fields/0000755000175100001440000000000013115560421011534 5ustar hornikusersfields/inst/0000755000175100001440000000000012741001136012506 5ustar hornikusersfields/inst/CITATION0000644000175100001440000000110412707163676013663 0ustar hornikusers NOTE<- paste( "R package version", meta$Version ) bibentry(bibtype="Misc", mheader = "Please cite fields including its version and DOI as", title = "fields: Tools for spatial data", author = c( person("Douglas Nychka"), person("Reinhard Furrer"), person("John Paige"), person("Stephan Sain") ), note = NOTE, organization = "University Corporation for Atmospheric Research", address = "Boulder, CO, USA", year = 2015, url = "www.image.ucar.edu/fields", doi ="10.5065/D6W957CT" ) fields/tests/0000755000175100001440000000000013114310436012674 5ustar hornikusersfields/tests/Krig.test.R0000644000175100001440000002273213114302351014674 0ustar hornikusers # fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, # PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. library(fields) # # # test of fixed lambda case # Check against linear algebra # options( echo=FALSE) test.for.zero.flag<-1 Krig( ChicagoO3$x, ChicagoO3$y, theta=50)-> fit x<- ChicagoO3$x K<- Exp.cov(x, x,theta=50) T<- fields.mkpoly(x, 2) W<- diag( 20) lambda<- fit$lambda M<- (lambda* diag(20) + K) ########################### test.d<- c(solve( t(T) %*% solve( M)%*%T) %*% t(T)%*% solve( M) %*% fit$yM) test.c<- solve( M)%*% ( fit$yM - T%*% test.d) #compare to fit$d test.for.zero( test.d, fit$d, tag="Compare d coef" ) #compare to fit$d test.for.zero( test.c, fit$c,tag="Compare c coef" ) Krig( ChicagoO3$x, ChicagoO3$y, theta=50,lambda= fit$lambda)-> fit2 #compare to fit$d test.for.zero( test.d, fit2$d, tag="Compare d coef fixed lambda" ) #compare to fit$d test.for.zero( test.c, fit2$c,tag="Compare c coef fixed lambda" ) # test of Krig.coef Krig.coef( fit)->test test.for.zero( test.d, test$d, tag="d coef Krig.coef" ) test.for.zero( test.c, test$c, tag= "c coef Krig.coef" ) Krig.coef( fit2)->test test.for.zero( test.d, test$d,tag="d coef Krig.coef fixed" ) test.for.zero( test.c, test$c, tag="c coef Krig.coef fixed" ) # checking A matrix in the case of noreps set.seed( 222) weights<- 10+ runif( length(ChicagoO3$y)) #weights<- rep( 1, 20) test2<- Krig( ChicagoO3$x, ChicagoO3$y, theta=50, weights= weights) Atest<- Krig.Amatrix( test2) K<-Exp.cov(ChicagoO3$x, ChicagoO3$x,theta=50) H<- matrix(0, 23,23) H[(1:20)+3 , (1:20)+3]<- K X<- cbind( fields.mkpoly( ChicagoO3$x, 2), K) lambda<- test2$lambda Alam <- X%*%solve( t(X)%*%diag(weights)%*%X + lambda*H )%*% t(X)%*%diag(weights) test.for.zero( Alam, Atest, tag="Amatrix no reps", tol=5e-8) # test for new y fixed case set.seed( 123) ynew<- rnorm( fit2$N) test.d<- c(solve( t(T) %*% solve( M)%*%T) %*% t(T)%*% solve( M) %*% ynew) test.c<- solve( M)%*% ( ynew - T%*% test.d) Krig.coef( fit, y= ynew)->test test.for.zero( test.d, test$d, tag= "d coef new y" ) test.for.zero( test.c, test$c, tag="c coef new y" ) Krig.coef( fit2, y= ynew)->test test.for.zero( test.d, test$d, tag= "d coef new y fixed" ) test.for.zero( test.c, test$c, tag=" c coef new y fixed" ) # test for multiple new y's Krig.coef( fit2, y= cbind( ynew+ rnorm(fit2$N), ynew))->test2 test.for.zero( test.d, test2$d[,2], tag= "d coef several new y fixed" ) test.for.zero( test.c, test2$c[,2], tag=" c coef several new y fixed" ) #cat("done with simple Krig data", fill=TRUE) # These tests are about whether decompositions # handle just a fixed lambda or are more general # checking passing lambda or df to Krig Tps( ChicagoO3$x, ChicagoO3$y,lambda=.001 )-> out predict( out, lambda=.001)-> out2 test.for.zero( out2, predict( out), tag="Tps with fixed lam") Tps( ChicagoO3$x, ChicagoO3$y, df=5)-> out predict( out, df=5)-> out2 test.for.zero( out2, predict( out), tag="Tps with fixed df") # same for Krig Krig( ChicagoO3$x, ChicagoO3$y, theta=50,lambda=.5)-> out0 Krig( ChicagoO3$x, ChicagoO3$y, theta=50,lambda=.5,GCV=TRUE)-> out test.for.zero( predict(out0), predict( out), tag="Krig with fixed lam argument") Krig( ChicagoO3$x, ChicagoO3$y, theta=50)-> out0 Krig( ChicagoO3$x, ChicagoO3$y, theta=50, df=6,GCV=TRUE)-> out predict( out0, df=6)-> out2 test.for.zero( out2, predict( out), tag="Krig with fixed lam argument") #cat("A very nasty case with knots and weights",fill=TRUE) set.seed(123) x<- matrix( runif( 30), 15,2) y<- rnorm( 15)*.01 + x[,1]**2 + x[,2]**2 knots<- x[1:5,] weights<- runif(15)*10 # compare to Krig( x,y, knots=knots, cov.function=Exp.cov,weights=weights)-> out.new Krig( x,y, knots=knots, cov.function=Exp.cov,weights=weights, lambda=1)-> out.new2 # compute test using linear algebra K<- Exp.cov( knots, knots) H<- matrix(0, 8,8) H[4:8, 4:8]<- K X<- cbind( fields.mkpoly( x, 2), Exp.cov( x, knots)) lambda<-1 c( solve(t(X)%*%(weights*X) + lambda*H)%*% t(X)%*% (weights*y) )-> temp temp.c<- temp[4:8] temp.d<- temp[1:3] # test for d coefficients test.for.zero( out.new2$d, temp.d, tag=" d coef") # test for c coefficents test.for.zero( out.new2$c, temp.c, tag="c coef" ) # compare to Krig.coef( out.new, lambda=1)->test # and # test for d coefficients test.for.zero( temp.d, test$d, tag="d new y Krig.coef") # test for c coefficents test.for.zero( temp.c, test$c, tag="c new y Krig.coef" ) # and Krig.coef( out.new2, lambda=1)-> test # test for d coefficients test.for.zero( temp.d, test$d, tag= "d fixed case") # test for c coefficents test.for.zero( temp.c, test$c, tag=" c fixed case" ) #cat( "done with knots and weights case", fill=TRUE) # # test with new y # lam.test <- 1.0 ynew<- 1:15 Krig( x,y, knots=knots, cov.function=Exp.cov,weights=weights)-> out.new Krig( x,y, knots=knots, cov.function=Exp.cov,weights=weights, lambda=lam.test)-> out.new2 ### compare to ##Krig( x,ynew, knots=knots, cov.function=Exp.cov,weights=weights)-> out.new ##Krig( x,ynew, knots=knots, cov.function=Exp.cov,weights=weights, ## lambda=lam.test)-> out.new2 c( solve(t(X)%*%(weights*X) + lam.test*H)%*% t(X)%*% (weights*ynew) )-> temp temp.d<- temp[1:3] temp.c<- temp[4:8] #compare Krig.coef( out.new,lambda=lam.test,y=ynew)-> test # test for d coefficients test.for.zero( temp.d, test$d, tag=" d new y") # test for c coefficents test.for.zero( temp.c, test$c,tag= "c new y" ) Krig.coef( out.new2,y=ynew)-> test # test for d coefficients test.for.zero( temp.d, test$d, tag= "d new y fixed") # test for c coefficents test.for.zero( temp.c, test$c, tag= "c new y fixed" ) #cat( "done with new y case for nasty data ", fill=TRUE) # #cat("test with reps" , fill=TRUE) # set.seed(133) x<- matrix( runif( 30), 15,2)*2 x<- rbind( x,x, x[3:7,]) y<- rnorm( nrow( x))*.05 + + x[,1]**2 + x[,2]**2 # perturb so that this example does not generate (harmless) warnings in gcv search y[20] <- y[20] + 1 weights<- runif( nrow( x))*10 knots<- x[1:10,] Krig( x,y, knots=knots, weights=weights, cov.function=Exp.cov)-> out.new lambda<- 1.0 NP<- out.new$np NK <- nrow( knots) K<- Exp.cov( knots, knots) H<- matrix(0, NP,NP) H[(1:NK)+3 , (1:NK)+3]<- K X<- cbind( fields.mkpoly( x, 2), Exp.cov( x, knots)) # compare to test<- c( solve(t(X)%*%diag(weights)%*%X + lambda*H)%*% t(X)%*%diag(weights)%*% y ) test[1:3]-> temp.d test[(1:NK)+3]-> temp.c Krig( x,y, knots=knots, weights=weights,lambda=lambda, cov.function=Exp.cov)-> out.new # test for d coefficients test.for.zero( temp.d, out.new$d, tag=" d reps") # test for c coefficents test.for.zero( temp.c, out.new$c, tag="c reps" ) Krig( x,y, knots=knots, weights=weights, cov.function=Exp.cov)-> out.new #compare to test<- sum(weights* (y-X%*%solve(t(X)%*%diag(weights)%*%X) %*% t(X)%*%diag(weights)%*% y)**2 ) test.for.zero(out.new$pure.ss, test, tag=" pure sums of squares") #cat("done with reps case", fill=TRUE) ################################## #cat( "test A matrix",fill=TRUE) ################################## set.seed(133) x<- matrix( runif( 30), 15,2)*2 x<- rbind( x,x, x[3:7,]) y<- rnorm( nrow( x))*.05 + + x[,1]**2 + x[,2]**2 # perturb so that this example does not generate (harmless) warnings in gcv search y[20] <- y[20] + 1 weights<- runif( nrow( x))*10 knots<- x[1:10,] Krig( x,y, knots=knots, weights=weights, cov.function=Exp.cov)-> out.new NP<- out.new$np NK <- nrow( knots) K<- Exp.cov( knots, knots) H<- matrix(0, NP,NP) H[(1:NK)+3 , (1:NK)+3]<- K X<- cbind( fields.mkpoly( x, 2), Exp.cov( x, knots)) lambda<- out.new$lambda Alam= X%*%solve(t(X)%*%diag(weights)%*%X + lambda*H)%*% t(X)%*%diag(weights) test<- c(Alam%*% y) # compare to test2<-predict( out.new) test.for.zero( test,test2, tag="Amatrix prediction") # test<- sum( diag( Alam)) test2<- out.new$eff.df test.for.zero( test,test2) Krig.Amatrix( out.new, lambda=lambda)-> Atest test.for.zero( sum( diag(Atest)),test2, tag=" trace from A matrix") test.for.zero( Atest%*%out.new$yM, predict(out.new)) yjunk<- rnorm( 35) yMtemp<- Krig.ynew(out.new, yjunk)$yM test.for.zero( Atest%*%yMtemp, predict(out.new, y=yjunk), tag="A matrix predict with new y") test.for.zero( Atest%*%yMtemp, predict(out.new, yM= yMtemp), tag="A matrix predict compared to collapsed yM") test.pure.ss<- sum(weights* (y-X%*%solve(t(X)%*%diag(weights)%*%X) %*% t(X)%*%diag(weights)%*% y)**2 ) test.for.zero( out.new$pure.ss, test.pure.ss,tag="pure sums of squares") #cat("done with A matrix case", fill=TRUE) # # check of GCV etc. lambda<- out.new$lambda Alam= X%*%solve(t(X)%*%diag(weights)%*%X + lambda*H)%*% t(X)%*%diag(weights) test<- c(Alam%*% y) # compare to test2<-predict( out.new) #test.for.zero( test,test2, tag="double check A matrix predict") N<- length( y) test<- sum( diag( Alam)) # compare to test2<- out.new$eff.df test.for.zero( test,test2, tag=" check trace") fields/tests/vgram.test.R0000644000175100001440000000477613114303027015125 0ustar hornikusers # fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, # PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # test of vgram library( fields) options(echo=FALSE) data( ozone2) y<- ozone2$y[16,] x<- ozone2$lon.lat vgram( x, y, lon.lat=TRUE)-> out # compute "by hand" outer( y, y ,"-")-> hold hold<- .5*hold^2 rdist.earth( x,x)-> hold2 col( hold2)> row( hold2)-> upper hold<- hold[upper] hold2<- hold2[upper] order( hold2)-> od hold2<- hold2[od] hold<- hold[od] ind<- is.na(hold) hold<- hold[!ind] hold2<- hold2[!ind] test.for.zero( hold, out$vgram, tag="vgram single time") # multiple times including NAs at some times y<- t(ozone2$y[16:18,]) x<- ozone2$lon.lat[,] out<- vgram( x, y, lon.lat=TRUE) N<- nrow( y) hold<- cbind(c(outer( y[,1], y[,1],"-")), c(outer( y[,2], y[,2],"-") ), c(outer(y[,3], y[,3],"-")) ) hold<- .5*hold^2 hold<- rowMeans( hold, na.rm=TRUE) hold<- matrix( hold, N,N) rdist.earth( x,x)-> hold2 col( hold2)> row( hold2)-> upper hold<- hold[upper] hold2<- hold2[upper] order( hold2)-> od hold2<- hold2[od] hold<- hold[od] ind<- is.na(hold) hold<- hold[!ind] hold2<- hold2[!ind] test.for.zero( hold, out$vgram, tag="vgram more than one time point") # test covariogram versus correlogram y<- ozone2$y[16,] x<- ozone2$lon.lat sigma2 = var(y, na.rm=TRUE) lookCov = vgram(x, y, lon.lat=TRUE, type="covariogram") lookCor = vgram(x, y, lon.lat=TRUE, type="correlogram") test.for.zero(lookCov$vgram*(1/sigma2), lookCor$vgram, tag="correlogram versus covariogram") # test cross-covariogram versus cross-correlogram sigma2 = var(y, na.rm=TRUE) lookCov = crossCoVGram(x, x, y, y, lon.lat=TRUE, type="cross-covariogram") lookCor = crossCoVGram(x, x, y, y, lon.lat=TRUE, type="cross-correlogram") test.for.zero(lookCov$vgram*(1/sigma2), lookCor$vgram, tag="correlogram versus covariogram") fields/tests/Krig.se.grid.test.R0000644000175100001440000000476413114144442016240 0ustar hornikusers # fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, # PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. library( fields) # tests of predict.se # using approximations for conditional simulation on a grid. # options( echo=FALSE) test.for.zero.flag<-1 long.test.flag<- FALSE data( ozone2) as.image(ozone2$y[16,], x= ozone2$lon.lat, ny=24, nx=20, na.rm=TRUE)-> dtemp # # A useful discretized version of ozone2 data x<- cbind(dtemp$x[dtemp$ind[,1]], dtemp$y[dtemp$ind[,2]]) y<- dtemp$z[ dtemp$ind] weights<- dtemp$weights[ dtemp$ind] Krig( x, y, Covariance="Matern", theta=1.0, smoothness=1.0, weights=weights) -> out if(long.test.flag){ # the grid ... glist<- list( x= dtemp$x, y=dtemp$y) set.seed( 233) sim.Krig.approx( out, grid= glist, M=200, extrap=TRUE)-> look predict.surface.se( out, grid=glist, extrap=TRUE)-> test look2<- matrix( NA, 20,24) for( k in 1:24){ for ( j in 1:20){ look2[j,k] <- sqrt(var( look$z[j,k,], na.rm=TRUE)) } } test.for.zero( mean( abs(look2- test$z)/test$z), 0, relative=FALSE, tol=.05, tag="Conditional simulation marginal se for grid") # # test for covariances ind0<- expand.grid( c(1,4,5,10), c(3,4,5,10, 15)) x0<- cbind( glist$x[ind0[,1]], glist$y[ind0[,2]]) look2<- matrix( NA, 200,20) for( k in 1:20){ look2[,k] <- look$z[ ind0[k,1], ind0[k,2],]} predict.se( out, x0, cov=TRUE)-> test2 ds<- 1/sqrt(diag(test2)) test3<- diag(ds)%*% test2 %*% diag(ds) #check plot( diag( test2), diag( var( look2))) # Another plot to look at plot( c(test3), c(cor(look2))) hold<-cor(look2) upper<- col(hold)> row( hold) dd<- (c(hold)- c(test3))[upper] test.for.zero( mean( abs(dd)) ,0, relative=FALSE, tol=.05, tag="Conditional simulation correlations for grid (RMSE) ") } # end long test block cat( "all done with grid based se tests", fill=TRUE) options( echo=TRUE) fields/tests/Krig.se.W.R0000644000175100001440000000443213114144407014534 0ustar hornikusers # fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, # PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. library( fields) # tests of predictSE using # off diag weight matrix for obs (W) options( echo=FALSE) test.for.zero.flag<- 1 # a nasty example with off diagonal weights. set.seed(123) N<- 50 x<- matrix( runif( N*2), N,2) y<- rnorm( N)*.2 + 2*x[,1]**2 + x[,2]**2 weights<- runif(N)*10 x0<- cbind( c(.1,.2,.6,.65,.8), c(.05,.5,.73,.9,.95)) temp.wght<- function(x, alpha=.3){ Exp.cov( x, theta=.1) } Krig( x,y, cov.function=Exp.cov,weights=weights, wght.function= "temp.wght")-> out Krig( x,y, cov.function=Exp.cov,weights=weights,W= out$W)-> out2 # direct calculation test for A matrix # Krig.Amatrix( out, x=x0)-> A test.for.zero( A%*%y, predict( out, x0),tag="Amatrix vs. predict") # now find se. W2<-out$W2 W<- out$W Sigma<- out$rhohat*Exp.cov( out$x,out$x) temp0<- out$rhohat*(Exp.cov( x0, x0)) S1<- out$rhohat*Exp.cov( out$x, x0) #yhat= Ay #var( f0 - yhat)= var( f0) - 2 cov( f0,yhat)+ cov( yhat) Sigma.obs<- Krig.make.Wi( out)$Wi Sigma.obs <- Sigma.obs* (out$shat.MLE**2) temp1<- A%*%S1 temp2<- A%*% ( Sigma.obs+ Sigma)%*% t(A) look<- temp0 - t(temp1) - temp1 + temp2 #compare to # diagonal elements test<- predictSE( out, x= x0) test.for.zero( sqrt(diag( look)), test,tag="Marginal predictSE") test<- predictSE( out, x= x0, cov=TRUE) test2<- predictSE( out2, x= x0, cov=TRUE) test.for.zero( look, test,tag="Full covariance predictSE") test.for.zero( look, test2,tag="Full covariance predictSE explicit W") cat( "all done", fill=TRUE) options( echo=TRUE) fields/tests/Krig.se.grid.test.Rout.save0000644000175100001440000000422513114304717017720 0ustar hornikusers R version 3.4.0 (2017-04-21) -- "You Stupid Darkness" Copyright (C) 2017 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin15.6.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # fields is a package for analysis of spatial data written for > # the R software environment . > # Copyright (C) 2017 > # University Corporation for Atmospheric Research (UCAR) > # Contact: Douglas Nychka, nychka@ucar.edu, > # National Center for Atmospheric Research, > # PO Box 3000, Boulder, CO 80307-3000 > # > # This program is free software; you can redistribute it and/or modify > # it under the terms of the GNU General Public License as published by > # the Free Software Foundation; either version 2 of the License, or > # (at your option) any later version. > # This program is distributed in the hope that it will be useful, > # but WITHOUT ANY WARRANTY; without even the implied warranty of > # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > # GNU General Public License for more details. > > > library( fields) Loading required package: spam Loading required package: grid Spam version 1.4-0 (2016-08-29) is loaded. Type 'help( Spam)' or 'demo( spam)' for a short introduction and overview of this package. Help for individual functions is also obtained by adding the suffix '.spam' to the function name, e.g. 'help( chol.spam)'. Attaching package: 'spam' The following objects are masked from 'package:base': backsolve, forwardsolve Loading required package: maps > # tests of predict.se > # using approximations for conditional simulation on a grid. > # > options( echo=FALSE) all done with grid based se tests > > proc.time() user system elapsed 0.764 0.043 0.800 fields/tests/fastTpsPredict.test.R0000644000175100001440000000421713114302620016734 0ustar hornikusers # fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, # PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. library( fields) options(echo=FALSE) test.for.zero.flag<-1 set.seed(123) nc<- 10 center<- matrix( runif(nc*2), nc,2) grid.list<- list( x= seq(0,1,,10), y=seq( 0,1,,15)) coef<- rnorm( nc) delta<- .3 out<- multWendlandGrid( grid.list,center, delta, coef) xg<- make.surface.grid( grid.list) test<- Wendland2.2( rdist( xg, center)/delta)%*% coef test.for.zero.flag<-1 test.for.zero( test, out, tag="Comparing FORTRAN grid eval to matrix vector multiplication") # testing predictSurface function nc<- 100 set.seed(12) x<- matrix( runif(nc*2), nc,2) y<- rnorm( nc) delta<- .2 obj<- fastTps( x,y, theta=delta, lambda=.1) grid.list<- list( x= seq(0,1,,3), y=seq( 0,1,,4)) xg<- make.surface.grid( grid.list) look0<- c(predict( obj, xg)) look1<- predictSurface( obj, grid.list, extrap=TRUE) look2<- predict.mKrig( obj, xg) test.for.zero( look0, c(look1$z), tag="testing PredictSurface and predict.fastTps") test.for.zero( look0, c(look2), tag="testing PredictSurface with slower mKrig predict") # new y set.seed(123) ynew<- rnorm( nc) look0<- c(predict( obj, xg, ynew=ynew)) look1<- predictSurface( obj, grid.list, ynew=ynew, extrap=TRUE) look2<- c(predict(fastTps( x,ynew, theta=delta, lambda=.1) , xg, ynew=ynew)) test.for.zero( look0, look2,tag="predict with ynew") test.for.zero( look0, c(look1$z), tag="predictSurface with ynew") options( echo=TRUE) # fields/tests/mKrig.se.test.Rout.save0000644000175100001440000000556613114304717017162 0ustar hornikusers R version 3.4.0 (2017-04-21) -- "You Stupid Darkness" Copyright (C) 2017 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin15.6.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # fields is a package for analysis of spatial data written for > # the R software environment . > # Copyright (C) 2017 > # University Corporation for Atmospheric Research (UCAR) > # Contact: Douglas Nychka, nychka@ucar.edu, > # National Center for Atmospheric Research, > # PO Box 3000, Boulder, CO 80307-3000 > # > # This program is free software; you can redistribute it and/or modify > # it under the terms of the GNU General Public License as published by > # the Free Software Foundation; either version 2 of the License, or > # (at your option) any later version. > # This program is distributed in the hope that it will be useful, > # but WITHOUT ANY WARRANTY; without even the implied warranty of > # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > # GNU General Public License for more details. > > > > # tests of predictSE > # against direct linear algebra > > library(fields) Loading required package: spam Loading required package: grid Spam version 1.4-0 (2016-08-29) is loaded. Type 'help( Spam)' or 'demo( spam)' for a short introduction and overview of this package. Help for individual functions is also obtained by adding the suffix '.spam' to the function name, e.g. 'help( chol.spam)'. Attaching package: 'spam' The following objects are masked from 'package:base': backsolve, forwardsolve Loading required package: maps > options( echo=FALSE) Testing: Amatrix vs. predict PASSED test at tolerance 1e-08 Testing: Marginal predictSE PASSED test at tolerance 1e-08 Testing: comparing Omega PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 Testing: test of formula with explicit d and c PASSED test at tolerance 1e-08 Testing: Krig function and direct formula PASSED test at tolerance 1e-08 Testing: new predict formula and direct formula PASSED test at tolerance 1e-08 Testing: New se _function_ and old Krig _function_ PASSED test at tolerance 1e-08 Testing: Benchmark of formula PASSED test at tolerance 1e-08 Testing: Benchmark of formula mKrig coefs PASSED test at tolerance 1e-08 Testing: test function with several locations Krig mKrig functions PASSED test at tolerance 1e-08 > proc.time() user system elapsed 1.118 0.039 1.149 fields/tests/vgram.test.Rout.save0000644000175100001440000000447713114304717016617 0ustar hornikusers R version 3.4.0 (2017-04-21) -- "You Stupid Darkness" Copyright (C) 2017 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin15.6.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # fields is a package for analysis of spatial data written for > # the R software environment . > # Copyright (C) 2017 > # University Corporation for Atmospheric Research (UCAR) > # Contact: Douglas Nychka, nychka@ucar.edu, > # National Center for Atmospheric Research, > # PO Box 3000, Boulder, CO 80307-3000 > # > # This program is free software; you can redistribute it and/or modify > # it under the terms of the GNU General Public License as published by > # the Free Software Foundation; either version 2 of the License, or > # (at your option) any later version. > # This program is distributed in the hope that it will be useful, > # but WITHOUT ANY WARRANTY; without even the implied warranty of > # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > # GNU General Public License for more details. > > > # test of vgram > > library( fields) Loading required package: spam Loading required package: grid Spam version 1.4-0 (2016-08-29) is loaded. Type 'help( Spam)' or 'demo( spam)' for a short introduction and overview of this package. Help for individual functions is also obtained by adding the suffix '.spam' to the function name, e.g. 'help( chol.spam)'. Attaching package: 'spam' The following objects are masked from 'package:base': backsolve, forwardsolve Loading required package: maps > options(echo=FALSE) Testing: vgram single time PASSED test at tolerance 1e-08 Testing: vgram more than one time point PASSED test at tolerance 1e-08 Testing: correlogram versus covariogram PASSED test at tolerance 1e-08 Testing: correlogram versus covariogram PASSED test at tolerance 1e-08 > proc.time() user system elapsed 0.737 0.044 0.771 fields/tests/fastTpsPredict.test.Rout.save0000644000175100001440000000465713114304717020442 0ustar hornikusers R version 3.4.0 (2017-04-21) -- "You Stupid Darkness" Copyright (C) 2017 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin15.6.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # fields is a package for analysis of spatial data written for > # the R software environment . > # Copyright (C) 2017 > # University Corporation for Atmospheric Research (UCAR) > # Contact: Douglas Nychka, nychka@ucar.edu, > # National Center for Atmospheric Research, > # PO Box 3000, Boulder, CO 80307-3000 > # > # This program is free software; you can redistribute it and/or modify > # it under the terms of the GNU General Public License as published by > # the Free Software Foundation; either version 2 of the License, or > # (at your option) any later version. > # This program is distributed in the hope that it will be useful, > # but WITHOUT ANY WARRANTY; without even the implied warranty of > # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > # GNU General Public License for more details. > > > library( fields) Loading required package: spam Loading required package: grid Spam version 1.4-0 (2016-08-29) is loaded. Type 'help( Spam)' or 'demo( spam)' for a short introduction and overview of this package. Help for individual functions is also obtained by adding the suffix '.spam' to the function name, e.g. 'help( chol.spam)'. Attaching package: 'spam' The following objects are masked from 'package:base': backsolve, forwardsolve Loading required package: maps > options(echo=FALSE) Testing: Comparing FORTRAN grid eval to matrix vector multiplication PASSED test at tolerance 1e-08 Testing: testing PredictSurface and predict.fastTps PASSED test at tolerance 1e-08 Testing: testing PredictSurface with slower mKrig predict PASSED test at tolerance 1e-08 Testing: predict with ynew PASSED test at tolerance 1e-08 Testing: predictSurface with ynew PASSED test at tolerance 1e-08 > # > > proc.time() user system elapsed 0.990 0.037 1.019 fields/tests/misc.test.Rout.save0000644000175100001440000000427013114304717016425 0ustar hornikusers R version 3.4.0 (2017-04-21) -- "You Stupid Darkness" Copyright (C) 2017 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin15.6.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # fields is a package for analysis of spatial data written for > # the R software environment . > # Copyright (C) 2017 > # University Corporation for Atmospheric Research (UCAR) > # Contact: Douglas Nychka, nychka@ucar.edu, > # National Center for Atmospheric Research, > # PO Box 3000, Boulder, CO 80307-3000 > # > # This program is free software; you can redistribute it and/or modify > # it under the terms of the GNU General Public License as published by > # the Free Software Foundation; either version 2 of the License, or > # (at your option) any later version. > # This program is distributed in the hope that it will be useful, > # but WITHOUT ANY WARRANTY; without even the implied warranty of > # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > # GNU General Public License for more details. > > library( fields) Loading required package: spam Loading required package: grid Spam version 1.4-0 (2016-08-29) is loaded. Type 'help( Spam)' or 'demo( spam)' for a short introduction and overview of this package. Help for individual functions is also obtained by adding the suffix '.spam' to the function name, e.g. 'help( chol.spam)'. Attaching package: 'spam' The following objects are masked from 'package:base': backsolve, forwardsolve Loading required package: maps > options( echo=FALSE) Testing: fast.1way means PASSED test at tolerance 1e-08 Testing: fast.1way vectorized means PASSED test at tolerance 1e-08 All done with testing misc functions > > proc.time() user system elapsed 0.507 0.035 0.533 fields/tests/Wend.test.Rout.save0000644000175100001440000000466613114304717016400 0ustar hornikusers R version 3.4.0 (2017-04-21) -- "You Stupid Darkness" Copyright (C) 2017 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin15.6.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # fields is a package for analysis of spatial data written for > # the R software environment . > # Copyright (C) 2017 > # University Corporation for Atmospheric Research (UCAR) > # Contact: Douglas Nychka, nychka@ucar.edu, > # National Center for Atmospheric Research, > # PO Box 3000, Boulder, CO 80307-3000 > # > # This program is free software; you can redistribute it and/or modify > # it under the terms of the GNU General Public License as published by > # the Free Software Foundation; either version 2 of the License, or > # (at your option) any later version. > # This program is distributed in the hope that it will be useful, > # but WITHOUT ANY WARRANTY; without even the implied warranty of > # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > # GNU General Public License for more details. > > > # test of Wendland covariance and stationary.taper.cov > > library( fields) Loading required package: spam Loading required package: grid Spam version 1.4-0 (2016-08-29) is loaded. Type 'help( Spam)' or 'demo( spam)' for a short introduction and overview of this package. Help for individual functions is also obtained by adding the suffix '.spam' to the function name, e.g. 'help( chol.spam)'. Attaching package: 'spam' The following objects are masked from 'package:base': backsolve, forwardsolve Loading required package: maps > options( echo=FALSE) PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 Done with testing Wendland family > > proc.time() user system elapsed 0.692 0.039 0.723 fields/tests/cov.test2.R0000644000175100001440000002173413114144334014657 0ustar hornikusers # fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, # PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. library( fields) options( echo=FALSE) test.for.zero.flag<- 1 data(ozone2) y<- ozone2$y[16,] x<- ozone2$lon.lat # # Omit the NAs good<- !is.na( y) x<- x[good,] y<- y[good] x1<- x[1:20,] x2<- x[1:10,] look<- exp(-1*rdist(x1,x2)/4) look2<- stationary.cov( x1,x2, theta=4) test.for.zero( look, look2) V<- matrix( c(2,1,0,4), 2,2) Vi<- solve( V) u1<- t(Vi%*% t(x1)) u2<- t(Vi%*% t(x2)) look<- exp(-1*rdist(u1,u2)) look2<- stationary.cov( x1,x2, V= V) test.for.zero( look, look2) look<- Wendland(rdist(u1,u2), k=3, dimension=2) look2<- stationary.cov( x1,x2, V= V, Covariance = "Wendland", k=3, dimension=2) test.for.zero( look, look2) x1<- x[1:5,] x2<- x[2:6,] V<- matrix( c(2,1,0,4), 2,2) Vi<- solve( V) u1<- x1 u2<- x2 look1a<- exp(-1*rdist(u1,u2)) look1b<- Wendland(rdist(u1,u2), k=3, dimension=2, theta= 1) look1<- look1a*look1b look2<- stationary.taper.cov( x1,x2, theta=1, Taper.args=list( theta=1,k=3, dimension=2), verbose=FALSE) test.for.zero( look1, as.matrix(look2)) u1<- t(Vi%*% t(x1)) u2<- t(Vi%*% t(x2)) look1a<- exp(-1*rdist(u1,u2)) look1b<- Wendland(rdist(u1,u2), k=3, dimension=2, theta= 1.5) look1<- look1a*look1b look2<- stationary.taper.cov( x1,x2,V=V, Taper.args=list( theta=1.5,k=3, dimension=2), verbose=FALSE) test.for.zero( look1, as.matrix(look2)) u1<- t(Vi%*% t(x1)) u2<- t(Vi%*% t(x2)) look1a<- Matern(rdist(u1,u2), smoothness=1.5) look1b<- Wendland(rdist(u1,u2), k=3, dimension=2, theta= 1.5) look1<- look1a*look1b look2<- stationary.taper.cov( x1,x2,V=V,Covariance=Matern, smoothness=1.5, Taper.args=list( theta=1.5,k=3, dimension=2), verbose=FALSE) test.for.zero( look1, as.matrix(look2)) # some tests of great circle distance stationary.taper.cov( x[1:3,],x[1:10,] , theta=200, Taper.args= list(k=2,theta=300, dimension=2), Dist.args=list( method="greatcircle") )-> temp # temp is now a tapered 3X10 cross covariance matrix in sparse format. # should be identical to # the direct matrix product temp2<- Exponential( rdist.earth(x[1:3,],x[1:10,]), range=200) * Wendland(rdist.earth(x[1:3,],x[1:10,]), theta= 300, k=2, dimension=2) test.for.zero( as.matrix(temp), temp2, tol=1e-6, tag="taper with great circle") # example of calling the taper version directly # Note that default covariance is exponential and default taper is # Wendland (k=2). stationary.taper.cov( x[1:3,],x[1:10,] , theta=1.5, Taper.args= list(k=2,theta=2.0, dimension=2) )-> temp # temp is now a tapered 5X10 cross covariance matrix in sparse format. # should be identical to # the direct matrix product temp2<- Exp.cov( x[1:3,],x[1:10,], theta=1.5) * Wendland(rdist(x[1:3,],x[1:10,]), theta= 2.0, k=2, dimension=2) test.for.zero( as.matrix(temp), temp2, tag= "high level test of taper cov") stationary.taper.cov( x[1:3,],x[1:10,] , range=1.5, Taper.args= list(k=2,theta=2.0, dimension=2) )-> temp test.for.zero( as.matrix(temp), temp2, tag= "high level test of taper cov") ##### Test precomputing distance matrix # y<- ozone2$y[16,] x<- ozone2$lon.lat # # Omit the NAs good<- !is.na( y) x<- x[good,] y<- y[good] #####test that stationary.cov returns the same result when passed distance matrix: #with x1 == x2: x1<- x[1:20,] compactDistMat = rdist(x1, compact=TRUE) distMat = rdist(x1) look<- stationary.cov(x1, theta=4) look2 <- stationary.cov(x1, theta=4, distMat = compactDistMat) look3 <- stationary.cov(x1, theta=4, distMat = distMat) test.for.zero( look, look2, tag="stationary.cov versus stationary.cov compact distMat") test.for.zero( look, look3, tag="stationary.cov versus stationary.cov matrix distMat") #with x1 != x2: x2=x[1:10,] distMat = rdist(x1, x2) look<- stationary.cov(x1, x2, theta=4) look2 <- stationary.cov(x1, x2, theta=4, distMat = distMat) test.for.zero( look, look2, tag="stationary.cov versus stationary.cov asymmetric distMat") #####test that stationary.cov returns the same result when passed distance matrix: #with x1 == x2: distMat = rdist(x1, x1) compactDistMat = rdist(x1, compact=TRUE) look<- Exp.cov(x1, theta=4) look2 <- Exp.cov(x1, theta=4, distMat = compactDistMat) look3 <- Exp.cov(x1, theta=4, distMat = distMat) test.for.zero( look, look2, tag="Exp.cov versus Exp.cov compact distMat") test.for.zero( look, look3, tag="Exp.cov versus Exp.cov matrix distMat") #with x1 != x2: x1<- x[1:20,] x2=x[1:10,] distMat = rdist(x1, x2) look<- Exp.cov(x1, x2, theta=4) look2 <- Exp.cov(x1, x2, theta=4, distMat = distMat) test.for.zero( look, look2, tag="Exp.cov versus Exp.cov asymmetric distMat") ##### test for correct value when using C argument: Ctest<- rnorm(10) #with x1 == x2: x1 = x[1:10,] compactDistMat = rdist(x1, compact=TRUE) distMat = rdist(x1, x1) temp1<- stationary.cov( x1, C= Ctest, theta=4 ) temp2 = stationary.cov( x1, C= Ctest, theta=4, distMat=compactDistMat ) temp3 = stationary.cov( x1, C= Ctest, theta=4, distMat=distMat ) exp1<- Exp.cov( x1, C= Ctest, theta=4 ) exp2 = Exp.cov( x1, C= Ctest, theta=4, distMat=compactDistMat ) exp3 = Exp.cov( x1, C= Ctest, theta=4, distMat=distMat ) test.for.zero(temp1, temp2, tag="stationary.cov vs stationary.cov with C set, compact distMat") test.for.zero(temp1, temp3, tag="stationary.cov vs stationary.cov with C set, matrix distMat") test.for.zero(temp1, exp1, tag="stationary.cov vs Exp.cov with C set, no distMat") test.for.zero(temp2, exp2, tag="stationary.cov vs Exp.cov with C set, compact distMat") test.for.zero(temp3, temp3, tag="stationary.cov vs Exp.cov with C set, matrix distMat") #with x1 != x2: x1 = x x2 = x[1:10,] distMat = rdist(x1, x1) temp1<- stationary.cov( x1, x2, C= Ctest, theta=4 ) temp2 = stationary.cov( x1, x2, C= Ctest, theta=4, distMat=distMat ) exp1 <- Exp.cov( x1, x2, C= Ctest, theta=4 ) exp2 = Exp.cov( x1, x2, C= Ctest, theta=4, distMat=distMat ) test.for.zero(temp1, temp2, tag="stationary.cov vs stationary.cov with C set and asymmetric distMat given") test.for.zero(exp1, exp2, tag="Exp.cov vs Exp.cov with C set and asymmetric distMat given") ##### test covariance functions for onlyUpper=TRUE # distMat = rdist(x1, x1) compactDistMat = rdist(x1, compact=TRUE) out1 = stationary.cov(x1, onlyUpper=TRUE) exp1 = Exp.cov(x1, onlyUpper=TRUE) out2 = stationary.cov(x1, onlyUpper=TRUE, distMat=compactDistMat) exp2 = Exp.cov(x1, onlyUpper=TRUE, distMat=compactDistMat) out3 = stationary.cov(x1, onlyUpper=TRUE, distMat=distMat) exp3 = Exp.cov(x1, onlyUpper=TRUE, distMat=distMat) test.for.zero( out2[upper.tri(out1)], out3[upper.tri(exp1)], tag="onlyUpper=TRUE: stationary.cov versus Exp.cov") test.for.zero( out2[upper.tri(out1)], out3[upper.tri(out2)], tag="onlyUpper=TRUE: stationary.cov versus stationary.cov with compactDistMat") test.for.zero( out2[upper.tri(out1)], out3[upper.tri(exp2)], tag="onlyUpper=TRUE: stationary.cov versus Exp.cov with compactDistMat") test.for.zero( out2[upper.tri(out1)], out3[upper.tri(out3)], tag="onlyUpper=TRUE: stationary.cov versus stationary.cov with matrix distMat") test.for.zero( out2[upper.tri(out1)], out3[upper.tri(exp3)], tag="onlyUpper=TRUE: stationary.cov versus Exp.cov with matrix distMat") ##### test Exp.cov functions for correct use of p # p1 = 1 p2 = 2 p3 = 3 distMat = rdist(x1, x1) exp1 = Exp.cov(x1, p=p1) exp2 = Exp.cov(x1, p=p2) exp2Dist = Exp.cov(x1, p=p2, distMat = distMat) exp3 = Exp.cov(x1, p=p3) test.for.zero(exp1^(rdist(x1, x1)^(p2 - p1)), exp2, tag="Testing p=1 v 2") test.for.zero(exp2^(rdist(x1, x1)^(p3 - p2)), exp3, tag="Testing p=2 v 3") test.for.zero(exp2, exp2Dist, tag="Testing p=2 v 2 with distMat") ##### test Exp.cov functions for correct use of theta # theta1 = 1 theta2 = 2 theta3 = 3 distMat = rdist(x1, x1) exp1 = Exp.cov(x1, theta=theta1) exp2 = Exp.cov(x1, thet=theta2) exp2Dist = Exp.cov(x1, theta=theta2, distMat = distMat) exp3 = Exp.cov(x1, theta=theta3) test.for.zero(exp1^(theta1/theta2), exp2, tag="Testing theta=1 v 2") test.for.zero(exp2^(theta2/theta3), exp3, tag="Testing theta=2 v 3") test.for.zero(exp2, exp2Dist, tag="Testing theta=2 v 2 with distMat") cat("end tests of V argument in covariances", fill=TRUE) fields/tests/cov.test2.Rout.save0000644000175100001440000001107113114304766016344 0ustar hornikusers R version 3.4.0 (2017-04-21) -- "You Stupid Darkness" Copyright (C) 2017 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin15.6.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # fields is a package for analysis of spatial data written for > # the R software environment . > # Copyright (C) 2017 > # University Corporation for Atmospheric Research (UCAR) > # Contact: Douglas Nychka, nychka@ucar.edu, > # National Center for Atmospheric Research, > # PO Box 3000, Boulder, CO 80307-3000 > # > # This program is free software; you can redistribute it and/or modify > # it under the terms of the GNU General Public License as published by > # the Free Software Foundation; either version 2 of the License, or > # (at your option) any later version. > # This program is distributed in the hope that it will be useful, > # but WITHOUT ANY WARRANTY; without even the implied warranty of > # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > # GNU General Public License for more details. > > > library( fields) Loading required package: spam Loading required package: grid Spam version 1.4-0 (2016-08-29) is loaded. Type 'help( Spam)' or 'demo( spam)' for a short introduction and overview of this package. Help for individual functions is also obtained by adding the suffix '.spam' to the function name, e.g. 'help( chol.spam)'. Attaching package: 'spam' The following objects are masked from 'package:base': backsolve, forwardsolve Loading required package: maps > options( echo=FALSE) PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 Testing: taper with great circle PASSED test at tolerance 1e-06 Testing: high level test of taper cov PASSED test at tolerance 1e-08 Testing: high level test of taper cov PASSED test at tolerance 1e-08 Testing: stationary.cov versus stationary.cov compact distMat PASSED test at tolerance 1e-08 Testing: stationary.cov versus stationary.cov matrix distMat PASSED test at tolerance 1e-08 Testing: stationary.cov versus stationary.cov asymmetric distMat PASSED test at tolerance 1e-08 Testing: Exp.cov versus Exp.cov compact distMat PASSED test at tolerance 1e-08 Testing: Exp.cov versus Exp.cov matrix distMat PASSED test at tolerance 1e-08 Testing: Exp.cov versus Exp.cov asymmetric distMat PASSED test at tolerance 1e-08 Testing: stationary.cov vs stationary.cov with C set, compact distMat PASSED test at tolerance 1e-08 Testing: stationary.cov vs stationary.cov with C set, matrix distMat PASSED test at tolerance 1e-08 Testing: stationary.cov vs Exp.cov with C set, no distMat PASSED test at tolerance 1e-08 Testing: stationary.cov vs Exp.cov with C set, compact distMat PASSED test at tolerance 1e-08 Testing: stationary.cov vs Exp.cov with C set, matrix distMat PASSED test at tolerance 1e-08 Testing: stationary.cov vs stationary.cov with C set and asymmetric distMat given PASSED test at tolerance 1e-08 Testing: Exp.cov vs Exp.cov with C set and asymmetric distMat given PASSED test at tolerance 1e-08 Testing: onlyUpper=TRUE: stationary.cov versus Exp.cov PASSED test at tolerance 1e-08 Testing: onlyUpper=TRUE: stationary.cov versus stationary.cov with compactDistMat PASSED test at tolerance 1e-08 Testing: onlyUpper=TRUE: stationary.cov versus Exp.cov with compactDistMat PASSED test at tolerance 1e-08 Testing: onlyUpper=TRUE: stationary.cov versus stationary.cov with matrix distMat PASSED test at tolerance 1e-08 Testing: onlyUpper=TRUE: stationary.cov versus Exp.cov with matrix distMat PASSED test at tolerance 1e-08 Testing: Testing p=1 v 2 PASSED test at tolerance 1e-08 Testing: Testing p=2 v 3 PASSED test at tolerance 1e-08 Testing: Testing p=2 v 2 with distMat PASSED test at tolerance 1e-08 Testing: Testing theta=1 v 2 PASSED test at tolerance 1e-08 Testing: Testing theta=2 v 3 PASSED test at tolerance 1e-08 Testing: Testing theta=2 v 2 with distMat PASSED test at tolerance 1e-08 end tests of V argument in covariances > proc.time() user system elapsed 0.767 0.046 0.805 fields/tests/REMLest.test.Rout.save0000644000175100001440000000570313114304717016747 0ustar hornikusers R version 3.4.0 (2017-04-21) -- "You Stupid Darkness" Copyright (C) 2017 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin15.6.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # fields is a package for analysis of spatial data written for > # the R software environment . > # Copyright (C) 2017 > # University Corporation for Atmospheric Research (UCAR) > # Contact: Douglas Nychka, nychka@ucar.edu, > # National Center for Atmospheric Research, > # PO Box 3000, Boulder, CO 80307-3000 > # > # This program is free software; you can redistribute it and/or modify > # it under the terms of the GNU General Public License as published by > # the Free Software Foundation; either version 2 of the License, or > # (at your option) any later version. > # This program is distributed in the hope that it will be useful, > # but WITHOUT ANY WARRANTY; without even the implied warranty of > # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > # GNU General Public License for more details. > > > > ############################################################################ > # Begin tests of Matern covaraince parameter estimate > # Note that in all tests the smoothness (nu) is fixed > # and only theta (range), sill ( rho) and nugget (sigma2) are considered. > ########################################################################## > library(fields) Loading required package: spam Loading required package: grid Spam version 1.4-0 (2016-08-29) is loaded. Type 'help( Spam)' or 'demo( spam)' for a short introduction and overview of this package. Help for individual functions is also obtained by adding the suffix '.spam' to the function name, e.g. 'help( chol.spam)'. Attaching package: 'spam' The following objects are masked from 'package:base': backsolve, forwardsolve Loading required package: maps > > options( echo=FALSE) [1] 75 75 [1] 75 75 Testing: sanity check 1 for REML from Krig PASSED test at tolerance 2e-04 Testing: sanity check 2 for REML from Krig PASSED test at tolerance 1e-08 Testing: check REML rho PASSED test at tolerance 0.001 Testing: check REML theta PASSED test at tolerance 0.001 Testing: check REML sigma2 PASSED test at tolerance 2e-04 Testing: Profile likelihoods from Krig and optim PASSED test at tolerance 1e-08 Testing: Profile likelihoods from Krig and golden search PASSED test at tolerance 1e-08 done with Matern REML estimator tests where smoothness is fixed > > proc.time() user system elapsed 3.66 0.12 3.78 fields/tests/mKrig.Z.Rout.save0000644000175100001440000000456113114304717016000 0ustar hornikusers R version 3.4.0 (2017-04-21) -- "You Stupid Darkness" Copyright (C) 2017 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin15.6.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # fields is a package for analysis of spatial data written for > # the R software environment . > # Copyright (C) 2017 > # University Corporation for Atmospheric Research (UCAR) > # Contact: Douglas Nychka, nychka@ucar.edu, > # National Center for Atmospheric Research, > # PO Box 3000, Boulder, CO 80307-3000 > # > # This program is free software; you can redistribute it and/or modify > # it under the terms of the GNU General Public License as published by > # the Free Software Foundation; either version 2 of the License, or > # (at your option) any later version. > # This program is distributed in the hope that it will be useful, > # but WITHOUT ANY WARRANTY; without even the implied warranty of > # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > # GNU General Public License for more details. > > library( fields) Loading required package: spam Loading required package: grid Spam version 1.4-0 (2016-08-29) is loaded. Type 'help( Spam)' or 'demo( spam)' for a short introduction and overview of this package. Help for individual functions is also obtained by adding the suffix '.spam' to the function name, e.g. 'help( chol.spam)'. Attaching package: 'spam' The following objects are masked from 'package:base': backsolve, forwardsolve Loading required package: maps > options( echo=FALSE) Testing: Full prediction PASSED test at tolerance 1e-08 Testing: prediction dropping Z PASSED test at tolerance 1e-08 Testing: new x's dropping Z PASSED test at tolerance 1e-08 Testing: new x's new Z's PASSED test at tolerance 1e-08 Testing: predicting on surface with drop.Z PASSED test at tolerance 1e-08 all done with mKrig Z tests > > > proc.time() user system elapsed 1.140 0.056 1.189 fields/tests/evlpoly.test.Rout.save0000644000175100001440000000422713114304717017166 0ustar hornikusers R version 3.4.0 (2017-04-21) -- "You Stupid Darkness" Copyright (C) 2017 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin15.6.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # fields is a package for analysis of spatial data written for > # the R software environment . > # Copyright (C) 2017 > # University Corporation for Atmospheric Research (UCAR) > # Contact: Douglas Nychka, nychka@ucar.edu, > # National Center for Atmospheric Research, > # PO Box 3000, Boulder, CO 80307-3000 > # > # This program is free software; you can redistribute it and/or modify > # it under the terms of the GNU General Public License as published by > # the Free Software Foundation; either version 2 of the License, or > # (at your option) any later version. > # This program is distributed in the hope that it will be useful, > # but WITHOUT ANY WARRANTY; without even the implied warranty of > # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > # GNU General Public License for more details. > > > library( fields) Loading required package: spam Loading required package: grid Spam version 1.4-0 (2016-08-29) is loaded. Type 'help( Spam)' or 'demo( spam)' for a short introduction and overview of this package. Help for individual functions is also obtained by adding the suffix '.spam' to the function name, e.g. 'help( chol.spam)'. Attaching package: 'spam' The following objects are masked from 'package:base': backsolve, forwardsolve Loading required package: maps > options( echo=FALSE) PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 Done testing polynomial evaluation > proc.time() user system elapsed 0.510 0.041 0.532 fields/tests/misc.test.R0000644000175100001440000000263213114302723014733 0ustar hornikusers # fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, # PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. library( fields) options( echo=FALSE) set.seed( 234) test.for.zero.flag<-1 y<- runif( 30) lev<- sort(sample( 1:5,30, replace=TRUE)) w<- runif( 30)*.1+1 y<- as.matrix(y) # compute by loop hold<- rep( NA, 5) for( k in 1:5){ ind<- lev==k hold[k]<- sum( y[ind,]*w[ind])/ sum( w[ind])} look<- fast.1way( lev, y, w) test.for.zero( look$means, hold, tag="fast.1way means") # now vectorized case ytemp<- cbind( y, y-10, y+10) look2<- fast.1way( lev, ytemp, w) test.for.zero( look2$means[,2], hold-10, tag="fast.1way vectorized means") cat("All done with testing misc functions", fill=TRUE) options(echo=TRUE) fields/tests/derivative.test.R0000644000175100001440000001642313114302442016143 0ustar hornikusers # fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, # PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. #library( fields, lib.loc="lib.test") library( fields) options(echo=FALSE) test.for.zero.flag<- 1 DD<- cbind( seq(.01,2,,50)) look2<- RadialBasis(DD, dimension=2,M=3,derivative=1) look1<- ( RadialBasis(DD+1e-5, dimension=2,M=3,derivative=0 ) - RadialBasis(DD-1e-5, dimension=2,M=3,derivative=0))/2e-5 test.for.zero( look1, look2,tol=1e-6, tag="radial basis function exact" ) set.seed( 234) x<- matrix( runif(10), ncol=2) ctest<- rep(0,5) ctest[3]<- 1 stationary.cov( x,x, Covariance="RadialBasis", dimension=2,M=3,derivative=0)-> look0 RadialBasis( rdist(x,x), dimension=2,M=3,derivative=0)-> sanity.look test.for.zero( look0, sanity.look, tag="sanity test of stationary.cov with RadialBasis") Rad.cov(x,x,p= (2*3 -2))-> look1 test.for.zero( sanity.look, look1, tag="sanity test of Rad.cov") sanity.look%*% ctest->look0 stationary.cov( x,x, Covariance="RadialBasis", dimension=2,M=3, derivative=0, C=ctest)-> look test.for.zero( look0, look, tag="stat.cov Radbas C multiply") Rad.cov(x,x,p= (2*3 -2), C=ctest)-> look1 test.for.zero( look0, look1, tag="Rad.cov C multiply") ############################ end of radial basis DD<- cbind( seq(.01,2,,50)) look2<- Wendland(DD, theta=1.0, dimension=2,k=3,derivative=1) look1<- (Wendland(DD+1e-5, theta=1.0, dimension=2,k=3) - Wendland(DD-1e-5, theta=1.0, dimension=2,k=3))/2e-5 test.for.zero( look1, look2,tol=1e-6) look2<- Wendland(DD, theta=1.5, dimension=2,k=3,derivative=1) look1<- (Wendland(DD+1e-5, theta=1.5, dimension=2,k=3) - Wendland(DD-1e-5, theta=1.5, dimension=2,k=3))/2e-5 test.for.zero( look1, look2,tol=1e-6, tag="Wendland exact") x<- seq( -1,1,,5) ctest<- rep(0,5) ctest[3]<- 1 wendland.cov( x,x, k=2, theta=.75)-> look0 Wendland( rdist(x,x)/.75, k=2, dimension=1)-> sanity.look test.for.zero( look0, sanity.look) look0%*% ctest->look0 wendland.cov( x,x, k=2, theta=.75, C=ctest, derivative=0)-> look test.for.zero( look0, look, tag="Wendland C multiply") wendland.cov( x,x, k=2, theta=1.0, C=ctest, derivative=1)-> look wendland.cov( x+1e-5, x, k=2, theta=1.0, C=ctest)- wendland.cov( x-1e-5, x, k=2, theta=1.0, C=ctest)-> look2 look2<- look2/2e-5 test.for.zero( look, look2,tol=1e-7, tag="Wendland.cov theta=1.0") wendland.cov( x,x, k=2, theta=.75, C=ctest, derivative=1)-> look wendland.cov( x+1e-5, x, k=2, theta=.75, C=ctest)- wendland.cov( x-1e-5, x, k=2, theta=.75, C=ctest)-> look2 look2<- look2/2e-5 test.for.zero( look, look2,tol=1e-7, tag="Wendland.cov theta=.75") stationary.cov( x,x, Covariance="Wendland", dimension=1, k=2, theta=1.0, C=ctest, derivative=0)-> look look0<- Wendland( rdist(x,x), k=2, dimension=1)%*%ctest test.for.zero( look0, look, tag="stationary.cov and exact C multiply for Wendland") wendland.cov( x,x, k=2,C=ctest, theta=1.0)-> look look0<- Wendland( rdist(x,x), k=2, dimension=1)%*%ctest test.for.zero( look0, look, tag=" Wendland C multiply") ####### 2 -d quadratic surface x<- make.surface.grid( list(x=seq( -1,1,,20), y=seq( -1,1,,20))) y<- (.123*x[,1] + .234*x[,2]) obj<- mKrig( x,y, lambda=0, cov.function="wendland.cov", k=3, theta=.4) xp<- make.surface.grid( list(x=seq(-.5,.5,,24),y= seq( -.5,.5,,24)) ) predict( obj, xp, derivative=1)-> outd test.for.zero( outd[,1],.123, tag="2-d derivs from wend.cov/mKrig") test.for.zero( outd[,2],.234) #%%%%%%%% repeat to check derivatives in stationary.cov x<- make.surface.grid( list(x=seq( -1,1,,20), y=seq( -1,1,,20))) y<- (.123*x[,1] + .234*x[,2]) obj<- mKrig( x,y, lambda=0, cov.function="stationary.cov", cov.args=list(k=3, theta=.2, dimension=2, Covariance="Wendland")) xp<- make.surface.grid( list(x=seq(-.5,.5,,24),y= seq( -.5,.5,,24)) ) predict( obj, xp, derivative=1)-> outd test.for.zero( outd[,1],.123, tag="2-d derivs from stationary-wend/mKrig") test.for.zero( outd[,2],.234) ############## quadratic surface x<- make.surface.grid( list(x=seq( -1,1,,20), y=seq( -1,1,,20))) y<- (x[,1]**2 - 2* x[,1]*x[,2] + x[,2]**2)/2 ############## wendland.cov obj<- mKrig( x,y, lambda=0, cov.function="wendland.cov", k=3, theta=.8) xp<- make.surface.grid( list(x=seq(-.5,.5,,24),y= seq( -.5,.5,,24)) ) true<- cbind( xp[,1] - xp[,2], xp[,2]- xp[,1]) ############## wendland.cov predict( obj, xp, derivative=1)-> outd rmse<-sqrt(mean((true[,1] - outd[,1])**2))/sqrt(mean(true[,1]**2)) test.for.zero( rmse,0, tol=5e-3,relative=FALSE, tag="wendland.cov quad 2-d") ############## stationary cov x<- make.surface.grid( list(x=seq( -1,1,,20), y=seq( -1,1,,20))) y<- (x[,1]**3 + x[,2]**3) obj<- mKrig( x,y, lambda=0, cov.function="stationary.cov", cov.args=list(k=3, theta=.8, dimension=2, Covariance="Wendland")) xp<- make.surface.grid( list(x=seq(-.5,.5,,24),y= seq( -.5,.5,,24)) ) true<- cbind( 3*xp[,1]**2 , 3*xp[,2]**2) predict( obj, xp, derivative=1)-> outd2 rmse<-sqrt(mean((true[,1] - outd2[,1])**2))/sqrt(mean(true[,1]**2)) test.for.zero( rmse,0, tol=1e-2,relative=FALSE, tag="stationary.cov/Wendland cubic 2-d") ############## stationary cov with radial basis x<- make.surface.grid( list(x=seq( -1,1,,20), y=seq( -1,1,,20))) y<- (x[,1]**3 + x[,2]**3) obj<- Krig( x,y, cov.function="stationary.cov", m=3, cov.args=list(M=3, dimension=2, Covariance="RadialBasis")) xp<- make.surface.grid( list(x=seq(-.5,.5,,24),y= seq( -.5,.5,,24)) ) true<- cbind( 3*xp[,1]**2 , 3*xp[,2]**2) predictDerivative.Krig( obj, xp)-> outd2 look<- as.surface( xp, outd2[,1]) rmse<-sqrt(mean((true[,1] - outd2[,1])**2))/sqrt(mean(true[,1]**2)) test.for.zero( rmse,0, tol=5e-3,relative=FALSE, tag="stationary.cov/Wendland cubic 2-d") ######################### x<- make.surface.grid( list(x=seq( -1,1,,20), y=seq( -1,1,,20))) y<- (x[,1]**3 + x[,2]**3) obj<- mKrig( x,y, lambda=0, cov.function="wendland.cov", k=3, V=diag(c( 1.1,1.1) )) xp<- make.surface.grid( list(x=seq(-.5,.5,,24),y= seq( -.5,.5,,24)) ) predict( obj, xp, derivative=1)-> outd true<- cbind( 3*xp[,1]**2 , 3*xp[,2]**2) rmse<-sqrt(mean((true[,1] - outd[,1])**2)/mean(true[,1]**2)) test.for.zero( rmse,0, tol=5e-3,relative=FALSE) obj<- Tps( x,y,lambda=0) predictDerivative.Krig( obj, xp, derivative=1)-> outd look<- as.surface( xp, outd[,1]) rmse<-sqrt(mean((true[,1] - outd[,1])**2)/mean(true[,1]**2)) test.for.zero( rmse,0, tol=2e-4,relative=FALSE, tag="Tps derivative x1") rmse<-sqrt(mean((true[,2] - outd[,2])**2)/mean(true[,2]**2)) test.for.zero( rmse,0, tol=2e-4,relative=FALSE, tag="Tps derivative x2") cat("done with dervative tests", fill=TRUE) options( echo=TRUE) fields/tests/Tps.test.Rout.save0000644000175100001440000000636613114304717016250 0ustar hornikusers R version 3.4.0 (2017-04-21) -- "You Stupid Darkness" Copyright (C) 2017 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin15.6.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # fields is a package for analysis of spatial data written for > # the R software environment . > # Copyright (C) 2017 > # University Corporation for Atmospheric Research (UCAR) > # Contact: Douglas Nychka, nychka@ucar.edu, > # National Center for Atmospheric Research, > # PO Box 3000, Boulder, CO 80307-3000 > # > # This program is free software; you can redistribute it and/or modify > # it under the terms of the GNU General Public License as published by > # the Free Software Foundation; either version 2 of the License, or > # (at your option) any later version. > # This program is distributed in the hope that it will be useful, > # but WITHOUT ANY WARRANTY; without even the implied warranty of > # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > # GNU General Public License for more details. > > > library( fields) Loading required package: spam Loading required package: grid Spam version 1.4-0 (2016-08-29) is loaded. Type 'help( Spam)' or 'demo( spam)' for a short introduction and overview of this package. Help for individual functions is also obtained by adding the suffix '.spam' to the function name, e.g. 