çeؽ‰;¢®zÖ!dîÏhå¯Ú›2pšå6U’€‚ÚËä«ú›ëw‹T©½‘ÀK¤%BPnl•¦ÿÉò䛈[ÅÐí4 ÒqÿÚïF@N¥ækœîFŸ’]¾Ë·&÷.Ô‚£¸U@þífV—-i]dyjžÓ ‚ ÌöÑ:È@.ù°T¹cdO6vó ÝSå4ßPþšÏ1Çaæ¾s§€¿M éº&Yüê¶ÛŽä&Õ©i7¹v‚ ˆP@,Py÷ Ñ`ŒM„áÿô#z’ ±ó8FãˆVD#6Žp€ ”§B__í…ÍOjš¨7¤†„`ž³|ßèºÙÆÒ÷ZO²Îœùåé²*è1öˆTŽöö‘LS¯¾xRªV=ªa«Z*°•6ŒÕ YÉ„ñ[ÈâîÓG$¡”00åÑK >û.«Éü:kˆà˜5l/®kÑtµ¾°eû –mVŠAÀ ˜AzçjŽUƒýìx·ü~µCkÑ’™a!p©tk€îCÌxL@æÔØìžÜ²ÏåHÄÑpGî·c¡«³'NOÏ•f{þ€wqR¥¬zH>×ÝVå‚sÏÁæ=øéÔºÀ`Ö?Të-Ÿþˆ$uNvœ^Á£w¢º>錜]¢5OÙz—#h²Ø“òÿеh½¿HIØ^ï©þ|;ý3)föGw ÿ`BSI½<ËæB,VgŸw°ò´èû{y›'ÎH´MoNÂ6tÔß bÚœ˜!¸r(ñôøáò£\ϤðÏ­vW€O¬€)œ}A‰øy<ÅøgÑeâhƒw« “˜ƒ¢T{–Ú£€}xùÉ_T=…ß„ÛmGv±jîú;чWljâ‚~C-8®ê()»6âs—o®À ¨‘-P‰’1<ÂÓ°S>£KuX§—×?&Sì >øS+'ÛÑ­ÈVÄË¡Š…Î¯Ý¯5ŒÙÔ-¯Ö³cT¢Ok󯊺Ò¾¬Ëeî„¢¶ñ9Xyøäf€z_„k:£Irq‹(6 °3O%ðôQç·åøÐ¢–¹ü.’â»j¡ò—mÕqÌšÑÐ¥¿q6ç”>™Ÿ(ïÍ(qI 3ñÞx›»ÁZ-Fî€m×›”:¹®6+"™@;w^K¦UÓÍÔ|¯1XyÐ0p‡7‚¸Rñ5r⚯kMÌÖ¸eìœþ~X‚…ÉAÇâO›G·Ž ™š˜yDXÐfŠ©Ð£ #þ‡çÞTz³I…5ýÚµ|Êßì~Ü #äýÞËQcz¾×_óÉðÀ§`Ðμ‡IÎÙñ=fýz·›?Cõík…aä‘ŬËWÞùÈå_í3În•ص³R‹¦S|‰ T ºÜ(éy™ekmìzè=³N½h© Ϥ†–n:=‡ê—ÛÒSƒ ÿè\9ä¢|” ZfÊS@@Ìj¬÷ÜXE¡G'·©¨ dY”ç(Tä–ÏåTd%³áÆ2¹~ÆÍ·Xš ˜ÓågoŠ£W× ®¹õ>Ü.dC9¸EåCRÙ>N¯o/ªÇW™##3cJ¿F—Ð@h•ú€»ã¶§ŸXÕ3„}øƒÀLbÜi ´•ÒÅY0ì×H Ê'ŽEg²llßQoH?´xÞª¡—ÃiI´‚€"ùAeÅýüK áÜ—f¶ ½±Íl©±Â†Þ–U°X1k7ͯi³¿>gØù%³*)köÆ}~ ëTÒ¨ð­.)I©ÿF±sh~H/ 5™_í•p8 €/ƒñH«;HV)@_š~…7¸ˆi=cl°±'âfg Dð~ v^ÂO´ msHB#¶’³‚±\q{¸Û)Þó¦LöÑAB'=U|÷}Gó0‹ÿLü‹Å¥‰900;}¿ÛëùX¶#jY#öÙ;/%R¥ÿrÆ#[±…EAÉüŠtn;$ —9~ûÒ9QæwÙcÈr]Í<,窟G-ÃöòFé Lz{ÅÔݼݬ§­¢”º?ÛáQ꟰}ó«•f Lƒ- Ɉ·8Š›Ê(õŠ×†J“NŽ­²¡,\ݦÑÒ#ƒÄ»¡TÎx:ƒ‚KÌ3ccto#0c^WÔ“ö~²­Y šŽ¿¨R· FÖÛz —޶ ¥æ0šß?ìfç'\2§…‡$pDqÚò)ô¿ô?;¥³½ô¡½›åëôï éNgd¹ˆ£ÁzçèÃÔ°¼ñêQ,úH?]Ã)_±"_ä«*«›„vèt¿”†CçÍý:²–C¦gž *Dô€Ém¡Ë•NçÕ u5u¢Ó”Ì‘IYÖþZVKÕIp¬¯+„J÷8¥Lò¾aû^Í,áõaW^¶û\§êz µ©@íx– àßçÍ#<ÜY<‰·‹ŒÌ[ÒÓ—Xd=6v¦ʹq&óy!™‰Fk¾2g ŒZ_+ÒB»]4Ÿïw)Nü |7ÚÇj Hž¥(˜>‡$­à†ÍëâžæqI€F€_9å¾T¥¨–íã”|„#ßÌîD±snÙÿX-„\ÜNŸêÎPfa2SÀëú‰ƒ‡H¡KÂä f{ÛrNŠ|럱®÷c;7l€~Õxç0kˆúÑ}Âô<‘ÓÝc—®Ã#B¯þzÉgn_"ý•?‰Ré£÷½ÂÓ/¬éöû¤m•­ªCÀTÚ,±ÔLJdó´† ”­P—©h²ç‚ 'FmÊS);ãå’=ï\ÁæoÉ;aJ´³ø5fô™(»•.Dž(Foi®[À$ûÄØxIô·ù|ïÕ„Ô¨JàFoaƒNd™ÆUF¬ÅOGþÜwm…O[€ã™^‰ÁÂ}ûÜQ¢©DŦ”zúàlÙA®Üz,Évù:I˜é^=õÛK.ƒ¾gSh¤GºÓog¢hOj:ê‡ÚUKŠ*Í€ÌYn9}¶ÃA„X¸:SIuê›ÍR'¢Ã]ÍÕ÷ÁúŸ¢Ì"‰«È¬¯´!?)¬¥tu‚Gb•»rž'X¡+ ”ÿ¼Ø‚¸m1VŒèV.å <ù´’RCæ‡):©b{Ýýr0æ¿»ˆYÒ<ÿ¨Èîä®À˜Léß}ü´^Ä9o¢`þllSÏpÓÔ­ ׄÊ$Ò#ê\{\ˆmÉÜÁÍ *4€?° ü…ý@¹ùkqus7÷Þ¹w7ß–ãÊ „ôK_Xˆìóïv޵§PU\[ "™„¨Ë$$»Y…RÄ'ßÔÕ§Eþìû®‘è¶«IJÜÀƒ”ZOJ±Ê¤lóxJ(SrãLdΈVû¯,9®ãMÉáÓ¦ZÈ xæMF‰Àø¿&KùÈuªn¸Ïâv)ˆ?ìC i{Õ€* Ñš‹_½˜5ˇÉÊ0â§²>ÊC$‚ ªå“âÒñ7³¬kÎüÿh0HGéRºóàài¬öPI_M FDdÈ÷wck¿pîRì¤Á”h8<Ðl{'ÁCvÓxŽžø=¶§›[Ý´©ƒÚZìüö®Uëë¹0o›"è23vvb“… (ð Ÿ®õj¬Ý!\V3—} |UmhEÀa,ôök¯‚æN$ê–Z‘»Z¢¨&BÞPsæ¾£hU°"n6g~Œêùlj™‰™P0DÍk?•m\Jw¸ÀU&´ƒ)bæQA«Ä ÉTí乇Â/zæ‡ñJ3¥cÙ†9EŠë¢Õl@€Ó†Ph¼ýðËLG²Ì`>ÉÔZ+Û-8>ñfuF’TÚú:Å`J vwã"Ò6"[*ÚA J\7gN} Hbÿ6ô›ð„XÆt×HÊ´Ô’‘h™VÛ,s)£Žb:Ú¦ŽÖe¼Ké‰nÊ=ñ“†ö¿Í»éOÐXªIË~ ƒê¾#WbüŸ©7ö@éê-À²]–S µRy)ÝH5†B:«ŽKa$zuù‰aÊ8GFäêk]~©`ƒ €UœxœÝ¬­šÞ×róÌç/Q¯ŽV.ÃÂFø»"¶fñ4#û “Ð@+Š[=(}ÞÕo©îäß…xF²Ì¨ó2‹hñ’Qáb,ªÎµØ"Ú¬9 œ_ŽS›)Û¯¦g—Í¢üŠ £A+?ó¥öàöi€•! ­Çðµê4U_šgl&¢d‰QQi僱@Áá= »’‡Í9Ø~‚3ƒŸëäÂN’I` ó[òêKu ‡;91«Zã³ÇÔFÑ–ǘ‰•q!Ÿ:U ÛYÏ€—?¥Q a…ìBú¸ë*1kúÔ VOÉõô“‰ š4 qîÆ%÷Üίcõ»4iÁÄJv Þ@×úŸü?4ñü;ZЖwU2Ú§ú£Ã}YRßi«80±É]mò”«±ÌGUøcü~B€åà§-ÿ·N°2o§<9Œdv‘'F¼[¦F ¬HXƒQ5ÝÁ‹#3d ß»¸jXšU:ÙKùȧ˜ØùãSZNfK54i›ç<1Í@Ú©K~tÀ{¹"3¿ýp[vXë lMMµLa~¢ï0+e’ãéCBóµûhõåoÜýhaõ6—0UJng;-T°üu!½?^Mìž‚Ç@çv@Öw¡:' îgZ¥Í3Ç@ò=>j8¾ØÈwñ-¿nñu£È¶øÒülÀÎ-’ íÓE’ô"¶¬ma~Ú¢ »F1T&åÿÇ›á>ÂRŸø¤(x:õÌ^[Õ)šž†G¦„„¤qÔ»¤ ŒT`*BSå8zÕ5aÉ ²qª ²É¥óMÙR×^f¾R;uCH<µÊàU©Jä–FœÝÚaÀÚþhÕü¢Ïœg%Ϧ¼¯ðVbHQ(¾©5x§V—ºãy h±]îµ'bŽ§ÂŽŒ9Ô„Þ–XeCGŒëᙲRµû¼öæ¬%k*5èOúª½r–[H‹K(²îº˜aˆu×Ò¾rãÕ©¬W6,îé’@an›  #רó±CJº‘›~§ò/¹Þq.sÊ<¤=wÍæ›ßCFý^ëùmÝ$Ô쯦™kR²·/‰?ص¬·É™´}"!ùU1êà)&g»lpE ’'k3iú ~p)Ei/`n§=¨ªxZ kÑ¡ÖìÝÞS&ë©Gƒø«šËUmm`”–E Ù˜Õ5Nku`ž\WçJ¤´'ŠÅ)Ìó*æ Ü`äË}ìxŠ<›!jƒ­À1vnz¬ cå0­ 聾£'¼.gb5®aò®U,‘AöŠÌ±è¯ùL}§2¹ÒÛA_G³Ru©î€Na ½A—’ocØ®$¹³VrèPùi:ÁEôF\ê’OvS!¥%¶.è¸ ð³ÐJ°¯—Ø7¸ßPÀ0‘Bw'$Ý~/¸S[Æx^W3¾PXU¶±›Kê*݇°µï’8ö*ÎR€®ôBÄVœQkKµ‡çä3áŠô¼~¾Ëÿ±E¾|v«Çeß¶C´¨·˜(ÛNÚƒ 8¥‹à]öÀ ûf{­K•3úDµ{º}– $ñ”k_[™z¬iO}_¦Ã¯uû}4ÓH«¹$ÒÔ‹nNËÝ6«(HEhÀʧ³B eáËûÔóÚ*`FºY”}rûÅëâm%S}< Ys¼{› uw8]³ëŠÖ ±% Ò*É› ÞŸ¶gòÄ—ÝÙ‰7¸`]`¥"ÛóX¥!dÅé¦50^NüÞÔ}S›‰0Äš-lU Æn!7=Âó Àˆú;@çNM%î™s !/Ðu\ºë1^­]ÜPQHn&•ñWŸ:´k·ûobM‰n iùænÙæ¤¢ùUE¹ósQ›Ï÷) [W˜®<žQF9Øð›ÐÇkgwSúÙzè U]v¨~B ×öÌ–J¡ ‡H!Á’RÊc'‘Î׎2<… þR³k>öA°—pD­)É IB=œŒ±«a=úÅâQ'’jHÈçÛ!a£™²¶nÛ™Ógmi#¾,F,pYµ&Õa‚S-KR‰b?Q'3ÄùS¡.prJz9³üH@.Ylü¬Â(äQ‹²½3 E#Ãm+÷b¬¸x1ör×Sä—1´Õ>®à•©²s²Þq†1â'ñr2»*ºf=vpŸæøù,¼ªãE‡øŠ5cõÔx‡Y”ì ÆM–’ß´¦9Ú9q_òÉ\:{Y‹ºÒ—™yâýðã(æàâ=qG7¬L¨”4)ì¤õzp݆0쵿‹> ˆYUúÇ/¾Ä_HŽ|Ò\ràgª¨›ž˜Ëægú›äö=G’‚!Ò\}ÃhYwÈÝÐV-Ý4ºwp“)j‘<,b‰Ò“ØÄàf!ˆ"9 ÑŸ¼Ú•šê{º7–ô-þýFqÓ DHTw~#ö»½ÖO{ÿÉTèkî¥Y¶éq€G?úwîI8²“Šm^þR¢öÉ[ ƒ® «Q~¿Ô¬^îa¹ëñ‹¾D8%çâ3ØÖ¤ ¦ýJî ‹†Þºb!¥m@uÍð^6bû§9‹{]VÇkFXí{¡œªйššóTv@ÌöÊh••/ˆÎMì¬B'.  6ä²Bä? <™÷9îÉÖ»ly´‹‡QÂÍŸ@ÞyémÙ¯å9;qO<•ÓRù@¹Æ³•˜ŒÓ;W°vš*Äu¿ˆ+“åV7FÉ+Oþ‰ìç"Ø·AEj.É*ß/ iðf¶clÙÏFL“|À‹‘àŽ{¿½sä{¥£Ý›œ¼°R¬ä –ÊùõCŽò׆ŒÆJØ9o„Õ|®ä}Éöý=5fcs‹…µ±qÐvKº–ÀÛ «„AÁ¶Gs×M·’h$¯V·Åé´¿YÎ'°b˜ö—áèâÚ^fNiæõZ7–ŸåÔïôEˆ ã: -ù_OàO'~LJ•ìÀfä`¹ufH:#}ònä¹¼chæ=œû¬“1eÀîº/ÝÜÒVSh"ìY‰vm.ñ|¡DØñÚað;§ÝÔ"G~È0ýþê¶õ¶·µ±hÓ똒î›åvþdËÚÖ5Œæ‡‘1kšàˆ tüX°3˜‚¤l¯†í~^¦À™Åf²›Õ\ªÀ}µÅC{Ô„‡Ñ;‚Çß[ÂÞ¯~ý¦^·î‘|£Lñ6ïql@$Õtd%&„¼¦ÙÁßñ,‰ö~%ÚYiJí£4e*£ûò,$„ÈšUsTíw8¸'\Àk¾*e;BÐæ¼#ü%}G(ñ‹Þñ®6ª¡ñIá¾–pžl—úm®ÏêêÕvšßuÁÕ/Ñ„ç¿^ë½D±¦î c,üÃû…Q}¬¶Í2ÌИ£°ä|5΄¢4?‘ʳ“t\S¿’zL¥Ný;ÜcÞ¸‘‘äUWTxªð® 4d À˜Ä¥?dæd=ò£“½¢{©ˆ]Èî"Õê…ïkˆ©<ëzp:>ø&L0Á—?¹e†¢y“P¨1ƒúØ JU[óï'Öò‡”{ӶײBd} Ç›®Áz´&†œ ‘@ðuH†Öµöpô³‘ì#ô¡f§ù§OèVZ%g˜æªy­¸,’'g•”hú#Î@ªÍXTðGy`6·9Ÿ´ ÇÛèŸ Ê]*m´9nÛ*œõ¶šy_óWXÙàìºø¢°ú%-q@‡•èù²‚É¡c¹:ðzRy"0eÉ¥Wy ¼<´†tœ`Ü£O’ÈX Ø™š„K¾ëG†Dð†>‰eÛ“lƒtíùÐøHw #ÖQÙÐÑsd7äÝ(U ŸÄdAûAÐ?cçíÑHaìZþjYy°o}]7[äý“[N3µå꤂CºGÉÅ÷ŽûØ„µ/mç{½™æRÏO šx˜išÇÄZS ¿„vîDdæR¾A—å?M¹JÁ'šºùדª °.µš=†ÌÝÎ ×]‘T즑:ny8¾Íf©A)ýˆ{ºV¤Ѱöòm0wi¸ôžÐ$þ‚§ü jY¨OÀ‹¡Àë$À[²ûßjby¹7à\D´Ã÷õý¸üð°›RŠ ƒÊWËŒ¸gÐ<ÙmwÌMüØ? Qyv˜ Ù+NE =‰°Ð~q£ã±:öŸóå¹JíÞs1H]³C¨W2²ö炱[Ô gâá¨îdÒ2‡ø"›98`ŸZŸV¹â騂[HšÏľ¿y=7½©¶Õ’Èì8óë}•㬢»÷!ãÁ·ùĽ´_˜î̪`øsWÈ’Ž›âINWC¥ÆÌ]Yœ§‡ÈÓQÝ ¤¼ü{§x_ìÊ82I!ÌàþzýmÓ ¶{0Íâº1…îö‹æÙ£“%ú:ª“åÄ þyïÀï|¦—ð+¤@v ®·Á€iø¿þ•iÈó”ÔÞm]g—í©úq%=ZúþŸpx!7– F³óa²ƒšá!½vÓ˜¸ª—Zõ;¢8ê°*¸ 7×(‰/ô¡ZßÀ6îmÈNZYäkÓ7N9LO8Í2çz¸¤²»‚úšsÃáåÕ Ð ¢6îH^’Å9RÓ:4CФ¢×"o6ëTãIíXÆ&#gsº'ÉnÈ^R |bD 69ZU›+Yü¥wJÓ68GÙGÔ­zMPfº{ùÆJ³ Ü;Q&éFô§ ޏ¼xwòȸFÔ¾å=ƒš4ÕMiØï¿?àà^ *oЦ8Hdªq¤Nbø¾jއß~òoqiœ ÷”g26ÀÈkDãGU|×o&€ñ»›svZê¢Sºb7ocV§åÓß!Æ]¸£fáÅY‘?ó߈0™üØŠ¶JD™|ŽÔ¨ågóËSRö.¹ÿ„í³"=*œ6DõXªzüº°Áo5ÕÚ/ø©vÒŒÃÂgç|"hå£ÿ>”íFyE( 诧tiN¸Û 8«±%%;žbšŒƒÕRÕ˜‹uC2-}ÉaJðïÐw¸ÝA×Qž @”À¢É*¨üñέ!½w¼ÒgÝïŽv‚Ìlö"`y ÆUdן¾õrI“l—ü‡æð‡é;”GؽX+YHigÚI‰r§$odœÖšå‘âèDZ†­D¼ºR>"›+÷þ23yª)™òËm™7.O¤Ætžõx¹5v”¤°É›sÃô„ÝxÿžñÙTö]ÇÏ·{@Ü»¾hm|÷‡¿¤„Š(s@H'ÑQmÛ6#”E^&ùGö pžÀ ’Ý´;}4ŽZMãâ*„Öeú ¶†=¸¯°_ú®õbv&ƒÕL4ž+åª*t㿺G“–'‰ÜA[±e<ÑHØ29c¼£ÑHê0jJÌs?áTò" ²D°â¹ÖÏÀ®+°£½nx†tÓºnÜŽ·sÙü¨•½bç)¸VèHʇIÞ[sy+¥íãõrÃaŒwÔÎÚç4yº•s†dY"›ÑD‰*ôsg^ò¶è€¡ä)Âõ²·W·­¸ÚY(¦f<ëò¯EE²Ç/WÔj7ˆ\§Z?F^]ùTsX€që7pÏÅs¯…íxàû>þË [ø v–È– y¨vHw†2…Ã<¿ó€¡þÔâà1æù0™·ûÚ2‚¨!kZ¦«^òTÈvµƒ5ç.´hç„Z±*À<Å3}Jíᛚô˜Ï8<ºŸ›Õ¯’;z ň~»t¸¡¸à'“—9ÙûŸô½xÙÙµdUoR°¢ý¸q^†`·/s­)ZOÁ·¼ hëÆ^å=].ZW€õ;¾û ìÅzzߣ¹Ch¸ªøótÙ³åçÈR¿ “ÿQ ™©%7&Y+X×Hr¬üWƒáÙO¹úQg;˜R^šRêM ÷ÃrS}·„[/+d’Ï,ƒ¬(À©û“û&“M†`°£œí+üAîåÔ(¯IĸþQ°gLocCžä²•¨PΨՒP±-öqœÃr9ô1ã¨Ö¾Nçv ™Ï×í¤olö1 _[W“gjEÜa‚C)±!d,¡7W»^²þvo-ªeì‘\Žn¢ô8Q¾Èkæ¢';¸E2)+vëtÜš¹#ôŸ@Í<„2`vAòpD†¡­|©ü‹«6Åí¯.Åßv gí¸]†0âŠä§>»9ïV­«æt±ñx+O¶@„Ÿnþm31Ðçœ!ZBÌU,j‹œúadß›¼{üG<ïêБ\Ï¡J©Ûï¿»Üÿ´Ìp„û½¡Zö~þVº.õ±|CùªÈá&ºøK§ur!å‡/™âÁÃäµÌªçgj¥š»ågr}VR‰9•&X Sôeù„˜™¦6Ȫ±â>ùŒ(§®‘ÎìD‚ RïnåX’³³º§QD†´N2(/µúº×y$‹¹oˆsâf³«M*˜D­ÁÓ²¸ƒµó§ÿ‡ß2)þe£ÒÍà*Ž€¢tÂÐ=Ǩ"žr+ø£:‡YuN™2Œëå¤]A½{q{šZû‡ÀŠÌ¡®N„^ž[táΓÇÅœ«3ÆÑþ×báƒNbÐ~¥¬ 'È!f` óî˃O¥-j¼1”L>°¼XÄ?462*.âɤëÇåcž”0u>ðį@÷°…"MW ÅÎ­Š¶B[/C½šeÁ©xÙ‡¼rY@üâÄ“Ø5O›¶ë°˜Õk„Ú––§ÄÙba¹wá[Ñ¥'d¹"2Â’^•Î,ýÏVã?nùŽBÿY'·g‰Ä ­¯©÷Okk 8©2TF+3}ëû¦l¶ç#-P).¾).Jü«•}VμxsW›˜@,röZ9G‘$Ž›g¯ÄS¿Ë?\V£0â>›-!T!LPàrã\9¾Ë)SèGMgz1dY?ímEݲ;«ó ¦<YÂ7µ ŽÓx) X˜Ó,†JàEǨW¦…Xþ2øäˆ?âÅw•ºÎ[Ð.__èDkgþ ž+'äœfóî]’Ü1á2QüÞõÕ½qž‰r="a“òš}:™ÄiÇE˜ƒØ’÷@MÀIAÈá ÓxÇã™F›cb¶.'wRkpï“u-nAf)šÀÏöÍ#Pm­<œ§íÖ‡‡³%¡Uj–M·!PËBÄ„ýšµ±…|2mÂI8@Ê^àT9gñû'¾rü\YI·!–emJMB&k£"R©;ÕûoO¥; ޾Ð*¹‚ä}ºRñ,öµY‚ò¢ólå:’bºoñ–É[2Îø6nó8Ï™¿¹¢âBLKTÇ`²0‹ïy›vþÒ9æáêq¼˜Ô…^„BŸß›Ÿä“RL–Áð`58Tƒ¨º”äÎrDÿо¡YÞq_Öí<ù%Ÿ e˜Co)3"!é~ñ6Ô3]ç}d¦,)û´Âà>(—y#w7ƒªÙTÌî¡DtÁišäöyÌVÄTÛM#»ÆÄÄÏP« û %SMž¦}´â° ê¬v(u˜r °ÈÚ%ƒU%ŠnRF>Ï*öÊòÔ¾“Gßþ€üQà…­Ë±¶·­# Y¸ˆ’œÖÅ•ãü{*SŸ‹›MÃ;…XøÀOÁÎ!K`»1 þÈçN{dD4yÍÅ7îBQ ºBH‘‰oß ”ÈìŒn¸spgÛH´Ö|-­<#ú©£Í X PU™µíŽ åÝ×dg÷1ûeׯ¤ç ÄÅÂ5½ý…º€‡Š?†OèÏa^Ãižpì<à‚Åöóm/5¸Ã*šéÅ{q ¡ä·÷ð Kç^q%{G¾c@œ£—3ìjPn‚³'¹p‚k„™cýïÄZ2Ì©1ë™^få5FB¿m’FÚuÍo¬éd§mùÚIPÊ:£¹^ £…N,´ÛÆ£g¨|¦Ù °¶ô´“úÙAcP8V(Áç ³Nö²ëñTñlK’ݪs‰d¶T5ÅZäb1‘ Ðä·%¢æ“iÒÖ¼cé‚@„ø–x̆pƒÏ³ÖŽ–³eÞ·RǬ!s¨Ê ušìYOîèÇ„¦SŠ'hãÎQ)ᛢn>b'.®¨P~Ô&𷲜CàYùµ+X©î¾„EvE_1ýºyËEC¹+ïñ HÈý%Û­HLœm±óÒ\¿hÙgéMž6b¸úËF€wë„–ºµÔiv“,ß42• Šÿü‚kÖ§>Á»Ì q^fù›Ïž³FtÖ{ZgÂû­eYóC[>èvjÈPËdá‚C‹&™Q– ÿxÍ[2ª©zÆ–úM¡u…s×ZÇÏgËV©C *µkŠ|<ÜüþÀà£zYº9 hŸ·t£Àà6ŠÿtYøsØ]ðù>ã¥}<8¾$åñÙZ|î‚.®£¨ñQ°”s°u ÇÅŠ˜päÏÑ-þ\ög¸C Ä´T…ƒ>xz’ZÅV`ó¢$™º™ýQ_‚hDiÏ'§Uîõ£Ÿ".¡P{ÕÖÐ*|Ä]ùe`Í+W8Ì<¤´/ ^ª£¿¿âŒp! Åá«=¾IúPø™Gþ We0é%\É™ŽuÁTQ_»ícóÌ „*ÖHVð´€ËlwuÕ'×ÔJ6ëÿóOÃÚ0¥9äXÔÈÇKÆiZT?…ÙhGRðuAÎV³:¾IÕg¯/û†°'ºFÙ ¢"‘ƒúµ˜õÄçÕÏT jÄm+3êúÁv±cÜ#a’ófì"¡Ï•„(˜C\³%³·HÓþ~sÎýU5»xN©p TK}Ïêúìšs°iñ NzÚHr-T²$˜éuú·’vä)vpÛã"S˃>Ùðᩌ\°ã:·ÏgÆB¹²EÀ×x¹\ A¤ð¶²:‚ȱ ª­ÍQ䦀e)bÅËI´­˜Ìiq³ñë 5·’‡¼š'š»gÌ—º¿ç?onrÖ±"9—†Z(ôpné[%o °Œä?OÔ®t%:Ñ ´=Rž`¬Þ’ºl²äÞECæhñ»jÆÎò È~ W—D~Vî (¢{9P&î=»¨“\7’ÅÖ „ÿIY;ÙhãˆLû½ÕÒ‹Q@±“½Px'Ò×)}û†U–ôŒÍIª_‚zŒj*Ú‰ Û©^ÉM¨ç#>æ&$EÒ0=@èVôDþÿÍÙ…0k»ÓU¤-“1Ko6±è®Àt 1Ü@¬àQÀ®«”94þè[¶0kBéOoöì©Wy4 vÛqAe¡ÂŇ•°^oæ,÷ÄÝáYCš»s³(Où¢J¯›/=l*ãÑEÉÍžGåÕȧzw‰$¯âÙãL+Ð)ï¼QG®oÂkõ73Y9I½#¶•9ãçùÏD È'?1*±íÌ®š•P"ˆ•\©§iP¿ì‡7AHÆ‚\Ï›™n»Éq#M@Ÿ%_"J—¢y(”¡‹z )á½hɸïëàfÎïØÒ<©÷ül¸þzqˆÆf$#ÄÝD½ÒrÂb™f¿@LÉá©Ö-îÐÚÐùÝ¡^@xBà÷¶àËÇi–"1Y•wÿ¼ŠÈ÷ûÝŠÁ9˜Y/vA üï¿·hÆ/#Èùp³S2\‚ïýŽ­TòáR: p,AÆZû'Vƒ‡ÏHœ÷‡í:4Õu¥4 yòMX‰yÅð÷ß‹]eáó‰qr ì«mg÷¥ÖpOR½ Ö…%•«óT3¢æ{¶wêjƒk­bDüðw¹7‚јµêD˜2•Ž ´Å@(ZÿqxWÒ?ùÿ‡™”$§ÀâA¢¤Â/‘˜roÊ»©ÙöŠáÍ< sÛÆ%õÃ_Œ)X „:=ßmÂÉ=ƒ ó:¦·Æ††jx5˜%ãË5î/¡eÑ54µ/üüc´“òP®¼¶Õ„’Ïë›ï‡ùcÝ9ãÇŽb‚ã·•vLmi•ɬ]sÚÉ$ú£Î&«–œ§Ó¢~u|žZ.Ób:Ò†âëQW àB©XLõìr¸uWÇ|Ȩ¶[ó;ï½·¥@mŸŸÅ3ïùŒMÝ›  6Xn¤!ðëö A^b-¡ú; ë_äs k×?`¡‚TBBËæéþùaÿ¶Žç1“ôVŒ ãÀ˜š!Q›}½3&§?ëg.É%ÆœðÃ3‰ª]–W´"¿FÉI$¼rðÑñb^GA딊h!2¢­©+2@uPˆ&Ÿyo_¯Á߯¤¨Úâ%"¶iËâ ©¹Ì l™—&Èï?p6®ÂHqX´¢~˜h¤ÐHO¤¨6ô¶‰î) Ù4Wb¨¸Ù;ÂÖ$ï"éyˆ@ó3`à3™!?ض1ñ‹ qTøšÎº’ç§ó>µ9FètÝ0;·ä¾nAøæTß-IÌÃ:ÏQ¹ææd] ³”rH*Ëý-ñ1›Î£È#3ö³Ã‹a^ÔÈí•>º¿š€ÏïúSu‹3´ß:ÚИC×-ÔÏUp±ˆ:âîDHô¸çôFW±|’õ¯&iÊ%¤Z'afŸ È-Œó~Zb‡’üÛEˆÐNkÛÍÕ'ñ\u|Ôfs›’o£ï§¼O¸ë;úãà('¨Î+6‹mnÿ^ÁÁ!àH¿0ÜiÄ÷r9οnsÝV4nÑçe– f5¬ÒÃ;¾Œ´„»^¿’mÅ£ØMðÁÞÖBníé¬*:ü´WLÚ%n#à"´|ŒÀqŸ©üD‚Ï6ü–yDbË0¥< ,ÅŠz]ÎZ¤1¯W+³öÌ:¸P oÜBã«6—|çÑSÉ9¡EA„¬¦‘n !INêËWê°ÖzJtnR%äeòз6HðA^OŽó¶EHVâæšPþ>¸ÏüÔæ*\‰¶£ÓíçÍŒäK!yj°Š«™mê=IÌj²6WF«Í„u—5LÔy—¶„d×l2:à‚Q«OAÚ‚Ïà¾Ñ?Ë'1†gqÂ+AQf Á…œ¦8Pª‰ã;t“3yF~oÖ'芥gµŒNHÊYÆnpÏay±!ç{‹£¨AÛîÝc×ÑýÿQ"&ð]q,ŵñ‰§£½¾Z—cr®˜ âë‹PJ€ôn;Ròt{²í¢û'ˆB Ôz‘þ‚J¡ó Ãá¹L8WÉ5Ã{·|ª8.pàMñíâ>¥^’ã~=ýT¡Ë'`cÀÚ=»•¦G£TÎ2ÿ\ ã e=µÚ-ÿ9©8ôkõ7ëqžg…ðûІÅa—Tæu®p7õ–_./%©må “Ep+ã'ATÛ9r?¸ì @gf¤ ¹RÏó,šÐ@»i.Ãâmx ”¬{ @è§OÞ0ëæ Ë“²^ñ$ÜUÜÏÓ³Žo@R{‹èüÃI™MøÀª±”’zIãç¹áW~‘\Ë…c!º¸gZr§ÃÕoÛ¦ÝMjQ¦qs6ö¢4 >½‘ÉhÆ–x'Ž›ÈE¡FÆäEºVgÙ-SpAr¹BR÷8µ¥ÛEñGWx„5øt«Á oÊ'¹" }âAЖ~W,B:ã mœÒöiã3CÅã°|Î|î6%3ì°k°;‡ ¨ø|˾ekºÁºQu[[Ù4z8ýö ðg î a`?êDZöL[“¨do£OÊ+}z† Ï¡4ƒ¾ÃïÔÁÁ«‹Wö»c¡Êr²ž†H{!eAú5jnh]ÌÐioIXloM«Aî¡.ĈZµÌ±ñ:/T¥ÀÌL]á‰Ãó¨¶^°Çƒ:ïéDør•¹?^è·í#ý°6/£ú»£e&ªõ ‚ÍŒðö\2-= ±¾³«|RUâbª®}nŠh¼%'q§¸!E‘KF.f¶+/C¡,dŸ¦Öò»°•$رf“ž-ŸÏ¤?ä¸Í}õÖ1t±"ðã·~%ÑuÇBIl¿àY8"‡ ½æà@AÝ‘ó3*†ß¯8k¿2M,2!‰òsÿ¤—T9 ÷£Ž·z j Ð WFc 5Ò[››:7Ûapea) Z*ò³ÉQù<·â}aØ¥EƒÖ«nidzCÏvtžaܱp¶(ïÇ[„g›‚ƒ'­5Û–8i'áNùãÕÐ)áú³æì†‡²1Í`°oÞ"‹íÍ~—œE-AÉ=¥mñßCµ¢¬P;y O>_wàÆøÁžRxlH¢Ž!GÚ²¥(UCú‡ûZR(!€Šš‚åÅïŠw#i‹‹RèÕöà×~±C)‡Ãj`" ¨&7¶÷™äG¤HƒâshZ@?ÅÂÊHðögÙ_ºîȵ®ÀŒ­ý Ò©Ý¡=Ц{¼ÙsÕ7õÕ}fƒÝ6–.Í»³‘ƒíÑÆ²œ—´Þ `Ê:ÎR7ˆ2Ö8ä8êA.¶ù™!aXçy<àÃÈçUl…¿ð"ŠI ¸ê%™ÍrÄ®çß³!òÈͶ‚Îh“&í£mŒgÉÓˆƒ^k>‚Õj†ZØ:FfÌòB]/A P?†Wc¿Ò­5=à4MOh@]ñÂ=ÞcwáZ†F! †•x«Ãl‘L³Kä¨NÒÅØÓø Ò\Né³™3`-œÅ t ÄYIÓTìš¥á ³¤‡S;ˆÖÑ5œÄ_@÷Wf·ØZ³qù#¦J×Ë”ªjNü4© ˜&ªf (©I驚¶¼²|Fã·H~6‹Æcæ‡.ä"éà0‰ ¯äïû7þM ›™¡Lü²b9™K÷j·±(8ô(z÷¸k~ôÕ"‚EªÛ®â«zx]ié6e/ùÙôv4üqÚ±ËÚØQ˜ÇèÚ—}Ioý- 㬲¨.T¬$H+Ýž±ú*sd „ÎâPqÉ-ÓÉGÿÏ›jÛ(ë¥@˜ëy„Û¯ŸŸ5'ÐÜå0~¦!Ñ Áù„xLF€&žŸ}Èá ã8K±Ô ^QMOHˆš› ýœ`ßS µ®?˜;n£x%t=n¡A,Sê Îpƒ 5¶‚Ü䌟¡¸‡ ¼È–…,ý¢ÿôç“’sh±Â†‚ E—$ÀÖâ©ò€Bþ{¯d­\ÛeË‚žUø@¾ËzžÇy­²ácÓ®E·fÈûŽ “ „Aå¢àî]‰³›`îwJ9*MÒî«þYýðä#9KdÔ”ö'¤Dô§ì€ µ´a-égõbŸ¶7ÌYé‡rùå`nl,v5=;+bI²eíCß섘_ܹB3z6+ƒ||ÈÇÉÎaÃ%—ÿÌ#~Ü Òà»Ûã öwG9≅q$dýçón×aÊ“îƒo î›kÖ¢@ £©2ºdç¼c.û{×\ï,¤¦¡Ý,H³ø¡°Œêj {¤æ‘’A(;݅ⲋ{ÕàÇžg^‰|‹˜÷ímՒ蛯M‘]Ãþã•N÷K8{iÿëˆÌ÷’ö¯iv ó wúÞ‰Y²GÍš-²2ëÍÉ¡?ïøÇ&ÊçH‰þz+Ž'þmj±¤ðaÁù~hèM CúŸEžµ?øÞÞSs«€,Æõ›BÉ1®¹TXPh{-g±Û(ÿ®jö±NøjFoáaéÒ ý•ùJ¶H–‹pÑ1Äc¯–ŸâÉZлdD v­é¥¡ØAÿ!®§›ïqé%§4L'ØeˆYˆÔ‹¨ÍãîReGžX%&VHçÐÏ%˜ I^wD(ÃdXT–´a”j·þoÛ4@Pïêä>Òÿ0|³è”&ùAQÿCHIÙ[Ôo‡ù`ŠÈ¼Q%Þ¤©Vä H4 µz¹w¡œ¢½²ÄÜå‹ Ž’^ä“=åÌyÝžô$Oì<É“@J¦$†µ6ˆUŠ ïÐßo ÁDŒžÃfcUò‰lMîëAÒn½E¢©ô#.)‘%ÌMx#ƒ8#mߨ4 ±šþí—m$bû^¶i7?‡•±''+èŽÁ';îÕ\ÜÙû»w°ÄÁaÂÝŸúÄN†– ^àA‚ƒi”!â|ZÓ;BJ=›­¹Òõ}æ‘x§>¦Ëg4mÍÛ¨xÃy˜ËôdˆB7Ò´­ŠËçQ/¯€|æ%9h¬F~s&ïß™sŠõœ\?*¦ ÄŽéÁèͦ¤¢ÄvŒ?ÚçéÜdàfó̯øÞŽ0óen"Õ!ŸšeºYyz>í¦Ê·ºSmÅIVm© —žÆýw`‰y·DÂVåmPÆ"GŽk¿uq@2b3:¤äg¾d½RŽ8=²bá—zœQœŒ©X·R¢b¿à~CÌGt‘¸œ†Aì­=Óé÷/ -^ä'8žãß‘7óÛUŠí”SÆÜZã)Õµ¯ENîëÖsŸÔzŸ“[øˆ¯CC©“@±ã§.ŬŽÜhAù•¡µ šüÂrˆtÈúêÄ÷Š ":T.e'•õ3•ãæ"AXÃÅcä˜07W*.3G«‚Í™Ž,"£Ó2‘_½¶ÁÒoµ®•lud‡´ {³#÷ÌwãPœÆjÚ{{TŒ…@–>Ðûu˜Úúï ãàá%mªjå/Ü>}§î¹ìÅ^sG#\ÂF >™7µ¼ør‰Rº‹hcíèÇvÕ¨¡(šó×ù“uî Ë-qØ›HZÉ¢–‰O¥NTpµ[}3ä2 ¸Ã´ßh× ‰Ã¿GœÑHIÓpÄŸm¨–˜²øåL3ssƒµƒ³r!ÖѺ­-­•t‡)¹ÂÁÈÍ¥"F°WaT-¾D’T‘y¥½¾â{PR›W„eòþàFÍËѱàΗcDt[æÌ(Ý€é¤ÝXìKͯIð|Ÿo…Š@¥ö>€æ­Â–Ꮉè­Eî­]Q {–‘EPþ‰éÍ”U#M"ÿ”ÿTåsáó=*ß™T=ì Dç{4H7YuÁ—õÊ¢«;VŒ|ª¼±C£`'b‹)€ÊöÍЯ,‰H³‰å¿¼»dí&%6w‘¨pšŒ”[*zʨvhÖ9Ljªgd—L…nG‡ð„¼ pû¾j+Qo*%ëfb ¬¾fúàø šµz*fnÕ~æö.KO°¿Ùøðc]\üq!;ÄùffcoßéWìN1’Š!buÙZü¥#"ü­|kyÌ“½Z¸O»öz5­BGÓÖ‹4•@¼,úÛÉõ¨ÓÌ»ç*ðHik òüMɾeÙgz'éhÀÖÊUTS Ú3’L e ‘i{ÆL(~Ìç3G¿=íô}{¿GÂ(%ZWPÀ~©»Í¢ ÞõI”DW̼¸efAëR8Ké!mXR?Áª‚ˆ “‹^Ì~d¨ë‘'õŠúš©Öåò0åX‹ŒmPÍQMg\uÃevè]É>•x`ANÞõÏ×-I%ùãÙ¨B¬¤K%¢Ÿ'ÃÇm >8·üëÜ€&t{À;ù }SK®Â?åR¢£é ÂJ°ÓÒz`áuõÚ„=ÔCZk–ÀQ¶çÁsÄZÜ@?Wƒæ^+[8LA†d…ÖèšñOŸÅ‡{]ÃÒoC‚)3©!¢ýhöe$‚Øs–‰Wİ ‚'™Có/,J¸ÅߦÓá”ØÒVÒÏ2 J7Ôºàá›—i‘?Ì캗þ™TÑÉõcÙ¨•9î)“´hʺ¦;âUl°„´_jZc±o¨UB„ ˆ“U×sQ¼s%6nœŸÌp߆ÙXO[ós&×…"å%®6_2¤nÙ‹ úAÁ@?ˆ >?RM…å:wôëCXª”Œ’ ›qvRšë%}ÿA§ñ*┥¼áë"öä'“„ü»Ö›I½üÇVX7ë¬Âáo$Q\H‘B5{‘Føú«Bw…L—‰mŽ1ýÛ´Y'gõ£§Íÿö^ˆG¨üÏsÜñƒñ);w=sžºÃYÊøè'&Ôïïçø$ ¥Ú†]mœ‡NÉ­i¨ ª¢Ð,±gxŠ…A’ЀРC·ª)ÌŽõ"M{öÔ1f°MÕËy“îù‹ÑÌóÎÈBo=Ó,ûp躵² j><Aýi"ÑIÞE|^U–ðîç|è’`F;õ¿ÿ/‘ÂsPª•ÁÀÀ‹]j*ÒKÃË4UãæÕ¥€”ÖÍÛïu5±>Û'k‹Pì°ÊË š3Єv-ùp…žíE7lV϶·FyRRƳÂë„͈$2!0©†sŒr'ùð³é/fóÐF÷Û4‡O+v¿‡@lµÈXj¯X9x[Øðë_-˜‹šJ/TÃI—Ë7"ìñoD"c7™Zµ‚ªóG¶Ø§–¬<6Éá#rÏAZ—à«l0ÞØ1X+ž KŸûЖ$^wwè¹}¦žàHw„Âä-*¶Hó<,)0Ày¿óí?ÿZ+­!µå@°(w#F«Éó<õ²ä»ýS]l4º·ìh¶]‹ÑéÚ’O–kÈÔMº¼|÷*î*Ô‹~óU¬jÉ·a’0ÅMµóI=¢1Ópv¦`³œNGe#CörÊ!õnÉùÞ‘%¡ qúCûÅÆÇc?MXL<`»U¨pCÌÍ>áÁf×&æÍãŸ6矈Ÿ­¢¦µðjɶ^ÁÉ}KÒûN: r°spû¦ãÜj ¾Í^þf˜ø8ßK÷ øöẨL WFÉû³½d(Æó:¶pF>·£àŸ ’Ôï{oå–ýNœšO¯ øÎ#Ì_\? £JJߘÚáÍJпü8i]Ëj^§ÓSt÷ Ï"k¹¼%Å?OKQד;T€³R!‚…9Ùß¶ü:s.áÔÈ ‘ˆg}ÅŠe1dÓŽë1U°\ð3'´'GóQªOHNsÞ NbflVFþ¢Ò‘@/žÃÉ¡(éd1‰ëf†¦åx‘ÆA¤7¡VD5 ¬¹µ•™„²x¨›®'>v³šÿúÞXb‚AÓ-_³è08N-í…LaÄ̱nŧd¼‹Uh3iª¼êì`Æé)Î! çàMC:õ%é½ÿÀ¶/DÚíàκ­ß¾;3S®<õ6 u@}b¥ß [¥ð½D¶tì †(*±³K¨KÉ|dõÔΆ"ùîã!Ð þøg6ÆètŒr“±âz’è p¾r'ö[è·˜ÀCŠÑWXY  ­ôð:®'wå'¹¤¹>Ú²ù\×÷eH`¼ÍmêiÊ[úÀóà™kø!‡&Û Ùƒà Èž ¤%Öñ¾ªØWë]'ë<RˆtÝëÓ£ù]¼Åó3Ï,±}g— ÐÑÜð^÷à›Ô•èet_Hì:l“x ú<‡‡ Ã’Àšñ&[ÂM–41²€ ¸â ѹT˜GªP“Âú {±a@Yæ“ãz¸D=WÂ.nåh3o½HëÊ–£˜Ð Ç,Ë’qö÷©SŸß0Úz ;Rñ4Œ==ÉøtYœœªNw¾…(ÉÒxGƒõ:| ;+S"3²7ÜôepÓC¶È7î¹<µ£@ëÞ¾µ^…›Îú ®fðV‘¬¼¯Å¼à[~é!à¸Tˆª*»Ó¶3–Åöøh$V„eÛÅ;ÓÅ)jÛßÒ/´Ëçb°Vw%ͼbÊ næÜºÊW âºm€q¯J_°ÜcþÇÚ†M u˜ÜTŽOb|§VqkY'ÄJõ‘c[6ë§QVõ°6wúŒlaÀ…Mi Ý/ºÛw!:*6;]/ç'ñ³péŒ hÎÌÒ OѺO=±ä™RòÎj'ÐÛ}J6Œ¨ 0±˜¹ ÷±0‡s¡é¥1°!÷h˜á*tjÅýùµˆ~)?’òþ7Ûž½Œ¬ ž¨ÐÕWõ×ÃaUíä‡Å¬mż‘SˆÇéõB[ífÛU—>=ï Ó¿žYi (ý4J_K¤–“¡%9Äñá3꘮8J”êï[ÑA}·‘³Ÿ¯„3{àmýªÌ¬ŽÑŒeÔËX›è‰|Y©êoí«6^ôŒ»¿öâ— ÄÅEúƒÁ%ómÅéµ3ÄzÄær}{•“÷[™/ƒyëb_Ÿ |UvèumŸI>øçn[焽ëâ DÞ…ah,¢[–ÓI9 i;¦bÆ‹T½ö{ ŠJ®ª)?ñ 8` ®%õ„°Y :šŽï儚Î_…¥oY–¯²×ïOÓ&¹&4ƒ«t*å6ŽÙü¥…¨J$ëµù vÛŒã4*YmYFb~¸€™Þ²uT(€®¶òHQq úq{E4õÕì€$ÌÇÝtÝMo^öè¼³ÜÇÅyz—ž­¤} U؈ ‡+̽p%ÈÂú­…Ò*³Œ(wÕÀ24&©ŠÍáa1•± Ñ]qÞ¶6õV•4ýøa³…²8J "¡TF¡"粉,â¿@|ìL}I‘Q²ÜZŒyþ€"¢–§‚|Kæ`>fìóØ† ‡e‘øg°ìát:¬ìÆ:ðIóŒJ™07¸Û¤ü®šeye§ŸbýXwd±¡j³~uþ$Æk R×uo@í&"2l¾72€CrŠ¢;œWnzeMùã{ÄcІªu)M6ç×±³F K@ºï½$Ÿ-aÍúËV— E™›3â™w‚$ì1_W7P+/ðþú¯¹KW²ø¤{—·W¾àtkæiÂçùäD½«ì8 Ÿ¼QSÇ!Ï<BÏnyüä® ÚçyKƒã©+Ú`ì©Öuoü?Åh%@OkåÛ …<7T3¿t?6–ªç^Š,ÙŠnW)ë¤`<{JENxj~¯— …[{ó¼ºÍÐsaå–䕤"Wý沆òô6ør0O€+Ùê`®É^ç´>ó`žÔR>¶Pî¥{-è"±¥í³°©úÏ“ÖÍP×PL¬Pw3‚øˆ”kl²´‹ª!S…ý†FW$¢5bc8Ù~ž@Ùƒ»¥Ôk‚+¼qàŒ1ôݲàûv£ÈÇägv½ÅTÁ~í=H.2¬wÿhÍH&rhÇé*m¶Êù”=6Ah¶ MºbêÿãpRnæ H˜ua‘Çq±c!¯òyoÕf«wtve„ åݬ'-KýŠÜ¬_“þméLŒu(^uôX^ ³ÄXY~?‘‚È€¦¬¿ŒÇs6‹µî´&¬ÿ±ž2Ü.Ýé6šîÝÔ-ž«–;š€Sû¢'Gœ‘dg.s­ Q˸ûkÚÙW¹}EãŸ5ë4…eÇOî¢5¹4ÁéßeB¸c aaAþ{ .)Ü/ÎŒ*Jîk¥EpêâéÈ'¬Yì.é8Ç—Ú5Z^Œ+ŠWçrýù×þ x¿EÑoC )'9?Ýr¬ú¼€¼e:vé°­Èà-r³Ž—ŠÚç²JÀÄ·û/nìOª`ºE×ïø.) …LÕ€ÇÔ±2Íö¸DÒ‰ÉkíTzóMâ(§ .€åàKQù+þšÉ ¾Å‘À<‹kµŒž¶Œd>Q ;åÑ} rƒoìSAÌ;¸:6Üí™4>rî÷ .Œ$±(ñNšÃ’²Eh&wh] V5•áŒÄ?Œt¿Ëé\Bz“~ÖÁðU‰%³O¢pAõðÈ_Üm¸jLuþK:`Ü´qŒ¦¤Á é!h1.¯lÀú)ÊÈïnБ׳½K3Â@%gÏ…¼ó,°óø^ô—¬¢BÐ1cùÚù¤ö-3µ‹$ŸµL[Ñ÷ R±OÏ(Ñß*²2áƒ÷Ú—¦KHW˜f2=[Ää¦MÐ^[ûkÖ¤ìîÅ¥t$ †EÑá?dWBUb8{! ²ß‡ß)íz§ùÊŒ#ä©5Ã~5ùcF‹ûŽ:¬Ôb’Cù `Q]&ãÍÞIÚó+£u‰s% 2Î_²¤Ù¡1³­ Ž)äb„x—¦éÜ]8¥]C¶|¢»ÆÕT.UY/?)oÅèo½úÞ‡@¢g€ð"c¹9ƒ ÀF+öJä™$9Yz,dG1ø¬`¢×j’@dÛc§òÆrÐNñ|¨=ÇÈWˆÒ£y õáåNj3ÐìA“Ã@ÄÎà !oIÂþ¥žnØ/e$X…Û˜nåu'8•ÁÉîí.Ã!v–3_â;ÞSÔL™ŒC` n€-Xÿ­Ût#o†RY§ûØįzT×femúáÜLtJ™.£ d0­(#o^õÒ”â* MàO ¯öl’—(ÕLܰ­v¿!ó’ñ²ÜIN¾³õ eYĭɤ3ñ,Œ"€<¢,o†5êûÿ£O¥s\Ú£ªäî±é¨´^"R|‚Í’hFT³E\Îìs^µ·VïЋ”‰Xèrijט`8«wçD⃉¶­'þ.L 5ƒƒ}¦Îñ,ÙRëh쩊»,i–Sn“Lqà>v"OŽè/ÞûzÕ-ñ#…°È¢`jhÛ3‘ŠŠÊÀ(ئNŒ½€}áÙ‡¸Ú×Чmé®v ðÑ@<æa@ÿ´­½¦p²Š5Ùùü1°¿¡}gdGG)èt¿M•dE 4_Ä!@ùY…:•¬/|‘Üò¾ÞØø™¬Iܾ?,®<œ^Þȇ—Ñ®Mìu@:÷£¿(*۞D}“.çT>KéBŸå¥Ä­ÑmæˆÙvÓR#?»"ßBš~Ï)/þ!IÑ ¢#Ë:0=‰à…Û xèu—h5wänhQ‹Vu"ºù^tÅMÊaà½uGÆKá†"žÖŸX…p¢¯ôMÙ¸{¤\ÿ;érA^kàrh:Ú(»«™ð:À‡^qh#Ó"wZ¿|f3®‡£8øêåqët¹M>²®Í8]ýO7µ%¡1»UË€ü Î¥Ró ÔUú Í%2tyÇŽ6ÐÊ7­¼^· †Å\²Ñ¶60†ì‚Ä(ÀîÞ^Žx¥~X;‚n"‚ºýjyiÝdH1µL‚û¾aƒoù_'δSØ èO\ ”Ûsa˜ŽTÁÝ þðoe%à¨zäº#&q!kšzö-ôõW߲ʻ TBøþdÉBÝϦôjj8pe~3PƵ²Æ»µ£~Âè©’¯X`~Âùð|bYªL–”&–l®é9Ü´NBi]É€Pp”¾ ÜÅ[›þòT]Gô¡6 ëÕå­ÏÂ|À}Ñ»ÇÁ•…5ˆ¹rí)ž/ZàºiM*÷§†.¢…3ãQÀBÀ·!½^~n«•õïêÕLÁ^àftƒD¾½xKï³q·ÿß ’wé3Šd5ârÊtb~’zÇúYdï‡1ŠtÜlŠÒ¢/ü£vIÊÛă.~E–Ǫ¹ 6Ž-å×=Œƒ¼ RϦ¾Z†a/%üåãõ{&Бl ]Ñ®dÛlþ*䩟ô0•Íb¹*Uƒ€ø[*úÀ•N§=åx³wU÷j3Æ;Ç~ÉÎä¯ú{Îì)ø²ëŸ1?¾«B½N<" D÷ö^žŸýgH§Ny)U9R#¥ÙÌ`5x c„á>JvÃÁNÁîk¯¯Þú³âN¹î3}üÚ‚ 5äê”°)Þ‡­ºóÛ~¯{óÀ´­4¿‡í4ÙQªMm^Fƒ­d4.XÕp0J·NéÕ«À‘4Ùsôј ®Œé}a(EøßÒ&9ÿ5‡³¶ÔÇ>ÅÉMôÇ¡ð#C¬®ûBÐÕ' l>'õ5‹‚™¹/¨8›¯==æfZCäM v˜ ÈÍ}Ȧóca“Óó«þþ\Ðg¤¾­M:°v—…³™:¹õY2öPÓ9·BB7ÕîXÇ À¾ÙºŽmÎîö"‡\aºéøåÔ3Yç•cyY®½™ù{"³-Œ]—Ô°×Þ釮{%ëËáÄÀ$iâ›ÿúy_úŒÌý—µ¨¥ðÛ•j"lg^œ*=†û‚ _Ü%åøA§ &€ÖW½]ó@Ì{‹Ë‹Q•ö†%Ã{/vtXUu"ú˜åø…<ž€]©Ñ\MÅ*$Œue÷ÃVðÚ³Çþ†E²áHØÿ™ÌsZcö*AÕ´+ÃéoÍÙ’½@ËÂÉUÅNDT0ïO“ªTäkÛ3húºËèm‰ÔU5ÿ¿©ð³¢Ìe‹ŽP†žKN­cÖ—‘´N;…ÌZú¡Ø*"a ƒP%ºµlt« ƒÆŠœ,)Edè]Hg¸ÅÜjØ¿.­Sb~Ùlò&qŽ!Ñ—uHû4D¢ UG࣋>—ÐÐ` £w·¾< ×Âf8o)øV1s´j”¹/¥Ð‹ñF¹Ù•4$lŽö¥‘'bšóID•„´rvqiÛãÎa_XßÏ4X_A,Á˜Ï#¸-ï­Xã]$öËŒ¬N\jiv>ZB{—-;¼T ÌðÛ¦Eúp§¿Œ¯R‘ ·-²£þ¢ï¾Šð{}¯Ð¸A…YÆr'ž6p¦÷òÁãeüe%"ºe,ÄWæö.¨.œp4  Û=¿ò³=ƒÏ[=[©çKg|ˆxýÜ¿O#º‚k«ŠÕŠ=Š<>*¯zÐþˆ?”&P±ò•‚Ðdq“ä,ÃU·¤(Š ™V2x%ø6öÜ’[DK#ÔYÅh“f‘ìŽÌåÐq”Àh›­˜EÇõÏ·f¬)ñkæ>wܤߧ?»~g²ÀSŠÿaíØÔWë¸Ä">™`¯p(Ò{áÖ=ÈP‰9#¢0fuê:~`sÄž0àeÞÊY¿•ibš»T¿i­¢M¥ú ï×÷pm6°rAþX…efc{Zƒ~IœÂjl¾|j²,ȼØõNèIþçwÜ®.Ç-±™Ûá9‘©™¥Üe³ù-Áû«^¢Õ w&hu1WDr&'J”yøÀÓxƒTB…ŠÒÐÞR1£›d­ t†"#ØvMˆÞȲYa ´ÞÊÐ"»†‘w3ñkä«,gà¸tz—÷Wÿ]Þó·u ­/5Ó»‚ˆïù\„3'r2;vÇj^*H?9[¦xU%šÿ–á· éÛpƒj/œ'4 OtA;† E„€ó#õs¥ MÄÀR#‘†4Ô3ɧ»}“Ó£>bΖá8É…Ì¡±‚è¯œÌ é¿ÕQž õvÍmEIîJCÉLeˆÔâ°:]Uá8ÈhK !D/„Êœ}&á¬()Õ¸É÷3=b:qŒ¤ý•« .™Á‹¥ˆÖð1¸øÌçêD³W˜`6V‡ìñtôD4^\“ÜY#dð—Y?+ÞðŒLØl@j†"V¬¶ÆŠ1ËŪ¼½öÌìè_<ιðÈÂ!½f¨è[Ùv¸fÑeìG†ÂÄŒŒ²XºíÕÐ@Ô’oûY–d•R•;]—‘rå Õ×W!~´ö'|¼êÃÜSù$fØ•¯ü¤ß¹UX¹g*T°š‡nÖÑ_P:7Jäö¬|®3>Šã€˜9ÊûÜ<ÀƒÔÚXì7á•-š×åú¾XÉ–ÁrpÒu¦É ¥ûÆá¯™q™QAhñ_w Æn³“ò7ÀÞ¢Ur£VRuÃÄ]YÜÈCSÚ|ë§F®%…yBÊ#ýÞñ|à×9Õ²Y¦¸f9û@q9†é*¬w,›ø½ºL”`¼¶—š{ÙëûúJ|Ûý¼ïD‘¾b$(‡iý'ÈyˮƨNàÝmK1#ó?ÕÔŠÙÂï8žÕU¯sÅ7Òš“BVëöŠtµ‰ýEâ?gÆžr ÖJ-<à–ÿ··kð‘¥€†âÜœWF+“•çZX¿º4<Ü>³¡tŸN\ÿÏ:FœþÓ>- ML?*÷ÙNO1 Ïù»X3Ú÷v5Ê­tøa¥ðƒRÇfÍ}˜ mSdìÕ‰ÂàhŽHZDéS­­#z0'ož ¡[¿–w”UÙÃ`Ó$ÆÁà-µÛÊõ°ÂꈊÄÓUQãG`¡Ø#»3€éÄç€i¾'k&B‹ð§lŠSe]ÜܬÆé Ì{’ZYoÁÎýœ‘½h éïèS3ûÇ+ìà·£bZv$묺 Ü%—äÖO°ÿž{º¾e9ð„˜Õ¾"ªœÄ™±Òj¬2*M#U@ì@ÐØß-øÃ$Öö[†8—nø¼)k‹>ʱNåc/ÍÒŽ²“«p­¿k…¯\ce7O‹Æ(ÑÄÜøÂWïÙà<zŽïº1ñ)<~Q#A(xÐuÔJÕÖ'–œÀšÌ(þ?„Ma1y÷y} ¹õrY¶„Å$E….‰ÔJ*×ECÀ€?âÇ›·­2ÖÕvŽ/"ÿü·Cå„<ÑuŒŽTëŽÀÖaô››µš'uëÿR†øÞq`€\èãÅ#ËæŠf]‚ŽæÝš/ñnŸƒÐÑèô²3<ÑE'Ã>ÖúšsyÜðð>Fÿôî]ßáâÔtž#®F}Óé ç¨Ç]Óv³gü4Ë¥îóý'x9Qå*+) ·O¼‹îøXß»74ØÎõ– K•Ò&ΊY-OÂÀžŸ ^~ ô§Ü° Êùg!R·ž•© 8gH†Æ¾¹FŠn®ö| šµÚðqLÚœùçñ8íQ^ +DñÒ‹æø3„”uïJë}s/Ë`3ƒöâÝМ_—O®üòS†ÛÊ]ºÏ]Ûƒ©CŽØå¸{Ó `òmÓß/‘Êt"´æeÿ-ÒÿYd3MùZ‡ C¸ƒc¹+Ÿ¹ÔÅ̆N-¹ÜwïÀæþÖ©›Ü£Á}TqâRPz;˜,ŠÚ;k6*ô$TýðÈŽd2Ê\tlPµ*ø’ B6?y[•DW -Ýê§—xdª~.3qއªT‚:öˆ“³PR >aY,^÷XÚ!Ðß«pÞpè!CƇÝ÷àwvï7®ag«½«åM0 ÌK†ª·¶ÌëH ¦‘½?\îÐuƒµ˜ƒ5˜0™ 4ÏCžo}ÎvÿL×AOJá®ạ̊̈́<|‚#æ â_"Ϩ 8´Õ;#J¥z^! «,:ɾl üJG}É|ÖÌ xn‹ •˜PÚ^# ÊWN²®^$¢Úô½Ù‡ˆH*ÝSýhGÒo¾&tœ± ü†âÍè˜WËbþñ“* Þ‡i« ðvðBãÕXüь֚§h†'ø8ô˜ÅU_¯Ýî{º’zº0GÃæq%seP2Ù)Q¯µM¶zM3û*g3´»q,xs#†ÿ…XË»!Ñ“ëÍŽ½„•{Hžø'­<å·X Ý.ëE›Ñ»IzÓHÔNϵI#) ¥©$¢Ÿv î™ä¬h.Q÷£p$·Íƒ€†N¹ÄĬfñnµ²…z}p ©\SDö«y›(zo”×ÌûãÔŠ±]&›̪æÜh+”ÇV_þhï Kù(žS}¢Ö€&ÔÉ)€äååo_â Ž ½/²ºCæSï\}F7 BãA§ÌÑ&v•¿&‡ˆy+Þb’/‚ÿËú±ë¤¼|H:'’ÎÚ³}ì :áyé÷<= à’Y¤×áGN½¢8,•¾€KdËáí~¥ªSáäé ,m›à‚»õi‡›FCE§Ë7¢Ô'è}G…& ?Є6ùIaíÖùXÓAà*Ê£xÛR&Û¼öàñOÙÙÞ¿ Aw«ÀDdYÿν‡Ýçr`t²ðóUÎr3t@–e‡_ÿõ)–É÷Q@Âô¯œ¤¯ËnóÞ†köÿF` xÜÝãýlQ¶5idˆ§³ N}±ÏľÑV}üê*ìpÒ•Æ»¡ÿ¨@‹ïWn@ÓP¥7MsSå+ð+ªg’J>YHñ“%ÿsWàeØYØöäý!‡±ýh^`v·„u „™m\n¹w¬pú:ÈóÊ[‹ÈBWáä&(CJªƒG}ÿL9"_ŒS;öVŒ$–ͱM¼í(;*Éè²£J ƒ*³ÇJâžr#1 3®@=þh+œbÃ÷_‡N‡g ¡Î îNÏ·ÝH±côbÌ àíaÏs<×7ÏIS⯸ՙRz¦òœmŒÔ~p©d© cÈ"rS¦ÂRÑÆ¤QöÉ{ åtn2¯N 7öh±»Ñ,RŽÍŸ®ªŠ…JÛŸÆHYÊ‘ ”¡ÞëÛ÷µ¯I¼‰ƒä&8™û³A&-Ø\™y rkNFúRU´.*W¤€×³¦¯ÿ;…T;çüdhsô´H›–fÖ™]QRÏÀ\@b,3v$U¿M.ãH5€ýÃl:8רÖ«ž3N ‡ÈÜ31~ªŠk¯aÆågžgîȰ¦VE-˜è‘ ZÂ7¡Î"'í ìï§ì«ZŽYƒv¸\°V¯¸5Ò²¥tðô¦J©¡‘â‡ð ¼^yp¾xoåuY”>…Ñ]Î Ø$#¼áÝ[à •­äsƒvü°tõPÞÍ· 09FÉ‘ÌmàÁ0€$|·8 .Å‚Gç<ÓYµ—õ±0£’ýQøÖÁDâÀÁ[í½_½Æ¨…>€Äþ&þ–ÑP{á~vf2ZEhQº…6Ó˜Ë9›ŒR|«Ì؉œÂ™ú6ãp®,_x–Ï[øÎ—ù8OPmŠÿèµoÙg}NÊ ÁcÉ)TÄRÙ¸^›ÚfŸ¶KÔ®$¹çð=ÒˆÞo‘§€š,”‰R)­;Ÿû<7ó‹.S8=g[Ñ0ú@ §ÐO²¹Å w¯€ÊvºáCĹŸ>±ûÁùôÖ€iIJ³ÈäW©îо5î!Ê`yÏ¢Õÿ¦èÇÄlʘzl/'££èV‹ûKf$¦›%ÁÌuWÛSvÖû ‰È\ˆŽµ×F÷·2¹W˜å? Ø]V2éNô·Ž˜ê*˜²€x­øƒ\ ׳7âÉïÜ#µ?@ÒÏ‚OK×^Sbþr„ ‹Hð¡;¬g¿ÉÃÈ·Í„óï;fþ|mÄê`£•%ܸ˜;ÊÙ´–´á¾ïm=ÿ &ÃL YZÿÄ[ƒê>šÎòP“–XæÃ¿bÄé_YŸRtÞ` É¨1a¶‹`ý¦ˆÕæL7Ëê»ÕcE‰.ÈîÀ-÷dúà-ŠŽJ’ù¿“=†ªÇ#Iûð5ÞB{ 1J°–·9¬ZCU³Ë–ÝÁ¢R‰Ú¶ÆÔÙ"o‚EjNF؇nÕ·‘ë”Ka+)D«mXb…Ë¡I}û@ªÒX°d6šmvÇÄÁEë ä¿/-ÙqªY•.ÃBƒíAõYK׺‰®\À]ëN!5‹’çëáèׂë¹åM£ö¾é Ó†¼=e‹S‡q©FdúùAR+Y`›K£„Aç¿ühL–cve¦l)óIo²+gtÊU·º ½yXºG©‰)™™74T–(Y<6r¶Ÿo£Y 1#–y*›‰è$£ÏM æŽZöŽjSTÃk…—±néˆÄ¡im‚0¿ßÉO)K¥Qpø”®ÕY)0U£imq+³™`u=¢£¦™½ òb1+£GŽËÛPqg‘òHuFq™¢¸™Ñq¸û˜¿  ØáôD>´ê팷êúc«÷‚a’¦[‰MÚxj8`4eYxQJ[ßætŒÌƒ8ÕxFËbŽÉ7óþ8Æ _à’oß󦺊Ußô!^­ó…¼Ñ<~+r¿ÆkNäu_"»ÅôØ~^D&DŠ/TñZr]ÙDÓ@t±øý£õ¤¥D±EvÛîf} qgHF6mx ·î¦% V7éÀ©±Ï&³—ÒØÃi™ˆŒÎOYT²„ÎR€ Í' ¹Gšý7S.„OöåûW®>eA-Bú9>Á½U@;eï(€]„éfžš àÄ0¿Ž<Ý ·è||)½Óm n_´Ý²@+ö¹@²Â†nß8ÚdѤ&hºOÿM2*¾¶$Ê6g1ÌòùŸˆ{¦ÿVC™°åPÌ ”Çlšt=1næ3ù§¤€ñcd:È.¨Üð^âÊâøF’N”Oˆ·³@”å7µ¤y¢@€Ê¥š$²èË¡ò~iTÇv);Üp/fþ3žì˜ƒ°/ ‘tWo=Ÿ7/¶hi‚i.©Tïxf¥kAYäÜK…˜³Ÿû¤n—‡F¸;¿OT(۞ȉ~õ¬t•¯öy‡B½!“³¿ û”ÐOÎɘd¨Áÿù/zñ%úlmÞìÒ÷yånßìI‹âë.Ü/ëþÊJH3¬ðÝ6¥{h‘ʶ¹7ÆX»ÑãÐ2O°\óàS•)ßÞT)•¡í"Ïk—ñB âè¸^×MÙ^5miAˆY¡AWÔó‰P»8‡cžm„é±H¶ !{Eˆ …Îì}®žÂƒ{¨ Ñ Ë›#›h»Ò$1A›²§'*dÛýàøFñC¤P`êæë@PÄךà9Ûò­žã¨8-¸ÌHE' R 7§r“xEÄLßøbV¼ìä(™^›‚pRËð1þwlÜd[…#šTËn%åãa6Á ÂMý‰˜ËIÃ`ÊŸ(é^næ¿ÝøŸ)çɇÏ'­®'ep“ý}s/´Ô‡er»ÍÏF°x­ŒŠ‹FgX+—× –/0ÅgÐEŽùÞ½|gÅ¡²¸†(ù¹Ú£B‡Y^k’ÁII+à‡‰z¡¦¡çY”ß>1 ãj£:Pži‡J²KlzúŽ’’ÛðÔAVßlŒ $Ø„dŒÁÛìZ(p‡5|Ùø²fÌ¿öÄÃ2ÍLœx»2P8F»}3öÈ)dZ¯$j_M ÇÕòã3xˆ^#œ€ägS¶jÓRË“ØË÷ïv¦gè²'FàQ`ÚÍuýìîh³”éKØ!?$Hî[úñbd|é¹] œ@jÞÌ–Qzš{’-ÝÔ‘\In]ò8ެc®ÌÚ‰›¿„$·ÏG÷¦Ãb\Mû°*ø|…z°È"ª®QÚa^`HQñœ`Œ£‚j” t¨kœ}üŽ{ïÕJþÆD >¬7™mÕ)Fè?N…{Ä8ÉÙ8—[›^¡ˆ?lµ8µi³V±º¡ãäÛ* E°Ì1ŒŸ2zšÒ4D™]k)ö‘™ ‘›’ÅP+vØÊdBé#a¸ ~=@\hô(­Ý–Œ?&Šâr]ÄÌžaL¬^V¶šzé‘u†?=*Òu2à”¦…‹ðŠI΃£;ÙL>] —û“VWc‡±5ç~CÈþÎÓÄÖèÓËI¾˜—˜ºàÕz±˜wjã¹]”×>‡;' žh:²>~?f«” œ¶ÄU»_Q0¢x…‚±—§Bž~EÄhVvÕNfŠÖìž/d&±bWlLekóîƒÒÓš‰£v›8 Îø'*^aþ5Õe,¨·Æ‡73Èilüjmï¸³ÍÆôQPeˆ¥’qL•“95 js Ow \ð³=ñV'Ùh‚¡:84IÓç´ÂÍsÐ49» ÞY”É—[LK’MüñŒ°Yô½d­]Â]ß<‹"Y9 LÓñZ^€Œ\ïoš´TNâMRƒ¬ÖÈÕ¹C/…YÒª&w,K÷Ó}ʇ}Z’º;­¤hð¯,ô‘ß`I&Z…ç ôÂ0šDcyWüšœê8u=`‚[¤¿ ˆáÞö7.oáÇÎ@je0VꢒÅ»F˜4Þ™r¯a­´gtÜ;4TB‰œ¨Ö%<¥/׃c¸Å›Ú%´ ‘+‡ÜHoK(¡ðÛqH‡ûö8éMµmÚÅ“ï­å67KÐðšßk@Y¨ŸEˆÛï “QÍÚ5üêõ1¨Ûº'Ie½ 7É)ÖpnçÎs«Òý{ÇU’Ì9σb4à硎I6¹O›x‹Ÿ_´«eÃOH‹’Ñžïâ3˜çQÝ—Ÿ–MWŠ€ýÜ÷es-;uä¿3¥¿œkÛÕ[5ÞeƒpG4£)ñÁÞáð$™,« úýz4ýåz>lAi¨/{³¬: ÷t‹˜×óæ7`tÕ>€ §ÜE0ªßüäœ"B˜^…z}©¡ýW2ýÁc³ÍÇ1Lz˜NK$q-$Q¤×_lH§àT1óœQ6ǽ§¢k¹6¢í{RÎzæ[_”W±ßêœiuÖïQÐvåXSíÍ®v_‰Ü'‚¿£Ã ž ÅtXÂ;¾ë3é"ZVƾ܉¬)J—ÖV:ñ·TpÝ¡ã´Tî-SNŽ÷¢2èfÕ9 «³–òŽð_úqå–†'ð{£³`p‹Ò]r——²²\ÃÉÕÂ#¹ƒí U–y` Èöp¦©¾¸¬••+X{oÐïïóm=‡÷Ö&1l€8šá‰ÙTTÔînGê¨bVÿòöY'Þ¦¤5Ia•†ü~‘ùHÊv”tÑvˆŸ6c¼Óüyâ·Ë÷ I!D¬ù£y 1ÿÖÚèSd»iH,—woÛfq‘>F˜4;Ò¥e˜s§±ñ ë5G7‡2U©TE3D(’Ú“ÿ£RÿDg°¤ ›…og»þ$V,@„|þÂYxlÖɘÑ|xŸ_+â]¾ãаÝcÑI}±vÐb¤²hÀ*3ÂÎS9’1˜gºÈ6ì¦ ¢PWYë‡Î#B×>c΂ƒ@(åO³93)^L#›´ˆJÊÚJA!éôm½v,–ŒgsÊÞom† ðŽ)fîÒ ¾£Ó^¡èerr“öGõ3ÏħڳC2š»: è“Ýä‘€3õ&ôÿúQO˜vYÆÂ”ߊ=<ÁéHYefÚ;8q…Át–´ó¡ßù‰~ïÌ­º-™øÀ5?S ¤’kà᤺åß|úcpl·ª"ëƒÈëÑ"~[Á<µ® ò-xMI §zãMtFŸ¿màƒ¨KWvv/_ªvÕ*‚y·0ô ­]ôÁþsæa nCÓá>+ˆ‚™p¤‘PÝ'r€Ê% &#¹×“KdII3U;n~<¾Ó¼£1eG\Ôdg{޹ЄÊÕHb£QÛ5d­{Sõî4‹†®/f6â.€ÓÊjXo޽Ä^´ÔCz¶ Ök*ïºkæÓŸww6Rm”;êoCu\FJâ ¥,2zVW'ï$rñp!”¿Š‰ »À±q<ɬ!ìXltg6”k<æ“:=s?—•fR?Z Ð|ñàs­@)íÙ¯ž5Xߨx|,?TÁ½˜ƒ(µGJy£ Dë4qVí : ©ÅUs;ÏsS+ÒE2¹•kN¤7U´ÃGâ‰%û,æfRfX.±ÙxdþSÕ)Ð3νՖ©ïÚM;uSô¾Ì„·+zø)F¥,x¼m{°YêÐKu½$Ü'$R¸@ÊþÒuÝvmñÐHÿ5ëôîC,fÖ”¶SÁ"?"šÎkfH•lŽ :<ÿ{\úz ó¥*FGcí®0Ç„ô “Î7ª(6’aTLœ^2&áÐÃÌVpmãN€Èu<ÈlJégè<ôÊ–>ÎĮԊ,?<¦÷Lóþ§>)ûT1¨áÌ?'Ò`¬NÀø-©¾CT}q’•£OѦ¸Ð6sÓŠê4š:!%õÅŠºŽ?ÒV¯“GJ5•ÏÝæÛcÂb ÓÓwæZÂ~©lší|¬À#ÿäPÄ<6+al=f³|H_ý$î`}#Ä,5äí\?{‘ÆŸz2<á%ÏÓ&2ÇáÐR”¯ÏvýFdû°JÂçôŒN ÝXåÖU(gØ!$ Ü/Æ–œ ŸüýõT”)jGÃÓQ2ª_ ¬Ê[ˆk¸º«N"iwÅ(Ör6ÞÚíÀ¢kÓU–öù‰Øa˜!&²Çè%ýjÉ«ÇÒ¯y·Œ²t^Æg¢ÿ¼§%_ Á¥‰Þ橺#j猰š[뚟°A1QxõÕvÃP ƒÉ“uÙeSsÈôOØ–Wš–Á ± ·°ÇÍjáÑ7Ц³¡–_­™¹å,"„ŒlB Ä…oc¤Þ2®ÀâÑŠFÝ4W¥é“B„1Þà è]l®‡›Ÿ0Å{ÔéREèa«LÛàXhCÑû¹7AH•’¯ž0ÐÄñƒˆáâk «¬„ò‘r;™ø]Àë'è¿kZ7@ñ„©¹6ö••r1ÞzÔfï9ü:x …}ÖÏ4â³(¨‡©¹‡Gà£}EàRlE§GwBd´=« •®TÊ”Æü·ÉÞn?¬ ñ}Úœi©Ð¢‚3t‘àT·³syÕ¹É=f4†*iq|IÉc¼ô§ ±ÿÇ›cŠIôO;LÍjŸ!¶g¸ÝF¶RôMÂD%­v¸Jæ ÖŽ tQÍâ´còÑ}xÝ;|£ŸŠØmTó YG/k1–Ó}ƒ¥Ì.~Œ&Ä}P[±°Ž+ÐñŒ„áõì–>—ÝRv¯…]eëjT"ueÇVŒ§ †ZÂæ ¯zÖ‘«,tre·í|Åt ¸ªßÂi× ë ›ûûÞÔ±wNõ=¦ÈPÔ`·ìúÄ2²;ŸoÖÃŽe]HéëüZÊ—ëZ9ç!½»ôÂý¡š.âP!UÂÜtȦûÇa㉘F¹4/ýEEV©?D“ßȳ›ÃÇ}qvTÓ“ÃÿÖ½—åþ™ðZMÒ-q× ˜kôï#ò*š¼.Äžv—­Ã¿ï´*ÐY”a•=“똬|<‰[æ/ÂQ¬‘ô·ë€ËúÁè§}L*1•m$™š„švã YÙ‚gj‰\ª:)â#ó§€:Ѓ¼íã!˜ï5RÙÙçæË—|¤Š£ƒœääÖ '÷c8 Ùîž2à¬öø™?,RbÖï­Æ×þc§eL•Ï^jƒéŒÞeEÀð_—ÓôÈåô'Üãm»”Þ)²Ž“ôÚ!*Óm<DzÀEXbPÍß3Ž îNÁ~ö.—†O;âÏëm#Ë« –ËY} ±æN|¨¾›ö ÿoÔqº˜K-ùÒÁuöŸ3µw@Ý@g/¼"‘Ìu P•ˆà=ä¾÷.ÿÅþ"ŠÑie»îÛ}îÒŒ²ÿ eèX:˜ñ„?­Ê]-ù\ot¬FBuAŸç1 Aœ5,;í"ö¶®ãZvÄÑ ú6{¯k›B)4TªªÛ)TF·¡þ¸Ç“ ‚ˆû-¢e:»åûó™Ö¿VÙߟM‡‡¶Ì.ß6Û^…rÅÅ‹çþœãB¨EUão`‘jÌtSuŸæ¡7ÝžË@Ði(h iyÏ”œæî³qæÏr€¨ãA?Ê'áeÛo¸Õ…^æÑ•¯¦¹œÊ?ác”— ¯qfa_½Q#Þj+Üõ´‹,…Êa¥T$*„ûƒ‰lÔ;Ÿe£š-oÙÔ‹áÒ¸-"Ù…ôµ¨kS­zLhZƒ“ÁqØNy¯N˜dBÃ||J ùÝI5D6 ›¥ÎˆŽ bél¥ ¾ôáæŽ=F¹«iŽŒ“Ôðè! ¶ü÷ÛVeí¤!¿ÁäO|rAºX=uá í?uÃå‚ÚEÌßž…yŸy\o¸@üŠVoQ~k"(˜ò þ2NJ×b«Úäd*Nô—¾kVWu€¸j½ïÅ ÌH–pnfÄãïäÕ׬"ø}ãšn¾ÏÊ«M5¢åã›W€wl¦IK¿iÌNû°–äÞA¶nWl…š7öcJF ïþ»»1Óü #ð“tÃs=׈…u §Ú … íyÍeÇÁ÷9?^M~2ai¨¿Vj‚‰³ ¯°¨è€Ù òZR²ò¬ü¼Bs‡ jmŒÝg>5{מ¦D›oH‹KU,êYgê]äè†XchhNþ3 ¦?¡C|X BÛPg¦Ï†÷6b<|¢ÌITœþTíÚWîÑùržK8ٺ߿²Ôô6/ÿeI½•V+ó—}”¥ —pMÒò^ RV?o èŽ/b(c÷ç1hy{êlJuMG8¤ŸÖ×ïµ>a4ÏüoÛùf*!.Þ#œå/Ê$¤h*ÑÑ5™P_o^¼¨h3W¤ð ‰”½T£°f‹û!øM·¥ÚÄQq!O•òÊ+xßc Ï‘÷´>þ6MX½~ÁRzbMÃêww¢Ûi »î©þÈÆ£0=!‡µì Ö[Åøÿw).Ëw ¨k4Û< Tg-R‡—EY¹v²¬'r}áCLkža¬išeæí?_ÊPã:–Ø÷MžV”–¦ :Ÿµø$5˜ë=®à]¯»—J<7‰Ý¼¯![ÉT~»sÌ{¡hBÔ¼sÈiDµ°Ø[—ÖÏr­¯•ŠŽ¿ã U›Ž+ÕÊã½ÌE/ò?ò(=#r]ÈxÍ@KkðíôS üHŽ­w®ó6\Z³Ãyý¹‡M îØ¢Ä“s@R'_dX¯•1]‹tÜÞvç×4¥Á‘´¿qݶáq¥ëwñ‘ÃêGÙ˜ûÑ ˜ŸÑ4#™ÑYöT¯ß<7¥qbÄñ”$åa’À íu»Û享 leISœŽhA³-k[ì`÷Zý\1´IVhQE[ûs_§z½Î9 N<Ùæò\È8vˆì>aq]ÊLî¯Ò4ç¦dÍÏAÍ–œ;@Å­áA¤Q.Ðb"Xè0êùÕ°µj²¥@ao~†ÌÉ›¢RÛ®@ðîr3L§å–…1x+ÞIœñ<,ûç ú]cͨ]$éLY*ÀjŽž”ßgm&˜ÄíztƒdB/ãèPé ‹ƒC/bjÎg x•bG?ͯ:‚O¬0ò.L4 ée /¨† TMnhe:¡åþhȇY䶈¾¸Ï9„ŸšÂ“Z1 ½®Âœ¥“Z¬KÜÁhí2 ¶ã¼Í±Ý<.‹å_6s/]àÖàÈ5nö®œšë¿éؼÉPá¨\*LlRVÛÝ©h±j‰âéíõ6s~~è1z^c7ÔrØfTÓ±°G~™ù>ÃàºFwO¦ßÕŠA §2}Ê5~<€hRQ¼‚÷,äq:µƒÓèl°Õ,Nò,cü$‰ 9ùüǯû¹ …–é']=·³ Ê8wáöy-…4§ºdbjªë­ï}Y!±˜¡Þ4]ÔaÖ5Q«¢Ü{¨Àíráhè©ùù1GòÓŸÖ’XÇý ¬ÅF÷øÔo£×?•}g'Ò¨Óa…¤ÙóÞg‘(‰÷rÞkJ>®>™©Ý5ï—Ýgöð&š3è=fùvœX.¬,ñÀ°áIQ—d×|„ÚV;ßøî +j'úmÙÆRÄdÌ~C3¯R%¦(ÉgD{w|å';p29>íŠ<´cv„s1ø² ÑÃEj¥Šé›CÞV“çw }Ü% 1Oº@>·¢)Mð<ú€ ¼ÒC­Ÿkž>À£°”U4-¯Y:¦áIåÅ0ß´ç6Cô×*[¨§Ýðµþ^~Zæ¶"U&oÞLÕ w'‘߇~j¦+ 6/d¨t£†2â.a]üá”.™´Ã‘Ö·š¾r”ÛC„2ûí¡•Ç´Öó: }Æ5¿Q¯äª¬>ÆÊlã~8}”o>¦ŽGGE#½Ïyês·pÜÿÜ·ŸÒ©I('°ºsˆ°ê6$û0o áKâk€#ш{ǀߚǯµã*ÆZ#ýNÉk¨vZ«˜Î"twUs»Gð½ð-?‹ ÏŸï'`õ]ïùÏñõ¤can~D ¬¹ð¶›Šê¤R]lhvH ¹pá„B¨L‡õ¥²"Ûçwéíâc¾°j†îENµ)^w¨`ŸqøÅ\‘¯Ž  HÝ ~·©D#£ý§r¶È[¢›$Ïù×%Ùû(îþ’-"§^ˆÍª¹!–ÓµÁ&µ‘ìÐ]ݳ˜[â†=H…t«^Íï­ôxúÍÛÑÕEUªIPf*e3¹³'-–ýÿ˜Ê­'ªD6ªþýŒœ¸!¬‘âÈÊ3S™ªÝ‹ÿÁò–Mƒ·ê˜¡CøýÄy6Uj ?»-6³L^2_õWÞ›ƒÌJˆÆ!ï˜Ïû©?dÏ,lÏ¡KÓL¤ÆJä„è¿ØQ fr9þ }¬T¿¨e¶LýOÈ̳Þ: …^ÄÜÓçöÝÒ­fÒñÇ&ÃréáÞú‘vP±V{lF`Á½› Þ™V³a!Öd­’‹ P:CCµW8MãmF+Ü%ºÕ•«…Tur-íÕS„# HO*ߌmÇ]({ëš§¶éDãü ¨Ãkâe|p¶{…%IµìZ Žd¡ß«È‘ÐÑ|Á¿‹àë¶Zü¾œ­ƒà„/;‰q+F®wF2ù¿ÖTñq”zi11W›_¦¼s-’jˆ%)ßÿ×sQ—å˪11Tz‘¿¶¸¾Ã.XŠ"VUÐê`§š ÑF¯tjüQSeâ‰÷ÑÛ§Tõ‹5ŸZ}Ò?A­ºöƒ+Òîi*2þ{øj„†’ÎÎx¨~ÝjÅ'HbÇ\ÂoÐ:˜p5£,~î­)Kx˜6ùß@„¡Ý=«çÏ—¸Q¡1ëâ‘mZ fÌÅÛ48+»}ÇXº„– îiÑd‚O»ä³Z¡A×B)®¯­%Æ™ï …ÿ1oKRvõÊí—9‰ùäTLéæz„¥ «ÔSÙÐÍlüø{€ØWC±È¦i§‚R!ƒÃH ìÅà²GègN9P^¯/¾ÞT<—fõºÕ¾]ÛÑØ‚)•1ðøù;%¼”#“ˆzbMüà;ÌÓáÚÂh—ÃÁik²³fgMº£M3¹àFêªêuå=³‰Uþªàçi.2÷Ìñlmä?ÔÈø£1AQ(…qIã‹,AÈqV¼èX&Çýeó4~»áŒÿàK»°Ïµo)¯F©&²®+“µ±ËœùŸEÛ?oÉSɾ×*¶q8qS§6—`«8®.­ûúŠÅ®é–9œ£õ}ç2zô=TcC¯À¾{Aþf^œûOÏ÷ù[öõК¸×¥5kÜy“ˆ–K4þ¾Ÿ!ðcZ&¸E”Û”>»„[§õîa§­jÃùԮ׃)é \~]üŸÚŸÆd®Ÿ»Ë˜.B÷$prËCHå:{L‡‚æÒ&öIìŠ-è“UÖô˜=_û²é5XÄrZzf±i)еÀ£"£ÎU®‚oBP#©Î“yïR‰«µR¾"€á[ÚÿìnR«3'Ö…mÌLc1ÂTcŒÿѰÍñüNq¼Pô Ðd:üÍ1Å;ÌT'רB 2úˆ­a}ØU´6ºã¥ð¿˜nç0ÙQ×B÷~ ü³hxNتꔛÇͺLA|cKÈÃÿº«ˆ”öè>­ºýªº€ä…tŒö‘ñWåúªsÒ¡¶`$:È—ŒM5é)°i»#ë¿Sšjóüa&–a ˜(PãÜKÞœnQ»eÎGeHÞ"ˆ8ðèJËv!H¢ò‡ @âé×ÏCOúHÍïÖq@5æaµ¾~ºB±|Xé„$t•tc-&ª(åMÒ„q0þÞ:pàlj3V »¿©ŒúÙÔd¸ÓMQÿÚABG"ÏÅ.gÛÝŠ9aËúÔ<¿›;«Ë$žåã²5ÿiíXz ) ›(XZèÇ‘1š@À¯ 'ÿ_ˆÒ Ã3dL6'j‰×âc`¸º4ô´’ÎÊ6©¹eöíÙ ÿ´Ƚz]wæ=?ò}æñ§½Ü3Oî}>îCéT†¾q"ݶy¯é°'Ƭ'ܪ8ÈLü”¡ o\‰¥ÊÖ?uÓšB(5EoSÑ÷(ªš"k€úm–|C…Ä >5CG Ö’Ëd´OS³·ÞúÁÔdf ¢bdÅ3š &ººPin‰ð=)]¨‘Ô½+ÆÁ<R6ÍuÔ$ƒŠƒH/†èÀ„É“Þù ¦3ÛЦ.èÚ†åÓÏ"…ÒWºOét'Iãú•8òxPT|†35N¢ßüGÔ“Krèæ£á½L‡EãO ðIcR9Gœ.í‘´XÝðáô»Ð‚wé=íž°Ù@McGt¤}ö:fN‚æ·Ðo{ƒdá) øPGy娡{ʘýNÓl<Ö*¨„Wb´¢Ç­å;„$4•%NB‡~UA¹S{¸–µ6eE ŒdlëoõˆÐŒmýö‘v”íïÖ­9¤ŒŸìâ³+¡…LëÛIæ+«¢PP®ºB ÆÆx ò,©ú¹)JcIf^Ö"[ñ¹k„ï¢ó·“¤y}Ù¶”NŸb ŸS~`àdÈÕñ¶žˆöÝÄ„åÿ|ÛˆRû-$Ž€û7ƼI#DVÝPj÷y³4ë@ž•4Á]ƒç 3ïÖ$›ü_:yÅ’Îû¸¹CPòëh¢7Ëž"=ÉRŒ ©’(½SØuèN”Ù|Ik­°àû×û]G1̾DÜŸå**…š0/{^õš5Ì)q‘œý,k| ~+ß_ãæ_WLzÎúL@µîĸˆ$÷™]ñà„3ª÷(¯g€þ™ÿú³åin-øÿü e°¯Tuš‹šÏ:ÛÄ]ˆÑ–”eŠí:Û¬jÁhoÛœŒ˜éØ_HÓüÝÍÆ¨µár§9ñå| ‡!F…¹{Å{ŠK^÷‘|˜ïê–JK†¼›†…ºï·ÿ^êó)¤]¹YÆL§F¾CCüo–Y¹lí·‡Èò$ujØ!bFqÙŽ+4’ðú¶}¨æÔÞ¢€˜õ™ “v' Ä×I…û®Šåª쀩wfGk“ØæTF¨ñsÜÓ‹ЈûãË]_®,K×Qe/\lÌ0Öýx48B_{_u/npÄsú]˜2hà¨þ¾©u)†zò@KŠb­gØ )B½•¥Èɰå.J†¦+«GBÌ «â^ŒQ`N·Ä1¬úeÉ$®ZH©Ù6ïýÙ»Ü.æD¶t•˜ÇG€›«¸úÍH˜Kîˆp·v˜½\HÞ ®ºKõ€µZ[>Ut$˜B"xjv@OA‰‹õÀ|¸NPãPá±w›§ /p‹LÔ^£ŒäN–`ÑÀ܈ÈÄØ ÿr! šÎ—ö!¹pE·¬'´ô‚HškŸX­EðÍUw]ÂüÓÞvß^9²™³ º®D×YÒcÊ(ÖÔ\BP®eÒXª½º!¤ÖD^ÂÌâÏ÷Çá®9í‰ê¦e ©,wŽŠ\ï7×Ô˜EêüFD•e|c4¿ã{Rž¾ñN#ð–[Pþ;cÿ–j»¼e<“u†€OoîÍ`ÞJ´ó½è£l<±{èÜ·èò*è60GÙé6AÎø®áy¦æ¼Ç'e P~Ò÷^ÔƒÝUûlò]rG¤¨þ`ÆéV\¥xX؇øYèU‡\û~{„`‹X]' 3Ç^‡„!mAxeø4RÝW=9mè ñD4Â8är,ÿ–»&êI‹îærZ \lúþ½×f4ôðhc3Ô½Ü@fç7'Møè¦3U2G#ÖÇ©Ròç, ìh:ç|pûÛ _ð…ÁÄ\ÏðšbÑþ_ÍqÞÜ=ŽŒóG7ȇkh‘½š-à%°‘ºQ–ûq†µ‘±§©ç‹8¿«½R€§(>[úŒ¨ÛKÝ{ ¯—8¤³°Ôz²$¼n #°ÖÐ,WùHWñEœĤ·È² ضVvÚctÆ{ãwò’Uyin¤­B~VˆUTyLÒÕ£m èvJöÀáêþ»ÈÑ-èùH¼ØTcK©»g1µd˜0–=ž.Ô9˜^+D¤€¿.ýø3õœÎƒ ÔEÜ”‘õB€OGè €r,ýöa0ÂÆaaã†>ÍyFêÈíÇ?Y/d>7Û…Pâ08ï£È44k‰8bY0m'ùh2臋À(DÎxrclÑd¹ˆN¦•T­Ä@vXYväLX›ÇNP±;ŸÌmÂÛ9B`>zÕ/6Iò-ýY…=tð.|J{NWras8!ŒNv,õ¼3¿äéÔ“!‘DE¢À £?–Õúöðþ‰°×›tgdÈMÁEEËCYµQdžSˆ‘vÖ2”áò­-W™‡òn 祓TĻߓow:Lú "1 8êä=Ýs~í “â›-?ôŸ¡Mª‘Ø>¡»¹ îú†Ø\ž‰]±8ÍKXÝ WÐ!U^CjVDZ«˜€Ýw„›sÊëà‚©_Àѹ4*)ÈŸ4_•À¦‘ÖFl×GHÙ½e0]Y(Zˈ.^x}{³Ý¾MªÛßÕë›¶´×ˆþ‰ÉG¸Š#ú Õ ¶x=&¼Éé˜ðÍõšÓ¿ Å8ôp*ÔZÛ#ÚWÌ ²é„ÂkÈLvȬpyðõŠBY€ÿê#jø<í÷#—iÜG¿\°ëf0Hk6eœLwâ•FM¾‘@ŒA»q²‰±eÜ{{c½oV“ÚÅ4‡ÈwgCÌ $Þ¼ŽÆš0SªyóÛ9Ún¯üýšoqŒZ 1;0)¤o;6÷Mò$Gr§Ø¾;éÙHfx}b ëÑX¯ìhL‚r¤».må6&1``wÌRò®‚LµÔë¡Q«Ç7íËÏX÷â?ž_y î+LE¬°æÉ°1'ò#AùÏŽB…(v¼Jnì¦ 0¹ i5¸M1GtN¿”JIl’RöÅÅÀè¶¿S@*²Npmd†ZÃÚÙ+:™íCiÆtñ]™Á=­8ÂZcÄÕþŠ õ °}%r“ó)Xn$=)õÐÂËyŸ„3–sô‚ÑÉÅ64ë¶»k#W/3Àm:ø.U PYºÎÈ::¯’EÎ #tcݺ>ƒXá ùþI šõ+KnÑ{÷%¡%|—^Áea^¯:áè..#è6üó蛟ŸÍã«(þðO™9mJøÃŒ9þ>a%ôr_ȶl‚Ÿÿº3“6P´øžx•«]wÔ: àW%NÊè”ù”ÔÒHj’öwFÎÕF鉤€nÓƒŠ¬|hõíäq1©úIÁA˜`õ_¯Ÿ´²‚Þ%Æt‹.#D0É™Îè&ØéuãÌPDðbUÇ $Í(1{ lÃ7½[ dqÜà˜:í¥»ÌÀw{Z#$=ßÀ 'òD jddÜíº¿µLÆÉ,Ý Šp#×~‡Ö§Š[jè¯=¾Ê Ãc´ÿÄŒúú~’ù™®yÊYy“Â8œEûÏ·–VôR§k#§±Ý¤4 î`‚«àÂà‰‚á2ð®EÂþÿ³3r%D‡g+ÙfS0ÁØe_*ƒ—¨²ÄWGGHébŸÒ+Ò˦»lÙªä.¹E°x€B ˆ‰°› ¾y@ö¬H ŸÊ†T%ïî$?š{#B"¹QØq׿°¹öבî-­·ÅbLï-¥:Òòö„ ¹všÇCSYD‘Tªq8B¾’ô ;@—V‘0Òš.lÚ•ïÈGéø[ÖÛÒé¢ðâò+OÎ1‰‰U¯á1Fk+NDÿ2@¥)tÓ­¾‘Ñ—•ù:w !VsŒà‘¯Êêó喛θc•ò®ß±³¸ ƒ.(Ù#n#â¡Ô/4 & ˆo"O©Q1—ccwê­…x•}x‹²>Ó7I0n+\€¬cùþí=¢ña0þ¨mcîÙ⚪•j­Yƒ­-í%¯[}¿G¥›3”u =JL2¿Ýɸ3œ Áéq yoÊñfOdø…6©ÃígpNÔÁr [RØÓæû/øThìu×E#êA2`XÔ£ ýg ÔO§ÛEĆ{ýãÈhÆ"À4ˆÛëCÑÓxÓQ]/80I2[>Y®EXLéBJÂÐwÜ5*ôƒð¶_ošNúÇw1” +J c8uwKlÝïQžlvá•=Á–œJ’©`.?h [8ÊðžhûŠ0$Àø š­Y]Ú†-Ý€(¡írâ|¼ÛǺ®ÉÝ?W‘zpå%”~Äë¦Ëo÷f[©æáƒˆ+êÚÇhÌ®ßCh•D‘”âÒÚò"¯£‹Ì%ìF·§eo»‚5$%Ð ¦Ò«O+î¯"6`³ BCX-»"껂ƒ $#×éƒnϘÃFI’¸#ßMRzƒ¿9—|ï‘'5v?¥öƒÔ#4v•}2è„ä×&9=–“•·ø>óOFyL˜ùÏÁ& &ï ž¸¿¾ÿãEÿòŸ8à"b‘!óãÙM³¯.JQÞœ5õé´S&[eó6ò\E=üN…N šZ% xõ ¨A÷ð.ºú¬ä¹oÝ--i"ÎHéô¶¼SÓ¦¾DPšiBl™ôKIg)‘I³L;ñdôvØg³PlLˤ~~é/C­ ¼.cdÐ?„4*ããÓèEdf ­÷h”ù èé]Î`É5ÊÁš V{ø BÖ½¡‹ê{1n@üK£Íí§?1÷dȈ€‚;kQokÔö^ÐçÂ@×áÛ{3§ÖÑIi£äf¬:Ld»‘ÆÇ} ûWXÐÞ!ë~ˆòš:! )}Á§ ϾU¶¬m•/FÃVªË™×ÀÜ×nÏëwît;¾W†X¯Ý ÔDÓÍêGG!PëÉsÂÅs˜m=Â÷¶Í‰cš Ët=Ò¨r¡ŸÁB>tæE±¾nŸÝf÷@ìçRSP#a—twä6W}Q½‹#‘BGçÊañ j“ ›¦6§“";în_9Ãû“£â ¥ÅY#AimܼOp-[¤,‰§¼ƒžHŽ2e²@ý¥Ãqcä¸lp¹¶Ü-çôIª%p‘LÊÔŠu©÷•VW§ UßKz9´7 ¬xº#'MlûðEöǯSA4^ßp‡C>e&ñ~$›]£-¿½ÇpÆ;uºá4Ô×]P“ý¸0M©çQDĶÀcÜÛÓã‡eŽûq`ïdîá·*Ú öBƒ´Ày<@s×?I©±_@¬ô°:æ~p‰m5’­Êm ðG;ƒ.‡~Æ|7Èyr`üJóàõãà>@ ¼¢Åá¡Ö„Ï2 –…KúãR–NóBpKÅ3È3_wgE¡<—€³².Äá§Èoá^xH®BeI4éÔ´F›}Y& >dŠ=³6ÉÒÔïö/gÿj&ÎÊ Å18~o•q°÷µTpI΄£Â&ésoÅÎ#x»Ãœ@U‹)^êv1“ÄÙÆÊ¿›’9Àw¸íw¿XãîX}ðÒ3:í^ Sa$· ë씫~62Ù$ÌäÇÉ2æÅÂgp{ý£H#– é¬ãfDÞ ¹ý²ú×һи|-Kau_ÿk44vÁrªäÚgH²G!vö¯Ÿa_üïLæŸe¥>Ò"g}¥ä3]«§_>ðy4‚‘ØíaT{‰£8£5UÈv§ÉwÞÆ¢¯^Làf¦y¸<‘°Fû N¦ F}l@³Uz;h¡=­kø…DšxÄ1×ëŽNäÄ$ ÁþMe…n€©y÷ª‚²s¿êÑòùwP´ÛB8¥—Ç ~¼` ýY ·¸•Éáe«Pq+°éí$¾ÅÌð(ú)\qô;´aÕþ¸6;ðºD´Ó/[Eà5^~|SÑ ¹¶‹ ½zß»îÕGLÇóÈßð^¸Å9ÙÍoßûy‹“ø‹›K»l&ÛVòÉÆ§…2GI£vÏ›•ü½ï7jñÃGV˜p–3 )  ÷—ˆýeó™å}îflçâ0"–‹/™Ô‹7•- A–ªÉ…7Hi4Ú@š4}Kà*ÌíN6qGt7¢|o=7ÆÛ\³MB‚¥g¦òq3Y®Zd¾ƒš‘< È#9PÕçÑ¡p ˤö¥œÎîV"7Lÿ[kfþâéÙ™‘—Ú »hÇ䢎j‚XÝrdûîX<®v¡9ãçm Þ>í¢-‰Å*ª5†¨‰÷NÊý ÉµîÌßµ–Œ ½.m²/fç߀>Ö‹Õ6•[{~Vi ‚í~ð»Y¼,äeÀˆJ)™Vnúât†ªw¼þ ¦ †5ÄIjòÞÓ° |ÜÆ œ-ìEx”¾ÔÙ3oº¦eµ§bZ„mœ¦%T'šz¶hÈÓ´lÂúo÷ë3Ê\Ý¿6CÑùOÇkÿtôŸÍKQK¢— n ÇëÍOV«pÇüâk÷T1OÛO@û’j÷¦&H×aŽU­¤é Œ©€»S?„ÄùÝ/.}AåB ¶DH\å±n=€³ÅDn…ß¹íLSRâ`ü Ä´gF(Ê@®#ÈÆøñ"xö‚®(ýDx— ;ÝWÔûˆeÆ$‘;ZݵéoC+5íûÓ}ûµŠÑª¡;Ë_¶—4D*Ü/œVˆp•Ala„Ná;Ù xë¢Ô¢(Bìzfiâi+û¢ @*úø‡BÃK +w¯a¸¿ >gßÔ¾ÆEÌ!'ÒÕ›*mû6›Ã¤?æø0‚›éÐ7q®‘ ©ÕWÀ!ô ª[þG5Øà“µ¤OÁó€ù`]ѨB‰  ¿Œߌä¾O,žÉ("6Ñþâ°-R51Ä;š«•÷ÑBœÉ”w'¸ÖRW/vÕš<ÎeuTwÂñh‰"£ÓbÇh…u€N›ñw½^ÚåíæØÞtU[„RËhf¡W¥A O!Žï +ií;é|Êàs¦RÜ$Æîs‘mwŠl76W¥µYÇhªn¡t»ÜË—6Ê]óôÛ-܎ݵKÀ‡6¦’Œ"[»®aiAäÌÿÖ½Ä%BÖ“Ø*¤úuY¯³Ý•ÀGUEeñÀÀãÜV°ÇWì#ЄÈ.#¹ Hf¿¾ Í{“ÆH<8Té¨)p@ÒÑÙ;œnù™oûz„ö±·ÿ3÷órÍ»P°¸ñk uL–Ó(â›u‡ïÂÿ0ÝEI^‚…æXDäÏ1þžÝª¼»‡.Gs>6èʶ:gsZ&ש´ùäJ¬pÀ¨?Ï+5®+ÑUô„òÕ­mÇ&_ÆlœI¥ÂS¸ÌqPdd0ìH¢÷°Þ¾®­…‹Ýëùl-P !½¡*BWžÀ'ýæ¹Ä†«µ g›%XËã|ªUùœB^U’÷?XÜY]Á}Z¦ Ê%îß.bœ3¼b´Ôpw?{vÅ\"È^JÕïÌE‘úÂχƒugÃÖ6)?_èXA~ºÂü‘¬&-¿ÜK ëQž]’ã"ë…ÖLb»¥M²½|§„¹—èb—=ÕÃ2 ¾æ›™[Üvb¿-ë§“~}ŒoJ¬çÁ0á­®ê¿ÑG‹]2«—Yª;ùpõî[/ª.ÇD*| <ÌÉ0ƒ”iQ0¬¿…¬X:¬.¥ª¦t%á5xF&“¡°Û=~}¿,‘ÏrxWÙ)½„Ä’ªçh Üýe_Jú`¤S„ÓÄ^ÐOaÊá€É´ ¦FécŒ,4k{Ĩ›ºÜ ¬ÜqËq>!³z+*„\¥v‰È>4ÁðXp²Ø8´ÝIûŒÂMÏôv¨OVñˆì>‹ú’äëàP P®Ïdò…ìQoµªãøç¿ˆù8“ºICï«åSwð`äÏBλ<s•Tòtþó7®”SP²¡v¡ ÃPêÚÔmдüV¨YÝ_X]Áþê¦ëï't|èÙñýXü_»îίz¤Ý‘R‚!l_ò !3‹Ð`×Ôœùâ¤y¶¤!ÿ±ùd÷äIÎøNí UwS#¨VÕçñ!¢á°ñØ—*ÍŠÌÊäXö=öÏR}bM5½HœÙ7ª<ò¥wζÑðÏfŽÜKÙ…àÙl»lBˆl«"Ÿçi!8&˜€õ†/63R\{ô·Fù¿ÓNyLHÇN U¨[¢üÆ®±‹YÍâG¯p‘\)§ÛeÔ2tµ2‘N`+ãô„ÕW'u&[F-¡­B´!qÔŠ|½¾Ûix#¹ëôêÏ_Æ(ºÒ£$©V ™6š†®)0"}Ñh^Ô&²Ú"’¨­ô³mŠ8ñÀ¦€$Ê|ôòYÒã6ÐÖ©›•ï1´–™ØŒÿF5!ó¼V±K$p±ÞPgGW¼)Æ?€àí±Ëí_Ösrª9¦I¤NQT ­#ºP۩ç´“ÉÉ{_©9:CÕ¥MÀнº WÉQolZ0øƒüj ¿bÂp”ö¸`;Øî椰¦´Ð—ZylÔÕbs3«á ðŒ‚Ì€ñJœDz˜¯òñ*Þµ¡ÁÉ1¾fˆ¬QÏS.Å<çåPèmÄÛ´VS•Ûá>TýFŸÁa©o_’:ù‚âÌåTå"¢^l×\¢2—%¢ŒZL HVä©âøññ'<:!Aéd— Û˜¬ƒ_}(ÆRñ½¦¥’é¶6xsá‹og·¾X¼÷L&Ûî+zYFµÂe•ú»ÃmþÄ(`ìí1`¤±‘-‰78@à6†ÆŸ:ƒˆëëH.üønÏwXǸØ÷eâQ«S–å,óŽèþ–Í|Óè°ŒDÚ»;-«Ž²5ëáì1ÉͼËÑËäƒî<1°˜FÊ»_ÜØV,;ÀªË k=˜ÛåÍPrKü^h˜Û‚YÑ…èb›¿“ÓI™…êgV­Vû…)?º Ikws÷ë¨gÓÄñ„_â>Gݶ|ˆéš¨üˆGW¾á>x令ô‹¼ Y',˜Sø*î§Ð×"U™wi„™ÍFl#ï=½ðlåš$1mÑ&‰ƒNA‘›°º-^cRk˃jéµî¿SÚ}KÒÁG½oJ¦W}t{$Eu2¯÷=TÒ#tý¸·g{Ph|¿â˦m7ÄzsQüëvKãéÓÔiÀ©‚Ä8HûŽœYÖçBWÈü¹ZDˆ,ÓUƒ|\ì›(ßò@ZY‹ `טÔ|6Z¡„f¿_2~é¬h¼ÙÈÂzRýQ€?¾UO…·™–”sþØ"ã—Fg5}â ¶ üe“Îof´ñæ»ÞCÞX0ž?ÿÜ·b":"N- <•ëä¾»a1šAØJÿ2‚%,à«´A^[çó•û…{trÔW†|˜^EP¢^$zÜcŒÑƒå®† ™©Yu6Qo¾ÑíËßÒE/BCO¤½.É È%´d³Aù-ëa> )ŧq¯ÿ{„ËߌP‡2N¡OqŠ’ÉÿO ¯ m ¥+i0TéN§h¥º<žVíå1?’ŒvtÒãUÛI)rf¼ïÛõ-z[ß9Œ¬9Ѝ ¾&ªÎ§ÂkNXÛõNË;ÿ³íÊUwMkÇOÉâóÀ°L «Êg·$FÈZn3¡ëuIuZ³Â½z}þÆä?=¡Þdx<ÁsK“HÔ©õiŽâíëü’µò,’òBz»ñœoÂÊó«ªLk–€ËDÞ7œ¢=±*çÉ$ˆq$[¹3ò³“äp ‡$IxuÅ{IÙÐV[uοÑS‰G±ÎðÀÛs2cMiÌÛ.;XW•V°9ÐàU(Oÿ¤qé Ðý!¢ý]AlΙ'·¥R±ó›?üÕµzÜû+H*ΈSí ~¸¢·gZ)˜ËØÈ6ŒÎ/&#©æÜŒ€tPîÀð¼ü^,PÇ2b¬¸ vAy£Ng€ž6-ÕæÏz¨X¥P’o! sµr£îlÍ-_‚sH£S¦Ú™aòÇ%I«ÕŸS¤¥wu»mâ ½p°B®QóÁý û®úë¯V‰Ü°<…¿±Ù:YÏAdWÌdO£{ÊEIö•mø_üØ­@]ƾL :ð÷á;ùÞ†<ÙVƒPö¬¬ž\éþÉv«WÃB®€ÙY2¾ÆR#+‹1[2 #:SD¾=ÜÚÆNEfÞêrFS€Zí<HŽŸ¯³È]g 3gP/„·«Ù–J“è-D«p€9røIV´&oQqú8lÁ8 ÔqWKJ‰BÛÂÚþæÓBxýP}ýhdƒ§Ûk‘¿;ܸ# šNSbðK´–3þ7ä“Y¨Ží(]ü¹\‰šÎÅÁbFo°Ý?WE€Ž+Ü£å»à²>†TÊÍ!KI?^À-y£ÛÕO¶*ÄÉ·ðhiìù£tÄ–eJ¸NufÎ@ú=ÊyÅ®«!QHqTÏ®wÏ· À2ºµÈl—ēýÙ]d°·â‚¡—EUb• AÃùG13£R÷Žß²õRUY¥õTQ­à¶­Èeªc N(Vs–´EÔÓœ¬øÿZI 7útßáGœw´3¡¸Vi}ñÌÎ<†‹;' aóŒe¯ùh9— ·3#"qm¶×Ç^ßÅÖW/cÈ›.⃹7's Is«Û\*FÇÍí_-w1ÓQÒÔŠbß®ÕÅôÉ짬ú^@vZ|NÐJRCW÷‰GwÓ®ªÏöàø¶ÿ7Z'­FÞâ‘´=B°*dc0±ùthBŽ©8ZkÕµ•²QÕ-øÅîƒÜp–î–ÑQ,e˜Š¹Nê0e@#ìBÀAg#bx ÛaizL{̪ÞI·yZ&â©£Ÿ¾«j#ÔÖUJÐ,oëá–#†\Üh¡´Œ òôTN½Ï÷€”ë|dÿÈ7Ââ/xa Ë‘°!Õ$ö€š¯» ÙóüipˆkX\Þ*Š:])ú:‡`Ú£Z*À7`$†¶žÃ+o*ˆ;Ê×ĬáGÿ+ÀF|zâg—ÖØ‘ko¼U5ЗMáZKÔ@<7à^ÈfáÒ4  : ™Eø?KvƒzâNÑ`r2P_æûÞã¬n+˜&9òƒØô•]ïFaþA3&éMŒ±SBNL+áÚãô—ÂÚ3¼Š (L“ NFs¬<DÏ^XÏ&ãòLËÉoakëŒ\T^'! õƒ`*áBê÷ì°¾ÝxñŽ´™ «O=X“Õuû«‹nEŽWNúkzUØGfKž”dãY²²$¡úÇUã˼«CFð 3Ð-ùQìgÔŠ ä´vˆˆ#ê„7ôGNM² ¸èØŠRe#Iyšó쥕KMãÛ|sªÜë Ÿt@Y<·6aï<™š®oë¸þ¤0~â{ŠêM(q¢ î$ÄE,{ü¶G–ÿ§èÝZÄôðßr‘Z}=}Ö1a)„ŒŽ@Hë ¢ÑýnX(“¾{@9ªº_Añ3±_~¦¿èõ“ÞM=$©½†¼Ú%K t’ÒVŒêrSðg<9Š£ð ˜cx‡z‘tÜÍ}Ö:ÂÚ>-Vl|uðüC§áFxYßk«ù…‡1쥲&d7Eøã7-aÔz”f¸Ä“*kÁÂÂJ­(Ÿ´º=È1ß$jTî÷afµüÌìªzòGôñ!:˜x ÷J³o »‡79×ä tgÏOƒ6:Ý™d`tßÎУ0¦«læ5CL8•%Ê^;4Í!ð5µó»Ï´@f/öBšˆþT´Í%CÛJw+IV/ÛÓnOf.ÅÇ£íYÓlÐÅšÍq qþš jÒ[è”<ÁÅw(#Fà4ÓZ>”ãëN3»’êÂ6ßD¾`™Õ¹m:]ÝBiô—ùñVÌž{oEË7ñXûN¼¡lz ¨’ ~ÞÐòÒ`À¿”÷ Úg¤ªÑ*W\[! +í­p™ÇìãôÈã~š­›TŠõ$¹t¨Ø=ÙŠ"öy)ºÍÙH†9FÉqûtwhPwŒÂZcøÖŒýøFØ$göv(܇øÓò‘ æ”7½(‰—ùýy»Íˆ“r@AVã‰ÑMµÓW!d¨ÑÐ|¥êI³>!v麃ìJÀ?:œÁ?ápTbQˆøçâö8ø} ¨+fi‚µ…L½w¯OW¯XŒ|+3ù&ÍÊË›KÇuâé‡ëÑÀì® “…öê?În@ÆÄCõlŽȰRLÕ™Z·v —KáîR☨³¯å‚Ýßµ¿òÙã„üÛ:Ÿå$‰Ø¶îÓ-ã[©®Àæ÷”´,èÕ嬸ÀÌ‘éyÙZúI¢4`°#B\Ü>*¦Ùí#ö5-lè­\ö¹ãËÆ­·±çfû¯3¾þ±x·ôý ã°w{o±¢ŽÈ×£ÇGGü¥ ]‡¶ØCÕ=é‰ÁÓµ´gÁ¿–t7çÉbRSâÌÜA%GŒo¾‡qytÝ•á LX=º‹}Œ€‹$‹ÛD¢— eô‰ò4ÉâÃðüªž,ØÒjõ1˜D«–e‚ñJ¤-.µ¾”UÀÌÔ M˜bßP^‹tYÓ^º  ²‚”uFÇ YŽâSK–t“7vàþ3›Öo•~4²Ú§ ó¥ó¥Á·¼Q #LôÕD­ †,ÆX{ëƒE2T9Åqö@¼óêêæô-™Õs†íþ„aûØO߯T}8¶!5S{$)²ÅÒμŽüî}š8(}ID Ü¡€4éú:”i^[r¨f‚ÍR:_wÏLS–ÏeMAÒ‰¤a-®:eµcœ°¡ÏêÝÅaßÒÁÛŒÌF…¦G³ž”ŸVÄ¾Û Â´i)ÛaÿÆ&ê*ζ¶ é:þÙNÛÏSŽ.®j9/#öƒt‡ ¯ŠÔ`ÿòâf›R6xsHTú™¤ÑV(f ägŽŠ) p›O˜‰ÖWOCäÜP-,…G ŒÇí) û1»ÚA¬uß`ü«êÏӘط,x4_7aËÈDÌžo˜¡EŽê7•ld•„}úˆ]è­OÖäÑi¬Y8°jáIæ%ÐucÂÚ–>åªöVã%øn”ùøøÒ‚ÎÖT[<¢å`›>ô¸%Z:cÁ9¾vïëÞ¼£Ù [õ‹änÄ‚á·jhÏ ÛûDýœŠñ¯Â÷ ›¶þÃÁ7ðéq¹´*y¶µ†¨Ò¹':uý ~édè„> ÇhÓB³®…ƥĴzHâÁÉ•µ£´û"’Öbì2 ìío³Oöy¡È8¸ëíU·AJ< ðfB ¶°´ä¯âž_Óu £“‚“ñø#Ö=IX®Lˆð Èþ6ÇÚ£€tY±þ÷Þl¨Œwˆà ¦èRÈï‡^2¢ ìæZÝ=˜ÍÐÃutG?ò  Þ3·ò\X+‹?ÞKWíŸÖªÂ^1È©ÌÈÿóÇ[è&Êîú ¨qÏëh0áÞ–,Í™-¨Áõò8€ý}Ãew-p>I•G€–âY¥Wˆ0v’(¿på‡ 7ëS"0ÿÿîɾrÈ{r}“ÁdÕ\Õ²Ê1q’͕ܓø_ÊÜTy?¿ÔñpŸþ6‡C˜Ãêïyš;?Opí¡“Á,Ý‹$3Qï’ˆ«&«É÷0§!ì02×{õ{ÕŒRhežîtñèõ»ÙrD=ˆ)ª¬`X<޿옧¡œð­îµíWkcVafNÉÙÇgqËo®13%‰-‘ªQè ÙU”îðAU—…–Ç瘨T¾CCpÑl9(ã$œ"hV¢m9©"¾¾d„GÒÁo=v4”°U(5ú†^´ªrÝ¿‹oÊ e'Ôă¾þC6Õø{i#jj¿C¯s&úóRÅíÝúÿ®†%*®î…é¼/yå×h/CƤˆ¹t‰|rgéHXþ² ¹Ñøq­¡Ä8ï%Ñ|_û¼=ĨTS°¦AŒÂÔÄC MOX° æ®a÷ƒ2cö ¼З?›i÷)ž‹ž‹nLÞƒÊÑO=éæÅ )ù6/uH ö³—eÀ {ÄÑšá­íŒ&&â›Hi:JºŒwUHÆ9qøÀXÞi?›ûä2ç7f•mÒ?HÓŸm‹“݆Yú–;±uɱP¬š¾ÕÞ&¦‚ŽGô7îþ;–,u«„~{®¤N%°3p¤3á¹ÆˆŒÛvržÑÞ³‚Bæï_AçìN£þ›QÞê·UÒ€¿â—.{a²Ùj¾‰2¾O¢5ÓàX6é~€-Gk)ÞT|÷.’=’µ„¨®r'äšb%3½—÷ôp&?19CÁ‹jªÅÁXHÁ‡´ï–™æ‘£tTï;ýz$ XP‡ù^‡›+¶Ài‡ä`} ãç;ÁÞLšÊ!ž52N%ÖÎ÷}ô@xç•u?K¨5¡¿p! ÜÅà\÷<ÒÌöfyVš€®Í-ý•‚Ó¬3ìBúT»ä‹ïƒÍ @)OÌ1.rM÷úÞú–ì…=kz½Æ.K/íQg©Æb#Ã7¯Ñ*Cà±f(®ûE¸t±‹'*“.‘.ó0[#ð††©'빿–tQe_õWžóTªäh7…¸m–ÌòNÁl¤U¼X!  +YÂÙ=û}¸î`¼Ák4?C×[N¬ž• ”y|£Ñ<Jˆ¨hâ;ÕÚ–oÊwÀç\SlÃ貿r®JêŒÎöt§+_›C¿>å~ -}Ô¬H÷±,ÐŽ Ë(òD:nñ«é’–È}Í5ˆêôHVD>~žµ[NÏ›ÕF#lâÙx3«Óƪpž›ž>pƒXÂv”2ë¨ÄÃ$r´Ó¡ÿç® &¥L+j4ÿë>-dRÏ®Iú u£RÕ.q¹ «¬ÝQFû!X™†Fÿ`å_:´q” ¦#({…ß¿"þ­.1^ñôÑ9‹­y‚LNçlÿDTm$¥$e!\™öPì¢j›ÑÝ¥›¶$„r/±††à{l¬×1"º½ ¤ÕÚÒÚb¾Ê#¯[~KrAõÕqOÒp–›fF»ùY¶IcŠ-VÆç—ÛøK~%öJÅÐACnÖ2&£Î{YxmpxÞ·GÊ–ø%ô™¼Ú<ÄRGî1d9újÚ/IˆŸ/=¯rÀË;q¥Ï[¿p\Ÿ¤Ž¾‘XÊVZ\Q­4ì/±­ ¥À"ßùAìî²A¼q¥ªÇ×Hˆw‚M Û°¸cHUx¶8¼ú·Ý‹ºƒ±’¶÷8êªü·µ|xMZKZÂ"}7Ù&RfDêÿ_ˆïĉaº:1å{æÅEÜ[<s©M±g"´<©Ÿv€ÉA‘*Ë òŽQåÓœ%Š=8~…Ý“°®©ïV[¥ªÒXä’{Ñ™ŒöªH‘ƅò¦p5¿ñmOÝÇê;fÇ@šn×Ö¥ R€N V_}ŽÉux% †1ÿGíGýol 2åHÃ徃 ºÛuk•QžÑÛ\3¿Þ2ôSgqQ/ˆÂë·æ)° ú ƒ·úƒ$H,wôµê ìÀäàÔ”¬Þó ŽÒÕ>šÚ„qÑÒÜ<ÜÜ€tƒiaK©°‡|¦•Å’8ãæ³B˜æ Ëg@™è‚ŒWýØš—pà°Ò_ «Ýïb~/h65%‰kZØ$I‰=}r¬ªÍ7MʈaMWæö½Xûí7hRj˜÷£›ø±<ËZß /Qˆ£zC+ž<ˆGüÉ}“Vî//$#ƒLŽÕË{«åÚ~,uËæRíŒvMâ´à áø‘D:#[éÑ”ˆž¨zHÖ‡‘]ÓÏkh§âéR|݉l¡6”±»0í)º+ÿƒ»‹Úð½ÉÒâ?g~“ÑSãǤ|>¦ŒSlw¢”ˆ°ÒO"+H~íac{?v?†“­0¦3cOPZ:1—ì}Þ€à=~‘6wsLhEªÐäi¥ËFúùó¤Z ¡6ð¥*<>½Íþ9›þCIÓRíWô…-6Ó~ã ¢eJ·TȲŒ`^@ß¶á>h2‡zàÖP¾QË|ýÑOC&ùß+à•¤dæ nT¬OõŠÍ¯ôìLfšQl/ðùüº}!DºÌá?³Ù¤Ýôˆc8QU!›ÚÚÎÒh Áñè:½÷G}FsŽáŠ€ðIµÃÃv‹\^`  ?®ðˆ®s^mLJ+ž€HJ*º§oÆãì;tyõMÿºd˜Ðk2®‰Z¿£pÏ¥‘ClQÇ0b¬¯Ëz4 Â@’fÁrfÄFeT¦Ù{Lf«í#UÞT¥FhU.€RkJàXNȘ¥Ô(~oMr­ ÔÀí>ªCêëç8ñÊp›3²ôCÍ9,2|\þfAšíàkÀª´#Æ×_¨)>g}ÖÊDàǽÌdjJkï²xÆÍ”÷”ƒ2v,ïB^ÞГXÜ£«+Ï|•û刈±5ákQØ<}A±©àmy n¬X­9N…Gsz!ÓýçÃ_Pr »› ™ø§#¼êJkþë¶ù'žíÒ¤ôì4ÅRLbô9ÝXȧ\Ëãw5ò…澎ˆr£M2XÂD$ô剔ˆµ¢Çt ú¤ÕT‡*0"yþR¹AMCl€LàÜËð±8X6¦‹¹ ç¼`òND€s«íóò’š½ðµàWÿ®¡è»âWÝÆý2‘9µÜU< ž6PzÅÁ$¨ÕÿR¬P(5î¾Rïó/›’ö »1§…㩾[Ží§MA ùvIc:æâ/[ÏÕ·j•Aó)Wœ†úÔÈ w¤­ µº÷û„X D.Üb8ÃHŸ6öÉ* -²uºÚÁc¡_b¯_‚W‰DͰ,Õýt–âê£{³ÏlF¬ Ù­†ßË• »˜`Nÿ,ˆg§û €ø¹Žº•é+˜Ò즯b$i¬¿½KéH¡:û ¾±­²›^sDpη+Ð9cm¨[‚í¢g²Ö¡§eéQ§ºõÑ¥/Âkô ªTmØìnM-ÃÝn"i{v×^UhetlRâ2,;³¬™‡zˆ5³‰X¶ò Ù©ý!íur•†Z§ œêÝq:»}«ã~–^€ª¼l ‡(Ú?X'qDËü‹žÌ{£ZÔXé¢ siÚ˜£Y]¾­Õ+GìuØn·ZÂÚ¯ñÇh‚THe‚67‘¾UÕ§çXP‡Žv›Ù¥ –2VkÂNs J‘·_`¿¦Ø\*/̳liååãã³Z°““(8] æ¶±Wû(gY% §5ÝH…ŠüŸcé€û¤ˆ“>Ø'áHž]-Z)…:´@ƒ1 Hå*[»±ñG ŠØuqC"~ƒ¶n”ÉÎëk‹Þ|_¦ý–xŽ&ÙS‡U"BŒËô¶=Z5ÆUòíö®3k¿RsV?_ Ë»÷êúˆb«z•²wä;P4ýI—çÎV½Xæ¼úýGì0_«M‰ˆUm¶$Beôed )ÎÊ(Ö6¼Ÿ®ÔΔ†.“ž=ýº‘°èðÌ«¼—c°$<#ªp¿Î}ä^7oÊûLzÆ‚x ¯Ÿ¨Am`‰=[ÁZí.sçI€óÕ½3â ^ô4‰–âÆÜîûb%‡î9Þ®ªÝiŸe"è8i7·IÄ œ99ÌK•/Gú y>È'y•üÍx=…74 .àŒ­Ârú£Iqz%€ì¬íÙd©@ðx|f)§ê20…ùq+IRõ-PÁÞÖ:ŒÜÛr [8vt=¸jk·»±:×MP!Õ­†–ÅJö…¯ÚSºÏF,| âª3¶Ò÷üÜîë~z2ײ«9ôÂG:†¶AX­>–ß.•<öÜŒÞú†s rñ×ñß&ƒÏpÒÄèSVé¡Èh«ÏƧœJ¼ i1ŽË³JÀÔÙÒ4O Uúϱ? -=YßReµîÑ/ò€ ÓútS¼ýɨ( KË4znºXÚ‹ ŽÛwß*,Q]r6mÉNqú'e†ñ‘Ç~±{ìëÉ·qé(gÆ3ìryëoój”Áê<^ýDs˜_ÐrT£ž÷¯{Ý’†ÈÏV¢lÌf!ç$+é¡ÚxVT)Àëà÷¢l}ÀeJ“Š9û&ý´ï†Åa¨ŠY$w®’('ŠÔ@ÕGëÿè-TCòÂ@L—˜Ù_ÎâԤଌœ^ExÆ8ò”žUßMCRI cí›ùÓØžÐTìÅiºdÆÝ —ô-þ½ ”ÑN[Þ(“¨Õà¥ÓÁX—×§ÒL… ÛÕóË k;û?Pá:ÅŠÙîµkÚ«ílƒiHå´LX%ÅÔèb¾8”Uô-3£g ?û8èûÛ#ƒw—sÄ«^Îá.FšÝÃC2¸ÄrNî"^V…¢Ü]†ƒmXUåÊ|òk§MR™º²¾jöid| ¢­0Å ”õ¹À…§›År<Ðdð}á]9JbPúdt„O`—x±]#F> 'Ы:ùU)/Žerm;²œ=¥sáqÍÂÞèi1óý)€~‰ÙS`4LGò5Ó•\¶è¼À%‹£  ¢dbö÷&µ¥„³s´øÕ½©;å•KÔ…÷¡yýèd'UÏLÀe³÷t Œ?!–Ä\ò׌ \¨£ýLu¼[ 9^¿úùÈXtcÓP勺ö55Õ7[k%Cá )’_îÝ—)+ãòËã¹W˸=»G!\|R²Öõýª@ÕÑ=7Ÿ.=22@ :`ªsýLÎÖ {_·&ñÏ”b¶çʾóÞ]·_Eê®8¢* 7Ì!XÆô³T”È÷ÝÞ-D÷•u¸ÁílÁ¡0~`âß[÷$ç)yCæÍ´î]á+󠬪0”l½d›–†;Íl€<ñDåï:ÐÆJe .p!îQßy~ƒØ9Ò .&6Ž·¾U+¼ý ¥Ú¬–7]©”8l´ä–Mõž¿†>ĶœüðñùX,i'6¹EDÝÝ‚ø=?¨`¥ˆÕæ6¹™Âé¬WDîé^ßqy¯¯â@?ôqw…Èð¹ÃÇÞ}Q$z„ÒÆ’„yýfµÑ<ôãºÞm1õ9\m/ 0 O×c¿ EìÕ ïX׺½ß(™)Ç„_nÊ Û£ª?…e•/"Uà¶8S‰Ø"RweU—¤ÿAu\YF¨u°…y>TÕt.XI¸ŒÂ{øÍ£åÛá„¥V6º9“ê ~oùëÜ‘,ç$1´x0a‡ý¸A¸P´&çÛîCÄá@ê˜k8²B!^^!/Âì‡ È=R™9ìR€>áuÒ¹]¦¦Ñ7s2W~9ÿÛóèã$žP’æú¥e⦕ч%Ë, c¦ÏKÖexC‚}Ô= çîÇ6É)w@†tx@׋5¶‰ßt†ßMúñv³ ìû¹’L–ž‰8 ÿå‹Û!ÃC–#ˆþ×$IÉÙ^µ]Õ»W‚°°iÍ_§€Ë†l‡žøŠ©ã; >ÙãË™¼êK{øy;Â/׿‚8Jy{-: ½{§(€(úÎu"¿a ‡»AßÒVf«ºC4!E»#b„†C“óAÜ–½8·Köyö<¤Oì¤MOµ;<CN#ü ÅOø=å gÓR°úêËð:µÁ =çÉs”ïÛþm-$˜5ë!°{cµ2f®ïÓT¡›ækÕa5i-{Ÿÿ¤H{Ò´@sPl} (—Öö7 ³"¸>ê:9@ö öM´Ø¶NÊ ‡|4x5Yi™ÄÛSç^)$:? ]H7výÿSn÷ÔðÞê¡Éã ‚Å=ÈeàçVe¯âôÏÙz¼•ö†^dä ˜™(³,Au·§DѲ’Ø_¸…on#h¶æ4¸ƒáYf:H,ǧ§’*ß¡áŠ$3¹+Éy^—;Ï9wÌ-Œz[C¤ýü²¾¨änŽÂE˜õ£)¦ë_ë²’)—¶ \zºT剱6½¹ƒ-ÌIßF,«:»d\rÙM]tjÐí«–Æ%$“yà^ãXãн—šUüYüEµù1š¤Ì;`·i>³'xïVˆ^^ šŠ!6Uš<¥·¶z“–K?Š4QαŒ)§žSÅÅ.!ÊëZzˆ\¤“«ŽurÑŽ!¢ hÝÆ¯aeÛà‰,‰ž¥ 6Êð¹MÝÀ‹ØsFÒùd~èl§·nÇ&ç¸2èê¢j‘™ÆÄ­Ûî¬gÎÅñf„#7"ùûÅ&Ån†@ŽºxæœtªÏ›]qÁNœ}Óä«„Û€TÕÀ#9õÞ'6]ppVAï3ËïŸS)Ò¸ÝÛºé3‚!Ó8 ÜùŒ“g@“î\ðPò¸&)LyóöKzæ7~ôl¤VGþfƒiäêÝsÔ</)¥›ÅZ‘ùó¸:ØPfåI…Í' Jpn—cš¾¢WK–âpì­ïðÛ¾ÝóO"ÒSʬÀLš/K…}ŽO° Gˆî—-ÖÕüŸ-7Fk7‘›¤r.1‚úþ%J×Ùx/ã§ÿÄ-”^3„£/l¡Ôš¿Ð*£\œ ò¢Õ§i+áý§GÞ ß¼$šÀݵqeÓd¢Ô@ –òtû:PˆþfÎ÷ݺb/_ô|ž¿5û9eg"ª·Nèyk9®.Ì™ÈËúÑ=ëæ¶ZnÞÖʹ‡d\RÕ!(›BŠçдÂd±éQâ“…(ÅÁ0´§1âXâÆ*U{Œ^š,A2£½x÷¥åó’!Ž ÑqϬνˆc¹$B7¶||.èÿ|í1òÊ,[¿`ÐKÆ1jU$5ɧ¢¿éQ’6Lô“j­Â‡J5Þ™¥YïñåÕjÁ›;ÙDItíøIüõÄÕŠÜŸnŸ'º×©„è‚BMi½º"$ Ver™H<|.I$AÙgLb«õkÕ¶$AÈ@5è«L·Á2̘l:šÊԀ˱dåC2Fe¢W,nÓ2Ú…xÈl²6{ëª[Ï[ÿ?,L¦6êóöU*œëõqÆf’w8 V"êyþ5ûGÙ_s Øa¶‡NñòÑü'_‰¥Î«€Oß¶:NJ<µŽ¯pwA}›!HþâOó&R°}àæñlŸºÞj\{«þ­ÕÜL85 Àf·ì¹‡A º ¾)¡>³Él\¶h›¿ÉòV£,[äŽ K¨òÐlSö§sì#nTGÅÊùþ:‡Žy²MÀQM“ôÿjºal°QNå¶bÌäÉŒtŒgèÅ ¨+¿}‹úNÛ¨ˆXà ƒ¬:o<4:íáj£qP?A1ŠøB¢g_àó· µµúãËLåÖôÓ”·eï–j'ÄÞrÚsG`-å×ëŒÉâÕ£›ÓFþÈsö q†É€.þÏàÈïe äC°p¾¢E"*A¤›7‚¬”¡³d}ùq _Z—VÆE93E¤ÞßüdiÓSœrC~7>±‘¯P<Š.S'•ó…ÈŽž‹‘›Â.XËš+":¥_1˜–h*£ˆ”Tî;¢\´q~¥n» ¼`ÂEbdöœq˜kõJN% YJ؇Àß5ÎäID]b a@yõ9¬°sMÃo*AHà!Â%-=Ø$^ÏŸö)á|ð2HU–eçZOcUv!‘£W{ßßÒd WÅþcõ ¡¡èÔ0 i”·‚Ÿ–?±ë½Õ›¢NÍ¥ì° ›S©¸Ikç±C,#Û®2^\°uèd®uïÙ„UᤈÿK‡`è8ß[ h(­rðþÃûã«i_V8©Ë-ÜÕCµ«–3¶Ÿ]êædùšÊQûÕ:ö_7"ÑyÖàV€ä0vá/=eŸÕh¸£ ×[ é¼¢ ÅFнŸ¹ `¼»ù$ŸýE:ƒ¦±g\'4ÊPZWôîcƒNOlÝLl¤ß¨M46ÏdÂj{ öc4ÛR,(‹ ÝôÕ»C0†"sñ ¸þß!ùÌÊk2Öî[]Ó3^”@G1üWöë¤iˆ˜À`Zµ°7Üîr”¾öÃ2‘~YÛ£˜JõÕðß8á”! á×3ÊÛAçÐ ";$aîöÿQk¯žF+; /£‚5_õ óYn>)Z/á=¦Høšð™£hFw9 ùj±6m“—€¼Öpf@„ÇBo ²Y-•šuœBª˜WWÿÛúé‰5ˆê/6” ³,‡ª+¯`¸åóN|@ÛÃxá áz ³K›ddmX¯³Ô@—4RsÑzÈ`k€vÒ¤/ø}j†2ŸG„ùdDwlcÛfØø!>×â-ÏY™Nñõ; `aÌÓ±$û¦'¬ú #›ˆ.ÁþU髾Áóìùú0#®´«Ž€œ¥PÚ2š¶,ä ÍÞÏBòføéÂf‘I~ê¹PôÏ1¥†UvÇqt÷Ì} +ívð KÙÌÉq³N·ˆ§],¼Þ9c.D[´Cw¹Ö2,´­P‡ÿ=ô¿´z( ¸žYñ‘deî±±g´Œ¬s–@ 5í<6»O{fÕçÎs?Z Y²cbiuD3 ½5ÑÁþ#ª'.~Ë%Q ° ÓÔ­¥ê…ËÚ#,U˜>H”4jÎâ¹ $â;OnK+Ž[÷â]JézûPx‡i¾';?[FŠÍ¢‚D±ô Š‹N‘­gÄ*uBÉa”{ˆ*ö|ªýŒ©FzæýÉ{ŒX—¸‰á\ Úñ#GÙlfI‚"•µ< |Ì“p¬ ùñR§œ-ê3Í@c“ÕÇ<ÄP|–²¤s¢ìUe™È^•Nº ÷±} ­F±®¶¡]BZL­­ãV®çAé ÙVŸÔ" 9ÂÊOÙ9 Èuï¦Dñ†k9_&#¨&ÏRÀÊ×Ú=Hðm§YZ'÷†Û.¸çÛ ‰¢¾™Õ(:]GjaÉЄ…7¨bÉ®­ mK¸Åõ¯Pû$ôlÈë;‹† þ~:}˜ì9‘µ ±´N+ðüøI²¢Âë¥Êï7ÅG»J3ÁS0d¸½¢1-qç˜1—˜Û2‘E˜$°^–ÃÈéëR±ÒÖû)®¦†v}g”U˜ÃÝÖi­¬@),Ùã’­B99 Ä”lÎ+lI-aUF雬±RDÕ¤Z3Aªo&»M€sµ”¡Ëó¤a¾Ý¹>õ¿}(òùŒcîs[jãŠ=M9ï‰.Ëþ,gâº3/ýÚ®ïäø:fl°+žð¿jâ’ch3³M@&!çt™·ú"Aeèõ¿07ð¥ÃU[JÜü~YÏ?nâ’éD ³’~¹·~VƧ¤RºýôGHUˆ¢ ÒVQ¶CÞVªmºœW;øRåi£"áAF‘‡©5O¸–©Eô£! ÀNÆßãÔ5âÖ`…§óW?* íà—0)ÕõjcÑœ¥Íƒvž {ó»¦à¡D¿Y8³b0ï -ýNmY™úšg¼.#[†Q=AEA€,§XœAɃSÕvžn¯ÉúÑØÊóÛTÜŠ­B Êú«¸MV8o3»~R‰”#}l”y#Ymw¦(?’×>.®°â%Ëyn‡å(‘½!ÞÈÿ^û3öfPAËœ–×÷ÙN¢ÿðÓdžaÉŠÏ&T3\¥T3 ›$­g‹Á³h=TÊ*­éKÑË× 9YÆ…iÓ?¢CN¦@W³É‚±KÕEÇEÞ*ž˜EË“©øâUOa6^-®¼¢ÂTnÛqÀì(r]wÇÌOÕŸªÎØÃÕìŽòŽÀ¿‡@¨É\ËЗ•nü⢶!Vét HÒ<ÏÐîiÀŸ’%ÒÐÂs53F¨>OÑŒEðƒÚÑ{}Å)µÎ›½ÿÍó{¬–¹]Šÿ‘ƒéÉ?ˆ ¥¿^>û°ÉìBê½\¼<~6&L,™; ÇøXDkÓÞ¾ºe°w «öb°XË$jb‡’œrBìچ⥃;¨Î+¤ø³—Ë—€NË××|R¼Í³7Öõ¦IVb¸æþS00àkj¤«R>­ïÏz‰d¸ ë¾ ‚ lÕTamdš»ò{‚?;Àî i"áæã¡Tú:‚i¾m'Ì)pVy’Ý>QªÂ(9ú7†t´Äù23¤Më¾v]?ì TS#Ì›r´ùb-E^Xn¹(e¤½“\CÃH&ƒð–½’<4…pÐÎ1 +&,'.ê32€`v®sôðÉó>ìôºT%6ƒ$iõ¦aÛ§Îæ:û ©b(ƤGDPÆÐ5„3ÔhcÕ^ ?Jƒ;4‘)öº;ðÆz'Ïò[4¢7]¶tÛûýZëf# b* ½BQȆ–¡í °ÃF@#¢ˆŽT ~ÄD nøÜlª–¼TEþv©‚Ř›pi‹ÎÂ’éÓ—x>nt¥Ò|¯+RS–µö§Ô:{F--ƒÓ‘òŒÅù JI‰X/®”Sk·os)—Ú%’ð$o?›ã¶Ì^3á:Úb¤´Ì7'Õª?æ±òý ~™mÅWŽ-5?œmáòÛ(_âÖÓ/“jéq^Ÿ›G™ØDö–é? Ú¼w¥ŽÄBbÅ—®d¯!(·nÝ# %%?½âý;šWB¸„]û›.ÕóAÛÕUÆfBPtFÎ_ v~[Ï ¿Ü«¸ek|ÙŸFÙ«(„¦—çÛH p²²Ìœ“M*}|?âÞ¼öº²K=üš[-Ñ)šÏÔ$UáÁ¬Ðý.K É®=i;˜CuÝ6®$÷„ÞÀvÿÎ3ð1€/ðô~½`éšÓùÈoÔhxÓÝxºþ#j¿½ºÖ憅®Ü„Kd°“‚CnÝt%kR›yjf4ùŠ×«8}~¥wé´Ó7‡¤•tÍTÁ"íÃÓ¨tHÑLþÒ!j…’Ä:¹´sÂ`í[î6åYêN½ÿ¢Ýüò\ ûõ×ò›P( ·€î”{”÷àA ^Ì0n{.RR09wÃÍä—Tó+#ðZ¸ÒjaÛÓÀ¢XHJ.Ì8Î`åçq¡²š ÅÚa{Ùy¾ÈU#:¦ô­Xz7e&Eþ«‹Ë<¡š(—>»È†Iýš(x#þk\ç´lw ¥˜Â£íèqÂÒ Ü˜¶ÛÏztK°ŠH¾˜x*á H9*ÅÎl‰IçëhËäëÊ!IíM2{›èõ5FZ×w`ÙÄ«6ƒ—ã.½|S¯ÓãYž» 0‹T¤D#ÂÑ ò"Œ­]b~Lº \2(?€¼‹Na:጗߳ Yž ·®YÏp¤+ˇm³'^ʲ͈˜¡òxýºŸ÷Ý´X_LªÒWä]»þᣩߤCß‚`úT÷é¢ò#ÞA±áRJ™ yª{j¬¤™;YÀ ó¥vP°Ô2²ÔF¯…=ÕÃÈ`RÍòÁM¿A¿$ð*Ò`Y·UdW(î‹Wí‘™âa=oªÍ_Ïl`-K þi`w~ëíѵf ²£zb¯Þ¡}s;ZÔüKs,?$B¬·Iã ™\å’ĵ2“r` °›_õÕ:E&Òì!ÿUQ¿r°è’‘›/¢áU¯A`U`OZlôÊϺ\ ´M F¾­j©œÁ®t9–^êCÎéÉkõjßÔ[#ÕÇöZ 9•U-Cú-—“!‡”­è4os¶ªz½ï&~_Å3j§¾ô)ýÐãGÜèÑaˆ*KE¼<}‹­ç€Ý>9+«¨ärƒÔhÃ;‹j_Ð2,ËoÚi[ù.ÿU2VÆ»\€^¾{àRÙ°cï¯Æd,ÒBó[ M=4zUÙÌc~\:d‘àq£*&J>×·j¦ìckÈšèÿ0ÖCSÔ¢ú¹?÷õ+#QǬçLvnÔMb6æI¶¶ "5À°ÓŸÁ=y’ô¯î§ž¤½è Ú¯ÎeMï¦?¢ˆ†äß“w «d<õùwëƒɪ²"!‡õ2·þ6O¡Ed$g¢a¤!±À~örVih.k‰c•÷¼StísݾÈé5?JǼCØ…ünâ~C·á©°ÚWzÆ.qõ-;ëÁ¶Š3Ñ?à Ÿ½6rÏV†Í55½¥ñêõÅ"—Ç4îÊw8¢Äûºí ¯‚ɲôéŽÎlž>fê¥ay>ùkà¬å™žÖ3FÔ¬G¥¿tT/¿e›ShËfdT˜¢íf:LÆC:@ˆo•¡Ü)PÇ*:WÍ}p"¤×KØ}&µÀ5¼Qâ^ÆÄĉ!³ÊN‡RjÆÁ¥|™yeú¯œžÛ^‰¥ú?`éèúë 3Ø:®»† áùLR: ͱUC¾,ÛJl!ªÚŽàn›Ï%ÏÖÍ_põLc1Qš'aüûVŽØM;© CÕ‚!y où@×ÿ&âlÃŒó­H‘ü\ÞiNÒñ3Öψ3MígÎ?Å[°|é‹£ÿ)ñˆöpm+~|¯/-ÂM䊋5ž˜sÙóؘÂVX·S9}£ÚYá h¢Ô¦€ÛÄ !²cTa÷=}–§?ÌÓ,/!£Ë?˸"Mý¢$ûCäÍ…§T‚µT|0²kD@Ù_I>ÿ&{Ïïcka…òÎ'nìÀ>V˜°,T¥Å`v‹3„·>V’¡]]lIh1ãH® Çà•)ÍKbœŽ‹9¹}ìFíˆùWHW¿~e)ånq5û"¿ÜµÌlÈ5ñ1È™CäêÜŽ3m;;¡{G'.Tù²1c/„‘œ£³o5‰A_ݵIÝ}+E—¬ÆOj`ÙhôkŸèE¶â”‰·ïpúÍ|®=ÑÅa´c½0>~g‰pb¯ÛÄʘ”Hnl ¶-“¥á˜LôëAˆÙËyõÈÚ0‡¼©Ç¯„‰òbOñZQÕ܉¨”Ó'ó & [رQþ'MWѤС¥ˆ 3¤D²—¤¦”Cg(H÷/Λ‰“qíýÒ´ØJCûºTA6ÇÄš°ÊV4_”Bií”V¿€9ù¡©ZÞ0{ÃÌ…[áÖÜF +´ú'†„²0T_F}7¼³4Œ4ÛŠƒŽˆÊó|y-Ü]Iü¡3‹&…â}ô!ëUâT18ÂìC“ŠFöÂ\”õü7jߌ†\\ºŠ²EdÜ0\¼•*0ÊÃÏÐm›üä`OÜ·AûGÊȬÝppøNÞÕKóbE&Cñx\À W C8­ï‹2š§ÞsGç•׎vô*F ’£GÆòŸÒ·bT ˆç"n°¦œ‹‚ÉϳÜ{tx±5z¿+®È4>¬> Ì2B¡dj—ïæûÜïÝDˆg´QÇuæ Þ|[Š;¸u{ÜëœÁú™ÁüØs¡–áÛÏ?¸cV°™¶\ŸoÑ…Û ³Òj-LcÊFXÒ!w|\xö«ÄÒUæÊaNj&¢±iahö”-åï1õJb*ûÀn†æw1ýï¼wU­_æ‹5ö‚Áœ8QB™×ÓUꈈ_;‹Ó““æg^OØÚžÛ2€Ùõ•޼vh.Àî ,^Xì½ËÈ•~–lÄ žE”ùä¡¶§½ËZL¼®`{\ÂÖìOWM…AdŸcÁŒ¬¥4O3ø®†Mú«»V tM7ÂCÁ 4ƒ¥,1¯ê¤eAÓK-é@n¹y*®*6+Þ¸t1乎ãŠçè8‰Ûrê»Æ/bfì@ìô(Qö,±åë^ÉÏß—,-ÓýÌÌ^Ö•’Ž-{ÛRVëC¾êuGÔú×Ę äFM a$|OCËG‘ö"j ÿYx‚êR[¸¦*¬¿è\ýhÈjÏÚ£bk:RŒQFÀWé”è+b™dÏ„V&©{I-l}¿¤òëzÚ­Ñ*©©ó×1g·_ U[è/®)»o ¼_<Ñp¸Tè&!TŠ~ƒTfãþ>d¨¶%£hd½º_¦å?‚¸ Ëo1€×ÿýxçcä’BþûHöBµÜ÷Eˆï/AtVƒH:Žñëy K™W-2ø£›laª¥¯\šÏÆü@?çØ¸ùÅDkƒúxŒ¨"¨kQˆ9©†p›}Ú‚’5“´ãmÚ÷‡±hç\?峎“¡ÎÿäJ ˆ/÷ýæÝ&Ã*Þ9¶y”d!¢ÛŽå°®ÕÓ u{æqêC[½?‰öýfìµ:*òJv*OZÔ­_M"Åw°ŸWJpã|ÄÅO"2¸ õ=‚Ï׺…jý÷’ŸÔ“¬”auã´P§»l*À’/=½‚®G5ÛKÔ—æh\ƒ$ÐÑC¡W^úU祇§¯z »+˜NïnBEó¯ÔÉdöA±`(C(ìsĵ[úû7 q5* ÔÈ) ¨fÕs¢+ÂÎE4DMhÐÖ.lûp J`7.ã8”f·1ýå ‰¸ê‹¥7P mhjweëößÉÚ·Û+­îݨáݪÚH´ÖYcÇ>Ìÿx#†cTŽ/á÷ïZL‰ù)C ¹ŽÁꭲ̩ºæ âÞÔ‡’%ð‡Nõ?Û’Ó w»&eÝ¥éØ´¾Nyc+²µ8=$à#E²JHK"%MdÅÃéSšœdžVÎ(ãÓ‡˜í¯ÙVa¿q?DýG¸útmÂmy‹†OŸíñãDy{ Ú%ô@l}èÛHK%d+ñ³¯kNv£pX! ç{Ÿäápé³ã¼=Ü–€Î]=`½ÀÓå|·!\4NÀ^)²tÊ(MÆëü™Çc'Šg³ýÑ8eóö Lns}@‚Tiy¶_c·÷uÚï»[â¸3¾]×¾)ePÄÓX,ÿØMÒ8DQâ×ñŽ/'Duöo1A_+—v2#&ô}˜éd³žt}ðƒ¤<DHöÉ>ôWèžDx÷*dâŠÎø=#æ…Q}*_‰˜ Ä|ÂçQÅ-1J‡¦ä“·ƒÈfΆÅGIsª¢#\¤ç~c#ÀI!q-w`eê}–2ÞOåPPj˜áÞ%Ù¦ŽÁ´\8=d…{kÑ?L,ÒQaë7v¼Yø1  ò±@SiÚîÖlë¨- Þ<çWç’Ïú+C3ŸnÕ»¦pmìwÆóÉi&ÆüqÕd¬(6i·YÝ|ä'/Xí¸±âàÝ›ò[¡Z-ŠID–nZ¼3#«Q9“¿Œä[X¤ §…åìÕr`“?¬ùƒS©Á?©S’S†Ÿ×ÿY6»Ì‰ ,.í ±C5#[6:$‰5#i~=Pájç¿‹ÞYxÁݱ®]Ð{*¥=ׂòB¯&7WNô)éšÄDŒá¦Î+Gº> æDN˜]ƒ·à_þHÁ«Qþ×ÝQ™‹/Ø .P"ñßà®8†”œÅÿ-|µÊRÄíÓ-uä.x,.¡uÂËÚba¡±Ö>{d}Ë"œV*´ŸiMOûbwŽT¡~ÓŒïqqO`¤ëÙú5­¯’y¢åùX׉rÈ/q“Q©1EX±«qº#Ä‚´älw‹Æ¤É]Šü–³©ˆä>’­}A[ÏO‹À^!=n‡dr§g€ªf ‚å‡ç&Téãa3ÉWŒ'ÈZp†41–1½Ô&3“ˆÚ½7ó×mÏC>ã…rAZŽíËñÞ:4XÖ©£<%»¹˜ U-mþYíä5‹½‚‹Åo¾D÷ M¤ï;8‘Á?–•30›)anÌ*F.oMÀGoÎ0Ð z'éà[*å|QŽE‡qê2Þ™è1ŒG1òÐߨ1gwkÚǨÑd Ùq_“Á­üq»CXùòƬ¹%ÚHf ÙVœ* ‡=Z´Ç½bKc­`@ÛÈ´¢Ö‰Rb—á)G g77Ó‹R–ý¼˜{_',ÝËf[åÐá|ˆ½Ôv@Õä‚¢'Œ‡—]EzOò÷Œ-AÇ& ĉþ/N»cm:bDðÏJtP9À7ql‘Ï7ót¼¬¸{¿åJçý¶ªt†çÃN/»$€»á!M?¼¾ø‘xœª=½ÖYy£DE½+lxR唨÷>@ùjmÁ-…¢Ç-hûø ·@€´%gruúôÐä-[KsžƒÎj˜‘4sº8[îäTòß9n &ž»•u);sIš}%K*4J… u£T•ÑN8ˆ*ö&Ó¯ò|„u%†l9cz3Ú5̯ð"îSóUÛ˜ÙËúgMîüž+ÛÇ[F€ ós‹ïÖ2Ïs~Ýš«"kbvea°KuJ&v+(µ"ó)(´HKD!m´7èmè9!W¶qÉ*‡ž óÞx¹°©J|YÁV7ƒ^“ñ*~|è“áßðEï’IÕY—ù‹ûΠ ÜQp¹·#@ÁÝ^öïì¶›ƒ $"ˉX%ŠÌê'UóûçÝ©.S7À~z$‘:’}’†P€4møùÆ}þ_a»nHÜ2dáÕÿ=ú¶$L;óŠZÜr§¸V,Æ!Å-%ÇOjy±Sjô¸ý³ÏNü+¬¶cùw ÅÌ>~ˆ£Vûþ…‘âË~biÑÑt0&Št¼U>,ª'ObäýM¶5œÝVqçíµü²£`.}U6Khc+Ê€ª*°[´Ú¶uê‘W³ Î+#N?›ŽŒg7]óË©ç¡Öwã<×k"ºKN3:ÍïŸpbcƯQÈË¢öxj~¡w!ð¨Ûx¶)Â_Ö3A2ĘIœoÍwJ”^zå9úr!åûϸݨË-·m÷·ða¬ §w>Ï~ ±m¯¼|¶"IÚt#£©¨æÖ1BÌX­Síy>[|kÀR}ûØeð¯ÔŸ×–Ò”Ü[2C0 ÖÈ£”9 x foïØó¥à<ï,¯p\Žʰw¬åC` žï¯®7 •ùì`Ö«×VoŠY#*ÎE˜z}8 i\íùuõJ´P‘² _‰#gXºD놦a_]˜ÑÅWbïõî“¡ê…ÙeIFDR™ÆÍžåfp8C&üï‘„ôkcãÃ<íôa†×|÷§‚ýÖü(órÚ:Xé¢k-•Ðó½ä»Ñ„NeÛ^ Íè˜H‰{ÿb´À…ÏXOÌ¢\0{œ\Û%&SÈŠ«çð\Áõ·úø`m¹…åT?ç÷•u3 Ú¥ Ï  7@°vý“àsRëÑô_áOœ4 Znâï·2±Ë/W‚zŒª‹±“Ýômw pN"Œ±<Ì%°J°Ç‘Æ•rfñTʼn8%ßÂ\ ]=XÆi†4Õ쪶EïÂè´9ƒÔkê·Ö ·<-]††˜ÃMι#ƒ5-u¯¡<6ÚL#YG½O4ÖðÝÊï²Ë‹þÜáµÓÝ¿\È=D$ÇVï€ Wüî;t+ D§8Õ1kñaÜë#LˆË\Ì^¶¨{ä ?S DCΗ=À×OÒîe¶câlzÅ_Ì:-„øʹg˜ü'W§ uº8Ý”8CœÇOûBÞ­¯r›c‚òQªNXC*Umv7]ˆÈ7C¬ ùõNØÖ3/4‡Q¥†Šb ¯Ÿ²ÐHýy‚ Šml5¡EµCL¿=\‹»žVÅÏêÕÞ.sF(œµ_@‘«Ãh’£o“‘4›ŸËhVt³œzBŠo%ûÕp*ïcµ’Ó…ü±%v`±BÅ«yý‚{±'Ñ„>&«™“÷®HéKe G¶.»å+ÅGfcElÛL¨îOŸKˆÚIižÒ`¬ '_-Åtî¾Ù¨2Ɔx¤ÞZ_«~ˆô D݉4ý#.£4sùq»ÁÒå†eÍ[1éa©¬k+ßä|Ä­->¯«"ÍGž'åØLiô¸ÊŒ4ð¼Ä¥ÜOŽ{:×Éëô"ѽ㠸:44•Q½Yîí€Â=pðÓÉ>…a!ço'©‹÷ï1@üΦ@¯ËØãy“ûóí_‰æµxüÔ[C~ÄJ½Ü¼Ž±58s)êU¾[†!oL¥–· ·~9@n¡`=º¤û±¯²Ð7Ýs×¶a¯“Oã›jœLçm&Õ4{ðp¥ÖFòJŒ"W+b%NÒkfGu“o’QGãò¢ 3¼Þ"SãÞxa×~g Î/®hÖ¾¼;ÆùŸQQêsÎb‘ääèÚe:y‘Gö¢ópºW=9'Ý|ƒí]ƒ¢vÖ1­ÿÌã=IÔŒ~¼o¦§”mAó>¬a+S".o*‹¸t=KnBfåqµ747ì6å5@Ó~£pü—¿¿,!dNœÔ%Þ|€ß|Ft÷ð’c÷nÉåË×6¾ö ¡{r† ­ˆ¬®Ó˜XÆãÆ)W­\Žàzs¶ÀÇi8zWP­!Ü•¨ûvl©S-¹›¢9· ›LÀ3õ…|Ã[?uƒ–Ê«Vˆ]Ëe_6ÉîS ¬ŒÕL%rmˆ“ƒ×Üê9z®~Xo´(qWT†y³ªX;Õ2.±²ºø+ #õyi˜7Ø¯Š¸ê¼*†¸&¥û/7Ñ·‚=Œ¹Å|•‰š…t& ̨ΙÈBO[ζә—ÃA®Dsæ|Òîs˜Ë,îvÛ°»û.`éN…5U¥Ï"ð­PQnÅ6gkùùň®™=G4ÅÞM=´x):ù.Ș*ïÊåûü3v—)±Ç*Y¯ß–ý?d‰ÅæïpÁ›¿E©Ä¬Ù*½ôVµM…ûLÄqˆ¹Æq‹%§¾Ó››°$ï8²—-·?6âWÌ­®‹9?ÿ'un|ɾ8HäaR 0M9ý3Ü0Æ;Häk­Ú×J˜Ò4%]q4’®œÓ¹+†„—šl?éYsU,ãN'ÜÈ9Ýá 𴺫™‡Þç¨@Šn;óVàÎI|Õ† ’ )ƒÿ4ñ§T" ñ–F ÜFsH›þÑhìu ËÌîÜPÛ=îÐ ” ‰+ßM½Ýì”Èž6Vvñ–?@ f[í¨~ÄÚê kp‹ð¬ÝS!D„lË‚§ž®[à'ä˜ÑB‹×³üHŒÚ3Öõ-áEä˜e¦5¢®Ý‚ðP7¯0òI~?ÄN¾\YkÖä–‰_¹€<^¤]Ä[½ÿÓ£n<-¶;Z’è¡âÌÛZÛöSÁ=Vú~ø. B}‹áçî‚1/]!Ô{A÷}>gd³Ù9g^œt]@˜¹·nÚKÄHÚû¥[ïRÒ[¦*Å`Ø+Ai¤˜Ð-±g2i-5E…ÓÎÿñÔÌÌvué¨_Q µóAkÊrÓÿÖÏçoůï l1gЖˆiÄò÷zBžY¬ÂJùoI¡‹‚Oåú˜·RëÄ3‰™7 H¦€Ù €¶ÿ휅hJ¯µ,MlïÊä$,bsg¢"ïÅÒ@>‡ÎQËjù;mñÖúžãÊ)Íh0.þ@Iý>!üÎg!-×[O1ÛÑ”ZŒa¾2w_9ÀVDB[Ó§åÝvûLŠ{hÓåR ¤Kýû¥pŒàEÈRÆ©#9]µ1Œ1a€QmOùëÎáî>çÅIj¼ŠNŠ5 )%7U1Éü½ô Üþ‰¹ÑH^_ Ùmµ¤—Åú°L6TQ™XTj@^®#—¦Üx¼ÄïÛNW§m —´£úÑL…ÇðX-ÇZ!ˆR'iú>£œ‰¸Š{Õ΂`^d~òö­>®ÈèOgïaUA™æQ3‚° ¹«–aXà U9?ëª+\V4äôj ý§@ÆrÀÑ)¸;¤žBÄÙ·š:g“ö²ú "@¯ü”‘*•é·øXÅÚ¦ õK†½ê¯ ¦¶Zï‰êƒþ0üŠ ŒÂ˜‚ÓÚlGÑ#¥¶nêßï },y/%ï3Á!.¹D¨“î”:taÁõêYœÄ‹ší}B™í- ŽX?¦‡x˜®ÝúõG)!!^£AÇ1ÀPûP¶Ì±{J‹wó$½ß£O¹ ®®.™#¾ßéÁR^¸R¡uÓ£[‚0N¿q‘x™rÄ}¿å›ýkú“Ú}ÅvÒ³T“âeiY4·¤OK_C*ïeòG•È~FîÕ/¹»ÌbÑRuo˜œY èDª ïAA]FpÛÜâê#ÄüPä”ÀKØNâ#bh€eI_9çèa„ç)GÙW=‚+]ü€ÇAÆæj; Á/>ÒȬvµfŸÍ?ÀG#Ûëã½bZ’j;Boù8¢+Éí6@@/9X î`™ ‘3ÜËå·¥ û {êK›íyÂ+ˆ±-ö7wIF ÏÙ/`HÅZXö(R@8†-úD@z%67 ŠŒþ]|>pÜÓ*È&èòµ Ø¿j z ðÖ—Ø3¤mD‚²oº½MlRdì²qÖ^˜˜à'òJ¯$ÞÞä1²ð–j‰Ú}~O¼ ±ji:O8¿§n‹>“ÙZnÔè|Ç|;¦‡G•›ûI¨8ŒyÏW VÉ RŒl}6`OÓxZm§ii£›]šúk›gbªð6ãóÕMb…pñþ›%Fþ0Q¤x“w8ñ(áæ!ÑR1¹ïÆN¹[@^A³hÆ¥vô2XË»š’Á]Seh[<Çd³Û¤ê†§l,FþíP ””Ž:˜ &>{ç¾ K J²²N`L|YÜXß|+˜ÆN²Šv%GÝ¡*‹qÝÿ4 A†TC~‰ •°}% Ã!ž[gרçÏ.^eãžµ,#]8f>!sˆ qd.'8ùú#)¤¤ÂSæjFeÐùêlóRÕš|ç±ÌÕ$‡øIðŽm%O{»XwüËhX n=èù=ÅtŠ7gq(³ª€´N?êðZ‰¤$¢1ˆ¨ëgSVܬóÍàqgæð/ò%’LCr<4]¥ÖHòÞO,îŠmÆ—Bÿæ–'ȞϦk¿îåÌSïâ ›  P±€GßÍN>©­ß•º´¾€á<³·|oÝ å€Ýq;ÀhÜD#Ì£|ZÊÑ)ÏüwÀ›ò𿆵]ïø7~5çŸd¾?ý¿`nõrWn4ƒ<>‰CÂ?±:ZÓZF”êN*ÃaèL¥XC+çqÃI€Ñ‚¦q4"•Vf>gÓ88kYÁ'¤NUëjÕ¸õTýl—¸œ`Ž…i§O­c#ÝæÉÐ k°ÉÖðÛh‰+4Ù½¯ÅÝ3†k üUz?(l.pi@Ã+‹¬ú}MIŽ@cÔ\WÉÁj7¯Ä* HÃùhÓÐezyýfКýË·qžvÐC’xÄe€>¹ Ȱ^8‡œÚÇžXº× ‰qUž4øïFc€±º¼IJôÃ}¾Ê’éÖ·ñùè±f5Š–ÖÞÁÜjg€ÕP¬­(1Gó±)B š¯]/=HAÊ׈Ëcs aÝ@kÕšI&øŒþ£š {p†¼€!¾Éß,"Çm–Ñük zN >ðÏÙ”“-£ÔÙ7jSG¹v y± n¿¦™ûÍ­ðòµ!½ugU m#»:qŸçlâAÎ[6&j¯.ß‚Ø"€˜,ɬ…[ H­)<å•埊ô1Y^oŒ¯YÐùS¡E©(†_b7XË]&&P ¹‹ñfÆnÔÛo>TÆ}©!fóÏæ,9ç…±)U â;ò¸lÂïè€dT,n2.–:ʇ=xáOª¤n­‘Gx-9Ä-Y=çÝaè#£ÓxÀ "Ž+Áì\s¿©ÒFE¤#Ü GºOßêH#L[Ai¯.1.çö$|˜ìÏ@kø§ž.ö¢ÎøG4 ÝHÄ=30:¿I÷àßkå(t£˜{ÚܰæG½“„Qé_3ðuDYŦ‰+"ju`ƒCêeI¥yæ°Ò±Üð•²Hƒ»«kG$ºùUfïà‘Õ…@qŸwÖ層˜e†»¦ž%¿úãÅÈU*‹—v³AÙwº`Óqqæã”ôo™^"˜H8j{zvE=ü$ÉZkz=‰â­ë˜d.$ë¤G©8L ð!y‡ü°¾>2=°3 íám,þÙö?@›Œ`7¡.èù´™?O½8æQF5Vdîü¦#„+K“­³/Ñ}@ˆs$à¦×R#®+«¿¯\>Rs¸qgÔG4c&ƒ¹‚oOMyÅ·—·±#<ÉÄܱw i?s›Œ L]±W i…´x:„é§Åù†1i–(R“¸I±X\ßÃXζC´¨Dûe%c›ÈTE)(;P0‡O¬<0!«‘Õ„±³‰tm¿JX¼0sTÅ÷µ•;’7^‚7|AYžÂÕÔ@¨Dá»R9–ŽfÊàüœ-gñ0¦kß·‡Œ_5›²>xK¥%÷~(çáö™Ä¿É®EƒæZ=óõD ÅÍê ™FuF™´WÉ”"||¹EŠÍC2µÑP¢â‘wJÍÅŠš%`|ýø×¥üϼÛmÅaS×r¹Îy‡'ïEKù¥fƒüÞtí5 s±Ÿe,ès{Ö»ãýB„çÆý¨ÿÿ Á©ù–J\Ä~›°Ð–°»ÅlD@\ïÑpÝ%CÝ–u* þG†‹™:’[‰3 kÐË’™RX[nÒÂ.hçßʔܸ®¡ê8Œ9ĈšË¿ê~sçfÅØö6лí¬-~ÀN'ÿ£^ËC4ÙyŒKtõ îPïLà d?Ø÷Ik£APšÁH{~Š/-Jœ, &‰ºeö³áìïÙÄEj'ã¯"æch^<¬ƒÕ5»@is~\¤¤Iò“ ˆë(qEbP½hãÕCÙ¥Þ˜@]PàPyÄÑ.a•*XýPQEìsÿ";1SÅ޳ÞHý¿lœ³ÂzyƒÒnÙŽŽUé÷ø ŸÑ#YÄGnùœ£D¡Kýn3úÑÎY±îèn7s®š}NI-DEËonË÷ŠÀÅW@ã¡äz°.|ŒD ™ƒñþýÔ%‹“õÜ¢£ÀH•_+0Îsô–8ŽÐX:™ø昣T}j꜂.¤éA¾5{|kW·M¾d™ãI•RÄ‚5|PÏÑòrøÍ®3XèYÕ¶1„;{Ž’Õî&sXP€†<ÍÁ/—å¼#wù,}ã|(ÈìÛ×f¹¼óíëº PôC‘ƒzL4ñ5$B;¡4mÕ˜¼kø !¦‰ Û¢¿ƒå R0SÏ®‹Ð0Õ›ø¡°1íuƒ—5`bl´²N}%_ÿÖYZˆU ø²q)Eáä3ªÍÔá:¦ø€•“öP@½‰(¡ààöÝŠÕ71Î+/c' òËï÷¢¥.!¹ Ól×£¼>ñ)"y‡XZà¶šEæÿþ"¦~/§f+l\Yk”†w”-ÛÉ*&©žö×°#D ƒ\ˆ¼ -䢙ºØßòƒuËr’÷µº$EPkUy«CÄÿc}¬&i˜õÆÝÑ£TkàY¨4dúsÝM--DXb#“öLþ˲¶jÏ6Ï_c%o®ú ¤0ï.o²ù¡yß"…X¡ÔÕ¿ëMA=×òÄ[ü×\¨úÛ/1GBÚ’ëötð3xÉMœèƒÂë`WÑŒQy‹=ÃŒ¥¢w“ØagÌ‘Œ’ïAÿEŽÉ®êi࣯ܖOý|¯Î4ð£2±(ðgP¼œt<î‹·.¨5€,ǹ=¼«)ÉùËÚb:§¾yïÕ¶: ŒL¨¢û­Z±@ÆÀ¤ÿxÃìþ@Âvåî8yR|±7O±¯§Î»1GʶŠÅô”4È Àæz:,Ò¶¨H™Ùæ³wDf.MÅUÜQÂÖ)s †Ïš%ÜÑ%øz_BÀ7œïàM´y’‚zH§if•þášt’9‰Ÿ5¸B´/CmásÊ\öÙ|S”¹ÎÖ?€ÝƒÁÙÜÃîÁ«!9#¨ß:朾}ò$E ‡ºëѳ“Ä6kÙМˆ½Ö­|e ²âÛ'pêÞ^Ý?xoMD v>ÇÏ&êFu¼[þó÷@ÇÒµq™s²Y¿O/0‹~ ÙFÕá)£‘ù¼SùY 6>IJÃ@Ò˜ßpv2c¦ð/-^"zÝRPUµ›àB›x Yð¯v5ìâG±D4Ž">ô†Ç•ó‡>éOñ¦¤¾Ç¥éOÁœÀPV·|Yøü»AõDëÌÂû¶=–BN¬=Lê£blûFç]§•¥Î½¼’TçÂÆü~EPù|IDm™< ”?êÑæe–.©*£ìEëywRï­gÏ^7w’WµÇ0”¡e'C 3‰Ÿ»ø;øD”¿ó|8]¦ÀùgÍÃÉô&/ £„foár{—Sß®úÍ|¶”¸sz¤…¨ð"0¬ º£JŽXmçñÃóVOº~£·É«ïÍÉ%ç€|šæ©áŽdì2jµaLrRsކi¥ŽR! Íõ%î2ךÉ&›Š¾ÿ¹ë–Å^Îú/«7’‘K©þÕÊ3v…áo#fRpŸƒ¨¯ÇÜ£ÏüÂà¿_! ,ƈw•k¶óù½l“‘w—¶ûð)„%KžN§lù³L&-{²þ‚³#ÇÒgv5¢/ñ#‰[“£ø4°üñŠÁ”’ë°àöÊ2”ÑܰíDj–ÊÕ¾L/6Mƒ¢AÞæGƤÌ÷@…# ‹~ÆVÕ¬fÿ@·ÁX¿¸ò»­áö½I·y¹"™ôœÁuâ ^A-f’ È |p¿*ЪBäöëÙë y!‹Ê’²fÖîØú˜W5˜·ÿ[:ë&7*×!²uþË yhe¢€Ù8ySŽu5(_:—Û°°_‹ŒQE„œRt’»2‡¸À{OÆ»æ&‹{YÆßÈ𜫟}_ÿ†€ƒ¤Þ¸(=¯îqTpF¥øÖDòï9Çt?úÓêÍ"”FÄÆ(Û{ãñc*.]ÖñïˆÓ”À-–Tc)@Qzýèl`H4vû0F®´hC»ýž×ãhçÕÓê­‹K»|\ﬔêÕÙÒ·´ €"ýOU4Œ¬ Uä²§«òòßéwÀ¶¾@¤? h”$Ÿ®;Á¶ÀÞÅgð8E‹};‹ÞÚçlšÙU±m zÇ3\â†õõä—Äív&Õß kÖGu¤­ª%Ô%ž„aTø‹•ûú€ÅonøÓ'Pp„¼±{¨–ÎéIõM¿¯!qÖäi஑ŸPŤJ¸UÔÅS=Ä·Éû$¼$BúÉ…î¸ ÁRNà¬í ¶¯qE?'Å¡hSžßV†×\tb|9Nl7黆S¡ÀÁKéèºK¡ï¸åBUà6:× ÷í1Q¬;& Ñû ;sNî¡V6<œ= ÂEwÜ÷ÿ»‹1¤E¹b«EÅÂìŸ ²V"¾zŠSN,Þ²7åÈpâAŽ{ÈZ^Ð ¹2ð:¹)&£Ì®û1eœ[Â{ئóÇSBŠÞ× ¨c$/ð’€ «©ok¥ë¬É£ê»¡¬›/Œ¹(úñ€7z4f±ÿƒ/Ål‚Ô<ñæ3¿Õ2ý¾ŠWÖº¶—™¿q3è«Ó3~+‹Ñ!Šà+æPþcè?O¨ÒÞχ‰Z¨ë ­²Ç‚n)`)eÄXVå H’À(V£^qzښ̎)C‰½yuŽú’÷Ã:Íøì5•¶S¶8‚‰ çxc”QFösý=_±Gc ßEçQ:¶Áš‚q¤hžm¿¹¤Ÿæeú“'*˜éÙc3Åw– Ø\„¥‘¬ìè<*ãÚ‰²WS¡ŠB´ª~R‘Ž×BMàÊÕ¹ FÌLÏ‚aŒ–¶º¿¡¢âooïeLÔ€²ÿM.ÁúÑñ ‡S{[U‡ÿ›D'Éj2‚š1«vNÕ÷¨?N¨¬2Û¯û÷Nš2èš ¯8Oë.ìÔ»Aj¾t¾ËY»\‚ûîiñfWW ÷Ò"¢ÛB©¬gÃhªÿ]-*zžîíx¦§TÁ¡ºˆü«Ü>hqð'õõ®óÙ )qcðyhŠ[6ýª0ÿº—2yâÜhÒ”#ÕÓVÁP Ô½;¦êGpÎm9)2˜L“ÔS³ Ùß¿½5ŸrsŸfŸâŒ4>ú¡ñ+žø©!HrÎ3Ø~Ç1Ÿ?Ý*—;8]†Ý©ÅåÅcV0/¼"ü´¬5ÿ‚Ñ}®òéúw&ΡbÁ!¶³”õxt½à­ºg¼Ø\8"'FºÝ®ñÜßw+âyÖ" :M·¯lœz8@Ì@¡aPB›ÌŠå+äÄ«Ô3î‘«×àîB釓5o%,Žx¢‹»þôÉBz9Á¨BõNÚA¤Ø¸™X³ÊAŒ6_„Ï!}{™QkL‡ž‘&V{d1ö<’ìÒèlLŽÚç£>ìžÃqzÄŒß&ÎÈõÓ®¡2u‰Q±`ð{ù¬š»­%òÎÕDúUZ¼Ú…68X†@8w…^ûyCøO±9ýk“" ¢ñ|«Í½å‡Õ#ó ˜€–L„“ï¼xirSþx÷XJ;è™eö„kb"YØÂîÁ=Ó¶y¹9 °`; öî†Vh­Ô¤±#Žm%ùãñyPQ‘>Tm&þ€áƒSÌL‡(ŒjKÔ„çÑ;ê´ÊL@ÙËùy“Felã*v,šð 1Gñ¨ö¬é+1âÏ ,ƒÜFaÓ÷'„Eˆ¹¬LgÜn?Eüýµbþ‚ä>)Â:5~½ê¼Þͳþ’9í 2£¨ žÂµÝN:Á'Sqîç'TVÐ[¢V%;yšÖo¿¿7li_K¨h¼k©¾"•)ÑPÎŒJröÝÔ8ž—Î[¸!ظ#Y•‘V¿ñ³of[¾2© Ë>؉˥¯K¿¦5GÂ݆3ПϟûÌá7âàµ{àæ}7°k˜Ñ(ßáH—'‘‡Ô^n÷§Ï°dánϰÜ”]}ýq·PtlÌ%T‹17°kéSïèõ‰©¨eéï¢JèŠ]¿ú„ÇÝèJ#´²©½Î,ý jyM¸¿¶g¶³ÀéÀ1[P}¡¬…öjú…Œ_ŸÚÞÿ3»µrã#\þdáàv1øÿÓÝä¨Ð™9f“P„i¯˜}¯b°æ,¼û"é9àppóûž=tAÖ¸[‹Ó…ßé0j€õB1™ó2ŸxÕðû† Zœ`&9ãÑ-1°;Èž£)í- ú¹ö©tݳâ&Q=Ü>»lŠÉ-C§‹v2²ª*€Açà m`?ž22²p«ÚÔuõ‚%[-–Dj.KSø4pýM^Ë9‰²ãÞ2f¯ÜG æz™½4Å¡ÓÝnâÿ<¥yøÞîÀï߃øƒÎa¸öoÊwÅÞ-ñÃÝáøTd:ŸòóÉUÏ«te½+]©Sì0ã¼·+ ´Ô±]÷ ‰j¶½ü òÓ ±Ç†Ÿ/SmÍþó!» Sõ¹õ/M‡›¨©Ð¿l? üv…t¯]dÓOSaFZT~}Þ.|¡r*DâRguyÈ›¶‹°4,½É”¼˜5ÜÇøÈy„_åÜ\Ü8ªx^ÖA$lžJ3DCªÇ…älQ ÒƒòÇV¡ FpűŸÐéµ/6²T’ˆÎ_1¶²%›‡lS÷ÒÕÒ°´ÃY‚ÊÚHe–WÕþYrX ,ê3’uÛv>@µL[Öž_ØÀ‹‘yþ›ªâûŽ,DÁÙDz,þQž3µYÜj׋ÍR-Ós.GÛ¦}„œÈÿ¾Ž TÛK‰¤ê0Y ìÆ‘Ñ aº¼æ&pÑÁŒb1¬Q(2¢¶P-püàÞ oð}˜SÁ¨3e‡JÚ+Á&rsÚ•›ôL¯~mð„õNYEé‘>òØP(êÂ;eÏÏBZ¢"=ªèP-Yû¾9OG¨JFß´:¡‚´?Ûù×Ý(€HÑ ›½oÄÜ4]ëÍn¸lò"2ø CÃ…êúÖªmõN’»‚ω³ZŒWêß¹ãL_ø“þË`ëñåº+~¹Úe4}ðyîYHù ‰Û%NÖQÑhæ•…ËfÉÛö¶ ÜY_#²zŸ ôkótÀiïA­˜ßo­žÒM1yF°Þs‚”@z± ¾…>µ‰”(«•¶ÚœÁuïßråµm„É¢Á6ìØyk—jï¦ÑX,nŒ°‹’©†ÿ´½^÷)9ï|nSËÑÒD“£÷÷¢S´Z´ae0÷ÒBlªÎÌž{“i#ôóêÞSJ{üÀ?$`I•!˜Ž6¸³DðuüŽÐwÖDOMïοÅúêOÑ^ÌN¶,Õмšàâ,k6®¨E6¡5n^Bƒ¬ÊÂÈ\Ûx]öÇSùù}î§o7iÀè¾á\hØ]¨S ÙÆWäF2¤6¤7˜–ò@qêËõ YEPÍ`öq ߟ{éÎÒ{ E±rUc‚Nƹ‹M!UÖ7Bîå>°g¡/ ëúÖ^½Z5¦ÕØÇζi÷>p=h00pQ0B?ÈBšt<çÈ»ô…”óåÀ:4rˆ…(“ŽÜûc{׸•]˜°Ÿö:ÖÀåòüOÖÂ~öpÅRÿ¤²Xþl’ø±G–•ëí©jP³?D;`[D)¸X*GÏeJÙIËÎCðͽ²EõÓÈ­.bâÜÜ#Û°÷æØ~K, vœžSžÝqºYOPÛ¦øq‘lûØ!H&‘ ½ù}`ý› :5QoÅt“'zçÚû[4›÷ÖÖC¡À2em-I¡W‰%¼å¹e>$!,Þk<€~F>Ž%ĸbçi¦Mÿ#“šºI±bªÅóùp#ÔßšC¾‡oüÍ ý{`êøX²VêgX¬Å֧ؼ°/5SÝ‘öÓà—|~€Æ¹ZâÔ6È8Ìi`½£-z6›™‘ë¡ó}óŸAß-I/k—€”™döß•*¿>ƒ“ˆR€$–4ñ? Û Ô¸€xÊXõPad\ž¶‡ÿÛ w¼ÓðñvHˆ-fFB]¹}_Gµöl¥s1(©þn뇗lva xÆñ²tPÉ‚Ô\ ø§í9ÊÒ¬›zÇACO¦<6 ãé±ñ!ÞòIõWàåE€Ñ™}Ã~¶¢ÅÍ“E0ÙèiÜÿRK?„²yÏdÉ ôîy¨±r#8»wTæ•§û3Ðô“ͰÙÎI’u¬·WÌ…%uÉÂú¥^vbƒV^…Þ{LH{ä8\k÷'25õ ²M©$Y3sÿO©T§©†-–FЊV™ çûE8±¹õVÒƒs5;Î Íy”E=žŽx÷©/G¡ü‹€2õኗ¾d¶AIfläpÀM]’$\ãIW‹ˆz›ž!]÷¡ /r»n­Ÿï¢×ø@Á}dà\ Ä‚Í7´ýJsŨ“D|¬}Û’edéŽ+õ£eùs„€OûvóŽåªúÕ(íŒTÁFÇ6òϦ¤e_•¼!Ìá{áä5c6ƒq †˜ÚÁIø(úìvãx•Aùî ¼šrñ/+•8º'd]IøOm†Ó­[÷š¼V_&Ñìˆ -‹è¦jíEâåÈ|<Ó4šŸk>çb`2iÑ^•WãY½±òôò£;b¾Â)#ï W“%Öƒ Â>¸ô;º€©M‚;›d}!ŠFb([ZƒUœÑ?Lùù[ý4æ&?B€ií 9X˜A…é’Š»ê8ïd’¿-á¡rEyr¥q‚¦¹)®}0þ1QKØ´>®L€Y­ÙxMè{hþ4S©.G2k~ñbnvئù®˜dî Q8Iï•ÇT—T•6çÁò¬p´Ïl\N†=WqËCL®Ö&ÚÓÈX¹3W¡ŒtE¦g;9(ÞS½6LcÍû?ÊÐ6ÿfÛq†eC³‰»SßA G¨åIõÄ tÀU¢Y>VÅ`ÌIúR|ÆAÝ;ÿØãØ‹Ev6³€~5Ž`Mú¡9‡yª%S°e$3oT©âW}lLpæÁ|N,œ$]ÌÉÔ´ž½‰UêÓ»–nÁˆ¤¿Zòôééw•‹$Ë='ôÿfïH}š¦Rv=À¨Ê×´Šn(asZi¦ZŸýGÊbšd&¿ý2õ¥Dð"l3ëTÓ‹ŠÆ©Ø£ûHa½‚‰4ãôÿäeaã y?ùï3ÂwXçñrÒ`KMÕšCÚˆt1È\´B&ß–EüÚi÷rT9~ÂèÑJÆ}Míº±¥ÚÑ¡0×7SßaÚùp(Ö7"1;®ò]hK¼Ù@r|æøY¤Œ‘_±ë#§4Ç?åþ#ùµ¿5ýîý²†šœ’Ū+‡ýáG×d€JøELõd²0Ü1Có4A2 µu˜ëÄåŸa LX|G ÿ¶¢u›J9ûECÉEgÙq!ÉŒ<^2C“Ä9&Ì—4‚‘F`§à~}ÞÊèdáWŽ@$¾ýyŒª€ ¥2‚FN AÀån9½È[k¹@“ÚØäuùaÍ7ÍÀL<^ËËÍŒ¡-Øßð÷ÖOŒ'5°Ä•{Gåê™ÆL~¯ò¯€kÆ8l_ŸGÝÏldè×**sÖ݆$ýũ þ˜Qw{¹½]qaFûðÅŽ„W”¸v¡ÁÝü–xù}ý¬8üØo¾™~º«O„t¥Ã:RÕß £¹÷ÖlØxÆnù]~’À9r`òç™a<¤ŸÎmœ²ÆÿpSÓµßWÌZ賓ØÐ,íkNÏe÷%¨°+¨Âs˜z3ecÆ L 'Z’tA §ÕI˜®±ÕF¦åTQ\aç×Ò?tðöÿ$¾Z ¯°:?°¦š6Aaü+æuDžÏ!k¢)hQà¥åÝWÞZ=ÓuÄÊ.Ûëã{þ ˆOiöX””–ò%…W7Lù¤Þï”øì‰Ôçv<.ÊÔHŸß«t¦ÖpŸšÖ²´Eg7ëætšÙY'Ù_ö[0#¼Ç§é/I.­;d!dcÍwƒ*!òú»ÕÄ¡¬†£êBàÜ_sÅV•Eû€˜Ëßÿó4Ö¢OË«hFŸD°Hj%. Oµ¸q^ «’æ^+QåÑ„Ëß6?„G§)7¯(ìÁýÀ-¦Á½æ)Q§Ú™æPˆÇ ’‰MÎyö› +Ç~Ö@"ê©'˜ËdzšV"!¤bRfÛ#úÀ4g óV™kR]ï#\òø}…{/À¶žFÝ| ‰Œ»0cîà;xÜcUdú–È’ ¡ *¼ª4RÝ\ñ# ˜x {¦úÑÉ•mÜ F]Gv¡ï…Ó©Aða½c„T›6¾ñ­a#àÁ³Ž`lßä… êóT†Öf†…áþîÙI#FîÑbÖÙÅ\ín¥CóRkC©å;ž¼*ðÁi4ÑŽ-U¢ZS{EGÁÕÍîÇäR[5—]ùºTA(Çê œéEÃv f`óbã ªË.ÄTŒÓÆT}O…¥6ÑD· î>êBWChnÄôôƒH™ØJ‚¦øÆnÓä_xýQÏÄ-yžîRëgß2PW2µÌŽ·òœ¥qò ûPzvw«øGVlx{•6†0Ò[–S„Ðq)ÏKXÙ}¼ÓÔ/-Õ†rFÇ¢ ‰Æ\Ÿ5ÀEwrµ‹`*! ÄgÖºå„ a…ÒW¥ûqçS—„Ü´ˆÀ]Þ=ïm“Êgh”8Úá.³‹]F ú(r²®ùÊÇ»ÙøtÔúÌ(44n)<¼«EÜÅhÀÅf·¢d» 2á—îèÜË0ÂÔ˜FßE³xDE+›"OG÷õ¬dúKž«zðÛÊ-*A1¡À’ éëCFi¢~ `Ûby2:ÃXO^wURÅu»T ¨ÁŇ[a‘ÖT €S½À nãïço\“Î'DÝ‘lt`oºñ„TnŸl¶rÖÓåÒÄFÆZd»zw¹Åæ 6?/÷÷m­‘Cœ$3i<“>N}¥3‚"ïK‚=D)piAL°d¹c^²b$ n¾S,W)#~’oe^Óz² k…øü"Ó‰ˆˆ«”nØ~ë#ä†å¨^0øÚofÂOî«ãòL+É6ñ-&£„˜£—)ÍH µTÓÈ´ í)ôjÇÅ©N»áñ]|âþ¤²hÞ݇=4gAœ/ù,‹Ö;‹êâ« ýÍÝ'•"è)ÄÆy¶ÇRœXŠyŽ^¿l5[(×b*(&gwÃÐßÙ2‰eKžÝ b»]Z\z ‘bm.íW]8ò÷çð² ¥D¦O}5AÚÄo*‹“Ý#´ñ][ÓÕúê“Éü)ãÚhÍ]WoÉXx=£q¬çz÷Ÿ¢½zÓg2ÁI%"—IÙ)P½Ãÿ¯@ø¦ØþFýXz(Z Àš†n»)tkÞÒÉbø°?fËGu€Ú)0+înà,¶óà“²®°®¨H‡p\Ž ùoS3ªãÈ$#EèVe»éâ)½ÝœƒÃ¾Ð˜˜•†x` {rhW,%ådʉ‚µ%:<†É(Úþ\è@é»>!xÞ¢­ª×ƒìàqhDÐ…PÚ‘eœ]“ÎYq}H„…ñõ2Z%HL-EšSsj‰à ‡õóN %«0 6Ÿ²<pÅ×f4êúÞjÕï^;É$p¡sÝ)@Í"þQÎß‘€ˆ:x¼5ÏáSfoÌWLØTK+ÈÖïÖ7é € ÖÖo—>ÖÞIlªœ,x ûÜ4a©å TàšT&S îé½Ïm΋¤ÂæÓ¼Ø9?”ï›*w³JûÎÇñšÅÒ ‰{6#~4iÐXÞÊ*Ÿø”m:+§™:èåZdrF„]qà>ÛÅ£X®Hä¶ž] 6º%€CáP†ªÞuÈÿÓäCØ(‹a/º\‰ªÆŠ0Ðæc pÇÛÌ[|í-·pÿ!dÛõs¨ødž‘mQæÆ¾X~~s©¿È܋ÒŒ¨Œ¾ ¹À¡Ô‘7|F#ÉÔ êßD‚!´¹9‹…Ÿ>–y¹SùpBÉLѶ½hÑÆ äBƒ>dºSœ›Éß‹Y/<·Ž™§ÀOÙ¯šf†6£Ø®²ààoÄ$/b 4ƒ¹d¢Ð6Œ-¬[fv‰Ký è{\¥;Á\i°ìòœò‰@­@©˜ ÿØî²1“ìãXΕa=º[¢:}Ágy@\­d³·B«JiãÛ'ÏQûûrÄ¢êìv$Ò­K"i~_§X`9måæùwŒÑM$†.Ç*ÍÁ‹QΗ#ºÿX¡q¾uî¸QÖ’ª¶»úÐ4,'?@—å$×8×+Ò+# ñÚ*ûbý;'p,öŽãçšÓE âA'ó›·ôÓ7‹Rë¶µy²ùÇc‰¬@fìB¿W1{´ïâ¡Õj%‚xCZP¿Ê–_ñ£Gjc1‹¤«Ä‹[sùz¨õ‘£N¯%/Çœh8à²àéÀPóÀŸMwÙVŽ ¥¨Ú§!0¢)Ft—Ï”¼— 6Si|•O=ÑWí™o݈ûëÚ`Lâ(Câ]l/÷-V…)‹¢A­x+y/dÇG1\qÞ‹ŽERkº\ð> aP!+$êÜc)/ˆŸI)¹Ð’–pE’kÙTT®2obQW¼Ûœ«`¯Ò5Ú;®±2«9ü`ùj­—ˆOÔuµ ÀÓ©Qa‰ÁcrP®ÖâpÜA†$ƒpö2œ™Kÿd…9àØ„{ÎQTÀÕ#%TZ;&Dß½–Þ¥µR¢X¨G|ÎF>ÉÂÈòFxÆ¥•˜2g…(nh’tÂy]û¸ˆæïn'Àxùô”Œî¸¡Lêt;ôÀ'¢1¯;Íû˜¥›ÿâ2Ž,ÕÔD}ÛÉ*Çß(ÒV=´Y“­hÂܪ§Ï IÑÒEÉsµ¹H Áì çÃÂL~VÔiæ£q ¶CtãÁhc³l[d[Pu§›ø¶¿ÏrRz„ÅC1•üˆVè)dïPóÌâî>6¬*e—nõºÚ=ÍGTieo™b0ÿR31ËQM`wT ·ºJ<¦m±4-3ò›³œ?´‚ª—ˆ /0ÅLžÛ@å†ÇªÌSb0N͈ÅÈ››w‡¨ýC< Z‰þ³†ä‰ \aÍuù-OÎ( ¹kƒÔQ Q]f“@wN§&Po@¹ºÒŒª~G?EËõÍ›/?è4‡Š,o‰u%ø¤n}ýím¦&ºûw‹û7² ,éS«èûZ7]S)é– JC™æ%û°+ËÛÌ“P`séÜó#ÑRyd›Im·¼õjg¸$'þ¾З-̺ 28äõ]½p%>ËÍÑÉúÿîÜA ñÔ}¤ƒ |Æ¿rSùÞy²EJ£­U#Ž“÷)a,Š•gaO¥-pÖÀèh“6Aiàd›"dæ¸À?r£ÕWܤr1+”­Tö‘ývéZTLïZ5«x’^º`N<¸gD¬ ƒfëÊð~ÊW¾KU˜ÇÉö À¯öØ'RGÇ„Sî‘+¡»ÿ5¾y]*%³8TÔçÙ&üèWÔmBƒYæ¨%!ÑÙ‘;q“7–h^;⪵EŽ•á':Të~X¸F`I™ƒO°)UtíVW& ‰¼¨Üq²P~.Oi_n¿z ®é/¨BfpÁe2Ñ—9æñ÷³Äo?yúÆ 6y'Šíô) Ývê8ÅÌ÷â¥32¸ˆ4ñe](elú]'¹’/?ý ›.Ï…:MA˜®ÆÂ:j (9\ÆWÿ¦Ôbœ›ã†À‡ ·`j¾ÇÉ(Æt! ›~©š'·h$Ó¦GÀy’p¿¦”ɪK­Ú“S.Ï7ãoÞ€'QD켜Y¢\!˜vámoªú!fÔ €imP긙p.r0Cˆc T5ñ„dò|ÖCƒz7D8“%tàšgWªè Úv¸ *OiiAàP÷…Œëö’6”ny?Ó‚HjuöácÜÌMfaDƒ´èŸýN]Á¬P·…¾u¼/–æ,È€N®Ð<ì]ã·¦PÀ5Èã)r@oIû¤?Ý×ÿÂ=uîz§J0Á!¼;ò-É(¾S—pQ=¶è]ÇÅ5ë>$¬624³›û'fBlZL†±S\©€@%ö8OA‚¹Ÿ‹°ú¯% åÊ0Ãz:´†a{9ÏXãyévâs3Ná5‰çÖvož,£É4«HÛÁ@Šô]B8RRô?f˜ ƒBZÏvJÍÚëÞn ) Õeë†dø§e$'4EówP4¿LþM«¬ï^žàf4ª©çñ¨ËÇMyÖ·¿õþ•6KX¿Òë~ÚÏx%I/"<¶(fïá’pú§;å¹"ì ÓÔføÂd‚±¬LâÔä ›°GU i<Yb†Ý”Dƒ¯±4°Që½óüjˆiçæ®ÆWú4œ–ø³é³D_ÅæÉycŽÏ `?;™E",è1Ä~‡Íj—5¼.èLg#? 8^S[Ê]8€J5–¶>WM_þ€¹ø‰Nð¡’x¾ÁCµ¦‚‘x¼¯õX¶Õâ¿Ùö!*cí¨¬‡Ö‰È]þ »›€­ca ò0,º@OÃ8é!4ŒqùUg˜çøí8$X/ÎÏt^õ|f”ì·ü‡0B—¨Æm[lŸUOîÊ윦©Ùë/< îCz¡¬l­ƒQ*é·{Vþ‚hF9¯D€ãìÎÜ“-lµÑ¾‡ì®?ueÄ>gLù~Xˆ2ÖèV=h[ N”ß^æ´“ú%ËZûŸ·aw¥¾Ö6á:GÓréÐËÝU² °Äø(þ0¼–#cË/(¶•0ÀŽ×Va¬³¢q Gó¨{ã™@Ç8ë4>°8.eDEJ ‡ÇN#`îû'~­—BÿM`ÿש ¤ßEoúâ#®D¾ÈñjÄTÌÛL¬Œö‘}ˆÂMÃ,#aÂ$ºvWž qõ;e#‹Úf#ÜØn߉‰Ë_мu0¯!-•“œ¥Ø¥f&c1ÿo×[­oCUk»tã·@#êåTä; Ä7ÐÑq3#1¦³Šî¤ã²Væ•]R‰ÜžRé'É&Ȳ²»äŸã>”## ýšo™!UÂÝ|‹"Y£5¸Ë1Eû,™Z‹ØKxH7 c§Ìm)Wr»5‡Ç¬Þ6ÈÅÀx…M"Wu±”²;Ðy†íuí‚#yvuúá2…\¶üÒÛTº+q¾ôÇ3vƒ’ò„¶)&•)2Œ>)N÷#€uæƒÁÙ¢/ËAµö´{µ¡ÏÉüòŸ3qT´ÚB9õߣ¸·Ñ¼Y÷TT½èœO á@T†MTæwËÒ^ø\é¤Ef“À“^c…BŠÍ¾ƒ ÊšÕ£r¨:8†.ݯ"Äy¤¸Ûˆ ¯¸P r &LîÜ÷úÄx“]¤“¹ÂÉÂÙ×Wþád«,ÜÖiñz*ÆrZFÛÎÛËŠñg•†Ä Ò¬1>"_5žB½·¯ížBB³ÎéW´(”Б¶DŸ‡pKÌ» >s=pmd]lv7…’HàÙ‘n1484;tÇÛÄ0¼vm‚WÝn”áD6[jDñKŠ·ÚÎ>‰$ÇeGjÛwÌxQ„†O®/gU2c@ö#²ÄX¿¦ yZ;vËaàD°¹°@ŒÀix±œí/öù·ÁÁÉaëã^´MôÃÉú¿ü“ ᦒ ¢J¿(À”«!Ø)ÔúeëU\sÄ$ 8¬Lí žf¢·ù/ÃBÝ„sÛØ4‡~º^',=zzCfIU:Å ´:{ÒÓZPëq&¹&•é0ÐRë©@ÏUxS–"ÈúËh­­|œŽrrÞ?1ÅÛfc“0óy‚oèRÍLj7FR#íÍ<-5DJ¶½ÄÄuÖ¼a´bwšõè×;ÖÿeÖ›,J5¦ù|gø7Ò.‡„[?ôt“ÿwWáB¶¥¡ ùþ&&Ö•Ð"{ØÉcуË1+ ÆíUN]%2d¸´tœÝ"£`Ývʰ\É“5Çëéc{¨Ç½¸Š÷âÆ×Ž÷pÝ×9wt9'ßOx™@|GýÊ9+FcINÄN»#D¶Æ0€›ãÀ·‹WHeNOȆ 2‚*Pû¬\Ž)³çêЛ—UÜÿÐiüåã$5cËNŒ óëÕ%V$à[-”Ö²›_ ’mþ±b|šÓðû.™y¼ßPŽgý>.e -°t¬A£¸³à¸ÚÑæå8-MNQqlKÒAõé±OìËB×ßÇÖYmûÔŽêÎd<è#ûsêÁ·.²ú-/;óÎÓûá›—”Rw¤ý©Ðkæñ2ÀÁ5‘ÿÿütƒ¼ç ȵT59P§k9X .ƇÉùجSŠˆŒ£äË9'VPê9Ó¯¹ÒïµL]½$]ȯãUÏSŠÔ퀄µ£óºaûR¦µãËo$.ŒôŸÑsÏeœ¡ÒeÖþa‚ Ø,›wÍ+ŠªG"Õ˜aÀ3S—§iGÞÏÝ¥1$°L‘EOv·4Qj°B8o“+ ;ÐcÅ©MàT$ah˜îÁj¨” ‘{K¡ûšùñÎ;´Ù|v“yëÖ1Ö¾ßDÛˆ÷Ó¢ñ¯+¹Q)LŠåsÀþ†?ÐOƒI Ù£Ll¬Zox†Ãûf¼àøÌC‰5.”´.QGy+!uiq\mU“”¡“ý+ò€ÅаkŠ¿±ŒO™ž ²Vxhj^ªõ¶É"’nU¢éöÏŸ­ ŸŽø45ñÊ´&È Nßal{½ø3k¯åÇA™V ñK‡ó ëFL}f§£z†‚³e *m^L¥«¼‡µÎhr§`3^(·ø$Œ(ô@0Èä}Ï‘P óº±f´Óf:b»×™l*Ï@µÌDVµkQðu,ºà) ЮV÷Ãt š+0]‚”r«›š9-,tCIfë×÷#$•8\CöR¢üvp_ù6F»òlж2’ÂK ÂÁî<ž—a†jɶËXUá¥i“Ô°—xw¤»­kÔ š…¾ùÈÙ~b¤¼–%€ŒÿkLjƒ¢„–‹Â†²Uªv ÊÁ)³'ôP°¥ýNêçËUͱ/.õ’(§îF¼YGe,pìv®üNËLÇr5é*‡µ{ƒÕ¡sîɪÔÖàt§¢}§m/¯%x|gÔ¾P¯O¹×;ª»ß•;(|ZŒé˜œw+êþ ¸]ãU#u‹hã ^n È©H*cê‰#ˆ)˜s‡Ú!€¸iÓ7€Ó—rì¨užà›ŒX å狆¦{æ5‹h‹bDºžû™r³äK6ÅaUx.~­Q­Q¨¢:±¿ŸåᛕŽˆâÿxøpÀ²5eµA·]qBÁ%û…¹÷è Íà†œx¯W.pð˜ø}³ ³àŒ °°0/O.‰\ …€¯lE™î¼ç§§îˆÏyÌNfæÁ’ šæä0*î/žéñ4òQj£“¤yJOÑA–|qĤ'It5aë2£Îõs9šÇ ëƒ×bG\<_QËKëƒÁÉ–¹utéÂûcÇjVÔÂÝ'6w„¥¥¨©†h-+ ¼>¼•KøiæÈÛ ¼JÊÙkØ¢¦~Bóçh‡Ë#²3yNf~¿^„-?q%¬ÅÅÝ· T—Ð×ß”$_Ôß·6øtR¥í9º ô¨éâ‡DÇË< OwÓ9«9k¾ÿy B.¶˜‘^†kþ•c…ÅÀëæ¼ÕMépx]s¥†Îè>ïâ]ø|‹ûLÙAéõ…C¿UGad#Ö6UÜeÔ@q<Ä' ­‹7ÿ³Yø—.ª•Ô6ÌpºÞû4¿×)ßm:dC›Û &_ ú:¯ cïs(Zͨ|w±¤30ð|d0Œñ<*¾Å<Ýao·³Þ‹ûfmMß'Îa4Ùüd’$ÿÙÊ)ˆ)ÐØNñŽÈÿ‹±¹Â©£×ÿêUÍ=£A"»¥Õeo÷½ô[tøìeØC“œv7ÿؼxy8ÕäbVôæ,XSQ2J:Œ}8ªtÃhg=ÆŽÿ$·E˜]Êß9Ũ§«ÚæMm¸v—yŒ ÌÜOtÁ¥³úãòc ¡“r?]SœIEMš€«Rr‹]ËÉjCr°Ž >¶ø§¢ÊñV»+.eY¬ÊÍCkìH¤‡@«¿¨rÒò~wþÕæ²!ó?Þü±¨‚ô Š·7Ðä´´ÓôZ­ð`T¾Gë¼6EΗQ‘~ìùÈÓ÷ýlsE‰[µ¬0°ïT:ºd]jáfM~• ™An*eÌJ™ç®;aÙïxilÏÚê>ãYcFØaòr®v´Ð’¨x‘H?·>fšSxbåŽ'…¢Këq<¼wð®ßÛÕK*WOÜÆ×6ätÃN&DžßnwJ-üó•šYH4*jn<òUc?}lT-â.ºòœi¸¨ƒX\ܼ˜¥ö¾þ9—ñ¦Ê8!ðÆ’B`Ï¿fɵ°@exÎèôó/qOŒ¾>wxôàq5rrù^¼Uü¥ì&^h!ëdê~eóe¹´ô/F)?—„r©zk†}·`ˆHsÛWJÞŽ“Ûö(ÍîÅZÐ7ŸHç#ÿ¬ƒÎGkÓ[˜r@]J‰°ÃÿÕx¦M¾hËA‰'++½k•ýŸ@TÍ"òõÀƒZ†á»Y!+1¿ýµØ×D0'½õiÎpkÍ— T½Ô{¯ÄƼÇ!éÀ|Z×TU#QíŸäG¸‘/²=ŽW;®œ¥¢ÉâÊ¢=Œ!šÏÔ ‡Þg¤H½(‡%÷E€UņÑ1¨¶Ãß &Ì"ÞV·Ø —±ZPGf Iýö=µ AkŒ|18À™*«=ISiOc«eØÈ˜”?ø!zþoѲ —DZ&*¬®fþ^ŽÓ¢š¹Ã%èÎqÕ)n\H¨2që­Äˆ¡†æªËmž2u?ÌÃÎÌh:êö«Þ¥® !TJµ˜qêAÙèK Žì=PCÛ—Ïc‡¤›ÄÑY2ÉÅ‹'Ÿm=aQ‡ï&½­c,Û;®Åa†d܇Šz«xÁÿz…0¥¯|¢ë!²êÝWºãwA±ôZ ÅRšä²ÍÒÁRdžöî w^çUû£ˆdzNýÄCˆ‹Ä_êMRQØLC²Ò§ÝÌ“d H…³±‚ºþ+ܚïðbgZ&Y·„Y@#7ÓÅõ¯—x‹ßrT@=Õ»\¾÷²,\(.P᪪|BÇän¦>1_ Γtç“?¾{ŸëÙS‹-h_ ›£üU9¿Ý[C} ³Ð²§‰I^§jÈÓÿ—û7ôxQ 4](fç=‚“Qü£Ì,ç ƒT6vdP\¥‡gehšý/°=#ä“ü“È¥‚>ø’…tµr‹¬ Þ3;VÔöWNÝmrÎ¥8FA~OÕЗF4t´‡aèØQûn:/a,Ïc*ë)Þ/a¸æ2 Ãþ þ Šxi¤J4™Ø™LX¾á˜b÷Q3 ×vNª¦Œñ„‰Ù,aG"E2'‡“a]⨜EA»gПæ°KH”ÖàH“~ò;œNuŸºË»Íö¦Íºï~'PjÎÝàÞt?k>ûTýÕoWÂGA”õuM¯PiZ+KËaìüôÒºõ/,ô½kpƒë-?ÏçmÂú„ÈïIq©Ûì–~¹%p#¯,!¸€…$‡!*HcoÝèe^ÞaLOÉ"à]áîúï™—¢ô¡I˜‘†­‰k÷w‚L†¬vŸœÍA¹"{÷¹»Á4•eùU¸d±žÀ D±E·Ükû`+*…õ­ý6{wÞ0Ti»6K ’©]rÄdñX)2Ùtm§òçö¯w@Ëo¹û'4é>É㾪2o3O7šSf-Ðu5x*œÅyY«êê¢ÙÈ“÷ \bJ21ºý1ãRdÒ÷$ŸÈ1«ÛPÍ0Ô@Oƒt:eYʪ4¤„$»Ö@?­1 Gå½ö¨?n7˜à;š]¿ï>cü2uŒäOÖ© Ö4E‚üsi!¿˜›h¯˜u´òˆëUIÍÔ»’Ó?òÉ9os4ç ñ[ëxÓÐÓ°@òuÍÊe©Yþ=en«"öã•Ç{â4Pʧ(vÁ®+_—½MB0<5ȯ1EíÞsû“0rÙ¨ [² mŽÁÆ33!.‚6g&jEþ bÌŸ3¬Œ .|¹„…IŽ«Þò9 Œ÷Ÿ(MŠ==?¹JI=bxv²·›”,󮯦m¤D/ò!%B.Æ vF&ëÃ…#žý×4÷fKE……R¤‘@ši1äš•8OÉúêO ¾E§¬×}î(¯Î×0ðl3‰lÆDÂᔄ­ëÆëoÌÔþ§%ñŸõ&¨t×ŠŠÆðÓ?~ñ,³š·ì´D—Y!CIá+§G|öyà{Á¨Eí±žOTæ̸­‚AUh =Žäyx‚LøUSŸ.ÃhX:î‡Zn4·¡u?|é¼…lù®VJk£,W2‘±¤5ÈÔÇÛ5S@ÆíÕÕš™_]µh#´ÖnZ"hž}ŠÏ”9×Û»ý¦T5±*„Nç½Q<…öFwo¾WÁM›¤Ò‰q+ ÌÃŒ“°n<®k°ºäá@’7"<½éqÂ[ðY—uR*wzA%© …æ)ðfr°ÐmÒ¿r@KÝé]jï÷˜Æ‘ÃW„SmC”wf¢i§v¦uÆcš7©\5°ál”Œrðs3–Š“KþWU³J:oR;^€—Î.Ûçc2Á,y·\Ÿ¹fDoãŸzŸäªÇkÄt§”ŠG>žà´cØ{"J¼lúUÐN™U.ÿ½6¡®ù-GžÉ Ilp ³_g+ó·Æ‘V Â0<Áßï“mcè·¢½Яr>çiP”qZiêÒ$v¶numÌ}ˆa}ÛËÕPñüÈ1æ3]pN=áåܯ¸n dÛ T¼¥öµT&8ÂNlÍ›¨oÚ¥èø6'͘+‚ š¸ jʰ‰ðY*ãéÓ•„y‹> cýœ²º…ÁÎZ䎰єW#ßm¦§Œæ³t%¡|],šŽÖEI-@=™õ‚gÇHôž[”ÉÛZB19¡TP2ÒA¦Ð\)±p|¦ ý³8.L¸?4Ôó6­¼Š%e¯81‡‚Jù@l[« Z§V‰Ê—! «9 tCgs,Ô-Ô{_ Ù ¥ò;Û¡žO´Eu¤@÷ëâ2u œpðí×:dlÔÃ72šKE3ê8U2ûëL JëAOðCH='m.åÂ40‚ŠñµWng¶Nå^óÓFM7*ÉäQ3÷Ù«l£­yÔÚįìe)Ï• š);\÷5 ;]DΑàlv,Q yîfYàùaã?tçQ°+¸¿mz•Tg¯Îœƒ¡kþ? [À&cûr?˜ {/~>NoÕÇ…ê«$ï§|c-Lg®ëƒ13œ©õ—s¹²ûOµ2àôèŸá‚ÊNHߺ#ÊÕ49wŽÎÉ©Ò7ÏmñgËk|ÎXîBs3)åŸ37Y)ѨMé“#O8R•Їy䆆‚§yÞ<¦?Y„KNïðha~|šì{[~šëã1eÀ`$:ꘗÞþXKèz’J^Q“ÓœNSUn³ #]A¿ /`Ìœ IæKéZÞ8^ú&‰ÒŽ—Â/·[›1jaß½í®G½›÷nP¡7]+¦~ ¤ j¤ý7å~b÷ª>ÛÔX:3œ«€!ß u'“•tF@ ˜9ßâT‰È;”JiÍ$ªÅ²TV»æ‚Ð$Ç®¼Ž²¤·k¨>.tè#ž?ëDo‹  ¥rˆÆ8VÔ>½Éü… „“MÞAâK€O‰,­¬úõ»çhœŽ­‘ÎÖoÖå:(¿Ã`]çYo⣲)÷œõ £çX$Ø•`ôõ Ç~+¤Ø¨âØÙ·w‰›£*Õ=<„å©_¯s?ŸŒMd2£Îb 6¨¹’´ÔO[‚àXxh Yp‰Ö÷6®-G \RûVŸ¾‚‹ÁEAáç"ÅsÒߦõ~ZÖ|ØQº`-Saa ¤%UcêbIGaí÷7õYÙê3±xÂðã?6éú­9èL±@ÿ©éî#hV¶¾p†Ý­ã"šxOö¢ AÜ×p ¢•ô³FEÏÖð lˆ f8ïп™B‘=NüæQ˜:úä7·“0Áñ=“ÐDƒSÈÞE÷ôhöù] ;ì)—1 -®?ŒÃÓÖAÎEâÞ¤»@G uçÝ­žžóölHTÁGè^½ËÝ¡yÏÔ­<…D÷þœ¬ýCàX ZÎñ¼²÷3­S?àØÅ&mìÄ»9xßõ<Á-a±>bЇã¶h\Eßç.™¤ªøë9T$ö¦,|éÊÿê0«ý‘m J–Ó¼õ³‰ØB/R(û8GÆ +Œ­(„ò-Æp×üûèèÇΔݢ¡Z¦…Ÿâ®ÑxwnQ¢áåªÓm&²dÐ-ž4ŰâvtVBÌo±÷ïRR{ ãL>+Qu »×$?‡[«¿ºiauylÛ‰«)³R»!àÀ³½.´Y•yì‹Àý»Zž*ø=80zÏr¡M.ý2;ʉß,bŽV íµ 4¹‡í^°Á…6œ IäÀ7Ä«T*Å4:™¼~ö8ù@[žœ¥nù$Wi³ÀìEDÊ%àï‘25€ó/ý; XMžHyz…ÎðE-bé¢ "N0Æødm³àmf,ÈÏÆrM×ae=ì=ÚÍÓ÷ÒYŽPÁ\+ç‰9ÈÄÅ)pªáï"Ѻ×!Ÿ?Zhȕ³gD X7¼^mA-U袺ÝXwGø%Áþï-u õ{ZUš¬J‡¨)ËÈ8—+)súɤŬ#^ÑLñ¡fmÍü@¢ÉâÃYÔp²hýfeI£ÓeŒ‡kó6-õ{´…LA ìödû:} žYs9ý'­ÁÖR—’$Jr)çD“dv·„h¬,^¤‚²Z× YÔ­;n_ J‹àTžÀp[!°@V¼› }È5þOa»{ª—¤à…¡Õ,qà ³Cž·/I¹œÊC„›¢ïávĺaH^çg4OÈu£ËuÎ>CÇûG”U¥‰fÖ¬SÖ§:*¶Ç»«N0¹•’–¯Çg_g°ÖUïÅÏÉ’A}63x& ŸÝÝP/ØÅi¬|¡EoIÃJêHÕûm­Üz6H Š&~º+y_®L¦m±!Ý5|S³‡ÉϘ±¿CÊ] £9[-¤‡ô–ji.®µ¢fîc‡MúÛ“ábƒ7¹³Ö î3xÍ n_‘Å Í\áÍNH:1qѵ•ëÝÝ6»,¡°÷ü‚8Y„ SgFF¤hoÕ(È(µ’Æ?i'KíºŸ’Í}Åà±.½ÞwŠ9sK0=î"\ŠBŸ±#Zdà•´ªÎOƒ<ÎàPÚ”¾^þ…Í$ È[ êÛEË ’l¤R$Ÿ0e¶YK&ûóĆ›%ÚÅ›ÓLYIvìÛ&èoÅoòôÏÜn_Ýyó9šiz“€•£á¥º‘±\Æg.õý|ß+îº3&óÐ{‚Sd!@Ô¬–»u²&é¨xh-ªßÔé Úòާ%K2Q±2$ðAÞž"ƒPá˜t`Bp, B|XkU,ƧQÎowRÜÍ)ÖNõ¸í£?{€Í.æ¶ø›Ôž95/±.ÇÄã£R¥K¹ñGnãl 䨵@U8Øc×úú=¼À!(É> Ñ-&Çkî}ü—ªS¼Ò“•êºÉ“ù)«á%àÇGcú"±æi¼e㥫‹dµOe®H@a?ãA\AÞ>fD×zÚ¡3 ÄÒþíªÿLG)δG÷` ul‡$ÒsKp' ~×Ü2¨3†ðdö^UÕ³´Ú«Ü®˜ô7~ËK4Bqg÷±ÓÊbž~´Œ^­×›àƒ¸Ö‡d”ù+y®‚¾7*IþõƒÅ”÷?Eøš u9ÃýÈ ´üm=K×Y¨";C ä»sñƒˆÉu0{)¥(i5îуï/ë.¬®è=Š’ÍFórZÅG%º¦?j¸lÔGe2„ëÏò KSä}W’þùÌ-¼ëkNQ_5TP@|‰iA:1ëTö€ ý l#â…$­4ñ5ÔÝCi­á–]Tø©q$ò™®j}T»þ )QÝêj¬,’!užñ=ÞU‚R .T @sì .ƒl:C òeèDšèD>׎hOì #Þ ¯©~Øe[ö—k{V‹Syɇz!K@zGWöµƒt?ÓÁVpz9unáPÔ“YjÔÌÙêÊÆ§%íFA±X’ …ÈlV ˆŽÆÛ”fYïü½"RÒÂüz“ÏÉæ6„öë_«Üqk/7󢞒p³lÔD¹™ÊÔô` :Pk*íÏBjíµ"¦Ùig%:ÅÖh©„N!Ù-í Ú¬÷†<¿OÇEÈùŠqãaËÉj `: Äï2»çŒ"Ì~Ø¿¢™ÛæTÏy+¦Ð™G•ÕLÚlâ#——.ù qÉéuÜw3$FˆZŒXdY¶1?ëøØèkª^8IÒ§8ib˜WT„§]*»…[[ûç1.´·ßqIfÜS1n™OÒZc¶››@ò‰¬ÒOìÈù?°#KÊ~G"4¯#Vu¢ýe¹ý9ä‹ Ã']Bét"O¾X&øíf¦3YöƒÆí–«Çiè˜ M„ñµÊ8I’8íùehc¦Š˜yšÂ·ñj äB¤· ‹kýG¾spbã¾Âøûô¢[F:áG¥6ê= vÇÛ~G _Fk×QO •¤}¿d§YtK˜n9„¸kݸpj¾|wétB´;P¨¡çËT}j•“½U«ð¿#Ýå .Z =ðˆ<[ׯ‡qm^V~ò£ê}Nkœ!ñ-;­ÇeD Ÿù‰sãLL—6ÔÁj«UçT}X&ì^J³¯Sá̲1þÝx(ÕšÍDý3¡/A¿×(vGK§¬\yŠ¿»€Vøýü4x ³…˜<”b4^(ßµãPµ¾„ÃQØaÏ#ÆëàÄ«Èó™m_R–¯;ëj:p{·ãIà >f0æ‚+üîb8›0äø´fØ,Þ5<74£ÎeKq@¬õL¹šª¹°[|)Hq¬Ëö¹Q·eŽdzªô°ü;Šö¦”3áSíŸþÿä]“vœT´Õ¿¸$úññüâ‚p¿6 }àt‘œ–h’î»3:¯¶3%žšÅù©e*îvðUÐ2V¤=E$Àþ`ëo1Ï °gOãÆ¯¡ °+ÎM~ üe÷l†!¬¨·C}ô»?uµrf—ÇÌöQÅí¤5l–'r¼N­ò” .A9ñËßP¦Ç·¦ô È›©ÌžD°=/ωIÙûªÅ‚ÜžØÁ½ ͼ'~°±Áj±eÎOÅiçæתlp…ÅbGŽ––öIä®v0üBËîWDìTëŽÇ›œˆ²XÜ" ¥nlêÃHj¶ÒñFz0ÿ³¾ˆ»åÄÞ/Œ?¦(#H ¢.e‹VtÇšÌtd!%—gÊ‹LÞ Rl¾OubsüfØÁxCê›òÓxßú«Y¸€NÀß­(Rv•¡áP‘$#È}R-.ÏßmÝŠ4Y“öÊ NâÀÐô?4å"„Ç0›Ë¬?Ñ›„zž?ûãæmÞË8ÙÖI’;ø…äHw"Ït.v+´šüô'ç/è[^ ? Ghk)X¸"Ä‚*ë¸æ˜°9îBÕ8®°T1Âã§CREUïø2!ã~ƒ©*vÿàü9 ¢Öþw§x›2`»§† Ž¿ço-€;Öèò³a+õ䜠_ŇÝïù›Ãž¯6€¸÷#¤±­‰ž×û 8s´D¹*_ØàhTá?^~„èÄe±ã SšZ Áç 4 ¤B7cPX‚î‰ÏZPïÿ¨9ïïÙÔ—5ÖÌ„Œ`l0K±}pqe“UŠx1€4{7K;PnPs±ç+ÅšEbÁéwèP°F$wÏ›’Ï Áedgè¯ùÁß³¦mÙ©ó$è’EÂ⎌µ»TQ÷¦xg2Ë"‰w)Á‹†èÑ(XŒ?›+\{©¡8F/§Ê¿°H(Ó¡£\šs™ÈoúLT¿BèÈ<èB•o4:qjóÜ;á6håÊŽ•’ËÿÖj|IïN,HÞæÏä€u¿>G•Æ+ûÌ[‚³ÿ²½ƒŠ³ÓÅJ€‚ËÝœ<ÛÁ'{7–c7jšÔlç®cÎŒÈò6î¶þ[µ‹ÈŒkΪ¨ÃLÓ’>4ˆ7¬¦Ž"qŸ”5”ÓÈBGãÑ÷½ƒžÕJeX>EA÷€ã1§[dRÉLóþ¢¯±fêWx^nMq-’6"¨N){m7ÊÏ¥‡ÓæÌŸ‡š­ùãÐxSß7Ýáªa¼GB8â}ëÎúkPô ÛŒ2„²cY•¦¬o¹a,yÝÄ~C6²ßWÅ?6tFSÿq½Éú™AR«oóôŒ:ï.ExAhrr¿×â' èÇ@EÒ¥÷ÞN÷ãºq™’ý‹§BQØð+Aˆ/‹)Mªux`·ã¯f:íÀ¨øÓõhL¶àÿÇ$ˆþÊ)ƒ™¾èý©?óœC²`AÉŠò|ú –IT,›ól»©ˆl,NzEö¨°ùiŒ\wÒÕ)ø*pe¬#Ë„^â˜›Š¡áñãpìÝ7 wOÎX]lG7¹Nç3Er¢®Þ¼MË“fr³©*$cRÍÄ#es(“ïwÕÞèÌDr ×V¾çSRù>™.n+`>\Lñ«mú.¾¿ yZýM8Tyn-‘ô@­„ÏÛ£’æ î—ôרFOô0(Š!ÉêïX÷*9s,_MŠÆëË,ýyâUuMV}œºÉå¿1‰s/ü.NÑì…âE¬°Êø PzU×MÜåšÜ·òGw+×É#þ‰Í7#p«“gÞúÕp2hÿ@šxÊø£#ÖM $Ÿ[\Õ…9T‘Ôö.ÕšèŸ:óÝ¥¢‰­8áRb…Gëá/0”FÖ¢R¹öÛ(h(µ#wžRj=exe˜$U­Š<,ÔÅË-«$0µ‰nÄI™öÖrÌÀA·Ã· –÷Ðú¨ |š„b&KÊk—„&Ž÷ 7É-pÙ®/“C–ã\¦ö‚\Þ×Þt 6Ýçœ}b¢U¢â,â¨]¥½©Ñ|õ ¤¢þ mÖª«[ÞßPXŠç FWá/±¡‡š.cŠ*¿Of‡O xvö›œ›GK;-Û[Ì‹œaÿÀ÷ 8×ÊÛÁši°(–Ø/œÃVàñÇäU¾X¶ì÷]:êš>‘ÅU¤z›ÿú(Z‘C]¦ö—ÎÒ#>ùuVtUmŽíœÌ”¥,ëªÁˆ¦gÖUz]³ÕÉÚS0Í/\µüÕ3¶‚ñ Û´L¶û¬n„hÈìpM«`7 ÎòðVfH¼°â§0þ8ÁHB¥·‰]eV¦°Ì­þcÙ $ðÕ™ÊAXùŠÆ…nÖ4‹”êUoáѤ5õÁHç[Õšh#7+Ã~èz2ŽN·¢R¶D“pSiüA=‰z³æãFš³ K´åÌ…l;v¡©3ø£ƒÔÕmŠ<ÃE»ž³bÔ絋²>‚ ÔßFãV$ÖÇ~ þTèéÛtZM äA•(Rú¢«çŠn>u ÿlHü¹=B—ŸO™]A1!(-Ýääì7Ï¥ü9šÉxÎáÄz’T@X)}I‘EXˆGJ–Åó¾2Gl±;‰Cqþó‰Ãí.^ ;ˆN?ðŽ*¢˜Y\<¨ä*Ñþò’u: tϬY¢_6Þ¯½õŠVA„gé+~}ˆ¥‰Ë°è<‰,ÉL°;í©­þý›—Õu~”˜X ÞÜ‚ûȹÖGäQÐ}F7·Ãr2ÿÍéÅe˜pdÿ#sFøBbœ‹LÌÈú`;~Ék›Í%wØvoÎ?Á$~©ûæóàÆ#i¾Ïuet¾ó­GÁå_Ñ™µ…×—c2xƒ®oSS¬‡t·ÞJÁѶúÚq¸ƒZà2 ßÀ0³4åQ­| ᓊ€pçPëºR ±Ü6ÒP®“BºøŸ!vÁ c}rjøåM䥂pO ΧÖ2Üxïá-HHí£Œ !µ•ñ¥Vˆ¤®“}ï‰|øÐ`PQT£ã6´!qŽóʧ:Í#€M9z0ï2 ¤=š"63SzkâçωRIšMݲvÚ¥jñ?-}€ÚÀÃß`*´oÅÈ0­ ãMc ¥hL;uà*nЉGõ¸.j@]ìs = ’æ8Íúu¬V]+.:h43ÞìLÓ-¿é¦Î2¼?Ÿ<[üóXBd–Ÿð 5¹{´æ6jP& Øpaó„ó«Žëñ¡ÆiÅN $2Œ¨œõ-`€ãÚd‚ÐÉ vúi¦Á,¹CÖ$r5ÀP=ô@íY€[4—Œ®Û£]&¢)‚ ]/«UG¤y½ylÕÉ÷΋è4*ã³3.¯£c¶v~;Lˆ”™Î¼QÚñ•çB ˆË%›ú’Œ¹Ÿ¢LÂÛ€íüõHW€sÓæ·@cC ñQ#7`0í DRƒR©Q¸RS}@ý2Èâp—\NB>v:Vý^='óõýŽ™¦­F)<þî­ n4–üÞš8î œ‘d³s~jqBpï„:Î0æ· šÎ@¸çµ&Lê/H½ëã†ÿ„˜)©”Ó›`Z/Øp¶ãzxpaÔõòI2¹ÆXKYâ·Íƒ¢T<•qÈd›ï` Ô•–ƒáœ\çºæÍ°êÆŠKj¤£Ñã='Kx…#ΕuîZóÐÚ2’k8íܦëQ/·‡H“1âÛ/L"¢âä¤awzœÓ·[ŸËî¥ œþ¿±açÃnÆjÕã…òs,Ü£À¸!¯²µ>û†Zß_¯í¤ŸcÓ™vPÔË€ù­\›T˜éæ…ÅMäŽaêV— ¦í}í\$¯’')é/"£I¸q´èÙvÕ/׌ïˆ~Èí;O$|œ9¦`.ÃaÉn*˺ZúÆ í3¯º1:ʽbô9ÀqôŽ–¡`eé‚ÃÐn=ËT¿ñE¼tƒ5\3êÒ¸t¾Ë ø›tDÇ„-*¼¥Ée'Ǩ ¢µ'ú×±‘í}Ѭ§•*|OKÉ'¡TªFÌÅåè§ßÑ­O޳®e9}·ˆá¹µ‘[dFËMƒªaj‹¢-wêÒòŒ¡AáÍï×)v¨}ITNx'ΚbÎûS©ù¯w[­zôÒ‡Öz¯£Úµ¥#AêÎEp±[7•Q·ú¨¥œ‹¯}éÀ…Àš(Ãøë¥‡bÚ»vÃ:ŠÝÛ•xc̣ݤü€ƒã¯OùN܆¾š*¶ªù5 ÁöÜŸ…Zú ¼„©¶·Éèë=b` ¡ŸRªrÌßFƒÛù¼‘î?íÛ1ÿ_ÿ³!oó¨KÃZOs95ƒ}Tpih^q‹ñè å !¶blxwh­3³3O ñ'Uõè†ìˆõ[ò¯[À¸w­‰no/EŸ"bÞ‚°ó @cÞl5ÄÀ—ÇÕÜýäæLë[Û¯Ö·ƒ£™[»„¾Ç¡LºÛƒpÑ5lOf/0ð™.ö|GH ªÊ‚X„åÀE'ª¾ðqÆÓGÝGQ¨4mñÚTz{LŒ#4âPzá«`óQB»¯áCÖ‘·,lü£Ɖz2–G¯Ó€J0Áš‰yÎY¥Œ|{p«GR‚m²*šÙd°à ¾9ÔVA¾±o®Î0Œì y #Qõå RoCêJ[§ÒoQœƒWGðÖ7ɼI:Û¶ù@áá‹ù›I“\ЏÓç8€þð ,…%Þ¾/Èì»ir€qü¢ÇÕVg˱å2Ús}BƒÔe Ñy«K÷#†§¹†¯´vÄJù¬°h2Užh€ó3åiï~Q»!=j°ð¬[,‹±óˆŠ¼_ý§FnNGh:®DþófÕã‘zzhê`[ŒY ÛÜÂ(Èü_¢?+@áxòJX`[Böªl@YôŸÃ_à3 «ÌAôqïvµ'ž˜î°PÕGGny=±xDEá 8”ñ›sêÅàÉñ3-Îém~A…9J{º·@A=uö$‰œm >ç^ÅÜ#÷­®Ù¢ó}Y×v¼~›‘ù….¦AÖ(íñ²^ãñú °J„mvoèî" X}ïoškÃ$KŒúÜÚJvâ5^/çõmާœø`ÚE°iÀ,)–#R—±¡$3¿ÚêÚ “9ëÉc0)þž[÷ðÄ4¢s39ã:“ŠÍ;E8Õ{5îm*‘Sð)sñ¤LÉmØÖ•Þ`Ñ„ò3×Û‘Ò¸Ú:iÁ¢Ú¨HIƒjÏ<Ͻ¸æ¨ée\gx%ê3A=Ø•NWŸÇ±ƒ±@l;ÊCW÷ãmìDYPkR4Ixr±éM#“n†|i˜HlDí¾öénÊ » ïM/E`k…¢5»œ;í±¥ñ†€Ë_-?4<@çU㢮ðèM–ÆïÈ ×¡` 6ÿ#tk]4Á`zÞå©!q—¤Gç1¯[m‰ó$œ»rq§¬ Ç ø(!:¤ç©vDŠÅøœ,$D0)$:?Ù¡€9Þ’fáø½­Øs²ªš„^ï’Úì ¾U¬Û6¨ÑÚ^ ÑÀC•Æ`V;©jÅQô¬'YÛo€qv…¦ƒM¯/‚ö«þ]âÛÌÌ{Îk~3\8ÀR,ës¿7ì´`È«§e¯‚Wå¬ëÊAÝ̹/bõOîx ›4mà='pk\Y½T$ÃÙlá«T|“$Õ¢Ï:ôâ Wr…ŽÃ‘óU/yü>«Öâ¤v(Q_=¸0{ƒÑ‚–»vZ€–@‘ ·$£â‚÷¢±tÄ<ð2¯Láÿ(©ž‚ Õ4C`.7.×(;â×b%r™—ðgyr¼I:p6¡4ðlmÚšzï{ßZM|îÓhžMyIÿ2I;áV,*DBE1dTE¶NÐs4Úâ9­*|[H‘5f>ã¡é2ó–{~¸,6Æ2ìÊ3芳z‰øyN,oBçk]"5sû$Ö3/½@Q‘Sa1—z!“j‘"H)Ú¸IÚ¶S†’ä ½b­%U0WâL€Ÿ¿Ø.ü–(½fùuÏe;,ÎöÑîtT˜ØM™§Ä @î`/4õ¸›' 5Öµ}ÛÖ‡îI8¸ÊâC„jׯeV=TÂݺdëT‹”§̉e&_tg ¤õsfWálå¦Z>1Ÿ<»àÀ©Œ€¹D˜¾z”ÜŠsoÝ:ÈhƒN#§æ ‚G±êkÁogëu9ÄI±V?’åå„Wphyÿá,íüò-6ºu¼v]¯+¬Ü?MŒ)Pcì}?êÔùò™=,Y‚Ê•¯´¤±ùP 5žZ/ åm1¢Ýê%8t~.ÕžšG×9ÑÆÅIÜ||ö u(—™ØðhtRÖª'Ü'ä¢Ü"ãóßúbÍ(¥múÖ-šäÖYŸF\ç'rù5BU½i1Ÿ) ýB€--éQQ(¨ð›Ì»±&„% ¨ý¶}]Ù”,uŸmï`Š„ª#ð/“J¦^ v‡UŒ0ÜÂC«¶#RÊ¿xŒØŒ®ŽÁ"hÌjI_ÏÉÅ‘y™EË"£[šÐÕ‹ù½Cûwg–ÁùVk¦ѳTÒØÙ?zß3ès ¦Ëy ¦YxÐ\T‡,•àÞlÑgZº) ˜Àìè5Ø|¬S`·¹€ë"RùN8’ï<È"òãmTˆ#I8³÷ûÌ8¦àßXíèÊyÜø·n)ì4¿ýÃâaÎ|ÐPVn´˜ãžøt]ýïvÈ^B®ºàvnÓ±kÀ`•¸ž]2n…fpd?å&²è…e±'M¡ÅAk?)2o>U>‚v=Ù³¯üJŸd 6‚ñ¹渰 Q ¹P†²¼ü vX¸Q&YkÀ[Õ4gx1£•YC95Y7oeÍ?@x¹…uçNM)…«| Å*˜ÛF ë ¢eÂ]±09°žp’`g”ˆ÷è†<Úì}G¹7¾Qð›Åvó‚£ËËÅWÆŽ¨IÿUrú™Ê ¯¤Â$ÙÒÎî2Â)Ë=‰½Ý¸î·gv‘^ÅA!(^± ÚƒÕJ~FãÛÓùu!Û‹±°³êÛ83…,++•›ýZuå OâÃVN Uú†da¾üiɯO2%·<Ý©I"YL1ç©ôòðAÈ :§e[+1*ž¥²;¥Ø›`ô±Ó.Vˆb¹.ÜH¤(]Öš¦õÁ¥Þe“ [`óµ÷Ú¿¢À÷_öû¦,¾¨¨Ä¼Õ•¹ž’3)9 4óu´ñZ¶)CJ$…¿à@ŠœdŸ± †ðd '3$îÇÖÆ–p<™_“ø{O¯k6ŒX½'7—½”*¦¸p©z}ˈ‰Äce F¿KÛoݯWÐÆf6žåˆÏØÔý€>oüé‡kîÿŽ#gËÐÍ“…þÇ÷… Y1<£à“¨ã¶çã@m”馪—Ùi4ðF¿¶Œ^QÉ8¥ yš ŠF‘u|tåÒ뻘HÇmüu®'ªÖ3ãnAÎQT:Ë›8Ћõ,2»óoî+¹Ó\:+Wཱི ¬ˆŒ¬kðÕï``G°š†„bI{r,r.q…yœâ±°;Ì{ÞùüM0ƒÐ„ÍÆ®sü z>pwä$WøXX% }¯<|éEçÓgXÎéElPü-Ç€ÙÄÖ"1;].¨oCžÞ"¾ÉøÐ8²Ë>¾Mñ#—É–Ï´›¹þ Š áãÒ†ý›’Ú;˜šñÏAþ‡ÂuÃÝoÿÓÒW÷ǸDõõîé?ð}°ü*9¤½’gM.*¸IÛñ/k³dÒ( flhº!¯Lú*SšmÆBÝqø¯Oî#ÃZ:•T.ÎÀ¹yª{ûDlBx6­½Y¥P8ð³©2@‰re˜X·µ¶6¥œž“œCêÎmÏ‚¿Eñî §Ù'‘ðM¬o|I'n·ø¹=¹ûŽóÖ×F\;øªSõÙߨm™¢êJÄc2ÁmR;[³(/ãâ“ ~ûDX•cÕªæbC„™nì²­±2¡¹L3r« dö?¹zsìgx7>lZ žÄR,é±W‰øƒ7îmV`D±u­-Ä‚k ÇܱwÔá€ú [åuÍ© å·áÓ3!™4FcÿÞ¼¬Yða+¾ç×zECôWïRÙóé £÷Ë­…OCpЧ™ÅPßËjÑyÐÀEêÜ’B¾ÞÝGóÝ:"DT½å€ƒî€ò†B|›÷L%w™Öwgñ+b‹€8–F–ÈR¼9ßb0+jªl‹å<Õus~>œ{œ os‚¡Žz()NÐ|{^ÂêF_æ…TvØ£üê[À^¥*dW­Û)HÅ÷é&îᣗ‘¦‚Ñì¡*tý†¹*C«%l­hà©€ÅÔõªÑÂ}ëW2¹™,”ËÙ*'+Dr¸dÎãzO&¿þ—Í8ìÀqB&ûˆ•+5Cbü6·&GvˆŒlíΡ)À‰O$Aµà²jÆ£ôŸQ¬iª’µÅN(S‹•<ž¶9·g¹-`lKI|óFý5“ßËÍEW<ä(ZRwx-1b5,í U†‘œ,åä WzÔAI±mu©»È……ÅJqpã4ütù“I¡:`ÍŽ‹G´çD€–.:õU~%ÎpèŠâÙY÷Oôr¤ …ûlàæÀãŒvׂlqeω6/‚ü±ö~NP>,@ó|Ú¼ »ƒú¡nòã9ÒYWxK ;8} ·¼¶æ´ä·JÌ2Œ_]n T›l×½®®¬q—©o”Öô¦ÎÖ>dA“•*½«ma#cùç¾=î.¤sõ•ÇÉÿÃÔ¿ýE×÷|q ÙŽßÙ¢Îơʈ:cã;ö+CQ©y•µÓ»EÓ2tc'U–U£:ýx.ÍÛÊæ¦0ttÓª'‡ˆ d¾†”#Æ–àÉL„áL_j¸ª$ƒˆÅd5<±'sz؉„=xge1w d*¹þÌ¢ô¢os^¡ùÖ³ÜNpÐä%ÀÍ(òêmË^RæZ=_s®‰ ¨:£ î¤N}ÀJÈâ4è~z·öÈCÍ…òÊ%Kë&·×‡ˆ4ƒÓÃŒYž·¨O3S5e;øüÛ™¹qVMðÇLKe ®?Šo;+|Ft6:l=ÙBŸ]辺}Yv¼´<% çȼ(¸O@öG¥RÓè‰5¹±EÌ(x5göð'«âk ¤©x ÞÃç5ú¨­AÍøèõfÏ<Ùãv!9çß¾Á§ÅØhŽ$T÷:·Õ8±2ÈaÀŒ ],ºp±dÀµùðŒ"hñÄg½Ì¥+e¤) |r²ê¨Cþ¯+K=Ì‹ÂOc¯Üí—ÏNÁ¥¯Öž1üÞ.+Å»çf~QFº.l88×ÇÁ^aˆ|é$xF*†AÅ¡ yþ %íÓºŠý+;µšÃÌ—8Zc|o; _” ¢ÌfbªƒìoxÕ_ßHIo_ èPàŠ¾¡á,£2ÅûM:eÆá_R‹—›†LÇ~`u[¸N08óÿðØóä ׆ŒLdMÿ£¾¡Kêé¡–¶j-Ƽf¯‚Òÿæ4Ù§+ÇïCЯshE0¹g2ÄÎI$‚Å-›ñeb×%„¨Gcö(¾ áÕRgôj·•ËTŒ” l@]ÈÙ¸\Š:|ïí5¸“NGH»#IÙ‘çbj™@’äÖž€,à¦Õ„"kbÊåòKÖeFˆ|‹Û–Qû€9…ÓÇt¡Š…hlÜœYÓXû‘?Þ?ÉýÛ,ã­Ñ'd-n€]¾Å»äakå^ÝìiÕÂé¹´kPŸ>½Ï‹¨ââè̇ ž¢-.ÐJ‡5ÒD=¥Š_Ž‘]:°a-M‡hOE‡Ö˳ºÃwÔI:y¯im¸0_Cñ³xo‘Ã%69S1¾°C¨ãrR©ƒyGîï,Bw¶lÊV¯à7(±umÁ-±bœë_¼¨1aïR—¡8±&ßÐ. ó,ùô‡9БDÛ{=0…ÓÁ<Ÿûe„ŒZÐÔÅáf^‰<åÙ¦ ~²‡V!ÓäqTý—çUYΡ‘`Â!W©¯Ñ¾Ë†)y‚kkx‚Ò­ÖDUŸV ¯¯õ*7£GIÀç§î%_ýâ&Ÿ¦š¼ü®ü,v]&HÙNk„£"ȧ¨ §²¤µÈã6©ò3{߯5ð/œÉ Ô°ÉFnpX¹D|:XSìgQñ#ä:¶’ºtŸ(ÂÄ•M¼0¤_ï\4õ¨¹èçÜâXÐø9y€Cç#?âPÀ×–(DGé ÓU¤±geéíeL'°£0Å•(ÝH]üxTŸÎ/¦ärV.Òñ a—u‚K*(–PÁ” <ÞIKŒÑÜüÅyS`ñe8ÃË“tÅñjO xé$à§m¢†'—oG½¿•m6»Sµ¤`áÃ8*i†‰¼_z|ð×Õ@’æU- 9÷q'd5@€Vù¿BׇEG¿M[ iÿ(½KnÀ•taÂbwÔðEö[+F dEÏAMêK[K§wI+ýÐIý¦Ò%Ìðrx•Fg³R–Ú§” uê”úþìQ8D÷þÿ ÆS¡A´Œ?Ö1Ûd‡'”»bq7èšüÁ’ëˆÛRGRaðùVjz¨¬ݘ˜³>}BCÌôí¨àâ™g7´à¸jå|5+frøm–çšïÔÿ¸½ânÿbè’7sþʶŸÌT5&vËެü²k8H!!¡³ÔºÐ(µUXA{¦é™jü¿øvߨ3†'¥€§‹:„Ph1sL­ÑW[ ~ì£Wº5Ô¹X߯õ”'T’Ì*6åÂ+̯9Î&QÛnuð:­³ž‚da'ŠG<È+ã|¶S„­Âó’û$ÓÆ8žÙåq†{ökÔc]Joe7ú^ŸÁÚú•½³ÚÝ%馽C›tÀÁmͤþP $ÍŠ}¦€ÈÚu[ï/‡)ñƹCºÌ]Zñ{[¸„ZL±Í‘æùbo èâ̾ON7P õ3…è0ü¾íë’ë€Ó„}æ“̓·H-9=·yØ mõÈl&~ iw"è¯ïS’ßèéžXAƒ3yZø©ï'cÔ$}nø6ãW©‹Šñó7¡ÛmKæ –ƒz:”7_TÐL½ñ¥7¦\æHon¬¿ aˆ2Õ˜½xü?¿O ÖÑVF£Bâ®c{‰eGÞkg¨wÞ1„Z)Qìm% ¡‡\æžá¨ÞP×5­ˆÇAC¦JÀklù…jÀ;«v­€6BÚß×û'B} £}%W›ÒÁu_ÔáÜ`MÝmšñßĹbúÁà~µøÔw µèñ#ùq–_3n\ùíÆñG7Áÿ?È#ømôíâÄ9Ôö·iä…€{iz“bþ6ߨÄA©þì‚åN9»ç«qr´‡ ¶^8¾ÂÏÃõÕ½Õ†ò@éu į$ŽT?&¤˜<à|¨$ú_݃ºvðyïeg–ÃðíÒ."JÙØñi¶ÆXtwÌ“ÉSM-9?¡àÎfRÍp!ÌÒ—v&ñ|‘Ò¬^ÞcJ§äÔ[©É>íÃÑ¢Nôb²¢eS©Ø{VÔn=Tż.4¨[—’–@"kÜrY ž`¦‰iÑ™üÕªØXîÀUÆVctã»J?“¶ùD4‰¯eQOö 2|Ù`°†·‚Bä ﺒ<„°ìP°·”·72ÞurϤûK—ùrt cAª=qá…©HD„ S°†è#¢ÎfO[Álc¬‹pÙ° ­ËDä>›ðñ‘«Dc•¡ïåﯔ.^«2Æw¡{†}“"¨棯¡RÜŠÐhÿ5c­·Šmíl>€¸…ÑGëþ\QY½÷™2Àd£Æ3õg@oªáÙ~“ÜÑôŠä1xW¸{]‘{É2dºøî³`ñdÚ°õ„?Xé\ÇæÞ­¶$ K·Tøß¥=„“¿k¯îP=ôÝóA K ^³èßY¥Ñ;»€æ\Ô:Ñz Úµ nà=-›Càr•C>%²pó7·°aØ ®+Å„ç! 0ìM2ÇÜô-°ØZ YQÐÂîÖOj ý:P…KnËRÄÀûJA¢¥YoÏõƒW˜ ùÓƒ’±h²,òÅ·,Õ>kGÏk°À²÷(úÚϪ¡Ã˜ ©éj$¼ÿX>‰ts0¸&mä”d°ß)1r­Ú"÷sMþS€áïi¿ ®.§Ôx¶û»WÄêÞ½\ÛÉÜiÃìáóyi~rûzBJÅåßt£úÏ ›®z·)á‹I4]’?Šç-7œÝÕ—œ0j¥Ø—܉SÏŽÓZÈÅÈ…Ï@ߤ:“() ÊW3ߎiV¤¼O>à™cO[~IU%d¤Wî‡ÖfÝñh ïÁ>µ¼Ü^‰Z¿‡AÒí¹µ¦ËjŸ:ä[·_5ZϹé`åùuù)¢žIHòÈs3جÃvd!?œr¥Çœ%o´9õÆIEôÍ!Ûd­>ÏâNú5q–XÙ´ƒêœÇfKcEˆ9BÝn¾ò»3dnG©Ô’h„Ã"™¹øfª 3Q³G™'Ón'ŞV¼âÄ=è"$xêz•†ˆ¼¯f çø?3g³VÒöÓtÊқʖ· 4H—j?ãŒG+V±è"›sÊÐÙ¹øvÐÀûóªì9ì.PˆÁ»´Äõ¨2(r çÞˆÈOÄœ›’²,H6ì½øØ(,w-q[AÖ¹xPDëçg µ8ýY«TÐr"MÅþjVÂgˆ7g;óˆÿùrº°PMÍžb*óÞ=#ì7F0ü°¡·Œ{8nðöð­qxÈtf7(hyÄ{  ,Ї÷Y/ï{[—ç~6É£ËôܘU‹gœZëǹµ––¯¦1ÛiÅXeý“åFS:ÌQ:#ê¹bÁ£@P%3„䥋d™H³RUxãR±’ÏMJZ~'îŠç%ùâ^ïn¯Ðhp›¬²=â½Ñv¢íS£ ˆÌqô DÈ×6ŒcÞ¨3=É onoH4è½kgiæ~J: ׇ҆¡+mw¨w %pMõ£Y]¶sac^óƒ™Ò˦#¹×.²EeæÀ–ãó4æÙUª¦jfëi±2B_ßd)*(ñ©°ø†{9üuä”Û;Ò’X)x¨^ØJEÊtÖ¯âÊ+ÓÈo%÷!š1Í5 ¦;þ)æR„{TýqŒÜ$TЙ{äv†¨ì|‡×1RŸ)F¶ëÑ w|KKsŠëBv$ÿ=IyRcÑ‹gW£cO)~U+ð¯ø(Née(ˆùªæˆ¯±ànõÌý}õÃÏ·êNNcÆþ¡.Î sWzÍþ¢{K^¦ÕÔ쟓¯Wfï„ÜúÖõœ9$õAx’%¦ ñ€ò*-6uän w–q`Š1%ü)M/ ¬@„N"X1\*¥_žf&Äð:(ááHá–þà«^›’™H$ÕÉ¥*¸ZÈÚ‚@Íð)Û)Ù…ùçÎÎ ND5ûz;¤6Ÿ KìOÝ+F.f ;»UÕá…ƒ3С¶@Í´ ¾ï•Í)Äá _>ÚæŒ¿KNh.^éZ ë÷Ós˜jŒÔpIZ¾ó§%ý1ÖÑØö–¯’ÀÖûìFëìºñoUÑNrAoG4¼'Ár¥Ì+a Ð>Š<¼úX…zÅÖ„"1rn©‚Ön>· ²;¯vþ‡„ì•Y¬ÌÊxJ@>V¿î€è‘ñGð¼oAª)nyÛöPUs¡õhÕÌIÖyœ?ä›5—õF…áìWUÀ FbÇqÖB^­xT±ñ¢½ò4tÝ åŸ 4‰Û¼øšùi¶~ÿº‰èºoì<»³¾¯ÛÉ‚•Ĩ½äáÌDFÎbm¼ÉµTz"aŠ„õ`#­˜P:¥#m)»h°ÖR׿fW^“pÙ¾þäq¥íxÜ€O7IÓÚÉŽ´z°uø_?!` [2—®Ü}f¯ƒÑ-#äi³/@7Ll g…Q£9¸ÙEüaaYOx<€!j—W^xëd0QÌDŸMÂfäuX$—øÞ™†UNÿ¨Ú¢z²ß£fu,æ¢[Úçò® ùVP ¨˧T ¶lЄ%’GwI1NÛw÷–á_zÖ,FÐlEÒ|J&†pVQ W‘Ã$zÐþG¼š@¼ЭÀ£¤úV#¶]‹áãu_ÅOi WGq­,µÂ»8ÜfÃ[²«û!eÑéÿ¿€Q,Ëàä)ù»BjÕ_Èñù•ð¥íÒñ)ÁyZY\µjÊj+®r‘\Ô8=BXá٩µ/xŽ5û©ÂÅ€î?ÇqýKß>`‘ã’¢³#@cfå+ÑØO_,jÝ+d]s»“ÑfÕOhØ¡-ø«žìДGqç€t’µE 8t±D "À^3ÖÏ%F†£H®|V·³ ›Gÿ#p*ó^YºÄ턲Ïû¶ƒZRåÚög¯ò™!Æ3–piÉde8ùù*·ÉÌe¥)¢ù8!úfÂ:š±m/R·ç|ÿòŽ5¼m¶gÌwçfÓ Ÿñ<†]æ_€ü¨3rÝf“ɦ¿Ô|çpét( ‰¹vœ»Ìü¼m]3´óãJJ0V‚77º£º1f~bâˆá—’йöû¢ m]w3®p&¯õƒ¸Ö:-ÿIÒ±Ùµf+¥ëzù ÖÊY%rƒNK¼§\0ͰŰ‘#qÙcÙ&‰=¶ÿ§½‰ráëüM”6Ç'ä§õ#\J^Y»»ö϶ě$°TŠºÄ¨µ¯mAÞŠ*¶=7½Š‘Ó8NçѬ>™VE1] ÜÞâÐ㛊º(ž B·p€¹aÙá8Ï_dÉ9%“Ü,¢Aݽ H9Ù?2kdÙW= K9žù¥ôfn}É‹6ä;Ò;z1Ve—‚©~ÐO½ÄÏ^ïèćœ fEr­®½)€}ßQbi]T7@ò(¥Â |žØW†‰g7={ӷ覼 <`öfÿéL‘©ì‹$ð¼d½hæs•ž%«â‘5yÁu_Ɖ“ýÚ‰™ôu^Á@ñ4I¨•Úû—UÂl|uøÃÓÝŠp œz¡õˆO/–º¶~Mg$coµ á$-V$My€?ˆQM¾Ço£BÆcÛc g|ê¨px·}‹£»Á?6ZëÐ|ïfjžïi–#B°ÉEÂü äkÃUF¡ÙLȯ]ÍÁ‚º²H|Lá3 Ðü Ng£½3«–2¡‚·¸¢N£²)s†y–XõÝ«}$· (5ĸ»ór\7Ï®C•”ïniEüË¢–¬À¬!JWd¾2ýSgd“×DÈ®àºb_¢´Ã•Ъ™d¾1 ú ܦwàWiC´HÁøÀzlÈçšDÅÁQ†¾åì¶­üÝ*Ë @¸tÒ¹Ù\Þc½ÃâTA Ôo7ä™mJUs‚XTS÷ZïKËõƒ¬³:³.´ #©äu×äTœxUê'Ü”å÷Y‡¼«t¼4]¶¾é|ÀC²ÜFÇB,:ÀküŸ={q:ã˜Ôi7eò8¸ž£þéQ• Ï/ åëcIvk÷WÆõp-õA iê¨wø'eüpj¯B¸ÑËúijyÿÞ•l »+]§7uÀ¹ç‹|^Ù_nH¨;`W4 ÀR@ha ¬¨ò“HÎ`GŽGœgÏê5ܧ;ªÁ~Mˆœ(r ƒ'sRmiò€FúlcHIïv­=[ ±´"É›g¼ªÀÄ|•'8œ›'§óܰ§%±²*\aêÞ¥œÍÿg:F¨+õ¨ZN?¬Óž§Ç™;Úk_2Á¿¢£÷2Û:' {-¡óí#E9,?œøúýVÉFRé¦E³xJ¤ªE«lT½Çï¿”Ñ)ÜÒ.Níf¹èWãt—¾i ƒ†^Hnãà¥XrµD…¥žrŠ×[Í}¨Ç v¨~¿†SÜ^*R9²p1·\<=%l:eªÌÞ‘Œé²ôêAÿ0B ¼‰™É÷§¬qÈÆ­÷z)Áµ|Ÿ><á¦êm`lÿ(Àˆ´`Z2£ÿ¬›Ž÷9}±'Ùq ±ÒË(eã;tØÈ¦p?ë‰`á6¯– €ŠF\6ûGY×qEÿ^nðn’¡æ„Nû¦"ð²qºø\Kc+¾m’ÌËNgQe´JS+ùT½&ïŽsꘅÄï±.'ÎRž àáuRʨރ¶Åͱæ­ö£YÞýBÆVIÓŽÝžß®%õ«?\{[²gÖÎ|'Ï¡²óïm§ºÎ¼ré^+!tÉU8ön~ç'Ê´óf}0gMsf PIhΗm»•ç9$8`rÚ]—>¯ðb‘T]XiÁœà›,ó›ÍDu–;„)Íùo­3 ˆtbK=ÞO()m ù–Õœïü¶t—¥ƒ*µ€äry‡¨ÂÕ?wè¾Ûâg?Áfß$ˆkÛÎŒî½!ÛZă°ïJŸÆ1;3Åá¹)ùbÏVjµxй‘ÅÒ‰d<]›+²ójNŒìóNºÏÃã+¸ŸÀA¤ÓÞŽÄMúåˆä‘ùDbÄß{‰Ìè5ia‰Òæä‚?ÚœÆiŸ(ä*ÅÄ¡7ü2o“¬Ú·nítÅå’ÙΨ²ÿºÿJÒ¶‹›WiA´8ÛéÖ ÝCöÄÍÆ:ý¯“DéÕp¿f $±kVEX•¹ ˜”±NÆ¡Ô;i²þ(y› {¯³Êe ®ÅŠ‚Ì…ýßà'„ÕäMʵsŒ)²à \o1ÊrKHXÏ 9²ƒ”Ì<²\™ÔÈ’y™Ù¾„”*ü ‡Àei`­ßH…Ü•â%w%*?,$,s#†kë²ÓßLM¿É?"|¢Å<û66þĉ^1ýŸ­ylŒ¤^HĬè6sвšy9ƒx—1öêdmd], }²×´÷ŠÇVŒt×NÄU²W”ÌÑjoãÄzzYò½Çj¹ywþáªÈ“ÚÄH†{‰¯Äƒn•è¾ío€ßî‘ê!óB@ <±.õv#,õð.ÇÕ[³5€àm­ëŒ*cúûñ¦ø³ÞÞÄò¼ô?NëWÑ)ª\/“Pq¤Û%>-2Øñ«àpCbf=ÇÜy¶³ƒ—?a  ðTGà6}®@qhÄœ‹³Ü اªœ%í¶œ'ű%µG:'aù•˜µÉšE~FñF8b¼¤T4ó0p–øô¶‰ªô|3ú@¤|õ9ý*›íÜוž­-·h¡­®ÞëcÁ4é襆á!x×ú?¢1Ë«m”Xû£¾ |ÞàËIç”ʘ=ú{•î_Žt¥pH×ã×gNÄ€ÔKïn³HP£òT€o…Gݼ€M$šõfbX–V“’ÄÐUÕ Û…–W$O«RñgËß™¦‡šbnªe!X¥Æáø¤V´SO_$“}E`FŠ8õ°XóÔØi¥ä;kæë—ëÙ_“H@« éãXËå:FÝ“~Љú=–#…ë–ü­Ite˜28-î‚H«P»’eÁœD¼‚7Òß«÷$õ? nËœ€-Å.â.F§‹Ø¶Úü•ò»dCãü“)Ü•4é »ÀÇÔ6¼9ðFxÁÎÕzÍFó ªºô«Iøj\¼3þ¢ˆt—BÈê®ôe|p°r¾5UºóþUø};EH×mH>ÅÆ0óä/ )iÅ]Ç9í‡8s á@€ã1)~v`a9!q)dÔRrgã7R¹œx¡ezG<ž\²H¨ ‚›8øqëÚÂåä5*¥¢Mƒøj¸# º“ÂPQÌJ/åû¶ cX†['Nªô1–|Ù]CÊ:X0 ×y?ʳLQ.s?{_J¶00B,ùüz KÙ¹•ξz¦êb®â1†m^1'„Bzë8 ÜaVXÃd³¹ñÞ-2ú‘<®+í§Uê·k…§G 2Ó(%O¤p¾Ûc]˜½Öï&â“ÈËì‚NÎ÷Yg4Ö'Úé·˜%£ªr ÒTs«Êëæsòh„ÄV¤'-ßrnÿÍ‹y“ða­vó@4ü/¾ôa)%©— t e²Më¾ÿ|ž DxÓS\sÛ(RÀ’ó=ã›6£Uîý ã98?4·nž´×'#KÆ™3û Þe=«%xݹ7Ó àåÏ; ‰'¼;jÍž‰Ûº”…Tf‡Sgññb¹gâá»y¦õö™©€á_`쪄×ãâ“N˜ à j«÷íHV$h~|ÌÎ&4{Æ…Ê CÈŽsKíÚ¯úæË…/j S–²ð1­†+ÂaÖ£Áçç¡WšzïKå–.?q(\žõúKH5»º;*KJk¤V`Ä’±yòSÐEÄ=ߌO„mF;õd@º,ñWÔÏú‘9Zòë—ŽG]¸%7³¥tãµ!ÇŽ¸¾O`ïÖr¸°CSôœ?jõ¦ÎfÅÆ,L€lɤã~ç<Õ‰p~C]¼¹Pܺ”=ÏG'Sò2³¾rê¢Mܲ!h5êK+JÚt€Eáá]`+öI„ ã6Dù÷èÜËiºêl¡^$FKç "—þï©”þaGÞ™nI ñž¡„’¬7!ÕÙì È|2‘Zº#c-’¢âÇ|(¶zà"aSjÄØá| íEÄH÷Ÿw¡œ7Áf_Ì93¶m™*ÑiNÐjšº…–§,ž‚{oMf¶“L`á Ú’c?⮄|‡ðTÓöÛ˜u=Oy½;xë¥êc“š ÕDÎ4yÞP\¶ÓZ^Ú?ô)Ù¹˜õêˆ6€Ï©‡>ž•€ Ì20.L‡®:*Ä0º‰\ã” øicʳšÆZ»ò/“AÙÃK>¨Ç„eå¼¹?6Sż‰±*&å£Ö›Ø^˜{x«EpÈêúÐæk»Š6ÒœŽíºVhõ”Ý3dõ#üý½zÑÔ(·Ó4·2ÁØ2ô¸>ñË>BÜRSRJ™²y±ÅJN"o(Û_õzÜØ”àf…–ÜÝå´­Dd×xtÇóàßFš‰³#w-µß®[^[AÝ(]n‰x9÷Ðá`Ò¯0+m’ÏÅ6¨~}Cœ |Ez*Q"›M’TàÍPª8øðó¼1Ka(õ+\`©œ6ÍrlRÝêþG†d*¢~ ­aƒ»ÍšáñÅv‘ücžÚjëˑןoNúSƒ‹ N£hGy,”ìiBqM¯ç+t†®ÿ/å¾1ñ¼Ÿ£®qÉŽ³ŠOA˜¨\¿²LQ!Dvػ޷UˆI8Xwå\Ô<=ñtdƒŸ%MZŒ=z^àj¡;r±Âd^°že4hXó•Õ4¡›!Í–% uäs¬–d>•Aè  ý4õGIne—Õ8ˆv¨¿gô3ýWW³K ™ Ás³({•¥³6V.lŸ#—#ẗä<ÝKszÚb¿±*˜fcTÂ?ê?ÈI6¨ÌÔ¹‰Üÿ„³CÔRåx’ 6bÂdÇe«5c†š·™›FÉœÄëËŸTv]~†[ïѦÐÄs¨«‘'œïéÐO—îGꎠҜ07²JeÖÙ3Ò6dÙÏ­_ÖP“nõW) K}/+°mº‰ÖÑ(3£â5qé½gz yRŽ•)±’¡ôJÇ_§>•éE߾СÕ+#6jÜnY=¸Ó†BûozÃ)—ƒZ Ш¯/ûNrª…m*:¶ÕLlÞïϘQqA¸²n‰7†ö#•XÃ%Ò =D8»°Vûs“ÔŠ)ë£=õÉËb ì+ëÊɨàuB¬@½ºÐ@-ÿ ÅÎo¼¸oâ-øÝQ‘jZÆÛ6R teÄ3ìo¯þkTjØ%õ­ µ%Å lþF:X9áÒ’='Ô¨0Xo…¤ƒ(‘xUÜ]G˜áÙ\øm‰hàØG©h¯Pßæ&:›–¨Ó­Ù÷±ÜN=dÜ„"Ù6´E“Ig*˜ãì$ˆ$+h¾¤)õ¢(é!j>Å EQŽG™î]bq¯ØÆ³ OaX‚ïOW5ó3™-Õú0®YöºÎRm¼U:ûcÁdë)èQàb2Üà~ˆ|’Z5ÓÁ¡'Râ´~¶hûºR¦ú¹Ö@|ÝŸ÷Ìȯ“Û&’¤`-ïµ`C¾_ ¶êºf"‚HÎ×lfª±ÏdF4Ä/žémò¿"*òq4®8™wŽ›6|êGßTþË/‘Þ™WEsN;Ìs1E: 5ý2{Ü,Hw{ ºäÎRõôÉôN*Ò²³ÝDç‰ìŒ²t{À?(FbàU#ÖÒ×LÏ_!͉ŠÜ´§Ìú„··,@´]ª_ûØyøƒïý¬ýt™{Y05v· R)ê{#º°õú?ò0ÔÈ4&Z=i¢fœ˜µŠäPIQß)_ÙÁÔëñÛ¿É­mÛ®½Pm*kG˜0­hÝi)Ç:i’0Õ÷·óvbÓ R‹ÃAë2È‹“Cèo¶X`å%p7UåL·š»Äå¿Àïôú4|Af3“gªjÖ[ݺu oH¥^Ô;Š®mç’]p÷<ð-X¹N>Fw©9 x%gÖW,cûQÚ㎎Ÿ7íe_Ø@:‡<9ÕLláüÓÊùŠ8l¯\ÛÇ¡œPÆ|)á-gWÒ.ÈU; Uy–E|…Õj›?Hƒ Ùô$‘äxîÃZMm§7TäÏ®Z[Öõw<n Õ¼óÞ‹¦ê]Ïãõ¹90‚æµÿÊYSŒ¹Ä :ž­Ì™BР6 wÃhüAÌž/DrúeàïªTH1Ú„lR'úUôz=ê¦è”­ A¬¢r oàMü ;To/Ü—KÀ¶÷oð³éÖÃÇüÖÎo^÷J$62ŒËg†¿ºI«ÙI[Yùë8åÒý–ÂþOsÓr–xýDSg<ÙÍÕa|(‰þšq–ÑèætÜæ4P"Øs¯õ‰÷:ÌÿÅ ø¢©æpëNŸ)É,7]¨`§¾V'<€¶þk¡à‰u8LÝ$f%ýs€0t¬ëÅXqÿ;’Pr¯¦2†Ëª¯ì7Œ–šxDp¨#z®CR’WxEÞX<› ±9KEy».Z Úˆûl­\ùb¥Æ ¸@û1¾…—à†ªÇ7Γî!kž”DëîaxÁ1׿ƒNZ¯ÜmNž€VmÖØ]8? lÝ÷ ¹³uÀêÇPщÁµÍ)aaÜ@†ì˜î9¾UqÿQÞ BfÃ_xôe¹Có=©Ø{OÔAš¼šfl4Íã£ÙôýÄ× ~¨‘Vþä}ÌpÆ{Êd”Nµ`LŸIû°¼b­ôÕÁ·A\ ý³­úÛ¤9óÀlÂ{M¥Ø¯ú=$Å"(z¦±y}¶vëñ•1GlRNJ W…íkò±ùIÄÚmÍŠÝ)ró±µ1$~„ݺ! Ô[K˜â7¶U8<*€]¸W‚m Ðã¥+ÆØ½¥ ]Í›65bwÌ=H s0Í#SqS+(u³/·Ò¶g —™çò`™ï_ }O)÷U««}u¯‚]'޶ñ»C†³rD¿¢Š>ÖnÂ0>¸£ »M gÔŲêÙ‹®„ÅB¥iýLÐ7ýô¸},¦´^Ñý`@ѲªšLi`BâL€`jwûsqSÌ /*u‰Òê†õ¯%‡iNÄùìÖ?ñU^– ”]*t@­2UÁCŽÑàÏ"LrL(èAòŠ,þ¿gvžãò5ÉÑZ6Äûg¿=òÑhGåÎ÷õPí:(íH¼fd„Ù‹¤k Z£¼æ4©Ã„A\¸—0ô*%a)@§ÆÔëð/ú/ZìÕ×õ.h5K[Šj’1' ‘ãÜ}Òž®š!kè Ž_Qq¼UdxWÓ©¤Qx©—fg4R|=äCû¹ñÝGVƒ?QÍÕyœØê¯r/_C7s0ÍO]í†gH\–¼ÂZÚ*42êcÐeõ ówO¦‡±é(ïè"8Qgÿ>PVLj÷Úfz¼?„?ÌP]ÞÙç‚M´ ¡àq&×ØÚ¼”­X Á˜ÛÍ!þvØ/Û=S\? ¯ÖêÄ·¤µÞfÊ?¬å½,õ4mG §ËÌBßæâNpèîµôS bã뎳RªˆT'þ9FkŸÍ½}láb˲š{ÒQ¯\¸Gs²ì¶½¡û™iüßtÐ%£êæb ÒfõÀŸ@ùÛ÷Æã`:Ô÷§º™‡ÐÊÌyˆö0K ùnóöùþŠ.¯¼±Y¸w¥à r›ÿt'$ú¥5ŒQMg¿YJÀYEb¾­MõmÂ*:B’Ê1²ûæ(:7ì@c¼ó§è¤ÄÎÙù/E—%yXÆ ‘{‹_ÿð¢ží™ô#ѳ*¯äÅàò¸žk¥Qf‘²Aîé¤ÖÜExÙÇ6Í Oµè4•I®!‡êFR ¨Ý,ÌÈP†a¬gYhmšIGŽ{.CC0ÁŒ?Öµâ·9Ã<Í:‰¬ •$O.%uÝŸÒ?†ýë@F–úÖ%¨ô·âéZØŸzUm ‡?ý0gÔÇê÷k—MZ±Ð®Anö Ÿµ.‚•ÇK3¯J 3aî ¬Ôæ¿«þe-ÿ‹g¹×u ;¡ŒÜŒ©[«‰Äçàù»ó(À©œ+ô†á$þšß:Ÿhl¨ª¥£U‰¢¿°zÍ^1_‰u =œŸPßDüËÄÀq×ÉOL}¼íP¹K!)¤µ«(ofçù<³¢ã>÷¯}ü—Ûd —çÆ±µ(*/å™V;®‚š Š+|/â`N“Oºžè+ÎZÔµþЦ)Ïü씹†LÙ ¦üáÊæ4ð(æÀ7Ë ÍBìÇÎí"ÉÆeýù ÒýpItu}ùô"0À’äÁÏ¿xÎ7)ËTÜë9ú*V4m4Þø½-„F1)¡·£½#ÅXyº?*0±s>?›h"§é÷‚›ŸÕÝ3”ý ˜ùHfIJõý¸Ñ!UøFh›ðë«Å¦úÌ2­4ŠiÐÏu«úÏJW¯b\ID¥¢{yê3:ôr£Ûð+y4þ=A]³æ¹é Æ{$™ƒÆ¿ôyc¶H鼎C$—™Õ/Mø3JÊ2GÄRða¸:¿ÇGmÕ"öQ§üLbâ»ðaÅ ãÎ!r!‹‹[뎽=üUÚQã£Fö®åõ¾v}xÍê1G· õaõûö «+$á›òîŸøÕ‡ü¼Tiº§Ê¸í‰YXí£7Ãüï °ë‘lNÕVÈãˆy´‰¨È’(@eóedÜý>á¶´Š›GiØŽ¾æ;ÿ¶Ö€ÖŠga!üJ)  áñ_µï¤&“ئ^¨$?¡}€©@}›ÝÁ ËáŠß²éê¨õŠXꃨ·€{Gð j´L-ªªG/nãlGÑÏBQîášUü« ’ôV7m6™§›))ÑÏ¡·¸eýwuÎê™ ÑÈNµ­dïÀ(Ê¿ˆ•‘P%y¡“6›4,¹—Lðß;¦IjÊsáÈG]è‘´žõœÃ[«Ë^mEúx‘à”³ôß y§.#8Ïñ$ ×¥1Ѹ"e”e/P‰[-î¢fM,¶y‹ =ïO® ,*1%O7·v¹³ÓÔ%¬~ò`[$vâ·eø˜ò¶5•X g0Z ‚zø–BÃÝãt%“°€®ÎM$ë,n4ôäàgc\õ©’Ï„TîêœÙü¼ßIžŠn©¦LvZ!Cùeßu}žNt~@0yþãtðõµDøË?ÇÊ=—ÇQ-Ô.ׇkñ à˜€ª S‹îõ™~é蚀!B‚Wµ× «9|²Ÿy¶ñdÔÛg æ´`‘:*¿0S¯óñòÂ䲘-Cö7¨“Rš¢œ‘C¯—è=¢¢Ä°@ÓŠ«R¥9§"^žë/?×qÿ,ŽO>¯lDÝf[Þ½K‰hRjŒŠøˆ“Ûh‰UÖ|¸_Îʯ3³ŒýM—[³¯_Ô€«™X:ñjr(q®¤ÿ»LøÐd`>³ã C̆לÁc`å$F´>‰-q;ÎÀO›Ì,é¹#œ’àØ B”¹c³ËWXú BÞΈ¶©øx«ÓuŸV’%Ó6ã­ºÅ@å¯ÿÆ "Í9c³ê¡š†R«-åH_DÈM>Ú]ƒ‡².Ö`‡ø\!züÏІ›/“&Gæ?òv‚,ˆ@@É'R /Œzt$'\žNÌäB!€1ta€Ÿìœ¼ aG9§(.ãš” %9iîT]'æñ À(Ùø·‡åùQ›Ù5–¡ÌË¡ÑQ#v7®DæA÷ci<–àqŸ¢N`I¹þæÎóQ§/ɨšž²Þí²ÍµS#é"Îa²—:²Ä³ªQzáw(bÆKœ‚i¨äê­×ر,•¬za„Åâ·¯6fÓB9+ôÈZÄØA.Uð¿îÚ  órŠ£U#"õ¤‘£$b…=†5Ü—ïx ]`z>Ì7ŸOà-VÊ­—zžú*OEçÆúNùfty¿ÂOcÒš,¤ô¼æ4£}¼éþwfxÂÕÉZ‘ˆõ®Gœhª7ÆæY¸„íà+¸#uÓÓ VÖšÂÆ‘—[æÛ1>¤äˆ)ÅDq¡ão‰!×»0Rg³´£CéâÀMLÐx bö*ônØ×żxéç¿OϤ­W^"‰…–ÈÌ-¥9uå.ñ) ˆ¿ÇO¶¼û^*ÊŠ”ŸQ6mxýÿù²É??³a=,KbÁ~Ô9çõN8^£¯¸pc:ˆ{%ìæŽŸÆ«.Íg‰ß)Dñ11Yó²ÝQ·ØœcÆ^@s/ÀSjè29ÌØ¿IÂSf:r#×®Où¦†dôSu6i0žÑXØQ¿U¬ŽÔ»è\wˆ“„ÒüòÍÒÚ§µAjë62X§ åé³TùÒibÛ@%mAQäò$ܰωü™Ï¡ŒBð«u—ÐM1È— Tu@ŸŸULÖi#Ø„y<)— Âý@`ÕíD’ñäVl*-ß:yÇbD?îeÏZB’,ñ©±Ó¯ˆXÐ%ÍmÒ¦J±ŸƒHe0ø`ɘOaŠÃ="õLÞï²Ì>2£B·mä„‚ÿ IÑVáuYCÝä‹>mƒ9ŽÍ9ýg6¤â9f·¥wƒìÓ“ËÖvy£u/îÔ{Íá~ùä\ ÇyJÇ!•K/°äÑÌøì ¡Y<ðtFºîȽ͑–™MBo;Wšd Ú'í\ ÷(bÜìùÜ9ØÔn43hKSa—wŸoDÔZéƒþÊù¸Í¹Y`Î{äž”³¨Æþûmo¦I+àWÄ϶³{Â'L.-Ú&7SOÐÃ@¦}Dx*5D̲ШüË>÷UæòRïúœ¸µÁ¾Œ ÃËM§kfŠHYÕ§3±A!1Ã``vïr8ö4¼–I×8þùÛùzMsª³ºÓj¬¨â~xì¡tÚLötÿÛ €Šá^Érø³´'L4’åŸ}VYäXÝð8óWõHi\½’} LŒÅ5`ÍŽpŸº;ÂOÝ„Ú'Ú;F`ˆ[þu9ç¬fSc>ª ÞV}`ß:c<:Ùç/ý’®°ÑD¹Ÿž-ŠôT‡i[é.¬§aF­Söù›k~?Ky&îí¸õa6¥¶áûpc@\óºZH6îÑ„¹¸S˜³7!Møá* ÛöŠœÂä ŸØ1ëLtš×PLÝ—Øek@7 ˆÕ‘l½Ðj¤ÛT¡]xåÞgagÁôDÿ!+Ê`Û‡ø c—ñüÅ¿±n.æþ÷ªœ“@ñP¾œL°“µ7aA¶ex£ˆQ>Œ¿þøþ2þÓl_v¬RÊ® Az?z‹l@OÌýÚ#3z¹†tä5s$P À¬Ö“¸šùþ0n¢•¡ºÆLYA™5vu³œg@!aAOöN‹š¡ýçmBm_i=óŒÍ¦^OƒÓüIÖêù$Ò‹p0<&Çe=…Ø5_ÌnëƦÁ°Þ ¾#y0h—Ÿ”$ˆTÀ³ð*M‰ÇÖBµ‹ÊQfÉÀ¯ü ®ï ™ ;”IæÀš¦4Ä3xñˆ2ûF“)«…àl­XÜǰШ£Š®1*šÎ¦™«ípåÓËý(Vˆ‡=Q)˜ Vo@xBƒ½éËß<8.†±¿È¾ïw¸µ¼)þä÷{?¶4ÆOT‡ÓS¬‰ ¡4TIfʘì e¶ø¢y¿7AòdõÕiÕýýtÖ~x5÷—è…šFY‚_\y¦–šáÕåemR"ÃbPÑž¾+‘OÖ<§^ý~‡µãh÷-V³æè§fOHèfBú<Ð,i\/liIm¬´ðû§T“•‰F^¹ Ȉzž¤3¯A30ÚÆl+gòÞåB'ÒOYÚ1`‚Ó"·{Ç{Û9N…Ô­½Nl1iÔNLptWÖì&<±ÿpjËÒË}-%¶}¯˜ìö”œÑwÓz¦zZî5Ëæ´ßóöwœôÞÉÇ‘yi>8é°˜­Ÿ÷Ï ¤lCׯ‰aB_sÞT_þt(/vLœIfC 98Gû‰HÇɧ¢aÝ#½A»§æ7±†š…{ôŒð½[ÆÁ ÇΛ× äåˆ8¡Hß–Ó$ÿ C;ƒÔ{[¡ùÉ6 ÁáÞ@ Óç\›‘Õße¢‰¬2× !éÿl®×ýA \–ò @ ÞÊhÉ9²¸š¹.=v/çMˆÐq>¦n·mqÁ“ëôOT—•,™&.ñØ)á—Y®‹ž¥å§(ø—ÖëÐdìéD5‹E›NèʰÛÜ‚zz ÙÌvp¤žÓê•éÞÒ嬄Ž6%=[ÝE2¼Q¥Bè•xÊ7iíc >— q–›Ëb¯¨½S’ïeLFÿcûÜ—2ZdK„q¿ÏÍë¥6˜Þ'å2ÍJ.ÄS ´RräL¥…õñ¢ÊO¯223±úcmoOKg{{ÍûâÂrï¬`õóï,{_ÌϨÆÍj Z¥[âß©þ• ¥0t;Ìà± n/¶`(v^C‘¤”%p‚åY.n6dЫú· #Ïzòt3œóRÙ¬J˜Õña”l¥•wï– éyãz1˺ìjõI±ñ7˜b>sh뢰w[æ4ŒJ Yhþ†éÌÚ†·—r¾ŠXðv„‘-–â¦ÄfšÇ—ÞºÎU29aVÞ=KÝÏIQ3wJp ™¼éZPò8¹9àRªhF`·Íõ•²8mì˜ùg¼YÁ•›W—µlµÓËGÃ<^@ñís<.Ÿ¬Nµ@Ÿ# S‹Êb#hæû9!tdÁÆùÜbV? É)›œïLƒe]£ ­PžºÎÈ ì‘å· pYª||‘åk ýØV_Ãmè¿r×hÈí⤜¥í|k+XÄ»Ób]—mA B.ŸV~›Ç'>–µx£—¥Ö,Ü/JÃ)j²AS.SEø{›žPââÁªD¿P„ãaõ ÙB¡•mÂ*êvJ”C"¬ÎC ŽxŠ9Ñ–“þÑÃïA6Èb[W~H0²ÖÏ_>~ƒ7(§Z¦9$B“¥n¨.«FÀàì™Q9eHj×Ef‰ÿš‡MA팽Çñ&µ¸wøg¼„øoLVl¬(,£ŒnëZ^Ñ’œZ(HØ1­]Ôª)½£Q+ÁJ@S©êó(±fÏMp~¡‚±ÿŸž•èaG›ˆ¼åùÕ¦'oM5†I=Kü¥íu,9M#|ýüÖ“Ö—ÕÌ/¶×0Úe/àw5Ên ´\2VV{lcF}Ûð°û‚ ½oüWŒŸÇe·W xøÚÑleIÀ<ò|að,es®äŽÓ‹,¹T VtžCêbã; ¾rSF8e%…ÖP¬V‚¡µÄEõw۰ݸªã‘ÿ¶ƒäIIBF’å×õ6îšñ0̉׺Ç3ŽÈó ¢öÁÓâ½#?—Bª™ÜsÞÞ‚- b%˜ŒÚºf‰†ÎˆÐ¥€¶„¿»¸læ† ×¹VÓVoâÏv€Ñû¡€±´>¨‰FOÃUCxj÷ ©ˆ|9%]¶6Ÿ y2쨾Ìm±àÜÃM‘½gà~ÕÝìvÔБP„¯³@Úúé6]­åF½+¼×Ò-vÃ#J„¢Û¹lMÝZq„‹ó×…ùÑyKy”šHoÏ2²0€a™œÅÉVd:müI}Œ©rgù¡ž˜N¥Lz¤…’<ë—Šþ Lç©'®Œ(Vmwß×¶‘pð£tàú߉h )t¡Ùa ßÚKýŸ€š]©¾n'>¤IøÐZXÓMk e;9Â8S»Yp®Lª·¸­˜ÂE¡Ÿò”¯Å –÷·X’ªpºvy«‚m^ò|xÖâÇ*¬—7©4ZÝZÍ|x8iňJµË¨}>R-Þ/ج§ÅÁ5@òFT];bµÅ±­ÂMCzá€ã±Œš5Á}Kð5^m&ípkúÝ|е{çãà´ ´K|Åèo0CêANgíY\ó9/k¯c4ynRÚ‘×ld ûš,‚2Z»‚`‚ä,2ýN.ï5oRó pÇ8,«5ª3¤º*ÍÚ—usŽ,+›Á²PÁÒxßýú«‚iVއ¸=¹#QQ=”KŽÏ~m5Beb‘t™c.YªcÊ\˜3àSæÝ„²ÈY¹–jø'Þ&MŸh¨¬òÆþ™RìŽ|šî=àuñ¨õ0…¨’¶Q'Æé,.>ÄêHthˆ)½úŒŽâæ›À‡£2l‹¾gƒêaqóÙfj‡¼Es«{f7°‹äÚª&YwÁ)ä<%•¥¨t²½4¤±¡º+!Á¼7Ž`I{:ˆ|InCØ¡7ׂ”äèÝ[˜¼1^¿Ê:ÁU¾±©™Ob”á³?‹i%þN´äëvõµ„Ú0 o-T±Ô3¿Ce9iˆP$¤×:¶Ô£Ê]ÜÕ!VÜdXÑ ÏÒ‰µ9 &||TÌ¥ü:žÈבã·ï¾é’$_£W:Ìô¹€·•ôÜÔ$ƒÒKVç ¸Ëc(HÏáŒØ.'n„z«·ó ¥%ãø\5ÄÐ ìÛ¤döæÚ¼‡ìˆˆP­Æ,”náÇ+Åß®Y^ú/´“²'çU—gdŽ·zÖc#”—Æ@àEïiz«^Šûg3Ùj#röÖ|“¤øZ\€`øÉT'ñr&áU`‰àÔ ¤Š@_¶KS¨…ƒ¯4z@wZ•}Ôó,bP^ fRà÷pPR‰0àf¥ð]î:¼'@1Ùh/×' HÓ+˜D´.ÅbÓµpH¯˜37”`Ùû/3R£B+®dGµ˜ü-¼ãAm£*vÓ«“ÉÔ–Ð57£Í0+“À… ½ B°O_D»†uþV+’;Õð“"ÖCäí’ÈÍ>ÐJœ¶ áp7S^ˆ¿R…”<;¿®„¿c¶îØÛrn¤n»nöxäO9“3ÒÚôpÇI]­hS Y ¡$ËjÖhg–„£êHÛ'’-zE­EÞ×T&QAð ?·ÈÑòD›?{€>­ÖЏQ~ÎbòàjjæÇ^ó ÍÆ¨ScX\ñÞÕ)sÿÈLtžäÛgÒŒwéÝ Ó–¸ïBišôL5WͽZp(zLjOÂc3-©×h ü+ø`~åÕZÞ¾mFÄrv>ÖÍ­L Ú·?a# ì½æÔKó±`ý‰F`…ëéäMó PºoWÖ·b} 1ö|^¦g.}^,µ7Cù·Ï¡°õ÷hÓÜ Là¶M– .K¾ã€ÕÙú¡×û ú—íâqVØå·ÀˆD¤>Ò‡/Áóù)Ïçr•mÀƒh Ŧ éö|úCA=9Žñ¡ÈX «ÆÑwS¿Å«Å¨uN7É?´­èÆÕ_1Å©°/Vðã£Ñ-Ÿ¿B¯šày3¼ˆ\o_‘Ï•ôž²ÆÞ/,• ¿ÿzT7ÁÜìU@AÇbúñŸ³{¢ç÷=å*ÔÖÛ§V ‰£JqTòz‰W‚ÖnäÐØ . Z*HÜ1|xp«ç^>-ñ§4a¿s ‹ßì/&ûÙ/¨ÄÖ÷wQ”ýwv9u¡/ë@áæöZˤ¨ÉS&ýà})^/íŽÔÿZŠþ­•b?ÓaÏ"¸œtºgåä#šxqyìú‚R{ä‚Êþk€t2PÊâÓ³ëQ2êóO§ ­mÄ/¸všü†ÊDàšâð"‹ÇèɰLàzs|(Ä\_÷ŒÞÉÑj\~² ð¼" ŽæÀxÁÜ€â%ŒÐÁC8=h·+DÁÜÆ9ÌÄ]³yó ß€Q,Ý“ÑÆzVèUSÈ?æ­=&ÐéÛˆ¢º$Õ#:Tù³ñQ\i­µûÁeãÆ“ Œ}S,ÚÔ¾‹ˆ…:oßI=ä lÅ éÍ-¢,‹%$šŠ?jþgžWQx@ÂòÅf"÷EÖ…îcEo'A9Ý[¾$û"‹?n~7|&ÇÙ¨»Ž²?jÉͨafï—Nü>ÝŒ‘q\…î¹ —ÕF„ÆÀU¿V5Y›'µÛ]Û\Wå4 O’ŸCëÁ¯yÈ>xœºoy¶{sê…h^q¢TØÔ9ü‚Ù;æ8'ª[,icNŠX(Hœˆ4}žœxÙm:“äm”@ÀbmQ´sUÀØÛv,7·×sbL8îªó a4ÎGp;V®y¬7Ф@þî@šQ/Ðq¯½Ðº]j•5…{Õ;öÐpòúmh°ÎòªD’,_Ø„îÍסjIŠ¥;ã4áÀäx:̰A?k¨ ÿknPíºm¨ùx~ ^,Ebb(+/ƒySãד³éQjè5ÉfTg~ZyàƒºyãvRSµ(Lµ&!£‰ð0š&÷Aó€s2¬¸i÷úiŸˆ·\ÐXŒ”]Ý*Ò¦ÆÐýôëë©ÖB5¬úÙ`¤ÜÒ–„•ïÇûN…¯7P“Üp*68½/š¹±&±p7¶lï…‡ƒPÙ2N?yÈóÿ ¾q®#t=-6ò¹ý;5¢Ñâ¾Ù‹?ûâõþõÒEÙ5§ëçö%¾éòÉX?ý?2I\”òr¢2ÀéáÉ‘íÁ2¶ûRlL© Ëd©Á1.½7ýæ9ß>Ç”á#[¶òºˆ™]ŽªÞè»ñ\­}Z-Æþ#@Ï``Ä÷Ǿ³µŽ~B‡Ÿyô¾åòü9þéAbvçOú»+@2#<ÖíßÕQ¡©ÐÞÃÙß `”On9åÃÉO{¿Ö£øÑ¬AJ8­![þ?•3é¯ÏhubÓAT™i¤K]wáʯgåpßj@I(ošŠÜEŸO”BíéÒtøoHF vûž´¡W€¡/@ Rž#6žH÷¢Kù±lœã_ænëÊåI¦Æ¶‘+sϰ"Å Œ*‚VÝHHXË G›TS..*äy”|D2 lçÕÞÞwVguÜæá!Å/±ÄØV ¬ _¥Jºs^Ò|c%X–ÝÇhÀß4&ö: ÷ùó™=P0cÚY56úß7®Ó¬­Á„‘€ o‡1Ø”˜ôŒsŽûø7K±XÊAGïF¾îI“SȺĒåö´ŽMФEšÿ³„nu[-„>h^2×ÔG+PË·QTíê= U"¨3Ûã#½¹uÙaä  ŸûŸtÍgñfݰî=1Š>Od¯|Ì/ÖzôZÚšókïŸ0)ÛV7Ðyg謽o®|c 1ª&a˜…Œ»6ƒ¶ ºB&CcyU°˜.GK©Ü§XbèôcxPæ–å:Á]ßZéö3Ü£|ß·ožr ¨ï6Þ¡’]OFœmê_9Âþ¥\\†XNÛ ï^WÑ$¿S>7­†‹’ñ¿n^œgm[}¤† Ž JÅ»oá6‚1®tã³c'Î&½§ËÏ•Q¢j ý°k ë‡Oz»cT¯j Ñ6‚¡CC=êwÛœÿöüc<Ïd”ÒZ§h­l3 ù€+ïÙùVX°«:2«ý8ÙŸãBæA`ÿÎýU ¥ÜÞñúò#Â#% !•s“Dz8‹Æ®¤ïIþIÉ9¹IÒÚ&%I#榆r?6éî¡"Õ7-˜ é+2Ô–àQ…ù B4HºÀWÔõ¶õo×÷3æ ýìªIcÏf"‘H¢¯«~åËǯü³]¡Š,Ÿ‹I¬Y…ŠUÙD1…íφ’‹Ml¸6Òà±là…öcµcS^;‰0Ý¿À`ùÒµøûàøHJ<·‰¦ng³ˆ°ôÔv×+˜¶ê¦ G †’¬ÓZJŸEW±2·æ³òñO¬ Ä±Õ©s²Žc¬-•Ötõõ¶½ü„æ× ô'ÝÞ—°‹ödíº¡=Ã'ŒrÚtÌ99¹g9gnR××ǬÀ=Ü=øk/&©Ö³ÊRˆªûº­†iJ›-ü_ª:NÀa!¼$|‡Êeï…i’¶K«}` )Šyp`«¼…èµÔz#Z©P4?«+CÂÅ¢š]¹js`’­ƒ(®5—;Ùßÿ}ªX–¹nç ¼%Å.æ¶ z VÒÀã> ì3 pÖˆ™¼bg½X_€Áûœ(WsŠâïO+ôj_t_ Çk«5!煉´ 3 5·m²¤ÿå0…Wù`ßço.ƒÁ­åѹ¼<›Æ(XAÑUÍ‹ÞDÀ’ì$ ˆ{HàÐÚ¡˜ù׿ƒ;Ô´· Œ¹9)àøÕ•QãñHGïÍ«ò–ávï\6A@Œœ¿šK¿_ø¦òH†Ç "ɼV(êª}ñ}3ÄùB‰/ºƒ³;]ÑsÃæ;A3¾Éá@Ä\ÓOyŸi;¤ØªzœNÒÈ’Ö*ôÆKœ¹ªèéŽGœ¸@Ä9Ü›¿><´ís—Ίž=rHÎÅG‘°2À¨”×µÕÇìwâñ?ßm‡>D­•;üU¾t,þ>L©hÝÌ¢NwÖxOIÚ|>ë^è—’''@¥gpü4`Œtä y,1çÊÑËD˜JÝ7b)öl Ž_(5‘qNö¢ÎØ»!S#ï醢»–Ld„êT–ÈʺkÆK¡fÖ›&ÁP£.@ (Ó,P ¾fµâž¹ü®féë°ÇŽ[Žõ^uB—“xºŽ+Vpø!É  a+e% ¢7 x¯ô’MÑZËNhîàë3½>¦ìOßJ,–õ¸BÁkþ-&W« íËœ?ìy« áÙ¾$Wò·gÄ 9¼1]únyåýId¹‡nW0¶b#Ðúlh“îT¤ˆLhGžVDÇY˜æMW”HèèÄ9KÖÆ¡:%¡¯‘¸j'²´%ñòŒ¦¬e°2ndÅ4¾¯^–ñ4ÐG–¢ƒRÐϦϗUÙÎz]öèû‰ã•Ä2Áê-@L+S|_;¦·øVi0•!œB0›WwÉÑpHfõäÐôþÞX§ûˆ‹EIž¡K4qªg¯KKŸÞk=ö4JZˆ˜+K¢×”“’É$߇i=«9Ð3vQÃ^ñ]e~ʘ±Q}g¥8Ðí©ÈBë/°$ñ’ò>ïÞƒÛL|rT¤˜ÌŸfa\{Þèö5`½Ž맸@8<âØ†A¬1³´7Ìvôn„í„àÎåÑé RN¤Üñ¶p{åxé*¾ÏPˆê˜8*ò¸Â Õ˗畟„mO-iI8ò¾þÜW¯9ž2µî/’Bb ©}òSœûý8d”_YN~G‘(ÉÐï`:{ûMöÀ3µa„ЉǵGmãRÎÜ»¡„WŸÁ<Û$ JG ~>A•~ú•t§~‹j?Á(ZƒkšçNqHa—Œ@ £väH)@ûÑTZ‘Â;Z€hÌe4ítÇñ+…èÝT¬5ÛšŽ¤ãé‹…¾‰û‘Q·Lé e å|*@†¾²v5û䫤¸Ç5üí༾%%Aby”6怛LÜ¢ úbWü“%„rØsÓ­ûsήAOå†ÄãEœ!¹TŸø:?üxJ·{ZææÈ–jÍtqÚgd«|Ч¯¬¯(¶|q«àGÂŒwmìꚥÂ(è“ØU#b ZØü×D§ÑÇlÅ €5>à烴©èJü^§=rrcµ#£:'øŠ‚9ôä!²ä^@ì—{Ñî"¨a_rª(ΘsúYi²²|wDY´ fƒ™xæÝmT¦öÚÊ\ ÎM |hHÚòQº¡âmÒ*YNŸó±`çL€1z Ic)hLôênTi~N|4Ú·ÀwOC±8©¼2öûêjæ­ë¸RËÉtxb§%^=Ó YeÏõ¥öXÍòÈ{üÞ¸kTÇIo뵿19J-É9ÇTq¦%N=ûPÔ…Du!µÎñqQ X —ï«KîÉ ^EŽÛ'rˆü7HV¬¤]œÓ¼Qƒ óOàêm-d¸~R¶ì-i@46r¢5‹¦ã•9Uõ£[ÝÓ§§žwâ#_¯W1µ‡ƒÔ×àlc˜÷– iJˆå ÷»'Ãǵ¶-5Ø}•¶À)‚bNSk†§s¹8ŒÙÞþ¨FƒxrXJ" ¯Ï{“q«òûž´W8"KÍ?’ÕÃPÔàX5}ˆy~Á“hЊýÀõÕ¸Mœ+Bz>0 ‹YZfields/data/glacier.rda0000644000175100001440000006603414762765721014577 0ustar hornikusersý7zXZi"Þ6!ÏXÌãvkÝ])ThänRÊ 3Å$ï’³Tüe߬½–Ì»j;f›PèO¸ko*[Jè±öZi©«§ŽU-ƒÕÎÉ’Î… ÿ` Ö“‰¢U‘N5¨8ºßXçjP‡I1Ó¦b7…§­)~&-¾Ø¨¾$C22w<—¶‘¬R‡:7y­p6ŠÏÀ¡Ayxtƒî¢Ä;ÉcÁBŒÎÓ¼B¶Cû±=ˆ{iW+KàY™xe|S Gi¡&“€ ÆÃŸ‘ì]:kÂ!sÍn¦ãpñÓ~y=\^ñG’”£SäuÅÚÜ™™@Ão·0]€ÄÉu½Û\ªE˜ÌUýÂM6ì+kßcMXŒð‹…à)±åÊЃܘ¦ ~Ãv„áU¦÷}¬Ž{±§l‘g+âr†,qK–+Ò^7…sFÓÇ,€eúáOÙ!îÇWE³Ü›­ž|*JŽûþ^ ·¨2O YDž©Ü ôÂWKçtJ¡XÉ•;*޶ÄÜ(»Ð?}ÂÌK„P„÷öï=] ™·"&óÁ_•Nµ9ùð“þeçt­ÏõeÎQ0ÓeT©ª™špÚáÊ1«€jvÏ&ôÃ"˜5Q¹&A°åÏñ‘‡¼@h¯44uì{|Z)@€Ù´S€¦È:ó°îzsè¨üÍr­Ü612ô8›°—ñkmo‘ ý%ý)¬;Û¸?5R™Ùd2EG÷BÅL¡ß55 X³û>¥õ£žÉrµÍ®šô7|‘“Nïé‚1ñ-àY³²9¬™5ŸŠÜß:v¹&$rìÍïn¬wr§Æ4Ʋ»GxÏû=ãOïüN“Ê€Y¿~8Åiz·„çÀ`¬ŽòNþ‰Ô/á:ëšT`H#x"‚™k®ÞWõlVíçdŠ›Ò«ð@è]™l^¹Üæ¥ÝËaX<ÝH4/ vgeç]QX8“Èé>y;爾¶f”÷޴ΞY):$<ítX¼xÛ—Ê¥/¤§‡!óº2†¿þG˜õ†£LÓî+!?ò«ci‰ŠÊt}‰(öšþ•Ì\ŠÑ>f*µ»£RÀþXyiUnÐB¶¿Ø•Õ—àã”:õ ç¼<ƒa7ÏC1Ù¼Biˆ$ ˬÚɵ‰?Y⊃¾I°±ù°©=دt=”ÖœžÈ{*s–Éé[Ãñîá#J7›6ò›ßo¬Gy+­8'Í«Å-ÂcR¾»¡Ìÿˆ9[ÙX§J*í~œäó¹=,¼õ•SWì’ P<ÕÍZ~CÂKþ.FRa‘„BCqÍÛ7üxûF‰XÈû³U]'€ùŸ(»ÐÛÖ¬cíëEµ¯ÞØ,è‰ì7$‚}áÑ´HG9¶‹=Ž@:¶ajÁ?»¹SäºÎÜY#Xü ÿD@‹2)6HÇÁÖxž‘PÏmeéWÂ)rÑͫމ4Ã\½\ ðVÈV] ÏŽ ›¦t19ÙêmõHåDP!Å/oSžâÊ÷°½Ü¶*Ш |ÉaÄç'ƒzɪ‘äúXº=§&â­6ºb÷FBü]o¢\®싃¯EÁÒ>ža€ŽK ÚÛIZ¯1ÄêëñºkïæRyÝÒBŸ`vÇsÃ~°ppµ,xÞ}ì3%ÃEÔôßMÒtØ9Ë&tménä÷¦.~~ñ1 éný^PÖû÷¡©:‰ú’ÙšÉády22œ‰X/ä’bÿ ­³ý<­âü¹+D÷/ª|4wU…â]õÈ~D`s¶ÖQØgñ¡/Ò\m© ½°àæÑŒNª–¥þ Ó„QÚë’¬ÉV•¨rS­ýÐOí! ²<»í1XÎÙZot§"ö“i´®Þf›*YT§þ–aAQŸ¯ æÕIPê/SŸWN• ˜L ë´³¡H“ C.òœ÷ãGK£,û«B Î½Ñ`ªÅþó²wüÀžïˆÛ@Ы&v¬_½³bÇahéÃIuâw¿¿hŸ7‹Õ)dTj2c‹)¾¦çWºÂËÞ-D¨Û:RÅÌnÿKÜ™,F£-×CÂ}"þÙ¾uÄÞèìØ19ñɯnÏU÷ÞÏœ’•ÌývNh†WF¯Ü)€¤mÝvû~NpZkЭo;ɜ䱛`;C~Ê9¼ÅP;FÉë‹¡BYí?jž6FªjÉg!í}) ÷ i¥|6tßTNóÑËQÞdƒ"äyç€?Uø¯œbέÓÃx_[]ÁÙNrªžiƒŸ0åíù³ÿlañûã¹­qAªËNh÷Xs]¹~®T¢ŸnIWÐ);×XާVgS¿tÏ·»#@¤ÉNãÿKr…"uÒöø b4j -óhý¨¦G$µt¦uÜŽwõ¯¥§´[ y­åÌàn^µ…¦"c­w”Õ$T‰ø;*r½P̘5òÝyöA 2$žZr¡-( …ßu‚o”ÜäW‘ñÊÌœØÔ7‡úb¶EQT¯f²KÈ÷óȶ³z˜µP¶$êžI2vZƒóNi„²õ”8Û«atZÓæ½+D:š,"|Z9‚ÄÚöö¸˜ÕÜ«L+vä]fc•_¥Vmì©ÇÛt®«²þ ññ¸éðòìyõw}bÃ…ßožmj–&ýØ{…t ÉgÇoìŲ„àßЧ.¥hŒùÒ… Õõæx|²/tì"©5&u0Ë|ûK˜fÓfŒeŸœ—߉Rl‡ 0ÏDÅNö“M øcïòЍ@y!\¢&In÷°Wþ,>Yeôã3‰k1U†BÂ#Á…ø-M›òÔJ÷]"™¶·Ž d­÷TØFAÎxñ öäØƒF/W0Fb—9j†}‹›éÀCÀÀ†°¾çùP™iÀØsÆ´uV±zðq ÚAÔ<ýäòIM(~—·A¡¾y,> žóÉwÈYF0ÉŽ8ÁÏYäÉ “›^Ú¸ßn–«(þnÞ‡M˜)š l~ð'ITS(‡ÑÄ}Èã—œóÓ9BbÈQh£k˜|Î QÕƒÏÐRƒý‚]ö¨(“£0Îaùäãú07Ë„˜+G†qA]§û4¯žÓïTÝÏjá[\e^¿ƒ•{Äù³<.›AË ãYTÐÞ¤¼öI±±^oS/=“ü É+SU01²@âN7ÚO}{ŸŒ±¨„Ü›<'~$Jm¿GÖoÓT5xuö«‹Ú:¬â‹}…Æ&y¤r'º–±a0Õ”6T q‘8ÊöOË‘ ]] 8mÙ?IÔvM £4=õiýÐ^§ºG“ùq?<ë©å_zyŽçEû‡ÆÖøiì+]”*Îõ$AiQg÷×ñ n¬§…J¦ -“hTò&Ør¥ ·º–ÍÃᣭ0y¡˜›„èßÜÏC‚x›ì1«3†¾l)v Ž–†Ì‹¢¶ƒC'4Ë×Pù Ø'YŸ:ªSà$4?I A¼±/}ªj}R#¸?æf¶.ôNfŸ"¾ìÁ ˜”—kzòUy¹-"&tÄôЗµ—â&J…[ÍK¥êsªæëbwR”1û„çþÝþ–ûhfJªœŠy¿Ÿ³ÎlÕ$VE4”u-tÊNn«Ü#Ò~éT¨ÖÅØ¼=‚&qlÉúæãKŠ™8†ä3Ã.[rØ!ªJ,®ÍñAS¾Ä}e¤ÁÍÊ."iKãáË·_ÃË5—[9±ö½Á žv­%‰TæÀ»VÍð¦'©&l`GíÉùîVáC·8EË?ˆÓ‹¢ÅF :dX©'xäéà¡CXÜ9_H ýèËD¯{ƒÄœ±Êrš†=žõÚ°o•i&,9âÄÎÜk×Zâå›Ü©> v’ˆì²þ*‘pE“ß”ªP R­8KYC»ø\´w×_G†˜B ÷µƒ¸ç:ºÝ0 ó4/Áj›óHsf¹4…ú&f=«î‰äæí„Òˆþ‘8˜{qUÎq:+ AÀZçø|zª’fjFRvY;FßÈ»ØSsׇãÔÊž5|‡ò_Ú‹?sK šá‡ Ë+ÜDzžcƒ=û6 ­Ò2’ĸ°ÚÃÔõ n+ô ]{D™¼®ZŸqÈ Ô\'%|»UäÈèæ–%ngy•7i)Ãáîäu³÷2¬ö˜VVPÜIM4*Šm¶ˆAíÀG€0‡(¨#¡ÎëiëšÞø/òÛV=Ä”ƒDb(œzL7º¶[‘mÄPtr²¶ ªYË÷Iò@"à¨ÄŽ´êwí‚ï‘–àÂL9§|¾ð„S”DWÒ2/)å+òËðCD7y´öë–.ð±Míâ¢f@XyËÝ–ÝUÛ^é?{á 'ÞŒrœº¢e6»¥¡—'?„OØ'h+è^Xæ5Ï£¶—„ZdQ³.”\¦´¥J{êÓ>AgAI§üMïµ ÂCº‰Cw±Æ|×/•†I<Æó?§}yÒ«†ÏkaT¨glÝ)Hk­Á·ðæî*"x,$½ßªe¥—´Ê7n´@jÛN͘Ÿe-Ã5µ% H‚KÒk’Ëfñr?õ¨æ—„WXȺĞ6Ùjlróñé¡Å;¨Ïb[cºue_¨àïQ¹YýSåxº?Ïù†–X8sê­Ý›?c©ÙzÆC6m µ7U3¿Fš³ƒLü0tÏÁº‚®ëåÄ6îf}RDíì ËZÉ8fBܵ ¯é’ÿ [I’¶X䣗€¥ Éòƒ Ï4ÁµCwãŒ7O»§×­ Û*`÷Ù³éºúÏRÅR]л "ê–'0ÞPЊx‹ËHb£’w,x¼ä^¼GLi=¦fvÁÖÝ!€3jžçlÉ/¶® |Ðèc¬žñOÜÓ¢ˆFç¡îÎŒ‰[Ú4LS"j˜nÑ6¢\â‰'GúsÊ·öC%b™`Ç®|Á~ à™ù/ž˜Œ¢ÑWýpÐò»"äì£sÀIˆYܸHx>#q ‘õÚZérg –êlbç!Ì#Ì•X=)¢Gc’DÙY7¢°yËIyÃÌò¢Y½ÜçETO«‰pp}Á< ‡zeAÖÎ6J4nCl•dûI3´À|ÜfZÇd,‚ñ‰ÑÅ”^›¯Ú©…š~7ž ±}@\¾¥QÛ·+™ýúÿ-n*¾Ûö$µ‹›Jû4o“v‡˜«‘¬\ž’ï »ž'–Û$öÄÐӛ鵙§ca!Ó_+Âóƒ E(%FõÍ¡³tîwšÊìà 8”c…±*Ö™°3ÅÌc¬!ÐjX€|ýÏÿÛjÔà-½kØ2¹ŠwJÈÀž‚dàÌÆo55§àá-S—¼PçjàXë>"ˆóq è}i>Q­Kâ+bÍ*Úa±wçšo/³ùJ:q}…ŽJ©/zàªó” Úa—ëÐÙqÌ©»(÷„=Òb´6‰X4 9}¢fp™åM…7A/¯Çü,‹>;&téºlF¼Õ&´±@ÁeA.ì‚Z ‹èNUüá><·Âü|â Q…rÄsPq>tiYúàÆ4{Ø™F£ñu߉ДˆkêMãÒúèÙBùY|¼æŠÚåÛ6F0¦AKdž|;œ»vÍt$  !©×m:7ÉÆe. jþlP¡¸èóãbø¢¹ñ—Àxd°Xx)˜-b_ÎÔfÚÉëU-h|ÞLÖw5¦1¤óŸ¡LòœµÔxçDÇX mg2nmbÓé ×RwÄd(‹5Ú•d *‡Kà§ÍŽ)öj6òÒûÒ=Ђ<ˆ#é©~~eëÆŠ#ñŒÝûýÒáG‡ý;ŽÇµL kqT²%7L¿ý7ë'kQ º¬®'Q7ˆ !A!Û%ƒ©Ø†ºÄ=IZBÎæZSW›Mm@qþ8!wñ”þñÅ Š/¾ñü ïĬx—¸Tñü–)UϦÏxÕwF¯Î•O’x»Ý¾{¿åzÅéÓp@Ý&Xx‚V8µH³¯.r&«Í„äk› ;å³¶×÷îoò¾’öŽÊ~—žôüÍ‚<´ ©Ó@{ð—çˆðr$ki™Ý˜®¡u'†g³ZI¯±3×ñ<¬)Ü.v—GBîxtZÇÜ’›]y2 «‹;ËxZŽ;“rè‘«‚ÃÈø r7¶J¿IÉT+œ ¤¶Èž¢Ì«Ž”¶»wnnË%.dª—è\/Üǘ¼Tô;=) i•KÝbøÉë €LÉFÝ‚iþÄ/¢lÙUÐd2«“”iú´}nùÔŸ.ËÇëÛózRhGÛš4ÉJ5…žà™–‰V@ŒÌæÈhWú—Á1V¡– ëpÀA?B±\GóUTÂ?Ìòï:KwÖa;zÙç§8f«kÛøÏØ[ã)’ã¿K$1uoo¢™@´ØÃŽŸ˜-f3U]zoŽgæ"í ­×QG­æª*_ô 6³L_î5°fiŠ~PpU«"üìO$醡¨¨f›ÊáX…}qš^በUÙÉlåôƆs`x0S=(àÓïg¦=HRцžrº}B÷Ê™ð3ƒÊ¶ 0wàæ°dÀœ¶ú*’ëWÚº?êfça»O&6H½t³Øœ=Zø…'c”I¬ßƒÅÅ•w¾8¶¢£'üà0½:²ÁÀü®ª%½[éWSŽ©t“Óê–¤B¡B6A.ž®w<»5*/_“ö.^ô/¸b…ÀuþoA]ªÖ?W§<ˆNËüÖ½Ý}\†´ é³ÇG×S\†W±HWßœ'é“ÊÔú® evóEW¤MJw·³‹q6b¾è††xBP›ÊHng§êÉ̃@í2£ÚÿìÖÓB_þòæd­EwÍá_kÑ/é†Áª'¨{Jf¶mI"ºÐGÛü È |•ÚWñ‘+Ø(é+0³G‹ª>nC¨GÒe_þªÎ„/1_(¯‚³Rèk&Þˆ\ZêãúÀ“SdEçV©uÊ­Í‚Œý Mþˆ¨15ü°²)zÄÏø¢”ááztÏ•º_´všÊÇÚ½æ›ËNžÎ"$GáýÛá´ÿ©+ÏY[@œµ´@¦{½Ÿòob@kßYz9ýŠI«årØ¿ÉqÁ=áb~JAb‚‹J­0ËXMÅÎ\b¦ô®–M3.׋‡?fʨÂì_©©s:ËLìbë)¼ù1‡ïÞpÀ(˜‹âfá:!;=Y%ê÷€ZíP¾×äЫ$˜d7¼u$ XïÎ&ñz¶ø¶¤žÙÔ4Ã%ð%-®sbÅwú\++ú<µn–éÆÀ»&é‹T‘é8OæÒˆœ2ËŒ—á_˜HI]Ž×Ñ¢÷JOpOœèšz{{" ¦ÛRveN´2¥+PVSNîqs—rlâ¡ÿ÷rXï]ÄÀœ’í[¸ö)†À³vP$Ä‹þŽX#ÿ50m½ÉSí|ü1@Xm@­ƒÒ™•p€¦Tˆ×6hŸhX­ìµI. …@›,[¥R¡2F9…‹ÀBáù~+’Ä›^+,+R8 ¡:e®ßÞ c>ú·oþ³ú1eÀ¯!¤–ò´½À+ǃãþŽÕá¬Pœ3«‹m”JÖo ½41Šóúøoù*6âöBþ7z”@÷)ï÷GEˆÿjG™ø‰¿|wb½â•áçãÉ{íÎ!qˆ?öË_¿>fýK5‘Ur †Ñ¨Ð†ngª×Ýpª*ùÆÅG€J0ÿª@A÷O8ô"¿à¤_™¸›’‚zÆŒ3îSõÃVWÝe&›œ¹Ø›$¸ŽC¸ä1ô·GÍJÆX|¼þˆE!'0$/¹$¢æ…Ójtµð+wÚfFFrgib1rëë7€ï×㘵¹£Ú9Žçÿ¤[öÏ€¬@ý8&.qm3ÕІL/}Þg̺½¢Ðd½ƒO‘6GãI?'—«• _K8ne.dÂÐ2›£ºÀO߉ʿC(1T5·f¸é¬Šÿ€„à[yø• µ^ ¾§ù`)­,ëÑ;À°Ö_Lq犿ÇS{rñ„†ÆùQaÕí+Ã7\oH¯s’v“Wì9ÒI°oyéîôÁ¸Y~àƒÖJÍg“["äˆcäÜŽ‘&žÓ©o&×Î]èmVå[(´á…—Ám< íÄ[êlØîÏÇzFPÇl™|“¢Ã;z9턺ÓLj~jË,þ¢'í͛լgí>‹ûèƒ÷Q¸Ë‘Ý1õ Ÿ`¸²×ão5Ò 8&–@£õÿ‰@ù‚ÆSu ç¾UjŠÂšÌ¸J{ îs‚5Ùt*u)‘ &8äx½w .™QiÅ^,ˆ¹„¥jËÍ!ú^OЕž€ï.‹™†±úW]~B¹- Dªâ5Hå.PYSG~·›¦´Ílg¬ìGØÊI|¾w"©`ÇtŽ+2HÝgöŽ’{VMôÿ$Ð{³ _tÎøÂP’RÈ-à ͺ4äë#‡4 zT1fï¬ÏÐ?4K >ó%¬gœÔúyߊ/Ó*Ôª0÷þô;&)§—ºL7Z_ØEù‚òçß.p²ê‡(¶»J‰W$€h±ñŽWĈ±eŽ“÷«êâJÜ/=|XýÜtÑJé½’•Œ"IPÑ1š®Ås•#ª¡¦ýLze“ ’ì®s(ÓˆæÏ·\H¹TÒÍ„»vjnd7çÄØD£ö1ñï"-m2 Ê“sÝ#Œz€E$1w”ƒLWEÌè"È ­!!õ[ºø\HCúƒÕ!°žÙ mýÖf9œd„«ƒð©èÜm8¿q };æäÿrœPÖf]dæ"}!œñ†¦{l3Åø 7¡§æes<Ï¢è€ÚÖ˜gd#œ#²ûˆ›ÀÀŽ¡–q‡w»ô"@T9®eÔW-H¤…R\äaÜ‹æá„=ä×ä¸X£ZrÐF¨ Ìdé4LoB¶=Û?3í¼» ‘²Þ98Ô!I'Ú@j7ø¡.9¡åUQkX&lÂz°GÓ:¸¤öÚw. ( V)J7<©¬yƒ-Û45I‚TÞÜ(Tu˜@+”J5¤—þÊE@èÈèm÷çÀ#QYšÚ6vL/Ø@5Š–D! …ÁÖšÐ|”¿øµ¬&r¤v*–ïÿCÓ BÞ™ÃÅ„’Cê‡Ý_v–b™"•>ŧR®X5丹ù;®‡ôÔNP"AŽÝ¹q«sQå›ÜK‘ÌÎJQ[~v‚ÍãImÿfcÔiœÙJ"Ü&%¯"ÚŸå|™=è[œÏÈ{Ÿ0¢;û€«RÞªð30–ãæÍ$þ¥Ø! ¦@äÌã4z$Ï{ ðõ͘=`n0L=Á•R4VÏNçâi˜•bl¬îû›èôµÖ+òñ»ÿðb=£òš¥ sÔç\tqšôE§Oe"gÊ‹ßàÝüµäT l³| RòÚ?¤âŽÜ8Šz ûºÇ‡ÁQgÇ c†¶rG?còêKäzTa ó."ÍÁÞYRp”\Tú7t„×d¹ÆÝþú˜è“¶åÄÞîÈ,,çõ•–±̨±£À¸ ·ÎÒŽ›žØùr²é cd‰ `éPï'Å÷2ŠÀ£p Ð!/ñrÖÓÚ¼íaÇÄ=Õò” }oä+ÀÏfìÀZßô–/kª:d<ýÏÉ.æ÷àbnF@tkI8yÞ-#y&¢oŽ)»'§Aè-Á&­J”kÏòêKN Õ4-ëd ¿iMÃ~çŽéRº“"fQr'f¦©Jyúeb„.:Kšm!¹¼ò„p8<:íäXSI®(a,Q—ÍŸ^6â¡ÕCx×É¿>Øxü‡Ìçìû~}òQÇøÇí” äòï ê´Þóš(A÷”J$Ôa¦ðk¥yëÀ&š1 b L¼ÛÑZj±Ž%TGó®èúµW4 n¿#°or®Õî÷ŸU5|€f´CÅÃ- ¸M«èùWíÆ@›lÒ¬bŒyþZfGŒ'”`z5HùÇr5~Ö/o€yý!@V;eEÙaátü¢8y¡~! ó¸C;R¤][GµJm¡48ÈÒ.ëê¯[û?Rmšõü`JR-õô¸ø?²ÑTòdl´Z^03j§Ù§Vi~wTW^ªyÿ5XÜüÐÕ‰Þìá½®÷‚wÅ›u³fˆ¥¯ ¼-ꂟ˜e²j^j¨oõίì–oƒèza]Ò­Yë7{cÿ÷W`KòÙ–ÏÄØkÿý6nWUêÜG¨ëA†kˆ^?‹lÅ’CX ¨ŽŒzDNÔNÒÉdxJ¾æm4s‹ þë¼@‹›±(j…õÃ’ÊÂ*—=p³Î³T0GI¬tFuœÙñÂã¾>'×<«Kõk¿çN O8C,ü=r Ñ:;©rͬq­V›Íþ F±:<ã÷‘,¢ åg,¾)¢/Æ8³2@Í%lýéÒã-Ù‚µR'ß¿nu¤vë¡ÒØ…*^Ê}ScBúâméÕ®é,õå·Î¼g[_½+lKmp°wª’þÝ5OäŠðï Ôæ 䄉«¿‚Ö×È—ÐTòàáU“äqŠÀú{"‰½¨LüÉa Ì€ä£NPæ¢rMp¼Jiö‰š)”ãõíf~oÄ:$üŽ˜]57!IOÂŽ3v¨ü»œ=WøÔŽOÎÚø”’¿YD²LŸAþ½vŒ´j;áMÖ¹ \õÅ+祶¡5÷c¨Q·¦Òl9ÍfìX¹Qu;å} ï—ã& Œ¦•ÝfŸM¼/{4áL÷M»…8}5ºÈ£+'Ò¹WÅ|÷Œ3Xr¸n­–ù˼0 8Êíͯ*)“ïæù§t°‚ §5çžØ~FÝ›²ÍÒ­ìÍ~o8òçøü4"I°|I€”§°Ö¼²¢±ñWg£‡é¡¸˜ågå/Jüå쀊lûiâ ·°:ƒWFà 2%Ù(Ü„;!Jð]3ô f©÷ñžkùFE@š&Øw‚ƒ%ÖwºÖ›´x3brÄšošæ öÚ òýËÆMx®âÈ„,,¢vw… .®bií™b¢Ú‹'½ÎÄ-"{©ù˜´l7¬`òa{é0Æ%ù+Õ>)´F®-´ã†¡ÏÀiƒr10Dm}Ú¡¿xÀ¤C~ä€çÓ@Ûft z4¼lÙê’èÀ@b “fMOˆÈ0àp؈ÑéBÐ ‚ÕdæÓØn]¾ºg÷ïcfrr:nÑ.Z^¾@ÙñêEFù¤X½ƒÃèÞãX uaY…µ›‚ *‚3D|æî”s§’æg¢OêãË,Ñg÷¡·½Deæö4=?—[ +ÿœIüwÁ »Ê‘@­ìÆS¼ – ià±w‡I— }Qê{ùäóYÏ~¤¬V´5Æ­m?ÎzQ(ìY·¯=«(YäýÐV‘îªbª95™l¾9nDn \Š~’O¬¤ñSy×'ì.j͌ߣ…ÃÄÝÇy7ßoääv©§öÂC';]õãëpv0éÑ›€ýå~†•Aq––â/®.ÆRœG6o0}#gÉkor§ù´Õ•8x#RÆWð»wgïùæ¿r¢P¾©t'€W]´Ì“ªyè{Icu»´¥öèöúŒT*µ_"©í{Äy%û¸,£^ ^fš ÈjÙÃàmáÇ 1Ý-XÇAy Jm«ßJy¡„Ió+ñ".ó×óÑ^dÿ媗Ê3Ï’'èås6n Ñü¬Ø•ùoY"²ÚÁT,ä Šy$•vZçl€‡k²ï+o&ˆŽz›2”Zn97‡Š5B¾êmïdéju¿{"PÊ`1æÌ>îË—=7GåÁAÁ ¹¤>hµså)Ê—=*%x)xøâ™|,úñZ‡RBU7¦$D \ ºùH¯vÚkûžPØ]eôxÇ–m«$\[˜µ`÷mì°DÎÎm— «Ôû©·Ç b×`Fî½%Ð?ŠŸ›Š•ü‘”Š#Â,¶é㹊É9’ |´I¶° ]E¼Fß{LäBÇ…¨;2цÙUßU€IÌ´>XïeÇ l¸ñ wÑÄ‹6¼ƒËiç¨S7g6¬4a«¬ÌÐ7Ç¢c å6€=L`»Õš¬(›ú©6<¸Æõj˜»nÅ»qÓñEVh¾Aeÿátyd]2“BG-{€^ïDý0”œ8‘™Ð%Òå ¶=ûÉ{oMä,«lB ÒÆ×ž-ÿqR è9Lm̼DÌÜõ3V,`¶Ecþaᨠj»XòÜ ÷¿¹à¯þõñC$.Sªëæè¦Y ŒÿO Lè 5w¯¤±£€r ±;+Ý!“mh ÖÁ1GægäLÕÛŠÓ@<£4=ÏÎP[îfþ锓›'Šƒpßô°7ùî ßì, µˆí%r>, ·6íJ%}ÿõÀÎÎŽKµqLÓWX½šáÏ{ýi­³gþÖ›3Ë(.ª.áC߈çòjçÎCõ¢É#*cç&§fLX/9ò}ר¡’ –J'·åÊÒË?oǨ±C Ø{—ªýúOc3ç9H"#[PíðRȆoö†Ætî ĹMmfù›²ºÇ x‹•Ûzœ¹ò×$Tõ²†Ý`÷(JéE¨‰©aÕ¬ƒ<Ö/ažÖ4Ìþ=U<¦.nɨyR×®íy|ÒóãÕ >y_ž(c!µÚ•ÓK´ªò3ƒDš¶"˜ŸîcúòhG Ïà NþS¡<ÏÓþì49Æ´¤ÚL¿á Sx뽫È÷ G ·æÖ Øjì.þÏ¸Ý +tª¼‰ß|Ð/60eÝBj±^šqŒ‹?M·“˜ˆnC¢·Ð!_ÐÃ,em¬Y:V62ž «ÔZ+–Ïb.;Ïg 1ætå+sND&] q!'kV1&óK-‰U€ò>//c­ Fž´*|s^ˆÂu ¶mç¿WåferÿÎM’$tÂúb„?$(k~Zsð(>²I2t¨ÆÎì×1ßB  „óÃxx72–m™È³³¸u'Ó‰5WXTã*<¢ºJ¬MöhWôgú‰Ï¿¯>…mFöD{”\‘Ðg[ï—Ž¸nžâËEqú·¬„åZk?ð{dw¹Ç²ô“mwó-<¤ÜÚ0¥úšK[ þ…$™aº‹é=fC”ÓmÓì\pC¼¦/k¢‘ѩժï\ÔMïW0läÅ8ƒPòå'–;^…jôcðŸZ…ÞÝúTþä›z ´ù£ÝÀßžþ ¸:iá˜Evÿ’ß_+kì~ F¡š-™“yÙ3o§ÏyUò¦Ò6²h¯¶ˆÚvfc=ft)cd'!ŠF‹vj3À$ÓIg°oŸ„trÂF(?Ikxm¬ðyÓk—×äÏ~¿‘°åþ$q§Ó%âN6X‰Y°Ãµ ž¢LkPâ) M–üŸLbûôÑò|=¬Úš½qŠL–samÈwÂñF* ð @´ ™3br¸#J^/ñfÅÝdÜUEûæÈ€Hzý؃Skæ¬îô:®x ¸Àí¼µVH–#ŸœP¯~µeDsAGˆ«])!Gµý¾>éîÍÍfï„p7Ø·n†¸ÀöÇºÑøypÅ×Ñ-èßò¡H©á—»"gZÿúCe;ßPÞŒõÞFίF÷Qj,ë²Xi‚ÑUÿrß³Sa×&´FbúöžIÂeŒð5¿þþÛ2dcj·*žêó;yòkW'WׄN:Q笌ñ¬ŸC¯' kp­ ‡¸mÙ4ˆ,2?ž/¨IeêÑ=(.ßKL+,d¢ÒA)Ã݈17F©ÝòYº¦ÑÃŒø¶Ptµ¥óF "«è˜zz!´¯Ù4îKüñ†eWLw0 ZÀRÄÂ#&[ó‘p’npZ̬ˆàq¯X­=ª$ùÄ6ö[0ì!f°D@Ü[ÉRäÕ ã‚XOð¿_7‰¶•}{Õpìšó/] ;haE€C†ê®!ÿ'ºw¬”Ê/$+Lÿ`Çûâ@Ó¢q‹÷Æ» – ²Í4÷Ð7Â@h^u Vž†¸µˆð4æw! >öƒŠ%Õÿý`ÅJνŽç9MmÏÅ®ÚðøAý‚Ÿ©-\Ujˆ¦µ‹[VïðJ™è2BÐÔ‹ÊÉÏ•Å×¶~” åHa]N1׌^¨Ï3#Ö]$б›­©AkY$;À¾ùÙùoòSCt¨³#ðSy§LB¥0FµXÆÏôÉtø8¯Må`]8_Å`iÞKÃë‹…«‹¹tD&„$<8íñí'¢Èι/’Ø.þqõblOà$ž‹ªíÜÿ๮]¾LÈ$&Û$p×î5&¬b'ŒHQ}ª©íq®9q¶ÉNé¶±“oÑCñJ{Ùn>æ{§øêïQNÑ‘’®2 a8v䛸-ÒÓÌ Us蹂 ,P˜ˆøžÅB¨äêò§sƒb?¸Q¶œ‡ /#éwXÆ™-q×â§Ðò´•l¹²'” ŽŠ}¦ÐVk¬‹—¹ŒK'ª6ŸrI¦±Ì-PoÕ¢¸¬ä¦dÃ’.ˆÔ;â‡å®:¼‚j¢™!×ô†_y?÷í¿ÇU!·©ä½^]`k:9pyJ4ó7;^)]VÎc1E¦™«?.Ðáó—&Þ¢¼c[}O¦Ù7VdF3ÈwsLž°ÖÏÒë=3Ê-H*LÀk›‰¬zÔÎûLsêÑ1çÈ¥E…go+‹_¯ YÕf2^YÿÈG{…_ ëò %ħÿ¬S²Þ6š9TW^ÚU ‹4õ °q°ŽG—w Š–<õ…} °»ijÍ ðÃÄxä'3"‹ÊQ4=—7s2?°ÛSÛÔrLXòHOÐ|i÷ÒSph+¦±Ü€XuŸa¥¬ Æ÷Ó¬Ja’™Ù‚hºïÕiÁûñÃ^튱®Άî±ÄB‚Aæêfm.²¯¥Ÿî¹_âžp¾ÝiàÒ:>ÂDI³]ˆC¨“ûî²=ñòdí+P{×$–ŇQ¯¥Aì­å6¥oÚöò °¦EYXo¹°›ÒT;‘#eCÑVÉ'´!< j¦U ­².(ÓÒùV =jPCƒÕV½$\UþÀ‹çÛuàÍü³úÑu{bb5¬Þ`&[ìÒª¢2‘‚Ý¡ÆKƒ£ø¬ë·âÄ9ª¤áeÑ2lwI_A6`zÙÕ”"ú‡O!±v5öõõŠ|3aδ롓Ô ç¤t’J ZD·ƒQn9ÜCŸÉ'½J+2ñ¤,€mõ“^šo(PÉž%gBfE)§gØÜ‘™²£âÒé[\ÙD Gã~„ñßÓz1LBt=7vÛP ³RÚÚ4ƒ½ûß6óMøC³Ê »~<³0ó˜òmÄ[ÆÝÑRRDÝu b´8ô’:õÏí%Èz_ÿ?ÔvŸhgŸe–3æ[r:G9ðܸ੄±ÉŠæÒòÛR/sðèìHÕl_†‚ú¦ª2mË€hœ2”Ç€õÀÑcßv¾äMQÇ«é?‚Í…Yè‹»‰žHS÷ƒkW51€-ÀÍ4Zý¡É ª±»_IpCòAð‹9@ V9x]õšõH8ºÇ?^ó)¿'¼~À¢s÷5ÒgŽœæ0F“’§Ã¶8‘”Þ5 ÏRõñæi³šÙ¢œzõlX[å`tY}ðY'",¨ëaŒïôlé›ÿä»_áá ^½¯Äâó¾—–¤ôÚøôÉY>k2›PŒVÅ;øâ [-¿ülŠ¢ —C õˆ2Ŷ*ys¢ZuœŒv¼\Ò(™4G¤»gD~ŽãÜ»„°Ë<·Ì× öþ8‰(H$5ñ™ºÉ†¶c¥)-4|\غ@ŸÕ.‰Üg/Ér?§‚7<‰ó:r¶ ‘o˜§Õ탺{ ÇßÊ ~Ü®!1~6–IßÒØÄ-ÁH]Á*äYðÇÀìkYöq9­ìIIǘpãL­´Ε[´í\¤–œGa¤–ÍßµííÚê³’q.‘ÍSj!¦¶(¾’é|œQð˜Æ Ÿ›6m34?r}2ܹé)5¸WÂ0ƒådݘ½SÓÌ˽f!uIðÔB_l[MåHßÓ1ÕI;U"ç²Y¨ê÷t‹¡SïÿÒŠˆ³°ú˜·^§§)Û 9…9ía£¡í5“5u™Õ˜Œ“zú×4SYxJ«EÌáfxD³!‡,ç¹Á~Eíî@…iïmªÌb¦’WB¦s3kç%¯Ž… `RÉ⓵Ð'2Á¨°ÿòùéù{‡DŒ"¸æÁžàþÐ;r¾Ýeª^–K I‚4r沄Ñ[ŸLýÝ“JÍe7¸ÕAgtÕ0ïW³õ;` ž;ha¬Ò|y ”G4>©µ‹y÷øVZ=£¬³šP{(ÊŹä ëÎ'Câ!^8~ žôú: Ù ®mÍ|ŽŸ Îi>oÏ ¢¶t‹œ}ï~šîBóÕ?j>§ö-‰fiŸb5nº`¡§Gó„á x6/;óÜ£`ó¨«À"Eµ86Œ_«yÎ |¶X©»k¼ÜêÖʨàé”°×®¿Ì»l›]ºx€“¥žBo°hm‘%îÇLÖ\ÌÚÄk£‡Ó´Î÷ÑâVIêùKüše&í³Hô™\"Òz>X²E¡þ ™–üKÌ™&bàã%Ê.j¥ `ˆ³ÔI°`.4–à7´)ê,*'äÐ~6^õ*ˆSØ^n¯’N÷†VÌŠ]ÚzlñFS*ráŠ}ñó\ÿ‰*©× »*×bªÆ=PW¯Ÿ„ 0x½¹ÀE‡Ðî2ß'çû{½"j@ù÷ïiFÃ_}),{™ÔO\Ž87[Fêq¡æ8z.û¿Õyßm• XM”Ko±ó‘(x)^úVŠj/‡cEAXÊ€]¸“…zð€òk÷Ü2çO8ixšÿOÍjcïp —B\~E˜QØ…Áñ@H²ÆŒ?ãl@F%Ð_3:ûtÚͱ™7d“ò¶ it²ð¬{wì•­7%«…ÇFv‚‚°)r˜ óú¤Û5¦îwÖt­/>gOdAêï®NÔ?A*c1’Ä4ÑgÖ,Ôý×_¦Îûk‡Îlíg&cÞ§K–‰®¢Nõž.›7¹¡±[º_×—9Tâó:ßÿðaØjËÓ5Ï£? lƒþcKRÝ ÕÙÂV¼É]¢©>E †¢Ps„¸ÝYy€‡.ZÊ‘Ò9•$§ùe‚§!-biìå“îJ˜ˆ_~9e;ÈÌ#ñ±¤q:AP½ý4;,z†Ëv{Éù ¤|=–@KI?Õ%Ïú‡ÊÔVPàf_D$#z‚8¢óõ”ß׳÷úJŒ]/:¢c•¦E©ñ®ªòÜ œLþêBmÁ¯·þæ$„zó˜u£³©Ëäw? R&G…㜪=Œü±PìIÔy0~LD;UJÈ£,)ò3GמŸxg|À%‹W?2H@ê37¨@ji„ ö`K½ác°7#.‘=A‰z, ÔOEà«TiÑ™Õn•F‚»®Ô‚ÓѪŽÄ³éö½îͦ"Í?ÙåÍ¥!CÄÌœ*Ý.¨%ŒÜpÇÝ¥N/&õG¾iXsT„ÚỘ…¸Zöé.уŒ«!œÄÆÐùë ¤=ð‡F÷×_I;ãP˜%#¶íë‡ãMäº7²™r¡`Q”ÄÍhyÕvŸwy aÿ¶Û·ÑžÔ."Œ¡äèϲt˜ )ôßY‡Ì-ÀD‘ºØ÷,Æ•äæ)ÆSóe/=55Ï®2Ønè|5½Af)3“¬ÂŽœ38–ÃódQè`kFí8‡VÜÄY.fòÌé(ˆ{[!S–#‘q˜Ð\æVºÆ+zêQƒAJa¥÷Ú&¤Þë×*ßW@¡›ãލ€†Å±¾™C¥2ñ¸øðP´‹@ê«÷Ÿ¿³T‹µ0 V 8h¼É:ÎhZøòšõ‡)ÖD-œ öCÿêqÞQãl"^˜‡r YôÀq{™)Œ–œ.WÛ`)e9ÞwâÓ-}N5ÁòÔ=9Õ–å5ÛK³¬_þkÔ¿Ç-CñyZŠ€ü8ó¤Ú3–á»Z›ÿO—yØ|+‘¶Ÿ@ÜE]ßB­;—ÿ`hIx ƒš–nÈhãck” ¿…•YL¬¨ÓUxc5*bÕå–'|¨TÙ%“5)½kOÅ:XÌÞû—±úŠ\‹GòP«ïŽèq‚ €/^Ú}l_±…>s·q¦V¤Èœl|ö;ZE¿˜æ–FÎd$º4®!G†G9blÂ5£vòv0>'ŸÅsž²Ÿ ØéÌ’õ[H'Aíp&râãüxÔ…j Ä{ÇØŽ}<; *IXeë¾Z¤yJKŠàˆù|—矶: rF%eJ–¾€6Co•ž“Ñ7¹¯2q#2–Þ¡Ù@ä©áF£Œ‹…RZà"YzÁ<ÕjŠ0ìþÊ6È5bk«ï‰uóg0„¶֠JmvP6…H)ûdaf‡Ò³ª%\Pf>ÃCTjÙÜ=]‘nmØ•UûˆëÒ•K"Ô]:Tm¹(´gòŸ æèÈôï³vž»(ž¹çL匄j.£ %¼U²ôn$ôÿ–òuêö±­€!\¥¼À'î9ít­´¥4êoS„_> j~{½]d¬oå<7Cæ–HIœÂ™SiüÈÆ˜ž¸Tª-ƒÿ’ 'n‚ÉÙRü$][?·Y÷âÄéôìpÉNJýÙàÏSžøã·{€Rž1Hc: LSÑ57ÐڇاΰêŠè œàê ó[ç:Ô\~ëf *ÅðŠZ*ŽSH§ùoä,7!GFqålåsâ/'%™¡X}{`yÏ™É9…¾5’h¥rZóȦÎ*mEß%þ<ò‚ u$hÃwC2^]e3¨Y*cØÎó½Ä˜ùá,ïzÆŠ(àÝ*^âJ®w+¹^CÄRïö)H3)ˆõžJö¨.w»'‡.[lr5;ŸE=êP›ÉÓeœ±MÏ\ñd½¹Ä{>îæ lðÐ(gF×2¢©¨'oì3“™dRð!Xg¸[³6!O]KꈴžŒ,¥`›3þcP{ì-“eZ9•K3kîrÄÜé„H¦g„4yÓ–XKªÌ*`L°Sk‰©'‡4:gâʺf²ÏÔ$-×èÒƒ©x±] Η·+Òp;ªäò9Ù:lÅøõÙ˶Ç_ 6Aq)¬/®K…|±H´Dxa-<ƒäßèZSQç:B³©ÚTT¹HØÏ ’ß;úÄüyêÖ×(wÖ÷Diÿåi£“1ÖŽòƒÍÊáj¡äjÃë¤QÉÍêOÊq?¾&Ð: –êpÖ?‚S °ä>xËP(n9O !b¤U@ÐEÍ%EY«˜]àüÎÜÚ^Üb‚I0rmdáœÁÏïårÃåëH{;Åð4‡'9hu®v]ë.*XO0¢.iš_¿´ú°n%äèø¤Ðga N Ç̃u~-1sÄ¢Æ-ŠcïW5C×Äÿ¾š|eh$ ƒÝ£7Ù¢IÕjªÖß…ÕÅSÐc#þ"‚˜ú]MY-]«ßô*Sr‚«ÐXMÃ󉷨裣:¸HF¾§èŒ²ì¤­­.Šx–ÇO}5¸WÈ‘57)2iBÿnÖâ…³¢ŽSZ5k—:M øE~g~,mXðmW¬°"ªÐ@‘.ë=®öøÍvô®³`Y‘2Úý8W•K¸ÊçM0íÏ"‚ªDeÙ f¬½³×¸:SÔ…õãKãOxR&®öÖ»Í|éZ\RNF¿ï¤ï‚ü ãÇÎ¬ÙØ8=AЧd¦@„Xy—Þj ¢Öƒ ò¤K9„Ëí›P¥Ìå&3¯cT°À’ý¨5mr“(Gh~L§þ$Êy»jÕ6yÖ‰YFÞZÉü‡‡èd) 8-É»IôÝõˆãbUzm¨ÞéI6P%?ÍC‘™œ$°±/ßé2ÀYÉ1º@’Fó†HÚヰLþÝ?2¤éKJô€ëx²Ä爂³¨tX¯Ä#àÌ4NØÀ²¼úÖhÃU’¹èÌUQ4ë«:U&’åJ#êEQ­ôãÝ ¡'f#@±Å>Dì‹P—®Oüä)…Ô\O–°@E¬TáÃja‘:•ŽÌq‡ ý'ŸF œ¡ÊÜ¢j·À;´z«€¢I¶ÓÖ:]™ž--KIÀ‹â!Ϥ 7¦œÀóÞʱxMíÑ*@ð_qˈ|"Z«^^¼™ÒëEàI»û€VF;Â':ŒÚÖõ‚Þðl¡äJ’Öü<õ@g,žÞý v{»ck©ÞÙj4Eë0[„JcͨŸf7öÍŠ¹#Ë~3LÊ.7‹ðÝä €¹Ò΀ª‰KE¾ ç­òwY0Õü@Wm7‘¿ >ÿ¶“ì{vÀxxù±ð·p¡J˜Jsô›ozÙ175~Ô LþAÊß _±äGМU8/d3>ÿOwˆw='nÛEeþ)M}­;%ål >Z‘Z‰‚M†=æ¯Ùgpm·¥`Øl® ¿HG-TË£'ñÅxQ _|´#~ÈÌ­2!šƒ$âD¡ÉÁZ6­$«ï?(cE¨„;\Ó¢DWÖ~ìôMI–ÙºfØákŸø†>Çó˜qIû{ZxúÿxLeb¥©ª«B!^õú•{ l'R÷6rëžïñ#Ä$ qBñ7ªW>ÓÛ²yné'P‘Ñå~Îpsð߸i üààÈvB‡ÔÝ{`pÿ,aHõˆ †)…Ì%âÐ i–Ÿ5Rc2O}A±Û „ÑØázå™=Mlž4óYÿAÀ°£!È1A·ÇƒF§[Ä®\£In¶€:®4™¥rg›­‹7œ xc’ö¡a®Øø7hE1QÜÿÙìݯ¾q½XrpŽÊé`ó&ƒu?3ˆ/àTáOÂ䨑÷NUdì(ôg‹;sæÐ¤®2¡z}Eð$$Qi¹§MÊôÙ¸¶%Òàl±zà(¾J ©PÙ¿¨L—‚Ëí·,ÈŸæaa¥™?ÈrÞeðD>¢¯T†|åIâPS§Ÿ b‡éáN+«ßîÆaAÛ7OX2ï4»æf&¢…“˜¶snV"º8}²ØÂ^øÜƒžaB5®E] ä-^Ë^KH9³Ê 2c&{úM³äJ„".YÙ\9H·/Î)Cd.ãV9QHĶú —lúcAOÆ,°"?öÙiþOñšò݈ä0ÈÑY<¨¿¤dZ@ $Ô÷ÚþÓ yú;éZ *ádSX¸¿¡?ŽÀõ¥ïêQ¯ÍÕ«&X5KÓ²B¡Õ9k-@tf݉rÝØlºt¬ìrN{ݘ£n~Þ½{Q]¶‹ÕgmìuUsTlŸ•«æ'ÊËy®Â;÷;1úõq¯j!v(tÑC¨i®JÐ}h>É‚SAIÉÐwW„ròG›ñÿL_Å bÖNwØhï#GÂæf—¡Iª­CüIˆ3lH©Àß\ÜÛP‹jÁ|Í29[nõß/,™Ø“„ ã·–‹ÀRßÚb¡! ¹gc»Ujžö‚T/\¶Ûëû±Y\D«¨B˜r¶yw²|=Ä¡‚÷h#^x¾Íçf;ƬNF”Þ'•æL Gž˜ݺ¹òn`OÌ èÀXÄHÙFsIï:†STX)†/{ÖÆ•ñI6i×7à}ˆ½7Þ±^àÐ&;Áá·l‚‰Zû,ö)A–ùhB…éÐj¿¨`- ¶’I6MíEöüZÏ×´R–*;²qä™þ‹#/Å­-U3=ó^jãö? ±Î:bÎr‡€rÔ½íÄ€÷ Ö#Q ú€DÒáqH,ÞIo–“Å× ‡iiŒ=韼ÿ±Eú޼ùé‹"ˆøñ BÞÀÈ,åù¦‡Êói.×K"üx™âŽR;©U6Ê’;XŒ`ð›î4¬äÕ‘fÅõ…«´S}LÂ>2á5-ð2]ðÿ-ˆzn;:ïqÓ“©.Qk×UN ù…[ƒ,îÎ÷}/Ï*Å©ò®W?î–¾ý  ¶¡R ÒYlÓŸy°¹S9cʹfa¯ðn“¦2xy}€—|d£"kšxÏ=‹7ž‘í)²„ý£EVIóQn«Œ¥ó¬I—?_Ïjy{j¢D¡½ZöŠ—ç30µ ŒC£DNlp#?hîBa˜¢p"ê²[µvè2›Ì¬dµ  ¸Oű ,Åòz)zÛÏ*]͈@k#¼ÙÌ©vÿyyÝMÙ=O{t¢Å7|’ Ó©Z)‰^5½þ|Fo¼G4oN2 ø¼¨_T{ÛhUCqŒh› ¨,qn´&è'!,Ìýìy8å±ûóµÒØOBWôâüÆÄVÛT‡éöÚ±”`xYFFh¢8eApÞ?‘.8¢º¥\ _›‰#/6—¦Ž_S©ò5•ÎrEŽïSü²Ø–÷Äx¡/I©™¸'ÇëÁàèÝ®-y—áùS5/¨‹È!|H/œª-´vz½ï)èküðPÐ>X/<çW  Mźb9 ©‘ÂÖ‚Ñ­µ Ѧ\|WA»v`7VÁÒÑ¢TKò½]Î\1®.æâbðP&£Ô¥9@Ϧ¸(±GêV³ã*ÕÇÂd„Ü—[ñXß ³®”KÏm·…äý\–ÆÖˆàz¤ /V¿¼é¢Øoßy§œ¼½†sô~Äý19R4œ<>WC¤\À6ÛÌ_´ãTÌój*Huäç5Áî<‡úõ‹ÖŸ¨hÊ×¼Yìà‹ß» ¸Š¢”Óð°'4ê5‡_V|æ0=ˆÒüÕ¿„¥¸?¥Èñeî“ý‹½s“~mb«Ù÷ 伌n§ö~(TPJŸIínñ¨€:ÕI Û;Ž8ï'/[ gøþ”ò1`Jetm·Ç̆¶ì¤L›ÚÁEìʳ«Ô|Œ|}¨’ÞE÷]¸É+}²ŠŽ¤%#BÞA \»{Ð=€¡±– “5Ód+ÙäÚÍP†P>•~fP÷¹ç8“y½Ý@ÿÉÃ:žàòÑ‹“§šc‚“ƒ2nH'Ñiä>‚fGàNmþ35ÿMæÓ§f㟲->ÐR« ݉zû%K%S­B‚äϤ ì’ÍÔ÷òŠZ“ž¢1ÎÊ»´,Ó O^Ž3/}ݤƒ›–5bmù'¼J†³eD'FfWÑ ):|+a3ù„ÀlëyU—Qjà`C0:êm©ÓPV§îgé>Ã:ßj”,*±YÀo†{o°Í I¯;'UrAVacl¯"òSèkêB*¬a¢­V})‚~ß°:_ÍÇV׃¯Kç=†³–%åua^‚)zM-nI(˜ÄÓû‡¢Ô#V­{‘[w#Ô©nW³YÏ> 4yªõZO)å@taBúÎ÷L‚Ú¨ÌBV*¯†m?!ìö¦¶"Ø.uD1z¦ƒ™ÌòI\VÀeô3VEžÆ Y)ŽUŽ6ë[hjR1•‡ À™RÌ›Ë#þ+2ËÕ¶åæ“c'cPø¼ ]Ý0a^„~‚Ú³Ú/9à¢äXN ^Z:CÌê‰+nÄ]ž$&¨«¶ñÃR…@Ï–:gý‰•À•?Ú˜‹‘Ü•²¨cÜC@r›’‹áúNè© L„– Ò"¨®kÙëÙþ( +^HV´·ÄóÓ:IDV0ˆMî—ÞBúÎ ÷w[³æ~c0Q‚7ï+ J[‹zóc[úuçCjÄòÙ?h–Ú’,þ¿Ä#Å(ÉìÖó;Ô|£Ç¥^—ð ,8P¯(èÒÒùkÍ7ˆ¦¤¢m6M³/†»m‰NA ª2·’ÏêѾ2©þªÒüÎoUIû*ªÕç-­ÐŸõŸ+øœšz´ëÖ1°¼SÆÂ®f+½u–kÅתj¹ÓT!·*§¥³ò]¾ÎÀhM\ÍÄn!OMã™–dã é–Õ¨nÏâà§?Qø1xè‰]–²Ø‚öå×W*îú/åÒ§¤EÝ+mLCœÁ££Yü»É,Ð)}•ï~{ ¬,ÃèwÃÁÊ\¾wpòû®Ò©6ÈeýãÚ9ltÚøX„†< .0b¨ëÓ¿@)^]Ôt‹HãœÈZ±ÏpgšÀŽefeD}E7“…tRæDøQZö¾£´²5—Wý(pÜ¿ C"uÆ\Ž"•7ÅYhH?ÎTÆ8Èl;6’”˜Ä›O‘]ŠáÊÄÆÃYƒ1”ÉÝa*’5a]Áä ³UúQí²bk9æÌú=ŸJ;ëûñ½Ñ YuºJžf|„äÝßüZÝØ‘,“vD-ˆqòÕod]܉™ö ®Ô¹LªˆÄ§¿\Óîì¶R¥KÂïuÈìÎ_¿/0߇” ž#îŸeãv*ìní'£-!Ô0`Ê&‹Ø·VŒc Kžä¶<„]w;‡;þ£R-X÷Œa›ÐGôÍ~Ô @èë¦ q6K[¯B„¶Z˜.}‘SV{Óïm_)’¦¥Ÿ„±yjœøûzćif]O}”ìß®=¥es9”rp3>Ë6Þ+¤È°ÂΛÀ Û¸âu(ðT£Žz§¨ªc—ÒœFŠ´ï×¥ª ÂM/ líJƒ‡[µž€Ëëf}P­øƒOºàÛ7‡B`/Ìøþ ‰[ÖÌU¥ ʾN˜]ú%r{Yo£N£Æ±Ãab|Z4”Qtš³û(Jgæ c´¬ú® Ú7V'Ž]÷à£×M¬ŸW­îJ=I͇ow…e#+©|ûŸ4oÕ"4xS§ï|F˜1~ÊõºF¯(§JÙó‡è†cÿ…~ é½Ðñ úÆõ½OÜít­¿÷r–ìn¬9ãá 3ö’m'wûÀÆÃ;¦IÞ¤?`ÀàyVo3—ôº¡€#X÷êJ¼— ~~»m*OûrËD…D‹j°5PKªvHýÞÔ‚‰Üšªé×^lNýŸè¬*½24?’å* ò‡óÕÆÐŽ{xJ®ÌzòåGw©ñR]ÖK÷ævŒšŽv~I€o‘"©þZ !d+,®.›çý7ÕFçbK}7Då_£¤ÀXúàËÿ‡¤Í;ZÇû×nt²’Ìz¨äì¶»…"¶ÅµZ¦˜yCBd¹û5þ½Þtž>xö—@]nQà<î^1Ý[OdHr~P?"úIÓš"²š˜;p[Û=çER\/k?ÎNko?»»áþj´ú½Í´’I¹ãauíZy¯sïUå)*…À®” sW‹U9En>x!¬#ìbH­Ñ†¨ûùçþmN«ÄÏ¡µX›Ž¬X©«âw% 6]+ø¶x íY;€®¨ñ%ƒ-Ÿ’)o«E‚ ¬ãžÆEtÈ µá=÷@¡!*5«%€gšýÓn¢µøÕËU9×ñ pýSSr¬dqþnõ³ÀÜ̶ìU¾iFRËXKrñ•í·Õø¸¢š;!‡=ò¨kÓC|—|¸Ž7B¹ç‚eÿò_½¯Rà1?0eMÛ¥ È\€KÁ<ॺîú„. H<µÓ°õ!Ã>Ð_ã@‹ð  ßKÎT„–¼ šj©6èËð”µvnïcú6àã„Õ]M¨šÕ)*«虾ùbeDMø”ºµC=}=¬Ôs/aª$këø|:Æ[“Œ5â’mÅÖ£$ñŸ> äHl6'Ñ››+ ÚħU›¯["é#’MJD€*Î è™þÿu“È™mV¤SQæÊü$eÆïàå%Wñ›¨>àT×ÅÛ›ž¦•Ói̸u”ånt€´©A៊ ‚ÃW¹¼Á¯³ àN @ ¶ŠÎð=o/JÁKwt ž5Y—y¤‰çVµGt ü-.ñÚ@ª“ –m¯&þŽ#YÆ>×/Jæã%}<¢Ž´AÎs»SPH‡b%ú‹çº†éP]à).Çs“¶î©†$Püp”òƾ½  l9kHño2ØdÃ6½S|!¨FÅÓŠw~BÐ~p*X}½^ÿ¥9Ê&¢*ƒÅ°?š¹ÚRUWµ/fMT^šð<Åœ7Q§…æµ^¨·LùX.yÔ4â Âz‹ ¢ê¿9‚é»j äêÛ |Ëx´˜í7U1ck”È.qìEG赟i¥{6)⣴ÌeZ›û" _q¼,¾vÚ‰v5?/ù%à]c™ßDéÕºÁ!m‚ÖÏNsz¹Eö[™^I‰7Ô«Fwu=” $äxÕ¶!K1 žÓ¸ /’4€0zqÔM" MD,:m?€èYUû£®° 4ŠõbÀœÚ¡Õ·%%ÐKâŸD×t¦Ã›e©ò°š¨tÎYÙ/Ñ 8ª7Ík]6j.òâà¿’ ^_ã–9óÙG»29”¾ÊÃPáÆ*VÌê;Æ@Ïkúò]̪A_kÃε3ö>&(îù×·aaùCTGúU$kXMë ¸0³Æ3ƒsn‡÷­áÎ/²á]p}iGûx£7ÌT˜Òrnräót4Ñã*ûïóͲ*\²æ.¢$sbøHhzNYÿ•ïÓbØûP†Sñœ-š•°D޳„à ²]t›½ö¼(„A›-Ž2”0¡à‰A”M0;½½Œ‘˜‡ÿÉñ“ êâµ€‡ÔúF±B…“­-ýЫÌöž‚x#íä—Æ…Á0è¶þ3?NÄÂb F"†‡àìAB„ø—7þDb–èå¯âD:§äBí̺fFÒÍ{Ï:DÙƒ¤Öô¶”ñ*`‰\L °‡CñÿçÓœö•™ÞþËxˆ*âMR> gfe³ÉçðYL?%,£ ;úWé{ûÕ^ MåJä2¿Ez«ÿ¬„+^9a‰",è^Xx;ÔŠŸVbÈâ‰f¾¢_ž¥¥&Û»ŠøQ1r[.pÇée(&¯i£·™s²ëy‚Uð2R’Y~lÖ·–:ŠO] À‹µÅOü“š ƒ’Åí`£Ö"ûm¿ìT/ôûËÄ—ëO|zY‰‚¬…nHå`-ÝŒR,Ý£î«,D‚äo¦9ñ®G«>ŠÛ §ÂÐ?þAÝH­¥W“Ü›1o–P>)‡p±·Å]í£Ï¦vûßßZögX–ï59‚ä*­äJì3ÌèdÜ´î è)ò¬à}LørMqØÀ³ÜN@ß&Ž%V^|_¿xiÅ3"´þŸî©dyª› Þ%Ší¸<*¼T‹ÖXe±6è;ˆCŽÈÆŽ£êw4˜EB{O±æS†Ôç¼aNe’V9=œË¥~%&pQæKs0%]놉†›UöÆ€Ó'’K.:x”ÑŽî§Ó§rj©Ô†Øé9Äê›oÚéŠN°ž·8(^H´lFáZÙÑw({xØG??a–kÕ“ÐÃÕñOÚçQ e¶*ÿiîÔRC0E ³¸·Õ*Ø<gPhlWk˜ Å·io-ÛŸuµ6f;›( ¬ÝZ}W|Ÿ¨›ng_é'_SþUÈ¿\ß,»`}=ü×¹½Xy¾ˆÆ[r%©ƒí³ûþ5÷«7LPí>Aåäœ m„,a×M»"àós™þò">> v•¤[gç.Yñw%ò긛õ×÷œ 3tªa>0 ‹YZfields/data/NorthAmericanRainfall2.rda0000644000175100001440000073322414762765714017462 0ustar hornikusersý7zXZi"Þ6!ÏXÌá× ïÿ])ThänRÊ 3Å$ï’³Tüe߬½–Ì»j;f›PèSþÁüüá šÅÑÔ%×Óñóo/Z³Ý!›ëîKõ•--3²\ŒÜºö™8í ÞŸ‰RÍ €WñÖÑvÏ{®|-ÌO²70– €Ì#AVeŒëñËrüö4~±Ë]5"Ñ©µxÐ8’W,UŽÃåÛÁjœJû³L8Ï›â÷ ŸïïÓNh¿$òT'ʲ`%¾Mý £â“ñ–rX/ôG±Ýò®ô¨Nê…y¾Ö/1î+ `¬ÙôåÚŸ4E{Jw\CÏ¾Ë "(g×Zm#m³E³D-›Ñ,”I *Î ÔýöU¡ ^Ù„ÔmVK§ð€ V0usSÎ €ré]“Òµ4-h„ úth¯a˜°<?^zŒÙð«{‰ï-H‚¤íS”>®ÃÅ# %k—\£,gÜ„‘’ö†øn£iúHçDr‘ua“å¼\qûP–ò­ÇýTÆ$»ÉÔ7ŸT[í«mˆú ص\±ç_+:¤Ö(®Ñn‘ßí¢)7p™Â»:Ã!÷bC–˜Høv /Õ)i!2rÃtf %„Í®_t¾µí¼>h¾‹!ËâÏLU5'<Í•™¸ û >[,9u΢n¾££ž²¹>-èî<šØÕôj¢xZ}žas‚ËnЬ°lãc¸ÔÆ`»µ÷H÷¥×"¬Oƒ¦E{Ü‹Be‰Ztv¬ Œ0z)æÚÚ³Ö0*Õvu£Œ“É%êB·i3þ ErDSõ#¨RÝ×èëáácHõ6¯—­°âºfKˆ~[Ë£Éïcyq0ùð¦V×Ú~R¯OÖLÿ¼tõŒsQîßôÕäÍP¸8ç d/%1.~Òpe›¬'wåP˜K¬u—Á**g üÝí§þœtÄ‹½hRVi ‡Ø4µSÐfÝöÿ?‘Éw8…lá]š ÉS¿?$,`¾]ù/kŒ ”ü‚š9µåÿ²·š¿_ŽMžNÖ@’oÄ™ k]:y/õ2èÓó ìÕÄkk¨ƒ8¾!’—QÒÝÐyâÑÍ 9öâðLO—^üS»à˜Þf|µwÚ–2ˆúºäM²î`s£ôÎlëP2å)Hß¶9EW+Y™À˜À ),…¢Ïõž£>þÁÒb9r•RA)–•KôöoÖêeaÈÀ¦_Ú;Á2c®û/“‡hlÉ‹ÍtéÚLì+5„˜dóŸhé¸)Šk˜vz”;ƃ:„)NÕ”=NZPnMïéÅw„ÆsÄrëÿóòÞõn¹§`¥÷hÏ+‹K*9YýüÀŠ¿ßü±†¡™îûÙ¸lr3þÝå/Þ€>xÁ=]›F*ÿY^+@;ÕO#Ê1Ü;©è⢠¿±þàa·Ï<ŒÏUJÇ%6æ#)1Ö b‚ùzo-¶W(QvÎ]öùÊódñ-4rR·ÁRÙs'Yþ©†ŠØÃ‘KA˜Z­“ ‹2¡u&YÞQåZmíú>rê9¦_EÚªOê‹ÿP9Й_|GyÏ µ‡Jk¹±LcèͶœÍgÍg·^‹£kŽ)é ²ë¸l݃HÝU₃״ëtͼѱÝcMiíà„†-Î÷ wE÷ÙdèoÓ6èfÔ"§Ç'à1kɽÁ†*Í‚ –oñÐÞ™ZÑ9øÛæà%Y¢æ¸_ŒÕØŸœfYN¢H3BVíëÜï+`Ò`î9Lƒc*°üý¼š•,±ö­ ŒÜ×ûñ0W+Ó¡œVGéŸÉ¡‰üæ\Ó«þA Á-¼êS³Q·XŸ{2„q8–g$<þ• es*óŠhÑÛ'ú¯<>[X Éè"’ý£Ç×Ûz¹ÙÜi0aõŸîn^W•»‘ˆzEc™$¤2 Åü yùxŽªS¬ŽÃeÏWwûÙ»ôµÓÍS؉F3“µP뵨릥$åô¹™ô߉3PƒÏÉ·7èlÓ6Z̦…³FnçpZèÄ'ø3Ìœ¥ê[À_³”m†VšÛzÃxE·k›¸§®ßTX" r@cäar¼%ë ö/w/#”1ÌQ­ÉËòKjȘ!—¡±)_*á(“rìÿgˆodÀÿæaÃuÿ‹Õ•~?-³u\ŒÂ»Øÿ£1„uä/ðl?«¨ïŒˆˆc€ö)ü•`×…ª̾ËKaAÝØ,<öcõr»ÁŸ °»—á,LÑmâ¤yxÐ È^ò ÕvÌl—rè:[^½¥HU𠫽؂’5)P”l6›=Lˆ»j¹–þ­>>£–>àa.íˆBþ}Ö=óYBkÉ›&÷±6X+áYÓX ¿FÞZÎòdÛùÙ+·NôÊé×ý5©Nnˆòšt»ûò9 ¿‰SòXªT'_Õâ†üEû÷ÐæmOé+‰[“*råU´5!#Y$ã•)IJ4‰Ë8Áo”Œ¼\ÓžyYþºð~¿´“³ìˆWb .BÌÖE>³1¡Q$S¨(^Z4È‘ÂÉiÏQãÎ)•Ý{Å•pŸC'”KÒøõ‹_þ…’²v´áHaYBTô¨ƒQ&ŸË»½¸¼¢ŒžF…á÷ÓažšÕkûˆn,“0(1³¦ŸÇc `L‰ïßFÄ€7Õ.œ)™'£[½³µâÜŸ%[\ÑWïh͸>§·G¨ï\L\€m‚þv¬½Ù?ä}:Õ~«Å`îUY…YQ àR›VŽý0¡(¬ãn™ö]ÓûÇ@3ÍVÍŒ¸wq¶ÚÁºQz›D[-ÝÿkŸë¾õ •è ºèzG&J¥2žÙÙD¿E­÷–Ó†…úã“:ÂæÈýíq!‹ÍºåKi B&ï €X@Ûæ ²†;•Ø™úy÷\Õð.np&¹KÖ,+Õ(Ý&“ÿšë3ãéSÎ!ZýÚ5;EŒœê»€,bï¢ÄØæp›]D Lœ.9מA™ë™ÁBQD¦m$4õ¦£Õ‰Eì6n½¡‘à³^¶j`Õ;ÿæv‡rž)ib6ê+З¿ýëTóûLëx@êü¼Ÿz~ˆ@ajâ6…ÆÉ0'ñ8rK]'Èe iU¾¢?DªYð›W¡Xàáù 5 ôÙ8R[¬”>aÛÁ örÁN t£ò !œgò!HV\·ü‹¿n žâŸFúAîGUhƆGG¶žGÁº}è>µßŽÈ.ÁŠ<Ð×Oå5¾Ý:‹sVë­õ×^c–ksÍ þÝ”C‘ÿ ܺ½àÁÔ'Z> a‚ÑÁuŒT?Ò?³¯„{Ñ©yŒùηé<)|/°QbºÙ§$™2O|–Œý{ËcSÞLþ |j”EðÚ–K쇰Ó$¹•XÎqtR’àVZÒâÎìQQ")÷®æ2‹ÛxƒÀ‚ŽE²~ ›¨/ïÐ@ê@;W´5Ýê3âEg¥*ôPªQTjF„ñ¶žß·ÔËiÄ…„&ÿ^;QußAé?ÁÖÿâä`)`”ϳ,8 k’(ÿ¾tSY–á[éÿ  Ÿ©PU6wàpš"÷Ù¹|ðm¹¬LoQ>MÖbðdÅ4¬o§¹øI Ûp»‹ÁýÜȯü²ÉÙ ”C.Až² gM.°¾u+„¹´Žˆ~{hI .§GMª–eñx<Nb¼ôž”û]Л»ƒZ…hkëø<Ðö÷«¼/ì·P6¶)#”Ké÷m ]>悪·˜UI¬»ˆŒŽjˆ:âÚé;¾ˆ„Ì>Ômj(5)°%]vã!{2ߺ()€¹’ˆ©±<ó‘ØHÉ‘P@ÚcèÛD̦ɩ•ˆÙßêBCoXÓé=•šÌ9CyÁ>Ù…4÷!Ðz’{J¤ÿƒûŒC?j‘„K”?4­£ ±¤5"%$3?Øõ†µÒAk ˆËÞN8®yíñl‡˜î¹}9û¯´u®XiF•Óçúu6~€ý‡.‰¸R^eÄYLÛaÍ5Q‘~?% &KÖ’lì™ÂõöŽWŒ×ΡQ­úmU·¥jäšú.cLdeuG° æU5o–q;‡‡ü\û1Ïç°ª%Fù$+µ/Î úC°‹«Ì\îÌ}Ä~YL\`±Öf©[¡fV&†aï3€„Sîú¦Œv…Ì~*·([ Ë Ìb= ’ÆÀ‰†e1[¬ ³f‡¼µŸeÐeªƒN.ú:'ƒ‘: ³£›«0"Ò8¬õñS£#Ÿ•«ú``ÝÉMªO@5)Ã9G:(.-WèÀ:d&øö_._—ñ®æþÔ[™ð:Áb°Nd{h‡OF¿ØŽ0f mâ«ørÞà ê_Â~­ €'Wx¥"qÂî]õ p$UD° ؾÚß·Ø”vö`Y~UQóüÄ ³7&öFo²ö{„È’(<£øî¾.³>B€aKÈ“H)`ÕPš[:¨`˸ $ÑÔQH¸gØŠ akÔÚ8óUãƒ7+i× 3‰/eXÕ¬ w@±Ÿ“Ed¦õ +¾uÙ°™#€om°û€4öv²³q¸5¦SP5‡c-iôÖ–½Ô¶a±I|8¢6šS(òÓ(Ñ´¿œ—²<»Ÿ˜²Ï8[H‘CñcãžÂ‰Lüî:C!טóø¸ot4Ô}ý>ÉZ{RxïSèac…=w&娪 Ç g„û2ö™ ²@#íÒA_q—ÞW1¸žJ5‰tCO¦tÖ¢G/Izzm)÷'¾ÞExtùù˜ßŠ[_±§%i•ð ÆØñçû_8ÉYí­(ºfFג̳ÛÈçxºØc…VpyžMì»VÁ³}S£|k-`*ml<ÀPk¬Ï¢~Cïð°ø£Ÿ•Ãõù* ÓÑ]MiÔ(âÂXò6Ô C·vZÆúøÝÚ˜œ/WÃ>°×&óYO„<#†yš„T,ö@ÐÏqíLŽ«ç^r5!–v_‡Ç ´!£ïYâ`–E|oTÕúí Áeéb²te_gkûÄx“¤5%Ød >†§Xrx&t‘ÆÀZê7*ï+tI@±–É?Û"0h±Ósz‹Ip”㜴AU3×ÜÛø°ÆmiMËAgSó7UÝÔp).¸Úö`«0­çÞ]@t…ŽÍ1ÃPà ÈOAèÄ¥ ¨b AµU_ª§Ê½Ö-¿­#ÐuõZÌã]ØoÕâe4¿Ù’ ž1Ùê×eÏÝÍHRÍ%;A2&á<8%¼†¯:ÖlËS5‹¥àb2Õ£ ^Q7QÄ@IÑÜö$R·ž|ŒÉ?àö*"»_ŠAI[Þ—ÿ½hþúë_ö …±Ìë\_Òø?™à¹ƒZšüôÊçY‹AÎ\m³`¬ßLP™r¯ë%ûg¨ëåÍmÁßbãh¼…盂7õ…QTÖ ?I­š/‰H%Þo¨­<* …é—™¥ŸšaX\yÑñ˜øÒ6a}Ý$×kn”[¨‡oF4:þ\ÖÂï_fî…i-e#w#k°"/‡Sßô#¥Úìlì=]uN„×Ò­@fŸ%½žÍµdÔu Ÿÿ;œVÈóëY…À™‹RY²dGËÎ1*ßݺtî “YèÚ–X‹6ß ø&«LG.ؿ OkmÄZPGÊì9°m×±SIA0ÏðHiÊa ý úººfi1n~AïPäjýê[èÛaZÌý.æÛH½¶>5€éämøWß*“·Úƶñ[í— ÅD­2^¼áóF(ªPXàúî:L®Ìè2b£…Â>èë.3Ä£›rC‚\èý–ô³¨š&yÝ ;™%“jÆÙû3ů_¡á»t`^ÖæÀ6®k‰ó¾"kS¤¿y¦d¹›ïy:nõ©o„-³,ßE÷²ºÓS½êkAƒ;dªÔ«+žJÛ ¶=sÛY &iõÇNƒ!„ËÄ<&ð)ÆÂXJm>cß`!·©oY³møn¼8ðÕÓÊØÞ ääžž!'BXf®"4ˆ’Ú#y¬Ü£7l!/…Y ƒ¬–GzELÐ÷òÒáÿ^®rH×gB—’ÍXŒúWd€Öx“Uñ_ƒ‡cÉ„‘tÃzê°ˆÇUtáb•„_j”£Œž²iú÷ âéÝ;¨e=ž»Ñ*³cÕ“n\y˜å‡Ø,Ç”+Ð>^û:,I}]&MôÑÛû¡/C»nOm„º{³œÕÓt‰ß,¯t(}}>Šî ‚j»yÑ$ WìÙ$Gà œ|ø¶ÆÌÌ5¸³™6Hbý¤–ŒgäžpÒüå*WòÃò@;¯è8˜]ÌŽÿóþs€Øgúo?Ì1ĶþÎU¤e:Ío3™'"2ÅÃwÙ¯ZtVø†s#´ÆŽGt¢7‰LÁ m+#±Dóç»ëøúæ¤%KÈs±ÏP§yïÑ¥ãfzž+«ã-—ÀçÖ+[HÃ@ãÊÖ¾e£÷Õ ÅÒIáí­:SchÓòØ“8>&Anè"œ(k}¬\²áá">g[š1»Û=y×ÈÒrÔ›À{o»íCRB…Ô§¿¥:ø£­Œ°Öd¥uãK² §dÆ7ÏZ“–KŽ‚P–yò:• -ã½Û9d{âÞœ½E§¿ßQ¾öÅV—¼°Â1¶°atöÔ^žî—éI)YXâªEÁ§gDèë6Ç“Cqøâ¡U2áÿÍM×Krf3ª+¹Ñ)ÿ¶òÄ£3žºˆ°Õ—Y"[öYø‰Ç|e"¶ŽÖ4ÇáèlQìh<†j쩞L$¬©-±þŽÉ>ø!Ñ›YfVPÝ¿‡”ò,-t™1;úêD1 küÃñÉÙnhS>ýŒê…¤vÂßø÷Æ~ …‘§…ØÈ¾Ch?¸)°',ïj58ty$œÙi€‘‚¡;½ÿ%¶k¶Áñþ3 ‰CÈáúj#š—Ûj¬÷Îú}Žu÷á9’$s]µ9FÕãY· —ä±™M—oIàw6J~tq½4Å·ÁÈÆ“òÔT4Gè)58ǶýÂ^•¼´ø±|;¸U§Ñ.UˆíÁdlîüa~mPG™ç½ˆêÊ ÕÃÆîúùèM…ßÇúЛã0´+ëJí>Á÷¼ÞnwÉrbõÞ_ª$Ù‚“³Ò®­Až¯‘žH‚™Göƒ˜¢9–áÎÿv½ãòÙ39òÏÛUòÉ`lýTå^½7î0ß hŠXoqaq³Ã8œw¶nNnRán3sÙœ-|“ Jº0Q¯ƒ²ÖQu2÷©>3íÇlhRVµ&>èÂXcÓ<íÍ !Vøf*"~ÆÃ»¢¡ÿA‹¬9%Æz?t<€¸Ó¯ù =”´Æ·á7³†"Åe8­,aRøÐ`dS ô‚­RxÖ•È´¤–6ðñ»Mž»îÝ•V’šp¯a|f9ýÇ —¢;kMß³¯#ñ+s5ô³ØÞ>CÕMõEŠ ñOV–sz¡“™-èõ³9K ‡ò#\ñxŒ±^OšV»™äÍ–C²Âi*1°bå™'¤cé„ÁunjÕ>S€2ѹu†×à$2D;¦(Ïfã±²–¥j_ù(Ä? Ô¿ëH“âbòUþw5Ú:"*ÂHu|•‡ÉÔqU¦T¾viìhÿ‰ãõ0ŒÙ‰7#^¡"ýBÔîƒlðˆ×pÇ‘|Á¢;šÇAoÚK‚Ðx|¦õ8ôÁCw8¾B¹9%rëä…$cÉUrÅ’ägÁäk"õÁý8jp•¹Žï¼ÁÅô¯ U“+ÈT4ó4°f•ìÕÒú“Óý˜îÜäxžlñ~rŠ ÖˆnhF;<é7oEzÁHÛ<ø4Ú ¡ãxQvi™k¹–¢ÒMñø³o-³pŒjµ?W. ›CÕV€æç ô)w9ñ·AÖ›¢fu˜¹"¥;)Ÿ[¢^»uLI<¢*“É–ƒÚ«é8:—×û´Û¶¯\¼äš×ÊŽéøé"P¯ëjJ¿i8Zh‘жÚqÅê)(Ï"Ç”LRæbrcÁB•q±ÖÌ‚(Ò’)%DUÈ7%ËVêú9¾’›STšô#û¥ËûÏ ã'ïupNýëßAéåêÜNšäã¥Á¦¨=²Ÿ*jõµ–H ¦ž&ù°Á—Š×¯\,Z‹¶Ð†³'yÙõ1ÖH+œ&ñÌ·d°ªÄÎÁø/2Á÷œZ‚M‘[xŽ¥„ G¿a»›ÀÇ=qIÅÈð°kÛ¯”õgDB!ÁDå ýfÙ¶øH%öa•Y‘˜U4Å—æ -±å3%S¿ÃwíïC7\´>þìå!v”ÿná„ä t lÖHAcW%awÜÇ€MoÅ{èÓÕüA_?Iù |ÖSÚg -y¶Æ ªEY\TA–bÇv“,Уÿ,K®ž©ã>(|0/V.?ˆÑ¹ÎB“´¨ ©2±¹Š^¿µª-Pj‹ëW·£ùÒ Jû E³‚Y‡dãþžŽŽ”ì%Ü-‰‚5•N>£+iq¬Ú¾†ºÈå6üª]%ÚŒÒGŒvy`žªþ°‚]| `®Áש[˦Ùóq‹Ì¥Ê¬7Æà¸µK ëúyÚEM¬B.T‡27»Bâm×k.|":3úNÑJjÅîCèçÒ€G…vÎÿžCŸRís£b ±! »$2&Ò$/—aëoP‚#¼Ïkˆ‚§/÷yú4•™øó"òVŸ=zpB%^êÆ4ä+˜h®+mîÃ@Î7MÐ)…“¤è™J‹óÄÎ:†àâ9&°Þêû©ôn¾F1UQ®&f¸âA ¤AõK]zZYÓ-ÜæxÄ.°?ù-€G•ËUaÒª6\tܵ~L·xœ€cO¦ã‡•ýS -uEÆèï ¥ÏKåÙ¹¹jŸÜ,НKôª!Q Y¶:HS5Îr‘åÏ¿ß4—^_Ñ™¥ S2A%ºñ%’Ÿ–]ª[Eí&èêÊZ/“_8ŠUÅ…*öÅûI…¤o;…q- ÆòН /aTç?¨·ÄŠ„Ʊ ½-v Ó^+¾Ø°‘½ÖfhoÊ 3Å÷Z[ÄElžÿ-)_¼„`§À N»soµH:’ì˜NÛÔñHûcau1E¼úîb¾•}= f?30´ ½õsjöýËá)J^Î4ؼõ*”'LBµ*qg¤)¯ìtûp­Ÿ¡bkÃ(W^ñ…o#½æ+ñìTœ<÷qz“˜íçøÃÅ{Pn^“ÙF®ïÞÔi‘VÃíXuÔ@nì5äã4fÛÕX--êþ³.üÐïLäKŸ–ׇ(ij´@·2sSÀUçžé´‚cÎ/F]car­TåÈã)ÇÚÛ`^°Œ`÷Z:-­°Ð¡‚[ž³XdâÙ½öŒáìòžW¨vÑ"0¿y| U®íããÇÓ Ç‰­ù+‡7°m7Ðzùq. sõp[Â|7wÇŠÀ—²Øjdü4>Ìô¼{ öÂDgºuy’Úô}‚¯;âçÊE £2‘±X,÷#Ô€!8 Rr6ƒN›Ôþ˜ã{àqÎ?îÏfb»×MˆÑ¶§TñIâ‡$Ì¿Øþ$ ¶‰O' _8 —Äñà`7¨¬¾öZïçô„ûûK²)ª›„ïɹ‰´RŒš]ÍýZq·,ê—§Wzã(4:-ÇÝ!•žB¯ëß1 M.ÊöL2÷;—”ŽlFÚƒ)p¢ßO´v(u6W… $gŒÂ-8ßncã׺.³O KxàÏ·ÇÙ01²F<ð½wÈp‹dÛþNÊÚ  ’aMH®ÄØÔÙUw£bkÇ0ý”~Vš _åôPczÚØ\&ªnJÊ™Û"~ðmb5×Eû\KRU×ï±°œUÐB;~1dé*çp[bÁô‘âû ì`¯€oEfóöþ¤q^dC;; î­Óõ'ìôšðÂÈÊüj»ŠPw÷õ”f(ôY¥¯“+Né»ú—8̹k[¥Ì´émô$¢Ó–Cæ`J6¯óAÚªñ{¡•M2ª«ˆ²þ|"Rïª<dïFÓ çÓ€ÿ¨ÚðσL’~ªØ‹mŸœ!/ ²¦Q·Ma­^ØŒûì|æHèj¦ £ÏeùηBâ\p<à~Sk&òÊçBkŽ?‚ì;AÌRù!ŸiÁp«;á@†ÿr _ˆ*<¹”ΟlA…%ïƒ?‚Ñ8xqY‡ã+w£¥×·™”( ~“÷Á•¸€¢d:¶c˜€Ï>òðï—2 =ê†Ãƒ0-‹ý_16KklPyÊœ0; qùîÀª›§MÇ+Kèh‡^ž&^l°bˆ5!Òa«.“-hß&… ƒ;:˜OA¶¾ÑÿÊŠ€±™•IVè*´FܘGöÓÚ±JÈ´ŠÎYV‡èJj8%EíÈØ*ÕÎ=höûþ»èi˜Ì9w%Q®Žhü'üÌ÷\™ 2{ö×Ûẕˆƒ,ñŠm™Ò ðsKKÃOj’ÿǼMÊø[<‰i«+5X „PJ|”u¼gAõÏå’®ÉPY-TÝ®2”ny¿T|¿òš)u•5瘫}g¥1‹Â}I2Ô®dÖ¸Q «V èôÔ£í“Kšú²+ð©$ÕïFcH êRÅ,Fß )½Ê•>‡qõ\¤ÑõªÆ4Ç”ý¬® ÓM`ÓsÆÌÌù½ö”µ¬±_þs“¦—yò>T>j¿<„ï tZ]ãO†þ"€HÉ˶èßËÍ‚y×Þ§¢ž t#îX"wú÷‹fôL.ó’tre¥0*›˜¿Á…ÜÐ…’dAªêZ¶82u¡ÎXì1Œc¶E€-Ò ‚ò‰\CŠkÀ\Ò˜/izXô®y`B„,%€òd—$ÉUÖˆ1‘ÿ&æwç r§ëfó7$OnÂØ§æîiÈÂ^„‘“óf$m®rÚRœõX¯„ P Þ9ƒ.N“ÊB0ÇÊ9´×5 »ƒp3¦ÑLo±å]Nºn¢²m_ 4ŽÀGëðº™Ã^EoÙ^Üõ»CÖ6•Zº©dZ`³BÀОrÞEåÓr9Š(J–Õ›Õç“ 1¼Ìü¨Á…Ͳ¬â=XIŠ*8‹ò&þ[ŠOôxÆPMÕý0J×½S"ÂBª`ud!¥¶)ø¾Úº6Åꤰ¼3*5lúèÓt1“<¶ºÃ¬íüIìÏ'P…ÑŽ(bxDßáùØH´ˆ ~Ž n^®ªŒpyJüš»§²ŠñòX.£¡'0d8ôÒŸY §0¶CðWu#k-·«êL7H~»·ȧ¨ÅZ¨I:±¦hãH[ü³=Š“ÈÌW`oŸ¬ìÛ©Ñ·wë,åxÈÏwKáß!“e…¶® ÑÃq’Ñ«»ô»dà? gpòþÕ¢ÇÕŒœ¼Ö›E¼^µs¥}_y!¡8p¢KÖ¿ûøŽMÛ'å}þKp„íprá|D”cRpçvú ]`‘Â[§¼ß¸N£É)€EnËvx>ÇëÝÙt;{Zò•±9~‹bCS¯o…2øÄèg^UKs7ž"ìw±»”sPë‹ÚÙôÓ†ËÒ-©IµLÅA¦]Qƒ ·üô¥`¥kë5lÂ/ÌO‡d2‘8ìÓKËõ ‘™+ßÇr‹¯SôÇðbÄ)ӭĤyÆ‘1üCqMj™¾Çðd±]×çg:¿%¨ÇӃĖò©`z¬¶ßxkzÍöÔ”,x'ÃI¸ê™ *go ö¯L: S! £÷ƒlv“æá´ Ö"Pª@½Î{UI[ƵtÅWÂæ÷A 4l9’z¼ŽÈ¹ ÑÈ:ÝëtîÀTâɦ§•Û»¿[´> Àãµq]\è}ùò¶M „_KY=C³,–ªÃ“ÊáM((µ±Hºs‰Þß§T9?¿E6BíÚÔçÑ…Ä‘31Ð*Gvº5W-Ý0ö͉œi“©›Bõˆ¼$¡5‡ì0I ]NáœtsêÇßYú#5ñ5‡ M~@'gd{ãaHeCŸ¿¦ƒ­ØóÑ ‹k¨˜Ðˆ7]˜ ´ah®®9˜; ÒÓâ‰3o5^µ_ÅæOŸ×ô˜ï'/9ÜG -oI-wP¹hxmÖïoåx¥&¯Úõ—è[—»®\0€þz†â™ë={,àÜ zYœµC3è§E!©ôRIN¥BE^–B~=¢­ÝàARTÌÌfa—ÿе}‘ŠZÕïEÑÆÞhц¨- GCkÁò(*i0WÇ@b¿ä—½vùòó¤LÀBép…LÃe*q6l?Øýhì2UKáe¾ù/Çn; >HÔ *23dâ’l€j9åã^Wµ-ɼ{ô¦žÍ¯1¥½ 7¿a¸Ü »F˜‚ã£á'¶Í:G¹ú÷÷lÒ“f~¼O‡ŽƒÍw_ÿ/§Ö…¢7Ûª²(î$ÊË_Vh<[MWm3¥XÑ?•øÔ€DõËw]âV¹ËÐrFAp`‡s×k¶Nå(Œ¢ºýT‰-+Ö½Ofù¾øX˾:‹ ½¾Ç+šJ$·Ì¹Fá%¿ùxõŸ0ÞµÄ A’Jã÷]U`ÆŒægÌ©mK×½cÑR3É©üÒT!ö ²c§ã6„K¢m; ã0+ó?Õ+ø £¤ð‰BJ40¸…ê]„ ÊaŠ> êðð&tª]|(]K‚fu×^ö&ƒe:•ûñUow Bë¾.TrzôðlÂ,¸~Ö*ÃYYV—źKrïÕ[Kð-äÑ”tK£µ Ü 8GNêÇÈ´nRõϪÐNÎ)¤¼÷k)a'õ—ÈrÏ||N'Y@ì§€Î=:ÝÍ¢ú™–ùBf±:­],ÙÿöVkˆyM±HlN£Ùô Å¶â‰ø{p1é‹8äü.Aºt#hþÔ¤0f Í`ÕPu{k§Ê=BÒÕ|Æ”=×?…G³³vs_ô¤¿ë †Y`\ôO) ÏnüÞ¿­š•´§“HÇ‘1ÃS¥Lù–ÿUð| Ý”f]¸=~ò¥$5: ²4ºùКH¤oG·=ÔÖ¤Â2êCY¤™ËÇçíÍ\Ëøæl…55¾ì"m¡dÚƒÇé´Éºïw dÇÏå8؉l'”bãiˆÃK«Ûå{—"ŠŽÜQ>·U÷‰îᤂޓj<žžkMRû–£ô%ß[ûûº«º†ÿ]Œ¿(7Í0¤¼>OC´MÂG2}­‹Ä×Ï ;,^oUäž!Jõfä4ÏÃÐÃñ1Ü|¢KT+mgk°h[15óo$•¹}#çLmï,±ë-¨A?¥løÇw`ÅÕ´?òÃÜ"ôŠhB¦ ² ('¦“ª3&àÉgÍq #ÎÂ’h"T0ùªz'|cÈ_¢Ñ?3*Ú_’è £‹À?#ü6OÖäÃ=+.v,;7`«o’=KЬ™=Ù Îï@B b}-XB©Ø# C[yFÖ11ó†œ&¡*Q¥ 5ÜhNþisà_H ÐÄ@_Š)êÝÈ-]ñºnõë&ä&p-Zaƒcx`šlû*>ü²x6RË\ÅåxŒo'%º±ë/£€uUP¹®)`ž' ¸gN³•§Š`«uY×­¶®8º)ÔÍ*K¾âæÑ‹/š£¼Ê–39öš¾p\üÊ\’Ð7šÉ—ûΠõ"ÄÈ(ôýJÿ¸¹«*ä^ý8`•ÇL‹þ=ƒ°“oä«,ô~¤!7>O ª‘5úÊIÍpà’ïmmo†Täž;" ¥ë‘`I¨q¹ê[¶—>G³8ᣱ=‰§[Jȉ„Ýu¸m¹và+»& ½ 0@¾|<­•™H°ü ~‚û4=›öu Þ–xˆu‡|ÃçŸ@ùÌH>É?‰ýH°Û¤ƒñ¾m+¯¿ \ņ¬]¡ŒðöâbÌ®Ðæh«HÄ,%ÖäÎ]oϪ«Â9Z eEËh_EºK ž€ ‰Ê: ›0¢UGù2ý”ìkÓ<}'óaj›˜Ú±ÌŸ˜äV,þ0·á iãÄ^n†Á6q¡¸‹E˜HmWŒÅ±P÷À,Ô4¨¬¼§Q6RRÛ”U Åì@ßÉsüÑÒO‚6~Éî««[CY*ÿ«t˜Á¾X6eâ«Q<§=Œm–nx†—u¡çW•Y|`íp†í1ÏBi¡¡äå!MwBJVÍ?³ O¶Ut§b±k` B‘”*ÇziœÏþ·xÏž[>³þ%?d–‚[ZÏ‚¹V­épyšÉÀþ@Ix7/:3dèßaíßÐÔ­,2ÈÝ2·ðôrC5V/²Ô‘¯|þ,€þº1(ïÁ‚Á@4 #ác±pÎìºûR%÷ÿHœù8lãXÝþ—~o­r哸’ºä6¹ë¯îIO€‚z"u¡ 0øSnPÃ,=sM­°þ=J©?fI;m\©» Æšh„¬¹žÐØ0;l­Z¨ßÂ7Ú&»»…ÖûïÀúø üTù%ÑÚx¡*)o{*©N%ŲBüBz&tYzÞ üUaDwCPkU;ó’Êõ®wtM=8&L¿:ªWf¨V} TÞÙét>·”å¢{|Ò|ND§Œ¿³³›6ÙU—}]Ùæ‚î¼O:ðŒÁT.öÊþÂ:ì^Þœ>HKB"­*ß…ëÏÙ#%Z ÅGÖj£h©±SrÓñ&} Ê›ÙQìæÕ›¼Í}Bÿ7%ŸÖŨåÌÄÐÚW)PB0Ãö©ÒâœÍ¥ƒÀ¤iÒ"¥ÉÚYš~Vl¥ß2H92—¤w™Z,,,•Ðį¼ˆ¬×Q c—!W–ÀÀV<±õQê¥y=|âsë-Y}(Þ¿ôŽ%iæ²»g{U­}öŽI “pÔá›1#?£. (̲=ý5%…¢j‹I£ €ßl“rÖÅ™‘CÈvB×°ª(lþëÙ¥,³F™¥ã"H[´oÉ1¬ Ä=r¢K|¡d³·@ 4Ü'â}»ÿ± ¥vœMU8ø­°YH¨ö˜ƒï³çì‹tÔm׎\(^²èŠçØtîúÕ>4¶$O_× |­Ì¬µú+3—銖ðv»ïÜ•V¬Õ Š%güÒæ]o^gõ+ªÇ84·ªá^õdŠÓ¡Åîžu>ƃkª{d†¤?y¶ÄiXÉEB¨ÇæN(þ:Ä¢R+3ùS*&a>EâØsí~k‰ˆ9Çkô¥¶¦>ê%vÖ&Ž« ÇÛ‹ßշ¨ôóA7ÓIìP›Ê\:'Vš;©r?–ç ¼_ ðX+^N†°Z,±gP xŠþ3…£k ¨ê9^Ý;VnÐK>Ê ?q–0®XÇS­ÌyþX¾Úú…*@$Ú냤Jšì• õ²S·ã=ˆgõf(BÉ’¼e+’Ô$û³¿#"ƒ®.>Äc¥gê/ oaVˆÏÚ^| VµA„›nwêÆ:aš˜TÔÀÚï…VáÆx—¢·O«yóå߸ƒÃéÆb³£Ìš?°:ÊÃpÈB³ Hü[b¬¨ú׋NÀY‡ÀªXŒlP»Õâ±’ªáq™ÅRõˆlË¢[aiðþ¡Ù©8®*=¤H}ä¥ÍhÊoéœÏÅ~F]ß„š¢óïl¦ÿ5õ| S\ȽÂù{Ùšƒfû™>4€<¶ñN„ùN|uÉÇ9ŽSÿê[ÃSýʥ뭺/ùÛéèRð8sf¦ôи~÷´všš#©¶ãý$б#œÂgƒv ûJ xÃ5©¯/ åѸqz½ô’ûk`ˆä`Y¦5êô˜hRæ{tï90Â[máÊkÐ0Ü¡Íc(ÇÑRJ†ÓÔ”1 LÀíïçBOß­+á2à­6ìÑfˆúÅø;=_dCÏ¢>¿²!~‘÷™c¥¿HVÔs+Á« ñ/õª»ô­ð„¾§ý*órÒ"››3ÐÀe]G$ž&.ɰÇÎQáÃÄéœnÒ¼ ÂÃëÂ"sQú?‹w½£ÑÒ¦¸ó6­c¹0ë²{šãjF}h&ÁCA*Ö›`¸„š(`n¸2¢¸XƒÀ?¹î_hg©u÷I²ÌGvªívÆHZãk2¥öï~1ÿÎʪƒQjÈd .@“FFBQ×Ú‡^.ömqJp`ŸÃP|7O´\R.˜wG Ýšqÿà¾$§1 ~/fK\‹O$«¥|â"¸Ù‡&)´¬'WѲ‹Õ¸²ÜL¥‘¾iüñJžÚ†h6Ö‚waUb/߈CÞ3ÀÜ܉÷™Ô$sÄ}ƒl%b}Ú=ýš£( ‡5kè“N¬Ûâ€!@¹¬ÞBXŸêdÉ‚9wY cÌDøÈBoþakïžFøÓˆ!R®ŠZhæ&î£ÏÁˆÍ-1ˆ¨Ð*vìÎM’!É(pûpÙ… G_Üì?w»¸ÿ fϜևÔJÌFè‰=ö\¼ƒ(Èg÷ÉB'[¬MҾ—pfêÕ¦ä›ôléÒû—:ßyëg§Ç3o£N“Žõ«Vêy£Ãß[üÔ1ŒÑ¢¯Tzæ%ÂÌÔÄn?|=@¥Ü#ØÔÍ~ºæ8ξ1õ7³àá—ß8§«Í'Ä_‡é7†õ*ï$Š {» ª-}™Irng>ÅônL+âòS(!Øù ïY†,6föféð!{®;wx+Ì5∎²4p«$ïÜÀõ€¾ïsé*s—ìú–$é¬*tbí_o;›¹à«jMøÎ`¼£uÙ8jüõ6dˆÅÝ;ß°Ñ„6±×w>ΈDwìú¤c•ßáFEhZ€SnóDsí±6Ò[¡ •Я›ÚÙ!¬pvÎq[’J²á]% CU¹ÝKqŠvzZŠsî6AíÛ #Óuó!%Tú½Â~ëë”*üY®cè $'•NfÙœÃà|z‚’»ò!Ejk{x#{N¾í[I>’éí奨¬Kí´÷}nöÆ-p_OO9¸ÓpJ–Ï­BþõB)¾ü¦®lSq2ý–wXósMü¹=b ô\’mý÷œÍLãÜaÖ4×®ð\TVscÛB-¹ÖU/ât6uôÕeb†'ù/²ÛÛöÏõ¹.Æ®h G˜À í ÐA²æ×ø„&y†ø*_ÈQŒ‡ Ó•#/}j2Otzÿ r§«¸X9aõsJ7ÿŠerh$ KLpõÁ+m&æ`a»U¦p·3˜U¼Ï“hý#^e¿ÚP×E2\dÉæý¢¾­Nc )¬`© Òí^Ð:¢1Œ¨€&Ȱ͈¤,²jfJ¨†M„5QîÊG6gxMo´l^Óç4£ÄøþPHRãZ8È9A_Ü‚ÜݤÁ[ªÉ‹Ú'EÚiT©,šÓÄÄ~Q*IcªfóÁå2Û™š‰fôó×ÏzÒüê^ÝÃÉø2£:UM Ȳ(á9Z#Îÿ…èïû‹K‰_¹«`ñÜ­òïXÎT¡e]_.”™ž@”%¥gLù”éÙ²­ÿ›É NKá"¾ŒnóNØá´yœèÅÌ¿~ì|ÖCe4½’΄± ?£sʬƒ¥ÜsÁòºM‡EÏ`x¶úü ËÅÜß&Î`D//@%…V*>uCíiÜ~.m<äŇ»s@?4?0NBÝLö`0«A³H$% \ðD Ó]ܧJ9KÍÅžáXŒØWˆ$ï8^vïô‡©Î ¼COk 3¼WõÝÎ "K·& ¼Ü@/Cyæ°©vL¡‚‰³Ü!¬†Á¯ÓA•S‰AsæûÌÔØ©iŸ!;Èá€äöä™ÿ+Ê£aÅMi¼¾Y.þ6ö7/3Xç,wLÒ¢†ü~;f^e «k‡§ ¡ò¯ e+iÝM«Ðµ =D¹âMdê‰8 -Åal… Ÿâ]@Ç“ˆR©åÞR² Œ¹}mt3u.t/l”AآݱãƒÙ,f›€ÕõGÀ¬åãx”Öt15aú¨Ž÷æ^BŸßñU2<š´¢ËŠž#\ Ö% Ȉ˜ÿ¨~6NÛ\5ÏŸv$öº¨Žþ߯e[Üs3º“SNmÛ£`û¹ÅêQ}q@8`Pª ª"¾K¢Œf]Å!–’n(fi÷»üÜ­;C¾åí”6­àÏL<¢õýƒDZø‘@B䳀¸j+ØYøO+ .À ›à1½ìý[>Þ•s‡ôÂC{ý ìü›e½¤Ï'–ìA”ÖÊy\‡Iåf³½¾3ªhét{z&8k¹Éǵˆ˜ø~Ì⤧±h¥pÎl]è¹|§;²¿—±ß¡nNFÈKm¸A ºÖGóðâ³|õKk$Î'ºÜ•;04‚ ðÿ’rW‡ËÀÈB ˜’ë(ïü6C!‚NËC;&ݵR^/Ãa½8F1¤¹®, ½ÆÅ(xŒTðå›÷kX8ÅB§Ñ=ˆ;Û#+ÍÓ¤óïêÚ­<ƒk­4°Áôˆrt*ÉÜR§Ž/Iš,{j蟺ÞMeŸ,B!Âû‰Ù`…²2o&#hb"Tšv3¡Mwlã&Ì¡„÷ÊH$ƒ%ËypY“\Øš§ëÓÒaIüøÖ6Ä ¾zá³È-¥«ÉqÃ&½Ò. ùH¸;÷­¡¾/añÝHÊ7¢ÿþ%flåGO\q (9- ò–Öãn‹] ¡âÝn¦ƒc¥o€i¸¿¿ß%FAE½`*¦·îÆfÅ Ç=ŸÊÍŠ'KI !ðÅÅ~}溄çkÎH©óœrqÀGŒ*"ug*®Ôø;¨þe ïxÅp$T‘,!£Ç Y\<Óô^Ó—Ëiri%³¹I/*i䉨x'Ǣs*ËáŽÊü_Çr~QÛÛ·:_™nÿêv\ð4}ɦ.¼ž [Ì8DU}uâ§5eªYùå»"(í[ÞïÓ¨ªÇ¥$cv/S%²´YÕë‰cw'|ëæâªŒ¼ŸÕ{î4…ž&²§J—û|ÂÇuîAã°>B« äÐr ¶‹Oe¨äG{ƒ/âáýAjcœÑþ9š)vUš¡ïóÌŸeTÓPñýYó¿bd&ÊÔP”•€Ðr0ÍØP$ñ(äÉI’H²6}àÒ~ÀzÖ;~PUã>Ò›s¶k¿%Ôý¢²«Å¼“Âú Úƒn¢×Ó¹ª·I¾ók– œtUnè¹+žž·Ñ¿¿×/;Š"ó<Åm"í)νB õ`54òGþºÖÀ0šBék–dØ ×N_0W† CÛuòlšŒ|ݺñp¸³Q7Ä*<Ø.‚Z!i8g©[0+9¸‡%FÊÕɾPÅp-ý¸ÏÝM´[PÈ Ó[jDeœˆšr÷}l8¬È¤B ñ¿ö1æ9xÄ.('ˆÊj¦*Áíä­IÕø‰hy½D7 Of,5¨!XÏ TûýÍêÓ×  œCje´mö(oò]2:›ÃÛíÛcdrÒãkn ™a{<üO 4ž¾Øæ®~ÒŽpÌÞ[f¹ß)$2¤™Xœ©î¢Q½\/šê÷‘ŸG]r/–"|»LÎhG ©sbDÇÝ×ÀcøÉ€^_T’EQª&<®Y†N±¤÷Áž 7ëp8¦«ÑfÅšY଴¥¬EzåRˆ×ÖÓ?êÒêñÃþ»õßËÑä¼¹KjV]œ{õÎŒ·Åy_7ÿ¶Xm3ð(@ æ3šµiIé-‚ãDv‚‚Î!›ô½§@5¬øwO#0p ¡úBvB¬÷ûÎÑc‰zà ô¦Ž3›üåw‚–2|DŽԳLc½Õ-Ø-+IûÀHá+nßßÒµW]²Gù ê"ÜA‰?ñòøMV¹¹ÙN‰£ÿØ-ð/2g¯W>ÍwŒ†ÚŽ ,(•ª¹òz,\˾þ·ûÈeUëÁ’ ö_”o…}ö÷¹"ÈÖ•,$JÁ=&aÚþ‹<+p_^åg;EÃ3\,h‘£¶Znöt^ù..W}ÏÊ‚Ûbš"añª/ëð‡/Å÷V²¤ÞÖe+Sι÷{£øP A£ÌH}v`êñ‚¨šwMC¸þpsay‹~Áa³Äþ)ÃÒÏøÕ%  ×Å4SÇW÷ (¢ð…jÑT꾇Þ|I‹·å,¿?~ßëxp9B Jm"‰…>QÌüPŸä'ÛGõ|AqVˆYPtž¡cƒãZ? ÒÝï0#_åÐÎ „˜ç³¥€F/ñ2äügúr´¸òÑ:wlP¼j»|Â]ªû€w…‚Ž}Gr´‹¼¨A6åe­ÝÕ–%ð´È“„ýFw§±XÄ X°³Tþã[LAm:QàtrMmŸ(È-‡6¥fõ¸ê`M4`%‹ñ£nЗˆ.zhó=#%´ ^0À\Q`¸Mè¬\ïs"{"€¼—£ ¥PoxrÆñ?H ­Gl˜^ ¬wççø iWì¦öœb«g¯ú°$ ‡¤zEd³‘ý»Ônw'Ü!úÞYY=éÎ!å£ä@¡ÊÿóŽj5›Ì A õ²ùî¦Ã+ggâ©fðIÔ"Œ%ÀñžÎÿðJÕæpÊùÙe"–õRu:<ý„¦ø´;\ª»kÅf1=• z_%"w.•ñ×·æ*Íž\Ù4T[ÛíçÓ)îìvÁâÔß`=ˆnBQm+DÅ•!üz—z€jðØÌSkóuóz6šÂ? ã†<ßc…ÿô¾v“A/"~Mï^š‚Ží->´¡mí Ú@tœ¦7“¥*|ΣçcÍÎWÜYRá´ãâf#ži|÷Áš‹¹Ïz(´u=K…öèh¨V$Á¶EÔ» Õf½?°zñ"ˆ—B|MÄe|ä ¯„š\ü»»N,%ÐI Ö˲X|x ?SñÙ‘2ižùØp{O¸úÞ³J–N«Ôí%8—†‰ã|­¦zü@ÞÙ”ã%~çÒÆJ·Љ®†~ àÖ=`Êî ÁI¡A*É»\-YÛ\lW5UÉZŒ«Ï¼kàë¼MJû¯š,5—Û4ŒÕëÅ[oźÁ{&ØÁŸŠmŠJ; »$Ñx»ÈXÀÍûøwÚcÜ_N» pL\wø˜¾˜Á”Ÿ)¨<ÍCñ¸€èÖ¶öšR¢£Úµü-õ•ÀðLØéóh}-^ NÝðd6#é&®atôbXZÏ>“ji1qíaøEÐ}­ŸæÊÛ,£ Œd«ãöÀóÓÀzQæzUˆœŽ~îÊ~íë •8Ûƒ±.šiÃD:ÜÖaÞTì"ßíœCM‚h¬‘‡Äßiyûp½ÎÂŽfÐç‚9í×÷WGˆŠ#úú悱^S¶ªïÝœ9Ú”IhD'ȯ‰´Ö6ØÞ®jÿ¶Q Ák§AÏ.ŒIÿ¨6Õ§9(ØQ¡ö¯äq[x²1ÌÂ^œÐý±$•G>zyda·Ä3Ö¯1ƒ Úk¸ò{ö—$ûhg÷-̱gx´?î ôï‰ÎOÿµƒŠïäQFlNŽ::.QzŒ[âO­¢{)ù{œ:Ft£ž´¥Ö ¾ÊñƆ¤\Â*©’±¾ý]j>Ò଄õ×:YgæŽëÎòpñK†£òGì÷{+—ül$ŽYw–ÀG´JL’<ÎUB'É!l]ÀNü’8zˆžÃ=M®Ž€äÝZ©u´EqIXnÿ°¼ó~v`¢ÖVܰ¾ú[ꎈŸ9_Ž|ÿ?rÏ·Ò[,ða¨©i¹‡µë„Ëì¢F¹ûÂ?ë—ÈÞoùbÍm¨ýtv À'tYWFÓ¸NõF¶Û#6{Uée*Øv¸ ÄO®L2Øàç€;ªï~ªWÑsìLu¯ÇõÕObeéÊÿè§hj,í¯Tr‘?Kë·Ëšµ™n½5ùJ~žuùZ\…Oä*Ü›-ÿ³Ø ³æ›}7R‚RVmZQJç˜å·`À·Ä+í Aÿ‡ú¨¸¿DS<‰s[ºè+Ýr%/=ôÔ8¿IN ‘]¥Žék0×ÎG#7kûûÐMÛ½¾’Çp‚fgœ4 oîò êfhû¡´?Òs÷·µ!û(åaµ «Ãíz§<_+JAgâÈöÙz…”àâX`ÓÏüzÛ= _53³'ùNñÁï0¯»+5ôâR³,'²³E;““ÂòDss(l4§³ÇÕàäˆq†©M׿ yÓñB‡5ÅÜ %`ÌStl°Óøþ–++8›Ò5 Ûî,!¯ñõjô3@šíï_¥8ºkHQýg4ámo–¿S±¡}ïn¯ôË*r©!*cß`$Ab†˜ø˜ù=’²¸¢Žwx8Š)¤vg† ™ï¼¸ø˜Q̸—Q±ûrIî¤,>´È>šÇžu­Iç¬LŠÕ`“õÈ¢âŒËW$Ó¢ò³l’thB‰ÙR(T½½¡&B{‚C Ë&YÞ¦R‡ Ö‡lEKá„?Ôô§BÑ¡ja—qQœä †.Tø­%†(z¥ÊŽ U?ÐJ­Ü­Xù>ÐëÅèß×t±h!,hdƒ8øèZ½ˆ7lOb颀Í#ÕÞ9¨më7‘ëBè› A¿“ý X²jö¯wÿÎ? ‰^}˜NoÿæDÁëNï¿WðÅPäHðÇ O.~{*V¨—¶ƒH;È’üÞ!ø:^¾2p?"puÞ€HŠ«?í¶Mý•P%PBòÏ(¦¦«ú:¦cK Ó¢\ Ks&mhÙ9içá€<ð"]õåÑì2Òï˜ÜÀÏBë"I +œ>Bæl;Ä®Å"æ»äP?]¡ ¯år|NÌÕ,;tí­àýßð´ Ö˜§˜?-ö<&ðd/çÏÅô ›ÝÐnÞ2uåÙ| ÷|âï\£&n“œ`è\qÙï˜ïEhUe ´´¹¡ •ÒbIï¦ê9„&$:€l#Ž’°ò• ¸_öSæÕ¨$iàzêsi²Ô§—gìiZh;â‘Æ) ±yW&þJkI¹FR³|‚i¯¶†¶½i O.½’ŽËðÛ)s›sÙísÀ“ˆpµ\ 4N=ÛsÎì1ƘP‚å†/VJ¿Ô2éóŠße—~ûEôÜq>"o­1"Èá¿8ê#ñÜ“ë!4 \>lRùCÂúÄðª‘ZaB*ù‰,ƒö/T°ec@¯ë&² \éÑ•v7ÝGQ,ZB÷ïRB¬“VÜS&ÈOÉ¢úÂ9æe@Mçš²©ªM]€B|‰Ø«Á]ì3+™'ý8·æÐ¦¦y!˜¼X«Q4FჀ`Ww Çø¿M#íj*+ñøîÈ6¨•ŽO5\Œ›lj¤¹:³©70¿^[%:÷³CÞ4"msÜcfÉ–ÉbŠjIØçh— ²ë¹RÿÒ‚cÖeUÝÍ+Í{hùΑ4ï)gb-XiYÏ×vïåßÛ”ç‰B`\fdé›”‘üµSýnhf­2 ‡™Ë¸Îçs°E§ ¹·.Öõ2øÙR‚kuB+5‡+ïo©–ñ"*ÀGY ¤tP=¬Â|ðTÊÞ$FM¨ÉRcá£]ÑkÜN…l”Z6¨ˆÇ@Á  ÁXÜ:GœÐUÙ@)€05'ÿ†çæóÝô¤LÒf8¹™sÓ*Ï EŽòÑˉ4NÔ;¢wú(’|y”‰j8©i»”ƽ€qûé¯Ù06uœt¡Ré衇‡jÜŠ$¿ïú”6_¹%PëF>[ÌЮo-Ë™B"ð#a…ü™v HAQÉ)ÊȇJÞÐúðÊÃŒDÉö=Ë xüìÙ/稤|*ÇôÜü‘žž“õeï -³ ‡ÒÀ†Ö­„a"¶ BÉjhú¸[O o5]§¿£ÛÐ b"”ÝfóQ\êÔ·Œ›kVˆ©ö ±ÏÄ'ȆÚ”ÀúÌOÙ¨çÁv“šÖM w¢ÑTý²Ì’xpÒû¨{e…£ÕáŠð.25r¯þð¢?+c®i¾Û«:©U°dZNúk)\‹øôCŒªï2!uV*;Ú™Œ:{Hf $ˆú¿qØüí„ùÆ ³pà³Á$ý _Ý’Žk»µm‚ù4haÏ÷˜ë5G׿teÕ¿JUÛ‰i„ׄ؊Ø`Y_̺lç_¿Ûݤ6`$úKÈóðh]\Ò¸¶'Þ(ZRèJ¼—Ð…Á²P]”Wü,Û}Ξ Šì+/­ˆŸ|Ò2ŠÜWNn5™i«Lý)°ë¢Á£'yöÊE³Ç}q „Ÿ¡$ݶë5•ök5±±ú¶)ÓQY´| ¸K¼]H{e–JÁ¡:øMHí @þLª1¢K(%è=‰!å:¡¯ýàˆeþ3¼½z¿ÀÑDn¿u ­™ˆê½s͆kFö"hæ×Uüw®X”2†çÓ¥e¿Ýrû™1Î$©?I ÅÜPð]¸ˆ}·qÿ6›ÑJ» äOüî”;z¦‚5CNªm'1;Ð;„.ó¹û#üôá̺é„ÂÄ©<~&f5­²{díOªªÈ!F숾H#ñýº‰‡!^Ò­QSÑ¢ –Ž®ËÂr™TöÇüjœnJÑ9ªöéÿ7ZE<¬{q×PY´dÞÈQÒð+ÿ]¼¿;9D 0Ð<®è›Ø,Šm{ðìsRÐn¸qÎE•›¬ŒC ÌUøý00;Ø©ôØÛ$sD¢«Âî²¢?AÁe£‚ÏÑ鑸‰åat¸¼êñcªÓÞ’{$ &s»C(©ç!#·vÚ2t«²Ô6& lþüÔð aF@Ý‚°0 Qp´D…×PDC«sôÈ©Uh4“.SRÍS84šÔרÂnüá7ܯ &¶Ââ/+̰!u¥¿–x:n25¼6Iµ”n^œ¿æŒÌtÏð =4VY$lPR"iwöWÚ9–t÷Ä}—|~í8,'5 ì-‰“. ☟§Ù#/LÚs¡s,Þßdܸ#o”1Žd±âìŸâ“ûƒZƒ×w2$Û5>œ÷'6‹ØMÖ¤³§´SrHQòÒhí!‚çäpñ$ MÔÈÌãÍL$_u×Zù‚6Ķº2(õˆ^õ+‰Ó`r™7€=Z ·/É,,|‡ÈpL“@QÎxËñ¬ aÏŸWø¦|°©»·Q1m.æ»}¿ñEŒ?¸.CJÄYÿ<¶~’~82üÖ#¥` ŠôFê‡Ëp¼*ñÒŸÊÆ"[ç´ VK¸p1-Áå|\jo1/þÌúîäw÷ÑÝüä¡­´ŸkÓµîâ°ðœ‚Wnr¤Ò8=pxàJô„½8ú,°ÚÉ5W¦¦»œT K¡‚Ç[Ya¹,jˆš+݆,'¦1óß¹³×<‘l8X¯÷Ó{º…ÄÝßps@Á㈼ë«Nû¯sᚘʙă:lu…6YøÞÔàfãQ£–×igŸµ¼óçñXØòþw"—ß1¬@Àà‰‘“J®>LWC²îÖíF&xÞª&'çd¦Â Ô~ƒç剒Ló˜0ÒÄG›,M¼­¨º·ò°tâϔĘ¿Ã×p×—M¸Dä ü<އ]M-û]ÊK"?&p¾×¤kë¨×ªÆ'Òð‰Êªé¦é¡Íϱ}il9à2R€ •wLlaÔô¦¥å¡%Ù“ò]bÚ>ƒá|™7£Ê<‚ÊSyXýY¸FMoh뙘( ŒñDõëWå+dÒPÞ^Þÿ8ç¡}VhÏKÄ4O¤bªt½}uº{ÐDÂl<ƒÑ€ˆöó s¥àŒå ŒÎ²py¿Æ®uü Âå MÙCd…òíâp$©%Ÿ‹ÀZp ércM)Ç©Œió‹‹:wl<,SPƒ2ÓA|½5ŒÀƸŒÃÝH„ÿÝ„o6’­*ì¶ïNZR¬`/þ° Õò>Q`†*À“t/þaÜ$“ŽÐÛŠ¥{æþ?±åï:_ÇÄŸKkÝM>-zPüaÙSËp&”zõÞqøj|ñ~G㞸æXÁNÆdñ+ IpU.Ý6”]ó±˜Å¦VõŸ{‡ÜF¾ÞÂ9;…(âúãlU¨˜€¢3_í‰Æ5qfœ–}¾?êmWBʤ–§ôà‹ø­TN…(Vh2»,Ó×ÏÈÄ éòdÆÊ_9«,(%L³¿xgD¡ÿ|o&è‰d|$É­"P‘Œ[å0­ÛK¯þÑ5¼¨ÈHÇß­Flˆ{ÍÞÿ5D“Z¼ÏœEži£*’²1Æ‘ ì,¨'~ï©#;ó‰Y½¨;\—ˆ«7{§¦;UÖÖ…UqXËXлÒÞBÑð²cn3ǃ•Ëg³ô¼¬åJJÊßñ XnþÆ~ˆ¦Þ\öM§pa|r‡^–,ÿÎe¶l“ˆq%M"9,+¬ wD¨Ì:YËîT|¬["Ó¬{'6‹h–•– Ç7AÅä¦ËçÅ\l^[¹¡ÿlå}ÑV}Í¿˜XÜ\ÖÚÐØFwõù%N‰œ–¿¬-‰¶´Úãø§˜LjÛ rZ»Kë.Ëú¦sN¶›ó©èŠf™¨êZ‡ŸHR\^<,5`›tÞžo'k|9ˆÁ ©þ©uƒI'GkòÚ9”bH‘º›3Ãw¹ŠF´Á3qˆO¡˜—þMj6­_ú9ë«2;õ…Ù£ÊWÉf5÷k”WOiõ}#-qÕã$h¨:àQc| ZáÉfø¬ó_Ы”#QLsäѼ±¥ "àëÈËÔÏÚèUÄ/¿1Í>a$"´Ÿ[ý6òÔv2žÔ)W‡6Š—âÊk}ÐUÝ¡bbD»J؃-͌̇Oìœ ax¨¡xyD÷duGÉåðYO¹ÇÊñ‹±Ö•ÌVd(̘ז(¼»÷@'O–¸:v ‘¶È¶*a4à‘XóCü¬ vµ\ãIá>’i=®Øn³¤a+ tZ-køMei}Kù.f^vDµø—÷]M$žyñ®eá—ikýò×µk•Ê1E¥e?‰˜õ½€|7&sä¯Ä›êÚ‘¦CŒoÒÕtGíͦ•««“;úÃ7úeÜdþ@ÄË© tàôn<ªu]Zœ«2m‘tz’HY‚fñ«CªUñD¨^W¼„z8Ü‘ÿÇÆ3™½+cíÌ£ž¶`—w<ûÃÇEet¸µt¸óºåÿxNùeYOáãÞmºñÞî©ßÊÔåÚ%%XÄ·Ý1ªß¥Ô«YÎuAÅ¥óƒVJõÈ.?EFFŸ:( 'YiÿXnš¯¼Žyd´Þ cKÒ:kL—‰ÈBug©©3 ÷!,0s5C}!$Õ¸Æ5ÚyÍ4÷EF½5±"žÈËã¡ã¬"}îåÚ˜FTešnåO ,cÔr›Âhf8XÅSé…“÷N)Z<%VÐ@ˆ6‹³ÿacdrsgL«ZA±Ê†éS”˜‘þ–SàÕG+³/ð§]”OKoQ«ÊLvñ^) yÛ'ˆ+-YþÔŒ£èüe£"ƒÝT´6Ë®s'ïûðÕN‡!Ä}·èÄ}óvöYš$îQcg]-o¿SãGY’ìÆ“æ6ü~ñx$+ ĥƗ—„V)lÛ³ò¥=œ·rp> œÙÀ€¡EúŒXŽj8*SµjÎN}¡¸_L芗zdJOW_{Éü4="…è×YÀ̘Êß*‡ ŽÔ`ÎÔ¦Q òT΢È-‡¨ÿ[cLì (ý@8~2‹­IÓ«;PZOLŽoЀú÷1á¿ÄÊÚæžü“s‰°5èðÃ}SÙCþÜÔ-:U -kÅïçÎ °'ÿ09âsê|°Ñ^°Q%ãìÝ: \ÁÀt›IÆÎ+û~ʇÊþ;Ú3Š\_¦×Ý6‘¦Qƒßà­½äe}b­Ñ$GŒøra÷JðÈ)n³;¾Cˆ¬Ç1XÊÒ†'Äì.Å:¢4ÔP¡`‚óMf©Öƒž:øSp$oƒ¨¯ã¸=‰Õ²lšRgšTÔ6w¼IÒ&,Mac9waÞÓmXë6§#Q–¿ÅU0t~ìÁãÍÕbð;7`à ÙK?‡cƒgvÉ­½o·I!;¬`†•²â0‹å %6fƒWºüR!åG/ÞÇy¨6ùêf/Xv‘á=žAh6Ÿrùèi‘ùd÷À ®aÑ:7·rj‘M­ÅïïgL"M:CË“;rœŒ>•*o!'sçI£,ç¿a)\!Ü)õБ©6õ&µÙâÈ^NPX+ Ò9’›ÐSów÷Ãy[ë¹-øä hØH¨¦Uàˆë5è’ØnîjL¯¯ßDÆÐ°¿cuS!F6O×Ê®ùÏY;Rà“üYŸÌZs5§'H/@5ÿe«³êŠËÊ%Þ bõ¤mSn”drìÿ†\ÒÂËâÙ(NÅ…>ëK‹ëý¥|OÝ}E~Æ¥Ó&â°ÏO“[¶å9bë—xÚÆ-š£Kç^ï›Áql–׫Dº$Ü!+5 3ÚE¤pÑÊHjè o:o&5“5n;‘ªô›eFèíu/›?¿µ¾~¤¢µ,¼ [TÑ]VŠƒ˜’ÅQ( xD#¤rGÁËNÉ¥¡‘õˆJSù-ßCtœ šd/- $ÈQÅ’Î<×h0ÆœâùÐÅ‘YøÎ niæßŒ½;ÕW,öU zJ´=²‡×lU¡G=ebv%U…ÓÜKûýTJ&l,{¼rx#8œˆè^ÝGÜŒŠÝ-vt½æ‡üüüm¥®F2è–w#Ž5ÂpoÜ·½·@V{u ú+X[}b½ÆC{»•ùÖÁÖþD~€’’bÂÊN9-.»þŒ¢O¦ãR ¬D{³¾L:ºo™™aÈw%YKÂ…Ûê-ÜIt,ª£œNÕŽ8¿p´§èhÚOU¨R÷)-ëfâ+-POu¹L««0!I®  (‹dí0˜13¨ý³‚p^ݹÓç$£g „즾u’9ÿ)ÃuØÓœðc'‘ï¿u_ݨӷ#1‚Œ×Î ½ÌŒFhÏ6ä¾ÛWB!×[ºDŽÀç¨<¨›¦vz/â¬ó Fé{M@µ º»øÖÈ9€úOVš‘ló®,Aì|­=é©#?À<<Ç n@;²7AÞœLjGíДêÁXmKtáÙÙel%­SœAmÉP)¸`‘Ø‚yÆO2fÙMdí=;M.ÔŒZÌäI¾1I#Y‡<‰`eH‘• œ•ju%ª¡GWsu’H°ˆžŽ]tÒ©:y}º›¶¡ØrίWß>²ð6Áù&Á¯©×MÉß§]eEv¶ YQã·ë¾Ñ }ѧp—3»:dI5F$}Š»p»,ÂØì…piìDcq’ý›0Óûã ©(ÀN3w¬#äXé¹#=™Hr€u•‹É@b³»SDYØ1' ±}ÏÓK#RT_œ¸šÈW«Ÿ;q/j~{SªNï§­$‰ÎÞ¡˜9—b='Ú{ÐVP\¬'Kµ¿ï§–ñÒYOüß;³Q¼U £ï²¬pblû|†óµ[þì·+ã’ z|ŽÑwòWwP‘Ûh{‘¯ÿšÂÿ¶Uÿ˜·iÏKñ/Ѽ·+˜B”óAgÇ‹X1e™d%ºH³HàGš¿ +Ý;át¹öùëhðÉ—õ1ÊT(qàÍ‹t˜)-köÌì¾½,äÏDpæªìÈ©ø*cuÝGXÖ $Ö¡ ó$AÎÔ"øYþð‰‚:Ó)ëÜ%JJ·ûÕà’@¥Â_S8Rj¬q@•™—2é‰ ÕC-cBÁˆé…®± ´–9ñ?±M0O–îÆY]ë­ÔlÕß±“i^è¯çHÐo(€ó’»o!–Täax=[άªø*¦w0cµõ ôŒç !¬ƒ}aS$é¥[Á~?ö·•ŒeWN2”ÿZyõ­ýëµ ä˜ëIa¤6J=²Êo¤’vŽyG¨tÙÝAH×,iÉghL'cÀ+‚¹¸+4x"×-KûÛ8oÁˆê[סò ˜é˜`—ÒK‰i}FrBµ”8IRæ¤Wõåó^<Q…Ôtks9Ñí9-ìá㬙Ar,ŸNDh#Ï`2à¹v6r–°«øúºî‘ú–ÞžÖ¡?  ÀnÐh8ÜtžÈä/Æ—¬‹ðÒóòêþ± ¥}SÇ»˜Ò?Èýã ÿƒ"¸•XЗ"Þ‘ÿ·]Ãu˜˜‰ÃõíšIÝq…lÜžW½¿zx¾:Uª” ­\"<+[70¿RvåË`#y܃n‡äå üSôODf1GX»²>p¥¶fÙ{MNJG³ñŽrÕûg‹²4%d³»|IÃy„µ‡üa¯(ºK.süGôw{¯<÷0ϸ/tøT¤D">"ï ªetJ@]ý‡‰ YéÏ2+ÿÞ{g(õ(Ü7À!(ãO ,D—毢iŒb@]½®‡¨·@!²ˆAh}CäŰmó\Ú~´Å;['Sðn"x3Á Z©ò»Aï±¢îÍoŸ‹dí¹WÅ3‡î"öMN9{½¡ˆ& Í<ʈ,.rªR¯ &Åì©èÇÿ—åçÍRk•]߯Ð;Þ·šk=µˆPþ„á;@nì5¤øB›yBÒÙAoÄÈ\6éâ¿ý´ðÈH‘àÓЮÊ?(¬"|ÍÕ!}ÛNé/Èpó®†û®m™àãÌ îå:ë€ö¶!bú­ƒÀ_4 B—? ¿¸p1peê8f{]¤—‡ÐÕ„¾m0º[<~ °‡r¶ÐÓ]¦P¯g€ y?ÎÓ”§Í Jg…ÐëÏ Fsš¥²ùÓ5èw´ØËÓ×Kݺ,7}ÿlÅûõfš‡·ú_ŸŽ ý_ÞÎ óY¼:ƒ¦È Wf™YmW;¿wïE)¿VOp*™D)½z¤z­êÿ0ÒmEÞy|çÜÈ[‘ö­h”cNÿV‚™È[¸À5;v9Z”„p´U”-ZHé–sN ¾ÈQ3LØ7¶ '‹Ä ¼´Tï{M^ëÀ2¢1ÿ·kâ¦_`ØÍ…ÑÔL~£SÇžp¨Q_^5Êl:5Nc™Êæâ¶˜j»ªhrŽŒü[ÑÕ%7†X⣎œ tg÷`¨×Ê‹epÔ½ aÜö(Mú"Iø1d7õ7A:ÒÍ È [Ð Ú$¹æÝÿPo~¥ ª§k…¶&5÷…ŸëåP®â„­B‹éšf†öËÎÞ#µOyV"Zw¡ØÆY}+¦ÆðoE,‘u—MìŸ=J&Ä@µcÆÛ³Â( gÞ-å v²?&iÔÈËwST,ÀãØ´tåU½-Û·2k „®¶ ™9†ƒrø›ÿõjCD/6÷ @ÃÞºi—…¡ŽÍò·â&—olí~Í0ÒµM)‡$”Á¦Эä]®Í›¿ªHÎe-¶Ùb×±¹Mù»ôîšGòKˆ]¥„Q]ñ>¹­mï~9`™·¡Q>‘ÍìàÇ»î÷|¡ÿu¸QÎ.ƒÃÀ5–¶Sóƒ<š?;÷×yÑŸ‚¦\•„˜'-Ñ.A]6žÍ_áp8P+<¿Œ§ì‡âá¤+TÕæ‘åöÀÀ²Ù42€u^0þQL}Ñ0¾GQ°>ÚDÂPÓÊ$žQ;-¦­ŒL©»FuÅäñI×ã‘CóÖ©Ö±bƒŽªnQ“ÚXzï8³Ó°v@È=‡%Ü=y"l42ùŒtʱmU¾+©UX|?õäRÎìãâŒg1[sœÅ{e ;0¢šn²òìåŽEìh‚-$¤M’[²N¨H‹¹(&˜-÷U¦[®ÈÚRÆ\¦@ÆžYêgº@¢vD €ñ…ûÎ*¸­+@z!˜ 9 ëÍAãX3DV}ƒ–œdß ¯H³|Dǵ´óÓ´öš]Üá<)E™ˆk* Ëô¶€>ô oû Ug¥Ö)6nÿ›¹fŸ 4ýgׂÜ(Y>IÖµe¿~qjrZg"Êáú•`vÊ<‹vIڕܰ:$ò}?ü¦6®Ö׈Ô†& t3Ò™H®ÛÂÆ\P %°¢0/«>Á 1纨"»â …°´KÁRk¤^*Ø(ŽÆ7LÏNo Kª0ï¸IIÜÛ·?«í¿¥rwg$®(¨êÕVDqû šßD"B0/ö÷WCærî¾Èá ·$™Ì߬bÄý¹6{ÂC£†Çt^Ñ\Ÿóz¶r¶¦ñ锈áäÙi“IîÓ WŠÖCP:Mð[E± I>NŒ"³KŒLÒl¾Ì…œœ.lëØ‰Ñ,ö! WàÉ»¼ø’‡’)tsÎ"à ⩘¢è;®qÉ‘JÙÌ3ká{T`^¬¹‡æEl`R™óÝ1`ò‚} ÎD]Ò+ö&@Eæ(»„i³'`'·7ÿ¸GÙºPOýŸ?nzÍ®uœÕB}t@v®å•Ö<Ù#*¿íß½R!…‚d‹_øÏØty ²£AŒÀS¸A¾YAÉóA@}ÂY¾ö4UE+§r¿ú·ý¥FoÈÜóÈe9JµÞmĹB¾MãMe9U‚)™YC†0ÔÚâæÞdO²ƒ¤¥R_á]Ó|9Ȭ¾ªQ _„XœÒKeJ¡ixsƒ[½IÚvÁÜÐŒYÐÝ””À-u¦o‰é þtÙ«Ü|.¿ø´ñôò©€âÑxµM:/„8ì§ W$&ϰqŒ'çå 3Av­Ý7b¢WWŠ [ï SNÑõ¢ Á·õp0Ä Ñ*Î1™§eB¶“h6ªž¡èit-„/Kq1r`cþ°*´3Ú0,ÝHs-ímˆc(N§/éÜ-ñª ,K–ÀƒBéÝuÎ)U³uXDX^«V¤èGƒªv¤}’¶Wµ#ËwcP Àl³•„P4¨2Ú°É RêÊËÿð G±KÙi°ÂÍß”—t'H¤Úg‰¹BrÜÛNÁ%w^Mû¾Œ%b½mfªZü^DéXÔiîNJþnÖ¿(¦ü;ÚU”oÜd2]Ÿݧ‹ ?NKÄ™“²·Ý7þ“áEÈeêîpª’~nC‚2’ã¦Ü Z.ße7šÍº,…£€Ò˜7ÆF%zÒÄá,‰‹;_Ò±›¾C&ùR¿Ýe~:Â=à™ÆSlÛI=wOÅ+Öà8n´G Aµ[a䂧욊½9¡»¸w³Á™JH“[h·-›ï†¨1ƒì›<&¿<›û©×è¶qÅ€07ÕÀ«OE#O Äkt±ÿ¹øŽTÐàH"±^ñSÏkF 04¢v¬‹*®‹’Œ¬šÀT’-r’úœªju¹\T’Ëbµ+ÀºlŠÓóO`Ý9e»É0Pç]ÆžåuüɸoðÒñ…K®fD•÷DÑoçg©Ã”½_×–­Á¤S®£’ðÆøDö$@G(’Æß©Dûq%ZøÄiþÅI“'¸º×hˆlJ£L±MPÑÈ]=·E‡ßä;e ðµÅÙ§„íÐ/±)t9R€œPy”úGÀ ¨Ø—«íg:6ÄîrY­T?ßÖߎJtõÃ,È‹‚,%'q©²“ï®EF|¬ÆÈj_…‰+gšå¡M8à¨ÓÚ` 6ÙŸ†µ¾g8p¾ìÊ ˆc³Ê†3•oP/ä_Gñÿ–N†ÏK¾-˜ ÅÆ6¥k´| N™“ƒo>A¦f–\ë{ãÀ!^[|Ìö51T1LÐs½9Ì|¥ÖvÎÆ»+êbUˆ x*†]y¡7ø6AÐí`›ôpdz_ÒÌaÙ“>ÒÖˆU)»"°KE^3­)R¡™-›¢^%•·¬-3 ´'hññO{BCáX2 ×(Ýí;Òav²œ¾ μç-ßÄD=§ÿ±¿K)mE;/Í%¤ŠFÅ6Îqw<3¿Ÿð«à¨mN\6Ó«YvÐè ù«9´­gÂÉÔÂEÿrG|f0,#ÍÁñ^=ú0'1¾E„ÖÝÙ¥àúm³Ø(ü”:ÃsÅ.KÄms¼—*KýC»1ƒjz.ûòðõ~ˆ_Áß@ÜY ©˜ÎˆÚjËR|™c¨/šº3êÐÜê”@”Ø{¡.­èâ»é8Jˆ'¬™ á„þõè¹þ4c2”$SëÝNMÉO^1“«¡!7£óQàV& ÎY{K¸€Ë Z’Ï&ô•Ƕ¶‘Äqý±Tónì£PóÞÆ¥ù ¡æ4ŸÂJÕ}·ôîtj{¸WÚ÷u(2ƒ]O§ŠL)Â]&Ôä`ækK™ ä+ß9ô2™z¾¢¨LÅØ®<9©Ç‡=B5ãߎþV53½q‘·A»¥·ýZ‹1ä½([Åx\ZY!•ÉVeoþ ­oˆ7:,f#¡2©¬z[‹yL¡í”uÌýU€Àuj%qÎO(P‹\›¦µq.•¬oûÉ;A›ž»$RÆ©5çÿ^«‚q­wk¼é @¤¯S£ð¶Û¬Ø‚lªíˆ¶ÖŠHj[ª¬¢R#c‰/.Iˆw0[Ö”MÀ<Û±zxOi èNÉPÛ¦‚å)Vg¿k"åyþs_‚°Ê2V…§kàjC.uAêlmqÒaã«ÑzúP~PA}£RÆ×®V¸@Dä>…È{NÓ’~DÊñ0(ÕÓ’ñ<°˜È!7:«¬s¥°O+!K:µm8¹ŸìZ×J¨´—"Öý?ßJuÍ€ ª£Ú€#ŠIgÑ HèŽþ{XDîr4Pº®þÁw“ø'·„lc‡#§€9­^Ÿó,§“èñl »]šÙD2º§ƒQÉKßUG9¯ë)oqdþ°†;Ç®Tòã üù–¯=¶ÓCw‚Ø9|ë`C"ÅäÉó¤4G霽Շœ_4Ø£ž-U)W,”ÿö™"Ó»¥äçOÆŽCò#êð§WG:ÀTÒ]'•ÈìfP ,p»àÄõóÖǤŸf{ùËeb¿™µyÑsó:=f/X‘ÉP^Îq•Óõ¯ÞA$ä·œT„”ª»×_—Åî•V«³+`º£zÁǸKJ>ÚôAÍ‘™33È…¡ì¸ÛF4‘=å×x:ü§7ØyK#H3±@ŠÏnAáïÜ99 É3FØ~“þdT®Iì‘æ>ç´s$š¸&—šêÁAµ”W½ö²Ê[`0MðRðbÐ\žÆ)›‰ºãYž8XÇù7¬·eT§pðÝ ÏP؃5R`Õ•|(4¤š²>ÐùÑÔı lÑL4ƒ¢n…—ê®§´·~ì«õ³±«¹ZP~´ì9N.°p5šIT¦nŽ$<{ O-c<ŽDW±ÌQVÿ†ÐøµÄõL˜ò·°èŒ‹®‹õ so?Ï"«T©óÇc{+*)ˆ2›ÞC­{#–ÐÎŦQtŠ^¢)7â6KŠÕö*;9c²#(v*(++»t¥þ[—Åsœ™i«Fon”v-A°˜æ…ŒÏ°¸U‡f¥t-m€Â¦“™$¶æ¸>E鸒ÄD&8tw9”6êy°«ïsØ¢Ä+®æñí*öxßñ+bf/àÂ'Ùñ¿òøÒPêúEG ¼/ï‚Aûƒ »àN6çPwÑÇ|)œÚŠð»T¦R'†î~äÇФç-“õD@L¶§9DÖOEׄ”—ð1óPCSí(n×Åî8©·ã`Í€ 1Ÿ´¥„|õ¬f¹¡ØOÏBDœ•$8¿U@ð)O`zž›6¯õR«ë#\{’œì19Dà×§…žÆ^ml%¤a“„Àâ!2G¢%Ó¥dXLHg’sæâ|osÍ= DBaÄ'Šî“'¤ úç.fzE- …UœBÚ ¯ûŸ-äuý{Xõ˘E8þq&ô'0G›4¥½jð½ÀIêVÌ8’"¢Æm§µ{R «‡pw °šÁOØìYB@ù›¦Ÿ¨½2 šNrN³îò“Û—†œW±n§^¡œ9lðfTÉY̞¢]É“!à¼Lê^:Lñ #–6,Ý\M¤Ë´=Yî…-bݧñ"$e›0r­˜­ÍŠÔþWÕígéQI-h Žãú&…§´ ræÆýR{#÷Û¹m@{°¡DùeÎê½fSÙ ÉxdRŸBþŸ¤f是ۭ¿“a¯ÎibëœMfßP±üCy™…ÛlÄ>³6‡˜µ"’r>C«DÎ>> µù bÿ»™¿;%ùAˆoþ²h‰N´уˆ<—¬îPq®Ë”VsÓ³úTíÔ–ÉÕvÔ¢ÃtqÅ·q TIoæ.cZC7I߯îÅ^|ÏI°î}¹c¶BÅ5úã6(—¿`tÞ‚êÊ<4ƒp`ÈFBMÿ˜C hÞß²•‹Œ¥½¶¸‹T*’ Þi毮½¤uÐí¦-dÃQ ‹ÏŸ€yGÙòüv–Ë倷|Vp¬Ì…tÖ–¦¾ò4U²—òñlh«â…Öš+îÀÄf©ì\éßÝñÌÿžu=CQøÊvï|êgE`‚±~æßá­´¤É9K,9O%-‚±Ou#ýœé tš‡úÌÊäóÞ¿ËŠ2­ÖÂ…h%ôkÖ}áÒ tÞ™#îT‘ßÀt‚dü.òh$Ïü>HÔ›ˆ¶+‰m*ÜʤԸôPëºaÓ¥½×ŠøkÃÕÐZÛ3Âï¦?èÅš€‘PˆRõšcZ»Škõˆ$=Å#w…ˆ¿ôìÓ–s©ª‘v3\8±msaÂõØYœÄ„­âÕªLöÙKÿJ½€ãþ$ ’ähB6©]Ï   ¦=t’ƒüm·È©ÄIŒÑ–8‡‹¯2ðÚ&Ã#˜îw{PAº!!¢¡UWuíØ8Va?€×¥ùà*ž‘—ÿ(ô^Ôü”¬¼Ààõµ’ò1ÏTžë\Õp&QÌÕ‚b?}rÙNh–ÎDÈÇoõLËÄ©©á‰“ÂIȃ‰T[ìŽÚYÕEî‡Ù£ÒЪ21ï4½Ë÷ë½l˜‡‘·rº$¥\k®Jõ¤°~JK{|CÓn¨NÇX¿ÀE‰Z‘ø0\ ê!?$ a×UìˆÛß’7#òæ BC^]ZžCGlk§áŸЦEÀL-Ð6'Ñô=<,ûFƒÛº®EcÌwå*L}?ˆš) Q¾0“¨¨\¶¢†jɆݜž¤)`$}Ü€ñ½ø²¥“¤ËævÔü­ã4VòÚ}Ÿ»ªòvïó:5›²(Â53NÁ×iýKòç_QÐÚÊ´°Ü3W)NËDÚ^ÉV¼[Êœ¯—³;ÜSfJG‚…¹šQáÄ’ÇçÆúWxµ~=Ê9zÉ©hZ5.PMQ4¸ð ¥Ýº?W2œËH¨ Èžfä»û+:AvÅ(t/pG¤'v%‡èÞqqÛ«u¾ùè”ÞŸ–´‚ÿÛ‚r¸D'1· QÔf–ª¸…ø^‰ Vvpמâ-5—&’7[ÓB2N¢¦DÒb!”ßÏŸH{c–\ü_ë¸`MÜÛͦÁâ)¡g7ýFÝ)‹r½ìÛæÿ…È­cNlÆ«OMŽpìéRïÈé~S[ÏJ¨å¾HÅýcâ¾_ÏGÜÝK£iþ9úÇp¯ÝäéÓ®-è/·%WÐ|•Q™ŒQÂëpûa•Þ4 25uÁ¯$•„DѶ`‡ŸÜ9“ÐL)‘YêÇN„·úˆÑ…cI IÉ[?aÞŠmKo¢ÝVbIœá¶¡7ÏÔe™ø×¨³Öb9©Q°sÜcŸâc$ÁJßWHn3€¿(£XÁPU­·h…ÎtºOÈÐ7E°n´ìq§˜¥„ý¶³ª ›ë$™•0òY)÷9éÁ”]Sû6  ³¡\Y¡Y`CÚÕ˜(æë:¡dSZªÎa3Æ7ñ²bÁôdB¬HÔÁZ¡w0‚(µsl½1ÃÅÊÌUMTgsª5++|ö%»i®jV–m\¾4SüÖÿš˜ƒQ`5^äÌ»Þß¡¤!ÒLo5åœÓIþüã³w£`¡‘iÜb‘nÑq‰†ŠÏnÁE>3“s´,Ìɨ6eˆg>-Rµl^.c¢*¾å[Yajó¿*†³Wðõ¨ZB2h‘M­s_ž¤…ýV¸¦dE„«»ÃÍPþwåêÊNHÉI@'€5µÆy sš+3ÄrÓ#ÒŠÒh™>>)÷ØJ ª%ÍÁ ü'I.Ù³ŸJ/o 5ôcï lʘVÀû{LÒ*Ý< ¾"kÈilPê5&üøà_ –27Ç&8åÍ1ý%£In´G+Wêî[±~¥Ñò’†Q@af™r²ÑHHÏh† ||çFõÇúŸÆ,©½1L<µZláÁ–÷ßÈKŒÉ˜ÿ𸓇ôgâAŽU¥Š]!v÷Ÿâä n¥â/IÞwH¤`­^4q–+¹©zɺZŸùMsNt5gY›VØqR­¶Ž" .ª»˜ ± sVÖÚTdús’¢U‰L€.†4k̬œX<ŸuÕHÐö3¼/Xôa‚[,ŒÆß4IE<ý2êµq~¥´½û§(•Ös¹ ܵíþ$ˆ®TBQq!‰]—dªlÎÅÑËÚÚœ>ödéS¬ø#TòZRº15ærw6óGØÇ£º  Xuv´}|°Ç½ÊàÅ(‹ø‚¸3j{Î?åiõh‰Çì®ËFW¨t »Ü6öbø1•QŸÌ9€–º§]jÅF¬KÛÇ¿Ór+½²\ˉç›L‘fÝÉú¸éôÚL×FºöÑ5kKiÔïç$t+T⸲I›Ê?lNYOx6kL7h i"þŸØ:ÖœvÅ8F‡\\?Íý{šx+hèAm¾³Íݽâ+üzHze}¸˜ðŠÐC*ïsüÏû6Ú)×ʬX'.öÜÇ®JgüeîXͰ¿U;°'O¼¦åî£aQ–ŒýJñÅ—ܡŲGš¤ˆ!¸gAÿL)x#Ï'j|š¸ˆ l¿CAªÆ2 BwG¿MÇpÜÊKí`¿Hí|üï‡.æž`ZWua§Å€ï`×¾|ÖŽß–¦E¾ômµ.íŒ{ŽJÎXª­ eyŽF*Ô·;Sl¦ÍB°Î&n'C¹³ÚK–0¦SÐ/.Ë ‹.ÞFAË(R]š(q;‹ÙBÙkà`r){ þõ—OÔ0Ù¿ÑIf7…4ÁZ`ð¨KÔr"G!£48 QyBiZ¹z¨1…ýjtº_[f*©\Öw’ i׫Š­£ÔO°·Œ¸l}Ì6Õ™)v,õítÌô'¶Û¯Š~ÙÒŠšåFù²IŒèhù÷o‘C#³E±ò7&¼;Ø!Ø1ÕÐê­‘—›\àë¬óåyŸ¿]kXü%E⯯½ ijÜu`Ow˜;ÐõC/þ‡{Û°¶ïy!gª,#ž˜ê<ª ,0›Ä”ç¶Q&é$½×óá¯'žN!6×Âs·ÆJ$¾ÁqùŠ“ ÚDüB剒OˆæSaNý³>‡?6¾¤>PC¬¦ÌÄJ5¼‘‚$y¼eÖ“Õ¾ÓÉIÓ +)!v&' põœ÷!Ÿ’-q.Nél¿íOôƒ( ðp *øå²<=©·éÐx4=Ò­/ÁÚÒi\9”¸õ¼÷Œ÷×Xñ¥¬,H¢ºÙþˆkBÛ/?¯Vlªr¢†ÒÞÁKÚ}n¥fæ|‹–î"Ä•¬=¤ZÜe)×F­ö$j„:4@ŸÔSsD?B6*Ægå'ð“¾õ¡ïJi!—â‘`]õ©àh¦Žg…ï]’7+ƵÇÕà/P‡¬\ï…hšžÏ dÞ-ù7èeø,bšà: K?*¿óæ¨ ä ÀoØX·<±é}ŠØë±úýT‘Æ3¿ f½µ,Rú•Ep ËMÓçñRŠ º‹W»<޼M±ÜrN›ÿ²!ª;Þ e9Ò·W_ÕZ5Ì4<ÿvŒMp"Þ])¥%Îc¤æGp8ÝïÅN4æq“Þü`*S›]@/h¯›žFÌÍk]Ó-¤!®o®pŸ?WÞòlB•—u?æ‘#j?èMzy™X¤cà% Ô}ÎÙì]l}' Ïbÿ•îµÈ¬íœ{Ž•òw„‹3¤s•­!óxÕÒiH5­è†`¿YH’œù8ýëδ³û~>v­LVäçkEðµ_2*¼d°K"1°ñQZ Â˜U9#Ýà=ÃL>½ïyà›\‰{¼0°#A=ä™_mÔÂk¼ÒŸ©Fé0¹(zJа鿗‚µ5ç*·6þå§^0ai‡f½2©© E§^‚ŽôŸ8OÀv^£í§K¼÷ {tf×/N&™U˜Ñ7Ó$!á_f?]ÈCFóÞp.q'ôÝ@û­­аiÊMðsi‰–93g.$Éh(ºSVŽ’k{VfŠY¿™Š¼½´12½µ,‚¼~*µ®%C¨ È°a%ßkîUÿ4éû¹Ÿ›G (ê†ñ)’U=Áo¸žÆ¿”cšå9XI +%³éÖQZƒéj ß `ÕTc„Y·:³c^4~ŽŽäƒÇøï9R­XØ8õà!|841®•¦dKxݣ䷔(ó‹îúrÒ>‚ÝvkÓI“NÐqê7S¯ž|d<4ô›‹ Õ.‚àþ½[#DÇý^¨”I¹êD“wê ›€;ÒUrWOpѬ»ÙÉ}áT:®qÕõNOkÆPNs¶„öêÜ "âF¢SM ŒfµÍxQ ÌFü=ë÷¦wqþdœìiÀ5W3ÄzsPΉð‡ëo âëí©åJ˜Ž1 RðlÙ걞(,;pѲ‡i'ÑûÁe´T–­­À@†SLHó@­ 9*ÿ³ätmYËåî?ÝÙ«1Ír¬žòKˆªòŸ-Ä&fÖàfn 1jƒMÜB zŸ˜=ëW.FöiÜTûþ¾×Úv¶·y„ÝQMã^žm×È€Sb'Tæ®2;ºý(.ƒÙš’Ææ£™^¹œ£)y÷Lk„®YJ{hïzâ9KŽQÝðdêCŸTÀ)…ä,Ë[Áp×iìqKÎ7š¯ãpÆý‚ô#ÀãÓ°¾¾±6c¤3³P½úÌ·@§ I'd€¹ÛÝKy´n‹Óøºù¸©Åô/¯6àÂq®SHœÖ™ ƒ›Ó€ôlêȈ½„¯¥ï¯‚%€Öº~IÏ$a„/·¦s÷8XÎó:ÈoUÙªð„6VA¿õÄÌEW–¡Il4—¡vËíÐ}íòoÛcƒË¼Íÿð¿LHølÍoÕWØM’*©Ä>abxR2baz¯ÁâÇÝÚÜeÃ^iuâ„€>ÍžÌÅ'†rUä7(cÒ¯ÎÔ1 þ}K¡|ÿêf®3½­ÝˆÏ7òe5rM¤à˜°pÍxew¯B!Z¹›æ ÛM°£¼å›«ü3Ñ4þÒ„Æži›‹‹Zê …ßø@‡r ÷'¬=ù<ù3\èÆPP^‰¬G%zÔ`^rÐSUó;§\¯ÐíYBÚ~&©°€pO`©È0Ûÿ퇉 nûúRr&8¿¨U7Ô\#‘äPšrütçE [µaÙ}ù{ç’¡g4džšä1rAP}/ÜnîÊ JOog¬«Ýå=¸ÚCLÙì`6·ãïz‘9\ôôÈþÁ gè(?܃ÒKXœ¯EìÏÃî9­­0ù¾ ¬¹ÿ_ztßBÎËíî¸Ífny_çI:’ß¾$dÖüÎqƒpB¶GÙ0¼Ôý°•ÑËW¸âq«Pz>”` PZ U úi–¬‡7“•<yúµLЩ¡çÙ‹™uGœŒz?TŸ‹ÿKQ)ì¹–êq n UÝÇ—5Z8lR‹¸_õ󯥫d'3/Ï짉Š-}¾]”)l•·wlîÃ{©Ce£ø³^¦¸=Ö°sÿ“eÌ ÚÖåf{E;¦x,71cÜI/<7š°Éó6Å.j~âã$Þ+ 1iõV[»N@ðÄN^È1®}„¥ŠóÞª:‡~uâ 'Zpù/ýì,´úU÷gÕ>ñmŸô#݆ž!ê“ ËÜÎâMŸâWàü\–ÉÄ·/w†ë†tTwMéFÖ~«¬Òæ˜f6™¯WÄ¢ªêëKÓ¯ýzð®LsŠ‚‚Ë\Ó§Òu‡@àcagê04ñZ1PŒj¸B­›?Cá4Nï¯èró®÷­¢ö¨æâ7(#_QO'«Ñû|›Ø#ª^Á d‡mƨµ«/×3zýw‹MÒn—ùMé‡Máðd©Á€Û¥kfy% ¹èLJb¶ª¼˜ÏºzëyptJÏS1€ùÅ|E´gåLúTâÓ£D±ÚFÖ é·§9"á¥7F´Ñщv¯iÞxØ( ˜T5Î@Gv§ƒOöpi$þÛ\K¿È:«R W&²þ@y¹‹Ö6Ür²á¡Áߨá†nrÀÐ;Ã4Ä? ¾•®_Ý æ:­bšÍµv™ƒŽ,Ç·>™FÀqÐæÓï%î¾}±(ø{p¦ŸÎ¸º ¥q—VÚ•<ì¢íŠ‚wåèW8\ùÏ‚ÞÔ†I®,ý~ùÔ:¹?½Ž`»ZÆÞPü‰ÒÝuþ,¯—b¯Î¢¶uϲï²w&CÏ+•–®=â {d-J÷FŒ0ÀFñ'è„Ô#Sa÷&ÓÒ.3ôåqúFk‡oTy¬W^{~zÜÔ¢°58…‰Ñü«lžè‘6‰øõ´·Ñ" †•a¯ô¬4³7k~ qñø|x ˜xË.}—8|æÎuzL¾Õ5[B"R1¡Ù”BrEÆÊ”ÁÜAw&z0w]3’úÞïW.{%3-Žš1ÜËõŠŽGHqî0 Æ»´ý¯ #°¬²íiûlË]7¤i¦S…ÂE¯ô¥ãhNseŸw¥÷ö…‘_r.à[&Ÿ„c®Öê=€}dVœ0l'…¬F–—È ª/(WI^›†N_~o*˜Â±qXþUó© *ãù^eÈÂãñjŸmœ¢€°ßÐ2dú3æÒi*)fçk´gXå¯wb$iA‚ø!›[&ª™û1¿¨½û¢o7ã[‚Òo×J û1Ê¿§¹e%q ºµ‚ü8b8øMºŸHÉòDÖ2bm8¤BªñoU/…?‰p±¥ËõõûñMíïä¿Ìê3fð?N[þÙo[yÍ 2K«Øé;ŒUv1#j/ùJ¬)cDA=Jj6§2;Ô‰W&!P¬n0‘Ÿq(‚8š%@øÊEi]PkFë¨3øáyêÝü}K½VJ¦92pÐÜqT Ÿ¬ÙzbtÇe1OB–,Y5ôÂkü“ wmrßòœUç!æÝ¹È ‹å¯DO¿Ö/á…œf¦¡ŽkFA–dõa£Nø=m‚o]ïÃÓrjðç/¥Á‘ÿoŽ\ŠÎfí èÕóLûNiò Ï'íÃoØ“?N"‡M3ÖPzâÒò9ˆ¼U•;›±PÔM4b¿/ñ¤á7à!2æøÑØEnÐÝøZ9óøf¡Ñų̀•nKôY±õwMïÐ{ Æ E ß‚5/T¾NÔ¤•Ð…ÙI(ÑsU9o§”ä½üÔ=¨Ö£Žø“ ï¨d1‡÷ÜÒÕÃ1F:‚^­¶µ`ÍZˆ5Üscˆ* è Åê_«:ò ì5v::Dìö;$káñ&tˆˆk‚Yî`NY-qv»¡vû„²Á¸ÏíÞN½ŒdYu4ëò®ÿw\fÓã½®v,êí%8haÓôsIá »ɵ€\c›¶ æœvFð\V.ÀÊs_}q„_…cœD¼5ö~Rº@-!?‚UžÉ˜Ù‘\kú^æŒhgëæ“ckͽ9#mÖV’ˆÄh˜jÈ‘bGqOäuI»ù‚à7¦F ¥wžâ;Rq·M}X²(¢%‡RC+V…YRkùcchÙ ÖqË ¶I+¹¡:¡Å ²×&›åµ:Žu®ý[Ö+棄ä—JŸ³½×jþ¤×X؃tWàyYe±-Èî,ßfs–¬wa26£(G8¶Uó„=9é좓 §À'>×­[jÚò½ÄýA\ Oâ9ìØ7‘?Y¥@cGìN泆A”t‚mÒß9ogÕêúïžÊòêɿȪ\ôQÆò Ъ¯°¼}?Š\ñB`Ä?Í'n\ä2.Y¤üÑ ×$?‹4¿¯ g7kpH¤©g†]Û™V1 îj#Ö¡¡§ª!ä䛺²ÊDh$v¼Óý[ë ‘2þ™yŠ:"Åo*Ëá5ªâ)›^Á[M¶š¢Ñ\@EY1}Oí ª*m2–îõt|Ü(ùôlú ‡KO2ŸÆÌ;¼Ê*–´g‰ž”Ïk®ÉTwÀl¯Œfµ©Î{¦@çœíl¿aÄ´Ezˆž~ºPk¥Å¥®–èˆh$úØó>¶Ð·ÆúÆà£~ùE å°$X¶Ä¦Á s °ÓŠtÌ%Ö"² Úm«¸ù§ÉÑB3÷+­ƒd§‘:f;ÃßÃË,€¸â± ú‰|ÇùèNW˜óˆE?§j‘ª,¼[F¾ºéásð§ûŒ™[„±î€¬™3ÈÍp•î0¼-ï(ÁË9”ÄHÞ·í]åì^¹½µõ·§ØÂš1¼%¿þÆ ¥E+^®| †šô¶QLîUÉåô…âÆ,o쪥¨[¯EÊ"ᚉ¾k•7BmáR‡dëž=2ôĬž³k-ð”~äs÷¶ ã±Ã¢4 Dp((Ïðƒ4@ñ*_sM0âÄì–HZ9p­Ó|S«=~=~›ûMFç*†Í] Z”Öhmpã«ÔþÉ›¦Ú÷K¼Ùá>pXy¶¥¼’í5mt&&kyêÔ+ŒH²yqxüž“Å ò¾Bµ.qÿÅÒœ8mêÚ=KpTÏ¥÷HÌÕÿ,1w£D@I4~¤#8 ŠïuÅ#2ù•š¯‘bÒ$jàð)¸mx]úÙ–wŸ¦ó¤ ŽÜ4ÓØÛwi›]Ìækø¹\™‡µ šö¬&@DÞ â1ý $"¶»14ëZä"!bçÑ °FŒÀ2X¤ ZÑ3øìªC÷Ä )-ÐÐXÿ@Ê×/4väü‡iŠæ1(ÿ˜ß)2×ÛRçYØÛ#sctõaKýs`àŒ­›`ù…Á•ç-:¿ôØ}Ãæ”Q¹‡'a¤DÏ‘ÌÖÀp x<ª­>d¡5ö‡¯Ë½Œ®Á5›ætÑÒ"œ-põ-ÿ‘Œ·*WxýË€4‹ÐšLËG°lµÁµâÏmþ¦é>÷k.ht…$éú‰ÿMÖ?°vÉN.•¥ÅL%°IÃq -' èªjb82!Õ‘yg­*‹ê˜,rJ#GD±PÑÖöý›ø„d‡ ` Éwržl¯à+fÃÄãÁg$Ä?nÙCVN'uð_ÀæÆ­÷#ƒè¤‚?xMT8ö"~É9“#î!ü´(¦0=W ÉÔ‡«i¤Â,”SÌÏ,2%Mºèøxe_ð`d嫜JÐGmƒòz¢‰Jæbë»—ñÇšØEC8&W¸Ì‚'ŒûAì#¢ä{mpArÌ vžq¾Š‘8ÞÕBÒ».Î ´naqZ‚ó®ÿ™ª.­Ê«óîüÞ<Æe\‡£4gVI˜f+Û>¶Ó’Ÿm!Tr‘:+ŽõDû² ëƒÒµ”M&`âVfˆ U$m§Ù°¸lJšQä;Š»)䦓¹¾Î<çRM¿š\Wž\ð¢oèвP9ú_˜áÌyÜÑ º”yF̪ÖÞ~x†v€ÏM©ôÌewo6Z™DÝf'æëË\è˜T¾ :ñ,õ[úU: E)Ã<ÁDwM[ØdÛ¡n_¤¿ú^¶"šÎIY‡ßË™ÁÂaÃ5™écú*Á1€'XM%E52á ­9Ì |¸½’þ {^ò>{=¢éë‚{CRñ6fˆVŒ–j‚=O9Œóÿ¾œà  ÒÅEw÷ª£ï“ðš"½æœ5V:ŒÞÔRºv3ê:iðÜAØF=Œ»,l¢ÒíxÀF¨Ùʼîfàa± p°Éú¦¨¼ ÐôDíM°Ç*<_êç—h§œ½ÞwÕ¹sžilcs€›—ýkõŠœGòÁ7v}þŸÞâõmÄñ½‚lÖþXba‘™Þ*Ö:zLR ¬Ý«â½8㛡×-;Ý{I D‰ºd!b~‚ý’Y?fƒÎ™ÜEê4“OæéZ±Ôyþ†v V{iýCc”Âd¢ðý.­4\¯0—÷îÀ‡ÁËÂÛu®ó Y”Ì… R#`÷‹Oû?ª%oßèåiFá­“aµo‚I)l$/×ó™¦#3 ‡Ð˜ÀE#€M¾Mõ*Óÿ¶¥»Ö«¬Üªdb¥Öמ›‹:¶YÉþ×"ÂxYãi˜Ð1°±Õ–_ÉmÚ¯nBƒjU÷ê4û~¼yû5;ôâÝ¥ßå8#BÅ¿òɲÕýìû+Ô)øÉêV¶æòãœb¯-¼ISoTx~Qñò~¦Å)YìÀ œ¦ÁÕÿƒ#N8}ó_3¸òwÓ"ÂìT}é]y ~«±?&‚2CNÇP[¨Ôˆ-Ÿ²Øzr|£Ã¶+•'-%-r¾=õÎ’T0®tdy2•¿xª” £å&ûïvå '%­#óD Ãõ·î·Û~ƒ5]Fµðˆ#Å “u؇,‡m„Ú>U~%iq ÕS?WZ]ÿ|X0“m›*§õã_É*œ9W–Óô8˜'DºÛœÃÐ^Dâ V!ýØÝ8¦|UþʵjŒ™ÁN4e6<»B•×|¬< ´ÍGQÿ–kß¶!i:}¢î±½ÝËËÝTŽÒY :#éÿx>ÉoÂ4ÉO?ӢЉŒÙÊ…ì^ ó)Òbo•´SŒ¯%¡@̼ôœÀrûÇ–VŸTœ—]Nµš+8 ¥ä öÀ^2“‚ä2˜ 3¡'¦]IJÜ¡4©T»Cqsýö ®I\±Y[ÔÇ©`\x˜Ø²Ì†¸vG tæúÉ„¸ oúe1Äcg/+È9HfDçQ_i¬½4åOZÚMµFË[u–¶ñä^ŠU''¬PÌp©”þ…]¤T^Qrûyñ¹›q)¶¥©NÞóÔùèeáýJ.Ð_Ç,pâƒò±TÉÞÝWÀô`ôuD¶h{:?š¤p¨×êþ6«*ây'|\É_ïKn6Ñ)Ž2°»­8ˆ¥C>^çÆÐÏ×–\KÂz`|ä€V˜+ ŽVªõ.Hb„/û}GÏ·QQa<°ÀRÑ1­B(y}_´¬t-¿~fÒGsÉ‹š'@´îÑgI{Óåøsûð ÒÒYǃqe† ñïgßæÀeúôdcnºÈ±âÚtƒ@?WQžÇ¢+= #'$Ú#>Ää…ª‚Ký¥´Í»hžµ˜¿+@;pa©vÙh§÷ÅCþ}Ýë^,T^º¬k»­È%üý¤^I‰YQ­Ö¾ÿXyq@  ÷•̶çÿè.Á±ã–¨(ëŽoRTŒÑÿ?©~»ÓcJÖEËöh‰d! ¯îuûŽhN$|¡¶‡ bÓ¹¼€ÅL¬U ¼‘ýjdG.ÙÃwDsaÓ‚©X… öœ‡ôÜtÙ¡§MR1Z–éښ3?_˜€H' | ûp2C¤JjâШ ã`˜ctÝ«1¿ë`“Ü´Bà“=”к’öù–âfWï–Õ$vx",ŽÖæÌÉ‹^þáp¿æ> Þd$<¡ƒß "‹(• šÐ”iO|•Ý,Óf²‰{î´€½ªé¯;6õúJ4î\&û¢‚±M‚r»áçvÌCóÁçUÜ´|¡…S}=÷ç9,ä½U‰—oæzø€ÖÑ(|M‚ä¼›—Ѳ}êv77Ù~ù/ª3’0È€Îí7f; é¹ QÉ |’éœTÄЂ’¥ŠÛ„ÉRzÊWÑvG‹G:-//Ö(üÌYŸÍPò眃ûÀp×)Ú&wfUf]U…VߪЎ^%”Ͳävêj æ×NøM“öt¶å/4ÜBMŸG¸1wƒª2¥Oú2÷™)ζŒ\cG΂ê…i½$¥Éìþ"5º2íØ—~=ï"»„±ü0Éd4\U[ÖàÜßåÕÙ‹B÷üÿ'× ¡q·WW"ŸñsEêPc¹XuÇ Y’æ4ÉK Ö2óáÜß§sƒTýÅ®úÑîTù‚ÎSÖd8@Œ%dÿ÷« ‡"Šê¤ÝTÝIäÞ®JÃR+~±"àÿi¼‹¿ÇÚ£r"½;{˜fŽ*AÞk‡’€ýJµN?bAüi˜'¯õ±ùIÔÐZªs—?‹êlèx;kÞÐÉö猾i¦i®U…G?)ª…ÿ¡çBkz&mìŒò0,XÓ–Î'}1¢rÒ‚æä*žƒ9`;²²0^5‘“ íxÆœ_2[h¹n69±¹¦Q–aPf*Ô„Y,T'TY:‰†×ØåÝýßÀé&—²JpÔåvRoÀê ²!IP#va%ýÇ¡.@rLS½R§$wàÊÙ_‚¾AËî|hÖjšâ¢4A½/›9~ÄÊ1M+=Ë3Á"Q]©¤õ¨äV|°Ù‰ÄNn‘ô];^žäza*ã½­ nBiæ,ƒW<>¨èåá\ù/4r=Ër0Ñò]Žƒà¹Å¶ðPW3æê d{Ó:E,ŽAC®¨;51ò TçÛ9Sëê©«;FãÍØ‚K×@Ae{­ä+úÅ=@0 1ïÙ#R“ÚTºñ:Ï ?‰Îè$¬eizD¬ÅO%¥öïháLÉoWmúöž‰pí …'kOèàÚxk »Œ“¶u&úÙo¾ï/iÜ‘ÁL™±ã®ru*÷(œøˆ†ÜÃOð¬”éù±{Ÿ| Þ*`Åsä¬7°eøQ…‘ˆžUÆØÁ»Š:—ÈâÕ,´J•êÜðÏþ!À—JÎøBÙÁ¹àCG„7>¾ù\ô:?¸èÕm³&?Fÿ-Ohe{SÐÅÕNæ¿GiRS UÁlgôªæ{1·]D"7“¾°¿n]ÓÈœ¶m=rNêUN­= VYþ$®¦¿§át‚›]ðý¼<žô ç'êYçÔü‘ÀA½ä¦×³ÿŸLý0«Í\Í2ü®¡C®blS€êl¥Æ¡dO×t˜'ªz$24r *Gì‰;”•¸(úæ—×ÙT¿\5Áî­GkÆ—Ú%ãçŽñøX> oe¬Í ýàwÌr¸{3ᘤ*9ªéÌ©ŒàaË ô’J¬3ÐÙª‚zi Ç!Ù±ûk…pôtz"=ˆ…ŸæUÓÊu[\ÙݨB4/ÁCИQÓéü/ó5gLªsm™ûý w]z6¾øÂ¯ -¬$ë!‚A~HÚtH/Y ‘åJ2:|M)æy|¢ñ¯’$¿²¨”{óÄ“’ä~Mä]e¦I¥Ÿó†G]Ÿ\&ê3Æ—Ç#Uéòëä$0¾ìEÐonÄxàžДМ|ñcíÒLb¬OV <‹ŠÉ®öz S~™éÕ¿*©(w"Uv-HZ°2+¤D“@°t‹Ó;šëfÇÎÞ˜:éé8äèøÔèû­\€ØC¨£¢˜•f‚“+ÀF} {óY1ϳí’jÙéÚ­ÏŽÈÜ& V’Ý®PnÚ¨…ÎÄÞÞÃ=̲ÉÙVþëeÿåíÕ¦³3ô‰ù{ÿÄõ5¼;u¦šáÚ”ãÃ.¥FD/™žêZQ`è×é]Gö–ŽÉ¸aDƹYÇÛÐoLeªP€ÏªœE.Η5tW“Ë,ÀÔ¡óVÞ§òë·lqL•WäoOËAL­F!ÚîÜ‹ô‹ÃŽÔ9`÷e c€H+òo…mHN‚ô'ÉßXÄ]8¬Ô€‰.ôÍq—=flÖ¤íG:A–qvXÌ:/—`lñ#"††µtD°ã0>èùAyråýFô³†ÜÙ°²‰­*ƒJ¢ƒú¯ÂËGÝ(Ã{_VŽˆó{L Qy`bÂ茵aÚ›PýPаÕÈ`ç-˜;æQœºßµ2íyî 3%Nß“'ŸOîö4;ƒ:”¹ /Cÿ±v# η>™Å]>”Ó\Ázò|×(d=7« ^ ÒÓ¹Só‚lËç)Ô©M( õfd V®æñÀÑ› f§÷ÝêÙG´ìî|žò#Ð#–åôj ÆžƒÉÛWONí„©Í¿œz\5¦Öä-Xr>ç¾zDãžiÍôãáØ–ÓÁÔS?I,P´‹Òk^ 4à>à6õÓ {¯Â7nŽ¿6¥ü™(^INúi¾ÎñÆÐàZÌøÄë§ìJ¯9€³žm,‰…û¦öƒ]o]’Û]e´è³ô*E̯ԵÂÿóây«Þ? F÷ø¨0¹Þ%¤›HÈ w¯”È>—›ÓE2 ²,\b¦þ2Veã —8òc{$^hþ»#¦Òò ñZ=²sTsd."uõ«ñPEDE™ºÖ˜%¶?Â?‘Áp¬<Ât¸»SŠ‚u‘Þ. Ì•žf2^ï{¦ti!ŸZ.ýÔœÃÃnE_Ò,µc>Ë0‹Õ/v Ÿ5–²¬½Å4¦®cÄvn¯ÙuFÿx Iµ'fÔÔŒ Å|Lþt‡r?Óo «‰Fd?uî’¨wE?';Šw\ –z€D ý_¦.b¼Úö ˜¾ëäŠyõ;Â4º|³ýK YD²ªe.`–gï6) µ# â‹ê#tD“¢óP¾Ð°¥›1ºWû}‰Üù‡ ³ÁÒx´•ðÛeËž¥ÄÚÕZn}ÇÉäQ¶Ô¿Eõ3ORüŽXáìµð>"›ƒ–òf lzb qUü¸Ï 0pnhLò?‚*—Ât <¨ÛñˆÙ(¶, L™eÊ;•ù" @‘ç0ȹ¨ ÒiD1_³k|ò‘ÙA΃·êmRw0‰LMÐ +À(ã£þMšº‰MÓÞËOvý.6g>×h(—²*>×yˆá|)²?)Ïܪ© ¤´ó¤Áƒ Hkfgu[Žï±¾œ‰„¡dýÒU›oCÉéQ”'}ë¶¹kõ(gá}Ö’C,X1»5ºÓü„&ô-ð–BTŸ` !×®`ìfôÿNåÌ+¿’3Ù©“üWvü9íLƒ÷8²Ð8׊äüô»WrœØîc@8¼§^2’à°ê {ú«™öÊ©5g½N (+ý¿:ÿd^(vâ~J¸Ýèþñ³~¼óßÂDè8§¹d¿å ÓCȶXA"»Â › îÑám¸HÖvPÜE ’ë옺|õ_BW†*é>‚—Vá@„ çšG‡G‹T÷bâ(€OdûAEÃ0XÈq}'ì§4éÅóbn#7shš"€Œ«ÄZýs—z>±JV "†,€zV–ÿÖœÆxmõÙ%t‚R•DµdÛ±£›F«õ)y¿ílA·´ˆè•å—<ù©2O¬óì‡|æ«ÍV=<±Ð^ïÎÃãW×â­Ãü\LFÙg7+鸵û,húíýDxé –b/>³¹ý'{vcwè•ÓjŸ'Å8­‡è³ý±ZwäŽÖá ¦²@Šñà *Æ×¯xÙËßK2.h (ªæ“§Ëf³¹®¯õò†bk÷ÂdK±ê)ˆ-TU'µ:”+À@¶ÍZ Q"æ'éNÌ 8§F]e3V %t‘þÄ`š„꤯=¯Ø¢vp ÿXTÞ¬»†ŒÂ?±Uͼ¾®>ÀRëÙÁ @ÏË $˜©‡õf‰=ögh°‡E…=`§Ç>LYX‹XôëÓºrƒ:t3/zLRDÝœÂñC¿™.×F‹Æý`dò6V—à^7Ó¹,ʃHYmIrg+ЏyRn!£ôwøH'ÛûC›e#íj¤¬X«4¯žK ”6àïm…«"bý7˹Q ë’^Š¢†Ç2å_$wÛê#I)PmÀO²‰;(›¦H sðó0®åÕ †?¤Ð9‘£M–.Ÿ:¡¥`Å%MQ|†²1¡AxåÌ%SAº(c{TjïâÃ+1 ›í9G`È0ÉL5ñJ 7‰)¥Õžø°(Ë&©ër¬ð½&` µSÉîŽØÂÙ¬±Þœû}Ýâ̬Ã3PÓ£ £FÛ8¾OÙg¤”€íE ÐØ%Þý`5°ün–’×Ì»)ƒQí M¸ätÔ‚³H±X9RdÛÊ‹n2zœhÕ?ÓíDÓ[?ª°ú¨ ¾ñ™îë‘EéÇ%'ƒ÷¨ß ­ ´ÑJ;.òòØöú{ž]ŠšË?ówš„~zV¹Ï¡”kÍD™3èξ†ˆ)¢3§fØÀ†Dâ݈†RÊS¥…±úâLúžý×+?ÙÑëìA²¶ð‘ÿ` V‚rCšg§5N‡Ÿ+aΞ¨±!#Ò—$|‚ˆ¾ÄðÚ§‚ä*ñXÈ…9pö¥­ <ˆ}¨9s4ËÇv¼N a»"ûä KVÑìì*ô‡`÷|­Ãæ|D)}t2•Ú%©ÿå$oÒø&ñœ#°€œn)&ÂJ˜yjïɬ^’ÚtÃS1.àÌú ô¥¨“TEáõ$ÃP–ÿk‰ ÷ÛK™7+…\3NÅ Ój¬4¡ËÿÙ:³Œ¿FÞ4ÿÚ¹ÔnÁ&‰ÑÆö>½f^®–³•2¬ f%î¦M L$Y§Û@'Øò߃Lƒ%W^rSr½ÕFO_~±£íÙ®;”“\A8|8×¥¤…’„´w¼ÁT?Ê›¾n¡ÀÞD àÙƒóãzŽ\×#ݪ1àý#’­OààÑ;áà÷|^OYC©cÑQ7y™Ný¦hC=€®ÈÌhråYÄsôë Íù$6Ì+ö‘–Nþ7ë,ëNÝ›¡Jó˜Î,ìɪ®µ÷{»èn+ñ3ù¡“»Gnœ®-SÚ€oÉ{mb¡ÖŸU\ æÔ\ˆhjó=Š”j"‚öiļÖ‚~§—Yž¹Aìæ ½1W̋⽧¹Pܵ®Õn«fÁåz?é9ñ*¢ÿŒu22{TD£…C"ïµ/¦ Jž:­Q½6YK„éDI~ãuÐ$XÍrˆüV§Ë/ØÁûhXUâ}0Õ °n$'zC%b9§™3¹D+it¦CM ¢$Ü-Y½ {zÁqþÁ‡Crs'ÐŵիödÑÊÂæ|Ý/žŠP0—ÿ/…SkJ¤[§˜ÖfŸ(ë¼ùÓÁAcßx"+'üämÀl˜à/w™gü$q‰²–+¡úf0OjÁÔ•+î-ŒY7…¢¹npiÆÙ€\Íî˜ÎZï®áq’ƒ’OÍ`mM7íwÿÌûU Å„oYé?˜&âbµ³'h^‰§ôY³¶Î5gþâ÷б« Ü3wAÆ—™gð6ŽGHT裌%s’Ï; °úÅxÆ!þ:nÝ7é9(Ÿœ¢’FÔ ËËá©ÌˆïâÌÅï“Ö¸äÍ¡¹[hÀ3aå\75«®95Ýúü²@C±=Z9C/ƸëÜ1Df%ì%ï.,¿By°æŸ:ú™3E³i*ŠKpÊsÿ«Soʲ›ãs]ÉÅw’£#æjFôÑ*øk8ˆánÝ‚[RùØh¿zÎv$2,övW5$„iêŠ5ö†[V§ÑU¶ï´ae¼¡oHHêFòä§¼ª–h 5~5CIl0‡¯!“ñB²Fx­þ®•v?ɺìéYN÷É]rã ¶‰{uã´¼ ø1ÏÅLæ;V­‚Ùfó¹*§µÄ\(¾æÃ®ªËwBŠû2C…¡Ñž|o×_š§%éRÃäü2·™eˆ§òìxÉK*>³dý–u]ì{,*æK«þ_3’µ¯¹D´X‰÷l§Üþ°8G`­7<(S0<™*—’ÞÛ.s£îȶÔëÝahä°kFûS9)#@AìåbuÙ~L¤:Zˆ»qÑ磹7Ó yܹ@»çŒ~ÒÏMÅ`è~§Ìo)>6†uõì”ϯÌâ]\‚öáÁ£ODþË¥¡ u³0²bÔ)øÑ”Šþnĺº›N¸œ¾Ýî‡æ@|÷FÍ#6ÀæÓi‰jSè1x-äÈ âí8ÊßAÜús{á •-Áæ‘Ø\=ˆ‹°5Õ„è¤_§ ˜^AÖa»µ `æí‡Ü⤰¹ÿþ£1’1Â5’9Hw²+ßjÝz¢-ëMÖjµd{$n)ÆúçÓÑXU­¥qÕcôK¸•äÚÜH÷üÁkiôáöUt&mÛµñß¶(iï¶c£†E3ÿ핉·Ößg~÷³Øì€ì?u×\®Í9àõ ;ǵ’;:5$ˆ=8L«4hè*v©c²)ö]d¨X!Õ¥ØÆ'ýìÏ`TÆÕV55<ûê!›õá,ô詃xY°Kó°±P{´ö] õ•Ϻ@òJ ½XU†4Ƹs•Þ@Ñ~!›‡fôMÒ<íPÇÓªc´e°ýŸÛ#¹B(íÛ=!û˜ØÒçMFðg$<±@ÂÍG˜òÜN<ê@Í·ª!RÔl£ðôùh¤|È¥›bàx¹m½8WØB¥½‰û½’‚6k»«qÁÇœXåœøy ÉJˆŠ’1]|y5ü¥îU=ee™‹5Uñ‡þrô€Æ& ŽfH™Ž+¨k/í“¡²+ƒ¤@Y¨ÝÔÁyoç€CR/y3ñTj7d ²EIhfT ]‰¬nžàœ ÷S¸ƒ¤ä™ gm¹g@Ñxù}'ÇB±Ž" ×YLý„Ò_+¢g` ]wÂí÷ËÑkù+ðF(7ž®P)DN:þ™ì½”>ƒZ65ü¦XÔ‚¶L¿NƒŒ.#X’À`&O—æ.U}.¡ÛüÙ ÊZ‰Ï¹^hçvsòyì߇ªrv†à8)ÅÄÓ¿ †  ÅI 6û *»U`v.ûÚñxw\ÙÃ2> ß?ä|ßpñÝYs¾ÕšüVÃõÞ„öTƒüÏvxË>D‹i»í>Ž v±öp òT¨œÞ§H AË™÷( ìCSR›G²¸’}&cIOñ Úê¬IÃ×:Dc/x·a–nÇ:±õuÁùVM-ÅF'Nݯ8ÓÀÚj]šJ¦ÔÌC§¿^¿á#öìEu/_¼}3A@ÆF b¥»C-@îú±®PìOcòƒQæx’!p=U5®l¾9"À"V±•&’Õ˜}ôø…=#œ£Û¬(·Ô•…iÑ®60ã€êu7/Gá〙pHÓb›ŸŠÞÑ”Z_ƒQ»ÓmXŒ³Ûï.*C$!ƒN#¿g=pj€Ü œÓíƒJ²©…¢¡‹[ªµj³J;y•s¡œÖk°¥½lߥ²RÙkEó{´ôƒ¿#ÑX’ÍÛŒ¬4@(¢Õ'2âTÈAp))û*ÐLŠoaò<â~âær6ÍÝF$ ûÑ#WÈL¥7Ò4ñºÖzTØL±oµ_í!žÄU=ÞºïпÀÅrnò23d~zÀ÷LêcþRÌko ПX]T;Ź氋ÒÈSPË'Óh³·ˆ| Ùò´SŠ+ü:žµy¤çtML2Ó©‡FÀ}ÎöiŸåÒ?dÆ)Ò»áLHœr›Î!’MÀugFO¸ÐPV)‘à˜zµÒµÕ™¡õ&îéŒþœÔè̤U°AI ÀRtÿÂëey øÙá‚ñÝ¡]¹IÁþà lÝ}]雤÷ù´$‚ò?{¶Ã]üxÊ)/7øìXf•iÄ5Þ Ôä¥_h_Àá½-Q½l9Üqýy™7#§ÃŽ_'M?)‚§)ÃÍX‰ê@åwŒÖ¶¥8ƒ…1VˆPÎѰÎ$ßB¸½aZZ­ü}º"DiâT¥¼žÈH·‰MOrA#gó¾oÏq'3T…‘|þxÞM@<óc/={™G¢ÿ,“Ûo½%ܾ\ý1êœ&¹iZÏDÌq7Úa•ø;ñ S¸[÷ƒA¸ö®.#ؽÕQ4W}§OJ:¯vr}&ø§ñSli 5rR„oUL Ä„¨t0ŠH p–óÖÂUê½ßõi’!Òäƒ&Ũ“AynëVÝk¼¸ˆÇ]¼-ÇÁ§ˆšs1‡æú1G+}“j+Ö7èÇ™Se6~´Ó fÅOF;-³2Ï=È(Õ¼–©.:Z›H=>çB•¥Eb¾‘’2½Ú«ý%Æéêà÷¹˜Dés—%x› ~ä8”ChØz¯ŒaóŸF£,,Ä2o?çE0æU^âˆÎØï;€ÏWæŒI “ËIÒŒ-‹߆Àü’£6íâ–yœX“÷ÐFªáA`ö¹=.[JFû»UÝ^N:Ï%™€•/t' Ži©èÌ&m>#E±-ู¤µ ™ÀDä|¶RE]&g°R„r"J;¯Q@î”yRº’ï¦Îêy΄¦ ¼ÜÆ›dzCñ(A ø­ª•}ݤä¾h(¬9зnwž?ˆ(s€ýùàñúò2`”wÆž•[5]Ò,H¾hf©Yþø MøûQñàÒõnjn—:zhÂ|&‹Ì+rà‘È"yÁg²¹3üïä6ÑÜGÈQËŠFMoR¢ƒ&ü¿7ôˆßjvYjODi;0°t†'rà[, 8X³]|â¹ÉJN1ûO’—›Í„ÆêšqŒ“”UØ´]¯ì1……g¯æ< ‰¹÷äÒ’zWL'U^5â­Z{ˆÕÜÝ6AÐ ÿúXäÞgÜhþÂ’Š-ƒ$ áK\Q®—þ{®hå` ê;`cGk¸8PpGî¤Ô@Ó~Ó„·8pÁ…¯åOO2[+x\ˆ³Í[[ƒ,îJV9à‰-|ŒrySã†dN§ ¤›ôÔ4Dr—X–ެè36_O÷ëù½jA8Ž iMÿ#îßLÀ5øoXŠ$chf¥è|æÒ$ŽÌá^³Žd,b¹"uDDIì”UBèHÞ†×÷Æ1”"gf_VõvÑ÷,™Tˆº –²÷*ãæ|í¾?7÷@Ê'ByyÛ% ß=ìùé‚‘¢á°ø…ÿ¤Óc3±—@¿N‡!îã« ŒHÔš¸‘VgŽ÷϶–ÛÂßéC¿…_]ü•ïñÊ‘Äåµp•ÇŽrŠ#J2å;3±‚{ 7!zUìMl…¾±0•I:/f+†Ë·"¹;¶ñâ{JŽ9sr6÷c‡,¥¤‡¦p—ú9MŸ1¡ß)v'±€1Ÿßw½Š^-)wª  >çÝ_Zök¶ i?ëªZê@ú9™ì-Kií.+Zoʢǔ9ZÖAQ`Fž£C†0 *35ŸnA³Ƭ7»Ý²ëÏÇé`0ÎV¨˜X| j¡iÓíMŸá –íЫIšøˆkÅZÄÙÅÞ~øãËoB»Êxi·öÁL,>brÖñ®ãSžy8ç„И©Ž¹m¿8m.Ÿ—¶à·;¬Ô7mûÞ*#dêò*𓽳Ny¦ŒðPº§ˆxn’I¾Hõ¨ô`1ŽRÑeÆPj2D0D¯B¬…aUÒßìÀDfï”BˆÈ¦‹”È •.-£¼³9ä¢ÔÒwmÓQ/)µÞU“ ¹ Aõó‡'ýðEÉÇÜEZeðP² ¾¨n^è†Ó³¸œ>Фqçȇ7^d›É¶H€Z|5Íqìc𻾯?¨EJ|»Ò0?WŸQ †åÀ®aq9M¶€el»ºžm›š vIz]E ®x\óýôÿàb½/Ÿ/eÅ*,Œê¶ E›t2Ú8ˆC‰ëÐkù¼"#¥±Lû¬£T°Ž&d"”¢W€Õ±ðÛR2mÏAõ°Eë“sà,ahÖŠ7Û'½¾ÿ@É:]µû¼¶"¢Ûî f³zζ¶ÓáücÔóEõ Cß½}ðÛê”6˜úìÕè`–vc”×zºTÎ/(É "ðÈ–ÂY‘ðwRʱT=NJ[n/+]XÁìI,ÖHÖÒ6¸ËÏüïØ¡.ø3ÄÎ>ŠMØûµñ߉©gðD„ã@{SwÑ_ªé¡›žáò¶%ãªç[Ãê‹\æ-¼]ÅX¾}‰2© +œ®”¯ðs‘__—VM›¨˜y‹‹ã7|ô,vqï50›íUÖ!0šQ Èã Y ®àH¤ñû…ñ }C9ÒMÜù$ÓžC¢ùm bÒÇ–ûùa,(ÓÞ3.O˜¼pé.h®¢%iˆ³V¥©\Tc)ĸÍA¶|õ¢F)­¨…ï.?á%ÊëýçŠKHÓü)m¶¦ œPíÄ:wùB^¶X“€TÔÔDþ!7qà(*XÊœcCu 4¨’ã-ÊccŽ™ Çòá¨eéÆ`jŸþܤà{Ô H»ndŸä³¶ýˆ$ç~Í­Ù 5Õ¤FÌÆU D,wåžIB+TuÚslùi5ÃÚ»¼ÿfƒË9ü%ÉU”ÈÍNbœÎ»$JRý­åµ¹k½K©o< ¦ï™,mò×v—2‚§AOËW«„·9ÔÞ¡#¼ö€+‘y[\¢¼þ>$÷C}îäöÝSAI³x7¾’QÃU³»äC÷ÿ˜zZ ïæFó!¶pÕÓü}Ã9iÂïþA'¯ D ÿpqWÞÁ:Ë}ì…iå¹Åñá«#vÈïg# ¥•ë¶Äía ¦×l»­h¦Æè# †À–!Öøk§fp÷)@ŠÈ6y3ƒÄ|jq«´Ð­eLš¯lœÄ ºÀ–‘y˜Ð-³Š¦ ©@ èªo+î`"=ÚûºZzËòBÙjâ²ÉV_–3+©½É]@¤ý#5÷ÚL<æLÿ.±‘²ÒÄU´æºvì‘"Õ ¥@Áj$R¿Íœå³ƒJ ×­œÌ#*Äp{Ú)žª ¨;ë_!ù‡f¨-Wäu©ßÎ8xý Þaï4÷åÏ¿<Ó†]³àã:$õ>!46“Ëbø"´”%ÜÚÈL³°²êý¥Ôv½Ü=à§^OË´Þó[‰mßY0#=`ê üºôA÷T÷ôûµ‡¨6;žÔ6Îíùã‡/^£ùZ¯:º~µ®—LJÙß¹ý_³š-ÄF\ïÖ;(9‚#<Åj–{C$„ˆØƒ… zà`çÀ"˜¨šÜJ¨ÿ3-ù>@f‰kœÓbÏ ) XJ†Â¬RWEðÛ¸W­Ñ|Nk!íüX\l—„_¾5iÅ jáû¿ ”q(¸–lL°’? ßu[ÕÞÆÎÓ•zV±œajJxhÕožÖÕ‡•é¶×qzL 床ðȃú–ÐK¬[7\sÈx¸È ×è^WF)m®nÈv®äNêy—Ö”â[./3ªì³òŸd¡,ȶ<àj•H š>RºÌÇ+Å.² æ)ÂÅ.¡”± Œë‚S—O~x5¼? šy vùQ÷¨(à®Ð—LJYšQ­;ìŠXºˆ:Êîîƒé©‹ß&éI΀¼Ð*+âŸüÊl(¼ùéÓç’ýØI9¬UÍ_¼OÐ ìlíè4䪢!í0Ó7ŠÖQ+çë+ºÏVFVÎOÞôP›f¯x/$5ÀS›¦_ýa?¨sO$,)ñ¤ÞïzÊcbÐTŽ YlÑ{IÃä%Ò“xG€ÕÍa^9–Œö·¶’6qŽ´¡~ÕïKµ1ŸY‚ô(!‚‚¸¢L|â¾9ø?Yk÷°+÷¸qÅͧU±õ3Ðߪ-hqÈ£ÊzêŸrP s4Õ˜üÎ0Üo߃5 ÅÏo7˜ñµTß7Âp ^hUšäto¡50öäëG«VÇîšEP¸Mí´·dL±ÊøÛc-Ÿ·b·É4]>þø¡àa ?îÃtéUï¢2"½TÆ>~*üS["è;v^@ÌU}<ë\ÍäÖ8NCÐ}.¡;IfôzÏ(eÇ]ÑÁ( 7$Í×úJœ?5#zø€ÞLÊÀÒ`V‰•pT!÷³ÐH#݇gu &´:I•‘ve=!*HSiÊ>éëÃqèìVªTÝ<\ Bš‘o¿ŒK«bÐ}¸fê{òÀ×`›Ì Žþƒ´[îg=gaZޝ{üæ‰$äî ]/À[ïË`nîøW›¢غþ—'|/ÜÛ”éi´¼É1>ï… P™ÃbžP‚8V@F׃¥|DúrRçzíd¡‡x°åüƒ$àŠVúb„'ìÁÄ…?ô®67AµR¶¬ ª J¬Q|ìì“Õq~5fÔ‘ Íœ4ç—_7Î;„t/º.ÚÏ4‰gåYð2£$KúÄøaùÁnÑNhõIÉi]ÜøU£=~2^Þ/ˆU@,†¡€ô!´—̆©ÑlÌOÊ—9%Ö¸ècïö§ï©fÊ­æÕ–©ë²mÛÓÄŒ#zÂP[AÛ=Ùù–=TáÏOHaAÓÙµžƒíYžˆÖ‰Ûƒý|Ù&èÔ¿«Œ¥~Ü„«8UŠ9*hQné‡ *ŒÐ7Ö6jlC£‚¢²ë¥Û9ïNâɵkUÍÅgo1ºúa:Ý!©ZY´y€–hº£R¯]š*ÎŽº û!H^.ÉþÙc%€5±È¹ÒrWq ÒyööbíÔ!¼Ä ù“Q"‡zîÐ>2žYHÙÕ-©Dï!/RR ó¹Â´ÛޝÓ b|Yt"ÐŽŒi#à\A7ºkå£LZμ±3Ìâû])viDè ³ê^Ó¿ uj«®üxm°j*$PØ?ÜÖœè`ºÅ1O­Þ2~œ_ß½³€ˆü}ÿXôõ•¡²×ì¶«¤ö¤  /]ÓÈR^XöèrŸ”¯NtšÊŒcÅ’€ )ªÿòi@¬ðrŨÎA‰ÛÏ ±kâ¶   ¢ Âu‡dôW…ÿ qŒªÜA³GÕ7.ž¸î,bpÀ49+h˜ÉØžÑ0`‰ H+Ýifï”kŸw饪‡¨Ân”³˜l•çÃsíÚfPì>…$§N²• £úôVL H&'xîéÛzÛ5ÊñfÛ9Øä¨_~=é7Ï™¼$mgPšú;Àd®†ÐnzoÇ…×u¡˜q>›ÏûC{ 7†Zé¸6ñœ9ÒÉÅ 1ˆA ݳÁµŽé²±ŸCbØ6}ÒyŠYSòÒRñïÛÌasŒGHÒ¢‚dÓúð³÷nÌhÂwôÀnîôàÑk<÷ÞâÛ¼à 4ÿ¡·”¶ÎY¹ 2ŠØ:— 6žSö]­=H,ÖNéúËC‡¤gýC»Bl°° i(q?5hì *ÅáÉ·â—•Wï­÷YP¢ØÀtAè úgâ4Ãö©ªÛ´ƒîSÁˆ{c©é‚€;‰ý0Ø• …%ŠMôs}Û”•ªRÊJfʤ6þ‚)û—£þ¥Umy9Ïe–vÔ7ÔÔ9lÄe¾“Ë ^ujܪf TîCHÔOH޵]÷¥Û¾±Lí¿ÿ"¿±—œF¶e@™à¦(ºiEFÙ–ƒN°àb?˜lè«—é4—Ã!äíÐýÅýâÜèªÜ0ãŸBŒ 7PÑËLLP›JñÏtj×Ó€†±ãŒgSù ?&µÔt‹»}’lƒ¸™ƒEü“‹¨Åï|;Ô‰–šä/<•’[£ó:>‚Ö~®@¹î÷5‹ïø·j<.Üq­¥ömjý)ÇÇ’·?)¦þÞÎ8dÇéµ/øò•{ƒ³ÍÊ.Ó/­×,´aLXÏÙÆ—Í€^> vi~UüD}añÖ… NP£Ô¸W¦ˆ-ò¬A£ I B~áioÚÔVVäÜéÅ#yRôx :ù?Ù6 rc£jv?côó½ÆLs§¶Ñ«i<6ÿºÂæ $þAãlªcO¸PÙÕM.-•»‰ÃUž!ÕÔðFZ}¿i¾Ê`×ùµÍÿæÐAÆaÆ3v\ÏÇ–pã8Y ß»‹y•´FÜë牘W\ñIê‰Q ¨E>/‚F"6{ô]ywüò»+Yy-ì ±¸:XvTš¾Ú¦&›ò!¹.B«ÃzÕSˆU¹~àe.! ²ÚÒ àÏí 1U×®.ÿ‹ä7êÏs5ò„ô*]'—Fšø†6Ð’w~ìü’}×ÆŽº`ƵíhDu$äð¶ íÀ/+ƒms¢¶Ž¥ 2|Rw²ÖZ·ÑÇΦ>¬£Ù>¾[A\`é‡9€³Whl"9s6­ô2Dmë·ÈA‹) Y0õúv—ÄÇgøéç Cúºäü‰£C”&\ë)Œqçþ»8-] 8€¦žÃû‘o hpž¯ˆKg,³èŽØæd‚kb˜Šü&§¤ å+÷ÇAó¯uœ®üQ¤nRŠ ‡µ&ÿtøì¶u—ƒ¬q j, ZM'©(:š²5X)QÎSâPC£±#´NèèEwUD»º™¹T¹]ŠÖÿû¬6JP¸|™Íj{÷{|rܬÞqžyôÍBâlô2jŸ_‰ŠwGöè¢mßRXUwE:?°[ݹX⊜bú:‘@Þ@<¢=µf  e\¸c˜€RèULV_'‹R%$N9\L°À\ŠMÒ¡öËM¢…ø‡ºÀËÚ.åÉá—Äø£ôÑÖØ°~˜uGžÕ]m½–U*Æ»MdSýƒȳ3Øíh/ .n‚åÛ04²t;pÄ«:}ä†Kwã¤^ƒýfi|×ʬ‚EK|4åE;€!pe%ÿjZϾ6_š¡šQWF޶g*ôôw_<·S n¤²¥íô"üœ¦ôõ]œ¨•AIž b7FðèPVl»Í Àvßg;  ·ž[»Û±l1:ø@2Z¼|]Ø–¥#Åz¶‹DèÝ?61Ri7žðnÀ`Î eLòA¿Çrb“N@í Út`ÖM#ÁÓ_ضn JµR¦Ó'0b‰3<}y4»H xðª&‡5zT²%c°ï«êâù޾í뎶áƒðU>¹ƒã÷Ùt†ßæÐ<ù*»—gP>o7Sf˜®” wûíŒDà§ ×Â:nA·æ }‹y$»h?ñ×30Ý‚hU~Ëôœì¤°Ÿ þåCÖéÌŸ9¼"x‘k VuSTnTà L?øw$‘<”áÏ K§¼×½Sh‡Þña À87ݸˆÐîˆ2ò9ÏäÿÍDeÖLÔ•Ò-|ˆÝ8š‚v+ýTô˜=2*FºÆÍÈ`æ’Æ;Ãï¾SÁrpûª€¿ìáE¥ªP¨g画‡›}²Êau9 ,º›†{Hù7ßÙÀ:öΫáé-º`=kðãn@ÐóX?í תñÓ’Ù~­Üºq§„vÊ·I›%Š•`éŒÛfbwjù=Ö¾¯f‹ùöúÅo™·0ɼº7ÏêÙQNÌ(\5»À( ;•%Qö'o€1(ý‰‰49]ªiÌ;F9v×rüœ¹Ö.8zºQµ¬vv[‡/Dei¼jp•¾¬€èýÿƒñªÔŽDå¾6¯=;”ÒqCLËM¤CÊëïl³\Eêô±Aw[ŒÀmŽ$Nüxò”W~P®Ú-NP,‰ºwæ ÑºÌ[BH=ªCEd §ZS›õœP\žŽÛ‡¾î{¼áwÑ“g%ŸˆòxzáQS]Ó—“•K×騡S¦U9žH3d<ÚÔ¡·ÇùJþ]Z‚ÌÕ3+Tž̼ÞHöåUeù–ã†tL{Xv^Ö#h§J­¾Äþã2 ¨Iõs‡‘°-i´±`EÂ¥[ n1w×+å‘ «CÈJŸÚ„?Í)‰"EbOÖD§êükª™Üû™¶¼­{Ÿ*ÕAØwÃÿ…Æe[_ÂÎÝþ— ÊŽâa˜¦Ÿsp;Ó17´ÊâçÃ#í’:Üö t(ðg¶5¾zÄ3ú8Ð]þWácš¹K% >Ü3õÀJK]Õ}*ÇœßS¥7iÚs;nÚ ~Ó/ß¿/ÙÃϤ•Ÿ€Š«¨•\>¸”ÁXj£vG5- g!óã1`fÞ}7Ävh»£©å}Ø:%æÏŒ*”¿ç½Ôqí¨þÓYU–’$÷8& ž±{p}¬ÝôA5fÑ–—½£Âã£4åc£‘ÔÂò!@u̬ÀÄ›Îû ëG >›ì]D¦ð¨¹fwf*Ýu·ÎEo’´k°ù° ^¹! (úœü KGÿ•²÷Q55;( ˆûg‡Ge\¼Ð>ªì)ë4wT’1&N§Ö÷g*:)Ê`Aêp,4m·+ꆳz¡úµzk0’†'n{ƒä¯ö4ͤ'[ºÇj1ZŽ&‡Ä}#${еÏçݽøÑ5-åïâÛ}uè<†2!¯^Oov¨Â¾ fù¼gTKÌqV«ØÝ9¼q":ˆMX'Úýc{(¸——,QÅÄm,YžH”O‹”ïýúGÁ´:~Ô1üØð< t¿‚0OÊÝ*.éÄG´éŠÕL7 þÁ¹Æ:Ûº’R9›l* G¡ X¹«%ì’…%"žYÌes_ÉÛÜû²§Ò£ “ê‡$D 5"òSðòWÙR o$Þm—냀(4˜•Qzé,¤ÉžùÌNü±”.ÍJ¯zÏëaý¿©HÿTóç`ÉáYžÊ5ùüÂÙ ¡áXLàù!{Œÿ¦ÅA²–ïýôήÊRn¡¶›ßՕĹçñ·*t ñJï-Äv.˜@ƒàd!o(ô­ìzÔá(<Q¯ OÄ´VS•îfæ ¹˜Vc­›ËTfc {àTݾkTžGxÍÞh-“CHV½¤Îû1hꛯçTJQööϲ£`90ûvjôdÏ[µE$É&QtÙ¼x[fTíw®íÆøä‡”ù:eç2_ÿR~¦kœï0j~_5áE ŒÕw’Lj:<öý³ÝªÇzvjŸþïµö‹ Ê\ÚY¯ÚÈ5@žãÞõ·Æ{Ñ]áG‘†BWwÂýBo ÜJeÞ01=ž^¬¸Hk÷ò½¤š¨!j×A?Rƒù0îŸÀ‚-r%b͹Ø´â÷ jN_×ÿ§ðx¨¡š¢®‡÷äÈÃUÁbz»¸£¡¿kÿn¦4\Ô¤ØU?ÿô³ëzo‚\ÈQó1,€˜sU€ÇêI—ã±›cù]|'),cÓ_’#œK^­5àå()líþü¸)¿Êjf°£V½¯ç¤¹§¦ve‡a3”¶âbI´Úq»B”b 7×C4õ4¸IÍÜîèä¢{XÓ™(/ÒpFòîvo|ƒ!Wqm¥>÷Ús넵SŸeoˆ¼bYË/µ_Ë@)¥ö»m³qóâ~[n‰ŠÇpä|õ9 p"º&i÷œA'`Á'ö6ä…r©É„‡Þ킘Ԛ<³¼lºÉXÅøR‰©ÛÔW¸<µ™¹ U ±?—ý’Â8ªÎ:ÀY;¿^=íͱÇdf ¯^ÒDˆËgbÂá wÍãâÍ@œJQ4’À߀È^W|Y@°Ç\"Ü &—òûú]˜†T¡E/—3b¯)k-yåz0¨ôÒñÚpɸÕü?ÛŒ3ä#%ÿ@Þ1jPÌ2údƼȿ{Îò~3?–lå2%4[—›Ïö5(–§DôI¸Nî¶s|]"®®• ò«ÄEJ¯ÜÂ’»LtS'ÌÉ…wLl§«Ë=m×7|AaŸÇ&ÐýiàÊ0Ì”û M}Ÿ"hDœ ˜º"C&IY-Xÿ”¯#b?$­W]ÆxUl7n ý³må2½Y1ñ'û kpx¨X§éâ»Jø:’ÊTØÕ´!yI.EݯGC!5*é8$ÓŠîvR#»Y¡]»ŽÙkE“rä²¼—4ƒÒ:Ç}(ÃtÈÐz`´Êµ3:]-;òö>g‰>¥2^¬ý¾-䘟zך,ípH7•W-ÃÀL6wCžöÙFêyÖ(œ~škÿÚžŠE¿;ùÌ1:~óöVÍ65ŸÀŽ®Ñ†ƒë\^?¸ë¼¿²gšLc ë†¯¤º*^f!)½ñÑ(ø‘ ¸ýý’cö~ü r½ê„µc)ÙQ^[!›GÊ Ä/˜Ä9ÑÐ|i€z¸6ô§é9] B*“ö’3Hówyhª#¼u×½´@CúÛÒÃŽ"jsã@¸ ذ>´¾$Ô©ejNCÂÔ±åÊ>–LüÛ aKº%”ˆEÎŽˆÿÕžIvüHÕû©%>Á-sטçIë…­Òál^".êà~“Ħ‘{AQ^Ûj4Þ)l“HH8Z§®ÞOÛŽJ(ø#½·ãÍÅ -ÒHn&íåäŠD¨œPÎüϽ.fùÄ8Œ²äÎè G$`„U‘Ê·³Ë9:‚USO¤ôˆ´ïížÆf&vTÞ^—SžO,0E±º˜œøÃ#øl…˜s’ç’{Bgaà‡ñÕòÐ#Á,å%tݯ€-¼©‚tü¹¶üwLð?;Tà"矉‰œ§@¡Ñ\bñ?Ï¢ÿ· Éý!ý2Z5 8Ë ÅøFX¬U¢“œ™‡²P@µ(û4ƒRA•(wâe°PÔÊÙ2e}º;}eÕ¥s·Ü/¡Úä×¢|ò„¼vú^à/•i&ùb*)Ù =ºbíæ•dÒ–âÇ jµ1*Ç!o—¢ ã¡4‹ר{|âÅžâ&Y§%)Š«|)&Úu0mzcëLwPAo÷S4.ÖiÁ Š ½ÕujW ã†8“50дÂf§ÔßýY:ÑÔ¿üšª§”)$ìƒpm{ÏÎÜ!”raûð_6Í峘õˆ¶HŒoo' žòŨÒ÷’ ¡øÝchÂhÅ9D.¡kÒšÐ!?J‚ï!ÆjÕM|IÔÕ‡tUC¸hË’™‘eQ°&7Û‡’–œ ³3Xêc¶]A,7ôE»t–Ä THݬMA ÑبÆÔ£nAxLÐ]“ìxÜ ´le†÷_ËûøiNçw+6&³¿kùî¡/8úÖˆµCûË£^µoî‡/·ãÀ›†Téy´ìþ•G>ªnÛ£qo¦ðåj.ÈÖŸ+ Ò[=$z¨Ù¾f²ÊûÕÑ7&5†ЄA»B(V/6—¨º56¶L‡cx$±•Óy¶ÍÔ¦<A*®vø.GvÈ:dþtL¦:kwúzw‘€ã‰ÎeÐH8ð4kR~=l…ïôd^€#/03TæŸõVUo‰aiêÕ–Å ŽsaæfãeÝ÷‘Å® ˆºwJU¨Šb ýФ~ !¼¶`Dq­`âLŠH «-9Œ/‰¨AÇï;,~â­±x~oCRè¸ÍÿŒýBª2ïœVšB/+ô¾¨CA†zœÆÈ›E‰hÂê¬7¤6qÊL6:$°äK£øÀˆWïö9ŒØèµÅ2Ä—ì:{ ¯‰/T¨ì— tó*î;Pãöð€àHÑcõÍíÝ¡ñP™ßýQòÕ—(±òeX7ÂK-Fdº3#ÒÖ w³a”;ESP qLÍF!Ÿ7,FY!¹'Üðél:¸œoǙϕ:&È»'1s céI£î×ÊpO÷râc¶_×@<å,‡¨˜â8*ùõÒœúµ KÇsðƒ…£Ïæºb´)ùd3…éOˆóc¬eb¤Œ;MQ×HÄf™7v¿MsF*#½ÙÁÀëm@‰{?üXÆû;o cð~`Düª×ö¾3(!_’Þ˜þi`GNw "ÿ¤Xø¥ þV+Où%)YJoÈn¤Wœ|h^ª[³•ûîÀ6v=”uŒ ç8+ÃÅŽO ¦uÒç$ñ9”$h1zwñVN~(kÒ‚1aÔú‡=­Üm¶Oó çÓÔ·–רK´¢9î•û›¿è­=(n¯ì-aÏ{‘(r‡Ra²9ÁÓï×ß6eã\èp ôþÀOxtñETî-h hg-WJ{A6z¯‰zγjm×î-”cÔw§è.ª¤ó0Êt/Èp e~‡[»–§’?¥oÅ{eY±íGRàq@¸À 2iUI†]Caw>„q„D›Š`Ê&§¡­d÷À­VæöÛè1Êî4¢« ‡’{xžöá[V¥–Ec @Òמœ¥%ÄI£%vLŒ¶^,èæ5õ ,(ý U¦\:øXZþ\ûW‚ó.s/f,B‰èšX¿êÊcŸ ¶«ý«c¦ògšÄ€ÞD|$è× –ÐaÌ2ÌŽ•hjÄÏÕÇ® “¦ñÆ›.ÇŠt“Ò¶XÕÃ$Ö¼ºñ—#``“V¯³Žp—z÷úlÌÃÀ”Z$£Í*s{ØíʦñâÔb¬9\â¦-÷þŸ€ÌK²„@ßY=°ÇßÔ&U$ÕÜ †`³…q·¹»±y£h¥Ô’ýqb¶XFMÅ{©v»ÌÙé ²„éÈï6 Î}„{(0OÌF0Ͷèõ¬?û‰ös“`“çWà–{§Ky”90¼þÚUJÒyuïÿ±‹Y€¤¬êß±\xÔw_?ànÆr^­¦)vfÓ]‚*T¤bQÕöN`,Ö§÷¶W÷ãuRfþ<½/×± Æ?Òœßm(W/ÌŸ‘«`%ýÿG3Fô³Ú@‚1_J¥íUy«ÄÓÇÆI ™~ñ=DíµTÒêWqíö•øº]=Üß~´fÆ^$s®kÏ'ûÕ)>ÃÇ?Á 5ø=€GÇ*F÷ZÕ5„æh©žM/ôõ"~Bµˆî»ßZ( Õ–Åw6¸áÀ+šTnGC|¶#y)$Š~!îl$B~‘.· ÑùŠ+WÞøÍO8¾‚Ö¬ú|ÒÔùº¿JÂO¦HV³âñýÜ úúÆ~Ë_ØÀ²»ÆWØïïõßÖR%‡ÈFÙ ?Y*‰ÌÉhV!Í ÔËÄ4á'ñvúµHp­“T÷ bF OQš®ñ U*q\ÿªeY86j‚weÐæˆ;s"†±ç›Ò2ey8VðÕI+‰.‘äÃwóï°¢Dßx®7 ál’ =‚<Í3r©•;“¥ôyÖ˜Soˆ «ìÜ£#DY÷Cc, n8™Aiq¿þIØn4ÿ#¨å;™Üš16!BÛ>õþMrF5A‹)ìÔl•1Ý|þ¾³¤za}Ò†g‡nÓß©+¼‘\‹£ÛPÙ‰Ìp€Â”¸7p©Çë>9?ò㤟Ôê*“Ø¥fÖIió2¢v_±vßX&€);µŸjo;˜¯4“¼é¹,-z€‘OÆRüÀ©¬DK<Á žŸOð†½4P‰7ìeªkc-Ê”mS9\O‚4ëá—Ñ¢ä·ðÍd#¿zÂ\…¡Ñ’ž‚C·‡ŽÜæòì€>ÅwÓ§§âóö fðšah#6¸&¾öô‹'ÓiÁ\f“èªÑõ¾Úù’¤+Cì™G =̊ÇxÛõXºí˜c–¥uã&‰7³P·›Û¼âÒbº"¹ë×Ô›ø+µl:æz‘¼f8$2(šX°Wv²QÖÆ’€ÃGwä¦ ¬6e|¥¸Éb©¿­ ôbŸá‚'Çqža`Õìè[cª HK^è0Æõ¾æucùìØ#\? jTÙ#júŠì)9%Õî×¥­,j QÓÌ1 Ö££µL¤ yzžõÖ™+É»…º#_»a„ Rh_Ç*DZ•{³˜MBß úï;úiŒŠÈ«âuüáV–çd&7 Cì-Àsñ:¿¤ƒÿ2ÙêpbȹÙ!B䤃$ܦ–ˆd¶0&¬ÚÕ ¯–Î’"ÒDÒgŽ“ŽÒ¨F9C²Ô«MÛ(úoÁ›ÍÛKÿOH‰ÙÝ_âIË„- ¥íÔÍh#½­ñ•‹Ïé«oò\d`atr½–à©Iì飅OõNõY6H!¸áB‚ÒH¿åT<¦ Óoóf?Èk°eÌ)ãÂ%)ê1²;>“Œ‰ì3E"@ÇsØ ¨íÙMVÿ ¦†Nôµ0é¶j<´SUåY 7êO@Ka-›¥ˆõD|šðü V@ÒÏ„ú9ê­}‘‰Én›j€¤ï{GÁOËÉÎ[2^êö§S´oÙ|û‰^áúðoœ›%™ùn^ Ò"-?Õg(vZ¨·3¤!·ÉEÿ$èq6 lÿ Ca'gòÍ{ky–ß”C{Y[¿*H#Æ®x†¢CrNyj“Â0.‰ïe;B3#‡C¨ÇÆôÈ):Híû•sLÎ áûNNÍΡÏþožŽú“,/ˆ¨Z(çÅ«¢ì’yKBáîòUïÆ“œ¹¥ÕìøŒÄÿ× =Ô¢þE×›÷¨ŠÁIM!ΞªŽ?‚ü›–‹År½žìwòÛñ€ƒ£Ct ÆNK׸Z8Zqp"7ÎΆ õÓÏ^n/J|`‡ìK"—SkÌ4B>ÙÀÍ2OÖô:ÎÙîöE¥³[>šØ/Í~G®àhÇuNa³¹®Ö>¡Ä†0çâOÅüyz ¹†mI|”.HeS](ÃyÏøÆôï®:Ÿ½z±g\Òëˆf»($yûÈ>—M"xçâAÈüÀ->ëQ ÜöZ9÷!¼2éâ’ïŠç'j{ñÓåJ6ó\¥Ý;þœô<ú} }¤¤pÛË™ÒüzÌ?4¥p®àWáꢡ¥U«ýÃ*¢b£×oiæF±ø³KïSÕ©@"ê7µùϧتaõx¥€îgÛvÒµèÉïsD‹àØ»dHXí‰ëhš¬åMèÒx°Wk¿»“¡¶œÛyTÕÆ"$E¦v+ºGƒè»2bWö”›b€’¢,&h^NÒzn³à|ÇaÒÖ.ÊcÁ±ûôŠ+åA’€¯Œ'ÜØ <ˆI (ŽâBÓJÑáïÒg Q'[”q¿Å,—ùÿ¬ªbñ³Ícù…Ó™Ù½½öxãuW6Ž–˜îðÐã BmEDèÈórb);Ì m2`Ö~·§õ͈ö޹CJÁTê‰(;”Š{Š.kqÏú!qK´ŽÑ#%vû&ÀÎÆXL¶¨#âÒÈ_ =8°ò‚ÍÑ),Ô&B ^1†øÄx.,>aô ±R«ûF¯‡¤ Ê8bñ¸cȸ€_á× $rPná¿™Fuús15“øàœV¾ÚÏ`^Àµ/zzº¡ÒÃÅj¸ž Z3—2ånO{¾^ñv»ÒúÁ7¢Šg Û¨‚ìŸ|¿§àf&X42ŒÎO9F!Ê9KEÌ1*¹Ñ¤ŒpïESû¶¥yXÇÓ±YÝI»AT9ÔúãŠYÁÀïâ7‚Cƒ¶ê·X %·ø°V„tˆq‹âÍdtØ•V©7ek'Õü[r{!¦íã“f¾©¶™À¸Šl^ÊJv¡ qS9Êbòæ& ÄÜ– yoäiè³´3¦eȶc#Yo è-3‘Í[§X*¤¢êkr‡ów¹¹E{¤[ÓoÞÚÔhDA{;zK¸÷+*—¤—<"A' þæIüX%|oé’:|á®Ñ ‘ðçfpÿLvöÈXóëóé^ Me”"æû©(¯3«a™á‡Œ!ÖÒ™Ò»<©CdÚfRâ½ØÍ_Çþ \ç=GôöYÌ6íCYŸæÍŠÈºQxØOó,-I'´Ý¸ä´±æ×yø1Aðîê³²²x¦¤¼2ëHp5‹Ÿzð<Þ™lS­ÁLø:èBSì7P-6DÌe>‹J±f†ãu£q’Â5íèê0ñãÔS›.ÌKák³„À‹ã^ôŽºN/r8Hò¦ O½bŒIãú{xàˆ¸rZð£‡w¶A6†I5›«À| ‰Èá—3 @€3’vaf’ÀJf, ŒèÄÓè| ³“U®Ð6&-¼ù)í—Eчr$Å;`&úÕ(…ôN—hÿþºÂ®³Ñ?a)R;lªvœ•1WdÍó÷ñ…Š‘dëÒ¦fêûÆ× ”!#œæ§•OI´C´÷8˜ ÿ.‹Öz«4&c¡fž«Ö~ —εð‹èUKaþ£<MsÀ.ù﵌zp&zºÛ·ÀXe…ÝǺm9_´k°ia*_¢.W²ulĨ=Vø¹í4o;Aød:7ÀQÌ%±­RЬNšRu¤¦˜ñ-çÕrèy¦:Ss]t‡÷MçT˜a‘6þ™Š*à¡ÂÏB|[¡OÚIM&=}¥`I“Ê>I>C@‹€MÁ†WHìmVu²þ D²Ð¬Ã&À´yl°‰m)Omù$l%¾¦:Éú+h™óGJ}î…Í0tÚ4C×ø«êËñ¾M¸<èWåE¤‰•Y;†WÐY»óÞeF¤ßv²jø]FN¾lÜÁK‘§9*Áo¥À{Äà †÷2,«ð8×=pheÒŸ fÁ3Q'( UÁ<^-è].2Xù%¸ ¢¬hÞ(Sáf%g£…&»Ù8¾nÝDR¾ûø¢â)HA×9¾Õ묈lLº¤9EeXÇ«MШчmÀUo.¥ÆPÀ?õM "Ìì6‹É$`™X]q(ÍH¸Ýµªø^ç±C§p£Iذݧá?fCò1×â½€x3—;+½‚;ƒ³Ö¢k¤TP§Å/,²ê¦²ùÛ9¾Kã-ËGê9vl‰“´‰¥…šN$›oè䵌‘÷Ð|CÝXi$t³ƒæÁˆT)@ZSp‘LýLd4û)Œƒ‚Î,90¬ˆ”a/ép‹µÉ€ ;3òwÈa«°¾Óºž¿ñ'õ.§ÚÝŠ×>ß‹pëßoÚ·eãPºí?šŽ5öŸgx à-±&CÛ_ë)_c¡4—ŽzÓäÖPwœ<ãߨHóžúãËÖ^®RÈ%lI ñtŒ?@Ú_ÏAÖ¡,tx'PéÙVíjgâù9Ò@lZ†ù‡ûBë_K¸ŒÕòƒ Âgy ®:¡ÐdªyØ<0ÜpY¯Ê‹Z3±›Eݸ޹ý¸*$*ÑÖ¶'˜+Ò‘0²ùüñ5]›œø9Î,V 3Û3É8"$"wÖ¾:@/Quu‘Õædn¾ã!òŠ£ùJS•†ø…“7?é&Ö¹ ÝÍ45™”@z ã¥]´¿(í|MvÐúYxŽ^ùŠdóÆ2¦wÒ nCêò,ŒYº"A(ŒDë4h¬uLÆÀÆ¿g«?VÕZéÆ*ㆮ½pÒp1Œj%¼öFÇÃ.‚Ó‡Gwé—a–™©á»p´–Q“¯÷5"KœadÈ$oqÐöëÈŠO=€ÆN¬~§àIÃD’ÌLÒ½ ÌzëoAª.œNònÜ÷7# vý}ç4 LlœÇ“1n`¿ü×WH4OÓøÚNh·O[ÓV ÕM‘e ¦æ!ÖH}„‘ž¡d¼¨>ú)žæf„D“ÏpÅR¶)Q'}çÞ‰…o§°+›s}TÇV:Á×çMä Tï]E½_"+<·éÕ·º.aØÄʸèXûB¡ +²ø=-º1>N·Ú_ðžR?Ø ®µËÇdòT¦¯ ö9s,kö çt‘禞° aZÅÔU¥ˆxeCÙÉ—riý‚dâ`ShæÁ<ÒêK–8÷O û9¿Î›½¯¤ñ} 2‰2ý.ŸÜûNý¶Ñ•~‡ÚÅgå±ð¤–æÒÅĺ¾Â´­ =;j6¸”‡lÊËX½Ážõlœå×Ow #{¼#æEù˜š°F—+oªHg |5™4Ïh€˜‰uÞel«@ŒÕäô˜H!kƒ¿ÞæÚœ‰ïèm ³±Éo;_¿æ™:„ÊèÅ%!g£yªê©ÃqDÞxýÆô¸ù`Øé~ j(0·Ä=¶Ö4Ügí}9¦Ó5¼gJ~Í‚@½TºÏXóž¬ †F£D?¹Ua[cê,Ê•<óÂ6ì7æ,P<Ê­¥F9ú þÃhÓ°]™ï²Î@š›'rùíÉ’Þ­ËŸöžˆIg\àìx´q€‰Q3,ë¦S¼j: y®q|pƒáy¹à‰¨$“SË=h׎îþ1á†ùgXI+ÓU_ªÛè+v#¸D½F"úvÀÅzzÂw$½:­1ÄG¸~8‡ 66Y›󫤧Q‚.6à/úÄázq T:C𦫾Þ\ÖБ× […̽˜3ÆxË:­-2„WT  *ƒð(„tU8àOªßÖ°åÝål;þSu„q GTý•þ“ˆ–¶‡¹„šFô¹"vwÞû/ív ½`îd‹L”ä °ÞSK_¹[®ë:j&ú_¤2e³Ôð¨p{ËZLü¦ãÜ…Ã/DÇèÌܨqie§Žô+…ù…QºQ‰ìE²|[)t,]ÚTjZÈÉ£¬ºûT¹çä¾—$JdùÕò–H6ÄZŒ©8Ò@°1hNkÅE\ÆI<é€íIóÛ®üegàÅq©Ý#¿FŠ&Äĸ2Nד¹¹™Á!Uã04 q ZYÕ’aî­‹¤–§Jèo»6–R*ƒý±ÀÔ…!Ž–p\ $šÃë¦5ÿÒ@ÙùÎñJÚÄD´&Ö¾½ãÀþYÇÌ*´ õÝ*–J)!ÙçÛð,Ïmù%ç£<†O‰àÓŤ`Oüº¿Áú›«a§B`䟼j;{ið3àz!‰›¨ûHkVC…ì=Êò?²–Qk­H'wÅõ;{ Œ!êïòÂÇÁ§ƒ¥lôèÀ5ó×wî/›©¡xicE²uýƒq}NÃìbl¿8½œViÅ·ÌpÇhî"²íÆ-£ÀûsXeÓO"S-½‘®þ¾ˆ ÛW¶­ E_c︵yý‘>@>B¨Ç¥ !0Ë=gÒLÕ^¸8èÍ—ƒe’ Î`^¥ôß¶‘wxÉ2Pn®OÅ1?ý_¥u6èq£Q#îŒ:†ì‘%úÆó°ýãÃd½Öm8ÃR¥ÅNŽS_]é ¿6Z‹šî6¬íËùd¥ƦjíŠu0º?³þmTFwgRXñnÜôßµ ®¨qsÂyßVÍ9^”çÀpÓ:aÃ~›¼ýÒ&ßžMn­ÓØ…_Þâðü{%'ð]KüŽÆã«¡'$:Ù§ÉÄyKŸœZÔ+v±ÇU&ÒXúêö.Õvv»¯X3¶´¼¾µŒÌÆ%ƒãw‡Üá fµÉ—Õ"yJ‘ —D«[øÏï}F¬è‰ý¼F™·B‚çÕbW…,‘¢ E”` t¦W`½qÌ×É 9i9UÿD2– ÔúÕ±7Mé—S®˜€H{™ õ°;K@]AB¹<}-1D„y¹ûƒ¯GÁ2FC>[þö’DªQEy§òÕ¦`Ó©lÂ<çv#µ9ÙxFä8ÚæP¼|ÚU„DÓÃÕi¬ðá¸Îü¾ÉÉíÍîɺ÷«éÎ2Û,HW€±«ý¡g;žö°çR¹òþÒ~‚L²ðæBäty|0Ò»• ¼T|’K†ZSø‘³ò©ƒƒQÂ’1ô0"s.ÖM–¢¦ûQÒÛbèÚ!º&†ñ>a3#^úgÀÚ6Ô f£<È[áBOL­@<ë_XésÖ€ 4£8WP4êmg&XSxØ‹ÊÄQ0l‹êòñ±† gá¡Ó~ÉPÀô,Àœ:Y<˜ÅN¥ñlî ù ÏR·˜¥§9Ç“†óÂzš$}X¡ðÀäa.Nš~svK1 >Šx”¥)¡ÿD©¨ò'x¦HúG¥ÖÞI/च¦±»¾*“.L̬¥qÜãY\/J,ä—ºãÒ™VÖ.àiWRؤB$Ô‚0pƒ‡kiÞÞ¾V9ÆñVä’Ï0N[£Nìÿ¬¯ƒÇYßÒFÞ¸£Rb,þäúƒ©*‹ aïõäQi¾·zI¾-¿U ÚE+ù¹EþʶzÒ麫]Bp%bÉVæ—HBê|ÿ3ú*s`RñºIX*µƒÄKJàã$«6¬Ã%„%ñͶJtCËÌ-Ô‘äÃû˜{?½_Ÿî:žÉ€Òà~ÈcË•…7ĉLK”÷¶Šò¢ìO×Ý é„ãžÂÓÂÝ…ñ{ìXèýº*ÙÄÙÃ,w'Y­ø{bk/ݪú ±Åþð(-rnº‘4D*§WþZÉ1¨[Œ:}AÏ%;œç[A>Ÿ½ò¢Ç.ç?› ñOt$Ü@'ÊЪOñ4i.²GSŠ1Ð Šzi;öOZ1\zµK2d*´Á7eµj#¼Kúm^“×–YMê¿@ÿëűåJ;Ë̇4tî[‘³q©b¢o/Xë¦-6–®ó:yz ­%*.q7û4Ö\ ¾°!_EXP"Г>(S>ÄÝ>·Š d|ˆ¡üTNYÏ ³ÀÎPÏopÌ‹ —)&U5“!ÕOÿ»0ØMBPð¾–K ö½¬†¦s„÷hê”BÞ~‚[êù!e/S¡“²¢ž¬ªðèj™* ‡f4ª—¥Ž¡¼LÑP <{ÊEoP±®±ªJÓ¤(v¨ …~: ™¤6€Hw -)òÐaò[ã"id?j±](Äû±¬WEî7åþ„ÿÔHðO€k„RÑx“Ðt¼÷¥Ó{̃â^µCúf^6Øs‹ÒªýGÈâqm—µü_ݦ T{duËò é]å]>X¶AüB½âäS–J¨Ì¶ðL±‰QKæÖ³(4‡œËßgúŸý-Åè5Ñ­u”‹‚\’€[o†£àG„XÃèØ¨UÉ„îê:ÔfBÁ¸PHwßHWèò¨´?zb$¤Š1X:#†C?航<¸bEÒÞõá|“†¦cBâÚg“ kv4‘OÓw*|ÿÚ?ß%¼uþ𝆦ý%® XŽ7éÜM(c< íoÃ]´CõÕpŸ}¯8=ÎT¯KñQÒîâ¶qLrÉéO‹l•o×ûb LÕ(J•Î¥tÏz»±þA^¾Â…8ì’ŸÃ ŸQš†,/X¢L)†¼J‡c0!ý)gÚ7ñ${÷¯¹ ¼Ù§0A8†ëðˆ &ò2U÷]=z"­ŽT»}²Ú˜÷dµB¤ÑmJĬ4¶? RÇBŸäu™õÑsƒÅ<žÒ2póOãÛ¥¿ãŽÈçNªÔ\àðUOøh½Î]ÃqèÖbPø"Í€±`ìSYä,³ªþ-‡_Ò"OY5Wî¤#œÅd–7.&[Æ´w¢“ϦXÕšÇÆg)”¶MÇ`.?×n}W©·þ±øWˆÊ wn Ï*¢…Ëm}LOE ³ÙÂè¡Ú—V‚ü­©Å²Á3êæÁœs8Õ Sí ·™´;=ë½SLà˜ó*L%GgEˆ¢ÿÏ÷ññ£ˆØÙ0B¬Œyú2Œü}²Ý„„vi$çèxÊÏ«óÐ>ï!ZJ£â€è»tíåÒP4•ƒáhh^ÓA<tUJV¿üNBJ ËE¸5Σ{Í™Qé )ɦFùãÅ'r„㿈—‡ÉÎÖ#oöRQôzvsH½ñoE],d¾Yè| +Ò¸Š+“a‘n=øÑô=¢ r ïµn ‚&¥ÒG}haò`Q'mUªL@|¨€Lýê³Tnœ;Zøl©ø=X³jÉ£§ˆÆyPþ9rf'~OF^ ÷îÂlÇÐénŒÔ”›´ ¥>sœ+btóú±|-8Á¬vI/\РMÿî+Ì4ßS“ÆXÓî¨ G[qßù0j0ÚÁÂ{1`U¸`\ ºZ4C¾É‹0«†»KÎö ‘]ÄŒ1‰òÔ¢^£I«êdDÍ+Ì/Çìÿ#uOËë¦ÚF,Ièr“ú+uØüÐ Ñ‘6QÈ1Ö‰£>e¶ÿLA»ª¨aÓÙhŠ$¸Iäñ·w¸Ç »iw³šP«,LìgQªý)h‡ò  äwÈøe§bB,›Ã@Êéñü#´•¤¸;«¯›9åÔ‡åÄÍ`µ‚É‚I …)s3¿¦ƒU,…†÷ ”Üb€ü%Úuc(Sß/3Û™ ò =„l'G¸ PêSÍÜæú … C&ª®?ãYÄ®ÉX§ð¬RÅëÇ’vy®:¹¡ÐIâ*¶Å¢/Yò¦Wsú¨¬ÛÇ ÀqöÞŸÅ÷ Ÿ,Ka]íÖ©—¤üäX ù;P¯øÁI¡C¶èGF£Š^V‹pG Ú¯µ«ß2Û*÷ׇ_V ÔfpR’®%­G+â7k4{(cf3ö¦1¯VZ}ü—â÷d‚'IÅ61ò}0tR¯£D¥QyòRÓì¿:hð=™vdä±<Ïêk†f{þ°`íãúÂbh ê0h¸Ä¦_lZHÿ»bÎÀ¤ÙnU v¥85í²é¨ÍY qËààåzgÍQôn2êL°!òì¼óÖ@yÁx…ºavy?¦Ú»(éáa’VŠf_žBîB¿E'\ެ.‘ì^£û| £•sL Oòž§²W—D!=öà(@-ëñÔáôVŽQÖFxyŽ…E²Î%t× K<µç?°÷†}¦Ú[ï\‚7'>2ë“»†§ÆÄËÎÓñù”ÒÖ _"OȲ±`³n)8ËC}ï7…9'™îÿ)EÔ‚qãÏŒ«}¬ó¢Lr}%½Ïè#fß>îÁQ/üÂ*L£Î ³m§‹«'ûïgäbT‡f©œZVŬžŠ*{&©T)LËÈ“ý„%ƤÍA–õ1F\|=…øYÝ É¿Ž·]t·¨VSb™þu}òf%™i·Ù2 mÕz—FyÆòŽã'SÝÊ"b_ÿ•6²Qrq훲üc Ê¡{#pN‡P„é€\³¡82¬˜ØjÏU™œÛq²ž„éº!®¥G‰#ò[~ÅÞÚô‚{CVÙuñýB¿¶—è×gp­¯u2¬~b„2®{ðÑàåÚ1foU‚vt×b0\ µò ݸûz™ÁXìÿ2%~MIþb ÞòTr’?ìi×YZ™† QħÒ¡~At;Þ„È6ph4ÿ¦%ùDƾYíÖÇ»Yjoèk4qÒy6l%sô]‹KܯT毞ªøhï^˜mþ¤G£ÈþLã7“àWoYi2åͽ,µ³¸/i¹qô -·°ËˆóoÂÅðpÊÕ¾9Ÿ·Pº&÷ë4bˆüè“”'`Ñeµÿh•q€®2L™ýú,4ý«ðÍ7~0›ýº—ÇNÇzOšÃR å24kÑ™ÆÚm‰·OâË{AØåÖÐgó³x3åèºeØ‘ÇÊ¡†2ü\2ÅÞOó\&Ò_RÅÓJ‚Á,c@ÌL¦Ï(V-ÈÞ}ÃÊÊÔ$‹e&°W­‡KÒµ•“ñûDíêžò„º!ž¿b»á›`úTÖ¯O‡äZÉÑAwðwŠym6Aÿ·ƒÚ-ûvÅW »ñŒiã¨@÷¯Êj”’Ÿ<½à-6V®W>ÒáÃÙ,w×Ð=’Ö¹ŒÐ“ú¡—$Nœªï îà‰Ùµ‘¾OO¼>dñ oIiÜ*²Å›i8”‘k3Þà–l¬‘„šAŸ¡P%—3æ¤l[û}Dî ¦’$g^ïÔ‹, "øQ§~»]ÞX\[£Xé‡kºUjúp ¦;…®qw ‘gÂ{?YfU a@ä¦{Ž/&¨s|—±¹º¿Õ®'tatWo¦~IJt¯= ðbÇy¼«ñ¢r'RaÜZŒ%4 Knûæ¢iúˆÂ¼‡ÅðaÁob•7xO—`‰qŸï[\¾&ì.D¡lM7­s”öAö¿v´¯QtìòrV]Vn˸¤ìݱš6)vèØF]&ÊãT& =†³ƒeI¬–ä úÙΩ0€O·¢ÊÛcâ€í•^ñ”ö¼d”cë«GgÐçp?Ç2ûf?زºÌüÎNeít€›CMá†I0o9°¬É;¾ÚT”3-Ct—wú­^QÜ<Âä-ÝÀ€|dÅš´0´4 v)6è ` 9%}‡ŽÓŸâ}Ä9F™X[ e÷&”“þÁ æú†ùÖð49 Ínñ’%”ãMI‹O"IÈdwï‹n3šB¸Í¸ãd ªes&Õ‚ýCìÁ¥¦ g‚`;’ÎÓ}öЈõfÌÌçÛyA°É |‚uës¢ ët³Ãm~,Ê›ù=U^Ä£@qöôi_A†ý¿2Ý^âqéÌêÓT|ײ‚A%»â;­k–t*›Pð/“w0´ÕÓþCE ÉkçW@dhL_Y¦¿KÊ]0ø$™Õ ì#!6N¨ Ù··õ?tã³72‚=SßnÏT1~ÀžÀ\&ùÿwoÿ ȲÊX÷Ž+ùšš“éôµøƒ*•êºq£EȘ“Êì!ÃÝ}]õàÒ£Ü,…ƒÈÌ‹ kö…dãÜgf°@3ÉA3ÈÈâê{4 %Ž¢½&ëäa§°†;<ø1–X6Ì<³ Bsû†46£Sôfq­°P“ ÷ô€öàvñ­ïWQÓN•£SÍqìñ/)¸Õsb#N š)µ ëù|ºêúÀ©aÆáÃv=üW6œîˆ ÍG¢Áýf5ûDwuœ7ûæy/í/wla›æx¥Ö©ý=Û[àÔªºGUÅNÇ}¿ñ\[9RÈqãëPý+À2Ì0qy æ‘X*jJÓB ãžTá§èÆKœXŽÌ;ÆIGSÌ«~@ ÇaT{“&ì¾¬Ž«|Ÿ$bLJæz B|Ü:ݸ™¸/n)àì£j)Úlµ×šo¨-î¤`N­ÎU/ýuÌ‘YŸê¨ÍòwYf5|ÞU˜Þ(ü=;þéAxp. i¸ƒ‰Å¶ÎwhÀ$ÞõÆÁˆö {ç¬[œÓR¥«”>Û7_¯ÿŠ$Lù".ÿ=uÍKìvgÃx½:Ï(Êå8嘤‰?=Yô_úVôÎЂqBšÅç³p4àÒûóDG^#öPÊìèJ ¨zVÜNlV³ècÑÿmí­ 7‰xø3¸œÚp$ ®g¿rÝŒ+ËÇú”ØûÈjcN0˜´yÝ>‰3*Œž„ÿ&UçCyrÃác›—‚¨|¤Y´çÒ‡ ܇ñ úŽ„I¦äãì¬U[­lbœìƒÀó‹‡ÂŽùË÷¯Ã¨w››?)Öp¹ HTTk”‹ÍÌtÎPò?àåíš7wœË* ƒfrø¶Ü{²“ó™I²çÿ`o8ÒÊ”2®ß$ùó”$q ë:ò›QÒt8š%GáóíÓÖ††–Ö ™Rî³Â©¯¸¼…Pã4êùö!q¡õ<ªŠÅèÂ[yšw”„%¡û»È´à­ä š;KáZ¬E=šíË3˜ ‰êŽ{á§4T®Ã9d†J)Ѭ/•ÙÖ”µR–íã =mnOè¼§ñpVCo¿Ý{Ÿ¯D¡yZ:c†§#ÝÜ+Ú¦ÕƒÕE¯0S¬FßzUU]2‡vÿüÚ6‰iù¬œj×f Ù¢¡¤Äˆd¢¸búí#ŒVtc*Æß? Æô}û÷zBµ>“…Tø…O.pÊf G]'ät6|¶rø¹ÿjÜ™Ým•h×)d"`kk·ÍiéŒò¸(ѹÃcBècž#ýç‹ÂùŒ´·yù¯{¶ë‡5ÑÂ~g€rÕB…¼n3q« WA*r9¼èáéMXžã¶6ªüëÀÙPmuª~ÍF0 ˆTªl™¾QXzÄy J„Ô”ì[àÞDRÐ)ëÕ®À!2—¦ D{¶{2ˆ—}ÍmE˜ä«1¯@wÙÚ€X¡i•AÎâB±†ýßP,¢÷«m$…yÒA‡=7ʱڂ-×»*p x ¾>Ò åå”yjãØ"Hÿ*´Ú3‰ÈÿbU†ý  ‘Áp¹6aÚO8r$¼°äÑ6ýY"hÓUÀÖl© Âtzh$™y²ve¹êŠxeRƧyÆ€,q&uj¡ ¡=ÑįEx3”!èwcÉ=½°d”lø(#¾:MÀû£¾£Hi¢&ê0;ÙÆ-tù-ꃨÎ逥Z¢ßöê·€‰êªoþžE²F©2» –€Nt¥/yBÑŸ„ÐÝ6ܵa£^ðåµ `™>ã/mß`7 “P‘˜»¥ÚŸö],ÌlùØX%ŒÄ~ÒùÃTà1`Ž(Ü º½²ü+ ºÞFö,DŽn¶º"&ízx¨æ a(½že,Y «@0›¿ÿ×¾®Ê‚FÈ-=¿>1ˆš%ˈ÷íEœ6b¦Œš4¾4©¬Í9dyÂóW÷m_áÅíD:dh¦jô=±ÌuR6W¨½…¡6=¯¤¨t"8Ö—É9|Çtfo« ‹.‹<{pÐ…†6>É»©fê¯þ*ö¸tç ˜âJ©+€{Š–]Àoöˆx«ÎèŸ Ò=’mz ¨^¾Xí¨õ¡ )è¾ zŠ«GHTÎYûþÑ ÛèÊ+ù›?ùü—n`ó?þ©á• «G¿ê6‚à‹Ð:®‹]e^äUïõ\Ñ.­«§ž”â@ù¢ û¸k>¢hzœ h‚í͇óiþ†ý3uºmmªD2ÞMEÝ>j,˜Ù$n,¿;nO/èÁs(³º9µÈ7ú¨y§{v¾›Þêšä_Wʶ!å— Ò.åœõÆÔƒ®áò¨casÉ/ÅU<ò+m‘cœC]qeÏ¿šÄ EvWØTvèJÊ{ÙPó^`ð½­ d‘·€— ÅK¦›«§«ú³fÂÝA©Ù$:½ŠÚà@MÁ QµæMX¸b¥¹| Á¯C…À¼Ï-º©­,~›i`£õÖ;ZPK ã’î¹#ÈZÓ ª£ÓøûB3Ÿí•…Æã&ëÏtªIü$õµ`Iå¢ôâW}t3â.©Þþn§\ ߪi $Ùz·Ù$œ™Á£(RÅrŸ·øäû]v«±C S&ŒÊºÊÞ*èÑÎZ>~™aÈ`!gp|“è®îV“ øÿLák×ü¯Û<ïåz±¡ÆÓŽh»þóâoÜ»åÞÑ]è{™àɰ™¹uŸæþ¡úúÁÿYÛ÷è7 Í— íñlªÄ±å&)5|½Ù€ÂÒ ¯°h]ˆO §ÐM徊UÜkSÅceÛh¢;ù â%Õ3pöýkìx'S‚½Ç8>ÙL¸cËzºÐ©õ,Ã"ÿ.ægUÀÝ«àYm)Îq˨>h Í)¤ …*Ì«?lS¤Í£Ô ‹' ºBìù–¿g¹ë‚<Š=EÊ‹:;Ò¾b,öƒÄ2['z]“b&‰¤9ʉѥ,Õ”"fñÝYsš¬øÂ´Çj4kŸ›™o«~–˜8ue`aL$»)Èî1Ž÷³ÃŸÔ8°wíÒq°x؆ªâq;—¹È²lÛ‘˜ý™qZT=µǸÊ|÷“!+¿>G†eÓƒì6Gä·‚“ƒœË%ûr2}GWçžÁÈž$ÆÉYï÷ôÄ”..HàUV5ÑR”ÌgÀžÏ¿¯è=vµ õÖZ‚rÞï:~”d\P«q¤É,ÃéU2ø(3MYE ãóØhÊ}5ç°'D¥Sûǘ¤LóŠ>ìÂD(€ rÉþ;ßP‹}µRÆ2.ò2*¼ä6L2& nç+0"ûI±½@/ ­ö°äwfÜUš½½§“b$1€´c·»Ã'§WK˜ûq´Vö!˜é]ó*|­^ ˆÜUOQ1ubOç¼í-G7ê­Lùœ|li€j>SþÊÅ­«ÿym›ÜÿFmø‰ê×<Ÿ†(ŽÕAû¤ùIA®ã 9£W›gº]&ú¿×TGû¼Qߘ#a¿´ éë&–æâÀž®Óñä¢2 ‚†\0á¾¥’¢:^°Û×J%‚CåP¾sSg§F¬l6gFIç±+~å"¼„ƒ:€ö´Ø_(ž€¶èëÏÚJÚ\¤Vj"{fõZ^˜ìÐ;°læ ìb^9ÃÈ´ŸqçzM8îNWJήWþÕ©Á±Û$´¼Näñªþ<Í" LÕ Ä‚pŽ)æ]$GCþQ½-ŒwV)6Ôo3º¤0uLé󘆲G >þÖB@`? §²£ùÞMç@KýT,¯2¶SììI´aáaZ#\|­ÜŽ×¹ "'‡•L_æ‘üÿX4õèSžV,ÎûzîC·"K/Qi‚_Óì!Þõ Ø»´©¢Ø¤J©‘ñhÓÍ‹›'ò×"É%Í”5è«Éœe7l¸„‡†ñBÓìê}ê Î?‹VÔö „ý·Z^ÑØ6pVYš^£ÃwžúÂÏ{oî+y­jýpÙÓ*.…·hÂÌê;Œ¡#ذ±I]®Mi2Ù ·Ï¯à—TÂgÍ#À *ìhX¼Þ„õ÷š­ÀñÒ< —f„¢M zÞ®l.«2刳‘Ÿul4¸ð é¦ì££ƒÇÎøÀ|ËdaD¬7ÉzOÜ~¬Æ“󺋖L)Ž8qõݨtÞRÝ‘3jtÏä¡Ïÿ¥îäÊÛƒpd¤ï˜Qïök™#+y¼ò2 Šñ‡´žÔ±RzôäQÉÅ&Pòƒ}\Wšç£€(·Ê}Ç«ì~QµpV]ÝŽÆaVÜwJ)œ¥( 'A¥Ahƒk9J,å•d‚Z}º¾Ìà©áû ‘Ðÿà¦rªH}{˜î¡5(+¿+&Ípza JEèËÒ*æE-½oD–ÇÉ´SNøÖ<6!“JþŠ:þ„áoàúH9ÐLk·#¨_Hò+3…ºy¾“´Th©&Å`ü8¤øOý¹jYƒ}×?]:l'ŒÌš)Ôiá¸cê“ /}è'±nÿ%ßæ—B(íaŽ%iÌpØ;àÛAþ8—®Ø5²­(è ·‘KS9LB5:cO2?TfÜ¢ŽÑªºÌOï'5è×rJ\‘|ô©Í‰@b!ã“#7lÆDu,~˜¦}|k \ݧõ…@G[sè~ZÜI–Gv8jI².)±Âi–Xã7<¸I%‡¤y9•ûR«?a¤dàôã9‹½Ó©Â•%5™•&ÄP&qv›ÎÖ.+hs1»íÚúEaâÏÓàcÑX®Úc„CëÙL‰6Þ¿>Æßz™·l½÷߯/{¤|Õär6…(Ù "•¡zîË·šæíü1²*@¥‡ ˜eúB ó;Èä2Jᇹ;û§^tø˜Ê=ô¡3ÃúBK”~ëßê b¡j]Eg÷ƒ¸’Lº^ pŒ° ¦ê#—\ÔSng ½d†â;†®a‡ÜE$‚—,3õ4~uÙÔùê=VsÖ€»é0!.^ÆsPŠŠmC(æ&ä³xö£å›fbfàÍ<éEò/‡ö'6à níÂÃâéÊðñ&7fU’õ#ñ8µÕXf ¦ ·¥\Â%·Y_wá VÛ¾z¨«¬4#ÏæÛkç×LþÝxØÜ{J ‡AÚ–ndŒªÎíuÐÂjÜ¢G„ ña¤‡`W—®²¤iœXËöˆã¿ ”ü“úÝJvX“¼M÷…IwDÝÊ »Ë~øB§[ëÖŒb fi1géºoçªýY`è¼¹‡:ÊAñ¶­ù?*ƒû³ÚÇcw§½KA2ö¹¦ÆœÀNšý£w^óªxSÍš'`ý–ã…Éö:Þþ}§01”þ‚y7ÄüžÔsš!Ùò Å_3Ó²r»ÍÀ2Å«þ¶õ!0A|øc$r?úQFqä!·âØ»jkrQL€!ÒN³v0jc¸ *ü™ ·*i#xHæMŠ;·Nn¾xÝn`×Q¦H¼( órÒ*q(žù¥ô"Cæ)!×–ìÜÂÜËZæå®5׫±»IX’Ä@:—¹˜ø´‡º·B?SS›cïR -—b¢aá¿4,ø–ÞÂó|³¡¾?wÒ'ué}\”­å:H9Q¶·nsúÁiŸj¡‹ ryÀt;T}O½`¦eôë ½Ô+»[Ô”£Ùõºµ„!×eóö5ÅÁÎpyšß@IðGoZAÊôHÔïzånä¿u|©ýd[ýFÍÃ!y}†e_ì¦ë5/|q$¢‚Vü@ÕÀ}"ä±g€¼ÿD¿+u?RJ0v—Xv@žêþ£1H™_ÝÔs0d^J’ú•öppeŠ56®Jv©‡¦ 4TèÎYdeÐǰû€~'~ÇJý—¢¡l'Ê"]-š†€øïC+d3«±)N[ÐDõ4ÐïÀW¨D& •£0rwì#] ’„¢F•Þ’zÚ›Â0IFóð“ ljìÙ±e”#ÿ™±XYtùÄË×¶ßâ5úD€Ïò‘©ŸHÚÎîyµ˜¬¢!€e2~°¤©¿[üd±ˆUµ¹ÈŒ©Œ!ŽçJɨlV­ÕGûõÍX ¸¸ dmX7NÕý\ŽãúqG nvù?c!ÀÃù]’@Q6™¯óÒ°ˆÅ,D ?}Þ©"|Aû€<œs³^ˆk÷@ùݪk O%¨1œq/f]ñbPN¢ãdâWù×ùß"Á?µ€ØU†™UG…3ÞIRå’ú6„È}JO ì«QÃahÐ‡Ž±H;ÇM#4Íïô1žtbĶޅ ›?ŒnÅÎÙ)Xºkz]=Ø ÞÖÚ³}æWMºãíð¤~ƒ…áåðèàñT´ÎïxZX=œg9Ï2Pó¾³öY_‘l²O÷óÍ}EfyÅ07¬ˆ)ÑSIÖR÷½ë¿ˆ°¹kÌhË^HÍÄ=  iC‰l$5«Ã€ £§<"–€‚‚“(|™l¢Û/ö ¯48åƒ|‰%ëÀ‡ë—k+iËI;×|¥û†©/K‡pµÁxÄræ0ÍF›WA'xö°sz–e*Ý´º<ìý˵óþð;Ò H3±‚€úwŒg¡ì=]éL52(•k°·¢‰4!÷À /§éqw@¡;M $/H_Ϧ³ý¸xƒÛ…mÍîf–þtüÒ?QÂŽvŸÔŠÊ_eØõ/6-˜ì3ÉjéÄVM'ö,²=-¡*Õí`©GõV)tÎeú´Y_¶ Œ”nèÂ÷œJ!ßÎäFíª‘·2ã›åJû'W A€,&3±' I98á"°­­òèõúÞÙ›ÉOªÑ0Dñ ÿv´  ø"Ÿ4ç @𿇌5p„àê+1ã̧ãÜh©3¡ ©uáI’p¦žî‘¾»¥l8HZÐØ)<{G„«Ü.òàÞïÓ‹ÒŒÜØÔLê¼³’MMÓ‚±ÒrŠ‚Œ™Í(§MÑz±zI§²¥KÿbÚøœúŠU°ã CF©«8ù²£–>ÖÁ¹âŒ†‘KÙ0»ô n¥¹_7Ãeõ«èªÑ”)%Ÿ·ë ¾¶Ð¦T¢ ª U&x·1 ;-Ò?–Ö¥’LX C°"¢üì-sb ~@¯õk¸0wý𰣸½«S¡:• ôœm:ç¼·ôôÑÜL’®žÌW)-GXÉ*¹…-Ìlj2ŠMoÎL! P÷vU•Ž\¦" F2·ÜoSÞŸÕÇ#‚îÿt~OÊXu¿pÅšgQ:b¯´"ù{®Î<'ú 9”Až“/=|¸ !:ÀÔ +çÚ µ¨yór}/‘ƒ|,þÒŒs5¼¿«Ígwˆ¦~‚²SÖ~ « >Íl¥°³&ÔýG‘FŸŠE5ŠÎŽjˆÛ¾ÜÚâî":u'MÐßO˜mËx`Éï:rOèÎ:xžk)ËU”z¦Á§´[œXa¤ù.ÈÖØ?yôBîøç@5áë ÿ¤$¯âŽÉð|+qíÉfœ.ç}ä„¥·_½—Ç¿æîao°%ÊqÔf/¯HâŠ5PØX·4\Ѷˆ86¹Txéì$†r¶,†µB‘”—NnË ž%X†ez›± P‰ç7/ô&½«,%“& QÏ‹PMÁˆMWÁG 5u¢—1'¡kñ}oú9+(Ñäe€è¾+¸t°ŠJ IsP!ÇoAGòr^yÈN¥ð=Áü<6bbœ¢àΜý,ž~z1¸Ôžâ¤´…¶#/3'Ä_£q©+¾Âk;jsЃë˜´ò¢ä€àüÆ(><™õÕœ§·šZEpHÌ|â2åÑ‹ý¤¢cEKfjæ¤'õPʀݻ=Þ˜Hðób% aRAó£aÏR-å>ÈIæJ¶r2¦]*…>9}¾_ð8-}DÍKui¤šhn ÅVÚ®޳¹¯we ^µà˜›Iä.±ñÕ<¢¦7ðX¢ŸI˜ Žù°- ýÖµ–i2%^ô4QcVú‘”ôK9žEíkƒ¿o@né5ÇJùCð%å$€N‹í.ÿàJ²ž(º7Kd(’C {O»±‚LƒA-FéòOMWL\:¬²l pÃçÒá.xž¼ Uuq¦‚©Ìx‹âRg6 J4¨ÇQ‚ߌ§Uõ/©R>:Øå¾ZHñ´7ð]€½œy˜ƒ‹Ä÷(k`]X£ ?† ­gB™îq(àvæœlØæõoë^£+DgÀU£~†%+ªë˜Y¼çBxzg—vÕS. êœÏ›+dnÚÈúa`|ÑF2,„ðYØN85bUë«ç»ÁfÒ€.‹y —ŠÛϤµyѼׅK¤››ó7’È?øH½ZÚ̳:ï69ɺ¨7:4GÆ>j¶ƒ:åÅ5‰èÆû?œÎm…òè3âmÆ5[”~LQÁèzÞÒ¶wÅä‹Ù.>o•à |†â˜˜ÿe™ÁÇø4‰žÇþW²èëÀw¨Q]I¹ün`ƒœmº¶ïè#³ 6jwÍ—1é½—³4f,¹D[ Œh.¡´·¸Nw“>·*©Š2™;©…'^9ɞϱ¼/OêhŒN‚²íœ£¥r7á8‡$²×k f¨µš1Þ]P ŸTÀÝÏ\½Ú`ä=3M-µY Š+ú—±‰LÛÃ@µ>.Ý”ókYRC]ûz¹ÿp³—žÂ²6`‰ê S”ÚzcÅÑ3„ t&÷…Z…1ïûý\cx!«¥k'6á)N ל,­fjœëå¶kÛðè«É\7üjš˜‡ó˜Ê%R´uí)ŸT¡Â»·ó5›PòB5”&„š_•£k_ùÑGÉàÆ³wt2ÿž—u]ܾ<ù°| ”HÈÚfC\´c,`ôx8o¤Õ?¹[]±¯VžE1c|öÌvï×B Ò¹Ó7,¹¤÷Ñû·7T¢RªêJ<ÿÙWÙT’–ªá\EƒÓõ%§YkM¡… oAṲ[»_×óÊgÛUWfº€õç¥;æ#ОöºòèÛˆ--ßÓÊ‹mׇCÇ‹nå\ØO¬è!¬Ìä„”­dtq´ù´‘ÑšZTÂ2pã[Ãü‚VÚ_‚p^/EÓ}ܯ ÞZÈ}­z:ûa⋯ òÛ¡2SÅ.€.ö1ÚjGvÒ›o¬C©¶sçÉÿ¶l[¢LîÚuyx{ƒÌ³Ø½{ÿËó .–&¶Ï…äË­³ |^ð ~ÔeZÄÁ>›üŽþ?{°yáBR%þŠÔª®å …L6g&Ij§QŸ¿¡! ýÅšhG§ûæKvO–"Ó ÃíIQQµVôGv‹.ñ Ä=T`rÈGÀsH#;“ºéáÏ"Q[‹v} «w×ÙB½Zëž,PÂÉzsN/1Â4†¾Z·±ƒK”zn6{ ΙKi>É8*œ©èËfHpyCw@j†¡tÒ­ÆÖ˜0ëÜn¹eâ´‹¬+óˆ,˜­Þ^zaGFâ-wi”ûCú€€«:뵿ŰwUÂBýJ³~Š™?ÿÚs1Z]~ä‘EÒ±œJÓÜÒ•ï¿ÑMÝÒÞö“Ÿ¡Üt”QeÕ[—â§!ïV)tSªÜNé€èóOœk…fïçýÔâkycÐ]Èètç—¤=°†Íøª¥š>ÝT=é( ¼òà8¾cN$ „M¶ȭµïÜV°ñU>t+Ÿ«|èù× z®3Ñã,X@¶ˆ=¤#{'´Ž€¶Qc »)dè«ÏŸƒÈ‰²•€Ø˜e‰üøß?ôÁl%´¡:®Ú¡ïªÉÎÿ§“'{eDî^9[!—‡Æ¨ðè×ûƒK¢yO]¬Xˆk‚aˆ“ñæ .ƒ¹ÌL)#ñÝ/@1«æÔTr&[2‰´ÅµÔå3tñMM 3†ú"u“Ç(Q²ö™ØFûv]ÞÎçO>ÜÉ×GÖ®•ƒó µl|}ª„ÒÉ||µÇ ÉbØ“6{Ò%áî(RÖn%>ˆ<¸Ž¦ccߊ e|CU&F#ºÜª[Jü€Ÿsç‹[(­þCpÄ•ªþ¢ R^u$6ݺéäÖ¼Ó¸ïèh§V¿f3DóJÝ`‚"˜ùýyIììƒ%ÛµgÂìÍ=ÍõB3òÇȺ3Æ•´ùÁB+*ÚѼ÷αxÄæÁG9Ü’o !lÐóö{Ü-_&,¤Ú Šuåiñ̰ñ(÷¿õÞå}ëĽÇh 6Ó…@ÿ£#“^à\µj2çq Ö1–Ó|ˆ±ûœWLnú¿¬£õ jn  h‚.ÛT¹0Òg^NIÔ( åáBå8¯ñ‡±nÐݶ¤ÕdɘÐóÐä7¹‹mÌœ?¨o¤T‹~@¬x$Qkßäĺn©Ò7N¶Œ«(H,Ý[eŽÉ¢ò)<'€šuX 1×¾Ÿ`Xs"攄õá ¥ åX<ñ“¶ …5 '”φ‡ÞJϹ>¾]$Ö›;Yú88¶ÎÚFVåÝѼJôæe Ñò‹ó<Ú—‰úsÈbB,¾FF·Å- ‰ØàLàWæ£pcÃmÚA##`ÔÇô7ã<.ªuvxü »KCñ-ÞŽ`ä@VÊ0™“'gDß¶Î3$_?ÈÓVãz–¯ðèG(·à¡»Æ…sr@ ¹ð‡2AY¿_ðGí«JØŒýmš9æVf >ò§7¡.($ÁY^34;4@°e? zpOt‘*? ‡Y&¿!þo\¥öqÇØBï´‡xÜo‡PÛB-<øw{CYØT3©-:ŒßWˆÞPÁjXZÜt@‡ ~CjÊ#–|1;ÞîüP—mŠr¤ñ1ô‡c„—’2-'m@Tui(n§ì=)uWwÞ]d„-VŽj»S“Àý††{³V_Šôa2‚hóP/+­„õm°†J·UãC0—fö¾Y—ÌÉ^j® 9]²&†9ŒžŠ?C‘Äh•¶S¥©„î.î ¸.Àƒa¬ù²ÖïÛv/DDžv2\K¯8AÒ› b™\‚UÊ=ÃÛ£·çIТ'Cv:¨8|âV&¡Œ‚zTµˆ¨[çWÒdÂ|ì,‡ ƒþE=ƒp¡jª-Û÷ÞØ±ˆÙ¾¸ÅŠƒ“žÎG¡- ’\ä‘nÒ¦K¡VÈ7$ Âå‚Lì³Ño|»D_«þÝz<Ûº˜$CN&{‹Ÿf¬ÎyçÇ0ã<"›öü3á3š<“TC$ Þ@:ÿ› ãäRëöÍtÿ‚_ãûØRü˜ópÙ7ú³˜Ì‚uÅQ!‹AŒ@ß"î…÷'B|%„&6µüÇÎîtªµËñ4Ôá£g«ÄÁ»rD“ ¢…ÒŒÍ.ó>Tã eKœu Üp Í03k¼ù€µÈ«ûJå8Ô¬ë­.bMŒ,R=e."Zb;aJø©¢Ð¿êÉ–:wM«ÖA-×ÿ”a¸çÓ‘ µ‰)?ëÂó…Ü}` xd,çy‚¦àƒCêâ)ƒsäx/E³ñÛOnßn]"DíþiЬT`â ©*‹$§íÉÒõþ“¨þ\¢¨›W ))j‡‰hèRZU>/ËQ6ÇxfŸió-;Ì_íÙ–™ÝeWߤA9••ƒ?^·³ ^ážã¦~&êPÚ«ïMâB¨n]è<4ú€â°ðï6›ÌS$V*vÓfÃPT¦EÓ×ù°Ìy™h7Î[‹¾frCm¦ÿ‡GÀPJÙ‚ÞmDzm»YÒ(7ìSí"#UQ¡+:cľM²àì•”«ÒÊ$öKË=ñ¯†kê—ùðqÖ,ãк‹Ë…ûF“ ,›¹¤ÈL‰ÖÃÝÍ9qɽK>²'GR;-”ñÕÐ?