'help( chol.spam)'. Attaching package: 'spam' The following objects are masked from 'package:base': backsolve, forwardsolve Loading required package: maps > options(echo=FALSE) Testing: Tps radial basis function 2d PASSED test at tolerance 1e-08 Testing: Tps radial basis function 2d PASSED test at tolerance 1e-08 Testing: Tps radial basis function 2d PASSED test at tolerance 1e-08 Testing: Tps radial basis function 3d PASSED test at tolerance 1e-08 Testing: Tps radial basis function 3d PASSED test at tolerance 1e-08 Testing: Tps radial basis function 3d PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-10 PASSED test at tolerance 1e-10 Testing: der of Rad.cov PASSED test at tolerance 1e-06 Testing: der of Rad.cov PASSED test at tolerance 1e-06 PASSED test at tolerance 1e-08 Testing: Tps 2-d m=2 sanity check PASSED test at tolerance 1e-08 Testing: Tps 2-d m=2 sanity predict PASSED test at tolerance 1e-08 Testing: Tps vs. Krig w/ GCV PASSED test at tolerance 1e-08 Testing: Tps vs. radial basis w Krig PASSED test at tolerance 1e-08 Warning: Grid searches over lambda (nugget and sill variances) with minima at the endpoints: (GCV) Generalized Cross-Validation minimum at right endpoint lambda = 6.735369e-05 (eff. df= 475 ) PASSED test at tolerance 0.001 PASSED test at tolerance 0.001 > cat("all done testing Tps", fill=TRUE) all done testing Tps > > > > > proc.time() user system elapsed 1.603 0.056 1.653 fields/tests/mKrig.parameters.test.R0000644000175100001440000001515013114143640017213 0ustar hornikusers # fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, # PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. library( fields) #options( echo=FALSE) test.for.zero.flag<- 1 data(ozone2) y<- ozone2$y[16,] x<- ozone2$lon.lat # # Omit the NAs good<- !is.na( y) x<- x[good,] y<- y[good] #source("~/Home/Src/fields/R/mKrig.family.R") # now look at mKrig w/o sparse matrix look<- mKrig( x,y, cov.function="stationary.cov", theta=10, lambda=.3, chol.args=list( pivot=FALSE)) lookKrig<- Krig( x,y, cov.function="stationary.cov", theta=10) test.df<-Krig.ftrace(look$lambda,lookKrig$matrices$D) test<- Krig.coef( lookKrig, lambda=look$lambda) test.for.zero( look$d, test$d, tag="Krig mKrig d coef") test.for.zero( look$c, test$c, tag="Krig mKrig c coef") # test of trace calculation look<- mKrig( x,y, cov.function="stationary.cov", theta=10, lambda=.3, find.trA=TRUE, NtrA= 1000, iseed=243) test.for.zero( look$eff.df, test.df,tol=.01, tag="Monte Carlo eff.df") # lookKrig<-Krig( x,y, cov.function="stationary.cov", theta=350, Distance="rdist.earth",Covariance="Wendland", cov.args=list( k=2, dimension=2) ) look<- mKrig( x,y, cov.function="stationary.cov", theta=350, Distance="rdist.earth",Covariance="Wendland", cov.args=list( k=2, dimension=2), lambda=lookKrig$lambda, find.trA=TRUE, NtrA= 1000, iseed=243) test.for.zero( look$c, lookKrig$c, tag="Test of wendland and great circle") test.for.zero(look$eff.df, Krig.ftrace( lookKrig$lambda, lookKrig$matrices$D) ,tol=.01, tag="eff.df") # same calculation using sparse matrices. look4<- mKrig( x,y, cov.function="wendland.cov", theta=350, Dist.args=list( method="greatcircle"), cov.args=list( k=2), lambda=lookKrig$lambda, find.trA=TRUE, NtrA=500, iseed=243) test.for.zero( look$c, look4$c,tol=8e-7, tag="Test of sparse wendland and great circle") test.for.zero(look4$eff.df, Krig.ftrace( lookKrig$lambda, lookKrig$matrices$D), tol=.01, tag="sparse eff.df") # great circle distance switch has been a big bug -- test some options look<- mKrig( x,y, cov.function="wendland.cov", theta=350, Dist.args=list( method="greatcircle"), cov.args=list( k=2),lambda=lookKrig$lambda, find.trA=TRUE, NtrA=1000, iseed=243) test.for.zero(look$eff.df, Krig.ftrace( lookKrig$lambda, lookKrig$matrices$D), tol=1e-2, tag="exact sparse eff.df") # compare to fast Tps look3<- fastTps( x,y,theta=350,lambda=lookKrig$lambda, NtrA=200, iseed=243, lon.lat=TRUE) #look3$c<- lookKrig$c #look3$d<- lookKrig$d object<- look3 np<- object$np Ey <- diag(1, np) NtrA <- np hold <- predict.mKrig(object, ynew = Ey, collapseFixedEffect=FALSE) hold2<- matrix( NA, np,np) for( k in 1:np){ hold2[,k] <- predict.Krig(lookKrig, y = Ey[,k]) } #plot( diag(hold), diag(hold2)) test.for.zero( look3$c, lookKrig$c, tol=5e-7) test.for.zero( look3$d, lookKrig$d, tol=2e-8) test.for.zero( look3$fitted.values, lookKrig$fitted.values, tol=1e-7) test.for.zero( predict( look3, xnew= look3$x), predict( lookKrig, xnew= lookKrig$x), tol=5e-7) test.for.zero( hold[,1], hold2[,1], tol=1e-7, relative=FALSE) test.for.zero(diag(hold),diag(hold2), tol=2E-7, relative=FALSE, tag="exact sparse eff.df by predict -- fastTps") #plot( diag(hold), ( 1- diag(hold2)/ diag(hold)) ) test.for.zero(look3$eff.df,sum( diag(hold)) , tag="fastTps ef.df exact" ) test.for.zero(look3$eff.df, Krig.ftrace( lookKrig$lambda, lookKrig$matrices$D), tol=2e-7, tag="exact sparse eff.df through mKrig-- fastTps") # calculations of likelihood, rho and sigma lam<-.2 out<- mKrig( x,y, cov.function =Exp.cov, theta=4, lambda=lam) out2<- Krig( x,y, cov.function =Exp.cov, theta=4, lambda=lam) Sigma<- Exp.cov( x,x,theta=4) X<- cbind( rep(1, nrow(x)), x) Sinv<- solve( Sigma + lam* diag( 1, nrow( x))) #checks on likelihoods # quadratic form: dhat<- c(solve( t(X)%*%Sinv%*%(X) ) %*% t(X) %*%Sinv%*%y) test.for.zero( dhat, out$d, tag="initial check on d for likelihood") r<- y -X%*%dhat N<- nrow(x) look<- t( r)%*%(Sinv)%*%r/N test.for.zero( look, out$rho.MLE, tag="rho hat from likelihood") test.for.zero( look, out2$rhohat, tag="rho hat from likelihood compared to Krig") # check determinant lam<- .2 Sigma<- Exp.cov( x,x,theta=4) M<- Sigma + lam * diag( 1, nrow(x)) chol( M)-> Mc look2<- sum( log(diag( Mc)))*2 out<-mKrig( x,y,cov.function =Exp.cov, theta=4, lambda=lam) test.for.zero( out$lnDetCov, look2) test.for.zero( out$lnDetCov, determinant(M, log=TRUE)$modulus) # weighted version lam<- .2 Sigma<- Exp.cov( x,x,theta=4) set.seed( 123) weights<- runif(nrow( x)) M<- Sigma + diag(lam/ weights) chol( M)-> Mc look2<- sum( log(diag( Mc)))*2 out<-mKrig( x,y,weights=weights, cov.function =Exp.cov, theta=4, lambda=lam) test.for.zero( out$lnDetCov, look2) test.for.zero( look2, determinant(M, log=TRUE)$modulus) test.for.zero( out$lnDetCov, determinant(M, log=TRUE)$modulus) # check profile likelihood by estimating MLE lam.true<- .2 N<- nrow( x) Sigma<- Exp.cov( x,x,theta=4) M<- Sigma + lam.true * diag( 1, nrow(x)) chol( M)-> Mc t(Mc)%*%Mc -> test ##D set.seed( 234) ##D NSIM<- 100 ##D hold2<-rep( NA, NSIM) ##D temp.fun<- function(lglam){ ##D out<-mKrig( x,ytemp, ##D cov.function =Exp.cov, theta=4, lambda=exp(lglam)) ##D return(-1* out$lnProfileLike)} ##D hold1<-rep( NA, NSIM) ##D yt<- rep( 1, N) ##D obj<- Krig( x,yt, theta=4) ##D E<- matrix( rnorm( NSIM*N), ncol=NSIM) ##D for ( j in 1:NSIM){ ##D cat( j, " ") ##D ytemp <- x%*%c(1,2) + t(Mc)%*%E[,j] ##D out<- optim( log(.2), temp.fun, method="BFGS") ##D hold2[j]<- exp(out$par) ##D hold1[j]<- gcv.Krig(obj, y=ytemp)$lambda.est[6,1] ##D } ##D test.for.zero( median( hold1), .2, tol=.08) ##D test.for.zero( median( hold2), .2, tol=.12) fields/tests/Wend.test.R0000644000175100001440000000532213114302402014666 0ustar hornikusers # fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, # PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # test of Wendland covariance and stationary.taper.cov library( fields) options( echo=FALSE) test.for.zero.flag<- 1 set.seed(123) x1<- matrix( runif(2*20), ncol=2) x2<- matrix( runif(2*10), ncol=2) fields.rdist.near( x1,x2, delta=.75)-> look temp<- matrix( NA, nrow(x1),nrow(x2)) temp[ look$ind] <- look$ra temp2<- rdist( x1, x2) temp2[ temp2> .75] <- NA #set.panel( 2,1) ; image.plot( temp); image.plot( temp2) temp[ is.na( temp)]<- 0 temp2[ is.na( temp2)]<- 0 test.for.zero( temp, temp2) # test of constructing covariance matrix # and also versions of Wendland function # default taper is wendland k=2. DD<- rdist( x1,x2) temp<- Wendland2.2(DD, theta=.8) temp2<- Wendland( DD, theta=.8, k=2, dimension=2) test.for.zero( temp, temp2) stationary.taper.cov( x1,x2, Taper="Wendland2.2", Taper.args= list( theta=.8), spam.format=FALSE )-> look temp0<- look stationary.taper.cov( x1,x2, Taper="Wendland2.2", Taper.args= list( theta=.8), spam.format=TRUE )-> look temp1<- spam2full( look) test.for.zero( temp1, temp0) stationary.taper.cov( x1,x2, Taper="Wendland", Taper.args= list( theta=.8, k=2, dimension=2), spam.format=TRUE )-> look temp1b<- spam2full( look) temp2<- Wendland2.2(DD, theta=.8) * Exponential(DD) temp3<- wendland.cov(x1,x2, k=2, theta=.8) * Exponential(DD) temp4<- Wendland(DD, k=2, dimension=2, theta=.8)* Exponential(DD) test.for.zero( temp1, temp0, rel=FALSE) test.for.zero( temp1b, temp0, rel=FALSE) test.for.zero( temp2, temp0, rel=FALSE) test.for.zero( temp2, temp3,rel=FALSE) test.for.zero( temp2, temp4,rel=FALSE) set.seed( 256) rv<- runif( nrow(x2)) # test of multiply stationary.taper.cov( x1, x2, C= rv)-> look temp2<-stationary.taper.cov( x1,x2) (as.matrix(temp2))%*%(rv)-> look2 test.for.zero( look, look2) temp2%*%(rv)-> look2 test.for.zero( look, look2) cat( "Done with testing Wendland family", fill=TRUE) options( echo=TRUE) fields/tests/mKrigMLETest.Rout.save0000644000175100001440000000735313114553520016766 0ustar hornikusers R version 3.4.0 (2017-04-21) -- "You Stupid Darkness" Copyright (C) 2017 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin15.6.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # fields is a package for analysis of spatial data written for > # the R software environment . > # Copyright (C) 2017 > # University Corporation for Atmospheric Research (UCAR) > # Contact: Douglas Nychka, nychka@ucar.edu, > # National Center for Atmospheric Research, > # PO Box 3000, Boulder, CO 80307-3000 > # > # This program is free software; you can redistribute it and/or modify > # it under the terms of the GNU General Public License as published by > # the Free Software Foundation; either version 2 of the License, or > # (at your option) any later version. > # This program is distributed in the hope that it will be useful, > # but WITHOUT ANY WARRANTY; without even the implied warranty of > # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > # GNU General Public License for more details. > # Test adapted from fields package, under GPL license > > library( fields ) Loading required package: spam Loading required package: grid Spam version 1.4-0 (2016-08-29) is loaded. Type 'help( Spam)' or 'demo( spam)' for a short introduction and overview of this package. Help for individual functions is also obtained by adding the suffix '.spam' to the function name, e.g. 'help( chol.spam)'. Attaching package: 'spam' The following objects are masked from 'package:base': backsolve, forwardsolve Loading required package: maps > options( echo=FALSE) PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 0.002 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 0.02 PASSED test at tolerance 0.02 PASSED test at tolerance 0.002 PASSED test at tolerance 0.02 PASSED test at tolerance 0.02 PASSED test at tolerance 0.002 PASSED test at tolerance 0.02 PASSED test at tolerance 0.02 PASSED test at tolerance 0.002 lnProfileLike.FULL lambda theta sigmaMLE -61.8145417 0.1015556 0.1002546 0.3185669 rhoMLE funEval gradEval 0.9993032 8.0000000 6.0000000 lnProfileREML.FULL lambda theta sigmaMLE -61.8145417 0.1015556 0.1002546 0.3185669 rhoMLE funEval gradEval 0.9993032 8.0000000 6.0000000 lnProfileLike.FULL lambda theta sigmaMLE -61.8143732 0.1015557 0.1002514 0.3185628 rhoMLE funEval gradEval 0.9992768 8.0000000 6.0000000 1 2 3 4 5 6 7 8 9 10 all done with mKrigMLEGrid tests > > test.for.zero( trueTheta, mean(hold[,3]), tol=2e-3,tag="Monte Carlo theta") Testing: Monte Carlo theta PASSED test at tolerance 0.002 > test.for.zero( trueLambda, mean(hold[,2]), tol=2e-2,tag="Monte Carlo theta") Testing: Monte Carlo theta PASSED test at tolerance 0.02 > > > proc.time() user system elapsed 17.036 1.064 18.124 fields/tests/mKrig.test.Rout.save0000644000175100001440000000762713114304717016554 0ustar hornikusers R version 3.4.0 (2017-04-21) -- "You Stupid Darkness" Copyright (C) 2017 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin15.6.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # fields is a package for analysis of spatial data written for > # the R software environment . > # Copyright (C) 2017 > # University Corporation for Atmospheric Research (UCAR) > # Contact: Douglas Nychka, nychka@ucar.edu, > # National Center for Atmospheric Research, > # PO Box 3000, Boulder, CO 80307-3000 > # > # This program is free software; you can redistribute it and/or modify > # it under the terms of the GNU General Public License as published by > # the Free Software Foundation; either version 2 of the License, or > # (at your option) any later version. > # This program is distributed in the hope that it will be useful, > # but WITHOUT ANY WARRANTY; without even the implied warranty of > # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > # GNU General Public License for more details. > > > library( fields) Loading required package: spam Loading required package: grid Spam version 1.4-0 (2016-08-29) is loaded. Type 'help( Spam)' or 'demo( spam)' for a short introduction and overview of this package. Help for individual functions is also obtained by adding the suffix '.spam' to the function name, e.g. 'help( chol.spam)'. Attaching package: 'spam' The following objects are masked from 'package:base': backsolve, forwardsolve Loading required package: maps > options( echo=FALSE) NULL Testing: addToDiag PASSED test at tolerance 1e-08 Testing: spam vs no spam PASSED test at tolerance 1e-08 Testing: Krig mKrig d coef PASSED test at tolerance 1e-08 Testing: Krig mKrig c coef PASSED test at tolerance 1e-08 Testing: test of predict at new locations PASSED test at tolerance 1e-08 Testing: test of matrix Y predicts PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 Testing: predictSurface with mKrig PASSED test at tolerance 1e-08 Testing: Wendland/no spam PASSED test at tolerance 1e-08 Testing: Wendland/spam PASSED test at tolerance 1e-08 Testing: new coef c no spam PASSED test at tolerance 1e-08 Testing: new d coef no spam PASSED test at tolerance 1e-08 Testing: new coef c spam PASSED test at tolerance 1e-08 Testing: new d coef spam PASSED test at tolerance 1e-08 Testing: nzero in call to mKrig PASSED test at tolerance 1e-08 Testing: mKrig vs. Krig for ozone2 PASSED test at tolerance 1e-08 Testing: predict Wendland mKrig vs Krig PASSED test at tolerance 1e-08 Warning message: In fastTps(xdat, ydat, theta = 0.3) : fastTps will interpolate observations Testing: fastTps interp1 PASSED test at tolerance 1e-08 Testing: fastTps interp2 PASSED test at tolerance 0.01 [1] "testing using distance matrix" Testing: predict: stationary.cov versus Exp.cov PASSED test at tolerance 1e-08 Testing: predict: no distance matrix versus compact distance matrix PASSED test at tolerance 1e-08 Testing: predict: no distance matrix versus distance matrix PASSED test at tolerance 1e-08 [1] "testing using predictSE" Testing: predictSE: stationary.cov with exponential versus Exp.cov PASSED test at tolerance 1e-08 Testing: predictSE: no distance matrix versus compact distance matrix PASSED test at tolerance 1e-08 Testing: predictSE: no distance matrix versus distance matrix PASSED test at tolerance 1e-08 all done with mKrig tests > > > > > proc.time() user system elapsed 2.091 0.107 2.191 fields/tests/Krig.test.W.R0000644000175100001440000000645013114140330015075 0ustar hornikusers # fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, # PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. library(fields) options( echo=FALSE) test.for.zero.flag<- 1 # # # test of off diagonal weight matrix for obs # Check against linear algebra # #cat("A very nasty case with off diagonal weights",fill=TRUE) set.seed(123) x<- matrix( runif( 30), 15,2) y<- rnorm( 15)*.01 + x[,1]**2 + x[,2]**2 #weights<- rep( 1, 15) weights<- runif(15)*10 # WBW # double check that just diagonals work. lambda.test<- .6 Krig( x,y,cov.function=Exp.cov,weights=weights)-> out Krig( x,y,cov.function=Exp.cov,weights=weights, lambda=lambda.test)-> out2 Krig.coef( out, lambda=lambda.test)-> test W<- diag( weights) W2<- diag( sqrt(weights)) K<- Exp.cov(x,x) M<- (lambda.test*solve(W) + K);T<- fields.mkpoly(x, 2) temp.d<- c(solve( t(T) %*% solve( M)%*%T) %*% t(T)%*% solve( M) %*%y) temp.c<- solve( M)%*% (y - T%*% temp.d) # # test for d coefficients test.for.zero( test$d, out2$d, tag=" d coef diag W fixed lam") test.for.zero( temp.d, out2$d, tag=" d coef diag W") # test for c coefficents test.for.zero( test$c, out2$c, tag="c coef diag W fixed lam" ) test.for.zero( temp.c, out2$c, tag="c coef diag W " ) # the full monty temp.wght<- function(x, alpha=.1){ Exp.cov( x, theta=alpha) } Krig( x,y, cov.function=Exp.cov,weights=weights, wght.function= temp.wght, )-> out.new W2<-out.new$W2 W<- out.new$W test.for.zero( c( W2%*%W2), c( W), tag=" sqrt of W") Krig( x,y, cov.function=Exp.cov,weights=weights, W= out.new$W)-> temp test.for.zero( predict(temp, y= y), predict(out.new,y=y), tag=" Test of passing W explicitly") K<- Exp.cov(x,x); lambda.test<- .6; M<- (lambda.test*solve(W) + K);T<- fields.mkpoly(x, 2) temp.d<- c(solve( t(T) %*% solve( M)%*%T) %*% t(T)%*% solve( M) %*%y) temp.c<- solve( M)%*% (y - T%*% temp.d) # Krig.coef( out.new,lambda=lambda.test )-> out2 test.for.zero( temp.d, out2$d, tag=" d coef full W") # test for c coefficents test.for.zero( temp.c, out2$c, tag="c coef full W" ) #### ### testing the GCV function lambda<- out.new$lambda Krig.Amatrix( out.new, lambda=lambda)-> Alam test.for.zero( Alam%*%y , predict(out.new), tag="A matrix") N<- length( y) test<- sum( diag( Alam)) # compare to test2<- out.new$eff.df test.for.zero( test,test2, tag=" check trace of A") Krig.fgcv.one( lam=lambda, out.new)-> test # compare to test2<- (1/N)*sum( (out.new$W2%*%(y - c(Alam%*% y) ))**2 ) / (1- sum(diag( Alam))/N)**2 test.for.zero( test,test2,tol=.5e-7, tag="GCV one" ) cat( "all done testing off diag W case", fill=TRUE) options( echo=TRUE) fields/tests/REMLest.test.R0000644000175100001440000001110213114140462015243 0ustar hornikusers # fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, # PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. ############################################################################ # Begin tests of Matern covaraince parameter estimate # Note that in all tests the smoothness (nu) is fixed # and only theta (range), sill ( rho) and nugget (sigma2) are considered. ########################################################################## library(fields) options( echo=FALSE) test.for.zero.flag<-1 # ozone data as a test case data( ozone2) x<- ozone2$lon.lat y<- ozone2$y[16,] is.good <- !is.na( y) x<- x[is.good,] y<- y[is.good] nu<- 1.5 # reduce data set to speed calculations x<-x[1:75,] y<- y[1:75] # testing REML formula as used in gcv.Krig loglmvn <- function(pars, nu, x, y) { N <- length(y) Tmatrix <- fields.mkpoly(x, 2) qr.T <- qr(Tmatrix) Q2 <- qr.yq2(qr.T, diag(1, N)) ys <- t(Q2) %*% y N2 <- length(ys) lrho = pars[1] ltheta = pars[2] lsig2 = pars[3] d <- rdist(x, x) A <- exp(lrho)*(Matern(d, range = exp(ltheta), smoothness = nu) + exp(lsig2)/exp(lrho) * diag(N)) A <- t(Q2) %*% A %*% Q2 A <- chol(A) w = backsolve(A, ys, transpose = TRUE) ycept <- (N2/2) * log(2 * pi) + sum(log(diag(A))) + (1/2) * t(w) %*% w return( ycept) } logProfilemvn <- function(lambda, theta, nu, x, y) { N <- length(y) Tmatrix <- fields.mkpoly(x, 2) qr.T <- qr(Tmatrix) Q2 <- qr.yq2(qr.T, diag(1, N)) ys <- t(Q2) %*% y N2 <- length(ys) d <- rdist(x, x) print( dim ( d)) print( dim (diag( 1, N) )) A <- (Matern(d, range = theta, smoothness = nu) + diag( 1, N)*lambda ) A <- t(Q2) %*% A %*% Q2 A <- chol(A) lnDetCov<- sum( log(diag(A)))*2 w = backsolve(A, ys, transpose = TRUE) rho.MLE<- sum( w^2)/N2 REMLLike<- -1 * (-N2/2 - log(2 * pi) * (N2/2) - (N2/2) * log(rho.MLE) - (1/2) * lnDetCov) return( REMLLike) } out<- Krig( x,y, Covariance="Matern", smoothness= nu, theta= 2.0, method="REML" ) pars<- c(log( out$rho.MLE), log( 2.0), log( out$shat.MLE^2) ) REML0<- out$lambda.est[6,5] REML1<- loglmvn( pars,nu, x,y) REML2<- logProfilemvn( out$lambda, 2.0, nu, x,y) test.for.zero( REML0, REML1, tol=2e-4, tag="sanity check 1 for REML from Krig") test.for.zero( REML0, REML2, tag= "sanity check 2 for REML from Krig") ##D hold1<- MaternGLS.test( x,y, nu) ##D hold2<- MaternGLSProfile.test( x,y,nu) ##D test.for.zero( hold1$pars[1], hold2$pars[1], tol=2e-5, tag="check REML rho") ##D test.for.zero( hold1$pars[2], hold2$pars[2], tol=2e-5, tag="check REML theta") ##D test.for.zero( hold1$pars[3], hold2$pars[3], tol=5e-6, tag=" check REML sigma2") hold3<- MaternQR.test( x,y,nu) hold4<- MaternQRProfile.test( x,y,nu) test.for.zero( hold3$pars[1], hold4$pars[1], tol=1e-3, tag="check REML rho") test.for.zero( hold3$pars[2], hold4$pars[2], tol=1e-3, tag="check REML theta") test.for.zero( hold3$pars[3], hold4$pars[3], tol=.0002, tag=" check REML sigma2") nu<- hold3$smoothness out1<- Krig( x,y, Covariance="Matern", theta= hold3$pars[2], smoothness=nu, method="REML") # evaluate Profile at full REML MLE lam<- hold3$pars[3]/hold3$pars[1] l1<-Krig.flplike( lam, out1) # evaluate Profile at full REML MLE out2<- Krig( x,y, Covariance="Matern", theta= hold4$pars[2], smoothness=nu, method="REML") lam<- hold4$pars[3]/hold4$pars[1] l2<-Krig.flplike( lam, out2) test.for.zero( l1,l2, tag="Profile likelihoods from Krig and optim") hold5<- MLE.Matern( x,y,nu) test.for.zero( hold5$llike,l2, tag="Profile likelihoods from Krig and golden search") #hold6<- spatialProcess( x,y, smoothness=nu, theta= hold5$theta.MLE, REML=TRUE) cat("done with Matern REML estimator tests where smoothness is fixed", fill=TRUE) options( echo=TRUE) fields/tests/KrigGCVREML.test.Rout.save0000644000175100001440000000527013114304717017407 0ustar hornikusers R version 3.4.0 (2017-04-21) -- "You Stupid Darkness" Copyright (C) 2017 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin15.6.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # fields is a package for analysis of spatial data written for > # the R software environment . > # Copyright (C) 2017 > # University Corporation for Atmospheric Research (UCAR) > # Contact: Douglas Nychka, nychka@ucar.edu, > # National Center for Atmospheric Research, > # PO Box 3000, Boulder, CO 80307-3000 > # > # This program is free software; you can redistribute it and/or modify > # it under the terms of the GNU General Public License as published by > # the Free Software Foundation; either version 2 of the License, or > # (at your option) any later version. > # This program is distributed in the hope that it will be useful, > # but WITHOUT ANY WARRANTY; without even the implied warranty of > # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > # GNU General Public License for more details. > > > library(fields) Loading required package: spam Loading required package: grid Spam version 1.4-0 (2016-08-29) is loaded. Type 'help( Spam)' or 'demo( spam)' for a short introduction and overview of this package. Help for individual functions is also obtained by adding the suffix '.spam' to the function name, e.g. 'help( chol.spam)'. Attaching package: 'spam' The following objects are masked from 'package:base': backsolve, forwardsolve Loading required package: maps > # > # > # > > options( echo=FALSE) Warning: Grid searches over lambda (nugget and sill variances) with minima at the endpoints: (REML) Restricted maximum likelihood minimum at right endpoint lambda = 0.2767992 (eff. df= 9.499985 ) Testing: predict sanity check PASSED test at tolerance 3e-08 Testing: predict using direct linear algebra PASSED test at tolerance 1e-08 Testing: GCV PASSED test at tolerance 1e-08 Testing: GCV one PASSED test at tolerance 1e-08 Testing: GCV model PASSED test at tolerance 1e-08 Testing: Tps/gcv for ozone2 PASSED test at tolerance 5e-04 Testing: Tps/gcv for ozone2 new data PASSED test at tolerance 1e-06 done with GCV and REML tests > > proc.time() user system elapsed 1.253 0.050 1.296 fields/tests/mKrig.Z.R0000644000175100001440000000377513114302672014317 0ustar hornikusers # fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, # PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. library( fields) options( echo=FALSE) test.for.zero.flag<- 1 data(COmonthlyMet) y<- CO.tmin.MAM.climate good<- !is.na( y) y<-y[good] x<- CO.loc[good,] Z<- CO.elev[good] out<- mKrig( x,y, Z=Z, cov.function="stationary.cov", Covariance="Matern", theta=4.0, smoothness=1.0, lambda=.1) out2<- Krig( x,y, Z=Z, cov.function="stationary.cov", Covariance="Matern", theta=4.0, smoothness=1.0, lambda=.1, GCV=TRUE) test.for.zero( predict( out), predict(out2), tag="Full prediction") test.for.zero( predict( out, drop.Z=TRUE), predict(out2, drop.Z=TRUE), tag=" prediction dropping Z") xnew<- CO.loc[!good,] Znew<- CO.elev[!good] temp1<- predict( out, xnew=xnew, drop.Z=TRUE) temp2<- predict( out2, x=xnew, drop.Z=TRUE) test.for.zero( temp1,temp2, tag="new x's dropping Z") temp1<- predict( out, xnew=xnew, Z=Znew) temp2<- predict( out2, x=xnew, Z=Znew) test.for.zero( temp1,temp2, tag="new x's new Z's") temp1<- predictSurface( out, nx=20, ny=20, drop.Z=TRUE, extrap=TRUE) temp2<- predictSurface( out2, nx=20, ny=20, drop.Z=TRUE, extrap=TRUE) test.for.zero( temp1$z,temp2$z, tag="predicting on surface with drop.Z") cat("all done with mKrig Z tests", fill=TRUE) options( echo=TRUE) fields/tests/diagonal2.test.Rout.save0000644000175100001440000000465013114304717017334 0ustar hornikusers R version 3.4.0 (2017-04-21) -- "You Stupid Darkness" Copyright (C) 2017 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin15.6.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # fields is a package for analysis of spatial data written for > # the R software environment . > # Copyright (C) 2017 > # University Corporation for Atmospheric Research (UCAR) > # Contact: Douglas Nychka, nychka@ucar.edu, > # National Center for Atmospheric Research, > # PO Box 3000, Boulder, CO 80307-3000 > # > # This program is free software; you can redistribute it and/or modify > # it under the terms of the GNU General Public License as published by > # the Free Software Foundation; either version 2 of the License, or > # (at your option) any later version. > # This program is distributed in the hope that it will be useful, > # but WITHOUT ANY WARRANTY; without even the implied warranty of > # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > # GNU General Public License for more details. > > library( fields) Loading required package: spam Loading required package: grid Spam version 1.4-0 (2016-08-29) is loaded. Type 'help( Spam)' or 'demo( spam)' for a short introduction and overview of this package. Help for individual functions is also obtained by adding the suffix '.spam' to the function name, e.g. 'help( chol.spam)'. Attaching package: 'spam' The following objects are masked from 'package:base': backsolve, forwardsolve Loading required package: maps > options(echo=FALSE) Testing: eigenvalues of both versions PASSED test at tolerance 1e-08 Testing: inverse A+lambda*B PASSED test at tolerance 1e-08 Testing: inverse A+lambda*B PASSED test at tolerance 1e-08 Testing: inverse A+lambda*B PASSED test at tolerance 1e-08 > cat("all done testing both versions of simultaneous diagonalization ", fill=TRUE) all done testing both versions of simultaneous diagonalization > > > proc.time() user system elapsed 0.506 0.034 0.531 fields/tests/Likelihood.test.R0000644000175100001440000001054313114140430016056 0ustar hornikusers # fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, # PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # this is a test script to verify the likelihood computations are # correct with the eigen decomposition format used in Krig # see Krig.flplike for the concise computation. # library(fields) options( echo=FALSE) test.for.zero.flag<- 1 data( ozone2) x<- ozone2$lon.lat y<- ozone2$y[16,] is.good <- !is.na( y) x<- x[is.good,] y<- y[is.good] theta<- 2.0 # check log likelihood calculation nu<- 1.5 lambda<- .2 out<- mKrig( x,y, theta=theta,Covariance="Matern", smoothness=nu, lambda=lambda) # peg rho and sigma as MLEs from mKrig rho <- out$rho.MLE sigma2<- rho*lambda N<- length( y) dd<- rdist( x,x) M<- rho* Matern( dd, range= theta, smoothness=nu) + sigma2* diag( 1, N) X<- fields.mkpoly( x, 2) Mi<- solve( M) betahat<- solve(t(X)%*%Mi%*%X)%*% t(X)%*% Mi%*% y res<- y - X%*%betahat ccoef<- ( Mi%*% ( res))*rho # sanity check that estimates are the same test.for.zero( ccoef, out$c, tag="check ccoef") # find full log likelihood chol(M)-> cM lLike<- -(N/2)*log(2*pi) - (1/2)* (2*sum( log( diag(cM)))) - (1/2)* t(res)%*% Mi %*% res # formula for full likelihood using peices from mKrig lLike.test<- -(N/2)*log(2*pi) - (1/2)* out$lnDetCov - (1/2)*(N)*log( rho) - (1/2)*out$quad.form/rho test.for.zero( lLike, lLike.test, tag="llike full verses rhohat") test.for.zero( lLike, out$lnProfileLike, tag="llike profile from mKrig") # REML check nu<- 1.5 theta<- .6 obj<- Krig( x,y, theta=theta,Covariance="Matern", smoothness=nu ) # sanity check that c coefficients agree with Krig rho<- 500 lambda<- .2 sigma2<- lambda*rho hold<- REML.test( x,y,rho, sigma2, theta, nu=1.5) ccoef2<- Krig.coef( obj, lambda)$c test.for.zero( hold$ccoef, ccoef2, tag="ccoefs") # check RSS with Krig decomposition. RSS1<- sum( (lambda*ccoef2)**2) lD <- obj$matrices$D * lambda RSS2 <- sum(((obj$matrices$u * lD)/(1 + lD))^2) test.for.zero( RSS2, RSS1, tag=" RSS using matrices") # check quadratic form with Krig D.temp<- obj$matrices$D[ obj$matrices$D>0] A3test<- (1/lambda)* obj$matrices$V %*% diag((D.temp*lambda)/ (1 +D.temp*lambda) )%*% t( obj$matrices$V) test.for.zero(solve(A3test), hold$A/rho, tol=5e-8) Quad3<- sum( D.temp*(obj$matrices$u[obj$matrices$D>0])^2/(1+lambda*D.temp)) test.for.zero( hold$quad.form, Quad3/rho, tag="quad form") # test determinants N2<- length( D.temp) det4<- -sum( log(D.temp/(1 + D.temp*lambda)) ) det1<- sum( log(eigen( hold$A/rho)$values)) test.for.zero( det1, det4, tag="det" ) # test REML Likelihood lLikeREML.test<--1*( (N2/2)*log(2*pi) - (1/2)*(sum( log(D.temp/(1 + D.temp*lambda)) ) - N2*log(rho)) + (1/2)*sum( lD*(obj$matrices$u)^2/(1+lD)) /(lambda*rho) ) test.for.zero( hold$REML.like, lLikeREML.test, tag="REML using matrices") # profile likelihood # lnProfileLike <- (-np/2 - log(2*pi)*(np/2) # - (np/2)*log(rho.MLE) - (1/2) * lnDetCov) # test using full REML likelihood. nu<- 1.5 rho<- 7000 lambda<- .02 sigma2<- lambda*rho theta<- 2.0 obj<- Krig( x,y, theta=theta,Covariance="Matern", smoothness=nu ) hold<- REML.test(x,y,rho, sigma2, theta, nu=1.5) np<- hold$N2 rho.MLE<- c(hold$rhohat) lnDetCov<-sum( log(eigen( hold$A/rho)$values)) l0<- REML.test(x,y,rho.MLE, rho.MLE*lambda, theta, nu=1.5)$REML.like l1<- (-np/2 - log(2*pi)*(np/2)- (np/2)*log(rho.MLE) - (1/2) * lnDetCov) l2<- (-1)*Krig.flplike( lambda, obj) test.for.zero( l0,l2, tag="REML profile flplike") test.for.zero( l1,l2, tag="REML profile flplike") cat("all done with likelihood tests", fill=TRUE) options( echo=TRUE) fields/tests/mKrig.MLE.test.Rout.save0000644000175100001440000000456413114304717017165 0ustar hornikusers R version 3.4.0 (2017-04-21) -- "You Stupid Darkness" Copyright (C) 2017 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin15.6.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # fields is a package for analysis of spatial data written for > # the R software environment . > # Copyright (C) 2017 > # University Corporation for Atmospheric Research (UCAR) > # Contact: Douglas Nychka, nychka@ucar.edu, > # National Center for Atmospheric Research, > # PO Box 3000, Boulder, CO 80307-3000 > # > # This program is free software; you can redistribute it and/or modify > # it under the terms of the GNU General Public License as published by > # the Free Software Foundation; either version 2 of the License, or > # (at your option) any later version. > # This program is distributed in the hope that it will be useful, > # but WITHOUT ANY WARRANTY; without even the implied warranty of > # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > # GNU General Public License for more details. > > > library( fields ) Loading required package: spam Loading required package: grid Spam version 1.4-0 (2016-08-29) is loaded. Type 'help( Spam)' or 'demo( spam)' for a short introduction and overview of this package. Help for individual functions is also obtained by adding the suffix '.spam' to the function name, e.g. 'help( chol.spam)'. Attaching package: 'spam' The following objects are masked from 'package:base': backsolve, forwardsolve Loading required package: maps > options( echo=FALSE) [1] "testing using distance matrix" [1] "finished default case" [1] "finished compact distance matrix case" Testing: predict compatibility: rdist with compact versus normal rdist PASSED test at tolerance 1e-08 Testing: predictSE compatibility: rdist with compact versus normal rdist PASSED test at tolerance 1e-08 all done with mKrig.MLE tests > > proc.time() user system elapsed 9.053 0.397 9.453 fields/tests/Krig.Z.test.R0000644000175100001440000002113513114140264015103 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, # PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. library(fields) # # # test of fixed lambda case # Check against linear algebra # options( echo=FALSE) test.for.zero.flag<-1 #cat("A very nasty case with knots and weights",fill=TRUE) set.seed(123) x<- matrix( runif( 30), 15,2) Z<- matrix( rnorm(30), 15,2) y<- rnorm( 15)*.01 + 5*(x[,1]**3 + (x[,2]-.5)**2) + (Z[,1] +Z[,2])*.001 knots<- x[1:5,] #weights<- runif(15)*10 # first without knots compare default to fixed Krig( x,y,Z=Z, cov.function=Exp.cov, give.warnings=FALSE)-> out.new Krig( x,y,Z=Z, cov.function=Exp.cov,lambda=1)-> out.new2 ########## ## compute test using linear algebra K<- Exp.cov( x,x) lambda<-1 M<- (lambda* diag(nrow( x)) + K) T<- cbind( rep(1,15), x, Z) temp.d<- c(solve( t(T) %*% solve( M)%*%T) %*% t(T)%*% solve( M) %*% y) temp.c<- solve( M)%*% ( y - T%*% temp.d) # test for d coefficients test.for.zero( out.new2$d, temp.d, tag=" d coef") # test for c coefficents test.for.zero( out.new2$c, temp.c, tag="c coef" ) ####### testing predict function hold2<- predict( out.new2, x=x, Z=Z, just.fixed=TRUE) hold3<- predict( out.new2, x=x, Z=Z, drop.Z=TRUE) hold4<- predict( out.new2, x=x, Z=Z, drop.Z=TRUE, just.fixed=TRUE) hold<-T%*%temp.d test.for.zero( hold, hold2, tag="predict for null fixed" ) hold<-T[,1:3]%*%temp.d[1:3] + K %*% temp.c test.for.zero( hold, hold3, tag="predict for null spatial" ) hold<-T[,1:3]%*%temp.d[1:3] test.for.zero( hold, hold4, tag="predict for null drift" ) ######tests where coefficients are recomputed from object hold2<- predict( out.new,y=y, lambda=1.0, x=x, Z=Z, just.fixed=TRUE) hold3<- predict( out.new,y=y, lambda=1.0, x=x, Z=Z, drop.Z=TRUE) hold4<- predict( out.new, y=y, lambda=1.0, x=x, Z=Z, drop.Z=TRUE, just.fixed=TRUE) hold<-T%*%temp.d test.for.zero( hold, hold2, tag="predict for null fixed" ) hold<-T[,1:3]%*%temp.d[1:3] + K %*% temp.c test.for.zero( hold, hold3, tag="predict for null spatial" ) hold<-T[,1:3]%*%temp.d[1:3] test.for.zero( hold, hold4, tag="predict for null drift " ) ###knots case ***************************** set.seed(123) x<- matrix( runif( 30), 15,2) Z<- matrix( rnorm(30), 15,2) y<- rnorm( 15)*.01 + 5*(x[,1]**3 + (x[,2]-.5)**2) + (Z[,1] +Z[,2])*.001 knots<- x[1:5,] weights<- runif(15)*10 y[5] <- y[5] + 3 # avoids GCV warning # compare to Krig( x,y,Z=Z, knots=knots, cov.function=Exp.cov,weights=weights, verbose=FALSE, give.warnings=FALSE)-> out.new Krig( x,y,Z=Z, knots=knots, cov.function=Exp.cov,weights=weights, lambda=1)-> out.new2 # compare to each other Krig.coef( out.new, lambda=1)-> look # test for d coefficients test.for.zero( out.new2$d, look$d, tag=" knots/weights fixed/default d coef") # test for c coefficents test.for.zero( out.new2$c, look$c, tag="knots/weights fixed/default c coef" ) # compute test using linear algebra K<- Exp.cov( knots, knots) T<- cbind( rep(1,15), x, Z) X<- cbind( T, Exp.cov( x, knots)) lambda<-1.0 NN<- ncol( X) H<- matrix( 0, NN, NN) H[(1:5)+5, (1:5)+5] <- K c( solve(t(X)%*%(weights*X) + lambda*H)%*% t(X)%*% (weights*y) )-> temp temp.c<- temp[6:10] temp.d<- temp[1:5] # test for d coefficients test.for.zero( out.new2$d, temp.d, tag=" knots d coef") # test for c coefficents test.for.zero( out.new2$c, temp.c, tag="knots c coef" ) ####### testing predict function hold1<- predict( out.new2, x=x, Z=Z, y=y) hold2<- predict( out.new2, x=x, Z=Z, just.fixed=TRUE,y=y) hold3<- predict( out.new2, x=x, Z=Z, drop.Z=TRUE,y=y) hold4<- predict( out.new2, x=x, Z=Z, drop.Z=TRUE, just.fixed=TRUE,y=y) hold<- X%*% temp # X%*% temp - X[,4:5]%*% temp[c(4,5)] test.for.zero( hold, hold1, tag="knots predict for null" ) hold<-T%*%temp.d test.for.zero( hold, hold2, tag="knots predict for null" ) hold<-X%*%temp - X[,4:5] %*% temp[4:5] test.for.zero( hold, hold3, tag="knots predict w/o Z" ) hold<-T[,1:3]%*%temp.d[1:3] test.for.zero( hold, hold4, tag="knots predict for drift" ) ######tests where coefficients are recomputed from object hold1<- predict( out.new,y=y, lambda=1.0, x=x, Z=Z) hold2<- predict( out.new,y=y, lambda=1.0, x=x, Z=Z, just.fixed=TRUE) hold3<- predict( out.new, y=y, lambda=1.0, x=x, Z=Z, drop.Z=TRUE) hold4<- predict( out.new, y=y, lambda=1.0, x=x, Z=Z, drop.Z=TRUE, just.fixed=TRUE) hold<-X%*%temp test.for.zero( hold, hold1, tag="predict for null" ) hold<-T%*%temp.d test.for.zero( hold, hold2, tag="predict for null" ) hold<-X[,1:3] %*%temp.d[1:3] + X[,6:10] %*% temp.c test.for.zero( hold, hold3, tag="predict for null" ) hold<-T[,1:3]%*%temp.d[1:3] test.for.zero( hold, hold4, tag="predict for null" ) ####### tests using predict.se x<- ChicagoO3$x y<- ChicagoO3$y Zcov<- x[,1]**3 + x[,2]**3 tps.fit<-Tps( x,y, scale.type="unscaled", Z= Zcov) # here is lazy way to get a grid.list fields.x.to.grid( x, nx=20,ny=20)-> gridlist xg<- make.surface.grid(gridlist) Zcov.grid<- xg[,1]**3 + xg[,2]**3 ########### tests on just predict have been commented out to ########### indicate that they are redundant given ########### previous tests however, they could be useful for ########### future debugging ... # full surface with covariate # curv.mean1 <- predictSurface(tps.fit, grid.list = gridlist, extrap = TRUE, ## Z =Zcov.grid, drop.Z = FALSE)$z # just the spline surface # curv.mean2 <- predictSurface(tps.fit, grid.list = gridlist, # extrap = TRUE,drop.Z=TRUE)$z # explicitly here is the difference surface of curv.mean1 and curv.mean2 # curv.mean0<- as.surface( gridlist, Zcov.grid* tps.fit$d[4])$z # test.for.zero( curv.mean1- curv.mean2, curv.mean0) ## new tests predictSurfaceSE( tps.fit, grid.list=gridlist, extrap=TRUE, drop.Z=TRUE)$z-> curv.var1 predictSE( tps.fit, xg, drop.Z=TRUE)-> curv.var2 test.for.zero( curv.var1, curv.var2) # SE with covariates included predictSE( tps.fit, xg, Z=Zcov.grid, drop.Z=FALSE)**2-> curv.var1 # as.surface( gridlist, curv.var1)$z-> curv.var1 # SE for just the spline part predictSE( tps.fit, xg, drop.Z=TRUE)**2-> curv.var2 # as.surface( gridlist, curv.var2)$z-> curv.var2 # SE for just the fixed part predictSE( tps.fit, xg,Z=Zcov.grid, drop.Z=FALSE, just.fixed=TRUE )**2-> curv.var3 # as.surface( gridlist, curv.var3)$z-> curv.var3 # calculating from more basic functions ## these tests assume that Krig.Amatrix is working correctly! out<- tps.fit A<- Krig.Amatrix( tps.fit,x= xg, drop.Z=TRUE) Sigma<- out$rhohat*Rad.cov( out$x, out$x, p=2) S0<- out$rhohat*Rad.cov(xg, xg, p=2) S1<- out$rhohat*Rad.cov(out$x, xg, p=2) #yhat= Ay #var( f0 - yhat)= var( f0) - 2 cov( f0,yhat)+ cov( yhat) look<- S0 - t(S1)%*% t(A) - A%*%S1 + A%*% ( Sigma + diag(out$shat.MLE**2/out$weightsM))%*% t(A) look<- diag( look) test.for.zero(curv.var2 ,look,tag="SE w/o covariate") A<- Krig.Amatrix( tps.fit,x= xg, drop.Z=FALSE,Z=Zcov.grid) # see tps.fit$args for value of p Sigma<- out$rhohat*Rad.cov( out$x, out$x, p=2) S0<- out$rhohat*Rad.cov(xg, xg, p=2) S1<- out$rhohat*Rad.cov(out$x, xg, p=2) #yhat= Ay #var( f0 - yhat)= var( f0) - 2 cov( f0,yhat)+ cov( yhat) look<- S0 - t(S1)%*% t(A) - A%*%S1 + A%*% ( Sigma + diag(out$shat.MLE**2/out$weightsM))%*% t(A) look<- diag( look) test.for.zero(curv.var1 ,look,tag="SE with covariate") A<- Krig.Amatrix( tps.fit,x= xg, drop.Z=FALSE,Z=Zcov.grid, just.fixed=TRUE) # see tps.fit$args for value of p Sigma<- out$rhohat*Rad.cov( out$x, out$x, p=2) S0<- out$rhohat*Rad.cov(xg, xg, p=2) S1<- out$rhohat*Rad.cov(out$x, xg, p=2) #yhat= Ay #var( f0 - yhat)= var( f0) - 2 cov( f0,yhat)+ cov( yhat) look<- S0 - t(S1)%*% t(A) - A%*%S1 + A%*% ( Sigma + diag(out$shat.MLE**2/out$weightsM))%*% t(A) look<- diag( look) test.for.zero(curv.var3 ,look, tag="SE for fixed part") cat("All done with Z tests and Krig/Tps including predict and predictSE !", fill=TRUE) options( echo=TRUE) fields/tests/mKrig.MLE.test.R0000644000175100001440000000510413114144077015470 0ustar hornikusers # fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, # PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. library( fields ) options( echo=FALSE) test.for.zero.flag<- 1 # ##### generate test data # genCovMat = function(x, theta, lambda) { distanceMatrix<- rdist(x,x) Sigma<- exp( -distanceMatrix/theta ) + diag(x=lambda, nrow=nrow(distanceMatrix)) return(Sigma) } #generate observation locations n=500 x = matrix(runif(2*n), nrow=n) #generate observations at the locations trueTheta = .2 trueLambda = .1 Sigma = genCovMat(x, trueTheta, trueLambda) U = chol(Sigma) y = t(U)%*%as.vector(rnorm(n)) # ######set MLE computation parameters # testThetas = seq(from=trueTheta/2, to=2*trueTheta, length=20) par.grid=list(theta=testThetas) guessLambda = trueLambda # ##### test using distance matrix # print("testing using distance matrix") set.seed(1) out1 = mKrig.MLE(x, y, lambda=guessLambda, par.grid=par.grid, cov.args= list(Distance="rdist")) lambda.MLE = out1$lambda.MLE theta.MLE = out1$cov.args.MLE$theta #perform mKrig at MLE parameters out1 = mKrig(x, y, lambda=lambda.MLE, theta=theta.MLE, cov.args= list(Distance="rdist")) print("finished default case") set.seed(1) out2 = mKrig.MLE(x, y, lambda=guessLambda, par.grid=par.grid) lambda.MLE = out2$lambda.MLE theta.MLE = out2$cov.args.MLE$theta #perform mKrig at MLE parameters out2 = mKrig(x, y, lambda=lambda.MLE, theta=theta.MLE) print("finished compact distance matrix case") # ##### test comatibility with other fields functions # temp1<- predict( out1) temp2<- predict( out2) test.for.zero( temp1, temp2, tag="predict compatibility: rdist with compact versus normal rdist") # ##### test SE # temp1 = predictSE(out1) temp2 = predictSE(out2) test.for.zero( temp1, temp2, tag="predictSE compatibility: rdist with compact versus normal rdist") cat("all done with mKrig.MLE tests", fill=TRUE) options( echo=TRUE) fields/tests/Krig.test.W.Rout.save0000644000175100001440000000646213114304717016600 0ustar hornikusers R version 3.4.0 (2017-04-21) -- "You Stupid Darkness" Copyright (C) 2017 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin15.6.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # fields is a package for analysis of spatial data written for > # the R software environment . > # Copyright (C) 2017 > # University Corporation for Atmospheric Research (UCAR) > # Contact: Douglas Nychka, nychka@ucar.edu, > # National Center for Atmospheric Research, > # PO Box 3000, Boulder, CO 80307-3000 > # > # This program is free software; you can redistribute it and/or modify > # it under the terms of the GNU General Public License as published by > # the Free Software Foundation; either version 2 of the License, or > # (at your option) any later version. > # This program is distributed in the hope that it will be useful, > # but WITHOUT ANY WARRANTY; without even the implied warranty of > # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > # GNU General Public License for more details. > > library(fields) Loading required package: spam Loading required package: grid Spam version 1.4-0 (2016-08-29) is loaded. Type 'help( Spam)' or 'demo( spam)' for a short introduction and overview of this package. Help for individual functions is also obtained by adding the suffix '.spam' to the function name, e.g. 'help( chol.spam)'. Attaching package: 'spam' The following objects are masked from 'package:base': backsolve, forwardsolve Loading required package: maps > options( echo=FALSE) Warning: Grid searches over lambda (nugget and sill variances) with minima at the endpoints: (REML) Restricted maximum likelihood minimum at right endpoint lambda = 0.003053154 (eff. df= 14.25 ) Testing: d coef diag W fixed lam PASSED test at tolerance 1e-08 Testing: d coef diag W PASSED test at tolerance 1e-08 Testing: c coef diag W fixed lam PASSED test at tolerance 1e-08 Testing: c coef diag W PASSED test at tolerance 1e-08 Warning: Grid searches over lambda (nugget and sill variances) with minima at the endpoints: (REML) Restricted maximum likelihood minimum at right endpoint lambda = 0.002794267 (eff. df= 14.24999 ) Testing: sqrt of W PASSED test at tolerance 1e-08 Warning: Grid searches over lambda (nugget and sill variances) with minima at the endpoints: (REML) Restricted maximum likelihood minimum at right endpoint lambda = 0.002794267 (eff. df= 14.24999 ) Testing: Test of passing W explicitly PASSED test at tolerance 1e-08 Testing: d coef full W PASSED test at tolerance 1e-08 Testing: c coef full W PASSED test at tolerance 1e-08 Testing: A matrix PASSED test at tolerance 1e-08 Testing: check trace of A PASSED test at tolerance 1e-08 Testing: GCV one PASSED test at tolerance 5e-08 all done testing off diag W case > > proc.time() user system elapsed 1.138 0.045 1.178 fields/tests/diagonal2.test.R0000644000175100001440000000326413114144136015644 0ustar hornikusers # fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, # PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. library( fields) options(echo=FALSE) test.for.zero.flag<- 1 n<- 50 x<- matrix( runif(n*2), n, 2) A<- Exp.cov( x,x,theta=.2) B<- Exp.cov( x,x, theta=.5) fields.diagonalize(A,B)-> look fields.diagonalize2(A,B, verbose=FALSE)-> look2 test.for.zero( look$D, look2$D, tol=1E-8,tag="eigenvalues of both versions") G1<- look$G G2<-look2$G a1<- sign( G1[1,]) a2<- sign(G2[1,]) a<- a1*a2 lambda<- .8 test.for.zero( solve( A + lambda* B), G2%*%diag( 1/(1+ lambda*look2$D))%*%t(G2), tag="inverse A+lambda*B", tol=1e-8 ) test.for.zero( solve( A + lambda* B), G1%*%diag( 1/(1+ lambda*look$D))%*%t(G1), tag="inverse A+lambda*B", tol=1e-8 ) test.for.zero( G2%*%diag( 1/(1+ lambda*look2$D))%*%t(G2) , G1%*%diag( 1/(1+ lambda*look$D))%*%t(G1), tag="inverse A+lambda*B" , tol=1e-8) options( echo=TRUE) cat("all done testing both versions of simultaneous diagonalization ", fill=TRUE) fields/tests/diag.multiply.test.Rout.save0000644000175100001440000000423013114304717020250 0ustar hornikusers R version 3.4.0 (2017-04-21) -- "You Stupid Darkness" Copyright (C) 2017 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin15.6.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # fields is a package for analysis of spatial data written for > # the R software environment . > # Copyright (C) 2017 > # University Corporation for Atmospheric Research (UCAR) > # Contact: Douglas Nychka, nychka@ucar.edu, > # National Center for Atmospheric Research, > # PO Box 3000, Boulder, CO 80307-3000 > # > # This program is free software; you can redistribute it and/or modify > # it under the terms of the GNU General Public License as published by > # the Free Software Foundation; either version 2 of the License, or > # (at your option) any later version. > # This program is distributed in the hope that it will be useful, > # but WITHOUT ANY WARRANTY; without even the implied warranty of > # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > # GNU General Public License for more details. > > library( fields) Loading required package: spam Loading required package: grid Spam version 1.4-0 (2016-08-29) is loaded. Type 'help( Spam)' or 'demo( spam)' for a short introduction and overview of this package. Help for individual functions is also obtained by adding the suffix '.spam' to the function name, e.g. 'help( chol.spam)'. Attaching package: 'spam' The following objects are masked from 'package:base': backsolve, forwardsolve Loading required package: maps > options( echo=FALSE) PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 All done with testing diag multiply > > proc.time() user system elapsed 0.462 0.032 0.487 fields/tests/Krig.se.W.Rout.save0000644000175100001440000000456613114304717016233 0ustar hornikusers R version 3.4.0 (2017-04-21) -- "You Stupid Darkness" Copyright (C) 2017 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin15.6.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # fields is a package for analysis of spatial data written for > # the R software environment . > # Copyright (C) 2017 > # University Corporation for Atmospheric Research (UCAR) > # Contact: Douglas Nychka, nychka@ucar.edu, > # National Center for Atmospheric Research, > # PO Box 3000, Boulder, CO 80307-3000 > # > # This program is free software; you can redistribute it and/or modify > # it under the terms of the GNU General Public License as published by > # the Free Software Foundation; either version 2 of the License, or > # (at your option) any later version. > # This program is distributed in the hope that it will be useful, > # but WITHOUT ANY WARRANTY; without even the implied warranty of > # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > # GNU General Public License for more details. > > > library( fields) Loading required package: spam Loading required package: grid Spam version 1.4-0 (2016-08-29) is loaded. Type 'help( Spam)' or 'demo( spam)' for a short introduction and overview of this package. Help for individual functions is also obtained by adding the suffix '.spam' to the function name, e.g. 'help( chol.spam)'. Attaching package: 'spam' The following objects are masked from 'package:base': backsolve, forwardsolve Loading required package: maps > # tests of predictSE using > # off diag weight matrix for obs (W) > > options( echo=FALSE) Testing: Amatrix vs. predict PASSED test at tolerance 1e-08 Testing: Marginal predictSE PASSED test at tolerance 1e-08 Testing: Full covariance predictSE PASSED test at tolerance 1e-08 Testing: Full covariance predictSE explicit W PASSED test at tolerance 1e-08 all done > > proc.time() user system elapsed 1.270 0.048 1.311 fields/tests/mKrig.parameters.test.Rout.save0000644000175100001440000002273213114304717020710 0ustar hornikusers R version 3.4.0 (2017-04-21) -- "You Stupid Darkness" Copyright (C) 2017 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin15.6.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # fields is a package for analysis of spatial data written for > # the R software environment . > # Copyright (C) 2017 > # University Corporation for Atmospheric Research (UCAR) > # Contact: Douglas Nychka, nychka@ucar.edu, > # National Center for Atmospheric Research, > # PO Box 3000, Boulder, CO 80307-3000 > # > # This program is free software; you can redistribute it and/or modify > # it under the terms of the GNU General Public License as published by > # the Free Software Foundation; either version 2 of the License, or > # (at your option) any later version. > # This program is distributed in the hope that it will be useful, > # but WITHOUT ANY WARRANTY; without even the implied warranty of > # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > # GNU General Public License for more details. > > > library( fields) Loading required package: spam Loading required package: grid Spam version 1.4-0 (2016-08-29) is loaded. Type 'help( Spam)' or 'demo( spam)' for a short introduction and overview of this package. Help for individual functions is also obtained by adding the suffix '.spam' to the function name, e.g. 'help( chol.spam)'. Attaching package: 'spam' The following objects are masked from 'package:base': backsolve, forwardsolve Loading required package: maps > #options( echo=FALSE) > test.for.zero.flag<- 1 > data(ozone2) > y<- ozone2$y[16,] > x<- ozone2$lon.lat > # > # Omit the NAs > good<- !is.na( y) > x<- x[good,] > y<- y[good] > #source("~/Home/Src/fields/R/mKrig.family.R") > > # now look at mKrig w/o sparse matrix > look<- mKrig( x,y, cov.function="stationary.cov", theta=10, lambda=.3, + chol.args=list( pivot=FALSE)) > > > lookKrig<- Krig( x,y, cov.function="stationary.cov", + theta=10) > > test.df<-Krig.ftrace(look$lambda,lookKrig$matrices$D) > > test<- Krig.coef( lookKrig, lambda=look$lambda) > > test.for.zero( look$d, test$d, tag="Krig mKrig d coef") Testing: Krig mKrig d coef PASSED test at tolerance 1e-08 > test.for.zero( look$c, test$c, tag="Krig mKrig c coef") Testing: Krig mKrig c coef PASSED test at tolerance 1e-08 > > # test of trace calculation > > look<- mKrig( x,y, cov.function="stationary.cov", theta=10, lambda=.3, + + find.trA=TRUE, NtrA= 1000, iseed=243) > > test.for.zero( look$eff.df, test.df,tol=.01, tag="Monte Carlo eff.df") Testing: Monte Carlo eff.df PASSED test at tolerance 0.01 > > > # > lookKrig<-Krig( x,y, cov.function="stationary.cov", + theta=350, Distance="rdist.earth",Covariance="Wendland", + cov.args=list( k=2, dimension=2) ) > > look<- mKrig( x,y, cov.function="stationary.cov", + theta=350, + Distance="rdist.earth",Covariance="Wendland", + cov.args=list( k=2, dimension=2), + lambda=lookKrig$lambda, + find.trA=TRUE, NtrA= 1000, iseed=243) > > test.for.zero( look$c, lookKrig$c, tag="Test of wendland and great circle") Testing: Test of wendland and great circle PASSED test at tolerance 1e-08 > > test.for.zero(look$eff.df, Krig.ftrace( lookKrig$lambda, lookKrig$matrices$D) + ,tol=.01, tag="eff.df") Testing: eff.df PASSED test at tolerance 0.01 > > # same calculation using sparse matrices. > > look4<- mKrig( x,y, cov.function="wendland.cov", + theta=350, + Dist.args=list( method="greatcircle"), + cov.args=list( k=2), + lambda=lookKrig$lambda, + find.trA=TRUE, NtrA=500, iseed=243) > > test.for.zero( look$c, look4$c,tol=8e-7, + tag="Test of sparse wendland and great circle") Testing: Test of sparse wendland and great circle PASSED test at tolerance 8e-07 > test.for.zero(look4$eff.df, Krig.ftrace( lookKrig$lambda, lookKrig$matrices$D), + tol=.01, tag="sparse eff.df") Testing: sparse eff.df PASSED test at tolerance 0.01 > > # great circle distance switch has been a big bug -- test some options > > look<- mKrig( x,y, cov.function="wendland.cov", + theta=350, Dist.args=list( method="greatcircle"), + cov.args=list( k=2),lambda=lookKrig$lambda, + find.trA=TRUE, NtrA=1000, iseed=243) > > test.for.zero(look$eff.df, Krig.ftrace( lookKrig$lambda, lookKrig$matrices$D), + tol=1e-2, tag="exact sparse eff.df") Testing: exact sparse eff.df PASSED test at tolerance 0.01 > > # compare to fast Tps > look3<- fastTps( x,y,theta=350,lambda=lookKrig$lambda, NtrA=200, iseed=243, + lon.lat=TRUE) > #look3$c<- lookKrig$c > #look3$d<- lookKrig$d > object<- look3 > np<- object$np > Ey <- diag(1, np) > NtrA <- np > hold <- predict.mKrig(object, ynew = Ey, collapseFixedEffect=FALSE) > hold2<- matrix( NA, np,np) > for( k in 1:np){ + hold2[,k] <- predict.Krig(lookKrig, y = Ey[,k]) + } > #plot( diag(hold), diag(hold2)) > > > test.for.zero( look3$c, lookKrig$c, tol=5e-7) PASSED test at tolerance 5e-07 > test.for.zero( look3$d, lookKrig$d, tol=2e-8) PASSED test at tolerance 2e-08 > test.for.zero( look3$fitted.values, lookKrig$fitted.values, tol=1e-7) PASSED test at tolerance 1e-07 > > test.for.zero( predict( look3, xnew= look3$x), predict( lookKrig, xnew= lookKrig$x), + tol=5e-7) PASSED test at tolerance 5e-07 > > test.for.zero( hold[,1], hold2[,1], tol=1e-7, relative=FALSE) PASSED test at tolerance 1e-07 > > test.for.zero(diag(hold),diag(hold2), tol=2E-7, + relative=FALSE, tag="exact sparse eff.df by predict -- fastTps") Testing: exact sparse eff.df by predict -- fastTps PASSED test at tolerance 2e-07 > #plot( diag(hold), ( 1- diag(hold2)/ diag(hold)) ) > > test.for.zero(look3$eff.df,sum( diag(hold)) , tag="fastTps ef.df exact" ) Testing: fastTps ef.df exact PASSED test at tolerance 1e-08 > > test.for.zero(look3$eff.df, Krig.ftrace( lookKrig$lambda, lookKrig$matrices$D), + tol=2e-7, tag="exact sparse eff.df through mKrig-- fastTps") Testing: exact sparse eff.df through mKrig-- fastTps PASSED test at tolerance 2e-07 > > # calculations of likelihood, rho and sigma > > lam<-.2 > > out<- mKrig( x,y, cov.function =Exp.cov, theta=4, lambda=lam) > out2<- Krig( x,y, cov.function =Exp.cov, theta=4, lambda=lam) > > > Sigma<- Exp.cov( x,x,theta=4) > X<- cbind( rep(1, nrow(x)), x) > > Sinv<- solve( Sigma + lam* diag( 1, nrow( x))) > > #checks on likelihoods > > # quadratic form: > dhat<- c(solve( t(X)%*%Sinv%*%(X) ) %*% t(X) %*%Sinv%*%y) > test.for.zero( dhat, out$d, tag="initial check on d for likelihood") Testing: initial check on d for likelihood PASSED test at tolerance 1e-08 > r<- y -X%*%dhat > N<- nrow(x) > look<- t( r)%*%(Sinv)%*%r/N > > > > test.for.zero( look, out$rho.MLE, tag="rho hat from likelihood") Testing: rho hat from likelihood PASSED test at tolerance 1e-08 > > test.for.zero( look, out2$rhohat, tag="rho hat from likelihood compared to Krig") Testing: rho hat from likelihood compared to Krig PASSED test at tolerance 1e-08 > > > > # check determinant > lam<- .2 > Sigma<- Exp.cov( x,x,theta=4) > M<- Sigma + lam * diag( 1, nrow(x)) > chol( M)-> Mc > look2<- sum( log(diag( Mc)))*2 > > out<-mKrig( x,y,cov.function =Exp.cov, theta=4, lambda=lam) > > test.for.zero( out$lnDetCov, look2) PASSED test at tolerance 1e-08 > test.for.zero( out$lnDetCov, determinant(M, log=TRUE)$modulus) PASSED test at tolerance 1e-08 > > # weighted version > lam<- .2 > Sigma<- Exp.cov( x,x,theta=4) > set.seed( 123) > weights<- runif(nrow( x)) > M<- Sigma + diag(lam/ weights) > chol( M)-> Mc > look2<- sum( log(diag( Mc)))*2 > > out<-mKrig( x,y,weights=weights, cov.function =Exp.cov, theta=4, lambda=lam) > > test.for.zero( out$lnDetCov, look2) PASSED test at tolerance 1e-08 > test.for.zero( look2, determinant(M, log=TRUE)$modulus) PASSED test at tolerance 1e-08 > test.for.zero( out$lnDetCov, determinant(M, log=TRUE)$modulus) PASSED test at tolerance 1e-08 > > > > # check profile likelihood by estimating MLE > lam.true<- .2 > N<- nrow( x) > Sigma<- Exp.cov( x,x,theta=4) > M<- Sigma + lam.true * diag( 1, nrow(x)) > chol( M)-> Mc > t(Mc)%*%Mc -> test > > > > > ##D set.seed( 234) > ##D NSIM<- 100 > ##D hold2<-rep( NA, NSIM) > ##D temp.fun<- function(lglam){ > ##D out<-mKrig( x,ytemp, > ##D cov.function =Exp.cov, theta=4, lambda=exp(lglam)) > ##D return(-1* out$lnProfileLike)} > > ##D hold1<-rep( NA, NSIM) > ##D yt<- rep( 1, N) > ##D obj<- Krig( x,yt, theta=4) > > > ##D E<- matrix( rnorm( NSIM*N), ncol=NSIM) > > ##D for ( j in 1:NSIM){ > ##D cat( j, " ") > ##D ytemp <- x%*%c(1,2) + t(Mc)%*%E[,j] > ##D out<- optim( log(.2), temp.fun, method="BFGS") > ##D hold2[j]<- exp(out$par) > ##D hold1[j]<- gcv.Krig(obj, y=ytemp)$lambda.est[6,1] > > ##D } > ##D test.for.zero( median( hold1), .2, tol=.08) > ##D test.for.zero( median( hold2), .2, tol=.12) > > > > > > > > > > > > > > > > proc.time() user system elapsed 2.995 0.119 3.108 fields/tests/Krig.se.test.Rout.save0000644000175100001440000001654513114304717017004 0ustar hornikusers R version 3.4.0 (2017-04-21) -- "You Stupid Darkness" Copyright (C) 2017 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin15.6.