Üb¦Ø°-‡{òcÉ‘³^Úýn×|÷zZp„}ª»¦]×±`·ª‚ë¹OÐp–8µ M3´VJq\øçR×X7ø·gCvR¬ú•~:¢~ˆÍÛU9ÿ‰H›Æšg±ž¼ì‘ÜsÈ7EïñßÉo6×™§9½‹zò%ñþ< ¦ ãJDy7?i³<Ã7¸’¹×è)þ{UŒ ²1}A³¬O5%Í+WÑeÿ<Ãæ×ÈŸ€‹È™d^:õÕ’š¥3½ÒVhi¤UtNÝùF UAMe ¦PÓÙæHŽwJÌÏ>üÁà=Çm±HÖ²îqÙZLá„;ƒEy¶9>"jbŽzžÌ™ €³îwÔ”ô?üÓE袓ÜbЪix¯|• öO/âC.El\ËÊÖ'@7<“Fíú¿ú°²‰Ý/¨‚Ò/â‹\)Àeþ°1DÝ Ý‹—–26iñƒ)ÚZZÊ»—Çn‰ CrãÂ³É +é8»èÔøØÈʧ&vã‹Ä6#Lvîa|E›]ÌWü¼®³‚±¦\ËÀ@þz^2` øAØ ásÔ~N›ãù” /îcè-©ßæàžô·’`*‚’´ÍC푳iôéKØmQÿ¹ tëNí}”ïD]oÆ Å[0âŠ9í¦ú*%6ªº–ó7îzÉÖÖn‚†¯)9"œ7±¨»¬™¬~£Ù?$d×|=„Zž%ÛâôR.‚¸RSEÒaà HÉŸvKœ€Ëçæ.SM5zÛ–Iô®‹¾³»ƒn%ª[ù–EoÞç¢ASkgîæõ{Aœó¨¢{Âx–¿wá`åÔ?³ø•H\±®±_Ñlžo]®Ú?`L lR¤6;§óºnJ½Ï;ܧ–³ ÔÐ"©ßW|æ hð,l$…e‰Ë›<¹4º6yC²Ò-apijŸ¯ˆèœ˜¡Ko,vè#‚}ª›½sõÿïUízS0‚»[w“&‚+5ŸQDZÕ“"~ãׯ)üRž€ÛÜh/FúŠÜò®eòº£ý».2W©)Yɦ2Àåo±MðñŽüú©J„ÁfëkÉ?&"ܴô:”¦¤ ÐßeÀȞË?r“½jvì—`óÍ{ÏY5ì=$Ç#~kšÒ^ AX5‡³»87h4 Åòô׆á7‡fd«)ÞêÞDÍn çI&I~fD)u)Å5Afgbç0€¥ 5€aß·§Wû‚{-[¥(ZÛË?}zÂÉ„}êÈÄãìÖÎ+í °ú¢ÀýàMÖ-a` TûŽÂuÓ¶;h(Î>¦Š:‰ëD\æ;ÏÓ€$wß/Áõi¯ö·â1á;ZëtÕë=à@íŸâH¦…íÑÊ¡mÏͤzþŒe]U7ϵºŽz ÷ÃÙº°ƒuáý`.÷GÑ ©švؤüqåÐ}ÿ\ò{Ûö»ù.gàë]"ú«ò§‰*¥¨TôrqØ2ï[kÃw`šê­Ž•N -r`W42<µ"…ÜjñÊæE¼¾Q÷ýR‚[TÙA=ÓA—¸J âÊ#¨WØŠS¿“Ê™ #m&ë òF‡ÿ£ÿ ˜„…›~Ù’Dæ*‰ ?Kß”sªç¢oóa –7PE…Ùâš#!'ºe¼Ñ ßæËßð¡Ô Œni´cýuÆÇ(4˜°]ú —“ýWäD¬$’ÍŠ®Í=µèNUôu‚æv*jFSVï²Ójê3»3lfsTAk´]ñFúŒÊ6M÷›ß‚ÖËF¢Æ×­h  ¢ž*IÅÖÄLgÝ_bmK£Sr‡eˆ‘n¬K–„ë¦)&$ úƒµ5»kÀ×öš[GR‡©§ÞPl¾J¹Wj;±ÍÁ!.¥!s½-²çðTu×XÎâXîì·Þ,§Å ,ˆ-7¤¸Êû­rŸî! )ÔÄ,fš,õx 8·*Jt·L<{ÚµRöX¨ nȺîîïÚ-øL Ñ@þœYÎpn:úBÒ°ÿæ+‘ej-ìOóôÊÑð¿S-PÂnyBJ_½ÏÈi ‡$é°ñe}@ÁÍÚŠ¥Ë†`B˜uà :Ð/–àÁ¿÷ cÀN×ÌæÆ² ßC/̧ººÆJ\~ö’ÿJ°iA-#ègæ¯RùuÎA‰Ÿ-·VµJæ¦Rµ-Ežw±[®Ô2 'ë("r“ºí˜M-óî¯'|bw>ÍKÄ‘°‹'‹ =õ|«×®Vr…aèZ)óm¸$ ãûQ8±-ЩWíÝîÖ”1Hæa÷D£èöîÍ@çÈ"‘g_‚ãøXºPãvƒûMê`Eºœžï"-¢{7XFÉåç%*HšÙéDmÜ›¡#MU0¥ß1ÑRx¹kë*ßFÚ‰ —á™UW>~®ñ€1Ňxx¾1lwîºoúíTfÑÈ#­¼éûç f?<»Q¾=õ¬Ù¡‹RXöó¤;„:þ8KÌ:lþ_P·­ÈßZæ$ìIÙ«òHa?@±~Bš-{rt£s ;/Ll.!i+皢cInŠhø¤Õyrµ‚?¶®™ŽN5k©¸rob¿‡$ÑØ: ˜+ùg|ÿFš/¿cvèKiÈò8.Aˆó *…)¼§ô$"ÏMLìî©Qt´ ÏºlPÕ˽m|Õ ö¥›ò ‚Ð~™ÞÚŽÀºŸêJ’«#üÛÙ1˜îã†xNÌ1± j£HùGÆD ³Ýé!a´•àÄä…”jÝŒ0-l -‘©4n¶ù’‘¿H~ibþF"Ÿî—I°8‚óúŸþN âõñ0wMu˜õŒ”Ùhæ[êF#BCŠ<¼&¡IêMî¹ìAWDÕMj‰Q ‚]l’Ö»*¿Ò8‡Ù `Uu¾±¯®V:øøpþ—É7Î]a‹)lïN¸ã~5 ðäÑBW£uyN4„=ó=&ýÜc+gÖUícñº/Ù‹3¸n„áÎÀ.ìŽé<…=>Oi*F:©p3 ‹Ð,h½,3€ý7^%œè>§e‘µÚ©I·ByÝ‚›}7U¿¿%eÄöY:iBÓdè/:†}0¢p‰Õ/ HAÐäþ ´äñ„%õÛçœàŒ'émï‚^ù}š9¹ë”VZv¸=¿¨>ôÓ]¬ºmw&F,¾²ÆWH[C ×tƒâܸ—ä‹ELÃ>¶hü…q7 óƒa+ȳꀂìkškÏ-g%±"çÎÀd[Ê¡~>³ý“b“UÞ½ƒSOãfɼŠ`nˆ;œéœf {}Ú=}£OÁš…@ÎìVˆfMq¼ù€Ú³¯m€hõ©ùTºD«°$ã#37=E/Ù—>ÌÀ±»cY$qÀ3—6²c ÏŠôÑ‘ UûdNÇ/}²l_p"ñ<Ã0q#Ú]çÞêjúuǸ—Êô—÷º Ó:ñkƒ¦/ôåçéù¹b#TQê¬_î6„f9g‘µQ˜´ÃØ%>ÖëË¥ÐmÄ“ÃìØ…éJ³ü‡èïj•Ñ,ÃŒô:ë¿¿ _¬mÆ‹î]µ³ ’U™Sjà‘yû‰Z¢êÀòƒ-}eÔFNÔwJ ÿükcÉ·=‰>‡ÂAºsd†üFßçÜfÑ{›Á—KóG ái ,sXù -³v‘;«„&´ŽTàAÎrèêÉd*­dŸ†§ >£ÛȳÀ£ÜWb fz–C"×oƒIl¡õ~ÀÈ]5"EÁì`ËVLÓ ¶¥éc¾Îæår»wÔã3y«ò“ÊÀGgwÌššÊ투È=R•ßßëµm¡–±ÃÀ*˜¹Õõ’˜CeJîÈj¶²œ|rãr”8U–­'&´ÿÑ ý5Åe.áÀ‚†k’½' wΖ µ™Åî§P9.S·Eb_Àä`]AæÄž–Ðf"d†ÅÒl€Ñ0 «~éPöµÂ3˜A=¶œÖÝ»\?‹þ2¤D³n¥C‘„‰áY¦ ´äÝíx@f$ÌAŽ_£TrߌwY2}Ž ƒÑ?õŒæÐFÁwùu+EzHë IöX4M6L|mÞFŽ›ºë¹CuE?ÛØmE}¨ã猵|²Ó#ÙÉôßw¯t¥­[:a'Á¯=(>‘I¡©Rßü ¹a0tS¢b?‰uõ¼“\p'P¾ ç™f…irÕ0‘õã̧1,6­‹õÛ¶ž˜sdfÝ7‹â,(„'OˆáwEa'0d™›d¢¶O®þ"ôÖøÇQ«UÅ„½9ìŠn¼Í”¶ýÈBÝê}qg¬šQžkسêTm»­g‰R®pm`ÓáÉ»#\8ª ¡x}‰»+*æûõc`ä¶yÒcÜûø ”=¨t¡Tz©¿þÒu¡?Ú\µÕÄÂ?wD¼¿søfÓ= “Z¾ÊcwH RÈ·‹ZUjW ÛNÙrÿ¶ÐÅï ^±5Î^ËÝFeŽ!ÿ%ÓMÇHMåøèºBRÿÎ'`õÿ$¦å7V‘ÇPþ »Zkk•B/céHEÑ £Àyð05âc½jø›R•SX?UŽþ/Η^@Jjyóê±½øÒM¹ ÿÍU [ˆTÒàw'דÉY:“øµCÃLwh÷·.Wä:=†~¯BûÛžÛÝA<“ÂÆ÷Á…B¹O”Îq…sDX'ÂÄ’‚>yr‰¥t Ï’˜|Iy»8(W%’–ç·Æ.§Í:€8rï­ !¯h‡3=ÛØú<=SfŸßèàfÿ… 2í9ò«¡ëæ%f®–³ ýŠk ç•ûÿó©$±öˆÝ#ø|‹"øÏJd •:õC­4òsu,^Ó4j½‹^¬ëÞ<¡æ1ÃTN²8Vº÷]‡ƒ¤Ç‡ö}''ÅÞ…‰ó¡­·”¶IWΕj¥3ËŒ'‚<ˆ·—Kƒc¢ïX;FpnêBM5Åü(«RŒ”Ʊ8Î+‡-)õÖÆFéÐ ¶cÝéÙfî8–4 ÇÀß4±*úhÌ­‡zé."TI²ÛÒº¾ɼšëæéO#^$q¢ n¹"Lê€[Ìû ¡Á/]¯ÍÊp£ÀrÓõ'aKÞ$TŽ[¨âÑÞƒÍ/@¦µ ÎmŠGªB¯Ï3Uºy¨ÅQÖLªñf[¶¼>JnfiÈå4' #~hL•J/¸Ýú L”? Åe Ý~Ëa ¼éèMÆ]2àôŽIßµPC8b`&„Ñ•ïÆÙ^kÒJb0$‚à K(ùЛV\¯}/Ú¹­ó„Þ©gâ;1»ñ÷BÊ2[vië ܆ÔTÈ n…ós~dÁ©½¶8Yì{ßW8µ“À}þ´ãPQ§pDO}—´(œ"ùÓ7‹ÃÜtÛŒ_mÍm¿²i‚×TíÚמ3Ê“ñoß·ìaQ6Ý~‹wP€6eñ€—ã5˜ú€@ÿ˜úmYÓ®«÷î) T‰aÍp}Úþƒ Û2h¾"Pº¹¹a‚¤z4Ãé€Wó tE–ö‚“¦ïWpÜ$î¨ ÙK=/9¾‡)5‰|,¢÷j nú4ÊÂÒÏÓNül™„SÏU>j”Ëꂽ' ã©z5ôè#4_0T˳B«siNi3íï]ûe, ]Š«zûÕ0¬8l>Ö!˜žØ“S“™ïÎÆîAI&†®­Ú´VyÏeTö~ó x–ÕÏ¢+ïLG¨¼¤_”ÒX<؉yaDEL ‘zM*Ùr>UÚûÓÃ¥µþËNÏçº$b÷y2Ù¼H×ÿ_¡ç ð“»}°æ.}|4,œ_[ã »zÚü—9Rñ4tlu@â-‡¬cÓí0»´÷‡/í]YØ7ûyNÖ‹+©!L¦Nå-%Ø>·JÑZ) ZDÄõž|ïùòÖÎvÐêjÉ•¼-du™jM”Z!¡ýpždF£K“7 é<}±x¾Cçº VKÐϪäÉZTø¶)ËHØ É¿˜€a"¹8h2‚þL$¶Ê– ÔÙ¶#QÇC°„[ê£r¦$}Yá?ë ²zŒ­%–3;¾(›/ â }G†œ«Yq’¤ûrFìëƒÔÜØ‘v—¦Eè¥Òîš‚8Lëá_÷¾;éY7!Ë,53óÒë(`È. àøti} hMÔ«Q@@[¿íAuTɸxEÛÆ¾sGؽ?®WGä] gÒÄHú»âx4­÷Gš¢9Œ‰š²ámÔ«Ó)ãßðzB+¤Hòm\ìnÌ "SF㋦š{#‡5BÃÍ ŽršNÇôXà(vw+ +aZÝOâ£pLJÂmJ >,{,ë+€©åq)éù…ðØoZ€WÿÐï®ÆÄ}X(Â@úÛ×yå¶ÈBu˜{·Œ«v;lªhføéÒÊsPk¶Á«Û²¶< ‡øËüž ]Ç}T#ëßuã|)XÔpµ·dÄ•-ŠÈøjbâßl)g;sºÃ½v‰Ã$5“¢}r–ã|Z‘Q\­$Y1·.;àánÊê¶Û#X³lÃ*ÝWcÛüõ÷q+é­–@ùæ>˜¤,õóº•Eß5z®à %|ÈÇí: ìPum¹Œ}ˆ0åÇb ý٢ДA×È1~îž®üÁâÊ:iOaI¶Ù`ÿ£ƒýèýûqÑï˜I´ÂC/9  ‚u5:“q$ÌšÉCþºÎõý%ÓÚ=MËgV áÕ’‰q}½ê;Þ‹¿ÉÖ¨}Ý©Œ@„§s>éßÙ}ÁÉøˆd F²Ƈlô‰Ÿx´€&s• ÖÊFà„ÎÂTÕC—ØRºkb‰šº‰çˆÏqÕºd1”)R\®(_Ñ«PÇÚ Uz×AF¨Iþ•ŠÈ³“0QIŠíyÊÿF×yë èÕt.Ü8.Æô‹KþÕ¢G]já¢ðh¼üu>"VîOé½ü¥§dQ´C/½éPB„:!MóYíÞÖ½$™š³þ Ä•P&Ž«ÙåB±ñLK9¿­P‚¿6+”¸ÊPˆ¢×¶|p ÕA`Ù*ˆDh’ÜWÜU»pÉÜæ&ÖÆ&Ã훋A‚q†rymã°1òåŸ9ê1ÇUȱF«ÿÈ…E©¦ ²^îü&¼9°:i&w.œ«¤•PÈÛ»çX‹ ¿—>©B ”Ÿýöw´×®REƒ¦³Ú¹‹ÆÎbŒÿz" (»ÿ—•MVâKR¹ç=m—»cŽÙ|b£y·Zò Ïã률T‚f¨ççJ ¾¨lË#i’ñh(ÊQƒ£Ì{Å>¼‰/§3ûýÑ z±ÄI“yÂ,éÙ-YAòÀ@À´m¬…áš±Z rkºŽhŒBžëá"¾•eéÞ~òû‘F¦.TžéŠ÷Iri=ØÂVûL±qSÊ,e˜­¢Û7ĺ{Ík[é}.Xºw‡í¬·‚`iü›œÂíndõ‚+J,™ êíq‘í½ŽÀÞÙ3¥Á|q‘E/ßp‘@0šÊë–ÐN2RAH"— Ž,&=áJê$î¯äã_“æ"gaЪ$êvø—÷Ö|‰×û(}F˜Ç×pR  fžHÌõÜñ²cóœo3N…ÑæŒÊìI@Ã<_£æxYY~7yRŸä=1¤¢øþž«M V1)OÇæ éë­ :J9[€t¿ûñøÔÖ³AR\ÚPTö‘û´€Ô¨'ðÊWËÜïA÷C†9ª¡Ÿ]ˆLNɤ¡¤©óxy.û©ƒäbõ˜íËçâþ2ÖJ;ïRêeHý«.e}k†Çm—–5òìÎEì`Å™êcoÁƈ¡Úשi[?sŽ{éQýIžGø[/-4–X.PŽpÛ!<¿FqQ/›d/4V:o§&µÑèá¶!õ%Îì$дß5ÆMÜK÷Řö³­>¶=èàƒ>sû.]ö°³“Â~œEµÓ…÷%Žö´qŒMÛ"ï§õRHÒíÄ2u*‚£¶C sVRÆW†² ýŽŸaŽgˆµÄ¸Üó)…š!e–ù„L«¨Š×&áð¤b}öïÝу²\í¤*;cÊVQ¶œV` ÖZKó¿ úÃ(û¿²Eð~3¢ã©é¤1O…ªÍúc…¯å½RQ;¡ŠZ¸…Dm"¨:ƒ5V(&{!oß :c?ÿÉù4íߊo y‘ßÎÒ,§Ù3ÒÙГ¸>b¸;ýoŒ¾êt1k},½mQÂ{‰Ë¹ð¶>ÎKéÔÿ0z䯨èP»‰üžfÜÖB(× ¬Ö/¯ßhÈzdðahØàüt´…wíùÚ>QPå?=²mHL[`°ë—¨<‡à‰ãÏaz¨Ù1ç0-§fk!ýþ‰<¹ƒE’›Å Ù€>õ-§#2Ïp ¬_\ª‰1 éÓ#¶X’P bùk…ÿï_âY(ϧþš'òz@ rDJC WúyþØék-úÕêÞ–9ð€ÂËáûЧ¨ìF1eBŸØ¥˜¸dd õà9òV/¬æÈz,Yƒ³z£lHûÌ - hZ̽3äÊr^îß.H€ÉÖò%Ïø®W[8waä<´üäÎ+v ˆ;â"äá²   °e#³ÿ“ñ" ÿ©{Ž‹(F@/Uò®,jZËÈwÙµ7Ý'[ãpÅL{úñû¢!¢”é/ª”T;r™j+FÛõ¿soéÖ (çØ€ÙþÁ/©ºãC¯_P>ÜBu€í`_Ôsh[¾ñ9sI9k‹¥y>”#f Y ;kÊûhɉ<Œæ/6^™-µð>°>°Ôgšœ\[×/óøÕ(úÀYR“Wȸ˜˜Å4¦÷}‹z»2…ŠâÑ*g'¸2ð=vÑ‹ŽUp®Ø4MÎŽFVήQ&xF¬£åÑy̾Xý1!<=ÊiÂn>6ºUÁb¢¯wP«`ÙÅÍ«,¿w'b¬–õ[mèZ^òqçþÞÔ¡o.õÚ’HÜG9ý JgˆAˆV´Y“u*Ý^ròúBaÒàôàˆrñþ›¥²dاCJL%P„[ÆÛ¡étÂG®b§ÊãÈCwqçpgSºãgݼïÆ\ˆnTK£q.—¾:^õö6X¶z¡87toSº9ö³&k;k5›é%™rÌ?çÌéEŸ¿b¿57¨Iê4/UväÎ5]uŸb£9þËxRIAÏm›hì‚{(æcÐKP]"%–¶iFÌ€f|e>–ÃQƒ™;¢äp…DÅ—”‚²$ C5®ÇÖ£ž•N鲑F§@É8=ŸÜ =¡Øl<ÅÍ¥ e÷¿0ijDY,~öÛE …žÄÐtë÷ã¬÷³ ~ðüå$ k¶³ù®q`È«xJ®+œƒˆú/Ç¥ÜùÈW?iâ:ö·qåY&öŸ†Pp¯f“9ßÖ›FÑ?–EÂÞ¸ÿx‡Ä¾[Ò@å~ųïWV¦žl)yKÊ÷VñY&}>º®»IJ”ÎBDz²±ÿZÏ gþr­BI (í;]ITkvƒ£X•.Y1¡¼F)yÈ®ýiòÙ+âè‘r$€·@×$†¥ä(T;l÷÷óDL‡BRšïð8¢ ‚0ø¨ôRTÜðOÛ‹·Ær%:øþ;"­„7/å?X˜ÿ8¯ýjÿvg§–t'× ¡Õ¥†Žè€Î˺­ac…g3»å„¶«77”B`§N3«fÑ–h^™ÑF²ü_î“2ªËd)Áùâõ›?áLÉ ,‚ˆº9ÙžÛN»5oÉfÊÃû$GøÓqƒ.¨)¾CVÛñ0‡0(Û$McÂd€êyÈw_8G ÞOrÁéð×Ö‰ÚïÕ–¶2mÊ¥§n>f=j «w„¼'Ì_¹ÊÍŒ&¡;r…×Òé2ä7ãêhZà…/w«³þ*#M üHñ§‰¾cRËœjwXmdZ5Æú>:%+áµ÷•nûôháˆû8 ЄÿWäœiÖ7 µrSÞn¢MuÕS ‹ŠéÄQ9#˨D¤©’H`‰ ‡ k ²àþñAòNvÍè;¿Sîîa œÕqÜj†{ëüaõõ ¹×Î2Ë$)‘?të¿hQõ›1éÓ¡Lÿ'hínôþ|üžÏìëšRµÐٜޟÂÀ‹lÂ!Ô~UñO›Ç„Ùx*¾-¶`Ý©µ :“¥©­Þû£lØŠ§™Zæ µYìtæÏo±x “vã?Ð|­(šJtÔL#ßÁO‹gI¶ÿ+_LÀ»ðÜÓ¡Ûý >äò¤{°˜¹:ާ£hy, Ô丬y m§ FGS·ô”l¬ûå º/ô®°¸ËQMœ½6œÐA¯âÕI݇@<¢jnºx|e„Š2ØÍq £jx†ÕSÀ†Ò°›þëu8 ¹rXÃδy¸­?ymB6Ë"@LÚ±…=˜E$üÔ~iñGçª4OTò> ±#n;?`½jÕ¾ßÎ,®±>å÷M¶­·¿p^a³Ð‹¤™SÓv²üŒ$GÚOa#Érâót¸©ç-v€æY+I·yªk!Ï ¹IývR” §çóo·WO-u…YçC5–œ48¿CFÏþýÉ äæB\”yÆ%èŸodö{% úöµ»Ó·€`Qfâ9¸àÄŸÁóy-ë›Â…Œ_.º¾ ¢†á&†„€ÊÆåÌ3†½¬á±™“³*90«CïûÜ𣄳°õÓ}C㸚ã°IÄ,G’OTH⟫TÜxÄ·/`ë/ÕQQ&ç¯O@mIr[3>ÛXŽC·Çõáh›p­ò|!q½„¯­°[PÁÂ]ûS/õÕekõ¬ ­Õ—’e¸—!{pCéÜòJ½-)%ÏüŸò/ñ?± úöŒã- ~LI"´+*½EÊÜ7QäK¡‰®È4bpAÃÄú%EÜ¢Þ#~{/<Óû¼‡Ž•k 8å÷Á ”»¤ƒAsC¬/A „I`Î… Á‚M)z4††c À$O_¹è{ ŠIݨÌXÀùa_÷ÂÆ9ü·3¯°$šà§Èá2«Ä—×y‹¯.f/L¯ûZö£ž ÿñäüùs/e¨î-“y=JŸço™‰ZÊÊa`J·À=ûèçÑX×lŸ»¥«k7¯87.ßÞ¹©Üócg(Û`•‹žÀdUr“±­M¸Ú±†±áŸ)˘%t$vg¶%ÜŽÙ‡0¡ö™£$/:ŽfáLYˆ„¯AqɪV—"9œ9ÁGþ†=1&n-o‹ä=Dzò‹ƒÁñŸ6¡.;q³§v“Ú<¤›ce4f˜ãÇ‹!èÏ"Î3Ìç;-p+ùUÏÁ Sfý–§»:mpbÐl^.m^6‡& 4BŸŠþ¹ÀPØÜ½#Ä…ûöêö/àÆ?!Ä=äÒž:ZæþÑdÎî ã­¥1 þ¾#ˆ¶Y?(¢Éœ¼ÐP‘nÎr¡ HÅÙ©:þ* °ëj%Ùxž8npS.” áúg‰þšÖv«Öð ´k[tˆyà‹kŒÃÒoO*x ±j©r¨ãLܯùfré$樆DÛÛPÏ23‡‡Ã yÖòc„¤4¦ =ÿŽK±"Ýó#Ùùþ÷/õòÿe û òÖï( *®Þ>(4¢ƒ +‡2 aLÇ¥üü_¸¤t´NÍ9ø¿ÿmÆÏÙÕ/¥à1ÿ9ñÁôL²Aø0+ê»o«÷Ül`HºÝÉ:²èMxþ¸Á¼Ió÷€Š³Ú¿)" ëïužSº¬ìyÞnã¤r¼%ÄÔ–3rE¸äÌ…Ù:Ñ$ñ±!ñÀ-ÌÙùÊ%üM CÈ‹œ‰ï×—Ç\ÃVÑ%'Wr\4¤°^„~I>éoŽ$— ©s•pPlSûnT™˜jZ‡(d ,3ŒE{¿_¾ï Í¥ ßxî&‡N¶Z´f¿‚ÏîP’tÀ¢ë+èÆï9øðûvÙeÂtJà¯éÖ®€È Än©—›ÃF7Ìùš¦ç«.¨¾@ ê$†Sk£j?p+ù™—qšª­ÿMºØJ1¨Mͪ$*.{¬zçî‹æ¹XGÄîËËu¹GÑ 5oÙ(λl¹Ñ6ž§†fÿp"—ÿ=ˆè;†WnsSî™~Ç´”³k?±Ñ5om·½‘ašÕ¥Á‹ý§ð¯~’¸pH¢Dåèì¶ñÉÆË›avgÊ|¦\ ¹Ï9ô~qîÖ¹Ķ{„7;f{EßüùìèU k Îb÷‰‡gN>ªZ ]CñEF"Êhv{M65ÎÍÁKU¥‘u'¦vhC’I¬¿õöôÚ³ˆÓù2«»Iú–£«~j“ÅœsÍd¹>L«Ã>p<…FµÈH=ÂLá†>sè/™Od­+DOí<\N#üI¤ê¾NŸ¾¨àF––£cø¾ô+/#êÍÚ~Y?˜¨6ÚikL9H>‚Tææ!É OI²Àí+ÊõS;ÊÅlú¥xê~s©ûÌï†I(“ê5à1‹Ï ¤\yˆë#ùAH¦u—' –Ø@/7ø8ÚîJk:LJ¡¿l3`)Ï~¡%V ügÃŒM»‡ü€'žð¥?û›Ü%·øˆL4¨3ð—t¤OõëŽMAâsŸ¡ åN°]r¿²@¨;ôÄ~¶Ê,+†;“²Ãý ^’Kÿɵ‡¨v°³rôhoW™d‰¡ÀrßkÃA(+Žñ©YÆÉÓp¾«A`¨v“‹XÁ£0B¶½æ„ö{YVu]Þ­&7É€£‹æø“ùd³²çç×gŒ,/û¿æÍ‰#—:ÍÚÃÀòkÐå6ÿMÞõ•¢×¿  òs¸úG1^XüµN¬ÄHÖs›§võcP±ÃªÜeÑ÷ØÌTùÚBˆ]𯉿*#χ}Î%ˆù¥J4VÔ+êÉqzöDYi½l§0»=‚é#^Sƒ> -ɇLLž÷Ú{ÑÚ2pä´µf„lŒÔ~¤Ô"ŠB¹a¶Þ…ZùÂÓy…Õ¢A³Ì6÷¢bÙ»ëÊ•è›òeÓ¹'öÆ*CçM¾3Gášç‡sOŒ9‡Kîu¾ä>ƒÔMD¤ò Y äòõ0–Õˆ…îýñ¢P;u‹pE<~á° ‹Ü<ÀР”t˜EO\Z!‰RÈS„>FnŒîð¥e+y0+¿‹úò¯EYó@òŒÉ¸äd;÷Ž`[W§[fªœ²{i‚©d/ûjXy,7›êlÚGhé‚ Æß« øÇ$އb˜S•ìý†hß«è‘AYQHdïöÇ¿n%«„J´j¼ZË“egÅÇÈ…vgŸuŽÏº\F£ã\ÒSU¼­‰¬ øêâZ²ç÷kbì3Â_i’ñáäFf8YÈNÛK%:·Ç:BóIœÝ´DÚm<*šL3W „ÜëÝUˆ90¥6¦—D%cMG%r¡‡)m¦‰’yT*þ¬P@D cw•¡£¯-ŽL¾Q‹û»»$sv¥dÕ|8È”Œ †;Ž#µWù§ÛBêÄÛÙ#ìäê€ð_ð~Æ"9Þ-¸˜žq7-ü%6ióü<²¤´(»áG#Ô%Pé_½±™Þ£´:ìn³¦ƒ¶Ù$êGÃbû´æ±ćóJÛãí'LíܨûÇ—R_ôÔ]ãõ/‡T?nÜN?0Dù ¯Hñi,ˆ·ÿ°n(h²^²ÔfKDšÖƒZô"˜´//˜Êžžá ÁPŽÁ1FE!P4º ûþh‡,ô)¥õ€CUQwŽQTÊE.¼ëu£;p$¬—N¶C«Í¸¦ôEuÄ‚+kë9åï‹®ý¸€êƒÑÑšlÏ+ˆMã¢1ZYmÒÃa òæ7H»FºÑ½ów'­ òEÅ…“wèÚWãx@ÒìFaçá€=fP¨J]lû8øP¿Iž"Ö]çø$µ’±û Ò™ÇeY"€>¸%õ£œÎñ1‰7!‚N ²†Éõà}– Ñ„¬Òy¡è*HwB–ϸávkÇÞû4à _ I-ÚÅ¡4`)pF({¢pnnÿ€Ã"H”‰®ü¤DˆÚ ô!E&„cBº3ÎCïa3ý¦^jTðSM®Ü,¤ "L‡LÞ}?ÿYÊÈð±~ÿçyXWÏŸPtnF²ÜÐw7þûv¢÷*­2‰€Nk˜œy‡Œ}J€”$¸ ]Þ~h“G_Ö„\ØÁÏɈ?cÐR@YŸçÂÏžÿ´F³.Ò”ñݬ`P ·ãN@¤œãÛ´Å\¿‚üVÇ9êD Ìœ<òŽ/ »GHJi@×k•áYÞ»Mè½ä/ …7”T:/ç:æ$E £s;VÙ§L~¿›ÁGfVfT›'õO «ULæˆ;ù± h)M‘€É¹f’Öy®õ_žíN‘éà´¶´Ü×.7?üù4ˆ/¢%b_½áŽ–$Irí]¶^Àv¯ÕúWEÚPÂs؉†ÿÅõ®éÚ|^–=éW¤nwýˆ9DgúŒƒ3œË%ã#ÅFðê5ƒáúÜÆue£ÈȯÿdßÞ˜¢Ч|Ò~BZÓAÉD„}Wå;¨±Ó¥àð}ú5Þ‡ÌYå»ÅÖ#÷êÂÆ<¦'©¢¤´é¹°öÁ›ÈÌuÊ€Õ «c·(‰ûrt*Bé!Ò”ÕØÏ-•piÞñò_Ñ¢—SEÙ)C¾r|Ìh,¡¹„„£DÂÐ)³^ Ñ¥Âå”*}ìà% Òi,÷ªCŒÍ÷¡œìŽ‘MÀš¨Åò”Î,¡}c•S»HÒµ«þ¢Æns;€ÑQ6_E{yRÄ9Ü)7S¼Wã0ãªõç¯FCP]¯é_5I’žä]Ï‘69zåHY>¾úø =/ùáW6sk·ž{ëu,6!ØÀ/iqçÕš-öƒG_!Ódð™°ñ´.Æk}µf øŒÞùRKT™ð£&,UÙÃlî‹ãAåIœ¦€Á©»†I…α¯0h]G— —¤ÀóQýHNßcРëe OF¶êMŠÍ~3i}.`Œo8Þ/¬¶­\uD×VÔxª(© €Ï¨VûÄ‘™ƒÙ鱿Ûê3/å¬'P›"Ûþ ½[hªT‹ÆÒÊ8EZuÉÌÍŸŒ$¯ÆÞXzÄÑç*ýfïÉmŒœ+o÷ÔÕ‚•šÕ€R¾s/–Óý_¾ÕélL9ð?y‡³´LoðJ%5d‘™ç®#VÖx ûr)Šð¼/7M¼]$àÜE†×çòÅÀæÂ»X$îô¨¢’j# É«îäÉ6¨ÐÌÖ‘ÚúOƒ¹Á¥l¢“>ÑĆ-¶À¦™|_µ8Z×CNŒó” ø‘Ÿ´î:Ec„?†Õ#Ö!: £<0Á»'Ò¿ÈnóÝabÒ¦‚ðª}d‚èÂ/‰Ö#4 «|³ZØ`Ä~b¿©!D€‚'üöT VŸãö¡Ç0Ù0²ÑðÛÇ¥ÿ‚v¨vzC«µ²Ò¾èÁ• ±¦hvI£º @D¦Úø¤Ï?[åÌš µ7Gr¡å‰€¯Ý#Åy¬ØL>p´FP¥=ØÙo‡ÇÏKÿnn'£ã±‰]òŠTx+µ‰Ua§‡QçߪÂ\K¨=³ VY¹ú€G$³ˆôã‘âc&Ùæ-šù;X/wA5{.þ{Ó0ùÊà —žvÎQ3A }];ŸÍÐY -]d€êÿ!(°mqC%!ŸUÆ!>ç¬kò†~™Ê¿Ãm‘¿k߉b~;øF?ž=rø³)E„Äå~$—î÷†;£é¦ E Üžë¤w8¡\.G°»äP[÷EG±IË%„¢s '¿R{NáQEÌŠ)»Üþý6eüJ¼5z I°¾Þ³n÷rTY&_šз½Êd×€¥vQ.óhwTPÉÎHúÙ¿¼ÇŽ—a¡zÄYÃÓgÄ>Itê+ u\)§rc/|-æ~è*þã¢2j(¤¬ ã, ¶V '/ÑÏÊ…,.ÝÏ‹{yæŠÄ”ÇDŒ<;&’Lñ='~\¶<Þ ›RÂ*Ê(¸ŠHXVÁ«œ£‰ôÆ;¥Q ¦Ù>¸ãsB®Ë{Úlkì}ÀzÖི÷x1‹û¨OÌ1T.ß‹K ÛžÛf< `˜åxý”`¹®o©õÙÐaò‹sBÒùèÔ`<7.NZE~/ó{œ˜WïËÕó?¥Ëªn­EŠëËÆ¯÷¸å…˜7/ÄSÛÕP޵|>Iû8mš¤+Qyò¢™×ˈŒ ©÷lœ˜z—gߟMû2™Î= CìR:ýJ®Èò >¦÷‹]˜¯'ZÕ­øŒKË£éÚ Ïç3žy£¢Tz)uajŠ{¥ˆ]@”gd‘©¬ŒRêæÐûU·p Œâê Êg!IK•ÏNC÷Šð^sÏpš°f2Ù&bT~q¾Úùr›á±€eäºpgª¨CL6øfS˜PÇ68á|_šo ¥e3Jz¸õSÙ`ìåÄŠ2ávqƒZàc Á^·ýñÓöîNþ½#Û·ŠVß¹ýãEý”óUwåA–&li~`¼EÿŒ¥¹-Je¢˜ÌI×W¡Ws¦¬JIYkuºPÛp c|/ÑL°Ú0X§RÏ «™þÓzªc`j©Ïçç« Î ÿïIîã·è<7þŸØ* 7¥Îoì†Ü(Dåíš‚+ÏRÒôÂAuÆÞ»Í“üÏ‚šÝ•å*ö¶TCU* 5aùXû^f!òvñ†WudÓ|Ýý€Àj*¨‚ùÊTX,Â¥ú^å(3Pm~¥g3SñóbZ…M¨ˆíPÙüúêy‡ÍŠ@žèº[W¡Áç•^׊<×Éþ_4Ýc¬Exë_ÏS°YÓeOlrœÛA¡®v£"<¹²ã™Y¸òÚV} ‰p:t’Ýœ×Ów†ÞÆâ›C9U_í !}”xX¢ql>¼pQP`yʦÂ10’ŸÅƒÛ-ÕWdpíDþ½Ü¢ó:éúd_^ÐÏpv/³‰¹|ÿ®w»Þéô* Gb9L€ëÓ®›{{úÑ_¬Û „׾ЧÔÓÕÅP®½yÈ›ôJâ=¬g…’(-=Õ™æecœܯ.ØZKÈ–»@™µ\ýºsW[±²Õ_šÌ#£yᘫXËYT/VôÎk;&®š:š£VÕ_ج"SäXœÆNæ1^ÿ,/ñ²WÌ\4%•±îšT:;Ñ  •›ž#O{Vj³- „49¿© *­èZÕ¢ “Ž“üæ%R&íìîcëÚç°u,ÁñÁtÜu¾¸¶­.‡23ûͺ˜ªÛΚwÁ1ò`¢ÕŸüjÊfœþqa½VºûäöᤱŸéѱ•KÜ õ¢rNr)ö˜Eu½æSÔ…}Š›« †]@1ßâµb*o8ˆœª<}ÞÞq4iMkÇ>PÞNG ‹&P¨æ¼ºÙV¸×º›ðÈÏ·•¡ë®@°ç 7ð)îx!!6po"|¿!Ànà &ù™5hóÑðŸ–ùËé Í’†f[[ÂOã`¬Ög=ˆ^p®§0\’ß!i"Ý=m(Ž××tŠ‚ž¶±¯\§³—XÐàÙ!æ­† y¤…¡ W9»m«ÞÀNFøP'áFï¥_÷î÷%$Ñ*kœúdÄ ò†Icýd# t§GhB¹M¼Rs„™öõ‰‘Ìæ 1Aå ×±ƒÕÞØ$×øûˆ˜¡­ÓˆÀØòblù@kP7”õéL ›Åʇ§3Á{] Ö3•„ï—ïôÖ R¢(â›S)U.úéUn"”N£ÒDüýEgã¾ð?=ðx‰ì 1÷|¹efU"<*$y'Ùð7¢|ʪ» Š@.õÒå¶¶#ë-=GÁdÑ„Žám³aZ¯zÛ)RËOÎüœ.k8K×ix†G·h)>½D0°§zÂñ¥%2µè_™GÊ4ž±ßÓÛaz°¯Ò…ï£Öt–¸¿Dïð¹@@ %íîrª±koQÙó|Aªv-QQõ‘à™še•ƒ·Ü³6Ös– †JNhÛÿ>ŠY—‡ò…AS;/<Ó¯ëg…FUÛ 6¾y¹ÄWƒtmÌƉ„¡Œ=ó’Úèk_´ ¼:Oú?rÏ+`{Á/M·µÃŠ%ïeÅrûçCŠï9ùOžÓEíÚÝ·Pê ±Å—‰„!'Wâßbº˜ÒFº0ùfeû$ õÄ·3>(w½é.¤âH÷ ã`r™u7»â]å·°â«?`‚w˪®ûÎPÏá^ c\ô'Áˆ£#ëlþ€´Ó›­²<#š³©ŸkËã>e”7~ÿáLÒHÝSufi¾;cDlë % ±Q.bƒdc#CF½fKíˆZÜo<3ÅÐåg$]÷*þì5«¯d-â“i(´íouÌHÌßZ»]ð#¨Ñ°Sß=ÛÓw-ÀÖ¡´&Þv™Š>æ;eöòùôl‰¾ô»“ŽŸ?úh¹B xN º-¡Œç³fÂçÆQä_0³†µ„¢};VU0ÜSJaŠ×6 Có°t ÙM3Í´A¡^Jø![¥Û"šƒàáP“tK0²é[.g}»{’UOdô:óëTùœV‹×îÍñ‚¡ºÀhRvM{óãÍGˆhæ}ŒžJLøÆ:¥Þç•Õ®–É’«.WØ PÚÿÒúDxÇ€+ @‰ŒI´"K!cº‚$T}{+ Z÷BDµKTiÉ#éÄôvs”℈A®9˜î«Ó£âá ^™nŽ” uM±Æ{¢¿‹ŠÝz÷4vÿ9—©0ú¶;š}ìçÌÉ#{“ú£kÚ±Ñÿõ[Ÿ¹¸ñÀ·8?ÚÉîQý¦°ìd®ýìÄ]oÍ]8³ÑkÜÈÅê€}IÇ™Á­2®“{C S¼#œÐæwõizŒ[‡ÝãÞ¿ªXj>‹y•ˆ5ÔÂ盟Ãòa qÃeuä¯P\|øÄØ}ïIŸ¼²·¾‰¿î'\dÀNt. ¦¶(0—ìy®ëÛX…Ñj<ŽÉÞ?ç°á,¢ÇðfC­n¦/R¯™88¦ ﯬeÊøÖbH”Ó{°”mùí7íï©})>Í(XÆñœô#[¤‹¼7,Ç1!ð  [aZãxXžU@E(6‰=?äXSbad…B-Øg+k7ÊRWýW-€y£.ÆÕ~ìNöý¢ýÝJ›×ÈãŠß3íy,òù©í½·Å;ãe¹â%ÅÊð5R\މ¥¸ø3¡éšyÝÚÙÓUÂæRÀCB§îÖÈ'â °:¸‚Äí¡—Ôô*ü¸Œ%ˆÊç.[GÑ'¤¬`gtÛ(Kd“.´M€íxš”eQÙÐ[Õ /¤bóµÞ»Ù¶6þAÈ6ÑŸOö§Óª"r†Gtü²è¾Òc49•û,ýx8V ¨Ã9ÞÛià8Ñ Ê`å5êâÍoæÛ׸aô:ʪK½$o`ßCEæA“iîïóâ(õyºßlŠR@³Û'šJM³w‚£÷Íòð˜jd•´"ítÌäƒ-: y“…Œì¹Œ~ö´¸LŸÙfí?_û{ÈÚaþ^¡Çð§5”Ínî›Ò/§Y›½*þAÜ—7ÒCNÍ1Y ~c‚^mÐe^pHðÿ¬òie„üŸ~®f(]IS߀›C´ñíMd¸‚”¿6Qþ&"[¨qæ0cæ1­Þùxë?|R‚ðÙiïþà•/În$ïÄÕMPOKÿæË]®ú –n/(/[»3MÌ_©„¢Cš0LóM†YÞ’›A·Qž½‰ú¿Ñ-²+LñÏk!³Úö 4ÆýçuÛLòÝzñh؃¨PWEtœ€çßtÚø÷/e¼Ð h;É ÓÔc’âêTÞ&ê=·ÌL@Šidþë9™Þ5ïû™Å5Ë ›‘Šê8û‰ò¯ËÀDW ÈÛ‹éâ§Ò™ß˜öÄ€h X? twêaƒ{…ûD…mvÓµk[ݯû9ÞOEîY¡ H.Çïžb»$¨Ô‘k êè)|U«r ­ˆ*Eˆ^. «GëáUÒ?EIzN¼ÝÓýW!nÊ#ŒtÓµpWíîH3X–˺·6‡èêŽ>0SÆxn5| h8åó­±ÍV¹ÝíÆÃØúà¹PöíMêXl½=ݧF]œÃ©aIdLš”¼oÖxLqjQçóÄ¡Ø3>ÏröÓ¾·¸ôw·j¥ÁIž>œølƒN ôþZöª‚ÒajúG·v‰„‚®P}«„FmÝ0zõ›¬_Z® ÕÄu/n ñ4ÉɤY€/F•ÚŠ6‰š„'=*»Ø*ןæ]TMèLÖ€èçÒ}â Ë^>ÅjI$!ØCáÄWëð,Ãc7±yÒv‹¡–#•Â!DFm–ÙÖõBç‘3ã_#šéyzV}—Þwê•k[ä aSÄ¡è7V‚Ÿ·Íò¸Í¤Vpñœÿà‡ æ¾K¼Ã]:@Ül-œ®Þ(èì&8°vß»š¹bÏOU¾)VÓUt­(†°¥pTlÇÉbE£*”ü‘vÒöƒÔ½"±h·.ŒÄG­¿íÿKƒ¥þÉœà-éèz‰½áC¸ ÙÊÜÍ óά±-w R©X}9¼dŽLþÄ{zAj?<†JPS0~Õ‰ñþñgkHØg$¾oÿo‚® §­7F {B˜xœm†’äôkÅîçb ¡ùËÁ?Ñg’’*¿gŠ’™ö öëÛžf.Ah»ŸÓõÒf†*£íþ,Û*É€ŽC5TšÝ§œÍÆ_Ú” ¢ˆ‹˜RFŽÈ=idB[ñ®qì±ÜœD[65ïI¸¦pÐNvÿ(›Hš³ˆ%}ÂÕÐlñvj±)é)¾jÛŸY½ q¾D™5ÂOù lЋêˈó&Ó°›ßbu Ì ô˜åª9¾<ÏÇÅ5è¢iÌ*€;èß÷?cC›SækEÄ+­âͪºûW·7/îÈÁ @!þÈá*ÐýHVf$X¦$ðEUÀ'Ñ„d îÑZCÜv“ÞpÝ7^o‰ó_€N¾¬ºm³%€¢°cj H~±súcµg=ËDJ^O/ŽUj5R¢ÓÇôjìQþ øßãüM ëËœò;2»ÒÅy’=Õ'ļ^!}j×Özã‹`£PÔá³1'ØÿTo;÷âÃ>2Õˆ8 Œº÷Èš`ÐÅôÄü6•í?f1X¶¢‰ˆÞd,Í wD*4 Ù fs:Þ³ì¬mãôsÊ|Î{¹¶¾÷¾í©¸÷‹ Ñ:×ôx„€É/¹C*´p!]GÞÛ¶wþ$Š4+€šûJÃÞÇ3š½=xD£,笖\<‚Ý®d ±Æ— ild}—tØ_Ìp$\¢ààØÚá]ä¤Î‹¡)Ò9˜ !®ÚCÜd=÷R/D‹H ’zÉ8·‡+ê1¶ ç:Î1%óùNãVO©éí6÷›@ œ ”“¤»P=µÓ$œ n°ÅºŸßœœàm 0ÐjdEμî²lñ´'¥¸HšrçéÅ×_¹á•ähozür¢Ÿ¿èºoº(çEaI —õ– Å^fF Å@#+1>iÚËàÿø}±X=º÷,¢W˜BppŠþãwZ ¨§T«^m˜”wæV¬]yôªZd5=…0 ))ÿëz×dtÙ¯o‰ÄÑÂrûMëî!Q÷h*ÈuÿÂ)5L+ï‚;Ó ¸À™ µ–Q3 2›(Ö_áH¹C8’…n(3{$>ÿ‹Ô.­Ö 7J7ÿöBfØÚ¥Û¨Œ· ¢ä–DÇ×àŸ+‡‘¹üö¦vOlÔ=^Þ­ù ~ÂAž¹® ®AdÓòJÖ^Z¨ °[“Ê»¬î·„aä¤K¶dªteŠ“ÒÌ;“!Ç0k¦;IЈ?u7˜†Ÿì28‘ìr‰aÀ±ù‚1\nÓÞ‘ƒ ‡ øÙC -nð—Àð$ð Ýilô¤=ürª8Òm;ïÄ9°ªöG]ñµÐ›‰iÖK}oe[ó®Ûž-ÿiúÞr܆,•**Eûô£Æ¢Çœ|<Äkßuôô6æ*¨¬­¿ýè“‘=‰3Å¡g§iå(Ȭt–¢ œ|° )1Qõ1n?ñbfGä—€m,جƒ$0Ö(˜xÎïÎÉG&bWÏÄNwØD«(§.ús7 «Ñ²3µšŸéÌÍÐŒ_:“Èåëò—ˤ°?½Ý)ÑPx$¸blêïZÓÖZ2>íð)TSvÏðzàZ7æ-UUüw(®.;YÃèwdÓ)%Ƭwˆ×€M¼Ö{V.îA^yC¥Pìêt|ȃJ£MüFW¨e±=Cïåwó#kGOÊIiÙtiÁ‰ñÁ($unm„U°äöÜ yRÈW¥S'7,åGª“ø¥»¤ª®ßAX¸ÜÛ{ûj—ûÕ?PÒÿb(Pù!?hÁÞõúGU|Ü?ŠcxR`§ð Þˆ3öÄññÜý.Úcµñ%¡ÞÆÄp' ô<51iyÃ[ÿÝl—)Ý €L‡jŽ)–²(û†7ƒŸoTi£‚§$þãÇß°)åþø„{JSv“-NÂ!”N&A0 ŒLÓið‡Fiºø) àŽI(è¬'ôç—ш³uYB¢­!wà¾ö“ÂB¿è÷!$‚±Ò¹x°F¾|©½KÙï¬ o÷ÿšÎç©¿Yïÿ=|áz¯+Á‡ U¨Ø}|Ù“RÚòÃÅ׆XÀ•°Ødµ”óçøåýµüM=Ý%7ýÝÉä\uM‡š°[×MW¹×@ÚÛkŸvE?ôû ¿5@´»¿ïÖ#÷ÐäTE¼·»6­ç&ÖìÈž÷—eœD–J«sÈà Šíò—Xý«žpÙÁEº‰‡ÊãgÒ«pXz–XÂ$öSÝË„I ¡ÑXùÜÞ'k*!«ç”K5Ƽ¶9þöŸ¡¼dèèË<4„Ë‘e-iº03|¬üxøéoàáÁ¨%šfrùmå?÷.ñë)^Œ3ã¶ç…xÀ0}5"u ÑdÞ<÷T陈rJåùdCí3¡¹,õ9TCðqò)/k»eLY¾ÿÜ[¬ I{Ûf\|‡±™n^zÛÛ t16²Lóé~ßݯǒ¿{TW¹Å•.¯dXéä¶m@*èz N"½#Ë”èÛM†oG\o(„h"üz×#d¿xмݧíïõ}ý“Ä¡mºïpæ=ÂÐñÜ/V„é°I܃xÖhûÁ‡ ñA©.+œÆcÛæB£ról k®Ž±s‰ú,ÿ9"R$Xõ¸ç_f¿áŒÁznýšÿTEImx©Hƒ ‘ÛSò3äÛ(©„zb_8­°+Ð1‡Y‡ ËG*¶6±mÿSv¡T­€9ô*§³ìÀ;IïêÎê—YaF*ûÞÆeV×qnòÖõT¥7—WÌVÑÅ¡‹?Ì,cÕž¦ª×)“»3ê‹À¤·÷9Ý}&ÎZî‰yl1ÉøqŸ JN@XèÿÏKo!“Þ15éá+׋ýµUú4A„£s&g™s% ¾[S>`nM÷òFÀ$ÍGT7:a…Üžgôí7šlº}¥Ì-ñÒw¬|-€WÁj4Ħ×Í©G×!\™áDNÜX|L&ŒmyÂì/7]7ʳÓ!†¼RiJ¬ÏmAõ ý!ÀùŽƒ€mÛb¥$¥Î)¨†ÊÅÑÔkÄ~$a@´<LdBbDMN§ã%Ã_ S?MêCBôköÖÉ÷ßãn ÓÊx’þ@¾£×Ô¦‚Ôï]ÈEnyÙ¿.xUc"AÿjÈpcXoôì„%ÂëädȹÂ+|k\÷Žì@øgöíeÎoOdô4<¢¼‡é+v#WQÌ]Œƒ_HÕEWÕà±)d°ç78ˆ¿ó ,܇7æ¨Üª“eêªÀF…Ð(Ó“5ï?õÑÖô GGß`·5ýùÕ`¤òCǹp3Záh K%—6?æ[Ptþ£eYã!L4òzŽvÈjËIÒ ÊyèI-²½»²ëÍP\Â.W`˾. þlÓ †|¨ß  ŸïÁ²H‡TÁdæ¹ƒÒ°Ž ·‘cÄÚÙ¢©ÿˆóÆç¾wÉéõÅ µ¶¼™¤ '–@EzE*À¸\J¥Û.«hRì Ò0kú¬É#¾útHœ»/áG8öÖRÆVã¡Øë»ñ7Ú6?9ü@íyAÇ#˜>7ÿ§Ÿ_ ä3â!tÿ/éÈJéaÞ?`¥\‹%Jç_ó]Ë ‘°Á `²˜öŽ8NºtÔŒ-`»móØìŸù¨§¢ ÀÎæ;—+KT*>‡g[D¸„®iu‹¶à§ —DÐp–S~' ¾kxûÑÕÎn¸ý o‰„}ù¯àCÔ‚#…ˆ¼fHDiü]ê×MKr²ÀhIOå„䄵£mñEó]n‰—eÑB±BïÊ)ùŒ>ü †ry¨ ç‚Kì¶Âl6dpÆÏfÚ&üº-øPqv¤·ÉQnbÚ?<)Šk=Ÿ–Ñ}ãóaç8䨇×áž~•lãGCè7“A“ÝÛæ÷ Íø¬‚¬2M¢%ÑãÉrlLz&ö8^Ÿl‹BР¯á*l ;ÿô©Òž&`ïCè1dô‘e¦Ú?™+»×ŽQ²zdzr'¾|öHã¢áÑL.˜‰žáÕ—» «õIr¢lS{Õâ«©2”È ®òéÒ¨vkPN.¨Hì„$½&]g%‚KÎo&Z@Šž kã~%:@ÜSͤo|^—fÜŒ¹²Ñ6Nˆ Q³ö1“ÇÃe´<½b•¨¦4 Ÿ¶yÿ©àaTÏô¼Nk1Ž¡ ãˆfU6Ó@ÅôäP l Ÿ,\Ýäå ¸UÜ!¾RuÑO-T§‘=r¨ÆºÂ‡? ëÅŸ˜4èlÙc´ß½…Nû58 kàm#8-ü2›^Ÿb nIÝv }ï™—yŠöƒ×·­¦öü¯­$ÏýPŒÛTúØ;Ÿ‡lٻǶ”ŠìGoª%þÁ”4Ã[?¡çÓ€ñ ç¯ôVâ¬Öp±Ž*­Õ4×áb´¢†®œ8]+„`ex_`Ø|‰Ó.åìAz£Qí¸TB@ó“C=½Âÿ¶.JšøßòÊÐ@×Ï–=àä$ÙÜaÆçÄ`8RËÊci¾•Äû¹OÎK Lñ2_%µ‰Éñu Ž&ËêDb8QzF‹”¼÷^ ¾;U3”MscÃú¤[pµìË™g‹ÕQ›õ×¾.%CîUÝ`3¼-?ó¢=h,'£Ñ~ˆfnÚ‹àú;FÄ`@ÎÝÍP8вÿÆ) ìDt»1X$x ï·!ÇAvô]¸±Ã¬øq†ý7;»FÊV!?g7viõ gGž›óâiÓ5oŠú]žŸãÝsÝ ÀR‰È0%ða}s…Jh[QÆÞTÔg­¢iq§Ø:Ž ÃÑQèÏ…F³ZPRŠW%Ü•Ã|t£ô[ A²R<±%bAúLè:™ÇyÌ®âõA¬ó6€ŽhôæÞ-)TV¾—§îZ¦/óS)°Úd¿4? XtdÛ’Fã¾"F4”\ë‹ØÃF Öª—DVr Áþ…!v,l~¢ÍÞAñhÓ§ù ‘æ)Æ ¼3åÁzëqìØŽeU-S<3Ëû|tÒð¥é­=éšüÍß¿‰\aÖÍPnIÒ}lôtç9úáÌôK”¢Σ“Üq> T}¹ú¹ôkn¡@´npf¿ˆ·¨>•¼4%TA©Hv·§´Ÿ G:-ýÍÝ0½Hÿš5¿{ÛÉ¡æ6Ë‹6ÊjóA}•ÒèCû^Ö¶ÝÕ_QTû”JØÙ_.>­Æ5ÅÞ×>IŸöÞ<hÇÕø•N™V‹êË5§7ê=RµÈël„ÌG»JÈ–³ã _íùV´1ìf1 ùÛRÏEÝbótäj<ÚtÄPI à–[Ü} I·ÏD¥ßöb :™¬ tÛB‹íÌçŒì¹H±£~ïCÍÜÂÏäÞÉSÇunJŽ•ÆÍ–ªÅ¦{tƒS½mcaÖD¢%\J´Ì¥ö/¨’IXñUh]ˆÈQå°Â‘[Tº5geD†—–åu°Ù‹„þíÍ(Q^zäÕû®´YÈ7XH¡¨§œ§†ý²Û:G¹™’îGZÕg]*BC-9ÙæìÅÌkþ+ûAEvçGß—2²ç5$?è~Q©Ä‘©ÞŠä¡£|7ÄÐŽÝ Kîß8±"æ¨1ÏêûÙÂ!H=>)¬p[0L•Çpè Î!}ª`¬BfdÇ,%çrÅïÉD#*ÿ_®~né>Úiޙɻù_l„DNcWeÞPÁjQI•4Ëõl2E{ÑæIûžaü˜\·’*4»5T>{LŸÐ¯ââC\Øâ&ÅÏ“ŽË¢ TB³#ásW”1Á!jĹV¨x’a¾ŒËÆ¿ÕdØ—Tª÷Ñ¿×{©"cÂ'½¯®‡9úø³• ž*#<ô!ÙMòíŒ:B•¯­/êkš}÷£çUVpžb¯u׋ð/çÄgƒÂ— 8ªÔm÷Õ:¬V—«(jó¡Ý¦ú|Ò…uiôÐ;éIÕvˆ=PûM/Í4ßÞ2ý@*\Õ—ÊŠM¬z"ªŒt[}ñ)÷NÍxYã®Ùíç™"×ÑÒAƒ¯#Qà¿…`•ú*ÙU½gNO£ƒ `ˆ¸¬‘…øëËRL à¸Ê3‰õ¥;‚ä€ÉÙ'Á mþ?ý*ì—¯½M}ÐÇ/¹1à\lOï³Ný#z+–ÔˆS<ßåÌÿŠÙ yâˆ>µÿk}9QêßåT¼ZQÙ\^ƒ^þž¦­‚Û"sÕ&áº5 5v¨ýQÙë2w™Ë8:yyÚ׸Ïâ÷ñ¤‘‰ˆø)â¢bÇ©ïŽü¨à{Œ|ÔðÊßZ=9+&ŽTƒ`LX®dBÅ@ðM=عb$SP5¹Ý¢¹ß䎃¨àZYÜ7ÏU€XpeQåÐÀ#¢ãO¤1ìFA©l97io\ªÃFݬ^ež¹ 3aš"H`«!kØ6.ßsv÷Ã"àw"EÒ ˆÃkXvã**'h(™ë䊠L*)´™Ú=¥5ÛR~Z„çáàQ U ¬AKÚqã‚ì­Ýß{ ìÜž'* »±úÕÕÎI¡†ý%jXjPÓÝÐèÿ=oDd ë)K³5™[ˆ¨1· /æ|úçg«žœyýä•mr<Ê•)V®G.gdʪ¶èžOÜÞÒÌú¹ÍFÏ6Ú1›IKèÈÑfôÜB9¡r{eƒÿгþ‡§Ù)J €ŒLŒœÎÍ*‰Õ+Éç÷š-jÓÃ(êÚ…¬o.â¶šÿº{º6ŒgKÿw¼ØüžfÇÔá?Ýé„XŒw¬‘ßF[%蛯4YõÌA b–ņÔXÄTj Mbe_Sýp¤úG Ћ–‰´1ƒ‘!Þ€–kUô‰Î`™ÞþÙW*†›ƒÏJ5¯_ä‹É”?°IH>”OAa²mw>BA¼Pì?X^:°áä^¥8öU æûÜÖ£§·/f‰%],'¢³V ŸU“°’î±Ã<\ëEc„€Vª](`²Ã×q“­ÓŒÂ "Z}FI½µ›®k°F´óg®HQm͘³ò9?L÷‰ºL.9kÂy½œY¿LaÁÂØ|½Âü¿®¾¶°“&ùÇÌ ”(Õ!‘ÎÖ¾ú¿À©)]MèôniÎ}ò.þó|Ò÷09y=-OJ¦‹XÍÁ/"1¢… KöÚÔ ½Ç¥Að57¡câí¡Ñ­L¹tà ‹ÚË­|fÂ]®âŠEŸàŠy;xÖAµÿ[Çû‹Š£UjI˜ÖZf†œõçÚñ`}¸±#a‰·Fý#…¦šjÁ #m¢:G¤ÂO~zÏÌ¿àW òu«„}0@ÖeÅiÏ;' g"ü`D_³<†âá¿þf7M¤ªmfܽ}¥¤zÝÏÙ^'¨³±Ž“í ¾#ï}’5þУVºÖ"TªwÚÀuFmW˼ñO›Æ£=ã{î‘‘­n®\vŒŒdKûÅð{Ó^ÌÙ—_œGß-!¡Šm)*ð-‘êv‹CU'÷÷Hm —Ù¼o2ë˜?H‹jssjèðz=Ì-C 4yÉ n~hmù£’êÚ7•­ÖJ·®y©›õD ƒ8}b|i9tM V¿Z'úöÈx.̃¦<&‘ÐË’N±ëé{°ºW‰{`+!œˆ$€ñ¥W~™ÁYsn&`5{Ò»×;KG¼omò·ßu3À:îϧVŽªÓªi$‰7Ô¨ù,r¾=ù¡R¹>¤IqÕY—m¿nÚæU'®·ÞYb Û)Âç>îtÎÑ+T€6«9§¿ú߇vƒÏÄô[/#Žf-Åpz}&~ C"‘Ó½É^1IÏpìX¸yjùô4‚°œI·‚¬Žî5ƒ(J¿Õ©h„0"§”SëŽÑàÂgü ¸“Þ[6èVšÎMׇyIØ5øƒY³³Ÿv[¥Ï· — Ñœ5Ñå!–Då+a&â·‘›ìxSï>~×lv]˹‚5ŒÆT¤0Káš—‹Z´aL¸Ki»Z;=ÇÎŽ @:/°-°R(;3¼éŒZyŽçÁw÷­w9WŒY‘™qœõ碯¼çø], G ?Êò× mâÙ”ì| <.j]ñ 5›×Å¸Ú ,ȱU¢nžµMŠæƒ±tÃðxÆ‹M]ˆ%›oÆ : øüw":©P˜áv¯ !ŸqÃ=!¾ÀNÛ[VOŸEJÿFrXõð¯må$~ Šàk¬±#%ÿg *‰×ᆭ9£ë£®òq¤,|Û\ómo©š×àž•Ês:Oþµœ8꯺‚¨^æè mÍ€Á¹[ˆéy4’]Þ½DË^ªÏ5þƒGF?‡´Éñ–ËŸºsRœàfÖܸélƒ+ƒ@(`8šÍÆŽ•Uÿbí(«eÜ~ƒd¡|œlý-:mÕÓÿL“½ˆ¤SO%ÐúµÙ¿™! òåVEH¾èë^ ²M‡2…wæàÇiÈõß›ŸeZ~»Ï%=›ùðµ•ÛØ è9Ú^m7éeŸUØê–¤_œtû©í{ã÷c±Wñz ÜöÊfξJÊóö5+*/ c¨füµÍ ï½ØòœÖ[ë0¸Ú_îÎz¸Ä;®Â“Õeÿ MÄ^*JW4‡ŠlmŸxK!©Ÿ+8ÌGÄθð5úJs5nÏÊô´;œË³ð#]íÈñÆÓ‡¯ûrà\>[рͥ­Êt (O_;íûä$Ûn®Õ½jm™ êù¤°u5',‰c²·ø*¥'î7´Ú{aS; ®^ë´~WÕÈÕe•îg·XÉZo~ù[SþrеÝ¢£{@?®ÿ%–Ûf(\ Ƽ%Ë7ÊÙ6Uæjgk/!Öš–îM1ÁáœgÝnIàë)iqQq±iÅs±Ž,z«•%òdÚ¢¬…Î<_˶m·ÓbÇãg.©¹Vú°w×Gæ@å·T9œµ½_ …ºO*e ÊP,¹ŽN ”jí!+?ð „ÏÓË|•µãVð0JÇ óvûS\Ÿ5ìì-¾Mq½À$Ò G‹W•ªÒVÂ&’ÉV"º×²Y t~ÑìupZDÔtDËš˜¿ÞR¥Ë˜}PÊR0§x}äÈd§Š³&R,£Ž–@$I^+äÑJWÙ…óüŠÒõ‘é6'ñåáAÝäÂW«Z6 Ä"y0,üôÙ‹~ç“û½r|…bÁ¦ÄñLxÙðr×üÚ™dmâÕœ£½­>röT¹ñy!’.ÉB¹³ᩱ?6ˆ:RÂîs'fƪ~Ècð,¿†¨µû Í}±(;ÀdsßyE¹­òz‰ÂáiK)’üŽ6S*T çz]V6oUJt±Ë…¥Øj8Qäf¤â¯C[øÒCš¬ˆó&8x(yyLY(>¾Ý«ìuÑÖ5Lo¶E,ãúÔˆûl嘭û¸‘© ¨Ò SKjcæÙ¡ÞŠgÕæÃâ¸+ ¦—­=ÌÌ4ÌÓ9ÐKÆ—Œ4=ƒ¾Õ’ƒO)Ÿüd’õÍPÁÄ9ÂD¸îÓ¬lËÙ`#Ò?à ÈåJ¦3ѽ¯­Ç4ݯjá‰ê³e‘àŸØ‚ôêöœ³èl±*¦Â’´ìþñyæºÈCD3Ëž0©1JrÜÍÊÈ7¸C6ÅþH5¥×¸S¾Qn̼1vÓL"û QkÁŽÿÏ(_W¦ ŸMK!Ï£M¨*PŠÍㆠu}E)HLëû)sŸcf|—„…Ü‚¨ˆô:ø2GRîÀëôuwÍKáÛ Ë´¸m,Ø*]2ĉ»jØìd9&´iÌOfb s`_>q\»H=õ Xâp6ý¶z:ØÁ«­ 4.ôÝ}Ù½aµï lŸ`Ö!“ÓðÊg‚RWvÁr,m6·†·•ÜÔ:§éŠlþn列.r³Ñ¤¸¼Ip;Äq¬|>éèŸö пWG.ßpã©Mº`½}*VÈÜM¥Á5~{J!Báüý«+éY.gëï»–¿‚ãéæ.©ÒaºvV¢'îÀ3{úŠ¡8ò€ßÔè–9·˜ëè}œ–eôOéU|—Ÿ5[ðŠ\HAkŸ4N‡-«Ø‡‡{Ž —æ1‹D>—Êb·+*†ºž•›}yƒ¿9…Ç;Ø? î]¤Tþ\ÆÓTÜ&òîì^µ%åA¬_‹ª€æovŒÎÜåÌÍÏ’^kÛú™‚E}x” +x(–¨ŠR}‾EÙ÷W,µa£”é†ï·»I êöåLè‘Fu+³Hoøj SF.£iágÃQV\ph~绢UÇÞó¼ç¸ æ bÚ bq2‰ô9‚ÙÌã÷“.:XÜÿßT¼ ûæztHø÷’,‹M +ÚÔ,FDîż|ˆ§õ¢²§n«ÅpWUÛêÓ”„ÉÀë^Y5ÙfŒñI«I‡ó:ðnÅÈžcjýƒ[ÿq¥$ô›ïp îZhÄý%ï­6oØš8ý®>°eèÚˆ½¨`ìEkÅ;³ß–µ»ŸÙ1¿¸ÑVPx©IRÃHI)ÑþÛV|­ïðtmu¬°É›ã©Ö(µÜ`Æ#úüÊqãjè'š~_öµp#·“ðÃtš¦Ê¦¥åji62O4ò!;Ûaü ¢ZhºŸí46íë2ÉyA ŠÏìWƒ˲ ì…Ý2:ŸÄñŠ" KY×É®ÿ:‘‹)uxS‹¯¬0˜kâ>kpCÄåÀ_ÔÕ1¨PlÕ‹à!õÒg:^Qê%ìlÕ4=Ù:w&E“€¡ú.·~ï|õ<‘Ô[]‰ÅïE´› fÎ-‚[d'QïpñŸ™ßZ‡ˆÿìQõy!‘àV?ÝÚ°sjSrt؉¾^9G^ýµÊQÆL‹íGÄ{™­ÖÄë ‡‚8©ãÛ}Ÿø0µø½¬„ÛÚ¦I® ¥„óJ‰ ÓšËÐ.î=}®)qe#@ƒü>µl#LŽ—vYsˆDìuÇj3c8Ô°eù7k:ï1‚pœ¿‘i ùR€„Ô#~ ¿ÑÜèFU| –Cyw4Ô)èâŠ=àéº# QÈ™»^“pg(÷‡Šn'áÌï›eò“ñ@™+v8S“êï ’wÅvTÕ-Æ)ý#|ùf07 ‹.aÂ$¢ -GÌÛ¬\Ýäâ'*ÊIJ‚„Mÿ+-Ðó_¬‘]¦?<´†hÓbÄŽ$¶¶êô.æ«ÙþîÀ*1eUjU›«µk‡™{üÁ4DÒ°TâMµ}fqh~˜,ƒ¿´º ß2®ò÷Å)‘€4rÍŸü¿Õ¨`ýww/je»4NQ]8²M¿Z‹°ŸÜyž(4¢‘¯J6ÛUù:¥ÚÑmûF…Ø?[V¨QézŒ˜“HòÓ³,2;àÜ+J`£ƒÎ‚kFP„RfüÞ&”QÄ*kß¿ i/еHúZðÊ 7î-¼õ´ù¡{Œ™A§•™‡y`yX3¹4µÜ|\Ó÷ëb#Ö›YpÑQ‡ãöíç* ~>&,¡äÈ?†LV]¾Ý‡œtºêÇrØ]~×z‹5X)fNNΗ£Àfx5n fô'¿näVª¾tdVþp™'Ýcáó0m•dfrò3æ `v×xsâ4Ÿ@Ïò†%@u…‡ .䂳Å%zwþrw}/êq¹©­cÖ£›Fš#¶†º*ÓÔ èEÖ7(Õ²Þß]áãjañÇÆo^¯M•®>°^d¸M¨»sÚ?O:а­>D¢þ'Š€p!rÖÌï ç{vîd _´"gŸÕ¯zh;=“Ìío…K¥Š‹Ñ"ô|…w-¢¤T3Qnc^ÍÜHý1`uÜÑñZ_eå’®¥†ùó<ÁiçŒi@0^ª?™ndYµ;ˆž» ‘½EćmÒC峯À±¢YðÌ\ÿ ÅŸ|âè½)µŽ¤.Æõû›Z1*£†Ùh ªÑõ5.Ey¯ºíÒLs„˜#%x0•Ó=®ÑSa“±¸‘_eê1—¡+åÂÓ6 ‡<8´{› '?ý‰å¸¢i_Üò¥q¸7 >ã´Å¦Oì†z`@ ’€ ™ã .”c¬hWºˆîd-¿!gÃ¥ ‹3Œë3oÏvØ`øŸ¸˜nO•V¹ú—ÑsË1Žï4‚r¹èk3”+±:‘†ÍR’Upa†š‘Ûîg±“ö÷óá¶úªe2›²4oD­“#•HËÎàã-´áà¯n2äw°¶ZX.Tªì’Ñ—ïYÃgÔP2t AQ¢‡èVa7¾"WgMƒùÆãiËF,†l„f~;Mè4Çk™ÌÔÍs&4=>²Ù 5ɨwY /cû²ow~ ¶ä Uçÿ¼;,VEƒU¸1I ûõ#é}êYhêÈ'æ,Aí¨ü‡"|ŒïN21P8¶²/¿2…u±›÷M²ó zƒõcåž%Þ$ÛwWÛÊ” µQî$¤mžCÉu©- ”ºÃ&&gBjÆ$R{((ö”v®Ô`ݼ;_›w%{Œ—¼¾4Z²F9ÿc“ê%=ÐöIá§'ŽÇÖŒüZ„ܲÎe³'4&D7ªÈ Jªè¨†˜Ä'_¦ôhaØ&4 ȇ&«zT·ˆßΗVŠ xvÝ4$Å·>à©‹ÄBpà9¢E6ù «uÿÜl´ ªË6øãòoë%lÜc«9Bpn‹éÞ¼Üs÷"´Lº{‹šo;¬ï%noÔ´˜Ú¹;:ì@Öª |º‘]™ƒ¼ÆzÕ9Š%1›ŽOëêÚì’c_¾ n4D0”|D‹‹å œ;ox9ºÏ{Ô0ãÕ˜"Y®ýCZfí"=‹ÅP™q}CàÏš;9óî÷™Ë€Ü™;¹ËGÕ‚¢Ã ÕUQd¡>Œ6Ùo2iˆœã8Ï”È߀–X®Ê¦ˆxÑãgߺÔñÖ8ãí’µðzÄîÆ«çf®4ÜDñßʤ§º‚LBPû>«ùóðjöìòä)Õh›¸É!"¥J§dÊ¥•¢DÚéaàÛàøä|IXs!ÕwXø³–¡\Ï„`&È™‘äÔdç \RVp÷z"gb{B^‚/üíã,Gž(_UŸl…¨~þóäíŠ81oû»„kù0Xµ1ÿH¶u¼B­ækU,2ëAx[FX*ƒ%—ùP5ÂÐ4ŸŸfÃÓ/c™bß’ÆÈÉÓö+j+< °¹K6Ö ¤÷X‹¸d‹÷†8q¥ð€‰RÿÕßÑ1¾ò7­§ ³‘¹]ÈpUÅØr*[åÎ#FÌ :=:†ÌÖ‡|lÈÉ=Ðu‚tÖ«¯Ûú;¢ÆdC †oâË­dé§@{±öaæâ}zbËoA[@!0ŒdMR¸?‘ËãÌÛÕÄÛ%"l›° ‹VÞ#œ™“/Ä©ú]ì1ö$æ <…ÎÇÛùð§CY;õt2RpX==¿]1Óˆý½a¾¤mƒÑÛâÞÏrû¾Iôtñ÷X §†Š yn|Œª#]Ë¢a^ÓFöƒìÖì娫L×ý©Ÿç3§Ë8¬9~òQ§Sw4oy·Ò,¡­€¢1 ×\j? n¹Ÿ?žü¡R÷×¢·¡¬Z“/&_uÁæ+¥¿±¥”w¡›:1[¾ý«ò¿K õ™¥‚×CðG*ê SÀ¶v{†ô?äec—½rRyuÑÓTsó¤ìC‡ÿ)®Ë›.oâ}KÒJÿAšspÌeÏÎÒ»¾e)–M!LÔ÷QH¥Ks|=â®CŽ+á$ÁÒãx!A$2 f\ôl^¸7÷ÃOLˆÜ8Ž÷=gèKíOSùãã>D  ÆÐ²åKœÂ$v©û `é3¿‚05mOiŸßNmÅâuÎ$Ún¹Ð•J;óo‘òGÏTµè,VÓ#‰Bt¾5ohªCR0Â"Î pø#7¢ž–\d[ÍF‘”È › óH²±áwŸŒ 7É­ Ö`^ûåÌמRW P¬"Å}wgaÄaa”OÞųI‚,Á?ñ­ûAƒ9+,8·žŒ—ay«û<žþý§,bf;`H%Bz¦À1)(žÇpª¬öLÿ}G™w1aüSÑ]+™?tc »¶S>uÀ¯{˜“‘})ÎÖ“$ZÍÆäŽÇˆ';wsO>-n[•í„>7ãðüÇèÚeß®¯^È’³9-[æ!'ˆÊP(² ¹Ì—qçþ;ÝÅ'Ì^¸t” à×ýø¸´ÉeL@ž\Âc3aQ} Ë’“–ÏOÞ¬_=¢O»Ö1ˆØ¼âo{†ìÝGÞ½úïý³ dšëdšøÆneÛÙ\å´¯ÿùbHF¬s gáÅJ¬q”¯Nò½l|"^/¥J´±ãGÓBAcìðXáhˆ:ï꺤E>p”!X¯œlÐàv¢›M/Æm ~© ÊEÚFKhÛF½ß 9•[Ú­¦!´Æa¦ED¿ub^¤GQmŸ]k¡Üf¨ Z1gÛN§^P?ÑÖÒŽ>Y-ؾoM ¾­Ï”•‹Á_ô¶F÷OÌCgµæ;%dP0E97•Ý#PMâð*7ÍE¤³A‰&d+Ç®MÎT§þ­;­[TÞlåPɋ޺‘A•Kš'ƒ}½Ûµµ¬zÕ—¤ ɰzÒä·¯ù\·’}3¬rü¯UeªÏŸVBj´ú;RŽ®$š[„U¯…µh.ïª_Ä4CÖŠcU ÀF”õ‚œÇéŸ=´+Œ,ý`€u‹ß#gòØ”1JmÂl“îG^é_?+w±ìßÂ{Çr[Y²±€},\¹ãë”)4@uˆêžÑû—É¡X+H2-Ão)щà3'@µZ&hì&±Œªê¢hj-!Ó–CVE4ÿ"0±V%b’P×(2¶ƒë®ÀJܤñm4ª‘‡™Ä`½w&ikñ&dÁ%šzí“[£¶íÂØ÷Áµ”–‚Ù¡)NºG€•Š«ÕYþ3ËÃÖ„;wCXÄO§‘x4\d‹Ï’Ùh)MnÇÆ†Û,Ñ5©§¢érNÄ#݈€¢èæ\5xÑMÀ_°Šî!§pþƒÛJ^XÀ–D—Ok#§·å'Ó@Sðy«iÐðHfÄYçNU™ìA•6çÔ½³›»m´êÏ÷X€îžx¤ôít˜ÐyŠîhL¬jÛaøÌ:&¹ˆ00·$'5}‡9ÆgÞuZƒ´yž×UÅ–3e/cB×lúOnP@dLc)yb}¥oº² zˆL3j•HK5~¼¶;ÔjÔëÊk£—tèÞ9Åvž­Gö,š¿Kø=ˆ2æ"~¼Ø\U‚#Ÿ¤ú—Ð^}KzèûaUu¸’ÀòøeÃÖuƬíRƒ‚4„sš  úºwJè˜~8*Ÿf¾ÀŸ“ kÃþÂýw:‘hüŸ¬ˆÛ€ó‰âRÀ¦WnFý$–¸o>0ã8?¿/m]–œ¿]YŠã^sÁå{ÞÞzù“&ÓHQæ ÑÊ~:þ÷Ž" M Q5·v[;3&Ãé«T:Õ ‰¯E´p¨Í½ ¹Æî’§ö áÏ/àaÙ!Ý WÌù™Tï­ÃìßödK0hÛ§µ.F°od0D†1[îÓRkW~®µZ9Ø·’j¬íÙ€Õ¸²¹HLd«ð‹«7ù®äßeÜYFŸ™y-20õ9}<ù«™HŠqÌ*èŽxpúÉ»ê¨ó%ÀT_@–ÖLý«†¬ÚaùÓz/ ðüÃÝ:À5²½ÇIÍyµ^B;pÉ>`âsXg_.jö;ô¢3ÿ‚¡ÛŒS¾¦0ÿ†„½ˆTŸú,#þ÷ïÇl˜2¥?¼WF ÇVý›µ4Z6EÙêíý}÷ƒÄXÎA`u¡õÁ3þ*‡äs ²íB‹÷ó–R1Uº,N¼Íþtv³xhàDZð°Y|ép²¦ÍtÿJû”•ÿÓ…ù°åšd@øÄ*côýfYôŒÍbÅÓú>úA±g–‘%×þÕFGàÑß'Mc3õ¥j¸Îa)HèÝ]IH»-AlâÔ c¢;§vÖÒæ´è äE=id ·é€\5¦´j.¿Òa¹‚>ØÊiÇL–¸Ñ÷ º 𤼨¾Z¦c*Þ+™œ‘°šÁÄ>~¯@ð±ÙWŒx°¤o¿´¢Ì¦o8Ý ®Æ¨ãT¼b  Ì³Ï9ê‹Îãl°ÜO q{ ÷|’üͦŒzÞqÀ\–Dž•m`dVuðKM£ïÙ†©gÔ™Ö#-šJT Cš¢úwôSþ0äô~ˆ"úÎÈs²ÇXéíF†t‹•¶%G–ÖC^=t!Äo Ñ"YV` šk²ÐÕgv!k·õv¦+îa‚ÉùEâÝQVß][BB]7šu¨ wc´â!¥xÇ Þà ‡aY‰J³õÚ¯F/¾s©vXD‘ømÜÌ‘[PUó骮b©EÆ>¶—¦ü(wqªn‹Û»1pî§ÏJÊJ‹uiå©=Øð<ƒxHÿU•Q˜©úМ;î»±m¬þ4lÂg>Ž ¢ÊŠ•'‹g0ŒÉÒT¡o qš „…âB&y>A†‡¢¯lz°K¾½§D‘5¼™8º=Üv»w/K"è/“ª¦ç¬$v.ÔþÁEzN‘©sw¢l793˜ûãI¯{q(andj Vä6à‰XFï|«…joJ#ààù}× Úª1]°ÍÌià3O#Ô¨PY‹¹Ñˆ¨§Ÿ’5övjê„ô¯øÿ•à©,Ïè MnZdÈõ:jà=“r_é)¾ù–Ò“pé…ŸŸ{qìh¬ºn¡d.X:Àžm95¥]˜m½‚í{V­Kß5]Ï«CÇ0{‰ˆÑfÖØŠ{ÍÙ`x£Â…D(E9¶/Z6ó0"åõ£s<ݸÓè½õÒ(9P Ǥ/ª ­åQÏæD•‘(G`48´ñàüs@R)hÓƒè”/`³:Ð2ü»è€ÖÄàç¤ÌóF•™7Öý<{hõ[ƒÅf¤ŸÇ¶ù(x}`¾›–Y`}ac?”_ŠÓ%å›e‡Ý©|G–6¢@4»=ür»JÎòÇ Â3>ó5]Ë:¶ÇÜ•iöié(½†ˆÄªŠf@QȘ‡ª¨èz®ÝÖ©¿«<°¶Lê4ÁºÙSu1ö·k#õ?¿Æ”ü.~ð|íÆÇ=Á©â 2î”»ŒÃ/mnÎþa[…;øÚP²ÊÕ³W¬a5¦vŠ ÃÀ¸EX,Õ:œÑÖ«söY¥#_þ‚oknÖvSBæó ¸Ëv¡,ïÇu6ÐxAU[´GúÜ1pß^„… N]ðÜrNôÛ?´(Ù9«•p<[F"’ëo®HNÖ_7W_O´ëÍî›yѳ×…Z‚5|¶·JEáBASùì¤mrÇØ,¨›øLÄŽ ø÷d0ªµ5x`ÛO‚¥ê:eazñ»ÜfúW³߰Ôôº>=¤õ »T‡?Þ=È@¾§CñZ_+ËÙ’ƒþX ÖÞ&ƒÄõæQ4]Ð7m^jSMæŒnpõ™Ñ‘Ásââçm[›Üîn†½«ë&k,ør„âz%ا j õñ@¥ÃUýGIË‹ÜÆÁèà§ŸoMÁyJ­H[p’5=¬˜ kmod­àNÉ­Æs#ýFžÁçÙ,û/_ò™zusE:(ÍÌç,˜y³åÿ`ùZ1Q’è¼þï#;y{î”ü*æoêáœ*Ä“`<Ü×eçS³ß,ïžù5“Â"àsQj6è Xþ^1M?Z¿`K/jMiÀÚ.„ׯ [°x`¯›Ý¸¨KìNjü(*I8Ëg‡¬â˜\ú}8Ô%¾†½ÙcÿMQ ï_X\¬ ‰6~ûÏcFŒ¸Z¨~:HÚ¦uT=ÆB-Ó‰ÿêùª² XHLOA#ìK5¢%ù«Ø…†uHìLðÒWóñE­CÐ}¶ôËíh|Y[â¢=…’Ivãys¢GKN8”QÃ̶–\›¢ýõþv0Däw;ŽSþÜ&}ÝàÐ]&8œγ8CÆ~de“÷þäøýù>x ñHÿˆ°D"1¾Bàa.ÿ ºÙ…/õ0øñtˆäœî³ªá ×N#§EL¿ÂÞ´sCÚWÝ3`vM'¼¢ú¤÷ƒñ.*9üªêù7¸ŸíUQU§²åÛͽÞtwµlD½?NªdAà½sKé[—èæÚõÌL8“&©ÿ0£¥érº1ÀûyÙ.·‡\Z-{Ã/Øè‡\yç}Sú“f£ÝAÇ,-!Óð®š}~³nèGHÜMôä»$UžÔ/óC‹ð‚C§µwà îH¥°D+»ØÝÍÆüëŽîís eê€ñVº.™¨QgeÆŽ3ØY¨¾vï¯Áz ßNmŒl: tü¬ªÏô3U40‡¦­wJF·:ö‡w’\Úâ´,‹ ävž-ÈÏ4ÏúÊŸ•8ÕÄTI‚:÷ºªÖ°·n{ „,yë§eÈ~ֲȉÊz/D½©°È{è<ÇÈ'OK®“Ên\%¼°;ÃQÿB-Ìõ¦ZÌzƒòÏæˆ–AQÅR­HzþPä°"O.°Gö 8¶¹‘í‰dVä;èm•ƒã§ŽKxPŒŸnr¶~ÏUœ¥œIÆ·ÑÙ óú=øê†T>n^z?#•;Ä;rbcß{H*(;j M_…ý6׆éôQr‹­Ö‚b¨ïËÌL­\e'vfcz4Ó;€UŽ=Ûõ{>9€¤ Ýk=ØRþ;7³É€¢ëtERe7<¦ñð£é#«‡'È™F¤åÓ™b&!è÷a^n·É pôŽÜtR—?kQª\CJ²?àæã¦ ªhñâíL å5+µ7éÞ9ÔéCÆÐ®'‚–ßêJüÏÂÛÅ°É •ÍjwdD§c¯ælu{™ÆûÂ<ªÊ‡—³×ëãò¤›!)€ÌáqXÉ3nÒ==@1Õí¦šyǵœ‹R:Ä©p·bñ¡Wâ©x ,á Ð;*<­–eÆ|€ñsD‘ƒXÑ%¯éÂDý¹*äíù§6”9üò†N‹ è–М2êž:¥)f/ÍK/@EJNѯ–‰ç„°nEñå²VUøí¼<…|,{$³ý=‹kJA†øPÕ%¤D¨Ò´>!µÑ.nÀ@7—n" üL¹ò 1ëÂH©!5@½áãˆÒÊöª¤—ã³JððÈÙE¿h>ç(øóÜQ·~,ZúìÛB–:n>ø¾ µŸLgÝÑÕË}ƃ ]èRÖœÜùö|ÄñÓÌO-AÂlhxˆÔNÄ+úÄÔòùÐFsjÄî%1pQ `L ¸FéÅ÷Ĩ¦Áê RÛök"bnJáôÿ®þŸ$æ¸;˜‹‘¦Jƒ`M[zæ¶ÔŸàôËöÐØ¡@o<ÄåS³ñ 4îßà1Væ‹ £âñTtYwnd4dþnjÇoó&RÓ:ÿã듵,A\×hÒTÁ2¹N$ð5Í@ì íÈ+#nÖNé…%'e R„l ~÷ˆÄ~¡4 n3õÝÀk²±†7ˆÞäÇh†à™~N©2 %ºqzz㦼8f’4Š˜í´nIÆñ[H‡‚= B¡=™ò‘U €'?ÕE¢¾éq™šæšj hw#;pwcìq–‰¡î<%|®·Ø ”k0è;OR_‹ÊlãrÇkëq›]BRuÊØ]<½V—‹@ʘŠìÚHwʦþé„åûEÀˆªN×>m˜ÇDÒ oV°l^½“þ·{Á˜›ž\üQËamñ#S—rsˆ±;´I‘ ]O!ë–žjÍ¢©¹¢Å”>/ilà½2dg­åÓPÇw£ÐFþk xεÇïÒÿ‰‘»ß¦àâ’yàË·aUIeÂD¾Z˜o¤ex*°’­Hj†tHIHcb„ûn’ŒLë8F Pk\(³¶$C ‚zþ'é3´3!Ój_sµÂÉ·‘fÙ ~Åód¹ÚmíAS9õlæ®%ŽSs8Ó,Ü’b¿‹å”FJª7AÏd?éÈqJî8Œö"TÂfÙk–TD¿²#¶z©ãÏ‹¾_:`ÌéCr²Ë?Ýl:kö>hƱhº£Ô,ˆ9D•LÕæðm—fAü_g ©ºùFEahªù rk–£q$:¶•B!yÝ )½c$öÃã žxüXæýO€J¶¡]Ëü­_…5²i`ˆåbÙy¤üWø~¸^ºèÖÚꆦ#?ÈȬˆ—£Èðy×3¦ °˜—UšlÇ‚³“Š*?K¸ãüzóü@Ñ}‰—¨¢yþJpÍÕdšän\£»|D›!qê×ßÞ4 0Ø`Ê ¸èEdv|ºô„Ðö/d×j& ÆÜâ%Äγçb'רgm'¢*÷±´ñÙKÕïXÎÿúæ™`»ß ëœV½|`%ÜÙÊü?s‹Om ˆq¡ö¸ÿ³¢2WýüêïÉóR«Læbø QÅÓ%)a\¬Ù¯ÔN(_Æ eÛN«šH<Âësˆ†4½Z sñ©äÝT!•Ú3#_Æñâq}aÏHÛ×bJüfÝÕ¬sÀÍðŸýA$e*vjÆ ›È[ïÝHBñÿ°¨TÙ$ý݇öí´t%¼!›`ëÒgY¦›€zàŽÎ#ÉeBˆŠeÇ&¼XÜ«rEÅä^üÌÜÉ}ë2£ß[²h­û½TlµC°ëãU·8íGç{w¾îlM䈻6„^Juu¶çÜ3Ë?»‚ÓÈä=Š¡`½ À‹ “©³¤ÛÀÐÝJÈëûß0{Ã`‚„ n‹…:ºÑ4XJÚ¨˜|óXÍâq§B’6ŠõMpšéÄ “ÒG?å ipntqn/9éåÉyŒü¸[ôf¡« ¦º¼ð*"oáªô½¬ùÞ¡çk×kÚ3ÔŽ»3ŒÎûÅZx Cq³zç˜÷ϲ!¸°—dûO[€Tí«X›ì“£·"~çì4ÝÐQø$×s}0/8siÑ:ÃÄåþ3_Ê,E0µÛ¯]\ô-œáˆ9T\9ëÞ[ý7Î_[)Žþïç1“Þu{ ÍgCV8…þŸèc©½l•ÍU9â¸#Ï#X'ôïjµßé Öýžë,<âAûWU<*ª­®Ààé–ÂÅÈ#oå•Ký-YÖ;ÜyšºÖ¦j¢’ƒ1ëC^F-øË‰P~1âÞXu¢D§âìÔv?0¦¹CÔ¨¦¸×±hÞ.¸ä›âí‰Ks0Á›€¹Ïà•Wn8æ°~ë‡~À¿˜½DºÅÕÏè«k‰Å»&ã½Y¢ IØÙÛj¤"Vþ†ÓyŠtñb!²CiíØon“¾— •xÄ’ïe¬n¥µтӖ=éµ›¡/—¦á®Ez@Ê-ïs/¡ þ0²C§U“%jBn;ÄòI“ñU|:9ÔýX¦‡ø(2¢$—öRƒß ÃÞrÛNÐxÀ³„X\¡oNRÎ’L>¨e âqýS*¸}•´¨5Œ‚ÉnÔn M”£(­œüóý…öɲmþrŠ:\Æô™¯8-™wñÄ„ÿ+îbdEÄÒ¢ úTu|ãT]FÛÏ+E¿ÉŽB_y؆Œš†<13wõ¾/ªï¿Æ]rÃú¯šøƒ=|oºK÷Æß;|>ŒÔX‰à“‡_ÏSúdƒ®n.ò;?%/ÂÇ›9ôºu’’S„Q +?OGÀ?¤~§žgÜì%Ìd«’ÊèÀRK¿Ž$RŸFü=s¹=tö Ó—•ãý\Š ·žÑX.ÙQ}"7ÿ‘é@;6ìO¤ïó^”WÄ nh›‹‘æD 5A_vÀ­wÊžY?8¿^kS5°%ÙñZ½´u5¦Cää^Ûd'Ô†’BC›+TXíw(µÊ5£Ž¶ rð!c¸ÚÀÁ r–Ý×9GÔd_$\>”‡ÿ?FÖ‚uŠ…>‰ŽÊ¤ÕïÏ×ʪ³J“@¬3©ImduX¿ãé$\M†F†V2YêðíÛH:¦5íböÒ Cll§ExEδæo˸Ý&öxÀïâ½lD5ª0`ÝälÑþè˜rÉËÆU3çñû›fúÛrÎMä\²˜8%5÷`mëÓ[B¡Õ¨UÖiz€n:ssA«¹|ÉÞœâ^ΞTÍ:c-ù:8vŠð4€Ò{,ãf/òqƽ‰wG”½Ÿ×þºe¸ÂØí릕#µÖˆ±ß9ïoŠÖm`Ûmf5N7Ê_ÉÞJ“Žc—Œ¢i]Ò)_w+@Ïä‡á‚yÌ[¼é»ìPc=ž˜Æ¿h?Ýj‹{f;ÈtÿÞ>'äV yšK!òs1úšì4¼o%oÏž·jò‘O%žú¼ÆkÁîS\‘© qò›`VižêOžfaûí,8û¶ºRDë츦7<ÌsÔ½uU…6Ó\‹8:ÍÄŸ}üD¸(QDZ‘­ÈÁúSdõÒµÒf’™^®ä±É¨ó˜¯ã õF_(‘™ ?dÐøn¸.©ÖžŒ²tâŸÉÜ ,hH摺µÔ%L•Øäwb’@û‘!‰%-.³»R}ŸÂý²Â²T—ɛҪg£HŽ?Ï ÏCV~aÀ.JÁy·ÆÈýæn7ÖÄ;Z©\$EFî› Á‡NÊF{É ó*3æ“ã&Í.òpÓ•ãÂ<·ÝèzŸVª÷åòàyK€Rs”ÃÈ•–•eÊP8«¯ßA²#錣¿O(|£F§ˆøjtÔ†õ5éè"º­€EÕfˆ˜9;ªýýX.Cç\ôP˜è‹êm‘ÿa”)tPèC‰ÕNÊo~¼‘|›üÚ{Ð[áè޼awŽÂÜõZZxwzµzÛâ~­[ )9ËZN¾Ñ¥­å jkŽƒó jì@ÇL ð¯a{;W/"ÍÏ}ªg1%I`3ûuˆ+|LOà*‘wÂjvÚŸ7Rü}µÞ¨í†›3¼„0Ñ,ܳ ^.Ö“ÀàÆF¸…µÃ“A½kÒîëíìÔIìZb~$¿»Ú-³äöUª* ®M*cRŒlËlÜêdkžWúS^HZµ–=,¬ŒS~~ígºM¥9Äd ÅkgÀÅÆä€Ý“²GÓÓÕéŸ žâ̞ą623œáVŒ=©Ö¼ôœB÷„|ôÉœbQõ¶|Ù÷ÀÖä:oÞ> /e« t`÷ä{‹'Ð7¥†²1 öHâÑÌêÕÌuÔG‰fTï&Í×YLH²g=6ß?èGÀRmZwlù+ä¿g†,=p‡òQ±¤Ÿ«°«qÑ3½‹*,Sþb4,9ä`ì„ñƒ8çéNìÎnoekº·ˆË)ˆ\WP~ç³ï. Ü­½¹Šù€Ð&ZéCR™c]Dq’5j3Œ|©ýÄ  QFîîêUr´ŽTHÏ”}¢3xÒïY¥4«æÉIX(ŽRž7Póòe›ÈÌ“–.žojlâ+XÊ;OÉQßçÀ>°Ò¾Õh—P*àÓMð:/IS‘ê$—i=É£r¦ª¬¯¢ßÁòOÞ´¾¿í½ÄmÏÛt}·“…àªZͰ¿¢M¿¥„í­JêéSUIyÅ+")6œYëà°ŒE9~!õîqô,ùó1˜PmõóϺ8fmöH‚êB4ñµnÅ’êë¡ àu¾ @¯–\ºè¼è¾=†ºa®ÛÀ® ¡>àLt¢Ú¯}KO`|N 7¯^'? öæ$E÷z-î-~ *èj¡à+&0^|±õ%ÙÖß[éËbÛ¸ˆç,S¿ý›j<]’. ŒÏi\O7I;!qxý©?nV¥»µ+¸œw± #€R= Æ€²ÿ›ò-oÂ[¦ƒzÿ鲩btF ¼ºYŸ _@ðüŽrÏšø’Ðl¯/C2«y=×_ØC8êÈGéEЬ؟c´7gSÞsßð_lØšÐ\dïxfB?utÇHÅ ¿Å^±)×l™[—ßÀESÆnaÕFÏö«…tÙÃX­ÓJ–I½t'¢p/œ4ÆIçCùtr’îçÝpðÝlÜŽ‰·˜rê°‚Z†`ÿÕÔÛ¿©]Cÿ/w¿Q-Ÿ5çK£*á6ÿÖÀµS6ÒŽÀóW¹ïU4_( mÒÀª¿FS÷YGúÞzo¨’Ú°C©¯.áòú2  ýšèê -êܵ“|;C…o/dò2ÙBê´‹·ñ#¾=”ù¢=+½;XNK ”"ì?Ÿï®÷¥àò‹p¹ÁõÁR…BäP»wEÅÉÖöÕ\kq*/È‘zj… W޽A);º ?ÞÏö¬ºJ!˜ ýR×s-Š™»_N3³›ÙZ!½pÍf)ƒÚãô|]×0¢(ðx5én»Ò§á$ŸiSè¸Ïv,/@D,c¬+Œ ‰-E\LÔË´o3…EeñOÕ•—|Ñ-]e%^$L‘Ì6Á9êñ³Ü™JÏBi³úåÍö`Ó˜ 7PUa¥õO9HjkIDù*ËÈÐZG#wЊÂÉ”m)÷‹Ùê…—Súx}Ù mºªË§eh‚ve3@ðÄÿ=]æý{0ZuÁ4ª(ЦãAÜû…-5¡Œn`³oˆ&Ùš?I%Â(\±Ba½¼Õ˜Lˆ¨ïOÊ2œ=«Q–}c9‰ i¥‡aŸGŒiô/h;Æä²’‡‹¹p"Ûâ2È=h^IbþaßRÔ•Vþx([Îæ¯I×”Ið´3\W9çyã/ñWšÑ/—+'Ó¨¬€.ÑÀN¼N$9*|ffÌåGaøÇÒôØíJ‚½sŠÚ«™…oÖ£]®6[‚ìq®8·©Rºæë»µ[ÆW±ð>ìûÑ?¨AFWŠ{Æ}ßâ¡9C\ÎÉ­ã7}IÜw{쥺kçõÍÍ$]“UÜçþ°$¤uqo½ÍpÂÝCh{Ç]â¿Òm™7*áƒ.gOÂìæC¤z ðÙkn“wWæ“ £;0¦†ƒV€Úñ£Sl<ýÞËpþþÊÒUaQ²Ç³6å‘·r—½î•›,q:a¦¨0´Ì73/ËïYœ,©8òl‘åÒÿïŸWÐö1ml]䢑W÷wD”àF5,úC“'ൠç–M¥T ‡ðήõÔ•«÷v[¢Ë•Î¥`+ê†ýršf%ÃêŠ| #¼ß/3¦HË P&ÝÆ¾J•r8êwÍšD"‰Ó­éfpb±Zu°`=Ñ<ƃYiôùº;«¥Ÿ)‚+jþ n8——¥ð*?Jš­Ìîê²ØúÏîšÀn(–!¶Ž]èãˆ<¤ËL:òô„¥­‚plÉÆüê%5›À÷{È…é XÞ Œ¡9o2dƒêÅ]0ÚÕžr>*5ô©.•¯‘üNû×áÍM*U© Ýhrá5¸d\ô RÑž´Ï]Âó|fÎE67û]Ühãrh¼ñ6{uëÎÖéÌ—m¨&ƒ¡=µ" ÿ€,×L˜Ë¯]¢É(å³Z†èAÌ4ìù,HˆÆ‹µ­ñý„ÚLŽvûŸ2^p›í'°%aÚCÆ€Ò¸8°Hs$vá+ÙZbÛ`›ˆ'uE_0ßàq.ºòò›eI^‰¹cAdl2Þ \zÁ1jxßµè`Ö5N(nÏ£ ¹ìY;o²èõƒ‘µ«brmU9ÃÛ5¤…Æ(íèR2¢C:Föóx7Å0ƒoÂÿ´IؼìOg7áì\“ߣٷ&…Kðö¬t’XÐ'Nõb˜\·Kxå:UºÓ¹¿%çÍWŽ›û·r |I;âß.e•Šˆ_£~kéÞ‰ºëc|+2²¾!þajú¨ss-f_n%ûCËÆ‡XXsW~ˆ¢Ö5îazÕíËû81F 5àn˜ F)ð…ÍÚ- @H;«Ô™µüV‘`vürj§¬3¦êz¬M•%µ<žb˯j wõ©±ýŠä$Š^Ž*arÖa¾ä[÷çÒ5ÆlÅûÜûõØîÒŠþ,~BNwRÇýýZ–ý‚œG!˜›x©¨€§ðˆm‹r¼Ïνõ—uŽ£g}«€á:Én ˆãò'M´¼Ék Ý`sáb’V%Íx,ìÚiÌÝgeˆ’‹/u¹ÿk L:—ô¨>)ŽˆDÜt­™8Þ·« 3²Žù‚umöo#ÉE1òÐD“\Ñ÷þfgÈÉoÚ t¡g›¡1#Sì<˜. $Àd(:]Tì p,!´S,®ôÁ¬ñ!¾|cr6O¼† Ùû„H·óYO˜öôL“S>'«PV1ÔŘtñ¤Ÿ~ä={,¿ÐöþíR%¦¥N>ÊŒRZ 6Xr1¿ñ×O×\zµ¾—äó82\û@¸ŸMj*ñ€@\‰Ðk.)®U=„Osæ4Ö¬ Uô»äá47 U«XÄØŒHfõ £Oȱ-㈿&ÎòË$ac0—r AhŠÀ–ÖJ¢&•Îð|oˆ­jxëHTù¡j+'ÿ­÷±Þ¬Û˜rÑ:­Vþ}ÅŽúe³J-:Í 1S¯ÖêLV>û{™4ŽNü¡9h!aSío°?MuZ?wüú⡦º³U<5¥A…]J¾Î•ãúX h¥î<ÜÂMùP«nØi¶ºõ3% eÓÒA€^ŽwéãǶÅGûžh’?tRýêÀJbã<¸M'ò­ê™’`J‘ª•ÞðˆÁñj’¸ˆüÉmKµÒ´ñŠŽ7y.Û%GŒX*†Ø(6 &\Õ8_zÚœ<Go^ªX‰¿[·èöû´F-O$¢<–=.„}pšd•MÞ<®‚¡;õy›Ö\ˆBNº„"œ ÕŽU+¢Ä>þÛ~ .7ñŒë”zŽØÝˆtŠø0ýüÑ äŸÜ¿Þ,öÆé,rx;ˆ:„ž& Œ«Ié[Ý’é–±¸j“–“Bý`=“˜šúîsâ(­‡ ÀTÓÚŒ:ÉñÎAãx#4G_ä8Ì™û$dQ1’û"È^jßRFj<‹÷ïHI¼œ7¡Û%…‘ë>ãx[]°îÛ#ž0Å‚|eÓ8T++“%ËYì[Ûjñ“8¼>«—ì@­SAÀa¹~¿sGx7YǹçÉPÙ^Ïüµú“Õd*ý.hSÉH ч^È tÂÁ&;ƒÁz·µfÝôd=ÁÓ+J_4¸ÒÁY%›R©³pžÃ;W؉rŒB€òÂ5®ïa÷>9Ì4/[tËãCw‘èÆ†R^|ú¨²vLm£mE§\ÝÂar.w TúÝKqÕYŸQpG¬øo ¾¬v– „Û}²Ã¹ƒ‰…tŠD#ë©¶+z¯š-ö×#‘ÛÚ™zcLÉiØôÞˆP}¯Í=Üî7DìiÄ®%¸¡š“ªÒ.’yÈš³~m¹¤Ò~”"±Î ´#ãŦ,¼Å[-(è¹ôÇõFu†Ž/?Á™¨û›•ÔÑêУgÁ p(öœÚ@í¡õ5/§þÁ{èÙž°{ÆìiÙðþh&ʺžòð(-®‹Û.L4} )Ül ƒ±õÊ¥_‘p@ówûmÉ—êzK*{×Oh¬ÏÕoˆV¨¦ÈçÖžÞy­w‘7ú€^oQ êׯu± Øž؆ccêÎKŸbÍÁ$™Pt ùÛà‚í@ì»&Bí™øE-BCfw\ÇŒïÚ'$ƒ}'Ñð—ŒG#Í?Y’o.ŠBº¶tFÓÑVþ"¤´E]ÃÖÝÈt=sRqºP‹=†jó7†É•€ä¬×ÜeÆps×€Ÿu>úÄŸ¢N(_¬éq¼¦ï$Ýܿ܃垠L&¯+T€fò&˜Œá˜­ ©K¶‡ýAE‰tenSÍÊ%E:…<'¡¶Öÿ‘­7ýsµ“¾wnô®©Štg,´™yxÁ70¦"i…wá©bX„ß°ÃEþÜ+KÂjRæ‹Òµd6‰ÛWºà¹~ÏB¶ÊYÖYe÷6P6 ÂþRs'½î¸OšeTy&_iúI‚‚€ÒV=‚ù-v¸ªF—ŒðŠ3`gxøG7fƒ7)Âòi(YJz[Ë öЙU¾;ç•*Ÿ‰9’µôë÷hv¢ƒ6iÉé uc'J¼¸käm³‘?¹(’Ê'´ªŸèê€a¦VvsßìÑÞëÂ7îzÌ}~b‚úJÀ àþZ«·¦Ç€Œwî Ÿ>äÅÕJ?æ[ xó¼ýÒº 0§Ô»öYÔU‚JòÓñÇÔùx¦#ªŠ¸³ÄÉ®mÓ?§Î£O šº¦uõwwÈQ½’ ¸ÂßVwãìøª&´¼}˃ ñÈÅ |{ŒÕ‡ŒêÑÞì—"—'æÔ~ºÈÊ“®¸õ_8&±òéo>(®±h!8Š(Z kH?E†Æe¶`Ô£Ét%=›µŸâü*³î\ÜIw|_@u_+¸*l1¼‡dRXn/DÃÿ(Žì¤*$ tgÒ¾3R‹üŠŸjacsõ×¢°`E)V–Hm¹Õe]ÚÇÐ8Y}ÁÔùšµ¶2õò&}];q†™€.xØÿð0²‹ áß5ýÐA¶Í,W®å`,ÀPÕr"y3Óˆ¥]Ý"'Ù§H¬33Œïà ïÕ@ÜûN‰`^†‹p9’¿Ä.«è/"ËC‡i·Iœö½TGîUe®${î«Ã¨ðÆèÈ188{ûÑEœ”Oã8hÇZ¼ ý¬ç×^Oêøø£¼„F¬ÒW—Ä;¦dHèÚí̼>C$¤#ö+êÑÁfÁN²;ß5 ¡±çì#á72ìëÇ‘‘ˆH÷Þë “£Þœ3˜#ºŸéãï}‘šèƒ N®µ€â B­Í‘Â`ºd¸O\Xô,ue£†ˆ2ìò›õÞfüBÉÏèÅÓIó{1D^Ñ[ºWœãÚBô9žÙ§eþ¶¹I唫ªÞΰc{žâ¡H¡M3æüÑÒï™òMÿ(W¬L|°6ið†¼ë½ç£w+¼&o@l•¿}] Ô½ÿx‡w3×1Mó$W/Þ™Ú¯á Þ†à:v¶÷0¨‘—ëÅ=€=q¿:ИiéX:wçCˆ`’…,f “ÇÐ(½OONÝA]dþpÕÌ’pã;wC”JØãoÃÞÛ¢×8/ƒRuÊÍ4= 2†¾j0”|)¸ 8(ò šŽ¤úæÜX²8 N§Wñ¹M­_³Ìce¨ ½ùº-@™‘5е±Ïvyã‚?CÙGv¨“–x—`FŸº¤¤îÿ›“‰~'*8ÈÝ ”ü’úqG¿Ð h=^ò7P:@K Ì÷›ÿö{•o €M@ì¸ ŒX·b«ýxùÿº4<ô­¾¬ü)8á.:ãMǦQCÉ[‰Þ Ü,[¿èæ`ÄAfaú~²†J;ï{–ÿÆ(Ÿ¤ÓœqÖ>K¨`ؠľ#ƒèŽS„Øýµ½N<@ë/‘Ìø3zÆÑI+¸ù­j}¯Z¨ZñôÌÅ‚]ÂÖ7»‡Ì˜§ã'Ûcº7ˆ#u4a§ç2Ss±Æ~ò›êN¶ç4UÇv¬ ¨eêSBÿ.Ø•¾‰9À |ÙvŸ¡_‹1¢r›e"Hœs‹z½÷Ëw¨ƒ8½‘Á”„½:ìTƒ0I)ýZžâ’X…hê¹Ä9íç41Ì wýÏcg@EW³VéUÕ AS´Ù²§Qµo) NÞrJ,æš¿°ÁÇea”IsÃè*¾Ï,ÇèÍ¥™’p–RøŠ‹=^¨,óÊð©1/×2@dˆÆL†ND<èÎ:²?èHÈïír•ÚÐŒm5%Ö±Qp²BÀh˜9R’ëÏBs—×?Q1cTˆE• ¹Å0ŒÂpX×^ÒI×¹Éý7ÒcO¸Z’¾9nÚ¾§`\€`Z±¹®x}.òÓëF}`W«Ø¬¢ä¢p–ûºAâ´Š…9Ö#V½5LŒõSö#0A°6eøžHõ+hMYCÃî=W3Fݩɕ ù½‘§˜‚žzLÚcW†ê÷zV! ꈺ?Á1#MaCâ5#d×f[žž¥(1Çe«ëo°6ýX¹‰¨Ðš&RL[ßkòÀ<m 5œ ©¾òeU4ÿdº€+ŒìŠìh€¯ñwP±Ñl—F‰*ÔBÅ F¹óè–¯•ucû­em6 €™R@0-P°;½àí­›¹ƒ˜Íî·e-ÁÃYh’º£é\è¾€™1ü¡b¦dO!e1yIHÀ ]ˆ’­ªˆ?Ô˜Œx˜Z s‘U]Xí² ¼ŠF/Óâÿ\iѳ-Gá@Ãæ;“"t?¹Ê‘Ó¯iJÁêé0Ä£¦dŠ7Pz°FQcýà‡®1,„%ÿªÎ¨†`Õüà%\BlàBˆ›§ïˆž-ßç kû° 4Kl3—êÓÅ`ûDo¼8Žý +(ŸÇ+å­dy›¿–º4MåÈOdà- š«ó—.wÒsÎS :5*dÉràáSÁM¬±òÿöG6P_[Ðùdú°q$öÑ-ÈŸ€³PËU¡õ·í+ yJcÅœn±Ñë0µ!¸‹¢?eT’‡‰~qÅC ¹˜¶Ãö:¬Û%:šÉ!ðÙáE‹¾²›G¥ìÉS›ò²úˆ%! ˆär:bèÚ¾­¢ª™^*Ò 8,o÷<˜40oܳö7ž5B1û ]vTsÚfÅu6kÕ2fº¬Xu’¿ßêâdÝfW.úJ½ó´fbï>fiÄ ªˆÿúÙ·—|Ed¥ÿÜõýf\¦f£a»L '郡ÊXŠbMÄÆ% .òTrõs7²¡§été«v¶9{Æ4³ÑËLc\¬<7r[ïLÏ™³†™ -)YôW^—¬ab«!£…w œÖTM릹%[¦N¾ŠXRíù…ièÐÜ8¹m*ñ,ÓOøê9vxFX…=¤ØÑ'ÊÞhÆÕ%¹ôÔGîŸ..ÄÄ‚Ëúš_µ÷ñ¥TÉY0I"÷®\KšW–•k/”˜BQ)§i‹òuœSZ}¼ìl²¤þÀÅïàêì}ΚŦ>0ØÁ8  `‰¥jËLÁ’»êhŽ e¬7¶+|&îjQbM€ˆ³€,¦ÿÒ @ðä £&_>d¢––L+…'Z‰…To³í’g%ËRCŽŽÕª²4XxÁC/–ô–nnó©)Þª†Lº®–MmÛ«^(3ªÉý7ÂÁÀg®†ûÕc=>79ð•.½"Åûñs¾.~ÿJ‰ Üþ§„žã5Šr\oø¤KÔ¦&q ¢Þk«F­ ŠVPb«F»½@ÞÀdÛÑuÕqýºî2µ¯¯Æ“ž×`ínÉ$~Ÿ@kŠKï?‰vô›WÏZ¼Ý¼xwkhR˜3€D*m?›²’”.2V›øYD£¡ k"¡yé@w:úZ“}1šÕ‹óô×8¤ÿÈvOñ!ëÛ ¤±ØFô çÖòjÞQ§1”ž‘ä• œ3ÒÐ"-½_[kBü“¯ ^³Öv¡¼ƒ ‡:óÖ,|ö§`×ðüZGœŽ4˜È­Œ £? £Sgü-“¿Çá1 $ÛšUÞÃfa¢ÍøÖë‘@A:ù¿äøœ‡¯Q3} i~S§nÀvZ·?¢È)ØX¸Ð¨‘Ç‘dÅ7¾Ã?±n*OBþV8{D9߂䆜~± 6žb–fÄ>ÑQ1JÊÔIç9ãâx@0U(æ:ø¢å‰bà’­s\ç‡I*U»[®¢ßå“®‚þýo°Øièßï³0éW½ÔôN<¹¯}ÿ„rp\EƒÆ;P3lÒ1N…äý.£…âÀíØå1iëýð8S˜Q·P`ÇXC(yQ\ D´9ÓWÒ¡P¦—6f}“§z 0],íBxfäÜ&^z§5Ô<8d†ôÂ.+¼<¯hmcêBªàªîãk°nèÄ[e1©9—Ç™ØF¼ôk½Dõ>eS©•!÷YŽphߺS¢¨ºt¸“Ê㊠~ÏõŒ‚~é˜Ó*‡€ °‰a[ç¢M(æV6aºcÇC$ïÊ¡¾?óPÙ—¥ãPü¸»£$¹ÝãaöÃ2:FÞ»: ®øÒ¶Yd\î2±VØ…—"',Ó®ˆ3 ̉Iû°à°îÊ ŸS%€ë8òCÑ+6ÁDלÃ_EAcoÈY¯+‡Ú¿èζÃNȘœ÷:ö}ö8¦BhFOïñ c+Ö…×^Š89²t3‘H:É;‡ÜÕ›ÁŠÔ$¢!‚âeÏNŠZh :Ó“¾=Ⱥ³9ÍAÙþ£:/ëš›´U ¨PxÌx.ÌEº.¦ 3!ƒ„‹¾ ïªìy)RסÐ6ÝWÀ³º.A§[ÕöBV…|´p`á%Mâ5릇Ǡ—QÞG"pÿ‰HŠ è¤‰˜JŽÜ‰JMè#´r¯cQÝLoAOþ Û­‹œ ×°´6˜Œ‚x­]É|z¾} ¶©džÞTá¹ó7(h‘²aé—䔨wTƒKÄgwõÔý†ð";èGã¸ûÖc!{r^`Ó®oT••ö‘·Ó­Æ¥;RñÌæ3ÿSÎ雕„:`ËLÏW=ЛRÆ×„÷ÁAtç€öÔsMWòd|¹¢é ‚Ðíi‡A¦îHWD/¶ÎF£=FõÐ º]_úþÍ\D’ˆß˜p}ÿÐ sðBóÃ@#@ú'šäüÏŒc)¨&=Šì¥— ý»ý°Í× „Õ·ƒ²|)ݧè‚À)oZÜ `ÚJ<]´UîìW$t>a8}ÝeQõ¥ê¯aþfñ n¦nÉå›EÉe™¡ £ízã¥+ìUò+±Üu>ˆ¼4[àR´„LJòËK¢zoµ¶N¤HqYU#§Žb€d\ÓnGÿÄ—©­Æ5Ú>`†)/˜ÐGk÷ÏKakD¼'à¨(ö!ÓñÒ½út4$—}e>ºhô%´¢©P6ò­µ·ñõ8ƒfWÓTα?«FàÑqJß®ý»;ÅcºIê|HÄOkz>/<¶úBóžbQ†o\ÏŽ<Œõµÿ]=Ûè§çV|s›0ùñaÛ 9¯å|»f9«Šp¥Ÿ"æ³W™#ûÔð–R9¢„dz,;ÞžK.ǯ åó—eÀýrm¢‡¯ÁW¡²ú]qexM1:´ôxS§Ås³#D£Gé¶ÖÊ™A¤ç逬›ŠÂ•AôþQt¥KßdÆÆ¹Õ4~) å‘%br% +8ŒÔO“‡E­“ˆ D=8ÔB‡Œo›úÆ_,“èc>”ç«RqU&xeÂAòÑ/–лÒpq‹ü²+ÆH1 Ò €ŸU” Ç%yZüú|E#$äY}GF Ë_ZÒ 5øĪÀZÒßÿ("ywÝ© 2F¿t?0Ó–`ÍKÌ;]JË\Þh`w“>=º|‹H!x{¼››¢Øö«´J¸(KŸ—>“j¥40ÑÆ0{•«Â{âb(ÞDÛÙGë:½Ò">ªn‹åNÍu?°TÓ´2ÉKv”dgÍPÍ´œçÏKD™Fý‚ytèw7­‚¥c®Ì÷N+ÔûÈÕŸéîÇdˆGRÁã3wq¸*·/RçqÒÖjw‰\) ±']èMÛÔÊ ŽÅZð(ðÏÇ„ò½Â^DüÛ5¬ŠÇgCUñÉ”‘{Ÿ É}+IýòD,¶R¡=mSšãH4wìlRÜfÇHÐ^FÔ7jº:ž\n¬Uh ÊgCeâ- ’ðe»' ¦âO¬Ü€ 7tÔº'nž*ÐÚaíð¬ÂeÂv:— }^hÝá±ÈE½Ú¢«‚spc¦4{&#ÒÊ\¹p¦ñSŒ¹¥Ý­TE }~Jމ×n†´ÿ ™«puMSëRqpÈÔõú!õŒÌ<•hŠ[aÞ™>ƒ×2jl€íç€OŸM)Æß";µ’ši÷ŽhðûêSÏåHZö©×ºéåÅï—.+²Ä§Ž`Nþâðê¨Áñ1]ÏögmN²(ì›ç;lˆqÁ‚2°²è ºá˜×epãv¡/ÎçEX?L›>gúZ»àB¹®um =îÍ0I§¿*ŸÈ@‘)=›i.ÿµépâë$:Æþ†TÎL½õ„°ëÑm„„ÿþ»iÜúš_JÙÉA²OŒfPn6í²i€Ux«õ£5Lø.œ{Ä'†å•I¯MsÊgEaô~a7ýQHšMÞÇÇ»T<{ÍCZ|§F“ÿç㵄bÜçw¦Î*!#öÕR” øïGÝàƒ!,ŒRÎØʵ«‡‡œœN\¢ß+N“úêöÕ'cúûMõY­¦È ž†`@ C¦>‡oB™i-’®BW?½ßxÂs¥ q¶_,H(ˆNxA5ŒX7{Èu{ådzÕ1AV@h\´Ë,a¡s °ò,F#@öWÕ.}G˜Ȟ;ÀIY°Ÿ1-J0Œpæk€éçÑ•å ©¿äP&i_Œ­ùÎÎÚÜ|ò²Eñ¡à W™;ˆ ‚]bÜkýÒè%pØ1­õŒÄOg£o¢ K\eãj>Ý'!ëÐjZ¿ð<;U8nHÃ쾨²@°×ž£\)š×Zù’à ¢*C+­§Ç¶¹©Ò]íò©Sê¦-jZÓ²ÀŒX‹¨p„ ŽG«òñ*Rã€#¨‚È£¨@£ü'SÎpi+ÓŠæmÛ]õúLÞ…й/¯…*ñ[½ÆgŸÇ§²Ìœdû’½7C%´í|o^HÔ—¦^þwATÎ"ïÞø¬>S ÔVa&€à¦ö&'}ÿ[ð}ù¿cm}šZ8Ã*“_À®ÞUå„Ôar *…W6RåúÞ-”ºÕ–¦’šXŸB}3óÌ/ŽrK« âEK+Kbüר0œ¯¨µün&Möž”9E~‡w¸$÷\³±ßiYxáÁr`§y9î§k\k8Ø›hoÞWœE“Ìô}Æ=Hz§œ|}4÷i½û¨}#ÃMÓ©Ê[E8ÔCM8æòŠV‚ܦ„qXà€7¯ Ž1˜+-Kñà w dBþ‘24ßd¯ÙP#’ƽ‡pÈÒ ×̆{ÒÀ•w ìã~ñá¯DÀ”O›{… ^^²Âz.Ï&iôÜ cß+HÝ_'Ï:RÊÕ¦ýÖ‹Ê! ;?–QíC(H®b˜úÃÊL>Zîç¼wbFÊ¿O3â5SÌ®»<9¡ÔKÐZô S퀧êW:YhAoSÁ‚µŒÍDv,”–¦ê‹š¨h$0tõ¾ ÚMÌ·šô«Wr2ÊóÏœ¨×¶M:‚]UÊѳÈNìÒl…n‰ÍP³iuC¬ˆmG FSÒ±RÀBÅnµa®]l†T®h¹ÅúfËÅ£ §¢kw­·b‘Z ºH. ù½3#XX%BV„g!¢º(Ä%x£zAA¬£ {Œ)‹R?º'q.«MòLö¾¨ †ïÅ“rE>èWJì…INKõãU Ó,Ný_øõ˜ð.Ÿ>Å[É(Ú Îe°‡…ó¬þvxñ ´Èh}àbE¨â•¬‘ïF?ÈÍ:á(¨û†­JKž@–|–BÙ¶hR¶É“P§ Rø.c‚ºKÿ÷YU±”]ò±íµMŠ`ByˆÛ ft3a˜ ¸t-ôš²"§ØÏðfųÅ]1Ét1Q/%ÜEƒÓ`a¦ŽQ£¯XY°á$cñÆ÷^%Ãó5QW;ÌPqÔB¶ã¶]FržÕÇQŸ Q=I\ùŠÇ´á]im?4Ý1§þKÑþ%¬Ö.ñÿþÇÕ$iœ1áÞ§øö‚ñÓeVKWð·¡DUòmhˆOîOTí+m(tçùÁ"XîdÇ'“ › ¤¾öò¢RbuXͬÔíOì&¡µ‹ÑƒÛ0QÜ j|X3ëón0£°¢Ç1Ÿ Ö \ÝÇ“üV<ö Mt8 ‡U~àW¤=ƒ/{yö[¼GÜ¿:å\“Þ Õƒ7ù{~•v™rP-bq¿éBS¼a´€Ž›vJ)”™¯Ê3”!pLc= uú:Q£Ãv·[ÿy6­¬·ÀÑ/ƒ‘º.ˆŸе»Øl_ò¶²±ˆŽœ\ØD¬ß ˆÐž2ðÞH/Û˜)bÿÍ…Vº£ÔË6`3:“ÙðáÏ<ßðÛùg5Z6Àkóù—Ü—™0¡]²QŒYáÔMòoô КW½Tr÷]Zäê1«OÉ~±S¿ï„k±ksGŸÌr¶ÀðÅ;ÿ£½aî=6S-o¤µŽ˜XÁ)|²Ž–WôK¹äï²àxÕI#y+¸›#­è;u”ôî†óÎüQÁÑÀÚæ„[Hý ~¨› ó—@™dhà;ªôâúçâïÀc'«†Õ –>ðcÝJ‡ù7ê­Ù¡ÔåW ùòáz=-˜7”9;ÉènËҡϲ –5z 9T¹¼“ö÷Y‚1²[3 Ç—¡»ò?ýÖf_yÉ…— õí+ˆû°f 1ÙÿLNöñ* Än/I­W‹ÇÂ@‚ÒºO)ÛMÍ[ÊÀ…Gj µ0FY×m°£{. ‡Y½¥v¯D^– ÐSœspHþ‹gH!´’¿Y«òb…UnÌ;"¡Þó)¼gí:É»âÇ|‰J‡Êd+¸Ž–w™L’ðA ãOuÏêùxnQ<[ÑŒLNÖ?Ôœ„ã?¡'ËÝDx‰Ô4#ëŒ6`Ë]O`d—àá”qŸ&~ß×Ú¥›¾:žãu0ßGü$™)N=«ÒÅw/Ž#UÚcîÒm¦œsîÞœÕÁ}ôrÕL¤ ŸàP¢cû-ºO«hÔÇGc*Œ{ú »b3@Õ¿{æ+ž”6æOc}]Ag–¶Àøðj"I^#q4õ¸öÚ(FIY+H'«:;ÌèU K -vïC1,#jI˜:ríO*ì… ¶âƒ}‹8ª=¤Ô*£ÅRSæw‰GÙ4ý#ÓÎÊúƒtæMËUNŽ¡ŒoÂ8¾¥§T^-‡Úó¶Fjërx&àÉ"xó09BŠÍŠR¿»´ÊÙÔDÍdƒ¯¦ñ“Mn–|š·<2´‹r¶üSšphšï^HcÂ’x„fÌÈŽ³!/‡"jÇì¾SÖ]û#¦  Ì'Ú€œ+Ó‹,<7—…½YDþúóÈiÉ—IHk¨hÉ+“Øn€TóÝ ¡ÑÏHuçnÎ ‘ù{eÑæÔMZáYŽ¿¦0ãÞ CQ›kghÁ –aLlY3››| m›s3ÖAŸ©´¾zDrŒÁ¶¡e;’‚!‚Êp3…yÇ#F¨0ö?iíÑ>òbJ†±#Ũpj'm‚(ŽâS3nª4wÀÑÂ%À€ ¬ÜÔr¸+(H:…ì¢Y~fŒªõÆâ÷®üåüþåÿ^ZìfúB K®¹.¤x“bG‘(WˆÅ÷ÎíÑ]ª¥¿ 1­8ºVb±—¹9û¬ãiúj¿@æ@ ƒèÂýºVrƒÛË„tL–Ê‚@WéîU¶[\¸!çŠ c|"b«•¬ÞÞ)ótOG_NŸgìÅlòVߑصÓÑÉ/¸€] ÷óÅÄ¥Ó Y•QÒRdüiÃCùÌ)Å´’¼æÅÚŒL(e«$ äЈ" »ÛÚþ¨’¨–ž(Ž?$C*i‚åR¤D÷¦Ax ½Áe‰@)GÚL™ê½Ltz ¤Þí!‚"'[ºW„,Ê»| à=€þ-™…Û˜ w@í¤7– Á#铺h/õWA'ð)Ÿ¾ ‹]Uà ¨øQâN±Š)ƒóÿeñíÉ¿=mÆ_18XåÉÔA  ÚF© aö|¯E´÷5¢aá­…×aÙ†„¾ÿ|Þôtöª ü²ÖAöÒ^¥ñ›Ø¼„õÚ¸ÏvøÍ[ e(·G†>;TqÜ`è â¡â¥ê•2ðÂüYZÏëxÁ»£÷Á+º­Å!Bà€ð²S¨((öl¿O©à)®õ Û̳m€hçꓞÔÇ->ð vPK8ÌFeu…ÆLao­ý‚rýý$Ç~øZ•«ï1¶Ì8XÆLjõÌ>ô'o¯$³*d3`㺞Cuÿ:×RîƒG\u/šÔ=gñÁždÖâ«þnÝûþ©K?ýnßÿçê“÷+z#Æ_ŒƒZqŸZH³ìU.rÿ_ò·ùã>J«Õ G…§NŸ‹xBîò‡|>m)aha«Ë29vñ64_"lê¼Ã?”ð}µõR¨@XSÈ@«o$ûbÖîº;ç“ÃBÚEdÔWfæTQL%™üg}Öë.;“P ê ;ZåY°2sµ5ò‰~ivÜW†a*ß½V“˜ÎCÖßT«ôžu<© ý¸¬eá—tÖ$ˆ9°Û]˙ַx™×FX¨ÂT‰ÿ¯>ø3ñÄÈ+DC4ØŒy#‡˜ùþ="U~ÐÓÛXE鞘RÜ_1ûŒ"é220³é¾Ñœ°ÈðûØb°xQ¾Çê®´Šcñ¨g^´Š¿p @FWL‹¾°c»ÎÏsÿ¬ÞA'kyl‡ÎçP UÖeò j0›üÅxÁÌ{ó]yÕDû½3†•‰ i Z{ÀÒY #$õynŠp¼tKÆ 9ŽLw°ŠŠ^÷éL`È«N”êssÁ˜@ùÇÔÉ?»RõH¶{Éó`î½ÝÖy×ò¡ P28Vƒä^àFõ"ÔïÓ|2%ìΙ²œ[-ö'0RƒÂ¤4½!àÜw:Èã„ ¼^<âöž#÷ˆaq™óÖª”‡Ù%ÓnyzÆê¶å³¼´êOÕ½’Cd¤[æèt£B+mvv6¾U€è#f0鉔KÍ“ Mƒ.-­‡ËŽÈZK… ò*ñŒiðDX—å®s1øyØ›oø¬{Y‰ÕõÃîѬk‰^æÆ)gªs® ±eJAÿëø!>ÃîzÆöb[SGtíëi|_ï…¹¦¼ˇÄE=Ë€ñN€Ó÷>B Ð]ZšY™ ¡F}ð @ïµhDC'›Ð‰Àœc£<©Ñ«¬T37z–,8{Pzb"^$*ï+RñÍ rJÞ^D˜sjº#Cž¿¢¢(F¨À¥ƒV£,È™Hn ¾¾0+ÞAyw®žô)R*6þP­ùg N`¢}Mz„ßÉ*¦†j¸<×n,ŠØ§[;ü¿àÜýÅù¡ó4ÇRôÞä˜U»*b©$óO` !ÅðK®a.$¢Ãªî[,£~üõÒ¸j$ì…È šÝž£p_«·žŒ=ûïïI.œàl ™ôoc®@4“â˜-J3² 4\fƶ>*ìavt³G‡³žäºÌˆt¢-AHý+Ú{ÍZVïò9x€#áoˆ8÷gñÚž-  Ï@’•†t—°£`I¦½Xç`•1%Þ¨Yn0Áj( ŠìAÇVXîé(¤Á xÁ%&èÒêDÞ„ñâúŸ·pø×ù¨k3é¦â´ìõ¦ñ¸wb:vÏlÕ¾¾©Ë2KQ«@±ö$ù²žZjdx*Å»‘ÅB[l€4*Üùi6ªÅA\ßë²&޲DŠYØØ¦ÿÖÿçÒþ*(1~áIæí˜dá§üÌ7p;@<+Xä| ‚¦ÿwÿâl¡”m|¸,Üw gü &+ä«Ì,Q6 ôÌEWAB_OÀÍ“?wµ°ê[8u)üýà-q„îƒÒ8¡šŠÍø pq!vœ%ËfnÝó@íS_xýŽ^: "÷"~h±ú[F¹ ‰Sˆk× m2[(®ø›o0eÌi„/âÂ}@ËV†Z«ÜhâO·b “ì’êå‹ùÝ>`ÛƒØAáöyÚÀÎŽùMèl¦[`yÖÙÔZBhj ÐÞïÿ<¹×¿’3IêÒhjN˜|ût§VÒYI…oCϤ$¨ I‘ŒŒx7ÓˆSòùÞ¾!U@8æêE‘nÔO³èĪ`’˜swæG¤æ+FÆMX+J ŸÂ©)fÄ/‡-€*> ›ou‚‚Z¡Zô¹¦šðþŸ‚¡•äÞ,ö±FÐD`ÿ×iU`îó(=lz ¥C¢êbUóúƈ.¦åÓd‰’FägÆ÷í/Jc¸œÇ†‡ûQ±"¶ý!¯É" s•œ¹àb ÅZLnð€Ç¸¯ë†+Ey#2ŒÄÂéÙÇÊ>zeˆUñ``둤‹éÒ6£4 Hñ”©8S;çc €[ Òôi_¤„É¢…óûÇî§fŒZVüË/‡å€’GQJànòùU.‚k3Î_+ÿñƒMKëzu¨*¼Ÿº)7°nĬ†ÌYº‡1kH{WTèº*kÞ3=+ ŸýÈ'cj¬Ÿ÷;dlÞ²lÉ.Þdg b’å·p‰ã¤î(óòHc-Föú™Áù^ýžWöC$5¤> ‡Fƨ£(´.¨Ï8zY¯–ÿŠ®cĘ6ä¢;ö°=·!P!°«í¦r™&¨$¤±žÔé"c¾[šì,U‹‘;< €ë=«Ï ©<ÛךñÔ­›ÎƒŒ[¹ÆX#¦ZÔoÖRa‚òìPvqm¥£þ!t—ŒŸD…þßDDÇ.åCÅ€à‘78Úc5ä\†Žà@4©éU°ÓÃÉüEv3mâJIíñ½Mƒ\˜(uò"!–À³¤à%¡ÚðÕ¢éjpH‡óÂE«¹uOyÝàüaÒÁäåãM‰Z m[ÁÁz«džGxle—ë¦Á9°SX)þd's ’5Æ$“ßþø ñ+£+´rõ“È?ú@ùl÷h'Ãÿ°Y–CžÔ:p†R‚o!“ |ÃHŠ—¸VbÚ¢¼° ÜÒÖ˜~9µà¥÷Ç^´rà™Bõ“^+SUÒ7%›®ÅýmfÇ^eËú”eù‹Œ'¥Þ5=M³.wâ0ÿ+!Ú’ù¶E&Æj4vÒÎJ&C+Ÿs@fÏ›"É‹ó•>l"ÄaÈz1”¹’£žßq$m^p¹“Á¾ì€Ç_­ý’ÎäA&…c‰éÈÒYeNEC°Bjü|DÍûô%ãÛA|T5Ïx0G$̃}G²€ß›þþ²rɶÂt`(!°Ì›{í—jäaYB¿•ù‰röÜûI@ÅPÒñ?”`2¢>ÙˆGcDè*}l9”ÆO×sù3zÂÓ½;GM‡6H>*¾lï¨'be£`r$ò_G£Ï9Ë5²©èR€’ñJ˜Š?%«\õ.‹.9cŽr oq»¦=•v¡¤ð—ˆÖPê… ¤…ÇE_H‘ì3#[äù€®Wóö‰uè÷Eا^ ^ƃ^¬O¿[èÕÀkhÊÓ®ÈXˆÁÔ]é‘%æ ÚôïQ*ò*^~a²}M×E†#U†á&IJtȤ'nTºQFëuü7+Ø\2)vºcÖ³~2¾¤¡r ý€b²£@•¾´y z7ÍRä¨ú³©Ž ›ÃMµ±âÁ°_:ÛÑ(ù%My¼ÌXïSàiŽ…TØ”rdLxž H¥·`ïAV ê#"ï„,C^ä•o}Ž¤í¤•tD´¦å¦cÀ«T#þ,µIžØ¥4Óßæ¼³xÙ¤ Bfï¯|7H} «!Ú)&ž¿G¥Dê#–­nJí;ˆ†HÏM]­ÏìmïN8¹œÕ!*V&ð|},îL›®-S-ur ÅQ¾u;ns­Õšâ)Š›•õƒYór}ÞäŸt ¤…`n¡p"VPDÁåüäx–e`ìoÍŒ}F üÁ¦SC(WzY9-ã”ÿ#‚rƒJŒ¿Ô‚7!‚?Ÿ°úuî¢]á&ÝF€êñ-6:ªð)Ù—*¾ù^qTBu›•–wâ6sóǪ¥_ ‚µûŸèÑöøÿë‘çü%*VÚ"H{õåúÍ`í)4É©2ŒöÞxí×O×8-˜ÅÍbÇz‚÷†\s±<"™'ãf)9ûTü¿4û•̆´\°-L'ëŸæ¯RÆpÆ}IQ@Tšè<ʤBiN¹¸ÍP-7 §æ^B®§­&q܉!õ‰O¸™GŠ·”ÀÁj!®Ìw'û€Óâ½/øVGdˆj±¾O¦l3Jjµ:YƒëìÊI9‚%½¹)_VZÏü’ôɱíöTÞÞÿx‡$ú¹¢\e°†À=êSëÂ’®_ÉN°Ìy ´n%e°¦¯ýœ8ve‡ô“ª2w¯¢ºyŠu'ÓðÊÝh›¸õŒaãÔð>ñDÇE‰Ovïë<£‰¿ª¤\Û‚ òS@K)ˆ~ʼ6r„D§ˆþý—y¯²ðû‰Ía"ùyÍ¥èHpðy „¡WÊ )Îò†å•¥·¾ªS "séR“©¤Ú¬¥!¿[ 6ã§A"[hªßˆÏÃT:ºRg¦¾BX+Tƒ ÷&ê°Bf²^‘¤AÿnÆÈ4<ìó‚ñY­CÇC`¡Ãή/Ÿ<ôS«’#*̦N䙥DòuÓ¿ú´-}èâÇên3™+ÍèµI‘ÛϦ Zœ«\ý¶?1ïeü%6%é,2£vüp ‡ î&³Î‘ÏÐŒ;|ä&öË;€øçªvm{?Ç1~à9ñÚWíuÓáJzEèþë…xç±àØ{yìí-µôðQÁðu‘‡ÃZ‹õhZÕoêgóäU÷·‰U” xº!jD¯Ñ:ê¨T>ü¸oÑǹG>‚Z›x‰‘˜¯uåÔ6 ïXË"à•Žj›z›:­°cÝZïÖ‡¢ð×Zßæ£D‚g³”ê}éäQušŽñcË[ÊâüUY§ï½¾õ&oÞ ;km@+Z9¿‘=Ȥ#·°^etXÛÚ:Ÿ uì™]>»bÖëèa°ÁwÈ“– æk‡ö¼ŒaFu•Ý&ZÙ ½Tø×S ™6•:5¹‘/¿ù›·v0r›{€Hb¼BÁw‡¾’?^㻓‘ñ¦kHØ¢Á LµDŸ‘Épžg™eð$hØgSï) 9ñhó±_âåd€çîû" >ÃaTò3¾‚]àùJFÞÑL*~I v튿¸ÿbJ<œ.åËÛ¹üj¬÷õ0·œ!õÎ^vÎ B’ÁЩ¡ÔŠQ5DBòþ |PGˆõ¬„¨ÏòoâŽ)K‘ ÏÆ?éT<¼x°j`>5/TSZ’ Hâ5d…¨ˆ:’u´Ÿ uprî"Æ1Åj+­}C×¥-Ø„>ºl Z°À´ó2ŒS}ù(¢Ú6qØñÞ‹/¨Ô6d„z<”½ÕµìÔ–ŠÜKdI¯…¢}6›}žv@ûÏM°2©c1(fvÉbØ)H[èæ<èmŒ^»=§•œEkçp¹Ýtñ(¯Ñݮޅ—g$´fÕ ¨8͸wÞý¡i)ó™ÈÇü»Ã²Ä±V4@kñŸ ïÂþwÚl-ŠÅ»4jbÞk&¸\Dâ´¹lʽjÆñºäîÑã•þü¦þÿO§Èt&Ó .*`å ºÊñD —£1©¸^´nœ†ð+tÔãÆl? ~ªuÙV÷lÿ¾j§fTúÇúoŽTµÒø7GDi<%ÁЭe=XÚ½Pȸ‚Õ°”˜:·Í自a)Ç iD«¢ À%Ž>xÖøÀ›¾7©M_éPŠrб!^‚¬î*UžÚS õT–Ÿú<`¢½ŠÚÊê¥(èø˜™Íä%S[ٞ㤃Ä–ll+4Ë›û +xîa´9§ Ä-ÖËî, SqÖÐ;ÓÖš°Äs²lÅ^ëæ®­G± dÚÞ\C• ùÏÿ9ÃMI´)a°è6­ÑdÒÅPb 滯>Ž“ÖJ.Ðu(Û|Ê3àPóM4ø«ëê,êqܨ€dËsùºÆad€+U˜°k I.¯•4T½kiÉæ…AXdIÕ}ʦÜõ•؉jR﹯p»;FÉw“ë«j¨ìÊÏ~H!Ë­âTªw !%fµù’œ ˜õä<62)¶ÆEbTÇeBZÙ#/{´êmÖ¶‹ËÐŒœî[+¾K^ˆDk'¨…ßÒcô—CÍ–çÌø[¹oÒR¦ñ;(ÓÝ0Qd;ŽÝ9“fÂOˆûß~šW7©Ø’ð1:4CWÐ$8Ú1Žú*¬Üh¤. [¥ö0Ër´sز·‹ÉŒá Ñ“Œm§CH¢Þà³f›Ï¥þ³y“£8Ë’‰ÞSHà%‹rô:p¯âêZrV?*Ù»žƒ@1Oó†!8üX_9‚öåß6™â3)RåÈÔIšÏŽØUr^’TŽbÎ]5Z ñol¯Î™ä?# Ó^ã:_³ÙLäÄlÎtùÛC°uc*N,æÒºd°MYŽ5àQg¬©– ÿÆ@V xñçZOὺo- ó|Ò«ê°¬bœ6éUT‚ÿQs´<ì}G8¨½óÜýEŸl®Í$PŒTš[Â'DÉ©ó¾ŒÔƒwGc½gnÕŠBù…².Ð.•^(dŠà1° ïÜõ[ÍÆ M;ÁÿÃÎŒ°­4Ñ\ÅZžìQÇ%F‘6÷t?ꆂ?\IX2¦I£TôL¡j첃òþºÇüg£ä„Û oÐÌxf]Æ`JÀ„H`É,÷%JfËÜZÃŒ“Å’mž1¼å|¿Rö~ˆo*ïöÀÍ»Õ'/ªr3â¹ïµQËNPAÇk¯¼ÏwKø¦ö`EzuJÚê»ÜZ³‘Í"@xlë¸Ñ Ý*-ÄúvŽšR <öÒÈ*½Æ?¢`Þöõ5úï¯Õ”ØûlçcíáÕåtÝÖ¡O‰ÏºÜñKÇ^LJ}’bE&EÓàˆÑ?E WºÐíyÚ¢]5¨ò:èH¸Öó?y¶·Ô÷uÐS«,B õ¤eéÎ|%Yw•2¨Ük×ïb¢Ú;+8÷G½›}hîÈ¿(iX{©¥mß±Î+jT‹T¬7¼®§}Ÿ\r‡5û!ðŠÊqÓYØYŽÔäÞ—_®a¯gIäW`¸ÀyöÇfŠH±yQšñõèd[çQ$'óyþd •ÚPü[ *ñ¾ ¡?R²Ì¬Ò ð"ÀC7(É7ƒez ¾½“ž;YºžPQåóµq Cm®s<‚åá)7Î79vÀôÙÖ.t„—ë·Š´ Ã#ô–œdÀ"J.µÍŠÕÆó?¢rGÀú`1©U{À1Þ:ŠË‚¢GÙ•žS‚[謆 còI¶ªúDDÚ¹MbWÉJÀ¤ÌyˆŠ3¿ÙÛò±ðBÝ.3*_zm·õû(rYDsŽâiEjҿő缟ÞИǿµêšÆ@œ=âgMu€›ÈÞU%šz}ßJ²‹..%t}dþB“` ßNñlˆ€_EН7ðáègWõ|úòdö[¢ò„¸aDÚF¡±xÙ9 =<#›$üE,®”.¨Uü¡ÿlˆÐ“t‚nXख़ӭ0OîDc*2„ø|Ïtiª¬ó¡|¼)'„#p´=Š^JÿhÒX¤–…$5c“lÉ›©Ñ¡Qƒ6ôîà}Ï9)Þâ6yÖsêÚ#µ”ìlœûF£Ê8 ËFä%±é¶J:D°21ˆºtwsûwLßs:7¼¸úwÓ$±ÜäÐ3¾»Ó ”dK”ŽÊ·Ó*ÿQÕ×Ý—ÂÎrá›Þ¯Må´›&-ý¹)ëa& £áõ`h‹KÝ\ÜRýÝY *ÆË­~C|ežÕòsèôDgʯwî>¿üÜí¯An›P@‚®vAç—êVÑ<°ŒÁqOðµÆ¾}šÆžnù¨Ý™ºòL„áZõRõªƒ~+¾‰ÝÁ g˦«ó°Ñ^ZÞQåqkÓŸäÓ^ù³¢—+ï1FÁcirgØ ú©tR”Ì,‹ˆ|i·en$IóìGßoοO`ò³é]¨øreÉë”ü¹½RN¥åR ©Šë³yt)fЖÂzÕ}>ïýî@{¦÷€ÃŠôG:cÀSóÅ‹,Ä8@=]08>]¦Éâ™ÒCe†Ñ¨€X:˜%1ƒ/C’àóš5CF|§8É»¥¯¡‹}k‚¡–^S´˜Ï$eÓº©‡H+ø—ð0ñ’ ø<@•{HÜUŸûÒùª\íÈm5—¦X1þžšA7IÁmçeÁØKÂ$” €—'Î’Ãp/Œ®®VRÎÅ/¢B¬ŽÉŠS»4-®t¼IÉ#ϱ¹i0:° ¢NNû›io]h9¾ŽÌ¶Ry8îÇ!x• ÕUÎç-ß³Íh½,'Ü„´A³n­ƒa’(_Ãq/Z† ¹Á/–)¼ŠÌôô”±a¡~Äÿ¤8ø‹w»Rü¡ÐUÿ4æÚRx@ì5[£´-º«6³ jËöï0Ø´¾xsjÊ'©E°ùg-$6sI„%îßú‘áO7¬íýò¸.!̸*iŸïUt'Ù ‡ñ¨“÷° bœ×—9"ˆf¹K S§Ô+®¾´*ÐÛ[Æ#mè̺aEzÓf3i âvG 33¢¿÷þõI|œàC,Á.ãÑI%„E2w$‰Šªû|YEz4Z’us½V‘l»=cŠ×¨³s2Ny.’AŒ‘}èa·ôý¥‚œ‡ÄŸw.aFm¿Û¨P×ÈMLÖHê|M…‹¾Da¢žTã` 3® öŠzª/«¡äÚ¿ûm½â¼Ý´­:ªGº¸Òß)BLKyôiÏwɳ®‘·Ö7)ºŸR³ã¿Š¥* ïÁ'B¦¦8Xš:ÝaCè"ÉìÂt~uYÛ×Î]PžWºŒgqf0mQõì@=g•ã$‚Ú„ù„€§D×Ûa‹ÓÀ¼\ôÚÃéII\3E?Œƒ7{”Òú¦å('OftîWid¶g†AvOE§ø'7{ªâa…—­<òþDã5Ò㣣8ÓŒ®ñJCÿîïDdk1NT.„ÝzŒ„ëEÕŽÛÔœÓËz4µÂ!dÇÐË^¸ó‡Ò¨øžÌŠbíÃYáp’qœ4aóà˜y¥v5wln14šscC¦sÚAÔ„44o> N'[PA™c޵ívåÐVÛË7—ë™õ0iHäÎâ2&s69x‘VLy?a“^éF˜ %ü¼¶í×½ÈÏßøTÿWÏ”¥?;<ÆF÷1þ«·¢#„ä+ —~WRÑû5 íÿ’!',Ò.„€šq{C€äú¼“Ï( ¶è¶˜’è‚cRŽã»Ò&ò›¾7m|.#ße€Í„o˜d Ö_9d%;}-¨Q'{}c•hxx;{ó¨Ú Ü0wrº=å¶Ê·.èäUÌRNrLÔGuoΗÂãÙ»¤Ý#C$¨¼?Àfƒ²*¯,ÃÜSÕ4ùËqtó\ú¾WxËF0.½*rj·T£wQ‹~ÕÌFFœå ¯à¯ƒ$0Zv>uûA1Ï@·fšß~Š2Ò‚Œm7·Ã~8=©@9ª¾Ø­™€ú•|]ÙÞ)ådt[÷×ê`ìÖN^’Óû9îdKjy©³ªë2êºÛÿÿ^h• Š¿, >7Q†»måÀ€5ÛàïCpä5Ú­>è„ë2ÐØ/èo¸•Å ‚«Ž~™“K-Ã+KAÁCqYÈ¢o±Øå²eÌÒ´1q–$L‹cÚ¶ÂI?z¢öÛSº¿\m0(cUœô™0r7X‚ò~dU9Ümp)qN‘>˜ËÜe Áêè¸s0‰!C-Ú‚ÔÈK1ÞÚpw Í6qN'“zU ë¦ÞiÝIÐ$°Öùù ûóÝ“h+(k1±9 GµT/dVi´Ó¾mç€f¼z)ïI”÷4ˆ¤á lúÐ }\•æÂK¨³åÀ>arFq1xÙ›÷ÛÒjh@54™A¯™JwšBõ4'}¡’÷Êæ§µ­èá ½rMZÝ-=Ù5àŸ©Aé(áW¡…«äQ^šc1‰Ø“;ä¯sRõKd&ŸC縭̫ÛØLI]SM4\Þ·ýÏ ½´°(f¹On›uDÔ¦·pȹ1k©žäßh¡zÕçA[:g'›ß‰êË“c3¼œ-z(Tå'CÖà­ì¶ï“PÑšÞɫ߷#a}àáç©{£¨œËݧ„çïÕí,>‹D|ÜAùEùyN×–¥ØÉV#j?9Ç¡¥Ö®í‘/ÙUÈÇ}¡?o^ë ¬Õ¶à©u7±oˆÕæ…©UÝÿ¥†/ßgœë­çþUÏ,oždÿÎÜsש€¿º‘³y{Zlˆ²"QñFN»j_3S²V)’Q¯:QL;„ѬÏÜ-|7g7•7ÆÍ>Ïgñhkûz›­‘¶©ç æ\Dg>çÒ8³[ü¸)ûÐbš¾Á{‰•Ñ;­ŒÃt U8½Z»µ꘬æ ¼ÛM嵃ànl<Äp¬šÁÐd?Hh^ùc×ø+(ñj%§A~ŠÔÉ }h|‘'«çÕwW*2»Ý®BWwà4Ü`” áàOý3ã¯Á EÈ ý1STãð…²JfÕl@`Ƈ-iÒªžtÕU\º¯ÚéôZ(j:iüëh0¦Q)d j½&è¡9Öá^­EV••ËfSêîƒÑ#vQ4á¸éK¦*ýâºÒd54S4¹ÎAäï ç4t"¦ZA%¯dÏÊ"7âòí©À¹oõ@þñ¯¢­È@¾‰Bö &É 4ÕXb?H‡Ï°«Ä,a´9I?Lÿ÷Çòà¥Iúe–¥RB¹Øt EMÐ*¢}Ø[ué”»ž"ëÑòá¿°]c+pªu '¹®¡ÈûÓÔÞykÎøF\ªt È€+¡«­J…0†JêòÏV«¸‹ÃØ0f6,Yá“kú]eÛEežÁÉ*rWøLÿá¯#YyÄ •«Iñ  àŸ àhŸT—t+¡2´J‚àèbSóD™¿Ý—ð?Ôž2gIk–1 ´1SÉ„á±ÉÏ/âÌ]žÿèö_놼LûÀ•€Ðè*ðšš4º¦@ÓÿÜË,‘9B«—¶0 s9»áúŠaZ vTºi! ì–k ÷SË­ˆ ðKÎ;€JpÍË^õ€“ÌæMijD¿2OȘ¥Ò×3'¥òmTýlìòkúR .¯5.³µØ3<œ~ 8 ;Æ{›©2C“ñÎ%¡ü‚Õé›öl¹™í `é6 ÖÖ.ÜT4çôn9NÓ•Kos“Ä5yѪÆÜâS-¯'á$¨•~¤ç4?‡ˆ$Ãì_l “ùb0°–Tè#¸ãöU4kéã„Ìv1cן ˆË–&Z6‚´Šn¢Ì¾j~Å iØÃŒ©°¨Í:øŠýGi¦[¡m~ßìÒÀ+»¶ <4±ƒ³l¿Ó DCw bme¦÷v÷„çfРإÐS ·qAóèØÅÍ‘¢ð „ÀªÅ^ì´Ò?D ò–+"Q%úÂøZ×Ú{â›GÍþA»ö‹»W Áœß̉XCtý¶M=7ÂÝTX+ì3ÊŸ‰RY‰Ô[§8ç¾üÒ¼Q¿SKsèU£Ú¯G(r¡9y}…†jLÊ@s<¡Bx„ ã]¯› Ñ32Œ¶qÔ¼›W‹.¯Èo ^&Ì†ÅæÏA‚ëÈØŽó§Jò˰㲀2cЬN<½ö!Ý &é*÷aÙ«Á4|h\$úÖOôlÛï[ $Nïê“©"j: K_N6ä9!’7SO:_T8&ÐO\ìæö„㤊…ò–>H^[ \N5× ÌÑw(8¤9JóFo–½ˆ3Õ¬åƒöÝ {?ë}Úz´Â3ÚüÔ‚,L\ŸPWSøÄÿéâ»ñ­#ɸèÃŽq.:‚™A½¦èÌ;À±©ûtš¿ÄËSnˉ[‹š…9qò-8xP;lu™ë者SúUÕÀ¥ÊTiß½da®}ÇeÐy·D%²E¯bÕ4ŸÂïšæ=€E>_?)Ò«ò„Èë æÆlô sÏ»NlW\F§W»å«ÙqôöB74"¹Ë{YÙ!TóÊ·j\: ”&‹Vm:ÌV£b”~ íÂÇ'Œ…·ñ£oSÿŽBD@²Bh0½ö”ÜÃ-°ŒÊ8¡2@v!ñÃg¯8bÆöÓëªDÿqûlñ…NÂÁÑžä ÷mnÀ‘/Á|âOu»øÞ'º›3èá¬âniŠá%«/ä²4u³í~]Ƥp7 „C7}«Ã†WR‡öËÜEuAôRÆýMHhò'u ! ÍÂ^õÿïjÜÉß® *÷ù|=£»X¿×MÍ:]yÝ:Åìíð €%=ZkðÅ-_U6 ÿ2æ¶"‡¾Î·Gß”´4“gÀ©Ð¶àvýì}È{Bë{žÃƒì‚Ï™©yõGD± ·(Å’4q^ ’ØIÅJ4oFØH£A¶>–‘yDöBS=8b®Û^ŒD²!3™— ¼'K9µ»|®L@“‚9…Ýš}¦´fd¼ÙÊß¼˜þ¼ïÖP£°Ha·S¯n W1É{b¼î˜„ %Êj÷÷ 7éÈ2zÍ[á¢8d§¡?"œÞoÔêxš¢Ðö¿ ÷5ÄB^9¼`„ÍV¹#ýFÊIE”þ²‘í§ |XfcÜNAÇÒ‚9—¼v À>:Ž–Z:|3¡V—Ômÿ]rG pEó7å;ŽÒÄÇ1íæ],øpì…¤]ª-/áöº À]°q²)š«BêÁõ–»Ÿ¶Á¾èãÓÞíCÈh (/÷_XD¦Vs#íìÝ0yʹÌ×ûµJj « ~Î$ŽÂ“u¸ÁÁb󉨑5mˆTò4Röøé Gl!\…K@VZÿØ„€‰.7—,%Ië‡Îw8C‘jÇŽÛˆ¿IñÐ[ûϵã»; d«U–ߓܨ{~{¢G-8¹ RYÚÛ wï,ájé«RË A\7¹h÷ßÚ^¦ó­ê ð¨çgýî¤xʼr5ؾ›Ö5vAFâŒÁG–#4PÊÆYE0ý$TëfL‚Íž2¤O‚~÷Yî§sZÐ9‚8&ユÕIØ.€]†6ÉΞšy1RQ÷75¼Ó×LJ‹cTiP½é{‹™RÕ/˜L!û”+¢uAž‚®É#–Å·°#¤Àþ‰Šá`§ÓÛèÆJ€Q Rq Bµ\Íõœ*c+¥58Àܸaª®gSùrù’•<“¿st0Àߦ¿ÑÝ”Ü\zª%·‡›áµ ] OM@v-dÇ5 9 ’1ÕOO±ÁýC¼:õ•–˜Í Umï€ h¹Õ§!µv™¸™èì6Á#gú¡þrz’LÃQñ‘¬å>ÖÉ—ýz—yÄßl\šÝ³®+·f ²/áüfÒ30>¨Ác‡"r:‘‡³]5÷¬~d\Ÿ)û¡{ʘ£xû.éoÜY*ùÇÖ‰G£ò1„ ‘ØÑUí2šeLÿ…‚µ(‘Òôwfɲ£üƒ*–ÌÝ‹¢s¬Ç¹´+ýRn/ úZˆÉ8…€æ† ¥7„2ß.Æí\S&¦®ñnÿÙ—²q™£KE—Út}>Îá¹µQ }uâÎd¢$\ƒºŽ‰‹8}€œ àúŸ€ƒ&-“Ç7öÓÚ¦ HÁbŸ5ø.w´5V‰¼œr+Š/œEl£bL»}ôÃíq„?ósjßa`{êªU¸Y‘ÖH,%žå_¬@cÐÏëóÜbÓú潦 u}X)æ2’Ì {êF ¥Ç|Œÿ¹¤­Ì'd'HÁlxÔ7CrÑz1÷*‹ö–«ù/Èù®†>q/þ€·s—ŸÄKÆZ¡1’¥zÝ’Ê~é‡òÆfW¥:н™ý¹¾\x›k޹ƒj¥KH\ y0¯û›Ñž€J1énK0h S³[…Ξ€AôÎU#?®ŒUÿ(â,t½9æ n|:†dBϳ§–3ÖLwþf~–Ù£ÚœU,ƒ#mn÷“Ä ~ÝÓù™”/ΜÄ,é!ZKy…Q<~'Y?H×Cv_ÚúàVhIJl#Ëé:t“Ń#®\iµÿ´€oË0Z>¶†‡+þ¶Y¬‡ýiÖGÞ”žÎV6Ž2E~ø,âËÉÍäãMúsx ë>fšºO~¦2‚ªúÀÜ#šë®Ó:úΘ®j¬“e•GkD4Ô¨0>.Û]Ù²ü€œ“ºnó_8Lb¬ñ;Ãçû7BS嵌øtþKm;Íüåîs£?…燕šq ЦbÒ) "j6)¤FÀ`T¡tG t¼éä7ú?5Ù¼û8<¤@-¶Rÿ$YÂGØv¹Ëˆ¨+ÑTËŒÍM駃u˜Þ<°ÕäÔÁ†Ý{К•̧͋´`ר?®‡¿OsE_éàÿÉ“¼˜§˜ ›Õÿ«ú=ܾI¹Î·ªFyM6æl’6óZwØ–‚ª­–5KËà´ aìMN):Mªz¾`ÈSp âÀIc[èíT)9o •Íëü.Jú¯M?Ÿ¿Ÿ/X™ÏÁÐy…ܤýdÆk2_Gh­Î ºA»Äp;ìGé_P&='Yá!š—äˆ|ì)x`^úJüE¸~’ž›¼D¸µ¿Ô ¹>P¾i&i‡b-°p~ò2v›¶ ‡hs\í WPæؤbDI\zêUÆ8+mtE©ùônÐu"ˆ‰Žùðé"/,ï þêÅóMö¿&ÕKÍTòæˆý–˜¼sñüßCèf¤Þ ‹)Ò9T~ ÓS y ÄþÔ"â?-@Ö’r}3 zN6 Žä¶0÷‘+Ž'}×"/$e ´Â;šV9¢j3s=}{ìXT‘cæPGsp¶@ü^©PîÐdÒÛÙBwÒÆ¨Rntuß7‘«SóýGf¥ç|v¹ÒJ‹ƒ\ †~¦}QÚ@–~kl˜NÚÉ2ÿÆ×‘àÓ¯†ù|“iËÜé<ÍzõÔ×ϯ-»”÷â"l¡^RK)GhðBÕC®ñEr8œˆƒ«hh ›v¼nîØðT Éã,U Qkí'c^ƒ"ÌÊ»º:ÒO¤t@©(©9§ÕÔA(€ôª—ÑÚêÐâÿ«…oóZ“ÉöÁ^ßÌì¸BšÚ:Q‡4°:â¿HyJ £ O@§r7¦C*±Àj€5ܧð§r%-ŒØ™úBöš¢ãèa 1¡£zûn‹«YÕ æjü»%±¼¡xʹҩÈ0ëD•¯Lƒ(ÎX®mI¶šÊ” opèå.t¥e„ §î\^J!¸zrÜw/¢Ú¤ÒûŸÅ‚2ÈçÎqȆßÏ·^õ<·1À©»ôE|ØÌJ2ض®%I>mG–”^Å~¯•¨Ôµ³ËwZ´þocÔTçè7ªý\.ËFýxÅËnt»jõåé™1Ãî´Úóhji”õÆ$(WöF¿8 ëGdKŠ£9Õò³r+ùê°oQƒÁbGj¾.äØûªƒ~@†wÀ ã;?ÉWˆñ_®õ‡‰"½;`»â4etŒô»O5õ÷AÕ§ÈíûžL¤õ75MŒôý5\¬>Ã/õ³‹"iÞVééüEËi@ét7q£üˆ ý/ÞãD?èÍ`w‹é0Í^B&;vÒ¬Ô'«ã4N·JõS™A_ž>ÎM£ó?V±QÛ _[S‘z…Ûê#¬ãCÐMA0ñW†á ÖÙ’N4ð€¸ y$–Àwë± hÏ °è /v4¢1ÍÀ]_vVÛ³F”åŒSåVj®‘s.›YÉWG<™Ôà¸ÏzñZ–843dÝÞïÀ,qß{Æ{LÊ¡|‚D4˜%×(’™q»;ŸF7îYí Ž±mkŸ9Ô ´.†Ê?𪠷N5¯äšBˆ‡‰UyŒ Ø‚,U­ú¤]àÄßPµôUÚ]s®5»t9|W‹‘Û·dÔ‘¥…(¡2§fµðüªÙ¹œ±Wdk å(š}HQ©ŸÇDÔÄ_8ep9¼àAZHãð÷Ão¶·ÒYïþ¼?ŒPi]ßéDꤛdœŸÈ£É t;žÝ=î.gCìèc¹G†ë˜‰úÜžU8&þGX˜‰SšÞîAµhŽ·Ý¤+« Ààé…& RI"µá(‘¶…Mõ´ÔËÏ€.@TP7S1QÇ)/ŽÞëY\ bì’ÆÎ^`;?#èG”äŒ*ûÉmJ[ï'y ã: ÊCÈAši¦«6×Ú^tŒ:|ÇŪ~<‰:@ç!ŃŒœq*‰fsþ\¦¢tÇÐã;¨|¢~g›€7Å’•,K=D“ÀÂQ¶Ëàøž‹Ê¯Žþt "4« ZâLÕÜ!€öØ1:â@¸ 6(¥Øé]oÛõ9žØŠvŸ ˆËKê7Øú–Ž¢wcÑ•œÇè¿#.ã[m¶D·i:|0ì'ó%”÷Á]!Žf[ÈÓuÜk2À1 {Ìsp ‹i¢ú)öt›ËÀðþò¥X=¤³cž.„°‰å-i€ZÉ9i{ÕƒZpWcµ\ßv"8å~ÍMõÅ¥!µ ÚŠõ7X”ìQKÒÒðo•ƒËÌÚ~Ù]øöÀñ ³TG=†KA‘Ä Æåô¼žÐ4‹—fCA]ƒ/;›Ë-µÐe½Wö'I{ÃcP8K)-/#~»ÜÒm#¢Á ^äT}zn}Áµ+;ß¡‘"ØÁÛ͑ɻGÚÕ(…g¯GD> jÔˆ¸qÁ/+|oYÆÏzä“vÂ0Þõiþ°Ã  a¨{óäË»N†gÍkJ§¥ço. ƒBï·$Þ‚S òŽ5‡‹È‘ý2%Äõ§âã1×åÎZk-@¢>¢õ,ñ!‹¡gìh!»0,®ÃmaT±¼oeŸH ØèBýì‡Ýo4÷4ßÄEÕèø ß²ˆ^ÍCªMz%ò„æÙQˆc vÆûÈxW޼‘|Æs«ÑDUF3ÿ\>‹À¶EÀ¥†ZÓê Å}¨œ„/>þgÕϙŗbAå¿GnëçšÔ2±=, Bu=Å®Šì~¤<Ô  D^áåíDé%Ö5*œLë=hÔ¾`%ÄY›é‡EZˆ>Áls|${íÛæÕÊìÔ^ž¸9y’@A}ÂÈå%¹KOn7'þ‘”›kÀ!~ϸÍ˳vEõ‚ö1Úš<4˱ ÒƒU¾×Æz ÒT\:Íúȯ2’›žj¶ ÓŸ†uŸÿÔòëõ”ž)\S¿LL“fF¡hhï}_vàg©Æ"ÌjÀ»HIŒÉ¾›ð7Ay/¹ #Tù¼UîŒ*"m»Ïû¾]QI÷_°‰šrúBΙÚP¯M$ê&ëUš1yµ÷! ó ¢Uu°~û®’H Ó•fR2a7¢¦kD6j’.¿yk;¶[YŽxVè‡F=éÜÓãûK”þbàWfÇÚŒ.«¯ª¤‹lŠw£$1~a%!Ã<´©và#I÷ˆv´É¶‰>vÊ~D[Έ¢wD³ø»tv5ÆÃB›ÔìMP3¯ª ÚÊXÑ jdEý‚2Drî!S¾Á‘]pñGf\­”õ¤VH­dvˆQnD¾°Eÿ%ៗe0¹®¡s€ ¯™’U:¬V÷ˆÔGcÐWÞæÛô#Æ¡zjn ŽOB—CÔuíSG‚ŸÿØõ´•frS¦å'ÉÓ>åBiáŠ'ÍÕ<æBª# LYs§Z£V3 ¢”¶Ø}ÄǬ,Zý&£ýµÁ•ì¬4Æ„;ýŒtϤ.¿ˆW5þ @‰ho°rfŠõðµ%• Ã(ï^d'0@wÿ·Œ†)[9ïÉ‚DÑi\ wÏ“Kié¹.Gf­8v²¯Ü aÏɃ2뎫—ÆSÆ4úÍIáØ©Zøˆ<æOB{åÉÇæ§I—äv‘"Áî¨kšàLáÇã¨!ŠsET¼ÑÊùnµÇÆÚl ÎîÙÉ«‘× 0Ã)9/?ý}Žr\-솿ËÜœ\‡öÞ‡¯3εÒrÕV³îzÅR¢©åÓñ†'Y é~×¹J¯vêu…ÏKÑÓÌÏŒRŸû¸óJ¢«ë \r4DäaìPZ,*T+r&q—;Ób±@ò/ˆƒS]Kô1×ON!g|¬ú¡šD邤‚ÚæBQG BRšyT#ó³Õ¨ÐÓ!3B¡À{tìZÞãÿÕ;‡mÂð1Þ’ö9ãëše¨$½ä³úî½­^\M2D‡"~ ³Î‡ôŠzgNÐp£‘aõȈf-ŠA0ý[¤âKÛÖ‘¦Pµ~h£m²ÓóÌ$L@Ìnì»*•»º0#Þå+IãvTÙ>ÍÉÑzùàÈ0Cr®!y¿b·›ª[aÂÞBùN™u0)K›YµDÆBªÓÉw=¶µ3o5ùG6˜vZrð\¯ëÊREêB*ÑÇnòBó’øà„£éþËÙX~"¾ËàP¦ƒ¢Ã¹â%6Ù4ß2¡x,´FºRJVá¾/¹’ ©ˆSðžI©<;ÊžTZT*˜šTUÉÓÑ&ô¹ä öõâÁB¥Y*¨íÉ @f6oõˆ1Û ü¹`©+Ó<±FücEƒS¥„Änº°³kYâW±œG#hñ•º½™‹éšQ¡Š•GC”4Éý@LÙ†À„eûE˜Eû¾„/CÙûøÖ :éf<®Ã½ Méë)^âðC€cBTϳ x5D†û"âxžr£‰¬# § ÀlÍ»(ËEËCØM®³D²k #ûf‰ŽÿÔ¯@Õ*¨Ï©p3«h€5~ü£HMPXœÂ,FòÌß§ÿÝ‚žñN, î1,ï,Evylæ°Vd`‡ÀóÝ6x=¹#†Õkß•š:IM°˜2f%´¸w»/õ; Ô‰@ ¨~ &| ”o :ß2pV®ù«,S7›‹Àøa+‡åìŠgèÚ²¼è%JÂÔ¦ÿ£&~mÝg oɵçð_(@thGÅÁä{ô;Nµ6^¶Ì.'ï¨ÿmSÖ:iþ÷#4T?cæ«*¿à°-LÐÅÁ&n³×oO)e’ñö‡lÒ HáJf%ŸÆé]fˆ9Û!üM¹æ4'¬Dcid82wá»*Ø|Ü<á®WT)’Àœ½ exÒ‹«Ûî’/[8u¼šóž¾¯“IÍN‰Œ„‰Ÿ’z Ól¸g¥ÍÏ¿tDI5M|tÎ1Åt®Xqù˜]Ù¢:šõ­.i4j² º»9wvŽK̨úý0ì1nô¡FTE8÷­wË—fúR¢–ÑÓˆ¸ÏìM’Ë$†l!êï6PÔÕYð¢.ª‰þ-Oa íý?3ò¶ [`ʺZÇêœR«¼L >A§šŠQÇFy{¤‡g5ÀÍÔÛ‰v0±é2{x€'€_1¨å í]?QI¥˜ä¯÷´l}Œ½äÑKz·á¦UèÚ÷ú ôÎ;ù·Tô•lï©ä¦ÎÓÚÖ¦O„„òíó$µ–~ˆ4/”bŠ7aÆ,¢õµÄ•t \ï$6]ëÝ.¯u½ƒð;¦'ªÒ†RjH¾¹½À‹Á{&.âsŠ…ÕÔò]HLƒìx±J—y'E¯àgV“ùB˨Cìë*Q¯))Ÿ%!ð*]ú %ÆvÐÑ<`xv#¥oYÀžU` X"fÈ ö ÚÇD‰mÔ&ˆ–õŸ}wlÖ Z²”}ž”ßæÚå**]È›§&W4œXݰùà”\/¬ ^[ñæ¿b·š¸wÕÍ*ÈÕgž.‹&žì™5;­ÍÇü¬Ýü $á¶ï òg65Æ%#r}qg:CÑÑÆýS$ZC†n® ;Œoå‰ÿE$‚w” h;‘Ê”›ÝîŒ'ê„ ÁfF¥Bu³¡N§ µ ŽY»t«ÏÝ/Íê0ý&}µüZ#j²Æ7€û÷Þ«JÂ/×B²þÁ0ÕüKþÔJ*W…§ý“ ¬?b†±£¢â‚ûh¢8ï‹]wYòÛãÖÌôPÏ¿Ÿñdý‡ÜšÌ ‰·@ª¢=a›Bj¡$ ŠÄþ4I.\'g¨(?g%ÕòêTøˆ}]¹ˆÜîÇxÍT{(¼•šŠçJN±º×ÊJDÇ¢£Z)Ö_Vi¤£>š ‘BÏ;WQRë é{½›6E½­\âv|%ä†`¦«|1‡îúØk·ðÔ„2 ZèÆÓé%ò`Ñ!·˜°ózÑg˧Ùí§wN¯ÐÐ[ݹŸGæäÑ2Fe¸¼þ‚êíÞ´ÁA†k¶UØÂ‹`òD1ÌÛ;T Œ#¡že_»ú¸5q_…-ý†Û{$ºÅ¶cxÏ)]ÃK|ˆïg`ñrwÜÖEé;­l7<À•Ú1_CÖãÇŠ«þñò´Çß Ô’†‡Awô 2óCH}u'>TuW…œ Ÿ˜³„¸ a§ÿâÞê”ËY¡­7Ð ÒáÅËŠûIì†Âz¹/!ù¥²þžN&  U']!GIÐke¢÷jHf_Hé ŒâmÁÀZ&2±-Bœÿz.~–qôË^ÆÏYµLšEŠД“»×œ\ýoÚ{lÙ°¤²ŸC§#ÖƒÒr¦“cÿ(Aûò¸ô´Ü)˜Š`‹ñ®ò&±ÏUƺN$¦ÏÈP~óŒÒ-àÖ+ÑXiOCø‡ˆI<(û{Ùl8´€nüt„Ò¶dÒÖ XÒÃŒÙr%̆©×¹™18O§©ÅîzæCå$™qÖ¼üº‚¥éÛ"ݤ?®e3 LÞ ‡½z©mÓ@*; >f‚`‘(eúzELƒ»¾ÌÃO F %Im"5àbríÔK`?ƒôƒœ~WÎNÈVy†¦÷š£Ìhî× âb%ÄOû¡DwË:¡ÒÓI=usJèëzj=©±nv²ÙXÑ æÔpŸWhz²ëQî¿(˜0ꤛ£ã€p˜—² f]”Ë(ç¥R/Mñ`Q¡ˆµ–Ëut ŸÍôMéÿ:+Q"x( µ/¿$pé'‘®ÜûÔþ j²føÄ‘¯5is?ÖH ” Ôæv¼ ïüÅCüN”~uß`°<+úó{ÖTy˜(i P¯Ž]S²ãbÌmbR°†ÌtÜ¿'Øwzm*`öY£ÐsÔ)ëHÞb|ðý€!ÞĵW1L§\@òž¢³c§)mîÓ7µÊ·mt8LŸ“2±À»2ÅåÝœð‰vëLš¿°âÚ…¨ …Œrª—›J Ufbš§8"]*~اº3 ÉÊe²à˜z…í„)“› 'nj´þ©({¾Æ±‚÷7¼ÿ+2ö T#YÜçþgyà€¹‘ßûú¬p=Æó¥V~Jéú>N è ;zú» {&Ç’7ʉõ¼Mž&×á‘2!¤ìvŸÎÏÕtaWnxY/&abS°0=ÔÅ/à‚Oà’øoêÚ2¬±z±*ºVÍáDBK46.)TRŸÌHÂ͘“1àŸjgNëÎÖ¦ÆHGWœ ¨Ò¸Ðø#G}åd* J/¯Æ’,’(Y5u rÛ „U9kÉ<\½Èü‚–°«EdH±p>v3õ¥i‘9`ÓI>¯I´¹¡çÀóÑ*”p·ÂÕ—Òth-¾Û' Ê)Šg§=‚TœaúX2îê“ý_Ö$N9#OµlDÙb°iþ²Ÿy]¦èì=9¢ ¥ Ì8ôÙÐ 1WÁ™Á‚áÜA",ú41ûzǑҤãó=Ë•PC…mŽu<ÿÈÃ=7–ÂR a3ó£yÖ¶ÊœpkŽ’= ŒCÁþØ=áv`³~:œZ=· ´``€V¯N†´_c¡ùà¼Eˆ}Jƒ¡ìbïÓÝgƒÛlúl‘P˜4ªjÿ¸™D©ÚÄ%ØBÚÆUùmýL«wyqÜ\•Cå77FKxrÔ#7‚¼< ÃÎÄ^ró()ü»¥TZÆ$´žú)5è—Jàë¯ZS™tõOÖ|2ÎémÏOŒÝZÙÝÝä§Ê*bMV„O€ÁÈáRø­DýEYfCÌ_óÓ§_¨Ïa‹¢Á2YŒlªÕæ\s™dE‘wÐWf÷?2NȀ؟ålôÅÒ)hcY€Ò'ØbÕ¯îûCG±Çáî¶”ù6:ûË¥¸þ­lÍYŸQJ—Í[A€òé€qÀ8ý÷”u7ûJ8àTç'Ù.¹+4{µâŒ»áÞ ‘êö¼¢§ˆÛ${õ wBÐwAO¥fe¥Â•p[SñcCw’])Ïäzy£6˨N6¾~(ÜÓbqäª^:]àUL¨5d+ž¼1³Ü&k!3æ¡p\”¹¥ÜQ. Ñ'è•>2Ù“¢‚cDn‰¾ìÇåÉCë´öî,g³µg>øh­~u2¥öy£z”eˆÛ–æ»InA$5Á5îËšÿ„澋æ†{Wm4(«Ÿð‚)VÆÅå'OW ^½!¾o€¶È„êá-Yü a¢*üköî[ q„ieÄÊíפÜuƒwCŠðKÅ(ì·¨äwÃáÛq>uþŽ âµb·Ó¸hk1' hBwª”,ìú±ÊþÍŽk¢Ô¿G¤ó¶Ÿª´W˜-p„w·2÷Ñœ`r'#EÚ€È#:³:£ŠAð¡‘Q‹¢M#Fl‚}å\zÞKÒèEPÇcÿÑ[Ð`. ÿ!#ݲhÜHƒ RfÎm颔Fò!Âç7„$#Û›À D£yòdœ}L= -ìÆã3‡f¾rY|qTÛj (ºÎŒ¸™,l¦¿‘GÝÈG 1]eyÎé>mdYR`ÚLE,L¬´p¬7t/åßøSýX;mépß%AbQ=ƒÁúÃu„ÝXÌ bqœ®G+‘ª#Š¥ Ù$:7ËThÕ'Å 5˜²mm½î\Tùe¨ÉtÏŠB甯ô¼áÛ;z¦¦ Í Æk½ëKðˆ×l8¨þc;x†çÀ^‚)'¡5®\YUcœ9+E¹I‘i3ױ쟮+¸Åˆ®„6b(D±5îYÇ:V‹Ž¤ßÿq¥FXnm±ÚŸŸñÊ^(¤š¾p€GÖ|Í8éý“g¡êå8=hgtÛžL­ù fº†4|;ÍòÁ"¾"UNÝ`Us~zÂs7&Éüð%Ý”•ô»¡åÐV %)I”ž¥ÕðÄÚâUø|Õù÷xoë¸hÒxéý—Ck¤Ò“Ȭä)_1È^˜Èvžö:ÞÊÛ[ðB±>o o˜µz® ž'{¶ìhÏ¿–`î¬~/8Z¬ú0ªRåéruÔ&ðó¤»!…;™â–¬¤tÉʃ³Ï¦v ɘ¬ÛÙôŒÏú?ÿ’@¨ ªÇ3.¾ïÞžð%QéõV¬ì¯ZÛ•‡Q|µ Ę–¶fé j›Ê‹.c]°Ì50úÔ78'K_ÎO²(!5+!ŠõT«&‘² ¨îê¨òÈZp;@Sºûã†Ç>1'YIàK¡¥`ŸÃcWyÖ“Þf'«ÏžçxÚHþ¥–Ó£Iu<¤=ÿÑʶ¤/"¹ÍÊV¥¸­ýÖiÄuD–×U{U8'p*1ÿŸ˜#x X ›ÿ'å’Ö÷Ò ¢ Áe݈lædu›ÜáÀÝSæ“@0Á6èbÌUGÓŒ/t‡BâñïÜ•Ðe˜šƒ*÷mz•ž„ ÙŽŸâ²sÔµ¿Ú‡Hí,„ìrñ³°ÁTÅš;ËÞòù®%Œ!s–HyÑ®Ø:Ö`n•ƒ¶ð w8ŽU9MO 'Ä6×ßVM'Ü€žÉZ—UkøSôéù$ÕÁBA.mßn+[DáB¤xÝ-° B“ò¿‰Ý/Ñ X–¦9æ|’6!¼ÜDàØtêÀ]êÞ²o’¡ç,°9>×ãÏìyn›ÞA…³]«öý{WÈKµš«h{!èZ’gN]ô;„î‰SPOh,Wæ"*rí¦²›MýDçv@ØšQ©gų¼ òlî.=))=¯áŽ‘-¤m[àt°uaÂøàg&ôhL"kYapaçK*öCψ•Ó¤ê ¢);KpácRçü¶¯ÊŸ6nüA]¨]_Ï¿8šÏÙæ)0t[I]u\¥sj]€/:à Z<*^@ѱá ÿÔ8ª l¶à4ß(Ï«=¸f‹ûR•졸ë¸:ë—Y@4-íÛ>5OÇûcEÓì|yÆ} L ï¡£{&¼ŠÎ¨41y>Ø7 9Ñû&ðA¶¦Í`£ÅmP Tœà‚¿… ±[n¤~n# Óèßý3àƒÞŠ'ûê+¸Óãtx@_òi¦Ýäþ8¾N‹‘ÇŸ1¹ä®=€Îâu:3÷º%>Z¹8òOø9Ïw7¹г1ý;Ô…}°Åÿ4ˉã<^™Ž¨*o¡Ð¼YÀmSÊ õü¤† õˆP±U%É…cl¹‰áìq¯‡}¦”3œ{"¶_Ì'ˆ·´o7à<ïÔNC×UjÚ/FÕÈÐÉQ ņìù¤Ê†E;w<ü¼P5Añõ?¶[ Ñ·[4n.÷ÀSøtÏ;GHX£+ÿÜfÄéëßCÄ-¿eUs?hþg÷î”vžôí–CpßrDY(gEµ!";äs©]&aÝ®^tG¬ô'ØXgc|àçÑ„4LŠfÔ\ÖÞ¿½3¡¸"{ò¿†zI23F-{˜I…%c³ñ²z²@Ur4Ý2\µBL(—ÅŽn¸¾žRÕ€¬ËÝæ§›6ˆWyˆ aøN3] ;ò‚•ºvépœdD’@ª w'ã4«¸´®‹ÊÝ'ÎüÏÕ®›®œ¤Rw3–ÅcßPämsq=óéÊ„]ä«Ïì¶ IÇ´Ÿ¦˜L;…ÐmœBAÓ_pVxÖ¶täÊm93ógÓ6ô™*åGÕ}îÌùƒ:UÞ†Úç´ å· O×¹†^àZ 1agzd‰ž`†!Ê7z6kŽÝÇØV+"iÔ¶˜—V<ݳÅÊ„!™ ±ÝÌW)‰'/ ð-æ¡’3<¼ºcõĽÿöàñ”X²@aöù’mäsæÌY ¢^Èó!Ú¥JÏÇyB"1<ýFëõŠ)×ze­ÝUZ ]˜5`Lç‹[F¥+ÀêÖÌ#‘\{òïø"®´ÿl„]&Z>–Ï9bœVi¥Å` Îr¨•ùүa³˜U®2ÂèÏï~ Þð³‹ù(b‘ŠÃ¿5ÓÈ·Ëð!šW'ý®…ô6"ý¸*ò…þ#»€C9Âi¡mº¶>JMV7Û°4±q‘ä¢Ó Ü§ïN_+U‚Y Z$% '*.vÑl'ˆ=¿yU›l³†×\eƒÖÎÏ‹âE¡%Þ ·oA~qØæÏÉMï»_1홼6_yÿà½)ˆ ÆÔFÿ¹¹’\Ǯڳ0fÅõ@ ‹*UàJ´¾v{UˆŽ`ã>(µEEEÙ†|{Mî¼—Ï››õŸ$*–4˯÷µÏMí|•.ˆ#¡Ä’@b8OÏLjp¨GYLW! ^›õ³˜úóVÄZ)Ñâ÷‡õy(ž}¥¡²º(±Ô•ëüˆRÿÙÝâ“<\™ÉF ˜3¢t¨½²Òu8™é3º+ãèWgŠ!^ÍkÛÕø!¡Ámz ø*²ßÑ”ÙQÇ%þt‰ïWÂ)¤ÁÖØ„ÓÞ‡ßà#È9²ž{:MÜL¢%2ËäæïÉÉ#º]³ŠzÔ üƒîÿß);: š\ Ý߃ÌS7h–šñyæ^Øï„Jùó¯Í!63­%’¼I©7• ö –ŸŸ,Šq»“Ò7äb.Sk»W4Aš{ûÎ…5Hu—w)÷¹&7 jgU •-tLŽÑo¾0Ò8Õl[bÿ›¡Õ¦óÇÒ‡)Ö^~¤KH/gáªWà ɆNÂòç®+®0xæ&&‹i‹®'9ðTGª&È5å²±i¨ÉËÆœ]¬ƒíg(ú¾e%RéÛ}- ÞlŸ—¨Ub¾ŽtÉm¹dÌŠY£¡^‡Ö‘FhŸþ‘1žavfpø[¸ )*êß’FšÓ*šfõްñdçVU* f˃ê,"ø§1¹þT¡Ëú`W/4€ƒ¬‰»Op¾RŽæë%3%9öG ‡NŠ;Ç麇Kƒ=tÎ’’‘µí$9x\dçøÏ4}–“F& Ap¹KO‹zÅÆüv¨3 ?ø+!Î]ä¬ZîÓé’º¿›øO.p~Î2%"”ÅG}Á`Zô›œ ËÅÑáÂð<ͬȇéúÉFNã•÷Ž÷ƒ-è¶¿À”ì?É€A2Œ×n<Û°§ø/ÚŸ„3Æ-î*}XâÝ#5dö¶À·šW¬›Ž9^G¬Ã‡‰ëˆYðuÙ¿5–áèlr¯é·H÷FšK ¼ž6+%æí±¹þt I#Uþ®¿ÙÞ~ÄRDìçC£Œÿ˜ÁÔ·Ë"ÙóIª¯lD¿ÿŽ WwP…DÑ]Ÿnó’ì‚û´s {à" j¼èØv›ßn«dÙaz%ćuXëâšÇ)„Ž•c °©,¸d´só˜®éqlbK ºuá;ê›$˜‚e)©Y ·i õq0;z²v{q ÷mËq'¡GçÕT½oƒ5V¨«…/ÅàõÏŠŸ€È› õ¦%T7OÄ ¥·2ÈXv>taC¯ŸÄöø;4+]og„ã\ñQÐîçá¢üjâóýÆðvæ€"×Á•ØiB_4E”æTÑÉ][¬º8ù›Ï¤ÀF·lXçH©‚}X¬ƒÆr¼wªA§zF,ìÝVkÑH©± SJ‚{kÿA±Î_z=Dé®íïd6¯TjHƒæ µí¡áuºz³GWgýÌæ“¸Š kN¸†ïS3‹d± Η mkSèãà–›ÌA·C«L=±–µæ;h©…åyS?}»½èìöé&ǰ'žY™-lÕ¿)ôC²ûFÁi gsꕱÏ1dN"ᦷ-"ŠÓÏdÖÞ%²`çɹÁÁ žž,ê!#ÝCÚíÝksH’ÃF/……Ÿ»]¿ÔÉ!P?g óAõýEÍQ/PŽ x‡%ãó¹R¬¡™g64„‹F7zè¾a|Ò5{{†z(ê-ÇËç¹£…5f&û.=±±“ämnÎiÒK-Ì®9 ºf½¿fæ¼lD(˜ãnCBÀëCÖQ—Íè]4Jü6FSJ§[]Ç@ŠñÌìmLòûˆ"õq8!tú©;?Uè '›‰]¡ÊþÖžÓXB¦Ú—¡>þã0§J:*@È»_OWÝhWZÞßG/ ›dY7Ì‘ÙÓ”…Ÿ+5wÿ®ni¿"O(ÌÙ@Ù*2iæGuÄoÆA(Í/èÛÚö~­xeöÇ4Ã?¸[À×2jXfIѼ7íkPáRüF¨g^S-  þM b—@ÖñùŽ2H±¾­{õC@¯zþ`¡·mãÑÚ.=#mOEu¼«/„ʬIÒüªPøîÈî áŸF¿÷µ¦n<5Þ(Æp FçÝý º ÷Kk;½¹9IGG5¢éŠy˜E¸ëWa0Qñ–\$}•EÄÙD zÙb#:Ü­—né‰S8"OÜ3Þ[݉%˜(ZÅÂrÄ”†¼TodYù¼ü,Ì«ðnußT©—2.V+½)µd™{ÍdImÙr<°>jArݪ4“ÉnÑg×8ÂÑÈÏ1;kÞºéeoAõ…`ð‰Úêqö‹Ã6z¶9‚• ’7ß…ÕãÏ ¸à2f'¤a”"¹åv§$|V…囑²>¿n^憌 ¾ïqPºšedH $౪ªáÔØ_†³ï«nƒ kVxNÈ0M‹ªî˜ †'Ÿ~‰6D(‘«lï·Ý)N ùM¬K¶‹¼À)f)ó Í¥Í'ÌÖÎO¾M8™ÿ)@Û&ßœ ‚tùÑá,|Õ¾„3é¤ ã(F"‰>sWgk­˜.“âè}Xc±…­Ü‚û®*‚´y 1†‚Q6Wºz°êø1fó@¹ ‡ÇÇo'¨ÝæT¬Zz»å¥fM}{’~ÏÙÓ=Ö8üc,Ópé=Øü;þÆnR¿ž^@Œ—„ÙC&±ES­MO+mpÑÒSø…G®2Í[ð*&¹É3ÉÐÅn+¡´À$˜`},Ëä{SÒO¬ã¯‡ªwöu1†ÇêöáòhtRÿ·jœŠ´3¸¤Ã…m‘ŸüÃ<Øl>>˜ñS*ªØºnœIg+Ö“{’²éö ¤–ô‹“4c¸¿œ ʦnÕ–VN@ië4ö8?ŸëÉ ¼ Bu±N°J˜uXŒ¸ «¨F¦ûú~uÂáü¹¿f£lÔ h|°wËE6*Æ0™ÖC<|]”mÛ41ha¨\œ³j]ˆÌB[Wñkù ÍË<¡Ê¸‚]”–󿙺x©tù£5“x‹š‚ÙB+ôC‹Ý;©#Uƒ˜‘(êõ¾mb"ƒ ëzÂ6žÛ³j:cvܰٵ7¸sóg^äÂ~¬È"y_)J³¥P 9Ò†{ ¾1}©¥à ;qù' ,`»|c¬àvw<:p§)Oƒ^²þÈ BtÌ—Ùhý üÕÇk éÑË/G½Ûþ0mŠ„¸vŒ>)U,½;nÁ>¸2Ó5©Gþ+èŒÇw‡g·à°Ø¥G‰ô¥ò¦8‰"ØÒêó`ì’L”UüÀ§ô¸:ŒL±vl®Bî‡Ü=zÕ¯¨kxÇd fÆ€l¹}NZK„úº”ÅÉvƧJ©­ké˃¶ó"Ѝ ¢”#³fPÏäÔÀÎ>i8še›îêO£2ˆ¬mY ‘ÍNøäçtº :Ú vŽÆÆ-qÚÃi©6‡}|"ÓÇ–žÕç†Önzo÷óÁç’úT®ŽÓN(¡¿uìíCH äñ£µ!ïQDDòE¦ö[zo^¶GN„ªØ:ãcoÍéõwveøÐQž-±gð¨î©ƒ²j{ÁŸßªµwC¡‡2¦ 6¤ Ñý`‹A ÈŒ#‘exÜ–¹íÙ/©zxhØÙ7‰ùûj2‡Ä  $¼ò‚_™ç‘¤huc/¦#Ž›–K1YÓ­á^¦QyÇÞ> †Ë‹V±ï"'–‹×'øjcçúRïžÏ¸Éž›ö £d£«d— °ŽLR>i~ r*˜o³£å9#…¡‰K6¤üéÂHÊ) Ró¬ºK¦¿Æ·Ð;©°úÝàŒ¾Þ¦€‹ÿg*ÛâÂMcKâCBÃ0*:Þ‹8ÆŒúÓJô|CSPÿžNŸÛ"78釯rÄ,hÄU/¯2l½I›Eæóðã±\ wK;Î+àëí ”Ñõ1ɢI…2íoMIÔßÇßçÈ „aE|-Æá¡·b¸BÛ&¸R6(L+˜.¸ï¸ÜHáFû žž˜!³,3浡 ą̊Ò2q‡µ«lˆ^H ”{K„ûó(k"4'ââ*—ü¤ ppîY6I"¬xí?¶@—¹ž’‡"‰2SÊòÖAVFüΕÙÈ ™ùõ§ZÒN)l$‰îÍÁáK;6 Yˆt³´n^¥{±ÝO¼}á»^=úãQÉÞŸôuÜÖüï‘JàmÍÙŸ€Ö=žö>—ëeôSTT &r+ô QS¹xÒé"ÄnÅÅ Wœf3‡ÙÎ6gÜ.iù$€€D¶ÁØÅØà|lð1‘K—, yJôÙ¾žj)«KŽÛÎhwïúaÖ–@§aä‚,6’gMÚB–ß¹¦ßþL6@n‚THío‹gЏi4bW‘¢±KA}à²No¼í¶ý„n:kÀÔ $Éà[—Äw¢(1ñsˆÄ… \a•SyŒ"uYiê¶{ØfÔ‹Ó’a2V¢òÔËÔ>S+âabN¸Ð*Ö—?°æÐ͹ZZ;÷¿ÂR³  õÙ:0|ß诡Ÿe ¢jéW€…¼´Ý̯nÖX÷µßêñ`QŠriž¡Þb7™Yž‚I† ‘­@tLð¦¡X_XªuîˆïÏYfj‡DÐk³Üf×ÐÛôÒG6,«2óÐV¦:€Ñ1â9ï_cýu£HqS¢¶XxëúÓ0>`Ãꌨö¶§åà’n\›ñhÎ\ÎûºÃÁƒ¹‡ôë«~Å(çYöP§Ž«Î°íeÃÅ£@Q%ß~à÷Ä^Ôy¢(*ÊL€J VÃhÛ0©{A#«7¾ÇV»¢ýÒ• ¹§hÞDýQpX~$°’o=38›¤¿zôÁàlV'›”å·EÄ%¶#õ¿Y± &ðÕò3·ã[~“%†¶7Í,¸øÛÚѱڎ…óÂŒµrlY­Ø5î™sóØÿik\íþ½»âe”h/aurÈYwIsËÖRy<Àìç:"#Ö÷<T,£®?™3‡®ôW/xØg 1$"»…;‚ÞX"tÀ%U? ˆòJ5rsU®¬isækˆ›†FÈgà{Vðë&¿xDåtÄw_JîÌÚi ÈèUe– rÃCú7.Dá·°iæi¡qðÁR*„ˆ]I¨ ø9xyEø˜,cÑmO µóì·¿l^?,Ÿ"y…‚þô0öaü”N Ã1ž—(ü¾åý¶inyÐ/u¬iµÜï,Mòtû¦îÅVÑVüî°¨Fâ@ô}Ãk•·AÃï•æ“€¦¨ æÙØ©AEžôЪ†Çå†qóråñ`N[¯¹/€fo* G5™éÉ ¦èÞ/M[%d †xHåt¢d+\wbG¹Låi‰EÆ]‚ŸVÕ º†?‚¼4Œ  wmMÈÀ0i9¿ÃWl¨íx‰±ÑDI§|›ká¯û0„ø½yûw"W:ãB_¯àOjÈ#bS?â¯%·YÂ6^ÇH{ÝyCUë$*ª çŸÕ!ãsES,M¦t †Yq•^|§ž(pÞåœc_ÏGÍ“Çö60žÄÝcЉÞí‘ûíŽ>ê“H+ÀÈ*•.DÎXÓLóR¢=>®¿kVkÖ+áM¦ú¦<¾Y©ðë<Ôá·Ý®ñ­8§jÖHîpZ0á÷“¥Œ‡k^(»®§‚ñ¸_†-›§EI¶p3I0Á•Œ_övæx+ÎW\{ò„©u7e 9=°0n”¦`GÎMJ-­…òaøÙU\²›!õL‚x QBYX‰õù¤›I€â€âúEüožÏþõÑ—\ïæ~áÓß²‚Á ïºí¤+Ë]Ó†ÌÑ¥>-£pÁþÐ}‰äîý.m¾ÁOr‚a ûIUK1ë˜ڜ:qPŠ„}´’qÊìqˆè+„»¢†…nàSrD’áT\‚ÐΣ&eìµTþCvÓCOÁøŸ}Î$ç<5J.åÑ¿ÞÕ„Ò*›T‹Ç–5˜òx ïîW$‘ª[õ,õá=­7%"Û¤™ršÉ®HFö+;£F¥Ò'8–•¡cD&rzLÌÜ;e²XþAƒñö®3˜¡³1Ïàœ×Ý!ñ¤W(ß{Æ0“ ó\δ÷| %µ;^”IÀ#³Ã Ùx¨Z¾-Ó1È5Ó­Ù·­òQÅüm·‹Ãÿ¦ú¬C ì´j=*0¼k¹UzÌ|~†¢¨¨RÎÙ”pìšDЊ}w ¸M}áxñµŒ±%)¢™"<)u¡»“©«K킯¬¿Zmï„åúýƒ¸_E"åcê”ÞSoA 4Ÿ˜$÷“¦‡Ã¢ŒqŒNàòX'õ’BÿÃŒûü7±Õ 4DûÀ°‰ˆÛØ&67£ÎD½ÖؤD„Úùô‘ÇÃúaðÏÒYÞ´u·¨C ¸â´©“¤j³ýõ¿}p7ýlsÛ’x·äãWj¡Vƒìž3 r½°M%d™Ìä΂ä0ÒZt 3³ìWŒaÝÄËmzÜ“8èZÏ¥B˜â+”ÞZšUޱ‰ÎOÿûQ³Œð_Õú‚dp%•iñ×Á;Š*<úŸ*³Úbz©‚?åõ"14æ\¯óqªd=DÝ:ql…Ëûõí(•±Qº®ëä,P¬`ê”B‡ûáþºbúº|¥¤Ù‰’‚š24;ɉdƒ¤_ý+D+Ùáõà!º¥úi–%Õ5ur…w’‡©eøL0>ØC»£bØ“!á 8FGÉ%fg®>7)6Ãü»Í*Î8žý¶„/¨Ñ½a¨è}¤vg üŽèÿÈ"¹RYÂ:Ùsü?Sv?Lb-&ui†Ä“l1ô˜?„xèX²`„RVÎ׸Ån})Ñf¶«Õí@gbR/^/ÞIÛVžªš€0‰žº`SüÓ¤…Ë¿wa"žeø¢ÌY·ŽŽèpbosëÜåð¼˜QÚùÞKÚQ¥)Úˆ"\íc½v¬sïï˜wB,Ô|!êU6™æÚ(A1N(ª-ÓɺF¢KÎÿ‘.7{7GA é<-î %Ø(ž93°*Å—“m+¨²F$nF§ôÖP¯a ™•6;àyΤ6*¯·úí¢×VyPçp.Üško¬>ü¨üd H½×Lßáæ¡àP,YíšÒ^PÒ ÈD§¦8N¦b©]5AO Óàƒ.Œ²-òªO'§šä§{0K<¬´a³ÁjÐ(î‰4©<Pô3–iKz Jd¹˜N' â±û…Ùñ¸Ûñ{¥¸•ÆLÕÎR9H¯7VqQíaÓ§ÜÆÎ]AWc…ì>ÔañГ2W9t$Ôê/Sr6‰hsî@ơ̾"„„úèÈÍösKËÉØlÙ#·£²õ‘¡ñôXíÄbLüdðJŒ-„'@¤ß­ždÆL³ê Ì|H]Ù"ßM÷à/#’£‰›$-¼iòe;ˆ-MbÞõe³÷³D—|/§¯Î¤gn‚[Àß{ž‹#¡_p_}eXš<--‡õO¡¹\­@qÄN) 1C’ú†&ËC²]-QPºÄ08wgpßÖdãÇS#G‹oÇ*DIG±áLû‚°e}¿£ ŒÄggoäè³å’^ˆGÅVù9ÉwØ>[âíëÀ¶ÀœX!ˆ”û›ñùóÿQµ¶“Uœ ¡!Ñ…‰¿¾H´)J©À æœÄé°+ýgŠfÖ&LVaÉ bóëAãlj³Y—VçxƒSö‚k=¯=‹f¿tM›Í«- Šë£Sž¸È½v¶€Ì'‚Ó݀¢ª1ar¿µQ¿þQsÃQå¡YÔ.|L0MDÊÑ«%ëÞ°šà¥£2èDA»íòªà=µä¨[? ªÌ™ž/À»[ÏÆíŽz)9hSÓ*{  ÷û‰)àì6—¯€2 41sÉÃJk2ø¸ʖΊìíêç’<6Цƒ?DzäSßO’Ú^ß÷{žXónb…Ë×S_{kĺbk÷ ”øÛxŸP¹W·}O”VV‡;X|ÍŠ’›y'•E¸O÷½ùDÜb¡ÙCcáëk](ŒçjU®àgîorc†\逬™fú3';ß&,Ѿªf;1] ÈíeÕ™*"R¹O×Ü 3ÏðgY­™• ¶]¾Ê@†üî”ÍG*:%Sø€ _ñƾ!~ëVdËÄbhðlpõ5÷ËÓÔ4ç ôÔyy1Þã´äÔ9ª8 [Ž\¼Vhé!l­@ýÌméN§J|_(”žâÔJúahµ1¦7ƒ²ÌìeË„ açUå!^¹OÚ®ƒªÚÙßãòDçk—Œ'G.§ë÷5ܱY•q²Žªö£©d±ÓH"JÆ-|!¤œ5f3 ÿY1ü@¨ŸpìXä>‡–ðBÚ˜÷ví¶èŒžC˜ø¶)„ƒŽzvøè:ÑXÐ ÜfkG zÓ[{>¢$ýÎûbÈì‚Äe·¹m{5[eŒ>CJégæóˆH~TJÓ<1« Ê[=ª¦ŸäÚÛÒ‡¾%m­@)£²ù Éô4Xõ{QêÍ—â3ÿÂU &FÃLl6fÏâÐmŽ`ôµøõ ?V>«b`nÅX¶„΄ïÅ8šXssdm8@ß ¶áU+5 užÕa½hü §I9_ ´S7‰;9®ˆÎüßÉk`@Ñã$­céÉüJWE¥épZ`Ö,¸ta‹+¥Þ¦8d9þ ˆ q‹ºÌy«é{Öºœù†Å,¸( ÂHÁ«üÖÞSo¶»WíêùÓÚÍËÍŽ—eáuûÖ¥¾ñ¬Ÿ8l0ýÀeb¯VàÙ,ôîvPÙd£®¶t5ú ïS—"emןĄƒójWÉìw`´zÐm‹ëéÐßÙÓ´maõãÊ| ±¼?JµZ?NͯøØ`(QB'^Ï’€½?¥)Ͱã–AšúÑ“ƒ{Ì‚V³~ªÇY‹1&,ôŒ,Õrá'³ËG®x‡5V«#ØÁª` [ÒÁŸçzV®$ ÑÜ·ÂllS>/Õq‡§ôŒò6ñ$cÒd=ùAVWük²6Ž™ êÚÉñ»¿!xÒä«…ó¡@Æ—±씨… îOØeœ›pNÜc#£K‘/¹ØYö”#9ùàAóñ%nÖ$98aƒö-±• îf&k놞5xô”s„x yjð¤‚Ü\é1N%êRsœn§fnaø†JU †æ©à•᳎ÛeâAé4¼ê¾»¼›åœè©"»VB#ÛècÖ’æL.ÉíÁ™Ž98‘šVN‰9jwÃÿ{*§}·øa"W9Ÿ°ÎEÂÎI û_%0…î)Â2–ysoJoçÕSãöÅ7„ËÒCcÜöéŽ_5êWu¡²±È.U2'ÒPìq:çt@c(0Ñÿ<„°tt°­ùÓžŸ¤ P‘;î_Ì@Ñ Vò4?rÍEGlº‘03H:ó]½ C¾() ï‚)~PqÁº¥ÜŒÌ½Ò å­ÖÚ2²A àJ.£ñí·-8)‘)î;¤,àÒc¶ð–ˆhŒ :¦±aaYïƒc?E>Žg099ÒüC?âIf Œëµˆ\±EÞ·7—ýSÅ.>\Rû6äÿÓY´Öµ’øVƤmõŸÎ˜Â·*ÚF¼ÕVA­'2ôγ&>á‘ÃÇÉ:éÏg„(Ç5½õÚþõ4(´VÐáì&¬2´q( Úàf9&Cf”µˆ±Ëw—ÊÒœ·SÆÍC;cz¸êøF•5E/â³€•øÀVž*ÂÇã4•_Ø|“Êkºù†é;½-„€¸»Kr¹R·qów¨É±š;È-FÐx!êž$Ë +€¼"³‰±!Û<ý±Pz|ë¯ñ=û¨­¡ËëŒÑ²ºAøƒL²Í⛇•»‡%hy¥´;"–þµÞoÊκˆ¦[ò0k" rÔ¡œyIÖ#JH[[bKüïn£6¢èi½ EZTs¼š³E¤$7L±[Á ó|7=Ñ`n©VD ‚§æl§1m‡n*rQ(°(Ï¿‡]yqH­ºù¨µ¾öÁ–7°µ¦M#fM\m>hqUà5f¥Ñ•Í$^‡ûºD+ï®M„!$UoH®›G£x63Ÿ°ûϰ¸úTù=×ûÐËpA1ôv˜Ï”FD7œbuõçé¤!—grªâ³Ò$ÍCº”Šƒàt˜?‘`4‘lú‘ᆟuÑŠZª$æ—_ËLa×€xªŽ’(;¹äbM!8oª‡E°’T£J*3¿·¾RßP³Ì „çE ~¡·q³áßëjZÿ»RÿlÁ‡djèiº;T__Œª–ºäˆBÎ+û³Î]¶M]F°R‰Ìñb¦ðdª,ýìÚ'ó}Ÿ^Vì2ØÆÓWDoT-ì*î—ÒV¡eHCϹ鿦BФ±Ë$î#ñÖsàš}¤epª´¿lÛ~‘›x5uý;ïím(5É„¸ ]¯“©%OE0fÜ GžJ†ráj•yë`!E ìdá‹|ºÝ†ìZâ&˜+ê<šoù–,p±Þ£jàÏá8 ùØêý„î߉ñAኽ#|ªçi?Rw jn`±ˆ&õÝLÅÝ)“••çˆÍ}NHá`áwuh<Ÿ^b­¸$µUÆHÿ@ ÄAžºò¬yÐõÙ½r%ÿkÚÇ€|ãñ @Œ‹·u’…²Bmâ§„´¦(Î~57ï§ÚHÔXÈG3 ³áÂÄç€Éèm[ŽÕÖ¶°“»û­Ù2€{ÞW´›éX ê#ó{•"Ö^’)‚Ãf°*dó 8~-þë*5¬8×ã”›íº)ùò(ûë”°käújC—J›YþèîWøürÀ'û&·ÛZ ‰Ù‘u!Ÿv„ÃI6‰gÖu "g5SóC bX\Êtm„¥–¤pr$kOj–P€gg_7íÖð»bbÆ«{ÚÔ]-ðÂz¬¥G!sárÀ˜ÃýŽJv#§²’>SÝ.È•‡ŸhˆÒvñæ¸á²îguŒ6¾ÈRÿ  ¯* Eì7ÕýHøydpjw÷/Kj®UÅý!jBã‚>çeH%&sáA½•J§X»‰VÜs¯RÈz×÷ƒ˜M>šK´ µ¢µ ––S¼u')oÄk4ù‚롯) ˜g…žFÆRF¹€¬ïí®¤ycÓßJÕsæì&ϱ²@Ü'.–(Ç•7·ñ„Ã{­Ë~,'ñakˆz’ÝïÃ/'_Ÿ4ÀˆîA.8ÔÆ„"EtrÊÖ[^ÐržŽÆ60ƒÄûÙ²µá"âëR»Ä ²ƒ4%»§Ölø”‘àZ¿%Û!àÖåF®‚í}o±ëm2müZeF0ߺ2Ô '°aˆIØÙ¬Ö¨íä(k¶ $Ãx·^ñ ÓÀûs~« ”÷·]/vZo7‹$@–¸–Ì™â¾C9ë¯E®Óz6Itfäú7<¨dl¯_Þ¬ì6õ¸Ú|_˜»ÌêtΨ¼ãzi- ÌI Ë '†¯qY_¾þòÊåŠÕ}áÛTsl—¯©\€™ø&À}ø•£¾i™NåOÿ ^lu›ŸÐs§NLSõ]ËÙ°~{Ð ï6cñ=N Åz‰>ôL¢Ôuw÷ƒ ¯n§›02CÒФÞÒâFáb‚·±"¬Â‰Ñò®T,ú“ãŸýÞDÉcc­´dOd„R  QR˽„¸¶ÅTÛ÷ð”Q ]À,w%d³û?åüµ¬ÇìU–óÝô.zWÁg–.lFÑÔcaIñþ%®:Tm›§· ù^zÔQ,âÖ“k{íÔö>ãE7U¥-×[ª=’ Ú©ÌXSk×Óš\ïíØæ\oPÐïÌÿØõÿ­´àž—®ûÌ9K^í®<ù|üN±¯± +Í_Ý 8!Éàû¸téÕßQÅÇÝ’+€‘7çæ{$ä 3¸B•A˜8SØäÃX½g—¦ðžÿfe!×,µ]‘¥ÇcZ×0T{aˆbâ´v ÖFºÎ®¥ë´ -7;¦®UN„Ò4y#79p Õ$–¦xá`ʑڵc2ùˆŠeNGQ²™‰ìiK±C,ÿ^]jŠLNp`z|T6‘ ‘£U- Y|¨•õ²2{~ˆ¤p±k“ûŽ˜²2±ô¼xÀüÕ´Ô L4a[A« ê§J©ûšSÞ*)41ÂhR´®! ~ƒÕ®Ï•ã½Tt ?KoÕ­|Öÿ"qeó'ª%Ò?¬UKÎðSØkfÈ„¿ kù‹£‘ÝÙ àˆh¾žw;þtÒYÃs‚*zBòA£†õt¼Kù‹4™³Œ,”cÙsÈ9¶U-JÙÌÀƒ–Þ[g&Têœ*¸5¬Ÿâ*ž´‡Ïôn÷åul­Å´l 7îÓ„³ö-EjEõ0ﮂ"S%´×øÇ(˜†ÈRÆ‘w-ž&/°X!æ hˆ•+âJ"WñzaßlêyTHÜI"}†½Á|[û¨„wªiä¨ì”#ß ‘õ4‹†/x¿Š£`ÂFƒà5žÊDbs+ Í×hÑd°x%Û‡æ§Vû©pþÐà6}D‰«Û4ÖpPf#ÐØZåjjgÝ4î±§fx-˜Š¹ ä.`>o\ ždõ­ Io\c× G ™”¶“Œm‘O6Þ&1nKÖ@çi¯2¨ßs¼`²õ‰­9÷Æ@ÝÕ »È*ŠGk€õþ€7˜BWCô»6Ð3~Šq’ÖÇ?²7 ‰qG]…>£÷tġǻg<…vÄÚµ< ÙÝ@(¢–‡‡™Ü¾_øg¤2ê<`¶›S¼Y®H]ºÞOÓZÉQ€-Ååß·¡|êroÐ…bÅØŸSˆ™-³ñ×ñœI»½æëî–„]6§è°E}›}ïÉg-‰?eѶG‹Æò=ü“÷üÑnèOîSNãgpZÝÈý9þå•­aŽ´¾œzبŽ"[ĵ>iü£€¬W2‡šô†…®=C »fAN8/É‘3ðÁÅGÂþ~9ÐÎØàÓ˜Û-ñ/»¡^hKó¾#êkÁp)‹AÛoêüØÆb08 ò;õ¿äG+áT›R­Œd¥á¤‚3úDZêo"êÙ#/•3M•X˜™}v;^ –2r¬¼ÁæÔé‡Ñ¬Ž}¯îK¹èAÌD2Îhû~{&¤–M Ê%>;B¿ ÄöT†jZQɵeì*cÊÊíýq7¾Eõª¤ùê:•vé?t$íÿÕ£côoݬyFU²„Z![¹eoz¨/—•å9€{þn.œ²’Úî&^j»+JÊŸã&¨"w‘ÏIþîaÑn:Àãßr]æ}sdýF’ ¨³—þž°Ì ç–ÇÏ’¢BC \O†¯¦,'çûôHg“¨çŽêbà1œò0¡.ïÙ ]‘RÿÞN#¬ÄcÄ`äorÔаk "¯œ¹––(ÂQ,i¨ZB•K`(E3hp²Ù>¨öK}›Ço¥{1õ‚Ì”—;3Ô@ÚYS/øÌ…µæ*#­µ7ÉäéúÅCò®åxô`Shö¹Ääùx„1d\à:ŒÑ&—ùÞ÷‹‹ s ín̳X¼”!DÔ…7lê9Úyj!¤º‚+l˜ûˆÃÅ."Lu¼êòRtˆÎ‰ÃÅýKœ¨B¶­gÙfÐÔR ÿW˜á6w0ðÕ·öŒŒÎbAç "̱áT#xæs\'Ýô0ñz[ä…(xj#áfÙZ±¡l‰™LÛL¯þ@ȯŽÔ£Ý¼Zß•Ê,˜À< ÷C,ÑxÇQº°B´m>Ì뮎ÝïBÞÁfÎB¸8ñ2í7€Ã‘þ(x¼£¯‹{0ŽC ú"pÕWš ”ÊzQ«KWD£ö¯;°KìMqC®Û³Î˜o$†ºÑ¯p¿õÛ¼ ’Cu²èÊÕ²H•R>€$Ä“='»@ºƒsóŠyú£8(õ *¹Ýç„À ¶è&¼'Ù}y%°ä…Zÿ”õçÍŒæö*ú=§c”Šçã’1ѳ¯»„ îö²×÷ÃX{Òžè¶'â‘ ™•( ©$Ñ7°•÷ñCt5Þ̯k¹Ý‚½Oj ®WóÊyV-}Ü¿E#é•©"–Ý}mWHØ Ôø,TnƒàÕý…g ó×£×Ñqù}ŠŠâýÅ«³ð½ÝWÃfˆA â³`ŹHþCÎà!Rä,<Нª3pnc´tvA€hk)…ÌïFˆ^Z£ªé R?µÿÏh*Ky-¥ N-è­¦åq%e¤zsùSgOÜ·žæ¶ò‚ÒÄ຤ïxñéYMµf´O>Í]·›Ò—r´%›ÍJìLWÍ9±9œŠkÉ'ÿÝûÍÍkÁL§ëÑaÊÅN4¸Çª~N—êïyìÈy®Ëj„„+~¿ÔQ·ê_ïZ´ãÜ+îO ,€- àriнlÒ5ìP§áß$ÕþõŒýI‚#»ò qšŸkÄ –3¥ë´M‰Ý†_˜_cFµ>…[»1Ó¾„SìÖócVãð;£rj7Ök8…޶ß~rOVA6ø!kü>QÇ¿_ô¬PW+…˜V”yà€¤‹»ª*êœ:3-©jµ”ёˎo~>òíTq9·àcqGàÔ¤PÚ/GnÍ+7k=ƒYݶ£Ò{yû‹‘z{³eã:Iœï^x(4&x¥ê–=‚\ :O´Ô =#½Ô-k†ß•yõ½Îð€¦Ýäˆü’ž£‘Òþ¸ì êöQ$À^4Rji#¢,>•…{d€8k ½D;5ñ,.Þý¹”ˆ”gh‰žénhÞäAYó0é#áŸÇB›”f»C´Hï2.|·Y W¢¯.]š3Íuª<æßaƒ¹+;´?,ºªî/Óx0I¿ì¢‡¢1¾;|TÓÁø–]VÀnmE݇TQÇe° %ñü™OÃÆ…ª©QÇbþãRd(>Ì× Õõ£AëGŧ¥)Bñ–ÿȈBAÝê¨ûË­ØÚÊäTGËÞ^’Æ;qdXù*·”ÁèHJÝ¡lC?7ÍŽ%'(ø7h½Ý¢}g|»™PG@ë#Ä•½s `†1`ÊQu$«ô‹¡ÈÞ±î‰?õoô´"ÃN‘% (O! n ù¬'£Ùëý]És'æÛCõžQÐüØ™ŠFøO¯°ivP‡EIK:+»O“ÔCõíÈc‹yÒÀ¡ óeuܘLJ5!Æ) 8kó‡/|‹Gñ^N–l’DúÊý×(PÂpþóhýèskqJÑ êR¦ÃFÑYþ5[•:ÀÜ DxÕ,ߥ·Ž`Ã{QÜâÅ®d-ap‰g@ÅW•¥ïg1ÿÀ‡æ=2ÐŽÊPºñª Áñ†£f~¡‹U—bHY@\èHÅ6…¬ÏLÈëì«ïÙš%"U¯@ °™²Pùlh†å ã›!œßÓ§ˆ!>o”/ÓZñœÜ²9Ämè1¾ÍÅB¾‹¦0B—ñ¤ £œy2 €ej' òÔe”3™üð>»|¥í¨H‹×aú-çXâùe·\^¼¤„?Ë+îIú½•ïu€éd…|Á9Å}i‘)âzR+Ó&ø(Ô!‘«•+x¸Išì»=Ÿ*W>jv³ü[O^²!Š× {=äÄ ­ ém¡”ü‘Èu¿ÆÅ³ò[¤oVTæ‘!ÞëF„ϯª†Ì+¤¼ÀYiô4vöE5t’ß²Lz¨aûgÅù,JÌ6=®ù…Ó°…÷ÚlAeµxÙãŠí×ã£R7\?×µ­!ºrz¦{ܼէ½Hêá)°Ÿ~­öÂÄ3 &, IÆøÞ‡K¬¸jÈùºô zUþ ^’^±ÿHe,Èo3FÉñ0sìퟰÿuh°qJÂ>Õ¾¤‡/_!1ÎV©ic˜Ew6ÂŒ2PÈ’Š”X ܸ‘-’=(pH|B#ÿ•Q¸øBFk¼1IÜ’´úI^Æ"#_a™§ø7îtý˜îÛß„•Èš÷cY|Bñá=S9­») wèoI@®`àƒã `69 e³òÐȘp·ÛùÏúío¢ß ,"¤x6=&ùâ'`=}' xTÆs¯Ço?ª®×ß—øÄ›îTø ]&¿‘‚uBK¯b§ò›_5qyñ4æíÄ\GÆuC”O³L@Ò–2pÃçGgLé&zÿÍæf€çA1`~ˉÁLn„ 7¶N‚ü‹ïõ¹ïó³àÊí eƒžÈ›'"ÞÚ}j7ŸfÀ¾*èÿ…güÌqÔt{ÄšÙÌ=Q̰ ¡jˆÿä¸Aç -#ʾý××¾“ŒQ ‹È/&È;ú¥¥À‚ï‚ögÂY®(3ehUž`lÍï‚nnIoUÿ4Õà%׿áÕv x&œQéäî!kÕü›ê‹Ò.ÿS÷¤v§¸R/rípÃ6‘£€½ÞšNm¸äðɃ„öT4K+ãð>ö}VyÜ;Êðž(KãÀŒ:]ìyš• ]•kÇ+ñë‡w–njâÍ’"cc؉€Û^%)ûŽf¶ç÷­Ù¤:³ä-AŠ‚¼½dÒŠ6Çݱ7MœLÄSéÃ_YмyRÇX)£AüagІ¢Z¸Ms]­¡Ò¤5¼¦:թ̘ çÝmÃE;“‰›RÏùJ¦pÑvœöÊÉXdcW;”¡GZœ,ýgFy¿·øyŒÝÇF5¨`pÇþ›ÅÝ$Ø­f‚73Úôø:•1b>g(ZRÙ³öª³gŽºÜðÌôIXÌÚ¯ú»ä_5“Qa×V¯‘È¢Eº-†jF/C«Åá;5á–å9“µË6† {Û÷!¥Ì(Ö~©wH-튷Þ"çéWœîפ{Ä%} /lúRÔ=…¦´ªÄy(˜‡’™uð Æ¸R+/ÇÏ«Õþ®a§‰¸q6ÒtZSF)–Aü@à1Gaíô;l;l°@ûÁ3þÐ ìvËo‘Âþ™FÁ%¾¢¸sà»îa뤎»½Õ*<óUyèNýSu¼ËNy¨*°YøÇ“ÕF6å"ƒ²eÈF!+•¦_¡M⯜a½¾Nº]‹  [>øTƒ»ékíÁ­Ê>ö©àªéQ|^ˆÀ¾òf9²j{gþ¿?õIØ^i1ÆD÷îS2ÖŠV^OqBDö÷ãÐcÿ^#¸Vœiª‹ÿiýë5Ý:~³g<ú©°WI$Ì¢ðäètKâé…µ02yB4½:#R"úÌ:öqCmê±l¥Û ‚D¸ìõt²X¨exð‰‡ö\OƆÂÙÁ`9óÙ–e²‰Â/d‹Goª/ª'Ñdù±(,w°%G)p'WSáQYhÂD‰|é*£@âbí·½_tb1¡ReU·|‡–C—/xt´¦[X:¤‹LišV çr(ðŠA†Eׇêká¾L!]ÔáˆuB èi2öÍÅœ“#oÒ‹¯qû#!—)M½ ›¢0¥^‰È ßÚŽœçEi7èÒö¤qf©VäöÔ1ÓÁU…éyòÓÁ/<ðÏôþWàõ?J¤IÄ4÷²›m¼” Ï9¿’—5Ùû4èI«Bí<““›ai|}M ýméO§pÄgªÜUóÈl/¼j”Úk·/R3lt6âdeM3E¡ºtx£gQ‚KkÃ7¸Î=W,·â}ƒD.·ôÕÐvÏj-1§KG>U|cOÖ dŒÖ [¨¸Í§·ŸSÖt ¸¹¶aƒ Rú³#ô­³)ÂÀ> ‚Á¥ÛÖe™ÐI"L;þ£³ÛeCv¯­©… ó"øŒÍÊÛò‘D^%›ÏP“ª: qˆuRw\Ì™óB€]¦ô ¯¾ÇWàdOA@PŒH„à{…*ÍÅNd";/5…ôíÛ˜¨B‘ºöè„ᔪ`È­mں㧸ëa4jí™A‡ýÃ)ÓÅ¥\,¶ZGøG¢‰u]ƒ‘Abƒ˜F˨k·ÕãŽbWtÁIŒ›YÆ×{1éÈM±D%[`A äd³^ÄÖ)ÊôI”nïj9ž^¢N“–¸›Ü²dkIÕNÄ•N§lÉÏŸ,‹’ÇC„W€Ë§æg§@zYÞpŸq*ÇÓ¢èè¡/ræ/àáÌq\ß›V䧸]¨ƒ¤ûrýNÊPCÃÔ¨H¯Ï°”²Â€Ps˜Åž5'§g ¹òîÒq™.× èëU•šb7•Í:€}ñ·cû"7ª@zöćòƒ‡ s\ˆI†Í};+vÂ)U$jX`¸y! Õ]†-”v:jãTþ€DÕèÇû÷Ó»—ÆIÑÀ¢–Jcø%†_;·þÒ_¦If.H Ï~PÁ kâY1˜š~‘’ñ8ë‹ý+€–ÿlKÌà‚Ê?‡]Nm"5ÒQ^R_Y’Ç»Jî]^­yÎNaêv»Q|ö’ÉhÐè¿WÁÛ6²ÞÁÉné–ÊÜÔše^só@çŸV1š"ÕóU.Ø|¤ZM;±Þ¹°8ë S\†ÂÒÔRçLÄ‚ YœZ(Ъ–¬ý-£ÍÂÿ¶^Œìù:¥€¼™¨æ:¨F%zOt“žg”æ?¹ˆ!T•žöi`3ô×(¸öÿý’ÿw1ú²èœ¤L+xçòÌ' â]´QPÑcmü±:JÚäÜ£~Ka Œ º}q04Œ›³¡?ç¦Q™9€@Í~‚“ÿŠøf'`8–Õ0ón¾P¯Y!ïß,\êè[L9ŠçŠ—Á¤øÛó«&I‰ïX<øcfPˆ]8 G╲A\¨sCÇþ½œåÄ\$¼OïüÁ¿ïE†¨1/ì’,ÿ:̺%i¸Œrf´ãfºæcà¿ð£wð&]®§‘†:` C¥€ôRHr)Ì@úH†Ñ¡ú»ÑÄ$ Š/à-ãhŽÐµp2]^8ë;\a˜RÓ=£EË;?^%`Ý–±vü‚›¹pÛÃm°ÑˆL„ðUœíýÑì{‹Ž®o‹§N£aµw¬Q!§Ä9GÎi ´¸M¶•Ö 3‰x{k%_©ýÛ¦µ7¾ÎÌL•÷\3'jᔾ«Ð BÈÎIÃ_4Ú4¨sÆX›\¹ÄÅG@ÄMçä|/‰†‹Ð­ŠvWx;âjš¾®Y,¢?8Û¾¤¹#d·â¹'s~›+Z4ÅÆ¬iü un|”ÆL^R;µdüZyBþéV/ÿNõR°;¡³·HoêvÜ0ŒFp |xó©üC´Ú>IèíL¼/fÆ¢Ç5dsÄŠ$³„·Å2¿#³T½û£éLÅôR'k·»O Ë ´¢ç„oöEƒÇ,ÃfÂ7®™ÞïÐäP!ÀÌ…ŠšŒÌ$H›Ì®,?” ºO1{Ó†~Š£Zx2éB¢Ö6´Äl1Èï-PT]—mu© ÂÏx⫸ó²û136ó…Ö9Y3’ê&J L™ P¥ëâœÁÆ7ât³úqˆ«V‡º@¾>'A01]“%5PjRt} ijWýcüdïVµÂp1nÃÌøRqQÊš\@XWc‰¸õ0|ÿMõõ#:¶ùû}&!rTn=‚.\x´¼¿G t‘ëU²;>,sGÇ—ñMAÀvèšnfuë Uê8m¤»BV‡ÞdR¹ç«5%K5#²£{yÇ>¥s§ÈgÿÐÁ á6ïÌP—¦m)¸Þ8ÎKru_YŽƒ¢Ü\èræY\÷Ùµ¸UÆl%ÒÌæê|È]ˆ’ðRÂë…ùjk¨l>Ÿ›°cæ†èwïúœÏJ9$0QWê®AF1ym‡ùÝ(È¿Q(îÝK‚{gž´ùÛóDZ‚Á—û¸G+Ó°Hæ  ÷6Q娄•a”;޵íðä¶3¶°„äõâ´rð_kñ—ªð“`!–'1²¾’áÌ–Hó _!ÿfÇ~€®&œ UD÷¡·àU=|Pu&ŠË3`&·¨.‡, g´­~!Uåp"#£Ò¬–cùÛ¤Â|2˜ šÔNhú*j—WFšÝcëè³4y üÅ _¤Úa¡Cµ‡¿ËŸu¦l ¾À̯ÕÈ4z4 c×þ+"£ï`Ë!òÚ.YV—&²¯û¹ä<êzàúE‘ŠæèÔ§î#d Ó#¶´~H‘ùt¹#ã¾>øŸÂÝï,ÿþmØaÊZ2xËlÄËmeuðTno¡È a°ï@XOÝPÞ¡¼ª×3±\<{7°«Æ¢ݨR¬öˆœ“9iŽð6q>®Ã#œoö¨TõÖ{5b²ŠDŸ@ãŸf‘Êo5t|Oc×4A¬¥›ÞÅz+!QšàŠ`³˜&Ï ÊM~°DuÄ —3Q¼ár¨€‘ÅT¦ó‹œ48Iœ¤Î9-,Ž*Ç~ý<Κ7NOøi~F%ÆT½Wh>YdëdiâS‚lù¸ãÈnÄIUR´= Æzî„ݶ”½7#˜Œñíll–Æ\®kJy”ÔÓ*Ɖú|ŽX»À‡ß´6ã´Õ^ýåk¶(Ý–ûÈî)hEÔ\ë,f…ß"öVIæ\u¸àí-gù±7ã×ZÔ 1°}›ùÒ8 ‡À÷aÞN½A U€*U½ffÛ –°Å)Qzõ1 Ý*ãdìò‚¸ÛÄ ì!›/.ާU‡ˆJƒ‰twÜ·ªýÕÈšÆ2±¯æ ÿÇÕÔ…‡§| º¢G;Vͱl¢rqŽ` «ð·¶Úšê àÿTF1u´÷í:û ㈿G4?Uwz«·³€ãºiÂЬÆ(½w­÷„üþò‚)îøw;àh3¶^éþnP‡~¬æ[am´ ˹¢Z‘ªUq.6ÎsTËþ $c‘rw(Ô$Ó-šÖô³øYD½ovPß>Ñ)ÔÇ“©­%¨3ƒŠÑ€³æ‡*Xà$g+vÒ˜dW¼²Žæªy´Æ¹-0˜^"Þ:Ut¶‚Û/‘ÕGýªŽù‡žuY­iL=ëÝ­È¢ÀXhË÷£Ç±{¨ËXhZýØ".ŠàV+w”` JqäÛ ®V—Ù¿T‰3$åÁ¼`Z“C N'rráaùds>`%'FÝ*Ú½ãžøýÔ•¶¯‡ôZ%=ª˜Œ•à$‚ÉeýU^Ðp›c0|džÓÀ?áß틼ÕnP周S^â}éfyÕT_ÕVU’ºŠÃND¤….ȪO0ÖR˜ÆÙ\é&ª!÷Ú…*‰LNQçì #âdö«´æZs¾ÍýCÝÄ£ÚCYêq…˜ŒòÔã»°’³²ûÎìúuKŸòæî² wSNZwWÅñr^õ~Ð :΋ö½A .iÙ"rÜ݇é̡҂ïéG4Ú'<ìR,Xló/4ãCv{“Z•YíÙ>sñ¹Rå­¶1^¾'Ú&T©4w@êÀOóûpŽ+Š6Ä”¦#aåz8Ó/æ·úS}»MÙ>â÷‰-ôô  ÷’?ê°ï»(ýÝ{;圽"‰U¾ÑÐOzíû6׫d²ûr©Íä³^d»Iî†XŸßŒ)ø-8GkH®èÖ‹*E+cÕh¼@ħ ®²`Îì┬¸")q({ÉMm®fJ¾ J!©‹VŸ@Q(ü E›ZØ[p}ÉyûÜ{™™ÖyÅè©áÀ…øJ+Þ'D|îAÚÁ+Œ 6~†ÓsÄh»n<¥‹Ð Ä.]#v]àã¡Z^ ²ÚWvýM½ü†\ªõ2û•þLzZ~dÉÆÕW‘«ÝëÆ^3ÌD[5ëİüü.!±kdvðØW! ¿ôÕ îÕ%V²˜×Õ„ªÃ Ï6‹À¬˜eg*í ø,+âû *3»Üw¸œm|*Y奔Ϲ›xù:ò®eˆ¶ÎélŸÊeö]âJþ­~Fo@jb)Ù×A›s,ôïÊéYwgØófu²$G~ YKÙ£Ý=»u}25¾tT©K®Çéá(ËßÇÛâ6œR~­ž¤¸J €g»޳üÁ 9&Dš’“Vèk–ŒF™$>§xÖc¸Øä0? PþLB5¿?Âݔ̖ @Z’ô=œÛVóht‹{¶€M(»˜®Þ}»S5„œÄt²$äêù»Ä)?æð”û&]–º.÷²¼W!tÁƒ“´åp‡Í‹É_¦ž‰êÍÍÆx9­åå ¦`Q”:vIqžÌ¥îˆ¡xë?Ë?ø|?ÔAqùü>ÈtàÈtóß!®„®˜Ò,P—5l×0‰iÁä+· ˆ&PÅäÙ@ÂG¯ü“_·qÂ!!D¡Ïòé¿*Ø/ ¯†µ¼{cAy›lõ»$lf”ǽÛbȥІÁ QqwÖ>¦W« ì¢_:÷úêºÛêí?\ôxX†>U»™ùs‘5*sHæ’Œ0miÌŽŠ§ÑÓ~ÛÃÜ"{Ör0–lØŠÉóg©7 -”.ªÛR~§„p{<Ëá8¥:gÛ¹GiÐø·êvÅLÎDìÝk”-s¯"AÄw¾Œ¿êÒ±‚H«»Õô$`œW*©&^MõJ5ö6ø`e¿Â1<Õ§bðÀAtLl=>^„GçäÖЬö¡/úkÊHÔ ›w#‰EЛ!ëÑ¿å˜Û=^~Ý%˜&ÛƒÃUÕ’Ê󅦤!ûÚ9;t“¦Ò¶@¼ÚüIëáØ/­Î\Ó×D«sEqÃúïlÏð8¸Í@Èÿ€@ÛÞFê]g%5Ajý(zͬmîWðhµ"§Íg‹š,÷(Ô9lRïI"Åä›52Ÿ+Ó«Ò¥Rä~ãöLV`å‰1žÏdZÔñÀ½È šãÏ»#’{œyHç¶SK·pÇzñò|Ê)ñ°êÐ_ƒ:c/´ÂÀõÕƒVÉ"ÚÝSQ…vÙÞ]îêõ[ŠŠ öys>M1H4yJþ§í$—{cϳþ-‚fàÛsb¤š3*B.(ö±/4¤ÔÆB“±Ñ¡qê‘r¬:Ô%§†ðcß@· Û®ªÌt1“è)§¨ù E^‘z‘ÄKîòuznpm“¡´}RÜ *–w°¢Þæw”ˆ<ƒÎ<ÿÐ[HéÒé*©|¥š¬P©ˆò;Ê©W°Z w–Á}çù oAùQ³re: þúv®€ ª© äï*Žs8Ö\ZS¨#Ž:ËnD}m§^E5ƒDy”Ë4¦T\ä’‘l®Ž(¾´5ñXÁ'Æë?YûË’¥ïá“V¨úõžÌ,Y ÇboPê¤ Z¨êÞo—EwR¿x>·1Tqš„– å:Å{ÕÇ–O0Íú©bÝàÒʾwp © e£Ì wTr+œ9§y|ƒùCÔ,l@KûsEÿ*Q=ñ¯3i›˜3ìžÅ ¼™úœî÷â•›z œq,óî}Y oKrN`6?ÿ*yaÉ»ˆ@ú„*¨”ÀqdýŠ ?í?F»@ËäT'×^!d})eb…G0œx蘪³#yùûú);»û£k`«™‚þY4â_bS³ÇLéH<¡½*íhýp°—˰~‡VC¶£Ø£»ø-¶mÉÙˆO£êÒŸ&ޏñ̆‘p–É7>³3åZÒIï×í»Q-¬0[:Î3äì/ ŽGé%`)Ä»tÊQHÌ# .«ÀÞ”ÁÔ>§ÑöõMúé.Jâ¹ WB(xëß/ÇJnu6¼Ø27…‘ªžgC/2Òs8+¨¨´¶õ¬ÐD<9¾ªv­I"ðКr0öX+(ÛwB€1® /Agcœ×âãÔ|&Ù² U†gÚ‰ˆ ñ² ”Ý}ªVLm‡é´!ë:Q§Ü–¬8 “`$^…à—ê'÷ÇÝuµ”',Šì”ô—pFä#·î­ëM†;%¨w|:ºußÚB¡™¨2÷R¼X’‰Ú·:¢8/v3ϪSË š Q÷rF›ŸüÔ\/f ÇÓï-ÇËÆHKâHqJýû;™0¦)¼ 53ëJ…%ð³Ù¤âqœ°Í Š8s©ÕõñYc¤BV-ÏIy Äê ¾4vô@*°ó¦2QH4BÌ0Î<±éž‡ËÂRÞÆyç$Ù ­¾i=•Ø&-Òÿ†ÜÏÀÜK+}…ŽèbIaV˜p;G¡Ô "ÞY¸˜q<¨ò\ÕŸag-ÖêâežêÎ1рآ %B”/†Z™k¸¹Ü^(y3 î%O˘ªè¡”L¹È¬›>Œ˜ögR+9îñ•YV¿=“3¶“P&ˆñ]F(µ MèÀ÷cô€¹rµâ›†Ð kÍ‚»Œ:ø•ß«˜d×pHw±Š=Û#üÞô—É{5;øR ù2ë¥ qˆÙ%i •)ÄöF°Ùp{¯¤üñÎq«3ÃÈâÆ½…·B]çYÄÀô\>9Ö{A[( «Ó–ºpO¢À©‡{ÇNÛ[6|ýøó|AŒç-RgOLžuöµ—Í`ÄÀ4•ªiƒ C†§;ÎvëØ¿Ø¦Ô2×—:¹—לLÇú_,<0ŒãÿoÇÁwìÖIXL1DÖ-yà5oºP鿆°ÙV†ë÷ T–â–ã]äE/J8e2š‡×5ØíxͼU\Vúõ-¸öÅ®ëË’ñTO*fÀHf KõßÃ=²¡üã·MYì+¶ £ ¡÷˜;´EÄ5ÑT[”ìyI3™ ©xzPõ?¢1‡áö³ ɳâˆ÷|úä‘t½%z®›o cL —ƒÉGŒk¥ÅXßȈËã{ÞÔ; ‘¹pKvùÀ¢™üÀ­z‡õ ‡˜«@!…ý¢ä 9©»`ßÈÞè%»F•YÂ4Ú;pI“—\°kVG¦ÕzƒÙ;]H+‡°,8C®>á1;C>Œöî§„uméC˜ÐvåîG ÄlâtPȱåt„¦§)äÛ:Êxåìh޹mLä«!®«ÐDàøG«CÅ CÑH© ¼ï@K£f(VݼÐÑžUBä"ÝèÆ™ø×mÌa(Lš!åÚÙìU¼p7Èû6Ä—‹«)•U†9'ôá!uE7ð…]Ò¾f\er„ó&*¹ @Šî²>¯:†Ê‘)ÒÍ“hôÒ§rD3ü tó-ÙáJQ¨ß€öKýÿVíÎ]8è%¾µxÿžƒÎ˜g¤††Äµ Ð~–éÇY ÖŠ™l7ßdFC1q‹µ€wŠzxgýkÂ)[˜EvS3…]¼¹rÀç À}–製tÜNw>æÀ±y´–š Ñá<òBŸN¹g<~¤òºC˜u,†Üjñ.H^Uõ·sGp$Äžž¾£B3MÖŽÊÁf€4<@Ôôõç;7!Õþ.¹s@KUñcKJ!¾õ‚è­=IJ/È|ª-> ^ˆÂ¿‰¨ûþ»J±xèT•s®ï»u‘$˺j®@ÃдEÖÛÕ i/Øž @¨©è­¿Ü—lÑs[‹¯l Y•h»ÿç%݆ÌÅk\ýOfñ>‘ÛkÁáP´¢÷-j_9½ßÀù@Ç“U,¶f†­$).Á±C¤C(HR=„Ýæ;ͤ síl<½™ WrªÕƒ©)Kž æ×úøjóÝX  x r‰‘‡Zl‡"»¿÷k¿aÜ»…î6墨VðŒ±pLžq\åÍ—WB@u¼8}¡äOüt}´c€µB—V¥—Ì$™£†oZ“"{L\°—¤…ïÇѯQ½æ?wÍðÉØf„‚ã¯1åäDfØâ0Ì[K:xØ:}Ó>K,y®ñ]1txùÚûMv»á?‰8©ðÖ®›IÔ@NéÀ9@XcÏ VŒƒ…Ÿ¼bÏA£ZúGõSƒí¥]ä…ò×µÓéå· ÉC×-£ÄŠ»g!Ю׏ˆ¬jj?­ÕPß°plùP÷Qg6©àSh"] Wó-rr+ÇÓ×^›wíØI÷®ÔÃMÚ¡£=>kžöEæ,S(m3\dqñŸNOƒP–ÝsÇÆÚ!¼Ï>+h&GD䌎‹q«A9ïÔ¸Û쥧~tÁFçVES·V™å¦Š »Bfì.Âë1ÄTÅþÐÏ÷È˶²VûļžL*û>1pßþo Žr=/émmÖºfU:ä¯×qÙÆI\vèSçm/>ü/v|êæ>®ˆV<(ÔiõFm Œ×èTr¿ïE.’’+tµneš'Ît]âmÖ²m§¯\ºÜ++º†{G¦Zì-/±UÒ-uÄØ«N“!AÜ<|>Λòèćzê'½†©=u¦Šo–}ùâP‹â%ÌTòGÍÈHãWØä×d"úh°™Á¾ØûE|eb8.·l í§­n{^$Až®I#¦ê…0=^5™;8“j‚<”û{6|öÏcüp%5cÅš¨[}†‡Ó¶ÉC¨QÒznLl—æyt+­K €Hª°TçÔò=Y¡‚ÑßÖÿ˜2ŠÛò¶¢…žÕ®`>rs—  qpÎçw€“ÇÁŽå$¿½ÆîÂç¶S´º+ä÷k3ë^ŽE…'éå[dñ¢ŒÜVÇ%º ¦NÎÖ,âÕãê°è)&=dÒñt¾p¼XçP 2'Á CœŽÆÄ'†¾h%Më…{ ÜŽæ›5G@±ËÛÀ±¦FX$=:KCNRyRû!HX‡ô}‡3Ò1~ Q¹.´¸U ./$Æü`';æ/ƒØ!¿4^ýT[ëò§Y¼£^£z›Ï‡wµ£ÿL¶ß[ .B{~æü2%å13Æc8v¤íá×j„ÁP|úªO©Ýé0Æ >j·„†ÞÔÿŒärΫª^~抲‘nV±aJ“]'|#}좺Êý}¿è3ç,ì~–+¼|Ša&"þï%¥dÂ%†W•æÒ¥D¤'#–7ñÓc,]‚¾¨P ”9ÖgdÓiIgÞRûY"µÞÚfˆ|q«»®1œìƧÇ$÷¾ ö¬udý¸ýÌ÷E…†=ÚqOfy/'B?¦zdÄÄ3ð§9¼Ïò^,eãPsܨàú&”.Qw”}¸Za¦€Tøÿa#QPeRZS²V2HFt`¨;ÊãfZ6¸¹•äËèy[e>ÔF'vãø°pÿƒ“OÇí¶ –-#_Ÿ¶‘ÑÂ6qEkjþè$`pLg à,õ£¾Ê›ý­6)ü÷}ü\«Ø(J¿ðg ô|žºf4Ô½ÀÙeQnÒ™K®5)Ž MH°»¡˜mk"òK¹¢…‚ ¼qL\æ¼ná¬ZMý GÆ8_Ö•œ÷¬Òìñúr c¦EÚ ŽÓuÚÜœ^Ðì£ùÚÌõOÂcRÐxí¼ÜCè àGµr<ݪÑö­i<~déãˆ@ÝLCΪ4—VŠR¿ð’ßö›Y¿¾cÛ¸inr¬‡´ ý\ÏÕ×xþS;e¿d Pá¾ÖëÃl‚t aüER?òl;ѯ¹CèÿvA¶ya÷ß‹'ë£ Gé0Û?Ωýö[Ê%“®Ãêcöë“»[ h”r‹Ø‰ÛFpl(gÄÍÒ~Q;5Ü(H‡¤1À®ÏKñ“ÊÀ–+4ÀhÄ6xÌDÅ/a»‰‘)F$øþ“òA¬®Ž‡’¹ÐÆíÚB ŒlSÀ«X*—àÞ°éåÁ­rºŸ÷/høE(kؤ§B3¾yÛŒê£ €úmKÌí2th¿Òé{ALƒf?V5Â;—š(1é"hŽ?Îø|ÝñZL9†ì.–©(BÝöœ•¤)b³a©0ÎZ´£:Ô€1>û1B¥‡ˆÎà*Ê-Ù$ݾ¼~×3Oßö"îg‡Ï_ËYìŠôl ã…ÛffÂú!ûK™ÀéxB>Àçâ;!,(Yc Æ€#T‘D±PÍÚ’rO׈3—¢Žªèbtaö\5۾𩨚tB“ –]¼ÿ¨¯ÚNBÑJ]²½c@“"ß BÀÖ ¹É –¯4¨àHCÒ‚Pl·9顽ICÝzäCnœž w—Bq.Þ Š›u.wÎìtiŒâ€²ùt,c²†åPž?N¹ý+ÑaªÆÂŸ»—Íz©Jó¾ÄlkÓXnZÔfÑ«q´ðÙ3îßžòTJÉ<ºC™¤jDécoègvy!¢¿7P¯.«:©GšÒ¿M†M@¢Ëi>AsåEGó¼\>ì{‰î¡ÎsÕ­W/r8Lb²Ytu¾èa9Ü ømqQS>ÓØÓÖ>ÔÇÄ`¡*D%ªn|«Ì:ò1ðŸ#ŽFE!rμ›D¨Šê‚ÓÔ µàxý}VÒò5†xý­7Œ+x–ݲwä¯ôÂþø¬Â²fYÐQKmÕ-²„Rõ:Öx+`8KW©ÍˆûŽ"ç|+x@ÝIdöâÎB?¶Ú ¾Ý¬Ì8$57ýq.¥Ob+ÃÓqDiÒxâ°ÖĪg‹'õ£YÃÃyÞ~ÓÑàäMÄLN9zŽ¢£ã êþuáÊ-P¬W•¡¿íçT“`+Œa¸h òGy–§“jÔrºÁP¯ÐQ¿ÊË îL.c°Ñ‹²QqŸ|ž°Ñã>*2ÚÀcp\Ó’Rd˜´^ÿ­ƒ7lç{H´†¯lØ^t$‡>ÂýÆÛ¹—xƒÌôØË$ïu¦ÕnK0Pyð · &¼ùYðÔàü5Ï|Æv°AÞ›ˆÊNz„NËŽ*§_tf±vQÍÊ„m䪢a±Ð-£†²Æ Ðfwv?"®Vyo˜ €(‚¹°PNƉmtEF›<©à/Þå;l€¨­ñ:'r™hUb”Ïè™m€+™¨7Hx—:×4.x$¥_4²µî’ãsÔ=ßÈ_“~ýîs·ÞƒxXJÅ.êˆØÐÄ/µD–±_ž%=üì5qÝG²ÂJ-fâÚJ€«Ðÿr$Y´Lõû ¨‚í·víçW°|Þ£[ˆ=­.œ^꺘S{Ö -‚Ò¾Sj£Z¹üWq8Ͼ¦ Qá±ì¨.×´ï.KÉÂÆp°§õpE}c~ ÏI gÑ_J=÷âMt “¼Ï ’KüU÷Û­ñwÚz¯?à†’ýš¿Ï«T~›‡‘q Ïîd³ƒª¦&ä¿,"óî\•Œ¯Нxj¾´Ëêê·`PF‹°Øgäà±>|‡Y¼íŒžsBK>NX$Q)µŽY¤¢Gx”l©¾®®µ^O7˜nºÞCW„ÇKšdà ALßS\™˜= rÀ¾=¼/æòg¹Žê³B0“*RL‘xØî½ ¿ˆ("ŸË!ìûì•Üäy:©óápU—$òɯ:e÷jê»÷µ¸ºV“­~zäåxV €¹k ¨âscWLj%”Ñ_©ùsÃG]xdR¼‹GBo~øèU\#ÄØ:=äk‰”ØÏ ¬ß‘bM¼ÛL°CLŸû±‘ ­o#ý š}ú…)PDû2#–?i;¬ÈÝå=íêÌsÔjD¹PËÈ <åN²c“"ý&Ðþ¦EÕ^Q‡5iõ\{ªGêçT¸¤ûN´ 6›¿ o©nÛý£Ö é O팓]sy´]ÏMnÿÛ#:‰º>˜ÅüwþDS©fKw•à†‚,ô-ñZ Ū- ²“}Ì à`‡š"‰«­”1ïø?#íËá8ƒæè~É?Ü)G–¤RøHå^µX‡ßä¹3Ô²o¹$]E¨®¹Ã!ü xç%ýB":e“qj/À;„‘+ù ´¦šOjà=fÐK¹­g£ãJ£©“+ˆ•]ˬ¸wóc7þ<ÿ Ï6¤fÀÁ s<鯾'b‰JEË/J‹âœˆKI­€©ÎÄ«é«Ä~Õ´KÉۑؼùîÊPvO~èæÆQ!éÙ2–8ÆIw£«>¢^‹ ¨®ˆ2éÝëCöã}-53Áì4iï= è®Æœ×'«°všpüXn2 åÏÎo–O õ€Õaöˇôº¿.ùÖ•?š‡„É {yŠLâ' 1Ž ßhë]U˜™‡kÖ “þ[Í3É}£Ñò#Cn¯8_ÒÉÂF>ÄÆJ¨ÔŒvÓÔ^¡B¹[fs9UÌ;v­ÖAiÿyé3Ÿ€l„dŸI;©“^ÐP¯¬ôš‘å/CwJÿ4µ²A‰!/÷sÇK DþÕY›í¡YÝu-ö_L´¡ÐKcWö¡á¶E„&€ÇkŸ›æMKœéÄ Å ool7ö»6UŠ€ç¿Q ….í<‘W2aâ© ¡j²TÈRåÆŸª|ëÚ»yù·2È!nX_ûn´~¯Ë^xauÉ&­Ütí.KˆXJG·"µÅ9ÇznjG×Åm²¿a|Ú­5Z‹d—­à_UGÖ’Ʊåè¯Û»„ÓóªÃ;o¹$.ù?ñÖ¦å$ìCªƒ8§Bï €ßM&Á½¤NspcÝ“>Û³™ŸÑ~4igß”ZÒ¾Þn1ÞúdPëDùL>“­GfM~…› ¾0lÛWV 9šŒ˜ƒuö`Ì!NÞÌ=Fáp\ªnOû¶/t!7F';(ÐßšÕØöFYëQ·„$§gY…ý'‚ÊÉ®·*xþEô¢„©>oÒïütöÀRÐXcfž5CåmÊÆ #f¬ Ê“N‰ …V‡èð²ÃiÇa©þ±GWä/O9ŠüÒC›¨.ØÙG;I‘>a¿Š{({î[¹_ª†b¼×Gâ­—IÚŒý‚¬í Fw|©ïÆl÷pïõÕuÄ3Æ V4‡zMºv:|6 ÇjóM€ÿ´g,­r¹îŸ­­¦ ¶©Pe sKœª}ù䘼¯ú$'[<Ñ+k$ž 9¢Á ¶±JR‰Ï„²W‘,7ÀqÒZ°“°5dò±Â¹Þd¼sêòò!±êbRŠ'Ñùeœ4ç6˜9'uóIÿŠÑ÷øûUºÚësËÏ~”1d³}¦|÷#VÓ“€òªr[J'H‰˜æîÞ99AÜïÖ^9<ÒYÔ_q?al}pŠNPTÒA~¤ï°ó[7Ó¸ñŨ¯n«µª H#™ÌŸ]‰£ÇS´ˆ&rꀀWËŠíhRù²ýj±¤c§¹äÜÚá¨ÖÔ,®D 2åæˆviƒ0߯”<N‹P›¼ l©È7S©*†Ç E¼ç·D°gN·î€ ä~ oÚӇØá ÷J¯¶úÒQÉдðP[Í8Aݯn9ŽÒû-pþª~(Ä”þà:æ¸úÕlý-xÔ¹Æ6UJnÇëûYѧÒÕDqùYÄ€"¬üOÜò\á ¹©ô!þöCYß‚œ·©›5‡CÑÜô!f]Sp ¿©ÅœÈ x$KbɧÕJXÔ¨žpÉ–K(ú8^ân ûo NÊ?*ÂNÌð:êöAݺvt"5gÀ2p´"0áÕ€l)•÷¸÷ ¢èÙ68´Ÿ/|[‡E3µJ@?ˆŒÇ³qd&m®ÅÉÿð'î™N`Îý"~ƒo¢Mƒ‰Ìæ‰ÞIb¿âü"Ö¿u[¾¦ÁÉYÝMêjä´oUèK_#ø?3OŠh†ÝnÃ2ÄT©6dÅøHðäLÜþA=<=ФºÿÄqUŽÒ¡.É™lÂQ8O]ZOøcÒ‘z,¢Ñr(š‡;µŠ†÷L>! d/ùÓ_—¬¹»Ù(pƒ~ÀÝßÀÑ ^&}»Eê¸É-öÐB™ÎæøwBõÆ&ÁNA»ç&Û`ÞC­þâŽ~uŠôåÌ&89Ô+0F´B·¸ø§¡*i©s³ôo˜ê)#°¯û2HÈ › ?zô`^‰ïe8Ï‹³8jÆéÛV¥oT3Sqé«x€§µ¦¼Þéðn3gÂü­Iž…ûqbÀ€"~ÿO¦‹ZµÆ*áƒF C V©›Vùuä~™—åe„;ìTßÖšR³ *ó}†IãÑUNà&íö·³Ì_“–Eø5ºÚ¨C,æüÈñ ­®–ÿ»ÅÎ!”ðÎò¹6Ôñiãç\>œÚõ7X-.x˯u7z›Ýu¥0DØUç¶Ž)U‡ÙrZ>ù´Ì•9^¿á]ĉêW7» !§w§Y&-Ñ«Êlcxÿ¤ž(¤i1ÓLèÅ>Œ«6’¦N6ƶá/bÆÚÔ'üÿ%*†HHh…/—K`¡ÌD%}ºlo¢²JËk¯¬'f„#?§ #ìÌv4Õå­Üy¥z“8%Á®}JF-ú!Ú’oº,r "ØbÏ`w8gŽüU}Ía‹c˜„}Îò§máéÆCæa!ß›…cGS'_q:¹Ž¹˜pxÁ)[ ììMß9ÿvžqCr/Êa¢ú}†3Qa,ɾ5¹ÓOO.“Ž%¤è¼­“×ÂüUÑ™MÂ8-Úâö &­ ×)ÏÁP)Ó”8Ô?@`ú²xÌ"¶Õc‰c}”k;—ÜãÖŠ¡/Átèg¹–VÞ3ve¹m#ùEÌ)•ç0ßB£bXÿz\oíádÇÓõ÷r™ÑD“‘öž7OÅ´ÙŠW20IÃf8 N¬ÏrìƒáÍO•ëÇ¥ž{^M¬³?«ü3£„5£UÔÆ7¯–s0²~T+zÔbþe[¹úl/hÂù¯*êàVg%Ÿ”7›…Ö¬¼Ù26SC•ÿßÅ/FÛB‡ÊýÚ o¾íM¯òܯÝ<"ÃR£2íÈòÃèwú6ÍXPf¸êÌ5: WdWa~üí/̧‰+B<)íÁ™>ñÔ±ôÆço²¯¦¹€¿h¢«zäž-ñ¹ÜäW€¬JŸÒå:föÈ%ûƹk½;nÏëæ´õ½ºº÷¨vvá3^ *Òc¶¨4d®ÿÉsØ¥cÊEå….ú±±™êªrÂù86Y$Gú•3÷ÒíÊ™™mÀA›Ç Þ]õ‰gzÌoÈG³ëªœ¢ 5½})s!®1$ÙÔ}mRUêq à?ãÓ†­ö Äð¿±Úº× ¦pËÜò‘`/ $=aFnB~ÅÈÇY®4£9+Jø'VDAB2ä0qòž _ˆxƒ“]öö>|ôÿ‚ ÙÜÓ­è 7¤§o•?¥Ñ)mܤ‘Ôµ%äùx~-Õ̆ग़מUÈ¢ç¥gß[d}ƒì65΂E~œïR¶£üúÂo Ôí²¶*íÅ,:ð!÷(ùÓïiuR ջ͞y"PÃŽqÆpªØòzT¾Ý¾àw¨óÇzè‹Ð@• 6ŠÑ~µH餑šþMç{%p’ðVlQtÍ.ä}ì ­A­f…\šüðÖLÝ È‰q✚ÕÞNrÀç_[f2‰ÎÃ:‡„Ñ3– ×™rI€;53â²dÑ HÏÜ>Ž.†Ï@T‰±¤ré²7()G¼Ä&ÔÎÄr·y[‹g‘ºM._=$¦±Ž'lý –õh£ª¯âW·—åÒÒœ¿>Sìÿ[cÜT¢*¹­?0Äqbk’_i (ކ' Nçåx"r^ùþ£j¤(ñÎa¢Ê’n‰0_Óçâ‹ñ½@iî\/£-±ä›¯È›Ó}Ö«µYºÎášÂ«_PÖREï½LÒTð¸ó1äÞ¢ÒÛéSþâü DÒà^}Ï¥—$bèÈ]]Û ¿Z^‚vÿ nݯÈwÄ) ¯éXä¨z÷D|& ½jæO{u¡U¨x¤ÕzÔÅì"÷$CÝü¤r‰€|tý£ÔÛÓïD¢ ¥>¶÷¬Ü LpD@•[ Ûû\&;â¼7K´{“€‹•®&?ñ®ìîârI8nÙVwúÁ‡ã 5¯¾ÞŸÏv¦)V)îhÒÒN8ÞÚV.Ï=)eYù|j˜¬&Ü÷ѤÜüI{™×añ Ä6òg2¶æ*EVCk¸£C`œ'ñ‡ò!Œ]lÊz™N®F/2´§±¡øÊ|KñØ¢ÌhPôâ•8qÚÿù­!å^•8æ&^ËȦ£ª¤‰3œ ·ôF±‰ÑÕ¡˼…àoÃÊã~ð]ö¢ ë$7sn7äŽpfÆ/¶Ër±ÖIP%Ìüñ§4Î] ™U»BªãžKÿÏà^~¨u0f}æò´ ¢°zZxðejGíD(‚°Œ·ö ïQ¶¿K64Ü‹»ivKL—ZÑD²"¹—üÁôo¡Ì÷/[Ø©¿_ØzÛ Ï•yüœNÜ }¬osF­T„®ïœLǃ|ª*C•ûJy¸¤e†ìÊèH·#£=W]ú/4ðQoíì³×‹×…\cŽ£³hÊŠS ýlÄìÿ†O–™½eÁ!|Q{¦æ°~WXÕFŠ„÷¿Ý›Ç¼ g{,IËÔäúV¯öÉ'e×F×[ÑÁ'¼ÄöÓþyðΈї.Ë:åW7Ñ“ö#+$Åêú½)éœlküÂ*#¶&¹N,ĺ M̲Z–"êååEïÔx 1åt¹Fp£…ù, ú¥É÷øYÞï,ªÅ»ðç4¦Ò‹_Nª- ‘äHèµû÷Å×׈Dåþ\r |·ÎÊk1x¨B‹”ëD"4WÿϤåz%Öº£¹…"Ôx‘/2é°ƒÃâ<]Þ릿cÓù¿˜{vSŸI9ƒgßßuÞn•YY åpo/ùˆ]eIÄ£ž&Wr!&tPàé¹þ#ds} d¶;/ žt‡^G……}fúÊI_z¨z±æÜ¯1÷å— ŒFÍ`”¥àIõM|ÜÍÞKþ³W6ùXºÛÒ8HžçgÆ­ë¸hb„]WPû÷ÍÜå¶èǤ3ÁO”¸ø~_ k‰²•ªÂ“WpWcmÜZQdŸŽ*nÙð\Zÿ; «6>s4vñ¯ ¤Øï,DPþÕ,ÏÍs^Íü ðV³©pò¹mVOÕlGì<q»‡WñðQÑv´éL—g¶ÄÆ_Cê×H—h½aÛáæBQ‡ÉG•¼“­ àRôf¤5E°N)hOwØ"É»_ñèÁ;„©žæ1µXP½¦º ?ÄÓ¨òOs/È×V­~‹5 8ð¼nc‰J2û%È*ä²ÉÀe#Í ³VG<öΠŒ\T‰’±¾H¼ô[ K¸dît–NQpÁdÍ,4/Šq+F5iA„ÚT3òÛ^'¶k*,ˆÑ;ów¹¡ÀnY؉¯ClØs³öæ¯ JYcN(¹ÄÑÁ–üÈ&¼<³ªu'9  a´×aÅ«šáW= &H‘Gô†Ž½¨¬{Ìç>-(ƒ¬¸³‰²òìXÙLé-òu"ËpYÿn±Œ8Ð=¯­Öɸ?ÌT}´äõz‰,ÀqLÒ‘¢Zï¾”#×xp+õgM* óÐ ë"yw ³úËk’‚ίZáø;×Ú ý±ÀÁ–ÛWâ<>N~ºIƒ™7ëßî'øÑ6ö@Šðvž[Se1Ñ›Z%8áÔ—ÿ¶™‰7»ù´õѾ2¿{[U Ñ7ð¢õ [^O ØU’T-­Ӆ3„xÍ„-:<>[.º Ã’|9hixã%úŽ6Z!ƒ¡T7ˆ£ií ~\ï2ӂѲ\½©E\‹‰c¯‰°9sq`æ¹±¡·æåêÙ©ºòë¢þŸy,؃"¦~ås‰f°(D„A§´15÷ ˆFŸ77oÿËÃn¡-\)Åž«¥ô ¯Í¼ ¤¥%´6’K ïm¢wäTkgÕ' œ´éŽ –"aWÂ/gÇ&2‹ÝÄxûºõ@g/at'˜_üüýa‘dâÜšãx)ÜN‹M´§ñVgÁX¬…u¥EþÂ`$T´Ó5’pòH–jÆTûzòŽÕF¿¦#?T¥ aœæ| +N¼e× î­NSl!']á½í¼Å–‰°) r»\Ô#_&MWm° ±Ýîô\À;ÊVÞų xÝ53üÉ,ƒšÉ:;—|ÀþžŠZÜÞsÖõh„ô01KzrІ—gÐ4ê…‡ 0&޾¯(âúù5|X3UÞqÕZ%æ<կʢ¥NFSÅ´„$8%rgC•pU_ ÏÔ'UX‹`k£äVÊÙ#˜{ÚîÒ‚³ …>.6û­wÐ'¬c„\¡V(*ånR•[÷40óêó?=`t£÷ò)cÓÃõ#ÝQÙ‰óŽTâò©ÚŒbh' ‘ê ¥ {µ»b¿“§äû‹Y4öÕ3&Õ„ú1þä˜XÃ÷X ¹›\¯4L6>¢ÛIFÞ<r7©Üì c¬l=¦Rdb¡K¶·`5pc™¬ÑñPnHµ”T‚æXm©5!)âDx‰wB3ÒÆgþ¢(kÃu©­|+þ‘ð¥sœØwþ´÷>.TÀk¥†–©j„©°l!s¤N÷˜A¦iÂÃîûùŽ!Uÿ–V•þ %“\ Ü<ªîjþ)ç¹ÓHúÌFy²Ià8!ÍæÃËïØ©ùWüú­ô‹O-I©bŽ÷ëüßJ½Ñÿ_ÏtB"ùÄãD§=œ†›an1å±ôãDà·g!£Ö÷œÐ8V¯Oš™â£ÿߟÂRŠÖoЉÎöÈÙ»Á "š$ßV‡’®¦ýdôC‘}¨Ôº}óÏ~"NTž$Æ>«Ù„Z®=jï2Åà•ÙTìÚÂN™È*ú´ÙÅNM?,îC¯y“ØÛ Ÿ¢µ1ðlx]¸ö¼µÔmo þ\’ 1„87–fÿaª¹´6²í/^*ìÎ6Öƒ=n9f`,X"É„Š\I{&)Óú` W@WÁ¤ª=|3aªXãSð?"×cᥗ¯y"ÄÉïðÃ1Á¨™Ê=Mm0u¸#íJ˜ZmƒP¼­¥mZ„3G½§ºO`ÜvÅ ™,ÙÌ…Ì–Ä„>8¬ê· pÖׇ©ƒ=;øÝZÈ'dä•7¤óQvm4zZ'‡•Á@²=OØfXþõëÎ<ÉLŒ;§Ÿœ3U3$sîSt*PõMLRÂA,%Rë#Ÿ™ç‰á·†%2ʯ(Ë9Iµé'M@]q¤”çdÕ¹à*„T½Ùik´º©$gIÁáè ”ÿX]Üõ°½~Ĉ'ã/¸ÑYØÈØ &C|)fãíxtÒÂd°'fC—z} D=ǰ'UÀÄo€4Ù²jÞxw~éæ²„%%Y?He±Òrò$ëoAEí­í$ÑÝ,L2jì›ØÓ[f#°Rû߯Î.áæÌ+N“¡ÜðA«™¡9œuN©•åøí%×,lyÐCLp†êæ&ó.®k=#0ý–é†ëU„ö°WRfÊ÷+-j½ÿÛ³ä°ËS0Eb)õâÐ 2PUñ·xÈ@\íÝó)÷Ó¤•ä6üž#ÓÕ\î*Røž –c£4O³®ý ²Œ«*usÛÉ{dY6²ðò÷=þcœw ìŸBÐs:(m9‡•l}‡ #Ñ–|ìO¸[:Mx–Š ˜lPèèpœ3î3³æMô*¯Ê!לèŽ)ƒ \+é(3€ÔuîE7ÐR’FÉ뇆àr:¶L{Ž”uÖƒä"«ÓnÝ(8‘¢¬ŠTÒ €vÛ¡p[U„o#Oiii»wíû–"U,ßWn¾udž]ä×fÅÐí ‰PîÇø½¿#ùOR([OþèöW÷¸qd)zÊw`Ø,¥îOO…îíªcàÖ›s?Õ»O'ÇÅãËv°ý„>;Æý® ”A/Ž E_A8ä1-·.¸ÂA ’@T"1¸CjÅ×Eë" ÷d×´\¡ãË{¾›0.´Bf¶Ã0¦4Â=J"¬c8ˆXZ«‡Mùk.D…ó¦øýLAU[h,`ešµ§¥¢z”<© £üÄñ¥<¶J–~ÀýZRÇ7(Y2”¿ÒÕ˜8?ŽÄ¾ñP[Πϲ†¸8#·†­´_Tû¹=™ _8\5‹fº"HA3DT ØèÎe³wËÃ^?¶Ð/è×”6r¢4özk®ÁGýPþP ÿjÆGc8L„|ÉA_^¬ñǦ^ïê§òï\¡¾˜r,öš à×IöÚQàŽ67/åø2×E(IÅOè&ù½†ð |A…9A=ÌÈ‚Ç|{ZÓ+Û­¹×·™—;¢’Ë ˆñ+@®¶Py®,À+È…62äë©OôM&-ª!Ÿ…ÔñS3©•H@tö<Ü„õ½X ؆shÚ!0(â¥&tKöEùcåüñ¸›}Z•.èåBú³¶Ù†Ïìkxœz30'$q^ž~Ö†"¦“FaŠA¦Iõ†Ä6€;áö|'©sòQPTI‹Ð:$Eò¤Ù¹ºJ·W‘u ñvW/ÿQ0Z¥"±ux¼‹¬Ž‚ãÏÙ%tÌå 7ÆO˜0ˆu‰°ÎwÍÐæˆV™dˆ btÑÔñ\Žžo¢¤é–MjÚº 3(¬wud`H$>ùO(rÀù è{·¸Ü!‰l®JQñ8®Ã: ®§ð : #´»”ØþV€&—J øÉbïêßé¤à†çq>`ßÿ¶8m€NÁ¢;Ži9©h}^ìŸefÝ ´ YÖÙÃÊ"®;‘Ëêê¸#Gyñ,ý7“zÎA ©·;Ä„Åàt³â;˜­ßÇ—pQÛ ¿ŠË}ž‡Öä +Þâ KŽ ¯4ç+çYÚh[ÿ¹238®Šð.ðHJrÎ2»%Æø>[bÅŒ]Ø`¸WÖƒl¬sYCÓcd ÷ÅÓR{IL˜6C®uÛ'À+°’gþir éÜIUŒHNbŸÏ‚ñGvÈ6ä׆øwòSFý WÅÐi¨jì–Š0T;njäïo`•j"X'k|¥ dÓrÕ£¬&<'“–óè`^p/„†˜ …ÎÖáG~¤ÀÞôÚð^âtw{üdðl#”Ytcâ¯ÉIµ—«ªYìœæfTÎ7q«+UÍ«mÅÏdsü!\Ui7Û‹C–jîÅ×}:ÅGhPåˆè*áðGZ(U™tþ÷þ¬‰˜¯läáM†º\™ÿítuôù Ù®ò?àÑ¿ÔBC’^£¯Žmýjb¬À‡ì¾ò›÷J>ß•ú£-YÚ}° Ä;¨&¯8c£_¬¥þ ò´³ç0kEغtä'\µOq2ùn›0™ÅCâü•1ÌÑ-5 ïàH&çâxÍäähòÑMH@âu{‘êÓ!&D8ªh2ÐÜEÍbió˜lLa@Ê=~ëà”î¢î! ª¾ârcöìøÐÕk‚܆h?t#&н+‡?vÈc’ ±W‚Ú^@àÖBSïb¬) ˜T’ÈÁ›Z"h&íˆ!æªÉå Óì oCk/œú “(øGÿÿ»m¤rÙXIk™¬'Q£°"Ù‚$&€Š€Yzß´¤¢âöà¥Q$l¾ãq¯ÞŒzït¶`d:E4{T#‡Y-5µãynæñzDËJ¦õü[ `k)?ç Xè˜ý}Yc2jãáDp¸È èñ»ýÌ”Â#Cs°ÀÒÙLȾÔôç@ä­ˆÎññd¿@FÝ—B“ËÆÎòÔåw´³t¥•?!Èœú/´óDÕJU(%âœ2¾Î$MK¼FÙ ]I­Û>1ûF9ºæôËádS)Íœ+° ¬Ø&²­Ì­ª£e¦S9²(k_ ž¡ÕWàHßÑæÚPbw»EœãSßAÍ aøw)¡q‹å²`þ±´T4qŦg!»óŒ˜Œ/† káûÐíÛÔøžk@=¡Ä ü0JS„ާ]‡Q5`$v6Ðsè'³ãÊÍÅ ­Ÿeï·zªÇ, 5ËÊÇÄðüe• `Q°FìÅHéà0½Aî"Õ¿BîIL„j¡8Î$/g ô XÆÄ1¬p‡=Éc Ç;­±n…žÖ™µ~qHõØ•æ„dg0”š<óÀýë>ÆK$µ"˜4€¤¬B]˜ÙÉ~UA#ßãnýÚ7iø¦Ülú3–Õ‘ôF¿Ìr/mb—ïìÙûë½!c…' ”S2̧ù=‡EÎÒt¾—0àS‘ÓÉVó-<œÂ"ý®ÐÙmÊ1*‰‡–¨»r1ÿYôJjŠbû‹µ¥9!Øw¼ ²ïãÐäO’ž?-@fŠùSÿª¨/rßXòa;ÀU‘™Úƒ çÖ0îþóO)ÇkzÞÈy²UÃg‹»öOØÃtôé€i‘xÑš-ðE†Ö­Gz‹C—\ Ad·;Ôu9!’dÖ´iÉÑ„wö@ˆ*¬íáþ¦Æ‚šßüÿ^×vN†u¢õ*~>ŒMC¶+.£4kÖ?Ê`GÙšœ-iÉ Ä™ã¡pÍ3MââxßQé ½®WûnŽŠ»ŠŒ:}R©»‘>VMÇÓA“~¶ï¢5Ð﮾€x¶aMN¿"DMf‚émZƒJàHOó¦XtßlcõØüÉKÄI³khݵ Ê¡ÆxŒàÐ× ô£Xõl §É/¸Š!¾Ê§ºAðüCÒF‘ÅõìÓNÕƒn‡utgÆÖõïÌ"Ó45³QÀø÷tDÐíÇ¢•*ðýµ‰œØb6÷ËR'¾Ž°]ä€-¿¥:óúøž‘EñoÔú+-¦pï:šàÖ©ï“ä° ;Œ ØzU¶{§$¼ÐBÝfZlJ âœHP·ýëÒ¢haËv‹ÀÍ–£Ö¹7B; *Ïë ÑÄ q;B4Û¬Â×X÷ý"ÍÓ'BÜVŠ"q* 1Öð?ƒõ™,û}§.|ëªØÎsãni§ûÛ¨/‹¬VJóÀA%ÎèêÂ$9ȶÐ$®¡[î‚ÒËcà‰á£5OÆðËGl,^’ QåøxAÖE|ù¬ŠËP'òîá"›Lk”kö)^TïH]ûÅö"žåD(i¡®Eé8u¦( aq`*„kö]£K¨ov7,›ôˆõ9"‚L~/FŽ Pû–M%pQݼ†»,«©Dp5ÈW†»\ºÝƒN®À#G¦îœüX­4~o^B“ÿ•6¬(œ©&ïm¯©ìˆØåÄkšHGM²Ò¢çH¹¶Ù%¾ÏïâR«!wÔ.`——íè©JsRÙÊ×1‚ùžòuï6ö(Ñzf´ƒþ%Õ2¯5ñ ߺé„åwHÖkº*|(ñÂÒ2YƒÇyŽ«äå#¹à5 Û¨ÿF ]Û1?­Aq¹½YaqĪâ‡É 0§D2׹´-úÀ›|<•sSÝtŸ– “åîO–>VÌÌø‘2«Œ† ÏYVZÄuÌ,³¦c’jJ$ÍÞ4ùžÊÊðå­»JH‡ÞN)½Û?½Nï ;ôZH$pžm ÎÊ$3 †ô˳çU°æ™ùŒüfŽOÂUpK<¨†5´M”?C‘Š[­Œ†!ï!9H¼3äÈXSW§ïºáb‡®×_ÇÜ¡Øå9 çyó:kS ?|ÓÓ‘:ã1 A‡.ˆ?Փʆ¯AÉDËI1 cÏ䯓‹aH‹?çzz$˜A¤ÑÁ ûj²WGÒ!œE[ yÍ¡ØÑl[ÕÖ‘’×cïý×fePøñ'ð'‚Ö½}¾ú@Ø6§6†9+‡Ð< ù¶°!zê©ó€lYPVº©LFg¢¨ÛRÐ}pʼÝìGk‡ßjÏ‚.¹êÈqiTžTe‡ Œvâ„VU Oü’ÒyÇ Eú{ý”§„U4îÔ¯gzºZqfšªÊfÞ0„ÝjRƒ«––YÁR‡ J ÎJâó0ë˜AÛƒ¤€W-6 ½¸IÀ?Y=Ì(SÃñ>£oå4„•úÐWD‘†D †Õs›„ÿEƒ}?u©v .Ì4vÎÄð­Î".‘••J ŽL¢Hpo¾2§«ãrÊ"Æ‘ÙÇ# b[dYQMTÄ\k“ɼÕá;ƒøcç2¨J94c±ehòÛîÃäríp–0‹² ´I~ºLö ñÂØÚŒõöê«#ÿ€wØAµëaA¿2’¿¢ŠW»$‚;2ýPªÁ.ÇÕösáëŒuB¨ÇµOåÜZ5qéêñO¯ ÌE·¾õ-^£Äg¬{ý}ÃÒŸ¨ñˆÒšFçšâ§Ã¢Z Wîj#pÊá*ãK±ië=é~¯zµT¼u⺽[-£ÉªólöÖÁç†:{õR0ÿÍUÎyc± zëØo1ïÀ╌`柷 ¿“×]ý°ÎÁŽ®œnÌjÞÖÈÔÚ™_Xà˜e&‘ DõÿW_IÌ„‰ÝôžU 7áš$ÿl¹“;$CH­iÚ¢“«$Ë:Yî`žå¯£{Ñï¦Ë|ö÷»înŸë€:h€¿ÃUkïÄë°pMcX‹îÙ3bN; -Å8•µ2ÄæÚf*l’%*ò~&õDHJV;lîNW´a}ÑV¡º]²–჉€·¯OôÆí{LÆSG‡[A€¦üK†Óú»Á¸Št‚,S¹üTLÀϳ¤yx£q2m{=q3–ÙÏ?µžŸêèr@¬Õ_·•Lnþ·¢£mwÒ^ T’ çß>—¿"pëG§±û'‹¬g”`üé(ZädL­Â ~½:¼ 0X5"²]{h§Wf©0¼j«Õ释ú¦Gð:‹c',lîCò|‚=øù¸ÊÆá½§-šÖx eþ½4S5™55†!ó&9ý:_@W³‡ÉutÓËë·á%]Òb§ ‡fð*[âÓ†Fv%'¼îký‘øúäcVŽxõ÷Æ{÷>ë»Ã<©s¼ü]._,±H?îë»O¶/J‡Üw—‡°ù­PR?/ðÏ“¡ÏÏßbÌ ;ó´ïšždËX{-ç$Ðôa¯S~Bû¹MY?ž/(ñ‹8ÒS¸ó>­»;;L,ù¡2ûæâÁ! nÜÙV4Dd^VÄIp¨™‡H–{ÇÉrò‡S5߀3œÙ‚÷mÔ €,ïbHñ P+>^«é>ÎO]ZmërXôpIé§pÚi^¤l'8i $sûw1äjUN–Ÿ?ƒÅÏF:õbÙRyU áÙÌ?kÀù¹Ø•3¥w  ßmÌ`‹Z;‘•:ê­û#6îÎ>,âÞN…bmÎÄPÛÏ™‡”&+pÈþ,b²Ì°Ú‡Þü{!¾‰¶1µPNòbïŸxÃÆ‚€ÒšzÕ3ú9=ÝË…ÝK(¡^!¨6G òÇ9—²„¢øœEÖfÎ/·dËU–n®V~ ÛÝK‡¨žƒG€MúÖr'/í|¿0 L ‹èwíbbÍ}ä1ß>¼{ŒÀí8Ú„'ѽ&€ØÝWˆXÝ‹—¸“§é8—áâ.7× ÇK ÎG]ÙP0sÛJ>¡ml­M©¨ÂÆsNщª•8W:Àp¿1r¢a¦#„HÁƒ\MÃѨ=Ô~-îð)‰7ú¼>ìe/þ-•?‡uÓc‡aˆ/TXôωŒ¡‚);•‘M^5>9W`‘Öɼ™Ô @:aÕµá2Ü$hîƒñÕ~t+ob» nbäÑóˆµN³´r›¸¨1¼‹¹Ø£Ãd·¥¹x k&ù?'غ^Zl‡½r°îz"ö§‚“-‰ž¶Ššeäs8ôÞ¬‡Ýc­¹¨°‚³óúîcòÇ`ím͈à‹vÞŠ( ¤tâîL­õ3>šÖ_¾r'¥F¥Ì?À•SŽ d¸0¬yá`À~/¦M¿ßÉQÒ0íÈj < è;¾0ï)‰€͆ƒÚ›åÌçÓTk—Ž®»´„êïKr Ù¯ÕuÒŠtýWªîBQÉa$ €‰S‡à4iן£#ÙÃ$ÙÊòqx=ÐÁʵ[ù;An1ÑÑꀠ”ýÊ?Õ,#å7§§¥èž˻•+„õôç`.ü—o5Õ-ü4#–@ÁîÓ¸üÒgO+ç÷–§§4?&™ò‰¢2!šŸäišgð«g÷÷cbA¢ëŸà­ÐîÝ×X•«“^v¼ûôÎ%HC“ÅþÓ—4qG…%ŸÀVQQ &’`CF¦ð®(~’ñ®±ë¨5«x†|X6/Uñ{0¯/ŸŠ#³-ZRÂy õ„SÇ1 °žXÀxMk•0dÐvqÊøBì—®I¾[jUé}©3oûî†O.»"”‰0—&ý#ÿôµ¦ QÉ 9wG®“ío¦97c÷õ‹%©f÷ ƒ –¨®®PÁ1Žjˆ™ŸN³Ù;pm ˜çÕµ:gEð¨(R-ÞLzÚT4B¹U" „6såÇÀ”øÇøV(ÅS0ë9ئŽsâj3…Ü–>ó²?×ãYƒºmA¥Gñ~+Žm-·R¸¦¡ >]¶³€%áaÿxs!¢vãzàó.an-.˜ ‡O"­cl×ÀC£83v©Å$3K¾D@4ÉeîxïbU+˜âö­w’×ZçF*ù§ JGhzã ã§ ´MoRö­MF1ßéЊþ² Yï!MÇ«‰bËß÷ˆ>CÍã´ø½©ó|É =j8^‰ìOÁíùƒœ_ìú”çW—ΜEB‚5ŠqîÑš] jÜæv4ñŸJûšÓdF­Œ¸}ÞK&m‹kQ ^ÒîqZZ™+wcB$ÑAîø:äFÚàjEµ»Ó%^²²ÝÔ"aùÚ;±ŸÆB«H#ìj§gÏÓyí“C¬™r¬Špm¸Ðq‰wF¬yˆc=/ñ¦¦LVÏ‘|¢VçÔ~ÐÕsæÞ9{^ ÿ š–ÇÄAêbÐÓ;bØR«ó ©óv “c$Œ „/ÄÞ½0ØÖB)¬T¬ZåõfL7pLˆ*:ƒí´¤?ÌZÑ´™d Ž˜®Ê —ÅôÊUp`JÂ,ì1ð«MB˜¯û–L'/¦ÄfÏIFS *<ˆ¥å¶mûƒÉ¹ƒwV¾.@ ƒI’í¿ïö0Ô®ö;¬2$)¶ÖØÇû° ¾¿"½eYR¶›Öÿ¯øìÈ)ÈèW“I‡PH¢(eœsg¡3½ú;¶7ö`<)µê¯É±›öþ¡e¨´æëg1ÇG§e‰QÊßo'ÒuÁg=-*~¦ƒ˜¥uÓKOâãzÑ“šàqb©gV„÷&w¡ÃI`VÕ¦5œŸA“œº&¥qóÿr¬®œ¸W ΃èqöüÒ¥ù¿ n =n6¤Ü?84èé¨5%;PçôŠüÆzéÿ°šÊ:,z5Éy©ß&;»H‰&};<ÊV—×­(ZlÙ›ç«Ã¨Áü™YUI©ô`ÉxpÐ@ùdꎺõç‹CÖ-‘^&yÇgtX>æ¶Ø Œ®õ7b”ˆJÂK›Õae É¡ZðXñiìsûÑ>“±ÒöÁ~ñê±TX_YýÃ>VÛ¤J ´c Yʘœ4 r*WyOHî'feé–kÞ)Ž Ñé‘:àÐU'Dɲ¬êÁyLµŽáÓuû22È©&Hžºª¡ ë¿ÇÀlªR=ùþ\Ð;„gU_*­h¡l ¨>›`dÆû×/·±êýÍõi [Ë„Pˆ\ìëfº˜€æ¦ú8ad‹/±$‘?}öRŒgTx)Ü)Šù¡$º¹xfÙ½-rŠ(LÊż½ç]µ=‘7TÒ o‡î49Pá êö?]åYíµ¶ÛÀ_zL3йªžtªÕ—þ‚0ŒŒ rwüì¬þÕ’¼}GÅÕêɸéž%RÁ´®=È,¶Š#ÀÔÿZl"Ÿb‡T¸ -p ¸ ¶ €" õ ÇQĊܽ!]çæD°­¿C×ñÀÉààñö»XgšM²æ³}p›}¸äÔ³ œ°9 +⇾;kh¼&zÕÙÓ¾w9¸Ã¸#[“|íß«A̹zo[¼Þ„?QAp u'4ùM(fïœ&o?|äq…Åyî\jõÁ6í3—"¦Ó¿úZ?å¢Töœ°Šmûéÿ•TÇ«9|ÐÉÜ’„:üšÎ2 ;Æ@•l,¿ºè“M¾Ùr‚?€ÍZ…¯kàh’’¤kŒfgÝêúÿæ*±â‚j¾ìõGŸ¾5Ù£¡¢øÒÝe¸ ö˜½èKÄ×È·0ý–}ÑÍ¡¬ÓûÏ6}hïxÝBÑ Ó™ZVP0 „O¼Jj [˜Ý<3j”ÖÝÖ£“W ”Æ[âÈ›â,1“lôŸæEwªý€¶ÙnkŠ ú“NŸÖ¶}ß^ÁÊ7•=²Tõ}XѧÆG.æoì÷oó=¥üÐx±õ›»aaqŒ¢ð/ƒÜR Þõ~mj_‚Ã$,óhÌy¡zw³ÙUÌùšÏ¦Sa.!U²*ö¾\¥¢Œ>Á#‚ht.WËuÞoGI÷\Yarái§Ö™ëË®ÿyoù¿ÞG#mX¬åüŠ .!Öe•[mä5 ‡¥ƒCn¤†‹E _ù§‰Ç¢'@E<âyÐCº*«^Žýƒ’¨‰"H´àZMÔY,5˜¢ B1"ñzä¼ä‡ ¼Æï_wÆ’à ¸k\A‡úh¼‰…_BE dc¨EQŠ·.À9ŸCawudõ*Y¹-{¥ôô؆sê:®1.zð4¢’¡4”úÄï®á}f×ëÇ+!5ÓÕÂö/ŽøÓØòégí7zê´žÞcÀä«í­Õü<üª¬b¾¤LN2ÆñO’ßœ „±©°&;ª@~O[¡éüCojίX'ù°UîæF¹\)œæ×¡ò©?_Í(bþO2nm¹ðÌ ‘ùÐæ…tø£D3 øÕ™~t”gzìjŸ3æR‚y‘ON¿Ôzácû‚õTé»gë|}{‡(,¹Ú]0þk!&nR¿ge>#ñÄqâߌ™¢Wµ¼Y8u /¤>KT¤'G§hÐíÅ–=s™\˜ ‹hÎuwbÈ 3ã–ˆ¾ÕšB,°æÌgïE†´qZH‘6*Œöø¸Å݉6·­‡çAÄàW§°épÚ0ÿí‚uÖ–uOË”|rB˜²ƒV<‡35úvxYêšÞª‡’çüÔ†Jy€}¸½„­èµ]Iýú™Eèãö‡fBÇÀ Y=Nce†;£Æ¾‰ç#=ñ ]à1Ç\&u­»ÿÄS-ݤ…^Š(G0õ±§¯&j{Ç@åüò„÷ÔYûåóÙéuï{g†˜¼Ìƒ8²sÝ/5* L<KþíAÍRgËEͳ )Œ|Ɖtì~퇩ìàd3V1\ý‰€øp3s EÊ« â8CZë¾×!²W:h†>VH›tJ•z‡²ºþ­°`X:†ì+ÿÈŽg¢Ï^&ó½mY †{ot©$Y2Y4¤fÜ/Wéʵ㓤ö—näøSW«$D¥žõY1ßv[6OøÄy$ŸÔª>zI|¥š'µ;htë§Ç‡ò±¹ÏÃjfVžgq¥~é÷,H!kÅÈ©Z=&)Ï¿ø R*ÏQœO)5[ÐÈékð²ùV]Ìx¿ô.¥øï$áHÿGþÒé¿pÒ2R\¯I©–ë’°Ð/d•Ý'‚bŒÀyOÈ4£ííŠÐ=·¨ÅËÃûq«¡0ZÅ[ó ɶLa/Îè÷!ÔښЈ d/õ~õ-D\ÍWX KZUy|Á Iaÿ¥±=›pÔOÐÎã‡éÅÓ3*ü‚‹MVQ?ìÍ„n[_QÖ¯Ö¸ÏÍŒUro”rÁbì<¥?5¨ZDw`L·àÒ t5Ný/4ll㸧s.¼½]" ô59¸ÂuÅð.9ê‡á@‚U Ââ¼9áÛLëIx¶òNL²®4aZå÷y‹Íì,#—dd×ßÖ vXÓT âv´9›ë"AøCÚ““¬,G[-ŠÇS!²@¬¢%üáà•숅þ{Õ|¨Ãã‹MhiàÒDÅ\µËÀœ¦g¶Õyzßjè9 –jVwÓ?ó~“ýæl0è<ÚG^`:¼˜èLÛüF¢uBLAT±Ôm˜6`š/ñ³€œ$ãø]2«¨å:ZE¾äf,òï·¼(°üK¢.Š.NV£a9Þá,WréÅ48³çC˜A" “^æJl‡;DЕçø;F:Kß긶ϓ˜‹S6Ó§Éû„-¿EÓlÃkºÌ£lCÿ>šÔ¢h0K<£ÂèML¢ù–æù)¥^êmE¶f6„?cL”ªÌ\ºM2¡°Ç CªÌTÖΚë€í‡•k¤Ü»ju\ü¶^§ÓïŸòŽ`­'ì/iP¬R^µÊò8Wó`Ýu ÕÚ¹ØôÄŸùŸŸ°7 -ùöoFµN•A?8(Åm h ’þ¦×y"sëCŠ£˜ÙOkˆt"Ææ(míugÐpˆWÓtH(‘I ýÁÎÀ]¹.P8³ïüXõ!HT׿cjÿh ÛÀØhjÌìžB®–]o³<{$Ùx óéW}b貈>qú·âÔØ Æb^!•ÑK çøb¸{ë mí±ã1,÷.}¹Þ´ÏtÌøÒ)BWwA­¿† }Ø8Ε=Ýw¾Üùp%2ùm±e{ú2/(oÒˆùŽ,éx> ˆ¹ÿ3l->³UXBåshó>E—^{U£º†‡U^gÞèZÑþ©¦Û…æ«`®ˆ-w)¢7_KâŒsÎ ûƒM¦A‚-6@Ãö“?Ømã%S¦CÉL¨^ªûœDí™§¨òìa¼¯%dîÈ(sËÉæÜ¿ö.!œ*Ì#à­ü·Bj¾Ã|±ó— ‘Ý!ˆ?©KçuðVÕÏ<3Ls¿&#ê2Âc†CbéE]qW°dÖë#RD0XéáVXP¥è~Y\Ú¹ÉDŸ]MÃê&=ÊÖæ¿ú¸YРƊʹGs‡Ê Èt¬BnôË»¼ÆpF"¾zÔ*ÔÊLÀ-.ì¸Ñ¼-÷"¾KóàUu’®¼1wèî½ÂîCå{ÄM.?tecÍ©±)lךÐ~TÒnÓ«õóIÁ°Òõìšuì¿Ü23•Ðá磛  ;ÚîŽÝgL_Á¶.¼ \QÆ7ëÀüL‹xO¤¾vE@$ëß"Ò€YF‡W+â+asÛG»/=C %¬´%ïÁÍÒÆïqÖÈ„©ƒÂòFòÀÀ‘‚{Â{[–ü»¹áõ´‹t]›ëˆðŸ‘—øxv¹u±>r„FTÜ4ÖÎV8NƒÕ‹‹{=7.··RêKÞ$þœ³–פ˜õþ \eÓ—“·­ïZ5‰<ÒðAø?Ì·Ùg%räÌ«T7Ç¥òE cʲÚê¼mì“a~W¬ó/=“¡1 åÉžR矫tk¬GìN•öÅ›Dáæ üSHË ¢ 3ä>â §™p» +5-# Þq0¤NÔéë£_ú"›YÚdö‡}KÎf«d Ò+­ãÅ5¢ _®«Îrꀮ-y6VÆFÚµ_Ïy5ìһΛü( ˜ŸfÓSáSJië}Ù"‰!PU 5«…x GЮ°ë"(s¥ñš0a-õšÄ¨ðä¿ìOålª¬/´âr¤öxñ ‰`qphyW[á ©±1ĸ7I¡ÃŽ|e»ÔÛ%°;8òp ”( ^š?3ožt³˜‘kÊI70g_D>?u™oå~²» aÞˆÃSQû Ñêcß,kO³¼ï¦OGÖE©ωI÷ÆæÒÝ2¶Ë×àñïÎÞ:4óß{ÅÀ —Àv@¥ö¡ht¡ƒI¨˜˜˜ë«.ˬ`wÿÙç-ªý®¨.ªô養˜{˜uè÷?b-ŽåÜÖ>þzNF:lGÄFmÔ÷ýï°Ÿ|Œ%tMN/5λF”®“ÆÍü#tÿîwS9¯öú®·ŽYBå[Íþ•‡ç‚”Ü8‰N®½¦a‚Mþ‰”1{òŸç#9kq‡Â’Ü B§î|x® Êú„ɇÏâ(8Ó–Î1YT$øH¨×±%¾·vöõmfó“P$ã,—ïÄ··b²®SC’´,¢5 ßÓ¸~èû¸N[býþ Ð~d"Aú<íc9~‘LÁ–r¢D¢Y ¶jœ‡!¬¿Üub­ŽRf“Îxž™xߢ˜óryòÚ}:}“'úfº&¿Ð¿ö©Þ,§ *²SMr6›h¥ÞƒBÇà;«JrR‡ÙG§eç))ËW{Ls(ˆ¥UXÌ̾³7ñ¨öœvš}Î×ñS´Š9Yç3ý娲êÿ·Œ«ÿ²ò¤x®G¥«B/!1B«T¹icèC;7ø] ’%=æh~^~ºàþ;¦3vµØÅë|"M/Œ¸+ȱZß& 7«ŒžhGÐÂÁ­çvZŠ~ÄwŒvì-±ÀSI®Ä‡Â9HŠ6qÍ ]‹b½X¨(pËŒ¢䟟åi­¥9j9Èïñö&,«WÃvÞÖ€qæäë­fH<¨çsˆZµ7wˆ§`ùhuNH~ŽÇ⦼óo–Ó ò´]U­'bƒžÜþ$-n\äãÑ*\ßn‡¼—B¹ É[z4SSo¡V%ù‚`§î5iÿë[ ýR«èMÞ‰ @³¬ªÎºð"ö·‰€¾že SÞÙ«( ñ/2¹µåÖ †EŒì5è WºŒ¶ðÞäé]}ä] ößçß„*1&i¦³Ûx¢ìŽ£êTŧÙƒÞ[‰×6^¹øÛ—× Ò ŠÒr<ýqõ=êjyºc ˜ûaÁùÔsc9ë_xàA¢VhIYSýEìK*, ¶šä°_ø¨«C}H3²aâ¶Sá§(”óéuŽDQ0¢F­Éðô€ïÖEí39˜oÈ“j7†,Õ´‰ ”¢pô¡õ4€~ü{nê?'¾`Aì»{{.zðñtc¡VžûX¤VökÆ{éþšuc-óBä„-Ù VŠ1ß¹Öާ­Ç\0 s)8û®ÌÞiOàsËä6èãGl„îF.0áÏoùÆ47ßo´ïf"!i™¯}H;Fšÿøm‹‰¡åÊ;hÙ·¶¢,Ë€VâàUµe׈¼ufÉ©¢døÌXž¾ûd Nj7)‡îvëÅÒ áP}Öˆ“püM%g÷-£Õ0gÿÑÎ3¾Ÿî{h{º!“lW4NKb&‡¸ÎqÄ3HÝ|ƒáÀzµ¾W¸ÍjL—|ªJ1½¦SÚ!¹@„\ƒÖ4ýŸ Q͸ŸI×óŸ œûÄñgiš’E3­Js†4|øSêYû0ª"Ó’OÆÑjÓC%Ϙɕ²?åõ·f0cA¡V#Þ—Ý{5mAÕ‚?å:uˆŸ…f¼iNĵõ0.R5V(9$Ja/Ó•C??¤2ÑÆ¡ñµ§Dé<·a}æO¼”¨ jM:„÷‚ŠÐúˆ|kMú´.ɤ–EjN£½õa§®ÂjˆÅ<óOš÷p«LÖÇß*Öãj×ç ›û%N—-¿m¦µ†Ú9?|s¶>”¤H±#$ܡ՜ó?É~•£cÝgñ¾‹¦&DØ£I^µv}õ6¾³mæÆÌÜ„\ŠªãÆ‘Špt “{&‚‘Nÿ[½=Ë5c¿îJ,TB§zŽ"o& ¸“ªßùéclr?7&‘¶¤Ï'ÆOÃb¥Ñn†[?÷€<¶¬…½ìN~iì—?~JWY л—gþ{ÉT~eÆf-ïÈm'-£A«seWþ ý[ÅT²aÕM}úÀ-Þnv>pBÀª•ÑØÝ—…ÐD /ñ·…ü»¤É“óÌk'ŠáàÕ¡už±†¾9ôü2U´×“6ôäo?ßÝÿ ZÕ>dÓ'-]±o‚œ\žLóÛâ•|óRÆ&`uþ½6ü ¨ÿžÑ÷l+çæyÅža¡tçe{]a§³x¥H¯æ“Û¾q+ U|³tƒ°@é\}q›¨<tàkkk>ôðæ0gçhkº"eÿEWÁ"ÿ½Ri5 ~kð‚È`Å3W·°ñÝßÞeZ/÷{Þ ^0v<שŸiIþlj´¹õj: ”ð Õ\ÐuN‘Äa¬°W‡ `Ò–]YMQ? Ê}ÕªÞ–'*R‹“%$ÜfîkÜ+(LŸ«º¥I¡ô¦Öì þ[«rÓþ¼ƒ"59µfá|Sô+&.šÍmQa»@´­Ç{Üßhg¨ EàŒ3Â>†÷;nÿÝ’v£¸‰§9 ÓfÞÑæBQr6ý9¯“®6º×åDÒº¬jó°£S†™±!OÍÏ.wŠqp{0JÛ píÈñ*c>C'¦Öùä­‚ij‡Ì‘ûY6ðõX• ß«ÒHQÆ%JSyh¡`ú‚½~ wÑF3_2”ã¹éÇÜ…Ýæ$r|ÝŒšÓð\šÅˆ˜0DÙ£+Ï«ú8îˆß ¸X£OÛX¡rsDÓcn’jÈ­ G8Pšú™àþS’E9¤‡Ž.GÏò;œŠ$1VXz`gˆ^ó3Dõ>™ÝbD(27îáôª—¬HÖÅšÎø‘ÕõuHÑ,Š5»?ÈCkÄ}öŒ›CÚÂQŠ]‚n‚©®Mpq"¡²šÓoîã{Å“|¤oS‡Ý’‡Œ.XF©ìdRQC1HÙM‡>LRV²‡Ã ™îœû›¼v_ÄÖ}kŽeɸZû¶þý+hq³y³3 ê¨+b9|;™ j°&Hs3¡aŸ[UKé-*÷Œeˆ/_‘:S ¤ü5%YB4jS¶åÈÛ¢^ö?¯ëÞž¤3c_Ûʳþ ´Ý¼Ì´'$³ÑÙl 5''úâXðT›úÝešºÎc»ÎìH›0ø×D'³–üàhäí]ìpÎzâ‘øò%UZ¾ç¨¯–*Z;¯ta{ ÷N¥ºèd¢›µâȱ9KlõЪC S¾K×5q)cœbXŽ÷%,&‚“¾j¢Þ;¢ câeŽ™c]QÃÙU3àÊ{¢ÜÔÖqZ3n—ÁŸü÷6g+¿×A%çÐ^\Dõ驸R¶4óÆ$¬·ÍMŒÚ˜±…Ò T’pQº×€¡ELS, a>‘ØW¤ùØ~ð8q-Èæ£N“zíø¡Ös{ 2a7Ú7I÷ùñ²sIuŸî']ÞO‰…óòài»$ZÌtÏÅW6Tôƒï<8ÕX]Ú]ÿn.ãtꈅ8GŸ…<Ð (õzéËã"AÀ5*·3âVë?7xØöî¦:½`B+1²þ¹läúÒz©ÅÁÈ"i„lÖÙ`Äôœ«å€· £d ”æ©«àà EFd~Žv—ãøyuO”œ3Eà¶€Íu·¾±Ü1‰Â‡„|X¾­®®7ŠaŒ`êiÒâ(aÛ¬)3‹K©KRMfœrmÀR­.µ/˜ýÚvaèäR>Ö?XÖo7ÚéáJ­†Œ=×Uúá#)ãœ^ Ç?õ•Ÿ;¢‹r-e&-lƒ¯[P" 1ˆ#‘2Ý9MNßôÄe˜¸H\ÙWºÝŸ> ¼CeT-«=+ã’:&J“XK(Îö¼ëèZÙ*ɸՅ… ƒb’×—”`0½0Njozð bo £}<Œ‰ŠS*p´‚ÿT½˜8®ï¿ÂX•Íôµ„gͽeÍ¡g8½ö˜}ìP«Ë’¶M×uÀÀã'» ÊŽçeSÎä´æ2•†·^1þ]Ýa-™ú‘þyú~ß;ÜAz`G¯Áà&f0ѱ~ésè‡/7¶/gÁƒ‰>×õà„äøDâ׈PIÈÃiÒÄ‘€Œw~ضª}ÝY&‘qŠDcµ{uD!óíôØl'òeÍ…3vÜí,¹šê°lôŠÁj­³†"ZßÙ•Ô*€è¯2âsßó÷ïËoê*ì#ìI‡)t$ñãмŽ3RR ÞQø{bnHÅêm°ÕÑâÜJÀéN<Ó‹Åλ¼E䌩è;ÁCðtfþ ç0¤h¼B[;$c*4æõ|l·»÷E> Ñ Ô„‘Óš…„å‘X Ñ9£ë5}œ ;ßõ‡ÙU†rA ò ×TüžÔ숫4ÇV ‚]îá%c:DôÈ*ü>7*{ž•éÅõ2ÇihÈ)íÄŽþöϺ·ìj“Š™^»ÁÊ0\í¨ÈÊÀ´½ä Æó-h(®á€ö×7€a•~YY ÚEÓ³‚‰šc È_ÅQ¯‰,öB¦Á¸æ ‰ÑaJÏ·ôR§îìøA|ÞOkKb°~ðú‚m^Ã#P8džic ¬0LUB@Hðà³eí•Iœ3×ÈäIåV¯$Smí–ˆ›Mf¶À0„ú:°$cÊ[ø©òÖ­G |Hò¦ÆbOèN{ö鎮.ŠdâLð)†¸X³D¨úÊàò` 0ÄÆ‚½Ÿ¼¯ns®·1œ•ûæ´µý «%‹StÑqÀ3ͼâqFžëRæP'eç·ÞµÂa µ7FúßÈ\õ§xTŽŽÕád"Ó€*nU7T©Rw|Tx:>,,˜Uw8æ÷ß ¬Ìã)<¹‘ÛAí_ÒAeºÝnëEÚ–tY‹õQ´/‰— ïc9ÆyÍxîæ*öåªgû:˜Ùug+Ï«@å(K½j-ÓØ.›ðœâ7Ž3ðÎá})¥ìô€šÝóGÙjà &©cÍü•”)´v:åý~›©1¾¬Pݾ‡°hè «+ 0zû6E”òÎòo>’"¸“‘™°8ZÃßìÄÑ0S Ì8‘)ém ^„“À¦Ó(~dÀ/Žqxkך„О}°sôo‚2n«#¾tOŠÛèo ‘ÓöØÓ3>±1ÆÒî’±¬ù;£¥Í2Zfø^¸•ºq%ºcÌ32êÔ†·ø§61e•Uy8çÿ.ÆÔóz'H¸Ù§‘•oÇÑÄ*ÀèÁ‹¡ÿd#¤Wê:'8’~˜Arè´Z»‘i°ŠÈÞ!|Ý•,õÞË•¬¨s)>-k§}þU,GMÿÇzÉÔm‘7»ó9ëó·‘—¥"f£ö^~„œ<3àÝIh”›;ÁÓ1Œj)þ*¢ ¤^ÊLC6jBh¹TO„¢ó9wÍøŸŠ_„¬Hü˜1‹_ü¥#è¤B–ª–®“°ñÃf§QšxØÈ°†÷¯“rÕ'S­s`® ¿´bo–²¶ßÄn®!vžŽBQ\ò+c-Ná[ß@"¬þgZ6m÷®ˆgäC¦ŽOêßJŒf冢ۜ¿¶Qç”ëj7v½ƒËp­dIÁ¤µ¸øªÿ¿>…¶Hë£ Àc¯¾j0ãþ‰¹µ;HtØLeƒ¾h±r»?òº÷àõ0'ùaú9þ"ñú¼ðÐŽÄ©°R“ Òêxž.Å+Q±øà½Þkàömßw–Œ8Xµ‡ø txª[¥|•Ík’w#VD –+²´oNæoU„—¡foþ8 ‹?jaÎßây>#Â-+(=7ÅýT:‰É#úê:ä€NLˆ;‘óp«XüSкjÏL®ÕEŸ:мùÀã¡8ðP:Áþ ”•ª§г(-V«@tIè|ðq×Õ^UqÈÅ< qLï^Òþy¸Kã ø2 @I¢!Ÿ‘’›eɨÿÔ&VŽÔêy½«}Š1ù¸KGM+§ç u­Þ$sœAˆèììm»ÂÉDé?Á£:Õø©$5|}Å0Y|Ý|`J˧±æ¸•ôÖëù"Lúe޶LöJ.BuFÓ?«Ëü½¢ìÞ“ÏÚ-èÏÖY?ÿèÿ_Mí¨ d’g§Tcx°ì|SªMÁø1˜å˜Ð¾sš `Â=“U\W“ÖÏtÄã%ŧdW‹Ä¸¡Ý:fpæ¡Ý²a|&E5DšÁúðy´?µg‘ô¤‘)·o°¦¹iFù™ ‰.L[ÕÃe-µ†üpƒ.Ìüe‘GóööómPlã%©êÝñš…9¹Å!qÆeÔ„L.òúÈs*xꂬIHn¬ïMd¼rܰ¢ßlskiGΉî8¥ ù>+m¦å삨Š9n•Â+b©CR@®3+±rk0ŸJ^ùŽ©ÚÏJ”ðü·3[s$9Š‘"׈d À«ªK3õÆWçœÊ=8EŸæ;}þ[V¢Xs,Ö¨ôãF¿SQ@ÐTŒß3Õ#Ôøú‡Ûò}èÄM£éóUû÷ºˆ ã|f”®â~zêfýÌÞHËÜÊq§,ÿ‘®Œ.îJ$jçîíõÜ£yMu•!&|÷–5 îcr ¶Œe΃öÄ^N®lå1ž8—7éý¨´oØ~ÍÌẫ“ôŒÿŽééÙ_ X¡<æèPÁ¯»7z%sþYÿ´À8é’dúöµ“cÏ™ëïèÄ\ÉÁ*ý•I:à Îq›ÚŒÃ OZ/q/s€±}Ü ØïkxìFÓ°¬:.jÿˆLj”Ú¥ÝpqñÝ&B«N¯L&™µmÂö1Ù-rEY®—i©ë[cñCÞH*-ëUS¾×Ú\Æ'î{á½5å J÷Ì™­×ÌpÖc ÿÌCtœŠO¤£òuÖ/SÐbî¬öêËyR¡e`m ]š oc5ÿ ÿ9œ=;™b>lKËA÷å6ì¾³áÃY#'ðZ—H€Ž?M†JÞñà’0ôÒ—iÕ|å¶”È_ˆ5!–«NgÑ9ÅíâlN  õbT˜ð>«"»VN„ÌîVOê ->—¶@²Â¨í®¾Êý¾ƒlÛÙÒ|Ù{Ç©*„Šgšj(òF3ÊЬ&ÙðMfXn¶HÒ 4XÈRhÒ•wíHõ̯K-H—‡Ãó©U$ÓŸJOÙYqSw¶3B¬ Pˆë@"~ õEHDáN«…žˆ9¦¥Pü¤ *„×5Ó1_´¦žE(±/šV¬žâ]3¯|€˜È*‰ ÔœT¿HVt¥æÂûZµõ bÒ'æ8X öò«u%#·Ñ2qàB+{UNãä$­ÌÈfö)7‘ZÊ0¶,{E@æÔ±Åƒ~TŽI9 §Tmž¡ÅxêTx”¼£Ý›Pù-=ºß_}Ç?ŸGgȪ‡%D;Od(¶ÎFÌfúšŸ3d$ƒíÑ06œH9ùÍwº•fyû0u7Ÿraþäšn®¥F´€È2#â õôWÓonÒÌò;Ÿ?ÄÓ\`©è@:îÁ‘1¤/OòEë(t–žAÙ yX®Žc Cñµ;ðÑHh=`J,„°èÎ{È|HÅYÉQ^Z°tÁ¨„%Å\–JkUÎþýVõÀk §ËÆÝNÙX„ _¯'§l¥ ñ+'B†{µÛ{|+8¥­v4V<ÿv=—9üxTd'œç)¯ƒ?{d±“5zíÊS¿pwÊ3•ÑÚön‰†Ü‰ˆ(Dª±Rµ—ñ‰6pè£]GNd0eÔa©!d6!•ÑøBÿ §èœÂ—uÖãd ž+È€7«¼yþ{9 _éÆ[¯ÍMo§OÊ$úá¨Ò3‹Æ(ëDŸé>îN…ÿÚ€<Âü‰6öü£Vƒ«¸JÃx<þ‹Ü’Z§á”=\äK iávodP¡¾cÛ.Om‹ø42›IÚÀtù:vÈÊ ¥Ýâ&9›”ã¥YÛÀ´]6Ü-O¤á“V !c7LsFGáŽ+IÄF±¾(ÏÈ•ƒ)}ÐUKSƒªÒ™éèp·® d6xåÓɶ.Žn,ú/¿ÉúÎ+s½F¨óìvqZÎ|ôöQ³ÍO°lÀŸ¢þ*1Ì©ä/žÐ=vI/·ñ\h+E\¯¡•Žû5Wl˜¶ìz,þމxuBá¯%«Â ¨ê(\ÃãÔok‘ôÀ"`œ !ʉÏc)¾ d£º›”A>š’„—ÿ‹Ú:å<ˆ*ûy¥¾œzæûândÁЦb8ÄA©½9&¯² ؇µcÜ–SÍ“j¡§$SŸ°@Ò)œ2¿„àÙÓÿź¨f’¸ê60±,,®}žÍAÃ|ŒÙØŒËL'°ŠP’õüë˜+|Œìu‡ÊÛKègúTy€MÛ+…WŒ±ðójD)€¼zB 9Èêi9QÉò êÓÙ~NÁWü/xõŠÓ#k­ ì§Pc Dõo7'¶QÚÛ¸øõo¾¿GìèÁþ0Gõ±¼í©;?à^ešùÊìè:ÓÈí°½uVH>‘RÿøŽ¼a±oI/T‘/ tcvð„ öýÑÇ¿…†å0[¬ìøÜ§cÌYOP0t–nŒ6®ùÖx¨¹w¤‘›+W&«¢&CZ® ²&ýdëºM^ùS[±Ëê«zSDHñ±()=²²ú¡…1È^¿óÙyÿiºˆÒü؉q§-Í=â~”Ê& bÉ_RýgˆÔCî¶j›t}xÔZTç³]½‚åîkh +X¤¼¬NtQÄJ¡VÒ¦ ÖGtT+¢ÂëLUnŽ})h§/% ^å´µb§–èÅ% ¦fÁõÛ¾ ݬ.P¦ÊèÅù®Èп µ[UhwÎE¤y¦‡>c1£^ÙuàÇ.ï7¼ü¦çâ[7\Ð9ÝÖàKJºÑzbYnJÝhf¹8´Ÿ“¦&YÛYÂŒÊËÖb•µá0¦ÀÆäòê•›2ì9æzÅHpsÀþØ+¼üÂJÓ ||¶‚ˆªñZÐìo"nkF]Ù°Ú¨|B¸H3[ÃÊÁ«÷}OZÔŸo©…,^ù’"—•/éjW6j#âxX>¿-A_ñ'Õ®•ÿµa/“箈|ÇDtvc¦hüÐãè‚@a‘{t„m®gúæ~ã‹ ùÈ1 Ñ,Í¥z¹EigfÙ’” 5ð¾C°çûÈHÖâE=7e18çqfÄ5ÿ›©^º1?ßÑ>h•ö}ÌÉ5’·ZÞ24/5Û’_©†ßç²þµ{¥ù«‹—F¤¸2Ù@Z\üŸgì6c½Út&•ímåCöõÏ pÄ,€7¦ý«šÄ°_öÅÙ XT±ÆÚâGwËX!Ëza¸è.¹HY¸‚¦œhä=íUBb/f{ƒµ<(²(¢¬»3'¤9´ÙósIüf·µ\•'© dN³“wbP„|Ü„fŠ’Ë¯ §‰¸'Çlaªÿ̳xqog0O•ÚFqwpbt#òp]èØév-ucÈÒøK…w6³•Ï2ßΓ—%J‚àÅ)V"ñWoß…%¸a+&»¼ 8PÔÕP¼Ì©á8x³ç‰ÅËoIø­ú« Î}kéba£sÂeðpF¤ï.H©ÿHbòœ›^y¼êˆçÛf–bÑzņÄÿ´7Œî QÈ–É'"dëG@™ÛíHO?“å'ËbšºÇ…_H^ÎßfhDµð‡ûyö-à`ÖÒ>X=ìMˆ}oëH6Ý^²©'J·Ë6Ô«w4É¡Ð]ŒÞ!޽O*þ,Ö0 W{4ž]5óa&j¬«JãsöV“½0Û¤ˆß\ªèâ‹ãí²¦ûë˺å<šN_~\Ç#@ndKƒnáÂÞ25µÝ;†àó|îD‘Èû$ äTX{¿ã §må¨<|{V?ÍÃ÷bt{9sÑæ?ˆ}¦¡”L: “O›"åDrHÆÓ¨ËvRéµ¼#‡iæ·~Ö€µ’À½ñÁ!ò›Þ)6žO«£t.*­<ÞkìÒ€šúàÑ_Õ:†©Àà+¢E“ï>mˆuJ‹CVdÆôó¦–BZÜB‡<µb#3ÂËÈQ(hFb|äV¯Hø œcPÊòi’ èZ1ÊEö㌪BKÍš1d™|5íÛr‚Ì]lù™ó¼ãÎéUÒz÷gzÓõ82`-·Pë¦”ØæÇñü:ay Ž£ÌËþϧúŶLÏù-ïšÜdAHPµjNÔAÍô±ØqâOÛaqt0YéÆèB‘¯=B¡&ò§îâ¾`ç2F#ªÕhUÚS*Â'•ÒøÏ‰žÚÇg š>Òäl5KèçêCKCÑwYš…—6ç‰ ü»d¯ üö3<}g¿;TlÉU _.›™¤GsÖ²¸¬Ô6Û"õê¶ìòý?†Þôè†P–éjîö–H¼œß€«Ï™ dl09U0T빊½f Ç,Ú½Ètuum]›ï.Y<»(À¥)[Öïñ¼wìzSýR)={RUJ°•SÍÌÑr p;98{Ör•Åu÷£>8dqY«‘*†‰1Üáa˜/YG»ö{Ýò޾ ÀD©gȔ榞r3 ð¿QÇä‚„¾ÜZ½µÀŸ"$B(Ô„ Ëóéÿâ œ<^LIkˈN±Ü€^ ªÂ¤8 ù2‘\œˆ¯6voc᪉g·ƒûtÛr)m€GLÆþ0õfº¡Þ‰{5 ÿCØb'VÕ#y’`¼ 2þï¬+;ó†€ú€pm‰púåøÝ´‡½¿-„|r£‚'q´%áÒây~Ïþuòe\c‹Ì0ý¹³ÕX‹9ùæš6n  SßL‰¸|Œƒ×$î¿é8ã¤Mcq™í¾Ð‚Ç)M Î F¢€èf+iÃEMðêÏBj”ä4ÇÂ×€H¢«…@ÿ8$ÍoÄîGîÓõ¸Òâ³B:püÌÄJåçg÷™ÐàOE­ŽË³K§–rI`[ˆ•Ìž:N 4–§•‡oy¿(¾¸Ø*˯ðÌã¥É§uKî3s%Bʽ„c6îR>Õ?RÆNÔ[jÊé&Ö“mãM 3M%Såˆzí°…2ʃͺåWS™v%•²ÓŽÉ ™säõÀ]_/d7š»²BLcf0þ»ÜÚI8Ðx…f‡D?£õ„¯–Á¦¾“!® ’ 1 ;ŒüÛáÊ9ói^y1¥¼ù¦ïÈÿøáíCϩع¦œû#%QèŽaÐQ±3ïð]i,Òû"ÕÆÖ#§;äo™´Òo˜dY5`¯ô¹.‡Ç~ì|ÊÅ<"£ì™38Iø¸~~' #ùv™M—%P¼Œ $^¾ÿ–f'Ñ ôv-dz+®°{§?ä¼wQê¸T§+Ú¸¿ as?O !Orhðç±ÞÚ'ý¬ÇŠn* ´xvDÎ\¢˜-sÌ'óå×sYßïºßxB îeƒÝ6b ~¢ˆÓô“œÊPVSòÈ¿¨àqùìRµLuk×¥d¹w°¾?[Ëf;5ŽUäK€öÃW`› ·„œóPŽAÂÀ*šË8õéY¡to%W's!H^œKº ÆoÊ—ÅÂÙe¡k)§FN¹‰P~l„ÕC¨Æf_¹¬²~ÊÁ…LaI^ËÂéû²s†duzÒû} €¨©RxL5¸M\>=U´hmÀ$¯”c¢Ÿë+˜ï4Ú‘¸ZZ¼Ü9jM˜šŒ½Óã>}‡V]zsÑb:‘?Õ»‚ŸI¼VQÕœh2]ZÆOáYÞ|˜Žå||¡ñ\Ò&ÏŠÙ†ÇdBwÌw'BÃþÖ¼äªüy^ž±´òPb´ž~eÆÜ3mëºJ©ÞïûÀµTN­ßÿ I”Ïyü»’ÕÔ<S›§R3Ú½e„yx(Ò{„Á€ ÁéX@º‰ø¸+ädÝå›RûhÔºXÈ%ÓAO‹P¢ L•¾‘ÅŒEÜ…¬´Vê'¼(JC×BèbÆuÛu)k…Â*,¤µltÐ t&¢­èqåÁ‰WÁŒh·/¤ï¹ãw™G¶9Yk­P;0@FV¡+ÜÅ:º’›¸»Ûs„uJ; $;2!ÄÚ`V™œHsüÿ¯;oÔa©å g?3=9쉎1ˈŒ çù¶•©òÆÃžŸó#8á_=ô(¥:Ü$ÛE€.*ûÊ­Ž6^ÑØ1¬f±{"Où…°ùs3i‡NÇrv‘™7:Tq!-Z %ͯd”Ñjðº¢^RG¿â¤úðcÈIBºM#¥")“ƒ^çZ>NÁe”.Íéa¢¶6ò§ßå~ž¡ªê^P¾k-,9¢%<ç{|ÎèŠ.›¼°?m 믱²*”ôÐӼ̑·ù×¹ßûЏõ„â·ßA W°VÛö«vUJ½ï³äƲ˜/¬UL‰*L¶ÅÄ–v¸¬õî)&y6:‰êz@‡w²Fùµc—¹ßÚH{0¼)±I鯥fêºhÁõVñiæ#*­Êú @jÕ9Dx’K›Y×u6îíbð5½:¸{öÈ@¸ˆ›Š•;mó%GÄjq'Š‚Éœk—5<˜‚‰žP²$a9ái¹û¨Ix /‹Y  nš‹p%ý“îËýDá"*dÝÛ¹ùä|‹WË—ð釬i…a>rD¹ù:ùëë-qš¾ l7<ÛÁd7Úí#Înú—;¾oÈhƒò2µËM¦a¶¸»ªÓ…¯ §óÄ›,áÒ·ÛW¿eþa6¹P_dÉ®¢ÙÜ.7Igtë¹Ð"ºï—Ã&„ˆýþÎYüwešh­”k#º*2 ]*C%Ù—&Yæ¡zÿ`º—0!×ÃMÚå4įù«ËÕãâpbˆë­X\f‚Qo{*ÇZªXµ€ @Œ jŽýá!4QúH‡bâoÐwÂ_Bqž€‹Iø+¯0Ö½œü¦\ÿ()ÞowAËãTœ0'0vV¢½#øE6¬^ÄØi=ã‚MMèÂì9©†ßJQyÀm¹Ïûè¹_ìÓT‡¯îºE´A­Òœm¯ê`$«ÐG& 6q £Ô¹×^7m)':±º¸T}6i6õ©Î‡¥âåïµSv£ð±1W%Ì\ˆ6Öº1—øÓC#ââ´°TÂfc”8SþÔT7ÿ ñ à•¯G‰œ¬cµ3ßÞ¤Ô„4¦ôšþ"X(¯Çޤ¿ýQ™¯.SÎÆ¡8JÏ®LѳAÁñìþ ï0å/? ·¶e+#¼—4ÜÉ1cLF|×xü(eAõ ¼ÕCBþtc“W'u6LÔÉü .¨ÔÝrCÚ=\I)·ï¶¯Òó§ƒ.«9b¶‚ú4j×ÀÙrÄlpu îäˆêÀ† /ö´T' ¥6ªoª`TÊú_RõÝÄîi)ÉÈ€Ìe€ª¦ÿ@¨=øU€âŠŒ8š²ÂØ}é‡xµ`OS Ô:TóAHØX•uZ§ÛÛæ°GG.Þ®‚s³Í¤/rÌn¿Lø€ b=Y½ž‰È&6™ÀÙáö™8­ñÒD«¿²{¸@£ô6׿_´é!øLP¥Aü×ܪq™ÜÊÜ!A ŸÏ‡/6ä#l{Q‘>rP®}5¤yéIØ¥ú"¢•ôKæýœÁ—t Þ%­ŽàdE­CbøNó"eIƒñKceú¥·-ú·Ý¹|dõs0[e“xpF;F⿲^su¾³Ð0<%Y{v8¹C,Ɔ²IÞï«3Í”ÉmÓ¡­ <™n´Hñl¾çDÜh7Åèìí J~­h>4y±õ4‡øŠ÷™Î’~ˆF¡­–TÑô³)k•½¿ À£’#t⪋»ÖèÙz wXÄùX£ßºq)“/ì 7L7å(6<‡úÖ‰¾ÿ¯«ºœ?EÀáa+G™dì C¼•ÁÕ3Òù p¯ÿ/T¿YêÙ‰ 8}oð –ØÿvJ{xrÆ; è¤óbDðÞu0ƒ”É!A Fœƒ5Ö§PX8~=ÿ2z<ƒpyÒ®œ£Ý×<üÑU(,D›y‡vñHlcm›Y4ã­QÇfÐõtšG"ÌSwM{LU€gÔÙ D¯®’¼ðöþå‰úG ´§k RpzÚ.̳¼‹”ÊJÝ›é›}Ýt¢C^¢ œuFÀXdgëB„ZÆ–D ¦°bK^u¦ë ?ùåôåçHäõ³Ej:[q[„{ú`lt9b¬ú‹d uúukïë’~ñÉ'E#i5*]™(²eÜæˆÕ¯=¬./Û4Éx^ßÓœ¯EgÀ¨>ʼE/sòfbÅ/É>©£{yû¡lã8€EY<órÞw\ÁAu|œmÊÖöHåÞÉäÇ"׬AÍ-e~SVþ^\Þ³PVp-àæÌ„Luœ¡Q4žW‘bDÒ'ñ—íjOÓÍ>h<€ª;²Ç°Èèy+ðÃÊF陿Oµjš¼#ý3ØÎ\‡kyoyb.¬ÚçÊà3Ç}šRcFµ5Îq´ÁDÛ šP:NŒ2€Ö¬ùþ65±­AÚX&£Ôçyô…¤¤;_êjyà•¨04Kº´ß<âEP"f‡Å€d½§¹ç±-T]Ny÷Ay1`¯Í£¿Ì6\ÒÄïÛ[ò˜U“äAD¦‰²¯†Õ€Ø3LCD{—U¢7à'Bzs)u€bO=ø ŒdNu§Or9¹;•'8–U¶kwT•i¤lÚÜ…çéx0dÐ<³ýÁhöþ,má‹;™ Éý³ ŸA-¥î:¦2Ëò÷ Ub{v”ÏL‚~Ôœ±™ Zu¬€ˆS–*¥È ÿºa© ¾¼ 2 ወÕ+—ˆn´©$É5Æçˆàß’²çr9ÕÙ!{çd5a‡Üùg(¡ríÇ£À"Í/%ÝRÉÿ ÃÖÛ¹KãߤÔÎd–§ó «YŒÁ*CŒ5þ{´aœ¥é7o*ÖÁqg£4úG§ùÄlÏ”ÑlÕ¨·[G‰Ý87ÃSËœ“ײšl·ÿnQìÂ,*(ž,šæ§±Ç£oLýÃÿcHÜšÞ#¬$ÜVuÜÏZö8Š#ÿ6â…‡·;tETG¥ú.A©jæ|}¼§t~`°_ÞVÏuOY ¨u`±NпßôM¸'h¢õÄÆE§‘e<êå¶âíåúÄ¢¦¾–$ð¥0²o§µ-5KÜVCd¦fT’WTP .\„À XDÍÉ| F.çê²G]ˑطÉ÷ǯw¢ÝË“gToÉö\Ó°ZÚŸª ’°ð™§6œ’Î FTAˆ2•uÀ^C¢¦0q•ÌDQ à-ٿ磿wõs¼ØFí“ÐDä™MÅç“e›ÀA rC³;–“¿¡ü$ÎCe—Ʀ5Ù0Ý+q :’úã<Å_ùù/D~ǺZê½J§zG«v2¥2”ˆQ9ônRjaÞ½pzÄçèÏs¢qùIî»òz]ZŠì¥"µ<_È© Û‹%Ù@#ØCèWxNdSô]*ŠuOû]\ØvÃRœX \'1_ú—rm“€-Ü(ÙŠ9o¡)òÕÖodÔÓgqXåÉ‚ eýWÜN‡ª(tD§, Ñ¡ñæbÍ*W€³ý;N$û}°­ùeù:ƒ8 f¥AVßøªÛÇÍ_¢$³Ôü1¾{/qbk6$£+¬¬Ìÿ2ã9´ð] uІêJÕŠ`Zo»Æ?Ž!Hû©îÈ¿wš¶W; Þ` ]yf‰Á*ï§?: \R«UáVëěȷ(F¡ÃUщhÓÊuç‡m·yÜh¤ºƒRž‡ÉR(oÉK~˜mâ9´èÔ„¼Ø 1b ù3”ŒÅÇýKá¨Þ0¯Öæ¦uÒp©^`…&ž8ý>‰¬›»e`?2c=¬€õM™Ñëø!DNËÉ󧛿'dBÊBÙ%ÃžÛ 0˜Òùï…Ø(JU‡…"Â@:Õ6F|?.ÇŠE2a{T ”ÊOØzÀãš—&FÔ¡)§.&¼]6H³µÃ¶ô ü’å´‚5ô»•‚¡ñjýÚ4ûL¾›€`UÑÓ"žh–SMã–kX|í7ÿÌM«*5n"æßÕ áí­eA«‹³mù'Cp8´zâ þHê$\Îå'@g+Ù˜.€Š4¹ÆôN[šÁùs[žáÑ¢25òíEí©ÍÅRÆnò1.ƒŒ¢gåå±cN뎙(Ó•°Œ’:dñë´Ã–3yjø —w7}zŒ‘¥*¹Únp ÉsëþàÑÿ6ÈÑÀÕA$`ÒÉìSA€£ BðŽ>úlµfgÚ¸Ô&gvüô1×̇Êåçziè–zŽEK2Õ«P×}ÇuÑ ÇÄ8ãÝÌww-Sù•—І´ŠP®tŽ»€`Û¸wÞ6]ÕçæDâZSvB{Z¼þŠy³Ÿ[g%Ó}üÇRׄ!x/ª'4Gà›kà¬aîÄfiKeî£ h`€×á7;Æ"6¸-:9.?•jÌEÛÞ€Ø*Ö>Ͻ´ÉØOaôs±;I/—=1 êê±d8%Ç®yÈ,ÁTþ H°¸‰_¤+³Ù§¿þBrÜÒ„~LR‚›!dˆ-ć³N˾gÑâÝî&ñb;âɲêSµ¼òǶœnN| ŽÔ2‹ßdQ2¸ cé°N]Ñ2üýØV¡Þƒ„pQøÊ'»¦z@q"ÚšL×S¹\Çh¥èÜQtÁĤ:Õ`îúêPî†>·6˜`RƒbØH¨áå–T|â^ÉÊ–®aš~ôU¶ý"=?h9§“¨˜¯Ù5j¢(¹ÖX$NɧT©jÝêì6jñ†Cc9‰#÷ 1™4#}ÙjŽÀHÁE¿XÀ|‡Õàa=ïŠx—X’ÿ•„–ȢΩÓzMë§(GÅ¿÷‹xUÝ„jµBû“ªÖ‰£Ç’×%\Úµeö7Øg¶5oþ¶[FÇ"þxš{ÿ¸X:Är¹ðº Än$ÖçIè.ûK=Ím\|0_#ˉá)Fä•È#·$aÊÔLys<úRzÏé±?¶ñÖ3(GŠâf§ûpr)Pi³0yá1w Ï}ÉÎ?Ž*áäsú=q8»‹A^pú åÜÈkOÞàdܾ¯“7ñÞ-7Òã#‹íÜšÊÙ°þ,é˜4vØoúçÛȲƒ[ö%k>Éé<:oר%®¾ SlÅ r%_4ähQÇ!‚òFu¸Í.¢OÀaQø±U\²Ÿ7n'AÄõO\€j?£ê,Âî'Cb/¨¥E"ðÜÁ>Ù×­A½p®cÓ`¢{$Öd-t"iÙnó…!ˆb½CÞ?—3 û !AŽß»IyÏ$)ý_9Öþý‰Ô"3þN„6êÕéZ?òñöDj· ãíá £¥Q“ŒZïnÛæH—Xú–ñÈ¡ÙÊx”e"ú×®¨¤Æ7o%ŒÞ»ûËkfp¶ƒ ˜4/6^î?û}XÛ¸#@«æ“¾Yû‘™g› #»Ê@€¶ëºâù‘$Êšc"9eý·tþŃu<&%yã"àtoF5"úË/} Mzõ˰DèòK·—–:ý5p¤±vmj ê#‘&ÞM¶®a±ÒšQÛñ³\QËZÇv˜­5ìüí?ò≯x5;I\Q®‡2Õ(á«LÍ¡½ªÞí_¨Z¸Ñ%[QU¾¢`þ òÿY”Òl{wì ·Ë 5‘q­7FyÀµß±ûÙ6Ýø¡ØT§âAI”q·™?¹[ eÕ\Û§'Ô’ïû:ϸ Ò•”!KzgÂÄ䇛ª‰‹ða^œsˆ¬0µ£÷=†qÝmU™6~ð¿/BQü*ï£A–­N¸‹-Æncäã*ùÂoq¸gr¤Î2£PTã€hà×Ðóæ?H«ÇCãÝ: Ï\ýÂC"Ý4Lg $tBKÏ7È;0æ—Nm4ü\*œuŽ­#Kª†+úÑZW_SãµËfXiˆ÷üfù·–ÙÿÏb •žgð¤?Jj,­:Ztƒ\#Ðv¨ø§©rGožT}*Å¢–ýeRW ›Æÿ抲ò׆~ìClzõó£_>ùøDŒ 3Š]Ï‘bpy6oµH1@Ü÷9¯àP¨cõ 47^dÕGwb(׎ۈº ¶wŸx ¬k‚‚µ±VR&]‰I°wÞøÖö½5•­Ÿô·WÌc§Û›…ñiÙ‰€v0]::äS¤Úëßb“_ÉË“t‚°òœEzRëÜ8CßX| ÓµÏ-¼¥úT#Aöº'«`“(cþ ôŒïPžÉ1Øl²çÖÕZG‹NoirÇ>º*í)¥†|Áé/Úø6Ò…_ +Œ¶¼?+_j<'!xÓ!´d&.jéÉø+ÆêêVIðJÿ¤g ¦+šûPÞtò<Š·èÝÒÉ^?¯)i……kl%Ér+Ë &l†¹WpQköéÜÌv¯óÕiþËšÈ%™è]·Þ „î››¹FpÊù=Èáê1¸™ôâY»x­Èu‘+V­¡ôHнýw¥‡=‘ZÒóužvÖ±‹òxß½ÄZ«ÂCñêk´`VL˜|nˆã6©Šºê€{¡ÌHTõ¥¿6r —ÚùÅ÷Ö{¯Í‡æ³ô¾á+ПŸ÷@;zHCÓ¥¹HêOÓ#ãpÖSŸa.c:ß”yú`×b˸zp´¦Ù|Ï×áË~¥É3Š&R¨@~©óìÛ‚ð1𬼤 ¬à9^CHHðâ½+~¤Z|ÙãeTÛFE{ý‚ÒÕÅß ©Œ]t%@¦Ã­x¿Žž£°gÉ:ŽXzq­Æ—ͤÿöÓÿµ/P8ž„… ¯)† "³ß6ËŽ¿ŽùŠïR8&š¸•tµÉè]bùZÃ:ÖŽçe\ÃéZ C·îΣ¥‰n‡žB¾áTÈá}ÝjåöÛ›Af=va˜@Íoب ` £rýâ±F˜7ÀY]aBsÍM å¡l‡’ÜYqcJK(ÖæˆT‚哵Ȍ .|ZdNŸwª§ÎŸiYÕ«ç0“‹ÉCëצC— S/Эk#»×_îj|² Ûc>à'sï<¥#!ÖÖNgÖ8/ýªëú =™3Cÿ—åc …¡Ê¡zöW€Sh¸{®”ÛnG‹Ž’÷õ –ƒËO *UÆíØ`bmìØòÝ—£Úó©}k:»ãÀn=m£ïK4*iº:ÝF&øs[Wm4òd~¥ƒ4’*8/} .OÃØäôÛÜ$”ÛÐj&Ò„„‚‚ØÏî³ØRWì㈊@”Cn!ápýú"äî”Ýyó¥ØÙUk=àÚHÈ7Œ ¼d7"žöSí¦þMyR|ÌÆØ€3ÿåþjfÁ\VÚÙÄ9ɚߊùÒøøÎÙe'è#¿U—mqpÖ/5QŠ-©ÖêMLÉ´±ð¯Ñý‰?£1}Ù¶ÉÔ…jÁöáLžQr~$Žixy kÈ(l„*:?S!×ÓF nÛñõ]iÛ~¤ÑG‹Tp(ŸãÙ ?*¡Ž7*S'¼ í¢’†¤BA/q¾~s‹;3QRl¤Uu9Qøê ô 6ìöþ)L¬û§;—îÑÑáÐJÅ/®§†.ùÝ·ƒÿœ8†Œr¹ßý¤(Ô„PΆbõ ëªñïÃDq}^ÖgáÎppÀ>ÂèÑÓÄ6¼OEhø´3 a¶Ï_eŠPBå¢aÇ[s¼@§©¾øÔMëUq÷:z¬ÀéÞ!Ïm¡1­Å§ú ˜…{½A5;k(ø0Äç¾ú•$z”`Õ€j§®k52×Õ÷ž*¥˜r˜›‚Þ:Þˆ›X¹Å¼ÆÅ›¯#5É‹™h[YêkɤuL‹NËN+¾kbÛQ+ ýW( ý<0îMHÜ" ɪòS2Ū_ˆ€Ïð‘寽G¯>\šŒ6\a¬±ëUïa[aê ã?Nuu ²2“ 1¾6›Ü¹$g¤ê®Ã6äðèyã ¢ìðÉyö{ÍÁfŠpžÝT>EÒ`›œH÷ã<âǹxf,PÓ|×2ú–ä6u«‹‹%Ocx›ç¤iÚÔª±žñ‚ä‡ wBùà·fq»|0-åH„uÚg«ÓÉ'/w²Šú’†>nˆœ æ6ìq6é—ì§™)XºÓ+«v¹Œu¿ƒ4ýNCx³„‚‰SèQ¾¹t†¹`öÞ)Î#!6]½Á: nž´°¡Ô/`øé¯Ìý²¶ ôæùl`äÕ‰E 3JùÛçSšìºb¼¤R¹pC$B8ñDrˆèÖÔ¥|,J_ºJÍÁ˜ø&v¿åè :É]Çf=dï·±ô`IdXæ*¾4 JžEIåÒ®´åS¶ ¤:ª=ŵ"1NS ¡dtq{†b”7‘QZ<^÷Qúœß5Xäb?Nq˜¦.Eø9ºpLüðËŽчå`£µÀÉöo¢‰Ùr)&_)p»”Å€$µbÞxALR¥uÓ…R¼x Õtk8¥ŠþbûuµK<ºYkhܧLÝMjðÈ|ˆ¥›šštpÜÆ%,ÑØ~º-[ìrÐg1R }Ôb´§q{ÛH’èNäJK7ó«ì #Ï%D¦çsp¹X¸ÓŠ|1pÞ “ñ¯ÐÑÒºÇÙ!!bvèEõÙÛ¹Yÿs}e¤õ€; #Öç´Xo}ý½ ¨øMäb’xÜÄ·(Pá…ë–!“økTÅ·_ÇÛ½ªaW´L0w‚àL<ŒrB¸6bõ/g®Û°›«+d3ê'ro4ÆR€& ?Y)€”eý>Œ"ÐrÉ×Rs±fP|:–5ãp_Nsr2 ¸Æòÿ#Ù<Dø‘ÄTÀÃcòy‚9²0›Ìƒ—ƒÐ'q޳їìò£i9ØpQÅÔ¹O†âñݯ54×ΤrÀBÇïó²Þ‡³Î¡HÊ Ã.´ ÝWó1•©îÅ!SKn*H„¼ näý¯6ìôI|4q$ËýÐäö†dÄÌe@ÖµUúM‹WÎiG ÖÊecÌ-$Weè.YÜÓ„FŽœ.ÏáÑ#”2sV¼©àÁ>‡Ïˆ¨s/¶NmVCÈÛªgFë4ü'"Ç£MEf™6ÐÏÃÇiÕrQåœê!t¬“ýô+(eª#œþù³Kûð †Zó®â7©‰sì0ï ˜ ^yô–ôç0Œ²®f&ª•7;ËìÁºÐ‚­­ÑËѵ‘¨¯'ÚÁ6]:Òu¬w‡(ýÏO^¾Z¦C4£é+Ž‚tþ —“Þ#ü'ø‡-t¡Ð]ÿoí™õÃÇõVݦÛÍBxåGµÙï'±Ã¾D«¹Š½)½qíyƒîîòplôjÓ×d÷})½_³’À£™ e¢C™ãö6bý»#[G «“K‰$ÑY»@µ††AB—ëñÇ,Š––ˆÏï‘ëÁÕæví`RydüO‘H•T¤HR’ÈNŠÁáäÔð¶‘Þ·5*EýCkоÚÑ@â’#ö=~ºÌ…_EB^÷/ ¤:•Ýæbo&EµÝÌÖB¸Œy »6ñy›º ô<,óúØ®f'#@}ºœ“q€Ö‘>T9œè¶—iÀ}€‡ÖøB0–›Ëœl^4 gã«T23Ÿ?&ÿ`Ÿ7>¿n[4UcóÍâ¥àMì^xMÍÌ}QË®ÚïSLT~¤&\à]í÷cÃh\‘ ÿùi+x÷d¡v2üN(c3 6UÜ­ÜÊØM¾d"ç ÉM] Of'_e}â#·ú`÷ç úÉÄš È~ „éǧKi-AªüA=ï»â[Q IEVãíEÔÈ À¯iʃÕÞþ^² ¼¯„þû‡ÅMÎ娎@ÿjê &ɦAm@ˆ”×·Ä—Ü%æLb?É2 RåGÛ4ؾ¦rEhA/ä ÓÍŠÅwÌUj®=¦Êâ|þsÙú?ãI9~rZ«/˜žL›ühPÿ¾ j%–¶ór)qÕÐI¢H+¸¤6¾Âio¸¶¡<>¾Û˜ö[^ÛÑ:\ØÓí3EÄòä¶Ùw¼g´ýœ}ÛMôK¦é­Ì/‹ Ì2l%épúFNQƒÌg¼ðÔ[Ýžœ>G‚ù±CÌ÷HòINÌAÕ¾ ƒÛX¯AA]éJ²9CyÍ¡Š*8y)žF¾ x’ Ó¸L*Ñ?¥J 64›8Tßd¤€ eŒ|#îÅÕDAÝæRKTabàqÀѰÁÕ `=Hþn¹ÃqÀ8>c×¥röYÁ§R*²ðdj+Þ`¨Ž³PÀ%0dSª÷ŠÚÍ /¡C5Ïbå•ù#ð¯r©¡xV›BLƒj6×›ÊJüþ4[Æ’!Æçã¼càˆplÁˉoª¤PD彤ìËpŽ]äô —gw\©sâ5pXY°È¸lz(¸« EõÎ…¤¡Ft?ïËU Û¥‘ EZ£ÞÿBaûËõÍÇ[€d4.æÃwúµ‰/ùÌÎeX\œ¿É@5eþ¹ËàSI'æÑ½áå ’3Á!|&yÎÿ)P♾B†ì$&ó]±ˆä ÏsNÕæçåâÄáT`8/øzlt\á—ñWîÊå;s;ÏžÖº˜2‡YŸßfçGØpÀî×ÓÛ°ºfÙƒZ”¸_³×õ›£Ýƒ"msH†£Õá÷h’$g9n}þ¸j{ˆýpȼ†o(Ž Åå†g7Áä Ky<þ¾xǯ¨þzø¡á—¤²‰3ßÛ9ó¶*Ëœ:x@‚‚GKe­€wñ˜1-æCšçýâ w/×”²Ö a˜¥Ì¯çKÔî.o þ$×q |pá ÅŽ3ïhÞlLn=¤«ßþ™ÜÏØ,¯VɪdM~W½÷n9ÏU·… ~W”tñ„"É2Ôµõý)™éóTTcŠòœÿ?ô×þ…|›Ò3:8Ë£>ç’fíü@!¢ß•ÌÂ5QÒ\Çný«[7²fN©…[¹r´8|wæQ"ä–×ë¥å²ë¥€zZ³fè-q#–µ##Ûw »Ú¾UKì:á«ßf¹‡\ÉÁ¸]V+ÈM•.ݦü®ÙUÓ[îæ€ Ù‚”²èqÜÇóºÞgü±‡Î™lý`;ȸm‡©;üá Ã\m9w¯ˆÚ'xŠ÷% g=ÞÛp¥ä­ûØçD&Öz4®zNtg>Y,­™1ÕÙì$CŒ¨bÁx£—x× AÌd? 3pÏŸå©ÿ®§÷¸#áÐvSÓð!NsI?ÙÒù=e $Î9‹p`ë 0 ºEØB©Œ<,ƒ>ÒÚ3¥\’b™iÇgšÛÙzV‹ïL©s×üK‚ÿµ*•“Ûš sœ–à³}*‡ú\‹‹‰G¤©(àÏ–2)opú_᪳J`hBˆS6D“]œ8xºT k„WÈj!c`ïy—ãæ(ù½Ó»…ß¶ßús`èû÷N,ds"¿ëý\mF^/„>š´ìÝOŠÔý´ƒ×ó;>{ŒÏ>)Éê" '¬¾$9¬ª:BPíJpÓàOc½Štn¹‡«‰íû8Í%]±5[KÒ¨«O“§ÌoÎéÿI‰|È)j§ZPuË/ß·ÿ6;ÃØY~SmdF¢RßÌÁ³¾ DQl0[ÁnƬ1nÝwn¡½ôÎö¡¾€ˆ@›äv™ØÿºCÈ·éŨQ›ç8“p{ac.àl'Ä_þÅÌ1¹Áv,Ý›ï9'qr÷±iŠ‚ea6iu/ý_4 Ï72I‘­ê?i€ÜQÀ…ª†ŽÅfl¸ÍÛ¾èN]ˆP§ýŸ©X ñè1´Ôd:Xn¨z×ÒíGˆzy»l4ÞÁg+ôòVZŠ‹gŸŒ=Á™7»$¿ÊÒD©çÞìÈEYŒ*‚…ƒ£YÐTe$kÎÀ 0ÀÇa~ø94}åCVåè^~v<›mn䫞hü¢‰€ caÓçh`-FX:4(i`ªNÓF%¸6‚@®jìÜ’ÜöK–­yø%wØ]sÅ@Š¥ŒEO>ý†@øýG¬öó[M%ÕRÐ=ªBšÀlk¬â%›SÌ”q:ž(ª.àœ"ä98_¿}RâÆ¸ÛÚ;I·!¥Ì㊻bœWÙz%ù‘hÒpô]§uâ×ì-äÌÑÿ»½(ÍVt+"pY§Ÿ€äùÑ' ÑB;úÙŽ¸KÃPÙ­Õ"ŸÓ°™&!Žgq–x*ËBî{¶ýj$ªÌ.@9kRkã©  ÍË[öÀS¾” -ćf–18˜z=³8ÅœniC´§9ÊpàW$Ê9*°ÃUMÖ'‡L‹<ëçKÌ“P¹¾“=£ql5ÍPªìœ¶^Ã"95XÁ‰@š%8qáŽ>™&WÙݰdeôœdóó,ý^Íÿ’ +;z€¼Üïp©’öz `£\['N‹£ãtbßlÜZ,Ú) ³>Ÿ’æãoùdDöqcZѽgó‹ ‹OŒ#ŸÜ¥)®j¿¬x?*«¿+–ÇÌl ›§VͫٽÔÃ=6êó[ÕpÀÖtjÕ8»v.Aƶ·ÄÏyI¶žÑl`ú-%\ TòLcNàç;ß›ü®¶)q$½.¥üEC:4¸ˆ7[*sÕ³}¶S AÌ1žP(Äÿþ„Õ­/"¬ý>üÈ9Ä×O’¿›cÏ÷ƒVŒà¬ŠMDȶÉöWז䂉_)‚FÇ‘¹,ŶE z!Põ1­ß`‰”Ž…¯ÇMGhLŸ¤vªRŒÌýîyBò좬fd¶G‚r0Aú¢\Xw¸Læ½È„¨¥º‘EêˆuÅ€æÑ$ÊE÷¬ø#†*€ZU+»†G:Rן†=iY‡\?à'~Lt©O’o§1éâè¼dO¨<ø,/-Éf‡ óM½pûí½)®r„8 ÅO³w¹»_M­-|. 8gÜ<~¥b_ño:Ò^Rû½9˜”.¦1 lÊ™oä` ) ÿÛjü<ÿƒcO¥nÆQ™…9.—o?܈ØýÚ/¬ƒ\}è°Rbá€Ãzï¥˰ÚÙ…T“oW®]V'îEú È?á}§¥ú—ˆ,óªáºÑ¨íLòÐȹ\¹ÈªÈIñE<*mäfH¨öæ c#i#!y³ÇVìÍlõY«ø·~*RFܹ8*Ìy·tqÍW·°ûxÝÎMËç¼®—N'’ªvæ­w<²hñP;èVùZú9< JÈŒð0̧;”UXj9§€^E,÷‰§ë–˜\€Iµ¦76tï­v‹ggÏýßÅÒ‚|{yiò›ƒ:c±ucø‡œÚijdžy‘ÖxïŽOõ{š„c—HVÝ|šÝ8Ç©‰kWâD˜Ìèá}y…ˆgÑlc±µ©ŠO4œ´<ä 3RIKÿ;o÷ƒƒ«X!¿¼úÊÈÐ4³l8ªàLi7ž´cÙš{SLFûÜê=/vKÐ诖zÿ;7<¼Õ8Æ’NE:oùD=ð8˜{« ¶NPƒqÔvÐ"øêcùoöLÁ±,èls×`2CkìØð(&êÄá)ÿÍèsÞ¸>²ÀÞµ:Õп˜ÕÂ,…%aýð NtúN“~ø‘/ÐH¶‘"ø2§OÚÄ0_÷º[Íœœì{«ï øû4t®8,&À,¿p¥”¨gÞLY™6œd“o8o_¾#ˆUÆÙ²~˜‡¸m-$+OBy}…¤ÜÙàØ8"ªÂ!ýqt£è­¯*5ì‹ì˜šÞâ_aÉ>ÛAŒ³ÁÝÙ` ÓÖ~yb ŒÞI½Â3îÄêÃ>uxv\IÊ×¥¶i*¿%[ObEÿŸ>ý¼§ôVžUØ08¼e“@UpmŠ·_xTó f›bN. /æ‹‹ÃišSýœˆ‚©!<øíàþ4ÁqZÏI,8$stVŸ8Y*Å}¡ý­IÓ;’'§^_LúbHë.”•«B-D*¡[ô àË8`nÿT}· S%Ï3öšâó™1p<ë)]?VrŠÁýó;îÐ;>à38®ÜÚj&hb;j”^à=ñâŸ8 Y¥@SéUµIƒÓmŽ"Ø”"ã¶%( ßt¢ÑóŽ—¤ãè‡ñƒšg…$™³e¿è¡ª"o¸Ž‡jãÏ߯WWÔ¶)ì"C1˜'ÃKõ¶ó Ä!QúZß¡±°÷ƒä³Ý2ÖËÈ%Ù_N§SÇÜ”@Ÿ Éš‡¯Š ðÄÈx¨Ù£jw%¥´“#í/É$ë=… è7”ˆªË O@¬84d]=Qx,ʺ„]ðf-¡I²Êìb Ìÿu[]Îew©3I@·MÆI÷Å£_^0!‰q÷Týå,‹nŒÒi2Ì\º¼d6ÛCNWévH!¯þ²–F­EWíšoXjš$Q0åô©‚ÝÆOfÝ>¾Þ šïE_5$ñÐá5#`Ã[UݰW¹ø^i✑¶cOŒ3·ðR²ˆÓŠðHaÇãCš ºR^xb§y¸Ä³én]|1†ÛÙ¥ÝÌçÖÿñGqr“šI²úú@Z¥„BËÄú+!†²þ·¾1×Ðq[P^zš ×±NªÅ´ÃàþݳÒZ—¹Cäw[rÕ=ê6™L⨯ʰïó%Øšß—âõÜçfa‰óÝ•ï­Aªd6™a—˜—9:êAÁºÞ[ÕF‹Kó—@©Ò"QÊßX&Ÿx9øžÑ=!Bc±ZUSwo@vÉŒö²¤ˆÆ WožVQ¤Q ŠÉíåk²cþ¨¨"2xNŒòhîä+·’ñœw®Y†ý¶ úI&|ÌWz&K~Óa(ŠË-ªÊ *àh¼Í.J«3XñÆ~7Éö)ÆÜÁœ×2ƒþ³i|ùävh}ÈSXg%Óº†Rc&Úl˜Ö ÿ U„bÃåÌxÖºížcª.ÚM£ D&qxq凼Ɖ]ú@»wZ¸…2tÒNiÖPuò©§êSõI¬¦WÐ@›{‰÷ 4ð‹ŠY°µÊ”äb9y†?ÓÙùGÙVx¶„î¯Ó=Z”q·;x×(׈¼b+ƒM¨l±œuæ=n)Y§TrZMbX .é"nÂëqÄZX±CýÐêV#æG› ¢µn§ßÏÅÀˆô/Šï˜gÔË«NõÒB"á)åEÜwÚõÔ!€‚0eâ·Ô*ðõzpÞsSŒXçÛ"©é~–íDQ läÂL¹ÏœX>×éÚæHÂ-AKT{3Nöȸ7*z~R ‰øŸÜªœx†·ú]è XÇPÖ®U¬ÉåÉ\!,ÿmÀ•©1‘ÃÔué¶~‹n¨žVÕ¤Ñ<ÀÇ÷N›ºGdò;:8$åÿlµÍ4èôIÝ ãü —¯–£ºžH¶ckt'ÚU´Œ\i‚™EhžnŒHÝç›q—²¸õ1Q±³övBJV§© è©#½³ƒþu;{G[+ü嘟XÍ”ŠµŒa:3DèDûi¹+<¸/ß^50wd¾mŸÀ;ïuî·àtº\‘æˆ=ôÐWÀüG’0"ŸòL—~äÿ|j BÐ’âš>Æ×¡{%¤ëºEj.Ã’;’rú2aã=|t¯¯0Þ_µzeò*êo÷ïClÛðËrî®ÀÒh=Ú÷ÕN6ÕRÁûÅæíØr/åMH⥠> t|mí‰¥Ë & Ýj_Ê/Ú2òïëÇÄ*ü¯¾½È§¦—I@FÏTÈb“£µuYO¯BçyÂçø>Rf&É‚òt^O’ë†ÖÜÕàœrKÊL¡þ¦ù’8«ãs¹¿}XÞŸ×HYÏoêâ 2 Ãg#%O&ÊŽrÈÕz⢤ø¼Ì²'|¿”œä§žbÝ_ýöÍ¥?â®â«€—œ…Í*¨-¿Ðª›¯cPìCÎpÀ™|7ƒgäMé6ýZ¨pqÿctè½˺*^>i-“V9SZ¨“ò6%Viñee)÷§Do6ÄD†VS0a8Lšxs´ 8éÑû—úÈ-˜ÙƒÏ¹KÎÙg&@4'\LÅd‚D¹dã(œÞyýTìI1h–$Æ×—¾w‘‘éY,hü>Wá‘ô"ö{$\ÜÏs„¦ø¨EËùÍ–~àâ¶hŠªâªEÖxT^¤ÌÀéÉD&[þ£OMÝg–ÐáÞ™"í+‚‚,-¥ƒƒ#ùªòœƒéâ³aH=ƒj Kq¿‹¯§ô$`è9[ÊÞ¡•wìLZŠÕÙÂ’ÚÒ[±ˆ`Éó×¼p R 7QÕøÎËÍ£££¡­áEFÚÃ^¾4u6%W6B¡ ´&šÑÒ€úÉı{*Ó«¿ ìÝ@s_¿ãúRÛ›XYª×e¥; ýû!ñJ’Ð(/£xɈ1Ï)¬Kš‹åœeªstJTXÞnÏ}±iôLÊ!k à ý¶ƒ-aÆ|à%ß®1¯þ¤2Ôt´úš›ç©¿‘¢dm«~LÖ<)–"‹ÿéô¹«©¯N¦÷ÅïàÉõy_EÐF!™9!Î'Çiôžnsö&WῳÎH«W†¹†Ü^âñSCäR ×_‡ÄZd9nwzÞ}œ7éõœƒ9ÕÅ¥\NCwì½ ë(ä-6ÒÂƧ N"åûØáàåíy¯Lቤ‚Kýqªþ2Ýþƒ’½õÌ…!o†k¤çQÁdq¡KnÄø²‹NÝ U•À„uóR„q4ñF(ÃSÃ%—@”³›´/Íï«ÚiÈO¤²<¡Ô5‡—ÐD Àä®DøëõݾÀ-¡Ž¼l'UeòZ €1Œîñ4ÅRöGÞf( %q™Ý÷õ}ô:À´, ÝJ:h䋦‚8V×"Ýĺ®Cû!8Û'ϨþÀw'oÒbn©à{€ä²R(è¦ö©‰Ï åY-'Õuj¾ºŸ&÷ŒÊâÑë ½ËnÝhZeÏ¿¦ÎûãJ½auù+c§G+d,Ÿ£y½‚ƒ.Q31FÀEÄŸØQm·Ô†ÿ‘]žNÅß9µHJ‡]3âñâ®dú<ÄË¥Wmy¶ÛÙ*Ó÷í'²¼î :€&ꉾ]È•?ÖcŽ'‰v#0öây•5¶€àÓ R šYDj\ Nê¾”‹îOEf÷¥äa+ÖßMægI–±y ]VžÂ‚«Œ$‘ ó6ˆ‡ãøâd-)6á';ç¾§ú>öœ+—D­1¼£üsÛøv¯ ”WzAïÃÚépw(®Ôƒ±·˜j ª-C—?•½IߺÍÓ#ÃÆè[‰›1ÅY†û•L¡˜³þ¥à q4Í^þœyËöîgÇ{1Ùçøö‹{rB[ŸÌ3êy'­=nª@) lÎ:’ßz3Ñî™–9+Z}. ³š`Yl@_i~kZÒÕÂÆ¸·Àzqa'{©¶¯&”TMWÃ8™h‚üÒñÖáë1Ö¶iÌ ûŠWnG2j›Õ7«˜(èÐE ’:;C%ø ,À¥ÙïRãx:æ ¢QºÚ.Pd]’˜"q§õNÅÅå›·†Êºú×SÕ£ª<í†òµeºq„0Ýå?¼Ÿp0 ÷ìxV§VïÇ®ãrX;žé²á?q¬Ïõƒ!WV¼‹æRâñ:ý3(c¿mß êÅÖÅ8˜zâ©ÔsèÈé.ug ‰:JœS[­-üÙ¾¯ŒÑ rO‚¶ð©Q† Wÿ»D„½aõ ÕNa‚ÿE´)Úz¢WeV× ¦úÀþÀ_­¬S˜ÖÎØ|îå8f¼Öþ¯Úšµ±a–cÛÛR §íØ‚ Ç“ÿ%% …Û$êû²­ÚClŸñǹáE›KDÒÆh6ÖÙÖT.ÇËùá·¼¯ÿ€™ÎëÄiëm(œ4Œ¥Û¬ íª´°Ú°¾«â¤Qd[G¼È[Ó’±¶( |µ!Û&ÙâúçˉÔÚek3:LÖò·¼“<óÉx~~ìv§ÐqËÑökT8^’Or™¡À])Ýy€ªpŸ‰hº ,¦íüÔY§¬Œ§Í^ƒ´2Gi®³òåM\k‡l¸ðCHh<éy:FÙy«›Ï µ°ž‰ˆbž)m’¦”D1û!ã0Ô Ou…“W7—Žf§!y{¡8˜;üðúæÇ‹Þ•-±;“r½Ø×>‰_Ä1ÅØZÔ†p{“ŸË€ø–’-úw;nfä#ãæ@!Ø<Ý€ wƒýDjùÝ~ʽàÿxS·.ÏÅSWlßB H~'!1(|þãkâP”¶àO¢µÓË7É>GÃmBA{ø¬@ÛÜòJò»iÐâÏ—ÜÞ~äƒÞž±qâ–¸“÷ž+KÆEÇZ$U¬î²%a½PòC¡ºÂ¿·]5±W”mÐx¥1+E­ã8‹#5¿ÙБVy ›Ÿ ωæe6Þ6DÞÔª"¼“>Œ%øvÊž%²µG Š;âY^@"ç{àô޲š'hÞÏŸrÅU5¬çŸú§âX€«SmæË"¿Ö}-±ÝªªÑI>œâ—„µQ½£A¡b¯­í ò£ÃÑgµâŽxŸ¯{‘jr ¯íO¨ͱ7S§ ‘»ã÷ò¡º;n€»Ö0,Ä€äVd“¿pÀ’Qò{L´ý¹‡FÅ®soÃ‚Š¿`SB™M¸qÕ—ƒG£ÿ¿<§–5 >ÇѨ¿\Æ1›u ³Í|~ìÈÓîïx“ŒÛ4ÓM,Y¹Ý³‹^¨ñÊ‘xNÔÞRyÍ wåÆñU<'Ä]?Ä¡ =ì TÔ6¼4Dš_ÆY0 ,;5]xÚè½Ìk$ÕðáÜN¾ð-Œf·'îêGUZÕn¿m—ÏDËñø,naô~üpË5J²Ñ_‡˜WýTr²E±èß|´õºì·6Ñt÷™.¢SÆÉð°H¤ Ð J,ضBÞP õc|ž 3,µðeEOj•ð… ûÞBg‰’¾W©82“þŒñÖ’ÃŒŒêêsÑͼè>xAs8M,Ù:óÕÈ)]ýCƒ»Ï×%P¾&Õ|øI~› W«Eg)H²É°¿-Ÿ.WÈzÏlv þs€€§ç„}ÚIã÷áu@;ª!>œ.‰—†ÐÝ™Ä\¦&¶ ¶¦âr8uÇŸª@òj–I3ƒ“ˆ[&Ò]‚)‹ Í@”ºÇÃW)Ka—µUggu›™D™yR•áKqìL¥¾“Ì׹闉LÑKMñ®6ùìœK…€:„4l ·Í;øãÔ}6›©0K"è$MäE°2ð€´Z» WvெrJìB´Z†Û„¥´V$îþã\ÀW$CÕ G-…ñêUô@‹ù¾|ÿ«4X;"%z¬Ì¶`V&Þ˜D¼@uÓ¶në§9?¥$'­½Éò,)Œÿó[=—ˆ™ÖíìãÉyg5¸>0 ‹YZfields/data/WorldBankCO2.rda0000644000175100001440000000621714762765721015355 0ustar hornikusers‹]W \WåñBëmZ•£Š‚­ uB !€Ê‡ÖM²&+ÉnXˆŠˆ*EðhUD¨xÔú)EK[k­ˆ­ZDT°Z­·ˆg­ý´x|oß&v¿dvÞÌüç?óæ½_’9m¬Ç4‡.NÎè»+zuꂾœÜ‘ôšÊrzM8ɤG$ŒEÞÈ” ›nI2êºåBÁbrö7GßÀ¡3*#—ÿ -“n«sû¤»Cé¡í'?þq1œSN\6¨vÅ®¢àdFËbNmã¥ê3.BAý»ßßóµÀ¹ƒþ³F­Î‡š¹[Æ?ÊK•Ÿœ)l…òÚ-Éj„©›÷[îÛÒÈÖS¾°ÿ—ßG¶zÁš—#W0°^?]ë¸þ7˜±ÝíNãç"F†EÕÀ¹¶Ð!# žsž]µðÜV¨ß›§ÙàÒwõK/ ’Aõ¢Þ~0owÐ7;ç¦ÂòŽkWÌÁ§o¼ûd­€’¤u›ê§,³£nT„J=àúçˆ.û»C {r®úаÈ,¼â õG6®ܾ éîk[&´ƒz˜³ßÀƃ°»ùÇýõu+~ði]¢8j»{GvV¥?zú_˜=æ0¢ügë·Azïâ—wô€ó>·ƒåoÆumq•,²¨ Øõ$òdm /ºÃ–Ý3*Êê@ÑÃ:qëCõæé±Ýep´©Oua…l˜òMs‰×(Ø0¾Aš u³²'HÞ –™ï-=ò`¹<ðe«7ìøP·¹© Áãðm7×(Œ©^¥]ô²–Pm ð‚’þÙ)‰¯€ýnáí-¿ï‚ò> î¸~_ Û®V>[+Ú†£iÉ•ƒÄ_ŠÚç»gïäÓ×,KË*Wþ y/Ùn--¿AÍü3êìòÍ]¨K~Ôò ±ùÆœ£ÀUŽl_Ôç#(úõšjiÄOwaÈ<|0;p`ß`ˆ_í{ê$È?ßäðn·¾ KYònèê] ?–ë”Xá r&ÌcjÔ-ó}?«rÄDìx›²€t^sÓßq/ ¶¼Ú#×}õðE8È÷¼\^{AúÒ+úõ' mo¡jnÄ’«"6îÏ…×mšæµðÂé¼O“¢K7Z’ö^B}™yïq;’¡uí6H@žëž¾â.ÒgûN8 ñ»óînIO‡ø攊{æCÌüâÇÃÅN ‰k:òõ_ë!ö\ôÿ®®-ò­âþˆIç_@ 8ð$â—‡ÂøßýŸ)NÅlüÀ´ðâ4ÿ§õônôËuú¹ ù‚Ò¿˜eür (ëÏ{„« ÙG˜‘ÕÿoP4y¬yÅS‘ÛÖóh“ÝüÅÑ‚hOlôÄŸ¬qå?™ŽOQÓ7 g#ÈG#·è=0™ÿö™‘V^ ûÆñ(„úäÇ…8¹XÀ‹$ø+Æ lÁ0ÑÊ'Њoå5ÙÚ¯Ä2!N:I°‡äŸF°J¥5_Я8_èXã„þÅYýã­yc¯þÒ$AO´Ö§løFZû.9&ð‰ ú«ôê³GD ï–g!.äÏ­hc2à#«”{ <üñ6x€ÜÚßk^å^¡áGÞ)›y·0˜p]Øÿ‰Ý;Q)èPq 'ðÝnÁ~ð]-Í߯„cÜD>ѧŸã*É™p!ùBë,¢ä¿" 'ÄÁ‹\·@ï'¢×¼ü ÑÑ2Xý¶êò˜7snËëÿÕÂNwO5ß¿KŸ8× †Â㪽M¿’è=²œï<4Iú¢Á“×ùx"ä¿þ;Ñþ^ò¨u‹\FÀîmJD!\¿5|Nø„\Eå #z4~˜Y+þWhQaßÕ;ˆn´]™ŠçkkË}ž'áÖõ&5dJî°î«§wòbÜ?QZÑk~’SõÑÈ^­ë…Æ!„èú‹'_7´¯Ÿ2e>4 Váy.Só´ÝàtÂ~‰Üª ³Ðy"èÃcóx¹H7è8/9¯Mü9#Êßûê/ÕÃÚ°®^ô>–Uúµ¼ÔÜs¨à¥öT/ÓëÞbœù}ûa?ƒÛ=l?»§|=/ºû/—MÓã<샀[öKí{ÁüI[J¿åeÑ£3o哞kІkJƒ1_nù6쯩{&Ȧ¼®^Ú€ãº9½;#é hž‰¢{`¿ìɱ§1Þpƈë;ûësÄ“Ñ}FänqÆúÒIEXÞf`I©æáxsÆÞX_¿â/?uõÂõY>º{Ma¬mÄzÖϺռdFHpU«Ãü6©|—ó²¢gŽŸ›*Áë%µ‹§ñ2ŸyƒëUkò͹ƒñ*oqÞÌ?¡_SdØOÝŠõ‚ì=·øó¼Ø½IŽû0Û|s×ÉE‡y™7Ùåî«“'Æ-.Óáú²² ªñ¾ì­ƒîIb•ãÜwøù¨®<-ôMì†eÖ‘6Œ[:oæo\W‰ùk©mØÁÛÿõÛ¾«†æ·¹›ÿóßÁAŠ>ÎÿrqC. i 2Ñ{o«_ì+Ø] ½–âhÒªºŒ–ÕÛ4w‚ÓRŒ‰f:Ì™&ŽÔÛý=Ð ­žÔP™:`8¥'9sf'UK› 6üpŽ´ÐzÛ“p3—ŽÐEQd&k#AT¬Æž×)ŽeBÉ›Õ9BGë©N ÓÇêYƒÊŽÓ#‚E¥ER†Ñ¢DÊ8ÚºÞ-‚5Q"Ÿ$‹¥9’w„…Rëx7³JO«mµˆÕfRÃr6D±6Çh%"8RÕÑMlÒѬ±£§QɨmЮÑg ™çhiçìÍQ”ÝÓ=ÚLš(iß×3£%9{¨„éh“;RX†Ê´/ô’ ¬£D’L=i Õù9!K†ÃDê퀱¤‘´õÙCJZÈt]¦É¾â,¥˜¼§”å(rTg\Ú-™©&mr‘!òÙ´­/¼–ÓÁÐ é´Ý“šK«m3à*c9VmW=d¬ a¶ïtüJ#IÛ¸+9Z‡þæwXÍ{‘>ÊŽçe›ÕÎcí–D2–NE¸%éHºSÍ.Iè”R¶!qIÖ"“½„ätq°Ÿ›d†6Q‘”f´Övè»YW•&4϶¾z$[TÔ?6¢[ ªØbF׫p[‚š2¡ ̶AÓ)Åücì\RÉNÇÜ-•6¨HU6e½çœíÇ.R>ZMmªœ5Ž6КΪ™SÙÔˆ„±œ»"+oøÏÿ6—êqfields/data/lennon.rda0000644000175100001440000011216214762765721014454 0ustar hornikusersBZh91AY&SYu4i<UÿsUUÿÿÿÿÿÿçÀ@@@@a Ÿy$©ëFSFƒfP $=%²”C@ Ñ@$ R@( JDRQI(%@ y2ÉEH¢€…E"ªI @’PªT¨DU @@(( ¥PªJˆ¤ ¥ P¹êøppßqõTT¡@Т‚€@ ÇßQ¢(N Ýç òHIHH ( @ Š$*R”¢ŠU P1ð„ÝQT$P4@ÔZ TOÄBDDÓBi”Éêi¡ É Ñ j~„H’ýPñC@2i Ð O%%Q =@d ž©JI©0Œž€!€˜LÀ €…R™&@€‡¨h¡§¤•*CCC É Ó##@0@4ÈÐ_ÓìT—‚#ÛHš ó%‹ˆ@4¨é)U4…*4ŽMR‚h;°®…JD8„BŠi¤Õ.„iQ JM"¯‚Ò+Ä*tI¡PÒ (hJ@ #¥E(¡RšQCH¥"iDÒ*R¯"N ¤âM*RPh@BhQЀEJ”@ hJRèPÒ@ ¡‘6ÂÛ.Ò´ ".‘M  tº¤ )E)LTCP§H„t”„¡t ª(íaEÒè4ëih@…-[*b¡  D(Ä6ÁMRÒW5s–XÚ«‘;,îÆŠ¢wX¹\6‰Ý«¥IHº@t*PhÑ ¢'A¢ ZÒºZ °ŽZØ,—;9]Ý—N£PIn[–5ÎkpºY;»QB©BéiUŶ³­šm±A³clf+I‡JQFœBhPÚå±crM‹j-%!sE&ÙÑ¥‰6Èâq4hu¹3•t»»q6Šæ×(“»ºÅ¢ŒZ.VäY6µÐ±"$Ór“D´°ôòœnîåÜá»»rÑÑ,•JZÖ’#HæÖƶ5³š¶Î‡.&sw»Ýth¹®»·Yα\î;†a½KrñrŠÜ·-\µÍ±Q·!=ÇH³M2E,ÜÔ´\ˆ×)×* ÅuL¤SÊ ÒOrNmÒܹE£šÎººƒ¹^J†)é†Q†Y”xj¢êºK†`„hž^D¶J­—Z(¥(ÓN”6Ö –ªâ®¥žU¡RºxReN—¢šx¤d(Gšæ¡jK…)Šeg¨%G—¦S&Ç îãrî:1.»¹šŠ…^æN™”é‘g¹W¤ ‰ âà• Q¨YTVb¨aäUh”R˜‡‘A^§™––fºh®J.*©¥)*"EàY‘˜˜©Ñ˜Ôm¶tÄf ÐÆéÇn¦E%¦k–á)3»q»¬¥Ýv‹Nœ™T±rÔR¤C) +t"ÉC,$•ASÓ#-M$rÓº‡tsNìDEh®¸\É5B«R¤ò´ Jò2Å RWD3Õ,2RŠTЍ°Ã\Ô¤·O4Ôñ Â’]!EЊ¢¤¢5M<.îQÍÇw4n]1¹G¹4—Žº.eÜ\];4Â×3t¬3Õ4·=%ÌÃ+MCQ2ÏIˆÂˆJ¬„œ«Ô7JQ\ŒòR„‹t±  Ó"Ãt<õÏ2ĪÂDµI<‘)K rõ/BôÍOKBCÌÓ<ñ%*õ3Qô¬$Jô­DE”UÐ**<ª)U+3243*õò,L0ò‘ —ÈÑ3$µ+ ³r3ÅÒŠ‘<2Ð’IP¤ÅB4#ÒDB¯4Ñ<3²,"£4 ôW-1),ÝR”ò¢ •<Â"53J”D­,JQDJ̳-5ÍJô¨ !s3T²¤Ìò‹$IJŒDT3Tõ Òƒ  ¡EUuÑ\@ÏJ£ 40¼4Ñ RS7#,+I"THB³QH´ˆ´)I$3\ÒõT‹3ÑWRJ’D2«H’¢±BÔTBÔª‹K TRIJ"‰ÂÑDÂÃ$<óHÓ0“t‹])CL%<”50”]I*¢ÕH­ 4RÄ,ÐTRÐÔ2ËsÏ= µ*5<×(Ä ÒpÅBˆU3U"3ÓQTó,CIË ª½ÒÃ%Ï0#HįIJ%Q/S RÍQ(òQU/*MÑ*MÑ0ŽÅÆ]Ü.;¦g1%·3ˆE· 2IW'2J¼ô3D«¡Hò*Ô°’(´5OWUr‘#B‘L¬ÒÄò/C4ŒMu*ÝUÒð¢JÕÑI¼0Ä—)R!1tÑ1$•u ±r\U‹M\ÝòÄDò³È,I$I=Ë=]rDH´Œ%H¼µD´*³Ð´=$R,²£52¡R’É s Ã<ÒS=C#4 µÄÏH…4MÊÏ=ER% =C2ª¬- ¢ñ*Ì„¬È4¯TµÈ±S#ÓETó-RSHˆ„­]"ð±MrT±-Qr«Ò%#D¯L4B$LÊÍ ¼ƒPJ\¢=sRP±×%K*,,ÔL2E Tƒ 4UD5#P²‹J JÌ”2‘B•2ÊóTEÔIRŒ1ÔR3sÊ3BÔÓô‰0ŒÍÑD¤ÊÁ,‰2#CK òË Í<—R]S)’H”]¼È“MK % ܈E=ÈBÏT<…,CPò «rŠ"“rÃ\ÍU3RQ ÌH‰Ì$-$(²„E'%Ï]<%=/QÕ*TIÔ•Ê0’•=*…*P­tJ=CMBÜÄ= $"t]@ŒÈ²°¢³+DÃË•,¥(°Ó-ÂŒ452•7KBô¨±BT¡O+D¢2õ¡vÝÝÛ¡t¹ÄHŽ-¯AĤÁS(Š<‚#34"K Ô µÕ 4½,Ü—DÂ+ÉuCLTÔqQr©LõpܽT"‚50¤ô«D³OGK7B­2¢2 \²J3TTLòDR½qS ,(°Is4Œ3×S4ÜÝD« 5H‹×TKHóÌÕt+ 2B­SÍ]KLr¼„%W/)Í(ÏP­<¤°µ²¤*,ðÅ3ÐÃU+DÐ"SrTJ¬ÊT4*…=4ÉQP¡J¯WIt%‰,S3W4J“LD/4]rܰË3D#ÒQHÏ=2õ=E$ò²•AuÈŒ·U2"Šõ ÝPÔTô=*JLµ 4ÌÃ"ôK,r²Œ¤ŸS‰èXh•y•…V)n˜G¨”^*‘h‘§¨hˆIyh†§™E¡I"E‚(eº*YJ¥*h›¤ªé’(©‰)…gªi®.š––I…äQ§’¦®R–hY„Aå&a(¨‰éf¦fF…&Š©U+¢Yè%„fèe˜¹„”˜ž’’ ^Q$…J)ºQT©zê&iDˆj$I¥‰š¥‹‹¤„¤¸dª’j‘'”f%¥Uâ¦H˜RQ’’’n†éREº)*¢¦h˜Xa’*Ф‹•¨VK¤•F”“ç§SÄL1*‘KSÉsA#Ï D•Ô-5!LPÓ#PÂÊ#D\ôHƒÐ¬¬2\ÒŒ±O( ¤¼CB(Ë%"\±"ÑM­™Råc–è–›„—¡n%feä•JAJäºZ¨¹!"‘"V›–j–’E+¤ªhŠº«¡%¡‰‘TžºT¥å‹–UšF^’RfRh–ê&¹ó èQ¡é^–‘Ey©FP•®¢è®HGusº;˜R@"ênDQTz9!”ŠX˜y‘•„IjXf"¡KwÆ&î™ÎçEÖb9]"ìÎâs§:¹tÈæ»9䂚Z§¡éJ‘床aêU–y¥U.¥za$ª(†¹–[šaIjRH^õ¹3 Ñ(SQ"-*•+Õ?[²¢Èˆ¢KU%H¨RÒ³HÔ…%Õ3Ï!(ôDIErBÄ-Í4³ JŠª5í±-ÓP%2ÉuÂKO+0ÅÒ¤½H°Õʬ,µWS#OD“E4ò³Q½]4×BB—<ŠUÑÔ0R)0ò¼µ?þ;×PÔÔ””ÄËÊÔ5<­ILQA =´£•ÕÔ°ªJó×L7%#L] -t¼ò²7+S#"õWP”0Ñ1]B¬•ÈÃÕDÒ42ļQÔÒ,*È—)‘W,Ã$Ë0’% ›2,+QI D4ˆÒË4Ì©TÊÃTò3ÊÅMH¥ ÔT2ÓËÌ0(ÄòÌ”ÌHÄâJÉH“Í1Q$Ì­KÜÊ5BJ‰DUŠ…ÄÓ2…DÄ"’%4‰TŠBòB,"¨’ŒÊŒŒ4¥-)MJB¢]Qs"Ý0COU1B(¥U5ÔÉ"¨Iʪ à $Õ+Ûc- U ]”ÓrÌ1DIJIt³%4ÅKOQ=AM $±¨ÃÓÓISM,ŠÜôU]]"/PÜË<м¥W¥CK5 B*“0Ä3ÃR¥7@½"Ï2 ’d6%¡V¸P”ªšV"”’¢*Fº‹’Ž˜E„.ši‰¥¥k–ªe¹„‘…Š¢%ùËÙUzZi¹hFG–%Iª™ IªU•¨¨”¨y…™iJyREdb™e"‡®ºãñ·]ʌа‘¤“Ä£Ô¬–Óõòo©Šžª>‹#U!TLóIJÁ2L1T"°C·Su$”×.¸¹.î‘„]7p’Já–…¤…êNˆ!åj ¢IY`U¥®æª¤¤…j/Ç*=º5Š”=*<´ÄLÅ\¢4³ÍuËL4”¥Ì³uÉdÊf©zìÁÜpbs‹‡1 e"‘å!i–¨nD¢Z¾¶oǧóF—®žòoǯ$ç"î)bJ˜Rë˜xi’èžžšAZ’„VVf²ä>¬Jþ&Ñ LO5¶EUzœ¡uÐ#(²Èƒ}g?‘´>³ªU•Xfye*zåY]s¥DiG•s²Ä½ ,ë~^á=íÛ’¼ã<£¨ìòÍt!ŒÔÄÊOŸÁQO 葚DQüÝ=¾Ø×KUë†á‰’Ii–hf †a*{Ø~|oSùl<·?eQræÄ„ÜBüÕEåwçÖû%ŽX¨ú,¼©mç¹$bóf”#ñË™¢¢º¨•µµ¶öõïnõ™ß‰ùôx†Q¹Û¹¹e¤©¿5Çâ~m­éºØ8›XEPiD˜Æ‰¡Tˆ†&zïϾä¾ð¾¿ÎtERH+#B3ùn߇çæûÇßg¦;¬´FŠm£åᯙl8!cŠCB­‘ˆ@†ð{¸Y¼¤lÁ¶}á¯z=í»ç³îH*ODf  bcIªÊæQTöÀ#óèßZîB¡I¬s¶Ù’×"kiÉÁTÓnÑ‘6Å1ÍÝÍ“k#{]×"yÊò<ÑA9 u±D £ŒS-©æÕk5„æÝÊœ­ânîUpÁkq29ànbÒ·rãɆeÛ"pƒÊL¶!²§6ó)PÜ1¤ßÕ¯(šØŒÝWFó.µ’*ÓW"Æé©°Å5”Á»tÔb¸UkDzrò\¼Å“Z¼¹5a‘½Õ¹’h[9aÈ„,bfo&æJÑ.LWeµí–™f,ÌØœ5‹vm›­Í²±Ù*ųLÕ¶eÍ´ ‹Çnuíy2ê7&¦-R-ÛœÉ-.pÌÍÁ¸,pK-{˜È)†¸ë`ØØÃk®Âó Ó™HÍ )E^rÊõ™9±¼Ø¥yÌÆ4=[rÓbcÌW6!âxò×]y•ƒÌk'+CSTZÞË-–ÀÌ•d‰˜ì¶ÜÒÚÜä™5ºŠ6©a¡ª%™›¹)™SN,R˜±ÑQ±YèÛz,åˆ[[s5–n™Ù\&ã»g>Õj»FÞMÓk,µfEuf¦j0{™’ °Ü¸®š‚nÇ^^d6W­K³mEd{uÅ^ë³räFêÉ&J÷c ò™6aVFƒ6ÌS^ÌÍ 6ኹ3%»¹5a‹uµšEn!,© "•c'&,¥pÒí¶í˜¬ '·]ŠæQî>d(·ŽÇuîÌe̺fµ“—DèEccx Ún¬ãuãs7e¸É^Å™ °Õ-¥ŠYŠÜ‘¬H2l-­U™MÄz憦Ö711j̸my†éI¶§sæar]]Äî5Úb“.dŽMrí̱î-SYºc»& ¸fdʤÄÌnZ—2’·œiÛ6Äæ¦\Á=Ù1­’ÚP¢šwkiæ²fÃ+d˜ï¦¾fÍešaE‡Ì›ZÍtcv31ï17u˜·7Xhõd S”»m[Õ—G2[šæ×a[ܶcR'¤×1=ÐpÝಱZ²«3^ðÓn;²”ÆÓÖÞƒV³p¨ÝªMð&¼xÙ%ªãŽM&ÝYmZbe·&RÝZó»³Seä‹,Ó5kQ³w 2ê¦*9“Vµ¡³V§£Ü«XæäÈ®¢îæÇšãÔÚŽck.m.æªöf , 7.6Å&ź¬ÀÍ­¡MˬÍ×–&eE6Id{7[›œÅ“U{»¶Ó µI®ªb3FË5ãÈr›Ê˺·!±¢JE‘¸÷^å-P“FiZHÖÓ3Ý2U2”»­nôfæÂÓ(jǼªa¹1LØ NAtmæÈÝÞKºî™–Å[™xòê*O XµÝÕ”r9†kF,ºÞÇ—$»Ej1ÝÈÍÙk7.›UÉfh©²7jy²å™X÷s®ïVj››w ™0.űÁã¯R¯rÊG™–Uw64L©:¦p˜&fåXñìªCŽDÈYÍÝ£[j,Õ+Ícsvæå–jÚ+šEµÒjªîÒL·7{ šãV¼Û^êÉw&Ê¡¸n5š¦lä×Y†m­LÓ.ŒMåǺ7(ÜÝÎ\v²‰¼œÛ55H³v«ƒËs2-fa±œ–˜ÕÍ™·v‘âÂ,{cY¯tŪ>9#7TrF±›µnŠï&˜`,f9¥næÜÄÌ›"Âì©€ŒÃ+¹×i[WI»­¬¹^QÚ È›MFYf=—#Ç39 ¹ušøâÝ´r´‚•׫ynkdÄê³@´ÝäÍÚøâExîë­»!­5œ­`°y¬™mRÌœ†2^5¥TÇZµ±dy̼Ȕ…oãÜæÍå{¸Ûթ̺ó8›ÇëÁ;’·fë —mÕCujÄÛÚæ-¦>Häi’Hç.!Íy·ZǸLY›pº±å¢{.BI)LºL«’”Ó‚ ,né±]ײÃwf8±¼Ý¸ôk[·eM²f¹b¡qê•JǪÞ4æÙ²rYdZœ¬Ý›„™ŽS0[t²• cÍNe¬{ RǺÓÝ»&<Ø·q;µ@µ9\ªÌ¼L»5kÉn&®Š¼Ú‰¶-npoQ1îÉ“nIµÉlmV;QuÍ) ­XreBÍE‘MÅ%»§ ”Ñn=ÄÚÚÜš­xY+U–ZøC,•i¦âq¢¬ÊPa‰ÖC„pãݹvlÉȶÕs ùÂàñ̵X·s™Š(ÖØ¢dÌ5Z÷SÁTÛ ¯f1’餅Ù1!îØÈòè<ÃdypÀÖ¦bŽ9¯1×É5éZs Ù'Ü%Ð9fÚâD¿Òþ÷÷ÿÌþÏîþÏí?·ûIdñÌd”Ç‘yÜ7fî›$¹^‡¤\õ2šÛ;•Qjv%îÊ5*ª‘ ´¹w^/!®í¸) &R)\õÊö‚R×ö}nòí•ì´Òôæ]r•s*òsS$$è`ñåç î!9Ë© ç*ó IøÉÚ'Õ¤¨U¨ºîK¥åž˜Dz$K©Zˆg¹AyF¡åQEéâö šRCɹ½*+ 7C"‰P£È¡BM *«CÓ="Œž¬LëbiûDsì\¢¹–ž!)DR">·d&Jrj2'’|D#01"2¼È£ÂCO44NdUUOB¸—; aί<£¡"¶{-È÷öo±ã*tU¤ •4²¥Mœ*º™•šE§¾w:»Ç¯xz懦ô¾=>jé%…o8“F ªTgEŒ4n\ÈN]¡öËÚP([ÅNOÄ%í±LªëNÈÑlr9<È™;D̃µ²3)‰+$ÕéOÝd&%çñ>×zØÉM.ÙBI "h¤‰d¶Æzfzå3e(vsŒÚMT:!xÖÖ¡QA§c<¹²³6€™?q/g‘éûí§Ü†C%© m É­§µsG—\^½éæh[‚h^·¶î_sD’*™â찾ќåL=žÌ„Ñ Q4¢I „¥t3©(öeÔ¢Š#èQYºzd^WÔš¸ž^žk‰MO((9¸„-k•$›m‘ž¤¨K¯Vº“ÎGVÔŽRxÑ"(‰<4[dÐ Ê.OÜB kÙœ.zòm)r²(«ÅI´àY¨•y*îD‘“ÎÞ¶W•4çJ¨Ë‹¥Ì÷ -<Ì~1’he‘ùCó6dË"5gª5‡fРž¸€EDòÃ37¶pz9þçoÓL5#óvS‘M1HÐÄIõþE#óÞ…Îé«0A²à 0æ!au!•ÚÀà„ ”g@É\ÊñÒ ICÛèö^¹fBz†¬‹óåÊ¥W44GÙEM&AQåTb­”½û·Ë¾/˧ʒ‰÷0Ë7ãÒèR~O·¡w¶|øÔdnˆn„ªjGèžMMè‹~Þíóù¯Wá°â‹hfE©T^újY"eqarñÆÛápCÇ2³ ñ¶ûKÃÞo &4FHW篻SîðÏ=0¢Þié Y@Úðã¨Ã€Ì>ŽSM*Ó"73wÈ]ûÅ}}£9úÝõÄŸbÙùZm’é÷¡{ðÞø¾vcxEKNɶ½1ÞÐ)] ¤Òl1·y=®_>µ¼>CŠªceªFpB˨U©c€OM{T@ŸR™òd©´e˜u·žw=ê|Wœofu "’Ñ ¾;Ë-%ÎLj|û›Æá#kô<«fÕŸŸ+å¼1š³Î²¼j£ÓÆeŒn³ÂäÃÞnw½ÒÐ×›LԦǛäÇ®DKë}±}···©«ÚÒ(ýî·Ûííd\4ÑŠ7'(NŒ£ÊžØ(¸÷{yP±°boެ|óå§– ÚŠEnÕ²³•*í´9rÝTòð‹äöï;ÕÞ[¯0j•oxóí§ÊÜŠ¯’6'œ¯œö™ó²‹"5ÄSÂìa@T^Fé¡UxÕ ³"4´¢ ×2¤úöí«cÊã{xÞ2zäj'†oFÅÛ™yj¦!Dõ‡(Œ2+ LBGµ‘U©è½¶›Ûsøûž×±±¶f쌗]LKž—µË&`·o½ìÔݶy ³ÒÑjÞÜhycÉ U\½JBhÝ‘=Ög"Õè„Ñ!›³žÕq¶Ç/eR^UäFši©6³¹Ù× "rIië’}:ΟkùÛx§Þªëø×îòõÍùa#ÌùçÂz¢Ö»3°Ü—¯oy”=,¯·•â¯zëêÕÂĸvb«¤º#:‹âŒ“ÕÕ û•xm— 9ÉK…Tkª½w±C5 zÆQóft^z½ã.Ñóv¥ž”ù3'ïá÷Ã義•"†.éyñ>ÀöUY|ªׄqΰNÉSVª;ë=} Æ„›uæ÷mœ&(“{¼£Ÿ×Œªš¥Jª¢|òç—”3œÊ5ó²B¨˜d1í`¿}°÷†ºMbc"ŸcažØMrýèwBùS¢'fWŠ˜[t–¶Øê+í¹ÑÞÐÒõ*}‰äøoIvÄSæSRñæ~~=‘zú5yí×±¨ïQ½w^Ýn^òg·±’KU xǵ2">»É‡0Û|öçÌ{ÛŸ5wÒÑÄ÷d9\‰©Žc¶ò)Z…•¹` ²24šƒ…¸â¹UTtQ¦Ã½˜œëÛ'ßmÚ§?š¸Ïî¿VžžP"‹9$m5L,kœ‰–’1Y q¨äDqòXGpòèe@§‘!‰‹û_^#ÚÆ{n¿o~}÷nÃ5è´|ûÞ(oeTDZ‘Ô&IÙÔëP¨SEß}ï-÷ÕKÍ¿š(¬ýÛܨ=là-$,O ðâ± CoL¡û‡•ÁFÈ kwäÕ‚e×/u*å­Zƒ‰Ø) – šÔ•/n¢]LÙ$^ÉÑ‘§µò˜à±ŠÓi»¹‰¹’ÚÕ„ŠÖ“!ÂÕJŽQòL²6é'&îeYö'Ͻ•]R÷ž-"×=g­ŠÝ)r]I&py~ù~ßSwßm² ŽÈ, ž0ÉT<’Qdc¾ñû¡ññ§Ÿ²»a­nçLaÆÐ›m.Zæ:»·ïßè×Äñï±k ï’ñvÄe¿ýĘó$+B‹[Ž„Q LmÀY’Ÿ(W–ÃI(g]£ “"£=ïxÊù’D“zƒ\ùÆé×q9jÆÔCtœÉïnAF„5×#M3F£JG ;"­1—e«4_Sè…R¡ªN²É6Ýù½–öSveb$Ƶ›Ï„ÞÐ8DH̲²…*®Diй‚9-Ûkës2š¤=¬P¾ÛÕë8WµÈ¥§·N3ò,Îí´P‘ì{ËÕyê}×½·ÇØKš¿ˆŒ÷ìnn›Û~ãÛ²aÔ{’ùÛ¥‡’hz^DKĤ‡ÚñáK‘”…%9giÏHC-d—«r“ým„l¨æïÄŸÏ=—žóØÔêÒµç9$mQZÄšv4Úq¦í“ ‰àŸUÓ{øsîô\í¶Ð¸GDm®M¢&[FœØ’¶Ú©Îü÷·›Û&FÜYõꇌþiÅÔ•]k¼‡çç߇ƒòèjäjüСhÔc3Tߦ8ù;*#7')Ƈ¤à…8†í¸«ÑDpJ…ó1a,S²qѱ ¥¬B–¾Y#ÀM¬µR²(žFwæX cO†=vµÁ¾BÒÒ€j‘Æò¯.‘,P䯨ÉÙs–wµ¦÷ëj|5©V‰»|Gï·¿=Ù“ñ’BW³ °“š2—Kè899SãàŽZ8q‰2Ûãß{vdñëfèú=^}k?FÃär>Ø®î´TVÀh‘óSµmÀŽdËÃG™†âa:Ï©˜ÖäÔ/Fk~§÷µ‡#¨!eµ­¼‰üîCrˬ·;3,L;¯(ÛRsÚ>¨Á]oIyA6øÐzé[êÍŠÌX)E&7G$p‘ÖKCã|d9ŽÔü1@XÇ‘lxÊà%Zhò(v¼8ëÖ†¤¢AA´ØÝi¶¿5­Æ ¶—³Œ)ëŠ}z» »Y°¡ ®}úæ‰kµò’vYU|ë’Æ˜M °O˜¶ßsQ¸ïÖæge»‰”~“(ÛiëØÍ"Á«$œ÷¹†&qÌj^µ»‰àÎUŒœ¢ÆØñQÒ¼j¦Šˆ¯’$ü"‰g»:Íš4-g _fׯ±­F xÖ‹M|h4[<ñ¬3šÆÓpäÖMS‰’Ò©X[XâÉSVÝq¹$3%*dFdÊwZºÛX•­›]¨¥²º…qË$×мýw&Nu( Ñ(Hä²FVÓ‹%Ѝ©-“€rÏI·C2$ µUiÔ «y8r¼5jbÄÙ¢¢§&ö=ݯîÉ“‹¬| 8üGÜû×sýÿ%á¹âË‚}1 zþÝNÃfP9Œ7P´ 6ƒXÊ•Á˜uÓSNZƒf–J7ÃGpìï2W+eÂùîaá ༉SB¯g 2¶ °]0ëOqÁQKÓ’K„;š­h_mš)ð„ ÿ1Ÿá‡¼‚??Ѥžáœü.£ñ½Uü=÷½Ú-¤y-n@­ÓdwæNŸ"kUx+Ðüvh¨tÈÛ|¤i®ÉJ­V'(^´³›þ¦Ýìß*—¦àŒ˜ø›Tñ±[|«’I!¤Œ Æ„m+¡>¤‡Ê'&InLJÙ*‰ðnòvZêËIÊ9Èîf*á0ú̸o5òÉ+P‘´âDà(˜H°±¯¬Ã¥Æ³aQˆ÷ UJ¡˜\©q­ÍeOÁ3Ó×÷ø8ÏãØÓR´x·´LÄ—Ée1µ ·Éµ4ìOkÑð«É„æ)ýXyß:yOï»ë³<^_’YV«³ejôo;;÷:·v[‘áF®“˜Ûê)DðK ˜04è&v(!¨ßÑëëÙ.݇†KÒŠŽäzéÊU‘9|•Öµ6­',e¤,¹²ª™±E²Â¸ÐYkßs=ò >1aab4BI3Š(@LKSùYää%®üu[b÷ y™G‹ëqb.‹V_ÕÝ.ìM`}zŒÝµRþL+Wæï½Xºv\›Ì©ª8¬Ù¹”hyfUŸÎÒ?¦Ã(Q2w û¾¥Á&-'êNuððÙUvSQ!Ê(̵K3d=Ȫ©¤ÃlÙšhg™³#ÉÜ®©±NnðÓJá]À[––M¹Y1™U+¸Á“ œaŒm¬Ë,©Ås"¢b³‹Il’¶§~­Ü6¨íåJ‡bgÈÑR³×ðëÙ8Y[õ#9N†•¬l`íñ@rfL;š<®n!ç0ç)Ùä¢mïÈìNÆ)ns Ë”ýÝ-"}¿ »Êã_3m·fõÔß­EP&ä÷Ø=—xv»Ïc‹“}p½.n*èXμ‘Uod›r§µŠgŽhÓãĹD²%v1qF Q¡¥çÏ¿áS:5¹cJøÛ¢ß'[(¨> Â2û—0™ -̬ modAqâwŽ~[ͳkŠ*|Þøó­6ì«/ÁîŽ|x®9Eî>ß5ˆ¯‰›·“r(‰Ö›ÕnN†/ùnòR$ˆà¡¢Å‰(½2wᜃfÃ1ˆªö\"™ÈÄ(ŸMÞËX Þ35œ4±­Î}êóþœï‹Èß­zýؽ¾‡aôÖƒ…7òô¯÷¼å«$\¦êªUd´¸—s­vÖ’káE—iÖä.j*p„ðî”e„„}÷/ 0³¢ì©2!;<_¬ÔÝ¿3šˆß{VwvÖaŽö˜CËRëNÑvz·lg'Túq ß‹Á2Ũp{W½ßžî¼™ló¦Ý{>kSNê±ëTÚÕ,hq5æuœÒfqo 0tü&x(ÀÀ_À‚7ÉûÉ5·&ÃÌÎY‘:ÜN¸¢µ»Å~ÌYH,ŽpN&¼y¹Ýhd V`—P˜/ODòyó“É#z=…×Z͉S*S&%‘c <ÄæhS(±cq^Rµ¦Ó³õªóõ¹;Úï¹s¦vôÊòož+wM•m?=ÈV3žûym9<ñøÁŠ%“KñQ‚%E8¤jbÆî 1'°Ë™©õAèíÔÌäyZšÉœZÊ/U–Å‘*nŸ}O½ÊÝjÖIû\Ï<_-éÛâİd 7wã‘çxÍ&ö+¸ÈnOHxðÊú&¢)ú¾)3qLÈ9oÜY—_|ÙžúÁ ¾7î{oÁï¸÷éîL/Nñw®"O"ª˜'&È· òf6›òÜè§Ö¿Œoν2,צ?vÒ“‚†åëùñ³xº2¬®W¸XŒ„‘Ñùó]:÷hÕl]í’&;vó “VhÜÁ8õÈ¥îqirMqs˜že“1L-n³¡ï"mã‘7"Ü…Ý„zÆ% ~þ5)г·o9àŽ½x?@Êñä`/ü΃ ý+ÏÐjàJ©wÈQVÑO\P#P±å©@!%)ä市u˜p9Ñ 63¿'®ì›S°Ü™ÃÏÓ­}ªîöh·Vq{qÉf²)8úßë7Ê ¶žŽ ½—Ìó¿{áÝD19æÔÅpŒ‰‚4„·ë}óW—¶^ó|S˜ÐÌ·L!ÑLi}k.j«ÎÇ,S÷µî¶ÐÄÞö¶‘<ú>£7ÜZN™Í•U]xðT¸é™7f $ÔupîO›¨ÚÜž b¥Ì˜A„‡yhe¸“¸…6˜ UÔ:w]Òá@¡e iZ¾ø`æñ¢s}ïoƒ‹£ŽUˆ0úí¼ìÕ¾µšßŒëí…¡Ú»9‚ÛªÖsÎøö~³p3Y,èñ.aCkŸ‡Öš& =„ãRø¢Ÿu«–‡—1¶à·2§¸·{)“-3¥‘IÙtÉ–dw8¡q¿>¥vncï%S¼Œ€‰A­”¢ÈÒl¦.GüÉ媛ZZ¤a¨¬†rK‚ú2:5§ ¸èrÃþ–Ùà é?9eñ”·°ê\@¤„kÕéKû:*\9°Ã%9¼Þï‡sÅ— eïZ“ºšÞ1ô½ï¸ 3«J‘~û>…ÐïkÖ¿†W–˜ÎÑ„ÆRðÓLT§Dîb`1•7Ú`)ŒÍËÕ‘Mm-¹:Ïט³;ü}·ó œíÒž"UËår©ŠŠS.×*Œ’X¥ÃP–î ŠjeÑpM£{&:žj_>ã£ùQöd;©Òßp#tѧ÷pÏØð¸/¼ÜPUÝ1 ¨Më“W¹ÓôËtÚ;¼&Á%[_…ÙvLÌÄ[÷¸,Î ~¤ÌÜ÷<ëi£ÉÒdÎçölÜ_%˜*(ø¯%ËgR  •¼w¹"X 9ˆ¸e-Ñ>ÅNùÌÓÂÊ‹ïÚ:¯¾ynw?Y*1c­òk¸WÕ%iãü½ì‘Ö«\1“Èéá‚a!NÃiÎŽ®[óÚdôYå2Ô YfH xQM-T'‚ÓsCº§È|8Â53/s ­¢PÞ@Â(ó32Ц¢Éf\³Ëj ¦ƒ‘ÌÐÌɧÉ+æ=/ÇV&äw áÓDNt©‰Æ½E¿>füïÏ€¼Ý‹$íÈÌaÎÞ[w Ï2 ˜&Û;5gÍjŸ´ÝùnÓÐ1[§NL4Ê`ìÃź‰Oü^;õ0j“ù5ê{ø¨°Ç„„§ëÞúÞ(ãáôÝiÖäJ’±ÙpòÔÙ9««ÇM}ò¶+™Ú ¸Õ46Ä øFš²ííÞŸG©¨.×L€\6â,’Œ¢©ðKu«VCÞÝ»ˆÖ¢a'%‘Yé÷Ô°º.ž¿ÁIÞÉ­O#ÊÈ|ìÁ†ç F> ©™*©tëÆª«FVÞ‚O½•udŽîeå”d*qŪ“ÇW çñüu~µ¯/¬Þ˜®âËB­ãW’×¶ìÏJ¬gw3‚éé¦å§¢xó´ˆË÷÷ÔÊ}øû¶ÈþÑ}åo!÷–+EŠ!ØçRÎÑÏj„\«Äl¹3OîfzñmO‹èÍyTAz4]”˜‰%–H +Ë\Ë­sl­£Ü»]Oz’!ð÷S•«w?AlvˆC9U `Ža‘%à„èº4ï?v‡™bœ¶¯Ì—Àìùæ=ç–- ÚJ}ÄÉUw/írÁ1 4þù¡|½åÃf´¸\Š£òú[¨¬jâ› e).°uŒ«™ç€„Œe¬.ε•HNXuS8¤\Zê^a1§OÕºñM¤ hC'-»\Kñ"RÞåÆ+!†l« lùõíî±{Õ'ž\ópªÜd™£j!ª.Ç2Èâž§j5L“dQÕD0§iͪk6ð¸É–Y"i¦r¥ž҇挵ƺ>ÙDH÷ÞãÆô¼hË%N¸TÊ_¸£n»ÃÖÆPÄX~w¤Ã0n†M©Aµä¿F‚ܱMÌ'Ô1ÍsÌÁFBèΪÃÙh±:§PÖgN‘¥IÛÌÞDL-‹qã¢È>t•iŠÄb¡ÜÀsQ ¤]@Žh˜-z‰sš­D§¨‚ÎÒù«6ÎæÙ¹·tî‹ën쎷)_Uð ùgwñÃéäï:Ô¦~ºú~à·×G~ªç²ûyßorM/-ùî¿V&¼’ë/Ãß–f­¸mQMN=žÎ"Á0Zžê^ =E@-pEr!žLžVæáŒ“NcÂzÔ1­¤&‘2;e!iGPáA·2H£|êc*Ëß2ÚœÓØ É}§25/P*Þ¾Ûœ,^ÜKɨùï_neßï;mˆ‰¯ìþšq¾×…¡„Ý}ïk¹kºEF^´^YxÔÖZl(p›©Pà˜C“%ݹÑm±»œÓ¦ƒL>Zš¥!†3¦˜™õM­dÈ"®å%æ¦D9}3Ûµ è¦Z4ØÚBek+ËÓF¶pÑ qFHÕ@eÛ¡“†êêY“A.ðãZv¹joÊ>Æ©V„7oÙ#¬šÜô1¥ QzD'‹aâ/:2ôœD=)MnÈ™™D žž*¨s…óžpý.ºêmc¦ ƒo¯Üîæ¨qLí }ñº[ ùÎ˳¾iCÅõQeà>þ¡Šó$Aºv~Vå®u@ä:‰æ¦JVÎjV®jÔÒ¥“00Ç ÃDd®h‡ªz´ÝÃÓ:]—9×F8Ôƒ{TAÓÈw†Vöï3—K‚$Ì’|BaŸòÐÚ«@E«hü¤âè£Ø{i˜ÇJ«%›b‰A¶wGú:–õÚ+Ï£í}â<G4`M~ 5%~¦éó³1h’*¥ØŸÄ–¿jØíÔ~Bò;‚ày®xs‰â<:2BAì•E]¼N`›ÉC#t¤TS~Ò¹-†©© * /uTê1ì<«…U4ñ;—z*梕yo/úT¢_8”–x‰~e€½Ö>QÙ¶ªUQÅÍ…mL{eÚ RÛ‡ª59ݸ÷ÔÝ;£oµKA]£'ž³T%ùÔÎÿ/´Ï£dÄ%÷4:˜3æ©KèCX쩆ر¿:×<ϽF‡$ø¬]²Îã‹o,þ¦µ±g5!ô5osšÀE®$¦ƒØ˜hOW|ÌÆò*æ ¸Bíb4“Ãé3ÂeKµ ìm ;á6="õ7έM M2î8‡~%±T»)F?;w±€ƒ8Ÿ&bo+‡– ’À%û|KÛ¶4GJZ˜j~¥ÖÆõ7f…L±Cƒ-4‘o©¤%Cemß³¼ó·:*Úäã¸S$~Þ>úmÿ©ÿQÉ4‡K æŸÓòq_PŸ5A9|‰±ûòñQiÌpØ¿6•^GæuwR9,„ôòüîe[¼tÑÏ~V¾v{ìcê²m™‰^ycBÓ©ž5‘©¢d<5;wÛUWú±° ‚¯Õêd£Ï;ä;·sVª³"ÐS%0¶OeOE¯%¥+‘Éñqf•µH‚Á³G‰Ù;*üìËPj¯ç r¿K4G]Kü'žŒPéD’Ž2Í%²ìçÍsé©Ó{åçE•™“3?;Ü\>p3R´Å~»$ê&LE†¹óZr6cŒuÅ&†™~'ZYÜp\3ì¸Öx'SúYjb"7ánMJB·Ö©æÈ‡‹!¿o<üsÕ:C^úŠbð k’ÿ©¹rÊoþij¯nØþñÕ õÛÃ<ÎåÖ£`:©M£>wj1‹²üÌ.M¹u^•û®(žIa3º‚¹†î™ùЉ­[´èܼ<åá܃z¸v8nñ<œÒeãmõ5œ*È¡Áj§ËMœ€1Ée=7«yg+whÃA08ÓÛøæÕPÎáTD `Æš©žµR‡?Ñ Ë~ùÿ^›b+Ç?\ÔI$z¯Uüy¯ GŒ_ÔG>jfñÞÖYY–2Á0ƒaCCÁ1Þ¨eÀ›§TþÑ}TÃG4ú`V–ñþQÜÂüåç<°mWña¢9vž«-ë ^4Ñ5’fênúŒW T\#¤é±&X`Tazž«@Ì*¥c>ÄCËmþ50µ\!#T3‰äcä[–5ŒœW¼¸»;7sÍ-nx¨¿VÊ^›Zî?–·Ž²47)ãq'õýý|·éß׬ú\Päõl¡ÙïBø@¾^­H>SS›dÑ…áô¸§º!¾*Uôìù|U¼ÿ¯œáòt-ò E[$3¼©P>Á?‚Å‹‚Ý£°Øâï÷‰G”åˆZ8ÈzaÈx˜u¾|ERÅ<õü2Gw²hu=XpåÛ• "Ͳ«˜;ü\g°Á .U”&•hj <ʦ‚ω±Þ´YHà†5Až9òüj¦]è|êµL‹É˜oc›ºj冉wÒA7X﹇ÔSÁ`ÔyÙßx¬àêz~25kÜHä7JË3‡Ví¥081k!÷¯ÑåŸ^ Æq°­­§žlE–—u v·ŸÚ ó,˜‘VçJZ '11ûù-ÞuïÃ'÷©f"ð>Åàù{MàGפÍëDv{E†´˜ó¡Ú}Óªu¾yÍ7*­3ÁTÓÍB‡;„Àÿû×*£ :½.åwÌKѾ¬… ¹÷fce±†„N_´Ï•È¡”¤„®ûxn…pý²°¼žvêdémŸXóýiÄQ™á¹r§Á4ñ.ý}òÞ(o,6÷eôb¡ÁvêHZ,<>D&þª(™¶ ‡ÙßoúÕkçK8€vXþŽCK£ëÁõZ±|44¥ ÿíÛËsÎë#Œ˜¨vgmmôÿ°ÆaU%ðZí¨˜ºÐìeµø|g„ßì-P_MΚ.¼‡hºV 5ÃÛL±S-0D=ý¶Usïëý‘]m7ž¼A}¹Fže4÷ q”‚Me “©ÔÃ<ÿX;?æ›oD¥PŸó±·kx—¸’[O,ƒ©wAyε1¼Ï#O¾µƒ_ξ‹Á¬ä!ø<Û ¶} –߃kç÷l¸¾®˜Õ)Ùñˆx]»G!á·M;jnÚÚe8ÄxøÜeÄó´5ªåJNÖö(íÖjñÏÔ;Í—P5Ñ@åHs¤}X¾ß|O¨[/÷«šñöTð’VÀ´iñËþ^’lŒÒdÞŽCí;KÐoN^#…Qª-söêqCþëñã¶–ýË-£ßßYο{ë=ïóO[Û곩;þ {ņ,;]|ü´õ‘{)KK`sÖ†›Ð)qž_sLY ¤—aqR±Óyï†Ä9®\ÃCÕIö’`6 [”‡ÎJÙ¯/ßËÔV>SëºØ3iã;~¿›çÃvs Î­™ú÷u3 B^|®äþjùn[wœÀ aË<¿0¶Å# 3éê#±”4@󥼪{ÅÖ¿ý"2p$¯¹1úGVü¡^&ôâº,iÈ ry4ê?“Û[´ü –;§y¥;ZM<1™ÇÄ6«T××¼ñöÓ9ùhÈ4L¢ßA;+É‘PE*Âß-A…´+¦9ùš³„rrád9¬È|ÍtÃ/çµBàŸã•t8˜al— ÓÐ0Î¥iÌþ(‘Ïš¶q”ldgœ*˜)K‚è¸÷­Aj-S ¦¾‚mò•Ž,yÞoüb 娍Ð1oÏÍóŸ™dËGTúúÒ³á7ðs_g^”õÛÃHüYÓµ2o8Óuø¿°Ÿ„éÿ´ <½n¿Wñ2Bÿ¾ôÜ~¬– ±²}Ù¯óÄ xoèkoÛP¸nÝ—•ùW»F˱r‡Ù&}b›è°ü–éõlÂÈ÷×÷‡žô\´k¢ Gîê}F£ú„§žÞÄÊ »h 3¬zâdU4xb”2¿­ÆYŠ‘ûA––Åhñ؈ΒOÏÎõueVCFfR\¾I…éêé\LêŸ÷)ŸjÝE?\»tLþΚ`ð)3¹rQ+­ðþ³óò¡½¢œ¦Ù1 |/J¡2³ÁTŪ:‰†×•! –6s«Ö~j†O•=u?>3ú.?y^XrJÙ䙲Q¯Cà1z«¾Æ<(Giþ–C©ïï6àhÖç‰]ÓÁ‚í&~âíâtàé;ÁÇÒkF`›úÓCl͉´zŽ>{\ùøKø{eü^™ÛõtSL{‰ÿ+¡ý±>;?¦„8óq&3ÌpètššK?/¯¢Ù‚í3êö+J^m=»lÆ}£øõb9Ž9Íù/ªÏ™æ¼sÙ¯áFOLeO!öÍö¦íÚÂñ÷Õ†–ïîxßiç¶Êˆ1ËåVMɱKɯÌ~“~¶±“!GID$¡úÜ.ŽYcÉóG?C®&öxüsêÐx›êîìiî¥õçÙ`Þ¹àÄyˆÓØB;‘nȰõqÂO§·vòÿ˜goÔ¾s!ºÑé¹cÐܦ¢ž JVjzm¨”(°ôKº81MüÁ¡Ç‰Úï8:¾¦8vxNY;¸o!àÅiÕ,Î|÷]†ú¢ÃѧxÝó[Øó×zÐïNÝsúç;ûK•nÇãÜ¥óô3“õF¿š;‘­ÄÚ¥âoñ̼ëövË a–KªÀßð­P2˜¿ Ȧ|¼wæšk#ƒëÅÇß7[oÀu*ê:†»Ûï+M ±h]GU÷·‰°ñÏÝ_ÞßqÛ¾OhlE¶áÂ9SM/oÍ»³ë9ŠTÁªk+©ºd™Ë³õÏ)¶ÏŒP5ÖòZ8hç[­y1ßãßÇÁ÷ö:1W?efX{ CÛχhà a"' ÆŠž]D\ݰû ¶õ7½,û~îÒðÇTž.~Qt´šoõv¿SJ›ñ­^Þ&†gm:0ýM&ºÞg›jÉ1­–ˆÆü[:ûËõë:n¿ëý‘õïç^>Î$óæLò™~?%xÏÑSÈ—°A`x”è2W’Îä8ËU?¼Y˜Wstü@ R„ïh£ó˜ñ“–ÆmÚ¦IÇtúû}þñy¯ÆFNˆüGRý$ä þ§/ßíïá·µUï³çÌ7oLíî7æ5÷ñ2&¼eÔ÷¾§L6ä‰é%?z>ç™j _ãïëàD ¿4~`€Õ²‰Å‚\Š—A½ÿ²*U¬ä–—ït¬sÁ.˜GÅ»»I’CGðQññÌÇ-ù¯‘§Žð¾]=1]|ÔPç©ú}üWÖ¹æ™mÏ,õŽ|t"7«t›_jdÕ:ÇëXj+(¦ýüuP$€_ÓögÐyú¿ÔxÆîgÌý´›qž8ßâ2'fÚx¨õO0`DË0ïœÏgÄqúï+¯|Ókqò*—Žû5Erù¹‘¯wë¤àcì»$}™ý/”!ÜÕ† eW7”µ¨w³:• }Ç1Ï5o¨ãqý{ˆZüIùùé?Û³ á©þ|Tñ¦Þ?Îô—³lÿ*wCžtÜÄÿóê9a·†=iDê[ÍzŸ¿3W¡†ÊåÑìWƒ ·£¹·¡C\´ãÔ¢ÈGRU÷Š·öÏ÷Ž…ß=iOÌöÕp7©ý·çÏ„L!åË¿Ì7¿ µ5X}SE>ª¥“ ŽB±ìFdÔ3Üâr€‡!ý\ Ä‚!¼7’î9dCXÙÒ¿‚ü›ƒµã9OóYÏsÒß0]ô]åÞU¸Ž;q…õËÅ8Ø~+´Üüþ/í½оõçRóÞsѽ¹ {[ã¸?.ÅŸáÓû‡Ü=|ã²\¦Vµ œõµNû5{|»É³sïoZÝÅ÷V¿„#cð¼¾Ð,~.í£ÛӀܖ3²‡÷«GÈ˨Ô2“ÃßйA¨,¡{x &8‡¡ódT|vŠüWÇßÁßÌ *c8;C­^²@šº‰an–cyGze§ªÎyˆ5Íý/²‰:æO;Líð=V5É…é‡fm®x‰ /ã[¾«‘öóò~köÏñò‡¯©píè·èi³‘˶¾ß×öærç³ ,™p`\Ö£ÕkN©ëO ùJÝÅ £B˜bÔU|äïî[›<ëø®úæˆ:1ÀÇž—"mï™i“uõ u^}ŽNƒZè*ÈUví×UÅŽ¿?ÀuÐc×/¢ü-¹½ÜeÕ“Ás¹¾Ü—²•6Sõ÷Y94ÏPõ÷‘Ì ùñç­?3Ç´î”2bÓËü4ÒB­Fæê`ž©¥Þ„Ûþo˜#Šœ¹ŸJ5ٵܻ_À½ ×kQQ¸K+â¼Éæ½+Á¾çl™Ï3ŠfÊà$Ï÷õâÉ«Õuõ«JùŒq£ÿl=M»UÏœx‚ªè¿½ÌÈ…ð{{0$7ÛNìòá#Z‚špó{†¨¥n¿¢yþYÕŶ½zúËìø9ê_wsæÇ‚aá¹~Zs ¼z¬ÉÑ‚^#Hë­¾²2¥°Ú]“–Bû;ý‡Ðö~©z÷ï¤Ýu©Ø©v™Orà šâ'¢VSø¨ˆcs·tïÀ ŸR~"r‹sSzî÷là¯ãqB÷B´O%èùºÙ:©ÑQ§‰"ä¨, úœÚ¹¥òîžGÈ •äÐBY7ñÔ7™ùÙw$?¸yƘ_ðȦÚ"ÝèRÖŸ/øäŠÕg%Ö¼Ã@Ô@îá¡EÏÄßq§—ù\Ïæu›¼+±É,_̸ùÖå²Y0ïºvÐÜ– °' /ÃÆ1ÄÚ‰dÃWãòðý÷å¤Ca`çÉóõ1süáåÌ)øc K(ŸMç¬uÊÍÇ Þ‘¼ ^.5;EŽl» ß©mú{‡Ó±Óz}4i˜†4‰C㾦¶~œ¨èü}fúïKß·>ÑÒoTô\&–‘ø†‘S>m"'Îq úÏ\]1ÍV¸ê(iÍÓT–Å¡]Wz×ÓÄ>‹»$ÛÕäÀœ‚cCÁmÓØ¸ó¬½1œVÁâ<ÈÔNkWÅÛ:¿‰~v¿ñÞã±ýžx!Ìã’áØ7ó›‘ñÐ6ýMÝMYM"§ây‹¿Õ÷½Õ˜[>}ªÑ×IÙÞ§§¥”nήœTíKºÖÕ0êr¦é§Ø¢ªMÇèý†qª(Mtøð8ÍQS ðsË£Ô²oñAjøækù‡w†NîúÏñG¼·mÆxéçOQWr×¶Aãêoiüwi™ÙýÕj56%~±•£ûÝDï ³èˆdrÇãíß3ГÛiB™´ÓóÐKSö¼œ_ÃQ¬a$ó¹{×ÃwÆ<†û y©¦ýÌ´‰  \Úbãxò!]½Üц™‚¢%åÕLSÿ õ öTǨŽQÇä Fç8D¨tC*Iè«5l‡4rá¨<%NÓ8ñNôÙ>]ÙhÒ¼†þ~öÞûOa`ò:„qç®mÔ]Ë©üŸ:äïúë8xä—r%/²{iÎk&;²*ïÏËK‰×$¥%àcMî.ù¦!Ú®¥‹GÉi›al'_WosNjdFä†\“&ëÞßÏÜs—?OØùŸuRoü饾¬jw$K¤Ëù£bdƒ$ƒ*màÐ]ÏoØ|¾®£e¾WË€_±ÔZ)ºê“E“Âith[ˆs ‡zTT ”}!òêï¯;>Gîì\\'ø'‘Hw?–eå¿ ˜àúõ]Ù7ðX3Æíˆ§A™-“t‰„ÓÔ~Ûó×÷Gç¿F<·-›iw ¦é õìÅ=ŽFåê.¾Q|rÒ¼Šþηï~ƒ 7EÉU<Ó´~¶B¦ÎÄF$›­Jp?LN²#nCê|ºõÈ@æ® ~¸cÌßdÆ–;© ê‘ÎQ$ÎÀ1/N…{÷IÛ~Þ: ̃r'³*D¼‡_Q Bä»Úíjg¸(2–›~ÄùFÉ"&‡Ãõ€0žY{²(ƒø»îìÂ>µ=Ó¦/Ìbœ<|矣 ÃNP‡2,Ö¯”5/ —{PÖV:¼ø±TÛA²þVt*}YŸ/7ï±FV‰ë p•ká¶6ÖŸF1D¼È÷~)¤ÇõÍêIÎk5|â ,AôÝô•ºp\·ê1`¬jFËÙíªhœ¦ö9sá¨g’$¦u@S/“AS.ñE­ŒuÌ]›i¨ÇdÀc»ÔpCb ñ]DÄå7ŽOL[ŸçôÛH"‘ríNáλ$*ƒFãÆÌ¶ÍâÇl-aúsUâ`.%%á]½Ù°ÝU¬`­éƒnãOó¦ ¡û7—eÅ’>KÕBÂ@Ä%“·b[Zˆ×jã »Ñ~K9 S»¦ÂXh:§›~,p‡ÚË$Hì5¶qŸ½¨ñþï-çÇà/pö Œ‚zrÀ'ñ1Ì¿šN>K¾üŸY­Þ™à³:ü¦<0€t@-xZÝŒO5W×o¤ƒú¿Lç¨øñÃЪgžãü®ñý0Æb›P»ð”‹âi4rS¥_|‰™käºù*}çº,ïõ0BÏ™º™£Ÿ—™Ö¾ÖÒ'ê]¿ªÖG¦ó´ˆBn¢Ø”¸iyi¯¿Ëe´½-s«|Ú¬”¾ôÉ0ܺO#ÙS¼<@ÿÙÞѼTã6¬%Ý— Ÿ«vÁ-«z`ösf1×oË&a˜nrË>šø÷õ·çx™>/Ÿo÷††v81B(ƼøÕá!ŸÛórþãų+cKµ¨£q >Þ%ÿy×ÖuãÿšÇBDBùVG—˜â©þe¿wMÝø}µɉÁTú $Œ2ü»Ku_}@×BA˜`ÿŒì 64/6âùÍÐ]@ g­ÄÀ‚‡ê°ëæþɦ“¿Óòå™áV5õ’ÕED[u^hKž Ç^-ð˜hk48CÌ~+KÌûñß\I7²Cp»eý2f–øÒž‚Íyƒ:Ä÷jÿÇø?îüñCÀm¾ ¦°ØÍ!ÝH`„‡^œ:2ëú~®ƒ†ô 6ÜF¾ ý;òÈ6™Áükç…ý¶,ßã8¢žž~b§9‚0'Fës±Ó;ì]<ëéáÓc5·’¾÷çÑ9¿ÜÚÑ-‚‘é¶ðMüÜ ÌèPŒÝ3´ÒX‚Üžâ>ÛÛlr«§cõÊmðd–Ã! ÌX‡—žSxEÚ„‡C½þC»‡iFÇÝÓ› d# <~'»º.ù8äkÈÂñ”Sƒ¯êgðpZ }&þÚÁÎ’ Ù¯ûß< N³ž”á;ä¦d‘´BŸ ,ü»ùïO¾‚ž¹ÁŒâqý´ÎeQ9ë•2cá6À´{ÌL&ÄÄ$ cÁ-4Îúƒ0CfXÅ阗ˆž+S_@ì°É[…=ׯ1Uëi˜cãøäÅàOSäTãëaÖ”¼¤ˆN™*¯Kê­¾³à½¬yªÒ¼ƒbsSj>Güc­XÚœû_x×1Æä“Öó^jÅ! ò0B1»×該r l[ÙîU*kcÚ¢PSǰÛZi}°Kôn_»íxp‰3ND»;‹ÑÁ›öFêKLØçvq5Ó/Á×#±¦ƒÊDÞ ˆñäxÚƒµðý†sN¿Ú/;úÿåõ•! GŽ‹ëïë$5¯‚˜4|Ì<+:£ ƒm>´îfwD²´@üq~úû?mçfìFç-xX¯í¢¯•9Éë“â}ê|äââx„å1 =áh¸Üša°^SSwzÓ¿¥¢þ[ÅðÛ‘;ìQäû3ZM?Íqõˆ÷Å9x'Z‚ÜNp˜›4¼ŸlÄá¯ÞrÆkÇÁƒÓ!)eq çøfãÔhõ¯Ìzò ÈùÕ!¨„YWë2`j:ú=˜µ¦…ŸOj°{]d9‘[Ñ>þŒGY¦["iõÁF˜3¶«Û¡Zw`­kù½Ñkç…NÄÝœ§-É¢@²ÓqæîãlPSÖ<Èi ¼/ÞØš»ÑÊ%øX;ñ«„mƒsÇæSºø~äû¨^j¨_¦Ä#¨öß|x+Ô1`Mj^ŒOƒÁhÁ‘<2A$Á¹äÖñŠ–10ûöë|­dãÔyòz…Fà"Ú±•¿âI‹}ΉãâbÓæ˜ðS:çÊüó^&r! lk¸â…öš–à´X¦Äу uà·Ρ¶º.¯ñ~³B7Å®½î&¦o˜¯VqÆÑ»YX ý÷K©Ïž//™Ó¨Y–Yrck2ÄÞbv·CøM1ia¿ùØ4ňOë_N¢`©z,æ{“ãL¾Éç|©ùbß_øõøpѨšýŸP@´_+[„î>ŽD 1 8ìÔ_&ö(sé²ä“DøwæZØÝ$<‰Š ÂpPO=ÿ¬\÷PôýŒ™&ý¬ç‡•yÛ—¯ºÉ£UäÁ^‹˜ÇwruÞ äfšc<íÂ7;Œ9”¥8$"(E‰¥¸ÛBæ¸^ž®Ú׋X×òb j`¤¢ZZæ.ï¼/Ñ»Ýîù@@6lEPÍø°MËvÑ‘@@÷ŸEET4àÜ‘UUUÀ²_ÒTA…EPÂ8Åo‚\íZÍ~K@P/*p"Šh­hÅb{²]ìð¼óÉë¼`Ît\Ñ*2Ä-·Zž!áBI³j92¢.ØþÃî÷¶ÎŠÚTPÊ×Armäܯ"zž£=”ûl¨+öòx<*4¿1¤ôOaòsÙ:<òºsnn¯:¼&4‘Rƒ—7I^®éEEcUͼs^vèÛrÜ LÙ‘$5¾®Qkp²S»mÒ”é‚(öP8‡3g¯tùâÿ½ŸüÜ«ú¦bÏ÷^n4M„˜[!0g å.]š÷½<¾Iù6ïô’Mšý°¿èÒ£û\÷ôëĨ«ÃûÛú1ï\H"Ñ5pŸÇåÙ¤—Š.ørl¾zä@Î3œc«æ{/¸·‚µÂŸg!Çž}t§3s~Æyò…ëÜãa—ù>$\|åìž ™ãR´ÑEÐÂjHˆx¢ÖÑç²|ßK°OÞÎu«Ã]£ó"€¨òI ’ò)Þu´#Ôð¢úüæ=£gCÅ{l)óܰº»¿£Ûòôo{r˜vÃÊ‚¤¤B£æx U»&̆½»8) +ÜŒS öÂ8ocrŸ_Оø…‡²o½“{jPîHë &¹¸¸Îcv mƒM¨ÜÔlHc‡ 98¼~W«N!üýžþfùD½£ì_°RÕ×+ó‚ì]ÞõlB âÎ’’QIÉã@ FÐI ;m`«œ~†îõ¦°}AB;dU=±³£¼hb8Û‘´Ôœ÷Ƽ؈†-:åt@4ý—·¡}6Ò­â5gféÖ\Š 5ˆ 5.RMMK³¼—˱†Á”k^*RD$#€N¶Jn‚›BÈæË£Q4 "‚dzóy9ŠÇ’¨B(ì'F…‹sw‡Dû¯£**€SZ²Ò¬ã‚xï#â©]ÍíÈÞÛO{|ÆÅë‰v²Ö 3=®&Ó^  &²53½vN˜#•¨fYGÜb‚mÇ ™²×¹¡N¨Úµ¼èç¾@½ý;Œæt5óÓ !†½S2¦‰‘¾LèQÇk×bxqÁ¦,ë±XÎL2d‘G ·‚Õ.uÉ–«­¹9 ¢i‘ï—MØ[‹ü²=ô¢‚Þ6¡ ”\‚¢¶ùVyî^T-¤ˆ@ÇL®ˆÄÒbÛù¶œžX¾š<Àå 2E¿=‹æw’Íî,*0'iæÐ»ÕfLÅô=¯IÜ‹ÇÆp[6¯×3ÅFþ¦[<$‚ ÏÛçíâßðLçÏ7÷ôóPLCä7×½“cä9ƒ‡‡Lë5>Qt‡}¿žwºù#môB’!Düü^û‰h¶¦vùüÍZ>ì]Åh%øîX¢b{"%G¿Yá¯öjzè7ú©¿§Žž¶œ«æ+E`¡kÛ¿Ÿr˜=•ÅCƒm{ùî'î`Õܲã¨åMÆ)Ú¯ÖHŽ}üñylÏÖ5’/•‹çÔ€>?e#å“j_&edÁÂÛqóÂ}Õq¯9>IÏlAGƒl0¶ÉbŠ& Ÿ ¯>æ|º¥ƒúùî{ñ~敾)­ÛžjÅrpž×9»ÂOÇbbà‚_\ $2O§Ô¦ÂU£L–b  •ÈPæÜ=Õˆ ¬Ãlc0Ü4´2H!ºøÃëg”ãSêñ›VVª“±ñª|¯,ß•<ôDŠ0[h!#èΊå¶àïSTt° —/W2‹¥î\±, @ˆrÝsÚ«sVÑújO‹ëë9Eœi žIëÄvdk\‚ò9ä"žpGCŽ ¬äcˆLÍ®ÔÖ:Z ­‚•lãI±±V¦8¤y|Îb‰··ìíN¸¤‰Ç¤QëSU¨½ù3¶GòsDÑȺòÑ8£~·9Œpöåª|Ç÷Û=GÇð‹Ò62çϘ«½Ï;½Û:ØlýÇ·Ï–ô…HœÑúºÿ›]ÉÜ98,0hy|3æ÷ti°Ú©Óù/œÕ‘BF+ì±òÙÈy^\ž>þ½~l ïQ$ÏñÈBƒüB’´ M~²ÅIÕ"¬LÇòåëyIE}”9ô+ZýïÙgî÷—ÄÀXqCèÒcIúþ!Tq»:ߺYGß§‘îÕ¨à¡%adPoÏÞ{Ü™àŸ”Cxí8†ÅŸ‰çÛȵ>|°ðM?糋qëzᕘÓ®ªËëPN±~á.Ťó¯¿5-YÆ,“„–P†µüýφ‹Ç¤Mäò| U ¹¯æï•> ?mùŽú·ær«TQdœQRÎ2GÉÔrƒiÏAdb_d*b¨´õ¥“? Þ­U$L??¦òˆˆê¼ýþ~ï~ ÓÝD4H†zûuã{o8†ç"ŽWÁoⱜºÆ`h…b4Ê(¶Þ-\ÜÜ®¾ ª‹Å¸$•Ū†•„6ÊÃBóÐ]]n#7(‚)Ò€DDuå PCˆPh@¤DiB…AJ’”(E¦iDhQ …U ¡P¡B•¥@¥(vÅk«Qk[lhÖ )A QB’€R€¥iR•V€ „(R„€(U ¥J¥)B’±Ú`ÕЍÛZ+j‹|6¹b6Ñj¢­£Z"ÑkQklm¢¨ÕªA1h¢ÔZ+&¶ƒmQFÅcXÚ¢¶ÉF4m´Z£Z±Q£UÅ£cZµd£hØŒhŠ(¶1²Z `¢Ö6,X¢Ñh؈Ûb"±h¶£m’™±i(µ±±TV¢5©ZEhhQ( U¡D)jÔQfE`ÑQV-hŒQ¶ÈEQ´FƒQ¨ÔIA±6*‹Q­QQ´Qª6„­±Xµ¡†bÆ0 À‘li˜‹E‹RhƈÙ4›b ¨²bŒ˜Ö6‹*6#hÖŠ#"Š1(ÔkcZ6ÑhˆØÑ¢±ŒQmEck«mرlj¢L4YH‚ ŠFÃh¢I’Y$ÆŠ()14T› *#DF* -š4„ȶ2Il•Š‘jKL2hÅMµ5ŠŒQUbTj± $Q$‰‚K“Dš›LH Š%Ðc‰"Å“£JhÑ¢ŠdEŒVcY+FÈm¬c`‘“%2)“# 6‘4Œl¨C 62“4$”hDš"4• Ñ¢Æ ’0" Œ‘‚I0b`@i’a7ŽÉ™`Š f5ÑD˜¬lH$i$" “"LkDZH€e@m&±™Q3BÍE%Š¢ ÕFÔÍb,Á¬[hÄjˆ@˜f Ô(ˆH0ÂMH€‚d‹)C ÈL͉‘a&@‘% ¤4˜ ˆ±&#iJI2ˆhÔb’dBQ£l FÊj,XÑ’D‚0ÓL©‰@’RQDTFbCbR,UFƢѬHd` ŠL‘lŠ–MADÓ$ÔÆ"Á‘3424Ã$‹D˜ ›3(ш6 ŒID`ÆÅ(È£%2Ñ3cdÅÖ0…ŠJŒh5!ƒDQŒƒBa)ƒDQ"‰›Mde”1F I ̉˜É’R”FA˜M2Ì)” ‘ …4D ɳȔ!‰!†ˆÅIˆÅÁ™c2) È…°Ab¢ˆÑ22£F£ÁŒ#H‚ %-’¤BI#!$˜Êj"’D31`$„C2”4(†%MÃ$),Fˆ(¨Æ’E¢ ™’ LPŒÁƒQ‘"m…`‰¢fÆ’a™0Y&R32J€(”Á„’&Å’X0Á¤šB ‘d2…‰¥$¢ÄBcd±£I¦šh$ˆ£d°JÌlÌÂdÊE#0I³0#”†,‘$¦É!‘(IA%$Ó4¥ƒLÀ˜f‰JJI3†B’YŠhÐ Â&JQ%(ÀP…¢ƒd#FLDÉ¡ˆQIHC2 Z2hRÈÙJ!¤‚„BXX€ÉbŒIRJb`ÑŒ‚#&Eš$ÈÊE„d ‚F ³¦fi)ˆC2‘”‰F„ “cFˆÀ#%B,Ha&IRXƒ™’`dÊѲP”‘cÄ 6E„‰›,Í ”`K ÀFhŒ£ Š4d̘Q0€”iQ"d ¤‚Lš¦ I‚Ù$¤LI–DÌ BH“Í ŠB$€ˆ’Œd‘˜Œ‘1 &ME ",6&dh¡ †Ê“(Â4”&` b3 ILB…b%&2MŠ@BbÈ °É˜‰(›fdÃ(`(0L1`‘¥ $ ¤HŒ IFci† dÊR”0 ’@1™†–B²1cAIFÈ ™@‰$ 0B†"))I(12˜–@Q E$ƒ3(3"dI4MŒ&e –1‰dI™(H%$”’3&fˆˆ$‰²ˆ†FÌf4&”ŠÌ2$E(”›4E –$‰L $d$˜dXšL˜–D˜ÉbM)( 4’‰Ò46fb† P4Ô (`3 0Œ1 @Ã!ŠQ†¥*20˜‰–4c!(™ 00A€ &S$Ff˜’dLšb™i ÉDJj`h`Â2@ÐLšI†I&e,a$#A À)  l„(3LŒÂb1 @! 3)%S 2be(FC 2)(@˜ÂP’S!)°"2HD¤dM1Iˆ$*LÆË&$Q$e2E‘d &bFJ˜ˆŒÌA Œ!ˆ„™I„‚‚ˆ"ÓQ&M!&(ÅhÍA ,Pi› )ŒÌ†6%2dXÙHÓ!2F”@ÄÙ!"HŠY(iŒ‚‚!h ‚1!23“&„™I1%1JDIȆA!‰„S$ŒÉ¨d† 1&FEi%’@Œ€!Šba‘™I¤¦D0¢‰A ¤Í˜ˆÄÄJI#ŒTFQŒÂ(C†`ƒB“)“&HÂ!MR˜2D¤’HHÄÄÃP±HÉ„)˜¤$3(˜*²$ˆI€ÑAƒ%“E4R ‘$ŒÃ$ˆ¦$&É¢˜Rf(Ò ¥dRca³L›)¥ ‰–"ACILDjdØÁM†‰¡¢Æ“ †Æ(BSI$‚6P1ƒ˜‰(FD‚$‘ˆ4b L¢Jc%&,Q$0dK$„£(eÃ&Æ6a%4ÉfFˆ°ÃBYç\1Œ£ É‘„ˆÑd„Å)$’…F‰A £ eFm‰(!2”È’Q€Æ™(Œ°2d‚’l‚‘°"²šQ4d‰$’¤% !QƒM(ƒBF”‘H52Æ0XÆ$‰0h±‘‘¥(Á°Ñ Æ$dÄÆSM&SL)-LÒ „dFf)HEŒAcF™ˆ 2hƘ”Mˆ„c2’3"J #dYA$¥†S$)LPfi$F`°…4¤ÄÑ™,À‘RbBB¢B‘HFˆ¨I“dÍ4™4XÌŒ¤ÁŠD¦&Lh`–h‚‹! 1bf@$h™’`i†‘˜ÈD€‘$Œ1´˜‚!JI¤ŒÌF‰…‰–i‰(ÑL fCF” ‰3†Ì‘E…P¡$hÉI”ÑH†$Í„Ì$ƒL& ’„`ÄAŠFÊ1!M%™QI„"A2 ±fQcf@hÑ1¤ÃLbÉ2A K# À“˜C ŒRR!’A3 ¢’°DE$“DBid2be|žäÉ„bFR#d)5#2 2Ì‚ !„¦“"HÒLŒÆÊM fFaÅ)’L‚h(¤”„ÄÄ)&šR!LÌÍDFĘˆÁ*e0É$DÂRŽîѰÅ2&)d!‚lbÓ Eš`M 4˜Ã1‚JL, ¨$” L„ˆi$Æ$Å%ƒ&&Q¥1I@! ˆ’Œ£,Y $Ò– ‘`“ %’šSMfc"e$@Hh¡4‰˜0Ò˜˜ƒÑ"0’1´”›¢Š&R‰–DLJ )@…Š À3cE‰)I2c4D3E%ˆÒŒ ¢“L0Xe)$62F¤“22dˆ`¤²[2B’f@ÆDR(d¥̲@¡J1“%šcÚ‚e$š #DÈÈhfQ…Y¤‚R@¢É”²4£4 "* ÌŨ¨ÒTÍŠ5$l‰F€ R™F30–6RahCHX‰š`™I0DĤ³ ! ¢±A2Œ’’h±e4 RDÄɉ,HFˆJ FÌ"-AQ"h±˜``…HÒ D¥D’HÑ%H’E‚ Ä¢ BŒ)‚T›Œb¢4$`2E£&`Ø"f£IF ™¤°‘“Ê©Ô`Á¡2b"M‚))¥E†4`Š10d1†$†Èb‚‹FŒcQ™¢ “& ÆCD“0idHH0Q²É“)!£‰–H$i›1Y6M‹Z$Òšƒ2#C,Š $&H$Ô)Œ•†50Ù›%I™ˆ 3  0 BDÐÀc  Áb&˜‰cQd°X¢ Æ6J4š@Ñ3‹@©M$,ÍJ‘¤ÆfE( ‰¢6F’(†b4‘F*M“#jLM“Ñ¢’Ø¥"ŠÙ4”+$„’ƒD¦ŒL¤Æ"‚“jH¢¦aš´ZCYI% 4)FdQh ÐV±‰¤ˆLi*Š€Âb‹&˜XØ’ ŒȦ¤¢+D’cb¨ØŒV6‘*M$•145“H•Ec`ر’D¨ŠÆ  F ´Œ  E¤Æˆ+(K% hÄQ5…–„fMŠ€Äi›Šlš"BH´P“(Ð…¢ÀF¢‹Æ(Æ"4Š5‚1PȘ4E£DE%%™‚ƒ%‚0RQ&£˜R"¤Â02XÀ‰h‹ FÅÌh2jKM¤¶("Ñ@$£4Y4TB!Ia£2E“dH¢²i13HFÄ›&Å¢*)¤ ¨(4XÔmˆÌ‘2Q “DEAL£fX±Œd„³*6$ÑXŠÔQdÑFÈ…h 125‹¢¢ÐlQ3Ø™£DV E°’Œj FÄ` M $ÒcdÉDRdÈPJ`ˆÐXH³4%¤Ð‘bÆ1‚&‹TAQJF‰b ØI’)MD±I& ™FRƒ%&5¦a…c1¢"Ò„¡)E„Ô!#F0"E ’¢© b* &XÐcŠH Q ¨ ÉAAˆ±cFˆ¤(¢Ä"²cb4Šˆ“ ¨6£A¤ŠŒ„lÂ-’Œ$D2Š"-B¢É$EA!¨“FƈŒ”I©„TQˆ³5H‚$la™"ÒRX l˜È™1˜XÙ–D’4”–f‰,šeD™4(™Bj&cQh‚€²cE£b ,d“a"£&CD4&ˆ$HR’ Š6ŒXÛRcB$ÈFÆeÍ0FØÛ”ŠlÑTbI6idÑE¶M‚´P IE¤1D$B @4X£6„Ä€P"QhƒT ’ÉQ¬kELh²F¤ŒlM›b±¢ˆLHÐÆ²IdŠ,Q33DF“EF’JŒ%°d)ˆZLj(±2ab,Ti*Œ…bÆ#`¢„(ÚM lQF4– ˜¶³(±QIŠÁj,3d±@‘¨",,BPÍ2±FJˆÑŒdˆÑJIˆÑ“clh’†hŠÆ,…bÅ‚€¦ˆÉ¤ÉÆÓ,”FÒj)˜µ%Œ•E Ù©˜Æ&D–,PHj4hÑQEÐb,j&h‚ŒDmH› ÂF ˆÄd4F#(+hÅBRPA%&HŒVe¤¨¢ÁˆØ44Z2cÄAbÑ©"ˆÆÄ‘±£RPÊ1‰0š1Š5˜jÅ%$Š2QRdÑF !¢4mDdJ$#Š34AQ´È’&cAÈ0h Éƒ#(¦ŠÔdÆÁDFÒTXÆ0klV-šRb€ÄAÒZ ´”†¤Ø$dC4–M€ÄY„Q4b5„Ôh´D…E‚ ÒšÄXÆIhÆÆm#$„jJ,”X4h´b#@F2šŠ4XR•“4j Æ£I´hŠ(É °LMLÌÄÉ„h@©J¢ƒj4šÑF1Ta ˆÑ‰‘™‹$™ # bÆÑh¨M¨ÔZƒPm(†Œ‘`ÒDš ¨ÔQ%ŒQ²(Û&LXÑC )–‚1°FÆ0PR´FH£D›"“ "M²Q±4ѪˆØŠ-£[-2bÌÄi6)…,bFLPQ&"ÆÆÅŒ!±b„6J&EE¢–&É)¢"°š5 ŠÆ a‹¬ÃAcÁ±j" ,IQX Ɉ¢Áª-²ˆ²!E,X¢Ø“QQ’eE’Å“XÑDb‚ˆÖ1C I´T¤+JX-ŒZKFˆˆˆ¡ D Ø£A1’¢$ 4S šP’4¤¨É€Ñ0Æ2“F’¢Æ4Hhƈ£EPPS-!0-lÍHŒ˜ˆÅ‹‘  ³662a ˆÙ"ˆÆH£2"ÉbØ“QF³6(4¬š1ˆÆ4A@X¬’„mÂU&B‰ `LlȈ¶1¢È˜°F&QS BmC1¨ŒbMD”PDÀ¡(‰4ULцEDXÆMŠ5FÉ$V#H£if* ¢ˆ X6ˆ°hÙ$Dµd¬Q¤“°Lƈ؊"¤111‹¨‹@@Z"ÐLŠ#QdÐQE‹FdACX6‚$¢‚Æ0ÌcB† cÄÍ‚h¨¢ÆŠf3$¢f“cHi+…£P‘¡–€(‚ ¤Ñ£AX’J+PF XÉhÄÑ1²Q¢I+4›bÅb¢Å‹HÑ”Ñi6ÄPXÚ$¢¦h± 64Q¶‘-ˆ™¨ˆf 1& ÂUÑQ£F±TI$VBŠ ‹)hÅEŠÄEE¢Ñ6‹&Á@F6DŠ4X"-‹&ÆÑ¢H’+Qˆ¶  ˜ÅchŠ6ŒU&£cd‹cd£XÑ£bÔm`µ+&¤µ–5cQ3FÆ´F Ú1i,jL[IƤÔ[#L(¶4•Ej‚¬b¨Ñ’ˆÚ£Uª6Š6Å´E+cX¶,£j6Å¢£D£X±¢ÑI–Á¨H¨Á£`µ´QZ X£bŠlchÆÚFª6ŠÄPX‚Š(™µˆ¨"´bÆÒU¬EF“hµE%´h´UˆPF°Z5±ZMBkQ¢Ñ¤Ø´–¢V„¶1IÑTmE Å(LdTT 3A¨ŠMŠ1£& ÅF±cmdª6(Ô•‹hMb¬–,%QÆÅF¨¤­ ¨Ñ‚ÆŒÔQ­‚6¢¤£l”E±6Š“´FÆ´lVŒEb"̬lZÆÄXª6‹HTm,XÕ‹FŠŠ hØÚ4j+E‚Åh*4Z5h-F´[E£h*Š$ŒkŒhڤыFÔk±b‹‹,m’‹&„­Œ&È”[A¥*-&ÅÄhÅ´TF¢Ñ…Dkm’"L‰`¶5ѱTh‹XØ*16Æ¢Ù"+&¢Áh¨µ ±IF4ËE¢Ú(‚1¨Ö#I¤ÖƌƂ6±b5IDhÚ#j`ر‹{Õb@UDz0ˆ¨Ž›AO÷×½„ĬQ·³.j"鱫³;»îӮ“ºuØËú´VEå?«ØÇœç’â Û¡Eï]z<Ž©ïUÞCÔ¯L«KÆxÃÏ/zQ†j:IixTyrmv‚$”´ôOÞ¸ã#\OIË ² Ä, „ÎîAµì®Væ­Ë–±Z ì­vNíÌ£DNàÒ”†”¦Ø¬LR<9pª«žMö}ÝæÉëÕË–òjdÛØÅŠæõ²êú²iÓþ„ÃÃ*iŠ¢‚¿m}TõëjBHþÌ»ÿÏ;ºþo·1¥ÿ4ÿ X~ϼRè9J˜‚nž}ë=™Ôþïøõù÷gËZõ±½•ÚÚ­³èI”ÉS R¾üÙ€|üÌŸGæ_pÉ­4 ¶iQšhþ9D—Íz4wñö5‘ó\Sôÿ%ýïçÕú¾õÕEñÉôtÌy£6Î9\ª5c,n‰Ò6F/ËbýâžkQg’x*D#€ÛÿLI¬lÞŠyÜ5­lø÷÷K˨@Ãbj ~%‡ÚÔk2}œìCx$ÓúŠ$ðtÏáŽâÄåU¯m1:­S3îMôx†ï'Ôk½ŠFгb|Œ?×ið—$xÉDšYoÂàã~½ëT:þo¹uo”ñá„ ~ÚÂ!W$Àü‹êÓ¬¼hG®B Ï%1ò¬aÊsÑ3Ì?>®­L<eôž`8ä`´kx!ä+•–G•ÆÛ‹r“6ñ5mäeÆZ}‹uÁ-ÏvkÅ$9ce>wwsÑEÛÿ!@PM¶ÚZq¯’0½“öÆóú¢‘ñXÒQµÀD{øfd÷Wû>wÅÑ£GŸÑú™ñøÿGqyu”FË’­1ÖÎËsîîæírˆäÕMÉM·i˜§2ŽD5bxÝõ¨ŽA<;ý™»"8hаm˜Ž0m ûÝÎgÜ»DÁZ dïSÜ”\¤q ޲5r/Y1 AÅß“?†ùçëÝÎcíª7SŠsNFâÈíJõŽ—6çðGž<óƒ]‹k_¬Ò'E§fW?©Û¯E`ŸãOõ¿r ½mj ‰ò ¦.’Y"™-3ÓŠý8€Ñ> @A-߈vˆ!Ô '¶½u\ÔÍY¬|4 LŸ=wÌðÜÇù¼v& y—Ý‚Ù_[±´2¼×è˜ò(×õ¶^v’ESuF›N8ØÇ[/ŸY»ñ´b`4K$a¹ÑÌ«ß^³1ryÍêÍÉv,á“k*n‹H¡¹XÃå¨4BN5Ám™ŽàÌh4Ïžö×¢»ÙPó*óÆ©zÔCÙ/Š,ó)*F‹1F£X ý0Ï™‹Èç»}0R9hƼá[Z0kðØ=““Ëj4 ål€#@²}yíˆ{• ]V àk—M¢Î즽5; áð;ïCPöq;Cä¥H0¬=Wȇ`*è¯wÿO›÷›µ>@–Tbô±×ž¹9cá–Ѧ¨¥7¿Æý‹Ï7‘z«]7ÛAÃCS¿WµC° ”¥¤ÉN$•,T§Œ!û1na¯Æ­¨ß^+~¡óɹ 5íW}t¿Ò>½ÎàÅwyíê5ˆÆ|…HôºmÞ¡¹}àæçs"ýyî2&÷0N¥yŒ‹Œ³4Tõ¼&²|üCäjŸHÄæ]ªu{FšZBa4W>tžR‡YHϬÑìuT”ÚŽ-ö¨´Œ‡\n…x#†mîèÐâL‡;ŠB[IÜŠÈ•8æ2©*¥4Ñ aàQ!tzÐïž^a4CAîIh/Ôð©QŠâZ”‰®—zrÑ1Î POúMóë]}†ã³Wêz¸–B=C¹èùòþwµ{ ºÝsÌ<Œ…pøÔÚÓ)ä¥BôI¢%¬j¦²£GTá–fˆÒ÷çÏOæ|÷äT›©†WH`ò"bœƒEûJT4»²ç\óÌÕ:¢a=»ÍNØØº³/r›­•ŽêÇ/Ñgg a]è´YŸ>Cã{ šù—‹èåêˆ.wî\E(y¢˜ñƒ)Òg‡b›|ÈÖMƒÔßãæ—nÚQ¸íåŽeš¨>8¼GŒÄÜŠQOª}V÷Z%Œ¿.Ì4I¯"õÖ–c)•ªÆžF]µøðÚ¦5½žIÒÛ–‡ä^¡^»×ÞäeŒ¨ÝŽúe}t¼Ñgª6b.Ê%ز`õ<ÍeÛ’y}\S¢Æ˜[ Ê”ÀéÙkPš …äĂþ®ÒèDÀA ÊÛGM½Ý†‹·Gø#ñ¸‡éÏ=IëÀW>S÷LåØ;s‹'쫈 ô 0k³º– &LU°Ç‰©¼wf«zjNКCø¾³©|4 qïOJ¸T:ÎÜ*füüvuñ{D±`<ï•Ü?OÝ=¾ŸƒÖ¢noÍSöyÉSguÄgÜ\M£t¦'[X×EÆæ,Yz ˜|¥¦óÛ{3Î>Ëß‘{ Ôyï¥Å\$õ܉"¨‰ï•[žNш´XçÈ=`Áà9 Ç—iDš---áYÏÇ1 º—rÃ{ôÆŽxv¼-L$mÎè4åj˜~†ŸRíLè€}準Üß©ïÎø-É|óds"éxrÂyå¤zyæÑ7iy¦¥º·h?P7ä¼w X<¶š¥Zy/¼O…9® Cg$ÐÅwlÛ{Ñ{)¼ì€C¤À1Ó¸`Èos~w½w껾w&x-6yyLòús–;[®®ÄEB@lËI.¦%ßÀd2¦ÙkY¢w4ø­º5"QPúÛØ†öÞ¥èÃ?ˆv'Ùj‡¥C’baßšÈ1Xr˜ˆc e•º{=¼àóVžÏ›xrúV lËDG7‰ú¾Q%  Z–¹»'S§è[Ü9›Ï"V‘fæ.] AÈ[ O¦›¸ºˆ 2–4+‹™ö+‰/ñϹpˆø\c–- — -Ó ]¨…jo=Àé)Á!V“86b‰Úó p°ú÷0âeßמO8S›™”@ V Œj,瘬¨V]÷úÌa/5¯qï£A¼xé¹o :\¤×F´££°þX·eÙŸ/çq÷øÌ3æ]wäÏè!¼Ä«Àw2ÁŹ Ó|‹Ý;xœGo1¥mû†J&c˜¯©‡:²sÉN42‡‰, Ä™£—3âS[U̶HÁvjœcxªðÞGýƒðŸ’è}|iÜl4³ƒ¨!Q=ƒ›:Ç¿E“E-yÔ"š¾¬xI’y%¾$… â«_^;ÈÍ0doÆË²‰DpõQõžWÊÐ-Ú)ÇÃ?I¤4†ìcK‹UJ{O¬‡iƒÇèíOÞ÷O„øË½º,3ñô[àõ1²Ï, v\™S{™Õ5+ar]]Dωàã\»5°‚ú­Ë(×—à;¢Çé1œæYXÐOÏ®fûnö=IÐb€A¨êJ1ê̼!ñÜLÉ;1w|ì‡ËòýyîùZ»žŒ'Ý¥1ÄßEµ¬-KÄQ»§øú¦{¡ðæX5Ï$oÍ÷>mý!¯<~ܤaNéÝËøøJ„²¿§¡îYSȬ1ß&‚xM)x9MËø<ä}b)Ÿ„"pÖÓóMÌ”°~IºMqDŠÜS°"8âå2vE)pü$+Êy¿BãR˜—މzÚ”(éý)k½>9ÄÑ)96[áéË@ÛÕ1ÈB{¿V‹wC‡9Ó}[¿ES=¨Q¨±wd“Ô*m&ÛÔÏÛëÜ8ƒòܨŸ¤Ý¿XíFGG{íJàfL*¤dµ(ÇòYÝn®§­Ü±&ÆVù7nÉgÑi1/™ ·R@›0>²àêìø#$MyÓwã»\1h-‚5Hgtž 1#ѽS)ªÇ• ¹:¦™Eü3—€”p×2º`Ñt ˆ"Ì/o¸´Ö±ùéž‹ä'h°ÅƒHI!ÉdÀAúÕ47I£oÄ!GœWêÚÝÈ¢1 .ÑØðGm~e ̾=ÄÛ¿Â-SIÊ-üg\áÛHôôü¿Eá®4‚9\e±ó®‡ë™#\í?VÇKÌTd3Í™¦^ì»;µg]Píáˆ`I\ñc„ “$­%%¥Ï[reöÆF\Z fyžH=x”Ãß>_=í¶ÞO‘àðxb KŒ ÐaÚÁû<-[@³!ºä´ Ù²ÕàÀñénÏ_.òMó¿LÄ3þ_Ðü!$iÏ ´“xB04¦úòù‰¨ItéZL”má3yå¥é®È»’‘k†óNI©×z¹ñøyj‚Աطd¸±Ñ.8é1nL2ïó[8i·tÒf<ÊzŸ?‡e®«›Çûxøvð‘Æ \* b´# ‚6)µä¶L¦‡|XWAF‡s0^uoÁãàx ãÊùÖ>H˜p9”ív;™Þ©Ã{Û—½}á2GBo˜,îæfOˆ½è Åƒà³\ôÌÉÓäQèî\Ì<#i®çª›l~, «h{µòÙ—¹³6¾ÄžÌ˜‚¹ÛèìQÊ؉'„]œ‚í…±G«y¹ÇöÚ8äJ?_0§XŸI×{éÉÌŠËû&Çý>—ù—éýDÀP]DÙËå¿­¶RIs¿Ø) …ç#Š!çó ØÒ!!”ºˆv K¶ßÇn¼çÁˆ²%é|aëKbÊéß{òÏsÇÙãYÏ1eãbm̦UjåCtx&Ÿ×}þ¯Ÿ¨þ˜ž!A1„OíN‰Çg"#{i„üÓXBÒð8°Ï 8·aˆö„Ó¨¬“}ÄË#PZK ÏqIXrhÐÙF§}üê‡tàƒˆð†V #2yTœíßå¿Ç×À/bêfÚþ¤á]$“1ú~w³ú;÷ÌyŸ©b LªüMÛ‰«`‰$y=’&TÿÙ:u 1ødYK,Fmˢ좱Eqá ±Ü¯‘6œl;9ú‘y°Ó§'BíÛq¡0Ob‚QzÓºOðH|m_„‚i¡ž ¨ö\.6r¶¬N*¿áóÔÿZñ|ˆ#ȼŒ9ñÉ/Ï×{ê@pŽŒBùãˆ*>?„çŪj°ÐÔÅœ!IÒœWpÍ7iöb˜ ú¤Á¾_ò%©ÉH)kí¿s¬SŒ¢>Ÿ{†¬1 C&`Á¢CSº~?9~2Õ›åƒó·w4œ2Iô1#Á8€÷/œ8ÅØÂ#šw­n3_Óó>xøê|ì„ý µEüêÏ;ôøÓï'ø,W€¹^ûüklŽ;~ìÏ=œÛ]ÌäYdBý˜oB‰¦`à–$À”ÀWçzÝgù^Ë¢ ~ȧ~ä<>³÷?<\yÏ:œª }:¯+Äë:›ºgÏ®ê ñÃÆÛ×ái2½Ý=ZEß¹‰€$XØ–xo-',νW4S BÈ›®?©Æ·S,_ ßôàñ§k~¸˜§Íš`q¹¿›Üæs½ŠAyà¶.®ƒEk:ø³Æ°jM¼R4D>»LA’p¦ÜfP€mÌTÀYöÅD€B ^bÕQÕõg×YSßCÍ=– i¥ÝòùšpÉk|kÞÝ‘S½íÙùâV½ûÚp§žûüÿdyTWüÊç¼>s×D/lAªKÐO/×´³áìŠO ÆåÜæ6ïŸååA™,E¨Û®VŠŠæ5nQD)ƒLz*å`·ÏV&ÿK×4¢a ëëØyÝ»5r=ÄŠLóúç#è•^r\Q3ÆS˜ÑÓœÚ@y‘aíU˜MÙ«(™âdB _×+¾·#™—´”H¹E-À‰'œ‘cyÎÝ"¼õy«É¢€ÑèØæÆ½]瘮^§yº±‘Ib’æë6‹Ö®TPlZ-cZ*5¤Ú×(ŒI Òh«ÖÊ_íïßÏÏè¾ðᬟê»û¹LÏô±ØÉâb=(“–6@pcà,"&6±ßé¦PÔ$Ÿ1뤞ü¶0¢ò=$âpkŸnFØ$þÛük•àÅÅßɵ'è»ëÜáÈBûox‘¢ kï]î `¡ &PH®DÆìû–¹ÖÈzäi‡(¡ #ä2¤ ÌŒ¹‘áFAÀ!ÏêtGžv.˜›H$¼ìv‰yëöî•È  ¼6"·‡*‚{·’¡ŒCÑ„åC©×í½ûnú}³lârÖj¨Q9™Û»f‚Âr1£Ž·K81¦Ø3‚cm\¬?6ÅÒœh}|±´ç_+kLGÄ ãÁˆAàÑÆ_{Þ¨-”±Á&ä ùbðJ@3-(q¯Û°âzŠû|gëjÔbûk>|k‰!ö»Æº7ã8„›í”çï¼Dåë¢MÇB”‘Á„S‘ñ€Á!ÄPÉÄuÚè°å)ÅE²Ú¦ëä>õ€tçsDçH ZL-qAQˆ#w Ö;±–+˜-ÚøWX“ßs%æŠ(„·V?²ª¼žþwK³Åd;-X²–Åè©æLËȰ¶·]*ƒ'[V@!póîWäÃÄó®ò£náÌÂóÊœo€±ª4˜…<Îô¾‰Zø+<µ¶%×–BE±Á· ÜÍ4Z¦›4zé¸ÉfO¨½·Gï æKdzhŽGbYÑN¿Ø»Eõ[7ã•þ1ïGáwÛ©c׈‚ó|êç„`¶ä|½í¥¦ùrŠ£ »¤^äŒoIãTÁ3̲žW^ˆ9?–ú@d¢ ÛLÏ^!Üê ‚iy_‘¶»lxUæG^Í‹ï;ç¼ÑÍ™dTq¨1Á1~8‡8÷ÒL}µÂ”PÐòR‰ß×}€Ð¯°½¿ÔT`ùLM?ƒT_[~jÀ½>Á´ËëœõÙÀh@xC‘ý –B4ðò6Ö|/ËÆ‰Þ‡Ï©œ‘©fóÜã—˃SçszŒN‘ÇØžV¢c^ZÌ÷ñìêŸæ•ÃÈ_W÷V,Õ°KÁAx²å]i辪r°Íž¾‘j¢ ûÕÎHÌðó¿ˆÞö ÂWáíEGõŸ½ß®Z¿ ò„øb0ú?'ñŠÉóÞ>ØÄ5_±&–H-Ì8"ìÚùŽ©TLByaÐòÊ"GÊåêÔ´¤í,¥4Þ¡“ñuÊ©.$ÙùÝõõÇFÁÁtLuD`û9 ì‡×{åŠ@uórRýâŵF¿^ø¯ˆë_‡P¥r? èó0•ÉrˆB87Æ*3ŒAQZaci¬ý}ï:j~õÆÚV¼mDCñµ•FÆ…G4¡!µP ‚É3tZÖ2û¼À4Y >(Ω"'ËØr¦/"³È?»ÜûéÃa9ϲ8§à˜ ,o[\*Ò{×ñß 6®ï‰ ¬UØ¥@‚w&sÆ´ˆ ‹ºÜU©ÛYDñññ‰©«½äiôAtM÷¶tþtÁþ¥ï›¸˜‹0‚_©Ë1§ˆÕ0YÔþ¬ã½G6{âÜÁcÂÙ¹µa¨¬â‡?§‹Š“ü{*$+–èT~?}¹sq?Îû~¦Ñ/(>IizA{‘á¤tÒCÈ>H4H Š×§§^(×½VôUz*o;q" £Ñn‚W‹rŠÅ¹UÍ­;­#[ß5¸öž·´\¬W°ÜÞ'tŸÂH¢™ž*äÉ Š‡’áŽv\®ìé9›ÁžÔècøÝÞ×M¼`Eñ7\£ÌÂò+6HáºDóÞõìì}ˆéÌ”Uâ74p¶¼[–ÝÝEP›#$åÒi#×Ý"-’Úå·5ÃTS»r’Š…t½ÎÑÿrE8Pu4fields/data/ozone2.rda0000644000175100001440000005427614762765722014413 0ustar hornikusersBZh91AY&SY†Á»Àÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûþÿ÷wÿÿþûÿÿÿÿàaÿ¾ø”UDDŠ…RT E(Ð…©P {ê½ôœšsà>ók ª˜ß7»}ð ðõ¡¤ù%‰%5xù7 B ‚ §£¶ß ð{é…±÷^‚OfïŸw‹á|’ xßx+sçÌœ"š÷·vûå¼½ôîÖ§lùáFï>qÏTAo5|x¦àEO2i Ñ Ó*~“DŸê ~…ˆShñ5<“SÍ4SÔ2 õAé“eÔh†PÓj= Ѐ¦šª‰“F€ €RM4i§¤ô@Ð=@ ESüš"&P†A 4 @iB‰ 5=LF)J?"i=1”ý)4õО§µ@Òm ™”ÚÈÃPÐ0Ð0ŒŒ ÓÑ€¦M24LM¤ô !0Sð&=2ÂMSõOi©©ãM™M §…ÏF‡ø¿:ôlU¢=7l¨‹W5|¶Xzb< gL<ʾBu‡'lEãyzÅŒ¸†näÓ`d ‹d/+Æ*G0D¹\1[‰Qáä`MdòÍÕtIƒ@ŒT d†X2¦"#‡^ÒSS …JäݰŒÇ긱 *uöykâ­ÉxT剴LHHo¨žqe"Ø”Ø!-äMBÔE6"ȳ0'KÒˆ6­ä̱yæ¼;§ÇiÙ¦H %“(¢>šdÈ ¦:û(XnÄÜÙè1Ë@’?‘›0ÔtY’$ŠÉé‚B=8–^—5¬öšÎ ñÂ) p?Xî¶e!#¡å #|“ äŒDp†ãaNJf¢nÅɉ`a!éäÁ'šsh¡p)*,¦L"‰ýô‘†Üv8]ó}²¾kœ&(c¶<å·Œ•“$l–X€”/˜¬;P­ã·sdŽ<š®Èñ0²E®Ýa´S$–jø˜&w#‰ A‡k G«u`yA•iÝ‹S·aõR'¤‹ƒg!f<¬ 2\ŽÑái «…§(¸Ú„1Ý&Öï)N"‚(j=DLщ%ÑM3~ã¥9±îá•‚‡H)×ÜávïQŒZ*¾ÍIÕÈÔÛ%Æ•kÇSbÁ©¸Ëä5‚”É@Û­™Þšð÷”üóW£Án rƒÜ5AiMPöOµ*Mã YÃËÃ6_8ò­;\Ýí5ˆQ eˆt‘nºA<ì 4Kœ¼ÌY“¾CUÓ¹¬¦±B‚*c½\m‰xQAShyÁJ ”ñ„˜I~¼.B`ÄðÎâ¯w PO§^¦U>E£GDÚ¢1ÂËíN8ÆnvN‹=þãÊb/LßÙ!RÀEH†ì.xq¿4IÌjQx5ÆKÛ\òúl 7¶=~«9Ûƒ´«Ê””}ŽYÙ® J´Q¨%ÃàC½d­á†›Ü&7šÖ݇e‹¤A&먄ê-ÖH0š0ΧCQœW0;êÆB»Â`Z„ËÚÌcBƠ͆Í&ÁÑ)¯LLù’šÚõ&FDD¥àTA±lVîky¦«mj¦$éz&QùÞ8KŒê/‡vЈlÙŽ;Ï•¡<7Ñ9ã ôEÎo6s(Š´¨Æ;z,wMZneF– ‘-dòÊ›C]ˆ V:«2À¹¤¢°U13†Æ›rà˜›<*æëÆ%¶g\Ë> ÷“ju:9 ѱž"Pãvx kÄ#*(â±)}‘poÍtð¡Í,5œðQÂ#t3äÓ*ÆáCkV;=j3EѺñ¶¹¼¥ŸšyAÔCtÚII)Áž¢)4î›°ôï<ø“–ÎF²Zª2ƒ9tÄê]—œ_9¢0a^/œo9ìn ú' Òg&Ü–ò;®õÈiRïUR=ƒž¢¡ì¹¾ 'µäˆ®v1F'¹U’g"p5-U»¥§Åç ¹`¥3ºË$ZAk@°+Út¨GÄ®SQGzÙ°…g"”šÎÓAdp—,ô-ÜËÛæ 1âíâÆä ÎX£çÒªºVeÒjU’Ò.D!…ƶ±^>‚=pXâ—Ô‹] ¨píØôãÁxMæH¨.,®2¾.ËAcK‚nák-‡ã¥Ç'àWO 90šÍ\D`¼cNT$hcxКge¥3ƒð&Ÿ¶U1dX†W•…\!hs"¸¥ Ö¯ŒTèå5ÚDÃE®“xÀbÅ$Q>&çVoUØ`R®;}íÜNæ {¤e‰ž0Äe$vKsœ–UD…4• íD½OP?yN•PP\ ¡aâûnÐ^‘Æ*é‚RH±ö ²‡0@LÈ™ýï\q‹ï_6sNU%›çmêá1¹Kf¢Ò.Gæ{ÉñØ Pˆ½íB-xKSy¯YÍs©YYqCDþ[ÔM7i¼E×b3ºH«JÄãg¸ª¨§Ð'˜\ÐîÑI^­7N ÛÌ îRöäa‰C\'«Åt…XòÙA”×Òâ£R®g$—.+K™ l µ€wËö×XГ^®¡ÅO2íœÃˆãƒÐœÜ‹Òw¨š5FÒæýñ‡Y!JT¯b°³¤¦vw£•Ž© îѳ㠲dg­•;¼`±|’ÉUÉcY@¢òIÚ©ã1 YÝ)X½C½Þ÷ÃËMM× ëdÔÝôêÇèUÓk±ç±böæ}ây†ì˜l„"#ÑDßU§ ×òz#´ŒÏDe}\ ¨u”ÀÈ„Ž Võ|QªÑU2ÌcCtX2mMrë€ï÷û»z}jˆ• ”ˆ ‘`)aÓAÅФáæ_ÄuƧµx;ìI l™j‰´¼v?ù:¸^qq–ÐO¼Ç\ÖÃ!êS;Eó¾|2ÙÚÛE IàÿnÎ3Q*àœ~ÔÂÎfoÛ¢tïA„©¥ …a¡`Ó7Œã&' ×ijjñLï»íE¥QÈÏr lxƒSi ByCœ\Ñqæø×fåÛ'lKfçn¤1!˜îÅt±Þ¡7½b5x‰-H𤱮:èÒ¶'Ûc°ÙŸ'Ùõ'F=ÑMÔÚº¨¢T&ÇyÙáú! jÀÈd"ZN ÷ž,v©³ á΃–í=žÛl¸ Ž\Z¡M'›(ׇÊ;’X/Œ^”„¥|<šhô{'kx½úQ¯ÅÛP±¾!¦#|Ã×'à;ÓyÑÚu(à]Z¹†u™T»Â¾«Ù÷ºI€¥N:^qì ÓÅæ8IÔY3XM  ›«¤«F’„ša*v¹tR™Æs75] h$v YLóx¬¨Œ Ëõ•‚0‚ÊQwš¸`B1‘ЃÈk'G_ X^Ã×,Ê`§¸Ö¤º†chþ ÃÌè㸼÷/«ZÖåíI5y‹5ç™Øœ÷ãûD©xë"×Z À‡‘v¶¿2¿d…dt7àŠZ—­Ùa5,•®/Á²wÕÞx;#ÕRœ|zlb—±g4¿›fuÄËS4Ôˆ –ûû’ÛÕ9˜eØL-7¬ö{§íTkÉwKQÍ›Äwšs«£=Ë™Î2Ì06€áaL$ž of0hÒ¬÷·´ µÕÊR7bAÍfä·U¼m¨«¦½snåˆÚ´*»š‰Í…Viìã¸Þ‹æ­¤(쟙‚Ú>Ú1C;Ú =ÎT‘—hng4qcpÞSuãÀŽ`—´ëž)ÁBP¾¶Ö Ñ‰Ÿˆ™««3½ôûRÔtl`Ù ‚Æpi1CtÃ^A€ˆIïÃÍO yGW&h ²N.°°µm²ÉÖÝ!½„pYú†wÞ±(¨Å|>—·—Jô×1°ENÝ(.† £¬Îå>Í¥|¦O•=-Mk,.¤Vï áéÜSªxEìì˧<|^´Iò¥ /Ý©Úáj”Ýuo+ —‡fÁ¶1.nëSkÆ3›)VIUAwWÂZe”žçºOšÚ¢‚ƒ½îóž¶±í!­Éב1Ä ûQ<¯Ž»ÁûðúL,Y#1îQ; ¿¤ð07ež“XÓR  mM†ãSf'#¦3>gBï\qc¥eê°æAÌë§ôøÃi²ܚc7:‡0¦÷G¡CJ.³¢¬GÖÅ‹Þ0¡¼„ëœhåyG@GZNnÙprtôÀ´/~ux>ówruX{•C´†t‹àçáÑœžgÌ ÏÅ6[ó¬Ç-Jð‚;/DÖvè ƒmÒ/‚vq8|&êOñÖ0BÅ•öÄãqÒv› œâ[iÉ>m èÌ«D Ô…(˜Æ©¨Ü‚6Œ/~˜¬¤íÃiñqvJnÛ'8ëCrv‹*“jL Ö×X°=Óì3ݪ¯£·ÌãdFåÓ¾YÁw¯SКá„2qÒž£J{“ÂVܲ8ÑÎÖªbÌù-ææ©ÖŒ•÷c­¼ Š¡'à w¸ÚV,ÙxŽ÷½:ÞAéŠS^N.]غiÑ|­fá8&Ñ…Då3 \ÆFÌÉ„ÕÞ$þ²Ùé T›Jìù3íLõ쨤¡ºíSÁÄ {|U•:XÛ¼Çy3¸Kö ï¶{„j:ˆã~Û£ÞÐÁWÐFq×°KxÀ 8GÚÔu–{w(QÓsXY¬3iaù¥'$EéÐâ…A‰/¶®âïÄ{8Gxð´¾óÏ79Ùe—a-ž™¥NÐ`‹8º?ĵ;YBMÔ{©ˆNQòzR}Ͻ\&´OQ³O;Ï®ñžÙÙw- ±„Þey=ð‡¡Ä)dž¥@@ a¸+Hû¯#¯æ'mºšÕ) £àTi¹õÈ^Ë¢ˆx½§]-ˆBð¶4A8|!¸}u´/csí–r¹ƒ†Ýï=†3Ÿ2.Æ`þ<ìPíÌ—*©o*-¶bf ìRyé«ÚAà¢óHC™P àMÜtxxÐ*+Ã[i­ß™:”*R]íwlÁÒÉŒ¿FüÃÏŠ=%¡Mв>h× båXxœ©´—¥^aœy$ßÓ̯«BåY¹eJõ]øÍ­çé˜Õ½XEñ+·{ˆzÝ_I,ÈCZŸF¹NŒ}¢á»rLR´+EÃÚ ët–fIËæóƒÆµ3¤L\Áˆ$]ð-íi^ô¥ž=ú1žøX[ Šï{EvÎÃI¯I9{¬Æï;×MYg¬ 8¥˜†¶ƒ÷„²Ú Åò–Ô|±*ªÄáÚ iÛ¤cÛY“­ã[ö=>wÓå«Ú޾¸ÙN²\Ф(%dúÕ'(õ–ֽ仠›Äh•(¹wC:e‡/:i™;¥³ÂÊck××wç5nf“é—_=SÉ žÛ>=ø%(Ýa€$‹Ûo]Ò‘v÷‹Nt­[!å ÙÝð„ºö¤N¶´L:v¢hƶŒ¶ÊW%+cŽõ–xžŒØ(޾‡¨¤›ÎÔÇ4Êl0$ÅûûYíJ¿n‘³÷–ë•`!"Ën*(àN;)˜ŽåI<`ãðŸ+-‹Ôç×ùpÓxß|ó³3ܶ Ïiz…Ö¯‘M`Î>yv}Ù|ÒàRmS§9N™~8íN•CÔ¹êQÆiæ=ž-›¶|iû‡x©Äpœdx·<žýŽþ»ÓPÒýeL"¿ºÀVÐ{K·1èrwóiW·JO= tÆ·:õžÎ@È>)7yn{I†‹Í2ÇI8V»£éhPq’v<âWX^…fï+ØÖ³{s—{ÆC5M,ah[‡]ÓŽ4.Ý‹.VB{âÝЙ$[¤' ¨øJqÁÛ‹[& [â î"Hý`IÇŽÚv°Ñšk•ÏÂ[§+µͦÛmãÂDWlm±×R–æUƒŽã”ÞÍ ‹{R¸XÅ*öMµ}“žnÞGWO{í ógí˜â-°EýqÑ;ÂÕÛM¶‡Jv«ûyÙÔNy+%·Þ梒~€¨ɇLOˆÈ¼ÅÈ 5zƒÞ;« R²q?rð¶—@nýNÙUëw€N½©o¦ŠÕ¤ñáë-¨ö‘Û:$—¯[ùŠâFÝš 7t^C[Ñ·zÊyrñàZ œ:0Bï=^æéší[ì+lµT8ãC)Ѩ•ôÆèŠÛÂU,Æv ½â8æq‹¯µO^oÝë4ºÊNmo'®iÎÙlY=Xâ)±t¶‚œR'™b§Òþ»v¬;?ŽÝû¿‡½Ý²÷—Bí.ºñ=§dhuÚ±YÆèxfçÏ~lõ±Ëú[|žU×8ò™`·y™îësz´LñŒzuTðï+uï^3€‡«ç·Jh…Ƕë±;ÈöM¹šøîj>Ñ>Þ3ã2ó;Ä­·îϯYÒ@.óã‘ÚEm¦ëojߨËÛÖÕ¨Fú"H7ëº%ßy¬é‹^¨9ADß»íµ6¶'¿pwNPÆkH…J0Ц!—»Xé>|ê;Ýp»Nô™­»ôám6ÂWg™Þ½¯ºqm™oJ~m|Ù¹êëwíÖ'>ÁL:° 4!YÖØ…$èälõv_ÖŽXy¾­#éë8~.öj;^¡è¤Cä¤Ë,´‘àŒÕvXÏм¥0`1ÃJåb/a¥4Ò“¸INý«êûbÕôÝÏ Ãuë ûl|N­-?¨¡Âz)O<Ôû¾SÔIê=ñÑŸÇËßÔ-¼MÆ=&tÔ{t'ž ‹Ð¶‰4’T×ÜfGÈ iÝ%žE·¯‹¶A‹óE®>:MÑLûÊÖܵºÛ\l¶Ì݆)Ö8`iX4`s”¸h½-Y»8N½5Ä–.PÒáR€± $š¦Rµ†yt±êº"À–´˜ÏZWš44+HH§ ËQòñ òÅƵEÈÈ »Æ˜Ú5—ÜΈþ6 øt ˆ=Áu•߬Ç3”k$T8вæhbaF±¹Sߘ¢ûÁÚ”,Z,ú$Ý ÷A«ÀæËLÕ %I’³, XD©*Ô1Çÿ¾'càpøÓ÷¬WgÓó›ÙíYã£Þ‹µî<Ãxžã¯úçx{ÜÝï»Ïòw{†ç+½"££ÕôŸrßûðú¾ë‡ßGÑðú^?ÚK”|§ÅoÀø™zg úû.ißÜÙœ+?¯ù“z;~ÉŸ=M½ÍpØ[=ñýPá?4üó}ßeÓg­ñëðë²ÓúÜ'8žµ!jòÝ¥ÞÅ‹Ûu'…ÀÁã*Ím¢‡ÇKj1½©ç#uø9áÖ­<>Åq­¸6í¾ºçvÆOYƒÊÓ[îW_*<åW×dhŸ‘c‹±?)q.yØ´`Z±å‰çrÙÊn^ª¶WSr¦£ô«å,é}9¸>V5CžÂ{ØÏvx¼{Uì‹ûW6yi£kŽý­ý ÌPËD»3 Ù[¥RÓjȾ´‰…MpkÝØå«z7I&íÙÛ·r<ÉXÁyèBÄѤ¨A¡ˆR本PH‡“}Ú¸^å¶öá¦Ê—ä šgØ/ ÍÇ#XBçD¦ÍwvÓ#\‚ÔR€îW=jJ50nw¤m€Ñ‡U'…BŠnD˜Ú¤ð\5¯؉ÊÄö²[‹³âõÅ7¬†؉ë#˜>¦Ì+60£®åÚ_Áh1{—'áq›]æ×{6T2kŽWÏ"ó5;’É ES“êz÷Ü4h qE(µšæ<\õ»ÉØ%O œ³·“ŠjdøYÌMOÙqÉ: XdʯG¿]t“aN¶ÚŽžÑEõNÍÉ›aÛ´çÎ;óWÜË•'í`òÎeE®ËëÍdƒÌÈ[ª:‰pI ™™ºÊhÿ‚ýn™ùçÕ®{ÉÒ¿0 JÙ¼F¤Ú÷ªPé±N&ÓäܬŽhq`¡Ã¶Þ5£Šø… D+‡õšn®2)]ÿ->#š”zµ0È<=ˆk(¸_‡%#ªö‡e&QªG™æ2ødcëcï­§\¤³/«ö§ƒ÷p÷üå£eÛÄŸO‡››fµYÝJI .Cœç·¼ç!âï.c”àðü+ÎzÛÛ…ÈAÁ¦zj¸¢I†|Î;Œlp `d‘ËIžhÇ«yÝô<êÕ ñ“ïÿ¢ŒkÒÖØ³g #ÞÎLj›6Èþ_¥¾û©(#:#ë<P@4†š~oƒ©Y%{‚P 8ßáD™“N.§Š¥D*/ÐSEéâX¬À{OûÛg—RÆ"#Ípïã€:+À¬ ­ú^‡Ôþ ˆ\µZmF¯â$ÃÔEfŸÌð’ׂØâµï-ƒÁ÷|w4ú¾ÕÖ?µ ÔB~û¹Áèz5¹ŒóKÈj»=©BÀE~ÕGHŠºÒs¥(Aá&â~tcž19F‚[]c…@¢èÜÍ<^ND¾Å0•.'À,®‚ªB²»*vºÐ÷e-[3yøU3¦‰8„ðÑ%»f6fÙ¹dÎÐV¼4"~4¶.gqý-å&N-I}±ÝnÓ9 ÆòØ3kvåVײÖ] YJÅcEÖN±êôiÍ7ßé½B…mÒ¾FÖ7+¦Íè¤_/6<Ï›%‚[7†`5¤‚Œ÷¯ñ7HŸ)_Nå·~•ÑÐd¹˜ÇkîR´y´yÚ½äöÝ'LPòØá¬KEU±À%–”ÄÉ’Ž„7µ"mUibÊn¾ê\ “lwk{ÖÙOz: {âd{-í–§èwºÕý;%†«žp„,‰Ž8*—²MüUNÎUžÓ‘[¡9÷ÌŠÍpTƒ¸¹lží•íE§MèŸâÙŽ5¶EӦLëœÐ¡¤¬äBè8©˜NÎùÿuòŽå’¢—.Žàï<Á.À©Ÿ:KLªnhyuåiui~-C¥£¼í€Ê¡W¿™S é~ǯïÿÿ§¥SQ]‹ŽÀ.Ä’±ÔÆõÔC““‰(“MÊRrpÍ™­ÔØëôå€ÉéQ°ÐÑ´×\áì(yY™”OSDKët‘Q MÎq9Ìì Í0Ð&õÆCþ¡ze¬ï?óÁõÿ'”ETÄÒÄEME1SÅERR ‡Þ=_O²çû`TRBb¬ 3áYâsþžÉT0-öØÀï’~1pK‚‚{j NëAÑê m§±Š±é­C^!u—ªµrÖçKoäʳòh ñ`;Oâðú «V èïW&œÝG.ÒCèê]M ]e3вuvRñåÊM»%úz{(äõ.‹ö¹S¹«èI)ˆfê\0óÏîù2JbÂÆ_cÛ•¥ÜòǤ?° ?…üŸÝ}†€Ù!€øø ¼8ÉÆ7rä܉ˀÇÂ8θ$k9Š´\c)jâb°ŒUZÑ Ošy â™U—cSxTÞ9é3„t/Ë\œã¤qH™6c8ê o¯ÎËçKó3ûfEªùß¼núÝdIºsÖiÀydk’ŽBµôú5bâàõEkºì,}ݕ׎ ÐuƒÏ€À`0 ;Äu t§«öÞ›8‹I{òK¼'gˆ9r‰Bc%Ì#~y§9”X²ö³À-äYÓÈtðï ry0©¬$”Q5ÑÅ©™ìôD&,Bfw&î‡B‚šh»îr:èå¹bPepI¿ `‡Ó繦‚pìSÜXXS3C† ¡Õ8"EA˜ØÙ‹Vf·74n8¿ÚÛ°ØàÐà&ð†@<MÍ›®Df°(@Â5¶Z64a±ÁÁ¶Áøõ(d áÇ ƒ"³ Wñ¹Ù?ì€Xd0Þ, dÚÚ0À««*³#ȼ¡Á¨˜r‰³„‹‹h¸ÐdØb˜ÄÀŒ 0. Ë„$!-BI‹»ÐB®qRq-"B%áŒÒÜ „´“˱`tô(8‘,Z‹ (S  mæôðÀ~ï&{°O×r<ަa†Zûd‘ŸœƒlçdDM‹è”„£@Š–Èè°… áÉáÇ’Ð @q@ Ûccc 5¸<ûä Žfa†zhÔ•OUp:¦sãkmf[mÛ•ÌòêQX¨¢ŠÓa&•jÃH <î›™ c>EŽ÷»à\åoƒ´¸Öfhl6ŽXÚì (oAŠ"倯"ƒsØÃ 0à ¢*Éù¼÷ ¢ˆ¥ÄúÈ@ÃGa†fM|ía°Ÿ%¾ÿ!ïÕ%é@0±L¬4³ê¬;t Ã}þŸý¹û_OH®Ó00^Ó”­‹rø‚ ‚!¸„ä‘{9“dAANÑŒ2.Rí™T™˜wRÁ†ßC¶çŸnkñæ®ySUÆž[ ¿ ûV‡á%žsgŒá·ÌT“³¦ÚcxACQÆÉs³! 7ÂáböòS;N¤© XA†@ Ä*Ä æ=Ž|¸Ü·1`¢ ˜iˆÌ:ëé?Ÿ“bGç½Ï?O“5~KÀ‡ªÙ²Oh’¼;…ݼ‹‘a (•t÷VîÖ™ÝTMM—NcÌ£Di ØC 0à ÷ûô}ón@k ""i"Š&(«ñ‚ fN… …‚ ‚vfÕ»˜»Õê¥02Èà<®_¹gMÈykrå–ÁdšŽ‹öåÿŸÝh 1 ü”‚‡Ú¿'ËÒ†|˜Ð d4€DÚ~ ¸a©Æž‡–A@’L%þ^Sã•gððŠ˜ÍµÏm}Æl(ý»ïYG<_g. ;ÛM.³¤Ü>6'¦§.‹NS›ã•v»­o«J¶3ŒíÙØŸ4^ó_éûçxžë§;‹»éÉׄý€Íîlg»ƒ ¿Ë´‚7»xŒ z;¾ãgR¶RœUŠ5XWágu‰ÖÑßð-QøuyÉ×,]ɼæg/¼ÅYÁx,Ú1ÕoåQm‡þ T¥ùWï9Š”ë0;À‘Mè<…Ѱ*´ÓŠs}ÕWLOæÚës̼z~Þ·žìÆ!m½÷¡.dzÌâ–w0µ‹JmB²|0¥|ÃYà»FWõ‡?“R±Rì;™®PåŒ n«u¬Þfñm'¹¾A%«tÛ#ñÚ/¯ß³bí}].®ûË=dUªÎ¥¹ö¾.RP ­³84øPV@†Àê}´ŒÒ>þFĶX\)å\ÈœÑåMŽÀð¦g*VŒ½„§®1ó²­[g:±…DÝ…,ÜÄ—Rò•¡B8ø d]~ÁQ›OÈù݆Za(6D­uS Ø“7°Ò èàçë÷@h·ˆ\Ë|»8@à]žj Š.„<±è{±=øž…uÔÀ,ÈŠÇl ªñ»š©]‹”¥B ¡ñ!¿ÃÓËI#Ô Ö4Ì@㟄õQAm)'K:8‚'饛¯h˜ô¯U~'K’[ãÓw1¹D¨î0o8Á/PÐü7žw ¢>p!惊#g`ìš«òX™>ƒÕ¾§qâ–>ØÔp TBÃqÛTHÂû¼÷®Æ 뢽Æu¥$ímp­-ïñ]ÖŽÖ½Öp¹Û¶“cm½Ä#øeÅr¨ú\*iÑûl4ˆû8Ëú ))jã'øœ¹è9 o…SIóáÕŠõ²>ºÔ'ódûXRký\øõ”QÒrkœ/Çï‡[x£œää¦@PEM1þ–¹èƒƒª‡çæI’sµ—}£ï¼÷ÐtŒ‚-äÊ–¾'µ’ÑxXmÁ”×#TQ¶c¨?O”äòÕë?¡ƒ¬ê‰·ŒšÓÞ5#AKCãK´»I_iM©©â?}zí'žgY3¶­JzHd™˜´·,^rtãþ;ᬻajI{\¤öž’§ÒW&õÃÝ ýüyuøôóƒžg•©Ü‡Æ  |míîvµˆsõ8mwžüfÑ’9Ol]OÌùQã×9\†¹aY)©ªN=±5õ‹X5íevÄ竼Ðwß(Þ¢†„óôÀñž|ñ{@ò…Ñ¡çmo˜… í9!™‹IT–ƒ{¬‡Œí–çhÞ ÚL! 7Ì(˜(÷I“@qAÎ „‰n9høçi¥}c!|£#yNp[o¬¨ˆ3>-ê%å{NŠ€)§ìá2˜”4ã{´Ò›OxL'Ê<° ½ù‰A®x|øÛ®Bä&Mm&Fù”ÒPŽIÎðmÓ‡†.×{yh|ìšJw-c×1¡÷Ã’õ€É ðÌ¡oqðíÏ`mñ2O5:¤ÅܰªpÚGm JÚ!£†éb­2>%Çg»˜ÙTòO,M½°í e•?˜_òæSCPíáñfu”ÔúgÝ®P}Ä.¡ý}ͼ¡ÚÐú¿§­à yÁë=ç½ëuú´sƒ”pœ¼¶xÔ{äNÑ×l L†‹X™)IK[fqu‰Ä£ÂåOm±Iâëq ÅÄÑYÚé屩=n ç¶vÅ0€Û0-¬)i÷ÇMe¿5ðÛÖ6š~AKÊhq•ò—.òämv—PPq/œ›J='¼@AÓÓ7ƒh.X< âMC´êöHÚùvñ¨)zÇ´x[C󵃜`:Àd¼®! £œ¹)µ„¼åã’’;1ÞÊ—'hò¸Äå˜2ë çË;HkÓí;i#Úu ÄäPš¨ëqÓF Ô§Ìƒ´ßáž±Êh:OI© R€¯? u%'ŒùÃå'ŒHu€ÉzÛGÂSj‘óŒ³ç¼ñÎ0z@åÄãx d™oû°“í|©~(é!Bæ+O´ä%=cQ·}»íG¬xÏH:Hw <§œ§¾¸;T†Ñ•rÌ]àÉú…så9m€jk”QÓlI’q®Yî”ïm¶DTž0ùC©çéšíŠ{Êrް>’v¸ŽpÞÔFAßmµÎ|dÔ¾u½ð‡Â5!ç<õŠÊóÅÉqå鯞+ÖC•@žR;JjGÊ}`zÀ2}¯iòç‰ÚNs©hãî—b­ÊQ´¥gŽzÞÞ»rÄ5"|ØOغò‘ð‚ßëj+Î5±Ö•‡¤øA¼d®l`·,|ïÌÊê5m&¤å=¤N±Î^'Î5jhí=¤QI´oñb’m!ÎNÐòÛÁñHžRœ¢·ò䧆ù¼'Âuá‡Â²»p2~2x<çˆéÚÀâŠ(åÏ5 x“RWÄÂÚ}gœñ¾!ÚÎÖ7ƒ¯L£´;Å>6ý±ØµwÔ/ÂCme4ýTv€õ-ð(rw_;ÞRs¬Äò”ö‡‰õã ½1ÞYà Rò=׺)â=×üñÊÚ@ iyÁ«”§lþޝ;o<óç§µŠXÝ0ONxm ›Î¤O ?uÓ4]!ÈõŒ%}ó^påç ´Âd=¤2'ˆW ÷Cå'œÒùNÐ}A;@WhÈ =$õºoƒHû¡rQïxÇ´xCÆ8ƒ¯|ÚÚ5Kל:“¼íRm-%sÌ£Ò²Œ©r»H~vÈ3ÚÃPž0m&ÐêS®ø'¯ÅŠq×Â:O¾Êø¥hR´­xçií;Ç)âM¡øoƒÚ_áß;®vîðmr“˜ŒyAÞO8ÙQíaí`ô²"ÿKùy Tw”0…~ý* ‰‚]ƒH7âüèÛ˜’S@’!‚ “QDÔ¨©ÊPO°YC D|`Ô"£Úé¾¥1O¯=ºŸk¯ÎKY£H¤!epŒËÀAEv$"3;ÁSÉHˆ-ŽZ·Íõ¾Zý^`sý&ü´mÏŽÀ*xJ€¿§bD›`†"" bbfbŠª"!ªh’jˆ¦¾ÏÄS„2×Xj§Ü~›î~Y~?¶}×”\|?#ô{/eÚ–Ož/n¯»‚€„‚JŽçÙeÑï=BЭºœ¹ÑË ³ºM‚IbIûip‘)Ó-k4ƒ’¨© J ©ó WñoüŸžÄРœˆ¯Ð WDˆÉ`E"¿~úâšÖc ŒÅT5>Ÿ'§Ì×ů?w%Q_¶ÿßÇýeÙJ>„¨¦Ò† @C€çæ@ Üž6U¾U±ö @ MÝCœªIÔ0‘³sEÔ¬^D0“rà6¹‚o3b»;)#™àÝÇ‹s£›É,j zp^ë9Ž ZX¶çt)Kù,Oœ*¡…ç¬úÚ5®GÞCLfañƒ’Þã'= m€ÉÑwo ã]œïj²¯¦Ý÷ÊÔo& ‘ºÔhò‹Ÿº™Zhø»8ÎÓt¡²Ð¶|+{¯’Ö…É:-ôýš‹%¤Mx5"n°e Ó~%GØ­…1Ö}ñù4{e]ŽÔÞ0ѯ"\·­3ËAöqò|BF×å.®“­ $p€¨¸Z…y#ÍFCó-HæÙƒõÁO;Ž$ÈA Ðbø˜‘¥DçžË1\p“{+a}QÛA]z£òãj=mC—ÁTဠý_Gô ¬Æ9¿-|/#Ël÷{þ A~lˆ©J¼@*'õÿÞ˜ ¾#‡ÞàЇŸ¯¿Ýý>êçÒGè½Ii)Zü=¡ˆO×~‹û'L}¾*&*û$¤D!DC@D1PQPÌY–”ˆˆ’AŒM¤˜ÒN$ƒ£GYÙrã_ωŸñKtΆLI©jJ‰ ” H “ ™Ȧ ˆ‚ Ó q®Ýÿ³ä·v½W%»Ÿ9¬ÆÍqñöz<-=M9Ïg¥Diì§b:k잇ƒñ8çÆ¸K9¶ °bÕ20L¡JÑÄ4UL’ÊMÉR@Lù~Ts@L±$… K˜à‘-$ÊSDD3$Ì” ‘”U%*ívi1£Q žžÖ¨0ç7¨èzÚ(æ§Tâ)€ò*t.ñõ&ÎyðâÖ»ÚbL ZCóÏç¸ìe?3ñiˆd!0à¤Øþ³ð‰ 7øJU4U¬r ((¦Šª)i‚’_L4튟xøþO¼ý+€*®œ½Œ$8ø–ÕC•Æ ðXñŒÐTˆa¡f“ÇVª„}cÖá“c2Úx0õq‡ù¤‰·~Ô¡[ŸÈíx‚ô;¼¹½ŽÙõ‹z‹ø îÅ¢¡:S3¤å"›'w`c=,~ã‚J“÷湬à‡å]ZÀ¸|6€|kpHÇïÁ-y?wkçO;ùúŒE˜¶¬ìñ }Zp“•$ls•E”…†SBEX­ÐÍÒ6:˜.’è%n@ šR4£N;Æ0Pà=fI@f×X¾úÚÍ…ïh´wbq…å&N5¹6èu‘šJ›Ê«ãµ›Ò°MVå Í:ifS#\T¡FžíP× ž;S`‘Q"v™R½õÔý`¶;–Jú˜õUů ’/îëÐ`ªÚÊ:œZû§2ÇÂio7 Ú•“ äëÐ’`°èœ¯…á°2­û‡®IÛM¹…¼« Ö즴[òõ¾ãééÙÌf *øð=U £·Ü|¶iý?À-–ȳ/^?SÛüNÖX oòpý†Í3ëQ±çT9Dg™ø"šGÞD™LBMh—’v)Éuº ŠàôÈLæ4öÉ’Då\Øþ»ø¾«ÿøaÖäv^GµaÔÐö<—n¶ôNú÷ÀKÏø·IŸQÚí;ÈK‘hé¨Pßjå',IÉæ9µùÞ  7“¤ý½ÄÐîdÐôµ!Us³”;Á´mQÐó‡QsãI¢,ÏÔZ© f‘´Rº¶Ì(Ô?¨µßaˆh‡Ç18œ¿Ë̤ð¶–\§¶kNJÒ-Ù&‰µ ÛˆHbIð~W¦{É‘ØúÂPžçí÷åöÃÛüïSÐûnQCÎ}‘ûŸ÷‹ØÊÚ|6Uú/³k~C>‰¿9_¢+pûÉsìUâW©òg±æúžµ[ý_ºçÐ2!B¢üð¿/ oG2x 늸fL!Á뱚…Œ@žË5Ÿ˜Ï«±oGo㛺µ ñ3ØËóÑamæÐÞÿ¹ÍÒžN ÙínòTì¿ã¾ß­¼þ´I‹W·—0¿gh•þcgõ°Áp­¹M O9+í;­”™ƒ5ª^pϪI@o‡Õ‘÷”Û"UxÇÊAê|¶Ü0Jb6!æ¡»5p ¶ã…-µT¸QYÇD—–©ž1ÄÒོÙYY4ˆ}°¡yÄ ×„ç'¯Hò_“ïUÁô‘£Ç$±P‰g;ÏTáß ±šˆ;zc:Úÿ'ØÙ;×`çGyH§¼)¾@÷íÂG­šfFáë­Ï´£&UµƒdÎ='­eµ”È´† è{ïY]†a^vC °&âLŒÅ)à jöÝ)s˜O¥KJ].œt²Tp15ˆz..ñoA¼Xh¨ó³<6÷Á¥§u‹fY=þ%)Múäýþª‰9]€6Ñxºžýa"€¢¾õ ÑWÝG_†w¸§P–ò£Ód>Y!—=ã=CÞ™+b±Êw»®â›ÔHAKÜù´ì“ù{³ì¾.nÈ¡^D ¢”KH•|þF'JÅáÑÒ\Ïì‹hýjp½³ò_×Y£Jyàû m7èvTÉh¦E®٬UÜ©oÂÒXë°ÈFïu»]÷m¢/Îû~Ïß|Â4Ù‹ÛíçÂV)<1GHU;s;øáXùøÙRŽþ¹)ÚC(B Å©ÝÒ" §B%ßáW9"T÷ó$A !Å.½ðëôÊl½ Ò2&-¶ÞGß~aæÎï…®3yÆYt•¡Øhωðñÿ°Ð3Œ«Lþû07åª|^ÒÆ¦Q kûSãð”É‹ȼZ5KÀHgŒ¶ ¹SkF+©;N=Lë3,šžNÈc§ú†…ŽŸŒ¤— =YÜ <#ïÚÿ%ê#F6»L¶Í,p÷¦R¬á Žï«‚”«n” ‹(^¨ú0RÕ¸CL;Fbñ‘ç6Ãì¬d ó@ŽD‚l"׆\š–.•d¾Wb胛% B‚Àv›¡‰(Aïh¶¸&e;IcEŒ§é7Éò†–S}kƒ>1+΃½—;$Á2N•Û¯®Ü ÍP” (ñÖÂÝ„N92eà›‚:¾ 0Ý­ùnŠÛyäNJK‰N\F_Üͧ™ß†Eñ‹·X9§J‚Lo#¤s~ôí“`š.–kì€}!~§ñ¿,š€6Ú̃+ŒeàsèDÎëEÅM¹µ[÷x’,rpˆ‡ÔÔ¹ÊäSï§í]î²à;óHx/_×wî_OÕGO¸_•ÓîY¹g©6©ú‚ ªJ¢Š#òöa…faTÉúLÉh²3Y“AUV¬2ÆÛNR‰!´ƒ9£ñxܲ3l–^Ny›Ÿš7<¬Üí2´³êУB¾yÝZ ½/RD6Àl ' ´æ¦‡yÆ-Å:¼óóè*СD1š "”¤!शԚJ(#BÏqüóߺaïr1—¯¾nKvŒÀ ²€àúÍ#£Äáfë³3´½–ß'o‹ùøùx¸×8k¶›llm¶ÛƉØÄÅ«Ö ìí„€µíð<5êö0ƒ§µì¾¯µ˜–+ËÉݶ>¿T½Þ?3¼.ðûž¨9fæ5”µj?G€þA˜½ÒÎ6wBÒ!.qÛ:H‹¡+¯F«»mªËaÛ«±|ÇœRà\¼Øèkk¿4hVF´YYòFp™ ¦ädT7ëE,:-ÊFmн¶ ÓY#]4œŠkOQE~º«J¢-]$EÆ¡ /³°†,væ,M˜ïi`!„ÆN¶6 ­ý"‚^Úb?Y/gIí}J Yº3™”þìàŒ¶x^E†”¼åÕìÜ­Ç¿À‹Ç·…›m£ê¨Œy¸ ßd㯾ìí“r9%oé®úì*(}¤P“Á­ ZUeÆü^ƒÄ½áǽ„ho7Ÿ_ ²s6éä7×½Ë^móìEœà{£‚°D$fb —£o<Pªe6²ÝBÞšÁº¦°“@¦Ì¦¦{bÕœdÚCK!›%ð‰ú6²¸6^§Ïi‚+Ù;ZåðÊ”U{ûNSœÐ nSBæŠä(IølKGZÂ0ò\ VE¢òØø¬LR77ŠS§Å«Ý÷aå¹9žQà™@sè}ó·´Bàm×Eù*/)ÎuQq=ébE ‚«…Ð>5Œz8A… žâ|±°J2ÐS§0~·«öºÆI´Bf×ñ!^O‹hËîYƒ,JØô_V³iZ¬$=À[ÒBlÖåE¹à—Uu´½ÄÛçjÔV€BÔ€Z²Â ªÉ)rZ¦˜©‚jH%š`‹ÿo†?¿ì>pÚÆvzÕ/½w$"¡"à§—:ž <¥Þ(( PæÔ—U6¼ ž¬•…¨¦'Sˆœè¢uÌ‹¯ak²w½ÔÀÜ BP B=à¼Kô8Xáe™˜Y–fE™…ecH„A“ˆî>tz·×ª9(’IsTƒœ£ /¤^.Pã¨|#æísòŒ„I—Ÿ¨#|Óý&[…¯w•äøØÜíñÏ¿õ{0Ò æÚI6†Ähjôn.îþN±/ðpqµ¸Ñ±­¯aˆØnl>ÎW1—:³Mí}äbiÜV& ÞrYgÐtv\µ¬ùJ4ÆøâEW–Ù !FúÑ6Zßb.¤o~cT«[ÙNçhB° ³=²”„Þ#É!'&øÞòX4ñ‹*àX*%àJlQÎhÄ%8€šI€ÏhœJoŽFCs¬mˆÈ'.Á™ôåÈ:§ÎTE9ƒ¤‚`¢dv”‘ÌP#Ž`vt²°¶úEfQÆe—lmna¸q»£ZBJSÔ›~,бvX78éV˜ƒ(aÑv0S SR#“雕YгLb²'Eízà`›¿,l¦0…„⥱DËu€ÌžxEu½’_qܽó{ò†¶ïJX“Ù\ÀŠB5iÀ¬’U*iL­‘=Å•h%ÿ«þßäýFœ̼ž¢%ìaÜãO7Õ:ƒ756Ô ‘ÄI$`X¾È‚h‘çz>L‘n0¤AÕ|^Öm·$Á€Áãnø<]¾¿o£Èòèu‹Ä-ž—Y*òEð†ñzRäwo–äBø‚ÔŸEhjãKw7ž‹3VÏ´Dß¡GQ?šáŽÒè¹ÏÚÙn I ¢ "i(¨š"Š˜†$I,ÌÀ qí{”¸ó¤øklÁ•·eÆ T„YÊä À±†Eð÷näž&.ñkXd´ýž¥…¥øy¿…?Áù=?+ŒïÖð¼¢O½éuz‡ÃÉ×ìö»=¦×]ÝôÄåß±/‹×ñ9ò*ù¾d—äñ7Ò¾Þ÷võ׿Ènõ~\ûÖauOÌYÅMK`-¥†ã=¬ê‹~ç¾ÂŽ6ç¯#çNè†+™íd!ÞbJ'øÅnï»ú ƒÈ·2ñQ[Y®Ê[㤠Á@YEe=ðjˆà_Ú­×$ïo>;ûd$øañ »ž®:h.ø¤FîÇíé€H~iJ¯-fïZ^sHkéæ?zZ÷¼6 Üúœ‹-ãá3ÉÞ+ P†L°ÝzúfÅ‘ âp=Î ^b 6±s]E~d|zðéãÝð×ÚzH¥˜—FÆ.Ä>(âzb9dmºpÅÙ]F½5íÎÚPÚ [Æuæ8))D‡{Ââ÷/UQ_„1Ë3ªº% ¼üH!¸ž§Ù²|5õ†¶TmÂÕ‰Þ@kúÎþcìfžt€a指&Ê0ÜYY²-h焙Βm¬èM$³!Öh)`:%:L)kC? ¸ D½îØ[ëÙØÖÑÝRƦ´3Ò¨0w>W–í*i¤âQ´è=à,îÝ Ëç]u¾¡NÇ\‚1PœŒ®—]×á|ù#B¨ëÚXß%8‰3¨…Ú9ȰQœÚΔ%ìC£èˆ`¥”Xr­O ü/žÆßß͘J8âzÚ8aA“al©YU?ä±RœQqàì Â4óÙÁÑJ ô².ÀwE.ŽfÀŒ AGJ| ’Fʾá^¼5Ÿçsù;ðyËÞø_—‡ý_¯êø>Ÿã÷ü¬±sÊø÷î¾ àÿ'›òû»>fϰï~çÚô·3+Ðú]eÝþ‡ÍøgÚvQÖ|«í<_Cÿ/®²ìý]Ÿ…ËØþ?ëGð‡ñ¿ñÅÍM5`•þ®pºŸÁ×ÐŒ[¾äIY`’¼rÎå‘ ;_¶àÙ±gc‹Øû¯+'f¸¨cM¶Ûmú­lp»Ñuší´4)æ|à~$š<,¬!0Ób<Ž ÇÅŠ…´‚¡d(†vºSèÓä¼—lÓÀò\gɪ2p Ýå¸Ü@FøJäåášiªN˰üél[Z’W¼µWÄ¢ñ–aµZÞÚÔŽ€zlDU–³"¼CêƒyË]Wƒš-¦ýí—æWghä$¤Ý6ÛãªÅŠwöÝ’ØVÕÝi8•óuô(¤K3šÉð‡Í#nü4Ïw…!œB$3[gy¹ª—Œ¹1ì‹-ËVy^· ”±kS”7¢ b3±È ðp8Zœ_.Œö¹Ò´%è“ÅRtážF!´ÎHËÂY–ùŒÀÀBc[œ‘R&¯Ú6²Á!iRÂô3Þò+±fãt;|œ yÜC~f[FކþC>H}bQIE¶5æ ’Œ %Ó}ÒH'kyp;û››5wÝo'/ñºΡ_ë`€5sÙð:>yëÉ\opâBp y88Q¹# ÷òZµ8\–‡Óý(™†¾žñ‡ õd€äe;b¶]ZgjfÐäMçjÈÈèb:X",KÍzU“.–çµïž909ÒÑåÏtÏ׿†ü.(€‰4USBQLETM1Q1TU6Ûlm±°cOÎÓÈÊ1žd­ ™äTèöUSZ¬ì¹ÏN§…*ùí—ùå‹NS·þ'!ºÝi~ö‰ï\›ß¹Rr”¢(" jBH ußu %ªnW×¢âýxUç^^äWŽÝ¥•8>÷.ÙðéÄü%nŸ{£¸†BT$—zÞ/M&tŽ%dÉq¤”ä÷îŸ'k#¢C¬jªˆ9fY!,•Y%K//»RŽHes C?HçË5«Iv÷ž[cŸ›¶ ɺEyVLóW#ߘ׽0°Ó0¡1çmV ûŰñº»…HÒ`ù¤ºNQì’š¼Ü«ôÄÄG‚É8N’.•nZ\_ZÇjQ°:Efk–Õ³n* JæEØë¶0ص6K …ªEËÌ’~ó€Ž:ó>ÒtLt+´.Ðw<HÞÛ9ø×Iàc~¥õãØ±¯Q¶Ê÷>‰®·jã ôª'[@:JÏot›ˆõø”ï)ÎniCÒ“WŒHzâ$¢*ÂxMÜ/x»à{Î]×®§×ÌŒ^è,EîRœ5²óÏngœ.nÐ÷t¯ÆÄv*ñ³F[m…Y­|ÞŽírއP×t ͧ^Îìñ´°h°eÕŠ0åd7z¬×¹×â0jÔKð€+ª ?`<ÿž;0o1Ç. sÜ^~I·—ÙQk‰Ù˜·±E·/î°÷>CÏü“ÙüÊkép÷¬ŽÜf#>Š'}òT£gEÀ挙)!4mNµ¯x°v˜„l¡Î Þ÷ÖúzƒQ‰Ñ\0Ç1¬!õÈ~r §1•;%!¼ºŠaÿÝ÷@JmGî~¯ãÌ;̑è÷ûÛj@ÊxuÂXP3/ ¢ßH!B­DØ3èú~ëèø5~F  Z‚ºø-´\ZDîR•ZD›ˆ5`DA£ÏÅüiG «lÉGt»¸¤"\_~Osi G­„V`ˆc1˜V™ -²UÜ˃%*¦‚^ë¨ãD(Ç—YNi²Ï=3[nq̆úEñÃi5GÜ#†¥.Ô‹'‹"fõl¼ÊÂ*ƒŸº<ô{§ôyü[Ü)…\I}Žß×ޔ+aô ‚êÕߎòKQŸ½ƒÂXeÍ['…Ìfé(СVF1¬Ðn6†–Eº-‹';“η>` }sC> öÄ3H=™Bù“pÒÝ^zŒÝa½“R…0÷‹8­Qù`;į]­R=lv5«n÷TrÒ¢Þ'68Óà… F"8žXèÏZŠsSÕ B áÄîkõ=OÄÿ5jbF èÌ -Óùfa*5?™›U¥îÖ¶´sCÐ÷^¼ea³´ƒÙÍ—2Ö'ÎAìsÝȵ3q{„C»ÃÓº¼XÞ+t3°0ýo ×vìÚ_y‡},Ö-Å]º÷ÿÏå`6€ò,·¦ÊúZŒ]ÉáB@ ìfields/data/world.dat.rda0000644000175100001440000003564614762765722015075 0ustar hornikusersBZh91AY&SY` G | ÿÿÿÿÿÿÿÿÿÿÿÿÿÿ'ÝäÉ$I4Y$I$É&I$I$mm`mÿx¶ àŸ{qõîÆ|ò Ý`¾Ã¶@„à9Qw½áTA½ÁðìÇÙ\WX­ÔB*P‰ ðÂ"m'šbi¥?SM4L‰OPõ Ú”ÿÕIúSýOj!OÒOH¨¡ Ð =!ª‰˜ª¦€hM4€š¨Cjz ”òR¤’¨Ðz€Ð¨Ðž¨Þ¨PÐ4”ýJ¥%CFCA¦&4È@lš‡¤hÑ„ýª¨ýúª@Ð3Ú©¿U4ÐAš›P € 4TÕRRyD0õG Œ™44Â~š“¦Þª3ýT&€üý*¦Ld#ôÒz†˜L† @hb4T¤ÒMS¾_&Ûb»Õ«ž>CЃB‹ÏƷȼ£\L±@]Y`¬«±ƒ6Ù MÙi¸:‚·¤ N-»«µˆ©vš „²$T¶"£LÝÖ®Fµjµ’BT)f âˆ[%ŽÚw ¨ ´ÒYX" qMCƒF–èŽõ\£-DónÇ#1 µæ –(kXà›´åŒUªŸÉäDG䨘fM±¸SÑ ­Åb&å§¹qZ LÓ%zü]¾s{×ܦ‡é§‚ýÿ5éůôþ©Šøêú;´°:G–ƒžºZ+œ–í3£†×][®X7PÀ¹ÁÒ×Õ¬\q<M§«Ž¯–ºXŽs—ËLO®Ž×}r¸Kž×žo‡èóÆùÞ/ Îøï圾¹Õ»|q·Î?MwÆŽ8óÓœñ:óß«\gkç”ü5“‹óÅö‹Ó<9çêbñ;]Z hôjÍp=1U*¬ÆÀbu;[Q³vŽ[¶ÌXí:¡åºbaåG¢"K¥ ‰bX† –HQ(©—¦E¢âf…†SÚ6QùWÌŸ ½.϶=ëâøIôØÅó[ϼ¾†ÖU{? |½³ckclÞO'ßXEã-£ÌZôݬÇiŽ‹y-+Ì•Qi³]­½ÈŒÔ#Ä­][«¹`„ÆØ7-‰¹v Ƭ´\ºj˺Žïs£h±´ÄÓqkhM¡HÚmËs*ÓAš`QS,Iîݵcȱ¶ÓƒÚlXÀ6ž 6Ó×¹`¬–<%¢4Þ¢ku ´ê<ź{#½Ô›—zɺîÌ›"ÁZÙ²j¸Ô&k1êÜ5´¤&Þ^·ØîvôïÇu¸çÊãÆtø[æïÓ¬ô¾ùß¿^9óã|øãyïæü—§§¢ñÏ^nßcÃé>üyò×OžF±œßœç9f.¹ÇÕõÙ9‹«×Êý2ôë˜év@½VÐè{âõõð~ôÑ@Ññ‰~Â?EIóhü]Ñæ7 ¯Ó÷Ù'㘻|¶éb¼°öÁØ“F5éuhö>Æç²|[uî;ìXs¸ùG2ùŸc{´Kô¿39äøPYüïæÉÔÕ®]ùÅW­+ú€½ÏEYB6îÄÐmÖ _Ñ'4sA+‡Ú'ÚŠƒ<†eûŸ“ŒûXÚùcW¾Í/AŸ³>.ëwê wÒy°~¤Ô»]Þë±ámáu uG{äã‹C £ôö¡çÛåI~¿‰5¹Œ8‰*OÅOÆ„ÆÍ-GI$ÛéĨ h>ø-úÍßÞCÁ/&›ágÃßû³Ÿµ·öñå?qû¡ùgÏßó:½üÔ{þŸw³“‡Wvþ|ž~ Û¾éµÕ«V‚Ø‹a˽G¦5‡;oWŽv³zæí“4ñó$'ëçûï®Q{¥ï¾k¾tM VïÌúð–ë–ÖvôŸÁø÷N<Nõž¿)—;?Úæ¾{·}£µ}ö¾4+¾{Ѽc>~ÓÕóßß9]ö#ʯá¾t–/žë¾}PÏY|oíͳõí´zÒÞ¦þÇÇfzÖ߲ϋÃ/]¶Wwªøýt/ÚWØ÷̯Ô{“rî Éݹ!è0Àýw!öˆý7áÜúwn Æ×t »ƒq»vçvíÕ±O«ó?º¾aófÌæÈ!üîw2¨Š|É ðˆÑü}×Íèÿì"(‰ùK ¢)Ø]ûÈfÀòÿÉå:Q›y%ém˜o<újÿuuw^ë¿{O¨u‹1™¶3Q,Äñ1‚Ð2$Í-Ä´¥43qs ÌEÏ ól¢m˜i­™;Yµ£DíÍŒ¶ç5³pM)›,“f6f4ÑÚÚkKrÜÈXÍmmٚјCk!´kfáÚÆbE¶­.ºæ˜¦¦b!”D†‰*Ó¢ÈZl6 Å´æÓ4È»#¬2Z¶±Ää’FXV³a¦í™F ¶láÀ$[mÄ ¶°lÙcme›ÛØÄšØrŢݜ§YŦ›kk²NÃrÛF‘Ã;S,NVãf‹‡YÊØ&d›¶±ºF6âÓ™«v“jlÔlÚ²ŠÍQDóÑ ¤ÌÔDO ìŽ:)›K:Ô‚:Ûfí¸š’[šÊ³¤Î —§’¹V»•V"¨(«6[fqlX´Üí´flÄÚ˜ˆ[m¶IpkLµ†A6ílLµ‚3[vMÒ¶èefG6ì “NØ*.Fd–™©¥Y&i!ghèÃ8œq­¸æ±¶Öµ‘Dèjb›‰äiª&Af‚ƒŠu»[nÛfÈ»‰ ‰ •$¥»©›ˆf¡©X"”E¨¹)¨¥J¸f©’Nî]RXe¢’ÌmYÚgh$5¹™Ã-6ÛFÓpI»m9c[Y‹rÓmÐÓknp­ŽjÄ`ÄvÓdã-fm´Vf†(¥y QzZHŠ‚èV§¢è•ê¢)ååE¡à',ÔÓHËvX“”œ‰D*Åut×H/2Ñ ÔsI<Ê)5UuAÔCÍÕÐT°SÝrªEL)×(4);Y­¶aÇ'5²ˆ"2‘,%MEqsT¥\”TÔ:NÛZÊN´¶Ð’ØÛpÝ…–‘&–ÙÍŠÀ'-¬­e‚[n1t¶æ)ÓYÛfÖ–´cÑ-3Ìò(CÍt!$2’ÒÁO*’%MÔ…s3зTÐó=<´L*0ÜËL„´nFÉ%§if¶vE±µgeÌÛsqÙnmØqTð¼rÉ$7SAˆ³Zi£$è°&´&Æím hF[ml-6Ëvͤƒ:0­Hë1gdí­ÎÜТSÊ·KPÓ5s c-f¶C4³lmØXíœ"µ–´Ú@vØËI¢å—ˆI$Šš(h Á¨Ämi,Òm–ÌÖÌÛ›¤[›vlÂ͹¥¦Zê* $AAY'¡’V„P9$îÛ$¦ÖJC-Îí4mq77¶¨ë.Ûvsl³³Žr4»8ޤ¶ÜIÆ›jÍ8¦Ç]…–D¢qØæËZ:;`¢®ÖÑž&0c-Œ ˆìÉ·GZÛ3ŒìŠm‡vFvfqÜiÍbf U$¨!*ç‘‹š‡•ä¡[,Ù6¢kR'InÛ£µ·fdYi!ÆÍÖ&%¥ÆE›‡³6´ÊÂÌ»(,å–#ƒŽÕµ‰©e“‘nY&e¡a§OL³CËT ]"Õ2”JBÝM3$,Ý5"Ò)]ÒV°²Ã°[3VÖ‹ZÅ^‘fb+šŠa˜žUº‰ë 3 ÊÙ³¹a» ™ ÎŽ¶Ô—Ã&ë$²KK<×tôñKÉ-UËËKܤU=ItQÔBÏCWsm­cE–væ3 &d¡!fâ˜y$R’‘:*Û“‘[Yѵœ³r5»#‰ncµš¬LšÖVÍ–9˜skp'6km¬ãvœÚ­¶¶æZÙÅ–bÄ<‚’O()=T…MU+›fÙmÛgpQ[kšÇmg 2³’àÎÛe˜lͳZÕœp•Ú´“ˆ³›M"Õ“d:±:ÈlزŠKlÚ¶ÜaEÚvÉ‚Î6Ù×gGÜvwggEYÉÜ—ÉÝgVwZvf_.àìwÌné^õÍ ñ$«ŒÎY›¶Ûa¸m¶3²[[­˜²ÌÜ™keËc;TÜĶÈYX鱺¡DJ„Qj¢y.¤J¢Fa¡Rºhšn¥–£±»3¶Ö:d‘–鈡IâU(I–…¨­…¬°èÜvn¶tm1­QJ²ŠÌÝDÕ=,´<¤]±0ÓS=R+, =')$Ñ*—PБ2TLu)<Ì=2”"LÅDR3Öî2jXÜÓr+Zi(-i–ÖVä[RËa9ÖÄÝ»@(1µ‘-º0­¬ÂÝÃNœÒVÒ(ˆd‰JJ$K¢A¦¸™çlEmh¦k r­mYe´Í ÂÖ¬r6Ð)8Û¦m&ÝŽÝ™$®IZRªh[¢‹‘"Õ¶mi%hÉ"(·g É\êÎ×vu“«Gm¬ÌÌvs«9Ç#n"WnëNÛM³;98¬fa¶:ÑvÇi£m­vI»,gÒ×vq+M¹lÊ”çv…Ç6æP\¶œu¶ÝhmnìÚÐ[qƒcrD‹7pR°äqÃ].:ÖwNÄ烻vr®ë‰B9¸^ˆê—®‰A*á —¥%¹@…¢D y™ù»æ<ðyžVn“®Z–ivY¶¬œeh²V´’Rˆ—CWÈ‘s#Ñ--P±*̯3Ñ5s\iYcbÎ%­ØM¦¡¨¨ˆ©^ªª„¹g$í“–¬ÚÒææìÎ1WI#QROJ•$ƒL­ MuÉT´¬TÝCEH¯PI$È­se¥B<Èg^…ó¡thS@ù’±(Z J£0TÎT&bbašg5QLÌÌL3M34ÙL­àÊå  e®V³A£.SÆ%0R€A‚aiHd‚R IfB –{áßï§}õ­±vÒIYlD%šÄi,ZŦ[A,Bjų´;Y»X‰"Kø!AAAS HȲ2tàˆ`Ä N"3sss¹¡4I 2K „0v° a¥$ˆ`eb(’(ü%Fý˃À¯Á‚@) °‹4,±5‰¦‘¦Mm2ÑhZh²[HI¨)mçùg$bX´eˆS$)bR€˜úb%}¬uü”ŠÝÙ ·p Ý—D­ÎÖ³wbq*Ë•7qRmZ­Õ¹8îÁr.Îl.Ʉͬ¹k2³k%Z”ë;•’Ú$‹›¤Í¥Øí“VºÅXëv5h»'ïû¾›ŽïuÅ¡#ÍJð"×}§ÊùDÃÉ´¹lìUg–©*%…,·bÚjÔ”B‰›m¦l@RÑ@ÊQ± ¥+PH8:*,)¦êV¥ M©µ6åH´½Ë¥ª%%Š-QÊ™’¤î UE5bµ0š-ذÛePH©B‰·¶“#m« TˆjZ&½šßÁOä×eéý¸ô§uýÖ¼ÿ°Pp½Å–.º=]!×Tptšè ,ëªg(Vp×!X¯¬]uÒëªꯞºëx©Âóç¿^_u}øôà*’AÐ $MÒtvå¶»lFÖÉÌ,‘kJKD`ÛB[ŽÓIQ hHQ…FDã»± TAJk! C±L@µ§¡-” ‚ÁªprÊŽa²ÕÁ°M,%ê–˜6Vˆ£jf¡\jØ'±4÷70PÕ”í‹.Ém뽕»/3­^|÷yÛ9ôì§Á@¼Ð%î‘õÑtP¯[û×¾ª†¥þÊ"'ÖäSûB'öâþæ&kíñH?lý<§}à >‡?l– {èåò)]Dô<¢ýB} ïb‚¨½è/{Óôôâz`$:@:W®jHPé(iˆM u‰ÔõÒa×'M i<€éWHéHšCJiHRHu)Ô¥æd|ÀûIæO7Wá].®A§K§åwý>÷ÈÍÝççbçÁ8±Ï‹k4fÃç5/>v0.ó‘ç¯óßFïsÍ/¥äKÎØó¶òyyÑÈó¹¤=¥æyÞW–óâÏ>}ÓÉy0žzÞw–ß]äyï*ö¼ËÏŸ#Ï·—µ^ÞÝíó¾uó·GG·cœn ìöão€éÑÓ¥Ó½¼oÔo[-m¶M,Õ‹&–&¬Ö±,–Óke ¬Z³YfKe‹5 ’4 3 ,¤éNpÚêöý¼ÇaÉ6¶šhÒ X[hSVÒÈMZÚÖÉ[$ÔKe´ÒÚX[DHÉˡР M ÝÓº;ºƒÓ7”Ã…Â’²n·ƤiÄI œ)†´ÒÉm4Ò´J™kmkbke¢…ZD¶BDš›Z)¼ßk–:´ZdÂɸ$™hÆÄb¶Ñe£-¦­’e1*G´ü:+ñ IcÀX¿JÓ± ÚZh”¨® ª‚ŸòÝHÑû*ì‹W5 bÆ0U¶Êû*{*{(@ß¡ ôðmðߥ4©àÀR><ï)¼ o)RÕTjМ¼ iNSʧ•yCÊùFÎS˜ßßÎçC>qΙá;Kœ3™ÈA3…)KJR *R…"Q!J”¡HSE92 Å$àýS¿ö<óö_e£mRÃffeŠBx~,ªœêHNž©˜™%DIÆÂÌ ©¶••[´jyénžhéRº”I*š%åY•áNS§¨‰åk‘è©6³.ÄXGaÙiE‚š6£¦Åg$ÍÉsXì‹·.|]|]î÷rt•îÍYgfØ’ÖšÍÄ›Q¨ÓJmm©›¬§+-Ë#™²6c›s:65»5…".ºefžŠ*Yê)é„–•z&$¡•¢xž™ë5Òå¶³¤³c·”rPÝ­9†µ¨¢h„ïâF2òä²1­£9ËÙž’ºQe¹Å[X¹avÍl×&ÓX²ÛŒåEé¨RF5N>[×£ÌÃM窜C¹Î=XðÝQ’š3‹ÏE‰TÑjr9ù¬½ï(FÅ óWÃrøgWÅG¶7Œ¸rP!xÍØ˜ÚÝ¡.t¶µòÐy3æôkÎ$¹GSC]š4l³RÌ›%nEÒ‰mCšìŠl.L¦a±<¹Û°ö’G+›ºÉµs¸¨©V*a[aK:Wb¢ØÖÎä»fƳÙÀ»`pê3œQrëBɅɰãXÍ \m"!ÙRÛ›c°ˆ#Šž²O’ô÷Œç%3çxCÎF3—q ÝDä¦2n×\YÐìím²¦ÆC.rc®ê,CeÆÆÙ©©Õ¹[™cc:»ck\jÌb³çaÅ…(Š A­¹ 6²¶ÜË™"-‰ŽhɅФ9vrçF%¶ÈÞqæ=S±.ç=œ¦xÙDj[›¥„Ìë(Í’ ‡)·1%Rœ¦²jv6Cä7o||4‰sµ´dÖË.¹Ì&°ì'U—A¹å §l¥;;!¢†qg±„í‰IÃòrûÖânB¡ëLØÝ 1¢Ê¦²«Ô%Ì´m‹6+±¡».é •9®»],R•œ“=Ø{=†]6íÃÆ¬¯ZÄVº³¢QÚåMÍ] m0ªÍ+ØÇ:š…¤qˆ^fšƒm§°ëFîÚãs©Qpî@ÌIsDL//G!•HºÆÓ²1"m°â6ØÛe^\çCc8“-)!Ó¡{Æä؇Y ŠÊ™ ŠaD•š®ye‹„¡Fk$.²g»6ÎåsÆaLÆ”ÖG‡6š{;²ÄÃvHl£È®„Û.˜±˜R{&s+y¼ømiÛPE±µÏsÊ(a ól" ËkœNºDAæs Õxzv6c3™DZž'µ¬e4Šºï{;Õa—m;•V{²*š§ÖÁ!"=Òy¹ã‘svw;\Oté6ÅöÆ[›ÖD¨«I^…*t³8¡™z*+®)1·g!œ‚‰ï{·´Al3ÄEÎØÓW½½P/{\fž˜IiL˜ÚÉïe=jËÞ»;ÝbìòjŠCmÙh¦ªÆ/^DU}t/ ×¶´XÝ‘Ðd3žØXZÃ<ªdT™gª5·y Í^勌0/ft[N•ì…%Qž%H©œ›ŠÊžônT’jèô`u[s–GYžQг†{«&­¬V°…ŒtŽY6Ê(v¥]¤Ôñ*«Õ(yÏ—Ƶïy}ãI³. xÔVÄ=+Š6ч5JåMgmÕK¡èV•Œ›ÈB¯j ÛŒ[d-›dG…"¤hJ™…]DŽ"ˆ×Bbv2ôç‰Ó‹E§9É4R0¤Xm—Yms6Ý"b¥6ÐÜ1~Rž×0ùÆàuÙøIÑr¾˜œµÙóÖºGפ‘Ûg„N™2¯.v†Æì¥$³¬ ªçvcB9¼’ùeîñ–áÅO óqó^CȽðª6&ùz= )Œ*»Ö÷ £JÎÍ£‘LÃT(ÝRKËËQE'š$Û9EèE^M1qNÔ‰ì&JhÙ¶J\;bLä]mFdG°<íç{”óÛ%Ë£lÌhÙØUPUâB(™ãUAQ²½´ªŠo^õDzm›XU©SM “¶}ëµ{A‡¬‘k—¹+ŸSÚŸ\èQ@Ë´ã³hÊ‚+¢Kž^J µÖ†µ&ƒW¶åG0«í•±*¦ÔMQ«h‘y“s³‘1°dìís›—•EpÆxv7dž'ÍêõÜM2ñÒB¼*4A'B\¯)ÛJ)¨2‡……ØÝ•å”saâU”º{2Sá!\Ž,ñ9áu“vvîÕÖX¼ÞõÄó®tÂÈè×\IžÌÖÆV³… …áHg†)ÖÐe²ªJ™Óu¶{"êéœh«i ­ºrŠK;(¬ŠÁ¶¶Û\BÚ{·€¶£:s¸‰ #3ÄôôR÷žÃĆR!§7exuäìkÂ/d¤$µ¶ÂˆöEìma¶ÎÖëeF¨ã)k$^Ȥ–‘Ó((¹;k°¥±-r—¶îóÝöï {c>Û Ç„%yz+‰î˜¡ÄgŒ™:å×d•uÁŒ¹{ª*9YŠŽ¯c'R­Ú¶èkRœ˜Z÷0"‰™ïEÐŽ¸u•—YÑì°ˆ*“zÃ’¨Ôy%3§y„TT̨¢ñ«J[£AŸ=î×H/OBt‹Ä­r\Et<¤¢4Zã!žQ»—¦yzjyóeBX£ÞØT}4 ÃÒ®`yG±Ê%t½+!=ÒW\"IšŒ¨aé$”CQÈñžžP’ylF›k²ðÔ"åm'93k§<¹éÄGdì‡d“ÚäÛqœ=ÞL©“åÇ|º:N-¬µ´šL¡,Y Yki2mhYdkBÖ&ZmhÒÙ [h±hÒÍk52L“+2&+4JÙFPK2¶$ÙVÚ,ÒŦ£I‘56š5ŽÑÚ{^ÿ89ÙHa)b%d‡[Y©´L%Š A,PDÙ[¶¬&°ûë‘m¢ÂÐÖL¬-k4±4ÒØ­’Æ‹je¶ÑmLD-Yb¶Ö¶Ö°¬i¬IµhËZ³- `° 9 ‰Œ8øøÍXÜiÆq¼iqÇ«¿ÁD1&B7 I$™Þü(ðÀR!m,ÒÂÖÚ[b-ŠÚ„ˆFa"T¤˜iY&•˜$Ú²¶KÊ --©µ¦‘©–¨ÉfVKbY¢Ák%–¶Z؈ՒŠЙÝ7ÏKÒ@ô‰R•–•&ÚBÉŠÚ„mm-´X¡XY6Ze–m4Ȱ¦K5­µµ´°“³Dd¶Ô-a ¥²XKdY¦¶ÕšÐ´Ú&­”dŒ‰¤kEf´Ô%¥´sä畞LUZŽy[ÙµnxæjŽa¹‘æ_¶aö9¡€æºœ¢r‚r‰Êʼ£Ë@r¯*ò¯('•(ùGÊÚ Ð'Bt= ÏÏçóAÐpéžž~ƒ£^ÁÙ†Èlµ°µsfÇd;6kçççyùõë0šùŽc˜5@j ôß ôáÅÞïÆ!)$$‰‰¤Ém¬°µ²E1b%ŠØµ²³ZÅ2™i‘´ÒÛZ4L´ÒÙI¨ËÉj Ö™#YbÚÑ2ÖÈ&ÖF“²,ÑidKL­–ÖZJÇ®úáë¼o°gÚÚ6­´{ $–…–dËkBk5–š4i$„€–R! e&FYM­11k4,-lšØ„,BÚdk™6YbMbM2Ä‹k&šA„-µµµ¬,#DÚÖkF[,ÖÈM2 ‹eXY¬¶-–Ëf˜e¶š hÑl‚dšh"Ù#L„Ö,M(X™ !bV#MËX¬¶‚dÈXˆÐ™e²Ç•Ë9e–Y,–B`$!d–••–[L´U²ÒÚÈR-¢µ‰b-"kKi¬M-5“yÃyÀ`L6>ƒ¡zGJâ &$Ä1,AÑî¸wßoßhMD²3à ²É,ÈÌ’@LA3,,¤Í,°L’É,LÌ’Ì1à + DÑ4-e¦¶–‰‘k,²iY5ˆÖÓ- † d’)˜–™’g""Öš-m jØ£VVÊØ¬Ú”jR¥©•LVÙkeEb„ƒq7WÕÍ»6à¡(bJ‚‚)Q8Ett¥N É:w%Î\Då}žµÌÖ‘Äs¥Ê'I]%ÅÉ”ifVjÕ´š™Z•, ¡ ]x@†€4 ha=Zµƒ\'¡M"iRu'Rtœ Í:'*hª”¥š…Ìi¤¦\„á;99qœ'žvvpžrvðf3&eÌ9ƒ@è Òº&1×tA @RR­Ji+-fZm&IYY"´BŠ(ÒÙ­mi’ªŠNr:rHå8䄬ˆ–SK)–²’Ñj¹×Ö_Yõ~ïr.8 té(ã)’ÊÙZ±-XYcVm ‰fÕ±[-k[+$d…1FE¶¬VÖ‰52™ÓŠŽN98;”’r"¤–«U´±E efHL„D1 C‚¨DDÄT5I(%A H•5îã(Ã>Æ,Gºëetº×]4ëM`}•%¯ ë˜×cë×I¬ªóÅA®$ó¥5ƒ­XšÕÖ:ÓXëPÖ†° `ëSZyÇ­N´zÐë^±óš;×Ö=iÖYÕÕÓ¥ëÝûîpçŽ|Us§=RgÇ>+61Ïy¯0—3¼ÞÂw—ž½2ó<î…ç½¼ùyKÍíçÇãØóÒów·{=´ö/cç{CÕCà=^¯¹6»M»M¡µÛµÚm »v»M¾ä mv¦×jíO¦ôÏ¢í6íôò|°„m §ÌÎߥnÙkúåFU @•%?„‘í RY@í$"ŽúßRúÖøp¯ |8.âúŸZÙmÀñqo‹‡ÖÞäÅ,P±[,ÂÁ±K!,À, Á±)@¥‘ii‰çÒšM.‘&hh øø.åÊS*erdÉ“#äÉ“ d dHȵ†P­˜˜™ËÉ“,-º[P3ý_Â$@dY ’I$ Â@ò†s 8±Fö(ØÒ;‰àðwÜVí§„·owá­§ø»‡Y£82sB#IUAÑáãÇŽðÍÆmŸ7¯šçÍCº€å®["-¬c—ÒýªP§,Ϋ4â©òÔc墵Ç(êÔ˜œ‡¥:׬óžt÷OwÍÇ7'“Ž/{ëºëS­·1òìÖÜùvÙŒéß+—˜ù\Ö|¸eŒÑ‚²Ä`²ÁešÈÍŽ ÇDÉ™2 —‡$²žø`ጜ? {é‡)ø–1A™Sð>"ò»ËôA”K‘–NFN^Ë'¬ë:Þ°ë:÷Ó|ßnb8—‰ ee”–RVU”Š$Á{àKC€Àx¼2xÀ–íCÂT•+PHÔ%HT…MU%CPMN4q«ÆÇ= æT™œ ÉÜÉ>|Î`Í›6lÙ³f˜™˜Êe(å+”* †o''ƸÛe7-Úo ^¼Þo!t»™3¤ó±‘8Ä’ËÑ1,AlbYB2;÷ÏÒLö‹ánÛo÷EA~p¿>\wävGnÒ:µgY¦µ.NÝi9Lç'1Ü9µšsºµ¡k mYväës’ÍÖ’ÎqXË:ÉU³œ¦·GEºÓ‘ÑXå‹’G-¤µ­:&ÜÎéÒB]¸‹¬vs«®ÒGhîhÓ²ÚÒÓlJÇg#²rÖ¸]ûŽìž:ú ·) jÑ:=Ò±ÝØA¢ÅVTi¡‰ JEA¡uQ¶ž$ÐÈP”ª“f‰¶i fH8!@Õ-¨“h›·{‹1-ͨ‰L¬ÊY r»š´OR×{owE…—4Åj²µ( Z4˜…(ª‰”E¤‚&¸ŸÒ¯gÜîŠcôÿT¿â½¹Ââßþ±pz½ Û鮟Cg/¥c]&Žкv딺®…Óé'Òa×\‰±§çš<Ð>_#ã•Ê|s×= žxš.ºZŽ{ùñÞNÞ'+—kg}iξ»é[î_ÈG樺U"¡eN¤—ºy¨eeI”r|{¿çÍðã—®± BÐ!¨"l*(À.íF”R¦¢r$ Z 4Z&·@Q2[ÚÄ=ˆŠ]ØU§–]G¬f#\Q³i;kr÷nÞỺær?œtº‹ƒ»à"ñäë—ÊôëÇBñkÏ~Û `Ÿ!oÖiØYK}~Wôõ*Ÿ«O»Uÿ4ÚËõ”>²+ßYëwy¦úN#Ð^‘™ùyŒÓlL°Uµ†›“äO‘§nmZù,‰>H_&¹;0Vχ‰Œa"b-’T­Ž˜‰ÇÐsS4ºRNªMQ&¥5©cªÕb“Ä© N ÔºIÒ½(t«Ò/HJ½ #Ò2R•4Ž”:€êN…:ö{ØžÏYíö‡Åñ{Cã_h{äOkòžß{-Ÿm»áÝÓºÚ¼L½sÖÛãÛÃÇ®=%²Y¦‡z¼<—‡¯ÍoV·¥¬çz‘IêßšÎõ·ZôÖÓ×$õhž8ý—®==o^¼+=f¯Y'z$øøzIáëÇ­x’cÒõ½zz½Qê~¯OO]êÝ»¹î;žîàê{žîÓµí;{{NÐíÐíí{S´>Wá}N›Ú±‡öÛIZ¨‹VµRV£‘…éÑÒÈG9wŠœ.SŠ“¨D»Ž"NC‹®"Žt9%+ª¢¦ b”Jf–’T"˜…¥™[JÕª­iE3P.pî;¸¤‡;¢îIäŽ.èŽrçAÈîêÛ+-kRK5elU(µZCRÑV¶ÔÕµi6$I¨ ÉJh­¶PUH+µem![mRV+e¥mŠª‘ª¤ÙT¥£4’°¢µm‚㻤¸)]wq ¤¤qp…!8¸à¢8¹@:¸¸ŽHè#‹¢$8îäL• L¬VVÅ*‰1EU Z[TŒ´¢›gORÀúW”/)y/ âíÓp#ëO[ë#cX`bOXzÂAÁ Hµ$Ä¡))!! I!G¬> ˆË¼×%¸B¡¨©Z”¨Z—ãk±+¬ Ô+k)”)JZZh j¥)¥¤¤jfh( Êe–×Àßg3'134ÌÈ^&fff*&òrrÈ•[µä¾ñ¾_¾_¿8` Ùç’vRV6T’s‚EdYEôÝÞËÝí軃Ü{ÛFæ|ûFÓÄ™MAÅHdNWBà 8¨ÊJ©â^ 8¸¦x¢_‘ô ЇD B=J(ô t£Ôž`:„ê’…N…N8Dñ âñ'‰|^.ÃÂ#Ÿ«©:¶ǧ:sÂæ¾x&¾rÍo1«QjÕ©Ôj5µž\M…––`Xcg›”²Ëë›Pº…Õ.Ý.·O¯¥ÔêºÞMG˜ñÛåòØ_KïPIÚ÷æï ÿOØÕ[FæåòÏܶ|ïì͘ª¢¯É°ÀëâØâž7[nÒ¶fûzV#vMŽž›êõxï«Áõxíã¶7n¶Ý°ë7‰¶ëá»Ü­Ê Ì%BT @Tµ5r‡+ Ô¡ÔQÔè*BY`j x±÷¼’PÎQ†{Í‚… n¥ƒCDK@¥P$¨P&¥æsç)Ï;3¹à@Îf3†|æzôéa¦ÑjÕ¨Bal·l·hµ E¢ÖØq*U©-s¡S“‘Hzdyž^(xž'¹b_·M•‰©Î¶ÒQÑØÚÒìË8èàyRj*"–fæE„K ÚȼO(<ð,¯H•ÓÝM&Ýv&ã‘)”%Nªx^Yj“!=¹áEŽžæ.Î7‹X…N‰I×›œËqYÙÖgfTá–wlÖ\ShÎÛD[6gYœknÁ£‹d¶ÛlÛ£%DDÑ<¼gºf’%§dvß¹xï-¹¨ì¦[‘Eæb¦¬ÖŒ¦é,‘‘1ó‘-¶­U…\•±².wbóÞÞϰyÙœ­ë<öÛ¼(™øq©>­º.³ÊaÒmbua6—I(®a‡&ÂC¢U2IhÍ6x­Í¶¬›3m¤›–Ø\,])«-µet&µr[mA¬ÖÙ,Ñ(œ¹\:T·=dë‘PÏOféähL–²\íÅ•º²ŽK:1Ó Q”k¥s­\®æÊBˆˆ…¦léukchPGû™¯©ÇÔêP礼Ìn7ñÝoÞáñ_Bøß[eð¿ÉÆwüAâ•>$Q÷ªuß-¶ì'Ò—å¤P´ÐŠÇWº²Û´Z幘› –‚⻦ê…Z"+ròÂìˆ TòY`CKke㵃#Šæº·v”PFa£ÛÙ·ŒÔ:C‰¨f=ÒÙ%O>9^žx<¯7®Óh÷hö-¿£u?R»…èôÜ#у‚hô ×К>c÷î÷±ZH÷È•ï#Þ“+{çÈËßg'Gïìsß<-^ú$¾·ùM¿ Þœ{Ûußu÷wÝ×ñßVÝóÁ #Èo#WƒR¼ GRs©°(9؆Á6À ƒ± ‰±6&Å6 ±~8lCc±:„:¡èŽ'K°ûßxïú¾{§FâåËr§G%nŠr¸ÖtÜ´è—K.‰]9'M-ÂéºWGC¤èånïw½ÂêãW®;Ë»ÇS‡Vpïqq8äã”áÇ ïo£·jm6í6›O|é÷ðìì{ÁìC°Àì{Ãåôú;ßþoŽýpmí¢•&ª‰E%(â".’téȤ@pJ…r 8Š$‡8ártIÜ¡ÁD$çN.tNœœ¨q ;©'9;º„Nî&‰iI%³RªU¶¡'$âé ¹.;Q+jŠ’‘µ+E«hˆ‹¤îîI ¢C¨«V VZf´À©’†€bT™B%iJ*›j¦(b™«mY’Ðâàp8å9ÊÄqÒq"Ru9ÎG\9ÑÁuDp”«$µ¥°©5*«VÌwWpQÝÑÑ\qÝ %#ILNÑ÷n£mÛu9Ìùó¹Ìû¨nŽèF±¾ ûÇàˆø4øˆ†+À^ Áy¼p•Èr—!È œÉrrLŸr8©â_qÜx€N88à€É2L¢&Éir rPá8DáxxNŒdp/Ht½&Í&ɰøy¹Î{\ç;ÍÏÎZ5š› ­–…†šÚÊÚÚ¸A+ À­ Ú´ë:ÊôbzG@h Ä.)yo%âóx.ݰ*:ðX‘6GW)NŽ2,ιp?øDcHÄß$¹råˇyð0H% @ P‡@=gS¡*Z‘¨ †4‚q'Bpóh3EecKA@d<žNGŒÆcq¸ÌaŒ8ÇŒ7ŒãJ‡d3€ž6“E¬æòo€—Æú_/…݃1š(³!dA;,ŒDQN IJ2`¿~îï$°ÓsÔÆ|g:œfÿ‹¹"œ(H0#†fields/data/RMelevation.rda0000644000175100001440000027037414762765721015422 0ustar hornikusersBZh91AY&SYþöªš¥ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿár?|õóµU‚+A˜Ì„ˆ˜Šm›m µ5‰³5›R" ´%–-´M5ªÆÔ¦­µ‰2k²S#c"¬Lµ›HDA#¢l¶Ybi™KfŠ‘BmY™Y6Õ›j…™QXOnç¾€H‚€‘% D ""¨( Ђ€@ )A@(@*’¡P R*Q€B)AR‘P (© ¤…)RlP©U¨ª•UU (PR”P*…ÞûEkm¡›35IjË&³e¡¶Û$¨FÅbm¦˜Ù­wÇCÙCib´ÃTa!#‚” •-K*[Bšhlb™ªÚÛ"k,– h!•´ ¨Y6Õ‚µ´)†ÀXÅjÛL€ °Åh3b„3fŒ‚6M²h•a4U³% e“"†BfÉ&šXÂÚ•F ¤+6RI†56M @e£LØ5S#m½ã^ZÕS 2l[FÍY´QbÔÖÆÒV̆ àGNDc+BF¶Ùe­d0†6Û ›EbÌÛ3m“­e‹1bÕ­¤eµ¬6 ÖS 6³0˜´È…¡[&¤Õ6M±ˆ4Õiw‡Tü4 hÓ@Ó@È€@ÓddÐhh !O£ú_±¿}QÃû7=û’çzžÃÞí·}ßwÝøiêWYe–Ye–Ye–Yb”¥)JR”¥8¥)JR”ò”¥)JR”©vÝ·mVí»nÛ¶í»nÛ»~„iú/¯/±}“¦¢ûNqçæI”FÛ+EKbÖªL¶(Ķ“F‹ƒø7ØÕ«õè}8åm·Á…ÏÜIߪgå©ÚêkæÑôů/ V^uZ©yè¿=Ku¨|êx>x?GýšŸQó$vé>ü©j©_R/³3EZ-àÌþR ‡Ð#èÑùàý%9»ôJý2½¯é*îEs¯¢[¼>á>à¿RYçåÌÿ4/ÑÌ“êÖ˜¿7-œ™Âøô¨òÏ„wmªxªŽÓ´Wj¦­Îê·*¨­&ŦM^Èòs®w;¥Ý\îìF:nNÎî*îvåÝÕä"ðOž%ÔévîåÆíí*Þ÷[6×ÚV®~Ÿ­µØÌ –JxÅs~6š6_´RŸÍÚ½ÍÞTîÅívœöƒ[=â%õØh~×<©õ×l‘ÌAÛ‹ŒY¶›4Û3mµèÄýe9Û©úáÿ´¯ËÛWº-¹M%µýù«ÄhŸ=J¯COB^…þßE>oÎùýµÒ¨þ ¶Ù¶fWßË>~ ½Ge¿_¹Ú÷{¼•`Ì,ѪÑfÚa´iΔ¯µ6¶®ŽÙöé*ýŽÕó=s§ãm\iµûY±ÿìU?Óãº.m<ºÀ¼S›>ަµ¶94ËB§ÚÅö…s´=mW:WtíÑisY´Ûfm6åCjº´iŠ¢¤‘*0lj,UlÅ–,É`®ÁSŠ+®)ë\¶•N$ºÐâ•¿£‰]XkÜUÁiô¨éƒ¢S^á}ÈrýLœ·KöùÙW¼îF…+ú%µq“ ­‘øÙ‰ÉxöÏC ^ãy«¾räîÕ™¶6 FI &¤„Ó  $„f¿/ûÔ@z[m¬Üpão $:^—¥ü/Âñÿ…é¾7Ò{h?„­¿Rçÿ9ÆÛ7åEW³þo*“Ê É£µ©é|ˆù)x’ØÚ¼ƒm¯/­±±ýqS¤‹¤®Ž>*Ná°v½bš.ØZƆ6ÆÑ›cEF5\ç-Ff_!¼GtGít] î<½†Kü*8Ú¸ÒÛíèÙ–×'¸Ú÷…Aõóë‡û‚ôúÔúxãŽ6ÉÎ6z)=î}ÿ$ŽÖ“¼T⣃aV)\˜ÜÆÑŒ,LÉŠ¹»ªáfÆ‚(a£SLÜîùÏð«WŸ©ô*qkݳo]%³Øþ§¸GY'fèÕ­³»n6¸¹`_ÑëªðÔ1Ìíñm Ï$:ê–|z«hn›òºù,ããä#°‡ †Ãtî\Š«‘®ÿä"ìá­—ÆJé“·NjUÚI®Ÿa\­n™<«Ý|`ºè˜Ž¾lM¸l¶uù«“ko®T—÷SØÊó\ˆçIÐU´1ZN1Wc·ü*^ÊWÂä5VΙVÎ-Oqšw1|¬²Ýr´Û[‹Áß6Brýž» ¼j¼>,œdÂî;q«“fè¶áŸVªËëú^Ô“¶m%ËŠº!,[sa^_Å}FÖßqjù9X|™sU¯öûwRú½Îœ–m„üt]¾1.5~FâœfÛýÔª¹oÛÞ<›Kã|n8£…å¶mðê¥xNè—jFÊÉe°XÞ. ®•]jMÍr»2ÌY…˜§MÓ„‡ +ÇÔÜ’çËbšœ*s*榾¹e§wR~Z<¼Ái•fY˜^^+&c354þÛG°R.?¢èº.Ë¿ïûýËvõýlùDòÃëEÌâÃåyšYZ_‚¸ñßüéè|OÐݯi•R«Òª†5sZmW!E¹°»®Eݺ5îî±b¡$Q±L6Иi#I˜†kÒ^Ù}]ª¾f£Uwôã6[fלюLÏê‡.ë ³«’Õú:º«UÕ‡TVÍMNQÛd›ZߗÆœlûh•ö vé¿´t‰;>:(·D.Š.„9;Bv™]ÕL •™¶Å­–èWC_½#ãÅ÷éµNsbl·q¾?$läÜ6›pÛâQ«º9~÷HjµÕìWgjrž‡9©òìú;”/š9œfm4«vË<‰ßR·.úówÄÔõÂvj^/z©ù™È­¯Þí¥¶o aÎG.îă}ÔŸQæ"'1íÿ·Ü+LVÙ.^Ò0º­‚jÛ”‘+š«–Ü“í9žÏùþGùj½U6OŽÛcã¸Ü7ÿœ~]@æ¶m‡*Ûcäír³í!Gç_ ñŠüþàŽ¥W$Ÿ#2¯7þp¥Ñô}áìü~×Ç÷ü´Ûëë_\¯+ÀyŸ‹[|ØZ¯¹j*(ØS3$™‹»tGnîs×[÷¼”¯¯¡òdu25/ûͭ“m¼.ˆŠÛ¶>ðÞNÝî_Ñ¿ÒÚ­·n—JŽÚ‹žK¶•t©vÒ®˜»Y6rÙ Ùž"—OWˆ–Ô›Z­¨¶ü=ßÞñTu”xVÛVð\k¶íÿÚ÷=Â_û]Þ­õUíëWb·µDe¼'w$ô+üSÓkUàRåbfÀãj¬±Ñ¶‘¹rÜ·-ÍÚ#kš®Kåk–®K^§àm«õ:í†g]¦ÛiðömÍ>ª¤?üûñ?Úþo÷ÎÆ¥Ø y~366YšÝ9=èCøÓ»ôt:]¿¼`s)hlmq¸á¦ŠÍTmrÇ"æÎ\¤¬4m&5wt‹E0 @Ò=†ÕûaG?.Qx3ž¼]’.Ë3cv\8Ümv[Ž8m¿GÙANš1ÓϦxÇßÞãÓzoMô:®ÆW¶G¶§gÉ›\qÃvn Gá»*;!nʧelvVv[ŒÎ¦U9¤®ð #œä© ßþ¯û¿¼Eõz¼!L&¯5­³‡¹U&»ü:Ôq…^è\j^y3Y“±~µøWZ+y¥u¢¹ºJ«x§Z<½R¯!>çÕÅÑŽÙîÚ6£¿6‹µÚ¥m¦eQ­ÝÝÍrårÙ´ØÖÍf¶‡y+Ç­WCêèïÓÑ ¢^®§:žAàhvyôyý4®6lÛ°f½+mäÔW˜Öz¾ãR¦‡]¦W]±™³®o\~üàýŸÎÿ_gË#·Um¥Mµ¦´D°m˜Å©0ÅF“ ‘“1CÀlÛ¯‘é*2®¿j\Pì6›¥ã|*èú>Áðw­ôR¿V‘ô°Ìô´Ç¥öb©òò@ðÕã×Dè^¿–ß+¿ÁŒ¢À(ØÚm³m‘k ¨ÔH¨Ôi“CÉ!A±‹n,±{/¥úœ2¯5Z£^K l̯3½ ¿'oú€¿WÖø¼o¢®è0V=<¼¬Í+LhÆÆØ…2«À}êñ×5äøÖ€='ôñ#¶m´ñUÆm™…EI¢ €C1%Š4 2‰( Âipàëyöߴר¯&ö(ÏûŸñkmWûäâó±z”N©u•]\]_ãVÒâlc3“M™³•¦ån5çˆ^´Žï³£€£Ãì%[Bm*mc±õ;Apªq»I\÷«¨¡Õ)ò¨gÓ'W§Që÷U· [»*©ÞUi}^“„Ù.6mmIj*I±nhE±Z6×}Ñäé|€<ÜžoȆ§›lí^ló°RùôaW@BÆ£GÐýˆªsõÏ×kØt½ÜŸ1/Ì‘ü5>£Ùo•Àã6¼/vÜnJÅ'çÑùððb¹‚s¾|W GPªù ÿÏïAÛ%6°Úm[^lÄã#aB #Ä\åpŠæâuµÎÙŠîê뮑A¢„Q[¡Œ÷z«ïâôƒrýo—3 ÔR¿4-3àË,Ʀ͜­·‚¤¯×RuÊû Û.¹{Þ3†”Ÿ³¬JÖ%÷5•5‘øJ|uUôQ辶3k2êöÆ·Ý^¹mUÜÒ4åm­³2k6ͥѫÃ.Ž<ä] ¡¹×K^‡‹l^z™çËÏešf>šrT’é:N“¯ñG¢Q÷Ò¿Ú õp{H½ ½ = {ä{^uO9æá•yÙŒôR¥þÿïæu"õt»ñ‹4[&ÙVC«jÓZ-(-Ìk\Û¢Ú»Ñú'Óÿ ë­W›¶¥[ß—ü«w]‹ 0EEIKÄî¢ßzˆžI¶º×&wQçÇõªuÈuÝv³®Üm¶:)Qy/wÅϼjñ·süûä.Ò—qÚÚHÅD’cF h‘’€D×êµøV·Ôí[ßënoæø l$­ÎòmðÊî¿Y°W8ä§«ªîv[Øô ¸Jã-“ǵ¸Ï­ü¨ßKö¿Ûð¾'YÕHú†ãŠØ°Û¬¶ÙmÉÇYÆ|P'Éæÿ¶ÄåDlMl·ªk]$Öºwmr7& »»(cSª£¡:¬›Q«àhÏ{džËî¾}$wÎ{åR~mGRN5Ÿ+޵ɯß+†gJ—/ê9}×ß{퇾û{I\V{j,¼Å- ®$œbw·wØNá[#e­¢ÀSl[œ·;®;¸Ò‹•Nànw:àTanî¡wr)(Q—wù¶·Öm¬ùËkî4}šê$ø´=P³ŸŽª>)Z“ÅIísmÆuFmŽ{goÁP¼=´CÈo%íÒ¹:|º«²5/Æüí*­‘êèí(÷—Öªé/Ó¾L]½5ݪ¹é6wå|'ʆwAîv½U}_¶|°ÏšßA+â*d¿±:ÆÜg“~$ü™ïäùAøø‡¾—©ã³žójÕ½ßÕzíVÞ ­é‰‘Ðú!ÀÔÙ[dðå}º›+½Î¶Y•§ðz¯¹Øùª®Ìy¸ÌË1æÜ÷E'GG@':§9+Õ«±åU®«r“ÕI¾e‚qRq¬Ùq©³[Yyò÷üyÑ:äÔ‹Uaz]Ç †~nn5u4¼¡{:ï.·­ëu¿êr¯Ý Ï̪ú-LwV¦i™kuÊ¢;ï¾ü¸]MN¬œfƺ»\œ6|´Cø|ÿ7+»”åTáG¨i[¦ºY0”ÊF‹H°kv~‡è=ýª÷ÿoI¥Ì=ü‹k~Ä’tt‡Q÷JȽŠ^:]¶‡Ž/ÑûB>¢^`=ZLG-Fâ«mÏn8âr5½.