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # fields is a package for analysis of spatial data written for > # the R software environment . > # Copyright (C) 2017 > # University Corporation for Atmospheric Research (UCAR) > # Contact: Douglas Nychka, nychka@ucar.edu, > # National Center for Atmospheric Research, > # PO Box 3000, Boulder, CO 80307-3000 > # > # This program is free software; you can redistribute it and/or modify > # it under the terms of the GNU General Public License as published by > # the Free Software Foundation; either version 2 of the License, or > # (at your option) any later version. > # This program is distributed in the hope that it will be useful, > # but WITHOUT ANY WARRANTY; without even the implied warranty of > # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > # GNU General Public License for more details. > > > library( fields) Loading required package: spam Loading required package: grid Spam version 1.4-0 (2016-08-29) is loaded. Type 'help( Spam)' or 'demo( spam)' for a short introduction and overview of this package. Help for individual functions is also obtained by adding the suffix '.spam' to the function name, e.g. 'help( chol.spam)'. Attaching package: 'spam' The following objects are masked from 'package:base': backsolve, forwardsolve Loading required package: maps > > # tests of predictSE > # against direct linear algebra > > #options( echo=FALSE) > > test.for.zero.flag<- 1 > > x0<- expand.grid( c(-8,-4,0,20,30), c(10,8,4,0)) > > > Krig( ChicagoO3$x, ChicagoO3$y, cov.function = "Exp.cov", theta=50)-> out > > > # direct calculation > Krig.Amatrix( out, x=x0)-> A > test.for.zero( A%*%ChicagoO3$y, predict( out, x0),tag="Amatrix vs. predict") Testing: Amatrix vs. predict PASSED test at tolerance 1e-08 > > Sigma<- out$rhohat*Exp.cov( ChicagoO3$x, ChicagoO3$x, theta=50) > S0<- out$rhohat*c(Exp.cov( x0, x0, theta=50)) > S1<- out$rhohat*Exp.cov( out$x, x0, theta=50) > > #yhat= Ay > #var( f0 - yhat)= var( f0) - 2 cov( f0,yhat)+ cov( yhat) > > look<- S0 - t(S1)%*% t(A) - A%*%S1 + + A%*% ( Sigma + diag(out$shat.MLE**2/out$weightsM))%*% t(A) > # > #compare to > # diagonal elements > > > test2<- predictSE( out, x= x0) > test.for.zero( sqrt(diag( look)), test2,tag="Marginal predictSE") Testing: Marginal predictSE PASSED test at tolerance 1e-08 > > out2<- Krig( ChicagoO3$x, ChicagoO3$y, cov.function = "Exp.cov", theta=50, + lambda=out$lambda) > > test2<- predictSE( out2, x= x0) > test.for.zero( sqrt(diag( look)), test2,tag="Marginal predictSE fixed ") Testing: Marginal predictSE fixed PASSED test at tolerance 1e-08 > > test<- predictSE( out, x= x0, cov=TRUE) > test.for.zero( look, test,tag="Full covariance predictSE") Testing: Full covariance predictSE PASSED test at tolerance 1e-08 > > > # simulation based. > > set.seed( 333) > > sim.Krig( out, x0,M=4e3)-> test > > var(test)-> look > > predictSE( out, x=x0)-> test2 > mean( diag( look)/ test2**2)-> look2 > test.for.zero(look2, 1.0, tol=1.5e-2, tag="Marginal standard Cond. Sim.") Testing: Marginal standard Cond. Sim. PASSED test at tolerance 0.015 > > predictSE( out, x=x0, cov=TRUE)-> test2 > > # multiply simulated values by inverse square root of covariance > # to make them white > > eigen( test2, symmetric=TRUE)-> hold > hold$vectors%*% diag( 1/sqrt( hold$values))%*% t( hold$vectors)-> hold > cor(test%*% hold)-> hold2 > # off diagonal elements of correlations -- expected values are zero. > > abs(hold2[ col(hold2)> row( hold2)])-> hold3 > > test.for.zero( mean(hold3), 0, relative=FALSE, tol=.02, + tag="Full covariance standard Cond. Sim.") Testing: Full covariance standard Cond. Sim. PASSED test at tolerance 0.02 > > > # test of sim.Krig.approx.R > # > # first create and check a gridded test case. > > > data( ozone2) > as.image(ozone2$y[16,], x= ozone2$lon.lat, ny=24, nx=20, + na.rm=TRUE)-> dtemp > # > # A useful disctrtized version of ozone2 data > > x<- dtemp$xd > y<- dtemp$z[ dtemp$ind] > weights<- dtemp$weights[ dtemp$ind] > > Krig( x, y, Covariance="Matern", + theta=1.0, smoothness=1.0, weights=weights) -> out > > > > set.seed(234) > ind0<- cbind( sample( 1:20, 5), sample( 1:24, 5)) > > x0<- cbind( dtemp$x[ind0[,1]], dtemp$y[ind0[,2]]) > > # an inline check plot(out$x, cex=2); points( x0, col="red", pch="+",cex=2) > > # direct calculation as backup ( also checks weighted case) > > Krig.Amatrix( out, x=x0)-> A > test.for.zero( A%*%out$yM, predict( out, x0),tag="Amatrix vs. predict") Testing: Amatrix vs. predict PASSED test at tolerance 1e-08 > > Sigma<- out$rhohat*stationary.cov( + out$xM, out$xM, theta=1.0,smoothness=1.0, Covariance="Matern") > > S0<- out$rhohat*stationary.cov( + x0, x0, theta=1.0,smoothness=1.0, Covariance="Matern") > > S1<- out$rhohat*stationary.cov( + out$xM, x0, theta=1.0,smoothness=1.0, Covariance="Matern") > > > > #yhat= Ay > #var( f0 - yhat)= var( f0) - 2 cov( f0,yhat)+ cov( yhat) > > look<- S0 - t(S1)%*% t(A) - A%*%S1 + + A%*% ( Sigma + diag(out$shat.MLE**2/out$weightsM) )%*% t(A) > > test<- predictSE( out, x0, cov=TRUE) > > test.for.zero( c( look), c( test), tag="Weighted case and exact for ozone2 full + cov", tol=1e-8) Testing: Weighted case and exact for ozone2 full cov PASSED test at tolerance 1e-08 > > ######################################################################## > ######### redo test with smaller grid to speed things up > #cat("Conditional simulation test -- this takes some time", fill=TRUE) > > # redo data set to smaller grid size > ##D N1<-4 > ##D N2<-5 > ##D as.image(ozone2$y[16,], x= ozone2$lon.lat, ny=N2, nx=N1, > ##D na.rm=TRUE)-> dtemp > # > # A useful discretized version of ozone2 data > > ##D xd<- dtemp$xd > ##D y<- dtemp$z[ dtemp$ind] > ##D weights<- dtemp$weights[ dtemp$ind] > > ##D Krig( xd, y, Covariance="Matern", > ##D theta=1.0, smoothness=1.0, weights=weights) -> out > > > ##D xr<- range( dtemp$x) > ##D yr<- range( dtemp$y) > ##D M1<-N1 > ##D M2<- N2 > ##D glist<- list( x=seq( xr[1], xr[2],,M1) , y=seq( yr[1], yr[2],,M2)) > > ##D set.seed( 233) > # with extrap TRUE this finesses problems with > # how NAs are handled in var below > > ##D sim.Krig.approx( out, grid= glist, M=3000, extrap=TRUE)-> look > > ##D predictSE( out, make.surface.grid( glist))-> test > > > ##D look2<- matrix( NA, M1,M2) > > ##D for( k in 1:M2){ > ##D for ( j in 1:M1){ > ##D look2[j,k] <- sqrt(var( look$z[j,k,], na.rm=TRUE)) } > ##D } > > > ##D test.for.zero( 1-mean(c(look2/test), na.rm=TRUE), 0, relative=FALSE, > ##D tol=.001, tag="Conditional simulation marginal se for grid") > > cat("all done testing predictSE ", fill=TRUE) all done testing predictSE > options( echo=TRUE) > > proc.time() user system elapsed 4.008 0.074 4.080 fields/tests/spam.test.R0000644000175100001440000000751013114302744014743 0ustar hornikusers # fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, # PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # test of rdist.near library( fields) options(echo=FALSE) test.for.zero.flag<- 1 set.seed(123) x1<- matrix( runif(2*20), ncol=2) x2<- matrix( runif(2*10), ncol=2) fields.rdist.near( x1,x2, delta=.75)-> look temp<- matrix( NA, nrow(x1),nrow(x2)) temp[ look$ind] <- look$ra temp2<- rdist( x1, x2) temp2[ temp2> .75] <- NA temp[ is.na( temp)]<- 0 temp2[ is.na( temp2)]<- 0 test.for.zero( temp, temp2) # test of constructing covariance matrix # and also versions of Wendland function # default taper is wendland k=2. DD<- rdist( x1,x2) temp<- Wendland2.2(DD, theta=.8) temp2<- Wendland( DD, theta=.8, dimension=2, k=2) test.for.zero( temp, temp2) stationary.taper.cov( x1,x2, Taper="Wendland2.2", Taper.args= list( theta=.8), spam.format=FALSE )-> look temp0<- look stationary.taper.cov( x1,x2, Taper="Wendland2.2", Taper.args= list( theta=.8), spam.format=TRUE )-> look temp1<- spam2full( look) test.for.zero( temp1, temp0) stationary.taper.cov( x1,x2, Taper="Wendland", Taper.args= list( theta=.8, k=2, dimension=2), spam.format=TRUE )-> look temp1b<- spam2full( look) temp2<- Wendland2.2(DD, theta=.8) * Exponential(DD) temp3<- wendland.cov(x1,x2, k=2, theta=.8) * Exponential(DD) temp4<- Wendland(DD, k=2, dimension=2, theta=.8)* Exponential(DD) test.for.zero( temp1, temp0, rel=FALSE) test.for.zero( temp1b, temp0, rel=FALSE) test.for.zero( temp2, temp0, rel=FALSE) test.for.zero( temp2, temp3,rel=FALSE) test.for.zero( temp2, temp4,rel=FALSE) set.seed( 256) rv<- runif( nrow(x2)) # test of multiply stationary.taper.cov( x1, x2, C= rv)-> look temp2<-stationary.taper.cov( x1,x2) spam2full(temp2)%*%(rv)-> look2 test.for.zero( look, look2) # set.seed( 123) temp<- matrix( 1:48, ncol=6, nrow=8) temp[ sample( 1:48, 20)] <- 0 as.spam( temp)-> temp2 test.for.zero( spam2full(temp2), temp ) spam2spind( temp2)-> temp3 test.for.zero( spind2full( temp3), temp) test.for.zero( spind2spam( temp3),temp2) # test that ordering works MM<- nrow( temp3$ind) ix<- sample( 1:MM,MM) # shuffle temp3 temp3$ind<- temp3$ind[ix,] temp3$ra<- temp3$ra[ix] test.for.zero( spind2spam( temp3),temp2) # temp<- temp[1:4, 1:5] for help file # set.seed( 234) CC<- matrix( rnorm( 64), 8,8) A<- ( CC)%*% t(CC) as.spam( A)-> As test.for.zero( solve( As), solve( A)) set.seed( 233) CC<- diag( 1, 8) CC[4,1:8] <- rnorm(8) CC[7,1:8] <- rnorm(8) A<- ( CC)%*% t(CC) as.spam( A)-> As test.for.zero( solve( As), solve( A)) data( ozone2) x<- ozone2$lon.lat y<- ozone2$y[16,] Krig(x,y, cov.function = "stationary.taper.cov", theta=1.5, give.warnings=FALSE, cov.args= list( spam.format=FALSE, Taper.args= list( dimension=2, theta=2.0,k=3) ) ) -> out1 Krig(x,y, cov.function = "stationary.taper.cov", lambda=2.0, theta=1.5, cov.args= list( spam.format=TRUE, Taper.args= list( theta=2.0,k=3, dimension=2) ) ) -> out2 temp1<- predict( out1,lambda=2.0) temp2<- predict( out2) test.for.zero( temp1, temp2) cat( "All done with SPAM tests", fill=TRUE) options(echo=TRUE) fields/tests/Krig.test.Rout.save0000644000175100001440000001264413114304717016372 0ustar hornikusers R version 3.4.0 (2017-04-21) -- "You Stupid Darkness" Copyright (C) 2017 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin15.6.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # fields is a package for analysis of spatial data written for > # the R software environment . > # Copyright (C) 2017 > # University Corporation for Atmospheric Research (UCAR) > # Contact: Douglas Nychka, nychka@ucar.edu, > # National Center for Atmospheric Research, > # PO Box 3000, Boulder, CO 80307-3000 > # > # This program is free software; you can redistribute it and/or modify > # it under the terms of the GNU General Public License as published by > # the Free Software Foundation; either version 2 of the License, or > # (at your option) any later version. > # This program is distributed in the hope that it will be useful, > # but WITHOUT ANY WARRANTY; without even the implied warranty of > # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > # GNU General Public License for more details. > > library(fields) Loading required package: spam Loading required package: grid Spam version 1.4-0 (2016-08-29) is loaded. Type 'help( Spam)' or 'demo( spam)' for a short introduction and overview of this package. Help for individual functions is also obtained by adding the suffix '.spam' to the function name, e.g. 'help( chol.spam)'. Attaching package: 'spam' The following objects are masked from 'package:base': backsolve, forwardsolve Loading required package: maps > # > # > # test of fixed lambda case > # Check against linear algebra > # > > options( echo=FALSE) Testing: Compare d coef PASSED test at tolerance 1e-08 Testing: Compare c coef PASSED test at tolerance 1e-08 Testing: Compare d coef fixed lambda PASSED test at tolerance 1e-08 Testing: Compare c coef fixed lambda PASSED test at tolerance 1e-08 Testing: d coef Krig.coef PASSED test at tolerance 1e-08 Testing: c coef Krig.coef PASSED test at tolerance 1e-08 Testing: d coef Krig.coef fixed PASSED test at tolerance 1e-08 Testing: c coef Krig.coef fixed PASSED test at tolerance 1e-08 Testing: Amatrix no reps PASSED test at tolerance 5e-08 Testing: d coef new y PASSED test at tolerance 1e-08 Testing: c coef new y PASSED test at tolerance 1e-08 Testing: d coef new y fixed PASSED test at tolerance 1e-08 Testing: c coef new y fixed PASSED test at tolerance 1e-08 Testing: d coef several new y fixed PASSED test at tolerance 1e-08 Testing: c coef several new y fixed PASSED test at tolerance 1e-08 Testing: Tps with fixed lam PASSED test at tolerance 1e-08 Testing: Tps with fixed df PASSED test at tolerance 1e-08 Testing: Krig with fixed lam argument PASSED test at tolerance 1e-08 Testing: Krig with fixed lam argument PASSED test at tolerance 1e-08 Warning: Grid searches over lambda (nugget and sill variances) with minima at the endpoints: (REML) Restricted maximum likelihood minimum at right endpoint lambda = 2983.87 (eff. df= 3.001004 ) Testing: d coef PASSED test at tolerance 1e-08 Testing: c coef PASSED test at tolerance 1e-08 Testing: d new y Krig.coef PASSED test at tolerance 1e-08 Testing: c new y Krig.coef PASSED test at tolerance 1e-08 Testing: d fixed case PASSED test at tolerance 1e-08 Testing: c fixed case PASSED test at tolerance 1e-08 Warning: Grid searches over lambda (nugget and sill variances) with minima at the endpoints: (REML) Restricted maximum likelihood minimum at right endpoint lambda = 2983.87 (eff. df= 3.001004 ) Testing: d new y PASSED test at tolerance 1e-08 Testing: c new y PASSED test at tolerance 1e-08 Testing: d new y fixed PASSED test at tolerance 1e-08 Testing: c new y fixed PASSED test at tolerance 1e-08 Warning: Grid searches over lambda (nugget and sill variances) with minima at the endpoints: (REML) Restricted maximum likelihood minimum at right endpoint lambda = 42494.84 (eff. df= 3.00092 ) Testing: d reps PASSED test at tolerance 1e-08 Testing: c reps PASSED test at tolerance 1e-08 Warning: Grid searches over lambda (nugget and sill variances) with minima at the endpoints: (REML) Restricted maximum likelihood minimum at right endpoint lambda = 42494.84 (eff. df= 3.00092 ) Testing: pure sums of squares PASSED test at tolerance 1e-08 Warning: Grid searches over lambda (nugget and sill variances) with minima at the endpoints: (REML) Restricted maximum likelihood minimum at right endpoint lambda = 42494.84 (eff. df= 3.00092 ) Testing: Amatrix prediction PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 Testing: trace from A matrix PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 Testing: A matrix predict with new y PASSED test at tolerance 1e-08 Testing: A matrix predict compared to collapsed yM PASSED test at tolerance 1e-08 Testing: pure sums of squares PASSED test at tolerance 1e-08 Testing: check trace PASSED test at tolerance 1e-08 > proc.time() user system elapsed 1.542 0.050 1.586 fields/tests/mKrig.test.R0000644000175100001440000001746213114143670015064 0ustar hornikusers # fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, # PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. library( fields) options( echo=FALSE) test.for.zero.flag<- 1 # test data data( ozone2) x<- ozone2$lon.lat y<- ozone2$y[16,] #first test addToDiagC I3 = diag(nrow=3) twoI3 = I3*2 .Call("addToDiagC", I3, rep(1.0, 3), as.integer(3)) test.for.zero(twoI3, I3, tag="addToDiag") # turning spam on and off Krig(x,y, cov.function = "stationary.taper.cov", theta=1.5, cov.args= list( spam.format=FALSE, Taper.args= list( theta=2.0,k=2, dimension=2) ) ) -> out1 Krig(x,y, cov.function = "stationary.taper.cov", lambda=2.0, theta=1.5, cov.args= list( spam.format=TRUE, Taper.args= list( theta=2.0,k=2, dimension=2) ) ) -> out2 temp1<- predict( out1,lambda=2.0) temp2<- predict( out2) test.for.zero( temp1, temp2, tag="spam vs no spam") # # Omit the NAs good<- !is.na( y) x<- x[good,] y<- y[good] # now look at mKrig w/o sparse matrix mKrig( x,y, cov.function="stationary.cov", theta=10, lambda=.3, chol.args=list( pivot=FALSE))-> look Krig( x,y, cov.function="stationary.cov", theta=10, lambda=.3) -> look2 test.for.zero( look$d, look2$d, tag="Krig mKrig d coef") test.for.zero( look$c, look2$c, tag="Krig mKrig c coef") set.seed(123) xnew<- cbind( (runif(20)-.5)*5, (runif(20)-.5)*5) temp<- predict( look, xnew) temp2<- predict( look2, xnew) test.for.zero( temp, temp2, tag="test of predict at new locations") # test of matrix of obs N<- length( y) Y<- cbind( runif(N), y,runif(N), y) # collapse == FALSE means each fixed effect found separately for columns of Y lookY<- mKrig( x,Y, cov.function="stationary.cov", theta=10, lambda=.3,collapse=FALSE) temp3<- predict( lookY, xnew, collapse=FALSE)[,4] test.for.zero( temp, temp3, tag="test of matrix Y predicts" ) predictSurface( look)-> temp predictSurface( look2)-> temp2 good<- !is.na( temp2$z) test.for.zero( temp$z[good], temp2$z[good]) # testing stationary taper covariance # and also surface prediction N<- length( y) mKrig( x,y, cov.function="stationary.taper.cov", theta=2, spam.format=FALSE, lambda=.35 )-> look Krig( x,y, cov.function="stationary.taper.cov", theta=2, spam.format=FALSE, lambda=.35)-> look2 predictSurface( look, nx=50, ny=45)-> temp predictSurface( look2, nx=50, ny=45)-> temp2 good<- !is.na( temp2$z) test.for.zero( temp$z[good], temp2$z[good], tag="predictSurface with mKrig") # # Use Wendland with sparse off and on. Krig( x,y, cov.function="wendland.cov", cov.args=list( k=2, theta=2.8), lambda=.3, spam.format=FALSE)-> look mKrig( x,y, cov.function="wendland.cov",k=2, theta=2.8, spam.format=FALSE, lambda=.3)-> look2 mKrig( x,y, cov.function="wendland.cov",k=2, theta=2.8, spam.format=TRUE, lambda=.3)-> look3 # final tests for predict. set.seed(223) xnew<- cbind(runif( N)*.5 + x[,1], runif(N)*.5 + x[,2]) temp<- predict( look, xnew) temp2<- predict( look2, xnew) temp3<- predict( look3, xnew) test.for.zero( temp, temp2, tag="Wendland/no spam") test.for.zero( temp2, temp3, tag="Wendland/spam") ### testing coefficients for new data mKrig.coef( look2, cbind(y+1,y+2), collapse=FALSE)-> newc test.for.zero( look2$c, newc$c[,2], tag="new coef c no spam") test.for.zero( look2$d, c(newc$d[1,2] -2, newc$d[2:3,2]), tag="new d coef no spam") mKrig.coef( look3, cbind(y+1,y+2), collapse=FALSE)-> newc test.for.zero( look3$c, newc$c[,2], tag="new coef c spam") test.for.zero( look3$d, c(newc$d[1,2] -2, newc$d[2:3,2]), tag="new d coef spam") ### ### bigger sample size set.seed( 334) N<- 1000 x<- matrix( runif(2*N),ncol=2) y<- rnorm( N) nzero <- length( wendland.cov(x,x, k=2,theta=.1)@entries) mKrig( x,y, cov.function="wendland.cov",k=2, theta=.1, lambda=.3)-> look2 test.for.zero( look2$non.zero.entires, nzero, tag="nzero in call to mKrig") ###### ### test out passing to chol data( ozone2) y<- ozone2$y[16,] good<- !is.na( y) y<-y[good] x<- ozone2$lon.lat[good,] # interpolate using defaults (Exponential) # stationary covariance mKrig( x,y, theta = 1.5, lambda=.2)-> out # # NOTE this should be identical to Krig( x,y, theta=1.5, lambda=.2) -> out2 temp<- predict( out) temp2<- predict( out2) test.for.zero( temp, temp2, tag="mKrig vs. Krig for ozone2") # test passing arguments for chol set.seed( 334) N<- 300 x<- matrix( 2*(runif(2*N)-.5),ncol=2) y<- sin( 3*pi*x[,1])*sin( 3.5*pi*x[,2]) + rnorm( N)*.01 Krig( x,y, Covariance="Wendland", cov.args= list(k=2, theta=.8, dimension=2), , give.warnings=FALSE, lambda=1e2) -> out mKrig( x,y, cov.function="wendland.cov",k=2, theta=.8, lambda=1e2, chol.args=list( memory=list( nnzR=1e5)), )-> out2 temp<- predict( out) temp2<- predict( out2) test.for.zero( temp, temp2, tag="predict Wendland mKrig vs Krig") # test of fastTps nx<- 50 ny<- 60 x<- seq( 0,1,,nx) y<- seq( 0,1,,ny) gl<- list( x=x, y=y) xg<- make.surface.grid(gl) ztrue<- sin( xg[,1]*pi*3)* cos(xg[,2]*pi*2.5) #image.plot(x,y,matriz( ztrue, nx,ny)) set.seed( 222) ind<- sample( 1:(nx*ny), 600) xdat<- xg[ind,] ydat <- ztrue[ind] out<- fastTps(xdat, ydat, theta=.3) out.p<-predictSurface( out, grid=gl, extrap=TRUE) # perfect agreement at data test.for.zero( ydat, c( out.p$z)[ind], tag="fastTps interp1") #image.plot(x,y,matrix( ztrue, nx,ny)- out.p$z) rmse<- sqrt(mean( (ztrue- c( out.p$z))^2)/ mean( (ztrue)^2)) test.for.zero( rmse,0,tol=.01, relative=FALSE,tag="fastTps interp2") ##### test precomputing distance matrices: # set.seed(1) # test data data( ozone2) x<- ozone2$lon.lat y<- ozone2$y[16,] # # Omit the NAs good<- !is.na( y) x<- x[good,] y<- y[good] compactDistMat = rdist(x, compact=TRUE) distMat = rdist(x) ##### test using distance matrix print("testing using distance matrix") mKrig(x,y, cov.function = "stationary.cov", lambda=2.0, theta=1.5) -> out1 mKrig(x,y, cov.args= list(Covariance="Exponential", Distance="rdist", Dist.args=list(compact=TRUE)), lambda=2.0, theta=1.5) -> out2 #NOTE: compact distance matrix should not be used by user for fields compatibility reasons mKrig(x,y, cov.args= list(Covariance="Exponential", Dist.args=list(compact=TRUE)), lambda=2.0, theta=1.5, distMat=compactDistMat) -> out3 mKrig(x,y, cov.args= list(Covariance="Exponential"), lambda=2.0, theta=1.5, distMat=distMat) -> out4 temp1<- predict( out1) temp2<- predict( out2) temp3 = predict( out3) temp4 = predict( out4) test.for.zero( temp1, temp2, tag="predict: stationary.cov versus Exp.cov") test.for.zero( temp2, temp3, tag="predict: no distance matrix versus compact distance matrix") test.for.zero( temp2, temp4, tag="predict: no distance matrix versus distance matrix") ##### test SE print("testing using predictSE") temp1 = predictSE(out1) temp2 = predictSE(out2) temp3 = predictSE(out3) temp4 = predictSE(out4) test.for.zero( temp1, temp2, tag="predictSE: stationary.cov with exponential versus Exp.cov") test.for.zero( temp2, temp3, tag="predictSE: no distance matrix versus compact distance matrix") test.for.zero( temp2, temp4, tag="predictSE: no distance matrix versus distance matrix") cat("all done with mKrig tests", fill=TRUE) options( echo=TRUE) fields/tests/mKrigMLETest.R0000644000175100001440000002066413114547313015304 0ustar hornikusers # fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, # PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # Test adapted from fields package, under GPL license library( fields ) options( echo=FALSE) # ##### generate test data # data( ozone2) # x is a two column matrix where each row is a location in lon/lat # coordinates x<- ozone2$lon.lat # y is a vector of ozone measurements at day 16 a the locations. y<- ozone2$y[16,] #ind<- !is.na( y) #x<- x[ind,] #y<- y[ind] ################ test that optim results match the model evaluated ################ at the optimized parameters. optim.args = list(method = "BFGS", control = list(fnscale = -1, parscale = c(0.5, 0.5), ndeps = c(0.05,0.05))) MLEfit0 <- mKrigMLEJoint(x, y, lambda.start=.5, cov.params.start= list(theta=1.2), cov.fun="stationary.cov", optim.args=optim.args, cov.args = list(Covariance = "Matern", smoothness=1.0), na.rm=TRUE, mKrig.args = list( m=1), verbose=FALSE) test.for.zero( MLEfit0$summary["lnProfileLike.FULL"], MLEfit0$optimResults$value) obj0<- mKrig( x,y, cov.args = list(Covariance = "Matern", smoothness = 1.0), na.rm=TRUE, m=1, lambda= MLEfit0$pars.MLE[1], theta=MLEfit0$pars.MLE[2]) test.for.zero( MLEfit0$summary["lnProfileLike.FULL"], obj0$lnProfileLike.FULL) test.for.zero( MLEfit0$summary["rhoMLE"],obj0$rho.MLE) par.grid<- list( theta= c(.99, 1.0, 1.01)*MLEfit0$summary["theta"] ) MLEfit1<- mKrigMLEGrid(x, y, cov.fun = "stationary.cov", cov.args = list(Covariance = "Matern", smoothness = 1.0), par.grid = par.grid, lambda = .5, lambda.profile = TRUE, mKrig.args = list( m=1), na.rm=TRUE, verbose = FALSE) hold<- (MLEfit1$summary[1,"lnProfileLike.FULL"] < MLEfit1$summary[2,"lnProfileLike.FULL"]) & (MLEfit1$summary[3,"lnProfileLike.FULL"] < MLEfit1$summary[2,"lnProfileLike.FULL"]) test.for.zero(as.numeric(hold), 1, relative=FALSE) lambdaGrid<- c(.99, 1.0, 1.01)*MLEfit0$summary["lambda"] par.grid<- list( theta= rep(MLEfit0$summary["theta"] ,3 ) ) MLEfit2 <- mKrigMLEGrid(x, y, cov.fun = "stationary.cov", cov.args = list(Covariance = "Matern", smoothness = 1.0), mKrig.args = list( m=1), par.grid = par.grid, lambda = lambdaGrid, lambda.profile = FALSE, verbose = FALSE) hold<- (MLEfit2$summary[1,"lnProfileLike.FULL"] < MLEfit2$summary[2,"lnProfileLike.FULL"]) & (MLEfit2$summary[3,"lnProfileLike.FULL"] < MLEfit2$summary[2,"lnProfileLike.FULL"]) test.for.zero(as.numeric(hold), 1, relative=FALSE) MLEfit3<- MLESpatialProcess( x,y, cov.args = list(Covariance = "Matern", smoothness = 1.0), mKrig.args = list( m=1) ) test.for.zero(MLEfit0$summary[1:5], (MLEfit3$MLEJoint$summary[1:5]), tol=2e-3 ) obj<- spatialProcess( x, y, mKrig.args= list(m = 1), theta = MLEfit0$summary[3] ) obj1<- spatialProcess( x, y, mKrig.args= list(m = 1) ) test.for.zero(MLEfit0$summary[1], obj$lnProfileLike.FULL ) test.for.zero(MLEfit0$summary[1], obj1$lnProfileLike.FULL) # testing Krig function out1<- Krig( x,y, cov.fun="stationary.cov", cov.args = list(Covariance = "Matern", smoothness=1.0, theta=.9), na.rm=TRUE, m=2) genCovMat = function(x, theta, lambda) { distanceMatrix<- rdist(x,x) Sigma<- Matern( distanceMatrix/theta, smoothness=1.0 ) + diag(x=lambda, nrow=nrow(distanceMatrix)) return(Sigma) } #generate observation locations set.seed( 223) n=50 x = matrix(runif(2*n), nrow=n) #generate observations at the locations trueTheta = .1 trueLambda = .1 Sigma = genCovMat(x, trueTheta, trueLambda) U = chol(Sigma) M<- 1e4 set.seed( 332) y = t(U)%*%matrix( rnorm(n*M), n,M) optim.args = list(method = "BFGS", control = list(fnscale = -1, parscale = c(0.5, 0.5), ndeps = c(0.05,0.05))) MLEfitA <- mKrigMLEJoint(x, y, lambda.start=.5, cov.params.start= list(theta=.12), cov.fun="stationary.cov", optim.args=optim.args, cov.args = list(Covariance = "Matern", smoothness=1.0), na.rm=TRUE, mKrig.args = list( m=0), verbose=FALSE) test.for.zero( MLEfitA$summary["lambda"],.1, tol=.02) test.for.zero( MLEfitA$summary["theta"],.1, tol=.02) test.for.zero( MLEfitA$summary["rhoMLE"], 1.0, tol=.002) ### now test REML fitting MLEfitB <- mKrigMLEJoint(x, y, lambda.start=.5, cov.params.start= list(theta=.12), cov.fun="stationary.cov", optim.args=optim.args, cov.args = list(Covariance = "Matern", smoothness=1.0), na.rm=TRUE, mKrig.args = list( m=0), REML=TRUE, verbose=FALSE) test.for.zero( MLEfitB$summary["lambda"],.1, tol=.02) test.for.zero( MLEfitB$summary["theta"],.1, tol=.02) test.for.zero( MLEfitB$summary["rhoMLE"], 1.0, tol=.002) MLEfitC <- mKrigMLEJoint(x, y, lambda.start=.5, cov.params.start= list(theta=.12), cov.fun="stationary.cov", optim.args=optim.args, cov.args = list(Covariance = "Matern", smoothness=1.0), na.rm=TRUE, mKrig.args = list( m=2), REML=FALSE, verbose=FALSE ) test.for.zero( MLEfitC$summary["lambda"], .1, tol=.02) test.for.zero( MLEfitC$summary[ "theta"], .1, tol=.02) test.for.zero( MLEfitC$summary["rhoMLE"], 1.0, tol=.002) MLEfitA$summary MLEfitB$summary MLEfitC$summary # simple Monte Carlo test NS<- 10 n<-75 M<- 400 set.seed(123) x = matrix(runif(2*n), nrow=n) trueTheta = .1 trueLambda = .04 Sigma = genCovMat(x, trueTheta, trueLambda) U = chol(Sigma) set.seed( 332) hold<- matrix(NA, nrow=NS, ncol=7 ) for( k in 1:NS){ cat(k, " ") #generate observations at the locations y = t(U)%*%matrix( rnorm(n*M), n,M) MLEfitC <- mKrigMLEJoint(x, y, lambda.start=.5, cov.params.start= list(theta=.12), cov.fun="stationary.cov", optim.args=optim.args, cov.args = list(Covariance = "Matern", smoothness=1.0), na.rm=TRUE, mKrig.args = list( m=2), REML=FALSE, verbose=FALSE) hold[k,]<- MLEfitC$summary } cat("all done with mKrigMLEGrid tests", fill=TRUE) options( echo=TRUE) test.for.zero( trueTheta, mean(hold[,3]), tol=2e-3,tag="Monte Carlo theta") test.for.zero( trueLambda, mean(hold[,2]), tol=2e-2,tag="Monte Carlo theta") fields/tests/Tps.test.R0000644000175100001440000001217013114144041014541 0ustar hornikusers # fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, # PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. library( fields) options(echo=FALSE) test.for.zero.flag<- 1 data(ozone2) x<- ozone2$lon.lat y<- ozone2$y[16,] temp<- Rad.cov( x,x, p=2) temp2<- RadialBasis( rdist( x,x), M=2, dimension=2) temp3<- rdist( x,x) temp3 <- ifelse( abs(temp3) < 1e-14, 0,log( temp3)*(temp3^2) ) temp3<- radbas.constant( 2,2)*temp3 test.for.zero( temp, temp2, tag="Tps radial basis function 2d") test.for.zero( temp, temp3, tag="Tps radial basis function 2d") test.for.zero( temp2,temp3, tag="Tps radial basis function 2d") set.seed( 123) xtemp<- matrix( runif( 40*3), ncol=3) temp<- Rad.cov( xtemp,xtemp, p= 2*4-3) temp2<- RadialBasis( rdist( xtemp,xtemp), M=4, dimension=3) temp3<- rdist( xtemp,xtemp) temp3 <- ifelse( abs(temp3) < 1e-14, 0, temp3^(2*4 -3) ) temp3<- radbas.constant( 4,3)*temp3 test.for.zero( temp, temp2, tag="Tps radial basis function 3d") test.for.zero( temp, temp3, tag="Tps radial basis function 3d") test.for.zero( temp2,temp3, tag="Tps radial basis function 3d") #### testing multiplication of a vector #### mainly to make the FORTRAN has been written correctly #### after replacing the ddot call with an explicit do loop set.seed( 123) C<- matrix( rnorm( 10*5),10,5 ) x<- matrix( runif( 10*2), 10,2) temp3<- rdist( x,x) K<- ifelse( abs(temp3) < 1e-14, 0,log( temp3)*(temp3^2) ) K<- K * radbas.constant( 2,2) test.for.zero( Rad.cov( x,x,m=2, C=C) , K%*%C, tol=1e-10) set.seed( 123) C<- matrix( rnorm( 10*5),10,5 ) x<- matrix( runif( 10*3), 10,3) temp3<- rdist( x,x) K<- ifelse( abs(temp3) < 1e-14, 0,(temp3^(2*4-3)) ) K<- K * radbas.constant( 4,3) test.for.zero( Rad.cov( x,x,m=4, C=C) , K%*%C,tol=1e-10) ##### testing derivative formula set.seed( 123) C<- matrix( rnorm( 10*1),10,1 ) x<- matrix( runif( 10*2), 10,2) temp0<- Rad.cov( x,x, p=4, derivative=1, C=C) eps<- 1e-6 temp1<- ( Rad.cov( cbind(x[,1]+eps, x[,2]),x, p=4, derivative=0, C=C) - Rad.cov( cbind(x[,1]-eps, x[,2]),x, p=4, derivative=0, C=C) )/ (2*eps) temp2<- ( Rad.cov( cbind(x[,1], x[,2]+eps),x, p=4, derivative=0, C=C) - Rad.cov( cbind(x[,1], x[,2]-eps),x , p=4,derivative=0,C=C) )/ (2*eps) test.for.zero( temp0[,1], temp1, tag=" der of Rad.cov", tol=1e-6) test.for.zero( temp0[,2], temp2, tag=" der of Rad.cov", tol=1e-6) # comparing Rad.cov used by Tps with simpler function called # by stationary.cov set.seed( 222) x<- matrix( runif( 10*2), 10,2) C<- matrix( rnorm( 10*3),10,3 ) temp<- Rad.cov( x,x, p=2, C=C) temp2<- RadialBasis( rdist( x,x), M=2, dimension=2)%*%C test.for.zero( temp, temp2) #### Basic matrix form for Tps as sanity check x<- ChicagoO3$x y<- ChicagoO3$y obj<-Tps( x,y, scale.type="unscaled", with.constant=FALSE) # now work out the matrix expressions explicitly lam.test<- obj$lambda N<-length(y) Tmatrix<- cbind( rep( 1,N), x) D<- rdist( x,x) R<- ifelse( D==0, 0, D**2 * log(D)) A<- rbind( cbind( R+diag(lam.test,N), Tmatrix), cbind( t(Tmatrix), matrix(0,3,3))) hold<-solve( A, c( y, rep(0,3))) c.coef<- hold[1:N] d.coef<- hold[ (1:3)+N] zhat<- R%*%c.coef + Tmatrix%*% d.coef test.for.zero( zhat, obj$fitted.values, tag="Tps 2-d m=2 sanity check") # out of sample prediction xnew<- rbind( c( 0,0), c( 10,10) ) T1<- cbind( rep( 1,nrow(xnew)), xnew) D<- rdist( xnew,x) R1<- ifelse( D==0, 0, D**2 * log(D)) z1<- R1%*%c.coef + T1%*% d.coef test.for.zero( z1, predict( obj, x=xnew), tag="Tps 2-d m=2 sanity predict") #### test Tps verses Krig note scaling must be the same out<- Tps( x,y) out2<- Krig( x,y, Covariance="RadialBasis", M=2, dimension=2, scale.type="range", method="GCV") test.for.zero( predict(out), predict(out2), tag="Tps vs. Krig w/ GCV") # test for fixed lambda test.for.zero( predict(out,lambda=.1), predict(out2, lambda=.1), tag="Tps vs. radial basis w Krig") #### testing derivative using predict function set.seed( 233) x<- matrix( (rnorm( 1000)*2 -1), ncol=2) y<- (x[,1]**2 + 2*x[,1]*x[,2] - x[,2]**2)/2 out<- Tps( x, y, scale.type="unscaled") xg<- make.surface.grid( list(x=seq(-.7,.7,,10), y=seq(-.7,.7,,10)) ) test<- cbind( xg[,1] + xg[,2], xg[,1] - xg[,2]) # test<- xg look<- predictDerivative.Krig( out, x= xg) test.for.zero( look[,1], test[,1], tol=1e-3) test.for.zero( look[,2], test[,2], tol=1e-3) # matplot( test, look, pch=1) options( echo=TRUE) cat("all done testing Tps", fill=TRUE) fields/tests/derivative.test.Rout.save0000644000175100001440000000756513114304717017646 0ustar hornikusers R version 3.4.0 (2017-04-21) -- "You Stupid Darkness" Copyright (C) 2017 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin15.6.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # fields is a package for analysis of spatial data written for > # the R software environment . > # Copyright (C) 2017 > # University Corporation for Atmospheric Research (UCAR) > # Contact: Douglas Nychka, nychka@ucar.edu, > # National Center for Atmospheric Research, > # PO Box 3000, Boulder, CO 80307-3000 > # > # This program is free software; you can redistribute it and/or modify > # it under the terms of the GNU General Public License as published by > # the Free Software Foundation; either version 2 of the License, or > # (at your option) any later version. > # This program is distributed in the hope that it will be useful, > # but WITHOUT ANY WARRANTY; without even the implied warranty of > # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > # GNU General Public License for more details. > > #library( fields, lib.loc="lib.test") > > library( fields) Loading required package: spam Loading required package: grid Spam version 1.4-0 (2016-08-29) is loaded. Type 'help( Spam)' or 'demo( spam)' for a short introduction and overview of this package. Help for individual functions is also obtained by adding the suffix '.spam' to the function name, e.g. 'help( chol.spam)'. Attaching package: 'spam' The following objects are masked from 'package:base': backsolve, forwardsolve Loading required package: maps > options(echo=FALSE) Testing: radial basis function exact PASSED test at tolerance 1e-06 Testing: sanity test of stationary.cov with RadialBasis PASSED test at tolerance 1e-08 Testing: sanity test of Rad.cov PASSED test at tolerance 1e-08 Testing: stat.cov Radbas C multiply PASSED test at tolerance 1e-08 Testing: Rad.cov C multiply PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-06 Testing: Wendland exact PASSED test at tolerance 1e-06 PASSED test at tolerance 1e-08 Testing: Wendland C multiply PASSED test at tolerance 1e-08 Testing: Wendland.cov theta=1.0 PASSED test at tolerance 1e-07 Testing: Wendland.cov theta=.75 PASSED test at tolerance 1e-07 Testing: stationary.cov and exact C multiply for Wendland PASSED test at tolerance 1e-08 Testing: Wendland C multiply PASSED test at tolerance 1e-08 Testing: 2-d derivs from wend.cov/mKrig PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 Testing: 2-d derivs from stationary-wend/mKrig PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 Testing: wendland.cov quad 2-d PASSED test at tolerance 0.005 Testing: stationary.cov/Wendland cubic 2-d PASSED test at tolerance 0.01 Warning: Grid searches over lambda (nugget and sill variances) with minima at the endpoints: (REML) Restricted maximum likelihood minimum at right endpoint lambda = 1.938365e-08 (eff. df= 380 ) Testing: stationary.cov/Wendland cubic 2-d PASSED test at tolerance 0.005 PASSED test at tolerance 0.005 Warning: Grid searches over lambda (nugget and sill variances) with minima at the endpoints: (GCV) Generalized Cross-Validation minimum at right endpoint lambda = 4.881835e-06 (eff. df= 380 ) Testing: Tps derivative x1 PASSED test at tolerance 2e-04 Testing: Tps derivative x2 PASSED test at tolerance 2e-04 done with dervative tests > > > proc.time() user system elapsed 3.169 0.241 3.408 fields/tests/mKrigREMLTest.Rout.save0000644000175100001440000000472313114310436017103 0ustar hornikusers R version 3.4.0 (2017-04-21) -- "You Stupid Darkness" Copyright (C) 2017 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin15.6.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # fields is a package for analysis of spatial data written for > # the R software environment . > # Copyright (C) 2017 > # University Corporation for Atmospheric Research (UCAR) > # Contact: Douglas Nychka, nychka@ucar.edu, > # National Center for Atmospheric Research, > # PO Box 3000, Boulder, CO 80307-3000 > # > # This program is free software; you can redistribute it and/or modify > # it under the terms of the GNU General Public License as published by > # the Free Software Foundation; either version 2 of the License, or > # (at your option) any later version. > # This program is distributed in the hope that it will be useful, > # but WITHOUT ANY WARRANTY; without even the implied warranty of > # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > # GNU General Public License for more details. > > > library( fields) Loading required package: spam Loading required package: grid Spam version 1.4-0 (2016-08-29) is loaded. Type 'help( Spam)' or 'demo( spam)' for a short introduction and overview of this package. Help for individual functions is also obtained by adding the suffix '.spam' to the function name, e.g. 'help( chol.spam)'. Attaching package: 'spam' The following objects are masked from 'package:base': backsolve, forwardsolve Loading required package: maps > options( echo=FALSE) PASSED test at tolerance 1e-08 Testing: mKrigOmega PASSED test at tolerance 1e-08 Testing: lnDetOmega PASSED test at tolerance 1e-08 Testing: lnDetMc PASSED test at tolerance 1e-08 Testing: testing det Omega formula PASSED test at tolerance 1e-08 Testing: REML Det shortcut PASSED test at tolerance 1e-08 Testing: Q2 Det and Eigen Det PASSED test at tolerance 1e-08 Testing: rho.MLE Krig verses mKrig PASSED test at tolerance 1e-08 > proc.time() user system elapsed 2.699 0.054 2.753 fields/tests/spam.test.Rout.save0000644000175100001440000000511413114304717016430 0ustar hornikusers R version 3.4.0 (2017-04-21) -- "You Stupid Darkness" Copyright (C) 2017 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin15.6.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # fields is a package for analysis of spatial data written for > # the R software environment . > # Copyright (C) 2017 > # University Corporation for Atmospheric Research (UCAR) > # Contact: Douglas Nychka, nychka@ucar.edu, > # National Center for Atmospheric Research, > # PO Box 3000, Boulder, CO 80307-3000 > # > # This program is free software; you can redistribute it and/or modify > # it under the terms of the GNU General Public License as published by > # the Free Software Foundation; either version 2 of the License, or > # (at your option) any later version. > # This program is distributed in the hope that it will be useful, > # but WITHOUT ANY WARRANTY; without even the implied warranty of > # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > # GNU General Public License for more details. > > > # test of rdist.near > > > library( fields) Loading required package: spam Loading required package: grid Spam version 1.4-0 (2016-08-29) is loaded. Type 'help( Spam)' or 'demo( spam)' for a short introduction and overview of this package. Help for individual functions is also obtained by adding the suffix '.spam' to the function name, e.g. 'help( chol.spam)'. Attaching package: 'spam' The following objects are masked from 'package:base': backsolve, forwardsolve Loading required package: maps > options(echo=FALSE) PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 All done with SPAM tests > > proc.time() user system elapsed 1.336 0.047 1.374 fields/tests/mKrig.se.test.R0000644000175100001440000001222213114143612015453 0ustar hornikusers # fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, # PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # tests of predictSE # against direct linear algebra library(fields) options( echo=FALSE) test.for.zero.flag<- TRUE x0<- cbind( 0,4) Krig( ChicagoO3$x, ChicagoO3$y, cov.function = "Exp.cov", theta=50, lambda=.06, GCV=FALSE)-> out # direct calculation Krig.Amatrix( out, x=x0)-> A test.for.zero( A%*%ChicagoO3$y, predict( out, x0),tag="Amatrix vs. predict") Sigma0<- out$rhohat*Exp.cov( ChicagoO3$x, ChicagoO3$x, theta=50) S0<- out$rhohat*c(Exp.cov( x0, x0, theta=50)) S1<- out$rhohat*Exp.cov( out$x, x0, theta=50) #yhat= Ay #var( f0 - yhat)= var( f0) - 2 cov( f0,yhat)+ cov( yhat) look<- S0 - t(S1)%*% t(A) - A%*%S1 + A%*% ( Sigma0 + diag(out$shat.MLE**2/out$weightsM))%*% t(A) # #compare to # diagonal elements test2<- predictSE( out, x= x0) test.for.zero( sqrt(diag( look)), test2,tag="Marginal predictSE") # now test shortcut formula that leverages the prediction step for Kriging # Sigma<- Exp.cov( ChicagoO3$x, ChicagoO3$x, theta=50) + diag(out$lambda/out$weightsM) #Sigma<- ( Sigma0 + diag(out$shat.MLE**2/out$weightsM)) Tmatrix <- do.call(out$null.function.name, c(out$null.args, list(x = out$xM, Z = out$ZM))) Omega<- solve( t(Tmatrix)%*% solve( Sigma)%*% Tmatrix) Id<- diag( 1, nrow( Tmatrix)) qr.R( out$matrices$qr.VT) -> Rmat Omega.test<- solve(t(Rmat)%*% (Rmat)) # Omega is the GLS covariance matrix for estimated parameters in fixed part of # spatial model (the d coefficients). These are usually the "spatial drift" -- a # low order polynomial test.for.zero( Omega, Omega.test, tag="comparing Omega") # M1 and M2 are matrices that go from obs to the estimated coefficients (d,c) M1<- Omega%*% t(Tmatrix)%*% solve( Sigma) M2<- solve( Sigma)%*% ( Id - Tmatrix%*% M1) x0<- cbind( 0,4) k0<- Exp.cov( out$x, x0, theta=50) #k0<- S1 t0<- c( 1, c(x0)) hold<- t( t0)%*%M1 + t(k0)%*% M2 test.for.zero( hold, A) test.for.zero( M2%*%Sigma%*%t( M2), M2) # benchmark using standard predictSE function SE0<- predictSE( out, x=x0) # shortcut formula explicitly MSE<- S0 + out$rhohat*t(t0)%*% Omega %*%t0 - out$rhohat*(t(k0)%*% M2 %*% k0 + t(t0)%*% M1%*% k0) - out$rhohat*t(t0)%*% M1%*% k0 # collecting terms to make this look like two predict steps. MSE2<- S0 + out$rhohat*t(t0)%*% Omega %*%t0 - out$rhohat* predict( out, yM= k0, x=x0) - out$rhohat* predict( out, yM= k0, x=x0, just.fixed=TRUE) hold<- Krig.coef(out, y=k0) tempc<- t(k0)%*% hold$c tempd<- t(t0)%*%hold$d MSE4<- S0 + out$rhohat*t(t0)%*% Omega %*%t0 - out$rhohat * (tempc +2*tempd) test.for.zero(SE0, sqrt( MSE4), tag="test of formula with explicit d and c") # test of new function Krig( ChicagoO3$x, ChicagoO3$y, cov.function = "Exp.cov", theta=50,lambda=.06)-> out0 SE0<- predictSE.Krig( out0, x=x0) mKrig( ChicagoO3$x, ChicagoO3$y, cov.function = "Exp.cov", theta=50, lambda=.06)-> out2 SE3<- predictSE.mKrig( out2, xnew=x0) test.for.zero(SE0, sqrt( MSE), tag="Krig function and direct formula") test.for.zero(sqrt(MSE), sqrt( MSE2), tag="new predict formula and direct formula") test.for.zero( SE3, SE0, tag="New se _function_ and old Krig _function_") # # test of vectors of locations. # receate object out0<- Krig( ChicagoO3$x, ChicagoO3$y, cov.function = "Exp.cov", theta=50, lambda=.06) out<- mKrig( ChicagoO3$x, ChicagoO3$y, cov.function = "Exp.cov", theta=50, lambda=.06) x0<-rep( c( -20, -10,10,20),4) x0 <- cbind( x0 , sort( x0)) x0<- rbind( c(0,4), x0) k0<- Exp.cov( ChicagoO3$x,x0, theta=50) t0<- t(fields.mkpoly(x0, m=out$m)) hold<- Krig.coef(out0, y=k0) MSE5<- (rep( S0,nrow(x0)) + out0$rhohat * colSums( t0 *(out0$matrices$Omega%*%t0)) -out0$rhohat* colSums((k0)*hold$c) - 2*out0$rhohat*colSums(t0*hold$d)) hold<- mKrig.coef(out, y=k0, collapse=FALSE) MSE6<- (rep( S0,nrow(x0)) + out$rhohat * colSums( t0 *(out$Omega%*%t0)) -out$rhohat* colSums((k0)*hold$c) - 2*out$rhohat*colSums(t0*hold$d)) test.for.zero( predictSE( out0, x0), sqrt(MSE5), tag="Benchmark of formula") test.for.zero( predictSE( out0, x0), sqrt(MSE6), tag="Benchmark of formula mKrig coefs") test.for.zero( predictSE( out, x0), predictSE.mKrig(out, x0), tag="test function with several locations Krig mKrig functions" ) fields/tests/KrigGCVREML.test.R0000644000175100001440000000674613114140364015727 0ustar hornikusers # fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, # PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. library(fields) # # # options( echo=FALSE) test.for.zero.flag<-1 ############ various tests of GCV and REML set.seed(133) x0<- matrix( runif( 10*2), 10,2)*2 x<- rbind( x0,x0, x0[3:7,]) y<- rnorm( nrow( x))*.05 + x[,1]**2 + x[,2]**2 weights<- 8 + runif( nrow( x)) # x0 are the unique values. out.new<- Krig( x,y, weights=weights, cov.function=Exp.cov) n<- length(y) n0<- nrow( x0) NK <- nrow( x0) NP<- NK + 3 K<- Exp.cov( x0, x0) H<- matrix(0, NP,NP) H[(1:NK)+3 , (1:NK)+3]<- K X<- cbind( fields.mkpoly( x, 2), Exp.cov( x, x0) ) X0<- cbind( fields.mkpoly( x0, 2), Exp.cov( x0, x0) ) Alam <- X%*%solve( t(X)%*%diag(weights)%*%X + out.new$lambda*H )%*% t(X)%*%diag(weights) # predict sanity check using replicates set.seed( 123) ynew<- rnorm(n) test.for.zero( Alam%*%ynew, predict( out.new, y=ynew), tag=" predict sanity check",tol=3e-8) # predict using unique obs ynew<- rnorm(nrow(x0)) Alam0<- X0%*%solve( t(X0)%*%diag(out.new$weightsM)%*%X0 + out.new$lambda*H )%*% t(X0)%*%diag(out.new$weightsM) # Alam0 is the A matrix test.for.zero( Alam0%*%ynew, predict( out.new,x=x0, yM=ynew), tag="predict using direct linear algebra" ) # test<- Krig.fgcv( lam=out.new$lambda, out.new) y0<- out.new$yM n0<- length(y0) # compare to #test2<- (1/n0)*sum( (y0 - c(Alam0%*% y0))**2 *out.new$weightsM) / (1- sum(diag( Alam0))/n0)**2 NUM<- mean( (y0 - c(Alam0%*% y0))**2 *out.new$weightsM) + out.new$pure.ss/( n -n0 ) DEN<- (1- sum(diag( Alam0))/n0) test2<- NUM/ DEN^2 test.for.zero( test,test2, tag="GCV" ) test<- Krig.fgcv.one( lam=out.new$lambda, out.new) N<- length(y) test2<- (1/N)*sum( (y - c(Alam%*% y))**2 *weights) / (1- sum(diag( Alam))/N)**2 test.for.zero( test,test2, tag="GCV one" ) test<- Krig.fgcv.model( lam=out.new$lambda, out.new) y0<- out.new$yM n0<- length(y0) # compare to test2<- (1/n0)*sum( (y0 - c(Alam0%*% y0))**2 *out.new$weightsM) / (1- sum(diag( Alam0))/n0)**2 + out.new$shat.pure.error**2 test.for.zero( test,test2,tag="GCV model") ####### tests with higher level gcv.Krig data( ozone2) x<- ozone2$lon.lat y<- ozone2$y[16,] Tps( x,y)-> out gcv.Krig( out, tol=1e-10)-> out2 test.for.zero(out$lambda.est[1,-6], out2$lambda.est[1,-6],tol=5e-4, tag="Tps/gcv for ozone2") # try with "new" data (linear transform should give identical # results for GCV eff df gcv.Krig( out, y=(11*out$y + 5), tol=1e-10 )-> out3 test.for.zero(out2$lambda.est[1,2], out3$lambda.est[1,2],tol=1e-6, tag="Tps/gcv for ozone2 new data") #cat("done with GCV case", fill=TRUE) cat("done with GCV and REML tests", fill=TRUE) options( echo=TRUE) fields/tests/sreg.test.Rout.save0000644000175100001440000000521013114304717016425 0ustar hornikusers R version 3.4.0 (2017-04-21) -- "You Stupid Darkness" Copyright (C) 2017 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin15.6.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # fields is a package for analysis of spatial data written for > # the R software environment . > # Copyright (C) 2017 > # University Corporation for Atmospheric Research (UCAR) > # Contact: Douglas Nychka, nychka@ucar.edu, > # National Center for Atmospheric Research, > # PO Box 3000, Boulder, CO 80307-3000 > # > # This program is free software; you can redistribute it and/or modify > # it under the terms of the GNU General Public License as published by > # the Free Software Foundation; either version 2 of the License, or > # (at your option) any later version. > # This program is distributed in the hope that it will be useful, > # but WITHOUT ANY WARRANTY; without even the implied warranty of > # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > # GNU General Public License for more details. > > > # test of sreg and related functions > > library( fields) Loading required package: spam Loading required package: grid Spam version 1.4-0 (2016-08-29) is loaded. Type 'help( Spam)' or 'demo( spam)' for a short introduction and overview of this package. Help for individual functions is also obtained by adding the suffix '.spam' to the function name, e.g. 'help( chol.spam)'. Attaching package: 'spam' The following objects are masked from 'package:base': backsolve, forwardsolve Loading required package: maps > options(echo=FALSE) Testing: predict at lambda sreg/Tps PASSED test at tolerance 1e-08 PASSED test at tolerance 5e-04 Testing: GCV sreg/Tps PASSED test at tolerance 2.1e-06 Warning message: In golden.section.search(ax = starts[1], bx = starts[2], cx = starts[3], : Maximum iterations reached Warning message: In golden.section.search(ax = starts[1], bx = starts[2], cx = starts[3], : Maximum iterations reached Testing: GCV sreg/Tps reps case PASSED test at tolerance 1e-06 Testing: GCV sreg/Tps reps case PASSED test at tolerance 1e-06 All done with sreg tests > > > > > > > > > > > proc.time() user system elapsed 1.492 0.051 1.535 fields/tests/diag.multiply.test.R0000644000175100001440000000235013114302475016563 0ustar hornikusers # fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, # PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. library( fields) options( echo=FALSE) set.seed( 234) test.for.zero.flag<- 1 n <- 5 m <- 4 mat <- array(rnorm(n*m),c(n,m)) mat2 <- array(rnorm(n*m),c(m,n)) vec <- rnorm(n) vec2 <- rnorm(n) test.for.zero( mat2 %*% mat, mat2%d*%mat, tol=1e-8 ) test.for.zero( (diag(vec)%*% mat), (vec%d*%mat), tol=1e-8 ) test.for.zero( diag(vec)%*% vec2, vec%d*%vec2,tol=1e-8) cat("All done with testing diag multiply", fill=TRUE) options(echo=TRUE) fields/tests/Krig.se.test.R0000644000175100001440000001240713114143713015305 0ustar hornikusers # fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, # PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. library( fields) # tests of predictSE # against direct linear algebra #options( echo=FALSE) test.for.zero.flag<- 1 x0<- expand.grid( c(-8,-4,0,20,30), c(10,8,4,0)) Krig( ChicagoO3$x, ChicagoO3$y, cov.function = "Exp.cov", theta=50)-> out # direct calculation Krig.Amatrix( out, x=x0)-> A test.for.zero( A%*%ChicagoO3$y, predict( out, x0),tag="Amatrix vs. predict") Sigma<- out$rhohat*Exp.cov( ChicagoO3$x, ChicagoO3$x, theta=50) S0<- out$rhohat*c(Exp.cov( x0, x0, theta=50)) S1<- out$rhohat*Exp.cov( out$x, x0, theta=50) #yhat= Ay #var( f0 - yhat)= var( f0) - 2 cov( f0,yhat)+ cov( yhat) look<- S0 - t(S1)%*% t(A) - A%*%S1 + A%*% ( Sigma + diag(out$shat.MLE**2/out$weightsM))%*% t(A) # #compare to # diagonal elements test2<- predictSE( out, x= x0) test.for.zero( sqrt(diag( look)), test2,tag="Marginal predictSE") out2<- Krig( ChicagoO3$x, ChicagoO3$y, cov.function = "Exp.cov", theta=50, lambda=out$lambda) test2<- predictSE( out2, x= x0) test.for.zero( sqrt(diag( look)), test2,tag="Marginal predictSE fixed ") test<- predictSE( out, x= x0, cov=TRUE) test.for.zero( look, test,tag="Full covariance predictSE") # simulation based. set.seed( 333) sim.Krig( out, x0,M=4e3)-> test var(test)-> look predictSE( out, x=x0)-> test2 mean( diag( look)/ test2**2)-> look2 test.for.zero(look2, 1.0, tol=1.5e-2, tag="Marginal standard Cond. Sim.") predictSE( out, x=x0, cov=TRUE)-> test2 # multiply simulated values by inverse square root of covariance # to make them white eigen( test2, symmetric=TRUE)-> hold hold$vectors%*% diag( 1/sqrt( hold$values))%*% t( hold$vectors)-> hold cor(test%*% hold)-> hold2 # off diagonal elements of correlations -- expected values are zero. abs(hold2[ col(hold2)> row( hold2)])-> hold3 test.for.zero( mean(hold3), 0, relative=FALSE, tol=.02, tag="Full covariance standard Cond. Sim.") # test of sim.Krig.approx.R # # first create and check a gridded test case. data( ozone2) as.image(ozone2$y[16,], x= ozone2$lon.lat, ny=24, nx=20, na.rm=TRUE)-> dtemp # # A useful disctrtized version of ozone2 data x<- dtemp$xd y<- dtemp$z[ dtemp$ind] weights<- dtemp$weights[ dtemp$ind] Krig( x, y, Covariance="Matern", theta=1.0, smoothness=1.0, weights=weights) -> out set.seed(234) ind0<- cbind( sample( 1:20, 5), sample( 1:24, 5)) x0<- cbind( dtemp$x[ind0[,1]], dtemp$y[ind0[,2]]) # an inline check plot(out$x, cex=2); points( x0, col="red", pch="+",cex=2) # direct calculation as backup ( also checks weighted case) Krig.Amatrix( out, x=x0)-> A test.for.zero( A%*%out$yM, predict( out, x0),tag="Amatrix vs. predict") Sigma<- out$rhohat*stationary.cov( out$xM, out$xM, theta=1.0,smoothness=1.0, Covariance="Matern") S0<- out$rhohat*stationary.cov( x0, x0, theta=1.0,smoothness=1.0, Covariance="Matern") S1<- out$rhohat*stationary.cov( out$xM, x0, theta=1.0,smoothness=1.0, Covariance="Matern") #yhat= Ay #var( f0 - yhat)= var( f0) - 2 cov( f0,yhat)+ cov( yhat) look<- S0 - t(S1)%*% t(A) - A%*%S1 + A%*% ( Sigma + diag(out$shat.MLE**2/out$weightsM) )%*% t(A) test<- predictSE( out, x0, cov=TRUE) test.for.zero( c( look), c( test), tag="Weighted case and exact for ozone2 full cov", tol=1e-8) ######################################################################## ######### redo test with smaller grid to speed things up #cat("Conditional simulation test -- this takes some time", fill=TRUE) # redo data set to smaller grid size ##D N1<-4 ##D N2<-5 ##D as.image(ozone2$y[16,], x= ozone2$lon.lat, ny=N2, nx=N1, ##D na.rm=TRUE)-> dtemp # # A useful discretized version of ozone2 data ##D xd<- dtemp$xd ##D y<- dtemp$z[ dtemp$ind] ##D weights<- dtemp$weights[ dtemp$ind] ##D Krig( xd, y, Covariance="Matern", ##D theta=1.0, smoothness=1.0, weights=weights) -> out ##D xr<- range( dtemp$x) ##D yr<- range( dtemp$y) ##D M1<-N1 ##D M2<- N2 ##D glist<- list( x=seq( xr[1], xr[2],,M1) , y=seq( yr[1], yr[2],,M2)) ##D set.seed( 233) # with extrap TRUE this finesses problems with # how NAs are handled in var below ##D sim.Krig.approx( out, grid= glist, M=3000, extrap=TRUE)-> look ##D predictSE( out, make.surface.grid( glist))-> test ##D look2<- matrix( NA, M1,M2) ##D for( k in 1:M2){ ##D for ( j in 1:M1){ ##D look2[j,k] <- sqrt(var( look$z[j,k,], na.rm=TRUE)) } ##D } ##D test.for.zero( 1-mean(c(look2/test), na.rm=TRUE), 0, relative=FALSE, ##D tol=.001, tag="Conditional simulation marginal se for grid") cat("all done testing predictSE ", fill=TRUE) options( echo=TRUE) fields/tests/cov.test.Rout.save0000644000175100001440000000505313114304717016261 0ustar hornikusers R version 3.4.0 (2017-04-21) -- "You Stupid Darkness" Copyright (C) 2017 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin15.6.