Þ !zØžF>Η.lW#:꜊¶2n®µUÉÛ¨½jWªÒµv¢-–ÙhØÕclm¨I±µq9ÚÝݸ¹UÕ´mÃ2DK ‰µêEкqt÷r¥ãühºŸöËøDßfO¶Ú¸ã‰·ã{FÌÍ›¼Å:¥tÿÍþT»\µïö×[ïT¼.Q\E}ìòsÔ÷ì¶Õ¯Éöm_µDFƦ“ ‚D–d ³foû“®ªøÍ­§€¨ëkøªŠóþÏû¿w÷>ïúžÃç|¥_(^ëkjmMm³a³“Ž8N³r޲êÜç>'¿[ž:ÐuÑù:ÎopÜfÝsùÒWKÁ\*Ô5 Н”¢µÍDA! ~‡ Ôx¥O:9.•<Õ])uÊuÕ]n³d´VcÒje—¥–>º# «Ÿ—¶.ïøûø9aw y¶ÍŸ_²ýéJ½wøyÏîöä¹fÒ¢cV*‘QQ`U˜š0JA@ý'ŸmWëëSÐ×-Ê(Ù‹zã»ì[“wð—Kÿ?=+þÝ`:ªTT¯³+ä Ö¥¿¨«¼¿b~2^dq¡òÕòö}Æã8ó|uR{æ¥t¢ù]¼<Ø{ÄyµWpò.æNÌœ5O.áO„ªîQÕo}WÎUì¨|ÿ gèÅó>X·¤ÆÛM¦Öj™µ¼yÎùŸÔåJw81Km¬’2cF$3"R,ˆib¯™•|-'g;=5–ÖÆléßú¥'zôkБ¾¸6[ZNMÉœ6Ñðm¹\«óI':Ußú¿ª—:\ìçk…GûPìv¶>6fv;‡ÙظÎ}"ºwî%d^*Ýj¸ª…Xk«†ÕÎm‹Y–"ÀˆÁbI£L0i2PIšè@ùÿ€çË·õÂëÁˆëêmpÖ½Þ–ÌÌr[]¯Ê¥ÙÒ¯5æ¼×Ø{ÿïûWUÖwΚ#®ØØåvÖgN¤?úø2ž w»“œ9ÿNçyO¸C*åm±iû|FdØ,(Æ·…ÍD.ìJ½&<‡æ5m·ÆV¯,j®â,˜™$HÁÎÅrÇwlQÒ}UK]E³Ê)lê®V-™W3*ôô÷õ-|{å?6Ü'¾±™e—…éz\‚ƒñj®o÷äEùwjwtr)|ÿ‹×‡OKÞÉÆd{®7¶¹3uÜq¸qÊãz„‹û>.æØ<*8ÂÚÁm¨Ú¤¤”kvÚå‚ú§úÄøO‡œC®ÓVë¸Öë·Œzý¿’u~*ë*byÂq³­ÓÇ8ÙnGŽˆ_;¡ æŠrTÆÂÌŲÌÙ³lb&ؤ³F¤M%‘ e'Ðko[}ž†YMÿ+>Œô?rAÉÊä‡ü9"õiÎJ<Â}@úÙöoƒæ|Ëû}`:º§¶ÚGY¦“gòG¯ïÿÏ÷•Y]ÂîøfÚÙ…®Ì̳.y™Ÿ¶©/%/Ë%÷¯,:߇ê~"¶õ·ËZÈÖ¦ªÜ˜FlÌÙ{9ñhÝDŸ­/Œ«ü_&¥Ö„ëR÷ËŒÚÌÔãu¼{UQwyÔ‹ÒA·ÓZóÉóX‡˜î/åíµ··òûÛ{oû?Û~/µ¤¹šnÍNÜ— /¿ï*ké{È­z{Ä\½7¢o¥`c1fLcË*BQL©€3+c9àybû€}m~ÛЯ£Õ(ùQum¤âêðÛ6¹6unW²+ίeUç§±ƒ¦¾´¯$ö2<ûؓؑÒÁþPlêâæ£ï#y°}È—¨µU¿oûðþï^a­šÙmy–«­¹´+O}ÆW„½óê¤S÷6øÔ”ÝbßIhM$Ò2e™\ÔrŠêÜ­ÝÖcmÛ]16¢ RJ35{e;1|ß”/—SÐAòà÷4¾]l¾G[mõú›mžÙžùj¡ïÐþÕö5æ}uX^½W='3Õpqɹ.98àßè*«›U·çÃÎK™—0Zó[k\Ÿ¦ éU“T«M´BÚü¥~vi‚Jð€‘stÈk1®¶«•±šï@ì©u2vIÙ[;+pã²þX…é"§¸ÿ»óû8¿¨ «åý›if[LÈîÝ¢×Èvª»N`il˜Ú6lÛȹÌΊ’&掮»¹1Ë›šä±Šd™è}¡÷>çÜûŸCð>e.øG.oZ¶\Ÿ,ù–ùýÊ“üŸáG®ƒHùª·|þÄŽqÁÃŒÛ>zå©w£Ðè*sêzz×—Vm¨ÀÖ5šÅŒ¶–ÒØÚ—3m¯«Sž/Ýñ‘ã#Æ]äçÏ / >†¶Ñô-ŸCm·—”tÿ—×ö®÷Eó¤~üY©­‡Ï|ð¾…VrÔ‹ºÿŸî~çòävêMI›6 ‚PQXac!Ja›ð5WÅÖõ­’Zý2ýQšgÉ”—÷8´¯†LE˜–#4Ái­µrm³g^å}¸%Úhýÿ±ªôõ^ ¦¿_¯âèõeqo²ô¡ûH·³ór™fôy³vqâQŒO¯>§¿ø\Å]à*®­»m][ Q•;±l#TRæÜ®iâ×#[_?®1Ä?IçO=žªÏB–f3̵/5!ö:(÷ÕW«ùÐ÷ôgÃS¬S>l]ùVqwât½—ôü’BOZ«¢+ÔÄú锣¨#ê’u |ª_ÖG±å)תû£¯Û[i½õ¦v5R¿ò£Àî¥ö(ùáú5=nゃ%`a¶a±¶¥´ñZáÜáwn£D.mÍHW-0a‰1H$šîêïB/AKJv$q¦ƒnËKk[rm¸ã—ÈâãR•O!Ò…/‚NÁºþM» ¦šiiŸ¾}~,¹z®^µåË.Y\m:WÏÖß 6׫óÏ"ëzŹ»Ë§8_c½?–¾»ßrª®ã'zÇ1Æ­˜&¤2“`H…^›m¯qQçŠóÁç•Ô‹­®³SŽ8µÖ³Ž8¸ã†ëƒÑwµÙô»=®×Ãâ¶¾~ûìüôzÁ]¸Ó3,­ÃÌÔÍ4Ü=T¢¿Cý_£ÛjëÕ†Ê=„Ęa/îí·ô¶Ûy¤`ךÌαkúR£Ïÿ?®ëj²®¶qªÑuÛMŸ r§§–ŠO·ëdõG[¦ÆÑµ6ÖìÙÖí³ùäÝsR¸áVl6K…6µÊj‘‚ÐP»»bÇ.®w]ÝÙÝ]ΣÝifæÜ¤†nîÔn”Ù›=|_'>Wy¨çÔûe:ö¥\|v"æêìœ:ò­‚ºñs«…ßÒóK¥‘æ§ØÊékóT;y)8km³m^-1¦c5/Ë(]ú9îù.{ý}ü«*ùÿôþOø?'ª+îTÞ=†¦Í=žmcÚ:­ÞT“ÑýÿwPåµ³m+ž+M•µ³f6¶)èý£üQT§w¨â×c“lÙÕqúT*éú©^LËV^gUǺ%?ô-uK[SZªäËÀáãS’W½©¹–õl­Fj#IIIÊÝ·d‚3!!—¿ªž-¾Óf®gpÝd—h”%N‘:1ÝaÑBºÚôßÞöª¾T¾Vu;=ó—_÷íkkÌþõ;m½öÚóm¹#Í\ïÇ ©NÏòÿNoZ©Þu¶QÄ\E"6±– E›—A£aÝÝÝ×W9rîîš*L“&‰LÆ)‰±·›QÜJwƒaà6ÙçÑgŽ?FQ9¿Sòˆø6©µ¼Í_x¼4«˜ÈÞ'7o¼ùÄSšN²+‹£L.+š²§/".}Lõj¹®kšðü>WÃðzj€·{LMvùS° ÞË,ù’v(ÍzºŽš•À£]+æR» ågÀ©Ù¥p“å©Ù‡1^êù„ísW«©ÄÓMµ†ÛÔ“ce¬ @!¥1L4†P ý þ“Oü~Æ?)Ÿó#r¸É{ѱÿgÛv~hÌ2È<îý[Tµq{Ÿãã¥ïÇ®­ç ¿Ý=È…’ƒwÿÛgп3Õÿ9öù×ûfwŒçýù¿­.Ø ÿ ¢ 5­$>×”UQNÇóÛ¥†¡òx{Ç‚£sÿ¼™Þz oùÁý»üYÿŸþû{t5~oóÿ?ýºE~‰$H‘v‘"D‰$H‘"D‰$H¹‘"ö"D‰$^äH‘"D‹Ô‰$H‘"D‰$H‘"Eý"ÀD‰$H¿ª$H‘"D‰$H©))))?í%'_¨ê:âê:Íê:Ž£¨ê:Ùê:Ž£¨ê:Ž£¨û‡à!ÚÅüûQ=¹·¼lU _¹aßmÑá®Mþ=µªüz«õÑøµÁ¥ÆÃë©úÄý¾ÏÕýÿúÿ/wý½ï;×ð_æü<¯/Óû>Ô2<‘`JžÉOôÙP‰®I_@õ·^DbŸ­R; ›€ˆU_E˜XMÈF#ÿ„·Ì‚  dž`ÆH˜(OHÁq‚gÑ£]ƒ’4¯ý9€Áv 'ÿ•”TÖQ÷±¦o Û|~.>ív½¨ž¹ù¦þâÕ½%ûP­u1Njðñ“,våÆ˜ÀÏ?/Ö#Ɉü™8dI(P¥½|cü)ú;ô~5­)kšñ¤49UˆC…~Å«ì;„¢`˜ÉúK%££%Ô#ýÒøô‘ÿºpc¸n¾>cÆ,{×âÕùܽm{gÜGÿ·ù활Ýÿãšj–%Åú2£Y „2ApÝÊÿ*½à_…¨4Ïæ–UÅÃä†|%5Qj*+ãð·Y³Á^ÿúW4Á%ÿíàx1›±õG+ÚórÞ\óxØ5àu~]Ɇô‡ÿ&òá{™ŸíelMcK|Ñ_ÿÝ ‹z7l‡Ö’[WÝ/ÉTàÔÙèÚngP‡tW¯ÐO: R)!æ/+…>ÿþ×âÊk“ ÜÌìEä8}ÿ—õ\-,ÁÂÿ ?§Û½©O}\,s'mGFå„ÙÛ©×?›ó/®KêäÍ—‡{‡}ïCÈðæóh3¡Û‘·à΂—0Mù˵?ÔFþ’ÜkÐ~[㛡S.~Åç«fz¹²4ß #1%á}e4Ý=Êpäû¸÷Á+ü!Ùä\÷–>ÿ^¨,æÔäP9Ðã²z£iÞ®®IßÙ•F¸“ù™À ÝÉ[~(FÂ’Grò@opUÎFrnTëä± ËMFæ<þc6Cæ“Gd&~OK™âW²fœÛC º>µ©èCx%.EZë7‚Û\ô5£Ä`tò[¯²A‰JÿrÊ=V y?qö¦Yòe¾m„û6›YmüumøêWcëßEÄÎ ß«{üŸsýÿ†ÎÊÕâ1:ÍLø{v[?a<Õ]‹W±*Úm ÔIµ½õ%ðÛ§³ù€œKªê5œ‚þ×k{µkâ‘<¡ÈƸz÷^ñ–7åK›s“aÍýÝôr)7Oÿ<»û:ùø¿Ÿ'‡†`2²äçnS¢ß3˜¡nàÝVÿMÎ,Q_aácY#8 =Xïf€öskpW+Õ]rØLÀÉ7"G›•Ns5¶¹Ïq"aG£²lp7ÐPlßÎCPÛÊÛ?ú¡(ç„fæÕ&½*pb:z­¢1™r*œa•†gØÎJø;÷áþ¢<ámì_àÉ÷þG‡Ù9ÁUw$—w»3§÷æ»_“Ó±jšÿ.®&3w¹ö{Mø\šn:ÓŸa2ÏÔ£vh«%7µ®÷B\as/=h™XAÆŸ[gÌ)WËß û Ï GbÅŽÚΰѮ¹U^oÌú‹›óQì^’"ù$m§(r•:f`³1'žûFåô”b€&Ä +EA€#ýÑ_  ÜœªJÍXÜaTëYXR§snTÜM%“4Á…ÃÞÑ'/ ‹,áhä3k4g:†M…#Ï’%ŠÓ9Óÿg¿þTì×í嚆×þ²®ÆÎFn];£(’·b¾ÝaX¼L8Ôóìwú¤‡p9[Õ“Ò—:LÇŒ"*Eâc²nB¼‘ÓÎs˜Mk%¬‰Í´ƒ•k4À§¦ØUù }å´À¦onÆæf÷-^¿^c²Õ‡È|¸ã"œO°–T虋iHõµ®ÔqP‡£¶Þ;ˆùnøýF²Sm;GY·Üv/›-ÚÓùçiðºö®ãØôÐÒ¾ªÿ'äpú…·í«H1fÚvB‘Þ8ŸŒU‹« TÕú×8 Ùux°€]|îD×Ï ¾tÏ¿&4äÙ­©· ôÿ®ô Ó©ïêwtIbK4-1Ÿà¡áé͆Ç·Þ†ô§§³ø˜³Ó³/Zº¬ÝË~"Ø£þ/Mß’ð=†Z*§Fqóò¶0CëÄí§õæOLûì@†`¿Ô½GfŽÌœS<+OÆ|P'Z ³Áè«y×xýeM߃ÖÒNIåèVš2ÍÌ6Ï»uÁŒ+èX¹÷뱟²aícoÂO‹w³G5ÍY´àÙÖâÊŒ‡šÌûËû|íDÖëÌcÈ.ÜGmСGF¸)çÝŸÙ…_“Â’âΗ1ô4›¡–üöt Þ?:¸ÔÈ ¼ÎA–R·jËÓ˾¯J\´Ì½ûcß >¤¯.z£âÌiêx³Ëϵn@¼¸UÈï¶ôŽž…ÉS¨Ži'%ëG”ãxVeç§™¤Ýž÷m:$¯¡=`òðçߥ¹†Àö¸åõ¦QKƒ…+Ù4·R¥9ÝÁW÷ -6ù*iº^Qà†÷; ¯o‹²T•ßðìñ©f³Ñ3¹&#î‡r„·•\]r%œ÷ÞZ¥k{¾|JôbÁŠ’Ø¬|ê$6Û>ÇÇ›:o3,ì>lKw†&šMÄ[¶,Æ×9Èæ­HYÒŠ6G–vÌÊ´L‰k׌~Ž0»ÏÍ8¯'±=6·1¯ip‹3ú`צ¾er6¢ËØÂ[¸áÕeûåñÒ_§b³=Îþøò@î:˜¤ã‹•\fÊkã„§…«û^ÂüÀãMž4 wµ¦‘ê¬1:;Ýy¾Ï5Ò:ňѧ{›M:ß´X63K[®FÏAåÉ}íTߌ³Ytoãg™]s"Àð/רîHÃÒ¨¢Ó8ñX•”bØl¸û‘VQ+l Iö£~2¤f®áNíY~幯Z±4œ÷n ¼‚2ƒÅVW`"d\óoP–$ŒAÊ©Š]åßH+×Á“VŒ ððÀW©k(Ûl̵`¶`I³\„[vW³¶¶]b+:„<Ü¢†A0ÿ³xÚÓÔ¢†AÝ<ÞlcÜ¡ÜäŠ'¸®4*ŸYQuć@8aqçóM&•±WZÐb{9÷ÝU›¹hÌúcåÓ~]¼ü\Ä®lplÜóÔé ÜÊâN^Þä{ábšƒ–ñ¬ÜgVƒtlÑu7Ì2Ñú7çC–5³Ó(›Ó©oUÊíï?!õ¬ÀŸí¿ü%Ó˱ÎÜ#œDvs;RŽP˜õL¨úø¹R9(î­Y'pG>˧ÕŬåvà¼gSn ~[žl’IL®}ìÑØ¨Ç©õnUU5tkÙ¹É0Žç“–,†}üè•(sQ~ ÔÕ™›®òmò1¢¬°7åÛ‘­8<8õ.Wôµœó¥±KoB„Ö]¾ø GÈ"¡<Ï»râúï?›Žø¸ëßïe¨ó^[”;Xãtós¹ÅwrŸœÅ’áÅN¸ÉqÌ8ÙÞ9SvÿµŽ5™]Âê»z5à’Ö(ËÔ²è(äAËÁ<ðALMF^ëJG'NnÅ—kœ(žW*MÊT®y˜ß–n vjºéù&Ù¤úvxº°ƒ #»ä‚˜…vë9“¹rýÄÓò”0ç °@Z¸áÉ ˆì.ÖN Èg–”šgt WÃãÞé(í¢J|w³ë9u’…n˜Š‡âì3 û ©–B`ÇPYž¬ŠãXªSfòÁŒ–BÏŽno,òB¯Rón€@W3 ³Åö‹ê©4QK=ÓÚ•^n3…”Ê¿Uòë]ä0¡Š”æòkbôp3=y¸âZÖ7–vnê5“X…ä-‹—þù¹.†ã&P–yàS¸-ž|1À<%ÒsüùEº¬R¡9 ê¶={ïe o©Y!GôwèNzмԂµç…J 1Y0óßÙtønÖ²õê©_ ×´Z€'{H Ð¼Pª‘ƒÉË;ÀÅà™æ¶mš é‚þØa[J‰šn¸‚hX­™·"Á*QHdáM~Û±1{_ðò꿇•ƒ?¼Ž;‹`'Bl ŸR]g¿7lÍ-s_bÙso5ãjéË8í«F@&å”<”ËSÊõÅí'y‡ï˜U£4Ö˜Á³‘cîÎÓÐ÷’6äÀk•#¸@î2l‘oíµM…{2í³çåìÞÞ¸kí…MÇ)c>2÷FAckI$âÒ5ÑÜà“F77pËÔÂP<¬¹’épåÆñ—BŠ o€³ f7ùm¾¦œŠ7­ùN+Ýoóyšy ™nÜ‹a$z«Ð¹ÕŠŠ¡ˆO¡´ð›ÆÃ›–ï9Êœ¦ëõ êßoeÛ+Ó‘##jô=¥™œRAÉß™þ™ ™ðò‹³‡®˜.Q~Côà]‘/pÃ/9ÿLŠâuû`[Ç©6ú“º£.·Tvü¹.â×TAb(ºkÉãŸi÷ººÓÞðøXr&à…—#gÀkˆë³[°/"(þâìîZå‡ÐÆ‡Í wzRªÜرãc¾`7utÌþUåqšî55Z½ýiñË êéCÃe¦¤Òãyb"„ÈpÁrUd[Ç;=‰,L; ZÌÖ™g öØù`¾ysœmgŠY‚Ṵ̀0#Sµ¾˜äi;’ñ¿Í²Ûµ_ºai2®´+ u—‰-pù&¥¤R{‘-ãŽ]kŒ­a ñÛŠuì5ÂxcÁb)&ßDõWN: Â’@V£ÕŠž<ú55®8šÕ±dAQ`¶¹¤®™§J|ç&c­é'4\,ŠÌV¾ó²–M¡LüÜü‹ç_¶î ÚŠ^*ô»Ù¾d!?€@BiÞÞoŒaÑ2§xõÑuãÄvŠÓÅîÔÁ†Ø†«¬\*ió:)SÞâÄÞÖC*™VQ8jˆ(òá¬Ã¶â¼ýŽÿcÊß><©™–:Û\a”+‘[™²û‰F@M{‡k‡ˆø×³#¤Ã’'qR‡Q•gc28s P±3ô_–ïo¼0;€–’K{4lðÐÛ{¢gH»¼¸c„™Bl^ï¹/{÷vèk, wÆ#w”]ŒÛõ©€ó³9Ë¥'ÿ)ÇÇÒïÊÔ@MË›c‹¯.uWŒj¼ÐÛ}F” é[ "¡Fai‘‹üG]µ!¯‡y÷+¬ÝçÑŠf•HšàrÉ ºhjD,qÆÙ ]D<}WÆ¢™!ê ÕœiLƒÕé“:hÝåâìÏLLÓ\Ì7™ðHy(Q;È»q V::Ý,ÐB>ý¾¹˜¿Ú~dúHñ0˜°p ñ3k\‘nàGfnNfq n6öóXؼÊIxˆaÊù"Fê0•÷ S£&až¸TJ)šz!‘SN2ûk#ª œ¡èãàj”ò6í0¤è=žäÛ‹»‘8zktÖArlnÒìg4ʹ_MؤÌÄï)Úéñݪ=«#)[/×¢¹…þ„®6%Ù{7©Šw¡)dÂKP`âjçw+òß½Ó‰6ŨGøñ»in´|Î=WGL<†j‡¨ˆdÁƒ Ò¼hÊ‹Û[GLîÏMìÓiñç¸íè-Nµtlå4°‹7AƒoýpÁ&ï0 þÛ 9ïˆn»u\6Æ3ÎëHrröP5N"nîjxXh¡ÌEÊ/ò›l5†õvÐCŽìŸì§Ë®æËÄP:Óïóy9¯çT¢ d>p¨LÒ3¹]·£óÞùy†ÊAYgŒ·ZÀ`"7–ôLfª~öÛò¾¢ì«Ñ?=³¿z­fi‹…@¿±žœ‡p2”S†É^^Ã+ñ;t ŒIíi&Ï¢ô­EBù9´ånX§–•XŒ×F77¯EÁ­´r•GF‹9MµäUÂa!:ì\ Þ3¡¶ÓvÔÑ—7§Ç6~‘x±vœÎ0Ä+Ž0ôÜ€÷2øßÑÍãê|æ<%¿ÊÈÇJ˱ýÌö£r®lª`Ï9ÿþÚàópe9w-„Ô•©äÇ…® +’܈®¦iƒ×æÌ9ÃýƒÌÞ{Þx8Ž‚ò ¡c|GSã-.¡}†ŒDG¬QÁØâÓ÷£‰vlæGŸžáÌ÷›®}ÎvÈ ¼¬E¨µÈ¯ÑMÂå¦qçÍ…<ØÕ½ jxÀ¤TDл[CJ/eö»ǼÊg¶[b^,×àm³Ç)‚£Ja^q¿ÝDÊ3åeý_{ÒH†Œw,]C!<­W™.'(Q3Ô!æHhQ™OR*¥›'Ë¿› ë·f[p/¶üx?ä|þãävd þ€ ulPú=Ïñw<³Øq×äÛ™(n6F‹—çĆ:áÔoÖO"ñùê†ã–l¤â(Ÿë(®•å·äÓ‡C)ät˜qU3á]¥äTÙOlÙŠH Q§\ÿ Í~'¨×ÍØØÄüŒ®ß•éîI}'íÐXÌ|·) ½·_Π33s¾õjST†±°ÕéÄ^1+3¡«þз¿ŠtÓmw‚uÅš¤/0ã¾rXùÕ,Ä8˾gN]Â_!×ßÀƒp)qú`½1dm3Å,afÓÊS‰7"žFd£æ|ÎÊ+,ŽÅ° œºáâàñÐVtN%¼±CYÌ—¹7l„çŠ6ÎA²!ùÅ©å'‚!jÔ"jÅ^fÓ aF6ÓA¨›ÄÞ†Ð{ÜÅëÿ´XÂ?ÂD9”4æÚA¼6 öv9}ÄI-ûʵ¼É‡)·Ië骳énà³¾,Éñª†…ušìÐiÃ…"àÀÑÚ5A=È?p‚Á”ðÞe·•Áä1£Q8|²T…“ì´’¬§ìÒJCz\—ò¾ýq™æg\Q]]ênËmýrFžÌoöb:ڼǧ–îÛ§CD_…x“£r:çÕ9Ÿ­o›{>7ãÆß‹×mP˧ p÷:–Ëêpá¸É™o=±K±Vüd_0ÓÓ/¯hhÙÈhÑvIg!ø.,Ëô S°ªî ÉÔž4â¿ÿ\3FâÅí„K\`–g€rJ“ÿ¼ÛçÌÕw–X24uËBÂA%0Õ¦S$yÅèéÁ§Ô·²×\€¡'`uü’žydÅóþº€ÿèÇnmâU¨ïð/š°¡·õ¶ZÄø²èw_®ö\/ë?Þýþæ«b¬é§Zg9zÌ;9&óÜM½W;i¯„,µmŸTkä¾ ¼’zvubd$.ߘÍì?¬•ë˜ ‡:ÿy¦ë‡÷H‹¾,ñZÁ¡<÷•Ãí>±éÕøbÅÑ™§%#g{­Ÿ•ZËìqÅÍ"¾¿-oI\ì-|YSùýF¶ßGq?æhª°šïÜÎòz-rއ¨«–EÊUÍß88¨}cäÿBXxÐá»wfHñ”þí%‡†˜h¼¸I©D ‘p-½.&Ë™ÅlþÑq4ØýÜl4,x¤GPNøu]œöæH”1›û>Ħ ìÚ°PÉî|æë[;ØgW‰¶eÍèsä#'‘üQÍpâFn¢ŽZŽ9@žC•2û±^VtÁèH·§šBqëè0øÞT“£ð”[–zÓäŇ•H£SªèÜt T;”ÒÙÓç5•w /hLÓq%5ÌnE–G°|˜½gº,»í¥{“£RrU:Ö6à¼,e²åǻșÏ8ä*ê~¢dÀ3Ë3ÐZª~*]pP¸äœÏà {†ãâ¾$öc}0§¼Æ¬Çг L÷ßTÕ)Ÿ3J½¤dAec39ùGá¹ûŸ!LLgô™>VÚì=*\eLÉb¿iIÊj´ÅJL~»8â5‹ïž°¼£äUG}kÕ•Ö}ZNw"ÔÿçDž¸v ƒ,Ϥ' (xñ?sP[=Ð~˜´X¿ß¤þM/bB>£­e™ü;˳"uý•jñ¡‹ô.…5uo²›[+ü¹7æ?oìi¿ŒëÐÍæå±r_ŒÊr„4ûÌ%%ÒåîZ†ÚOþíöÒ‚ÎlJá‰tÅ?×E¨YÇû‘§ïù÷û8ab¤æ{…Û[¢3³YhÂ>FPTÚ—S0Åkª s²dbÊ—´@M+ÎIùïw•¸Áä¾ä,|™ø$'ýªÔ~s(¶<7çý–$‹³§®®‹Nû)Þj¼^C 8Êz8•¸½ÌXVjr ·ü´¯Œ#¶µŒ,*)É-G·ò¨+¦ž$nܵ÷%"ª •‡ð¯ïÂ@ÚâD'$ƒìǹ&V;ÄÃHÔ©÷ba>þ×é 0άRÛ­ËŒ3Êíúì_xZ”F=N³URÊb¶³ÃÜ2º?n÷~ÔÜ:EÙM§8ÂÇÅ!‚]£,oUóƒ·ã«%:õ5?77ÅÎkM\K÷W48zZwL-ÄyïOmìÈ,S|)u$\*åÂdI· k~꛳ÖJ¸¼n{‚XÓÍ~Ðí$Nï-Öõ$‹ ;íÿê~ײމØÈãå’;SjÒØ€¸2vÿ°ùæ¼}Õç?GM+M t–B£qôL]û¨ÓF¯'¨*š‰¾‡²»|8Ú+Áä9© £ÚžjWvÐä.ÝzKºó”â^óׯ"Õ€\üBP‹ú•Ce†£Ó1âòY÷TœÊV.Kî8tQs”s§Öˆø„ô`zÔ'=§ s×uÐõßënRýÓZõ‘U[YI™¤á6<6 ì}LÔp‡ÿ36¡Ø¯ê¨ðàÏUÔ_/Çû8@4ó²f$”$õé‘B¹³W êQhwxßiÛŽ:hÂÉ׳œåÝn(Ÿßucš‰sßÏ5ª%Üf†Z:yõXù©kVjÑ6cK‚r"J#]-KR:åÈ~5…ÍÿB½)晦Ï$v\¶ùûˆóϼKà…P+6šDõ‹ô3E’æH35Ãp ã\dO:<ûMÑ*°Öü1i«#7+dòNX2öSf«ª1ÎPá"8|ãUH­vë÷¨ŽOsû2kçì¹sØP€«M2W5ËfcÌ(ñS¨ÄÖ‹Iy’áW-$T Iõ(¡åĆö%×Ñ \]£E/³ys¦¾—`ÀD’P"o·ò?Ë-ÕÚÅ‘¶é?·kŒÛÁÜd6j$Ž`»­Ü&qMI9 ¿5ÖuøRBÞÝÞ73=h/ÅÖ3'ÀÁ¸ô3;h˜àŸ@÷Ç)ØŒfXpò”ÂSJ|(ÅÈ…¡Éfò} ,LÓ¦èt¥KLYjŠ Ü €^%°I²MÌÑUgf²Ë(k72Ç+q¥ bDJ®ec<ÔŽLÔ3»sEÇ ´W3-Æá¬?ãflfí@3Ÿ{¶ö8H§˜»‘Æ#BóXÎJ¼|;ë»sB~_ê Ñ6bUÙÁÄýÌD%XÝq]‡œm3¦!h”Q8¤Uð(|1¶ªw5”ðCµ$s!µ+¬<ì¥Û¦ŒòÙwÛ6ž—ƒ”Í1Òu-ý¾žM™Åî@î1ßÊí aÛèŽ'õ6kÌë+æz}ûÇuPÃX C±ÇûËSܧŽÜ·p~,jAÕ׉ã.Ü_tÞ¨¸±2îÀu3¨o,0õe“¡åYE;Ú]¹ÅM;Bµ,[ÚOÁv)N|÷m-¹TÜÚ&k{Ggn7/sõscK¡o<•˜jÄrw¼G£fkÀRå~Q®ëlìŒÚ‰ÏÄÞ¼;þ‡¼æ;tÝ2jq/†X)bÛ#Œø]NÿûðØgk7œvÏJ×m.çá6’kòŽ2\#[ÆZÖI¡qZ˜T—ÕÂØkµÄ¢ÁVmëÒV²ŽÓS˜>…ÉTálêé8Ä%„;Ëï0Y½ }|¹ÈjŽŽÕáKD½"z·ÞLröæÆ58ûæM„r,ŽÉçÓ ×ûÙÉXØžY»(¢wxé6ŒÒà¤2P®;˜L;”ê7a?mŠÑ68ÒRwJj³°Âs t›|&à+³Ñ ¤H\ :Õ-v„Õ(X¤¨WÀ{/ó.X¸ Þ]$7©0 žÑoŠ-HðÑÀ5•P› ëÓ]g6XPãâc#%™ªLÃ~¥m¥ƒRåÄç”Ñ#Œwo7G›âdò¨†t_1Bõ>ˆK,´ÆzéäËKUÂäàÖ*ÓÊë(£Y¦Z—¾ŸEþɪazSËõȸ[ Ä&•ß2⬆Y7¹Üt¶ÊW7yE²ÆÃ±ÉÖ‚Š8}kŠ=„f‚Ì9‘§5ŒQÅX£n,+½ÂãC•3ã0ÙÄEµ«„çÐ=ds²Ûê.ÊbY QL* “—Ò† È*˜f¿‚«Œ(æÙ‚7ЩFàrO^¹\‡‰èïÍ=Y„Ñæ–<_;#EVY/a :RT õ%5(WåUcRÉH‘^z©˜zà‹xËé>÷ZèZ Z©iûÝ 0yÎG)DÛBXoê W)$ aÙä«xÇOÀ¢A”a°¯–éùBrpøq^æl³®ÝÜå!õ³•kU’VÕ"”6¤OM [µjÙu†ñˆÇÂÇ&óÎ^¢8tTYwu˜–µø2, $À¨¬Ø­‹ ïÆSŸP:ó¶cÐpaCŒwøJzÿÕ¨m¯ä1Œù°¦p‚D›Kˆ ³8­è¥´qŒgËys–Äs."ñ² Ò­ãdYî>÷¡hPK–P¨©pCÃk²µ3òÆkTidÝÕWIô¦¾*[¥ç˜¿ÎÍvÅÅve°y!É×~ÉmWznÕT02Š’#Kcm@xÇKÄhïHç‘mæÐ‘çšÒœûMÛDÍF–'¡ÕtNžøßy‹¶^hYKĉŒºÚ-;ií&vT@8ü‚Ï]Dî¼SU.#IÆ–áR¥ :‡F®Ýƒ5 X›CÙmyK/îÒ™ˆW÷¯5"ù¯JqQ ¸øÎOÊ’æyVaÅ+Dï’Qìógid#Þ²îÏQÅl(2ˆF½ø`Ï©ó©ÉÈZÕÏ/ ›ž=Á‚Ó!Ïd±hª;•>Ìé ßN^î¾…X>œ÷/&›àTÓ&P@‹ØêÐHo}UÅa÷¼Ÿ]0ÐXјtCàe­Ò `Mï& ºŸÇÖšquã“ý~2Ï;šî¢š(xÌ`a”9U6S«ÆÃÄdxîg7"àênñÕQ1ùô>§V¯ºl|¸–ª%®6a&NTMá €UJBR—æŸR¼~$”jÎÆt8jÇÑ8L%ÜúÅ„ÃRéDâ:pH+ØŸ6º$iH0ÎãÍA1æx‰¡n¡J„\«˜ªçP=.Á£êQ³˜i+¸HñÚä»¶tæºBÚNë¦&›ð„à]1c K¦Ákª=ïÊñÄä|N‚Za:ÆbK؇ 㕽“Yµ'Hãâ±e";yžæêLøyeI“d:7hè£b]1D¹]34mšrWòÍhª„Üt€ýæ|­:F[#&œb Tf,Ò“üYW®ê«]%rn;ȰþÔ˜ ”¸—1ë°¤Éuðàëí޳¼‰ª…ôÇMÌ*hÎáQbdw¹!R÷G9·s:JK2ØÐí#LK>B‚G5ËL˜ŒQòÉWïXÔÀ¼çeÛ÷±&F“½¡³Ó¸ÖcÌL¸AÊ ÌßþÞ\ä¡e#¼;®šà<äFrHap“s?zÔøä}x« 9'1÷Z8ú›ìê9›{«§I«¿#à7Ò€•dö¦ä™§QË¿UÈ·ƒRþFíjÌÒÓÉh‘^À¦pœÌû­ñ`Ò ›šSø2-È®£Ña‚›7:*ž%ñwsh¥ê‹–f¸ŒœµÁÄoÄŽü6Lo0îŠnX%Ð$G†®vÀA¿‚€Ýu<‡¶ƒ¦dŽKл4o6ÄH‘VŒÒ ˜oÀH³:zÃo›V½Ö[ýߦî Ó*Ô-,DÀ5ãýÁçrGv/^üËâü—Ú¸ó±(š\w\Lž“´£ ª)Ù…#<Â;€éÀ@ßÓXÂÞ¤é<‰ÚVqº?N<§Rm¨&9ÙLSQ™-ÜÊ!¼nÿJ¬ÊyûÓ.Säù7fJw Få±oŠ}ÞD·—Ã`ÜXNªöŽß5ÚL>)üÎwÈE׌ð2ëº)&ùWb†líI¹4‚6~ äM!M˜Ñ!È`%Õ|qþ‰KÝ[³ Ö]ÈB ã—ºÊÜ6@l›M6SR¶š(Âÿ†Ù¢òHª 9î®z C½a/×ì2¨.Ôö"š“ÉËÐT̪“t×?ž•õÖé k³âæ­)nå]]Ügh%F¶º–%`t©ÖÒ(å®Ö²\ó§‹B7´‰Çš xþ¨ÛAñ -Ыæ×™ÈŒ¸†š€ž3±Œ êÑ2!‡#*t`XÍ1YùUìezpuø½XLêAs2($D(@ aÝyÕ+L”g Ç~ÐFx*âp¯¦¢¥ôvÿXÖï;æ4ØW¡E›5V”"xˆô\“Ð80}‡›ÒÑÀ\ðʼnFC‡Äÿä{ë±wŽ_¸äÓhI±ûÃÍËMÎX\¢Hãä²NÓð-‰nïÓsÌzå¥V;;xßÊ^ë˾š1D›¦ãë†ÚÏ€3>&Æê€ui"IdW!Å"ÃÓ¾¶®_ηî¹/zo•Ú*kˆf2&WzùÙù2,héc“ewºð§BÖ¯cÒ=ð{‹ÙÐÄ;f£Ÿ:’ÉM´¦½[rêí½0´]Õ:ÝËr½ŽÑ žÒ†"oåÌTü]HUñ´fã¹ìC.¼ÈßÌíp±w×bXq‡ØóÒψ•e ¤ dü˹^àÌÒî<£ÈlTÕs¯i@»hd‰8,H2@€-S¸©ôÔê%ô@MœŸp«*ud8Ï.´Zý>A«âõ“ˆ3Ã× :™WH±T~öòyŽ›÷…}ë“‚5_1*ØþRv322t/+†9@Þ g¸ÿ¥hs6Mª]Á&«(o¾\õÿ«ïÒ¿‹“ó̈ÂAËAù>e4½wÆÏþ<`cê©ê¢Õ)X¿ åg^ÐFŒJï™¶aÅÅEY.gÙ­+â1L‚¥H‚0"ü”rq`³Ùò‹ÝrA,{! ž¼^ wýjØw­Êžm#‡rq}pùÕ]—ô§FsùXÞŸ(öšá†w"ûUk!øJkñM{¶yZ´Â–k·ÑBx9ü)IÝ«,,Ü>ŠŒ‘5ST›4V?×½´ì×ñcÂÔ8ò:›«ÔgK^’,™P!ÿ`§ì5jè§­;*ƒÍ‹×þ²Þ>ñœ…ŸÙàNXî¾|ó«(Tta8Ð^3='…?J‹|Ó„œwÛM¨LãÐô–¦žT ±C– fÔT¯¡Ä‚Øw’ãU*&õ>"etKàUŠt°škL°á™áEt ¢Ha@˜ÌM*(¯T²,0™±Í ¹z²õ}ðþB_“qëОo»ÎçpAF¡ wgšL¥q›AôZ¿!qÕYÌBg¬k¸;¸õ=`¥fñúÉˬîÙüðîHÖ±IøddÖü‚É©Œ›k®R£_UÏÀc ÿ…õÕUÃÕQÓ±*zsâS¬z¡?0|K|ôU­9•^ÏpŒâ8oŒÅPü¥±³¨Ö?Qf)<6¦!À‹47ì]®ìŸï›Á;j÷N"“ŽS6)«ßÏÍ“)Å23­›Ç)'%ßè#åhVæøÙdÈ72ŽöDƒhà5ÍQü}õ6ï‘øÁa\Tê™®ø-ÄŽsz.Vl!ÔŒwÔã:TÜæÝu±µÂ…ã±7"‘r–½ª:yU­…Z‡×ú„ᬊ]Ää_U¨•¾,WmµgP‰!A†˜*¡ãs· F„ùÁp‰qi%Ü©¡“PŽ÷BÎ{ð©Î«@YêN*(QßÇM¼r‘Οüß«õµ´-/É÷ZцQÖÊl9NŒRη¬¡‰Lð‘ dPù‹È®àµD"ÚœYl]¨¬›‡á·À¸V./šªýÜcI}‘g9¶Zj„xÐö¾³ÅyCÃ$?ˆ¢TYp4e"/¶“ëꉜÁN ›Ä\ÈsÍ}ÛP˜ýq¡‡ÄÇIý,P7ü&ºúž§y#ÂcÀD&?Ù åî"=‚üD1}YOÉqnÄcá¡à3˜r 辶˜»îq‰uo-ÅWLð™à‘îÃŒøÇGó½©l§P;¦#´Šr-és#†‚‰O˯|$&L}¢·:ŸP#üàÒÞÒs™…ÊÎHo£Õ2‹¤×òFÒYæÁ}ɸ€$FàgŽ# ‘ì_¡«ÓJ¦Ã ˜ßôJaþœèÆ eØÎÿY5v±ÃäØÄ0Þp?Ç¢û¾ÃL¢ößg ?óS-»¢f)tÍë`HùU¢Žm›6”Ǽ-§rþs8 ãý ¯¨ÓÖŠc1ÒÊ˨4 :<‚öÍ8 û™&kØCí3€Šý£½+}Ętø·´Ÿ‡,øñjsf¸z^·‰uü?#¹6Î¥ÄÎÓLûZˆq`þ"†޳JŽþW™7]¯+|l©†¦ŒüØIém¼æ?èHð·Ë¦AòrO?•îŸÜ…µžÊ=°½{“EÌíM!Iˆ‚¶|ƒ˜›i=k±#Á/¿ D?êášqÿ…} ú^î YØÎ‹Ç yÚ¹˜•´aÑ\þ?mÌXÐEÙ½dón Û÷Ñ´fƒ·Oæ~wij0ºÖ%vã»pîõkhA—ØÑ™êƒÕ$uX&ó{×rŸã“µUŒ˜¨á]Œ¨ö6ÝÃ.ÄŒÁ¬ ÜbÌ=IÐ{zP×iOýðù.…ÿ˜¢0a‰Õhó¸è¸Ú8â$ü¬ðhv³¡¦¡šbßñ-s™¿ûî#j(°.ŸÇ¯Ñ~×g~/ÎÕ=O;¥ÌõÓkEuúB-ñщ>LRËý~ÞÿÅ; Ðø3ýîŒu oŒK®3wMMå±SÒ›á 9—û±Ùº>fßOUMàkšÃ#í~àŒ<ÍäˆzýÅ÷©¬£ª˜5î„jÄ%(àRàÛ§SiøoüX›ÿ‹R®aLˆce·A…&ªÜwE0ÜK„ãQ–dP•^±.Ä2å÷ûŽ÷ª"]+Éæ{²›×„s°ˆŽg…÷¯ÇÅ>^–e±¶õ<”oX<3ö ›sü§ hÝ‘…u–³qIÂJFµ‡äÅãÿ~2#tb8neA$ÖBÓ oÞc?|òæIdoã›oŠŠA”¢éD²ï&¶Q¤`p´gQ ËÓ.ó§C Þ *•ÜÊ(±÷xDH‡¡œ¡ÿ5“²Â=g±D«jÞ5”0‚Ré½f<³'âTÅ£Á$üþG9 ̤ž ëˆr´j ÆrRÊÙé©cñ.V7Ç‹qœ+^ ,ž´L;+Î?3 †(–2Uò[À'Zëó)5‚‰¦›#HJ$ø˜KrÐf Ìy'Þ÷Mú ÒHGb»κâdÔT ž£M@Õ™(âñfÞâ°öPBø\¢–ÑÒ[p[„ë–½»ÒÄMȸÂcÀÔ$;ueE4ÿ3*©0BUn7šâ4ˆá›˜ä1¸«‡¤_ï5B’6•²§ËÎáS!Ûýæ«À Ð%vè¡ËB ý­CtÓÔÔ¶Ê †y}D#¨ØÔÿÉDNE …Id¥ ‹9—Fz0eÊ>èÅ5£›â"õ8ÑAf*y©1þŽBR6ŒLq5Ç烇´§€éð¦&±?X]Ê•i­6š¤á UûÄÍLh0k½ù‡~šO­d@ä Ž¨d—ÄßÊÓFñ§ƒA…ØTKñ/Z4ò!í~jÃÕAáˆ,s™š”ýügY">D ¾%]Eæ ä=™PTz÷9¼¾„d‹Âœ¼¹kL+µ‚ Ö‚š‡›þ²ÂD© u9Œ„” ]ƒPÿ°­-߆ãU60ªûK¦Õ1G™3a½ÇÈsÝŸ©h”`þ’”l(F‰#w{Sˆy?¯ƒê…Y9¤ñ‡¸ø 0Ö„• Lh¼7¸—˾yÝ8 1Ó Ö!  “årXQÊ\ºøüF© \ -œÿ!M™YDDÜŇÓWû¸¡8— ]VJ²ö°™©Ç]dp/|è—¼Q³Âv2 Ða(‰ëöÿà ۋþ+ÏH ™2R뿾 Œý1(2H²hH’Èœø©:ƒD=b”&…1`>kÙëîb„ Ðk¼Ò¡XG,䈀Öy‘ =€'O½ºøî ŽÑýššªq!þ£ÄF²!¸fS‡¸RrU{ɧü!%â/OÐýä..lNó´a¹eÊ1z‘€%8fœæTŽ4ƒó&êÝÇÒ›¦Ò&a^ f–fIäsžzåø7½³?ÚêU¸¬~ýóNÁþ4«DÉÿ¡W¡Yíö¥ý˜qJª/„ú¦VëˆÚÃõ§„رDñ‡2èz\øßLfÑ¡-wÈq×[,GÑìFX’p]³–CðèÝúê›MÐÕù¼úŒO—þdGb-=cÎC¬®$„2R* 4ö»ŽzF2ßTG‰UXn†§Cu·åõ6OËú¯\(Ú]˼Xà_Öau{*-¶112Ç2˜´©:à 'ƒº´â×å…Ò½!z¢Â¦OÊsrH™ôÈŸ×ëöñCfEì‰øb ­]n­äø`/qûðØËMñÕ`z]h\Eþ7RhASÿƒtªÈ)Ý$N éU6 ªè†›1Ì>Ú9²Ü¡å]8⇪ÑÀÂKzô?SÈyþu¥9-G˜ÝõŸ¡CçiDRÚdÊŒœê!f¯Ü$¶V4 :ÕµgL*¾—ˆä”ï„ìq&m\z“q5àþZH¸¹¤fEFC’aŸ7 hñÅ™ˆOåIæ]«Æpå+êURyóDHn‹E " ¢«× ¤yÚ†¿©V³ï̳Ê=ø×i\i?Ìàaö[‹Fâ×EÞé–H&ÐûÂÒ‡E¨?°ÉµÝˤ¸ÑT¡n3bX#Ök*µþÍHr|wPM¾õ/¸°¯3uh¨Ê?ðàÄÏÂy€€Àâ¤)ë±{ìŽpç88ËÿøãR”U=„w’0ø4·ò¨ÁÛ2ÎDÀ˜œªO­.8ÄŒÝBSK¾§à†“úÈcòac>þDQÒ <‚]u™#|,;dR˜wÊžuÝuÏÚ]S›g…Õ0Ü"»ïä\ ä($²“ H,àAp&µõÓ$ÅÊUôúY²vs Dn4Ϭѡ1Å âl‡¢ã¦[@ç /®ˆM…õz+""„åàî Ž,rç0«) ÔÀ>f@ë¸Ëÿ@åûÎmˆ”çs™D %çhÉDçQ r¥aŠ%€ÔŸj(@šˆÀ:æAÎ"¸sn£îæî?d_WÞìëY× `\Œ kˆ÷}†kÏÔQç1kÄÊ9¸‹0ðÿ Çnô‰xÙ°òçbÀ\µœtcÿÙ×´™Ãh¸%ÕÌn15ŽazÞÝÞOÛpÕ1Sˆ¹¿ô¡ ÉRïj,óèÓþkÀ•—ü>’2oÙ}÷JeõFßøü1=|·c„¦I$8„B» ¿ªò€ô*à~p~¢ë€iÞ…ƒ3;¤Á0¯‘þ8ø¾WàtÓ*ÁVRƒ¶¤Æ¼7U›Oû Å €Ã2œgîñ˜u‰nÛòw:´X¾l8hF;#š|@>i=I—VF^à1XPéõéŸçr«sx˜ŠsßЃë|1µtaxÝb:R:üçÃfçó+†Z@fÐÐüÓ`õZ|t w,KEж9}ÿÛó^}ðä…¶–Ë|gǘënЋ±téwãJy` æ¸ÒK1M:@ÑèÂoqÖPw/Ú©|0i6}·~ì˜óè5pc œk û_k–aJ¹¦‘–ÑU¶RC:Ij#߈z£øH@¶„œŠ¦ÌÞu¼ F€kÆÕ+B§ËŒI³ßUx¿÷L?ÈÊþÙ‘«#xÆýƒK¤6 §[j~Z™A ¼,FŠrˆ_ë]íðÍ:ã>ëÆø—Vö)s&žøÐî‘õ¡ ¿ "„N×QÿTÌÀ|+ Ï0YÞ‹ ¢´§ Š=ˆ#ÝõýÁ¶ªÞQ:¨š«¾åõ¦l\*¼ª~’’tr©ñpýú_Pyòeë7Ù°üï– u«FË‹PÚÒ6cA s£'ó¿×Åv¨ÙпãmmE©Ímÿßä7Q“@E-ø>’Ç~ß*_ >ÀóAR⎠iÝ6îø6‹ûÛÿƒ)"ùæ²ü¼-·)ÂÞ6‚ó®¬fܵšì&#õs8·uéÍB ­[ËL¢^äÍ]÷VžJoÖHϘ– ƒµ4>ã×ß”³0(4z>CM ù>MH![Ê]#]x• ~²çÿçå˜×!÷T‹ÿ8æÂ­×MÐe\™ÌC­î(ÙµÊq¶°ï˜óB ÿkoksìUý¯P–U8AúxŒÖw‡ˆ…£°ï%÷o#CUÞ=0 uj4Ù1å”íô>¦_†{-ÝÑý)ˆ!§èÛvˆçÿÓw—É¿Ríu+ÿ²~jÁ£ }-Ñ+ë9 Wüæ?OïûÜùÿnÞkåˆîœ¹_éŒÔa†ÏµñFIWDaMfŒfÉóþwéÍ·ðVaHWÇaŽ­èÝ÷ÎÖ[ŸÈ¡JX((Ž}yÑýs ØÑ­pºZ)‹ˆÿÅõøŒó×…òÛ{^šwê†ÐW^ÿÚ‚Û`΂aÆ*ØËÑXÙÄ™_ByŽì5€²ÓÁ.ï'Ü*§¥?=õæô-;ù^'hI§Ú™ÝGÞçø–®i¼P“­o€`; ‹Û_>ÍÉö¹ï* zŸŽô±ÎOšÂIQ}i1¨ ‰¯üNSßü¶PþËÅ Q†´W=ÎÇi;k£ç4Û­[\ź³žßWUN+{ñ¾Ó{UŸÒY«¿Ñu;~ËŠ(Ö~˜ýûuû-ú]cÌÚ#±v¬mØ~†S.ùˆ‹ò^Jb™G ²@2Þ?ã±ôOP¿ÿ—­1ùp Q…!ß³»ü@ÅøgàòË¿¹ÀJ—qÙ(8ãoA¿ùƒ!Ÿ…thE@à…c…}/Yì]GŽøÞ?åí‹ç´b}ŒolaqóТÈÚ³ æuœ%ž‘A(â}*£T(©¾Ú:Í•U‰˜åˆ—y:?¯áýùRBO(0Ù^´$•‘°ÎàõKWò=ò##ü§4þ(l¥‡Ã"ÝgoÃùß`<7?Ü'}ï{O”PkÙþ—aKXUy—ƒ ù Ì0„Ô{æý>ÍŸÜ“µq©5˜Å+!ˆ‘ä+l\ r/WÛ%|ä>ðøöQüWØÍ5ò.;ð îmÙ/ÿ7›,›îÿzê`¤¶[ÅûÍâ/B4`õ|‘£˨ÅÅ„Ûy‘WeùÎ!ÈMÛ† 4`+È® m£‡Xqz?ŒìŸô½~MŸôDk»’7âÿ”ã݄͌9³×<ñX Ëô›íµ%°|¿l‹=RÿãcVøpÿã^cäw½èJl„Ë!*4£Û]‚/ìÅôÜe z§üޜڽ0ÏÏ­FC~O·¦¨N©ÈM¶7•E3« b|W¼ïÞåaºþ1¨Ñ=·,Uþ#B¨=ÜýïÂðô|Õ%†´FÓ|™QŽ2–ð'Q¤:o¾{Wż ŒXˆ)}8p­ô¦ûD½k%ðæË Ó¦ ñ®Ú³o}íÆ?’–;‘Q¶#EºÝyµQ8÷õ“G´09š“Ïç^—]:LAœÊ£öîx:5žä„ÆÑõ2’oŸðÀˆâ’\y@°«2aêÀ >èë Ö>?/Ô…;Í÷+±ÌÔ“A„^=1ÖqÙ à÷owøþÅÞÏ’êþìwJ>ÿŸ^­†aþúiKö>Ázj9úÑG‰ÆgûÊéq#Ø@Û8}ô/›” à{ëþGÑü{&”îʳj¼3æâ\`|ý*F+‰CöWý?oü·¾Ý?àúíõk‰Ø4(\P”|¼2 í ÜÔDÉú~¿TžÂ®é'ÏGµý7CÍîf(gÞ° „ÂD#]Ä (÷bøèM¼ ×T}M~›Æü…h‰µ(ÙG(ôÝAo3£æÞ·¡¥¦VÛœŸTGͽìhxÍQöÞWæOáîGè¿õÿ\õïR÷ ùn_ßffxȸTìÒ‹ûã@ÿËÃ9>þéÛúv@þ;s§A¯Fr†<Ááu¡Ç$zŠ‹¨G¯h¸j4™"Ä–i†É8n l¦Î€hí™ £h,¤}´Ÿëx¥ú_KŸ|ž¯ƒÕm‡Eæâzí•‚qDD?Ü©+ ã©#ŽíA^f¼¬°ñ£åˆxŸ'±å<Èm]4Xo´Dqåþ ¼P &÷”4 -"h…A®Ù3Òë•U INî$ÛTf]j¬bQÌnôu|ª¿·úߟö3árí0Â(ÿ ÒÁÊI;3ÇŽ£Ýj‡YD}ûüŸo2k1«ŸÞö·hO9Zr¯ž¶F`Œ÷24t¨*ýPS2f²žï_DùŸynÎå¿ýcMd? ÈMŒÂó÷föpQôi˜×¹­¸/È’Â8Õ†N;…ˤ‘i­6ÖGZ71£I–Í­O6)¨q«\Jb«f7kº–3¹ÉC¡†ÉÀ™±sÿËþ«xõy¨Í•­S"°-½aÀ8÷|óÒ~z¡3¾Ñ_„¿ ÿæIîtzßNî›×žòà‹Påk*@À2)VWð­¤âýFÙœ¾´ºþ‡ÑÃ…Uœ{ðªE¯3â£.ñì÷5,ö…]aõ³^òOΟ r1YR\½ô4dÙ+¼äÊð_ûs˺oMzSlCù·#›"{™ÄŸhõϵ/×n îê[2´ (óm­I1ã¾kþèSºÑw×@+h#hVëÏxû¼ë==TÖŸÖ›5±xr}ó‘§“çÆEÏfs¤61ßÇH«>Ðó¹áåwñP§#Œü¼æ™±Z*´Ì`¼9(ñ€ñµ5ÝÂ]ÿùeb/ÊÄæóÒÁ_Ýo\°iõþÜùxÑfæô=Bduü0Î vY8:Cc¿·gà åù;å{$ÓÄ'rËüQñüâÎaÓƒ ¿° kT±BŠµÞ»2´(¬M…Ã<êÅ€Æl• ›¹vj¸¨CÍ%KT€VŽÎ²l%Á@ ¿#;¼\´äE‡!€•Æ¢úX+Ü/@àä÷ ŒÎòõn»"~€æw§j¨ø¹ÅLèlåýïÀu·Bd,oêû%W<¡Ü·§/brÀ`A„·ª¿¿ãmM—§"¤1À].50"€FãþWÏ6ÈŽ3ïñ“rPS °% Ÿ`⣤›uëˆK"Y§pHûÇ<ÔR+ÕQëN6Í`(Ì€rƒ"G@6䆀,÷/H–Z~YŸ Ó» ÿo¸3;®ü¿4¹÷C¹ Ó‡xƒˆ.ƵMÿ¯Õ¯äýÔ~»SâÍéùÏQlî @ú©Ü÷ €ã¾$ô*§ƒæþûc…¥»º?ÛëæŽ6ù}›ºþ ´|¥ÉðÚW7?‡ßz3àʯAê°‡ ­Î7åè•I#Ýì͸›%¢GÃ[\ÉØ0ƒ?:XJGñ/(0JÛÌ'5˜Ö)Ä*€%LE?(™ð*‚uŸI̳°^¶™¸šœV!?ãì ªDªâM8æîæ[-ÅòŽKÞxÌõe½Éˆ! ¸£aëÊÓo¸Ì!ç–“øo›«ÚÕpfbóÀ»{ôq«—FÌöÞ±/¿w“÷Poì²§võ®|ŸƒÃäÄ€àà”ÐÄѺ.ž•ãøCŒ³vqNƒKRT¹)ä¯eå3/›lS"¼1zL¿î[ç™nH(ýP½Õ{לýÚ§Ô:ÕØƒl{稱•ˆÝpŒ^9'V+¦¨cp#¯ ÛF[±3„æ®ã5«½ZâüB©DlŒ2Do]à{ÖÓîeè»â ¿£®gšåôµÆ>¹»ÖÛÂf¤«K©Ÿ2Z_Å¿}숛ީˆNDóѨ”/¿G‚OµuãRÏÇPsWòû–¦çµûN^ýïúö¾³|%»jƒ ðLÌ2NÓªAI21¿éÌßî{³_ݧON_&Ç©#3<ÔŠCFr$Ø6žËºÜêÉœ5¤ÓËÍë#Ï9›-&K‘|SIp%‹h†¡gšË×ñÒËTÝå=‡KË»¸èZšrü¿WéBF§û—{9vìëÊ‹06šŸ•³Þp×çÜîúGµ •÷ëâEÀlRåÔb¹ GÊ˯7Uz÷ àó¶)ü{ëMŽDÆ×ðSE8£ñßöúXû-?âþ|ÿ½d¯Ã±'ñpÐp,ŒFð3ü!õhVŽ@] jV‰47)0±^J_,Œ….ÇÂ7„ÔW%¢EÅpå9’)E@²â'óêÎ3¯ð”5’eJœ$ð¾¡Û&QOÆÊ?)ðžw;7×<Ó.0 ]ÙqÍÒ=µ­4ÜÔ¤Þd3ÖCV`’33‘j¼†^(#8 ÁáΆÿ±ÈŽ[v‚«/*¢^õ7ÍR#&Ü>ÑûþçÏøû À¦ŸÅ½nÍsÜÕH»™Î÷·ÒÞÅ@2›xnݽ›Ð×›#ç¾Ã/oìN¡0úg×EĴɃï›õ?eÈï.Æ¢Õ¥jÐÀká© £ @€³ækèÛ\‚Šòò‡—'X±ó¢ëµt-ˆç*ˆ;œÈPñÓ‡Uw¬Ô½-ëz¸è€À“zh@àèeMlÉ~³¼Y#o`~ò´ÑöJù}Ó HðÈ’ôB†"ä`š¶E"&ô£Èù Í6ÕÇx¹š³éO‹•ñá#»Šx‰ 2`l\¾+äuuªæèç9xøÎ#ø:N•¶~á”ÀG‰WÛ×áÚ¶N_€ž¦×ûYÿf;³xhôÑNÊYð–{Ç:¶ƒÀ¨Ðoßô„ K¿Eµ;–¿Ž™ƒø:¦ÊIöûU ô{àñE—o!«öÓôÝÕl÷üuiF7ü{nªV¸”u{-/—?P}c3^H¸åG«[ºÜ|]—i©¸NBëÛ¥68ižäÕ~Ÿ»rA'¾ –µò‡Qõ÷y3)ŽÍD=0×Ý=f²©Á½ê'>¤ݸVI>"\«3AµUd!ú£TºB:Êwj1Fà 4òŸú;ZÚ`öš ¾Ã¬[“äNäŠÇìƒî‘»­c²ªŽ–\&iEçV“Dóe$O·ÌüÚü¬©¯'Éÿ?¯Ñ]¡6‘!Ÿ=œ9aŽvY:põugãN0¾ÔÌì¸To‹٤ˌËbé3‰¢‡¯ü–ƒßÌÓ;`eÅÁ\HÀ˜tZ¡aÇ2à]P\¼ k4ûäPß÷Ÿ7Åý9"e]I,z“añnÆ8¥näß lBËùeæ”ä]Ì“†ÌjÈ.Ÿ,Õ(‡{6î½^z~wRv(îÓc€!ooäµQ˜+™ãFNŠ&ÃÁAY>Ò^WM¶‰¢æë53t3â—µª J1ñ‚K³E¶”è„L:I[å]râf„\Ë+!- –£þ„6žqþ*VÙ >M™í;²@ÃIa„0EœNqÈð‚6Àse¡™"(Š‚ÜyÓ­—z´‘ƒãì]±Üàl†EÔ°> AÜtŸf,Žîã†{$ •4;XÆ)D¥˜míóœS¥¨½hâ|ûÅOwM7oLé§X>`“ІRy°h"P@zfu«5ˆN!f…°&4ƒò Ü!¢(Òuû4V™¦Bc GELàÝ~@.\wÄé ÉW!ׇD‹¬¹":›uJçÆÈ`Ò’è:IÓ¶IYÒL|QÂÈ\?R6¬ï²`ÚL^òž˜ú` \^©ñ]Ƽ@vlèóå$[¡Aá§¥¥WPÍ™2š€¿SlØg£^?r(éÄ82éP/WåP0ªŒÙ‹|©]$u.-“7GƈåÉq', ¡¤€Ï¤õ¬€°KzcGKoUÊ”WIÌŒì2ñ…vÙ:0€á±±Q•ö Ó $ýkeZkV-–RFëÖiØ 1pv‘2‡`-åñ.‡ƒG؃bé‚òÎÓ›?¬€åPáé‚@""Hcz©è‰¢œžpÕmJ|\K QUË“¬,î⎱]þ®·î±)¼ªùªxÎ?ác>÷sÀõmz3kè°p!Gu¶”®¦ªéÕD—„— “pœa,ÔqvÆ*R¨j$X#Æ…aAòJ•5ìrV/7GÔRmn¼X¿¤ùÚ4aQ¹y=Â{ðþõ·¾Õ»¥w^~ûÄ Nþø½×s¨aО2h¼uXH·1pRß7(\—eÓ¸w)h#†VIŸtêŠõ‚ ôKz̨Îy,õòèP‰"EÒ^q»Z€Ât¡IUB¯ô/ÒÓ_q rƒÃH-€vЊNÈQq;›1s<„¹û|ÓÞd¸µˆ×çd¦@` ó™¼í£0ø–˜ n=;׈0fœòãü‘'ÃFžý‘„ÎkœU€ch§ š4pÙœÚCú)hÒÃ~©d«ÃkPÁ‡<¸Ççß6}aýFáîVûà )Óã9ÏVò9£EÁxº+—=ÀD6x$"݉©œ éÓâ—[sCúœ.‚LF‡×°W9Ìžq~d1R•—ÝÕ¾²¼7·þL‹ÓÝâAÖ˜Ñ~7o…Ãõ‰UÍ ðÁÌ/Aш…W}Û¥Gè±E)Ü5ùÆVm\Å–[ÖE†¹¼³(NR!yøD'û­S=%ðñFæiAJ¨b–@A-Ñ ¨öWÊçߌñ*ëo¿ZX<7#.d«t-Áø'Å!¤t'NÝp!n€ò¦UêŠcBìYfÁ›<È)z Iì])­îpÄ{¯‚ú´}î-h!FˆÊk•?Gi‹ñ€ ×N6^ÆáE6äg¶|’ùÓ¡Oô¿Ðí¶‰dõ$bZ€Dû¥!Þ*4)¡€#ÂfáD #KéGÖkéÖ(lªýqóX®—=j®.W xð€á1F V¨Ð5Iüft>D'*¸0<¨’á餢ØÌK"Y@$º©‚ÿç?p¶WU-¢¯†äVùxšfæõGGŠÄ ×¶þ9QºïÔ¬tþ×äcRÁb ™ž†#£R§®d(·"°Íça‡"4ª|´DnôFë#S4®<´k`iô r1ìØ} M<Þs‹¶j~–AØ#líA‘ Tƒ 'ZAjÝYGU ÕÍ„ù.æ € ›ry†D1Ü5i-­‚L£¸:òK†VÓZ&` Ð$Ðk•€>Œ};Å% O\Mr¹õ¦üÝ»YôkÙ$‰[¢Ñ–Éì” á«<÷¥„V·Qü°XYÚÇ$³AJì~y¯Í<%Õ¤CÇ• =óõò/_ŠN:æÜÌdšMÍW¹Xe)žó¥üô$dM äËZïq=h)UÆñ¶¾Ï©Ê†ër¾Tƶ(–Ö‹†N™˜áñÄÑ®s§Z;rã”°I©ä,-dkÙ°I5üBò„á*µrŬ“„¡è;øÐ5!oœ¨`òc"ûYªCÇöd`‡½{¦xþœjû}i£ü}õ9~,œ?SÒóEõ2!U ‹8A`U?BF1_Šk±ð Ù/ç9Òú7b¸ù7róšõ Ãi–€4¢,1©Áð³ ]z`ËŠ‚§¡Í¨Dj¡[%pá[ÑR¨’:ýD¬†ü®ò ¼j0 ˆ  YÇH<ÖUB)½ØJ3ÁŒ44ÿ¬óùNçÖý ¥E%„Vd•J8҄Þ¹hµ€(@¸ËÂþòŒJ¤°Áh;W³¸¤ê—X{ÂE+ðî`Ì1;>“Åe1r†2åà Š•'>0l0îQ%%G¯Rõg`¹Ö{vté˜6¤ìD"]¦*ù-€n’§„6/ÇÀøu•8ïµpÔÈÞåªs‘‚¡ÖåÑ…+B“)Tµi çS~©üŒw±ry<„ò˜†N(¯?»{¸¥ŒšèËz'öóúù©¤²H³‘Ë«{KÜ,ªÂüçm¡pYØmãé0ž0¶i³M‹ ;o¦Ó¸PølžÊ·Û… ¨?Ò]ª6 )ÁMs4·Á®y™ ïg‰£†M]±b–&UmžÝ¸9³Å>N>Óþ|„H›étº#}éüüs=Ò#¬Â?ÜÅÝ]>w0¦4•K†lÝÍaIaœå,ä¸ÀOƒ}dlg®ú±æ¬CŠ Õä:ÀMô”h1s.ùTŽúئÁ¸©b£ˆPÌOŠAÌ™ˆŠ(Џã-˜×@¯Ã\mœ¨•€)¬––ËI܆¨N šûî—×»¢FÜ óÝÆvm&ò.rOA©A™Èf?TŒ<~®9>õâIÙØZ£1@£9 Œ0ææÚ9HG ¥SNS<0—&ãß\.ÌVB²EÇß :É31WÍŽRkª¬“LU5ï–»è&ýØ 0¨$!6ivØF-H Cqd"äètSˆo¯‰-åÈì‚–Ýã¼™ ÇôÍr9ÊE÷´GÌ Äoµ>‡€ÚRÓΰÄ8Û8ZÏ&¿ˆ®s/=1n¸mŠi,Z!•ÈV´é¼&¨útHg]Í«’Æ?ä!˜hÈÎ->pPtö6°÷)Š€Õ4„Äøö"é@¼š½Àó²$<ˆJGç J¨î×hÓ¥;¼÷#àæŽ-æqë¢ÿ“>àÑ@ô.%.œµ5ÑÞuT †ÅoÝ6{i!l%vûÍ.3¶[o [7G:¶¼¦qvï†ç­´.ËdD¹Ån%ÍÒÊ—/×»÷±ښ—‰¬n‡6jdQ6‘FÀ’ä–G¥œðj(x¢Ò‘–¬™ð©¸µ‰¦¸ça$´¢XãÞ‰Êa'Ô ’äŸ$ÝpÓ\(×'íxö‰^«"ºØÆ¯ýôÎÞ~Ê6OΖE}i§÷tø:x­’ÖšÖ‘$ΫÑÝ×Fx)Ñ'¾}4ëƒï/ÏöXŽÏrzwHù5È[‚øUéßÜ^ ÊÀ3_ nkcFa+B÷„)©° %@dΟ.}òËmƒ3¯’9öwµÛ¨Z)™¨R|ÉABZEéÜjÑÎÉï%;›‡úÛã™Ô"=mêåÇ[ÑÕã,²œ!^†°±v9úÎ:>QD Ëž®lë•'«íG¯@’ƒ`ྔ~ öˈ/ £nhîœñö…Óþe×nÜç‹ VûñŸU/š¤HáGÞVël‹Òw‘,¬Ö½2REÚ‘j‚8cÕ æôqk!9‘¦t‹sÍi-aa¯Ê¬îJb÷çOAd&43¹Þ] :eœ/õop›ºñÆñzòµ¯ZÊSÑ5E Bf?/îýûE]`èh掸¿Ïb`6q¨‚=ðØSžHÁa‚ HOQ³ámÆó`â.ÌÇg{¨8ì€N‡ÓýÁy塘ˆYãH‘’ –«G -ß–¦ÕôjÕ(;;6‹†hN3dU­úbQÀ»`?éEÓkfsq&Á€\v~Fä%e ˜hN/°·W˜9ýS}—ªcô{ÿKî’+2X—ñ¯¯Ì™Ù•\‹·Ç&±XÙ!·Pc K N éãaÏÖðŠÖ¨&ú'Hšô›`å–(Q„- ÒA(ÌÂâD¬`Áaì¾ó)¼bë§GûË ¢¶vû´‹ªeøših n±é"JCçzÈŽZÚìú÷ 2£¦¼ÜFØÀd«X¥:¹„€Ï³”á§~ÇýiuAM4õÕ<BjÝBÔV®‘8['I]Ágl©‰H‘1ºúĪòÞgÃî+Óò_ “qòÓ#`ø8—®ÏŠž¾ TH«B¹Ì‘>¶¿TJÕ)–‰tˆZV.>yý\b‹PÙJž±Ùo¨?ª­“„ÆzŽf 溪~<{ì,!ä;³:þ8 ÄÏ%ªø!ýç\§i.6$ªeq\šÇ†NÑ^ç°¬hâðÑg( 0ç>IA×óXDªu/’wê—>¤$“qùÍƺGƒü÷ü^ì~ܛ–ý¥9SïDsN[:c%üE4˜Šà—¬ËÆ]å’©5X¡M±Xã Ù}Y ‚Wû“*¿,ÜÈrêcÆ8nò=ÂGXx²ÝÊX'Æ·±5ôÂÒúq·pªUÈ€­ ]ÓO[r}7]Ÿ@ÆQ ágž(ÌÒŽ ~ òÇšŠ#<;A]±Jo]IÝ©¡Ã#Af'¡g²q¸kéM2ß]o‹aâªàànïžogŒ‚'3¥–4w‰-9×½)”ª€û´Œa4jèê2` 3DÈEO ¶Ò?fo_˜§48û¼Ï‡Æ/×…>¿„¬–ÅÇ>ì1#vŸº¡|ÚéDПüxžÈx®&§Â–Á EÓŠü|Ååˆ:?. 8•GêbäǦÌãa Dêt¦¯J¦i ‚¾•¼|ÚðÉ®y x“ 0á…m-Ò…t/¸\XÖ )"q´oB ô?E‡3†7*Âae¨fRuÙ®ä4–?Á8¶ç߬#9uIåÉ{þûkí†Vaöï\¾Ñc-jzóëaÞã^?ƾ1öÔÖ¼l´z¸eÊ,“†Á43*›réK‘\\&Ï/“7?–Âè[™¼£ÈÒ=5ú æªFBxG AHJ¸2PÜõ±Oô2|ËšŒ ÍÌkÇà ²ãžáoIÍSúVœÕ˜74G€ù”rü4ÝØÞ¼)ÍÈÐàC‰Ž6‘È TÍ,ú­g6ƒ`¨°,±¼šâ®ÅF+‹åŒYÔ¬K~› l}0Ø#RvÉJ‘Ö0œ‰GWrÒæõi‘_° Rr5a·Ç ÌÒ#Ù?v 7ü×£ï‘ L¼5f\NTÝØÉ6º›W† ŒÁvf‹¾J€Àœ­#Ø€¨\|p\Á'ÅìüVù3U§¢6Ûó%ÙÒæ†KøÀôÁ ¯ÃÅ¿]¢{ñm'ý‘ÅY´$R†hç'F,´…f³æúè`œZð·q•ás3C ßd00@Â<0í‚Æ`å«>äFTY–ÝÒ4éàÔ¡wØŸzƒ‘àp†Õ ,PĈF¢tçäÃëWHü,Ä®–ñäà¥hÈ q¼Fq—ë°é(íØ¬°¬’ÂØªª-¢l ‚a]ö&ÅõÃìg/¸2­0¿bÐrÖq›vùÙZ1ÝÄeL™xaL›cúˆ\3Åõ›ø¬v:âÚý'že@odíî r6Ÿ: áîE…Ë{åŠ.vÒ Ñ4 OŽ8s)4›ó5A"×£oSe~âñß‚‹í—6û~;é¹#§5ï'”ŽpsÕ¦Bk!ïD¤î"˜|]”Zæ cb®*ºÍ:Bús) S àMekoó?Æ=áØL”J"!ŠR¨·W\ßÄy ëÏé±¶Ø]R€'n^ôÌ›š³è-G]ÚÊÃ:<Ä)hÊÅë6XxµéL‡löãZlßÇŠ©ê£ Þ¥¯¡™Ë1}«‹ºô–ÎS¢¹$vFÃ슊}uòyÕÞ‰q%]!oú t;o’uï"0Îź«¨.,:aF2k‘‰M²ØãÃßVŠÒÙ…[?qO7}Ò¯¬ x¸ÓbÅ®9žíð”‡F^Î¥(…¨l?<l^Lá‘“Âkšø÷Š0#¸)Á>Ë´ 0U%™6ϱw]rÀK L<’¿F-YoÁ‚À1±î†6,Àõ¡LýAãŒttÚ±¬è½hÛ´¼®Ã6HÐí®ôXj¾Īç&^m0ªK;(6gŠ–R BOSXr O9mÛ 45³u¤øM!E®@v€‘}8<ã Š_‹ì’b”€50)©c†ˆôD’ö|Ãr‹þ®( ÓD¬âðl']0¼NCâãI±ÆtÝ8Áésù|ŠNÄ›À«› P/³kD°\ºI¯¬Ë¬YÅãQPiE~Åö )ò‘EEÊ–Oˆ®Ù`QÚ=¦ 2Ï”6ìóò·Ënž*³Ÿ{^œ66»ö×ÖÁ¸¾a²¯rÔ脤ÏŒiÍ3‘Òk?ö°Áí°ÝÀÍw-ƒÙ•¯Aú¤Ÿ›†°~4c$ßîAF\}ÐpÜE™œTçßý²¬­‰r9˜ŒKü€ÛÙEi4ØÚWÕ¶Öÿ¯•>'ãZ@¹û›&°Æ]í³IËԤ氫Sø¦êß, v'–}Kàâ©g»Ž„]¯LÜêh¼øåsKc\¦,rá,–5uÒ8=n,u+Õ®ÏäÖ‹„M„æÐgœÑx`Ÿ.7nZؾ\á±7«•­µxv¾“Ø%Ù@ Å¥ÄIE”ä;$lM!{æ·KªЀ¨ºbü¦m¹â7O˜¤‰"¬'XÃJˆé88‘Ü·× T#ø¼H>e©ÔêA¨Oµ 1YDܽò®oâšÁ*V`n?KgÎL£;p‰fó t\´È°<„õ aÈl\}nMmbØêÐ5ëèÓÞ¶pt¦ÀÆ@ô¡ŽæM¿wƒ{–Nv4eY·u°d‹i¥á"FgÆÈ¡¾„J‘qÅ9ˆm tfaË~tô›ß #ÖÚM·`ܧ5¶`•to~ÝŒç;yÒõß+“—Œ–m|ñ©-BYfKìûr8 "[.¯l:t$”@IJ4§:ÚËýì:Gï Hcg¨«ß¸9ŸŽÂHTÈ×D+2MÑ\A À¾PÅUñÐÞE½{…/Ï‚NXUX´Þ”)Q°0ÖPWH ðù¯GLrïŠí1P"”Õ8Íd¥ZÈI×´kå|¾“˼¥I Ær^¿…Úos¡¥ä¾ ~˜Vš9ÞÒ´±ÃXª¶!Â]sU þÕ0ú†ül:¡ÄôtK쾡çÏP,>aÚ€Tt Dq(¯>›˜1ø‘œãDEk9:}<]ÀØäƒÅ…÷— %P&l8É=݃{Oè‘”¶,‡×Çœ*ö6m_# @n8@û™¥ê¼±hÔ4+"Ô]þ*]Šù#àhž?df`¨ ®àW(DnØ;è»Y#Ù»:†|þn³Ó·Ž±Ïs0‰ä‘‹N‘è ™,B Ü$ãÅ[UíN‹ø'¯ù-$Ï8™ÿ*LŠèW_eF’´CixÕ|iŠcHнaB†#š£Æß©K0‘/êášøyçw¥{Óc`~aˆy&ŸÆrÕŒîô…€†2\àwîÆFB½[l‰Mäâ*•dpÏ,ø89û~„Ïé Q‚G¯å,}?ë7Í?ÿö·f©Rì¨~RˆU²çĘ*¹Ñï˜}véòásò<ÒFð˜Ã~‚&‚f->ASn™]–ì°˜¸¡m17e6¼|Îî-Åë±tØ>eν5ÅÇi@ÁZ×Bv¾ýoSĽÔÿ²K)n¢Õˆ€É$)$º4–‘Ã7ÍÁ²FBÔ³œ£w…vè ,ñì"Ó="¿y¿‡b{ŸÕWg6ä¤/+m– çk\ŠÛà?å_p=gí´å «‘¬îÊ'XÐ< 2@çE:$}ÇJ/6üKÍ“ ?GW e¾¿w~å“7 McùWª SÒUžØp»p:w„^K‡™Œ×W*Åß´Æçkg@ê§:sïÌÓ䯺ºP®àÌ3 I*š2jC¥’D;Þ„W×uÚïW½)+è°Þ½?ßT4ªf¶ƒÜ]g‚tx<'ŽÂRpsÚkú¯Ð. „"%%¯™âW›Ýh]?‘©»ÍÆB˜%'´\«íÝm…\²Ï'˽‘Pu^Sž¹4ÈÁ—Ïq‚ðS*Ý Wæ>3¿L?Åf'Zò¡´éæ¨Ë˜!¿TÝž¢3'-’ì²£Òù-wVKP£4ŽƒtTñÞ%vØ7~ËÁØOŒ¡‹Âf2½7á‚/bðÆpÄÃÝqÔS/"t¶}ย6 އ%\«'"D¥z;¬ÊÔ‹¤‰ ÂŽº8ØH8å(ž_eî·P郺“±‹ÏÏ-R¼"ÂùžKïÎvf¿Ûî×ß&ŒœñÆOƒ ˆpº5Ã]…ªç46²~Š›™Æ,ˆá7x©M^iáAã¹å›Ñºñm|#d ¼£†'®¡ª“ž¼7CV åzà ¢8_9A31\˜¤ãèÇ¿ÔÄÖy1NRîõ‹ñ–hâlœö½­ENóÑú»Ì`<˜ÉÌbsxÇp`Ç ®k%q!]üC éSRÙæ¥ß?›ßá!œV„[+žøOrùÞ4hØ d“”¸7ÓY«f”ä]èVB2ú&7ñ‡ea¾šêN òoꥻ8+¡“&7”@晤j÷/åOìt3,ê˜fƒ[Ç ›]T9׸싿†ƒ]2 !²žrrØME–Ï£Bt7úš5x³%°Â*~`îûo`£Ø÷ûz-2ŒÔ¶'â©ƒÕø¹ùÇÅ4=Ý)wË®)P4·ÅÅ/ÏG^@JÐB躺?•‡Û>Òsšõ=‡ ãËÄ…ø°«û‰ÅÙbŒçm>KÉÎ÷Ó»W¯T;û‘€ÆëZó áCðìûïìE:›^˜™‰T»dSc¯L‡©'´òìo£t¯ŽÉDx‡žºÈÄ[z /ˆ½DÖ?ä–2œÏx—¬g…,+Ê íj{ôFPÛ}ýµÑ¡êšÃ`²ä:;¨¤×ÇÎ¥©ñVhFþ1¬žœÉ”™EiÓpnÌ|–íÒÝÎÌ*ÎAQTNù23R°¸ ?â9Ô=ÉþŒô™¡íËV„×ù÷ Ë‚œ4¡Ý†…ix"óqæ¬a¨y¿ÔbN’]i"€% ôÌüp¯í˜ƒï´ÛF1Û•©Çͼ{jœ+ç÷RÎ¦Ë­Ž¥vÊ׿ò»½Ì.Öpë«ôÈÆÏs¿ù”Ëmó£e»ç©ØûcSp5ì×a¢ˆ~ k×SºSá{æiª{þÜ¢{ŸFJ};@Œ½Ó} HýYã~‡ÛgŸ—Ü9Ž1 +·Ây5»0è`|¢ÿ–œ¥Þ£ïÂQÅi„꼯Ê#ÕgÓ9ßÈw oÇÈ)O«G éÉ6 ºbÛTþ'¾É\ÿ…IVüjp4?Þa‘Ã/`cÒêK=  ¤Ã¨¸v{”Hó¿+ؼÅç‡ÅthŒ3ñ*°ÃŒðfdžùŸŸBéâSq܉ê›ìÿžœ•Õm‚BëÕAX-K,>V÷ »/-Åœâ}<{´‚³Üì"Éà·Ç8ŽmUÇ4áküÙ:œ(³œñ_›ÑnÏ|q}ìj‡3%- RtTòKêB­§E‚çë(Œ‰Ìn‘ɪtY”8ð5 :P©¦0l— 1|Á3aþ[3j´ŒÜàVœ6ƒNbm‡Û¸[69ýŽËdµh;ë4üÅùË4ZŠÍã^·ÕžÐ*›?³íiÝõÂ׺ÈÇ97sƒ¼=QŠ×©t=  ¤åÓýmª¥áñ6.q¸füÇTüŽld÷‰#Í}Ú²q:‘/™'äºæ ÓZ«ü1$²%mÛï§Œ‘#9Ò/:¦èT4µÄNOa÷m{iú} ãvú g‘a‹÷Ñ__(̾XYZß_ïAXo w‰< UímW™rö“z;Éý'‰&]ÚÏ]]Ò0íš‘Õç³û$wD” […kwú¶šÖÓè›®æë ~'P€Ž&ÍDÜ=Yõø^ú—çÅ‹ô£aÁr®@‰RQ%¬:0 Œ£å,ÅàvŠð®ÚW«±W§;¢ÿÏûT“XÀ ¹<^ü¥Îý ¸ÇyÎÒP›í¼<ŸûÆÝYš›UÚ÷YßìëkŘî=È|¿~§µ _Ë4¼n}I)”ûM/IãÜâ\ä¤Ê¼T#lU5™ž^rP:'™ß´Â~àƒ}Ö$áÚ·Uè³í©™½…’¾\<Ö$Ö½q„ùË·Ækxˆ]®¢CÉ4CÎ?¯éý„P|w|f“ìÂJžkÇÙð¹ál-ºKö@:ëF1W Ë µÇ€‰ÇwEÒÜY–‡Õ¸ëO “[ÂýoÛï|aCªÂ LûýI¦ÎŠÈÛ.öàðúDyT]=ïmåý|˜¶ÿB¦âƒÌ9#_SÁQåðÑœwâä ü^7ÙZ)? 8½IBya”ïõŒ2Åp †´ÂÁâ"5îío˜N¦!FÛdžô/ ½ëó¶wz?åäRj@«ÌGr,Ç@ÍÙq=lŸmè‡Iê±’–Ž>`W;,.Vã­\p°0ûw´@ýjÐÓ—™qù¡é_“øäVï¶-¨¤³´ÍÇë¨É{Š¿Á;0®Q韇¾ê$ O7lýþî-ÿB~ ¢Ü§Îjñ@~Ïh‰™ƒ@Äß_͘ý¤ °yõ– óxÝ-äÉ¢râ㦨ry;«ðr^­íðpž=”ñWó…)Žgz#†?eGžõ ¶¢ã³@9WÏ¢ŽÊ‘T{ZU»Úã°m#Õ4¹:7Yž¬¿+wòÆ÷ŽÍÝI ˜n–²1ª„]ì;è°·5‘ƒ'é£ æ̧«¤yÞ(,oßçÈgÙ¦?Ýñž8 A-ãl°uêtr!sÂI,ó"g’ÝÊ?0ä³å¾/ž+Œ£*âÞf$ñBú;\¸xV>%™°_–âÊñIÃzîû÷ëá_ä‘"¸É{©tÜá±g»£¬D3øf'ÃÁŽO!Ú¼ôÐÂ$YĉÀ©ý?²ê²ûmðey“œéžÕPæèåÛ€-îæcè’®²4jCb°XÕxnó_“O_QWƒ=| ¦¨2ê´yäÇígŠ+®'>%(b‡Ó¢¿õ3¡{DÕžµ…̸Àð‰ÖÊöÄã¸-›úT<“Q£€ 1:l'9ÈÕÍÊënÀZtHzÆMóžõïD†Î‘ÃU?w{}VøòNîMØ/fFNO}é1 åZmr^ìUYS*Šöø·¼¬ëÑ V*>=®ÉüØDMTwX3L”Õ0–Z¾æWI „q‘a é놄îuêp±atŽLÌP6™4Á™lV«„D".í·í0ˆ‡©ÊÒÒœ5éeÞod¬šÎð¨ÖkL¬Ðfo÷ãõãˆ_~‚—‘¾=0o€ƒÃãa8Ë©•~¬Q¤¦®³ mAê#C&õÃ|+©>pDÇØÑ#gWð9–QŠ P–½“Y²Ü^ËK³¿n›b+«Ï…€¡fîYÐnISD™åËÑþi7äË3Íé¸v&/"pâÁ4È9OÈ"Ž%6ÎÙùÞ OsD6((…æyä{Ô‹Í]Öùû0³Áò nñŠqæ’H ‰Ö=lV<Úä;Ëì(àë)Ât¦ù¯ JÁ\½P3Æ]Jª»×C¨\ž‰Ü1¹?ÊE´®#[Q {þº£¼}¶ŸÁgcéPŠ?Ê4î!µ7ÜÒÝ Ã´üòI—qïÒ/ƒ~½rÚ¹»Ú¼C&„ÞÜã…aWRë+øó<0á\¿¥w;«ÿ¹©Öþ7¥/`ý] %WäýḺvu•ô§Ê"6^hžµèý§¾õ³ò9/ µ.qÕpS7"-AÁ5¾¿³: å±^L½Ùïg7ÑËÒïô}„ð ¹'“r‰ $«úz=|»^1Es¥â"mý»Xk81ªŠG@(§|Z~Îr!f©A!ÜT6Õ²=ƒúÑ" P¡ÚõoOäHU–TLœ{ÎñˆÞ"k£ËOÊ•¹Â>v>Åå¡ûˆÎxÇ0뻾£ µ’y‰GºðEý;ñ|‘{ç ÷{ìXe¢üßÜôçlÕãè¿HÆž.bÜ?%Hî6Ô¨R çyÇêQœ<È µ/(¹Ñìuð©ûç?ÈҼÓ­ñ´|ÈyéHŽIîÒš4 ‡é QË].øxÚ#£ÝŸñ·I–ŽCòá ³æ¾ï£9ƒž’¿‰™‚e—ÇaG5omÆNS,Î&È&‡]má· ÿ7@·¨€OœþF»©q¯wó4×F&ñA%Æå=Tˆ‡°þÄ\‹×½hYä}õ ‘µh»Œ’íç‰Á‚òYý¨rUY%’„‚ºf–«AíäO[ø€“pYñü¶Ö)Xh´­´ðPrÉ·SZØæÊ »]œáJbåï…2"ñk¶ 3Äÿ¤Ìz®uÏRÄ;©A?ÕÁ¿kŸ2?ªo…Mhp,fS¹Ìú SûÌB/˜¶Ž1n½‡åµÚùßm\˜Vwk‹E~¼¼g6Ñïö¥º¡¯÷LžàŽü•%1ò’#û°M?¦ð´´©L#hk2AÚÔjË11›°ïn2È; |ÍŸ¦”†¼äÓ73tpÅïwý*µ&a‹‡ä‹5E.…üéÄ å(ÔfÁ·OXüüÖbÄ\°x›C'*ã þº~ lOa8Ö{?˜FŠžÁ“XѽëeÊŽ7Câha•¥ò»Cu3¤Sêñ …v7+ vW¦öì·û0¤u <ÁU³Ûjƒ›á¥¯£ë—€Š*ž¦ýÿåò)GDÔ ùÅŒîúœ:|2Ë1‚¥Ø_¶f™N¹«KW,{ÎI ·‚¾¦–ãÛiÃ.íåyÿŽô+C‰ýmrOdbr*ó]<—:,¥ŒF}Ôéy#8g³!m’º[ÃÈyMñ'z—Éån¿sARÌ Ï&+£z]Ïláæ‚«K1öٟ숵ú<:ʘû*çEˆªÎMÏŸ¨•Ñ_ϧyOyA{rçzà4¼øe±5›$lî°Å cX¦K®`Ì2i9lªíÐô#WO#ä "9B\Î%x–I9‚Ôîó³)§ˆt'÷Ž~A)ôŒãÜ »—súlö½8h4q´—?¢ïÐ,ßÈã@¬ôó¨l|: ?ôu˜fñ†îvs;WÞ=òS‹•—òx£Ò˜ÚÐ)~1ïy›@ô¯ñ\º:@¿™DËüØÚ$0{'Ð:-<¢wÍë¡Ì£éñ2#è @e’»¶²ao¥‘º;öc}ÞøÏÔõ>p†²Ôü_]lû€ÙºÂu>#jCG Ö]¨‡Ù•´+ ¨öUލC€a |ƽ.`i É–žd›W°!7dWk½ËÖJK’v¥í*Kê#˜šà…Á•ƒM·-šûyŽÿAOÍÅžÒöÅ—9‡M ýd<á!ƒ(ÛßL ±ú¨ñyÃJtþ_ ó”~É$}»Þ´câιñËÎ\Lã[ *RÄ)Ûq·]Co¶¤‹øC9èò»5­~!´‡˼NŸ\^ªMÉꈧY•LÖP·=³ðÑ¢›_ÇMÙû·9‡O¾k;Cµ¤ÅÔk”l3<‡ 3=´‚Éœ]nàzG2"nO7øJeI蜟™yFšÿjLYOÜIEqõØl´¿–SIîÛ˜ÿ¹u˜?„âëíéc·pëË—l„ˆÖ*”vx“ ÒªWA:´òeÞ_›A¸é@<©À¯V&HPõhÙ—B¹F3Á½QH‘‹ž­wcjO€ÏΦ“ {8Ö ÉøÔÞKª9Q½ÌUȾû°YÕ.W-o[crü×xÁ«ÞÁè„úŸsVÞŒÔR<¥ƒ„÷Ž÷«‹­N'3z(ÈÔžÏîÕc×( kÌE5ÐêogN~&·Òëµâ9«PÛ=Îë1,«ë%9Øè´:9TŒô°´òŸcù ˆù¶Od·ñ·úá3üºÐ:ϱN›2sýqRL·c,-b_… Ðáh:Þz¯à!Æ"µs9©“GîE¹ê–øž¬ðFê+Y[p•×mK¯ÑŒÛ¡ú¬xù×u‹E˜^ÿ‡®HM;_Mmð"¿z¦Zìï¸ù4…°­w艳žˆú.Uw;Ú¶dr,o¸¥!£fZ]„ ÃLÛ÷µìêp+“¤2±N mP “-éÝ” ÌQ7)âCÉFƒN UBuôÎ1ìÙ2çBS¯Zÿe&$ MZ‡Î²P‹E8w5 »»9Ê¢̽AÐÌ59½a¥Ðœ+‡¢éhV&¹Eo3Bl…µ`iõ¡—"ôT‡¥º½¢;a-ßY…$’·i]Ô¡c |·É`ôÈâÆð™áÏZ/ÆaÛ• µwâ+vìýEx šì°N”Ô‹öWhÐÐ]ì™Ðüâ÷2º6v7ñYÃÍÆÉ¤Šs…nï﹪»¿£¯Ij Ž“¬{¼ß ¤ý1‚òã´ÕNó¿áJ¾Í Sés±Có|ÿLú´±•o‡'3«pû2n¨‘Ô8ià‹<ÅèK ŽºŸa,ób9…–[¼yVwïTå)Te¨KúÅ:gà í"W)”€1­cSÎ!®ÁQ8*‰‰Òw'9Nm¤†hÚæ„ZÎèLu#&†àà XdÏŒNè¹±Í)ÇÙ׊&ÑÔçuÞŠwß• ¬­Ì!È}÷ß•Ê{AÄÈÔÅï5°YÂ,¬iæ¢HÂÆ}y'[.•÷iZ¤2ýÔ}ú…¤òýkM&×¾—Çnºë% y6÷[±öl—iÑ #}F~$3ºŸ’Ù÷j\_l³^æ_É™_«›ë™Î-Ïîú Fé‡L‹U-æ¿<.œ©¡ÙÞãiÏ—£yO»ÅA ­±}Ñýÿm¬!^Uw7gH錋£˜>[”cÔÞjâ~ÏšŽÞ>jÂöñð)@ålwƒ©æÒ ¯› ÕâËÂGàìe÷M÷Œäßõ´I±nyjZl˜öØZû±1ØÈ*¯á—5fáAgTç¡ZmZŒÕQéVö‘Ì7SÖyÖß&‘pßœeRÊÄ’#bq¢U& O5‹O$« 4Ígýh6ñf jgâ©éÑÊ“ã¶g2²[ñÖÔ9§ñw…Õ4ÎO¿­BçÝšom”ˆx,· ޶g²íÌ…kÉCÀ©æyB‘¹5=´g )I~²ÝœËÖFZñˆvü ù«…ö95feHYAùhÔÌÔMa¿ËëÀkšJñd*%.ŠnÒ¾X3ÇcF¥hæ@Dâp1¾7ÉôÒÄ.R›ƒ:î†I™îÔ|gÏÖN•5FÞŦ¢]½Rܸq‘­ ÀtfåϘ†1V¤¿š¿4ì€V„Oøõ’I“Ñ šDQºŒò  j€§/ÝÎáÚ,C}´ñ×±e ‡5:¤¥hôOdƒî¶<܇,~ë\‹òAØØ—µŠKûi{µ&ˆ{ÕÞ•±µÍõü¸ôt-¿yuºlžŒ£ˆyhÜEIrظ–—Û|. Y[\O¦ìøI81?Øõ¡\¤™’ñShnÖ¿EÊWˆp¢–Ú­®`'/€QÀ²NÛJ²À9ão¢‚Òò*%V¸J/Ó‡¢º‰Ç9ÇÝ“4<˜ýhTÀ5må¿ç83Aqß«“Ì|y?‚Š <9Žþgè¢=ŒºÛÉ}GÊÝÀšÎøÈ1%ìÂÀ÷ðß bÜ(ÛÝíÆ JüO´³~â-ÝM©‡GpùNòÝsëŒx›Ûô»ñӤכ‹ ^ÊH„ŸP^ÀWÝTOž¬G¸eŽªÆ:™#zM©È{f»Üš%¥‘¶3Dî°Ÿ²7›ëÊ J…Þ%Ñy›iZAºTµ„W-îNA¦hOæÏ+î(ß—Ûkd||>Ò˜nÎXåñpÆivRm®L¨{?ÝÎÒB6XŒ”Ù!¹.g5«óÏ6ï÷CÜY.:ûióÀø’Øå_†¤Åµ³³zk»¾ì+‰~Ûßè©Q†ñÞ¬b±ôõ,½tÀdµZP n³ÿy†O` $Š”dXyQ0„ÞJ·ÏÔä Œ/Ž¡Â”LD8ö}”x×L¾ûM@GxD‡qFRçHó$7µ#ßϘu޼²X»­ yÌwÊ«õÓì$Û$½®ä_ÐMWï@âÉGµ/cŒQry‹YMLØÐz¤SO2ÆÞük’UiûÊ-IalBõÛJjŸ´4 -öþ.nK;œLŽFI¤z-'ˆèнyKj€ñ¿,ššŠ­e_ÉÝåÖÄaØ÷·qoË8>Q¨jÖÍÍåÏ‹‚[S.û}¨óÒÅfm<ñðÞÖ°—©MÍïÈ!“÷€¢«5DôRœí]Íš³ÚuvbÛUÔü¶¯Wb"™gæœôA·½I‡zÁºqÈqpDö†ˆ B–ôx‹£ŠÏÌ 4g)F$£ÜþÓ–Rµ]ò²¡Rˆglö‹* ECª†Q”’—(æÊ œ¤‘B©Ÿ_[•×ÄG§nÁ·QI±~ðWMýß‹ºÐ—½äŽzêx"wMÚý²IÒºuéëø£èûÑV¡IRâY"ó¬>Rû•ÿ;`?‹ù×>û³ågµÁ•†¹­ Pq/{Õý¼"ÄL£½Ùñ´ ó¯eq†u…Ýs¨/tü7çÃÞK"à7@s&òã¬èñãø#5 Dê½îÌQ ÈØ­Ÿ¤‰§a©Ðôñ i8¯ Øm¥æë°Õ?Ôš–늸tRÏÛµÍñÆûCpl¢|)Ä>÷Å*÷ØglEå°X0¼«q9úQ¬GWFÂÐ6uïn®;­î1†Óæ¡)Ô¾vúïUdÜäeÊÄ'SÌO@t=¢1ì#†_«©ê=ìÿ³ò @k¾™äíx·ešP.T–×À‹VÙ¤8Ì­¬È>œRV…,V…PDÇ…ç„úu&]æÛÐPÀÔω¥7Lù0¡g6õ«èŽ+4õ£'‘©‰±=Öé]÷þ ©‹šGC¯×r÷bTJW fY&îu¤ƒëŒC!{*A³“U¯M¾)‹ù*ñó¸â`¬Z/±F¨˜‡q\:èpßmJ¨6CåD-ÜwþÈ\XP³jDèAn°œõ)Šå«¨~;kjÖ*µ{’»¯píkQ"Ô细0ìž‚ìêí³MÎÁï%ø²îî+ΔKßõ .äUZÉy;DÉ Ìåš­']ˆ7ÄîF÷{ºSL+®HŒd#g$jtÃ, —†qµ¾åX|ÜÔÚê 1«èÁ'9U56,â¦cδ¬7׊Ѡ­YõŒŒê*šy¼Û ú…IÀPa§i‚>°ß©à ž“knFпl?ª¤‘ÕjrêIsRpR3Uáõüó×ß-l0V²šÏ ªaÝ1”y|ëç+ihÒÆjª‡F÷×Ûì liQÇ«óòæ ÍaZÆàÆ»3ÃZÞ·‚”è[騽1RO!ùÿ@ƒåwÿ9»E†qJ¹kcßí Go§JV™¯ðp©\6—Û†8íU»mu¤Wîu‘Ñ­K»²Â5?HIÙ5SÝ}vo1$ä“»ÑdÔÃ.»õ± à%pT Ðõ*¥Ð«jdAQ³ðíB@´ºÙ[ðqöË úûÞõkÞ¿Ms–”ülÝ¿½–?*Ñ$àa‹Ä{1Œ ¨¡q_?D¯³¾Œ]¢R>ùz£†*µlR~“D:ìÜ™ª¥ Ìiº€Îá{q­iÿ଺MjH&cQ…7¨°н¥4{†¦DÔ2¶¿EFUCô…û Ö%r=1$×U­´¿êìåEc÷°’[Ac“*Gi¿>P@è¬rΗ¸Œ‰ð†šKG®¥È$”õ‡}¿þ|믜¥è ¬‹ºì7õ›.li#– ÏК‡ÂçÕZÙÚˆL¹-=—l´ˆÓÏÊ5Oœ­êZŪnÁ^mqµ£=I~ç†6åg´Þ›¢´aBÎQRçÝp6½àÛõ„Õ¨H‘&E@`JôջѠ†¯å³óˆ¿Y?ù¶Lõ™æŒEÊRÃëŽ%_*h¦ä•œ³-µzŸ®9,nÁÌɆ˜ðŒ/«É‰Á÷´®WY–ä"œ‡ºÖøgš”Û=‘Ÿz€µ„»ÜžžøNvvKBEÝ 5®kΙ(Î;œ˜M"¸ÅBŒEÎ÷néì‡J±%Ý|_ª¡PQÏ­þÞ‡é¯V Ê’?eÊ:xìWþ¤yÆÏ°µÎfQÕ×Ä´óŒ.gú-¿úÞyó|â‹]ÿ…Ì×ßé#þQ›¥yéc*ÀÑ .‚O[Áš–3òDËIŸãÑÞ·¡8F˜ a 2þº ¾÷w£_ój¹f [?ê)–¬®çÑ…¹‰°LŽ ‘É¿£ »;MÐγ³{òRiÿ¬ö#4`?öš•«]Ú±,"­m±ÛõN.A\1ò¢w‘Â;7½‹ UoäúÃ~¤C½²ƒ> _QϹH„¶,åáEÙ,Glrˆoíïõ«A&×:ÌøÇt®­ÂÜ› dZiÁ=t.÷Á«ó|3<Ûc\ÔºD¡‡7´¤îȦ­•–øz-Øü69ìåtÆiÚG½Ù6@Íîèj¯vg›®2Agð#ÑÎÓ&ÄÀƒ k[ýr¶×5'³íëš-s2)ÉŒzhN FØæmœ²RŒÒ÷alÏò³ø*y6–»+øœ'~Wõ÷H=»9ÿâ¬N!r^vMºÏ}B&÷Òùü<·®‹•œL’ôÒ k^ܤ:YfKz8¼3qèö9)ÆË{ef¡ãµ–Ç£ú1jÿ³¢µgÆ·è´þ§F>#nQp~Ù‹Aª?ÐOëUëûþã|S!´åJ&”Ík¡C=óíºª-Íl†O¼Dœ[©P}sV¡ï»„µÛîöœt´p;gÓà-ö,[,ì¥jXV”ÑÈÓ9•…mäzY‡2øÍ9êRÑ% æ£% eÇ93[oñpPâ³³µ“ 6Sµš`s6 aeòï“)ç W)"¥Œ¦ƒD÷Þ*‚@Ã6v¹è•Ú”¨ ¨î 4 m“jrŠnNîímc´ÈžË$ùBç- ØD~³@~ÍfŠgZSk¦YøÅëªö¨ò±ÓÈ&›(.æ`€€òñV6&£š:DbPZh©9,JVIhC²1àzÖFÁ°5{ ²Ñ\²Súï¯2~:s1éâú!ÍqY¿uñ&XŽbä ¼&#;rxQL‹Ã³IÔ'}ÚSR®»‘àæ4õÈöu3……Nšs} Õy7'.Õgk(îu†¢~,¨ý¦™C"Õ=¯ Ì}'›}~Üêï_&´’ŒãØÕ=4ñãQךßK¨>£¶ÈHez_ŽV*KFrá: & òózhSv".½Â‘"Ú²C‰ýù¤ÄF=Ôz:D¢BñšDgëÜärK§v1}7£al°xîNï‚JédâC?¶®#ø›ØÂ]³)3gh­ýç”nv*ÄÂÎw å´o¿¡×cŠ~pÍúãNWÁ0¼\ ?ºƒsFãúñ?~&Íju±X{eênýB®s‰©–S°ŽØïÂ÷í2¼¨Þµ^Q*Ög’±Ê” ì¸"ø$¬Y¨2ÄðbmR¿>ØåÉm;!V¾!Ñ^½Ã4Ï£òíÌC»ëý0ü6/1òF懾ûním¿;æga²8,¹½ì“¡ÎÓÆýKè°ømô*cwÀ-(29z±òyróʦàÖìúµú׬OiÖÄûk!Óc±¿T/~êÑÆ=TI‡Ò§nûTמ¡EUº¶òaº’Á¨!Û¯TH+(H pd rÌ.]&a+Æ<¶'µ>Ðe2ªóëÌÿCi´‚µTNíUO«¾‡éÙ9—çÊ÷!b|Dßå™?_K­£À¼è3,—áxÝ‹ _^b9ÓÕ¦ÃÀxøOu¢rrþšÉ3.p1†”÷¦\qXö’ÏU³Ó©;Ç<¢¥Æzx*¢©ii]þ ZµižÕw«±”$mø8››ôЏ_Ù@Ãê|½&+™èøÎdß•ÛgËè]éüìD‡“”Jœx±½Ò¿åc5 î$ï~œ¹º•@š[Ê ë¤¥7œ6ïn-Xø¤pukuTÑš1ßääT´k"Õ¤¥ýç®Î‹®2O—±uÁ#[ûàC"²ð±’0FÌ._°o§T_Ïîî¡ÂâÛ—ÎwÉÞë[ÎF€.’óu™®¡¥(9HV4Ä„§€’‡I­ú†¸ÍÄðT›ßî9è4¶âW¨5a#^b)ñ3›ççÔw&œ’Â(V^ÅÇwq¨ `ðÜòe!N¨È§¼gtÙWTÄ’ =9>ÍL„9»¼Íþ S p@ÿ#Ui×3ÝÆ ø 'ëX,R¯>;ÎΠ«À«]Ý KµŸ;»ÑH7Gpüo›öÜ'ãÕ¹ ý6h}WKýäWn6ÿ”ªNá"]»1v¢{¾ieº|ÈèuCês1’Í$B1]:}¤üÍ=‡µÝõ.~V¹Hl³Jþ+ăHȇ– ë¦­´½"vXIóâQ´]#) Í„¸ÛmÇ9j¦uBášô´½˜çµQ)gž ʪËýÖPÖ÷ö©R/Kõ¯ÃD c©/-nQV"®äe»HžJ`&Náå£ÊÁK§èn·u“ÆZ_6;¼YŽa”„®ˆß-­½qµ’þ\ø9ÊNHŹòÇÊr¯&ÊÅa%Š9orÆoÜÂ¾Ä •…årϦoŶ`g=Øs‹ˆ|B0&¨ÆkÖù'šü“Îû°Ú=sf€f•JÖV“[“ ¼‚ƒæö)õ›öi(LSÛÅR¥†”2æ=…¨qàµÏ'ØÛ Pqº"öbðË’­40ÜÅ´+†¥b£a§ŸE ò÷£F²«º®ÂΦ&ÛQØ å&-×D—ò1y:c(]«vÅãAYiºÎêP“îkõÓk|†g¥#ÀÇ×tÛm‚êÎ…žÛî©€õíeås0˘ƒó$ÿ”F«U¶û¨œÄ~Ke p?«IÂub Uv,= *ÞZ-E^š=¼'Åv†"„‡!“ñv½‚g~Mˆ'Êø tÜŒ¡Ý÷ZÀº† 6tc_ÅçØ4„“½Ë~r¾ Ä 5ˆ†jûÒK®©?÷ù©nÛ=‰£¾¬atVV”“(*"ÀAOé0ÒàÉUüE¬²>"·#ö…^Œs a%)Ê,bååkˆZè·eR¢Ûuç♎ùm¶0 ¦V>¶e*2u<2ÃÞ`1béú´›÷„Z=ˆÞ k´5³ˆÓCÎÊ)®®Ï©êiÞ‡+xtîù?¨ÆA#¬t<ßïDý Â]jüPU#1Þ¤}cöºÂá=Jn‰œ˜O*ß^Ñû'·Ïô}-µ;î ’K¾4|N2É=éX e¢Ï¦Zã!ŽÖ—=Mà¼-ÆMÂt›Ä]ì&+ïŠ×FÚŽ$ y¿"íxø_÷uÐNÁaÆ&P±}ô ?>"FŠŸ3uuòi\§Á£&r†ÐI§êàµû`Ç¿³ cÉnNZ䤼RÕnЧ0ï–,±+È@ƪÿûó8%ƒ-‚tú˜' ¦dÐÕ|Ûa~ðÇBagm ñ@%5𦼾ð“dZÂ÷´Û¿&†,`±¡v £.²ÊÈ!êèy&iŠƒÐ=(n*µãØ/ Q‘,—”r–^ '̨,¶ÃÁÿfI— ùbÜ™£t“Ÿ‰¬œ»Eçþ·ÓŒü™Uíö³ûÈ›¡ÃÍÅ—o–=„  WÆØ¤ºÛf¨5aA«<]š—‹¿"ÙºN„¦™¥ƒâ­‘‰O·­ËXQÿ¢$ÃŽŠf7. }%S­xUêØG9¤Ecpõ‹Éï¤/¸öÔ@õ;<Ÿ+Øù¸ýF® ‹"T°â&~…ÿ§Þ9¦¸‚|ãßRâ|™Á3J•}7¤¢ÎXM ØFHë± ðitVOFˆâø¸}¼¯ò]è$YŽ‘«¯f¹÷x÷KOOï ¦’¨ÏÓI{´r²n‚ˆÏ¼žòÞ]†çñö"xK 1åóýÚ]r•è÷г¹ÒÒ^I[~ˆu+›®pã)”|+7…ΑQcv< ®>E𾍗ªõ´rŽÐ gC¹“[®-DT0vïUu—†¶Bq’ƒÒ ¥ÆøÃ0A]"%—A)fÕ4º6Dµ`FàAÀ[xÑ>z¦*Ȫ%%­b µ 2ìBŽj;óÕ»_aIˆc—C­:, LJ­T”E’®¨¨›TÞÁÒö=ÏmLÌüí¬¡£*̳ñ޵¹7{'¬Ý Ý/Ñ|Ñ ß??žñjá‚ãKªj·_¦Ý"–N¯U%iÿ£mqÇhéÊ‘xmá`P­«±N|_³Ä-³ÖðÙÖ‰#ˆv;ØÒÓ±–ö'»Ó/¥®ì¿¯3)U#ið!{²†V(åºÝ±º?Ò»…}ñ]˜SI¼NŠ—„Š : ¨9/RŒ4Ëh>1(âÅeE_“4…V –zò„$’g¢Òìލ ©B65}%ǃAý”ÉŒ'ÆèiòÙSʉŽÄgǸrʧ_Ëjÿv"=ÑöSpäj‚,¹½Kd‡Ñ[WuÞMËAß¼Uÿ=½Èçc°#'«~?»/° ú+ k?¨™Æ¯wñâ˜isfî[E#!Øü²|\2ŠÐÁ1Z<„ ‚¸8ŸoÕ‡ýžCâþÆ$‹þSŽäj¦‹ÂÍGrVyG=o˽¤"¦IK­‰Oê°¸–Y4sTðÄÔ{?'*²¥¢­×– 4àoæ#BúpäWB)@oN—V*L;ÁÒ¯ñ5ã5ÞR:-ÅAAxtû¸X3ÙÉ5a £‹USýŸpªÔcª¡ËZñÊsTì7Þ ôÑ‹;µW6µ´éòÎÑÏRê©^Y Ìêé׸ÿ°Ë«°\ ½1‰Ž,-³!˜££:騯Æ:³xÖB¤i°_ ³z?xÎÿâxÓŸm^‘m;Gá7qkVû®‰fÚõótÄÖaasv¯/¨`# ÖÒ!q½äÔ¦¡L œ–‡{ÀA[”ÃÃ:ree2ànj –O#¸3¯ÝÛA˜W·Å”¾¨Ÿ[dw…†q H•Ñ™ˆC&ÒÝàƒ{0C‰êÚhX󱂿ኊ··!¶Âo!LyEÙÐ7c3²™Ôá°v®]"#ß΋¤™í2ÄttMöŠä>îy¾”9«È2*lFÎù|8†@VDñ˜éé§éÖš™dLϳ< ÿ”ð¡ë°¸°+–«NGh$:vYÙȃ¹ ²¯²œaÇ;ÿæðXöôgb«Ï…<ψñüßÅÿ¡ø¼ͼŠÙwCãQ±Þ Æ ¥^/ÃØÿ?/(¼F$þ¼¨ËeTê’íÄãož)½Žzð®ŽÊ’Ñ%A†Ý»'’›bç|r«Dß‹êaŸÅpçæ=èP¹ûÊ+)¨Æe—ŠU²ê]wÁI~HÆx×f´úœ`Àº‰3Ðîðå˜K£·=NF‡%ßl„‘UPQußß“V*uuòÒA º§}z eh©s3KÕ/woRãûß;ºÅ=@œÿåŠGOÀ)˜böíÃ~Ì2¢h­cååò'¬Z„]b4„ÆÝV˜Ùf…ªÎ“ 6ªÙ.Ùç™W´Å$ ¹•‹îû5³Ùl||§¿§_·°Ãž3à.•¾P4ª¬.ÙT¬v< V&³ú;óõûÌ43v·m†7Ûÿh3áP±Cî6§åŠÖúúÿžùï Ù5UÁšq–a·Y!ƒ6Æ3½¶°‚bÚoú°~•À’³%Gî…q‹s2™P°²Ð‰-a§[OÝîA¬YoêûžÌf®N´“0éæjó½ésŽ9ª×ÙÞ‘<Ø¥É_‰õ%‰–ËR>a°FŸ–sªFGÍ].©ð½Eñœe–˜uÒvY0%&&DQ6ð ™=X2"B‹¢bsgZ.yq^ œ§ˆ,ûPQ±”%¤H0*̦Ë4Ê2£©¶ ‡W4ïóGm¨¡ÏÎ*$pGγ ˜‘>­^m»¿µ1¯ÏCOK7GïúIoÌùÒD:›!º-Þk‘i“EIª5E¦¾ü‚I¿L3 U } (Å ~Ný¶w÷PªWœß¿Å ƒ¢‚î´_'U—­zι>3úbII¾˜€J(T“#ãй’¿o=º+¨¬Þ÷?ùÌvH#üeEâîIÄ€mhpÁ¾˜›NЬɏ”ª¬å½j§ö8Ò/ø±†ÿÄ«rx^˜6˜Ë^²ä\Ö­9YGõHuŽ ç–”€Ï3úYјFóZÞ™„ W´o3MÙ•¡ò8©åI]t§ GN%Ó4È‚Rk€ê÷|(ÒÁüÌïÖ›>j™ÜÒ—]r V,oÕw M-3d–¸¾)øñuÿè\µ‡ë6ÿçð1¨ß2Ô»RBX”5ÿ‹1[KÖ¹£þ@"F¾ò µß ò¸L_]iàÙÊ«?éÖýÞ™Í(k\ÂÏùD©7üÉÙˆµ÷iQ‚)0îºjØC âA¦¬ð‰=ax2îùF2{âzH.aE9)üd|HÌt:‹=ç­þû¦àXg¼_ loêXÙ‘Še&hË÷¾IŠš»g¼ùWpFß)û_›Üç4FX!e;›äC¬rNý`…jOÔZål!ôù¿œGsßOÕ3¨ÊUO“À›ƒ1¡úkæÿí›~0ÕORÿ]f‘¦|%¿ëÃÛZ< û½;øîãqü(6?Vþ—ªûõ¬ýd&žœÌDŒôLµ e )Kjõ]xÁt³ü¨%*ØÝöÃÆ“Gk\{lùXyr´Q"×!›:¤ø¤$±@L|!/6gD [J#žæ=ÿ#ý¸ —2f”‰—Æw{ v(›¬õV¡ŸaÓ”eÓÝhPF§šÌîLßãKò•柃ʪ¹‘SòNl²&Atºà±;<—æÂàý\â™]oq%ë)ŒîKé$¢µ MJE‘Žh¸·—q¿'+±aXÓ·[PûÎMD+Nþ£úˆ ‰÷¸Þ|b¥³NÀhUšòÅï( NX¿‰1@”%\ Éóºoõ–/œÍifÉbREÁÀ–±…`ej¹Uâª1ϺR˜f1C»ïË#1Eyâ’àùcs`!n9[_«ŒvR –bâë,{Û×µf.!†.¸›@!´”»²Ríš+ Or`©$w,tzõ}K·(# ¹%ü’‡[ÉÉÈÈúÓ”g¿Ûi¿JhÐãY ´ºâQ”±xœ(¬Ëñ™˜ö?÷ÿNž#O™vBWüù¿)”´L“5?KGÉBÌ¡ôÞvMoÙ•ÿAò#¬,,§½Ì}J¼‘s­Š’ªÒ˪â[æü·é]» ¶TM±¶yo‰D°[/€÷Ð|ÇW[FIÉ»Z Oæ,Ÿ^`¤¿¢ÿTnE~"´OÑú1+Væ²Æñø÷Ç<è ¬—(ðÇŽA´³Ãó9ÓedTYGñÎUÕJXPÖ¦ØÊ²KZ›Žœ÷ å¼Ö‚ü˜EÇ–âž•Ï7fc~úV½êf##ˆÚx`Þï+ç<'[øÐ/¡Eðu.® 5ökZZºúÍé£ ªYž‡ù‰euÌŽ nÿ£ÿÓÊŽQÏIfówzæ´Œ- ¹LÀˉÒùÕ[nÝûþòj§UÊÔ##kºrRÐê …ÁŇ­Ft3xdÕ™—ÙØg†z:óp‚éóVmÔtÞ-DK—Wr@/ôiÈX6ÒáYÕ(ÇÜê÷SÔy®°˜-ѼÃy;¢·g€÷?÷ûÈäg•§…þîÉ?ÝMê@’ËBr)ô4ebÉ( ‘€èî°[©ÍTšb €»Yüð1 `ÈÈ ªïK§eÅ­Êž çú8ð™ÿo <¬ÛÍ='xa¢!#o²§uƒHU‰¿iýÖ¡óÈ—K,ý|ïðÂt?šÿ»¸êQÙÁ•Wpê%*n¼€¸t¢È𤃫@7-¹ÇÏkÃÿ§÷—RÙ‹ÑðcÃ"í2¸ÙN°€$,€Í2ŠßäQ¸’ù¬µ€!ZbfMÅ@KçSþl€Wž%ã†Ãm0å„qÊ´}_þjy¥\ºcSû»+ŠåPq©;ÉÔŽÙJ?OuñöPõ)bÉpláê‹Ó—C¦ ¢ÅpŸNé$xà‹®™âyÿËÙäë^lÆÇö–…ùô •êöðoN¤Ô_QcÞãˤ7¥ÞYT+ƒ³'”Û¤J!JÍ8ˆ?É^®soÔìxõbÑ0U.ŒJ  …-`†] ÈÁ‚©ÆTÞ­}µ´0 axYHq"M£™¸÷†*CMU5`89ˆZnd¡×å×z7-òf ‰;!çPuf“q†¬K2µT[cMøFšÄìŠ[Kv´w²k™~l³)BÔ^_böJA*™Ö‡p5!Î>ög¡Á‡ºÈoÀIÈ7Ó.ÛM@GF·ÿó¸ ¯ÊNçÅ;ØMÖ?@ÿg´.ÅžL–K³åºÛà /pH$šLsë†Q×,ÎtÀqs J¾lpÂðÏ•+£ÌÖSPÊ—™¬ý@E%Žr~¹Z%¤¹w•ǯEÒo&² Mi§¹üô©Øš3GÅT5öî=c·Zë{±|ç$‡“àƒÖxjxKøú_÷½ó*|ö™FÜ¥°è¹±QéÁÙY¤”(åM½Eþ«³Šä\›7B‘(fOŽ5äQlº@ùµTÇ ”ƒ!`<}ïOÍ+7«ßŒóßÔûù—PEVv&8‰Gg‚ô¡HÙF.Žú¨¨ª”’6rcÈ„h’fÊšY,ÄE+iÐBö«¾b+ÜþzäòýŸêÃ{<ôü^¶&Gxåñ«ÇŠž1©€ý_ÆÄ¿çbTÏZbQVøÈY¢^ÉMŽêW¸¨aη'£h÷@pF… Ûlh¥/­ºî”ƒ@‹³ÊE+à'Rõ d@f,‰Ò±á….¡´hŒ“ Æ  /¹¿Éß×(Q®£Il“"åšãv`uU€€2 µÅ]¡•y}`Üsó,ßpMœ"«^k4'ûiªòúa|Úé…#ä6ôaŠ(gÐ^¸U!ÞãDu²øâ¬4iÉJD¥#Ä v#¼{A±(KŠ)\ ÈvS’Ôî+ /¹¿^ÿÂ÷¾Ö8f Ž®áO²j§eïÁ-ß¾—ö¶ƒ§—éq„^Ó?•G8ñl亯9¹È Ì+ê[ƒ `0+ [-Çô3Ó<Ìäš)Ô²Ôá¢b”£Ck‚Sxçž*™uAàê¢VªMÐfQÝù<¹¢i~˜8ä♤òp¦óÎ3ÐÍnguY»÷ Ê„°rŒ‰} <»±L˜<ÊHÌ÷ ;ƒ jÛ1¯Cô躱C¨“0%óÖêÎ!YU•E€£)Bÿx±ýŸ²ãtK¤¶«¿Çø¹ Ôstsi‹&¾ß‘ Ž(r¢šŠŽëàÃ"zÀ€±„ª}j7«éå àcCÍŠ<æôe¯Q2}•:¬œ1h·¦¼¦2•¹À -zý½ó*ñûï ÔÕ`Þ‰áhyêÞéºW ¡ƒbc¥mRU•RáäßuËýÑêV%,ìÉâCƒs“3'€i„½CªùõèÇDB”!¨W¼ÇQž8‚>lƒ$Æ™(žñ¯¢õe‹bÐNé5/ûUl):[òÃ_+&²4'® g8­b˜ˆû¤Ãß±Ý>_õÆÿaU—égƒÕ¢{u6ç£ôº ^gï‹À+[e.ÇyjN¾¼¿¾º׈kVÚq¶Ì^ñ.“e¦/Þ}‰FyÔ0•yHhS[ÌGIdæxË7½« ¦M’û5BL~], ÚRéKq‰–e†Ø£tà“^Á´Z¦±gÅÖõÆ[WOr ëdÖ7Ð bŽ[íÒ,©Ê.ÊË䈄 :2bÊ©Y†Ëÿei"w»ÜÞJjq{ü;N å[êäçÑ  9ò¡äFàSÐ2dù>˜Ü{ãPy¢PŸé©¸ƒðÂÜÎ>rzl¢B6$ÿTù:AªÄã%ͨ”æq£Ü¯À&ú»•4ê"Y~þ,éEwçNWÝ…i-Ôõ2#6'L{j·ÿ:•p‹A« I±*tZTŒÔ$IÃ^H‰J.ÏXÊÕó¬¢bÒFÖ£¼¶)ÿ]?™¨þ¦BæJÂó•Нôáé„,®âŸ_Q ðÍ–ÝEO­?ˆàUX¹%QÞ,¾äœêß.J™¤™(]f‚‡5È!}[eIˆ.e uçãÿQÿk­»—…Ñ’R¥íÇ@Ä“EØ¥R{xäxˆRL±Išl£ÿÚöWgž ܤ1qµ*ÿ•›«À؀βëÍœÓ+Dù ”ÊY°zÍe]©ê}=Øß”ØG~’ÉeL›X7Vô‡«ºeZþóz&¹œÈwA “^NÎŽàý´¿û¬ûWœÉdÚгŸ,fRfø—W´²ë/æ&­øí^„R^°µ.ÞždŽJ¥Aòæù  žô8½¦hTof¡oÏêq» €­ò¶6ǺéôÒÂâ!üµðp`’¹M €=³³V59™–ÏÃ(õÝ££…§½³Õ¢$3¢6­)èºeÿ‚Xü› ƒêÂMDv!¿ÌoïD»ÁŸŠÖÛ¿.'mØê…=7;¿1‘¢NSgKã ÷;­éÔóTØfƒX·€‰OŠ›¼–ñÔ¡± ª•-vµ sð†<㎹œK¤ØéT§ë»àë Ÿ¸úÍ Ö­é ¨ÊjËJ“ºm,4ó™ ?~é1üKÖ¼—¢| èÏžüL|Ü6'R˜tæe’4+ç#kZ÷˜=üT¸–¤ÚŒ*mfYN¶ÊYü¹å4¥CûZ]Uãå œ8s{¼¸WöšZ˜ÿh^Þ±£²¾ ep8Ïh’ïw1ôný†€#LÈž»‚ÅQ•ù d¥ffbaÙYIÂ’Ô¢ª1ð{KvJ—Ö@¦ðçøÀ°~=ÕÏìÕ¬PS³ëêwU §iz·¡Gx•2^E׋,½È){Ӣ唡 ®õp²}<\±qxim{6FºÍš»Ïp—ÕËÇ›zÇÀ´ U¢=Hv •>Hk†,¶c›‚³¹Âk+jr2‰Ö³0ípÜŽŸË(‹6€Ôùb’`Òè’$Qõ.çÜZ]ŠÈ €Z–½DÆs™W[‘°ÇA¥Ì&÷+iûÃùÔ41  §Ä!Ϧ˜ ¥‡KmÞ¾Ýð Ýc"ƒø´ˆËúØ• ü›Ëª Ty–IìW¸Q™I6²ÒE†'²Y_ª®Ø8íkR8Ý®OÁùoýõÜܦ\Ê0úæ|(œû1cš˜v? µ¬Èð²½;Kêez?ÂýÓ‹ ³¶„ÝibK~øo¡ù:,$RPŒþÖîÇCjN{ÔÑcŒ¡Ýë_€#0§?Õd³¿ ¾V\Î+Hµ3`L‘ug7[±ïÇ?~o²W'uQmk´ô/Ñ™QIh$Ü ÍF„GgÕÒf«sõÔžÅ6qö2ïYÑKN5!Ħ²{‡(óÝ⸺¼hh¥0«8—¢“!Q;Od®R½‘Y0ÎëBáô€Òß\wcFLT¹ ©û±KAÒCk06f1Xù Mu Ùëì©I5Âô2;¥ú|½õ–mýé;LÂE麽q Z  ¸zHñ±âgîG@+½£J„¢¥)îpþ{ï§öm; Ó9   Äeª^áAidÞƒò“Ãô–2Î& µ7w²ÉgBê Ýjø“Ëå|4òÐK¶åÌnïœÒáh¿ëP^šB¹;!˳ÌÔåòŸç,g§lVÄwH^NN”fÊ0n»Ùîjp7Lü†\÷ÈwFΪ°†ppHeÏ~àðŒcðr,XnZì/ñÓE 6ô êË„»~Mu– ™žÚÂ…Šs,~óx={9¹UhãJoNÝÆ:¨LFt¹;ÿ°5`ëmÙa;*«ëúRफ़÷C)\rR=­#4ƒ^›)È·Wö|ÚRµR[W‹ƒïP¼V2˜U?®Ä´R=WÓˆšD(îÃ ÅÆX°4uűH£;á®T0¨ !´Zþ—štrxžŽìõ†EƒìSûDÏDag¦øká†ò¹ÈÎ''š#¡þË“pîÉâž²RØvšI›ÞŸUjªF:D¼gø´îºAß<á^בX•ÝWÍÍÀ5 “A30^âyä­—ÏÜ4ÛÅ««”˜Òà¶¢NÝþÑ“Ébï¶®¶ÿ~ß^È¿G ¦IŸo*©äÅ¿E>>úkåw'±m¯TŸå ígÁYŒry„\PköÈdšÈ¥Ë¯LP<‰u‰’›Þ#û•™®â×ÍeåGWø}›N=;á²A¤¨¸d.Îó»òa\ó˜#צR¬)!5=yR$¸“á­¸.\XCŽ;³µQîŽàšÀ}ÇW¹è§vW÷Ÿ +ÏŽlG~`?èò¡TÁ!6ìÜÙÄÂ=ñsVUÏE‘ákt襹( Uå¸%w¤16S½ðš1k‹mØ5X0ý?lÔúj¶º;ÝŽ«ƒóKw®žµ Óü‚"Ü¿r³2›Æ˜e³»X²u^P=¨¡³‰@öHªÄ÷¦ƒ[6&¬AÒcêrûöÞ¦§H(¸Ý4°U–î¸]~©ˆ59¿¢­ºð)ùfTû3Õ²ˆãr9Ác]Ã鉄ÐiÑâï¼*yý«êvº“‘Þ½—ÛÎ|÷·cÚ \ŒÕÌ*í¨ê7Ïï‘ÿχÈœ?>c4óê‡SCçLqrøÉé Šhתñ«ë ÔDZ«e'îîÞFIÛa‹HÒȸ¦MßH«Nä@”¬u,ß½üLÉe‚ÿrI­ÉççÍmn‹|}ˆÿ½÷*?%ÂBtçåüù^#æ`;Xj6°€¸bøiKÞC\Ñë×0°Û%'6™Vн#N‚F?3àŒ­ìYÁÊs™kÑamÅÏblT<¨6seÔŸ²þu¤óñfHOÙHäúB¦Gi!xWLú¡n’{J.0þL8“à` ev`Ú-úÃ1¨·ŽC~܃STí— {â¿£}Þïnåò¡YººßöÙ¼­ÜÖîåJëHOZæT(±m&œÎ%’ÀL”𢮠¬U±«`ûbÅc&îת¾^ÍE>È<’à¤j…Ï-~¦ÖDXÞ*\Ì/ŽQÛ.<×Yÿqi¤“6‰n3w#ëA™³çË|gë1#×îO&¾d[œcEÎCµÖÝê!‚¾×¸‡›Mäk)vاÉOè´á²é?ŽÉ›dÒKãE•,ôyÍ祕+1Í&~¬Ù>áf¨²¬2íwëâ©ñ4ò|‹g Á\2úÖ=HìAeÌ©åé7“פ?¼­uv–[*‹5wôÈ'¬ÏnF=åÓíä¿.˜xL§”‹ü¸š#PW«ÝXôbÜÐÄÜ+¦èÁš¤¸Þ;»/þXæCyª˜œÞe·ºññï´¡hùcçZØS“w¾ª¦*m‰µk­Ø3’À¶AoEp›#6&n{kÒ;¶"XO ôTÉ–Õl{7¹Ù-¤òyÍ¢ÒB2Ke¿JÑ–Á,”{$oéÛ`š‹€kµgP“Rãô;£¦ƒ“TÚêŸYy]w¡-½ZÝþøhñ–õ¾{‹ƒ-E] "¥G+ƒ<ódsr¾eEVq…zgˆ­œnåVƒÚâåþÃ`ÂŽàæ9™ëCž¨}î H…ð䳸?CßÍv/Šdå#z_D|ºá‰$-õ˜zªA°ç€«^ÅGSJ.ú²3Í--n6þ‹F-sk¡/£ÙíÞSåµöå{ÍõH%ºu]ÁŸ®5`…è^Ù:`ˆêo²ou°9:2Ä©ÝÎÛtû¡ù aüöÏô1Šgðí"ö_®wë"z¹¨øø+®§@¶°^Äýx\ó)6_!cãIÌÇE'Tê@(þyK»/\[,1Yï­Êv7Žˆ €”Ò_œ-ó×Oî«E"4 Ðp¯Ãr6X— ‚þ¾ÆÒœÏP"®‡*}¥Ejºð–4×®›£ÞÅý¾º–Ÿ’Îßé"j°E8î¥ TßÊNߟ Iï§æ¼«’¶³²?_)›a–."_´¤Î³pǼHmÅH56»²3Àº.ì#üW;b½\×Ò2É$lÝ¢V'(«æ+i¤Ýµ+cærb§9«ÐgðV‚”‚`G¿ï­¡pgõÕ*g‚T–Æ›eYËLJ’÷ÁZ-ª +;ÿJBÇ×™öñvå½<ª€¢4SÔ‘±ù ­õ2o¥Ò…*ݧÍwއOò{õ– çà9X.K± µRðÉb“#´×§g´Üï~å­gäîi¹åw/Fs è5ÓRpJÍœÑXÍ#&éƒÛô+9F+9vÙJk.‹åã[ ŸdˆœQ ð (“è+µÛûê “Rjcó¡ÏîÇÆöÀ³~;âý©`ìc€¥SZµVŸÁñ BBïbE`=yÎi¿£à° Šö1ÙA×ËUª\Ô €%<DÝ`G ®Ú¦Ì S^™¢ û!ªkß±¢¦€ÂUë:Ü?^'·[›ƒêF>|gÙGû-)÷ DQ‘Ý{õøÓ±Ø3¸3š=•ÅÙ“ŽÁŽXßø?4Ô³8bþw]¿µ¯ˆ†„rØÖ¼ÎV­ÊV3ØUi‘#[•âü˜=_—–òuå eS»¢ÅÌ+t Ãð¡{n¼˜Ö ãìf9œeÕ¸f“-ó,yœ\ü%¨Ëô.²_¬×‹-å~?ë­íü§¿¾'ÜÍ÷R<Έ¶K³ÌÑD§Ç“‚ÇpW‘ëéhûõã~ðl ©¥ÏîÏÒ×â—›™M=§Ç.ÂVu×k†ÖO'E‚]f°é§ÆJJªúkøNÖ(ÅSwB%6) ]dñØ*;ÉʬßXÕ‡øŒi€n)q‹¬mUs*\•ef§©'ü?vA´±óšX…M<:x$ó i³¤gÍ„Œˆ¤Ù­)öxxhY‘¦-Ô¤Í1Š Háõm¤ûhj¦ñf­"®‰„†£iìf;Vb5DSè_ù.Ì.YjÂû’-FZñ»Mâí­Ñé„`F"âäËuæ>W…÷ãøe+c˜ÏÕ’±|ÌpÒ›:§Z/÷‚ÿ€æ ”ßRõÛáåS˜–~NÇÒƒÎI×µ^fëQ$,Èw—ù¤7 MrÄà ôAðÊ{>—ðõ·q1ïAÊÁ4äèå@) žu]å¼Ê›dí>ŸŒ-!6GRô­o-ęۙ<ï)´pøU…\ø0¡Ò©¸aƒN¦¨IW¼ÏÏ[®oIÂ>´± ?¹„é—ÌûªïžÛºìïœÕqA¯÷XQk¯ßí»ýø^¬ýR|:=< ”½¬KðysK‰ò¬ÕVK6¾Ô3òıßÈ{¾ó£ý–¥MªKÇf] ñZî9Wˆ¦ÂóÊVÁ×Üüú¯ßÔž8˜'ìñ@Yø½˜y‰åû¥y³¦ªšûSN0¹µÒ|¦b)ðÙTäyb&F_Í9®:¸SJþ}Iþ¤åƒIÛ§íÌ"‡–^ÙÁ’ÀO%¬æf[¯Uò¯ºMÜÀêVÖ¦LÒú·FžJ&šÉ唎jΤb§¦‚pò­[õ‚ëQé+¸Š±x›€Œß‚§ŠÑÑìÉ¿—4ºcÜi*IXVv¯—QÎ>¼¯)Û ‡aPŠòUaj=«8Ç%áø(Ï®¾¦Tlª[ÓuéÇǽHþ²-L1ó¡iëj? _(:Ë’KVÊ•D›%™˜æâ<¦¶‘Úνø´Uš­=ÆÃáû,÷í·ßáñU“´ÜG4‹Nz«dÎj£†DÝʹƳ“±¡—àÓû®§™Zärþù¤³,ßlƒ.Cle%^Xê¢_ þÚ¯WD ›O!çwÈ@Í_6ý¹DaÁç˜}}ÕVvØÕ­»ôŞݦAˆQšVµ_½?¿’›(­|‹Óf%èþÈ!ªùÝTÇû!R×k8z¿.wÝ;‹0ÿ<˜ŽnÄl—¨`Çž¹& ¸÷»ìÂ×iž-Ž4 æ:aè1Þ¼ÞÈ{SÉ>slât–5hûÊ(çëE!Z¹õwÓñ†.ýÝEz©=èǤ±)÷’<8WRð*ŽÒÉOJú„µTÅn±öïÂäû|^S pÑ= irÛʽ5K÷®•nqÆ|öѯý¨‹z"²y{í²Âÿ+Rê€LÂM·Ì$Zz:É×~ªLaÁúž‘%ô,-òª½ž,æ×3.~!ìû\Z ýlºQ9å…#ÌñÓ’e÷óǦ§áCÓ«-kõ½ùÕÉêÏ\5šÝÉL±Á¤ZÞOiXp”F.o±\_BDÆ\%nft 0Úl•4ˆ…“o²ÜÁɰÁõ]l]· Ò/-y^îöÜN²óµôh¤ËÖBö\*Áú♩ï¯fþ©5ª¥gÉ\óJ<+ÖèšÛ)Dø‘g&7äãË+±Åà×]~"Eâ.·™ŸŸU³eÊNenE·,Ç®ÌH75½Žyd™^ÂwyWö}—YÛ§úØ.¢°V‰Z«¦™åáΕ‘ŸHøÛÔ~°[&{3ÎÐyžÏ®$ÕTÊ‹*V€O¯»ÂoÙ`Æ6?Šo9ÓMÊ©îCœN¼,¿”÷èG.ᢧ’Þ>8ðÔîDQ«Ø&¸”pòùu¼pª9èdÛÚdÿ°mÐOM×­—®Žûmñ×^< Îc}-33zè¾IØÌôOÜgx*Û»­åôkÊÚOãÞª¸öEjK…¥5VîÏ¢¶ºË®ÆíhíHøÖ×Ët‡Úúq8¶ßÑpLX í|1eâ»tùÝžk¦jºšB›{$âÕ‡‚y”ÒiÜ[ÞQ¡Wâ®·*|Œ#'ñðf]çs®õx»ÀÎùÚŸu»9ì¾³4”Ÿ×q~ôÎuMâ ìB=5cø\ ºül^:Är%2@ûÄÝU–Hö‘# Ζir½Á”ÂŒ.ã¾(8þyíF¨§•¯‡·Ù·øçp6v=¡7u#ŸÅg[ÀAÝé3o:A•y€£gÉÍþ_ &H;íÍþŸÞ~ã~Œ7®—šøè£Hvbù¶É¨XÀw~s7qɸô6~óÏë’ RNöÜ>c]‡Ínt©†Ž#þ ßâ$N©žVã½f rìªD(¤îÑ•z9­±Dq•AJìWŸÎîÈTYݦ)ãÿª¥—?6™»\_ßýUz(J;[ÆtwªýÐl,óFê)F8nÇÂ×åzç£óÕÂê(Œ9Æ$ÀÇ4õé›áŒ÷p:Û¤£$xƒ23§sHõ|àxlðC•MÊÒç®FcKägb}G™ExpißÊ{ðøhæñËyމiÙvÌ/ Tè‚“ñøö="˜”Zms‹«ÑÌ÷$¼ÒäË?RØ®$žHÐï¶6óIg°›Wê¤Î@ô5'ë+G/ON”øžPŸ‡gØ©ÑËèa¼ý~ßa]v+=LÒQmý›Ÿ_ä?Êuš÷…lkk ƒ[©ÿ`*X©87òéDa¢úó¨ÿ¾òìóçÀئ5§Û‘ð´ÇÑA4±MÝB¤ví¿©Äòh¥O[–F­ãdöY µ®WŒÉøtvÆ—è!Å »q.ÔÜŽ7r_E1Æ*i3#»S+u}ø›V`}Šåf¯Áòë4ºÙ/Þ¤˜í‡wªAÝ~·y@êQÑ»ú_¯Y/7„GðGÍøŸ¡¸´8M‡$m{i™VŽYÖãÒÿ_;ºÁ+[ô’†>”ý6:ƒ¬möI´× …pSb>ØA¾&˜h’¾<þïÇ£K`/¢}OÁßkFT_¨gtÙÒ̼5ŽSÌñÏßéWÀÃ7Ÿæ¡¸RðeË‹²Fª°,¯ç+¢IӣѦÜý¦Ó{쥆ÅÑ0½@9!ÛÐ4µÎ¨é-•kÀ‰àmö†ŒâˆÓÖUŸHVêÊXDÖýÒyæ~zWØ E ¸BéøVXŒ®0JÏ ^†1¶bu߆eºkàZ®Wê¿>ì>Ÿ¦ôÓ/¥‰Ò=³ƒO7Ïòî°7¤È«B×o(ã뵘Àñþ!!$,—XsṂ È¢žæ˜È<–"••U"^r^ê”Aû™®¹H#p pTðR¾ñÒ&t®Ü‡µá«S‡ÏH%E2Û~½Ê÷G{ed‡i÷2^ì¤:׊ퟄ_ŸÄo ûO`KŽ—UÈRôvn×¹³ƒúD*þDäûó¬VÜš{Cæã)GØM5§õMÜøYõ&#ª´¿ œÊSq–Pz³ø¬úkGÒ$¶X“þ[”Ðci<½Ë,œAo’;Uü@þqr¶õþãö‡8&`Œ a^VÑæ-©Ù *Êû’2üv ¿^@@Þè× ˜4•^C5÷ö¨ŽeÊ𴟯…2¤L€Š_æA BÞð01úÎྛ$zËnæ„âÅí(x^¦~ç¥$ 8ïü¨4©Eoq/ékQsÐ=ð*äEKø‡¢qèà BÒàõÉ‘éɵ튷؊œ_ËQ¸¯a¿àç‘Ìd»ààyÓ.—:ü;h ÅɶÿNÅ»ùü7¨/Îë°€×kN Ùz&ëÁÇc‡µhERö&p£“ùÿYGló.Úª~J@}XÛç…®y_Z§÷„öÄI<¼%3/•>ŒgÌ·Æ~ɺ3]b‰\SƒCjzDžâ5ÊSE,Ь°tƒç«özgQ¦‹Eþý-ô´þ?$Ä,€]<Ê]ÊÖEUA=µƒ¶÷å¨êîü˜Í®)¸PI ñè8çtýÛݼ?´Óßd×ÒŸÞ¢LGuqwïFqG[I2D¸-”·p}²»õ‘]€¬7-Z×[Ø>±õ;-Ó{IšYÂqÈŸ%óE¤)r{•asæ`¡+Ÿ ôô|ó-62žt^ÄeFƒcæåû7îdÛî¼Þëùìà\¹'Ý_DÞz­ˆO_eŸa‹òN©æHŒò·Ëç|H˜´êFßÛÂŒKÓÕPûÕú˜ïê¾ |)…aôß‘”Z\²ã™·bÏý%åûÒôƒKV´I¨ôäë¥öX"èÛÔdiÚîuÐݸf)z;cGM2%òG+ ÏJŒm]‰NK_´S›èÈ»çNe¾|Q¶üt™b«öÐü ß%¶äõVÔk"f¼_ëMýüXfòÖ¡'dr51ýNf2Æ´yCwof’±#yª¯2ö…1iÒÑÿBØõ ýSœv Í[×ÈL$H𷘆sÁ¸Å…“óy¼°­ª, .j_w8Ѫý‚W³¯Â’QPÇ3\i÷ëg–Û"CZ&b¤­ƒ"÷î%óv×cÅR”“Ö‡›õ*av±D«­úÊïáçññÊMýã&«WŽÑW©ö«(r½×øÈ®ç?¡4tîe ¥Ÿk¿º|Ô†ñß_WºíA+Scܧœ—£äC(XðOaò%”O5¬Û·uÅiÆv…Ìþâ½ñAs`4 º÷ÎÉïºS}D™«}nðJVé[Œ[a©°ð{èþ¬úê:Fåœ<í+VˆÛ.M6&èßí²JJmDZmë2“ðí‡ÅDörŸæ›CÚðBSžnÝrOÈQˆÓGÈ™•x˜äŒ=ú†ð»–Õž¬b#ä|\:×_–U‘ëûɵq¦ÙØ ,ŸL6Ü‘¸&‚|øïrjÆ_y.¥8Ù&Šæ6•öœÚ¤]¶k|W['›Ö­ìíz–”;ŠD<ÙÚÂ>˜TÖ#°?fqØÐÕoòþµQó‹1 铪¬£èL§ÇžjïpúÉ1LºÌ£/âdw—mŒ»/³âÛõ6 –‹ìJÏKÀQ®‡¥ªM°¾PW™“«.ÜÍ5ÇbáÜfŒüÌÙÅöBv´¬`¦pŠIúþBü™¸²ÆµÍmÓ ù®Î{ÝCÿ&¥®í»´—Ä_úÓ×,^ׯ´Ýí1ÍLF;Ï[S%‡KÆå*ae‰Q·³m’H­üZ§kì廞¢ÿÓÀ«™ôp¯p8Óâ¸v©¢Q¶J}ÁŠèógd>ݶ­&ÞoëN§üå(¬'­ [°âõƒ¶7EOa»`b/èu%5ø„!C;ù±Aû*fJ„þ" BÀ”}öyqÝÊ@òÛ†¥Q½é1«¿{%«(—ƒ¸‘ÎèÅ8xÌìÉ šÞ.õÛ®ö¯cØr³Á!åΧ¸@*EEgo¯Q¾m¢XR¾–7¬,ŸˆŠˆ^³ûEgåŠ(²õÎôJ¦Ka‰›–mJùT`«>Üâ˜i) `Hx,Ÿø¢’#œd•Ò'õè4Ìáå:Ñšk6ý9ÓbÜ­k»ó÷ïÍÝQÈõ®ÖüYìh•º¹¢dáVeS¬ðW¯œñg4¯xõ­ºÿÅ»žŒ®ê}®ho»Ç>\Ãj¸*Ý+ß):ß¼Qª¨3_Ù Åä¹ÎÄ[þdë0Õe,ÁQ»Ñ NÖ¹a@±qPü™ÔßËuj|v[òMîÚ¨ «™æ¿ñ0R?A ÚxbbÌJ$¤Ú:ý­WsM¾$LìŒaŠY8±>DKÁü»á}j›\­PL©Ø.èBxÈ1J¸À3þ4tÖ<õŸ¾¡Ç åA:>Ç' nåd­ºg4 Rl€[÷h¤L¢¨Ã»cdÓÊsËûSN•ec÷R¼ž Ä“nšÀ;º‚©n2…\–—êÌ ³…¥ë®õ©‡4©é!&ÇԞ -Cê-öt2zTð×ëM¡µ"™uÍ7ßPJK{  ¿ÀÓÊÀê­²~Ö®wæÖžÈé½'v9ù¹Õ_a&„{iFuµÍ!É•kÓ.ãÖï"ÍŽ¾}|¶ÕêÕû$-³¹Pé£pÚ³½Ó(Î §£]Ÿy`×èÈë)A½¯´Ÿ«Òêy­?ØÐ®·eñ«WO =PdôÜíQ›c¨7ØM†d„°®í:÷/\ü4¬3ê,ûƒT¨éú·é†A»Üž//©Q6q—iRºŸõíE;«Ë`\R%Æ‹qAõÕÊGÊa“»îù=5­1²ªëÖ˜Zµ@Í ˆ>­…vˆæA¨w÷sp/9n¹Õ¸É¸Û#Œ!(àäo縻åßgN8*ßÃ^žŸÍ"a£cx38ì*¸û?”®e“àDb¹±¯)•Í„Gtñù»I«€ü¶Tò$”Hø3Ìõ©ƒÑþ“âT>.9P÷®Út+†:Ðõö6û¥¶Y½an@w[5Õb.î|û|k¯²6Þ§<ݰ 7ò«IæÁ§çõúǰË1¢sè¢R„ žåDÕØ‰ß<«^¡J—+ßÕcNÔ‡5*÷…PJ 0PãÜR®°Z çc˜Y¼ûû÷üm}e«…äJ„ÀjÖœ¾˜2 W¢ŠÏ»ÅõLFÌ—¾–Q/} Æ~rKÈF–eÙÛχicW› }U\€œø%Ø·÷H›_žâ‰…"ƒ*¾q€)l¯i3×öñç°÷Qœ=%qŸë<ž{Råý#G¾µƒ÷ÜòX22ýÿõ¦:ñ'ØÐËDá¹?¬é#Q黂Hª§„ÝIܬ ¸„œÝ§ƒuÞ_÷Ùôœ.ù{²T™ð¯Å¢Ø–Ÿ5¿ˆ×Óyœ÷‰{½±ÿ×¹£É}{%æv™j)Ñ-=Þ”­?¹çšcœÔâL}VÕ¡íÉÐÈæaþ3TÆýO0÷7)Ô+Œï†PÓ›yb)÷ôPZÈ»öÿk´Oº>ß³-íë@·A0Ø'GÈP«•õú\w|a}‚¨S‰Ïÿ|jáÜòÖ³½í„sþ Ͼ÷šôÈ/¿6&•ŽI0ƒç¿pùä.š›.ªž˜„¶ñêÞöM3KÈÈ»¡åǵTàñ7€U øõ‘½½üˆå”IIÉýºíÖnõ®WjCb|ïEÒø-PÔö²çíþÞ<.¨†”Îö µ6Ù_¦G’àØ‹–Y&¿ñ]NÖŒ$Û-÷_ Fgµý´-ÙiúH]Û½†ÌÍx#.•/¾ˆŒË¦™ÎúŠ–Äcã©¿¶¬I¦÷SëŸiÊ]ZÌOQDï™5?w“3¿”:jv²±*¥@ÞGŸZ.[~¡Ñ²±|™=w™šóqüR]&t¥DåóT2WÆ‘ß2‘øz^ËÌQ( ΋Ã"®Õ¸ŽŒqqô}äúëˆuñ|W¹ À¥?–ÖÌŒ[–ªŠ»½âÞ?··"SñtÍRV-lmWK;6¬öU/s·—ªÅõú_Ãm±`=‹ÈþÖº°ô=U¶wñe¡»Ýœó4&.Q’¦ù×9)u'ßYØÁ¿³ 7"tjÚ|Ýäcž“Xc"Õåú?TƒÈVlÆú½FÍDZÂSöþ·¹)6ûɘE²„÷kúó.¿#]øîmOúnÆC¦‡kÌ&Û:¼þ²pq…‹¾k‹‰z­wMqJ2ñ†yWâi÷ªmR'+ùâ§wíYíaŸÞ¿O¹3Mž†KA’ÿ:‰–âOH¡ï–ïðz÷=9ÇNÄ=­6)P‰xdñFx6â­dï̇‰¸ÍÅôöêüì²Ì›l;Þ9žOøm!hf×*ëåtǃ÷RõÅ6hy” zVŒØ¢LúÇZZ)¿ÿ,ðb†ã‡ºˆ§À-ÞáY1’îùæ~ݹc1í¬‘Vø;‰¤uR¥ÖÞB¬š€ØÏðùûÏ̓Meœþóƒ/ûwPX½»Ë³ž×¸½H¾S\«øÊ÷m'1¤TA"¤W"cj?³ m/’¬öïìþ´æQ¢ùžJWi#jå¾=Ô6 Ú–„ þ¶êá«ùòyv[ìYÙ_Øÿc5˜èÀ> ñþFÎnÚC%ñgK¹7œâÈÞŒÆò tÑ~”ú†î}¹ºå§YõÚë¿Q¤"=Àˆ Ûú3þÑùFibI´Ñ pÉ.4)r’~"á =Lßü! {rºÜ[—–ó“®ü+›§Nþ´¾ù¯ÿ$óÌ0êì€|%ß$‡‰)tcmÇg/µ4÷ˆâ/O³|Øö™£ئŽPörJ;ÂÚ¥™O5¡©À¤[üßèÒ£'•ll§É¸íMí«x†ê7©Z&›éé\oð(ë– ¯3-àv‹&Ñ®À~Õ ÷è‹­<«iÁŸ‡áùVyÇlÐÈBâìŸø?^^––ÊZSá1–ÕqV¸¯¯WíÎqHÙd-öï>-2кu¯ìšÜŸŸ# ²s‘ Ðoö;ÎeéÒol:ˆ« âC\eó_A£¶¹ äÅ,‡¡«’Óe£;ª½ö ®±ÈÅlùÕ·vñ=ûæaª¶lšG2UèŠ\àôVÍ-¡µÄ`§T#š÷ßšè,¢”™ô /Ùzà:˜p•]7묛ž*è6ä$ÂÚ*ÈÖ­nçæî¸dÉÌ ä\îÂmýësí:–aËßáãœ1»W­Oé4ñÈÂk:ÚÀ=v$ppÞFý9þ¬jùž÷l¡%Žªh½Š 뛋Ò“ºM ‹]†cSÃkÏ'‰¼¢¤ûã¦Ç„RóŸ»_¨_Çy.É¥>ÁA‰N†fSΨÔMïWuUÜ ñû¨öè¨öe!^?­Ã"œG¡11I±iºÓ$–ލ- ÑÂÚáÖÏlþsœn¬ªéEJK¦}­‡ØWŒZÝ8þØÅ5ñŒ±^õ g*¼ìv…´ƒ¾·b©ZÖV¼”E5s“Ÿ–4¬¢›í ó»*Ó<3Zä ®Û¾®ú§ð¦ÿw—ÑæÖSm}ׂ¢¦Lý z:òÊÀäuèa1Z¦)£j}g#m«J´p„úGpWÝÍ^{—Ù­zCãäŽB²? ?•Iê€ÇÈ=ˆäMx²—'H¹^J$”î‚Ò¬û.7¶Ç´CÏn®M‚CõTL£ÊKˆŒvG\0­¦½ˆ,{Wm³r¾ÙÖFœjÞº[q+øŽdØP ZrÚ•*¹f~ÅR&«Vá†ÓN0¸Ôcyóéy–fÁû¥cP‹uw_³íy·]«mXK/m÷½›½ v+âoËaÂûå£Ý+óF$r'Úçþóf¨¤²¶ß\)bƒãi 6ˆwX|öjñ¼Û+:l† Fg§ÒáŸË’æm¸•O¢ç×Â'äчã?ž}ïd¶”å¿l\“>åÈÒ›í«ÚX»×ÌĘM4óÅd¾û:îqÒ ;Ö»¹ßmìõhØ¢"lYó) :íÁÆIèŠÓZ™ ßMû â¥r;ùç}L„-¦ ÿ*eeæü\X›¼”™Hœ·>æl¿Z Ž7u ªµÿôj 2o+#ƒ‡ŸÀÌ!8}Fe¤Lv®nÐk'¹ýº©Ç)ÎY}Ä?n¶öÎ?aEí.Ïbo Ž5¦Ì<´·†hßµ«v…Qt½i¯ÇµÅåEM0óáí†J©þ|×üyïª|Ã)'á¡ô%ÁòU|ÈÆüv#Cr'$顽ê‹°rCˆ%7ÖõÃ@Zô>–-ò1¸mè/¤Ø=òÑž:ë[Y¶äéáž³Ôp¯f8$/$½‡ùi~My!,Ø-'²ß<…>Y¬q ]É0PU87l}Ù'gV°ªxzT>½o2TÄN¹ÓŠo‡ù]ÕÀÚxÊ9½¡•Ý5ÞÄ™¸1Úª‹~÷ç¢"Cé^Û,ŸÚ‹…Œ„%£~'£”n¤ó’¤tS†ÃT/­®îß;ÎCëûÓwɇü|;‹Æ=5éÊ*\>4•™†·Ýß•ÅwC+´ëëf醀„ç7±0X“Yžþ76.ð9ü¾â»Ÿ-¢+ŸgÕ6Úqnl•ß<,ƒ4KAé^ç\¨0Õ䫸úuºœ—7?YP’N:)¾ûÏð¯ègÈ[20'?дOt´Ž/ŒÝõ§Ù¿]œÆç!¾÷92<3ä.•{I¹X·}x,P~ÛbMÖ¿ÌèJ>—¬:ð~¡\8¾—ª¥ãÏ´¢g²äC³ÄæçÈð\ÔÖMäëøÆ°ü¬Êô¿z'ŸónЏ]_EÛv—â©«‰öf~ï¡ó$Mßñ*áåÝ|cÒóCÆy÷WÕû¸¼©šˆj„¾€#д©¸­ªº3§b¸” Ìá»ÉæÇ@ü™Œ‘ó“ád®–%ƒ«{#8B«Cap$D5ɤÎ.±TÆ~®väßÝÉÍ÷¿Ô5щÅáQÎëÎ\9ÿλ癬çÏ"ƒñ…rß¼hб¹E¦ç“ž»l!0TÒ‘~Ó¯nݦnÀ˜½³ýº+8(žŸÙ›oÉ CóOÇœ€i¬U|ߌ†—q¢/åëã^¾ƒ‘mšì ‘ ßÞ„¬sŸÜ jk7e_múØ*ýk©SÝ÷û$“Ëö{ßHù,ß|³‰M!Ö’«µU‘%òÖ6jÑâ«™wÃË“†#é…ðG<ÕòHëü³moT™ãgk+¼òð˜á¼¡§ŒÊ~®Ø[S¯Öò2^XGy®†ÛaxlÎ7CY”¾•Ö™­ÆåZyÑ<¢ ²ý1fX—Äœ8Ùva9]ºÄs-ܾzM˜—S‘•?.ì¿DÿàŠŸÖöH…Úϼ…ŠW§±ÏV7;'îñôå»Ñ°Ä~¬WŽdŒ–½^çÙ‰6åâ^Täeÿ¿ÇK{Ÿ”V«çË/çÑžÉÅæ‘1‰z2Ü^óz¡_Ïš¦ÊÝaÝ ëW¢æ¦°ó…MoùK¸8Ôµ`%µKk7&ë둵ýzs]½Ÿs¤¸Xª/‚=ð¢Šå(¼¨Ò¨®ÒïÊÁp³£•óíp¨ Ó½t@¾¯Ûg ƒ’¸xçúë™uUûkÉo:º½KÒO²˜¯á¦( ¢×¾‡AªCMsØ÷ ÏŸzDVY³N¨ï›îå(¯>iáÅË²ŠœNºkGŸûÿ¸Šà+‰ÓT+7öAà¼X‡áü_ÿ›hÄàø=šãý ªè¢¨@ÅdÅ+²Öö'”,í†o’WÔër°´÷æ(þ¬Aù'}/'b.û^ž~ÊI¦áù¹òö-K»ýú•$átÁusmýmNxÒm¼¢ÐÌâþ€?@(À˜Ó\oÀY­áI‡á¤¡¼—÷µ.—ÜtçìÊý ÛOè¹<Ϫ>ÿµZIn¹5Wlã361â>ÅúÛÕ'ämš·¬Öå¢ÓoñFð®f†ØØ¸x¹7͹G˜EÉÿm_Í‡Ô ô6§ÀÚýÃ8Æm>¾.œDæìßåÏô›¥Ïÿtí¤v‚³Y²f¶6$´H( fVX©-¯S92Vù¼ ÎUqGÛM«£ÔÅÊÕ4Æ«¯D›‡áÓÿ²²âã7Êf«;"Ïò–uC<:΋ËxIî½÷V<Í/Û‹{ª_‰™µ¿œyÝãÅr‡Ž{~o[jÛzmýFµ¿K¶Í[ð­ExŠârë¯ÒíZÊýÿÖú]jõ›kÊ‹H«sSk𡱶»ºj1P’Љ1îëp„È–*(D&RC5w—òæ› o}m_¸Òým­¿ŠÌÛvž/ÞÜ_Å »CõA¿ˆLð¥7Ñ~™÷‘}·&v(nt¬º¡g_áSãuSÅðIŽó2Æe3!ÄT^/9W7 PkÉåÿ•s]´YÞ¥n¿_› ™ädÞF½m¯‰Þ­·+B®n[;¥&¹Z 3 ZÅs+\RhÔhÊJÑñìõ=žÚþO_1WÍ÷³Ù{;yv×à~RÛ "¿•Sî:'P›-2سbËc…Õÿž<2ï!t¸bf}ø«y©–æi™úUCí§Ïܹ‡ùc§ËüËUãŠö‹ö Û>É)9Žýû½²ršiš-ÔcP’†i¾M:P˺êC4I*G—t½/K©ûÁÿ+ ÕÍV6~ê: ?ZM+1m™XÔ½x¢ÕŸ×Ÿ%ÆÃ8Ø}ò¾0nõ˜Ùeƒ“ùxÇUîiCšÔ£w 7ކx2Ýö3 Œèî=úæÔqFÐâ"â£Qfsn c±›b™®6'ñqÊx³x|ñvõùýMû)zZZ«6·*»­eßÊX”ã3ùÑÈ\Ë¥ó¹ý¿£QíTþl›m›?ã­?w~Ÿì/ú{Õ?  åUÚ¶CJ3e[e–Æ1©*3E‹Qš1¢ˆI’’I“45ŒÌÖ?j/‡û(ÿœœi¶»%¿¥T^@¾è¿ª/ƒUké_®¥çmE|i>|b'™EÿJ✧ö ë*q…ÛÞßÚðŠr1ì:ƒ“ŽN_zªüÕªmo‘½ÝF+Xª4hÄ*#Qoógxí¼y;­×=V«mzŠ¿Z­i­­mynJ[Ô1™€Ä¬Aƪ͆Ô'ŸõR<ì<¯çùû¤æ:M¿áíöûßëzýÒŽ‘:XeVyòyùXyùÕílÜ8Ç1D¿µÿ_Øîô¹EfÕ^qÁ¹ºHŠæî»º¹jåwtnî[fÌÚSe™›¶T:‚:ÚY/Ë3m³eÜNOøHN¿öþ˜éduþf›M˜ºçTßÛUG¬SÃJõ‚ñ‘tàñªuÔ^ðÙM¬Ú½>³aïTëâ³=+!]}UícG$_׫¥ê‚d’,˜ÄÚ,à ÛM›½ñY޶«£/[K”^´$» «•^›°K]Wþ¼°¹[¯Ur×^–¿šS¯[|Õµyõ·Ÿ¯=‹Îtmç¢ñÝÜÿªµjÿ‹âo ÏpNvDvrjà\ ä6äÜfã†m³º³ok*œÌK??]Ç‘K¶%߯µuµsm›i«¶òêö¾çÜø½§ìª¯˜«{‰ˆ¾Ë)™o´;¼ž?RŽÑ_Ÿ®ÉWb—àíWv\&Ë“‰@å^NùH­Ð£wÂÿ÷Æ®Nïžnx{Ïž¯Z½ ߪlB“ Ñºô—'›“7¶A.íà×wH»Â—qÕ´5±) XˆAE·q¹Qk†1wtHØ´]tÜH0‚C˜$DƒÓ{ zõù¶¼ý«àí²ÕyúÛù§ áµÈÉ6MFÁ®îíŠô2åèo/º­Vø…«KãÛ÷;øw­7âoˆ·üTìÑòä|³åæ¶>özM}moŒ6ÛÕÔÖ£amª*cm¸ÄR‰DF)$dÃ@òov¾ÿjó­Wjí[ÏÆM§#[vÊßÿ2üíwíöio³+y ¯²¥ÇX.®tx¼ÛG×X§¤uª#Õ¡Ítò·NGN<Ï9æ}·¶ðÞÛî¼áÆnrW)ZmÈÚm$ßw¢{{U´©äÚuÁ›6Õë=]móRI Ô1b4DŠ0‰4ŒÍFbQy<ÛZ÷ZÙmµqY™8úÔú7· £UtcOdY¶Ù%¦É·à{šÞ=Ξçgå~O›[_Ƕ¾•/›\®lîæ:Ížgýò…Þ{ç³ü軿ГèRúì*:quøÑqµ+fÓ“°ÛŽWÞAO«•ôõÔ½?Ð#ò$ç{¥NáG6Ìl¦ÖnW-spms‚ˆwZæºM®Q(ál“Úåfoœ.+ëÕ]ÍK±¿>PuJúõ72»2»=³òøã'³ÆÍÙñ¿’Šž®ª½ Q/GlôW.GŽƒ»ï6ª¯ø¾ÏZú=jS´RÍ¡´³cm¥­†Ê»Þ[¤—Ãé%ô<”»)v2eYÙïŒÌ>žYf7\ÎcõQKÀæJßy•s)ÓK¥ŸÑ¯Ez/CÓùŽŸ¾÷õ°-™²¼G¬K¡q ßaraÇqÆoWA£ø~d4›ðós|×%Üß}øÛjÛø?®€6¥­zÚÔÝ"“¢L„¨#dD޵½ª×îâ®rÒísj‡ø(Wéñ[Ô«¶Gu\f6òÙœšeÀ©UÈX©¬ñáú{z›y6áÙu~ÝVèÌ/<ÛæjüÔÞ¡ÐÞª{˜=Êõv‘ .#ge¶Õ¶Ç~ܭùJG;’í”w j®*³UÛjjŠ, QTeÎmÊ6Œj6ÁL(‚DåÀÜàLL£Aw]Îpéι˜‘ù?•øßÎö¿ýþ7äþƒý¯Àþ?sçðÿõîÝÇ?ñ÷ÿ4•”ªn­kÜ?øX±bÅ‹,X±bÅ‹,X±lbåË—.\¹råæši¦ši¦ši¦ši¦ši¦šYe–Ye–Ye–_ñþ?åUùMû…UDë¹U4O4ªG%)JR”¥)JR”¥)JR”¥)JR”¥)JR”¥)JR”¥)JR”¥)JR”¾(Õÿä€ÑàðxÄ|~ð!ƒ‰¶Ûò>Á æÓŸ—vWUô”}.5O§®ÙÂri¸Üog~*ô”ôsÑ^ˆò'M>ïÝóHwtqQÄœa›5¦Ø©)«‘Œ¦[Ô}2xk5¶ÞJ'Ó éê¾Ê²¥ú¿ÅûÞÛéR¿Q“¸â&ffŸHäcŽ8ÎãÿÀ%ÿñPýZ›ù¤~fi°ãõµOä_IUV÷_géöÛäõ¨§“·w\®r4PÙ'wZå„’w]®·wræi$†ü=[ð¶Öü-­Åúº7&³f~«á ^‹§óþµýßê éU{júz¬FF¯Ÿ¿8¹®{Þ»¹ù­mó×Îü§Þ£jòÛhœÕ¹r·w%7*+ ;º¸k¦é—6ƒdDlX·rºDj*a9Ew‘eÆdúâï!ÄTúñÍgn'Ð¥í$úâ|ÅÒ&ñö(}5IG,±_~k>žäƾŸ'ÔP«¢ކƿD—¾JçϘ•Ò•nU}X»ê«£7ryBÙ?>‹âÊéIW —t.êUóe_Öâ;ÍïKô÷%Z7ì?R+õú–m—G¦Í?Skmÿ5%ÌÑiþœÛ?åvÛÉZšØcMŒ$ 64 `É©bY¶Í³‘ÿ|ü¿UOZWÒôæÎM›^9‘kU“ÀÈìÊúZÖ×°ÛY³é6{Y!ÌkU~š/úÒÈh>”Ù8¶l~¥/¤Û÷R‹™ÒÁ¯®“ÀÊ×Õcøµê·z‰7¢4Åe4le 47—|Íeøg©¾ŽÓoÓƒÆë£Ž¬tl¾â]Y•÷1wZWéé_sLü„¸ül^f-V]WÔj{oî~ÆÕÕö¿›E\ :i¢«å-¹dd¯§/>•éõkW1ÌÒø8=Ï*GtVÂ>®ÚŽ(q‘³fÓµ´Ž5¿øåÓ¤õ~š»~XÎN'é¿Oþ©#´eF¨ú'é©­6«øURëXšÞ²Kºï rxár;¾ÍîO^.ñK×Tçé|϶CÇÙÉÈ õ.B®È–°»®½KØ«¥•_n.¹úXÛŽ8¿Kpq¿Hôò‰öÔ¼™ëŠyDõÒžTïÝ¢ŽøÚ§€ÍCEÀ´8Úî-£RDHѵ¢Ñ\ŠZ»Q†Û›kFIFÑ %‚ÈPÊHLØáÎö¾ºÖö·ëö·µþòŽÂ.À›ÝïGÙªp)¦»KLFŠðé£q‹÷ó<Œ\Õ[oØý×ó?iÿü_ÂÓô”ûu/¶~–1™^xSq}]!éó!ë–®¶Ý¶‹ks\l[’‚ÑŠ4BŠÙo'¸÷ãÇ×Ú×àíRµzí~[IY)IµãNM|œmßútQÚôÞc?åPëÂç)Ñ庌Üq¸½YË*N¯´xÁãŽxÿ/o¹9Êõ‡ÙuÏJ.½Gc™Y¦ÒìsG+ŽW#98ãŽ7é \ÞJ¿«‹¸©Þq¶m¦"‹ss•ÓMÍÎçs²î¸gtî‡nÎ×t®î¸FV³mfͶržz«Î£Î£“ÎUõAÇš§™NÅ‹e³ìôm¶Ý—~ÿnò¢ŽmÜ¿ÉÇšÏ2C±Ú§fWf­»7&Ó \»éö‘9´2m³ZÕ5šÕ=VD¥!‚ äþêÿÝø5·£­OGZôhµè™1è‘èŽèøzÖ«â½Îóµ} 7RŸkU¿«QÕ íˆÎgÊS×Áº¡=…'°ªæ|x>Ö—d«²¤û­’â]–eÉ›v[ƒ÷Õ*uep [§È‹…£òCÞRýÇ •Ü‹qèÅw)^ëÝ{¯oÉíûÿ­ôнì^ŸÈUwˆãUØŠÎð-_=Ð…§ÑCŽ¿ Êe‹ Ì™“VФÐY€3CP&)…¶¿ÆÛ_ok|+oÓßÝnÎôÒ'í]±’’\ž}š¹¡ÉösÖ^““Ö±ÇÖ¤ñ[fÖÒìê::¬V–Û:Òª}Ohö_ÇÇÿÌþÙ¨ìäìóW;±Ú_Þ‚œÇëú~G*Úm™­¦Ñ5ûJã5¶ªãrßoàxì(uõ\úœ¤Ï=¹¸eá"úûþ›jÚô•ó¢ö•ó*ìvGbÏOÆÙ÷|ô¤so#q‰'‰«“µ‡7âk“ħKü}ôÒÊ565"3 Ímmmm'xçW:v;*¬'ÞÒÜ.2»,Üœq[vO…QÛÐ_¼ñÓêz —ù¯öÜž67ÑÞsÄùÎÈjŽÉvZ7e›gc报ڻ.8<õxZºN3^Ÿfc•ßeIé>ÝÚµñU·ÊÔZÍÑhÔP0¢Ý¶®­ºÚæÂfæÜ¢“[•5rƱQdÇ5¢ì3Æ f#Bc K$&1µkŸ‹#¼ûÙjè­Øf¸üTë|Oõ|azÚ‡_K¯‹IÔIÃÍjllfȬh¯jó{­Äo!Šý_¤µQãÑãõôž6¼kþ'õŠt©;Ÿ|ÿ¿í—‹“°ªìcŒmlÉ>©†2Åçê¸IßJ½½O}ß³S»‹~Cï}_ξ¤Xõ ×噓ý9õ_Ãí§ëîå[[2Ù¶£ÂmUÆDZPg;²îÅË»»¹ÛŽîç0R1çÜûŸuï}ï½öŸ¨øÐôm¶ý¦ªj¯¾‡±óg#ßH§Ñù´»òñ86VÖ½z3% í8ýß.p>[m¶¾Íª·P*ï'šyµ¿Ñîÿáä~ªî[v¥,l&Ùk2ØØÚâq‡”KÉÉö;hUòíoGjøl6×d¿n¬i¼9]¼ö_ÜéÔÊêj»/r{™sg¹¯—þ¯7ëHúÑõ¬Ã‹³ûމH~0:YX‡È+¶‹³IþÁ4ŽÎŽ3m|ÍQÇ&±ó3nLÏ-´¥>2®Úá¥È1U¸ª#7.†Ì$\ÜÝ×I”îãbd\®IÚé 仑Ü»¢îw'(ßw¶¯žÖ¯ºÛ_#à©óýz_-Kîùx62ìï—¶·ð’NûázßCè= ì(Üv:¸âã-ŸÖ”ì¶ØMvO¼UÝ¥ÒHû°òRy²<œ_vG‘.Ûþ®Ò‹» ð*n8fm6&‚’Ä–ICM›6¡ìåt’úå^HžÍG’ÌO'=O)_q'•OwØÕv&ÅÓ6fæfZ™ooYR;¢t§t•ÓwIl뺓©‡uTýïàQم糉ƫSaå$øžRHx~åÂŽäùªÎiµmX¤ˆ–6Rb61‰¥fÌìh}©^ŸK[×[1϶ݠ•?½ß>„¾…O×øU=OçIñ;%;÷òÑɵ³†ÛrgeÃt1TèàèÊï yzuNÉS¯Ù™vYÇlvWe™øK£f}®L¹)Ç.›šÜ¢Þ3¿Ã$ÒUeÅ¢’0±´$\¹u¢Ü«wWnVº5·,ŠŠ5ˆÃI ¾}ÞÇØ~?Ÿ­¾ ZTì°ÊãU‡ÆÆrfžÚ ¾¿œúÿî<ç¸÷wµwŸØØ+°k°Ëƒi²ë݇CA9äâŽæm|[%Ä\e¥´¶Ô0…£k–îwÆé¹n ›6pã[JwšŽqWnÍCЧmÚ¶r6žsm©#¦¨ñÕvÓn¿c°î„ñv4sJ{Z«ÝÑ»U]L.¦¥»—R+‰º˜¸¢êaÄ7˜®"ò½(WÒÌUù¨ÝÛI˜<Úñ>kÝ[U¯w­^Æ÷ro÷»SâuBöÓ¹†üOU%’2ÊÓMD´Éˆ–é~³j·ýž´¹êœõj~Ÿ6[‹éŒ&ԲƦš]žY«Ï׿¿Ø@óÓ›ü¿þÿ»Ùìi~;hÖ®#ÐXÕμ6îºz¿òµZv=m±°ÆÑl•ÇŸóþËvˆ¾˜}ò}Lb̯§™ms2ü§¡ý_»Ä}4¯¨­M·Ð×6õmÄC¹Îž9ÂùmeOSØ©âï'”ÚÛ:]ð÷8ãÃÔ£üþ)'ïü>Õ#¹ÎfVÔÚÙ«bqm œm`–¢c£w:â.[$Îîgv¸Ìw]s9\à]Ý$ƒÝÙ×t»»8Ün3fÙ¯KÂø´rÑá•ýžRx¿2:QÒžayƒàUúŠ¿í$ì$ìipmN7¤ÜqmÊã3Ž>é*Ÿ²t·Åkí½7ÿcù˱ö\n1Úmîh'öÁľVÄúe´M´aLÕ\)HóþZ®¸F©”v;f8Ûm­‹;r臖ç¨} >ÆWÐõt»ÜøºÍkuœriÆ›c¬µ»Vùõ å’õ¨×]Ö ²Ùl¼O€ñ;^ûš¥kÕx<½. 9t×Ë­ªøñ{Í›N2›,u¦äãoÒ?äùOW«DÛb±´`„c LI2=¶·¶ÛÛkÛ^Ú¾™ß~éåzª¯Êßݪá¬ë999.FÍŽÒîÿÄB¾´¼HrEs4³íøô¶a×t¿:—ŒèIã£íJ¶å_h<ˆ¯µJø ¯´OSª»œGuÞÕZ‰ÛJãMƤÄã•mqÄìŸSD> ëàßC•œ“]±-Â=†32N$4¥hSa(”mËFÈ“bÆ4êÝÝ®9cºîÎè¹ÀÜEhÕ›l|*«áZ¾a |((¾—¿§­m_eö>?+ìõ«áí·£«rUj¶çx@¾yÕ[mµþnp«Š“›ÙsjþnZ®X¹ ¹nZå¼?/vIòvÙU›i«"¤lE© ‘Šd‰E«ïª¾sRù£Ø36>n·RŠ_|úßgèUzo©ôÝ…WbÛMUè|7/ o &’F"£n@„ ¹ä^.×â~šÛm~×÷Þ«ÑÕ¯ƒoE†/DåÂô}ªÕê~*·[Cku¶hÆÐÖŠÖêædÜÛ”Q‰‰ Œƒ!·ïyþŠí#Ïl®4šY­·#\iÄr=j’v}¤4«Ñæ.»–lõÁSÆøšîîÜþŸþ»¥Û´œÕ ¤áVÈ|Ùšá·YµóvlØäÛò(‡ UÝQw»Jšêa7|î±.YW®ªrÒê•5ò÷b·ùî’¹sj—1[RmQxd仸?E–§9†Ø>^Î3åæ·u”O¹ì¶²­©/óúb?«_°úÒ¯¬ëêÙ‰,QcC&+Ä®d6ý_Šð§¬ÕÊÛæïx¨½Wˆ8ÈÑ™æÕݬkFVŒm -"aB[“®…\»º4’çwvF;šäÄ`×w\îtçNä»wsŒd׸÷ãõeö_e쾯µ£ ;8¶ìóNÏ1ísÿ4¨ñŸþ;4Øì„ìå0´zæiÚ¡]“#éq'ISõ~×¶Êïš-±µ[fÒØm³Q³cg5­nÝWH]ú]|Å9ÀòÝÙí§¼B^§ÊRz쎛Ñ=ö߻۽Ïdë6·ZºXô;•áâ8JzY¶Ú¯>‡èSÎäiš]ŽÍ¯v7úà§h.ï•-¬[›§+˜¨Îìww]Îé;Û¸#%ÜäH¹\dH„"/[ø¿×í·U-·ÞšÅko8h›xRó¥Ë¿·ªÖûÿ¡úÏÉ«ÕÅãyo-å¿××ÊvsÛlž´m·a·v”«æ•Ù©šÜÊŸSŽk’ý/œ5©æ*»j–{e—ÎÛ†zÜÄùÀûЧ•«äÈö@ò‹ïÈòåyiÞÿg½Ôð›Kexµ\T¸¨Û!¸Ô¶c¸ŒRS#`4Ê+/&ªürsUð仸¹Ï¡ùØW<+u•òHö2u ì$ìjq³nÇ5ɶ6Üòª_D"/:K»%Ùÿ³Ò'¤zXÌÌͯÇm;õÿP“£ð>ÇùY]‚M+Å£k|íâ´D–4¢"f¢Ï,©áÚG‘ç®MwÙ[Z¯M[^¥"Ú6º¶íµtkEJ±YTdQ­$ÂÄÆ™%!˜F(#òö·µy͆±ïkW.kž©Oñþ'rÓü½x㱕ءØM‹tÍ¿j­ré¼)ðCÈ-Zo®7s¸ÉÅi]½Ûéx}ææªÞsë•Z 2¬Ú»jÜK9[EF`fŠ\¾§=*¬ù?^—H‹ÛÒ}ôÌfºÞ8àÖúYcázêTºXÝ/±î*´ÙS;þ³ÙuŸÿoü—që|Ñ»å¾*ë…5/ƒGͳ®á³nMŽ»ÙHŽ`Ê»®Ëj/¨¨ýÁuÍ›vlÃï:æãÖŠ—6søûÝ|¿ÊÁÇÜTñ$xPzä8›GC¶ÍŽGØç´‰O¸Ší’¹mÓsRí…is¥YsäìhÚTÔ¯Ûõir^¨õ2:ON^«í—²Ã6uún¸ú„TæÝ9‹ò}giä;ÕG€¢ô¸Ú*ƒgVÉjëF t¥¹k˜Ó®Ñ(‹»¶w\ÙÝÒawGwb±±R(Â&,…uÑò˜sÕ×(Vº--u8z´¯c:+KŸŸ¨4¡ÕÉð#Œm·YÆäÜðªô š½è8ç ?kNö]iZN°neÁµ—[û/åª4}®“ÅË”»€±µ-ChÚªïîAý½áè½¢êàù[Uu‰q¶Ûm:ÆÖÜšë.p÷a.Ó?CJçk¬km³óvÙ¶Ïð)_ËGŒÄñuYxµ<].¶/_U…ÖÃhqµ\hÚdy[5©™˜f>•ªñÕ bnf±5”ë¹mUo[‰©µÖÚ"LîuÅwr¹I³•ÉË©®î®ÜNéØ\»¹\áÎÝwF“èuy-ô5ô7¯¯½¯»kƱ>R¸O*].Ó¦ÚvïõT£þœÕ;Ö«û>[ð¹}>tu¡u­¨qí•ÉnÎVùÅ ´Åvĵ&kRÄÙm˜Ê,…ÔX«ã1÷ªr£òˆé¥pr§\Ž“iuÓoºÖÙýô)цãUäʾj/š¦¢~eE*ü}çÝÞnŒ“}‹»R|iWTŸ›üŒü¹WL‹Ð£Ñ*Ê;Ùø1Œ“HkxV¹¨ªéwëöƶ¹Y³uïÅH»P<º¯Áyz®W¸÷ãÆ×øÜãzh¹µXW$˜9¹d\ÀÒ}hÒ¾·)Ö)ÖÅÖÓ«>?êúäÍš…Í+ÍÙ^™ßçÔs(p£†ÍR*‹6¤ˆÄÕP”‚€Í$ADÁd[ëy•O=‹¹é_Ñ‚üÿl.텃̓#ýºÊWWÆ¥£í2ÚØÍ™¶9367YÆÌÙâÉ~Þ—žÝ G·Q÷¾Ý@¿¨–oKKÛÁ‰íÁ”öèj^Þ&‹ÔUaueutû(õžÛÈŽb%þÝUÂ;œ¯‡¸K†ÖʸÒÙ4“’Šú…WסÝhllÕæó98ÇÝ‘\´Gü´©ÉÑzÞAN®.©ðñŠë6§¿ÙusÊßîA\Ò+÷5Wuù¥tÄžöN}8ñ·û¼—I-Sþ߯õ[Uñ°¢"£0„Ì€LÁH†š C·Ñjºú}lom¶6ä³m×?1Pv”„שª}}žR.êšWœ,Wœ™95#Ö(ë§]¡mY^ŽW£¥ši§¡ŸpuQº ÖäO±?/R¯àÒ¿²N¸§^q½‘qI™ù¿ÀRn»ŠnÈßQªYŒÄ»ZÜÄÜѨ%]×JwfܬW"dÕ9Ö\uÓ‡nÇ.ÐÉ)ݺJ dƒŠJM0¼jÖ½ kЭ¾äm¶vvN8Ùï…+˜¢½n+ù4®ÿ¥.’“Á$ôy¥xAÓ <Ïh>º§,Aê)xz® ù¿d‡9Jo®øë[ÓkR™mÒcXh‰E=2(¾G2s_×Íà¸á³qú‰RÞQÆUºR­’VùV‚ÙøiQêè' zˆ<ÍpG¨‹ÍWwÔ<Ôú„xÀy¯sÈ—OTð7éÒiõFCúÕ4}'c]†ªÒãFÛj®Çer=nãNý(œÊOqëø‘.r“°NÃ6ì7ŽqØrläÏÛ9„´Úß­DI¬šA%ËægEÝ]ræîN…ÒÌúú©UÎsœç_²ð¼/ r’»ÜB½:•= Ón¿\qÄ×#¯Ý±ô™)Ú*OÌÀ>–ª/a¿ô«°Wa›fÇa·ëg*(rêdôyš\(óe^K•ŒQa>Ç(­!®™Jï»N¦ò£@Úhl´l·‚òUÌ#¤µ.ŽÕ}vIiYµ-ØñãN-“²Ñ­jäØäûŸòJW”;DJ´*}v‰üžmS!›Êq—+6ÎéQº„ü¼Dð˜ÄeQÙIä©ÇeÅÆÍœ\™¯E¿á¥Bí3kW¨+W[]®ZÃUʉ,KFÝmº5&W6×6éh´ Ì ¹píÜî]ÝÜë:#s­ÝÜ€Û¶× «þ9DüHìçl³5±ØÅØÝ=ØEGhE:ü¨½`=d®*9¿V“ŠGªCÅ#Ô ÎŽQš«©CSñ¸ãq]IìÉKÍs¾kšCÕÈèf‰[J\‚ЛB¯^ZE{JWhDqêЫhMf‚ºØq“H®µN7J·Èü·ÉjËijšÛ~~CArç6h¶›Gª“Ýs*l\ìÊÉ_6«Iùdu+©Ûl×S¸× ›Ã½|‚æ&¾^ÚjÞ«m^-iñ°Á”±ŒfL‚&AÁ 5¶ß6«•'•#Tü YO…#)òˆï| ®TÂùµ,š‹æ¨Ò>bZ%æªÒ«m\Þ6gìjƒ”¤{¿ãà¡ýÜuÑuðoe:í¶ÖÚuÛ:_éy4§Žd‡ör—«þWæ-·Äk^±]XµÖá®îЀÛÁn§uaQU»ºãÆ«²ˆI$òê®.•û\b5(ùûéZæ`t´²$Ä<òêàû˜ºÍmá=½³lÓ“m¶ë6ÞIv„Ÿ_N«ˆ= ˆñSÐYEÑaUÐØ%³ö?[»xÛOrHý¬”®2OBx¬ÍöÞ/íI-Á×d\QV¡~gZ‹6£SZ”bØ Ë5U)é(g¸Æ]]+«Kmþeݲs.ŒŸS½&¢àXÖ%~¿{%¥+½CJù2?6V¡ÔÅõ8ÑÄÚêo’ ¹’¥÷‹‚vø2+e±m³":”:™Ôá›:¶f礥ßn²Ùlµ>¦)W[•=^B_BU¦.`0ø¶™-DÏqP¸ê2Ž9.}ExÒÀú¤j¯ž/…hêGSŸC4²þÁ Z«Žb\tÀãŽÏÍÔK}£´Jw qRâ§ã3Œ›Ki&,h®a;³ºµÛR4îÚæª¹µŒm"È`:¹Î„›»¸ÝÎîÜ‘×w78reл»“˜Ÿo켺«ÙM¶öØWZ¯_ þÕ}ÿ ‡£î¼ùôÉ`~b.ùc|Ž=Ò•9ˆ?3DYUl:,fXùÁÊÿâ"n ‡¥Šp—6, RïY4Ú¶[ˆã'»É¡ò3EÞç·ÉÖÌî2*æTwü¥×é$üÄCãžI²þÊ Ë•ýÈ{ZÜýg'É÷½ï{Þ÷» œL°UĬ¥vÆTç?G„Gæ äTm©dùÛM3çii–šéBÕ„n{×?,3,ÆÂdŒÄ@± Ù–clåUKêjôÄí`r)~B=0³ÊÑÈ•êᨛËÇ$O-挹‘¨£¶“ÝR¹´Ôòª®ìVri¨ä’îI±jGÏ¥|ï˜ùùä@µ_£Í¥ÂWÅ¡äàâ)îûÙ\(|@}òŽ!~ŸÆCÚTäTýß1ßÔ¤û“À©x Z”^B5*]Þ_”.¢N47$Wø±SåéSëÒêTu1}æaÅòuÆáºz¤sðh»Ž•'~*–̶mVÞ6HÛ• ÂXåÓcvwln[±Í±cH¶×xÚ¶Þfýi¬þ% ÉëbQÛµ òô+àej‹È¨sÕMõY¸¿Ö9a%Û ÑuBêɽõÕæ=CföD¥Ì¨òu4_·ò»š¯2ÙF¶¨Û-«i4X´I“A¨FQ FÞJ«û*ÙªÝ$4WGM!ä& è¥ˆæ`zs$l¬ƒc0Šèð¥èd.ë W5+©™–VÚˆºíY+¬ë:ÍEQãåOðjïùDu*ên§nã 9J–ÊÕéöÕë5mËH5·(À‚ÄBƒ@x´«áåCä•ò*jŸ% ÃamÃeò{MB¹rìñ÷áUù¢~iÎÛ%Qª¨Ž&7‰4%u„á¥UÕâ«!{B´¡Õ){ZjjÝÒ¸E8êáÇ žWˆÉȃçîîÒ´KbÚ­¶j6¦Õ=5W‰\ž«¹”æ³gØÕ/'‚9j½4œS@upU¤UÔEvõ¤NU?ÕåHâUèÈ÷= CÑ*ÁSìïs¶ß#¦%rªŒAöîâ¥KÞb¾:Ÿ!,£|¦>G´%.bïJàŽÔ“ˆ ˆ®Ý,XÊf¹¹%ʇBÛ›EÊ©ÝÑlî»»X¶ÅD2YR`N\hŒ®î®MÛƒºãƵ«Ú{Oiï>›Þ{ÏyérGû0ƒäò/‘òw4ª§-R^—t™A{| ~d>eKæ)™‡ÌÌižðHÕÂ×[Œ¬TÿFTµÑ::búi4WŒ™QÏV’ñfAö¥t-+§ïݸ]Öl†¨d>§U´i69eWå>>ßìr%SÈÁ¢<ÄZ¢]÷Pü¡+=™¦\òÕUO3!Ü<Áb«—~Á Õ¢F nBݳYš¬³º“†êˆ®.îÛ¨áͺ¸qs¥ÆELîäH*ÿ@ïÚ£ò/~ŠOÉÚW'ØRj• Û"­\­Ê|Alê¬Ò*ๅ=Mj)>":pÒQÝÒûœü@ze8 üD=<T>‡¥UÀK½Òá‹‹ì–ÛùiFªUîèÒM‡°ÔßÑuA¢7Œ*Uua¬jU>%S«©{{PO†G©‘êy |žª$>®(§ÒéyÊ]á, ´ž3q´q›8Õ¹’j5G9¹(¶Š·—VºÍJèàÒ-Tyª9µ~D.øÆoUTNdOòd¶­*äU•eYQÐFéÐVˆt $t€óÓJ/ë諺`| zçäkzÏé ré*ç*G_’¿GÃ|8¿0Ze3>ÂÕÕVó”74-ñ<‹lX•Æãm\mŒÛ%FÆIѶÅFÔPÁ ‘@Ík3frJWÙàKµò¼¾&r‰.k$^; .«Dó•êY/®IÐ÷4,žFŠð”²«Â%xb9Ööïrv”\HÌ30L"ɱj¹¢H³Î77Éd/gLQÁ™ ƒ0—ƒz²?±|-¿õå¨Å0/#¨\–"/[¯×÷}ßcÝ÷{•R¾†!ñò`¾9]¢fÓ×ʩʅýÜ|Rw"pøLß.ä‹'hØÓh2œi’fL3µöQ+~UøÊµSñ”Ü11¿:å"ü¼Pö™‰1Ï“)S‡‘¤¹Äµ+™”ç)óüd_í{~è¢æ"ç(йÀȹÊȹÁ¢¹Æ œ?—·ò ›‘ÚJï[fƒ­ÖÚí¶äMŒ%˸J®î×9ÜîîîÙ;®\Ü×çjÅi1IȨŒ0j!(Á $ñm{}›Zùɵ½£k|îUKçáÄZ’­Ñ-Û7¢£W$x|Šœ{²/b‹%}¹YW¡Âûpȼ«nlªÔ¤íiX†Ë´JÑFÄ™Qå|x'eJÔ‘ØR²'›•”»þ®YÓb²‹TÙc`Új6‰Ä§¿¥ø‘2_Ù€¹Pž_Ëù~EG±Ê”z4?ÙQøEä<äDåÑ_ÝÂÕÆ+ýZ—;5S‰2¼Öä•y)y)|b U:ü®Ų…Õÿ¯…]à®áCf¡½.lwt.qwNw3—;©×rìãŽç]Û‰Ó‘üO%­oôZÛn(V$åQ’VýUˆ\ª`l/‰öTW"&˜G“Z”ž‹(Ö¨~-Qø²½ …r$ÆZO¥^=GŽUŠ:ô¬#ÃUaW¹¡ªåVUsdíúÀÍ›+i™­›M–—¹QÉðäh¯+íJ¯)/*jö*Ujʺ¶Ü¶ñ0)ùÏ ™ ›r™(}i{©8¤3B逗â[ù”õ<Äv‘|üWˆÔ¤úx‡1ÌsßsÝ÷|>ä”—ÆOð*øü+UTÄŒER«RÒ ÿOïïrpn8ÆdmAmW35cf‚(gwc—H¨¤Ý×1:ëwâní×$I"a2&)&òÖß©«_Gªâ õ2^88*½JŽ@tåyáPéètuÅìÓG GÙ(é©ÁCѦ8öE<üàEîê®h'ÑñC>+®•]‘I«TКç’õe;Üà¡ÖzÉ>ו~:2J~9<}*KŽ*ÀMnD&´«ð„Z@?Ÿ¥+vçjÝ*„Ö!±b4›W “ý¿ÂOÅRüJ_¾T¹ ÊŒ%zPOíêˆö¹ÙÒŽˆ $âE÷Z•_gM}N ÙPÙ@V!Ï*М`ñdÕ«“ ñTdœxêùƒÓ(ô/Å!9…9äehñcˆ}-Â.í´šN6›®U†4IIA- f¨0Ã<•«Óµ¯\Ö½/ìù#ÅŒ.M𥯆4†¸àSÂä¸ÕU²ÅVÂ<®‡aEý!+J­VÌ¥Íó|Þ «U”–ÁúGEµI²S`[I6…üнê£M+Ê¢Ÿ•ËS‚,§3Q[)6„ü=.2©²£j¹íj»¼£‰8UÆmÇé¬jFŠ6ÆëW1£-˜´N]4h¤Îí´™J Æ›)²‹Æµ^Fµ¢Q²©´»¢¯z{ßãJNR2KJrð-‰6²=þHãPmj'ÄãŠFțߕâ*°OUÃeOŸú’TæDs0x:KÏAáåw_*xpâ—&Y«Ïâ ˆ®VWžUàåÀ^xŽÑ_"/­áL¯LO49êÒxºÉ²Ý(½I7°Ð4©f˜Zb™Œ•Âî2RH]ÜŒ‘“PÌlåðÒç­G=bçµ8iW5F#Ú ñ•Iª*¾>#Ìï½ðÿ÷ò‡ÕV( ŸÎç%nkˇÛíPa® ڌǰ¹råË—.\¹rå‹,X±bÅ‹K04ÓM4ÓM4ÓM4ÓM4ÓM4ÓM4ÓM4ÓM,²Ë,²Ë,³xi_kî™Ó÷_t€]bÀª—*¦‰æ–I‰e–)JR•oË,²Ë,²Ë,²Ë,±JR”¥)JR•`,²Ë,²Ë,²Ë,²Ë¥)J°Ye».>ûø«ã ÿØ?¥ä‡û²‹ä…ùE~RŸàršŠÔrÜYµ«c3[Ux­”i#jm•8ªÕ¦1QXLŠÆ´ÆÖ¶6H䣣ÕOíê§Cé„ZµÑ•k™<§˜™•g™yŠÕdMʰO79u’å˜pL÷.[%ûßÁÇtv™]ÂlmÅ8¶flfiF‘‚HÞ5«Úm§š…Áñâü¸2Ižª;S—\•+’KI×x(ßcQ<WEM'‚WµCÚ†¯j†x­=¬­xøšüÎÚ‹R½Ä;ñiÈ©æR·ùW­£R’­UàEëƒGöòw=+ûzÉW|…ÇðIöŠ¿®RZ•t¯A¨</ ¥æ|±6b}ªPåf&…»Ö¿97ÇU|9)ä}ØËþÚ}D§ï}¶ŽësY,ÍÎìÖÇcsWMÆl°’eº%;§W5Š9tîç5ss¹Ý„“›]ÝÉ$ݹ۫“ºu×9v+¥Ç¹Òw]kn8ã3†Ü[ŠćˆG}«´ùAå#Ž’µ”¯—UÀ(5Úå¸k«µÓïcÓfÓø~Ž¥ë}x¿Ü"j^ÿÔUMF§É‰ò¢ÅO•J×<ÿÞùE<¥ âxž'´í;NÓ´òd膴ʗ’<-W)‹KÙUCÙ #s„÷å=P­ºªè¶•°Ö6¹bæêä¹Ô•Î cF²öuN­úö©Ú+äÂêÕ˜/¤UWçú<Ý4-|{>T¹BøšÒä&²jrü}ç xYã\³ŸäŽã¦ÙNꆕ¥´u\¬i˜¤‹\w\FåX%Ísr«¥›k%ˆ¢i&fŒÑ‘“¶ÍµxÄæx ãô³ÎÅ‹(äŠW'¡ô>‡Só8=®£npÉW[ šŒ¢Ý[Å-ÂmW"£I <}…­ö?U©ðÀ­¦Ÿ¹Ÿ?7‰;í8ÀýN¥S€ĤV¯¨GHN™žá+¢èÕZœžÊ¹õV¥sáϸWßTÕób¹€ÛÊ»ñw™W®’Ng‡þ·‘ÝÒ¶±.WE#¡è’ÔrtIÑG t%ß«“ÇOn/¼ªÊ>xŠå;ï|ö<—ž¡ÞéwÛµÕK•Ðï¬Ü“´ìî®26ÆÅmqj*å-»»”fŠ-Ç;.î§]d™ÝåÍ£n[v·níȈAj$Æ`„”ÒfY–\·‰øœ#Úö¼¯kÚú{€ñã$¿Æ(µKÄ+j,¥âQiV™'mT«€ûúzÀ³ÙJðPþ^µÁÍ•³mRs9º½¤W·Eý( .«põë„Zp‡—í GìïðÔ¼X¯_”T>OÁåü8}=çª?š‡üÕ'éî›Ók|”jÍ«¡Ñrw)Òé×IÑÔ볎ç;ŒÝœ»“%ÚfšZf¥á•µªÓËÝÑÇÙEd/å!s>ª“ðPêäêê=ª«SÀQÛEeø5~«d—~§¸'~N7~+¥ª¼hª©ˆþêI«Øl6Ò­V´šØ·ŽFV«J¹ iÈ·ð½BW±ÂÑÁ\6A›66VEããšè¯ÑO\N+tªµ3?*n%g%ÝZu9v"ê;®Æ•ªìJ½X¯ò£ƒQ.ÊUý}œ–Ä«³*ëe]š§f•ø6´«Äö©Kµ¶›a´µWx¢ÕQ…Ãl‹mÊØÑCRlkª¹kšvƸ”™¨-¨­˜1H™±‰?gó>›lêÛ*èvQ¿¦€ÿŸ…ÁSðS×a`zBMÒ®áÎp—°¯þýÿvÞ³/LM*8mTã6Í¢Ú› í=zðoç*//*ä.@¹.K’î;׸î?{£ø¾' U±•`»ÄEÜ~_¸ÚÂHßXUñk¢Á²TD”²Ì²Ì¥¶ ´6Å^ÝúÞ?Þ“„ùè“ö~×ÿŸçæårű¶·nÜ%ÆÆÜkwL‰(î·.AQstÔ ¬@É×t[të§wMšI’f@„f3+y©ÀÜK‚'9JöC†*àÓø9¸:){Ð~ Xö¯CE/4G§pEÉ*Uë)Ί֮vS\¯g®ë$÷‹í‰ÖRº²º¢{‡¤ò%Yü´©qT>Â'R%;Ò©Y ²›6m›FÖÁy_+åy׸D÷¿b©NƒÆ}}u/U·RÒÌ“û"¥Æ*ç…âáâ‹èþ'h“¶íUÛQ¶¶˜¨$Þ¥Öh€é»Î®í-4ÆšZf1¦™¦šYÃÓ†W |~p•í}§BVCƒ’«ØÞWúí'À*ÀøþI"èTá ºœ- Uêê·f³Y×uÝw]×tŠ®9^_I¬+£2œÚWŠL¨ˆ["œylе‹eTÖ*§!l…íÞ…ºÃ€³$½œ–Fa–JˆÖº­Û[”.Z5+ºÅsI—[r¸hª+c1£œŠ¹Òr®ˆas´%ÎnEÃFåríuÛ¦îwÓ ŒlÙ³f´ôTyУÈú]¯õúN_¼øÝ/Uùûý0×½÷ræœäÈo#öˤòË8Zø æn4/6¬4?WUÆ iüœ©¯OE|+ä4O7êRên“ãßí¶¹æQÐ\ÑMp=^ZêÔÃÉ`aÉvý¿z ®obæOʆ½_üìm!ÿe&öíÐô!ÿÜŸñ2‡Ö†·RÛ膭 ÇsöÕCãB‹‡¹¬‡Ì‡ü|Ðé!éµ¾®Cx‡Ó¹©–‡ §cì†Å ކmŠ68u!^‰>™y$ÿ_¬§ÿT~ ýYéý/÷=çéÿßì¿üî‚?*QöÍ¢zUT¿Ï‡m‹jÐw§Œ¶®3†äˆ5ÍËcws®È×.d¹s¢Ñ»º±¹uºmÄQ€‚’}'üú«ð-´­½¥«KžëÅ}˜]§ÇJé¥>²WŒªúˆÙʽüЏúFªîÊ¿IO™ ðŸf6toHû¾×ˆŠâ?l=¥+t£3ÿ©j’ûßçú‡rCRróG[8à›Vƒl­¦lÍFÊ®z®x:]¶xÉÛÚ¥Ê\¥»J½`¯É½Ššë*‹Êô?òõ^0¯kû?»Hýé_³v¥h›+L¤Ù $l¦6ï|nm›†o%ä¼—ø»÷•ùâëD÷tÚ_k|½kúê½n^œ¤äeÈOõñÏ^:<«Jýúî+a°Øoœ—ïpÎT¼{1´áyÙýý†¬MúdÆÐLš¨Ú µñì‰cPKúžªµîõ©¥Û¤qC×A<á^f»«ÜƒR¶õ,ÑL2QsÐí=2›s±[ÊOAÎÒçEÎKœ/äñ2÷`÷jw*PçkœU]ÇhÚ“ˆi­’ÚNl©Î§x9ßÿŽÝõr»‡hƒ¼RêHïwä®6/7²Šì ¿/ü».ÀW/פåje'“‘î*=Ƕ\3ûA/ý®*ß Ø…FÖZ°­H‹XzÞ;›b`w Ü’UÌî¹0‚ÉQ(Íi­³Zm´ÚÛ¤é:Oµôpû_kº‹%î³þ’©~VÞ|YÂ’ïÙÊãqRâ‹Ú® ßø‰Ðy¼Œ–JÙª‹Œ·†ï[£k+hlkRÛ µâhbL2D|gÚý÷ÑZÞ¾‡¸÷ ¿Çß|/t£ÝRÑ=ØZ§(;dÛåxÒm‰¶‡äm”·*«ãu·©Õ–Û¬V*24 “f&k“»»uÝÜîvwC·q·n8ü:«ðÊwb£ÛÐõ€÷‚÷‘{Ä¿¿)OàîP÷0{‚s;`¯ «³“ÖJ†Ó‹×ëõü7!åú©-Ì™™–Y•²*¡M1¿`µæ¹-¶¸§Ñ£Ô’Ûß åP¯°£Å#¨S‰§OPtå\ :`ÞO‰®ªµófG.[:§0­œW3Wk'4é$æýÜ«oCݪÕ]2 öÀö^¼ÃüŸãû‰_qCûžßÇAÒÁþ1Jé¼ïnªðŽV†6mM­¸*·Ep5 Š#˜wNí-Ëi’’ÔѶ ÈcbˆbL fÍî÷P{©_Ò¡_¡õ^ƒŸ‹Þ${¸T«Å‹”ñPñ0å©v©X-¶ç µ…RéhyùâÄ{Ïù~µò¼¯+Úv§iÚ{­½M’U_‘ï¶ÄÜ¥[iWƒBŸë¿[Ø»Õ. ¸8Ô›6L„d¢EI¤©€’Y´¾ë¿y™w²°¼ŽÉkŒGíJGÊÿ¿I%ã)™xÒ?¹n1pÅtRpè蔽µ:$® tTz©zÞ…èh®!8ªéÓDïÜ¡Þ4h´&Ù ²¯•jâîêŠ×3”Ę©1ÌfL2!$I@ˆ”˜ˆAM+êuW®¯©Û^¹ÐÒÙÖüN3Žñáxé~j‰tTsðçägñüϺ¥ÝÉ}èá|ï£îíª™OÕª‡|þ/êst»Žm€Ô3d2­++hØÛm)æ<ǘô$÷Ñ<í*Dö†ÚUëÔêi*Þ¥»×\ €· À­Îµò‹[«r“(b$ŽWçS]Å{üh{ˆ½Æ°¿Ž…] _ŸÑC÷@œ×iÿjöO”{©UKîI=e.ž£P÷48•ªWÔ‹´PîÙ,¨ÖX4o!Ë©Í[¾KÛmW×TýÉBØ#aJì·ñ\íUΩs¡sª®t—8.Nq.7ãz¾¯¨êú¾}éW7Þ£ƒ'{šRœú\ýFœyWÃàmúŒ¥¸Ú5·j×:í’üÝÝhÛC§UÑZswuÍr ŠçeÝ«…ÌÝÜ]—uÝw;wfn‘‰3!rêQGÐmWN=8òØqêå§*p²{Ù]åSM*~$£^këŠ×Úþ¯ðú‡„ÃõýTW¯$̲ð”Þèv˜ åKàÀ'ûŸ6G¸Iî6‘ÿ©T¾Fí¬RûhmàÛäÉ6&²Vþ8t ÝåÄ튜AÂ,á¶B L‰A¶ÖÖ› xÊñ—ŒsÜ÷k¡ç¨>®/Ù¢=>Çcê§uû¿Oý>‘^J§“˜–š‚©úÜnõâÕñºÙmbm¨ÍbØ¥`ßæ¸l—wDiÝÆ"®îÝ#kAa'ÒZ¯í«oWj©ð¾ç½AΑ¿Ý!<¯©G{W5ô»ÂZK~z‘·RÛÉ¢4å «ÓÖJŸP¾®óiå ÛÉÆd8q¬SRÂͶ­“mKÀõÜx¹^"—[ëexê¯/ô¥'g'f•ÙÄìävaq0þŸuÚJ»EWi*í*pQvÖŽ ¼tpÚ¤«¯Rø6³T¦÷fYˆÈfŒ™’$d›HÓ2d&J0ÍÏwù¿_ú?ÑýoÖû­úݵå*̬Fa?¢¢_ ‘‹mFm6W`¨<§ö9÷>÷0¹ð|uDí1³·§lmÌ1Vå¬ÍfÕ¶xÀ}L^QO)O&:òqànâÅ^"««©™~ñ"実rúûkçm’­²¯´U°ý¾åÈ;dšFÚ›NïŽ2â㎤éŠÒIÝÚîv0‰Ý%NîY¬k›§:Jäb+—NnK&ŒFIÝ»œ•Ýtéwwœë·w\Ýüo¯Õ«ëõn‰ãí¡«ÌfT¶hÆqµ.Цpo¼UçÔð'm÷‘tÒž Ÿ¯xIøt¿ VÜ€Žßæ¢â£׿:½¡OB†ï±þ/EèŠ3‰W¿”ée\*½UJ¥Æ/~Ž’t÷áÒʸÙÑ{ðé‰Ê®ÒªÙÅÅ‹gJïEÓÑÞC¨£ò»Ð÷5M¬[X¼BX§ZŠ_g³ÙûÞ…<2dVÕU£0´Ê²fVb> ¨ÖŽ…[¦`q™‚´F[rÀ°†4«í¿Gj¿¡Z¶ßÈñaÿ:›d¶ÙeKŒU+íó%\½MzžF¯¯ìtCôz@“ÎKÝ(ÕWÖVû¯äQ¤‰`Æ1L³2þú©Zà×QÝò”à¥r”ôÿÚ³o±F˜z’üü‡ýêm¸¦3î„E¤sj]Ð/-å¼·zî‡8-¯J•ù2TýÞóê{Нr G嶃«oÝ|uémoÚ­ss¤ÕÊ)&wNës¥ÉÎEÓ˶£s]£sws6Ks»·$˜I”‘rœîÃåéGÕ‡€à^êGiƒ¹ÅUÐÏòt3¾]>xßοñÿ¾ò÷•^ód½áÿ…û{¿Oö|±,Ã¥%WqÛîRorXªË2£U˜;>Äž,´›U=®Ö•·ª[x~̯_IW‹EâÔ¼Pèå_¶peWIGxÒ®™.Ҫ٩ǼblôÉ::;ÿ=GrWsìv…_¡ìˆö2¯ï•諸Q?›F¶‘+§‘÷(½_mô^7™Ú4ÛVrÍIŠá±¥¶íZåÕ±¤¥¡ÚîîÖàBSV “ljÞ»mo¨ÛZ§¼Tå@]gßyê¯ÒÓ[ZÂòûqÄÚþü‚ññ^"iÎKœ.pz´žë §»Ûi^:$x¥â«Å^(xþuÛ;³š ã¢ÕuÛµn­\W5’æê“\´¹&Û–vás3#X…Ó®Kºà¬E®sVæ6$É$ ¦ˆ–ÚÌÌÛÄ×9ê_îGÜèô¯ÿÉuºÚÛ3¾¨›–ï¯×õû‡û½.™'°ªa:Ñf'þ(“ÀsÞäK¶æ¡Š6«m¦Í¶÷Òî[m'©÷)þÁx‹Îh5fWóêfÕûòQþÍôßÁ ê^þ¬Uéeƨ]ýç;÷¬îr\²;o ›[U²ÒÊÌÅNTœt«ž ô\íKX›_S2)Ñ'˜ Ç××H÷ÑdžýMÅkÞ"Ådj( ÉÝÛGùR[­iÃʵµv"ßk°ªºäºà߆·­÷ÖÑu¡ÿ*<™YU'_ÿ]&ðªÊÚh¶ÄÅ‹cfJÆÚ(™24“  ‰”¦Ë6kÉy/!æ=oAë}o¹º)ÞRâÚN«6+m¯…÷ÿÓûŸîvýÉZ›Zù\Ô!…áfÒã±IWêü?SÕø‰}bTè)sôx 9¤»ˆ5˜5f$Ú¯)a¨H#¤Fùû_=·Ïmóµ¿3œ2×Û†¿Úkùo…UŒÌ>ì‰sîü9>%NsðåE%šÒ“h Ç-Éÿh’ÿ§QRðŠ»ú>g=ífä+w£}Vë›j0²Œ™DË» œ».9ßçýu¶_Å~ò­ûÍVæÐÖ½.dõ"«‹Ïi×ïÄEå”Õ| m0ÌŸŸlEj×5Ís]L«ŒF¯©““N¤8èêj^Ú­WR©ÇU¦µSjsš­œ—B=ñ^ûdçí¦ÆÏ®gÕªñó’]ã2®ü†UÁ2§5lœiÅs•È×1´çRfѵMuä· \›Õêuµ­9”½EÔ®ÕtôYÓÈÞPcÅïj=8m‡d¸f^¬¢å^+_^æè«i}öÛGq¸áá…WœåžÖ-Éåò¦¶S¾6‘ÄJæmr¢Ìb±·:v‹r¹Öãºwr“;·91¢±\«›‚" `ŒÎÇ3Z|B¹«|H>N=Üì*=Êžæ ºS‡q'Ûm/ÑM¿÷s5%݈üu^3•øõâ)§ú·—ÝÛßàÚZؽþµ_ʺ*|®<„tQÇAÆMÏ\éÇŠ3瓵+ºãUaL+0Í1¦¦*”—•V˜m¶Ì9D‡0ð(o­Kyj7C]'{žkÍy¯gìýŸKìÿñ¿£ªÉø*l?êñþŒÞâÕ|…l­½nýv¶Ö·‚öÝÙÆµ±ó¨§3 7þ³ö».ûK—UnÛmƒBP,’FË3l¹o?ùŸŠúx¶Ù›^’'j ž /vîÇê¡uUMmKª'âIå â‹ÀKŒq§¢ø2ïR•Ó‹¹©Ó‹§NNøWÙ!ö@î½ðj;IZØYT`j4d‘Y"È´išŒ‘©¢’‹ø~¿j½}«Ùé?Ê©é1­“üÚÉíä§uÔŽ‰^\}j~¿—§9åÎØwåßöø4¯ì ìÉÆÛ&ÏC _•þËäy…ÑIñ0ÚßÓŽ,ãYšÿ2©_WÚAÞelÛEµµ†Á› m Íy¯5ðÁñ ÷âNCj÷ÜqƵµó’GßÿÖv´¿±Sd¹Ý¶:,ŒÛaø;[ö)S¶ä9nÓÎEÍ¥û<6¯K«|B²T£SA’ƒQ¢4¤ #4Ì DЗÉõÆÏÐ[|_çö½?Èïš«ùvÃîê>šGÃWÕÒP.sœž§°½¯õIÔ{©ö©ðò¶ÓfÆÞD’~ÿã!ð¶Uð•‘ÆY»9Õeô¹¹ÉlؘھI-fÛuYµ\å¹cb¡¢4\¬q;®mÊîêã¸ÉÇlÍ!™*MŠ‹Þþsí¤棧›[7qãm³cÓŠïö;ÇL¿@§è¿kŒwôôšøåF¤9N—Ωݪ4ý|vŸ¨¿*èÍU—þî.\¹bÅ¥–Ye–Ye–Ye–Ye–Ye–Ye–Ye–Ye–Ye–Ye–Ye–Ye–Ye–Ye–è<7›Íÿü]ÉáBCøWÚ¨fields/data/datalist0000644000175100001440000000056514630624264014214 0ustar hornikusersCO2: CO2 CO2.true COmonthlyMet: CO.Grid CO.elev CO.elevGrid CO.id CO.loc CO.names CO.ppt CO.ppt.MAM CO.ppt.MAM.climate CO.tmax CO.tmax.MAM CO.tmax.MAM.climate CO.tmean.MAM.climate CO.tmin CO.tmin.MAM CO.tmin.MAM.climate CO.years NorthAmericanRainfall NorthAmericanRainfall2 PRISMelevation RCMexample RMelevation US.dat WorldBankCO2 lennon ozone2 rat.diet world.dat glacier fields/data/rat.diet.rda0000644000175100001440000000110414762765722014667 0ustar hornikusers‹]“ËjA†+3HÁ•âÂEH§§»«¦{z¦»òŠ‘5ñ2ºšdB.Ðip›ðâÊ•àVw®|€è> W¢n½,\bç?3Ýßêœ:U5½re¤›£¦Rª¦³î]w²Qs¯ÕPóŽseQµ×ŸŒ+¥ê']<)8îž%…1øF´sàð,¸¶À6‚ƒ ˜98/î/!¾ ^e" ¼.#2‘¿ Þo#ñŠ%®‚w‘¿Ç|G¼>ÀºøˆÖ)ÜŸí`Þl,|ôO¿°1ú†?¾¿úýuËš/4•c]|0ïmòšò}óoØ ùäá¾Ïm‚þý}й®ÿ’æsø¦Ï¨_Žº~)âì1=DÎc¸êSì;Õ ê2Äü}Ó!ͧè—á<âËýöŽÞ_„uÎià ÞÃ=èEêë —ß>Ž6xCçoã<>öqþó§Õ_m€û÷qOÞ˜æ[ðó¨Ï9Ô{èà»·à o€ûò±>Ä~ô1Š}ô×öè~&îEÿ$þOºðéÂ7E}†{ïÁ7ÇþršŸú¿g·‹­ñ®'Ôäç¦É™ ¢¾¶³Í²*«éµk›Å.¯åÉæzQíÒµ*Ÿ/wž¶ÿ·[b»…faXtXD,b] ‹D- D…¢´(#ª#*‹êŠJD‰‡-Z<´xhñÐâ¡ÅC‹‡-F<Œxñ0âaÄȇ#Fš·,Zd¤ ÏçÎ Æ›ftëDÔçLìPÖE¢uyuÔ=}‰,î€ÿÉàgc4:óe…™¡xŒäûD8«±Ða÷K€‹úß ´S$E—àVò‚»EÒÁÑœ‹ ä·„ßž˜µùD«þ{·oG~k4dž°]r°?å¾yëÚ­[¯`ô!›G±ÿä{J_¤…-õÈÏ¡%5ÙŸbžŸÊÓ^:*QÈ……PÒ…44øGa_9kæNP)Òlç¨óÁ,¢vÑý ¯íTy,.=·žù‰Íž¹…n` øYV)‚+ b{‡Ý>#ørò¶çÔAGåKUÛË1‰OÛiÂßYà@ôË%¨"ߘÐAîPméµJÔ:+Àuœ_{˜øâõE+¼G­YI´ÒÛ‹‹ð%‹¦œ¡I29œuô-ƒÃš¢ˆ ~ò?7ù¯hº†­V_ín/ÂÀYfM˜±Z¡ÿ˜>¾[W2„>0_SÕOIµ㌎èK|<ÓràâºÓÍ£+ùg3ÿÅu‚z çp\.:¬¿–ÊŸtÂΤ2R¥NÁòÉ»PýþÚrÎvӨΚx漋…Ûô|ТÌçV×ÀåJ¿„ × ³¥£'¾™œé•„ŸH²‘Ÿ ΊÓÌyÈZâGÖ†ÖòZu –Ô÷*…ŸìZ3iJ†‚Hºföœhb«t­;í÷»¯„^ª«{âfÐ÷uôÖ õ¾¾°ŒËÉÅ‚U^èMF@­LëVrœØ¢Ï÷Ôž‹ºìÑj§?œ^ã¸è-óÁæQwìë›?¨I!Á{ØG<Íi§)—²{ïŸÐuôÔ¯(ɹB€Á'†˜Ç:%/(þLèÆGQG]×VKä,ûÎH¢•ìö$ZÄ­Q.ã¦DÓ&®¸¬®žÄc¨´T›Å0qÕ">‚®§]vÜÐ<šÅV輎<ŠÝµ£ˆø{×"ÊÙ Ru4ÓðSÄT»¼î,Ë.±*D„Á ú´žŒpâ(-»1C²G)o{U¶¼—Ý*”÷0ÚšOË—PøÐï%ÛÅuâdvbðXvb5Ö¶bÐï Ldñã•3*oHÁ`­ žàìRh‹@ ·~nq[êŒEÇH“Çnÿ!ÍJº[¤â•w‡­ªè¼8»¯.‹÷…-œƒÄ#‚ôa% 9‚¬q%•îô—å-*z–Gz.]¬´ÊÏ€ eÎv½ö§œ°$ùirú’vUà_<(;ˆÊàjÖ2>‰rè@Í0=I2µÚpä)œÄÉCÜvKöì©ø#ã4=—*JÓ&Å˜Šº¡ò¾fbgnµŠHr´/¤ïvê?IFT3âVU>n5G8b§n¼p B ßòCÐJ.Hh­ÄÚ?ᘻ*¿3b p~µ­Ú–Ý`•fõÂÏGâ®@>åA*YT‡–´„v…ìI iÖ—]ß=îh;Mçä‹fG‰I%¥É Ô=/” ¦k¬±¿·Ãás ü±-þÒ@ÌËw;ÛgYE]DN•Ýç:$^Æûªš¥= dRÐwÕr\‹ªêO6vSš¼)Œ^3¼Bð³òé³**`ÚHJD†×趆%¹ámão¢V ^öþ(e7'âSÆRºÖ¡¯o¢d/jމ¾Š&(vËp°öFP'Ï—€- x„v¢²lÉÂ+}¶L·£ ã y@ª OÊê êY ÿ§ÒXp®°ê;i‡LÖ7¯´ÕëÁK“tTáê"TZ÷žMH°__ÜØ8'Èä§N£Wš7èî}ð*¼Ø' Ý,ŒŸF#k/@ÞL¹i _¬;û@bè¢æÍ‰¬¢Câì5s—u™mHA·cÀ2s}ô–ÜH~¦¾ÍWpz¥ˆÛOc㛈d^‰å(³¡GÀ]V ±l#ˆ3J;D*ÆÃÜnýR~Û•d‚ñޤéîâp4é<@ •ìQõkÛXÔŽ2»Ð ÛjÜzkŠëkåϤ%ñ±9IÏîù[troÄ'îµ0Ç 3ýƒÊ…‡/”#½QkÃséãÆÊ€Yüß› sŸ …y?ÕòV DbšGò yËœXµLZdUÏ?é…÷£{½³ð¦¦:˜(Â\ ¬É´[ˆl:}:4Ð OqÜ"ákZü"md¦‡¤–Ī–“ÆUU«ŒLŸbͲÝ’âõ™DK–gjIʘóS´,p X‹Cd}L'lªW÷ k³¸Tã­z@¸šütºMlÔ½*HñšŠea¸^ÊLèFwî_Ü>lÊRÌPéh-½ã;Oʲ"}ÝŠ\ÑûîüAÑPB‹ey£¼+· nDá| ¿Ä_¥¸dkq¹¨Iç9…pa2Õd Ñ,šÉí0tyNnxW¨ƒ¸õšúV¹Ì ˜µd‚%V*í²j>ËB†4ô©$nʬõ£Âö» ¯PUT"×Úb†)§ 0®² qÓszJ_ÄIJññ7CöË=½8¯§KÛnæ“Ù%_mä°Lˆkؤ¹·Eö•ê™p=ŧ¼RÄÓó*Új±"{ŠîC‡°ž|àuᨵÅlÈ1 Æ?î^çwÀغªÜVkaêÝ1®Š¹5g°#it%~¢©5Ô2möÍmµ‘Bn ù ‰Z¢zà[è’JbÇu¯ºµF­Î$¾!ìJJÒÙì«54¾:ø»òÈÂ3”õ‰3â™ Mj žŒÀ[•'[4¶ÆòÔ™yÓ¦Öd‡ <›êò-™Ñ·#ýåÆgdìx?—:ÃE±´”´èC+EžÁaèå„~¡Öu†zHY“·l-W—Xî…_õ? ,ŤÒÈlãßý>ÁÕ¸º:žIJ[í)ŸP¾ro[û+»ò—b˜¯f¸ÛjЛ­]£_eì£yŽ<®ûæH ñßú–*Þ©î Ë?&k¦G=K9A UÒE"ÆôîøŒ‰¿{Nn$±µ\qqÝ_ÍáTËJhà@¡KqÝ ècaÇ]½”í½íg¦DAç¨I£XU`–Ú]ÄkhÛ¤æÔU|×Üî%¸=/Ÿ´J©’CçF‘À(WÄXa(§úºÍY1ÛË5<îÊœáp”wô}Ooð¶N7û†¶] §D„\çC­{žØ7±ŽCÛîˆc0²a6CDÃ禹_Žtta­ œi2aÔúÏt1–#ÊšŒX2ûYèªÇûU{«1i/zwÔî奦S‚î5Ú·½ü|µPÓ€(Ïo·!ƒ¼ŸôŽn?m¢e¢¢ò‘z)ýœdâ²aÚÙb™ño`†<ÚéêRà wâÕM¯ô¦Æú¯5¡ÂBÈ—±eUQسÝ"+÷ÀÝÕÏ›õ®%¥NT9aý‘¹[df r§a?Ôñ*P»8ÿŒÊÞreÐàÔ30DaXH·wÊø8S.ð‹CošLù Žý׳ãI#Š&qéñ¼UÚNª‡Õi™Æ(ZN7ã.yôìébý4„Ë\ÛBîlÝ%׳ EÚyèWù®¯RË·æà€'ý$¿!ÅÄ?á†AB¨2=Õòš<Úºú¬Û…agL_ ¸Ì§fgaâcé§RÞE|n_æž*ýEÏfÈ7·!­WŽIn¤XÔÑðÎá)¿öÕ]»ËtV’~¤oñSý”á£m#Ö’>‡dˆÒtlºW*)ò 긽òú¸?Ⱥ'«·¨ Î<(»¾‡€”ó´ø ±×ò]šŒ%–¯4Võ ¼¾ Ló l¦îš]É€W¿!Ïí¥|èü÷ÎfÌ8B‘Ìo©þ†"×Dâ×AJå‘×ÜMZŠÌ9ctu‘ ©3ò=…6_çB·âGÆ‘Eýôd_bF>OÇ5››käTÙYœIhÀ› M¬9êk„º¸yîü± úýßS­D‚ÐKÄ¥L9*áÎó%hQUöØäZ!Ö–šM€i&ü°íF  þyÓzÅ:sý»þG‘Õ݃z> Vªã“ëÌR¥BDˆËw†…¿ìÏyQóØ ëÍ@‰ÞßBd”?˜MÜGï+Šêžw6ˆÀµ18Áu<‰»Àz.¡"LÄÊôþ­âvËöê©ÍG˜?D5ϵyeÅn«EPëÛ]¿øª4¿ÂtZt¹g Í J˜øFd© ¢(YÒ­ŸÎ*o 7åøÅ)€ß˜ÖºâÚ øŒ[êo_£e‹¬D—l¹•V³§Çlá®^¤y¨êƒZÝ‘Ðyæ^Ù Æ÷;¬˜aÕ÷”ßÿÆdWnŹú©|ÝÄ“r§=@ß ŠÍzn•Ê»Åïu•¡"D]ö×x·ç^µÁI­_R”&fâRÛ;CЄ’0YÅÐB‡MC;cSPm\oUœPý _äyô^Ø‘ÿÚò[¤J±²9ÐÖÁ¥1’InØl¸Y7xx^èÑ¡@y;äœißoYÕR’1,U.4]B[:,gæë©¤Ö×TÑ×Ô4†#ãm°Ì%‘ºð€63[vŸ…+èH<¦‰<#;=ݤ™eåŸ\B»I9íÀÇ£'ãïoÿØàs°˜œ%i l²¾áŽöÅ?û;©ÆQ=àzÛšP_L÷_AIûdƒúþPÜТ&è BwAPN]š¼ÝÍKlœ3ýq@º‡n)i*yg%‹Éù~8‘ó[®„õTn#ÆuBË«åÛ«bw— ö­¦ ö Ybt¥ùw~œâß÷:Ò &qY”ý’÷ú %êÇxøÝáUn8‚òU}‡§60â@9¼çä«ZÚóP&ûº ߊH_[5PÝH»1gëÖ ÐŸÌË Gÿ’s4TSÙÉYºV‰Kpí£ðŒ&s¼@¡âƒûuu…öõ#þ§ª'ï»Cw2[,/ —yÂÿ[-ã&¼µŒ{uP̻͊›QÄj“hƒ*é¿/‡¬a¥ëX aÏ~öz=s€Gÿr鑱È1nÉjç .£ñÔ…ÆÎ k{0ÁF«ðš2&‹X&õÆá«©gTUŸÔ'ú}ÎxDbû´6×#š÷lØù" @ËÚŠ(m›Z”郠§ÜäѸõ[±y½à17 Û¼—òqˆ ¿€Ùù.ž›@†þ±Ñ˜[õ<;Ý9U?QúÞNÍÙ¼Õ€¹Ã¿v&f¥~Ð{×þ§·v IäÒfžÓHÙÄ ¾Ÿ\$Q^‹à½H–£×?‘ïø'†¤hàÌ/*z³W7ß0¯q3Ýÿëï³uF~>FmËuô0 Û¼‹FRÙûêWMz¿¬Ö]LŒ§@gO “Wž2ò=Lâ!\¤šñgö}TG™þ”Où-2˜Yã]gõ U—¾ºVs yÑv×O¤~1 Ë8¤šr’§*άìÀó‘ÍÕ#ŸÞêÕÔ>öµì™ª¨Òò7?3ÜžÌwÓwLëä4'ÆbtOÿ{ÁhõЦ ùºÄ{‹“Á#˜÷ðÍA0S ¦ Šâ¥]D.f¥ÊÚ|ŃðtZ”9ž—H»jŒßò[”C¹©‹Fáà -a9fn¬'ýF3 >*6^ê\ÝÆÌ,ȨýãÅò¬úò&ªó´‘KñåŒ}5oR®Ç&‰/BÏëĬœÑã¿ R>ù”¥ÞK´ºäÅXð«eÂì­Iu‘GûþÉñV¦%7UÈ 4&ØÑ#)&îD#ùÍS–¬Ö·ÔpÿÜDp?ûZ°*†_»NA©¿ËÜÞI½­Âö#²¼ðøš#$ñC ‰x>CGdk\”ÿr[Aûm§«H¦$ÐOµsïpÕˆp·ó®­)ÛûŽ„}nïÛQá¾]ž'#4½;MìF±.K )ÙF<ª!Ä쳼訙“¡z9…úR¼BjZ™Â<8¨x$섎Àµzî`¹å¦íJTI{#‹Ä-ßR?JTwí| ñò6Û) ¾æ¸oÂ×%Ðϲ\êŒGUж¡åªKõŸEC15´D&qMsq³ kqÈɾ™qÖ±·i¹6ß³ª!{üpc„„ͨb¸ây­³cÍò!Ûªì|–?KñqóøÁ¥¸5ZbÑ8pÓºƒü… W ¹ÉÀe§2°e—sعñm8®]Qþ»×®íôLÛr`Fà3t}"©¬:Gä²–~Ö@3绨)ÙÅS¡68‘–Ä%÷$;¿À‚¬ÞZ>Ý@žÑZâr¥­M–·~ Ç‚{¢o—DÕÙçÅRR‚\•5‰ÐÞŒ ×Ö±ñH‚Ú±‘ A‰Ã/ç.7Qx}›LxÜ.ö{<] ˆ±r_ O˜ùíº€kñ”>>µ_øó’A€Üb“~ÍaG<ßñmXOZÑ`›ó¤´š(%Ù`ŽåanØ78ìwk2%4èÛtó(—6Ç#ìÝØîÄ(+BC(t*Ù–Ÿçðå笋’¤²^ˆIlJmòCVÄ¡""8 ÙÑPé¿’Þ«ð~¯CÂÛ Ë}VÞFÞ¯é#Ĥ¯¥Xãä»Z¨Ô¡^Åõªiáô9ƒKP¤A0kÚhrvò…•üõ}™·¯¹BLéôyoo¾8‚4L-ðbâþ‡›SÜc0þT   ,æ˜EM+^žþÆüšôÉÓÐOˆÅâÚu‚Œvf3PaÿñÒšçÃÒ^ªô–Æ5ò¹Ù+|ÆXƒ¥~èJ´!Ä÷Ç7×gæ·fÍÖP]'’¿…SfM> GsùÞÝLˆ^ˆ˜N¨¤DãÙ0_çeËÚž®Ròzyk ”Læèu”¨·@4*Sž¼¥”$b–gš´Ú^m‰Ä&ŒÉE0¨3Ù©ãô°‰Ø9¨‚´(*ó _ï1¬l§[üx‡­"MÑKÆT¿gêB‹áX°•aXËÛKª6a}Ù_%î0éµÕ¬”²Ö,d—ºWç…§Æïo¼qðr( ?I¥‚p³©ÖÞë,²ï¢§‘åÁí¯â4NËñ¿ƒõñ³éfõJŠØ8Xþ6Gó{ðœÑÔò;¶quò‹1œ¦Ÿ«ØÉ{‘uëé³}Ë\­!.UÕ§yK`É5¦¯ïÊF7O—¿‡¤¯Œ§æj|îxcÎ]¾QÎSù0ä¤[ ð‘l?j<(¡[q½’D½n1ÀúüQK_\xòýaËuÏËSëà\[ÞÆÃë{ù¡_£×S¢õˆ%>ýè¸Ö–!^ã;{44Ç¿:¯ÕÙù}%æ *MàÆÆï7nîÈ·›àX1¨L«tTL*PWâmUå~‘ÕZf™/´ý1Åå=jlOçÒ† Á•oÞAØÊQ×Pjð«îàÌ Ö8yÞÆ:#‘à¦2xg»³­'å—BÚÑxF:ÎùÃ}üËa]zš-2é×¥ãaë—]æ÷‘ÖR <܈)´øu³vµ3Mò3€¤¼ú ¦‘ÌÀ¥­GH×Çéé!qS~iXUèò½õh.‰¢’Ägª™T#|“š¹ö&MYÉâ` oý×áÒYɨå`8­QÏÉ™ÐÒq&±íwWñDÏÔ£_oëðŠç}KÉoýh‹ËÎÑMƒ›‰ŒyöGAe,zÇÀ×ýØwwØmÔ—1%˜ÁšCñx";îž°¢ÉùÐä{²œÂ.)o-å=Ô¤µ.u‰¬$°ñåQ\È6Ÿ)yc³=*y!|¬½ìTPVÊìi9eD•‘–#y*0¶Œ%© b)üî%h^þ£bÿ¡±a(Ÿ¿n!*½>úXUqºO1¼§²zÕΣù}:wÓÞø„ð<îôŒ[\‹·îçET}Ñ|î~ßg98^CY9lãõ4ŒXÖ\Ä3g7 ÆÁbqµ0¼»öÓÍ?j4iþc‹ÐWc;2ÑTÃÙüøÚ¯© ì„ÊBv‹[»……Õ©ùãwýd²qal<ô/ˆÕÙŒ,ŒÛ}Ï,qJצDw£lC»O0ðË?ë‹Å'ÙèqßY§Œª“ ±‚h7»›÷Űª€jRŒ^;ç¢[>Äê©äÎc<‘¥[§ì-¾ÌÙ/Ñd(0 $t öôçB÷cÄŽ@‚¾3.µº'Fc ݉1ÿ¹<¤¨^}mÝŸù4ZfuƲì¤>™¥<€Ïº åœ ºÑ¾F”,Fj¡ñþ¼”Jiò5ì‹~£¶ý‹ÐÄ:ÿê•€h:¦ª|Ñ6ÕÀ;Þk| ÂõP¬ V(cïµý¿¾×aƒÔób[žÔP’Æ[t LŸ˜v^Õv/žZRß>¦sXL+ÄÙž%d«=EòÂ{BF%ÉPQ ㌣ýô,û'Åö8’÷èH'S™± §Æ1çº_¼"†æ "³Æ_DÊc±sµÿ~ªRE$ÝL‘2xîrp‘§ý¶3&H!ùâe”=îPº!4±ûCÎ÷2kÈ¡M±`îܯ8¯Í˜ÖÙµ+òoT\ÀN^¢2&}::X‹¥ >ÿU&Ó0Y±|Ån/Àä ÂBöqÛ¶êÊ”LØÃÎlb”ÆÌSà¢ÿ„‡,s“_éÒ]iŠÿŠ0zÀj p.NgàídžRx+W&O2ìzÍ.xb©ÈÉè ¼¿…*9½Uúô¤nŠ:Îð¬¿h”Co«Ža­yñª22¶õ²,øS¦é¡;ˆÞ¤ªç â¦ü$B}COR ¥T#º­®æß´¯[Ú¬n´\Ž}FX4 ÍêÑ®Lªlÿäœ"ägµp¹SúXÌ5m‡·®l‰óI'’+m‰ÞvO»«ÞìQïe=Ö¤ÖZ”Å‚ãµó7‹Œõ$bC3”dˆ =Bû½}KÓ¸=Þ­Z#  j¯Á ¨=q±a(Æ>U~:˜ÏPD3ÔeæÇíæ.µP°û†E¬’á .éz"è*èÛ‡o]$ªé/ÆÍí`'vœ“GE7ÈÐFÀÝMŠQHWˆ±q èoæÐ](MÑã¨t/iâ/Ú·¨ê?: ˜]ÌëˆØ‹û¶Î:€J îÊ•ûbŸ­æëvÒpr69òlz/cø¡oß9w!zeµS/Õøf‘¹ež´FY›rì(ÔîZÄNøÜ„ ø¶|¬pE7ÞÝ¡×jµÅ)ÏSn‹~ p¬vh cÂ- øØÓ²ŸtUÐ?y‰.¨pÇk€,33 ’*™ÞBšÚPSµp4˜gMü]‚nÁ®ŽlăãšE¥¬Nö÷ÀñÃu^o‹?ë)â(Úë…°y$¹sbÄ|‰bï_àQâ6¼-‹>&æ@(ü{3%AH󈚥šGGiOùîzT”ylÒ[{t4$0\aâî§n$‹œ"³£·7øøj F£×ln{ÿ|äå°¡xÀõü(ËÑ=•(Tsx¤ßd±O„ £¸gð–9l¢[]DÖDý«2U@÷7Ú] À§$Qöd:6$2V»ÝWÛ>³²¤TÀ–EÙW7H%±áH5ÝV¶<¸Ææ3öƒŠËõÊáš„Ä ‹c«x­u_YÒ*›ì”Š—Ë6;èñD"LZ‹#Üû2†ÓÁ¯ã)@8ëŸæÁ‘ÿð¾OþÛÕÉ 2­ZëÞ)Ûâ»UÏõ¡Ôe†×>[$Ýk“FsÍÅHÿFu—ž§èîÏÉ0ÖŠ"¡_¦Þþ=¢¤iÆ V }NÊSÖæÍøë„%Z%;]½$V·'‹vÅ…°÷ÿ™…f'_ › KvfƯ Š•©<Ѥ²2šÅœ·paϸ0I¯êN Êä EyÃ’Ö`–‘uõËEXÎteüY‡G׬êæûjvoœ ~]†W’ýÿ3± ÇÀo÷óÍÍwäýªï8|JfÆ‘%Ãi_¥¦üõÒèG:Œb·Óm«QIe¯*³gÜ¢ó„Õ¨õ'1IšÊÛ6L¦>ðoh™ÿg4â¬có%yP·àæ&‹¼×)ñ¯áæ ÞÑ¢›,šŒ1ì­jý|&Ö˜*oE²o·™ï+ó'jÅÉ}ïÒ 5ºî™_©7ÔËH;Ú1‰¼:5ÝóßU†,;?Cú·÷GDq]ÀãÏêfÒ§·¬dŠÒý÷<ç0•w¸„3ìö ާZr,ÛH}ì2b©×Z(–E7Ü5?lúµÂêïÀÐ;ÄÁV.5Ç©‚µöï:ùÛî9ÓËïÜýzC*}mbb#ïì¯v rÝGlªG]tO»µ ZcºBWóÛ”c3Ä!† Ž¡÷Ö¢o-…éìÑØ¡Üúl/fÓÆIÃñš £`4þ”åGcyÙÜqw5J!#"y,øOÀ[åÒ=OÚ›­“Bƒ.í+°"d+cÄ-4<޾ÒWªNIžÓ6ˆHCÌXÍxQ°Ø/ž>³kÇHoO@XþÄÓ­aÙ%é´¸º“­(÷ñ³ÞÃÞ)À WnœÉ1Ý•« „ãÞÞ»r€"//uá!?[¶C{%>O¸nã¢ùó3aÎ.$çŠ_ª\~¦&VÍôS5ò;¢ »M&Àɱwdj-µ ìà½Z û†nF= ¾QÏ_J…1•Àh€IlÔ\ãþ…X™Û-~½ðj«yŽkpíU]Þ- Ã7˜ŸŒâÏ;F¡¼¨ßÇbù´;„å˦1L;H‰‘XVZb·Ä›ë]I:ç<Å‹îàf »×{ºùR*ƒ¦Ý[‘"(œs;@ <8«Túé+Ôƒqÿ Ñ¸6ŶT)`ÇYï'´Ê‹7ä,·µây»‚–} i0J)J¬ªŒhM'Šnï‰5ßXàjîK\©~·fǦú;å2/†mÛ´Síw‡]i5ÈzðSxBâîué™~‰ED»ó³¼÷{øôëħ%—ÊûlQó••"#ì–ÖkÀkYK-sËû 3þ°bŽ£{±¥ôÌxKUA5àÞ©{Y}*VÕµ²rWÛ'oÍÔ°ôC!,±_Òf5x܇mg¡Zøãb}æÍm}ó0t³€h ê>vÇ V%jí^pLó»(àpËdb$©öÁWBLOc‡ož½ ³Hm _-¢ˆ1.® ݽ¿º”'‚2IõÞ¹ÆDY4ÉÂý"©IÛƒg£_ŒzÈ«|Ì ¥‚uL1nhþ‘?÷ y˜Æ VùzL-ÝØc9ûXå{Ç—Ò‡Uâ 6~Ì.Å’G¤«/à¦Iô‚úQçÌßâH.Ä >oÊá5p·Pò„q¥³ÕKJ‘ín–W{p±y–‡¼›³í”bK²«1ÊÒ<\Ü‹_)^J‰ì]ìÎu‰­Û-\á}Þ*ùdÄCZGÐ0 T¤€g¬RÎæ3 yZ9¾l“Ù¢óôƒBœ“k”²:Ï~)h¬¶Žm"Z–Ô¢³û•zðá´tÃú¥'ÐzÑÙûÊn—ËM]İö :°^Í©šÝ¾µa¹zxkÀ¯Í¶Pøyc˜CЫ!­"¸LL&»Á}™§^iææD¥Ð7g°býgd…úÕ#ƒEòÀMwÊûH%XZ0§o ^ÌíÆ+/«½ ¨á¥"*²è×À(^Þ¸8­2¼L´úDW<ÕáÈ-…`ÌÅ)³ÿ™ÅXLÅ:9Ïœè«ZÊ })1"ÓqAõØý”-L¿P¼ZNZæ$½…éØ-=ëyB÷¯æÀÈvF8N Gò62YÔN•^\º¢Q.4Ôs«à\4?ôÔÜŽßsb´©^j¿o­~—`Iߌë šZoãïÅÞƒ\XïˆÏßÞyfBX.Š—“$Œ ¡£†û䧸Ÿ‚rô*.¼Q¯-ˆÍ ë>jƒä—Oá«§ël-ƒÎ¡¡Và=H\€‘7Õ«ëh©Nüçø[©Ï‡A10x´#?@³£ÓàùÆ›•ØT æëé@Fw2‘ÚBÓïP­heç¡ô¦ðýWE(N\ÕÉI,Ÿi7]§k3V*¿=ŽÇ0D²?ÿ0jx€›îÿ‡ÖÙI2´(-œå¬înù×»‡)®ø¯°È;%Dïyµ} $ÅYÖ×@%qTø)fûžwAå…ž„*Â!PRïLÅÌÔ…™£¶sN .¹ý½ÒéClá=Ípç©SzÁÕe9µ¨tu_³œ÷Šîµ¯î}ç D|šÆj‡Â‚ê]µéÏ™„ãÀງÃäº&èV…òŠÿqÅ)»Z»/hDZ@ÖÍn™#•ÚÚ¾QíqZÖÖ{¸²e®—z$ª‚­ËŒ¢ mñ=z§ÏnéoÞƒsÅßZ -#þ ¨¬Äí^²y×Õ ºÔ§¸!»ñ/-…$¶Â5ðÆÒ‰cmûûÌÞï\¤7ÓŸ£ž¹çÿŽê ¥¤½±ƒ–Aïâ…©‘¥Ð²2ªÚ×–.ö÷¨Ý(oÄ¢xÆ"ýÍ’-R ãç3ˆÀUø;.«G˜îƒÛò(±?ͬ?$}Â&mŸÄÑ=UÛ šN=,‚!$Ï_"\‰ÖHòÔ)Qä;kr«¤ýMQã§ ÇKÿÖÛ W§[GNO=cxŒU´¨)žIÏb9úz[ÜÓ5òôx„˜CPKü©áØb·²ƒ|WNqÙdsÂ~á›4ûýMk)'Þ¥Ò%9LG8&Jûd¡wùÜíתù.´„*Bh9Cä¯ODEš‹B¸jÅm£p¶oqǨ}¾-r nnsë¹òU“Ò¿Àpðw›õÖ[9Ù›h"Á·Éz¼“ë¹bÛƒJ¼¦°2»ÏÔ~°¸m¤"K}º|¸bõ9ËîkULfnÞëRú°ŸÔÑÁÿý®“Æ›l‹-VÚôÍLÊ&«^e<€“H ޾åÉw!G³WG²é®Z­ýZ°ÕŸ¾aº¿µhí„!ë²:SÙŠ§Òyz¨¹@¥¨ü—ÀaVƒó/ ŸX %o;ºK/˜G()„·ÊïG‰?´’k¡{cdƒfhU±„¾v…PuÍg!…Ê2 æ•[®§»DWÏ^lž‹R®pù1óEݶ6EÀÃ’ˆ…Yão›¤Žê”(Q¦?±HÈC„4`bO œÿsÓ:t†ãç„>frÉþ.Ä6[ Êj@OaþšÖ­œÖ^8a„%©m®¢TìûñxÜ®”~wp†rig,ù<˾Žï¨˜yßèÑëøÀd$*y±fŠ$¹F†îéÌùXæFÂâRÆIÚÖálÍ;]'c/-ÖXÛ‹¬¥[²mpõ€´önº-ÓS2îyÿÐÌÓ…ëôby¢î[}WšÓ=/êRc_ߺŽéèâG© °úNÁw'.鸊Ô:­¤ÛMÀþw4<©w¿âÌýQ=x$9SRƒÔ—@ª¿Æüú"£pöõíæÍ6De¬‹Ñ§Ô|ÆØ½K£Õ-B…©½Áƒ”¦þñ¹ráÜCQù6Õ]ëÇ(/pó=OÝà¸Û^*I“lcûp!œYéãæ-¯àZœ¾ÿ4ÏyŒŠJ@rÆŸ%Âê×­æû¼¥Pc6º|tÇL!µpðÈàN7Júx’\ºN7ØÝÙÉ|tp~²¬‡$Ut"TDþ€ÙÚ_2°«·}”zꆯääTuêÉÉA( ìagœ)¸Ê÷]iÕ#¶Ê ’7µ{@2¬ì34`ð2ïøèLÆêÔ´éKræ…X¼RtË›óWÀ¼F7"}àJÅÈr«›šº±R6Tï)Q½ w§`ˆ†lßÝ<†[õ¼¬¨ñ >ÜïàÏ<ºyKÇÜ×ò¤Æ ÄXîâÄvVF~îo>W¤Þé´Èý¹RéÒ«RDÌA)T?ȨµZÚ×_Ÿ>Ë^'ÁyFœª “wÙj+…­Þ·D†ZF±b3ÇŸ…Ä©7hyšøªoÿcxוÁ‡Œe ›¡áÕ˜í¼&T;£Ê$¼<„s¤1n¬¾ã‰Q…˜xûÓÙfí0‹¦´1ÿH~…ažgÝðR%N±>“ØÙ™ÁŸ6Q<‰ªXþäTw»ö >Ùw˜Ø7©ïvBÏ@ƒ~Å,;Z‚%Gâv––»“Dçâš®Ê'$yc¨Ñ¥Ê5X4Dù³£k™P!¾€ÖÇ`¢@k£®,ÁKF|8 ‡X®JжÇùù–šš5ÕÄõ EÔQöË*˜+¨pˆýÛ²-€ü|B0«ž_ÛCd½ß>K¥v ÏT]ñ¾è´üò‡“2E; >K ‘ogã‘ÖV+9˜¹ªŒ¥„ƒ…Êø×°Ï{¡ªÁ¦ôW ®tS,Ñ}PËA«øD%'ˆD8Z妗1û^ùjGx_"›’QC´MÑ Õ|ã$7Ó§{n­ F{˜[¿·L-°7DFaÝRh ý\‡ BÉýÏŸ÷äˆTs¨Ç¦UˆZÓŒ(™ÎòƒU*ô¯“Ì1˜Hgk6­Göý#É5 Q!ÂŽE¡µ^ÚL®üým¶’”<À©ì<ú©ˆK}SE˜ÁZ”Û£XC÷–zÖ]eØLzPO†é‡LéÊLÜ, ª’VÊ«½ŒÎŸúÿ˜ò^h=d‰Ì'}Hß ׉}ô~¤°„B‹–<>°ÉÎÆi2ù¦NïG€ Y/©Èì¦ó÷GŒ,ÌÏi˜¤H§h~}TÌ’ò ­Te÷£ù)•EKIŸG_9r#OZ·=îÙ;kYâÎáF㎽ÉL<Ë)ß”%‘ zÛ?Ù8= “R!a?ú3—ÁíUëºFf§Hèµ²µYÃóÛ[‰Eÿ¨"æ›1omÆ ¨‚(ŸÐjé.æŠæÎh¼Y§­àa~‘/`Ù„.`Ý­i$fÜè¯.­È˜¶ó¨ÛñÇÀ(?h·E-ƒZ”™j\v‚Ó‹–MÇ£9yÙàÑ/ôzÃL@ÓÅ„47}ÎÓ4î8Â{ÅP.µ´avÐ|ì=4‡¤wàxj*§Aº~ 0í\\…9\Ú¬4ÜÑ牯.íè‹Þ€Í±3x{»È¨pÚ?‡\Æ|ÎÁöŸSe¶þ=µžc;À³j Õ!ßþò~þÆbµ’©bö ΜâöÓ³úåøµ€ë›‚qÉ,éöòœ¼Ê¢¹­ ¼‘€ª"(©'ÙRêØ…Lʆ•šŠØ!þ ãaå Iå8^ÔG=‚?lÀ«\`'# !’—ªƒ?Ín›z¦ ‘±gå¬xUºuWPºQFœüs69ïwµ>/èë¨ýVfvב7Ê—½ùÔã¦*†´ƒ·f¬ÂRhÿ‘@ŒJ¡ñääm9 §Z´`¦&ô‹}S»Åd”@O•H*ÿ DüSÓ»+ëérAñvØ@­vÙ 1D~C’Õ>drpBö8Ní^:Áú÷yäN©”¬ƒçª²Q}0wŒdwªt²UöÒ mVРÇ1¢qÈÌÉoîœPã…ùß}ÞØÎÛÍIuز¶îÉeÓSŠùíÀtÅËò¬3õÄ)z²Èg¸° Ð6wæÎr@‘¤]2vßl¢ÚbPÓt ý=NÑ /Õ½ £E#–¡iNãµKD³ZϵUƒVŒ‹S>@ô¹Ž«\‡Ÿ†•œª`ª:T¼í-JnƒÑË•EÌóö}rR»‡výž%ë–l¹o•Ój.aì —µéì3¡ëwèû¹€ÙYliš ø¯gÐΓ®ò¿ñ SWì=•ÄѯdëR}…Œ Ü/bÈÃÑšA§!¤ú9‚›9æ3ƒ{†Î,«™KlJÀa#ŒJ²òÃ\í¡U²‘—ͯ֟a|ü¥B?šÄc1ã¨)è¶žÎ% ñž¯:#°Ý÷ÐÉü¸ZÄÛjtv;¯JÕCEÒ¡†Á‰*FdsIz6PÙvóÇ9¾ô|;>ý¾»TÛ'‘šAèVnÂbøXØtÞuïLe•ÞžFI¿¼ëŸÃ‘Ÿ$Sò:•$Lú7F>ŠÂñøÕ¬5?a·tӜǩ0ÈVJú$³Ûþ–ñÁ‰b©Žúî7 ‹m•¬¹¦dh†ªKE -0&.[ÊѪV‰öÛpàY¡9;bÔÅ9çTÌWÛ-«rG9‰MXuP,CYk)@ èì¥NØú¼£ÚœêÝ|ÔÂ,|ã½^ûFÔ%)ÀÕç.šŽýú©»¨Ól\ôgdx™³¤• ÚDƒžoǼ°È–%;þ,Уbä€ÞF&©,}t˜§Àø1ú- ÊôEÔn|¸üøÃûSE0\H0ï¥i<ãêÞ÷ã¦~óQ§ªÁµ€hã$­Õþ˜¾\KŠàQ Äɶ÷'Q`Èá?ÇÔ-3µ”è£÷æè±9¾ Å«ãŸR½A+#€†Øm´HRaó àéZJvt¦üîOXúëž»ø¡Wâ3‹Ø¦ZY)Ä¢ìË’Áï­×Ì^qo£¦Eó¿TÙa¥; ä$>,©¯‡èÍj#Æÿw–{Šøë€î,hÜldªŽm¬×ÚtS¿©/7ôÖ„”GÐÓ4†÷ÅrèY}í§€íÓ[ál‚ÞjŒM7»atäµ @Û{#wZÒAO&âàéøÉ†ÎzªýÖ‚B&ÑãÑÒg$ª¨/ÈÙ£p­Àô9Y@<äÄÿ$Añû€ò»eÍó´–rH”-fÊy—8ÆÈdwÖó3·äÎ&þs¸n§D•³9žE؉w,–AÓ_‚–1‹NrÐ ÔZ^"KrÜÆƒiŠñ¡u8ÜY»¯ËÄâ™kä4ÓÝ3I?7ñÆï#Kãnm-/ÞcÉË5Ÿ¬÷—л‰S­ßI1RW°kªKïì¦h°"PY§¸‹û¼{ ê"1 5 %=s’›oÚÀw³¹“[œ@{ÖQî{§Û½§ú®FSçPÐY¥mà©ÿ웺=×›0mq'žiì<ÀAãÒ7´‰ êÊñ·î,ò/gòV³œ0ë/¾¿õˆîwjN;3Ð60´Ô´‹úu(¾/-Æ‘2¯f0T¬¬™¡®».uoˆ’ÞPÛ^©ÇÑGoÒ¦öUýÁ)½í2.]Q *Ø.+Ö`¡’™ƒU}™È8ïÊÖKÁb¸âGâÛ=Õ`< óÀ$/G&÷ïk8g ¯$5ñxÝ@2ŽOb*4}{a˜ÈéÌ÷«í=AIºøàòb^…»UPÝ¢‡8-NU³/‰¥K/êàgÓo¤‹X“ë?¡ ÞØPüÄ¿•ë5Œ»iÛ'.8¤Áœr€ýßtžfºÜ‘”1?‚Á»?E¡ Ø÷8ðN`¯lÜ#‹)2‚æ %4ægVJ¼¯[]È?_özªÛ$#¥ö_RÒ*u |'6yx‚v?~ç¸âšâú5«Ø›"šx";”'b#=i¼­Æó=[ßÝê{0íXaÈò2À´0ã>pf‘¦.!šGTÚ3s;‚NI¥¦ÏÖ}ÃZϙʩðf’Å;þçw…wv†@"šQ ÿ ZZQˆç}Òâ÷³2+排DÈ´¢6ƒÜv„ñˆ¶ôt8À:b" •mÖø;7غßr ˆÉ(Áèódxð$9ÔpØ‚PÍCU¡Œ¼|¦` ¯¬r³7 Ý!y›3ÑæÐMÈq8ŸÞØòìXó{„û’Ó÷£±oy‡§cZ·WÈØ\éz þ‘a«VlàªÏ”¦©ƒf¢‰èÅ!æD˜(ål¨iF>”(£ßX¾n#tîX?_7Ï÷Åû_~O¹è;¥­Ha“=JƒŸ¦Aåç•ã«áj[ÞüiÐÙ §T pj%£Ì;*Rçh%4qD\?®£ ââ¶SÃo:}t§ÒØeb¹çƒûHñÓš_øîЦG8I$KîÜÍçÞ‘8eüûÝÂHÍìC¿¤2Šûˆ¡óY—|íÜC¬¹ ä˺r;\¸hõÍ—Æ]Ì× ÷¨#L€y¬ò !Ó $Î*éÔâˆþÞa¸ë~käY÷èZåen·1ÎñÛ;÷êl?ýØ›è TQ@vÊlßLȉjœµœ ôyRmdD'çQ3«Ùu .Ö²ˆØ”¡÷ª­D©ºª0mÏ_$üøÜ–Çgr½ ^Œ>5«8˜åîî1Šù|%M'i9Öm>IO» 7•ñ‡ú»$@¥&xÁ˜5ê+‘;)C4ÿŒÓÏ‚UĵFÔ¡©WýŠ8~ùÎH±óêYQš4KZzCá´ÚŒ>›Ñj<ŒS»äSÀÚŸXµ‘Q»|Åì÷ú2D+¯À.oÇ8õF)D+©¹Ur#wÀ$4ϸ"«˜„±=@ §#‚z·˜n½WõÇf¸È܈UÔ§©*»zZÂôÍUð~•Þ&&qƒØ§æxk·¨ìŸéú%Ydë0·âçVåwˆø‚ –𬷠ÐôK’œ9à•_nüo·«šç2‡$¤¤Ø‚3NËJ,ø!Ý”`Ù¼Õó÷]+€jª˜Í@6Ý–?yV ‘W(#ÖäßÉÎlA”ƒŒ+ù µ£.ù¿s‘oÉNPznÐ ¿@鄺šW–0YóKtßÚÓ«%5ë“ÜÒÒ~[ÁW£'aëcÿp—kiWù¥LÁqEÃH¯Z#d·º¬iRÿ€àÑ»64‹©ŸÌƒ²r¾ Òl„ê‘Ú«"|ƒÿŠ^á ç*šÅÑ÷;’àóQ;¤–œÇÁ8Vggø D†,#WrŽšµÀÛˆ ƒv‹¨ É«êP‚¼èã(üÃñÚE°æµjÞ¼Gê0?%ù®d %Iu¦¤å<¿û-°eZþkÇ,²O‹“ò!Sü«%½nŽi(.•u± 6±ÕÙIÙíüù€¡ 3؉#²GÛw§B,Í{4À¹O$ÍćÂi×uŒ“¶æ $.KI.Xšsi˜lV’K<È¢F̶äw·A Î\Q°ÝÿS^¾ÒÖ–´4²ì½<èܱзtï™›êºÊÌåò‹?ŽL>öÃÿÞ,=íß_P˜£ßN¨äëí%Ñ]Ó鄵!*à#$¸ñ¨)b Þ!g…ôÈèû¦µCë… ŽV·»ó8ªqm:^>ny>±ê uH.ÐúáçCkØ%ù ð—êÿMÆêº>ywn~ßpÍc°I*Qã„aþ¸7JÈÆi2Ø €=Äá‰`t>Îé´9pBÔÚf,‚™\n”š¢€ÅT;œ40WxôôZ>‡ÕÅ—àç¹*„¿`Ö Îí]Êñ>û©_i/@ æäñËhìÍ>d2ÜGݘʎ}2U~ObílÐÛ µ ÎbÝßÄ ãâ&Mè8¨Ï Î"ó½ŒÍ!išKŽnÉ@ æ…=§™µ‚³'o%g ’qWOo¾F’!!±§©'¬ó]~ žE(iú÷GBƒ êà—g¤ƒó"Žp¬©–¦¤!ûó¤‘îF¨Ròü.ù#QÇ’žÆƒ¦‘ zvàåò^ZtÿÃÛ:aÚ„"Vw˜EZ¨o|áê]x‹³ì³•l¹]/ý$ûx·îHSàyE®!e(e ^à_ÊóNb†é:q³é”£}ëÈÒ-S‘b[ØÁB€,#-—ß7ÎŽ7,ÑKh#k³b‚¸»°‡ûCWòY\•µæŒÏ¨S½BºFÚgÓ:X+r:Øñ/zdʃ ¦8-D˜AæI jü[âòîN¨ÅОŽ3e+úÞg3裰øÁŠVBY>O”yÁnÆløíXMI§ü) 3rÞq(Übô‘ü(¤-ÑE\8ÛbµÄQ@Ú jÍv¯"IZJÅ%Jq“n¬‹ðSyÐÍÞa-˜Ú4ÿÂÜIÿÁ±cÖé‹'ð°°ÎR¢\‚â6G5Ðç÷zR¹ë áS ׳3ã¦IFzÀÆ`;P—K ™4}ƒ.¨½8ÿ,¢ k°Gýä7ÁœÌvHIr+åPzM•1º“±‹ºÝŸq†¢š©-ù‚AÇ{yýf»*\Ñž†è³%ÿˆåù½}«tÕ󚪈¹¹ Ù2ò=ójIG~é íiÈG®„"‘í“ið`tn$MÈNã/›Âzf~˵XàÑÑäŠàÙ?=ŽÚDu›êixüiS³0E¶{œ Ìߨ+xvº–håP3â½5ñ-飕dþ±^ý÷¸\É– ôì¦"̇›ßº/Ä&WÛìº~ß݃¯ßPxMŽ/9Ü3ÓsL×ä«M=j¾ç„-Óª{2 aê/³wäGE£O®dðq OYÌàuÙy+xÙ»Õ,ßNg?õµ™w±Ó êÝt÷¸‹aÍ|¬Ç7lgnNÁÏÔÏeþ~ú:Ê] 'afX®yTîA3D¬©ƒˆ®Í’™öÇ×=ö}¾¤ç(Î .ë—u‘¾w'Ýñ†ßÒGý:ÏlKN‰6s·6à0GЀp·dtù:ø=/^5y¶Õ©‘ͽ³^G¥Âhu¿úœs«G ™‘ëûó‘±îHŒýœïÁëÔzÑuÕ”³WÚ|5J]f’Ç.ý¸0Ð ±Ÿª¢`Åë •¶Œþ-šÓœÞï«£My.)DSg¶™Ô:ÙçkS¬Ú o¡,¸ö±øçí*‘©©ÃS*ä$vÉ(»¸¡$yè±qÍù¶–§Ts¤vŸZn[¸ºÄÈ}½…–>±‡ÏÁæwÑ­‰¢Là™ž"gÁ¿Øí‚üBSb…ß„©ÐÝDˆÖ/qŽ^7‹”ɪò};¹YÞ*+±]g'*µùt ÅNúa}¹ž§:j€¥ãˆèfW*‹Uýª¿|{·w»§–7w\EÏ"²qäÔfõºý¤3äãÒ›»B*¥Ó»Š¬áæ*,åE´Uàd0ð’ðÌy¶è-„E­‹Ó€Y—ºí²BÜ)çŒãj=QñYH-¾ä•±ºÄ-ß—_­X éûE‘bǢߚ|÷ J$ÿÇ3 _$Š3xÒ¼2Øô3 ª¼Œˆndž?óK-hwÃHK—¤m¦u  ûoot|=ß•³ÂÐìƒõö²ƒMœ*¹ûpŽcÁÌ4ÇoûEQM*J†%èTƒ.äD„ Pæ ¦üGæGP´Ö ¢¨«í¾ýMϽ"Ó9KQóû×TøªqÓÞcõôÕî`6Á%à÷›`YvŽ TîU~fkÑÄ÷™/o±u)ŒcšÂ3Ô;Ñ5òÞz±J0•êG&TåV‚VšX%˜câßÞPÿ›Ò«N¤Î(Á JÝ››œ Åhmç{|½ä/ËÄßÑcCô& ®á70ÿë‹k°¯^.lóyŽÔöªë H0™bÐîf”ÁŠBoku@'M±n1Í󸤌PF5 („ª÷+VîCX†n ’”vtMÏ{ü³wz_j÷ùvHªêš6V–%¿Å>“Ú糃Kl„¬µ¦îá¨ßWÌqnæU0þzä>æ$R:OHÄB©z.$.ßñÅOÊŠÒQí8âšá¹|ÑL~šauZ•å"¬®çÛ¤_Æø¾öA›^5‘ºýÊ¢!‹âݵ–êK¦€þÒ-þŽb4;ÍŸÉì>ÔêÀ%€ˆø¤ý‚xºQç½êœ}Üé‚‹Ÿ \³Ì­Âø][÷k® »Gãý?i' £ª2¢¢Ç¿Î  Ðhõ¨ÉAOç3å‘—–|©]l¸2/,MÁßÝDMpDDÁÿCÐ0Æ‹o}’„Wî@É‹W¿¿>/¯rÔ|a©ýீÒ"3xÊ ð.1ĬÜbMDcóìšKÓYÝv•”úžo$ïTNis +ŠgY7G)%]§ï2;©þ^}½šÃÈ]ND#ÝáÏ4c\«S–¸IT!e½J± Æ^€ŽRQ:ôæ>{cû‹ƒ|Z,EÂCÛi^fI¦d\‚ðç{ÿK0¸ÝzÉ¢]ÁO]b)ØË¢V-ÝÝÃçͱµlIÀ›æ¯jx­®–ד]™Ž1*ðz» »°0R—?ëÍV¿r©JÓteÞoË^Õ¥gyøi®*MÙQùÔyšÉ P+Éêæ‚ÃX+eÒ>ûË7 o$uíT²,1{ãÍÛ ì{A¨²C£BJûA Œd¦ tÔÿ|°@ç¢íó` çÈÅ$AÞ×*M„°&šKA}9Þ÷­%¿·¢«3J=°KPÇNþÅôÉúV•ú±ê‘Ùôrì„¢CF:%#±}>Ê€Ù O)¬žÑ´9ax"ZN~–*&ͪu·@°ØXu5¼Îc»ÛĨskå @º‡zj«ªiyšIÓWíZ_n}HâO’¨†Q„éòxƒm×QYj.Sð[0FqD,Ž5ÀFõOl·äk8ÌßDF]a³!”4¿¿¹L˜¨Ö—L"¨ÍlòN’€¼D+¶BÂÙl:ÐÒ” C`Ó2®ã&­u;ò»lýz" 9ØÄö+øÅµû càÚcÓƒ°Ç÷«ÂÿBXat,…;ÏãºöàÓ"DzçFǯR[ ó*ûI*ô.Ÿvƒ„®Mºæ*!pZá%E08G ^oÀpüqDzNG*߯ Ûa­Z:&)|\e68 ]Z/Ô.Â+Q¹#$È5yÃÌÌçç!™ú¢FÀ.¥ëè›ïƒmˆ-ŸhM´¸cð>T¹‰ÕÚÿ,aô}C‘•Yƒ}ê7[±Y¸`—™x‹9Þ?ÐrWR'ÖnîîŽÏySmºÞ<±tùÚ)q-K,sB´·)üiæü.b¥&L‹-]ÚPwê E@,„$;+Ey÷MŽnr ¶âD7Ÿ§ˆÝkâ»Æ4lbm?W8«ãòw5b-,ĈdÈ3*!åp¶µ·£Çâô*^8ë`¿Y~˜¤™ýS.ÀP!ÊÚäÈ üi§õ¿ <ÌíAØ!"ÃêP»¿•|‰!gw¾Ôø·?Ê íŸê³(œO¢¾Ì×)l¹p¿…†°¸â—Eæ!«Ñß<;‹»òpCgŠLþ˜·è€ìÿ=lÑ”X"4ñ­ßëæ3ÕÔ2éйDÒÈ}°Ÿ›B6S'íf‡êï¨K1a9¹&’ˆL%ž Q&ÀÍe˼òû4.d0a$Qƒ5vwïúÑ”ý-¨ßçXXb)ÙoÛôXͯ1í!5͹іÈôdS”_ “söXSŸHpt‚ã’ «Î# =®Ï±[©+4ö"Wƒiº‡ðá"æ/`v…ôb%¿­Ýù€õdwëIQjÒÏÛÃb”›Í1ÕשÄN@+úù(ŠÍi£Ã­½á>Û5žÉÚ䎸ÙÈ—Ó|Ò sÀê޼(i·8¢)5!ÚåÔé$ôñcÐ]«ÝX^Òº–Ÿ¤‡B˜¡s♽Ì>šµÄñŸNµZøPoÿV¬YLñ¦aýì„à´ÝÔ*Ðܽµ Â1ÑÇ;%?«o;T ¶Åâ×꣪µÿ0áþñÔº”¡™`’’iÛ½„ʹǺ£+ Ü ¬üþ·Éôi¹à­W˜ÙÐ1êE°± ,õµË¾U¾]×Ȳ ú Ñ‚¿A­wбaØššD‘xâ Ö/Â+^é=ëL"ý ˉ{âÛ¬ jDìÎÏóRÁÔáè0³¦lMAfVd©) Ʊ A?'žw7]ŸtNDòçF^‹¿r¢•g=¶‹¾[2Õ jÇÆYäÎë¿z!©`Tòæ.a˜“sÚŸ ‡ŽUú{²ÞéÎÇ_ƒ šïDƹð ÅFÞËgè~©0.lAÌ™w ‹×ì˜nŒ¶ÅAΚwüP\gá—©ô6ßnÀ”ça±…¤=}{Hÿi.VÒT¥óZ-¥·,KÎâ'Lô >bÔZù6ºL—4£ëÛÏ•¦;Ê_; _ÌH¦Ñà+k MHwm6ÕeÓ§ñüþå3Vüz̬v¿—'“)äÀ‡»'†à½£:Gœ®R,\ÈÄTbÉrn”|CâÏø$”3§öÑZñi˜BþЬš‘kâ }?'Ð=ÎÛ$Ü¿Ipûãªî÷û²/Ñ‚üЉyËd'ã ¾P‹¡ÿŽ펟ã†5R¤_ŒšŽ÷’ßð˜ÿлÞú·÷Ì‘°‡I´I@£AõÙ¾ƒàIÅNÒ65‡¥Åe¡ÐøNéƒ ZðÕ?S}ƬŽ™…vvKèwº2†šÎ«G×{S× Ä#±­L[ø*Kïñú1Cñß7d!SkÐ-gÈ™d£î€ÑRLþù*[ãöÖ*¢ß ªU’èbÚÝß꫌ú$VÔO2ÿÊÞOˆÌ/on2ì±JëÛíqGçä×±yHy-mY²9ÀÑ a¡L€÷Ér¡ß\û1]µ!¬¥X¯QÄÖ‰PÍLÚdý¡|“Å(º'h=Ï€ ®õ¦+¯¹ˆD±Ó¨Ó9žY‘n¦…ïølY˜ÇösúKËË•Âæ[”?=sá:æG(bÚòΉÍÊì"è‘ywMr¢O“ @ âýsɱªcü ˆó–úr¥8.Ožr8ä‚ÉtV±Y$ùVÓG2/¿9ú¦º ·?7pˆó¶gø™ 'øíMsÙŠŸ/~ß}n» ãíø}Š:¶ùÀuõŽ +®´¾wTß}S×,í­1ÿ+Œ„ÏÍå/sú<ÞÐÖX–QÝÛ éâuv=ž®±öa÷×Ó0ŒjK…+ÊŽ$ÜY–ºB¸S”M­=•ñ¡#P\0ßÊ%cÞÞy>PNÚ3WšÂSäˆ!êóÙMÑ!âüA6JƒâqqÅPJ1ZŸáÁƒeûá¥JÞàÃìÆ’ô‘Ê{ŠÃÊÓ–i² g+,@‰¬²4Ng"… óý•Tr0ÄHÒšÈñ0Þ*Z·Ð¾agÕñàÛ¸ Ŷv1{‹¼ý(@Ââ(B"yÈï‚!ˆVw¢‘$ÁÞ‡ÜÂ]ÂÇñ@¥3à jàñt=‰>©? ¯rúÛHÂÙ 7Câ…bÐqµ¬(ïõÄؘò¸4î89¼<µ\‚í?¦$T¡ýs7Gêû)RH$P8„›>&8a(óŸuÆšUDˆÖðŠMÇÁ'"àæs.¯¨1HÂÕOÑàçr:7_ætìlâxRëþ¬˜q#ek5Å+ÿbãbÖó–½óÐéÛ²-â¯à@ÑüàTóì9ç“Ì+4»þJÏÓÒ–Ÿ1U©òÈýÓŠqºr½çD(…9œðä=ò|ÑÀ–EZY$´%Å€4;¡Hæj·GÉ4‡RÖø*ðfÓ^á«ÉˆšÙ8™ž½Õ,z°¤ã˜+R+ÆÏl½¼{MÎͺ;»ˆñaÒ*Û¨úÂá¥Ûë¢÷bn©:F‡}ý¤¤ú¥Çt0Ömnû"$Üð]ÚãôkTV·Wß§K}GsŽó¦¸R÷K,Ÿ3È)´²'TK6¨ñâ›Ûe€ƒ´ô!lìË›õÉ—$Ê„XŒÀT´wjÙyðLщhâ{šƒ¬ï¹F[w•ŸK¾N§Î?„Ö~ˆÙEó]%Â@OÀÇ ÿ©‘'hí‡"Õ°ÙÜG å¨"ÉJýÝ0#sð?§Cô±4¿€¶@|ç |W \×Ob@]ju¬AQMµ›¦"˜ç E¢iê{OÁ“JØåÈA›üÓQUÃx‚”¡:üLñ6°ãm²æ·ùº)ÖØ+šÔúÜàYˆ"Õuñ{)ÑáL޶?†t~Åþl®qÿ»R-i ÿ@ŸTTMö6‰ijTm±RŸ1'CSö5éW#|Óg3œjÂw°Œ °ò}ìÃKêÖÁ ¸(…¨ôô±À/šr7í™ð¤®Ñg­È»›ÒyM{».àZIYO‹À`3^ŸFöc×>ß•ÍP(Å«"ðµÑˆ}ª–È—Ò¨_h2WIe•ö'‘e!NzF>±7¥ÅöÉ5‰âg¿ê‰Iõ…$xÀaÂàB=@•ö>!»µJÀ$+¬Y“^è ô[ lG%‹é^‰|V¼á€´2=W–†Õu ’ûļìFß.ˆs+®Ðç‰ñWkTòNaÖ€LÒ2JrÌ7Æ*‡"lK”ŽZäÓu?%2FM«ð8-!ü3-5çŠ[ÒŽîz–'ͽ6úÆ~òÕIäå€"I.Ë}rÇðtJ®ÒíÜ"¹ÏŽJgt[ðq@áswÓŠ…w„©¿6ä¦P´ûÄžRé *‰x£âXxa@FèR#8µ€L*;•a!m” (+êŽá¶š‰Û>´‘ÖkƤWa)]´ô(²4òHêÕ_ –‹\d¦Ì{™-i¿¢™Êüã®?.¨ÂWÐj5%O}’ñAnûÄq j4a©6`p°™HG +øä¦Þ¼£·ùÀ€O»_JÎ\ÀlRà9|¢8/fsÐ ”¬k³M—èQOTªEi×ÒÚi´hæ]•¾›z*c9!>È2Õ9• Ø1:ôPÑ9o/w¸Ce}NN„ÂÕ×ë}%ú]Úæ™äy‚÷k¬âHÖtª'Ñ t™„kàjÆèÏ‚u ›ô=”™½ ƒð”$ÃHôl4ý6Òc6éä±ó˜Àñ?þùöj(@Ž5xHÞ„êX²ì4BÏWbŸJ…ž«”³ûOáÏÐyÊ-$,rhî?‹ydþuäЉHJ°j°^ªØ>Mw.*X¿¼ìŸÐ榖é]ó°‘å2>¬åݬÿuïPÅ.fã[]¸€, îÜú¾k Œ’1©³[´Šhèy¤óD0øé±ª[_82¥ÈI}gÒe ª´íp{·.‰áÚ7iˆ*º¥_†×źLÕn­Ä ÉâùècþÞl;‘Ì[õ2.ð 2üG8W•Ø¥œëZ`%ý? PœïR—l¹p9tñ·% aBÊö¼âÞ˜ê(€ÅíD5âíA…˜!Õ‰–ÍØ(ÁW—j†8¥?ÚxêcõÒÂ=;- agÅopí§(eZLrÅ~üËÝf&Ý ê~ÿ0Îðy³õáûw°^}¦M‚­èdp^Õ «aå1WÁ1UJΘàb©$^#ôb7i4"Ë„{îþ×ëÞÅŸu/çʸŒ¿}ã{Šh}X}†Laø c¿éú£óÅw­ý´ñ3çåÏŸ|ê€RøQ’ª£w¾)3qòf÷É…8ê î kK¶"ì´Nóû.Mú³p.ÍùŠs”Æ`?vahž¾ý†,èuê¦uÉœÈY¨âܶ’Ð Úº½ÙgL‹@s¡käƒ?eÿ×pî]W€5_¥°$i3rqŸCµÔùY:4ý¢ñð²~ùmG;ó/œü9kïçÿè_Û~ì`" …1ùC½ÆåCë·,‘2p˜‰ó.áïd$úK2€I #=†&©,¾˜QŽåÐ:ã`’ÕnÎZŠ6…”Ý,Š4Ä{¼Wz(3i—òËÞ“ÖÕcU\ë–Çp\·8ÇBN\âÔŽÑ•78v"ÆPîäBØœ‰á:Þvå¥BC˧X ªxIØí î©“>S-¼³¾çfš¢¿»3 V\¸|±MIÍòPâHö«¡ÎE¯ýà¯û B‚ÆtÛ |+5õøû›Ò4ãâÊ‘çxtŒL8¶1aa>£ÃôDTT²3ÕsåCæ”3 óäå§²n&z8öê{é"„>Äq0øÇ¦¨Ú¬•\Åd¥¼pŽ¡Ó*%×O(p¢JÝ©+hßûaÀ–F[>î;@ªTÈòè_ùX…z+=uƒÀ97ìv¦1ä_¢§¶A|Ë{kŽfØÂ»Õ`‘5HW©_%.¦ô“viëaÊ“ET‡KHWŽ@6­-:!‘ˆazë2¡âÆ~¾ … E1ž2t˜•˜Ÿa2¥,[?±̺(›òq‚_E3¸V¥"ã‰È:"³©w,±C4…o_q,„Q‡ìx üˆ¼H´*x~ðº¦Ír&se›´©µ«LÁš¬E›ç¾F0aÉ¿÷·E™#_Ã÷®dsÇÎj>ñV«Í @êIŸÄ¿éÖç\÷¾ù":l}Û;@ô Ø nLÊO(ûÔ ø>íà…º¨j?f¦U|áV4 ›w†—6ŽíðïkvSúyòëÜ‘ˆý†ó†#6@¦›ƒ¼Äû;7xp ªH IØèÞòåm Š 4™I ˆ©ã¬+¼¼2`±¢IÞ vnbýâ-†Õ:Æ€õ…ÉŒì¬ÒMML¯ÐÕNK"g›¬Ö6m㇈™ÿz‚Þ¦m½Û?æ76¢ì¾¢-Ø»öoe…ÏbÉR1œ,ë®c¼IÇü-ÈÓ(»¿@§Ú—P?äŠäO!ùÐu/z4 1=üËÚj«? +˜ó¿<&;Í{çtöPlgAô*B…zóõ‰uWÊ{ ÂÆÅ¸RÁ T{øø "-2ÌoE‡r‰bþˆ‡¥t[!’þ‰‘¢u—þD ûìÎØQ>É{µ¢C¦ VÀ<äµÔƒè*›n-ÝiÙw¢Ë„S·Œ ˜é]Óÿ'¹eÓ¦ñC\¹)>½õ Ãmö•{³Ã»ž{&C,X)ಇ9ÙŸ:ŽÏ2ÓX×nlóÙ³–i†aø¿úþµ×‚Ø·âšGë ]Þt;† †q …jðù_Ÿ,1Æ›4)Ÿ›F ŬÈÀ£Óå’9¾Ü\ªÔ²G£ v7ÆG–¶³T(3Á…0ØÅD‘/×Á´Ø‘pˆ!£QS±¸×©à\7žürËô«S¯J2OÑ7½™£ Úlw ûÒ‡Ê3DéÉB¡ë4ƶÃ\÷(Vô—» ÓÉOæk´ÈSÂdAS%Ÿ„5‚}H¿…Bº°ªXŸa›^¥–TFÌe»V;ó+·‡³ªXÝóñ¬âÁÏê÷IÎ’¸WÚJN ïJFÿÝc¯z¼tW;Ü»V ,O±–ü¢èQ@© Àru& OØ™Ä#̄ٞÛ5Í¿RÄ—ØlP;ôcfMöï´0öÁEB+=µÑ•í>{ª°¥-0’­îß…1ÇWB;!')GÊ”0n¶W. Úaž9@;ÉŒYôéA³(-ÿÛÆ'îTXê?B³åh‰­c˜¤ÍH;¹”Ç<a]÷ç.