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # fields is a package for analysis of spatial data written for > # the R software environment . > # Copyright (C) 2017 > # University Corporation for Atmospheric Research (UCAR) > # Contact: Douglas Nychka, nychka@ucar.edu, > # National Center for Atmospheric Research, > # PO Box 3000, Boulder, CO 80307-3000 > # > # This program is free software; you can redistribute it and/or modify > # it under the terms of the GNU General Public License as published by > # the Free Software Foundation; either version 2 of the License, or > # (at your option) any later version. > # This program is distributed in the hope that it will be useful, > # but WITHOUT ANY WARRANTY; without even the implied warranty of > # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > # GNU General Public License for more details. > > > library( fields) Loading required package: spam Loading required package: grid Spam version 1.4-0 (2016-08-29) is loaded. Type 'help( Spam)' or 'demo( spam)' for a short introduction and overview of this package. Help for individual functions is also obtained by adding the suffix '.spam' to the function name, e.g. 'help( chol.spam)'. Attaching package: 'spam' The following objects are masked from 'package:base': backsolve, forwardsolve Loading required package: maps > options( echo=FALSE) PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 Testing: taper with great circle PASSED test at tolerance 1e-06 Testing: high level test of taper cov PASSED test at tolerance 1e-08 Testing: high level test of taper cov PASSED test at tolerance 1e-08 end tests of V argument in covariances > proc.time() user system elapsed 0.766 0.051 0.816 fields/tests/mKrigREMLTest.R0000644000175100001440000000625713114305500015416 0ustar hornikusers # fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, # PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. library( fields) options( echo=FALSE) set.seed( 123) x<- matrix( runif( 20),10, 2) y<- rnorm(10) lambda<- .1 theta<- .2 out<- mKrig( x,y, theta= theta, lambda=lambda) test.for.zero( out$lnDetOmega, 2*log( prod(diag(chol(out$Omega)))) ) Mc<- exp( -rdist( x,x)/theta) + lambda* diag( 1,10) OmegaTest<- solve(t(out$Tmatrix)%*%solve( Mc)%*% out$Tmatrix) test.for.zero( OmegaTest, out$Omega,tag= "mKrigOmega") test.for.zero( log(det(OmegaTest)), out$lnDetOmega, tag="lnDetOmega") test.for.zero( log( det( Mc)), out$lnDetCov, tag="lnDetMc" ) # check that det adjustment really works. set.seed( 323) x<- matrix( runif( 20), 10, 2) temp<- matrix( NA, 50,8) thetaGrid<- seq( .1,.5, ,50) lambdaGrid<- 10**(runif( 50, -2,0)) Q<- qr.qy( qr( cbind( rep(1,10),x) ), diag( 1,10)) Q2<- Q[,4:10] y<- rnorm(10) testDet<- function(lambda, obj) { D2 <- obj$matrices$D[obj$matrices$D > 0] u2 <- obj$matrices$u[obj$matrices$D > 0] lD <- D2 * lambda N2 <- length(D2) rho.MLE <- (sum((D2 * (u2)^2)/(1 + lD)))/N2 lnDetCov <- -sum(log(D2/(1 + lD))) # -1 * (-N2/2 - log(2 * pi) * (N2/2) - (N2/2) * log(rho.MLE) - # (1/2) * lnDetCov) return( c(lnDetCov, rho.MLE) ) } for ( k in 1:50) { out<- mKrig( x,y, theta = thetaGrid[k], lambda = lambdaGrid[k] ) # turn off warnings for lambda search because all we want are # matrix decompositions independent of lambda out2<- Krig( x,y, theta= thetaGrid[k], cov.args=list( Covariance = "Exponential"), give.warnings=FALSE) Mc<- exp( -rdist( x,x)/thetaGrid[k] ) + lambdaGrid[k]* diag( 1,10) X<- out$Tmatrix temp[k,]<-c( out$lnDetCov, out$lnDetOmega, log( det( solve(t( Q2)%*%Mc%*%Q2) ) ), log( det(Mc) ), -1*log( det( t(X)%*%solve(Mc)%*%X ) ), testDet( lambdaGrid[k], out2 ), out$rho.MLE ) } test.for.zero( temp[,2], temp[,5], tag="testing det Omega formula") resid<- temp[,1] - temp[,2] + temp[,3] test.for.zero( mean(resid), resid, relative=FALSE, tag="REML Det shortcut") #### testing Krig verses mKrig # test.for.zero( temp[,3], -temp[,6], tag="Q2 Det and Eigen Det") ###### testing rho.MLE from mKrig and Krig test.for.zero( (7/10)*temp[,7], temp[,8], tag="rho.MLE Krig verses mKrig") #lm.out<-lm( temp[,1]~ temp[,c(2:3)]) #summary( lm.out) fields/tests/evlpoly.test.R0000644000175100001440000000311213114302551015463 0ustar hornikusers # fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, # PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. library( fields) options( echo=FALSE) test.for.zero.flag<-1 set.seed( 245) x<- runif(3) coef<- runif( 5) temp<- fields.evlpoly( x, coef) temp2<- coef[1] for( k in (2:5) ){ temp2<- temp2 + coef[k]*x**(k-1) } test.for.zero( temp, temp2) set.seed( 124) x<- matrix( runif(12), ncol=3) fields.mkpoly(x, m=3)-> out attr( out, "ptab")-> ptab J<- nrow( ptab) coef<- runif( J) temp<- fields.evlpoly2( x, coef, ptab) temp2<-out%*% coef test.for.zero( temp,temp2) fields.derivative.poly( x, m=3, coef)-> temp fields.mkpoly( cbind( x[,1:2], x[,3]+1e-6), m=3)%*% coef-> temp2 fields.mkpoly( cbind( x[,1:2], x[,3]-1e-6), m=3)%*% coef-> temp3 temp2<- (temp2- temp3)/ 2e-6 test.for.zero( temp[,3], temp2) cat("Done testing polynomial evaluation",fill=TRUE) options( echo=FALSE) fields/tests/cov.test.R0000644000175100001440000001052113114143772014572 0ustar hornikusers # fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, # PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. library( fields) options( echo=FALSE) test.for.zero.flag<- 1 data(ozone2) y<- ozone2$y[16,] x<- ozone2$lon.lat # # Omit the NAs good<- !is.na( y) x<- x[good,] y<- y[good] x1<- x[1:5,] x2<- x[6:11,] look<- exp(-1*rdist(x1,x2)/4) look2<- stationary.cov( x1,x2, theta=4) look3<- Exp.cov( x1, x2, theta=4.0) test.for.zero( look, look2) test.for.zero( look, look3) set.seed(122) C<- rnorm( nrow(x2)) look<- exp(-1*rdist(x1,x2)/4)%*%C look2<- stationary.cov( x1,x2, theta=4, C=C) look3<- Exp.cov( x1, x2, theta=4.0, C=C) test.for.zero( look, look2) test.for.zero( look, look3) #### check tranformation of coordinates V<- matrix( c(2,1,0,4), 2,2) Vi<- solve( V) u1<- t(Vi%*% t(x1)) u2<- t(Vi%*% t(x2)) look<- exp(-1*rdist(u1,u2)) look2<- stationary.cov( x1,x2, V= V) test.for.zero( look, look2) look<- Wendland(rdist(u1,u2), k=3, dimension=2) look2<- stationary.cov( x1,x2, V= V, Covariance = "Wendland", k=3, dimension=2) test.for.zero( look, look2) ### check tapering of covariances x1<- x[1:5,] x2<- x[2:6,] V<- matrix( c(2,1,0,4), 2,2) Vi<- solve( V) u1<- x1 u2<- x2 look1a<- exp(-1*rdist(u1,u2)) look1b<- Wendland(rdist(u1,u2), k=3, dimension=2, theta= 1) look1<- look1a*look1b look2<- stationary.taper.cov( x1,x2, theta=1, Taper.args=list( theta=1,k=3, dimension=2), verbose=FALSE) test.for.zero( look1, as.matrix(look2)) u1<- t(Vi%*% t(x1)) u2<- t(Vi%*% t(x2)) look1a<- exp(-1*rdist(u1,u2)) look1b<- Wendland(rdist(u1,u2), k=3, dimension=2, theta= 1.5) look1<- look1a*look1b look2<- stationary.taper.cov( x1,x2,V=V, Taper.args=list( theta=1.5,k=3, dimension=2), verbose=FALSE) test.for.zero( look1, as.matrix(look2)) u1<- t(Vi%*% t(x1)) u2<- t(Vi%*% t(x2)) look1a<- Matern(rdist(u1,u2), smoothness=1.5) look1b<- Wendland(rdist(u1,u2), k=3, dimension=2, theta= 1.5) look1<- look1a*look1b look2<- stationary.taper.cov( x1,x2,V=V,Covariance=Matern, smoothness=1.5, Taper.args=list( theta=1.5,k=3, dimension=2), verbose=FALSE) test.for.zero( look1, as.matrix(look2)) # some tests of great circle distance stationary.taper.cov( x[1:3,],x[1:10,] , theta=200, Taper.args= list(k=2,theta=300, dimension=2), Dist.args=list( method="greatcircle") )-> temp # temp is now a tapered 3X10 cross covariance matrix in sparse format. # should be identical to # the direct matrix product temp2<- Exponential( rdist.earth(x[1:3,],x[1:10,]), range=200) * Wendland(rdist.earth(x[1:3,],x[1:10,]), theta= 300, k=2, dimension=2) test.for.zero( as.matrix(temp), temp2, tol=1e-6, tag="taper with great circle") # example of calling the taper version directly # Note that default covariance is exponential and default taper is # Wendland (k=2). stationary.taper.cov( x[1:3,],x[1:10,] , theta=1.5, Taper.args= list(k=2,theta=2.0, dimension=2) )-> temp # temp is now a tapered 5X10 cross covariance matrix in sparse format. # should be identical to # the direct matrix product temp2<- Exp.cov( x[1:3,],x[1:10,], theta=1.5) * Wendland(rdist(x[1:3,],x[1:10,]), theta= 2.0, k=2, dimension=2) test.for.zero( as.matrix(temp), temp2, tag= "high level test of taper cov") stationary.taper.cov( x[1:3,],x[1:10,] , range=1.5, Taper.args= list(k=2,theta=2.0, dimension=2) )-> temp test.for.zero( as.matrix(temp), temp2, tag= "high level test of taper cov") cat("end tests of V argument in covariances", fill=TRUE) fields/tests/Likelihood.test.Rout.save0000644000175100001440000000555313114304717017562 0ustar hornikusers R version 3.4.0 (2017-04-21) -- "You Stupid Darkness" Copyright (C) 2017 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin15.6.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # fields is a package for analysis of spatial data written for > # the R software environment . > # Copyright (C) 2017 > # University Corporation for Atmospheric Research (UCAR) > # Contact: Douglas Nychka, nychka@ucar.edu, > # National Center for Atmospheric Research, > # PO Box 3000, Boulder, CO 80307-3000 > # > # This program is free software; you can redistribute it and/or modify > # it under the terms of the GNU General Public License as published by > # the Free Software Foundation; either version 2 of the License, or > # (at your option) any later version. > # This program is distributed in the hope that it will be useful, > # but WITHOUT ANY WARRANTY; without even the implied warranty of > # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > # GNU General Public License for more details. > > > > # this is a test script to verify the likelihood computations are > # correct with the eigen decomposition format used in Krig > # see Krig.flplike for the concise computation. > # > > library(fields) Loading required package: spam Loading required package: grid Spam version 1.4-0 (2016-08-29) is loaded. Type 'help( Spam)' or 'demo( spam)' for a short introduction and overview of this package. Help for individual functions is also obtained by adding the suffix '.spam' to the function name, e.g. 'help( chol.spam)'. Attaching package: 'spam' The following objects are masked from 'package:base': backsolve, forwardsolve Loading required package: maps > > options( echo=FALSE) Testing: check ccoef PASSED test at tolerance 1e-08 Testing: llike full verses rhohat PASSED test at tolerance 1e-08 Testing: llike profile from mKrig PASSED test at tolerance 1e-08 Testing: ccoefs PASSED test at tolerance 1e-08 Testing: RSS using matrices PASSED test at tolerance 1e-08 PASSED test at tolerance 5e-08 Testing: quad form PASSED test at tolerance 1e-08 Testing: det PASSED test at tolerance 1e-08 Testing: REML using matrices PASSED test at tolerance 1e-08 Testing: REML profile flplike PASSED test at tolerance 1e-08 Testing: REML profile flplike PASSED test at tolerance 1e-08 all done with likelihood tests > > > proc.time() user system elapsed 1.337 0.055 1.386 fields/tests/Krig.Z.test.Rout.save0000644000175100001440000000714013114304717016575 0ustar hornikusers R version 3.4.0 (2017-04-21) -- "You Stupid Darkness" Copyright (C) 2017 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin15.6.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # fields is a package for analysis of spatial data written for > # the R software environment . > # Copyright (C) 2017 > # University Corporation for Atmospheric Research (UCAR) > # Contact: Douglas Nychka, nychka@ucar.edu, > # National Center for Atmospheric Research, > # PO Box 3000, Boulder, CO 80307-3000 > # > # This program is free software; you can redistribute it and/or modify > # it under the terms of the GNU General Public License as published by > # the Free Software Foundation; either version 2 of the License, or > # (at your option) any later version. > # This program is distributed in the hope that it will be useful, > # but WITHOUT ANY WARRANTY; without even the implied warranty of > # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > # GNU General Public License for more details. > > library(fields) Loading required package: spam Loading required package: grid Spam version 1.4-0 (2016-08-29) is loaded. Type 'help( Spam)' or 'demo( spam)' for a short introduction and overview of this package. Help for individual functions is also obtained by adding the suffix '.spam' to the function name, e.g. 'help( chol.spam)'. Attaching package: 'spam' The following objects are masked from 'package:base': backsolve, forwardsolve Loading required package: maps > # > # > # test of fixed lambda case > # Check against linear algebra > # > > options( echo=FALSE) Testing: d coef PASSED test at tolerance 1e-08 Testing: c coef PASSED test at tolerance 1e-08 Testing: predict for null fixed PASSED test at tolerance 1e-08 Testing: predict for null spatial PASSED test at tolerance 1e-08 Testing: predict for null drift PASSED test at tolerance 1e-08 Testing: predict for null fixed PASSED test at tolerance 1e-08 Testing: predict for null spatial PASSED test at tolerance 1e-08 Testing: predict for null drift PASSED test at tolerance 1e-08 Testing: knots/weights fixed/default d coef PASSED test at tolerance 1e-08 Testing: knots/weights fixed/default c coef PASSED test at tolerance 1e-08 Testing: knots d coef PASSED test at tolerance 1e-08 Testing: knots c coef PASSED test at tolerance 1e-08 Testing: knots predict for null PASSED test at tolerance 1e-08 Testing: knots predict for null PASSED test at tolerance 1e-08 Testing: knots predict w/o Z PASSED test at tolerance 1e-08 Testing: knots predict for drift PASSED test at tolerance 1e-08 Testing: predict for null PASSED test at tolerance 1e-08 Testing: predict for null PASSED test at tolerance 1e-08 Testing: predict for null PASSED test at tolerance 1e-08 Testing: predict for null PASSED test at tolerance 1e-08 PASSED test at tolerance 1e-08 Testing: SE w/o covariate PASSED test at tolerance 1e-08 Testing: SE with covariate PASSED test at tolerance 1e-08 Testing: SE for fixed part PASSED test at tolerance 1e-08 All done with Z tests and Krig/Tps including predict and predictSE ! > > proc.time() user system elapsed 1.508 0.053 1.552 fields/tests/sreg.test.R0000644000175100001440000000410213114302774014740 0ustar hornikusers # fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, # PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # test of sreg and related functions library( fields) options(echo=FALSE) test.for.zero.flag<- 1 set.seed(123) # Tps has been tested from scratch using basic linear algebra # so test sreg against this x<- rat.diet$t y<- rat.diet$trt sreg( x,y, lambda= 10)-> out Tps( x,y, scale="unscaled", lambda=10*length(y))-> out2 test.for.zero( out$fitted.values, out2$fitted.values, tag="predict at lambda sreg/Tps") #### GCV test sreg( x,y, tol=1e-12)-> out gcv.sreg( out, tol=1e-12)$lambda.est -> look0 test.for.zero( out$lambda.est[1,2], look0[1,2], tol=5e-4) Tps( x,y)-> out2 gcv.Krig( out2, tol=1e-12)$lambda.est[1,2]-> look2 gcv.sreg( out, tol=1e-12)$lambda.est[1,2] -> look test.for.zero( look, look2, tol=2.1e-6, tag="GCV sreg/Tps") #### replications set.seed( 123) x<- rep(rat.diet$t,3) y<- rep( rat.diet$trt,3) + rnorm(39*3)*5 sreg( x,y)-> out gcv.sreg( out, tol=1e-12)$lambda.est -> look Tps( x,y, scale="unscaled")-> out2 gcv.Krig( out2, tol=1e-12)$lambda.est-> look2 look2[,1]<- look2[,1]/length( out$xM) test.for.zero( look[1:3,3], look2[1:3,3], tag="GCV sreg/Tps reps case",tol=1e-06) test.for.zero( look[2,3], look2[2,3], tol=1e-6, tag="GCV sreg/Tps reps case") cat( "All done with sreg tests", fill=TRUE) options(echo=TRUE) fields/src/0000755000175100001440000000000013115103665012326 5ustar hornikusersfields/src/rcssr.f0000644000175100001440000000212213115103666013627 0ustar hornikusersc fields, Tools for spatial data c Copyright (C) 2017, Institute for Mathematics Applied Geosciences c University Corporation for Atmospheric Research c Licensed under the GPL -- www.gpl.org/licenses/gpl.html double precision function rcssr(r,par) c c robust rho function: c This is a peicewise polynomial with knots at -C , 0 and C c the function is quadratic for -CC c rho is continuous for all u aqnd differentiable for all points c except u=0 when a != 1/2 c c c rho(u) = 2*a*u - a*c for u>C c a*u**2/C for 0 #include #include #include #include SEXP expfnC(SEXP n, SEXP d2, SEXP par) { int In, i; double Dpar, par2; double *Pd2; //caste R variables to C variables, allocate answer vector In = INTEGER(n)[0]; Dpar = REAL(par)[0]; par2 = Dpar/2; Pd2 = REAL(d2); for(i = 0; i < In; i++) { Pd2[i] = exp(-1*pow(Pd2[i], par2)); } return(R_NilValue); } fields/src/rcss.f0000644000175100001440000001757213115103666013464 0ustar hornikusersc fields, Tools for spatial data c Copyright (C) 2017, Institute for Mathematics Applied Geosciences c University Corporation for Atmospheric Research c Licensed under the GPL -- www.gpl.org/licenses/gpl.html subroutine rcss(h,npoint,x,y,wt,sy,trace,diag,cv, + ngrid,xg,yg,job,ideriv,din,dout,ierr) c This a program to compute a robust univariate spline according to the c model: c minimize (1/n) sum(i=1,n)[rho( y(i)-f(x(i) )] + lambda*J(f) c over f c definition of the rho function and its derivative are in rcsswt c and rcssr c c One way of speeding convergence is to use the results from a previous c estimate as the starting values for the another estimate. This is c particulary appropriate when lambda or a parameter in the rho function c is being varied. Moderate changes in lambda will often yield similar c estimates. The way to take advantage of this is to pass the weights c from the previous fit as teh starting values for the next estimate c c Arguments of rcss: c h : natural log of lambda c c if h is passed with a value less than or equal -1000 no smoothing will c be done and the spline will interploate the data points c npoint: number of observations c (x,y) : pairs of data points to be smoothed c x(i) are assumed to be increasing. Repeated c observations at the same x are not handled by this routine. c sy : on return predicted values of f at x c wt : weights used in the iterivatively reweighted least c squares algorithm to compute robust spline. Vector c passed are used as the starting values. Subsequent c iterations compute the weights by a call to the c subroutine rcsswt c c that is the linear approximation of teh estimator at c convergence. c trace= tr(A(lambda)) = " effective number of paramters" c diag: diagonal elements of A(lambda) ( this is the most c computationally intetnsive opertation in this subroutine.) c cv: approximate cross-validation function c using the linear approximation at convergence c c ngrid,xg,yg : on return, the ith deriv of the spline estimate is c evaluated on a grid, xg, with ngrid points. The c values are returned in yg c c ideriv: 0 = evaluate the function according to the job code c 1 = evaluate the first derivative of the function according c to the job code c 2 = evaluate the second derivative of the function according c to the job code c c din: Vector of input parameters c din(1)= cost for cv c din(2)= offset for cv c din(3)= max number of iterations c din(4)= tolerance criterion for convergence c c din(5)= C scale parameter in robust function (transition from c quadratic to linear. c din(6)= alpha 1/2 slope of rho function for large, positive c residuals slope for residuals <0 : is 1/2 (1-alpha) c see comments in rcsswt for defintion of the rho and psi c functions c c job: in decimal job=(a,b,c) (a=igcv, b=igrid) c a=0 evaluate spline at x values, return predicted values in sy c a=1 same as a=0 plus returning values of trace, diag and cv c a=2 do no smoothing, interpolate the data c a=3 same as a=1 but use the passed values in din(1) din(2) c for computing cv function c c b=0 do not evaluate the spline at any grid points c b=1 evaluate the spline (ideriv=0) or the ith deriv (i=ideriv) c of the spline at the (unique) sorted,data points, xg, return yg c b=2 evaluate the spline (ideriv=0) or the ith deriv (i=ideriv) c of the spline at ngrid equally spaced points between x(1) c and x(npoints) c b=3 evaluate the spline (ideriv=0) or the ith deriv (i=ideriv) c of the spline at ngrid points on grid passed in xg. c NOTE: extrapolation of the estimate beyond the range of c the x's will just be a linear function. c c c c c=1 Assume that the X's are in sorted order c c=2 Do not sort the X's use the current set of keys c Should only be used on a second call to smooth c same design c Arguments of subroutine: c dout(1)= numit c dout(2)=tstop c dout(3) = trace c dout(4)= cv c numit: actual number of iterations for convergence c tstop: value of convergence criterion at finish. c c ierr: if ierr>0 something bad has happened c ierr>10 indicates problems in the call to the cubic spline c routine. c parameter(NMAX=20000) implicit double precision (a-h,o-z) double precision h,trace,cv double precision wt(npoint),X(npoint),Y(npoint) double precision sy(npoint),diag(npoint) double precision xg(ngrid),yg(ngrid) double precision din(10), dout(10),cost, offset, dum1, dum2 integer npoint,ngrid ,itj(3), job(3) if(npoint.gt.NMAX) then ierr=1 return endif maxit= int(din(3)) tstop=din(4) ybar=0.0 ysd=0.0 do 10 k=1,npoint diag(k) = y(k) ybar= ybar+ y(k) ysd= ysd+ y(k)**2 10 continue ybar= ybar/npoint ysd= sqrt( ysd/npoint - ybar**2) c Start iterating test=0.0 itj(1)= 0 itj(2)=0 itj(3)=0 do 500 it=1,maxit if( it.gt.1) then itj(3)=2 endif c fit a weighted least squares cubic smoothing spline call css(h,npoint,x,y,wt,sy, * dum1,diag,dum2,ngrid,xg,yg, * itj,ideriv,ierr) c check for an error returned by spline routine if(ierr.gt.0) then c add 10 so these can be distinguished from errors in this routine ierr= 10 + ierr return endif c compute convergence criterion c The intent of this criterion is to find out when successive iterations c produce changes that are small do 25 i=1,npoint test=(diag(i)-sy(i))**2 + test diag(i)= sy(i) 25 continue test=sqrt(test/npoint)/ysd if( test.lt.tstop ) then c * exit loop * numit=it goto 1000 endif c c make up new set of weights c call rcsswt( npoint, y,sy,wt, din(5)) c reinitialize test criterion for convergence c test=0.0 500 continue numit= maxit 1000 continue c One last call if job code is not 0 if( (job(1).ne.0).or.(job(2).ne.0)) then c call css(h,npoint,x,y,wt,sy, * trace,diag,cv,ngrid,xg,yg, * job,ideriv,ierr) ia= job(1) ig= job(2) c if(ig.gt.0) then c endif c calculate cv value if asked for if( (ia.eq.1) .or.( ia.eq.3) ) then if(ia.eq.3) then cost= din(1) offset= din(2)/npoint else cost=1 offset= 0 endif cv=0.0 do 1500 k=1,npoint c compute approx. cross-validated residual c plug cv residual into rho function, din(5) is the begining of parameter c vector for the rho function (scale and alpha) c c but only do this if the leverage is away from one. c this prevents the numerical problems with quantile splein of a zero c residual and c a zero denominator. if(1- diag(k).gt.1e-7) then resid= (y(k)- sy(k))/( 1- cost*(diag(k)+offset)) cv= cv + rcssr(resid, din(5)) endif 1500 continue cv= cv/npoint endif endif dout(1)=numit dout(2)=test dout(3)=trace dout(4)=cv return end fields/src/compactToMatC.c0000644000175100001440000000377413115103666015204 0ustar hornikusers/* c**** # fields is a package for analysis of spatial data written for c**** # the R software environment . c**** # Copyright (C) 2017 c**** # University Corporation for Atmospheric Research (UCAR) c**** # Contact: Douglas Nychka, nychka@ucar.edu, c**** # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 c**** # c**** # This program is free software; you can redistribute it and/or modify c**** # it under the terms of the GNU General Public License as published by c**** # the Free Software Foundation; either version 2 of the License, or c**** # (at your option) any later version. c**** # This program is distributed in the hope that it will be useful, c**** # but WITHOUT ANY WARRANTY; without even the implied warranty of c**** # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the c**** # GNU General Public License for more details. */ #include #include #include #include #include SEXP compactToMatC(SEXP compactMat, SEXP len, SEXP n, SEXP diagVal, SEXP lowerTri, SEXP upperTri) { int In, lTri, uTri, i, j, index; double dVal; double *cMat, *cans; //cast R variables to C variables In = INTEGER(n)[0]; lTri = INTEGER(lowerTri)[0]; uTri = INTEGER(upperTri)[0]; dVal = REAL(diagVal)[0]; cMat = REAL(compactMat); SEXP ans = PROTECT(allocMatrix(REALSXP, In, In)); cans = REAL(ans); //intialize entire array to zero DWN May-1-2016 for(i = 0; i < (In*In); i++) { cans[i]= 0.0; } //set upper or lower triangle of output matrix index = 0; if(lTri) { for(i = 0; i < In; i++) { for(j=i+1; j < In; j++) { cans[i*In+j] = cMat[index]; index++; } } } index = 0; if(uTri) { for(i = 0; i < In; i++) { for(j=i+1; j < In; j++) { cans[j*In+i] = cMat[index]; index++; } } } //set diagonal values of output matrix for(i = 0; i < In; i++) { cans[i*In + i] = dVal; } UNPROTECT(1); return ans; } fields/src/ddfind.f0000644000175100001440000000236613115103666013735 0ustar hornikusersc fields, Tools for spatial data c Copyright (C) 2017, Institute for Mathematics Applied Geosciences c University Corporation for Atmospheric Research c Licensed under the GPL -- www.gpl.org/licenses/gpl.html c subroutine ddfind( nd,x1,n1, x2,n2, D0,ind,rd,Nmax, iflag) integer nd,n1,n2, ind(nmax,2) integer kk, i,j, ic double precision x1(n1,nd), x2(n2,nd), D0, rd(Nmax), D02, dtemp c**** counter for accumulating close points kk=0 D02= D0**2 do 15 i= 1, n1 do 10 j =1,n2 c c** accumulate squared differences c dtemp= 0.0 do 5 ic= 1, nd dtemp= dtemp + (x1(i,ic) - x2(j,ic))**2 if( dtemp.gt.D02) goto 10 5 continue c**** dtemp is less than D0 so save it as a close point kk=kk+1 c**** check if there is still space if( kk .gt. Nmax) then iflag= -1 goto 20 else ind(kk,1)= i ind(kk,2)= j rd(kk)= sqrt( dtemp) endif 10 continue 15 continue Nmax=kk 20 continue return end fields/src/addToDiagC.c0000644000175100001440000000247013115103666014421 0ustar hornikusers/* c**** # fields is a package for analysis of spatial data written for c**** # the R software environment . c**** # Copyright (C) 2017 c**** # University Corporation for Atmospheric Research (UCAR) c**** # Contact: Douglas Nychka, nychka@ucar.edu, c**** # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 c**** # c**** # This program is free software; you can redistribute it and/or modify c**** # it under the terms of the GNU General Public License as published by c**** # the Free Software Foundation; either version 2 of the License, or c**** # (at your option) any later version. c**** # This program is distributed in the hope that it will be useful, c**** # but WITHOUT ANY WARRANTY; without even the implied warranty of c**** # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the c**** # GNU General Public License for more details. */ #include #include #include #include #include SEXP addToDiagC(SEXP mat, SEXP numsToAdd, SEXP n) { int In, i; double *cMat, *addVals; //cast R variables to C variables In = INTEGER(n)[0]; cMat = REAL(mat); addVals = REAL(numsToAdd); //Add number to diagonal for(i = 0; i < In; i++) { cMat[i*In+i] = cMat[i*In+i] + addVals[i]; } return R_NilValue; } fields/src/cvrf.f0000644000175100001440000000155213115103666013441 0ustar hornikusersc fields, Tools for spatial data c Copyright (C) 2017, Institute for Mathematics Applied Geosciences c University Corporation for Atmospheric Research c Licensed under the GPL -- www.gpl.org/licenses/gpl.html c** finds value of h minimizing the generalized cross-validation subroutine cvrf * (h,nobs,x,y,wt,sy,trace,diag,din,dout,cv,ierr) implicit double precision (a-h,o-z) double precision h,trace,cv double precision x(nobs),y(nobs),wt(nobs) double precision sy(nobs),diag(nobs),dumm1(1),dumm2(1) double precision din(10), dout(10) integer ngrid, ierr, job(3),ideriv data job/3,0,0/ data ideriv,ngrid/0,1/ call rcss(h,nobs,x,y,wt,sy,trace,diag,cv, + ngrid,dumm1,dumm2,job,ideriv,din,dout,ierr) nit= int( dout(1)) trace=dout(3) c return end fields/src/evlpoly.f0000644000175100001440000000136213115103666014172 0ustar hornikusersc fields, Tools for spatial data c Copyright (C) 2017, Institute for Mathematics Applied Geosciences c University Corporation for Atmospheric Research c Licensed under the GPL -- www.gpl.org/licenses/gpl.html subroutine evlpoly(x,n,coef,j,result) c evaluates a polynomial: coef(1) + sum_i= 2,j coef(i)x**i integer j,n, i double precision x(n), result(n), coef(j) double precision temp, tempx, temp2 do 10 i = 1,n temp= coef(1) tempx= x(i) temp2= tempx c temp is set to constant now loop over powers do 20 kk= 2, j temp= temp + coef(kk)* temp2 temp2= temp2*tempx 20 continue result(i)= temp 10 continue return end fields/src/evlpoly2.f0000644000175100001440000000161313115103666014253 0ustar hornikusersc fields, Tools for spatial data c Copyright (C) 2017, Institute for Mathematics Applied Geosciences c University Corporation for Atmospheric Research c Licensed under the GPL -- www.gpl.org/licenses/gpl.html subroutine evlpoly2(x,n,nd,ptab,j,coef,result) c evaluates a polynomial: coef(1) + sum_i= 2,j coef(i)x**i integer j,n, i, nd double precision x(n,nd), result(n), coef(j) integer ptab(j,nd) double precision temp, temp2 do 10 i = 1,n temp= 0 c for a given vector accumlate the polynomial terms do 20 kk= 1, j temp2 =1.0 do 30 l=1, nd if( ptab(kk,l).ne.0) then temp2= temp2* (x(i,l)**ptab(kk,l)) endif 30 continue temp = temp + temp2*coef(kk) 20 continue result(i)= temp 10 continue return end fields/src/ifind.f0000644000175100001440000000402513115103666013570 0ustar hornikusersc fields, Tools for spatial data c Copyright (C) 2017, Institute for Mathematics Applied Geosciences c University Corporation for Atmospheric Research c Licensed under the GPL -- www.gpl.org/licenses/gpl.html INTEGER FUNCTION IFIND(X,XK,N) C FIND I SUCH THAT XK(I) LE X LT XK(I+1) C IFIND=0 IF X LT XK(1) C IFIND=N IF X GT XK(N) C J F MONAHAN JAN 1982 DEPT OF STAT, N C S U, RALEIGH, NC 27650 double precision X,XK(N) IFIND=0 IF(X.LT.XK(1)) RETURN IFIND=N IF(X.GE.XK(N)) RETURN IL=1 IU=N 1 IF(IU-IL.LE.1) GO TO 4 I=(IU+IL)/2 C IF(X-XK(I)) 2,5,3 IF( (X-XK(I)).eq.0) go to 5 IF( (X-XK(I)).gt.0) go to 3 C following used to have line number 2 IU=I GO TO 1 3 IL=I GO TO 1 4 IFIND=IL RETURN 5 IFIND=I RETURN END fields/src/mltdrb.f0000644000175100001440000000321513115103666013763 0ustar hornikusersc fields, Tools for spatial data c Copyright (C) 2017, Institute for Mathematics Applied Geosciences c University Corporation for Atmospheric Research c Licensed under the GPL -- www.gpl.org/licenses/gpl.html C** evaluates partial derivatives of radial basis functions with c** nodes at x2 and at the points x1 c subroutine mltdrb( nd,x1,n1, x2, n2, par, c,h,work) implicit double precision (a-h,o-z) integer nd,n1,n2,ic, ivar, ir, j double precision par(2), x1(n1,nd) double precision x2(n2,nd), c(n2), h(n1, nd) double precision sum, sum2 double precision work( n2) c double precision ddot do 1000 ivar=1, nd c****** work aray must be dimensioned to size n2 c **** loop through columns of output matrix K c*** outermost loop over columns of x1 and x2 should c*** help to access adjacent values in memory. do 5 ir= 1, n1 c evaluate all basis functions at x1(j,.) do 10 j =1,n2 c zero out sum accumulator sum=0.0 do 15 ic=1,nd c** accumulate squared differences sum= sum+ (x1(ir,ic)- x2(j,ic))**2 15 continue work(j)=sum 10 continue C**** evaluate squared distances with basis functions. call drdfun( n2,work(1) ,par(1) ) do 11 j= 1, n2 work( j)= 2.0*work(j)*(x1(ir,ivar)- x2(j,ivar)) 11 continue c*****now the dot product you have all been waiting for! sum2= 0.0 do 12 j = 1, n2 sum2 = sum2 + work(j)*c(j) 12 continue c h(ir,ivar)= ddot( n2, work(1), 1, c(1),1) h(ir,ivar) = sum2 5 continue 1000 continue return end fields/src/css.f0000644000175100001440000002650413115103666013275 0ustar hornikusersc fields, Tools for spatial data c Copyright (C) 2017, Institute for Mathematics Applied Geosciences c University Corporation for Atmospheric Research c Licensed under the GPL -- www.gpl.org/licenses/gpl.html subroutine css(h,npoint,x,y,wght,sy,trace,diag,vlam, + ngrid,xg,yg,job,ideriv,ierr) C COMPUTES A CUBIC SMOOTHING SPLINE FIT TO A SET OF DATA GIVEN C NPOINT(=NUMBER OF DATA VALUES) AND LAMBDA(=VALUE OF C THE SMOOTHING parameter). THE CODE IS ADAPTED FROM A C PROGRAM IN DEBOOR,C.(1978).A PRACTICAL GUIDE TO SPLINES. C SPRINGER-VERLAG : NEW YORK. AN O(NPOINT) ALGORITHM C SUGGESTED BY HUTCHINSON AND DEHOOG IS USED TO COMPUTE C LVRAGE VALUES AND CONSTRUCT CONFIDENCE INTERVALS. c Adapted from Randy Eubank Texas A&M c c c this subroutine solves the problem: c c minimize (1/n) sum(i=1,n) [ (y(i) - f(x(i)))/wght(i) ]**2 + lambda*J(f) c over f c The solution will always be a piecewise cubic polynomial with join c points at the x values. Natural boundary conditions are assumed: at the c x(1) and x(npoints) the second and third derivatives of the slotuion c will be zero c All matrix calculations are done in double precision c c Arguments of evss: c h : natural log of lambda ( more convenient scale whepassing a c real*4) c if h is passed with a value less than or equal -1000 no smoothing will c be done and the spline will interploate the data points c npoint: number of observations c (x,y) : pairs of data points to be smoothed c sy : on return predicted values of f at x c wght : weights used in sum of squares. If the y have unequal c variance then an appropriate choice for wght is the standard deviation c (These weights are not normalized so multiplying by a constant c will imply solving the minimization problem with a different smoothing c parameter) c trace: in matrix from Yhat= A(lambda)Y with A(lambda) an nxn matrix c trace= tr(A(lambda)) = " effective number of paramters" c diag: diagonal elements of A(lambda) ( this is the mostt c computationally intetnsive opertation in this subroutine.) c vlam: value of the generalized cross-validation functyion (Used to c select an appropriate value for lambda based on the data.) c ngrid,xg,yg : on return, the ith deriv of the spline estimate is c evaluated on a grid, xg, with ngrid points. The c values are returned in yg c c ideriv: 0 = evaluate the function according to the job code c 1 = evaluate the first derivative of the function according c to the job code c 2 = evaluate the second derivative of the function according c to the job code c c job: is a vector of three integers c (a,b,c) (a=igcv, b=igrid, c=sorting) c a=0 evaluate spline at x values, return predicted values in sy c a=1 same as a=0 plus returning values of trace, diag and vlam c a=2 do no smoothing, interpolate the data c a=3 same as a=1 but use the passed value invlam argument as c a cost an offset factors in the diag vector c c b=0 do not evaluate the spline at any grid points c b=1 evaluate the spline (ideriv=0) or the ith deriv (i=ideriv) c of the spline at the (unique) sorted,data points, xg, return yg c b=2 evaluate the spline (ideriv=0) or the ith deriv (i=ideriv) c of the spline at ngrid equally spaced points between x(1) c and x(npoints) c b=3 evaluate the spline (ideriv=0) or the ith deriv (i=ideriv) c of the spline at ngrid points on grid passed in xg. c NOTE: extrapolation of the estimate beyond the range of c the x's will just be a linear function. c c c c c=0 X's may not be in sorted order c c=1 Assume that the X's are in sorted order c c=2 Do not sort the X's use the current set of keys c Should only be used on a second call to smooth c same design c c ierr : on return ierr>0 indicates all is not well :-( c parameter (NMAX=20000) implicit double precision (a-h,o-z) double precision h,trace,vlam double precision wght(npoint),X(npoint),Y(npoint) double precision sy(npoint),diag(npoint) double precision xg(ngrid),yg(ngrid) double precision A(NMAX,4),V(NMAX,7) double precision P,SIXP,SIX1MP,cost double precision ux(NMAX),uy(NMAX), uw(NMAX),ud(NMAX),utr integer imx(NMAX) integer idx(NMAX) integer npoint,igcv,igrid, isort, job(3) eps= 1d-7 cost=1.0 offset= 0 igcv= job(1) igrid=job(2) isort=job(3) c if( npoint.gt.NMAX) then ierr=1 return endif c initialize unique vector and two pointers do 5 k=1,npoint ux(k)=x(k) idx(k)=k 5 continue c sort vector X along with the keys in imx c c initialize the indices imx c if( isort.le.1) then do 6 k=1,npoint imx(k)=k 6 continue endif c c sort the X's permuting the indices c if(isort.eq.0) then call sortm( ux, imx,npoint) c the rank of the value x( imx(k)) is k endif c put y and the weights in the sorted order c C**** construct vector consisting of unique observations. jj=1 ind= imx(1) ux(jj)= x(ind) uy(jj)= y(ind) uw(jj)= wght(ind) idx(1)=jj c normalize eps by the range of the X values eps= eps/( x( imx(npoint)) - x( imx(1)) ) c c do 10 k=2,npoint c we are looping through ranks but this is not how the c order of the X are stored. The location of the kth smallest c is at idx(k) kshuf= imx(k) if( abs( ux(jj)-x(kshuf)).lt.eps) then c**** we have a repeat observation, update weight and the weighted c***** average at this point temp1= 1.0d0/uw(jj)**2 temp2= 1.0d0/wght(kshuf)**2 temp3 = (temp1 + temp2) uy(jj)= ( uy(jj)*temp1 + y(kshuf)*temp2)/temp3 uw(jj)= 1.0d0/dsqrt(temp3) else jj= jj+1 ux(jj)= x(kshuf) uy(jj)= y(kshuf) uw(jj)= wght(kshuf) endif c save the value that indexes unique values to repliacted ones. c x(k) corresponds to the unique X at idx(k) idx(k)=jj 10 continue nunq= jj itp=0 if(igcv.eq.2) itp=1 c handle condition for interpolation if(itp.eq.0) then P=1.d0/(npoint*dexp(h)+ 1.d0) else P=1.d0 endif call dSETUP(uX,uW,uY,nunq,V,A(1,4),NMAX,itp,ierr) C**** check for duplicate X's if so exit if(ierr.gt.0) then return endif call dCHOLD(P,V,A(1,4),nunq,A(1,3),A(1,1),NMAX) c compute predicted values SIX1MP=6.d0*(1.d0-P) if(itp.eq.0) then DO 61 I=1,Nunq a(i,1)=uY(I) - SIX1MP*(uW(I)**2)*A(I,1) 61 continue c fill in predicted values taking into account repeated data do 70 k=1,npoint jj= idx(k) sytemp= a(jj,1) c c unscramble the smoothed Y's kshuf= imx(k) sy(kshuf)=sytemp 70 continue else do 60 i=1,nunq a(i,1)=uy(i) 60 continue endif c return estimates on unique x's if igrid =1 if(igrid.eq.1) then do 65 i=1,nunq xg(i)=ux(i) yg(i)=a(i,1) 65 continue ngrid=nunq endif if(igrid.ge.1) then c c********* evaluate spline on grid C piecewise cubic COEFFICIENTS ARE STORED IN A(.,2-4). SIXP=6.d0*P DO 62 I=1,nunq A(I,3)=A(I,3)*SIXP 62 continue NPM1=nunq - 1 DO 63 I=1,NPM1 A(I,4)=(A(I+1,3)-A(I,3))/V(I,4) A(I,2)=(A(I+1,1)-A(I,1))/V(I,4) * -(A(I,3)+A(I,4)/3.*V(I,4))/2.*V(I,4) 63 continue c c create equally spaced x's if asked for ( igrid=2) c if( igrid.eq.2) then step= (ux(nunq)-ux(1))/(ngrid-1) xg(1)=ux(1) do 190 j=2,ngrid-1 xg(j)= xg(j-1)+step 190 continue xg(ngrid)=ux(nunq) endif uxmin= ux(1) uxmax= ux(nunq) a1= a(1,1) an= a(nunq,1) b1= a(1,2) d= ux(nunq)- ux(nunq-1) ind= nunq-1 bn= a(ind,2) + a(ind,3)*d + a(ind,4)*(d**2)/2.d0 c evalute spline by finding the interval containing the evaluation c point and applying the cubic formula for the curve estiamte c finding the interval such that ux(ind) <=xg(j) < ux( ind+1) c is done using a bisection search do 195 j=1,ngrid lint= ifind(xg(j),ux,nunq) if( lint.eq.0) then d= xg(j)-uxmin if (ideriv .eq. 0) - yg(j)= a1 + b1*d if (ideriv .eq. 1) - yg(j)= b1 if (ideriv .eq. 2) - yg(j)= 0.0 endif if( lint.eq.nunq) then d= xg(j)-uxmax if (ideriv .eq. 0) - yg(j)= an + bn*d if (ideriv .eq. 1) - yg(j)= bn if (ideriv .eq. 2) - yg(j)= 0.0 endif if( ((lint.ge.1 ) .and.( lint.lt.nunq))) then ind=lint c a1=a(ind,1) c a2=a(ind,2) c b=a(ind,3)/2.d0 c c=a(ind,4)/6.d0 c d= xg(j)-ux(ind) if (ideriv .eq. 0) - yg(j)= a(ind,1) + a(ind,2)*d + a(ind,3)*(d**2)/2.d0 - + a(ind,4)*(d**3)/6.d0 if (ideriv .eq. 1) - yg(j)= a(ind,2) + a(ind,3)*d + a(ind,4)*(d**2)/2.d0 if (ideriv .eq. 2) - yg(j)= a(ind,3) + a(ind,4)*d endif c 195 continue endif c****end of evaluation block if((igcv.eq.1).or.( igcv.eq.3)) then if( igcv.eq.3) then cost= diag(1) offset=diag(2) endif c***** begin computing gcv and trace C COMPUTE LVRAGE VALUES ,THE VARIANCE ESTIMATE C SGHAT2 AND CONFIDENCE INTERVALS. c call dLV(nunq,V,uw,SIX1MP,utr,ud,NMAX) rss=0.d0 trace=0.d0 vlam=0.d0 do 100 i=1,nunq c rss= rss + ((uy(i)-a(i,1))/uw(i))**2 trace= trace +ud(i) 100 continue do 110 k=1,npoint kshuf= imx(k) jj= idx(k) diag(kshuf)= ud(jj) rss= rss + ( (y(kshuf)- sy(kshuf))/wght(kshuf) )**2 110 continue ctrace= 2+ cost*( trace-2) if( (npoint -ctrace -offset) .gt. 0.d0) then vlam= (rss/npoint)/( 1- (ctrace-offset)/npoint)**2 else vlam=1e20 endif endif return END fields/src/rdist.f0000644000175100001440000000463413115103666013632 0ustar hornikusersc fields, Tools for spatial data c Copyright (C) 2017, Institute for Mathematics Applied Geosciences c University Corporation for Atmospheric Research c Licensed under the GPL -- www.gpl.org/licenses/gpl.html subroutine rdist( nd,x1,n1,x2,n2, k) integer nd,n1,n2,ic double precision x1(n1,nd), x2(n2,nd), k(n1,n2) double precision xtemp do j =1,n2 xtemp= x2(j,1) do i= 1, n1 c** accumulate squared differences k(i,j)= (x1(i,1)- xtemp)**2 enddo enddo c **** loop through columns of output matrix K c*** outer most loop over columns of x1 and x2 should reduce memory swaps if( nd.ge.2) then do ic= 2, nd do j =1,n2 xtemp= x2(j,ic) do i= 1, n1 c** accumulate squared differences k(i,j)= (x1(i,ic)- xtemp)**2 + k(i,j) enddo enddo enddo endif c**** at this point k( i,j) is the squared distance between x1_i and x2_j do j =1,n2 do i= 1, n1 k(i,j)= sqrt( k(i,j)) enddo enddo return end subroutine rdist1( nd,x1,n1,k) integer nd,n1,ic double precision x1(n1,nd), k(n1,n1) double precision xtemp, dtemp do j =1,n1 xtemp= x1(j,1) do i= 1, j c** accumulate squared differences k(i,j)= (x1(i,1)- xtemp)**2 enddo enddo c **** loop through columns of output matrix K c*** outer most loop over columns of x1 and x2 should reduce memory swaps if( nd.ge.2) then do ic= 2, nd do j =1,n1 xtemp= x1(j,ic) do i= 1, j c** accumulate squared differences k(i,j)= (x1(i,ic)- xtemp)**2 + k(i,j) enddo enddo enddo endif c**** at this point k( i,j) is the squared distance between x1_i and x2_j c**** for the upper triangle of matrix do j = 1,n1 do i= 1, j dtemp = sqrt( k(i,j)) k(i,j)= dtemp c c filling in lower part takes a substantial time and is omitted c This means the returned matrix k has indeterminant vlaues in the c lower triangle. c k(j,i)= dtemp enddo enddo return end fields/src/rdistC.c0000644000175100001440000000341313115103666013724 0ustar hornikusers /* c**** # fields is a package for analysis of spatial data written for c**** # the R software environment . c**** # Copyright (C) 2017 c**** # University Corporation for Atmospheric Research (UCAR) c**** # Contact: Douglas Nychka, nychka@ucar.edu, c**** # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 c**** # c**** # This program is free software; you can redistribute it and/or modify c**** # it under the terms of the GNU General Public License as published by c**** # the Free Software Foundation; either version 2 of the License, or c**** # (at your option) any later version. c**** # This program is distributed in the hope that it will be useful, c**** # but WITHOUT ANY WARRANTY; without even the implied warranty of c**** # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the c**** # GNU General Public License for more details. */ #include #include #include #include #include SEXP Rdist1C(SEXP x) { int nx = nrows(x); int dim = ncols(x); void F77_CALL(rdist1)(int *, double *, int *, double *); SEXP ans = PROTECT(allocMatrix(REALSXP, nx, nx)); double *rx = REAL(x), *rans = REAL(ans); /* rdist1_( &dim, rx, &nx, rans); */ F77_CALL(rdist1)( &dim, rx, &nx, rans); UNPROTECT(1); return ans; } SEXP RdistC(SEXP x1, SEXP x2) { int n1 = nrows(x1); int n2 = nrows(x2); int dim = ncols(x1); void F77_CALL(rdist)(int *, double *, int *, double *, int *, double *); SEXP ans = PROTECT(allocMatrix(REALSXP, n1, n2)); double *rx1 = REAL(x1),*rx2 = REAL(x2), *rans = REAL(ans); F77_CALL(rdist)( &dim, rx1, &n1, rx2, &n2, rans); UNPROTECT(1); return ans; } fields/src/expfn.f0000644000175100001440000000063613115103666013623 0ustar hornikusersc fields, Tools for spatial data c Copyright (C) 2017, Institute for Mathematics Applied Geosciences c University Corporation for Atmospheric Research c Licensed under the GPL -- www.gpl.org/licenses/gpl.html subroutine expfn(n,d2, par) double precision d2(n), par(1) integer n do 5 k =1,n d2(k)= exp(-1*d2(k)**(par( 1)/2)) 5 continue return end fields/src/sortm.f0000644000175100001440000000466013115103666013650 0ustar hornikusersc fields, Tools for spatial data c Copyright (C) 2017, Institute for Mathematics Applied Geosciences c University Corporation for Atmospheric Research c Licensed under the GPL -- www.gpl.org/licenses/gpl.html c OLD routine with line numbers and computed if c SUBROUTINE SORTM0(K,ki,N) C HEAPSORT ALGORITHM FOR SORTING ON VECTOR OF KEYS K OF LENGTH N C J F MONAHAN TRANSCRIBED FROM KNUTH, VOL 2, PP 146-7. C integer array ki is permuted along with K c double precision K(N),KK c integer ki(N),kki c INTEGER R c IF(N.LE.1) RETURN c L=N/2+1 c R=N c 2 IF(L.GT.1) GO TO 1 c KK=K(R) c kki= ki(R) c K(R)=K(1) c ki(R)=ki(1) c R=R-1 c IF(R.EQ.1) GO TO 9 c GO TO 3 c 1 L=L-1 c KK=K(L) c kki=ki(L) c 3 J=L c 4 I=J c J=2*J c IF(J-R) 5,6,8 c 5 IF(K(J).LT.K(J+1)) J=J+1 c 6 IF(KK.GT.K(J)) GO TO 8 c 7 K(I)=K(J) c ki(I)=ki(J) c GO TO 4 c 8 K(I)=KK c ki(I)=kki c GO TO 2 c 9 K(1)=KK c ki(1)=kki c RETURN c END SUBROUTINE SORTM(X,ki,N) C HEAPSORT ALGORITHM FOR SORTING ON VECTOR OF KEYS X OF LENGTH N C J F MONAHAN TRANSCRIBED FROM KNUTH, VOL 2, PP 146-7. C integer array ki is permuted along with X double precision X(N),XX integer N integer ki(N),kki INTEGER R, L,I, J IF(N.LE.1) RETURN L=N/2+1 R=N 2 IF(L.GT.1) GO TO 1 XX=X(R) kki= ki(R) X(R)=X(1) ki(R)=ki(1) R=R-1 IF(R.EQ.1) GO TO 9 GO TO 3 1 L=L-1 XX=X(L) kki=ki(L) 3 J=L 4 I=J J=2*J C IF(J-R) 5,6,8 c < goes here if( (J-R).LT.0) then IF(X(J).LT.X(J+1)) J=J+1 endif c <= go to here if( (J-R).LE.0) then IF(XX.GT.X(J)) GO TO 8 X(I)=X(J) ki(I)=ki(J) GO TO 4 endif c > goes to here 8 X(I)=XX ki(I)=kki GO TO 2 9 X(1)=XX ki(1)=kki RETURN END fields/src/dlv.f0000644000175100001440000000510113115103666013260 0ustar hornikusersc fields, Tools for spatial data c Copyright (C) 2017, Institute for Mathematics Applied Geosciences c University Corporation for Atmospheric Research c Licensed under the GPL -- www.gpl.org/licenses/gpl.html SUBROUTINE dLV(NPOINT,V,WGHT,SIX1MP,TR,LEV,NMAX) c CONSTRUCTS THE UPPER THREE DIAGONALS OF (6*(1-P)* C Q-TRANSP*(D**2)*Q + P*R)-INV USING THE RECURSION C FORMULA IN HUTCHINSON,M.F. AND DEHOOG,F.R.(1985). C NUMER. MATH. 47,99-106, AND STORES THEM IN V(.,5-7). C THESE ARE USED IN POST AND PRE MULTIPLICATION BY C Q-TRANSP AND Q TO OBTAIN THE DIAGONAL ELEMENTS OF C THE HAT MATRIX WHICH ARE STORED IN THE VECTOR LEV. C THE TRACE OF THE HAT MATRIX IS RETURNED IN TR. c double precision V(NMAX,7),TR,W1,W2,W3,SIX1MP double precision wght(NMAX) double precision LEV(npoint) INTEGER NPM1,NPM2,NPM3,NPOINT c NPM1=NPOINT - 1 NPM2=NPOINT - 2 NPM3=NPOINT - 3 C RECURSION FOR DIAGONALS OF INVERSE MATRIX V(NPM1,5)=1/V(NPM1,1) V(NPM2,6)=-V(NPM2,2)*V(NPM1,5) V(NPM2,5)=(1/V(NPM2,1)) - V(NPM2,6)*V(NPM2,2) DO 10 I=NPM3,2,-1 V(I,7)=-V(I,2)*V(I+1,6) - V(I,3)*V(I+2,5) V(I,6)=-V(I,2)*V(I+1,5) - V(I,3)*V(I+1,6) V(I,5)=(1/V(I,1))- V(I,2)*V(I,6) - V(I,3)*V(I,7) 10 CONTINUE C POSTMULTIPLY BY (D**2)*Q-TRANSP AND PREMULTIPLY BY Q TO C OBTAIN DIAGONALS OF MATRIX PROPORTIONAL TO THE C IDENTITY MINUS THE HAT MATRIX. W1=1.d0/V(1,4) W2= -1.d0/V(2,4) - 1.d0/V(1,4) W3=1.d0/V(2,4) V(1,1)=V(2,5)*W1 V(2,1)=W2*V(2,5) + W3*V(2,6) V(2,2)=W2*V(2,6) + W3*V(3,5) LEV(1)=1.d0 - (WGHT(1)**2)*SIX1MP*W1*V(1,1) LEV(2)=1.d0 - (WGHT(2)**2)*SIX1MP*(W2*V(2,1) + W3*V(2,2)) TR=LEV(1) + LEV(2) DO 20 I=4,NPM1 W1=1.d0/V(I-2,4) W2= -1.d0/V(I-1,4) - 1.d0/V(I-2,4) W3=1.d0/V(I-1,4) V(I-1,1)=V(I-2,5)*W1 + V(I-2,6)*W2 + V(I-2,7)*W3 V(I-1,2)=V(I-2,6)*W1 + V(I-1,5)*W2 + V(I-1,6)*W3 V(I-1,3)=V(I-2,7)*W1 + V(I-1,6)*W2 + V(I,5)*W3 LEV(I-1)=1.d0 - (WGHT(I-1)**2)*SIX1MP*(W1*V(I-1,1) . + W2*V(I-1,2) + W3*V(I-1,3)) TR= TR + LEV(I-1) 20 CONTINUE W1=1.d0/V(NPM2,4) W2= -1.d0/V(NPM1,4) - 1.d0/V(NPM2,4) W3=1.d0/V(NPM1,4) V(NPOINT,1)=V(NPM1,5)*W3 V(NPM1,1)=V(NPM2,5)*W1 + V(NPM2,6)*W2 V(NPM1,2)=V(NPM2,6)*W1 + V(NPM1,5)*W2 LEV(NPM1)=1.d0 - (WGHT(NPM1)**2)*SIX1MP*(W1*V(NPM1,1) . + W2*V(NPM1,2)) LEV(NPOINT)=1.d0 - (WGHT(NPOINT)**2)*SIX1MP*W3*V(NPOINT,1) TR= TR + LEV(NPM1) + LEV(NPOINT) RETURN END fields/src/dsetup.f0000644000175100001440000000411413115103666014002 0ustar hornikusersc fields, Tools for spatial data c Copyright (C) 2017, Institute for Mathematics Applied Geosciences c University Corporation for Atmospheric Research c Licensed under the GPL -- www.gpl.org/licenses/gpl.html SUBROUTINE dSETUP(X,WGHT,Y,NPOINT,V,QTY,NMAX,itp,ierr) C PUT DELX=X(.+1)-X(.) INTO V(.,4) C PUT THE THREE BANDS OF THE MATRIX Q-TRANSP*D INTO C V(.,1-3) C PUT THE THREE BANDS OF (D*Q)-TRANSP*(D*Q) AT AND C ABOVE THE DIAGONAL INTO V(.,5-7) C HERE Q IS THE TRIDIAGONAL MATRIX OF ORDER (NPOINT C -2,NPOINT) THAT SATISFIES Q-TRANSP*T=0 AND WGHT C IS THE DIAGONAL MATRIX WHOSE DIAGONAL ENTRIES C ARE THE SQUARE ROOTS OF THE WEIGHTS USED IN THE C PENALIZED LEAST-SQUARES CRITERION c implicit double precision (a-h,o-z) double precision WGHT(NMAX),X(NMAX),y(NMAX) double precision QTY(NMAX),V(NMAX,7) double precision DIFF,PREV INTEGER NPOINT,I,NPM1 c NPM1=NPOINT -1 V(1,4)=X(2)-X(1) if(v(1,4).eq.0.d0) then ierr=5 return endif DO 11 I=2,NPM1 V(I,4)=X(I+1) - X(I) if(v(I,4).eq.0.d0) then ierr=5 return endif if(itp.eq.0) then V(I,1)=WGHT(I-1)/V(I-1,4) V(I,2)=-WGHT(I)/V(I,4) - WGHT(I)/V(I-1,4) V(I,3)=WGHT(I+1)/V(I,4) else V(I,1)=1.d0/V(I-1,4) V(I,2)=-1.d0/V(I,4) - 1.0/V(I-1,4) V(I,3)=1.d0/V(I,4) endif 11 continue c V(NPOINT,1)=0.d0 DO 12 I=2,NPM1 V(I,5)=V(I,1)**2 + V(I,2)**2 + V(I,3)**2 12 continue IF(NPM1 .LT. 3)GO TO 14 DO 13 I=3,NPM1 V(I-1,6)=V(I-1,2)*V(I,1) + V(I-1,3)*V(I,2) 13 continue 14 V(NPM1,6)=0.d0 IF(NPM1 .LT. 4)GO TO 16 DO 15 I=4,NPM1 V(I-2,7)=V(I-2,3)*V(I,1) 15 continue 16 V(NPM1-1,7)=0.d0 V(NPM1,7)=0.d0 c C CONSTRUCT Q-TRANSP. * Y IN QTY PREV=(Y(2) - Y(1))/V(1,4) DO 21 I=2,NPM1 DIFF=(Y(I+1)-Y(I))/V(I,4) QTY(I)=DIFF - PREV PREV=DIFF 21 continue c RETURN END fields/src/compactToMatCOLD.c0000644000175100001440000000361613115103666015536 0ustar hornikusers/* c**** # fields is a package for analysis of spatial data written for c**** # the R software environment . c**** # Copyright (C) 2017 c**** # University Corporation for Atmospheric Research (UCAR) c**** # Contact: Douglas Nychka, nychka@ucar.edu, c**** # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 c**** # c**** # This program is free software; you can redistribute it and/or modify c**** # it under the terms of the GNU General Public License as published by c**** # the Free Software Foundation; either version 2 of the License, or c**** # (at your option) any later version. c**** # This program is distributed in the hope that it will be useful, c**** # but WITHOUT ANY WARRANTY; without even the implied warranty of c**** # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the c**** # GNU General Public License for more details. */ #include #include #include #include #include SEXP compactToMatCOLD(SEXP compactMat, SEXP len, SEXP n, SEXP diagVal, SEXP lowerTri, SEXP upperTri) { int In, lTri, uTri, i, j, index; double dVal; double *cMat, *cans; //cast R variables to C variables In = INTEGER(n)[0]; lTri = INTEGER(lowerTri)[0]; uTri = INTEGER(upperTri)[0]; dVal = REAL(diagVal)[0]; cMat = REAL(compactMat); SEXP ans = PROTECT(allocMatrix(REALSXP, In, In)); cans = REAL(ans); //set upper or lower triangle of output matrix index = 0; if(lTri) { for(i = 0; i < In; i++) { for(j=i+1; j < In; j++) { cans[i*In+j] = cMat[index]; index++; } } } index = 0; if(uTri) { for(i = 0; i < In; i++) { for(j=i+1; j < In; j++) { cans[j*In+i] = cMat[index]; index++; } } } //set diagonal values of output matrix for(i = 0; i < In; i++) { cans[i*In + i] = dVal; } UNPROTECT(1); return ans; } fields/src/csstr.f0000644000175100001440000000144113115103666013634 0ustar hornikusersc fields, Tools for spatial data c Copyright (C) 2017, Institute for Mathematics Applied Geosciences c University Corporation for Atmospheric Research c Licensed under the GPL -- www.gpl.org/licenses/gpl.html subroutine csstr(h,nobs,x,y,wght,c,offset,trace,vlam,work,ierr) parameter(mxM=20000) implicit double precision (a-h,o-z) double precision h,trace, vlam,c,offset double precision x(nobs),y(nobs),wght(nobs) double precision work(nobs),diag(mxM),dumm1(1),dumm2(1) integer job(3),ideriv,ierr, ndum data ideriv/0/ job(1)=3 job(2)=0 job(3)=0 diag(1)=c diag(2)=offset ndum=1 call css(h,nobs,x,y,wght,work,trace,diag,vlam,ndum,dumm1,dumm2, - job,ideriv,ierr) return end fields/src/ExponentialUpperC.c0000644000175100001440000000322213115103666016077 0ustar hornikusers/* c**** # fields is a package for analysis of spatial data written for c**** # the R software environment . c**** # Copyright (C) 2017 c**** # University Corporation for Atmospheric Research (UCAR) c**** # Contact: Douglas Nychka, nychka@ucar.edu, c**** # National Center for Atmospheric Research, c**** # PO Box 3000, Boulder, CO 80307-3000 c**** # c**** # This program is free software; you can redistribute it and/or modify c**** # it under the terms of the GNU General Public License as published by c**** # the Free Software Foundation; either version 2 of the License, or c**** # (at your option) any later version. c**** # This program is distributed in the hope that it will be useful, c**** # but WITHOUT ANY WARRANTY; without even the implied warranty of c**** # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the c**** # GNU General Public License for more details. */ #include #include #include #include #include SEXP ExponentialUpperC(SEXP distMat, SEXP n, SEXP alpha) { int In, i, j; double dAlpha; double *dMat, *cans; //cast R variables to C variables In = INTEGER(n)[0]; dAlpha = REAL(alpha)[0]; dMat = REAL(distMat); SEXP ans = PROTECT(allocMatrix(REALSXP, In, In)); cans = REAL(ans); //intialize entire array to zero DWN May-4-2016 for(i = 0; i < (In*In); i++) { cans[i]= 0.0; } //set upper triangle of output matrix for(i = 0; i < In; i++) { for(j=0; j<= i; j++) { if(i == j) cans[i*In+j] = 1.0; else cans[i*In+j] = exp(-1*dMat[i*In+j]*dAlpha); } } UNPROTECT(1); return ans; } fields/src/dmaket.f0000644000175100001440000000521013115103666013741 0ustar hornikusersc fields, Tools for spatial data c Copyright (C) 2017, Institute for Mathematics Applied Geosciences c University Corporation for Atmospheric Research c Licensed under the GPL -- www.gpl.org/licenses/gpl.html subroutine dmaket(m,n,dim,des,lddes,npoly,t,ldt, * wptr,info,ptab,ldptab) integer m,n,dim,lddes,npoly,ldt,wptr(dim),info,ptab(ldptab,dim) double precision des(lddes,dim),t(ldt,npoly) c c Purpose: create t matrix and append s1 to it. c c On Entry: c m order of the derivatives in the penalty c n number of rows in des c dim number of columns in des c des(lddes,dim) variables to be splined c lddes leading dimension of des as declared in the c calling program c ldt leading dimension of t as declared in the c calling program c c npoly dimension of polynomial part of spline c On Exit: c t(ldt,npoly+ncov1) [t:s1] c info error indication c 0 : successful completion c 1 : error in creation of t c Work Arrays: c wptr(dim) integer work vector c c Subprograms Called Directly: c Other - mkpoly c c integer i,j,k,kk,tt,nt,bptr,eptr c info = 0 c npoly = mkpoly(m,dim) do 5 j=1,n t(j,1)=1.0 5 continue nt = 1 if (npoly .gt. 1) then do 10 j=1,dim nt = j + 1 wptr(j) = nt ptab(nt,j)= ptab(nt,j) +1 do 15 kk = 1, n t(kk,nt)= des(kk,j) 15 continue c call dcopy(n,des(1,j),1,t(1,nt),1) 10 continue c c get cross products of x's in null space for m>2 c c WARNING: do NOT change next do loop unless you fully understand: c This first gets x1*x1, x1*x2, x1*x3, then c x2*x2, x2*x3, and finally x3*x3 for dim=3,n=3 c wptr(1) is always at the beginning of the current c level of cross products, hence the end of the c previous level which is used for the next. c wptr(j) is at the start of xj * (previous level) c do 50 k=2,m-1 do 40 j=1,dim bptr = wptr(j) wptr(j) = nt + 1 eptr = wptr(1) - 1 do 30 tt=bptr,eptr nt = nt + 1 do 21 jj= 1,dim ptab(nt,jj)= ptab(tt,jj) 21 continue ptab( nt,j)= 1+ ptab( nt,j) do 20 i=1,n t(i,nt) = des(i,j) * t(i,tt) 20 continue 30 continue 40 continue 50 continue if (nt .ne. npoly) then info = 1 return endif endif c end fields/src/multW.f0000644000175100001440000000251613115103666013612 0ustar hornikusersc fields, Tools for spatial data c Copyright (C) 2017, Institute for Mathematics Applied Geosciences c University Corporation for Atmospheric Research c Licensed under the GPL -- www.gpl.org/licenses/gpl.html subroutine multWendlandG( mx, my, deltaX, deltaY, * nc, center, coef, h, flag) integer mx, my, nc, flag double precision deltaX, deltaY, center(nc,2), coef(nc) double precision h(mx,my) c integer j, k, l, m1, m2, n1, n2 double precision kstar, lstar, d, wendlandFunction do j = 1, nc kStar= center(j,1) lStar= center(j,2) m1 = max( ceiling(-deltaX + kStar), 1) m2 = min( floor( deltaX + kStar), mx) n1 = max( ceiling(-deltaY + lStar), 1) n2 = min( floor( deltaY + lStar), my) do l = n1, n2 do k = m1, m2 d = dsqrt( ((k-kStar)/deltaX)**2 + ((l- lStar)/deltaY)**2) h(k,l) = h(k,l) + wendlandFunction( d)* coef(j) c h(k,l) = h(k,l) + 2 enddo enddo enddo flag=0 return end double precision function wendlandFunction(d) double precision d if( d.GE.1) then wendlandFunction = 0 else wendlandFunction = ((1-d)**6) * (35*d**2 + 18*d + 3)/3 endif return end fields/src/init.c0000644000175100001440000000765613115103666013454 0ustar hornikusers/* c**** # fields is a package for analysis of spatial data written for c**** # the R software environment . c**** # Copyright (C) 2017 c**** # University Corporation for Atmospheric Research (UCAR) c**** # Contact: Douglas Nychka, nychka@ucar.edu, c**** # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 c**** # c**** # This program is free software; you can redistribute it and/or modify c**** # it under the terms of the GNU General Public License as published by c**** # the Free Software Foundation; either version 2 of the License, or c**** # (at your option) any later version. c**** # This program is distributed in the hope that it will be useful, c**** # but WITHOUT ANY WARRANTY; without even the implied warranty of c**** # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the c**** # GNU General Public License for more details. */ #include #include #include // for NULL #include /* FIXME: Check these declarations against the C/Fortran source code. */ /* .Call calls */ extern SEXP addToDiagC(SEXP, SEXP, SEXP); extern SEXP compactToMatC(SEXP, SEXP, SEXP, SEXP, SEXP, SEXP); extern SEXP ExponentialUpperC(SEXP, SEXP, SEXP); extern SEXP multebC(SEXP, SEXP, SEXP, SEXP, SEXP, SEXP, SEXP, SEXP); extern SEXP RdistC(SEXP, SEXP); /* .Fortran calls */ extern void F77_NAME(css)(void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *); extern void F77_NAME(ddfind)(void *, void *, void *, void *, void *, void *, void *, void *, void *, void *); extern void F77_NAME(dmaket)(void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *); extern void F77_NAME(evlpoly)(void *, void *, void *, void *, void *); extern void F77_NAME(evlpoly2)(void *, void *, void *, void *, void *, void *, void *); extern void F77_NAME(igpoly)(void *, void *, void *, void *, void *, void *, void *, void *); extern void F77_NAME(inpoly)(void *, void *, void *, void *, void *, void *, void *); extern void F77_NAME(mltdrb)(void *, void *, void *, void *, void *, void *, void *, void *, void *); extern void F77_NAME(multrb)(void *, void *, void *, void *, void *, void *, void *, void *, void *, void *); extern void F77_NAME(multwendlandg)(void *, void *, void *, void *, void *, void *, void *, void *, void *); extern void F77_NAME(radbas)(void *, void *, void *, void *, void *, void *, void *); extern void F77_NAME(rcss)(void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *); static const R_CallMethodDef CallEntries[] = { {"addToDiagC", (DL_FUNC) &addToDiagC, 3}, {"compactToMatC", (DL_FUNC) &compactToMatC, 6}, {"ExponentialUpperC", (DL_FUNC) &ExponentialUpperC, 3}, {"multebC", (DL_FUNC) &multebC, 8}, {"RdistC", (DL_FUNC) &RdistC, 2}, {NULL, NULL, 0} }; static const R_FortranMethodDef FortranEntries[] = { {"css", (DL_FUNC) &F77_NAME(css), 15}, {"ddfind", (DL_FUNC) &F77_NAME(ddfind), 10}, {"dmaket", (DL_FUNC) &F77_NAME(dmaket), 12}, {"evlpoly", (DL_FUNC) &F77_NAME(evlpoly), 5}, {"evlpoly2", (DL_FUNC) &F77_NAME(evlpoly2), 7}, {"igpoly", (DL_FUNC) &F77_NAME(igpoly), 8}, {"inpoly", (DL_FUNC) &F77_NAME(inpoly), 7}, {"mltdrb", (DL_FUNC) &F77_NAME(mltdrb), 9}, {"multrb", (DL_FUNC) &F77_NAME(multrb), 10}, {"multwendlandg", (DL_FUNC) &F77_NAME(multwendlandg), 9}, {"radbas", (DL_FUNC) &F77_NAME(radbas), 7}, {"rcss", (DL_FUNC) &F77_NAME(rcss), 17}, {NULL, NULL, 0} }; void R_init_fields(DllInfo *dll) { R_registerRoutines(dll, NULL, CallEntries, FortranEntries, NULL); R_useDynamicSymbols(dll, FALSE); } fields/src/inpoly.f0000644000175100001440000001060613115103666014013 0ustar hornikusersc fields, Tools for spatial data c Copyright (C) 2017, Institute for Mathematics Applied Geosciences c University Corporation for Atmospheric Research c Licensed under the GPL -- www.gpl.org/licenses/gpl.html subroutine inpoly(nd, xd,yd,np,xp,yp,ind) !---------------------------------------------------------------------- ! This subroutine determines whether or not an 2-d point (xd(j),yd(j)) ! element is inside a (closed) set of points xp,yp that ! are assumed to form polygon. !---------------------------------------------------------------------- integer np ! # of points in polygon integer nd ! # points to check real xd(nd) ! 2d-locations to check real yd(nd) real xp(np) ! 2d-locations of polygon real yp(np) real x1, x2, y1,y2 ! min and max of x and y real temp, xt, yt integer ind(nd) ! THE ANSWER : ind(i)=1 if point xd(i),yd(i) is ! in polygon 0 otherwise integer in x1= xp(1) x2= xp(2) y1= yp(1) y2= yp(1) ! ! find the minima and maxima of the polygon coordinates ! i.e. the smallest rectangle containing the polygon. do j = 1,np temp= xp(j) if( temp.lt.x1) then x1 = temp endif if( temp.gt.x2) then x2 = temp endif temp= yp(j) if( temp.lt.y1) then y1 = temp endif if( temp.gt.y2) then y2 = temp endif enddo do j = 1,nd xt= xd(j) yt= yd(j) ! quick test that point is inside the bounding rectangle ! if not it is not inside polygon if( (xt.le. x2).and. (xt.ge.x1).and. * (yt.le.y2).and.(yt.ge.y1) ) then call inpoly2(xt,yt,np,xp,yp, in) ind(j)=in else ind(j)= 0 endif enddo return end subroutine inpoly2(xpnt,ypnt,np,xp,yp,in) C parameter (pi=3.14159265358979,ttpi=2.*pi) C dimension xp(np),yp(np) real xpnt, ypnt integer in C C---------------------------------------------------------------------- C C THE VALUE OF THIS FUNCTION IS NON-ZERO IF AND ONLY IF (XPNT,YPNT) C IS INSIDE OR *ON* THE POLYGON DEFINED BY THE POINTS (XP(I),YP(I)), C FOR I FROM 1 TO NP. C C THE INPUT POLYGON DOES NOT HAVE TO BE A CLOSED POLYGON, THAT IS C IT DOES NOT HAVE TO BE THAT (XP(1),YP(1) = (XP(NP,YP(NP)). C C---------------------------------------------------------------------- C C DETERMINE THE NUMBER OF POINTS TO LOOK AT (DEPENDING ON WHETHER THE C CALLER MADE THE LAST POINT A DUPLICATE OF THE FIRST OR NOT). C if (xp(np).eq.xp(1) .and. yp(np).eq.yp(1)) then npts = np-1 else npts = np end if in = 0 ! ASSUME POINT IS OUTSIDE C --- ------------------------------------------------------------------ C --- CHECK TO SEE IF THE POINT IS ON THE POLYGON. C --- ------------------------------------------------------------------ do ipnt = 1,npts if (xpnt .eq. xp(ipnt) .and. ypnt .eq. yp(ipnt) ) then in = 1 goto 999 ! EARLY EXIT endif enddo C --- ------------------------------------------------------------------ C --- COMPUTE THE TOTAL ANGULAR CHANGE DESCRIBED BY A RAY EMANATING C --- FROM THE POINT (XPNT,YPNT) AND PASSING THROUGH A POINT THAT C --- MOVES AROUND THE POLYGON. C --- ------------------------------------------------------------------ anch = 0. inxt = npts xnxt = xp(npts) ynxt = yp(npts) anxt = atan2(ynxt-ypnt, xnxt-xpnt) do 100 ipnt=1,npts ilst = inxt xlst = xnxt ylst = ynxt alst = anxt inxt = ipnt xnxt = xp(inxt) ynxt = yp(inxt) anxt = atan2(ynxt-ypnt, xnxt-xpnt) adif = anxt-alst if (abs(adif) .gt. pi) adif = adif - sign(ttpi,adif) anch = anch + adif 100 continue C --- ------------------------------------------------------------------ C --- IF THE POINT IS OUTSIDE THE POLYGON, THE TOTAL ANGULAR CHANGE C --- SHOULD BE EXACTLY ZERO, WHILE IF THE POINT IS INSIDE THE POLYGON, C --- THE TOTAL ANGULAR CHANGE SHOULD BE EXACTLY PLUS OR MINUS TWO PI. C --- WE JUST TEST FOR THE ABSOLUTE VALUE OF THE CHANGE BEING LESS C --- THAN OR EQUAL TO PI. C --- ------------------------------------------------------------------ if (abs(anch) .ge. pi) in = 1 999 continue return end fields/src/radfun.f0000644000175100001440000000127713115103666013764 0ustar hornikusersc fields, Tools for spatial data c Copyright (C) 2017, Institute for Mathematics Applied Geosciences c University Corporation for Atmospheric Research c Licensed under the GPL -- www.gpl.org/licenses/gpl.html c evaluates thin plate spline radial basis function double precision function radfun(d2, par1, par2) double precision d2, par1, par2 if( d2.lt.1e-20) then d2= 1e-20 endif if( int(par2).eq.0) then radfun= (d2)**( par1) else c note: d2 is squared distance c divide by 2 to have log evaluated on distance c as opposed to squared distance. radfun= (log(d2)/2) * ((d2)**( par1)) endif return end fields/src/radbas.f0000644000175100001440000000221113115103666013726 0ustar hornikusersc fields, Tools for spatial data c Copyright (C) 2017, Institute for Mathematics Applied Geosciences c University Corporation for Atmospheric Research c Licensed under the GPL -- www.gpl.org/licenses/gpl.html c**** subroutine to fill in the omega ( or K) matrix for c**** ridge regression S funcion c**** K_ij= radfun( distance( x1_i, x2_j)) c subroutine radbas( nd,x1,n1, x2,n2, par, k) integer nd,n1,n2,ic double precision par(2), x1(n1,nd), x2(n2,nd), k(n1,n2) double precision xtemp, radfun c **** loop through columns of output matrix K c*** outer most loop over columns of x1 and x2 should reduce memory swaps do ic= 1, nd do j =1,n2 xtemp= x2(j,ic) do i= 1, n1 c** accumulate squared differences k(i,j)= (x1(i,ic)- xtemp)**2 + k(i,j) enddo enddo enddo c**** at this point k( i,j) is the squared distance between x1_i and x2_j c*** now evaluate radial basis functions do j =1,n2 do i= 1, n1 k(i,j)= radfun( k(i,j), par(1), par(2) ) enddo enddo return end fields/src/rcsswt.f0000644000175100001440000000273413115103666014031 0ustar hornikusersc fields, Tools for spatial data c Copyright (C) 2017, Institute for Mathematics Applied Geosciences c University Corporation for Atmospheric Research c Licensed under the GPL -- www.gpl.org/licenses/gpl.html c********** subroutine rcsswt(n,y, sy, wt, par) implicit double precision (a-h, o-z) double precision y(n), sy(n), wt(n),psi,a,am1,c double precision par(2) c c psi(u) is the derivative of rho(u) defined in rcssr above c c It is composed of peicewise linear and peicewise constant segements c and will be continuous except at u for a!=.5. c c a= par(2) am1 = (1-par(2)) c= par(1) do 100 k=1, n c find scaled residual r= (y(k)- sy(k))/c if( (r.gt. 0)) then if( r.lt. 1) then psi= 2*a*r else psi= 2*a endif else if( r.gt.-1) then psi= 2*am1*r else psi= -2*am1 endif endif c c note weights supplied to cubic spline routine follow the convention that c they are in terms of standard deviations. ( The more common form is c as reciprocal variances c wt(k) = dsqrt( 2*r/psi) 100 continue return end fields/src/drdfun.f0000644000175100001440000000142413115103666013761 0ustar hornikusersc fields, Tools for spatial data c Copyright (C) 2017, Institute for Mathematics Applied Geosciences c University Corporation for Atmospheric Research c Licensed under the GPL -- www.gpl.org/licenses/gpl.html subroutine drdfun(n, d2, par) double precision d2(n), par(2), dtemp integer n if( int(par(2)).eq.0) then do 5 k =1,n d2(k)= par(1)*(d2(k))**( par(1)-1) 5 continue else do 6 k=1,n dtemp= d2(k) if( dtemp.GE.1e-35) then c c NOTE factor of 2 adjusts for log being applied to c distance rather than squared distance d2(k)= (par(1)*log(dtemp) +1)*(dtemp)**( par(1)-1)/2 else d2(k)=0.0 endif 6 continue endif return end fields/src/mltdtd.f0000644000175100001440000000313613115103666013771 0ustar hornikusersc fields, Tools for spatial data c Copyright (C) 2017, Institute for Mathematics Applied Geosciences c University Corporation for Atmospheric Research c Licensed under the GPL -- www.gpl.org/licenses/gpl.html subroutine mltdtd( nd,x1,n1,np,ptab, d,h) implicit double precision (a-h,o-z) integer nd,n1,np, ivar double precision x1(n1,nd) double precision d(np), h(n1, nd) double precision work, prod, xp,xx integer ptab(np,nd) c outer most loop is over the variables w/r partial derivative do 1000 ivar=1, nd c****** work aray must be dimensioned to size np do 5 ir= 1, n1 c next loop is over rows of x1 c c evaluate all partials of polynomials at x1(j,.) c take ddot product of this vector with d c this is the element to return in h(ir,ivar) work=0.0 do 10 j =1,np prod=0.0 ipv= ptab( j,ivar) if( ipv.gt.0) then prod=1.0 do 11 k= 1, nd ip= ptab(j,k) c ip is the power of the kth variable in the jth poly if( ip.eq.0) goto 11 xx= x1(ir,k) c** if( k.eq.ivar) then if( ip.eq.1) then xp=1.0 else xp= (ip)* xx**(ip-1) endif else xp= xx**(ip) endif prod=prod*xp 11 continue endif work= work + prod* d(j) 10 continue c h(ir,ivar)=work 5 continue 1000 continue return end fields/src/multrb.f0000644000175100001440000000260113115103666014002 0ustar hornikusersc fields, Tools for spatial data c Copyright (C) 2017, Institute for Mathematics Applied Geosciences c University Corporation for Atmospheric Research c Licensed under the GPL -- www.gpl.org/licenses/gpl.html C** evaluates radial basis functions c**** K_ij= radfun( distance( x1_i, x2_j)) c**** and does the multplication h= Kc c**** K is n1Xn2 c**** h is n1Xn3 c***** c is n2xn3 subroutine multrb( nd,x1,n1, x2,n2, par, c,n3,h,work) implicit double precision (a-h,o-z) integer nd,n1,n2,n3,ic, jc,j double precision par(2),x1(n1,nd), x2(n2,nd), c(n2,n3), h(n1,n3) double precision work( n2) c double precision ddot double precision sum, sum2 double precision radfun c****** work aray must be dimensioned to size n1 c **** loop through columns of output matrix K do 5 ir= 1, n1 do 10 j =1,n2 sum=0.0 do 15 ic=1,nd c** accumulate squared differences sum= sum+ (x1(ir,ic)- x2(j,ic))**2 15 continue work(j)=radfun( sum, par(1), par(2)) 10 continue c***** dot product for matrix multiplication do 30 jc=1,n3 sum2= 0.0 do 12 j = 1, n2 sum2 = sum2 + work(j)*c(j, jc) 12 continue h(ir,jc) = sum2 c h(ir,jc)= ddot( n2, work, 1, c(1,jc),1) 30 continue 5 continue return end fields/src/multebC.c0000644000175100001440000000516713115103666014077 0ustar hornikusers/* c**** # fields is a package for analysis of spatial data written for c**** # the R software environment . c**** # Copyright (C) 2017 c**** # University Corporation for Atmospheric Research (UCAR) c**** # Contact: Douglas Nychka, nychka@ucar.edu, c**** # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 c**** # c**** # This program is free software; you can redistribute it and/or modify c**** # it under the terms of the GNU General Public License as published by c**** # the Free Software Foundation; either version 2 of the License, or c**** # (at your option) any later version. c**** # This program is distributed in the hope that it will be useful, c**** # but WITHOUT ANY WARRANTY; without even the implied warranty of c**** # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the c**** # GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include SEXP multebC(SEXP nd, SEXP x1, SEXP n1, SEXP x2, SEXP n2, SEXP par, SEXP c, SEXP work) { // NOTE: in original multeb function in fields, "h" was passed but not used and returned as an answer. // h is not an argument to this function, but "ans" is equivalent to h and is allocated in C and returned. int Ind, In1, In2, r1, r2, d; double sum; double *Px1, *Px2, *Pc, *Pwork, *cans; SEXP ans; void expfnC( SEXP, SEXP, SEXP); // cast R variables to C variables Ind = INTEGER(nd)[0]; In1 = INTEGER(n1)[0]; In2 = INTEGER(n2)[0]; Px1 = REAL(x1); Px2 = REAL(x2); Pc = REAL(c); Pwork = REAL(work); // const int tmp = 1; const int cn2 = In2; // allocate answer vector (corresponds to h in fields' multeb) ans = PROTECT(allocVector(REALSXP, In1)); cans = REAL(ans); // work aray must be dimensioned to size n2 // outer most loop over columns of x1 and x2 should reduce paging for(r1 = 0; r1 < In1; r1++) { // evaluate all basis functions at x1[r2,.] for(r2 = 0; r2 < In2; r2++) { // zero out sum accumulator sum=0.0; for(d = 0; d < Ind; d++) { sum += pow(fabs(Px1[In1*d+r1] - Px2[In2*d+r2]), 2.0); } Pwork[r2]=sum; } // evaluate squared distances with basis functions. expfnC(n2, work, par); // now the dot product you have all been waiting for! sum=0.0; for(d = 0; d < cn2; d++) { sum += Pwork[d]*Pc[d] ; } // cans[r1] = ddot_(&cn2, Pwork, &tmp, Pc, &tmp); cans[r1] = sum; } UNPROTECT(1); return(ans); } fields/NAMESPACE0000644000175100001440000000367013115102445012757 0ustar hornikusersexportPattern("^[^\\.]") importFrom("grDevices", "chull", "col2rgb", "colors", "palette", "rgb", "trans3d") importFrom("graphics", "abline", "arrows", "axis", "box", "boxplot", "contour", "hist", "lines", "locator", "matlines", "matplot", "mtext", "pairs", "par", "persp", "plot", "points", "polygon", "rect", "segments", "text", "title") importFrom("stats", "D", "approx", "coef", "cor", "dist", "fft", "mad", "median", "optim", "optimize", "predict", "quantile", "rnorm", "sd", "var") importFrom("utils", "object.size") S3method("[",spatialDesign) S3method(coef, Krig) S3method(fitted, Krig) S3method(image, plot) S3method(image, smooth) S3method(print, Krig) S3method(print, mKrig) S3method(print,spatialDesign) S3method(print,spatialProcess) S3method(print,sreg) S3method(print,qsreg) S3method(print,summary.Krig) S3method(print,summarySpatialDesign) S3method(print,summary.spatialProcess) S3method(print,summary.sreg) S3method(summary,Krig) S3method(summary,sreg) S3method(summary,ncdf) S3method(summary,qsreg) S3method(summary,spatialDesign) S3method(summary,spatialProcess) S3method(summary,mKrig) S3method(plot,Krig) S3method(plot,spatialProcess) S3method(plot,surface) S3method(plot,spatialDesign) S3method(plot,sreg) S3method(plot,qsreg) S3method(plot,vgram.matrix) S3method(plot,vgram) S3method(surface,Krig) S3method(surface,mKrig) S3method(surface,default) S3method(predict,fastTps) S3method(predict,interp.surface) S3method(predict,Krig) S3method(predict,mKrig) S3method(predict,qsreg) S3method(predict,sreg) S3method(predict,surface) S3method(predict,surface.default) S3method(predict,Tps) S3method(predictSE,Krig) S3method(predictSE,mKrig) S3method(predictSurface,default) S3method(predictSurface,fastTps) S3method(predictSurface,Krig) S3method(predictSurface,mKrig) S3method(predictSurfaceSE,default) useDynLib(fields,.registration=TRUE) import("spam", "methods","maps") fields/data/0000755000175100001440000000000012741001136012442 5ustar hornikusersfields/data/RCMexample.rda0000644000175100001440000061114612560751565015161 0ustar hornikusers‹\yÀMÕ÷ÿÍ¢Ih 2k"É<¥'CxÆ{Ï9÷ž{î9çÞû(I¤ˆH!óPI%‘D‰L)Ô¥PB’ÊØDe,%üدµ·ßçûG-{Ÿá9÷œ½÷Zë½Þkm«C¢QùDùbÅŠ•(V²Xñb%Jžýg©gÿW¼X©båÎÊòVû¼ný èu·³'U:Ûsö”—+ÖpxQ8¿dÑÙŽ¢ðÅ)Å”VáI%ì•¥dâ=Úí~¢]ÿ?äÿp]±]êxðÛÕléFûò´g§=¡„:?x<¼k6ý¹;Ôß šçüj§eÿTÇýC_!¿}Iõû«,u½?÷/ú'=«®÷–£ÿîÇèÏÝJÓZÈkCdéáêxò÷™È­ +ç«ãÉYÓhB»OÖP?Ùá;Ž×CåFêïz'¿Tmoo ¹nŸ:Ï[Xˆ|q;ýCîDÞû62r!Ǜ߬¶Y¦´’‰ßóÕy‰-Ï!—ƒœy9ÇŸÒ~x,2±yîiÏÉë[!/yDÜùò“›oÝœ¸Pïöÿ—vadçW·üÅñ+%ã§?@þtòËWK®VçÇ_žA{XÚ=7ж¥Ýº²Öndù9JÆŽ VçÅvðþb«ø±¹´'ÈÇû!»Îäxö´×£}õÚ%O¨¶sñál-‡\ÉûpÞ¸9îVd?æSX’ë²ËÓn|=òš²ôtuÜþãrûCªßþ˜÷g¿5ù\9¸:²GηKÒ¾÷e_ŸMÿeã•´NVýÖO=ÿC.gþXo<Àyriì¨Úá{/d)9ãÚ£ï§Ý—yfÇaöÁ"%›ì§]íSäc• ŽÜ†üŽq|§ýÎ*uŸ`J%u}0„ßÜ×—¶ý ²ÍúëÞCû’æê>þ_GÕõþ/Óþüuž¿à]Ú/VSçûC§¿Ç'œýÙª&ýµZ ËóœÉ#ÔõÉWªë“ÿœ³ 9¡·º>Ù_æsæ#ú;Û\ËN®¿ÒUǽӟ«~阮È/ù.Þâ½´_æ¹½§FÞ÷2ÊxöZ^†¬ÑY–õ!ñÇÕNl}¹‚q˜˜ù1òÙ-œ÷0'‘8LûÜS©y}1ý—\£¤{üfäζÈÕr.ãÆ0 Ùùè¦×оód¹Ïå¶:ÿïß»™özŽÇö¦ýâÚCš#ïC¤²ùÛôWÏB–á}ÄþƒÜÖEûð2ä¬_c¾Böù®Evüë°.Æ®h£úÓO«¶ó÷w6ÐÿÞFÚÓï¦=ò"Ús?'ù"²ýô×ïOûò‘JÚ§ >¨ŽÛ›nG~Àúd¿~#ÇǬ¢ýßß.l…Ì©ŠlZ Yý:Î/QÒ::ùýäç= ÿE¾2 9â>u½õëBXÔ>Kɹ¯)9ý¾Ùã ¤}ç·ùyÏV`œÿìWýÁÞPÝ'ø‚y,-Gÿ«­9oDœþ‡}õwƒd6ýíkÑ_o?²ò$ÕïŸbúûÑ«þW2O—²žûÓ>C>ƒž÷ª‰t#oy=÷÷/-¡ÎOþµAõ'£ú“kd¾Ïc\$ŸëEÿÀãÈ»@ælG6nÆyUGÐ.¾IÝÏûµ‚º¿·ñuÜ{=èMcœzO¿¼;ȳ™Ÿ^+ÖI¯æ*äËÕ}¾ƒÜö²êO¬d<%^9*FoÆo»yîiÎÉëö"/F»Ç˜Wîwã«Ðwãùžîc¬ûnŠ÷âväþn}Y*uV2þ¯‡ÜÝù9ß->ÿCäóè›ø ÝS÷‰ç®¥Ý„q¿z"²dy%c¿SÇc›ùÞ±÷y/±×ø;±‘¬Ÿ±^g‰ï¹. »)vƒÈ ?*éü#zwwKäÚ¡ê:ç]¾·3;ÀÊ:éôä»9NUÚm¸¿Sw ý—¼®¤ý7ïÓÞõ íµÓ^Ä:e‹½b?s5ò!Ö1ÛCïÙí«Ð_ÿòŠ_é/ö·’Öô»µ5ƒüh¥:ÏšÛ˜öäÕ´?ˆ¼¯©’áÚ ‘‹²³”|…ñ@ûá~{uŸ°cqÚ Þ@^u+²8vmð›ØÑ[Ú"WÞKÿ«¿Œ{TÝ?è'ó»°.çuù–óÉyW—¦¿duž`‡jû[®G®H«óü×ÑóþhYÀùÁ@Úø;~ýê\W {"yrroe亩ê¼äŠÈÒÿävu]ò^þn² ²ó,yí§œ_j¯’ÞìToóäû§ÔyÞt¾›7|íE¿Çdž·y‚ãµ#´Ë£÷‡Dó†:žø°rþEbvC¢÷dÎórhŸ{J5¯±ë? ¤{ =éîøùñKÈ7“Èq¢ûðwÝ»Èm?yóؽLôï‰k‘?²îÇ×GÎ9™y z¼+~A¼ ëH¼áä•;”ŒÁÎý4Lûòwä~wìåƒÈaO!ïLjٻi·fžÅj?Eÿ…Œwç¨ÌÓïDﮞ|‹¿ëL®‹ø ònì]'ï®oVYm'ýee>¥Úö·œg¯zö[¬×ös¬'öø vwü;Ê{´[1Nì:+h_Âw´N`7Y{X߬/–ªó¬¥øŸÖkؽÖ(ì)«¯‹,,¥d¸ér…øÕoTAŽ¿ KÉþ;‹”¼Kìõ¼¦´›-缬·a9æApd RÛãŸü Îæm@>ÿ&ýƒ™Á½•è̦¿¥ÌóšÏÒ_Ž¿ïá¹ü·«óÎûÙø]þÄÖ´g^ú…ß »pÿÖzÈ«x~±–êï$žƒÜPVÝ'¹4Ž|åyú‡¡W’=ÿ ß.©î“lu)ý5/á¼ Š©ãÞ؉ÞVô£·b*r¦øÏÏ^‡ì…ñ\ô”×½èÕÙCûBÆeâH5äöŪ?ñQ'ä¬mÈÑ]9Þ;0á¡ÏÏkÑïcç¹GÅOÞQY„]àÎÎEŽ‘ùü(ëŒëË<¿còæ‰{iM%ãÇ¿Cî|I¯¾‡ö\™¿®Böãyâ©£œ×ñ²>ó'^¹¢:;‰Ûƒ_[;—þÿ §¸ÈÁŒçXwìŠX>z6Ö¬²þ~¬4ë‚ó;öº#xŠñ«g}Lÿ¾›Ó·62Å}œ;eßâѾ’÷ìÃ/²±7c?ØËy/çíoÖY»/~€ÞŽìÒÙhòìh» ßú<Àúö'Õo­o²Þ©Œœ‚]e ÅŸ³`]²ÜeêºpÇÏEJ~rùëx8…u: žÞ_2KÉØ0dÛ¿ù^ÖS]üËó{Åoþû5XròÁÇž™Hû!ü‹ÀEûö}¿ýˆïŸÀï÷wq?ÿsô‹¿ÜÊá/ŽOð»ßIþ&Îk†½ï_+ö|é²êxò`ž:žüšy”ü€u'ùÚGê~Ék}ÌùqÞcò¶±ô×ÉÐáõJz‡ñG¼í|wï#ìVovœ7ûÙë-úÜc]ö²ÀO¼ë𧽋þTÇGä·ŒËDú)ñÆhÚ£Á¿`'<ü­óóÚG^„Ýïos¿}Tõ»±þºoˆ=úuä#9OžÏ½ùçÊó¹‹>>ŠßÁxŒaÆg3/ãc±?ã2žãþ«Èvâ߈މWà=Åþf=ˆý€û”y{›u&6iòqÆ}¬+¸b¬Ë{È[oA^Åz+&øÖ/já=ëWcŸ;ïaÿ8¯²®:ßã<±“—çu²®áø }‘À—ìz"÷àÛëø>ö"îg¿Œn? îc?ˆ¶]ì4ûŽË9~ïÓ®$xØ©‘?c·Y›°Ë¬å—"g±NZãðk­þèSë.ž×ÊGÏ…ûŠ)ùåïYJ¾‡_¾nŽ¿úÑ‘œÊyšÐnØ•v•>\W=8.l¹¹‚ïÌâ;c¶¨óƒ¾àYAJÖƒ;ÁWƒ;Ôýƒ+v«ûù§· Ïó¿wó—Þ@ûìaÿéäýÌGßaÝô[‹=_kýåX“‡Áé“Û/A~T^OÎbýIŽþùÈ ÎOÞÍyw\E¿šÎgå%Ìïv¢÷àccyo†È±âG÷a}õ|ìBïð%ïü9ïÁÍŽ½ŠÜñ-òcðµÄlôTb ï=ñó1á}<÷tj^ߌ¼ˆõÁ=ò¬:ßÝ.zúÃCÈY×#GuåøÃ‚›¹?!Û¢Ü:ø=nyì×øaðŸø7¼Ÿø‡è“øëãÕuñQø9ñ‡YoâSÒ>‚½cï@Ø«oC¾Å:kOF/Úƒ&о‡÷n`/Ù-Ös¼V%ä…}U¿u ÍúõÒú¼=í…œg½tšþgÊ"{Õ§?ù í¬[áïbWƒ?½”xB8i=rvlxÄ¿ ¦ÐnýÖd ËO Ž/8o3ÿƒ·‰?ÏñƒAøïA7âlAÞ›´›¾¦î\‹}”f]÷GÏú[ø»þ Ñ×3±§}Y‡üÞmo2dzÄþ¾ÜÖ¿d«êOç;%w¾I{5¸Br.v}rüïl"ý)Ö‘d‡ùÈzÄS’—ñû½¿Yw½°ç½O˜oÞ\æ‡7õ×{Œ8‘æüö¯Ñ¾q%íKç>Îú“øî(m‰Ÿ$Ôp:+Ç– ý(ú>‘”v–¯Ëüêw¿i‡\É|tg ÝŒG÷Áô;øn+Ɖ[ûÒ-ƒÿ?H;¾™ãñeâgO‰Ãn÷Ü,šBêøV5ôN¼þIì7‰cmâ9cËJ#§½…|º+Òàe¬±–ø-±¬Ã1Á;œ?‰9Ûdž¿»Ç îå<*ö¶ÞeâZõ,d%Á·O²~Ø{ Õùöú‹X·í—Y¯ìa›ôBÆñ÷í¶Ä§ìëEV8¢Ž[ÿŠ}½—y'#Ž`½*øØHÞ·ŽgY!ø¥Õ‰ç²ne] ÏCþ:ùµèíøá,æK8–8tøØçÈÌBÎï#lÄx «~Îu%ù;Á×ÕùÁ׿©þ`…Øå²®£kqÞ£ø¿Žþöýõ.åúŠã”ôÿa^ù»Á#üÏŸ¡>ãÄþCŽú€þ»gÒÎá~~#‰c_õ‹êOžyZõ'ºLŸübráqú_Ä®O†_ì¶ã¹Œ·d#p°äU¬‹Þévªíí¿zijð»½çÀ¼üN¯PüðNIäÍ|_¯"¸@â¸oâî“Xý›˜ƒžOŒ§I<ŠŸ“HÂã8?¯áÙ$.”øÔ!ð:wÛPÚ+ÀŸÝׇîpâîbw[b‡·˜E»ãÆ-ÕLõÇÃ^Žo`œÆ—H¼ú%æG|ÈGÈîŒËxžàlY?ãUÑ»ñbð™b?-PíØ—Äib‹à¯Ä^”yûäd÷+éÏŸŒ5¼šù+ÑQw~ÅŽu6²;ïõGNßuÄžudþ9ñ§ ÷sê0oœ ±í£ß#ŵWËü|ÜžŒ¿c|»×ÛyÄÛífOÒ®ž‡¼@æåá¶ê¸µ#ƒ\ a½-~÷ó¬£Ö“𘬼WËÆŸ·nã{Z×ÃK•“yyDøc;‰ …Ÿb¿†ïðûÃg{=ö ~ZWÐn%q¯Úè«ðB‰gç0öøêÕyÁ[_"'ÍPç$îÝõ42{8ÇoeU„ÏRLâX?¯@~%¸ØÞ›ÿòúŸÚ}Ô}üÈu½ß\ú«ÁÃñK=¡Ž'ÞLnÂßH¾'ñ,‹?µ˜~á½$ V«û%›‚×$¯†7“,Ž¿ëý̺æ}IÜÁ[HÜÑ›r?ò xÞ]¬G^ÆŸ×@üìÊØ‰°S?Jœúôibn;ä¸ÅÈ>µ‘ɉÈsO©æ5ñ­Dyp]÷Pr+ö¾»{À>—ö3跧Ĺ£2¿›}Dû‰o<ûgð¦ø—<\øñ)Œëøø•ñ»á}ijá™Ä¶¡_x#±ÿx.ƒƒÎz{Gpîçð_bˆ·Å YcáÅnÁŽŒ]¾LIç?Á¹ö¢×œuèç]p5gŠÌw‰û:÷,@æÃ·pš ÿäZðA§þ”}øª½…÷f¯ø?ø÷hpXûQ‰ÄìŽ׺»×¾‚x˜u½oýÒ¹ }e}ÀúiÍÄN±ÆÀO³úÂÛ°2è « ãÞj<ƒó¯å½¥*‰=þëS¸ü)ü døÞÏÈéë³” öÆÿ “ðBÂö-õ˜7a%ðãà$ñÕ`¯ÈõÒ¿Hðï—Z"‡Â îËEFñ/‚Ä7‰§e™/þÕuþÖ†ÈèOÆjÚ#ñÛý^Åè³NúmÀµüÚrŸr#ÕyÉ?—#· /e¹Äµ^'LgN> 8¹Íº˜l)ö{uüúd)Öï7K÷6ˆ_½„ùåM%Žà= ÏÀë~âå4D6„Ÿê].që“b‡ïN|*<Ñ·à %ÆÃóLô›H nžÅïNÔ¾JyáŸüI<ÛÝïÁý@pðW%>= ÿÓ½üÈ-@_ºM6Ò_ÞCü x@|?¸n|ÝDu^|¸_ü9ìÝøâgñ ~nüNÆi¼>|ËxÅvJÆNÔBþ ¼²O$î5œ=6^âY}‰ãÅÖX{p¹ØØ/± ünç/ðgç{á›­Æ>pæ²n:>@öã>N½ãtâ½: À•ˉ/Ú§$޵÷oÁ{±cÙ/à °‡‰¼_úÖ» ñR»®èï‹ùNÖ_‚wýÈ{µ>Ç¿µÞ…WjMﳞÂΰâ<Ÿu;8u#ü«öVêš#ª*#vôŸV–’ÛcÈ›#çüÇñ‰ø“áYt\;‡øTØärä5ø?a)¾Wpà´ê¾o–w-Rr~rðlŠã/D&þDfñ}ƒë%vÉEªß?†ßæ'q-íg¿ ~à#Žê÷=ð~;ìTÿøþ%ØÉcà@Éðî’EØ¿É7u^r4¿+ù°àlnOŽ·ï”¬…}aâØ¿ãz›±'¼eØ»Þ+Ä—¼¡è¯;x˜—'øx#ðJïJÆMâ?ø6‰Ýo!׬Rç'ÞÿKŒ‡˜èCœ6‘„·p~^ÃN”§vÿ„¿änor߇÷èNãwºOI|ú^ô›G\Ðm„ýï^…Ÿ?ÅzßC¼-þ™Ä±æ1þã'"uÜ:_ˆ·/†¼¾{üÁÁŽ2>cßò;c1>c³Xÿb£Àc£÷bî#´oÃÏˆÕÆ¿ˆ•½|?ßù†qcüê×%î5JúFï; Æ“s;qbçúŠÈKˆ£ÙÇ™7ö÷Â÷üDp²·áÚ“…ç=€ç°ï;=Gðñ&øï&N]Jæçïà Ö¶R´?$fÍÆŽ³ÆóÜVÑËwa—X¹Ø}VSð«:8U\'uñ¤Ô¥ÿ)ž`œ†»wÓ^'öµÆÑ^‚O“¸õýŒÿPð®° xNXGÚq<8†ÿyÞÇ® 悯ù]AÿF´3w";ï ê¨û•Eßž¾øž¦ê9üÏÅþžÏ¸õŸ#Nç˜O¿æ©tÂÏ÷Å2øÙ?’÷ñ#þCòÓÔ}’s¿ ã,™Eü yðT.÷ð1n ?åÑÓÓ˨ó¼§Å¾ž¤W€=ç5‘8W⢉Sð{ðŸ!ß–ø×ìÅD_‹óý‘çžêœ¬³v9É÷øƒïï~ý窰ßYù v®;;Ô½|ÁÍÿº¡øå—óûãÿJœêÇÔ}㟊ÞÖ|”q¬{ñG…îÁoŽß.üÓ:‚§—¯¡dìϪ?¶µ í¾¡=õ%ö ¿ÏàeâÿÅZà×J)p+ç7âDÎFÖ=ç=±Ç_Á>r† ¼'úÞ‰ O´ãשŽßé”ùR]oÿŽ^³·’·c¯Ào1ö÷¨O‘°Ù¾àgíg«'íJàqÖI™¿ûÈ08ÙÖ-kö’5œuÐêźayÂ?i¾nÕ“û\Î:=Í8K5Ü[¤dâ)©ëÎ}è¢ðøo¸…8R¸BòºfÁ?Çtã¼>‚·…ø¡aGñ×oo //®úÑ;Á>ò®‚õwÓ¿ý¼ˆý<‰ÿtÇ.òáoMyŸÁÕÂ/ÑS÷!Ìßй=é¿„ßç!næwŸA;»Ûo NåW©¢î—< .˜Üß%¹vr¾ÌßɬÉÇ÷É4ë\²Ã`úo$>›¼d¥ê÷Ž Ot»Ìë•Ø}Þ xÅÞpì^ï~ô‡}ÝTâÝUáß'ÎtEî“ü­Ï›'~óDôp¢/qÿ„/qïsO¡æ5qèD9ÞŸû;÷w7OD¾GÜÕ} ½â>)¸y7øËn6óÇm úºöQü~Aü{òäâ«À©â³e^žéÃâwÇáQÆ[ó»ã5°oã¥O¨þØæ]l#ëOli Ú/Á‰ ?üÁËsÁñbÄ.¿Šu×9ͼpö¡ñœÕyÎ ‚;ýnágóþœ[{Óv¿}FüèŸø]ö—ü^{1ö€ýþ…ýŒ¼ˆñ'/#ü~—º.\ÓùyáóÄûÂ'W»‡ç óám„Í$?ìZò+ÃÒØƒÁA_¾f݄߼&üò¢ßâw1Öy÷ª…”ïõÿÄð·®Rýþò¯émýÃÁ»ü†"mƱ߂uܯ†ã—D'µÕuɯ„w¶è mÉK>5yW„¶ŽwÝ܉vEx ÞßðR½ïÀ}¼"Ö5oëª7ò8òAðÏ&Þï5ó®ÉG§Nì7L¬Eß$Þ!î’˜¸ù~hÂ=?¯±« ÜßÉçs7§ºKñëÜ© ƒ‰«¸wwºG¯/ñ¯ËÀKã ¾=þã:þ:qïøâ­ñàÉÄ-üߺf>²8<ΘäYžÀν+<³çç!Š^.O»vY¬>ù±Šw>þæHüÀù„çqæòÝœñäC9}¹¯J¾¦ŽkÝĸu* Çì¿EÿþÀzi ÿÍ~›¸œ=‰uÇ~œqiw…ÇnwaÜڷ¿·«HqÞ¿õ«ð»7±.Yï¯@ÎÀ~³ž%þnâYÇ{Hü+ ?ÙjÅzdÕÆµ.š®dô8þwôGx©p¬T‹îYJÖ¯J‰>  ì[Ö“ðcðàPx áxaÉ#É ãºN‚£ßr#ç]‘§úƒS¬#Á>ñ·×—¤ÿ]ð™` öEðz(èF3Èa n•ü°+T÷ñOyªßßÛ€öç‚›‰]áO®„ì½â§vs^É »‘õ×—ºÉ£Â7“üøäJÖÕäŒê¼ä3?ªû%{Žá¼þ^² ë{² 8£w ¾•·¿Û[s/í¹Ø7ÞXxNÞ#¢§]ü]¯5u¼êø¥^Iɳþy+rý>ÕŸ˜Ï:›˜ÄúxŒõ5ág=?¯…‡vãÉ=H~•»<Ò] žãNáw¸E?gðÜÄ‘ÜðçÝ‹6*? ß:¾•¸Lü}ø‚ñWÄ ß.~Ìãñ«oa}ŽW–¸ô?¿»0¶ ;0&õ8b£…oö0þ^,Žk N«‰+Ã:í ŽáˆtÞ#Òyùkuž3Txh÷ /<ÿEdæ‘S\Á½j«ô‰³ò+ðL{1ñdû%ñ§‡2ÏìÔ£°#àv pm»ºð¿Ë°þXÀƒ²„'c}ˆÝe½=l¿¹¯Ä·ÒĬN<§ÕPx¥UÀ/­âèíèâ1Ñ-|¿”ä?§ÚÁ¿NÕÃNMUB_…'ñ§Â½s‹”\/q,£M%_Ôä‡H|7ŒG¶¨Ž¬~ ²4ÏžÙ×iäû{Õñ`zõwL^ˆæ¡Y›9¯…èûjâ——‚Ÿêÿ†~ñ7ˆ_½ûÊŸŠ_`òAî‡ô»nÖ}jð³à}ÉïÑ_ÉU5o ¯’£X_Lˆ#óºü˜ä5›è/Nž—·ŸõÖ[ËúgxgÐ7^áéüÛ^M‰ƒ•æ;&~­¡Ú‰/ˆO%ˆ=>}è‡}™à!šy]p¢,¼(÷ü7wƒØß‹ˆë¸Ïc»gwSð"ÜvÂ'×ùå…göq3Ã3[ÊxO…×Bò®ï’¼ëN\¯Çúdò<Ž1Ÿbß‚ãÆVŠ=>û$6\pp—Eу±fà ±«‰Ë˜üŽýؽÎ:á‡.?û9ìgøSítÞøÍ×Ö¼2×ñ#~†½†õÃ~[ò©' ö8x¯‘8u'òEí’)ñy“ϱþ¢Áɳ¾Y/ÇhãwX÷D:’_}›ðÀë—°.Á~ˆþÍwŒîÂŽ‰®e¼¥îÆ~L僥šb?¥®%/#UZø¡¿/Cní‡\Éû _¯® Gំ`ï‡I‰oß¾ÞO&¼dµêŽƒ?œ·Ç‰Oo¢'ƒ±ðËɧ’Œ£ ‹:A]xä3ú‡„ºü 9ñU:~¡ÿ4ø¾¸²_Àzë7Áïõ«°>'O¡o’{†ªû%×À“I¾%<•q2ŸÅþL&àW$Û°¾$kôG–ð~å}Á¼óàÿy“ÿ~ ýâùïÒ;~ªW|Ä+#võoà‰¯Ðÿ‰w%îõó!Ñý•ÄŸ>÷j^c&Ê ¯ì7™·_¡OÝwyîsðÜþØín@¾¨›®ïÖÏu/@ÏÇ`çÆ7À‹‰/b݈¿/®¦ñY™Æþˆ·g>ů?ˆ_ˆ?;¤´(¶Ex(ïɽ2ˆöPüÝØ=Øo±ÞOLx-±ËÑ÷ο’¯ñ#8—ó ügx¦3»Åy”ùâ$yÎíØ«N]ÖYGòµíÃÂÿü»Á^)|1m?‹^±fÞÚ.¼M»-ñ»®äw]„oÃo²¾ëE{úÄšKþ‰5Ëz?ÂêJ^‰•m!±^YWãÏX%yßу‚ƒoeÝ~(þôCðSÂ÷Nea§n€ÿ’ª qè¿eÞþHþeøY u<|‡üŠð¹qôœ‰ÔqílìÏðVpçðJô~pš¿ì“<Îuă Õß3yÚ/ëÚJÝ/è´ón× *¢ü¬þ÷mT¿ñ³g“Wæ–ü©¯áÇÑnE|߯F¾”_2Gõ›¼ìõ‡‘ øžÉÉ9´ûIÜ+™•Ïuuˆ ›8öÖoúÊ[$qìç%¯ëqÉ ‰Gxwàg˜<ì Xǘ‰ è§ÄBüÛÄs’ÏÙ{8€ŸŸ×àþ‰2Øÿîoä¹_öVýîìw2óÄ} ûÏä]·×skǺ¥%/ëWÉãú‚xD|öF|2þ•‰[ûÄÙã·ƒÃÅkÏà¼²ÈØÖ…Ø±«c_š<ëàæ±Bò«bÑ;±›à»Ä.vŽJ>Çvò¨Œ_=Cò®‡3×;–Øã-øεržšþÅÎçUo¾çì'û%ÖI{þ®}/ßÇÎ~xSü§. ¯Ôú­r“àaˇÖtá{yÿöŒÎ£¶dݱ®Ç¯µ*`EO÷Ýͺ] ]N›zœy‘êzˆv6|ÒT#ôZªêk/AÞø«èíMÔñpYÚ¯Ÿ>P)KI¾gØ >gXCòºËðw‚ßYoƒ¯¯ÁûØÁ4üØ`|íà>ÆUP <µ&àÙAÕ+UÛ?Ó¹Þ²¿–xœ?Oìí‰àõþcà¾ÿ>í¬º\W½ê_ ñèƒ{Ur£àa‹ÿ¥=Exå±’ø-ɬƒÉëá™$/Äÿöþ”<ͬ·ÞRô÷¢ðM‚w{xJ^{ô…w~¦WŽçOü.õ6¢ï›N<Ï}ýá…&ᩜûëj^ ¼L;ÕïþŠýæ~!¼“ùÌ+w"ñ·¯äxà nüP·:|A·¤ØÕ? ?t­øÓóÈOŠ—L,ÆÎL¼€ÞJ<Þ˜þx¬™×µÐ#‰Ò_¨ãî/øuîzüWòÖL½B]'Å•üÇu-8²[Lø¡ºNágÂÓ|©ãï~wZ"u|ëê†êxì´äaj| qŽØÉïÐu ^ELÚ:oKóPJðÝM=Âõ]‘ øýÎd~¯Ó_ìl]EǵnÀ¾q.f¾ÛGyŸövÖûCñ³ýÍ<²{1ßLžVü,»–Øáºî ®{² ž %uo­×á¿X£Ð&ž%¼lÃ;¹IìñŠŒÿè¿u‘{ˆÓG××E¿F_Bß§&ÀCMõwNeX—RñS·0ÿRW ¿ô4qžp¿ðP¾¾™ÆÑ^üC>‰ŸÞ_'Ì#o:l\“óª\¥dpú êöÍ ½þX0;8˜|ZÝ?x\üï´Äµ;dѾ‘ç.–yzDâWÛð‹ýåøÅþ«¢ŸŸ:Lû^Ö'?·ç5,F[ãgƒ¿%¿ËRç'?„ÿ”œáªó“O Ÿ´GmÚ¹‚Ÿß"ö{EpHï8þ«·ßá-¯ö¦I^ש£r7ë¸× λ ¼Ô»{&ñ'xLb3¸hb x@âðÙÄãØÏ‰>Éùy-ü–ÒØ‹î/ø™®ŒWô¬;¾:²7úȹ-ø]îÕð4â§¥.ÊnøpñOŠ#gã—ÅŸÅo? qìöt¼1¿+~ù'±…?ú=z&ö±äS¿N\=&õ5 ^á÷ăGÄ®—sþÃnwvñ|Î'øéÎÉ×CÄé-ñ¯8ëœ£àŸ³²q §´øÏ„º‘ç¶—Èü~Iâ×C„G*ü;Wx£˜¿vð$ë ¿×úIðl“-b½´¦²žYCÄ¿—x¾ýÜ\x¡Õ±c­2àôÑ?°C¢Ûȯ‰~$¸Ùlñ·å;¦^F/¤†Y´{/IÙ¬g©VÂ3­uY–’åj«vxˆx[¸ñ®ç g²„ÏŠï5ŸŠlƒ]Ö¿ü‚’J¿Enæùƒeø{Á+ØWÁPøeAwðÑ ÷ju¿ ¡àã— Oåðxÿìvãg¿!ü“g¦ý ü'ß‚Gâ7Å_ò«0’§* w O|õu~r6ñ´ä³àìÉÐÉÈTÎk,y]WÀ“óþA¿z;%_ë#âLÞkè+o˜Ä±»ã_y]XϽúYÈK7;,þó×Ò^*¼”) ‘„—bŸŸ×Ä÷¥„—ò3þ¢»»Ï}[p²±â?,m»ˆv3ð÷*âÝñ“ÄÉã?`×Ä¥žI|&x\üô¼GoŽçJ×-àðñŠÂ;ŽÿÛNü)¶âZä«Â zyët,<&v3<—ØeĵãcUÛùv=ɼîe^F×ów£RwIëéè0ÁÇÞ¤þOjœÄ±#Ž“J±Î§:JÕܼ<Îð_á›íÆ ?#ï2|‡|äp2x}ø¸àfÖðNüá°<Ñð2ìÙà/潱NjÑž…<»šöC|÷À‘<î‚—_C>}Pœ:,þþ|u_­Ì÷yø þâO¾ä+û ìY¿õ.Ϋnæ—üýø)ɵ%h¿-ùã*ªû%>CÛÙŽlþ*²*x³÷ŸèéÑÿÞ*ჿN<Ø.ùš=X·½¾×ýåU (q„8[b <®Ä{¬Ó‰±ˆK%B©£pî)Ô¼†w•(ÕUI÷'±§?G¹o•¦=\Ý}ˆ8¦…ÿâ6‘¸öèø Æ_ü;âíñ•»Óѯñ§Dow#~¯>¿DðîCðüc_K¾ÇRá—LÅÎŒ ’|ŒàfÐC±ëñbuþ½½œÈY*ów*öˆóÄfúïâ{9$/³שÀü± ®½{×þèR¤¶¿Gbר ÎíÏ´¥èíêï KK<ëqUkÓwªßZNoMcÞXO ßì~ü&ËW°Z+X5Áí¬ ˆF1_£ßð{£±¾Gg‹‡í‡>L-"n“z ;;5žlªÇ¿´£à_©¬©jäS¦J“—8¬ÚáfÁÅ–Ác§ ãø0¾wx~BXð9ç5½Y¼58¾ì_ Ö _ü‰cOg _üÓ !¨ƒŸ\.çÄ®÷7öV×û‹Ÿþ ß yš²~ùwçüº7!/LŠ¿žü »1ù.øEr’Øë}…æ _­5¸o²Z®/†÷öÀ3ô>^Ùlæ‰7¾×Sò9ó™g^Cø"^EÞ[â˜äkn?z¿?1û21ó)p93¯k‚k%J¢ŸÜýðïÜÏÈßqçˆß=Jò3ù\ çßÊ:âV–üË¿àOÄ·³Å?`½‰¿_ >^¼<0Þ>lü:ð®x9á—ûú+ð¥Ø»ø51ñ‡cá—Ä’’ÿÑÞj¬&~F¬”äWþÂ8vÖKžå|É÷˜/Ây \Ëñ‰ 8·óÞÚü~çð{û |T[ê´ØK…þë‘ý$x¬Ýx…}b7ľ±/—²N l78‰õ™ØÓóÀÕ¬ÉÂ+{œç´ Yw­NØÉVáŸ]Á8ˆžb¼D÷¡ÿ£_÷.ÂN2zú)üèýÜ?õÑ+EJÎ&ÿ+5Þ_ªó60/S’_ºq²z.üKøá;áy…«!ßÄOÇ2/ÃG%^æÁ'5<Ó:’×YNüäßO!7“?¼Ç÷äùƒ'e>ß ?.èLÞEP_æ·æ—ã÷ùß°ŽúË"§MVçùCÀÁün¢¿;×¢]¸±I ÕNÊ>B†Wº}›œ"yj©¿Ÿ Å~¿]æ{-Öýd)Öï'ì4ïsô¯7Wâ^šOú øÓ¾›×Hò½* îuû<ñM/äûØ%‰©r| ðSR䞟×è­DIæ›»Ÿùé®Ù¬ÎwßO[örE¸yè!÷ønîeøÛ†?º•ßý»:>€ù±³âYè»x-ì鏸±Ÿ…o²–ï`x£ãX¿bÃëˆ9ÄûbÍÉU•¼ÊÓ|g7öŠóÉFužó&v¡3Jò-5_Ô–ù¬¦áYy58…}†ùmïc|ÚŸ£ìy‚kO,A»/~­í£ç Oô:á^(ñ©ÃäãXßÔG®¬ Ž[3‰‹X#ñ§¬‡fÐŽ ¼ þ¤á‡–'ÿ5zžBtûdQWälÖè8Þwô1ìƒhšvj=÷O-<\¤äTìäÔž;Õk*Ÿùj _&uõCœWü5% üKüdƒ£MùãOÀ#5qíÎē›áϘºhwTýçíqæE ü—`ך®;ÞDâàW±N˜<ÎKÓÖ~ö,ðZ| ¿'q3?¿R××øÙ_øÉí{Ur9¸ÁŃ ›ºgÀãLÞ¦Žcÿ ^ë­'Þcxg2Ž OÜJ¿Î×¼{ÖÔ9ÓuÄ?ûú%¾gbÄÁR×Îâï&jö¦]‚qéî~è§èSS7\×5»Oø*:?ófø!†~½nxf‹‰»ÅŸ‡bâÖ:/³5qcSǬë²ÁÁ?¾Ùl‰k$þkð2]üVéþ©ó7ügñãWOǾ0y˜ÝÅÞÎÞ¨®®yeG³…/bļ0ö÷ië:eVÚÍå:§.ÎúiýÌ{28™ìgdxßOôîñÈlá§H]2ë*üKoÝÏúýœ2º¾Äy=ÝÙ¿ jcצ¾a\¦>"^‘z^\j4qÐÔ#àz©¤Ì÷,ôMJöñ1ñ¯#/f)©ë1¬·g².‡#ÈŸXB¿õ6íæà¦C1ìè`?ö°VêÍë©Î&ŽÖ‡ø›©¿ ã^ÕGAIpÿ§ȵàIþÛàx¦îBï:´µoŽ?âWY¥ÚÉÿªªvòø#¦ÞÂŒç‘Ãà«%ïÄy:Þuï+y!ÂüsÏ’}|¬ÛyßV]Þ—uñ‡èQÖ‡¨|ïhñÑ蛬‹Ñqðø¢ /<…ÿ½“ïû#µ^ìì…ÂC›òu–’ƒÁGRÝÀ™S9Ô=I5ÂK]Iü-<…öçØ©á<‰{M%?! Ö¨û„wð}ú¿Ð.Ÿ¥Îþ 6Ãç – >Uâ]ƒ¶Ñ.äý$Î-¼àB¾ŸÿzÓß®æ/»üyÑßýÀ»|Ù§È¿mÇ«ƒøÅÁ “{±[’ŸâG%gKú%qšèbìôóz\/zó$j1~¢-yÞÔ!Æaꛩ´?dÜ¥^?‚rüaüâ”ûn–’š·R»&uã'üƒønøõä2á—½"ù_:?¤;öq˜ÃzÞ‚^ +ý¥úƒ¿á{ü#Éמ‰?kòBzì¢?Oò¾V¢¿âIu½|rû½ªßÿêÉÑ<•öä[ûu±7ü²Â3‘z­Éõà°É·Y÷’‚G˜<(|Ùd#É÷¬4QIïö³á§,Çô^`~yýð'LþG+yµðÅNîQíÄNxÖ É3KL_NÊ(ÖøýØñ<ñÇ Mž‡ø‹1©»[ ^{žñë%–$Nk#ùØš‡¢ó;ö¼ŽüTâ׿už•<ëàƒ9è]§‘äi]QCI“×±ýoI>µ±¿…wr?úÞŽH}…&‚Ÿ_…½oò9ödT¿õúÝz[ôóÞ£õXEdÀw6¼“àÝ›<Žc¯#¿ïŠ~̺}³rœ…ìËóGCò £á9Dë˼>E^‹ÑÛëÖe)ùîmEJ¾^”4 yüÈTÆUªÁÏœWYìïðƒÂ„o¶\.|3ƒ Óìçÿº¥ðЮÝD¿ÞÇo?uW‚Ï·!ß&ßÙìß×›8qŠlÁsè}ûüSð×ü]ÄÉŸ­÷ë{Fp´{Å>Ï.¤_ïÓwñ*ÕNþ)¸øÆÔyf¾Iðg“r¿dŒïlöå»’õÈ;}å}+ù]z?>‰Çx¸çƒ÷˜}ø®-©dâ¸@â{xÀfÿ½ibwÆÞJ¤eÞŸ{Z5¯ñ3ÅXïÝÝØåf¿½àÌîÐ'‘]‰7™}öê€?º¥àAÆ÷GT¿Ù_ï xTñáø¯ñ{{sžÞWï&ÆoüBìàØAîcöÓ›ý/8xoæ¥ÙG¯)ã.v¥ØÛ2ÍþyÚ¯~•¸²3TŽë}ó: nv“øáƒ›ýò„`¿w#RêK˜}òºÂ›µï$îhß„ÝmöÇ; nm}CœÑZÁû6ûâ=>cõ”¼Ë¨ØçÍø;Ö5¼/«ã.ú y)ѯˆ§E—°~==”|“h¾_4®•zPÑêànéòäS¤ÁëM}ÓµHÉ•‹3Ñ—©‘ÄCR{¥bðjR­^ç¼ê‚¯•.®Ž‡¿ŠýýÕ»H£ézÅþ£_ꥆÊѾþk¤®SüÇ!u<ØL|%X"u¦þ­ë§$$ »2¨ÝviÉ»Öu‰×ÂkðßBûc7þC®ºŸ©GÜHø+?;^COnÞ2uˆ§€›$û'O&±ï’­ˆßèúÃÞè!o§èë•ÂSy…õÖÔN nÞVøáÕ¸Oâ ö¹©7üã:ñê ä`âw‰ôÚçžNÍkôp¢˜äuì"Á-b2õ…Ÿ{»8ž{‡ðÃkÊü×u…÷ðûã«>BÎÄ?…Ýnê wDÏÆëâ·ÄË`ÿƤ.±©#°ÆÉÞ%a=/öøãØG¦.pGò­›àaZ?Ñ¿ˆ_Fwb/DWaÿDßdŽŽOöaüD±×Û‹~¿‰8b´"ö|úJðçÔ)üŒóz{:µ Ž|þ΀½œ*lGÿðÿSõ°gSÓu”¾ ?Ä. gÀ÷Ÿ‘øØ}䕘úI·¢ÇÂËÑçÁ ñ›µ=þ!ñsS7iX„ö=äc]°3‚zÂ_¹ø%uÜÔKÚĺà/‚ŸçOÆôûâ×û.¼S'©jiÕŸµ—a}õ²~AÖ¼.]i—àgE¢—%(ñ$x]"Ã÷3óº:ë¼{½åþÈxv?êJûUÁËtý£4q>÷vò1ÜꌧøôYüGpS÷èUÆU|°ðÑ2Â7Í’:G5‰Ç™zG_Íýb¯óœ±a‡‘ݰoM£„ŸRûÒ9À:â|AÕyGê›èúF½Y{Ùi&yZUȳ…·eê}Œýbìïáøáö}éÏ/ÔõŒ.Ǿµþ!?Òú^ò4>Æï°Þw2uŒ<Í‘¼ê–äûXÕˆ[¥$?KêE7°~E—`¿Ÿ×Óà5Ñ{%®%õŸ£ÍÀs£×‚×GK±¾¤ë ÷ÓåÊ:'S‡ÉH}CÞBje)u<5½›AbêA´-æiª9~dêž?U숒á~ÞC¸VâÖóÐOáìÕ°¸W˜ O*lÃ< «c¿†%¤~Â~ðìàs±³çEŽ‘ú)Á_ ¢øÅðˆƒË7©~ÿožÏÿ¶¡ú;þèCÿeÉïÔ…ã)ì&ÿöžÈä_úÅá³'w /|vZr<ÛäSÂ#¿‹çN¶wKÖæ9’¥ÈCñö±Î{«Áí=±‡¼§°Ó¼»ÈwòÚãzµàk{%ˆ+%öÀçK|Ì8O¼&yœO²$2‚ŸŸûëj^÷rÏ0?Ý$Sêt¸¯Oeq77ÄOsÛÀït¯!_-þ'¾“u#¾‚÷ {7>Þ{<¨ÈymÄÿ;3ööbì{æWl%ërlšðÄŸŽ¥ÉCe‰>¯)ñ­Ä½’où)ö„óü:g„ðÈîýËs8 ðÓ Â;"¸×VâFö{¼{j/ä ô©»½¬׳ÎÙå±;¬?Ä?ÞLk)qlk*zÊŒaÝ%¼³Î<Ÿu³¬‡*ý›xTôûr¸PôMÖùèXâ£Ñ>Ä=£>~q´öiôÖýè¥à¯‘¿°Ò·bŸ¤¯R„ä¢ÔévH­·×î.Rr~wääýÁ¯SRW(Õ}`ò¶uüëÐqäVðàpq)³ï—ðxL\ûNÉÑy_áÏ>¢Î 6£­÷ùÒyÚý>V×Iì÷ª†]쟙¯Î÷wcg?{&óȆÿëwß7y^×q?¿,zÂäeë}¼Þd½MŽ`½IÞ Nlâ]7ÈqÇþYò;ô¾]oHœëìïâ¼&¯Kça—ü{¯ä}è}ºfÿLòôÿùyM|Â=-zú{ì2³/×Ëè9w€àã:ïZçqU!ß.þ¼îø·âWë}¸¦ˆ~ÖqkWâÛ:¾u¥ð>ÿfþľÁÞ3ûné<ë~‚Ÿyð6LÞVUპ$Þêìd1~õ4üçIð'§¾œ‰kÕ%?Æ) ngòªõ¾Zó°íñÜ×~Dæ¿ÎÓj‰¿©ãÔÖžßì£õ™ØÛsÉû°ÆÁÿ7ñ,G݆uÑ’ºMVÞôëktã¤Ôa5zz|ÄhwâøÑ|™ÏM„~5¸e´Ïù~Wúv~º.ëgúBñŸcG§¶‘o•ZÞJ½6X—z†øSª§ðO ˆ/¥š€Û¥®’yûó2Ü5]õ‡Ÿo|öä(ô\ø`/dTø©MòWHžö?Øçíñ²êü`:üö`þ| ëcб%ç]'ó¾,x”ÿ+|ämÏ%>ãZªîçßÏüôs±óü››Ó¾}–ü÷”ür¡êOÎ{CÝ')ù‰ÉˆK%s!ëA^„þð°Þzëà‰xsáy{#™7޽ĽN|Gï:øÀ^ð™Ä~Ö¥Ä'øk‰™à%‰¡|×D!ë§™×Õoî)ücw'ö²»\äÔCï/|Q|Ùm_é^I¼&þ×HäVxåñ%ŒŸødì½ø#¼ß¸½oL\5^‘¸YLòUc›É/Œ-ÄMÄî‰õf‰YÄábñ“b•„ï} »×ýà,Ïæ<Ãé¾çxÜßiE|ÚûÑ>Íû±ä}Ú²/©±¿ŸJ»‡äUçÀ¶Àû²/¯¤u ;ÉÚna-}ü*¼Uë)Ö«»Ìûð«¡Ä·* ôæQôðÊèjì”èp‰èXɧ~”u7šä=E³ÐWÑëð;££ÿ#ÇÐç‘ï'é¼NEJ6&ß!]ÞRê4¼ßózûu<õó/5 ,õ˜ÌgÍ7Í"®•ªþšº`¾:/<ïÓÔ5Õ8Úó}Õ}Ãþøap'RóLkvã¼’¼ç`?8L y&¦Žé(ô’á¡å3oƒ[$¯SóKe¿fë´¿pšºÎŸtºÎÔ-µež7fÝ4øÙQò= ¯tQCú'2Ž’½±w’Ñ7‘ºN©Ô¹ðþ¾èWäÞ™æ“ö„7ëe7§}£Ä½Ëb¯™º¤Ÿ2Î3%Os¨äcþŸ<ÍjbwŸ¢ß݉žt?À®5uHûÁwpã¬snÓµôW†Wiø£šgö.q¿øx‰g=„3uG§‹_ û÷ûb£:nx££ùÞ/ËYŸßgêŒÜ‹ü²«ºÎy§mÙOÜðE#’wy+öŒá•#ŽlêŠJ†=UâØá±Û)ÉçÒ<ÑÚ|o» ö”õ+ë›ÁÉtÑIØQÖc·ò‰OX·KÜKóC/`ÝŒäúè¦ñÈ¥\^O“‡½g/ý¹ÄI£à™G¯"®9ƒ½ÙϺù‚ß™>FúòÒב7œ¾?7uÿ&µ 4µ\üèéí‘ÃÈ‹Jõ@¤òÀIR·â¦*ç OøEJ~Ç| ?¤JøùRá0ÑïÝቅ]$þU8vxÉeê¼àOpô`öI°{!˜Ìï úŠî2Oƒ¼÷àªïUÛÿgrúÞÿ?ÉŸŠï?/ÝO.U÷ñ['÷«ÂƒMþs@Ÿü\/¹ ½žœR‹þÇÀÕ“qâ±É¦ý¸®òýªß;Ê:ãm®Œ”zõÞ8á‹?(¼ð\‰gËþÚ^¹YJ&~=½f¨:?ñ:¼üÄSð…Øçç5ë¼ûü+÷;ñ³ß~è à»n_ðWö§v£oÜË„ç}ˆùßÿ,>÷Í<Š÷dÜÆ³%ïëF™÷H\ëgáw&zø‰´Ÿá=ĺaoÇ:²ÎÄêʼ–ºÎ~ü^çSpgÖ ä3¼7§;yªN'ÉïºAÖrø9öÖ}û ÉË|‡øŠ=¼Ã~»ßvà™ØÍ$žu~“uRôïð¬Åž~]ð³áà‡VOü{+_øc6Ó¾!zþCôGÁ¿>ÁïŽÎ/ˆŽ߉>"y™vS´­àÝuð³¢å‰oF‹žþaäC~Wºvoº q–’Md¾W%o!u¦e‘’ZoKßÔ˜}ša7„WQ÷$øœÂØã+Ñžn &þdðóƒ,xަ®Jñ£Jšý´Ÿ=#—öÐÚHÍS¹ƒùë .ík©Úf¿Ÿ‰\\ê±™}~Z OüªÅê¸'|dÃOY,üð‰èaÃ×ûúÜŒ?hê¦ü*óû³"ä,üÉ„ð/²Ïäùy >äþ'ù;ÐOfÿžçe>ë:)zßìÛ£yჯÿYóQF°^Ä» /¥£ÄÃô>=%%n­qðÉ‹0ûó &>K ϬíD¤ðPœSÂý}eüj½ÏàϦÊíÌS³O1ð7{7¸­½ œÍØßOƒãÚÝÁ;ì.èI³ïÎŬO¦îÉf¾“ÙoGó¾ð;­óÏðN®“u <ó)ú‡øÃ›Áñ£RÙèé'%ŽÕùÍa=Š6ä½G¯ÀnŠüÇ8‹ìá{EÖâ?D惤c~¤C™ßívf)yz.}1ùN©Ã঩mðpSH¾æ4ð»ÔPø<)á!¦²™'©›á¥* bO†Û¦)ù~#u<|IøiƒÀuÂô×´ïàú°¶ðÌKÁŸ~ºF>cý ÞlD{Äêï=Ä>φ?Ü”F–'¯ÒÿMä:á¡Ìå½û#ɳð{Àó;ã?ø×£ü2¬GI©“ü=œœI|99¾m2“ƒlËûH^ ßÝ;‰Ýä}‹=罇æ=Ó{DòB¢øWÞ-|Gïbpÿ„Äyk‰S$Þ: ÃF"»vDžûkç䵨¶{>·û­ÔMXÊws'3ŽÜÞä˺‘ÞÈŒ[÷"ôQü7ôWüsüÕø‚£ #.ï ¯+~øB¼úbÕŽ&žÛI|<¶½“z!±þâo'ðãbͱGcW°N9‘‡âl»zÉtäsà„N‘1éo*üÑ+ÄÞþ[ôñ7h/þ´_/¶`ØëÝþ ]CâÖ%ˆ/Yû„?¶FâÎs¸¿5šøõüVËâz«)ë%<àè)øÑÝ|·è§Ä×¢sˆóDDzŽE{K~µ+ò¶ÚÈZ’ßuú5"y‘-øU‘ÚÑž.q®g˜§éž¿)½…þfÄcÓW³ž¤ÎG:¯·»Ò~[p²ñø©Gð{S.ú?Õ =šº¿(ULò;ö¬RÇÃOÑçálìœp¤§ž#ìIœ-Ì%?!l&¼t€’Á!ð¨`ëQ°=LÄ~á¹ÿ&hp]%Ö?ÿˆÔIÚ,|³…Ä©ý 6í^8¯=é7ø×żŸäÖ×ä:Ö‹ä›’Ï9¼¦º>Ùß‘lÏó&e%ïŒØÛ²¯•·\âYSÀ±¼¾ŒkÏ~ø­¬sÞ¥Â=H<#±»%1›øQâiž+Ñ•ùy~^³¸ÿnFªåõ¬\‚žr'Gv{1?Ý|Ʊ[OøáåÏñŸÁçâŸÿŠÏÀo‰? ï5ž’<Ì6Ò®*y'Ðû±o$ÿRæel²øÑ½y®XTâY Åï¾ôi%?àÇ:_‚s9ó„O6\Þ¹_âÚ¹ØÁN}ðç"ìJûwÖ%ûKpûÖI{q»ÏkGYßìÆäÓØ•‰3YIz»ð??}ü ¼Ak0ãÀê*|³ŽØÖ èWë"~wôOð‡è×ðµ£ï ßÄèiÉǺÞB´ ñþhìíheü¯È?¬áD>eý‰¼þ™Ï*ý<Žô㌇tœ Ýa&ý²FúbÞKêˆä…lc¥>ü¯WÀ‰L~çÝàÙ©NÌ«ÔMèWÿ’:á&âG{Ž"ßã/†=¨®_ÃN1ù!:®Ý|é°n†¶Þ7ä'ôh°>kðïÝä…ÜÓItÜ@».zÍì²—¿küì×*¨ã&$Åzä·!¿Û¯ ~nöÙ&íÅÄ¿“á˜<<æoò&òRM[ﲊqïɾòÞ@üN“ÿѬý•,ÕNb\š}?æ?Eâ4‰»˜·f^_üwÿœl›ðQô>ãX§Üûñ[Ý.ãië|’·Ú…¯Ä_5ûzè¸uŒ¼’x#xT&ÏãwòÈbëe>Ï7nöñè&íöÄcc5™&¿ã‡CªßøÕ/KµÞ·#¹Ù »Ö©^lò:¾%žf¿ïÓ~»ÀìÓ‘DÏÚ­áÏ™8µÎçøÅ*âïZ3À#̾÷NÞù²¿ÓäqH…èÁÁdt£§ó¾¢wíDvý.ùш+ù‹8Dä;Î| >yƒõ<2»?Ò?!½èÉ,%§ gÒƒzÓî N™¾sý2.Ó—`¥Ž`¦¶²Þ¤ÄON½LÜ"5˜¼«Tá§Èø¿©ë¨_º^Iø¼Šp=|ípžØåcYw‡¼áKÈ ä‡oP×›Àóƒăñð4ƒ^øAÄ»¾v±ðOÂïô×Á§óçp8¸˜ßõÉo?C]ï×OOʾ„Éðä’Gš|a£:/Ù‡ønÒÂ/MÞ‚ÞH^ÄzâýŠâ­Çõf '½Áb‡R7¥v¯'üÅÄaê‹$d¿ŽÄÜÏÃñw oåÜ_Qó;Ú=!u¶orßEO¹ckÒ>¯Û ¿À­}ï;ü{©ƒô>8VüyÖÏø#̯xDäÍàñò’Gý‹ÔQø”<‰ØLü£Ø“àÁ±ëG¬ üÚXU¾s?ËÙ†Ýë,a~:“ðWœÞ hG±;†èSçRâ~öŸ2O7G·ßá>öXì û!â¼vàe·ÿ»8 uÞºµYìîÅðÑ­ç°3¬ÇÀ§,uÎj-vw5p1«þGt¯àÞkÀë¢s…W2f:òaü±h ÞJ´åPλ–xC´„àd?³þGTšÆYù.Ïy|È ìÜÈ]ÄéÓ«Nd)9›üÄôè™EJ> Ÿ0c=M·N_ÛYl£:~^oK<{.ö©©Ëðër*Š_j þ”º\ôî_ÄKM=†÷áY…SñûÃÄEBû5l#¸¹ÔaþÃN7öøròVÑ'Aá«èú ÍÑ£ÁRåö”ÿ5ñFÿ]pSwáxð¾ì—àß/É/}FÝ/¹WxàºÞ‚ÆÅ'Ï,éÂGM6_IV ~›©³°œÇ{ƒx”7}㥅oÚýkê+ÅHlžø[×¾y|‚óó>„{;ÍÝÂs¸ „>{ÖÔSè ú½†ðCO nö-vU|)ãÆÔQ¼(ž#vú ØUñÒ½U¿ÁÁuý„—Ñ[±Çñc.<˜ԿU$ŸÄÔMø {Èy>„3 ÿÍéÞud_S/¡ŒðOöß®Úö'¬7Æþ~êgÚºNB{pn»~£]Š8Ÿ%¼ekÍ0Úº>ÂHøÖ}âOçÞÏñ½ÀßL]„­Ì¿è2‰W=ÝvWÉÛ’zÑ›$OëøÃ‘£Øã‘íà‘•¼§È øL‘ጇˆìc±±ËÓ›ßÊRò=ðôË‚ƒ?‰>Mßý ý‚ §ëÃïJK=ÕÔüÔV±»—IžÈÔ­ÈAè­Tú:Žga?¦j‰½^ò°ºo¸Ÿxw¸†¸røó2>vǾ ;Áã ¯¥î ¿3øInÎÚã%hÏ‚_ #t•y~z2¨ÎwòO¡ÿüïøÞþûØþ ¼¿8¦oóoð/b~&%N\#¸÷Lx-É'á#%e_dKüÂäåð{¼ÃÌïKòä¼9ø‘ÞÓØ?^!yÞmð:¼*è»ÄqÖÄ&ìšÄÛØ­‰̃ÄÝð+̼¾“û7ë”ûµðDE¹Ï2oÜ{°[ÝvígŠÿ‹~‰o#^_ˆ}‹=¿û ~'8E¼6ã0vfjÇv÷Ž½ß ù<~JìÆC,‚ÿ»™xR¬¼äIÿ‚â¬Aÿ9¯³~;C±/œ þ¥Ó»Á¹VæñIøöø|¶äÃÚ/ò÷má«Ú ÖI»…ðѮ²N¶¾å~ÖûÄÉ­©(<”uÙºƪÁx°J`§D÷ƒgD?“<޹Ø!Ñ1àUÑ^¼—¨-¸·Ä¢W÷WíÈìÈ^x\‘Ïy‘yèõÈDâ8‘Ǹ$ü¬øJzÏ‹YJ~†š~Kp³q¢¿Ù‡t_)R²5|t5ò³ÒÅçÖz{ xtjNu<5ŠóS÷c›:iz¿Ë° Â#Ä£ÂÍ_ÐÖ8Ú$x0á#3ÔýC[ê0èýt]´ÃëÔõÁFx0f_±ÄÛ -‡¼l³Ÿ@Ù’ê:8›ñ³õ>±÷ý$Ïç7‡Oeð³C¢§¿$˜œ#<½o€®{Ö–8k²jyÕ6ûÈþò†w6’¸†Ù' ½ê]-¸·®s¦÷˜Nœ)ùw£/ÎÏkì4÷/ámÆþ4ûèºfwgѾ¿köøk§:nxfïàŸ›úÿÝŽ#ïÜLꘙºÿÛà©Ä2~cãDok¼¬3|¼X]ÉÇ.Éó™:ÿÚ¯~‰¿ëô“¼j]ß¿‰àäšWv?ÓÔõŸ_aE¿™:eºž¿Ôé¶/°J~†ÆÉæ5¥ Ïg=ˆ5õûu]²Jð£bÿ™ºýïcï=ýëhTøCѬËѺ"/üëxgd ë^dþAä¾›ÆÇ"Ýeßi/5}^úìÉôr™¿¯¾£ÎK?%üñ^úføÚé ¢Ÿ_•Ú o&õq„Ô‹¬O©Ç‰+¾©æ­TÃ^ Å_ ?»èBu<œ¾&¦ŸAjži5ôIpŠø°±Ç…GLa}ú¢ß9ˆl$ñ0Í/ý¸³¿žõ׳†:î?]Aox*m‰çø²Oròﯷ%®5<=5\8uß ÎË鋬/qoÿ:¯$ü}Ê~gáhøaÏÏ‘Ù䣘¼¯ ð{ƒŸùÁ§ð¡ƒ™àÝÁÖ› ]BÝÏĽªlRÇý¿ßþ×b/ ^áÉç¸ìëmò¼j¡’§‰«'wÀGO.ÙF{øcòþ#œ§ã]µ¥ÎÂiò¼oÅþ^̺íÃOõ :¯«ã+ñ¯Ä±¶‚×$À3I¤ª‚¯‡ÿ> îîÊûÂ?{œ:ìGœ-”ú~aS9^9KÉàqº`#yFÁ;]赇v.êú@pþ 6ã#(ÞßI^©ÿ~O¤ðÀü‡™¯~ñ2ÿFpX¿4÷Kî^Ê pÿä Â3ퟓÌãüä Ô[J–„‡ãýÀwõ–¡Ç¼I‚“= öygÖI¯ü´Äøq‰oÀeï‡NŒ»¼ïãü¼Æv‰Ýýxû¦ðDŸÂÏuCøcnsÆ¡[QìíƒàhñÏ„'úó0>žFÜg‰7Âß‹ /.ö‹ðDWƒÇ^¯=Ÿ.çüX#pÖØ%ø£Îo|/g x‚3<ÛŒ¾rÖc§¥øßWp?ûã×ÞD^=ûɃ=`÷ı³ù{¶Ôc´Ë’Ÿjý$¸÷á—Íϲžæ9¬nÓiw?ûº^ȲØ÷Ñ_X¢kñ§¢sOÑ?ZâU‚ïD£%éo ï&z¿7ò¸OdçxÚE‚“Í$þ¾‡¶ø/‘z'Ò”¿© ¾Wpfª’™Šé]J–ê]tN¦‚;¦7b/§1ÓÏÿ„ì&€7¤ÛÂI×Xƒ,¿ÅèíOù»©7ˆó¥†“¯dê’wn®þ®ÉÛ¾@x(šG®÷Ù~{;&ùÜ:®}qì°ö–ÙW[ÛãïÃ'1yÚ®ëŽë}´ËíTýþO ÚÏžÆ{÷ÿZï›­ëŒ_Äúaò²W/3¸¸Þ'Û.Iÿͬg&Ž-|oßÃì‹­yâÙŒ#‡8M¼ÄÔ×û`‡qiæuÉ·> .lö½ÖuÇÏ7y×MÉ;1¼p½Ïõjü‰ø+Ôñ0qk«²¾àçz_kƒ¯Œ¨ã&Ïú曩 ®÷±.ÿêì&`üêÑON_ÉëÐûVë:àýŸ¼ê57ö·Þ§:-øw[‰[ë8õIÉ—þûÜìK­yßa¿™<êæØ;¦Î·Þ‡ú[xÑÐcFOb‹¦ñ¢wð>¢µáGD˰~ê¼éȬšç™Dœ&òq€ˆ/çßÎõ‘:ðØ#¢ï vnT2S•y’¹èïÌ9™>5/KÉÝŒÛô'ØYiáy¦Ÿ÷IßߟóòფŽ¢]±¡’©£’÷µ…u%µd,m]O©/þ}*.ë@3á_ŸÓÔQÚÂzcp´ |§°—èm]?©~d¹ãª?ø™:Á'ä}›ºIOðw_ð³ær^%übS/i½Ä¹f N6TüêuÍÔIÒøÙ—zçÉ™ðuL}¤Äd#™÷Óy?-Qý¦.ÒT‰w=*ùÚy¿;ÐÔCÚA<7±Hð´1ð2÷üŸøuÑÓGX\ÙÆ…½kê%À‰ÜFÄÛÝ %Ÿz?ïÍÔ=zQâ^ˆ>Ïã9â׃ߘzG;‰Å–. =Axà/ÓuŽjñ~œSðl킃-f3õîÙÿÝ©#ç'eê-'ÚžÂyvßòH[ôº®gt)üëô€ÁÉÞb4uŒz 7¬.÷º‘yj•“üi]¿h]oä[øÑÑ’§õ€Ä­uÝ¢[áÇD+'FŽƒ;F„§Y.q«iÂ7ÑøØ=Øu‘lò" '‘Šà‡‚·¼˜©^Ì\^–)‹ý™>‚ÞJo%~›^&ñ¯©‚Ÿÿ:%y"YÂk©uí’äc½ý 8uj8Kêiôhª›´;àG§êÀcH•Ÿ÷׋ÞWׇ¯V¤=ˆu'ôÁ¹Â¼—ð ðŸà(v_°±ºº.?=)~v7âŸÁð_ƒk%óô—¿…ûùóÓ? {Ðï¾ígñoNü{c%u<9·5Rö7L¦XÏ’ÍÿP÷I^^â<ÌOà7{ÓðüLjû{xNÞï*›øNâÔ‹ÉWKŒ-¡Ž'ºcߘy}ÇÝÃÄ{Üõw_—ú ƒˆG¸ñv´oa<ºH>ÖnæO|9ó&>™÷Ü(Þ™q¯I¼/v»6¶;66< ö¬àãwÏEÞNü2VUðïcðBœ<—ó–èãgàG;]á¯8mÉëvªbØ-PÇm©[lÏßM{4~‘ÝãoÚ¸Ÿ]Î.½`í¯°>ê„|…¸§5üSˇgdµæ;YUÁ=£ÿJ݃èï¨ðüžH~I4$¿.z;Ï­)y%±?"ûßþLâYs…O6Füè‡á]Eð߈ŒóÈ5ø7‘âè÷ɳ+xŽõ:Sÿ™Œ’ÕîAV O1S|Å®s2ýß/½ö¢"%ßbÝN˾Âé‡DGÀ÷Ón¦] þvê(vLj‹O{1z=5ü õèÕôë}y‘מºì1užÙ÷+pøðmì^³¯ØóaGü{½ÿnp¦‰:nìq½ïîd쯠õŠÌ~»×¿Îu%àé˜}v߇‡àOZ§Î7ûëvæ»ùµÀ̾ºÛà&|L¿ÞO÷®ýÈÛÄ×ûèþ‰}ç}N~‹Ù?÷qpOâzfßÜRŒÿÄ÷Ó‘z¿\áQ%º3/ÏÏkÖ÷°àÜzÜø·îìP³/®Ä}ÜÒàŽf?Ü÷ȇˆÇ_2ûà¶ÃnŽ_Íì»Ax¤sÈ4ûÞ†ø—±ær\ïw{°™êwրߛ}nOrÄÅÍþ¶—ÎPÇíØ«f_[m?I§Ù϶þ­}~žÙÇVâÖ»ÂÕû×>žaåÁË2ûÖ^Èßx©÷«}‹u9:š÷½ž`4Oxà·`GG+ȼ”}Ú#[°Ó"K™ÿ‘yŽÈ@âÛÉ׈´'¾¹NÎ+Ÿ¦àž£`6qÌ‚‡ñG2M‡NWòz+£äU§j(Y~ع]”þ›õ*½ƒü¡ô á©Lëƒ|’y‘.~y;xÙéÚð&Ó%Å6z\ÎÔ/~Šu;ÕfJx#ºnq(õÖÂÄÓÂÐ{¦^qŸ²ô[Ø'aø¦NñÏàÁꑯ’—fêÇñgƒ[ÑÃÁEÄÙM]bíg¿ ^ï÷%¾fêK½X¿Ôê¾ÉàÕ˜:ÄãßT×%OO¶#ÄÔ>†ÿí} /Þ›NcêÇÁ½Øs^Ù+•4õ†ßG^d¢;8ËùyMüÌ=D~†ûùcH]_¸ßÏê<7ŠïÞÎdê ï_ >5ƒ¶®'|ÛHÁ³c²Î›:¯Ÿ‹ €ÿ‹5¢­ë—#Þäì•| íWëºÁn–æÜˆ¿oêKœÛ^`OA™:ÁQüVûfò™m™¦>ð§ØÑÖLæ…5œËÔn‹Ÿd]Ëï‰þ‡fê/^·ÑÓâwë:À· ?¼šð»Ï°.Dv“ßY-ñçYä×EF`¯Fîc}‹Èþª±ß#•±Ÿ ³>|/·@ö'.È%¿1Óvæ.%²~gjž¬¡d¥^Ó•,õqæœLØ‘¥ä—¿ ulz ÝÛ-RRç‹4&Ï&]YxáÇÚªþÔ–’ÈE¢Ÿ'‚»™<KŸ• ˆß›ø×o#ŸK<{–ðPu~HZø¦­çsžì/ýKl`žou¤­óB ß@ê¸×•àìþáIêz=q Ö×´u>ˆ'ñ¯FØeþEðÌ“ûñ+’6G¾Àø5y :ÞU|Òû^œ·Ið³9ägxC$¯KçÜÊøðÊÁ›Jìf>$–IÞ¦ðá÷2ͼ¾’ùîþ ŸÕý ¿×ÆúäöEߺù‘’ï?-y\Û†Ò~½†º<ñ´Ä±u|Kçyürù1ú26•÷{„¸y,y»Nê£èüŽØyÎbâžÎXpç^pkתÆ{2y[àÑØÂ‹µGcØ÷bÏÛ¤>B á‡ê|ŽÂ}粞#`âYQøVÖ-EHÇñ{ùú;úxatçE{JýƒÜZôëü‹Á#`W™8ÖBpÊÈdÖßH_¾Ä#ži#¼Ñêøµ‘ð ¾À¿*x| @â†׃ f:1O3-‰¯gê]»KÉk†d”¼ø#uÜài?N*RRòIÒ3$/DóWîß6yžu'/õŠ’Fo¯ÆžOÍ`^šüÎ4üMÃ[‘};Ãà”á6ðiƒ£é:+÷óžÍ>uÈ· ‹‘gaìñ÷Xÿƒ‰ü~ÃCëD|I×U1yœ[áùóÁyÌ>œš§ÒŠ8ºÁÏ2¿’Ÿâ\¼Ï.Žç‹>—¼MïúÌðS4ïìi¾·Ì@ê|M]7eøÙz_Í ð+÷JÞæ¹¿¢æµäeþNcöÑ|Eüj]'EçgÖ?ú_pxÃ3Ó|”¡ðÉL^æ­<¼| Õ68øß 'ñ ^&ûŠÞs#8¤3û×äaê:(-ø]†Wö;x–ý9ö•±¿ Ü—ù¬÷½¬Äø4uO4N6‡uÍ^ ©÷¹Ô¼“ŸÖù–ß {ßÙèé]‘>ïÉäY^ÿmø&ß ôCüûÈtü&ƒÝ-çÝIœ,r£äe^ĺT° ÿÑØÝÁ)hÁ÷.(Žß“‰‚#eÚ‘‘i"~vÝ÷j(yÅdÙŸUúðHu^z3yéÅb‡O>„ìÃ~U¼$öYì;ÉÓZ$øÙ(ü©ØÝ¢ÏÛ ¿b—ïvþÀ¿s>Ãos¦ÃËp—¸–ÍzéÜÌøvÊ¢_í=\g¯8¬úmÉ£³¥Þˆ/uOnÄnµKÃû±öàßX²ÎY/±îYýø½VŒ÷o5æï[— ìOø*Ñ/yÑ·“ÈQäƒEïCF³Á_¢¿‹–Üû|ÈzÖÏÈ<ÑÃc±"½Ä¶„Ÿ"u„#WÒ_p ¿¤àâóCx]À .#Ï2ë`&)ó6÷ÁéJÞ¶5£ä-•鯡›¢Ìe×Ò.þ“:/-õnÓ’§‘~CâØÃÁ§ ïTꧯƒg’.-¼R­·W‘ÿ™š¾ùç¾iËœ…ÔW9ʺkêš¾]•þá'Õy&®­y¦U$Oûvo°œ:_4õµàfzŸ¿±ð_R÷Ký½¿ßu—Ñ.Áü0ûú} üòç%¦÷óËe^„׃˛}ü´=¾„¼-³ß½ð>‚vðO̾}G?û¢µ:nöëˆæ;Ä×Í>}%±ß“;°ÏÍþ|#%Ÿ+þ2ûò]ÜP÷ö²¾˜ýøÆKþõ=¬Çf¾ŠCUâ±»õþ{“Á÷ÕEž{šsòrê¸ÀÍ~{/ˆ]þ€Ô[ÐûìU!þÿ“¸¸Ù_ïeæS¼7øÙW¯öIì¯CH½ŸÞ,±·bO›}ôê ¿´¤Øßzÿ¼EŸªãÎhÁËô¾y·‡r®¬¦¤Ù/oö®±¿õ>y ph»1ùf¼_%~õio¤ÞOö9±<‰wéýð*I½©÷iöÁ{[p³QðKÍþwÅß¾^ò­ËbD~>ÉgŒóÈl‰c¼»ÇtÚ9¬·‘ú2¿/!¾W°=hìî° š4T2ÿ$ëqþjÞC¾ä%dì[¤dzoFÉèõ´Ûµ¯¡¤Ô{Ê(s묬üç•F¥ãï§×óüé·Ð/ég±KÒ÷‘Ç”îR©nV–©–uN½ý±Ôgxû05PôµÇz™jJžAê²ïÔuáïðYõ9ª?|}<ýƒá«‡IâÇa“™ÈKV+ü‚Ÿ¬‚—¼„^ Àñ<ð’ .x°šõÛßF^¢ÿv‡ÿônu¾:È&2Ï/œ¡drÏPu^òý¦êxrœØé÷GL¶ÁïOV¬îëý/×û¿ãMF/{=ð‡½Û™^eÑÏ¿+%>ÂþM<ÿ>qöØùyMÞ¾ûãÉ-ª¥ÎsŸƒgáöop³À Ü+пñèñøÇ’wý¼ÇøCí¥ŽBò=b‡²kà½Ç^a½ˆ=*õrÄÏ®Åøtþr61Ž9üGö·p’àN#ð-çBüP{qN{%<:û…®´Æ~µsDŸ×eÚňCYßõRmk©àÛÁ­Y­l‹öuØ‹VIâgÑ]𪢂O=Ý^”]mvy9¸Cä8ú5²…<£Èbô]ä9ðHž?—y.þqDòq þ÷-XŽRð$yêw‚K\ÄxÉÿš÷’ÿxxþ]Ä 3ýxO™ð 2>øm&Þv¦ ñÜÌÍïìR²ó%sÉ´ç¤ÁÓ¾'8½r²:ž~…¸oz ëH:I^…©Ïp%ëiJò‰S›ÁR ÀÁL]†ÝhwD¤jÂw%^lê1hmÌQõ÷Ã{á{‡íÀùM†ãÔ ¾Ú­Ž³¿VçO²Þšú ·V¡¿ù'þ.‰s-ã>¦îÂ=RŸá6ppƒŸýÆz`ê-<ý“|/Ùü/y%ù°¦ÎªÍêƒ^··“gl¿Ëº`? OÅÔI¸ ¾}%|rëù"'Óõ$žn¥¤nB+ÁÉ®ý«ë"lg‹ÎgŒ>Ë:½—÷oê!Ô%?-Z’çˆì‘8Õ*p{SAãcRO!Òžøs¤~VDêBl ŽW0Iø& øwÕГùûàõçÏÅÊï ^žß ™ ¯(óùè™näK»üνEJ6'?2£–‹sqî¼]J^ÐK—>´Qõ^¹Žƒ~Úð¸Ò9äW™zˆeð+Ïëmò-MD½XŒø~êVÆ¿‰i¹ø¿fß/]÷0Â󘼯ðHŒ=®÷ùÍý‚»±³LÜ«2~™€uÃøÙº¾áCø5&ÏëìuS×Pïã¥qñGÀL¼ëZÁ¿eŸ³o—®c¨yâ:¯«*þ£©_¨÷ézœ&Ñÿìü¼&Žäþ"³¯–¶¿÷7yZ·à›ºƒz­•Ø{†÷­ãYß³n"ïÌ웥ë ~_Æo7õõ>Y7«ã‘ÃÂÓq,Íó×ùq•ˆÔ_Š4ä;é<¬‚}øÆîî‰]]Ðxhþq~Wþrâ‚ùC°'ò;ãç ï%3¦tFÉ'Äî~Hb.ÊdÀ‡3‘v)ydzÈ[ÁŸ3µnàüŠM³”,q…j§÷ò^Ó«àK§_CŸ¤ƒ¦CüÚtküÚôU’ßu|ró#ê¼Ô;«i? #uàæw€c§®‘8ÖßàEá&Öð­¹ô?-üòׇͧa…)ª?øUòµ?Æ~ ^„—ô‚HUPqåÿÞî!z{fEúûã'ø¬‡~ª”ý ’^UýÉ×áƒ'û'Hæ£'’µoTǽ¿Éw÷¾^øtðVïQxå^gü*ïÖõÄ!ìæÄ'Øc É«HÜžmæu%~·û3óÝ]Ž=펓xö]‚—5ÇÞs/ž÷øûñEð^ã#,d°ã·bgÇËÀ'}Gü)¶€ü²˜ÔÛù Õu±†àѱ2_¨¶³SüæEÌWg$ÇÙ7Б¼2çRp%û'âBö‡äCÚÏK>õCÝ‘ùÝvMüsë_ük õ&¬wÐëÖô˜u—E»-öUEpîãðl¢›°ë£óÆ"Ÿ•¼­î";`çDkI\«ñÈØC‘•¬ ‘—Ñ+‘×ò™‘Ö’O} ëhÁ?ÌË‚Â3Œ¿]Ðû²  |ØüõèÁü £‘.ñðüj”Ìû‰|ÈÌ Ä­2#àÃfúQRâ8¿5íøl™6å§+Yþx暺´/üSÉôßâwoå9Ò‹±óÓež÷‚?šÎƒÿ“®WRÝ']Ùèí"ü„ÔK䋦£îBJê¦êƒ'§Ê⇻ÁAˆ“…“ÑSáØùáøa5òM‚¿¦ªv üÔ`Ï ªM¿Ü´švqìQÿx^þfßž’âW#óXóQÁ¿‹GñWõ>=±2¯¿ ždöçy|$ÖEünÍC¿ÕùûÂìǣ̴³² Ï©÷á±ÿ"ßËþRøcÚþ€ýkÛØÓfß’ÂÝɺnöÛ n`ÝËzcx'×Oý\Àì¯#ûçFGJüJï«ÓŽõ3ZõÒðMvolÙ…´e¤H‰S;Ì×HcáVbH>Ÿ±»{þ]Ü9ÿxŽù §##.ß&¿DC%ó>‡Wš7¾˜’™y•w)9Môî¸r%Ã3ËôêHfçE>/R2k5²á8Î×qîK_Tç<í;x˜é÷á›\ <| ¾B(ûÅ„’¿Öo þ&?5ø’8[ õ)‚þämùàôAmx0þ ì ÿË6È×À³ü>ÌC¿‹ô_ÃxKJ>Zr5~tòyâ7É{á×&[ÓI^ ¾ìýȼòVB;&|Óë×(™øg(r}Cu<ñòFäƒbgñÞ— ν—óÜÅÂ#}FâÖ‰–țȫˆŸZâÐñé¼÷xoðûxæcüJôxìWâ±ðÔc’»Kø'Í$_³<ë„óã×Y(ü±áð+œ€÷äÜZY†ùfKý{!q&{DWúSäÍÙM%Ÿãbü$kü#kë€õqëü}ëN‰sIÜ=úë`ôkÞ{ôð¨äóF…WÍÂ^#y'„¶ÿ=²Pò³ÆóÞ#°NDr…wrã(RŽç-ؼ9‘ñ[`gT*R2+þFþòò}‰kUÇ.ËÛ‡¾Î›Cœ!ï!üÒ¼f»”̬œl1~kfVúŸ›UCÉgÄŸî{;í{Úe”ÔvyǥȦ×q¼¼“7R»>½¿.ýáu~ú%ÖÁôcOÒÖù" àk¤ËaŸ½ý!¼ƒÔì“'’Í:‘ª îiöùš: á[ Ôq“âW oÁŽ0û†h{ü]â½&/ć4¬„Ôû„lG÷߯.4ù öˆ_—ßköY`pqrvQ²u(Ì> Kñï¼äA˜ü›ˆw&NîQm³ïÇ4üÈÄCÿ'ÿº‚ä_ï>ƒÔû| þwcàL&ßãoÞK|­Ô/ÓûzÜOœ4Þ¶mç¡qðÅØ[f$~ìfÉßÔù_ 6œØìÛQæÔ¯aò:¾Âþ2ö·Þ§#"xÚuØ«&Ÿc ë–õ6þ·Ù—#@¿YMÉ?5y?ƒgE?†·dôt_±·£ðoLþ†z}gçç>âPfßiüÞÈÞ‡ÉÛhŽ^‰\·àWò¤ŒÝ}þ«Î×Èÿxþœû‘=‹ XòŽàç½Ç}ó‚ƒæµƒWŸWNüâ¯Vf)ùùÇ™É]JNÇ?ÊLhB{H¢†’cOf ÉÌDàcdnÿãšZ­lFÉ‹°ÛÓ‰žþšz&6Šñlx§íˆ7¤¯~øßè¹Ô&øZ©¹Ì·ÔSïÒ¯ù¦M>¦­ã_û¤~ÊráN„OÞ þnx¦•ç«ë‚ßÐÁGRa’äƒÝ+y#:î¥ù¥{Ñëþ{‚ƒ?‹àÜß¿{Á/N|ÈðJg¨ãɾ¿ÒÖñ®*øÞo|oo9ãÝðICòH¼›©ß8m!¿_N¼ŠþL<nt~^wUmw~¢û.ø½;„¸k¯¸µÈÓ0üQ©ƒ}¿œÕÄ·Ê]¡dl‡äeiÞèÄëbá‰×fþ9ǨóÏág8/£‡ _Tǵ®”¼ƒâOmTçÙÏI=£žâGkž¨ð§­ßáÏZŸð¬—–"u<+»^óC£ÿqŸèVÉ£|ç:/:¼?zxaô6ÑçšzLò4tëíéH©ó¹?!Òžºáƒ#_«`%ï«`8FA+ôx¾à÷&~5÷™ßv2²8<ý¼O‰_çïÍËý]œ3w<‘Ì'£äzôZfù6äÛÂ3}YìëÑ3èøät%ïÚŸÉõÙà~™–‚ŸÝ°©HÉ+ûíR²4ß5ý ñS_Iì¼ôüát¼ýº®RùqJ½½}jê)=ˆÿ›ºóYŽW«£Ú¦ŽÒØOá ðéPðPS?©¶äcŸøõ—øs¦nRô@Оkp ¼6S/IûÙ“ÑWþ=à`¦NRyž/©–³r^+Õoê#ÀÏKV‡¯ê"þmê"Wò2̯¡H]i#þVbºðJàÿ›×—ÂuÞè|ô©©TOÐ­ŽŒÿIÇÔ=Gü9ž‘<†ð§L½£ÍŸªób¯ó÷b}zÓÖuŽª€³9²¿¯ñ«u}£»z!Å^wÊcW™ºF Á;ìá‚’©ëI<Äú^ð°Eøs¦ŽQ!ø±Õ²íËÈO6õ‹V1ŸŒžîƒßnêݸ‹ã¥ð_#?‚›zE/ŸŒ<Š=‰²™:EÁã)ØÂx/˜Àü,(`\Œ=•ÿ%ùùcÀÁóóY¯ý5þJÞóü½¼$¿+¯:çåîÇÈ}KæáO×LWrú#ó~eæ=æaæÍœ7Eäðƒ%“óî‘û»\øj7Ñ®•BVXrîÇÓ¾{1ü.³Á}¬÷&ÏSöHýM\:µ‘8ŠÙw@çw&>à¸Þo Ìu<üžùhp´äõ…)pw³¿@Yîoìq½¯ÀSäcqüK½Ÿ€Éãü’ßiöx˜õÄo‡}hð³}¬É%Rï/Ôy›z¿€O±·¼ç°“Í>:_³dWužÙ@ê¬$z>?¯“º'f?€èE“Ÿ©÷¾iüðSÿ_êKÇo'6uÿ×1b/‡6xÙmø;±K^WmSç!ë‰ÉÃÔõýo_°ÿG2uýµýÝOÚºžMìëoÆ›ÁÉf¬BöoD¿®ß=ßä[êºýóÁs¢#з¦^¿Î³¼|¨j›:ýë‰#DÞÀo1øXŠ8b¤µðÀ¯’|ÊàXÆî–z5á›æïb]ÊWfÖY™†˜_ƒyŸ·›óò^—xVwôl^=âY¹‡¸>w vEî@â]™#à™=Øa™¯ïÎ(¹zåt%í¡ææJNÇÊ ÿ>n£¿âµÀsc‹­b\Ç&¢Ÿb]ѱÆà=±’àQÎVð+ç ô±ÓOp²ìòÈkø>öäÛK~åsàWvðaû6žË¾l¼j[?áÏZË%^=!Ù]xf·Á{³*c'DÀ«Œ®~©õô£ØÑ<ârÑëà{D‹Áˆ|ÇûŽ,ÁN‰Œ»üþ‘ÈÎØW‘ºØ'‘âÇ•,øñVðx d3¾{þQÖÏ|Ù?/¿8}~C쮼Ãà˜y áWæ= )¯9~}îIò1s‹.F>Ÿ”›ó¼’ÉkÈüž–ùQæç†O²”üHxãóɳȼZÈñ±[j(ùÄ%ô?P1£¤¯ oµËñ 3-°2×ýÁñʲ~”®®OÿøŸº>ývDz2ëUúApˆt§¶¯~X=Oêã,µ¾bjöÝô?~I9’Ç}“ðS‹‘ÏÊþgá\±Çƒ…6yáusT;øGpñ/à‡¯b?¢‡ƒöµè¯,yû%{)ãÜžªï6F^ÏùÉ¿°’kЛÉçˆË'ï&Žž”üšdñMꊎ[w;¼2q7ƒƒ/@Ä3uÁ5åwñ›µ_=†ø©ƒ¢ë€#gof}0öw_âcvø6&N­ëž¬&®fx߀OÞ‰®óý‡ð=?aÜ=ýˆàg9äUêºÞ†o²Ãð¼GJ[×5Ñqiá±üËØÝ…’¯qä]m—¸Õd¾o¾…ßlüè ø%š_’ÁÞÉ«È{ÌÝzr <†Ü¼‹ÜZÌçœ_ÀE ¯$ÞZXö»çdæ„ı~!¯8³½'íÏë!ß#Ï!3»¸º.ó¼ÌßaøÉ™G$ÿ³ðÈ.%#W#Û–CÖÃÏT!ï8SFæóOè³t‘àj/⇦žZ—3Èšäë¤NNm€§™šÅzœ€HEˆ3§ê’þ$üòwÕ¾ÖùèHú;5AV_ °Î+ø;ÁòN‚”ðϰ^ø§‰Ûù_‘ïê¿ÿÝ¿Ÿø´ßZê/”“¸×vì›ä,ìù¤ì'˜¼ã*Ú—Hžæwø}Þ›ä9z}¯Þä?{—€+%v`/&f£`§™y}~¢»ýîοqÆ®sÛ2Üò;”ŒÃóÄ_¯ŽÇ–<ͶÌǸìOÛý›ÞŠõ•¸Vâq±JÌ#gÈw‰Ã8Cˆ 9QžÃ©IÜß>ºc¯&hOß´eßx»ø¡}a_Õ¶~Àޱ$Îo=OÆJ‚G[·0_¬RØUÑØsÑø;Ñáühмƒh3â„ÑK„7ö¸Aä#áq¿(ù•0/#yÄY#7ˆ^’õ´à#üß‚~̯‚[‰/çDŸæË|Ï¿K𲚜—÷£øÓÓ¨Û—¿Ì«»KôóÌK‘ª¬ÑYyï5çOìÜœ%\_X;¾°2yÉ…¥$Ïã¸ÔGÙ/ñ¬-ïÓþ¤aFÉEÂO™!uVtƒoê7fÞDË Î­ëÿ¾Ý™þoêþv ï:RMüh]ïWÛÝ)âÍWHÜjz8$öI~{ø£yg$^µ\5¯¿ðÅZàÇçþ ~˜» {+·?ó5·5øzÎiü®œUüýœá¢¯óø…máo6X—Q²:ù…—’_œ9}H—ùƒy—ù^p±/gÓ~÷\¾cfÊVÎ{æ/Î{Tp²®ýÔý3Ûé×õn”zjWˆÝ_^‡©Ó°}•=“þ»$έë3\Ê82z{ö¯©ËéO»1|„TÆ™©Ç0‡u<€}æÀ[7uœVí`yWõ÷ƒg‰»™ú ×÷õeßcãgëº A-úo >—<&ü3]oa´äy¹äM&k±^˜: ËÈ›ò†.Cæ‰=®ë+ìÆÿH¼EÜ6ÑþçùyÍúën!ŽïNƒŸcê)4ûû<ïøgðAM…÷¿Ü=vTò¶tý„QÂ/sñ‡bµ¿WÇMÝíWâ=9 á¥èz ljØŸe2¸”©“Ðýn—"¾`mÃ.3õú Þ ?Ëž¥©‹ð™ðºµžîîfê!\#qé£ÌŸÈ:®7uÇOØØ-‘úÂ?ÑõŠ°Ç ú’QPÿÆÔ=x™õ3?.~µö£¿lë^G¾[^)Á¿V“Ÿ›ûñÒܼÜ2è뜵øÛ9c°ûr,üŠœ+áÑæ`7¶i^¤d}ægá5MWò¢6JfN‚ãe\ZCÉØ ™Ï%~ýÞ#ôÏ*BNZ§î—2™ë’z èñ.Ý8¯Y]JÖ’úJ—à·¦cϦ¿,ŽœÉxI?ÞvàèuÉ—LýúšúŠ|«”ì‘ê#ñíN໩*ô‡°ÃàÌá˜nêº0Ï o†ü‡¬Ç¾^ĺ Ÿ¥)vUP¢§jûª¶ÿëˆß}²1¼ÙäéUê¼äÚ]ê¼äd‰k§s7âÏzG…GºòäpêyQ™×UÁï’W˜˜o*Ñ—q`æu9žÏÝç*á—ü„ÿm/f°Ÿ±­ô×’8Öpk5¸½5¹7òüz«ñ«¼ÔAýZ¢ïâ—GŸ)A; /6Úõ#Z¼"²³r!|ÛȳÔÙ‰tgŒ´’zE•à±ì`.z¢íOùÿHƒÂíA< ¿–øÑ;±ò^@¯çÙà7yàûänÀ®Ë‹ÞÍÍÇÉ\3g÷Ë™Ä{ÍqY‡r®!n½›8W¡‡^(ì² Ù ýQxÓÅ5”¬Î\X®]Ñ9™9A<'óóu^fëAæ“w‘ £_óPÇ Ït`Iú{¯MÛåí$ï[óO¯®·KÉ2ì;bêž.'?#=ÜÌðN[S_#]!®Ž½ýžä<+ñlÍ7mÀzž!ŸÛÔ5.þµJGùÿx¦³{\×1í{ˆv{é×üÒüÿÍêþ¦ni[âx~¹ºêzÃ+Õ¸xwô»®Sjö½_MÄðIcÌS³Ï½®Kª÷·Œñeæõ½U¿ÙÏ^×!ÕûØß$~´æ®@O˜}ëuÝQ½_½ÆÁ5o´/ë‚ÙŸ^×ÕûÒÏdü¾hìb³½®+ªíïÞàX†'ZAýóûÍë:¢zŸù(qIÃ=Žþ6ûÊk=­÷“ï@|ÇðBÿù«÷×uBõ¾ñ]ÞD ´à8óÍØÝº.è¥àÖùŸÂ5<Ð&øKy¿·DΆ?›×¼/¯šÄ©„ÿipnWxdWòwr”uVN%.€§åÔ§ÏÞϸΞ‹_Ø=Rè¢ ;©¡dó]»”¼¸ðÊb%ËÏbpµ½k‘›™?™³œ’ï´Tçg^;{$8¨É¹«|–’‚Ÿ·þ‚ó®_Åy’7bð´¯+Rrqþô‹Ôy&_äzì­Ô¿è±Ô—Œ³Ô«ÛÕu&O¤øuªó*Ü ÏÌàh:?$ZœvuìŒà þfðþ^Ú:/ÄÚL5üÿ7æ‹¿†Éé>gð³ï™_É7˜W&¤Å3êþÉâ—(é­¥.„7ßcò?j·MüJþSbz)Ñ8™×eùîîìJ÷yx%n ¹É÷øƒ<ÃøÒiê¼øàkñNr\çy| ž›Ázbð²fØû&¿cq(ç9ÆŸSH¾¤s3q“×±†ü{x‚/g7@oš|“½,õOî§^‡u[}Ú:c~Kt!¿'ú4vI4!yÖ:£8ü•È6ÉÓx›uÑàc:o£!yT‘ àé|Œý[ðßÑäk|'ùÐãá æwÂ.Ï;ýRçiôÂŽ6¸ØÏà™¹3ÁÇs Á?skàçäì⺜éèóœ®è㜺̷ì_8?{ù¡Ù½E_÷a®ÂnÔý/Œ‹žîHœª°)ñèÂ:üÝÂÊè¡Â’ųÎÉÌaôhæG‰cŸ6~÷pÌóàí™§XWM^w0ÙYp´&bë8÷…àîf_îU5Õõ&»çåêï›}¸/ƒhôöÒòê¸Ùw[po·þÍzaöÙ~nm×Öõ õ¾Úë൘<í®ðQõ>Úþ ðRãgn„ÔûfWß3yÙ ÐSfŸì,xt&޽yeöÅñ#Löð6³vpV3¯ËÀ·3û^Oÿ2y×µ°WÍ>× X7LÜúvpe³¯õÉÇÔyÖ…àAzkç¨ðQ´_=>µÙ·úZæ…É«^Âúdö©–z…&Ný[/ä2ÆŸ5‚ùgò¨¯ÿYµÍ>Ôkáy=ý ü_³ïteæ‡É›^ùƒ:Ïì3Ý?ÇÄ¥¯ÀþÖûJŒaþê<éüÃ2g·å'™¯ÆþLæñ“ø×y-‰KåÅÎÌÏüͽ¾kîÄ»u:g6ó"ç^친ÑëÙ±²çcße?ʺ“Ý’y^øñáÂG;×Pòîî´;Õï*lOýáÂÆ·íR²xSáeà‹™3‚ƒÿ~Zgø,k¥žÒ{bW¿Îu&6HüïûÄ×vùk9~s#®×õK²¿Pú;ÑÏ:¦ù+ñeôK=ÄÔIòÆR_ð=LÄà½ÞŠŽ}ǺÎÁ_7uÛËü¾Þ¹±Çgïz“Çeâ^eÐþÆâ긩o¨y*7I=C]×ð}ÆUr<ﺔ<6ÃOÑu »¢ç¼ø{¦~ábx?‰Çá]™y]üÑ]Þ0õ ]Æ“{-~¯©S¨ù(½ÈkÒñ­Øiæcl 목K©y(ºáþ¾Ó;Ãĵ.&no—x´¶¿{1®í6ÌgSwp›ð½_g¼šx–æTäý›:ƒ‹à)E‡‘geê Þ.hø&:Žõ:ú;ÒŸ÷lê Ö<ìóÒØÝ®È °ËMüêA‰K×Fßç} >oø%ñgòгæÊ¾Ã¹}¹ÎÄ­?æ¼Ãº‘ó ~INƒ]Jfâ;g/dfKÜ,»ë‹z;çæçDò ‡þ2]ÉGÐ[…]Á¯ -xÔ…wíR²á—œW<¬ð™ÿÉüû­-íoˆëf>m¯ÎË,„yUöÿ%¼´Ç$ÎuÏ•)`ýÈ´z YÆúdöí}™ïdö뽊٧Wëm½?ï0âf_ÞZ—©~³ïJþžÙ‡7>©÷ßý},Rï»;¼Ìì·{9ñi³Ïîð$ÌþºMÑKf_ÝÕ{T¿ÙO7ÂzmöÑÝ)q-½nwô•Þ77qXô³Þ/w|F3¯KÁÓ4ûãŽým!¯Âï6ûáΔ¼½î-Œs³ÿí øfßÛlì³ßí·ãUÛìs{ãVïokŸb1ûÚN„¿nö³½{Úìc»ŠxºÙ¿Vê6é}k£'á˜ýjµžÖûÔ¶åý›ýi÷òÝ;´£˜of?Ú¦ÒÖûЮf¾éýg j€äoâ;å?‘ߌõ#ï7áNg}Êse>_²VÉÜÏd™‡l#q«Äer–¢_rÅßÌi,úùvoöôwv?ì‹ìÖÄëô|îò)ó¬PxW…Г…C~¤ýðÂJ¢ ##§+y;y… D¿_óA‘’å÷gÎÉÌ âL™Ÿ|ÕŸùz–ºo¦ÿ33ÏV×e^\¢î“yZæõÃ’OâÇg:ƒ/dI¼ìZð£LÙ7Õñô^xÝé¥2ßGLA&{¨¿›®'y"ÿÕR÷M}A>Fê%Ééñ/²…ðÌK“¿nî¤úÃiÃhß!lz‡êÎð‚µ‚‹Oþx€> ê€ ûÉkõ³®øðý;à™ùtP×'¿"/*9IünOpµjði=©CíÍ÷ôzb§z ‰“$ŽI=¤eüýÄ@éÏâ;'¤^™ûuiÜQØÉnôWÆo'ž—ºïñBx!ñë;(~ô»à¨±Ç$¿º­ðÎJ?8ëùÎ$ì%ÇÇÿqjó÷íƒÂÿ^*8ø“ø…v6ë‰}9|#k7ükñ=ëqá—uÂ~µ®×Šî“|ŽEàVѧ˜wQGò8êgüݹ–u.ò2ñ®H/ðëHÇ ÈªàY?öBŽÂþ/h¹IÉü_d^¿x2?%ïã'ï]âÚy÷HÞÕ5Ä‹r·ÿs x`î»Å¹oÎJž+çqp…œ–ð§²O°~e/Ã>È~¼9² <3Ÿ?ÏÑe$~háöñ)œþût%ÇŸA>)z¹—Ìÿ´ðVòyÞÂÛÀÇ ë;ܼìÕ6¸ÚÉïÞ@|ÍøÝ:ÿsò•œ¯yj=+!µ]žµšãzŸÏË÷OÓ¼r½¯§®›¦ó<+³î½-õ M~§®“¦÷íÔ…W­yb9mù»Ùÿ¡?²W`?gÄÿȾíÿèçÕ¼ç.ÃÁŸºäñ^ ‹8^¸€ùW8{°p<ú¢p°èíeÞ‡¢Ïs±? [1n oà9 ¯ nUXJp¯Ãð±2?\‡\7GÝ'³;?3Cø©c¥~yÉë¼[ò=ó¹¦%¼ L-Ñß RÏ›> ö÷Jø®é±ØMévsúfì›Ô‡ÔñÔzì—Ô”¯ÕñT7òÖRˆ†§ˆï„Ÿ“N’¼¯;$¬ üý,;|ëUÐ=¸°¢:îo$žâ?/óÛ½];%¹?*9[p4Á“ ð¿½ÃèOoÑ d_ðW¯ëyâ_ðªÄ â·‰'êÒÎâ»&Š“ï®&~ï>Í8v;Á¿tËñ~â_à·ÅÇbÄ£øÍñÊÂCÙ.8ÙËàŽ± ñíXü^çWÞ›3Ÿßí<нì´f<:%„ÿ½Vìð Øgv^¨]ým”<­÷à»X2ÿ¬<ìf«*ñòèÏõU;º˜ñ} ÞtÔâýDk ¿û0ñÀÈ*ìêÈd±Ç»K«ú9r1¿·àò3 ”üʪŒ»ü5ÔÏÉïƒß‘_‡u:o«äE×Êk%<’?%/z–Ä¡pûÜÊÜ?ç˽ÈÂëÀ{Ê).zú#Ö§ì'z!Û²^˜ù¼ ÿ¼ËÓà]²ÁÙº\ʺS¸á­éÅþg~“—Pø*ã´põÏ Ÿ]Cɰ‡ ôla6ú²°ÅC%¯£®ia%ö(,&uL/T×g¾ýŠö§ŒçÌ»ïÐÿŠðVF4Q÷Éô>F õ~€·R‡ÃìX’8ºÙÿïÍïÔq³ï_'©× ÷ûÓz[ïó7HòHôþ~•…‡¦÷õ{3£Î3ûùµÿ2ûø}N^¨Ù¿/6©÷íÛEÜÞì×w/y&zŸ¾äŸØf¾G9OïË瀷höãoTï×8E>¯Ùo0ë–™×Å÷f¿½¡OªëÍ>{¥à•šýõ†£_;zâšýôÆ£GÍ>zW’‡aöÏ{¾µÙ7ï&øf¿¼÷È›4ûä݉=köÇû†ø›Ù¯'úËì‡W‚x³ÙOëi½ÿ] ð³ïÝ7uTÛìwןuÒìsw­ð@õþvÏ’_aöµûž^þ(Á¹[GÉû{ o ñá¼lü†ÜSøo¹ïÂKÉí.yÑÕÄo–ú¡9ã˜9Ù5¥7*™½Jð¯'Y²oçþf> >Ôå)¾C—Nø«].DßwÞÄý Ä^,Üp8«Øÿ?¿ç¯™®ä«à^…c…‡6ÈÏ(Ù“øEa’xtagâÕ…M?¯ÝŠë*H¼ú?É÷úµ‹:žÙš«ŽgŠ„ªë.½ ¢Ì©kªë-i»üö׊”Ôu–.£¾búyÙ¦¾’ø«é®ãÔué†ðR§X—Së\u½©§Tˆ_‘ªG|ÃÔQúÞhøŒÔgÐõ“.gž{\×Mº‡8VP¼ÙÔKZDœÃ®×u’’'/UÇ“+¶#u}¤Û#ê¼d1~·©‹ô$8µ—õ R×C*‚‡™x»UÏk÷ ~…ûQW¤®tû•JÆÏ0ÏLÝ£Á‚£eG™zG«9/6 ;ÕÔ9*žì|Á86õôSü×Ô5Òö÷}Õuºž‘õxµõ1‹ÙWk<9;oײ>d?M~ev» Èb|‡.±tÌïè’EܾKIðÆÎkÐçG×uŽ_ëZ,ÿÜ)*<47£ä®ÈäyœŸßð? § oeôK\÷8z¦ðÞUôÇá›¶žû4|‚þk%oLóQ5®¶‹ûdÖK^öRÎ7<Ôg÷Ð~ô)dH¼-s§¬šzåõê¾iñÓ_€7§§‚?ÞicxØ©Ó+Õs§ÖÞC{ö°á›ÖÁ~ Ï78Zÿ>ê¸á™–W >“|¯QØ[A>~Šá—nÂŽö'±>ù6qƒŸi^éDø'É(ñödìï+ò( Ÿ4\Ô++ùŸ¢ïC…7žÅwsO üxÍn?ps·)qÃ}7þz-ÞÀU2ö;|ÃÕxY}þžs~˜óN ¤æ‹Þ*qêcøCö2Éט¯ŽžhÖ)ƒ“MbžX>þ„á‡äxt)Ç£Cà½Esá­^è~ð¾È"±»5>¥®áƒîg~Œ_(¸|< ~¦á^'qªMƒçÖ¸˜æŽçÊmËù9‡YrÞ{[ó>+ îõ%÷É.q«öà†f>¯Äïé2ܧËmØïOË<þ˜õ®óÓøO»ðž;_Š]Úõ2ðç®ÅÙuN¿x·øÕ7«÷aæ÷;ä¾Bžaá(ñÓ¥Ž~awÉÓ¼–;$oìæôkܼ´ðGýQRóYÖÌ®¡äò°M]½¿Ðø}Æ.o›Q÷5û é:,z¡¥'Õù†¿R@}"³oÖÛz¿ >ð= o¥ö¤ÙH×YÑû]ÎØãÓà˜}€t]½ÿÏŒ\dá·êþ~ pR³ßÆÅõ>?Wa¿~ÊDƃÙ×G×MùL} ¢ÄSàÜf^ÿnnöïÑuRdßž¸ä>Jwp8³OÆÁõþYêZøÙáò°ÂÙØCaOø`aᑾ ‚û€£uÜ?rZý]aid/¾¿ßû)y€ñš|“u,Ùz1Éšðø½ïùŽÞü_ÏÁßò.§N¬+Pý‰§á_›yýïfÕï.A_¹½Èpë‡ÇgŠÏw‰§ÈO‰WÅ¿}ƒžM='Ž]ú´’Ηÿª~g zÃÉ%ŸÚ¹ˆ¸­ý%ñh{y8v”ycW'°¶£×¬W¨K`uÜLê£EÿÄ~ˆ¾~}RâX]ðû£•±;#?gˆ¼…ýé'þuGâ„‘ÊØ9Ÿ¯.¸ÿ¶ <ú<ÿÁ¹m~WÞ¿è¼™üþ¼<‰?ÿƒ]û†àc1¾Kniâs9*tVÞ'y”Õ™ïÙ[á™fÁŸÉîcæórÖÃ.Rg¥K3ìùÎÇÁÝ:/!¾Ýù1ñ§[¡Ç:æ{wZ]ÞIê˜wmL®µY_ºV†ßܵä.Õ.!ÚÏÖù mˆw›}A3þLÈMo+iöyUò5uþG%KI³ïÇ3C‘Y|÷ŸAªmöù¸?Øä{ì’üL½¯G ?Ïäy¬Ç6ûx´Ç5ùÚ¯Öûv´—3yïûH½OGkð9“ÏQÄý̾ uÇá“i=}¼N¿ù œÀì»1ûÁäm\‡½aöÙŽ}oò5>'ÿÙì«¡ýh§‘î…”}4r£OM~FæQN‘àcÂ+6yߢ׳Çá×ew’þb|Ÿ.ð\]ú`_vi„ýÔY¹gå|ü¬Î½ÐƒÁOèt^\§÷¥ýß­SpÇ®ñ÷º6ÅéZ—ñÔõò—w)Y¿µð˜è×½wÔPrþ¤™ßó°+ _Šg”чóú€‚ûæÉ¼o ¿¤°Žð^t‡!÷²¾›ú K+ªûd¦áÿ›º b/»\×k¨ßœ)G|ÍÔi˜-q¯‡±§L}†bU;õ™øÙº.C^jêòŒê7õ¦ÂO ýÅêï˜: Ú—ybê/\!|”¯/¦îB6õ[üÒgÔy¦ÞÂãðH“MÐ+¦ÎÂà¸^šüaS_aü¯Äpxdf^Ÿ¿u çL=…Ä¡âßJý2]G!Gxâ¥{«¶©Ÿð8ú8ÖÜÕÔMx›ñêô~ÊõàVö~xöÆþÖuê`ßZûy¯¦>Â}¢§ôRÇM]„eâWnˆÔõ.ÁŒl—<,]áþn¤e#¤® íîŽèKS÷àiü×üëñL½ƒÞø%yUÁ¿rW£Çs„/š{5ùצ¾AÖ“œzàmÙ?ÿÈž(q«Îè 3Ÿ—á·té ^Ú¥ú¿óxcçà¿w¾}ÑùFîÓIêtz‡çèÔœ§S â_wžÆèê²?^×NèϮ͉ou½ž¸v×+Áµ»–ÏUxÿ¶p¯äsn¾>Sìæ7ñ䩢߇¯)|ä ¤æ­å°Ï_a3ê$Ö`>^îdpµðÌ~ .Bê} 4OMïO'|7½/A• êþOûŒ¼|³+yÝzÿ­·õ¾÷ƒ§èýÂ#Ä™ Ž&uõþÁaòY̾š‡¦÷Ø÷‘:nöHr?ƒŸ}I~¦Ù7 -ãÎì ygzŸ€«?Vm³?€Øaf^ÿÅx6û¨òÿß>šg¦ëÿßAœÅÔý_(u 5^V<ÇÔù ÕÔ÷×¼2]×,óÍÔ󗺇'ÃýLýþJÄ•MÝ~­§u½þº*iêô/C|LþŽ©Ë¿v:R×ã×¼1µŒœ•·S‡,o7þoÞÓÌ ƒ‹m–¼+©·Ÿ{Ï•óµøÑš'v+öEöüƒìç˜wÙÙð^Ì|~ü¥K/Ö÷.7awþ‰õ§óLÖ‘Î…ÌÓÎ5ˆwuÚ}ÐiæFdwò@;Õ#/óÎÃà¨w¾‡ìÚƒqÞÕ£i×löÿèÚ Ü»ësW¡wº–Å.üëá]Jî}óÿÁÏçÏ*|Já3ÕÕ} {³oWa(ù߅Ǫãb× ~W¶…’™Cøñ™o©?–ùXx-sˆ×˜xX?©§˜ÂÊtxÙM­ÔßÍ\ Ÿþ™8•‰ƒõ]M›ïé/.¼ñ5רþÔHp×TN_úuüëKæ}8ú~d68_xøÙŸÂs†À¯0q¯¿ÀOý<§ß¾›_Kxâ;ÀÑ“àíëx—wzr1ø³wß;È-•Ll…x–¸™×DZOݹأnZxf—‹½½,>Dê£èøÖàä±YàÚ±ü-Çß7q¬)ÄÉ"…àQ‘zØ#¿ãw<ÍùÕÁ#LüÊc~ç^ÉTôdžìÇ•»½ûlC¤Ž[}ž3Rò¡›ÃËþYxÜÂSÉÎù?üí%‚o?€}Ú庖JvÞ…Ðùeò{:{ài¯'ïô øv§)Ø»’Ø)ª±>ܹçÎ7™Ïwöâïuðu‘’÷c7w >Í(™Kܪk›Ó•¬GÞeתŒÇ®åà•þ-øùþûÔù…›Ñ›f~¿-~öp£ÂaØ·†wîƒ;˜¸wCá±iÜ\çyX¥Ú™-²¿§ö»gbÏ›:æ:¯[Ûå­»ªû™8w©Þªmxå:[×)¯_Ôèí7XWL]r·­yäoHý×®Ýiìq§­ëŽ—Û©þ¾ñ³}-uÆM^¶ÆÅí’ôë8ö òˆ O\çaë:⣻ªç2óú(~¯©®ó®5/|5þ€‰[×Ç>78¸Î³ÖuÁK‹¾Ö~u_æ›®nòªµýû[Ç©¿%ÏËð¾uµ®óý-qD£§ÓÄ÷M]o7­yÞU¥_Ç¥eÞ»[çIëºÝ`??z>x³®Ómò¢5Î}»Ä©tz"v°áqë<è—Ëû?þóbáoßÇ{éRSðíÄ­;?Çóê¸sçKx×î4Ü¿S>Ïß©óïÎ-ÄÁï”ú7w¦yw^÷+¹Ô9^yñb¥Š[JÞÝãüvñÙÿÎuŸ35Ι§Ï6Ïšƒ ‡g5óÞÍ:Û‘Õ¬‰]J¾ðk‘’K=%«Ù–3J)7ýœl~©JÎj^O-oYÍ;7¤}·JÛÊj>8©î×|juŸæ‹ß@~õ¼ºó_”:ÈjQ¼Œº‹* 6Êj¡²lÏÊΧÔßi‘þW]×¢o_ä臯©4¬K¿V÷k±þ6Îÿ±÷=¢Ì©¬–¥Õ2•ÕòJEgÌjycÙj¨º¾eÎuê~-}®oyßõü-ûq|ÄÈçK¨çl939ÿ ç­¨ÉõŸ½K{óÛêyZ~_ùÓ>䡜wB¹CY­ŠmE^§®ku©¢dµº\Ñ7³Z]}=ý5nç¼:Ò¾AÑð²ZÕ;¬îÛªÁ,ú©ßÛªQ²1¿«UãGküO[×çëëõýôýõßÓ_?~>ý¼úùå÷èßg~¯þýú}è÷£ß—~ú}ê÷«ß·~ÿú{è—þ~ú{êï«¿·|=ÌøÐãE=žôøÒãM?=õøÔãUƯÏf|ëñ®Ç¿žz~èù¢çÌ'=¿Ì|ÓóOÏG=?õ|myŒþ*_©ëšþ£`²¬¦Ûù.ÍÞÜ‹ü|çý¼˜¿W¦Ï]ç ž¯Ý»õ\-|T½—–¿÷漿WíVe«ë[URîyV«ê* žÕê&åFdµjzòvefµêÌ{mmK¿w—zþV™?‘Ý÷ª¿×êÁÛœâºþµø{ƒæñ÷†Lãüa|ÏVÃpÞH~G«Qç¾çýìÿ¶õq}¾¾^ßOß_ÿ=ý÷õóèçÓÏ«Ÿ_ÿýûôïÕ¿_¿ý~ôûÒïOÞ§~¿æ}ë÷¯¿‡þ>ú{éï§¿§þ¾ú{ëï¯Çƒz¼ÈøÑãÉŒ/=ÞôøÓãQO=^õøÕãYoïzü›ù ç‡ž/zþèù¤ç—žo2ÿô|4óSÏ×ߪû4»÷uŸfžåøuè?Áó6¿ª9÷k¾”v\™ïYÍûtãïMš„|·©×§=øýlS”Õ¢ö~ßí•‘É’ê¾-íÇûûçÏþEÝ¿EÑŽëÓ>l©û¶¼à3u~ËêïÑnV ™[–ïVx7²oKõwZ>;ŒãÓ:òýÞ}œþOŸ-·1.[þ¼–ï­õg¹Æêx«*—оA…g²Z5¿DݯUÇ[Õóµ²>V×·JÀñû«Ó~ì ×?Åóµó1òå¾fµz­÷{!í…w"ßÿ‰óŠrü3ùåõêw·Úœäø¶£´wüÁßù!¿¿»÷ÙÛ”óö‰žÝ?‡ûì?‘õ?m}\Ÿ¯¯×÷Ó÷×Oÿ}ý<úùôóêç׿Gÿ>ý{õï×ïC¿ý¾ôûÓïS¿_ý¾õû×ßCù^Æ>ÐßS_ý½õ÷×ãA=^ôøÑãI/=ÞdüéñhƧ¯züêñ¬Ç·ïzüëù óCÏ3ô|ÒóKÏ7=ÿô|”ù©çk³oŽ©ë›½§ ±¬fÏ+˜+«Ù£¬‡Í;ý†¼WÖáòwg«0qVó5Íø;û¨ã-J,á÷Ô¸“ç½-³ë~Oß›9>á{Úó*ò{?ãý·ØS’ëN®ä}Vþ›ïpó|Ú÷ñÂçèôcÚ£ºó}^†|¯ Ç¿¨ƒÜ…Ùò˜‚‘ÏÚ‰ÅÔu­ªªôѬV7+·=«UÛ]Ȉ*pVïÌ@öRå²Z=YUýžVcÿá¼WÚ©û¶š{œû-»Œû}ògãÓÈïX?[ýôòÐ{Ü÷ß¶êüÖ%Õö Y­/¨Ž·®t«ú;­«æ¨¿Óºã¨õuop¼Þ/\×p4ç5™D»ùêyZ·ú”v›Co«Ü¬ַ«pòY¹|×ÿ´õq}¾¾^ßOß_ÿ=ý÷õóèçÓÏ«Ÿ_ÿù}ú÷šß¯ß‡~?ú}é÷§ß§~¿ú}ë÷¯¿‡þ>ú{éï§¿§þ¾ú{Ë÷×ãÁŒ=^ôøÑãI/=ÞôøÓãQO¯züšñ¬Ç·ïzüëù ç‡ž/zþÈ|ÒóËÌ7=ÿô|ÔóSÏ×ëÛ«û4§|~V³}ŠVœÕlÕfú_X©îß|§ùö4÷9QŽ¿{eÏÛ¬4ϧíÞ·ªûµ‡?ÓâíÁÈÏ!÷ýÄ{)ÆýZ^íó^›nGlAöÈWÏÑrèœ7õäÂ7é_W¹ë0çÿÝ™ïyñ|ÇZ ¤^ßsX×Z¥6sÞÃj{“³ö¦Gûy•ΖÕjöKê~­–e8þùx®ß^Ÿã?³¶:®ÒÍÎŽ[EÛÊj]áu]ëk Õy­o|ˆþ&اf>u9Áq{*ývnëneiß¿IýÝÖœâþ¦ÿIVÌjýôzúŸÄýÇŽåü g¸Ïd¹þ…’Ÿ2™ë_Æß}qkÖÿ´õq}¾¾^ßOß_ÿ=ý÷õóèçÓÏ«Ÿ_ÿýûôïÕ¿_¿ý~ôûÒïO¿Oy¿ú}›÷¯¿‡þ>ú{éï§¿§þ¾ú{ëï¯Çƒz¼ÈøÑãÉŒ/=ÞôøÓãQO=^õøÕãYoïzü›ù ç‡ž/zþèù¤ç—Ì7=ÿÌ|ÔóSÏ×¾Ÿ©ó›ÇD¿7Váà¬æ—Ý¥~WóŸÅ~¾@ÑF³ZÜ(x–Æ î}Šöpyž7Òÿ‰<^¯Î4çý\}Hݯe‹›yo6v[ˇð·ZŽüó^¯ÏûYù+ç}S“÷ò'ïËè[í5[EžÍwº+Éwë§àÈóöÞŒ´—üÉùkoæ<­/~?ÊõgT¹‡³ãJѨÎë#­¯ôxÌW¼Ù³ã¶€ó{,¢ÝWôÔз¸~l[õž[¿Ø„þ™cóºÐ¿}Ðúßø;k°³ZÅ÷l½e÷Ù1‹óv•âú}«8þË<ÏÁ$ÿOð–Ö‡ïãøÑbôÅŽn}¬Ã“ÿÓÖÇõùúz}?}ý÷ôß×Ï£ŸO?¯~~ý{ôïÓ¿Wÿ~ý>ôûÑïK¿?ý>õûÕï[¿ý=ô÷‘勵Ÿùžúûêï­¿¿z|èñ¢ÇOz|éñ¦õ½ŒG3>õxÕãWg=¾õx×ã_惞f¾èù£ç“ž_z¾éù§ç£ÌO=_›¯Áþjþú:õ͇¾Íqñ×[´àù[x7rßþ{Ôûo1õFî÷þôkÿâD~ß*ì{°êÕøŸß7ê]~ßìeÈÕ|×–?t@jÿ¶â§¼ÏúàÆ¿ _á;ôyRßjôvŽÏœE¿öï6¼ÈùÚü¨õÅ1ÕoÆCãYÈŽÒï¾Îy÷*zQVëþ¹©Êž×o³£êï¶^Ò‡ã«Nq|8eë* 6«õÏ8OÏŸS}Ôý۔ŞjSa¨:¯MUž$«MMEOÉjsz« ilYmšò]Ú´šˆ¼=à>íŸæx'pÓ6]~£?W¥›gµÉ[Å}ó—ñw ä<ÝÖÇõùúz}?}ý÷ôß×Ï£ŸO?¯~~ý{ôï“ß«¿yúýè÷¥ßŸ~Ÿúýê÷­ß¿þúûè勵Ÿþžúûêï-ß_3>ôxÑãG'=¾ôxÓãOG=>e¼ÿ^g=¾õx×ã_Ï=?ô|‘ù£ç“™_z¾éù§ç£žŸz¾^q¯êo~Lôó¦Ã´ç_Îù#zqýœßÔqƒÅß¿PÑœ³ZÖ;#{ϯí‘áÕßk9ËçüU³‘Ï<)ëà•ªBV«F;hç½†ÔøªÆc§â´Z4¹þUÞ³Æ{´¿ªí7íÿµû2¢Ò,ÎÛ‡ýÞV×·…?ÔzZ äpÌÖ‹þÚ¬ÊdµÞÓŠþÃËÕ}Û{MµÛ\¢ÒN²Ú\£h7YmnTaì¬6ͪ¨¿Óæ9žW¶»@=g›Â´ï;Ìýá÷´0—óŸªÄñ‘ßðwÆàºççm¦æq|ÚÚ3.å>¯Ëy³Ûðoîàøœ¯‘sëîúŸ¶>®Ï××ëûéûë¿§ÿ¾~ý|úyõóëߣŸþ½ú÷ë÷¡ß~_úýé÷©ß¯¼oýþÍ÷ÐßG/ýýô÷ÔßWoýýõxÐãC?ÐãK7=þôxÔãSW=~õx–ñ­Ç»ÿz>èù¡ç‹ž?z>éù%óMÏ?3õüÔóõž§iw¨<¾ùiüóßVäúäþר²(Y-o«…ÔøÁ ‰üÝW®àytüqÇBúµþ½"@êø©Æ74þ©ã+3°³Z­œä›;Ôói¼¥u¹™|ŸZ%ÕßiÝ’qÕ:z-íî[ƒNò&áµ~\±õÊâ´7îT÷m½øeë¿ >«Í* <«MÕízYÈÖÃéÏi¤Îo“¼C=G›{r¼ï0úŸzOýÝ6ãs8þ²¢×7|ß6 ÛrŸ9ê÷¶ùTÑγÚ|…ÙfÛKÜ燫¸~ß!®;P“þCěڟÄñ6Ó>uŸºÏmÅÕ[ ìÆÛJuQï¶ÒD*z÷ù¶>®Ï—ëõýÌýõßÓ_?~>ý¼úùõïÑ¿Oÿ^ýûÿ{_G’d-³%5”ÌÌÌÌ’¤îË333³efffff;ÍÌÌÌÌlúêåË9ïÜÞîíí¬fvûýBY•ñ¢+!2’ò |(/Êò¤|)oÊŸú ~¨/©?êSé—ú¦þ‰âƒx!~ˆ'â‹x“øSëÄ'ñJüÏÄ7ñNüK{PßwÚ í‡öDû¢½Ñþ¤=Ò>•½rÿ}\v¤Ûèaº-% ¾œ¨õ~îÿxúW®=é¡—Wó_ú'ä3 _¡Xw-Õ4ìçþΉ4÷G®îEúcrÈ7ÑmP¹žYÚuÒµ½!_þþŽÚ ºÈùï,½ž~K?ÁüN}_“:õüerVÔë)Sæ8h„~-ú»òùù½é·Ro¿ÌxÈS}ÏÖ@þÝ‘ï¤À{âûñq”{[§¾±ËéÏ}éA“;u~|3èÇÒ,¾9ãyA=<‡Å·d[¼·Ô@Ú1Ko×7´4ê+›ù+ènäß*i®ž ùk6Dº¶åê@¾ujÝü)Í÷ÌÏò¬õ³=¶O~Èù%ÿìûÇþ²ÿR”’åGyR¾”7åO}P?ÔõG}R¿Ô7õÏï¿Ä‡Â ñC<_ÄñG<Ÿ¯Ä¯Â3ñM¼ÿ´ÚíEÚš¿ŸôП+{£ýÑiŸ´×åõò%î–åþ›Üo/Ùõê^íì¬úåú`©Øzx#K©LX?)eÃz~©ºmÁ'Ç'³àßSjG·Úè/æqj¾›û©¥ a¡tØ<ç|©oˆ^_ééÐGé ñüÄdÈŸó³RÉ ï2y»AœVþˆç-t·TK™>©‘ù8ݪ»á[ÊË‹r×›ãù èý8§Å×ÔRçÓ7m~=ŸoîpЇñ>p.Òe/"]£1ÒÑëñm;å»G¾ýó ßðnHãºi‹ï´ô:¾sÚ!ÿ¢ôÈ·<ƒÞoßÕ^ù®ï¦¬z¿|·tÝyûnÏ)iÏÚ?¥ùžùYžõ±~¶ÇöÉù#¿äŸýaÿØ_öŸò |(/Êò¤|¥¼)¥ê‡ú¢þ¨Oê—ú¦þ‰âƒx‘ø!ž¾ˆ7âx$>‰Wâ—x–øVóyâŸö@û ½Ð~hO´/ioj}žöHû¤½Vއ4çëš>ÐRâéªý¼çø}(å¨×«üËËß®'Œ—ûŒ\o<‡q\©·zx¡_¿¿äxˆë›ÍlH\†4×Kw܃¼.­•ë·eŒ  l‡¡?®çTª ý´<ª—/Óó—2SC_«±_Yfÿrä¿’ ù$>Ô÷4ÉWý¹oö„x^B?.oñ ²ëõøViƒtã¯ÈßéžÀ>­ïXŒÿ|gé×/üj›N¡Ü¬Ïú/­óë{A«kñ½ôQÔ÷ ~N¾‹£ÜwÝýÛâWgñóļÉϨ_gnñóé šd¨Þ®_²‡ )&ãyJY>囟Ó|Ïü,ÏúX?Û“í“Åù%ÿìûÇþ²ÿ”åCyQ~”'åKySþÔõC}QÐþ©oêŸx >ˆâ‡x"¾ˆ7‰?µŸ@|¯Ä/ñL|ïÄ?¿ïÒ>”½Ð~hO´/ÚíOÚ#íSÙë"ØqÉþ%ôzKÖI‰|e†£´ØG(eYz¹þßÚ]†ú¹ø¨²žVó_îGº¶ày£þè7÷?Ùqý¼Öýþ´úàx©Ú-|ò®zêé }LLºã2bAÏIÿ_¯Þ éõcbß"z˜`‹¯kŠ^¯¶|toŒû|ÇCz.øô]—ùˆÏÓð“ò½Uôö=|¿Zõvü¢ÿÊ^Òc<å—« ^Þ¯H~Ð_©Æô§ÇRôƒã•mu@/¿G??Ń<’ ‡ …œ"= çfñ| räú,×_νå÷6Áè/}7Ðb'AÃÀo½ÕÐs—’È?"