ðÓl°À&â¶¢,Ì·¸<¡Ð„õYt‰éjÜËèN¬˜½…lúòPtO‹ÔPu‹“哸ÊsÆ„&Õа‘œˆÍ«!,93ó•¶¢óa§< ƒ´”Ú°"ÚžóEOâ"â÷yÚ6yÍÌ· í0€-äÄ0Ï™¶œ° Ü1Aú@¶1¼Yë¡%lã›Íƒ4^[¢ ÁNÏZ¹ ôÌdâ»–|’ð‹Êö'W êavnØå ŒUm[zÓ<ˆ1 Ф ý³¦÷ÓP<÷\QP¬ßòâ’À$åÛ¯À#â¶8ŽîëD¯PêhÏ.âᢕ+ˆ7d.•”-+tSöÒI¥} '%7A »YøÉw÷M=½ÖÕÌ=²Ø– ljåóA1·7xc*`6W2OÈÙGô/°;V;¾¡Ôä@ß$÷w$h™´Žƒì”4ÑBItËÌ·Y›>NêœxË-š³Ï¸®Ó )§÷09îs^õ­…ò’‚þc5hÝF%ò¿Ië'•!|cþf¡b7Є†S÷XõÔy_ßÑ$ XóEuñHSK#7Èó†Å÷xmS]³&$Îå^é”ÝXð4˜Ã]—•²wW4l«B–|Ê‘®mØÉ'Ó¬¶çlBÖ½¿†á½þ/Oåå§#T@ “bÄ©Q½¦©Á»t6ô1¶*†Ó<=Á+óJ§§Bم˹‘€çÚX„›“ÒNÖ³•†*ZÚ×OF­æ¶Àã\-?P ‡4iMnǽ#ù}sȆúõ£Œ_;¢"ðÁY› .=í˜]£Ç¿(@ZÍ `+[j‡páK<¸ÚË5É©®V¼ÿ¾ÝWVÝÁ/êùÌ0† :4Õ˜}â& ´Zx=Ä…M¬ï4ê>]Ò3js¥£>?,õ2¡?+Žž”¤ qºVhY¶6>ÜÊ:éWˆiÕͦ…aS!c$žŸ M5¹÷RB "]4HP –˜&нf–ìXŠÍ^#޶Òx`zÇé)ðX™zà‚ùÏêè(,2 À6¸¢ºößú”~ï—Dº¶U~xL6S=û´©yX#’˜XãSˆh›Œ~)DÓ¼Íþö¹9i×…Ç¿0« äN #\oDb%ÂcÊ&‡î×ðZê1%«¥Û7é'w‡"Â?'7@@‚ « ¡°Oƒö¿ÇnÛ8K(Ï¡*EÝŸpb†ç”ʺxÃáOÞЖ+­—åùKÜoœö#©7x×y~?ó“ä³YÑæ÷üº?–óŸÈ¯;S':š…vÖ?‘{’º5M.´î˜V+ÈÆSTÔƒLxª+üp?è  s¬±tCÑÁMlÁŠ:§Ìq :¤»¨£¼KÜòõðiÄðh W»{x×óº0ÏYU;º÷_ÆÀ¯ù[µ¹ÃÕkG}n1סÏþRpòÒ}ΣæKC׬¦Ù‡Þ%Ò´YǦ瘲@ôæ;šUÿ¼>6/ââûFéZÒ4Ÿ€E¾…­ÍÖKñžUj±Uòðq¤µë q‰œK¯„ä‡ÿ£¥\¬% ˆ)¾U¶yÿ ›<ªG =Œ,áÀÛ‡Eb”Ñ]0É’>ª·_üÌ /Ç»ç=`Áòtد X¬™uXö¬•[û¢€Ñqç f6<¯X›L¢tšü‘y4yO þnÃ^†|ŽMn¨|’aª_&o~nå–ÅØÃ.”Ún+ÆU¦D^Ûf˜4åò¤f6Õ²H ×ÐoøÞBykù‰ùÄU¾  €_Ñ{~¢Eã?ÄtÊb¡ãÔ+î<–]¦Wr¾ +®f>á*×=÷v3ûøÇ>xpLUî] ŠM—%$ÿûÏæTàfš:ÁD¥çƒ]ZGkKíiŒsî׬8µ",êãòÈújÚ«øã𘰠êUÛ*bºá¼©H׃rœ§¦È=[«›œËwøv+B›×š…Ó56^Ì-é%änrѵÌpù æÜ‘s{Áíl*,J!c™°5“œSsýË.·ò›÷|a àC=EY¥©vDØ6¬ˆ¢ ݃¶1š¨Ñ:áŸtüfòë„ ‹Y ÷wxd_¾ù ÅDå(8 Q[>¬cW‡gd~Û3Ä /7$¶½`ëE” õÎo–^˜Š ±98«{#– uFíµ¨NᦊT^4⃩ÃwŽ "ÒÿŠg{ >oŠ>ÂNJ K#ÑPÆ*ÊÚ#2¡^d6×q‘2è-‘.¶0A…€YcgÓ´ËÙlU XлȦäO8²ÿ=Aתýã2œTEIÂ/çy~%JC©SÕ¯øŒqrfüLª{L݆Òèépêl³ r9ƒ<ñÆ?G² Å…I4™ wHzËÑØgö«6ð~`—Ño•§¸ËHÞAkIš€<¿Ò¡NqÕáð '¶ ¾ë€–c•dñÍØÍwõs1ô’ŸêæÚZÒŽï·ïЂI¡š©E#š”LîÄv( IIÇ—FøzzÿUŽ¢=ôµé*&•ýjµà ðqP©$µ?ˆ¹6 A}§;ùdŠ"ƒþà^)œ?èí×U¯°[ë51Ç"/lµ1/ ËêqJeÉNÍZFÔ¹ë[ ôúØÖ…©,$½Ó(7;Ú( úP,Î4½s¨ 简’Jʃ³ôz0‡SX„è£û® €+M˜ðYGh“°ñª…Ø”‘^Ç–tìJ@Æ\¼Ö0¤DëtŸ®Ìx’2‡´ßz èjª9ÃpÜ~×În\Å ”ûæy€Ìó…áóy"G¾Ë¶Rb·ëè ™½cÈAšÎïlÊiÔA¾£Ohm°Î_üý1åþ’GWVuÙÊŽ]!”ßéÛxÁ²bðv%ªOäOæYÁuÏEádÝ`Â0˜(ó¡…©x`ì;*KŠu_^zþøè¢NSºý%mU!òæz7< .‹cÙÃ÷S«?Í_‚p qéÈø2Â3qÜßàžÑYâ8ëùæ[/ÈÆ|ûÀôko/kgµâ¸7I<·¯ú4M§ù@ÿýá ~ÝOy®³½Ü ‘ÁQ¶4Îß㉉±°uy^s\ÏÒî¦þtaà:2FÂWf~ÆHHcÚ»PÄ`‡r¦þ.ø^¿ÃƒÚr K²¹O°”ûÀyûŽFƒ°ºQ/`wè½¹1PFÞŠfë=U¯$8 ßlM©tì? 6/¨vEZõçµµô©íYœá?ŽÄÿ˜‘Å@<º’Ç<ÚyÔªkãÐÄâËÒ ¸èÓ.cKöÙ ‹ˆ®ÓW’VKC¥ºk_ažèü]~Ž.ThÂ=uR”˧àp.FÂÆ±bÔJàGÇÎQ|h²6'ó8™,ä¦ЉfíÒA¾÷g(ef€ð|ø@Y£MS3“Æð<0‘¤Çy42ÛÚßNÛjckÒvy,Å&Pý1sž èšòàÉÞt‚þíGÐÞ"{™Âç #)š{RR2Ê/*Öuwâ»×ë—í5’£‹½¼Œy”è2¿xVe©g Åõ7G.…¨#vØ'¬Wc"ôk|ð"jg3f­uÍ ÔUMŸE÷>„ÿ UèÑ3^ðÝBþÖ¸ÅLæ¤]ÌÔÍù@(‚–ÿÒ!îg˜8kå)è¿öÒï_'‰6®óD÷€Ž—± cy'‹Gß¼8M~¡ããOöñ¿yÉ㙹}G¤­™?=õLFp`RW wŒ.½pÌ7"H ß^1(éÌŠ¹  ÌÑZ ¤Ø&3ë d°deI9 F¾óòâEmð×õÊþmƒO<~>W=ᚇ·Ã€ñaDø©/$r‰n¡=}Žít ÒÁÕÜIàr$²>Æ/zÐs´qTðfh}!oÁ(úÅóz_ƒp0(5$¸m~W“#‚P\Šm6E=èépˆ]–N°¦‹šÓ¾Â(ò¯&kDLhÒš˜0æ{ ½¯®¶ü“q‚)ƒn”‘²Žÿ{ ¾sƒ˜³8僴£òMHÁI%Þ8ǵ…ž¢<Ÿ C¶~ž'ó$ÔwV µ&Ø;@–CäÇç­Ab"ÆÌ™sÞ÷(69Xvˆ G­ø3=öÓ)†˜E€YïF H©$€FÙn±îÒ?ôM}Ž€*F8¢~LsÞNàQsçìGv©FD»Þã“â!æ×Ò4°šû™ h|ˆù4oŒ笲ywjÙsÞa" ÿJŠñ=½öœ)W›+ QŽÅ…°Ô&·„ùÜa:ËqŸ·Æëbº=>æIßĺ)?›€…aa.nQa?)Øg?ØÕº.ÎËÅ’âEïJPñXÞ´ÀˆT‘w¦Åã´òû¼3ˆ‘fïˆ,å躕vžµR\Š4_M*|†¶¼<Ãkbéî*zÛ ñ[_/…ÿKq–Ð9’È4Ìî¤$!*õÓ°&²Dȳä¾ T1p°‚öL¿š4NG/I–£|Î…gŠ^(€B±c|ÆEŸ{Oî‘¢w66F|0{¹¨’.0‹ElÉ]±:An†å·ÂXù;à6 AØt¦ ÔÁ8PÓs}j4kå÷„T7s]§´´nÊKïÊ)ÚàÖgh~Þ£V4Â`‹Ì°VÐë? {²šåÈž`[¨±3ÀÖèáO,4CñRªð½lXìzÓQ­€tmzæÅ=µ¤ù‰“ÀNÜ~àØ­àóû¥yñ7éž¼v n:åO§+zŸÍµœ·²HéÈ®¾ÕæS’{ˆ? ìJ-‡¼½ÎÍD›ùÃI›vN¼‹žhJcsiî±"r­ä8ÉI5 BG»¾ñ¤{·|Á¦t®@)I ª}´àß‚H¸#{ÔöÿÇõæ lí¾UŒ\+P£¤[IõQ2Ÿ§†Ë™P=ªkèß¿ ç'‘¡/Ð2;›PáÉY^m¾–©&™ðkKoÓCá ÖN=õ( Ä&÷ò>ºJÃS”£Ý¦ÒŒC,ÇŒ?û'nåjn \Yâ¤1äõi¤Øf}pÓ~îxˆjð3I]l»@ï;Dçuäm;JÒúe಑¿aVíaôJwÍlŠ4—îsÏYܘÒÜÝjEÁ`»œF^’Z¹ð€w ÍrmŸÀÕh]€íc—ÆfIš.Jç…‚“Må& “P—°P.û$äKÊ÷¯Eæ \—üTÿ©ti§Ú§ã¦¥8Å/ˆ¼¹Nâª"K‡¸1Zé1"Žõ-ÁÎŽqS|Íší’¥õ¼Ê,ýQý&ÁÙÊd\ûéÇ‚ ×"ƧlÅ9Ì [òÁ}ñ1 $ù¤îFQûC¶Ÿ½Ôzµ¾NdŠÌò¢ð¨jE/AàÕkOÝqLäÓîgÀÈUË6ÐÝ!~,³?ü²Ð0šœ¡õ78Xé X]}>ým(Ië¯6O¡žzP'r:Þ—äuÖÌÚ!®Ç“µäÉ*.jà–ëŸF7a í³Vz°/ža7€ÚJÿOU‘±Ù«v=&ŸÆö2$Ng>ïcãèË:od;î æ'¢’AàåÀæ"â©¿ð¶yÄ®ÔG” w Ç“ÛçˆB”>tCUCõù,ñ¹µG2ª]kÄ¥gËKħ…ç/ºµ¹÷ê¿û¬l«BãóAËÞk @jÿÎúûÅ£X—ƒáã…BJaE©ƒoTV·xðÀEN뼉@ʤÏîu)š}$lÉ~yÛaäߢ¯’ò)‹¹o:0ºÕ_«=hCT %î`¼ùîÞ Ðœ|šFèmvQ¨ï w=V¹žgµ”¦ÓÆó`¨V$c‚öã/YWª?yñJ£‚è£&œ7al]Q¾%2í\xx•R6Ô %±¬™k[‹$Wl¬9g:+Ì~{Ç‹S†rñ£UN½8ùp]UŸ/Èèh—Vó9êýœ>…±g=ê=Teék2ûhKïËße]VæN¶£‹‹®yÏ$¿ðu,yÚQÞØ·uvEU™€€cÀhŸ~–ñ'@ž+E!×ÿ…삃O»(;,çP‘ÿ^½¯oîsHœ‚»ùm¶U4@?Tµ9H›¼š0jc IJe wEæ³RØÕ‰ÚQ™F¦ç2 °‡./bòѳ¡’ØÙ `Ňå«0>Ïd’׺éÅoÊI™¯°ÆÑtÑÈø$U},(kQ•a¢oÛØ&î3Ÿ¨4]Á‡†kxv‹"oóB ²!Œû„ð?øl}4Zí\‡:ñ`9‘Ø7F±ÊÙñv5l¡—Â.$‹Þ[QÖÚ²”Ós?h†¼íûå©ûU*á%êgû‡Ü1`9wvu*?PÞ6Y¨®Iyé–ΧÙ=dP&¾n=œ«Ä E“f“˜ý¶G÷|ájmÁû¾xp HÖCÅ_^NÕ"pœí8Z$Ë*ž…hvªxÂ^¤Ë,ÖSq“ Z¶Wj*‚òV(QS7³ì6ν-ݲPÂ-3?¯>#ˆ:~ç|Ó·¶skÞÁƒÊ™>ä\w½TP¥ô>EßNÃÜ¿›¦¨¿FébÒ1º`>+½ÌðoïÆªù4¬ä<êó"}ù!g€qøJœ öSØÿô?&ËrÕ}é/– œÔV`æ¦E9ˆ\Eجí¾#ë÷×¹|ÖjEqlÊp¤Qó‚ÃMŸÆ&†ìàijMž"*nêÚ!N·{ßÂ%â2‚„„öÁ9YBÎDs-‰m2 ºT{H² »³ÆïɯF‘«` ]¡A+]ú±RG‰V7§…RTîDoÓÚ£†Ãe=õ‘õzgµô~ü¦«Ê‡'·›B\®E?+q þTÕb ‰|‘’òù Ö`„ü ,ZúáÝ2ËHì=dHË;5c"Ôï@0–eé†÷Ȧ:H2_U„¬n âÓ´‰™«ñ²hŸ˜Âwͨ>¹­çþêÐÈ3w¿I³{“ðñìAájEm¿T .òeD ò‚^»#]IQ8î0õ¤>” 5Ê­PÃ7{ñQ„GÞh6‡{–š‘y¢6t½FN‰yýÚD«ÖVÂMΔ¿t<¹ ¬pø¢ìÙߎe6æËft÷Û»NA€„|.ÏÚŸ|¿Üѵ/ç’ýÚ”*A(If•%j-™þöªÔ#$XÕKmgêzkêø¶ÃY¨µ6m:ÚQþ†Ò§GŸB§– a± ŠŸ¼ÛÌêe÷¿ÔÙKZh Ùef+–²”ú½È—Ù…¹ÌŠ´ã\L}BK0zÅt£ZÎ}cH5oõ äF¸%Ñàî>¸ S] {×€ oLæt`nÊšBÏlê‚Àû.hÑ&RÐõˆ¥9ÏÔ5¶9'ðÓY ¼C]0´Ã}ù£èß’âÛìà A(ÇÊ4¢ú°ùz}c;èp{túïfÑI‡SoŠ_€Ü=Ùlèã941³nNâ´£oÎñÄo§Êµlà$7ÏPâIŸ¡y¼=ú ¶C;çÜù˘>/=Zo™’…ó¼Ã؈íAªæ¿~Ø?]ÔvvÇ’Oçx’I4™7€uÚu+ø¼uYna ô²*Ý!² 'p•™‚SÛºÔË—½-ÖrèBã5“Ëœ; ôp:W_¹­BWþf>d`b"ðìU 5qß4gø”°'XÓ±·Î6}ý8tó+`L0(°qCР܇7€¯#{Ô¡WøŒ}™¿ ƒF×ø¿}]´±»Jãí8ñ²‰A/ÕŠäè¦NrŠ™»ÖC[ DÜ61H’ÉÓ<@F’O𜊓0;øœF€„<®…©¯|)WœW%ЂDÄjŽÐÉÞàùyôѹÀúC‹Ù'›|rG³ÞVèÑ~WJ¼°ªÜå¸Üï™ßŒgÛÀW“ÛåmÄhZ¸ÚR,Ú7“0}¼MÖë;Ë£ðk‹m ðL'rÕ^àã3ñnñp ùsÄæûï‹,·‹ Ö( ŸnC4§iIÈkEšo“²ss±„U?=¾Ç# ½$â}ÞÒ÷Ü•îÅwÙ"¹ {|†¦óî›ui®‡Cù•¢Ày± g¶^Œyój€HFÇ$ý0¶_Åù‡Ðz‘ãѰc]¦”Ã3öb„{§¡™õàEjXÊLV3‹ ÜþåEèæÑˆ±¡’ŽF‘ü›¹‘ËÞp-¾;Œ»? µ=ú„ºK¦á•Ñ$»âsÊŠú3Ô;AßóG µKk{2%‡VœT~¤€ÞdI®à³Ë78ê;—‰m?sñŸ¡Dz°ÒšîE£§EEoí†Þ¨ÛT¸óKCWjò ê+W;(mÁ ÀCÖ·:šñ*®v _“äcÀ=‹ˆkÈ9J&öJì%ðåáòf¨Jè3oÒ/ReT¦ÉQŽÛ’¶ çN«Ú{hÅäá(²-\¿—‰¤mýCd:ú¼›,ý@ç>â¥o6Ÿ²µmVÒ[`%”hŸ)ê¬Üj׋iú€E$ÈTekrÞƒÎG ¥ÙؤLЭê&Q¼)ËÌtÿ´œÃ!§_à¬|È^eE¶±¾øÛ!’d­]Dúz¸¼ ìå*þG¡*òû}æþ³e­Î{=™VIUÿÚRÿ§2!€Ü67T€2ÿñ+ ˜1Cƒ¥®ÎœEz,ù–Q© >ª?¡5´ÅMk»T›Ýd?‘‡È¨YF”ß‘%™8sjH{‰´ZÉPùŒÛè˜àá×LÕŸËã~Þ¡:ˆ¶“ŠŽ­È˜l73¸ C˜ˆ/ÁÕ€MÄųC«¶w ÌËóê_º= ¯Î•¦Ž\B íÞÌ*ß8ŽL˜ý…¨c€­v‚Œ÷ 'ð*ƒ¿ÏÅ?xb¢äôÓõNÚb¤)( \i—ì?1Ë~t²_÷u• ±Þ1Êû§i€ôøÃN͉ռ+ƒ&Þ¡ÏQ#èÒ¯å Éã0ÅKæY±’*9¥fc¹†ûH,§Ÿªó¥··UƒÇ&›“ÙÅURÙJ‡æ:Vi¨¦ëS]Ÿ’^ÄÐúì,ñ, äú›v`°˜xro¾¡ÌL†¨œ„~ôf⢟G\¾«ÕÐ3׊âÔ1™üav½ßMOºŒHüÙü`•ÿÒó2s¼4/D("új)¯$¡mX‡U½ß‰9ElpüŸÖCqhì8Иl• ²ÃŸ×Þ8T‰oÒ£asåä`uÇW»/zX¶ šRÈ»b7±šŸW½‘øƒ ×(!Ê8ÆÈG¯+ðˆÅù›e‰A{È Œ¼½¯ÿpXÃc-¯.œ> ·Nd–YDc2ˆ)5'`€¾îŒQá ³~çü¨žš’N­õ@Øé¿Ý¿ªlÛ ÔÌ-ù³ka…e‚gÄ÷Â5e`‡”ßgÃýG#<ònàÿg„å3¥£õ àÓËŸQt}ÝZÐ'Ywxfml Vüw?¡AL}øÝ*Ø€8šÇܯqg¨ÕøDH‰ûõþ‹~w=šš¸ß÷sXÁ±Ž­3Ë–™²$º|6. e«Lh<×£"R¼¿Uãøi˜Ô¼oƒÙ?®ÅÞhž®‡¢¡ÿ‡bM¼þ@m¥ÎÂR ÊÝö u©?—‡Ÿ^ƒC¼í">•ØäLÇ!‡ü.nä-xïßí<æýÖ~EH}‘„u=ßBØ>ì[óÐܱYöêOùøóç¿—ÇÐLèL3TüÓ¿Üþ\Xüh³$7¸J4½6Ž·`[íŸB ?æz}ë…È­ûbSÊ›&h‰°ü4k2¢á¯¨9ôá‹nxÂ>$õ[°aΖí¡Usƒ<©½¢òWi=âÚúŠY½ÅÉBF]iÛýå·£FÓêNHGáëYcœ¢³€¹6Þñìè¢Ç=ø3í²Š}5G—,ÂoKK^>ažÑI;ù;ùÖv$Ì߯‚“Ea_ßöE¦P'÷NÀL`lt1±¨À´Á#…æŠ]™>?2²¡SÕQÕH¢õ¯Vz Ö{S]&£N3¸Þ¢ÊFïŽùÍÁLí$rÍõSŸÒqEºsšÊ¥v$•>ŽìÊl ÏIïpSÊ0Ín½ãñŠÊÎRøËQ i ;ÃyÑjþ].œð;!ms,¶yôº]„:ì¡ËC¾8ÑŽ)nFC(´%ôlA©[ÿ€à(î8/¤€îˆÏ'°–4¯¥*ŽWF>ÎÉØ–ë Ý{›vÅßXA=FA€MUþÃÝXRI©ú¶¦ù|t妫Äp­nåpÌ}M2®†4†«Š$y8|Q˜×ÝrbúÊ•/?Sô l'ÈÉ«GXZ–ÆÇÈF e×,ÀC`þ ‘íú<[C¢—é†Zö£j³W‡<Û(‚¤K\ØÝϳÜöÑ´ÄZgYÌôæÂßÛ]¹¢²úúsCz@ôAl ¶QJlã™ÿ„¦Æ±pžÂjÿQa«»¥Òg{а"ÕænP‡9úõŠàªŸN•NΈlß •’tteæ_–î ßi†JªòžèG#±ƒN=K&×${²‘Öð¸½á|°±*I—ØÙ"ªš‰SÇ„¼KÙKžÖ@±Ä}rø¹½¥’nmhK†øB¡Ìn²’ÚŽ ¿¦Ë÷r¤šr5K¥wþ>¤6EÄŽRMbÏ–4h¶Ït ¿ví0ÜlûÞ‘ÿHç>Ë·ZÙÄf¡RCgëá+Z¡ɬ1wwSÉ<4 ·¯ÞŽÒ~• ®m´w{˜ô O…óç1>º-£ž\¬o°Wû„ƒŸÛà[sE8¨]PÓÄL‚ýÔO~ ?òqW ƒ.§âû¢~Ò`േX†±âa¥¦4ѰÈ 2m eù r"@@kOU@𶸌Hv‡ë!ÙjJæ_ÏŒ)à OMt³©R–~3á¥ÁinY<°,™äÇ×ÙÆ_žGÊ€)UMb_ º'VÁª(ž#yRÚgåòæöïÝwòÄ9 këY¬ ÆÎcû„ ¿_]_™úŠìꃭÒn_BLzÂÔj8ÇJEÔju˜ 7|‡lä;ž>ÆBq¾`ñçpH•è 1v7Y—Ât’þºè)P‘;Jø/§Ñ4t•µÁ·dâ£û:O=p{¾©ÊaöyÑ>‘"š—õ;b—Q"Aeçc¾ISmãöþm³”ñ&·Ü˜SZCç^fþ›÷1*»°’S‰ÛOº©á½`¯iÆl‚¥yú‡JA¿ Ãm¿Œ"/wQkÒ¼­±Eß·o&V¤¬~æ¸ëפ <%nj¥ÐCÁñ_ÏߦðÕmœkˆÌrÓš* ûÀ+‡™7Tå|¤ÏþŒÒMÖÇKÌd-Ý÷–“]ðCÞ½\a6úº3°zÐá'¨×jkW€‘W.{ît®žeÎØW¡3‰üpã£8ŸY¨|þy'œ…Óß"Q¼_Nœƒ¾Âõ\ýÛ»r¤ àÕéè¼ôDD.A®½™!ÇÈà“3n#NV×~•JuÍ.ág•vOÎè’D—кr—ÿ#‚v¾¾"¥z ågEü…\4ÛpHµÅéléq7ÌFz¬Š¡Ž{UÀKž6X‘L»f ^ÞÓµK9šš4ë2J‡j“l¨v¤âU#ÈX)¶+Ÿ.±+å%ÿM5ÞëŽÃ€ôò¤óÒò\ÊŒ_ Êa= î겯« Mvì-éPãb@q¾Ðï$XVÕóŤæ"m£waö ,yÌ0‡Å/w%ÿâÇ7ÈþS*ƒ ȨÆb`8—‰‚±z^èâ³z db-i:ìF3ø…ŒÃj¸(y"1ücL¨‹ÂGß[2ç˜áhöïº$áEÄœ¶RA„¨\ûÖõbuµ>ßÏWT2¹¬üÿW?Ä7ñOêZÁŠ`-KÝ·²÷.Ú­[¿¿9f†ÖžÄƒp¹0%Ñ‘¢6ö?9nªO)ÿ¿ ¥;]Þ:©(fÒj9g±Ÿéô¦¦Uì»Âfæ$[þN!-y” tP_¾OM6Ïm›?h3•«>ìoÀÙ=¡K J EP ÚQÏÅÿÿ§HúÇÁ¨ÉÀ O‰ÜCÙ,ç‰ï56mz}²²v\Ï š>VŸ;†œÅm8˜wƒ¾….J9›v²é#kkbÓ%IF¨ÁM~ÍÂþdZÆÔBrda11ÀküåÃj ù¢tKBîõá b®<ÿÇÄ’%¨ŒKÕ IÓü6€‚älõ˜ñ±!'Ñ™•ôµXÝ=hÔ4ÏÚÂK ÝÿÏ7µ&¹lƒr-Ûx}éɲ©OçÈsB  ¥žäÎ/„»’Ùè»–ù°zBH4`âúõœdq´jk/ꨌ—…ШÀD«î¬´¬ß›ÇÌô®‚ °$4ˆ3eÑÚ$EmÐìaí ´3îãÿÌþBv€2&s·¸»½Ü†0Ž-ˆâa MJ˜†Œâ°BoR=ÅʆãUõ}.•ñç~aœß[˜®<ÇØ@Ösòù~«’åXj­ÈIp&OO»OfYµåƒÙ.Ù¡íœ0)“E!Æ 0¥L’jñùëï‹ÄNÌb$p2¯µz‰) ËLÊLÊ)œ<²3 EûôëžÒãŽåÀÉŒÕ N0†TVS?„ŽÏr¤¯Ù£ÖöJÐEõ—Ï@SÿL^7Q/žs›ˆ?c(ì‡Uƒ&’ ±'ιU–SàÍ=7ÆlM–†ŸÐnÍKî{L Lâa™°ÌÃeˆè7:ùð”Ï‚}]ذ,I'¯šHFÕyÈP´Ê1HæŽÂ_ïÌî+«Â`þŒV™YÄtdê”ÿ-J>ùšúùR¢UïrvÚ^lüñ¨øŠÑÃ[âÂÃÊÖ Tëqù0S—‚ §ð[Üii ôëª žj»gÿítn:+H#–£’¡Ÿ›G7UŸ:ùW’LÖNa§U ?uî§Šø,DtPr}^«Wu‰ýCzéZü˜˜B3pÂçísË3€¹?,GÎHtqŸQÖ_Ñû½P;Ì0{ê«_UTÂݰ²›–» ò¾xŸßF{£(1Á=ƒe ¸°¤³\Rv¯þúŠof{˜ ¹þä…Æ¥Ÿi•iÂ?Y¬Ñ„i¼ÂÇÃkÈ©T…ðB•wÁ5‹yC¤Q33dzVáøˆ/‡‘I_—ŒÓ¿I©¤F_ †»[Ò”û7Ì» …wd ëe³ø ƒA…ÆÖÂ\Š{Sß8€ûb5GÓ.é&Î#ÀEP~õüEïP¿2‡b"&6`ÆDY¶n8>±{×ùÅËn€%ê–Ä`’Npö&HS™µUÂâ÷«Š%#Þç~F&ïãè§€±:{Ìe£?WHÓÿµÈ/•S‘¥[2¸ð½¡˜¬]Ÿ0ÍM€d×T¶ßt*“.®·ÛzƒG@«CÚâz •Ãè1•Œ¼ŠàIÕ©…ù4²V™S—Ô°óÛtÛ°–M-¥dåÂ:r€Ê™½õe|‹Á²¤â¾ÏJû–ìˆéHgâ—æ30$;“„`Ë#ZsG+šìLÚܪ0™‰‡t:‡HŒ¦(ÄÅàŸ){ ]•¿á=†®¤y­CSOœ}œ¢½ì<²YÆ!à“`¡ïÆ× ¬|"F<‘H‚]ª™;Øiˆ¥<Ë•¨2ìÇ i,Q½Ÿš'wá)máqóÏêÔÆ<ÛÿP…+»œìE*p*×?ÇZ C Sý,ãå:Iíót8Ûe:z9Vm] eCr5+hKqÞ„¿PYµ tb½TUÝ,‘‰”0YÊéê‹WÖÂf|/Áèú†£ _õ-+¬ÍnUŠnÈpßm¾-“˜ Ò{“£ ÃúÑåzÛ5!:@ÎÿHœiI¨D‹ áISàV}TR„ ¢˜ºígâ·hÔ3Ÿß„eWzÌÆ9í”Îõ†#'çä…P4¸©5YTêútèp¦Î}ÁÛð´ÒLÏ |\€ƒŠ·WE Yv£q4],6ÒI¬3‰©ÿ6»mXBË)äŠsÒ“§¼[Ü?Ï~—E ˆT¶û§ú „B¤ý"~2/Ö?jÎÚ©keì4È‚϶ÃÉÀz”^ê#ÎW#8¤õJ®»Ým€Ý|!<„4‹ºŸç—?±Ýþ—šÔÍó³;ÆV,vZÙØ cß © Ÿ½æZ}w"‚µwåH¯#8Y¨•ϧ\§Ån=°\>óJÈRµ_ý?4•fž°õ€þ ”è©,ÃJ49XïQÜÆÙ"Ê­I€×Y€±âhžjˆ œfüŠ˜l žÑM”ªEc|™]$ž°tìOK#+‘Í¡/UÆ_ÂDÂ|Á©œyïJË=žˆÞo(¥œ§÷-ø½ÌíËRÐÁïî“•HÒƒŠ‰£bùŒ?±†¯´dXšË>1#¹ôbQM©æA§õ¹#Tï„çB4¹q\EU>*Ä€Ëù -GkF•I\qÄ]u–ú¹ƒ¸{Fbü <ÛÍ\±Æ5ðc¯o»ä ݰcÆDÑV!Œ¸yÙZ7 Z€ÃM*û©Ä n,«KÐ}-9›~S&-œlˆêæú–-=mJÏðõmg¬£ç?qr.-säð·TX—¡*g7µDœœÊÎfDþhÚÆnwPɵâ-×Ý&μœ†'«?µ²)CɈœóýýSñï^‡ÂDi’¬úà¿2Ö|»±œBoÜâ½Z³¸s´Ð§&±7à±’ýAÙbÓÏ1$jÉ»'pBOãé½ðj%šY.g ïàJûZÎhV‚ô°³ GöÓš® íåÜ·fØëXCñož<¾<ÜË·ž1ÁdÌùû,þé€Ð÷ïRk’˜nË×ýç(ì$ Õ¾; OM„ªÙ=Ð¥¬”üµç-º4ͲZGcó¶Ž­ &«H×5ïºy¯’­._¬V¯¥òT‹"O9ES­ÍM¤êð^NÓŸ~gæ¬]w{p’jX  Ñ{Ь=ø;¢Ñ óóA`55J³õ2mi-`6‹¤¾ûi‹‚LeÓ¯È&•I” 0:©|B”'åyí]šJ…¦¼™Hæu–@x®d÷¸â ›,Ä«sfiF\,·ÕCpÝZ–¯Åߨ’G¬÷^ÅëÛ”Œõh€7˜30ÊNJØLœJh»j&ŒúÌýüß Òú±Cf”{½ÖGƒW'ƒT‘*}x2ó=É…‡}.Ÿ¶’×]ÂCÏ©ÁÁÁP×÷ ýÇz–eÅiuuÁ5ÔpzÐ=álT(5vqø¤J·Ñ¢:}̺dùØV™eèó1a®AŒ¢ãEޱLkÿg2d¶\;ÞBêfÊ ´Ï>Ê'¢<ÂDF_2´Ä”'G>èÄ& ´-gŒü9÷öT*ïBA¿t…sï}xøŒ޲ëûz¬|vZ[ıUU¯$­~Y¢Û )ŒÇnEDÜÞv֥׬Su¹œ  _C< ‡[!E¬TºÉŸI@0Re|§YfjÃEÍçXÐÚgÂZÈéùWkãÈ&ä$>}0½·KþœÌTÞ¨œ®B½ôý@Rq!‚ο¢ËHÍ7SÃAîƒø€äz!ìîƒVžÆ:Üʪ¸´•œQÕZ€›xýW…žó¥Û¯^pÞ#^.ûQ`}„kM»™Êi2'ŠN­8Œ¬Ìé¶çE`¶¯áý ЯSÚÍ3ÓšÛÇoánØØ5äB !öQ»äuö&¸)é7>åaÃû½K›'*¾ÌO2¬!Á–Ðr–ü@Ø\:`70M­ 'ãî/ûÝQÁó­‰L™x‚H°êfÓ3£Î˜§WU ‡Ú Î…Áÿ¸c4¾òº/7¤$Žqþô [®õé…ŽnÖÉ|.Úþ ïì­ëUÔþ{m¾*(ÀZÞ;ï+[É 4påANýD›·ÌêVbÊßÑÕg1jŸ:V^ÇmÙíDÄv "Ì̓DË!É"aΈD!¥©z vÅPÝG¬ÿ*[\uü¤zê.†tÙO8+ݨ&î=kÑ ÃH¿5)ë÷JbSk橬~gY ÖÛÍš³It 6ÌTÃ_(œqUw÷”˜b¢7Š$ ‡³3=À`Þd ïŠü]C’ŒîU/}¼‰‰§êßnýÒ¿’œ\_ÖõXŸÏX¦õ`-7̳Œ?y@´ž±»õ§¸Çqp Š‚ÅŸ[P"¬Ò†É*¥»>­å(ŒÕ®nmeÒÃÅ%Q r¡¾wÞÑF™¢RÊMÀÊö",¼«”Yðì÷;úoøA²òì|´Ê3ˆLåÞ´ZòäÜVƒ¨(oü5ÇÊ9kÙšIÓ¢ONøeNé‚MõÍ1/ÂÜ(;¥þF¹J)ƒŒ÷Kt¹€å‰¯/§¶…5p`þ¤³»´C~[s±²i‹6yì…T6¼#,ŠMÄËRJ8„ŽÁ¹Ru‡6C"ä³ÁKGÞÕyË𹩷w>RïW‚¤Í¬_¸E¦ÝïðçB p’øÜ&ƒèÔ€(¾Êœ×#„SX¯›„Dló‡_âaAY÷sÖ¨<„r‡ÂU  íy8`1ñÅ2´jy±ÆÙ\¤ï„ßÁs¸—üU½Ùàï{#, ­á×j”Õ›@kBÅm’²63èÀ¦¹n{Uc°kÕ¬s;ûР»at^¨¶ÞŽãš4'R§vØõ²Õx´ã[~½vm¼êr•KÃÆÀQ@¾8"Ô¢Åu HØV´„µíó!sŸìI6MFüÀJÔÃøøžÓãò–ÿ²’ÁPÛËéUÀQàƒßáð¿ÿE|)Ó5¹H‘p ¦ Üõ¯Å…j¿|&3ÇóMðÏÐ-Z•iÔÞ l’uno6Ó T:n}hœça4ÖÓg¼'wJd‡8Ê[ª|pÄàÜÚ~PR•ÂÞL‡÷D›Ð}|~Ô:I{å[À.¾B­Y-tÒÝ +94näûÍiþ,|D%üµ4 ½¢Ï¡e µp<îNÉ›6Gu²yú b’š_\¯øÿA?"§sñkôâE¨öçc÷J^±ŒÍ6[rg×ñ·Ó¨®YáÂê°EXé5Á%Q^ÓZc©^¢™`¾2taK™±Œ%¤ðL±6ÌÕ¿d™5Q8¦ —÷wöŸ7Šq”4ç–NdpË«r}>àÓÃ}%=c1YëœÓ¬ÏNë3׊ŽÙˆdõwßõás³üÒIùg}h+¼mBQ™¸Î•l¯`FtŽjÂ¥>µ½õ–•%PþP"ˆHL7-© m–ÞÌ‘é´TÍBFïDdO”Á¹/²š '³Á@DnåMòó?ãXøã7ýTÜ;c€¾`šƒÀŽmäç…â&gRÜ­•¦m %û¦8µ(Kƒ:Ž‘±¯"@ÁyfÐH©_\Œ…?i8·Õ "Ò]é·[-D†&ñã ®R¼†°ð‘ø÷£¥Î»lãg³ÂX–×çÔÖû‘ ÆÊ¤#ŽA¥â#ôÃù¼ý,Å•6ô¢dÝôpA†^uÍÊßÒ=0Üô aülÃ1·NG­Í,\·«†©Î¡¤*ŽAø_”œ†ÊÍNe¹_y®œ3ÿ +¿ALœÊ¥xÍïˆ2¯Ù •½Cf']ŒWRŒÙ2Å5Ï¿E8¤üM´ûoÄBÀ"0(RP©öSsG/w¶ÅÎhÖ3ç™OþÌ[ø¥Ý" n £ãŸ1Tuƒþ—ñqgGà¹4’F¾8n\%™d‚ˆÄùÓ‡=…_•'û4aÊaY¿·Q†7bÚATVž‚ð‹o~/$ZþœØé<.ODî‘â®/;”Œå—ÔŸÅø.TsS=6’¢|xàåk‘ƸV«q¿Ÿ=aþyÜ ß—}ýDfv™Ìîpé6Ü™ï¬œÆøx|¦©!ê@Ãc¯àAköÒ¥Œ5šyý™¯…–€”ù+‹0JÄMH{xŸ¡½kÕ³RôÚJÙ#YÖŸRêíÉ«mlüÙ„-çí¯þTww bhâ•Mrª¶–c}÷‹ßT7¨Ýëlñ/Ï$Àè’±!BD+°‹‚^/Sàr¦>ÆNæ#ÆÓOWqΊؓ}Ìlè¥å€(•¶&çʯå¶;(1æ©L 7æY…wìpUi]Ù9×`žé»ãå½ÚÎSÓÞ)öÿ6>ÅËïNU,çuºµ·giçÄ}ïâ\ ñ`Aí“Ç‹“B߈”Æ\ö[\‹ßÐti'çW âAøÓ´žâÀ‘ROŠq š Š «¨ùk£k¸YÜàfÞܱ¶<}`^6=2¹WòC^W¾“i¡ Â`,ѱ<Š’Ñ¹PÇòÒU9,ÚQÓðn Ô óÚÉŠŽÜ™ßÙCº:˜Õ—ÆÂõY§XJÚà?$nÚiÛ9J_Ê…Tþ஑\’ÑÞiw‹Ñ®ÖºÜd­±«¨•>ûÿ'üïEdl{@&s´>DÐ'Ï3ÍsÂõ\«jCùÚ—ä«>rôCî|à=þ)õNnJÛÏ2 0á®Ò>i–ÄkÜ/1[BÕ²!*ë O }£©ÊÏäÔâ¨K ‘q¹ž’&c»‘ "‚H +O„µ÷û#f /’xÍ›s–ª"jV——’[@uþ ɯ7Ÿk;¤Õa2Ggmmí¡àPôÒ:—Ûw+²É+ν`™ˆ,³âsVLo)z½9ßËJËG±æ³lCh* ‹_WD»’þæÄŠÛ2§Iu^Hï§|h:<°å‘NÐe?xu ®‹UNeάªŒœøšìàO3yÆý‹Uk"rC»óá’ ׃Jˆ½=f;ÀŒhîŠ!ŒÁeoË? óƒG+"dÊÊRbkkyÅIæ4èÇu'Ž“©`Š*Ý`<(¹ :¥ÎÁ`ý'o™G‡‰*>:÷lÒ$\14“zc eô4âAÚËnXâ@¢–_QqæËì>ͯún…ñ0ÉK)|,o;¾êɹœb@ ]Ño̵“^ü//­A.8ü²tï<¦)Õôÿå¶-ÝC;(7·æå/íð¦á|Ë%÷Ãé…”2€ìÎë˜×!{ÚÔ)ù“È”ߘ£*QÕ±iõÿtMGº·jûÈS?•°cNÿ`“ôs$DéJ™t¥ÖV1©ÞÚ|4w påcž¿àAì/¡×ú¼ÀË®äÓ×8é– 8ˆó´„”@¬[GM·ú% p‘J H `ºI>>K+\0UÚÒ]H‹Müpª¥iz¤–Cö`~ñoŸ“b F ÷›>ï£*:ßå]õ¶‡Õ* >Qymÿ{i&YžÚä˜óüw( ºg/á2WѦ§ïYÃÆãçWvÍc­ûj;ÏS_}Ý+úÿuyШ™d¬¿3®µ Á0‹Zƒò̼¥#Y•³“pßä†(œ¼~ðìý¸Ô îÀø¦tÝòò6ÅœÜ_ÿ÷Ò¶*†º!Ù¬G½…ç ¢ŒaFŠÈá}œ2ùrÛòRÃRT;‡xF‰~0mFÔÍç”'°¸ÃBš3ŒÉÅCT ]4Mzêªò-ȳ9wçt“­0 ÙÜÎ~WÓ8¬Ú v w£õ<}Õc¤‘lÃ(êýÆÏ/rà‚Îz0Ñ™aY†Á OE³[ëóà ª.¦äôÛ{ô ïk›£5‹Hÿ(\÷S6îã&²iÁ׿\„ ` ÜÐhËe©úçÂA«"P-> ÓhN½‚qËÉuå˜í¶j<ùjc8ÜÈ^Žb“ Ò§–N"Ù˜ZÌÎÅ99 FzéÔÅ \¯\Qà|nýg­ˆ˜>Y:˜tA|¸m ´–PfUµì^þ#àÏ£´>f7uãnv=._½9ÀY²ì}Àçòf:ĘDÙÅî@`FBTÏ|+WÿÄ÷+%ÇO¦.¬+Ù^ ·@aëj£ì%"Á Ì}r÷È`’3Õ¢ »¶×EY'™¶9ÍÈßHªß¶oj)Ìçº\ÜÄÀYî8:/ïê¯õéB=3EI¯iàHÏNp-¿%êá˜õí„|³²‚šR.’Л•®Z(„Eß¿¨ýc—y|^4o¾"±öH)Í¥ãÓM¡‡ïQ4±õ´B?ˆõ£NÄÆMŸ‡ °œ“h—_½E/ú) ±{êEÅà•.«Žð'Žƒ¾tM…bÊ ]¢•[É&pýꥀS®À?…¡/`ê7ù^|1r?åå ‘…ñ5šéb/Õ–nD£am)<¥ÆkØ$( u¼SÃeß–3ݽ”õ;hÚɬÌåUÑ ö/ìŽIÃæ ‰ù^RŠÁ¼¿™Õ€gæ™8’½9–Ñ*õ€{>y‰P@vÒ.šI8e`ŽAìÊ?f([U½£„_̳>ÖÍà]!Ežý%¼8€äÁvvÜ} ˆKÛj¥GLn¤gIQV£×Ó$Š3­iú‡ø lÀ1€´s¼À±ÿåçL˜Ò¿¿³¾9\L(Nôxìcp?¸T1ÓÐ$á;ãŠÚL‘®¹ç6ÌÔ9læ1$œÚü»ž\6*³=w¸°(†àfÉ|ÔÕ¥‰v¹g0+Þg«˜ÃN•ÈÏ¢&χp¡·ÑùCø¯ Äkª|öUZhͧï‡u 6âµ.7{|²ŽB?^ ·ç×3Òw C&ÍóԔܨيÛë¨?ÿ óúrdq Pdö08{i}ƒ|¤ í©]&!Fzúcf9]ï%/á j« If ·ZïŽE‹ÛÂ3øˆA÷Öïaÿqê®RC¿Ý™GjþÞ<ÿ¥"Éåð'~å«\ð’h†éÁ±cl C©ˆ~™zSàÄ<ŠV·¬ºuçVJ´,¼§WDˆVò,þízÊDjŸðõä2‡?mšßG»à§Uý󳸻*È)h ©á3¯Žé'À/ÊqpI%ã$JøÈÒ>o+TH }'NQQxGP3›'Û°´JgæŒk8.OÃut"ž¼îKÙ’P!:ßÓ²¬Ï•u¦Ù×k4}„¢ÆÜ¼5˜ÞîÁìô`…ç7ɈZÕžÉ~ú^‰¸wù›'˜ÆÖÑNµ¬† ʰµ:bî’&c9X43ŸWäÜ~‹ä«ø_N,‰y3D¹‘Fm¥ŒXˆž]ê-Õ»ë¥ÀN˜°ÛÛÊ6ÐvƲYúÕØËðš$‹‡2ÚV^R •4Q¬¿5[24JãQæN¹hê^Q%ðzc6f­BHÄ,ñ.µÿÌÐߨ±å­•€¢º›†ñ¬úÕLé³ß ‰”' øÚl¿HÅ~ÂJÇËñÂâËÔæŒzsX'hñ,¶ôßËØf2<ÑÊ ¤¥ês`C‘+0:—¯ÕÄ>G£ÉŽßöšì¢ÑÔ ”™í)fÏè±&|䪛a¯Xƒâ|Z±>fF…9 ©D–3ЪrÍ*ÅÐö9]¦w¼ßx&(ߌ9¼'e}†6Œ/ÃP:å¹ý1M(âKħB4\£ôÇ XX™òýÓÏû»Tˆ0Zõ×ìÒtéÜ÷â®ïþÛ¤àoüó œcºð<>‚Þw¦€6’è¨j3ª™lŠ\zÏÊ]¤À ¦‚±á[.‘ÞúgæÝïˆ0ÒaLÈé‰ ×Ÿâ쟯1Á @®9:mÿ“ÝóPþó­t}#ª‹o´Ž«{ºØ+±¸¹æ¯þd¬³—/XûµÐËsìÝ‘0Íu$ÛB63@â_Y±¯ÓiŸîJ‘ù¨®VÌ8 óM^lŽ…™uwüŠ<Ã}Jë N•þ`Á¹)î"ÒÀ"jtøX ç yBkä*FãUäjðŸ„Võ`(«!"õ=­ÞuJvEu]¨µêzèz¹;÷˜X£; :ø-=ŒI-õ Æ:Ý’pä»=k@Ýrð”ñ°ào†Z›}ã».ôprr¡<8T ¤{9ˆ2Êõ ÞiÓ8>÷F™ £J„þœ/¯™@0EH8N€,›+ìƒ.YcèÍÞNKЈڒ’èIG¹‡AU\RÑ‘0w õ}Òê"jÚ1zÐÕë¥LÎ1Xªຸ¦=O`qŒÇ<ýZÇ9ÀŠ#ð„·€¾ïi?C,Ú™ž§b8–áz†ñûx^RÀ2$ øytK¹$Æ ºŠþJ»´h4Їæ;öýÊy€ä¼æ–§¸-^Iñ¾zª Û[†’ªE« ‚+ž‘ˆî°¼SX2åJRt¡/TÁÜëDÞÖ¨6¬é׌¥©˜ á *(ø.´ˆž”+5$ƒˆ¦Ï9œ?î ¹þo«\àÈ”K[©›ñI³ïsÒ¯ÓßO8¬a~°÷kZ.>nc ôë4Nñ°vî-ZŽBÿÎ¥k:ší³ì øÿú (ϲ¶ÒºR¢¯ÝoS/×°„¸åcLÔ á–‰KÓL»ÇV¦§Ç\àvªèµí Ï#‘<êT-ÜX6ºÍئfù|‹={?úg2KUm(­óx¤ø·ÖRâ0Œ>•ÖÑñ<ÑYkL ½üç\”Û‡7‡7,x”â¤æë[;é µ2Y>¨`—Ó6›(Ã@/ópeðÕ5n`êô,„†U'¾?0þã±v–üaMSÊ cÜtó~Ørs«:Ñ8`ÆmqÍx˜ZÁÌŠ¶Šs2hÞŠ7ÆžÛ-K4^ÔyÖ×ó+`zg›VvâPþ »MI·ä#¸áÃ'Ê奛̵± ÑŸ$]÷¶ªð‹Å;u•&ú÷Ô]Иþ¥Ñ_Ä4;q'PÞ°ƒïNÀÙKæQú.Æöfªä}ºý~¦©ô€¿#€‘çòfu½bC¿`ÃáÚ‡W­ÜOMU³Ó'–mÅß1(_ø6ÇPaÛŠ$ë2[VåÚªbò´>“ »Bÿ<óÕ©>â(uìz›—íX£«¢4ÜÞh¢+¥- üÏEªõÁ¤¦ð.š:qßÄtzŠÿöÔä~ëÔ-ˆvS²ºS'g”F:®#ö¦”öâÿÃ{†º¯‡1½¿ðl*™Œå†­\+Œ§‚Gž˜¨Y^´Î+¾k‰ÿ.Oa¹2_7ü'¾Q¹Žš¼ñ(7R\ÝR°OkH¸*”Œ†uKÕV µ6¦ôÙIö³“·Ä¿bEf©‚ÚÃméí©‹å˜iZ¿Õ¶£° lç8,·5Ÿ)ú²P±=\ }sîàßÞ†—…/'ñ=‹y9ÜIä4+È:‚p¾t24-3é‡Þ}™¢^SêFg·" X%í n9^†ŽU¡ºBg©æ£ìIÝ Auq_Ï Šõ@k› P\›œ®‹Ì/k¹PýL“,$u=e š¯. _2¨&ÉÆ-ù¨>W‚ºÏ^šæÔIðæ«j|íùúhÚrêž»ä_ß„NÍ¡]PÓ7{ÅQX­]@BÝ;uæ_¡èpÃK¤~©_¤,\Þ´Áõº>‘XŽ®žÀ^â½SvóšånŸ–qß–h¼YûDu*û’±ÏÊF¶À%ÿüeäÂÇ)’4ßK¿_>èrøvŽrTÜ´ ”ê·Q\ 5 ÒaóÞË\2š„‚†bÀÀùó½‡óHÑŒˆZ)Xm/Ää|>QS¿²Q:##™2¸=ÆdÅ|¹|/zðöåòrÓÑùã=-pŸ H"°S&’lÀ©:Û*3Ãs_¬ÏCv.#r˜pÔŸ¶•f|΢PíÂ#IýÏNÝKŸZ”íjiªðŒŒ‚IÊi} DÄqà‚øØ¡öb Lÿò–8±á;Fíî±Þ=&†_ßá·1°z¥DS'Z„^t¨åPwÙF¶þžqÔ©÷F•ÃÕW‘äΪt”c±ýetBA¶œˆENO´Ók“’¥«mws–Òãì](|ò²t”஑j²ÌÁ9âÆ‡iYÅÏy…SÑÅC?Íú¹½À€%l,åÝZAÕÿeØùÉÃý=D‚ñ×q}ó.ŽÌqƒ\fÀ¡ã›Þp9¶CPhóÜ:&õ;DÞ¢"B  òaÔ—vYAîRµšd—‚×l€ît÷j¤Ôœû»"KR9ªí"h騪Œ F¤ëÚ]üôϘ0 «æÎ&Z@ÓË(}ÃŽû±tÿfì ës2¼(ý¢}wæ(Á)lwRã0†~òeV “m"‹Jzù ³¨ÉaD+ö„m=ÈÔEˆ©‰À@ÚÍÊ9bø¨nÃqó.‘> É£­ûd3Àzĺ•_)ÑŇ“¼{l£AœËŒcÕô¨|¢âʦ ¦H+·3\RàÝ£þ+ÿîôB¨(KÌZæì.%JȺp%4¦RK°ø„¥dÁ»cƒlUã©ÇëE2»äI>¶ú¯0Ë–± ü±Õ”‚Ó©¬Ì0ê.©]~`7áÊÚOÍžØ*:ÔÝAíypöðõ@#G@ø'l‚oÿ5†õ…A?v\É@¸a×àÚ˜b+ Æ[½…€z€˜/ ív¢+«,»õ޽…)VËcOo²Y™ÿÆa¹N ÆHkSt'·Áˆ#£Ø¤Þô¹ZnÍûo 0ÚÂv÷fƒnþ]¨ó'v:Z0•P[eâ Ù¹iä>–ýMF¹»H2úª®€ÞˆÓ¾ê&•­òaó'íéFpuªá;Y"kF—ÀWáiK’_^]8î“ttØi‡27Óƒt‚ê“úJç;WûÓ"OÑÉ]‰¯½ž ~Ì È™,«å'×m~ y%Œ f qR€Bv@ ÁÇ)‘K(zDñçxëN+RW °椹ôñTPŒxËœáþÿç…E{uÐæW/çûIó nÃ+/ór¶=#ý”<@ "u²®Â´2ÊÉ3&ñ9SxÜòúÝ*馹ÒÐ~! ÂcÐD‘]Í:’e%¶ÿðM†Ú[šOÏ>KÍO¿h,>ž&ªU÷Í>ȳ6Ú¥Å\gjÜ2í“PgÙŒ– õ]ù\ÏrδN}èÿw`‘Ä€g¡`#UûD:;)xçÕàóŒÈ¨ó†”ó%Í¢QJŸ«¬Ÿ2S%1·^i–ꢛr£fªR?눞#6a¬.Ú&åßk^èÊvóW›¾ a¾R…ŠÇæß³”?F9%*R¿>ÅÏÖ a"Øïˆi:ðþ—–<(9ôy î\1…dÝãÊí“;Î}C ø€×b[)§?¥7yOH³ýù«îŒ½~”—ü—b®GÉ‚rª\üºßTöY“ÑX™6û¼÷¸gÒ}îõWÖ^’½¾_Ñ`Q vå°¾KBÃgiNHnÏäMqa!bÓ¯» +N]º!öèüˆ1Öz½w4° Ým}§*L ·Ø§íýgK½ÛœQÙôÞ´~”3+÷4}±£8è >süÍã¯p¼í~¨ã;©â¹—IìÖ –¾z÷YÖˆý}Iüíb쀺óàý3Ž ‘5¨¸V|úÁu”ù4¾¥Œ" G=ºëã¯ëž³†ŠÜÉ:œ Šh°:¡{öÕÙsThZë½§¬dŸê­ŸÀÉ*ÒÌç¾kú±L¬Cd&ðO(˜皟{÷²9HEAÒy®häÔ›½'ÖÀ,ç’Ô çl^ý Cn¦!'Ô óï8î@ñR^Ë#æ~Ú7|Lš×B«Ò7ûÐ&èÌô®ÆsŠ ö±^^ *ÕEF ®ãÕœf³Rêõñ»ÊÙfê6ÄPR0>a½A„”C÷ §T㪖Ñõõ>^™zð+gÀ]’X>F8˜2¡a!1;°H¯²AÃWɪ0§*L õJE*ãÆ™™AÂÒjÑÁ¸¾‡>¸Ë*÷V$é凉j÷Õ1 >2º•–Æ) Tý¸^*®m„û\ÔŠi» cÓwa÷D|XÕê|Ž÷ ~ßC”æ‘›æìUû“à-ó6Ñ‚0³ÃÖ‘‡Û.t-Úüªœ„X™•Ð&¥K…ÏO%¯v% »ÉÿL¼á 16ÝÄ}ÇtEò«Çàb0+õ\üªÔ™ñ'mbûÞ¥LlO!z-ä:‚“æìN£ (qjz…n{Ä=Ä€ý±ë±ç2°WÓŒR$ ¶©CžWMI¦ws©ü¸È q;[.1ü¢`{¯æ-×âEˆ*†˜Í÷Þ1†^ÛÇb±¶4‚º5Àfpgƒ”'ìa&Ï ÅÀ"¤Ì‘=vã…è$ƒÅAGû¹Šö?X}T¿ÔNq T~œ‰»’© µ}˜ûMé䙥N}®O#Cþ0?ÇHO®4JžNj“‰~Y]™ðçì=d‘O‘C(}æ?SžêM¤%Æ®Œ|‰§²Ä-%FØÕ3à>¢ƒ‰¶ZÕ¹D{%õqUµ7,§Ëè¢ ¸Ê¾-oÝĶãe{Û€Å-”R&o¼zñ^7Ký¸õïYæÍcËÊfX[<«ì$& E/a*†m˹rœTᲆÆó~íz¿^׎DTÆæSÅ…«¥mÙËìõd¹G†ÍÚŠW鈱×Ñ`6I¯°ÑƒYåÛÖ–7£=7À0Ò6ÝfYC¬ØÃQ`ÙðDw"QÏ|,côÂ-ªY”ŽNý͹Ôt1ï^R vŸw•ù5#‡>KY>ø1© +°ÃN15IÝG “íV~Ú^Ny؈‡õWNšs,%ÊAu“ÓÌ /{žõ´eáSb¸È/7* ¡õ¹œ‡ð­l:шc‚q…<É )NSK9|«Z¤Ímîñ:ÇÓ²`ƒùʦ¬Úd¿âد b¬dlRî›ø˜\Ö2?›5oÇØ¼Äj§ô*Š^Wþ…‰"×|„°… Ð ÕŸ³ö¯usÃÇÈ¥OµÊ,¯­vÓ1‰W^w¿’ÕœÚ- ¡g ÂéÝfßöµœHÐ ™m ©ñy¼/·,¿%-m˜±€˜ùTÃ:r\èî9¢ mvS?£b2$—ÍXí$µK2}A€P£±8G®‡„ߥð:FÐÎ47‡ ' ºèeµÜ=\Êí+ö®4Í—šEà²-/Œ>\4fÛð´cÌÛý>AW¬5÷_ãOÌ¿¢»cú^-Ö…Ôù·ôÚ„®JgËê¸Rà,úÚŠh£”Ø×óïâŔ͋W‡Uø`—Ä&"´/Ô£“4 z©1…lÍ«DÁ:Á€Ó±ŒÞ‘T—,¬é »ÆCohº@'é*QÎA­MA©Æÿ«ÎÒî5u.ŕӨ Èz5¯ª~´œ³Gâ­(…®£Î¶âó½ Ç$v}z¬'5‚úàJEW‰Ö·˜õÅKŸ¬weÊz;ðÊ¥>DWG¾V~º–YzÚ¯:×1#X3ÌtxeK“e‹Õœ}Qs"Ý_Q µ™ÊŠ#<)yÅ<Æ*{ºsggÿŒqß4°üz^ážìö,©Ý\}žL EVË0·¸¾‹»É»´¥„0ðÆnÅÝ þ¡qÒŠZ—úáì1km¡žã@í-i¸ ˜$( ð&^4áÝ4º)\Ãì ª%ÕÁºwäçÉB* )JƒIjF6ô¥ ßêÕí¹O2¸Ad;îeµâ#—C.Ze$#ÓL%€¼ÖS÷PË‚ér ¾*>R†^¸âEK£2áTæFÂû‰ä‡Ó»í¦æ-Iç†&¨‚ùkÆ[hk;fލÓë-¨\dÿ2àÊ=L80HkÏé­äVý P0l-r@®¹ôJÃfIÍŸãã•Ãqxäp$t{d&¤ÏŒèHsµh4†ÔnÝ¥øZ¨):”2P—Qo8$nƒä¹"*íþ¸hÓâ,È/û?Èê\©ZQQb»z¥#(rCáIIBžÆ3Ùo²p1–M𙼇wŠCÂÕ²Œü~&B‹l«à¾áH ˜µF/¹þ–Û…‘³AOƒìU«Öôà©jÜcû›~Þ7÷T3‰vªš^ÝV÷ I[œ[ãœwÇðž>^ž?²¦ &ªR@%z‚[v€AµUˆ´Häöü'¼cr Ñ‘Z/ífä¸zZ÷pâú¨\È烀‚Âßö0Šž·v€À¯Õ‘íR¾'ñ+?ÅóšâªT¡MZülô •tìo@#› Hûí ö ]ίE¾(º (Û[&¯-‚øÿàô±Hc0Óh2(²Ähu–ðfgE±Ý 0ÓÁ­ê•øÖ–J:ÞHž{àdxí­ä‚ým:å×¶L‰ô¨Ðe”ú_q°ÓqÎò¨ ŽÂÖ–5qè‰uÔh)¸?&C¾Þ_œÇb@ðpU]ã øÌßÈâKun*àÆO¶ ÿ¿þjÿ^áJš^ÖP*6ƒCbžßXR:ȇ¯ˆ¸#¯îÚ@Ð4¸¾ÁUìWÆŒŸw-Ët¦ dÛt‚zH°‚B^Kµû   ào™ß•×[˜ÿ4½^É]û¼q‡mÊýÍf&Fy6&–ÍIÁZ„{ð΋ÇçHfLœÜå8ߢ¶VŸïÂ;ëî5”²6­ŒàRE¥¯³¼|@bŽøÇl_—Ž",\Z·Ç`§g¼-—Ž5$Ëžu`áÄ»Gf€!†—N4A»÷Âµëº Ÿ’˜Ý ”? s6y„ç¡¿N³W5ˆFWhëÕ10§«Çâèv±¤FýL¤âá9n¦jŠ8JY„µâjýsÍûM$ÜT¹³J8ÛU3–‘ok3¢Ša Œ*þw€õ:=]?ÃÅ+§Šs±²úӤ߸ʷNéPBÏàƒÖ,b ¡e³€Œg2™¿9Ùœ pT¯†‘UëfZãnUÃ:ˆ †SW¸³ŠbÖvóî~¶OõÝÒ§»ñß KèzðæO oLÂc“æÕšø-ˆ<²)žH‡kõú5‡UeÎKŸ3§NEn~é™gß i÷pÙ6D‡¦o‘eÕ$,¹÷L˜c—…šŸá€Ø ï¯_W…ÖÇn ãüáÂ:R¢»%…\¦¤°ØEö”a«(9éB˜³ŽKV ÚY­>éeKi5»Ét%zÀγ¿ú‡×Fœ;Ýñ–º|›XfP\U”À…·õÖFVÝ/ +n¶&¼ÊÃÓ´þ/@†+/Mš3£>hZKÒ±©.eÃ2i[_©‰…íï>XÒÔÐR>éöÂ¥(¤&’4ù,s•~ßø–à>f)¼{uõ¹ãâŸç^jq’©žxLÇ«Ç8íådT/;ÔȆïÝMñÈùSS°rÂô ”7ê,ÆØÅâ¥tØ #àõoDþ0]Æ­¤PWÓ¦ ÎÁ>ئïq’6Qï2ç„íž^’(–ô#Ï•^A~‘]þt«¥2¢çé>™â¨X½AË8õêSt¦CjgÙaÈò¶õÌå’ßãK(<ouškÑå;H6 µ¨ÂY´WgˆØ%ÀM`Ö;ÝðÒÞˆ—êŽÙ:4×Á·|†u’7²ãã `c2§‚G¤Î×AäœÑÊ5Õmõ·Ãº\â)¸Ñ“%hËÊ<r“}» 86ô;úðë¼ÃŸqŽ\‚3{ÎEuÔùk¥˜±.7_}*ØæÆ¯\L[åpµ™‡5½ë-Þ àv/ÌX®$%–Ù2R~£_ é{o»#šÀè¯+…+þ£í‘@å5€¢*ò1j]‹¡2i2Ç?Kí€ÙPÖ ðhG.ùÉŠ°,´…óUØÉ­Ó|M:^»û_UÏ¿Že ò¾>‘YÊ·­†½àÙxˆ¦Tk¡Ñ²¢•`›6Fq4¼É”\M†#„hK‘´%kS¬P_n\Ž*l¿RÄô~ž H.Gò²F_ô=ÛëVwÐÖŸ²˜­×«ÄéöÚ "âú)`ß«­üûGæ›”ýT¯üXœž&\Ñg£¼c]çÐ. Î=t³ô¡áìï•DÛÂvÔmQ Þu Z5B»W@àèxZô¿Ú<¸ Ÿ }Ûð¬ÊF‰¹·˜NUʯ$^…úйì‹1-¦;/è:!(Xôy¾õ~T÷tn,Z µ h¬lá3”Ïã{$ÕFÛáY€çvVÒ½Ç`OŽ’Ùúƕ㫑léÚ`ñKyÓìËàñepQHž$Kúùx‡.Ò“D ù¼c¶¸aåÒ¡VyùŸ×ÖÔ•ƒLõ‰-4/Œ¡4k²§%YÅý·uÂ,u¨%ju¤G`<+Ÿ!@Âk¡<ö|ˆuÊ~ 9|Tìöão#¶ýk½$ö¹uëSì~‰fI|Œ~{æâ3O<|¹f/ûäû>Â#å‡l™pfC5뉙`^™ën:ª°ê¨†$.ŸåŠbÞ¹F¦ 5îg/ Ú\pßÑüL ƈßdò©ÉíYà¥>p9Þ%ÒLlö: ¿ñ ß +U¯ÑV˜­€.®ÜXÏÐsé Ÿ×¥ŒÀxÈÓ]¦ì¨ÂÝõ?•2ÎyüÈÛ`ÚÈ}WÃo mÍ¢ƒ—s[µJ|#”閲˞¼ F†ô¬à¨I8zE%ìíåì‚n{5V=ý²10æ;Üt‚…&¿ ‘•l*TÖ¼ÀD^3‘gJYŒBÓO† Œ©]·> ²¯ü(»QØSµ KË¿gjÅç@>¶qç6æÜC„uR×":SŸµÑÕžv½O¡xú5,Ò²J…0$ª­¯SÂèãŸg=žEþ”Xò fâ#QƒA²,…«TqˆV,ú1ñátNÈ’ãôh¨!|)ä¸j¸ØQA7¬ÐшËåŒÖAxûmcd‹/\·»Œíé‚“¡ÎÓbìl‰í£~.ÂóŽ4Ê9‹XÇ7Y{*s¶ ¯ Ô¢¦.MÉÝE´2$<×´1×`…c?ø H¿rÁžŒU}:«Úί†láN@/ šQUYÕmm;®§¸64"·˜Á’§ ŽõÓF¨°T<h@ã·Ü«:Š˜Co‚Ý4 8S´o§<7h’U2ÍßÝP_Xîv»wÑ2Õ¢«”sÜ~’ico[ÖUíuëmg»Ñé‚È,ë`H]&qƒ÷NÔײ#b0_¸Å¦Ùµ´z½>ÊêÝÓÜô­ÏšMæ’´Gö%*«qÛíxþÇR7œ:Ý¢|rƒ¤@¡un_ÓbºòQÓµéàSëÙ O߆;Ê=vÒ¾°¸#b9Þ[:|ü3 Ìõªáèꓨæ_°5b0`ÏN¢W5Çu4(K¨Fû+MAV·!3A¾šOÊJ'.ŠC 8xÓ ¯ as¸IûtX †Àoð¸(žiA|Hqlçw^ŸÚQfk™²:VØÒw—ÕÓæ]qMjfæ)’Ó]µ­ûSöC"݃ÛÁDó€ OˆkÍu/”*g`\L¸›#à—› Ñÿû µN\Ž0×Xì bÎ ˆlQó>þn"oL”ך=±]¯J>¢×BCŸß¢Éc)Õ°’NB;·×&¸ìe]Dm#ÏuÃÏãª/À öÀ¾-3Câ8™’!Ú–ƒ³À[H%Ϊí*ÈY‘•?Ë’íh&·^G–LO½ô”ìøë^E÷ ®YkØ›í%EÛO-ê"R«.‰v$,m§»vHb ß8&vÔ̯Úå½ù›–^.W·Nú,¦Â¿¤\¸‹ âMpExØÈª”¶c:Ì+ì{É‹3^#nsú¦vló‚ %ëµÛ,˜ÌßÖÌß'ÏÄOýÃÒZÓ À ÚQ)´¯X›I¤ùÒÑ„D?Wئ!EñäÌœJ_­¥¢š‰…tœ¸Mðoÿq¿[:Çp<œ›ý ߸Tf›q´Œk÷,Ëg_Zàvz.8¥ YŸ&ÙËä:ºÌ[¤©kÐÇ­CŽ §yX:Yæ<Ó\+@•.Œ¿ù®{Ê2Ä¢_¹`Ó¯û °ÈJ8´Av ©»XV%UÔ^c„ݳ'\Þ$l¯ 6eòÐöÌà(òàõìñ߸AGXg¹ Á$©Ê€UÚBý{‹7_ˆØ¹ƒ„[ëÔÐ<‹[G)ûºGð¯Åhe«¾qRƒÔ¦JÇúZî œ–Á¾2C–|}$\Ð…‰S®±·KgZ1-禹G?MøÉÁR÷Î|?Ò,ˆSZZ^©ÃLÓ»tF3Íùãó¦ QÃBÿRWäTÝe»P¿ø³FGMlÏ|ËP~*„úê–¿7áݳ"ù$qzê.)ÖY_‚¯Y¨pKZ`oÐ dotÆÁµY—Ý1KôfBëÝa蜹q%>Hûl‡Kï–œxÏôHœÿýÔj¿h2³èYW ¼o㺿º¥,2þ'+;èà@¶ÿÁøªa*}ÛÑÅ /5Ø0õÌî6´'ÐT†…Av{ÖÁR¤ÕN¹®—)²¬;'iùþÖþî<1;G æi()–ÓÿâÍjÖ9fºPŸ-0õ ¼Ûù-¢mçÕÈB°!JM—ß),2uòhψ+e,BÊÍüT9rÖ+y@¾WãdÄ„*øCyÌOÇ󸔻ôZFÚ_¤Ü‘ãp‹W1ÆY¤høURÕ\ª¯ÞÔ0ê”XÁ:›Á+y ŸÃ r<ê7mf£°æÊ¯B Ãy€mE'_DÜØµ:Õøóh6uŒ%ÎE …¥ž#tÎX¹òH÷÷‡‰Å¸ Ý`즄§»Ôô¶*tü.K~ºø`û£§)…÷NzÜxõåêý3xMÆ“{À”4¨Ö=ŒðÓ:Bê5Ol ‰¡j&,|Z ÙÇüÓþm.[Þ…~c<ÁÍÀ~òǤ#¹óüêf•¢º˜¨QÜ£× "Óßb’;ØŠÓ\þvtŸd÷(¢éý"Ž@&g9uú2™Û‰ªÈ^ŽèŸê½æc ;üáÍp2žó¨’Òc¯DñfÌRû¥Ù·Æù_ÿ~aB3BY%XPÚx“Õ3‚Ró:§µØ œ”5››œöá¡,¯Šê˜Ú]-ÒWo-Þ^ݤ—fÇ gÔ+W]ØÍÊð„ô°†Ú»8í(®g`Çצ툄ýN°%·¶ ¯î³€œÂ„—xœGòÁ&!É ,ÕJl¯OÐ.†=W%-ñL•±MÄ¢vØ2{É¥8bFò΢*Ó¸G)("lšu…3SªC £ËŠM" 5*ÑÄŒ D÷øœ¥Æ#S›}ëö´¸Œ‘­© h‚]6(©tí1Ž4S]Ú¬ìÊi…%÷=p)¯H¿jøÿ$×ëÕ±‡ë¸ýAá¸> ùnüf>*ZÀþø\xèŠÖ¿Ì5k®H/ßSNUMàëï(‰(½‡.’íÔqçA`mÚu€3±ˆCq÷hH£ö2TT€ÑX%©¼WŠi·?x³ä§éBˆ ¿7©iaü¨â“ÿaq3<·Ü.5;}¨åÄZ?ãw ŽÇ>Ÿþ÷v(6òAM,K©œÖŽ<Ð&Œj¼ûgR¿â‹$KV¨K6Öö]*Ó ÑO)Ÿ|-^Cex%ã…ßE0ƒz9=¡ù¢‡\¥€y1ªùS­Ý3c&Œån×K`Å4^e²ûZí2›© ^e¡.mîÖÚΪ`×2ü¡a˜ævñ»‚¸?Lè´@}«Ž å|JÎGççYÄeÌ;¿Ö3_\ZbPûJ¾KìÄkEd`xM£÷‘¸8'~½¨{U%mcÏ¢Ùm8žñUµÑÕ¬¯Ô¾Sølâw~§Ô&<ìcÍ•Ä]ÜЗW@å赨Bª'»1 2kDÍñû9øf–T)¯’j¦{ÍÄÄùGkiüá@µy û².Þ¿p6Èü.Ù³¥ @ þ\sÝGA:«C½í­á;ƒƒÞˆæ=*LvíS²‡ÚcâkøO|†9Š{¯E¼þºšå*,ÄåÔÕe‚Þ"ÐŒž·©x¤—[ZP.ŒYmº×å»v°f^–R2ËGÂY.¾&†2åÏõë'š_˜Ã;ÖÕ&ÀKër ’[«’ 3fª«iÕ7£‘¾®™™ü1Ûèd°;"åTjÞ²f¢M ?oÏ#èA™<Õ ½*7r2"=Š;VbJŽÅ&4”›9KiK³ŠŸÐ0Õu¡ÓŸwGŽ£ 7{«a²¹@ ÈçÏé+Åu.,ÂDÝÆÒš<÷¨Dx4Á>YS-xòÿbÛ6]ªÜÔ Û¢É «ªBñF„u/¹ M@†¼ ÀÌ©5¨…»åú€¦×A|ÌdõcÔ‰`¢Ásg`Ò‚ŽM» ×è²['—Šó`:Î&ÜÃÛ(0­fˆP¡[mœµ«ÂÅ×Z>69bSø%þýgåU2ÀV)TÆ„ 0 ‘ÌîƒPÔbdƱxàæN‘?Ý‘?2Ñb¤T*i•=/Xñ4”m!q³çùiUº]Jyj vu³ÎÃÂà4ÏD_ëKµ•ÿĪëþÔ›F¤:‹àTˆÛøþ¹Ì«ªŸA5ÈÜ7ˆ GA×zU¡ÉÏ´ÒÖw9ßSC6»ËkFé;ÀØR×ÿU‰*šó+ XhºúK:DâÑH’sl4ïŒu;}ó2Ù]ð5\GHœ[’r~KÒ`x6º¶8gCþ­¤"C­}µ½ì6vîFlUkᜓؙ$òž_}ôÉ–Þ¯ç­#8®=hòÊ•áq'Ç&½q¬)'\&v28{JîgÚ€|\hgN)Ê)s£_8œ2`HD"iGæh¾-¿;y”ë(Uiò£¢ósÈSˆÃv„âcŸØœÒ¾– B r^©Ë/’üâ½A‰öÎvÝŸaE½=»v,.׳«3ÑP‚~I!S„”]—Ǻ٠œ°âHšJÙ€ÂQåt˜%!7g¹šéEÍ»ÞëÆ¯8Oã”{†î<ìxfz¯Ìó}ÏX¡üêƒ"êS #ˆ’*lÛù?Y‰,2“XNëý‘󄙔ħ›‹L»Lm*É—Ö8)a¹ÉnÔ™"þ4LO‡ÝxÖkBØOvâ~«–C/‹‹Î DÉ(}®Ûô¿Qeã(h÷æ R×Àç‡I”-)ã£ì_4ùƒúJg±þ꺜tä> ‡þ¿äç:qD8v¼óAN£òéÍ(P>ãìáÙlóÁ®/FH…ØD^ Ëöã;…y6RAé2U_I.Z©îÕ GÀ$qÄð“@I%oÈR#ÕbrãÐ|`Çt^N~¿Ñ U aõ+ÎÞW€b5=>ÿ¥Û§?QPòÔÑ´¤^Èš‹Ž °ü…+½ËkXŒº*»© JWǨOD'‰?¯¾ÑÅÛç…`Ÿ ÐßIÒîÁÒƒ4„` 5ÁgÛ†•…%ñ 4žËJò¦xU²%{¬Z|8… ¢Uå£PX1£'~'!{•Ü'•˜Ï$hÙw[Ü0냞iŒùâÉÍaŒ2§æŸM®jª<&KªÑvÌɤ¸UäöwaÂ#©¤§Yd%%¿/Ž• pZ®¾,ø0| Ug}“ãÙ›…ó‘.^¸Ï—dš°35ò®Œ(Ä3´ô˜ËÇžJ,ªÍòÕz$®]¤›ªr¥æK¤ÞäØû;šsm]€=Ó~[¥/v¸ì”Sßñ]õ놠D€µ—Ê÷çꚎ,~2•Ү窀²4:õv¹lJF 3‘r(2˜ŠÈÊch(}ÿlÝX)½V+.³ûÞ#Çîê8"6‡ì¸ÃÑH‰;¾šÙI¦ï0Ü1«û"»ñàb-è9•JÖËÛ Úz‘jáoœânRýæd³ÃR©"VA÷zFìç;‰ŸÀeR´ø«’6^3Cˆ¥{}%X "¢\QiuÔå«ÊŒ• rÅnLúÅI©©3Ùzgwd9uÈ% /'¹tÏæêêŒþºÙ¥ËòdjÁE€¹nñ‚3h©2>ÌÿˆàÞû %–ïfe…¢Dªã"™b³€†Ðdoß5[·2ǰL2uòÜŽé ªò§šKÕ…9ò7Â)ƒþ@s¬¤p$ë3Oèqgê(@¢ÚÔáibàß6Œ´oÈ7žøùí½º4WwAæ% ~ ÌÝ)ÊÝ‘mƒY|ÑZ‰®XÃàÁ%_Foö-+öË„pïõYµgµg»ålZeXgÛU?*]:¿Î<(ˆÒ…D?%3¹vœºr(ëúA+Ø•Šù>WäFX4{ûÉMŒyÄ dÁ‚Ø*Ѫ­æS=ÈÖŽÆgAacÙ–®*bÑÏš…+Uÿ ®ó9¦}†TÔ›ï-#^ç¤ÿyÆ2 }w $1Hž•[òg:>°cÖ\”wm ¡‚ææÐ¨²Ì¸P6„2´ 9ãS’ý,ˆ¡ ìßabB)jt8°©~.ƒv$þk]\³|Þƒ¦Ÿ·Iüûˆ‚ v—üÝ$±¼¼¡º²bU+zÉL_CaBiZã ÞΉ¤ø#œ§DVôµõ™1¥}T­"Ó&=–~qçòW%3"GÚÍ\½;ÏÍáÒÇK²çM‚+/`5@ƒ ÍÙt³ñä8ÁU±¸‰=Y ‡h7³0Æ1X†DE//¼×WOP°Á>fçëæ ±9R²þß½âey[z»€Í}äÕòŒsÀY¸%ü;ä·TÖ$ÃØlàRÈEO?%B«LdÝöµTÄ‚ò±­óêòH–´ëKoÎ ÷ì‘Y`«›‰›±Òãò¼¥fàââiÃ~¯¶”‰ül·C°(ÏÉ›;79oøm.º?N£VÿÜ®é[œ·Âë-¥çNÄ\¤U}@z(í{e¡á?– âq¥ì',)ج[Îja¿  ±®áKDßÛfí!í«šn~„$S¡Øëôþ Ï2™ò˜ÈoÂ.¸xâµî·™»Æ>NÌQNZáî“Ï­þL$.¢ oEšœtÎ4HŒ±‹k”Y½í#¶%L’±ž± ÇPyìÆXGRçHy› ±=¯ÉäƒíÑk]*$>)-d6´ó .w«ƒ‚ä,ß7jÇÒæ&NH12ÔšÙKòñÊ.õÓäuGÈŒg×-8ø?ªå{•Ã{)_¸ú—m¦ÙXT¦µ‘0Cö6ºÔ©rÿ%½Ïê˜úPìnG’ùd󙫱-Þ[ZAÄÜD#³›é'Î|‹<ýÚ€]âuœËÿÌiê÷Gè€.›Iµø}™¨ÍèÊ;ɘ¶0òA¦±’uýð2Æ‘,`][NªbjCû¿‚âlľ=6taÍÂýXIÿËYIfžŸ8ó\»µ'ŒwFá¦Ò‰„˜ø Úøn.(­ýÚ:p+¦oTÑKJ ,vñŒï&ÚæßÈMûÓcÄ ìúûö<á’¯ÇkûÄ×$îβ¾©ª:£\ÀäØeÆ;èYB‘úó (Ÿí‹‡Ôc¼çÉaLèŽMÆf;{ŒF¦NZÛöüéß'hÓÏRu›…¤C¦Mç¯Äç7˜³ kd QØÌà?xP®Þq—¦¬z>Uçáy½¨t·¯ðÑ —0jª€\^ÿ7{ 5oפO&/?-¯€¦‡ .[ÅšA¼,ïü_ªä  F·¾Rý>Ìæ2ö=WÉÍ4‘koh"‡<¯RàY¼§ L;V EH9Ûõ7Ÿ(‘XÅû¾ «ŒèÖE£³j˜}XCgL!ÀiYxŒ+î èÛD1hѦÆ4t¦½{—cì]j'„Ü=@ñ”¸Ë”pšŒ/Ï‘Xµ”}iߘö¬OòIW“ZÃÎbvé90aÀEöFíb§¢‘Èx„>ÒdÓåv;0ÁñßAÈU’;MsÓAÄG2ÒW9+ `„ȡà×ÊÏ݃Òë²–i 7\o32ä«“žW€I¼[Qà=j®‰&ymnÖO‘ºÙÝYÓ¤øâÞºàÙNÈZÔÝ!![ŸúB%3–V P€€©"7›dýÈ„·á• o’Cí¬ B"!Oì…jµÍÀ£a÷c·Mi#¼FÉO6€iº •ƒç Žñ¯È}9ÚÔ\Jg€0.ñƒjgG6Ua”MJÊÐÙ…Q Z®‚D<ë L:XÙãÚqµ°êÿtvÓ*—”e¬½›ÏVKCHÝ;+äs‚·Cj¨8TËòz¢ÃÁô•Üà T-I‘n×ý¿íú=‡ÆšvŒ"Ú‰{&\gÿh.µçm¾p›?mÚÒÕ›W”tKh¤°Ž ‹2Nýœë msæo5Eµ¸×Eþx•µsáoê±Ãuðˆ J­øf·ÅÉQ8S´Žÿ0Ðï@©€ýÖãøòæJd_»f¶ª{IoAƒä‘*­Ú¡øNöÀv…,8DÄò‘ŒR‚ôeqãýìmò-ü Z„U;¯Ë×jÃÛÜÐàí4“„w¼ø,l¿ Íï@>ûá”F5MÒÕëÓé¢×ZŒ‰$—É¥ëì&<ïš\î^ùL47<¦Äô9r°ë]R+}ˆ~ÂsH¸w:§ÇÖëFü‚v;x qm¨úçkýËß!þÉÏ@‹tÞ÷¡Œó@Ãà]ô9Áz¾z^¸x†eD¡ôÐ ÆðCëwÅ ¦(˜>pYSó›jgìËq§ŸÍš¿ð é×h?*¤×adÔu~ ÊU3s´ úÓõ€ Îù©!a¿Üt;¾›SƒtË)½V¯Ø“$c’Û,¢ÜS8y“áY7<¡šáÄkˆ6ªê9á-;Oe¬» 'J´´ûÄ¡T¥ˆ@ó¯k‰¢}Xvªl”ç§¿ñz"²M¯²ëG–‹áyÔ\×>ä-Ïí SNPFðÿWNí‘iK‡³ ðšÍã̯ù5â‚f}1DÚ‹3Ny<*DÞ/Ûf­ñq1¾Ç¢+F¯‡r60&çG³Y)~.Ïp)Ÿnµ•H¶;¼­”›iïãÒ¡Éý$Ê#ÊEÊpJ-ñyQÖ;Ÿ ê ´…[Ïί:Ä‹/FˆrÔh¶#ø"ËÁûS àhঀ­§Q”÷§ uâ稅½ ¢BÛlKÉz-ýž½¿Û#æ®ã2¬7Fãói‡”Vïþ±m±×ß<—.Æ!Ø7„Yv„`pqÓuE},Ò‹k†ë´{n3:ÕÙe]„NorÙ¬­‘.×õœ4€¥, úö=Ütà¯á>ˆäÎ>DŠ™ÍN{Â]h PSSsl1M«®rwP‡Àqì¼;L€°x lðD¤gÈ-*jô¤Ö_QùÁ0$ƒº9ÞDðJ&Íñr’.°'0¾-ð¶Þ¢&À@(òFá–>®“aB÷¹Îe¬-wÁ¨Q ã“"ˆéVÇïМ†•"Æú¤‡ö`ëòЉ\!À¥!+©<ªÇC\qŒï¾k¼ë¬ÄÙND¿ZzÍ`att,Îì&_< ¥»åUwggó*ïDOT þ’\ÆþÍçT·ÊÀI÷W2+×QMAÚ²y?IÏÌi,ĪeÂQ¸.U]/Á€v®òÚ¯§üQà5!žÙ¤±3Ƴ ë-€¦-Ú? kïœ<¨ÏàêåB±Kž¿Ÿ—Ù<£—œ½±¸K^J{ÍI×óÇ&ÂίŸ'LDˆ{ç¡§b5³Ù;b£'–±8ÞÓ[:Üýªï‡Jò½ºÃHl0ƒ’DªßJba}³T؃qL&$d+Bu]">ñ?û¿Gš¿‚VUÜ]ÉÛ¼ŽfušÚû ©?089þ¨t'lº†"¸õ"“hÓºüÕiOÐWÂ䘎æÝr‹…xÐÿEV.¿¶×Ê1œÿ? @ )TÏž¬qÃ+~ðH¡5·Y¢]-~KèÖÙ©¹]C݆ÞÚM17Åã2ÆÀÊMã‘ã»QŽ.æ,/ íþMœºÉªc×Y“B=Í¥~„Nn69†šs"°Ñéî×–Mm,§Ú!2ü¢hÚb%èÐÒàcCàA­¹Ó¿Z]”ÏðÝ4î€QlãÆUòÏz”•Œ,qO®®ÁA'#÷óƒ0íѬÓå¹Ý5ÒuWŒ‚¢ÝVïË˱?Ý# Éle‰ÙPeçc+UßçîŒjÝÿåØŸ…ÑºÅø%Ý ~¥üÅ{”ü½´Èø}—;¦òS€á˜ù+¨¢Ÿ'S‹HÓƒ¸(Ší+jXéJΉ,…z@t:å^=md_óµ°vy"÷pbˆQnh|±S-Ž|°Å´0X«M+^âúa‚ÛõnÿÌÒþšÞ/H6{øñ‡{Hu4‚×UèËkN„«Ú‹Ù`ÍctlbO— ýÌR¯g¿wíØsuØD”ɲ›|°ð!´íˆ<^>€=TË»õ"ÕŸÝK–xÀiÑù R¯¢œèÅ…b‹jcÏ+à•¼plØ~V°ÎÓ±aèœ/_‡ Eq‰ÀÌÄ;‹WAñÏm¹`ë‹q¥GJogG®ÿž¾œ$šÆk#4„aÏò=èî¡TÿX°¶ÆœÎ@Ò6yäÐf5‚QZ³V@Tl{©–ty R!ÿJ›`è¦Ñgz‡€¤Ãm49?Kæ$ý8‚R¼St’µïˆÂ·d‘9ýwMçÞØr›ZOzû?yƒª¥S‰T÷»HøoŠÑ —ñâÊ\È…þ&Îö²´t o”—E‘)f+¹Pq(úÓ¤ùª° }YWq¡õi¡¾¿jÍsø ü° Žàî†&ÅËXÓƒ<£Ø®ãw¿Íˆ?- _è¿×Ú§Œž%Nxµ¦ó?\áj@¡t¬3…cM€ø1ÚCùÚv fŸ{³Wâ ?×ja —Š*› nþÂòôfú4Ï]è°? X}’-+ññO‡$BÞ¤“ÐÍõÒëºÝ¸gЩêË v(¶Ú× ±ªk线}^ÕSGoÐõ˜ÁTíxxolÞZ þŽ£iT&ÿõ-°­+º¾‡ãFFi9ÂQýϦ£‡®ôaÊbýñ[ºY–h`é…Èè&]öާ;HuÉ‚ÍÅEú0ûi´9‰Bhs¯œo4èàŒº¸þg†@£TŠ¡hªCWàƒl "jÜò4d„ˆwÓOƒMÓ °:ëyºvÞVÂíæ‹azA«á®©vIWÀCÜV+öÌõî÷¯ ”ÚǽºZ3J'‰g<$u´»³¾$ùЃ*²}Ý^fõ_dÁ·0!o¤]{î—ͤlµû¶d'É%_ŒµöXšj;K§ÈG²xí–Ä… #bˆàÌ´To3­‰éwœäGòA;&DN—Q™³ç ¦Žœó"T°RoU»¡ò:d¯^bK-QD'LPŠ#ÒIs•ÒµNסR*mÇR—J6F ã›H¿”vêÔ­úâ”ÛS?†kÇ^ý Sç, ôçKB‹ógÒð0Ó«:ËàÞ4'^ò;3‹ ‚¸ešùb}ÀA*Ùï¬_íÿoIq±§Ö‘P“ã(W—¥¦¤iÙ1y+Á¾Z'P„XÒ…Úi©A¤jvRtù$ ¼#z«ªWß`!q9ªÅë~ñòÜI r:`ÆLòÄ:KÀ,?£ŠÑ—ðŠ£Ë§](ªÅÓgkfÎLN¹‚‘1¾0ápDpÕC\.«–£uWïӒ̘±TÌÝRƒß®3x¥½Ikz~9ËÒ N†$»  Å!ES}p覃€¦ŠƒFb‰¯7!À©.›@¦§Ì–ð¬á'†’ç} kòM{ïûRð¢²Ì'œ£¯ÑuÀ`J*³r¤»± aúãgLx”L÷­37šcÃ5‡,N}q2ot ¾·’©ÚdÎyoÊ’™öx‘C¥…Divqš¹ÄV‘E4J¿8´ÏvzÉ4Mì¹Ç%I×_Bnv6> S‰_zøügèávÛ]rxâxѧ‚0/QÉÌi7ˆÄ«°’B—KÐuñ…`MÈç—áWìŸgAæUd™Èpwë\–WYÐ'V¥ðK¡â‹÷]&Ù©•‘:dS‡ÛøB‘4ù’È8©gz빓pѵ}ÈþÅ¿Âñ$ñ;„Zûê ÝR´Q§”È jcұܯ?çº%"‘¿ö™^ wÑ ŒzŽÍKQ¢ùp¿•èuÌר;–!ýýq ÎÙ|†Ü×u2ÿZÎêLpŸÜË©È `w^òa‚Ú£Þ?*ƘÉC×SÖ§ÇØ‹jI·r—1øGaÓëîé–ž¿¼Õøâã½qÉ °?ô+†ÉÓ‘ŸÜôRÃïª÷"~L+¸Ô}C@b£êRŸ¨þÏï!ýˆýó¤þˆ…ܘ„örvšèÛD!æ tPw H<=g?†!–}ÜÓ”Å1Ý£òT_e|>Å<ùO§áË{ê™ ¡?Ã;§N¾g§†J5cÁÜ9а¿~|)Ù[«ãr[öûÆ¿ÏZ§é"†õy‚¹¯ 4ºÞ]ÿç5j¦{<ãȇ=Ûyw'4×48±µm×¥²6#á6¿í!ÆínE”ÿsÀ >¹¯UŒ@£WW«™Æ†…xõ×ÒÞ“–¯öò²ûõ[¢Ÿ-gÖц@p›W¤Ñ¶jN­]Ç»õXV–¿ÛÀó¼pÖáþà·W_ÀºðΘœÒ &T/®8èºr :%E˜ýpYøgzïÜÎÔVÂ@­=_A¤›•Ñ'c_:Îû‰­öZ(BÕ7á#8]7¢Y©åõH]k©Æ;i‚/}Ø#ýÝ)Önöž§ý¯à¬WS^>ܰ2¯P­·  ÖïNnµ®dŸ#†ypæRxK ábΖ1Š]]Ù§÷p7ÃØ0F@¤!¬°w:Úa_;Û š_©ˆðÏÆ$Nìb~¯ðЀýn.ÎÈæ»!ùäÄ£‹þîpwíWi…C5n:Ò•¾/9©Ín¾0…wë‡Ô¹5t;XÕìú€Ùæ ÀÎ.+6ß%iÖºŸå¦DHǰ*¶Jä¾™è&bk[ žgÉ%T;VùÞþ£ë©£z>±#ª¬ny8Zœ2Øg§Lg<¶YT J–øKí¢ö$Âr/ã¯Ldk«C0ÿM[Æâ&äØáKŒÀWôP# î>/òl<Ђ ¾X›ŽòÈ×ÚŒq]Ñ`;6Z F¡³U7«ñ’[L°½Ü´´ÔÙ¦WRÔÉåmšlhVŸSº‚Í9ó÷ÎR¶ì’Ï3›²1x¡3^‘%³sÏÈbõ€Êœz 1?{C¢tÒÿ]ë[îÐ,»År#û\k´ô»¶6íùxêÚžPÃP @¥’=W~O¤Æ8­Ù‡.\:²DÈŠ›µóóL¡®~»ÝqØ¥3¼3£èð~^öµÐô{ÈVN£õJRˆ¡"7X ã7q€yôö}8È»”›¨W|‘h+¢ïvÛßlýíê¸ñû¡.7rýïk“‚MS‰ÌDÙy÷¤˜õ³'ûØ%”Vyjæ|%lüòªV:×VŠ{¸Å6¥þËå¡îàøAÎûá51fš I›±ÞF" ž0Ðdðd>˜>/*Ò1+y .`6¢ÃbvõpØùH£É¦M)B´ì9Uªâ$²õ1ì`wªõ¬Qmždë¨gþД ~ä,nmJ+êÛ“™Ç«Hª% ’ xÁ‡ÿM “Xô$‹_®*£BüÈÆªErÚñšX1ËuÝv&­C?HÚ¬ ]/åç⺆ÀÆ; ããÅ3LwW”lJ‡Z'“5ÈÐ!tóñ8éÑ8»p<#Î+:ž„Ûxì×TÄ"ïÓO°wôåôདྷHãÏÅfm4ž¦U°EçŸVÑ"0AûàI7ܾ²Ó4Sœ¡:^_ÙÙ—LlpŠÜÞâ&ZdÑ]¡„nO“LæEæízdW®o¾“? q»Íç:E•äÒÝte`ü'UZŒ±w7ùd‹_o…»™¥Cõ@FS½cYæj<ñ|ìøä¾õv˜ý\D(t ñ™KôÌ)Ø;J2g·¾E²¿×y¤=zœÊ¯¬ë3´ëä}ìý•ŒÌQËé«ç†EŒ«øŒ7ña¨I!–¡fª¼6+ô!„¹6Í{ÈJKYǠѹ‡—ë;X™ùÂÂí ;ß¾ÐVyÆ"EHì.VXE½D¤1ì.†zƒ¾6G·­0«n2`$M‹òIrµañ{’Ðb Ä7Ý…ã×Ò¼ÛS3RÂL¢¼i™§îgxfØÏhrØã{¨Ú”㦪ÈgæÀ‡>i{Næýá$7*%œßðøQç° sY›äÌ¡Y×ΟÞ)-ÙË{¿¾QÑvi•‡—W{òùbŒ‚Æb°Vp‹ªÊ^dßK!U•yŠöù§ï ©d™ ðD˜5Æš–7ƒÁ0£¬°vò T½Žqx‘Ž&Åè’“ÊzCò“ïE+yÌäØgG£ßqˆ.9R{3>Ýɲƒxýk*uxCk’dãì,(Fob»ñc©UTÉl&ß÷-U§×í‘U³?¸Ûà^S/õµ[iäì@û€J~­77âßÞÂDì̸Ô4CŒ<*Ì1>+e Ù~P“Ós[+þBî§}Ê62©½‘¸qo²æˆ>ÙQ†ÈÙ€ª¾5õÚJ¦ñ•çòHaÄ*ä²äÒx²ª|wó·ècbÿoÄ­–Œ™0¯Á]÷,!Ôõëæ–‚ˆ‹l"݃å—ïe|Æð{fÊ„l¦[%#7½ÌÅ^§R󿇦w–2H¦t ®öÐ[¶ü®^»™¿W¥#v‚#€$¦!•3éç–Çx€û'±Ä£Cô$’ÔÜþà`“˜—X³c¯^ý/}xGF †Ñ“# Ÿlª–È‹pwšæÒ¿ÚxçîÔåZX¢ÕåËê •ó— "ÌÝì!=J«u²<ÖŸÔ»Ï6gÏßk“`ÔfsG˜ó§,dú …¯)¡^á·I+ñŽ@…xÁ„×Û|Ø´¬¢pý;`JvÕ£¦µ…“?¯NQ²¢bFˆEêB¯‡®ß¿i;ëâ¡ëgs?Si¯Ä²M倇³\d‰ðï›Øçº<4ÿš=ð’ª(ãaD%^þ‹’¼BÌ´z_÷SRtù­'4Ž(zî0^¹sÊk#C´ª¦w ¦€ w:‚Mó_‹¸0­jV~Š Ø®œâ:¹U9Ï^o=Ù Û mÈZŠÅF¦èð üüŠÒù™š)ü^Dz ½×i<•‡ê cRûçjGKìÆ4t?Ó´zaج>+•\—3ÎF0^ÎÁŽ ò{в‡Óê¬iœêµ4¡³‘픤•ƒXrHž J´uìešÕ×ÉTÇÛ ȶªS_¹ÿ˜ .¯»3Éö)¤—±háÎÛÕ¹HѾÓè‰Äˆšý´¦Â×™b†aƒbóѰok |é÷sùg.#ÞMtœj2Î+ž°ý û@P‡m‡6Ø ÜàqH%%<£4À >kÍÇÁ°üj ^€S:.¡ ¹ªþZ¬s½Ç¹Ekø;ÚïZ.€ ùlÌ^8såG×ÊüK…z’IÓW®ó M‡?õ (ΫîaÀ­9•λ:‘îËÈTH¥¹òã¯/š•LtÉMõ ‚F?g{2ƒ}7$ž;|DAĺAâ“nËò°Rbâ¸GÉ”A>¡Ì=¸å/©+ç­žŠÕ€¾+߀–/ÙžÇR2QٙͤMªËÁØÁ¯ÇM/ÝÄå=²R©y]|'ºÚ_8+I$Ûð zšíí- ú´ÝoG·¥=BøœÐ‹@È# Œk½“+‹¥Ù²‚æ,ܓڔÒxµÍbK¼…F~Ã1aÍÙzN‡º&é![™èl´öÑ~Iøs']„æóï¼ “ßtIå$çÀTgœ…/\>öâzVF‹e\Ÿs"ï¯ö„Úìl¶Q¯³1a¤;HlL×/§X¤ˆ’ÝQh™³tÊN´Ú<€"dïãÁ| ä·q£*»Y4—D[Önþ—‚+È{ŒÇê!ª½1Iø`’—õ F5§‡£Ê“oÄãÉ^[¼Cnoo=šãµX‰¬€Ègvvá€Y¾>è Sa­h$;×øîŒoÍ£¤,ŒŒÑ@ÊÑ.´m˜#VöÏükb´Ù5÷ü8QuíÐÊaªÁe?²¾\3t€?}Ö³®–“ìñ šŽKÍÙ¢šÉ)1æž”hœ¾Sµ…®TäåÌÒQ_« K×0~j«'çIýäÍŸiÌ#æî9†¾(&Æô8?j)y´ÿEüßÌš·Z¡*Titjll±7’û.b ‰emãÒ/žùòÖj…®gc— À­‚ùMàOÒô8œ ØLü± …ŠeëûÄÄGÂŽP¢˜¨$L”êÙ£²³ê¼^2,át:RÂLkð|IÓJÆÒ? L.¾ «æ3¨Åm™m D˜ÖS;1ÆŠ`œf±Ò‹í…Ô(OЩÑÄ|ùcâè<Á7Sf!k?¶Y‚L¹jÀ8L§UÁñÕß²‹¥NDAô;7 ¼]=v¯“°Õ=¼c!ã$¦öš$d¿¼Ñæþ”M·%èÀPM³*M»8•‰Ï}WšÃÅ"³PXÔ7äÕÇ=)9á“£Ój¶*¨€Fž%»Í1G’^‘^K·^Væ'Ïb…¨ó›ý>ÒsÔæÝ˰9Déýžx“‚7D36ªÐQ3p ·(Ì·Ó¾±Ñ͘QÍz%ß„kÖ_[ù·ws¹¾Iv”!J ðÁê'iÄæpVÙä—NJ·•Áo Ú¯srØÆLEúq¬½Yµ_yP• _dç»ù‹•DßIcB(Ÿ‡ÿþüsº.Lµ¾NâEöë;o™xLõ:ÚšÈk}ŽèÒNI´é~W ¶ ùFƒÌÎ8·ýž0PSeQÈ­ vÍ4LºzRK£1-p{šSvVËËÕí¬®vfbÄ SUôwøÅ—wt+}l[¾ùbu¨b“,bÔ1о}öR^}`,woñïÊ—vÉ@)Úx“,a|œç{C¬>””KJÇóf€ûì’x¾¤JÒÂ@ELTïÏ l¨Ù…_ðl]™ÄUôÏ ¨©è*M)¡›\+Ð÷æ;ä™B­k·Ë"o?¥@BÉÑù͘ß8в&xBžÜ¼_¹óOóø½'шã›pª/Bæ‘E¯.ÔMOþï8¹ºpbˆ®éï¨+ù³ 5£ã›ÚhLAV¢µÑîZBßdF ©êŒeÉenL6â ñ5Kh´CžÒ£0ñã/0?{i†ç$~QÓÌåÍ]è< $•hª~â!UsGq[šì¬ËM ø6Éi«lxy„…U)d2%ÅS,ÿ–~¹ÕÏ>%oÁ] }”ªäõ¦½ÄL…úLcߣmòvŒÁ>*” \0Öb™±O:«ÐžâõAƒkáX†Üé°?.ý:„Œ-;ú³'²ˆE©íBlÚÞò÷5[tä°!â¹Ç<­Þ)>×Áí]ôù ³mq¬ˆ‡[kß}ãƒMs·POü +th¦ÃT{#Z@Í‘„gü¥ܾ;^!M/r=ܰA®Ž(é\´&¿ÎºýLÑ+ ×&Õ©ßåVì9Vx_»¥G­r%ð´B¢4›/öUOûm>»y–ëη_ܸöñwïð“”ü±ø`ïÚp‰gÕð3ÇæÏ·»÷°~[¬¸î|}³¦6=n%o&ÎKWì)Ý•yï¼%g@0OÊÌ/‘0]†`H%(]ŸíÜAƒðûQˆ5¾ppúá3y_üÃ…Ëí`†©¾ev«¥ó-0/ê8–ǘ*÷X@à'»f‘¦pá¹=—SÄ&"±~˜®yè^Õó#•ÞOBœ¶°Fk_…Dq´.!$A((1Ù³Rî!ý…DÀgxÜ£F¨ì„ûãÑFóPMKçŠ?ŽKmF)¼$ÁŒX#OB¹ Ö9b?µ_?ƒ1Ep/—­Kü»&§ßˆ¿¡í7ò"ÝxD\ˆ›Š£Þan(`Ê ê+ƵCE„ËÉÝÌaµq|Òê-åâöU{LÌH¥b¸g(ŽÓ ÐçäÂqψkw¥Ák‚×VážÝï“Øî ×K}mùùùÉg½ öÖCOÂÕª³fAŸ I¸`0%1«ÿ•`€Bï#÷ùíêÕ-B˜ !ìRÌÝz5Û×ë<þ^¶²¬EÑÔ¶C %cEöŽÆ”·yî‡óMi"XSïªùž¾µÖXZbsÔ©M?­igñž–M÷Æ”¢øyY dˆâÕÍ(ï< ×¸®—:·Pâ³4ÒÈÆ\ïÉœÂïû/ЖWKÞ_éä"+ލÚàµÇ&㦙Äa¾{(4ÍJH$9˜á Y—ª‡I½:/16â ymÜaìK=Øî‰[C¨:â~˜Ž´e±£ëPº!¨2”è6%A¨Ü®¥•È=À­–\/‰T¼1¿ã®^5?í§ «­ó‹6^æ ŒW‡”MY} {"‚ÛvL·í÷ oWçá+º'¬ùzše^3þ¦«}‹‚Ñë>G*‡à´°]¢=šmbý¯©1“(xt Q}UrÂ4ŽA9îšþ˜Húhu_Ú?'ÿuÞbæÝ NçSà‹8ùlŒ³˜£;1N‚æ21þË7”§7T1µ|E+],;QyǬuÁþ„.3¿Xa¶z G¥³éç˜hÂçÒì°¦LîQ¯fumƒB(û‰ÄE™ HTÇñ c{â[@œÅÅnªVe‹µ|ƒ—n5þ¿…©Ð o·‹Ê Õ<^td^Â^ÞÆ n”z ¤B•ñPàdש}Æ™èLõÉËçfÿË€ã/#¼4ÏO Wñ1Íý’ggn5Ì ØIî’”–þA&ßæL%hûÒWPDö¬ NÏ^®Õëä9­×eÏ=þcmÆ2ëŒá2ÜË¥BÍâðÁm_=C‘> oWåÎI„7”ÀOºhF²©9“TÁˆoÂaù#÷.UwUt!W|Èm%: ¯:t$í·„2=àÙù×äiå7=S㊈ÃA#î{]÷4™óÙæ-ÞÐrS~†}žf-Ô¢½²çŒ3ŸMSÂåhÄO¤Í¬A6Kªu-hh2™<}&h[±ÛŸw |ŒVLFCNggQÆ=ìj‰Š´`\ö  ú­)ÙI£ºclý ×ó¾hÿh¥nrܔн$ÕNåy‰D»KÈá0@x(^\fR™©*[Lñ A¿.²LYÍ#Ù†Ú±qÒþ ²Z¶pg-_p|2æú‚k×ëÒ½p«û)ukü]oCßñºÚ¨5ú,/¸µÂˆ7ÃëaÇæÒô1 '+¥@,¢È•úwÄ!ɧcÿ¨»,s(ÈÄ@L ÈK…ž+jãæ³Q=-ò;å‰Ë@Ñpw›iö w†³Þ¿ì¸¸§îu!×9h, Wj®:p7¡ÁÚ—“ÓÀÐ[p™^›ÒtÑðì éžÆ:†Ö$©YRéA õ™×°.É›tÎ2¡RQɳDR‘nÝ-ì·G •'˜tûÝÇùöðn–ÑiÒ>ví’öêkÙâÌ,¨òÆî@ÀòB#¤Þw5" aU^ÏoÐ{=l!~~%ú¨Ì`Ñé)sâ©@ƒk3áÊ3IüTiØ-_Û>£ÅvÈX„_Ï5Ùâ°.z½QkpÄ<4UÈ‹5qqyÜ1Ù>¥vÈdÿñxZm*Øõ•ZµÅaÚÒîIÎèÿŸUè™Uh$j Þ1µÊ0É¡xk« æ^íví tL) ¾O1yÇ™ôÏÀc' ~l+È–¤¼”òQ߇JñÆoÒþWsÑ&ŽÒ \Æ*¾p)e剼wÁpìÞk]´I±»bR¸J×ÿoºµ×§|«aÂ/äay7êI‚2Ob0n5ÜghæÖ[ 9`ÙqÐPÐ 4CÅ 0¸,Tkݼ¬¦ü"üçÔýX ~áï\Ë·ÞkÑx! ¿ÊèF 8KîѰ…æÛÙ:™n7ÄJC™0^Š9Ì µ@«Úê7¾=‰†ˆú5#f]g ³úöµQ©orJ“áÿk*r¼¾3r£á!Ú‡Ó›5žÓ;å¨j=ÿGhß+wTn3#²!Ä4#«ÄÑ Ååü¯±¸ïù(š.I þŒ¨Ù“Ô>'­f&x|-`TĻӭõ¨¯­PJÃaðOÉû‰ŽNê‚©MSüÃÂŽþSÂ;øÆþ9Lœ,®¦fÙ|GPƒ£«å=Íx祟d~7}:Z®î¡Òów4«4ìÄÔÂSVUBvŠÇÊÒÀýeüiâ¡étOyî¹½´}¦ SÚKŧ<[Á²ãÄ´=q(¢‡{€&ºæò!Ÿ>Åý&4dT$±l0»è<+ìHûùîÙ2te&N¿Xî @1š¹v°¨œ€¸1¶N-×d\°$*x-¾Ðź33*OiÂrûq‚D/®„Æð¿X·Àiw„¤af{ÞzÀ=suÝÜò»4W#Cu®%[y%„kÔ¾ÎÈv´úÞ®¶¸¶Ùúýzë'¨HDLµhó@,JúËÚ ê$ÙN}j¦9 x)âÍðb lF‡z³¥ _OvÏï¶,ålT^rkñÀS²E‚4G;Òâ0%8R·ÿp˜7s!Û]3ŠÔÆ8ó_ØW?Çi¸~ KZ˜RAí‹Þ»ÈÌQhð|ÓQ ™…GZÚÄÒ¿ÀK»œ"· ¾À>oôßíu†Ä«euÿèë ¸´Q!,pÞa/D¯‰¬›Á¦µ„°¾9{€é>æ½.@ùo¶MK®YÏÿ³áçgåõ†…F2¨²4Å s]…ö™ijh¯<9"Éæ7¾6g³ íf,ÁtŠ›4]–G”ù|0¾jîr‡Çç#På˜á5-~˜Ñõz¢‰SXØb#+žRü­’!#ÁæfÅ’B¡= ¿Áë𑜴.¯Æ¥SÓþTþðÊ wîUG$Eþ—<É3ËÒCâ¤È™Ê±%€=õ0-«ö¹+éÝ®I–ÌÍjŒÂ2hOSpYF¨ 3XJ[NÈ*Yò«ÕJLœ¢_¼Š!t-%l§¿LªÝV.•ƒ)ÿ³ =í0"Lùt‘á-`] ¡p3?pÞØA›Ò²‘°šÔÛJ9¦¹¢¿&ë&3 r#Ðe×è߯=ÌÒ²î‚ïCzζÿN6.b£Åf¾³zý¾¶÷8qÔº”oS*ý•™©BCr{ÄP9Ø]ñº$¼²+ò‹Ê0•͉=í2¨b7èé£(Ú…D`ìë.`ñ¡…¥%|wºäFl²ÑÞHrt±œó>˜Žå”ÐuY ¦ñp<Áãw à#È6®4Ø’TÉLG(SfTöéªô¢„3\S§÷‹ ²bÑó@Æ›KíØ§F[÷M7p»ììHðQÍØ'tŸ‹s³uq÷±yRË:Ïë¯É¦PîdMw G¤Ó*ƒðU»P*Òyø3"ШØ% ~k]êï —ÈKÄØš€¼ÌQ½É3Ýè•%¢[Üà4Ï?Oᱎ”ȦÈU.Yø«2G?ƒBdÎŽs\ÓrlÀ Ö V<`±VBˆÃœ 5¦(ÏklöfŽmD²Tñ8Ž/Ÿ–Û¢”†µÞè^üÀ„4²åzýô•ý½0P¢ÚÎ@›ˆz¼©Ä°€ÜÿEcè\Zm²x·™¨I"WT$è¶Èϳ¸jõÔìœx˜ÜTæÂrö¹EQSŸ-Lº™Ì7þ\ÞiñfÆÑ<Œö‹À82L«LbˆL– ¸JØfà”ÿ@ÆÁl‹±3­`w¥ðíG=ÜmŠ^8 註"žÖ-‰bCc#ÌcBnUæþÂFé­f†Hb7Ïuà¬p†kÄGxaAçùàž¿ô5/ÿGÖa¼žj.âòRCö8÷dk®=û¼ùÛiìI&q©ß"noÁX&rd!#Qƒ`ŽáÿEµÛռר³[lÍ9«¦üÏ!S5„z®¤ÑysuU#–îì=>heD7ÜÀÖ€l6»hD=G@‚"æð«v1“À¤ºŸŠÇÜþº—ÎÖ"Hׄ¨óá¹î("…ó‡Ïa®‰Q–‡æÒ7Ž åèœé¦jmºFOšUí ¨îkT´Õø¶Á¹øC÷Øeï¢r¡}T[ÜÍh¹¡r›ùß5ˆXüQlÒycqpXçR‹aw‰íñq'µýRvØKÛjiª&ÌgÅFéÊÙÔBmU-¿äM¢hTeÅØÞ-¿)Q|™'ù•%÷—ÿÜ1×"2„Ž$r]KýÔ;|üÑÙû,æÃ~ @û–^„ jqËäcaÎ0¹^$ó ´ µøx† ¬\¤‰vje$‡ Ž!Ý”:} ãûÕŽ7áÛ+1ø’Ü:uö¹v3?Þ“246½, î%ÝN“ÝýÂßúͽ“®6~Qi‘©Q®«‡¾£ƒ7UßFiFäR94òAÿîÿ ÝÌ¥– =˜£SÈ3jc”¹¨œ9ÃV5Ü¡Õ:@Tr´eU@£¢i`[À@®h*BÕ ´µhÌØwT†‹×?üsA G‚íç°¿ ­}_ø)¸3Ã3ÕèWÅ«»qƒu?¾ &£Å#Ý?ëVî >bÆË~oX ]‹Ù:zò›a€5ÝÇ{ºËTÂ'_æ@šò²ùðO*A\IÀÓˆ{ôFUføÜ/T~è¹Z)™@gay«ø%yaÒηt#~û–!rê)?-w©"Þ¶x#€ÌöÁºãË#†Nº¤ÑL&R¬ÎÑ.Çg(¹òýöX§ž€BÅ:×ëŠUze¾{¢ÅõáGÒUÁ Ή{ÅW÷SR)oö¥Èýsl·C˜m02!a· (b…Î,aת,€ßÑ9CŠN1À3üÎ üæŠb ûdêýç*ÍÊ~ÍÀòtìö®É ðlº¿?SòX¸¶Ô0²Ê‚ˆ|LgmA\°é!iÂÒt¬Š;Îèj‡…b%ÚÔ|x =z s iÇŽüóºôôðÜQuìêƒq꞉xïsÉsNN+;'Gì†FïÍkÂR€¬Cî™°Ò‘úV¸dø:Gèâ0g‘r/ÍEù ‰˜¦'E?5úÔ§¸¹V`½"„“õ„Ô*q¾õ£ù‰|híôñùôÿ' @SÙ–úRÓ¢:^º¹g38#«õ9ųC@•Fij9¾ëX;´th5¯é|µyòÉBF²-v",:ÊOGÍ4S+ie­û¯'켊hí±/Ç•3 žp¸ùýCkït‹Ézk2Ì'ã¾äú‚þ!bºg…’\²±(!ËF×ñÈ:i#§“ÌYUÃÂöê¬ïê]ú _‘!¹nÄj´Öãt<:~ر¾(„î:‘ßp… ,[$jyx ¾‰Pýnôh».ÿvÑn],p,ß×^bK³SÈ–¸E0ߌÔ¤½oŽðÖ™²z4 ,î¶êj6_Rº‚ófh–'N3º˜„ïéUþ¶ô, íC":VèhZbʘ¡"ݨ'¿«³INDa¬Èa;„íDÓ4<Ý’ºqþ”ïíURÞ¢ª˜æ³Ç)õR0*„_;ú´û/˜¦þ6sOþFv!íòöZ7æ$û‹XEΜÂ^UNÂØ1ÉêÂx–>Í EŠòÀ—·•+ÖØRÞ[jMüd\[lʼn¬ECEæÕñÞ’AÂ÷\ñ˜î-õFíN~—ÂÇo%›„ŸmrbZ\0+»¤V6dad,xqôbÃAY…fÔùè÷;&Ž,|›P‹Nufs榛އ|ß+Ÿ?Ðo K[ï« ØRçQ^¡îå0¦bƒ}ð²½Õ§#/MÂAƒ-ì¸ö]‰ÂZ÷´žÑòè[r['Ãä¯C±»Ñ®‰¨ÝJ’^ "¶6„*Ù2§Œ½uãZJ_ëÿÉæœ¹¥‚!òË’CqQ X ÂÝ+›Ö¿Î”ûrŠ9†BÀ†gÜ5÷‡´Pe¦ñdøj~µÈ9½@µ=ÑÚ^te„ë„ãŽ]Dï«ùµ÷—Ó’г^Ã6lñÒ§\Ž!·¸}4•ï"5‘åruªÊþVîiv…óx‘£tÏcWûù&ŽñœWGñ³øÕ™GЈæ.Ïa9®nOæiþKsÔܾ\Gf„¥ÝWEï|ߨ „#ý!¿iMÌp¹]ü¦FcÖ ¿XàFŠ7~wÀ„ùB}c n}ã=pË ÏóÔé/Õ.Ôx& }=ëcÙàèì™ß#Ú˾ŒŠãI¦9·¥i/YA–…0S"ëvÓ¶ï—»ÏH8g+füm 37‚ÈóúB7nº{î°XR:ÁÇJ|w';œ¶K…|ut}JùŠ´¯zØvÂÍspAË«ã=«Ï¤TÆ!aUö»>?‹‡Ï lºoœÐ‰Žk«Y|=ʪHDQ©Š`Ä÷½XÌá¨A¦¯ÈyûãO[°ñ‚Hè—z‘ù½9ýΞÇ~„oµ¤;u1ífÝÇ(;Gªo.aàMÉÓ ÐtÃq™kΖ£#ŸmX™«B*C„jŸÈ>ýÑR¯Wh&ðïu£aj-›Ysã1Q+\‘cô/û” § èlu"é5á\;Ñ¡§óÅñºñ«tq%òïkËuf`Wúå•GäK¨ ]éõ¹f·ÿUÍŽ<×uòèómŸŽ©häg:áFë Ö.}ˆËtwî8kSº­j5Ò«`luÃ[öÔ8žj_$î¿ÙW½bð-xÛ©3îÖv†õorvc³há3Í×q¹šÀéVX϶7›ánÊ’¯:šz$unÊ5ÓýcéèþW®ŸŒöjèh è]nªGÉOá(Ú“×û¾Õ×¹)]X^‹2NŠhÀ…2ÓXJGlmΊ“r„ºÂL>¸õvQu}âaˆ&(´#qK(TSœUJ‘%Ï`©Pþt…ÜùÕÁÚ½qKš$1…:ô,—M±$ÑÐù¤²U0äC1ű•˜Y¡ÑÒ…¥ýË4"Ecäºö¼Ü`'jY x¸³ÏD™>Ÿ›Õí>+%DDH/°EYÐD!pÇ_°–ºþrVçHE¿ÿxNáq°¼0!‚]¿a\ÔºQW“.k®ÿÛ®'¶`G,ƒ1úF·ç³hWn$žI ^)Ä#^~çSï"ÚSJÉ.ÚQÆa4nC=àF£«zW|üf"¶Å-µØÃPèÄX 8×]N¾“F" èMfª6­ÕA;ô’¬ƒ´y$uÉo»G†‹ Ú§¬kÕø6µõNÓv‚Ó—×g$eÌZÊ<ÄB·DÑŒ±á¹üœô¹š¹ñiœÙá´üˆ~ÖgF(âDÑS˜|šïÈì.=Æö»Ú›çæ4W_\1Žuº»kû„‰oGšüþyǦìñ&<ôâIÞ3T° ôéE¶ó= õhC¸®Ý=¦uâÑöTÉ‘ŠÒ¶È’–啎 @þp¥Ñ·žŸ ÂÝ$*]›RSø=C‡ `gÛZƒ£yš5Фp}ƼèÇ–òWwïÑíþ¸GÛ ÓÑã?ö4òÞ^¨tÔƒS¬È…·¨BypE«€:M|íN‘Fu m®ø_Ù¥; F¾ÊÒ"ÜÎe›‘”ª‰„ ¿â"Kk'³R¦Kܬ!Sº8#céDƒÍX%žì¾©ƒ6Þ¤^Â);#ƒ}ùâ’7½Di–QŠ7~CcÂË[ÔÝ,‰]89µ‘$ÃF' À´báédÒ“N§¬Ð2=àº:¦¾`IGÈ.’àlɶŒåßæ9í`Xš¥ŽJWQÿ|L[–)<º"ÿø_ÇÃòñõÞ3Ïá¾sÎÖá$ÅVXs׿‹åøˆV%¢ðÛì‘©šŸFŸ’Áy†Á)}4ýûÄuaÄ[îÓ×®úåæF¦u~þœ`;éW_~^ËÕP97‡NœÒ‘Ð&ØZÒ5¡¶ïŒísfú÷tÇξéÂJ€©²á~ÀElÍfg„Ý=‘R'‰Äýs±Fž‚u_9½!¥€f9Qy¿×VìGÂÀ%‘˜Ì ÝçTIOhðôf)¡ü¢/?Õâ9雄ª¬Zœƒüa[&é_¿w-¸ˆ»O×­çÂäá3Uº¾B Ò;;:n²ŸOµ«®[Q«¦^t1h\ì2\ÜžçiK!6}_¹zÏú£=Sš«VGµM'nMË ¯Ù$>æ1!s³3O—Ê„»§H7˜!M7ÎÃ˵¸âÿ+ß§š‘ëá¢ZTM>>ˆ.‹,ûÖ¶ñ‡ÔÓm?p$Ëï4'F$k%Ièþn5ßÖ`„$³¿¿³ê–`#¼½ 0®¼NÁÊ\©»ñ&Q#O¼ƒ¾Éèôn„MîñÓ¤Ì n&üEàÿ(G"/s¸½ )S¸Q¦z:/ÎùÛ‡¤ëñºdw3ÄSä.˜h·–òüö =“S'*Í1ó„=`Ûiç™VÓ ˜™ÏMø‹Yzsâ/ :ƒ4 cH˜~A{&%79¸¿VÚÍVOB: Ç3ÔÚðŒ©=ßÖÈ@ö:t¯¢¾ßûúâ«D¢š^‚@@Ý^~¥úÃÖЭv;›sOЩ‹ªF²™@÷ÝW—ží]»(9¡’b‡¶ˆ7ŲA 2Ä4ƒ¥¹Ae®£ÞÑ㞆–©Òº‹£QX/cõ*i_z^xÍ;†ü©M~ÛíVèf†É/ª§3šá)R%k¹GUÞw°lo\ß?Yè/esTpxýâ´¢œ«–Å+ôOcò±ûcèÃF쇟SZCKŒàQqÞ­]ú±y’"|Ÿeº¨£ŒðAÒÁq¦+oÁcåÿI¸è65Ïø¸ºŠi*®ù¾kþP ]qp*éÍo}!“7˜ ËP(|V½ãH>]ç5ñVHU·JNºƒKÛZUµÖÕéä|—MÃ%büâC|Fã_bÉxÒ\©÷þ› >n¬@8¹ÈÀÃÊ7Iæd'°wƒ8:Mþ“(¡ ué¥ÚÙç(8ÿ"~aû1ù…7ô޼-¶p>nÿÃ}»Áÿm6øŒ4*hÅp±1¶ö†+ã…¾a%ÿSIxìYý»‰m³ÐS'p>» H"®mJœ@fCÌ©Åwyb*yeú!f{ð£#­¹Œ^cÉÌ廡“©¼©UáîÌ gÝC‘óoÀ ÒÁÒ<¯ý ôš]bm=N»«»j´ÆY§5DÝ÷YÔ'5•ôru$9íý©rH·Fœ$Ïî¼4¼f +Ô`úú)Dt̃ï‡P à´¥ÏûvíO·±ú7nJ‡†|%à(«šÍ¹…ælŒ4Ê“š®:v6ÀH£ ”£xn…ºƒbwó¡3KN®“%åePg±ÂôŠáñÖWE”Ðj…™Þ©1ÕXý˜VzEérRë’ü,ôJžG%éçƒ{hmá&EŠÚĸÖv«Ù§k>9–q‘u=€•¾rì:‹XÉö¨a¹Ý½*†À˜-z‹er×? ¸=²ÚOÙ*j­Až;"õÙãtÆVÿê‚h•s„t¿äêîßË3ܪ¥McŠAèÜ–¶a(Ú¯(#œØÕ1&™pjÏÃÙ^üi½ÈKïR €;³An{턉ã±ë¸³Ôíèml)AñÍ€f‡Í cñWŠéXÓ¼%ôد.?¬b²ïÄbç'Y¹H úÜÌÁ²öå¬9µéñéo{§•h”·“fˆ‹2aõaft‚ON¹°úoGL¨´û?¶Êûγò„aóÁ#H'J¡êÛµé¥| Æ&ãÕf^iop\¡Õ/¦þpišåL’½Ã‚?¯Êh1XÍv)óà[­M¦Y¸«&»ùÇ YУ)•“¯Ÿ÷,û«JøQîøQÞ²Ù7è_4Iº\¬ÁE x6fì=ùmû% §’øchÔojì ‘CAU%Ïߘ:¡e~Î[ÛU£›±‰¯aá[¯BŒ›Â·dêº ]¬fFLU„&ƒ)ñÕœµÙµPgØþ5Zç¸Ñ¦‚ÅîÆ»*Þ…Fkç§áþ9 lQŽ©òŠÂÜC$‰\² Ø@~õgë}ãúHâ`Í%ßm+1–1ûv¶‘>n—X´K ŸÇëqÇ¿K¡êÜMlÅžã®ÆÂ¼‹ÌCÓù«ï­ƒc Üé´’±IF8ƒ2*)‹?šáó­â0R'Ñö~’»QAÇÎêÕ²?5oÔW+XË©µ™Êˆü1ñå _“¨/?Ü8pݦE@œ)®Ð¼˜Á HþK 8@W-|Ùª¬­OAP‡µÚ¦ 3{eç«Ф¤ÃdÏTРòRÆ'‚ÅÚµ]œjF×ìFßG Þ50äAœoäv…Ù¦r;H2Í> %T}«o»nß:A5ĪÀ¢)vC2EÂÈE/W¸k$á—Ãzˆ+¸SJ×›ìx´ÞhbŸO¤tðCyå¬lÜ"B¾°0ç.·É^1"Í{RóƒÁâÊ wY?jœö9\ï5ŠÀpè~*£P4oW› ½OŽ·\•üD§Ÿ à {4Ë€Ã/«_‹KÅìXüž„&~£"ÍãÒÂõâáJåõ^!ÿkpA³e°&‹²LìV»Ö?(tÎsµÅìÅð+)AŠßDr,t8 c©!Ãèe;‡TLWîÿ– Z†Íòüò¬¬×–çHÈï˜O¦Ïü;JÆK<$vG3ŒE|>®ã ô­åÓiœé>“ °‚è±ia÷¸¦æ‰ÃË:Jxˆz V±ôÆCr]°ôäÈùçfõo.±„Ä8RWÕ…÷:ÊPÃͦ÷{C3¯ûmS~Ïœ¼æAÔ VI¹ù*™UzÖ°©u°to¢»óñ ‹µÁ:m´Åþã÷uŽŒè_ýÎŒ:1Ï/V. œýGíP{îß3@•¡€£9¢õ‘}š`Å¢›i×4ø6Üd bÒ.û¯§ÑÓ¬”|ƒ5f@jû“z%ÈÁÝ3¡ù7šË ¶‰¢Q,yèðõ—׊ûk/̘tÝ(°JZ|òE'‹ªq÷¨µ.«žÂKxûØ`J…¤WÁ^cÖÛô[»£´õeY€_‹ª=±Eù‡®ïR žÈóahZ÷A“¹¹é Ù«:\î¡_ÏXo’Çîoi/.š"³èA_“=‘XuÙB‰º¦(lð]$¯ú=„ý'A8ô`-m)ÿrݪ6ÿ†oªŽŽéˆÜÙïxßas)‰S¨·#¿ pž ¶ÑûáÓ±MŠðåw’ð•e‰"–Ú\мOúÂpŸô`ÞIN5àÅòÅÖ*u8ªL3SNøCÀq+Y ²%3˜D0›gH¯ AB[¨ïH=f€y‘¥|œPGWü=е[ª„Åù€‘|eeØ ¨bºí<ÄkàÄÕu¶yˆ2ñÏM´Ÿ,)TbXüŽómœ¡sVIK½«íâó×gµ{»Û‚LöM™S?:Æ…¯ÿ3‰üw:ŒÜ>ÓDñC0*¶ä¼±tË¿ÁF™ÚO=VJÄÄ+â©›zÜávÔ¼À<]ÏÑîMBÏÂi̶ ƒ65ÒñÑ|óƒÜªº%4<<1iîĨj@ƒ'öT¡eµñrs±/,¨tab°‘‡jƒO9f¨þc£Y.s¼ê+ö 4þ2ŠÆ†|A´ï_¡[ã” ”1a'Y˜.f©$5ôîê¨/øÿdٜüä"mÂêþ –—& úeS)qtÏ#-¬ãxyÂË”S{Ÿ#¶ líP:rú²%η¢NU·õslÔÇ£9ˆ¯í˜à.eÒpÔúkú¾Ô²/B!èò„í¢Ögà`i‰ÊÍyêîî‰ÿRð‹ŽŸ='šI÷CòieÞÓVE$Y×î ÊA½Rè‘g=jÒŽ™Â‚pЦҰpQ*Ѧ9ÙlÿümŽÒòäÇ׉»B½Þ³g#*óµ=_ÏÒº¼à¾—°Xv(ûñN¤Œe];/ˆ{3/êû?ú8|ÊÌÍ‚Äe+B+òäÒ‚È¥e¬t¤=ØjRÚm'êá^æyá^}Ãñ6‡•ùÛìá’ —f×÷ˆÃÝÖ©{»ØXhZÓˆcy;BüàÓ:Z|ʼnîbà•µ‡c;c/Ÿ­pþËUõ$Ÿ-Z±Ó@&MOÊ2»laë‘Ìz¿²5݃¤T˜‚s!º^I[/ŠËôDMÀ˜ëß˼ÕæÞÿê·‹VÇçð¯e³`±S¹ën±hY|"J^zO+ÄൗàáC”(3X7oͱ”ã'ÇjÓ ¥¯jf·@yáŠ&Ø~{…ràH‡}›æevÓI¥I­®Q 'á›ùÕT€Võ µS›Y‹›TΖÕÉ¿`uÁDÖ¶g«›½Ý?ÖrƒoÊL éu963ƒú‡Ðt~ = [¼®œñizÖNÛÌ9a)Ëî§Ç4ZÝtK2 åì± bÅCz«Ø$Î-Ê£œ ÒdÂ{O²{Yr:åãîÂi#šË£:/”ªÀÔ©4Ú£+µûÁòÜ”D’ù±E_ž9„d’ºVÿ£j&rzC¨‡BÝ6ÎßB¬6-DÖпšÃæžî•7µº†PBÈüÿX €G@$9uãþÙD)\óÓC`¸­E¦Ë‘¯M4EiTà±6†&uxõWµÍD·Kî Šõ‹döÍ‘—Œ«MôÒo²ªÒrñ€w p+'ƒQ_%/ƒËй î%GÕÝÌØXÙò¤ÚyûAÎ!Ë}™Œ(´[]jxTüB\±:qTìT m•L&1~|Ý?for†bR°Žù•Žèè‘ÿõö;œf¨A…&ÝPšT9禮y~»;bgY‰k@BÜ$(ÁÚ×èŽjصŽDm]X–¹¯)$Þ²1OBŠðaSQH2ºïfÃ\ ´¤êµÙï{ó¨kú§ôƒšßHõ*È|R;*5ˈæÌ $Bt}æN®î³Ö“ô¢³1¿8A!Vl[cŸç¹—¬3Ëÿøqõ±ÉµÉ¿®aƒ¼ÀtÈ‚j?lÖN¬ÈϦuäñéò¢iìaä­ØPËn± õ·—ó_7Ïê@¬×º©ŒzA×ùnå5,þ9Zú<Ÿv3…«ã²"„Id²ðkî@ÚfUƒþvËÕÃk»Ê”š¬‹y`@ ®a§–{BGqlZþ·©æuQ5\oSu]P=#\Òìa—@¥P³MAü:ËX£–gXQ{ת³*™†[·šv,SàQ„&ôŒÊ"ÓGGC±5Céô£ð›™Ön짤ó4vÙÜX7WÅ+n8¨(,¬Ëó²ÈÈÏå"Šòi3q´7áí5ÊFÁ÷›´KšÌ´ÌŽ„Ò2ßÔoF±xäaY Rèe0>/ÎJlÒ(%‡V!¸…Q­µ—`Ñß’ŽßPìvðŽ¡;HSçn»“yÞÀš©é :¢ÖFI·åH~/„T÷>ñ›MÜäøQ$ «¶¥öž»oFQzmño‹Óêi*È kJy’+µ‹m£?J¦ä FŒ\%YÝWݨ@§7LQÅ>ŠçüGá^µùÕcr¾a¨„)+.çÀU_Y}àCƒö£ç`_š…ÌÚÒŒ«º Gs¹8„ò…gÓý×GðB©H=/«§Ãû‹W ²oò%°ö:N I®%ƒÚ§ âºY©×à3ê¯{¥ûÆE–ÞÅþ¡|?ã&mÖùé](Hq“³ÂêÇe÷_Òj£¿Xå+Ïz€Ð"zLw”¦Û)Ò‹·ÉÓQZ®Dµ¸Íkºç:Ù,^?»^€ÃqEr}ùX¼øœ:/h| X L…}ªÇ¹.hzSô#|^8Ë–¦º70 iG(ù† GÒåvÊ(ý#ë)]‹„ôàZBë»]ìÀýg®l%`F ÏËvf"ˆoÛ™bºŠ#É/Ú7ÀÓ‡`¬Ø$- ßþ % }ÊñƺˆÀ·´ÇA9Žc÷=ÑõÀ/e¯7J[Kˆ'šá•7t3<½¾­cÜàV¦÷÷Æ‘Ê6A~àV¶=üð¨('õóó#?(ix™nn!­ÌÂں߫åT’”‰ù¸Pùj5PòÇŽŽè´¾'G´îLÃ#-¥?Í |Uï€O1¸Ý¶K»î í`x@àï•´0X$.!b¸Žì"׸šÞËÝ›˜°f ²>}Î ·2ÒUõKFPÞ¸„òöÅ:3kU·´‰_8}ì~ÆÈMOfѸ×ï…|·/D ª½É‡KËÿWƒ¸Áj Þ¨£È§ÕlïF\q½þ¦žÑ5éLל÷}Z¦cvr`ÍÔ¶nšG<Û2A7Ù@à:Wªî–©Fa$†¯@Æâ&Mäçfåœw¥’C$Apß2À ËÐ\CrÍ)‹xWdUâÊ&6Nïçٽݽ0jéMÝα‡Ì¦Ý}‚ÜnîížÕUéÒ&ÀÛë…£øÕ'Âw º¿žëáp:èéœ#ß Pþüx,Œ~¨4vwžK õ£zÌ@MÑ„` …L„•(Âäí[Ñ•©³É¡Ï¥ºÃ• žïBN bô7%)"ÏÜg¾ eĦì)KšVuBb° (€º" ­ÿ´äø˜”HšÎ`ØaŸñƒoN)8I8éj¥6¯¨’ÛÇÚ“~üDWÒXæk~/ÿÄ´ÇÃL¡m½Ÿ €m»ÑhEx)òq'BB*ÙD +î£ÿw…ûöQ³HØ~X¶× lTY¾RÙ‡ITÏ“1Vç®öA?hd:GbÊdz¦¦6-®MeÕôÑóŠÆ¢Ù¾SH‡þŸ¹„›£8hrE&·ÁèVmØÐyáX‚\YQĪö•cÅÜ>àGlÂ;riÙH³ƒ‹!Øü”:«®™9èÚ4¿E»òdŠ— @¸Ÿì&5¨ÕÃÑ{LU˜°ýq=Ðh.N®°ÓžÎ•ü^Wè÷|å4¦y>Š×É¡Ï0Éôëe.!²4‚aX{þ妭÷Bá óÂV’–®ÛiK/Ên«Î À7g©€¯)4H]dÅLîÀÙÁ¬H!.£A’ü”ÜœMÄ7×㊜],hõ4_¶]&–A±ë# Š!vêÏ¥rŒèHóÄ ©4ÿ–¤‡(^ocÑ9Èr?L#Ï ÖÊçb,)Áœf¯­`—H¢¶ÃhÙ8"H­\ž¸¥ÖAsOƒ?ÚÑnê¥èƒgoƒ_:û]ƨv—RÎÿÍdˆWC±B§xªËêÆ€öus Rel}Z–ðß§ÃòÑ¿Œ Öôó¦·ïDBóÑd#!ËrCr£"”L€#`’¶¿Þ²*÷”¨=| ûÒ41PßFxõq²³„Vç¼öMn÷aõáé;þ|^ùS)PÐxå‹Ç:ª¯U”é°¼oü¹~r †‰ÝPÿ»µœÎfŽI'`²ùð¶b‰³õ°=;%³2:ƒ~QPU¼!rýˆ?`c^¹l(0T"Æ^Æs®MVû"{þ-`Re¸khUy—?UMiü"YptÒ54®Ú ²˜š;^“S²D³KnQ_Ù‰t{ aYÈI¹u¸Ê6å üîÄu½Èä™_%Ù€Ìwû@s§.¬$ÜÅI®&Í3ÞGEt號?(N)äÖá¤-Ákäߪ¤1­žÔŠÐ|raY[X×lî¢aÖS}Üz™ %MºqôéC ê¼ŽÔ íRýìôÏ/ã:eÕd½FqÔ/ÿÉ{$6)øÝ0ê=ýoñ!ïfìÖ6'GLÖ¸ç-ŠØ"OEÛB,–õ‰\­`‡Ž\ÜÔ¢ù}«xî,_ñtŸçÁJ>ÑG¥{ßR™Þfô6gB¥à…ÒíR qÛHÄO8,}îŸÈv~‹>!Æ]ææ:Dú vz´jµOub‡lÏMVÍ›ÂÒÿå³c—M¸öˆ–¸ÂØz5=nóE$’àúb>Êrö·.$§ÊöA>Mž!…4 Ï—Úó;…}#È¿¤¢IȤêVÑȘšäëE–*|ýû ¯[ÀPn†x‰ê?9ÌT„üבtpm Xû¤êBWЦ.ˆL/E£}ýáHÛÕPйð"ž>ÂøùA?ç*Ë™9ÅbÊ_ õƒ,L@ e‘q¶dV#80ªÊ3K˜&›çùœ!þŠ2Gþ½oº°¦éŠ<€Ü=2Ö “q¦•w£÷Ƙ†7Øqôù©Ý3vê{¯¡^ «Ïðüòž"¶ÍPôOáCù‚ ›Ü¬.RǪ°?×Ô/¿àÿqr¥º¬ýŨ÷·‰Dž'Ÿþ|À1)/óBÃÔ Ks1{KƤª ©L»Ÿ!ý9$N°EPJö¶pô…â‡Ò[¦ît¦Å˜ï"ïƒøšsÕ¹µÞ;ö|$þ‹+––uï':ú¼ ¯IùSO#D„¦†‡±Êl6¨h«ø2A,: št¥ã-ÑÕº µŒ'ØlÚSû4ôÌê™®õ‚m&8¬,¶†àn:>ODeÎï~FE—C?P,T®|Ò/õ¢Oší?0­.;ÏÃ6h3\r‹Íí³d!¯CR´/LRˆ&6Á¿Oú k\kí–§þð{ôH(iÑ"$ÌàÎÁìl‡d€AºUÒXÃx¶=®à32"^Ù!‘Ä—|dEì^”|›SÊ™Ø;«L¶zª«~L2å4ÉvSµq§Ë6š™&V7ȱ•Ù1W1qÇ“AØn¿qNÀÙöÊb̯ބïYÈkŒ+"0½üSÐlÉÖ¼‡ŠÊR{ƒ$aêZxÉ{1Ô‰Å[ˆßqqÞ‰8öŒGîEµÂå7>:=(Ïá­’¼éÒM»/lÃW Íylu/ûk–9¬qFvµ`>Æ4˜¦ü Œ¹…³“#_l+ï{ï…øL¥ ‰×Ì÷Ô÷¿ÿžâujá]Í(ѻ։ô¨9­Ä­4…Òë5VÇQÄÓü48 Ƭ7d£ÅÝV» äŸýÓš Œµ–ï%bÊeRªa­–EÚíò­^F>R‚ÐfR|»A ÀS¯‰Õ‡ÈY—ìD‹×Ž6kÉ#§™WƒdÿQv·n¤0êPe®ž`N˼9¥ èý>¥ŸRÁ@û”‹–¢²k5=ÌvˆÜ©ä `°IoU£r®)+;„Ç|ñû>ͤYí;{¹qÕq‚q&eÑn¨ùK_2ƒ,Ť@iÐÌF’HÚèª×·åÓÔ˽0× ¸^WÍ‚ôP?øò-§<\† ý«PÊÇíh¶î4â²üçÅQ»;¼4yõ ¢Ž_‘ñc§èA¹s³SNq®Ø>“ÊaíçœVD³"»÷ ü>g0þÂBX‰Y‘X\œ.˜ÿÞe Ûû>§ bŒ†^?ú'½øêþƒŽçà´ 5ŽÓ9Š<¨ÛªUÕ´#;='(p£¤dÃï6 V¥õ0·¾g¯È×íúžö¨Ý=âÉ0ò¥ |€ÊúÿQN%?äú\!‚Kžb°ŒÐóbÜÛœ;žW¯—²&Iâ3þòïrM긇©Ðãl&å©¿Å/ëHô;OŒ’ZÒ¶O“w2ú’dÒRÈWÙ^ºMiºœ_IôÀQáàÑ cH00ùlãÐúϲ—(~•èÞ@ ;Ê™M•G_ž†TY°¯ø³h°ÇäOŸ÷qkoÛž@C$Qlô5_xc¸pU<˜‰n²-o*ÕX”C‚‰,:‘¬SCè°Þ‚r÷/À_‹3ˆýƒüè­{Âlˆ=}ŠtW®å¢óÅôŽã¬ïW@›ñ÷ü÷¢3EX"µd°XÉ[Ï_›½ê°Ã÷ 9a—v­22©ü¹)ÐtÙÇs¡áhOúÃUL=¥^ÈÞ„ŒÙ‚ؾ•ªÈ×a2<+é4sö—žAz/‹ovF¶N?\4ÞhÌ£äw;й6óUðìàWïñ©þéHåuLþ½å áhw>´}£B§ù‘·’­déñg¯‘Gu;¦7Œ¤"ÒÂm(¬jrp€U–HˆoŽ9ÊÒö…Ÿ€&ŤÓðžGlˆfT¥’ˆeªÿ0ß© yWÐÔ¯h¨SnG;‡è²v€â‡È_öSa™U¿ìõâœÊÒ 6Ùr¹P§n•ÿâ 02Ôp•î]GU/,§)q™M·vœé/ªã™W´BÝ6¡Ý&^IAá‘X‹£v€³Œ0EôûóÊÂÌC’ ÿW‹ïàBÉsyZ²ËÿÌXÌ@ú&ÅuÓ7©ÉH4áä¦Na×ã–,W¤žyüjÓUÃÁÚómöÞF»Ü4]À¹^®ÉÛE“¶©¼âŠÕÊ…n´›°Ó|¤EËk§1I[R?ÂÁý,äèäŠß‡ òjPÛ0€ùè¼¹‹äÓØ±ŠR— ¿Ž·Iüاô]Æ‹Ä5ˆ‹¼3  0øågpÎÁEŒÍ %ó¾Ë”;¦Ë…'Ó½ŒEEàÒsº6mõ°wÃTŸWœ3v ¨é*¡ªœ×dnJ‚µ’Ù¢•G6Àd“w=·Có'ÓZ&ÉjZÙ_‘ØM¥JoîÆƒ£arHÆgĿ蒟µÂžqÆš=+³ŸZ‘×Öéƒ6 F¢-½ß¦*=ù?ãé®YÚnòìˆ|ƒ‘€à9l„ÿf‚ïÐ|[MØ.ãeÚÅÓ\àKçÂ"¤×ß@ÌWOY•ÑF!: ’éøÿ%zvš©uÒ6ø¡ûP¤b6d™¾#:ÇSVå­ÈmzÒ ®o‚?IðZ¦½97NQ¢h˜`\@D ÿ[ýºÿÓׯ&b9¡HÙe³·d¬ $e¶‡tûïFy˜þÉ4<sˆl§I=uB÷2L‡èQ¹…Š÷<¹‡d€ç±v8@ ™ž"y8M5± .²ÁQ‘I@ "0ÕŽ“n«æ «¢Äf¥UrÜTv:ïtÚÌ í{é×Iaè\jöù¤Éè"¥G-A¤ê ˜ ÌaÖy³£êÆW²IЃTî¸ÜŸÝgq_£¼\sþabÃÍ ÙÝÖ±ÒÆ_%@ßßÞ*θʆ%Á³šª[*OfÄÙIÅ\Þ“WŠ’©™¸Ãr‹·Mz|2ygÈ+h±A(yÀO¼å’àw1°ð)K] ÊQÔXÏÙç³…²ÁnÎoÓçÅÍ+›ƒ4I i[…·Ø³M.„ëU@zJð}DX–cPT-$^‚ jš8Ø0œÀ‡«]5®ãZ÷Óp»£1â9Vª¶þP ŒÀž0¦C«è:V´PÄÂïåm/bgM)Çág¬%Äœ`°h“ÓÓÌë’„þø¢L(*{úμ>‡û‰+qÑÖ‡VWs¦é¥§ôIl¹ÒzÚ’š¼yÕ8óVG$f/#V /€ˆ“Áyö¼jð¯™9‹ÈÙ#±±JIå6lçCIƒ3Ñé ÅLmYŽWS?nyš9B™ 2¤„üBþ'4ü•Š’h¢D[Êä´ïy3 .®|¦†«6ô+•Éz©“lxvžsò\î)HSØa­(,óßÚ #ËNèMÒ.4¥“Ç÷èw"-ë›LýÙÄRŒ#/±´ 3§¸•®î6óû‚ä^¾xGáŸmc¾UIÞ³¦ë—Ãoš=›Ñ»¶ƒÉ%„/¿-8ç’¾-ö}^.<Ï8ˆÃzIêâH’£šP­Fíòø¯¢—&"[ õЉå#šÝëi-öðÅ|)&{Ú&U××ìü%ÁÞÝK!KǺRÞ£WõKlÔFø{cæ;þzÓ„±›yûj`º#2WJHiY©I[:‚6­©˜°þQ˜‚½KoþjÃy#™M ¶Í;ÊiØÄ:×nTä¡@|ú×g22ZRJ" ÉCœ5í2òþZÒ ¾YáS¬_l”CγËðäŸGŸ¾w%Hóuó¥ØÚßRo¯€éOÿWÓ*ˆf[ÁµÀ¸·áÔ(€SÉs‰ÐÆfòd6¶š¨vï½µÄÇ绲QE«IoE^Ÿ²?bïoœP}7edP›9ÀùpHJ@mìÜPÁº.'<ÔnD©DeµŠJ¾IK6ïË„ê9]ÒUŒµõÓð…zÐ1Ìî’ÏÀÓ*²1EÉ7èíÑUç­ì괅󌜑Ê8ñb ³^bR»RņXåtÀ{ëQˆcÜPíÂ|zÈù¿WöÆXMÏýLÝœ¢•äóI¦d¾XŽ+õ;Ï>+è[¬¦…¶F’$ ðɦ[–«©·øü‰Lצ3O*ï'’¥ÅˆÐ»//¬bá1Qö;ŠSžâ%n³À„ÍC$còÃKÛ‚ñ•·F©pcGONˆ(<ïÈ-qù XÐP£»lÑAç͹GJaowžLˆ`ÇfC씹5,[ç©Ýáñù:e@X>¶<&‡ 6b8ß#T3ÓWßéR)òÀKí¡ˆô sHbÙ€æê¯ëmˆµËä8ã¾/ž‹‚RiyÀBãÉ3~€­OQ»»¸íE)?f_øª0(›oò̲íÃIœsù§óC&e“µ!]–Ÿ£šc:†KD, ÜL¿ Ûœ°x1ýlzgELãÐΡLxSÙ!µûZ¥7˜ÅÛ‡ðû¤)ó81鹿};ä†a»K¸ß§ì ‘_¼Tª¦ÿȈ„¡b0låöUú® å‹4)™9 ˆjCváÏ6âì\kP\Ä¿–ö¾âEÏïHǵߌ¹sªkI‰K‡ S:÷Èvìµ&Î¥èt.ŠBï!¿Ýn„H“ lø:0X›ÊH÷ ©½‰ÎXf4$ ŽŸ¿0#LògÍ_Êé³Ù@<Ƹµ´ÇA.Á&ðnL Ý#b ï‘;1æÞI ü5 #Ü'Ï{Ÿu$ÏÔ6g\¡VÍÃUG)»ÍÍ tü9h÷çQD9–âEa‘Ñ'¢X·ÿ›Ò–Ê:b3çƒ:7È cj%´>yu‰È©æ{4¼·1+þs”ÁL…>,¹@ýWmæ­Þˆ”ho’…Gþ{8;Ë1^T EM¡ßüðƒ»Ýh[,pàᨸ…Š“æõvoÆÀ\ Úï:ÇS¹5v€Õ[¿àÒ' ¼¦øÓR¤—¿7<ØQõàþ$³$‚Ï2Ì E §B¹õ¬m?$Û»©3œD–U~é¾£tŠ&ÆûVjÛø~ÓàÝ0ÁHWGÎÏ(E»¿™+ðþ%Ö4»G ¦¶ct_õ œÑãvSתÀ6Êzݲ¢–‚ÿ)´§Ì?sdï»f´üÏ8ºì¥>ÚýH™§*2kr´Y†—ôg;Àt¦pk Ÿ6ÜÔsŠI$VH´ÇéÃ3èb¤—~LwÐy´ ˆÎÎÍ)öÄ­¸ÕJÌêµò¬¿¯ìqí@ A>žöÙåÒ îÔ7b·ê„¦ðߘ…+e¾¶BâEZF ©ùÑ*=ÝÓ(nûñ­´˜\Ü­ë)Ìu‡£yÙ*Ö[áRlœGB^´J»ë·bÉ Z‰1ƒyVù÷@½[öÉÝ¡Å!ÔRpÙ¨ñ0˜åÞ_“¯IqíCÝ€#~T>iÉ4.ÈwU þ‘)â§+„Óœ*·S…Ž^<’ˆµTüAáoeŠ~¤A…WiÍç“0…Ã8Ä%›*XqU,®¤7ªra¼ÕBЮ͉ƒ!2cL£p ÿݾ)8S ÞÕ/‚¿¦Áõk¿>Ð|_b,f¤Obò´4Àz¿F§„Çú—Üh¯O‰ >NBûËoþj˜ÚW|b'`ü-Wïˆ ž Vpb‡!/˺CâoîVvXn h ×IPbß(.øÝË/š®gíäå°%P›•®ŠBØï”tÂ= CNñ¶E z°7°ò ˜Ï•ÌòÑ6È~¬ KØô»:j…}è6iþzuYsáB"9 ëÛjŠ£ÝìíºÄ;Ú/.ç:ÆpÛ…m æF"ÕÐã ¦jå¯@{¿Z/æ l2½ô²y*ËFè]š¥<—†§Ãüb~s™xß×§2˜ÄÆóÞ$}ú6üBò›PîrÉÛk˜˜{Jn±*ôˇB5tG ö»‰RY–ìZ3jQLBÇ–l“ä%Uj²šŒ¶ë»ç¾{flß¹†˜«NöªŸ5¹òþ®îäר,…Éï$JšGšûõ`ÃôPqWãEÛ´ ýo¸t÷s?.¼¢hâ&›‰È¶d&±†ŠÔª ˆl’SM°nù:X6p róåG̰Á}?¤µ•3ý4%Ùn]˜$ÚjxHw:t¾þU•$jó‡$±oŒ¸Šý…=OƒPýG–Êò\&öhÉW ÑFLlˆoUI& ¯•lzáLpl&‹Üb´ ZSôA´¤¥­á åÏýèÓPR•El»ËF€>ÜzÉnXm9ë}hùT#¿Æ¨ÚîqÇ´k$ •e¥®ƒj£O|ݶÂ<ˆþOã’|­ï‹×P?%·3Æ|l’<R;6}FÚ€FñE€‚ùyp2ir!ÊðyhçóPÐJ}¿(\ýçøFuæG £v%""åÞâTj宾²m4ƒ£è†µÁmåZòÞKˆÊSùïÊ’¬-¼Á¢Þ(™îWB1œ ßÔÍeÚÈý>u›¿Ü˜Üm–ʳ{‹ˆx%  ÍÔÏèm€…Nëá¨kÍqÒ¸ÒeBëbâÝʇ|=àrD_¥><ÌYŸÑ˜F£t%÷Þhˆå~KÇIÎB&"‚E§ _ûJÎ6ŒOt{òy”WvKáå’‹!г‰…éR“qœÄR… S¾Š%&Ùáôýü* ¾H!rŽ’—÷sÎꡨ{êB¾îÅÁ^æT-å;Â|ŽæŽ9W_ŒJ\‰(›Ï'v[–¬K탡}Ó,Ã\µ!3ûñ¤'8¬õÔòe„mƒ ÙH(‹ y @ëV&¦­Æ‹ÈŒG‘'[<›åXA|• ù:mµñ!O°ÖRB£h?Ä'KÏ)7N; ø„Ú›í™È^†?@ û<ïý—BA/¼';,{|º"bé´ºV#È×Ö_#qi¯écvë–ŒfnP¥‹hçB×*Òʹ4‰Þ ¹rÝù¦ÀÄhÞ¶v/ úð_Îö†œ\\ÒÃÛ@ûÚþç³äkkL¢ë÷»8­ÀGÂÞž8R|9œÊ.cÞKá)K8„íTMUœ™Æ+AêoÇÍ«»r&wß‚?2žUþx´MâÂ2D+d \õZç<5îb $%îÑûF„éžRQ}tÜ«è0û[îéqŠ4ùƒL×/ký jΚ é¶¾?b²öîðŠJæ«Ý×§k K2†쯵Òt§Å‰¸Oƒ\æQßÎ`S¶;q8Ÿë:5r(¢QMŠ]‘å¥ÎÆG½÷NÜÒ(%8[ý©Ðú?N'Áüùù¸ƒ³ü0_&ŽvsëïödZ°”!E<„1šu)ྉÓåßøÃ÷¨ ›ñìÃà6Ö ˜°m=™/GÂDyl«ßbÕu}ÂN¹d\fg&øé>kž*8[ž‰[™UR1º/ÙøLÅ0ѨDC2¾÷e0@¡““ÒÕølJS©TæÚbXիج <ÞAú¯AtöOžœ}]›tÿñ}Ž›>> î$ë8.?¾‚’7äªür<ô:)»”æéø·ütž?0õj»wŸFôú€¤¸FÅP# Ä †ôG¤”*Vö9NjîΪy²´ÂCj¤RyÉÓ#} D 0Eº,ÒŽz F-þ‰ãË£G­¿'–³„¯aj/n:!GU¸f\r$õúÍù’–O=Z²“Ó­«Ê5ÐtGN¹,ÚÃQsÇÀoKõè\U³˜0y·†E-#mmgyKù žZ¯–g"–¾dmº½à×Öƒ€ ÆP» ž ƒDÈnQ Wöîì?Úc™ÊÛ³ï510æèŽÞÔp&ƒÆd±ÜPARQÿK¨gbµ%ÏŸ×>® ¦ÙIÄ=\,Çý@­/ˇqÒb:Ðõ‰©€‘U°®¿(]‹H¡Äp$Ï+äö8Ü\j7x¨e-eT)•˜2„¥Äè÷Šc8Bê# QCÛc“¤r[ªåJÜÆñ¨Qø6uZýÕ­#Sö4Y±ŽwVp\ÝqJL‹;JiB4:`šôÿçlùkbYÇ“ÿV§ûÚZ T'î“SÃjR-Á?(ú¦ƒð·©ÕôÎpy` "Úœ’#¾"ƒåƈÇį ˜¯1•mËtË~;¾bánS 5?CÜY.÷ ^õÀ»'íN8„fRWŸ•+œ9îÒãÛ ö+¹Œˆ#¶SÕq ¯dƒpzxNŒôñPA’{ÆÖZqB4׎MÛȤÓô´ WA–—b8‡×/¯ 4yá$kcåo@Ç7ˆ â·‰~<‡’~Î¥(ÀÞÎè­¾ œ–UÀééðÕ0efÒ5y =~M5ö”b¼w¼1ÛYa‚N“óІBü0‹;Ú’Ýœ!y71ahþ<óÂÿx1BÁ¶ËÜ|izNäÑZ6ã^¦¶5ãÊëÃâæxt˜k`ÓÀ&ÏŸp«i #·à¿}h˜¾¤Òó¹lG„þ†LÅ|K\ÎßÙ7æÈAW×3Òò¦e1»¯÷e8 Åû­%Š2Ÿš‘f¸AÝñÚr.™\B轣ūÅé—îøl—å‘Oúª˜<Ð #ÅG¹,Å W”QQ›ÓËW:&¸È˜•íé,t{âOñ’Ù^¥êX<ÄRúc+ÂéJõ<‹DÑm¶,#´ˆpp£¯ÞSE£R~q ÌD°Óù%ìqPÄØ›¼³Ú@vü‹Áü~…ur6Kl šæˆyk d— Š“Ã"œvaM¾_‚láŒ|÷ã{Št_¯irë¾ ˜ÌÇÂkÜaìÃø9'¡·ÔÆÓŽ:¸Ã¥ƒ ¦ ­˜wœ^Xç­í"ç;¹¶2V©;(ß8tŽÎ=Æx×jœ»O-ê¯+dÌe„}ê0·18:Ê:¥T†‰t«œµéSsvØÉ5€ <Ýá·ßÜóÓ •JéòúÅõÓÄŒ9ÎÏ›J.u°|[°wö©l‹o@fð´tŽJëÊT^ÿû(æKœ !Õœ/±Ê»ðãµ!Y¯˜{^ßK(«•8ýVã ¥€H ‰WòUjÒi·$ë¾³ÃÐÛÔä@ÂjTvŽÌž.Al§¹ðÍ"ÕŠ¿ÃŒE(e‘§—!&=ýÃ8Bë3’m£5~ÐVqð‚æ¶ÿ«S§µŸßɈ¤¢i˜ÍŽÙKI#K5ýtè‘æêçÌÐuì©ÉO:Õ<ØÞ çýà±Î=Æ.ß8ZrÇ= ¤½ªõÉïïØ<þ{£mZ ¹1¨­…ÅÌrHFd ·O]Ë*‡øô”úRƒ]àVôUÔ™B¿åô‘RE88,…€!ê¹ä W²í®1K}¿Øˆn+‰Lݨñí™g4–¯(¶ì5iìÞÕb– :\(BfîP̈X8ªÒ´É}I¿ÆŠQë.ox_‚p–PÌå„9õꥢoKÔ'j WΨ_eˆ/Vëa ¡ ìJb0ºiÿaGU‹¬ÎJ̉àJ)x… ][Õã„g²¶€çi¶•$Ì›fU]*5ù•é>Ü1XQÚ3¨),iaî™=¢Âô–2zžÔÕ"Mä©Q‹AHÉ4ÓA»¨¥\¸T­V;h9?ðiÞ.êwù ÛBŒW †7PõŠe>(:õn°/¶$æ¨[2¡éÚI2U™È¤‡×çç¼²Ú‰æ-‚<—SÛI¬àlAÂõgT ¡B¾ßÌšã­õ­àoXÊw<ô âú,’×̞‡¦»[|ÀNÏ.: 7,!ƒ”0u/÷¹Á†\œ7;ÝÌGô¦åŠˆj† ºe12a*êÐ €}ó•DÅJâŽJžÍ4’bÜôp…F<ßiK[¾Pœ«Ú°ê‡Ó•1$ÔÚB÷Å#}óèGb‡Ãê •#6›ë€×GZs3°QôºSRšËÝTñ™$ͯ¡übl¨ÚÍ.«3:s {M!±08j¬ÊfEŸ£µ×-û©bWåÄ€ÞUy1™1a¿„`.ê)â­–yÍ’NZ}JœôäÙhªæŒ×= u-(jðí*gpG %AÎ1-6§Çµ/3È¢Ÿº ÔùxÕPË׿ÉjwÔõŒßϾ˜-4ü-,6Ê©ŠH“Ü´¹¼$Ϙ:Ö¯áë5î3 Ññê=Ô¹ÜK:¾D¸¾Y6¿Ôßì㜂0PÜ€›e_¶z”ûdÞÏnr>#^„ÁyÌÀv! @bpM»vã F=·¨÷¦¨#¬•Ý¡€¸›†K8pníºâ6çÝ¿i7vvª³€ŽMÍST··A–9Q{ÎŽÛß ž½b+éø‰î‰äYÁ5£<…ÉÚlçz´¢)èVUÀÚ» òE& ÿ™q&6ï¥!¶0)`—¤Wu<ŽÛQÀ¬ô„þ.\øè‹ªô«Í^¶®€@.p©ÙÖ³€cËäZ Íyÿ‰ªqX¤käLÝ)apÃØc›â‚|i¡¶‡¾)…T\ïl®-8/)1å6ú¨Hä´ ZrƒÄ¿]0Ê=íàM‹Í—3~J¬QË*Gĵl¢ýòOJA§uxªÿm"íø¢ìSÈ–X¹1ès¬ê›Z@›=‡?òýX+º|w¾D#'õÿ3¥>êºÂQ}¬°aL´ÉSvàÀB{MP¶)HúBÓìÿÑ»ÛQ=_ª×£©[Ÿ°n± þÄrBîQQ¸œ·L{†NŠ´A³CÉZüdB8Yˆî>é±T7BÙ•Ãu0“ñó½ûÄ„¼¦®ßþh3Úµç¤Óݪ锉ôT ·zDƒÜ»¢àö’D$¹è`1(¿ïï/Z•«Óóû\Ç Rv2K«ÎL†sT:Tî"_&½iƒâ 8Üjoï«އ¿A½üTx4êTÖ¡)i3õÇšûh‰ÒÂŒ=¥ˆV¼]iˆdx9ó§OE~v¾è—Ú5 Õ¡/SH‹8“QÀ£êö9 ~kÓö5˜²Uºvø.\"b‰aô`áðrOîåâ7 bò?’<Æì&ÐäÒœ˜2°ÎUFáStw¨#cy9yùª—ÂÇ (_,³™Â"‰H¹&k­~-àgA7=òºùCƒùsT“Jd¤-Œê.œ§ÈãPÉ+¤±Êüt§•÷`9ÕŒc_¬ÛoÒ«â\ÉGN‚ÊâÈ)²Ë0ßÞh†®–ˆ:T!¡à/d©)oæZáHŒ®è¯—gù½Ãz«{kgù[·5󌦱Q"”_ÿA±ú€~ÿC ™¶ &ýZVu‚åïÏ$80/zåh$r ©¤®&¶ý(Î ±C¢8vh&WC¯©ÿÇŸ^× ™C‹‘öá0!ˆÜ˜E_>6ãÛªzñf0+ïs§KÀ˜gÿ¥}K·±vœµJ;\¤¯K¬5ÒŽy`‘(;"UíôÓ Š;ê,[ºõ¹¼†°+^: DúÓfï\+ÃE$KíwœÃCvùÜAq)–Y;ºlhðÏ{[öfçYÇÙCú›~7h]î°\Јï&ÁkŠ“Z'Ÿl{׎Û\ž4¯*è“âˆöóX:J °}d ÜñÑÖâ°#_B·úƒ ®4×þ3™sŠ9þë‘“FÄм1§ ­¥ÜÖ3Ã`ÓÉæÂx†•¼y‰imôñô©˜daxÊá…ã3qþ‹˜$s‚?˜Ð¹Q¹‡ÕWŧ™ dìG«è·ˆ-ÖÙ Êi„]+E¨óë›#• ¦ æÞòËÀ‚ÿzDE#|`j²ÅÿfÄX‰ ˜_¥‘Þ|ÏàÆš:M//Óû'= ,s‹Xmü:88ÞКZxÔëÊq3m(¬À·•ä£GŽ’®ýkÖ¦ié1`õo' µü¾á„ðA`ã¯U»½a¥x][—ÌC€2×à —ý8ÁS }¶F ª›cuÚ ¨i”m€©¦ÀÈ& JDL:˜EŠÌ6¬Œ7ÓlŽ•ÑE´y”eºÞaý×=~ Ç›3=}Ì¿G”è$kgž‡íÌiíE—jœèMȰ/@5¯¦þúPà•=ÛØ‰ |â‹Üʼn¾©úvÔ¸4Íëƒ?/¾7ÖZ؉æEª:d-d>Ü<ïK‘íyh]ŸŸÒòë‹ÀϺýu¤¨ñCÓ¶4³Äö §ˆá.‚ò ·Ó†Îa§€Yk©¨ÌÒ¤`Tb ÂB{Á¸C`½Wp=/Bé öë'ZreÍNºõ®pš{†ëöóÙs.p¹“-RÕ» Æ}þ%'Q.9GZ—@Ér™+‡Ü`ˆ¸º¼®×úaGcc œ·$jtNôì'iÄíˆø|òk‘ ¦ ­Å5þVR‚÷–Á ç:ÙB*Ú„§ –{ëÞÓïœHƒk„p¢¦C'Sá}U“ÍhA܉†Dú ›ÈY|ÀÝ·P_àë.¬ˆÍk]3Ý—'JÀyð϶¾µv½õNýa»†tŽž"KŠåu·_;œ‘n9yÇ}›-^ †[9Иƒ&oß½ã@Ѩ»[I´5RÛ"Ô—``ÆŽW]¡ŠzjÁ±ŽõÃE·¤¹ÔÔ>àEE±æLB * † ¹]¿ÄÀYñZ§ÆâJdãp=yê÷–KL¤W@¾WŒ@å#ìçëqóYaz貫Ug7ì0þ䣅1 | Kýw^½ÁÕÒ ²¥{wHº )m;nÒ=ó˜x”Ÿ‘‹îR˜3%Ñ€§Úº¥¸ ö"µ§à1¬}Û²o K3[ªt ßa¹)í< Ñz¯ÕÿVs|½~"Á¦8m7_ÛïÑvš·è*±nŠíŸïsÜ sŸ)xoàû$¯²¸ÄH ªÁùfóGtŸ_¯î½Îþ9½y98N$~ù(¬Œ³§öÈ/X*FÄ?q‰Ú2¥Û§(³ÀýûG‘jï0æ®pª”ðœEs7!´Ï*ŠÅ]äb÷ñ†¸+ï=ZUàÂâèBÞǯ•xÛ¥¥•>‹^ú5EËôO`:j’ªbŠpнøÇUoWyXˆ–½q©#žJiQŠ¿¦^Ÿy˜n4Ò=F¸ÐN{†åBo<3Í=. iên`Å4—Ühr¶«ˆ#öfDuLø.AmÎižé[&Lªîù‹Ózu£J8 s7|a ÝÐf‹™Ê®Ñ*ñÁÆó#~i÷]ÿ:»Á¡clÉó…kÖt…Î O²ŽŠltJ Ï\è|³ˆñ{4¯˜¼¤£/íð–ý~_¨¾a0ª©1`“ußczúÆaPjdêg%’@©K ¸;t¶,¨( ÚXýjB¥”Zöš4F'û(Ò;†Õ(gØDT’k­iåö’7 Éƒݦ\±¦ihìsÄ<|ó¥:Ù»my~›„˜¦¨'²OŸ²¬ü¿/@NR[>^I$ Ùêš¿ÈV,êAðmè•È/’I|ª~\÷•ŽæÅ!cDÈÌÍZïMà¹Þéƒg’ó®3›BêfãÌhj] ™žTÏŒ²¡õöŠ#°ú ›ú~vö: ?¹³äf’&Ô~ãœ}˜ÇÌ`ŒûM¬Ú"ð¿Ä3ZºôŸ››S,pq6°k›©“­ xí̓ö¸uq@Uò^]´{|öeô?"î~Ão0»N˜d„mžsÁýs¯S“N'ì»6„,êëÏÞ0þ¼iÔ‡U»û£±š<Èœx_9!xͼÝS„TÀôáãÀm¿1Â-,ßv/$WÚ¥ÉݶVcÜE~!¡kãú-ÈgK ÙØ¬gp ÙÖ¸÷…t}.-ÙéþÀ¼.ÃÃCL àVèÎ| _,3õj}Åïw‰D;¹o÷%*”=vVHÀÆÈÏYÐXÀÜfw›+Þ[AàëµÑt;YUqt”ü‹C,™Û±ßÉO6:7ù€=)sÈ—”£ý én}¥–œÄÜ> Ð÷kîñƒå]†.1¸1C‹j+¨{WBB¦¥ÿiY½»ÐTîa»tky€ÀÀê ? ìYãú`™‘’OçÒ£‚˜nÑÿBœ|9`W›‡öN MrGl˜Rµ5ccYié¢^zè+(‚éÃÅ¥˜m©¶‘JG<áÈ~FÜës××XgžÂà&$ãÇ÷£ÿ¿ëàÖSË“ž„šéÀL÷ Ò°¥µ} ‘aЍ ï°)°óÎj}ìqPãÖ7cÌ(ìÿaÉkŠ LmŒUŒÁy2Õ€UˆÇ ׿Ç® ÎkõÇd2HÑi>|3Û©ÒL²ü¥t$+bÒܶ éõ|³N-Â:á1ô­`.3Râr¤,{ÇÖðd¾Åè΂¯5¢L¿n„šÚ`Ôó‰‰Hò¼LXÌ%>ẜ_¦çÉ—×4ï½7x[ q1¾Ó±‡š½ðw¯P{Ú¹¡Á½ÏŠ.äë÷™„¬'Ý/fIKÌ&°:Ø÷hUξî^†ÎM´9¡°aÊH§S¿»ñ1Ø”«kD¾C P_¬ÃªŽt¬íI"Óñ¹øì=äz¢ä(UÂ/d`„€F|¥mŃ~I •*ž&ðg¨ƒ_ §jX,E\wscâ¸Ó>bÃÉPÉ[X¶xž5¢™ðLÓB¬Æªi…l :À‰¿\Q¢5Òáâþ«€ß˜G$•}¿ˆ;ñÙ¦6™¢Rè‘%ÆÍ"ùì_/µ2A„(_Ÿ-m¨Jôírîë$=²¦£×—…x䦻ÓÛDvC“`:ôæ¾wüz4Ê®¡¡­Š›‚¨Vª~_xõ æÖ"£uÔ8÷ÌÁòë¬ÎK I¤mA…,ëNž  ®“qÝXÊ¿î?ù¨…\£÷¤¤}ÐÃj; “¥oÉ$±Á%W \nv(û]£=gjR+NZÐzŠNÝÎÔŠ)Åÿd;/À X¨åtB¿µ„øƒ„¬¬±ÌNŒGeÉ@ ÀËà#À=‹*/^¥Æ•ÂÆ,ós‰ÄüÕ'Þjÿ‘Z®ˆsV1¢DtØ}Ù/…õ@oØ Õùð½*†ÝsÀÞ´ðÓ ~t2p&uòÂe>Ö‰m¥ÀµÝÍZ€2¾Îl8ýlc7³Ÿ¤ÖòÒJJŽ&ÔΓ€íc=´ :Acg2ø3>•ЃK8²ñH^¦Ü|×=-39wZ+tuæµ×ü¢ƒ6/k?>[T/¹Šð2ÌÏùð›À-< âNÆC;²±T»ÓFòp+¹jÑ\ý)ÃÁ60ŠŒ•\Ï+j®‚XášÜêÅYˆ’EÒ.4ué]%ûÒHpŸ¦*SB÷µÖ!£T 9@oO…f´{c£` ÉÇk“ã×T7ÞÖˆ"̶XøŽ›A¯Ñý8ÑWöàëì¸ÜwŽáÝ”Í熯ᬱÜÜí@šêëzÜ¥ñ»$d´Ëg*GÛJž%Ç!Òczí”3¥šH½É‚þ„(qðûSp0”qTŽ»€ÅçŽö*yåè’vÏ5ZX«‹þÙ`"À‰¸š”ª=¡0:mJ·Q½£FMÝÉ ñ#bZ`tgÁ™™”ѵÔÿ'¾H›ÛÈ)Æ›X²6 BF·6Z9 ¬ŸÅ›=®' lj¥úIîXÚ>éL õ]i]¤ ¢s˜ðîA©kuQº¢«ÉÏô1:Ÿ…Lyü§ì NÒ¿ZǼÜF¤éQÿÒÏ6-K¸©­àÈL0^Sâs+¹+ìGµŽpd)¬Ì3áŽfkXíL‹^êÍòáºWÇ缇ühš¾#½RŽÛ›™t«ºE?%$«9ÅÝ7]v áÚ¤Ë/¹G*¿{D%@ÈoùcN!)dß娉Žà0·`šJàÛeFÓ‡þ’Õ&õÙ<—Ëú9Z~"–Dãä™z‡žbä‚}ßõnn<ÞQoºa&—@p“ë”7H_ó2¨*ôgø8‘§Ü°9082×Ú§Ê%s˜ÎÝ‹ÏÄàu7ÕʾÏH¶XÐDJ]n‡ŠoäÙc$pAЫæz[yÙsåIë£Æ,ÚÌÈ«…<ü±¢8d2C?S¡L‚L¶f}¬|ÏêÓ2AÚeç©kVqÌŒzЗØFãyôÑ9²#^ îquÆ‹…ܺS#ÑÐ^í^ù°ì×@9}vÚÙ÷õÔÿÚ“èéÚJ»cÿdºÜ9½Âê–¥wW¥QõsõÉò ë¸Ctµ9×í‚3s¶lt„º¶÷"Ë+.òž|ÉÛœAvÎpÁ“ðDjùeSéŠ93`R1VÖ}Âe §ÓDqh“@ìÙŒÝáõƒ`Ô¼’‰']‚œ]lgE•],ìvJÃAOÿÄLpn´ÍvíYíWñÖÃÃYÀ&ä%ÄÌ8ù)AI %60ý€WbbGTÌ©iiît˜þÐAkÓi†W¼ È9@Ë4)üÈìõ‹‡·‹uUç| „­ýpÏœuD´OÿÙÓÎhIçóµaß,£™#îUì4˜ÅU7„#k÷ƒ ^*|‡°¥)Q¤p@˜*`ýÇ.œè²¥“ ‹ñå,ùJ€!5òOÁÆ:²×-ýÈËîiœæ›¾²³uß)÷Yš=4†Š|­”ü^ UÏÕ"k‰üYwí‡ x+Šú4@Ãñ*bDŠ ~`˜]©Ï¼Ù Õ¬kï¤4kÄXãËô¯¾çpÌnÞ-‰Ëfn¡8“ BÎcšÔ‡0ÊE„ÿ*F³ƒÝãu™*ªå7¯» \¾p¦ n<ÿ8¿ÒW– U–šJ-~SšwµðÒ×!ãŽ$†\)!1¶«8äçC!jÀß¶Äp 6Özû‡ Š*}´ùq6Üç3½t[ÞÄ)þ®î\úk~Z'’–z“ˆ ywyn o DU\yÓ%¿íÇü† ÖÁmêõ ¼Wá„›U¾1!šGn ¯ ^1>jÅæ4•ãèyBi$0ܲИÏóÈìzX%å!uÝ.ý*šŸ8]jvu'Þ‚„Ekw[XŸX–æ~󽃊®s%sùw4¢)±XZŽ¡ã“T[ÌÀª>)ˆa¡ê³ps£SLøhœZ û“¢™ OÜÍh•ŒžCZf)*Ðë–¢ö¬1’Ù¿2NÖƒ{ Ë»"ŽÍãÌ[a»ÄÎ#œ¹€úŸmGL9þ!jª7†Òë¹O`Ô­¢'иIƒpÐÑheü¥#SSz|'vF乙㠂¾&™·¹{{îMÃÂBnál5ôoO B5nHû}¯×m‚ÅÌgewA±ƒú܉KVÒ5ã?|S¦s³Å€Š&%üÇ™”rÕ2¤žx-Xi=‚N“ÆõÀ„!ØŽbßXHÆ-æéùô)n¯ôÙ­x4œ{­ñíÃ=ü·4â§hJ;Tš5]¶ ‡é˶Ԛh ý[Œ!7ø“ú@ÓæùÎ0f:évwY¢9vD3=ïˆÄè]ÇTUé»Â¤:ûiKêÛb6Á¥!bÿª¬®Ë\%{”ÓͽxÉBæœ#gßô=FµèëeN`þ2Ð ›·ågXÞœnÇÒÛ"–Á§¼ T^ˆ€|ù%¿¾+¹ÕUÈPüžJ CÊÏçòÅ-bQ¿ÿ¡Ï&=æd£ßH¬HÝK"2Û˜MMÈæ÷ú!ˆÝ÷B.‚@£ÏŠ'3,!ž—*æ™`XyÝYß͸fQpì9M³YÆD’.öoãWÄyïÕ‡ÁQ†ØÀE^×"ÁXO>7JÖÏZv6 Çéz7ý³†Qg-Êx…#à•Æò–ëU&CS™*ZÈ0ÓùtŒ( jÀ7QàÈ‚µ]­c6qw{dù s€‹%cÓì56MW„Ëà—Ki -Ñy‘ê+ÁåS¨f¢Ëº~iÎ0ò'ÆöÊYrLéí2È!W¨Iõ¯mˆ³YWÔHœ8ÚÏÚaËïéÚGFL)}ð*éu¾9Äþ÷‹úÔ²´¡#ÞØYÜØz}(•½€8XïÞÈ~9ÓÄåö´ª7!„.{= Uyø780—J.‰Ù5\#:k„FÀh÷*Ø Dm-¹ñø×hšHcš¦*ϿԼî8Oü;µX³Â4Gnæ(‚7Þ·ü çáÌi¹&MÆï šSbæÅ%¾ý Í‚+<9q ÔV‡ ·á?•Ú 5Œ°žN³öÈÂ+²j…“컼Úó\¼àp;´ Ùœ3%ëbÚŠ_L”’iï Êv›EºÆM„]éÚKÚr/ã9¶6Cx¬š,ª–âŠ?÷fì/3—!Òçé-×KÜr’Ô‘êŸ :ê^Lu›› «¿¡‚^Zݹt”•-YþöF›x†ZÉÉÙ` Èr õ.\Òxj ‡–K*\£óñlâïk—0y+ùb¦lxIÌÔnò´ØHPô4g;j7±ŸºoÍ•ËÐ!p±µ˜Äc™Î”¤² .ŽPiæ¢Qv›&„ê—¤ð6Vµ_(ͳ€jz¸oì×Üo¤qKÏÞ¹|I`6žrÚ4е©ùn *].'صœ`n61.„ ß©i÷-·t\Å3±iÛ B…Œ89þÝ¡ßT„M wÎȬ?á A‰¯FRzuÔÀ™üˆâLg·Œ4g(¢´yz8Wé):ã'Öti¯L‘dápY<#ÄÆ[¯\q}û‘‘RŽ<ÀÔÚávλvdÕxá7$@±%?&%¹úÆL\°«qøµ_pï/ŒªˆJIbßìôAŒ÷÷‰µ©,ú‡Ì¢YSÁC²œSój³0ùDÌà$©ä¡ˆø¡PDž›6´E þ^ùr1¬+Y!Œ „*tM¢uCŠÂæÍT”ûxSçÕ‚ŽV.¿§ Â|ëpaMM¹À.qÒ™ö2:cŽ©ùh[þÆÎÈyÙA-´(s•µúÇ“y2'òí‡íöÌÝN.IËé·x„awRhÖ³ÊJ#CÄÂ?Äæ3銴N×ágã/=̼{PS^êf¸M&ú`L2È㬄ÊX`w]`hãÙ(RÃùú\»ÎQmÿÅß«0öÔºÀó|‘&Ó4ôgÊ”Ö@|§Á`ÆýÕûQn´h¦™ ´<)¥¶BWúÎàô¥DÌM­A€Ûª+ܰ+`ü“ÞD“3¾éSH6á’² æýèšž¶­¸„ã•K,~÷¶²O láæÕ˜C¶=,Äô³Ø³ðë›’U®î¶“MǦ­²×‹ üZz­ásHÐõüëyKìÍ`lRN-Î’¨'Ùñ§¹,’¥—Ï ‚]l QJVTžþе¦|nËã’•ßFÑʇÐwËnOؼgµCàvfªÏ¾€Úd¦ßdwÅÝ"¯ö8ÝqÚ!Œ³Š]—*KÑÏý¢u-¸ecÿïîÙÞÑ0.ã´{ÚüÓ±š êmÛ¡çϲ'V‘Eä,p~CôÊ_0~Št)Dù03LDÌW+±â²¼ª£'äózõÒÈT(YüQ*ªãÿ=zøÛ8q¯¸×”<וÛ”Dþ$Ëebü_s ‡Oóßɳn ”аö©Úý-Já?¡‰$®Sœ~BuS©ÿÿ­í×Ör¡ öˆDëÛÒ»ó!Œþ~ª@üˆéš ÇaÆú£ÀË Q±XÆvN“%‹uùzñ@ؾ0óF8tÁ@]ŸUË9o‚½v3_ÝÞXÉ;àÿ:Ípr\Ô£d#"µ¶Šbxâ]„—SóU-˜…Ak s>t@´Dm¶o»× ïˆËô×;}(¥f.‘WC¢E»º>‘áD^NÙX±WBœåÍH•pN>pƒ#ÁOJt‘àvAd÷m€É|ghû æS!d»ýõgA§/F•QçÓ4à•|‡:C¥˜EéN}?ÅW§ÍiM)RuîmØx¾„ ?©>ßø ´ÄGI²v{³%"G¯AKn«‰ £'¥ÈB˜ÜK§ºàb3ÅTõ´m9ÆVoj@šNÐÕGÉ&E]ç»ÁܵvQû Ð÷öV®Â‚êçh’)X-iCØW­N·¦Cs™ ¿r{$ÄB'ü_vˆ²"­ŽýD„¿+ ø eQnQ5]è?Dnö-¿Ÿ¦õcîM K00[Ó}¤³ÝÃçØ*/R'E_Ú»ôF®iýY„N yho9„ìPà%4e£3#Õœ„¸Åÿ뢃O:fn›Z7kKEæáF4y”î¢æ£ÿ£9Pj}ð%ÆHŽm2@•…õNëÞYÝ»/%É€#~,!Av,Z9Ž ÚåÚUžjMðc´YmQ¡ÍsÕ¯&ä‚bËåú…Ç*£›ÿ¯ô¼q#EÐ*Ãã“bÝ\Ï9ŠúØïöt”¼¢7(VЛQ“ ¿X5Ì;ž~S}ٖܺ!¥uóûø¥Â  ²“&ˆczØÍhÂGd*Ïj-b††v›é]Û7ÑüåãÆ-xŠ2õÒgj 1û”^žÖ­aw´“!E)ÔâÏ£'ýP™9.{‚L.~zÒ oáûljÊØ¢!)—„"ZzÿÇð€»4À‹7òÄve¸M¡{µü)Òoñ½ÚAŒhÉ3rÊ·-ŒOãx˜±¤ûÚˆ?Ô+º¬€ók““ýbÜË®Y_µP´ÄN㙋ßhÛÌìñŸhŠca¿ïx–µ#';ØÝ‰J:<8C¾ `³óÕ<>+„"®òùÇß`$ø•·$co™s£ã¸ÉtF2~ï8k‘÷ñHºX}ŽqúÁ»Y‹°ÚkÖâ¸rÃÍËðýyÖ§™P‘Ññý õG¹·ü,¤˜ÐÎúÏ/ wáC,Øø©V™Z›]Áï7+½ÁµÏ€æ Ô›ùÀ²P;£’®N¤í*‹/¦³ö­ò™×Ý£ëYž*RD¥š¨$Fª¢ ¥ÍÖš:PñRìž‚4‹âfß5b[Èö¡òxI{4NÙë[m¨–åä‰Ý³'x= ¡©˜ùp}ê,!¹kµ©Ín/­zG|þr¢'¯ EÔ¢TuýŠsÆ,8-´æv¨ùÒk-Wiôë!|ijôÁ,›¦âU)¾šÑ+ ÷”Ï.[¨0r¦]3d¬&Vøß2er9÷ÉÄSžEÓ‹±Å±Ù$™ 儎Lâ›|-F²Ê#gÀÀ—2+ÕZ ô®ª²kP¸”ÈÏÞnâ…fï[^‡Î[]r!ŒLþѰX^SAifïËàœ,=Ý \O©×'…³ì¼Åf\=¬uÎd¦­vwv Æ ýÌ…1þû§„Bü°“β lÔ² ¢ÒÜÆÍaÅ\{FS…Y¬‹+}?¤Eÿ¿Êkk‡9E8忌þ0TqÎÎ2f{—*š%íõ»Ü62Nl•^ÆS“ä þ–k+m1JŠŠè68W—È`†²% ~ðŒ©½wî¸×b¶þ`c5Û1›BÉpËž]àhâÃR -Eû‘tÐ s3Âð„– 72…·oÕã÷ÿhœN¡sfãU8ÊÌ •ä~-üJYÍuóÝÆ7³ÀÈ?hyý¹A³U­á@& 7ÐŽ4rkÜ{Üc:áé$ ñ—µ ùS»¼QWÌʲ¡F(Hø|â¡eýÈt.,Œa5ašÐ÷êÃ¥o¶)½VÂ*× ‚ìp<Ǽ§˜°V‘Hˆ£Ly´ÇkûÏr©_ˆ6ΩjzM oÙ}£µ‡ [2^ËÖ*Ùl(“N]œ]š1ÉÚJ½õ;/ÆpQµXéö3÷æ²JLœîí½sëU5t´Lx:Ú°»“”2­óüð0Å;¹ºc¼ÛÞ©ZR‚öÄù‰s”[ ™%.<­M²[úÛE\Џ¥|«yªŒ„r Ò"OÈ/{­ÙÙžS=©(ŠŒÔZgñktß3@/¥Úô¿ýÉ–Œ}ß*·_:aªh#USpIPɲGŒþô*ßµ³ %‘Ë®]wy¢H¤{ÛP­¨p¼ä}§œ‹]ä:~R®Š/x«¬f×”¾çK©«u`ˆ àÌœ,XKJžT}Ë:-Øã6²‡‡ÛQ^ ûgÛÈ9À,Õ˾ÿ+K@U„ðÎV¢y|›¼Âfqãm?[«*²ÛFÊ‹Nñ¥Vs­Ÿðæ‚T2\xAïÿÃråî¯Låþ?dOúã¡úMÞñØßH¦C?›µ'>4¯fÅŒ“ gé¾x/¹E±:Ë€ÝÁ58)PÒûÞòu•;ÞýTÓG¯&³™y"%üнAÓtŽ/[0êJâ¼°i­[5pWvÛoŒ2'w¤ÒcðDúRMQ‹m4ð˜NnÂÖN'x|aˆ2p èŽ'äõà(‡l-ý ¢j’G`þÇÊö5[Œ”"óš¡ù6PAåžÅÿ\,qu&ôò˜—”k×åXôr»Àu³ˆ{ã¥]Mò=ÌTÀ–URð'î×Ë!KrÂÜ™ x 3MV•6mÔ­kãÓ¥üþnt–°fËfؿՀx H(60œiaM‡ŸI%7ðf2‰/Øðü6&Ps´ÿÖás¬z-ɉ۲yÇnÂ4 ìkµž“NÈ "1ýºXr¨xŒ›À¦Gà?Õr¥++ýñÃZT?[CU«bØ èˆq˜›» Я™HÅ ôFú“·â]û{€Ñ³õ; ZjÝÃnU›ˆ¿²‡ýùßFJB÷×#Ën ú+Œ&ŒTwóuRÔULfY’–A¤‚%e'Éa£¨+Uh±e5K'Øâ(C{WWUØOÀi3¡¶‰Aé+çÈ‘í‰gÂ`Ú×Óg$xj ;Ö2âc±˜§•ʆ[2M›%Ü4«™€^=÷mÔÙ\×GJç¥:5ø’ÞOõüž˜Š™ Ô§ñó¥– Ç sbOJV`5Æ/éö¶§á ï&É£ýšó÷Âê5ÑáÀ—éyÏ Ú!ÓULÞlÞè'o»º¦[âÉÓ™½á„Û¦fm}Â6ò%íä>²«f—¤…ê&Ée\á g0MÏ ªièP§!‘A«U¢¨€¨[²ˆU-Ÿ6!DÒ™ûek'7ý*çQH"÷è×(E ×9¤ ‰•tŒzkG>¶ämIɱ‰þ¦3sòÑš>P¤‰ÜÎeã ¦x÷“Ybé]Œ.|‚ºæ1ŸAf®“úü ߳ƥà÷TC­ä}ÎAöû KÿlÄå ¯¸¤óU¤z[%GÈzwÉn¦+¥ôX£/JЊð½ŸpaCÊñüIšÕq,LjJ€l%_¦w.Ÿ`ûy“È +ij²³¯ÎžÐ}<¾ÊŒÃ¾ç%Ñc°cHHáÄvf½R™¼‘úÑPͤ:yÿË$ÞïÎ ³¶<–Á\ ïÜÑÚø˜ð+'¥¼"‡.µ©ƒ¢{ƒÿ $gÚAI¤[,ûAï ¾·¢!O)Òµ„CF’[ƒÅ[¹™ë±‰>+«¤`9Æ»…rz ÒÜì£^1×Wá]…’ŸVÇhñVòi@ŽŽfÙzCƒV’§ÞèOÑSEŽMÌ’*]4§ ©áWºwê'A¬……íëø{ìè%†ÿ´|d沂¥ïŽša›=ÑF26Øü—˜§m஗Ũ±Ê%µ‹ôÀòu7Õ³h„àm¦wÙMþãïó„Âs#þuOU[Þ¶FÈÂ7êµõa‡rÝýŽŠ4;fdý¸Œ5Õ í3(ËÅÖpf÷žó i“¡½Ÿ³ê iÜ^œ¾Às?ó}kZ<š=¼#ÊG÷êÉl>r@±²]ÌîÊ×Ã;ú‚ Ù"{Ið¶m ¿¼¢µÜ™ºuDÀ¿"YQ¶úë`Æ—öõ!s<îðãUîšÁÃáv#"xô¯.g(ਃî³ôJHÕÂôô…Ž–Iþ»y}— {7)©7ÿ1þAä”~ݱf„ÔÎŽôtö¼z‘øæ³e{:”8&ÒnÜtЩIÛLp\ŸæüÌW­¡2õãaZ?¤ óXîÏØ¤—Z0,rÀݬjÙÕ¯¦Û‘P9éÎð.‰«N•´'€qËŠõvóæ„7ö æ&è÷6 ´É¡Ëî»¶,½nØ×h­œ;ÝðÊAǵê;hà:Ëg˱¨»©ŽZ>í°Îý\ﲊPÃÄÁý-j ÂW`,#±aOƒ¼‚ ÷#Ur[\?ìM4‰HX€?×tï ò9ñÊMià =ºÛ²ëÒÁ9²Ö…xßÒ‘ ¢G%9sޤ!Iû?Aî±Nð'(Vá§9Ï.xï[„›°G†)ØÿÃI$Ì€œ ZÞ/Z¹¬›‚£l›cèâm¢Í“ÈÜÙôŠÏ­0ïÞäMe†ŠòÊ×Ö“w‰7CJˆ5ÊÞ’¼±=e¾kü-qbné#ϦàLÅÒ\ßcsôÓ‚^’‡Æ*FŠ0Ø]]çHÛ­î;c·?žõÍ”Ä JŸ†Dw§Á:Å`ª{Ͻ¶+„¼#³‘*$ LÒ׊לì5±Ë*·aP>‘°*Êq53• *‰.{·Ó`A”}¼‘ç/QT^i¡ô ®,ÎX"ÂP¼ö²h¢ŸÇ|žà­‡Ù—(38%ôáḹ5øüÈÊ׿RŽ—Š’Üh±f{«ÆÃC›$EKmõŸ&¯Y¸^Ck¿bÀÿ 7ÖÕ—z© ±íܧ\¬J¦-ÒExqóßöqŸx6%Ùa _Íh!ä ˜w:"tõ-fJF¿$_¤},¢!ˆ±UÚoÜtN)Óž‰¤Ø^L^Bm†R[˜RS ø»q”¤©è¤5µël[ÎÀØk#£¼È‚Ó)Z%ü‚ªQL>üÁuç8n%é2\¬–ZùBuµ­âðΜhé~¢Ë¤ ãŒf-†!f¸BÀt¶)#ŒÛ›¿[8Æ\KCt½èãiP Ôz˜§xÃ%4¹yØœVÝO^]:áù4*¬8Òù<8le1ò8áMyݦ´¬KJhr‡F ±Å¡ÚØó°{hLþ% íA3šÄïÅíü}GX²^ÙHܾ²L®㸣ôÝ\¦gÜT¦ŒiW*QÉr!wj0ÂáÜiR=† Yx¼‚3ûÃcʯYpÞŽ™—ê.£ŽÇµ£+EâÎ)Ó-½øŠ1º«@/ó·[Œû–çqºPÇQÝUöŸX»täàwP(8­Îó¥mY’±)$°ÑœZ¸02«ÈåZû#ÞxBß&¾º’Æ{(:¢IF™ÿÖUðÓ1ðgHpKÜ”ŽÄ%ï“WtJy¤ fí˜Æá:Àk.çK±§üNó0’–·&”züå‚ !DƒE=‰˜µrvžÁçÊ'.bBD?¡1ÿÙç-<3TP“¾Â²^éþùÒIîI“[/:‚hïªÒ#}JuKÒ9/ñ¶Ð{='î/žÎ‹¸y!-y(‚)A+)Cêpìíù"Jz“¬¶«€ŒHÔÕ² ¥Áõ)óÞà–-F ù¼7«ÀŽÛÓ¯4jG?ƒLBkY.%êU¹cn-½Ç:ÔhÍcÝ¡‘—¤·KV¤o•Ón—e ÀX ®‡ž9n-q≽ZÝq}±7k~Ë®RDAµº²RödnÞ&e,ƒÄdvöÖSHÛìÛ+ÓzÛÕ²®ù‚âÞïxk,BPèð‘ïñY_’#ø½ààVN#¨Î38rf2 ¿‘ &}€i)*Þ à<<†ë¢Ë×½V.ˆX¼Œ*H$¼ ±fù!ÒÝîx’ý•¥Ù‰Ý¤(Ÿ^5¹ œIu¨*]ŸúÝ”K‘Êú.}ž-¿™JO$^€.æÇ•iCÞâ†ۅêCxAçS}' ÿŸþîÁ.@™:¥¡©k+k üŸGxoºð °o°¹˜x’ÿ8†lÖ©Ë6Íü4ÙRšô Dî>YÐ$nP‚ô7)×>e¼ÔÚ†˜\ô.‰ÕÏßVwp! ÷%ûèÅ6ae®ðÝÒBJÍ1O•vYDày½–éÃß´FW>Ò¸±¥Š=ôÙa#8ך䲷ÀúÃV]d¿‹œ]o/½~Ë"¢@Üš©æ½OЖŽvþ}ø‡Fšj}üL®¾Ë{Ç Ýaøä¦˜¯ú²Ò•%}FÉ®7VÊNt L{ÁÔ][?ƒÛòÀsªå6&õŃüLç&Éo3öÍ`¿Á"¾°ºÆ<ÿÓùޏäu”½³­GÓüôØÏ¼¸5±I›yÂÚÞ”z¸¡jÓCƒÛ;†âð“9Ò+e»l’»WÑ×>¢_N¬¬N027ŸQ½½H ‰0bä(ýFô†„Ý6C\%ëÿRûèfUt XïZó†_“÷ƒ/~.ßw —ÎîN$ |ü‹Ãr¬…õ.¾BŽöó9ÙË…h0òôýZÐy@Ì¿êc ԱЌâMOINÉ÷ØòÁ‘p³1°ï¤Îæ%y6¼äwo±ýi2ûÕ ¡(+/­æ,¬„@€Ž2ܜ샧™cL©Oá0úöîÊ÷,g-£BT´0±ÜŒ þ†W ¯{ºÍXNšX.D¥®ƒuTÍyy³ã›)ØÄÑ®‡kF†Æ†‡ [ó‘Ût~1fó-PÀ³+Ûo±ËÁ³ÊƘ7h׉Ë~6 &Ñ3ºÓ.½¬Ö¶G`ÏK—3ŸÈ‘^ùΦ‹ËLÖVÛ*9sL€’Óÿ—ÁÄÞÐÓŠËj3YÎFÒ¾à—í±v³ä©ðh™À^Ôzˆ×«£½ùdÕDzB#Še/f–}ù9"YÀðhJYŽnázYLÝÖY¯µÏÃóIÓ]`è*룚Ç&ªÞ”s€bÆaÂŽ“üÜA‹Ôubï‡+Âó©q6“±4“Ž­„±sìszSVw_À˜«xlÉéE±ñTzZŸŒÄB½†×èC âbñ'½ü‘p(oA¹„# ‹ö",§lH¥ÙtŽm“ip•v¼é9JÂF‹€ ú·‘žãgdôf¬ˆ °-eú™dè~*Z©™º˜€'bŠ%ZÑŒ½ÒÕÆBÏÅÌjÉRÞÜ!κQáÙ ë÷aYv·Jš¿½æ&W¿uPLؘÁìÎÖGÊXPi)(ì¡ÄÕ­šßÄ2 '¡ÕÀTm·“[!urÜ^ªvCæp2e7à2ˆ)T¶Dx2A´uåÜͨÒ9ñ‡s°ã˜â pÜ€òÈèÍðÿvª€YäôþÍ7ô|I†eÊ,LLm õ“KžðCÒô‡€Ü“1¸ÄUœ=9Hè-ÈÌIËO‘Àëɲ€&×¼å¥ÓßexyÂχë|Rw{é¿VÉ·A!g# 2òµ¾ÓÍ(ïØYëÅýP¡Â6”1øòqe½k» á±ÏfÀ™Øøfâ¦F‚øþ”å Ç'UWÝöGl›í¨öÿò„§œHNIŸÉwåü«@ºõ£Îôä>n}LäîÑ íb²wüPöþÏ$骚 |·qÆ»IŽÜ𵆱ffÄ5°¦ÕÁ‡˜ŒŒÅ#ì2Ó2ƒ-n6Î]ª±š+ PßÉEžsñèë[^l©xàÑÝê"gº Y¥ßI*yÝIã1Þ<«ûæIK—ÆLÄ›¤ BÖ%x\êe3Mº‘Õ}û)Èe‘ÁO0‘*’Ø@´úfD{®nÒÅÛN€#"è;]w_¬rθ³Å«ߺ ­$kiŸ¬×Ûž=ºVò› ˆ™.®‡ÕtûRáµü©ÛéóÆi Ë\~oÒØf–Q´ÉÁ:¶’!£Ú–‰£ã¾ÛqYÚìâ¢ej ÉõÚIGl±=’ÛFWV„Í‹ò]¤qÅ®XÚÏàíâ33“¾ñnK i$ áXcJâ‰ÊÐ¥¯Ê™ßÍ£ºdt#tªãhè#8"›@EˆAù+;–ñEÞ÷sW}Éd€D3^Ü8=÷"4Ç‹u íXù¶Gc¡~À×e‚ÓàÄ>Ê*]*åy0¥k4ûó}°Ñ-div·SÒ9ùOß;ê£Z­9ÚÙ¶ðòÞŒ$W=b—O¼b÷eHDPâè ‹e½Õ£ã–Å"Ǹ֡¾7T6äŽÂ«êÉä £RmË^Ý…««pƒcö’¬_¨ª%þB檗EèÔg~!5²)‡½MuZ·Ê7µœy;Ì8¨›Ç „F»dÝ!‡a­ÞÔ†¤ÏkíñVᾬ^Øn4CëÒIí4Mš;JþQk)ÚãôÈ£ÏóÒ-8=ù­•e&(¯TÛ&£ì2Š¥³iÕûFÄ_n¨*¹Úó™U2ÓçN%Ç­ßû¥6™=¤-Ót©¦!X•\¹‹Ûù_@°DNv£ðé«ÌJ®“xOýÂOiMË%-–åšvÍ‚P×lñ€ìøÒ«öÿ“^Tt«Ç®PÅÔÚŒ*J9FÌ3u½cñ†¨~r.õøq!ߺ‹?>âšaÓ A¶¿u/­³1-®»;2ð}Ò,ÛÅi„%Ü쟨¢ŸÚ N…T6ùŽ|ÈÏÇ·”æ’†Ä×î ¾¢QÝñ ÓÆ ÌC}iõu^3B¬ì(Ë(@³Ðw¼¿¶û% 1üÙxYÙ`9ç´GZqTyÿ•Î÷.0ªþ57lÆGú5#ð2¶Ø|’åÌ·‚.Š^OÄŒ}| <–”:HqÍ…[æyóX÷ ZÞMÖWwCÁOŠ:¯#:³žÛ!Ä~1©‚%U­a,pm:cioð3‚ûõïíÇ_*’JÚõœºõ¾7祉ŸÁää—Ûý~¬©–ûÔ/mFìZu c˜°$ÿðHÐâhÖVš½ÄXõ#²‚ФfúQ ÆË¿ìˆÎ³V…'»ï©‡Ö÷ 3ßë~7C@ó w‡Ä^«»ÞŸ«Ï€Wkœ×iÃ*P…+ý? Æ\ê¿ÐH3`ÓGÒóm)$ì½#Þ’r”óî9RŽÜ‘ø*´?÷d‰K6- §96d‹³>øY¾7Qzœ0XRåâÜîŒåH•Q™ëX 9nñ]átIÝã!ÏFT0 Zaiñ óÅ Ã=OÙ­ 0¥–¢êµæÁ%¬`7³© ¬8œUhMqNµ¢;”’¼½@ö¾IÓ›0d¯RÈ’“#ÖOŒTÆÓ·‰FíWè+fn#ãŠðfþŸpð«uNNA`ÙQ«J^Ekë¤í͇MÒ¹ÊT m/úª¬öUë“ÐÚÏÂ(VD¤d2.d1­vmÏ€åʯÅ?¾´Û§Vv±á•µÕ€éZ—÷RÃÎÁ¿î×s耧ö3ÞiÞðSS—©ëÇwçgûlg*¡ºJZ&Í^n˜ÿ4XÖ“fFR*Ó¬{ j K'¯+iݤ†¼ò„ ž H;¥û‘ÚoªHÌNQ³4 yò§šÐsÊȪ¢^ï#'—K±&âÒzÜ;Ë«¢ljÀ½fÎËßc¾_ôqyø—ßÏ —D‰•üõ/²%Ř ò[:àˆº2³!Ê|+4¤Ït’jò·'ÖK»z¬ž6îåÞjÑêý+B,c]³Ikó„(ç…´›ßšp§iñõ7„8Â%edu õ”½Ÿñ€nœX üTíÁn[bž~:ý7—QmóÿîÕpwOì« jáªJ© 1£qÒòl#swAk¸}‹y]}­G9dİ4c0U¥ŽVé“øÆ•îcG(ÇÒKÝ9° NF–’¢vì·w@R–Ä™¤ì pXÛe¯Èœ[GÆÀ¶ÛãCè/q´öa©êüS´\ßpUùK[w%yÜt϶n–z"½/¾;ZÒ­Ç©;6Êfv{͸ÃJè @uÕÎVJæI]ù´¸~Ü\¨²7½k4ÒÇ»¤ÉÎò’ >\O2׉PÕÀÕ=w÷áx…yJöTgÈ¢Mù¬û1zÁ/oïX M?®Á”ƒ85Å.]å>pçtÓï<˜ò\ûǺ® “‰«¾@V%¦'5 IN¬¯ŠÍXº)ì¹¼~ÂÐqkÚ{#lö/D9Ôïç÷ØІ—¥0^ B/å÷6ÛmÞ”¤·ã¼Á\`Ï×LŸ§TDÝ}ø»U¾%bÊšQ¹Ité™6›èÂ+ŠH©ÇnÇŒ²zux]ûƒv@ÿý‚gúMÙî‘ýcý…×ÉDÊÊœ4òây‚J.YµºÞ¥õôWU.ÐpNqOÆ{¬ãni•`Ñùðâh2_Ì­¯ ‚ØÏd#ÎÖ@$f¸µ\û½@%%UmæiTÛôHîïÊãðZÖO ±¢=’í̛Ի;ŸòÉŠ Á§„[Ï…µèaÿ$¨K¬ùøu}›aSöAç“ß,¨ìË»{ͼ^9-~G¾µ‰Ä—ÈÀ8™oÌ‘| C5ÿÃXÁ;÷î 9ú¡C½æÔ¾/Å‘'#œÿ)å»'똲\0k9›;â‘wܵF»E0<™ {Y÷S1Z¦D¾†n}õ¦Ž ÑmWi$ãðgº;WÎ]žªPüØ7485FGä„óšµ”ãêl‰`òÅøøÙØ÷9ŒœªB¼àŒCçŸÜÞø8¥=}|pmزïx˜“K’÷€+öx+Žv¾™ïÑXq¢Ô[µ1v5àè4ÃÚ?ß›B ª ·ÂjäÚ³.aÖÐî®OܹÈÖ“´a'å§îW‘ÒTi΂€‘ŸxŽülÈg —úzøxF´í¯¤híËl¹ÓÙg¡¾°ášhñ „ÝÆ ´°ßŠêOpã=å=¬ZùÃNGµVÅOV‹:Ëb-„#)S{xoñM‚óšœX69ÎÅVžù˜a©Í™”±²¡Õoœlï³È®KEßãÁQð“F§~F’€½ågα 6‡µ2ÎÃ?¡SÉí¡x ¥1ÙCBòF{¹õ%ëi_­ÙÉÔ˜šQòe©hg»ÎaL Œ7 ž%}ÌÀ;¤ü‹Ý’Læ…Æ^7d‰µ†I9°7Ù2€ƒ~Õéc©Zd#µØÍ FQýYÃê5pÙ¤æË|–dËÁ„”V~ÎÐ9k7ôÿ&œ®01} ²\¥y~\=§*Qö,>9­ïG‹áãê©Z)P>WOÂÅÂn¾õÅÙÁ‚=a{êÕÜSdx¾ØÇZM@6e\aFl ?0âÖþ«E+ ©_œÙ5™´kÉz$Õ{Þ&Ó#ì`Ý ê)×d8_3ž‚ãŒ?öCf„ͼ¡µ-´_\ý 4DkÒažÅ8™1 `óz¤'Ä’MûsGDøU¥›®ASm Év‚—wpo’ÐU‡±^¸h5kz1ZÊ‹ufPçeKóævr>°tt ž¿Z–+ýÞ ]i£ÿi¨*EY¥…€ÇìË04/jˆNOøo0á/<÷YӤ鯢2?â/a®ñ”.C½^©yÇK¸· 8Aщ¤X[¿bÒì’ õîEè`m0”ˆ-–œv]‰Ô—oªÑ¡0GÜ]»R+Š‘æ Ê[®ø/E†/qgž°ÛŒ†ñV•©«MËDËÃî›ñ`lu4ÚqÿÍÒ&¯q——hÆÙB׬•g÷q–¥'® e]ÍÝj_×¹uµM‹ÍÍ­¦ôgPK‹p«Bz,£}ßkØØVþÛDÓÈŽÆó=Åoõ XP' Ú´djNW£¬e‹½½ïG¥l5uXÖÿ”(ÆæÐ/ê{·¤7Ã&½Ô8Áø3šž¥aÚb…Ž8»¸{lç„[âϲйQ•JF.Ã3rŠ*/ÑKî8Cù&ŒR \íÂÞ8=ÖvnÖwdbŽíŽü,Í'…lBßZõ‰ Íõ“ä ìҪ˵Ғ´›e7n{£Ðûwü®Í8oo×Z—áÍ0I´yy—€7:y£:ÌOájöä%OLJ2ñ®&1šØ~¯hVR]$UÙ2ôÞßÂë—d ï ¼ê&Ñ‘ŽÖV¹cDS ×äkÌþ8ôžÍð#™É¶lšA2ªnÉ £ÄÊHaöChVüýÏLZ•MñAŸ>–Ç…³®TŠx GJ»ãÛ¼´zÓd‘q|†`ùz1ªC¦+’rABIÅáeëÝÃÚX„ÉDÖâ½È?02öšnÑw÷L·8X¸R ú Q½Å§«­Dù7j='̬@® Ç´‹‹ÉØ,š0Q’÷Ès‘&óÊ¿_¼Ýeˆ¶0§.‹±¼;³º$W]Uk>þ“/+‚^õûÑô•ÁűkCêcD¥ËeÏ’e]Ì>« iºþlk' å)SrúËA"¿‡J0þém¢ƒ¬ñÇÁ¶¯Cƒ¨šMÚ9¦.+{Y9^ªG®´»°heÚ_¾oXßgÕ…º_9&š%Ýøò÷®Ÿr°ê;m䌜¾’=ýÝ•7u¥‘scî@)û?-÷ç2‰.ut.Jì”…!²í;D)þ}UeJ#æ ùM¹VºíYp?FW-RVàþÕžÚc$,FúLˆÓ?ñçŸá0êKIàð‚­!Öø‰;ôÚNcÍOùÆž÷»®o%×Ð/jù†QEhÁBAá$– “ |l}Þõ~Q5äöÊ óQ•z8'.Š` `OåBÐ Ù# CÜ`(¡0 ðªœåI …‚Abxq³×+LHà ‚2~^eÕ¨ *¥T¸Oy[gµ¿ §º4€)ô# pUsŠ Wu4>l$ ÷õ° WGáy0ɭ?ÇŽfO¿ö­ ѧs/ç1¯8Bï?ðTàÓ¨l'­í¹ûÖÿÙ8ø¾¶Ò€/Í.žÉ‡9ÁôùˆBüa›k¶ ËT5cÞÙ•ÚáYÆ£€@ }F^îÁMµgÇw{æâåqiaýŽ×ÇßÖg‘ãû¾í¥¥r̤tøl ×9‚Ãíµú,t€g>Ïe˜”)†Ç ¡i”´È6ûœ¾TKšÏ]óõ\(þÖ‹b{ðíµwüTT´h'‡ó¨R¦Ôg"NW§ r7XÇ/Y2ñáßJókVt2»9Ú²’*RûCÓD°h±8ú¹g(B(üfbI ww¶7ëb5:”[û7onÁ·y#tÀÄÜBr¨5É“ËTÇ#’Î;¥ùÒºóZÏxƒ`t•Xhr;i-|-?(–ùýÔäèÍöe×#.ª]8y4× ‚€úÿ›pç|òè5edA oÛ:?½jýç×m£$hAáŽ*2µZ2ÉFR³Ïòõ…Ä€w)ÊØÍµ9¨÷òo¬°ç£½ eÚÉ1-£uwm>€îÏà>úÆm¯B ¦´®§[%}肟©d¹*ä0 ^CÃp!aw¹‘UŸi@0æ-ˆ†éåâFAá•N}šÒ£<&zÐpZ¾šEçmC…—f͇-o³¾ç?·#áÐ÷öÔ£e±žõaÐë4Eѯûï>ñ±Í¨6šO.!â&yYþƒ"a t or~ަØU'üŒ}(îiü=ÇôÕ‘Ñ~W£€h¼«ô)ê+eEMÎDá!”óÌ,¶ßéLðŸ¼Í^@$µëÚøÀ‡iº°i³‘¸{üdÆ„Çy|†ûjŒZ},„ÝK|×7²¸Íhzµ~’nO‰Ì\z'¡Ï‡¾U,ÌÜ0ݰuéé×ó‘`(íF?Ȉ€—¡a[kw0öÛ8¼ÙÐ)o qK¿Ó\÷b»qK R4´[Þ’GOZ¿’tà )Ùêô‚‚PT;{›&‹À~ºE™x§ ÁrÓ¥_FnÂ`Z¦X€ÄFÀM6^o {ÉwHžÓ/â×ñ0&9mÊCȾ«Ë»´ÅÚyQô2,Ï’™Ú˜|Å”\ƒ¾Ûµšy=vM/®^¬L=Ò\Q ®Å¯^w÷@‰‰— Ñ»\üöG®æhÁ2³8‰·ûä­¿çð¼Cýª$A 3š«©-9ûJÁ¦?ò{ÁcÜ.ÜyWƒ yk? Ř5•âIUòä,TIŒ}$̰Ÿ­–c:¾¼-<Á‰Ô1GÚÞv•m¥âÖVò€v^žYU[¡‚ý|– &Òn?Ø”rƒµ`Ɉoo1—EáøŒÐ!“ð¥!ÄŠ ÜcVú]Utó¿BŸ›£YyF‘6°³ðˆ¬Ý^9»¹Dp27 ÃӪцx»¤üßm‰b¶PáÀør~= Ƈžãw¬;ö+T¤^[°xKÁ- d‚Ýç›2,Ýc Ú²]Î߈/_ð¿-q}n#EŒa´W< AWRIèD`ÖD’Iú7ŸøYMhQGèó[ÿäÖ0‡®qK‚<¦pH“/6éÛLd ðúä/[®J‹!»GJ*ªÞg´*Þ'f™½HèaFWÌGe£Y7uXYaGÔIŸrñNâ¯ðÀ ŠX§YM¶·K##. ÌbGš:ßb f QÄN¨ Cæ‡nÎ'¹Äýæ ¦8¶V¶N)»@7xƒ½Å‡µ»“ÕnI¥ùévÄÈPäs~´þhk7²Å454Æ1nª¸$¨|;«J6Ó1MÓñ%ª¿ eÝâ?ä•2—=Üø[ÙÍl`R>]`O6ÍÄ{¡A[âÆV`ïfG°(ZIŽmQ£Çß«èÌÿ‰¶ú9Âw5ÎBâ6Âedàá„vgŽ©E€P.Ù¦«ÅV"·îºU5Á¬ú=Úžb8³äü½SOß§x'QéR3­„PFéœ •)ò ©]Á¡ ‘âB0RÌßèÔ„eeª#ô=†þ÷ ò/aq.¹Îñο;ŠóÃdãQÍND€iÑÌÓGÑ;JúÖ«>Ö5kv¶9jwv*WPrƒÂðïèÒŠŸÇ Ð Zµóœ]­í-T‡œ2jçèu$9|åPÊZ/ìúØ+ج‡†ƒ¢&¡•¶xÁ)~‡ÑžCfŽ%H›ò¯(°šë|K"N‚ñ‰€Í¬ùá-èÒÇ]Z3zNõÆÏÌ„oÎ÷û{Ä.f¿KÀ2Œt,‡Óqv&ªÐQ@‹ û¡»ÙVOª“R„ïAÐhÉ— Zæª &+®Îw逫qRJ©4é¡áÆwølü¿/¢J3áÊ]wÅÒc¿Nâp•-<𣊇#^´¾þÁ.®0…ù3˜<Ò¸Âè,ãr¤É$õ¶T—ÎzWI€_[£Êz(AÑGIUï§•µ vã´P’_øVZ·RêÝM*§¥EšÙà,»Aü—ÜŽä>XiYkŠº°]þeŽDâ_ÊÉô^ŒžL<`:»7]ÏtfÑY7ÐwªÿÍŒ!ìÆG¯ˆ·n§3R¹•ßk£û 7M¡Åºm:˜“¡l§Ð‘„ÜÄ.Ë 8¬º®òvj3º„õht(T3-žxX‹ÇÀÂ+įzjò²KLÇâ3Í€/ ¿ËÄäÝ/yó6ÐÛ¤•@ÑM3O4Xoˆ|œÎ…Æàó8™ZÅú&lƒL@ï«Ì*Y‰ª”M`—ßç÷†ÙÍ_£PuÞÜ‹6sÚHí½õgX)JÀÈÊJF±îèFÚÄ@]“8©ª “K.&©èƒ ž÷hXÌæC ˆnƆ–Zûo¡d¬_kÂqúi²o §òˆ›gÖ00*ëU„KTdƒ”T—¸›ld…©IM€ß‘€Ô@Ò´/˜ú08"/€KNIgù*ï^„V®äD–7´c¼k>˜<Ñm8K°nÑ…ÃH²:e‚·çj £"ÛIû-·?ÈÛ÷7Ê#þ¨%9ó‚|“ ü¡Xèt!›Ž„ö.:{“³þ&'¦¬2AÛÍ{‰ªñc¼íÞ?s–·)Ò6Æi;k³{î 'œJUGÑ´LRW†ÓÓ»#‘ÜÍl./,Èt½Õ‘ÿ´*e …=5#ÿÌÒ'/fÔ•jÊÁï¦IãÚÍ— œ@9ð¨ŽFÉ$U↚ûMûL²þÜÙªV¼ñ÷k§ÞÁí.^æô”×§«÷fŸhÎæ˜ Ú­¹°ÎÞWaúM üWDc9ó¤ =äN×eɸo§RçafÙ—e]nM¶ë|¢D¥„…°sìå^ÚœëË7ÑòAF/§ÿ¢áŒú_à~¡ø¤ýò œS”ÖÂ,„ª´ÁË9+Ê…PB.è•ä~j–•ñ\#ÿa[”NmLuöÆ¿Í*ŠËLIâ Np|Áewª…â\hÇãíeWI^, K"³œTÊe9T#“=(lÃÖ‹'Ä^ÈÈcv¿ÖIvgO4¾XŠ6tDúÿôpdÂm6«ò”úë¶IásŒ³³j¤>…‹÷†Šy;^Ò…½ÏlÎÜ2ó]ηվµ©‡ #T7áilÒ¢›)uéU㑊ìkf¬-!º³Ð(Õ¤¾¼ñN‹&ñ"àÄQÒáj‰m(W5Àîn€ô– oÇ&¼ŠÍƒ ±Îé‹4^“f8 lÀ"µ­Gâ›]ìÅKÖí)¥­apÒiêÿ­mæwDK²BÙ $Ž¹Î†ÝG±`NOr›°µLƒÚ7Wº¹H?'DMFPßUß³¾–~Ž~–´šx ÉÕr€OeØR>Šj†‡_RVèöW€åAέ³fˆæ ZBÊv൞äl:ë$þ‹•iÇÒuJíuåÙŒ‹· l æ?5sU°†9d½ÉNJxsäÇ1•=äØu÷5GÀ€ìt0Û­Õî@yÀ_pô1$†°©œ„?[Š ¹gV=§>ò™}–!gý¸SU)2“¾dŒìïë6;€»Ê]LýM¹Í»/ÍEò€}˜Ÿñ ¯Céªgûªë2}ö>­_2,°@HÚ´ÔO‚iƒ˜‘ì½à†ŠNy£Ô÷¶/‹=rê|ÎOüàNU ™T=‹,-ú'¶Ì·¦|aÓºõȇ§2oàê²²—ˆAÜÎ1nS"„—›tçå.o/à{EÕðƒ«l?,Áå£Ov“qP‹“ VMb‡»evãÔ±´¡ZŠVAå|Z»ö!·Á}ÁaŽÉäßÉùÆÆEh|)qÿ@´ížQ@žpìë.×6»Ž@9‘’q9»G+:ECZÙA`6dçÏW:mÐd‚µ|³üíÜyñ„¡×¡÷%×50“ÿøk$r´d¸!4˜„ˆ5Ã1¹ÏW'\u~£õœ%ª¸hœèÀé‰~¥jZ>K½óïõgü¡Ýê‚»n¼>}BÜÁÚ•ªY§–Í¿ã{bÛ.L0I3jZt,¬RèÚH<â{OÕTx¤ÔÓ‚_ žð±2E<£v¤Y­É!g«þåu‘¨Ä®ékb£™¿U ¼á³Jc±,»È»ÜOöý†æ£3²><ÀXÁëãÞ­M׃7ñ‹W´ZË0÷ƒÇ®@Ÿ¦nk›8Þ{àQ¨À|ïO“–¯3ôCKËQ¬hcõ’ÑÞÉS²ÒnmΣx~WmH„ŸOi´úÁÑõ‹ÆÃ+š¹qß´ÜrÀ-V}q]d§W™° dÔNÞø6x³f1Ÿý’Ofxú'Œ apr;_@Âyª®Ul›.Ë­iƒ£O25·tqðiRV½ø›DNÌã8BS8„Ʀé[:˜€? hpmèÜoi°‰5œ~~£ßèUï­y÷;é3³£¬õrèÝÑ#Èv`kYµâãȺú×ðO«wÝ ŸPCæ'w¥àS˜þÚþvi£bÁûòøø; ©8ˆ-ŒQŸŽB¢äÿÕÄoÌ¡59#L Æ7¸¢ä[Ø×„‡mìÜÖà«î6‡Cž»»‹Æï§±Åéxà!£Û{¹ñÕ;à ƒØƒ¥·¢EJeë\§àAù_?B b™ý½ô7•a¶¸éi¹|i¶šsC:2mù¡[È*A±w•8¥˜ÅÀÿ‚$ÙíêB©U]ÍJ22¾vã1°ñ ;öY¹• µ¾"¶`ÉÉ«Z+ð—õZ}½„»â ánN­Þ­Cóï]_RH ¢Ú9ÙYÓð³*Nnc°U=ÖÛ´ÝɯfBý±,Û_æ,«-jû<)Èþ`”÷C§ã‘ª K%xÛ2ËŸsÈÂæ Þl°È)Í­œñxø$%qÙ«„Q}­|'A¦ä §ä6uUæ,n›êTÀ¢LÛÔœ±•høRº|»¿/GÌm×JNø4M„ …,ʵåÐ>} M‚M^—Yi}\¾F;4zýƘ›œVEbÜ´cn¥÷”èæ%ÙœÀ†Nu׊UhÈw8®x3bk Ö9NÖl]ÕHƒ]j %ôª6`…|JFU²Ç†5ÑâiòÜßE^ çF»ƒƒ’Þk!e¬›…Žc–ád8À âÿå™ euYzJSãÔZ`ÉÏL a)o|TáÀ‘wÉý÷ Ú]/ÁíÁ­8~ê¨PÖ÷/“ëhÿd¾æ5<½2‹;Ñaö–Mi[ÓfnÿÎú3F$s¦%´¡‚*–Þ¥8ï‘×€õÞñ9r+—¤?Ч®¢R…fëð5tÿ“—|äùWû«ôœc"'ºèÁy»ÛB‚&?8±¾{wRj¶ËYÉàš"‚nŽzÂCºÁWá ra/Å Ø I5uðœUm«+A›[[dO}ãô³\Utø¬ÛÓÊñU)#Ò]Ÿçr/\Ɇþ• >+¢ßf5ž•…·Y¦™-‰ö"pèÂë ¿P²ÚÖã/ÑÎx1Þ7ö,µ2§ÑT_ˆ „Ý€9~Õ)¥fÛ™;”ábʉUêzT3‚î$¬û=¼k,¿èý³ÖwöЈ÷sî¾7؉ †S3.°O&Öƒ–«­ÄZ„(ð,ƒ‹âĉ~L mza™Wðcf„šïMñC²]»ò#–oc£•øïl÷N*F†L.L01;âÅ2†•…6PÕˆþ0ÁdèÓ"ËÙ¾¡¬MJøç°Fâ„Çg €JKY߱ߖгl&4F+e+7ÑF&Y¯WZt'椆§û숉¾‰ÊBòFçTYê²¥&íK ½šãÍ;Ræ;#`(Wâ”r_Ãõ„X)/ŸÂîPÁöŒ"ÿ¯çJ8(½2Ꙝ/Kç ö% 0õÀL¹[dÛ‘,XhCŒ‹J¤½5< Þ•ŽX26£µ=å Àm4uòmÝî«ßÞןl­Ì¼2-þœ<6²ª!Äè‡Ü_Ž)ì¥|1Ð 8Ûî§Y„•*Ù„8¶_z k{qÕÄ^ÇVJ©}?ÇŠöµ¯  N~|ð35G+IJü‚oœL²r—å?õoþ±?U5_ ‡$ËP9èTû?µ¹ZG8;8˜Mâ_ íH"VbôÔ?#‡¯£:0Ÿþsûh· ôöv˜Üä†=&÷¾.±9’Z¡¡'Ǿ=}‘*”9—1/¢§’Ÿ…§_ïÌgÖåªÚv89øîŽ×µ.wÜãtÛ^ð”"ÿ°‘°µ¤Hטv™M´rwp)B"(nú0+Ø!(­dËySµ|h€"HŠÞÈ]‹AÉo#ö) »2JÒg¾ó†ûª.ï¤Í•˜Ç­0,ŽO Q•÷ƒjWû½ï|áo‹V–]Ñ€È-­‘÷Ï[`–S$²RÂÛW5‡è£Jý zx€G´ôkJ%:²imèèX¨Óz-)½JŒç«ý+rðý¼ŠV8äçüþÌgÕAN'šò>)Ï5ã»æ ·¬þÁHc»y {º]f•šÇ'ÝçΟmc^w«¾mt¶‘TÆÖkr€6úä²ûÒÝ*/¹Ð,¨©ÌZÌÙ¯é[¸ ˜›h¹¹!ôOâh|`h }- |›ºˆÛ(Í1§é/¦ànÕÅ”uìµ ÃÞ¨ª_x½à˜¶'ò0©e*L¦ç%—@A»Kðäå¶ ¯r²ý“~·ÅJ uò”¸M ŸZÚÛÑü Dìþ\eÊßq†:y‡ýulƒSrfýÀ¥­4³˜Š{ÊúPá¹WÌäQÁ›NÿmJsTùÜ>¶+ä?ª ‚ŠÞ),é¶~’‡µÒš`–Àÿ·yÿ“«Y—íäkÉ4±înDÓ,wÉ¡ EáÓÊÜ»þe^ÌÌ¢ÛH\s¡Ž/#‚rn:eï¬ØÂXµixu©ãè%ö9§~}Ùx›¤M G¢xTr€›¼%ÊPi+10¿UAùÂLutJ}ëbÇ'©>ïúÍUÂM%š¯^«‚ñWq„ƒ ©ek§‘X-zþ‰Ë×] 0:e;ÒÉ?Wëï8c—ûŸø(–$ò…!N©'PÃë¤÷2+… ˜ÂÕ*5°¿@×Sï˜Z‘­2‚,:UšmŠÈ’cˆAõÉ3RÆ]ÎדÊľöÔØ‰tRLI‹‡&÷[¼ëžéÂ= ó½7“/¬ºmtQíPs»"ßâïsÝ/·¯Üƒ¦TÍ Š$‹ë€PNy>úô€»ÿÚžÌF¹¹Í’¤´è±ÿ´Ú£’Þš#¨´p% fàCÈôs—ëûü]—;Þiô¬íxl££Ê’/9Ùv¬ÑŸ,M¬R•TDS»Þ¨rÒ÷«¯¤«ÖNb™Ô¤ø^e qìD¢ 7¶¥·™TXQ“,•"a» dqðÜ…f8e=Â8<ò5Á«"i_úUíTupQåÆó*õ0˜¯wJõ¹]–¤êµÔŸN“h}Gè›.q¦C·‰ˆz­‰³V>‹²ëäOß.À©¯ˆl¢up™^㮎°Eù €ó¢m÷OãX0Q²Dá`'Äó¯P«¾sD8,°mÙœ"\ùøÜ»ú¡›oˆÔ}?*úYR<–‘5K£rÜo“™ÕšC–VöͨÏæ‘ M€Ï¡ŠË¢QÿÕggËÊ F,«¥áêOŠ­ÁW°Üã>ž¢Ó.nTáÙ‹MhõŠÔ0©Jͳu’a®÷T±\ž¹Ä(‡›GDìÈóì„Â}ÛˆÏmŽHYw_°• Ã踖 bz†`æ‹8@Éæ=jŽÜô¸\âàP}}L}L³ú\ Vr!“ݾӛ0:S¬Ö[;‰Di„8“PÃñµéº¨É4¦S˜¤Ž®#ØiHfn—ÅYaÏ,˜€HÑ…Â8lc;»'y\mmߢ;._aŽ^o™¥¶´\év?™nW6}šîÝ™Ìä”2 —)6ulgÒ„_)qO‚·èïk…2åén½µ*çTnm9zyiæD”Ô>çx|xà[ºí|è&(ÃÞ@`">Ð {YßuѰ0€ö–ý‘7äážÁß×…Æjd.dï”ÃnQR°ä‚2Sáy».9fc¶Cå®<Þ‡'o¾;:ëÖw\º¥þèÆx?Oyœó²¡#9ð› ô]šš p>GNºèj¢³¨Õ½úãkÝ=A#úa;*>É)|)žKçšÁXíx£RW8›l®Æ@÷‰f//+ïüåéB4·ÕðØé劓˜ðO¶Š@T±,§eA•Î*}e|Ó«§ˆï$óÁÊñÔvú©v¿‹SDÄâdÞ„ ŠbÏÒ¯—üñÅ^‰ÚÓÀ‡Á‡Éô«ž^Ö%Q°3fgõ/Ò“ñ^Ó>* Wk9Y+øæMÎ{<ÊýÛ&½y¤”w\9‹¸áóžY@6ñB¸šÔ–Øô&;žutbß¾ÓKC%泫®GÛ¢ n¥(e2!d’V1Çnÿ¶Öi7˜±!3ÞŠ‹˜‰ªÍÿôÐtî²·¨Ãxøp™6%­ö‹§¥!tv9Ç%5J”¾g‡]p…F'à6ÒýèøcŠÌF¨UÍæø‰næ‰ÈsE–ª‡å©œŽ“ÿÞ7‡3†â¯Õ·JJ˜ÍJ"ˆ~¿ÖRÌww„¿íÁ.¾˜ºY¦ì=^5JwÙí-߫Ӹõzd ”6ÌîÁY«ÅXÝ©²:Fö‘0t¼ÓTt%>ã¡’£uÒZGeóN1‡«ñ‰rÄ×ÁuœT3f%pßêœ4,[B1Öl¼‚·¢VL uÿLý¦½µíÿ¢*åÊØî‹ÖãÙPÆfE¸wpÓç ”Ÿ¥AÜËib2Qžš—.£XwÔbÞ”£|Ð×Ñõ_n„sµ r-£ók“Ä”’­Aζ}#õÃø£„h­Mò®ëhñJ4ó! îzoÚöäE0#y°í ÛÚ¦÷!¬c¤zÖ½ÅȇtiÐvÜØÿgÃFþŸ¢~˜­µ@\å+Bl0ŒžüÌ+=ôé„·(¬ö‘1¢QBäû„¥CgJ莫™¼ Ö*Ó24."ñðøºPDÁ:F¨»§k˜<챈x<>“¹gÅÎ_ …/éB²–AZ!œcº&êº ¤ÃDÕëm$ýaˆæÎ»µ¥Ed™`¥˜Ÿ¾b“…^#Ý9 qŠšÛ …œ#×Ä òØm®:±½Ë;ïòá³YQæ|™DR{ä|BHàx[„îu±†8¨æ=~h8D¶»±<ßrl`Û[kµSA¼²IûYå«ä…#K(j浦“>€ÄI^TƒÿÖËV³…h&¸Äõè’Ï´y¬²¬Å¬k«r>ö^”þü§Ï7®¢<(¨¨# ÒêŠé]Â’{cÀ]‚©tfMš¾){¾§³ïú9uå÷²§)2§:Eñ&ŠãcÞ±ò6nèV1M!góèh„M±|0ÌPÙœ(¢±?¯±•.gV-®\¸T8¥}ã¥ùL#p „ÿ˜Ub$Š—ÛéÚú8À¡m|s νcRM™´îrÑg¹©¶Wá[»]¹E ïÄ6áY >º°7‚Šj'Ÿ!jPÌf©Š.:Õ)mÔgÕýäPùLZ)ÖÇòß2I_Ñ _‰JS§À$‚”Y*T•RÌÚæT Êaq׿z´çÃQ¬ÇÎ&†­ÌoЖWgÚìîqâ_ô-Õ¡YþKß é‰­—¦.vip¦… ›‚bRCÄQÒ;Ã;5ŠzÑ*+VÜ!+`ÃË08=ÛI5oxº–Ì{¸1øI€Ú6²Ðb‘0$ÝwÏH¾þmR€î|Í‹ïé÷(¢ /ÀüÁe°Ð·ùP£Z~샽xu¦˜ég`DóßL½NÎÏV´Õ›wMÇð¬dÂ!)?«¢Û ®}M“€™5‡B5p5µ^œàd‘iFª$•žJˆ;Ð6ƒdþàôçÅ‚Öw¿†¢±õÔÓàÝô/;õÛU^®ˆºÀ“¿`{®IipsL'ܼ#÷ ’ K­F3^[…pjôsÄ[/׬éL„×iŸT„Í µ•y…ÂØÝLÈ0;ïp£Ð´/¨ž&•Bå»Z&±™¾þ…mVJÞûÑÚÙ´ÀƒaŽ6]}Ÿ^›â!Zö£Rç‘ûÃBŠ`®^ï7qSÖU¤ ~ðz þή $(`ïzM“Žš?KB»Ÿ.DøÇ¸–5eS_Õz…Þ}µ<yÕÍšª~.Ô¯ÉãÜ™7ùÖ‰ŽbVÁ9.¿ákÉ$: JõÇM½-:¯¶×ðΗŠgwXÌç^í™O¤_êŠh€äÏœ§þ/ÿèDüx KJH"¸n:ÿwXo›²ŸJ®î¦æõ-Ã~‹ôôÒ íXq·Aù<¨“¼æ&æXµ:÷ ”Éz½?eá·Ëm{Пîˆ=µÛ(¬¶÷ s·|¾CQNm.à$3ñ‚SåãÔà?ðñ|¦5ÊŸ†žò·É˜–dÃÉñal{3 *Sa¤p¿ÝÖ i.òå-ŽA{ncX¿´ˆ\χÔ»C´¤Oɘ—QK½ôÛùÚr—^ ¤n]á;I¡_äyö¦Ú N£°ÃogÞ~к<5f•«¯->?Ô40ÀËEæ“FUÂ'Õu=Qñeœa9Ÿw €é€Wò×Ï´\b„ Óö0 †ãsÚ9ÊéÈ ÉãÕK߉ Ð-„Íí¾ë0†Â¦æ”a`3…éAKUÜ@̶ŸSXÜWs¶æ–¸¨d¸OB;„6:H™å‹Ë¬msOqù({éÄÙ¢œîZÈãéiv~0öG£Û8¦0ËÚÔߟÉKæP$šìÉ£ vÓ4P£ Ÿ‰Ž¿˜·=Ov¢æåÈR«éÁ²íU¶§ØZGÎSDC¤ŒЯÂúXo³öuN Ý*fÁìßÙ¦ïþ¥ó4†ì\¤Q4N-{À.ÊAe›&‘rvˆÏ×Ì¡˜c!ì%ŸèDÓÿUµaÁRŸ)Åÿ )M‘Ÿ¼M£¸Œ‚-ê×ÿào>}Ù»K„ÙuíÌx;ô{¥ßЉ ¿]‡ŠD´â/å™w·iÄKï¸S1»çsºÖ©oZ~š ¡ˆû©Â:>»(V䩸Y¯» Äw;(`µ(ÿ­½€ªÅ2î%J¾ô½™šg[¾Õ0£‡a‹ç˜zäI 1š©‡Œ÷CZX _ƒ#³òr)æÕ_ùÁ®a¤5`‰ïoŽoSèŠ^]€¼K\ÏA ø¡ëf¦ËpϦb¬F-UÒÀl_…ÈèJ[º$>IôÏ„¤2ÌX”m5 HÂÔ×–DSõ(Ðô˜$éèïõSÛÙ¼Ýöw}ÑéÔöDM<‚OÒ™P§OŠÿ÷ÞD¡c7M‹um©åzªY(­ÚøA±|×M0¥üƒ"†mÿ7+ÇnIЧq°¡¢UXÎjÎÒD¥É'‘ øªŸ. Ë!ÉÎu¡Š«®…@\P¥e–ùÿd6õ¶TŸš–?¿Ÿ/„³PT¨®ˆ.0H²§£¹k¸@­ A'ù` CDF³íx™*ËÄ9ðåÞ Õ†rcËÊdËJÖò=V­ÃB¥M¦œðÀµsJý^Åf¨¸þÃrlU§uxç§þÈÎ,)cÞ ýßv‘™8³~šú²A5ÿªGŠö_¿ °… £Š…1ȘQ¹ ‰G[Ò,k$Nzcè(Ø E]¨Ï뤉 ¡ >GÎt‘_½h/´Ò›ÙÒ^wuÚ产¥É<73”Ù|\ò¥Ç5äÊhDå\?á±〇YMÜ25¥´ïî¸×0›‰8×!&Õ /¦<°aà˜B—È*:TmªF€´wŽåËQÒÇœ51й°šaý@Éæ’È:tQ w©Nú6¯Ž^=Ip+'~ @鉧ˆ³º÷×éEÜ~@ÈuáÝ&€e@ò4ë „ç¡Ç-<`ÔW º¼XÍŸ¬d5¥–È‚Öù!yÐÁŽÑ=Šu7¶Ý;(ûþs®7+$ ΰƒ#ÿFÒ©Êù 9©vO+-W'>Žér¯”øûåyz/ÃE’Dº€˜ëFüw§EQÚÐÞ>™U›Ì½PÙHÇþt3Áéÿe%|ÁñžÃÜ–àçêëPéDf¨SNÞZ:™AŽcÅ«qQÂÞr(Þ”µXýËû†g&h Ð/á*£¸Ðí,±òÀ€4„ƒ¡üþ„itF!Æ`ÌFš æ"’ô@#0z½³ä±Ÿ~HÁ™Í0bË!BIÀñ¶qçIèÛJøíhè,-“ÿ¨oQõQÏÖ¢±ÈCÅ£Òe)³ÂZ͆Xm9ý€ ˆž1®qìV5S´Qö"vVðcø„=|æ’¿‚ƒ[^ÚîÛÿ°[ –Kutû^më²ô&=¿÷­#rq¡ª=“uv£éå­¶KùM<ÜäŽì*ª'ZÏvð9¶HQu× jX.ÑUÆ|rù_“¾']žY=¹d˜Âüš³)JÃÔ˜ÿzàÀYÂu~Þ“]“†m‰*¾,Ùl’G’Ìéq à\ïÝÄáãöÑ[ŽÄæ.+®]i‚ùâZ„peîU+¡Ð8£Å&Ì­ªÏÌ¿—^Î@D—þ«KA'A^W4Ÿ?·=+tQ 4’7Pc«Ò©ìHªûRÞÿÆê‰"ô÷gœØM2-.¡ q•Ðï³°|ÃqXGb ìukP ùL`Ę'’ǹ<–Å=ÇÜXUòØJà…ôߘ6ýw:m1“2dTácÖê…»U ÷‹†‡ùÓ¤ÈQmAaÞ¯Ü9«dö4[eé$Ó šž­_ƒøÍ$ég´1U_IõEöM[U¦ëÐvà‡¦^°í: W’i›Á[ LÔÆ:Ò+¥ ÎÓ|GäÜ«O…ä_åÙIåO=ïEJÍopƒXqF»RŒ>’MK϶JUœ¾Ühš£üýx£Î|^ÌcÐñ—9† œƒf·ÔL}ëšÒµº>è8ä.#Óë)ÜMú_yñ1€ýŒc“¥LQ^"|ôPåuVÕóMð™'‡ìy ;%ã­ëž}8í`[RÚÙkw’ÿWX]{¤lp?F÷nÖ„jHÄ( ºq+•'ŸŸÝ Œþj Ry·ò¼9ò¨ ?ûÁîc€6a„§Î¯4CÁÝÍA—…ü- !F‹øœPƒj!bšë¶´j,oÍzjòþåXY²ÈàŸÝieø‘-ö"Þû(ÍÞßÒíiiõÞÜž :0UŒÛºS;|¯T£ÍrœB#uâÀõ£–´^º¡ÕP8\®œø:¹V«{P¸—· @G]×dµüo šLÛTâðùòçîòh Ș*°³±6™´p«ÖÎu]ÕÈeÜuœH¡÷I9¾<ŠI]>¸¾`¼›-Z™ÒaíôJômR›WŒÏ•y/–6EàŠ÷@•½¥0ÇŠùÒµ!––«t -HEœ0àüÙe}@µÓ—ô>Çþô=±“­3A!DƒOkˆþIq1°B†ˆâîùíÆrcp«­3~uj°T¿û,™Ù˰hËõ7ìnDEeà´ !4Ϭ *µ«NCpßÛ½í 3®±—IÕ²œJh±Ô¾¥èêl VdêDÃâTé{[ÞÇ`õ>Ûä£=è6•}D<Ä74@Ù›qÖ“žêè¡ØsoHe@Táö((œ3‹þÕrk[Ù Åžmðäã>Z|¬u/‹‚ʧ>'Ûb%UÒZÎ oC„v÷‹„i.ØÃ€dŽZ> pºÞ· ž‡7 <Ó+-µ:pUjAhÐJMpzë Ñy©åÌ„’Ó¿®ˆù»5û™s}?ÆoB1õ—Bù•-ˆÊ"àüþÞw‡€šþŠ€(*ð¾-UËi³Cð‡kßå®Óal„*çVçT5`³ÙåWW¼ªÍ䛇R Íù¬£“‡¦Çõs~¯—¢Œ‡ï_€Ÿ7‹¬„6Î.ß<òØê‰;À= >-TXô6Ïýý™·Ìâ™%T!7‡Ù­N®,n¡úÕãiÞýkI‰Þ•ú¸³Od×ËÆ­*dì@ΗFné•ÏCîÓF³h4 G_c1ôй}áCüè?O±¹<=¶Ý•AñDÜë?²yéÃÅz¸é2Iû:{d£Ïx!‰&S*µíÓ­ˆ1AùüªþqŠ%‹gÜ‹¶šIĵ“þ¯¢Sr%êÒtÙùÙ•5§nË®èÊ üô5>%*õæŽø“²Å&®cOSÕñŒÍ… Yšjë–*Ö—¤Qß8dêh&¤ƒ%/ž­^®Ü°„ú4·mØDÃò»%Û–X40›}Ž.hªÏÓæÌB[­BÒYÕy¢Nzâëv½-ewhè X‰µÖ¼¥ã—å§â/6›€×¿ÍÐ0WÛ´Ê’]ò›:­82ÖÑ¡—¨YðÞ_y•-tJÎè¼G£Ýº?6œ:öÀÞì šÔH­>{[â–‚×x‘=¯f/—¶¼Ù Ïùâ'Úh2(PœAmkwø£*(! ªïNÊ;Ÿo‘´Íã°¥*¦_Æ#K[‚Ä\Ù¾_N+ªëPíªš¤@,mjADîÍÃ%zOÅѧbx¤Ó˯Î5¡ 'Е趥tÔõ}•s)pQü¸>¥G¸_'¸«Ç¼£OŽ7§ÌÈ#›#Ò¶Æu7û^±È2©ÔèF©ð ®ÒþJ?x4&þ˶ çYÿ”g€;¥tåRÝÚxÛÑÃ1±^r¹^+ ú°è};0Å îë]é)Ä~&R]útôÎB¯ž}qÊÒ‰'´ySBÀ6KµJ6ßqéæôN%‚;$´piA1"¾–“” n«»€|ö'ÊoC†6±Ê0î;–9ƒžä£Låàà„ËžeM2æ_ÓÐ]©O3=‚4-E P2½À1ÀÀ‰íüz+ÁT —Ú‚—÷Xþª\»¥’ŒûÉm°}›9¬´xaáùÞå!pÃ)qÁ ÍËÈUäñ#pJTmõ!bä„ÃÞ!íTrz 4´úš¯šÔÎßÁ©½6zqÈÙ)'A›yv+0:ç–V%uÒX$` |Û{âÓ&º(Ê<¤köÍÐ÷ê?´G§~BðêìBØ?û-~/ƒôx_jrnõK?Ë>ÊGqV¤™ìÏV`;‰>i늻æh^ìÈÉìo» œO†s°Áÿ/i'Væ¬2e<Á7Éñ"8¤'°úòe ’|\Ža­ûü‚Á¯ÿÅ}Ç£lÛhOÑzƒíŠqüeexdññjEûå°*¤*˘u„kØgÝAÆDã~“åGÃ7‘»žUÏX€%OŸ3¶ã„{ˆ$[Âñ¨”NoUˆæmvW¸ìf—Ä_©b¥`Ëý XV¨ÛËlÒæ'dúAèµáËHUfGF$ÃrÊØê®p0…\_Ûèþ,ÊÑ7m$`[HóG±²´ˆž’Ì ç5ÄnÔJÄ…Lõ@®XËuÒØ+‘…éQ~O,¹ˆ72Î7€ÃÐt¡S ¿¶­[äï–à£:A¹7ÉÄ'©Æ9¹;+vù«ÍÖ±išÌŒ*6 Ò\~½âº0­ÃÔ ßÜ‚rè ðº÷4… 8Æ®ÿÚê–^=\w¾¥æg(u\mí0ßà?õ—24Ûe(Á‡ÙZßë–PâæÎ ›ÒY(8ß‹i-,ÍÞú9D&xÔ>9ÑÎ9¿ß˜àR€};S V¿^”*ö¿Oó“Ø8µY!Ò^ÁåÍÅÛî­¥éK¢2Eâ)Mfó Êçöb>$`÷`Óµ@¨ÊSŒ-ö-¯9=EÁB6k=¯ÚðLa‹×ÊÁ¾½ ›ÛßI¦‡òR!ç°=} }[2HLi#µ¿D/$õxC^Ò¥´MjÓ :7=ÃÌãŽF ÄEoàëM¤üÏÈó[&ªÑnæzö`‚ÕÞ©U¬z¢©F¼2ê…²/}ƒä„„¥?ÖÆ$IP»‹¤‘)½/o:7@¢LmùÄ|çÓE0tžë&§Û‹:ð&1ä'ú³›ùuÉd5dSìL ƒúÐ5_8 Ÿ‚'ãÇC•þF0”¿u‚µ#½}:D°]Êß×âµ7@\áªJI<†R.¾PbÉ<é¿—§ ˜æÌÌ Ý(ÊPsOòu»‡SÅ"LÈÙ<ëU Àë½yÆÁOŸOŽñ­~>¦b;ùIþ ä•ù (2µDkŽ÷øK åý^¹³Ø®Ø±xŒ/wÞ}u…€lX6¤FriN+‹ÆÊsw&ãWóá¡Ú¶;‘<•ÀGo߈!P¡/ŒœÿÀ>³v|xû«ñKûÄ-'¸SçAT½|Êý°O†‚‰ì Ýñ¾£Ÿ§ÿ–4WVòðC–a@Ž-Ûúi1e×ÑZØ®¯‚”¥,ªkìf‚œlü4Q>îϵ©Ö2.º`ö 1™ös¿ÐbúÌ”~Çj—=Á³€yÄG‚*~…,ôqÄ~YsNz]w¤·‹ðCl>^jØ£e;cL¢˜Je${àã–œ{ þAÓYÙN¯¢ ’ŠÛéJ{œqµÿÜŽ¯—vWwº¤ŒUkßé$IçøQ¤‘e]¯N‹«-Ì\í͉îÿneDÛû¤ø'š$m˜à™P^‰4/ý¡zÀšDþæ¼H¥ ä¤"\•8õ½a XlÉåž»ìä*‰±Ç!Æà¢Úâ&N=ÏÏ/à•ÞŸº§å`…ÒðÇ2ÚEõ]ிY-bôtßù¨OÈ(ìY›Þ¹ø¯$JÆ%Wd5–ÿ/¬[¼Uó.ç Èí‘s AÑ5Ó=´`+JÃðQI4QH F(‹§JìŠyêÁgß"A¶8_ ¿àÖèÉêGx÷0¤ 8&ä¾uÜàÛóR`O¢Û‘(ªös ’‘›¤»kga3¯©€‹›y±<¹:4Ð0/TØ _7@ÛoŒIУÓC,q{iŒâþOd 1ƒßR÷±à €ÉnúX¨.$}p\×”;£3Õ¹ª£èæÑ„jǶ*›É.w®ŠÍÄggþ‰œ ´R¦9›'Ô™ÔÚŠöF—Û%ût¥r’V‰;êê|Y<„gR¶¢z©j1¢Ö}¹êc"ô¦„¿Mžò{¡çAj6æ’¡*j†«åµp†Žî¢×=<ØQ¡QŽ+8­F³Ê/ ”@ o2§Åðů E Þ·Ÿ!´&ÛèXØ+Uõc°¶jÆðÆ £Œ&éã¼[bºèâÿº›A²k¤Pëô\çHó@Ǧ í$†§qß;¦m²˜­©pÕgûDÁÖ5P⊺Iù¥ÆVÜ^´“‚΄¸  iz‹€ÙüaÃ…L{ÍÈIŽÅt_µ!?£R«¾`ïªï™ªÆQfj£31†œ×º;,ȶžã8 éÄÎíÏsÔݰÑdnvîœu^@¢z]¸ý²VÊË¡FRÅL)ƒµ…£OåSÔ´2,ÐåCŠfÅ5m3=‹yñ­›ééO¦V^C°>úÚ äÃÚ[ê}×++Y©Þ¿N¤³d(Ðb§$ÛCž»‹õ(²J[ô”â²#‘? Ø´-\MäZß!Û`ýâ.­£Ïï€,/Y³ ¾µˆÝÄö'‘ûð}™ õ{Û©…ŠêšÇ’D7*ºQW¿MR0¦Ä°µÛ‰ÿ{ýÇx0º4j$R•¶¦¸ˆ£Èu{_ÈÍ^ëÄ^’U·÷Âú7—Bð²Ø…²^‹K´ìØFÞ¾T`ï ž %JK«þ©ŽöϪ¬\Øø§‰„Ä]¿??ÁÏÀE5í®Z’}kæJ¡îªSÇñm¹¼ƒß*É™!<6íûçóý´É¾™Õê‰ïO'ÕòB‘3K«–ÉR‡*ݞŨ­Ù˜%¶ÔUÓE2þ ¨~^˜«8¼/Nz-7©£Éç½` Ra×Ãê¡(™†×Zå(ìt!XFÓà¡»Òiø³?ñÑÒºß5êkÿ49º˜Êd¿—`&aiz}OòÓ6 øožð-nBÎÔúÌ\©;+Ø.d’3&Þ‡ÛóߺÓ!ƒZN˜ Yæ“OÍÈ…~ðPßÛµÆá9MWx9œ7NqñX¤j¥?ïºòTzr:‘ÚR,^”åÃaYõ±XUƒ†>4¢R#¹¼ÊÚÛ^SSÓê=RWÃ7W±­y*– §ÝÅ.Uù-^Ë@ŒÞ§wb0Á¦È Ú¯¹UVOoï˺3K€+x$˜Óå*S]ˆ»î¨˜£‹Û)·QúR’`Ï<:B 긓R>‹´ë½×•ý1í›™ÊO7 GMCT[¶ìd^.%£¼›ŠŽë‘¶C„‘Ý`л ­ëé:ç–®áöyR®ƒ¡•ëä÷‹ò¼ƒpg'õÐ\ÿ/>×IP1PWq¡á‰U)£‘†~ÂÿŽêOí2zù’púø`(z‰¼Íä?ËË æ‰Ü˾Y±.´´D×5Ud‹Ë&;·Ùt)—uÁ‡eqÝ®øÌÁe!”\¸Ø7ºh¿ÊúýÏ Ï^ü?ìc‘»ä î>3­Ð ÉXÕ6ÊŽ¯nyv?Þ*\\úÚÜký&Tßžœÿ=÷|U*)ôîÏÓÙ¬¸òÜÏ <(â.QÙj1~ÿFÅŒhî5 G]ššÜ`ʵ›kዦ”ùî¶0OtóÛ„dˆÆ4/^8®ì Ie‡œÝEž› gЭ7ÏÅÀŸLãi5ôqˆáÄiê¨eðe\T×5¼SS…]ð%Y_ür]:¶âM_~“T´ áÔª†…∄Ê-Àh°SVb‡ë£HX§ôU†¿$Êïá£Þ©È.,†6 ²ë‚Q¨³¬Aþ¶RLã×lÄOs‹Øk£4ã±'á}3‚y¶èƒóeù«õú¤ÅŠs2²9-~J¡öÿ˜ò9¶‰ôe­x?«áKÔ+‰¥»ë…Ð89…ÁÂù銷çžîÆZ¬o•äaÁÐõ^¤/°ç•-YZÑ I³6ÖÁó}¥ZTƒ ùC•뀦\vèa eLònN^v¦„ßIÔ·*Д„[Ý‹C˜`¹ì1CèiáøÁ*Ïÿû…ÀÜAžÆ¼²¤‚­Æ(·Õßæ`úÙHñÌk´Øtò˜o¦X)œ·¢™s7@S­µÖ°ñé-¤Ó²ŠU¥bÓné¡[ˆ ƒþŸ”0P‘×ZØð:`ww‡Œa–q=,Õû¶ç’êóJ…wtÞQùþ Da¼ç®Å’a`Ôbùí})† ÍsyÀÊsæÔ„’U e"@ñË™:¦jé½®@mçþ\ã~k¾·võKʆõ©—`¦Oæñéð5Y‰5šÏ€º×Ž#9®á¹Ù­ã²×Žœ¬¨Ñî¤é»Tþˆý2¡pëˆêñéY”$_;5”cÔ C¤Š1«›;BÊv+¯Š™÷txËÐE*‡¡´úãÞý–:z¢–~þ>ÙTFsdû§b-Þ’²¥OùÛHö§ÙÝrÙ‘÷@ â“›"¯Ç€.μXô 9&zÖƒpÒt*W`ï¸Ò‰UÛ lÄ”¬ó¦-ípOÍ9Ò æ6fŒ›ŽL³k3–˃CS‘ÿÀƒ²P$%_ç`ÜOf` &=åã¶}>ålÿÖàe»ÚÅ|qθ(ÍÊ ‚˜ÈHàì"àûÀ1M}¾{ïò|» ´çºV£’'c^–ùíFCÙH/ïCÑqBek~™ $p— ïㄪ ¢Î½ŽF¯¤¼6á%Ÿ“$¯ >Ï»ûãg‰ò¼o·hå`ÂTØ`¿mØbÊ;÷§»’c¥:ŠÐ†™Tׇ ""ÊYKØ èïg¿ŒF7ñòcð1Râ†Ñ"ÃB‰ë†ðî”…tÉó%ErüÆÒÑÄ23ÿ(Hß¡Ü]@ù¹¸ÝX“Ž9Æázòw’kªsv•^_‚nÝÚ -ðê¤4½1o’¡sç;ûâ퉸ç>Ÿ¾Há‹7€Ç @¨‹y4çÈJ@«‚ëŽÆpN•?Ù 3½¢¿fwV*[ºØ“6Ëü1Ï'Ú‡ý¥¿¶Ä=Í’cµé0’±mN¾F tîH†E¸Âþ¶k°Ó ÛPí÷x„¼ï‡•ÞæÏ±Y7ëØ Î/Ô N‰,âñB–\ú Hó¿ôEëŒ%…–í­©Á/mO‚T|œ¼Gh÷!hC Œ€.ó~ð+D¼­¸‚u‰iÂv¤µ†Ò¥ÊuõÑ„–:–{t`FyÍÇW ëŽQ¼G+šÞtC[}-è¨-÷Çó*ÏA¨‘{8(û¤JÈ5˜­Ñ³|Ūã¢ðTO!h®DËL²SÁ‘qEuÌuò¤z6¦Ù÷/íù(È¥’(Z˜¨GÄÁ?½xØo9lñú”¹®R\›©pxçDÖg•]c‡-[R\%2y¹zŸ§ “K+AÂdÛƒ„¡fðí¬å·ãTôSjD.Ò›%:ñë]MÌ1'ñX<*ÄïÖs¹9Á¢Ü?Éê§eŽ~ ”¹Ï¡ë^Z°½ÇLª~*GÛæ„d ôÏ~ "¹O"j°n¸Ã>c4è ˜áÂtcí¦‹‘s3ÕE•X}¬Î‚!Y01^š¬E¿—çÓ<ñ»hvüÕŠõÿ* ÔŽPßÀ`vŠÒþêý`=³^}ƒ¶ž9ø½@…ŠÍáNzü!B Ï…fåµég -I§Äœ@pQMõ¶“·µ³ÓDg )¤¼ ›É.Æ**8‘zzè9ú8Èd½Ö·»³s]¾gÒëö’¸.ü`†Ê¼â4õ×u”¿}.²ÀPNcÈÂqʼn´ÿãÒ\%MK½‚R}Ég¯áÛé0¸œP"­´ðè¤ÓAp‰y÷+Ž„m´áœÜ4hšOp i®Xïã~Ò-BÝUàÑßSµ(waŸ}>yŇBΤñµ$`À5$TcNwˆÌö8‹Ÿ…vÀöˆÑg®1¦^@Öi…cQ© õ‘ÜÐÆÈòŸõí}hÂzñºUùƒ¦n¨‡%÷BÝ ¼H‚?p¯îTT(îT¥;äðÈÐ3Goá‹ =Òu,°)/fŸ­ê8ŸÙ Sñ`µÞ †›$ð! ô뉹׸w¬5åj¦ùOˆoK±l¯ÿ–nœ!GS¬ÊÉôÚÅ&˜OÊœê„ÍRøpÑØÝL‹Á@›3Õß¼Áà@MºÙúê¶ÇÕ2wq­Ò ¢/òëC‹Ë^J®Ä¼žÈÛ"EÜýEVÔ‰Ñø¹Æ™ô–” F‡ð6þ,qÕfÏr33ý­LAáªÉ¥Ç1Ù± ¤ÉUCWY²ØÏî!%?ü´Eº.ÅH®´”Äf}"ä®ÁÜ**\ì¯Q³²eÍéP¾%HÆ“UµM³%{„z!½üÙ¿ñë%z0•©™wò·oŠ€¦èêãYT>^>ó¶rô¯:ÛÐÈ1Ñ‹‘sCËmX—fÔâv$ …ö§~Ø 5QÞG¥v_{’ü&®öø”ëÓ íÇòn»Ç–Y«Š9á kR1›ÝOï3ýšÆ~‚ÞŽ´±V^èÓh.ãÆÜ „v3¾¦M¶:†°B¼^4“öj ìiñ~¯,™¿t[•åÂÚE„š8û2.óPk¨‹­.Z¤:¦ï¼P‡Ãe¢ƒ3¥„ mšëÀ×[bSü¨°ÄRl4¿üÍt\¨Ä´âÆÉ›•*ÊqrÞà†m<â¾àVŠË „»—T¥ñ%ùü=æ©,¬µ½Í¥¬ÖŠxÀRþ¬Î;Fûý¹²eÙ}fmÎD¥LºÛ÷º©ŒrÑNTÐÙ iýկᷔ’Iøé…Å“â¢ÛÒ@¿ Sy˜*"«bž«oœÃé4@œŒH1“ª[::G¶áIa1Fßr<ÌÌdUÉEÛ[5ɃËr÷â r¿ô¡+è8¡ÌlnƇNqÚk9×a8^OA/(h7÷.(¶ >Agåeæñxp²~û›YŸÄiüX·SK 3Þ` lÚ9nJ"ã÷ôéª;õa ù“?jðÒ"cN<~¶“Qkãc;9ˆ]—Âãÿn.›ÌÆÜ¯V_^SÁ`ÈœjãÑÄ‚ˆ,eºF×ý݈ëÌçkÁñß}³ß& *ðÐÒtoãç<3Cõ†ƒÞ!‹l‰ÑzOE-¦tüê»­‚fQ53UÞUø:Q EŠ*Mþú,ÛãóÆö„ûÔl ‰™‚.ó Ã0%,vZ×Þ×l£Ñ£ã‚j‘$bPw8 ÏU¾‰·ß½Y–°z»á=Ñ(éV]Sñ0˜ƒ/±é¿öÀ÷YùÛ®o٘⿅Æ<72÷vGy^ï6iõ£lí/I´;XqÅU\+xÝ*JÕËcb×sk÷Ê]fn¾Çb2Æoh@¦ß \qÕÁ‹$‘ö·Mý_À4'·ÙÚ¶{ÈÒiyï€kIÝùý|Ø*…Ò³½‡× cð¶2qaàwL’ùk×.¤’ècûä¹ ü}x^|îK6SûÀ;ŒuÀ-¥3t0QnKðuÃ|÷CÆsIüper dÒáM/|=‚üw5RM´.K˜Ê­oÔ’“/Ç-ñĹ™aï§Ñb¼â‡ÙG„'ÇIÙúiÿDÜ|KzÞÙ~äg…SCäE‡ÍáA{ B`œnƒsüD³¹¼ÓsHƒ:qÑ…¢«Ñ]B¢óæà}74ð „:†ƒu9‹ðñ Z;­ ÓB~oå%¶š¸¡aö·G]v~ÇÒ•,Pq7,z ¬Î‡Ä¯± ¶x6‹|¼Ëª2ÙO¶êªPI¨#õ'õs˜Õ{ß"ÅÁˆÍ¾4`Ð9 îÃs´ëå$7M!×i~?gZ €êE­YÁ—ÂÑ-øÅpêt¯p²n}OÃIr™måð_ëæâÑ!$~ƒ¥ÒzÓ`´6ó ®–Pšæ0Xöœ¤¹2¸Õ»¥B1BˆJ5#ö¡ ƒ¶CâM)n/õÛŽ~rô,v¤ ÇÝÏÌcþ¤:²ZcõšÝ¼“~H+¾v™Ó¶2Ám!”«9ÖærÌ2é'©%>µ<ÈlÇ!g•‘ÿÓö” bm½àsŠQ,\Bq‚jÀê°WK0] ƒdÑËï<ð‹ìJ_Õ_×¾lŧIQ¼³2Ëþ==pJ%X@|,Û{¸–õŒºp·Í|òúw ¦Ñ%š*/ÿgzzyôK7&›¤ª˜r;\.>oo0 õzäó¬³v±U+]­·Ë=6îý(†ñ“¾0¯fñ†RŒ´¬J™áÚ¬NsEfâå0Òõê*„RÓwœ‡²Ë8dfš"ÌÆ‘("jlöÑ®yÞ²t[Í[bò§èvg ‰+Ñœhl<?Y×}xEHî¶¶±¬ˆ3‰®W9’ôˆWvL[Ù(ňÇ11à~ÿÄóœãÄa.x(FÝxK—øàÒÐ~A¾ÌÃtIì‹ÀÒˆm¹uYIÕORáU”fЙF£Fo'–zƒïX -ÃIÔ—ãLÙí1_#PñvGU~Š—e ^6–^7*Û9ÆŒ`ͨ[UF·2N%E±Ä§ÁÔ}®O½¸CNݪP)ú°¿„úxgQ—YÌuˆÄÜ^Žö²U°}Ç“+¤ÝÖ¨ŒÒ4vƒµ,Tÿ™pyù力™cÎ"LÖÝ»}½ò,<”“nÍÒ¡þ»ö¥YÖI¹©0›îzâjs—ï&Ë…@£ V[ âù‰Ý r·µ±qqÈÙêb•©;þv|*,Útβ¬wcÒsXãH[·{”Ž›ÒŸÐ—ºoò4[“öÌá‚S(©¬Ô¨ŠÁwßšWPµuÕ_¥(ÌZÁG`>G©ª]|åºO'â62¼LqCóu!·Ëþ"¹?΄Ý\.~Ž”C¿Ø(¡cAï/TA∋k>‰,ØŠ¬ ôr–sg+=¡m†è|©ûçL¹ª^­Ol%£ßVežv¯zT™‚¬9Œá›E RNKH*QZHr£ùn0\®|‰WBŠD®j;žF·1|ïâ?ÇêІf¦@oÈAŠÐpáæ^m§ä*ݦb¹^šÏä `׈ûZŠ9ÑvØ”{ä?~mrËâØÍ:îM»öå<8a@‡£C¢R•‹.GCæzÚN}Ìs̓Ì>.Cù9X/õ£Â÷Œj(Ñ *Ù†s3W¡LR’"u§úxóŸÀÊä°&jSDUð=÷VküYÆÖsG¯¿¦ä)hùS½|½\ˆÓà%nÔiïå–sÝÇd¹þ»²mH¢_k«£Ë U=·tñ›Ç »Jb5ÿ‡Á†øøÎYlá`{ÍÜ,äýÚå°9x%”æÞ³v¼FYwÕý–hS¨fÄ~ %÷Ѷðôè) '˜9}c… Ïñƒ¡GöÎ觤1˜¯Cš%¶³CS´òÀºòdŽ>L ýV ÷RA<¶Ã{³Ø\µÍ>·ÍÜNÊÛâÒÁÜIË‹qo7XÒ¿‰É xïÛŒŒš[ÍÀ@‡ž÷õz4’eyÁœ°Ï¥Ï;³-\´Ë$Eù ƒèÝö„ÿÝoã^Å,†BšrÏðŽãO@Ììà ¡ª{.1z˦¸¶lÒ¿‡S kE˜Ð—Œy†i}tóøá•±ÝߪµN¯ÚíµyÛ…'ª•°¾ÌO  Ñâ}ŒÕ³ŒäRO¬J"î–Iܺ½{æÞŒ5q²1ð«hˆ³ÛS°þÂë…P˜s?PöÂdtKȪuC·J™}ËÊ? ª[{pæœc3iSKû ù-Û¾Q'éñ¥§gN¹VfJÓ—TÖËqytÐQ_>/ŠÊA“è\Q¤ú%! ÏhˆäqÖÒI‡½-eê?DŠ¿â(qø{<3P'*/]gô‚JÐçÃRBÎTPmпŒ²î®v¨òiFÉ¢õ¸ >.žÌ9òĹz7:)ÉØ°v0%£,û.xø žøN¸›Ó7ƒ¥àÎJUòŸtÎÃÓ9™Iߊ‹Ǹ¸X†¶ÝòÆéÞÑÛc1„jGHº‘"qyã½ÂÔøÔ§È “ÿêJûn£•òx¬£ók.‚4$ âzó‚§š¨±m ÉÚ`I†±wÚ®¸Y~E½ `*¨Ô€" –ç…XÌPøÏ±at9— öêHt«=|tïœ7a¬ðB’Dçø¿eð å?}ŽA/n}ô _UKŽè8ûs;(h]ïöÙ9uÒC²Ñœ”~5)ÙÒÇ®A)8wµŒÒw;mуõô: Mý˜ØüÊô‘Ýé#2¶I—ʘŒš&êëOËF‘-pŸÔ°Aÿ}L,½OE6Dº…›êµó“Üìè›?1¼<‘ —%âîÁõ+‹ûGãTÄêPšâ3~>øšßaÔÃy>%™1wTáJÖ•žx¤®íøåÉ.Ï9Jñ•‘¹BK÷{˜*îDœ°kIûÇÎð)¥gáúÔRvCœ)Ö>œ^® ^h,ëM­0‹ž*7/Ä q†»úd»•ŒyÊñÞnc’£ívD$SOÙÝ2wKëÍ]%ÈxDÄÏjïÎh`üºŸ®¸©LV®%&O¶;2Ë_8͹~­<:J|ÅÈT£èM¨ªØ½S¯– ² Û¨ºéüµ V‡$ûL1©5~Åo€|mo–'g¯ Çyà‚ÂWÛoR©5u¸S€pä #U+ºü#å‰vŸDAgin­Iéù1f”/¶¡K% !3g,=„ÐL— ŒO€`Wñÿ%ø¥÷ââÌ_~9–CûªÉÕ@®vUvY\ Å4ëPnÂl¶žª&šx] ‰:]3k»?ÌwÞ* ¬ý²òŒuM§È'g~4^½Ë ‡áÌ qI-ªÀ#¤Ç&4= ½í°/íÐá¢$Ër¾½¾¢÷ÓÎÊŸ5Õ%'¸¢ 1¨‚ààœáôyâÂEYmû¼ ÈÌ ÌJÙ_Må¢ĵ«‡Ÿk¢ªãD (t2 ’ZàŠÒµSËh€< µõ€;Gr:íÙ,ÈšUïYx( ,6º: gM%+vî§åNI!ùÖÀû8²àq_fp} Ábwñ®êT3š£`(´ ‹ÁE;\8[á¨N2¼+q µ‚Ð Y"Û±»‡LjÉOÒ”s=„5EJNQªÓJ¾)j|âén9²°óš˜¾•XËD kŽ5)ºhöÙõ4ƒtâÁ‡Â1n_î¡÷#ÕÏ瀹;w¦øUóî6"a¢iKà ¾¶ k”a_ºÙ;QFü¹fŒ‘'ªžTl.÷ïºhB»\É‚ BçÔ™jŸÕöÙê¶«ÉyŒoÔ•M%iErAídb3£®™ƒ²æOº(³öšÂògk:ärý—=zÔÇcË{>³tÁ‹‡¾/g ðIÝí,ˆz•ê£ÛÈ:UÌÇ»…—¯Íyu-Œþ—wS*ºó÷E—õXš”uœWÑ®ö5^–qú\vþä(žMß+Ä9Ì–w8*•¹Vü½w—@bˆ%,C¦€&¦º½£@^ Æ Yê ¬SÈ?(ö_GîÀ+¬bM=Ãã þÁCqê$yORÈAô¸ˆ~-áfºÈº'#BŠ¢-SÝsW²Â3 ‚iî G‹6K-†ëþ9ìüÉŒí´'6´z»äVnÓØlA ¾'\‹÷λŠ!¬éîWLAä:»fXß9äU–Ì–ÁÛ]Îjt•©ió:™”h£Š #Îüe¼)¨Ñ­N%ì¾/q­rÈ×ÑeáBCã¸ÔmB‹ì‚šÁ¼t T®i`⯉Á „¸,l¶ó á\Y‰yØ<Ö6MúšÕïz½/Ý ºf RþÛ]ÕE™OÔqW ÅHÆ Ié­þdÐ¥¤Á€b›Ð£SëYÞk0¢¾ÌpzðæèÆâfË;q> ÜÚ©´Ÿó„{ÍÎ=û”:nÕ.áÿpŸTw¡ßª!†ü@‹Ê¤wÒ»~»Ȉ£½,:)ýtÏýÏd ðRˆ%-î`¦$c VY)`8Pü-÷p b½Yˆ±}EÞñÝé©>乿›)ò)§2Ì?nNÛŽõG\ÑL¨7\ÁÅLç™ázEohHÝÔyÔWG†.Æ%¦´%gXÌbˆT‚}Oê¬ Ãßè©Ër{ŸÌí±+6Ô¤ƒå—ÇMÇy Å ³%ÞAŒ_@;B£m6¼¾.÷~˜‹š L.Råßsmb´0îpBê²£ í ž·Œ\ù>#R €Ó=-WcUtmdõôì="§§Å¼“y?º Ó›„ Áo[»F×;²ýÏÊã6QUXi‹ÌÔâ9=µrš\ ’»ný«@3ÑîoH&;~O+ŠÁ:áÓ#êkXß«;ËiÛÀÈdW‘A¼×ÞYNøö½Ì«Q XrõFÍÕëf€&Fì+’—ªQ{Ò@ wÉþ¶å=”\.èC#–æ;—uGeƒ·aýA»å¼¦™Þ`>6j¯.VÑë¯h)€•`zƒßí€4Þ±ÇF>C¸ÖBšúŸê‚C0îq¢!µÁµlƒªD.¶¾ûú<äêS‡39AaˆI=®/ñÀ²ä5â!X ª‡Æ†m‰™]¿ozý#$Ä¡öÙv?“¡:vËBÏÎqÈ0ó§`¸~‰ð!«/ôº¢©&ÏŽìÎf[Ÿ ·”wr£)éâù¼¢ÎÇœRÞ 0 1|k¿X)Sì/a¶a?ýÖù½ÒÙ †ã–SŠº¾gù,¤ùl@öʘ„×(K«[†TaËQ,ŠJOEëYMè‹A¤W®<»'êëÐVSQz,¢‡Ë>-g³2KÆÐ¾¥ÖmYÿèùF*¨ÝÒ½j’¶²Ñ)iöjY½ÿqD²Ò¤cLé–ló¡Â¾§²•C[‡-\oŽ>íÄœf“H•GºOÿ»÷‚+GÉÞ|!Ô… ƒCLÀ§ c½â›¾ekY®äéÓn“|4DbÅ7Ñã?;‰Þ0¡âç@4›Gt+Ê´­3|GШ¿§ä#r®—RíÓ´ÛÔó7@ãÄQ¥‚ùZá‹DÉmÒÀn¡÷QÙ ¢™ªµêP®x¤×a$Gmå Ýá¾ÒêÓ¡|bVèQ¬]Ù(ˆ›ÍD#¡tæy O«îL+1 ýúç’ÌÐUÙ\lW_>±ödalš—Üåæ³ääàÊPQÌS±ê–¹ÖAúJ»˜º$D¼aIÿJLãjmSÊ& Zî–U”/•eð°=1v_BïžwÍì¢Ûr%fsh摪l/ŽW™7e nENÍ“K’Eš¬çسⷓí¢Û‘«iÚNË]\7O·ôñã¬Â†Åh%¿æm•Ш&]C ;K#8ÀrC'UHº4 ¾\¸ÊFɬ˅#œÃ:]‡Â *dÚ§$„ûÓ2¾‘RÊ„j‘mÇD™§×½†ÇGxÃd Akó‘, ÇP;Ñà‹Î$ÐRg³ý¯-„­<û^};Ò6¨Œ¼¶­éH>8—Ç"¶zm;±û{·×0ÔÞ½âI¡×¹÷a«Ïå°á;E²I ²Â:ÌžBóÒJy^)C眺`s‹Îs°Q#GS΀µÝKÛ8b­“¨EÌ\%.ŠÈ‘€ÁG=³B>e¸K¼™Ù‡òš;%ï=ׯ_Èo|ª¨0µë«ùÿš{3é¤^h{¤Ë=Eç¹kK$¨p‡Y=g6ª¦ñK \=Gá;ÄIÊýïÎFøöÉúPêRè0‹ØLìÑs³]ÉçPê‰ÂM{>‘Ô ”>‹X®¼éîˆ2¤€E5g¡¶›ô–ô@† ?îƒÁ0Ẍ¼¬øS(/\$uÊT>GÇ«7ÀÞΰ-ÍÿÐæƒÃ¦_“ñœÃh§yfh/÷´}ïòá Í„…—twŽP¸¦Árù5Àǃtú§hª4‚6Éu_^Td=J¥H+þ³‡—,𨡧1É­û÷fÄá gÛ©Ï´×@ÌZög?ªµ´b(¢Æ'FÇ1Z ÕS¿ÇÓÂÙ—íS“Æš,-¼(%]z%2Œ0¦¯$Úè‹ÔàÿÒÎØ¤ DÀ[ÿ«È¦§¨æ» C¦]ñ3É‹üuÕ¬kšógÓÇÃô”g‚Uã ÐVØûÚÚ XN.ÿTó!aT‘Nr¯µ@Q¸Í¦ÅëÑÇVŽÅ>ñ/âr½k¢bm+Ýãf³©n¢ÏOˆsýØ„ØÏvÖúº „uáB1 cËô­é÷:ý÷±–Ú6ðÉ–ö‹€HÓ-XC†VÏ!R´y#N_zŒ´ø£vÚgˆÚlòSæâ)‘›çeNóBÛc£šÊð§ÓÁzDµZ…©M•ˆ´z zË«p±dÓ™±¡àyg]/Ay|.åwª QŒÙl:ž‘¹èù0¸UOÌäö_2 Jm^•g½8_}«Äy‚xbüîéï’ò®V¯Úè‘•Fë½ÿ!\ȹ‘$Åç¤Ùk&{ÇÔlñ…[TëLoPÃ4¿™Õü„:?òÐ}²5¤Ç3¤*=Ê%u{ü§È¥Çô“¬vŽKbØ 7DÚmH0d9ì&,Å|T«+pö}¶m;OÇNTqK€ÎãŒj.‚ àæšy€Ûàó 68 9Løo u1ÀíéXsÛ´ëÔEÖÚ£ë›퉪¸’…ö4¿B°–Œ df¸6ðƒi6è¶ÒÇ‚…å]òë\ènËË<¡1MۊĺÃ,žëÿðw $Y„›î®º`5–æÞÿÇŒ¹p"­}B®‰õS”jÞGñJ¦i¥` û)¶O½v0–ZË;—˜À1nÀ6¥Ñˆ/8~ê°X. Oßš›ÙÛãÛ7bQDŽ…KåžAž’‘8Ü¥WsC&Ñy¡È$>øÛùLXxJñ¹…–ŽÃ¶%DÝáج’ßϵ€hÛ:_¨$2o Õþ7"ÂÓú*–ƒ NæRrˆ°Ý*¶!@åâõ™;|žCûT§µÏ{ÀaÔH1ùÊœáK':ÇÖÃüR4ɦ«XÔ ¤ªÏKF§£á™ Ã[„ˆÖÉú‰:¶á´WœhÃGNɆµ]Ú&³ _øþ{è?LÐ,<&¬º[þÆ3å Õÿ±æ÷G ©á³›×‹—†;!¶˜º %}°ƒDR%Ê™F=V:EXB˜9•GZ˜m˜+ý³%´ÂæOÉ P£Ú*1'ÎÓU0c!ÄÚ…lp C_ƒÃã|Q+ž/§Õžq0aìášfïûj†Ø ˜q\ºx6†RÐæW8é²jRtIÐî0ðÏGÑ·Ùê@ôÏþZm²^…ˆTZÿ€À±àjXP“Ôø¬+B<Ñ&°»óC.&û‡Zg¶n'pÖ¶ «¬œ¥©%€ìðÊ+îwQœ~ò’ü«kù}ŸìÆ©èGG½‚¹3HÎ)â¬n ŒÜ)6³ÓYDß4˜Š:u`µ.A·(}Ðp‰­Ètmy4§3$ÇߟuûvP™„+†À˜‡ÈŒ]e|x;Mž7ÆMzdýò¬D¹Ë47We]…ë;Ï߬¼T§-hkûbýÊbù{/žóShʶɶzàÙ"¦Tñ,m¢dªSü¹ìŒ‘‚EüëÎåV4¶¾àv”ôLt„ÇÒŽEµˆyÐYXrèÆ+¨’Á¿,ÎŒæ)ûpã^…BÆ ÞZ¹:±­cíQþ>SáUEá2SŽv_µ_{äw‰Ú°Dâ_Il«¼71~Þ…WM)‰YûóeÖxhM±Î‘FcÍ*ôtXÕ—÷ô'üCh?%,Áù$ÁsÖØ9æ¶c@ý î\hϘ ¨*M\9šçð$Áx·xúe©ñû„„:µDéR¨« 2Ð2ÙÔÐR‡Y~n/?