«Þ¾OnȂ燀gß+ó@Ÿµå÷ÒœYï·_zýø¦Å/Ÿ~¬ÜâWF“gñ †¿–_e¬“øÕ‡¿¿_køøu»ç0ó¥‡K·øMÆwÄoŽÏ—ä] ¿F¿/PÿöC¨g7~Ïý´Å{ynÁïxðuãB¿Ówûˆrgà‡¥Ò|Ïü,ÏúX?Ûcûä‡ü‘_òÏþ°ì/ûOyP>”åGyR¾”·”¿/P?ÔõG}R¿Ô7õO<Ä ñ#ñ¤¾÷ÄñG<ŸÄk¤ÞÏßÄ»Â?íöA{¡ýО¤}©õyÚí‘öI{¥¿M¶‹(ÇñûÕýz}j¾/÷÷J'Lvr} «>[Eâ=×VcCí?¼6¢Ÿ>Ñþ¾qÿ´ù0ôŸû% & ×K8úÔúL‚ó/¾y1^ñuÊõ\®ÿt.…÷#åïòŒŸÔ|’¿ÿá§èûu¢Ný4ì_øeÞt±z½~.=>ůÊN½õýêÚ[çÛoðC¼Ÿ¤‡ ³ø-ØŠ|ë²‚Š»¨ï(~Gý.Ö½ƒõ¿gðó÷{…ô¬›ø'È£óéoº²R¬ú§Žƒç`wþYö#ø'øçÞ…÷ù #ÿ5hï 1ŽVi¾g~–g}¬Ÿí±}òCþ$¿ä_õ‡ýcÙʃò¡¼(?Ê“ò¥¼)êƒú¡¾¨?©OêWé›ú'ˆâ…ø!žˆ/âMâxTø$^‰_â™ø&Þ‰i´e/´Úí‹öFû“ö¨ößi¯Óè|*{ú×ÿÅú^éâ&ýyéªx¯öfÉñý¤?R™øñÑ_ÎGèßÐp/ž÷ÿ„çó৤äq~qj¿&%Ö÷|‹ž…ü¹Û ç}Ôük&ÖÔ|í”?äÿ(±^ÞÏëjþ˜çÒ6øÿùUÒÓZüšeÒËùõœŠp¿¹sA×c]Æo¿¦óíwë%~÷pÞÈï­6ÁâþþÆOþañϹHoÏ¿h~K<Îç¿,Dùê-ð¾~ÔÓ ¸÷o;ù:ëa…,þ=àïìß§5Ò0óÜKçÇ(ää?\ëlñqÏGf?¥ùžùYžõ±~¶ÇöÉù#¿äŸýaÿØ_öŸò |(/)?ÊSÉ—ò¦ü©ê‡ú¢þ¨Oê—ú¦þ‰‰âEá‡x"¾ˆ7âx$>%^Õþ ñL|ïÄ?íöA{‘ö£üûh_´7Úí‘öÉùús«žOù×Ñ¿FžÇSû÷ƒ‡¡Þå“õ÷¥OåAýÒQ­?—üV«÷Sù'p’ã—+úý#–2Ÿå¼(¥”cqŒ#|Ëw‡œÚÀ_G­¯.N9ïÕÃb[|¯/†>b^áçƒßG¿\z8¥h=N‡^«êa±¢Ç}8?è7PާaÂo5ü^.á\¯ßSøá©ï§?AÿŒ_ôçþ…êëõûÛ2âyYøÙû×ÒÙXü[„áyWý…h;Y†çc~Ñù󟬷ë/÷qýWgDz æwþ»å÷úÐ<¤O6D»çÛƒ^Áú’ÿMø#øß­Žz@þþq¾Ùÿ ÖiüŸ>}ìñSšï™ŸåYëg{lŸü?òKþÙöýeÿ)ʇò¢ü(OÊ—ò¦ü¥>Ôø€ú¢þ¨Oê—ú¦þ‰âƒx!~$žˆ/…7âx$>‰Wâ—x–ø&Þþi´Ú í‡öÄõyúÿÒþh´OÚ«ó™Ò©ð¾ÔÛõ ÇkãùFøÁÓ¿Oíÿfö8÷®ü‰†cœ Ö¸ÿø ¿Ë¾‰ž7ç=õðà¿~ïf¬Çûå/‘Þ¦‡µøƹyÿ Pîn,½}ÿ‡ñ\NyX,±±lIÐIoñ†‘EKŠtâ«È—܉ç©*âyZ/”K_4cM<Ïô]oß’ë°–¬9%]—ô¶ÇÏiùžùYžõ±~¶ÇöÉù#¿äŸý‘ýcUÿ)ʇò¢ü(OÊ—ò¦ü©ê‡ú¢þ¨O©_ê[éŸx >ˆâ‡x"¾ˆ7âOâ‘øTx%~‰gâ›x'þ¥=Ð>”½Ð~hO´/Úíûïô¿¥½ò¼Ns=àïþ´é¥?¡çy”§ÿï/˜‡—éœiîì,z¿ÓÊ)›ô{àü¤‘Éâ;(ž/”ã›ý×<þ«|üâèa@-~àÏãçÛòç|Šë·\Y‚ñ¡ß^ÌKü®=•ó;5ÿËzZî_fÒåð{æß8¾ÞŽ÷£:Ÿþ£ãý¼šz½þs‚’8¹ "ÿ'Q(÷çe-ñ0ß².!M¼§Âù^K†³Hg;¤ËÑ’û–‚sQ®Ø ½>KiÌ-þþxoÇwdž%þÉ–PœS²„oB¾Hø?ZÊÕÄó_0î³”Ç÷ÒR!5Ò‚Nó=ó³<ëcýlí“òG~É?ûÃþ±¿ì?åAùP^”Ÿ”'å«äMùSÔõEýQŸÔ/õMýj=€ø!žˆ/âø#‰OâUâWÙ;ñM¼ÿ´ç_Ø‹´Ú“²/ÚíöHû”öªüë¶¿Ñ󗞨‡·³”n87eªãü˜Úϧÿð‘›:¿e^B^¾‰—ƒ/®'r±Ö}§Kÿ¢¹ã®/§C|µþÉý“ÎG ¿ñRÎkšã9×k-ÓÓþqÿt½ 'ynØ?ò"ôØ$ ôµù&ÎF9~öLBþ‹ð7âøÔ⡇ɵX<§Â’è^Ÿ%õ½¼% öe^‹àœŽ¥ôt¤mØÏ±aÿÂqRçÃRò·Të Zû$ò5؃òMÑ?KË1h§-ü1,žv1£¾n§ÁWOøA[¢üñ¾7Ƨ–¾Eô~YúAÏ–~رô»öiùžùYžõ±~¶ÇöÉù#¿äŸýaÿØ_öŸò |(/Êò¤|)oÊŸú ~¤¾Ôü‚ú¤~©oêŸx >ˆâ‡x’ø"ÞþˆGâ“x%~‰g‰oµ~OüÓh´ÚíIÚíMÙí‘öI{-Ö ÏÍ7t¾Ôy<é?¯Æ瑟óaîÿà|òzJ—¯ï Œ—ÔúÃü>©ýÊ¢ò÷®Îë߿qøõ[ ¿}¿Sðcô{>r÷F| ÿì£!o{>è¥&Æ7j=‡ó·¥ð|üÔüðM,ý¹%.Î÷XÌzà_Ç—Yfày¾Qzý–¹¶¶@¹`Œw,å£\µÌ õp~ÀÒtÞoK›5xÞqj,=ß¡\¬Z†ÀÊ2*ÒãÄ2~ –ˆ«c™ý|ÍÇ~«eÑR¼_Šx[–åˆcYùùVÃoɲ枯½Šç뚃¯uSNó=ó³<ëcýlí“òG~É?ûÃþ±¿ì?åAùP^”åIùRÞ”?õAýP_ÔõIýJ}Sÿ ÄñBüOÄñFüI<Ÿ ¯Ä/ñÜá/ðNüK{ }({¡ýОh_´7ij¾Nû¤½º©×£üiyþ.Æ9Êÿ*~×|Ç¢ÝvOð|’ôûå~Á-ø)¨ìX7ð ‚ÿ‘š¯ Gÿ–=A¿¹ßñ´míÿ*/µ^ê¬ yr½µ7Ö ý§á¼ÿ&ìKøŸ¾‡4¿·q°>b1Msx–ìåõú,…¶ ŸïaðÉýC®/öÀ¹¿™Wt¾üv=ÕËûÝi ¹püÌýÑøÃø×Ãù9µ¿2«‹^ÎûCÈó«÷ò{‚k;-–dÛôç–Ìðç³Ø½ûú#Íñç—6Ç~¤¥ã%ÐÞ8ïj ¿aËxœ°Ì@|GËBìZV­B}›qÎØ² ë/–ƒçPþ¤\º|Ñ>î¼AúÆY–ð#²¼•xÿ” ï¿ ÖË[c ÔóYãaÿÑšþÀVoœûµ7ëíYÍ'[}ôpÐk"¬ÏXƒk=,{4üsšï™ŸåYëg{lŸüHþȯâŸýaÿØ_öŸò |(/Êò¤|)oÊŸú ~¨/êú¤~©oêŸx >ˆâ‡x’ø"ÞþˆGâ“x%~‰gâ›ãy‰e´Ú í‡ö$íKùßÐþh´OÚk>ĉñõ¾2×›éé2ëõk,¾‹¤¿î‰¨çý@ðÁõ@î6‚ߌßÐ÷àgUðI&®_¥x‚þ—Â~žõÄ \ßàï!×C¯´ÅóOrþä½zàø*ü ÔúL@vúOt ÝmˆçÆýÿøôzüsÅFÿÂ*¡_­qŽ^Í_ÖJ?ˆs ‘ïâjX¼pUÉ/'öÓ-%°gq¶Ä{®¿Ô{†÷œŸõÊ: çì,“ ¨—óAη7D=ü>œ‘ßëØG´ÎéXÍúu8kòE éïèõZ³Ã_ËšëÖb5ñÜ7žÛ1N²u×ûoH…|å+ây•‚ÈWñB­uv‚6À9Hkã=z?¬ÍV¶,‰ö[×B¹¶Ø7¶¶ë…üíñ=±vÀü×Ú~™*Í÷ÌÏò¬õ³=¶O~Èù%ÿìûÇþ²ÿ”åCyQ~”'åKyKùSJ?ÔõG}R¿Ô7õO<Ä ñC<_ÄñG<ŸÄ«Ä/ñ¬ðM¼ÿ´ÚíEÚÚ£}ÑÞh´GiŸ´Wß³v½>µßÖã®ÇùE`=ͯâ&ùÍÌú¹ßÏùp"œ#õ/>GÏï_½øäz#÷`=”þ–ø !Žw²ÃÊR\î£:} ¿Š£‘¯Ánäk?KßÂHF\iËÌx¾ q¯Õï÷Ì[,gä<îÆW¼rÏ?èןX¬±—êõYƒôö­)¼ð<âLYs#¼µ¨¿úuÖûoub^fx­„ù§µü™­ K! #ê¡ýtÿ¾µ—ßö‚üƒ¥½ G|?ë˜T¨o<Ök­“õë\-Öi9ð~ÆfÐY÷ñ|ÖO­óÌàk¾AÒy’âܯiùžùYžõ±~¶ÇöÉù#¿äŸýaÿØ_öŸò |(/Êò¤|)oÊŸú ~¨/êOê“úUú¦þ‰âƒx!~ˆ'â‹x#þˆGâ“x%~‰gâ[â]ùÿÐh´ÚíIÚ—š¯Óþh´OÚkvéÃõ÷szý¾r]PùçyŽòo°®¨üƒ­Ñ>÷鏿žÓ߀û»\ŸÈý.”òâþ'÷OùûØã Kß1x>F®×rý•ó­r%ãY[.ã> 5~{dklœW³šÏš ñ#¬ÙŠƒrëQ¬£XO`Þf=5åÏ`œi={H—›õÎiXÏÃÏÁzúPi¾g~–g}¬Ÿí±}òCþÈ/ùgØ?ö—ý§<(Ê‹ò£<)_Ê›ò§>¨ê‹ú£>©_ê›ú—x >^ˆâ‰ø"Þˆ?â‘ø$^‰_â™ø&Þ‰ijžöBû¡=ѾhoÒþhÊ>i¯]/êõ(šìX'ñý†smÊ‹þþôçiíL„¿‘Z?þCjÿˆþH9åújé–è_X<ç|¦~—Õ~é¨uxÏõQÊSÕûe9Ñí\Âû§þ¢A ñ{kMÖú˼z.€xYjü„x×Ö i‘®=å8ÞìØå£NêíZ‡ ˜uü¨¬Ó·.@ü[ëJü>[7¯ÀºÓ ù‰ÿc8÷d=ƒ{2¬—åxõf,ä»×åËïÝ ÌǬo_Àú!Ê…v¿aÖæQB/g‹ÝF/g‹‹øÑ¶x¸?Â5Þ'@|2[‚¨›?¥ùžùYžõÉúÙžjŸü?òKþÙöýeÿ)ʇò¢ü(OÊ—ò¦ü©ê‡ú¢þ¨Oê—ú¦þ‰âƒx‘ø!ž¾ˆ7âx$>‰Wâ—x&¾‰wâŸö@û ½p?Žþx´/Úíö(íSùÓq}Þ¤y^F~ÏýC&è|û·_4ý{÷ÁŸ]í'y~F?Ó–ß €Úná9×á>KÜë¢ö3§ÅE~޶O€œŽ=ÀókÒOâÙd”ÿŠøëVúmM(µ^Só#µ>Tçö¬µJà}³[z½ÖÎð³³öC<ëÈízûÖ)ŸðœãÕU‘Þ‚ý[ë^¬ëXMD9~ÿn`œf}ýY_8@ßoE=ßpîÖ¸´yáþ›6SÏgKÿ[jŒ+méáO`Ë’ Ïs`œjËÝÏóé×ÂYl‹#áNÈW4ùŠmG¾â8i+x¡¶ãÅOi¾g~–g}¬Ÿí±}òCþÈ/ùgØ?öWöŸòPò¡¼(?Ê“ò¥¼)êƒú¡¾¨?ê“ú¥¾©âø ^ˆâ‰ø’x#þ‰Oâ•ø%ž‰oâø§=Ð>h/´Ú“´/µÿFû£=Ò>i¯ÒÞïÖ'üŽE€Î±!ÿLŒÛ•¿Þë`ðcÄøMùM‚ö¹_XmúMÿ£Þyôö,c»ãýü(ôocIЃr¼rIú'=Æ>ºúþr%u*È7×j+øu6+âØoP_hrÔ ?K[ÄͱUÁy#[uÜ#e«9ÛêÂÏÁV!Úiˆx¶FX§±5ÿ¶&³ÐN“s‘–åYëg{lŸü?òKþÙöýeÿ)ʇò¢ü(O)_5^ ü©ê‡ú¢þ¨Oê—ú¦þ‰âƒx!~ˆ'â‹x#þˆG‰Oõ}'~‰gâ›x'þi´Ú í‡öDû¢½Iû£=*û¤½v !eôzÔ÷œç ß&A½æXà#óFðIÿú ×¶ƒr~10ﹿ°çÛ•Â)øÛ*ιÄõÏð›°–Xéñ“|+7m[5ÿê?]ëXÄ °Îƹ55¿Û†q’šr~yçx¬Ï;ãù'İÅK¬×c3Cï¶T¿ú>åÕ¯þνFÚë’6W>½[dQ¤+­¿i[ƒ{¨¿9âÊÙÚVB=/ÈÖó:[oYï€_@‡`iŽx`¶Q8¯g»å'@O¶‰wñ~2âŠÚ¦4Æó©Øç±M…=¨4ß3?˳>ÖÏöØ>ù!ä—ü³?ìûËþS”åEùQž”/åMùSÔÔõ§ôIýRßÔ?ñ@|/ÄñD|oÄñH|¯Ä/÷ï8¿³GoWáŸö@û ½Ð~hO´/Úíö(í“öêñVÔy™v.úÏ(Ü’­ôþXÂñûªüû¸ÿG®Òq?î´\‚Ÿ‹Zü9i ?®g^ys™È4—þÞ–þ~¶"XVø öE¹òåõvm5qÇÖþE¶Ö¿­óAШ¨gÐL½?¶‘/‘üõmÓ+ƒÎm…ü‹Ó 8Og[‹ßwÛFàĶqŠl;¡wÛîÖàcâÓÛ Ðåk; Ûaœ°ùŒvŽ"N‚íè™Y?¥ùžùYžõ±~¶ÇöÉù#¿äŸýaÿØ_öŸò |(/Êò¤|)oÊŸú ~¨/êú¤~¥¾©…âƒx!~ˆ'â‹x#þˆGâ“x%~‰gâ[âøWö@û ½Ð~hO´/ÚíöHû¤½šÎè|¨ïùþÖz»þS0/²„ŽB=r}þ{Ã÷Ð2~±– —À×aÜÛ¢ö_㜚5î%±¦@|Zk.Ä7VëÜ߬-÷‡¹ÚqæÔïç<ìX×…ãù^Ü'£Öooc¾b}…8ÖHÛŒuôr¶T¸/Á–q—ÕxÐ:UÏo Û®÷ÏVqºlõ¯"«KxÞµ-Òýà`є߷Y8Gd[ ?ÛjìëÚ6D>ñNçÓvà5Ú;ùÙήB¹ËÀ‰íÎÓÛî.}” ü?+†ôËKH¿5ƒÏ÷—Pÿ§¢¨çKf¤¿ÎE;ß6 ß÷j¨ÿû˜Y?¥ùžùYžõ±~¶ÇöÉù#¿äŸýaÿØ_öŸò |(/Êò¤|)oÊŸú ~¨/êú¤~©oêŸxø ^~ˆ'â‹x#þˆGâ“x%~‰gâ›x'þiÒ>h/Ê~hO´/ÚíöHû¤½–¸‹÷ØQë7œ¿•ú}¯4úæü± ÎóÛdüuÛàH{‡úf%Fþ%GA×gÝiDýå:Ô© (O<ß–ëDçër°½Î„zi/?pÞÂ?…^ÞîïƒÝ~Zödð´§‚¿=î·±gš¤×cÏŠñ°=ìÉžñwíycæÃ¾Ž=?ÎGÙ `Û^ [ÔOi¾g~–g}¬Ÿí±}òCþÈ/ùgdÿØ_Õʃò¡¼(?Ê“ò¥¼)êƒú¡¾¨?ê“ú¥¾©âø ^ˆâIâ‹xSø#‰Oâ•ø%ž‰oâø§=Ð>h/Ò~hOʾho´?Ú#í“öÊïyè=<§¿\z9˜ ócÙœù/B;ôïýøý¢ÿ0Çô †_¿µÆô§ üòÔúä„sÃâ"(¿ëuÖ£ˆ»¥ÆG/ºBÏÜÏáúj†•x^÷w«ñX8âËØj4…^›­…»`ŸÞ60§ÞžmœÏÍFükÛòAHóûÁñçÉV Wp¿¢íÞV”ó‚¶Oð«·Ç^¨§íÞàמë‘öÔ·õrö̈‡kÏ5C¯ß^°*ÒÅã½ïPPÛÔçÂz³=tòE"<Ö]ì•Ä^va¯¡!_-¬Ùkã+{øCÙëV”ëÚ*Í÷ÌÏò¬õ³=¶O~Èù%ÿìûÇþ²ÿ”åCyQ~Rž”¯’7åO}P?ÔõG}R¿Ô7õO<Ä ñC<_ÄñÇý?‰O…Wâ—x&¾‰wâŸö@û ½Ð~hOÒ¾hoÊþh´OÚëpÄ•PþñœŸÓž¿wö€~¹2åÏGÿß’ð[³†!®©µnðÇùÇ2xÎýÇUÏQÏžS¨‡ëç‚ÊýQ›!'hZœÇS¿§~ðÿµEàÜœZi9zêqtØD”ãúç{N yϹíül×ð»k{„s†¶w#õüvúsõýIÖMoמ÷&ÛsAŸöÂøÞØËà^{ âÙÛÃÈ_q3ìÕ±.d¯‹øö&8GaoU´=ôlïyÚ{NÄó>ÇPÏ€1H†ß‡}Øaä‰ó¸öѸÎ>çýìc‚Ž‹|ãŽfø)Í÷ÌÏò¬õ³=¶O~Èù%ÿìûÇþ²ÿ”åCyQ~”'åKySþÔ‡Ôõ¥ôG}R¿Ô7õO<Ä ñC<_ÄñG<Ÿ¯jŸx&¾‰wâŸö@û ½Ð~hO´/Ú›´?Ú£²OÚëÆ&º¼Õ~:ÏõŹrúß+ÿœ,Ò¯¯TIЈ•xOÿŸ.»Á÷ˆz½ÊqÃ*<çþÃ5¹ùçzmqäº ÷;9ÿ)O/o é‚çÜ_i!ç…”?×g§#>«mÙÈ+ö)m‡G×vqßl÷/’óE{¬lz}vã%½{ªì ÙÌzy{ÁÑÈG¼9OÄ^q¢íÕ°¾d¯õ'{Kœ¯³wÄ>’½'p¤ìa¸´Ú×Tü®Ûgc¿Â¾àêY†}Oû*øÙ×!.¾}Ó1¤·á^5ûÎ(¿ ãNûÄïµïÃ}öý¡¨gÿ'Ð…£~Jó=ó³<ëcýlí“òG~É?ûÃþ±¿Ãÿâ÷ò¡¼(?Ê“ò¥¼)êƒú¡¾¨?êSêW­PÿÄñA¼?ÄñE¼Ä#ñI¼¿Ä³Ä7ñ®ðO{ }Ð^h?´'ÚíöG{”ö©ÎËÜZ©?Wósž¯Ÿ6íeÚ‹úø{A]îïuCüvë(yŽþÆô8Ž8ŠÖ;Å‘Oú')ÿ®WÄù›ã5[…/Hs?•ã¥!O@§b¶ ÷ªÛ¶mÁs®ï^Í„rO‚ðü3üøì ;ê|ªßû,ØUãC?ø=Ûƒ€V„ÿ¾¯¶£÷ÏÞ¹¾Þõ½â÷lB5½}ûLø?Ûἓ}UÞoB|YûNÜmß/ðüü ìgà¯i¿ä÷×qÏœýN\Ðð›´?)ˆvžãþvû«Qxÿßû{ÄÓ³À>ˆý#ÎÚ? AûŸ¿O¥ùžùYžõ±~¶ÇöÉù#¿äŸýaÿØ_öŸò |(/Êò¤|)oÊŸú ~¨/êú¤~©oê_âøPx!~ˆ'â‹x#þˆGâ“x%~‰gâ›x—øWþz´Ú í‡öDû¢½Ñþh´OÚ+ýgÞâžluV®·[ðŸi­8nÖ®ðS³ŽÂùvåß·Í‚üô'¾?ù¿à<Ú_ÌŒ8ÕÊ¿)$r­ >ÕúF_ø³ªýÓ…¸çÁ¶÷¨ßWίžl@ù/¡/Îϸž“ñ)í%"‘vô-ïÒëQóË–ËôzìÝ‘ ¾Á=NõE¾׋±Îa_— åv n¦ýâÓØOeDþK¸/Ç~»"Þ?v!ÿ+œóWöôñµâá~˜ïZúûm>hÒNz½)ÏéåÒî͈ý‘€,ð£ Ȇ¸Û9pþ7 Ws¤sãÞÈ€<˜ä©4ß3?˳>ÖÏöØ>ù!ä—üËþ°ª¿ì?åAùP^”åIùRÞ”?õAýP_ÔõIýRßÔ?ñ@|/?Ä“ÂñFüÄ'ñJüÏÄ7ñNüÓ¤}Ð^”ýОh_´7Úí‘öI{åüœçcÀßò~¤ÖN˜)|þ~lC¼bµøÐiú_%º‚~g?­?WëôGâ~DgÌïlCߣß3¥_"÷;8:û¿m®ã½\Oµ{!.µÒ×oK=ƒ~ƒ[@¯U†éíØ»@9Þë'ç—cp?”}&üÕx’ß“½¸É~b¿Îý2úg¿×ôÅÔ#¿±áOàu’€$e‘Nƒ{'2ã\m@î´z "Þ@@ M¯/À÷ŠÞ^€½Þ»ã}h/ÔÙé_°~Pó¦€*ÃQo5¬ûÔ@<ယ8ÏP+ê­UÖOi¾g~–g}¬Ÿí±}òCþÈ/ùgØ?ö—ý§<(ÊKÊO'(_Ê›ò§>¨ê‹ú£>©_ê›ú'ˆâ…ø!žˆ/‰7µžO<ŸÄ+ñK<ßÄ;ñO{ }Ð^¤ý(ÿ:ÚíöG{¤}Ò^¹¿Fx®·óü;Çû<Ÿsç¶•ÿ.ýã^åàsoÊ I1ðÏùɘÈ7÷¢Ø6£]å/ÁýÏ×ð¿±ÇÊñSŽ8sI¬ûÙƒ¾AU[èý°7í}wEœJ»Ü÷°OBöCšbÿ% 5âÏt@<¼€®PO¯²h¯/ü»\C¹ÁX7 6åG .^À(i/£±~0¦òÁ}*Í÷ÌÏò¬õ³=¶O~Èù%ÿìûÇþ²ÿ”åCyQ~”'åKySþRÔÒõG}R¿Ô7õO<Ä ñC<_ÄñGaµ‡"ÏÛÜ=ôœwUßãœí-àCîTØ>›aܯü‡8>á~ãNy^è ÖílJ¡Ÿ×Cž\ïàúgáäxÎõÒŠAù{Û÷©õÚ)8ÿg_‚8­ö͈`?8ô‚\çåïÿÄÇð€?Q€ñžþ> U¤9-„ýD…?âÛübÑÛUß»†X h@ïG@g¬+Daþ0hòJŠò7/`zUÔ37Dç;`Ѥ—ï7` ü”6`6`óKäÛŽø´;—£þ]r|¼§òíÅ=Éû¤}ì[êñSšï™ŸåYëg{lŸü?òKþÙöýeÿ)ʇò¢ü(OÊ—ò¦ü©ê‡ú¢þ¤>©_¥oêŸx >ˆâ‡x"¾ˆ7âx$>‰W‰_âYá›x'þi´Ú í‡öDû¢½ñ{.íQÙ'íu=ÖÔz;ýayÞý#â˨ù1ýóý~AšþþÜÿ£0ýƒ¸¸ñ“mnâùÓÑ#÷’ ®›ò(#ÇQr?”ó£vŸ ·þrœ6çìí‹‹Ÿôs÷9©ùÚ£)HËù]@‚õz}Érèõ©ù#Ç‹þð+ AÜ€ÊXO ¨Ÿ´âmtŠrý‹áùHÌ&#>UÀœJx¾¿¿k{ ÜV™o7âY’óÕ“XG 8óÈW0¿ ¸yÏïa$àâ<Ëv^"NeÀkœã xÿá€÷{ÀG9Îøx||’vÊ4ß3?˳>ÖÏöØ>ù!ä—ü³?ìûËþS”åEùQž”/åMùSÔõEýQŸÔ/õ-õ¯æûÄñBüOÄñFüÄ'ñJüÏÄ7÷ã$þ•=Ð>h/´Úí‹öFû£=r~.íÕzSî—Œ¥—SþïrÿÜ– þj¶RÒ/¿\PžâïËĕȷþ2¶½ÒŸ÷r ä{ó¤öxذ§Äï¾òo²áüšZÏl*ý–ztÃóQXŸ°ÏÁ>»Oq}õbf¼„ý~®÷xâÞƒ€”à7 'îY (¢çpàw7 üûêâ~¥é—ÐC® ^‹|ã÷àýlÜó° ó¥€(¿ ó¡€#Í‘ï,öu®!žMÀý¨÷9âæ¼“ëd_Wé|ƱêõzVÒóšÞày’$ )°^˜æ6h†‘z=™w‚fk š~–¹à§˜{ òç©„tž ?§ùžùYžõ±~¶ÇöÉù#¿ä_ö‡ýSýeÿ)ʇò¢ü(OÊ—ò¦ü©ê‡ú¢þ¨Oê—ú¦þ‰âCâEíOÄñFüÄ'ñJüÏÄ7ñNüK{ }({¡ýОh_´7Úí‘öI{åz;ýã.Éó­b6ê¥-Ïßp>0^žÛ[¶ï÷l¥ÿŸô¶ÇÇ|®oÿGÓB8OjwÖD¿èŸÐz1äÓqÕí“à7¨Ö?¸z ñíwå~³ÜQßßð'ȉ}É€RÙ ÇàÜÐ_•CH7þŽ|¢Üù;>÷_ÌÆý£+pîV}_à|kÀ9½Žû¥Ô÷ë\Wú†{Ý4ÐËj8ÿ˜â£^O`FÄÏVö“ÿÒÅ ¿À2Ø?´!ŽU ߉ÀФ½(ÿ{Úí‹öFû£=Ò>i¯ª@þz ¯Én¤[{ Þ»ð¼âÞö:€òý¼‘o îËšχÿ(pâá޾¥ó86 Òcï!=çUšï™ŸåYëg{lŸü?òKþÙöýeÿ)ʇò¢ü(OÊ—ò–ò§>”~¨/êú¤~©oêŸx >ˆâ‡x"¾ˆ7âów‰O…Wâ—x&¾‰wâŸö@û ½Ð~¤=©ï9íöG{¤}Ò^k!N²:ÿÎó­IœxÏóuÛ’£þ³]P?çǺ;‚ǯþ½\?àú!ý;"Þ’ò/˜ƒóföX—±Ëýû­ÂHsýÙqÒœÑóäÿyÛp?¢_5J‹|\áúíÈIÍß¶"{Àáu(wé2Þ?”ã;9¿ Œ»QO&Ê ó˜>9žs¼Zñ¹ÃéõVÁùßÀzØ_ l éŽð×ì…ùWàÀÔ32 ÒšáýtøoÎÅü1pq]¤Wà÷:p-Ö§7^Ñû¸çwà\Rà.È7p/ö3÷aÝ7ð¾Cðý <˜ÛòSšï™ŸåYëg{lŸü?òKþÙöýeÿ)ʇò¢ü(OÊ—ò¦ü©ê‡ú’úSëÔ/õMýÄñBüOÄñFüħīZŸ'ž‰oâø§=Ð>h/´ÚíKÚ›šŸÓiŸ´×!ˆ[¬öÏy¾Ý/žÔÛQëy<”¢(Úãy úûó÷‡ûƒÃ‡Ù>÷øÚ’ ”û\Ÿü¼ò3Géõ¨ýMîr=„û­m§& âܨõVþoÉ‹rGòã9×sžà>§€/uèmÐë L‰{s4ÑùVãÇ€Øz¹À²8wXþMc£¿O½¢ÜÐóz»r!߬¸xO¼¯ @}[௸{Ò‡ðûxò*øº€óÍ×r¡Üí‘xÿ -ê}ré—¾ñF¹wwþˆó“Ÿã~A¼À¯ÿ_«dø)Í÷ÌÏò¬õ³=¶O~Èù%ÿìûÇþ²ÿ”åCyQ~”'åKySþÔõC}QÔ'õ+õMý+<Ä ñC<_ÄñG<ŸÄ+ñ+ñL|+¼ÿ´Úí…öC{¢}ÑÞ¤ý©óq´OÚ+Ï»MÅyOµþF8ú$ÂxÞžþIv;öÓÔ|¡=ÎÑØ‡Þ‹u û¹ŸHÿ¡ˆKnÿ&×O8ž¡÷/Ê Ç{îwptöÕüiâ¿ì¿zñò=–û´_C_è—ë=yO:°L¤CZÍ'Ã//°#ö=ûâ|ºŸNƒAà"ÄÁ\‹{_w NWà¡‚Èwçq¯.Dúü±Ÿc%ð}´÷ þޏsô´Ã;½þÞáƒøZŽd£ôv©ûêí:Ò¿Öëud¾†|Ùí ¹°åȃ{(ùp_#?âT: àXGœKRi¾g~–g}¬Ÿí±}òCþÈ/ù—ýaÿTÙʃò¡¼(?Ê“ò¥¼)êƒú¡¾¨?ê“ú¥¾©âAâCÙ;ñC<_ÄñG<ŸÄ+ñK<ßïÄ¿²Úí…öC{¢}ÑÞh´GiŸÊ_†ûçûqÞö ñ£m£Oëï•?-ÏÛq}¯•ägîë´ÏÂú¤ò÷áïý‡¿W@ÿ’"¾ªò7°âþåÏÔÜÚ»äÇõÎÅo!§í2}ªÊÝ-©×¯ÆÏž)¡ßT8gªÖ{}+"†s«j}¨…€Þ{`½C}¦ Ž]à"‰›õ8W ¾7'áùܯxþ¯¿ßCGüvzûͤ—w¤Äý6ŽŒØ—t伉ç;ãy‰º\þO:ó¡žà:_Žˆ­H—/©óᨌøvŽjˆ3í¨9 ùj¿@º.ö•õÓ¡½úñ¼¬—i¾g~–g}¬Ÿí±}òCþÈ/ùgØ?ö—ý§<()/5ž <)_Ê›ò§>¨ê‹ú£>©_ê›ú'ˆâ…ø‘xRãyâøÛþø$^‰_â™ø&Þ‰i´e/´Úí‹öFû£=Ò>i¯^8ÿf{)Ï·ÒNÆ·Qûq7!Ý'“η:ŸC]ÎîžÓËÛ¿nC?“È}OúÛ¢Ðß*IÑÿV¸—WíOr~³òÊÓ_â~ϸ>è}xµ¿’ ÷Ÿ–¬½ñ÷¹öá[ZõvÔ|nduÔ3ñ.Ôüp;Îñ•Ï/WÆóW¾Ã:…#ÖUFĉt¤\¥çwdy¤çWß¿’בß>4þGŽ Ðƒ£îËq4À:£9â9Ú!ž¬£ Æ‘Ž^ñPo?àÌ1hè°ex> ñúcÓ€ŽÇý.މðƒpL‚}8&#.¿c2öITšï™ŸåYëg{lŸü?òKþÙöýeÿ)ʇò¢ü(OÊ—ò–ò§>”~¨/êú¤~©oêŸx >ˆâ‡x"¾ˆ7‰?µ^G|¯Ä/ñL|ïÄ¿- iÚ‡´Ú²'ÚíöG{¤}Ò^‹¦ÿ«üól÷pÏ’:O;ë‘öåÐ×ûnú Mù]ÎÙ ”¿O•±®ªü‰\C¿éDÿ„Cväç~Æ©„5!×4ˆÓ£ÖKpn%°R2è—ë¯Ýå<ë¹Ôç*øŠ}Hsþw³7ôÈùãw¬ó8 +ô´#öqÙ±_ã(2Co×aÁ|Eá“ß³z&G ü^::aÈ%q>þÕŽÑØ'Uö5 ãCÇBèÙ±ë*޵‘“lw;âç8váÇÞóx~à,Ú;ìDúh~¼?6 ôxM”;>wÖOi¾g~–g}¬Ÿí±}òCþÈ/ùgØ?ö—ý§<(Ê‹ò£<)_Ê›ò§>¨©/êOé“ú¥¾©âø ^ˆâ‰ø"Þˆ?âQâ“xUø%ž‰oâø§=Ð>h/´iOʆöFû£=Ò>i¯µàÇḃò<¿n®†ró®¢>îÏñüÝëµh×€ó¬YÓ‚r>Aÿß–Ò?“û‡Ó±?°ñ•ÿÁ­èç9ï1â§ÀL{!W®r¿”û¯íáO£ÖW9þZ†ûÚÕü줜WÝ’ûT¯õ|ŽØ£ôòŽDØWPãCÎ?9ž KŽ÷UÌÑç†íÿÑ…ßQÇÐÉz»Ž Ø×pÌNº4ž¯“ãÒíðÇvìƒãØi”?‡ûÒWã!ßíHä{ˆ8?Žgð«t¼zúÞK¾>-Eù¯kuy:~à|‚3Æ¥ÎØ½Žƒù³3ΔÚ?¥ù^ægyUëg{lŸü?òKþÙöýeÿ)ʇò¢ü(OÊ—ò¦ü©ê‡ú¢þ¨OêWê›úWx >ˆâ‡x"¾ˆ7âx$>‰W‰_âYá›x'þi´Ú í‡öDû’öFûSöHû¤½©Œ4ÇëŒoCÿvž—‘çéâöéZéåÕú_Yø)¨ý¿¾Xg ˜Úüð÷Šë·á9÷ƒ5œ×Wû•\ßÐ!DÓFqA»á|›Z/™‡xÍÓÀø·!ðZs¤åïµ#Öè9Ñè—ë?Eªéùõðþ—wzûê{Ñf¹._G/œ³q ‡_¡cŠüÞ-Ä=Æê{µ3#Þó{wVÎ_o$@ú¡ü>½Â¹wÇgø%8cKê¹RoשMÓùv&û¦·ëLƒqŸ3Sj½¿ÎlñÜßàþçRÄ‹ ±ÿ,Æij~%÷k&_è+ƒ\×)„{I•~9¿kè‡÷q>Ø1~ÍÑóK䛇{$kéí8Däç÷çòBÇ}Œ‹¯¡ïIõ|΄?9#¥Â¶ØxO{)¶i?œ“râþXgÖQe߯Y)1òU»¡·ç¬ézXïr6ÄxÌÙû%Îfmn~éð×t¶@œJ•æ{ægyÖÇúÙÛ'?äü’ö‡ýcÙʃò‘ò¢ü”<)_Ê›ò§>¨ê‹ú£>©_ê›ú'ˆâEâGíÿ_Ä›ˆ¥ó¡ðH|¯Ä/ñL|ïÿÊ?ŸöA{¡ýОh_´7ÚíQÚ§ÚO»1]¯Î¯Ò¿]î—+ÿË<ðQ­héwËó9\äy «;PNúšJ@.üý’~ë௣üúåøgUiPúKp=ôúëˆ[úHQúÉýúâx¬ì=¿Zïíð ùå¸Ê1©„./Ç"ø7ªùâÁT(!%Ò÷¦ ž7Óôrj|k½OÎT“õúÙ×ÊYHâ¶ÌS¤á(W6»^³jG䯇xÛÊžÚáþig×âzûΨ½(?`7ò+:ë;Îñˆ✌ûžœÓÊ€Î8…vfaÝÅ9't.ü0œs¡G•æ{ægyÖÇúÙÛ'?äü’ö‡ýcÙʃò¡¼(?Ê“ò¥¼9_úPú¡¾¨?ê“ú¥¾©âø ^ˆâ‰ø’x#þ‰Oâ•ø%ž‰oâø§=HûPþó´Úí‹öFû£=Ò>i¯^ˆgn¹ØOoÐËÛ7Œ@=©_ê›ú'ˆâ…ø!žˆ/âø“x$>^‰_â™ø&Þ‰Úíƒö"í‡ö¤ì‹öFû£=Ò>i¯<¿.ýÛÕúúÍäï†qˆð¼í1ÜÛðíÆF¼rµ>HŸÄ'lÏ{„ø{F#ú#Ýr€~,=˜vƒfÁ>££ü”ß¡7î¿r…ó-®¿¬s!ßœƒw\B=¥ï¯-t¾FÌOœiéïyëõ¨ïÇ—UÒÙç%œààìSùFtÕùwNA\9çüVH¯Jô–¢ {p’ó(Öe犢ü5ü;ïb>å|’ù_á<…ó=î§p~¹¬çwyê|¸â¦Ôó¹`_Ôåå¡óë2 >™Ëˆ¸•.SKI·Ìú)Í÷ÌÏò¬õËöؾâ‡ü‘_òÏþ°ì/ûOyP>”åGyR¾”7åO}P?ÔõG}JýRßJÿÄñA¼?ÄñE¼Ä#ñ)ñJü*<ßÄ;ñO{ }Ð^h?´'i_´7e´GÚ'í•ñp¿&ô­Î7.Àý»§5àšÜŸ“çwÕ~^>Ä“ * >éßKÎ?VvA>ú'sÿácgȇþ ôoòC»ŽòÝA›".•Z¿"Çıwì(‹ôéüz{j|öq4ôî Ü:ÓbÞ£æ{þ[ôöœ‘8ã¬ÝÏ[}Ñësö2éõ8‡Ï@=Sãùâ¼HoÀï¿s÷4<ç÷íÒ ´sû/ÎçÏA?âwß þø./èÇ•û¾®”+ÎÐG¯Ï•m'ÒyĽ®¢8/ì*‰8._ÄÉvùŸÂ{ë#ä·c_Ú|Ó~Nó=ó³<ëcýlí“òG~É?ûÃþÉþ²ÿJ”åEùQž”/åMùSÔõEýQŸÔ/õMýK< /ÄñD|oÄñH|¯Ä¯Ä3ñ­ðNüÓh´Úí‰ö%íMŸ§=Ò>i¯ôooÑù#±ÿP~¥'ßè|(úseÁ9¶@‹´â9*ÿ]®.‘~ƒ{΂oúKBõ=Îîê¿GEŒ»-ä>2ý¦ ›cUI<߇¸³j=åâú¨ý®ÏæB|uõ{ûŵå8»-îSpö…ÿ°s,¾Sjþ¹¦1òïÊ¡·ï<{]Ô÷è1ÆIü~¹b?ÑÓê{˜².hfÄråŒ|ÅàïïòÇý•.'Æc®œ3pUÄ}T®ê5ôö\uS‚6*ƒrÍpžÊÕ qõ\í0¾uu8¨óíꄸà®.ˆoíê ¹ººÎ›õSšï™ŸåYëg{lŸü?òKþÙöýeÿ)ʇò’òSãÊ—ò¦ü©ê‡ú¢þ¨Oê—ú¦þ‰âƒx‘ø!ž¾ˆ7âx$>‰Wâ—x&¾ù=§?-íöA{¡ýОh_´7ÚýáèC{¥¿ëDüþ©ójŒ?Cÿêet>‹à~uþ¶¹Ü§ˆsps'-p›ô³¿ Ïß¼ò…\8?Î8‡o<È…ë“-°/âèßò˜†û%k·NÍnâþî§:½qÝ™!'ôÅù—«%(×o[â¾7goìÿ+ýÏ“ëÁœrþÈùæ=ĵq¾=ªSWœâ >)@Ó!Þ+w1½^Wñ6xn‡¿–+¼ÞWÞ©ó窋û)]Í“èí¹ÚßÐûáêóK®~Øu ] :çp\áßéšžåg#>žk¾üîëjŒ¦KqŸ›kü%]+'"½ª/ø[…óG*Í÷ÌÏò¬õ³=¶O~Èù%ÿìûÇþ²ÿ”åCyQ~”'åKyKùSJ?ÔõG}R¿Ô7õO<Ä ñC‰Wâ—x&¾‰wâŸósiÊ^h?´'ÚíöG{”ö©üÛ¯ËøŒg5÷6q>®Öëx>®ö;”?ÎĨ—çõŽŸD¾Gð“UëÕéð}PþÂå°ïéh Êß»iðãQþ ôºƒýµßËýQ®—–‘¿ãeq/гγ:»<×û§Æk\ï];ùöá<óÂèñ!î¥q~ŠÒÓ.Ïuú{õ=É~ºŠã\Ÿ+óFW¹Í µV ?ñËï__ÄÃs ?zh³[£ÜÄ p­Ÿ’kK}”ÛÕïbþç:†ûÓ]g "ÿ|\W°>âº!ç÷ßu·ø¼‡x‚®û~½öOi¾g~–g}¬Ÿí±}òCþÈ/ùgØ?ö—ý§<(Ê‹ò£<)_Ê›ò§>¨©/êOé“ú¥¾©âø ^ˆâ‰ø"Þ$þÔ~<ñI¼¿Ä3ñM¼ÿ´Ú×Û¥ý({¢}ÑÞh´GÚ'íUÆ«QçÕŽ‡ëÏVÉ߃²ð{ l‰qŒ:_¿pžsüpc+êåþ1Ï÷Ðß?4!(÷9?¡!÷àüºãÎJÐ/ð7Rû›/Y¯YíŸrÿ•ë+q.À¹´Ò;›áýé[Ðß?þ¢§Õü/5ÎÁ¸ò¬ÃsÎ/Ãpÿ„o6˭׫ƯÓ£ü8è,ø=º–ÂûMˆóåÚcÄûc¹Î#ž­ëÆG_×ÃFhç%ü4]Úâùw̧‚âÆ×ËyÇA&ÄïJT 館JóÏA©ö#ñ‚ÒFâyZÄÃQi¾g~–g}¬Ÿí±}ÉùSü’ö‡ýcÙʃò¡¼(?Ê“ò¥¼)êƒú¡¾¨?êSê—úVú'ˆâ…ø!žˆ/âø#%>‰W…_â™ø&Þ‰Úíƒö"íGíŸÓ¾ho´?Ú#í“öZxò'üHů“çÏ•?ÍdÄeÜ€{ƒÔy:úsyß×ó+];âæ¨ó@\OûïW˜Ñ/úßB\'õ=N„û{•“í$äÏõOî‡ Ä}oÎé8à\ˆò› <çcr½Ö÷+h ÜcãÊõXo_á!¿®Z8ãj=é¨-HÂz©k&~w]Ëåøt+⸻¾Bþs+õv]·. gMt9¸>Â"(6ö3‚ ˆï£ì'âbe+¢—ÊÛ´îg *åBÚã­ €þ(çBü° ÐÈøAe«ë|•û€ü¿à÷>¨¼ÕòSšï™ŸåYëg{lŸü?òKþÙöý•ý§<”|(/Êò¤|)oÊŸú ~¨/êú¤~©oê_âA­ç/ÄñD|oÄñH|¯¿ê{N|ïÄ?íöA{¡ýО¤})8Úí‘öI{åy5ÎÇ3Ês2ŒŸ·@žaü úÓ~_¾yþ¶DðÏó{Üÿ:ü.Àý"Ž]cÁ7ý‡9?6c=Æ™ëzNëÇY›Ü¿l‹{}C è峣ܦüxÎõSî¯|:¢çSû9™órüŒuVW ÄIwµFüJWïWÐûØJz}®yˆëèZ‡ù–k/öÿ\gzëíªñ*¿Oß¶êpLP2øIeB¼Ù ¼ô|A%jèíÙ0? ‹|´7_,¨Þ$^ˆ…'â‹x#þˆGâ“x%~‰g‰o5?'þi´Ú í‡öDû’öFûSöHû¤½ŠÔó«ø<Ÿ–çDÔù—çÒ–ç›xÞÞ ÿwå¯Ãó9\? ¿ÏYø¥«õjú{d‘þô7¬ôT¯_ý†_ò‡â~'ý%8úyWRÄiUë-øë¹*dÒË»šà žïß}s>Éñ$¿· Nèa|”å¹þ>¨Ð ½>õ=ã÷®2úT¯±^PKøIuÎŒ÷½q~8hH-¼ƒ{.‚¦`<4 ÷:-,‚çË0O Z½ù7$_›áo´mÚßñÏÎù횊ç»^ŠŸÒ|Ïü,ÏúX?Ûcûä‡ü‘_òÏþ°ì/ûOyP>”åGyR¾”·”¿úÞS?ÔõG}R¿Ô7õO<Ä ñ#ñD|)¼Ä#ñI¼¿Ä3ñM¼Ó†ëí´Ú í‡öDû¢½Ñþx~MÚ§²WúÃ0~]¤+àþ@5_æù×â¸X­ïµÃýÙê|î2y>öPGð%÷±êƒÒ¸8âJ8ËBšóú#Ò?i3æÿÎÓØ?ä~‡+¶§^N­—pâ¹ã=WuÄmvµÍŒ÷œŸMżD­ÿr~wî;(ññ÷¶yOÒÓjþ™g”ž/¨La½|PˆUïoPœj4ùÚÿ@áyø\¤''C}s1 Z‘íl\‰ò´¯ƒ¸Ï1褷^„÷×p¯CÐø=‰÷O#ýr è›™ ï>¡¾¸—'è#âb}„¿™Jó=ó³<ëcýlí“òG~É?ûÃþ±¿ì?åAùP^”åIùRÞ”?õAýH}QJŸÔ/õMýÄñBüOÄñ&ñ§ö߈Oâ•ø%ž‰oâø§=HûPûç´Úí‹öFû£=JûTóqÆŸáùóˆÇÄóæŽ¬«QžþñŒ§uõÍãñmYõú”ÿÇ׉†¡Ÿônˆ~p½‘þÄSqO›sýx¼çþ¤ü}Tþ©z~W!œvdžÞꄸž:qv\sñ{åÚ ?dµ~ËñÜ»›zþ ÏDúó Ôð_PãCÿ†z»A‘ ®ý!5þìõ ÏGÌÐû4mµÎ_Ð’\Ho”ãÝ=X¯ :~ ï/a¿!è.¾ A2žeÐû/:_A?êëõ'@œ÷`ö‹ƒ“oÁ©Zèõ§ï‡ç™_êíg_¡·œ çùƒób%8ß9äËõ€]¨4ß3?˳>ÖÏöØ>ù!’_ò¯úÃþ±¿ì?åAùP^”åIùRÞ”?õAýP_Ôõ)õK}+ýÄñBüOÄñFüô·á÷œø%ž‰oâø§=Ð>¤½¨ñ:í‰öE{£ýÑiŸ´×øø=RñçŸRÆ“Qþr­â¢Þá‡9–Éø5Ü¿“çoñä<#Ó=ŸÓ¿-ÒÜì|8ÇÎF?VÀïÞyzVó™ïˆ§¨Ö7èß4÷?»"n–Ú?å~ëÎ;×_žÀ¯>ÈÃ_Ï”d7hŽzyõûÏõ¢:‘n‡øQAý¢P~<âØÍÇ|/hݤå}ÑA§ä|ôÆ`Чãð\~ƒãÔË›Ÿ!MûÈ‚ø¯Áy;ëõCœ®`_Ô\‡ à²mP®â4䯆q\pÍ{ÈW÷ÂׇßdpCðܨ¤¸ÿA¥ùžùYžõ±~¶ÇöÉù#¿äŸýaÿØ_ö_ÊC(/Êò¤|)oÊŸú ~¨/êú¤~©oê_âøPx!~ˆ'â‹x#þˆGâSâ•øUx&¾‰wâŸö@û ½Ð~¤=©óí´7Úí‘öI{åùsoNíŸBÌõÕ’åôüA-ñ¼úÔUÎë8¾›ƒ¸j}ˆóÃ+…ŸóËïÞ:ÿÁ¦±úûàt˜·ç=‰tÄ¥†ÿBp¥oH×G|ùàÖ‘¯{]ÐðËóÊÁSNèíÏ?ÁKqÞ*x-æÁ›/áùNü¾ï+Œr‡p9øî{>‰ý¡à3­Ñþ9ÄÛ >ºÐã§4ß3?˳>ÖÏöØ>ù!ä—ü³?ìûËþS”åEùQž”/å-åO}(ýP_ÔõIýRßÔ?ñ@|/Äçë_ oÄñH|¯Ä/ñL|K¼ÿÊh´Úí‰öE{“ö§üahŸ´×~5õvÔzãÇeÂù[Çñ Ïë¡]žåy™Pįs6Ôz ÏçÑ¿çNqȃçÒ¼-‰¸ñj=’ûôG\PMïKŒEyþ~¾Á¼Oí‡r½´Ìè“û+Ír#Íõ˜‰¸V­çr=øÜu<ç÷àë½ý`³E¯'8cq¤ MÐóÛ«éù‚飷\OÚ{øÿGa?W}߈ï…ÿköáýö(wÐõ½¨Á—Ç!ßíh÷±´‹WB»_1ÿ ‰…ñ^H<Ü'’¿ã!Þð+ 1àü}ˆ ç¦CLMkÿ”æ{ægyÖ'ëg{ª}òCþÈ/ùgØ?ö—ý§<(Ê‹ò£<)_Ê›ò§>¨©/êOé“ú¥¾©âø ^ˆâ‰ø’x#þ‰Oâ•ø%ž‰oâøçù8iÊ^h?´'Úíö'í‘ö©ì•ûã<Æø‘!½‘þ¢ó£Î·2~NåóúçЗçw_#n¬K+Š~p|ÂýCžèÛ r ¿Á–µz=j¾#÷/ƒ¼*èσ2†|á÷TáôÃýî¿N—¿ÇkÏ&èÐ}<çüí-ü®‚=sëå‚Ób_$¸À…Ÿ ãôrj>Ú¹ˆÞ¾NB<Øà…8¼çàƒ÷@=üþ]kƒúÙQþ-ÎCÇú•²'Ÿz¾Tð ɸÏs`}9$ß½\Hį )‰û'C|Óëí†X°_bÇ<7$à"ê „„8‡L¥ùžùYžõ±~¶ÇöÉù#¿ä_ö‡ýSýeÿ)ʇò¢ü(OÊ—ò¦ü©ê‡ú¢þ¨O©_ê[éŸx >ˆâ‡x"¾ˆ7âOâQí¯¯Ä/ñL|ïÄ?íAÚíEÙí‰öE{£ýÑ¥}Ò^æëù6#Íóå2>œŠ_EÆ»è[AÏ看øSÎÝØpÞÂüÉå1Joו>>ø¦¿OÕ+èogœOuÏ‹ç«åy®O>ŸAq?A¾é/ƒÒ¿‰¿§-vƒ@› ™eA7âwT­·ÞýA_«ëïƒÁ¯P­÷r¼Çù×:õü ù9ÿ\žùùýáxõðü~ÁŸp/[H‚< ‰qÿMHziǹáRçpCüå÷×…û›CÊÖÑë©‚s!µqßrHCÌCš'ÒûÒúÒâè|†t®…tWœO é~Eç+¤öMBzVµü”æ{ægyÖÇúÙÛ'?äü’ö‡ýcÙÊCʇòRò£<)_Ê›ò§>¨ê‹ú£>©_ê[êŸxPø ^ˆâ‰ø"Þˆ?â‘ø”x%~ž‰oâø§=Ð>h/Ò~hOʾho´?Ú#í“öÊx27À—:o*ýÕ!ˆÃ ößè¿BÎŽ—Dú9îGTçó韂8.®&ðwp Âyxu>ˆëôþŠû†”r‘âç?M1?SëŸ3ä÷›û£Ü?}ˆýŠ`m )àO§Ög¸~ËõœVýêåÕ÷óň÷|þ:Á·S€¾Æý+!qp¿rH"ì'ªïW~œ ñE®àšÈWñìCêz6?Úñ–Þ^HΆ Â~MÈ(¬G…L¼©ó2#tî[<_„óR!Ë=Ñþªv(¿65ʯÇþjȆ¬’ø9Í÷ÌÏò¬õ³=¶O~Èù%ÿìûÇþ²ÿ”åCyQ~”§”/å­äO}P?ÔõG}R¿Ô7õO</ÄÂñE¼Ä#ñI¼JüÏ ßÄ;ñO{ }Ð^h?Òžh_ÊÞh´GÚ'í5öT¼8Ƈ“ñ¢U|Š ø½unÄ=}΋ëð\Þ¢öë9àù;îÿMÀ:„òÿáy —àG'Èõ òáz%ý‘zâ^BåÏÄýþ¾J‰àXø]Tû)œc#¸N$h'|'Ô|NCM7aœ|ë£Á7ßGÙ/ç›É3 û$!%àâB\ËJˆ;Ò0=Òípî1$ ¿ç!Ãï"d2î{Pö²".ç8ÿ"š¡ÜA9.>±åÏA{WÞƒÞ„¿WÈ=¬Ë†<\„ôÄ‹y>ž#>ÈsÄ=Ri¾g~–g}¬Ÿí±}òCþÈ/ùgØ?ö—ý§<(Ê‹ò£<)_Ê›ò—úPöN}QÔ'õK}SÿÄñA¼?Oʇx#þˆGâ“x%~‰g‰oâ]áŸö@û ½Ð~hOÒ¾hoÊþh´OÚë/ð#Wëéæ^úsÇ3Œ¿Tü:1åoÀÏgA|D£¾<Ãó·ô×ÝSCï?ý‚<°.”ë+j±J#?åi¯Ýq¯®òW§[RoçÁôz{Ê“ñ¯8ßçyÆÓ ÿ-ÏëŸD<× œ[ 2£|P^ün*`ŽgîÆûyrŸ‚ë—ôW”ñéÕþ&ý¥ø{ËýÒ8ϧö_W Òû¼?ékˆ›üqäB¼|ôúBÒ÷ÔÛSëCü^TO|­?$¤weÏ187¤¾GëüQÏœã 9øê{Çïãø‡&ðÓùMÿƒÐ´˜O*{ËÿXç7´Îõ†úãü_¨çŸBC«"]¶ê©€ybhÄ ­Žøx¡5¥ÖÂ9ÊÐZX'Si¾g~–g}¬Ÿí±}òCþÈ/ùgØ?Ù_ö_Ƀò¡¼(?Ê“ò¥¼)êƒú¡¾¨?êSê—úVú'ˆâ…ø!žˆ/âMâxTø$^‰_â™ø&Þ‰i´e/´Úí‹öFû“ö¨üYi¯óåzãÅ0>t™§:ÎWÔ›òvÅ=Ù®Jð¼K ¤§¬Æ{ž§»ŠýP5_¦ÿné[z;AÕàÔeÞOJ…~r¿ñŒ\¯|‰xìÁFœw ÎY”ó£ÚÒ©ë7È}|!©§Ûz=jå&â'”ó@ ç}C²g×ß«ùÝ/¸o4¤1ægj=‰óGâ‹óSŽ?/-Öûò¸0êýŒßÑPOÜwš~È¡YáŸZçCý°ôéòXg ­‰óL¡pÞ6´5âý†ÊñchOø †öÛ†úÖå:¢9ÞAÜœÐqøž„Nxª÷?tR¤'Á¿[¥ùžùYžõ±~¶ÇöÉù#¿äŸýaÿØ_öŸò |¤¼(?%OÊ—ò¦ü©ê‡ú¢þ¨Oê—ú–ú'>ˆâ‡x"¾ˆ7âx”ø$^~‰gâ›x'þiÒ>Ô|œöC{¢}ÑÞh´GiŸ´Wuþli7½>ç üî:ëÏC=ôåzãWðüýi÷ Òùcü uÞ)G ý½:¿Û÷v J†þ-,‚ô¾ÇèŸôŽ”þÈ\Ϭ´ÎãB¼Fµ^Âßß›ázÕz4×_¸k÷@ºªUϯÖ{`ž¤Æƒ«Ÿ#d_mЋw‘ÿ â;‡|{ªójnªçÍ€}×Ðz»ê{&ãäªïa“–xß÷2…öî‹ô°Fzû¡p'tæeÔ·¿ã¡«à'º1òo—ö´{4žÀy½ÐÇÿØR¼?ü†žÄ>uè)ÌÃTšï™ŸåYëg{lŸü?òKþÙöýeÿ)ʇò¢ü(O)_Ê[ÉŸú ~¨/êú¤~©oêŸxøPëñÄñD|oÄñH|¯¿Êžø&Þ‰ÚíƒöÂójŒgCû¢½Ñþh´Oi¯ÎÙôrÎ3B®â½Êxï*ÞTÃòzÿ\ƒm(¿ô.èqéWû²´.‡ ø×Æ=fj?€çsèß·ÞùÏ"¾ Ï©ý'î?†W|›aŸ_í_έ·«æKWqïYð‡ ½Üç’õ«ýYÎÏ:ìÖË©õ›yt¾B¶`ý"ä$âF©ù!¿¿Æ«zýÑóOŸÐÂôü¡%ñ^Þ«Úp6žw´€öÏŒ÷cá‡: þH¡Ë±^º93èÞ¢º\C÷ÔÛ ½€øš¡7—àùCù}}Ðw—A¿ ~eèë: ‹3GÏ~[a á‡æùDç#Ì«âÏi¾g~Yžõ©úÙÛ'?äü’ö‡ýcÙʃò¡¼(?Ê“ò¥¼)©õ}§¾¨?ê“ú¥¾©âø ^$~ˆ'…/âø#‰Oâ•øå~ÏÇïÄ?íöA{¡ýH{¢}){£ýÑiŸ´×ô2þãA3>¼Œÿäj&ãEެ©?Wñª¸ÿÎóÈŒŸCÿœš8¦Îßð|ȯOãÿËú5ý…,ð¿Qç zàž‰à)Ò‰ë›gá?D'å/ÅõRþ×Àýj¿eä'<_Ôzåúí…íx.ç{¡q$4å[Ð|ÛðÜvIï—Â[“xß-(¿OÓ±îº ã¬Ðmˆ7z¸¶ÞžÂÿÝ(÷û¡_±î¤ìKÃúPXJø‡e4æ€X>Ü»VûSa%°^VróŸ€ú¬¸g'Ì?Ç0{ó¨ŸÒ|Ïü,ÏúX?Ûcûä‡ü‘_É?û£úÇþ²ÿ”åCyQ~”'åKySþÔõC}Iý©ù;õK}SÿÄñA¼?ēėò¯#þˆGâ“x%~‰gâ›ëëÿÊh´ÚíIÚ—:oNû£=Ò>i¯Î‡È/㽪óã—w"ÿ8(ãOÑ?öGøÈT_¯/(þ­ê¼,ãoÈñ}ÐÑÛx.Ïë)ÿjm™òŽßw5þ¡òø¯‡ÄÅx($#öÛÕü‰þí ·—¤åþënœoWë³opC¨7âÓ†f¾Lh œ+RãÃz­ôúÔ|r(ü†CgÌÑë ]õå9^=ÓïïŒÖù}ýRk¨ž/Ì ¿ý°4M‘Îù²?Ü«æÂ÷0¬ìß°*Ë@kAùFˆÛÖˆt›ã Öâyç­¨·+âè„u/Œt÷97Jó=ó³<ëcýlí“òG~É?ûÃþ±¿ì¿”å£äEùQž”/åMùSÔõEýQŸR¿Ô·Ò?ñ@|/ÄñD|oÄ£Â'ñJüÏÄ7ñNÿvž_¥}Ð^h?´'Ú—´7ÚŸ²GÚ'í•ña¸NÿtžwÞ†x‰®›ô|Êÿ‹çݸ¾Çó2cÿAíï‡?€:ï” ÷—Τ¿®výæy ©¸ç0x+Îã_Æ>|ðGį I¶òæz'ý›Z<×ë üÏçwB>þ>_ÆïiÈÛYz½¡FÜ?š­»þ\­çpý·9ü CûlÒùVëKüžˆ§¨ç,ø ½u–Ð8W«Æ·©pïTXNø«ïŸã<ÒåS"]{8hsÌÂ:!ÞtXÔg½ý°!ðÓHç#lò9´3«1ò/H«·¶ä-Þ¯@œÙ°5²žuð» [ûêÃÖ#NJó=ó³<ëcýlí“òG~É?ûÃþ±¿ì?åAùP^R~”§’/åMùSÔõEýQŸÔ/õ-õO<(|/ÄñD|oÄŸÄ#ñ©ðJüÏÄ7ñNüK{PçÕh/´Úí‹öFû£›´Oe¯2n©Šÿ&ÇóŒßzqTüI®Ï—C\• ò¼Üdœ#Pñs¤ÿ­Zÿâù[žÏk4T¯_ÍOc\|ò¤ÿ°ò—æþdàk½ÞzÒûôâ|ê<Æ‹!¯žêùB X—Pû/–® ÜÏiƒ~…F¼)5ÿãúÐÑ‹(ë!ò½ÇýÉÊ~Óœ×ó…å jŸ~XYÄ—Uß·Öˆ Öñ†â{6 ãÆ°yÕ@WÂÏ9l3îA ÛûÂŽ”ÆûÓG‘¾Ôïo„ ÿ]¬3…=ô×ù {RùŸÍÁûçÿ†½€”Jó=ó³<ëcýlí“òG~É?ûÃþ±¿ì?åAùP^”åIùÒÞ¥ü•>¨ê‹ú£>©_ê›ú'$>ˆ…â‰ø"Þˆ?â‘ø¤?<ý߉gâ›x'þi´®·ÑöDû¢½ÑþhÒ>i¯êüø”ºzû*~{~ŸÕy©‚Kt>‚*â<ˆŠ_GÿÙ=2îäý;è—W>ðËøð«Wçsè°ÞýáyÁ÷¸Mù» ùVÄù6å¯<¶:Þsýó8ÎÙÒ_JùKd®‚4¯«$Òë mç…眿͗ë:\ï=»\ç;ôI;_5~N&ÇÓú2ªÇ¯óÑr8ÖëBê{5çfÃ&%]Ø Ïù½Ü³ õœD<½°«ÓðüÁQÔ÷:Ò_&èïÃãâþ—poü®‡'Âü*<ÅxÏð´“ð>ãZäÏ‚óƒáÙ—/<Çp½Þðœ¸J¥ùžùYžõ±~¶Çö%?äOñKþÙöýeÿ)ʇò¢ü(OÊ—ò¦ü“ý<¿¡¾”þ¨Oê—ú¦þ‰âƒx‘øQþwÄñFüÄ'ñ*ñK<+|ïÄ?íöA{‘öC{RöE{£ýÑiŸÕAè‹ç_ƒµWà¿âU©ó´Üÿãù}žß½…y˜ò¯ÎRòáúdéwØo#Þs¿r7â¿+†ïÀahêGÐçWÜ?åþêPÜ_:~·¡;±Þzñ¥¸¾£Ö‡ÓÒŸ‡ý£a!X?Qß—Ø t\o/lªÄ÷rü.‡í€?~؉2Èw÷بï#í5!ø O‚ó{áÊëí†çBÜÝð"øÎ„ûÑë „_qxȽ¾ð²_‘¯R2½ðjz»á5ûãyíKH×õCþº<~Jó=ó³<ëcýlí“òG~É?û#û§ìŸý§<(Ê‹ò£<)_Ê›ò§>¨êKêO­×Q¿Ô7õO<Ä ñ#ñD|)¼Ä#ñI¼¿Ä3ýÛ%Þþi´Ú íGÚ“:_N{£ýÑiŸ´WS+½~×Cü޹vãÞ_Ú·Š/Áó©Ü;Šßù Wðo N†ß5ÿ‚댧±ÀôP½^å¯i2Bô÷çü¥m#=Ÿò/âyú#q|­Áï_­‡ÒŠû£ý±Ï:û6òñ÷›ë±¯q?s˜ÂûËïÝhü^+û[ÐïWbÿ(|ã*”ßqõîK«ó~¸1žGÜ«ðÓ8o~vÊû‚öÎcÞ§Ò|Ïü,ÏúX?Ûcûä‡ü‘_òÏþ°ì/ûOyP>”å'åIù*ySþÔõC}QÔ'õK}Ký Ä ñC<_Äñ'ñH|*¼¿Ä3ñM¼Kü«óè´Ú í‡öDû’öFûSöHû¤½2~;í›ßo9>ZŒuOu^í=~çÔyu{½žàÆãñœçeãâ¿™†þÒ_—ûƒ<¿Ãó}KÏ*äX\ȉûÉôç¢ÿqÄ3È·~•¿ã²[HÓ_êaFè7.öýÕ~+Ï+ Dšû9CqŸ‹ZïÙ6Eo'ìl&¼Œóá±°n¡¾7úÇû²8窾_íqŸ»úÞñ{8ñ}ÃWwÝÑÏiOçzé|„ßXŒzÞÁûWØ÷ÿˆûÔ¿Ã/)".Î÷G$\€´!¹ÎG„ q.#4Ü»¡õû9Í÷ÌÏò²>Ö¯Úcûä‡ü‘_òÏþ°ì/ûOyP>”åGyR¾”·”?õ¡ôC}QÔ'õK}SÿăÄñ¢ðC<_ÄñG<ÒŽûåÄ/ñL|ïÄ¿´Ú‡²Úí‰öE{“öG{TöI{¥}óûÍñ9ע_Æ—Vñ¥èÛ çÏUüªX¿¤NH,¬Ó…dÃýÄê¼mËpô{ôÐõ±Ðoúп‹óe_Ü_ Î'Ð?yƼßs­¡W_‚Jÿ(å/Áù×_Z€Þ¹?3ï¨Î‡ï]Ì ½¿< —Sóßô˜…ÿj¾Éù)ñ9¨Þs|» ç‘÷½Ãó£'Qî ðþû.áà7磢í é8G‘)T/‘k+Ò…pßDD‰¥ ~°·âYF8rëõF¸°ŽŒõ˜ˆà•~Jó=ó³<ëcýlí“òG~%ÿìêûËþS”åEùQž”/åMùSœ¿K})ýQŸÔ/õMýćċò¯#žˆ/âø#‰OÎÇéÿF<ßÄ;ñO{ }H{Qþm´'Úíö'íQÅWö-¿ßŸsþÍõ5~Ÿ•=ïB½ÍÁoðXø)¨øuòükH¼Íz=Êÿ62üwÀýh!“ë‚nÇ~GÈÍwg\éÂý‡ Äãm–@¯G­gÒñî£}&÷a ð›Së¥A¸¿MùSôkô,싨ß÷ ˆ[Ãõ\µÞËõa®•Güg5žì8îáà‡¾ýTãÕSrXg‰è×õ÷{ÿsšï™ŸåYëg{lŸü?òKþÙöý•ý§<”|(/Êò¤|)oÊŸú ~¨/©?µ>OýRßÔ?ñ@|/ÄÄñ¥ðFüÄ'ñJüJ<ß ïÄ?íöA{‘ö£Î“Ó¾ho´?Ú#í›ßoŽÏ9ÿæúš\?Wãmþ>°¾qðÃQûï·S€î7çýc!å×vÅ9²™…ìÅøŽç÷Õþ2ýýA< å/ÌóG[—-ô ôúUŽ«¸¿ÉñUµÓz½a]1Tû§œqÿUî߆{a=A­çø÷ÖË©õŸ68¿>ë᳎éõ…oD<õý¹5ïß ×Ÿ«ñlª›z½yàWQþW¡X¨zX¯?¢q¼ï¹GDÝÐùˆ ÿâˆñuñ|î?˜Ï—Í]ƒõ¤ù;±e1òoÇ:rÄø GìÄy'•æ{ægyÖÇúÙÛ'?äü’ö‡ýcÙʃò‘ò¢ü”<)_Ê›ò§>¨ê‹ú£>¥~Õ~=õO<Ä ñCh/´î‡KûRöFûSö-í“ãsο¹¾Æõs¹?¦Æóüþó÷BÙ³ôÓáù傈ûR ó-?‹û‡Æ‚¯#4ñzô›çwy¾§üC禂¼ö]FšóeÏÇzþ°ÜˆÃ®ö;èß4T®pýôâä„=À:FxÜz:<£Ÿž_ýÞWîŠçíLx> ÷$„/H¨ËA͹ÞôþR±wëù#’#¿Â«?æ7ê{Vï6Òíç ¿—cí‹÷+äøx ؈ðЏ€}žˆ²¾ûÏŸÊñÀ«*xÿz‰ø°Ï?•Ÿ.ÿœæ{ægyÖÇúÙÛ'?äü’ö‡ýcÙʃò¡¼(?ÊSÊ—òVò§>¨ê‹ú£>©_ê[êŸxPø ^ˆâ‰ø"Þ$þÔ|œø$^‰_â™ø–xWñjh´Ú í‡öÄóãŒ÷Jû£=Ò>i¯\_ãú9÷Çäþ·š¯s|Ïñ¿ÏÊžwÒŸ–ñ­àÜnȱ†ÈOlÆß ?ý{âîÐeš^^¤uÒåwqÜVe(ý›¹ß¹u#ò]Áø&ì3ü¢”çg¿àñðVu¾Ô~×wŽ|øe¹Ÿóçe"¼±¯¡Æ—œ†ÆóºX·ˆèˆsƒÇèíFL…4¿Ûï&âÈ俌¸Ö\¨÷M¼ÿŽóÌ‘q!ÇÈ„À_¤øŽÔà™¸Þ'½«·™û¹‘)¡—È”ˆ£™ªt†ŸÒ|Ïü,ÏúX?Ûcû’ò§ø%ÿìûÇþ²ÿ”åCyQ~”'åKyKùSJ?ÔõG}R¿Ô7õ/ñ@|(¼?ÄñE¼Ê¿x%~‰gâ›x—øWþê´Ú í‡öDûRö-¿ß´GÚ'í•ëçÜãþ·ôoQëqœ¿sþÌñ6O”=ËxU‹z‚OÆ¿z?J§*~†ÝO/Ú$Ò\o\‹8çj‘ç›èoÀóG à¯ü“φ^c¼ö÷#…{£>µž´úmt^ϯÖcç`ÝDýþ_BFƶéù#={€jˆs™¬¥ÞïÈ4˜§Efĸ.2+Î-EæÂþddÞy €»Èˆ‡Yñý"‹uÅûâˆcY|BÔOi¾g~–g}¬Ÿí±}òCþÈ/ùgdÿÔx€ý§<(Ê‹ò£<)_Ê›ò§>¤~Ô|ú£>©_ê›ú'ˆ‰âGá‰ø"Þˆ?âQâS_#~‰gâ›x'þ¥=Ð>”½Ð~hOʾ¥½q|Îù7í“öÊý1îk¯ôú”?(×Û¹¾Íõ0Žÿ9^àï ùáùWÆçJ}‡:šèÏC[$D¿yþ–çs¯KÿžæyÀP¬Ó(â±äãüˆëŸŸB?Üÿ, ?å?Õuô9¹ôÉù÷oåþM„q¤"ä9=µ>\q³Ôüq¸Ì?¯(ç§'帔øýhÕû~Y‘¦ò:‘ÉÖé|F¦Ãגּ—<ˆk¥ì«âßEúYñÞöÔ‰x‘ÁAÃð݈ŒD\²Èrí@Á:Rdù ?jÿ”æ{ægyÖÇúÙÛ'?äü’ö‡ýcÙ)ÊGÉ‹ò£<)_Ê›ò§>¨êKêOíÇQ¿Ô7õO<Ä‹Äñ¤ðE¼Ä#ñI¼òüºÄ³Â7ñNüÓ¤}¨øp´eßÒ¾ho´?®¯qýœöÊýoú·ÐÍ+ÞËý4µ_Åõ:Îï9àø¿7´gÆ»pâ>0µÿÇxô÷‘çóÂ<±ÿ–?äUqÔùÁi÷ñ\ÈñÓĹPþ\ôwN‡t39^ãxŒë«Ü_}ˆóqñWêÏ#2ÔëWß®÷r|8 ñœ#– þ}ÄnœƒPãÍ—ÏqÊëï#ø½Tã[~ßrU-„øw‘¥ž€ÚpÞ!2HÒˆGz½‘°~YÍåj'A;õqŸLdãä:‘Í,¨§Å¼o…¸‘m€ÿȶ¹%íõSšï™ŸåYëg{lŸü?òKþÙöýeÿ)ʇò’ò£<•|)oÊŸú ~¨/êú”ú¥¾•þ‰âƒx!~ˆ'úÃI¼)üÄ'ñJüJ<«ó§Ä;ñO{ }H{QöM{¢}ÑÞh´Gîqÿ›þ-ô_£*ýÏ¿ÀŸTí¯q=žëwœïs~Àñ6¿Ïä—þ·ˆâ‡x"¾$Þ”;ñH|¯Ä/ñ,ñ­Î›ÿ´Úí…ßoŽÏi_´7ÚíQÚ'íUù¯Ñ?UÞ÷Àó%!éå½Á¸ïWí·q}žëy\ãü™ã þ‘Ñ|Ëø9*¾Fñ(ô¿fCÈ£ßÐ%oçèo ñ[•?Ï/pþ´ó ðC8Oþë€ÊŸŠë­!ð‡ŒhÚY/1h˜ÞOµŸÃïÃõ0½_\?Žô„_°šOf’óÐ|ˆÇYò8Ò¸¯Rá¹2ö#ë"îµú¶›®·Ù ÷EEöÙ¡·9¸;ê§ýÅó)Ut~"gœF}spž0rî·\´Ï—œBzÙ/È¿¼4ò-ôsšï™ŸåYëg{lŸü?òKþÙöýeÿ)ʇò¢ü(OÊ—ò–òWëùÔõEýQŸÔ/õMýK< /ÄñD|oÊŸø$^‰_â™ø–xWñ£h´Ú í‡óo®¯ÑÞh´GÚ§´WåŸz(^Ÿ:_"Ï)7úÇp?ûoܯâú6×8àxƒ¿O´g£$öÔùú÷®Äº}Ø9Ä{ ûê©Su~Ðß=åŸ0ñ]Â×"Þ‹òþˆï’Ú¥¿DuœRþÓ0®Tó¹‹ð/Žx‡x®jý—óÃ,^z¹Èoôü‘¾³rþÊñjS‰ûöˆÙ³:èÀ–:_êû9ñ#ꛉóý‘ àç¹lÞ¯©…v7J»Ü†ïB¤@<žÈ=ÒŽöÃo0ò`M¼??¨ÈÃçñþHÖ ?¥ùžùYžõ±~¶ÇöÉù#¿äŸýaÿØ_öŸò |(/Êò¤|)oÊŸúú¡¾”þ¨Oê—ú¦þ‰‰âEá‡x"¾ˆ7âOâ‘øTx%~‰gâ›x—øWöMû ½Ð~hO\?çþíöHû¤½&ï¡¿WçKx~ çC=<âÆöðˆý#úŸÿHôÿÝ¢ÿDÿ}NšæùqÓÿ™f<–5Ýž‘B‹w»Çù>Ķ/rÈ´Iã„aXÏ9k/^×çxç9=Zx™úMÊ™è?OŸ†EÍ^(˜Jw¥Ù½iö3aŽ [µµáÞ¿^.¸à°àY…¶zbì¯}w ŸLS{Äý¼L˜ÛOH5®eTŒ÷çï¦ ¶Nªü`»0yùežÒ¼¤0îù˜zIß‡Âø0ûîU5× Ó † ë;ŽÅ<Ÿÿbj~aðñ›VLG}l¸yYja:ÑÊ­à´1Î×_£Úê>骵¼&Ì‹–ÍË´qý¯Ï›d™òªCnáíÝ"q›»obœÏ9-?gã=›Kh»MKÌ/´µÇªø›;ŸÖ¾ûŸýœÒ3ú÷±w¬r'„Ù~æÃ’ sèL§kEza>l3±´ð‰7¹ëÉäµc¾_ ·«ŸïãUG¾–¼]:ÞUaLµ'Ï´«ÂØÏtîö›LÂxå]íD#…ñò㶃Æ÷Oí]?2ÆùþÝíã¤ÙÐÉÿ±0í^[6÷Ã=Âphiõ[‘>BK^xT쬥cœ¿¿»ùç×hXA˜­=;šé†§Á½÷µ¾ã|ýQ©ù~á‰6¦êÛò7i5V¤ž\vÜ{aŒš4|é‰ñBËšfýÔ+B~“7‡_q~ÿ’šÎ'Õ¶¼0,L?áXª§Â`ï|¬±Goa¸”+ùä1ÑöT8ÝÀP›0Ž>¹÷Þ­ÜÂ8óA™"mÇ cÞ Z´-|j]Ü·¤Ê¨ïÇï&Ÿ§›œº4O˜œo-\ Ìi¹0:<Æùú‡í{ÞÒ††n„æéQ>ÂðãaA¿›…qVûãœZ®gŚǭ-´ûÃkf˜X>æõä¦núÐdµ Ô¬4U˜wœ=àÜZa6Ù§8_@hºÎ)[mþoíê뉲aÂ4¹Óæ —³ÿj½¦îŸ“Fñ»ñmn™tB±y…aùš&9:­†ù®W!…ê cœÎs“Ý™'Œž®r±‹0Ûå}¸Ñøèùv¥Ûƒº4Æö›7µRUnå~bOeÞßÄ™öγÂûâ°¡“ÒyüÎM—ß*LÚýšóR§†µ¶l§.X…¡a ÏåÍS ãò|çŒ_1¯77uÓ¿ƒj»'Õlpë‰ÐÚ­Úú´çÀ¿™ßÔ7S©¡Å2 S«O)Þº,´ö.tü2í×úÎÙvmÆßŸïbÕ]ÞvXÛ>µžÎ{Yv©pþÑcaJÞ{üÚ…Ó„)dxš}ß{ ã—¤Oí•Î câ5žÅ~…¡öÇ­«E?¯ÐünÖ>Â0­cìþ5: ¯q¶æ‹Â{ñÛ¹Éö^›Z;j¬;,¼«ߘwT†¼«ßî>hÞwu9\À=iñìU­?Ѿ›ºéÿdOãOV×Úî†ñÆ®êÆÞ' 6.uÿ0ÆóúpýÐÒ=?WVê°yt4_Ëf<)1TøÔKƒÆý—ùrÈä_æªÝm™ý\³Ö<{âH[aô¨6 Ü;ú{¼¢¿}ËÉ*ªM‰‡‡F ï;7åË6Sx º™oð†!»ÿikÇÞ·5z—zŸðåõ^|ÞíJ츔¶‰ð±¾¼<»Ùá׋›ºé?ƒ´ü%B?^9ÝÊwx‚ðœ=w_ÑŅɰ¥æÓbœ¿¿FMßteo-Œõ?^=ýût­XñbcïÃΧ rˆ“ÂûÊ¢=KRGÛwÆï¡ ^FÓÁ3 ,¾óLxç4·,•4¶ð²œë;s’žU6¦}åwVhm¢môïãýrS7ý§ØõÞ·§ŽÞ ^~üÒŽï.<+]Þ^j\ô86nø“®/„¶ßÑl˜ï´çó¯Qs»µéº¾Ù#ŒkÜÿ¶—0m\ëPÍV»ŸeÂè¼Â;qÛ‡y¦‡ ¯•¹³®,ÜGx5¼ß(<4®ðÊ<·AÄ„ãÂstÔÒ)Iw ¯­;šV»ÝE˜2ämÞd½{þí¦ÿT{}ÙëæÑ<ÂôfÚ´¯AÃbœŸÿ5ÿ‹ÒÜQú´0-¨6ci‚èù÷˜³Ë,/$¼½ îërã­ðš»·Rú†VáÕxá²ý„WùKÃ{Vè*¼'Ϭ8¤M;á}qøõ°¡·…yjŽÅ^Žñþ¸©›ºécçÚ¶9Ѩ—0|Ù²°Þ™ a¨~ëF£<ÑöÞ?ÕÕžë ÃÜçc_¨# ·,sï=¯úÒ'_ Sõl•3~ø&4ã…ÓŠñ~¸©›ºécß®¡I¾ln#LùšOYò’0Nê7ëíèyyð›«ÎÆÆðB‰ûõÏ$ŒI'Ï/ûìƒ0œa»ã¦.ãÇbœ7uS7ýëÔüáÔ˜+¯ú ÓâTaÓ ©£íû`H‘#u…1t껎=R cÚÌëw÷¬! Ýß¿hº9¥0Ý+ßè°Ë½Žæ¦núg ZELcM´gŒ¡Á•7ÂXöåôòù–Ãr‡¶ôÖah3Ý+¼NKaœÓuö¨$=…¹ìêb]JEÆ8ßnê¦núwÐÊ߯ZL˜¾emt>›0¬xêj=ß~ù êqš °+ï»ÑAÑö]èNï¥ecž_7uS7ý»©V"Ó‘,ÕDϯ›¹Ô¨°0RWŒJvH<ÒTÊr#…08Ï^Þwþ›0Ï÷«gîê>_è¦núg¢&GmëCaxÜ- Uá[ÂûmòFYúnÆÀ­>§²×ÚøØž·Ï¯Šq>ÝÔMOªuXµqcò*ÂXàiÿJ ã ïóÏû-8õ\˜²î¼?z@™çïÝŸNùB7|)Œ™g”I6±•0ŽY1íÅz¡Õ+ù-Â\+ÆùsS7ýWPãûQ{2v](¼ ´Ý·öqáÕðFÆ$.á5ÕâÚ & Óˆ¼þùÿ|ñé´kácR=}ã|¸©›Æ5|]˜eo›ÝÂkn¿ µúOž×ß­Ít ·ðò^ê²¼ ¼#·Î鸵PŒóé¦nê¦?5Zî´ß2{ŠðžPãî㤥„פ ª–¨'¼²ØçŠþ~Ov~¾l¸0h=š]Ï%|ªît¤öuû]»©›þ™¨1i·Ìo·ÔÞUòUOº"£ðÞ9°çîÑ7…6íẕÝÇ81Eµiw¦Þ#Œo6Z<œ'Œ!‘é?Î..|^>­ÖêbŒóç¦nú?Qó/;†–ŠóB–ŸúìùÁ) %5·dã|ýQ¨ÖÿôË\Wò ïÇM'¾=!ŒÇtsŽ˜(´ˆYÉJíºãü¹©›þ]v>læ kÿýãÿo©ÑQdÀ ÇZa=þ²âJaêryÚ,_³ÐêlÝçÅŸï¾7uS7þ½ûT°Nž´ë„÷Æs·ÎÞ©/ «Šå_¹(­0 JxþüÎY1Ο›º©›þãÔ0¨n“¡C÷ ïtùãf÷o'ŒS³úmìôPhW?úú®kŒóç¦nê¦ÿû¾±vwÚ‡ù…1Åü›mW„qn6q&_'¡­)¼ôz¡1Ο›º©›þï©¶%M­Ôé¯ ãÌ.Yod>+ŒËª®©ôÌ,Lß®/Lº6ÆùsS7uÓœšFT˜1ê®0^9Ò3a‹éÂøýõ“tóJ ­LÜâ)=²Å8nê¦nú¿§š½Øö¯·ãé<óͯ-L~™V~~ñP˜ $ëšw¹{<î¦núg¦æÊuYÙ«0§Y='çÁAÂô¹ü¹åOö c§KÇïŽqþÜÔMÝô ±K…)f Ó8S[[ºüÊßÀesÇM( ëúä)1s³0ø^x°±& ]r|ýt¢0¯_X«FÏ—·›þÉhÖKÖ¶M柂U+ïêóÇ¿ßA{×'V¿ìÝ„iÒÕKï›ß¦"³[[ñIx/Yþ¥Ç½Â0cÈ’ “gÃÆÕOÞ_¿7ö ó^åï]¯#•𠌻ôH0áy»I¢>—Z c‚ðúºˆœ¯êeêV š&´£óvŽ(›ñW>צ9öhë<¡…X§taJF[Pwµ0^ÓJ8o…Ö.$Ö ãa¬žiuõÏ„!ãÀ:ýG×Ɖ—zLnòC˜Œ»ã×YùL˜jãOïj&´é^¹j¶MãòwS7ý]ìúBÿ™m6a\Û(x á‡ðþ<®M֥˄÷Ì©òô)/¼ÅÞTxÌøøìÈ-Â+rVì$iO‰2ž©ÞpHððäÛ BEÂã{Sñ^«š¾(|ë0¼É±Ægp§Ÿë,'¯ýÿ¸Ûù¾è›Éw=¦+ÆIe÷˜„¡S<Û•„ñYØÚí›æm{뺇+mqî÷ÃO† ­X‚Bmò ŸôãÛuœ5!Æåï¦núO±¯~hås“ÆÖ¿d¦×ãš/¸üP·Œ[5áû)á=¼Ñ‡³)Ê ïß¿íz<_xM.šÏøé½ð ߸hL«"aÙòõVnK)ÌOv®üÂ9"a:¿#ýí§„g¿‘ .‰þ=päÏ>­Àna8UpYÞÁ­…io±,l³·þ‡<ØÝþÉaX¾ªDèØŽÂi˜è·jºÐæ\(\|nö—·›þgPó§*Ó}­ˆq>´]oG>[ZP—5(¿Å²Cm²¯lÓ^xŸ¸RðÄܼÂÛy³Úšw¯…W·%Ço¤?,Nl°¸Ùź"Áˆ½¢˜¹˜H°%}ýÆ Ïʳ*äÌS\xŸ6=Õð0†¼Q§Üiaœ?­[ÒDÑãåeÍÚœseùýû3zP•æ oƸ\Ýô?“jùKµ¼<äXŒóAjªs÷tz›]’ZóŽé}R¬Ž‹~M¶ ïd—û´9‘C$ z]vTã"ÁþJ÷ó{(ì<ŸÂcùS‘ðÞò„ëf쌞‡ßì×µÆ6aŠ7'ïÆú>Ât9¤ì¼-¥„ÙzöAT#‹0]½èµ4²®ÐÚï?éQáDŒ÷×MÝôw¡ŽI§$úÛß­QDê–9& ŸJ3='îzùûýμ­Võt²Ï°訹ó­„ÂfNXåãaá]:m剄«ÏÉ“(®H8úÆš–G Ϩ›Ï·‹†»´—š S÷ç;õ{ ´Í?y×Nhü6™QY˜^$¨63Ûvaþž÷ø¸òW…–|õõ»¿ñ¸›ºéŸ‚–ж.–_˜GÅž–·ïïޞɱsKš†fahÕÕ •…w²4"¼›ß*¾âváv|D•âļ\ÜÔMÝô簾ü†ØëÎ/Æã»ÞiUZ˜´8‰÷­O—uÆŸÓ4MŒóç¦nê¦ÿmñ®BÇÏù…øt~ÁºB›gužUucž/7uS7uS7uÓ?­–èYÀªâB[²³ÖÈÙ…Oî.‡'Uè(|\7•äóü¹©›þ=´lž~;|y>b˜š|J-ÞWý«Ð<³í»ÈGh ö¹º-Y)´ü ÷W Y.´ƒ~œ³¶ÚÓ óƒ«º×©ÝôB=¿pÌ‹>qöž[¿£»ðI}öFxˆMøøÎ¥÷oòkG;=3æL'|JöZ²~ôù˜çÿ_eßy‡ôý­ƒ0]žeÍ¢O¿Í—­z°GåÝ1Χ›þgSsÏÌÍò½™)´À®-wœx"´½_´Û»Mh÷3ö(™¬™ðñòë˜fe1¡EΜ`Ê;NhN·h¿4½Ð‚‹äžðÐ"&·®•¦ˆÐÚlöK»´1ÞŸ? -·gËÌæKcž7ý¤Z)û v¥ -VÃ=U—ZáQï~Y˜Mh•cEù§Z_ü«õ~-´ôqžµFÏ+ ÷yù:kA¡œý¤tfM˜Ÿ_®°1ö"aÞ0ð¹_‰ §xŽ´gÚÇÿm;‡<“\Ë}Oø„9ßÙ˜3Æûý»Éóäûõg–æqß_þ¿/?{ÜKýRícÒåW»ý>ÝôÄa²œ¶1go sÇ‹§o|¯%Ìúë›]˜½\©=W¯æ’Qm#3åæá)ýôŽþN›÷9Ÿø€0ß ?YàÎaþVøyò;¥„yB’š¿”ß]_í³çwþµþ[…+ÕÙgš_º…q½Æx/jvTœŸ>u¡Å.WûO]÷ýöçLô×Ë5¯éÊQOø)ÕåÈæ‹B[ܹôîçBÛñüºÇû¡1Þ7ýsQmY­ÎQ!…O›3WOòfצ%·'¥¦cÉwn+LöÌC\° SéA›VWÍ"L#û'pœ;#ÌÚ9ÙÔÏ…¹Oœ —‹oægÊÄpS˜·tjý#µ¯07J“³{ï…B+?xÛÓló~m×Û·æ¨ÇBKSzå÷ªÆïÿ?,7Ÿ$Ó' ûíó¾æ?ßµF‡$M1§g%a*þ¥Q‡KÃ…qqÝVÓ=[ ¿mõí®øÛr{ÊÌëõ4žÐ†¥xÙ¹õq¡=ØRnø}÷yd7ýñéz,åõ|*mZþnxÂxƒ„)ØÐµŠ­€0µ>¹rwìKÂÔhø£/íöÓè]ggßJ+L/ºæKU4ú»”ú驸*D§“ì]׺€0ÏM\Ö×7R˜'ž‹·ðM¡®“ö»öï/×y¥Fµ«S…¶!rÇÃ_ã ™6ôn_Ùœ\¯enÓ{¥YwV0Äî²KøÔŠõêI¬ö1η›þgPS‹M*7^*´Q­Òœm9\˜ED×7ÇÆ³á€1Û•ŒÂô|Tés> ÓÚÓ/k¯X"LÏÒÅKݦkôsÿ»!Ãó Ó½€Ø•+Uæ£eãœo:W˜Ï:Ñ}Tka0±ƒ}€0?ù4|ÇI¡e.Óáû´1Þßš]gtu©¾¢¤0ç?qöQž¾Ñßé–5û~_.L-íÓN6|+LAG³Ýj•;Úþç…Þ>:ÆùýÓÑ:ÞY /ê.´’sïäÌtDhëãîÕeÚ‰iwvY!|"Zï´Ló|þÁ©ù[öomžÞZ½ÔE_öÊ+Ì­ÊžLyø–0;íÙõ]˜¾‹öój=æÀ¬Õ>go-LâãŠCM¶ã×ë+š>n)ŒOz q÷µ0uš\8^CoaÚ¼©BÑöÜ2—V¤Ð†¶În*Ô&ÆûùRíüòJƒç$ù5ÙzÆ‚aê§Tûök¢ïž4Ö7 ³ÏàÁok}æ,-ú×´uŒq¾ÿ´ÔhOÞý¶Qh«G|ÑÿQÌóó'§æ©æ™¹œžÂ<8ûÝx+« s¦‘S¼s}æ±›W‡N~&Ìófí\[s”0Õ*­íë=Þô¿þ±îÀÖÂP¾ÝvóëœÂXÚç\§¾›„)þ°+9wî樇; t­'|Òo?–:Òãýû‡ízH³…Ó¯üv=Út*õ»ÓÛ ó¤£ö›«¾ ŸÀfYObœß?;ÕÞ,»óhq¡Ý+Ôneæv1ÎÏŸšÃ­CË+Ì šïiõü~ô÷ùÞŒívsôx2ÍCË ÓKÓªÐ/aZv+߀ao…±jó6©Cç ï.ùÇî&„¡Æãâ_îmÆq§¼û7:&Ìí/½¦ Ÿ†¶jÙ‡^üëígœ²y÷µ~1Þÿ¿Jýƒ»gxú[üU»Ñ­Ë%áSønÿ'Å<Ÿÿ&T{=µoµÌ³„vmÅ©\ûc>NÕ¿œÖ˜ZoJHíž©µ­é/…©ÛÞ^M'¦ÆoN™O†•¾scn<á}/Yé}žï‹×&ŒnÙH–5Ûtû ]˜ã­=½¿ü——Ûÿ–š/OÒç¹-z¾\êñ†£çŸ²ù·«*LÎ!yÎv=.Ì…6Õ›·³Ðêmk^¡aá“eUÜFwÜûRnúÚuÆå×Ül¯sûª+,´úÆ› 3uþýÛ¯6îÄ´ý …Ù;*Õ³é=…±ËÞ^—/†‹a5›( w2û¨[óNú}Þa½9ߢì#…¶Àó¦1éoýÉÿèÔtÏœóä ÇÂ8vÈÖ–÷B„¹p›WšG÷?E–ãM—Ú¦Çi,M¿ -‡Ëš¢Ï¿ñ¹­:¯ûL.|*ÅîQÓk­ð1×´«àdáãé:øñzŽ˜çïß„ji<ûç6FÏ{“Î[Ñ î }û£Þû¤êÿZ˜»o½bYraÎ`}¸oÿdaÞå_¦ÿ×CB+|ãy¾ðÉT'y·Ê†¿¿~ߤ‹*¯k'´£ß¼ª…Ô>–£Ïßfšsr¾tbl‚ˆóÑ4٫Αyc\ïÿrêwmÜÕkÕ„¶3øø*ÏØÑzñ°æÞ7]h§Ï©Ñà ð1¬/Ó+•{ú7¸*²—ŠO‡¶5e_]Gh‰œ×º7ÿÛ÷1h¦òÞ•]…¦•þÖù‘wŒ÷ãw£‰Jgnéý0æùÔ9âÑÂês…áXùÎvΆ=³Ÿçš:K—¹Jõ[ÿ±?= ,0¢p¡½_n©2±²Ð†?Ÿ¼^¡mká1þ}-¡=í—jvPRáÓ¸\ÁÃ/{Ä<¿ÿjÚdÄÒ83> W‡aU‹ø­Uõl·6DÏ×^§>µ/Ya|õèhíë…©¹mʹ:„vï@¾º» þu»ü¬[bË‹èñP¶Ç±¥‹ùþ¹é¿'µä—4²…ÐÖŒ¨="N'¡5/>·A¥$BS;•ï´;B;»~mxÁÂ'AÙ›þ©NÅ<¿ÿ"ªu®³=S›èïk‹š½—Ææ«I çª=/¾~ÆÕ¼f;aœv«¤Öb¾0î[vbû½¯Âtèۘʧ* ŸÓ4¾Õ,Æùÿ—ËkFÕ;óVæÚÌU=¦5¯"´ ±Ïä¯7K˜o_›9ëÖÿ÷;Q¿bè\a~qÜØ=…6ùeŸR-ëÆ8ßÿ®T{u¡úÖcÑßç¾SÃË¿ý&´:åš½·@hM»-[=„–-ªk‡6…æ—óîˆÕq…vmh’k/çÅ8ßÿ4jì+,»—ÐöÞÍuù̱èyÉ™fùVÍúdúàD±„©Û¾Ì·,—…©Æïs[ãÑI¥mðÆîmÏeyRW˜*|š\üÇ9¡Mh]fCìßžgüO¡æå£=ÌMs -éãIÏowæv‰ $»xC˜MŽêŽõæ€ ñ†X³ s”Odž„yÿíÍOÂ#„6è]úói/Ç8ÿÿnTû0fmê“…¶öéôei¾ ­aŸDrÍš÷ÅU Ñßñ¸wÚ{oŒ¶ëxFŸÎ Š ­ø¥%‘Q1Î÷ÿ½ß{×=Èä+´<é²¼¿3M˜ûöè´;X˜—Ýüa{¡•x:öÁŽ”ç݇JÕS c¹ùU–´öÆÛ-|î÷~.L{†4ÎÑGhÆjoÓ^}ãý‰qš¨s¥µ¹Çó·‹73?©"ÌI/ÔKÚ5z|³øuÃ{„ioWÿ¬…Ž Ó¢CI®¾öæô+çvlûZ˜×'è{=Ö·èqNáCõî\ˆù~ü»Ð‡AgÖ>žõí9:\hóO§K²"ú»œµ×ѨMÏ£ÇMÓ.üRå¼0Ÿíj¨\.ú;V¾•wᢠbžï¿e·½ÅŠÆ¡Ñüou;aÿ B‹ó.Nïèß­„Ó¯®4÷汕^ôún¦5¥¦»SF˜šzLN19‡S>½+ìYA˜.‡îöÞ[˜r]sê›EóŸ:3[ô¸ûÙûã¹—mZªƒ$è%|…¼y??YŒ÷÷FÍ«gMV³­0Ýñl\åà5a*·¯ÉílĹβ•Ásí迢酹Á¬e‡WFË3`ßäøý{Å8ßÿv´Å¡@ˈbBûX÷ÓŽ¶3…^«e¿bÂüöô…Q_Ç óáöŽ­VFË“/ö-¶ðI´ZYçoÿ@ëþ4þ×kG…Ù•{|ü'>´<2KåÝõ…i\‹7æ&¦áïâ=Ö SðÕŽ†ÏÆç[Ò¹™Y˜½ø9µ0÷°_Ê6öœ0 ]sOÚ?þ}õzZíqxÑ#m…ÖáÒõðj]…–`J±jÕ„ùzE;OŠN×›ºé5¡­}ïl3„ñ¢Oòæñ¢Óì{4(í·z[ E4/]øì"´‚wÛ7=±]hÏÊŽÝ÷ã?o=ì¶çÅiŸ˜ŽG§}=ÏZi©ÐÂÇTšp&Jh»çûZN7½Uéñ1¡mž4Øñéßh½æNµ­ŽÆë*<ZïqûZ óãÊmr>óþ~÷Ó}bDôxüê§+ùÛÆ8ŸWkSlŽ],z^7ål1¿Ö„)£OÜû¢„±÷Â݆·å…qjæòŸ ¾Fqäs³·Fa|™wgöÈ,œãPÏ+-ûK»úíã·Žñ~üÙ¨V!ªÝÁê3„iuÞˆ”SŠ óÉû?ûu=Æœt¿Z?z ól߈¬þö~ÿ?‹šB; ìôUÂvž]¡“0Ö*o‡¿¦ðÒór4é+|ì“F|ð0þ*”* Î‰hû­ØkOÜ™‹…ùá©yïŽ Ík}ÆýWS ­gÆocžÏ¿ÄU}mƒ}Óæo5=b&Í9­Ó„åÂTkÚ›º‡ªãá½ýZœÆNg -+;E;Ú+ ¨,ŒCSZ¿öŒ¶[Ê=÷Ú†ÅéM¸ãýù³QÓÁt·û䈖ÏVÍs\± ÓÊN÷6åÕ„O›Á?–/ü5n’–Ddm~½þïιÂQßÓéŠ óà¬ï£F6ü-¿§G¿ ‹*,ÌÇ[.ZØ}JŒËï_f'k«¥2W¾(´*«[þÿúÆ®^^¯ã|)þž-[?M˜¾Ì~´vn&ar ø’±Ç|aJøÕ#ªWaʺu÷À<Ù„)YÓ×¼©„ñB¦¶ÓêÆë—ìè_F/± O„00F”Ñóé¨ Z¾Ñó¾Ý-k÷*=ï‹H|;O­1ÞÏ¿ÚÿÕ¯úí8ù߼þƒPmxHÀ°_¢ç3Îý5¦ÿ7÷X¶y;çNë§ÒÛKg‡üç@ÿ¯|ll4÷ý€ÂüiRâ‚ë« ãöî!+ß•Æ]ŸJ%²žæ1%o¤·þçÄMÿ£Q­S¬U—'ææÖ‡"Ê ÓÄLûÚ o.LEJv+|³¿0¥»Êja*³»Ð‰jÓ…©Ü»{Ÿç¦ÂžÎ“„ÉãèhGêÑö|4÷Ôêš0Y{!˃˜ÿ—þ3ÆÂÓE¥b%…)wËïM·wÚš —4ùãŽÇµã–vÉ1Vh+õJTë¼\~šg½Î©bž7ýCQ­NµDíÓ–æÎ½2t½&L·4|ÕØG˜v–Ì;Ü^I˜Þ¾Út÷1a6NëõÐsž0݉¨Û‡0uˆŸ Yéa|¸yݨ£m…±R¹â¦'“…Aœö]¿£¾0,Þî,±7zÞ%ñ„\ã²S©¡¹›íÿ!´ô—:<íµ$Æû­úïLÙ$Ûî½B[Q¸k£úW…OËëÍ›£ç¯ÃvÏß6zÞÐúùÑ% ¬Â|efÍ9F˜¿Ì«ÚÿZôûl +¤<ÜQhïËô7tøã­sƘ<ïi·y|Aa=ét±iÿ¾ñ’ÿð´äÉ”_ǦZÊo| ø sø¨-gsìfC¯c›Þ~fÏ\³øôfÛ¨¾M26æÂ ÎOïÕ]˜6Îù|<ñaaŠß¯–©¥ÂX³å–÷…k ÃÒõÃÛíŽ/ ¦Ì•» Ã$¿b}Óª[ÆVž—…v-í© ¬Aÿ<þÓžé²¶ú9¡u®[$ÞÝ+BK8!ñ/3 Ÿ<·+]ºþßĉ‰œó±@ü€_q8¾åºzŦ ­\Žm=§ m^Ò­ Ÿ¦Qï_úPh¾3n¿NhWmÑëª0f8®ð‹þÓr7Î<ÆK˜¢ÚüâQ%¥Ðf–K=´È þAÝ-Ç”ˆ¹ýSÅÊëÊ™-̹ƬšÓÍóòpSà¼Ýb£ëeUažïp³}…9û±"SNäþ>½ZrüP´½GnzudC3aöÚØ'ila:ÙfÊ;…)ûTÏXÃã ãô™'û—! ÛëWÐf±ðÞØ´Kδ÷„w«’ýûÄû& ë ' ý¸*Ì™ª.¿\kùÿžÏб9T|,´ÙǯŒÉ-´Ä‘Ö5‰=8Õ1é½Fœbà/–„ÙçžO‚'w…yí§Ó³âÖæVã»&Ù–N˜³$˜õáyaZkº¿ì²Y˜ÚöÕJ´Phy/û»ªEÿî>4¹î_Ÿ÷›Ndèò|ùSaô÷[õÙ,Œ¾Ãù. Œ{~Éy|Õ-ažsokü 1Ç"öê ýÒÜ9ÜÄ^Ò¿y´^Óúv+ð¸TŒãØMÿ‚‹S¯ÞŽì¼!s¬ {—…¹áÙÒmJ sùó®d+MoÍjj漜¦Î½„ék“gŸ—|¦Ð¦Qï¯}Æ£±Bôl Œ]e®ñ%­0Ì8’+i²Â»çŒÍ³^Çj4pv¾ðÚú`ª_«lÂ;£w÷×î sǼ•M¶Ÿ&‰N¾)´BøhK¶í’3ú{Ú;Uú–ÑóÜJ¯––3´æÛò$¶Ó>™sm\G˜­A‡³vI/Ì9.úlýU˜µW¦°sº¨ƒ{›-¦›K†nKwE˜ž÷Xr8c/¡åߨl²©©0ç©Ó¢ê§Â4<Ó‡¼á„¹å‚Óq‹§Ž®ïóË´ÓÂxºHµ·+‡Ÿz‡§µm=à·8Nay4ùXyaʽöîä×£Ç3£{ ÜŒþݸ™odY¡ÍÚswãcÛ¿^ •¯tÝmWn*iÒx}+¬róûϯsÆÙ.ÌÕ~Í®ÖG˜Ž5Õê$L³ºí ü2Ú®>ý®ó,݉„ë„ñ±¶/òðaÌoÏÖ*ÅaX{hôÇëÉ…aìñßO¤†æ‚óWÝ'¼÷Kô4çKáõqM¥At{Å{ìúc„Ђ¯ÜÞ7ÝSh‹M^Ya±0l«é3dù‹èïw¶Dwjÿ—u«*osèâŠy}þÎÔT>jæ“Ý…„öéK•©OÆ8?ÿéTë;:ONÿÙÂô¸³½¤a±0ýXéÈR)«0-ßSÌÛ‘0åšµìIœÜÂøò~ñi‰®ã¬fkû-ÆB©ú–›w] •:Í’K>Í+Ùha8Û§eÛQ_„aÙ‡ƒõ^ C³1#¶T]& q› Ú÷~¢ð>W¤M–Û…÷„F>ãf¼ÞÙ>ø„ý2Vx§ª÷K礄wQ#„wͪžSSF _…¡N¶–ÂtG½7n;y¦|žÑöZ!]’Æ•…׳×wZ>-Ì3s].ñæ{ÿ£éýìVCFm†š‘É ½,.¼ÚÄ^P¡ûá½8ùý'£Ç sFþ˜²o«ð ;¦žOŠ•8wé½0¬.š9xÙ×_ÐpÿcóÁ«7 ïįê<î Œ%/ïîyú’ðÞz®À¯¹„×ÆË£_œk'¼J¾vGjaô¼qhÉ´òBK7è‹W¼Bǹú¾0¼¨ì}D?µ9›òea^5®`ù©%„OvÇîáY>Äx¿”]§h‘;Å0aº¯Äç9C„ºÜ£Çëç+¦©6-Þ•r‘…!uìóÝ&ç^eìû"† /Ïü¦›ö ¯^‰[fj”\xÏK´äê–µÂüµ_©a“ÿŽyYLëûMñÛ‹þÞI³Wïã‘Cx÷}¼§ïGá5îÎÌï£NÇ8ÿ2Úd{Ödóg Ÿ ‡Òí¶/fðšµg FKƒ8ÃrÔÆ)çîÚHhüÇË\RhëÒ& õ„æQô˸#NaŠüè¯×aò=²·ÕkBÛ°0ǬŸc¾_Äo¾ùÍ“„z mYñÊGÆ…Ä8?1N D”‹{&¾0Gæýü²ŽðþþÀïs»C«½ìSËŽ^ãŸvìÿAxQï Ô¦ˆ)O^ýóÝfÊ;jR|ŸÇÂP÷é»,ƒ~Þ¯/¥°%ÿÏG ¥hTªKaZØÂ£AΜpO¬'¶ Ÿ]64k*|Jö/pàNp´}Ïø4e_¸Ð²U-R=´šÐú<ÕôjáSp›o‰ñc¼Цõ8~Óÿ¼ú’~©ëë1áÓl~…iþ|ë…Ú ë¾íq¢„©æñŽG^&Þ×ïz­Hï^«>/~/·ðî65U¶ií…¹VŽ«“r‰q~ÝôŸ¤÷7üê"´4k?]9=?IÜávvת¿]>åÕW3jÔ>é¦äh“éßè>¸Æ–£·ºOZžñqʽY#Œ»:õðÌÛA˜ãÔ=×Á|*úy¢+z'y>ÿ^ýúæ=6³ìmar–šµâÜ"aøøàÀ£NaÂà™rP–ûÍcœ?7ýi©§Câ/,ó÷ã¥ô®¢]‹%>‡>ïŽ_%íÐypnëÉÿ<;oøá~ÖCB‹¿póÀôó…á핦O>®†® º6ŒuGâì)œ=ÝVá=yÈõj?ÓšC-¦ô?B~é¸N˜j¼âýÎ"Ì}CKi»’Äœ\$5½mót½¿ðÉå9òP’n1Λþ±©ùÓø!;óìæÙ©•¾ý\hL¦Ý‡;Ï6]žY'¸îláÓ²ôÔ-{,ÿ|~R˜¦z[hmǼ™Ñ´ìÿÝ®ã¯úeéÙ½ÑöÚÎùm†ðî?ÑÐxEá5?Ë£ û× ï\‘×>Ô»)Œ‰üKÏ\uZxUô[ªÎvaø+Õ´É…qM–û®†³ ›2æ†R³z¬Y+Ì?êÆ¾õã_®'íîÀ|g2·¦N)í#SN¦ì›ö<èæ¶o7ý+xéòfxjCa:{ª³qÒ&a^3ß÷èÈú§љmÇ<þÕþÏÎJ^ø¯ûÙšZ½¼’ÙoÑÿ¯ª#K¼üöÏ;l޽ºøŽÖí…1rm¬dZèïuÙ'öé{„a]¡ivôÆ›+~ ßÿVx÷Zwã´×Qahùuê†7/…¡ÂÔŸ.ô†Ù ¾÷ÜWsͺ9eaa쾪ý ûaNñ:ó»èßCmH®n½ÿëÍ­¼Îv¥¦‚weþv:Ú®+½Ù;94Æñã¦ljÞýå]Þ—‡„ùcηÕk,üõùzFuŠÿíï§¡¼c\êªÙ„9áð´Å>ì>5+N)èøí;:Jj­‚^óð†\£ºSé%}‹”óÆæíž¤ýý[ësMK}Hx·]—zúºsÂ{Ϙ,¦u•¢¿ç 6šRC˜“ï|^w×na0Å[Þ¶ÿXá·O«„õ„ñѬwL!BkµswÅE›~÷~˜¦ ==opa¾Ñêzšž«ÿf~í\¹µO¦¼¦¾³–¬œn‹y=¸iŒPíE¾áWœZ®ªûóäÎÿ·ËÕ«¼ûÊÑ#ÂÔgMß ‘õ„©Dd‹þ/÷ m{ÁíB ÅxþêïØÚ2I›[-Œy îL80Jþ0¬jw_xÛ»¤Ú2d­0LNõvú™uÂð vÞñcW ïbΡé7„ççC räðÆYõšæŠ ñöÝjõT¥ÍÖµÒÓß_?Þa¤ü÷?Ÿä¦nú?ÚÁ‡×ño¼^%´ŸNÞAh»n7{z­‰Ð¾–¿½uWôw¶I¼‰Ž™…qì‹ÈG^Sʼn±Þ¥=& U† ο­²0 ¶ïª~õ³0Ï8×§Lü^Âëžrõ’=¦dŸnßÙ5_«&þr¬ò@aªoRå-c¼¿¿éßvY“¸® süÃe/pÛÝôߌV?0õÕþ4Ñã W…ξe…6Ðcƒ_ì×ÂÔÊTþ[Ù>ÂàHëµqì0a\œó`öª…÷'Sæ&­“¯/_4ûÒjÂkrÁñ±Ff†ÈÅ–åŽ ­ðÎe¥|ZÀ”¹E«¤>µ/† Œù~þ¥][#ÞMê%´Bó’,(»5ÆùqS7ý—àÞ?¶(UV:DV°}½% %/u~Óô±0L¹ônqÇØÑãëšãSzÞÙ>Û,O„¡q¿5]þz}MŽ~éy6æýîµ÷mA£=cœ7uÓ¡É:&±¥n*Œ #Fö>8_xïÍ›ôÅ \¸3c—l_Æ c!co×Ñ~°²ÝÙL%& C¾N3øíyvóˆv¥+LY²ëºzaÌ÷ËMÝÔM…¹Uñí KîÆ‚=ÞŸ{_Cê}ß™æº0ú-^Ì_¾/8Ð3ÚÞíÁ3¥Ï&´Q³½:w̧Êk .´Jç¥09M9[¥þ" ËÇGù㜣qS7ýO¦¦ k¾ÿ¸VöGìZdÈ+ cw*ýp0îý õ®GÂøxÈÁæ«R mo«aòº„é\§D÷É„aΓë¯{¿Þ‡[¿HìûA´úi—ˆñþ¸©›ºi4Íû¢Uʵ„)Ѱ#W×û÷MïG¿†{wÍáã×s’¸¹'vž£òkùF¹&ôôÆÍCV¶æÆÌ9Ö¿†“íVºïKqS7ý#QÓüײ·!ŒÃ½2dã+ŒS=q…µÆénÇ»~óW»¾4æSŸç_„yv¡å¦”Ý…)™ßÃÇWV cꦭ‡þm¿7uS7ý×QsëvÖ”Ÿ»Sωgîß'L'·ÔšÕ`‰0ÿmÄá–Âütí·xí³ ãêTUfî/Ìâ,v&,-ŒŸVy3©¡0ööH¯mãýpS7uÓßR-vï6!ÏO Sœ»wçùÕî“7<‘g×Uazúýdƺ^ÂØùÍí•[ cPÝÌ û¦ÿÇÞŸÇÕÔ½ÿ8‰:çìaDó@‰¤¡B*Š•T¤T¢’!ŠJÉX4˜C†¨„JhÒË¢2F*C†9*çý{ü¾·÷ïãsî ÷þëù8û¬½ÏëºÖºÖºÖ>{¯µ .#ÊøËõå8rü•IZoOª w‰¯neÜ#Zìzþ1»5nÝùìoŸÏºÔî]Šþ Œý¶0ú2ȓʖ{Ë ÅoGŽ¥Ÿ~-¡Ý¡Dèž<ž»q‘œ_6բǰMã^½U»öê¶Û]\AŸó~:©³«ØõqäÈñë‘©D›!`^v»<"nŠØõpäÈñ+°×—äòÀúؽsÛ0s{Úõn*˜»¥gÞï({øz_EÓmâ×É‘#Ç¿L6xx[˜S »Îîk ª*'¹{ì^Ða)#´&w±¸ËV\(v9rüó$›;®{´”ñhëm…œX¯UíÞ Ôžó.õvýAíõè^­Å®“#GŽTa¦ÿý¥s®Íî@°=®NqŒ ¿NŽ9þe’¡‚›ó¥´Øt±z¸Úú0#´771Iyâ°î¼¿ØuräÈñ¯“½Sò®ªíM0-GUÞTËèO£‹A¬j ¦%sûqäø3“¼¸jV±y%Hæø =Œ.‚ÌvvY~GUìº8räÈ‘#GŽÿ µöŽ=‘™ Òx`yCúŸßlj#Gqz)ß·ç¼±  /ö×V-v=?*IÝÔ¢=ûì!4ö¨wX¶Fìz8rü¿È¿]yvü¶Eš`hxÖNìz8räøÏIu®o})¬àšY«›Þ`=šŸzÌ£8…‘÷N‹]GŽÿ9I ×ü)Ž÷ÁÈF4Ž­»Ž9þ8>Ù²º|v>ÈÛ/瞃æÈñ§æHU þ`e †êªê‚¾#+ü”wÌú½!wÛ_€°í:‰ ‹[į“#GŽšdXè˜ý>,Vmø¸ÔFwÅîÆ:à—wÞ'cªy’Aä³ýb×É‘#ǿץŠÃÆ6U‚Þ¸ùêG0myzêc#!p uf–&Îa³åÎùƒé[åö¢Aìz9räøâýQŠÉö-ãA1zM’I  Å·6‰]GŽÿA\ß°»(1ßô³š¦ÁæÝ!¨LxßãbO±ëâÈ‘ãWˆïÉ›íçÝÄ®ƒ#GŽßެ²ÆIÜ—»Ž9~=ÒŽòÖý´>Š]GŽ¿b\—m>úi/Èsý¡‰=ƈ]GŽÿ9Iû =ÏU€ì»'o\ v=9räÈ‘#GŽ9räÈ‘ã×$™?&Pó#v9rüzd¶g÷:”FMQ!%@äje™¾þÚß-ÏFäÔyÜwI;YÊ*ž¹qçqbpo°4/'륀<<5w娓_O§YâÃ#é>`Κsþ÷±#i–×v¥Ò¥Ž™/ä Î z6î¾[¡,è†ØýÍ‘ã÷ ëm÷ Û…PÐþ åÛ­éFêÈáË^ ݰiî#”­ôfã@•Ëo–ÑúZÉ«…qA®Íà¼Æ‚ßõš*Íwd“kg&~ë*^׳xDþy¿³yšD`åP~Ãeú~%ùhü$ 0Œ„I`ÓçýìØ!~I9û6@ zeÁü ð‚LÜ}Ë‚§V²ß©%|^‡#ËÞ>¿aÒÇñÃú‚H¸¾Š[ã¯MÖbçõøÁ ¬ïYy‚ýÚùéí¦€Và#ÕÅ´ßÅÉ×ýe+ÏŸÛ8õXQxµ'?¸?ÜjÌn×ìÇö`yQgfèâ'é‘ËŽ~=}Ë›#z2RÿnzWž) Òsù¬§ò]rM+<˰y££wAzƒùË;ïÁ¾Ý:а#øõvwÜxº Ûê»a5è !>&]»3'zcX/±ûŸ#ÇoB£(­Zrô¨Å‘v«ÜÀÜoÏö:Ø´+FÖòAYÊß­<ç bóiÙ ­nà—Vï_7n x¦;LâæhƒoèrñRÃ*ú”·Q{ ¿>Æ öìùê:©›G­ô·‡ ÿðºàÄPð-rúÕ‚ôÊM«[µ„tõ*ù3›Áý©[µÁ ¯{èëk‚ªð:­'U&:ß¹yÙžµk—’õ‚¥ÍyÞÆ Û]Zo2]”o ùrå)ñ×GŽ_‘ìÜ­–•ÉïÀßT¿Õµ½îçxŠ¿ñþÎÐÐæ/Õ O^%ü‚× ðO÷ßétWü»úý2¥NŠâìPÙ¢.‰àUt¼–ueØÉµ‹îRsÿ¼ŽîÛöoPä´náØ/¾'Çkkœ«}ÁºWzS‚(Íæô!þJàIËFNŸ’ Á%ëÖ9Y`–íZôFÆ ,‚Ûßß’&\²)£m è9³j^5äƒ:åßsãÝ8вrxùKDv}H¾ÓdèãË;„b¯Ž¿É® í^kÉ€õßc|-¸̾[ƒä˜}Žë§£Æ»ÑLé™^—rQ”—/8r’.ˆž8LH­CfüÐék»õŸò–jò½ÑÚ£k0Z‹ê¯'ýñºHdâ{ÿSÍjên¥UŒ'ÿ~¹àÎ)éSV€}0BBI(ˆŽÀÆÊî#˜lW›”˧!~RçàG+þí+7ÞæƒÝ¦Ý¦L×d{€ô >ý?_ÏTïxæ«¥b÷?ÇŸœÎÑGãô[ýa9¶\Ãd«eзÓA÷Ó;¡“þù÷ê¢ÆÍ´õ•±eâu)çÏñSÓ¾&BõÏ;YdÁßðì¿Hr*lÜ GãÅ®ƒã/F}]ªëG]ßQÒ[üz¾G­owÍSòãîyšªyà׋ã-3§}jåÒuÕMüG¦ï'~pü¡Èª’6df_óéñçÛ׊ºú€ÅDíLCå% bÖ!dëžç`Ç]{$D÷Á³Y¯>}.ßx¤ÐÝu·¨üÎn›•äÅn÷÷"Y¸óÒâS. sZ=øôtßß¿†½53ì$…ͳ.‚­Oþ X’²³ÜÄBåžØíäøƒÑÏ¢Ó8Éb0õ­B¿^ðçÛÙÔ˜¶A]o‚=¤qÆñV;°úk‡9·i«´}¿ v¾ÿÕøÑ6NÜ#¶±dàí—^Û­%·³z1X™zåiz µ‹UN­Ï¿¾U\ë–x¿#¬Jï)ËG¥ýùóÜÆš^ܬpæHËÉa`ÖJî‰SÕÓ()T»,™í¸e˜ÌM=}Ü^Äß»L².r ;6ÿq{+žé=éˆzСa)Ž Âj×A[óÀ4·¹½)1LÂÂô¾^u`^l™è/c 6µB*°@DÚpf{Û`ŽÍÿ(o${÷¹…„Ùÿ1n· “šüt¨Øýò·ãùÓˆ项 Ç‹]ÜëÁØ&„ÌÓQíOŸn~ýûçM·×?ØœvŒû T3妠õÇF°­=MVÌ]²¡é àæM±ÛÇñç ‘±vZ0íËýÈ/6­¤ç¬9»z°#{×­.s?b_ux ˜×šA·ÜÀ ,UÕÜ fºbñì)WÁ|:ȹ¿(Î/ÔŸ¯7 ¬uàò§Ê›ÀÔ%›PÞ ìîúÒTË_÷½Z2tê¨cÝAØì3Ï‹î‚P»pÜ~CP¥¯·¶œ²Z÷jf‹×çòŽ&ÛwÄ«ƒM–-ɳ¨°zâc °Þy‰]UAÞK¿~9$OìvqüIhÞ§—¹G,HÊ$#uçÏã©ö˜Ùœ'ʳogúu—ÝráCZe è}¯Í?úzÉÉOS:‚éɦûÌ]1íXçàÛ`Ì6­mê,/ŠoÃ×÷xüq[_éýo/»´ÂÇjý3ñÛý­8-Õ›jPÍ{KÇœ}#òk×u˜±Ð̆ˆ-{òÁšT~d—þ­nZ ûB%r…‚mzѲÙh X:Vý”e)Ø%á1}/~9oµñþ[ñÛÅñ§"ý4pÀ¨©>Çóá¼Ã×Èö ¡?äM\ùúŽ÷ÀÈcõëË sBó§š}éeÕížÏÀÈMëwxRO0‡Ý ‰©1õ€É@OQ9ûYïJÐ Þ t6H‰ØÚFÁ,R4ßœtÄ>ÐDÔo ìzN%dF>VبŠÝ_Φ»ûyŠúË•ïÔ­·‚¸¬ž?ùìYÓÖ”Ýü¯|ÈèæÐ-]¦ƒ\nè]0dPÕ¨ˆUù¢¼¨üŒº9 áŒÓ ѳ¾Âsæ?;µ*Æ-˜øíŸ‹ÿUIœßL0 å‡Û#ú«ˆây{·í ýA´žFîN´£ÝtÖ4¸R߯©WˆÆë}Û$âAE­8wÏì {®, ЇÀMÛÄ«x -&«¤Œ³Au6R7öXjYîÐ|7w°×^L*ב{åÜäLQ;®9Ñna€Øíçøc‘ŒxÑõ¨‰ÈØò6µÛšÄ®ç»³ß Cgƒ6~=zTY(ìY6_YÊø9Ø~Ëåu¥äÀLh³ãCÝD°ûz™Öùvý±Õ캷ÜÙ2:Õ |)ûã9V÷Á{Ô«_—qàŸ¾z:`q4[xÖWXP›Ëiõ£DùüƒË£M‚Ý ]ÓÅ}ˆ)Õzbí ñû‘ãEÒæõ-ÍóûÀ6O˜¯=ãÈ­¦Žþ5¥v+ •R?+v}ߌöïNE¶ªqÕŸ «;$]èVSóÏד'=f& õ‰ÖUŒFö¿?9þPdÏ)ç³Y}Áz%½$Í¢v™={ú~'—LZÑk‹Øõ}³þlÛäÜÔË`uÛDjhƒtS 1q¼óõgIZJXÖÀž’.7@•:y¯- 5\à<€'Êrö…ñ㎃¯˜3ïha>xÓ׎3L| Þ¹"Í$û‘àÏU0~>¼#ƒÂû>KÙ fÕ¯òó¢¼à°¹·ô5±û‘ãIö¼Û¹uÌ}°NëÎZ%ŠkR1£u „#wœ¶–V»¾o×Éï®JF°îÂæ½QžüÚÊÎ÷Ûýî´¯KÕR []Yx}j&é¯îhÓ‚4:Ê×ù1øþüm'NoÂyJþ$x¼®vìòïÁ`ÕUƒfÍú@è´Á¨ÏV±ëúV$‰frï[WþØ7gÜŠTÅc^óÍ~ÿ¦¯îïWÛCz¾Öµ"A!< ”JÄÔcê(eó™M·!?¡³¹ë,|Fe‡?yjð º·zJ`†:Ÿ]}#äJžü¹Îb÷#ÇŒ~í‚ïîZáøA+d¶üókÇãËk§Òì?‚,îú`i ˜º² 3a8˜.gT'ùÉ5uWÿ8®R£ LýBÀ¬›X»Ð}„ÆIÓŽ¯oŸ]M¼NÛ<£ß²ÇÀÄ…·owtEíyû`¦Òþñ °)®Çïo©É*îÑÒÖXìõñ—9³üÞ{ÍÑ`›æ¾3«*{¼æÔLÕ£ VõŽò~Ýçæ8þÿ8h5ÝãD9ˆÒŠÛ ÄÞ•ðJµ?ØG‘ µ#À¬?k3yÔ:ÐKM>šÇy€î_0­h®2˜ˆ}ÊÛ:nõW]ZÅN¶ùòº®Êh¥üÌ• ÝÏ×…‚½Ö'ÆC2_üöþÏ8°N –(q?=uXÝÚ!ù1“N¯ðå­ýf (zþËóMÎ,No¡êޫ鳿¼îY§šîÅnßozFt-/ë&v¿S}Û¤=Ï¥ ¦õð…„¦ ÷jJ¶ ºÞeš±@ô€²áï›÷‚Š˜µéӽɠÛ[[ö²]ÆtߨsYÑx6gãýA£~ÿw#%ž”/»HßFc¥Ý38”O„P[ÞÙpá¥/ËùÄäÛuy.ŠÛ;±z[¿ìÏÈâ¼^×ÓAâ}-OËí ¯U¾ª´B‡Í'Nýõuv¿Y½—ƬXP¹ äââÉU•ïÄ®ç›ÓÚrÞêѭůã[³‹µÄé HÂ䉻³@ߪ7jÒ)å1jUóÁ³ ¶u:¸Wf ¨ájzOv5¤SžzÏ RyÍ2@$’ôÖ,iÌ«ˆn}Wüö|ï¸8XpðâgVÊ—šå— Òù~  ˆyÝVÃEy¯s‰× OVë_½ì}¤Ý«6Sì:ƒ¼aç±t¾¿~ªG–I½+XÅ#îj{RC¢eÓ/¸¾ ‰­¤×*%å×θ)~=ßš­ÉÕ¥`«T|åÌ+Àꜛ4ni<˜ƒ­t‹øÆ :tò¸'ð…`ó ™}zBðäVË¥A ÆŽLÙx9tæÞ-úz ×Äméâ.~{Ä×ú5º[Š–¿¢zʱ<°ÊG³d•y=¤rdEãÖãß\i̺>}ŠTÖ‚Éø¶û®Ö`F¿}¤Yv@lÏpá÷[7„Ü|Ööéµ¢üìXÖA ó2v™u q›74eÆE±ûó«S-ÀÓ¬Ôä„íI²ÿZ'fŠgñªz=wOŸ Ôéñä}s „.E!æ'ˆæYÛ†[¶Ñ¿Î?ª·›¦Ò+瀘¬œò„7]”÷yŸÿðXyuõ¹ÏÀX_íS;mh…ù0á>¨ÝZ½:™Šòw'ZÒ ì$ý²P2G™æœtPjï Ÿípµoûã§Fû@Gl=Ò"mæåöyÔ[@z][’”=ÖsHlþïž-{i3˜†VM}Gƒ1þ¨qaW:˜»*ÚaÓ•ÁÆ_.y¬èz–W­€#ÇWL\æóíuÙ.¹vßWDϳæÃ Ï-t{sìƒÍÊ—²'‰ÝoßÜþ uÊ^o÷ƒTu¾ª;•…p´^àUFBÝW{ÕÕÄ®ïõçŒ]¦@}’|½¯ÐÌR'÷Sá4èš0³Ê#Π§õ‰œ3ÎT–‘DåÖ:P«+ξº˜ê•NºädQ9‹}7R[B@»*nÖ™"šG?*8B5N”Oš »ã ¢`ðÑp^.„u†ŠÝÞäøÐs³Ý ÁÝöR{H˜›<-¹aÛ6»öåø¾µ¥Ã;O Ñ<Cë$ Èùs¡c¿Ý<†¤»Zïs´}}'š,Žé¾ìþPó}WE”l¹Ñ+2Y÷×_÷€¤ï+,=²µ]éNû TXáZ{8 ÂîÇ–žÛΑçd¿Þ¾'_]ÿ‹+®Ê6 D{ê —]`vë c+›@³ã^Íý`êö*¾:O´pFý\WÑñek­º¯«¯?yÔNÑ8¿hÂàìO@‡¿*18¡rÑ€’´×ކʕ>± Á¶‹{¬=ù0˜S/ÞÂj8ˆÜŽøOgµÁ® 'd¼#é¼$á2°ÃbïuûÏ¡§^ Ôï âuÓöR—ÐîÇ_ÞhµÔ–Œw[Fð}Rä'~ÿ}븸õzÝÛ®ö “‚'FŠÚyr·òE~yÖçô蛄F‡ûíÝftÛ9lØÆ- '¥úë¿ Á€ž® u}Jƒ4—‚¨OzX}Cìþû朢|G*³ØO‡Ç‚3ˆ%ÿƒQ£È›nº}_ö¿¾ÿW?¯ØÜû˜ëó7ôÏÅ15D+Þ¡ôÉî!Æ‚®ìäì°N tï)ªÙ9ÝAI®Q–š£Á¹þ‘Ñ®C@¹hòA,žÞ8á%½w²qþÏ3?fÔŽŽ¬?¶xâáúÛãEõSd—üã¢<\åÔÚ“û¿¿ÿVn˜-µ è;¹ºÍ¢ø^Þ³]yŠØýö«“ô.pØïÑVÞÁöÚ³Á`\®-\¶ôõ=Cœ²+@±¼`8TnêÁçï€êa çª;‚Šã;—Þ[AjdíÝF9¶•®|àpu2I ®"šgí©¨Rp»ë¹5ýᾨÝuZÐj±@ìöþUÒÆÃŽÔº‚18j±¥ÓT°‹î ‰ŒÚ 23·õ­èÿþ¦Øé]еe°)ˆ^šJ?Ù`“ž™µÚ!~]?9ɇ±'ÞË뵑یÊÈèá~‘ ÍÙEYî¢ø•¾ãF[”?·>„Õõª¡ëòÀP·vï_š<Ôú oãl[ƒsØxʱ<Ï7j‘L†`Uê^­ˆVDt_£jªëAó±¢¼ËFv›£•X ëØúr±ÛÿOIMó¿gxL¯s…ugEyÉŒ@¿¬M¢|%Ø#™÷Œ‡ðÙPÁhÓñÜúÿ“lýŽ#² O@ŽdæÕ5ßú²ÜÀ½Gt3üûÄbçØ’>ÍÁº¢ùM«ÑîmÀvw1ì9§k†k¬ËAϹ«¸¥ih‰ˆ%Ò/$@%o¶º(5ÔÊ-­äíÃDí8ŠQP8êôz*}HoP8ee%ŸjÛ¢çgMN‚š¬µþäs[×m sñÅùž!‰ÎÍ¢¸öÖ¼ÛÑ Ôþ®í“£—€Þz0›½rlpTûSoû~?Ø/ì49§þ_‡îy\:§ËcQ>“k˜'ßÄlk  *ÏZMƒýv½ËÒ ™`6§ßèµ¾#ØÄ#ž7üϺƒÓ:Š¿=ˆ‰¤pÂRãl°Ü ®å¹C(=ãá]BßùW.×ô‚ÐÅÀh̨¯¿¿æ¿†’#šóE~^º| yiHÿ¡lÓ3° öÐwj¥Áx¥d[§ºƒV!k jÚŽÍS[Dãôì®Û”Wf‚Ê\ÌX·µcú ±¶ˆPž°üŠ´(ÎÍÞŽå6W³«L'P¡:©ã :OïHÁÖã L7^Ýwè€hœ?¯Q襚d7ÉUìÄëkèG€œXnV×k„{7-=“ùÏíì»Õƒ.B¨ÐãŽêÓe`ïÓ«Íõ{g‡§ ¦-ÈE…;Û^ÏyýÊr†äú?ß>/¼ºØ¢|Bׇҭß~~?ŽRosÆ|%¨ÍŠUÓ]:ƒæ·ö¼×-̤¦»N&OÀî³ö®2ìÂäGƽEãÕ‡EïÆÊ½ú~õ>ù‘üÈñß?žû.ë–;¶Ø“GN võƒ—i]&~.7¸]Cÿç{Å¿ls½~ÏÄáQ¢Å# ¬ËA¹Ûu Ç¾’±Jy J§“^lÕPm’ößÅkâ˜ä®Á¢ñúغíëì@O2﮳Tý‰øÍk΂ªˆÜhÒX ZÓÜ|]_4¾Ýœ=nä1PoµÊÙC¢þẫÿÞ"SP¶FÓ=< ÈÊõªœAïªb(ú¬ôFcÓ9Q^?`u?­{På¼öýÆ$Ž<`þ:™3t«É.‡V`i§V»oþg§Ñ%î×Wƒ¼ë9¯ð.È"£«ïß<Ùè´ú!õ$o ߯Ë&°×檲͋lû R b3Òtô‘°2ë”|V&²Ôœ¿{ô¯6É–Ö EµµGÈÙ>ìyùˆQÏUÌ:Ðw«Œc@ûxÙ¬[•rëT÷s{þæOæÈ¼Ñû3÷€r=;×ëúгF©@W‘ l¯t‹Å_øÿ½ÿV£W¥_áýxÙ»Ž»¬)‹8ºc¯5„Óf¨”+~ùØW‹ç*·{G÷\ƒPËØ$ׯlãÖÚ¸ò?ûMög;Bh™´µløÛÿ¯FÌw?qŒoÌ–Kã&ƒ:§3và»8žœk´išÁtU-5'rNžøx´¨åÊq}w‚z®QzóõÐÂӪ׻‹òëáE Îï:€žºpí·©¢øSÎi^è*Ê»wµ8Ámœ°lŠ(ßs‡žiÝjá]¿ åÝ@ÙÉι:ç¬h>^¬@—V\Ýïøv’Y—ôÁïc {eÔ~ðUäB$ÁS䪴x)x«ŸZd…·O¡}’ìÚð^.¾kKŠêÚîöæ õ¦¤$ÞõÉTéMGF¢Ü\zìi0uO=ì;^³/“öN6·ÿÜ}σy«¿IÝO ”¥ã¦IY]!¸ä»µs?'Q?ÄSI0s…`im‡èYRØÍ©aÖª;+ÒŸwv†êñ°ccŽi‹ò¾ºW6ˆæ#åÛå\ˆú#ˇQ÷¥_€î:o’$¨£-ýtœ3¾}½Ž8—ÑÇèûÿõ[<¯r{Š9H½‚ïܸFÍ3‹†,òNJG:è*HËý+;„ÿ‚ÿ·þ§_‚2Î22þ†©× ¯¿^ é4¯5;|¨–66·wåÇÑRk!ðš“yµø ¯xnŠ ú|¿1?¬#( îB/ƒzéfÈ; Ú&î¬S`GÐümÝ ×g$úÎ ½òzRîäbÐ{¼,Ž+ÐqãîÛt¿ ºÝòª¸Õ¢~cí)ÇÂ1Ï ¸ÿü’Aä1V ÷ì‚ +lƒKÔÁŸ×0p9^Å–Þ2ÏýÁ+M’,íÞëÛ1ú‡dÁó3ê^jØÒ÷ÖY¬Lƒ'3wûåÞ¢xŸ°²ºª <š\DµUgµeõ øÌUƒ¡³Dý„¶Nšw«¬|ú†>‡àúàüù/®@pì†÷¢ÑüaUÛO–—g€ºg½´0w (åâ‰&£DùȤ§•m‡ ¬úÝF‚áõZƆ‰½}|µvpìÖDíz .ß¹ÿ~¤¨?aôÜçõð–ÕI=™½Ò'WÊŽJуt¿š—‹Î• ]ìÞvsVBê“Ë„U¢ö0”™÷áÃ;îR]™¦%v{8þ=R«­ÒûŠòå’mkMÿý󗽯dêÜ"Wx ôUùÀpKG0f ÒÓ‚Ñl4|V*„:ª%ó·ü¸ë]S»lÚ Ü|¼7–í%û@Ð~—Ä*£ `6×l]ÍT€å„òЦ H¿Uy:*¸³Øõ~-21Þ!Ê®] ð8õà\0øÃ´“ù ]ª•ª% ¨Ù¿#Úù±iQwHó[OW}p¼÷×´‹ò .'ì—äÝ»ÿé&§âŽOU#+×9_tURÔ©Ö Ð=T•£ ²úy~BØQÃìͶí°sŒAfUä²ab×ÿ{dÕGYw|T<;«|R˜Ž+‡¿í1”W¤S^E𭘊‚Å­!}¡ÊËÖå×Ùgƒ±[tÝïM5kÛ?|v øŒeÜ'¯ëúm]&Aª¿ÄujØBHíÞüö RemRA¹4ÞPË úô@ñÜïýý_…Ì„Nw•ƒÀª¾´¨›¤ !o­¦ql45¯?Μò9þ Ž\ê>´Î©i½ûaÿ๻¿ÿsMØO½ÛÐü!q$X/ãÛN‚¬Ixx蹄cÇÔî;"š÷Ÿ5奩ô’’gÍÕ à­ÜnïL±ëþZ$z*Uí2AJ°žYìAIC«À¶mûÁ ÒËNW8¤élËB~7Ñ<¤£Iä+Ç`Ъ¶>$Ê¿+†æôýy÷b ˜m÷í@®ŽÞà›ôïÝ›IM–5=>C÷®™¨{zš «2ì“AÏSZà™ytyƒõôyÅ`»Ypw´›Øuÿ®=Ç»~ØaÝ rM±×êÍçö¾Ü'4·ûËòÑûc†9ýóýA~’GËuïu ÞÓmâí ª-÷(? Fýú=7 E±ëãøëw„ÞÿÊ/×1e“%%ìU;?!t&5‚9m¦{Å>8[CK_ lóÖh÷Ù?ßÿ’¤,¸!óÔò¼§2× ÈyÍï5á!χ¯®# Å®ï»ÓöþåÛOÖƒŒÚºhúí`[lý{4ýñóðä´…ù¸Ÿ`Ý€ß8±¬ËËgñëøÎd¯ rŸqÔ!I»Öm‡ @Iî}Àðóüî¤Bàt5Á&¿ŒMý#¯¡¯A^ª©$e\»î¿KzaYˆü®{¢x>È>])²Û£!Ç`Ã÷[7è§gûø§“§µùî¿K†Þ1í^%š÷i%Ë…oàöÍýCõtÑ´9“ ªç›vÊ – öÍ9÷µõ¾7Œåô,{ƒŒ{_süçï÷ÈŠ»!¿LÞÞ¾ÂÇÅ®‡ãï5ÝÙî?ûÎ3*Ã9츌 ‹oß>²‹Ó©ƒ½­µÊ d`…TsÌ;°KFÆG\Uûj…çÜÎÅïŸ?²c¼šKÓù- zÔ>9jŒ‡M·£è®GSý-À4¨^ܸJì:9þ;ÈFï­±êW ÆÜ¥ú¾­`CN›½Ùðí×+&OÞ>=Rq̤AvDyjI¹´]KÆ«Œ ìu éùzfËÇ@àróô’É> ªÞ=ëïÓÌ–ËÂÃÞ7¿¼Þ¤ŠËÚ‘Ù8\zùëvßß™~ª¶#Eñlb5†‰Ù vùî Í¢r±×/GŽß“L[ùÑsuÝ!X{ý¼ ÜüÛ‡*–Ì ßÜâúæòà4<¼Òþ xIU3eËÀ_µ…ÏúÜå’bE/9*Pv[|ÁFÐÙ½‰ŠÕ&°×ïÎ1ÒØ &"mOÊŽùßß.¯Õ•·ÒA{ó˜ç3A¯‹­½øv —›ŽJÇ¿¼Ì‘ã¯LöéXÅ›7ÝA'k–O3•žp¨ÎÅ´ÁÕõ‚÷`º-×ð¬úò¼”©ëEå^.‰˜{¹#¨G“Ï[X¿ÞkÇ&mçÑç—‚¨ùº-–ß¾t?¶tï°ÐÒÅ{ï­ýFEaglóá¿|òðªòUgZìõÑ#GQ\û M;•ýÔ¥•—}—€™Û«›yÄŸ>˜d˜¼[,ºÎxrµpà 3R£_^øùÖMá(’ÌÛ%òS¶‹]Ç·"{홇ÄÃ6 ÞuˆŽ>X"£"5ìlûoçϦɉôjÐç«Ý:«€Ô‡^ {0Þóµ|ÃëõWÓ|ÞòIÔ/¬Òò/¼Ú£“C‰š;È+·–¾Üý6Ž¿8GϾ´v§!Ø¥þµ Ê_¾§Ën r j ùÏ~áMUs悘Ž]b¾iú7×E&u)ìÝ’ÆK6ãÍâ ù|¦8 #é êÈ®›Õ¦A7v?úè#—‡süw‘Œ–hÝoÙ€/ãz‰oFŸ;Ý@·Ô´ x-vÏ}êltúíÏŸf7qûxˆfH‡µ–¼Ä®#Çï×ÍŽéÏãÿ—üÔïmÿ˜V»ÁvôYà7d€ŒúLf“Øõþ)Ã\­ðÙ- çö9ÒãB.Oô>»Sìº8rü‘)x“vëü€b×ñ{Lcl¶ƒ>i2ÙM34ý ¢ñàF™v«sžð+Çn ‰Yóó¯SÊ‘ãÿE»iLü‘?¿@YOÆæ‚¥Øuÿ¦ÿñ™àHö`xõµE¹}ÀÊôW~r`$He^L鼩_”gÃ;¹\»nŽ¿i\,V¦•"þ|yå>‡÷:ÿ€ëV%>HôYœÓþí¨% ûžTdõ=2BÓü©ÃAÓ£oœñ™vpÚ‚]J w¬ì7ëÇ{O›#ǯIæ^¶íîÎÛ?žµ_é{-É…p@'þÁìï—Ë$œµUáûÛ1eYÔm‡_ꑟ]Ügà&=„¬z¡äã–%oAìŒÝß»ß9rü–$gjMöõëüϯ7¹0÷ñ’o=W6—Ð`6Äbž_yðÙî};T·ôÿŽëjsäø=© Ó!]ãß³>Ço´¶Çzù$•÷øŽ° ¿Ž¿"IÛÈgêףĮãÓéq¾®îß°Cb¦†kÂhñëçÈ‘#GŽ9räÈQŒd ¸Õq˜<Ø€°‡“Lׂ¸·û íó/\Ç#Ç_ˆÄ_c× æ,X¯Wº/̳@RöÅg}+v]9rü ñm;£ÖÆD¤!ü€œr „cBWŸÚ’agÇ¢‰;ÌÄ®#GŽƒSŽêæ{´ß6E?zØì3ƒ–蟻lt„æÀï¿îGŽ¿Ùa…9K‹°'Ëâu†¯éÒŪSÛ {”ü=úŠ]GŽÿ5ÜÚßirñYŸ>}¸oX¿ƒÕœon´1HzW£˜H/ñëäÈ‘ãß§ë4F x${hXèÛj‚±uó/ÿ Ÿ—ãÈñ&yøä†O.·¾8GŽ¿ɾÜû “Ä®ƒ#Ç?Å1%aS?:dš“äKůƒ#Ç?A:,êî>©£ :ÖL~–8¤{läu…*’ÐÍ+jį#GŽŸ¤‡´cï =`–Oí»Ú¥5þö±noõÄ®‹#GŽ_}Îë?ôéªóº¼…­¸}ª8rü•H;|Ü÷üÅqr{ü«7¬’ØõqäÈñoP#½‰¾ò9g É'ÇRêR5—YÞâ×Ç‘#Çß%é7U£¥tH'›É^{ܾü^âjªdŽ"HáÆ‡¼*ƒÏÇ·ólà"±ëçÈ‘ãÿ×–ãÇ2³ý°ƒ­N¨-„æûA"ñ·ïéÕNÁ'4¬!Ô9vÜ,Ùì›a´u]˜@óO1lÅ®Ÿ#GŽ¿OöòZ©NrSA7, õÐÑÙB}Jx :*’ÍZ×dÉ5‰Qožƒ¶º»èþí$нß̳úw÷Ý»~Ž9~IæÝ±‡w´¤@iI ß“¿‚0†7iç©Ï߇kjIc±h\?ºh¬)è†'ü=ïµ@³§ž™„ÛD^­2:~LìvpäÈñKÒu·ý6wIV½Ý4;oÁíÚ¬Ž RÔ?L[zéêbÛ7ÇAO¹°æí» ]“bޏ.ãÅÊ›/vý9rüc’8S£E9ôÉGɽŸ€Nî¾õNX/ÐÆô/ ?º¯Ùèk²A/aŒ:%=»^Ž9þ…øn»Ôþ:3ô²áóæ]Ó1œ?j™èn#:¥‡Ö«¬ù¤â,v9rüó¼¶yñ¤d/èL…McY0]‹‹×Êm=኉vo0Û{A+u7ØäÂ÷Ä®—#GŽLúÜÁ÷3ïU‚Hô½}³—#˜‰’;5ÜÕë©W†·"iWÿ8CÐ×G^¾'v½9rüc’çkú®©Ÿ 2N5æá0–“¯ùb6èœa5~ Ö .ö}e ŠnZ­–9 ¤ß޵qÜ}4Žd’¾ëÕû&°r–¾Ã•JÀòn›À™âxI ̃%J<S}Oíýê»`£y–ºóÄ®›#GŽ"¾ûOj§¬:þËïGdo£: {uõ^™'U`[r#ûÕdˆ]/GŽ9räÈ‘#GŽ9räøo&yÞ¼ºŽ?DNwùýOMb×Ñ#Ç¿Oúyϼ›£,!èZ0˜]kjõ1ë‚#‡Ä®‹#ÇŸ‰d¯á³ çA.…<Û<|³øâÙÝÉa$¼ÚW O÷Ø€w!çÞœÙî`z´u’~ÂíkÉ‘ã_Šëƒw.™n=¢[\&´þþñܶwnÔ„wàO9—¼_J <³Ö%và?æ½{ë|dZÃùuبuÙ±Ž~;i²“ýŸçW Ûô8rLÈNía›—€Ý ïï} läðJSû€õ7pZ” âa‘ ;Zìþæø“ÓuÅìVµRb×ÁªTµñõLûòx½×N¹(>('þ‹ŒÇA{Nå­/Õ‚Ð}ÌÉ+a½xدË@·¾`ú…lìg< ìè ­ÏLüü½UÏ3¾%­À#¥ØûA |–TfBàÞaôÉäIàÉùŸñf\­ê`^tÿxùl0šÏ%Â]!Ø6áD±kP§"ªï×t‡@®('Ã1‚öc$î…`”䆾 6¸kèÖ‚® =ura°Þ>ÊwWïõ_²#í­¹çd8~'»|爞Ö7»>± `†í¾óÅqú9oV­G:õ¾ŠÕÙË!¸ýzAQfÐS=±~f°Çž5Íö úÓ¿Cµzܬ´v ø+µ®N]¯×¼ý·÷]À¬LÍW/ümÚ¾Õ­38²¨ä¿òj¹QÛ–0y 7Î:0€P¤«B¾˜’ò]Q›>‚õôèxs¨h—!»boº@ »^{ÓBfW/sa AümËI.=!xpäèÒñç@¥xÖþ“L—’Þ5sÕAÚÛ­î`:\üõ̑㷈oÕĪã! }ù‰#eB ¨Pœ8iÖn6½Ûº¤¹^¹Eæh™âŠF÷fvlIÜ öÓ¬–Å[§|q=Ö)oôè½Ï ˜ºÍ:þj?¨ù ‹sÓ@õÛ¡h‰,¨ûj3¦W;‚žy,6ééð_-uüØÆ ,¿ÛÔMã:|¾žf×íâÓÁ>Onª˜J5³Îj® ˜¾ —êƒöÞs)Úp¨1hz¥ìÚP>;E ÷7ÎyaÒü¬åó+'êýÁ87˜tn!˜¥W=ÝÜöM×j ¹Éb÷;GŽ_•äe‡ª„©¿}¦ŽÜ¿ç³sK·h[X)èE‹†u,qk¸¦z€äI=z׫ޫSµã™qd(êê´)ú N¯¦¹ÉL‡ÈŒœ‰; ðó¶M™§Þ¶–÷Õù ¾çÖ%ú ¨[Î×tÍÓ©Ñ%¤¹5¯»ážgÃ!l»µÿ»·@Úxšˆâ^ÁðìÉqƒ@Úΰ•½/AQ¨ÙH«g¶Z1Õ¸ß'PWï·Ñ´¾qœäà4¤’däÀ(Öì»·Qä‰ðâV'ñû—ã¿“6\>?®è½¶ë—ßOì_jÞé«ý¹œß˜<ìÒoŸé@—q 7çüö™­(ziئ÷Ÿ¾½M.¨ù@OÐkÛõïfÞ²´*ÜýYgsã Ó{¾ø\nÂDKw©:'I¬évlÞàŒÊ”u 'rKÇ(÷øâºì‹s³ø[.~ìûDyÙrPÂ*9Ãeg!(¼–x sèÚÊêò‰]AÝ‘¸•ä¦í‰”‹ÿÿqü1i’m·7tˆøu|+êœ,OÏû.rãŠú· 2<|uÝ ô|/«çàÔJ/÷æAñëü§ýIòàóR>®{j´~`¿?É@ºz4˜êù4Où Ø®ùÕ³c¯€‰¡YráH‹Q~ÔìVb·“ãïÔyÕfI¯¢qcËžš»!´k~;憻Øu}3ú>¯›*Ö¶‡J»Ù^ c´딵¿.ŽÿÙM•³&·q³ž¶@Š’z³ýhõGŸãÜK¯¢þ­¢ØuräÈñP£åòà ka |77Q~5©vW˜ß&ñëâÈñ_L2ã–uu†Úß?ÿÌþ—LJ*ƒ™ÿR©¿ýtJjÞòäf±Ûõ˳Mtëò@¦h›xŠ_ÇŠ¬Ê¥šš ~æão¿¢2tÄ.>„2ç¤~Qžy¹ñÅÓyvÞ]t¹4̾0»…ƒÜÁX8ÓJ1ýþôáÖÏ^Ø–Ñ;í»}¿ý,xF›Út6Ú#qÎÄ\ñz#n½1Žÿÿ¤/ÌŽxÒûvÿ‚ÏëàÂÒ¼95ë@V4|àýü>é×§M×v Á[lÝüg€dqª{_0¡:ÖK'[ Ñ:;øP>˜õ[%Ì»ƒ]s}ÙáåQb·óW!‰\t}FçröÉÎu; œ:Ã]~F-È­t“89ªôK7•¹|éßNòá¬cµÛªßÿ>Í¿’úÃ/óä:I~æÑ³%ú5º`= R«UÁ”I{(~˜ú¥åføJ°£ÏÖºrÏï~AçÇö߈ùó宄û×m2ç–÷®@§ïj7£UØëKÜ¢AK)}x•ܔ八ÑOAwn—˜‘µLã¤þÖ𿽿o\›œ>Wð^LVäаÉÒŸ;¾[›¡ðî½O‡Ã@ Ã_„ÏÙ æ°²¤»X+ûá)%0ÛÞ¼Øþ´Î Ié`PµSw ×3³î4Ø)#aY»Anšw:>&„üÒFCïýÈ;“wñˆÎXÓ ½@fu­WËy"ï¡6×dõ“à}sÅîïSË'~¹â`eû4Äk©6‡n@8Cß⮚ÆçòÆsunÍŠÙ´ådn/¦fûÄÕJ ÷z4LÛôŒMßö2"ÿS)C}§¼˜ʽtä¾ @}<^^>æ«üüN8¶òÅù¤²Vú[É¿¯,vû9~§v6úM­†h\í|~E/3þoÇÙQê©=‹—‚X=µqaGƒ\ë©ãû_ó8WÊëÌhØŒ¥J=ÊÂÁÎ)]”]—ºÏز ×ϸՠ¦|é'-óÃ`ò`{œ¿är“;¾²%udÈñŒšìå• aƒ­n̦°ï€v‡:€]8-´6ê=„½åŒ3z[‰ÝOÿ˜ªÆ7AúŽè†T $`4ʉüûxp—6I Kíc=5æ‚ ÉȎ˯1P8=: ì†#ò‹Ú.0Á^¤ ŒCÛÃ’AëØy^±1ÝÔCß‚wì•ä¨k¥— ´\ä8‹ÛOëßN"}gðÍ-¢ñQ%¢U}“/¿rsÐ…% GB¦Xœ[æÖ:Y­w’¿}Ïœ¡Ô[ËÓÿÈIªd%è‰ãÍú€v6¼<~=¿Pý“E¢ö8¥j¯+‰úÇ/»€¹~¢ÿ«èÏ¿Óv«°ó‹`õÚI¹E€LTæ×Ž»¾ÍÍ®XÔùƒ­(w¼´y6ˆ`ñë͇w¨Û¥©t :¹ò¨(o™~²ûâÂû ®%üÁ®ua_.yfµRã×"Q}±c]O²¼=Z>Ü} Ž¿×üζ¤ É ü4yç?,ÏL™ éyl;„¦ïÒ[׃‘m޵ìñ´‹]ôälЋýR}VÏ=É4úÐâ« £7ÜÏÙº*cŠeŸÐÖ–Ÿ¡^èœÞ0Ä©®_ÁŠ;`žH]ó¢Itüâñ’¸Qb÷Ë7ó÷f¼O”Z/š—ØíЫÑåÕ^¾Ë´‰Õìºa&HÏP¥UkÊA‚Æ~ÃÞƒ¬/{Ÿ¯'vÝ.’xåǕ鑟?¿ÚÞ#ëáý/˽?óÊeW$èWã-½í ¡ï‰l62Nìvqü±HvTi®¨M™ËÛѪe HƸ–SÞÝ@öL´^f²ÉE7~ =ºË‡³2 i¦çX‰Ê¼5bÛ…}b×ÿ³‘ÄÊŽë7|!Hú†1µÞ€ð.×¼µrvç'f=ÀW±ziZ&é[¿ð¼––ì\ ö¾ ù3VƒÚ˜Xëï;¤ù‘æêP±ÛÃñÇ$‰ü0瀶1ˆCh‡k“Dñë7·GÉsQ{ èÐ5úÊ~$Ã\YU%½×6KG™‚lŽv‰}v Â>FN6‹oÝôŸ•äÌŠªM­A 3f? ì,ŸÂOþA oVTÿvqèÂÉ×Á›ü€z³w$x]ÞÉ'>‡@7'rfwcÐ ë=žqwô¼~ï'z¯Óê\ ÊîóšÝšÐŠ)¿ž_”dÓ–°7g@f:œµ*$â‘Ë™x>HH åÑ®³@Å5w3Ô‰ñ«ÓŠ’yta£ÓÛÑ E¥Êž-»þŸä‚ŽÃÜwÇÀž~ÙuºPçÝqcf(˱—À;äíškž¹NŠÁºƒà¿¥>¤ ôÐ…)ÃJAû÷÷k×"v;8þX$wºÙ²Ùdç-z`7=òó£WŒµ—‰]æ™íy³ŽÎvåå¯l]š§}>ï¨kúÅ[ŧ{æµ;†Á>Þx:ùÃÏŸ/ÝSج^`éæAמ¬Euyf¹íøókN¨Ùû€wA >aÌjð»9l+ŠASŠõ4s°þ»ù›/sû¤süÉh|}޵Âíf‡˜ƒh/ç!ÆóÒQö•èWا_ëXd=lèï¿Wõ³ôvN]ÿbè; VH‚RŽÌ|¤züçëê:ç+€?«fšûí7äí¨Ì¸”¶êXQ‡|ýÁ7ù)Þ»}_pÊôǧ"|įãgᄚ˜’ ¯!œ)ckj×Müzþ"ÙD‡š Þ`• o+Éú€UÜœ Õ|Ðeý¼V<~ ªrÇñKÅá ƒt.Ž6É“­¨&a7÷;Ö–ªb×ÿã»ÿ;]‹w<0œûwݪ%éÂ0;€Z‘yZ7k9h¯šcÉÕž kî]¨r½óûדVk³îc,ˆs–¡¢©Hý^›ç ¥u/fáV0½úËÌšþŒáßZ ¡ÉŽeµÅ®ã×%³´ÙkfáPÇ/DDŒÛšùPxW}¨XŸ´¸Ñ8æÿÒ0pù{ÐG£–è@ìC|’6þzïÉΒžÆé`ÊßziïÌ}|GÆ¿Jö· H Ò7¸ÿ¢Û²޳];Ï9$®}hù8-åñ†¢þðÎò¨š;;ÀV ;^š]t½K·Õã‹@%޲‘ž{-y6H¿œõ:~rßß¾˜Q–5£EýuLò¬—Ü@ØŸè~¤blO³p±ûŸãWªç€›ìƒÓÀÊÌ]ØRäJã饉¡6<ùdUÔ,ë0G%P×ÌÔ¡SƽñÂ1IQ>2VÊR®|‹Øõu´ Wk-{iΡË;‹Àæ~z·ö`6„ ùµ»jsÀì±Û·/;¬Ï ÍÜá§AôöÛ[hТy‰sÔ²{À,˜ÐmYC&ó1w%i;0“tNo¾utéP»Î+AŸÙ0ŸJ–÷òíÙ°VåJΫ|?ûHex ‘(®™T ›§Å`¤ZÎìûuß[ù·œ?vβ«`*&+gt{F9Ò±q@?БåËž>ˆ5þyÔ.EIjíZ ª*« 3ú6˜A gBúéaê3õ鯻I[»à±j°·ö¾[is¬¡öh}ö`ÙôØÆ]0Ï£snåÿçê`]2»?ÐÅs´ÐÅí ˜m‹¼–¥ìý¨uïNã@ï°3“èÚyÎêM=:ƒÖÑJkè ÚGmËkË©¢~aÌM鿾oä_æÔ·òU7ÁÌ^Ôl­â êÓ‚+ƒÒÀ’ñ¦7×­»ß9þÍöêß:.¢ñFeñhfüÐ&n¹Y¯­0_¦»}/PO3’ÊTB‡!›47ƒJi?oÙŒO G3mLÆÄ~3¶Eâ­3˜c+Ç^?¢ø4H -Ê'‡yL°ß8¤R&©uù[§lœ&‹æ•/_ÚvJ}á CMÛé‹Ýþ¿í·Ò:×½leS#µ¸ö`åÇßš,ê{¯°´Híf¦;Úåèªv¼þkÂÀµ ‘ 0m³)]y†?¨»Úlæœ6 »u¬UU ÝÑ…IxhfðºÃ½ÅCØýÒþIzæßÞÊ õÕ*Й^N—A_Ê»á×ä²IÓÖ¹é^ÔëŽûàá‰â×ñ­êÕð^öGû<0+5™k…É`¤æ\ҭ[Ów®}ϹïV¯É £]¾÷t}rgðŠ3`<Žžåãl§óÒ6:€}4ö®g‘h~­Z¤5r`—\ßvÂ#°ïÇåÞÅó
V¶ #|:h¯¼ âž±ÏÀâ×Ûÿ„,ïðl±ÈŸ7ûTvfUÀ2]rÊÓAÛÆô¶¹ê­Axè*Ѹ˜åuv·¨= x2P÷ègm:ˆúÃÎ賫•¾›^åýF͵zÒƒu;ï^8(tÁŒï¿<ǯܯŽ;PŸ2%Hÿ¦ÇÑ8;ƒj¯ºÄõN™iȺ®%cS߃(Å-ïR~¤MºI|ô(¡ÏnY4Ë‚˜ä'¿2™î˜ç¡0 d›ç®gG>‚( M{• âi”ë”x ¶yÒ+Ì>ÿþ°¤M^ˆï÷oæÏËÍÑýG^÷ÐMªíQ¿8O®Rî4hÍë§W»ƒž¢²;·à¼(0¾²k¸¨œB4ÏS¹ÒÝtŽ6H|û.;¿ÿsFTÚ€Ö÷»%‚º1ìâªF±ûñ»qx„mHy­øu|mö¼#ßýÊ5Q~<3\Öà>„êÞr»úþõë,3ò3 ÏcãÆ¤€¬U÷qJß a_åÝ*æ_o_Æß#ó¤Íö˜‘Þâ÷çÿ‹o¦»~ùK0í÷.Êuq)ßär‰h~ã¢)Ï“}l8vØsÜí¤ æMۼݛ AºšVGûî›nzEÕ ÷CmÄî¿ïFvª0äq&„–r©Ö~þç.„*ŽËw€PjùÅžËø¢ÏÇ ?(BÇö,“úˆ_ß_m7NY&¸+šÇO笠ßYìz~£}ñê7@Ž•¯œ` f´Ê”MùÊ S×kî¦iÀÆ´÷`ó>R²;”Až ;¦Òþžøú#²ÛL7h?˜Í¨±ý.ŠßÿVz}0Mh¼’ Ð¨ÊLûàò²®u®-8ì#šßê­ Ù|$4ØèÍ„¢v“r-!áXórkò3TLã³—¾Q[’Z–· ûÚçU»=Y»*D;yL‘#Â˽¼õö3¿ ³ ÌgBh=Ðl~¤„Î?Ua¨Øõ²s®yêŸbºæS{í ±ëùÙH?ô96GäPD€Ö±¹ ùªóF?jòÖséÙ Oÿ|͈—ûÖ‹âuƒZr¦;Øu §/*Yß~×ì¡`%zkŒ,Û6iÍÂ3Q`ã)÷Óô;“Ïö„~u±)æ/<ïäÜ`“îÖï/;äÄv»þbó#Ý«ÃËCž`öŽìd:ËwxÅáÁ` Ý&«¦‹æýÍk‚îí¼&öú lZ¿†phúˆÓô ñëù£ö™þj¸Àû¨Øuü°tJr·;´ Ä)¶¦¬(lI’¼su9بMCŠüÒEó1 ©öÏ¢AzudܵAúº˜é̵Y$7°ýœFÑ6ngè Ñüi£ªvb ˜”îmœD¿ÛÛ>}Q¾#ȹõ¾ãDó츸eQou@°=¡kxÈùÉ[Bžø€Ü¿D£—„†lƒ]©=„c)?£­yN‰Lœ}ÿö6ا.­Olo›6»ÏýOy Z—Ÿw› Š3?BM»½Êx[? ­7+=$f€œ@ÿ›Ä_Ôßo(w93Â~ê2 ”p6âƒ(¿»¤j?fÎmÓ4™pÑ$¼H2Öù>˜¨µº†}AUÎÑ>”jʸÞé=–‚¿ÊÅ.6ôõ³Õy—Ž‚y~F¿£Êu0-ŠùeÒI`ªÏë­= l]¦FùìFØÂòƒû<äKšôãŒ7tšûã+¥ çª¬~øùyZÎ|û€‘}ÛÖî,î ¦“^e~Z9HÃX勉ÿøwI‰£Ë_žØíÿê4¿Qj±¸ˆ6õ±2‡°WŠ;_ÔGÍ‹h8+~}ß›3‚zÏ»i ¡û«¦:£WzÏ[ÓéËý¿àÏî[öŸõQŸ>Öf‚èôë¬?ó!Èh™“©3 AFßóaº(OW8 Rèö ì»OÍ‹x þÉ-ã;Y±`à-»µ i­½u_ŠÆÝ0½cï×ÙŠÎ+8Ùúè07›ôÒ ì@Øvíß'Ô†•‡'l|c§~t¨ÐxË€#ö`z»£ê zÄ|¬ÜÅQü~.7Þùƒ¯xceÔ…bÐ]+ðFɈú‹øO»"€µ ’`Zõ‘´{d7üÿ˜?üÕ¸‘ÍÜ2dÿçÏìF™Cªú —¿s+Hj ÊÙvAì½Ïß/a;žï{Q>Ó­^.;x„n¶Bã!êb¯ÿïÆi:¡¯³ê@>ßÝSöõ®Ø’w– ¦Z¼Î¤ˆÆ‡ ¼+å…{s;Ýñ†Pæ‘ýó¯³ÊŽ&QQÁN¢¼÷­^¯õß®&i*÷}äÀºÍÑ^ ÆH¡ ûD”Ož°¹U¸å ¨²þ={D‚:;==('ôÄYmîÜj€˜¦m}”ýIÆ))BÔ]Ù‘û!ˆ×ÔÔt­^ÛÃV2ôÚdâûBkgó£Ö¢ñLÛPa¶ñ2;p,i ¡iî²Cö…b·ë¯’odñðj¤³ŽÐ! Eq½Çy`Õ9±ëú§d]Ù¬×á³Ál8•2·`&^6½²&i€?†Þ؉í^Âö¡O×÷ÏZ+{¨l!ø\]sKÔkÞ”{»\ÀNl¸^h#v;þq;?Ôþ¶ã8ì¬N¯ôl@bUòïùˆ]×7³·MúËžNA xÆè™]ã“xÁã™Óïç®…À$´¶G=øoF<]85ü¼Þñ±U¢yóå˜Æ«££ lJ3¨ûž¿ú‡¤–FFNÉò‚ÀRÏôÍîb×óÕãÜ´òö«¬pÐi‹2²²j@åd¤Sã}ÁnßÏÊö0(cÄ£ñ` ªû? XâÔ¹_ú¦±ëþjö3ã7m5œöêñ!#;U‹]Ï7‹k©—zöÝýܨ—g,!0¸Bh—/Ÿÿb/i]-cþ• {¹ƒJÒо`#ÊÇŸ­Ÿ&Ì»hç±6;ž½/¡/µlŸZùÅ÷Œ¬åæijï°s5:2`èÒ» Ö‹]÷7÷ËË ï¤kA<Ü»êm!v=ßÜÞÁF%«–ƒÙ¹·‹ÍT=°£}¤å¿Ü×üg'[ík¯!ÓŒÑã¡3û@Øöxm¹åçýX)ó¶Ç^PÛ©‹ªbÁ¿£wÂ2p˜§¯F”Yý|ëß’A+’n=Ð}|áñ37ƒ¶ë×ìpí.¨Å¦ï-5@Ý™¾çéÞ0Ñü$I£òâ8±ëåøÚAÚ ™í'X7Ø›$Þýýrq|Ïêy 5Λm‹]÷RÖz_b7uu<–Øñû÷EcÂ6ω°ݼœ]±óAÙV‡§õ©ê£-7ì­øíø›d[ú´®¼fÄšmS•›A=ñZÒŒé©; ¶ÿ¢ÿ›6šá÷[·K”g*U:>7ûvq"·ýÃÌ`–Ë6Î £ÚAQÒàyß²GdÞ%ý ¥*íÚ„‹Ý?äÀ²s¾4„^1Oœ\b?Ï_’>4Cúbýøá#Á?o¯¡,éªCQçQOUÀžªrc¿7ˆZHV—nÜþŽ¿s»-Ý3¹ï±4°—ÃlŠÎ»ç‰Ãäc™›n>éy— å­-Rús7­üí{fnãÑÉ1§A¥æ.º¸ÄZ4. ìš©?ÄnB`ÛmW?_çÙ¥ÌÚVßïþéòjݨƫ ³–7Yʹˆ¨êd’ 6[güãä~érÿòV£ÁØnÍr[ï™ã¿‹¬Nôá›=–n÷NÉÎêó<œ6—ØU£j†¾ðÑyï&µï.Æxœþ2Î\^¦o‰» ¡eŠlæìo¯×¢[é›ÝF`bØäi"¯¸i¸Ëoß Î T8ºzh ‡µÂ\!}_æùÖàÈñ;’”ÍKH>õy½vÝù~Áʲ}ðþýXÕV­%Ý ¼€ù~¹ò2ß¹þdo»”=+‡=¿dè¼ü»`”÷|)Fá\‰N½6'ãm½¿î—æ–À<Ï:½U]féÍ{=qäøKÒióV­§q_Æ_CÈVS™ ×/í‘™“ ²¬bÇ”×ñ çôŸ2òe4˜aÇÜŠ“#!´•œžöàÏ?oFµáÍuþ…×—åÈño‘œó‰²yñ9NÂŒöËîQW^lµþóñ5Êó½ã‰)ŽhzVíËï_oæšÿùso……jšÀܼò.bå<°Öœ­n2ûf7ïE‡ÅîŽ9þt¿—Ç‹¼òeœÏ~s5ùd6„>ç?.;÷ç×Ud7ŸuÙ3g1èˆ[ª;6Ä‚Íì×¼¤èçßï–#Ç#Y£m6¹=Aw‹,[ T­•AѶA`¼æ¿‰qyäV.?Wì:9räøçIíè:×]¦hæR«•úÚŒ©æã¬Àì­2/ŒÜ½þeÉß}zŽ9þƒ¸vy6ØÿI,—åºû®™ƒMQ;{ÕdìH»Ž}úƒLp¨W Š»NŽ9þ1ÙµÞ[? •?çèˆÁ÷Œ¥Oå5d­´_èïf7û• ¿±zä¤Á`8\;­#vÝ9rü_h?MõdÎG°ù6eá×UÁÊÝX±?ôÁ%;:.m|jb¼òdÐ%§ž*sóz‚B50Þ›N¯îè”ØÖRüvpäÈñwÉHv¯0›ì¶aL®ïãq 2m52ÁT¨¹½¬¿ÆyùÕ·²Ž`õŸEÈÜ?*ŠïŽ>‡†}û}[9räø×I6.=ªWñtšÇš6V²`>ž™°vè­›2£”æ}Ù\Røf2˜²ª Äý „6²ÍFç„b·‡#Ç5^,¬?;ÄtV±sçv`Gɦ\ zPjÝÅÚ¥ >é ·³ÿÃë0Ú'ui¶tÈò®‹oB8´Ïþ”>cÿMŽ9~72¯_>›ÐZ$®ù E‡/÷k%¹ÛÇìõl¨ZJeá5†ê¤‡WŠ]7GŽÿ+N &§Ô®j÷ù³aß‚±c ì;kŸ¯àøŸ/áÐÅ8í?ûf·Ü›Äÿ?öåãÈ‘#GŽ9~öiI’œ¹Lü:8rü•éTZ}A4ß}¼Áï–œ5È)ùËÖiÿôù¤úÊñ‘oåÄoGŽ?sÊ´ý=Ö€<8² ¡­j}»Mâ×Å‘#GŽ9rüäò6Ê&?Î>ó9rüŠló<ãEÕu>¶ƒPup^lq€øuqä("saÒ™>`séáYÿuÿ§ã«¢×öˆæ·’Þ‚Ûß÷wi|yêMv„ž¡ÇW ð¿Žÿ×õ‡ ô©½5 uå·ßŽ^qi¢æNs·Ö’|,v9rü ìš±qò™?¿þGŽ9räÈñÇ'¡y¹¬"Hì:8räÈ‘#GަƒÒž¼’É-°‹Q~$~=9rüC2õ Þ¸ù ̇ã;Ú|ñ={Ïêhsf„SåÇKV-»^Ž9þ>é„Üus-hP²rM Ï÷@Ðk§“¦óyPºõ™3¿(Oöº4²#>€Œi77혋ØõsäÈñ‰ë.#zm%€`¿©âÈ×·À¶Þ:ëU70ÞGN÷aŸ€Øçè~B:ÈÈYÙú]ÀžA¼à¢;ˆ¼Å¼åä@Þ*wÝÕû¼ØíàÈ‘ãg²Õ»š¿] ¥(µ¾ȱ;S{/1y)t{Öù¥ß6GÒ=’w¨~>_µtPã­®`$¶KUŸ ²ˆpn‰¾ØíáÈ‘ã—$G[wÔUõª~f¯“ŸÛI¹ZÆ‚œ4œ¶w¡íçã•=Œ½ïn;j{òÙƒÑb×Ï‘#ÇÿŠg“샋ö•é[&c ÁuùõôPo ^½öuÂý¶¶ù_žrñXùMo0ÏîÉ»'v;8räø%ÙMaKŒNOø|Ü8Ù´â?Þš\,œ>m†+˜0ÓOrû×päø3ČҾhù‡å˜”¤À"Aìz9räøÄs~Vv—b@è³ðOkÔ–§¯”Ü]¤ Vçd×CîÜz9þ dRRO¾mðLB&V4~Ÿ¹ÀSLòzDU½©¤ØõqäÈñ¯“êÝl´(w&¨¶]f<»AÿÜ)ëöÔݺåaÊüw uÃWÊœ,v9rüó¤S‚¯Ì=#!Šçî} ÌÌY‹Êç`êOî*x¨¢ÇëB·«ýòU? ѼÛÉÅ™ŸÿÂŽ'Ûœ ÷»ÞÉÚ½j N‹]ÇŸ‹díðzo?0íFg¤¾‚™ÔÈÿ8íH—S'>#v}ÿv’–àÊ‚Vܺ«ÿ!‡µÜôzé!~ÿ¿dïî|Ò]âªØupü9È4î»Ôu¬˜Ëmú›Î‰Èß0ÇêÚï·¯÷±a2óÅ®›#GŽ"¾Mú¸2N„¿[£a¡Èj™é—7‚<áyYJ+€™îz.>5 ̺ëºô”ß;ú•:˜¸7ñ›\z€„÷J¡[§ŠÝŽ9~&¹¿èÆñÀ@Ðw-Ú:ÈÌ„IQ”Ã<Ð7œL˜ÝA·€š,˜9ªÉ.ŠQ ³’âþiϬ‚EÁ+¶œPæY ¾‚Ï&‚Éà‡]4é±h^n”˜îi._[añ%wðWæÝéwx5x»6nRÞ`ÿ†/?U¯~3øï’kmó¼A»îîÞ/ÔRìõÅ‘ãÿ7ÊÏÇÞ¼ØÌ›õ.AGÀ¦]9{4A ż€wzöâ´î%à½pàùC>ø}ô§Ì ¸¡Ò™¬çøÞjåž.‡»õ]¹îíß×Alé8ÐWÛ$,3>ö—ϧNzDêy׃Wu÷VÜãVàÙ'¶=FÀ»äâu+àxÓ£.K-ï`^+/‹qà÷YVæ™AßM ZÓÀ÷]2m­é!ðŽŒêùœ^~΂yzóuDý\ñéî` ž²{}ýl$Æ÷7XVA}·^Öa0y]Õ·oÖ³/öJ‰Û¹Êdâ>±ëüUH®ê¤nW5›uÛªæ<Ì sÇšãEy¸îèù=Àç:Ì6eÀŸ×§§hü³Ù}}Xhx1½ÊÒ/;ƒw6ñ~D{oðZ ¢¦ÎeîÙíþ[ÿ\×î U¼( ÐÒó%«~;Θ{®ó©Õü²|÷Ée/DýÍF©5½RÁ«ê¦æ:ü]F¡†CÐÜÞsˆÕP5sj[KJš¼»lÿ.P†ƒÎzGCpµýR`gP³¦g9*žaÕáÕB°Û6?²œÙ_ìõô³“Üì²ïµr;Ëë†Å‚œßÝ_2ä.Ø’úó5sù`+ËÕºm»Î_…ÄQSÉéàò/÷œ3*¨ª(¹»Š>Bw¶8ó‰(>\bÞ]ÚÜÅViqGO—››¼7È|zó³ºCóÁOâ^Ú0tüëÔ„¡ÙÿXKÊï'Wî_IN*®i¦½ù'I‚¿|êtÇ^3@mr{ír‚ë“Þ•{¾ìkå€iƒÁ_ÿlWezˆÉÞ×›Ö˜+´I:^óû~X2û¢]ÎóÏÇG >î öúùÑÈÊu¹$¦óµ©ú ƒçš'Œ9Â|ð¹`×GìvþkØJ+õUy4„rvƲvC¨íš(ÓßìÆ #Çgå¶ýPÜ9â*š+vöö¹¾ÿ|¥ž2`"z¤Û»Ä©ó‰‡õW¾~;›1(c|Á ñûç_Bò)ä}Fg}°§žlž1,Ö v–]”îa+ʳ³ø]÷òËzêö^¿±ñ-(wa¬hå»MJ{x *øI¥M¡`Ôô_hRµ+…c…ÃÅnç¯FÖõtËýð›ý|ï7'\R§IŠØU¼c- í´TQü²[ñUgDõ4}ŠaÇ)^b·ã?#sc²oâø$ÐNν•@øvTøe0CÖO¥”Eyß8ýjÁ_¶«îR™Ñ`¼÷jŽ?qLöˆé²EÞ ë;ο´¦!û¼þ&˜°‰ÃBËgƒ=¼¯Ýæäaºçou‘œ"v»V’%s¬*v†pÀBá²Ãÿ¼¨Ù¬æél.v»8~]²;‹ÌÆÎÖó¦MÔºQ ”ú¹¶¶¢ø;?iωêßï2TΩÏ/û¯öqØhß9CP] =}ê`òåsÝëÁ˜ì¼´»ÚlÜú€ŒüË-R›ØpRìvÿl$¹W\œnz‚ñ]|vÙF°Fg}—%n†ÐaGô,;±ëãøc‘ôÙuRŸ‰ )ɱwEù·w¡~KÖh0êÂç÷ϽÐ16z`çËuÊé z¬gLëŽã@â–?ÊÝ:BÃ]R/LL@ºÜfùn…`gÎýeÚ B6ö±”Þšå­«á_Õ¼<¸ü>·>í?®¯œ÷ôÌm+aJM~;ÎÖnì=`ÈmÁá–P±ëä(^²=eMN«^?šôÄyÙ Ð] ÞÎkYz·Ñþðœ &çO ]b æÖ~öêž×jôMÐ×T1­ì^¾­˜çñqÆIAíñu¼Us‚ÂGõX AãŸaê!Êïט¬Ì‚\+nö]·Vìvÿì$«â£ÇEÊ€¾”½@^½ LmUÏ …D‹¹9Á¬HØ–Õ¦#‹Å®“£˜ÛÉÙv}Ï|~ÿƒøWï¿ù`ȱí¥Ó"Ÿý/åß=eפÔjñ©ñ×@¦¶‘“¼%Êç5®Ü.Ûy‚­~Ó%Z‹â:ŠÕ:ôö hÕE–¥^* »Çå:fý/û¯N´³·O0 ´Þ9OYìþøQIÔ¦<îZ» ¬GÌÖPS0åÉ1ïwF@`´n$/¢ ¼ƒÙ€CÝ!^^ÕvÉHï”<$q6ø#Ò6s¶«xÑdk‡žb·ƒã7n'=Ǭè¯ßL¤…múèÏë!‘™á9ž÷[ƒô[–7Mõ8˜Yû[âêA ¹åYWfi½¢ß 0=änÝr¦kŸÇk,Á¬‰9´×d ÷ÏoÊ;‚µõ‚k@=·Ê¶B4îO©;¨£ºÄÊgÚq³õ¢vºÞøã ÅÒ$ÓR °“Ç?馿EC·!%/!Ê6æ¤ýÿ]ÄFÉÛÛox”þõódL¤w,ŒÙ1:ã‘T©¨Þ4VùVkƒîùøã’{½ ˜­;HÝ üK_G:éƒ÷fŒó¶6Ñà9ÞP{%‘ žÙîáÃOú€/hzÒE/TͳEaâ÷Ço×™»¶OØžvÖ‡m^wú||Ó›S3Sœ@NÛ9~¡Óþ ‰Ÿ¿?0Ý‹½Ñ¬Vo£=íýÁîúxަnÙü M †í°@~µ9êo AsÇÜ: lkõ@Þ­× kG/yòzôçëe뽚ûÚôÓð.R)ËDóqY—CK&€}sñÊtí_è¾?ÛB=bç?¯7Q›ôW¿+;Gmiì ‘Ÿ”OîK~òûåûx¾íN”@™/¯jèÝüÇ Z^y´}öòÈ ã2ñû…ã×ë›]‹ 2½ü\Rþíß/ol3@2Lì³sgƒo}>.wKÅuéH˜C½,T{{¿Û’VV ’&çÙ>Òå"Õ*³ïEP%!ù$lèý]n†|0ë+æÈ¾Šý¬ã̼“úÙ§A;÷]ù´O«Ø²'¡ ëÛÏkIx r*{ä:…÷ Uégævo#v¿‰C·Êµ[òäM¶×»îÿ¼þ[ ƒfÓ'Áì4íÑ邸íãøuèq´¿üãŽZ™¼FQm±hÞ>½¥Ýû¾î`+Ó¶›ìfXŸ§Ou÷ƒÑx&+¸ë áD+E§÷Vb÷ÓWã°›J~^LJ4-ë4n}Xß!¬$Ørí{‰¹ûˆ¿1™TØné‘AN•õ`—'Lk¬í úõ˜ Å¢‹ S‡3³òö‚z–¦pd×:PÖeÃ&vÕjÔ¬%ãÛƒf~üBxwÐC7œ ÚÐߨ"[ÔìÏú´ûžؼc§.¤Z€‰òšó!°3¨ûQT{·j°ýoM`ücÅoÿ×bÛ%ל»²@¹{¯æ`}X=ŽnKÚÜÕ¿%±ÕQÞæ?Zü:9þ+H^ÞÛt_Ô«>ìªr0™5lUè¨ë`_˜Æ-¦fÆÌ–Ž£ŒÁ,–­ù4s¨BŒ ÷¼AÇæ /Õ€`y€lCõJð{´_õü[e'—tÁÕZCËÓEór‡R…EoA Ïí‹áe µ¯Ìx=BÅ€Šgç¡}$†nîQ(š'kŒ~µºÕI´æ_íÕâ×Åñ_Mò8¬úŠU*èaûJ—µ{ &Äzµ^» 0;y®«}Æs´ák·P%Á4¾ ‚ª¥«Þÿü"KÓ)Ùà…Eõ4bÁsÛláu¼üQRW·l¿î}ñÑ[¢òñ/J.l]ïFÁ2íPî~ÇÿÚ˜½þ×:¦Ó¨”ůë#[;·>õÃE0UmôGÍñœ¾Ã‚Œw ›a›"l;L˜p»I{EæŒ1}~` x“ܯ OsVõÜǦà±]Çz–‚?Œ‘ó‘sÇkåÁZw5Ùì¶>ùÛûŠ®H=έ»ò¯§™ræÚÐ Ömò‚$Êh¶´? ¡NGgHêÏŸÑÖgXù}ñÛñ³²ÿÃ’}°ûHáÅk!Ø÷$rµŸ¤Êíví,¼iÛhÇ©ÚGÀ;ô¾»~¿3†y¯ÞÙŒó+3EçRíU§eÔvpHõ»Qƒ‹EýlÇäyãÅoG±’”£¡×à• v͉ò Þˆâûy™í¤ ifíÆ(së~sÿ?¸8?¤2Œ¡‡÷–…Œ™·¨ú½<¤¬2Þ­3»©%QÜ[&ƒ§ñ¶w–çj·é™}´h·[ìú9þ`Tß7Õr`HøŽÂ•Èñõtñ®ù a:6#W肬(=ê?±»øuþÏ8XV3bŠ÷DC›úTXüùó­2Uʯ¿»þ/ØÏ`o؆ƒ`´ËÏx:%‰Æë])&>´ýõš·{AªÇ£¥ëKd!5ùJÒ¢ÓƒÀW—eÓxÏÁ–ï·²Hüú9rü;”y¿vT"X™ ]£' ík˜ÊýiAÞÎxEcJVëc2¿˜6žm* ´xÖqܾ7â·çê¼LëFd"˜ã®É™†æ êòÄŸ©‡@JýÕZ 3H·}Åóp¤BÎj÷°‰O¦sÉ¿Q`¦­Ü$±C[ìú9rü?iš)m\=$ŽðàØ^%Û‡éÑ`µâÞ³×€Zmú ?±#¨¢(YÌzùþƒµŽ‚-ß2G¾5Èê¢Ê°þ'À~rÿ˜5ìÛ¢¸1‰öºüûÏ÷‹dŒítÜÁŽ;¹ÂlEÐái½_è.… ½Pªìáqðܬ¥e;HAº¯¤Ey5À×f7ŤUÌþ¡6¿À¾©ÝâÕ«GŒ¿ŽŸ…“îm.X,~’ì|áiùV½AëNÓ(sÍëR¹h©(_·.}ȼ Ëu£mêm'ÁTÞŒ:oˆêÊuÁíö€L9ؘ7¶¤ç.õÃ3g‚ÜÒãíõl+v»þ,IÇJ—xçµ ÞÄE9[é@0"%Þ¨»xËÎùdžÞò5;‚v‚R~´Ã¯³þ3Ù2TßwìhÝJ盚#v=_c3ÎW̃°µ p†Û¿wý}v«ë¼3”c‰ŒUÓ[PšãÝóŽÚ¤TR'œjm’°³d;ÐéGÚÎsØÒËêFóÈ ›ö’Eê ÓÍkž­¹QÌ«GÆW¼c²QòÝÊÖ  å÷Ø­êêfß¹íù (1W£C'ƒzxåL|†*èä¡›ƒiÒöSÂ~Çü)º¢üºZçt󎜾E›È|ù{yÅJô$Ñ<;b‚êŽ%öøïoþã­ÏMÀË9#PãŽur[9ÇûkÒWæxw¡Z¼(Î7oÙÑþ¨û‹å³¯€u=#ØdÓù÷¯Û-¢×úæ·`·Ê)ÊL»óAŸcÁŽ`¯<*ùHdŽã»ésJ@®&¥uVæ‹ÏîÖ6{bÄîÿ¯nW½kÚúðá¢<Ìãä¥Õ†b×óÕís»Öô(kØ69rb WÍyœ½ièuj–¯ =7©¯Äe ÇÌqîÒI×{C»/TKÕ'OqÈ‘O FŒMè«ñÔ–‘îO_^í“{l`1˜öÚ¶¹÷£À4oënqÞ ¤Ÿ~Ú8]§»ušz‚ØÃæPî9‘fc+5–€$»U>ÅÝ’¼ | ±ûåwý5ñJËÕ×q ³óÃT×v†àÉm—©7×€_G®·\šþù>]Îe¯ž³Z·a X·‡-o@ŽTZI5}¾ŽÑ“œ]ù¢<`ü¤ÈÀc³¼Ï›“×A/[–]ÑZ#Q\%>;UI«7!ÔÛù¬œØýþÕ8D½K+¿­väࢼêdôÌ­ wóŠr–ÿüë)‘û«²\8€tŽŠ^ 6B¯U¦ï>01šÕvÙs@Ÿ>°ötó<Ð6Oz.sWuB»óņQ¾P8yŒ/¨é«V¾ ¿X`~Ñ% ´6+í0ŸQœoqL·sã^«2 ïµ~¸GÀ|v⸈ »LòÚ™Þ-Õ ò-ÏtÜEyøš¤´]-â»k…,úûv…¥Ý•ºÜéûùÑ*ÚÕFdwý¸gµcU@Û«ñ ]$@gN*¸e Öø`í­nÿµŽÊ¦h‡ÓgË@{¾ªæ ¨]Î×ï÷ªl/³]½–¶ÖN??ÌAì탽 ¿ý‚Ñ/ôþèÿ£ãTí)ï% 4UÌÜrËdÖÒýN+ÃEãM³WïÊVâ×÷µÚ¥í»ð‰·ƒLâ?Éé|­uÍ8°“ ºk¶3"çªeÎ`Ðuf9¦P½øè›‚ˆ cçÍp/¬}ªHâ¾R=˜ó5¶ > ì£áÕX &º4"ºh‘(ضA©Yt½ª]×_§‰ÆëPZÉáɽÇÔî–´ÖØn"ÿ™pxz_ŠYe³_áoÛÃìo_(½Ä¡[Ñ™ÔÍßÏŸ†=.Ï»;ìýeÙÃ;€Õ6dV‡ÏÏëÙwoœï#¡·îh%_”×<<ǽf¯ÉåûOTA·¨Ùd‚\œ¼˜ ûuî»ýpœšê0(B-£:§ È£ÁFKVLéÓ³øsÂAó}¹ÏÓOG‹Iëw¿åÁ½]‚Íx IÕž]‰‰hWÛÕöˆT@ù-Q<*¸¾»RsÄüò‰ ¶gAfçµ]é°S”Oº9ª[$ŠüRc1P# lÒâž)E`÷;¯ZrQßš‘z{/HjGãës+~_ÇĬ›–ãCèõ<`Ð2—¿murjæ ü5`Š%4å}¿qû7Ê8½?