ŒeôÕýBYšeo¶ç©øU›¤ÀwD]œÎi¹bª§Bv˜þà n‡íÅÜèÞè O‘ÈMm–zÁ†ìMõE(Fìµæ7‚ ßxëþAw®ì-Ú²³‹qú–!sLâ9þ—Žùïa´:عÄ+ëñÿÛ·'^[q—øyAÉn äoN‘"Þ?`ͨJßùž!ãyÆF*™ óŒõÁ+’#ØcŠïq§ª÷~ßî|^Ã@”—áÞÞ_Ñ7;ÞAgŸÿ]eº<…² 4 U—Ž|L„ñ§í˜í9¯ŒsÉ7³y--\ L××!yï…Òˆ…\á£ßR/€Ds¡ŒÀ¯ó®;Ûà*úJCʈ§ÝoØè†„~p^\&¯ráseKÅÄR„9Pñ´Ý%?ÛX:â +^SuåfH ”6Û)¶h”"½e·dø”’'T…ƒ½+¿ÎP-Ân„rð-AÿUšÚCÇ[úÁ%1ã5à‘¤Ì¹Š‘;‰š0¦›‚H3A@ÌÜ2vIöL¼4§#ߦÍ0,AMaƒhp¬º 3ø‰ˆ¼®ÉyM —>2‘ÂØÈÜ^ÞoXÜ!jml®• :jïjé‡xB¯Ü=0ÉÓÒšöI›ï½’ð0êõòü¶—…ÑMÕ( õ貌¯`õ]Â#;+R@ $,=Oº>m ~ð$Ç8ó+Âãs˜Kpn@b¨«ˆ%%ŒJU^4s¤[l[Tþv»®ÝV‚Â2uÙOø¼£”Ïxç ú¥záw39ÿלìÒ×Óófø àèâ¡!Åút'ƒÓbÝ-Ùjíë/‘ ¸x™–žÌ†ÞÁ€ÂhÐŶB;2SG ôµìiŽ3íéî>eᮉè7JO¿ù» J~±üÇdsXVBçY!:Ûlƒ™.Éi åˆœÎbì§I¢`núhÀ‚ŸŠ1àÕà À£s0F¹xñà uìîV$ýi*Å 3V¸LÄÛT^ö¿jf3(•n%&BΑ” ì`RòìÞ:ý™£Žæñ¡çn¾çé>#×4\n9@÷ÙÉ/™÷Ìfâ\x{y«XT?+ i¡€¼®XpÞȶUæhhãÄ"‰ìybÁ%/Œ×ø°8Õj"{wXÛ]¸¼ä@D÷¡T–ùšuÿ%S\âÖ&iÙ1ìì°A•i:GtkÁtR¥‰!¸BÛ Àá^õÓáødelF¤üØ‘÷ T<¹Ó±IE‡-ÉýÏ äê þf;ÎUƒÃDÏibŒ¥-I- <}gE„Ý!ËÂP:J~ו=.•Oô’îå„ GÊÐ&ŽÅðñ‰MVñë`[ î5œ QCn˜VíU˜»»³• 'G5J«±' ( õÕÆ–ùõ·v·ãlŠ·Ï´'°áU=(¼Yu“FÉ_)·IØð?ÊŠŠàfã@AÀ÷õÞ¢¤³âU3òÄwk‡÷z{Pxó©öÜ‘šÄ_¥îðµµ,dqïr ÜB½ù ZYØ8Ølk›ÂicòÌ O›¬Ô4[¶:kV„﮲.Œ&V5€ª·2»¾–€YŒ € Þ\ö£C=8½¿ÿ¢"ÂÁ1^™ý”äüŸ•RµQ#IÖç„Ö_Aq< ²ýí3Çc~A•j_ªø×Ù¿:Xœü”ó!• œS”ëêR\ÕVÂG2á¤I|²ÈZ{³o´WdÕãaª'„ «ø·‹¸ Ì5¤ï¶“ì%¾©Ù®µ1ÑU"¹fUïHâ- ;“W|¶è%/"›-Û ùFÔCÿ·½bŽS‹|fÛ ªkxeb´=ªƒUR²iæP8DñAÕòq é=sy•¾ Í´Ä4Ó7r’¤J$ô‰xe3©bÕá4‚%sø!c(ÐHŽ) ^ûòÉw¸úÓÖÞÜRöîBOÙ…?^N|3¼¯j®Æ ^D|»DO{èV½iÄéäc›U”Ci5E‡Ñd†j>¢0·Œ8id‰&‰]E}§ ŽŸÐÆ}nÔŽ’v ò V§&í· éz;‚¡dXɈ±ØÝ[,©þÔŠWM@m]è¢Ä»–ÓÖr&b¥<é•7™Ð ãÀR²y4Ûy\µ Êxgì䫸`VŠ" ëmÓ$Çσˆ½[ÑZ±›í«%'Éz¼[õx¼,œ6V /XU$ÞÛ)|Cbx `zÒÈu¢{DCøéjé)ñº|ýFšzS·çÇ ºM²•*Ÿì‹•ÂÛé5sQ¼ìržbº`"»5©y¸ø\„Yr÷×  ORÍ °nZãHÒêº |ƒÔáÒfÌh],+HqäéºzMê‚«fV#­OºÚf^‘Ü_m/G Z@–”íææ(ͨ&ª(ibXûi‹iÒAäÕD˜Ö×¼‹–ïp|®Žd ÌzYnÞ'hå0í¯Ü/Ruœú0¬ÞÕßí" *äÖ'vf,a.}MêZÇ=¶’3ãÅ£¹2 — û‘ûâ…?ö‰”ƒúR$94È· ÑöÎXKή¿ÐÅ•·ŠŠsx¸ð3ïvèE!v]¿ö¢Z"‘ÓåšÒ î'1$_ºEðè÷ 1f ÀD·Õ…+ì®´\-§ˆ :¼CÌŸB8nj>éï1ö„ç'‰Í€GY{ZÉËêXb\Lð¨øA×ðÚ¡ÝDD®Bó/E ¹+Q|ÿ@ÇSÑCËú#¡»™ºÜb©©Ü-Ýw– ‰š®^>¡5¦[ àÃI¯†©†‘‘ý4¦ŒIi{Œ) ÕÛJÁ]¦–ÝR¬XégúEá@åYP…DOPIæ®ôYñ©ÙÌ<¥ ³í0E€ g'B¥ü;ZdN‘³Û«œpPþ6†UáÖ Æm€'R XG’•(¾õ,'©«uÿ¿¹<Ì sîÊðâtåù>${ª§¦_òLêžä8öCýñÚ ’‚!û‚´¤œLe »½^˜b~µë~‹lÍ"س·l¯¸TKÞ .ã•ì7Í'Ž%Üiâ…Ød:æÒñ¸š2÷~À~Þÿ/ʧ¸2÷6ßMñó^lõšPðQÍ·<·¸Žä,ã ³à) “´62›ñÿ3Æõê—S¯N¸¤ó€íæÑf`P°'Ð!6WrOÏÞ#Ùje׬å˜Ôûƒ[ ñ¦ø¶§V:ÔT†¯úƒÐ±e?M`Îîž{-öy(wrz\'øXŒÍ9x€Ò}D± \é¡/ñêþƒ‚=ôj7ÀðØÒq‰ÛèîãPâå»AÜ;«•fK¦²wÝG¼1rìDqB(€ÄÇI¶²Œ©b~ÔpG~~6Q½AP}wŒùšu‰ÞjÀ@¯|pƒL¾«O%Ÿ,;@¼úoì˜Ì"0Cб4˜¶*tF½²´J9TÆÖ2vü*ÖÁGa@@ýÿžªP6©B½ÛZÇ|¨ݯz+¼Ç%×r G7Û¥;×Ûê„'‰­cVåÕÃFteë²]­xYΓŽBu¨t½b8 £ÿÄß%¸þÖj`8ºï}žémÑ}(Q|)¢ ¤sŒÅks\B‡šPºp_î+ðó}!?ìÁÕíñá”È ÉàSÃÌÝ`ôµ¼ Ž+‡½ÇOÕª³KoM ÚL7R’6{Ï1s· ÔwÊ}ø¾äu½x6isìÿÚ,.¢ÞX%¹\M†A„ƒîËcÔ Fh.ž8dM—JXe{ŸtJ»þ²få»ß…žŽqśɗ2²-ö7É•Áf~ËVëÕ&V#\ }‚‹7!ãë6]³¢Û’"(ïÄdÑ-†{™=Í ° ÑxxZ+ç€~«$_g-]–¯rƒÜÕÛÌœß×a·dëÝó 6ª—¯®ŸBXZí’„‘ÛÑ2¨Û RËÉ ʛ4¬w==a=‹úP|žðØ,V´3°‰êJ¶Õ#y³õÆ(éxÍ __ÞUr7Ö)µ1Ì«ì¿IRzVzÑ Š$Ùä )ˆÚ„³š…K1*\¼^?°öø²›®Šš=#m¶ÈŠë” ™ éAS „$j€C–¾eCšqQ ÂyÜ÷>(a¥Thec¯ÈóB{¶¢ƒòh¢ÈìsÊâØÄ³Ën{!€y'4¾eH”¡'Nò¯Qóª“ö¾e`-zßm@© £Â¶6Md‚òôñêBè êJ£\'+Rw_-Tó°šÊdN,çésfuèaí¤cY_Á¤´ØÂØ*õ¶Ž¶)AW4¦Ê­¯“Ó·º*Êä™ySÉ iïdó&þ<2>õŸ~º‹üU'”1vn¨y}CÖ@×î­žœM±A[¥LðÓ3âüä ÄF{ùÛ+ ÉBº•)}ÔÝóÃ&†s*ñažŠÝçcz–:S³Þ>yMø{(æÛÄÁÈlP[wŠ.Ð*å2-HxJÈH×¾rz7ÓQÎÝÖzQ ÄÃLÍÕOè¾Ð‹}è´Ñ¢I÷Øv6(ã¢~¬®§«‘(¢ÔûƒP–ì?|Û\%.*±ÉÆ…7Ï"8kA,Àý_÷jéPe:¬°ÎÜž24ú§m*mÞ‰qvý–ÔàŸÂÔ0¬Ç{SÁàý!ñK`à Eø%Jl—þ†uØnY7ä µôA”^渤¨ÞÛñ˧éô› 25µái_ï« ›<¿›ð¥‘ÙH«6¶Û=n£j3-–\MãÝë»ÙÙSæaÓ¹ïfäzv'½ÓKX»œ€Öù3?½‚æøÝ䬙âÉÞÌËê9Tƒšbu"DîlA¡^Z¹ 0— Hä.Përžé±8%E›—s5)éN=GG¨ßÿß(cJe‘ñɃu®‹V½»0¿Om–|?óTlo9'oõgÒã”" ¡EóÑeÈ Úbc½rÂåñ%Ñ*Q Yª*lÖ¦?b1(i |à‰ì¬m_ìqsˆî…)7ÍÁY8&²Giõ ¢9h;j±™qUÄl„Íì’ëP6Ó²#BׇÅóE0ßœ]¦‹Ü¥èOv)¾ïÈ“É".(Û6€BªÜÂÿ"³Gç’È™®<ð·Ç“œ+NàÞijn³Nüº?xFådCùÁ«Ò£2ñ‰ûpå’Lù]‚ ·Z¶Ø6¹o%TdèCý°¤Í|¾‡¾^K¸42žÑnJ†~(Ânˆã›yèOd­†ƒÌ–œJWfÜ<ÒVÏõU¹›$pP@Ðß¼BÃç8–ÁX¡?y*s ÔÃÞ†]ï8¹b1À““SdJF çòŸÕ+{c+ì¡_9L¶ð?ú™ð&͸2³Ž§µé«Ø±ÌÖÌzûÞ:V÷Ș ަnÓq¯q¢ígî¢o »‹d¥ú‰å”£j™l‰8@o’VËó©¬ëCítæ0SÔ)[Žoük§nåÁ¨õÉ»„Ùš>`RÓ9Ž´z¡¨‡æí:èúË?¤Z7p¸¬ZT0WIœ&5W„FB@oE8K¿þÖLz½L¼æãB‹'KWÑé ?{lL®ÝÃÚªa¶³@Ô¿bׯMï—¶“µû +×1REó´çëE7PèÃ~¨£á•öM‰ÒOâ’lõ*Àü•ð=`rÖC(šÏfž9\gn<³Ã«LoW`šî÷ûæôˆÓóåöøµ*ɨ€W_ˆH¯ìÀ(íôØrZéþ°ˆnаºSõWÿ¹´šÛÿ¿ÈõèÕVÒDW³Òc’ôÉs´8ë0diƒŸcq7«°Ê¯txZÿ d‹Œ^V¦\¾L…Ò‰í:©4ð1ÙÈUÚCi]þ-,ÇôST_C‹FAhÌãÑI %Ð*ùú}Õ§f"›` ‘ÔùœºS’ ”6/ËV¡³¦jX1V$å”^ü9Q2+H)Í#jäd-aà9b¥ ÜMèÇBSÒŸDÖ#µ&”壩ôœó ¯’Äáæžæ/¨ikåVÁueü†Aá¾Ò‚!S)ìl[Në;“—¼tV´D&87¡ýì=ØÝ W-OLJG”\‘Wƒíñty žFDøCÐ8½¨ˆËÒ 5gNÿNQcÌݺZA”²ôSÈpÅí °j´†Øå†Çd®»7ç)Åûåá¨1ú…79R0´*SëèùU \ŸR"g¿êHŠÂ„k/9–CÖïþ}*åg•EÙ0ÀúnЇø1K—U÷jáýŽl थٮ6ýÓ²³/(ˆ*”†Êz›3/ÊC+Æ éshÍŸéìN³I~HØ[¢HÇ,OzøØ©;õòq°ÿûV4ôª ¾­ƒüdüu¶xLÚ+ß\°)ÿmpT†*xâ§4Fêïé)º›èÿNt/.Û»Ïð»É Ö•˜Ì†OˆJX§OáºÝÄmr¿ÞÞènÉéž;{Ü‘ÁBÒšŸŠ’0 ±©?£K`íÕ|üüMãVz‘¥ŽBxrL ƒ¯¬ÿXó(PÓê°Ñu¤k& ´0Jýë ð¼ êÿ1`Ü/&õ>væÿéþWo¦™/0´x¤«Qùá?WúÊ·+Y/¯iÍа‘c)Š,±ÿf‡³gAtð ÞA‰“ H.+4£ÝËkÿ)ú1R€èGÛˆì»#UT1I¶Oâ6‚ ™ 3:²Ê´=Aª.æo .D6ï ,ÃÛ©­¼ô³H“U¤òðçËíTjõ=ü[بÂäqÛZ d¦)‹ÌûD’A´©þ©fÁ‰¾àW‚kçk¹È‰‚¾céý€êÓ¸Ç9¨aòëOóÉð1àè×ᣕ¸ùlÒ6Æjé±åÚlx~¸éöMv¡Ð)¨ÿÆÞoΛT% ›Äj_W2H,,¿Ž5ò¨ Ʋ¥‹þ‹m+èâ(ÇHþÄ Íp7éürøT«ñ ˆ-‚òñ‚ÿ4|n•Š< ¨ËÝÑ ªJÐÕÉËÕ¬ñÚ¦©o)¥ VÂñtÊR–†‰H WYèyJÚØóTl»Ez|LáK0æ+!·H%\œïëÒ”Ž+…û![a‡ÅBg»?} Õ•ú,‹¤]‚aÏ}Ge"¡Žíl$¬_õWþ¨_ •»Éu·2¬»nqƒòC”éÒüÌUÑ[ÿàÁã|¯êu!)TüùÏÑqÃ#‚ê¤öR”ôy}çT훨ìŠê:Š›FO-†ÌýÜn*û ,v.,UW¤±Uc¼Çø@±`Ÿó3EžÎŒ¼rè®Òc)Ø:,Ì1¤X©GwâúV=ô:÷ri3c Ns|7ÔOÕ˜Ö…ÙÙƒ´!W>ÚÄ퀘Eô·OE¨L±ªŸ jyI‚êSFhçû%‹v]îûŽ]»ö÷Îv¨5VPÝ Ó- @J ³Ë>û·“÷¤-ÿ/t }Žšë~×ckµ3X:$m´“ì/ÁËl[äøNÿod»=oµ‘ÕC»@«äÐ\uº4ÜKÁú ¢Ity¦ÜÓm|¿BðDYw¼ÏäøÍóó?ç‚þ Â=¨ÕÕ,ä«tœ•²¯ñ9Ó¤ÔÛÇ1Šƒ×†ª"´@U¶óhÔai;i‚Q†!€o¹ò±æ0æä’k$§çZ÷ׯù]à1y§Ê%2­}TùwMiùO¬­ÞÙɇ¶q)Æ¡‡$ì^l†e¶z){8Dä9 $ê@Šh·Ii§èÇ„oä ^, Y^C»»q†Ì]¦ñØpÚ-ôÂêEjN R4–v©›ví•xBxÉHrŽ^™>V­gQY**HÉæ^_ö'kËð<#Aáý ÇnP 0veNxZª½@îþ±ø'¯œk¾KÑYü ˜æfB=†Ë*+l?Rȵ‹7?Ÿ´§±¤9ºcKŒIÁ`œJ¼€à´çx‚8 b–ƒv€uÍÁQ.s^Íæ¡ú­beSË¿-aõƒa!£ aëb€vN3®€­ÙUãhCŽhó+`©½Óâ› ìHUP ƒ;¸¨~žµùuF¾-‰KÊ:´ôßÖP°"*R,˜^•¤+WÁ©k–õÖ=GQêvz%[Ma´.[îµ|‘d øñCÔw¬A9=2lgÝŒ¼wN Ĉfw§Ú‚»!·qÇmâ6ã¿ìv‘\8f§ÊuçÉV%ÂÑú\gëÁîÑõ, Pð‹Èß?€íü/çöccÎê]Þ*Rx"Ñ=mâ¢Öû!‘çüa½w`'îOá­ ­à˜-ÿ— ÿê ŽÁ:ãühöiÃK¨o Ë4 êú`úö›KÌé2=îÂÁ€“9Oê\zòÏQ|÷©y× §µ© ¥£ˆÃ‡ ª²}SØz™ïX[ÂnBÂA^Óöbgj¥O̳Ԛ›‘²V—q*Ë—Ï=®’¿Bà~¦uÛ…Ò÷÷ÖDm‘Øk–¼6X³­\ Eø[|‘ ¾†·sMMU§!:½b³Ð‰ußy—ÈWìÕ?›…;Ü®ŠW8¾AñU2@޵ßÞ¤r‡ƒÑ\Klÿ¿Ç0¾ ç{ÃnšœÏú€ÒV“¯â˜Ûóº º'ÉsTrƒ™ÉõÌnöÅÑ0.2l/ÃBMäžË´½Â¸rüà vv„˜ÚhUo`†ÁàÍkZà‹E´OF¸ý®Ð>7Û{AÀiòŽ- ãwášÞå­$¸Pç~̾ýWÆ`pá1Q—™O#¿~¢ßÈݶK¦…Vy+hûˆ1xC„ØÁ$ñ}ÆùL¨ÜXãEöÍÙ5Ï\ŒÁç§N–koÿ@Weâd_Ñå—}þ·IO}‰GL<0.A„³Ñe Ó‘|a¶v‡žeZGïWé‚ãQ+4J*ã"ÔwGzæNUœ K‹ÄÝAl úgìý #ŠC¸ªºÝIXŒH¶ikT’„F²–ðÒ€CPÜ2JÓø·VL’î¸gˆ²æ¦xdŸ»çæèâçñç4º7MT.#Ù³~åÞòjÚ!ZÄÔ³žú7zšä&GQžëÍ^ʈ„3®Š—¿¢ø¡Bñ˜smõÜXÈç×‰#7#’öÒXM~xeÓ^ÙŒ²8Þ7¨ ù¸0HÔy^¤'Æ¢‡ÁW˜0dÇ×ÝÈÿxÿ=È,©sûúåwA>Ã=¡ƒž×ËZ#1xp)zyå¹k¼ <ª¾ŸóF -÷#ëgv¤Ðmݼqõê üÀÜ¢Á˜ã¬[ûä¼ðÓ4Î[JÓ«Û,]Ë÷ÓCš;IGÐŒx6W YŸ ’³ŽtY¦\(64óC|›rK»÷Z!:~“‹%‹éÅý'Ñ ¼ î#C¥.Ícn~çøÕ!A)GùÕMâ5 <ðŒ»¤¦^)ž£GÀh^-‡+õÔt…Ú¾×~0{.Líi²Ç—˜m>ØV€-_rÀ%eí3ÝœÁ.4cŽöTÒb*¿^™~(š]õ<+:®¦sDÎPÔ—ü›}{ËÏfn_ÕÁ°×ȹÈï«øK)òu¨‘Ë“ÜoVÖÏ>c–CyF8ûÇžÁ^9JL+_Þ—Â`º{¥i¯ šÄ}¾d`âôï ‹Cq  9ظ9K ÌCüñ­¥·ó{wòdvaö}Þ+qÄ_a†]ÙaßXÚx±”áu2ʜ֒N‡æÏæÆ–ˆVÕûêg JCÒã¥Oh.ƒ% ÷³à`…µg~°~T¥W?xd¬cdïEùØS`M&±CŒ;Z–ØS!¤1ý¸LKÐx@°äìï ßbvVÀñÞÌ*²¼ßiCfTŽíS«fV©fÊÆáºM¾0˲ fäUíPx$~V»¶çO·×§D‰jb§ º‰‹g*OÌÆýÌc›g}\cEi‹8½#4·–CÍR™úž¯@³#ïEª¥TïBðÙèt!h `Æ[}‰–·Ò ¾{Ñ•«"OféâþCRg1’}Ï6V‚·žå^ÃáÔA¨f“!¯.wŸ+ÜÙ ÄØø¹q|2IŽÅŠÅdŒE4¤OE˜j‡^7}ÕÜ;áÚµ—»qí:;Éa5þ7¸Þ/ài tGMšSãèN¦]p!”I?NAʯ£þ†vö/uiq‡v’Ð6¼£ÑÝËY@Ån¸¿€J2{kÁ½[ê;!;F®\ÙÆHW5â@‘2ݯ_ƒøVu_eNØ"¡Z¾/bè_kYëÎ?›0üvÁýÃd§V"1÷§…°.zá}NŸö娎QŒ×[𗚇ò;Ü—Ü/aüëãOÚüŸ»›9¢hö°cN ¿6¹À[ykp)¿'qàe6xÂ!3 ]ú/G²sˆ»òé ÔÝÔÖÖ7¿ð ®\ÒÂ`ÀÊåª%-¦a¥sN$þûS”aö›Ø‘Èï>•a.…úxƒ¼ßHRq¾ÉŒï©”Q]ˆ+³û¶ ¥árz"âTÝ•`Ùk7`i«Û:÷sùœZ<±Ésáà ìæÅײD †…àHA+ñáæ±¹?®R­ Qo]s4ÅŽS ž% ÷%©=wüÈFˆ²=ˆØúŠ ©‰ˆa²P6ûÌDZå“0ê-QD»™µXsÿí¼W™ ämô„€»7[uôï×c%šx¦ØÛþXOŽžJ"ÉVÚP³®âã!»ÒÈ„¦ŒC¤¼ÊØÖ]¦:³æ“¡±Év ñ·À;£ƒªô½G¿â{ àÝJ†/í(Ìð²î“ÐÆ“qÆŒŠ‘]oŒ&¤îNõšiÌ_¾T˜Kãbƒ|» tû§Gy” ewà磛üQÒ”‡ô fj[7mŸ‡^›_iÁÿ¿«vJæm^}eyßëš&ZIcËQðÑY”Bàæ¸÷’®)J¢;öÇ <·˜1¬›¾DºKÄ€Cµ²qÓB_G5BœÊŠt­cI9mPóÌFôr'¹£ µà^XÞUðæÙ¦ËÁñQu,•„í’;:-¨OT*Hïþ8Ä‚—Lîû­Hšb:²Â%Ì^`ªZ­Àf  2U‰ÐXiÞ#SƒiÕÝÏfDu ¯`)¼TÒÓ ÙÅŸ{ñ—éô];ÒñÞc…dmŒ r|þh´ìú+5¡ Gi«žH ¾,§Þ)ºãpæ*+„e‚FcLlt~î4¹Î²AU¡LçëËŒ¢XÀ·›ÃߌÇüôÚ4#ýNЙ—<·™Lr¾G3¸ž¶±PÙ)¿8­Ù#'^æ0]¿õnÖ[Z¯„;µã òõþ§ý²º"N¨Ï¡ñÀz%”tp#p~ðâëãq¹é'ˆ¹Ø¨‹bùœêÂûYú Wë*\ž/³'é;ÆÃ_×d/ű™»aæ¶ù¥ù’S;À›2¢Rî@±ß|””ˆÏ  ÐIŠ­×,ƒiöI¦¤~gIÌòdzöÔÙf'Ðz9-òE,O_XÎUEvi}ZyO®óÍAŸMk¨ú “)bЬa‘;.>Ö{•0'ç®Qc¼ªŸ–òöžIúVyý¡Vÿ—)¯0ÅÝÀeÔÁª¸²ªù¸.Y 2¡2}ïTwîÅæ’Ô¾FäÕÕž›Xš³æWÒ‰k󿝒ì.Çï ¯ £…tvd¿z@’ ãkٴшïìïñs™:F»k‰Ý£âÎ3b(y`ñãä!§12Ìå ¸’uÅ«Ã=ñ„(üÙŽ (‹=¦]†[gT˜D~¢ý§ñèÙ;9ÁDø˜ ÿÁѾpQŒUv_æË løÇ@Q4Ý¿ô»8aL¼/¬ÊëaMÍÊ̤m ë›;(»Ó,ˆ\Õ`E­çº~&—Ü”o˜S¼Ui‰$®1&ÖáA$؉ªµæ|­„>èAÅ»ûd<Êhõzªø yiÂût‘gCƒüTÁ›Eœ ŒºÄñÑž§Î†DTMUú8§ºîb?ÙÛg­ æ©9£h©ï·þcùuÛâôÑj¦ùM'ÜÙ(7º\¥Cûˆ’Ѝ~8`yìOgk8?,a‹OÐ4šrQe°œ`Idàv®•f”eÛØ ¡§)º÷32 ž³XtBñù9hcÝÿR!øñ†§ïE0LT£)`Šq<Íô²ÐùÓ¾î–Tõ ©a]æXtÖCÆÜÄÈ¿iÓrm<åÁi F¤ü“ ¾PåLüh:÷ÀµŸ4ígý¸‚¤Ã”«î©‰‰‚2ùªPœ4û¨³ gô!wWæV-‚pï3 kÌ…-³7 ó†:-¤²T0Y·#KC”÷ž0×­²EÛ)Êbƒ§KuÄêÂð,HÇã‘V˜`c*§'ÌUf‚!Þ>ÕlÍÆæ*•ŸÉÃ?Ðà/-dû”JbDïe²råÁVÿ×лvõ%Gè)ç…‚õ橜×Qi¼7qjBÈ…W\ Æt¦ri¬g®‹y1Ci®L˜¨[ã†R ‘Š–Ð!©i¿¥Âu{˜jz;CÂhA Í ¡Ï«c->Í0ÎÎã¥lÃ[‡YÓøÙaÖ:?Y4„|4j2edjÚM^nk(»³4}+Ýù>sgFt¬`EºTF»Ên’ý¬±¤f­0üf³Ô‰ò´ A7¹ÅkNÔ(TætCõH ™>vήõL‰röV¥×g¬® @óánlÍ8ïŸþ`š•ÔûÛ¸ÿNQßè’0øÐì¶r¬bgý|<䱊· «÷ºl¹pl9KB­À%ƒÐ5ÑÉF#«¿¦‘$UnWYNñ¡. „àIþÅì„þ„Eù~5ï‘—¨Æ'¶h;$°¶ÙžÍìû†F˜ŽQü´%8tº ‚­”lx/*’¶iM™P ež€ßû/ö˜œ^ iÚì¼`í”]?p82 B}^óNÓ§ò'úk oÚÁ¿^«J*æ†(–A%¥¶d3ð¦‡Ù¢¾U:vŒ}M¬€H¹Mw°ý²ä`:'ÌÍñŠªFm…˲oQQ=kîÅ›Ž>®²Çü®£fê¶ÌFxèÅ‹-„wë.F››[•a|ΜßY ŒL7ê®'pëÔA‹C¾l}AGLÀ+›¸©Axí&‹:‡íþ ãS¶ÿ¦piÚG¥ê õôB…»<ɶ` ‹I4ŽxÍ=„Ì*ÅÚèXÄ‹-”H†NŸ¸d˜„F}¥þ$–1]P;·-á.\š@0„&;›òU0®A ½Ãúƒ|è¨K6'›z碎·×بÚþ]]hTHUÎ×|8EÉ͉u #ÈÆq…dP èÅ:«T ôV­­Ï}3õ|]*JÆzß¶ÑÛ¬ƒ±:þÛö½Øš:Ú¦oA¸ <~´©¨g Zb"”€ÓS,_ýøˆK :ª‰*.Ì¾Š¸ï¿å9¸T™O ½_ÐÙíÆ. Ëìøïh®¼·"náS-™Ð‹¯¨è”2³íïÔ_µ݊ѻ[ÛÉ”\r2 вɔɗû)hΖðN'Ú!úŽU#×ódò¢,ùY¯Q‹ËjR=ö‚’ÖDM‡brL=C„GO缜+™j^ yG²¸}0˜*†õÌé¸1Á¼C.‡|^õ›»Eµƒ/þ}r;Ä\׿Jn6S"‘¯¾šóÍAY°Dx£’ˆ”«GÐûʜឧoþXH01àƒlpu E¼k‹‹êÓOlã‡I7Öñ‰>X™~ Gàêeýu¸:0õ— áù ¬­³µ¤“o¥w÷dÅîXðí»ÎÚ±<á%Un±%>|Óº˜ÊZ[eâð\ø£'Îz8ÒtnU_à‹ŠãÔv¶È®‘0£“Ó^–P9¬¾šÈ Òc¤Œn)ô7è䆋q[†I;"ë—q &YḟÁcìž ŒVù˜Ÿ?*YÀ|1;?¹ æÀ†k“ÁCm]ò¢"ÕÆV‡q\g…*¯ }c)Õ°›€}$ûZID²»Jpý <#ÒÚêqãá1µë3ÑØAÐÒ?XõóÿR.{ÓB›Ë¡½——°>ùäHµÇ éjÓûƒ ž7M§ûë'ÂæÐÓÝ{Ù«üƒ=E—ï‹—q.×FY¤{©§e‰ÍòMº`FMÇpسԛ%KwU=Nú(I1Âuâê£,…øA>ÐwŠ„tº[¾¾oûÖk‰¶ h]t-íÝ9C‘ºy~„ƒÈÁéšâ÷´*8ÕÉyOùÛóåI±Wqk|{|™8¸Z>×Ö\l]øíJd’ž#usÔÀQ8L)]j¸ÓØ+ÖC;º“´.éoK#Må˜9lç]'ÌI=A*±/òŸ1&¡Oá„bG~P/I)éXŒÍ´ø„êFÀgO‡Ï¡›J…?øÔÂæ­Ó6|½9ðFÌ>’Ù5º+Ð_l¾Z\èýWçôi>@³EÇqäyô}ºÆ½âê.]Aë ³.º%0—ɼ»õ1†;n窲©`è,°%Î~Æwè²4MÍÇÖ(L²rh—GÚ´MöS É縂Ãў ‘"û8NX Ï+"¾Œñ&ã¶pfØóÜúÝ´¦>Sz~=´á#†É²xÖ1"Õå€Ö÷MYºó32të Tf&{K•)DðqżQ璘)µíVŠPµ|Œäe^Né6 ѱ ûÉR/ ƒf“_ûÍv¸<×|4oü´p…¥ ªÏ]¶â¥¦êBfOÛ²[}¤eRZÚéÙUîD…|e¤NžüZWt`õÑUg¢"XçA™ÄWÎm¨Cþ8TÅÉg3h_vò,œl„lÞŠ1\ü­5÷Š-µi§YH{RmÙØdêÊïÝ2ôh|æ§ ÎCC+¶4kÏnD(¦XÊì³J>ÓD}Æ£Îöõ‹S£b~áúmŒŸ5Ç£ÁY,Dâ5žû"ÍZòÜ|û(u{äá=D¶LŠ^ ¼/=4ÿ"Dݳ‰Þl¬€Ë†lŽ‘o%’ªC¢´…ãZ§•æ¦yÛ;;ù±'&OLJ‹ÎP×Þº™¹øÈ¹ö F.ÞsžòÚBϼ`ÅÅQP_eØlæ’ÜùBÉÏ!ãí¿êj,&ÓÞÉÈ ZvVuNÆt*o ]þå  Ö<ïè„P>0 ‹YZfields/data/COmonthlyMet.rda0000644000175100001440000260651014762765714015556 0ustar hornikusersBZh91AY&SYGžëŸíÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿáÆž€8G ¡ATU"¨À&Íóëàd¸‘{¥€¶ P ¡kKYØ%ZÅ%iª%E³J¢ØÒ¶Ò­2•5„(ÛØ7¢‰Iu•VšHk*òögF=ºr€’P)T©*DŠ ( X"6=Êë»ÎäÞܹg³ lj¶*PP*І€  (P   ¦ûë4“î9%TJ ¢¨ªЉA@R€Œù‹Ì}Ìèe½Ü°Ý±ª‘ä2Ä(§Vc±îê€D·,±ìÊ%7aÅÓ)VÀSP¤) ÈNzQB¨TФEª ÞŒJ+X¨Í•DÙ "Ö†±+lfmViAl ŠFØ•†µ³ b UTZ Zd µ€Û!¯¡"… (ª’Š$RJ ¥(ªPP$¸=˜ X °M€ šI†@¹bRª ÈÛ$[Jl>5=‹¥m‚…)|õJ©J¨UT‚€Sp¥ìkmMd«X44Q@ɪHTkQCl¡l)k(lÕlØ6³Fk(SôLÄ`&Ó ¦0šƒC2Ó ˜“B*~ ‚ #MÔôM1M¥šžM5Hõ€õ4õ™?TÚOPÚšiêb<Õ='’z`ÓE)äÊ4s‹)ï@X&Ëdô†™›ä t°³áÄÚÞÿ¿¸1€MX _ƄϨPb/ßxÄÉ $w¼Ö#ª$ `v@sÌ„ÙeÿßÐ"0@ÿ ±êóe'îÌP«U;ŠpGM…q>TqæA™‘‘enÓ® +[ ÁWÁ¹Rö¯\¥Z‘O*ƒÔ?XFLdzéÑɸ@å\MœJë³SÛ:f{DɄዠ- x`Џ}ŸMÑ$ 0¯r£( Q:+ WŸ˜€`Ð9âÙ;A„ À³:¨¶R¤ Mø>Ç@»Ó¨#‰5©5îÈN…þ‚# ’þ(»ê`¢Xàm°1Kº‡á)ˆ?f èUŽ~d/î/òIÒ½ElWNƯ,"âÅ•L$™™bE >%xß½°ÈzZn zÅ2#Î%q&p™4áUŒ„~5ª0‰À•E¢ ‡–’$o(CÀ€#xôR´AH*0˜¶QÁ¤xv_]A2? Àq µû¸pD¤mþ¨Yn!¼,Ê‚jA-þ©‡ì*deæÄ „ÎeÄ׈Wô?Eú=VuŽÜ.j;oÐÂþ{·8|TqÅ&dá’A= –( ^Ž—ÊΊFÊ`'[œDr×ðVî9üK~ŠÉg$¢Èe’ùa¥ Ì(Á†D,"9?hçŠ9Šê]@@Hé"4•[¡9VEe*a0MvËñ|héIH#Â÷£Èú+®¾x÷ñ}ßÌÊ{Üõ"zëÒ(â/”ÛPÊÜÇ;qüáôñœß@‰ãަàÌQ 9HìÓ@ä.Ó™‚B@ËÔ—‰"a·åA¢©t‚ì–{¯$YW&Ÿ9ì¿7kÛt…ƒÍMÂP˜g&1=$†ÒœcC¤?WU=Ž3¥ÄF "Ðl !¤r`¶žå¸TY0q@¼qpEÀlh¼2S„<¹‚Œi¢W²0MƒÈRΊ,£^9˜N9˜3GBº¾Ù“P/ÓZñß¶³KcLxŒ¨ÔMÄB ôÖƒ'Š+Íæ„ÖÃmtlÉÉPiW”8,û|F¤mÖýœs~ËÎLëP+õ:içWS™ ¥Æp"ò…AÁ*Jiš" „@ö¬{*,>$;ãP#4VnQQL, QžTZ†U¾Þ‘Z˲òË3* DO²ŸõŸv‚“ç…‰öwª¢ˆB˜Û†.“€¿))À8¶†ŸRk^ÌíâµbèÂ$Ê Bà±5"(éø‰l«‡oYøsèï$þs¨gú)ç"j‡~½±+²ÅcÇ”ö¸,Á}£DLœ"dHAeÉg^cÎmž †½©èÞêêG& îªns#‚äƒBKÕ—}ë¡yZvº{vLÃ7 pÑÆ¶¢P žsqd1ÝFã{™ßýαVz˜#¼¡1Õ¥F)A˜«ÍŠ¿ O†¼pǹn<ȬõÜ‹!û“êçÄ«0_¢’h <¶Ë3‚fx™£Áƒs;‰¥>n7—VYºCfa FýÙßÊΩ)·îÛ¥:u Ž«±Þ{DÕ“'~§@–vPêX€ý†`“Fb]r÷iµ¬«"aúTÙ‘s¾FƒØFÅ^¡Äñ£Š¼æ¬õ=N§!’L†Í([ûØvOÇ[ÓLî.–s¦gˆ™.ˆ¶Ùe°™pЭêöÝ[Ìo;ÇDqjª C «·ìÌ¢Í66æRhB…NÂÏ:>À0}(â¶oʽB59!¢¥BÄ!˜­n–­ó:Hl0†Ft°Èe“ȨêÏ|ZÏKø\ÊI橤e‰†¸8UÖ8A¢ñyºÍçYÍÖ#êGÖz­ý$»ø»JÀ³KLŒÆ¤& =V™JUŒˆÈ;+Ñ„Z‹HӃ生4]*kŰΜÝ$¡ŠE/Ò‘Cpr‰‹;8˵€šÍxÒÝ)\\-h…H¬WŒVdôó±IàîÎçi@ËH½Û)IΨ"2';Štò+sÙtÍ 4¡^Úžrêñ„[[Êñ€PÒ²ÒHQñ´Þ€Â7¸ˆÎsj¨üê•…œ%š…é{Å (tÙO¶)U¸JS¯0¯\´¥˜cgWŽñ™ÜîÔ³Æ)¸‚Z}5xÎS‰²¥˜ˆZ@ÆÖˆ.aiO+CÑ>,¾ VÃE¾JZBRbV4&#ÀÂMƒaTgЃIз׉ï"|VÈ¢§+ƒÚn7ã8–ŠèZQËR €v×H£(ÆZ Ï„[aæ%ŠCaæ/0Ä-±lX Ûñ! ˆî) ˆèû”bÆóƒGÞOÜ·æzÖ ÆT,·Î^sŸM•ÑÁÀ¥8ÛcæJB§ea•ˆu¾¥V\LvÂÏ'Kßb°À}­@ éÔ^âå3Ä5©¸.„î˜ëí¤i ÏŽRþ±ëIHôÆs»H¡‹ª++n1'o&òf°Ó{§e¥BÄ1eª<V‰@V"nµC¸0DkJÀ%—ðzí›ÊaS b¾“‰û<]õŒ©&ê›N7ºSóöñ§\`2V²Þð¸8°M¡Ö1ÖY¤d:ß éÞ¯ 8陑l@i×|e`lo©Ò`:Ò8yçYEfT$QÑFNÍZNv¡Žõg‘º2F»$¶¡×16!f˜¾™ˆÎpwLb"²%ÓØæÈ²p¤g—"êÖ9‡ Ôõï0kV”WvѸ-ÞÝÝfѶڊ–¹ˆæVZ+¶K­4‹NÑ>8*›€ñ‹MÇJŽ‘ÖP³{Y©±v(ÂzS,´ÌÙ¨u¼RÁ¡H«Ð¥ú Ò—9%Z[#tÉRÖªi WÒPƹiÅã+ž£4&Læ8 ²ëÙ%ÖØŽù@Øn5°å[S႞œgÎæJóíÔ0›ìDúï*N" Ùœô2zëpÚ\'«^õ(íéÚ)ŠÔÏd[–¢ýu Ý࣠Í! ߦ«FUïIÊgCÒÒ¦¨×À¶ ȱظ¯·NB:HêCຽÍy4×ɵ­6dMí¤ºÊ6˜Î~<êoÈÑk“êT óIñÌV¸ßX¬lÖuS‰ðb”>8`VnåšÜó † “ŽËxž’šX½"‹ÅA¶´ê«ÁY³([™4ÆÁ†òט­àQ, °¤û\„:_•gµ+%Z*š·¥t9Dàcñ˻֞X¬ÃCë*„Æo!1\^ƒ^ï*Ï)ÞM,9‰’3å=wÑß:Zuò툔ØZ(L ìòæ“J›¢æ‰®ØŽ×E¶|K^&ÙÌ_0#›’ëÕž²ïÄt³Ðú̿ڪð™ø{é» = 3OH²´á=dqxv¦RŒ»[w¹v¾—=­×]´5„LçÎÛ¾7‡—¦ú&Û0‰ê¢7LN£Ú;>šBéÓƒ·‚ÀHþ'Í´%O¶X`+)Cµï?KG²7…ŸQXg®V•÷œ‡¤â­åeAK¾Éﻵèñ¸åB•Ðú„ÔÏܲåËJµ‡ÓÍCp¦{kв%wÓYŒj‘9Ë<«%Ù3Y®ÞU§V̯øAù_ãýâï Lv¸‚AÁ"`ÈAÊΨBg²¿ddŒ“yMÝb=ÕXZð“Njb±ê5(Ä¥53ˆˆs ¨ŒèLR”¦UН”ªaëwÄx’¥*’³ }JZG œÄVd`&õÐN}åD´œŒ‰FU )€Ãf8ˆRó­XGR1{É«%fdÎØŒwМ—Xi»å7œŽ:­Ý¼G(¦PÜ1ìö•îo3íN–§¯göcæý?Òƒÿ*/úmð½Ð,ÕÊ"3<‰3ÉÝ ÑÝ Ôö¨éšr·\¯wuÜON²¹¨j^ë…wSpˆŠ3[¥Pîî µ‰Õ*º »‹…cºZrñˆºj…²r7OqÙc¥©N¬ä¢2Ýc–ʫθ«…NW(‚!Ýui"ë»°õ<•ee"JZ&êya[AÉ2\IsÜs»Ý¡gO!ËÕ1Ï5ÇruÇ(ÂÅsØ¢žî{w7+–mBÓLõDëPÃ’¢Tí sÅ ÂÚWu#•á—¹Z—Šáxáá¬b”aDíÏI<#qÂóÍÊ]uDÓÝÚ»»_ð»cl`ÆuÂÁ ú¤é"‰€‰}ˆù"ògåMÄdçFuCÞh‚A²$—OjfSŸYlBD_Ì:µ‰‰ùIùŠDÁ¯"K¼Ùb °‹ÇÑìt“ĺE;þ½ü¿šüþþ#úïô .„™E†jÖ™Gú:¨^TUD»¸åjÝwc8(‘W”Š'-³ï#¹C c¥À8ÆñuŸs«Ejêh!5¬ƒƒãþßPŠZµU2¥H“HÌQ™! ¤SÈòøRÝþ[«gÿ^ía‡ÆPí<Ï#̺T«ßq:8vûh‘Û{ΫEoì¿»”€Ù²÷ªÿçý¿ùÿmö*àÈ…èox àÀMÊ•§s—0Îl“=6éÕÅžƒ¾íßxù½{Ñ~tM   )#*Æ^R^bbgk¾›àXº€-²%xUúT<:þ&÷‹¥ÆžÓÝqêùM[ÝnVW.כǣ¥Ùés´9ó½ +NG ¥ÀÚRtîmíî:™\§-–È –Ë­‘_Ëëæö»}Í>î{C¿ÔÝx<<ýæµþ¯G}åÞy¹ž~ߣ³éî|W‹¿íìü¿7Cݱóù=ÿ£­ôý__£ìû~îÿÇÛâìþ‡òó~§«õø~ßéðöÿÏõÿï¿ûñù|Ûúúúúúúúúúúúúúúýn·[­ÖÔÔÔµÔò¼¯+Éò<Çñÿ×Èü¾N ù¾÷úX"©÷»:TAŸ«é9¾o”῟ùÛúúÿÕú_C ?:;äû |¿3ÌÜþû‹ËË««côSç¥c¿ç–& ýûúÙl€íuåç°èèèß«ÐËþn//////*i(Gì€Ù|v¿ê£öû"aÛÕÕãéðš1~Xq¾ðµ;=ŸªsÉâ™ívÁò©=€ì¶H€+ú=7È?OãúéµËý¾cîú_x·V½UanÌ—ë.î­]Z«¢¢£5÷ùÉ ®¥Eë9ƒ:β³­ê^³å˜sšJçUìfóP¥Z†J$UŠ'Vê èÔeÒ£z»Tœ«Ôº˜›Mƒe Bqw2òRT³§(--1"Þ©0ÑÇçqŒc$ÔËÊÖâ[„¶ÆÊEZÍe¡ÙQ!çMê弋ÐÖ Õeéå¡f*®´È'°¹qü×È×»þO¯gØÕe(΢æ/|~Þ(“‘öˆO߬~}ûùŒf–>òßsö¶áÙfðÊŠ—ü|:~§Rüˆ\ŠŽ\$&ALƒ– æyåqı˜†¢¯kõôÍ¿àB>º©…GKŠcži?#]n„B·îö»ž ±ƒÏvËßU#=Ð~?`ƒ;íÎbN%˜Ô`Oo¦ºžÚ|Æ24³µ±¶ˆ‚ f«Ò¤þßäÖùR8Sé̺6GÃø5 Ç9™|"ãÒ¤¢è SCàCR Žºè¦mÒ¶yU*r¹H“ñá›ãý²ýgé:wÿã@öfìý‡$_›Rd A\ñ"aÂ#„L"\  5Ù®ÊkµÚ5Úív»]®Ø®×kµÚíh*üºÉ'‹e³òß—7còÞÒ>‚°BIƒ ÂBHA“ãürìîä»qï7ý2¦µÂCdŸãø¥{0ýR¿U/Õ«õUúoÇ~ª·Øä 'Êà2¢ÇìK×Óõ£Kö¦x"_¬Ÿ{ö³3 Ù®3²œl•ûÙ‡õ¹Ïás”¾¡¶ž ÿ®e‚7ëýþ2’Tf ©–aGP¶¿À8熡”šq5É2¬­$´ÙÆþL¢ƒ‘ oîÄL*9QvÛ.U\Š!—ó±¿rští§`™œT¸DœU8<¢(»’=iØSN•ÛeÓ´™ÊÌ1”Ïàÿ³Pµs7Æ›A$ÚÉUAù…¤9ÅyÛFHKŸ–0$jñûþ(D²­Ô /2ª’ÂT6t( ?»"k›…¹F$dd‘Œ’I2ç ¹L¢ˆŽG(˜TpˆŽAÊeÂ¨Š¨ª(¹\åQÕD\*®\¢¨‚¨*(¢á ˆ+•UÊŽETU‹²²9QTs•È«…rç«•Ül~²'÷0¶ü5z‡ˆ$7¢ ±€·ß{±p sФÑ.)eÌ­-E PÌ$(ØU"•Y•UI³ “3+ Xš›"É6‘ZX´ÐÚ•V™Šl®iˆfYZ²!"4æÒB³¢Q´$áJ‰*tˆª¥¶‘Ša•X¥u dP²¬ŠÅ,%*æHJ&…EÌ+ZedYEªgC1(±HÒŽPi'3e ²:PL…*4 ¡É1($™š¡‚¤‚`l2B5,®hÔ©@¤ZRR‘-S ̪ꥇ$Å™q!(-Ž‚4©R+”UZTRH ‰#¤S6¨–ŠZj’¥E U(. ¬Œ¥-¢•mIdh’ŠÂR*¢3*-$Jˆ‹ªFg)R’­SH(©Dµ•i¨²EŠœ’«’‹6Y’b¤s N›A,¨³DTQ 1+¤fHa+ :ZAbIef‡HÂN•ŠuBA4D„ª©33R‘AR±N•D˜tB¹µt’ÚZ%[@Â@©"M"ЊæZHª’‚¬³ Ž$›RB‰HʪÈ,¢DBš,¬!SR³LÄT4VF\²KJÍ¡–…k4TC©Pe¦•‰"j„†5aaWMŠe´DZ$§QR3gK5T(²R…J9Zi&U&f™%j¦frÚ‡9­ *¨ÚUÔ# ¢ËC¥ËT™r«©E]55HÃZÔª©3.…u4ª:RU$jË$I2L‰Éj)‰´’©R*DMIjQZ'ˆušD¡¤†I«J³²Q4SKLÀŠ„Í˜ªa”&'0£¤EAt£-SP•,4£fF¢¤•q2H,AK#—T4«R´´ 0¢*Ò¢J©9b$¢$AUT¦¨IZ(l‚”DkRd¤ƒ¨‹-Œ-””’„‰˜W9RÌÙ¥`™JtÒ0Ú‡T$,ȶfQs‡JG ‰d¦¦¨–ÊTQLÕ(RŒ4ƒB ®•r‰"–BVFT•"™ÂHSB*‹B2ÉHYm+%%R*®’…EK0ÉM"ÎVsIEfbjj˜œ‰S$¬ÄåG"Ye\ÔêI$’”–˜The $D–ˆIÔJE Y##L4ņb­3ˆ‘p•2ËVª©YX”XšZ#‘†$IU„‰,4бQf‹LL+5ed©…ÎY•E(µ2¬6emU1Z¬‹f™Ë +’‚V‰’”’¦²Ë+ª‡Hͬ–ŠT„fË,¶P´¥Ð1)HØX•%ªBˆ”UB¤¢:ĶV"!–%FÌ€²Œ(ª# C0Š”¨XªV„ª‚‘„²ËC2³BŠÐÊÉ *Ù¡ŠYZUVl”“¤†’u S•r‹j’"RBhX¥’•¨EkJ*,- BSB,Ó2JÍ’©P’™…mD° ²*ˆÍº© ¥AEW0ŠVEÉjeÃR"X-KVr¢.«¢ Ĩ¨•Ѧ)ª%jE #;+3š%3´©RµR)0%¤H¥%%'4B­E Ee)¡f‘UrÊB”«"°å,ª¹A%&Rddˆ˜‘ªE’¢µ "¨TÂÕE ª˜¢VTm2L²T‰5ŠNŠa )Ò,TJZVÂÉH¤Ñ¤Ú])0­ "•LLL(•Å"Ö¬¶mZªjj•ŠitÊŶBtΡ%"E åKCeš°ÃH£5SYÕRëTMÂ,­.Y… AÄ–a—2£¥™FÐÄK$ÌÙ$¨¶™*l¨“6¡HWHÅUTR“"¨Q,"²MÔÌ*(ŒTÎb„¥ZËMU4ÂŽa!j™V*…†‡MLáV´Ðáj*j\ÃÂÍ Ì¹r‘D"ˆŠ¹‚¦ÔDB¨Ñ:™e¡'H¥I,̹š"Í–Í0¬Õ¦rË $ÔäiÍ6ˆYFFm”È©LK˜Q‚RˆM*QšYh¨H‘ÒHM…KA“:E,¥–(µ0i ¬–IÓi¡frY¥„•©u ²B"çL¨M ZªˆŠ)I)k* …(90ä&(…ÌÉBNˆÌH0éÂ:†‘šªe\EESC"RŒÁ,â‰Ñ2¥@”¶¨ªVu›TŽG"BÄ¥0+HÒ’•SD9ÔÒ:†RrK„š©&Š(­C–ˆˆ´ÒT¤ÀÂ$Ä­#U*L+V’™„¡D]:Ì«Yu#2ÍNYšbXIÌ®ˆ"HKH…1# 4I*V‰‘*T…g+C¨…j…h5ÔTN–jRÔH±(ÖWYªe¤†"•h‰Í¥J¤äšÒ• ¨­HE,Â,®ešif¥•iXe'4$ÖšlPÐS30‰(‘4D´æ‰f%YÓ«"2ÄiFiXGRµJŠJ£(T¡(æÒáFËgR°ë0‹ %*+ DÓ‘«9J–„K(ŒçS:&¡Jª*ÈÄÙ…l52Jг ‹#EUji-Jº¥,²æikZt5 i¡µ%(CK”š•Zu™RHæÑZ¦ˆF¤FB‘ “Y”fˆ’VU²µ9Ì¥樅‰g%ŒÈÒ0NF•e&I‘…ePé+$ÐIH´æ•e ª2¶D©HZ˜•a¢2JAECK$ÍA*ÕPR¶‹.R¡¡•¡V´"Ô”DÂ4#,@¤,M,åY«N‚¦R•ÊÅM(¡Q'QZ²Sª"™†HU–ÉdY¡TdB!ešj”'(Ë5‰tP²:*«"°Œ0äYa™˜‘…ËL«1"% ̪²-MjÒT@éÄ‹ª‰UšH`b³(£ J,2Ži¥aib[",B ”Ã#!- 26ea(a¡Tjˆš¢¢u5k#2¤¢¡j%¤µ+AR «B¥M HºDZ\奊´54H̱,9©T©dÃ$ L…ªœ’ÄEº¥G$EK EX…³J-4JJåÂÊU‘’«VI£RTÊIUJ+-SŠBÚ)FZE‰IÐÒ­P.•$J”Y¬ÀÈ®e‘TB-2 ÊTJ4Õ@–²LIS:…’Ò6šËJT£¢Š)U’¥D¢u,+ .‰´¥–²åeRCKhhFZJ¢Y*¡²2¹XfÒ³3´Bæ&&¥‘‰&a§C 1-C,Õ1ZˆI©•jZ!fÓ+NZ‰²6TY†›(TË1ЈÌÊŒÖa„¨!‰ÓU0¹fÍ6l¤0ÌPÒKTº•’‘‰r”HÍH“¨uL­%¶ZFU…‰¥¢!H‘Y¨ªªf'Q‘¡³"µ%©aD*Y›B°¢ÊZˆ©†‰(˜«U*C¥‘©–e¡b‰ ŠµC­C™lå˜ea˜µ ÉLêrªªÔ¸‰\¨¨éš­"ˆ"¨6bbA)‰‘”†r4,ÄÆ¡ZÒ Ò4@ÂÑ(«TTËJ £1PÁj'219lÃ2+.¬¨ˆ“‘•bX²UK 䦦&d¢’¢¡YjšÌ-4L¤­jt¤Ù¡ªË”eQaEI•¨¢J¡påM1,©d‰j"¥“Bì´Ë†!Î¥V$YgH¥ E¥†ˆ(”˜‘­ZÂæ–‡+R’“¡Y¡A­#”šDiJ)JI!UP‰$ˆ¢Y’ËP”+$––¦ªQ(D+2,-ª’,# D¬#©”VÖiˆªV\Ô#6‘Ó-­%¡e—Tꄤ‘t ‹- ¨²‹SRYJÈå¨H†¨`¡ˆ¥)¡%ÓEBTBHÅYi+(‚Õ¡l¤É6„s•RÕ…Ì©hff…Br-FeR(‡EH’+(­TE—- â&……³(æ,¬¶’beiY‰ÓPªIY™ÔÓ¢‘•ª©l°”’¥jJ*\¨™T]LªÙ"‘ŠaÓBÓ,R£1T£¢X‘†++¢X©afZ%…‘Iju e”a—"Ñda!U‘”f&Ê®„šT¥D!²S´³œ¬ˆ±-–š¬µ+Š–W B‹BÃfËJ¹W"Q3–„kJ¨ÈÍ °¥ 3LPJURLåFFœ±4êˆvi¢4ÅKXZZ‚%]L–˜”U´Rff¥(¢j¬£¤‘H¨™)r*¬ÌÚ¢Í:J°+H)fIJ…U¡jZ³Jê—LÖV¢QB#i”‡5RÉÍS¥pд„Ž¥„J²Ä0Ê,äPT"h©ˆ¢[#©…§Z´%5V–VDHKRD¢”â¦t¬‹ CAT’’,„5Ì,Šä†h¬–HY´äJR&ªJ,0²NAЕ1’ˆ¢af¦¬ˆUNªRª‰’˜h–IT¢…©¡e˜l‰,R*E:˜I†R¨Q$b*¨Ze)T‘h‰aFª™‰A‡%*¨ˆˆTY…TG5“3jfG4YXbT¢hf$•RFœL,‘(ª¢Ð¬ŒPYÒË6jÌ‚¨Z©ÕE”ª‰A‚V…ÄDRéQ Y)D\Ö‹Mš$¥!‡ 0ÙfÖV¨H©ˆF†h4"(« ‘&˜•I$³$è‘¢d%’Ð+—Uš)m˜a‚R†R&j%…bR†(iªÌTPÐ+§$)$H«YDQ¤­ÄÓYQDJh¦©¨…’‰ZDtH°£T*¥šeÒä©¢j¨¡R°ŒT:’R˜kQP-fp¸VˆI†dI‘a¦‰¢$fVj©$¦r £j\Ú&¦Šbp«ª ©"IÅE He„’²LH4ÄÀœXª²R²ÌÑK+BÓ-(¢5j¨e)ÊQ¥4°*M’šWTÅ2šZL’(¥(åÖ\M6‘ŠZ• ˜TÔÈÈ¢(%‹A%4« .Š$l"JÃu¬J¹Îu0”¢ª±)1I-™IK¡R(G*R£#fYT¦RH†WYÍÔ¢œŒA:Ë)"«”Š–‰t”$¤Ë ˜µ-M™¡dD%HEEÌH¸´Ê,Ô£TJ°¨‘5(¬Õ#D¹‰H…+¥¡aÑ¥6‡+I +ÙFeÉ8d­ M HË ‰ÑU) ÀŠ ÕLé’©¦¥IŠ$$$) ’Ó#BKHjÈ« ¨¦©Ì@©$"’4¢’ÓNjd•¥W"C¤ŠH¨H¢¨³ L$«¢f’jŠsƒ(ÔK+2«2JCS  ŠÌ‘TU,Ã%KY˜¤‰˜f…µ,e)U¦&V²RØD‚a$«4­Y*e‹4••f¦ÔN©‚ZÊ®XV™Ðˆ”J¹™E,¸YYfEG"%2¨YJ'U#J¤Ó¥"Ì”JQ3 HQ3Pˆ¨Ì-•t#6FУ³KbÌÅS*R$Y' ZÕ™Õ*$´+¶bT¨«HеV¤‰¥™Ä9$HH™šrê)¨›*ŒHÌË¥é‘)a\Õ¤WL*µ¡Z¢,ÅUM)eª«6¦sd¨¦IeEÔ¬4C UU)NHt„‘ˆ+˜­EiÈéR™RÍ2µ–&¬“¬“¨]+†Å$ÄD‹3Òªê•"J­6¤™F©ª¥Z¦‰˜”²VUÃ#)ZË DÑ B­  ,¥jl–«Ø„Q&µ›A42å¥i…"H´Ä©#:JK dDR‰Ì­@£46F‹JÚK*"D’0…3f \¹fe„¨X¡iRDÅ:B†-4(*“¤–$iQj&Ò:–"´ÍiUIš4Nk2²”2æ—4Œ)fEe)$ªÉC.*Y¥†‡.†h•I¢ÙGB¡BÄJÙ¡"ˆˆD!V Xb*iK0è)šE($²©"hsQR- #"åtÒ$¬”#) (U@¤5+JKT#CTÊ$É$²U-J(Îf(Jf¦Z&4ªÉR“4ÓK¦i\‚ºšRG%¤ˆHr²-k0-B ¬¡Y¬Ô fT%K9 š‘’J´¹U ˆ©Ì¶’ÌÒ #TaH L0ŠŽ’Zlª,*£2KY†È–­V³ Zªd™¡ ¥TšXsQMZ¥†r£2Ã¥(Fœ…ETŒ%gVRˆb”‰—MCEfZ¡§MP4¤Y§$*Ø„EZ‚•UÍœ¥*¬ºfe+,MŠF–l¥ TÙ­D¤²6•ª™b¥¤&ÊËLÁ °Š‘:ÊTU ÒM d”RÚˆF˜•'Vf†È¥0ÕA INuPTá– ¥™&"¬‚J°ºQ‘Y-Vd¢jIˆ«üìß³“°±þ ËÈ ªŠ‹¿Õ*ÿMq2¢l_:¯M ^ ÐÌ_öš˜åïÀÛ‰1ýoëUaD‚©Ju¦WE¨«2ŒB#S æR²-Ž)–%Y–Q"j+6+@ÀËY™ÊU¬êIeX³(¢DZÌ´Ä¢LÄÌYjfeD¨sgYÄÈ”"²56‰Š…+E©e©³L¹ÌÉZ"ÂN*)³ 3$DÕ„f¥Jtº„¦ZE)„d”YFJµÒʬÕT*KU ‹0¢© ¢Ñ1BèeÑÎDVtÙTZ*i\­Tµ40É% Ñ1KÑjX´’‰C’¨Qš˜‘Èås™DeFVe–e‘pÄËE©Q›,4±#,°‰DÌQEEj¡ekZ™)"X¦&¨Z–…Q¥”(¥ÒCEC ¦«Œ^0‹Õ¼qÇ&”Ï—’^Ì¥w'Ô>´ž‰Ô¯én ¾=VzÿtåâÆ»h‚4N¦â‹~†)„c#'•& ‘6o«Rìéd§ßõDüBC¹\~<ÎçS^_éô“bbé³­ò*¡w˜Ë­ €=TÅûœRø†$êÖŸxéõª6âÒ2Îcâ'f‰VÔµ]”죲V£¯,|j|i˜Ùò/ÙJµ²J°ì;i èõvŠvªT¸«díd£è -ÐàJH…ü"TŒ’6ÜNÞ{tèÂjÝó¦hçxYJizÆOrËRž¸Ÿ=­$°ý ‚[ýò”äï(f Ãùûékßx> '“rË«,´÷‚|>ð /TÁA1JW0®(H-RÉ‘©5 ZujËÔo´ÎÊ8ÔJìSQ¸}iM鎹֔c°|‡r%I =É! +íÑ£P^c‘¶m›7³h½'§ðõ&ûGW†O;yÏÌ‘lâ”U£úLU p·)$B¤&EÒŠ(ˆ©•\"+’BH´¼ÀgŠå¢À8°²èA•¬w²ÜTÕOø;è¹tÓîهݽ`.á5éÀ»unyÎ) qþFò5kx o§$âwôf3)–bÍÜÔªMÙù Æü´=€†˜*@;™$d°“ÝŠ ØÈ:õeTè'@l^¹Ðüæó|§_ò.:lÃåÿŸ3Ĩ=À{‚ÿ3„xtãjàšT¼xï\ûžt¾X±}ü!*˜H|08 UïŒ@i"ØHƒDãLqêD÷̾¨|»;•ÅEAÆ4'ð9Ê}²¾Z¼å¤ó˜Ë3S抹ñýçAž:º. Ø °\¦kÃÖ&±îòy‘pÅ¡ ¡ ’ˬHK„ADʨäQ“û÷~ž 9 qÒ;ì©D‡Q|ªšïzgE?–ÔÑÄ ¨Ø´ w! d„‡v`‚a}Ò]ßÞ}æ>=EÀÈ-fÉ-ˆµXÊBHB‘dìŽ0í»4;1 âÑSß¡<ì²Ôffq«Ú•æÕñQõ_2]BÝϹ~óaŸ1ûå÷%¥è«‘ºÍ ‚`{7Ô™ƒZ×ZÃY¬ËšrA#PBBHHÉEID(©*¨™_~r§À~l’ÉPˆPIÝHjèÒÑü?PáòS8µÖÇ*§x®:àë%´N°l]ÜuµÔ©Ö­_p®¾¶ÔÔr\–iíч®Yë—bŸôzÑ ¨ˆEPÇIù•S*ª¦ËÃVxká49¾o`Tœa}à¾öZWIŒ6I!CkÏ\4Bд)B@¨T‰P$$"5 à‡’/vvH‘%ÙŸUÒ}S«/©|‚¡‹‹Jí—Úȵ ù¹•©âÒ\S¹eÑ ÚÒ®5–,Î!¦DÊiV@Av©P\*"$„’2I$ujÚæˆjÆ´…Á™ò`¨ jŠôO#jµ“k$›YUD=ÆТzx^‘ë–§6öŸ·rMEô>J9ÁóíV‹ï5!µ"]ÅR>¿Æš]/ßâx™€¨-ÙtmQÚ£µ“jCk ®üAÅS Bô±öGç,@ómkµ­º2Þáš;ÊUÓ;.Ób¢93-ίӣ°ºî °9÷Ëú(£Î+Á+Î ¿³Ô§tõàWQ{7«.¨s1À'0t ªjÀ„ŠfÄÙêœ::Ï+Á&|PCfš!Ùš@v}–ÔM{±(îß½jIoçöܧïú“íÕÎëg]£yrÕæ¼@ ùCêÈ• ¦Èzbô,ÌÏC=ì¡sŽŸ§ú]›k}þý_äc"áp‚‚ (™rÀŒ„HÉt ÷ÈòR¹„°å;@¾9³—0\r¾HðǾÿ±È——nM Ã!|(®S)ê8`áCƒˆwªrèîB¤É$…’=Ú£–:k¥{wN;S%”ÈÊÌf HÈIHK„‰Mf²òàrÈí~ç¡\DBB´žž¦çóª/ß3‡Ï0Ö}÷jú¥:ÌÌÅ©™™=ÐÖz1F“I¤ÓéðAæÌ<Ø…åI„’I!I6Ar좪¨¯ù?ÁĆŠ^ŸU?ÿMú‘q°è½œ½„[þÙôƒèÖ}€x2%ƒj¨ãÔC¦$ MžÔé”é)ìG±.À¸hK‘ä=n±ö%Ï{ß«ð%þáô³%ؽÆcé8™CŒL µY3 ZVAkf.Í’¼ˆ¼‰’Sd…S‘Eê.Àøè œMÎËRÒù܈Sµ»[ *K;ÚRƒ*)Q/8޼UyháIƒól&þévœ" ±;&r‘F@’ PåSÂ^èð×(wêüJ d’ü“, × ÓÈC{;Ë,ï%©ÉÕ©fÛ‡rÏ¡¼úÍzÑ&ßo¾o´©ÆmAºVèn¥ºåS}B|ù¦dùøf{:U¿Æ]–HH„„x@Ãiv*&·}7ÛqÔô{Ç¢¯Ez,Çk§ï vnMà½;¦yŽª>»zß[m·Î£|¬}æeÖGÏŒ;HMø#Ö” ô3±„D„’r¸wI7çéŸj!¬pl×lÅM>‹ ™ÝFÉàSÏthZCDBHÈX—Zœ8ˆÝëDÖƒêyív8s9›×|›ðòèt?Õš±Õᙇú£@Î5m(¸q ®TtI <Ü‘†æ $Îäº@LÃuæ½Ð\•÷Ï 6êðËÚÍ£Xyé¤óÙjiæl9©sê¶Òû.XšÚò`<:xt÷÷î#šæ¾ç”O¿_~ï°É÷æz2V¼Cþv i ,W"2±˜0fb4ú¥‡yý¶¼@ÛŸÛR‰$`HÈBÆ¢n!-I!¸²õ1È ¹ÁèïÆ‹ Ì*-!P.G1˜Ù9„ßÃwýÿ obÆ„ I ’$ˆ§$©¸B“r†æ:·«ª]‰pJ—NÆ;ìNÄìW)¬· Οkîëü=¹}åæîYeÍø-ÝÛ¹úÿö]^\¿¼¾¹kÁE$ùè=7rCKAૺvTH²nÙ,­ÛÝ ¯Ü.°æ8[bE"!AQ*Q! FHÈis~‘`ø÷ÕAR;¿À¨·Â‰u¾ÈòÚ(wêî’„ð#eIàT' 8Gqz~c—á …Ìz¢}¤îvKÖQ–ÿ*²|;u¤²™«”9Ø™¢'O/.Ïò·jG)yEº¥¹3¿œÁÅ8pFf±ÌÒÙ,ûÉ Fÿ£ìÀ²; „Çé8ÉüíayAò “d@üÑ r) yíLQñù”,“Œchê:8Y‡©CC¥à«VECP‡›¬s6|ëÓ¶§&»­Ãy¡©[ן­ež3©g²ÐëçfNâþ(u~XG®V¡ÆøŸÀ/µO‹B0Œ‹ÛYîê¾´uÉ·‘™KN­ŒtT½A\1…Ý™"Ê¢Ç5ïÐ::Ù…/.ð.ìÖpèܵެ\uYë€8„q”4 Á ¸_ïRg2 j¤\…B¨¹\  #Œâä!žz€Ø1致 L\r/×R“rA"§ì}Gö_¯9áJÔ–´\ÿgÐóÝ:tžù‘ô×áD À”¾DTjØ‚ Hœ 7QwÛQ¯ì·”xùŸø¡Ðî‡NžqÆÚñ…6ÔöøÖ AË!ÁtùPãç6¨XÄX6篞ÿ¤çÀk~Ì`«]ËUò¬¼<¥þMk€ˆï¯9ø´þ× týÞßKï•f† …侬<—Š!â®ÉíäiLDP8év‡6Tíèõ#£Nô|º—K=Õ<PMÓÕ¡ÐdÚ˜ =€4H‡Š6x¥©2•Ò¢—`£QƒÄZT?‰s „I$!$’IC1˜dÆÆ}€ò«•§¹_2¢l['Hé[2^[úIôçÕü˜a˜ÔGÕ¾¡Q×—B‡™” dò{é§ ãð!KÙ¼+Ûª¥âcüqÆ8ÙØC"›l¸'eW*åѣ˚Dx´r™[ÕŠNqDÈ.ðÚ¹«êêf}[ñb:ã­\©¿ÄêÞÑü-D5“„]M™ØfO4Q­%Éh«öÞC]6b™™QDˆB@’ › t‘>–cécAê°7è¾3ÿm*wÔï%ÁŽ~=úwr^ÕWƒ_¸x41h[ô^h/›G¶ç$W–Í©:¥æ‘öhИ§t´Ìe0µõ\7E1Qt—‚ó‹<‚õ(O qI2ŠX'„Z#&>§2‚Vè¸:‚ä‹gI°VBêQ:9ÏÍNŽèÎ'²}ê>õ]æ0½§ÞçÞêj? ÚlÅÃ9:ºwñ¼`Ö“”‡Œ»7°¥Úcý©¼ÜYêÏuVYd©n~´,Šw©RBzìBõLr†¯”øÅˆÚ@Ú+BI$‘a$!$‘ šX»“sÈòßÔA µz[%Ç»Rô{M#ªÿç o„çG?[¶ &G#ò5àQ×¹»r÷¡ùÜÉ v¤›˜›Ù „!–¡1U¤ ’D’HÔ¨%2I Å’BIHʼn²vG¹.®0Íwž­T|Ѧ0yùŒÍI¿ué-$þû@çÎHàZkK¥m@sy¼ÕöK®ô“ûPíCÒ(1ý=íÃXQršÚD‘Q$¢I$•L$ -|Ô ·JFn¥„ÜIRÑýèÔÔ&Ûn DÛÈmäóê ›˜[Í–Än¸./ÇãíÃòÇ6îÛ*ôïgšµPú´$²UK µ‘T©€ÈFB @’£P’Báx.¡†.‡•@Ø#ÔÇBž¦®lºa¯^2ºJö€Op^Ò¾ÿ/¿ù±óyÐ\l¹:rÅ¿eâö[†ºxc×ëÔ°\ln;´9>Û¡Ì.Ù mÆ¡d&ÚUTµqD/à L˜ BD‰¨¨’Haœ9ý¥Ð&þ¦ °m¤vÐ9é?än†þ)¤6½Úð –Ë5ÂjµºâîñLæ@¥m)ý#oÞÀvGL¹*9a$$$Œa.„Üp+¶‘Nì6߸tiÑ'¸±p ý:7£ÿÍÕ½›Zë'±Øv¿'ß#ÞÓE÷æ£3÷j—0r ’Í‹=ÀcÜ«›1Ÿ´{v¼`Ù€®lHŒVÓ,²Ë,>BðãäCžÞfÄý§þbù¢óËɤ¤õˆ¨\CŽÖ/xIžIÝʩڸÀ>hñù_¸{ö?„ýø¿ÖþÇì¾ïõK?ªÍ~N©êMÖ]R9­hˆ:ÉU3¬Ô*i…_,|Áþ¸üŽÇØãÇØŒ`tJÈâ_‡¤tbpÂbÚÈ\ÈY1K2Qr7Qèψ‡ï?+½bÐ?ØÇãˆÿßXQ¥Àt˜Më)|>ëcòxž êóEíé{…4B„’0’0É#ÆI$Œ5¨ñ@tÂñ)“^(èÕØ¸ü~G¦Iø\;0Ñèá–e¨ôtöuÙ/gNÎp5ì•ȼ@œ‰­‘./JJ…<ÀPùkß2! $;é$÷²Hb 螬»WM™Ëfu𯙲êK—,–³—VYgÅzBù,±¾ˆw`t6Å@` ’mÂ͹û€ùßaÛ€%IüxCËúÌ«"})cøaõ¿F3>¡«Êú_[ðÌÈç:ñïÀá}fµ¯šN(áe`ŸG Û±ðº‘CZLú“>©s”|±¡Åâ°7—½KSš–@íìÿË?³‹÷@Å‚DÄ¡‘BrÈ$’I!!!ÇdBô˜$¿Ç]\±õÜçžÝǯßâ15Ý; ºêz èKLÄæ©²¥U3üÔSŽåãÊçrÉ”­w;˜³/˜»«–캦îf>œhá'·⇈Á0ïð.cðI…F݉{7³‹š ˆYº»ð+}u­;¬ÖØ(¡õÌÇÔãˆÚì†÷g®ïK‚ÞQ°z.(‰ŽPœæˆ¾i߈Z—Rî-Ȩ¾áó:`1Lf™F…*!¢È<(cð¤Ç”d·#¹CrènIEn~²‚Ê³Š†¤æÊ ‰½6"ئcÈ I!*ŠK }É;æÙ°A'È ê´,¶‹E—³CƒV|Ò„¬ÍFT_Ó|ÑŒ`Œ cßÓÇXGœëF0?Oóª;tÎ ßerôj¢vÀÇêÿV÷à'Ä÷?×÷Yaã6íYVZµjÔõEO|1°æO§sðÞýz¿½?ìÿû}ÿÒÞ$ÿž´whǤ7Ži}økMÉFLþ"`Ì9IÚœ€…&lÀ#þëdÙ€E$AagÆ^rÀ¿ÜÓ#F¿€ŒÄ·Ôÿ¹"CAQ%öˆÇhT¹ºp?ZmgYçñä£Ö”0È @'„$\Ïî"aCFâ­Æ‹…&‰1L°¦â&©„”Ë C!bÃ!Q”ƒI‘¹¡RdG›ŒmâEÁ.I™ .æ2†CDÕ¤^á^¦FíÐA†–I(A$¶ƒÃìü¹g7Èáq&¹Ž&tƒb`IýQÂÍÝæíÊQø}7çC7²†—3ˆ=ÁæEJ6pä" RéÌÆ”7 ÒQ¦Ø¦é#¸ t†$"+E–CQ”H£4›e‚ä¡iAT“ŠO3 G…ÆüL^Ùt§Y˜4z¯™s¡ýdõºÔ ýÉí WïÌg¿ÁÔcÀG¢2r`!Dy‘ I%$úCA¤É®‚˜Âˆ´>&梌 õ«£¬»‚SÌdÄRbL&¢MÔG5™±%–ûÜqºøvV3Ù=h•ÅsÌß¶{GU¥†B#Ây‡‰´øñzÔÖBÃÂÝj§ÎI}„G¤").nžQ!$e ZÕº59N¡‚ø…Z¬òÀ}狈ÝBã¶åžo˜¼<‹ëPÒèÊd3ÑÃ}J‰œwrDÅwõÎ4Mvyâ&ËpF¦'ŠÁL)N*©‰HiZpb ›“*ЍîÊù*¯L¡Ñàî§…¢fÄ /:¿Ä~áHë"9AFG¤%ž:~Ó pP‡†jTIöˆ©"—¢,¿†æ1¬|Ç0+W#Z¢ºE¶‡Òñ‰jÓ7)±8÷$WœQ¦ ]#¶}Оý!ˆ:,‚Öš'«àÉ&JbùÝDض¹J®j H̶1jˆ¹ |’ϲßù×9²¢LåÁÅè‡pcJ€ÍUÕ!(±ÙpÅ.˜Yw9yXµ®lò E;¦ÆX\;ÕU"-JŽä4jÝíš(>#Tiü¨‡¹Œ¨çh©º•)Ò.b I"áµ-ÑÜîiüIÅ 1Xè­å5KTš‰ŒÃ‡;.å ÐÕÞ r£Ã5ÕQ ÷îbE¢TéÝ#¸¸B/ÊèØ´Êg¾ï&nµš¤i—È\!2ÌT‡Ú;àÕe,4x%Š\mÑÅß±jaê5:Š\vÊZw•\¼(¦ôÑzs®¬ð®EIÁ˜äÔ¹²¢:›Ì*°DJÝ,«rlA†{R9±\H‰˜°dÕ9]Œ výìË“wWŸ˜zHÒV¬Ê€Ošâ³6xàÏ vyoã¨âP²bŽ“‚ZÒÏ!7t ¡°ˆ0›¢XÜ cPr ‰Œ6u®•ÅWÀÛ0âÚÙƒ3áM¦R«2Ø¢2šÁÉ@ÌÛ#ŠÕë‰PLr­,‘H°dFÁf“/ŠVÅøPOY!ã+“°jaº‰y8±34Ä ⶪˆÍ^J¤gƒ<ÕxŸ;ŒÞÜv:ˆ3šU&S,A¯uf•¯E£Ò'ps”Š% ˜‚Á‰§Ks$|˜Vµ¸FŒ+®5Ï¥`3•õhf Z pïe´ŠÍ š%5×Ám;UÑiTêxôÔ‡W8M‹¡¢Ðln³'FˆƒÔT-²¾:¶”ºñã4|md¬ô6ƒ²»U‘Ô©“H¿ŽU{¸wã]{–g<õ zDpo1>ÆÎ$BO¹™žsaÔ”:Ð0NýdW¢6»¾=âhÊŽ ‹†)ƒh»R¾Xg„%TªŠËƒˆ´¡5Ef”-T7$Q)b+ÎiÆêÈÔmŒàïá­Í\+ ¢Ý ŽÖ„4šÀq@t¼<”ÎÇ;¬¡JAjrÛ“,0ÀØîˆ ƒ†ZtSc+X·ö>ŒW:ÐUèèŸ_)ñZi•¥µ)]Ø€næzÓ‡ˆ*Ø#V°0˜¬‘lâ‘wv&²¢:žÄ Q»FvP‹4ÕM’®t"1…Šoi¥c_*Rƒ %§ e‘ÈŽç"Y8Êã¸ÒÏ¡“hô½•ÖŒ·¬‰v{P½íºÊÖ¡´„•1iMUÓíìñ˜<‡…z=qPé.²ÄG— TB¾ƒ˜Ï$TÚÓ!£æE˜¶$¤*ÍÍ]”´C…NHÝŒ0Š @¨äÁ& ­´JÊpDŠD{óEA£ÔUbèæ›Éô‰¢d3xšÜüž|õ¦9Eh–cj‰Eº ®Ï Íç>„UÔ£®sœç×­ç×ZZÓ0g)1O ×´©!†; KFØŽpH(ƒdŒ‘€ƒ¹‡î¦!_& I˜ÕëpsyÌž\÷(õyõìèÁ8RHôa3 p9a£øçCé Ï‚]¶ÎFšå xêU`ÈÊIZ 9œX85âÀÏÇz-#”ÔQÊ@$fæÎ )¾sRi˜¤.¤QCá§O¨ë*Y÷ñëzi™À®DM‘: …ÂÒd²˜FY D6CT06xÀ‚m÷Tü©LÆ[B|7—“#ˆI»­•p")=u™»>«Uޝˆ®d¦(0t9’@pøvóHGC›®HL3]#›œû°h''†•ˆúy3Q'%wÌê1šCµ*®u°{Ó-)ü$ç’3ìñ™3“J,Vy÷Û)މj0êY[jé« E-ÅØU5‘KΛF£*©­lÌÀLPXjÉ¿5M¶(17u¦°a¶‡e±¡ƒ¦åk$õ¬Û ”¨ÊΦJS¥ oˆæ‡•ñh‰Î_KËí} ucrxZ']Ùœu“Õ©r‰Ìßa…é^…eU#ÄgˆyF QÕ)ºIAâW°ì”›‘//XÖ Ãa¬ +c…ŸYÖàäÌaöÒ•¦©<3±«“ÛV°ÜÔtM¢‹µZ I±Ö’ΕhëUj!ÊuÓ5ÙBŽì6ìéêùÛ]ÅÃV³Ä·$e"HÞ0ƒØ^VœN)$‚1Uk–à¬ö‰ÓI‘§óÅä´ÍoÜPn,aGGçPÜa$MuÒÒH Õx9í-ë°1ÒnޏE‰dYI’ðNɤЄk”R/°Ó4³ÜŒF];æ' Ga:ÞCMO4,1L^ã-Of Œšn¢é,=µ*qT¬ŠTj\ÝÆöÚh๲»Ì·'´+&¶´_•²»!« ÚŠ‹EzÐÂH:»’Ìa²Â st–·ÌƒQßÈÓÏÓ;Ttìm¶›Â¶J> ZUE)k$uv±ntÅf¡YŒÞíä÷ŠOA¤é7!e}+a…çLŽƒ×¶•|JX@¦'hï:KÝM ‚4Ò³ó¤Òw–±Ú PCé‰éBÉñ³nÑ Œ¥4Û°¬)V§é‡g%ÈN8ìPÚƒJ©Fwƒöc­¡è ŒRP:¯CUß5°®òX>ˆô€Œb‹<£Ý…]¤ ¹=µl[P´©šÞ†´~af¨ž! )Åtíyç(Q5l&*²€Vm >Pã&<,ٺ蕕ÍNt Ì#K£>Ñg\Ê}k gLå«™’É(‹)Û-fí #®Ý¶m3›'ÛK[EAF‹"6¶„1†bÜÌJÀ’:ÞmŸIë¬è†Ž1Î!·f‚‹bOv6(â»ÚS36Õt•ï8`Qwˆ0‡½žŠñ#ºÓ{ÅV ˆ†/dîvÞÓ éLd€ù#¦ çk/µfT©Äâ’Ö×ÒZB4.´xÌø£ˆ­©:J4¬]G¹<ƒ‘ëd_mk*FQHñÎb#ì8Èmˆê׼ѯíìF1!¦%Å-G®ÀÞŽH’††­±O_ÍÔá´-]ìZ(e !̶±[±CX;ºùײo--Jl¾ˆT†‡çŸÞ'LõóNó` ×u´Èu¬èw.;yzï>þSŸiëhx€âgiˆh:-$sëoÝ˾3Ì{Ú5ÓMÅô^¨$’hå£p’é ûi¯7„mé&ÚekÒRÚþ¦‡s#™Q#害Bî{ݼ—<¾¯ºÚ=CMßÓb{·T †t•²º¤ðë–ó ýì®tß2¢qnÒõˆÌlyjø 44ó9ºou]±ÛÇ^² óç/fzå¡8ÀžY縯.ÇÔ!kÌ·nxÍáŸw¯{ÃÒ;ÁK¥{îÑ–9 ö?ô¬MÞÍÒÚçËyâ²hZíìõ”íØOB¬s(ͽkÈF;y¯Ÿøóê^5rzâ¾±æ=ü†ž¼ÐsãÆµ«}žêö‡}GÇã$Æûù_ä~”¨õ¶»šT›¡¨ƒÁ‘’þˬ$­«EfP-”@€J/È’¬P'àÖr²nt´˜héºÞKt B†ï!z¹CÇUî5‘:=+ª¨„ù/eâûfS>ýçž­îÓ *êþæZ7®É !ñÔӇᦲK`nB Y²;Œ$¶© b°ÌöêÐÖ‘–J—%""$c~Ü>V:G}rïZTNÒXêŒÛCzµ½„ïNLÚ3¿³m#sW½ìôƒBܹBb5ª’^‹i½N¤”ÞVäq?7ç~9e†‘Ø;aä@Ê b 5-æ´jþo÷Ϭú?GéþÕþ%©ú¿¡õlÈŠÞ5‘)ãµ–¦•z¢¢ïSWrêT·¯ðN!C‚ ëöCh-‰Á!ëÄ'š‘|âÈø±¢¤-z¹Ú(v‚vŠÙÁ‹Ñ‹îÕ,;5;5=з|§¬÷¹û^ªðÅêò¹ÌÞ[?Ÿ3öËVBÉr‹&fÕ–å«%LÏR¯š†HO6¡æŸ;A& ‘=àîG*&ûÄ:7Þ ©ÊL„Óe ˜Zõº««Vêå’˦! ¥_ãF8GäÏéÀÇËÕ‘&òL/˜VHPQD8úl+µ6Ë|$r¬¢MÂØX%‘3“ 8“DÊÀG1 øcŠ"$€û¸²xc$w„—uP“@ì…»­CÎW®ÎJ’ÍÆÊ$'š€‡œvÅ‹³ëà ëïTY×>yî=MŠÁqÑÇBªˆ}•ú:~4ƒð<ýãñz|Ø+ËòÀþAvH*FÈìt”Þ Ýé¼ µ²*Pdœlñ¥, œ 0HÑÅ(ü(©À’ Æ(Œ ÌhHpÐ$KPE‚`ƒ¹aU¼ •‹k= ¿—~¼&âôD)Ž_®áCä …¨ÝÙEåÝ«@µmí>_œ¯œæÈµ#'u#a'œÉÙ /É2Á•BXIUL…aJ„Yœ.p¦EUú[Ú&HåO^e̽nͶ„å’@Ê™"uë\+—„oØ÷yÄrAêCê)_EM½}„Ì…ƒ+û¿[Ð: §BáÀ°,’O–½ªä ;§^¡{{ƒ‡Ž¢Ìv?÷‘‡ë Æö°7•7q7ªáj÷¸ŒÄ5º´cÝ~ÿ\ŸMþo^GûpßÕÀ†p —+œ“‚Æ=<¶ x0[É›æ[ÊÞ.Kx¹<ÿߤ=)ùÌÇçfc°¤zlyÚ;·(§æü É—æü„’$-ˆ®L»Ó{<¦s7¢ÐèªÞƒ5dµ¡·VôWvK»»vî­è}Å™› "¯†¸‡ÄÝlàA8=“#K‘¼šrÞ"4,MRZ§š"ÎFp΀>Œ HBHÆHBGì Np$"ò“•_ú"¸wB`O¦Y¢žjœŸ d_6I ŒÇíµ}­A¿×û©]õ;ÈètïÊõ©²r'û>€|Aøà`®ˆêæb„PSü>¡Ð? ”~ÈD|òN^o` †›f»40pŒvG!‰eU¢‡î÷*š0°™{J5iåOºËÓ™ o9Št$‡Øc59ÖN 8E6ŽHx³Zw04 Á#P„•A$‘Wf];7Ó¢¹®ÚÔ‹ã#†¦†dÑøŠOÏxËxrõCÆ«ÆWbüÇö½Õ%7¡î‹Ý+Ã_”¿)íäIëOÀ¿7©C]~[hÝ=iê«NM=˜Öî¾bìT>»ŽÌkA'À`øÓøŽa–Q9As¢2dŒÔa…1S:ˆº³ª¬ +HB Ô<~Lzà w¶M“ g "("ˆŽ\¡UM_é˜ß]_Ù^zžœ¡JÒùð’YRöªrÀˆlM‘´ÀÛ·^žDó|é!&àT~Y­N(¼äººuwV:—S]˜t%þ hœæY9Œ4Æ©©URÖÉyžâÏi˜Q·¨…ŒŒŒ„oäW ¼€Ÿ~#ñIUEUO0O1õà#ɘçÍå™B®\Ÿ [>+R|XFK%ÖŠñ~ÉŸÄ´*c2²BBx‚o@ÛFd-Žþé…§îÖ6Á¶–‚­õEåú\¶w Íüã¶m!¶„þj#~Š¥#HÖ¤ÉLµ–HAˆˆç#F˜Ç¯.fž¼¶ééªÛË×Ç4p…ÂO ºUáK¦^ºxð©ÔOM¡tòê'¬§O^qk—ÌZcÙi–ŒÔ|Ho^Øê¿)â!ìóžjøO¬k:žÐÚ¡¡ÖÂÔíÍ¬Ë 7iùŒW-Ie9´ÁŒÌÊ5ÚîÆçÞ¡è~æÈÍþ«v­ÛkÙ+ßíÅÛn¤7 a7` úÁæS¾kÇÌ{?ÕDoyÎK»âº’êP<ó¸é‡ó€hª¹Ȋ죕UDÿ.Œ · $ Ä„Ü u"©Ã/ ¸©•ŒÑœìŸjr™Ïdm“l÷ÛUJ?**fõgÇ3ýÞÜM²nqeJU]Ѱ2ã`7âÅÕPÂT©©œÒ0°™QL¢¢äTÇüqóüìˆ` )'$NbTªºUôµ9iÓž‘dµ*ZIþóâìï“7¸¾ÿ®ãïWäwÐ]ôr¢òI^ˆì©ôI×®áʪŸóU•ÞH_!?ãõã”æ¡VqÏËãžORþ$ç’f}Jwן““… ¤láЂ dâÈd4 p™ £hWäyt©ø„î(hs©AGñî)RpJrÄÀPBˆ`œ~º-ˆ&aÁH#§Ê‹¾º.Y·˜}|tGÕ¹?wuLþ]É0”WåÊÈ1-ù7 Ð.UHºô] Oê矺.‘“õèüIþý÷oq~1:O×7#ß«¿}p—ï\Þ¿¼ ª”U]5xöEu+¾¤zäùçÅ1=nëÉùFË´ây‡ "Ók" $-ŽkÕÉ•S¡‰Lã™b¾>öçÔBù—Ì/®i÷CÍ÷Ü}ïÇÆ!÷NI<‚¾÷nWoå×Ã}(.hŠá‘PþÏž:ÜîüsÜ!Ñ$þ“Ï#óe:ïžÇr^}ã½Ï’KΕçGDy& EL„fh, ¤ÍB5j!2Ù…^‘<öw̯Êù“ÒÈÔ8kYë»}îò—âp¿Â\¥øò¿-#~ºïºQGë…ïß}ëÒDW:TíM ‰\þý9rî´yPý?®÷ ¿Q¹"¿.Ý:šŠ‹+÷wLçÊë×ÉÊü<âw?”r_[sÔ÷sœòÊз770¡ÈÑL”£êqwç)çŠ(‰QK/çs×ãÊœåßw¹HUO+¤’aEb–Ï 3KÊþt{Ù¹bî¯[÷í?7Ñz!wí¾úîÞÊ7î¯r¢ú•÷‡ŽÃ‹òzóõ¹¯»/¸%QýÒõ?:dï£Õ¯BL¿¡ß_qð¯¨Ro§Þ³Ç¹Í~ty|Ëêò~_qòœÂýǽåQCï^®õ—'Öžý\ýZ(U™ó\ÂÄœãžqÑ×ns*¢¿ž÷ëß("Í4i¨'E`&eC 6 Ä– R°Ÿ®¿ ‘TûîDQê÷'•ëñóÁ^Ž9õøù}.¯žî‹º.…á=ÌsÌœþ2¿'ç~¸-ó~«›–’ŸÑú÷;̇«¦®âA}׿>9é~âæQ©ËÖƒîŽ^e™9Ti<ËÒÍîýz}Y½ÛžI‘ABj^dN×sþç +Öù99ë„'wwÔy÷뮳÷@nNrÉä ç{£ªN{ˆd˜ªïz{z¦žîèOG“ߦùSä¢$‘—Aƒ-›¨ ˆ [P‚4BwNs1s|þ^ýWâ ¡Ãõx²$B$¤áÀ8%SaU886€m[«·wë—šñÜ »Ã*´CçZñ¼úÊ<Ùù„Zû׫Ýz„=÷ÜÒ?*~#÷·ïëä ™Þ¹s“ŽDз‚Шeé…€Hfe†h‚”šqcÍC†¾y9ŸÏAÂ/¾½Þ*äæî¨ãH'êÝóäê–f^9¿àŠKÝŸËäûÖß}â™/PçÞ™äENw{Ýäf‰ÅSæ{÷Ýð²sï[Ï_\ùG2‡›¾»ãܯ-õ*=ÅÓH¤#Õw‹yÒ,’úœ÷vŽ«@ôª/™ÃżîO¹´Žráy•Ï«¤¿—ã÷×ó/ä'®B …͘NfA¢«¿^Þþv~œ„~žârþ<ó$´4އyåÔÏÞæY’”–<ßÍ»òôLO`‰’u‹Ûv-&K%U9ŠI™PÂ!çJ§9EÒüÅÉ õ9>÷{ù|pøƒÖxýûžõaîã¡!ÈÐB*¼’~{Žwx¼‹äó–C¥<—ë»Ã¦É÷«çîmódQ÷º^9.ýûßž.ŠXæë}B*£øØWž;Þajê÷½xùøõgê\Å%D¼ÃÉ*ÅúîâßœwÇ{“ÎSÉÅg»–wžðË/\"¨ˆseÞ‹×tî¡þ—®w–B…‘Â’S¯uÎË õHÔ÷\ðäC“ž99ì¼P.³Ïâw¬Bªóõ÷§/ñHùõdèîïÈ=È:ªÞCºÊ½èº'ÈpT<—¯'"žn·ñûŽ<ÇçSWân}fÂzžÂ´K¤:pôð›È{Ö_Óòs…ßEÝùéò2o×~¹)È«ùõÊssWž:=Xåº9pô>}ÞWE/P©S£òÝÞìô+‡çÜ~›‰~F‹®¢¨«<î{ X_©òJ¨æô{½Ìä‰&©‹“…vºTú÷­Þ9‡9j]ÝnâÝÇëëÊ¢*¨û›‘úç=gÑ{Ýî»Óæx¶©c®)õå½Ýòõ Ê…~ß½óǣ鞡/®NOÛ‹¿8û¡EEU›ŸwÝ*ÜûÉí}Ïqò×<ÎÕßrûÑüݯ'¾÷˽»ËH¢N>^·?¤?~#ä³ü1“¿:È‘z(I?V»¸îZÇÑÜÏÏõÜsÞõÏžy$™_¢^;x¹#ÅÑݾèé‚÷qÂ.>n…‰o;“t%"÷êã½£óÝÁ{,%žøý‚µ;¨I,%B·Zô¹tK¿åÏXS“ºrrÑü×5w3Э/P¤¨¼1ý'‘{ s*ýO¾dîK‹ÖŸŸë|~}âëóÅÉ£¸N;)¹=­70¼TùçÈxy‡2ha ¢ðÊïÞ#Ò8D $‹èÞéâ%j•É2?«#)ÕäŠÜœîa’{©Ç#0ôN$‘ww¯'rKwxE<½Üp¢´HˆÞï{Õ¯Wνc߯r'¨õ(¢Ê5ÉÛ«òÒ‘,e¼óÌ‘R! T‹’Š ä½ÝÃ…÷õ#wHßu»õWç®Fd\I÷~û‡Ü{¯7ÕžoÊN‰Jû‰N«•2“¯wç¡}!áܧ¼îAp»„ÙKÉ=èJ!9„ûÖû¯cñ—ë|îSæ©'w‹:ýÒs˜÷è÷o"äE–ÛÁ1HTð A¦ j" a«4 iÎTúþòï §ã÷K‰'Ü]S§Nß®-úú~ñ¥úûב©˜U~{׸§EaC«’EB=®^ú‡äYPëÁß}sι–M?u?¾üö÷^S¼ð.êU•\§¢Í-(—p·å§Çß\Œ„{£—ˆÒ²7wž/»só˜€à„ ƒ- 9XdD·fª%#n·›ëJ´>¿Ž³Ëêjk±èBKöþ7p®‘ÏÏ?yýýíóò§Îü½ÞˆbÈ‹¨Ožês 0ïžâŠrÕ2°ª?;ä÷ˆù'+÷®‡êU¡¾t£èX~¿iÏ›~?uêRùܽO¬-ÏvºTZ=Ö}ë¾÷«rIúO×ÑóòåÜîzÜtœ¨P•Mk̉è„AOM%–FFÊÝÚªªëEÑ+½×+ÒsÎ\Ö0¤‹ %ú¿»ñß?L: Q†×äcå|äMê2÷\‡„פõ—×eôÿ§Ÿwâ_J’( |<åNCø£¼¡ez;µ» ï¬O«'›>ã¹YË~ª¾÷¸õ^¸O }îãÃ|ÁÄ.«Žv9õ*z¤œ÷>ï#]ê÷\9ôKP+׫•K9ù“¬]O^îN_Û.è¥røoÃÜ{Þü÷äúg^’·í>qóðG×vhú'÷\Âÿ÷óG¸šTs—ëŸÜ_¿}ÞD \£P*§¨æ!î'ýë’¨GÒ÷@¸Pn.}ou÷\Žj’=÷¿=áβj—ÑÛóܼ’ÉÌr¿\«÷· ¡èAò–«5…Ÿ'ý§?}o£¸b=]Jû ç “®ï{ܦG'¢+‡’ç¸YÄæ—*„;ÝÜ*­Ït·óû½ï»º Ÿâä=<0„þýo!ï\“Ý×~D§×'(.ûÅîõÍyò§‘|<œîOâ…Þˆòª-øÝ,.Ò§$ô£²ˆ»×(œ‹¿sUXy …›BÏ]Î]EÎGp›çÝyàôˆ_#÷=癄D’d”AH\‡3)èîÑ}yÇö?ŠùŸŸ¸ºã´ezž©•÷Yþ„MæÝÕÜ+Bœ·<ºj*†è¸»îàG ‘UDô”%Ïž§ˆêÓª‡êPQüŸ*¼Ÿ!t =÷çžK¡Bw5$åAü/QÉÃ]~'†ˆ¯qÜËÝîvÌœÓ4§»Ï çÝÛ¦b¡ü{ÉÒ+Z jN^»»¹Ó|ñ>üöûw–/½ÁäQªcç“bÉB‹%õÝîÅïpsoËñãÕEêÜDG?pxè×X÷J§­+QÕz/Ro2)2¾ï;ÙO­ü½íè÷~½qìù)¦t©ôpûÝÝ)Ë[«ù:OÓ|ÙOŸt¯¿iÛ÷¹jĈ$ ÁvØ Å°µ„œó·!øñù{¼Ü_G/ïÇã캋^–w?¨/Ä=ßqfQ%?”w’ò.}=‡ò.·òg?ž¸V…08jKèäybõ!ùéo»Çµè¾¯-½ß}öùAt*‹¾EWîåëÏ-Oäus¹*;»žyóg• ID~âÝYw“ž~æçg$•;É'™f7ãçpHø²•_wy$|MC½ßž=Î))ˆÂBRŦõ!ÌŸ<œÂ«¦g¹±ÓõV"·w9à•%d†sY@Š'W»\¾oÇ˸aÞeü<âuënÏ“¿+'‹î@ê%DŠ¢{®IORŸw»Ú´”W{½¼w=¿ó×Åg?‰~]ÖÞȤ½O¨sá[øü÷¼æÉ÷OŸ'(¿„_^T×Hó9’H4óÝ+¢afsè¹Ò‹V:G^ùî/ZVUTQDI!¾‰©Fd!ÑJóýnñÑ{Ž\"'ç¸:"ßêó'—£ç·{Ž@ù‡ å!¤Fo"‘ÑZQü㓜r‰Þßt祤§?‘9Ê9)ó‰´Ù‰¾îçoÏ­ó'³‰‘¾âIUIo8•ÝѹåHjǣϽÜrrKbD泉ȋÎïò`;{lj~yÜ,“Τ—ò¼EDP¾yS‡ç‡Ÿ<;æê>¤ùu}w-oW#1 «ç{¹;»Ž=}væhîüášÞO¸²È}üþãéúÊ÷xgŸÎ½'ñЧêR<“¥©…Uw';ó×Ý|‡ÌŸcÎSލ…]÷OÕåT—ºÏKiäŽ÷Bî|Þxóó¾?{_}ã˜iŸ“ƒð|<”‘BCøwrtwÑÎä}Hßqqiý$ ª(¸ø“°ˆ/}Ä÷w$wrwå“óèÝ{ÕÝ®Ûñ³7´J ñTU&æõÝ*§­w»”r*".ë{¡ÓîŸ[õÖòúòG{¹9+îç¦ýW'»Žî·\ñ%Ë*’¦ª¤CêÉÖQJ<=Ä”¢ùÝÄ“?>O8õ(ŠÓ}ۻ_Äç“è^­óî°²Ðû­Ùú²¨ûßžð§çÐz·Ýo‹®ç{§¬þ»‡²RÔæ=õäWΔ!îýwŽ…éáQ9ã´ ŠG3÷§šª!t%b@ä÷BãÔеäãõNõNwurýÇ>|ö›–£×¯{wÍÙ}Ýwç¡W¯uÜÇžªìnè%®´‚û×ãK–zÊ>—ÜA÷qÀôNÜøIÊùñÝëšbó]Áú|ƒëéâõ2’T_G"üù:iÚÏ6dû¬¿]Ü9£ŸÇ¿/wÏLŠHÖ¾nªÄB.Y¯w|©É;•çœÏ\‡QTÈîK*«Nª'ª¡êãŽåU^ãŸÔŸZ]õËø»~_qÉÅ÷)Ã'"ñz.¯ž:S+õ9áîäó!âôrtTu.94!TéI©TÒ$w9ôpô§Ñ‡׎ңRª,÷[„S—õ^ ó‘'U×rò¢‡ãÇ´.¾î_“ï¿çÝÑóW<+)0ŤòwU) ©‡æ>ú•õf箄ó çB%hªŠ‰î¹Y<®Ÿ¹ÖFuó=ë¾ër©âÀýwW»Ï”õ›.­N=ÑÔ‘îǽu>`œ]u}O(áè~¸QÞNémïϾ÷Ë6*ÈÈ|v¿=Bãw¸ã¬I $P¢:evVzã™>~ð{AE•rý[s5n|÷«ùþî_iAjjbùà^*µîî/Ånôîvœ4 ÇÖäóæ¬Nr£ÖSY'‡róÏ/ϼyý÷yò5¤‹ÿÊxcI‘Çbbô’ÿ¤8¤› ¦Ã`a’²ÈYEõ…–­U… "H»?×nagßï£î†þÖ;ß‘÷˳žu»GL÷ÝÈ’Áæ=O¦Z²5‰R™Ÿ"ûïvQ\áU=_åfùº„î‘<—¼;“˜¦á Ç-»»ä>|žl®xjôGVhô}ÞQáèîÉÔ'P4(¢ýõãϸ%Q´ç¦³ÉÝ9«ÈO»»ßÑõ„DäÓÉ ×#Ì>÷n÷p"s¹ Üß{ÞÉâ-Ðs~Aï'¹Z%‹Qß^_!+3BrÈ­¨Q˜ä~èí}yùûâ¥e†‚h$#ö—ñúÑï¬è0NÛbB`1&–|ï-b…óîþã§o¦üc ù‘qä'Õ‰™|ôò¨«uº™lI½Û»ÛÉ Ê©ëßž;˜YÍoDùî=ZîîMçÇJ\Þˆ_äŸ<%6õúïtTÇãÄîè‚JýG­1Oò{'ê÷rwמ[PHÒÖnw ×t£ÐÑøéç+îäAw.C|ò(åw?ttÛ»«]^¹:¢–¾è£Î÷£ÏžzT˜-¸’£rŠr# Ì(÷÷>ïbDn9%ëwZW¨¡T„üw<¢Oﯾû§nyÌ$„V’q=Bwñ×_'<#÷ïï¾·ÍJ+X'ÈO-i}ÊÏ}ÊŠžôB‡zÓÒ‚ï2 ݹUª½Û½iBßK»î{φB}Çv½ÓÆVª¨‘Gè;Þây:¨–¢fjÔ|ÜN„º9Ê÷ÔóòH.ýÞ:u^NNú9£õÐ= (C(®zº\Ö‡NIÑËóÍÑæO¾îy÷jmwr<.î:ëó¹ÜêeÊžü¼ø@_¨zæw/דʕo]Ü÷_å0jqùô•¿;Ý]ÞpÅæj'ÝsŽ.}ãÓû‹¯’ABgozܪåùû¯9}Þï;˜èº)…¡Y•Eþ¥——¡EçwÞá[§®¢ŽÜ-U‘“®lçp”]/å ½žã³ïryœ¾¹ûÇ{Ï/¯{Ü÷sÈîB%»‚È„´/Ý÷m_3Ç–²•ƒ÷ÐO·²Ã0‚è¯Rç¥FE2 ÒòsÍM/<ñ'½^<ó#Ôžô,ÎÏÚxE’Ü—Fù ¥æyÅX‘I½ë²+ÌÏ„îîæZʤž{›×uüÝréœÊA;ÍžßÍúîȾ¾c{õ?}Ürº^¹ÉÐê+®QE;ºíòH#ÖKqY|‘ëùžU8ù^>Ot§sb;ñ»ôÉȤêHÞïÎU?>ê¿Cô×Ë•ÞdQÈ;Ì“…ZTd]L¿žñ¯•ä™ò{Ñ}|ŒçÝ¥U®‹”ƒî!óy§æ’®»…÷]¾¹{îÄît¢¿<*t[ÉtˆÄ¼„ùÄîõÌ¿¸“Þ纒;¿oº]ÇëÞôQf¸ž–GOqHw[*Q{Þ÷†%¹î¦ºÝ»+;)1,MQ4’i'ÉÇz¼Þ³"‹äçtæ³èz?Lçп;Ý‹äÓ3„yáÜžISºº&W«.çió¥ëzÖætŸ2 ‡èÕIæEüd?(ò·w›–"R…«ÅÏ òøÁä• ’rµŽ;Û‘h‘·qÏ%4;J-¤ï×Ǭ‰8Jåw\¢éÓ*sÏ= ‡$¨7ÝwÕÅ0ª½Ñs_{·z;—×%ëÓ*Š/ æNîãçݦcæ£çTÖš¨žNqó'>xwV©»¥éÑõ¹çÎàNwwo½)ä½H¸÷GEPuó•dÊÓæO!ä9ÂõÝ´©4é.®Óš#5eÄû­É”ÍEõ{ÁÊ‹õg͑ʪ4SîÛ•Ç秦—Íï¾ò;|ëép¥U .U ©%^¯ÎîW8ó#øÏ›Wçç¿_£àå$&¤QEd‚÷<•5§}õêm [l%EB-Qe›¨`‘˜uô«ôHùÜá:œ¡-¢iKB".h}r;ˆ$¾ŽòX}.¦]72rZVúÒñê^—(C¡«ÈYVE~t òz÷nO;}÷»Éwq6ó‰óÏ<Œ: Y%e(ï­Þ!¾½×Ýï½äó‰ä™Ãøë¿}ÁΛS¤²2i!¡‰ûžïÓ>è‡Q®uä¹ñĽZ hArùîl¹<ÞOs%îää¦Âz÷åx”>Zò~'œz©KóòðW¸ÒÑ—0Æ„d)±G›º,vrü’HÇÏÜ{½Á+«×B$RéîžúËpÈ‚£+÷–+îçAI빉è{ºç¹ë—ŸÇsž÷Ž9—M~›µKêïÈïïeÅ¿ž»ï¾ò¾<ÃÔˆIQ¹Ü==Ì¥÷ÑåQr‹†‰_áßt„ß]Rt}Ú{ òQ?9?i¿ã'2¹JKOÜR¨§7»žI(èäêb×uÁE êi;·p#¹æ[ݼœÎ…GÝs8»»rOã/¡¾ï©Q ý ¹Û«®âr‹¡êÇRF>dôJªz‰˜½]%'®ä™uÎ~±>Çiwâ ‰¹Ò]õëºU©×®Tê7wÆåëwBEÔIs[¸îQf’¤t¥µ‰&ÎF7ãy_!“’>{›äûÒ‹ªÇ’ÎwäÇ}IÐÇtœ[â¦NFˆBZÍuÊ!r]ºî—ÈO#é9ª(jmò~ÓÏ’ÙQhŸ“ž~Nïväå?+¯]v9zˆõÉЇ›ÉË»øc}éEy-PZ‘],TCÕÒ…ß=ü>úùý8÷¬æë›‚ÇZw“‡’d*kÏ9õ”<®â¶œs¡&ÒC×5k×ã÷ЦGü¦Çö1Ü>Öý%ûŽ÷¸T©¬ÊG>ïqû{†Tùî-'®áÔW»{£Ç©9Š]•f$´+»Üw3î{â½”J‘"ÍWRJÉï¯&ôTÿHŸråʤ‹(äLçwI&túx‹r?œ{ÃR¦_;‡…g9úº`_$u2Ô5e>Hæ>CçÝ Oî9ðË|Û’wÔŽæ>—ŠŽ‹­ º“æÜ§»ŽŽŽGÏŽ”’þW+‘>EhËœåÞg~'<¸ƒ†è.…WM¿ÝíË¥ˆ±S‘7Å?wy=RúòwˆŸžè¨%%H¯nu"*Ö9òRK÷w-f·Ñ# BH5‰‘B]Êé‚g(Ô“?˯Çé–I¨ÐîáŠ)^¡Nmù´¤N`ç„9DfW(åë3#S5å•Òù—¹;”‡ñ÷ÞûßW“Ç6~ŽfN¡Bq;Ï"œÔ6¢ôsʪäû¸äÈ­×/ “ÔÔÝõ Ýî/Kçs6OG“šQÐ#ÝľŽPý?;påÊ|éªE¦'J¨³sdzÍ+ø>âóÖêºóA?æSw$$E@¢¯ž:ù5ÚÛœº+õÖ9¾£âÌ)Qš»A%…‡“ëÇ"ŠÎ„_V»H½" Ñ2T»")á•ǽÖ“›’ÃRôrpóE‹RÏW8‰%’•±:»Ýåw“›¥}O1[žÅUÈNºÒWsÝÝÅæ÷¸G ÊÉv…þ+ŠI„²ï9Ï;ï׸]êÔÃ÷qÉ"ëõz÷LùÞddt’ïq÷£¾kˆæyåèĸ’8¦OÆêuù_0ž³×IÌ÷v%\GuËÔíÌÑܪÚî9Q] ¶s’Rg]ÝÍèòyO[‡)§#Ê™gÏ<„‡¿/9ëæèùþGr)R |èä>OÓ"ï4B»Þì§ïRqú¡>WkÞ»TB•óÙê(”œ³Žèç_\ü‡Ž¤ÒI%úƒž(Îï3¼ˆ‡¿;¹<å^:9óä\¦â°Ö+?Ÿ¨òeD~P" ²®OœÊ•3…¿]ÜÂy{»iÏ]žIEËxO>¡9aOÓ*z›Ã÷¼šª$[>õï0ÌNæé–SÉÈ¢qs”9<>xsfÔD$Õ{X5TÉÜ +P)U2s<:dzÄî.H9Ó—W×=eÜÝ)ºå"RQžü~÷™ÓùCÒéeKïž<'î,§×£ñóyîwW{Ýç®êüîê©hUWëwYEÓÎùóï’^ª°ª·£=(/5 D΄‘û®RÝu:ZÍ(´/C.XwÎÏÉÊî¾nUW‡‹‘Çùç‡/B’yOqåOe'zåhî0¹G )˜adèª9»ïogÕ3×egTTüðöh¨‘WÏÏ9è<Ôª‰ÎœÂ”È# ‘˜lê¥ba½ÄT’N´‹wZë*ävå¤HJ…›$+”òvC¼ÇrõÈÊ“Ýnu>õÓï$zÄ…™4Ã9Þ»ù=Büï'ý{Ÿ£©w»¸­Pë‚^wâpˆõùÚ:;žSÌ’IP¢ÉSçŽeÑʪ¹^BétôÜœŠ+GŸ#Ö÷]Äq+":è—öžé‰wäG$È™E's”åDE Óv²9EM$~DœæaBd%~§©=ß>çÁÊ$ª×+÷Žèf÷væÕ´•y}ã°~÷NWÝi$^¬‰VÍ)§.Uºç)Ú»¡,Âèj=ߪ!_9?.ü¼‚£Îùç(qÑ?¸û‹Â1gër¡ÔˆU9Q‹R™NL¤ªá,ÂRËïËyò"(+,ºdîûˆ|Å#3Ït’¦æûÇqRŽ÷rt¸©uÝ*ÿ»m¿Éõß„ü®9‘&OÑúãy\z*”Ü>ñÝx*š´Kó½ïpI¯âÚ}ùÜ?{×¶üH~¬»åd^ûÞ=áÓ;’BqÈôLÎ’X‰FGùZrç©Ùú9/¬|s÷sùéyõaI'òîÅSdŸv½K9M>U™õÙ9ˆuM»ƒ†&‰D#êõç*òeºî¹Ês!I–IT–µ‰Ç{¸w«æéèîê)èän{su!ïÄŒ°°7®ëwpñwÜwW¬²,“¨r7ž7&RUîáQ^æù#Ëî•ûÚÇ «k¨w{¸áÉ÷ç¼y?:¤?§^)pŠ· 󯻇._Ý.äÞK©÷IÁ-"ýÇ9Êï$™šRƒÜÝÐżõåãî}Yy<îq#AZ<ü›Îðå¥QE<ï•áòLézXc¸[Þì§zSçÎy—ÝÜ¡*©èº¯v„U^­e¥TúŸñI>dùî!¯Ê8B諺j‘¥þLª®áW%÷ŽÏã(}@«˜kÝçÂãÙ¥¤¹·B©¢±õ)¿•î“çž [ï~{åNú•Ù$î¼øî¡9ˆ\Ž\´¬×<ˆ;—H^ë|ÞŸ¾÷N÷p»·jgf”\ÖDîî'U=GL'©9•2ªÕ§,äsJ¥R ·¬IÎ’M8î{»Ô½^x¤\-Ñ!Éç^´Šª)îŽÎ^¡D˜.asÖÕÝVä†L‰¹=XævtA ËËñääåQ‹T²ÅÐÊîXrqtõÝÑÏ=wz÷AÃ×£—ªWœwYH@›žàŸ7®õúïwçsȪU‹'ÃÎÈŠ(pèJ#Hôœ¤ÚIªSrB(£Ò´]ÐòÌí ,*¯r‹Ž^Zt„+)ÝÄŠ.ÝÍWêý{¹QŠE$›ëJóyº=ïpûÖŽ± ïÇr)È£½*µÝw[•‘q;“¸‰]UÝÂóg’dË–MVŸsÑÓ:vE¡CϺõh~!_G'9V¡Q+4¶eeRh¤E»´®ëó¤ãó»¡%Ó$ÝÓ§*™t‹/,t×½ ç»O6GÒ÷PM´Ÿ7­åEê‚w¢]Þk—î/Y¢˜[×:g¤OX—qò;£“•hì‡9t­ú<ï$:q'<÷äyá<‘ùIÄžíÏ/¬Hw%¹ËêGXŸ¹Cœ»„<Ïtsžîîµõž±æñ*‡»¹_-¹ìùÁÈú<"ît#ÑÏ ÷®ãùAóÊ"þ8•ßfBV΄Ü;ËÄJÈ.êÒ²LÙ¨ó¼û¯<ù9UçZhæÂó}NQçï½#ïÛïKè^÷/ç¶åÏ8DGÜG ê•r“<òsÜ÷]Ý¢—ÎÜ9|ÞdA{¡^nëuiõïXý'Ïðüï½×/婟;9™žBNEùßwÝòq~W{¤G®íO+±Ã©&”JÃK$"ú‘ÊõóŽyß$œ´L“ÈKË¡¥*hÒ4)V­D„ºè=è&Dè÷é±äP¥].ù&®úüèÊà ï%‘xKží+Bå99Ý<ÝÜNB¦ºŽúÞqìï3Ï<2I*Mºç‰´¢ .•Üà‘éùîÊjeŠ‘JŒµ çõïnu¬úåNK­Ž:ÓGpó@ýPòXÀºŠK‹ƒ“,Þ`d³æú>8\}{¯0Ðucœ#¡”J¹ÇÂOX}c…tÔ.‰¤\)¹’âáùÄy_æ|çïp*ó¤;¶9_RœPýÜë(HH?QÕ[ñçå‘sv.”V>ãïCÕÑÜUî.®ëî¾Oº\þ¿.ý6E²ÕæMתçr£Ìiß´÷x{žéNMÉÊ„õÝ©‰ËÏÏŸ$‹•œÎýõûü“É$‚‰~pNæI(i!ªNòrõ}Ç­Èy]ä÷Gfj'#§ºú½UìЪy%pô,‹çšªj.Ž[¾ïϼq&™+ÝÎ_›ÓGKÝÏ7Á”ÞNœÌt¤îÒªšT&sDŒÏ«£wJs«BÝÐ#ÙSò7zò pÊþÐç™ó…¬³uq©"Ÿ~\‚¯¾èê˜eÍBˆónß«qÊ„ÕYlºªRI‘@8R´YÙ¬NG÷Ð/)Déh••2LJ;ñ?y‘™)Eè;¢9»» Ÿ›£ç.Š˜ú9<ž;ÝÚFÖ•‰±Ì÷7žE)ƒÏë£óø÷’*E„™óÂôSõÝ듇IóÏoAÜÒ|œå_xŽrËB“-C¨zžÍo“•8|ò¼šy' …]”ÜÉ®îŠô,òr¼Ã‡så•Y½Ð£Ò‹$%UB"¤Eë½ït(‡42B®ªk¸å'@Š+·ÈsŽE]i3Ñ©²æ¼·vS¤ˆNeȪMNEî”ËóÉÞ§%Qs=Ý3û}¹<' ÄTˆHˆÝßt¹|- *ˆªµ–h‡Ä¥ChfêÅÞëÙÖ…aDÉȪûÇs"“´ßÈÄe,®ú8žâ£5†ª_ι'â9…Ù£ö—’Q>¿\[y˜õÝOs™y5úûÜûÑn’ú×wÒóÆ•;˜„+”P'I¥rYT”J‰9Dy4™EÒN†¢nèì]ÜIÏt/é7“?«áÏ6Ië¾ô<=ÝÜZ^¡‘h¥y{¸'u£¨ý;‡…¿ŽÓ˾å9BAK‡ž$žpªH6[G_ç ƒ½÷ßH¸dUþNóÁêQºË·!SDÈ‹]ró:ÊæeUg“÷â<;ž=î;¨wu¹TCˆª÷ôº|“Â) \Ê»¬•s Šœ“ÏIÜrJ€Ú%zŽršIõÏ/¸ç˜•fg„•ÇP+ù=×»ºBd¨R¡|˜îIrïºËüZóÆró2"¤©QËü¯zÎýwœ $±LìŽW®w!òÏ*=uÊö÷BïzPG’eJ.¬9å…)ÂÉÖjʇQ.brˆò³9ATŠº7"ŠsÈ}ï{Á=õ= œ‚ƒêD™^º°§5îëùW9v}õÏ‹Ý"ú¼Ê¸áF³*:;Ž$›÷ݼ“'– áìœþžMå+-Hï'9C“~ï{Á#B½~ž’9†sÎ8¡ˆ•¨<„ùý>OûóÛÝ`†q++’û¥æ¬õ¥¼“žî]Ⱥq÷G¼ÙÉP­ù× ç“!!K#!*«”‘o_{ï¼õ#Šî²ÌåëG×½/7êžWJé‡ekÉϤœ…ÍÌtßœ›•û»¥Fû‚ëCšÓˆ­?Ž;©Sûôl\¾üxäRgOíÒtÍ Â寘rLNãªõÛªõ¹S©:ÝÖ‰RS™3ÍM'2 ÃÌ #2²ªî{•¬Ný§ ½L‘:B—S³'¸î³RÚXëHró=77''DwÝÃëZá“ÙTNrè€Êƒ A·0 Ã$L~ ~DŒBVpŽ7{‰²yÛ’"¤fþOü¼ÿo±¿ÑÃ8ʎ£•DTDAT„"Cûþûÿ/š|Ë/o}ùÍdN;'o’»ÉÝkL¯ekÒä²÷f å—DA0¢ßH„–xdAxÀ&Œd!· F:!ý 6 0¤„‡6ÿ± ïÇéÁÈŸÃî“Èj¿¼ |IþÌùqûÁý¸jÚüTþ´%û#úò:€ .#øðc‚€h&ì÷`nÀsAÜØ L ÈTŒ² »m ù˺3WfkŒ7%[ß>Qš¾ú&gíšl_Úabõ§šžðxÅ»ðËÛ»Ïr £Ïû³!ëï3æNÞ_¹/ºÃ*v&'rcüsšþϦaU«¬Ýpÿ4ǃ{¶?î…Ô(ŸÛ£þPoׂexïú ¼sØÉ/=ù1øy?ï/9y ÍuE˜]~oÆ–Ï´cµ¶u¿µµ/?aÿ˜8ò]êëE{‘ýfc!wˆ]Ö^ÖgÎ9Ûe»¾ü°å)Ð~Ãþóºû'%‹ÛçÇñ€¤ ¯Ðeý¨u±ìñúÀ 'þ øÇ ?ž¿ÿ ŸêAŸÿ8qü]þß÷ášKç€-&Mú°J‡Ã÷?‚Cö`2ùÂéþP/!ÿ4Í导r®L§Î6¦û‘ÛG¨ý¥åïÝ29KV¾áüôÉ[Í`ç,ó‰y/nv¥˜]9ù ÔÌbáòEœ¤aà²øyŽÌ¿Ø©È7Í]‹÷3zZ3fðSªI>ÚºtàKó#P‡+º·`ꟿÏþB}vœ¸Þ3çß»ßï;Y€òý72Z¢^‡Æ'¦!P†ë‚(NˆÔß.ÈÞÓÍ?é-(»¥¢‡ŸÉDäÏó†ò]N ”¸G%$Âò}DDh´ %"ZŸˆà…§Ø; ȃ†FQ8Xò#zŽ5˜€‹C#5Ý>4aƒAûö÷c×´?ؘËÄuzüºÆÕúm_£ú¹øFAë`ãôÍóù¡/w§f…?áùÃ÷úy}þ’Å(qò?¬Po>/oø?ú»/ï~QÓWÿ¶Ç‹KÂmçç ÐMœÿǃa;áø™päH›ì†8@… &ÏÒQ€_Üs"ãÍ#"h°Y‘–³"U(X™åRÅ ]±ïø@&ºM‹"Ôp@{s¦‚‹²(&Ãø’÷ÍV—”=~/ê´vø‰½ûçOijuÂÒ”Óó5ý {òW¦=/ð¿·}§ï>ë°üR !|wç¿…¾áúù‡ÎØâ1§Éùx…ëóõ”Y¢ß8ˆ"ÇœŸÜ-Í"g‘úÓ€cÊ`Æ/@¾S£‚‚ÁáÂ-Ć ìñ„¤À˜ÏØù~)}oüÿàÏâ;yK|§ê?+küXûûWù”x}T#¢H4bRpqÚ„ ™¨Q§˜H ‹@²s&l2Æ÷_RÐ%bˆÐÓ#C‡6Wâüï¨S³ü¯j÷“{ ìÿ› OUfÞ¿{?Áþo^³¹}õ´ûü7¨¿šZ…qr }ZpEH‚|P¶iS$qiaã+4a³Ä÷á"}ÅÜ÷\Ù5‚‘ —ÊZsšÉS"LÙ"¡†( û±á¢m†ÈPq¤Ž$H€ÒÉÄÿÝù·ò_î[áŒ/ýíõÔ/±¼½¾ÆëýgËö´ù“ûÒŽV¡-ËÞ>wo£÷e×ÚSÕ:ÕÔ>múÔä-µ6«IÖÿrÛüœ>Ü—Éêr×ì½ïåñýËó¯mþËÝJáç¯Ê¢_ÐŽCì/˜q>-˜¦sÏ=<áÚÍ—Û€m9ÔÛ1“§ÎWùEð>úûüZ>œü”Î¥Ú×/µX_·ø¼}WFêÉ+6! ÛV#ó~Ù5rÒÖ¶ùOè§þ y,¤<^Ÿ¹ø¿gY†’öÃ3§à—ßCÝêqç_=ûÃý^>.¾Jù_Æ9Vâ€-"a‰b•3A’DCH àM„§Ëì(8±Ĉ!Ûl_ Ò1þ•eï¯ÇdúÛ|Oâ~j{o/>Oµæ >ß`ù~WZùwçÔ0‡_îúþæzùzן«OO¡Ææ2öïû«ÿÕöñï/»oð‡÷~ØGmþN 4–Þ"áÃ}†£8þÿÃù'_¯Åçíø¸ž’®žç¯Uüºž¡_Ôñ¯Ùëú?Þù÷ç7×kë÷`)z/×çóŠÚ÷æiï`Ï]óùU¾o—‰ÅíÉ!{þä¦6vøãíÓ·®~Ÿý›[WúNcò]>•u¿Æý]ý%?ž—ŸÑÂý{üCÙ¿Aï__÷7çåøý·QµÜ¶o/o^¡õô.|8 wí÷!Mþïò¾Í½ÃöùùöÏÈ^zé/Öýp˜CûÀ†»§Ìö|»çìÿ®Ó#_?|=ä|û»nñôý¿œ´=ÜõÚ?n»ÛëO[H*;Wäú´öw÷wÈýžÞ+á1û^é_ëþÖRlï¾{pq.{{ õŠ7Ü0²ê.:ùú•¼ÿäb{ÿáh!ïùkñŽŠ4ò¯ùñWýg·úc׿Ð^<~ùJ²óA§ç}Üýwƒñ/Ùý_ÔüŽ;Æðs-~oRÒïé÷É>ÆÛÚ_®$÷ýþŸß|q¿XyRVoè»NÖOæ{Ùþ›/Ù‡Ý¢í­˜—eßé-¿hí™Èé­|}¸——þ[ùuþ,wºÿù¿Ìß.?kì(@?j¾YjzýM,  vÖÂoø¹yC|Ó”¸âÞïWûž3ó{eB_%=#FÎîIåcÿOëß…ê…ÒpüE@ötÝg˜~~Ço·Ìÿøý­?“¦nì0¿?‡??ÞNgµåÀéßë¯9Ð+Ÿ‡Þ¸ê]xÈþàxpÛo›Ý¯—¤¢é̶R÷Sù^ZGô4hÒ~ïó>ÏQ§þO¾ëñì_3çŸn{õù¯ì8ëÀ‚$M¤xXáÂÐ `yXÁJGŒx1À§˜îF&úŠ¿¢P R¡³p~¢+î­¿ÊÃýnÿÔä¼?Íh×_š²zý>¶_·E±Åÿ:i÷6÷l‰ý7`7ãôsf¥¿/¬¼1³Ài¤éþ—æ>æ¿Ï¦ÃoãÿýwóoL8Ü?°‚BvìUÇ¿Xñ Œ¡ôOÇùõˆPgèù°½MÜv^=é/ôKûkìô†—Ô¶úx—ÛùõÖ¯Êv¦èF\ßæ?ŠÿG_lJÊÚ¼>M-óßI‡Î__É7¢Q#·¯»o½ð§>ïÍY{Yiàc\ܿ׎ݭµ“Ö?%?¼Ý~Þ‰Øk¦ØÜ}}M)ý}¿ëc×Je±uë<‡°}_Êú¹¯o¤¾Ö–1ÔþŸ_¯û¿²ýÁý‡õ^êG?o™HzŸåÃÇåÿ²ù`ûËA<½ýðøk¶¿äuÜËÓÞ%þ‡§¯êÍÅö Î‹íí÷½µ4eÀ¿ù^¸I£"B‚QÉ ™CA°À Zˆƒ™¦yeD&Á>ñòB&`©`“EÄý‹Œ€°à‡pÁøaó#–Te2$Ž”œà(¹ÅÍ$B¬Cö Q箸Ô3(üó¥£ÅöKë/OÀú> uó´óÕ<ôþçû lâ#ÙG\xøËx××üšüþ]i§³Ó`ZFb0Õ¨TÁ})ò}A_îü-+Ò ¿“§Þ~þžPú£øÁô èkú:r}_‘÷Yük÷qìÔdÑôŸ¦»ÕõØÿM²—2×GÙ¿éç¼ôüÁhwëN{JŸÀ÷~¿æó ­ysÄQ ¨€úÊ‹¯û<yð‹ÿJ±NÈ@²eÈЕLÄP £ïXH½|¨¿WÅýŸëΗÿC8ï¿ #xn}ï¡z÷÷RÕ‡¤ëÏOÔ7‰¯'ò÷ú-þ¯n;ÔŠ@pû5ñßÙñù|ÖÃ?·sïoÖ_Oäë HtГ&¹ü4ïÉ€@E‰ yî)Ñ`—ÅQã*Š(°ÈàÂS ŒD`"é?éj™ëþ&–Tþó¯ózþÙ¾¾›SÖ!xìX×á¯ÅØ<7Ãl‚–ï([â/£ÏËd¥»þv¿~o.ÔŽßí¾ïÜ~èÖsã_½¼D}¼iþ¡øŸó½þš#TãQëó·ÃäO¯äN ;í®Ü~ÿI~Ã_“®»^X­á>tÌ$8Ø?¦ôê9¢ñ)Îш‰°ý[¦)0t†ŽK¾x Ó†$1‰zEõ©ÎŸÕÇÓñ~úuô´P1Þûc§§}öþ£Uü{ý¡ßäÛÇž~ߢ±ßAŸÜñ¢âÄqÄ’R0¨^J⣔XÁPÁO«PµI°‡HfJÃý€˜J`§±õ/ŸÖ÷Æ‘÷ù}½ØÄåz­iG×¾°ø&¥šû!ñ·ï[í‰η‡Å_ç ü5ˆý­«·Ê÷†xíÿâsúÃY^»C²þelSâKØ‹ûéËþ„¹É~óÏüíI=»?­ö~Ïû—ëüîÜ|’ûìð1_1ãßÿsûïÇý֘؈ÂéÑÖ‚Ùhˆ Âì&xY€î9 ŘT4@Ð-®æ+²DðÊÌ¿—à|_w¿vÓÌËá2/‹/ñýÿ¯óuŸ™> ™ü>Ñš OàˆŽµª¥‰ˆŽ"¡Rq‰(þÌ¥€Fò5Šf 4D:P‰€ªžgŽáâñ¿Ãï¾/maóPK8þèü[C.Ý¿Yú¦öýÏty]sñ|>ý=¹ãžlïº|°/Éõ¡MC]og´OOô—ó=°iþ.ðü²úùÃ[û/»m“ŽÑî _·ãæûãoû¾ ×êü€?w“üÿÎãªr~¿…ü¿“à™ò¼SO´«ó|zü/¥6‚û Zû~ïØö|:BwøÏãý¿°OOp—ìÿ'à0ü†O½STÉÒjr‹(–FÔ¡Òg1 ] E Œ–]P!‚ñ©<-! ÝôÏÛý·í!8¶±)Ëéý ßེ—é~ ¼±Î8ûü}Ͻ·Üü/ëó}ÔùÛöf÷J°©ð~û°||PÁü:Æ¿2=µ?o×É~I%–l€Ñ¢GsMhò­Î0ÑÐîB‰ÛŠ@(‚F½Î Q‡( ªAƒ\ œF n}(ä(M˜ã“¡ÓgBKÁ‹áf`» r2pAœž*mÞ%,µÊ Ü!¨ËR#Jä™Áh ŽRAÇÁ4X1ÀP@¸á繄řÈÍmZû’2C"¿¶|gïŒÛ×ÖÆ%íû0‡öÝ~zKî,.¾k~Ô°„–Í¡°D;ŸÊXkCÌÈ@ˆ4ÚCMP8h5N “@Žƒ|^íƒíÛäXÐ}•ÑÛ¿¿êõö¬Mw‡o®Ì'·‘…¿Ôתgáç'¾â…÷,ß‹ñþfí»¿‰W£?pn_´O£ë§¦¿™ò¯ÑÎŒo¡Èýþ–×ç¹þGêÿ'œ}‘§_·?<€%mŸ«K/Õçù(ÿ·þ\ä£ö†-n@xÜã—&¡–‚YA6‹‹¶bi©Ó¢– g÷$œ“0ÁƒNÜ!ÓÄ€Xe‚¼u"›2$(²—‹˜x6˜ê‰ 1²¶ÛˆP£O5уB!‡¦ q_½ïïÿkýÃí6³ü_ÞÓœGï|Ú{µ<ûëÆ~ÕŸm”G¬7¦¾ßë>ˆŽ 8hä£F9:æ0J’…G;‹"öɪDJ‹qÐ",¨DB\CN Ad†²tŠ’º3áR”4M’`™hÝßìJ ´!6Lƒ§á .ä#ªS` hC¨P4¸C¨ë³VÑÃó7`šhÚ¨Ä „)eÙ‘.7Øa" *îèzÕ‘GΧHƒ¸EØ Zö< ô¦Ê˜wBÀ‚g Ã3l âĺŸQ‚ŒÌö±‚F%6ÌØ‡ÂÐ!ô½˜-ÿÁ¡2-¹6Öˆ€tÂáñ› 8áçöö§¨×é’'Ë/‹Ùíü_µåyúÕÍGÎuü_ÀO*Ëæú: d¥Ý£„‰!N‘¬`ÀC×b PTQ7eAÌqh%ÉQçdgÐ)t ê„?ùXò)ƒMW“I{<ø²z}÷Þö´=’÷qrÅP ‰¤É†4Pmyaà„è$ƒE)áHéR€Mzkƒˆ´™Ë͸D²bAŠ‘*X¹„ ð'–œœ`Osɱ°„Â*SŽE"‡Å£„P„›“ùgÐÀ¶(˜*¥¢#5hNô(ÓEÔ¦"ᘠ¨Y¸TöÚA;Œ“!Þbì°00ûÉ‘°@†tq^Ø­†E²$)beT¥¹•à€¨ ÕöC€Ø©ÔD òP¸Zö%…>S¦AÁ fÒp¯’ÚC‹+V¨‚`y"‰(þóS¹@žE„ "èPSf#x3븘ÐÐ~‹Ý> êX½KC¥‚µM=” “¢B$°³ÌE Bþ~𕥄 / )$/b\¼¡}eR'‡€6 x‚룟"`AD/"À ~&Œj°g–ã|W^¦ËC—T4‰B^_³”~#R4 ¬®å!óneH#0:I8# ­èY€Éœ™jU’aR4 Ïžã=1N°‰3"†Ç#2€S™°°AK"/¨4ÎÙôZ‚b]ÒÄйxÓ<ÂcÍ+.$2ÔcÑ6€Ÿ 6ëï}-÷±Ç=pTÓgýM=$'„L£eI@à{d¹,aÀ¹.@>šMCáRíõÀJÄ'›44(ÌèX’Š7 ï\À3ðô´$ˆˆÙdKަ.]HEé©0ÉÉäXàÉÒNÒD ©à„¿ zÝ„IÇõ‰fÈLo nõ»\£Å• ƒ c¼ŠÅ§ B§MŒj@F]@+¹'ÞÕE¥38ìy·A$†dAåksD§7(ÙzÈz+–+N5ÌrfÇ‚¸è$t³0^Ý×¢ÀXbD H: I[SÓÅÝ«6C®B¨K2©Æ78`K€Â=9 0àA €þöæì<™°¨ÎÈ-ØSÜ|çG±HÀ<¢ $¸†¹i„ežÐbsBX¦,ã\ …“9ÅÉ·á¢\G¶ w$Ùž ‰THSJe´K°‹`²ÆÁˆ.¥A\‰= ÑYó#Å0ZÄ *Ç0áQ‚ÌlXÁXló†0VLÙƒ$oƼÆ}‹#$+sœdà"BsHdîdçÙŠAíN;,óßB™3á¢gI¿LÝàÒŒŒ¼ŠBiPâ±fÈ“gËl±õë¾(.ð›GA… ”׊°-˜Ž)ò‹rÃHÉöçs}„‹/.LÚaW±@Q pòŠ)nHXC£Á›uT´‹«’V^J=jS¡•°¨ DV(9õª!J–/yç´"°ÊR–(˜2D0o ‘ lŒh)Ž+d¨ÁQpbLFªb €*$2Éus’î¬g!Àf6caGb„ ä)(’ˆë§z4{´F±™DbRaF¬s£|"® ÈûáqbœÐDŒB¼„Î$£%ŒÔªX E@:w£NìV‰‡œûš|{87WT†ÎíñK¿x)#  ÅŽ`IŒod8°4HŽ WxHB³HVq–Eú,d`¸Àhî÷ƒ‰ˆG“€ … I.Èl1MÈ’‚[w†;<“øÐËÜÈ¡énª[‹V~~ú0kˆ“ÑhCBæ'›–_ËïPÜšüƒbÆÀ†"æ1þ\ÚG”‘‰›Vú(ˆ¬±mXÂ%LR Æ¿ #†ô#VÉbýBöüÙå+3/Ç%)­¾4`X\ß³ª’ÛõeGpU%†y½ÒT¤”Ê# —÷á+]œÄ·˜09ù3Dʸr"M±â‚ÞçB‰*M®«@Ï!ŸAÀ7NÈL t|yÄÆ8—t‘T޲&VMƇfØ@G>¥²$<Á—´fIF-ÔaJÖ¸ËM+ÚÀÔòV%”²)É=”‰ѲP¦E;¦G£x°Á¥µ®ÙD’d•é­ôDŠƒÔ놷.§ï3ûy Aʨd„”ñh`*ã VbLÍ:mFžLò–<± Ãä’Å(nòõ ²±K®)&ŠØkC ‰pž£—6ŠÀ°!AHæYÛhú´´ÉH¥۬Ⱦ V£ ŠŠá»÷'ŠùÞ)ˆs‡j!ß 4o9D¬ *%æ-J2f6°’ƒ"Â¥;™**ŠrTéb£&b(”-J¤qdRrÓb”Z’8üB~8NÔ¢KWV3Ù·Ñlioš¾>èR8øeœ·@7™ ÙÌ·d-H¥ ˜.ôôyhè\ÀÄåy´3ÅÛ¤s'ka K)qV¯š*mãŒì±Œ²^ŒHa4„Å>ââX2¦ÎÔ‘¤žÛµé1*Qü%L›@d?A*³BIƒ>%èRGš[ê,¤–-.8téhwbï”nb³Õ“ .ý³S%ߌ‚‡2ª/ƒâÎd(q©2LpÆLxÎÀHþ}ñè*³Ë#.9Î5Ëif5™¢€,#0e©)‚™¯5 $êö‹cð³ˆi§ßäw.DªŒÀ…}dûŒÀ0µ©èƒƒi\‰ì¢ã¦˜XN™,“QøÅ rqÞ)k" 5bdsR(ꇄ~,s$¨&ÑDìa²2F®O¤âmSÝT\;«jæQ99”L.6¤œÃ³±(‹gFÂ%dñÓMçœEƒz‡)XLR"ËÃGÌUŽz(¨iE `¢2Æ+0ïå»õ+”Žã‰R]äϸÐjœ†Ì˜”ð?WÆBXVM!~u*ømõòмt€ˆ—!Î,¤Ö‘y1¦­ØÓÿ Z³2Þ†vÐËÊ=Í\×CUC‘GÎ2T³Äµè¹ †ÇÝÞA—t øH&œj8™ùt[ Î• q\"ÄM™üX¥°z©yDÅ1\Ë0Ù½J´‘Ptˆ'¸Ô4 Á2.¥­µñÅÊ(ôR€HÁeóé0«)޵¤-“0®¿ :ûvýÆ‚>]%Êg‹ˆ„1)&“˜ân½Å룗 WÿÚ6©ƒ¼Çm£Ñ2´)m,FîЪs ×!«ÊDVPY6-…ˆZxøKXy8©ú4"b_öáSy>°*µwh9ª€‚ 7¨]ž<»0CÅváßöèBS—xf›1ÜN{pæØt3‘¯ÞÛŠ-ƒ.áVÄüäA`!ÑÕÍ.ìÍÛ·+ Íÿ: Iú",EQ׃„]ë p Û¢— ÷[K(\Ì;w'€bÂ2‚“j4y$¹q"PO½È eÅ{!D·0tÑ%ðsG$¯•ÍUÁ€€\”Ó²åêt¢ˆ‰¡Û —„D±«£Ö V§¤Ì¹ß¥:É`Îüœê3°ÊÀ—q L$Âq +„-OÙäõ®åáFÜ€ÖŽ_©ØˆwkC04œK¢“w(àfè,ª —fáMˆœ¥†aVŠ6‰HÔŠ‹6Ë~Wg&&d{¥¶CãÂê"Ñp`J‰“¨YUsó"Þhl†Ãá×ËÃMÃì§Fipm\¨ƒ{D&¥×LG ´ø§u~&åBüud¨qæø©Éª€¦¬lH dóÔ»xbRm‰Ät„ ‘pÂ+ÞÆ>\Û3¥BD².ÇÐ FD àhr¡Ø2¼sM¡¬ÑZ«œwRï‚!x¬€2³€YY¡×\…¸ÅLI8iäèúpðvW¯ì£»«W†p» ‘e塜fö®Ò޳ihÝ¢1!`tº;äJÙ½92ûeŽópP«•ü Ïü”V( Óvº ܉aD5 ŽO aÁè&Q¸R>—-HÇ^ü™ùY+0xãØ”çGñ"=r€Î¬Ö"råÓ¾P•›³¬ÈJ'¾µáÊ4÷Ò‘w‚† ç…Âã83PªÕ]“]±ædìo1h&§€*0Z½(ÜA35Cφ±2úÙéÕä•2JÓa{1)ÖR Þ:M{›ÛA¯–˜u«Hêä!éêð%­´§ì,„pEçK.¸T4Yòq‰¡MD%&n¬¨HÇå«ß8P ÕÁÁ­éf^(ræIPº˜AÇK1Èr´ )Æèì.ºA°¢çÕº–¤L â♾ÄÒ(µdÆj'G@°I©eF€›4ÝæµÓ:‘ÀÂãX˜fÌT1ê)ó!é˜ qNYÁøúqÍëÒI°§d5ëÃTÕñZÐëáD€¹lhÔœ•“µKPE:#E ~…éY{mQƒÞ\·'' Ü$ÃÛ"âZ97rqOh§šæx%Գėp[Öp‚ˆÆ<žå¼ƒ'Eõ_æÇ(~‘;·>A}Ät#é–Ü/‡FŰ:ý9¡©0çgpë³w8ôì“@œcÍ"ƒF Ã…u§ OMÁKƒ˜›Â)“ýaˆ”~·ˆt”+ªŽUâyyˆááƒÁ'UØ$u:˜"eÆu@yÖHoHC9ž‘ŠqA¡ÆxwŠæV•±-ý2Å„ ÔC#‡(z¢¢ÝÁñ öPê¨KdÃÆÂ±¢ÏRh‚÷½ÊZÞ‰qª®(>ž Ô\FÛ‡ÖM"äà&aJ­ÂòSdb´Ádü~ÚÈ2 †X­›­œš=£¯D+ˆyâJ\&†Ü©“¶‹”:¡6bÅÜD‘`Ki qõ6ÑÌÈWQ×&F9£G/£œÌüRú[¦‹æ²ƒ„wc2ͬ°º+>(yƒ« Y'–Ñ’f‹šÜø{AÄß^|kŠ2–zÒ³”Lï…Ð?MÀlEð¥BÙâÕé¯ÆÛ­=líSbWEc£5ÆÝ!E­¸²…Ÿ¶Ô:z9Y¢%ª—‹fY\nkâã¦gv uqáè".ÍÔ ¶c|M÷#î~|›é¤åHc@ËG«bí\6¤éÍ,@–îÏá{w¥¥ãÛ»š‹}•KzMâ™) ˜AɈE+Ë”bà5!ój™øcdª«ój4ÎPÕEêç¶maY`»ƒ–Z8±ZrƧ¦"í´4‚ Ǹ9Å2žƒ™þGCÏ·öE)]O!Då.ÓË‚¾-ÄçþIâ¯À\ÖB(Vd”œÄ) „¡*¢€É[ó¤5”VÃè•Vso΢I€úµåÌÖ“Óqæi­iËYzNŸ/›•¿sÍ™|¤,~°U{(ÙWXX±8ݬ$ûl÷'RIk¶>â2±r“ü*c$Oø®«Nˆ‘œË*3·DôUxl ¦ÀÀT:9GÛÏyˆº¼;×FÂêµÕz ­«}Óí¿ŽhÈ»9ÑÏòûZ’øÏ{Ûâ,ié™Pm$‚¢Û0Dß&$!”RË3zé("\'ÕM=¯}¤j¹9W¯ãœ‰õ](ñŽÃ©2":žŽÅSö k\=BËH^+ÀÔ0 GHÃ&p´”\›·(oòõÊqèhMû¡0B> 6ýªTý{H[ häËh\ÅÅ› /6¦a'ïcÏĤu®üäØú*§È£\Öãæ±ÄxHkËDð{4ä]\j1XÎ×VAÚ4Í«*uPqt[Íö~LeTG†•a}ˆË¾pãsS$äåP"ä S9 6ÍϯC6-L íFØÎžù3ªC–&m²ÚOÍ3Ÿo¬gxyh 8‹#Ÿ×\–lz!Ê€\˜’ÜÄâÕ Þ¯ä «jjíF÷AJMBÄ lªëYD¢Ïµ¨è)Z·Ïzs;…µ„ê/zÝ ŽfÜ=?1‡ƒnX3ô3>£Ò*6гMáOê‹Ï½©ÉŽoòÝï—(pfªöù¥wvO ­R~»ÕKxwï_âÌáF¨X˜š:úû¶üq4bfOMâ¶VNtì`èQîïàtØ8ÌÎFm@°¯° T’¹­š5¥ `gñ¦(…œ)UFvérî-I–à´OZYûJäo.A»²Y±pt*E„UUJ‘ú‘ñÎ-ÖæáõæYñ¦Š“7Ú´–=ºN<Ìɧìm´¾5ƒE6p]R°A(bb`;‡bÞe<.OÁwC’þù˜Ï$Õ„Ï“Ênêª;¤%îÝhW{Ñ"%f®aºöwÿËÿƒ}þŒ’!5!lÑC¥k·&±Û^×:°Ž¥½»ã[öžW!ø£¶íVâ’KÛ^¯†–¾z[©Ïà¸_ÐÅC¹N\ÜÃ@QoÍ'uÙz&ª—n>5VF'òíù†“3t}þD³”*«ÂP]ûHÍ×~¹ïm;g)¦v“„¿ïòMt«Š±OñR£#ÛzzjöOܘT°ó5í\—s³¦YÍZžÝ…iÓ…#ÞèRãsb2_ßÙ‘g-<Õ0f댇v@ ìa½Xmj5eµIWÌtêhxsý(̶χÑ'ÑÈËÍN·k]cÄv?³ª™ 0.Âê*$ȶù—óaMSÞ­ÙÊ‘1¢¡èÇ8\b$'ì®#1z‰ÆêiÄzAdn çÕÅ eàÀY\T·Âb0®òaz½={M$M:Q(mp%ÃT[ŸÄÚÐæ®¹"Ò¾Ûû)^o%æÔV"/fí9L>1¥(*m1ÜêL®ÓŒäŸ§±²}•àæîù#¦®g !¤—?Ô8(óÌ=yT‹™6g“oéé€'¾½Â_ÍqÂ€Û ¶ÚTðÓS@ÍÜ.ꋚ0FØ–ýž$<’ØgßÂÉÇO™àYk/.Õ»W ]j+Î}éàR÷ºd§³/6ç›ûæ·´ýæ#¬4ì ‘Î¼Îpª«/ͼÝ3ˆ„*ðp;ôÑÔÙ;úšØœ *Ô~̛ƒxд¹ö³:!Ú„7w-{Àœ‡PsÖfýÂ.B¸ <~­»Û= ÿ¢EúCÆ3­=-·{—‰¥ÿƒè­½¸6ÀÔÍÃÖÝñQ™©ë ¾íîØôûT=T–82Œ>‰ä&ëc¤ EtA‘N-¼èkKíÖFm2‡è_û q;q˜TOY©y!;·ì7Ã&~©b¨—É+ÖQ¸¸Ýèx0yQQkú5NÐ,ÓÆDÆnO°—ÑÓ䬜0äìØh`r«et©îÓ½ ù2$ÿ¾ÖÉ]#[‡:Æœ´ jmG7žÁÛÁ»!}o(¢}M¡W'ÙiÏNŸ¢ƒ²Ý¤¤CõýRÞ ÞÙ*{~ÍýR ºŒ:Êà”œ1Òó— 3õËy)F%òr{K!]ˆ–¼”|õ-Tª×õôá"Üd¢ÎõP#(éÁ~Œ ¶œ!M·N„÷\õ6©fLõ9Î?ƒÇþä‹}ÅÌ‹ý¦o¹ÉÏF@6Ùˆ˜XëÒ€òÑ:¦šm½à*jfcPÎði!¶š’·i –îpµÂèŒ|NU»‰ŠwbÐå œ“ÿB:¡Ãåó#-2'JÄà÷ÿË"oøŒû¶o‚ìê!’y±YCc`æýI¶È°Ûdd =ÚU½a™o'Wv´˜àtßeuyÖ ž3¥èÂ*Äñù‘òneŸ©-\9ž7Úµål`3w'§¹FHo`æwcí‰éC‡(h|T;ßýßÌÅ­öÿ¨ðö§»ùôuK\N•ÿR3wïbhÙHI…M´¡R¡ÚQGÍZP”|rL"\þ±ýŽ=¦@Œ9ÌãfÐrã±–¥8=©JõQ°û¨úFK!›|LMÏ]@½Â6ÇxQþSô^(Õu©…h㇯止F%áù/ž+™}¯´Á˜ÐDÉS"&PF¾4~Ù¿h4TÇ>¨}æÑ»¬4¿>£“×âOŽÿ¼ÙÝG@ñ×za?ïÓüÇŸ—`qç%„øMûª‡ˆ»vór9IÖ®0zô+ýþw™þ@ÊËa½­çNCA*­G)è¾¹õûçʱ»AW²÷K¯ ²†K†ëyG)Ã" Ž}º-í›{Ò“&Æ+¿O¿¥.æy¯{¯Úzð *2Ñ̲­€™tâ2§Ÿ¶¡Ynš_>ŒÖ0|¯•íãkÙts©ÑM8åú§F÷w|ïFöËiü—¿ì8µ˜°iSŸ€©{¦¼ÚuØk Îîø¶mö7Q6yÒŽóͱz…b"W–«"x¯LSžñŽ@ØèNW“*ºR ÙÈï5þvp•<2üñœ”aG±¼“½—ÒŽ ÈĪDóªàÞ"„2uš26ã?0^wr´ìIƒWE+ú36šLÿG®0ÇI«®íu Ç;ùåYÝæÕ ‹%c'4·.`¬LÕ T¥–•ð·èI˜„¤Ù4êfävë»nç;D“×Üù"Jˆm0ø’¹¬ïåCj,ê—§¨Ò•NGòŽÀï7§³Hóe8÷â#€¾çr‹<Ý€Ž†E8á¾m Î’>oRòU¯üx¬V¼’À^>ª©†‘°z©âà-80lKê4u¦ëî9A÷áÝ]ÝþKd¬FC¼ D ¿3;æVpâwãn–—ÄÄúô0½$&™ñ §øaàDE¹1Ç%šBÄã7² Ñf„xHŠR*´´°ÄAs`õ×ElÚÌwuáCñ-»É(&w- âÛ¹Öúrú8(RcH2êØÄgDÅ(. ëÄŽ³L.rãUg|ħÚVbDÆØ;´aU–#z’µï·ßõ(+,cþÓ¸SM%ˆ.[: DLíMøG‚ºð¿Åš‘Êle¦ÖípbDGoÉáB|œƒ‚Æe¦)-ýTlYHAñOê„»W?4f½/Ç·Û˜„ÒÞÉ Jˆ™güÃbuë»[úésr¤ÎUÆYwüQ¯üBÎ’ø¸üÁâoÍÕ$Û=Æßjn PÆ@\{ iÉ#líß(,íSÞæBT_å](kŠ!~üþ†´„؃¢—Y·#O¦ï´|štŠzòMØE¥_lï¤d6îc3Pø*@SRþ!H¯à÷9¨jÏ_¬N~¸t,ù:„±fb•§7ÒŠÖsÕÊ»¨É̬mü¤ÃׇqƒãIŸ(Ì(ªüÌ29˜"hc6§"ÇíÕp[Ö€à>„ó8QÜÅüýÞÛ¥{Å[λä7,œµo¹•þvÂàÐq½U~ln\ÜS£‚ £Ñ»J»ºÕ9ò>,x¿Aùoó+3u—‘··X?í5[ËÛ%:¡óÑ4zñ}süòI½ŽóÓ\EWoíf8) ŠY|•îÇr+š:;ö¼/Q ´Ôd¿bÖúŵ|Ü4Þ³—ý¬LzàH¾R÷È{?ÞÏÛÔ–®6D>æXÝðsÙCµÚɡ޷ÕjÖûÎïÀânqé’w{¯÷®7qù?×Àù­óÿ6{ýà {#§sõ·)Ãþ9)(2»LDƒä‚SY'¤Ë2:`ö÷ÜXnœäé<ÞÐîµ ËžØZÌÞ«O8§–ô]~_ag<”í9ð:»ˆ'÷%\jàCa¢¹6ã0ï?Þ&±Ñ5óqúf‘,üÞ»%ç·~4ß5Ë,Ù”ä9+£(û†€ë6èçßèú…ìï¾lz-Y8r³h×'%¶­,fÆöøž«tâ¹?õSIVľ°JSÓ³Cöñ0ðó?™P"\ }>$­ïÙ‚gEöóI÷äpâ¼¶''9“2•¼xâÿ8·ßA×73$Æ*IÉ /šY>´"sã=0¸éÈ êÔ¯ÉÊ‘%ÍÓ웣(õ^‹6¼Ñ6OÑá-·ž $÷†nâ1;(úUD¤7:H&/¸ƒR2÷F§žüŽ^2\ôTEÞî©Äz¡!ú•£ÙE“ìØ&ë 6Ê®ÿÝuj³íˆ¥Wþ¢ç;ëU½E•½ý]¯°8º°[wžýº=á§ÕÔúôm`¯^åû©øS]q=»÷úÚP5Ž.ûtû«ah¦îë˜ÒÏÖij°6FÔKhì£<Žz'É_¹Î„öí[U|Nø=åçTJú„LØsè7 N ²P }‘Ί¦»î‚”\|ÑR¡‰@n{?gÉ¡oB`§ :&È5E#À²¨¿ž×Y½ïÀ–10Šw+5äîÈ4TâåO-¶G4˜¸CïøþÚ½°[b“#I ÙÊÀÄ@è@R9Å\ÏМçEækY­¾Þ;ÂU“õJÂ?C -lšDhԪ˯œ$ä ¨º>³ž/œáŸ)˜Í|~ŠÂŠ·P|{  çg†íáÙ«òf`W:"N£oã°–ÿ•¯7OEèTʹRsà;/ÙO Næ–3€ÛÍÅÆîû¥ÐU.ôÈ–©n+Su/B!’g.4x <]’ í×uª0 áèZñpäý¯£bµlTÓÐÑîwÉ|[èÿ0[CýVÜsÑNNÁ«ÃJÊnpi9DÛÔY[¶Œð\ôAï%ûàz8_S9n ¸‡7v®µ<Úh8º¢@êî0W]_×9b4ìn©¢&Ž-–kë»ñþüýÝÊ\!øçö}œ¡e·þ«éʤü™ˆåtÅ‘ƒœoW/ ø`×&Ü-»Güw$6‡Àƒo·c©ôe-ä~Ä1‘MËóãÏÖØ¬!§™Û¸ªÛ³Rñ' ÚÈ2nB>ßu&TÊ{©Ý>O?Ææ&©!·vdÐæR¹»¢ËaË~¼”és¶¾ÈÜ6ÜÝÛí!c+9uÙNÁgÞóYá:FŠ|Œ†æ|~y›*ÏPPPß ÐßUßÀÞ)þ˜´:%à.¾ÌhÅ<ß]ò€Ù,¯ÔEÂË.hMÿÏ2™!çR1Ö‹_ôä=@(—N[ç¸è›PmlÕmQë5l<¿½„ÓÙnÜÊWrô~Ñu½ùãרM-Ê÷ùj½ã"¼=yƶ;<¨s1]Úá_|Ÿ³lÏyÚJE=t)¦‘×[õvOsìsÓ50°°—Inúª6$ÿ¿p“†|¡Ÿ:w™|Ú÷Ù,wÍ e/æÓÕgôcï N0æU±0À—O¥oXÿÏçnwÿ¤ûÉ%]!Cy‘Õ€)aù?ìTü՞ɋd½Êx^D3ÇTýnë˜q`Ÿ^*FE¥À— Ò­vœñìðãg%]€ÉÌ«¤sÝ-ø½6k ,æíöCìG[Øç(IoÃç&Gž>Ú–UÏ5—“¹åCi¿xZ»Ð1Ýy§ªÑ6ª¹P6n:Ýš ~+m¬NV÷sõf¯K—Geˆ† ã§bÿöæzœ[ïJÔÁ=öv” ùÿ6ç˜éößó!ñÝ~~Mœ“—6ãB/u‰¯qÒºE©)&éù7rÛï3ðu] ­tœûù»¼º)Tý(ˆ®¶äL™pÓR6ò|h¾SŒ-ä­„ÉJ¢Å]<‘R¥D@RNŠÿ¥õuàölâ¬Õj_ëÎaø<|p(RØ95?Û(õßÂíÀ/³ˆQ®ʪO¯Þ+ßµ¾€¼TEÏÌàÄl΋ù.Pwó—ßÚÎj'Žá™bùÑ…qpØS­NC£!Æ  ä;¦TÝ}¼ý+'Òd{}v–Ü:¿zÒüPæÏn×}øAù†‰»í蚤ÎO.ã8ñ3ENß½é!á÷ø\г qß%œ¿úK(øðÖŽjKGê®ïâMÄ>ÆÍAñó>înï û¾Û¹y2l FÀ†ß_·½£1ÊØÇÜðȟ‘˜â¤kÞƒòûŸÈ,a€ñÜ÷¾©[wAvc¡Í]ß&ñr€Ð6±h²78»‹ènÍ`Œû»)„§d°²~¡'&Dö·æ½Mò*]v“ÀÄ8#'óT“øÛöÆxXóü-.z€ƒ-A³ ퟷ˜ÉiÂÆñ‰‘ê®äVGu÷áÙ»Dú>«>!ª7ÓuYö\osý¿f.a¹t3=Òœá꽸‰C®mÎŽ<Œç Ž ç&ñAµv¦§çX,GÙŒ™/;·ß:>¢¥4=~jM¯YÒZÁîíÛÏ”@ÉO©¹o·@Ö ôíÕWõ“»^/Õ“*þ€½2ç}ff¾GÎr[—kÇß¶¢ÏW©‡9m^R–…˜Ågé7—¢2âè翦i¾†Æá…ÄN¬¯4Dûp*š›àèø‚¼]Øk?w´Ï.‡éñRÑM}½›®ä'`ÐëÍŽóñˆCtèÈÑWìʳSg™ÂîYà í\S ©˜þp_TUðÞU'¼îÙÅÀ»½ ш·cYq#ð¶ÜoÄçƒj°ÿUOÙõõ£]]Á2áXBÏË1mä¿v^„ƒ;1«·4•ÿ~Ö;õ/®ÇlÅdø=mã°âðù¾3Íafø¿oZÙÃýòþšm°|†m NüúqOvÈÿb¡À¡ácÔðøÛj?&5«—á’û¬™{§âåîr¼RÁ·“"öÍbÞ’þõ©#ϳµ=âß!·ý$¯\åyÖrí:{Yo%©øÿ;ƒ‡JØ®>âÔmzz^Ý®i± ° îEç»™ƒWöHnµ¿>=­lºCñ6®1´Ø¾6 2ûmñzŸ Ç}MX´….ò«”èvú ½½gL·•Ý>×+Õ“Àõ½ ¬@¯»ñ_CS&š>–ûÁÓ¢ ^—˜?˜Ó½øxÆÕÅ÷zh™Îi¼Ô£ôºh?UOJ$Š*:[êÞ|í?kDùJ¤]eåßf™Ö7Ûô׳¡òHy•®î1ƒXñ‰úSó}·µ_vnOÙ’Ê2Y¿XôÊýI®æ~ùˆGçê6ò;€5¹U½=ü€þöŸæ¤ï¾ß5§h|=Ì”%g~ji3­U6ñô‡sãçÕd’QÓVO. qôKÇJ`ôNçz§»ÛEú> CÔÿÆþLIOÃk/d86ÝB¹Ÿ—v ™*þÿ퓳ƒäêh,1õõŽ[ÃŒƒáEµ%µª{âƒÜßâÝZÜ0®pÈS¡š»úÏÚ¯4lÌ©F†oîéû÷,z½§Ôÿ›ñ÷ìCnäšæ 6ÕîÖÕWøÂ–aÃòù~ûÅɺÖëWZ⯩½«(wz%ZÏ;¯ûî{+Ùþ“=;çÉo?cÀ˜ë­‰þv œÎðõ{‡ß|Ëæãü–.¶T=ßçZëþn1-;p¼ÐÓùpm>ng²vуÛÁeíïeìKÇxsí9º¤jÎs¼·Þv©á›ìÿUÑçù¯¥ã/çz_?KKƒëËÊAìröËþ] Õ5åž7ýÊçeç÷Þ!Éšs{çÜÉÜ'ü±èæ&nÆÓ?Å=^ò¬R÷Tõ%:b:SÕžþßoi†¶÷i0 BƒœÝe.ntõ‡Sù6=a¹'â©FòcGß°?(N`žôzo!2åö~X{tÛûeá|˜Ý1`‹íˆ; 9Úšõ9FóíͧëÀ‘â„qªö£œÃG‘—<Ö Înf+»{áíï•ÏÒʦ¿“»v†ZíEC~ÀÆåTëqß kÙßç·樸wAÿ7…”Óí²ó©ô²ø›¸ÝŽm×õ5 2a÷øãý¿g1á7Ñî–»óF5¥©3£ Ö˜ßùn ùõ:—\fƒïÇb‹ £”)¯Î庇ÅÑíhA4IeOÓò9î:U 6býj{îrŒëGåOð¹Îo8Ø™>žwWÀ¯î%Ú÷Øn]¥—Ÿ»Éömÿ Ž× ­²`áP.¿ÅWÏÓ%kù– Õ‰÷+±°ðp°ß1]Ã1rÞ?Hzb¢šN-‚†ôñ´¾x3rÛ<~¿Œ\9»y­û-õ\‡sõ­ûV ëÍòœ2¦Û×X“÷¯u´¸Eꕺ_ùÅ=…øîÞÈÈ|qwãv!wÓÙ\èÇÏÖŽÎb›.c±°{ÈæÌç¹–@ý·±rçÁºÔsƒzh6ŒHÛÃÄJ¿ŒÑGÜá×sœ4hÎÕ<Œ~—ã[wºÖ…õÓ˜ØTá øõf ×üÀrŸvðT°ÑyÂ=zb) ÑW±sâªöv­ôŒçÂuÍ§×Øöâ‹Y•茭ØËéDëv“ßí~‰*uüHJNʻꬅÿÍÏòƒt— m°iýçÛ•1×*wì&ocà3Ÿ2Œ.ö‹¡’l§ç¾îÓ©ŒFœ…ŠNY¤t Üxñzå¾N„,Z¥¿W½†^g¦,®Ö^ò*ÑÓkßwQ]¿¥‰ðOq r ¨Äqx½„^ÚªkHؼ4‹¾þÑD¦?Ñ‹_?õF þšŸÎ'šòtk÷Œg»é ëæTÌ“·½7 ÷?Éæÿȇ.…q<ŸÆçûÉÃJì\Ü&Õ…;˜LçÄÒç²GãÆöKÄû}5—C[it®YÉ`ûU˜–Ñ­ùU(s­Þ¥†Õ½‚üÛ[~V1Ͷ)¾•~¸Š|þŽn9ÆýD›<‚ýýž‹×º“S{È¡wU œŽÅÏ:ž# Õ¾ˆûm_=·mËí{=·ß=qÖ +"yòÄÃÇï~K¶ÿ>}–áûÔ™Æ/aªíìØ¤wbØæƒ½å†ÜêÝÆ‘ÕWÎÑ0L'¤CŒFˆ¦K‘«Ç¥VC;5ûH‹N+Œr'ÀûRÜûÏÝwöý ‹{û¼åÒ¹ /¾·t{ù («¤ÜÿxOþªFÏä'ü6<Ã5¯F×umÏí ®O'ý:ÿ§^¿d;ç+‰GÂâÅ;{{©´oÄ¥õߌ‡•3̨·¢šªkÞž%V=žêËô„*ÖüöCPü^WŠŽð‘”ërÓßvu§™ã8Ëóíàúl\ãcÝÁ?¶E\Ç{{ìá\áèlÙõ¨œLÙ|èÆöôýM÷*y?V z  Ãþgg¼‰ÍˆŠ¤Úÿ¹~D|Ûiè"ÜË| 8Îõç§gÈÕ•Ïò#Á"½a®Ök,:—ü ¼ù×yÌÇs?Çô–5ö Jçë¿ÁUÏë¾É´û?нë×¼p}þò~×MmÔú·ÿ¶Ey•=„㹉˜IT%ÚÈø¶ÐS»þí´L—Ūgj qSBs6Ù1YÂ;ïê`àFékÏOn§W·ˆ¥{dÞÇÆà+ +\!þµ1âø¿e'yÛg”®æ£mÄ剘ªÞ_q‹-àktBÒŽ&I¾üá¸y›˜?îo[‹x-)2þUNÍKJV)…6ÖO{bßS•Òk¢zc ôÏŠGROÕë2æÕ–ïÙKEä÷M,[óßš5ï‘Ûïu=š7öƒœNZ,^±+fP³Ú ì?ÈW“3¼‹ˆ²Ó9ç‚O…oØîýÖ¬Ô_øÝ”Z§Ç‰­ãx¹ˆ6SuzsXAŸ6ïâûÀH^zŸ#ôUÚŽºô£<ýرóy4CYfô”p#¸²ÚyŠ6<™#Ðmµð~F«þìí‰iĵÿVlj”Ü÷7ÑÀ|é†Â«p©±Ë.š• WˆPµl£ªb\‹à{èŠy¼#pW“ûÐ^ucÜúÜJ+h¡Gˆþ7O©^©Œ3à7å÷ظòÞ®øîšSÇðWtË3AÒÄ/Ž·wŽ·ý/ƒíJ´ðÉía+w^9É·üO`_(rY²ñ=W9ÆZÍÞ¿¨\¼.¢OWáò‹+„3…ûkhYouºI'Xî5-ÏVB“n9áQ–6´ÂRŸ·ãOß1AœÆno³¥¿4Ž¥†É$³Ö×äYU°*Â!8™n›^×¶([/³äË¥â]9³Òô1ÀÜ<…ò,Ö#žÐ7؇0<ÌÚõÆf<"ž×Ç Oäü[R“0;Î'ÇñTó¾«íaV½NˆîŠç}´þ‹,@ðÝó+¢9†Òªð}ª!Ž´Ýæï>¶,o§×gYäa,Û§ĦüoÈ$¿{3ä_Óìpð}1Ûƒ\·BÜn|\lÀת{sü†ñD£vë§Aå©àÔbqiûLÔÅAJ]Zʸ í9Æ&n»GæIäæø£·Iï¾»L’ËO3¬sm+›ÑXÈtKmòít¹G”‚Sð§ÛèDç2p_šŽÇá´ƒ‹¢n¶¿h>„öòɯ҇L=!©>%÷tdo¤sçáÔ7T~ gaÇéí!§Ÿhc ¯…PZ%XòO·{ºëoþñPȇ•CM7‡²銃ºÅŸå`IdÑØ¼Ž`™øj½¯µôÑ{‡ÿƒÕWmÂÁ$¸{¶BiÀz»¶ùë”Ðø´xü¬ŽÙÙ7O9ÞZ¨[Ø'3°µ {‰w kAGýü4.ÝS["|Ï‚ý]=x †Ã7›0²i)#|./ {˜“¶«ðýì®à"Ä{ögX\Išý(†oµxŸ„?“—¾µCQWöG¶?¢/©!táÚ¯éðÆ¡oõ¼»²êzöýU'hlã•}¯*~˜zÂÚwùÂÕó¡›y¾_$åWûƒçH4À.Í!_7ƒHÔ–ë{Í£õ¨1\o1—¶_Åír+×è#æâÃR?#ÒkñK±/ÛûEqóˆÍ;ÚAo°³Æß‰ñöxê÷ã´«møÿØ_°O²Ó«ÙNʦ¢.+ñþ»ñ;Ã~]E¶°\)1¬vúTù3oÁ ¼¤2ûžeN7'µ&°“ô ª?Þó«cKÞ[mHëþ¶ajƒsæX{5Ξ& ½îaפu’ß{Ð…ûãwú–éx]|çÊ/«`\·~Ÿê…ôÕõdIïirh½PœUwÕ•˾Úeð·† †Ø³{—Þœxxû¤ö8(˜ÿ±1Ê­*îÿ‡Ú¥‡.z!î»íП·á&üWè¬÷mÓð>´y«ÅåØßª5¾÷ór©p»ö¦ˆßåVÝ]Ðó}Êx­ß0cX9õ°þ×ÊÜ™úÏ{‚øx«ŽUé ÞV ¼þ¶Æg¿ÃÄŸõ<ã²¶ºÛÏtòM¿/Pñ”¶#÷ßï™öÝB‹ÞQN²d8\‰=êuÏÃð¯E؃ñR‡¢·¼ÖÅÚзB@°_ЂûªU^‹;åƒè¿øggèyÙq²érý?’‹OäÉI]u׸õ¸5+Û'rI0_A*_¿WÙ[¸ÚK9eò5¥ýx_«=©.Õ/…θᇠáÂÿÆãq5ã¼ÓáIcõ ZK½K´ÖøÎpüéÑgx‘ø¤ö¯[7ê˜EYE ÃÆÛvóas}þ- *4¼Ì9ô™'³Ó~Y#y+ ûyÏh–äÙºêÎM—ö|uX®4⻫u&Mêû.–¯‰ “ÅêAo&ç KG‘e£¹qKu½ÃFžaC™ÎŸðÅtÓ¾xñÞ$ÐIx¥·aMËÜ{¼r-±@]幆vTi£ÜÆòÖ<7²7*–â£—Ò ƒÈñø*º}ÂíÿMíy55Ý0òûc±Èòü·l€?`¢+±õ6ÊŽóÝÉ›éõ÷Iw–N“y߯68igéŽ3–îÇÜgêéêžòÙTâLÝbVHx0-¿u;†O3aA¡È;ä…yøÙþŽxЗ™³¹.ôd)ðñt1_?LG^•}_VXlþH‡<¸)OèÊ}|Û/nÎ/¥0Õ^w¢ä3¼V_˜×Â0-­CÊîd”Ù¾zÍÒüo1;Ú-7º”D>øs½IN$#)ŠÄ14ÅÖp¬~ŠK:Ûm·mèära‚Žt§YaÍ«%°öjQg¢ ”G¼Ê*Ú'ó¹˜éöt­ÑhÞ (Þ˅ Ñc=¥ë  •®ËžZœP +Ä[ÏÌÀÈ9mšžõ$ÎnÛzYç½¹ïMôÊeI=ñ~ߡ걙¥o? m~îív8«tœ¸±ºÙB?`¶xžz$ê]rE¦Äùq}’Yœë®K7L‡XÜÏ¢ó^—ßoâ×íf_e!Ô´µí/³Ž¥‰.`M}ûÁL•úóÓÖ®á}]!°?–žÛÌUÇE÷€+*/ÅÄEþcÑpn†ÒÆ¡_jõ·TÔFÅ®Ðæã±L]§ä*:ùÀ ½ÿ›ònD‰g¶–™V˜ßÓ(¬â:e³Õ®F_N^ãR-†<§É_…V¼ÖØÁüŽVw³Ù¡ –úõ„[þ?§rÛ®…Ï¢:/_ØV?'¤D±WnVøm X¾·)—gÜÑâmýÑážô’â•¥žÂº¶Ñ´ü™ñœ×‚­YÅxëamUÞüy2!©{JõyŒaµfûÞ@Ñ2p›•GÞë8È«£³ þ1@ ½’Ö?‹ìóÑoÄ}u;ÙHx Kžo_Ê&}[ûyƒxš?=yûÿ?¸ÐmdÆ»”Û³¼ØK¡ š‘¤wÉ^à_>ÓÂÖD)jr­Ø%¡™ekðêùlH‹wÍùoðYjWlо~ÞÁø°°›z/Á½'a(¬¯%oÝz9× ã^—˜mޤB’ñø3]ðгû~Žä®^ÿ•î)¡9^‡cäè\Øp¡Ï/ðU˜oä•ý§CP?m=ÝÁœ~£ÜïªÉóÀlŸ{„öúÁxBl|¼>Ìk(~¾å/þ=Ê¢œ»5úÙRUß¹´ÜRþSSè~}«~h«oÊc_× 3ÚݤúïxczQ5edh"ǵ%u/X^ÿ’“Ã9ùØbåžÂµ /p¦¶¾ÌµfÚWç»n62á>ÆäÙ^ö}ÌÿÌõ_Îϲýx3¦ÀÚ=мAt=ç©?ªöçx¤‘4º¨ÓÝQ÷H«ƒ{iÕ!ŸÊ´‡…ÿÝ/µŸIã– T_ŸP¸6é}’¹zݼ § >è—¾¯'Öèü3ãè½0E2ÐIþg*LÛ(ðíÁ²Ð»aÏõÚb¯ÿVü%L»™ôNõ©ôØLú¹©ûòw³úZù7Å»ÑÞÉH+ÏUÁÇE·B˳‰ŨëˆA4vϦ‹JÆûã'Ú¸ê[¦söÁ+“Åœ ›–ó^·,ËIβ&[‘jÕº_¢RïrW?žKhvþ’R¿ÙÑý©ÿcQ{_ËdÕó9«r~IlÑû­ÏÑ ëæßûmÅÊ6|±ìPšœçu~vŽÑËf6þìt=—è.ØE±ž¿ã_åÝœ?‡{9Ò|?™ÐöªúsÓ¹¾ }‰ÛòrÿøŠ¾Ý»8³‹ÿŠ`-w]v1í?3wòûåö5øG·vù ö³7òö-ÂÈô-&g¾ƒ«x†Øk€_Guòý‚w<¯pd»ê–äùèÒef¾tý—ùýE pu©·  6‘„íý3€ó¿jþÒ'šø¼y^Æ!p4ôé¸6‡VTz¿šú³ij3ˆY×Ëü¹‹°WT EsÊãÉ­dÇ/ëÈý$ùÉrý\S>…| ›i´&–:^ô+’`áåœY¥«Òxh6+Ìv9Y¨Ò\²™Û¾4ßó­qaDó‰ÿ“6ŸµÿÜ‹£ÒÜ@š›äÛMãÜ6…ÿPt¶Ït+-l%H'ö‰d„!ñá$mºòg}®ç=ÏG¢Ò¿ëì¬ÇÜúvh«¾ì= ß·u[¢ÂÔÀ¼¹|T.QyïÕìÓý^'Ûˆ ÿ*Œ)I ~ L<‘Á˜x|F)‡y-¼.áÃôÿåÔƒö½£ã![Oôvš$z€€tÁáDX‰¦oNš0`'Vò>‘]T"Å}‚Ôr¡i Ô°(4pC@ˆ+»îÝÏŸ:ôß~| |zÍPïïÇn3Eø#ëÆG>!¼\{5 yûXß¿Óß¡°Ú—·˜–íc°ñÅí¢júò÷Ö¹ õ“ÙF%ÀBKO(?þ?¡“øÁïØ|úbócÒ( ѨÔiýéÿ/ÿ—bc¤d$"ÂYÔ:\™–‡QžÎY3mŽÑ«Ð ½‡àØx‡€±PàŒ(+Ž>{LàXÔîæ¢Ê:týif/Q?½ªÓ¾ØC`t±"bu‰ƒk0à˜{“ÿƒæêÐxcê —5昰G¶3ÉõíÀðÝðÆœ¦@MlŠˆ.Ȯ˟¡ø’Çp@È qõ> ‚g„ ÷?RqR¤ùÆE«F‚û š_òCö¾ïÊÿîtŽ’Ø(ムÁ+H[´€—n‡ËûòL~9E´¹`¾‚‘~ú°jeìÀø .=á|(€?‡Çt)çŒ`Aøl"á¢àB•ñoàñ‘ÀÕ¤;j·g<âéOÔCF€?¨|€åOMÄÁ2Ôœ` Ô×cɆð'BP‚Ò±£iÇ Û!j ï@Õ‚áoØMWCàNÈá²à÷†Á€ëP‡)=îCÒ×1ô]?ÔûJz± $íHBãÕ.\»8}7;­Îq"[@\Feàãýß÷$MœoWÞóËrofõr3b®D$¨*)$HB”ÐhwÛ5[ëpÐj­ðÍåÔ»–ˆ2NêuN«£õB^¡þe@ 4/×dl„úO>€<ÉéÏî2ŸÐ¶y‰ôTþRBì?k?'ô 7{¾‘Ó;F†×Õ7ÀpŒÊÌN3—Qr‚dTD‚‹×—4SYà÷ÐýBTÓüŠ ™Ñ]ÞKhÍû†šêËRU¨]Ö‰d È–ñ¤‰sÑ|õ[>dä”ý`á_i}ðŸõá‹-þOóé>§:\ç/>½çÖ²îô•ô¯¾ŠxÈð u§†ýQ?Y\/aNÂ9¦£¨pÚ»­×Rì°_£üªÂúÐóàŒ„[?HÚ©Ï¢.@~aÉ%÷3ÏG'¶;sØ_Ywã½3¤S”8eÍ›¼ÔÀ襼›ެ– ÕÝ»…Âq Õ]»Ü…Ù3ÆÊË0ØèΠ<*ÛKŸ/»õ˜l›þc?EUx†æ_¯ »Ey¯ŠŸ5!ðÇìdøÐøÑÀ¡Ú‡»_i1¡$ '(µ 9TTí€ö>·I˜9LæìÌ™±¾$„$HÈHB0’HI$ g W*j¡f–µD-ÌcÔZìfú03ü¸z¯¨-ÊÇ?Äyú<óϯ…'r3×DEv'œæã·p—‡ôxÏ“ºŒq DÇåï'¿ú8÷“à Ú(Ùy}xbâbü8cðñ*ô¾#†Û,+xñðÒ†O lÜdGíØgv{¼Cû„ÞɽïꯠëÕ+¢¡ ¡†Ž„[¥hZ‚Ah‘h‰!$„!!$M 0ÑâÒwŒÖÓ Í:˜õc¿]úïçvÙ£®§áÕ ê©£íÞùIÞ×{w½ëÁvïÏ7OL០â¹ÅvIâ£Õ>,ñdd”6ÀAÔû¬ö»>ÕJþÂÊÇÚ²ÈÕXM†—M;Œj²U“ö pD€3ý´íHHT*©ˆIdHL‘‚áíY„aKmq¦>áÆÛ¢ëŠ« öøÌ€wâ^ $à*BGlüª©ä˜š-õÌ·&'>9½% QßøAÃårü†/¸éQסo/mŒ»,gJ ð ¼"˜ ã|ià'Ž„„|s†MFª|ëkÖ‹°C†WŠOÒfºI I$Œ’“EAU8ÙM8e,†©¥´lóxÛ;3·Ay7Ù›¼¾´zäxÇ™¸(‚•2)ßÊñ×{0G!‚Y(ý%ÄŽÕÏÜüü¾Ã²¤>—ãzŠ$Y#ó˜À÷ C$l„ç­ÃÁ ³>Üol€ÿœ{$ í!œkÏ3±Cϧ¦î¥Þ¶Îw ótèïÙ³§‘¢rhrGN¯&tëÊrèôâôÀûo(|(g•USî ߤêü-ÿØZ÷¶­Õ…ŸöKVËu4nˆº4üpÚM7¦š/Š'ÅB4¦ì’ÈU53Г³ qvši1xlŸ=L, ì¼AÌ’2Dhc^?ëøÿ£ô~²l}+aDâD`~B¿{ž'Ʋ6¶­Toï.loÛ[9i–örðƒ Œ*ÝÑœ=9z9BNò0‘>UõFØ'”äƒÙ£L‹åD²”´>aZ9€NÍ?¨þ™,ÄÉjr†ZËMù|‹}°ù_"Àó±ŽxÞˤ=Jè„L ˆ$2iÕK*6óÔ¶ãjKùd讬°ÎFüµ´(äWNj$ØlòÇ•<¸HIZË6v¨©,›T5î}€oîÃ*¸Ê¢e5.Ê¢åpQ*¤‘!! HI $ $Çãõ« ž§1?«úñ6TƒéLwöÌV혹Š?_®ö ¿"0 ²Hà|Ÿk†3VòÈR il`¯Ê‘7+…ä½ `¼Bôñ¬m¦—Bà>R·BJ•øbÆ’FÉòá ž[oÖŠ…ÑaÀÅ ß{’GâímZ †ü9$öÈ#l5:œìÌçy7‰wk9Ä^Þi®î®¬•h½¿/–½rËV ˜f0ÆY˜Ì³3I9ûo9ã†Hëßç>Çì~ËŸŸ¡‰ök8û2|å/qG þx„ ò\•ðBHg=gáçÁ®À•èñôâyÇW 3•³^гëÚÉÃcÚ‘|áˆ8f!Ñ2N/ÓNüFt’‹ –: ¡d1õk ¾¶{ÀøËä©ä­/”¥„žTaj~1P.8ÇV¤?áfëë¬}×É<žBÇÐíÙç®03•cüßZÒõíR‡…ŒáFóÈ8_õßaé”63ŒH|sŽxüÀä&Žä“[Ôx£Ç<óOwÙ)E_ÂÔ°âVUŠB¯ª¼DÆ™ÔÿP/Âz·oɺšï º j¶¼kClçu7]k·¾>Yv‰ÅÐzˆ3=L’HDoKñÇáË<ˆöö÷˜ûCB#%ER¼ýRÇÔ›8_ÀôG³c›Þpw0&ÿ-øê{®ÙüÎB‚ú®@Ýt¸þÝ­T Ãp¯d·l®H0-¼X‡B ã!Lñ¨’Ì m„íø·Jø‰øï·oWÛ—Œä»©}ƒütü1ëóðô^”‹îK±¹SÄWÜÕþ׸ù¿3ÔöÜ_ׇáBš/¯™3.Wõ‘.¬–#‘ U Õ´ã ¹¹PPUh„©R¤”„„wía­p1·ó}Ö^<½Þ%åíÖû1oMvýWÚÒçkOà~cñÄýçýäÑœ¹ÄšóâÀý‡ûŸ€ü§öŸÀü&G‹ÎÐÛq܆åÉ›_ò~k÷ºþGŽþ·(壖m›fÙ¶m›fÙ¶m›fÙ¶m›fÙ¶m›fÙ¶rnAµm[VÕµm[VÕµmY£K¤Óê5´6ô„åhß4í»AÇšâÂáz]iñæŒi)¤4g*Û9G&䜋qí«]®×kµÚív»]®×kµÚív»]®×kµÚív»½mÚ:Zì1—Þæe‡øs3ø}qÛ#¥Ýñ#]=T>òŒÿ ~~4 PÌôKã€@½Ð8żà{̇·ˆÐ´!‚’0âµ›ýJÐêúN,·jäà-ÛÕš²èœîö5XËü3¯‚öIì§²W†ÿ[ä¶rô—Ô–‰è6ª¨dþŠ×/s)FBÈU5F§‡Ô–íHÂí!u™è?ÉIåÊú‡*ž¤Û‘²2bª"UUYq".DEçàvùëí ¾góÓéB% ¶j'ÃüCÔEj_ä!ò@~JèFÊ`z¡4æ/2z²Ãˆ-O•ÒÖûÖÙ¿{Î ”œ£²ù(£è@$`Ü‘Ø@“µ*nDárg´YÃ0¥Ò„Ê•ªˆ”B2š"Èí‡&' y˜ö¨åçp}8˜`æ—S5.…ÇKÔ߉zA•ð“Lg¥†£ÒÔ㤟^¥ð ¶žµZÇÀ§tlùyÝ?¿yÇyzäåÆå<¤úªù’÷è~HzÂã^”zY“¢Ë3:Ã?äQ±³ˆ! ,æ'?a,Ø[´[ß¡Æß}e—dàLè·èÄ&Ê+‡(˜UÊ#„È£¿}þKùPIweÓhû¤JO”‡D¾‚4Ô²BGØ‚‰rû_N쨳°`1HO“áôŰI^.ccŒÌzLÇ—Qk)Ù1Óß¿¦?6™OJ4ff^”ô³?h£|ÈYvq‡ Ãè»Åuã!½¬«ýíìpumhߪ HH‘’Ëò7D€…ŽbÃ,\ô®¤Í†'12Ž’é­vˆé»n¿2{~=>uuj!r+ÚÀWÓ†1a§=‰¾*ü¥7 Ž€OL!–ä$‘…‡/•†Ãa]*ó ‘­RàÙYY®´+ù—Ì „<ÃÒAKlT‚^|5éÄÔ£BPœ9"ÈYâ8(ô!C¡X5Êì¸O®õñЧ¯Žˆ¶ƒ¢=}öO[kú†•þ/öô¬«Vˆóv­UÊ.WÿgNœ54<Ú”y´ù¡~¢–Ò·ÓÛC®=²7­„œ©dbæ¤Ñ˜Ä.@$L¢ "‚*"B$ª•Uù x¶-GÛKí‘öÔÔwÅõ+éËÜ&‘õ+S>¦iiž0‡ õëaêãçzɪë£Ö3 ³–r®Åå8]^ãUªæŸ:¯lÞT=qwA륪è] hö®”6Õq”ÀÉb³,Å™‘!#!ÈO‰žçîÝ©Âò•Š"µ#fà#«N®µZîúµrwZÕwpÑÏSï0d}#é¦S>–cÑŠ6\þFéaËÿùŸù¼Gy!ªŒ‘¾þ‚+êb¡›¢¤T©¿Ûw¼óù{áƒð”׃áÙRˆË!üO²ŠŒÖžOÞÅG¸ž-G¦×ˆŽ.)Àæ³T%µ5bj×¥ù«MXñÆ ]„#I$„$$d1»7o±\½µ4O±©‹Ÿa愺A9ûŸ{­ ÆùfdÌ›¤ àÍäf󸍇à7†Ÿ[|ßõBçÀ£œ$ylÈ(¸+{D„$ŠXFÖÚ0¶Ä¸\V°ÄƒRI$$$d$‰;Á7‰Êï(…|ð4Ç«3:¥õ@„=X”q$’ „"|&Ô’ à‚ðòÚïaÓfzW›}?™Ï^¡’[‹®Mv³XëýÈ™d•¡`µA$ „!(JˆMýòŒO˼xJ„›Ç|ÙÌ›:¦°Lð”}1£ÇÈÍL2úxÆÞÆz>'ÈGåÌOÛ„¥¦JXý·åÿA‘nû/Œ/ÔOäOëصV±¸+õ2IÄh(*.ªfê‡ÎÊ+&‡ë4Å:Ôèý˜šûmldAîPÏB¸{Ÿú3‘“6kQ-$utìj¹j¿½\â²QÚC+'pËÈwØTš\€ÌFe…5Æôç1x€ïô.¬ÉyÓ°êxšÒ0ÿdôc‚­”Xß9Òãô\L£kü˜z*B–ž|CŒKý›MSH² ¬$ÃI÷0É!ÄÇ”!å Ñ¤Mû¿?2VººÍ9ZgUmÒóç7ÌÙ3¢wŸ¿Üp¢à½é·1&'g©Lcm8C1ÃÈ$⎒¸ÿæ"àð[õH›^jbÕˆ¼Ï E •¨Ò‹9_dœc·1˜Ðk[ñÇb)Aæ*cÓ]ªÍψ›…Q{ Éu÷*\ñµ„v‹óyãq³wš}{‚øiÌŒ»Úl™½2B@¨l†yHn «Jøš¢~+±±B‚%¬A[ßS5ǵ;»Î›åNÐÏf]˜×írppHêоœ‘ íbj3˜`ŒÊÔö¾¢–žrª²HìÜ%“¶«OQC2Úì\º¿ÞnÄö<óÍ÷ï}ƒ+†…–¢`A÷žùË5K0K …Ê“”˜¶Á¯ #¹ÆiDä’Æ ¬\|w®³"üm áz§Û7Jz§Áœj6rõž½±c®+ðE%&‹‰æÜâLe œÊ¡w{ˆÒÈï»Á0IÙ—;[‹·j)ÍÔ’&úšP5nÅÎ:Gy÷| k©¾&çÞzëGS”Àží‹>Â;‘>n„GDp5Ḩ587ÔMÈ¢ò†” „%2 IS'¨D±v{LBS  T&ëÜ23[U g´j]5 OÃ{<놃Õ1(#U±ÎÞí.×b&Õ5(4¤]—ˆ „Ô B‚)*A&r1Qÿï¦Û”FJXí߀§ßë[^FoèWƒ  B/”õ(O=¥¶àÝ‹”Іáhò^…W‰fOµjf똣ÕW[cYÕ:ßd#¶Èl¶cQÏ«íìÎöíô¹Ög´mwéÂrrˆPÈȨV¢¦lÎ-'dD ×¢êŸ3•Ì Î^+GzF¢ª8ÖÜP!¸_÷ ju3ËÝBÖf\Ï\wÔû;®uÑþ‡\Dt`–šVC &‹ëNx¡MI‚M™y1ÚÑ”ÍU)«WR&ZLi«PAß·¦ïÅç~üôµ*8UHi»V‚«8ÌÀjr¼%™­V„ÕˆLh-®f†ã/Ý æc­¼žëgDNe=-"MáÌ’)„ˆÎ)v!˜©µJÒV‘Mª1šøãgϧ,óÌæx€ƒTK<8ÆúìÄÔeÄ|Uð8˜fÒàŽF|Ã¬Š¡·6©Ìœ¨˜W5(öø¬æòžutDÕ‘Îúµ'–´ö¸~°!ï¹\ò<.Üž-ļdÈŠbA,Aê¢'/Á×+_ÞDN²7L!¥ 4‡F· #Œg$Ý^n¤W¥¨š 'WžêÏmëÑ…!¹”j ‰ô…ª Ê9B¬$'ˆÉ…Q•Ý‹TMÕˆcFÇ•Í%j°ùñ[D`²ªÐA&LæBâ“`ŠÄд„KYºîr^ÑëÛÄõŽðW£Ü.p¹Èðo>¾åvõÏÍX[Bý²{EÝ(°©va¤È$]xósT‡’"—°ÆŒñ“ë\Ø’«„â?Æ3ÊäæË4Ù+ Åj2 [m|­½ «Œ5\ÉUÙ´uH ,©Cc¨$5µâœƒ Ž žôäXâsàÇ´µ©RÌ{èg,•-4‰7Cqè¨@,V4=²‚Å8‹fÓtECj)DÊ `ÂgI™ôšßA®ÙkÕ’‰<%aÓZÊ3|!)…'º…g:X©†D+¨ÇÂØjÆâ„T˜™‘»*HDÊ´‚YØü.…!Aœƒ©¼Ô¢^MµW3‹:©nX‚%ÐL‚ñ9‰”m¬U=IL£y‡åÌh¾ÌdqÅEÁHcÅø¶4¶—’„ƒÉ<­%ñRpݳ”¦Ûm–cK¬[pTëÀqœ8îôu·éÆÅdxæÔGÉB»u¡FЉ™(C‡—I£!¸Zœl)f°J±y‹h“`,2X:;VF=#A†±h]¨‡&8¹÷ÊV(Ôn&w»º›Ì2» 泺O!X_ŠY' !H›ý¬áÉ'ɺ¤ 'SØÖ5è»ädÌmõ}{jÝWŠ•ºS&u‚¾9Z°@âuz+Ìé²ÌjÊRÊšŽ…e}G¯4 $7$ÒCGÁBîr’½¢€”&½zÒIb‹¡’yx¼¯«ÊDŠ@†Qy0½èQ“nñ¯OJäñ(i¡å…îW^¨ðõµÚ¸žÜŽwËkÙ¾Åoœ¡žK+šVø©ÓÌwÊ÷]îÑ.dÅœZ‡M\Bm€â1µã%˜k.öÖz½äƉ3ìâj¶O—²5ŸŽ 6vö¾^™Ññtîæñ„€ÂšoŠ;˜.³°¿Z+bpÈU(*gyÔ0ËPYÍNi5Þª¹ŽÜ^£ã­t«Çö¦R¬-(£Ð©Tq2#á&Ê1t¼Ÿ)*S¬ån«¼ÝvW—¶ƒéYU ø+T«¦º¾˜vÖ.6“¼sÈÅ,ÐÎ_¢hG† +µº9IuÄóÖW]©qmNp)¯X5â Tš‘kˆ1ž­ @ h†< )ë]›Y,µ¹°°½ ôŠÈØT a3L–f»I_-#d'©Žn )U%8BÆ­A%øôŒ"B°,ï#0b=ê¦å-ÖS‹4§†iWŽÒ=s¥õ ÈêGNJÚ«V³ØH GA9£ ¶¹¥XÖîœêRŒL1ÚV»ëNRõ>x}A-¶ R+l&FA¡íUÌ&Ö‘]ÊÍ0ÊR­“)I nÄ`S‚N-¨Ò )”ùpŠ  ƒ¼ÖáTª ¬¨Ñë„»D47\›ÉæŒYËà"P‚ÙN@ëݸÛN Ü’ýa1ÓB… l›ÎhrUÐé#e’»‘ÇI¥à¶õšÖôÈm«o^MZs6nI\^RCS,i 45dœ¢™&‚PÕIˆ|H £¿]ká!>СÎ7Âô3f!C@3|J„¤º!y™Àê²òýbô½r°'v)[CœOMsˆ,‰90´çî-,äk+ÚÇYÍF©_0}/Ã)@½eU±=¦KðyX`ÚÐP¬ÖIS(ºâR‹Â$Õ#îqw2fªAùßJBÞc¨õª â¶+€î,¥u˪; J;lý R,d˜Þeb:BBÒJ^¡™ƒ5/¼c:´)4V›Öd˜nEzgÊuÄ©I\¶¦øh gtðx ¦„2J¼ByyD6RHEì°›g׊Âuð(ü4pçlmÇ}B피kÑñ$Å YøÐøe ë7¸ÅtÒô5êrnaV¶5%ƒ.mM„³žs‚…ˆµíºŽBÙP-ihŒ·›Ï2‰O'Z‰3ʯ$hl½XÜ’åtežºŒ3!0†”l(e¤–QpÌ4¿„ä£Cž)F51Ù®¬yuµÅÅdIЦ_WkŒDç¨Â(TJ9œ«Ë%¸ ÞkQÚ.–ŠúT µ´5ÕÖŠ®m}-éXIÄ/³Ä`4B*“ïˆQg©¤+:÷4–c î3|NÚRaå|Tc«„çDƒê‘:©%¥`£uï¾Ã¾4Ò?žPœµ¨ß$À.hÛøkÏnÐÛ6ܶm´(ºŽmØ¢úBz³ -ŒàD™HÂ0äèÔÆÇÄ^¥kÌÜ¡2kÞwhšv–z”ƸÁ¢TgzÞ¸±—0{ ÐɸjËÅc^%-¶–'ÃN*2¾'ÄõÒ÷ŠëPÆú^ÒÛ"ÓÇhÇ¡N%8hÌvËÇDÒ~&RÝ“É5ïÿ=xÏò+Lh$x¡P{ê¾F\,4 J7¹xv8 ”§qä}ºâU–¸í¶ƒ¥^ÌhCϳN4y"Ì—‡J±.Ç‘ãœ0$†1vˆ…E`Ì9|o´®ÙÂ.¾p9W·ÓÅKW ø¢[—v—›¨S@›Š Cå%º¸K†Þ ÃǬ)Nd6¼´!l‰õâT|>#i ¶ˆ3 ²íƒæ_>Éj˜ÔC™½ÝiLæ°=tÚ:ëc ½a¼Ž–…³Ø{Ͳ5ÒhRÜß4A¼zEËe¦lS„Bv£¹¸©ÌÊšJ5ßKûJ™­*cNUj9iíXÜBý‹Û J4v®Õòߋݡ´;¦ª¥‘!2;|ñ!  "–‰m:ÇÊ0ÉsØá‰4Byª¢í«Ä¯NÛiHû/d@Œu¿\6Ò=¥Ï]ÌùÒ¡Ø&SEœî|ÌijSÃÏ]o(݇ËRçnúÂ,Q,+d¥‰÷\1—U¾·­Â©R°'ÌgéµÎzÓ¾ç O˵kmJ:j~L×›ûtÓY â—J&¤c¬Å(©¿ø{¦¬ñëo#]›×]*ëq×FdM»Fò'ÓxâYΛê1*;\%8²V={mfõ8úI¨ƒÄ ã%xõ+mÝ¥Vo%!”š@°8‚R9‘¬µ GhÈcí>fí¤ÿ®Ðã›\¼ûl¯p—˜G1¼ü{·R—Åì9x§£øu‘v"H*w”$‹•Sƒ´¢þFÁ.©ãia”pð¼Û £¥ãrÂ7f‰ˆMo&Zâ>TD´^Ul bä½Ï•¸Í„ì%.ɼ:F/î_Eµñºy¤ë€ ©ñÖ\Ì9—¦»kJhKd¼ø°-¡H•*1S'šŸIV¦&$äŽ7H£[ÛVA Æu‚Ë W²Ê9¤½aˆ xÆñ¦Cš2ÎSB„GúÞŸÛtéøÀ>Ó Ë ÉãW…^5ëÜñGâ×/Ÿ=öE=GËåèÛQǦšHŒlÌFÔ!—…ò¨½òD°ZF”Ê ¨"锨¹Ñ©$•TÑU*2BBHü$å€Þ>í^íGÈQÈ äHhŸ"HþDEèÍ«(£ªõ<þ_Çù "CP÷ ù29>ÅNiNÅm•¯yjçc€l6)Ã‘ÈÆŒ™ŒaŒc1™™'—NzxAÏUÅ÷sÓŒxãcž^ZsñùoîG±Ækc8‹…$øí§À—·÷ô÷d£²ó ™ã«¡WÇ¡)x«<~;R›î Èm„¸TˆB’2H’$"̾ÁïÃÝY‡›9æo”FÑÚþð¿ õëÚ«ƒ‚‰ ’K!ÎQ5 "p ë«#Àƒ£Ò¡ÏH‡4ôª ÞórˆlSDŸØ¯Mbd¸=Ld¾F)›ZŒJ©T )@ÆBa™:;[ÏÞ~×ö ìKðé¢ûö¦cã¨:Ö݈a˜‡]—Y"ï8x£âÀ‡‹’&ôñzÕUÒ|ÿràÐ19b‹.avˆTÆ%  pY"qrHª™z;ÖOnï´¥×Qáw…ÀKº“º½l7<÷¼î¨î•ÍÎè· ·…/«^Ó3ë­F|nÝ ½.ô¹{{ß'Õmj·ÜL¬2Èψïâÿ¿ÕÿK—ËYÈ.hhÅ×ý{䨛٠Ò0{^ŽüŨ6Oã~›gÕ31Ôô¸W4´|l3 ©a^ì¨÷ˆåÙšÁd\ Z½/NñÕä—¶„dñºé÷€ö‡ý—úƒzñ¢ÄñŠ€@“Æ’K è æ²æ.©Mœ‡»ã*UiTõ•v¥øoëö5l+²ˆ¹v¬Š’H)R¢’J¢äý“8áZÅéÓ™ü¬Ö[Úð‡[u—VÞ¼Sâ~¢|/ŸYÑ ­ë&öª$*¯Dâž´å^‡½Nõ;Þ ª‚>'ü Æ?С0sˆÄdŠRI 32ö×W±ÇÂ󓯇ÏLGÐ4ÌÌ>ƒˆÖH73[ò½˜î€pMc¶„lm˜_VéQxTzÒé+Ö;àéÜ“MmΫ“ôÎ5é*º(è“®ŠºÛ‰ï”ì…(ßÂYRy‚ ñL¨HÈFI$‰$!$!BðIÁ<’x-ŸFu éyï·ü9Ïõµgãce«3‡aõîŽú1‘ÄÎ^ªƒØ ¤áÐøîÝ<lòÕå§–.\¾~ëë{2k©è†Òškôy '«_Z_YY@µªÆÎÙ ¿³´àAv, «,EBT"wKÇ.èwDf*Wίª>Èë‹fà#º‡K"ÙøµS&…Îñ®4Óªèøþ®j/ãjºSš#¤ñ>¼±11˜`’BB2BI@7HxÌUPøŸ ˜×ç?Éò¼šá˜;ñ{ñ7E@ðI$„ “ÀRÔ°§çû|ND@9ßýhh3&íÝÂ2nê$<jåÍVQ†K R)"¶éI’I$„Œ„’BO°q‡¼Ø eÄ8Ũ„Liel7  ]üÁ=ºîÞkvÈs‹Ò{Sš’æcžLÎ!ú ߢa¨îÑÝ«á G„Y'n5;¨qpõ…Ö Õ§[OoM­ÑÏq½ž¹9àTë×È«ÇWŽžå6Ñ} Û×µ>†2á‰Oî¹71Ox­Œ?yÖ6ý¯úP^kÍŒƒT¥9´µºŠªá iR”(Á.2áA™v!(•E‘ª¢¤…B¨’Š!d^œ³:ó¾Pï•練cÄÏú¶ï·pó~þx|õ™|éóÑ‘ÐÂ4_"†1Éä³ã`ŒC€â‚eâ0‘$ƒ A‘½ŒqW+}À.·Ê5©£Ca­“ª}’ ™ù×ÔèÙžÝèPá3§À}Rð§8{å}K ÃàðW¿Z'RÉ N(; N=5'¯—í¸¾oϯ=˜ø³kѰnž„œú½ÒØ„„eŽnIk½±¤®°qBz¥&We0ì¸rŠª" ŠÿSþ{o“†Fg‰/›9&}˜£ðZ9ÅÐð½>òç|¼õmÔ¨Å=8XÈ;‹RAÌ;öúšŸSên8Še*D ‰!$IÉÆ Ä‹¯؃·$æGoíòÀ)–‹^)zc@gLqÐázoµÞñùóÛj>µÍïM9ÌåíÕÕý•2ûtµ¤›r› ½ð€˜P ¬Š?M ´ŽÚI¤ÛJþJ"z³1ùŽ ~œÐåËŠV–aÏc3ëUí½rx!ÂËÁ¼PçÅâÅç…ç”9Ä;#M÷5gfºþuMj¼ tÝÝOš>ncæåŸ4ùˆT›žƒä<öÒ±ýØoÖ4kbÂåÌTTHL) *¹2®VIE¿°øüoñÀp€åWThqîÅj¾Ñ(îìšÔPÎŽÐ6š ùGÿŽ`M²»n5’;oŒo×J‚iûSK‚ÈföF݉t§x%I$Þ$–M* r¾Ýw$s$&õÁ¨4ºl ,a-l^é_}O¾V˜Ì°tóRf>ù«åDn£t·FþÔþ€þÐwám™D*ˆI)"T©R¥U&üó¿wO§ÓŸ‡]ˆœDàÿ‘!úïÁzçøž¸<ù{¤ÒyíLúh§g¤7á 2BH2ntÛ¡·$8É?”ƒØ½ÿÆl©ñ¥Ï<Òy°ë¨ûú¾úž ûXAe’!·„ P›jˆð°/°ÿ·CeBžNª÷c²O÷ñ“¾I@WŠ*S’Q{äãßä;í佂îw}Þð¹I¼‡<ï›­$·þî©–Ë’­Õ¿=Çõ}ÏuûƒÎûÒtNz¹üâS[ÜHÔi`÷ É䓇I¢ƒÏóá• ¹ŽjUhW—¹uóév2õîŽ÷¸¨äÜîfEÙqÌ‘ÝܪŸ¦GŸPÏsÝHrrfºî’ˆUDš–yyȈõ»²é¡né:Ó9ü{·äG*o’ãÝÊû¸¸<µ”ç’aîç±ÎJ¦4<ó¸žw“Ëæ¿{Ÿºß+$#¼è]óËÄd|ÁØ%érïZD]ª\¢~ ÷V,³:SÖQäóŸXçœõ)qn÷©Êžq#R#”E{Žý×”}Ç/[ºôO_qŒ­?"ïÄžN‰O$é—M'Ÿx“à Šï¸î~ë»èòoI9<Â(+D½>®¿âëçW»ä÷Aåá¬å<÷rûÑËÑâ^‰SÉ ŸŽ<Š?Z‹Ã•rç/]Ñ‘ßt¾¡NO>õºnýܯ9ô~<Ÿžøçæ£YG_D²qÚè“ϺäÒ,’A9Aa; åê¡w ÉÓÇpOqJGF.°Ð/\œÔ+Ý×½¹}DÞ.圸ä9ß·Ý^^Ï"Õ ¯~{ó¾ùȈ´H(¾ë«tsÂôuØç >(y=ž^îÈŠa:•ÝwYžN.ã']iGP¶¨ä$$RV©êŽBy8gždS7v“c.2¨ãàÇ™0NÂãÜã*€NÛNÏA&À‰±Î' —¨Á&Úd4áCœH†]—`vÀiÊcr`&a51BÔÄÌ…˜µ2 9ÆÛmɧc“c“cHà7; L)—œc““cÈlnm;bq§`PPó´í”Û““tÔ $[*vq@·. (\‰5²à ­0LÅ,ĬÁfYv™Þ@>@äÛNÆ•ÛȦӶÞBEÝèÀr:pÎÚ@9'$1ó‰2˜]…ÛäÞd Î4†ä °N$Ø$]¹4€õq80»&ØÄ†vÓ¶ßÂ!Û.7“›à<ÈmÈm8Sm—laC"ã.SiÄívÄàœ|É…ÆÞM9ÎÁÉûvœ{Öç ±”ÛÒNÜœ„› L¶eØ^ý[9Ø\ »ƒÈlr ƒ Ó²›âM3°)¹Ä™BEË;rN4í§l¸ä“Líˆtãø}מvç}ÄÉç6ŽAgguœÐ Î'œ²rs‘Òäç SÖ•“„†g .9!Ù@\ ²QQFÁäy?>¶ÿY?Çž1ÙÑî¦VÊžŒ-“öZæí×Í·Äé::¬þǧö>Æöû“½/‹ãxôãPãCø"æWr×üÅhÅh뎰]Q´à*(ÎEW*HBIHN0êpÏ$ììÚ)ûï&äH=ejè´c3¥¨½ú¾ ø59Z{§ˆŽù9zt æcàƒŠtûÏž»û–kи:qéi#›ãCåŒái™‡k˜ÔÓ.rƒ6ž•f=æ›ÓdüqSÏzÙpSp盛ضöÃdÁA\¢ˆ®PEª®ßÙóêA¥:Fa™¨fu”¡ÛWj…l9Ú×\%të\n;Çqfâi UÉO%9#2jáÛwU¤ï4šÛ‹ÏýšSgý­5Õ´-)¥NÈNL¤((•HÔŠæj„!I#"BI¹G´ Æäª}˜ŠœÁuúŒ×2`v ›â›«ª÷¯R®Nõ(ã¥îkÐ-À&áj S½Îf¨)ͨ›ïâzäéç{UEw¥#ÑȽÙö,ÿïûéáý{oÃsøÞ”ª†* dŒu$*I#UU*P•!&!²6gZpgPrˆe‡ÀT©=¤ª …‡¡xŠ˜yĽþbnÄÝÈîäùP´ ™þ5ÜÁƯ§äìÏÔ`ßF ÄÙ‡lŽq_ Ú% JøL‰cg…ýꃾ»4ÌèN$Ý¡Á…B8¨¶4Gt€/€§‚ž ±«$z-BýC ¤/…¡hsl*8iQbQ‘¤ª•TÉ$‰$’T¨I$ÌÇüóv'"Æ2>úŽuü%WAÊ~ë =qx*ÜÓÕÉÍϦ>™1|lËéž2‘À8ÔõƒÀëó_°—D{ tW°"9ª·ÛØ'B½‚zõs³×Óžâ\M99–`Ð’z¥}ι\¸tJôâna½ÜÔ~à öiÙGï»5øü¿AóÇÎG£ODÐÌôsMMDN|Ù› /ÿ¾ ðY<ª¦¤&Œ´¹ŠÆöI"Â!!$Ÿ˜ïæ±Ö Qä‰âp ØagNÀV%ìd!^™.'àðD<ð !Bû¢DûOeî8Ë×ø"݉Ê BBPT¬…#Ld„„! 4bhÀ¹Þ0kº8Á(âÂp¡ß«ß n¡êIÆMÔ3Š]FÀ—;„8ñzE(zb™Z\±˜tªÒ9ñ ›€¼õz åM,ÏBóÁ6r˜+Õ°œÛ´âD’*g,´~}ɹ‹ 72HBZ ­itŽ¡'Ö`_²É^J}Úœ bφì"MoÊeIº¬-Õ9móu´·Q•r×ÒŠÁ¸_v¼ï»iýR-hs™á‚jÞ|¥ÅË]#BÒ…#Dª$ '¢ÄH¹IaZ¤„†ªŠ*ÒºÂ+ª/?:h œð=žõ”î*dî!ÔpUПŒ¥@ÊÅ'’GßT- Ðg¨wf l[õšHÕE«‰öNÂë£ú5g‘¤²U»W.|›-qw Ú©Ý*| «P&Ö"ã€4D¾á©ò“åÝ;2~eTØ¢À9vCpÏ™ã²ç}§5o=’3F|¾P5c ZD\(ï¿T¡uç+#+Î4Ï;M1§PTk)6.0þÙP\"((ª#“"*§llw£ZšTïjê£D»Õ9šix®²ixhâ5*½°uÉ¢žÊ›Ý#›|›ågEÕ—Z˜GH9!jTrtÂ=œ0_qìÆiS÷^^έE9Š{UfÇ«¬¬É¤›œ­É{j4HôXS­Ÿ&’=tÓî´ÓGíÈsØ‹|ˆàX¤~û¬&?Ððä,LÄì®Û^ð?«i-‡Ê»ŒËDV¢ —¢Âžõ’›2s”ñÕžv—ü­h­ÿ¹Î@­|TpqƒæSÞß30ìYŒúiVµ] d~ûúûoéì 2‰”UdQÊ ìÌÃR›ú±`9ñ”s³o+)oL&õ„ê,!û,£×aO9_.\ñ˜ÃÅ©Z²qŽ-¢‡¹dQÆ2K/ë»{Nà{†É0‘Тì›ëëLÀ¹ÀŒ’BH$‘°=©\_xÝVÃãð–ÁJ¿…¦•S÷ßtÛßB%ªEÃå+oHÐ]¹rÑ¢vìFÙh§o.V´‹·.Z4S¶§§­ í‹—_üj GIÃef0®Ñ9“ZÀpˆß,Ìf;i.‰„µ•ÚÓ´‹µ™¡]ª;ûI;ee/ºtµ¥OPí¢ 9È«@<‚@BÈ(½3ï$“µŸä–•Šd”r؉ç1>8|Z|røúc0ÇmÒ ¡p^€Ë©hðih„¥Û@"šWa* ¢¢ ¹(„„*‰*š°Q¶[8SŸ8"Úƒ"„…UñŸî¶´“´bNɱjæÇe­œb£â«z®&˜¾.eÿyCZŽ+|–+ül'?ó[q²Ö•ª0[šÉ[¦ qbNib6ö Ä`¹Æú¸Ž &Ó,–¨¯ñóíEZ„œ‡¢±. ²$øÈû™x¹hSV'Åb’â± wiBðªé']Ÿ£Ijª}¦TpqüÉç3k ˆYÉRU.rÚª¡$$„°|s„ö¦÷mî”÷ûq–¶b`Jßq[a]­YF¼±ÖY)ÚÃ);XÉ;Z°š².™Wà áÌ\£V=Û24.MÁ9®;œ–:òg¯EõÜ¢RØÐ»ó`§`¼ª²k ò©À+¸Ô•åIÁCI^T;©h¤üF}LªB&šRT# )"¡ð‚ºÔ`†[/BëPм žå¾³Z6Ìî©V®Èoc»˜.¹€ëŒKdëåfQ×,¥×2)òYRâ/5æåßæÀÕeaE·¥dd•T0ªþã(óeñ›új£T«|†þƒl[bEL›;eʈf1˜fYŒ±™ŒÔ¢è(#ÞÿF7x~ùÄ}bù€ÿ#è ?uµý‰ÐÏþãå\tÎq’íéT0ÛûĽHq*¬&IY`(‹„c÷YÄF ,±–؃ÂÖ‰TD3þ_`pj ¶†¡—\%†&¿>[ÑJŸÂzl@+ð].ÕCÛª5úè§.`á[ 5Ò•ÚàŠíspf–c Å’™%W*9÷ a„­Q1þ'™RT"©˜ MJé6i¦ÜÒñÚ{dK³ó¤KS0”F¡0¦Ä$1¶‹`ÉŽö¢iš0b$H”b¢ç´æs ŒØ˜PJÑD2AŽn“Ã%ÚSú{%ÙY34ÔK6]æð0ƒ’IBKk9‹†¢ñˆ³†ƒjÝZPûWÖa; ¨ˆŠÐ°† 7 Š© ª+s$%.gtä¨IKv“´èˆe3 GV‹¤SuŽÌFä­•wU¦‹$š_¼T:Ln›$•¦"aPó"a‹#^*®c ääÔJƒTö‘/ØÁàs€î6ÜÞ‰–‚\Uˆ`&–J,„O5Nj!U 4k£ç×"C‘y0Á*Á§ *bÓª3¢¤âTÀ&ãÜÔI¨–á‡Àl=:Õ¼:~òÖçF8·ÿNeìÎóqsÄl…¤5ß9ÒƒÏ<\ÅÜ@:⹨®j§Gˆçò#¤O{0NRó*°$j6ª¢UPI„ê(5®j ¶C¸ˆÝUB\ë1$Ô&Éè}dqÍk7ÈHÙ¥X™H™æ"y¹œÅI%C•¸éeÔ½†Få³éŸw›³¾«)Éz˜ÖÅRͺ‡*þ(Lš®s¸×z±é_°wªo$‚ˆÜn½Ê³F”3³HÒb+ß³m, üF6R31Ar‰ø70{Pw&{JXW BN™‡*uR*%;jŽTÕÊcF NEÙM–¼›ê¬E[Bê`IH25P¥‡3ÅDi?Ù6==ô5žSÇ'“¥™]¶ñA%×]näà“ë\¹š"tïŠÝfñã‹©ÏL4§Ãa Î&.`7¢VB «#éyØ âÕEbnQ“ OœÀR9SYˆŠ•%9b™M)2|µÖžFMIÕS³â(Òä Hޏe¬÷¦õ2WFOd##CIGº%­À‚–›ºë¹›Š ¿Ùö|Ä•ñÊ]ê©£sm¯-oÅ­Nˆpž:,Dç4RÑ@úBñ+Ìß›“ ²\,äö6 ÈÚD\»–vDÞjóí0oIdS)fÉH Ú›šnä»™Or÷hwδ¶NT{^DƒwbäéQ|5F%"¦ò8¬ãRU„ Ú.*lL…™£Np(@ic7¬–8bie´G$]¯7m µ¾g9í[ˆt0 »Ôèd¨ª›½…wÂe)(¥.­£íWÊÖç rµñ…7šbDŹ'mmNu¢s*»14²÷fÀù Šb²Zjuy¹i+ÒŠFcI·^ºklªF³4\˜]€Ôªj*ö$驼•ÜÌÏ“"ï†ff¢„f¯6³FƒNÌœrÑ>Û²ÆÞC§¶S#«óW–"soÒùÇydêU•bû1hÀ™„b}ça(-ì½â• P¶³y3:¨ç…Þk޹ÞÔäÂ~u\£Åjn4øÜ¢$Iu—=µ«@{ÞêQÊrIR×q¬ð¤dÕë¿gCYô:?º0ùBzÝQ²¡HÛ'(qR‰2Ýq“ÞŽ|¤×B´db1BI85ë|sÉ#Ñž_³‡“ÅåóÏÓVªFìóÆ!4ÓJ3T†Â(SA¨h8„H¯2â °h2Ë›¦UCs²â:}W’èèTDGÇö1+¯Bú%³Q û;^¦V–ˆ¶¦‰Nö9ØŒgŠÁƒvI…y–ÓŽ®´ÖzBf¡CŠAî2ˆ"ÀÆ$7˜'<Å Úì¥ÇBï| òuU#Wã¾v².¥iéÞ1NU?tŠh¡L·m™‡!oÆó'9ñçvnXµ®6*nó2j²Šš=•>“4³šÉÓÝB˜TúIûZRêø¤d”M}V“ Ë5è *¸Ôˆ ‹ªjDñu{߇5ð|f=#ÄuPµeÔÉqEÇE;‚ªjj 5)ªS7p“VMõÑÄp‘ªzHóF´$¥÷S À‘â6I¹ ÒQÙŽH¬T´©Ì£&6Wþ2h8iÒ)¯zkB' ã¬Ð{ñ‘ »0ÃTTÅ(kÛ}o9yÖ¸+Žc9Íb1o£žgB‘k´t8ØNržVPβeS3ƒ­¦IB’ 2ÎRd?ðo6¡wÄ'‹Õ6[s/Ù³¡•+<Årš÷údÕËxC((‡#–ëtÙ¢tsuO%ÀÌÇ'¾nÊ©ùpžŠ[§dÕRaˆKäö<í,œè‘Ãõª›ãZR£¨|ÇËk¶§8‰N„– úK]ã gÍlŠÅ1Üë+¨Ñ-‡nº#à_¦›QEήàŒ9¥ô#>D)#'"’È”ŸTX0l™I€¹4]ÃÌT[±TPL" ;¤Ð¶¬ÁVÒ7e V†¨"ÜM^q%h+¼ ä­ž²—¶–Í/8id±‡æz *‚ Î"c'ÈĆVuVLæöÇ~l7åÀ;¨–øôn`ÞÜê˜ôη5#¬gV²V-ÖÛ<^”•Fx¡åžd¥`G=zÄå>bAæá¾iÞô¨ãMÒáŠ+ ; ¸øu7 DUíoÅ,t|Û6 é ‹ôm[U¼§–=Äg0Ðït„äš÷ÒRLH¦» 5 ï4ºB–ó£ R´)¼ {B½fÒ9¯Fqx¹ÕŠåš~eÜ|¥uÔãq½s¬Á\ÛŽ÷_¢ó¬¢.à°jž«>“ ¦’«9:XA5(º2©+&§‹HÕ*‰2 zWZK†43<3ÿ$ükmüoåtÔ³Ï3ÑÜu-Ž3[NBÌO˜&ÎMeæ„ ¡NiW 0ihôë±¶Îy¶¬-KÁ¥®NõÁ0gG¬á„L]féÝkÑwS“­zðô5·Ç5u½“ž aŒà|²¡HPIMu}í†g¥Å«¤‘FfÍZ³zMÚE6È ŽÎ¶±L¡¡!|œh%¸‚‹7R£EWOx…€æ¶¥P®òaÆXZ0æS2KHÖèâðMx8sªÃnWŽKÙ·+ʆh†¬AS}àún(+¼ ü)µÎ(%:#R"¥ÞM¼‚¼ÊŽ>Ds$!ÅPc[Zªã ŸS ñi=;κçµÊ9=jµ³yßM³ÄUCZ&JkJ€dÚI" ¸R.æbôaXP²0‹ g*ŒàÝ<ò˜p)Qïr³¶+¼éXåx­ä¥ GmŸ Ü¿Ÿ]èo\F¼{}—„àúN´}V\_Ìs©2šE!  =¨+QV‚©D8¤ÆÛãqéJÈpä'ÅtQÀI—²ÓtæPxϪØ1Ú³ ª– 1–*NÃ" ¼±' ÕjçØ¬Ô«È‰ëBó´aÒP ‘ßyqx• —°è^•ÃH§ÛUº¯Ÿ’Ý-¶ƒR®Ð8<¹ì'œGa°o{›®ÂX3 CZO;éî›GHój;úõÓw±®L„hƒÄš8áF9}öÑl8©X¦Ô¡"BƒWo3CI¢0÷ ,Ê2J¤xR¥Ë¤A¢Œå.“6â{¶B¶”„üjû®;æ¯LÅd„ú:kzG`“LP9$N²JÑ¢^„-ø  S—-‡vœbl|º±«£Ù¡×¥«©ë ÙA¨éMa²žB'XH4Ø£T1¼bB“·v¹è5Ây´£Yg­ IZ’išœ²Bh„µ“Í ²£èô…sV…<@£RI*ÀJT’¡<Ô¬¡€LŽ@%ßbƒÍ4dl‹¯¨V13ÍÂ*ˆ¢]$°‹ÆqSÞ€èKPéU…½æ¶uÄ€éï^Ój øÃz<Ì)m³– BY §‰›…Ô/í;2+aâQ£ PƒR•€\JL‘šóO2:JgRQ ï‘pQóÄϠ܆l~-³¶uzÈe¼@Cé8ycÅ5:ê†:z÷B 6ÓFóí¼d$ã¢H8QðO§1²‚k¾£Éˆ P=4BpÉæÁuk±#–#i$ æõÐ!¡ûN"jZ3•èÑ´ ô–)ä0–#•­ËÄ+Þs Ãt*ޏ:n͈{(iÆ’¤KPMõ±ðkâ0³³y,TµÖsËÀå!ÌG 0[EŠ~ÏO)ùuæn8¸5šÄ›O:Ê ûƒ*‚ÒEïZê…ßÍâ {S­–LC•x–Õ9¼ùHn—İÜÂz :äÈ4¾å@’Éé1X0"š0VÇ  1=«8µž#5Ï—²õv[m‰6ó84ÔË;>˪!]uÚKT’9.oÎ%¡Aó!òÖÏ=ŠPÑ9gÎo RZÆ›Lg•t¥ .ØxQ±K{<ãl´ x]&Cf™%ß+:F3†t}uÅ1+mé…Ì !Þk¶`k«­C®ñn2½ø•«zËrë¦*Ž×›l[YCÍ£Ní:R·*pºÀÖ™ß_¯>z¯Wò0M:ùk$ì=‚ŽÞ3Ö.Œ±Éu=©hJ¾ÉÉQ:ääùë^läÚIŒõ­m¢i¸nA¤þp«Qk4¸î‚ˆÒ½½•;îzX!+IOÉ&ém80ݘæqŒ–1õ“ù†ÑÞ2¾Ð`7Éa1wNy·±µ‰Ÿf>¬ÑA×]o Þ:”C)Å…—®ÚOƒNä•e¦Éäyƒéc†5 Øw¶c̶ßõEM²SM¡Ov‡¶Ù–kÌ㯎y©bÃUßÜ0ß³OVí]ö±6»Ôd:p:&ü_y×B’`;Â3ðú GÑjiž'8ÔÖr`Ü‘*j÷ZçG¶c-krÛb*NÄÔÄ-×YE'³Š@šªQvCѸ‰YŠ›yèô¶DiJIRËÞXïÞuc|éHXK®Øº”²²7¬ôщÎñ*yÖ†JcØwŽ—˜=«Æ¸Yà„Ñ9œrøò™Â‚Å;°*Wæ;´ô¾Ö:WøX¾mÖ4Ó¨VÝÏXèÙÛ’&·F¥ô9–[S¯˜‚ãŠÊÚÄÒòÞÅ %žqÙö\ç³éµ¡çYŒ C¡ðÉz KKÁ™÷ßá€Mm³m6ôŒéÉc´óxH3éÄšm\Ô‚¼FG\©>ð_HÊ®;ãtê}†Ú>µá¹ÞšÈ¼´¸$¹†šû:ë Ö0Í;ë¶¥_zŸwŒjX˜í.¢‰%¿l³!fЯºJ7ïhñK …{yfªú[¿‚12öß®™„v•y]¢î²«ÚLN;deñfÚ;¦ÉkT3…,ïˆÜºOÓߨT׊VÒ˜D´C÷¦:ó*R^vÞ¼m¦×‡YZ§¹7Š1¹‘w84Ÿ=}BëÇ5Íì‘È5Ò9íàðQ˜5Ý·':àh¨½ Ó„¡zûaZÊv¹†»>ºeHhZw–óç5¥¯–¦¸¶Fɾh“e6ÍuÆ1N"™ìm´˜ô†v„'‰Áâû*¥1• ßtÙŸzùwíbôÖ>s,9ÇMCɼüxĺð2âáÏ0?,×{;h3Îô%Ù/Ç”³¿†Ù6d÷Þ[qÉŽ÷“tó¹½B¶’ˆfþ·µa{zVã·•¥xo¬G\çä8É=5ÖAÇ_Ž0½öOŽ­×´«¿‡³zwƒõ¤—•—‡Ÿ¾Zpml¦Í?dÏJ{t¢j{[´}¼Q¹Ò~²À«ùË›ÆÉËާ0•Tz©4˜v„¡#8Å«ëÜÎû"Ö4),!ÿ¾… q«Âó“N±Ó¢´.B—®}QšfÑ&ZÃë Ä"Äé å¨ž:O3å+84¯¢\ p…çyA¢úG0„þ…yWÒ,Š¡èhö´Ã³ë; ‹ m+*NŠÑ󋥑·)Jbße-ÔµŽÑ_`Û·’ÎàÞå±0!‚`ñ[è(fÈ(ÄQˆÂáê#æx‰ÝÕìÓðÒJZ¥è0Gi,¥ÚS í”»Id¶tP6x’+13),ÅHÌ ™)C1TY„³*U3 ³3 LÄPÌ’a!v1¬e\(Ùõq¿’¢«—$„Œ„„$7y$€’À ¢DM¢Av‡~n¤þb)iTç ¸åDp LÉ)™3)+ÖdƒŒq®Ñ¼v°ïÐe±Éj ÔO¡MðÆd÷â­YrÌ–Uþ$ŸvôYŸ“*Ô-ò4VRàâÔHÙa'VÈ«çÇ>šFYìÿÁRµ¡õØS“a{DÂöRÀ{ÅG§¦+Ó—5¤7ʱ¸ü˜} z6ÿ™Ù[ ¹Ša9‚É9‰”â“9-Is!4ÄÓø”9±/ÔÀ•¢d¡‘¥TRQvQUE(ˆì© $ I!,^`ši˜!ÿ|jG8,âjZÒO9ΓJžeX§™,+Ì,‡`ʼÊed`pO-4—–'ÿÏ„)ìé‰ô;ÄV ½üdtj²ÇÒß â+Vb4‡ÎôjÊùÿV‡TßšJ9~_ITûßä—·&¢©«)ṳ́95“í3„ÈÜY&ád\3!ó‹çSaFŠÕ7壢ˆ`?ìOêF?£ëvˆYµ¢RU1”J„Ÿ@´¨xDU5@E“i'KL/ŸùÊ%Ò,K¤°‘ýŒßX§ÐSèÜ#P‰±¦&Œ-|ôn=)¨_veŒ²•÷rÄ|ȰO˜™Jž™Æ+æËÏf+òBk ù¬k;pæ·cÇlôš{«Í§êo‹âø¸ õPï}Ø«`‘DŠ«Æi ÊÛ•(‘HŒ!Rˆá'KR*ª9EDÈŽÔ}¼h'^ŽV4…׫ˆ-$q ÌV·²æm):åÅ*]r9úÐW§.}¤Žµ[V’`r¦…÷²ñËÈvBíbZÔÈ28VÁlЧ`;M*ìdW{IW}L¤oHvßÿh“q€?¡’K^œ­5³,ËÆ#R£tÂ)/»‹æ'ûª”ÀĦõˆ®d§åo)½”µWC„žsŒÿÅ …í6SZ2ƒ`Y%ºX¥µ¬ s+k.t{©}ÞU-d¹ÄÁ[¥®¤¦•LÄ ÿc„`üÁý²aÊàPDTU±¿”Ýd¼(ÝLC›°MÎU8›!sToôªA2‰ÓqºR?]•|Š“#}`XÊrm£I3 ¨ÂXÁé8-*5¥Œªc)1±‚c×k¢¿=Ô;déêI¬­)ao¬Rß²š0,e·bѱ‚cÿmñêbp†¶ÒeÒG9r¹Ë‡)ÆÁáÛa0Ž¥ŒP÷7aïV©b¬&³Æ*c"c(1”1Š1•O¾hЄA!ó2d>Ç›åd,ÛÔÕËv¥º-[´j…ñÊñé¥6 ›16le.Í\Üjµ)8istÐ5œn–ˆê7–ïaÓöœ¦û “ ³Véh–Ä·‘¬ÔfšÑŒVÄõ䆕j²[ý[ÃDj=Bsº•=AjÚUŒS°.}¤{ÀÛ—¼õ%5fDqéã2!ÌÕ…‹‹2feM“XœZtmj8å =B`Ôe\uYFŒ¢ÆHƪ«Œ¨ÆJc c(镾¬|(“V­fHÆ4`?M³ðZÍYXıƒß±-1\–+FRc ÝŸ¸ÒŒ‹¢êsHÔ`1•É7î6Y›¢Š9UŠŠJ(à<8ÿ`MU¾7Ç>ë©­-ƒŒƒä14dOv÷‘ƒÕAj*VÇ(ŸÕï îÜV²Hs|7I¨VÍ”m™W¦²£‚Á.±ƒ€ŒÂÔ¡îKc-‘y–ªÈ`mèkè&üáí!庠¸;ç–#²»%}fîiSœÊ®7$wã}«QWä8«@_îbß2Kˆât °'».’:Ê«"ɹ¾é*߀þä ÖÒ)¨ &°J:©Ru%Ê’Ó)N¨aU] Cž;mùýÿÜm‚Åuƒ ÖK9†fˆë $ë%ë!‚ë(ĺÂÊ:Â`8ˆÈtáxÊüKöQZØVK«¦#«¬pN ¶åvºÉÕ–+ä0Vá0· ¸V)¾FMÿñžšF„Ô†ü2q“€Ê¸(éKÅyµ S ±“#í2[–硲:BÊ9ì$ôã/t:Ih8T ƒîbÒÉ1ÈÀøLNÄr8GµÄí*òé•îšùòF¤ÈvJAN´Xd$Cµc˜’HÂ$HA$’Hd$,ñëP:ÚŠ¨§.ÀxŒG·b£š'ÐÚU‚“–Õáõ-ÂdliºÒ[šÉpCÞ¢·Ò¤Ò<ÅܹqÉÓPµ\Ôaí)”æ²q,)­ÖZ~,>Œ¿éjV»œiÜ«á§ÄFþ…ª|ÆN‰Å¸N ÊÕ9Ÿæ}º(ø¨øªêR›GCŸ1þ×ÜËÌ¡pnäõޝÓou¶m›†vR僱i{¹©÷)éý“ܪ­5)®¹šâêÆ^H8Ÿ`Ë[½”ÂB5*Q¨’U a HªQQ„É«¬(XÑÆ‡4x]°Ü»«7GÀÌ®ÑÍ˶Ì9}óH¯&&׳üJ+íåÔÔ]Âægïžév¯»¤3Àƒ©;¢èKÀR#ª•E4f3Ê­ß#/¸N53ûJ_>Ÿp‚}ú€÷F¼]‰}°]ü œÎ7­ jõƵDuÿ'«Óh!›¶êÞ58uddqtÓ24V”ÂÂ! !’2’0tG·5:s›§SàDq®1ʽÝ_‘Wjª¸î ø?µõ~®ï5~È·jZ¯g;eZÌ{KV¸*âÀ„c aØ+åCÚF£áª]ëCïã*ÇDŸ¾íåéËiEk;zvË·V£¶WKصœç!·—5vªØ]¬»[˜ÅÇF³³§bž.Ô<ª¼¥z´ ñ¼hâ‘Ç“UÔ«¨u4Êj:uÄœö£¦ºhä GK=r¼‚ÞI§ Ú4\éûÙ8âá)¿‹‡õ?Æ üÆþƒoƒ@¤Qª&W‹*&È«Dÿ"–8¦úçœûŸl_^ö§"ÕÌxéÉG½«Dóš®F4–8ñÇÇë¿“f7ÒÈ6 ö<š>ÎzýñUr‹”¦øâܤå`äfç‘ÿ1Ô‹Ë/v(Ÿû'ši»­„ãÿ¥8ª^‰“*Q• ŠÖfHªmþDûÓ»x¢~coëî¢[W¤ñWU)ui™ž-:Éxëc½£Þé*èÜ µíwþwžà܇!ÂóãX¶Ø7…•º­ÒÝOräW[Eb°d´És€oÆd^±N°LlÏIé~>ãñ÷û*»¹+ÖZ²­è®Wû[»U–)ÒtžÝò w^ ròqÕò·Efùüì/ –C×S§ª«ÂS¦ëuïÕïÃýäŽ0b¶dд-c"ÌÌdI!׃|¯!_°>ÁÍñü…pGîTuïd= ¾‚lƒe²Éäì,€ì1Y÷̆Xÿ2³)z_ÚUuqÕŽ­us®qn5¾¸×ùÝ ~ç7±‘íj‡Û8Þ7°òáå˳%o”ÙÅ™˜Ãã—Ž~ûâëâéÒôYëXÀñL¿t\Ãù}yo3Õ—6¦:ìáM"]ä{"×ê.«‘3žj·f‡ý Õ¾högÕ?ÄËüó|ÄŸd½¿àˆ|ƒ/ëË—z#7ݱþ¦gÌ> ö Ü_ug&bzƒê6fo12½qgë1~—¯Š±ró¸0+þK»÷º-é¿ÀÌÞÿy¿u¯-qøŒÆNû)ïÌ`x%½]¬C²,êL½~³!uÞž‘ƒ—Ë|"öï³.´²Ý·'½³üpSü€óßy-ÿÅ é©0³8–:÷Ù·ÿ°´²cøüv¥üSûÂÿxÂý@éÃö¯ý8~•÷ÆOÿf@!øß'¤¡û`þüV"¢nܧQ®0XÀ(‚Ðå}@ú@$@Ùm ‰/8H б`_¡ˆLîˆWÓ€|)QŸÌƒÃ”8º¸ÿ¶@ð •Û€2…zª2˜­ÿ$Êì•Õœ¯XýÀ>F¨Žt Õ€s_H S(PtËýOE癿ü‘ÊæïÌ—XZľÝ£tg¯>ùy’ëLqº:Ótew¦o-1¿¡oÀ-uÇ€uųÀ0rÿàbhŒþèáúãtgò½q}éͯ0˜šŒwê-n‰Ö¼iuÇdŽDO5ïS¡Î)B÷¬yÏ-ÙØOú*_ý¼_Ç[í­R¿7Úõ´wƒ´‘>“¿8Eóª˜úäü©l+Èàn‚Ù¿¾óŸ’Ü«§B]“üÎg‰üæ¬kìèUÎQs‘r¸TG ?ôvˆôêgPÖòéGò(ü§Ô~ÂO·î,–¥«*§M)g÷+x§Þ_ßnùTì3¦PöÆMn/©+ðÑÐý¢õ@°B"fFJB–£$¢å«ìŠ ªåpŸá›é¨?¸ëåù¤÷(ýJ8.½Òx²í!ìT­à~½`îÓÐ.*9Œü»‚âþÏdvIü Ò~Âra³ŒÏí*·cõ\,8ê5Fšdd2E’! ®û|•$+„©'^¯^‡«¸[ù×;‹:;»œi{oïÝ/>· Ф±á"BEAqoDÉ‚¾ôâÅGßM¹¦BF ysúØ£?PYǪŒç9V§?úL…³-Ó³•ëÍ Gñ?ÕýaÛùN<Ç€ä`G2:íÅ[ º0 bK25ÜÀ$ HQÃeE•îþÝÇ+=ÐQ †w´ÿ‚s·É çÃu÷Þ·;³hk¦ú\‘ ßêiÂG-ƒ þm$¥¢8ATB‡¥4¤³)Ô#1Ãå¥VàŠhe$`£ÍE$;úñîö)5 W’æBÑG†ÃÁ÷™3U Eæ™{¦% ŒË1$ç¼;ý“ñž5ÎfªwÄ>x›T,g,B2[™aD0eFåLm†H6Ð!ËfN°Nœ„èsA­RfâD£Yó^™É¾ù;ÔnmŒÃk=8ľ×TLψ`¹ãºgBIC;qyLÙ·a…‰=ˆ¤5*H’†Ã±#¨Œ?oNÌ™Ô3•³w¿ºzÖ«µç«k?ì^yQkœeR’Q ²tm°p]@L7ÜLºÁ™~Ï%çRÉVº6j´Ôe’ BA%¥ÍV˜šÍìn<$å“ÚnA1‚ÌUᘃ´ÓƒKÙ›fËd9=©Ä²¤+ªŽ%nÙ’#’D] rÖSLÙ( T9™iR9%ìבX8ì‚MëÂ÷öÏ'Guž­‚*ƒRÒM9$96à<¿3#>!à3“˜Ì~ ‘›rb¿g"¨N)m\â!XÒ1d;¡Ÿò84Íj¶‰мTêWt„‚sÙ“ 1ˆ1³Y9aÚ¦T™›Õ98¤òbµÎ”52±3áØÌÐàÓ6¸“¹=¯˜œö[ã}˜×“}£ƒ†¬ÏP-¡Y*ʰF‚W,HêåÂ:WaUjbyy‚-Óë"dÌÜYqJ 1@vÖõ/+¿}î3—ºZ®Û¸ŒèÌ_ÉÕqHð§ÌK‰×mÄsaàØ$y^;GÈqR8{©Ø&zJ‚2”¡O²]9Ñ›UP‚à #…‚ƒ%¢hGGz-êÕ\ÁûÜ2‘ ŠóÜ¡âC‚uÔ Yj”×yœ{¢`SÚˆc d«ug‰› Ê “µ*š$Sz¤C e±´éFíÖ}J›÷/²xåEb* g‰PµÙ9²n ë3¨’jCºÓÓÇKU¡Îo{Ââq”$2‹„–#ª“d‚$QX‰dׇ BWÕ‘ +1àê-˜ˆr¸žM]Êì{éqGh“˜lŽ‹ÌÛ·!Ä@—Q¹‹÷½B6«/ÆuÒëYô¸šÒšZ z6´Úoh‘Ò1K  !¡åB0óëÚ ÙëÎ…šŠ§:TiSÍ,J±ê¢Šg>%l Î`ò®œêA, íT¥YåKYȇ‘“-ˆx' tÂubnK=u|çX°ŒnN¡!,C©É°í{¤‚’„Ê&7›‚ÙèªÇ4+,'8º¡F÷V´Ì+há”/¥í4ý›µ®V%3Âah\a’ǹ$YD†zéwGoß}a­ÊE™†KŒè›ºPQ\ E@zL¤F5%Òyáç3wœ*‰ãfs¸¾¯¹¯Iâ Km}1éD*f÷Öñ´:æFÓH5w¨ÌÌ"qÅh)цP$Ax5ïºÚ¥y5'éVøÏì s>¨Ñ„ÞtH$…‚0ó’Š”á:2 œâÞ“X½k ŽÊøŠQÂ+º×¿5bø¹b6Š£Þ<æw¨c£Þo2uy—¢­²XU¥WhÉ *(þS˜v£H:ù*!hŽ™!‡Eµ2&ÇTyÑÜNªQ3p/Lªz‰>¹šçW1ÅŽ/‡ç*VXZ³“LÂÞµCô*Ö†Ò3P©²^­f³,TBC$"“•iïh ;¬Ž‚óY&±¼ÒS²ø”™c<+I]´˜=ï”„Š‰Hmb•­i¤Ks½ªÕp3£Þw´+@G€ ˆäTœhKW!€“(FEbYÍ ¡ÉIjPyˆwyŒ$Ó>S‚‹ÀêšäÔ­ÃP«—˦©šöÚÉ¾Ùæ{1»\ñ{ØK˜(‘ñ´Z›2;dô«œq7„k$æðª‚&%P‰X­Wô@Ú±€ \a"ë`@Ô HAJèsë–pB" À‘齊ô¼ 0F*j@¶ˆ¯2CžHÒÑŽ“ª @.<Ä»ZþO¤P¬"] IWNÌn.C@àm•WƒµŒÊ+èÑ9,|äQÍR„‘ ¬;Û8“È–H@Yéh4 ”€@ë$dbHÊÑu‡XHš1I¡FdEnÏI °~ç1  -9Aš2­äRÜ‚a ;¦$ÔÂAV, \2²™bÕ€¬Ad9&è83Ìi˜A/, Æ4UïÖ0ŽD ,s_-Á簌󨬒;QcUº"ô=™RS ðõ@ÌÈБ¨§3&‹i«Á˜ë5 &”JYⰜ갬tžÃxª¤Dú\—ˆƒ ¹TåbÎ雸נÀ'9L"()ÚÖaí‰âg˜¥˜ó鯒ã'Ç ôâ*§ôöÂ¥%#…)J4B.?dC$•àlÑ+Ä•SE  ÌŒ+“\OW‘”í:N!X&s½P(Ë=©ÑÜ£'„^r.“4„ ÙQ(‹]%œ%*p÷Økåïo)KîL¨0_r2ÐäúÂb:ZäǤÔùv ¥U“±ž¥U…µô`‹Z•!ŠAØmiA…Üä„Á!u2'¤)Gqvw8ÃnÏCEøâ–ÈHñJM,7Z°@“™(œG‚ÌŠœîÌ1„èâ Ò5’QD¦.…´B°¼¦yPt¡[$P*.'œ ô‡•jEÑY*™æ4hÉ„§…‚Ç !‹ ‹ —Š­µ"¼ÍŽŽ± ÖÕ–£d¸ ÃaæTN4Â…zé˜ÞµÐÃH–Npl»9$èÖÈà GCS)ÃnÍúJnå­"|4Ũ. Œ/# „DZf£“Ì Ê27R.'?T…±z¢õ0¾ÏŠ£q4m6Á6Ø`Az Xo{h+´Z‚uS˜ÜÖ6Ò }».+yÞ«w)t¨“Eée»¬@†˜¦ºKVµ¦7”©!Úzo]¹þ6šq«ë ã8J¼šc0xX šàM'PI*E ¼.”x¹’¡ §HOÊiZhç45dêŒQ£"# v8°ÏÕ6RÂÊZÒˆ°¯K4áM„f 1œò^Òõêó€ÀgZDbÙtÀ­ù”^$Jï,À*(®×î2X8ÁT³EãC µ`‰÷”-Aó™ÙåñmBK¦˜¡‚2@‚Bfl9<Ôt­Fx‹V{Ñ/2u†Š¬5y"¹"µ‰^§Dã&¬eµãKŠ˜ ;1€‚k ;@;ZH1¬v7M1v”ç2ÔñÖ<Â3x°Ãs¹&÷”‚ï R3ëŽbT®Âl- Á‡XÞ-wàâ#7X®Ònu·kGz^„K¢´=ö§ßÏ·Mù¦¨háà wæ åÎÚQõXÂ#Ò©Öñ®Z ÖDÜ;¨-0‡A§*ò_*¼äjÞ­s0Å"®•w%0.N›³³Ú´k‘†duÒSÆ+E–É!F¢è•¡k("=ŒŽÓc.\,´âò9 u½ˆMFI8•û®””i"h,çLš8 ±¶‰ ÁÄÐ!r$–„ôš´3lN–…‰ ÑJÐÐO%3š›U ŠR¤Éð"¡x£; V—GK&.µ a–ZK5†Œ‘³P§\Þ}Q"HÕpÇa”-’䈱@Wh&›šo°J¤¡®ÓÝ4jZ¡27WÛg¿jìÔçuÞfRéj%o&I©:æé@PbêËã±6už/±¥uUÈÖ&§]´2ˆ/X•å¨c00ÄL¢™•]·äL’¡P¬šFð5™¬¡CcˆVpiDH˜§)½ž ¤I$Æ¡HšÒk#§‡R‘‚(–Ä#„ð¼*ô>±ãªÃ¢ÐrEÖOºÆƒU¤û Ì"ÑÔVû¿ŒZî1;Ìô­&r¦-QWšöÞ«¼gÚÆ—F¤ªí&Œ8VÒ ‘V¸àl*R±¢ÉödPA6Žíj$î«yZu—W®üM=´¤Vv\âškJµ$ Ãó¾÷ïºgw·vŒ[Má·¤º:ãI z(—”ÞTXa¡ÙØgZÓ¨ò{“7lUík†É ñ[Nb¥cÒe¼Rë ¼±ZVxÞrÒQä–°¤š«äVÞ!cëÖDÓ…s*ðe8v‘é(zY–!RÊ[º ±$Aw¥­˜ÆæQ`ª‰íXfýBaŒF˜Ö:Ó-–m(÷¶ TdGîT†çq¿2¶›T/µ^œ.ºÀ¦Ñçm¶Þ¤:k¹ÒT"Åâº^8š¾¸]¦y:¤¯‘ZS.rÛx.pBùšGof¯Ñõž×\VÑÿ°¼í¶ÄõÕ,ÆzÚ¼?’TA—|ÓÎÇ[Ê%ã¶ÊüB•†ÏÞúõÓʈZ^‹o<ß„ŒLy¦ë¤ü Ö¿hTf„%¥'Ûh®u1Ò¶Œ'ì¯Ôckä7“fRAôLÂ’‹·;ï¼ ë)CÀÝzÛC™Ö¼ïèò¤÷ëÍûWf׬JÃRßkŸeÃØí “žl¾»\‹|ו„ñéÚÉ«`ßMæX×|\õ˜µ ×í£=oñ*gz´h.òòÄÕöÖ‡|—xÓ;÷C×ÇY6˜áe#B=WÎ3£|Z¥æÍ²Lç-ùð„Œ¯©ÈÔ“µùæóã‘Á¥ë=óΩ| íBܘÊÌö6!À±*…Kõ{µmêâ3«›û*ó¶gŽ!^™€Þ‘ÅÎ5X QÚÞ•‡9âêòÈO<âšÇAxd„# ËȦvz> †pãæG(äYt ×Vðn"ØŽ#9ðDf}>_[€ý¬úirxÏ»µ%¦òŒ>b‰!›F, º59]c (al×bÅ£¤“Täõ×ʳ»ã x–{¢Ä¯·¯m%ˆ´ïºÊe¹·w‹‘Á¿·ww}e«9mÚ¨cà*K¬>_ýîTîW|@;Õl’PÙa*³%R³K2̤Š¥™B3#0”f!Vb*f)LĆd“2T³(ŒÈC1˜¦e„ÌEIˆó…°JWƒŠ2@‘oÍ…BÕÉf*ÝúIçSyš+`Ød;²óÝÝ\7t>`ù‰ùqþÚ¥ÞŽ!pÄÊœ¨í“v…â†*9a(‘J¨‘J¡S6•ʹ  ŽDl£–3LÆ4c²>§Þ'ÞOªùNÍå¾QjtKùÿ"%÷Î[ŽÿkW~Â`˜ëṠ¿NQîÛ|•|”üE•/?!âQ4§‘*:¹wÍ•:¹ÕSˆMN_~ÔÜëæãs,VÀmæÞ¾P|¨Ùn&âq¨efb›Å7Ï"à6ÅÊ’žíÓt?AêCÔ«Ïw õ)ÜUÇTîù~ìºJ̼±ÀjÉužH8hÅs€ ª…BB €BBI 6&PÕÓ«CÖÕƒ÷DVÙo©§¹_.Há…9•Ìœ'/9uÉœ²ãœ±Öû”÷ mÈcÐ"$F%’Œ !ff3]çyÆîÓw/-?ÎQ÷Onäx­_ÝÙÙú+éçíOÊ’XuŠuÀr4—Aö„¥ë`» «‘Ê#ýijeŠ…•ETªÿ`¡zÁëõcÚ/¤tèõ@õBM6´B½\ûE7ŽUÈ6]7-ºäø.k Òò³¬V1ŒÌDzņ4O"¯!Z±]l«´Éê+¥P9 Ù§pc§»2uÙ£©]SÖ.­ÆÇWÛÓÇ÷ªÉv*«Õ'¯zº¿¡ë%ëû\¯6žJ¿ÕöH;oôÛF‰¥D¹WNI3°‚ª"áË™†3䇓^Lñ’ºvˆ¯$¼‘»Qs€ÜÓp†ªmÆÂ­™d1œÌæ+ÓÇUVö(æk™®a乯s>‘Ò;‡ÚÇ‘y³{gáž8ßUãÆ¢¬gb[3$a ÈÂ$’0ÀË ;ú’Ûª_5³ÿ«Ç9xèþ¢Fû²Þӣ빊8í9‘«.f7£…Ž5½ ¿7¨æG4­»{G4pôz`Ê`äVfa£˜ÂFŒ!I"IâÐ5ê8°ìîNn}êžôüD-­7´ÞÓặ¸r{jIæ?¼ý?'ÝËç)\k¶p&ÅX¬–K Ã%tîïKÔC®uS”® sÑzΓÞÕ´ƒûè 7к>]]1$$a$$‘ffpù¡–fZsõmž$<„ò ñ]èc [§<¸M£~Sfò!ÞÑ ÚqÝ%Þ{˜{µ{±¤j¥8æûX³ fjfFpβŸ¶Pë‹®Vä*ØïFô:âë«{½‡[\ ëFÕÇ»6ùÿªß7=ü…[Á½iunžÝ^Ü»zCf»÷mºã£Œ› ˆÁbT@°ˆK„‘QÌ驨v…ˤûãcüøßß`þû[¥Ò¸® ö‰íj`áÄé.æzN“»ù ûÚûj™™Kƒtéê {TþVøŽ Ì‘âËøöø=:çòµ;ß3¥ñ¾dºËÚ²ßÝ—Ø Šuâuêt§¯ÖSû [ä¯Ét[-§…»W6O^=>qFím¬ b`…°Hè°$„$`I # 0ÍÛv·Stãœß7³W[VÞŸä•q.§9wá¼ýò©ä ÈZQ[O…¸lzñR¿%°†º21rñ%JI"-H}žLx9¡÷LkÕøj©oD‰ .¼/Æ2 ß®|J‚=€4ŸS•bŽTå]m±­PàË@ÀÊc1b¹oñ½Z·4ð”¯)CÖÎú^¶/[Zàù.ñà‡ƒM¬<åƒùå«! ÖU¶ÝßnþGBÆÂœK ³1™c„! É B@Œçº6fúv ݈³ì<“2é ÛíÞõNbŸ\K|«@¾ ¨,$$É *˜Zñuàöžïøó£©Td‹×ej÷DQà“‚=3æÄö`>ÉN„O¼ª?0º8“ݾC°G°^™@N3íàØ,ÆþÄÕ°ìCˆI&P°£¨©HQUQ”Ô$k컲²ìD{SU˜³°¦ú®îPÖk8ÞàöqËÓ³Žb]Œ¹šyEØ(v üÑ)HH”Ð4‹´J¿èp½©8kµ§*»RæQ-Åê/#vv/"vÙ•Ô¼+·3m×nŒ÷£Ô¦a;ˆæü׊®êžTyhÈõJZÞù}t4fY™€žá@>!ti°–¢@’Ifn>÷ŸkmÃþ|#˜p ÷Éýw•^Rn ºYr|¶môéÑ«Èþfñ~}®rÙ¤áÀÉ–e™+¿yk«‚z׬:çåÂWD­Úij‰ÿfû¾ÿžHý¢ÍV¦Ã€SS hÂÛ+•Àì¦$!!ÂDâ‹¢ßcÍ& ×ôn½þô¹_o˜¿†—çÝþëæNýÆ;âÙ‡Ïzª»´ìã…§új§ySÓÑÍGk©Ùöœ¶¿ÝwŠéV¬s—x­ÝÊwq»;àL!ßÌŠþ=}á’5’0’$’FBC&8aÛS´£áǹ¨Æe˜Ì±þh.ªNl:¡´§U[ûñdøuv£’8)Ë2¯Øc¢»…uO£ÿ™x*ÛZd²\E!Ö²[8¸„¶NQÂ>͸G!æQ©Öó%æE9Aõ±t‚AqÒ%- ƒL‹%C‰”L¤æœ¯ö Ç®<ãéÀƒMŒ¸=~Ãyqns[us{wã>Ë]<ºiOÏøÏ}?bôµkC\²X–¤nÿü~³Ê/(¿Vœ@N²®²]`ñî¶<×'Ü|‡½¦õ:G´£ ¯x„9'õº· ­­±¨+áq­õð)àY‡êˆ¹ÑΉ­]h:ÑÖ„è\)TQ$$`F¤„#T¢J•UTV­#«Õ†)µÛ —\§™È5e;œ?·qžý§íUÙ¼ïå~”çÃó«@]œxïÛûÙµªØ,Ž„‰I£ BèÄì•“ß“V!íÚˆ©~—“Š=†0tz´'3s{pÛ–¦œÆÜmæ‡mSÈÜȇ'¥Çê;C>gó‡\¯(/ÞC>q_ŒÁÈ)m LŦb®Ž9ÊuÑÁ'X\êêÕÈ—W?:¢t Ȩ<’Ñ^Õ™Œjc,ö$®¹tsqWFwôé.þým•µ8Ó¶wÕÄ»âo*ª]ðþìòF6ý€ç?‘ÄÃa#QÛ*®WeÊ *ïô“üøubuˆE(Oé aáòßeóNjzûtYeOûúµ3¤ìD3„d’$&3 —€‚å;ÆLž\9b®xs£’›íGL,P‘·!$ ÈI$$’IšÀÕ¦¬5 ¢• ÓW uã¨ê:&¯Þ§ü‰]W”àï%=ðîY$–TCó ®gøþ“IéÁëêãÐú¦?û£1 ƒ”G%K‘É,ßá`<÷˜2®åwåN¡ÿ[¤‚¬¾Y> ~)'O¾oÇPÑàŠ¤IÃuü·wØw]¯9­ÍÈ!Â÷´séÀ»ÑÐCFþ:ÞÑ¿Z®þÑÒ«¡µìj»¤tg™dèlÆa™ÿ„†ÁËÇLqñª06ÈÊe1£,ÆfYŠÃ½¦ÁÆ®šÑÈr=é:}W[pìêu\¡c”¦;´ö­™'|]dh̽u UxA½aÓûýú§S :pÚ„£0[á) d¤¢DIÃ…,¹@TQEW•ÈÔúàò•¢i_‡?¤SY”¹–‡•Ž›¢ä9kìc cù¾ÏIø Ÿx¹fey°êçÖ: ´êyûU¼±ßXç«G6a¿EÆËðèøcá32ÊÿØ€å#ac«,uF<6{r.EðkyWÁ¯êª›éùŒlv9—á°ŠzÊÈ¡a²„’Gÿ€VïLŠnèÇ€ÛúzPrå2‹•PGoõS·93áÀ$$¯ÒT[îT•W•@÷G,/,„ž¤¸’â>¾"¹ iŒ§Äε)ÜÇ]Ìoý¿ÜÓ¹|Õ.á8¡¿U‰˜³G¡”ÊŠ€‚ˆãûÓoïqûµv•ûËù\;*n‡§NšéŽ–6î”éNé_ ¾$wQ¥wiGÇ~“N;ä?Én2Æ?·2ÿºIǶAÄŒ–LÁƒ2"lMa“Ý!Ùƒ“J$zúª„?ü€?ä|ÁíÁu!®$¤Ÿëp¿":|­Øsxx“¸º…4¸?Æþ7üÎE"¢ˆˆá\©2ÕR ÒŽ•rf‘˜ê€÷ 1ÜŒ/HmùXŠmçyðý³Þ=½_ÌŸúErßžãüO1_¾"Ó0~‹| ó›)hX.&$ ©$a!>wJ:ÈL:$¦¿úzN!×Ç/N^¯Lâcî‹Ü¾£”z·JçÝÛ€sþ?EÓ½‹Í}ûÃ罋hí^åÌ?ïߌï›FÑ´mFÑ´mFÑ´mFÑ´mFÑ´mFÑ´mFÑ´mFÑ´mFÑ´mG,:·Vÿþb‚²L¦³…Ž‚ ]uûÿÿÿÿÿÿÿÿå€` @L@’HÚÚÂH~Ç  PU(¤¥UT’A@"À¸û|ÀôP 44   ”@hP,îÐŽýVyéØþõÓ3%Bþwb ‰&IÞÒëLmõ@Aj â†:rKb‡²za a‡+ã½H­Ýi]ê9ÜN=è¸-Ž»f…B¿¡&BÏ©›Ä|JTÄÄ“*KPJHd¯h°¦êñu"\ƒQ[.¯5‹*1,Á2¯ê|F}’ÖžŠn$“0‚ FW‹¯øâû©&QÁ"†Cá ¬H…p}83ÝãÊì§£•›s\ÇiH û¶æYÕÒ¯c,ÏØ¡~j Œç@#6Ԉ쭒:ÐŒüm¯¿>µ&›´3îgRÛöx™þ¥Åá¸ûäõu£ÔÈɪ\P©"Ìø*â½×š•ª¸Ó™ÕýüeY²Çõ8T)dn_9¥*?‡±³°ÈvT´£†Hu!A0`:zA°ëé”:ƒá„#²À$’Ǽ«e úP1A ˜eÊÖ %VD®W Ðmº[ôò#]ô •Ò^›#$¡Ô ÷ND”¥+>cÌž¯1P6>ô‰îR›×n‰~¼É]‡dä˜Ô»²Nœ,Âh…úr,L=ⷱºDóÝ~ßš€#×?mµ¸h? ´`X0`Àiuü¾ø·§“ÂJ?…ò~ƒÔƒœÙõ\Ðö$'•ø—Û’ß=º´#úîTî8_ÕßæY_¡ðFŸïê¢>ª ‹£²æ>èB«fö{w _d«P†¦Šóˆ^)‘JM~÷;ÝžÆV¥|’Š—t[•Ö_ZÅ®/‡+TÓ‘­ó$"AyDðRÓA"ÊP<¦;Òš ›ÇÅÜÊÕµF%saPUSU/«µÓª½UkÇV«ÔŒ$ª„Û€®æÈðÍ1”OŠ¡ ûÂÀugÞªCkâª*ãÊP9DÀ`CóI î¯l\ñš‘\uV!{û+¬0ƵÎ̸[›}Í¡üFÁ¹ ¾r½n{‡¸öˆ€Äl"¯O¦g”jº(ô?BaF×dêyû~Zןdý|-p˜¾Ùe„gìBõôc—ºÆ_èçTþ~õísZ@ r)RC@ŠŠw ¹ (‹Ž‡Jç¡!‘aͤœpsWóTØ2~”oäæ‘˜º¬ C’Õ4’]Ì-' ª†$&$’a)X¦I(EM«,èºÙÖñºqc•{Ô>çZ³å¶ÊG­âµÅ"£|u•.{¶“m\çeÙ¸óOš<»ì(†‰X$nÀ¢©À‘QšÄöѬiü!+ÆA4×T0ÊJ1!C B'¬Kà=‰Âia0¨LOêëþG• a }ˆZO¹¥ÞFY…~*¼ÚíA“ ¯´Ÿ¹Cuà(Jj2p}VÀ-A5Â`]dJ3åÊÖ LãRª£Žj ±§ó»¸oqšë{õ&Aß){(prwsAùyQî}Fž#Éê]ÒgÑBŽÒC‚½TUEÆì§)yV¬Òކ4Z æˆÖ"ÅKÕ©\Ú>†íÿGÓÿÒù ú; pBóåÁž´$tb=ú]ÆWpÎ’¾ï'¿u¨Øú¥sdšyµÌ s3qB0¢ƒ }†)pñ +VTÈ11'ÄÚ0$©Žõl|2¿¯Ã ý{¡ð7R¶A<©(1J‡OÑAü„¥/™}aTúà›z§"`þ“ÜᎃæU Êâ/‰`¢´ˆ 0°aª^h /#kˆ íÕ;ÅÎÒÓ•©ØP¨vM ÕØªA")²áp¡†HUÅ%žÆaù™£¼Í~58‚F “KT¾°I\N¬Ò@WF[›t.–»ÔÆ:Ëú•ê£\kGjamoëuŽñµÌÔ!¨säÔå„Þ”|ó[ÛÉ nf=öãy›ï{LðÀ²üö¤w«ÀéÓr¯5ªåƺÞVØ7ÁAü9?÷³0ØöLáú>³—àzÖMù†0–lŸÑŒ\ç[‹]\’Ä5Y<+<íATŽò8¢fy†1î¢ôNw´ê ³Œ±›Ô¥$2ÀƒU]@*ÉE+2“2Šù.©O<Ç9©Ú¨ŒŸ™ñ~ây‡1pï)A*~‚3ÍÛp~R÷†„WÿIæSƒàޠĹáË‘ÑI§Qê—½þšòÈ0}×'Þ|ãÍêâh4k)· ­Pa(ïFÈ”‚W“Û|k­PG9ÍN‡GškŸñÿýg78>†ªÈò^IÝÄö“„‹fÉNä ~Tygë=kt¼Çv ŽÆž¯]†ê£Z7$[ô*åƒ@^#ÏHþD|g¿[ï$!bBí+>‡RW´ISdøÄXœØ‰+v TƒæàÑÖ‘ó[µf7¦0­­ZzSŽRUÌü2Û|Ô^¢s~š™>zí÷?¿ë Fí¦­D°"—è_¸z.•ꈶì¾á8áW«ÿVúŽª ÆŒ¯aâžUPT€XÈF:€2MˆBÌh‰x:‰V¸úy•Cª35õá÷J×[ùºlõ|æÑ»?ê¯Ää«u…T0{w†”ÃNÙ4ìéc6¥”)(.É­ñ+f0pÁŠ×/’VF³”3ý(#¸(‡"V©»•juB%¡¦ßǹà“DøÂvÊô;;PÍ“âéÜ¢ÈRnv …Œ¸U\|رS#tj - ébq'YçÊìiQ¥ ʪ^È=.©¶³¾"²)dHуŒ¸L}PÙ_‘¥0á°z‡‘€ižÀ¬9ÈÒâ–•0¨óŸ5ƱdŸQ- ®V9dj!å,ÊÖÝGv±û V& 79`a¥-JaÆŽLP&rĵkYQGlìôqK}µohA«ò-䢤æ%îI6DzxZ«P––„ÓÃF‚U¢(y˜‹q_ë­yðY?®•ˆ<éi¢:!Q]E5Vqf {ù`{­æà»§Úx{朮ü>x¥iˆ4”qØÁt‚-…¨¾Ü H["f‘éÍÚ`=€™½21W0ϨDvEjˆH É%Øé€®I:¨V¯§EÁÚüX¬8óyZÕ`gšã,}Z¿X€®0gÁ­@ƒµ)÷ ét÷g.ªâLfÌ‹cÒy~N†U7³2ÙÙ+cÃùpä:Ðl¸‚¹ÖŸÕlŒ"*Œž4›L`Nç+¨ÔPÁG-wôÒu!4G©9ùÅ1Ïž.™N²Áƒ­JµÈ7&G¾5ÕNçœm8Äã6à5¶Í³w¡«0ˆEø:ˆÀkXZ‰l«BÌ­¼¶‹ù©gÛq×Kœy°$uc&sâÇÎdˆÉÙ ´?yÞù™kE“d¦§>ÍÞ Å' ­¨Ìãà˜M«ÁŸ´7‹g—œ¦ýb|^9,°¡áÐÊsÜÏ5ÑGƒÍ‹›Eóƒ¯ Ùu“¡¾©Iº† ÎDwK-žù׋c¹Z&kš|Ð//Zé Àw`˯ `ï´î€VR?çYߘçãcð×R¢åkW—œPìcõ.ò³E› éŒV¸¤yzWÅ3–›±™[\j–oÜïn÷$ƈ¬žZ‡.N£—&,Õ,®"\)c*2ÃóJ^ÉÞTp\hö£¹d÷\r¯Oª‚Ð|죑aËÕ8 ¥f× @½lþ6½‡àóXZ­K ƒT§KjtYŽ2 ŬÖ#Æ;™ã4éä©nè~cÕ~éx¼riA;W#ã•ÕGú•: Ðú>Hê<]§ÚÑgʉ’Ū)ÇâyòÌ ~žÞ)œW³ãîõôG{LóHõë‰Ñ.uà[-jÿŠaWâ—Ù°yÎÚ±·×8üÁQ‘íìÃ¥¾éûÚc(ôáy¿8}%’uaMy @7•Cõ&ÞéàÁŽù£á5v½?O¶Ó™q\8uWa>DOºÇï\ý(’³æ9ìJ¡@‡ó0‚ʇe¦OT|“eKÏËrC$cU1Zþæ8Ö.ÒK‘3ˆâíg =+Tþw¹ŽçO^.Ìv9óã„I\\²P‡sFuEx:+Ѻ¥ü‡ñfÓï%fˆ¦¶ß#ÇCÀ‡!“‘¬åÍUuªÑu}eoB¯™äµ+帵 Ô‚m:XB`Ä‘-¼>ZË5F2ZÐë—´¥jN'_º\ZÖ>¾­ŒÜ¯ÎøÔÌ®T çð\ê[ÆÑç7ÁÌȬ©ÃrTÅ/ЫS‡z¦0õ!Õ>è£ë‡®B“ºKrHÿ`||Çý¿èøô#ørR-•X$BITnžÓ¼¢¦]áå•Ù®ÕÏ(ÊWd…åUQFäAäËšç:¢¶—jdiMBKm#„˜Ô4±©{R¢f$•s:˜eR”•Q‰…´Æ«m´ÓºÚÔ"k&\"Dª®LÛµŒæëD«š.FƒXÉ–\ö©vƦ¢H-@°ë²b”m‹·\µÓ!OFæˆÚQ(¹^Y”I.sÊtibk¨Ì8‰å‘åF+k&»[X¤¹t±[m-R\™Ål\Ò ¨ÏT¡„it1 ‘J”Æs[IC5œôΙáèÕ™yz"ÍB­(£Âº.tX§—§i^­†ë’£XFΜȢº6YAªIFItÖLé!ñ8¥±ZZžccD˜³E/üÐî$’dÌÏÓûó'ã?'ØŸ…ü‡~átÜ[o®xTxLI?…—ôcõArx´*S2´¢\§„Å‚àÊ_±É`¯Ì)›ýÔU›­¾])­- ¶i·—N4Ðý¬Ä̲¯KQw4 ¯î¿5Wƒ»·“àð;Á¡BØË«U­9›QFÛ(Eƒ%+egŸ?'ß÷Ù°>¾ù#[ç«×£Ï¤"¢*ý±|PPÕíüOM±´âÉ$mH(¨'¡@×©ŠˆˆŠˆ‰ª)¤ªª‚Šj"Šj™†ˆ&Šh*‚&¦***¢¤ˆ ˆŠjI" ª*¨¢¦"‚ˆ"iˆ™($ª‚š˜ )’¨ ‚jI’¨¦"¡¦(!‚!ŠŠ"(¨¨¦’ŠJ¡õÙ˜Œ 4.µeYT¹–ÌZÖ²Ù"Kjì£!Õ]u™§%¨ë ±®šn²FkkV¬ (Œ› qUŽÌÒ–œ*kff1URÉ¥1[3gpU+¨Â—k­uL2ÔUsšÖVŒÀÕhÌS–TRµƒ X¶R]kVª$Ö¶„êUÕm.32̬µ—MKµ×)3šs]i´ÔÙÒV°¹Z«©«LU8h×-l¸‘evXtƶ[(­a›“3εŒÔ’ËZºi­šÖKZµ£ È-HmUÖM³X¬¡UÕĶ\œåfg%c­Mv…ØÙU¬J]Ye×Ih$»\Í*µ©IÌÍi®µb5e ZÌGY ]« +-k´š*ÓZºÒµhÖ[XÇfX:ä”×f':eÊít-j¢$éš.eip™Õ§,Œšº•ª¶m:«¦²¨¶6Q[UÅ]f¬,ÖµƹµYYk©2Ó$U‰ÉZ¦©›UÙªÑ4RãQš¡…K$‹®šÔº¥WƒÝZ²¬Õ’µ™‹•¡×4ÒÒv£V¦bãZº”šà­Rε–icZì­UÓ2£W&Ψ¥²lµj¬¶ahʸ®1ÍmkTN ©3«•SNRÖ+¤J©j°ÙU©\»5:XЭf´†—i””aèTYžR‘hFT’Z¬5¥ÑÕ•©nµ¬´™Ö.–™Õ£A7 ¦™Œµ¬ÔYZÚµ)–µ“J­–¹™ZÓdbFÖ®­Z•t–jq©V«T«fµÑ”ÕšÚ¸­–¹35g5:Ågi𯲮(Õsªu‘Òw5£PmK:Ҭ굢šDæ­AYš Í[:”ÖFµ¥¨SJi˜Á«µ@)uUŽGfŠÎ´5Gg8Uf«™jëZµfTsÚÑ×,ÍœÑ2³K‡]a:æÌ ­2¥™ an«Fmf˜6©¬jRÊW]«-UÕг:Í0ÉLæi–ÓL¢ÄkRm ‹©§S‘'2ŽË“¦c5–­V X¥5ºŒÚ‘®dÕ˜ª] bTZ®uÕ Úí sY‹”ÊÔÖéVmYgMTÙÐ$3¦ŠºëPek§MÁ«5IkZ¥š«*hÖˆ´ \¨ÌÚÎe–ÌIªQÃX×I`æ.däWSMaÖ¥¢h¥ hâ¦Sšæ³U²[V¶jÌÌÈävšœ-"ˬÑfÃe²É¬­P,Ø…¦•Œu®h«f–u5£*•Ñ©¬Í(£9JåIZë­j&„̔դ̋‹ +-:mu\XÓšX•:rØÎ«šå4˪ŠÇ5Ö•v]f€jLTdÍuYXk¦`u¤ + qi‚B³Mf5Š´°W\µ´tÍgkVJ².¬ã,ÎŽeÒÖJ¸W:µ–É”ÕVVJ¤Å¬¶¬×9[T9 WT‹Y³Q5›jêrÕjªë0–ZÎ×&™ÈkFkhÍj°kYk©˜Õ3haÌÌš´!\vL™]kVekSI˜©šÍnf¨¬¥f,CSÔVit³ ªˆºÂ²æÆjXIXb5YsQNMk5kˆ¶Œå¢M,U§F5•gR(Ôµ¬¬sfZÉ€6*±´³i2×3£-lc é ¬5 ’Õu3­1NKµ£[ZX³5Mk¥L,ÊZ–ªbËIiqikT²é&¹ÛR±°à룭2™’f]Y°Î Q+UYÚU²5X´--d×BÈ­¬s•ÍVk¬)fÐë9…c¥¬™æÍ2Y«•l™T²Î’—\J1c“ .p©ˆµ³:“36kUkF!SªŠÎª³S›\ÖZcZMtÒhÖ%Ã[YLs²µ]iµŠ«–µ)¦†´µX”Ô͉j«JÍ`’˦–šÅT&jÎFšÕMšÈu˜®ªÒQ«uVµ[1 ÕÕY¡2늮pVjÕÈ™3f®3ŒÕ9.+,Õ®!#ÕfZ%ki»Vš`ÕT†¡Y™´ŽŽTSH†®Öa«LÖ¥\˜×œœ ¡R³Zs.s’¥Í"Ò¬Z–iV¸‹-BËUgN]VˆÚÌ[T¤\ZŠèÕÙ©5™3Lµt …RÓfºµÖ+V²CZ“µ‰XŬ¶mWI¬™8Jš˜Ömu“1¬m[V¸–LíT²L´Öt˜ÖD¢ÜªY4°­™¦-9ÖÄjb©’-N9c— ÖkZıg%XÈSJíi´íUUqYµjaŒØ¶®‘lÑ“4V‰l´¬Ôæ&‹ Z¦ÕY‘ÖUSYgeÖF¸Ê­j3LfpšÎº»*£%cU51ŠC*Ú§Y¨ª¦ÈáY ,­&¹m3ZÒu©™a4åÊÖZ­a¥vkZ¬ÂÑXu€lÒÉ]­UŒÌfe]¨é“•´©ŠÔËNjÚ:Êó±¡2ªÕ«†ÍL[&•Ó"Ö±™šFµ©¦¨ G.µ–,)k'4Õ¨i¥®¦XÕººr,rÔµ˜F…:ÒU9ÑœÌÌd™ÕªnZjr¢’AG¢)A—’G­rÎËV×%†¡œVYV³S¸šW]XUNc ­XÂÎÉ.ÆUF±š£"¶:ÊrÚ¦-®šŒ¸Ë)«f‰•UֺȹŒ×j˨š²œÙ5˜c–«\­:®Ò• B¯(¤”ˆB©D0–U!¬êbÕcVË2£1ªêK`Îjg1NE™hæPTy$D‹WeÕdÕª™mYušÐ]&ˆiFÊjºs­)¤ÙSG\D`¦³]f5 V²k)AW@«Z¹X™®­+4–Ö'VukµÕ˜fSN†e¤R¤ºk¬ªËf1bµ‹˜fµ«¦¢ ÒÚt1šÍU¬6(Ö„ÕK­6I«-*¬ê9E:˜b¹ZÒYi–kŒf­««©Ök&jäδ1Ø……ªµ5JT!ž)„$å!êH^FrÕÌÆ¹eZ 4]NMdµÖÖ«‚Œ®0ÈšŒÕ[5k²µ:GCƒU-­sšÂ¸²ÆÐŒ®\­bb¡e˜8–¹*8ÕT]’ãWfY˜•XZ&KJj#\’Îl++XPeA­¬Y PË$¨­WeÊÖ²+,§Y­]e‹*À•1³–¸µ¶Hƒª-,¤Òº”1gLšŒšÖ ì,“¬5–Î01¡™­j”à1Ë™šÅjfÅk®guc‹9L’­¤ê´–CŽ™Zè5‹R©4bÈÖËa™3­1ZeZ jÖµ[3€‹­j‚ÉÓUkV—3™¦˜ÒÎ`µšŽ•ŠÚÚÊt²¬¨b²5–ZÕ´Rµ‡V£MrÐ&‰ÆrÀײ²æ HÖ²jÀ• ²¶§0ΘÌsLÕuv©‡ZVµ‚ºÖVt“5S3i`”¥Y›2*MkDµ*Ó,Ê+5j»0Í5gi6³Z,)³—Kaie¦q©bSKU¬É5ÍŒ±«7X’Ò¹u’8i¡•jÓZÖŠ*ÑŒ®–UœÕ˜ª•3­mê[YlÒZèãQÔÁ«e]­/# JQ KD—#-\ `²¦ZÖÖNYŠÔåV(â¶e\5Π´êºµ­«e›]MKVLd•£0¹Uk- kQZ¶´ºÂv¬]+ ch•€Í µE1au-s9R­¦&ªUªšµ-jÓY2ãkꌫ)[Neƒj™Ò«Æ‹j®¹kQ2A5­4髬êl1e›F‰­)3*º’­jã –« JbN§[3 ¢Z+¨µÕ 6:jÁZÕZŒ²Æ¶¸–tĪÖCNšJÌØ ’²†‹U†ÁlÖ™j9k3«Qe­U¢ÃjSµKZŒ3GkJ#kj&«UfµXë[Ze¨WJi¬W9.«NÂÅ–­ZÙSJ!f­«*N4.µÄÍ5Ëu\¶Ž¶XkW\âœ]¥kºÉ­ê jXjäj’YWZºÖŠëéƒjËJš ab¹Ê£u¡c-!ªuQZÉ„R”–¥eRhjML³3J­1‡MGYk…uA\Ô×"ÃJ2ËVTm"Fbb*ÄδÚÖvVC1ÊpV®«2.m5Eg)f¶j¢SN¥¥¦ÎU–ªåi†®WS[[G*ÕœÁ„5³­UIJ°i³*ÊвæpÕ‚p­¡e‘Š2¤›ME¦®¶­s+0Ô˜bZ®g[NªÃd›6UÖ5“IªZêlÖjÉ¡iÍkXtª´ÚÚÑB¬ˆ)É5ÓÃÈ%ЋTEV3*)™£2fH t­Ö\©› YÉmNŽº¦´ÃZ­k(•¨ä굩•r4Ý*˜ˆÎ™ªºfΤ¹Ri*IE)F; „rXVT΂°2×:D«­V-lÕLY5ÚLÚ•S.5ÅmgU[9+‰k.»PLbef-ilÖJ묋Zåî‘jʵTGVf.