·ßéËþ“§z#, L—ꕟºŠò›œéK0»‰o­&+÷åõÏ4 Ù÷ºã‡ê/Ïçø•8â¾v§A¢q¥{ßö½ô?ïŸHÒ¶˜í¿f¡öÙÀ^ůówHNßo¿¨Edï™å«@ñ[ a€Tr[ƒÏå»õ’ Y«/*gÖ3kÆE•åáziíA ¢}ˆO’½íº“ä¼L4>ûÏ}ØÑ䤿«¤¥Zж¶©ïŸ<òäjí#î¢q{„ëžv”Èâl™œ‡Î k³sô’gõ‚Zñ×Óÿôº%22@]•Í–e»€ÞØ}¦y–;H¹ÃÒ“Ä®ï·~wýÅÏW³`Ÿj—ž9 ÖtWl™ ȺÄÓuÀ÷8ïòÖè‹_ÇNÒ`ñáü.¢üÖRV]7ì°åg%çí³a¸¯ÿ+Qœ :êì †]Ÿ¯•`f ïâ ©0¹Çõl«¶Û"k§™9`åÌJ6¶ß ¶•ÿÊÞ«v‚yVY”ûVÔNNõ,8 ¢ûRâÌÒ%¢ñûÝX¥÷÷AbüBõ¢@z®¸žöñ9ȃ]볂 l[a9þ¯h<^5ØÆ[4Ï›TaȾC ¦’#Â+¶€,ßÐg{›¾^ä·&cÓ4-eng0ãµ&¸†÷㔤[˜ØlÌKÿd¦ƒØõ‘íš—?[â9ÞBböc‹tÙðœêyË®/û þG|o­1¿qÕ_掙+[G‚=¨ãž7ûÁjy%׿(+¸í¶tZ*ØÖ¦už‚ɸ5ʱD¯½ß¿íñ$ŒZÜK‡ë §O¿íÛô‰»Æ¼{ºÞnöûf0 ÚŽ¾µNìõñ?Éö^3*iĦß>3Ê…Ý'Xf@1âª:‰üW½-È ÂÁñÇ•oþƒÿg•–¦i«2ùÖº5Ëá÷Ü5t?t{=$Qv¿ÝP{ÛÝ;ÞÔªIüºþi;™ð°Åï½h™œ«ç®—‚ºÍ,{êÚYIªÙµÌzÙÆ¥›Ž=õ±¿µ\!XÃu¥ŸtôDíëÁRï5×À\|y=Nk˜Â±Ç=·ˆÆ×h5ý§¹`Còº .4‚}¦q½mÏ(Q<:Þn}LÖë‘V‡&ƒ‰K5j¹Zçsó "óÁÈô!;;ôþ[†/—¿}+ÀµkT‘h^}jL˸‡`sw8Oý¤)Ê›‡ª)÷Ø ’mfœÐÜBÍ}¤w Û›ùEn& ro•ó SÁè}˜é¬SÚÞ; Ïà(P·T¤e|öƒêt¤¿¬=ø‡·l´\2”Áá¶gËA+ê7h<”îçml­ š÷?²zfy lÕªHj(¯—Ó“äÛY˜w*H|ï)’þÁQ‡ÛW€~‘=àãçýÉ -·sŸÄ€~¢júQøåy”üÖ¸9þùv1{*ã2eØH9þ¨; K#{ûõÖM Ë¥[G޵Íã>Úñ5üùØÖ[¯)že4¨„ûkg3CÑpyaÈPÃÀ.n¢zL“©ÜóHNïî‹lbA̵>Fçg‚•¤Õ‰\0ã.ŒšE‰â1dNXû¶Dó<é.c¥[@æt=$j¤hÞë;¿Ý‚R5ݹÙEq`mO9ç,RsN¨ÐQÒŒÑý×_Íã•mï:{Óé¨m»Aë8x§9ôéÓ«Î7ˆ®³aº°%š§9RSªÜß‚Dì´ÈÞ÷¤]‹ç(•ƒ`ãŠL¿ Ê# Ó•_xƒÖ°jNÖPÐ=Õö'J€q.îå(Æ‘\ªW f~~úÆ ”þºø³V“ NIàÇÝcÓþ<ø$hòýÈNà»g¥-I´•îÐ^ÖÐãu…;fƒºîûðüÐ4ÐzŠuí2@FmRmôéÛ·?³U‡Fÿãý3ˆ_—У¶žD³Ý@êd|^g]{{ûÑHžµŠ©Ø© ²ö¼ÏŒÒD‡¦ê6îË»®¿L7¥[£>¯JGôë>XÇD±GÃ=›ß·?÷I‰Ü8QÞÛºŸ“U4èâH—L Ѹp_§ý¸SÁÌz_`Wë ÖimÄí¶ÛÁüf¢ÞM0Eùzá•ÀÔ^í­²†€6;¸¥zصŽ#–Åm'¶1±(4§žƒnÇ}þÝhAÅ ìÕ`²¶Ïµ<¦eöîÂE‹EýÀÁ­ ž‹Æý];^w!Ê Ò ÜûêØÝP˜î[ Ò­é”BQÈ‚gÓ"ÎM»í™vïòî „w}£AƒÒZX:q]J tÀoe¶gµxYÝÕ=Ï”k8Ì©exá[¦öŽy ÞñÑýzE\„ÀnÁcõ³ÀWÌÙin ÿð‹z~((³y7O–”‰òŠg76Îz ú‚ÖxÛp50eçUåj;‹¿Þ9þ$S ô_Us)mºk¬ºhž™›°YïçÛwœõŸ–ùq¸˜›ÝRûÖ1Ÿì§Ú: tòâÁΛAyÊî­,2š2÷©3ø»/öØ–! fšÜÊ›«Xl5©ƒÓÝÜh0›NÝ<»ä²óJŒ4Ÿ]ÊÓÏ‹ò¹®«·4)üþs’$£xèê‹5`;HŽiŠõKêñk4î¾Õ,©üQ~ß‹)ñσàv]Tï“æà½½[Ñ3Òûò^ 1h'öúûÇ~’RPò}þlû ï}º5˜[íu”ЇÉî·xDh>Óãôý{T¤Øõ~sÌéö"ZÇĪI°ùH¹Ê¦îOAh~ó©Éb×÷WÉdÍ8Þq®h|;W”Ôê°hÞ7EÒÙkÈV°n·Œy•AùjËnkwƒzùøL« ¨¼A×,&ÙÊ__{sÊBPÉ[Ù¨ÖÉ`RMO›^Ó»=•ô­×Ùî’9¢þ:;NEëó{›ì9Wªtx§ãKX‡CºïˆVÇI ¤vXÞpó˜ØuÿeRMIj¢ñ·Ó½©2`L¯›Üè(j·•†~~Ÿ‹Í’Mö—˜êUs‚»ÿ¿hèÝ$›º Y¿ÿÔâ> v±w\xÍYüºþn?ÕÍ×|È€'‡VÕ~Úáän¶6ªò`¤Ì§ºÆ¿àùt;Úô]¾yý[0™C(5É@%ò‡ï½Ò2ìü•¥Y •·Ì\ñŸ=~献60 Þ~— ‚™ób†mÇöœÕpû˜ºËëuR×€èpÁà½h¾0cÄ(·û+AËÖ»v€u5¾0¤e5Ø )±¶sÚƒš7»ÛvåÕ>Úïz«.=!mz¤ÇQ§iÖé2›WºRìõö—ëùÎJÍæŽ¢úž£'GÛgjõ¹Ôè¹WqûGå@D×Úµ`½œSˆ‰Rº²øÚÿ²oçOF2E±úšó5ѸetB¡k(ƒéšþ­À»ê-Å÷hž9o¥ë££|½€–P—ƒ÷ÄoϹý)üŽÛ ä­ì¹2[ ÿöþ<®æí üÇ£T缦}Š¢h’¤”4H2$JTŠ$‘RQ”(S3¡™Ò$d(i¶"”4HŠ¡$2ü^ïïïóy{?>ÞÞ®{¹Ç½÷üõ|œsöëõZkí½ö^ëuö@^Û²Á»’Ä¥²j¾õ²@Þ¿®bc'à>“b<Ú¼,züÈÕ/îC6Œ¹0Çú&àï"YÄèö2Y?äã Ûõãð'µ÷FßqséöÑë2Íw>ýY#aÝ£Íl—ë÷’šs3ÎÈä-ÈM»§ÝÌðµß†y`ÊïTzqü Â2ò“Ïë–ÈÀ WCg1gå³Ô!ºŸ;Úëˆkfd‰Î˜_ï\(ôøÑõ%Úa@”Þ·Ž‹9¸!± Öï.`ÇŒ( 0<²±ë;xj¶êzü¿™¥?˜ ØÝÞg*ÇÆYf;c­H ûõøV}E<±O2Kêñ›çÓ›:€¼>IJø£ à~Lþ;='1nB– äöSõY©tžqôJò ×@íSú¯ï „jBQBɯ·Ÿ:‡?—d”î¬ÛAm@.a¥y¾YóvªñÆ œ´Î2W™8Mµvÿh`-’œzƒøõö;"Ý g{êN…5·Ÿsl}ƈºi€6Ì z¸|8àO*/“ÌÍ=îø³é“õZ­:øhÿx6æ×¿×Ï›Ôk*K{èxCõñ¹h ˆÌõë7TÒþÞ#¹ë¼û`é]ê55àg»œ²Ù/2ö}´ ujxàÕ…s¦J–ó¹Vñ¹mÍW˜¼á «}›;Ÿþºý>î<"2´~.`/ú +'ty$ýõrÙÀ<§0rŠíH ön›œú@„írþp?ßT·ÜPØð5ÓLE7w–=^+ª‰°±Þ¬i¤¡Lõ_¯ÿâð'µ—µÞ‘Ëp? 5»ãÎ$²Þ•ºþכώ¦úHÔ½òìuü)¾sK÷næ_6uÈ­cE…ÖvS-nc×™ò7#U*ý$ø’´Ü¥çž1îáÁå’€•Þzª9û!Ûåãð× º •µˆ:I¤j °¤czÔÞþǾ®ë{öˆYLg¿œÃÏlï°2÷£{öµ@DŒ«¼þˆ˜µê!63oÖøñqª‹'i¿à~”®½ér4+9'ãè 7–.aÏ~¹8ü¥Hi¬¼ºoÙ×ç³›¨æÕ܉Ú×Mkì;‘ÌÔž­œÄw@®‰Ùyΰ°©Ã7V±]N9äð7øsê“Wy/C?¾•3ùPh<.)aúà+¯/zǘW€ëêO]l——C9ü/Ô‰>W"¸Ыìxpÿj9<…™´:.pÓ[}è¼(r¸—ºO5 óigƯºñûŸÏ£Ò}äcûíÀ!‡'Rƒv?þÍrHÁÁí‘Y, ±æ‘•v]€D»¼ß¦ÖªÜ?,EÐã‡Éƒ^­¹î‘¯Ä~»pÈ!‡ßö×SÙNK‡¦™{Ða©ìÛo_·Î_¹ƒ*b»ÜrÈáñç^QuéÿÚ7ñjpÍ;À7{¾ÁܪõþlþJ) û’£¼–[ÙÛTÏ£2îóuÑ1Ù1.sm9äðïLÔ¿M0ÿ€P“d´äó{€<=ò½Ny 9öñu¹@Ì’“²–wò\÷ž“f€&©Þ]à_¨vIØŽÊÿØwRgëd>°\ž~º”³¾‚CÙÊáKsgœ b’pí'ÿ ,u5ã×MÒáVÃfª¨Âë¦N>è ™[pXV¾­—z¾¼ÏøQw÷Ž}èQú“wã“€µLFIÖõ´˜C%®VrïݺÈà…N) {.ô¸e¯4±U¢¯ Ö<•|?þoçÍèìÎõóÌGÚg0sÇÛó€²õ.;g¬W”[2Ù¯'‡þ‰Ô§^«**žôt\T¨¹VгV`1êÎF¤Óã4cÓÜò1S-~êe·{Ë·ïwûÎ5ÙØ€NL6îétüÖ¦[BóÙ®'‡þ­¸ÑÝCDr°TÑbìà—¿9~hråh ¶©Ûh˜š95¸\¾ßжAäB…—#ÄßM#¦­ôaí£¥ÿÿ¿”Ú¿+º›Ð…y^C?b¥ò×?œC¢3ZmI½1ô8|í.SX¶2>÷š>¯7E;¸m÷§llV£Û2V6÷jß<tlÑÌ ˆ| 6å2æ÷ ç $é<u3>5ÙûÛŸï¦_uè,ßÏÞîYýúë½9üÉœ2õµæ¼?0?ŠÃÿ¿_å¸É¯¼X\—7Q/ëe–V©šöå>1(0ìõ‰­a@-ˉóØdüb³qD.b¾ò«™u@J/5úž$°„•`ÜŒT¶ëÅ!‡~Ç«‹ úÍÊ{úö¦“ðbfÍÛsÈeOÚ×1L¿ìÚ K×zŒ$ÁŸ²\R›ýòsø· «Ú˜ø†írüeiyÇô¡¹ßß#E9ñéR÷²Å¯¼^V\éoÈ«ÿßû86ç_Ð\ ,þ¡+Ø¿?"‡¿6Ñüf–·ëE ¬ ¹³ü²÷Ãyø$€ò(Ÿ*kýíyÔþ?T ]<}Ö¯ÿ¾$ÆÿZO6 é(ŠÑuXÔ㜑ùßžoŽž²Š…økœÿÜäJöëÉá/Müíƒ=Ú¯â;´Rr×Ä·€ÙnZëpûà†wË«kØ.߯Bt©`·`: ÇRw¯\ –Áj±O÷¾¾OŠ˜zxûòÏûÂPo¶7YvQz+hÂ5m@ƒxÞ}¨e»^þ½HxÙŸZs˜Z·gts¼­†z0'›¨KY.Ÿu9ï]ÿí§ê1M> „Ý”·èU¡>!tc ÈÚô8â¿Äß;±žw´€5¢Îû~æ,ºÀ'8Jý—}ˆG­—.ñÖ¼©|Æ!_Þ‡C¿‡äPÃíFm /›y;‰.\ùš„Ÿß`ºô;5ù”}nŸ¾dHܛӀîö¥?Ò¯d»Üì&¥.èuÆJ „ v¼¾®YýÄ×ûƒA?ñõÇÿË~ kV¥[ H²w¼•T Q‰ì •¿æðµS—7ªºmãâgx›k¹Ç•8Á tÎÖ 38¸XÉýM΀:ºËri²[ÞŸMtdsñ´° ß.7¥öí •G€ŽŒZ} X‚º˜iã·ŸÃ}¹124¿ÿ‘S$ÍÚàhšÃH+Ý-’ÿ¯wN‡¿&ÑÈcŠkû€¼?e|ÎÉàO²$ Üg»|¿:Q¸ÑŠ™Ù€”ΟST‡@“´¨Ïo¿ÏܳûF>·û|?c­Ùt¶ëÅáß“ïÌÐÓÕ¿Þþý¿Q°óˆÑÆ€ø6L Ÿ H8*ZoªÎ÷ÛÛAå%_ ¬¼W ºpæ«pø“Úë§«¼³{Ù.ǯNÔ½ˆ_Ѓõûï³N¾n~ÀM :ã•oT}òÌ á¦\l׋C9üÚݹ§¶ZжÔþÖßî®6¤MÞˆèq^àX-£È—f{•ÒUØ1kç±_9ä¨týç}õ@À:7Í‹€«‹{¾|OÞ¤Y‰§•™rw¡„ P3¤¬‡Õ¬jÚn7—L@KÃí7²]ÿY$ç< °_ñHÁü3Q¯w³]vµÏ¸-c(Ô€M¼„ÿ  …;/%k±iKÉ/×M#ÑI1ù)Î@Žò-É<ÔÜ2ONÚî%ß¿'XóòœèYÆv½8ü‡ÐÌÝ%ë¦`)uåfû}±å¶mû–XÀžìhžË§¨¦oÑ}A@9Ÿ„«Æ¸m12`ÙYöËýgù÷Eþuûô÷}³e-n›tû2Pf-ÜÁasÙ.7‡ÿl•ï ÇœX Ì1ÕÖÅÀÏ=I;XþÓU?<Ô6²ïPE/N߬úgš×Ø.‡røûI-ÖO¾¥ˆmæ#æwD¥¥¹'k©*ÝOWÞQyÚÁvù8äÃï'ZjœQ.Û„—èu®‡^@Ũ.O³t‡”KhÈÔ³£$æz ]ýËäŒc4`gv²]nÿZDÝÛ­;ʳ]Ž QãÍÃ*€z¼t‰»_PY/ÿø ¨§z†»Õ,뙑Z Ô{ž… ðÝõD¼Žírsø× õJñliúr mš{v‡yK7æuÙŒGl—ëŸBd$sUܨ(¼9­ñPë–Ø×jµsŒ2t@¤Sïæ0@3ôkĵÙ./‡¿6Ѧ(ü­è: —Û°Wz Ï*î¤ €¿L-ñp‹dõëNYl—óG [ŒIt›ÿ,Èqá-@'|N¯ZÍ~¹8üK Ð+y1Ñ ¦À;ÛGš@¼Û+v{š$`^§ív\ Øal'w¢AiÏìåñl—÷ŸFª¯X­Ä]Ð'®IãÛåáð¯A*\SòDO+ïÊE|¨½€ în|Úøƒc‰1y@î6õ ËŽírþSˆŽ¬ ¤PÈçúaÝ[æºÞXšït.íYÄvù8ük|¾j¾JZñåÎÊf@vO{tœäì›ö§ùñéGÁÕó5Õ«å–ìùò÷;eš|Úl—“ÃÿS¾Íß~»¼Ó4Q¾.@»WÎ,úóå$Þûó^±s–±è¢‡ÛþüùMhÚéó01 ®_‹³½ÝHq‰¹˜p(ÛëïÏ"µ}”Á­·€L7½zÎvy8üßÄ®žM²–äø-¼ë z?ƒ/cë@'Æ©²<¦_e™ÝkÀø^§'¬2 *vùlÁưŸ/§ì±Æ"oZž±îf‰Ù{=yjf9—ûëåu“¬»¦ÿû3ɇÆè Äïߪ¨ø Ú»Î1ÀZb”ÕýyÝ(ºKÅ_˜}(Ñ—2_~§àVCêz`îjaöÝòF¥ÀMÙ¾ `Äd{NÀ®U=P—¨Œ4Ûëñ§ûõFÉçá"s:³Œ9y°Œíòpøß‰.¯–?qo%uoì ïÙµÀó^Ѻ=ï ?lD00ƒSx ÜG£ÞïHI¾0]î48v˜uØe\9ð}õ/Ö>Ia»ÿ—ÄFK«+u~€q-H+yL¾ö™>÷FóÁ¡m÷Çsþi2{Þ À–dày³0÷Mû`†`owõ¦jçaÊOÎ ’\ðÈO“€ñ¤q~¨ÄUàß6|LY•?ðåJÄå; üÚu1kîSj–“¸èl ýl+—«d»þ?ݯ‘Ú“«%'ZIJ7 )pû\N Ø$m‘KÝÄ^˜†ÙÞŽg¼u; Hõ²Q§G ÇþMpŸþ>áÂÁ©Mü€ùÛ¦&]d»ž7ÊÆ&‹Ž¹éª3[Ó3`[40÷ ¥÷Ñ~=…yfèáZ`\ЏoWMcí“*©½Å€—ù-M\ö É3M•ªÈ?¯_*IzÛ\¶ ðú‚iÇá20 }&ï´esßB¾%W€Ýƒ4¬4°N¯­"÷K€itmJ »)0ZŸî˜ Œ6M³rý™ÀL=L\¹µ˜ùf)ík ñR‡oí à?“6bhÄJà738;¼`íߢÛý¹c• QýP0 ¹Šzà¦$O¿Ùñ?⇿ )æ!¶Š@)”‰S2ìѬ‹{4Й”É¥ð¹Þ¯mƒœØ9ïwÝä$^¼X–Byzm¿¬OÅÞÕïoz²]Ï¿‰ð#Ï&$ZÞ¯]8_Ȥí£ovr±{ŠJ£àú-ïMØŒlÉ[wn¿ØK©Ãna%+ZwN °êE‰ã ìe‘·¨Tãwœó1A‰÷ŠFÏW'çî1×ûxÅ~R{ãÀ5¦yK¼sl¤Úq¸Le>ñ:K`›Öç8yø¹¨ÙÃ^Ä(·ºO韎¹Àp¹éöõé¶îƒ@ oo5zl¸®eøô3ãw¯®L|Eë1,Óg.`Âf'ï·fèðøý3^ ȹÌÙ>cŠõÌW>l(»¢Í£ãûÏÅý«íæ²—ÖŸøãï¯*6V†;PD½Ç&³l×óïJäÛ~/Çj  —Øp®+ŠŸ¿ß–õ {U.ó&í Û üÁ“×HŸçÜ7cš]`®z`Nêcö^8 äØÞÜ«kæùÜ•µ‰Äm£²« ¼¥Kd-™²‡°îi<‘sÍE *òçVg[ÐñØlwÒ ° Þ¯199îßϧJz»VŸÜ¤êÓ=;`o±Òc0ÝæÍÄ[€y:äH‚)2ÈÿüþóqPK‚̹ûÚ€\ȯr¾ Hdàbξ!`ñ):^*kg{ý°›(|ÕËK†tœ²6g¨Éˆu[´¹å©É™:­ûþûé ½·H´*ãi¢à!@UíÒž»FÄ®ŠªÍb»¾JïX+×Ñðå÷¢“Æ ´ÊÛ=sé ÌaŽ+μF»+ï;Ï»Àwúöªç?.£ÿ¬ã*0‚“†§î©lÖ¶solR6ôÊ‹Åg¯Ü•ö>d9` -’–ë~³aŒu‡n )øÐíc’øÍM³5»Õæaô×ßG¡ù…edE4`®•ËL·´¿*$¡Í~ûýM‰†ÝTì˜þnG³k;ŠÛS7±\6cT"H}ÏÖë_¾'GÏå-ÒýÓ€:š®ç@ÇcÜŠÙ“fûýûwÒYƒˆì›¤‚ËÉŽWJÛ9KÞY¨á'«Æ ^´â‘§þL¶ëÿW'5ÌeÜù“³Òâ’w»ÔÓëf!wGn{´ _ˆ9ûòd!Ú–ñm\;žԚ펟¦ð>Ûxì¼ÀRà7þBK¡=ð¶ Rµ\%À0w‘±~{ïOñÛ;Ìäô)z 1ÀmV®ÜÄM×ëPµJ¦óÔõíùiذ–y\=3“Év;pøÿ´‹¢Ú ÛIó—WNâÔÞȵTóµÇgV鿪zÔO@có'‚Ýl:îJi±Í/òUqà û Vô*‰‰Ž–Cô\[+º]‰Š=nÊÜÚW/¥)uE÷5fò[å"èÝ>±ÏÈ×{y;¶–Uaíô{GÙn‡¿)­€“j€$Žiº½<âåXÇ[ñ@T¾l÷ó¨®8'^À•k1M/\ø|½âÄÝ/_âèpq®EšÀH-<»önð¦·geë_|kë1` –˜ÈãWüo-ܱŸZž ”Þœ!{ž@×¹ÖçîøÄv;pøß‰ˆI)çd‘[˜A‡q!â`”áTÀñif‚Â@t.̶ÑÊÇ뽟~/"òF7é1›÷c€5k½˜ê¡IÀìš^ãðˆM ×`õ©:<Ÿ¸¡2Fo&àÕWµ÷+áñ %ȨHåW³7ÑyaäýlãV¶Ûá/ÇQîM -ê@Ä©{ÕLX øBùì‘*W¯î÷ó™ äY‹œ†öûÀZ=ìxcÖ×ÇSRèU¨â_ÀxkwÎm› m™‹ŸÍf‘¿Œ÷(º?^(™kK2Kaâ™at;P×5a\b¿þþo¿6np½v+Ю}¢W€š¾A‰cÚ}Yº=þ MÙÃ- "¶uß.OUÀõ gl¸~ÈYY/·•Tys·ßÁK@˽÷©9ð# Ð?C°‹Èäz Àd6Ý“¢ãñ1|j+DH|tLOs9}߇á±ãe¯rVšRÄv;üÕˆìÃâB¸€Pî Òõ§óÞ.Ó“×Òõ$>´×­(k#!“)Àš{ßýþ¤˜oß/¢T7G?ˆ–¥{¨2 ¢ÜDn§ö²Íž)ÌÙ×ì¯NÔtª½¶° (aóOçŽ$á8á¼ÝÍ4z§Æ´Q§=?¹ýP"v ³}÷RQ_8ÍÐÛ0ÑÇ·1gÓó-ù+ràWð3L~üÝ9±é€Ý8Oô8ƒŽ;]ëõéþ¢L²âTš ÿ´ý‹sÙ®÷_ˆ7:^> j<³³ì‰sv-Ëp øÀæL¼0aó©=:€Í°àŽ]Lû¿ë°‡{‹Ù.7‡r;Ñèã–8hmäŠNU¹O>žqÁÏ Èí5[ÆÞôD÷àÎ2zœ1Y[—°ŒöëÕ¯&n«Ä}{Ïë°b »zeîþ¬qú„#Y³²9xn:03÷¶K+Vºá“„ÝÐÓz†%  É$íŽK†Ki%s>Ûíð«½>ÖShÝœõÇM†€zÖÜ?ï!Ž£ÃtÇÓãöëÚ®¶‹»pÁ Äw0ã1´²ÏÓiJ…S´%àÓÏ|”Û›,GK÷=jlׇßÜ^–¦_ˆñšþå÷>×¼^6¨¥›LÒ­[Y²yâDz¼?dµÞH—6 ÛáÀ’¿}Œi7Py×Ǽ=1‡ŽÓ…—K•1yæÉž%ã€é`³Æe `&ní˜,¸¤‡«±F ËÆM3_Èþ„Ê":ßí¨´vJ7ìÖ°xúûH†òÜ®¶Ûç—¡™åñ®”6@÷å²ï¸^¡ãñ*¾>EÊÅÊOˆ5ñO‹Çø^g˜ÁP°ÈuLŸ”³ƒW¸9úàì.•éÀô°øù©¨ô̘ÒgöëÅáÏñë—†1±r}¿½¼Î½¤óUŠ@•¾±z¡ dì3#Ê{% I:›‡M×âîŒ÷W‰«À ‰%]ó€©>ÂkË6~`¶ej\|¢ÒYÙ„c@–Õ‹J?´2Õ0³ä:PšGRÛh¿¯ÆåµîÐqæ¶£Õ¹yl·ÏŸÎ•º½Ìü/ínÅw_Äï '£Pwß°®ëÿ^×*úzöaÉ%/Úù(iż:`¿í2Ö^¸a1V|°6Kî²¢¦²_®¿°N<¨÷¨]ÌCV&ÿ±_Š\º)€”õC‰áÁ€‚Æ0d 5QhÉídá;/?:Ï“¾8þþFg`Út_¶)ý×z›1O×Hê&GòˆíTä’Ù¶ôÂ`ñÄiLZ—Ô©ÑxI ìF>íw-’)kKXðYž÷KêÒ1a–G°Ý>?ŒB,•áçošw¨ÉJ~o±ÜÜý€—,»P>šÎw>ª­~(fbáÞ‰Þ?ì¹ä&dºOf‡çÞKái€ ÆÖtqÚ±Cmç.öÛ…ÃëÏ5Wê5"Ú~÷õÔ3ÝÎѸغ7]cÕ€váÄl03ăfÐãqo Óƒîê¸Ú¸r=ËÞZ„HJ÷Â|·S€¶=+œÿù=,òŽú=âjw>¼¸TÙžgä$Øn§MêÙ}-¡Õm@vpYOøˆè¼&@†{Õ êvTqÍúç×ûüÝV ž¾õTSXˆýJû½€%’ }hζۇÃßY¯o'¶Ëvúúï+ƒ;ÖB·¿GB¾^®~MÐÇ÷o€Ð“Šê›/ wcêD`–½~µpú% Òü‰ã¹M€öž¼ e÷úë÷á¿ïJ}ô<çf?vðØÃ²Ý–ô÷ßWJ²Ý^˜Â—´¶Ù‹4h{¨îOÇ*# àÔ32f-ì—ïÿÒ¤açæ<엃ßBÊÒlŒM¨9½¼Ãò§ÅµÖñ¢Ðr;z<©àÔTjàá<õ Œ©ÉJÖ‡€ú´2¸e˜`î[»½öŒq^JÏ"ÀóȇÆÏ¤JrK}öúÒŸ=ß‘#´h7”^ ˜GÆœÁÐ@ØÜrhj®–±Í…l·Ç¶gÚñ+Ef@E¬°b .ôHIþRâA¶ËÅá?‹(*¿ññ}ýµÃE3®Ñw±qÖ净H¯_^ ¤½Òm&Ÿ?sŽûGYù®oØF ðiŒS-Æâ€ÙžÝhxö`ÏÙŒ» ¤Ì±MKk–Ðyö®w};é8PóÁ8å€?wѪü ˜ožfO±ñÌÜàѸƒE@{°+ÃæËýš8äÃß@e¢4sïÿ˜/2jËËëZ âß??`Øå9kÒ%–:u©Ø' ®É:ÎâåÒiE;à;¼o+yýë®g‘’ 2³á–&ΞùaüÔqN€ nœ÷p³0•Í/æÌÛñ®0ÝŒöªGÎ}fSç¬a€$¨Åíf'Øo9üUª ×n¾ ”YlÍ„,Àv^Ü]¿°„@ÙØ‹à~®}B@Œr\{5pÛ!³ñ怙:qö$0+㛆’óÈöu1ù¾À°Ój±žÃ Ïê}Žk½QË·‰9£˜iûyÏLÜf¾àýè ¢$U£gg»þrøw&Zÿ*ôʼE¸8ÿÉ0ÀÒ¸µÅö¸òÕ‡1€ßö+îÎ4¬²tnÄ£€­gÆõ`<0ý÷Õ|©üD…Ÿyð_T+¨ lÆËib¾Ž™À|¦º(q&`IÒw¢‰«€ËzRž@ÝO³6ò°a»ÞþE©5S­³z)°6Œ›³ìÖïÿ¿çŸB´î\ÿ" g ê7>*b§¥Ð@Ü U¢Ï5¦fà2uFy `§Þö9“ç€ô®©+¿Ä!þlm1à7OÍ‘òF’ Ãs+0»UªøOÝsdúës@â½V°i$°¸†—ÿíóg8äð¿R~›‚mã/ôÃÿõ£¹1y®“6 ›tCwã/´¨Ö’ÃSí€|s†p–®4ûÝë[ãWï˜ñ¶ °©vaØ«P`D>‚z‘Aà· ìr ¾ªÇåxµ#0¦7Y<Ü@Æ7ö£À5 MùÄP¸s îûõãÃ賃Úßöçöª9­nÁ€DN¾9¦²X¤±sï ûåÿåìÊrð‘tg ·Øª·@ä×XN¿{°¹ËO|Ê} ÿËÝ­ðWéÒ¤€ÿ¡”¤Lùô¡¼mm8¨дCÜŒælׇC © ᠹǵ€0Žgðê¹¼ªž¦Ö¡7µ¯æK?)U9U+£Ô”Eu²Å“Mz Õ&ö×Y¶L ýDžpåXõ¬ÀX{jçûI5ÀÏlÔò’^ì|½ä`ÑŸ$øP*’a÷íÜ|IMwïÿüåú ïæZýèîStž‹wŒZ'Ç~½~o»>ëûÄôå5 ­öÝem|íkÏäCÞ€ìç>ü¼ðÕê OcÒ­ËÞ±P®LÁ-aK@eÕgœËÔQW[`z°9·p§ k¤µÚ“¿Î¼>´r„}¸æ\Àmß]Ïž{ø“¬u;”ï‹Ç!ZI)ÀàÞ¼›´=´oÎý¸î6P÷ίJ™Ãv¹9ü?õWl*c¿# о¢­““ ÿýì©ÌÒ™,T¹ôBáâÕ"@Ws¸¥§ ×¹(º‘íú~ÕÇú澤¡µ|Wáhc¥7Ap—Ìõqw{￞¬ܽkˆ×d ÷æ¨6šø`†ïóy€îg.|¢;PcÆû—Ù®Ïﶃ¤EÖÄ;6@´ µõ<0ï]¯|¯ |·z‚ªZ¯]ÖÉûŸ€±Ó uùÉá´}¶%Ö+Óñˆ@·`ýDÎþÄl§‘HA¾òF@Þiæ€TK¶iüþûLt;¬õâ“FÇŠæÝ;Þ ”¡ü‚fn@²dºäÁH@«öNoÅýõL ýü×;oùºO]„³øÃ7ZŠ€WÏkà¶”BWí¤Õ7€?2->Qýˆ$\ºæ²) ‘Û“WД‰˜Û(%QÊî£4°Ö=ŠßúÛ×ãý*¤øŸ¶ÈÜbÙ¹ÙE€ :yÿ˜+•œ¥R®ÿEa¿à.àëw˜¦Q! Ï„e\ÕðQöÁ¼€lõ_ŸXËùŸšíT-~cêzŒÎŸ8“gÒ‹1Ô‰n—î3k~Ǹ=6hÉŽ÷‘Àâ•k`ŽÔZié“v¨Á££âÕ¸d`Ûéã€l^0D×~–¬Þ~ÑC¶ëN =½e=D÷7Δ:·8 ¢þÞíJY ‡?òÙ« xÐñUMӀЩŒSP’?fúha y¶jº¯TèÈùÊatœ³uÊ •þ:þ62-¶þùë•휋6¬Øo°Žö¨[ùym$eš¾Í@Ïïø,À\„‡U̸@×Å\"À\fV÷WÓ:N½[Œ€-G^ʦ†Â°®òa@ä”gyïc{½þã©gS5Î÷äNm 7Ø È¿àuL)°Æ+2âNh}{ë‡Ê®§€5Cg©Ù Ȃ̻¶íP'N9yî ®%[V ª Y\Q¾×8ñØ™–—ÛdP°¨c1Û\ë"Ú…{Üá¨:MnˆÑzMÏx¯>s­ŒìžÑ€ëm¼Õ·Ê𜴇¾æ@D{ï5 뢪~þ+£½@Êñ¿º³lP6‡ëœ3Þ:“LÎüqÏo$1íè®Ûó~üý6üÍdn7 Uo'„ºþÉ¿ñª9`ÜIënÆóJ¨N)Å̾‚‹ÁÞãyoiNoÌ.¾uɘ@¼Î$w/°Ö œZ¬û×yð·£}Èbµ»"Ÿë5éòY;@ I)·„¾<¯í›Kê˜}‰Ž³³jr•i?¯gxî¾hrÚA©”‹@õßZçäJç¡›ß5¾Kôûóô\Ý|ßEÇ˨Ê×+€Ú¦°S=c wǽœDš@…^ídÀßËžŒ<øWG¥à–mc{Ž~&y.ßðJ ¦Úiç e‘zÄ?Wnb ÜÇDÐ×ó/I)Þö©÷\6Ó~¡¿j«PÂQ@¤Ž™tS ]X§,³–E××ýñþŒÙÍT–]%dñ£E£ÎÿxÿÊÓp}ÑÌ[}'ë(¾+§ù(*¶Ö¢@©.˜çÑËâO^€±Œ_ ÅÆÉí²aåžÉ_ÞÇaö¦./@Ù®‚0ŒýíýŸJÂ|w[ïBz¼ñxÚ1&úû¯_îíþZ‹Î×¥·f  ¨ÑÜ9¦j›Ÿ\–¨9Æ×àåÎ?]/ôtÃÒ¶Ä\@õ³ï¤wÚ Ž30Z¤ì“ºaO´8Ûs»)€0?ôÒk× ÄSºïÞ¸ øÀ_)´¿ze‰iÇÍRRË“«â.®‚êÇöÝ2ÐþeÆâ&º]·L|ó´ÈàôÀZǪ=|óä~:>_Þ¹äHÆv@žOÝè8%ýŽ`c°V¿ )ÿøûý‚#o†Gfš½È÷ÜN vŠ>—Õ]úãí–g±6:vø¾G>宀Ë_>sìy=0ïÖ˜*Óùø§ E/¯ç1ÓÓxº±ÊD¹XüÓf†Þgûþ‡U®[-»Xš¯ÚšŽ`»<XŸçrC£¥×é=‹]ÊáhÈìwþ@®½R'š¤ø1‘7þ%@:NSKÊ4É.Ù”Èù¥Mž€j0yúXªæ+—÷jÏ>£ëÊ@ÔîtÆfó¡µ÷°ZásÀïµ_Ȱ¢ÒxmìíÇCsš~ôÄXªºÇ5ºèîöƒtýâˆÄŽz:?oø ÑMÇ3/ø-¢öróØÒ¤ÛÈèˆÏIÕq€b‡ÍuɧýT¹x¿x,©ÄÕTŸ`‘RòHe¾éÃèø¯ÊTkü9q öŸQ-õ‚Yœ;¼ØðËØ±s¥€°Y‘s’¾OÇ®‹¶‡]غ©É(»ÈÒ%fñ1€„Ó¸´âÙ1µU¨…]tܬtòÜñ¼@ mô¹á~PÙV­óÆþ{úï%yIµ<¦ø9, ¼gb‘’¹ð x>(Çm|HÑt™üƒØ_Ÿj¬Å‡}ÿ¾ôèè ý“šz€Œ?5˜Êk©VWÈKl·ãW廃l)¦ó)©ÁOÿ¹çÔ¡uÎAâ€ìn*L`ÊUyîjÚz¯ž¾¤Ç7ýÛ”³R$P§:̧.¸NÇg®Ou$9«÷\° ЃY{nhÉÚ¨.aÏ»¨w×µ‹'µnhÁòÄ­@†¹ËÍð"j†“¢•(Š-)K•Íï\ØpbàõŸ–ZxÉ–§ŒÍ€z¬ôáÉBÜ¥gSÏn nù¿«>AK…¶z’€ç™µ«õ?viA•'àç:Èe¯0 ‚޾Ùuy4Ý¿H™½ÐóÉàòX͵ÇÁœ¹Ë)ÐHÅ¡6#ºŸ]ÐGýŽÿóØ]?§ê%y5n¶F¥h5óܬw+üâFÆ!ëi€¬]Oç±x¿«žÛó@‚ýž ®ÌïÎâwÁ—(ñsSÆçÌ$p8`󼗙붴°X‹î$*æ|}Ô_žå÷x›ÒúàÏÆ¶ýõÎ)BÛsC³e»€8>7Pш]yšÇ®«‘˜/ë ÄÝcÏ4vDq¥l°jïPÊ£–œÎ:ÔñŒc=¯õÒ+Fïè  ƒ#Ë|Üé¼ëàiA@Ë•lÒ´´èvqs¤•E$ ª^+©ƒ(˜³ÿÁä}@:4E·Ö>£ãåsž3Ï!™º!Ú è8úh˜o¸à;,ZÇì¤ý\ÒÏ üºÛÞÍIwx¿£îý À—l°°w¦ûZ³]WF– ®¿j"P¬K˸qÑñSI’N_°Fù¯|£÷õsQÅÜ®O‹yŸS”Í;õ¯ùíï·²½^~3—ăÿu¾Æ¡ƒÖ­¹õR[®“¶ÎˆÇMÛSLÛ«˜ö¯)Ugý>ÏïDYçžèe }ûþ‹["®ÛšuïFCܧý@™xÖì¢Çßèañ#ñ³_ÿíC+ö§¿ (qÏ•©£Ø.Ï÷’Ò¢ô6»Þâñ¤ÙíatžÖ[¾TÄF pïº+>Oè¼6)þ–ôñC@ÞvéÙæ”÷sǤ­$ “v ”I•Þpî^ï  Rï¯WÕ dú²ý>m—‰²¦‰gèq°à¸”¦ú—v; Ðmì¾ ¨]Ûž>cÑ:12t4àC™ºgâß¡9FGú­૎Žö»;Øè\ØXXg¸æÝ;@”U¼Ø¿YÐÄ®@ÑÙ€ÄéÁ£ Ô¹^s†Ú‘q%©ù°xßVŒ ùíy •n¶«—¨ÂöÓHÃ÷¯èñïÒ*—ÜÇ€cö|‹¥´ŸøÈÛ½\ñ¹¼Õ[G‘À¢^]Ý¥Hcìk ¶ËK) j³—ÌBÜ趬¾¿nklÕ`ÉíëJ²OÇ1'ý³ªVrýÐ%ä½ÐpQíyÚ-@–mð ¯}¤ÞsÏQvÑtÞ,z ³¬0‡X™¬òÁ¢Oé8yabãëíÑtÜŒ;ö2Ê8:pÞÖË€Ô$µR¬ï×ÿŽ Lܺßjvþ²ªH­úk‘^Ü@8½ÃKÛÁ°å±ý¡tÜrNâdÙX:oâ3_*„FU›h(ŸÔJ×f¦ÐqðápÀV=ÛQaUCÇ÷\ä^E Õ>›½«”vï|=®é5F½¿´ XRö¯Ïýœrÿ™¤^Æ.׈k”|_¹wÍZ¶Ëó£‰n\erû%ಷòy=_q#J¸uñçù0Džåä7ËéxÙ°îÄÎpöõ‹15;©Í‡t^^Ó,UH[øX]îÖ/ëk%sÔ‡=@Ü®^|Ù6p—5Ó¸ýT‘Ãå# ]×­ÜvÀXàûöôÉ1Àˆ¸1ûÁ¸»Àä¿ÔyR:‹Žs–oœøYÿêY·ÕÆÎ,Ö\ŠJf{}qøcH^ˆ“Ó¶ý2OD½Ï}ÓI`it¯ü6”ír~·^ƒ’7Ýy Øyîô÷9×ÙôZ2;˜±+{ï–.7‡ïÆËV ¢^_«Yèér÷*ûÖy¢‹!]SÝèøCÉþq ¨: »˜|èKÿž½…¿;,à}ûöêfQåuHå0ø%·/µÕþ"ÅøàŒòl§9M9À¼¡È]4ß¼CžÍŸýzôÆkcoΦ-?v5yÛëÃÔþC¹•_<,>·/ÑšÙR·u€Ò2÷ýyë‡~6©õ·¯Šà'3ÞXŽOÌn݇™jÏ»è¿Hî¾? ê©Ûè<>ßGØ]Îíòþ[îs™Ü«•W™¶m ND|âÚ1¦·ÿý;^ï8îûTÀÖ付UÑ~yÐÿ²ë´4`,»;b¿ú<ÏQa`ˆòp/•89]× Ø»ëåQ·Föë ½¢žÀ ¾Ð2´í&Ûõæð‰Î¿!XC·‹ý¯3¤&$å£?=LæËrGv¤ ¼ªt4/Vu诛ÇQCfò#W±õ¢_ÙÀL‡êîvrúÔ§ó ºÙ.ß׈mÒ æÞM X΀?ššdg(rêiõ•@™ì½`$‹9?cú1`¼rÔy¨Œ± Ç;þ ¿Çž–+ÿ16kFL0"Í=Ó¾üŸ]º½ÜÂÌ—íúrøýº‡9ë°Ÿ$àJ]¬Le'@Ksöhì÷eyA9Í¥#em*øôj.ÛåþÃþ­°Ü¾Áaà[eº¾Ø Œõv×ÞÏQÂVgÀÿB̪i½RÎ@øÔ2“Îvy‰€[s=j_>ž²ÊÍ¡óiÞÉ­¬P “G }Ök†ºÁ+§p`>vå÷F‹HNsÂnàï7$戗¿—xö°R#àïy,^dhäPõ¨Kl×Ãäϵ^íF+â€ì4ŒênûdUf’ðL=z˜½PÏ@Hõ¥csª|y]ÐÕÜ-Fl—ÿwû‡»!©ó˜§KOÃXû`e(íKJÌ&ê+šxÅ|6Íšéô³€g ÔçËl”ÄèÎW. hµËÈ3ÊÙ®ÏW)ä2­N-žçÖOPyðök±R À­,¨ ö—×TNñzNâ8¨Õ¤Ôœ¸¾Xòk Ìœ¿|ý›í[r½¤hÂi@î}ÃCm\tîð¢?®Ïr…1Ãë†z?*L¹²"r£ƒý) ³ŒyÌ¢€œnãr“Øš\Ï”¹©¨c÷'`q½‘h»tûË-Ú-ãÛÞd]ZÌužéâÀäI¿Vøõùs{*UÕüýûQüUHn[|m4÷À”ÃM>=;̶÷O8Ì6H¨Í3ˆ@}Ù´/÷D-5«>}ÿzþŸFó³üTJ€Tê}¢º\i;cOÔÏòÞ:¶tKÝAÀWóä¤'!èÞRmh醨v…?RÏ‹²BwŠ’8 wo_ ±76Wþxý†óíjë¤ûÙÞ/ÓZÕ) ù­D’¹4ÊpjÐZäBC›ó€ˆ°É>n+ DÑÁÝ»ýzÿµËÍGr °+ÓçMd}qøS‰Ò”œŸxOhRH0=.pï^=Ógàã'õD¬â¼Üo§WKÆçëf‰O1¤ûûaž{wiM¤»ÆN3 Ôæsy3`9oŽÓ°rüóôpø8æüîÏq%Y9»]`ÝS@0-qhX: 7/®ˆ'¬q.ýàÊ©@ºÇ»ž‹öT›CuŒêýqv”Þ’#!ž@÷:=Ãbe^}­É<+DÐyx˜ôòiC@T§VeÆÁÊ‘•Ìê|º·í=`ö*m?}°Iç—¼èØXdçî²Ç`ËýwÌÙïÏövÇáOjmU¯Åž®¦ý1#DÈ{ ª¦2Sá( ÝFºa:tFž/?7»p¾é¯„£»zî²õŒY€¤{1*Õ€ŒqlZVø%›'[Õ;çpCo.(±±o|ií‹/Ïôd¥QÐ5e`ñ%ÔVÅO–¨TÞ«àmÀ²»gÊ¥ß/I®»Á¸F >•­1»Lûçì1uÅcÉä]èÙIë5)òˆn?ïæ•´yÑøÆ¨Ò¼(ïR+x%ÛíÿÃê±Æà@\ÝP6(ñŽP¢]F¸¨\…ös­Ç^_ìÑ©\»òDÀ–Æf´m'ù®ù£z´Ûåæð'·‹–‹&_þußg _8ˆ qµiíkÛ¶ÂZiX0#“f^©“æ•Ýów¦¾)éÚw€a1¯§Ü\VâÄ\SS ´<loÒyàv§g&©Ù‰ÇäL¿è2òÝé©íº^tCN¼ ÈIš‹ÜãØn÷Ÿ^¯aS"ïr•{`0ck •yIûØ.‡ì%1ZÆhWîÀ:ô‡\û0ÇÍÖzÏ5€Ùy¿âV60ïÚ¿9È­˜®nDzé`6GÒñà<9>Ÿ›‡¨_·muºPî¥ÏµçÓùàY‡”ë±@•jÙG¦ÖÓq«Ýþæ™?®ï—ªæŽrV_nÞâã@Ì|pû¬µ,P¶“Û¶ÊœrúÜâó@, ‰5ßMçû-æ™Û²ÝÎrøS9ë|ì°ÃŸß—“FŽ.ÍòuÏu48v£ÏäÚE Z×§LÈ\bõf´œ ÌkÜ95 €ZÔr\pãž “M¡@,í^·¢i>»]ë´õ™M仴ʳr™¸Ü1 š—Ü1’–ªè&E³YÀ’ë¿ ùëÿ°ÔÛ­îã¿;²míÐH@ã,IÇën†Õ[B€0•{tãdÀý*®Þ]²çs¿0©øÔ+Þ@Ã6|ë¬ÕéíÅÊ“éû¹r‡¹M¥ã‹gvÍéa=qÈá$Ù*pg·ÎXÀô7ä]¨<䃆 r*S?¼¡b™šàõ,xBÁg?éü´ýý‰4 Ò •e^ÑynQmº~'Péµ÷TÞS¹â`> Œ´ßnŸj hr/SSg ,Q²; ¬éCƧS¿_ÎÝ÷S/*Õ.ô¬zžG8÷f||¶s3ñ¡ýT«ßýäê¿Ëã¯b?®×δ&¾Ï3ÞPViu2(íhöd{À 渙–gV6 í¬º°Â•Hİ¡*»“ã&qü€?¯ Åú«³÷u°½^8äðQªÁüœPu»Â?p‡É=õÞcÓ ü"²´–9jPd¢ à5<¼ÖÂýèû‹n éø6'~a¶ àëœû­>‰KðÂÑÓJ›‘û¶5R®§üºO;£”›9ÒÌêfjÌë&اP†âÙ¶â}߉1ên¾ŠŸËMy ÔSAû½Lå†=³o¿XòpÂÀÀáî£å >§.~°î7§œ«èr5×ö,þu׋pÈáÿô‡79ïNjøò{.qy—æ—@¼ð“ŠIÜĈ«)h©*0wÆN|¼÷$PüNû6l¼ o\i^D@Y­ãFÀ¼ßA„3à®s6îkb’Ð=Þ>À{²X3•3SkjrЈ÷/MÍ‚e8î~coÿù¹ayöýk¿ó„ÞŽeßž†Kg%N_Èô Z¦Ò+@³Çé8oûe¹ã ¨îŸ$F32×þ0ʤÏðáöa·d®VmØì¼b =î[ëpÿÏËâðoM4fWŸH¢â>þ:@\Û~Xôøa VYKˆö½û²ü7øV à'‚KæJ.(Ü.’øx!Qü €[T D9ÙÞ;[»ƒŽË%ƒ¬îð|ùü¥ãê}=˜Àb¯LŸyòëò©PÅwL26-K|o I»‡Mêbq¬ø¨‰R@¬^£5a&í×oœÖvØöåe·cTëñêìΘC—£M€ZÓRpãd ɱÝA—/u)ò¬dY  µÇJ¾q£ã–ÖÃåÊl·+‡o’&oŸ÷I^ÒÎæú˜©Ø.Ï¿i¾ìúÈ5€›ôÞ8 ˜Æ`ƒáüNÀ›>Þf*üó⬊3z¶Öõqµîœ·ÀŒ_¤Ù°g¨Ö'i²Ó¿] 5nƒåøq@, ã~“~þî÷y"U‡k O°YåØÕÌSÍ€¯TÎK’õ!YJÎPœ¶Öç}ÌÑH¿‹¾‹¾<çòß¿7—µÝãúûÌ?çMä¿õ–{àQidzVÇa»,¬äâN@Ûkö,ôûiÏ¥t¶{‹R¿¹<žå8¿îl `s§’Ê éxxÜQ|¦üÙ¯ûǥ܅’®VÄëÆ¹èü÷šÉ©kXnüüÍÂm u€^ä&&øðíR– .|ýéÒ:?(9ùñÞˆ%€›]Ø}“ß+2ùM Ô·Úç&²Žó©jÅ/)ä‘7 Ž~–7}ÈrK©; éÕs"¦ÌôLì®Ã‡ß±? ‡Ò$N¸øgo¬jdAHûC $Å_¸>ùóÎG!¯}?°*ŽW+;ø6ªsîé ,ÇmJ#ó´?ûÓ'XdwɰðA¿“U@ÄYÊ­–úê}±`«f>³X`ÕÛÅS >kjÿ°¼èÙÓ­Ì{ø_¿?éFç÷éü›ËrOéŸnè>V¬ûàvI—_iÞáçðqi8ϤôÏ Œ¸t:Q²÷M–ðþ©ƒB!€v6Þp~÷_ókZ-äÞÓ\|‹šÊùß›ÃßG^È/Ï2| _Ô1» À«—|ìí±²KÊ,ÈöËÿy~4©¹þ%¯ø;²Ž9¤³¨MceÛ€:rkYgÜç󉨤#ïN'®º†î¡~=-_Jò“-×€ˆçšØUÈr5ŒßªÇ2‚³Cþ¼ç;ó©±÷ Ñéy³X6ÆN˜¹Î™`–`ñ|«ÍµðvÀ)ãgócûä<áÍLkÀÅù£üÆîáäóv0ƒæòò1¯Ì_œliC÷W®òR›j~šhêø•wf85îrÂ"þÀw®¬ðŽ|ö5U‹Sb@´>Þ½8ç" ½Z¯O‹€Å¸®iYn¬Ñ2å“ÿxžÀ!‡¿%>ÍAQÿåœ_¥£›„Mþã|èå%Ú­f^@0„DS/\¼«ù !D^UÎë“2€o-580×èw<';º6b:aØÈ­ûxi J¶k:•6§{”ô±ß—\z±¾¿,𴨵­ôý2ö¿ÜTÈKèѤÆôß­¥OyŠÂTº?jz=¼µ½¡Ü}9õ@ø‹L™Æo$ï ÅvÛéx|䈉 ÿ¡§Ô ³xú1ö× ‡þ¢'Æo"†ýr|çN+Ÿøâ{ò¸õ-ß@í:eusØS@DYIßš$ÀGÍ|s>¬°÷B³1'ÀŽz&¨[ÑãuûÙÀʧ@h‹_Óî˜Ö0Öý H´é†'ï¹ Ö“˜çu–1qÀÖÜuH–´|Ü0™SFÙ€xLÞUýö}Ñ‘BRLìÛ5@žœ0úƒd5Ö ¬TÒ€¼×sF+@ ¨IÜ<‡Š€ihˆ’¥Ë‡ÎD[>ÏSAbÇK>þýÎwæÃÿEjýdþeëí€\Dn–I·rlÿËà)/€š,Òóäý9À¼I}¶­p´¦s+ð<ý3©ši€7/^häó È›;ŽÈDŽ¥ý#ï8 ·Eö5\WfFÂ&eó4`@æä™žƒtœo¢:M‘ñMy™ó•¨l`aQzé…ôsy”›êZÆV6”ì”è³ë²7š~òÝÀÓ€ÆE½e TºÈƒô¨ Þû>Þ¹êó¹»h[‰þL=W¶Û™CÿL"¥]Aë€Ê÷ïzs÷Pš›†ÖE‰_ÛôjRàR¢cFÅW‘¢2VC‚ޝ¹oö¿îÄ®£ÀÐrõݞ˅á@ªêÜIݾÈ9C ñïbϨ¬o4t´ïbŒˆòן}õ°‰ï->÷3+jÒ©p æ]Ưí.ìÌR¿‹¶ôýnÚUØïòÅÆ¢ÍõïJ’ÖÊÊOy~l-žs^{ÏK{™=q@n™öÑóL>ÛíË!‡?•Ú'\ùýýw‹š>€{_|OÉ–_¸Ëÿùüb$Ex¹¬âDãLEU Èc¼í޶âjÏÈz<XëHh[ýŽýýWMÑÙXþù|`rãæŽòž €_ÁRo.àÓìRM?å5 TÆã`?‹­t¿²`ûÉ«9@ì™ßÓý².×W*¢@NuŸZÄUÈ~»søÏ¤ð0›¯Ÿ^*:ZÝÆûòû×5¢¶”wÄ×~þì×™“áþ¯õ“ηê“åJ²ÿlcþÐnå5%€–ËÊsÿøüMâjˆÎØžbºß;YÚ‚ÊH|¾^}G–dn}ÔYy½ò[c-Ó7nö!ÀSDMÃ6Ž¥ý:°(ìÄ:@/mcù­Ùo/ÿÄùV^º6GpÕ™ã÷6ÜÃqÏ•«€œãørúˆÖiGa€¿«˜=k¼&àóì«jçìle>³så# †78Øï?Èv=¾J{lhËèï_oA²¼§±È±ãy:,å€VŸòé¼2}ecRw€¹Jéñ6&P7y<Ôü´À¶GÜ—ú!½±ùÑÖ Â$P×:¹x›ÙoÿQÄÖëÆûlwl¦R´þ4E r÷X?lš˜ý•3™êZ@HdYÎLx ønÍ#¦ýg€ñ®þõë„|`œÊ¹±¸¬0_!Ë }Nl×ã›ä/q~Zúåÿæß"¹f²çÓ3 ¼ï»cKG/P±VçËßóua@è`60Oö»šÕ'·¢ÐБ÷ Ã35o•ìðóç¹rÈáõëû:oŽÒãö§˜eíû€%xÞ%®^PÔ|'£™ê€ùG%_Ÿ]Œ¢ÍoëÇxCh$_ÕÐY`gìÞXZÄÉw»’åuØ®Ç÷Ý>®ÔpQ(%OwIe´ãâlƒqÀڤϽ´ïó>åèB輇Wém63àú×þiw6ÕÙw–9€D,{?xt—qœŠPš÷–b¼d»~þ³IM¶O62øÃ” ÇÜ€œ²hïÓš€Ï¿x¢µåi-`FêmM37F¼ßrÀÔHnáÉqþ+€e2KúÇŸÛþg‘Ìx‰xöúYSgøi]  ñf³¾´S³¨±™( »cj®‹§å¤îµýÀÒòPnõ˜Ïåg$_­¯šËv½8äðÿ£DyÁåàxÀæˆK–u/r­Ðç}þ°ªó*ÎïrWjoï7ôW!’ˆ‰í»‚yc¨õu]0P%"‡BWX}½ü«u!3žü¼ý)8äð§´sÕ()sŠŸ¬sµB¯ÅZIÌÊ: øêÖQ¢?p½ó/FêÝÐí-ÀZÞqÔ{EÛåáßAÒ<®æð>5gñ„Ql—‡ÃŸK¤²yLÜ™a€¶Ößs÷ Ûåáðç’y±m ÖírüæöY§šöräX`Íö4¯”nŸš7Êj§zÖG*x¬ÍÅŸâþ¾15Rƒ¢Îæ¥7ŠþûäY~g;€iZZƒ@Dï» ¹¨ r‡Ð#{?—›e~hÉÖm¾|&Ú&½Å€ZèëøÒ¨NE qgI@mõÕ«½ÿø¹»WRÁŠ…`°æåæ)4 °]ÙÔ$‡ŒØ®ÔÀp—³¾|Ìá_‹ähá¾Ø®@IûÏSûŠíòpÈ¢G/÷—?㊫Zþh½`«UˆæÅñ€I—9»‡¼û(ˆ_r@Ðu/`)-ºÅï7írsøß‰åMæm«Äá-cǽ٠HõÓ´{"£¥Ò;麎.ÛåãðÏ%wŠ+æÍ|`·ž¸ŒµÔ[;ŒÂóu¸¿‡¹ûºŒ’/°˜×¯Ý~ûšíòrø¿^´¡ÑþÊÀ‹Ï+wöqòÄ…5Ü@ÚMjìÌó§ë1d`‰é8¶ËÉáŸC21Ò°i]>`nºr ‹€¿9*Λ7˜©3VVÎyÈK ¼"mPÜúêÒ΀䚤¾~þ‡lòëSÎS§lž@×crRüˆ À._)Ë-üä ™ªs逰À¸6ÛåäðÏ!JÍ\GVµ¨ø°TásÀ/·µ^œ1˜®y~!e» ÞYKWëæ$/¯¦¸Èä5ŠbÉ€T:ŒÂgj*úh8èÊv=þéĘwy8DçSWã½ãö5™+YXËãÐ>‘Õ€xtÝÄN±]N ’ýj‘L»á€©œ÷|–RXÛC‰Ø›>@TK,_;‡bj™•Ýv¶ËùO'í]zþÕ^À×Mæ£ Lµ3ÚÁcóÂËfˆùÔÀ¤}l% ÷m:‰l——Ã?™Z“Å®Üàûâ{ìFFWoÿÀ¶¦mßhŽÓ㸈ðù}Ÿ€Šo7yF.dy²ó—7ûåÿ‡’ܬ¡µRð\ŸRžuÀLIkõÌ¢ã,OùÉZ§}õ²lO¹!‡yÆãá±5*€vV-¯ÐÛÂvù9d/ÑkãQÑÎU@†~t\´lPO"ÂÌ÷³]®‹˜TÉS/Wõ œ’Ì’d6ПYKªD.±]Þ¿Q]ö´³[ãu¿`>ò—äú8HTÁÃðí¨–ß?ßÝå#Ýß øðЧç ZepÝ_lˆíúrøkê.ã+7ç¢õ ‘…Ø8 L¹eªÔ‰qr7çu•.¿G ü"PëË·lNá¬óüaþþê°€Éy%@Y{¯Zûý×Ͻlt²v`R ¬lÀ|>8ÑùS›q†ÒGÎ~šÿt"™¾{}•€ü0ùÒi'-  yV®ê ê›¯µ°XÀr’Pëì|]9óÉ5’¡åÇHr8®Îvù8üI~»mÄA®ï¿nº}zð!M K.Ôxg hêZ7¹©l×ç/KžÄÎì·ÇÉÔêFVÈ×ϯE#älg]Ù鴔ǮZ HÂøëþ€ ßá³Wƈ'Ç%]å¬Çú»ÍTÚT™üýñ3êºyíÎk †é\D ÎJXÏkóíýߨŠNÁ£äÙ®÷/ÇÕ†§=´û%ð`´X\Æ·í80~ëÈçsÖÑÖ4ဠ4wǽ¤ý¹PêCi¤ó+&{Üýw9æá}/î¾YDqÞ…ây€îä_ÛÎÝ h|ÛÒ "%€N|t) žlÇ¥çcç9DóÑç”ëaÀ/kg1Ó“2ϘUü˜§„Ëê^^ŒTb¦?¥œ5À~=–_«(žYŽéjv´Òü²ýdö*6ö|ÿ¾•h t,÷ÄvýþnDÙ7ŸÇØ)ᤴ=·h jÏÈ[~iÒXÞbC ¶Y§K3"¥€ù¶ò/»7¿zÝXܽFÅÙ€–»sk9vàâz«#-@šfLQr¬b»^_Pí¹ªº°çW'‡kW^^ø“ÊIû•tžÑ&ùa ø´ÉÕ¹t?…­öz¬Ÿ3˜à¨ôÔOÃËÞÒºö൛µ¼¢'å†fùØa¿ž?›oñaãö3‹¼èþlªë';O [¦O-Ëþ~ÿD³N'H}9¯Ý~@÷¤Œ[Ò€«o¯êòá=uÐpc¤°ß¿8ѺÐy¢ä€HzeZxvnö®6 ¦=š™+š (@ (¡ó4Pg/ø,·¼&Wý˜ÍC`ª/Éè üÂ܆5­lzýp¥WY€Å (ÊÊ»×úã;Îu¶k3_˜(÷´å¼¾¦¯ç£-X©8 Ó…ï µj` þ~Û@Ö— wŽ–•ÛË ˆ@lÿš €G=|ô¾Ÿ|bA}Ó•À‰ójD€WžÈçßO·3Õ°Ç<ý€”Úe‹"Þ²½:ݸO]è¸ÖSÝ‘Ÿó0„ÉÌë¯Êj²µbf  —J[G,ÏüÃÏ£FeIµ<«Fd¾¨û¢ëçÊcÖè~N¼þÍöžS5ëÖ@ Œ\dK·óUI[u¾þ^›¿+wh8àZÝXŠËX`°ìάÊ~÷äA§‹€YìÇâbèz8¯¶©Ìå ž½ç¢®}y¿5¾'dEæ‰IYìê˜Xgv×Èh`Þy;„è~BeÒü©æ@dǧgxÇý~=¥ü îíLd2ÍCG¨m;ùoÚg©&`+=íŠï^=²îiRSˆúÃ# íûoRHóº¬ÄÂâ«å“Α§”ˆ µ hÉÎuÕ€Þ4ÌJ;ùíõ÷§µ“†Ø`ß[f€¼WOy¸èéçïkˆ…å §í»âȪu!_^oµZj{Ãï~‘ä_»øÑp½ét=¤„D·¿g»þòÔÙæå·(ŠÎzŽixúÅïóÜ5U6•οÅC†”ºáTq_¶­øá@-ÏýeÀ,SžÐ“4‡ö®8þ–@z°V0õgµ8aËs/¼X˜KûïÖ$å uÃ>ôN´ÌRà½îß–CÀ𧲤`10ým¶×‹ð¶–'À³v,àÊZ¶§~‡£xêí´R#ª>6ÐÄÂcýr÷¥y¸ç–J‚‹Šþ ¢G7{l¢}”ÜyY5 W‹>o\d$ïÉég‡ÒŒóñ+ÞÉþza·²ê„\¿ìïc:­Nhšš³j²R=®.}?à‘ DÞû"œÎϲcß¿žŸ¡¼ûo_½+Öò·‘sFqµ(¼F˜EÇ©1%€÷ìxµwòçsѨÃw´VÛ¹³Ý¿:©ªóï¶)‡ÑýnYC›~3PëŽkNº ¨Räú튯×Ç^îe‹Æîšcu,ðk›/ÊáV€agÝ5àÛpÔ£¡P˜kn³6Þ¦oüÁ·ÀH›îÙ/ ü {2k´Ïÿ¡òº„yÀŸQyå:0Ö«é› Òù¬Ù¦d~±7€‡Å¾Š+_8¿*/_ÞfÀU·ˆxn¨’?õÙ8ûõ€vv ù<Ô|dkœ´°&8-+ëj¡ã‚-«èø±ãa˜¾–ívþ»‘ — 8¹H'¥3ùô8[®P$·ê-`fYà—‹Šzc xKOž¿ð™/ÛÏ…­Y›Glr{üAÿ¦N ­ã+¦ÞÒ»™¹;q0KÂD/¥|¡Âb'oq ®^SÒžh«ç-çEÂl×ÿW'*µœ9ïš ÀµVt¼eÎ¥^ fhJ(O‰ˆ:Pû7_šo> Kõú#Oþ˾ðº×*ò‚¹ók\# efrÀs̶(± ð^.¯|ªà|¾‰gsÑVàóÛ}1C¬øgs‡L)~›pK·ž4`®PÙkLǽ±ÍÕ ‚´g, .ûò$d&r t®9P9«ÓºŸîržë¹Çóf"Å®–…ž£ãäË>Í9Ëv»þSˆ\‹‡>› „¯¤nR” à·…U*FJfÃ-:.vàK+[¯¾—¤·àð•ó?_'ÎsºiPTDçîô¸î´«Ÿ¤ã¦Ôó=Ç]žóŒÿüâ)Ú€åZmÆÄŽôOÜ‹€ÊÙ~H‘³Oâ年ðÊ{Ç¢:íÔ¡¤ïÔ,1Ë™t=*äoºúõs2 ‹ çÏw4廉©nwJaÄíÞÒ£;À{ÊóFñ©fà›ÌŸ÷À–ø'\l>rõ10׿­™ hÉåIy¡cد7‡ÿæ^guoèËpÚ°ÅkM¿øðxêÂXDÇͱ/ˆÃà 5î¸ãØm“ù×S”€¥Ùæsk i½-7ª€¸Ñç5~sà~)Åãuér1Xÿ•,úºÖv—ê`N¼¼âãHÀæVÏ©R|Íùw"ç€Õ­b2h huihÓ¢öÛå/FthªgѲ±@–nÛS“ÚøãdÅüàpÀãûç*lxèìJ±‘_½ÿxwÇla:ïžã¸&ùB'ð%_­ÙžÜü›ç–kÖ6y[ûN+@32Ë×xüÞ+ÿ]8éЋXËÃ_¶—äî¡—ÍÃ8yJ8"½ˆ¥;L;ù_Á@)äíåŸæd¨Zå¡ÅmU4íüî!ÛÍœÿZ»ò0Sùåù^Õãõ‰EòBK©þºÙr’80om.Y²s&à#:Ë+Zä€ôášb½©ÐÇäs ÇzÙo—_B—N•øÞ–ì^9|€úˆô£À’jPÆ>Ï7@7†¡ÅÈÕ=ºAº°÷™Š[v†éX½‹Pý/ï½ÿ_®«üxwÆt v).²•´¬pG••1ûõçðÇÐñõzË 7@<0HŸl¢Cׯ¾#1ý?æ±Èéè·›òÙ·!¿®Åeص;倿š¹7ÒÁ ˜W3÷øÉoÆ’ÞCVºÀØ/©â;GÉncû…À÷´m\Ÿ0sÑÇ] ÆNÕ|âM/JÁyò1N;ú·ŸªÝx–ôѨÆÞNj²zq/gÁoŸ7D¹¸{j QÖ³Ä}PMVÝ;]Ø®‡lâp5ÑPa`é Ýzâ”ò¡Û"¹¼@É|Ü.#òù}62 žÐ5ÀÒX®$øoÉxÂK˜icüîÏ`$|uyÉk`˜Ë.Þ_}Ù¯’,jéñz/¿òŠgÀÌs›àû0©úåûÕ²«òŠÿù¼_øï+éâ#:F€zÆô%9»å3eòÒeª@™ %[*AÛ9´3hí÷¯×ù|DoÛn 7XôXYH¾dÑó[¾=/ÿ‘¿ þ"ï,@wO­*=Ô¨¢ÅötI==ü#ª¦2·IgÅÛýúÛöí—: X*¦b•GÓu]s#YÏ«Wk `¶ašÖžÛk’q¨ìä›eŽsÏnqÍꈡ! þkoì#eØn‡ŸF û Aw¡Ïö:ža÷áí ÌžóÊX•Œ§¶œž h–{ᬊyÀ’ÌNXëíûãëyê{ÖÍ6 w×Ö¦¬/jY5suÀböÛ‡Ã_šÄĽ Ó…Ž3JÁ³ñv40ˆ? {¾p…îæ LÀ1–]\ x·Tß¼°ù@èN!Û¿Þ®PÓÈÓÖâ.l×ës¸È~a£@åã§L§Ý,åó´bãEA@{¦OK³Xj¡í¹Âÿ4¹¨¤˜9×—0ÒïÆën@.óütÎ~£{Ú]x5 X+Ï&¬ûü~Å(LßdÓŽ™ü¹ €oí¹úô xW™ë;©1€ŠS’¯læy×ÓI9€]¯×›ÿà*àÁÊE³5®}Ïä¯ç{hùÔí*—ûJá¯=·XÈÖ¼~ûíñ;‰tõ<*´äà÷®€¬Ã¾t¦û³å72ǰ]¾ËyvÿþK×> ‰ÊéAm@š:zúÊ4SQtÓ„^¶ËÇáâ8õS§ÔÊ“OxYQ[9tª—ˆV›uÅÒûzþlîš;>@¾oª±³ÓbKBðî/ÀxmŸ_òfàúüLÙÀ„WºN“‰ü¹aÑÔ,<ùuˆ¯¯#@Æ¡·Ï¹µxd†;¹Ð<ߨ$!öÛƒCÿFD,ÁàõÆ@Ø­¬¾$ ¸×‡‡]u5€$EMâvxÐãùíô܉çXQ{ðT$`üå!2M¹l¤aðè+À ÂO.Zš 8µC}W¦ P6ÙA÷mßKæÐCÆçç ,ýàì­TSéü»|¯€øxÿ¢ÔI- ÝÅV&¿®4FÁ"Püǯ+âÕW –l;,î+”xf2à¾ËŸdM÷,ïv¢„õ Œôó ‡?êVƒˆD´ ÖN]«®®ñÔæJH 0{—NÝ[z˜kúÇß>Ð Ìfí¹žøÕðbÉ›@‰§&®+ÚHvßÿ㳊¯-°´ˆÆ áC˘úlå[ n ÍÍãyK¸=½÷`dxûíÂ!‡# ÅO„¾ì¼¾ÝÓx °ÀÒ}KÄ%÷ËÙ¼Ø{:f_kÉ„j@ž‹Ø ÀppÄÓbùèð”Õ7©Ždì·hÐߟY5êþHÀßžTS’ãÂ9BÙ’+ðw_®hmÜ??V,ˆQžEµéK-Xµe“²$Ûõçð/B§wVS'ûåø‹lÊåö¢ ˜%wxû¤—ó“ç°»~5€¹‡}ä‰_XfMU«°`¦kDËåΦ‹‰—$\üðeñçÕ@å~\“Ü=šízsÈá?è!¹Ë„DGÏÞx À•”Þ×úÓv†gà²`¶çßèNfÄ òÔê`äLžgû˜«vFîŠædÞ)&Þ&a²­¦IU~½—`ñÕÖ¬þ‡@ :s•‘À2QOÝYúõý¯8äß@ÁÈܬeé@ž5—¼\Jß[¬ÚŸ»@ÇNFn€MŠ:Ÿï¹˜'Í{ÇF£?sòÀÖ4`è¯ëMœt ¦ægF¦|fYƒÈå}±€?wÍ ȠꙌû(¤ÀÔ#™(8½¡ÿµÛåü¦;æ^9ü ”·ÈŠÙÍ@Ô$Ü&¨U@ŽËkZ¬èVÛ{æß°Îý[äá™4âNØo÷ëõÒ!=¿¾ë‡éð½ºÆ9 =ÚµzÂ,Àj¥nn×¾ Œ1Úk””Ì€?%,ßokðiÃÛ\üÿ´âö+‹G#Â`GAÒNÀv9W›”ù`ù)¯ïËÇá_ƒ¨€²›uò Gõ³ê\3]¸·G€Ž½vQ*tk<1kír~•«JS¹N[9:Ÿ{¬ý4 Þì†MlÒo‘ï–©Õ@*Þ³xÊcÔ¾Yît~8ø+/Zß»§ýýÔ¾~ßuöMö¨kƒ¤áÉ’ÿ²o`_KKù¹Kßöë† KSÔ_˜Ñ3Ú'èÇ×ßÂñ|W/ržÕ‹9‡¶ž|L¤fr+`[ní<Ù¼˜f'×Ï6†ËæÇOŽÀÿiÏ«Y€±~“ŠÑE`z$ìZ:´p|ŒO‡ËI Œù•ÏG±¿^9üc0]v PEÓ-Lb? ›ËŸùþ«ý/ x·%‹¯M.Oêš(q¥ç×ÛÏRSz=×¥£ŽŠðÕ¾@ ³¼Â?3ˆ7ï¯JŸ”d•ðd OÙˆŒ]D”"Ï0›n:Ÿ¼Ÿ••w дK£ûNŒÖ´œ*ø€eL,)Î%5ÉPˆ±]ôÛrh9èEÙkË™[bóå/çOce÷úÊ®ú9ªWÜrŸfäY&´H‹HÇc·µó—oŸÐ½09û·ÊþÛɧ~³d»60æ^>`9¢Ì÷Ø;&añèÅÙNÀŸôFVÚW"«~ÊíõÊáj·¬Þé[”IOË: (¼Ô-$¾?ÓüÕÚï[OhÞk»Å~9«¬_ió¨µ6B§ØÏÈÒjV\Ò\ g"î×M@ {—¯J©.\Êí9PÏUTêåq¯ˆ]½, ˆ‹ŽNß/©|hDÒ»•#·Ù{t_«e4 Uk߉ãC€žíœ#¿ô#°–MÓØ0îëïÏ¿EfB!o¼¦à›t×ݳ¢íiá˜'¶Êû§Ù‡|µAK²g6`¾õI›&³a¶„ú A`²øBK´/¯vÖœ ؽÀ%wŸ÷!,.›j\ÔÅÛÍJ[Ø^¿þ N¶3ó´?°Æi—ù‹Z©Ì/ä¦ÈH2ó`ê'@¡hǃÇÀÒ¼0Ð!­Ä>9®Ò7NÇ~úy…¹€®,x7o =dõúÒ; Ê“y?í¿%žïÓiÿù°º­ÏøH§p¡l@bê!ó© @V˜§9Žò|#Ñïs¨C«#ĪérûµœrÊ€**θº'Pìõâ1#/ÐãqÞ›Ž„Ë¿[nÜñAMÌfzÜ4dm›šØèFbg÷¥ßüV:›/xÍe(¡qR[²Jöö¾ÌeNá›u‹3™Í[òn Ý«üZËÚ«jùa7PŽûG†û<äFž”.™¨¡Ü(ï 1 ¯L¾3’´KiþÃòDsÑÝú‰À”U5ª´dÑýä½¥.=œ=º¬}›ÅÊåâ·ioÂûˆ™€Ê{À]D"ó\&¾yg¶Cé* 7m7ÐñRIíá@×·§üJ×/Ï£ùËÐöèÓ³œù3¿:QÒä’mÍt>/ñn*y’´è¨èWI€ÆvvZñ†oµ,krÑqÄMÇÞÀN@Ž#®Û+Òãñ¤·+.Óþ½ï|Ü eÐMÁ’ÑÎtÞPóºÆxš°¸,dzê¥8ã¼£}]eAÿ¸m“è8…4è°4×s~š9#ŠÆˆ_ô®jîóËú?L/B`n·d `,­ÙMÏÛª98>¢ü¨äá|ß$j"™¸w-ïôïíXJÇ!ЇMLô=¿â ó- “ø69?l´†ÿLÒøù€º»vÔ¬¹þûŸ‹É}–è(ÂÖ÷äàd¶·ÿd®ÈËPŸGç«fQ÷mY@•èmË; ”D$±g>–åL-¡óZ¹º~ò@:/KOÚá¤-ﻥz@žŠ×['ý (§÷1bÓë€z›Ùº~,í¿–.'Þ´Lh}Xâf@ãì¸ b¥]x'µâÂL`­ÕÞË“Â~ýÿÉÁ=žŠ²Š€UtÀ&-Lľ¥{½:`® Íø5Àü–ćN£µ@ew.¿Ó Ôþ^•SòÔÙxªPû_¾âeÀB !óæÿöþ¢ëääv¢ë~ߘ¦YÀšë9{Á®?pŽãÏâ(b¬ŸZûåøÕ¨†ûà›OÒ(0 —&ú0(òNµ¨=xäòø ô6íõ«ßÔâ^ò¢üC ú—T¶ õÒãk`ÊŽR@õ³Ö½¡ãß»k2Ï‹Ðqm 6)YKŒÎÓtÖ$Wš·þf× º}?ß6šç¥©Ãê¶O[ ¸—ƒPæ^OÀ×wnuHi|è*¯ž^1˦®!³HÑYâÜu€ª.Yw*ü" Øi¹J?М³èñ8fse„X4ûí÷Imæ:ëa´ ˆxRÜuõI sÞKÙU¬–j˜šfÎþ<Y¹ÍúþëÏì¬[K÷™Æ­'R’‹+¹Ïvû}S_ï×ó‡î|`»l#u‹Ü—Ô¨]29fÚm`‰ÊØ< ([ÓÈûäÚ´¶†TD¥E])›R”ùõ§¤k|$.)m²H¿¤íSEé@Ú}+÷.Q£ý¸3áÐqzÜÜ)ÛéuP_’´¤ 5íg ·ÓùßÜáSÕ„éø­+«BP£¶®äÀ‚IÆ@d¯]½“1ˆ Á9­{‡±!“ ;E·/ùˆ·£ü\èßÝ^n¦¯Û5½ï÷_¿çe„r+PÇ2Ãs/¹ÀúÁ„ÂÕt~!u1òPzxè’IÍ€†ŽltÞõ‡å%ã$NªÉþöy0Ä5³Ÿ« =“\KUï¯íˆè8Û°âÜ­Uô8?cy¼£<ûÛí·ôPÒoWþxšír|·Ü/o…;p­êìÒÆé W|}|Þ:ob¤ ´ [ޝ°LË?Ž÷Éúþç,êÄ—Òy¦·BÔªÈIÊc€ÒÙÎÝ•A·ËÅŽu×ìM€Rv9ëdÃZ“5ôD¨©e ýǯuS-öí !z|–ÖÛк†ÿUK§¯,¤g¥—µ‹Îëä„÷ ÞêEÿ⻚8}L­+²=@‰ oŸ Tè´#‹®õ°1ôjAPǫݷ–T¹é%ÃÒf7ŒÚçÂ|Âözøîz[)Ô63îí¿[æ¥e­r;qýÎG DÞì/Tâ±ê?ú-aY&=mßýjzOkL, ͦŽ/Í¿-׆ì;%£é|†Ú7^1 Ð’9eÚâ°ÔÛ½é¸V1¿®²Ý~¿ÙÎ9¬<¿¾B¶Ëñ›ë+SûºkñŸõd ¡•@j^Œ–MÚD(Ë_g8 ÞŒ-M§èñ62{Aðð>@ï5òûs ç?>hY èÖÆ—ÇùWÚn©pÄc. kÝî&îÀð†s^Ð~l76çå Úßz*¯Û«µÄ/¸Ã Ôˆ#÷_Òdöèøy)@Úl.ü`TNî½WÛq¯ÎÍÝû¨¸D=¿sç2[:­T˜þÌkšÇåû[óZ©áöèËv»v»· /V‘B)ÿÜ}ÛÐ’æ6¹ÅÕ=+çÈXÁÇσÀ5êî¦Ð$k¶Ë÷M¿~,sÈðÓ¹§í> ÞvÔÈ„—KÊØÍKs:ÛåûÃõs6d§`Ÿ" ‘±JAçÒ~rŒõ¿æYÊ‹ÉõÈÔÌíY9~@Y^(æ·úÛ÷]ëeÜm÷ç >3%lIO÷U¿¸ øÔ”“‡#[—ëL6mè‘ñìÞt ç¦ìj%±Sïèªür|ÿr?Q`6Yj=mF³— ÷I`úQ]³Ÿ^Ê3â_ïíWȾó¦Öè§~—v#Zlç )`XYî0»ÓÌtõ¼¢ñ£€ ;W\_@ç-zÇÝ,«ê‚ãšÜ4ö½Çg7ÉÔ¤5ŽŽÎ@”È=üÈ‘—Û¸cÛÙ.×oöëz.{Z„€žÞ#’pðJéÇæóRè¼2¼k̹?=ýOóïë­…êJ…^y¤Mç—î„‹â ;uü‚à‹gFZ>c_;r\»Ç|°pÏÍëWö¡ÜaåÑ.üù÷hå¢-J@ÜÛb\dSDû›n»N`ñh`µÇ!`ž0Pˆ}ÒÌ@«…×O3ÓKq¦ÕÀŽÎZ“ާ>‡/@cÇsz¯Ã%{…NØîüaÝ¥¼ùš€í:>5¨˜Ò²Ÿº ׺ÈxX¬ h¢}õ°1¡_·OÒþ 7nt´9;þ¼ýô¾I‚ÒŽp´…ëΡ!ºìlÝ"¥ H[eõ…ûãà^5”!G¬HùçYÒf€GsÝtÑi*}¾ø·?.ǨNÅ÷I1ßngÛ¢BȬûêïÔ(É­×Ä>nêüÑvä>ÀŠÊ“Ì€*œ~KÍÀãßå˜ï7-|vŸE¯w2PË–§ùœj= Äf¹£ÃN:ô¡3â&÷§5ô Ú,S‰}@ô-1Yiá ,»@‡}3ÿ„ý…ÙL2°Obz^"Ý_Þ~^Õý °#?ÊîìY°j¤Ýÿkß¾tpC sz‚ë}šÔÝû·ûž¢ã„ñ6Ñ:€V´×¹®ûýóåÈ¡q>wÆÌ,N-·Þn Ò œ”B;›)›é¶<˜­/L¼G¶jQ¢×Þ™€+E]I?m,ç>sTÚ˜¯%›ö ІÕùr+Ù^OßÔ7åfëøÃ/鸸;eygK˜ËŒ2êÖ¼ÚGâ§ÿ¾€¨iiÝÌë®ÀZn­dÔô_þ?ÿ³û±ñ,-‘7G€ìæ¼yŒÈ×kÕdï9Å¡}á¸3€j›×æ}˜N—y§Uh墢Û2@—·xèrÛZÈg5&wõ^²]?‹L?ñgÒWf‘zýuà²]CÆÆÿZϳyÇ.ÁŸþ|ª¨¢j±ÀJ V¿½¥GǽDsEÈÍçÉÚœÔzòÖ“®Ì9-´{ÐãÚ¬n€Å0Çìºä˜Ê~cí³À|/ºþ΃:`.}ßydY r^›MUÖüxáëqô¸_~ª_TöËû*æµK 74ócuš^@Écò~ÃÿI?Ë~ÇçùiIÕiu¥Ö½¨«)÷‹ fšarSv¸î÷¯fÿñ×oÿøþi–/ŒrŠòSH5OÞð/õŒxàt*ªˆ[QÅ—Ïë^$Ñ{@ê Ø =—Ññ•só®à€z¼–õµ_H–%·ò ìWWÄ.âüò§3kºþúÿsþVbºO£Ç›]lÑÔ ë"!À $º¶ª éwtý”?Mä¬Í7‡ë) L×ôqE?ïÿ¼vˆ„€ÀlXq2Úí*`éÕ‚âû;ê&rApóŒ]WÊîüuð¯sn!^gtEHOí1[$޲-¶ÍºõÇ?o=¿ìóÕU?¾þ=ÏiF}hÕL^µË_î_B Þðf§€·e^t¿„†ßލœÅ@nǪCžÀ9ÚFœû&`¼¯¾ˆí/¸ðDûõGû»@$éµNªd{=ýÙ$½öé î«@Ììyäso ËÀéùa>l—뇷Ÿ-öU "Y€ßªW]3¶°…±Áu6­À|mE(~fý£U—¾<·Òkô$ Êc¯ -|I·§r´Yúûç{£¶^éðJ@:Iå3z~®|pÿ×ëÅ3…[ñÎ@ª[zù>ýœ8ï\§‰ß?>!︠~½õèйÔq €5S|e{v÷ÿ½7§ªûÿMáÞ3íKID“©L™2$„JBJ$3MÊ…’Bƒ¢I3Ñ "¢¢Œ±L•”"4ˆ„’R4PÒð;Ÿïë÷ûx~_Ï3õtŸáþõ~ÝsÏÙgí½öÚ{­sÎ^H“^¡¾‡ž´_%é¹Êâ:­ÅËÓš'!Q7ºc¹4àMkv]HÇߺ‚ÂöíÇÈx¬Yô×y>òÃ8‘KlcÏs@Ó‹Åye2Ø/ÏŸÕ?NïÒÐÆœ³Móø¦í€u|œ&»…0Õs§«Ÿ¤sEË„/cx{©†îóêÈëË…÷ÅèxÜK*³o" -Zèd? ³9£æqõµ»æ€ÔCE (=ÞyÈû ·/¼¤+=I: ¨0Á’½Ä€Z4ïpù; N¦ÈuYüu÷]"g=ñ\t, ЧƒGËײ/¾øE=š‡0xxž¹/ôÖeg@žnäÍ— DÛ„Ï×7ªÒqÁѤ¯½—< µó †ËtM¶ËÍáŸÔ Ïùñî¡í+bÃrÁ6@Ú©'m]$ñ\nêMÀ<ü†çx0`™§vÏúÏú¨&E[Ÿ\ìV~ª€W+"Œçó¿¿DëÎ’/@ÜN[“_´ˆ˜›rb à|ÁËŽ5›™½|öÈo, ÂÍ*r£ãÞûb•«ïñúày¬ÙëûåÉûní¢â³yº´=Ï]Ðr³£Ç¯‰­MÍehÿ‚}¦­ÀR=<{öÛïWÿéΉ[*±P±Â„¯÷²_ÿœþÛ1åØŒ0@Æ5ß„h¿Œ|RqÀe à‚se ϪVjåsVr'`¢Q£F­.¦P£Ôª± x§ÝêØöU€m4ÎZ^ùˆSÒÖ}Ë¢äü²…wyX±µÕÈÌ ¨×/—d®b®‘‘àñDÀÓÖ\%Aaè5ú<Õå4Œ4¢½ã¼Ú„Á¼HöCbê! &ö|¼qÜȾ¸ÌÁÿû¼Êöìþ9"UâŸuíêà¾è“ú•y³¬…Vö/X0 XfK¥ÍŒrqiÌ^S¦5à6)ënø]œ_hësC LÄUŸI7 )õ=ðœÄv½qÈáÿ"U3®Ï| »8_Áýk€H¯nÎNÙØ SÙ)ÉÙÀì/Ð8'Ì£I —s¯rlŠŽ`aÉ/n‹?¦G÷ªÍ9Ü€ e((­LfìˆéWüÉ{k‹èÚ´H¾OѢ߷%¾Ï™±n²Ç€Hy"rãb«o.Þ:yäóƒÀo _¶œ H›e7­K¤i?X¬ûÙNÇ 3Í/ñû¯ÜäÝÀkcÖè[/¼_7ïiÄh Ëö¯ë š xö™Ø´Å׿8ÐÖòö'–êÕ´kª÷¸ÍÊ-3€hÌoמ³›s^¾`gêNÖ  HfužÅ÷[§Í!‡&‘O²Ô~wGªÀØK@µ T©e;aùéRÔ³€_ËËßTUxpÈ“ aY€=ZÙÞéHÇßë«Ö­?iŒc!9öEï3Œ'S@°³;›zÏæ´¾ÜWs›ö¾Ê×µÒˆgÔ'_ À飼 M‘<^àYi0÷ùLytg*:a$•h¿PJH»ˆkx¸B|7P # º×UÊM$¯+g‰/þŠv}øO¾‚È×¢CóRk]L?uŒlòHÿi24÷F¾~· °Œ»ÂÛ˜[k¼ñÒÁH•Áj­ã€ì9¥\PÈôGÇL:^±Q™›õðàFñ]Ñô¸ôϪùãù½8äð‡Úw÷½K9ŸÉPøFǽFF Ú…€=ú¶tf*`×/z|¼³°ÅŠL³v`ö­Øaí}˜*òý9£UW|÷qGêVÀ÷—?Ý7°ð©¯Û|oÂ{åNÖY "ÏM„"Úo¿ì(ã@Ç݆^J·€x[¯-Ô‰ýÂÉU€Ô—­Ùe›Ô–M“ö–Khú“þOƒß¿!ÝoK³#Ò5ÆS%ˆ•–Žþ;XÒÎî’ô&1ÀZÆwüˆÒ³3æ´ßßáÞæ䔊ӛ´3¿¹×ã 9Ÿöt;E1×7Dê>àïÝ.Û¯N  5ð¯üë—Ã!‡?GÊè‹Û—½°l›W*G1Nçz…¨à÷Z¥íÆ^üÑ\¹è*`ñ6_'Hú圳»™ÂÍoNlG`mnѼ:´=(îaø«OBÚäÅúk—?$⡪Ø‚ð±¸l;*dw§PŸ %¶¹g<×[­m€e¢oIC÷7FBy>A›­oã_0t~F…úÛ)¿7õc8Z£´}b±) ØÚi›w]²œçP$1VŠb´.?¾6ò%myxüJ5x–ÚÎxœa×Ì ÚtbÞÑãMÞ¨ª7Ÿ8û6pø÷&uuiY—A òhØXV5,C\éùt̩߫Ç'Ý} S”ï­îµQ9ÀüÚútJ<0ªº?J3S¶f[ `Û²·y®œ Ĉ±ªVWö Ú_·ˆàú›0ô¾ÎsÒŒfî$\±ôÒ[@+ƒÕ¯æT¥ŸWû:o&»çõ}’þ=2R-îpTªÖµì®Þ%@¾ñ“šÎò˜Í(õ”€k?Š8ÕxØ ²±€ö#tº;ÕíÒ\ù°@ãèàwâ$_»Á«ÜHÚ_i2,ܘÄv}pÈáwµïˆùŠåW·:²}î)@½ia®+ì„q—;Ñó¬Gïe#Ðø-o¯{1^\ñÁì@À¾6¤íXÝ ÌÚZ¿4î>`t™gY˜‚vËÕûJr{Õš¡yfß¼íÕ–÷,™77¨ÂPq’»zÙr@¢Zv<»MKQ5ê–TdëËõá'ûË8ÆI•ïÓª¥ñ ß™õô|´¦^KPª`‹ôºn FµŒ 2mWÒKqxmø^i¹ûýA€ë%ÚŠ¶Ï\íK@´µPj•o椥&ß™l€8`ú`ºY ¹ö ïóæ³]rÈâ;‹Ò~v’êÙ¶°€IŠÅ[*ûsªø‚øŒu«Ò#„çnš’w (϶Ž{~&ɘ“þ #|eo;ã¶ôa Þ¸N~ÞÈ^'Åü¬@MÚ^f¬ÔOá§h»+ŒžìY Ô×IVú ¬eºð¯v\,Ýùµ¨#EýV³ÖÓq´åÄ(TCÛy›Û~ß@l¹Ãûp™!ï:O©<¼%Éÿžh Ï«:×ĸ–ðÌ|í7øoåXZÌööåÃAÔp=îôÂu@ŽQ—58Ï ¸Ï,ÁµLÀ«»ÇØž¼pk×í@`vÇ…[$qs’QgˆÆ-`–8 U«ë¥ÐžóügÖÅ©t\öÔptxCά²ý€÷è¿¶9 ÄÞÇ… º4FP5Ь Ëž¼|zþ¶ŒëCÇ Ý×¹gÚ}~Ü©“ k«Âû¼,áðçÀ­²šël¦žãzfNö[ Ž·:YâãEªÅåäȱtÌuai_@K£§í弯æð_B½Ì} w~êÐäºO©€?‰,¢ýlBºm¼^¢ àûÎÞTÝ?°»Fç´®&6uaÇqÀŠsfm9)FÇ¿’ÁµCó@#¦ÝØ™`M¨iØ ¸‚ÆÇŒ Ù@®‰éþödÖàyÊñg ¤o*Œ¢¦(Ñåõ¶bT½î°òR —™ù‰€‹G¯s\5°§%¤ùNžo.üäÐE -{ÜkÒI6«¼hªÜ´ÌÇ¥© î‡_Ï 2)§ðÑs¨¼óÕR·qž“søÏ$¦|ñܧ3´?Ÿç:”žºv¢ÏROÀcÓU#œ¢{“/8æ—÷'"–8c{&¼`÷ OQÀ6±ô5rç!¯¸ÿ~#P^ï \Ôž•~É}¥ °„ßVËš†ËÓù\hó¥áËŸ|+Îí]þXtÔé1à2;ãÃÔ/!qhnµˆom1Ó€Ì^×\cÚ ¸¼¨OÒ#[ÀºÎ>+›Ô÷Ÿ÷ù„ð®é@øñÁ`ÛÛ›ÃÑÈ;yan'ïšžëëÎÍ>9Î9Ÿ«Ô8 Ô¨È5/¤/K͆¯+#(¹l‘PÿD gÕ&ÏÛ:ˆüã&©@É.õTáñËålÜÐxl P§ú弊€ŒHYQhâ(Ì·_¢úçuFF'|½>müća›8–ï|AÛHí/S˵y<7¤áí> ëu×tÞØ)û*õ.ÀõÞŒée1s-þâ þç¾…5K´ÇÃ`ÿðïÏ9äð7õÏìͦ/ëØÿ^•ÊŸn0ÏoèÿÖ[³ oJ˜—dm„“Ýã‹!@Æå¼®“¤¦+”tvüÐz‰oŽwx=°5£‹…þúËiõƒ•g,×è •á¼dæÅt™DÀ{ ªhX•IÊ~¹€„ׇûs•ùM6÷ì­@ª$}Ù²Ч­ü/Ž9±]rø=ˆœjfÝ·mÂÍæÃªŠ²aÏ£2ôÓÇÄqs½Žm»Ñàõæ‹UüNyò©r™Ï³ê—å.%yF=ð6-Seå€zþ­qȯÏwBN*;bTd솧| zÜ8.öËûQQf§€™9Ïw ëc÷žWÔØŒÏÍ€R[º/ ýÍ\/}h?ÜLµ¿Ôd%P'¨Qºù1lׇþ!{>ºqç½9J@ŽŒž¼ÖÏX‹2'H•ùe»YœnY§|¨§fÛm]O!9Þ·Ô…ˆ˜I5cÍ»â7¬N+_9hŸš*¯ìš^šÖõÁ…¶{±Pçu“\€ðË>gïJÇéBâ]»]h?·AÍ“ËH¦µWïî÷[_p¢¡NÕiÿÞ½Üf`°(­oÊ>UxäÆcŸÿä³*XÇò÷Þ¬8 F‰ ®¡ã 9Ñ“ÂézÜQöܹÈ‚¥GsR²”PŸ Ô¡“]þ纆o‡•OX¾;ÒØ®?9üYŠÞÙ˜® DÑqoõÔ=Yµw'PWvdh£GÛñó#-V>¹/‰öÇ£­ÖªD‹Ðóö]?Ôé(<|®Ñ€>J.*‹~.{àÁø€[ê¹ó—©·ïs—… ࡉOSväÓÇ}™Ý ¸ü¹ŽÜ? ÎUvò½ò’Öã'‡ÈC¼»¿Sñd)Pš¬é;Bz€ºúôÒMuôñB"zÔz|ôз íÛø¸ßÜÇ’>?×¾è PÊÁKjBy€˜*ª™Ð¤|ö;™Ç´Ý"Ë=wó˜ìׇÿ*"½ÛÄÈ]tÿÛùµ6\è—GÞÌ7j‡ bÓ\Ë^ ߢïÅø&ùðâÉhÃô_üÜ@µ}èyªdŒ ãþà8.€RÐþqcŒE¬éÀ«ßçdÛ¼¼fjŪñïZ‘FT1Íyƒåºü)vºµêƒv{wËλâu€“†¹›Bt€rHô(¹IÛyÞ¡ž1t\-|#bêìn@Aµ¾®Z"šò Ș®Ç­èú½M\?öY$\µj¥Ü€j—}vQãýI{šÄtHäyÖZµˆƒù¶âÿžüܲɎý´ÈpÀÛŠ<ö¤ç1¥ ™ü†J Ú§Œ ç½?\þÅŠÚ[7¦üúq­ÌÜUEJ–žXÈ¥–8ºµ¨âà…,éh`yxqÖœ ¨³VÓ¦Ñ|%J X:¹î]nRç°NéÊt ÒšŒý“DíEP݇ü¡öDÍY¿fú#zþÍ´|MÛçæÎ;Ñ/Ú€ØQædrà)öcÛg¯ÌKˆÄ®OlZBÛ{ÛÖKç<¤rue׋I@Êšw©r}rþÓ“ìèù9o‘ÝLÛ €ìV2¾ªæ¡F#ìD™)j^uC×áo˜ÿ 9 •—íKõ6Ï—&ö„yG-°M£&7ÿýû‰üîqÀÑÈÕƒ0–’õVMï¨ÛÅÉÒ(l¬T$*Hž êڃȮžÃ@ξ­Õ¼±([æ½­'– -/7TŽwÏI@â´uþïÚæ¯ Öö^,—«­’Í €×:ûèŸþø-6L›¶ÏËs…¹Î¶¥n$}ßð‰'Õê; öLÜvê擦Œs(êÜ¢Ñ91é€'¾y Ý ðËñG Oß¼{ëVŒ•„C}M}Þ륹Š9vl×?‡ÿL⣧»”5WãDü·(:Þ´+úŒ«-æ &Ë{q;Wæžwîgö´ª^oˆÓó®¸H÷¼ŸÉwvÉþþãåX>*l“qÁÚxëG, ²9]Õêlõ°ç£Ž“×ç‚iÞ_·úµ3·Ë’ƒÑóë2›=é__ñj‹Ü¤´?Ú³º¾ˆˆk%#Ƨ.Ñée=™ÈíO,äâÇkÕ’Å#ëÖU±Ñ-Ò‡¢¶æAÛxC ´®ybF›Ù+bDéãBw劢HV ™ç" imìxÇvýsøÏ$þæmŸuv 0Jî*ÔÚ¿æ¾Éš×w€HŸ?ö}ÓÝáûýCŸQ;Déyª¡yË7gÀzôoD”LÌcµ•~ ˆeOg\($±nœAÝ/¿'ÖN…-º¾Nú”bóþãWd€šæ4mÀ¯X)>ÂVMžÁß\“7S¹9ø[­r`~êÑ_-9c5_Áć¦SúÝ€|Y" <(A Å ߀ï “jÂâÃèâŽY@šÄ?-çŠkéÖ½µÛ)Ý<óÜç°ÆEF¼“}Ïv½søï –q±YÍ·<ûìmd›¿„rJÿåqa²Óú“ €Ÿyd$ÖçÄ¡hÒϰÈø)׫NéÓýúõˆìÍX>t;QÕñÆ@ÇÎ4Éùíû€ /Ëž·ê¡í= |£÷jq½¿W?üúMÖ¤w„×c‘=4M­ÎI<¹í.„»®Kêq äCî/—!P½–Ç×` xå¨ðÏOnÒ~w³CzBP5fÒ—þø÷ërø{ˆkjñ¸¸GÇ8ùÒ^ºÿ(N˜=è·R7•”´û£YjWÆ‹<ÍmëéFÀ‚S'ŠXRå¿ôBnÕr §²ÿ³®€2Þ^¨ñëí°#Ïüéü¼?­¾è‰sjaÐÐï·©Yù'o`@¬,Ús:ç-Pú/'¬ÜëhJÜnQ–žŸ¼0À³U7÷Oéb•Ä–qž@$&)˯.<’;:f ˆlÄ=Þa÷$×ýz¿€C¿'‰¥5±cø§íÿÍE-Ò\¦@f^Réô˜|¯MSµFV÷ 7ÖË« ²]þßÍ…§&߸7øþ ¹e¢‘@^=*u³Ïðg†#¼Þä¥/¡­V\´Ïüæó@øff¸ ”š[R¼b4A#màŽKç]ÐÝäìgHõà @5¸·‹òÐçyrÈ¢^Õ¾õ‚k€|.§*` X¯ìÍ.·`¦&"q£¸±%AÑÖxð|¦¡Ÿœ$Ïrpñsý"¯ÅZØ:ºë¯·> d¿»ê¡4ä8e³/«é2qÊ]wŠ/5ª>ÐܸÍšßÛãèù{œd¬rÁÙüÑ­‡€8üJÂy½Ë¿ „Ù®‚ ÖØé”wg¼x ÛëÉ!‡ÿ§_8ûøt=jGŸÅl?xu¨K°ýv`‚ZšøÀn¼êèØø°Ñ¦ª"vÐ~gi§ä¸¹€Bëw7^?h×ßæè[ Ä•™»4ä Ø^¯_mïAÞý¨ HqëÈôT@c¤Gû`C÷MEGŠ–ÏÛE²ž$vÅP¶RÓN!zþŸâ^“ƒý$¿¹´Ü}ÿöŸy¯À!‡?²_ŒìR;ä]#zÍ>uÕþ  ˜DYäÁ^k`Vx‰FHøÖ~éíèx9ÀÚ7yÅSw¯GÐÔ±³Ÿ>—tiê­ÎÍ@ôªÏŒŠ8,On¿*žáÇÔžeùý÷þÃíq±ý¢É‚èß}=Ù¹è°G›PaÑk6Ÿ—é¯BäÌxÆ8=4;‡ÿ "ƒ‰Zײ¿±rÜT¦ìÀÃ{É«*ƒï«±g—â‘”0®ÝRû@Çß‚öf%ƒÉÈî"ýîH†©àùdsŒ†ëoéßÍ ãØ Rx‘e{}ÿ­$™ À3¢vìÕÙäù¥oµ5h½il<ðqÓðû‹sø÷&9‹KåK˜×3ˆGãWóÕ+“æÌú;¿®H`^½¾í&=ë,äO<¹ƒž¯;JѳH`x ÞüîÔÍŸÎâÐY“Rm xq0ï¤ýý·©’øH éx¾vèúk~_O>(Z x¹C½Ùá£@°lˆ@W âzS\ý^²]>ÿ$½O>ãwMŽŸoßšz°égõÎ=_Ì7e[$¤/ÐöÍÿå|ð0õö×lÿ( 3¢_õgM¯³;#ûö“ç©LÍ¡s€ó\²áŸdnNfáÎ0Àßïm–ñ\Ïo¡LÓq¶×óßJtö«né^`½ù"Þ^T‘å„ ÏãÍÈëÑ3[ hÃVã®;õ€y*»ÔÀ2Ì—õK’¾¼¼¸'›¯b{½8ü½[&¿·¾Îxßø¬;¸`e/áÙû‡€»#pAx`AãVÈ•\ìtÁ¹Góø|çDÁÀx{bÉæ¬ PZ²ùVUP¢NKºÜ×1âÃÚíÀlJIªÝÌûnF岨^Ï+ÑÊ GöŵÑu3aÁµ€Õ ^0å4·_ÉÚ DóÌsî­Ú@.”Ÿž¾í- Í²Šý{‡/oƒEüÑ{¡l¯‡¿ŽDN­¶ì6{Àœ¸¯>Òp®Žì^±u€/Ÿ*3J̨VEÆ»ÕÁƒúu¹(øE Ct_ûm?Œ‰îÌ%/€YxãÅÉ„c€¹LoUy0° Oooüå|‡þ =ÇUÜ^ü}³2CU@båîßö½ò³š­xù+ ãí™ú¡@©›Õ*<.¡ã)†ª£”Ù Þ'%8{^ía{=8üu¤–|z®¦6ˆ„—n,ÿúü¥"ó€PJèîŇ½ym´|t4`éc¸R¼€2Ó3Uß„žYïÃ-V dó¬Òžw»Ø^¿;‘…è Ùb L I)% ÀŸè“·¹ZwoÂOÀÞŠß°ï(¹®Òx¨ôCÝâû@å¿}ÝÈ+Ô¸vùü—ÏÉž½½Äþ—×ýrø úíÜÝ“Eë×oz/¨çl—–çŸ÷ž‚èt<µß]{¥”h HÁj…—oŽ)¸Á,ÚaøëÝŽŽSζäa¡Å§[ÔãeÇ‹”æýðö"[FÉqˆ²]o5RJbg„Ænüò{«W×Ó—>yxûZÀ·ñõO(\9$Q;W °ð(¡P]€ÝSïH½jTËš=AQ/º#¤þtôm`Y·²NÝ÷Ãßh×KÌ}Yu¨4…G¾—%ñl7Ûæ4|þ“ÿêq›á4½“@ø[/Jøˆz¾Öš~Ãßn'e‘9K¶<bš€}·ýk¶·Ç/Ê›ü$ÿÚd^¶ËñW#™½9ÓfùÀ·´5Hj\·¼ºk{&ànÑ•ÑoÒþÕ±ãV†€íøà#µÎÈÀ7ö<¼(5Ìç õ–íòÿchc'=þÖÜß|Çe õoà>D´\?q³pôÀYg?~:øáÓÖhR¿~\á½ëªh;h†ÿÓC |Øß.¿Dïò>¥Kîì—ã/JrgVVÑóo€¯už4½ pá·zòD`þWb· /<ìÞÒmÂÉ@nP×ȺX,ÝU§ó¦ö²]î¿;QýÑ~}>@¾ŠÛ:“ª€¥Eµ2gþêëñ^§Ó7îpzÏÁ£î@Ë\ëó’Ð>•[FךWúÁñ5«ªxS–ýõ×#qøç:œsMlà9ùN²ä{À¾Ýlˆš„/ÞA÷“95{‚Â_vEÔ>¹¯“±ÜA2Àr„¢«?ó=Ëä[¦zÑýt²k¿Réÿاü_F佦î²ôHÚ®]Ãt_·:­Ù.²f-°¸Í}.º~„G(íË“¾œ«"}ûµy¿V•4ãÑiÀÝCÅ…üþ–€²GÀrÊ*ro|Sæ†6—ù@ÚSÒYd¬•r-ªßoÝX²eÎÆOCÿ7I¿–Û`,?½ÊÖslo÷; ›uçç›|"¡ÇšGy=gj>ܰÀט-æ©lß»9ós\õ\H*Xüë_…m½=´<‹ÏßÙü}Öå³›ÔŽ¹Ë‘:°fJ~YÓx ¨5ºg"†ÏÓ‡ —£´Oki=Ì)þäî ÌÓ=úqöÏËwB³F0«Y†ãéß7N7;öÖscf ”ìô•ÊÆ;µ ñ›¥þõºÎáÖx76yà‘£] ‡ïÓÛw]* ’ÚÇÒ=¥¥èñ[@Ç»U{+~~S¿I{âÊ¡‹Â€‹,Ÿ£÷ÜðêGwgÏ*ùZ¦Ìn TÅZLˆ{@(4‡çº¸RYijVž‡írÿ݉fÜØhÑåÄìµó2 l€’ÿ0bBÐÀ°çãJ—¶ãèk·ÏÒÏ¡¹áâ…CÞÀxéÉ;çùkÀëyN<ô.fmÁò½€y˜-Y:q1à¶[S=×r9i®p\×`ÍÝ8²9Òâ·Ë&…eµ@ÊØÙ.nüP´n{Çv ¯nÒôH*ói…ß1ÄövåðÿÕ—V{PCŽwÒV—O2R=ƒgÿ Ú·ì«YVÈC÷^¿ò\ }éî´•uU>yß`9ú NUyþñüòÿV’§$û“¯o"“Kß³ÈνcÏ?ü.ˆÒÞÄL/œŒªgÜ·g£œ ¾x<0¯h1F)¸ÆuWhïÆ‘0]{UÀdFV—|¡çu^ÇåŒåÀô¾ó&Ãõàã¿nõ9 ÔÂ…˜Öo€%p-bÄŠß¾nƒKBóð* ÷û+,¤ãy%¡eë~ñztö¥]ë) ·Ûžxmøííÿo#²›ñhì@{4ÅZ“Ïu­JàN•³kN÷ê’êsÛ¡×Ïx¢jQ= Љsk'6a{=þ.DqgžFi$´¶þ\(PyÝ;6æ‡1ÏxÖLdQ_£{>àY6¦^)bÂõ!€Ä–c§2ªÔÝü1ûè8ÀŽqßSY5˜Eýo½}Ï3Ýû!axðÙ‡]Ï< „L»JG=­Ïãq'v+׳o< °þ”]8XÅ­›6²]ÿTRõ ŸôCšÛûì*…˜À§ƒÿ¯à-ú ˆ¶'ø h½þYzÃÿ'Š ,§–-²q§CïT1¶×çïJLQQ`™d0>íY ¯ú3Ï© ïß÷ì H!àB¤ìà{o"H: 7_èkOaôyÔ×Õ}U{èöå:•V ” äú‘–®]@-9¨Õ.¿˜:);VNl~ç’@{]`6š4!½0§Zòi“'àe\BËTÑåKnô<• ¨­j›QAí«'±â ZßDAúöóæ1@­o¹xöÿ¦ÏY´óe¿þfD^_¸¾¦ýé;Ï4…€ºk}Xsð½jݺ¹¥÷$û_Ü—õ\$áÎug0ÿ$н³Çq‹P {%ˆªÿäaI”dÜWbbâ|¯¤³€…¸PÚH}qôs:Nô¹{Œxy”» n]û¨yDÿeÎ8€6²®ùt È=Rú®Ÿ¸~hr”; åOX™¢@‹žÛ»»зI1vÍC÷ï jö…—ÖiÁSºÏ@çb*ï¦b èb)ÉÝLå›’^³W=°5Øðæ’}L½ ëTg§¥\êéÊ;²—K¿¿7­Ô¯‡ç€“» *øE€³ö+/ƒ ¾å#kìåÔD¥äüY|.¿½_ï•z¸é2 ›êuÕ}# œ>ðf  »º·’ÿùƒ-Ïê•x ¶ÇÒÒΣ÷˯Pÿ˜áØDpS¾\)U!zãm\fþî% Ý—"s¾ŠÐýl½ñ<@("ñ¶ðZÚþãTLÍ è¹ð PÌ~î•÷¶ÞÝ 7ÑÈ Èö›v2zÙCû!O©eZó7 MºìWí¾¬…õíByYìo§5Î&+Þtþ¢”À‰óOó €¼öðëTŸ2@ï&ÌîêlGt ¯<ÇÅ2Koºþ¦NŽDê@iÝÝ]¦4´=ÿ[î(¹@µÑç€9Váë%Tû\YuŠ=ÕŒ¶ÄÏžØ.>Ÿ)ÞŸRU|(Mˆ'&J['”·ú‘E¾3g3¯´9„€»ùø=ƒë;QæØ ¦ÕÁmÔV;‘îWsDRO­’kõ-±f×/¬»û“žGFXN®~Nû—ÅΓ‘›4 Í='ï\*nó¾ƒÍ€ä­x{¤i¿tŸß*n¶ëûOëGŸ¬ölž,ó?Æ=“o•”´yÄðd4PÖÇ«,–{ɨ£Ñ’CÏ|õ¦Úë5=óêŠ8u?óðŽ€€—î;nàó0çÇùNËóÛ¼ðÄËÇ*C¯_qýš¯»ûM÷¤Ñý‰;´+ì} ÛÛéG‘Ø/ŧu& ÐjÖì#Oµ–ŽêÒ½’@ïr*¨b¾Isnäèø62K+þ%š1Ì4î…‚`Oj³50®nË콕6|ù@u{(žúê»Õ§l)jŒ à ²ß)ÝŠü_FL®íñU@>:ocF{=¥Ò²k§ç@}%¹u¡³€rL}±Ã¬ÈgÖ3»÷M¢®tœ¯ª7/„mMÂaÒÛÜíí@-*Õß®÷PÄ;›}·h“yÚõ~íðßýüÓ‰$k>_n|JÇÏ-ÞEðÓþÓÒ^ ¤/ŸøhzÍI}¹ïÁðùŠ)ËÕs.Øø¸ŠHÀbçIËK–lŽÂÄ៣¡ˆ•åiÎŽô8!I@E}}R4í>¢Õ§]çrågs±òé€ÔÆú<÷°£ýÎ ¶–^´+˜.ž øåK;³÷c¦vùáCï@Ð+¡Öõ`Ž¡ñY ·ñˆµše ,ù'";ŽhÑúx•0`CÇS¯ï÷Eϯ~o&.]3žŽ—VH$…ÐòzÝá:õ‹rc/¨0‡_Ïÿ_ªÝ:pû^; øE|f"ôýdfÌ:OÇ!K®åšxP@ÈÏÞhó^°ÊÇŽó´Ÿ)7áLràâ·ºŽš!—›0öPÊü—ï”]ÖD«‰Åãœ%·”û“Ú,öë›ÝÙ<óŒP¾c·ì-\ľMúFà]'uäºy‡Qª…–z±èPcó‚¡vM]Yôy/à’ LÆ•Àü2zŸLä`^yl«”wÚ*s .S\QžCóC£5êãŸÔYÐýøíô_¿°¿=þbD÷7©®=©ÔÞŽÐi³h¿J! =©éjÌÞëóz”‡½Ž(Ÿ¹Ê+0!ìÓÚ›3ñe©©B÷ `~޽ýÊÈà²|5>ORÔ—> )Oz^LÑ‹\7¦ƒ`ZÞf‡… ¸cló9&05sã.RüôIËs~e@Ö^λ*#ˆ×4"JôÛ/×¹ôDì<Dß¡÷~€Ð4š|ka Båâ!t¼GŒ™¹ï?ûßV_xqˆ¹ˆJš€ßc6©¨Ò~ö¢#Ç®²Äì˜îÑèƒkAæ Î{²_"ùXLo«§`­ròÎr^dõñ|Å. –¬ÿ°NMÈ:¦Ü[=>¼¢lßOòL(RøÄ{¦±¯ì"`æKÕOãMŒ—˜ߨ°ã¶K4ÜÇ•¸00ý™ñÐû[;»=씞•Ó´eÛÛá¯N´+ÎEq”%{sêûguÅc›Áy`i¸Ž]¥x ÿ²9¢{€ÌâZÊlfw|ÖÄ™€™<ßQ¦t0¿:Ú- €°¨ïÍ=û˜£‚,óVc¹Té –,œU~XzV øS-,¦¸ÿJ9Æñ=… À\4%²àf]hšZÆf˜˜öì`'&tvcŸpüÞªÃ@.³çùr|wuïu}ÊRR†Û: ±úk«4®þ’',¦¤HõW&“/rŬÖwÍ ûÁ¤|ç“ÀšÏ¢äƱ½ÿ)$äÝ÷홡xüç÷é}EHøVØÿ§šÏôö¿žTOO‚Èé!דs÷BÀœû–ì<*FïÙ¹L³~ÀÕ}ƽ¯Ú„V±Nö. [:Êoì^ èÆeÀ >¯Aý_¸½ÿ»çðçíû«™¸â 9 Ô@{mÁn@Þ]¨×ÓPÈ‹‚8ýJ Íõ|Êj7SïåumoEäѺµÐi*ê—+$º]ÁëÞŒq÷ï€`ªEøø,7˜»îc}ü÷k&§ƒ.*¿f6xÆI]¾rßXãê¼ HÌsÆ4‰±Oõ `>]ý©V°‰äGCì0`ÁUü­¼€­ëvzìØÃʼnûž2aÚ.™@¤žæ­öY (yÁ©7^nloÇ:Iå}6÷îØá ®!Ç/X·BÍM# ŽÙÈI¼¦ý¦Ö¼ûÂãVénªÎð?äz,âЮœ3¯)1-÷Æ{`†>¼U¥²°£oäîÇ~lùÂMž"ôoï‡î¢4æÆ¹ÅiÀÒrl¨ý¬þ‹m],ò¤è'yMÜpßævU ôVOøZç ÆúÚé¹/€uâ{½Xà¿û*iú·à>Û(ë üÇ'OØ,yâÖÍ\Úv ª¾Ù᳘Bûöœš' kgí¹À低èlÒÖ¹)…gWüT¿ÆÙȃ-k³ ?}m“ÔäÒõ=Ó»Îi}”÷ô1n ƒIíîª|“”Zêl¶·×¿h©éI=[ µòaÇÜÀG^ÙÌ“Ü Ø±£='æÍümß­6E~ ÎM=¥ „T6˜[u£¥b{š÷h`tœl›1ù<0}íMÅÓŠ™÷z½¨„0kJçSUõ¶}€+àc¿¦ã;v×÷G±†÷!¬MCއdÝ#ÉQ жèÃÞGÀ?óœúã8wàÿjª8OfJ˜¶¾„“vfM9±°:2]u· 5› ”õ;¥´¼”Ò÷–0%q;ƒýõäð÷qéøü7î´]§k²¾tܽì¼_õv SúëkÇ5D®`»ol^#±ÿù-b0j'æqÙsUpËfÁN` ô®Óüx?M+L/¸‚u•­,–¾%*}ñÎ>k,Yç¥'³€å÷áxcÕŽv_ʲcmç¦À?¾ŠW= Ì´=Äå"øGcÃ!ªÀÒ¶³½ó†ýíÃáo"*Ïš‘—,u½‚üäá×g¡x5fGâ)@:LþïqróöZµdÚ?S±ÚҌ׻´áˆƒ[÷Ðö\uoï÷™€fdÝð<³PÙãP¯“É엟íl"®óZ^í¥)tXó%2Dø†y?â<`㟬’6šÌ©²ïßl{xjâ.Æ\Àm@¨5›;y+.FÞAß-mëùÊQ`ã^K@ :í’;§°¿~߉èˆHoô²ƒÃŸç’U¾ÃDм™c7Ñ,Žp^XÀv¹9üw•DLI‰òTŸvÌáÍ &¶¡$À®yûØ;ÌòÚå/ËgÍuØ¢°]‹V®acO’zWò`Úx&Éprô¸''º"Ù^ŸïÞ>÷ô¯8þdúbSÛÄÌyÀrõ|¤›À ,‡1vS>ÛåäÃŸí¿¾ê6UZÞ€ÐÊÆ¸9STº˜›žè~VSx<àzöﬦÆ}•ozð`./Úè*2 °—›V‹í*pWU ˆ{¹›Îh `­*8yæüu¶×‹Cÿ\P0Ú„'ÐeÑw @YëÈ&YM2®¹Ìøl ÝÑüÇ®uíñ®Æ^kÀ[æ‹)Q|²Ä†ËS{ßLè øÖ‚¯d ß|ÙÎU& ¤–F[Ò• ˜ ®‹ÿÀ窻^Ìï`¿røs´æ~˜ón= ôå T«ú€”\Z°Öà?ß ÷ç_^<¸ÕrØ?fÃÀ÷LPµÍ°ÊQ;´fÔ~dóH‹»>€W|k8c@ûå/ ·MmKÂlíÝŽ½Â€„¬yîþóÖ×£¯‡ßÝàägåð¯Mô²Q6.$Èy3Fù%) ÿxèºð`>$|Ãiê! ætÛ¼]øˆö»ZóqÀ–gï¿ØP؆À©†%j€-ó>t³e>ò-æw"­€etkÕ믃÷ãÿ(hàPŸÎè`$U6ÅbÂh@Ÿ|û\”ÆövàÃ"©«ó2®ïÊÁVj"ËІû ã[?eh=¦®k/ÉF_ˆþ€§2}/˜Sžål¾;÷Íó³ÚË}Œèò|çԺЫ€R\¤ªÄŸÒ~¾zAªÝ  ÞúøÛ¤ýúÑ“x;…£€º 4²H„¶ëÔ’n¡×œýÔ9äð‡Ø¹ifñmï C½ùáÎKÀaûÉ퀵µ~®% LÞO‡\lÔ€ñ"øÒŽÇö€kŽàþ¶¨ÄeŒümJ9é9µÐØ 5o•\2ö5Ò˜¥”»¨ƒÂg@;Öå¹qòžrÈáˆæ „¹|ÿ¸•Üze—7¸ù麣¸¨å¬eí¢¦€%gÖ”Êöm’û8‡#À¬¹Ï:w͘Ööï½¥ÞóaeZ# Däåëcx×5çP˜ÅnھŖŠÕ0€:uáÞµtÜÍ‹»ª{èu¸<ŸÆööäÿ‘§6Mß¿üå¥×.|(TWщ$Å<çZ­9ië1©ã@.sR:)„ÆþòÒM€ÇŠÔNÔ̸g_{¥"0—t1:€yãÈ4BMHʇá'£¨XÔíðI@V«¸Ü76!ÛZ£_¿Ÿ‡þˆÄz”Öõ¿|UCÊ¿± ¥Z_ÐÁwò¾B€ló}÷Ë%'5ÅxæN %,ßhJ¿¢ïaU„Q$à/s¶\Өų2¯ôO>1*Æa©8 ÆÛ ÒãÄ,mÍ—–©€yæn¬–yæzûâáóäpÈá¿‘ä,™Æ{sÂÿüñãà~¿«oY€¦}Œ9×ÓLÇÅ^£{«ö©¾âã½åÉ@˜DŠb®s½juî(A ¸øÖî<äƒkŒ]mZ@â"ºº%f€ZŸïŒÜ÷ÞçiióWÿ¾]À²ÛyyhÞ7ÿ%t‘ôLÊýá÷Å\ÚòȨNÇwÛŸÒñêGÛ õ=þ>Â(ïºBMg3f_²Oz˜zô¦Úà €Ý™‘ì Ø™Ì-É'›¯nÐx3°]#+ý{]Ÿîyß ¤ÇÅI‡æ»Ò~yU³LëÐõþÍÈ7~é'®>@Ÿ/1cÍ_9,-|ëùš ¹f5X{ËFÛᦽ:ûê¬æ÷ߦç0Õ3FyÀò«øðdkìðç³xíãŸ\ÖÍ +§_|79°»ÜÆs?~ª¤uÎLç?¯³§dNløŒûQgFœ¿Œþo.\1FxhÛŽœ™ÀÐû¸¥§â 0*{ã{Û€Yþzérðõõã®175oÛ|¹ÆÝìï—þ6Î:Û¸bÁOòW7Ù6xÌÝIûsÓS²g¥µëâ.Íû€ÆŸŸ~üyûåý%š‰6pGÏʪ⑱ˆP™½HÇ8bÈy¨âËQ߀üoÉ<h\ínÝ‘“2Ù£}@Q ÏJ·º=;¤›¼î[§Åå§À2UÕ5µúåý¯°÷;ÎÿuE2‘ÔÉ+DýOÓ|9§²°Ñ¢#¬¿£ûhÏÑ— øiyÜÑ@ÚιŽYÖ7£ú‘§Ù¢,ÀrÇDÎ)2E‡9©”“om”Nºgò;òÃŽ¸Út«QXü7 .¯UÔ3k¡óÔ£€æ¶Ûg ýÇÊuÏÎËqu7#xôVY`>äßðú+ûëû÷ß‘Î'ÞšdxóÉV©:®¬<|£bù«ïܳÒJàêí›/€Dî~Svž ”Š*Ó‰ðJ­²‰HÉêjþÚà{­@>1º5O²%rAÉÈ ÒPFºi4u,?7°¯²ˆ!–zêhQ^›(}enEÕâaåÂ眈»Ð× ('Mµªf;e?/Ì5 È«ŸÂóÛ¦Vç—©ö$˜Ö³^Uæm‘š¸&Àµxß=d‰Ï†Õýl—û_KcÆzå#Ãç›–ó¢4âªgK`ó¢ÀÏÛõÝwÒt•t¡›'Øy2 .‹MÓ§•ÔûÅÂv4 ûNÅ=Ëÿ:ù½ÑaIÅŒ=@¼Z9Iüu3“µkmíÔ€HgÝQ‘àòQªgá˜ý@tF,¸èÿç ”ýD¦%órZUOt»=uÀ,È­¾³w7U}%÷ÛW:®X9ªåþ9º=š¤žSW€%yÑ{DÑOòh(mñ\“¨`sàÇ‹“€åП5–ç¿ÿÓý²ÛrèûÆ™ô7g{µO QTêÂe»E/ß‘4ò`ÙÆé€e/]:§"˜÷XÇ>Iž;çÜ„cÃçÍåðsþÜÆ-‹ÿÇþÃéûéoíMr€ÚºlÕTSÐ\e±¶ãèà zžbpMŒ|œÈÒfJOF#°4²f?{†}ýs~Ý´ø7µ@6_j»zçF¹rõ¸AfM+¯qÓLJVé;5§©èRùx @t¿]r_¨ëSTNÔtb÷•w×u¥|ID±Aü×Ë©ètñÕÛ< Æ3—:3ð+6ä û@zZ·©ðzÝŸßNv“oÕÜät>Î% $(ï³olÒvÐ~̵¤½È&S×ɳ§ñQÏæ«o`’ý¯)ÅÀŠß»¦”|ûnÜ?'ÏÂßžžÕú·‹µ¢eâƒô_ÎW…z¨Íu‹·²=xqNÉG@A|& ¡€2#—X½¹AûéÒ}xÒ7`i¬}÷ÊSi«õ̶t<=îœØ×ïZHhj…i/P†ÅÞ0m žIÆËR„¨Y;%ëè8".1 ËÈÙS?ÅQ@öÅ~ÝÈs¨'ž&¦õ(ž7ñí5 CcÖ XÍ ×Ø4ö$ «JÄ©½ô¸W"?ª6úwËK®$CùþÏÁQÕ듺§Ó)tì•ÔŽåMËæ†ùò´~¦r1P‰Î í=€Kç‡,æ±rÝß» ?ˆÖ”žÚK®œ Øý•Eãܺrçÿ|n*/ûõËá¿“î&H&uÍÐ~ž2:9ÙÑP好•´ÿ쾪sßE@r>‰¶³çU´BXd% TŒ^ñ:iz^r[Às¥šŽ“KÀZ@’ ô?Ùˆß!7÷´þÙ³zmÕÁûÌ7¸Ê»ûgò_-;twÑùp`yÌ }7˜w i¯'œäã“ï³C­¿{;P>ãÛ¯1â´Í¥Ï¿p¥ËÓ ˆÍŒ=»åë·wˆà®ŠL®¤Ø¡ì.~ ©(gÅÉ Æ=ùZžN_—;[øÝ²iô8¸éãÈ«Ù¯ß W'…ÙÊü{×£üè²ýÒz€üD~\¼P†ÂËt\pÏÜU·7Ðçsû¯Oö”×7꜕ÖOÚmQɾ˜ÿñ^jÅ×¹-c†¼…ærßxßÀÙɉ¶ÿȺ [);cd²Q<;ã¹Ü·» ťϘh»¶ßÖÝöP‰þñQ¼½|ŒŒLÏ1VJï±ðh øZx{?_Bk{íDÆöô™_Ò<”P3°u7ì„7š%Î:e†€EÍûÔr ;[zãÛ)À7´Øl»´È[tù³/‚Äñ×úõØÞ/þöœ<½0¥r'°¨‰I{šéþˆU´®ñc¿\¿µ¿5VóÍ›1?WY­P=?ÚZ/×êæ9¤³$PíQ<7ól‰h60žº ¨²rŒä37a´8 У#\\º9À’Ù°skT hËf¦§  ½ùnµS–ºÇ÷šüà}Y'*&Üÿãr—:6¬¼èAõ¢©ïûµ‹¬pW“s:PÕŽO#¯Óþ±ôa™QtœÝ2+ÆËóï Laü÷VœQâ„™sz m×zM£½3¹hŽJY7Ŷ•Ý€K¸atYˆe;ÞMVÂÓ¡ížu(Ó B×¼¯Òªê›ÏIK Eì Ñþúí¥÷}¤ÇÓÂ:B5ÊŠíýêoKŲýÕå Üzqç3°„ø“'s½üqöøhsþôQ œóÇ{ 26WYÁä˜òg®+j€Ø?IEõ†*‘»­ýR ¤k:³9; (ÏesÖ‡š 5ÅO…žggf<óXLÏKŠ îw‹vùOèÚ_Tuóùéc1 ¯˜ï;w()á§î.w‰¾Ër:‘TŽ”oòím@¾Šþê&º¨«# /ŽL¶f‚K‚?ûõô{)u û­ F·CÒ‚óµÂ>ÀŠYV…Yû5±4îΔµ@e]ð÷¨1²‡+Üc¦Pó{ÄÞfìĵûzÁ³@£½—Ö¶2a…kEôp V_â ãÔäÏ»”fêñû‰:;ÿ„õ*ÿR¢û«¸Äî¾Ô¾HešíI-Úýf‚æ÷¿Ÿùú¥A'€¥.Sqg" ©½+s.¿"»9z“z6æ™–'º€ø"ͽ'8ˆ‚§zíCßkœzV ð›Þ“XËÎñT.XÆŽŽ[UW¯m×o¨Rì ¬Å©Âx¤ëàýt}z¸þßuGö³Ýi@TðúÚ@%k§Ï­’´ÊsºÄ±@VAsŽre©ÌêâòtÑÕ(á%l×Ëw£Þ¤¹ï~Ãw|¿¶ß,I·íZ¿þ|ã/ã[ó€ y9»TëP[ž/r ¤Û©Üñy%ûÛéŸÆI_\Sé8òòÕÕk­5Ò¶ç¢Z°DŒnº99ŠŠß^Dû³gû–ë†ÉeKFŽâžä‡*Ř#ù€ f \•øû Žÿ:SgâS`¹EÍ!z Õ:~€ÖónÝ¢ÞZ Šxf¯„«,M"ˆf.?‹}Ç€x~ϱ±h;Þ÷Ê\øP@×<'Ðþݔ͙çi¨ó‚œ9Д5·¢uJ€åºTÕ||ÅÐ~•Q–ýŸýÉ„,d‹*RÈêš¼ X³ߟñ-–CAv :íwÏgÝ®m¿¤<žjò>Pí«´óü'~œ>¤×cí¼«»{ý4®5±¬Éý1û×) 둇ò ¯Ò¨”sU?hò“…G’I`͹R¥9@Ïç§Bjçª8è´Ñª”íòþb}Þ$=¾õã§?›šß$ÊTPJ;®$\Œ´>Øô‰Ö ÃÈíª/tmü´”ÇRPMî W5@Õ#žÏÙôËåZH:%´X6hän¯f`ikXhLz–Ž«²ê¦™èÐóéÊ BUñ×þóý‚÷ê7@ÜÜí]uz|rLOÞ{´^TIÜGàuý¥€+©«<ÜTù(ë§Žøð÷ŸsÑpÄÆ_¿^=ˆÂôÛI(ÎùviP‹ízÕ=—®?ï:µç^߯½ÇL”µÄâè¸]4Ö!ÍñÏë‡3$¶žÖz<ÛS_]½™íý ™nMÚ<Ž7ƒCÞ|‡qìGsªAdÝùB`ÙæD6&d¿<¿@ªÿ¤|yÏ }°ùí¼e@ÎÖsà{³Ð ƒéª[žÚ/qŸgÞA`}–pZõûï;·S-}Ÿ§™|éë”–²ÖË@jœöY‘ Äq±T'= S¯ÖÖØÚ~º}ó¹Àí€5Fßç7–²¡…*¿7ñûµƒV#Ÿû º~Ý|¢1+Ãân^³¥o7ø4ö¥uSåÎúÕ@V Œä H¦åwQ%³oö×êbã?} ã›Ù¦ÕÓ±]Ÿu"+…uyÿùþ¨²÷ÙffÛåùõv½0íj:ûåøÿè½VcÌÁ°!Ç)×ÓªºùÔ!å)?ÿæÏÛ¸›„÷Þiâó#—³™°fi˜*v­¥ãå;£´wËz¹DºŽ_¨U-ZÊ=¯€ RË,8ô§É|‹V‘@^Ù¿o×] …7kµ¿"jÅQÞò×@JLЙõ3¯Jíꔌ݈Фýgþã‹+=ßVTб‚Db,ûõþ'‘±ôeyzàeÕ«µèñ?Î5Ìà¨'`>ÎòiŠ+è83ÙÅò„Ûåü¯¼ÏâßÌ>½ˆ‰»Í?çY1¡ÚèäLs rmnžÓ¡çµø¾LÞ©€R2Ž~‹ Ù.ïw«w¢Í"Y™?Ýð÷"³=8VÜ<®«zhç ÖšopËaóõ¾;ÛE:€Y®>}|n06Kñ¶­Y‚·ƒ¥ª ªA0óVüÞ×I زúÂ[¿ù€I7aä=qÀu6=|,7†Ä~ûYÀTŸï“÷˜¼ÚY a Àd­gŠ·¶s뢋Ò9¶·Ãï'Ñc²7îL#W fH齚Q+€iwït,ïdÀ‹¶éXYÿõò“¢[Öt•ã@f=_ÑV(Ôæ/.ý”¹Ê‘¯9›ñï¿bbÈv9/Q¶Fî³Ã €T·ÔÅÏH´`ÝÀºBÚ—j¢ª*€"5lçÛ^t´GÚì~)Ûåeñ˜­Én¤Fü¦¼Í8/é ÌÓHéÕSx¬OdÏ`ý¾¼Ý<» ðÂé9þ!ÀÌ/B‹ÞlƯ«ÌO xi¿î"~4~^¾¬q)®›é­EÅVKøŸ™CÇמùlJ¢àKyÁ`ÀÉ\$K#²£xÕ,O` ¬q.b掠ÕzÝÞìoŸm׊?,lQ®¸Ì plÑÌ]Àœ«³Õía!vN-[>ÿ ïù~/]*«Ö7»,úh™v Pþ«7ûz}ÖBï¼cBƒë‘ù¤É:ž#Ø/ï%“`Û¥•€®ghóü$Ï_³”ñ¼ø<šÿõ¨‘'ÿÇw³*Cm‰ƒ@ŠOº…v6êÍ:gÀ¾ötQ[,TäóyðûMô1¹:-é2PŽšQÅ‹@põ’MUjÿû?ÓToYO¦ VÖŸ¹(#½œŸH‡Óóù‹k©Êtÿ¼ Ù~á0¯7)iE=ÆÁ'ÍKµÀX4ªbM-=ïÇgÞ<:0<ÓBñ¼ûõøƒ‰o6T$/vªp`a‡`â··Jæ¨óö^ÿ> åO®×¸>4îdѳÙ%ëú$׌RÓÖ´bQ„pyhPöe‰WÊ–šG§:Ìv9ÿ´úXž 0 Ð×Ûb‡¶ÿdâJ´çy?AσóR¶ÍþÀ6ù°S5¯b1À%;%|Þž°9¯ ŽíNÆqì8ÓÙ·5Ž(ëœzµ>ÁnðWÓ_®S¬y“P%¼¦ü±³ŠÆãÖž¢//c¥ï¾ÞË·TXަÙ¸­h˜#×”£^üœ¶–ua,0Ǭ>¹Dì6Ûõö£HÆ?¤§w 0Ê\!K$$:ÇΗg«›x°¬O†xNUye€;cþï:Ý|¸£èo¿ž'ìsFÃu R”7&hy7áå˜þO€—L•EÉÅ´_¤ héÛ·vý òIŒyiÓ®4Ôá$Ýw^Ç­Êzâí /û³Ûe®2ØZaûËëÇþ4»-Üì ýˆöóßå=ã<ØßVoÎÙIÇÛ®ŠGCNä`ͽ¼Ã²qðzSE$ôÞ V¶|ºª´Ÿ—÷”Ž££hÙûp9åsË.Ò~À‡oE“ïcÓÙpï`Z~¥Â.\Œ×]Ý3o`)Î2'ª&#t’xÃ}!`Š;÷Î~ÂÃ~½ýI¤¶Ý}hàÀ0½l $·~Ä!ñ³€I`÷jâŸ}ÁË=n'÷¬_êø‘|[­˜9ßïþ‡µ·†X”kÿ¹v˜ð¿lܓӿìG¢kÓ#oWJO¬RáÉ*@®=Óx$ÚYEª(_ìr‚`K^†7ÊÖmüKÕe™´À·TPÓ6ÙËâÙÞî?Šèò½^Õ)W=<٭켯þ“IÌÔyöÆê·‚Ñ“£c­[0AKWX*é·ú=w9EŒ8#/L3ûj| Œbm!Û“€oÿÊ£¸9o,ï¦ ó€iôó‚öœž_¼ øÌú¶¬òq€û,˜º\m`gÞ®˜¸àXeû ð(#ôåÚÇL+æL#àSâU:®TßÕ#ñˆÇ†Ó»èŠ{*|€Ú¾|µI°#›êE\Å{·ŠoÉ€%àÌÅOpÞØq‚oýr\œrŽ}¿û;<ÕuÚá äÔ±;„ïâm¶øòñ᯿~žÐ«CCßã!Þþ*ûˆÑ@ì 9—‘æÉâO³JïÏëvlŒ¢¯ûÒr°^šííÿ‡iñhûä6:¾Uè¼:úà–w_ä7ÆM-¿^O;<}F.àÔW¡ÇX4üsh¼I¿‰ŸXNÒîFOÀF—j?"ÎýDÆ×í€;×ÎîÛXyšnØçS‘¼Ô[Ú®çœ]®¼‹ž÷“E¹{e«LÚŸøˆèEA*ƒùˆ{ÖÝÅ"À´˜T\³ž‡ýúû³ÇS;´@×{ÏMµùÙ@86Øov›øÆ7v§åâ¸Í0ˆ\‘)µ#}ùrV©x²$ §ÇM.Ø4ìyd‚öÜ—c:4þv܈Á|ä‰7•Û¶Šª°\×ôÛíŒq×xòU߯ŸÉ Lï×lã«@ô5¿¹~ºÈCOÓw®» T˜ÜÌl³ß>~#l‘û£¿Þz9Ôâ n¯^ËîTíýß·ýö¹÷škÅHë»ï—ô7׫y“ÿ¸/€ø¼öm èñZk—Œ$)˜Ëûk‰®¶EQο¼ðÅòhÓÍZ O¦\½,©?´_ôï3ûíÇ‘uâËÌCÍéxt—Jße NÉ\8Dl™ò</À¿<åèd äD‡ã){fkΣü\¯ïèÏêŸÒ© [ˆš7g›W& _TQ®Öw+Ÿ"óÞßjÄW8·¬”±pÇÖÙÝ逭èÏçN9Xv“ÿôŸy¾o?nÇú¶b¶ëçûû9{Ùqh0¯&uõ9µò°x2æ¶*üýÖ ] Šþ³ÞÁ¿³b®žÎ°ç1úOíÅŒ€ ïä&Öè¹övµ†üm /”¿·ÍðÇåO»¦øyzÏÑ£âƒë9ˆn[·9ÜØ^Ï?›Xé(«oV;€hèq‘ü’až±‹iUfÁf‘~tüÝØá’NÛõŠ"cö"?Q7gk¶x¥j¦Æ÷ï§ýêÕ/¾ýöü\ÔùÆM=1€.¹¨ÆOôZš°Õ´?·³VþxN `ÛÌíFŽ ãÅ‚"J‹ëÝ$$5è_"ZbKƒ2 ›'<{ôç}¿õ»iò¼+Æ‹ž¿¢¹lõjúÕS¯eV4·€ëüâË¿¿ÜÅÆž#«ž ¯Ÿb±æÿïaIÿ—UNÌJ”½róþ‡ýçÞÙ¶ðJ ‰§B=éyÈiۉdzçž§»÷ñŽî¡~R&ÖÉóý¸u¶ì":ûUà6ó-s§Þí}dCͤKÊ$G¼gj(vÝÿîM. ì¸èXº¨UÛ}V:¸ìÈ•öÉ}ñÞ7î­¿ý:˜e•²e'ÇxoÖ£Ç-¿{÷wy©ófý[ó~@EåÁÖqíS:ýÉs°$•ÏUùþuò÷¢bFçÚë{‡Žk©sú|ãŸÒõ»±´}3ëûß_D%Ö9œÖûëÙ³Ô‚SÙÞCÈlß:Wþ/(×_„Ôù¹#áB@´ãš5­€G|]7.Èy“»¤Eí‡^‡(oöúãù%~sÿN¿»wúìß_Ï+–üëKF_AJÂô¸v\¬Ì` ¨ù{•–Œ"]‹ÛxÑÃн+•ü§oâÏúp;û6=/~4y`bIÏ—Mî¯ <åi›zz˜P;õÜ™ó¾_1lý>Åóýºéùy[vÃûÁ÷y(/ª¸ý¾ Ûû‡-¢œIÇóoÒ©'ʼäuÍ;¢D¾_ù^+?WIˆ9ç?^DôךCô¼øð¨ò®ŠT@|îê •û€dm|Ùß°/k*Ï)öÞvì‚Ô¡h #ãç;síRKâήN Â/­’2Òôî¨)òù ”Õíðw] ö5*k–ºûâÄ©9 áÍ43Sƒ$¦OÚ>ž ÊšŽ@¨+‰K€S÷öHrÜipÄë×?ÏDq—›½ðâÊÞi½ÚÅ@{¹ãd^%ÛõÏá?”-~|µ~Üýf¬á²Ì÷…òUf>È{ è¹s²Úö§¨ÍÁdb®*Ûö­AxPÝ›xw–úYìo=Ž,£í‚eÛ”äJñÕg&¦Qò¤aÓÝs@úØÞ{ûBž>ïñ¥ªü0`aÍ=j›¿g!Žo¤ G>R_æþu×::n—÷Uó*šù.z; Ó‹óôt멼Ù|êΑi3T97hµKé! 'Ù<[äÕ ä›ÎèåßÉÙéï[“ñËö|WáÃ>/@7£¢èñjF*Ÿæ¢G@^ë³ÞØB«¥ÓL~àú09üô[s®G= X¦­óþd=¹ŒWi¥qïSsFž§Ô­4÷ºàpa=¿I.™eØëë·æNØØxegÚ__í»í UKƒ·ÏmøÕrÏwGiïx;ø[)-}å6/ =’Ç’#ª€Š5ÑJ·Xã¶ö©¬Þ,Uüs-k+PÞ%-‡ÃwÓ~½§õ»ü@…Æ_µäP ÖA¶@5žþR©;nð~ wÝ*+d!:þ|>=/WŽ0tš(oØîW» ® öR×åIA£=1ߨMÏë+»Å€ŒÔsnäç_/—ë”%f¼?³Ó¸7ǯiü÷7b¬~Ó´?I™¿Ð¦í~.þÊÛmðÿ‰e86rи°EXwPët¹tõµh¢½©i²/©Wµ5x]€rÛP¶Íï. žÌ›Œz_Ú¿øh°çë ZÇšéÏdßþ}røGˆº¯Ï»³€œ"}ZÁuøóÓÆ_U²eºv¥˜ …Q{ëCçueä'sÀ/ðõjÅ>jªßÓ6ÙŸ¼W§u|Ô4ô 2÷H¹Pjûíc,»ôÀx™Óàø!¼Ã"ñôÐç\HÈÎÓçB0÷ ƒºŽ'JaðZ<ö´îÓY7ŸŸÉ&,;3Œ{pý1½®VW"g]~šd¤l&°²è\|›õ\ `¡~ÖÝÁûµWNxà/Àv½pÈá÷ ™ÕõxEE3 ÞÕïSÕ‘öåÝ-:^eE•é ²‘?ãÛ³¨$rBü†`À·%,\šlXÉ‘¶ätMÀ½&jÖi‘ó¹uÉðß=!Éãó:qÚžd&j,@Û÷Qƒ³‚LI lçÜØvöèày­×Û«ýâ€Zÿx-·ƒíç%W¾ˆÔ¨î±þæ¥Áó4 ©‡Þ@(Š`)µaK¸töu@<‡ ^N:,^æÅqaU€øÃíbmªsTßê…h]Ãëó?ë }Ká/´'‡þ¢ð¥‹bŠv¾RrŒ8a ÈŸmÕo2x¾¦Õ ͽÅ@Õi9~˜°(ñ‡‹*ŽJ‘¬ÄÝñÔð£gvÎ9 ¤}i£j½?°fdÈà7†¾çþ/iÂúzW@V#5›) ‚eIÞùÞO„£XzϤ±k¥ƒã˧ع.C÷AFMÛ—Nl{äR®‰j«húø·‘Û•Ñ`y‹¨K3?Wéh¥•wC›î:>n¾;ôþ‹ï²XÆv=qÈáï¢Í‹«Fs‡ý} °]¹DÛúÈUOoêœ/Iy³ª®)@YžÔ¸p$PÞªhòÔüir5É9Ï Ê¸ç‰ß¢w@ûpšÇ%ç6Uú‰Ÿ~`‘ª¹í—¨«^Rñ'€ºûpCWÍI TSÆÏµÙ xÚŒT‘χ€j¯O Î;ÂövæC¶Øwt`VÜ@&™³gŒç<öó„}; G‰ó?:ÈÔ¨t’À> >œ1=g# XòaÕbe 'œ2$ÇxY7bäŠ;€ pTð¦ýpŸì…9c˜üÄ<ÕÙ~=—€°·5½v¸Hµ"6ÁG­YüìzÿÚ__Þê×s¾_áðŸA4™qdä~^@c—Éíàü][B™º*à~ŠrþÉ€ó]•×áÄ*Õ)£}ßcÆ»ÍÄ-u€0Òv=¼´È”õÅIýÖÀò³ã}çõãÖ’õ*O5‚ {·X/!ý—åúÀâÚfd‹ùâítì¡1 øe3ºë‡/Ï=ïËùŗئ9ü®v}4~Ѻm@NÌ?™ËTÈâѯoš%¬ë1æ% »þ±^¥@ÚÆž·Ü×:•5òJÎ OéeøøÒ~})÷ë<@’/tm€*ÑÍÿ ìÇÕ#PfJÙh_YžWÒ@>¯ ?,âàa¡ÿ<'P1Ö~J;Ú÷ľ†}>Ç!‡ÿD"áç’Æd& ® p±´ÁïHPÆ2©ãzi@õmõÄ*Úh+äñHêî5>@"Ýz6~‡uì< X3n>xõËyáÐ!Ño£â€5NÄ\½îÝàq‹/kÞq¿¢×ü™Yg^æð¯Iäoè[¬©~(ýãëŠ3ã’çû€”n¬È©­§çß¶ý­Î9@±feòfx:¢º7(ih^C”eU¹N! ˆÄÞ·íór»7ŸÏÏéËC5…l[Þ»¨žE•Véûˆm~§’ü T–zššØðõ¸ü>âf|îÞ稖·é÷/GûÚµùÞ²:S b›žÉR[ú>zû @‰v¶Žšì×/‡ÿJR`”üpë~À?ÎXݺHï9ÓǾlô–ÌŒë@MÝXÊýÇý]pÊÕÚ¤ðk\Wzåh?úIÏí)´ÿÖÉx®´ ¨îj4éôàþAË:d,õ'îKÎØ`èº-з’˜m!9­Ë:pñ°F®¿“=4ÏjK³1—ìòËû¾Iñ@µ.Qš¸‡´âQ¤Fl°ô ÷…=¶l×÷Ïs6²Ù\HúM@WûÒ¿_>y9üŸv-}!`°Sg¾µôE–QøÖpë2ÀÖxŽÒä*8¦ïØwxdš”Á¨ÉôâÁëm¿_=̶ì;óà·C²¥Ë“è ÀÚóíqýÏìGýÿÙ÷–ÙF^Ñ"ÀÂO™/‹1ËñCmï_/ääÅ5KUrOÛ×x@¼/¦ö$ÞÐù¹v| ð2ÓyG¶ë›Ã©[&3c[õë»üÎ~š3Ü|Ö§oy½üÁ©Þ&@¶«yÇ ×²]ÎÿrõWV”Ài@7¯O{ö8XúÁQÓ…]+ ¸Ä¨ÈΖ ‘_~ù|õ¨DF‹ =Ÿ7—Ù;Ðþ…ʇC6’CÎ#í§Ù®ÖZÄHðx HÇL-?j °ŒFg-XõД׶#’ƾFïdƒÔK [&úÜ47e;rø¯ eQnë¿ñ?û:wäÝùîå“ 3õõIz¾V¸Èýž[ÐÝxƒWZ€5Kfâ—£n¿ºô˜ñb׺R@ï?eâþï€e¿d»1íçó‹,9?ô:¯õéèê# 6)ž<0à DÂÖÔ¥Ò€ªbêä‚þGþBáÛióó–Y×%°Sf¥}Õ˜A9nç*Iò6Þgª·F„ ˆ»NWN×’×|¥9®XkûM˜òƒç×=†åZkØ®gÿ¥)²z|ïn`I$´Rßoÿ9´<Èóc·¹óC¤ZvšQ’hºGPTãBÙM·èxºHãXð @ž:¾Šó#‡/oµW‰È½þ¡å“‹œö–[ •ìÑ]‚Àò~="»nð»Udb™ê<4¯?Zd¹¤Tÿ.PXÙè—|À?~W£ïà>È@JÜ–¡d@Èηáö@y\Ÿ´~é@RËŽŽ¬; hïu‰¬G›%ËÚºÈ^(})Ë­“…د_ÿ•D7Òç»Ññ¥þÄ×£ÄÛ¾{ùćsõß®›Frv ¥ÚKE¬ç“–ü~¹ûôgžú~ùƒ‘žQÓ5c@Âçç+ö´b‡Ïú¾ÁõÛÔ6¹Nýs×€Y¸™2þÔƒúm×Þ»kÂ’·Xc§>ùTÈ èÑø=ÓæéÙy­yüÞ´ž®hÎóî»·+‡þRWüÌ»GÛùÐlqõÙá÷]ÿE»ñžnŒkÌ`{}†•ßò¦M°3PòÍ›ƒÖ™øêÙNï{€œ,KD¹L€åë´O^NˆD³ÛÚKÇšpÆÞ½ _^Í%Pš5ð¬ä¡NÝl¯‡þŸ~Yß¶ía\9›&=\;™fõ#ÕÐb`Þ~Ÿ)TZ,k·5îßï¾®kVçk–jl—ˆûê}kŽŸÓ,z¾Ö1¼FprÝ4‡Ît¼àN¸bÛ€l:®ýî®\Û§èçëŠOi­—g›¼rø›¸ú£ûç”/@¸Ät/llõëøX âß+l•ýå}ÙÐRóÅwÞÍ·°»J ¨Ë•«ïçk…£…øÇ“ƒçO³ÎYþQ”¶'…yc¿d½ÿ/R½[œÎljIßl‹Óü€"ãM¥½%oºIúJ ‰‘¦!7Ø.'‡þ’§ë çŽÿ˜íç‚|ñ_ö£©ÅmOn­Ü`ÖÉ-:ûÉ¿Êò4\HËßÃBñgö¡”yÛ!¥ý“ïIGï½±qŸíõR/n\e ¼¸Ï‰XBûë'4Ç>ÙDï¢3ý6ÒÀšmï%8žírrÈá¯!jMkä÷ °Â »kµj€àÕw™tÐê¦ç oy­/ÔíäÞvMöR!àF#TÞ+²€±_bL÷Œ@—|Ú'kñø«M•ƒÏµ,ä-•²´îQƒƒóOò D.q¯+®úñõ쿲ÈHsÌÐãï_Œx}ÉÈ o¸Ô2wõÆNãæqÚï˜#cRY°ÈÑa³Îò‰÷Ú8ù$@š!e_ÿÀ¼îrøGú=3lZ¬`—­æ·G\‹§]ogÞ&Ñ–#quYòέ€Í4årÜ ¼dRl‚0Ĭ¼Ôÿˆõ2o]ó “Jêùªç§â¾rœàŽÁû©')F ϔ߅¶~üþûå [¿.™Šx¼~èñ•q  º<_¶¨®ê”¥-½Àrn–]ò5 X«–H=ûxPw{æxŸãÃßÇ.p“»ýŸ·/6‡þ,X[¹*Û” ø±ð¨9Ïz{ÔË`µWñ)ö‰ÙbÀÏø&ÌìÛ99˜3Á"wæµÿ–ƒ]¿üÂ…Vz<˜@¶‰‰ºwÀ[÷<û÷#C ø°_hú÷/aëè##j€5ÉG[Ê–³®“ÿ&ñ£Ý®lûSÝEc@ÜÉúòþȦAûXõ-çÒ¡H`ÉÌ·a2I‰‘‡³+ivsõÌ\GÅtM¤ø3Ë™“ÖÕi nfùöÛü%2'éWòk³_9üœÉ=&ëÍPûîS å™úX^G¤EÊ5þ{œº–»Ù»/pª*¿ÿ¬"0¦%^p4øرüºbÝ[€¯Ø8ÙÇo$²sÞœÓõÊ…`>ÒráôÓwd_³¯žøs§Nö½gãÿ"‰–ι¾Ù–ÀäûððàÆÀà­«ºìU óû+×ÝÒoç çÉ€,u¸<•Ôa—µÐàPÆ7ýÒÿÃøžôqƒ«µ}l¯‡þˆ2vê¹y0†ýë žsvó`„›I\$œÕ&›}ÁÙ&óªVÓÆ _úÆðˆäå¢#Ž™±8øæÓ9€üÖx”Û6y8þ34|‚!§Â=í𨵷ØM¿Tg¶·3»‰Ü}›è\ÖÂ/%1j¿ÿýªHs 9,r%×Þ/ßoý‡ßYßýG^½6þÿ7½Æ´ËðÊç‰Ë€jÙ¬\ L²ÂHì%r¿[âP”‚Ñta J§jš¦Jb§ÿÈ‘§¼º'ªˆyKmû#ÿw«~Rë‹nOáÔˆ+ÚOÞ¾”8;Ô¾èA}wtœ¹ñRˆâÑ'¦µõ4ÕÁÔ|pjݤç^ïqCB¤áŠ ÛëÃá0t&¿ô—ó©PÂUamW¼[ᨓkœ ˜c=Ÿ%)…S;³#A ê$YÉUxùв¨xCÀƒg\JX½;É‘{× zrüñ±Ðýì¯ï¿B‘éaïÃùËL¯Üu Ðé³ ;á¿ÿ“Å’ZFŒ½€oc¦—fjàã¿ ˆ¯O럟–´‚6÷øxÀn™^h£$–wL‰ýõâðç9%Ö]%ŽØÿÉÜ“o«?ŒêÝ©;j2`K>,Å{­Ó—¶ Èõ¸}þÀx¾‡´Ý¥ ÌmÕOÖF\¢û…„º.“ÿуÜ}{>¹zÊÏx~Ÿ Hüóa&­·U3;wÀ –o/pºx+rÎÜ¿ c½žîev¨¬Q®zìÙ^‡Ñ¯¹d¥kYòð牄5<šÍjšã¥ð Péke®&|qÝhWœVqŒ‚6ï~Æ®©*K[W)Lœï¯ ¨v]@ý Îsé¿‘át™³q €šWGì±}D,_ÛÅf€µœµºhWXØV㕺gsž“ï¯è䈯6ŸÝèq{ye¸ãˆK@ì=â``³XÌ‹¯Î¹Ìöúü[ˆÞ6ð™Ú¨KÐÆ¯Bð|?%é¥(!,Ë€l±Š_]>9·èöéíƒùP÷^PûD<ÜCG`ë¨=€<{¶âÃÇï²™³ež„»õÀãË‹Måt\}æà‹½׺íosð10¯œ1Ê»0UÓúZ«€ù夓l­%0õlO:–OlK€V8cj­;óÍŒü*cV_9ýõú‡“\òæÄ®…€p•»Â-žÔQá×SöRËT¸6sæàùjVJ‘5 œ\:ô½ö¯¾_–‹Wlo ÜÎ »¼Ù^#åãâ1 ­îö™…ӤĕÏã`Ò̘,sÀˆ.Ÿ¼Äq€Û8ŽI"x€:ºÌן9¨µžj¢— ¼^£y¨ÕŠ¡–›‡ß™ÃßG´:RGµ«¨þ:eÕ׫€5§y{æÕR Î¨·&Zn½È[Ìxèu3µRoJ°]~ÙÜ<\Ì0`îí{ó<4˜g%Æ-ù*¸’} ‹FÙ«Î<è¦ãò³Å1íƒ×O]_“œ½ í#cvGc{=þ®¤Zº²/ú ®ŸF³ö¦|xchµc˲ɃÇv‰º¾Ü H–ïò¸ê‘@4[ë¿á´ùbõãÌY@Q¶v†‚,@SÇf4M>h‘ü±qå^€ŽŽ™„Êês;·ggüý·¾U¡QTÌù½ÛùnºãjÐ’Eïºií_t÷sà¹ùZ«%Ì€e$ÙrYjËàuD0Mæ:c‹€i€¼}.>yÎöúü݉4Ô/)¨YKŠ1³åàÀ:¤ÑûCÀ4ÛÐû:À°NkÞ¾”úÔo~w%P·ŒânïkJ"~Dàü÷@¼’ÔaQøaíÝÂQ@Žö OåRw®¨vCË÷“×¾sKø«™lo/‡±ë[]&j/æëy¾5+€QqÍ|óò À8\ê§ùi#0ÅRt-œoeͧCU¬ÿ8Õñ ü‘ {,0N~7ˆ7cGÖq·õüE†äã4`™ûØ]9‡íõû»‘JµÍ^|þ`µ×²t€éè¾ð*õ¹Ûðƒ£€Qsº®†ÕL…jÕWÒk€°‰/]žú óú9'b^Ü&ÈepðãuEÞ7>~6&ª¹Ý¨`_Õ7 uèñ ‚p;Ers"twýŠu—’c+4õéó”VÖ‘€5¢àöXí\:«éØÔ4˜9o.&HÜÊᨽF ÛÛÃÿ?‰7ŸËíøá¯‡uvÚžÐ>÷~0öÄ0x »{»ï뒀‰¯Rv@MW.ZxY¨)N ™Øh@¥ÉFm 2Ù^¿;‰n%!dž`&\ OY˜Šº®-nJûOiU öwãℨëw@L5³¿3y"`U–ÜäšÔ¸ñ"c2¤ŸbXP£zð7j;ÞÀÀ?¯j™~l3šï:,¯•±zÿƒFc ÷¾3¿û*`~R<6¬<ØÚù&/rmÝ‹€é½ÝµaÜôKxV˜—‚o"CŒë ê*èëR~ŸÿDׯw½¸ ˜‡C £NVÑZ¸\0ˆ£{Þ'æÍâÙ‘ç¥Ö@5Ë+¸Âvyÿ)Äî±j«78/a.êXLãõžY€½×±X0°iýýÍ£<©ëEWë4‰,-˜„h”Æ—ëî€5‹$Ÿà¥O/ìg}ÂqÎû}}u@ÈÝ|K5ùIÿۆͣR«ÈßAã”@Q¹¬ÂÏŒÇ yÍ[ÉÀ¸¹Q|ß+è3Ã3§v‚@«Ð'kÇu P4Å{yQ#0n-œ^Ëövãðÿ¢Žló£&Ë!ÇQùØÒÝ—HÀõ+n-~xxkíy B"² úoˆkDÎÇ6ˆ—gzlÊÄÙ_Ÿ¿ ©‹G*^¯Ò{³ª±âI ª¤_D`~€x%GmÜÙRgV¼àÞ6z·_qOŸÓ2”þVó]€é\88g:mï—;_®¹“ Ì#[-Û÷߬T»\8§°¶ˆÊk_³÷UÓp±xõ‚5ŽŸ/‰Ý›É«á ¤êéýóøçusö£‡+€úþÑëõÐ},‘È„s3ê%ÿút^ì¥À_mÀÿ6D ߎ TöÆi½_¹2AhpŸ4çÞª€Ï|?é_·Ž¿–MúÄ¡:lo÷ Q7ËøÊ¶í¿ýú9¿Ùí1³§,˜]¡x€m—s6 péø-G2Ι’x+'Ì Bp§ÓØóÀl^¨ÉR:¨x ú½êàø®œ/vÛ ,?±¸ Ñ»ØÞ¢Òû»¢l÷2’¿òn=`‡Dv7ú.\k)ì¬(ûÓÍ9מRÝ÷ =_Ðë17l-´†”ƒ‰’ ÙðõñÊÂwÛ›s«Îo%%cRÃW)õtfä‹„. Ç´zœ$\)úiÝ^~ Ðô·93ß>2ñvÔ…æ¸aå%/.}i(MB×ÔÐ=úwk£jàê_®'L;Øú?öáðÏ¥Ø{Û{C÷?¦r…Eã·9)½Ïu`X ¿ws»^˜Ï]W I…™ €}’uÿ|õ÷çF‘µ‚òûä1»ýå§·aDœRñÜTçè·þI€Ö0Îÿt´] ¨Wm¯îŠëòO¾ûv­ÂÐó??Z]߸ºÑc7g/`H4-O<àêÙÆàÑc\ ÏA0~ü¼léSÀX¼Áwѳ€÷}¼¹n;w,K=ï”™þ#Ù E@Â_Ý\û«åÄmoG÷ ®û$üùù$Ï çeYÓMGÀwï;ºÆÆp¿Ë‡ÍêÆ>wôækù#€ùâqãT`®¶5p{õ ȾX¥ÊÅ΀ôr>L7Ú凟ìH¿hʉÈK@mXÆpjˆ²Ë:8Ž/!áä.év ·œš.ºçÛõþW!i³…ê5ÜÎÈq¾Û^ –… ¯nÚ¾ü{¸Eèq¹ zÿ~“E€Oç;g|ýà §˜ùÌ; LsÿQGû×YÆ]ÕÔ¶X“Ôcƒû”b&M:WGN,–y"¶@›¾oÚ&7>¶×ÿÓ-Ó`ÿ}/`±ŠC®˜}Žø»Ç…Ž®'ûý‹LvQš8G¨í ·Dë†o/Ì0p»é† Œ(d.›MF?^çw™ß]^ÆLK v/BËLìÎ+@ʱғ¤“€5‘¾CÐÉ m³ÝÕÇ7å|§îžM8 x ¾ŽÁu),[‹7ržRCû‘ê™ Ÿ =¬Ù5Ïͳ³où¹ÿîK—Ÿtûõìå'è~`‘Ó1ê0 ÂÕä‚ôéþ°µVƒ¶SbB˜îË€é@UrŽS¨Ä{¯•%öX*{§(õ¼2NÛîþºÿ™~Ãz½ ˆYçf¾{ZD^_\¡'?P£¿(Ÿ<áÆþþð!UPtõªÃ€7.;–w2P2Ân¦·†6/|EÇO5¯O™>¦ý¹Lñ´­ÀPÖ’Þ˜6°¾äž~í@Œ,q(¤ùèèÑø}¡€ ðŠ6ÝÊŒ'o¯ÏÀzÀÖ˜©­úÌߎS=_ËÐ~oÖ’ú›¿{ùhËûÛo½˜.£ ”+ŸÀWþ¡ßƒR>HŒ÷§’Ö‡!?RìeŒ30lo®çóæÖ¯‚;ýh}îßLéxÅV\4È9»¤Šr€ qõQåJj.Ò]{ž¶ë“~†Õ·H M.¹ñ­°"Æv™Õ€ ‚²×“¡ûO£R:1‡xç‡\-"\0ÝFTð¥2¾95J€ì#¯· °uû:©Î·€9¨f»¸ö.l½Ï ”›«ÕŠi9‚»ÃN6ÑóÄ•ýÑ#j1UÉ,]ˆT]™oGnÙad’sí0  _]_`Œ3Àƒþ}Ïg‡í7»æO\{¿"긑i9Ycâ.Ú¯r~´u{Òó‰›qše¦€ÍL*“{eѳơãm¹ ³:ók´Ÿwú>dÑ~ý²·©Ê%{/5ñé2ÚŽuÚôºBüÛÀŒ"›rçv ìªËÃRlÁ|_¶·Ãï¦îB|{¢§Ç**ö_€ð(À¾=ŒJ@{¯BŒÌPýÌîÓjYòcoÀÐRž VÌ|>ævÊé1•öß…å_žÜªØ‚+EÎv7Àj¹?mwVvf|ê\Íã|¦t4àvLØDÁsü(¤ì„T«æ7€õô±æù½b{ÊÉP) ';Öu{iívxdÁ;*=ðÖK¡F§'ÞöJXSX>‰ïØ“H ŠªïkõÖ±cé,Ó»ô¼«Ï9w£"¦â·£Þ|UüSÅsrôoSóimù@¼Êë¿Ý¨ÆãË.I–â²àYE1ì×ÿ_œÔÒÉŸ«^ÓþÒ!±U]Khý³Žù¹Ø÷üf¯Òÿž‡Y³aó(`*ž¹¦à—Œ›•YŽq"À¼­ŸX”äX^„cÇÀõÇM´OÞxœcÒçQ@D)|Mt>Dº¿‹àü/€§×GÕµ”Æ}С7‹íõÿaœ¢±ut¤Øï·ïU¯—å0$œÇÌà»mèLIØ:ÓÁïKÐ]ùëv^,ê͘–Ü“À/?A3Ä– ß6S-aÃEÆk`lÂôeR €ñIÏpô7`|þìûu40ÊOÒÚn Œ#É—ÜWÒó¾£›^õ”ñÀ°V3O&¿ô«gÅeÀL°K;ô…ö×êTï‘;æ©8`)mÛgì4þe¤NyøA°ñi™ï}˜€>j|˜l™ÝÕÎKÀ8õÈEGï0Zßžò§õ¿ib›ln0/jÆT¨Ð~݈é:JÀ ÄžzǦ´Rʼ‡[h|ÊTõ-¾„J…zS€®Š=¹0Š›íí0¬œÝ½¦g~òüaò»/VëØ.×p$W™Y|!˜\öþvó—C-°6ó2­·ÞŽ3š£É2u¸e;àó¶?Ôêo· #YÒµ¶wË~ ºf×ÏMqtUþ˜ÍözýjûÞ£ÆÛº Xú‹w®”÷>ýñÌ¿þ¸Äáß‹ä³i’+?Šüñþzã[–‹ñàz`”)ëónØó åõ Ç+O67W2¬èä¬Äº @Ì–*!•„왦<…€9rõoõ°†¾­[nžŸ(Ö Äö;R( ȉMN×_ܪÆòˆ„­ÛÛó7SÆÖî酣엃ÃÉGbäÚ‡îñ‡©øÚdAæÐïÿk÷¢³ÌkÍ‚“šÛ²)Û 0Óý‰¦ KÀ1‹”ú+[›ÞþòÓZ`ÖÌK+ÞÈ ¸ä‚‹“θöþÖ‘-šÙugí¯Qx*£½wÅÐû8_³Id{ûrÈ!;H ;žðàµûñ÷×ZdwxúDÀ4<¦—Š÷ö2æo!ÀUêƒ>6&°0ø©+ÌW’¬É´[Ná¶d40ÛZMÒs Ã#ìy¾(¦iÚÒoqÀZî”P°†öŠçk¤–¶”Y»«*ÛÛ—CÙAâê2g“Ð @ŠY{ϾøÏuT“,FHnT{@ñÜRÀr¥gŠ]¼zS„ïêv 4jxXb€]óÒÝ|˜}éöß®fÞÔF¡y}À¬?°š7"°G{ëV7¬jÒQã“Ë%¼t]k°æ%JZq¾ÛçðoFîèü̹ßoßBlºò–/ (O~‰¯Ãç—üÜýô‘bK /ÉÓoJ´.ü‹hÙ7À}´«ú"ï.?PèDKÀ”ŠÉô¼ýA±ŽÏ,íÈ¡åshÿûBŠ÷í¾9€{¬_µ}ÇT R%Ÿ\½;œXa£å`a¢›7þ̾°“æÎÚ4YýzãÃÿÅ)‹7¨öþ6\ºóÖÚߟßYr²Üý£*Páí/zœ\þ4¹Ém“Ž‹hÖÜC«Ü¦4Òñ÷/]9n ¦öéØã-@Ì1† \@J?i=²EðÝÁñúǦMUì7|ªÃgE T—o±Ú4Á£ÕJw]ã2LxË ¨½§nY¤ýï‡JÞþ?í]y8U]Û?† çìa’I¦J4+dJ†ÒÉœ±Ee*C e*Ò„!ÉÐ@*7 Š”„RJB‘$©èÛï÷\ïÕ{}¾çíéiÐûÖûúísÎÞ{Ýë^ë^÷ï>kí{emë’4WN…Ø5}ôÛíþÂïˆtŸ–Üz.@ÒsÖ§+íúfå¦ë›Mí[˜³)î9‹ó}Ìður€g¡„Â@3Ùœøºì€ä}·oËœÓâÅÄìb` ÕéÞ¹P <~äûžLüøËW›«(;V÷Ú÷Pþ£]³on¼—kHÅÏzÃÄw£§g~-´¤ùÇ]Ïú  D ½³­)ÿ<'ÒmÈÈàËíúÂ+ú„{g‰¶ æøö럈†G—jÛR€°ºï9PJ”Î’é€Ü¸“M"¸³³;`—?àv1"^m`ã{V¿våò¤ÖZÓÞ#õQj¥ÏúE Ú”ÔSxÀ”~PÖ˜sƒ”/–|¥Ô2zym‚¡ÿ}£—€.÷ç° }ý|¼¿ð¿‘™ˆ”V0å·¬Ö¶æoJùâç1L‹L lFgT¤<–4§þý¼ÔŸ”ßêÉÞa*¾®ˆŸ¥ýÐëÙ'+È~+´"Zðaž#? ™ͼIN@—u=µÚU¼ÔpéRq@[o6tä9Û)¡Û¤í¾Óƒ9€l††ƒZ¿[;üÂ_øoûy‘ó†ŸÞW ái»Bæç'’ñxL)gê—ïsÃèmšº2Im Ŭï_ÿY•ìyêãωõzsc`Yº-›ž=عßÞx]öe:¤¥™!ݥث éñá@¬Jß;5ֈū;RŸ¡Š*ÞÏë&cð°à¾¿Ÿoà~fûHË6r_ L^.†mNí¨Ë3ÚˆD 䬹Z€ä~¼õÍš4@©ÓUn™OúxÝL¿¨VÎ`Š¿YeT¿XäË!ýeçbPIT'Àšë—x•±ÄöÁë0…÷óé~žxƽnϺ¯Ÿ¿ö/#×3)e+7 —rsF/²|Oź2N`Ô+²r"Í)û¾Xï07è›fó&Ròê=½rñà¯V84 8’¹>™%IÅï¹›nxº©9¬WõkÿÕïÖÅl[dEvšh\wöÀø¾Í÷ÒC|NJ\²½K×b4ÊïìYcQÓ„Zù¼ôk”ýÆ!ö”ÇõÕv³€L´~§p8ˆÊþk©ý€krÓ'›5Ö^_ú݉»Bž€TòéžÃ–ÀduÚ6±Y<\üŠjW VÑßMþòÃHœÚí¦  äÁޤ"ÀR·ËïX¯÷Žò´:pÔftÎn?r;}6vñ"àúsÀ£¯º+ØQ}Ñê|Éè×ã'Ad›skâý»T¿­Ûó–ßâKd©yÚñ¯WŽÊ,I‰£^Ï?C2¢½?qð:¹›çåB×-«ùý(àiüÞ*f~€¿w{V¶.àLQµ„ê€:8Ó*ð3ò¬ø(GÀõªN?´ìŠl½ž*àk\b<ýo©¼Œ£eìV@ùwhùÊ€N<ï(§2Rÿ¿ÓÊ›÷EÚŸ^Ô;Ÿï£\Ê Ú[|(¬{×»ýÇÉCfLìk}–¸ú–f×牀%“jq¹, lï¶ÜxÔ ø}o<Õò`’÷[¼*7Þ²ã:0•Æêäê½<½¿ð(Ãæ›YdðfÙÎÛŠ€ì]нj¾þþÇ(Ÿ­M}èëçúl96Þ¬s™ ¤]±ëj7ã.½ç"(ó\ÜɆBTO¸@ÜÏ ÈsËr™‚Œ„´?w®¤¯æOâÖ¥bœ¨r¡f9¡<-!Ó¦pòb6‡àXÀãž;EËô¹Ÿß6¾¹˜"ÝzÑiYÀt9¿Kõà§ãK”Û…Ç-ý¸%*¼½ñÇY§E*\c<”µ+¥ã íšmö¦€ÅÜíñʼôö'Q[›)Þä>|«ñc–µÅ…£.÷ÏŠhºûA÷do µ.9;=› ¨qê΃ý9¢œìu2g©xÒÄe:òù©cíÖÔ¡d)Öýåï)}výâ]š6HÕ39ìñ³@ú6țҊÈjOM¾ÇCőҢÊé@æ—TVÝ Höé¬õ~@áÂV¿Ù H(òu{x å‹pUQö*#¡Í üÍ%Фø©´®/‡ô nûYýÈç¶Ó‚©ëöèë|õöýÛz‹LÏ9q©ûãgXÍ7ÐØHQèýóýõ€›¼±æ:ˆ:õa60 Ô&….ÔpÆÈÑÛ•$iFÓ¨×ã‡GÇ¢a¹ ¹€ÊÒ3‹‚2Õ—œüà>ÐÛµÏSê¿B;²§ðŠ ö9-åi‹Ø¿Ù7ËÓ:Ê"~çŸ+¯–påÞèëíŸõsÛ%~ZI˜®av*+€)µr;wŒ90Ùx2°•k€©Udùý5¦” Ž¥øó¤£7ßPxkCùÁ'4@Cј^JùÈç¦J$²ï<äƒ/ß²ÒSi¦]ůó]U”•&Ýoí‘þæOË9ýI—jEÿ·×ß  àÏõ´|—Áå…5ÿxºZ°ö60%oE*.ã£êŸ VÖëM“A—õóæ‘ùN£—S0F™¶âFy`D¥Õ¾.ölN¬™’<à³#u[jî2[¦.Yýéù…Ÿ Q§°Ã9t>úÑD“ß<¨N§Sý¨Ñ&ËIkéìiÏÖsecž‰ÎÞ///uãË<'@Ò®Y žÒ6yZËá¨ÅxÂ1`*·®`ùž^tl-ŒÞR~^‰U ªòÖËÍÞo¨G÷DYà`Š×VäËsßîÎ=ÿO\'y'ÖÓÅ ˜ë²i'üü?¿|Ö²kfºÔýl¬ ùø+€,$VEäÅÉÊh Ñ.¤EØò SöÀ¥9¡@cø¼Àþi½?s5²¢odûÚéãÎW×1ÍäÀé­l@¼ÍJ3äR¶x~ 0ÑimÃsªå8§µg]|!à×kšÌg~ººs±ïÀ]¹þlÀ3üÏZÚ®BðQÚQ-Ào²8/®Œܯ¸]¬p?à ÊÕÒo ëÞ¢?6r`Æz@ƒ/ØåÞÿgG´·±´|® ¥+n ûQö¦þ|“d–µ·¶bw€¬õ™úÀ? ÐéD­2?pW}õ¾´{}€Tô¯>t_H8¡­Ø™joƳKjOHWÑ4´Ä€ÜŸ+Oñ=ìqir.bÊùIc¬–³Y#HÙÑÔÀí­Gy¨þ¿@ò>G% rk·M¢À´L0±*üŽ~Á²$+7•òc2¥¦Y[(¹ëBJjH@u¾C×L¬ÿ¾žÆ_“d^>E£‡ Œýr99M‡×:ïòJÒÔqž³€ˆÙÃf°[ˆC—¹/”{x"è yyMù.€<èOØ$MÓáŒHÒ]Iï÷‚2À1›kU”?¶vîɪLÜp#0’ë.ÍàÆÙÌ™„äYÀ¸Ø eÔÓ€ð0òŠN øÑM2‹öíÖÕü§"š}·Í2“â?®œÞ;ŽëZبjO8F;,N\‹Rì¬(à |bjî>Š': …¯ýúãý¹ŽºÓo¶B­'bv¸àæ¼·»E¦v.p¾›ˆ00š§äÏN†·ð¹…€±T³_Êy±¢-g§èI@“.–Í0»(M©z o.ÏNð,U¢xÛ12l/³ÐnãmÏÊ!m¹»‰5¨œ™þÏå²~WwRó×<üŸ¶—sxÁ ù@kìy ©ñ•}6Y’ï.;ï(Å«§õ^ôÙ Häät%gê÷ue'^³ÏrÆÜÔq€qóžs~Т;ü2mrÍNÐ/ L"d¡B÷7iœwÇÐ*¾ÐQ¯ïŽHЮ2PPÐM=ûî÷¦€^±ÒÅkš{Róeà ñ^ L £Eõ&tû²²Ï Ù¯W¾ùB»é˺ñj©ÏäÄwÄø]>iæÊŽH6·€%V Œß÷YY$f–|eÍ»€‘)|Õ¸ \›Ûò¤¡åÐÂ\ Xl«g¾v9B¹¿‘.e€š›Åîk4p[ÌÌž—â×EE¾bÀÄçÊ¿;›L•¶ ÒçFîö ? UF÷ѽ´þ!@U;&hÔQþ òžñ Ù Õ¾ãxïn¾ ä-ŠY¹TIëä2tlB‡¾Ø³(àÝhѵ¨äðÞ³1±ò—ºÃ¶)îç•€Q«o\¶w, ãì¯o~ù:ÚŸ‘oÿÕµÀäÂÞô/ù[[tûYY“€Tä(ëpTR=|Eóuj¼q­Höùÿ ²ÓÕò\HÔíöy6: }‚{E'I±kSöu`ÉÓH‚â•©—4×&3.tKÃ@fË•l¥xN¢gvÉ0 þ0 OÏu@>Ní?äx‹©¥ö¸S€iÎósÎ~Œ^aòz$`W½X¤‰…±0Þ…œðÛ #û‡}w1`Ø8é(«›¾NzÙeõ£€RÆ…ÝVù(÷üéåS–ósúÂy‹s~¢}ž¾wÿÊXϵˆòãKë¶-:(©·èE)µöYw÷ýL×r»BM »^å^Çzå†E"³€q>Bíåp š~竳#ççÿcp©K6èÊÑ+í1§Z¿‘~Ý£¹!^h–Ñ– 2NÊ~U²«#—q9Þ‡;ŠEÅãO$–oêbYbÝë„“@Ϋëb Äûm½xX-šÓ½#ô1:m7ï~AųòA«<¸íbÒã<&Íçžlˆ/$Õ8¾Èu4¡®5”}Ë('ÝÒTDŒ ÞàNÅgÒH¶:á»Ñ•¢S~'Û® ˜ÃÕ‚9¥ª€Z7_F)05‡ß*/ýYª¸ÜB`„7NÐ¥ü´éMqÎÖÿâ}ÑD#ýyÿÂ<‚hì¼ü(WŸÊnÔ`ÖW°IþØÑôY‹5€Å«åþãèl;2øØnÔåýûv}w^WaÀèËñg8eøÝbµ›@\±jH8>˜ºÜ—¥šŽic°ÊÛc'³wI½Ù²ÐÄ^§¦-€›ü(1*ŽÚªê’Tù1Ï+íìì4ÓqFAùëÇ0ìc~ T‚ðg›êx¸qhž.0 ƒuÊwS}.¯Aí^lM΀ vg ´§xÜr]sJ.Ù«õÆ;ÒçÞá—Û#ؽjŒKÞ€Ún+ÐGÎ}õ~ºoÞ4ùXY@;ݼ”š×Òà¼UUm èncSÓŽY?1ÙÃÇ¡{ÐË ö$®Ño× ¥|·0Z;€´Ï ‘ý- ðÎ*oÞ"1 îû·K5]¤Þ ÆŸÿùëâ¿;ªãvO’)¾Útêôà·{ÏýK‘”`Ñ]ó€©~‘ Fs;¡ÐÉ€Æxõ¥ºìç) çz(~+ Ô´³˜âùmë{7¤éo8•Š¿‘÷±º€*6Íà ÀFÞÿ°Ï,t¦.×ï6Ë$|©×µ¼E ˆVÇö)ÉúvlO•/õJ©Š Pâûd÷öogóÿÊuúЇ ¯7€´Š$J—ä¹xÑjá& õŠ£â¨¸=£õeÚ9ªÞ*üö€*uÆ•D~¼ÿìBžüw=€¶;?slK¤ý\¯æ;Ì+ÿ4';ÆþF£áÔÁA~Ôá@<Ô1üÇï46'—Â1î¶n¨ô¿ÿñ%Ûæžlùç‰ï÷Ò†ÿûËʾ +fields/data/rat.diet.rda0000644000175100001440000000110312560751565014660 0ustar hornikusers‹]“ÏkÔ@ÇÓ]…vQ<)=x(Vp“Ìl²é&qÇŸXYQ[µ«!´[(ØÒ€×þþõäIðª7OþÕ{žD½úãàA'¾ï{Ø L¾ß7ïÍûÌLÈÒÕ‘nZžç5¼Æq÷n:{¤á^Sn̸1]U°¶1®<¯yÊÅuÁ 7æ=<ƒo¤v: = ƒ¶¡4„FК@3h@/í’^F|zùëÐÐEäoB‡¬È߂ކÞAþ.â%Kº ½‡ü}Öw¤ +X7‚>¢uîÏv1oÖç>vμ°1ú†?¾¿úýuÓš/4•+ޱ.Þ¯Ÿ÷6yMù¾ù÷Ø ùäáž{žÛýû{s]ÿ%Íçà¦Ï¨_Žº¼qvš4=@Îc¹êSì;ÕPÔeˆùû¦CšOÑ/Ãy„Ëývß_„u ç4à+Ôû¸}ŽúúÃÅ·£UoèüÎÓÁ>.|þ´üëÃU¸ÿîÉÓ|<ŸúœG½~ ß½ ¾B_…ûê`}ˆýècwÐ_ÛÃûU¬¸ý“8üŸôÀ離>ý/€›c9ÍOüßG·ŠÍñŽ3'=ú¹ëÉ© ¦¹º½Å¶*«Éµ«OŠ^Ë“­µ¢*‚õÒµ(Ÿ)·Ÿÿãæ²Ñl ›.›ˆM̦Ç&a³Ó•¸PœgÄuÅEâbq=q‰8ahahahahahahahahahahaaaaaaaaaa˜šñ§×¶”fields/data/ozone2.rda0000644000175100001440000007522012560751565014375 0ustar hornikusers‹íÝ °¦íYø&DHb Ͳ¤³=áœÞÎéoë·ÏÒûrö^¾$t 0ÀhtmÆQQ,Ä)[[J§zTRÌãÑAÁeZÆÔˆ)¥P ¶ €£Âœó>ÿß¿ûy;ßkj,NÕ÷Ýý<ïýÜû}Ý×õ¿–{cåÚá—]{Ù^tàE·÷ßGïýóÅ/ÚûßGxñ—î¥ó¿ã+¾ü ïeøÄýŸöÒWìýxxwç‡?øêûÿäæîÎ+¾gý§~Ï+w·ÿ¯õçþÝ?{ÏîöO&ýñŸùç_2¿»ýÓ¿íoþå×v·ìý«üÿêîöÏÜ;ô׿ëOïnÿÒÛßðo¾ï[v·οîŸÍv·ÿí×üýÿð³ïßÝþ©åoÿºùœÝï}ýº¾»óšýj–vw>>¿ÿ|¾û¹c'ÿ›}ëîö/þð§|ý›_´»óq_öûö¾ÜÝy:ßå?Û{ñ‡vw¾qønçkožúÆ…‹»;ÿí·ìð×vw~ï~³îî|Ó³·þäÿù²Ý/úç{ÿõîÎ~ÝǼö}îîÎݲÿÁc¿'ÿG§=+úÖ/þ­÷vw–޹ןÞÝ>µ×¿ÿ‹»Û§÷Zóòó»Û¿óß~ðÕowûKw÷'|ùwìnß>øù—~ègv·¿ú‡öhwûë’ÿGþåÿßúнôeûín`¿ºg÷ž÷_ïìnK~ÿº3ÿÃ'ýŽÝÝþ}C¿¶ÿ»Oûƒ_õ½_º»ýÞsÿó^ v·ÿ·ýæ¼jwûoï—îÕ¼»ýõ¿ùý•ßö{ß'ýî?þƒ{-Ù›—ßñ£{%íÍ×¥½†üûÝíÞkÍ—ý¾Ýí¿?”·óOÿÌ~…»;?9ôkçÇ^ôò½v¯¾ãÇ6þïþðîÕwןú±Í_ØÝù®oߨÝíãø÷_ù‘§w·ßóŠÚÜÝþìôÿ¯ÿí½¿¿³×δ糆ï·ØÿÛÝþŸ2Ÿ?>Œãö»÷žVÿÄ^9éÇ«¾sïïìî|ú0N;¯êÝþÞýéûîöó{¥}Ê×ïî|Ôþô¿|wûÓ.|ÿŸy¸»õSÃølý£”óêôó¿ú±}ãË÷¼»µ»7ÿê}»Û ëè›ö‡å¿ÞÝú[Ã:Ýúа¶þÕþ°}ÅîÖßæeëû‡ü[»Ã|nýððûÕsC{¯®íwëôîÎÖýÎzñþÀîîìÍÂÞ‹½ç½RóÝÝoÚµó{«ìÂßØÝ¹“õöm{³þâOßÝùæaÜv¾e¿›oÞÝþèýáûÔ½þÜßϸ×ßýæ}ÆîÖÏîÍÚïü¿w·~i(û7ëëg†ùÛú¾iÅ»[ÿëþ4½{wëÉúúÔa¿l¿%óôêaßnýèOýžÏþžÝ­œ}ûò¬—· íÞ~ù0O;Ç«O¿{o§ïîlåî¼~hïÎgdÿæiû_ï}þÇþÊîöf>ÿî°Î¶êö ZÛÝþ…ß½ÿÝ™—ÿ°7Ëoø¹=ºõù Øù´ýmøù»Ûÿ~?