µ”˜ÃZ62gTŠÑªç3:rÆÉÖYÎ5lM]*äÚ®"¥hʵšrÐÍF„¤¸Õ]Y®Ž„ÙjÕ¡‡X¬Uª«j3Fr²«'D—5‹­:Ý ­Tu® ÅŒÌYœÔ)e­3¤µLe¢åW5R¥ÒZä¬àÖ&‰Ùªë+%£)¢Ö*†˜- g\-]V4U«ZSQe“MbÐN°X²"Ó˜•UµÖÊË[ZºÑ––9ZÙªµ”ÔªhMt:\Ñ•­k-'g[FR³jʘÔm4“T”­ êR“d§-8eUtÚZÅV– êÙ˜L“\¬×9#YªbšË[1jµÍdær´ÆCµ­sJCE­fµ:s2lBf³ŽÀ:Ö&µiK VŽjÒÔÚ¶¥k–eÕ Êjuˆ²³uR¸é¥VMk!´ÅÐRd\t­2›¥©«VhfÍÌΖ C4 6«)§iT@\Š”QÉRI(¨KД(—S9Ú2ÚÕeqÒËML’êË&š¸ŒaÙd¬YØ´)h;Y–»nlZ!j¶¶²ÓŒ-5±«ª–YŠÑÖXËM3e›’fK% ËIgXšT³RtÖdG™Ëk¬FÉZZšr–¬NÄf\fXÖÕŠ¦jµI¦¬I¦J­² ÈÆvÍ7XÊÖº´eÆl:̵(¨[6jŠÍqUkšµU ˆŠåh5‰ª›RérÕVee²å¸Ö®¹ËÖ´4h«ZgZv˜QrZR³´Ñµ™«[]Q­cVªÑ™Y¬†F)Ä«Y-ZÚuXj²Í&Õk&5Ö’™ÙšÇZÒA”ËÀÖ‹!µ¡Öp£B–'Mlé’Âì´ZíK[¥kk£Ik-©­”³¬ë†2(S4“Í— ¹¬´«ÌuL¹¬Òš‰k#iÃL4é–”Ä*óȬ$]%Bª‹·:ÇUÖ4R²hfÉs§.mf1t‘é…¦®¹­kWZ*¹fÖç3+S¦®j£K4b–™M¬M­ZÕ1u¥hÊÍt°‚BÊêmc\fƒXƒ ’/J ¬PJ±%V9´æ5ÁZêØ.©™Ž¬Íb&2êfBÉ(ˆZ!!) ©hQ‘Œj[ZÖÕq-qͦWT֘Œe¥ÊÐÖÎp´´,ÖQœ¦Mv¶¬i²×]p¬¨à,DHC-D¨˜s]j¬ÂÂÚäÓ1©¡±¢XŪ2¹Y,´«QÃ;TÕºÅ$#Z¶b³5gbíik–N˜¹fTTF"S®EE‰Q œ†CZ\ÑdjhÖÅËZЪ֤’¬¬ºTL9Uj‰Í]¬›Re,e©ÔÕ7SF®"Yu³Uf”Í©˜•B*±ÔÖÎbÆ¥®'5§$³±YkYf³¥vf†’ÌÆÓ:È–ZQE,í]6h°-6eÈÒ†¹ÍYuÕb5R±Y­Z3£¥2E¥Zʼn´Í%µZÌ1Z¬ˆu¬.Ц¥ÖºÊvN–U›Z°µ› ­Ê•¬¬Ì6j³©´dÅ*arlÉV»NdJ‘¥£b´µ)Ii3+BBÍJ¦VÍV†§XºXé°‹M¦B%¬êäë)Y53‘im$­[+6§Y£U[еÛS¨ÓRc.BÖ¶cªu¦”¨S8ÂêK«–h«5[›,.®blÀº²—N;F5ÍZËV´2Í [Bnµ;.¦£Kªµ ­,ÆV¡Êãœê±¥šŒä1+RUj×'™"iTF‘^V UdAVh×tìšá5R©kDXµ$jq5±Nv˜Û&–²•Z,”­-b™Yª9¨­5UÚEY5‘*1e4µŒæ]Âll¡ÑÒ$â¶:¶–u«V+H¤ÎÆ´˜Æ«3:†£4¹Ë’ì5\3«,êÃ5ËS†u#I”-Nk\dÍQkYK32³ŒÒ™1ÊãBÊì ]k“5B%8ªY©Y–sCM+5«)™:eLÒâ²ÙGe­p.™4Ù˜c¬Ë,ÚÌjК˜Ís3VÖV*ɉwS®Mi–Ve L;MZ#-2-ZÇkU°ÕL±ÒY¨M¥ÙÄs;–,™–YTÙÉqmKYY£&±eZËK§L¤äZ]ê¹Ñ«E¢b8ÙjU—1JÝTU*MKjΩVZÍjÚ¥R%E±k%¬d™•U…aAe*M‘®‚Á­MZm$–Í™&kj•5ºº£\*ÍE«š&rí ËG*šÚ¬m.×-d8ç]²å]ašÎÕŠìÊ´’©§JËEj«‹EhZÎtÑ5k ……•«(µ.µÕÕ))qZªÚ•;JqeÊJάa–ZãZÊs»FEËu]l5«5L“6]d­cI•ujÌBMkXÅšäÖ«h¦µgR¶eÆÒ³5©¥Q]2™ÙDºkbÎÌ1ε³–v¥f°í`”ÍJëIÊšW6B¨i ¥Æ­1r×Wc.ÕNHKRfÕ jV³£­dÍb#d%5šÔ²\ÆÑP*s¢±,´ì’gWjq“•­K‡YGJaµ§VC)§+'2eÉÎU•˜â¹˜ƒC²9­*Ó¥dÕjb[§AMb³¢M(ͦƶ5ª×2QšèãMB\‹I¦Ó‹vRá–µsQ5­¬le’ÆÄÅeU®ZY¥1.l±jÄ×5«Ê­UrËðwtnÌMËÑpˆÚÉY«UlbÖ¬Í©Š«LÖ*Zë$ë–ÍVjNYuvšÖ­@!‰H‘EUay^Re¹ë°¨L- jЫ(R¹ËœVrÑ*޳R«4®ª§uZ•¬Õ®t²‡VÊÕ¦Œ²´\"W!aÖUÍ3TºÎ¬ÊËM6šÙDsgªÊºŽ8µ+–ªµiµbÕÖcJÒYPµµdŪÍ¥W.ÌÒéZ«!™Š¡–"ŠE™…AuL%ÉÔÊÍͪYa‹N¬Fhi®S­b-,¶Zåi©“˜šh²!–´i¤²ËT­Kµ¦¸´ºZNY.]R2ÕjcMiW¡c5Òµ’Åj“®¦•IVd×&´‹Z0®¬µk²ª¥µ”¸±F#)©³u°Õ–¬¦hÖªÎaZ¹×,¥kZ©H¦éJeD­ÝÜÑÀt£H‚aRQPTHTUA÷…PÀˆ J 0*’ (‚¤ «¤€"!!" Ä"R€‰ ("P €=ûû=Ýö¼ùnöT÷`A"PR„Ü@ˆE>âÿ·ûÿöu_ÔË=ýŸØfâ~م΢óe|·nß9¡ù¼½ã;ò³òÖNϦ}¼"M·Ý²›î«®;Ô2$›­$ “ ¢Ñ„èHe’.Lź‘3 >Qßúoý+þ-Çségƒ[‹>@y>ž½>¸Am†„4H“éJšÛ™š|Ÿ¾÷ϵ 7 ôHùhgïÛµˆ0$ìõ*/Z8"T>ˆÇCœ¬ÊEÿJñWú¿×0¼çc™^û‚:/UÕÏ{ÜdX†ùó¾fá7þ&õ»þÄøf6:ÔœKbC§ t©B‰5M?ÂiüËéƒ:ãWÛƒÆB5©úÿ/‹ª³_‘ º<46$NÚÎk¹¡r‘ÄoÿZU;>¦Ù­nW­+ðCPtU!‚( íÇs<¤¤Ž’ ®—Ÿ™º5KNHèÁ±\q§CLè å9¥£¾ÛumLÿïĺ¬:zs.cò!³™ -BðÔQÞÆDå¿…èho¸Ìß"49„£¨3)B¢Ù :Ç·á¼>°ÅµÚ‘¤ÚB!ÞþÕ•¡@T«ÃT ¸í2¿Vª¤PõatÕ û;%ž›¥ª,ú9í4DÂC`'„gÑ•:jÌr°Rà0ÄMa¾ÌHÉûæa»ÃuÖÔ…lÅÑ$~4Ž}%à‘p\ò¦Óm°«:8©^“#ËÞt'†@ÁÐÙÈb}Q“6fÙ]d¬}+Çüî£<4âÖ}Τ¸¢ðÉž¤0ɉ_#ó.F !B3ä¨ožüÍÞ»¾?{y{ñ[ˆâk0ðê ±-üyjO“ÁÍʇS‡‚ZŠp€[5¹éøUX1·(¸QŠSÔµÔˆý¿W7"Ý£⻩TŽ14ºuF7ዲ0.ìÈ3¥“=Æ& )WAH‹ŠÞW+[ûÝÞŽx]Gàw=èv.W<›bý.ÜDˆ¹Öî$îá?GiÒ=1®óæf5’šÅªJUPÇ5"múzºåg¯+bç^,©ƒ´¿7´7~j÷ÎbZ^™â3{ˆ¨(‰Ð+z³öÅ& ÜÇ¡P {«¿sPšØ„-Á„!ÒBå(žÓS†1Úõ}ŒðmÊÔ#˯ß[ÐÕÁì mD©0ƒ¨¼Õ]f' YQPxÒêÎtcx¯‡¿¿Yv" ÏWrsøce@Bb &dž…&Oà+1:\L˜ø‹Hœ‰ÖÔÊ¥SÑ”%$—++Ü *¢ÁĿ˧¢ê\‡çÙõ‘œ)¯ÅÊ£! M8!k¨0Š–fˆû%³ù©\V ²}®ñL/O¸ÕC„©8˜f&?•°¦Ô!8 Å3=ïËå`gÐ<ô¶àö âR½Tf<„H#8ôÉ JZ—wÞ~>LùÁÛìæ¸EÄ ¥Ïæ¾úv•®3g%5˜¡À‰„ "…Qõ®î4dó8¡ír_2¿W+–jêz™¹1³W¸Š‹O_+Ãrµïž¯w«ëW¹á߉wò 7Í5Ós•C]$M¢€ˆd> Ý,ÉYF²%Ôh?Ûê«]|jù@¡Ýn<Õå“1²—œÒšþ9Þ— [÷<:Q{½¥`s¼) RÄ Œ)´r¤¶AKŒ’.L¸]™dn*¨¶ ¡'ÉŠì¬Þ¶2£!B ²£~”Oٌϫ浬RMíA:šª JŠs`œòî¯/ǽ‹†ü9Û½Öþ³Ðþ·Ë­ oÀ®á@ÆF¦ äPÀ¨(jdL½J(3£ ãMÓ/ÑÔÆ…ª˜š­²^ç9Žï¶u–Ÿ¾ü_xûç¹×c¶I “£Ù¶ȵ³ô?eÝ›3œžÃ’kf»;ÑÁpRJ'tTU‰±DSJèÜqeNõYy¡ KÈÈËð0â µ™`'œ8 …Zíâþ÷zÒ%uÇ-/—Iº-¹1êa Ÿ_3©‘<ªøÈÚÁñ½ÛŽîGñ:º•OAdÕJ!:¦Iý_zû«¼Qkb¨õBuro”«íI!^†Å m‚³þ‰xuù´¨GJvœP‡Ôý>7¡}üŸÀ * ܦ§ß}Ÿ¹Š°DÃî~g'‹ƒ‡g/…ºöþ%JHƈTR”¶0¸›’ãîä XÕ¶Í1ºAñ(v~ìŸ~ŒèZ0ÉHÓ²QU6Z‹ À°™#†L?ä1YQ&¾’ýÉýݬƒ( ï¬ýH”KlÉÃÎ!̨ì³»1ffµ^èXŸdÙ¨=è¤Çô+Òßæ o™¸£Û6v_…”'üÆ!.õˆá¹X‡¹‰}½sóÍ©ì E(P ´ÃØ­/"Àm4‘ü¤Ç+gP:ÓÉVñìçF§ÁÒÜ&c%{ïÌ%è+ƒ¥ZªÈ—@wSTæ|û0¤Æcôô¸÷SÖ£Ë>fT‹Î¦þf]Ý–‡ÉÐèû”„ 8"*ˆšçv8ÎäiBj#"ø;þ꡸«Î#&I†Í)Ç ¢@{æ­"Ÿ­V3Wø›  àÌsa±Nˆàc•LA”Çz“u‘êÎYöz™p¥E¼úWÓ° TJ)’¸‹@-žA—Í:[¯Vݵ5׃Ôèx4w¹!#RÁf 5~~˜Ç[’=†—}Ú.,+"ÐÊÆÌ®MAl™Žµ}Öb÷¼ÃñS—©“Îõ›=” ïOOc€ú{}¾»ç¬±©ò¡Îp3"’d–B7ÓÖ†Æ5õ¯Wßð׎ûfÚü®«?oÞ±™/)àÆÜh÷qã; ‚Ôh3åeB·a¢ЧØDZ¤áE\²Î/Tãõª…Æl•êçW{ÄßO9¥ª»§D§_ÀÃNWjVym9yzÂ<ïW W9õL:©ƒø;Ùü\ÃèP+C´ã&ŸE®þKMäɅȯ“Ùñê÷™Ò”Ïž¸ˆÆ$ˆÈññp ’‚‚Hô`ðÍVž·êãZY¹sªÀ> mïVññ^ÞØ˜j1¥lÜ’…lnÕk±ÂYHÂÿBaÕ2Ù°õfÚMàyqâ5†—PÕ*.b4X‚2TnLTÛÝ h²’SŠôoæªt8Bš$¬¬?eJFIÔ&¡ãgÙ‚6»oM  Úš ü1ó†mSOjP«/#VV?ÂÕ½˜µ¥Veêï-® ð–©ûYؘ8Qõ€3Ƚ•Í:ÊŠÇ«¬X0çn8ºKbÁ£3µÚ Z‹èŽ]¼cR‡g9žÉGª2{ xU¹åÌ~Ÿ§ãÁãK¶vâ·r¥~¬"k±5fF~å){ u"%#Åž»Š3îv¢ô­žo4~¨µM-hoü:Ž^(òÒ+O´:Yˆ¹ï^;ã?:nœÁ‹Œ¥òTà_•øqZ‰þf´½8ó º¡ 8‹¥îÂÙµ2\ùkÄ·>—4:ïñI®ë.ÐèO#[_Æ÷ =ûf–¿¼^_®ûQˆQΉ.!2%#F6«„#ÎãcЂWNsHÍ¢›Ä1b²ï ¢ȳeźåx¬;¥»Gz˜XÌÙæô]WY£ÌÃÂd0MQ¿ÕT,#P[Ö¥ 7¬ú¬ïçt³Á´tC 9*å™ð{}=³qkPÿi¹ÅPéÚS§º¼›Œå«W÷©JDŒóXO6Ý¢¼ß(VÐ’lTŒ„ L–^Κ¤ÄpLÏÄ E¨‹©“(cæ¬v«Yö–±‘iBäŒ$—¥yp„Zú¦]rüRŒwj©­("0…CÙ–=ö–ÆÌzsä&«™·áEGª]}ü¶‰}Máã¨{ÈØ¿Z…è#¥µ ¿]ßwŸ0µ(W¨bü†$U2ÜkxŠa—«Ï_“Œ\Zžò¬‘ïF|ñÇ5»…ôáË*Å¢lt“Îk¹^^è B³7êás°qEeŠ€¡Ä“Ý´•w„2³Ñ•uƒš}1çx«9\®3cÄ`ΉAÙܸEMRóטLî ¬ZÀóŠ;†Ò¬<ÇIh^‹ MÒ¹;y=3†€å-t«0ë™ ½”úò±[·)Và¨:µøØÎ½LQhÏ®èÛ2+€Ýà̼ÞUø M(ü`HáÑhøñ.±¡uhÛjÜÒáR½È—7È^XÑ`®¬î>­±JR”à<ú,?oÆ/ÚÒëËóŸÏ<|”ï¯I±¸cÏ”ð4Øìk=¶¨Á{œŠwâÔµ_ÄJÜðZ%,©)~-ZÊËÑßà™Ð:‹¼O#ºž ñi;ò¹­ƒ^z=jvEKá7ŽÏIÇËÓìã)_5ÒéŠ5Áa5Åò¨ÃU6D âèKEÐ\-`;Ü  F—S6Zrjƒ›`i—°·nr½ê¦ŸC_½HJ¹”0MðV5ùvÆò÷ºu¯9¬/çÓÓ×ÏŽÐûë]sÑy ÈVМr&„àÝ“·æèXùþÝÏèqÕÅuÑMÖ°Ó"Þ0¢µvd!^ä¤H¬ ºÝ9‹M¥Vî/`›/az´ñ÷jC5ä&èFÍÚ6þ[IUž¼OV\ñ€$Œ­ÿ>ŽjÑpZìOáO5 ˆ † p®wzÔ#˜í§…ú|h?›}IÝ0b¹Aу¾f†·Åakf¬Ø#‘Yû+tz“-fÖ×ÀWðgŒSÇáã<&'zäÓ\\l5À– Ñ4Gãäp±ˆKö2,6¸¾1óõ5nþìWN||¿Q ‘Ú-œ)¨÷Ñ7‰nzE®OÀ†pSTË÷‰ÎygÃç–P}E›ÃSš“ÓFµxu†Š®¹PÅ>ùKóú§¸k¹i&øë ñP_9„søñ8¸úXQ‹ÝZ…Z ~<­-è(ºò§ACàÁ &ü›¶Ÿ€÷Åe˜Yøâ“­ß1Al\¥¯§è_NsŠp›ð†':ü:¸äÏ|hðÓ÷t1›ò¶¯<5Äqo=^äÕθ+W+ÍÎû6œËµ½Vdƒ†Ë¢7ÕÌL'†ÿ;W\Ëü^€?¾Õ5ª5ÞšæÑN?zo/×NÊ“?]+)”ÓçÎ8ÌýMåÊþׯ~*^½[w£áßÅɺЧ>V½ÚxO¶õ¯š7h¼£Ô»UFi6ðÝŒïµÏÅ;Ÿýí©×Q6<ÖË3o¯ë-qTá)ÖÏín¬Šù/5ƒSá‰âéÅâ­Y­*Na ü¢žçTô6$Ö”<1­Câs[\-z‚ñbÁÑWTÁ‚¶_Z¨L'Èz%Þ}àç½óÉ“``އízæœßÞ’ö¨÷ˆ,Ž0‡™¨}š½k@ãGÉåañ oá…×¾Višî\¦>o ý…bwÈs@ÁJŸÅòÝì-ºžpÜ–hÏ%­'E5ÃR´ ÿ§ýâ×Üã9óKbw§[[ÀÔÖôn-Þ~sX³ð§²ñ\×ëÍrúê—¿]Dò wWd^ÇÍÁz§…á(”$•ÑõŒñ\æßÙ4—6‰Ç8ÍJÅ×E|M+{;Ô¹©X.|~P1]\²êOçç£þõˆCÓƒ‡ j|¿Ž¿#ôÍeäæž•ê>qÞcÄÎÀ÷¯è˜êA’D{•¬º‹a_–d 6ãá,®Ô/ÇÔ÷z0‡— ®Î¡q&æõÝOZ‘`y®r²h0!• PŠ)_oÛê>ABLJï2!ut*ŽóypD¼süçÚÇßg\xçÒgÏ$­ÄÖÿ¦K}ùý…þ×ûú®qo!¨àöš™f†…|#x3޾‹íïÕ?)º¿ðmL(†ÑpµÞq-nD¬–2¢0sweü”0ZÎ1U4±½´Æ-òd±c§]ÍÿEMŽlI‘ù뜷~j­Çá§WdÀEúîôòéÁŠ9F”qes^YFB2b‹ _IW‚(€¿˜†¶h•J.¯Û&È/•¼ÿý×ø>LüѳѻV±ü“ºpÑ«ûeòºtTþxN0ž˜ž1¤H@Ð^§·öþñL©ýKü—ÍÈŸ•â<"ÕÊÍÞí„Âj×8”0À-iη{¥ ®=ÖÀ0|­‘†xFrá(1 ƒ®ìvx¹\tÚŸµ¶ô­‰åÔ¼Ï~v­dò{ÈC›ÑO0$ÛéÕâRœ:úe ]prQY¾Sl(û÷½çŸÑ"þõª£ÔWúþÄ÷©TË~4Šy%tkyÞ,ÛöûÌÑý¤{ ×/?¯›3íãÄ¢' `ª-°èåâz ‡ÉŠÚ)z{kÕÿ’!ëãÒ–ÒFï&ɵ’sžÔ³üç5ÛÛxó¹S$2¥>|#÷Œ d¬d¤W»l§^¨ý)(>\ñíë•zN®^Z?3…RG×}YÄÐ f®/0¨sI/iPîeÃ*’vle2ª#ÒË+²íï—Î[åŒ!€^´«Ä@‡»dº4ŒILp…Ñ|l¦MÀ;­„'*ï^Ö$øO.‰(¬3âåcém'Ë׉ÆM™FR1l÷o)¨uìQAïëÉ=Ï}½Z‡ûn?„µM’7ѽ^£Ìžs‘*S‘3}gö‡bÉ*V«>05Ú‡èmÓqIå°¢am¥yïlžþx>7ÚT¢O=½yq?¼c>d/$üž=J/z…5sûÛ{ìtáò8œ°Î3…¦$$4e#­Ý°)•´ŒÝŽ™–© d…°’ÏK® _w»…¬¸žS0ñW/5¯zô”0HìlzÆ”þõ”tûp:‡Úìþk0'½ØÒ2Öï¶Ã'ªµ \âÀøí€þïÏ703L%dë>K¤F“ÚÛVí„{ ïmè…fxÎC!y‰žØcÓvÔ>úËÞ“uJ:‘êùƆ¿“íJi:Æ&”ÝÒÍÖ@ÄÀ YMŸwP„ï_5"ÄÈO_K<æ™®»a´¦›¥¬êêHŸD´I„'(@Ë»_+Û†ÏJEj†&ÖC9ÑJ¡~Û…Â-|žÞê|o`óŸ<«™¢j…äVõìzZ"}¡jxt×Oö¾c7™gŠN3Â_‚ÄžÚeà-ÃÝ»_÷“§®ým'œÏM[gˑ̈́ÒöŠŠn¯xñþ½ìDI32ú'°Ì‚À“(òü“cû¨¾MJªdž•_“=ž"Œåk‹èº¶(…Œ·Bf›êS{»fóžÙ…3Áç#›‡êúóÍJùÎk®—–Æq02»»µÊ$>s>ÛÞ:óJ8V>íè›p• 1gwež½pòßi—ì\ÝÀŠ[n&Dšiáæ÷l/T‹O†ÜC‰,Aͼ^î· Æ‡Ðø³N®kгHÈíÛ¸@PŸŒ¸x3–m¤úc gXáÌÓèÜîd°ÀÀ´šÆJé›Ñìø±JßFÿ"ûìMÈ(¦x§ktù»p©!ÒÓl a…qÙ‰jãëÞ¯@½“&i£™~»z!þbOžÞ¡’çÈôó]=mö½¨^SßÕðßh~—‡æ;|ðe¾Óâ– ‰{e=Ôóõ&¸‚n<™sq~ŒòkÕߊåÖ‚~®ïä´‘þšþŽŸ “T”ÕH¢+Â’GÛ°éþL'Ϫ{=%D’yï>òB]iS5§tµD‘öÇ”@mYÍ â pÈ =t—¹ÑÐqYMFñͰÂÁÈ¥øÉ{Û¶êÞëÃÊÃÝþNŸ?h><Ù"÷¯*<.d}·a\«N»2>¸ò†¾×È^¤^SEûý6=ÑŠaB{c±Æfü´¤U€[|Š% ÄÆºPDO]kÎ×2 7nìÑY™aÀ·“JšòN…=Ne›‰á¨ù#jìò¨Úé2T": ü…ëä­vÿ(^Ó-Oë?>æí~m^­ NB0!!v¦’m‚fܲ’^j{•òm*#WúR9f”’/}ëÏ¿(÷÷¾²¢’HHJóçb~¯Ñzš>v ù[~ÅÚeo&G1‘p£¹é'7ϰH(^n“+Ê¢¸£SÊ ©šd™³IÎQÃ’WÞ¼ûU5 S&së¼RÖJaæÓ;­‰<2¥©¢”H¶ít!/‡¥íÙ  Á²¦’†Ž…ñÊi'™uÁÛT k76ÂìB®¾Ä¢ùû~Ä/êâ§Ð|¸ÂZýg“êW¢šåè hxnÁX©«ZØy·ËÛéá<^°e0£®zlÀ;^±÷¯3p" DU ·]4èN&ȹ·Íí듃òeEó+ßD|3?ã½Lþ‘Ÿž‡Ã´n®®ûdȼ¿º^^–#“ù?«¼ÀÕ?Ë®'‰í_Ï´~zÆ~£ó<‡ç壾r"ˆ#ÏÑ^ŒùK–§ÖOWgÆèP|ÝŸV{ÌåI%^£Lž%^%¤ó°ûFüñ½ì*<âû^ýy=ð3YÚúv«ܵ•­uujÉþ馑yøz4ÄÒ@q*ù²ö´õHy-¤ÓÕCÚv+&ºeÑ'Ï{ϱ°ÌÕß'Ÿ=õÑó"‹%4Ší)gWjö²æ— Ò¯m†±0'„–Å蛬„zzOIØx¼dyø|ÏÄÍ×õjœË´ÙüÚQ„Q2ˆYk_uðò¹Ä¿mí@Ž!ðÚ_ s :¸l6³ž%ûì&ú·z«­PŸŸ9Åöi:]!ÏV!ÙB‚cRT3–à+éýøóïõíðÝ""‹Ä•£?®§ª"v’xŸ>L"IëÞíé•UÊ÷Œ"?Ô¿ëW|Ÿ=Œ¬õ•Âú q {:ì*¯TóQ¨ÞÄUïYöÝ٬ܹ^¹î?Q–»åÑä‡RúXåR‰I6p19Û¤‰!ߎÒM&pÏf³&œëWd•ÛšQ&–K“š|ÒÖMº©døÛ÷t3|¶˜¬¦m‰’„1›òï1'$¶GÍ Cd5!2Ogõ?Bﯓäž>‹SÕBÞ|{¼ŽŽol{Xòo^ó5A ã!®;»wO±k8 ×`è.)7µºb—¶n° ©Qì{±ºgiLôHJ÷íCŽí¹:iuH¬°Ê»Ce׸LȈš=®–WSèÎ~jÙh®*ïß\y=òZçÚÞ×ë¼éZû`UåPù½#¶L>Ì¢KtòsÊ%Y⮹'óªa}@‰}½âWÕó/½’²9‰Î\XBb*^¢ñŒê“–Ö½^ûïÈ} ¢ýZ1»iVÞÓÀí’±3ÖØiåwÛ-‰* Sí}éD_W¥ä¼Ù<¬jæ!rÉuIyÆ¢dñKM7žÎAurˆåÚL0”ä°,³rºŒ]5Ý<h]êk%ïwIž=uòn|Þ¤bE’ã{aÕR/­çÜx½Š ½{ÎI}}+ŽzÆNÜóu)vç¦(/﬒þZrll]&²ãEŒÊ£Õä•iréGž£Ø5z{ÏOÑóÞõ׿0zÃ…f$Uù=©^–ñjЫocÃÈ÷—Ñ´5­_Q¥—¹heéöß©óß?'Þ"©0¢/zI¶!·7\y$^}qï^=q=曥"勇ëçx“êF¬FÓ–¯}y šåå’IÎr#"‹++Òä÷‹ÙØûnqm,uN÷¥ ñË'ÜrU¦íiÎs"ñ¢ÕÄ÷ï·cÊS]#}¸Â˜E;hùçºzA†¾])‡YŶÒW<¸ÂŠEêQ<†UßZKW<=µÎºéYˆ”öÆP•å ÕÓµÄÌ&+ÂŽÛ8^Ú@Í'¯YÐN @[/Žvyã¤ÄØM÷ÝÜ5òW·ÍÜÝŒ§8E¤œZ$‰m¨yù¹4/H/úÌ9éùší¡oÙ{"9…(›Ý«t<¼)‘×o2Þ°Ÿ¬›vE2)êÃ5F{Yá¤Ýq©)ÅÉÛ»<ÒJ¸ üØ™™óÓäs™ó¤HjÉwe×Ë%2‰‰ÕÏ-¹ÊÖ‰Õr­Ì¿½¼xÛíZïz™þq®ˆj~Ý&¤Þ³Ÿziá϶PÐõ$Gç=ž¡[÷®ñèõ@°³wH›jàÖå&“sËëçaé¢xj„E¤T™ï½o]*¢Vûß}}טM/]T=Rl{d<Þ#{ïSÝ^Œ¿9û,œºÜ%!¤r¹§›¤°ó\ØgÇ”ÄâGG)"dãvÐ}ëÇ„ðò/"r‡ˆ‰ÅÈCXSSIÂc¹¤¶Ç^³áöóÛ:Ï–DÓWß•ëu%SÇ6MHM© @„äÝnn’¬T$ ó‡ˆN•Ï·47¬ÍÖx$6T±†”7j³“M›µ€T¸4jMZëœ_nÅAýOh’O­Øy”Pß¶£Ç*™Q í¬0Ÿ´HdÔu^n¹¹\yÄ¡m¤Ò]wm”Ú K QIòep‡«zéUG¿~²?Dõ‘Í&Q–R#•ÎØöõã8Ú7Þ4“æx÷=yŒ…KÇïX¾Û‘¯ÏåO<¡usÓï×ïDüñ×~w«ØÙóµM0žI3Ê­ôí½t`²aFpá Å·½Ò‹è…}Ò¨; @‹Ç­¥éòÌË’á×5ÕìdÔHh²,ûtЉií»Þ¸ÉÙèB‹—¤³(æQA'ßlDR|™ù:}uÑì±[Q]ª‹§›i~Õï6Û×in6e>E’¸ª‘}n›¾kªÂ8Ž™Ûwp÷Áñ§¥ôv }¥M¯zïPIWÕ†”®‘ú™ yð?{Þ%õ5?zù>I±to˜\øZ÷õŸ]æ„òk)âÓl¢1|%í¥ÖÐæU2niÕ_}½ælòŸ“Ú}Š’8º<$¤9˜.ØÕÆm³Í—o¶ÃÝ©>r)ÓÕs¬•rö¬?˜y×yÂêQ›‘Iè‘K”~‰2yõ•Ð*òô÷­¤ü…½cyþý¾Cð‰X~õÞP«æCæ{êø„¶—"“œU$™1§˜¶ÛŒÎ™G‚W•dgÔö¹ª'©$yúÞ»ß1ž•Q¼>sØ‹•˜P×±××r‡Èn†– ¯*Oñ#-¨>BóTB4,ù<©äÑœ¬’¹fèUAcmÃÚXo¢p°·ŸÞ÷ëˆ_72);Ö2'õæ±æY\ÀñNgB°!/\Ò}šO«5ö΢JI‹É‘{­“ʺ¦<˜Ð)E’¼[Ò–­‡íãÊñrO<¬Ÿ¨ÔÏ×JÍ}öœûµfAûÛ|”ñÕ\ˆéB»cž×pú½=-‹2#Ð(õ$»]«7ù{ûÖZþlÜ·à ÂEßãžuÐ÷ó&¤“ó×/*ºX«ÌöîýèSó'‰úߟW“"¯y '‘ï2dŠåD° 9&’ÎçARMÉë"'f{¡éö(ÃÓ#ÊßÛ ‡¿™7}g„G (w«Þ ÏUÍT ±³Ûdñg?;Ñä9 XѦÝ„}±¿“ïCâx«!¶!ÞÝÙ ß[E^Lï«)·WbË7m-¥M ßVv±$ã$ç…çh„YÎ<žô{Qʱ´¾ëqœÍ)'=–,dâS(zñuÇÁ Í…rð²Ò„ÓI/ äð‡±dGª<ìREP‘WOórîý¬B• §} ´æ&N*6½éТ‡“û@|üç¥~C8a:†nÖf֌ƴ[tù>D®È»B«ón¡ iª¸Y’Z'ßn÷›šn—CÌŠj5ܱoxÞ.yá®óÅ·{ÙÔ¢£þ]äTÕùv0È«2WJKômŒA™ÎNX{#7H®·(†¢{Û:|Ú39U8{M²R:è°c}Û™Ý-¥’ŽD‘œË @ÕšDÎ^…±øl¾òQÉM6 ¡•ç^ÙtÓ-!&Ô2’¶XBÝ´Ý#ÍÒ(€Zé$^=›•1ÌÃëÊžñ[BÆÁ-ChÒ듌 ›¬…Z^ñgc¥j!ö<‹…DÖsD4¨È®‰åb {å_{Z2¤GÚÌrË2¨WŒg…;T‚¦ûÞÇ©û{/œºên_XA'’m‰¹EA¤bv…UpëëÆ=·ÚyATÞ¦M¶WAʽ!T¿ê°ŽiP‡—ç±£»íÑéèI;hw½w^ؘ{¥gº¡R¤•SŒ™ãI •-OòŒô(”EO˜ÌÓx£R¬ñüöÕ>‹s1ßÞóé¤$G‘Ø‘þÞ÷Œó]VýB¦õûy5p¢¾ÆÔeÆ`ùòŠfáØŒÃÏ=Â…öÆjPô\äuñxއϽIùòäd£ÉÔ+9é› /Ïï‹ÃBKóÙ«…Ï(~ú<‹÷Òò&Î7¢Ç’|”¼#Ç•†dRW—èžßhù_s‰åi^¢h”-] Ÿi2Oµõ>cëï>•/\¾ôO#ʽ *71­®<å׫±½ãÔÞˆ¨½O»¨@š¹Ë(krÂ;ÖùÙa`ØcFy6çt‚Šë¤$Šok“Ôÿc6ïFÙ$ìÈÂ{tЦya!f(¯{ü½ô~~ÒWå_zÉIÎ0VPsw¯æbVÝ$âÖhöž”C^Ýö»Ãß9’uH(¿ÌŠj)–™©?&¾®ôÐ’?™SrUsçºU×4$´ŠJ¢%G®“tÞÙ܈?F3ôñžÚ¿Æ{ éük4“4ŠURkia½c1™áòÿ?9YPO¬&aè{ikWOz¡+8S,Y´3/¯;•EçÒ£µÝçŒø|¢ªÖÆÞÞ{̵ÓTfåG½{·\H¡QC¾¬’t&e˜uù$ùï>¾ûxâo]™ã—á:³ŸJ,¤JZà`SXÑ(òd>þƒ#ñ´¹‰&í_}ŒýRDO› R9åã3izaVöò²oRS/CÑЧy)Åv<÷²0J<×w™Ô=UO)Å9Üdda¯žµT*OdÊd…äô»uÍNÄg+³Óu|À¢‚‚Š‹‰G“&Åó’pJµÐÉËÓòdÉòg»;2kÞǵbvõ qk4â^TŒ Ìp¤àËÏnå0²(/2°H§†{- (ª "#™ÜW4WÒ¡òdTsÄ—5tQ÷Úw¾Öæ~ÞÐyž«ÏZˆ‰'<5¦¬,®K…&w2”Ò\æØÚÌ*Å©vØÔmÓÑs(×0EFBÍ4S“¬G|½…}­kKæÊgœé’Ô2CñCS@úè}_­Ù|’ýsâ7=«1®$MJñœˆƒ¢ÌYØ24Š™Ê‚õ­˜å±° È,ó%>L³vèÒ4@Í\3Ä;vŒ½³·´Úu»¬2õ¡–dë%12 ¼Œõþ¾øùôOä„>Iá£ÏfÆ£Av1uN6X´Óäèmò¯RÑl¿—F¡E×7#ö=®}DÓÒ~ØÜ•|ì#½¥kµ#Ô:¦íÎÖMÀ"³™2 ¬ˆrV·(¦®nö QW$ù œy*÷è„}LýöÝÞ~W»1TI2‘Q0 §]Õ\͘½zÇuJfÎïlÞ¶5Ók”Q.Ö‘IîžRNÕ1¥è£e®Ý´4„Ó­í½-®fÂN'w^×MÀÙk±¤a¦Mí…t4¥ÈÐ}B‡“§ˆonŸoyÏd<=¯PÈ@€II ³N7t³\GÈ~rÿG‡³‰Óûuê]CúÏ|‚úÚJÍzk©ª¼ç<¤Èyz •Wkš’E+n%^s&u°¢h>K0UÂô)ç‚uBIœ‹†è7¢}‘‚O3Ã甉„5i¼‹‡WIÕB\õµ‡í`ª}yÞkØz"Zòî7–št›f©Äb¦jâiê·Þn“üÒ§(§ÑûHŸ©ô‘T%]i=š\÷½y’fâ‚E¥…üΛ†¾Itz§fýB†{‘+ÚìÀð¤—9C @ ‰8Ä”¾÷¶‰^S>®ÏB rŠ‡Þ½rTó£íwÔí†Ûë¼iéeº__{ØU!D“ úçÞìòNEi5ÐȲ»\ žóÓŸ,Z”¯Î1zÍú‘ùGšÊå®5L›ÖE ô¨¢\,4%+égÖÄxi .TiBTYçÞÞI<ƒ©u&¨ÃÞv±ÙG”$ùÛÁ½_W*¾º.ª˜TÆ¥5Þ²hNf%«[ɨ>ùöϵËÒ½9s )êÞ¾Ûtùå#×gÌ>צtÁj×I=ËloCšt×I èËJ÷{{üýè…õ‹g‘×LÚKˆAIâ@TBd'”„›¤×m‡~‚õç'2áßžãy ½(³vm¬ÊÕϵü™7J“ ¼5+Wç*ZãPÐH|öóÞÄS'¶^ïwac˜ÖQÛ±7)¥¶Ó @”g¦Iæ7µâxSß«\¾Ä¦g9S œ©}§WH̼ÐùùËåI!=YâgP(;hTÊ;N¸QLç—We=PÜšDäTÖÝ$¶ÇaåØ}¯DQëf†¡ ÿ/{ݶÍ4d)`$Dí7¿]]zÍDùòg¦J½b×PÒ ¢(ôó3\GæDOR(zÉ“D¢¥_hðùž™3Ês£ä=æñD¿^|ù)XTˆ5#ÊŸhªz|•ÍsJž|žõ®Q÷ŒHnÇ›HÑ5qóµáË‹cKTU75Ì\ßXÚ.Myî³…#wzËŸ­ˆ¾­J=!4JB„„Èа¯Øùÿ=÷ïl“ <»»/–Ø;.&ihGV·nSèϽI'ª)[—ç'eeg•&ã[*Lzƒ$ Ã(¼½í¶÷ƒÚö¸«u\) ‡ ‰$r]èãÑçz÷®{Û͉!D®¯<;l©ë{Ï¢ñr½ïmêIU,YϬ»h\ƒÉ'~ÞòùħU“B –̹Î×&@™äGm‡2;çäÝŽß›åéUYk(xùÜY¤â;aEu>Ÿ]ŠgÉŒ‚‡ÉŸ>ç²}v]T¦»Ú̈zŠé5±<§3*yÈå:¿ôï‡Ïž •jÃÌ…¶ +""¨õt”?¶M34”ÉJXiµ˜!µBâq±gcIÚÆà[•²çb˜Ð_±cçã^å&¶2.®‹¨^Uêör¨©!2¢ÛÞ1âúÏä„Ö=4—©6"£;H†šX LÓ‹X' KP*’sØ’>ñeXö!ÎÖ{—ÚÂ× „öÚÎe¬ö&Yt¸q'Ò^ÇO*ºïmØEŸïKÙWãÚCïJ|ô™²ûyñ>B*%¦.š|îD \j_zUå^Ý»©%럮Ýïi$”ÎÔ (@„35Œ–ýeUç̱uŒŽÙí }º|ªÂz9rI¶Ò‰Ë ¤Dã8”‚ :-sèžM!ûYy$¨ù>w®hFVä¹6¸È³*IÏ_\TOxTY¢]Q*)Rý¥ç^gzîÝ®R¥D“§•ˆ}mtšÆužp‹s©GÛY¤û¯…Þ–UÒzlñI:s’‘!YP…©äW¤ÕËÙ$y<ŸT;­Âs¤Ó -Ä i¶.Ò°(‚ŒÓÒ(³“Ïž Ôyq?lŸ!‡á Ãù¹0"Ç™Åߢ3ÞLöxÎEÉI?z=ê@"Fß6i4Ï/ؾ.&hó$LÍP •‘I^6»œÂ¨Å¿[ßÛ*¢Šb¹Bz>ºÓIûmõvaëèµ•Å¢× ö <=ç†n_zS{b­ÉÙé¯xö¥ˆ^™ž QT½/g¶Û²B vpŽ—Ït"ñ]mäÞk¥IS–I_D¹ù'(­Tܳ>zrUËŸ™÷¡TQza«›;]’sÐ…ÊgiEå;ÂJ@šºSYg.n¹Í«yrRöÙá›Îq=³p+¨IÆ“GYJ³ÁG‡]*¡ó9©U^q\dÅúi8M¶\!XŸB{}± k ³/GæzÉÃæ÷¯z÷¶0Ó ¼mwžðþ{Úü™A5Ot‹llÉÓÉúžÏ+ûcÉ\•׋+¨uļŠCË7«N‰q%,…R½;g÷Œþ}¯ÎHV³Û2¤'æEØú÷xú²Z ›2½¾»<¡‘¢T<…¾ÆÑW¶Âh•0Å/:èó"ø}{xžÙ‚ןz=cwœ®å{$än§‡EÚÚq{×{Ó]:¸S ë¥Õ ´,™ýAåxö,¤Ê ,²ÕvLéA~öÇym¢VѵQ.öò~úGßGÃËå…_íÐ÷•W”s/CÌQC#:Ê5´Ñç¤QTÌ!9Úâ͆ˆ¤å‡Ûd{l•ëÛ4в=>ÕZ%t™^]W—zò*„÷x×Ó=íucUÒ.xÙmó×yFº(öîßzq<¤÷ÌöNùÊÉnû·¹|}èÈ/>bx´p´À¼èI`X9ó>i>Þñw™RTZ€k–QF©,]¶j÷³çØÔo½w|y>ØW!={Zz¡VB/õiï'“ <Ô´|ôšÎUU2%KÄͤ×óRïc"ÏG˜Y ûºbGÌꮦ™Í‘kG“­yh´3”f¨I^ÌäGúÆ6V*Š\ôƒ6pþg–KGyqt÷“ žžYó¢ì¢*ê9 vÝÙé‚WÉLì`]}®Y&xT]Z‡…UÏRDñ9ÚU2ã=^ôyEmZÎ]’Ãgïý^&„V*³÷¼9>Ñ’{½Ê’EÊ&ÚùŸç:ˆzxH—óµÔ·œÿ>M·èÚ KmÏd™ViãæLÜ÷KÕÆ{ÞÛÜ´ëÊŠôr/ t,‘óïxÔ²%p¾½º”¥ ñ{ÛbÌ™ %òD“L›Z[Õ(ᔵGÂRˆ úÆ}³±ëÍë{vÅÕpÑ3Ȩ¼OÉ_<¼dΡÌyî0ûÚѬƾÅͶIŸeºHÉ·ÞéO]ï^Òñ«°‚P{ëȯ’:åæón'&D×)9qß!ìR>†Û—Š`ýJ ¢åzBTSó}â9†YîÍwœd}ïö€ÏeeW¹3Ö[¨I™î¨“•õ´2^mtñS£ÞÆ<öògr¬žÖDMY’x½o]ç³->»=š™d©½Ö¡HL–)Ë ¹^«×·œ!4O“*/ºêê§žXöž×·}7•æ¡õ /ÎÑ3Ò¤ñõï^É=‘£¥,™xu*×H£m·)#J«$•,“ùÈkÆ'$%í³ö/Þ<ôË2Ô(,ÞýŒš3Æ{TÕ$öÆî’¢7-¸Iå¦ê ªã'J«ô^òJ‚«µ²Ê0µ&-»š:sÛLÚ†¹®™é˜ÍÙRˆ)a R¬Éóß½y>îTžç“öµíÛ´Ñœƒ¦Hž$ùóÚ/&ZÔ†jÐO˜{Eê…eÙv¯CdÏ0Á < Šò’I"òT“y#+.v×@¡&{ çÈ{Eî‰è†(ªášdG¼‹×ù}ôú…‡»2g…>½­½ïjˆ„žqêA|h‰!–VS2ÃJR"f `$¥3vÖ'Ocg¾Û‘WÄO´"fz¿¬8»ògH4Tg&†UëFP2™UaYÄ šwmãŒkk£[~ÁáåÜ Þ{ˆÒ÷JÃÈš}»ÊˆŠ|‡ÈiŠJ ¦T• /Šm·|„ƒëÎßæ2ú%>Œ üÞëlš&+ÚÐy'°µØÔ yï;Ìm¸‰h„D¿{ïq®·Z6…¥‘TæŠìàÑHšìŒý¼ Ú»¥IÉÙÊÉÒ‰<)í‰ëUhȨâ`¨#ci{93-®>ÑåDg½&Hf £W8‰ê¡áIYG—k0òó¿c=½ =~é|ù2W<«Ùüã牆!hËÃýg2±d<ؔ嚚YûfUr\®Y°Ã‘F¡‘Ì ¢¡HWÌñžêb_óo>&ž'ɽüüŽ‚AǤüõ'·ÏH§¨üÕ'øÉçÓ³PôȤ´¢‹ÍLô„´µ.L“™·S 5´)Ú—!»tû½gÏwRi¬i’´ ®Ae´®·=wŒ#ú¸Ñól®ecÃïTUžœÎ"ÍpÚS*媳]vXIÅ4½•XW­öχÑèži¶6Œæ­]Dë§²¤WMTÙ²ÐÈ+êyxuáÍ.¥I’WŒäòoÍ<²Ì(ÐÑën‡-pé[­]…E[ž¦óçÞ‰ÎÂÊŽ³n!2Š* ú)†í [²Äc Ú1×.“n !TNIË„•gµ ¯¢÷Ÿ½¼òµWO’{P¼¼¨Šr¨ ¹ã;FxÝ]* Ó› JôõA! I2Uz<““Ì*°¯"…Otžz4fÑ"=•صٜ9³É´r›mM1„«*á ÀÁã;ºˆdvÝžùìžO(˜š¢IîWRUž•ÑÑ'ˆ ARHóe®?WiZT’îugØ–.Ɔ…‹¯W ˜±ž$ÿ&úçBöW¢=+ÂA·‹mgzTÕ+ÕE3±¡e|öCÞ±-È’Ýwó•Ê©Ë>m:ì®þÛ”Ë0/©"‚£ŸiÎdíJJõJµSq?œ¾‰Ó¶m¶#<¡òNõU÷Ö宅ê‰Åq³Tƒòa]’Ñ//HU¯LöÎQmŸ ¦ë)( ¶y»¬ÜˆŠ¿ÕʼdYá|˜NÕ+w÷¼x<“-T%t=UÉ ’ÛçÌ Ÿ FýìRÇ®•ã(u´[hàt½fÆÜ——HäòÐ/^‹SÐ’tõ//ŸêòBýPð¥T+×™0—®t†¸öÙyE"…’ç…žš#Š«iåÕ ÒSWCýg¼ÃÏ'®S7<½ªZœœ³"’ªg޾cÒGiÓWÒ„ç”ïêTy6ƒ$ /eyú“^Óït*y¨bD<ó´êìÏ êrNg¼Â»Ì"½…KlrŸ­½D™îÉüøW‘ýéwÔ£›«`¨ÝŒv"q¶O$&E’I ¤óœ÷<æuftÇJï{x®¢…$¦’{ȃ§ž¡…ëÛÞëËt©ÉʺœãBía¤„V ™¿_´y/~Ý‘ý{ïn"¤–öí®s:^™”jY=­v±¾ØSÉ=ç—ç¤ë*e™*^ö×ÏŸi}`¶p=DLÔÏ~ï5Yµv£W[tS+ú<‡…Þz{Uê3‹QÍy¤…5ò¯>ØÅr‘G©C+LÔ”BL1.¬¢ëCEûc”2JŒ¤„/¨d'”É$WI0×·dú=‡ê ñ&v¤giq ‘#'/Þ³áy~¸Úæ¤&AdFˆ™WÛ™ \¹^Yzrg—SDç¶&º­®úñšžžfê½›³‘¢Î0ª»Ú*WmŠbé”&×OMˆfñì¸öÝÙéæ3Ò¶¡¶)QKWM˨q±žÔ®ë¤É’5 {^¼òœí­?ÞÞñjAüçÅxxÉrB/#Åd± æ{RðªE B/,ÿ>ǶТéna£fIö ÙH‚ôðDÅõ·*HËÞA ±v{[JðŒÕÚÙNjC&OCϪj»9Ó{Hc_{ƪ£í ^Éa¤‘º/ÚåÝ2Ï2Á+ËÇÎ4H =]¿^£8ITˆšØ6¹Äg!5%I“OìyÛnÔÔL<! ¢­t½Óç²|‹·‘LOSö<ž«{võ¢ì™¨s)ž±áÔ)ëÚ£Ì=ä?ŸžòIó&nÐu·\ûîó˱Öú?7ñ|~_áîðØÑåüÊ*’I3ÿ9$þoàsÿßñ,`ÿNßëö–@ü=÷®ÉûýDÁþTÑêÔMÝ©N ‚º2g·¦Çôc€Ë·ÍÌ®RðÁ3W*µwé›{0ÞÖývZYj.‹Z?ü_õ¾g4¶,UÇú…tU:1ʉ!† |Ìž a,ô‡ÚÁ !ý H!Ž%A`˜WÆÔÐm4`(0Ôâ‹ÿ}fkT‰ÃÛõþ9çû2óì‹U.X€º£L[$©cµ=‡ž“,kÂ4ýêTÎô&£{«É¡ôD忍8ú€Õ/ɬ£ùÿ±|ŽõPGp ô:ˆ ëÒÃ2ƒ«pü™Ï!O»[ùË{À¶{Z‹rXGáHñI ÇçÖ±ÖŽ0¤GœZå!½`ô5‡#G²B¸1ÛgtGU¢$¹‹‚„e 12‚„m! —ßѹ’h'BÙªåÏ<.5™õS£ñ^{·|¯­y/½;RÙø[3!Ķã~å8B'ô,mƃ`ô#Âbw¶DIÞÙ¸Þ8øqÚÞœxc±ç»îóÎNçÒ³7YjÛÿž‘ šQ‚¾ŒÀFÕ'ÕäÏLM›ªSE•³ð#×ðoNu´¶•Žû¼‰¡A©QÉž¬œ•ÐU†hÚ¤ÒÀâ.·nañuúðóZ“W»q?B+5©â‹i¸GÑpØöà¡wéLž¦ôOÍõ>ÃÈô„Ö–ásäêdæ¢LŒ– R°:%-›¬AV’à»$Îîݸi« AL0µâl±ÒUbjfw·u—J?+!Q¸IDéiÄÇfFkIšÆ~fuÙ[ÄžDœsqíþ¯ê´K¸¨ÑÆ%­Ÿñï#‘¦eïÖŒB&cÕåÌðÃZ¨z˜* ^ÆÜ94’ êb¾ßÀºæq‘:\~5R¥Â^Ê£ ã׿|Üs;Z÷­éæ¯N)äf¢pÁYæÎùÁŠ \¾î{q”“ݘDºU='%“ä—«E!W½(q hä.,bwr”º°6.Vª‡ã“ZP5ò#šÒ¬x<›&fúF0®ÆÊ€¹%Ý\6‡?ê\ÅMf¿õ_£ûðχåäåá½Jý«âª4!'PHÚìSƒul"¶§w5ÉBRÕQR/ƒ¡¡ÖQit;!'à k¶ë5A. Æ?ÛJOXÌàHÂÔõúýóZìþ·©2Gψ£ÐiG€(d ŠLà…«œ&ÿÚF½iÙóO#"b 3ðbF6ÑÖ°þ`™$3£N]oÉ€¤\ ©Òyk7[íØ‰-WmŽüTáÚ„‚×…±ã…Ìm˜z–&+xò©hX1]KâŒA@žœÆ©LL~ªÛYd*$j1‰­&¤v¯¼p¢–Aw¨M ì~.%áî'äÌlY‰‰˜‹_êk~nâu'³{êæudˆÌÈ£‘瓈bšÊ³cCQç’Ô­6ðëJBž¾¯ðÐùŘ#Ç2Z®9…G¼Xõï›ÉwâvF{¦1‰z“ëp}z5Í­åÓ$RÇ^]GgAM|ÊuZ§æ}­‡†ñ¬ï±ÛÃ9®÷Z,ŸNuz<âõ¯E_~ò÷LrŽzCHi¼7ë%4ä–¼ž ‰ç†ß­N|¸š*T&z|Üþ¢¾k}Å,ìRuOz™î~¾#œý/ÝÉ5`!‘—À_ ƒ€ÿz9PLÆêBsV·º“ÞÍunjø„LÆ‹—w?Swû¹Ø_êaTuPDпcI8¯'݃üë 豓gíEûøú®LšqnMÝ­cÐÝHP#ä'sózÓíhD½r•C* tîxø~ò‘;:Ü$­ªg>wG¨ÉÓG3AéɒǨN(Æ›ú:w⽟aOµã®8±©‡Bý9È&õ©3X¾Ë´y’‡¼…3ÞQîñ4ɰ£ì¡.l)Ác4X¤b‹—fSìqð•¾OM`… ÍOŽU2M¼i…@—dꊄ¦•ôf/šN‘G9¨:;$ØS•‘ܤ‹3'œÖÑqÝäÔly5œü‰ë Xšk¥˜i¡÷5ËU{}~Í?¯‡¸È…èÜ )‹ wHc,Þ¥Å/Jø×”dˆ#YIÁÓQÛ‰‚yzPŽn\:R’ ÄUÝÓ5½kZ(Uì,Ê6•Ù½ífvŠÂÂn/]´µê-zÔ¼ 'Èg£9H?†Pƒk«q¤2“>kN$ÍÁ½òâ¬ÓF8k7ê³R£L™QmUµ†(¥Aa‚`K¨Ê7e`èëœvîT^lz…âÓÜR®óÇ(;;åêeå3ÕX> #»û¯KIo…žžã|Ù™½¼–YXg(†"HST¡¸˜Ñ—¹Åå“ÃÍZøñÆ’ß”V¥/>ë±dÅèä‘jîgÝxÜa1+Õü àHÜÅœý²®FÙÇ‚f»‹B+¾æ²*ýN Å8‚ª”ã024kíâÛ™Oæß aÝWa•y¥Í9µ)ˆõÂmª÷;w®ÍæâDl2\Ô½ñk3… UM£Àƒ¦ùŒ!UM­®5æ…JRô#oöØ÷5êÖIä$˜%5ÇTg±£ YXQa†Ò&Â.µ í‘W¬º°lXî¥2¶"­"(·«#¹ú]®e˜ß4'–SÎá÷?½éÑl’#à>´R½÷•º¶Û‹´êâÕ bq|žjè¡À›tÀ †™Ç$Qñ^LäK‚²ŸÅ¢Š¬|öt¡èx»^õa¶TèF)[Ä4¤í åC\ ŠÊÙ ‰Ž`^öXi²QD†(É*?E)ݦÑ7±òĵŽ4‚h·µ>R„XQÚ¤O׫Ulʱ—Á‰I åûf‚V^Nª?7¥Eçóz‘ñW¹?’…_³°Mî–ËYËàÒŽÇ–²NoÏ'~©ŒŸð…æùBÑNˆ7ÀHÎJ…ï•*3©RŽuËäÚ!i „ºg¢bIBy#‘ ƒýë(Œ0GžQ’¢¿ÏòÝÓQÁãV3*’Íoz4C€ñj’ºÐ ©PºÐ3úvªÀà“,EPÍçîî'¢©9ŠZ’žò| úü”ú*n7Ói°³nÉõífú¦FÖ¼<ˆ¼Œ2¾¬Æ19™E©! !q±Å}ÖÉB¥ˆ1 !Ö 0q—š-¹AšÖ´ÔÐÎÃù9D »€ŒŠäV¨PX2]’hJ¹VÐÅjꯌRp÷ª:…è:8^zyŠ=®ÒíÈ+Hïs’bÊØE3¨a»Ð(ÜR¨¬j¢]G£dkQŒ "ÿîÕ* Öý'x ±KÞŸÙðg,äji´…*©n,Q æÚw$d u0¡±‹Ù¬n°$ÁðÔ½ú;óÕ‡¼)k'ÈXÿ¹úkV¤×‹"àìƒé' JÕ(Ú+VgË=0m÷Ø¥¹²ÞT ÏŽðŸE—_vm3x¶)p›zÖã}\?¬¹Ð„kú†½)sÜj[ºZñI‹[ÈËPiªAÁÑìe6T•ZÒ€3ZýÅæ– Lkw50s É(³³?&ÁY_†M^ºeltu¼°“ˆ_1«µ m¯¬Ó½k5Ç¢ h€Ýf1ØñœÄº {7ÖfUìTÙ#8¡‚ÐkBªRÏ?j'Z‰eÝØJ¯§‚^Q sU´[èüõ;d´Õ‹Û[2-S(åȆ*”ÜÂ-µ·É5Æåky%­ }^ôˆÁç€Õ,h¥®ëT—l §Î˜.¤lvàJ™ù¬­Áèäž—ƒëA#’ÃçΪ™ÏGYìª,` gS¡„ÊîôeŒÖ¾lÖi0Ö܇ñÖp¸ÍòTÝÅØÑ@sNŨM©Õ(„…û¥†âºTèi}ØTP’Tp1Ф{¿»b¸<°)E‡nùÔÔ6è ÕÃÕ[²NUóMõ}$Ã,ÂQZìèéo׿‰no9,Y€Øu<5‰$$%@ŸµtÁœyM]"` ®—CUÉYbÕ£sÕ7ø¹L„“‰q4&¸%õo³ùjŒ¤ ”ï€x¶` ( κ¿ãßi'TSI¢­ítCí1 zt Y"û÷¶¦>²\6ÇŠ©æKEß> Zœîá^3s|žr"OZ»Õk'tkEØÍô•gÜâ2–·N„Tpkü#b­ðÏõ_Ÿ=^.ÉßpýèaD0ånv¬ ެeB ±‚ç+KCê¦Oœ¤P•ò.™“kQ—Õ'LŠy£\áëç7ºDñfèy+ÍR+¾-¸¡¤¯*'Mþ2¯X"cµŠ®?”Єó£Ý`Ry«îz%ù‹õµ¿Ý«eòMã^=¿,|ÎóãÓéÒÒÎ^0õ¸ %”¶ñoc[ÕKÐÖ“ûyضêy º%| ïc¯Ú§_Ð žœ±Þ™ÏמƒÝ’7¤¯¸_6_aŒX‚™+ùÙÐ|ãH¾o (ôà“t†ZÂ%··´-ãzû9è¢ùš[¬?™}fuâõÏtâøž^â 3¬áR“$Qm«q6”ðlüŽRž¢×ÉñÑmjÃi!üuÂæ+}¯´Ýg#ŽkkI•7aÃL%¼‡î£Pe;u2دœõóܹÝ-N™×KÇeoêw\¼Ø –èBž…½p~暫͇âS¢ö+˜½x:V1ÒjþòOV£ ªw[^^¿«ïõןŸ öZÇŽ3µ~áI9ð5ùõÐÙüùü²wo|tU¢û.³éû¯¿/7ñqªÞ‚=ó‰<ñ4#¯ltÆüñíí×Ï"z‚ŇÇåÌê$ý¹kT˜`Î9ûBû·yß5å¤ ;Kã‹p—S§¤¨MûðúþHY‹'ƒëÝYüûÛò¶0¸À½íÀ@WÊšx±ÝñQi‚²úÌ ½GCª ™_¶]f­¾záx·4ûki.oœéã§ÖÿÈÚc1ÏTã.SÅ3Øê7öZo¯®ïΔäÍu¸¸+K”ܨ’ÿÄÍÚ¼k<_²ÜÐÁ•üÂÝæ¼Þü%ö¿”ã”ÃWÿSùN—ϼÛyœßž×ÚÁÎ`—ç¾z¾ßõ¶ßUà«>Ûú}Û÷Å.›—¶4í¹.¾\?Û·fAfù&¶½yóü/5Ÿ\Iù^ÎÞ“ –Ç>ÇÎp1üͬ<ͳ[_óß…×ÏšäøWä 4LÄÑH‘¨FjL&ÈF¡~Î2ê?7,‘ñ+øúÏ0LU•erèÈ9ЏàÕŽõø–`´L©µ„“%÷YN_¿Ò'ÅW%§ãUÇæ`|]¸šA¤/YÝuQPJ`öÇÎÜïm 3Ã5‚ÁÃ&ê®Ç!qñ ‹ß.ù¢'(GÝìû›ÊZåNKƒªÏFlT¥QwŸƒgY‚ã,*´·Ô‡5‚›ÍíÔ³A—ñçÃÓÙÈ¡ä=V k‰å\›B©˜®¹äÄ4½žSç½ïHxUQ$ÎÅ*¬™µËÙlJ•œð©A5g¡Fª…â5…v‰¹m²dží42g(¨j܉˜rç:"yŸFW‘WÍǶÔF˜Æ‘å’Tå_;]åIé&Iìä¶Q SÂÙääQ£aaÔ$xÔS™©¨åï39Úh'¥FM—°Ž"×¾·“Æáêî#FÐ*5I¨S=*C´tò’½ïY^å⥠„ºRo ÕÓ"Š"´Œè«8×ÚãóÞ|‚¢*z2ªIœ™,Óh…V(tš-³¤QBN A@ÈYb´P>Òždõú“ÉK°Qå¡iJ|ƒ ¤Ö‘é<´— yÚP@óÒvrr€(½³AN„ÐytÒ—Jth<—K¸Âô¤¡é)i<ìt%&´¡äèB”òC¢•¤;ËN‡HÑ@i4‰¡’Ùtb¡ÝÓ¥÷…z Ì4&òÁH£Ñ¤)hM(t”§E%£BRô +äq4ùк@ÑÓ¦%¤|ŽìGdÐ4”4RéÐôôt€m¥¥)SˆÒôR©¥M;c@–ÀhHRU¥ Ò®€b¡M i—¤¡Ùè %i4#JšÓ¥ ^± òQÒP½"iA¥ZÈæWH‡ž¡ é E £¤Ó‹Z@¤’ž€®Ž“» R´¡AЇBô®…ÑJ”4…-! @ÐЉCÐ&—¤GJ´ù*šN„O'H!@)@-*¡ç˜P UèP@ä…*¤ШTJD B…¤] 4 •Ј! DJ)QC¥4¡J@­šT  M*%*)¤Ô héM(š4(h4… *€P#䎡é4"ôÒŠÒH4£BƒBƒÐ&”¥ÒèЃ@(šCJæ]"#ç™UèiTÒ/B ´*t&„JÐ )¡…B‘:(Òƒ¤Dz”DÐ)¡QZéÒ‚è@â@€ é] #¤Q SJ¡ÒQÒ¡@(¯H(´€#@”¨!¡F”P4¥”éUè…S¥T)DAÐtªZ4‚/B>JŠt‚t&„TÐ) |ÉE<”õ>ðÒy % P ×´"P®„ZFšPè¤@ÒªRDR€ Ò€Ò .E)¤E4¢éè€ *(ô¨£B£¡)^€”= S¥ Ò="/H'©õt‰CJ‡J*z••D¡]€ihS@(Ò/N’ìWHô©êEé¡é†ƒÈ4ë@ß ÑÑIäÐÐÒ”)IN…Ðt&@i]&€ÝY6ÅØSI }|ø]. !ZÈ^€h JNš(ºÕ4¯Hèéè %&“ª) it¥%.‡vSÚt(ÑE JR!ï½"'’¾@!@¯@£©KÐ#H‰P ^•]¢":TZQiTÒŠ…!¤„èN…zDPt(ô/H£JÒ€iÒ*‰Ò½@Ò”4 ¡¤¤( Ò”.…Ð"Ô!ä#ää…!Ð#J§AÐ4ô4£¡B„ (G¡4 JŽ•zEhPéF P¡t¤è:MB”{µ BºTÒ%¥Ò¢éF€P €èé@èÒÒ i…JUztP¡¥]*½ ¤éP4ˆ% ½'J ôÐ*éD*•¡¡”¤¥B¦…¥ M4ªPˆô+ª4 ôOB… %(šPI¡PÒ¡J=(TJS¡é ]†…€4ƒJÒ”"t«Ð4°4+Ð:4)¥Ö$:Ò§Éô tŠ‘=B½SOG©W¤zEЇM! ZƒCÒt=!¥(Z 4iªÒ´‰BÐЫ^Hj©É ÄÒ‡:C uA‰5Jz´-B‡H!@òUiƒ¡DéOR«Ý‚攡 (t¯K¤B‡£¥@è^„®“BÒP‰Ò… í#ÑM%Д=y(é¤GAÒ¡Ò+B£¡4t‡H-- ¥€iÐЄèS¡J@J¥­=":4¨(R´«Hi UéP zH'’…T)@)JPõ‘•RÐ+¡UÛP(z ØC@¤’¥:D5í?È=¤õ Ð!v t)AB "¥+¡Mz”£HRªy.”CB¢ˆ!¥GÈ] ï'’‡HùµRP]ºzBbP¤4К¡4¨šUz@N ^n„ò i‰hòP4""”½(t:PÒJé¥)J ÒiÄ¥ëLÏAHh](HôŠ”+Ò¥#¤Ò ¡4ùÙ@éEè••Ò&šƒB-('Jš@ iWB¡Ò¥PèPõ"«  E<”O Q8ºDÐôi4¨i]=#J'Hô­!Ò!¤^”4&‘h “ Ò¡ÒS¢:AÒNÒèM+¤CÛ ôŽ%Ö† ’ìºZHšSC¥ÛR'X‘zM€ÖØz‘*º”4¦Ù\@ÑÝÝHš¤ÓAÐ.Ÿmƒ¤F†š4º@ ¤ Q(¥(¤P¶U4hTЂR/’)¥CI¡8%’®Á¡Jéé:;Xt”--t8‡§T4¥'TšJ4t= ¡4 D ÁQ=ó„ÈO’›:»ü|ž£»ÏŒ®o£§ó<¼|ü¨“¼ñÞx3Áç§”¨áE•Ât™­…ì$÷NÐ(³ÜI'ÉåÍë6é™&CP*‡g!š–«±Ý5‹£¢^Jë>GHŸñúÑld÷×øüÛÚßiE~ÌÌüÿ—ÿR~pŸÍÿ¼C*rQ°~ò÷NÙ·tÝ“ù64Óö»Êkåð P½çqO<ÏþÙÞýqb…P‰OW×Y[ÿÕ£7qƒ4S¶*j ˜ ô˜) ¹ôÿÎw.í9KÃBrú5ïWÓ˜u:‰;F‹±ëkü²Æÿ:ø˜1c™„WÁ¨%ø|ÿg'ãp9t7ÍbQ‡ Œÿ†41uÿ·þõS0Ñ7ÿIèpÇÛébœÌKpQs¼RÏ5¥o‘C.ã³BcÒŠnYž‘HRtúùª(Ç[v„ja_ƒ3(6% }êf,Ku“PjƒRªQQQ]·.ÓÑ•"èåÔOF6i˜»Š·÷t DÀ6®í\T0<›ÙSÝÚŒ™™à &hìËlæ)»‡Û™Æ×!*ÙÛ!ÀfÜ #fœ°(0¦î ¬¹¹™;™«”ü{LœÔÆP‰ „HpPí7~¥B$MZá!ƒø'æJ(É);Nf³ÛÕ3H z˧ڸ ìœÝ^Í)¬ #"'`½T1"@ "š„âB \9(/~òÍ+iÌ+¿W^W~óï_žvµ¡]9Ø&ÑO”v䈈œJ\™@H‰\H¢êIf‘НS äb¢2äKG¥& H#ý)SÓÔÔ?Ã:Í(Án´—2¾&m•°·ud?«‰ìUƒDuKBÑÌÂÙ1'™­ jï‡/J€Š‚#V¤|¢ F~´ÿ&4¼Ž"·u#0à®Ülµ¹?‹ïtÅ îô"»ÒUÁÀÐ6=£Ø5RŽò©‰ Ô|M¦jjSÞ'f%ÓU&1H¸_ڞ̌ø¦ä-Eoc÷q‚ b7EI1.oÃ2',ëõž·¾´£3S8î/†wzPµaÊs ZÐ.ká|¥òs=«züæñ»ïvn&ÞêZ¤»žsÜäÅÆ Ÿí¶†Ï‹Ã*C†Â^•{p©’M¢´°J.z¤šLI“=ËÉóy#@õ1. ¦VÉ4ãrc ^Ô·¨Æ9w6u)ì±”½j7;Q½7τĈ¥®ÌÖ†»šp+#['BÔQ"ºK»EÙ)RªL*ï×5Ê´ÔW7l_9)ÍwÅØÓåDŠÚÄz¡‡7º™ËTTH130XRi&„J ŠQS EÀ2s-EżE¨ñ(dÀÃÿK9½WY«0©(pã±Ò†7 3H1HM :¬C‚Ä ƒ`ƒæî:i2ØÛut{Cš.÷DžĤVIh“À«!Ù™áåmRy üñc”9žNÜUòõ9åwºu²ñç'¢¤ôÅŠA£M•/ÉòŒ=÷ÂûìÆ±f̯4j ç§:¿PÇ“ˆó÷m×…èD‚ü¨™Z4<Öuw¬·Qk3ìMnÅLËÒÏ– ”©Õ7JÀÍ“3j¦tA-l"Bï#þÍ~mSLãŒñÎüAwl삜T޽ihg‡Pp’6Ñ9¾žQ¡‚5«¥"t®¦eË(OsBqå›¶É+¯†—‡¶qEãqOÿ7¥:â:ô#íVAȶ‰¬«)añ@@—!!>F±Ë1@K©©!ÑÜC‡§Cñ?ª›bˆQhSãfµÕå46BjE±`­ DñþEØMm¡Ï ø˜üãšê™ðÁÂüõ³Qêó ïÅÔˆ»âîÇ!Ù5õ{sD0](+Kƒôjˆq¿¼S‡¾ôæV•ê¤KóÍLy‡ÌÍ>#|§3ÖOOèÉ×nÜìwÏ;¯:Øñ©ˆ]JêBÃYw»xv ;Ðp•ì’µÞSLY\n–ø¦b&£•¥QèÍ3÷PïÛДë^-„›Ýh²F›Íf^aèJJ©@w0T"ѸƒfD{%r˜;dJÌ$OBa]Hû.iË{•޽4ܱ9ÐðÇø JÙeõJšWKDøµN§ ”a£šÀ9 »Ÿz(}I¹%E’I¯c;2´4Vµdo÷Õûó¼žN ®™×$oµ÷?9_>ehíPAsæ·œ4HEªE¯ºaAŽ/[Z°B`‚­,†2Þ:SITÃ¥àè!R‡¡º Ü’4êà±OT…[Ä9Š(×7;}ÖUf­öõ£í/ÆNÈ„ûßx.¥ëï~fö”‘dq#¢zU¤üÚ‚8æBâ¹Tí²µêÕ s#Ã&†‡Ç_Ÿ•ͱ¸ (^§.äUkãQÜÍÀ ÝKz¨0ÊPb5ݧOJô+Eš'ø£Þbz¥‘–CZ…í>É]³PàG±2>…ŒE|#RíO…®÷1úUÅÑn•zðÆÐ8Ûcnäçqz÷«Þ8²Úز:H00ÄPÜÝkS^DåÈ‘8;nE홨: ZÒÀ€õWÙ-ÝŠmh‹³JT½åbŽÄ'1^³i¢ 1AAª2ñáasOw¯½Zeü†È9q/àY\|oØX–°RjÓ‰ LÔ]€{®*@bQ¶ 3Ò˜ÄÐ~íiÛ5ñâøÀª¥~YwõÐÑò^·fJh¼‰Å aXù2{”Ã5­]xùŽÿÜ_lÜ_­—)JÂבåánc9K,´@••L@HÑÂc”j{DF}[úÌÔ‹çkÝÖ‹ÁEèy£¯—·QjjÍ¡îA/ušøIÁNSR¬«Wîx‘…Õ‚—²ñA¤ ùµsgV†Ð#ݪšÕ/õ(礈jªP@d ;$ºR¡†3>:W ŠñAú›tÿ7« oØ %õÙã`-HÓ¡'åWÍ3Bø…¡ÕQû+’‹¾æk ­›_UÃõ{Ö$¨§fÀ\½,!D:X‘Òƒ¡;zޝâ~$d9 ¢[¡qˆ¡Ë7ûÄ¹çŠ ì~WÎnæ†ÔyxÓ¤Ó­RoÍsUÂK„LJÃ.€÷ºW© YÍÂÄ] nóÊ^ÁtKέ— P°st§7œ`÷~'´ó¤ÆŠ¥ˆJé¯ð|ñ8 î÷‹3YÐXÖ£PÛA’÷eD¬§ câ‡ÖËáã\bƒ×[pÎ/õzbÔúpŸÈ×Q>QoÇ–óWþqTÞb¦ƒ=¨U¿c ž}Ÿv+½¼¸[Þ-L 7·%DI/ã`­gò8áño ú~_‹zá“EÇÐÔ;ã/2-T6/ ‘fÀïQ“7?Þ¶ô?':ÞÆæ Ít™Ôôf‡Þ­mUnñõ»yñªÙÔ©5K?eÑôNáKJÃq=G j¼¤€Ù$ðÿ.vùô%Žúéû– X»æi}0y›y×^¯ÿYè=äõç¿8ƒÄmœµ»R†å)ˆ¡A§bT“>ÊðЂ7ç5öël÷JeSŠU-³¤ÿšWOßæ2£l iiCmp’‰Ïª³µï [g0jç/n£5Íý…«x³ 5ÓÆœLr˜ã£‘~¶ô`æ¥Äñ|l"Ðz®®‚‹FX‘ÓÕÛé îVÂç‹ïN¡Ç™Ž+ÖkŠ‘µÐBŽoôÔ¤FyέbëH{þj7¬{­™0!)«W”ôD¦~;€Ã½*Èœ$Å츜nŽòjž="xã\YùöMÖ2‘ð{2¯X~"ƒŽÄyì8E¯‹_÷°›h7wÖ„ësºyÐói¬ó£ä‹Íq(x®&+='Qy'Y=üÙ¦™Žsõó­ûò¥oa|}‰ªl¹ßûÚv´¿kJEjÖS_Ô^ Ô/"[çKé.VY3Ï Ö=â°f1Z¢¯Ö_­÷ëèߡ㟪]اÁlŒzí¹J|øéuáËntï7“Ìš(GÇߎï ÚÛ4ÓTq«Ô›] ë*»œkÕwÌæÎ$=‘6ÞÝ86\~=ø÷Ê óœ†:^>É ½-/»Þì¬íÇÄxiT(p'Ÿ^}KÀÝj:¥Õñ‘²–*¨Bqú4·Bâ;rãÌXÿÂtì÷âü࣫óX/ì+ßÓyŸ¨ß32zày\ãÅ‘;d­êGŸR¡óå÷ƒ½4ÕºŽùÖéZ¥xð´lNvZ8 ÏÝ­mÛ;÷¸Œã®{{„>ëì—õ!å8·”^à†È>5‰¯i Ñ ´ó®iǃ›±ë\ê´ñÖgk€ûõÞ½¾ø®9ðÑ=yÇu]Ú®5Õj‡›¯¨ñŒMç^¸õy¥.[g[áLÂjJQþYŸWÞ«ÃFµ¾]©R¯°¤†í/ãÁqÞ¶}õ·R“†vF9”µ3Sz%Èýó×é7©æÅÁu•›ð¤êÔígô“׌–# ^}‰Ç8 ßÓYÅø¯»ãÆ×tÿõžoš›y• +—žý³‡â˜ßùªžë=ëË×cêœO¿Ðö<æÙüJgÑ÷Åk^ø³qøµmC„/ž°>#kÝ2¬¾ºÔù›ø@â|OQrè¨|‰ÀOGr‡qoçÔ¯·ˆÖJohSþ‚s÷ç<îÇëuǾ¸ðÕ7«­¾<ù6ÛØŒ—ÎlYÎ !ÒûŽ1TÕ8ãx°+„õˆþîÿ#õúì+ëòòEÎø.y.ÃÏV§óªáôœ[ï’ß÷ÖkóÎûœ`ëdçÑ|Þ8¤ d1’ýg\|×Þm@Œ…¿Q£RPÝ}¨M¥r³~sŸ×¾"ÂV³¯žH‘ü¾Å¼–ÙWëÅÙ?¨Â.¼—«×5n·÷Õ{÷Ý<þË~}Ùç«cÃÛ>9'1Q»_w.oŸ¥ñå†ÀöHjïñ˜SëÊxŸð×彿+u ŸÛXÏÏö×~ ½øðGæ¸Aߎ>´íÇw!0£æŽN_:üKî›ëëUµÑ‡?,\úÀë–á.œ þ¬tzq2ÇŽ)Z~’ß>âÊÖ$ŸßžÁ~ËP5z²zß×¢ý¶ «ë‹^`>øÏUëªG+•ξö0cæüY$딯Úy|7šT°l/7O9<{×9žpÚG¯žþ¯ââKœ!p·µwòIÿ 7Õ×ãê~ä^¼t$›¸m/ç¿×ªzŸ3œú:ò[ü,ý}oׯ¯W.8ò[÷Û«%uå­ˆû·¯)ùóåóLC¯/¤à7ÕGßUíBÜ^=ý'õWÉX*V;Mä±Õ¢´âm»·×áñWÖ}*VØù÷K[T³ݼ±ûî³ãë¾ëZ²r}{4ž0­ï£Vì5\ j¿žÀz”ð‚ïXo–Ê„\æð Ô6§>]MNÌKÂÍ9ŠØ™ß"M&JÀB@§¶·Hîæmµ. ˜¸e­wG)?4Vo(ÁOY·;‚¶1Ã\Œú²Sæ ãŠäG £S¸HYÜn[}!'Š$GGP0ÑjqýTzïQ qëp¥èžË~†ŠñŒ-‚´xŽã ®3‘ÉÐüûû¯ ì<ñÕ4˜rGç_ʧ5ä > kýrh9!Q·Ç>o^çîW~=iw‰²Áß :] A§0vu$”âq0Ø2`žÜÈ*$$ðtk=ÇŸ?»g*æ3jÈâÜl4•|t\Ô¿MxY@ì•®¥„ÃÔHî¦á¾9“>/ ++BÒ-’¬ôbE¿sì‡-.ñJY˜ªÒº±6„8ÞMkbwÖl²´’œïÃsJ¾§—ßA²lêO_žtÈ?…€øøø€ÿ¸@ãããà>¡(PJQ¤ER”)T¡Q¥QP B…V€ûˆ ŠýO—êý7}áEEû¨ (÷Ð>Âù;öïÁÓ»½×ôhæÿ¢œš,%Ál°¢þäÌÖœX¢”™ÿEo¡Bí+hNkIܱrÁA‹I¯ú¤QѰ4ÍéÎh‰`Ü?ìD@ÿI›ÞÜjeNóú-O2™3“ZÒ¯ëiˆ&ˆäB6\h±©ƒW‡¢#á½£6T!¦j®$3U fââz×wI‚×- 'þÕÓã KŸÒiŽ|y88h빑IGW+sýñ«UoéÆ @c—ÉR‰§¿š…b(Á‚LÿH*uPˉë)GŸ7ÖwPx¾yïßy G#ë·ÇÚH ÙÁ,  ŒŸ«êâgbÇ¥Æ~F„P ÞÉá‰Þˆ%Ë›”aüqók[¸×Š-÷õº¿ðkQ7áÒdo6L‚ Þ:1éówQb¥çÀÁs,d@Ï¢‡(ô Kƒz1•‚+†«®[¡4œ0ikJ&\&a/¤DÅSÁ ùTWÚôu»HL†RÜ“ø|U\9ìzIF+¿& ×  Tž·ª‡º óër䯖sˆW²ÖBœt²¦¹R£ñ¥¡Ö…¿ëù«ŽåkºØïZlHAòÙ“€¯—îel^6y¾i}ìÖ"»„h<˜.3Î8‘€×R¾œŒ¨ XZiPf>5kb{ͯgäk•0k•ŒÉ";,yƦ’††P7¯§N»}ˆÿEÛõ+mQ©˜ÛŸLÙÈ:æãÕ^uœ:¶D.ígÕÿÌÞ>ðøÎF¢BPX5G©ü «£ BšQÅÒˆúÃY˜É… ˜0-úšª 7övžQЖ*)Ü}jªe`0h)ž2 YÚ½(›"VcŽ/' X·¶tf²@Y,·‰YX\T- 'pÙH0J¦S… Ò„2‘J ê¥Å °Ü&i›u>ÄEÆdz*7>ovn_Ø@’Ji>‘ dŸ(R1à­¼SZÎ „@©'Ë¡åÌz0ä‡ô5«Uì<’$Ã^Ä]íô˜Ý‹1HSð.n\y&Lø3†UpjœN? DßeF-™5"åïøœÖÁZU 0…#20dßR²4yâäía#¼ßZÞ1ÝúósžA4$wʨ |ø­Å‘¡V£?@Ф!Q…Î×½Æ,ª©Š¯땆2ÿ‰[š×²ëóÇvvªŒLÅé~¯_&dˆùŸ7«¾,\终#·Ÿ¤êcù9XÉ]°ÂPû”öÙÕÞ7Á6(n% ©B*¡_)~顾-?úšBƒql*øô{ˆƒr'Ôè˜c™ðŠƒŸ©›äjjVù<A×½¶î?UüJ69nGˆ`ÒäØâU1ç>7_žÎ ƒ• N‘‰}ÀÖx‹/±éû¯Ë£[VîÅ4AõÆ×9óK¶i’µØÜÇáÄÍ>ÌR _»QAY–ÏÏ—*â(0…áÈÙ»¨ú³ æùˆBq¾øäûZjÎT¢ ü24+‰¡¥Îýml×Íݹ¬=" …eã:€SP’[;É/fMAÖÜ«Åóñ^]ï›L‡«ãå–7!ò€YQÁ~Íʵ 'P2åu‹,Œâ…ñ×êóªU£%7þþ+˜¸Pˆ)Â2 ü–¼ù/Æ¡G…düWº×^¿)­OhÄhc9¢"z* ‚‹ˆñNµìm±LÁ^Êè¯FP`c…²1>E$õ1µ4¢ŒúñÖô·­¸š[p^ª½žm t6Z7 ôªÜ…82 ¸A-ÉvT›Reå3œA¦¦êÍë•;Åg T_Ý¢¿º%`"ù³…è~¬ž ;¥;ß ?4\[EAx?9©ùôùåóÀ#BÒ;äëdÍF‘F¨O†*‡Ÿ¦ß5±€ýꪢèÊ(vwf&!(êôEÄÚ,ð4f¶s2ÐGŽÇ³æë¸î&µ"‹ôx§³C(€: GÄê«í܌Մ*n›]3*ç)~{Þ²§½óŸÀ^l2¤ª!6;‘ŸÌ`y¿gIàÃ}Rû¥c@ð@›åÙZÄt4âAõ&`">•EƬĮ™¾WC>zÍúâà‚|Ÿ8¯º¬è±ò¸¾®9s@°âª©"@[1iB¾àHµ9ô;¥3E]ϱ0ì{÷¥oà#}kÖÒ& £ÿ3¹¥ ,k_j¾¾øõ&õâ—Îb;ËS•«äȤn†çÔâ×¼MLFõ'I¹Ð z_z…‰±ñ£`Æ|šÀ`"{Q´kúï!¸Òê».®¦é3>,F kÃR|¡ÎÓF 1YÒ“k»ïzÔ¬Ïdr©%%M-ªðëoehu/'‚ïgŒ`’¨WGèUMˆq#yK}E(UQ‘6[28bŒ°Q%X‡¸ð±[…—k­$`âS,@ç«92Ë™‰&Æœ=q$"-AáT(ÕÝb¢_¹%[²´0>Ú£¢²·ãtbgtS”ewr{‰”Vd¸'ej"OIW•ÏqÝóÕî±BúžÇ˜nKÄeŸ ø÷i…ÎPÄÅœ“½%,"ÓEŽ“–'GÉÅæÍZiM¢«É¤Åâ¯5$ªðéºÌs…®g4ÏÉ¿OãPC0ž’±à‹…U¿(´‰‹¼æb0ªqF™E”Š8„ZA®Ôx©6¹çTüÔDÑñ]¸à‡^(@pÄl&œ½è£ðÉÌÝ?Lms3—_0¢oA婸|[ý*w¨°¼6~:åM¯y{¸»ÈœL°%Uè¢32¨Z+?šÑ„!ÍÐÈÓ c­-µ{ jõuy‘Tt•[ ©^zJ_Ã=jz¾Ë.e„Q1ZRµ‡“ÑÕ+Zèl‘2ô* t®œu{¾4upÍ:ˆ¸3¦F³eJBb]lgм“êò'ajÚV÷”G(ÿ݈֒ë4&:gÄ8[‹h­~H€RëJ¤á¦Ä©eG…3 ðyÃX8ë¸ûÖ~·ôÖýw_cÓñGžÍ™,Y™ÅJlà2vÙóï´_-Ñ ©¡|&VÊ«q±Õt*O‰æB¬oçÎ9Já$dèÖo#uKÅ/4äh¯ˆ½jeñpR5²ˆˆ`ªâ×á]BiÉÝ«šèˆÁöΘ)„s²*e¶ä0z–²‘©c¦-!^ŠSK€É•èål ݼ®³-|O¦T cÂÊ’5.¹%-7…½6ãH$`MZ’ª0öNohjxjFêD<#‰üÄúƳ嬯S[âèðÁä€Ö#<&«¼`èÁ¤$¼^¥W4:^a,–Í&,´¬˜/¥+…vâÜ~ÚzáW„1àÚìnýÉc]¥½^w¡ÅkXµuÁÒnSÈk“rHp{+š2G…Ådhÿªú˜góŽ3{oÆœU»ÙÕ/÷·„6ë´ õÉf¨uœš×êÐõ5yo7èçák#N:fDܳsÚÇM4¸ÚÑ…+G/9¥hÅ+`¿ËÁ¨Òæ@õäOzþJ`U©ÑdAþ`샚!DO=Uζ0£ñX8¢…N5Z:b»¯›¤e¶…zÛ?„ºÓ†tn'7 ..àÌ3[12Ìb…4(êTXŒeqÁ*È'•sö.&#'jÏqªk‚Åw8'¹N$À‘M€AvTe€« W4x, ¢2­e“–#`ꣻ~©½Kmk¦Èˆ•¼J>à‡c’ìÜ ­<.'p!KŸ1}䌇6¦¡Ø–HŸ;ÐëòKQWR¹Ñ”ô|<†ˆ²†x ³) Àd×îB†Öÿz†~í ˜º—‰ 7~Ò+vDûæj®8N49­ÙµÈ†­‘ñ5AâlEq•ójŸ¯ê“Y ^Þµip}çê ‹˜/«4|“Õ-ú$¸ÖÉnǤ¯v^ì :…[XŸ”ƒú%Lìè½¼yóç>…Ð_’Ö„‚jsÚš•‰9gâÜ)Æ8LØ±Š•‡úW¤çç¹X0ø@@Jc W€ÓÏÂâYXÇuÑ µG·ËŒ^²÷Å©pùj+¥KyÔÅô騍€2e.(•Î6õµhýù ^áj–•R¤F4„îK2ñ|އå—ö;4‹ü°%ª×°¢fU{Í%3C¸%åz­OÅ~õg¢‘Žq$W8Ü­Ï&Ü[â\ݼ¸õÆ¢Œ¸¦´^íØV´C¯ÊÂ9ª˜Ÿ¦=SA?4cÁƺ‰Xäóóãc’µy¾/Æ—êþe®S³ù<1{ö}Oð¸4ìt½ß¥{G;¢â‡A«}YBÔôYÕø@®|Ц}RÐ3¡àÁ8‚:9hÉ¥l7ŸrºV·I!‘ÈÁÞ~ý–™œž¼R®šöLñÍç4VÞü²+æÝ,&±_sG·ºÖÖ‚°€Ú}kÝ牶ê¡bd°hWÁõªWç«üƒ/_wî´Äߌ\°N↟$Éf?GLºä•NÍ~g¸V>`óp à“}ðæÏg¾4¹)«Ö,Ï{6CGñl©0Ýj˜®O¸ 2…BÂõvÕÌÆ3‚1»Z±‹Á–†)=]~ ±oA¸-év£5v³mÐ¥WŒéƒæR¹1©¤`% Ì@œâ-7Àò¥ ›ÜëYÆT~©„~Š’6ÏÕ¡îJÓ{&-ýoÝõŒµðFsŠW¨è£uÛt[þU9ÂæfµâçF½ˆ“ùmÂÎn Š­ï©p-vº·v¹÷Ôãëxó‹Ž:ÀõokΦs7;šÝLkÃÍ÷ïØy¾6!8>)c(vܸG‘>k™¿EùŠÒÙöåü­@ÄryÏÍiïBÚ{›vFKdݶ̖‰}3%\°sŠoZ‰<ïùdõZ];çYO}!«g]V;ÙfœÙ°^ ,o®cÏÇÍbƒ¤ëó®ßp¿Åߟ²þf“ëß>#ÚGÞlÀÙ/sìC»n¾ ˜¾ŽžxìÃYWTU*^·ƒN)ë{š$oõ–:Y3“ų°ÂBçÝ–¹ÕéÍòØ*k–ãék¢ï¸ÚUquÃnÕ[Mt”Ü©¡ëux>q·ô0xâk±Â¯]rö‰.<æËMqlÎCÍvÅzgži±­$HËæ yÌi€Å­;9"²cm/?'(@ÌüÕ)‘üQ$uŠUØ/qBÔÌŸ¿/=i±xçVq›½¹™ðlh ´¬ BèÝTíP­¸WN\‰9n_E¸ˆHË´HœA61ìÓ‘Ý S²Á3$AƒSìȆ…´T=/rn“&;9Úš@¤ú6YN9ƒÃ9áS©ñlïßSç=k¾ñ”#,meôa„ÀA$ 5\ìIwáÌ̤«ÐUz²z»¦×š§ÎúU#M>ýËœæËu\&t½‹ú ³´òÍÚŽ#˜?ùppðC¼PÓvÆ)Ÿ¶Ø£SÉÑû×Iµ÷¬êÊD¶úëü÷®šŽòÈHneË*}àš ®·ÉœÖiõAËE¡®®î|êæ-}¤`XA„U#>ÂBA8òŒçÜv– Ь%OºeË|Ù?óÉQuå&ÛÇT üñöjmsÑ &ÈKf`ÈØ2u f!Ó²rm…,ÒáIÊëI‰-A9¤“Ž1ž­ ïÄëGN>²è/ѾÜk„“}ÄrWfNËàRÄ'j=zòä¸ègá?ìçÛ¿3Êê¥D <ˆO1ê'¢ÍQ4|$+¡`у‡]…!•XÆmŸaËÈx†ÚR¾QÐÐ(ç<ãÃAH;@+•NMÜŽM hf¤Ì”—„ æK“fl?‰æg¦™úO†ÔòÕM ´*$S#i`F!˜Þ 1ម¡` Ì>ŠœzðøÌTÑœÌßmÑ#fÿœë5¤Â¤6DcTDÊ¢©3£³„j@þÙL¸[»us}Gsc&æpÐÊá]}1`žâ™TÂ)`Ρ„(hJ–<þ],1÷ï]•OÁaà üz,t¡ÇÓ]î40¾îæltÑ–ü€(0 ƒIæY@ÆáÅCž²œPÒTo,·ß¦„å幕ÇuN÷ ÷©O®ù=s”WTpäµ+kŽ -Óɘ·N ßñŒœÁƒá6eœ5éª{ÂdÙ/ hypœæJ6™;«ÉÝ œ¦ÜÁ$'†_Ry³äë Ja”GlÚF «A±q'Í s«@^Rä‚m³`ñf!­pç7Êý\Q•OôÞ¨H|±j•`ýC”~'ÎQ«bă< ¥ƒT¿ÏáŽ.ÿ ÇâÿÑ|>ƒZ&zÑ–1Ã`͇?Yi¾Ò7DÀÏÁéSÆÆÔ:51ÀЃ6)“¢Å~GFÌSTȤJ ÓLOân4(Á–»‡Ëè­Ó°–83æÉìÒÙZüPKðû•œ¶<Îu‹Ø¥ñ¬•◯ĹE³h•EMꥶ)ꬿt‹‚P‡áõºÂ(ƒÔÔÁ­AÅѬåÓR†'Ó]š'ô)%™‹bÚ \eÌC™4$®Þz@ùƒ’·”´é™÷¸B„àô‘0¥`7DòoÁÝ+›Þ祫Ú*V4SÒýãEÃðJhü9£2´êYʽ÷‡JŽ (ZHó3'Ô*u KY …B24ù…C¿Õ¸Øk®îÖ<BÀ`²Ý•bÒ,{¬ã­Ý#‰1‘q÷¾Û6“löÕN…QÕÞ< ‹bÂÀÀB£ðöÃT–ò½YÕ×ú+|ó÷®ó±|47a×¥ÉJþBsÌ9}ÙÚø¹}ÒÞ2ÈPËâQhÙÄÚ³ |;,ÿ’kW^Øc÷Ìn8«:Ò7>/&•µäòœp€ú¸Dù6Ê;ǶϢʓ'{?Õ[8FÙÕz‚h­3{à^œPñ@ŒÙjÚg‹¦gØlŽ´M*DÅ)˜¾l_F¯£´4Ä:úðÊR…O¨<ñœNš9;o¸‚ês¥]æÑr~Mkë†röSøIõ(~Z«W?–Y jn¦ptæð%ñ˜œÈq»¥CT¶o5îFlp7-²¬§·‹?,Ù¡*%AéóHÓ[‚1FyZËÞ0"Æ‚™ïÓ®Òå6ºÐÞc…?5«j²ŠCé%bm•¯°âH®Q²ãiÚÕµ.*È¥†ÕìR.þ-wÄyiú„uÄ è rÓbGa=§ðƒ¡1aZlr1èÞ8Ï÷hÁ6¸Jø¤ 72ê.… ˜‚¸8ãî×~ÌÑùÈ yVUú­ßfãV-5b9ÊÑŸc8nQBµâÔæºú©Ã³“ÆîíIÎ&‚ »~n×¹;x2‡ãÕ1ƒcoòÂáP(óÊ• ÞVOðŽè÷êÏûøkA¾Ÿ×N ÂÌ#Œ!mÚ竽)6‚šíÃN(ƒìè¨ÈgHí9±@fíêqÚU‡¨“`ß||×Õ¹ü âÛ7Ÿ{ØÑ)Jf’NáaT@R¬©éŠ„\3ÜÍ$J\ÜÞòšG+­¤Ûö÷ŽÂpXÊßli F¼Øx|x€E{Yk̳%¶šåÍœNY±ø6m³ýxïˆ>5«¸CÑ~ Ʊ›|Y™ž"½òÿr'bŒçz±8ëFôVšìš…MŸV‹.¥xh?¾ &3ÏÏMŒvî5¡t\õõï\BNÈW>FFüŠ!(AîQúl÷‹_½îigÜþ8Rµ~¹[bC"¯Ý5Ò;ëÚTjìßš7|åušw5ù»¿[õ§|m/7Ë;Û[߀¨Ëå—{£I† ÎI*µ€³6þü¿_®£v>Ÿ8Úÿæ“üb¯¿ìÏåóosüÃÚ&6Å_6à>eÙˆˆ ý8SB箺OÈ·_kBhÂ\:Îظãüø²]ÀåŒâ’œŒ‡Žm£§IÍ¥s™ºZÒÛ~«øÍJ—ßõ)ýmßîú3âÝ!  ÂÒÓ:E¡/E½§Ž ãh@¬…Úª áó”6oæodbøXC¾ò°Ôf‰$7¬T4DÂÄÜ­vJ ?éH é5òH3Ï¢––¥7õpèwƒ±ßc'ŒodVý@ÿ&ÂTb†FçÕèÁB‹ÊƒË(ÈÀn쉀þÿ!ðÖ ¯øø³b*ÍÆØŒª775)z× -KBÆ¤Ì ÉžXW+›вTÒL=9 8Û&¡í; Ví„¥¥2½¥S]¡ÔFLékeáz¶Šñ¦Úž¢¨ºÉN»x¯Àà“±ZffÃ`º»]3eØD™ê¡vì¹%R—šxŠiJD²í9åEHT³r¸ÙMšB²i·B&ЖÛS­¦m)ej×n6PÍÚܦÊúꢈŸ¡úG°eìîW«zÕ|Ÿº8ž)/ñ[ø¸¾Óa¦Ëø ù¾3è"… .$`Õ?DAºè;—nÜöïÑsC3‰›3+h°² Ë¾‘ézeo™ã̽„Qá@x#ñ§ÁÈþ"2ÌÌÌ£U­¬ÖZ—kIœ°if*Ñ›K9tªŒ"ƨª,œ'ˆ½TTê*¨zTDLSIIMT ™œÎqÌÌÌÆqŒ;ADÐA4DLAUS ÆÃ°æØÌsc09¸f39†Ç‘k®Ã5­uª%©˜–®µÃj•ºÎ³[3k6JÌ ÙfZ­Z]¥iÙV•ÓVÕÍ;HÕuY!nTf¹i˜•QaÍ9Y•u]sNÓ¥h¥r‹ºÜë KF55N©K–jÓ®«±uŠXÍ3¤%L­Z©ªí4¢™meCE”Î%Zµjës,Â4Ö›5+ iP¬­Z§PÍ\X«&:Òצ¶šÍIZrµ­-iV´…:çJ•®S+9Å•13NŒ“F‘LØÕ²Ì©k “LÎ:­ ©Fl¥Å¹­Í¢šk†Š¢¨ˆfªy¦*v¹ØYš:Sh*âªjl­jv‰-’1¦¹V±`‘Õ­«PÍZVÍ5XÉ–,Òź6­-VsFK8…\ZÓ\²«#©[®KK¦’3i4–R¡šêË›NLkr¬ÙSM¥Ñ¬×Fµ3$:˳Hë5¬Z¦U¬Å)ΨJÐË:N«c9c²ÃY–†¹tÔÊÃV©¡4µ´4œjƒc–I™š³k•°ë¬Ä²k šëš‹ZB ²T®Ó3iRÚ3œªµfj¸±VµÑR™–ª¢Ò¥¥YU¬Ã¦\iµ¢¹Ú¥5œuÈéÖQ jdÚÊYLá³ MpÙ©“R±Ù];)\v¤Y­5­¶–b)­kš,­–´uÍ!,P¹U';§BêÕk:ëšæ«­¬¤±– ÁFæ¶²šÅÕ± ­ ®…«2-4­®e5g2š'2®iv™ÒÃ8rfµÕ eu%¨¶ªé¥Y.Õušä¹ˆèV*škšäuK,S\jƒUdÕg.jÀÖYœíS™–JÈeªÓ"ÒÌ*ÁFJ ×;UÌurQ˜)SXVªÕª¶ 9SB\Z -ªeºªí‚'0Ѭm5+Y¦)FºÍr+¬W]+[\åšÊ3­¥ŠÒÍ6Z²lZéc%S%­ÚÇ%aˆä[QÒRê¹(«b¨ÍY”Påš*[,*×Rаµ -4©3R:CW5t¦±²ÍjÕ)š«M¬Ð³Y— ¥jt­sZ¡Zk ÕLZÖi.®] ªÙjZæU¬ë’²ÒL­h¶I³®•4v›$¡Ye‹ˆ˜ä!’"á»›¥`D…*‰)!Í­15œËkY,Õ™´ÆfMb ÉmÍ+ªÃKdËŽcKÖµÙa­6£UUÕ܆µeY¤ê†J&:V¹&˜Ëv³T´ÕPK!k5tÄÆS4­iV«J²k\–MjÖ¶¹™ÈjÌE¦4çTµš•Ê`FKPê\5Ó%”îZ´°Ôjµ¡ZF©±b©kJq1¸R´¬¹4•ºÁÇ(Ö±­[¤Av­*je—0&´¦…VhV‹S1k:¦A#",¢”´£V)s’Z+­`*ÖZÕ  Z6²èŒueiœYË u] ÙiÍ“"ÒJåªÕgRÒLê5˜³jÌ„­iÃ-2×Vk\6QjÎ ZZé§J),éfuÓ™¬Tf³ •fš¥=E]tH Ð%W3CË6\±¦JmVã:̦U¥ÖY™Ñf¢¤Æ3µ¦I4µ‹#¦;LPå§2¨Ì és+V³-%Ц³§K]aeªÃ+I)™ Yu¤Õ´åi™hë69tÖ"¬´ÁMVÓ3MUn¹«) tÖ¶–¸Ö¥Räe:Å5TØ‹«IAZer´„ÕšÆVšÆ¦j±:Y„*‰¥ˆ T[¢š*Kib™”5lÔs;W[X®"×g,šÎFSkVŒÅÌSFŽ…+1Ô;J­’a4ëfÕ¦™dl\É,”ÔšjÕ©Íš†s.Øå\+ZHL¢‹­WM"fÖ™¸ÒÖµé 4²™.–Yª¹jâjµ eÒêáÓ0,‰c”®‚Ó…9œXkUf¬ šUN…mN•¬!% ]eWYcU™Í‚⋦µ˜µšhÕQJHÕ¢Åqq5Ö":ÊãkK²É¥e”µ§Klj„çUª­)„iŒ­1¸¦·&ζ²,²ËЉŒsTÒ뉮 Œ\­Ž«k¦¹ÐäMušê•™2jêŽYŠY¢YVpÊ+%ZŽ‘kM2mig13²Ó¤ÐͶZÊs6VšXF)!’(f&µFÖJëKgRÊËP3*Û5‹‰ÊkR¬¥uVX´i3MluŠÖÒ³Y6ªÁj›9\ã–M9Uª)«\×NU×4 ciÕrŒ\Õ§ILc&Íl¦´ÈÀ…Ñ4#ÓQ(ñsSHÑ#Y©›%«j¥ºÁ!“6*³•.µ«WZÒÙ¬–º¨qV£V5uU”ÔN´êÔÍdÓVN³”#9ZµŠÎ´Ô-jÒ''˜Íi™¬U-N ÅZ•dκë+T¥Â̵ÓT® ™eÙk.šÆf5c³1Meu]KF¬fåYQgCJ ÒÕuqu‰&²©#[4¬mh•Ëa]]D˜È¥gYYˆf®k'Yt]hÕ†s®j°ÎÕªä¦ÓUg)–Ò­-Z-ÕÌf‰ÚÊÒh“ªÖgNk–1ÒÈÕËZnšæ«¥ŽsªÑ Z®BêÉ¡#,ët+­ƒ•ØÈZm7W.dÌÓ5²jjL–@Õ£2¢“T¦mV³ZŠ*¶’³‰Éš²Lãµ ›Œ™(ÅÖT5ÅvŠÖ-]•\­4‹¦Z‡*²©¥j³P•ZÄ–bµTºÚV®.4Ë«¬¦˜ë-AkT—YŒêÈDãZåÒUqM«®±NSµiÔÌ⌮'@VÆVƬâëV ª»*²Õ´âέuk•ŒZеq¬¹T 0e‹Y\ÖK5k¬VtÌæ­2«5¢µ-ZÓ¬ÔÔUvµiÔ%®«Ž—hµÒ3h¤Õªè6º4¹eV’jÃUEªk£‹¨‹š¥+ukU™ÊƒU¤S†µe¥b–34ÌÕUÌÇN3N4¦dÉL”š­³V*3« K”Í l§[4êÍ[‘Êå“k–•f²š¬›;.ºÂÆc]¥º*´ë‰F²Ð¸Yt-& [DÙ’g6¨rÎ¥s5tc¡™‘UœÈ®Ö¶HjTÊgkš­T¤Êèm'RÍ51¦ÕjÖÖg6³³ 4¶:ÚŠ¹bÌâe§[¦š±V­r:ª]*]¦«5ŠL˪«6i¤ÉÍZ«YœU2Å1rÒÖ²©9*´&l#W9p¸´J¶1ޱ±Æ\ÔÙ´¡iÍYÍFÚjÚYc³.%j¢W*­Z%›au Éj¬åZºZsl‘aܵթ•# Ì4ê\gM¦w:¥fq‚59–*Òâ0ÌÆ²E³ššêí‚çZÇ,µÕ*Õt™Õ1][&©W5×fiV±a¤Ó…]*¹˜ëskV¨Ú‰V­œ¸°ŒÒÖS+ÓU”έ©iÚtÌTÌ«2m4«gVTìŬtƲmi¥ÓµFµeq«š´êiu(¤R¶±LÍ'+h³²é,í¬©×2:´¦jh±‘­”ê•2µ®Pê‹)[YuRN gMKG[ŒÑLÈËYÒÍ,Ã:'Ij2»]2s›$VhVj¥4œÎ“®£3­Ì¶²ÌSlÍ-4•Õ9*Œ²¹bÚê:U­bbÜå¬Õ4¦µ.ÐtÊM%Í6¥b郬¥fZ]£®¶­h—\–lhtlÐÒÙÒR¬¤²ŽÑf]—-fÙSµ–1£6mR°,æ³Jêêk“&.:²¬sW(éVµhÇHÚÎY’qZ«K9R&W-%Ô)ÌRµKƒSWB-5®´êå'LÖefM43YYŽÖ–l4ìU:­œŒm,êk…4J9˜­¬áº*mašÉu¬U°kN»YÊ1UÔC3s3EQ<2¹4«5¬¤ÓTÙl,[(ÅN£T©3†Y¢Ö,´Æ¬s•‹´ª†ÂÒŠ¹«ŠU±•$ÒÔLÅpÅHA\MÏPÖk­$4ÜkU ޹Öv˜S©X´™ÍK5«k«U®iÖ®]b%pµ­deP7Z:Z®•ZJKZ#U›UªÌ«K&‡a]-gZÓÖªÖÅ­UmL¨ìf ™¹ŒÅfUp¬-­[¤]8Q ÒCÈ𤔑LU ³†ÚnšÎ–³-Š8ÇL+–,Ó]rh¶¸è¥¬Z×Ü Ç# \¬hjÔ;V;ªæ×.šícF Ö“k«•­g# ÑVÖÕ±«»@4Ù[CY±Ó¡ª&¨“Œ‹3¢TÇVu­RåZƵšŠ+‚±.¬êÑrËWkTCMud™jZȪ™™ŽZÕšU3(å«.™Ã†¤¸ÖjZµ+F&¥•Õ²æÖ\Y©ZÕk9TÚµf¹Úmf­iË…T'-UsÔÌu[6RÍjMp«³šÓ,6´“k2¹«„J‚ɤL¦±D¨µWHâZ–4êY™Úºäì&k]¬åNµ1¹®¶ÇZY+EnjªÊÇX¥šÌÝU…©Xè6¥¬Ùijªf5 ¡jë\×HU–µfÖ+£U¹0šéNeÙšÑÖ¥­Z«ìf%U[ 2ë#NĬ\f5UuZÚË[#u1²²©”Í:µ\štZÐ]mJj¹¬ècªÉ¬Ö­]­˜tÔNc¦Õ™”ªÉ†Ž²±Êë:ä1.šfÓRgk]a,«WFÁ$ˆ©7# 1Es sUCR¼PB) P‘uUÑØÑ¤ªÒUrçV(Ù-1ÁÒÖ[3²U.˜ÌpY´ÀKjÖ•ud,ÅT¨k;©5†ºƒ]k qYg%J鎫¦Š™KGéœË,¨ÓI*¨­RÛUÌŠêK®,.j‰¦¶kJY™µtt5&³(%šliÕªÖJèÍbNWYØÇ.XÚ¨.©®°Ó­kW4á¨jZÓ'hfuÚFu¹YWRŒÎW XÓœ“bRe[ZV©ÄÖÒí15.gplé¦É‹ºËY)YˆiL]K-#jÌÁ޹&¹«BtÉÝR±+-šI­3Jêí,gÛ#©³*å2Õ,Yr¹µºv¸TÁuÓ£:ÍQÆZé¢Ö«U…­NZlÝRm8šÍgh\ª3TY³&–V» js•i•º*-’«[.+[¦3¦²4bÖ&©ŒEivµ­u2ÖJ&ÆaZ*YY fZ»]›2ΛЏU˜çjµU£(fÅΗK‹A­+k’«A³dÐÔjæ›§Qv6Ó§j®;Pi«ŒÎK¡ DjŠÓ Ñ­,† â(­V›«[5tMi[Yɺã…b¡“j­X3E– Îi5©Ú“jígN\µÓ;*4¸ÅkU1ŽZìªËLËjq­u­0Åm«RfšºNv’•ÌÓRËJC¦«—Z‹ÕŒ¶,q“™fá-š]9LÖ³2Ò-kU«L®±hª²4CW9wU²Uv³°u«r™‘¬&†UmTÆ™V¶lÁ–Rd¹Ó´WMIjØuNÓ³Rk2U§5l†Ž:«+Je¦†¥ÓR±¦›³j±ªæl´–Òfj„.ÐífÔ\tijLmV¡Ye­fM¬Ó³Ya.ºë5b™WW\²ä–»85̳u ™SjÕ\r¬ÚÉaISŽÌ²£Nic2e²£5ÚÍÓ¬U«4ëNÓŽ±˜&×UZË'3;‹-]PÐÎÖ˜Ú3§BUÖ)LÙ˜f«+ k4fVN«¸©k™Ëœ»ÓŠÒujÆR«.g8+RZ†˜ÄÝQZ¬Ãeb`«¸ÛYȦªU®ÒÒ•]¬é,:²æjÓXŒ+–¹˜Ö®æ¬Yªµ”£4Ù,æMœré¥Å¤´5•eqªÊÇZU*c¨èf‡fj¡ÓtÅš²të®ba&P¸¸5…(`º°sZëe¢ZºÖni«¬Ö¸Ôj'65Õg\°VXºXë2‹*ÓcUlB,ÖdÖ ‹•j,µ«,&ghÄë:®º³irέGkG*YÕ%Ó5É…ZêÇi¤Ê5­‰ZÌZRsÃ]Y—ætjÒÍŒŒÔEY™5•j¥E–­jœf³¬³Re5е¥™j5­1•Â]tçM`ubkY¬4Zç\Œ6k-35µ­­pÒ‹¢¨º.º!äDb– F‰XëL%¥Ì¬³+ªÍ%Úi5ªh¬²²aÙ©aXjPØÊÓ¢ÐÌÇV»4ÝlÆç5ÂìæµÒYus‰8åYfº×.t°;˜5™£L¢sSZ6Д֓L­Ó*dÔ•e—\ÑVBWsÇvÂ0€†Ê€P-ˆ€$ (@ £*ˆ @(¡"¤"€HJ²¨$ {ø‚".! ÄD*+J4‚‚§µíû~3ÜÛèÿ«îs=ÏO+ÊòÝòæó™¹þ^{Íôï‘çß?OUUE=bQAAõ”DhPÿµþ¿æðOá 2üß陼w¦ K0÷ïàŒ6Þðƒø??>~?C1«$úÙÙØ*ÈÉj’d†yÿ—öV(Çìr»k£ÿ§ŸÛleDe&•t dÄÖ™R K „náˆÉQHQ©ÐTs i"%% `ìÁ–%ˆØšÚÄN\³ñø'þ¿ÏÃ~Ö[K£.Ql.Åßæzï~Y`wï¿oö?wóß½÷éÅ~¾ðß¼wß{ÜkA+ª`Ù¾)\+ª¸t ‹ävƒZp¦¨…F†­A{?¤F»EcûR!»÷ojòÈ1–×,‘ˆÄaI°?úªƒìN Áp|«òmym†TED#mC•T¹"Á‚LzZ—æuŒhóûpÒ6„ôk©Dí‚uV°û’$¦  <*"Š•jªñºyn| W;k‰LŠ ì…# JBšY˜Z…(ÒºeÕ! ©“­!jH'P˜¢|ŸÌÁ¡ØŽøoTÓ˜^Ÿ]:tý©¨Š³@Zª%},1hD*T4  œ*ÊJ© „ƒC“.éØ"R\“Ã,<ôgO†EÁðoƒý ×Èð @“$…<¢©cVB¤—±©!:ª™’ƒ ¤ VBoÜnRsûÖ 4ýŸÍ¢ô\ç£Ñ›¨ªz ]ðueÂóañ ê€Á•Oà˜“N‰•áÜò¨†;B™©É©ü½¤Gc¤K”#D ¡iÂöm'dúŽÏä—SS_M›k¦Å V/qìòÔô¦‘P˜ÑLÐWdFB‚Œ"0*”j&ÕMÅ´¸ê©AUË£Ùgìz¬r–/#ü- ࣹ÷à¯yùµÛ8¾ÍË9§(ü7c`¢M`Œ˜ò¨KF¥¸NwkFSY&ÄžÚDžXð_?\û™*mˆ!A}"«¦”€u¸æJÉภ…ƒ^Ã6±’àâ”ØŽì×á_(µ/Odüny%ú¸ûë€íÒã<Îwìû¾°Z-‹¤ÜsÁ;ôÎyÁò¶êgµ¬»9Ó"xºŽTÏWœÂd7)„kÚØ´ï8½óûõž6i¤Ù©›éʲªù~ªoZz¢‹GåÐänHÁ2Þƒ³ãëfµœÆœÞ£ÛŠë[…½npÞt‡áFﵕy2Å”@Y]umÙÐ1“@NCbeNÌ—¡ÃUéí!#¿/Ïßž[Ž$·Â<zªiÏÉÄbú´&}èp"5~ ‹óJPAéíŸòüºêä’AæËD,ºèÄêÆ\L×D&\IÍD ?Y_OǼ9wÏ…|r¡ß“Á±GgLUÓ6©:‚x{ÌâªÒ±"¹ŒòŒžÌ£Ìþç#ú÷ÃWf3Â)Ébê‹ÊÜß‚Åc0øVxUcãåRl|¦3 KÇÞÑSÝ`c_-ýzý'fy-•QütŠ©¦Ìçh†àû04!“P@€œ€m Q¥H„ð+<ùuÕN<Ùj{Åpcn«˜ç3záßAx<8ãõ-FÔŠš?ë žNaè–(‘á2Ö™Ê:ÜÚêó]G:s¡±Nßw%αË"ü™{N¦UEO“§!'îzbŸ\ ‡ïÛ#û|¡e#Ëc§2culƒMeïr‰ó²fî]ܳ°Ò8©f{+„=Û8#X†jÜëÂåÈã—ÚE(±´øGWȵðS t’*àAw_'€ã\gÕÅxˆåeît·i´wvCýíÆX»Ï+£ŸÔPxlû5ÇŒwÄî·ã[pPþË|dÝ`UÚ ƒlL²³ÅÒÄ!‹1TLé,‘N÷ËåQŠÏçÖV4VY!‡jÌL£«2»‘§¢ï Æ»¥™Dþ§ÞͤnœëŽxãX•)T@¼‚Ô˜Ò3H@È9©h¹fÉœTìç)V ¥²ñÚ2tä~CÓ{áþÊçiR+#ËKêšsH¢4Äq¾­¥xi€¤läD5Z×ð4~£{GTI²ñu‹o–jr8¼A[#kî!+ÀHñâñYBYùßKÞ9ç G„äéÏå¦#ÂÅ`ÁŸÂ¯Žž&L‚Í gxÑ7\eDë]h©ˆ±¯8<á´ú|›fHù½*Â)>¸4›YäD¾÷kŠ,k¿‚ÌÉ4†°ÅýêÁsé­ƒ~ ©½Š(påMÚdrn¡‰…Í Žs¬[M…Sç“hFÉM£Cmú]¬þ“m\°, ½gWŒÚÅ=ž­íÏ¡8UÂþ?t®EâU¡˜µ’é]y¨gµâçâ.{ê ÆÎCX¶ÂëÛ|c ¡<³.ûç„Æ»–ÙDT8÷íÚ±Úr¯¢®´KU{Dߥ³¤IoÌËîï«iW2IH•Tît!ˆ µŽB zð·c¤!m'Wؘ“$†=V¡fÊmÇÉ@èÏŒ«R[{siZHŠ5B¤þ&ýÜÙ±Íç 8ÓŒV•5‰l´Û eg(l÷ø_¸`T´q’àX³°Ü;aðzí"š “–q— ³€žî_kD&÷šø&Å8s9iŒ`áŒö MPõ@ñàðl²¥o#±æq‰óWÀY²ó }v\¥ºyÄìËâÍ¡ËC`Íîxô|/½^ÙðF³³Ê,«JÎè¯+äUoZçÍŠòÛͼ®ûÖCq=‘ý$\+áT'ˆ™Þ±!t°¸Á)÷|b£ƒ©Ë8·ãmÉŸVÖ*Ì E„EYÁ¦ïò¥F à0ù“±Ž4»o9:—vâŽiÅò~¸ã¸U.‰$™dº|~:·zŒÕC7d­æý#žìBlèõyó»W{ÊtM†%­…¤ÃD@R2·&læN¶~ºw¼ºN®‘ríé´n®”'¸O¶üÔû<…&×£IŽ062t³ÍŠÔbq \1w²…h@kúrïÇ®¢õŽY–v’ÐŽ«!ŒÎÅôPŒ¶Uê£FÖb4¿$r¼û¤©¼[™bymW\“¦<77oÔû9#à![¦ûAré€üý4]?DúºiHl3kMm7¶ÍДL'‰µâ.ï ýmhÊó®ez<™“à…Ñ´ ÂpÁ:­h’[,¢ »UJ£©ð®åÍb1¾¼ž;èå-öÜoáýEÁòÓ©)À5â×ËŠñЄ£–õïG§¼šô8ã Þ­ÛPØKòëì’d,ŠÔï6œß‡¾óœõC–h"~N;¦'*³‹4nG *g”ÅžV¾t$žßJQìÙ/FŽõë­- ±Œ¬äÜîöO0yKW~MÎBg[lJ(màb sµºllð¹}íB³«¼†´‹"„ÐÉÊSÚ¤y5¶«p‚ͰƒåL 7J! ²žÕ)¢|8*cËàüü:Ǭ~yçZ¾¼ï)LC|W?èÈd~ݯú+8T%ÏÓÁÄògcN6„<§zó=Ò"+˜²žVËb…Á¾sþºeU”M8ôéGòÔaòQø*6úV÷‰uîÂ]âøU¿Èï¯ÎcÞh¯ð4Õ3âž_°YxŒ§·êv6zn­ìH05×\Èpv»Aàÿ) «l®6$ÝÅÁÿ J¯¯~¾U—¦Ãó‡HŸŸÃ|øø¹´ )ü°Púå<Ü^Ñ”{œ³Ýd¯^®wY‹¿ß²ìÈ´c&þéÛ±‘¿Õö¾(Œô,¬í ‡.êëÊaã(ÆÿÃÂcø eñL§¯ðË.÷ãÚâòüx@óÙåE6P4O(dÀ51¬ ScìfÐT/womVº,ÚÃÁ­!$JSœÕ˜1öVm3Y‹‹ÅÝ_1£þ‰¬ð›Îƒî 10ýx.FÔ|§¼Syí”.HÏï&ܼAŸ®]Cžð}8<Dw2Tj‹µIѨ5½§‡š0bé6ƒM±kOÅø'Î'|e—kqæ(·Í+(9ìvÿØ >³{·}Îï,PÇ;›xκŠ~¢xõ„‚Û›öL€É‰ƒ6IŒáÐ+ƒ71 ¨Xl%;:»qùeË.ZÅa-”E²ÇpôñÏ//Ñú>ži_µ÷? ÷ŒÌpÝÒ ß÷êÞíö{vQS6ª¢šk…ýøÛá+aM£möRGÞÂ92w¶1 ~nÄï§{æd¤.þç],úS€¬âÐa"0œ¤Ú9¿oRx}>ØÂ <ÙjœyS‹¬\< $3FLòð¹<ãcçœÍ!Dæë1ˆÛjðqÇ›õÁ×-ý<ŸIóîù z‡VR$ñ€¤õe#­<ÁÕ?U¤eÚ3æe·nÕä6«—^ŠðU–ºaŸkÛ ‡g½çV$®1)¥$¢I(xDÞ½âÙ˸|XÂ"<ƒóöžã‚-¯B“ma’¡<ß}íŽPÙÞ0ˆßÓGÿ4À½ñ{êýö[H8®±ç)ô|ªöeOžÎäø×j!q\²lJeûCÕã]&yälHµ Ë2²³"„ˆò>MÃÙQI7ÞÞÑß«õ}{OZÈ>.‘ ~‹ð’& EóXk; ÖK"$¾pá „ooxÎûÔÏnwÛ龄:ž1Èû!YšHumló‰sÓWª!ò¥ý4 >MBž$J@è‚!”X‡äõ±[u:~[ìÊð"Æ 'Òûf±>Zæ¦4›¸–T" |;áw0÷ÇŽ¥TޤV¬­¶Ja1 jü¸í&%¢INñS’L²™ö¡³ÖÓ×He8œ±`EoÃBï2{9ž²1áÌž8íjUóµ{“2žw­íëèmT~ä÷†´aä‘Û[fEÕÅ\~|ùT†I%KÑüÑ¡/4™ÕÒ,ðŸË «çʨa3d¦¯\ÖëÙJT ÓŠÏÑ5ßM6 |n0’›8û×—ž<±4甾†é&šßÁ¿wÓO¾ùIãˆGëÒÔ.hq@ÚØ@;é))ЂÅó5Oã÷×äÏ|¤ÜJmQŒy½«DÉëÖÖÆÑ(®BÌ'äòèZ(¼“ž¾®ïZ_y LZ„ÚÒ2]“¢U(Rò¯í"ö¤yQÝÌE©MäÙ’DX‚z”–I™>O2P&YõhBRw¡Ž3Òõû¦ß×ý[ñ=oQRN@Ë??-;8HÁ |¶„8?^²_CË~Þx¡ëh1P§Õìv€ƒ4df[R„Óãº_ÍBœ¯Æ=OEëÄ>íóÛ 5ITgÇ ú[ß+hí…s]-óÓ6² Ê\‰“íÛ ëÜ8¬Zßœ¾U3Û3ë̪”êu»Aay6&R¼=ë̪BK¬Æ±c¯|ÌÄT¨w|­-¶päÒ¸™È+ù”ò/’M¥éUã<У(Êzê sy¬ÂuY1I–Ö /·çÇ|ùbI³:ƒ¯  f:’(”Éä[Cž¾M•…•E&'˜ã[b9"0èÕìb7­myEÆLåOEÊ+ë©™HŽo]ñšN­)4èðä¼s=í"M­ò•c™‰)á§¿9ìÉ}dùéÈBŽKÅ'Qv¯3äg[}²<¦o®èA>qÁ „99~gMCâC9rˆ-BWH™ù”3Ðõ09š½˜Z’ªKe•¯QcžÖžg¬@>ùó©*‚ˆpq*‘'R-8Ÿ}Þ1¥¢ÄBQ;©8‡p ¬J5zqöï{ܬ‘¯!CÄRéùŒ<Ô½ùé æ&)ÔæZÕ”!;ϳƒIN$ßK,X`¿X’ýóUpœ‰%%,;‚6ýئö³åñ¼©Ê£7÷H]®üôò=’B¯´ë‰&®^œ„“#®ãk(DBÅ¡˜Ð í}£ÄåÖåÔò*÷g®x†¬6í‚I–›®º-¶ETfsËicKQ~Vóƒ^Èà ;“©)óÕ¬´L=ÊJR¨#Âþaé¢ö8*ðzye_¥…€DË'„ïéñq¢+Ö ÉeÚ¾ÝÊú…V9‰T)©¿g©UïY]‹Èf~ŠOeñëâ19˜‰:”¦Ûxž&b>ôBÙr°{ˆBv£óCsÁ$>‰Ùú/žïÚÏ Õâ6 ‰m½¡æõªZ}ºÕÐÓHf{Tô=ŨÃ7þ×ÖsWʇë6f“Ë&:]5Ä«%¬”¤@€êÀ¤p<V žýdrÀ;ÀýȩªxdN£A×™¼Ï:Yy£¼’¸VzIGóœ¡ÖžøÞ!{+‰_7ߪÏÂÓ‰_̘Úۤƥª?Œ{®æ óäìJŸÊ\ô†®åÇ›uÓ,+Ñðô°€áž#çÆã×}ÙÏSÈ÷ ùîþbß«­œ¨ÕIòFCø™'§ç½S’jåTz©«‘‡h­¶Œ”XÝr±·G~YŽ/x§p{D/Á—Å”%"uêõ¤õŸ•¤×„:R2ßÚàÚÞÌ„ŽÅ†‹ŠUPiAx™ljµIŸv½>[ql!çñ’€TÅê ²–À+ËÒ½2Hçmg»1ž@/«¯·Od`ÑàÔ=v±ê«ä³ùÈz¿MHÝ™ãh'³Ò«Ý~ƒ 'Ÿc:zUyÈÙ“»RAm/8ƒd3×½·«\H°–Œ%¥-vŠEYžäõĘoA «VŒÆ+‹]bé]¬’³veÈ,ÏÖÏ£¨i› Ið¤>Bygµ:Åâù7Ì+ùù ¨¿™ïžØº_ÔÎ{m”Ô ,©ufrù¾Oh<æÏ»¥I9í)“=¦Ä{c‘DZ•.M¥ÈI+P®vEyZ…>£Œñ^ÆvK»-R6 ºÏÌøSÉ.¶&§Aù%ûÛ7=Îz•ÏT{vtý(Y›/ÃLþ†Í‡©Ä ETN¢ìá ©$É“MÙ®Ñ#¤¡èü›ÄI™’ìô©ž7=Ø|Ú:¦ÎAòB§‘–c¦8™Ž’Ax¶ùïO(¨(#Ó"ôõú”ÂÁ@f«bU 8­üqûd% Mç§ç©ì¬‡Öš…%:ëi:A5DJ40¢:½D_ÞŸx'‚\ÆLD‡ÆLN¯›ÙAÒ”n6¤GŒÂY>‹¼ÅwIzÏõB_S$Þ¿oib!é{óΖ_(pR>ÝE‰>â²zï½Éß=žKeÒQE4™Ù/ÈÉHH“|dÆ‘‹—ŠGˆ‘'b˜LÏB̼þoÚóóÙe¾z5Ê/% ír&ˆh|­À¸uŒ£Ð–Ñ0)Ýafq×2ødÙ~¼˜ÂR|¯Ó±ßX¢M3¨XiÖTt–ŸÞǺ\*H#õvúã$á£|ϧ®I>ÛròSlKž”–'‡khÏ==°LJ¨•Â]H [G)“í°×2¼ë2BùŽ´Å|ß3åbåë¬ÆVa•^áÐexL¤,í±m“4êëlm.×N$VSºÕ#?ŸŽñ $8ï—ÿ_éÿ _¿š̤ŸÄÉç¤Ïž^ ÖÄ+ÓÓêU0<(>¸”ÖTÉP¦{&Ör"¦Q¨þÃ8DOW©OÕ·¬lF6¦'SÚ>&JK…±x‹•–ìÌt â$€L?‰}¯J½rØ+l@4ýFê»—ºxš‚GÖQì5) =-©ÉïJˆ(/z¢qñ‰Õq)'†©vN!°ŒEdézçûWSÞMFÒ£Ù&Cøôj÷µ£ÌÈ‹ü¹ªH¬M¯¼øh}b3>ñÙžÈ,òfó½{ ª½W""C!ßSóャVÚoÐ_7"ø¿m>ç! ?h3=ÏTæP\h$0ívM®DI‡&r’ª4/r“Lú=®“–AxóUUCÃ|å½zͳ»8pç°òŸz5QU"J+V²výö2L+ÓQç="÷:Êôñ)(˜îÖJ´€“ë´Õõz'—6¹üÚ闾Рª¡%ü¶‡ÅÒ³Ý"ÌUób†RT ^¢îæ‰ï-Û(¤Ú:s=  UžÎg¾I^Èû\JuD~º÷¶y’¹é±·gh6Ý"Aƒêû1"{Zœ=}íÞ܉äóÊxòv"à‡šüñ8‘^«—¤•åŸÚ)Ü©æÝe¥²¬Šôij9zµ3A'Ûíó÷‹‡FW±P©Èß ” Y›zg‡=«ô¸p’EQ6Üe{$ж6! «ï{efZg¥ç•B¢‹ÉHÉž}ü†G ª OM¢'ÛÓ/|]ç‘>Zæµ;[+Þ¬¨*’ y6—§—hŒwÞ„O«‰ >¡‘éá>½é_Gx{åw£ÚÂ#!™k'NLÈœmgbèHD€“Ù–DÒú‰=·fD½¬H‰ ¡¨m‡]"™'LB LˆÌíÒyò*ä„’F^¤Ä¦¥¡”¢Hˆ¼yù7£¿&Ë{ŠK…U¬9œÇ@@§pÛÖXÓ¼cf‘6ÔŽƒLÉÓÆIžÏ½v®«ÖÆQ&Ûsúvѹ؃hw±µ30ˆÂÒD ãXÏ0c=R-¥.ÆCJLB<*¢º$t²½ûG*çö•s̳É}¶T¡n¡¥‡++[b±CÕ!ÛòøÜœÍlI*¡^–Å•ë _ܱÊ}óŽ2"Ö4'Z†ƒ™kÊ@è#3Ù3ØIå!&¦£{{ÞÒº $»lö¡hŠ»Ïp¢ú·îÝìúfmo$€Ü ³k e Ô¤¨ò/ |Ìbkm!ž;&ëÎeƒ¼O$ÐN–ÚŒ$–‘fJØ“+”Ä:}·"Y¬òÐS1}i¡^ÁìÞ ïZ§zi¦$º)âšåutý¸óóÞ|÷…I!˜R<Æi»˜FÏdù<™µ±^ŒóMB8a^Dä~ÛÇÞóf(“¶­êwu5´^”ä䪣ÁÁlx;›9g—„]3JòË ù2xCÏ"ZØó…çè‘wѶØW!%¥8QÓA ºéÌ¥×mxU¹Ïc“+ý[\MuÍûÍËÓÞ=XŒ9»=šÛ•K@¢½*„@Èòá&'c’OWÙˆ£—·×gÊ‹³\Ì+«’TÇš¼Ðû–‚‡í“¬šuu´Õ­¸Y«]|¼nŸN †G4ùóÔ8™ág”^>&{0Íߣí¡Œ5´óɱ;éêøâzõBÏCN¿h|+ʵ ò¯ëeØ;óÙãÉ2¼¡!?}dê*9@PÙ‰³âåÙ»Ý(á4b¤’ ¢ƒ®•$ëAœºžÎy¬žxYç“«ÙcU.beÇKµ“±ÜW¡+J²bÉüõž>{åI-röI´åtD^ff„Åž”ÕíN”ˆ[-ýÏ´4:oZS” f:\GQ¯Ë/fDVR’Q9Öû2Á ð–ᨘˬ¤¨5Whƒ#PŠªPµPëˆTꌆ‰p‘_n´Ä×Rmb ±)É2 Œ<Ä·[ø™Ç…‰:!ãmÁÐ%-”v¥˜)ûd–<wòÛ¤h3´ª}¥îÓ(GQ“ É9É0‹¶Õr„þ`¢½Éžh‰šP„! JS€€I¶ì;øÛÊŠ¼¥gkaT‘{±)4¼FÛ‡êTòO Ç–þ¸ñŸbÎÖb$œ•±«9âyåœ$@T﫵½Ÿ S LI=;B.nZ¥¶¦‰£‘Чœœ®}M£hõqäR›^˜s(ÂâÛÝsexâv­‡óÝŸŸ=Úì>{åô =$¢z÷¦Œô9ÈlÒO£°Š‚ ¼g³Ë1­Y ê÷³®ÄD!=¨ÎL¿Õ.<¢Ÿœ¿{d2M£ijÃʼ:Õ™^jÆÜ±¬ªÎÚ3‘{MûX„•’ï$‰¢½lÄ—IV¥*øC')¹Ÿh¢ôú»3“ͼ;…Pù±Ñ…J|ñ˜x0÷gŒ##tŸ=äÃ3™Épë§ŒRýöשu ؖ‘DºåÏ:bTL”ˬnÚ;í·*–s—‘„óöïa„®U!åéWÖÛu}»í¡I“êDê…:rh¹Iè®Gš—mÛE‹§¹%«bä2)"š´H—CÉÊÀQIxíha.–ö?tétaQaPùœ“ö–Mª|Ë‚¡¹‚O$håîr@ó¨åvÊ¢†™–šâH{=úöçÑ!<ÐÃtöxm´J+¢H¹µb8aÓÞ×w­*¬ðÀªq™²HuºÊ@ŽfÍ&Î vÖ¹…×ÙÇ@’$õPY¯&ºèÐ^b°")ß^Õ; ·£)ójr°­ÑD`æ@ëk{eª “[ó—\K= ¡ "ðŠ(“!^\BO%®!$’B›bÂOž3ÜòÅ ÛÔàÇ`Ó%”Žcu‰m²‹bàȼ&“Ͻéâ-¸È²Ð"ë1ÛgÇÛ²ñ÷¬%Gíh‚<ÆvØ!'] †µ…ádˉkyɤ|Ëž?=çyº§”?c8óØW+ÕIâ;7ŠÓ©E:’S•á·œËç¢o\VÙ{ ô´¤ÈN{m¤îžÍm™9г٠¹ŒöNûÑçÌñ’uwL©Â<¢ŒÜZ2/8`®®Š(æ¡*íŽ ªN´ØV •¦ªbklº’'[»&a<ñ&ÛñXŒÔI’GEBíNÓW(™‡šIÖxqkϼSýck¥ú1®éåîùœ„'äùÏrüý¢<Ë÷¡í”4ADJ¨5ÜÖw<(*i$¡呯–öæ‰ó* æàœö)67gê:zGÓë"ïã=¼cVa_¹ìñDjðL¸œEÕÚ– "±hŸ8ÃvE$Üõè“5tUUç¼I¦¹zë®QaSÌçkf D&Nó>meç* wÉŸ$žB^’&žß{>&B{Õ•à¶ý³¹õpjçFG2ð½ÒúÞŽ^ÕËäˆ]vJÇM‘#:ƒRõ¨Yæ&Ž–*`ò^§”çÞy/$‚Šá˜¹;&Üš©›kØëšLK^h–¥‘*×`þ=çÕÉP¥ R(ÐxzÌ€BxĤÁøìðc‘$IHtñ¢ö«êEË0 )8¤T ÈÄb&Y «øâS§é¶ Í4ŸêW²2Sœ„–Ÿ&à ½8LòòrgÆHæèU9{š£Û"ÈâEaî¨æ§–dRXØ3‰’!)"g—Fi‡¥®š.RJ‚s Ù¯nÏ®ð†ˆì„ô¬!õ«eõ¶ÄŠoAïR,¾¸“*¹)É»6ªãT¯öHF…^jg‹è¹ÈF‰^_Ï9EÑ µw“"æuvasg°.(Nhk‘f5wUÈýyÁåå¯ÚöÄaâ!Ô1ҬpMòâIâL¢NgL¯Ȉ‹Á"RދР’ѵ¶EÚâÖâoR<Ô«9 É–¸ü3䓚<äF{:Ù{&W¹Cu4ë´Ü~דÎUµÙ¢Ÿ gožÛ6‡V–Ï‹µ"t¤DvI ©‰â'mÑ3u"@“ |77«ŸWj‘%;Ù†zšNIJ×é¤ÈÃãÝ㮹S]?½Sɇ=f3Rñ%šH{vr.¶ìåÄM÷£Ãó"Ÿ>ÒëìI„_5Jða"è¢JHOÎsç¾CÏ+âä«ÑœTƒ=¬~{Â/¼J~­=$+âx—%™°1¤¯›N‚ã»<½Ë¨k—!*«›èèEãÊžW…G‰ 5Œ³ÞÝ”÷¬˜b:Qa»§”_TšŽûЈúäoN3¶…&£ezûmÙÃÊöŠ\ùÞ(¼ÛDho1’LœmHYèÕœ‚†Yë°É¨‘ÔçgG4ú0šï™)Æ7©9d‡È¹åÚ 3ªjI±ûw{‘{Ì0’¢ÃÓ(ž{(jå² Á:ÏÂ~¥|ǬŠ( «{Åâð»A‘xš65Hš~1ÌvmYVí:£â0Çx¡ |™GLKÍÊ<ªíjÏdSZÆŽ’Ôö’ä‡bzg>yªN&±¼e$ÏFMÞº]å†Å‘vÎßY9ijƪÆKlçˆõÕìvA|9:z«(›KªiËilHI^Åïj„DÝ,’›%\¢‹Ò.Õ¶Öùð`’ WƒV‚wù¥Îó9‡rŠ>¹òZ³ÊmvOÏNxòžZ¬–_gL̼–x:”¤µš´ËŽÇ;ÝC¦%;\ؘ»¶Ž"b’V1,€Ãæ=ï6+ :g3‡T>{ø>¤ÿ_ùÏŸÕû>ïŠîpç+õÿëûASñ(|pÍùrÿÌ6?üÿhPþÈ"»1ã@fPȃôÊvHVF6âws:Ÿã6¶þûÆ?í¹,°ÿ ¡“j„þ÷­GôËÓi ™ ô¸¸b@d!‡`²iؤÉ*UaÞe’*¬H²HJêÆ ¡e¦U SR¢5ýìÿð³<ÚŽËÂ}2H! Ø—+§ìýŠ ŽJLZ›œ*ªpÆÔ΢Œ)®žK÷ŸçÞæ¿sÿÍ\f¤`11¶0ά‡®pÎI`d‡Ä$)$Use¸(¥ú‚‹”‚>dNÁDJ"åÝœÑÆGõùRr:¸2'Y JE•E_&–¨å Ýj&éR5ÀNuå>nÇ;]Ê« Î4s*ëFˆæêÚ5À¯š—7ÚÆUÉäà 0NÕͨ Ñ¿—NõT|mPË$z~ 2A° ˜Úç©v€q)Ë®¶˜™’¬óü¼ð™ŠÇ*˜3Ðò¯ˆ•-ÔkPÆø;Ì!!pÌnÖ îIßÒR3mƒSŒ¢Ã7@Af0vîN7²}ãú:T€øYõÃbg ÉÉ û„ äŒCöäÑ)Wƒ'5å 6“©¾×ĵS/úÆ^ÁãX'ÄWwu2Ù ¦øŽýÄŸJ Šçº·aA³HO´†–nŒW®½/:W-ë6nR¥PÙÖõÕUøW¥|âà¼5ßî¬s?Á0ÔH'Ñ“1wNQÔé'Ä0èAö’S$Lï¹$2—‡OS(ÆÞIÇá¤3,ªiá|+9…f& Ë$ªÒq2‘ÔÉÛmøEÚÁÓbb£Ȯԯ¢½ÙÎ 8½dz}`r˜È¼49CÖ—N, ô0æ‚Ë€¼¢(i,k)yN_ *¤É€{kÉ_¹eš[Š}íû" _Ö雃•û3fúàë-h†¢A#!·TR2•êO.É$#ê‰i[(…ç¿V›«³”4¤¿~‡5/X¥³dw“'€:žÒèûºÄ“¡KEè%s£â ­ÊBذhx5)+?o Q~òµñ€ŒL4C(¼á™XöâzŠŽA6ÛVéòšËÅC> ³ÓEpa„M›™mu|;¾È5 òµ°k‹Û_Íøûe×X/WeÓ½(ø;#Uë»eã6Ë+@@M(21-©CT:³LQÖ¨u2¸õóà/ãëZùkàŒØ‚f -¾h•î P˜@ÊX­†åí0¹zé ýk[6|:X¨ÊŒe’ŒLƒ±À&6ŠúŒž¼9ƹØñšéð,wv>ðˆ±ÉLi»‡B«†ËHˆH·_ ™iAX¿&þh8åÔ^ù†çkñ•̧–U®¸a*±JS!ÅSq3ƒžÐžÙò‘•ËàÖ[H†gò¸TXÏKz‚Þÿ± º¦Õ¥óEÆAáйâ: œš¦Fî^5“ÔeVb]‚Ü¡³{‘ÛUÛʊߘ³™Aƒ„£ˆ6KèÃ0Ä™ˆ®…›r¹’¤{4xü²ûŽì¬aÄžv›¡z;~îUçái3¢2I™H6üp«å7æx;É ìc ÊŽ]à T8‰T|>Hƒì=˜4yºVœUñi4E†nE›œq[b’E¼ÂÜ¡.cÉ¡¡N_òÃÀ‡„CÚkL¦ r%—Nuü¼¯Z|Ò*“èkéÒÛpŒ°J¦x2cÙÔŸŠßx=»Jx¼ó—39Þ?€¸éå ©ëæŠC6V.tÝà—O‰™cQí ÂpHå35ñ¹‡ *Æd]bÇVA ¾Ãxnؼ6•Š`ø„ÜÁc@5Ф–ì “ ÕJe×R‘άZV À&Ã/¯ 9„˜çA=@ü'ÁÝü)>4@Òþ C.–\^Ù~-ð&è —=_â#Šx#O ¡k»Ê¡âxáì V´dvyÚˆHˆÏÚYá1–ÇÁÜáVhË›B¯ËÎuG«ë)+pL6®åG9t¢Ò©UüÖøÞ.íÅ8/™‚´‹áFèÒtáðÔÓ6ô×ñ©Bv6P¨šÛ®r¿f*Q—X¬ê{^ŒÔ/̳±O)ßiïzâì회ڵ¶rH Ê“\ÆÑÕ÷°ím¬²sÑÊè›ñ9׊¶Ì“›({Ãz²àXŒA…;I䮣e IÔœÜÔYïKße8Ûjg…F&ÔÆ[cߌ¯‚ÚYöcŠñ>‰èÇym-vÕäC.[šÃM‚ᵆs2n&á‰Õ‡¦Î.€ÞÈô´ž‚ uÍ•ŠN‘‚›8cOì_2¡àð‘WËl¬æ>ÑsðÙ )¶TYæºã•¾ý†Ò9MEæø¾eÅk9®›S·Ò: ¥>c‰×èñÕ?LìÆÜri‚O ç.fYÄËÓUŸ8eÍé&úÚ÷Sá4«æzÍëÞbÅo•íÊ«Èå?`pNö?ÃYá›Ï5ÒCEhƒßKlÈ9 Ãokb4†¬ªþ¨¡ ¶ŽŠ!!¾œÇå%x±9ÎÓ·‚R€.4un¸&‹ˆíäìmù0ÊÏÁ<#IÚ˜mô†¿‹èfÑ+çΦ#8À§¥˜¶=ÖÁ`¶fQdº¶ÎµâŒfUY!NuGp‘Ž~“;~-E™æ—«Ð×f×_;çS“8±‚Õ]»oË–“Äî7…"æa^= $ùn.èB¶ .c7VÁ1‘1¡WÁí+NKp¾ÊRyÞØµg•`¦a2±˜°Gö»IçL°âË.'ïù«EIfó©E , 3XTmXñÓ¸‡¾R4ÄÓñ */QÝq°…ÆÑÉž=6é·¾.€,Hƒ#£&ÌPi XŸ)J~ìŽî«úP‹1Æ.–V±!'r`´®âH,³egS×ÈS-«\f³‡Kpä8ÆÈ•;yj²j”[A?u|¹=zžKñFªˆ\ñhΩþHü ¦’~$Kñ „ 7ÕgvÞp:™‘ɵTVZøT ÷®ÿ¦àÌüØ'ݤo#IàŽ£ÏrßÓFul6ÐY?V¦lnyý2q”}›©Ï¢àí¦´ìØs¯Ow::cÅBcŽš”^ÁÓu»zs ÿ ´c¬K;Yª*aT3ñ7·Ž1tf³rÛŽ7u\èê†EyÉ‹ÙMrg?O|¼'o>ÎÕÐnu^öAˆYo )ι/]ý1¶ FgRF³ “½P©HÖsR•’/$e#»%Wò䘄3GÁ7´ºzÙ³¼zÎX¤æ®è̲6«ÞÓ'm7«£ËÙL<{orX [ï†×c‚ñ¢Á-^úåxõ?)QY®6÷ 7{Å^ü¹#®¨D@vrÔ^{ÞœÊûe!_–¯kAA®„óX*9:h/‡zcG(Îså𷘃(<Çtpzãå(½çó# 襽å•×0„Üûu×-ŽñDS["a’jüӶѵZ×(JNÌ[%gŠÇL>®MPûœ;¤ßÝ]²žo»ŠÖêXèö£Üç<‚‰æaqG:Úæ`ŽtÁVÒ0Œ1A4ÆøµÔÅ7Hÿ~ñæ_˜Ëð»N¢¾ºj‡ôhþYˆtOF• =0 y= ¿>ex¤ɇ¨Þ0{G2 Yh}UÙàPp|/ {ï|ǧ¦/pcø§½¡ S®!&Mˆ›qc~Y#ÓÞ-FP ÍãÝíXN¬©WX˜2=en澞\ã1ŽH0ÿSA²îi°Cˆñ6¨&Þ8H«!Ìá6°”ND§gÖû¨ý>œ'Ýíg°Ü7‡öåWÔç7FG'áüöjÈlø•·Y¬~ŸG9db¤ S«ñ>(}ó~*uÃô'âשƖ·V¦ðfo%ð¤êNt½MÇ£Úr{ è׿,1€Ê,ΕfŒ€»äh,YãX¼²–ÜÐu…´=á¿#“¤H,ëÀªL0O õäƒxÚ•ôîE>z¨^p3’<| §‰Ê3pÅñb“…Èt…{b%EÞþ­ ;úFÎ$ôßøì¶›Z.¼¡›¶êrReÚÒ¦F4³{Ýúp,|ùs-»Ío>«ß,M±…åuðÇÎp“"±³*[{Vñe¥+t$Õ·IÙ‘sÊ!òž3ÃY Î…3TÎ&†ÇíÏÒó>uÍpݨM £¸Uó 5F¸Ýw–Ó4–²³ú»ž.”°”›¢#Øæ)Ùz‚æôèÆ.&6l:¯³´©læ Û&Ÿpeén×–$rxîuœ':Ÿx]Ê} +y>dë·,ªÒS›DèVEOy¥ ¢îÉÖ):2IM80í0ë¢vç@êÆˆÞÖïÔï5li5¨n12ˆË 16ªíäÖn¬µNÌÈÅe0ÿ$°ôÜ0ú¬j6LWaéóP‘Ö¡ÉГBÀÍ C æ–~.>dBÐb7‘ SLÍe1sbôr²skc„øNóÖ+†Ýpéã¦Ïín ïÎ_ ÿÄØ‚ã­òOfü±Ïò@ýŸÃL‰ƒ’bùŽÅàdÆ?¢µ/'J »â°_hIÌÉÁ«IJ<<Ò^{ÉRQ×w½˜erš¶7„í9aÕUÇ^_!Ù2W¾ÕÍÑjgu=°e·ºij®G.ÆpèÐÝß\Cw§ãž}¤ËuMp;Ü*ݰ¬×ƒsjMÅ[~pªP¦3í„ä…ˆCz>ÖSÏÖÔÀ銛2gÄÁµ—¶&Tu“¡W2ž–Í]¦fùr™JÂqLUóY:«sFIŽmæÍ}ù°åÊ;©êÈWtli¼arÞPí”™;–i,i’ö§n‹’ëÛψuŒ K»àwÝ3hG ÛüÕ¯–¤|›¡˜ü;–NÝ–_u­ï§$ŸÉ½É¿nÍÚݘ`gfüoMSå˱1­½«hùõ|CG~£mÉ+ïƒÇ [ëÓKwGž<—Û÷E÷ÞŸÕ^êþÍuß^¼a7 UY¨ódØ=Ζg¨d'n]5·¢°\$Õ¹¿K3ÍP3Ú6ß{F2s.Æ<„_óÏgÓ»ME;ãzlG° ¿«öïo bÖõÁEÝó/DÎáæ]áׯ颋/Ž~€ú†kŸQØçO»_ÓžŸEorÜGÊL?6Þ ¨£®må|Œá»oŒ5©ëeàx»>{èÛþܧ«ù¦Ô©óÕ½ØÏ c¹@ž¾¹£½ùnoþ|û×Ðyóí›ÒÅŒuÑ/·KbOeÛäiH2åg>Šôîép›mÊÌ™ú? ǨR*ØÈM—è¿„#ºöwÓ{ë¯JÔ¿}ø(ÝâÐ'†æì´êb7äk¼ªôÓÂ߉Ô0Ì#¶ó­y¯<•)¯ÎWæ>‡ðw·>E7ׇîé´/·ˆ5üNr{}«{9c;ó)Äìþënt•îVßlÓn{ºÄXç‹üüâø¶˜ýc˱}oÃ1ž=0lI:Ã~)E…xz_ÉÒžfcêµµ[>¾Û]­é›Kç¿:Ÿgˆ=˜Ù³›Ø{õÄIýµ}¶9íéY팔óì«ÅoÑ#§Ó¹ç¤Ì–Ö¥¨”ðï)k1=Ýáü_/9x†í.;‡öÕІvëÌ éðåµÃÓ=1™RæÒF>¶Ñ|’R]¦ß9ôtóùg"ϦÊåu¾³B&‚Z*8+R¯µ"fÖ‰¿Ñ™œÖ°?;·É²‹ÝïgÙa>‰þ½F/‘¼ajÓãÁrÞøÀ)ËJa™– }ȈìÖ+6üΜ e.ª?Oðéq¨xÆÔKÖÞJŸÇiƒN/Ç7¿oò,Pw‚ä4ö¤;}ZK%S˜YÙ…%G¾Éš€í¦ÏPÉíÔ3(µiEtr˜ÜˆÔÏܤ3câj[¶nPªnî3g–쮞xÏÐøÓ:ON & ¢%ïüJ³¤Ñø M×l†äïÃ-—q¶7©ŸÞ¸¦×’t͵…¿ŒáeB< 3:Âê7*íɃõ=º„?“¨Æo}Ù•D¦‡öoù^+²éÏ&À¤áëüqÿMïô†a'„©F{'Of^”LȸyOýô¡:p˜ŸìÄ/xny&îÅ£TO­›ïHÞi–CV0ú8"ã¥:'$¾¶œ0BzÍT ÛIM¢Jä² ¿qZ@¤Ùk#¼ö{ŠÛ+ÆWê8EL„„ð®–cOˆçpnâS]Ë †‡gw;"lrG#›ŠäŽA™ÉFɶQR¥ °r9R©€‰ ¤¢ƒ’ HÒ4¦fd@¼ƒœÇ’;(á&FÊSBmy`®CÉBœÌ„2VäµLjCœÀÉ0y'gÇp^K’ä©‘ØÙ„r¡2@É2\•6Cwª i ; 9œ”¡¡)2B•)6Sav2B’—&€6` 6ÙÍÀ„ ­‘ •) ‡ ]•ÉBŒƒ|bòP¡M•ÈC$Äˆì ¹FB'wªE{ ä!L€!L“Î@ÉÀr;œ…)”($L„ Pi…v •CÎ]„JDñ*‚dª B“!|J;R ’¨rZr  ÉiPL…W J’”ä ˆdªd¨&È™"!Hd d Ä€¹(¹ @P¨PyJ9#²‚r@B)aU(DØy*®È” ˆTØ@6{’‚+’+²²ƒ°&òdä"´­% ™J"®@(¦HêB °ì‚ˆ¥ÉP FŠ`ì *rAU9**ТòÈDL•P2E¤Qr(DÉ@ˆHˆÒ 4* P(òH‚lˆ†A°(ä«Jª”Š*¼…D@2E €È(@(U A‘\Œ•D •A2ä€*ا#!+*W¶H™ØÙ™6@ÉrÌÃ’vìÉ; ’“•‘C¹€R4 È2ˆÌ0¥‘ªsMŒšDÈ •É…¡…2T 6DÉR…É2Œ”€2P¡D¥PÙ<¡C%W’ƒ!TÙrJ¡€2ìr„É2DhP¤A䊙 ¥)A@d£J H%(ì­ ” ì‚x„9  W%‘G%r@ÈZi¤S )%QL• …” ‘¡y… ŽÉ@H€Ò »9(ä¡Y*P‰’4,B‰B l((¡B &ÊìÐÊU£°"d;;!›*«’’Šd€ ˆ” ÐR d (Ðì ²%%(9 ¹€P4ˆ%*Š¥ U*d¡°Ê#²Jü2¨óp2r@@ä¨dˆD- P†BR+@’£!@†@ Ð-ЃB%*"4ª®Âlˆ”¥!² dªöæà" É€¥L„¡]…ZÙGañ”¤AJ<•PÉP(ThØ(ÈA¥”R hAÉAy(¤)ÉDNBd¡’¯`¡G°•S`S’/"…"E 0AÙT6D…  @Ù¡ìˆò^A° ›(Ð"(™"Ð4ˆa"<€ÙC!2A£`)2¥¥È€S!R•M”|à6@hA¤ iD;+‘\PL„A °†B÷0A’£È 6UØP ÙM‚„ÙPÙRB•A!hTØvPQÙ(EÙPhG`‘ Q26T) ”J@(“ ³ Sd2ÝÀCaJÙEÉÉ@r(Ei𨠅¤hGjC*)v2R$M…]…SdT(M‘Ûd ¶Se)]šDÙM’„¥(\‚Š)€)J¡ ¡ 2¦¨PªZ€9&E TQO!|A°rBÌ(…ääÑ@PÈn P)°’PÑBRÐR¤@ä ä9lŠpî'‚C²„öAI:Cêt¡+܉Çz!yd$^é‘OçÛyŸ©±¡dêa{=" »K¼ôpú$åȳW‘Âö€Ì¦øˆ˜J-îJÑÝÎõ›#¨æŸ2ã]ÐÔÏL†h`ðl„,J¢K¸hST&VGo¦FPÈ1>oÊ ,q «hÁ)¬ xíöŒ¡=¸ô½²€­qR¾¨—=)]áâNmIæ•ÏÜ«–p¯ÔV²äÏ WÚڒІ\<Ô÷¥7›‡˜Üéƒüy|Ì™]{G-oÇ|5ñe”)Oà KFP½8!äÊÉH×t¿u9wË7q:Ê)E[/m4m..Æi ãN?ÕÇ3Æb~„g¾;­é˜Gþ¦ixOy1 ÞÓêÙˆ¨É‘á¼çÝ~/Û ·udO<ÆÁÄaAš"og¶jÂÛÜ´3GdhHNî*vÞûw¹ß* cG6¼ìär ¡‹\Áiœ]¥©-3l‹edÖ¿A˜2Ku&«æt€Àl[is˜{%ÏBc… Ê“* ¹½ð9™T$\ãÇô§M/qkDhM1Š‘ pŒKSJ#âXF–ˆ3{œIÃ>×Qï¬fÄxïøëß_TÈW’Ò,øD2BF!€“³28Ç©(ŸO>óÊy­o7Õìkh[yi~?ÜtÒÚÔxÚÖ¿E%·ðžúï²gñ±ãôÏqÄgÎù¤™5sÑÁMºŽVŸfóvëP!°‰ Ð2#ˆ‹<‡ðH½N±E§)0ûæ Væ_|¡€¼“Š›\NMØŽºg›eí”éšÆ~)ü,±­È‚44ºÁW—6biÄ¥\·¨Íð)4`·$K™dœ3v´e8ïinÐJÌÙµÛ#¤lÇ1'éûG·êrÛž °oMâop±Åû÷ÎúŠó†k×TžÔ·BUŸ»Ì`Ó¯8*I“ƒáô¤žIÔ¹ih¥!S|r‡.:ƒ%Ðnm XÖ‰%%7Þ—,M<¼œëÒc;­öQÂk%'žg Rñ£í1&ÓÁÊ÷²{ê’à•ö¡ÍÙ÷¶‡5‡ Û3Êw–ÁW_Y’^“gÓ/ëÆ–g4ÕΚi ‡0’jämÓ/†‡¤ƒr5Èå퇎ø? ñJÕ̬é¬ÍåVX#jÌ5µéX>l~éˆB®Žãy¦®Èø.èQ8ï¶³¥^ÔAS~å–|§îšnüð¾úÔ·;Eú[°žÖ£p d(øRgD©liWƒ;_µ‚ –WB1»E¨‹Ê©ä*ÃØŒzGÏS”öœ…“¡? $@}ˆQ–âH·/€ »bÐ%0§V­LPlgˆ,D¼´ ×bQÜàݤôÂÙdw²c¨06–-y„¹¤Ð[d žÝÑY#&šX̲§q©ÁçrG–©4dâ4Ó8U¹4iæªÊCg¤ê¬u|eƒg©°Ã£ÎôËm¿àÔVÑ”UÔ*;w?:ðŠSÀ*à˜eZ‚ áü^‘á38ž¾5¥´ýWXd£ñã¤WÅ”JÄHãj=˜W %‘xê’sصsÛ‡¤÷‰¥³U ¥˜ÝßzÖA¬oEÃJˆPº+)\÷,iŒ·£ãÍ yËÚ[ä$­5Áˆ×â—qÁ6É.˸”•ìxr³ÊG-P‹V[±+¾žRÃ¥­„¯µ4ŽóʾCúo¦¾ñÏ$ß8òŒ˜±,‚QÞ;·jqôqƒˆ¡Ôs®MZùúƒH½«†²¡RBÄáõM¶?1uE–žõÈVÓÝ´bÁ9´¸L¼Ÿr#?Æ#‚ ê9ƒóƒÎô ü”¹¥æ^±a‹ønÜ#÷]圔(¦©&ÅÖÜú¸Í œÈF¬O/ÖKz§÷“´[슱ÄΘzãp~WÓ§Æx#cÚuë¾0öâV×RK%<Óóf¼5Ë NÃá¶±bæ0]‚†‚æø1›EþäGÔJeºÃªa ËÂ5>¨ÔB}dcj³Ûm—E\8'MW¼BX7ÒCmC_Ü‚ôbÝÒÈâ݈-«Î6=üO'L—1¥?MófNÔc*ýúÎU±î-„.ùqe®Ç._Y6 £½MãeøÚÌ Wšœ™£˜ZÍñX1$”„mì¦:e#=Fêl3Ø!>Ž·”v¹ïîxJFƒ¶K3vD+úa÷8Á¨ô pà9JÇGK„Àœ‚´JìЛ¡ðÛƒŒ6ôD3õH;¶ÛIoH×g?mëßÄ­-„ŽæÙGóŠú߯g´êdôî•^e¥ñ©æ²ýZ’hx¹úî]7 á]j•ÀÈ?ÖÅnnÛœñÒÛ§3e€Öo:îIæØ IþF ºáÆÿx©ÐŽ+ƪ²;¤$“¶Ø3†EqmÊFr°ª[t´µ o·k"³‚râ*ð”±PÕÆ°¢è1çfby ÞsÃðn §~ŸcÄyd/{¾cÕ,Ôi ÿDo*G~˜5d*T)½Í+vIRæûu%»~œ÷³é¹ÀÒ¦õo+ªž¦× ê`Í–Mõ÷„Èsé²Î3ƒÏËìøÇÅyÑübök¼ðAûòÿi.[Û¡ž°ß›uÖÛãÎy‚ñ&âÈoË+Ö†œAÅ}‚&”F"jZ:ÏXk,?|D*_©kJW…çﲎð®ôÌ©c£vÚAËfÂOM•þZ[‹—þ¡ˆX04³r£ÅeŒ±ªÕÕ÷º3éÝÞ/wòülãrpš>Y>0}`£µÐJa‡6¿&bHôŒBíÀl=Jí-ºéŽûFP­ø9X¤‹á¶ƒ± §¹eêþÚ|*R·Q Ókì}”ƒøK;늆ϵe å6ÌÑ7çiÝ`#%Z{ )¼©Ã?Æÿ¸ßOù BYÅy-©†qºº\Õ6XU©Ú.àuo«„EŒÍ¥axô «w›¾/m-Àœõ•èÜL×[F.䀄˜B º’´£Ù>×bctR•ד±ÆNT´„ʱÇwOÈ(DxÙ]’ÊJ7mF ªÛñ¹É¿‰KfKA Xh$”üYüOf5ÌŽ‰…¶r¥Ž!—óþùÏ‚v ÿÛ?J Á}²A¿AÍøõ ½÷æÞaÏê|±ø]»€f¥Ÿj—ƒ“£kîÔao3—º‡ñ¾v•²8ôÛ—}ëñZó woçÄÇõáìc‡á˹ó}î1^qû×=ï!#ø—èÚèÜP7óï–…ýºdu¤ìR’©×ŸN³6ü”¬ëóå¿V¿‘\r? G¢ÙΗÓI²¤·¢(Ôù2¬¤Î.,œ_½nÊÌ“í»ä©ôì‡×†GéÍ0¡4H¥ÁÅ|~3gjAXœ]ÔïýÀ_ËùíÐ{úuwo|½`VüíOi×ßÓi-ËÕ|¶FßÍöîÜl¬©‡ñˆIX` drÜ_Cƒ3럤õì¿%*þÆÎâçQ„â.F_Ï?‘÷×[úyF’â•h“}2ófí’ïÍ$ÞO‚Ô‹)ÿEß¿ðôör!K³×i•fÄüÝþ<ÕÞZ»Íö—î)ó7þø×J d~µ[&[c0a3ròÇ…¾Ô¬öiOl?DÏîþÃs?.¨MëþÒ· ˜^V(%¯àè 6ÖÚOçU¹îÙÖþà{]K?÷¸WñüË‹éCnRŽi·?wrüŒ¸mbÚ-½9|#qî7™cÿ-Vv0ǽŽ$þG„²¡˜ÙÌq`]a•¼Â « ®ù‹ÿ›CÀÚ²;“´i*‡Ýå zX±¿Ÿí_Ÿ::Â0¹/S.­Æý3­àª «# î.älX7:“ç?-tl4 Õ˜®±jÈÖÅÖqœ'0u¶rU¥â„0‡ÆÝ”ŽùYµ»°ò8¡X XÅë/À²¾ÛQA|hagVPÐ bTGª¦ýõð4W¾£Œ÷šúïÚ#†Zb•‡Æª1yy´,Œxà"W€2J¢íÀóovQe"üš|| ?‚E¥ UD)J D”•D¤B–•‘i(ZPZB•¢JJXšT¨V• hD ‚„h)@¥*  PB€ ¤¥h•øUD>—³ó½¯á½¸ç·ßs{¿Çϧ}|ó?ßÇÅééçê}?½ÏW¿iT>5Pù,(tù¾ïêáùìßïáòùsh×äòÒÜ>½ßFc39©)fOöt!N) æP…¡#Ò?ý_ÜLÉŠ«,6RÚÁ¿íx°NTÁÁŸcC†CûB¸'6],Ìnv¤ÁAµ“±f“úž¤F* Íà–]w9#*ìèg(ÔÐŒÌÀZYBR4#ƒ'L›vF  J”ˆþJÿ7ÃüŸç“±“ÿ3˜í[±.a ‰@‘M16| àa”íB!ˆ5¶¬ÿ¡“C9.ìLfÆ¢º ¤ãˆL“ "ò¨y7·hwʪR¯x—/&)jfD)Î ÜðìšÌà†LAXBedÀ‚e„…Ðf®ŒòNÈS€Ç§É’…ÑÓS¯°½”œ<ê^q y0 †”›l<Ë!‘«¡Œp¼¹á^C¹£246ŽŠ£Å Â4iÔóIµzpNìjJ£J VR@h•µ…(2ër¬Â iµæVŒÄho}ðìÜ}[-0êß¾„pþ«ßáˆÈ33ÞA×]“D"r¤Ç ¤: v&EË;¹š;ðãÈi±ñW…$(LMôÿ?eö¸?ûi²Ï9‡jHhÊÚ'mÓ³ô=%ËÓÓ«n ¥ejtëvb=-“¯;\oŠò¸]á÷Áò|¼¨-C§1œ0ì‡.ŒÈÈÌŒ‘ ¶hMÁ({¬¦êÝÅÞÒß&æN¸RÞøE'} ¬*²šv3}‚tT£¢7ãU/ƒE¨¤H ±ã¼y›|§|c½A¾ýaÚŸsx^ÐxQlã,Ve%¶àŸ[¬V<âƒj+‘ÏO¨È ³ü­î\ðÆÚõº‰3D$BÈÝP;m˾ÓÖ$¯öyôÜ#q-®¼W:Z&QíÅtiIͺÐr¥[0Á¥H)˜ÇÃ(Ör²Œ çÁCnv7OüÿÞxf1×) êÈl5aš‰5R» ÷P¼þ!+¿ó”öj¹I«¼‰Œ2™ÆÇðÏ,_£¾_ój“7ÏÂã—Bc=àIèäß´\ü¹wb·1ˆ{X…Ã(.šªšXy\ÄÒF¤bÊ&ˆ'ðȹÉMµ'3J¿Œ#»T&´ÜáÔ-eÚ(T©›¬/æž´GáŒ-3›²Ù„/ƒ™ø×]OÄX¥5:ämÁ‚C&4 W PØ@N©ÆoÕCíÝ:b8,ÜŠA»Ÿc´ŸN&JðÕùÄ&iq>žÍL›³šN”ï(êdq‚ÂÛ‡§îÃÁêAH€ QèÂ>UK”fÑ€õ,ü±ˆ¬C´ Éî’œ¥#”eMž¡Ù>ýßf»cÆ1fôÅã×ÀÃó®èÀ1¹­KøH##fÒo ð7Øv&¨´"xKèRÿÜü­Þ…œ".MkX¶7É®3eîÁ޼6K×åá5™dI_j•{_Ê:ïXºRIgX›ÞØi¡ dG¢°€1Ò’¨¢ÍhëUBî^öFNzr:‹J¼¸C˜ Ð¶¹Z5ÛD…/œQtEªRcJ*‡&>®hÛ|F¿’ÅÿDªbã:£„é>«‹GÖÝ1¬bÈÈ”×Ί?1&}·Çxîæ¶€…Q}ÎݖД:mþu¼CfUò×ÙwËôC-‹b4°wF²a¨;d‘е¢­Žs˜ÖqŒäïÅühÙviËÆ¹Fü„[K *$¡“ödû÷O‹ÕàL`ba©YÚw86Ei@³ˆâX¨J€š)µ„d¾„>=‡v$`G"l_BKíðò[Ä{7âóÍün×d‰=­9!kkZW‘¹L«`–ó˜Ò y!•EÛÇ}p÷¬]"™¹y8l˜7T r,º^` Ù«¡:‹ÁÒ_[M)÷=9Ó†—Ru/«^/Üp\«/ô<:±ºW‰1W¬\¦ãfÍ',ÜYö1táï™q6>/ˆÒÉ6¡s¿†{#Ù×Ëí`j±A?´¯·ëï|wN¿_/r‰¡…ñæUÌZ]_éžø±vñ73:Qö¾û »@s&»}~#ÎúÆtú&Üã&×¹oÎ.Ù„®T‘¨ê… hçâ„áÅq°B5uïT[Ö3ÈHEr;›š³Á÷CAWZg-ªÇ¿CÙëÛ£ŸÆ|×¥()=t„%s=sL»æ=¿n+§Mïd£àvõ¹nã®Îfjgj}áÁتó 5¨Ñ ST`–¤«X¤nµU”¤NÌŽ÷tO”׉#«+âXÉß `C Ë”kDî¸6d³–¼ï»Ò– a`È.Ñ™²HGЬ tA*I y»F›²ÝõÔkÞî¨üòì±NOIÙ–µW¼ š¼2´+‡ù72ƒcÆqRå±Ú©s¸‹ÀºÆ6µ8q½‰ž>Ss©È6±‰‚ö tXRâ~ûÇ«Jž1í§õLµáã —â”bÄ”…øùÒ¾®8½œ°å»¬ò‡Ë`bAa'¿„ˆ#N ø¡ºÚÂí3H›ø…XŒe¬ñ@×Ö$¬‰†,‚2ZàIÖ+ãÊ–=Ž·ˆ1ë?§Ù£e©$ÅD;êgQ<™ãe{É‘~˜XÓ{Ï à=µƒ@'½HßÉF.WÇ;G‰¶3&ÍÙ+Ù\m9à—ÓcKÈ·‰V6rŽ>Si=Pd¥U¦Sëä|Ͻ¡vr¸¸ –xªP2XqÊeG»‰?øBlÞ]3ÅÛ…dfá&¹?oºÉ¶÷L ãO}]‡ôÌóá†y¡½=ͤWƒþj±leç4jͺí%?Pêë*½¨ }T"ÜCfH#.Îq™GR¹ÐóL+ƒHɼìÙ5Ÿ.}c¯½ª¼ød:ñ½uN3¼Æ+Ä8 êûm9ᬚjݲäyòüT­nßë€Á´z£ùýúóÖ3ß:Ï$ð-º4掴'‚ªŸâÒš…,™Á-q-é†6jűvGÛD<'å“ɵúÅ`ÀÂðõÈH$ÚÈ0k³KÔí`-“Šðç¸:ØoÂu;“gí¹™‰Ü&\Ã3…‹ö¡öŽ1ûíïeÀ©~´œ¶UJe»òm˜Éu}2òƒF˜øç†ŒXÉ´œúž³뺼.¿}6IqxŸñ|7¥x0 Ðmž ‰ºïµ–}1#ÌWème€Äžî‰8\¤Ì(HD/k†íWI¯Wô:Aëà R ÿYxLoá6Åù™_ñºãÙ‹ñ8ûwÌü_/šLg ]:¹·»zïàèê1¾ýJ×Dײ|ræ—ŽM"2ÅUŒDÁ±± Lµzky”’æˆz¾ÂÁ!89›(Qx™1c6°ÁÝ“ªš7gmh!R”Ž¡%¦?~Ê}GO¿Š«ž[ð4츅Ó&¾ÞÎ_à[sGìú¢-F>裯4ÞkãôÞîK³IÚ®^ƒÃ8¼^1&© Vž·ËÑÄéÐ[HöÚ·˜Q¢ëpO óxCR,šæ[F„äNÞWƒ]2;µÏ™¯¾C{]üÎ,¯-’£7Zp:󾺳ò|·úFJ‘èSãœ2mÛÎïÜv8èòÐÅ•-ªLü6—¡qÃÄ7uÛY0ð©KCÖ›v5•wçÑóÎÖ„ó}‘6S¶åp1ª©Ó¨á`th$á~UÛ2ÿœnÎ9™+cŒjöúû÷2½ÛQª[z=å`ˆÝ6‡ I6-ÙŠâ´nî´ïtÓâî7¾ÊZ-tÜ~¯µ©¶E;Ã$¼f¶§Ão'šÉ¾x´wðð]W®ƒ™ÓЬµ&±ûxŠÞ•cÝ&;5…åi–ÔwXädüNå­ýì¶uc>YïÞR2éàâ~Û`<À 8\–Ì–¼EàŽ¡çÀìPQ:ùiÙ3æ–Ë&?©;~»û®þ=¼ñ{ó.¹·ßÚ8üÝܳçÀeMuŽË׎8Þ}y´] òºè§ŽAO²(j˜³†IÞOgù{0;±sÛà2ïh²>†–!~ˆ£Æ›©°ÉkÝàÝ»ë‹dv•ÄÙˆƒÞ™'z€Ä| Së®U‡ê[rgú’ñ×Í©)åË‚µ×xNÿvè~ÉaóÖEiJ£2¹k›ç×äX.ñºz ²÷³¯Á6|g˜îh»7>ºe8¿ÔyØŠ’æU×ÕRç],ò5§ëoÛ¹.¥Ì§z)žŽ¶¸4žØ ”Ò^1ÆnÿÌkLÕ‚.¡P+¸‡û}\<ênÉ»d ¸iá,.+1Õw0`œU“wIo(D¶PIŠÒ㪟þèÚø†Ñ‰äþƒËåšî|׸úã_q‹Ùç@ìq÷õûçºxõ;ãæ?çúÿ0ú^ǧ=Õöa¤hAhTiV‘P(€¥”U Q(Z)h@ ZT ‘@iFšA¡ hZJBŠP JP¡EªFhF… hT¨• V‘*‚†‘  ¤ €hZJF•ªi)¦–‚”ˆB©Z¡¤A¥ Bš"U ¦h  @ ¬ ¢‡‘ýÁ¤_Àÿ¢" ‰ŸÔ¦Ïèïì7›[þ4ÿôÞ?ãÐàTûòŠˆüª¢ˆ¢¡B¨«ÿæ(+$Êk5ñô@¿ÿÿÿÿÿÿÿÿþÀ€ €Á $­¬"gíÀJEtB©JUÛ¾眻âv €€@ PP( ¡@B€(HÐ@èóP)E@ ¢‚ª¢T @ (`ú"‚RH AI%I)E"© (}˜ª‚…QTª¥R"…PRI)JQU (TŠ(*B)R *‚©@ D*”"@‚…*’ Q"…(V€…J èÐ ©@ £@€‡@ ØP Ðm@4@BŠ…@¢‚P€U @ÀQU@ê"ÛU£4îZb6`ÈçòUrä@Ù`0hô1C×î¾Þv¦&öa¡C+_~PGîwÊ矷í¡èLgñÛï u?bíKûœj­cðœiioÄ\D@Á}k/"ø‹Ý_§1MÖ5ÖÑ"ù¾Äß|Œ÷:xÐv<¤=ì¾ÕÔN¢ lú^Æ›ÝÀ#xD8ñžY98ªÐñ§ÆÚ|ž½þž²þ|)âöWñÎü{+9/Y^OïI ]NÀFE;• †Cm,Ä:8g~e¤qˆ6ÔÐNÓp»”ÀœØ•E þÿôñÙ•G¡ÝAí‘Ç×A­‡fÉ­º`oæ×}çO9˧ÈÏ¡´a  .èÞ!_ñ\ª>z(âÀ¨ÿþ ­ñõ\ŽÄå ÁúñxHû²íuÖ/™·„ ä!-ᚥ … Tkå7N¬I6CCy˜ks²XDu»öŒCÝ•LG¹¯“™úl ia%“t‚Îí¼»¸Oe ^(yËlÃ{TˆuM.mՙЬQ:¤x%àã8Fã%àÿ‘Ž)'4¼c¥ï¼EzËJgcÚœ¦Ÿ—Gi‘vW(ãÆÏ²ÄCk­Êš80Ž8zñüwçÛÕæŠNû|â‘k4ª«·Ââ3’Ë< VuùOwåqP¢‡± •ß}+] QQ*T¤¯†!Ü’B  è®Ê‚!BÀÚ×JèÜRÔ›'Â)¶ÖøV.¬!Ø™{}wûÿgÇ+¬ãwIÙØp]XlÁGTtvBžï…þ¸P´ReÊÄ SìÉ ˜js6ð¬Œb™]ÖÁóÿñ¯ß{h” l Mګؽs7ƒùüŸ•¥ßóNR&®ÛókQQ>Î>Ó‡ÆaUU22øÒ´üýóêõ^—\ |ð]¾ÀîH/ð°B®•F‰|å „~®rþwES"¿Ò̃¸lp±èkLS÷¿ìÞTásð•û+¢|Ú·.¾wÞ7ÀN7îÔï~–™9ÃÎï ƺ*Î6EF€‹d…?‡:oÑæh½.4£ó-2}Õˆ:ÝòŽJ]þ AOìHF¬ÂXUÉ‘AX€ˆ)†M ‡­ÙØÁµ²1@†[ïhHwQ-â|\¬Êñ5÷cµÅvl¾7¼,Z¦à‰v ¸ÝæBn=n-!n Î,˜#;.£ôŠ~üŠ0š¤†ëN™gŒ¼22pŽqK47¶-aß穌D(Nò¸~,§;ã Pœã¶÷ök¾xÖî@CbY¡Ë«å›Ž¢0Ú­^§¿¯‰âž³]kñfÞw·/…<ÀètQ%ƒ‚çeXäÙ5(ÂpJ’¶(;h@)—UW"ÛÕî²—#ñôP·¨±–ÔÔ2Peè©: Ãö¦:†¥æh‚ ûÁ6„x¸(‘ ÕD¡lft‹ ^šÖ]ï:² Êc9Àƒ¶ëçÆð“à•‘÷:\Ô壡à.7š¸ÙoSs¾FR q ÈËý¸_שâ}òz¨WþØŽÿ8ý^KØÖxÇ—™Ø%WúBF–Ù|:³‡ßÝýâ·F¾Tªn'âa~SÓ´¤ó~ðx*ÞÐÞ~ @¸ˆÀSýÁ0{Øöô¤êd}ǵ[ˆbÅpë7x‚Ë9©J¤„æ]”M·ÈUÆÎÃìhbš.vQRB4ðM³úŸÒÞ4¹ˆÑÅK,ž\» ß–JÓD¾ë/ŸÁ„±îút·`ÞéwËæc1×wÖ ¸† þb«»QAÆÊPÎsH B©ˆXW‘|Úýû[Jb¡ÍXo‹Î6U¡ .‡ïÏ}ûÛôû_ÆRÆ.Lëñaºˆ¾Ã!EãË9BXBT¤S¤é ¢è¯¤ù*$À%-*Šù2œo Ò æÒRzÀ9ñd¬2ÓÃV²P˜1W5 ÄD~DÖ$—SÔôuáiéeÚ삾ŽM¦pË‚ÁB@„È*«@ƒu¾Zzc†Ž+Ë\Ncê ù¾´àñ<îL½b÷ ÄŠIq !6¡:¬Úì¯uI’hMÑÄ7IW—÷®ÿ)þ¯-ãqÛŠÂT?ê…ré¦ ÑÂ{¼'PrI†ÀÚ­e „·`øÄ<~O”ø¤ÚÃÝíÏ}åóåsqiaF!³ÙlöVd«¼ê**z1§öþº›—)­X é¯¿®2ÝvBpslÀžÖ§@¢ø@òÌû„ÎYUóW]>bžMŠ"ÖrÁGtɵ£»OíwÅÞŸ²Ë×̧8¬;å/Þ_álømµuI”b‚Ñ#éM4'Ý3ø]ï•m~·}_Öƒ~Œ£×Æò-ùç´Ô!I× D«–È`oOkο&Ö^Òº—Í‹ªñwWâd_/ÍÛ¨u¿ƒñ|µÒŸ™ í|d¹Ê»Û¸ZŠÊºEôh¨ÆQ“B.OœMÌßUÏ€6—ƒ@ÀÆb»IGR¢œdÏ×4YWÍ<Ù¼ ¼Æ”ñ¦õ¸(D=”ŒD…óâwú4בåÈЈ44½ÞŸ. hn¥˜Ä”5Ê£5æd¦ù¦ñ̸zγ™)Ž&§ÃÀŒö~UÔ˜÷|zY5¼FwyÙj)®‘zÝUJR†f^º•+H7Å á)ËÝXr3’QóKç ‚«'À`¨ÔÚfc§)lcg,¨“3º-\äªdÛ^9ûݶ ¼ BS(X.· Sgäu‚”Â^ÁÄEÏlþ~¼s“¡2‚bþŽ­·‚ƒÝõã~ÝŠ„ÄŸ;O¨ώž­¹»Î&/õïkçÆ¢/³I°wšM¨8Sñ·<äRÛo N´ß<5ºÀ@z]N°[çëÔ1¿¦K;ÛY%ƒ8@ÁIÈ+Ù5œÙ mY4«Ó‹–/æïgp‰€÷òÎTWtc·BH‹DÜGLM:£¼9Îøy3ŽàÊø³˜¡0= PÅÊöŠs±Ó|ªJ>0¡Á¼Î ©3‰©tÝè±Y'–níh£±èxú²Ÿó WŒöjrDv)ôöLï× ÒNH¿}.Ôú߀QȲžcbQ } m_ÐýððY{h AD©ª0˜8‹±·ŸGʽ»Ï‰»êßz-Hl8ßH ùôîQTo«» 8„¼º°“@‹ yÐ×À²Ÿ³)µFþ/ 9‘O¦*¦üÜ.ôvÞÛõœZ´šJœÇ±æãsw©Ëª½ûظÅÁOf¯ aYŠ9³SñðüaR†ùcçö}³p€µKŽNSÉ(ÁÙ¹~TªzkƒÕçô¢QHkaü„A^ã¶~.¹Mí›n×·Ve)êàTáãËã ³'ÐÆâ'»Ìø¹ÑÏ¢÷µ~´í¼È‚Î!ò]øƒr{{œ¬CׄHe}Ó}¥qj+X¾¾;í ×¬‹÷\—³éíĹðRÅtm}H*µ¤{ŸA7 óÇÚ¼J6?Û—™IÂã»ÉwK [¬É•ðàƒùŸYÞ¸®oƒn‘˜ ZøÅµèòL.q[ŽÒÕ+„9@ƒ¯¢8³¬®‹ÌlDÃ(>FŸ\p¿ÍŒñ6d ¦°`§Õg’Þ5?ð£þHJÿM“ëºV1¥£KE ›#_!úmMw©µ5}¦.!fªòÿ¸Ó¿*“wñ©¹»I›”` Ѳ<˜£x Gzº™òdº6L‚)Ë͇eÁ°É™T»“Q‹˜ª˜c„Uˆ&”¦eõbða%~0´ÿ«;VñÛýS‰tJ„|$¦ îzpmm·£Ò»ü²þô$죕ïÔ+MW~»n׳ûê®ê¶,V¼~ nÞ|<ïÏ)ȇ¾6®¹ÂìµÍ~<ÏT“5³ÖpC ã­Ëz¬³ îµ)DjÕúþ ‹t9la~!%>Do£r9ºèò‡Ë›{F»bu–ò_ ÃfàÓxÕº„¼kB¶À¡â:=VçFn£,Lï¾{Hn†¶TŸ·×íPéÞï7¥FJÙƒn8»0çm’HΚÕ`Ÿ ´…Û)£ë3˓ڡO,ù’n1úú÷ó Îêjn’ã?§/Që—¸3¼¾ßáüO¥|pÛ­Ûzl;"g½þvÃü/å¾MuÞSc1NÚÜø‘ÎÂhì©Í?>¯ÒñXiq`*†Üyl¯Ñ:q.+÷}|þt”‡Œí1×§¾“Äaë>í¶ü1ü{ß«Í|ð¨úXâ°¼†i*©~Gè9e‚ŸRãwÓí“;“u|ÐO”3¾É¦>Uñ&„v/b¨mËv›Ó06{íì˨C@ uNI·¾xl—óÐðå¹¼Wfµ ]MF?>žq*9Þ­ó:áYwl õQ”“Cè¡ò6ß!µ|Êþ±^ßÒ^°ûgBªÔ:U¡ô¬ý-‰ô¶þÓ}{åš•ç鯷¶Çž­õf¹é1ößÏaÓN¦ØÈ,ˆ¤Ø«ÌÔ\ûæøžìöÛ©· (ùí܉Ùybö›×Ú}Ùý,f>ùøßÒ“BB¤$ÏÓiïqŽ1 Ò¸ü~¢~y„´E’yJ>$ç#Ààå}žŒ¬ž(åïµSXo&½Ùô½^XúþøN­ùõ}N”gºRã@ß®Ð&ÿ n.ª&SìfÍBO|Þ ®¢á‚ç)"Å®ÌHÍFÐ%5J©‚ܺ2Ž()2ïÔN¾eÓi.6y§Í̘Í_+1ø»$Fd:žÏÙ˜?ßVØUCÀÊÐWQˆ¢Ór-kAZ}ß O=³Ïo‚üö |)›Aà*÷Ûñ÷ßAAÿŸöÈÿ¥§ò¸î‹nÑÃ'jDmŒKm´Ì¦³­²nI›š‘©êžÛiižXevD ËW(õÊó‰ Å.q¹–TQѵrò¥s±¹×S&Ó¤ÁN,Ñ®w,‹=Ù”x–Îbɇ4gFMbžìʦ‘f••i6Ýš®UÛd”—i]L0¯Q*IvÆÉŠj¦G®Q×Tlm:'=­ÊIžÌˆÌˆd¢v-Z­šæ^$ÿCÆMËÄùÂIÍØÒÓMS5›=ë ¤Ä¨OFl³ K‰¬mÆu²Ü³‰¡ÓSÃ¢Ô <ªëaÖ×d­£"ÃÓ/BU ŠPaÏ[.3eÅÙÊgg”Q—µ²º²êÌΉÁ+ËÔàÙ¨ckmÃ]!6Û§DKZv.¬îÐè¬9y­j\‹R¦gI"OJ™ bRjXX¬’å4gÒZI¸¥nbã Éh±*Ôm ØÁžïî ª«ü þoó?‘ûßð/ÈB}mŸy¿©ìiB(ž-§bØgÞý™œ¾¿~Eèd/…Œo¨€(Ò¼sdÈfÿd¾sx‡V” ¯üîዃ­éª~•$1¼µ­+¬»/ìBȨ—NV’£ª™ŸÓ»ú1”¹(¥ ¿ºqßíÕ?Õ*ŸõQ–Ï "»kct#ÈjÉ%¥ŒBÏTfrÊ*“°Rêé Ñ X.º9JLä¢2/¿ê¿yÞúúü~þ:ª(£û¡÷¢ þQ7wÞ [ö™dak•š Ì*9ÝS ª­s¨®ÔÇNbm еj¬¶°²Äêª5ÁUT^Uø|QøŸ &Šj(ˆªªˆ*J"Š‘ª¦˜‚$ª$¨ˆ¡¢"’"¢J &¢¨)Š*¨©¥hˆ¢(’J*¨šjd)h&X‚Šˆh‚h ‚ˆª¢&’˜††*Š bˆ¨ˆˆ¦*b(¢ )‰¢**¢šŠŠ¦`¨’¢¦Šª ˆ …Uº!å©T^J%pŒÂ̶°!§ ]1„J ·LŒB£ Ü+B!JM§Z™ÖZ« aeÖ¶]J­S*–¬ZË\¬µ†¢²k®¡¬ªÕlÐÖ© V±…­d«ª¨Ôڜՠ&ZÑ, »Kœe¦’ж±i®¬²Y–%\µmI¥•­#j¹UZÕiÔµË)¬44¬k9š¹H¬e ÝKMUSca›Vis­U6µråkMe…Ó9rbG¨H^I¢‚‘%,:˜£ZY$r©´h9Œ–¥›E«YÕR×Ug)¤íYE®b²kjbªqÚVK]D±–3k)3S3³¬%¦Åt3irS”°ÔN’iˆ­.URWE˜©©Ê[BÜ5,” µhk]9–µfšë—AuWZW.ÒfEµr¬šè­«t¶Æ©œµcS› kif¬¥ëÕSLµpÍp’J­*µZÕƒ$›¤Qa9(…nP‡•¡Š’«YŠí6±Ù¬h•gXÕœ¬1ޏ'Rr3©Yejå³µv¸Ë`éÆ45ÖÖNV™)CK•¦Fjæ²jË&Hšh%i¤åk4•k\­,uf‹lrÚšK;V­Ö ªä…v¹­3«ªµ¢š«&×]­ŠsKXÍš,¡‚„ÒÚ“2ⲉm8 mf´tk+R­©lÉ‘¥©®vºŽ9–t¢j“)9¦« ˜åV™V:«+e£UfU­sXPEÑRˆ£Ê KÌ¢(­ÖœÓ"YJ5FÒÈÈáÕgZµ2×N“q×4ncVÁ1²­5²µ•ЬQ˜ÉU¦]Z™ªáµ§BšêµÊ%]–X5iMY§-Z¹k¦fW+ ræºÌ³µÂæê´Vº,Ù-++³EveªifÆUʘ¨´°ÍfsZ°¶*ª•fšeV­&©JÕÍBÍS]uu¤ÖY]ZJÚ´¹×0Í\²ÔZ3Rʆ­fµS5gYŠÖÐ…¢Ú„j5Us³°MV¤X U4f±˜«Uš1Ö] Çc)­µ4!%KkPSBºÈ™ˆit¥dlæ—i(*Z¹­Š¸`Lж¹ÅÔ‰4Z­J«EN¬Ù[S–NÆ Ic¹‹]tSQ]Šêë$š8¬[Ó-jÍ™•*j餶ººÚé$Èc9š¦24¦œ¨Õj…g"v¢6d]5Ì56š¦¬]kµ’›,Ô±I«Q›YuaMaXµ£L’$µXã9ƳG]f§i¡´¨ÒNº”«ZT\Q7%˜¨ÎYu´Õ®¬ÔÖlÓ¦³,ÚÔ1d©”ÔÊÔâ•Llº¸ÊÍ-MK6’«YŠ­tÎÔ—&L¢J0"•2„À², ÊU¢šªJÄÊÕ­f§e²Í-­Û]mZŠÁ¨’ô¬D´"(,= *2H‘µ-lVF¹´ê–„S²˜­j5šå3&œZée®…VµŒ3k¦¹+œÍ#G NËšVÌÕut“QÒVªâS5kš©¬'Y«5†­g ¹…RÖ)¦³¢uGVµ¨È†Ë˜˜“Hí“hd—E ˜ £.©U¨¥Õ¥–V²ª«˜ÇJéªh•«6Š™«ŠÉf XÕvT¦•*Í0©Î† ’çÌd–ÉŽjÍa&mUU³¢¦µ f:N&£]!«I.¬•m-jÐÍs\¡]Žff´–Ê®¬Öºëk›J¦:ÌjÑ•a«‚šZ¨æeœfiJ\+š1c¨Ö¹eZ«*ʈK ¢æ]bµ×d­PÙÅÔë9Í•©†*ìªÔÌ–µjÌå,[3£ ²ŽJ…)]XÖ®I4¶U³U²åYq9«sD¦\f´S:âÙihªt­ii³2É®uw- ,¦] IR±ÙPÝkf2MV“Vu©Xk˜:Õ˜««å®Kl¤¬ˆF¸%(¨ˆ¢¨«=Ì<¢±F«­Z¶¡Jå« ´²®3®ÓJѪ® «#–˜Ô×]Õ\ųIÚº6Ick´8æ™Ôg(›Lع´,ºå­ZÖÉ–5ªÒ °Z#Z3YsŒÅ«pÕÒj•‹Q£‘hfBΘ©%–°Z&³]¬®´¬É-s©81UM¦Q¢Nalµ¬£¥®16–lhÄ­“°D—5 jÒÔW4Æ­);X•««@Ë,6Y¥e­Zj™Wp–kYQ&ML©­–«ªëM#5HŠ(¢ ³T„¼‰]Zµ9ÆjÈP³4¶µ­QÊCe*ÅÒµZ–Ñ-¦Ö¬¢³uš3–dÒ²j§3™ª´YS®#‚×Z’ÕfºÙMf)MQUV¬°®e® –³Ui¦¹£65̳Y¬ƺ:Ýr°c)a³]5,µ©m]¬c•es¡®ÌZÖ™lS9Dœ“IaVl³6”ÅÖZªèËKV«bÓ«Hê,ë²Vs0ÕI´íYJ×s(Ú»®!s Šk\µ ÑšjºÌÚÙF8Å’*³ZèÅÆ«"ÒY¡¦¢åLÔ³N¹I8çZd¬e£5#Z«¬Ù”¸ªÙ5eÙ²ØàZ婬Éd\»¨ÍMiÉÅt«-JªÖº\hZ,uRí[KUdÕVµµXrÚRÔ´Ú²³W5R]IXÝT\ÍLQŦLÉÑfhÒ£ÅÕËYæm)5KZÚ®ç fÓY”Š]T²ºQ‰ss%²µJ´fÈÚ¸ÍUÖ\ÉuhukZZä–²×FmRÓ¥˜¶V[6•­v0bZ¶HÅœf¶Z«(•uj±4ĵ®(ņjÅbŒ±®0ºT.kMUcAÒmR™¦æ]:˜\LuέJÚÊ5D‹VrÒµ±Ö¬u­X¸hˆTDE™‘›¡+\S]—BÑ®ê‹]eRäÍš4–ëUœ: W3`˜Ö®J*t b‚ÂÊÓ(ÕqB»%TíS•£‡I”V®­Y‰Õ•u©cWV‹.E0¬Ì„8Ö™­9tëF¬MRTc X¢¢¢§lYŒ’2ºVÊÚÆ¥•—1‘ÌêÍ1Ö­lÊÔK:É5KK%(›5Õ]‘Fªiªé¥×EÖ¸e®£•iV«‚V©ˆÑ3Y“)«dÙu)TÚƒ«g*Óí3YŠÒëf¹rÒ4°»D!Æ•UÚB‹J¶«­ehZjÎ]#Z4ÇGT«’ésUu.u:ìCYjY¢"Ë]qŽ+]sZÚºê¥uÑ«U;¤ÓZäeŽLÑt°Ž5MF©W.8*ê[%Ù¹m:Øå5M¢Zå*âÙ:Æ–ºÃJJå¢ÈQYGUE23kF« ³#+N¡®‘ƒQ³-ՙƶZ•-Ô¶4¦Í¬`³.Me†és«uqX1‹jÕÕ`ËZ²9•ÔÄ©¬œN®Q£šÖ–ÖÎYÖ ‡U§ZeššÙu‡5™•Úµv‹œÌ޹k™1iÍ2Ϋf(šY­ÒjZ1Ò8šuTªdˆ‹S‘ [®ÕÖ‰,µº«Q!jeRÊÕµÑ#2ŠÚ™Ö×6•b¦V覹Zái¦²™Ut˜¤ s(´!Ir2©",²k,´e™™®º“)ÖÆšµ”ÍjËVjjÂÖ2ÍKUdÆ´.b5˦Gaš(JY2ˬ¢ˆ@‰"3Õ%̽sȱ¹1ZÔÚXê®bh¥aJt‚jcDÚ³–›©SºÀÎÃ[J UÉk,jÅŠf@×XÍuY«$j&gZecP(f ¶bÑ–6jrÌ™©¢ËEÔ’&ë ꤲºRMœÒV³¨t«-j¶X«¬¤§YjçIR@<Â*‹BŠH‚ñ4õ–pEpªjšÉ¨™Ðf¦aµj¶©’4´ê--¦ ɵvEІk-ƒV¤V2k£šã)âÆikH‘Å*›:ÖˆL®Íjku5ÄÅ¥'LδS9J4k%¨£¬f·já"œ®Ê¬ºS)-Œ‹©–”ÆeuL×:–¢™5kZªÃ†f4XÖUtÖ¦¶E6C±6™N²)Z‚¤Óª®®µfRζ¬Ì²NµÖÕ2°±‹-*ÊÔ˜®j­©ÖФÖ†$m\X©.Í2Z Ë€¤ÓMIŬ«KU¦%mMMrÔëRÖ2rÒ´˜rÕÉu¬VªuV8¥µQlfΑ+™…šqfÖ›JU¢šÔ²±Õ¥W]*¢ëXÖéµPŽj±°Z-k]AÑ;XU9°ê‘ÒVvŠÌ&¹:JÙhÆgU¬ÍV³…[+]HeZ”Õ]v©£.gUQkjt¦®Êj]1ËM%2Å×J²R¦k™–™Øê­5Šs+5Ni—4V®ƒŠél¹XÈgUV®§"î4jU©]+ËM3%J˳Zê†Åh-n¬ë²Ùm][Q±ŽM•³*ìÆæŠª°ìæŽ*J´Ñ›C¦#­6³… Ó-1šÕ­ ©5 ˜Êv«jeœ¸Y’Ía«K­VµZ¢FÕÅ"êºÓ(ºY­•S2êtì¬ØM*œsM Ì´’Ütë¤æªœíf,VK3K¥ªÉ™.NšV\µÚÐiªšêæ´ªR²ÄËY®®ULwZ²¤åM ZÕU4Lft‰MQr´©«u¬Ô]¥Š”¹HÔ•Õ’êSÕʶ–]mvI*ÊaJÓ2eµÌ×S2Öª”5•–²ÎÉ«¬¶kªV¥.TM –iAU¬YF:.µŽJ$­¥6eÀf²ƒe5Ö¶µ,Ú³K"Ћ™ ë]š×+EPÅ­s2ÓjjÌË[KµZ¸hÄg9¤rê0d2µÜæÕ¨5Ö¶&ɦ,i8ì©›Uu¢iÊsQfrªë-ÕÐN²WmY‘5‹LÖ:›Z¬‡.²ím3 Æ•Fɰu—Jã¬×-©¦dcV˜åU¦…ˆÅ‰²v5.¹w-h±aR-5µv+-Õ²ÚÅFæµn% ×jÑ­b[[d—I¦ «ZËv4×Bª°²[V×!•ÔâéeÙÔ]e¬Êë-jªulÚªXÖ’LÉ,'U;G5DzZŒÚ¹i©F'5šæv6®³©«\εË2ÖkW9¥’íR‹WBÔZ¥³%sSq­ –RYYK2e[ë5´Õƒ®­rŽ0è“YK®Cu•0š]uÍ#SB+µ…©§C0W\ÖNbQÕ8$°Ó©lÉȺNºÆ××VRhi¦¬«hÕ£%ŽÆºZ¶²‘šËJ5© (ÊQ’¶5MpÖªÄÖ‘–¢šëŠ]Vj×ZµmÓ(ŠÖY9VkWhÃM\ÕCaMv¬ºíjãZ­U*u1Öa©uG3ªlgf˜\ƪˆ6­µK6VÍ®’Ó8»Yš)dò D‹]õÌŠ ª¤73Y]Y±5Ì6iÒ*š‹T3ªµX’JÁu«f¢˜Ö…iHÓœf£¡Hh]Év¬­s•!R‹©K¤aâEPBE¦f„[5S%&ÌÖk.‹«²íq­Y©¤Ù®E)ec©¬˜äÚå«R®Õ©mkfc˜ã¥ •×\‹RRÜÌ´ÔÚÒÊË9ºf(jˆ3[YIVXÚ¹*³[eeµmUÓ:¶JÖ£«*Y™U5®`¶ªÖhÒK#Vã— V-s¥Ôµk\:•­*kŒEXÒNmR«LÎjÚ”KXäI3 ljg3YF!*¹+Y:³W\Jv[,¶ËT–²Ád²ÍjV%,©®fY¤]kj–ºæIIÃ:L;RŦU«©hkU9Ð)-#*)#(²‰H³XN¢Õ²uª*ª´Ç,Ô§NÍ&‚nLµ!µ’±ÊÖ­[F\¹m\:´«´rœÖŠTˆÌ55§MM2Ò)¬-Ii`iÊÊÌjâÓ!ˆ½TA‘<¢“$="ÒÆkU3ua\Ôæ§4œ¹­2Ë+–Ê2¨ª ¦«•Ö––ÆÖ–‚Qš™ªÕ™kZèIe–u«VÊZEÒç&ºÓJpÒi–Mj*k£—-®ºÌ3«XK«•©­™±2L¶ ÊÄÅt]¡l9®ŠÚÚÔµ¤Ê„Hu5¥«leÔ×V1a"µ®[URZ6KI«E´ mCÍuŽ[VË] ¡j¶©E][["´ Žê¬á›Y•VNjëT $å5]k(Ù©²lJkUJ\f j¶ºì\ºÄÕÕS2‰‹uÖ;3.•­F&f–²ÄZfÆ¢jÕ¡Y1Ô­kY­ª¹tLKVT×YfªÓV*µVµÙ®&WY®êíY“\¢\KE«5†É™[PáÆkMZ.k¦×e—TÌ£ZµYeRµ£ŠêÙ-²Žfe¢TjV𲫠C2âjÉ(ÈéªÒ3®µ­Jº›&TSšÆ%j# U&N¤Ù´-tcVÑÂæêá²Ë’ ”¥Ŗ-©ªrëtYi™)mZµÂ6jEVMegt­F2 šP”©šÕjÔ[V1˜•b­,±“ˆI­:ÓJ¥Õ5ÃYejÄWZÊë…jéŽ +5&µËVnQʪ.’Õª±µlŒ¬Å™­M´wFÖY’ÙFK¢…á!¹zQ )“‰Y©uÆÌ]³¬­k³EEBT‹5‹%÷qÁ‰ãò13,5$‚ÒHŠÆ‹9:ÕÕÙ)¥PÅ™j¦liS5%ä3µk¦f\̲±f²ˆ‹š-¡š‘UY­1eB9ÕªÕ“]2µuŒ­4âkXåÊ2±´“U”µtÚ–Ušä´ÔÊ¢ÖC1ÌÆ¸t³$jªœšLærYŒÒÉÕRjˆRÚê´¨µW5Ù›I–s)ij­‹ƒ«LmZ±f¨Å ŠqÚ‰µi´ÖZÕÕ«[tÍrD„X&Õ[ s­4™3U¦ŠYœÚÌåd›XÚÔWr ,ÐuNÀê䥋4ºaœtʹ¥5šÔXU’ÉVYY,.ëa«T5™[&¬NrEWjÆjf¢µM¬¨˜Ù#N­L2ÖjBÒVª]¬ºê®†²ImBµth¬²å¹)8wi—KTv¡3•-3¢ÉËU&0›-V†9K6',l&¢5Z‹NäXE¥i)r !(*„Ѝ”£ª«¢„Œ(€HÊ"Œ(),*ˆ,ªR (¬ * Ÿ£ú蟥ú—ì޾µóæBŸñAòD# sÿa¥‰ò‹ýVʸôÌÆ©’žkíõø@U(+Š)2€((H H (þUUX UWþÂþÔ áßâß­ÿ­ÿïö÷}>ú½~¾ù|ÖÆ¨šom¥þÒ¾r3†šÚ2ÎT_?Sf­è¢Çšøp[²OÕëx·ÔŸÈ÷ïÿ+"Âdï’5™••„` Ä¡–}”‡ðd¡³…࿬ò3œ>©{ˆ$Mºø=κ>qüš\ò¿á(ÉØI­TàTü?póDÑýõ¼µêºÝ„ÆD‡v8‹áFϪ. ”d†mØ…@P€åTH(ž´ô8¨|sº™HP0¶(qe(&*‘­ÚËTƒ7 ³ÂÃÔT¥Wö<¦…¬ç|oH¥%+©çÖi$„– JÿÔêèåU<ª©(Æ!ï¶[%•C°;Øê‘#|ÙM弋Ûy9Ëâ:¾ŽíóìßVâêÚ2prí áV•EâÍ~…|ÊàI\[øƒ.~7»gÍd Ê…Øì©Mʲ*¨ðõ³WÈà¥üM{s’kçÃͶGŠ$|Gð{ €B>‡ÑUpë±V¼œÈI˜1âÞo,ÖÄ'¬xdæ3‰Þ6°9š_—Èœc]/ü¸¨£Æ—Öü.$ÚÛJæËn}ÊM„#!-[fgiXúm•I0èÖì~£øì¦{3ìNG²Fª:aWl°ò^ßø„g3µ^VÆÝ ä%;ú–ry¾ßœsŒîhnÄÐéچ̥UQÙôQ‚ ®Ê ÏíÑ!WbDa~uS·s5ýE³$*én«Ð?úp¨âCdå<³B ÇÅTŸWåšyŒ*ùµ<¹a¤xݶW »8ØÚ´: Pà§Q‰,ˆ# »CD³( ‡–ETå}Õ@` €¾˜£o¥tQ[ôo¢iµlÌÈl/Ý×µ BiL–窄â­,>µ8ÑcwF©/ù”u!Ì€‹‚R@Ê¿Q1æedܲ£JöÍ ¥}én.~|ê_jIEKOÇ ¯}kXNUKFìSveÀà&PC0ýkwºº¾s”‹…–6èÕ ‘UHáKÙE‘¶‚:7Èã©ÈU)é™3ë5ObB5Uó+cŠâ}ñ}7J›À®85‹}e’öI;d”Á¿9,ç˳tN¡Y§t[Ö\M"°/f`ï†Zφíñš>7‘ŠoÞ`Û.Å)¼þ u>–)"´m(rfJ0ã|Dëœoåüýñ‰ÎhuË„Ž=áPu¥<*ìUîÍå usÎÍÕdï¡Ú’ÆÂ‚ÄY¨_z5ÉHŽ–ne”Vr h&}<ãš,Þ™j‘¯ù³§HNîÖKY;ÙÖQZÿ‹ê„ÈrêH@EÄk…ˆÖC±‚Ô¶/ aØx&É}œ-µ´3bþ¬m¸SÍG«½æÄ£ùK/,3­`›(°kG©¬ìã\6HA1>ÿ•æuðàò¦]rŒù¸Ž+œˆUÎ1—Lãõ]]Â:£Æó” E ~½0½‹Óª× âfÀóÇH‚¦‘PøÚ<úŽŸ'Æ—Ý–Þn•Â;ÛàagƒAlFÁ[ufäf3¥Ÿx[Fí¾ï‘ s^LÛ¶®ÏÛSå/²éb—ÓÁF ™#s¦-06‚ìÝ·¤J,¢}í´`; bÕÜ”˜¤L¿Z-.Pdö“ÚžÉrá=3³Iðü ǽËÎXÕ!6Ê’9¨XU i‘j¬W „Š-ˆµØåÞd‰LVÏ).$¾C!âˆñFpg2£{<ª˜èëH ðСÄ„º4ì‘Zñ  X‹žg=òæ|v$ssb/Ÿ+ÝÅËX~QñnÙ/ŸÜ^ìçÜÖ7Å*rÑ%†ÆÒi”á #õÐ͘“”wNÙ:ßÂ?…©ìˆ<Í£6~ëÕ à`2 Iï²é 67=•³œ×HíÂÛzœÛS¶ÃH8s{×¼&Û‚»s$€5a£A†ßÇ@ë ÚÅNpº—³! `Õ4³ŠÂ¶Ýb2·^g%Œ,'X %/Fî2t}ÇæÅ´5ÿZ5µ¯Õ';•Ï'§Áî&xUs¥ÂR RE#u*•lJóÉBÇ5%áUIèÓtbkŽls¢ƒ¡²ÿæ9¤æ×Wô/pùã Ô8ïE‘BËF4IÂVå‘F+JkàqÅ>·¨F/­R[®èöŒ)zWþTy5 ü…kò lÓÀþ]ãxª[¦à¿HúB[áoÒܵX¤„ÓïSRZÕwøéue´Ã,ƒh5qÁômñ'!Uîîf¨¬»BHÝôø™Uª,ï…¥¦ÉÉaïW®t‹·ÙP¦÷ïñ= à¶Øÿ\º±bç?Ô°ÓÍÈႊãaP¶l°œ"Í7‡Í5Í”ÊZ\›†ä­™‘_Åœ´O;=‚¶ŒÚ§ä ÔÜl&ÕlùE¬„>0Y@gðÛØ¶“A&¢âû,ER·±…ª¾D½–„ßé‰ýÏàæ+\L”D¯q,œãþ!gYÞ¼wåÂa¹{åË\½á_> FÖ^!øIn2.,º6Þó‚×t`Á—‚ÛËãÊG<,‰ð¥A‡M¤¶É ¼¬äL^/ÄÖ+›î£×U”™/ dHUý‡³cù<¤ÉÚ¬J `ŸÙ\˜ žoS£0§bЖeá¶¼Üvï®ExtÜMüÜX:ê•[7Mj;ÊŒJ c¾÷7„­®Ë$^Êog-›Km~"m¹½ÞÖ°f¥Lé‰* ãñwÞ{†•$5ôƒÙË*9\2ÚÍ©>aHgD‹Tçusív[î×¹ŠÍÀƒÔܺ·¢ðï ½Y r€xy_–G—dP+Ìo ©)¡q¾ºUìÏ™gtd¦Åå…eë°ä&à»2‚÷]™¶¼]/ʘ­ÆV0O5Ó²¨‘M»W{kgƒª ™e*ƒ2–Ñã¦È]×))›J üÞ }Œ°´éàËSxÜ'e{ÝŽQÞ¾žçÀ’ùt[†L¡íF&“«áž¤¦‚ч­›„pœz¶ZØûHixl…1B ùó3áÊóFÓ¬þyiÀnµc¢-ÅF/V£íNgàùð^¯ãâÓ¥;’¹Êoã‘ßåëEô „è«zHÝógB2*qëH&E‘„$§¶=ªŠÐÍa=QA,‘åÑZ˜AãH›0'ïhÃÚÅÁSe[z1l| T_tÌêNÄÚ]wë9ÃËWãçîý8OÚÀ‡ –Zx¥úxš¼O…¾©eñ ×=œU9ËÍPö®#W­hú3TSE¦[Ö-Ècóì¨ XQÏXÀpP»}a‰‹æ’™–n‚Óõ Ñ¿Ó÷<¶gŽå~LŸßG<¬•*?› oµ*Îù_VßpãMÊÂ?lG“g+UÚÿ-R¯¢k£­Hx݉„ORdX¿] ¹,ÅÐ^ë­UÜ6²ÉØ¥èüÉúˆ«žãTøù>‚\eÂî¬9Šz>T®üoŒõ Ÿ>þ ¶+‰ö[ý‚Í5¶{åGé)@gÎX¯Îå¬:ÁÇÍABZ.þQ6éÀPDêAËÉë{8g”fDYóLß3jßQÒö¯˜ù¥¤X_)ê ó*DŠÒ^%ëv rï*Pº­žM`·¤˜¡æÕÞ9d]KvÉn¢–¨J…q¼—P;~¬”ÚŽ|9'õUÕF€»ùdªßÉcŽeÍ”ÔÜh8¢• y²7Ä».iäÁ+ú6/ÜšçõÄ0ôýëó³ŽôÏíâðÈàxÍCt>رûñgo1ê¹úÂt‰JN&ÿ N' †mçÚ?ƽùü+pµ¶Š£rlv=[”ñP„Ÿ‡ý.,ùoÙF/õ9ï1nòÍÍf± 9?Žéx³ƒ’‚9š·ˆ'Ý?;@ûûTqÓÒ_Åç‚ÜGiàyÖ‘‹Ø¢+÷Ói*ɱcÈã²½°ªqÄdë¹RÍËå~^–õª(jY,G&“©«ýŸ×—>ÞAí 5„ØxÙÎÖë_Wj‡iÆØÒ<À¶›,ñRr¨Zÿ”*Ÿ¿©ÝyF{ûÄãE‹)áòƒa¤_líkG‰šq+`%xÕ0³éNªž×|U2!þŠ}6Õèëíͯ˜n¹Sx¯ÄãEð«m”ÞÇ“pJòÖݘ¾šç£¿HáLa,Lñý|×}Ûˆ%Üœe«òÿæïÓ¾'.ä4÷ÐÞyÒêqsZ½ )ÚÎMæv§Qa@a™5í9% ŸÑDûo*Î/ß›Ãl”Û÷òF‡ïÊŸ‚Õjet¨ñ%we7ÚÜ„Èm–©iüHü3îÆ´æ‚Ïw‚-¿<Íø‘ÂQŒ21on{ÓÖïèçÐ<$çÙ;Qç¹û²Qn¥Û2_ß…DQ‹ €«Â ‹)¿Xn®cý~½¼+(UÎÙý-6ï8}”oÊï¦ù„8ؼÕj=WÖŸhùmaÑÈpµ¤}7“˜ß”×mñíUXZ±bŠô`]½*Ý™óóûùâ¯c›ºõÎwW"·àØ 20%(š¯„…ê‹ƒ¡ …ð슮l6ÿ¢¢„¢ÁÕF*¡GÒÆ$ðy«ÍÕ‡^ì¤ ½;ýC¶û%hVâ0ó8"áüyJjíé}Ô—j“‚BÆ·Š€[Q- £!@R£û©íë|ÑïŒ+m…«¬¥˜õí¼ùÆN‘^è|H/ÉT=h¿ÃóãÒ81—É|ÇqM,¦“i€&œ“«ØVÔÒt ¢Z/sI`ñŠÒVQ×FÂt0H È)Ц¤©M…{"2|[áå†`~i7ÉG ]H] ŒS˜©ÜÎÐpŠX~îÏhº4v·³ÝLž¸ÜˆðCR ¿…-k@è‰vJNûzúÅïì·Ñìsðæf,Kô%þOÐóôIµ^~½¤_¤ØÓ‰±3øŸÖcn¢­œ¹@J(àÞH RªÊÝiÇ„EªdUÜíjq¦·±2G¢‚i¤ÿ~Ï.r&qæKiZb`Š ²Å袂•¾XQ¨½LÓ\|<õéwíƒëÊãDTû\òo{XéA‹uëÄÐGÉ«—‡ ·H, 2Y ±÷ŽGÒºkJ™‚qÒ-@C2››a°@â‚qŠŒñÿ›­L4u1÷Ö½ä·ñ²›û~ô|ÕûYþ¦äO’?WÌ?¥¨ûÖ›ï%âÉ)붨¾z{;lE1ñ¨…AØØvBF©B±ö´ÊnÝäRPðËš‰ÂKÏyâ5È Ê¥O©ïãz.j.oYã#ïo/¨Ib¾¸óÇŸ<‰ ˜tŒ'§25úéE]}†×ؽWZ†v€ž_iÞÊ{GH2xÉ£cíS]œM¨JÒ±ºÓä‰Âµ`6ìdM¡¦zœæÄ‹Ê­ò·jóxö17%Uí’­Þ#ad•À0FDBF5¢ÛLSÞÆˆÞWã”c×”•­FëòñDo8E@tÑ3éÅûeðñò,L?K^ÆôH¯õ6ãåu³ºMH¼ýIûÑ:> •Q,‡ÙsýÍs …Æ °„Áuô—_<£3c¢M Z2ó}‡+ 2Œægoñó·«¡YèÉ—rßPí­üÛB‰úSv+ë ùµ v‚SzÅzÜ™ÏHaP02ÂFÔ¾ ¡Æ‚Šëe!cbBøÙ‘6®ºFÒŽl–ÈôtD»c;\˜¿‰‘"ÞO9t TäÆ ]ãóVĶ+yº#Rj”µ1n¼ ëÒ«Ru¸&tKQ[× µ“7¶vƦ¨×ñ¿—”]úƒ9¯‚±³bVõ±ŒTáµ€ëA›Ûi¡&fmjÖÐÐØš r'7­ \°(øù´-$›DÊ2 ó{ÏŒO¢Ý® [eB÷iš/Aéɨ+b f%ObN2±ýžö)$ºý#ÛCŽF Œç-tó•vÃˆÊ mÈãmg ›ïO¯«Pª{|{ÃY‡bÏ\¹È[½¯ÑìSœoœ¦Õ÷¬œn ­LDè×*‹l†A&„Ð!(Tc¿ÂmKƒã „!pL#¦‹.µª–, ÃœŠˆÊÒgx(×b˜Se’$ÌF;æ½ZÉçÏ®ø]q_9Ý"4^žËè¶ÎbØÃ«XUW”]u¿Í¹îñ×( ‰tè·V¢­Æ|5#Ói3Ágk§EÚ“ª-rA&hF“ï^üüfy¢’’T!e%yšpåÄ$häpÈ&rlÞ_qöÂ!@B J6l‘¼A6b*6ꈌd/i‚ðÙÓjvD“GO•kkLXО Ü2ÆÈƒxJk•!,᫵ZÖ†ÜÛhØ—ûY˜”|›_3Õz¼$7L¨¢ ¾s™f¦k•  ™˜ëTÀJÇ“ ¡kT%t¾ pаmç"6ijäz5RiãIãÆ!sÐÊ«² ¹"‚âˆ$Ì\~OWÎ{òcR›òNïù2oD˜£–OVu°Ílé šNøÞW”äsNºçY3XÜÞv½¼™^|ð¾òÔðlbx*d‰Çœ› i›WvsòvkØÉï]ýg7ïØÜð®|»ö²d^û^dÔ®¼·gQ™å·Uu][qžr\æáÞ·³…Á<5Ê+Êö®õqïÕïCn´ œ$“¯‡ þ)ïB £ÍòÅìn ¶Ó`c盵kAàïÚGWyþÖ+øô‹’ûoz1]NÛ\Lð—œ&»Ìе(ÔñŸ{Ó¦ñtyœ>vj!e‹D=ëbk¯âO>o$É éÊÞ"äPJÙÖ¸… £v©´ëí´O-TæÍ$´Ò„nÅ t" ÇkðZ‰a ö×KXCçÏè“мý²ª¦ú-¬µ7WÒìiQ·®<¢¨>SlfkŠ‘í¿®W{g”™Í€ljìÌ•¦[åäØdp*ûŒßéGÎGÍ–ŽtB¢‹ÇñhV¡Ñˆ½ÄàǤNL¥ xªÑy<÷‘I4‚ˆ©y» jsÏ×aµ¢áTÍ£Ô:$¢%ê$Bv«’­„$TŽcëVõÜ«ñˆRÕ¢þ{d~&¾bfdoÞ4 Û;ÍuhF‰$!cJªž­KAzjoç£Ãïóû`ô,62uW\ªA&Äs®™DD2Äþwò$D]rþ²oÃÓúÞö}æt#›9Æç…™}^öš™#Ù) AëŒbÀÅ¢m´…FzÖ?ºß_#7•óž5 •jþY3€"°~æe­Šfw±JÑŠ…ëjÅÆTMOæûûö“À8„›•D˜êk…üñ>~sÛÖó×øû)F´ ”bvL££ø²-5 ÉZ±ÒµQ_&- —£‚Päpm‘<ÑB˜ëTVÉŒ…MH*éŠã• 9—Ï{xõr'Íóy2©%T^ÎUÑI«&úï!ê}šTM'Ðédò"èGØÚcÞO+“µ5­jo f8ñ|€ôÝ}oÉç0¢u¡M\§õâzsÏ­®í‡š•ÿ4¾¼n_É´y!Éz5öûçÎT÷Ú0ÈÄ($¤,’Lœ«äùóc.5¦ƒ4†iЍf1hëŸ!TÖ×Ôêkß½hjgæÒßÜawè—|[=÷juàL#P×-!L]×fãÃìÿÇÎï´ îiÚŸó“ÂòÞþ}ß=ä>L™$ÑLhœÕÐç¼?æÉž¿\aù_´{×õ½ȽûKæE]ë³À×TUiLÎG}Œ†§õë¯=%_ÔLPÄ´j6&&.Š o^ Eãj?Óå…âK5í¦Þ‹T+ ʤ1ûy®èøÒI’{ÕŒ¶šrv^<ÕѰTLÄ« ù:E@u©¶.GD˜1¡¶fŒÉÙ èúï“Ï‘Q¤³m¥õçœX‰3)ë"y³äu_åÁ¼·H§Éû^–9v+‘»­L×"„D©¥D(xÚ”n¶!w~©™55‚W"b@¶Ã„СGì`wOQt„‚Ú-)´ë…èj?W?Ï|¾‰VÈ35ÒÌÝ“ ÀDv(8ÒÛ—RÈO tÈ_¨¾ý¤Ÿ?¨þ'ÃÂ8xù1–Ñ$È–lhE ðpvHBžÆYæØÛ–Ïõ<¨ïaaÜŠEëôÄß×:!,Núì:•þÝ›ßl:éŒûy |XØÅÊ™±ðÒ*äú*»)ï5 fMâ[ë?>Ÿ& DÔ©«ï[Ñó•Ag¿'Ç‹•AO!hŸµ|Âö½¼†ôG;7ñûï}xì‹R/O±ÒŒ&„" ñªTDQ¼¢y&vS‡¾`üñ“íüû¦†{¥Pú‡%_kµw̺¹õr9s½íá3¶Ð’4SÙwóù|K}¬™ß¶r@)…#AL–ª1ÖXÐûn:é‹ZmÝ'çê쯢rlGò!õQSË,¼døO!æúd~|ï$¿¶[Bz”ô(ÌV×nƒúç<*„(m!‰Š  Fr¼`{üH«ôÚQ6`H²˜öƒïeì²§úuç‘%{ÏCÌ],@ÍüLžñÆ%̈MNÚH²bq¡ÙB°M=avT¢ÝñºÓm¿“` á#ç^&_.ÀèÃrÍ¿»d|ÅÕڔ܆u–ðÞž_VIo;óù0¯8Ñ­4Û!™„Bƒ@©Þ´Å_ã=üHª+ù¬ˆˆ}¯x¸uä\䦫ó·±+œç¯`‘B®oXóäóîÉ·µá.[Ø›RJ˜G•ô{Ì>Î6##Ȩ>o@ÖÔ‘-2 :£qÄÐ7™Ù7u(,ÃÝ«©¹|íGú7ñêúR×Äc:Ødf! ™ºßݾ¯¡ø¡ð±+—`YS“U›F²"/i‰kYÌÿ¤íDûïv=*Ó"¼Kz6©ã9u*§åvéïkP½¾³çüi­ GÉʧµêÍæäžù¶5g9e-dM· Ÿ±ryãåËÑ¢UV2âY½ÉpÓç®Ì}@‹ÄËêD1C%lÄÌ×m­+]]ZezDêÎÅ­¬¬ŸÈ%VŽRGB—øaPDyWQóZ7Ó]®G¯}õZ–ªÓE– ºà ŠEÙVŠñ¿_n0ÉÙýl(¤Û³½ì(Å#Èš¥¬JÖÆSc›swž»(‘y:½ßœaŒh]´h[„R'×ô4ÄÜû×ïâcÝö±VÖ¦A~ÛïNº«¾®þm¯£(üò#Hœ/OÎT^ẌkÈÔ÷C•ë“RâϽîñ엽Ѫ`((9±GÝp ŒÀÀmªE›¢«žòb}±¡=t›»J’c6̉´àê™cP "áãôÞ´Å®ŠN¸FŒG¾/>wÑýÝ Ôø¥$XTózÌCf¹@¼ªÛ&Ú[;r¥€Wêxh ©†º{ßçíÃê¾Øv¸þ¥¡ô‰3ïlK7BO‰\~L«¶È?úõ›…‡óÓê|'[bóƒÊOYØ„ýãØ_iF.µùóä$É•ééÉÐ̲‹¥Ô“?ÄEãnR{<,’ŠÎW­w.gêóùëZTq±EhÒéÈÒ „Á¼f‹›§}îú³>WÏL‘èªaãïײ{j¤*„xÅ[÷ÄÊôˆ@ÌM¶ïâmT•"…AQ}i¶ðz" š²yÞObLœžŽÂ/øöÒ{Mëad˜û׿G|ˆçÚ±lÏ"!*#óÛÐOÌÈY‡ï¬ø†zsµÄÅ|^Ýç°Ã×ŠÌ Pà™_&**]²‹š™ ùO;Ör"Csùì9æ…^ê¼ó.Ã%ƒ­1ª2V6p`0ŸÝûJŠ$þþú3éÀù,'‰‹[6úÞcÉû{É>áêòvÕ@ P‰¬B',Jå‘Llcf"<9)sò_1$ò÷OÏ~ô¦í×eOÎÓ™]ðŸFM¼ÇïÛÏ#éñç&KÄ™âC=Y5Ã’wØ·Úys}½ï<Ay×dìƒèèéå}ºÝ«Ð_[ü^üþOŸx¹d¢õb¤ž2{Ò™“Í{mÔŠ‰=-z”UåDȽ$DïÆÃá:ôÕ^z'Ö¼0g½ü‰óí…1$=}šyVΔɬ§Z\¡ê4AŒLáq4׈ÃÛÖr+èkŸÑ´¿!òrî’&0÷µä’Ц_¯[×Q_]ðÚáÔó¸ûåL'dù<Ô½ëûP¯'Þm2Ý­ºŒ»`ü™ÏッG›æâ~ЗÖËR(,„WS#ͳÓó“üÞù}^a–dTM!wT×f6&´`‚‚Ù ß‹Å7ú3Ÿì/Ù¶$÷Û(xJ¶¹åɱҢÊù=¿ºÖV™u­Mâ£ÛÂn¶Œ®Ä6&ØW¯KA&Ç‚Z)’<e6¼¢…r6!74pÀÀ¢\#œ©RÖ.dZ´UʽòyÌ‘§¨Ïç¶éTüûAðµÆo¡a+‘_`É‘­ˆÏ·G*åyzR¥üý½©^¨iT·Ç¼ýëD„SF!± „$Ž+Uî÷v6 ´V¤5Òg8«ØßVæ__Ï|~ôå|~¼LÔhŒ¦2´Ä0Ìóµ`³zÚõ{ÚG7}¦"&¥ŽùûÌeÞÙáN̼O(>¥ Ì‚űn¼+H1 F…w8&g—¤Ï“OÙûj‰õqNL£äÚûèŸ9æ/ðö_ÞœB¼Å}­9%L'kXÚjÚ0Ñ"Š/ Ë“ öx¹l_Íf ÿôwç ¿®ðêá°žu'ñ<†¿‘¾Oh^˜±ûÙñš¤‘ù¿±*ú‘ïÏWeåòS³:s±¼’¯.O=׿?ÂBý?a&°šXUÐíš^…E3×"þB-®§š ±“H\‹pÝØ¹á×´Lbti14b…ŽæÈ¢'½ï{$ÜòˆÔeºÿy3ÒzD{+Ù ã7z—™„éáèg(èþ8ÂËýL#õüÍmÎGX!0mæ¹XñìÛCÒÄ5^rsULP\TÀÚ˜mŠ6Ñ'Û£òO }¿{òaHdDIõ”yQx«”Á!}tå¨<›\âHÛˆT5*öoAçÈNy{݈NòÞ«q%M CRCžý¼XžËG_á7Þ<ñ‘24"t÷(>ÚM •'²/‹Ù&Kœ™ñuè$|]Ö¸}°™%¿;ïq’¥f ®‘çù£Þ!AI-ïu›Ÿêxrü¬o±†z5³y$ikÇœ­ÇÁi«SZ"4tqâ–)†DÆ(gªÆ*V†“‹P7T ¥èþ&ô|Â,÷Èdõí—pÑÆÐë…„*úƒÒ4,•ìnÕ1œ÷H¿k̪Êð·'yâ÷½ãªR/kXq¾¸SVõYÃï2îbžòd'#¶›*±æ›®‰ˆÍç"º(Mi:ëiÛl£ >7y÷šQª©Pö!LŠEm“Dƒ=öõåBÒEûÓ^®Ïd/{H~Cßy0Ï^dAfTž&p÷÷×½mOfGÜkhutŠ/ç~¼ûâûÓmm›iD ޾ַSÙšÇëÕT©è˜.K¶ÙnYOÑk¥¡ÛTv#Ôž“É9ôP?׌÷ײ<»vÚ»#ˆ­ƒ%Y‘uìZkÈínéMÖÑ=œ0ü„‹ç¤~›LÚɱ8ž3D™™ 28)m`§¨ï–/‘ô¾Ä¯(¦¡úé~ö ½Œ£ÎbL—kŒŠâú…ƒu©¢“Óšef1²! Å*Þ"ÒIåÄ#™(Ú{ø{m@µÖókÊ(ö«œã€k|­†A1RY% )çÎS{vä^òZhÖ\ ÀªeUNزó™H`ßRD«{$BoM&¢Ó™'“®á”ly-o! øá=ŠLBÚžï'‘дK!Òd3ȎصBBªª“˜QuçÎÉ´d“ñãï{l‹Q¨ý^¤ó W=’{¼ªy Šg…Tc< ˜¤aŠŠÞe0ÖΧy•>¶f™RM£ÍA~~+ׯî…ãzQù'æ=ý¾q½;iæ­™^ÏÏžPóĨ½W™˜{òè¹™§Úç²JÏTL—ÛghUNÚÉäùÏ|÷É.Ùs™^e¸Óg‡ÛvO †$Mr5[‚˜ó»6îJ‰)-Ž*8Èít„Ši‚‘ÈB :B¹Ï¾a $ôÓBO•Ô+ÂÊóV.±2g<ýëϼû)·•ì3$øÄë¯\{ž\ÊŠf<mËÞ¸ù<ê¾»8­‰Îµ4³bS#À†”¦Ž>WðÏH?AhJx½»-TÊZhù-¦„ñ÷æ¸Ïž7_ÌB‚E5ã/y‚@6Ž·Æâ«§çÉŸÏ|áð›]êè”O¾¹>§ÈÍí°“4"¢Ìüô®¡(„”Z‘xQ& E$8Ș£Jèž8tÍÓu³Œy¨Q%¶Ý‹[PMBQ‹ÖÆ?'…pÏÉ£ÆBºÔ¼mM&TÅÁŠ ºš)ÚÈ”/I«¹Ñrù¾OFÚÑЭJCÅ,I¨ÏÞwªš=¬Í¶2fÑ9žfÕÒ~Ðd<Ï mBÕïçÞ<‹Ë'Õ‡³’Òó¬™{ú½74|™ÃóhÈ)´ŸË#¿nû׳>á_Uûíô{öÂýôA’ú>Œ*:Reˆi¹_cg”ßFÞÜæéâ“ío$6'êòù½ât̳ð¢£<¤yÚ¡yBÛ;ë­ÝüM ®„©~…>±Ž° ÐÞE$Œ§åï: Üd ¸›hµVž6“×–ùºÃÐJæäÑ|É„ª+;ÅÞmtôæÎÐ/^ÙÍ×+'Õ“í°¢¯¾°©˜òìÛ»&NÈêL’®Úª±ÀbÕo"m4m™`éN¸ù´)å7]E†Iž•á×)’EûÊÑç:¸þ¹ß1‘ByRnâõ¿”+À¾OɾöÔ?XU×/Õ$oÎå=ü¾|Ô5籤¬8ØŽBµÓ*1¶†šصSä!tC µ )_áõEàSTupíj*Yá5Qúò™AI“Mzï{ÆM³Ÿ&Lôñížð™j’Ö§/+\—í"ždõøI<“ùéa—áò.UæöOh2 ôRy“:”˜]wñ;B™žŸÎUÔŸÂI9G–ˆOÐHÿ/zö³ š.Ï5ÎO´üÈŒ’ýö­÷³WÍôÂgäÉ*)µÜk˜ì‹ ïc;Ôò"˜yåz]yíûØÊ‡Úftd%Lñ=žévÑ©ÔÕ(JÏ"°ÚhÍ´þÞ<ïßa0Ü/(ŸD©ô“£#r0b6»²$;7ê“×§).ÇEPj2I2¨Âº¾¼¦9(ÿ/ǧƒÅûCù‡ËD(¼’"³ß.‘®¬ä2J«‹»’Ú\KûŽyûo™IRIÙé^Êo•©Y…Ž I±Yc2F1ç’„áõœëlçõÖpÔÔ¿´/io¢ÏJˆœ¯<_l(æiWä^>{>~gSßZqËÛ× g²"5ÒD\Lô=.ƒ-CeÍ«24mÄÖvsÚ{’¹úR}ã5ÛAm’Ãò"Èi±wÚ.F†¶ŒQ¦³‚ fY_JF€¨­`Œ+`©È¢h¶6™-ëèðeô)ÊQdÏmYuµwdÏžØ…ï ¤©É£k̘LµRMzÖ¨´ÀÉeÊ!ƈ(eð·ù·½Ä«cYáý¬yèýaÔßÎkU´µ gfî¶p°¯B\|äï_×'Í y훌öùë5p—ër dyâüÙYü™‘™ëA’Æ·fÄH×Eó°‹Âj|÷{ýó¸“ùô{dÔt:FÞÁŸÏIæõê\ð§/)öØV[w|ôð¸þ]øôdi‰zAEž2#_ù=ôò¼ ç;ž^ÎÒ©ÓÛm:;íyê¯%¹çD‰ª¶Ä(ŠŒóõòg¼°ìHyM4TMtš¦}ÜvÆìe†~²>kï·ž'—¢»äÈýEêÛšäIž§ˆó˜>OŸóJá}ìNÛ/(¤Ï\ܬ¯É©cúŸÝàOÞ¹k=’LÉž^U6%L©ôŸ¶ûÇÚ=Kïm×¶ö•_¯.úíÙ¡%Îbï·ÏgÏõ•}Oæ®>L’m²~®W¨¡†èEy|¨dUg[ùŽóìF®\‹Í—d2(OOJD-]dr5’M‹"æo{Ç|™Wì`õè±¶_]îÅÑ=ôYæOæâyÑ £Büȼä…ùü&Ñ“(™mß=çÌŠz·£bì#õÞ7§+£ä„ð‹!ä]Þ‡zÛBʆš˜#èÆó‹&£ÕÞEêöé*^žE µdØÉœ™^Ëéq÷ß{Po]‘NóäžDßF~=Tú»:³'("ÞÆ¯íœÜÑÚ“Bf;Q´n{ÏcÅãóŸ·´¼ÞÜlþÆ”N–›ÛP;_·¸h!<Šú«Œñ/"…S#‘LºS³&F¸”ü±/ˆžñ™Ñ›AmíÞôûÑï ó!õI çg¾K1UW¢×ç"8I½ µ[vIååãÞƒÏ#Üy©®†×|øEðóÔ×?˜\Ò_WŸ>ô`zû{ÞÙ,ctÉ}m"2ÕKú²Ê½ ˆ­DÉ// ,©ä™1†Ñi¸ŸŸ¾¾ûö->vâyAu:é6ìä£m™UvØåõ B(¢ó«ËÉ 2Ä*ÕW%rlZzÛ¶L¦…7£h”®j‹–O_{¤^*NxÉÊmgŒè6’Y½C\Ž®Ôa”¶ Œ—tõJ -Õ(yïzã‘÷¢Wï}¤^òt‘;rç!'au©j%Uæâòyå $Û\ꋊùtÍ릖±MjÕ]Òëj¥'—RìGzÜëÎr-Cþ³ïo:ØÍÙZáV_â.Ôy ÈOfWšÑgšIcbg•EëAjìÂVÆM®9©‡\›fÆ Œ½’ •nãf*’œÊù$û[7l‘ùïWVÑ„kÛÙ›Za­1ÔÁÁ¾Åm˜Ð¼ ¦b˜…•Û¶S¶‰RM7I3ž3õœyU#G=R-G!ˆíœ×†± ­ † ‚A¢\ */¨iE뫾IžËµ¼—™¢>C>õÇïJ"¢ö½‚HE^‘oÐoA#è%Eå‘59áIy®MBåzejJiÌ®)™åé‡l¦¿ïa"¬bÕõê•âp‡¿Fpüº„~nÂV…ÏUËÌYã+бt6Ûö˸ª›Ÿ; 5Ò Š‰q¶±“‘«õÞO7ÏÞô“™Ux\“Ü›õãÓìÁœ[-žŠ<Ü™_(’ a°\*Œ8çš1Ä«h9\OjWM·aãÀ½R$Ã0‘W6-˜žU'š2Fš*?•¨¼F{3 ’tÙ…+˜œçÏZ<äÉùœžAÛ Zþ0†A1R£0ªÆúG…h¢áfGŸÚó<Ò=*yfëúÂã×v>³=…Þ-Ê3 S1®*Ι¢ïåÞOßi&Bí“"æBxv0¦(“}dò½*¯£9 ê<çQµÄ¤ç· èÚç¯ÚZf£(rDˆÒEœv¶¨ ˜Ð!SÚ_/«[÷²ùñ]EÁóµç<þöPÞûòw–•0ÏJ”[F¢žÏ)3³ò™“H (ª§B œ~l1ï¶Ì’)Tõ(úÛÛh¤WÐOgˆ‡iM(¢ŒXuN¦Iæ{“ÛÙ½òI䫉Ý‘úé^ 2I+Êqóòù{ãg”DŸœ©‡¨ÃˆgW}²é'†.%aZ§¯]ïG…WºBŸlî¦f^mïZVüôzMåÞVºQ†áM(ºgOÉ$ÊÏ'W¬d_9^PŸ>w¡r4ìö+ƒWhšîD¨åJâÔ™^ ºbåˆÑ/®3½rhZ¹E«“lfrI„û{Þ Îa•WRˆDA¦º»F1ôN6”>m)W/,*³ 7÷mSÌÇØ‡æðóRÖ¨F”õµæ×u¬œ¹É*ù¹O=I!*MGlJÎQø{xºyUN™&ÚÚ„U2ÖI^u«=*"‚I1K!“Oa^êj)$f)FK7^Æ>~Séb”„õ’èR)í· ¨EéA{”飡‡Š¥{–zê‘nÃÊÖ©š`**…¼hÅ.™ N]©Ñí xx¯änåAò‰A \ä]–\‹ÙSºtg»*ýew®ÙèázRWùlr’K}²…›Ÿ“ŒrŸÍr©2¦Q>xYuS K¨ |™Ýg : Qr¸ÃÆyB¯la61Óbx]¯mŤŒ1¶“5O©5¡/ÌfT¹2¯ÈKêÖ{µž«ùõåï a$ÈLôL)þŒmÞ×(™”þ0š”^_hÌ„‚‹Â¯_Èìy#ÍÔ¼ç9B ®¼V’_>C#éaé'¾sÈçªò}¬û•åÈ}B‰–!jéH‚Eï¢Îú|]>Ò2ç<åªæÛ¶6î¬Äf‡ö,yí‰Rú÷¯]ö¸õ÷ž‘ {G™?'{S<( òr•+\«%G|É«¢Ÿ0«ç‰çÄ’D!“²dã ‘T‘m¼•æEó!á鹨rCŠJ),Gg#×±á2xÏÛí󞇑¤ú6º®ëD‰m?$†Tò¹ÎFG¦>ÆsÊIážsÔH$Ì™6¸{lZe'§…^LÏ“ÍÊ¢ô¡ÚÕ „8'xD¸3 eƒCtT*ë2;Hí‹7žØX^ß[ßݵ4—êÏPʇ#\mûv{Ãäe¦TH¡*D…N•l¤¢3j-q=(ôtm‘&yÐyþ²5²úW¢5dÖ¢ù/¡è Ñzò=s‚É©ý¼ûÍ¡¥jU*d«?Ÿ}wɈ¸/ÕõzF’ÏOg‰¨ÛmDÉ©z©•}Œ{Öúìö+Ïuˆ6Æ—=’º®—%Óš¸ºÎä´e¶u¶›jTžSlbiŸAµ!qí”[y èu™Ï41v¡EÝtNÙr³8UC&˜êºERõœˆüœy1ëˆy¥¿•¦„I&W§‡ÉdDÖª¶‚DzM¡wzL¬?zÊz˜yM¡xUå/cöÚÛ/"ŸÓØÂÅËÑ)5lQ¢&–“¨ªûmÐѧrˆ(²IûùD|™:”»œÚœEg“;(Ogµ‡q×>ºsz!þ!óžù9Y"G팯KÒjèEé ‰ëùy„dSÔ‹«EBHЗFr.IOµ÷ƒkš<˜O„$Q|òÛNáÔZáK´vÞÑë¼ç¾ñG×^¹¾·oÖOã>(™>ÑÊÿ"|¯-J^e9=yÉí—(º»-èé<òˆ“ß!‘Q}yHƒk&ð²jí ÛÛh”Q9õPY™vLÍ™tÕvÛwHIÙ5»´k²OF×ñû|÷Ïv_Fç³ÕÑ#{Å5¢{HÁ =ž•ÞÆå“vÃaîžQAÒùÏ–§–ý÷m¼šqPh=·COF5ÓIG@ˆUÜ¿XÞKEHœ¢=<¡3Æ Ry6Ö‚ó*ø¼“¦pólt’"“3k “1l$Î4"z$'œ¹³‡ :Æ-F² öí§×ÎÏ*‹Ñ{zF‰!' Ù’}쟽Ûˆõíq‘VIÈ_¯$É¿m‘E-g2ÐÖ£Úò½Kñä•'hˆaIg”¤ìé¤ßD¨§}ößisÂÏO ªtöp=–Œ¨dÌœëç¤òr¯^»VÛíÒš žÕžQºr:Ùsù¼W ÏI" ÐOä³ìºŒ2/5+nŒäÚÈz¸QJ(Ž®vǼû{Öf¨*}\,‡½• =S“§¹ëÚ|5äpNWmVë©ú2dD^æŒÁŒÞÚ(bèuTôtéÏ:éq¨ïÉ“>5ÙSRôå§Dçºs¬f‘Om’o .ôd àaAà5bW ÿV©\°3˜óËVØÿF_:¾8Ž&V?ÝzÒ@´‡F%Šq,™)ÍKè,”ÐiÚñ^ßwfëÎo!|‡†ãòz~uJúÓë7f¤*Ó³Wb…AB¥Ýx x)^JÍ¨Çø¹xâ#xgDˆ!iJÌïT•(øwhK)¥[–),‡dÎÒU™Ôécs•ÝaZ[åd{ç´T?ÚQGøÆÆÊvµÂ¬Ž•:])ôQ0²JòÒmß" ì[*Á›dZœ¬„›sHŠ1†¨1NE•JĤÓʾ•›-Î7Ám°¥é÷5Çò#_%ʢߚmpÖõøGÊë™MU®­ìCÝ..©ó“yÞ¢-Íc›ø=û~a(—Mš¿<Òk|+h«ô-ÙÙ=®€RÝ¡Hvu—Ë å…ñHüÛ39Ù5Û`tüàt±È³§òt<ÜÓ¯Œs|uªþ ëµ¼}¸»ëÀ1¦?x•î8·:ZgEBQh°@T*³¨ÃÓm<ß˾È»=UhkqýÇÅkŠc>vÎê²üŸ'ŽÙd’ÎÌ6rÒÝFµš©NùË#(1Ð>Å­èJpà„àÇ,âøæQ¸‰2áÚÇlñ' öÉw~¸ŠG`ïré' !Å$*´@ìä4#–ü_FRaÛ†¾™ ­F)©{”êjwo!¡’š³U1I^†0p&0€\*ÌËÃÈP’þÏjl*HÈîOŠ2îö®x3œe= B3 ÇrºÇŒ:½œBÄSÒ«´Šë{­€~¼+9 ” Œá¥¤Å8Vý»Ü̸2÷µ;,†¡_Ùš´nÚ}±”„žÞYZ]>U¸g@¾G#Îõ4hbùÝqç§ ƒÊ¹FdC'–2a ïN ¥DÖó*¡ä%ðƒœCuyZ g¨·ˆ)%!­ÌùÁõ§e°0?ßÒáâÑ Ê9%hˆ@T€€“öÈÖxœyÖa“3w˜L+l²">!²Å5FÅ•@Y•ç-3óO÷ê3×9øzíxøN]8 ¾0˜ãÂÈL±@G|¼<‰Jcâ9„ÓìËéd#¿!'-ÓÖ/Šly*C ñГMÆæZXàÀt)3»§äÏÜ€ˆULáQ@û2¤RÒãâ±EK,ÓOÂTî·gÄ(÷oÜžu¹â5j&ÍwÞèÄÛ¶‚©-¥)<֛Ʀ{á¾€¢ò8æ“<]‡ /pSÓªONŠ}*7pØ/'EöÃU_‰{4ðq©ƒô+ée×Óåä{ö\1»Ý“~4©oo­@öË4ôO>°Ó‘ Nõ¾[.žoœ‡¨Ñõ± §äéQj‚ ßLÿº¥ÜxR^ÁWìñ3¢"[8ØBäN€š§¡€ÞŠDWÆFOîÞ_Xà+$Þ3¨¤a蹂½Mž¼Ça¸°CX#´Óly&Ϧ¢Ð†ðkaÊÁÁ=âùÑi(oæQu_$³ê`ÕEɾùáñ85Å lUíÑ(JV¸4Š6Óy=Íñ¼X}A¶l)¯¾™ìZsxËûjbgÜsሞ Õ» z­²õÚ§RÓZ•†‰B²Æ„'’ˆƒ†)`ÉæÃÂyRÉ ܱ9૜d×±z€n9÷]ïCóo \}ó­ÝGyã2¹Èù•”m©Æí>zÑß8œù^åÕø^{’¢Ü¯Ïe(²ëÑ%Ô®° n qLÔp$Aø‰p߉¥¯®zù'~/eT[){³ŒyéGEè2žÎ‚…K?ÑÙõ•Ý×#ƒ¥°ÞJ¾p ‰ÓÍ8áQæy@´h–o)Ê€µ±Fàa0nµ(0ä;b›©@uEM=Y™EÃs°ŒÎèêxÙÄ(µ\p_Ë‘:õöí\å3Œ#B0¹O{\.Ç]—nÕ£—ßdŠ0þ$ë>åU­§?Æ£§O LvYïÆŒJxÚ)ºKín ÁBJG=æ#‘i)bÓj¨ß{ÁŽùÙîòØþD#vk{T;¤…n@Q´àKsHNqpªQ—•³ ½ ·?Š‘•R–Ÿ}«ÂÖÖ…ÆÁõ+“ Ò ÕQˆa–Eh^"¦1FÀ'šŒU‚М&lÃ"d›°y•û§ CÌs‹4ÉtÄ ‚Ì Þxºƒ{US¹Ï¶Â0|N+±ë&ÅQ+p³zú•D¿‹æB–pD.ÔŽ è‰æ CDô7ë]:'ÍF”·ÍRØÞms•üÝIâ„Ûo)+¦<û~¹cî ¤¥°Å|ì¡cÍBškŽ' –¼®G¥#€RíÙLÙdòlH¹ Ez·Ã°ŠI’bb.HÌCÛ § hó<ÍÖª¡s¨¶í͇'†·~Ê´â­y¥lÊ]ñÆÁkb—/³ŒuDŽâÊŒ‚.*HÂM$bUÔø&:Õ‚¹£ÆlŸiÀüDæÔÝFÆQXhïXÍ Ô{ú‚Ä ­Ïuî4¦Ù•Õ N&«“VðV ‹08Þ¢Ø+¶w pï– ËT€e^½ 9K9Ïá(ØìÛ86Œ=,â%Kºy7DZ{Ë4ÍïëKíãK}÷GIzõà3œêÈÀ¡HA˜²l!Êü›BŒ³dÝ›ôÝs|>1Ÿ¶MßÞi_vŽ[r翺÷1ÊÀBy×kW¢‚¿§/j.UuT²Nd¤µ9qK¬MÚb¨õÂ5EŒªŽTõã [fa††SO‰ûtø $o-‡ã‘ù]m¡Ûdý fW„™Ïô·¬;Õ#´«cëј,(DÃë ƒ(¸cQp°ù‹Þ…æÅK¿£¥NqóA¢& ¬Ë-'ˆMh›)§Ý®Ñ3ÒÊà(Û: _”££Xq´¢¡1iéÐè­½W»ÖÈð&ZÄ:;›MUŽÚ.ŸN…ss&ÂÙ]|(Û[-‚ ¹{Ð`±ß’MWysÂóŠ›~É9¶ß|ßö7Œô: ÷@qVõ t°z-xF® 0íRg0t«(Gï•óÙõЂ^C°ôu÷Ìqhya—:‚Ûb'§3*o|>/TU^¨†£ËŒk¸¾c?©qGù–ÙÁ|?ª¯Ëûòžh–íöùAQÐOGWÅ4mxXõõs×ÛRx­ÚºPš”tÜÖ•ÑÌi.ïE ŠÉÀ§»wúwk¬+(p‹Ü©çŠæ ýŸª¶—ÝÇLX¹ƒbç*¶Û¨ x î‚9†‚ 5åŽ9<õ˜cXÞ«B8˜á½oÅ×íÑBN9S‚ 1»t·t—ãJãmAÚ½\Õ¿°žüΣÀ½s•[¿»Ù#/¬¾Sh †‚¶WS͘ý‹ ῦ´.¬_\Y+[ægV÷.aE­HÈÀÄCbSC¥q~Žó,ÿA§¼9ð[¥»8EæÜs2lxÚi 9øÀq.âÊ¡}µ\Û¼Ò_í”7ŸˆP=­[±o²ü™q7Ã,-£Æ‘EŸºƒ‚¶~]l?ßÜþoo\ŽÕÏ%Õñ êå¢#¥ÊuÖ#´éÌ0+ñN}Y×€ÖLv£ ßÞ=^:Vó=,ÖQ_Ã<¶>âÙŠÜöÜXæµÿÈúžÁLìñ‡5®Š‹ ‰5^=p{mY5°UlÃ=’Ì”Y9©y&I! ¶òŽ8°U»G£HõuÜFÝ»gÙ8¹JŸc²ör܄ֵ(ÏMÊ›IwÙ$Ë@úã×i¸û¬¯>Ô¥„h¿;±oí7º´pWŽùw‹­Î„zñkYg®ùê4“(¯¢»4¾v來ò6¹=•·3…¹[<¶³‚WK¾û»—Fny?¡»w…ËÆ¬¹º¹sÅ`qÕè(ýsU(zkG×oUó¢S&ÛðŽ§ºÕ'²µ¸ËAŸ1C ¼”¨½(ýÿwƒC @TçÉZxib²¾Öc=3,Óè÷ÿ!˜ Ël_¿œ;QòW~ _\CtÔvrlÁ—º½Ççe戾wt†!¾”ñ¢rf—‚_`¨w"úíŒ|ƯC„X“f7´B¥è.çº{¹ÈÍVOtcò×rÊ{î™»¤-U)ö€o û†½!I.K” Äì)Þy§Þó5³¶án³Tî&ÚÇa “TÉh{Ö6—™¥=â-*þ=GÆÏPÆœC<úí¼YâÝ÷6¾g=”<«‡RÞ³yÎ8kwi¿äÞäªô;à™~tÆ×t½£9ª†_JkÄ=Fx>ã%Û®õ?^ü ÉŒà\ìYÖ?<ãºó “i`óÇ•[¬12ðh³·IåQ·…Ã`T“^J;¶•sn©ósSÀW ;óºyÎÔä59ñÃù_vØõ÷%¼[³6²÷î î{eW«ÁL@áu.T0…۵хEdE¼v½žÌ¡¦9ù®±¾ñëÏ;“ô{£¬õenqÅy‹6 ó™-üÇR…<\—¾i€v%.3?6.䄊ÃÃxk • ¶ùðÐÚ}uªkkÏÁùÞNA%¶ xç˜q³k ñãn· »€‡’’lê²ÖáËg£ð¬àÒC¯ˆl_Ñ©ÈÓj6BÌ\ñ~ ¤­k˜qÜÞ¾2V ðýL¤ØŸ‘ñjEXánäŽ ð9Ízñ—c/ݵ/çô¤«×_yr÷6²_I<Ááéq݉¿QÕ\tácqP]?7+5xþ„¤úGÆM´>k¬cÔ¬ïÔmG&òœí¦¯¤‡ æ–%×q×ð¼s!¯AÚ¶wöé¯ú½x"ã5­\.ËõIDþDÔ•ú +eZ XOZi÷ªßùïÖy¼bÊæÓóvÇñRªŸÙ[ΦXÌ^Èêú]ϲÐÌU@@1“`á¬Ä?±¼ZÍ© ¥âàχ)²õ—RÀÎ$ì×㔓íG˜l¢›¥SßD^O‡«V$n´þçøƒF Ʀ)% é©5™`º_Ûä¶Ø¢Ì-&­¥PQÓ“ñãôm B{ô‡‚©ÃEs&zÊ[mÙˆÝ|}d·tXùcû{Õ4¤½•º6ím^lަzÍèÞ,ñÆY7Ï ‹_7Ä)³ s©U]E/Y¯îN|?µßµø—å?äM•È™‘Fÿ;f#ò¾ ‘h¤4ŸiÒeÎ&”¢'º×+ü»µy}£Ïg%ìyf{ÊÏz•}íz¼¤öyHY.¶ÆIRByb³#Óá7¼Ä÷úž½|ãáŸM£Ï)ë½¥æ$–ª?ß'£Rš‰:Iå/¨Ãy!ážfºm’é,A&טe¯"—®³v˜‘Í^Иd*5…¶Êbô&T ¢¶#Ži¤ü3ïBªïõ·tïÛc=S§CVxý¯Õ÷›T?$“Ù ‹ç§,×Wðù,ìYé4Ý æ5+ÞäT0A‘Xÿ5Æ(˜À@{ŒGWOg¿Ž{Õäu¨^UQvÖ”Ô1÷ŠVÄXK-¬Å6]5Qй>÷Œ½D¯<™îµ½¨jì¹ÄÝ3d‰[ ÀÓcTi» §½»¡“í×SÞÛŒêìŸiyÅÊy3ç‹Õèkp([nixy<÷çiPäoYÎe}¶ìŠ‹éLŸPg§¶•{µä´WdµˆFCm‚yCò=ä‡Ñ[o{öÙZÏj2eÚËž‘@^3Ö”«¶"º2¹ ªð¼ èš„5Èí$%νºì›KÜ/Tq9㔄*쥹©ƒb0®BŸžéמb'’¸·d3ù4PúùØ GlÐ#KKõŸ¯˜VùŠtQE PüºZ^µ@hJOÇ}Hõ@P‡êè§äIKÛ Ð{Ù_IèÐдU-  è^ŠƒJFÏl©Ö‡¤J¤:Ni:Pét ¥ï»=% %±é:B¨t†iN—BD-#GHP—`:„:¥¤i:Aëä@¥h_J4 R:‘é €4¤* ¥*i©(M(h¥zô‹ÒÒ ëM€4¾§Jè=(!éH§Jzz@Ä”#B ¥^€Z¥>Ò‰J#Ò(R­ "ºPôt!Ò‰¡¤ô‹¥¥’'J#êEè>@¾„ä.‘hTéT>  "Тé@t¢Ä %%,T¦ö=t#Ä+ꔤ4(úJJ”§GÈC¤ ŠT }h) }.”(„¤ëBiÒè:ˆR•®”z4§¡ÒС tR!BE/¡V„h4ŠzB¿%=4)éèSç̇J… Ržš¡ÕšSJ!¡UÒ­"Ò&”D4 Jž€ôú‘Ð(…é¤C¥4R *4‚‡ÈЯJ!¡UèSJ£é•hA¤„Ò&€Gä‚:QJ¶T銤P¥@)Q@/J ÐŽ•ôŠ/¤Sñ@€|”:®öU~¤÷°PiéAù*túUJŠHªè€¡ QAB‘7eïe} ¦„t¢‡JBž”Ðt© „JA éJD?J|„} %Óú°¡¢‘ ”R‘„o™] Ðj(PiJ}M‰h§J%ÛðHšA§ähB…J*4І”¡t€-"ý¤¤Ò ¤AW¤P Q(B”)TÒèA)VZ€DtªP ¥… Ò:éJA¤SHH £®~¤DÒ  "€}&Ai"´(è)tª&@é@ Ò4' @:PéhOA ZD@  é=ªéUC¡@ZJ¤DZ$)Pé ЃBH  AÒ §J£ÒB h(At¨TCH ¢Ð*šÒ"…R¨ v1Ý6èí[%%šKjª(BŠ@«YZqPw`ëAÑA@lC®$3híª§‹@¼|÷[ V¡åÉì·qèŽuÝ5r¨ë§¹y|žuO“‹´úþ×¢_'h) e6Ïq£Òo™ù ø`>KÃ1yÙ. .ÖÌLÓ`Q,¢‚$‚ö£…âþ@!“‹@PSBº4+Iеõ= 'ˆD4®”=ºCö_Bô€hU}('ÈQ'¤ÐP¨”‚H:h H%‡J "J H¥=/H‹Ðt«Ðt&•ZzU(x^€W¡  Ò ¤UBì"Ò ==쨞„)TN„Ò.”¤C¡S¥¨¢=+Bô&•}'T¢€éQùšäÈJŠ…zA*t‰H”‚´¨§äR‹ÐRÐÝ„4ô?%N‘×B†‘CЮN…:UB”J%€B¦€Ð é:CJ |‘@MƒB€Sî…~@>D¥)@¤B€úž”zú€Ð¢ô T> äˆ@#¡4 )Jš=RîËèô¤KÒt¡¡CÒ¥¤•Ð)˜44¡@Ph5¤(҉ЫÐiB€(t€é”€Ž‘J R”¤bN©W×F‚„éIð„z=(thN•„J(AÐéEt‰Ð­"ú¥(TèTèU tˆ(tŽ€JT¡ % ÕhCHºt(” h^€’ i}*‰òPM§B¥"Щ݀èhéQÐ |€¡@ûJº hP @¡Q¡(@ ZÒ‰ó°t-*'B(Ö•¨T>B¨!ÐК@t Pˆ´+H}ˆ (ô‚%t%Ý:¤€é]"(… #M U1)@- …(¢%éSC@«¡4¥ 'J½ (t@ô‰B´Ò”#@Ž„TÒt'Hü€ÒHô«¥J@(JB!Ð%IJD«ÐP¸†ù¤:)¡¦‹ØÓõ Jz]'IK@zÀ”-"Ї èG£ zM/ÈzJ(™½‡ )xšÐkÉÛmÆaék‚Lôö®;2{ÚºTºM UAG¶)>ž/B­]Ò()(µÏ«\H/QM-PÒ5DG]Æ¦ŠžÂh:  j•ÐPDâè N‚†‘ ¤Ò:»©t‡OCÒth=:=k»ô˜¨h+Ø‘Tç-3 DñlçχI3äÂrÉ“²B¼/oyÓ䄺0BLI·Ffð‡ð~OÆ×á|˜]Þ)§ñì¿‘ÈõMî£QŠÌ†4JѪ}wõOø‚ úACÿŸ·µû…ù»{½Þ6œn ¿Ô?ûxãÛÏçŒL‚ýCþuç9ÝñÞú|›Ê)ãbŽO+ñnŸÇw_ô^ˆ¾þtq†}¶æîÙÅ©B ü¤×H¹Ïƒ›ú¿Wfùà‡Ìߪ§5ðQJ¸­7é&QyÎQØÛ‰üE­0úT­U(143¥Fò…Ù•¦-‘ÜÌt™ô%2¥‡8Tú¸§’ÅWÆ‹g@sqZç•“Š¤×RïQ͆å•.d‘—s`ó¾—Dóéìù¬Õç¥nXù%§¡Úé–Ï•¹­*U &©‘^´ÒŽšETÑ©RT &ƒÉd'|ÿfÞ?HœìÖî<°õrÖÓãõvQÎsé×Zé) «·lÂJfiêªJV]:+:†*ƒA h#/€Èõó²jêEF~õ-#x“¼#AKÊV‚±{`,‰ýµ …äÊs:Ö+wß‹ìT_²?TôýÞÛzýÛF®·µÈvÉ_Ôœ[ÎqK£qVÓ…öÑå•UñÓR“*C%‰ÅRUÀ[H¹Vq*„RŽ›l‰Á—Ì‹÷žÔŸ¿¿ûS}jy°ö ñr½’o/µtîµ×?dfR6g-xTcˆn) ¼ÜWw䡿ÎöNÂÕå¤é“¢ï×ÍŸò_^A2Ó±wÑW‚@BÝ…‰‚mï|â5½ª(¬º¾Ûκ3³¸Ýx²™¸ ¢³;UªP°ê1lRP»e¿°¯©uú•WtXøìó^Ã缯·ÌaO‡¿NøôÁ±»å—•P_Ê–k(-ø^Ye&‚L¶8Ùäæ©|ÛÞjê u¯níÊ5"j8Éå,J™% R2Kn¨bnÞ^”…käçh¤C¥œpË;*¤MBª,>ïbRgþ@õ ·GMãˆ~Z<ôùûÃ^¾Ù!NÖ|Ž3p^Ýç9 Ê7U.Ž!Y™Y÷…Üã¸Î$%ï•­Ï:tÇX¢w×tóO|T0L)ÞÞ5|Åd‘‡Î9ùãßç .ŠÒ‘úý]ŸÏçÎsÔeø\~Ô²0•u;«¢²…¢.•*<Žží™#±C.à$pm›´* èVjpÓskb¤•Ri`<„K³”0£ˆgF˜¬[Eñ%JeãŠxƒC}í³¿ æ&÷ί¨^Ÿˆé±nC3nðÌCŠÝV© ªŠ&•™Õwª¨ ³2©¼§(±ŠzqOºÂaK&o[Õb{ ]7›ë)ô‚ºÎƒÖÐT~x8¿yN/£n5vZ’;ÍQÁ-QaŠÂ-€Š‚“Ä££‹»h“%ûk¶ø3x“e¦ç}j_á®ù|{zd‡Iá¾fGÃ(”{yÝϵã ÉÀÎS3‘ñ|w‡zmgõâZ|õ§òFú烾 –O#·*p ?²cR†ÿ*P‡ÃÂ)ò6P™†p‘ «pܥ߼ÄYk—¹7ó}TÆ­U†r®Ù{” tîýÒŒ=”U°tgNèC±¥˜o+h51?. —Uú¸_Èü¤îç·ŸHj!]Á¶–ÌÀŽÒ!I™Å•‰°ÿfÍÌdÊÎqåNnÿÝDbƒn/¤Y•‚×¹‹×²®µ {Q•Ye$éiš ã·XO©†š‡•ÃêgâqU_†Â~áÖ&!ÚëO—\â=«Öú#–j ?~1yÁ¶âÐ`àFFö¬þ+Ø`ÊÊ0hcIÌÇ4ì¯ÉR˜(Áq³ë-8Õ>Ú2|6û¡?¶oFS¤æç»rx@j§Â¬Î&ªE­zÊ|R¯©j"l«;–p™ÓÀ„Œ#eëÒǽæ›"Ã^å†0®ÏÌ~ŠY8œ²×¦wù–¤ÌÖ }†ÁŽSþí84Â_ìl´Ä ‚Xà5íSFÀµªEØç .]s.žòØ“eŸk ×~™ Îù·¤”ølÌ8OÅbGçˆÏE8½{ýÕÃw{òqÌ¢:3Ë ð¨ãnÓ[Pžò&²föyx˜V—N2º¹]ŒôÈÕpZýóƒ,›>¨÷-ô.hoÌÓNcí´­Í@ÜBÙŒS"43!‚JzI÷ ò>^蚦JIe`©ˆ“÷}Ö¡<Š\u*êÅŒ‡hb ~s'çz›"óºâ£ªHÊÁÁZðBÜ»$ªÑŠSíÈâÉóP§ðóK[HK§2imß5ÖWBWEó)5ÓiP^Zl¥¥—`äaŠ’I„TØ®VVˆÌ}ñW9(ÇÕéßZ›IcôTOÇ§ÈæãšŠçÞ²¡ã01íÍÉ …PnO.b—u|&*´H:ùáÓ;öôé ˜5ê¾(‡€¼À¹2ŽyEs1 žã+1‹HëÓR^pªªH'ÅA$ø&š ¸U_ÓÄeÆ)ÍœúÍ„ñÞQ¸Óo„Žtº) wTL O2vùAÌ!:­uwmêë–n,…ý]MÅ8¶žôÕÊzW¾€(!:”}ž5ÃW9VâÉ É4¹¿{b×£I µ£$T >².if”ã¨æÔBñf=è``Ä¥F¸2ë:Í¡‘øsË“M~ãÞ¡Û *1ÆçŸ¦Ã ‰ÒþïÚ]»El£€\,4þ½O”Ã<Ò4ñï»Ôî8º{QêÑ”4ƒøûß[ßo »óƼüa¿àü\dƒ-€üñ åÜR1†÷ Q ð©Tî#3=g¼TPèxž¹Þqs¾mæ|yl<Õù sÝÕŽÜx]v¢ô´®  ±l;ùk¹‹NŠip0`®YrÞ¾gÕcGUŒÎ˜=Ðc×*-qéÚ%háôÍÙµ³ËÐNÔ¸š|-J[˜Û¸…meMp1‚4€œÆÊ쉄¬UÄT*3ÚÐwTÌì^ÌUeɵ†Ç5 Ë´‚çÕÂ$;'ñöâ¾}/µù¥Äµaåk)à»Ú~}sW[®ß’çÄnµ+åhŒF*yª,u)ìº "Ô'ÊXÞ È:Ÿß²,©ü#³Ê íHM±þT“a|ù“$â½l}¯}õ²Ÿ„ØZôcÖÕó½nŸnã¸)´vj¨9\½²zF {ø.¶z>À]XÅÖød›³õwFƒ`*zÚ ºÚñ`Ð#Ì\B´<<̼ݪÁ3Õ¸Uî% ÆõÙîd¬¿™jvx¬œŒ%á)xqág—¤Vˈ.‘n\Ù=úˆb9«…P­.Ôo$Ed%@ÔÊh¥[±óV Aƒ*‚Dj!^µ 6ã EL&1KÀÒåÙ`4jÅY|æO²÷*zk:;v~Ý©íÁ }ÙHÐa|=±U³j(ù×ùÑç7LpÞܽǥ»Þ©g~øW¶n o§’ÞµÿUu!1Ôr›©—ðµ¸8ý ¼Ä:£Uy‰Yl3òünïÚ§“‡› úíÔ’ö>/0Š»˜œ´¯TÁŒ9 #`ãª2HÓ%'™#³"š”ÎpF*sË‘{ôÄhr®%ZÞ(KÁ¢±çž oSàÉ™˜k|Úß”[T8‘Š{½fSºƒ‰ø½™Y:@ŽHî­lŦÐðk×Uït½Õ’³q¨¥lº,ÞFlX¢XækìÉuÙœì­Ä°º…´ ]´ºŒë{¸9ÏL³ìA ²šE$† Ëú£&†XÂyë4eÖê>5öß,ÝþF½y÷ú\¹ïŽ)^å/riüß#ãq÷ŽØEOž,mW+J°ÍT-þŠ1£Ø]:ª†œmr‡‹mÆEí{äDâª-tâ0–¥«ªVºÂ ›ÄÕ~ðjž$÷y[T—lRþŠÏ~ÔÊ ‹¯¦“ˉâ¼hA´’8ñ5rl¤W—QASðèHhÒv늨ºOrwŽzìÅ_ÌúÞuÔŽÑÌ\Ý|^0gëÂ×… š/Ë`SØ‹¥KÈ·›»ÆYè÷_¬=«¶|4|”$Ý»Ö}!Ѹu\4dl/E…=“U,¾*ùŽg»|:¾¬ö½PoGô;ÿ)ÈB=×öQÕÀKî*†¯á›ÃV}ÀËåK·!½­6Õ²líf µFæ›#H„fîÇàØèÇ|°]™È8ôpF9Ëú¶ÀÝlãºàKÜ.~)Jgûçj/o½ä½ùò|JÌ ûîH”URþWÖ¥#XÑÓ£”ÆR3ðÔÈOl/Æ}Çi­â÷7Éç6Z攳<ŠéEsí¬¼¶ÃÔ½j®ÓnÁc3àE}t<ðñ"ÄÑ8[†X Þ酪e6½=Ε±1¢1cÛ|¾Ûv”NŠÄÄWæòÛ%b>ѱ"4÷ ÿ§³uïÑyêµÉx¶O+Í®¸Äº¾°øGÁVBþÈiãGÔðÖþ)$" óT<[nµM‰¸ŒpSšû¯rk]eoÛó n†+ø™>MƒÂ°þ/{4!`/Чl—.¾õ*Ûv‘³ìWØÊtï[tñHžûÏZ‚꬧];}Ì©K ÙÉ•°çMŠùTD}¼¯ò7 s"_¶§Dû7a\êÒ ”ýã&·Ç$WtØ£×eÖ“\ûàìT<½ë”;vW ãõélXùÉú9X¥x¥ûbF? ùü˜úªø.®ÖoÇ¡õu„³ßåg¢¬¹c¾Š°¡ûÛÓÇøL~œN¡y#7¡½)ö¯éš/ïè'÷MÄô*ħÄø¦vïæ<¢|Ö´JÏ;º. ãÎm/¿Í ê…œ®LÛ±'˜mÃMrM×»ð|µ¸Ni(¾‹_"ºa4ï7ô½GÅo*)–Ø¥«{;Œb+(A…úBÂ]±¸b -þÈå.nߦ|Œ;}Bõ§£™ŽÝÙ¡?^cy¿Å¥ıüXò*êÐü’Û"sÑÈaùÞÞ#fÙÿ€™Ù• L[Ërµ8xÊkĹOĪ›*‰¦Šb®ÒLj…Ÿ³C|«ëŽVÿ¨8Cþéh¸ï¿ÕQ8"ñI¾/‹;wWu ~"¨òéÂ[_­G8›/RWÞ¶múÛ%/œ„™´¶bò„œ«Ý?ïLük8o¢?0Úøõ†€§÷Ú¯¿7çÐGë/ô=ùå?™æU'ãûfü3çå‰üT¯Ñü`rß©gŸ¦êX¯¾~§Üþ¡Ø6¦C¿¤æ-îüWôõ †´ÛÄŠ=:íùqV‡òk¯œûUËŽ¥ùã†z¼{®qfqå8ß¼ÃAôpìH[_Ùi¾Fý°p†«¿ŽBù[cÒ‚ŸØeõH|«hÁòŸO³6›\ÆT°ôWyÎÞñmމºº°z"ÿïŽýðš¤;±Ö:ak0Y?š€’öŸŽû]à0«½Þ!²õ÷–{lu´}?Ô¾ç=†YcÓQÁöÛ1ööϨ—ôÎ 3úƦ˜&øV·’ÓéaïÔd¦pçó'KH{ù—Þþ}ºQÒÿ©ð VÖÓljsØ·‰,ñBÏ–Göå¦Ð†÷Râ«§hŸÐX±°Rž‘"E¾üÀ¹×Oçëç°•a£«aÄé2ÒÁþ2÷û}Cª~kàW_7úp†I"¯Ü¬Ú6(IPÍ¢ÛßÉ%1œGZç‡9%·ú™é_É;GÓþXÎþWÍ.Ï »ûׯÇ{Ërø+úyW¾ÅÀ^§þVX¼ö21šr*R¢õÔ1¤üwÆÍåÁµ„‹ú”ÆxdZbº(‘9ŠrØš.¢ÌÖâ>S†\0ú/Ýñµ¥ÂË®ÿhÚV›¢…Üdv gSt*·¡Q¨×ÙíØ¨`ѹ†¼I¦Ð•~]B"ç}É·VÆÖ1öG ÖU0;Õ_$æíšƒ¡:‰dÔë–ü“„×ô=ýÙ  À@V˜©„'c¾ûl/åQ"DZB…iTi)iŠR„¥)¥• PB‘T¡VšZ)J(A¡(¤@ZPJ…R„(PiU QJ¥P¥ P()( ‚J") ) ()UªDhJU¡¥J"P(J@¥)R¡¥(j¤`U_ÉýBýéþ§¸ý#ôýõÖÏÃÏä|ñõxÿïß;Ï·WO7×79íÿ‰%‹3þ‰f,ÁQ?m÷ !Sóþéù¯Öüÿêùxî¯_ƼmŸ‹½çN©ÏÖìmø4¤ÿ•÷wCùL†÷TB©J¨Ò–ÒÆIvIoôÃÜÉZºG„’ûSB‹_³ªˆ ’O^£Úûŧë›=½¿¾Ñ à -®ƒîgc/ýcCSwãwçþæJ*r2ʵۥ:D*£C¢~zWIîpÛ;t?ÞÈñ¶zëüñ.l"ªQÖ¼¥«£ ·åÖì‚®ÍTíY‡n Õ-’W2°ø Ãò?/ô^)R¼Ž7±m_cœÐr—¶t2(u4¥àç?Åb*e‚œô…5·îÑÂy¼Vš[R Fl .âJªE„•…ë^-4çT›ãu ~úûqòôú^ý?aßš¢ª#%ùE9xQqÈ5´Æ Æí82¥‚¤ äE@šÒŵÊa¯S ²ÝLý¡[œ»Ï΢9ùTã$$’r4½ÂÁ¾[h•€ÉÓò —üOpY7šº}I„‡n¥ÝY#Ô¿îIm"é.¶1S4SD@uåŒ8 Ý'JÍ]™eÝÏ8ͽCÇÒÜǼaœI”#wL˜~{§ËzÒïï7žÏ¯­úŸq‘"Ÿ wžÐ¨OÊ#䃴#v¼ç…uŒ]ÃÑ_ç>¤ ½fòÒD'‹gZ³:Ýî’Í©(N[¬º‹Eñd VÒ•î–Z>J» ²LˆTj*ïîJ§ž;"ÆUÆ}.3·Õ–t)Æä&yEÝ×¾Þv¼M‹x´TðÜ1g·†-oºFQ0/„ßjÉS!ˆàdj3ÔÊXtÝáΣ¯7 Gm>W˜ŒätðŠŽã {ÝÞJQE‰w£åÜ)-Y¸ÞÖzkrÜK,GÙ¸ÖxÃ2Lx¯Œ¾é[·ìWª}7TS¬^ylâFœF º>šààºõçÞ2èâS› œCjãæ¼ñ˜^Ùçæº*h3óËà´Anþhýé/Ð~Ú¯Œõ½¯²¹ôS¼†9n™l'Cúb7áÆ|×uÁ{¼1 âÎ0ÞÃ0õ}—Nô³t.eü_œ\q|}|ôÕÁÞ|q]\õ¬ÈG‹e²VcE¶–„–`á¥wBY(À•¹ª -lǰt l0w]ÿ´,¸ (—: &8êú~é’K}€"{$,ÒxñQ) ¹„E a?£”l¤…¨A˜Fôæ¹Õ³ÿ,iºA2Mk×` ~Nvd „ýßVKI˜Tô’ÂÉîj5Xjf{Bú]øØ5GëÊ6RÒã«le‘½Ôj΂-Œ ñ–³ÊÊnƒZ}z8¬oÚåÒñ‚Âç­sœ¹ :WSJzÒ3$­e¦ FxTqÝŒcyS«VÜ¿ýJsÙ<ñNý>úŠ`kà;–Rð«ô“ö™ŒoKXõA;çÞÿ+À4¢ûè­Ã\ÈõGÆ\MiRâD´–¥ÎiÊÙYäVTÞ05}¾©Ù ó‰¸Ss&¶N»¬oÏP ûoµ÷¸ÒOX\vég×?ü[Ô§‘Ö)Ú&!4þ0Ôļ¾Ïbàfæš %ÔúÂÝÒY*6_å Z,¦E1“øhÇÄ;û(¿>…1¾<ÒüÞ§âtj7P-ŸÙµûiÈ÷¢‘‰¹è³`Vm**‚ï*Ì[Ô¥e¼Ÿ*JÄq(T‚˜p-d£BX“iæ Glô¿0ôkllJòŠL¹&úëNtJ¶ô‹bJc;´X,r‰‚ &µ…þîomÆZµ)‹~ËÏP ÑÇcØçÛ0¦Cèù)íÙðˆÒP‹c{î:PÔH·µ‰ 빈5ú¨!KcÒ”6øYÛf_ÜQ˜ßvilØ£Š©xŠ^õDü|óüó3NŸÌ—Ó/›Eh/æ‹P—'ðã&ëÐÊ#{læf»¹ëón9õÆþíí…s®ßzÏL„N°Ì/&8`øûž±ÏoäMÄö²¢?+kU¶ÈBò^¨Ü“6WÃõ7¦4Ikí¸F¬(~H#Íu’¼ˆµ`I¶ap”½«­¹S®Vd·LD-î™ n¡[âÖz’x>TÙ•X:&6ÃÖNæˆçV…ˆ*#Њ ~ÒÒ«Ÿu5c­¼]Óc¿¼6.#°5Ë[Æ¿³.e‚MN"maj\ a¼óýäq}˜&E ÎñR’+“Ü8aXƒüS£ŒôÆ¥h ˾Ä §s Ýž¹]¼µWæÈz†;ö4œ÷+²§ QgÓ\ôƒÊ§Œö¹8ÑŠ¢›mí²ùxúýöËfý73f˜RÍÊpãl°Îç=¡óÇ—\I5޾t½t¬ÌÎ#UöÃwWf˜ýYø¬#³8Y¼¬¶‡.TƒÎ¤N®ã)¾È!R{Ì:ÙI¢¾ó&)ÙQc·-2j€^p9 : <Ýg;Éf"÷„gLÙÍ…XY_€ã›Ìev8É {éë©ãäâéWÂ*šC×vâ¡ùoUÞ)J«es­'à•d5a›j{&Õ3N—Ÿv M( ´TÛË*=â›4¼+pÀMQ"ù7£kJ}.û—Ö“Ãqhpuïm`\øâJº™”>ÉwVi?‘ü±î”­Ro0¥ š´^&J].ó3cÖ•ºN‰‘;=JYz?v´³˜ûfm8öèêÞŽ—x÷™nü.©@©²+¢à’t6W áRU/-ñv¬±Czø8Y£ÊÙ5«œñ-1žé .;ÁG9L õËzðЯĒÑc0º–wY‡ 6ßXôî7{þØî‚€/úßj?"銰>µHºjìtAšgYWwRcv†2±.ˆ0¡¬0—o=¶wÝïúbçCºíEÀ_*2l}œL«w_g9ß×R>º^ôž56:Qƒµ†ÿLúb3Q®pš”-P’a†™8¥^' ùô{ýWbæè!Ü=ÕV}ßàÆ;4mCÓ8-Ÿ+