¹¼»ý³ÙËYÏîWó_ínÿËNì¼rØ?;Ÿq}EèÅ«¦ôk²üóÓq˜¬|ÜÞèÜø¬Éʃé0]'“•Mû?Y}ñt|&«;­w²òÓu2Yþ†ýíõ»&«óEû“ÕO™ö²zxY›¬~ÎgïÒÉêgN÷ódù§ÿí~'Ëi:ï“åß2—ÉòÛ§ûe²<ЩÉò—O×ãdùMS:5Y¹6Ô·òy{o¿ø+'+uoy}ÿŸ,_Þßž_=Yþûdõ·OVþÖ÷ï7`²úÚé¼LVß4]ÿ“•?:Ý_“•oNúµÓ}4YžÛ#ÛêÇ&+ûæý´7nûäèìdùïN×Édùôt}L–ß™ñùÛÓu5Yù{Óý1Yþ¡éº,hJÿ&Ë?2Œ÷ò?I?þâô\˜¬Ü߯fkoœ‡þ¯<˜®‡ÉÊ?ÆoåÈt½O–_4ä_~Å0/Ëe‡¥ŸÏ¸ÿÃ)ý¬üâPÎêËÓïžîÓÉÊßÚ±2MÞ3Yþê¡KÃ>š,ÿþ}òûâÉÒO×Ùd黦ëy²|p‡å—¬ïOÈdiX—“¥ŸÎ<||ÆûUé÷7NéÓdéî­Ž[ï,}ý°Þ–þÈ0_ËóC¾¥/Üÿü‹'«_4Œãêï>²ÿ7Yýö¡]«ïÆyõw~Òþ†œ¬þžéy6Y=5Ý“Õ÷NÏÛÉêaüV‡spo]Méþdõ§ûc²úYûdàÆdõ­CÿW†ù\ÊYº7|¿ô-ÃúYþŠŒÇRæïrÆ{cºŸ&ËŸ?¬ßåw ûey5óy%ß_É<_Í>ûü”ó?Né×dù¯ íZ9qýPÖÛ7îoƒ¯,¿Ø'Ë¿4=Ç&Ëÿnºß'+¿qH—ÿä”^O–÷‡Ÿÿß'Ëß:ì“•¬·•fÞ~b˜§åŸšž-wõoLéâdu8''«lzîNV¿wX/«2ž·‡ö­žòŸ>±?\+“Õ6¬·Ó/æsuà7&«Ã9=YýÚa­þáŒóoÖíé7 íYýsÃúX}~ŸŒ¾do>‡qYý‚)]œ¬~ ów>å¿o G«·§ôrrú¥ÓqšáÚ>úÝ_òž½ä7M»¾3é/ìÛ±ùÉ©»Ócxröý|Ïû?ø¥“ó÷†çKsCº~'éÍ!}nwHWné3†ôÌdHÏ绋y¿¦œµùÎçýåÔ{í )'ßmýƒ!ÝN=§ÓOóu&é…ü~.ÇàúK÷'è[&gÓï¥Ô·’ç³Y?—RÿäÎ8ßÅôÏþ´ÎN%ÿròN»ç3êI¾Õ¤+)ïÈ¡|ŸçSç†v,ž7ò~ýo¦ÓŽ{ù=åmýDòÝJùïÖ£qµÿSÞiåè~Ÿ.»÷üµÉéôÿRÚa~W?a˜ÿåôßx™Ÿ‹)Ïz?“qEŸ®<¿_þwO.å÷•´£óp0ã‘þM;–’omZÿëšïTꤟKiï‘Ý´'ï_y;ùóݙЭIúu*éBÊ;—z×®%ý³Cº‘õølê9u?å¥?çÒî_HšuêÖ¸_[™ÏïÒË©÷JÊYÍóÓ7SnÞo¾oÿï/LVól>þ­¦='ó|4¿Ÿz˜rÒî ‡ÆíYHÿ§©}5É{ôfi.ß§žÏHúlòK¾•<;—œ/Ö1:°•òÖ¿!ýL{У3É¿”öžHù'“^þ¢­ßJùè£}µ–ï.ÜÒgR¯ýg|דÿmI•“ï¬WtëRú÷¬þ¦ž‰öå÷…”c½™ùýX~?–rçïNÓ“?w`x>4¥»¯Ÿ<“ü§’ϺsŽžN9Ϧ|ÅzòoZÏ_“rÒ¯¥ƒãþ\Nþ«Yï×¾a4¿kº¼?öOL¶3Ÿ7¥ß9Ù87ÐYçêéïØ}ã}znÜÞ•œÓ'ïf|ôëþ¸}‹ù~ùΞÍ÷çS?ºúLú½™~\HþË¡«ÖãYã“öœIy¯žŒËÁg ‡öçZηËùýJÚ¿™ön}Ú¿ ê½—~§ŸG’>«œ‹Ãyµ‘zΡŸ»3õ'}&ßK{Ïåy=ó{<åž¼9¤Ëy^IΤ܋IOÏùÿcr6ùSKIÑ ôäl¾;•~?0¤'òýç&ÿ«òþ£“Ú_ÏÞÒUãòž ßw,圙K¿3®—SÿåœGÏ&ßÒ‡óe’~>›r×R>Ä~6¯æëF¾C§Î¤\üìñ´±™ö.¯ éSÉÿœ|éï$éœçä;︗zRîSi·sa5ítâß–òŒ/֎פ|܉ôk)õ:¯ä{ëàÜ­üž÷køŠ¤Ÿ6´ËþÿµJ»¬ û”üðªüþ†¼?’q9šüÎ?ëô³ò|4ýµßšïe\œSÎû]þÃÉÿºäÿ„¤ŸžôsSÏÂÝ´ûVÊͳsS=«)Ý™•'æ’Ï~EçWSyä\Ê=’ôé”»–üÛw’?ÏäëkQyiçÕð+ΓùÝ:#·9'Þ–ßñSW" ·«yïr®TîÌ÷Ö¯s>ú^“üèÂs7“/ý¹œ|—’ïBê³o.ÜÒÍôk3ß‘›·òlÝÎ{òâÚŸøŠÍ›ãv^N¾µÈ#ö¯óùxò_Hùk¡;sé_å‚áEÇKÈQsi÷rèÚ©Ô;I}ÖßròŸÍ3únžñIá+&Ÿ‘÷/Oj]›÷ÓI­+ë?v>åáû×ÃÇn¤]“ÈÃø-ó~6õo}ñn朚¬û½ñO‡q¿š÷•“öœN;œ3—Žë'çêzìœÁ¿uzÎüÞæ»ùÄyK^…·ûŒÏéÔÿ\ÚµœïÈ?ø’CyO>91Ó|ð¥ôr.ÏÎ/ò4>ÿ~9)ùãÈî¸ßg pæFÖ¡sq5¿ãϦø‘§RNù¨”oŸ<ßÏd¾Îä÷õ´ûJ~wþ¬Lå—?ýˆI>ôq9ã`½,ÝO=©Ïú[H†bL>5Ïè}÷WÚ}BykC: ¾oX ý«¼‡OHû¬ó‡^l§\8Û©¹!Å?m=Ò«é9hS9Ú“~¡Ç×2𓇒/¿[ÆõøîžI/…/‚[I{Oä»<ŸNŠN™ç 9sõÞ¾&íÄïM’ï|Ê)]L9ð€óyÆW¡×›¡Ÿø«Ìƒ}ŽßÒ®+i˜gryt+õ¯§=øCøàsÚ™v¯ ŒYÏ1|4>Ⱦwn]Jùøã†'90n¯s ¿‡Ž<—üÖý+†÷'ÿE~ŸO~¸ü_»’t9ísîmÀÝ"¯Ù‡ËsÉw?iÚï^œBŽ3Z×èêNÖ%<Œ<ãÜ^M¹[ÁA·òÞyk_â ÐGçíÑÔ;Éw—²OÑ{8€ù‚càãÑ3|0 Þe¾ð“Ï=R8¨óÿ{1¿Ã‹;ßÉ·‘ò7Ñ‹ä‡cÀÝÞ˜ïà5W"ÃЕµŒ›sÆüàowø4|Ò“Ž€OóûZ~G̓}^ü1ý²Îáø?í]H9ð7üùð­iï+•¿–úò;9 ŽƒïE÷µ×x\¾5¤èÿRê[I¹§#/nWÛÔþ´—¶“r®g¾Ö¦üC)çÎÂ'œWC/àòø…ÒûÔc¼œú{=ÖÏÔçü„Ï “ø•»iWÚé|†¾6í@ßà…èÓ•”w9ïáµ}Ÿò7ïéVúI®ß†;çwr:´ÜmçÞð¼”zñÕ¡k©w’ßËGþäÀàkÞ~Êw«‡Ôy†rÞŸ ¾ƒYÏå+æR_Þ£«põK¿#çN^’|¯O>ëØ¹ì{rµþŸŸéÿú¡!½œvàá(ð^纂¿–ßùu-ÏÛiý\Îö\ð¸ïÖd\Ÿy ¯pÎÃeæÒ/¸Û•¬û ÿötÊë:Ný]ïùžžœ‚®¾)õÛ¯äNçšõƒå#¬oçÞvÚ‡ÞÐŽÔƒ«¬ýløãµäKùëiüØ|VïràÁæk>ïášèZùùô›~u~ØGOà"ø=ç%>Ÿx&zôw’~Û­ãÍû7çÃ?=“üôTKùîJòm„Ð뙇åÔëœÁÿÓŸìÜÒk)Þ}:ùv~hÐç¼=øÛf¾ƒK]JŠ¥»ñpHÑCx º¼yy–+>à}Ú'˜ç‹iÿfÚ}îM½"Ç¢ûäÍ·$>@ñ[›oô7ä ü±õk®¥Üä»yvþÚ§OïÃçÛ˷Л®'µ.Ñzdòã$ý×’ï6—Óo‘—Ï圅w8Gð‡øûÛyº”g|,:Iî4Oø:|;½üÿÕi'Èþ¥ï4ÿè=½ì…Ð;à;ð ô éÿé”C®`±rð¥ö»ý}jØÏ¿fxó™ z'çÏzøLûÔù‡vN›÷£Þ§ÝôþøAzä§Ó|~íeI?g:×KwÈ‘Î_çº}‡g±™zw’:ïºïæ9íGÈÝôÖïú· ôx'ßá3ñ¥ÎáKé9Ûþ@ÇÐSòXöAÇ=øŸu|å^ʽŸrò}õó©~ŽŽ°¿  ‹øpøeq¶¡Å].GÛœ׿>xmÊ?ýÞöÿÙàÝÖ)9Ÿj]Ÿ½ ô$Îqt‹>HßGÂÇÃÈÑèü¾dž£,¦½Ñ÷Ÿ¼Ÿ|oL¾ç2¿Ë3úåâ5)Ç9O?W½œþ’3+¿¯ )¾ö*œ.ûŽ ss;ùßú³õÛúÁ.l’öáWØ/~^Î3zsôÐø˜÷âfùîiÿ›/ôƒ>®ˆß´Ï¥ýäöÚcæ}×qžé7á,›Ùow3N÷ÇõÐG“Ƕ#7œ]YK>8$¹^æ\ÿâÇ®¦¸?~¥vÀ7ÃõØÇ9לÙ—/ÈÀ&)ϹG/DÏ7£g¤ß{}¾?˜”ݾ…/$ÿã×/¤ü­ô‹|P*õâgÉó~¿êû䫜šüÛy~×ÒkÆ;)9Þ9Mßôyk)/)»Ìg¹ÇyQ:näœÿˆ| ¹¥üÑdHɳô²èŽýÿæÔw*ëg²~2ûjçØ@7àÀ÷SÏÜ‹·ÃmgÜ/Л¦Î]¸}¹ý ¯§_§Îxm…Ž’‹ð•ø<8Úì:?oI?ÙƒÁ ñ¹úUýXR8ŸõgžÑ|½¼•ÝÅgzŸúá,ÖñÉiûÞZ¾Ùú„‹wøs–Ü㼡ǫþ^y/ùÓOò3ùîí)w;z“ÍœƒèXéqžß‘öÔ>øö¸_ø ü£ñ$ÿ]J¿j¿œöÁ}Ù“ŸËïôáäô¯rùÚ¾9ϵŒ\TyùÓþÞ“ýÜ}gß^Iþ­;É—ý€n¿'ã~àÑmö\;èúÍ”Ÿr­/|¼q=å¢oä²ÕœãäQüúbüá•ß´ÿ2 ¾€žÃWáöUqÓÔh*·~Oõ6Î_ú,ø‹ù¦¸””ÜἿvÑ  Ãä~ÎIzb|û·áàrôtðënìüµÿÙ;ã}&óg½ÍâÚÎ_óê½óŸZ”¤ìZ^ê5‡oŽû¹ò¥M·þ“î†oaGGÉ‚ÃïÊ3Ü?:k'M_U{Ð|Qí®³¯áƒõÿIùpvÖqñðСsyv.¢¯Ö‡õ/3_µcYK=)‡]ˆó†>æòþxRí†W(Ÿ½è¹œôæôóÆg}.íÉwäëÕ¹s!åÛ¯9Wé«72_ÛøVíñSܓޚÜç§w@W£?*ŸŸ\N»Ìgñ„¤ô(Æ|‚.‘«ÈÛ䤥ô?GeÞ‹“D߯.\ÆC?­_vÀËÁñì4jïy2xâ¬þ‚üÓsS9ö/wܬcç({&~c«ÁÏë•q€kÀ×à€Ë±7?g>yxFŸÉóÎÙ¥ô‡ÞÀ>÷©†”ÝþéÐw| ¹Éú]^s=ôÿ¶y{Hí«â±é¹çòÚÂÉàx›ù}g{X×ð~t¾zùN¾Ëþ¡_±ìŸú·dÂ/u¾à>øŸ øþ¾ED~¢çCoý ¯Â°ƒ±.àÐå³éÛÈpùŒÏÕìçmôÔù›u\;—ôÛ¹ˆïY×¥\v$è¹–ÞÙ¾5®ÖÕ&:>Ú9u*ë®Aþ¯ÝxòÕþ"tªøùÁüžöЫá{ªÇ>4¤äYôĺäŸGNKÒëÁÐ üð´wÛ:Ìz†žÏ8,Ç®ülÊCgØo*'óEîÀ—Ãñ£pýÚfÝÃ;‹Ï¥½gs^ÒOÙÊ1?êÁWØßÎ7ú¥Úa§>x0| ŸùLôçű³íÇsŸQ~˜_=òUë÷þÃþƒ ³wc?Qü+ßoÁçÍ¿¾ôËz£°>#œé4ãB®<ºOÞ„»~Æ]2?pNò9< Ž‚ÞâàLö…q¬}EÚo÷SR~¶;Ùßp |@åMõÍe¤~­©¯þ퇩7ãâü>›ù«Ýœ.ùŒ›òœ“äcvbð ÚÉ$~DÎÆ°_¿þàÎϬcôV½tÖ+zÀ.¿€ï;ß[kŸÿOýÏx±ƒ°^ñ¯øeúfv…Î=8"ûcöÏäÅê‹R>;ç²sÿÇf¿ê\DgÈ‹ì’ÑtÑ:æx&úöíÎåîóÔíÖ¢Çüyé‰ê¿|è–s¸ø(:AnÌønÞKÓ>| =žuMþw@;}WÜ$û“¾\eW.Ï{83ù¸þ£òœ÷ä28z\¿ÿôNMθ¢³ë8ýæÿÁ®\Mžr¾  éya#þãèÎzêsþ±¨Þ,ßOÐ×¼7O;)w3t¿/%â;ëבq`‡Jf¿7ã‚/!÷“ñÙä¥è£øm¾>íÄO²¯ÃçªÏ¾ÄÜH?·óûFpF|;ü û_tÚ¹v%ïùë C›¡×øúú-¤½ÖñÊÌïìxÐSxÔ…Œ¹ÔÀw{^?Lú iæÜƒŽÁ)œgè=úY?¿äcßZÿÃô«8{òU_•þ;ÿÐ òØùÈïø ç¾ö”oßl߬¦?è¨ójc.õÝɳþ†¿½9s3ÏpTóê|g—о®g¿dþÉËÁ+Îù.íë¾Í8·<³7`¯Œ¯Á9—Èøkrý±q|ÛøâGvQì+2.äDtþ¸x[êaÿÃÊ~°oÈ¿è%<ãzRóe}òÿÇ—T.Hyô]ÖÝ՛ɗg¸¡þ/½wL'Š£=÷Ï~?ïŽ$?¾O¼“ÆMH=äÏâ@Ðk­dýiçZÚcßÚ/êñ^»#ì4ðÍp®Ö'å¤<ëŸ;½ =Iý¿Ó/v8m‡~¤¿ö±óÐøñ çãËà”Î5ö ì(‹ó¥rÀSIùÒoñçá§öª´]Y™‰Ã¢ø~û`#ýÄ·±Ÿ¬<“|Ƨx(úù`Ho¬ )\‰Ùõä'¢WÖüÄ<>ŸrðÇüÎÙeÙWè¿sÌù†oF7á擟¹¼~‘ÉωM¯Éž¦ñˆBÙ—mÅþ½#/áãðµåƒÓ?qÊÐ_ò5ûIò|c—Ë>¤v‚Éoß³{Ã/±O‚Tž ¿v.ü¹?‚~Z‡»•~ØŸðnr¼õÒøcy6øüÛ\òU•qn’¯ø›qI?àCÎëß~Õ^|ýnÛëüªþ.©ý­ü þ-E¯á4Îõ“™÷ÆEIþÆ[º3®‡þ]ÿÑø%~¾‰!W:Gù…™?¸~ërô{õ?Ì{x‹}yáaú™~O<×Nëîxf㾑g­oô‰üEo ½é¿Ò_çŒõsÊ9—úäkü ”ƒÏ%¯'ú>öSð-z½…¼'—ðŽ¿ëÉŸÉû×ßì¼g[Ké=ózÞÓçmæ;tý\I9üŒoí=C—Ñ¿úG¥ÿøDãÙs!ýª¼Ÿváç–CìßÊ™¡/æÝ3o+ÁðAp³¹´ãHú¹vˆÓDßAž¶è¯ê/—|g"g× õÕnäöxÈ%è¥õO°WÑ?tÿ·•ö¯%>ÓýI¾çÇNžê¾ NÈ®1çQùcú<þÈø‰¥è)­{ô¢q#“¯qèØ³>·Ÿû‰úwˆç”üŸ™÷Ë–}ίþ„/GéjʯÞ"õTí»¹q ¯$—mÝK9‡”|³“òj|wü;»ÏÆwË÷ìñœûÎùØ_>ÒK?Þ£äÏõ´¿vuòå™_²õnýÉÏ. ½®ýkÞ“óеÄ_€—?a¿™vÕŽNžrœ_ä8x…q1Þð·ó±3!çÁáÐ ò~í÷bç¿öAÏJߤÿó˜üâ ³«g¿—v†ÿA×ÈaôùøÅïüVî?íÍý´q|J½)^ï©}ÚU¼,õ·R.½(þ ½ 6ÞPÞ³/®=lÆîe?ð//;÷Ð1ûØ~Ú }g?3I{ÐÛÓáûñËð0üù¹ñ¨ò;4퇋7H¾ÄýxÂ^a>ý3Kiþdí»cGŸ|ðTr?: ·5îúÉîÊ8“‹ð¯äú8¼Ù>,•úÐÁ¶#ßÛ—ì(Ù£8GÈønx.¼P¿Éuüè7ÈUôÙÎ5çDù‹”÷Ö´ë³ò^<­§Ã3É'ðgç}ýföWñíôÃz‡3ÀGìGç!<ñê!e_»õ`Háõì‡÷!ígŸa?ÑûŠѸé'\Œ\æÙz©ž)õÌž—µ'Jùæß:Õþhü‹O%ÿéØ#Xµw»òÓNëù2|áVòG#Çšwû®öù^¬~¦á¯Ø‰âkÑ5úKíÅiù•ý=iã+ç÷óy_:0Ø™~D;¥óìŽßÁ…øàùG¿$éá¤Õ[%_ý¥SùÇùIOIÿ¾ôûµá¹~Éé¾ßÇòjø„íàÖqí.Ø[ÜÒê­¤ÉçÜÇÁaè ¬Óâ iû”ž;·R_ÚgÝÁ+è¯õÛyL— \ºd§üO޽_Æ…¼G[|'ù×Ó߯•NJ.B§à‰õO ÿ‹\-^º\Ü.í`Ça_ÕŸ>í¨ýh¾gGnã+Çfª1>ùî‰þÁ5ÕÇ^ëHÞNRr {Ëåìtü¬ørҾɸø/82ùÔ¹o|Œ«ïÑkz#ö{änú ë´vKyFG7!û ö‚É/Ç9OØ­Ÿú'£#êÍûY\¼qqR>‘¿MÏÁä#òWÇÇ¡·ìoøMàwð»Åéß:Øå‘Ðö§èGòy~A~d‡¯­¿Wê‡káãØ­à˪Ÿ‡ÓR;dü:Mî\ŠühÝÎÆ±ÄÏ.g\ø8Ä3â?‰.cןvNô#¸Cí7oŽÛ³‘rÅÔOçý‘ñ¹üüˆ俜rð)3ôÙúe—Õs,ïÉßpNtÎ_ÂGV~ßÜxôÙOä¿â‘꽓ò“IŸe–¿ü=ž=ÏÎûê餟©«4žß­ÿ:øJý´~`8gÈOè?ô“¼Å§z\ëq’öç{z_û–|‡ŽVÞSNø |Xý ÓÚÇÜM=yo_¡¯‡ó;àœÀ·7ŽSÚµü‘~äQ<¶ÔÏ~_º¸Þäñ¬ûçr? þ[Ü£‹Æ#ßÑÿ;÷Ý㱕ñ¡ï×Nv@p+ö…õ×Í÷èPí\RŽyÀÌÜ󫦫ù®vLÅ7Ó®ÚdÜN|`ØçKô)É×ø·Ò'7‹AoÆî$vþ¿ÖçÂûåjÚo}OÈy §7ôìÖü@<%üLï·Iy='“º_§vœ©¦Üõ¯è6=ypÖ’ÜgŸ‘«Ñ#xÍRÊÅwz/®Iñºün]ÂÑÌÏbÚã¾Uq ð·ðç|ï•Ëwì±Ù³7×nr?:É>Ô½pó·–úó ·O§ÜÆA8˜þç=¼[Ü»%å¤ßç³>Å¥¤¦÷~]žÙyÐûÒ+š‡ú{¤æÛy¼ž¸ÐäêÆóKÿ»GÓ~GäYç\㥿ü¨á£‹ñoçWˆâžÎûúg$%G|dߣœô§ö(©_»ð¦¯‡÷©Ÿžý-±Ÿs¼7§Ýo‰?ˆûŸØëoþµÇ¹+®{“Í÷ŽýHÐo|@8ÛÆ¿™îÃÿhzCŽÁG:«÷LýÖ>›]°}T>%tÏÞ†ä|˜µ³÷#rÉüðrð€ÅÌÇÙÈų²oñM—NŽ>_{¨á\xÁq!gšñ@ð—9÷Ÿh'~ÉzÚøÒÁþC|úKtѾFÏàPüRëÏ–qÂG7ždƱvkIÝï”ïÐóÁK}Ÿ|ö9=Xí°“Ÿß¸ø™ä³Æ•I?+ŸæùÊÌï;¡CôxWÓï«RÚ9«7sÎÑÀ¥È!øtüI㵤_ìïðÖÖî7ùÍ»ým_£ßá÷?â~[ ÎÌ¿¡|¼"ãÙ¸I«ôc䆯O>ü:GŽ!/è¿ó´qó;¼0I=µoÌ>ãïÇÀ—š'÷¯òkhgý"O¦½ìokO–r¬Gú4ø\ñ i§säÙœ#ôÖí3y_gÀù‡þ]Ë8³»„Û6^Ež·ä~x×éFÚÇ^èZ¾¯Aú_¬ßz~ï=ë)^ºv)=!œãtÎó\ÿ²ÔÇŽB|{þ µkžKšúN%?z5 ]MÿÑŸò©)‡ˆ$üj;ÏÖ³óB¿Ðq|yÌ{õUO–~8_ñµô3ð–®·<ó'ï}Úù¾÷Üf[·Îazqë{évò¥ølö$âsÁ•ë§0|PþÝÈ[òl|á1§ò{ãIçûÆËÍóNÖ8Úð|ºFgá—»¡?‡t;í݉=Ì™ØËÚäóîï´'vQnÊï“ó‘×ðóõÛº™vR¸ yŸÜ‡ÿ7Ÿ½7áþhZ{¥#úaœRûú\rNñ·ƒé§s/õás÷)÷+…¿“ ø×ò· /¦¯Xÿ:õ_Ÿ3ß9‡ë¿u/ù&ù=í²*ǧè1þ_X>%í¢¿oü€Ôc»_š<õ¶Ä‡ÅOÓ+Ô,ùÌ3û,|ñvÞÓGu'å?6 ®ÉŸƒ¾r›ŸeèÎÕôïÚŒ<ãü*›s¡çâñAÿ·~^W¯¡ÞžóW~u÷d4®#½ýO†cÇJ{áð»ès~ÙõÞÈ8\Ï:€ËáÛÜsAεÞÙgžã·•öòÿ÷:Ÿö²§Æ¯ˆ3Ç? _,î.>…]Œ´û3ýGÿÇ#ï‹§]ðp|wý«S.ùÎz5 ±h8ùè¿Ø×±¯¨ÝÕÁ”¿;S^Þ;Ì“¸0ΓµoÖGätžVÞãw_›DŽF/ÈåÆŸ½§{wر“ƒ¼n2¤îq_º=jWù=ã‰/Ä9‡ðÅöÿZü%ê¯xœ6NaÖïÙðõÏEoB¾MÿÛžÃÁyè…Ì;þ›<Ñxýéz{6ñ¸ê7œrصá§ÙS¸'Yü`zµÊÑÞßÒ—¤ÜÆ‹…¿=L;2ä^óz"ùG0ò%ùÖyÙ¸ÓIùÙÂëzŸ{úë~4¸›}ݸV‡t-ùÐ)|­u»”úùEi7ùŽ_…uaÍ£uê^RúéÞ’žyûŸ»èÿì}JWù=d¿¢;ä r º×ÄÀ{¯Tò;'¶¯ö‡ÕK¤?ÕïÝÒãùž= \HjØ…§Ï'_v_ÉZžS9C¼ÎÊ}·ó{ÞÓ»‡KGó|5åˆÇ¿} §¨ž-å²Û©=]Êa_DŸŒ?/„<&^Þ Ü£ök®§é=Á±ÏÁ'£Çÿfž'C:Ÿ|ηIʱžk÷—~ñcpO|pF|Tïã?:õ×r-í˸uÿ¥½Î±ËÑ;TOö“›k–zW,õÑ?£‹'£¯“¯÷µêêegýNÚ}(éÛÒ^t°qySýBãòåwôë©|O‚îà?ùÌÞ_Bî¹÷æS~ç÷ì>A¿"§uÝ\È>¤oÇ[º7—~¦üÆ‹M=ìåÐMñ@ê'pÜûÆþU>ù­qØô'ßÍêÉÈ‹‘ëàlîk"·ÃKÙÀ­é7àÇøuñwÝ{¼".Lø8><©ñï)»8àµa_^Ëx\Íy /e_òòô?+î3ºÒ{ßS.Í8u]åw8);üú¥§ÿ§Ã§Ã¤½—7õÁ…éùãðs2®çƒÇ5ŽnƱ~_é§xvâò{ÑOvrÖþÎv9òuï¸=vJäþþ§ÄûÈsì¢_®ÂñÁpYzðW¤Ÿµ×ÏsïƒN*Þ»œIò±7†+=}óëR/»ÍÚÑ'??/v3øÜà/Oèƒ´Çø³w«Üâ8ÝÈy‚ƒßoÏ÷KIï/ý­^7Ïì7J¿ï¦_i7ýb×iò5^žzÒŽâš÷Æå¬ÌØ·ôþ‘|G«ßDú×{!“gK?à8ŸšvÀsÜ+¿¹ Púzª‡O;ŠO'?~¿Õx©·þ^Á¥v-å¥_õûJ»Ù‡ùµ®OfÒü^=`žùIÑc¢?øëåÝq»éc­K÷›:7ñ›ÎvÊø±Í”Ç^St|;!vúÕ7¤^¸ÄVôð¸1úO;~­þué7>{'íÞ ]‚Ó³÷ƒŸÀçÙ9ñ·§Ÿ°~·=íéýçÒÔ·œq l<ÿIžç’ÞRô"~’õɾ¼vÝy†k^Ë{÷dv_f<Œ;¾z#q»Ý…¯j¼Ô¬ï­œ—Wƒ‡4WúÓùÉ|Áóœ_ÖEÇ=}ê+ã»{Ó´ò6œ|%÷ÖÊúÈ<ã?z¯Eø#øIãÏJ½Iùóø^m#÷ºòÇßÑ¿ØwÑÑ[ûK\‰êÝ2~WBÇÜ/f}Ù÷ìW ãç~&óB>„ëœý|ˆÿ_σàvÏáç×Ò¿Œ ÜÞGž£'ß v½üVn Ïè€{]7.öL÷˜÷µ#ÏÅî~³“öXì3zÏHÚážãz-ñˆùy°{`'Ü{–3ÞçgÊ)>zgHÙë’Çœ‹ä ­ØÃ…×rïJãÊe|Ìó=zí)sÿ§}Ž‚ŸÐ#¬g=Òk‰'JOV}£öçÔ/f× 2{KÙ/Î랣ʙ¥;c¿âɵðÖ þ~lÞɽ.í&/áà›öqLq%S®ytN²c!ßò/%¯Ñó9ÿà!p˜ã©ßùMŽ:¿ìÆ+M=ö'–Ÿ–ñæb_»Ço¶~O纀¾ö>™ô½£W„s9O¬SñÖÒïúIçwôbý‡ýW:ßëvh<Ö1»ú³¦}ô·p~8=¿÷öˆ+D~'¿Ìúñá;7³Þw²n¯¡97¶Ñ»Œ7þÌ:B7ê÷àÏï[èrö#r”s¡ü‰v%~À¼vÿáC3ø=8)¹½÷”¤ùNÚ‘ïªG3Þî[H;ù9Àiè%Vß7öC-^š~_L¿ùa:÷øíóó¨_¤|iGõ;wÇýj|ü¬—µÌ3yÕ÷õïK¿Ï1ýgŸƒ~¡—³÷"Õ¿%ãØóæÁ8Ÿ{Ö3~äCþçôCÄaO¿Ç8í«œœy3ü…ßÍ9‚Þ„½°gt›¼ŸC×Ù3ÂuÈŸì«Ïsùã’çÚŧŸä8ò9}·Ýâ?Goï}ã ß·îfüÈ£«~g<ðX8>~±|¾þ©/ùªïI oÀ_['Ú‡þŸKëß™gq”é䣚­ßùJ¾¯{Ø¿r}ÆÉØÑ4¾Ëô'õÛ¿½W'ùá°=Wµ;å·ëŸ˜¸!µÃÕ¯äŸÅeÈ¥‹wÒÎŒÓ,έ~ø×RìiìWçÚònêMÿ¬OãܸK‡ò¾óèÍq½p½£©Ÿý÷Š8…)¿eßñp_Ù¬ýºÐvD_ü¤þ'ôÓ½çÛ8ä¹vÿwÆåŒ}Bé@Æ>Ï…wÁéé©Ð;zÐÃùž½*Üxaø®ò? ãúlú8åÃ'§]ì)^ç…|g½ÑŠ‹C?kÚ/«˜ïøç÷¾uãy+ßeÝð/(?š|W2›3å®'îHãä¦]]ÏkCʯ½÷Ó¦x*ÿ“ÓÏãP óâákë÷–þž ë^]ôÁ ½RÿS9‡è{ású ^—çÆÿº—vd\_pet=€³­ŠÇ–úÙ›Á?×O¼Å¯ q+Ržõ‹žØwèÁ©ô‰Nž«L;Ð|t÷­øÅé÷3ø·ŒŸó‚½¼xƒÏ†<?3ñXÜ< ¿Lo2I9“ôi»¸yæòêöïäÃäwÏröáäõyÿÉ—c7?|ÿ‰ÿNÞO;Žåù'>|¾Ú$~f¿ÿ…_f=ÿ"énÊûMãú[ÏÇ%5>ó»ißÍ!%ψ;i>Òþ¾gœ^–½¦¸~¹oN»^èO¼º>¿4í~ðÿþÝìŸ~žüÅñsão¿t¦ÞÏž®ëoý•ÕòaêÍ|þrù,'ó<ùä¤oéoÌó'å™ÝÑ™üŸ1¼?ùsyþ”Û¿ŠÞü§ûÓžÉkãfݽ&¿Lª?‡¦ù®ö^–×äû·æwþD᫇EGÞßÅ£e?>—ô Ñ×¾V»’Ú‡oÌ3½û›’~|Þ¿(õþ†¤/™éç¡ôïÓ󬇒ﵞ“¾UÿòÝѤæýóÝËfÒÏšyN;ì»ÉGMÇñöEÛ«ý³ëÌ9K.fÿ@>†ïÁz¯YÎaçDãæ¾B~Ïåjä\÷KÒãóœ‡ì¶k·™r˧ç\[ÖþüNÞhœûœgÅ_çÒ®Ýq~í¥?¢—›ö:iò± cwTûƒ|G?S»±¼Ç×ðû©ýcÊ»~¬÷_å{ü/{#| ý=>Ý|±úœ´»úÀŸ·“=IåäÝŒGÊ…çÕ^ëḞÚÓ¦œâÂyϾÇ<<‘o2¤øwz<ú~z§Æ¸7¤ðÒòs)žÆNªòu¾[Ë3y‰>‚EoB&N;úêÅ’¯q/Òü:¾º÷Ç¥üúuçwöüz_X~/r'õæû‰xöéoõÎé'þR9µûÎ÷âß/ç;öqðôÞ ˜|Ö/ü×¾¦¿`§ „ËÖþ'ùøó7«ýŽ|iÇzôBô öŸï­çÆÊwôe-'õÌÚa¢Gò­ÐÇ·ß¾4ÏÖUï)¼3¤ì5é!Äm g“/àMâÑ¿[ðäêSÎVî¯ïý‹‡ôXžé‹kçusHù;Õ¾!¿‹KW¿²üîž*ë°î­ßƇÎséFö!¿óƳ˳ñøÁânÚ™ï¬Wrüþd⃔î¥\ú ãàÜr_7=E×SžÑõê7ÓÞ ‘».ë¾å¼ÚIûœoçÄ!J¿Ø 9‡áÇèPýSPzq ì zkz~nÎ÷ú×§âÜÁûù¿;×ÐizW8ií+Ò>òpïÑõ]~§ow_:½Tãê»<Ï‹â¤ü=·¥Gt‡ß_íÇnŸéÐMñ õŸ}[ço’zS;8§øã‡æ|É{ú}ç’s“üDßÒýžvòG`ŸÃÞ_/§ÿ¡‡vŸ zô|Ò·'½–xì\ØWûª'ÍüÀ/¶Ò~ûÔ8óW÷ü¤z™Ýñ÷Öeï)ÈøÐ5Ò\¾»Ÿ÷ùž]\ ßã¾"ø,­Ú{åw8[éqÖ¸½ô“µK}ètí1'iwÖÍVèrï½»•ü‰ã|­ßŽò´7ý3>ô³ð,øWñùƒãúÜï1÷ÉzÆwˆ„¯~*õÓï±?ÀלþØþ)N•þÍââ~×îÞïÍm.í!_D¯Å“^ŒsN¿ðCøÌÙ{ðÝpPvtìÿظG½s?5¾ž¾_.Nµö×Ïwè×fü$Ù¿®Íô‹½Fï?L¿¬—Žƒýrº¥œ¤ô‚ø%ü?zô‡?:|Ö¾Ç]M?«¿Ìþ(¿—vˆ?µ9É÷)ß>¦—jöKùŸnÕné츾êñÝ/@.½9}ÿÈÎjx.ÄŸØoì\äû“ác–SÏi÷B¥=âââwÒþGquRÞEöé9 _´ÅŽ5q˜É¯ì—ð á'ŸŒºn]M9õ?e·2™iûÓ“Ï=“æÙù½ùmÃ÷ø‘ÈCOèÑ6nÛ»zf?”ާÞÚyf>Ù‘ÙôÕ—‹óx/íÆcr*ýÁácø«¡oö‹øš;iWý£ÇÕ~%ϳñÿ+¿‹÷Ë>†Ùz¡gà_äÜ·ž?¦ú{T~'W°ÛÂÓÖÞ3¿ãéÕð·ä„êYS¾ó‹|Óû)= ;ûÚ}ïìEBùK'Ÿøè¹V9±§{áøKéuØ{Ò>ü/9Cü7ç>Ô9‡ÎgžØW½Ÿ6ý#ÇÖOóиÿÏi\’âØ•ö<Î÷øat»q4ò»s£üLÆ^Æß£÷ußJ½ç‡xªä™®ùò¼;CtšœE?CžâGƒo‡OT/–þ;g꿜ï­kúPzÖÞ£x{HÉãülõÇ:äRÿ”G¾…[Â/ÎGo™y|!ÿàɵÔ-|Àµèí¯¥ßøÈÆ\·ÿ;}bŸ‰¾³ îý!y߸MøŸôÓùÇlœ§Cº£=±§´ŽàPä+ç>Ý"ŸÔ~?)~­òGê¿4c_à^!ëØ~íúOyü5Ü †Nô¾°Ôƒžoä{¸sß¾:ÌŽ#Y7è ~WÎI¿Ø;÷~†üŽ_Ãâïë¯Ëþ5ßÕ8ù—wS^ÚE^®Þ;åÃSÈãô»î£j܉´w3ùÙm8zï]K{ðËp?çüåÅþ‰¼¶|â];8¤º6¤Æéê ÿ=yCöeù ÔS»ÁÈó½?5ýA×O`2nïFÊqnŠ{CÎf'g^ñ¥ð$¸>úE¯ÍÎü¢«ð ¸™õÊ~Æ>­ßkòÏÆ™‡o“‹èWùâ¯öqé\Ú‡oñ=:\ÿô[ãþòSzÝ´÷`¾O»àtpµã±Ÿ9½¾ö9/è…¦¿ìcÞ˜v÷>…µÔ—ßÑôO?é“GM»Òîâz3ãp"ø;!ôÙ}ãô õ¯M=üKè-¬›ÆoMùYggó~¨¿YR83ù%;%q%_$û±÷¤äüç·Sûôg-öνg,ý!_Š[Q:ÎÏ2åõ^)t4ýħâËÉcä¦Þ;ü0Ïé>£ã:ü^9‰E?Î&nåvüwØ£6ÞYòÁëàëìÙ·ºwÛü6þaÎÛÚ1&_ã'¥×*¿6¤×à÷ô«÷Á¤ð&ò>{áÏË|ò á_JXK¹Õ'¥Ý"7)ÏwégdzqRãÜM;ÓŸÆÓKùüiðoìàŠkê¯qÈ÷â)À‡Ñ÷n‰Ïeþà/ð ûn6ÞMùÒäŸË÷ìæ{OLêw_\~3ü‡û8ØÁHJÞb?ç>㈟n|¾ï÷Wœ1ãb=ÀuÍ—}»šyì½»)×úe‡_CW ôN›yÏÞ>¨ç@ò7þìÝ!u®á‡Ý¿Â‹$ù“|A×{ñ©?Ç?Ï<ãSé/ðçäO8]õs·RÞ̾à¿í<Ö~|eï/ÉïÖ?9ïBÖ£x“µ³Kûðâ.¢ W>8ÆIèQfï×™IoÇN]¤w·/jïš”þ¾Ŀ]OÿvøÕe\wéÜ@Oø ÓGÑ›l'¿ üâõä·Ïcø<8ú^¿É<7~Qží/üy„Üg½×o+ãBŽ??»òéù޾Ždþ{¿îý!­oÊë}¹áùÿïäwñð§×o¦]i>”*þóHò‘èWÐWò¡ùW/~•`î–ú¶Óø: ­2ô¤ö ÇßÁUìgqùÐkãRýzú·¼;ÞÓ8—þOÆí±¯áÖ {ˆëY7×Òþ¶½¿))¾™ÜP¼ÝI½äF~Iö >ª÷§~"öúãþ5çŠuÜx†Ú‘üKé{jøºxèfq€›iGÆ?b|Ù/Á5ê¬ÜŒœuýO¾ iö9½§ßÙ]Áê?žu?ƒk’ñ½§(ídùa%_í¹èB¿œçè&kK<¸ðyäÚÆïNþâ!i»òÆY~ö=÷׸Ò#ÃÐ8=ü ßot.«çZö­x)â‹›.©q¨]Tò;×ì7çúÒ8s÷ÆõŸOy™—ò{ü©èQºŽÓÏÆÁ¿•òR®{䋇&?¾•ß¹Ý&gÔ~>åZçÎÞ·‘újŸ—y6N潚zªï»3®ý·OÏ2ßoÆÎÅ=K]g¡[©—°“öŠ߸çÉgžøµ—<8¤ø‡ì'ö½vÏÆ):“záÊG¯ª?x0®]ùX|^ç }^ìéż7z~„w§=öOï§L9½Mÿùóßžáíõ×J»ùUÕþ.åTÞuGê‡#^—2å6®ʃÿà§NE?oÝ]÷³~^½W í\ÔÞÈÁ¼†¿þÀíjÇúæÌÆø†ñû5úÉ”ÇN”\Ñs3¿7nïZÆå`ž¼õIü,ý°ïŸJÇò·Òœg¢÷®ðaú“ñÙL{ðw=²ºS{öä&tµ÷¥7¸wžÉÝîsª¼ŸöXü)«ßI¿É×›éßzøãÁŸÞ¸ÌÚ)5ÞKÚOD΢gè½nô©wÓ¯ðä‹âBiwéVÆ…53ö˜½'8å–N{W%ïÝOˆÇԿDMþL;ðÅk©óY¹ÌsÚåܵŠÏÄÞ ÎÈÎ^Š?küª¡Þ'Öuå’ÔC®$Û‡ìáLÎçý‹vï£û)é±ðÕèýô,îK?ç<#'¡øR|>ú/"·’—¬·ú­çܲ.ù9Ð…ÚAÌå9í<›y ÷5¾¾‡ßÁ ÐEx œ îUþõaêó>ß/ÌägÏ/f7Úû£o%Íïpcò3<‰¿¦8½·(ý6¿øDûN_jÝ‘—OMRÞƒ!ů8ç'+ý.›vá—ì{r,¾O°ÞŸœrjÿþp\?{Dt^àö¿}Òû6Èi7û"ø9œX>뙤|hý8rÞZ/ìÝð‰ðã‹‘çµ ^‹þ6ίv§^¸~ã$ßvâÒô>å;‡Cãv¯½<ñ®áT~O=ÖúÒøª)^Å>2ŸèkãÈäw8ÿåè±ðAsvsœ\?<ÿfô§ñR~ípóõ·º³{ÍÞ‹’ï鑜¿pöµÄ}´n7ô=µ¿OûÝ—ÒxôêI{Ü A_‚nà§øÃaœOä¬Þÿ6ÓN÷/ôX\˜…ô“}"¹E\z~ŸRûHü ûÌ}è‡8-ì³øAíÔ¿Þ'~?ýJ;o&¼éZøXó0—üð\8;<‚œß¢ÇB¿{ßUä ÷¬’ªgL;èsjœöÓÿ–ŸOÊ/ø-C}'¿oº.þ°sûÀÌß#ÿ¥Èaè4|È|ÁýCû=þ×¹N^Gw”§=Çòž¾Õ¸˜çz…Ïäh\Ù»ðgWÕûpî iã°¥žèé¹ÒëºëI{òÌOÿÀÏݵ8Æ?Û{G’v^ï§½vúêëyy/í ½¦o é½ÈÉG[âduÃןI¿ÄU:»·Æ£L¿Øh7þ?îûÆÕNýø:û¤q¯Óo|û$|"9ŸŠî[?윜§øWûµ|gÚOÂ×áOÝ"iù·Ýq?áÝè¨óþ­û6¿/ÇþúÅ×•ï ŸZ>+ùè/É1çb§"œó ßé¼¶ñ[î3'G;·Ñs¸RÇñÖÖ?ß‹ÏnÜø!Í9ïƒ/ãW´ïœ¸É*Ÿ’zñäXö—å;RþzîE¸ž|äÒÆñγs¿÷ýf¼ÑOçyý@S®q‡×XìÓÑ%ò±8-½ÏôC3öÑêI9Ö¼%|ø¯:n;Ü—}.»ûÒ>_ƒIù‚[IÃÚßp†Þ³û ýMþ 9ïáës©`ÇQ½iÒȯ/|oAøUúÏÆÊ÷ädô¿`?þç•É'îñaã‘v=•÷惼%¾•uÅ…Hþ1>åKCzÿOäE~Wü‘Œóõ´ãíwò~f}.·£Wª,Ïü?{ß÷ý!ÅgN=p8r!<{ýan¥žÈø¸Þ”v8Ïé¥ÙJŠO„÷Ò/º_ &Lj³{=õˆƒÆ^ù\è mñOjŸŽÜAßHî…Ë£‹æ?G°NÐ5rŠï¬cö ôk½gnHÍ;ûç:x%÷ü7÷'×^(í_@<ç;jòyãNêoò³¿‡'ZÇøEø\ýlRžóV¼rònãìe}ÐK?Ÿ{k”‡þõïôÛ:¦Ÿ_ _‚c¿ªýÅÓæ†”^P{È/ôžð óNP;¯”3‹g²«x&ø³øY½2óKïV?úˆ<³_t?=ý„v£?'sÞôþ†ŒOãnç{÷PÃ'VÂWÿà/ÆËºÇòc·úlìña³÷EŠo‹ï‘ÖÏ'õÐO¢+èPä˜'îAœÏï{û18:º 7±~ôËú`ׇïQoý¾³¯àZð>úçòÅ©¯qïóž9}’}Ož)qi<ɬcrAïŸI»Ì#þ¼q°R¾y¯¾(í±Ÿz?çîøwv0ôÆå©íaž½O׸¤8«ñ xþ›‡q¬EÞ“ºŸÒ?ú߯/ŸKy“/ßãçzObž{ÏUÞãÛð›åk=§¿ø8úYþ?ÕëÜL=ùÞ¹7{/QýÅÒŸɇ:™ñœO}üKÅ{߈wÅ._<®Ú[¦ û ü.<ŸÞÓ=zïÈwì[ìïú]䙜Ô{Ãò;þ  ¯6>öWãç¡Âo࣫žŠ=Žõ¸–T¼ô¢÷W$u~ˆ¿ËÞɽÛgƒãï¼iïÞ‘}}ÞIŽûƒ?Æçà¯Ý‹Ïj\ìäë½EÉÏð;¿|«¸ð79ÃO“çÌoïÝÚM=âåÇD?.‡Ÿ£§b.¾Üô˜÷i/¾]{zXïâo&Þ>áNÆŸ>?\»ÖÔ·ÇÌüðo'×ñãåÏ|ý÷çíû&ï˜öçà#<üàx\7Ð)qt³žñ_õWJ?/Ǿ°~vÑ'ÓCv>3Þåóì’õoŠ}_ÊgG`×÷šiù?Üñ³vWÑK>ŸïÜ«y=ã‚O¹šñ}§}žöà/zÒÍ!e_OdŸQ{·”Ë>÷ ¿Þ<»§khî Ëkã˜q Ÿ¸»| ù§÷§|ø°ç¥”ïﵘ|äš¹Ðer ÿú¤§S>½Ã,žO†?üNõH÷Ó®Ôßû:”ŸöÂÿñ-ðú®÷´ƒ~²÷1晾¹öQ·†JHOWü|wœ.ˆ.,'í~È÷âoÖŸ&ý‡4¾IÚ‰®ÐÖ?'éÆ =ï½Ni†иå)~æÜ)½Éw›igñ¦äÇgöô³óåü6þÎÿÉqyü¢ÉÕì.èáþ½—p&îhïã94¤ì~ùßÑ_¼>ôÿÕy/N–ñ%¯Öß2å¬Ûgi>þ´q¡"7À‰Œz‡¾ö^òÔƒ®]M9׳>í/ý*î·6¤õO?¬3ü(< Ž`žø™ ìçlwœ¿ª<ò­¸Æïœ÷ü°ÝIÞ®<9¶øqƇ?‹qÜÌùC¨šv5¾qžÇ'tòœ8Þg|ñÉøˆe÷΄¿«]UÆz^ýržÅ¸9…ÞÛ{ÓþúG×"—àÓÝŠ€›Š?úÙyÿÆÄ‹¬]ÁPoåBz:vHð¾ÆSÚõèžÊô·zÓ”k^Œ<¹÷xæY<§ë¡S]¿)—N¼òÆÊwè«þZOø8çæ\Òs)>€O¤ŸCw7,þ1½‡dmHñm•ÃóŽùlèGïEH{ª¿O}ôÖp÷µ—Eÿ<'tí×ì^Ñiñïû“§§#÷×/9íW­úÚ´—ÞÝ‹][×¾ Nßû 3~K¡Å‘R¹_Î>ÑýžY¿ízL®Ÿµ{³Ø?GóÜ{„Ó_qŽ')¯þy¶Ž{¯mR~eô–ðƒÙ8ü¥Ê'ïògÂðë?™|ü7^ë÷¤ðIüUåñÔC>ƒãˆÃ®ßåOÒNø~ƒ>ÝýÇK3ß—/Ø×OnÁŸo?:él|×S“´#õY‡Å}óžþË~Fÿô|B¦_øRòtã«äwzµòãyÏŸ¾þÌ)=þJ<ç¹´ç°ç¤âÚ~º~ÞRôºöžS>x·uIoiÿÙOÕ+äûÚOßËû<7¾èý!å—g@_ᙋ™üôôõ¿žR|WíiRÏÔMõý?RºA_D¯Õ{>’:¯Åe¡ç`o缞J¾Çg“ÐíÆÉù“q{¤Ï‹½¿-~OôŽpÔÞcº;¤îàïgÜàÖ>¿÷¢jÿôëÎ’›ì'öõ½9.Ï8ÏúO/GÊÞfI&õ¤||…óLŠïm\ç<‹Ë¬\óÂW8ÈOøYx~>‡rŽòcá‡Cþ£'s®:go¤\|^ýÜ“½é= kù=õÂkO‘çâçiץ蔃ž9?'üó|Çž…¿»eöDúg ãÚmÝÛ/LüèÉð|5iýfèçR~ýÒo|=ý)?ë’œE¯h}»ŸjV~`G¹˜vô>žÔGG.0ÏøD8ú¶œæ´{S^Ï¡Ôçžtß½#ød|ŽóF\rü§s}DWÑ]ëÿKNpÞ,§ü?zŒÎÁ÷à½÷6û”}Få¶;©7í8•ñ®¾9)ûhü±}‹ïb?„Ï‚ƒáÇJ×óLn…ï[—á~Å|¨u€j<’¤ì)ý üË®ïaê³ïØeYÎq|˜}ú^»zåÐÿ¼1iù⤵«JZº4´»úuxÉ2ÜøÎ𼼃nJÙ …q_Ç ÅczÒž#ývެ½;÷³å¼¯þ~èÿäJìNg¿5~q~7?ð‰³îÍôûdԾɹègÝÊÄxÍÆñáî<…¿6ÞRÚKO‰Ô$ïÍËBä‰Þwì÷Ý!%ïžr¯OêÑo8Û„ÿÊÌ8ÂñûpÜ‹i—¸“³¸vÊÏðF“Í´k-þzü~Åiàt9õ¡ÿágÅ?Ìý8gåKùçÇù{êùèGä3ïÁ3Ÿ¼_PyiŸù2Oøòò§s¶œ'ïoW/¹¸ä>¾´Ã÷«)ß9ïþ÷ÔÚµoOùü[VòìþÖ¥ÔçùLê=Žù|÷ñÓô+&o Þ°½†|Öû$ßãïÜÖög\Üg¤ÇÄ+J¹èÕSùþdüåRï Î_Þw^ÖgöõS)ßú°ïÛöF¡Î¡ÉÌüX¯ÖA÷w¾CwØ¥rOVê;“uðœ~çû§ƒC²/YK|ÏgÜ×–y¶ï¬ÓùݸÕ öõCÊøWš8t[éWãØ%%§Y?î¿eçËf6Ž1{í<ã?/]¾9<×Þ&üDíàÓÞÚ¤žµ”kŸ8·Å`ßežÑÕ£ÖëÝüžyè=¼)þ ßFž;y†6îúø^â'Ö¥xÖ—Cçܲÿå­dŸ7…þEŸÊ¿Ÿrn=Co›gñÞý-bçÑì½&‘'ÿcÿÙí$]JÍ'y€œ0‡^²ƒ¼5¼o¼£<³ï¾šïÅaÒ/ö2p_ç9Áþ÷œ}"¹}+xù¦r²OÈÃ3úpH·“nD>»‘ý…¿qÞÁ¥ßki}2~ìì`ÏôBë¨ëé:œþà?N%¥wåG_AÙ°ïkí½Ÿß_s;ß‹“Ð{i2n½9ûa=¸†8óîývÀµ|Çþj=õ^Íü“gÄ3¼1?ø “Éo}Ã;èç{Ozê…_,%¿y„·_dŸ’߯ÝRô ÞAîé}§ÉwÁ9~oxvTï5Ì89<“?zRÚÅN¨ñmèÑSïóH~ö"½8ív_…8èÈ ?ã´¯q“Óqë·³žÙ ÓoÑ£×ß1íä_Ñøæøô”KÎ;‘ßᬠø¡ô¯~ýIÉoòÉŠ¤<øSýlï%ßÁ´/ãC?&îW㎤;ÙÖyÎùxýܰÑqsøcë/ºÛû©RÏNÊ{{øhç§}dz/{Ö½mõû©·ñ}¦žÌ/ýnébÊw®ŒþÃ]ȱpeö æµñó=½3ô}{LúUüOï…O*þ»ÍÞ¿•vÏÆŸ·Âúí½i7;¤kñ÷q^ö^íµäË<^¿§ÅoWÿšrá#p;¸Ügé}c?™Þ'tkH­o÷qÎÈ7öaRíqŽV¿›zÅcÇ¢ÏßOŠïH{ž}Õ;²ÎÙe<Ÿñ`/Ô{9R»köjÛÑ#&>ð ÊSË™u`£c³÷±9çñ#âtlf~{oÏ!mÜÌ<÷±¹!ͽ–Õ ÎCq^œâžÝȸ_un¥ÜœkÖÿ>û¡ñnrþ¬Ç¾y5ëI<>¸Pã$å|Ûÿï\O¹~¹yn|çHìü–}ºø^¡ôòvÏâËœŽ\?¤ÿ¦7‚³5ŽÈ\úŸ÷?0Žìw|×µôƒýù”ƒ] Ýhܬð72ŽÛ3ýCï¶á©‡?y“xü¹Ùxâ#ÙkÑn ø`Ïý¿0Ðq9wrîXøôS|DøFïáH{'q-íÎ9@î`ï‹n7nLÚk>zU~ÇÀ¹Äî€~ïÔ̹h½¾&ã!}oü˜ÅHûœKè×Ú‡rNO†g~ûäËÆÓI¿ë‡”´ñ‘R®8ââQ”¿Ï3:É/-~Am';ÊÞ/“´z䤿ƒ^ÊyMˆÏe÷„Ï·üöLpÝÆ?Nê<œ|ü3Œ#œK{ÙeÔÎæÀòd§iáIüM¯á‡éNÚ‹¯àŠÏW¾~G©—¾Éº¼zHÉ—ÅyRžqáóŸà£áÓär ?.ý¶Ø'³kbç%ÕöAì%jÿrwhÇÃÔßûàë©—_ÍŒþç ü“¾žŽÞÂÉÙ{ª]IK7“_<^…Oe·E¾˜µ >;nï#=iÆKýÖ3»7zmëùéÜgÀÞ€=Å|Rë»~Æý§×ﹿFx½.œ„=_ðžöc>þ½o3çVï-&'g]Ë·þ]ãiÜÛôža¿;¯jG,¿þæ;ö6õ‹Îø,Ñ‹ÜK¹é\©òažù3YpÍIø ÷¡×/d2¤97»ÙMÒƒÀ WôØàOŽ.Û×êc߆SÙ{£ó.ã\¿Ì”‡Øg#'À•*õ:ÇðEø0厽?_ƒÞÎ3=Ú,}™¤ýæÇ:³øG;Ÿà ½ŸøÎ¸?ÎÞOýáÆíü~+iÚw½žï{Oipþײ~¯fÈ9ä©¿9î÷¹ØçÏ®ƒà–OŒÃ¹àÎUr{7öµäv~cü!/7¥'¯_{òÕŽ4ãÀoÔoÎûú‘Ì iãU$_ïµÈ{ü-|ž<Ð8Ày&—±¿ÁçÁ Å;Ü|é ·—è¸]ÿ¶?rÞ6ÊÝŒKê©ý}â/÷þºäoä´‡ß(¿ç½}¶œ~²_Bçígåãâ*ÔÎ(íB&)ßýMö³{‚{o‡þ&ÿù´“½&yÚ8ôœý;þVÜ»ÆÛÎx7.kÞ›ö'Ö¿tF\ö=ôåõ×½™zC¿ëϘþ S½ç%|ûH÷ˆ9¯œŸõŸJùp~Óì“Ù}¡ä ~¬ä—Þû—þÑcXø‡úŸ§oÊsýöSžýfÅ>ä‘kêcWÿdžÞ_fŸÏÆëtןýÞÎ¥ýoÉgÝŠðÖ´Ÿ]>þ÷ Ñïñ3¨ÿnÚ¯~ã'º>yK¾gÏ\¿Ðô‡?Õ$¸Aý”’Ÿ^¾ï¼ÓO~‡ä$|Šs™½‹ö’ÿÅGàÀÏ€^]¿ø#ô>ªÝñ¸\È3ùÖý4Ú(ùêW’gãƒïzýí´ûÁ¾-ßÃ1_=÷×Wþ2üAàK‡‡r~­üf~=ýÏ3íú„+°“v;÷ÞÒk“/ø94¤üŒ^;”óD}—#ç=0䃗 ¿½wìÖâ´¯qÜÙmæ|ÛÉïücù-9Ÿé­*ì&Ê¿‘soûuÃy¸¾Ìx¬Gßáü®ü~†}kï·=;/¸{ãZF²ö )7í'¯àÿo#í&ÿÁm'#ý9/~Vê ]zÂ>‘}~ï™y0¤½o>羸%ôÃìû{oï½·=ùàÒð¬â=IË/„Oh|”‹?"/ð—š÷XÜ¥”ƒaªpä)z.õáçk_{pÜŸŽê£ç¯ß0Ͻ¯)ížäwö®ÕëWÊeo±yþ‰¼ÆÞ‚?<¾úzʃ/]MÜ“aÔþ>ýf'ÁO•=Œ{®É ÎivÕ†ï½|Ú:·µofï6îžÙïÌê­È§ò~~ŸòÙo÷›¼ßH9ô¦ô|äŒÙûUé‰Ù78½½ÆFì‹­?q%àü¢Ä£¦¿€o•žäwv ð=v W“²­‡üáëÉéè^ã‹§}¯Ë{qðOoË{ö ³ñò/²KÿNo#^½Þìü×ñ¹¯ï÷и„ûVv¢ßÆÇÚ÷ÅÏ“ßy²ž¾nß´oÙ9nϥܔC_cª—Hz¿Vê/±#âÄwÒË×ï4ø\Ï«¼§_s»?ÈùB_y#ã×xx)ßz¦b/%~Eq⬓Þëü=ã~ºoÉþG¿ì+vp çìù|G^/.ï#/žfïg÷†Ô~+©}Í>Çzx:åÛç—Cæ“ßü¿ÍÃEö49zrúÛóüàZ7ÎirbçïaÊ µwÒ~öBôoè { r]÷qêÉ}üM´'ß³³p?]f¯çÜÀð¯Õ/ãMNGzCúK¿KÄÿ¼p3û~£}ì°½-ÿzò6üÎߨýuÎAz$ç>º¹9u¼ýîòAp?ôgswH¯uu6ëÒýÜæ¹ö\öqJûzo >*¿ÃIáKÉG?Ânh-õ°cƒc ãèËiq ÒßóùÞyèþ*û Žà|¥¯ã¿Í¸÷]¦øÅë)ï†ó‰~"í¥g¦oÒ®ò­97êœüå+¦¾ô‹Ü ×Gáánô@è„u³ÂÎ%ý—ŽßûQä¿“ró»ù.]͸ògÒã´}hHñÓÖ=ܜݥ¸ ½ß-ë¢?£a§/u~t= íüO&/Ú÷ôšôPøúP8<ýúM¦ßìÉÕ³&_íðó=ûcö%Î5õ׎9ß±G" £Ö#»qð‹âàáŸ0ß[_ëi—{ç{¿sÊÅDzW6>oKüq$É¿ÊïþO Fw{¯yÊ¥÷oÓ”G¾>{¢âÙyï\EôÇ|¸Ü}È›ø³ÔC.á—ÒxÍÙäDô¢ú˜ƒŸ¼GwŽ¥<÷?Á«Åû…G“«j_qa‡Öû¡®û…O»”òÙÙ°—€§YŸìà©o˜ÒÿïhüBç]ü{޾r:¿ÅQ«GJ=Î_ö?8èØUOœßæ}õw9oÖ·’ß gò£é=yYßèãzäz9r±÷{—#‹ù0ŸøtNü>x@ãa噽¿}[œúΊGF¿€¿_˳{VªoH9ƒrðEä£âKù½v8i×NÖ»ûH}`ãõ¦?æÇx÷þóÔ‹§§x6vžk?¿èaèCà]¾ÇÒ÷…­Þ‹>g¾àãìásÏDÞ€kÃçÑEñšñü8áìçÝ'¼öã¡Æ1ùøØßõWÈyw5çœ8;ÛkIù3æ»si?>ôBä˜sáð ½?<ùÑ%öWb¯ÀþyÙø¤^öüŧüÎ_SÜ£ü^ýEÆ\Á^‡?¾ê©Ûãñ¯º‡ü¹‘|›yìw3n~©Ýô#ø(>Û¾$‰{3ëïNîì½`IéçèµéõùÏâ¿øQ°»YOT¸–ó–Hãý>?ŸM?ðÛ½76é›§të÷>ºo/úö,9w»?ìoëY}Ç–zœ+ä\ú&~+‹ÊÏïµ÷Iÿ顸uð#CWëðú7òþ‰˜‡¶?ߣwõçNþÞ7ùŽq,í;Ëo*ïÝKn=ÏG¿÷–äW.½ý¿nç;tò{ïÿÌyžÿf_×Â.ë*¹*ëg’õ¯¬PÚŽ SµKÑŽ´«÷“¤|<ž_€+“ã¤è<¤÷e³‡‡Ö~1í¤_Å/:7Ùqá·{?ýÃ!µþ:ûŠk剹!u®à?õ+å¬å™Ÿu~5tçFÚaŸàÿù›^fïª=yoÿâ!ýįm…ßtÍÓé¯óÃ|5ÎMäMóCžÒ/t‚½tã´M†”þ·t;íHáæ þ ÏgŸÍßÓwì'à âùŠnŸ°{v ¹d+õô~“´ƒ½+¹°üLæ¹÷ãä;óêý·)ß¹ƒÿÇïµáCðNötør¸+úøÆ´>ÊxÃ{RRô½i<µ|_¾ç@ê¹=¤õ—L?Ì?\¡~úi/¼Îq%ôj'ý/nÔ8³/k[èLÎÇGöÉùÿÅ. ÿÛ8[)ßú¯Cúo]ˆ» ÿ¨|›ï¿Ô8ÜMšzì+r3¾F;È%ÅåRžø â°âÇégqâüÞ{{ïëç˜v&üÄ' ¿:'Éð|ÜÙ!îì£x:ú4ö1Ž |b6þ+ýÀ[c—a]—NßÒ“ñ;ƒÁëô¿÷‰gÈ ½7ýsN['=׳>«—K»Ç0ô†ž¥ñ9SÏrü~àE•ƒò»ýÐ{ ó;{5÷JØçüÅŒwíÖò{úi߈KCïTÀÛ©ç฽O½/va—Þ–,ÎåÍ”{#ãÀÿŸQÜ8õôžÍ´3íÜÉïì{á¶ÎYãn~à/ø1qÆë÷œzœ3äóP?;¸,>'ý¨<š}U¼2ç~Œ;¦¹<;ÆÞ4Ÿ~‹ ÷€çÔÏ-ýÆ/ð3ÓÏÙ{‘à±p~CöÓ6?ç¹qÿù£ÂïCÙÁ¦ŸðNþzä7ö½Ç4ù7/í?>#ï6^_¾£ñ{ã(§ýß›ú7y’úÓ/qÔÙ'“{ïD¾/þv`<ÛÙ·Îõí¬cþLô9èˆ|î]/þŸú{¿PÚ7ëŸÌ¾P?7øE¥¾Æ½K½ìˆñA=wÓz9ú>óÁ ÷Îì¦ÜCigÊiœÞÔ3÷ѽŸ>’ézð1ñ'$û ýæ× ǧ ?µ>˜þdßÖ^#öAð‡úsæ;~é—r®ã»øí\÷"åãû{ϲ¸7qä蓜/ðàÒuq¶ò;?|¼ªqä}¾‡‘;äœúÁ¦¿ä½Í¬#ü¬þ““Ãç¼à<Š{Ò{½ŽÇCýè;}¹¯vâ·ÒþäkÜÓô¯ô'ßçðKæ=×âsÑ=ò£8çâè9'ؑ¯ÐmvÃðvø;¸úHGÎsn  ½W"íp ¾ ÝçÏߟ¾êRødôÑø£ç½o<ñ‡øŸ’ç³ó™½.ûjx‚uDÞ ¯°NÑ™Þ+œòÐqÄà…è79r’ö¢èqí„Ò~¸\ìjöéõ[Éoßg6Þtêg.‡/£'Ò?t¿z¢äÃ/àŸáÕ;»ãöÓûÁñ«ÎüÑ+÷þá䣟Sß…àFä½ÚM¦_“´Ó¹Ç.DŽàþÂùg=ÈW?Ú´ƒk?öž®|OÞª_sòã#Ð|-{Ev üÓñ øÙÆI9ųSOéìÔCîCwÒ8¾=¾½FíS»:|1ür{O@R|/>Xü¸NïuNýôðwtƒÜ\;¸ÔOÏDeÝó«ržÃ ‹Oe^{ï‰ö§΃ڣ:GS.:¹sÓz¦_ÃÁçõ^³>øõÜÓ^|?ëû,\!íe¯âœ©>2ùñú_ùO¿ä»´Û¼˜7~ õ»3.ßyza7ß=Hšv9wÈÃì$ª_M>úúÏM¹ì¥kwœzðMü˜z¿èí|—ßñC3|KýãÐ}í%Ï;Ϭ#üzÏοÇÂw­FnsŽÑœÈïìIùO‹‹ wO:zWÿPõÝ÷ ÎEÚû_REúãžÿi|c‡Ï¾ ß"^ŽóW\ªÊki/yß¾™¿Ö{…‚;7Ó¸éÃ!µ>ìgrLýÈR{…ÚßRöOG/Ò{6ò;„Ý™ñ`ª}vÞN?Ò/vì@èzßxòõþ?òAÚ[çä‡+MR¯õiœNå»Þ—‘ö¢Çøë´|WÊé½êÍï_•zΉßû`x–ÖwwHÙ ¡›ð‰Úc¤ü⵩w6®{ÂÆO×>ö0YÇÎGü{Ù¸5Wã§q-ùndÒW’[­£ÆOÍ9ɾ‰½„øÏèÓl¼HviôµžÅ ¨]fêYKyk±î=‘µ Ïß½AïÈ¿øy)» öáø·õÄk¢7êýÉßý“~àWáÚâ mÇÝäß`ýˆàœoüøÔCŽ¢?BŸí“ÞÏ77î¿ó¥rpêÅ÷)·÷'ç;v@ì¸NEžq.ŸŒ}ù]2ÿ¦“±;õûíý´©¿ç“8Ç©>h¿5{øëC§ùqñß§9áâÓ¾Ú ¤>ü’õÞ{ySNí{ò{奄—÷i¾®÷mèoÊ«Ç\ÊÏ8ÀkꯞòØ+8ïðÝi8’ìÖØûˆ/DÎèý#i7¼mÖÿ‡=OïíN?Èì§–BoÐ5þžÕSç}ãFèOÊí:>4¤Ö­uÈÿß¼œß;ýŸ¤ßåËòŒ/³ŽŸÊ:óÞ>YJ¿¬o~¼'Å÷NûЧ¥ßäô¨ãzg\.½Cùjú¿›ãüüõàxâ÷âÙ ¢“økq6ƒÓÍÆªž))}ééøoûHùôyΧÚñ§}äÔÆ?z2αÚ&ÿržÙñ¿YË÷õsN½ôëp@~HöMõdw†?Ú¸á‰+Ý8Ëù§Ç1.è(þ¿P?¦<Ãwõ×ùŒO"gÖÎUùy^ ÇöMïÊï⸈ï†ïÿðïÆ§XßÎôßøÔÞ0ùÄñ —±/Oªþ›á/œ£p†«úy7ýŸRñß= Üy´þ&ì½áÍ•_RÏÍÈypýp>6®àƒ!=“ù] ÎlžGsnœ_=ð£­ü/¢çìýiáÃßœz×:ï›ì$Èì¯È!èô úø‰ÑW4_¾kü¨”/Æ~Ni7y»÷ ­ )9  k‘÷Ηâïi?ŒËñw¯ÙoøMçºY»2ösi§õŠ/Fæò,>rN$…âWà0ä"ë³qVn ):Fn(_ŸöÃS×S;ô¾ñÓ¿·gœw¶~V©N}õÀÂÃ+/ç;|s¥¸Íƒ!­ßAʃ÷ÀÁÐç;>ɼIå3NoÊ3~Rü’ÆáÎúä ¯^vÿÆÚðLÿA oZOæ½2oôUø.ís®ÂÅñ‹Ño²G«½ÓÃq~|…õhÿ*Ÿ>ºzMíJª|ñ_k_“~ÚÇrh\?ÜǹÁÞ}wW¾Î³s¾\þàn~Ï÷è¼?EßJ>¡‡¸}[¿ˆ”A/ìëê»#¿ˆ7#W‹c×8â÷óûƒñ{ôSƼw ¾®òˆçIžoçûô“½¿ý_ÿÅä_ ?¦?Öÿ§Þ ß{ïlê…WÀ'–’–ÿ»›4ë‚|ƒîà›ðÁ ÁƒØ]ÓgUž\K?ò{ù­ô·ñþ³>{ßpÞ;ì›Ë™OzvòÜ^#žç»èAò=~Õ>i<±ðeÏïÅUL¾ÞožïÉ#•’’Ÿð±ì!Ðé‹3ùª9”4ÏpëÖ{o )ç}ï¡È¾,­¼<ã‹á­äÄîÛ¼§o7©÷¶<œ„^ ýã2½ö¦?ËI×|—úÈu½—–Þ#xÖüåáùó¦|Ås•7ä¯ÝaìònNý¾æÑ½Í©Ï|àßÌKýÈÓ?ç…{ÇjW›|‚GÙ·âèÃÉœ?½{èpí{k~·?®§Ýî«A—ÙkÁÛÞa=†?v.‘Ÿ•/þ$¼…žŠÃ>ØýøEvhðX|Uåδþ„ŸAçÄE×íbR¹%ùðW'Ošü8k7¦a÷f\ÑeôˆÝ›u[²´~¿ ·'7¬„Ÿ+]Î3ü­÷Ú'Åÿè{möâÛøâwm¥¾”Û}›Ôù(¾‡{àíK~àökqÖôÃ9 hŠ;©Ç÷9Oä#—ZÇÊÇ÷²OzCÚÇÞ> ù"vi_íÚÓñ¬Gû^è\>þ–]pýƒ;[ÇîÃX–ïÖÂ['é'úqÚý>é·óª8|¾‡CÒ'N¿Ñ?¸ãL|âòWÂO¨Ï9#¹ïÍ)ߌ/šO»ðÍÖ½ýz޽NÞ׌>8åÐãYŸäTzwþ$ÖÃÓ3ÏâE»àföKõ÷Ò.í˳xÖaï=N?7ñAÊIûÈ¡µ7ð>ùëוöX¿ôaôÓߘ|èÔó{ùøFúÉ n…_GÉïÅk’Ïz‡Â&M@Àâeì‡âé/<ûÙð›î£DÏÏg<ðGè'ú¦ßødt†|[ù5¿£ëÖ™uƒãí—Æ?N½øâcÒ®”ÿÖ<;·SäÇÆ—ʳ8dì¾áLöeíR{{þ¶è¹§q“ÒÞ/øóCúÎð-ø&ýïý]‡ôó¦óý°øSã§^öNô_ô¸ðç ¹Íþ®ÝNÞ×/3í†'v¿¦òΑ¼_IœØú­¥>|1{6|Eíz‚‹¿c:¾ÿÅd+~›µθà{¿hÚ‡_Zÿ7±CIýìêè7øG±›¨½xúoÞáô.øãòi<Äz·Î‹G/GÿFÿO_l?ÛO¥]+Ñ×ðçi;´;í¨MžÉ«Å óÌž¬?øèêÁîŒû'þü¹~³¡‡âå¼kpàž¼ƒ\ú ‡bO†Þ¼}.å¥}äió çÇw¹']f‹«þ'ís^Š)ý½9î¯ýðš©Üôç݇˜÷쌃ñ„ûX?ô¥[ìRµ'õÁµÉ½W`’v†>lÞM9É'¾¾ŒÞî¹Ð9r?:å>ryq€”C/Ôõœ~àƒñ£ìðGœ´÷*f~ÐÙâ©Î#÷±‚ûâ›ù[Û·øžÞ³”zì;ó_;½”KOC/Õ¸÷‡´qÎ’²gddþá ä(ôÒyïAŸÄ%EÙó4>ÍL»zŸÊnÚw'ß¿wl_ÁNƒí2Ïcžv\ ¾ðý¹?n¿uÃÏš|Ùó-åÍÆåaW §6^YÚ[½mðŒÞWó`H̓ù®Ýgúß{5ái·q[ÏyD¯Éß´v’y€k9oׇ= yƒgÖþ.8&ù޾Ñ“ŠgêgêÃwñ6Îð¹ÞûrØTŸr+å¤}p:ü1{7ý7¼|EúO®G÷Ne}УZ?èñVø6vhpå² AW.F¾!¯¹×BÜ-ëúzÚýùyÿ|Êo|Éô‡¿{ó3Sï½´ãþ¸=èdõ9·ðOäþÚ“§ÜÆiÌ÷½‡+íº0óþS}â£×¿)ùÍ×µàâ=“·¬óø/¾“^:üEíöS€¾®Sûà„â3l†sˆ—ŠuŽã“fíÞj÷žzÈ ìTàìpŸÚæ{t&ÿõž—ô§x[êƒ:çü~,8xõü!È¥ä*|Ð¥Ð~IøÝúY$mܰÔã|‡6>á!Eÿ8ùøM±ªSúO~·®ÎÂ‡ÒÆÅI=•[SŸq]×ÿäë=+Éo}9—ùY°Ç@ß+¦ëz‡þÕÞ*ýª?ÂÍÔ37¤õ?Éwôùo•v‘‹*Wæwç9|=x&½1½’ýÐ{…“âŸkpHÛõgúö”›ï*/¥?ø£úYäwû¿Í.>Ðû ò|ëpæ>±uÜ}|'ýH½æ±v©Ÿß+úˆO-¿˜_]9)ít.³˜"n´ødâ;á;á´õc˹,.<¾¬÷S¤þÞ‡™gzŽÿnÚŸvšOóðD\¥¤ÎKßY×ìvÊ·ÞR8ú¬œ¡~åâÛé;ñ?µ‡K¹Ö=ü­zÕägOɆ`ãØåûúkL;ÒôN‰nW¿›üðò1ù}´žo!íƒ35~ÈÚ’oÐaúrx2;N8þJ¹äÄêå&i_RvÙÖñ*ûkí¾;îwýg)g5vÕóå÷Ïÿ¤!½‘gç¨óÞy.É;³ÞáÒY{ öîõ¿Ž|"~Tí)’š—ÆÕˆÞr+Ïä,|õ,Ÿ-N>}%ò”õy#í¿¾×ºé}N·w½6ã“ý¼>Á½ ìí»¥à péÞc÷ ÀO‹ÇDî+œß{XÆå™Ø¯7žÂ$ã“vÀ'gqœÞk”ò‹ä{òœ†\‡ïEŸNÅ¿‚|«|ú ™8 ÿ_ߣòÿ—´ñm‹Kg~Ü7†Ÿ?•çú»ç»ú+ÝÒú=Rô®v²±Ä·:/œÏîì½y_ÿ¨Ô.ÁV³´~Ö8¦é‡ø_èfõ4üd”—vã/‡ËiWq õå»ú™æ™…¾â3à+ö1{ ôÅyPá´·qC'ùßÒkö~ôйêOïä»Ôc|ôk'ßÃ'®¦žçò/‚»ñ7æWî¾ûâsi>¿S½iÚƒ> [è=»58dñoqŒ&Ã3?ã®çôŒYqõü^»ÁÔ 7å.ŽaýÞú{\ü͹ìœ!ÏZõv5ôŸ½céYÆžÐ{p&ãzj/¾<í,~•vÂjGŸçú¦\ø.|„dõyIÝÇÖç´›þ>¢<¸ùHœ|üÆz<å>ÅìçâÓi?;(ú\|Á$ånópÞ^K>÷„¸Ï‰¼§=ä¬Ä«…óÃIjj¼RnõiãÃ$~²q†Ùׯ÷rÖ'œ¾ë6ãE/‹ŸO½“¬Kã;ko‚>â‹«É÷k?{2ƒÀg:團ŒÛßx¤IÅüvmüv÷Þ¾|_~7í —±×,ŽŸ´þº·Æùjgt(å¤=üëªgȾ(œüpôÖ=Æ—Ü9—ßíŸçR>Ü]²OØK°Æ—.§ýð88+=):¦<ö2ä=zSñkê/”v_rk¾§½~M)^ï\ëzŽÝ¹^»–ó;¾>ö§)žÞ/›ÿpŽ’ÏœSkyïÜ`ïL®„K‡êïÙàcñùåò»xâÃ'¸û…úå¦Îýê™òΩ|ö–ð}çâ+Ó?ôŸý†zà†Ö¯s^á~z|¹¿†>à£õ#|Å/~Ñ/ú¥½ü¦½ÿöþ}àúÞß9¼?ðQ^|à¥{éKÞý%ïùòw½ç ¿rïߟ˜|§y‡ß?fqaîøÜ‘ÑÓÑÑÓ±ÑÓñÑÓÂèiqôtâñ§ù¹ÑÓüèéðèiÔ–ùQ[æGm™µe~Ô–ùQ[æGm9öâÈ^Ž#‡g_,̼867ûâÈèÅޛó/frïò^ýäèì' ãGŸ•qôÄüøÅâ~çŽ=öâÄ^£'fZzboÅ?žc~¿åãÇöž<þb¿Ðÿدvqôb¯£‡çæF/ŽŒ_9rx\íѽ ‡Ž^Œ{;|¿¥7ìø~Wæ±0óbÚýÇZzxº>NŒ^ŒÚ±¸Wè·yqtöÅñÇ^LÇãÈc/Ž-Ì =6›cq<ê‹û‹|&Çlµ‹{ƒ<|ôâðã[œÎþÑÃ3/[Éy±0óbá±ós3-?¼¿*çf_<Ö°ù£ûKhaöÅc ›ŸaæϾx¼ÚéT>^ÆÂx^öc¼>NÌϵtÿÅÞˆ{ìűñ^[|ìÅñ½eYRûÒÃûß?>{/ÊÞ‹#£Îí½86Ú•{/öî^)¿mÓ¼x4{/¦;ý±óû wþ±vL÷m‰æðb¯qó¿Ø¯åñGNŒû2ôØücã±÷baaÜôùÅcãÞ>9qd6DZÙ £Çö;ûØì/Žžy±0ûb±Ó°¿ZF{nïÅtI½˜¿8<B/Ž<þâØL¡‡GhïÅÑ3µL—Ô±™‹r|´òb~nöʼnÇ^ìàè“ý:%(2䨏¥óÇ=>•ÇŽÍM—åâã/Ž=>ûyqäèã/FhïÅ‘ýØ{qìØLŽ)…y¼Úãó39¦+ùñvìñè“…½2ŽÎϾ8:ûbqæÅâ±Ñ‹=úñø‹ÅѼÿb¦/[xüű÷â±jççƃ<=F…™|­ï¿82SètL÷Aýƒ~]<~ôôëâñ¯‹Ç¿.?zúÏD<„¿B¸Oú^œ—ûe_ñåoû²w}U?ê·ç/ûʯz×W}ÉÞo_ònŸ¿û]_5ý|*rÿ?Ìk.ÕÈfields/data/CO2.rda0000644000175100001440000157131412560751565013552 0ustar hornikusersý7zXZi"Þ6!ÏXÌç…¯ïþ])TW"änRÊŸãX\°ÆqÅjnçj-&éZãÿü±@6Ðca•Ô4…ˆß¢yŸZåM@s˜²0+•ê@ ¡‘‘eà€“Y8Å|E‚Óð&—ƒ-ˆû}ÿ1÷4TÉzrê–k‚QuLÈ›8Ãç«§ ý¹ÖsœæøÔ¬(NcøéФÐÇ(6¶ørj¸ûQ¾dÒÛ¯âg_±W±`=3Ñ,±TUwùj¨fbFhüÉaò}!Y:<ÑT5ñvÙÒþfW ¨5Cð2œ\xïÁ dÓàqyVÒ¬¹-O:Ñ´‘CeV—‚5¶·e„kÉE[Ô¾3ÃW,Åk¶³°á]7± Å¿dƒ¬;JHâ]íì ŽÒ(Å{äP¯Ï7š‡Õ$ߢ:MÝ]i¤´¶J_b–µ¢ÜàiÏ©@ùƒ€ô¶ð!­:¾8¢F¸ dbQÂ'Ä¥Î×Þ¶tl;õ‡[ö8G‹,³ÝÂÖÌÈF©…CÙ]—Sú³Ù©…6¹'Ô·ŠQ9U¯§¨HGhµñ'Ð-º„RŒæLÍI‘9âKä(˜7¸kÃÚ•Œâô™!þ*,9ë¦Ñ|UwJO5kÀe·à£>>ÌÊ8ñ¯°ACû;ÌyCöŒôvÇLûï~ù¬õœB §ß× U–÷=ëƒC1ˆ,”ÚÕ+ <º= [1#ü *Äô µÒåêöÆ‘ÜæüRÿƲ¬`þ"ÒÔ´Ö££2XRdC Лp:qØÍ@s¸¶JHoyU¯ªKÏy4Qé,¹¬’wJjê(Û¢l„á#[?µætæM’ûÇš•µ„7È¡ƒò£/í­|½Æô²t­q,Â|KÀâaô§pˆ8åç> Ý™:Å…dã—!3ªN¸ØI%zÓ¦!a^’ТÊÌÔU`ü(§¼¹<1¤|ƒnuÓD TÞH Z÷¢¼ó(EËí¬Ç/£ç®yš“é!N¸ ËýóÜòHï>ÿQ¥ &$Ÿ7ÎÁ³Wz«lõ;dRc6dÕekO¤¾å•.ºñON½ÀFò×ZÊ}ÕÞ ˜`joFª,¯½|ýö[ z8Ú9Ã[È 8¸kv8.å[ŸŒßšØX×ý>hQÏÚ ÄpU.Ilñ߯²2YßK;B©-./òïž9êönvÄâˆÕ ÏÔVÙqf±ÃnŽ™¥’Zuh0ê¼»èÎuø#5:0jÊúÎ{ßXÜ)Îä$,ÉÞdñ‡2˜JìDám§Vl¹*M[9Dà÷~·Eð¡àï.s6Î÷xƒÝt‚—åÆô½Ë ;\§Œƒ?&P¾Îšþ†|ü.Š,Õ¬Õ59«ö~‡.­½ý¼÷g¤k1Ÿl¤B¨M7˜By;½¯¸Ðó óƒÎ¾Äy Wg®>†ø]YyZÆ „^‹ŽÞ>L¨ñ\j¨¸¦ÝŠÞ#÷S8ó¤MÐn9ùǦ%Ã͵(߲ώ2¬'[AV„R…ÞŒýëTY´cü)ïÇ{›W¼h«¸Â¬Â8Êm«_S& ‰.vok3¬Ò+ ¢KV*—qåÊ;hÖªïß冟œ[¦H¿ºòÿ`Ñøb_MÏô M—Dºgßêê*ä‹Éçvê«s=!ñÉn1SP×Ûƒƒ`Î9ï¢XíeŽ–£–AËemÔLv”½P)êÀ„¤èíZȽÝ5«:Ú‘÷lxŒƒCShä°¤ˆ‹uñ§Å‹,à1Ÿžž©ãËÒ=MäêXx€îÊco0ñźÞÃ<2â×Ô–ˆš>ËdC{&4¿Š— ‘(¸ò‚Ú¯½„Š.™_Ï/*8¦™’o1`ì:îp†þ› ˜T¢ýij@-#ÄPCYÞ·Ž3í·Õ³Ò³ 6óÈuwâ$Ð2\*± $q‹wlGGÜ%Gxf<¿ÎöC=Bhãq3­n´3€«„8]oÓHu©¡âæà~¬-W¿{bö}”¡ŒÆÃ]K›Ñ*¦]@ |­+,*㪮zªre øæAtÀߦ‘¸Íx‡ x%g.!ØEõ"¤[Sïo(å+B5¡0”l‡Œ4² UÉ’ŒH'Ë•_¨æC}{"NÒF‰8Šœv ^f[ •ÃÁ7ðÊr÷ › çî÷âS™È¬ÆÊ`:G³;$“ûÀå!eܾ4÷&Þ›”Ö×¶„êÑ9e"Þ«¥‰XX¹{G|$sŸR„J7l} ÓÞäçUQRÏåEo„¤Ê~#ÇådÌ–hT1k[ÃiG¡*´ê{¤p…ËNìiäÌñµñøÓL© Žß¡±(¾”¹‚OæÅ%`ÙF½ðØÿ ¨ù–ºíøªH“Ïܶ™.UhŽ}BT9Ê^c[Æ”³êtvk6b!gH—m¦ÑîÆéË ðÀf^ý¨½Ùe—t­Öùé5 )ÿ¬ÕM01W{¹`‹b*‡?KÛõí*϶~Xs½»ê–™ÄS…AN ëÒæ«9‹Ÿ¿,ú¢ñ—V,#<ú˦4E‚¬®5 ä }-1¦²ÛÚC~PKâþçÿ@iƒv™Ùrà²É>±>£(,0Óì}ÀãXu7Á]X cÀ¼ÀG2XïO¿hyg¬Ø37ó‘—2о:è*<˜%g®–žº$q‰ùbݯð$»ŠæâtvÉP5±í:ƒäÐûšvÈÝïžC“²{:-~gáøn )E`ÃŽÞΧÊîûç±AÌ„Pž­Í_½Š!™'“FÈ7ëåÚUmÁ–ß ŸÅµƒÖ~+Ûu³z``Uccdƒ‚Ú® ‡@F—n™Ó©ß•ðJ¸ÚÙ$§èø›,æy]û—Ÿjå\ðîbÖ¸:Ókì¸K»Ùm›ëï<¼)9±ãÐ ˜ 6RUö‘ÁÏuÔÑZæFàu4T#¶l¼°“ew²HŸWá™c÷)ùõü­Û~˜œ?DZê’«‡ ²Ú>•ƧRÍ2¢:ÒD~ç¬7FüŽÚ ¡Æ?v†Ÿû‘Û— ƒÁ3S$+ss)~.ÜÖD•TæGîªM¥Ý\•+¿ì4A½wéFeûMpXb¤Sû[¿¤ü¡@ò?ð†B“qÂ"ž™@2u¨ü µ‰ áúÎyÿ¢µÄº!òëãmz& Sƒ¥Gˆ×›äÔ.î ¤y=.²E}ìp9Kï÷zJCJkdŠV‘~`“ü"ùÎ,+û(±%Öfÿ„`>\AöøvÔe(c{ãó=ÈDØÎšuÄ4r K.ÅuÏ×vsMk »ÿ¦Ý/¤…2\ÓÃ×¢ì2D}•¸­ ?õÜxµ'Ÿè‡ WÖËg!=0·– q;^uÏJâ@ФÜ3QïZ5 Âú=ÞÍeM?S¸¤ …y ‰GbÐhDtâá¿4‡„äZƒ2ÔKFDVJÇ*‚\ßÌEUÚéøLày‘¥Í“Î (¯óiL'u"Œp´¤ajÍ¸Ë Î[ìzuïÓÏš‰õ^¸Mß3z„°ÈÔŒž{cè׉>t‰®ÐPÇ,ød|TÂKU—w1Cþ ,‘[¯²ÄIa´ÔØ£Ãm)#SwÓó혜j˜ÿš­)NT*±`Ã?˜Ë‚-êÝÏø<¯44bDôƒ¤KýÇRõÜU&W Ô<%¢ÐCžgù‹ÊüSÙšÿåñšèã$šX¯3:}p æëŒgéuãÍΆ{SIWø?¶6K°\ Ô{›±Ó"x 7ð±0&E5íŸ:Råg½™¥Ÿ5šázŠ¿ÞIü'u|tßÝ3æ‹Qeüûg-O~Íáû³z'­7ý¢•C4Éšì0I^L#sÜiå “0×ì›÷\á¢""¬–ð™d︈sઠæ{; ¯‹Çü´û‘¯Â¶Ð;æÆNÎA ÂÐBMF„RèöÒï°ØJm˜HG¦åéGGß`v¿TMæÅWóa Ò©uü MÝ…2W=Íÿ€ü4­ö»¿!>5©S’Œšäù¹Ÿeo†oëš?25=Ûë…g‡ ÊŒ¬ÛO“Àq1lÆÌ¾’à]ÇÔZ9Oñ†WÊDÑ>úò¼¯Ðe74•ÑߨŠM\L ¤°°…Ô3Òq-}°ú°×©ú[^úX Ø3ÏqïÚ'—ê«ÅöÿÉ©$ÉUËe=Aº =IûêäÇdZÇ¢ðk»®BªŒ×~îì q8œð§Éz¡6”îÎa:/z%_·Ý|ó¿Y‰´¶§ VSé¸Gy{C”Z®DÖ›‹°=Åïûë]ðýwù‘½Ï5!”IÞ•Ío—6Vöæ«I:5K[\i\‰ÖŸ4éJ¸ï4¹e£ÔÜ ܲ•ã0`àk%Á­ãlz~Æ“âJe©sùRÅó Àè>UÃý¹{/³ä¬:ZÖhÙ=ÂP…¬,q4à (iHô,‹@– Sk4m=¨¬òë ÉØ¿†Ž(T>Á1Ñp ¨¬H}h^éÖº+¬o!„‚rt*Ñ+oÛjë$~ Í´áÍt¥ wR·g¦Ø‰rV™èu³ »nÁöÿv@;ÝWˆÈXüxçÞ?ݧIaTEÙºîÈ.—÷Çå-þŒT È$´æÝiΚé}^<²ÝÌæ2оAŽÔwp®1àõbâÓ[ûmæøG½ìm˃Ä㸾$£\þs‰,P ûoJm¬ùÏÓü—âl%W ²ëÖ¿ÒIHĦ’ö„ÿs:[€€Ì8ûÞ;i`ƒv60ÚÉèæÔk¬êò»&Ñ,ÚgyUØw¦tiµHÑt…šq# úOy-Ç'çB*µè3K(ËÇlëPõÙo¼…|a2EÌS¸tWõô*³¥Ä’£|˜øa;WZÃáÒÙúÅGê•)õõ8'Y².#žN†š£ØÍYoz¯¦øò/þT-ƒ¿7(êµ?•$YÌ*¥Wà#±c‰Ä÷•}d õÁŸÞ´’–ÒpD@7¥¨ ùn -ˆæ2ȑף‚¥HÙ]—mÏô*IËY.Ö0‰U»aœöÎÖ%£æÊ¨ëb !%`ÔˆÃzÊ"ù”'3ˆÕ=åN°Pw6Ø&VÙo}–.uöTn^û Û»öÄOôª)ukB#JÕµÑçgk·mÿƒ½¯ø?cB80ΨPJjMªÏˆ!Rùlÿ#b'‹X?ñxfíkÓaä4àˆ¬Ò±¹qö»±KùØžóÈÝu Ûñ_ËQiàØ£×å[]2q{%[|Iûi³ü(¢Øn‹7–ᶈ<:ÆÄZ䘼½ý/ñF™ø×ÆZ——ªbùÖ–€—À½È^È]LÓÎÖ•u‚%¦:€ìø&*léj^hOcTÉ»áw"Ñ”ñ&-ŒÎMÈŸU4«èYÄî×Iˆš§cÞü0ÿ{UlzâMZÝ8Bô~¤µt,`—=Câý&tÖª¨ÇXP]G#ƒð¾oyè–`ÏÅø=ç<Â;mÕ³:ã¸Ç¯Ïüâ€1éŸ;w_nÎó` y{fçAµz¦ ÊÂh©îØZ‚#štÁÍø<&¢éz3ÿÈΧÍNŽ DŒU™ÑÙóßUQ¦>\µÕ=‘Œb‘¥wæû|F‹Iª{§ÅðãbnKâ?mÙ¯ãf‘BZU彎îÒkŒºRLc{Èn¢õª˜x¬ §“(sœY >NXÓžfÈø¥ÿCØ’-‚g&ÛwáL¼|uÞïA#'Ë-LÞ¦n ¶k*ÌÜf&j*?z¹øÓ€‘Á/Íg•­S§ÆÝX²íö={=éÆ9ß5ãVÁ߃L-¥ÍÛ*QqgWW<ˆq7;:·{¶-ù~ô³aË gÛm5ªÌRtˆ5j³'o²å›2ËŸ&¾+øS”ß¿P0ûôx»¸­<\8FâYØö7&$% 27_än„pĵZuQ3 kû»P„PÑiô‰§cT R[JŽÅT1cM¨k .™ÊT£,®/ 5È¿z²Ô¯æ—Æ¢*jÛ»fœ±\¸…o6 †NÔÞ•q)Ù"ËÎ^Ã|6Sì³Ìq!Cñ|w<*ÃWáè„ôL4E2ñ¡FÓü9¢NÍJè1ç³(JÒ¦ƒ"dH…¼Â²dÊ„ {¦“Oºž_A)uð ìphS.æ¿?šÿŒzðkt°¼©¨þÚ2há˜P¸_¦¾T]7xR´Ñ6ó戈z€h5c¹z61 üd»e¿CÉ(죹ÑÚH/YN]7O¬™.ÜÓÛÉ×y1|?_¯‘"z&ŠÔ(¾+kEFîí–ë•}|¹âËE=½Ðó­¥^]·÷JV(š˜ ÐY…Ÿ¾+M[¶4*ÖÂvÈMsß>ZDÑ—63—[ì)ƒm?u&H`Öžà)f¦6¿'ñR9;Eå¿@ø‰W7²“A T$E·|&³¹RÝÑßëÿÝz‚ðdÅ ©n÷©Uw6™£º˜‚ovÜL”Ñ–q›÷ÿp“7ÅÝW’ž'úUzŠ+ãˆíW;–1ìÀ–:ßpƒ1ùÍåÁ£?)Mõ—Aùiô˜µ”)ÌñI²ˆNb<£¥4Y-eE:§¸-¾dCèÕBò È-º‚{KçPæàO·öøyißÈÍR°×l²wɹØvÄ»\U1°2 ^«ù< ´¦×0ƒVÑO¯ÀŸA¦aÙê0;ß§l?™±Ï,r0*ØšKÄC<•PU6¦Þ Åa©•3—ñÞ'VàtiÑîïËà—þ¯ö£fä¦Ïј÷<†=¥ëPîK†Ê&Þ-§¾å_Mq&M-¡o0ê¿ïÀIh av¢Þ8Ά¦VÃl.ÕÝ…ÉøO$¯8€ßЖ3…ÊÇAg±oC½š>r.@[c¸->@ë$~< ¹×8ïMZ2_‡ÚŵûÒs<²åE¬Ô™ª’×^[e0N°l¥eõQÄ“=HsTJWJ ¨ƒì¾yT&i’ˆ 4}ûr—…Ÿí ÉœÇf@·ë±¶éù§ËÝÐ ‚²3Òûo')ð!6â+Á{+4ƒß$ l+#¾n c|Y³òcG¨÷vÓ¥ªÍã%ž][}Ö¤â1Ï8·Ý•GÒ !W¦úÖ¦…d9¥–Ȧ6|…eV;뉷“Yæí`tg…wçï!?©ãY’rGh!Tx±û_ScØ ö3;ZKZ}cÆC1;F³‰3,›!ç›0Í_n½–NÓM%Ф–Ç°ÄÀ‘)ÎÂHö`-(Uh7š6÷æùl³[j€pŸ–È­0*¢(ÿ"ž²|4_X?4˜à7öy)¯7L6y¨Ç:iur‹.…;…]ˆý¾0´Åù'F…ÞŽØ7‹'·»f-›œ1ªg64ó@ÔAöÍ¥ˆ5¥•k® ‹ëïìW°§á¡Ò`j'‹óÚÑéÅ›¦ºÏéå|d@[׃¹"—DA7WQl¼ÿˆ—ëÝ}äÎ &>£0Aª9¯D”¿3»È¤:¾s°Ÿ¶H!ÀÃpÈ£KÅ´J&úÝÖAM«¾NMrÅ2`2A–*¸ý(g:[¹É¶ãI‚W~$…÷Õ‘2lÓÉÐÿ “&ºæóØhŸz¬‘oL«ë½!~ØŽüÑèý­e•Åéx{KzÑu[æ;ÆLñž®¤ç€'{¯rÜžWT­AÉJz¿»¨Ô±„Pqu'uÃh_LÆ—zÏþÜJFߟüÈ›ZzM7 1æб5øJW¢ÄóeSLú€÷6èÅ?I0,9@,¹ÁgCí[uîa]Á n»ƒx´ˆ Á*„aV瑱]uþBÞÛdF¡j$䂸^ijÄtú^j}Æb8´Òj'ç«ü¨-í^85‚;ó•ûV*+/¨m¦ê$—'T€dTÛ:¥ÇkŽ0+hѶÆBsS"éª:&2¯@Oˆï9wJ/Ú» 3Î^4 ¼˜¸WZxQÕˆ]ùöݰU]ß~ª“^ÓFÛòû±™—á’Ë,bºÂàÖɉÚk¥ïïUDdF°yP<ÔÝ|‡¥¶Žï)|UûüÁŸ6¼&dø†ë’¾FD²m^ç×òoÕ{ãZ&ßÜ,×(½œ<Ì( ­!KH"ù¾¡§³RÓ÷õuµ{{©é– žÀÓwðQ{Bð5þ¢ú n³Ûº÷ÈäÂ`Ú^\àÜTÕØ¦CMw&L ó×^µCa+zì uÃ%Ø ²©2H³Í‡ÏoéV·]›%ò>§5ùë¢sû>ÃC”K„í²Î\_¤T—´yÓË&€>PêH–Fa`¼Ô+Va¸tÍÞ\XÏÝÀÏV¾™ÅBž-ɳ¡ ]굨¡”|Ùhtg¨µˆ‡7~&\î!}BÌvéÅI³Ê9 αúªJgiŸ*´| †NÄöðá÷wRÞQJQ݉tìâHeêÕRTåZ™š–âV†'‡þGèÈ¢§£;èÞDÙY)ûu«d@êì¨û·'j2*SÛî²ü,.—±pû>¬/(ï²s×â'"<£OßÏ¢ÕA±õ×Ð߯Çî Ú£¢˜Ùu¯›tCe± Rß>î”t2Ð÷Ðd è’°ó?øÃ‰ˆã8%Í‹¬£©oÞç×ãótÜX[>=Dq‰wk83àû§Xø Ã-<°‡ð«{/-úC†LÍÝWM׎;AVMÿýÇÔõŽpŸ«—¬ÏÎðý?ô¬[Šÿ+‡ÐTJÐõÀ!Kð"ä ð³ç|—›ÿ¥«]û¬u§z³ÚÈO2ÈZ¯+Iù€½3ÈdZ9‹°[bAŸÍᥩ¿+ì[åÈÏôV¥@ˆÈ­¯2Tú§Êsz?¨ž&ó›ÇfÀû•þ{žZé18€zÂÈíu'Bd¹'áSÂH‡‰\)xxchÐêt嗸ő´a!–H…'tc`BÈIûNHlË왬’jŒ÷Ì]ôÈ]üQÞò‰)í#PWxµ_¡ü¨K^Ârm.üEÈ×'Ê„!Qtôz œ”Ty}ùÈÎt3¨/ g KcvÂãgRn×%k6@óÁ@yÕÎÒDj€˜ ãRqz­î©¢.äŒV• öéDZlm\”«†@·‘ Q¬ùPGgt8’I¨üŒ7¸Ò•WÐr'ûëC^C¼8y¬]@§Üÿs èòr"üøHí'ÁÓ™²±”ÈD`ÈŽîÐ9ݧq… %›e³ºw~‰TûdNG[Í0^cæ…' [Ö.úlÄØÎ,½Ê»‘8®×E6aÈ"¸òn’TÌF[D–ÎbDÏ*] 9"øµWab_æ¸ Ø^’Žãláá²ë‡gq K:.2nn³‡Qèzô–ÏOß#‡îe\5蜷µ\p¨Ìxº;û™¸ÂŽ,YžR’î:Màm(:RŽ„1ˆŒK_vYî”$ Ï›7AÍYÅOø¸qåvÕ+yŒè^æC3ªõ†¸×Sªw}%츞ˆø§L,ÐÇ™!G‹ ãÂ,ó™ ÎgÆW;ÉLìt¤ $wxt´ðÆ#˜V3 ª±Fˆât‡,èÐÝâëígžxG;2¿ä'h*(çS‘ ¡\Ðr­ßGéÖ§zóÄ}: j2´áã¿ÀßJÝsŽ“BóivIÆÌ®.c¯¬¿Ù Òjïʱü-9Zi-”ør¢gÔV©ÑG9ñ~´¯'žäç.õ?ndµW-4ðÐR[qyGjhRö ¬à®*¤¬x'¶úâX}¯ÄØúЗb{ñb00¶6|À[ÍÊ€Hñ_xÀÊŸñc1|ã’UèYnƒ‰ÇD——¹—b\õ—!÷¿ùNlLJü@­n5õ7|Q#…9B!$èzÿ9Q¼4H]¡óXÓÄ”+¹fÓGuõT÷1×R 5ö{õL3BÆÇ-ê®M¯Šõmsô s¢‘%æSñë1CY훾¼–†IG´Ð ÿþ&WMÊ´lp„J¦æ¥qûÈ*\}¡'’tÇÀ©M%Û Ç­zÉ^k2JC¯úÌHM-2£'âdz~Y‹z0K37í$UJ49½IÞ!׋Nœ,z›12^¯ ûÝ㸢`Ž32~v¥W³14æNÄÆ¼×©rÌòuØÙrh4ØË`2`õx®ŸÉ7¡Ðsׯ3_û}¸ûVX°7&ä$€)U1dº®©>ŠØ¾k†É@Ü´ŸÁùÎÖÎAKf(Ý~R e¸ôËÍ 4Öhá¾h…Á‰¿€çìå!jÃúàÄí*Cn½Å6»K—%¯jæg©üuj¼Ð6ÃRD‘ U]M|½f9L"”MÔÈó£OÜï7Y¡««mXòAʺ/Á4UĺŒ†\ô¼º‹ÀZÊÇ5Y™Ir=ü[!XHÏ–Cèó_4­õŒG„VíjR‚¯”k\˜¸9›v˜Ä“'š…‰µ*PâÙvÿÆ3)^”mRÿ+ À9ýœÑv² 0ÈeÜêgýÇÆ|^ë| š"›`Ü»àXÓu‘jY?÷íMzÎ¥¨Ã5ÞÌKsç¡Bóòþ„jõ™ìœ)§‡TûlHþï™·GeZ¶“ý•ÂAн ‰Þ¦ÒUSñ6¡•WáiEG¼æGm²_®éÓŸ9÷r&XG ŸÈ0Fð|>ºeÛ0!‚‹’kÁc~{¸»JðqpÕ.MûH¥{á¼¶ÊÁ¦•Öö–ˆ‹ÿ:£¯\´'Úãh*9Ê.ô‘Áå®—‡o8“úW9Ap%¶`þØ?ÍD±ÞIÀŽÙÿ:žÆ»ñˆüYOPj¯¬>YGÝ&߇›xÏDgÄÉey ÂCÚkë»çíîbÍïñÿj‘ÃV1< ¶Måa(«ÕbZ&Gq,Þuƒ³i²ý£³òFßð™³R‚ö+ê늿¤çó 9O$Ëq7LêF’f7ÌB‘¡UËö&¡õÝ8aÙÝîÌ÷™xÒõÛGòþãHÓ†ë!dO!ƒ+³"‡ØúbyUF”PçÏzp¤7˜Ÿ´OM“ǸªI5ÐâÂɱ+Lï.¼© aó5TY!æ½…yb^½àx³ D¿¨§±Î½X ÂÓÄŽËSZ^Äê‡}æOÂ'cDËÂB‹^A•{XHóPûÌß' +™†Ó£Ø}Çò¥":YFÅU¶šIº¯p_\pd…úõ4YnC,i&Àßì3Þ5ÆéòCBEl+ÿL—€HT€ÔôÄðϘ.sK ">qaæ1B¥ÿÕ±8dIÅ«\D®,V‡º3‡>§?}w@õõ¬Š¾N´ÕÙ«ý¸þ·fºÐÑ<á˜ÈÓ­â/’¯QVªFÿáWåÓæ`´Å­ÒãZÝTà0Eå$}qÒ4ï†×¾Q4 «È ¹E(sMÝŽàÞ—:YêlÃõ²]©Á1NÕç%7®×Z…RjN¸`°4Qßý_Q2íõyðKx'µ¨ÛqoÊAćí]© ®³q»Kš72cXNóÀñG ´N^¿[¸<øþîšê° ú¥ÊÑ*`Рévrõ%YëÍy6ùãõÈíü¹6A6'éB¤ÎœT™‡b9HÁ}–dÜÜŸªë„æîÅA!‘‚qÏÛ-ìÈUl±º %ª(º¼ä>“è7nÅvì½2eN;9îMÜtD–Jz\=Ùå ŠŽ­@¦FÙœú¹3ÆmܧÑf³ƒË¡¥êÓ;ìNÃÝäT5² DÌÌ`ç8!1S}Ûä‘&ƒÌ—Ž9BË“©Is²ñËš þCÜÂ@®)H”_Rru%îT§n§¬PPV8k¡ªŽ•ô‘’;º×ƒ µ°Ú„Ù¶â åu¾¦:#"r‹¸Æ¤otû‹aèâµkóá 8´U#ÞÎËÕv b (“"Ù½˜éSžDÿ­0ÒÝz§êàì4ÜÅyôMͨ›Ì„÷€i®½O^~Cuv :ñË3#XüTWñ‰4Íâ&PüoP\MïèCâ'ÕéâD¿,ðÇ幡‹&ßgÚ5xæmܯ‹Ý,Õ忱–°°ŸÓ­ìý$êjñn4üý¥®è›ZO5ÌŽD8¹™Ñy%ùñù ¯$&O’oŒÞ?Y]T6×7c+Ë%Z”¢Ÿ ²vo,Õ¾Jê)M¾°éÖZbÏ‹´A¦³6ìñÑû÷(ßzak«éƒ1xÙ€àqD˜Ì]f¾Ëé2‹0>žDeìùJÊý}pË#nT‚±YÔ€-ÞÉâ'õû¦ºÈ QXfN­ÁäïİiXŠª¬cCubÃÛ5n Âh¬d;ÿ{3Äå a4¿iF°ÐÄî’³g_¼¨rm­R?L$ ãs^6âgçÖ‚„U¡Õù©ò ª ªß^‚>¬«gsîŸÐ7ž„®€Žñ‘å(}꫃Р²Dƒ„ÿ˜¼+´¦ñiݦNѦ_à&Gû©à |¡Ú[Z^ZQo^aŠOåðróØ–éƒy;Ù‘|_,ŽÜÿ Õ2zñ™P›™Ü?ðþ®]ø°UȹôvÄð‚Ú‹µW¸´ÙOtà(Zˆ×|u&‘W”PÌÄf½zl™q<ÜÉ=\Hµ9¶Óê×di9WáB:wjüCmr£æ¡+ÌýF¯‚‘½‡“óð§ú8³¿¢‰^ÌD ¥b/y ¿¥*Ú6Ô¼Äp;˜ÔqB\O hXąȺå`äiÙK¼V]G¶JÔßÙL¤;7„3á9xþ J ¢IxF "öo>‰SMq—›ˆ«^I`•+Ãã|ø3”Ÿc3ïþ²‘aFÍ‘+ÌDŒF|¸xIgÞ ‡3'íúç 1pµz¹£pí´he ÎI¸¸1•rK3‰g‡,ÿ²<1ä lkéÊïwxdª{–0û‚HtÙÛu< ›,<üØA£ê’áÝ;Ø)Ñ­†¾6WŸ[Tù}^úï«K»Ã(­­PŽ6~þÅ”–é1¸3ˆ9éohÃ"Á'LP~DÅgC_dúlŒE„)Ä*ï]÷à¾×KDÌÕ;þg/£ªÇÂÃÿ—ª Ô(Š¥D1ß»÷ZêÛZPM Lœ9¶mÎ?F˜ôÉ 3∯JAÑÌEøÈ½mL»IZ -&µCõ—±ÇßFæ9宪NŠ|:ãÚçÙ9rÞüå–`´„q:/“•+1ţʀŸc€LúaÞ»–CùÀ¤âpé:Ø2`ÊããÀù‡Ʀi¦Ó#hôG3rD:nŒ&«SäN9åÙŒ<öÉÎ9#Ì{Èw§V•gÞ´ñ¸ÿ·¦®d1Ö™ÖcS÷`éaÔè{µ›5”g#À”°Ëà§hZvf¦ê Ý Æƒ‚·ìà\€Â ð±ÇxK².ç@ŽÈóˆ dúgA1\0ÇÚ˱‹§ÖDxˆ{v÷©LÛ–êõÉÖHeªW_èlTË&ÚK':^lÑÁP&›ø5V”ïÿB8(EÙæRåvSÂ,¤ÊɰS*ïæ±No†`(î/]âî7»™›ab0¸Æî´ÉÅÂË#ØI³k(k½"Ok¹ˆ`…’­Ê7ïÛ7s zåHSd·jQ¤Ãxá›DT7n4Òà Çvjò=ö#×Å„@ù!¾ä0?}SÊ ÕUrsm}‘·˜üI‹°¤Æ·t6õ¤™Ké󯍤Oe@Z66OúÃãÿGÂJêÜ»-b¿Ô@{Ì¢¦X5 ¨°vPñ"­.§QChш*ìÎãåÍ@íÀ[¬w/1¥õj Ëªªe³ôÝl;ðè‘f rXb¶ðšƒôxõÓ¬”KÙ'‰û¾Êékÿ·ý§² ëîåë¢ïa$¤õªn7ßšDé-†5\Ñt­³l^pkÓ麰(CQ¨ñ–]qYûÑõ¦CHà*”i\€xuàÇÙGw™qÑÈ¥ž·’Bì²×CþʾÅ;*?Vì,胡<ïßÞPc¥”‰þlæFðH/DŽ*Aöà›çü£¢I:-—8º>²)£ýš©Y'¶Ãßµw» Ë /ýž¸€Dlò ’x÷ßµ®J• ƒÚ'îà‹S{ì×É)Øe¿¾îBn/g›'¾€lE—ZvpÌ@â³MÔòÄ™]@¢ ˆournÆŽ–7ùƒGP&ëÖèõc©!ƒQﺘrÞ%^q>°7 pŨõ—8º44’=îU Ü_tŒ±¶S-ãk$' ç9´Vˆ¨Ý`êg•—í‚’"{Y¡êK<ÐÎæµ¦ƒ~;Ñ4 ‡@V­œÐPÌüý£@<,œ*€ó¼ùtlé»8€u´Š›ÜMkgƒî^žHÚ{Çg{bÚY(­Þr©·Ÿ¸w¬sYŠp¶N!Ædë¿Áya¸b2ý­žƒ Õ¸*^±déGI$Ço&IJ1±s¥(ÛnÜ7æ×ê°çΤ¯m‹z”2LÍ·Áº#6rï3>dÇ1,ólÔ¸1jýyšS©Aº$Z–l¤òâ¶B!´ÒF§i®MôƒI-±€£IöòÑ¢ßÏÖM*Ê’ 9½S¶ôÕȇÐ02øâaj—xZú®è)¾v:ékf±Ò¾çNØZt)å“×–Íf@)µÔÖ*#i󸊂ÝOùàz€g¥ç¸4bãG5}º÷Ei.f X2ån…¢tÒûž˜¾å{­î ‚ŠÅQ§tÔÙɤˆé ´Éä.k¡h€:²§c“ÄÏëw<¯ ŠØL»Â¾ g:Š1To1 Úúp5jš±Ž~_Ç•*%*oˆfÛ`c¬ÌƒŽ¡dÇ9ÆÁ@f˜úÅq-½ù1WÑE­PMÁá•v}» ¥Å&\_¿ –ºÔûQbÃ#[òmŽÃ6C5/'Âù¹,±gG)÷,!“B<Ë|ñÏKL–v?ºf†é—'þlf4ù»dló×Eµ<§aFHDFS”ð‡Òg^5î(®=Š}pm%‹#tÐôÉ<â f}Àéc¢A¥U¸€Œ½¡ˆ‚dú4áû°ñ6ÁëEdÎ@ày’" ²¾k¶¶RU%€·pæ ü— 9¢þ–Ÿ+A`A§ÀîHŒó¾Œš#9×C»¢Åg« ïþä¹ì­füW‰øÚY6ÛÁ_ 2ˆ`¼Á¯ÏeQŽàs¼{ *Õ{¿/AIu¡Å§8ÄÁœr óå}ÒœßÙÔ{æXÚ&ÿx;øX[”ú©2ð±€¢å`)Š—3è¯\5p:§ÄGÙüuV‘J3/ùði_à€N_¨¥¥CÊ¥…{Wy.p5B@„C³äY©6 %¶z©·úQÕ vþ_vizéP’ø? OC«žJòCgЋwf'op¢ÿÏø çXõË8i­åUFfø—¬9Œª’@Õ]©"1áö|ØGQ5A¹éØìd‹è„-kcš$”æ;Ч,Žøª›¾1Zmç«¢ é˜÷ÑNùe uµB⟔ªúeÔ›TÇæ!ý×Ì“˜bKfì°2²Ö ’ ã¿¥c¬³ˆÌ}6j香Ìu…˹¯]RßùÎð™òëOª šk›îEéxíLÅ~Û΄¸;÷ÑF'r-·*2âÓÉK6¶[IÍH?¦É÷Õ@q3¼ðgÕ?©iÛ7ZsâÀ¯›D)N5½ÝùëfÓkp3&4ÅÔŽŽFù$©$úšç]‘=+÷RÙq‡ì~Ï)—u(lœ!°Ô¡œa1dÀµ };DÅØ•Ÿ³©ÿ˜g¿Xÿúy€9&E“¤³=ßx¿FV4“Cs( 3¾-Y?a!ê:`¯2²Z‹…ÞAÅd‰) îïwò GìfaÚÜ} ÔÔvÂÏuÅ“ìèÅ”°©£Ä Œ&xõ"(Ô…ýÏøÙ^ýÙ§£rÜ¢yƒ*¡ê2/]˜º%ÇÊSÇÅ•âeðòÔöA ×J¦(‰,íko9,ïÁNÝ®³Až€Èª$hU,£&6ŽcS-é?•ÂÔZS$ö†ÚtÖd¸ö-û„z*Ë*4öâ>r¦Ÿ^;ti*ýNÙÜá±Å[hx?«Ä¾;k¸$­ä­D‘¥¸> ²%€ qIƒ¢4Ĥ¦ÐÐZs¯ Šìq¨6È(b§–ùqœ-è_W<ÇŸÊaOMßQ˜_”Æ-áú'£åv¾Ç÷‹ƒyÚË‚}CÚƒ|h†ðÜwÈâÅ¥…q!4Œ“ˆ½Q¤¢šªß‚¸>êê̺1zØËAû3¸^d­qŠžcÜóÜQw“wLÊkÞQ0Á­õ”ÇxU©Ž›¾)8ï$+Ð8ãS¸øèÛ®Ó³]zÃlíÆvÂí£["<@Lu[2$sŠÏ)„(¬"$”PŠB@ı?Ù‹ŽíÅÝÂUêåô@Ù#46ñ^úª\ø ƒ„‘w>9ëOký“ãëÏÿÔáŽv“r{i7u™æ¤¥B4œT¹ˆ+¼Ì>ë5«f¿¥±7ÿ©*'$n@ ¹–Ö)7Ìl ÷@r}õÒb¯‘Æ¿5rɦ`ýÕÀ•Ž‹c;ºF¾;MäTm~!&´ÔîÙ¡m’¤Üß'bIYvR¹/â>éƒ|¥l.SWÓçŽéö60¸yy'Z»KäÖJ·D²˜ãaCàiks•“Æ'_ÜM\‹±r­”ª=PÏ’:š诬K{áC6?Luïp„¡AŠÃ%q™âæ‘Äû´É±\=Öv9šE =‚d (Ç´2›ŤUÄc@ö•Ø@aAáÿnö±ÊC•$!±rÉï°ËR;# Da•æ±± jÁf+o%õIø¼*¯‰«ÄlKâÀ9Á@3‰ŸPs2«j½íÝ‹!Q@ÁeGP…Ð¥¾gå ûîÂ8‰[ôFF¹ö³NØd_""Ëœ1ÿº+~Y¢ Ajª¢³zÝ9 ¬«aÀf`ÊcŒµž‰µ9Ðø2WXŠ[‘¨¢“ˆ¸Ä,áÀd·‰ â—“_²<Œ¬ý#Àªî¨[ÚV>Ë|Ú·u+)Š•g¬výî—Ûãéví Ý{d ²„–7,Œ² vÏõJ")NÌ##ßbDð!ºÙ—P{"h I;ªb•UÉ?X{ÁŸKJ—Y %˜ÿò£Ù_ÏúŠs;’ˆžbä †fä 5â¡sÛ(­’V^ømÄ<ÅÅIбí"eùѽù‰C>ˆ± Ôt£8à%¯˜IŽ,hPH9aH纕û¥ö¤åŸ9úíÿ¯QnÓ‚ö¼è5ƒ$±E›‰ÜÜx~<’gü½Š]ÔlÏX;ä \)d†¾Ì{´(º¯ãä9XkkÕ®Vß¿æÅ$5$*‘²²º²ª<ÖãŽá3#» %CÚñ¥m¦TgY §8cžáëuÜZI$LT=*±_ÂÖõè­(Ì9ì5`ûܯ—¶A”çìsÉ6¾  ÃRf7»X˜öÈÔKªÂU—Œ"6ZÛ>ƒ‚ì"ô-}_‡ðˆ?+oÞœö >qKÞGš1”Q†CÁA£¬| ”GŠÖ]&›øüû²^r–1Ãàa÷ µkE::ÓætÅÅlµgiɸëá`T¿µ<–¼f2 Üñ<_ÕU‘®T‘n†Ó÷ËKœáïMˆ" læv¤±ÐS$­¶/Ûï«_B²ò[§UÑ’;äÝ'²*7žó"”=×WÁ*ôÞƒå®ø;à©ÅŠê²»S6ð) 5c3”FÑÌy>6¡¼¤*‰Â£¶¡©(¥»¸`™ÎDâN@/ÓÉ¡™Ÿ`ø½ˆÚl§ ôxg,v"£Þ¸P-V!ü»}ÝÛ§è|&aàpчsŸþ4@ØŸ¨«’g¢¢ªE†ÁrÄ—8wd.§î>ðAÀÇûë'—α5䳈¦Ç§cÞ4'áÛ»V38Œö–M¶ÜnûSŸ³Ž€Á¢µ,ߥX¾COsÙ bÑýÓÅ^ß&Õ²€š§GRõù°(êSR±zŸ‰=¹~ËÒè0ËX¹õ¥{!°6á×µÿ÷zùxU2råÔcJ·¬{ž’µøççÙ¾É# ”¸qSÑM65ªAÞë ¼J bOÿLge)w"‚×4né‰äg0G´ ‡UJõ`T•“¥W{RC“L ™§˜Ë´zÖ§ø¡ÔöŒÂIÍê¿*‰ òΜ(¡é7RÄ\y¦‹¿øÅ­»Îo7ÿÙyœí,I0y¦‹Dÿ>/߯‹ÝP»ñ¾HnH-SY]ë³½ ë1ôºv|”Š¢î€“x™;ÁQÜ_ ªÐ08È(X` ãU]G- k>6%=¾ªu…HGxŸÞ‚:î,5¯s4ÜnÕæÈɇÀ^,%pŠzæF\š=ÿ{“|ÆZì¤W‰4h†Óúß–Ú³_u3¯^ jè1ãƒû ²1sø‘!5->JÀN^2UÌå¡öÆÅž?±pßnþ0ϨQOi~‘ƒûnàáów?ÒÏOöi÷z8d¸CƵû^ÅŠ¼f£ÖðÔ@pN¨².ç5Ú4Ý»vËß°&b%°µKÅòkK“Õ^F,3íXÇ"J2#gí7v¤ã|XyQèÇPלÖϤõ3¢|Wêó”Õ—¿^&a¡3^RÕŽé LL›ZxÁ7«ÍƒgZzi?Œï½w܉Õ-×öµ ä¸gczž´%V‡‘-3¨i”˜ÂÒY9XÉõ­Ô&jLŸó¨ë­&àor¯ý¾Ç;<±gbXÅ»âRÅiYÔÒ[ÍXÇé-…ýzk§ŸYªS±edxfМUxì^Á?XÆÖiy÷‘¾£&«µè·Ñ*IK¯†çÞ^ûJå—ª 3ÅŸÏ,bD†Ó삇ê„ù fbC NDèälq©„ »ç P¨=ýf\ò$=¢kºåÞNˆÓŸ˜^‰þ÷®vjjp«Øñ²Ä£+@~oSÆ2Ojì¾Í:¶=~~š;ð:%¿.GÔ<õŸC» ëŽÀ ú5Kû–™Y($)·{#ºÓ‹1TÄWžÉ\¸±¾¶æ*ØÛf m—§(›ToUoÖÛž&ðàô¤ûªÂ[8ØÖß:"”ãmR·êó;ƒp±×@ûm"<§¯;27ƒ#¦e–Û´âoV™Î*×Ep „Ï­^ÔtšÎ¤„Ø×}»­;rö¡&ÅP?Ì‹‡ì룷r¥Ì+"pÉ4·zY§œÜü±Õ øØ4CØyÉ—n„ˆ¸Kúq?$IJ’AÙ¯vH±s ¥^¨ÿľõà}Ô—_¨KÓËLpb¶ñ+Âm!¶„Z‰ ë&ž~£ÿÚÏsÕKMÝ&\:ßï½o+›OÀ÷Œ‡ÒݰÂÖøƒB#Ùj±•¿Ê0,$es¨­ à8xÏÄBšˆ}섎ÝI ¥«×™…ATÞRÔ”ÒæpžTyÎD­U—õΠ½€ñeººÁXM 8#1­He;±úËd®¾tµt# ¦‡èXÆ´vê‹áZmi’p·m”R÷Œ_Ó£žp‡ì©B$÷6¿}‘øPÎú*N4ùн¹ÕÁþesùäÕ+ ç?ŸðÑš¦X›q\?CŽ—« œÇX¦˜E@\3Å· ¡)ÊlüC¢¡{FA³eRáŸÓÔ EÂMNt‚,ùØÒ(£3Tê~‰«„„³ç$´š8=.\âþD»_9Ûgžs²s¢…Þæšð%N\ó~˜U!öj‚ìæôP¹!¾l:È·oÖ’HA–ž5ý´Ì  lpñ‰Ð&\פ˜zÛYg ôF2u›á4sác“ÜæZŒ(¹ã&´/ /VEyã+ @ê`ž &cX`ÄØÉH€Â®ÁµqêÑÖ¡ÑßÄîR‡zvÖU“’ûw+§ë«ìÏ™‚BFÔŠÎx·…AÓsW—¡öå=!î•‚Ä·Í™éT?:aE–ßQÍäò&k1wNØ¿F6ëÒÊêÞ‰ÄGvÊu qEv×ë^ùù(8Ø`â‚0’©ƒ|؉:#Ãoô™é¤Ðûɽ¦{ïϹL‰×OC2’&KU¤ÊáåV‰îY>·¹Çþ ÅÎdTk8ßÈÓˆ,³ —é¡HÀw2—;Ó Aϰï ¸_’*Ú/Aï<Ó˜˜<¾ 6Âgh+Lx>dz2GÁ¹loN]…¼¨¹79ÉÂ0Äié‚…?H~.ˆnM3]1þé™Ëï<Ê GÙÉn«Ð_³ˆ+¾Þ(ë&8¢˜Éã2Áá¶ÙÜÌÞÓ ÄxøÙËyTRÂ^ mª-:B².ñ¾dÜ-06ò8ARqµAÄ Ó\vz´)"ã¢ù[ˆôú7J¯ùà-R“~ŸÈùœÁáwØceׇì)ö¨›h¿´u%€¾˜ù«‹Èc${o‚²X’Å•™µüSsÉ”npa½å—çýÞ1â×Z€w¢œH+[ýi>}êu,£O±ª\Ó©<ÛoâM{%%uþgô4KÈÜ8ΠÝVÇ5Yq¨_„8AJÀ…d?mt ß@d¤QŠ8ÖˆäŽmô¤b½‰ §÷Uþ L „Û{15OÞq¶‰jí‹"~­¦fúžò„æPЏ…5×HÐX7.x•T}ŠG(¸ æ`™š¯ýL°@ \Ò·¡—¡W-ÔŽõØüL nþJ‚rU üë}QÓ—S„уu'r¢kZ1q4LÝ ÚøÌRT~¤õ¬…‘­.’ŽÿbðÏù 868ÄG8Óä ÏžÄÁHª8ó¸ëšœÔ,)9H!Øj„#sa^>//©Ö̦ԿykpþDT7=ÐîÀ”<ïª3·åÖW±:®Ôø\Rœ]|b®[’R~+•ÿN¶P#T¯êµÿ2 iõ)+@ñn_…ÍO )jKýC%KÙ%‰á²˜¤ÈìsA”åœSÅzþy#¡›{¿>•,ÎzïAî¨÷!ÂiôE8jÏÉð‘ûªgŠÈènîòˆÓ@o"Xlè} éžì8ãÃ/{Pï2öBQLQ¾H¡ÛCP( §ÍqDÊGA{bøxÜl½úQ3Qöçh€¤x,Ì)J2Y æã\çûëBÒ^£>6ƒ +ãÞdOaÓ­ï?Õ»œ€rjâ襳Þ\ã_žêË꧆üé­@Ôð)ßK÷ÜëGoöû² |=3©‰¿Z•ûâ û'ïã€/Ô”ÀÃ:ßU¬°Éà¶ Š©½ìÄÐ’V"×!Eà„ÜPiÔ„©à–xTCþþ ¼mèä¾ÒòŸs"a° 0cÌÚu’GˆaœFRß+ùá<0æ ûªòw0ÄY¾Þ¼xaz°Ð±v !2|-¨ñ¯³¢ª7Åë»<þpÌøu\çÀâ(²/¢&VJÓÁTªN§†ÏV^~ÉS(¤¹ ÝŽ®( »êÝ|§=Õ_ø@¿tGµÐ¸6n Gߥâ½÷F T©Ïž RJ¼yÑÔ ›š½Øûü¶Ø¢±œoöŒ8 9å³gMêw”•©vmTˆ†£ ß•Œ$eû$˜f‚Œ*øÍ+~¹’¯Ñõ±‘WI…`c’oÑàªâòšå±š¶»ë´¯Â<¨Ð”8¥€€âYp jQbõAÀ6õ@ñ rȃWÒ„Ì þK}Éçg,›òåí+G.?L¡¹9Ã×E ®'dN;Ñ)ØAN€zôO…!d²^W„ÔXºãÔßéo^ùcusóÜBÿAhbZUÞ(’Ìb2ë#öß8=Ä­-OI‡Emfâï)ïw+né$ÉŸ’Øäký¬¬Èð ¦ø¸Û¥Ýá@$¦vÆö™PI AÎR (‘6°[Ímª‹߸,…Í7eY¢ÒY0áŸt ÷-‡#ûÄæöañÙ¶!Ìš1ÆÈôÈSs- ^M%£?Pæ¶ Fyr…ƒXð–Ý÷8‚9ŸÕÄÍÒÓŽL¬²~!^1gYEM9êá”ê¡T¤“¡X?1FaþYÁ *¹ØÐþ“C3nMoHa ˜Ñ>S`׌GebÖ¸²Ü~;‹$…ƒb‘f{‰"•ÇEæu†8’É%ÍüMNçi¨ìwëñÄïÍ Ô±è#sj\(í­ám,YUÉÙ–Ã’P1_˜Ÿ’Á½sÁ7ÔÞ¼&cP>öá<®ÛˆÁ?´O(3ÿŽwµ$}ã0÷`õ=û¼{håo¯ï¢špûŠC)¹.Û]¼ös5 È‘2’E!ðè5è»iþñÓŠ \s„0ï ¯5à&´œÞ7ÖñA7 H@âÉ)¡+¸Ðq·ëž˜rì¯uõ~½Ew0“öw@Ѹ՜êî”4¢„·Å:¡«}¥»¤Åg[ù„éW­l*6o5_5T@ KǃŸ³ ´à¾¨±/²!Ž'ŽbוmUް¼qßù59´Ø— ÷hà¦ÓžK÷xeB÷S“<¹‚Ï™±…?~^Íîl=èä6æëúBžŒ<<ØêVSÞÒÇH„í@TŒ§G-ÓçÛ.¡u°Euz”G©*wW¬Ýh°L?yNÉu—\æM»ìÌ€,Ë 8òN_)zèCKcÆP¨ò¸ÞqÛ¦'Ë1Ý÷[tsuŒæîÍdZêw½É Þf(›ÿ¯5fü²¿æGìÒ‹Õœ–‰ûLþX.“ߢß>¯¡½ªºÑCóâV%þm ô‹ám‘8É–Ò²¤UgPj4gÃ_tŸª§#V/îõ‰o-ƒ‹HW'ñ}%G=‘Àž~…©”KÂôf®­FNþâß&ú‘ÅΛN¯fá¥ó¸x¶Axe"xàðJöÏtlT"dË´ç2-«ßÊ÷Ëp|~>¡Qí®9§á°\$ ÁèU <:³SGºóVG–®Ga: þYo³: tÃl‹f¦Íe7äö(De*òãÌ?&"Ф¯Ù&|ÇVú‘¯÷8ì¸]s›f³õè’+UïšÔHì ›’϶8…œk·ŠÚ©Eˆʉ—ýçƒ]¯HµŸÎ·@!÷@Íê Vøv×ÀIbèÀ™¬ýnðù/›à6ô`q«¥oêSsº5_¢I,¹Ç"eûÁ”hÇó¤•bbÝ‹6f^Æoh©?íà°“¤Ì+eí®W2à瘷/¢1d1ÄÏ«™ç‚[|9FæöJJÐLè.nH@ZüÄhî$54Ñ–Þ¡Xçm]¨/šMÈ«[‚ 8Ej]†Iж;S8„B9lZz½>ý °Ÿ~O .Ñ¢âûÊ4ïŒä™üöÒ1é¸ùõ·ÝG ox^Q_òŽ<)ˆ|á8WJA£ŽÖçž%zT/¢ê«€bŸ{fŒåú öÿ.2·ØÇ›ùúÚG`²hòD¶îû0ˆñ2xîÃNÀ€ïåzöÝ‚V˜…1ó<7NÓm“ø‹üPdÄ¢iLŸeÈ!XhŽíï©*¸‚¥<:Rw¼r_cNgZ'DÒÛ‰n:\…㫨{Ý&ž²T̽Àzª¿Ö´xûg˜ ï¹ë5à8ó¢çrs¯õ‚#klÝ“Ö'ï{Y‘Œ¸¥FnWùÔf$iÐQmÍmAkå™l,Âr']õUfÛÆçƒu©N)!ÁEµ5-®8ÄáRnÎV>/©~/V¶÷bžìµÉ‚ ”\½¥5ºÝÑ•VÖváÕëF®b oÉåØ'”#,¢Ë-¬/ȃþéFß«Pç[_-Tn8³¢Xƒ .©€Vfë(k”]÷xÙò¬Í_Æ…å2ÅÑD1<ñÚ%Í^]ŽÌU•ÎhíÀË d,ß"B3‘ȼcô œ*=@:uïÖÛyþ%OqîNFÆäÿÆB¾rŒðÈ%è"‰¾y¯× |Á„m‡?ý ÌîIx K\œB˜-â ÂFÈûyí¤˜ñÕ\cÏù¿Bž% D›Ö‹NKy €FñÄD`ê•©Ö$ÏD%o+µyÍêb!4i¾uQ‘¡Öu*á…g—[’}^ï)‡ÛÜï÷ÿÝ/#wYX.žê»Cl¸rc6/2+×Q;Ú! .±†ÉH|_ÆÓHâI­Eø€l>x"BåÃËëÎ.æ×˜0U^pÒ ûac¾¡zP’kãR¢7"w€•=-JZøµ3LG!(Œæƒ ©d@£ü«í½ƒ{yýzÄTªf“tÜŸéçŠX#ãk¢týhm¾úAèå†$X©™ÁépZ+hŒ3xWøÁñž×õcÁa«rž+…Às#ÄÑ+6ËÎR1"ŸÅ5f”2HÒ±C'¾LÊTÏ$üg­)cg› ®ŸŸ°Ô™¹BfÇ ¬T¦n¯ìWÚÐ'ó#FY´œ“å‡s“‘6Xðaýg645§Ö¹ø7Ðzõ#-5®Œ ¼“è¾D6}rôt€ mgƒ™#I ¾™D»n†ÆÿUâðàæuùAÍQ›I㊔ËOÓ;\§À¶–½!ÔŸ\$%°±ºÄL1Y´‹·ÇAz:úO—ÁµRáµ°ê9` 7«ÈDö!è”\–Y¤žÆñ*RÐ*${<”ßä½j)ÂèZø0Ï.€ôÃ\Ýùf~i3#Œ’ÎINÛ «‘Õ}_Z¸o\ö«htØÛšv1nªTÀNNMÁ¬•j ‹ºe©u_æU I}_¿óü¯ZŠs£’׃jL¥¨ˆ8~ÅUÚF5øŠ™q¹§#ÿÏÝÒ´"!O¿ð× 'çl˜ÎEeTf ôÎU¼÷­BX •nPAøÌ£ŽØ^¥9«œÈûâlBðÍK³&gÏçv-3 /ƒè½ãBÎ5äw› Iì%üiܽlV»pY`ÁP˲ëü¡r‚– ëOtº~Ši·£„Êß7WöE‘û|¹> áí2È€éé+Í!µ6Ê 8&€ó…Rhʺkr“6(³uëJÒ¯Ö $uõ ƒô?bÝ@ÍãÙÄ»+r[Ï>ROàÂXÃqòþ‹t'ö]T$Ð.LP‡æ×s·LqƶëSþ‹]ˆ¨-?ŒHаÅ ¤A½¹¯ŠCVÝ€ö+>žxéÕÀ½ŠWû:¬¹Ñ¾„îï‘yÈcˆUøÊ ÞHÛí·? ™j‹ªÁ´”l*¯®ÅÐC‰6×™Þâ­Õ®ÁCÍ8çô³÷í¬a×Èù Ë‹§ 8ý<æóú?ç*>ΫbËΠ[’Ã+D0ÉŸqÌrIªA° ?-Àµ’[—ôIìºÏoH{5öÍÄfɼU?šÝp¼%FXòOlÖ©}º×Ç-éœf[_16 0k¾Õ.H{í{HZ~gq=²–x½æÑ‚}ðu¾ËSѬ™½Ä±DÞùåL0is@±…-9ºÜ-^¹¸?spÜùÔÂH~S!ÓŽG÷FËÎÿ‹A28¶Éaù&.]lÕZÌŒ–'á®m­VLý#Xe×?z,U²Ý-~¢qî>R+v61Óð~ï·òòðã%)Ž«ÝÙå°ÇÞ¯”.Ywò›ú©HÕXuÇnZfÚÄ펋ï×n;ý˜kÉÙÏÐÁf#TVH߯¥¹ýµI¢{‰ÿr‹S6<ïìPÓj™‡§êÍeDÜC kÂBDÒÆ\´,’×®ör¥®u9ÊjÜåçÇÏwõÄmGázÖYˆ º¼­`fËú»;î”GA²á26U¥û=ÏOùN²Ò¡Í‹UèVP$ûÇÉ6$[ž°ÑéÜ¿¡Þ(Ð 䥒Gy¾ƒ ·Š÷`=3 ' gÑ}Oƒâ‹X¶¡º¤ÿˆÍëûúÈÎäP¡–€™]i'ª'åˆå6Æ*´ÐÖæJ³êÇ€ý{–—àËS·wB„k[òEütÉ ³ÙcÝ˵×Åpûú‚êS,`[&‹yz4"Ñ7™a:xÚtX_·-0–$›¢°$¿Ý1Õ2þDµG–ÚikÚ®ëé›ÕlQW¶ÜÅ~ê{bÊÚ=í•¶Ä^˜ÆmSWœyûÛùì,Ôíú9Po$P!ð ÖA×y½Ã:[-Â'y~y{ñ§z™iqCµØ2õþ >„æþ¢[£Â¹þÈ.Zú†¡•ù~ëx¯:eøÝ£®j Œñw+1âóÁ9ï%VqÒéS¸·7òó~ùû÷ò¥ÁÑyÌMÏ×ßý<ÀÜ\µ´ÑRý±Ä°ø$>z8s`le£XÁôCŠ‚*èM[ò]¿[NóÜþKK“9˘²ôlúcbô©RMx ‡4•7é·t¨Å= Y'J:š1Ñâ¨ÀçþR*PÎÀM9Ï A˜õ _ÂnCR¼@ÇÕ¸f\žÅ“¾Â_ÿ¿Æz${æÆÿ;~…obæÊM¥Ö‰ Ù‹ÊåõÍð~‘$_R´uå¹üWùJ·ZúT`S¤’Tg~þ°ÿŒ5lÌfñë.®¸Òìwó žÿ¡[ˆ&\R¤Q1{%’ÅÆ_)¡¨*/&hÌîðéiû·Eh7Sâ1®¾êGd}Baû gš{w°Yò;„ÞdYwK>½ãd3ck}]ð¥gæÌTzÉÐcÿ$È_ËÚ„ú´ üµFö $`”e<ï6Àª3û…cìÚQÓN!±r‘Žn?Ù3ck_³<òÖ2}ʾ½œÒQšrÍrϼD±íâÃ|uühŒÄ&ÿþ¬9ä1ßIÝ?®?…Ãh¶À5ê7ëÈ6 -Ëgx~+ŒCŠ4œe,b8|lâòå)h€®x­ûÍ ÞÚ¢…r¯ò5”ÿ²&Þ-@9ZК¯W¤ Š!ÛŸùåˆ*f ë ¸\ èÔfá7óµ®ÂÅ9b1è§ôÿg¥Þ ^–\O\ðÂk ;y¨pzM~Ž&Ì,“$q¯QªŽ)ÝF|t€ù¤RºžÚ4H&ÃsÊŸZY­Pç¥;1½ó“ÌgÐ1§Û8Q×+´ùiéMDvl.ÝbNGvsîo­€õdß5ýêH)¢>MÑW¸—’Y•|]"#¨€j½®*bC}cÂË.ã °SˆhõÝf´ÖËÖ 9£ÅˆÇêè?VÖkgñÕ|ìîhòILë­0,ÔFz,´¤ ’ætOî*ºW+%ž¶½´i멊 §™Õ¸ìóuSwÂ×"ÔƒÌßÀ3Žcý`yÔçÈ›C¡ñ ^°¸·3å;CšîûÛ*:Ãf³„ö¾Apòo=¦±vH–—¦G”C–"çy$\!Ÿ™ep <âOsñb)Ùû3«‡$-Àuo÷.%®¶iGŒ®œÇmŽ€¦[ZO>±qt«#ŠÕÎDÝ(b6¹-ø²Woç$& 'ؘ;¬"šÇŽCŒê¨x/ΠïûÌÏ9í—÷!˜„°õd\WûÌ6pÛï©û K(gw2jxåõÈÏÑY jT0Ñ»dÚ åà„sœ+Ö‹Ö à$úüÀŸJ"d¡ ÝXöq>òŽÈ«'|°oÙ>%EšûÙwÑëP|ŸMÁ½Æ_5Y°³§]Ïhäà²Q/Z¼þppÅ›ßÅîªiá²kW^…dÕΊ_tc³ëºµJ:†Ô+)঩[5tIiD#w×_X¢çž:\¤ÞÈ€ÃÉ×î*BCë!Œ.v0¹l¢”°ºæ’2Âǰ†ZtÇ2º”~Š«%Oç¢bn¶9Ó0´ÎZA‡Óy*ûEŸNø›€ ¾:nBïÍG—–݇OžIb?¨ŸßgTâ›ÞišeÕ H™¨¥%…¤g}oŠý*óÚX¸‹ZžüÓm¤¾V!ûÍfBŒ›´÷ù÷‹è ‰£©ø=-F¥YÖV§Òf­½IÎ… Æ>D8ÄDUqjæSN“8’JÄÁsOgX!ºgìŒÑ!ˆ}·Ï •ã—â*»ü—ù–yM…Þ¢\½…Å¿¨¹-hŸmæÕ\L‰o<=Z€ù#à [Æxñ/êD8ùTìS…j<·dõ ïj>½œ²£¸|“™’ÜbÛ¯!ÏrŽœl.”fB©;:”ýXbWbvúîfŽv÷¬ÆÄY#J´}{Àg’^AÀÙA_ÿ©Ùµï!­÷ÛulŒDŒïcîH–až…Ú‹5^¶ØuZKê¦%a!Ñ[yp޵1ÏZØä†°­*ÞE‚0$™örd ’Xc™>ã$9ÜÒó÷@,Q¦¬,6jë7Ù¾²@”)d2þÚWMFÅc´l?£‚£ƒzñÂ0®áö‹„MŒyôi„kJvg{27L¡o‹Ñk&! O¾ günvM¼>³ük?ϰç! ¥ }C”†H:ÊÓy—p+yösVôµÎÇ¢¸1ÑCÃà¥CëñòùG{2pe&¢´ħ`8Á­ÃvfúÔÎn¤¿„üŸö{×í#ó ;6 ìÛKQž”Ÿæ¸˜pè?-sÕI,Š{Š jN~ª°¨­ {„¦”éÕ·ï­còœ!óîÝß¾L$2òf2·¥qˆˆ`Ž©ÏË‹ÈÆ•H\[ö:‡A%ÓÜ¡ºÆ>ù+6ïkÐ8wˆ¾›—éJ\ùöªËÃAní4©ðUÆ:õQâžÐ'VÏE'qâ>„pÕE² ‹ä°̉æaìWFM­ø=·¾20Ûväü˜…)E6¶8ý$¦\ן²4ôÞ»‰þ8Lñm0¸ŠÿZ Àq×à rÇÏšè @Hø§‹¯€¸!éc2ƒm_Ùå>‘…‡š‚÷bù¦F ôŸð<Üâc³%r wøké½ hˆBRàd‚eòl+S|)i«8Ø€i }äL×ÚrZéˆoü¯‘{/e‚Õ 8›Ê5@l8IúÄaz &m·Ï£—Ѫ’ ¢¾ì@zÞžü)¬Å5)2Ù¿Ð ÿ’mÏ5n/D„vËA)â¥èÙ-cøâ3çKMO$ÍãF–©tça{ užî`2möŽªæÊ‘ñ"ö"˜rSý¨RÃègH=K.CÈãiê­-ÔPÜm«š—rÚ”Ö•DÁueü&t¾…ó$A7 f¡È‹'wX«ùl+—ze5à—¢S^náB|`+u´Ôb1v0u¼QØ@äì5ìwý0 õÂà#N£3aüK´ÍºÉ¹.]<§+ŽÏß²ÀÒ–tTR nÌŸ5¾œC½©9{úòõôKH4×XŽ­TîV{þà$%áëÍ=‹Àà¯dôŸuvyë–'gžå îc ¶“P§>?\}½ÆPÖ,½ñä`¦B\¬#Š–9!zÖ?}‹íqok%7§:$«âª0JúšÌftC¨]OxÀߟ O'<øøžÝ.Çü@€T0׋`èÝe.œÝ7È*sß]H1³€ÄüÝЙÛuw1º­³“ó¯¹[›|¦¹0Ïf]™/Á'f kÄ„>?ô(JùŸ[ò|%7b¥Õd!Š­qQÔûI˜â¦Jž®k;K„¡Âè@3mª¡~°ŠÞú”Æ`îMx aRÙ©P2©hëu@Q ÀçáêL×îSuû‹ DƒGü²¹>‰A3±t\TQ?ßTEbøÌ9x…4-±_ϯH‘—ŒL­„0ØG|Þ¯ëöưwibè/ÊLaY\ÚiS7û;¯Ü`Z£ ÆžûEVØ'Úzµ»kDŒIŽJ™ø{íÝú²#²U2ÜItÖ)r+?øc¼u•GÜÈÑk myƒÁ˜Bp.Á<¤3\dÄÝ5ÂÇÇ |Ø HMæÉòb4Š÷žV.ð}„´?Þ4óĸ)Kêì5LKXrK 0Q*÷mâfþâS¶6üGƒKýû.7ŽÛšþ öfAO¯ÒD™ã“|OO¬X´?¾z^–,;u2'¥{‚WE/İÆJ2¦‡ŠR°)à] OCåfÿeÌGQ:’úK…íp&s¤Îë³K+u‘¹6®°cgæ_g•51[²þ÷yBZO]±éO²o‹ÕÖb‹Âd\ÉØ\Ç›f<ÛÅ™bS·j³¨C‡@fŒ×0cÅ’Ó¥ôí“1ÑZ`ÊU¶ÓßvXY¯¸ÅN×>ú(6ÖkžSŠTÏY}p£ûL‰w¡b!k ~%Á 63ý4%ŠÚ¿ð>:Ò,ÉH‰§¿´ t-#`W~ò‘]êêWr僨r@·+’⺵ ²[Ih£A™º˜gþ¼£O*xÊö=s½†Fgb5½½ÓC77xWÂ_Ï„…œw_€½þ†J×—:Ü%Bð…ù2ž3McAÀ–O¸'…,ÆÎÙŒåí“¡_S™È4®¹‹8!ÀÄrÝà|Óþ¦¤‘!œ_â|ÿžšz3=Ë»%ê~Gjÿ_Ö²g£üÁñt+Ž fÚj[˜Ž65¿§wާܒW"®)ôF\Lz²ýòH©èZÝ‚ôÒz—)üÉÈAàÒ°T)Îß{ƒ+ÛØ©B’-˜†@4.âQÊ Æ¡ ŽƒÌÏ·Ó™Á?x=š"þvÃL×®šcÏ›{ŽOP» Æâ†· ã(Œj…Êw¢V®dc ‚Ä„±5ÃÈ:m[¸sõY]K±õ|9üÌÏRCJýÕøÔV€…Â|ŒÑ¢å2°yÔ¡t>9AÏÛ3Áß@ÐãJ«ã‰Ê(üSÔEå+»O4ÏýࣔXDwOŠ»âògÈ údP¹OÍÙjíõ2wØÏ¢yw@$`FSõ,¸zgGB4±#+’–G˜Ã·²ïù”vŒ-w%Zg»G–oé¨,k#¡Ò.á&­<Ö³ÞéË„g/ÿÎÏ”d²Ò"9>×oÙ—ŒQw ƒÜ‰ŠÍÙÍ seÓàü¯ ¤P™¬='éï4aÛ1ÌÔ2øLÐÞ³†î¹_T³ó¢/z`Zˆ31‡"÷|Øé!@äϧ­*jAŦòÿ‹´3R·Û³¶ò׎tÐÇN¾ƒ”N¿lnMÌ”¿²ýiàTN;[8»$T[?wCb žO™cc]•†õᡎ A ?A60ø¿w x[hYeªÎç€8G×ua\¿¤5q6®jÇŽìÅ™gÚ0õ ÿϨøéWνš‘p/î狀±ÑŽÅþ»Ù¦M ÷ ‹ð¶ý̱V–Æ”ÓU• ?©¦£p2D)aXþý«Ö0ã¶—ÚÛÅ rÜÐdJvaò×J7S`wõõº·"4F“ëH“à†·ÈvFð©Ä?uÁ^Ëžrç=/ØFðÏqû:2ì"®¼ÿ;[À9fžº†HŒiã*à 4v-Æ#=jŒûÎõ_íx%~Ç»‘O )»PÓ^[iÙ¦Hät+Fâþí«Èª{*ùÝ‚Ø$,Ø >¬¢H²dAŒ©Ê…ÅB4¹]­ÙƒÈZ~€Žd‰z¾|Ú»Cò[B¸ôÞtq8é?ýìÔË%R¿ìEs{¬ÝfÓ×Lák•ÿöãîÓ<Ä,,?éLW‡{•]òIpÞõ•åPa- ŸEixšËùN+~  Ò > ;È^šÑi´Áòì›\´•#Ab Œ'¯âoóçŽÅk/‹¿±=)3+xkÏžÏ9oÂÇüeÎXyÜkÒë]6‚ºÉO]oz¼TZîå{¨ã8Ô8@T}ô¨©m8äQ‹EÏ ÎÑëþ°ã*iÐXû¨æ¯¾jvŒ{„ ™Z%û^|ãó!D‰L˜*}Œ2²:Z¢ù"j¸8þZ×’R<ŒŸrS4ïYgK½5kc[|i»ƒ‘ñ,Ƈ ?°"9OóTòŒ-„©Hé_‡¹\pŸÚÑö­52u†L˜i›šdÍÛu­LLÝõ;´N7YÕXn£vF£Eg±‘ô6"w¬†¿KA¿®2”=: ãXÓ6|VN›U€;äÂ<ÚÚ Ò£8|eÈù1³jIuEI ÃàÕ˜œH›[dÀv†Iûå•—^þKwWÔ=Ç?ÐP¦wÈ ¹ûŒ/0ís R§W·ƒ?]Æö<¤ïöf!$‚}Ô »ñNñoHc«Ø€(— Ø¶×q*äÛ—:óª¿ ¾b |]X¬‹¯r4èŸ25%cëø(†!ïP˜ùnØ$Þp¥Ëôç ZvÛ,7lICL γÅnÅyð¹¼ÜD2#õ‰L7¹¥UÄ’‚ÒFJ÷–Š÷|¤2ÂÒT&Ó¶yF‚–9ì ^ Ì‘õÂk¼V9q‰¤¡¶Ý¦*˜+Î^üÏj÷KåØ8A$•Ù 5Yrìv#-†ÀµýqJÛ%?†*FtöúÞ¤µ½…=¨šTÛöP:û ì~!6šUšÞ¸ô“±úŸ„Øã_ž,QXH¥0ó&tº z’«S+}ý}%x€x§«.%¶-“B¸0qVŸ³²Ìm=H2úa:_šôžO´‰ý)*>×!¯ =ñ Rvñ1õ:j SCYSw7 ÅlJEË{S=€EÓ\´ïvK »~D4ÌÁ=<ÆûSŠ,Çu„RMô/¤Jý†H]5· ^+ÎË)N -ŠƒdÈ ¥uNwhÄE,ÉÅÜF @Œ6'Žho¼·AøMV´„"M$ scà¢é2Á¨©$¨Ê9õtÕn8‘<Û³Íð²5jbÝyyi¬idžR%6Òhöƒäç3'“· S3ÛHÖèÛÓ–yvÝ¢Ç÷SA!àN "lÉé`ï£ÍäMœþ¹’2-çm=„/¯¤º÷F~¿E]‘É2=k¯ Šô0}UcÜ\~v]Öd|tyÀAÔð®¬nël°ìoþËÒÁzÒƒ;"ý8™²T͈³ÏŒ×Bÿâ³7Qk*D×@‚œ]ÝUB˜õDdËž™yÔ-¾lØÛ8{¥EØ¥c·Ø-Æ cÏHž¦j%|‰|ê ”lÞçÊ]lÿ"Õ²tüÐTÎ TÞñd¸|µë2ê@ÃIOì[ú1&2qé€*ƒûücØ6yc÷¯ %¢ v›*Ox]üDúôÄ; ´—~‘#j%n(d 5ϲ\Êéî̆}?t èê½Ç•ØdjØ®¨Ê÷ú¨fÙá„‘ÒuIMy%;§6G¦d\óÿü]Äe!~ó¶öRÃ@yh`mHÓðÑ'!Sç“´÷¶Ð%ÉåE¥Q~™grœVËï7CÁ¥oÑ>Iß—½Z‰ šÝ=UhºÙÖø fN‘d{LS° °x7|›h¤ÆÎ³ÄŽ6w¶¼"¼€[èÃe½öBž$$Oþb*Ã,ä½h: §0-6·â⽜øö™kixÙ^údáTÔ‹˜o]°ˆrcó—.Ò|ÃŽ2ó ºƒ]hRˆ³ö‚Á)¼®9žøÇ”0ã:ò;ã•x©rk¢°zn‘Þ¦LILÓÚ€´)òÊI-þÝî†è÷÷7ñL-l(êh¥ŸàiÝ1¤‘åLŠ)5.ãØëË.€÷eJ*ªšˆÔ‡¡è°ûp‡iyÿ ¤ •Õ™ªÙ 2/Šb. ;þW°aºB%ß“í–Iß´p6üÞúBÙË¿ ¢®y©;i`+ExK§V¹€Ø9av9p ˜.ÞÙËå àh}Ã#P ±¨©!(Ùƒ+t,æ”ZlÆX”ù­z]—›æ÷ Û ¬ÒE€U))ÛN!vk}|!/Á®ÿÿG½¿$L”aèchìŽî¿JªDµ×?ÿŽÂjj¢Ç‘\$rôëžu¶†*²{ÊjMÔè’ö"ì€ø»+þ°dL»NeFïÞ©¯”èpN"Ê2›Þ´÷›ðÑròÌÔ¼*ÚòîøK§Á’ôú~?"dIc»`Ò$ÿ’|m•HÇ8ee‹N™lH"’ŒbÕóõç¬.µ-( ¢híÛ‚z  —8;ƒâ!†q2ÒŒßÁ¥Ïºß´Ëª˜©4‚§ ¿ÕçÈé¥!›Ý{àÀWZßËÁh Ò$´ÚMŸ7ãÀ¸@OÌ?×np²=ƒý²Èƒpbyìñš¬4§UDcîw0ˆŸÒi42øÄ¼È G@*tÝV]Ò—1åE1¨B½ÌÊ0óAá:爕߈óqc¤“|r£š—eT‡ÜËd¬Hã'PiÜQQ;§ºÿu=Pês!ZéÿÏ3¶Ð[½’þ@Ä‘Ø}+U‰‘g+bm\|ÖG KÈyÔ57oоîê’ “z¥X”ð¡Ï8ƾ²_ØêN˜¢Ð¨ûÀ»ûŒõZU§šÌz•ÄqO !õÓß+gdûáK‡âbuE‚{iÇôˆ&NÕ1J’#à†ƒý5¢Æ×Zón¯5üå·~±†©=@þ<]Ú\`çæóò4¶Îa§( 1YñøýCž4õª Âð}Œ`l™]dTv~ÖaÎׂ¨º~*:óh‘ o䤨k¦ß/²fÐú#ð&PhˆÜl6Àsƒ›0p8J?ßVØ!t,Z´zŠTRòËð¦ayö×SE´Kg@üub'KÿX—ûEU(ù–¯ðÐþÏmœ@9Ô I¬©,‚19Ç(‡°Q% µçòÒ¸íA%ªWç_”‰"tÑŸc.Ñ•OÖ¢ÒÄñ`2Cˆ!&Nõ÷’}]èZ¾¬FXnîRö;ÔR0*ã¼]¤F[ ZÃáëTrã-… fç‰ ÝæËÖSv/¢½îS€ÓíéÒÞ6šIpõQô&ï¿/l?,pd}T©˜f­!äU;Zûô³»ÒÜååyåÜ-®óÁ*HȘxï‚q±jÍL#‘SRlÙH¤€Ë½¾ÊG˜†í £;ä7ì}ÇLÙÿL¹^âîYV,ÁäuÜ×ß V޲ËpLŒŽ .­±ìŸÈGÙ.ZW¹ë[ç/5ã­A'<Áoˆš$jÜ6w±¼ˆT7‰Ë{KKgh~ßšˆ¬,»ýHsJx„åm,Ÿ†N^¢qÜ1a7¢ze BúŸY}Åmó ÷Ðrß‚Yîƒf§Y<7Ø¥:¢­ /‚…çVSØdzË2/®(~L+ ¥aÁðåzÐÊèTGtœ2<™±GR;óSâAt¨ lñ„wäT!Û4íW·â{Î%è Çð¥l$€ÅмÙ‰bèÁ»Ò ª[1\ÇŽI¶¡K@Ñ(LFÔÔä=’æ£ãEn tá=CžÜökæ¹Ð}b€ÿxRÀÞöG!qŠù¢KIÃv1à %|'| „30‹–ó^ Æ-锯°yˆß}ÞíóøC   M-R@ú¿5R ’œh;í=@‰%qÝyð°g±S¤HÐ Ǽ6m~°÷9l’-fx6Éáiº=þM쯕B–ì*÷·VDuöY>˜=Î3,¶Aa]e徟”€@mÔx•§ë|ôØqc¹Ö*HüÁÃd Y{¾XNÆã¶õWk/é»Á赃º”M¯ÈÑú\€BJc7®ù_öE¯5‹øV{ ªW¦Œ Ʀ§Ñ…“ü+«-:¯¨¥ÛUqÁÉ$!Œ]C0ö@"v^“s÷p«ªÛô8 F)¯1€rÕ_ì_1!v˜ƒ7b¡ðöRáÇáÔîÖj삵½Z„‘ô_oHXû<Ü•¨»â>Ã6Óó¨‡çÜ,¿^} f)!BÉÒè„& âÙ7-œ_]”|ñl¦à8 Í<¢eÁ Èþì{;ÚLŽÅÒxƒbœ´ãøn:犔Í]³ÕxG=^ÌrGÊÂÁÑ:Ðæ[2Ó[¸ÔÉÃ;s“·•´Ùc—m xøœ÷™à Ñ Ùöy˜´Úذ—·½Ø¢PNP%ÔY—æÝ‹=? ÂT–á-LÒ¨'̹;¥Š œvhÝfék±¯‚7pKó Š®¯£ Ÿ´'TÏ’È´z#²bÖZm_3TÊìÈÛËÑZ/IyŒo"‰D5 ((‡Ç;…&¢a"#ÁñyßÜupµ™êú¬-±⬵ƒ„ãY–ÖîÎԢɽš»¦0fãìÑÌ„šÒhzçÔV”3ý›¬uhô=8&Z߀ Øpíõ“íÆ'úWdä´¶q¾ÿ¹·>‹á†d¸Í­0aðdsó*·¢ûFåYQÜãøHÈ’+žÿ}Ï×+šo›YlEžûƒU¿¦ÁÇ ‹™†RiœD)Œ‹ÃnLÔÀqej¹«Üù©x#l°ëÖîÍÕo>çhN»¨¢°WfüÏä\•©àžrÏàT¶J u´ä„×ݲ¼×ÿóÊ4õòŠ$ÊÝÞj³sdH“8ð´™"Ú,l\‰%kÙzqºæÿ¦ÓCžÃ$~1dd; ŸÉÅT‡¨lZˆû½c’C"HSsçäüý…Àê÷TŠw/œGÇa›‰ÄúéçaÏœ´:Ÿ·x»WX‚Ï4Ž:IÒÝZZ8XxÿFÉ95 ;£>†èÛökd û.™äQhQS¼©yÛ7úþŽt¶6¾t`÷xAÁ£‹ØPµpj÷:~5–ßâ—>ƒ}¿¯ ”Çh츪 “áîpß]É9žg |ãó_ *æÿQ43i°¢¨×jäÒ¢ÕáÎZÃâóZÔG~®c…ƒË̵vú¸wêvøé°¹UŸ³îG¿$å W#æä4!ÉýñÀ€|Â#ðøÅåg«õ×6÷_ãV²l(hbŠ#ŸP7S$Âî0´Í”®4N¦ÃHöœ÷Ga›pÁ:åÕ% —¦/ÄÌò•Âpw &Ó;<ƒÄ7Á%pRgÝq‚wÛXÊ”J¦…¨{¶P¯ "º|*! Æ¡“ÏD†cŽ/¸Å}©¥DØ{úТãq_—B|¬¼SÇ¼ŠŠ³îè4¬5à:ŽfÁE“ÁðLÇQÒ¹ÿÞŒ¦_ó ªlœ­ùÍÒ',˜Í£0q4y­©ÕO`$¬„:û¿æ¬{ò *:(Ž—á9ÛÍŽM•¥ì yÈž[çúÃÀ‚­3 ^÷|G·Aüð:á‚s#8g¡Gf]•ºÂùôÀûZã¤E[ôl2êÕeãü¾­u”h‡Â&C¦öµÄNx¦·¿ÑÚR¸i&Ä…nÞÑGtá0·,]ø%ªBÒWG!!´¶5uŸ»ñ3RÔF ò Ûl”í·o»Ç)ÅÆà\„“L¯íê¹Ùø¹ÅÔxä¦ìâ€U¬ia¨ø²èsœñÑ8/i×Þí~ù±®Œz§µ²³qíú¢Á- ¯ˆ$‰Æ2b½Ú¥­|×}ò¤Ò ÕvìSaª&8«P“IUíÖ",>‘áõNpØ[— QØšdéÆj"¦õXµJå}*›úÒ[àæp¬®ò ¢1¾ééYÈè<­w=NcÃ,Eõ½pï¶ÛH,´8–ª„åbäX FwxÁµeð(&B¡|5:Jm ’¾Þ"ìK,¤òãg> h9…Ëé~‚ØmnŒd˜rØml×ú>CµgH½é>ºüÃÌ^k(eKôeyb‰¼Rt¡cb‘ËÓRÓ”k1Ö§Á¸Å4E»ê•|ž“ F§p.„ãuÞ”:”`²,›Üw§iû¶Yت ‹k\dšW±MM|%Q]¯O<%ä™Yr@Ó†æÊ¥7”üDQ²þ´§è@À»Yt}ãØ‹PÁqUIsùÆC$™¸Q(r¤5.Ð Ÿ‰+ÂPðåÖ#ge˜•U*"°ØÉxi½Ëݧ»ÍÔDšÿçÄn%¾j>j¡¸ä¨)¸ì'«%3_½ ¬/_¸Ú¹_5œÒ‘B–IZ4ºïÏ8X%Z+äªÿD ÙÛ1[`k¸Õ¾nAróWô9S&-³3ëi¬d^m NýâÝS@˜¿W„}Üñ×'Ù¤Œ÷σ?æò ñ•+¡”x ËF( :SC«zÒòDw¢= îâæï5è-µ¥¤Ö„fuŤ°&uŠÅlU0<œÑ¼jÎÛ;T¢SX ‚8fvhaÑšªç^H`Z’IW¯k˳*ôŽ4ÂbI0 Xåí¹ßJ£6ñ` Q©ª¢¹Àj ó+©I-xˆ$£ÕÐ[Á—Û¶…²“*ìCXç‹èæ¢RkÓ¾é°Û¤ùÛÅój.@Û@?¨jÞ$ÞåëÂì¸a`wפ¤xÖ@R¥P3«DäNÁOÝÚ%¸$þ³> ï[ËqÜAu´f_z;èd[7_ê„“#ŸI«%?nÆ;€ÜwíË䓿¾$ȼhüoè6w ú<¯ÉBµ!24"Pú•6ý’V“§2hª|‹l¯ÏH2,}¨^÷Diº‡NÓ=Xo8r÷Ï*3ÔëfcˆˆJÔ··éKÑÒ§=c«ú.FÂH¾ÛF¤OtJ-bß9[ú£;ć³@ô2®´#Ç!X#¸6twÅÒïÚa¾V(ÒìwóZ«SÁó&¯Aon‹’GÓ¨°/Ërû.qÅ:þp¼ŠŒ„Æ*šo)ûl#HýDÞBÉsê'SØð~¥Á>Hݰ%ž=K¾¸žqš~*]*Ûò‡ƒNè)íAòLl3×+ưȔOn]Ó/µšÃ‰ y‡¤¸h«³VVY»Eò#uT²_%Ö/GÇOQW¥\3ÙgŒVíMFÛþ}%‰O‹x×Õ­´üÓÒH«ZS€B߬Ç 90·§X=A©ñÀs»t‹!s–_íX’K¬ÞÌ!ÚÖ­rËhÝ|óì][ˆŽ·7apEØyÒYÿZ{Ì ˆŽ‘ý Ù…Äý”#ݶvÆókíuoïóï:aaè›Õ/'éIüúÖ0xEBôšÝÛo[e ”BcŸ[{pmÀÏJ¯Þ{Z˜üPÐñ¹,¹4|õì…Á) /i¶y[›øhÕ9êsë»»Çþ|ñkï ½ŽÊ±¯àg]Ú½O­t+õä?OêDé´€³pf=€œßšÙ¨Oƒ> v<ªÏ~ü‘j¾Eyû7î‰584”UíêìRZdgÉhQž–Á°ºëòŽqzû—F®7Ó£T>à"HW€w>B9éwvÜ}ÅØ™y8_óQŒ4z2íU)4V>Á(Îhè'Ì¢ø¿æMïCšJîÆéƒ¨Õ»€RoD8±\Ì1©×­{ñsŸ8o|ïZ¥•Äò´\KÙ]>¸]ƒŽ+VtÁ]yàœQ:5âû˜â²-ª#k{6›{¡µd°ííi&ÆÍ^«¦–®#é±°œ ÆšŠGh©rÆ2û“´í¥c¡Þ,•If½U5%m‰Ž“Éź!Šu¡###eD+5B3—(¸—¬Ñ–nöXõŒ0cGÖÿx€ ‡oEJ;wW²~FÃÈ„(nþ¹ç.9Zä ›há¥q¿dï=m8öÙ;¢TŒÉd:0ƒÝæßÞàÆÇT=vf¾àv`ÄoÃ^BVRiý-v‰Õ!V×DG€;SM›¾º[ŒLUx!B»L.'zVãM=YV/րèÿÆ BÇ2L4•{YÑ7˜ªpJf{€‰…Æj|“ âÁâ$¼§ÌGÌtóŸþ]Â!«YP³Œ~„ÀßVÑŸ¡šx¥>±^Œ´PºX 6 2ðLYwI3¾Û^G‹ä+ô¼dE›Öb÷0“íÂçøèWÓÓñ,3Ü!ÇÄ÷û~7D2×f7jä!ÿ‚l}$t…‰©ƒ%£äýcêœtçt¬m§2üA‰½zJ·B¬^[€¥éiyO¸…žM.ìE‚Ü vý4}Ž%fÊ~Y˜+ÔòÙ»ÔYÛf»^oxZáÕ„DG&·4ªlfc[ÙòNÂÄo†Ù­2ŸÞ:V,+¢6»l¿¹ép·ˆ®åÈkáôoˆyæ$`d<0.€Dð.w‹ÜÏãz2ÈGÍ\&™¡‚[dá…+NhŒ‡‡—qPó‘OÑW³A9€ 2Ëmè=ù ¾if»íh$yðô"¥Ÿ1¹LNlö”ßzÅ_,¹Lj–ž:ÇôÖî]PÜ2¹-“åL¿S üßS´“„Mþû¼Uj^ÀE:aNã*ù¤ªjWUn¬oòÊ(M55WŒf ìl9¸Ó¦ÅW‡|v†««¹J¶;˜LÉOÔgüÏ]Ð% o6i&»ˆ ðlàRUU­vXÚ ÊÄ,jx:e ü`C)àÞA½::ù$Qâøb^Áá%[.?sé{J¡'Y~D«ìé hÛs[Öf¹µ{*½¾-ò¢4ݶt5§¾Ë=‡úƒ¦SDö¢Û%i{—"õUL¦^ïÓÑ:òêA”ÔaBZö€g¡c®NÁ±ëÝ¡B@U@eah êg'*c-ß?ÍÒçØ~âíö®}ƒ›ù.sïGÁé‹r‰›h孾ʵùÈd°«jþñO’õʤ›·&j—OV²4kç0#r0Äž¢ºÏN®í¬â’hZž††¤7Êï]9¿wø|Ddî-ްå}µ)3*û4ëú®k±ËÏ]]͵à#_ZX˜Å6º¦Ü¤\¨\ÔñÏït¤óòàd[kl]qèGÉ«HÀêÙW®buönÿqȪG˜ý7G®ýb¯»<gŸU~7Psf˜ÉäHÀ‘rº¼œÖ-ð9ä~¥ \³· 6°üòXù_TÄ.Gòv'!H ŠAû¶#¸Ù×xmŒ-n¹cÓrü–qKŒ%å"Çj†I"Ö±u¢äá ‡Ûf"úÖÙòÖ"ŠäûÞæò×ݰ^ðçŒT(¿ÞJg¨­+F:OL±í…‰ÎcZÿÖÞ œH…¨Ç‘: T$nÂúÄš¿ê^¯®K$v½,›mÇ´°` \êÍö4M†ö¡Ó„Òý‡Ž« ³F7Øpw „ÿVDÙ¿ÌB\LÊ¡ýÒ'‹’°†Àæ-´6ÐÂèñe*`Ôù`­4?îù Ÿ‘”>²bC±¥X¾Y~£s ä–P5øJüˆ—a§ae×ÁTòõ©öMy:Õêy·óŸ3QvÆïŽ oÉ;j”S¹t0DZIMóßK•v¬aÐñ1 =üŠnùØ"™èUMîROd¼M-ìáth´ë`»ÂÅ~ÂÁöB1¸Ðb§Áéæ•e •ª%S‘.·cõr Ö£75k[‘cÍâÈ™>0µ›_ðwYDÂl;¦­«¹]ЮzËrkdüc Å·ƒ/§ü÷I”®®ÝT;ÔiZ©}GwܼwŒíÝe5KŠâh3ч¬Uõ™YúWyôï#àamÁƒ7q°n0CV¶°Ì@Äs-+Ïå ø’Zýw5™§ÿ’ßëàmò+°À좛úeòJürarÑ\CRàÜÒà¨2Í®A PÕðÒ¿êÉšŠ¡Oõ?W¦æ´¹ü¬Wð;%Úiå/uV¹AâÃ2E¼ü¢j&›¤LSô¿káU¾3cñ?Ì×(ÓˆÝaN`eTª ‰+QI½¤Ä¤"ª ·)£UØÚCçŒÃ8¥Ä[MÈ2²e åiQ¤Ÿ¼£ \„»¶¦í9aÕc˜ lvv<604}ArøÙ3ÀP¸×%©”ŽTE]·A´åF*º«ÆCÂmu˜Éb×£›BãxÃ)ÍϲÉïŠ&–J %cqÄ*Ð?è]7Þ^«OÐÄ É0=Iƒº,{n4«­oj(*žÁÿuEXÒ(´»ñyiq¢FŽ×v2ææØ4ÔÅF•yA¥É4l× ©v´oŸ¾ÉñäÒÝœ6 à½€¥ØµÙô‹tÄ;NB?ìʸ„-ýò׳Çä«™’˜¨Y`øhΣÆ7ó2¢ÞDžÍçÖr¾Eä¥ëÒ¸™,"ÇSõêlJ6/+4Z;©šöûËÇ6foÊVŠ\‡òò«¶çÀÞ½TâîÀú´‚‚w•4´¡u,wÇbIß»"/š<Ä7‡ZÕš/­Õógi²Ç³z¡‹Öœwa¸›z5¨Yc¿þ6¼Âá‘/g‹_ìcÒÖ.‘ʧ†ø¼AÅ%/³ÏûÜ£ÜäèMy,plÛÚáBRes94Kx‚–Ú £:û¨x`›¡Lèf±f4Ž öù膮þ!äVôÜw@õ,Îâ ÁÁŽ®DYxL(T–‡z./>RÔñÛVÝömà×jÈ3iä¡Y©øèc‰Ò:À>c'±‘emSZ«—{ò/ݺÊBq‚ìY¼+gøâäf§$CX\3.e€©poЬÄ%ŠWáa Nö2Ç_Û—®‡1(^!Þ¹­K¡YÕ ¬våÔbÒiOTL€TT\×ÄX àœíÇ:”-î…×=Ú'™ý‡vŒ—VÈYtWŠåkq GQ¬5ñ²JHw2P4÷®t,^)œ½ø½/Y[©g|Ã`}0D.7cê‘×Á¬: …˜ÈQ9©ë³Õ†ÇvÍÐdÊènèžLž››£‡‹rÒ&Φ„|‰K3”{ÈCVᎴE˜åa©V_oó£"ìÜ >½vÐÀ'Éf$Ðï€êVÆÍR‚íñr¼Q5öëùÁ¡ZŠÛ€QOŽ(ÍüºñæŽPZŽxiÜL ¸¬>ÇÞ,­÷Ð*¢j¿c_`9îfe¢ÓüÅ Ê8ÝrYéê9ˆøF«¸§á@F,5ÝÊ0íJ½[¶G}6µD[®=røÑ×ÄRsį¥ú¨Ð@¼/è"ÜÔÈ#øs+]¤7(&ªÂM¦&6ƤuÅ .­ÒR—ŽÇüapH‚G/–Ó‹‡÷)¼eóêÎÌ-Q¼á¡@R2“½Ù«Xs¹Uâu%¡¥Ã;^dÎ ’?M2ÝVÍÔlå"îAdJÏûµ[ջ넬*¡ç¥d·UN&ª*“é¦ÔtÐVCí‚y’.[GV9`\‚*zYZ§9zžx½þÙ¼µ§Ö;"ÚKGî®('ŽZ‰á þÍ¡¬4I ކå4±rAC²DÇZÇ­‘–ç*y©ì1ët>kI”³óEÙB,¿í·À²]E©8UiîoùL×î=Ø)n;2z„²šçp¼ô9é’³h*Ã<[Jå/¢ÑD¥í˜“>Ê}¯}žÔŒ…¹T«ðï |/Z®Þž¥¢V"ïÓö$œiSDOPôǦÒörbp.ØýÚËŽ¥zœŽóŽ%OÁýMó£1‚ט(?xM¿>YýÙíÙ•¯r üz“ª±]°Û:HfL>>ÌÜŒs凂‰Ø€ãe-Á¡†œn‚¢…•’]ß”¢WJ“*д^|åÕÔ>ê¼”})UC‚>/Ö)¨¬0-`3œ¢5ÑÿY/u¢.°Ú¿‰Š÷÷k '}ë÷‰Ñnƒ¹t"_ $|Üø^:ã³¾4Œ Ëj™Jî ìí·¡GW ×qHºÈC óN=Æô(ŸU›² GiQÇðÖf(AK‡*6$Ê%ÑÇè݈  ô:ý´¨ìÚ˜h}þÂ\Ùö0è¨ov|y@«n›fM‘.»A¬Šf8•d‘nú…>éèx§}ZDÄ„&· Ó¯Ú‘+¦JóŒA­ë)4Y«ù« “ôÆSK¦3|˜&5)êxXð„@c¬‰vA:¢pÍ5†„t3³ê¬Ät‹·IÓõ„+žðØš(¨ªL¼‚S4uÈém®ÍV¸:¼GUÚ¼—cKžì{ðJ¼a„×õ:)îP‰f¾ö/´PÖ¿¯ÑËø¾&èÀŸí¸€Ñx ‰—ˆBòOärJ@™½|Vòf¥˜g]œ ¨Ë™ïÞ¾xe?OÃÖ1QÁ¬~µØz°±Ñ¿ñM<ÔÒË“0‰Ið‚v„°¸“Ö²R2i=±cˆ"ÚNI|S{48É)w¦²!ÓºØ]€S.®­åõ@€N}ö¼*îÓ:Ðe•yÚþ86mHâ–aÓ2j÷I™ßûæäÀurˉ.(êO84JbfaÇ}_]µÁ劧OÆmÈ25Œn6_"Nl ;Ùï¼--_/™Kþñ-ž_"˜}î1‡r5„»,X®Øß éþ8ÓŸ*¤6ÚÝéìAGžÕk$'ü¯×*÷ìHŸ8çÈŠ¯&ƒX””iVi„¬ÖI&€s†™Ü²†—iUGífíóönà›e sNL;¯ùj!Ä;HÏ^ÎÝÊ9ÜBv3óùÊÄÝ›E]µ{ØNKÚþ¾Ás˜èŽœûÅŽœtþÖ uœÑ­â f‡îVŠUò TÓ$4”䝨Ëà¸ØRdKKªmÓÚ·/¼”¼†¸—5Gå3õþüŸ'`×ms¼Û×á­IOoÃiy¢`YÍ’á<à³N{½5à¤áclǯ2î[ט¡x ¿>OÉ 4-œ€‹ƒ‹æ¿LÛñèÏöLJ‰vž4!V_ÅËìÁ‹vÉ[í¡Íý8’Àêì‚î6½Ç»¨úý-+¥ ejŒ·™Gƒìpm˜ú2™wó|ŸñÐìh@˜Ùб˜ço‡\­¸ÆŸÌ`—gåvÃd}‚¸'Ù ¨8kDlý€,¾®ì>µ¹Óº/Nûè[1A¨–™.»1Ǫ,·öìzÉÁ¥,:_Îfî©X In·®²§&Ô¸Û—=$g"è‘ ŽK(‡··Ûš¹rg×#Ñn¹)_CÜ„Öa‡ OÅiâ1^áŽLv[zL÷ŒŸIÁ×t º$Dš½þD ÒfÄÔª³Ë¦¦di\ 8–ÚhºÔj6"V0£÷U©ˆ ieGŽQr-èxÇ$ÿŠhÚ3Ö]¢:y}œVTÍ 0LÈSøÎôѪú¸³a}¹™=.bÐÖa|JK*Ç~’¼fFWJ[¶õMi‡ÆcVâÑzóÌØE¾\ÄÏ4]»pÃ÷²¨±ò’¬ènoѼ+êGÌ¢aÜç­j,ÔŸ:Uplè­NµŽð±*"%ŒHñ¯,i\Ù” ±õ÷£U–MgAg©'BkõÉS™ ¸ëwn¦[ÓÀM)ã•I[sy`ŒŠ¤<—¸Ë´ /€õ«Ã2‹ã8a(ÄŽçôx·‡4[W¼.%<ëÕÐ*±²m{ižý»ÖÀöK=ôjÜ¢±ìNà €·É êW—·_zq»­V¢éøþ‚öÙ °qçO(n XZõF˜ñ^ìyL-y™š¨oÆ™çT„‰ê"_­“‰C纖1©ÕQ#ëÑÚHp ¢‚;:m (ЃŒó.FL`‘Ö±«Sê‡`hü·s…g¾®ô @<° ZÞ THݦüT \…±,]u@îHö_ÀÔ§ h:WŸ˜÷¼‰V&ŽËïˆø“ ¹H¥¥¥Ûµ_óGwT÷P¡ôMÚT˜ÉHTsm¼k*KG‚Âfú¤ ñq)hKS ÐD˜Æ¤c4pS™4qTŸ8}£E_9Zó;óîzsÍ&Ù³›ã8qã?¢×þ¶=CÔ.}ÙIesÇ'M±$¸›¸Ü«ÿÀ¨ôAŒz0a¤q©&¡VDÁOü2#“ª¶Î¦ëèDpx'=é;A¯·B¸%ˆ­@`€`›óMFþƒZ&@ó´ð7þèòJˆ¬Sˆ¿÷x]öLpÉ+×@5õ©"äEp¬’cmy„5¿n$9Ù÷¦õÆpžHXFD§ÿ½¼¯´¼·aªúD«~¦A¢2x™¥Kèæ‘ªÿ Ô¼À¾—½ÝèvFP¡‹”È¿ 3u¶eÓÚ72“‰±]Ô'­œ_K ÍQñØ;Ò×úÿѲ¥ îàiÿ¢2²àˆ;Iæ„wDÓJÀ:Yí^.…Z»’dHüobU„ ’`Q«aQ£N:2!nrÑÓ™ÁÌóvµtî‡?bÆÈ¨.6È|M¢­ø Ö¢¿\V@ŽsBÉ+Û7õ÷4Ô>ÆÆ>ÿäüŠÊÁ#¢ã”"PÐH§œ¬ö£…¥[<Ö0,+³c áÌØ+[Ð×ͰP®«‰ùd{ÂñˆÅ"D0qû)ÚW/ÆQÉq'É„—éÇ QkIOh:fÓR^ýúo¦4¼/­ç¤”³¦9\2»–zs9Y¨þ‡f”¸Ÿ/ ðõéòM¡eDŒ£šF½6¿€WÙ/u’7¥t›Y\Z•š8û½æŽ!br³*$ùêZÔVzºÎÓ·wD˜K)¥†Vòôls|ঠ¬o:EBŽð_Õ?oãËŽÖ/^ê,PÁ»ûÔŽ‹žKr¤ªùÿíÙƒ LHc°uù”1sÌ´’"JêBž-Ü=Câ™#å[Ì56m'h×XYd´€ch·ãß4£zhþÞñ­ Q¬4W;û²áõ €+0§æS„Þ—xùN-½ÉÅÝD|Œ Ør¥ãã'«øVEôÜIð›\V‹)Ù Ô®'ÕŸß’ n6VAÕº"½ìÇÿéï­†œLñäiÌá-fÍæ ÔÂj(eøé9œ®@ /_Â#MK!;’ˆ­9^Ÿøß¾ ŽøqÜÌúJ•° :G6á©Jv¹'ñ(¬á–%@ÿ8–RŠ$… ‡f Ç1óSñœó}7X&Xfa~.0 DÌw`Of꣹báÍÁ$p°}¥­zNõGèÙ.ö{Hæ-¢kKûo@¥Ðɧ@p`qˆ™Ù#ê)R;n‘'7"^Iq=Í¥Éðê½r÷ñbò?cÈb[ЩվÈFnä 0ìã!Æ#éιú‚Ã'Ñ©ØaJá4%ȦCD P'Fgû„TïàíµÛ#“A`Ví$g±êU9h5³Õ[šD«é³F™¸ð# ýN‚Lè©Xþ‡á DcM„k˜vúÛöŠo+¤(+Y¢]ý B`¹/À+d¿'>ãÃxŸi©@ªƒá+š0‹ÁÚrÞÀi¨8›ÇóâÎâé'˜Ì?Ñz‡2±ãQªD:Í\ÒÖȻ $ÃíP7€ì} Æå˜OeŽi–1ð'[57aÝì(+ØÁ›7ÉÕ†;rhýo2¾×Y£L1ß2ª}µ)¢bùølpM2zšÇûYQf×w:s¦±ô0äþæÒµêkCÔ‚G¦fE`£Ù˜»¯ÞGŒÕ:âIyT¢¤Œ6 ý|r͉ñmãcÅ\{$ì­xMµ Ì©ÙVÖ* ¼k% ö„t™§=‰#§Û/±ñ¼p»m´ã‡Óì1‘(Q(ÇoÈnÌùi7ÆR‹OŽÂpþŸëúQ;2åÕ8×ø)I ³=õ. Ø‚ ŒVkÍïŠp0d^¡bŠ‚p¦`‰²óÛÚqÒÒoBü³ÉŽ7ã7¥B·Jp¸ÝiÊAl9MÕòšáhè7¥[2Léò~LiyÆ–z_Ên\çqä2“Þ†¥9Z\Õ=IÝš¥Ésƒ÷¨“µ<=îÙŸ +§¼1Xndsmý~á”/Ѥ÷£ƒ6ÙT@r² Ôöñì‡d¯àjç ¬Úò^ø›³…¸q÷±ÒÈRæBÁ÷ýå fŸ8·â½T(²ºØKf³GjŠƒ ‚®³_Æ'ÿ®xçz”"w°…«ß¥†ãål‡ ‰ÖÓâR¿}¿G4€tK`|¯s»î¢»k]ã÷¿Áf‘ìª1æ;d ôä9=-ùÄîe§‘Ôã#B{¾!‹ÊAõÓ>ô©9¢÷œ|ÞxÀ$5ßñì‰GÿÎŽ(ž¥\£;Èï^}.Š„P2½B_Q§&úº­Ó›²ÅYňǹh+°)}óŠBHœ™g˜ÕRÄ_ÈÌâx²åA äJ×±¿A•„Q/mõîjpǶ©ù”ñ¡¡¹»¥ç˜ Ì׳°œ²W…XC-N+/a³(^°ó%ó¨Ô²7íº„”æ“dt×ȬÛdt½Iµ ¾|q¾1š—+mís|x馯¦•§Ozz5þÖ¤^ý·[Ó gÔZý¶ñêF‹qe^¶ÄÅ5DmgÌ€™Ú³j9’íû›ÌŽ4aï‡,'4B¾æ™^ñW×å1^7C¨ošÏ‚èÉä¦S%Ò…âñxe5Þ]¬e‰ihæ,\cø Ãí.Ëj_Ò XCo),E3‰9ï¡‘¦­õ(Y†$%"©­_뜻Ü´ 5s8G-y¨ñ×DS)£©÷ÖÐQ%äêƒV’ñw焈u”¤Úõ‡ÈõÊÒE)IÏîâ]çôPkžc\Ô ¯è¸Úäþq"{rm§üƒŒt£+:aH%û°:£¼”G}mªC`–\9ä Õ&8ñØÛÞ¶rÈz¹po âYêU†h³â;> !œ‘]ŽP•¹`~<¤ª¿P?Jéij-œL¢gvú¬w‚±¾0…/™.h7¼¤Obê ìAÉ&>ÍþtcÙ;NÑtNsæÆ`î¦: cê´Ì¬ :Ð.tŸ—áÞʵ®éóbùÉV:Cçí-V‰_F^I*IšßÈùüµ{¶à¶FËÏV~@ éúMJêöæùg£öîþJ¿2›ûWãŒm§EÓôô„;¡‘R`^'“bûA‘”$‡á_o&œÊæLS >'bü!ÙXiñGý~¬~úœE9i6mòüý¦Žêq­Ð^_BÅr¢•ânEf,­ùÿì&¿‡úÁK^¢F8ìmÉ­™žåÝ»”ŠÄøôÉ‘-[™Ž4 .¯„í·³pQVaîPSyÏ„–#ÔÑBøÂ©w<†R…óúÈÍÅO÷'`¿“Ç9Jý×sÓï7IãdÏæä@Éo™Ô5_îëÿäQKVµEìȪzrVÅt2˜ž^Ä&ŠÇ™çú`üx~ww*nËwÈŠ‰ÓÑ"á@§‚).†Àµdj\¹—‘ä >6¤[RÂr †#’Ìw)ŒºS‡ ¬$×*ÿI3$°ÚfÐF éQÚyifY­àÎçày*·Vïêl@ú‡1ƒñž‚ÅßשdÓÅß ùyI ¦È–Â÷HžŒN‚(9oݵ ÿ´·iáøá=Óuk‘š>Å'q1ÆgÒ°¼Ú©5ãN;#(îYF£?Ÿ‘¾úAÕWHX gC5× èoö8³´±"²µNÞ];¶LK,@õÅþ_mºð}øÁ3,Ë­ÊŽކ#Õóïæl «í:Ê›àð “„Ç€rl¤Ù=":Ê"vÞÒV5ÚÊQѪڬ㻈ÚzÁœ—‚)Ìÿ^…].­q$O¤¿Kd5è6»½¥Û)¼‚ú î——Rbܼ†WXìñå,€á‰ÌJÞvÜBÒF4‹?­…W”²²ì öâu$ýjÒUr“$1SÎÃErRÓ˜p×¥’û2©îÁ —‚s™" 7mçýø—†Ðlì|Y¨†™º£¡‚,îÜE¾Y¬-?Å÷btÅäÿ¯-XBJºÍ˜yÀâ‡ø\ðMšz6µ7™±±9`¥ŒÙ›¸É#«ëI¶hGžîþ-šDãç<#S¥[% Á6ÊÙ×B/ÎD´ý*NY G|ȃÜøpõœPH¬X’ÎÐ>¡¸?ýY’žÝÊÄÓ¢6YÙ‡Xó÷>/Ò§A·ÉçŽH)žô¶väPæÙ÷,{uamrnEùÌ=¾cøèÚ±ý]fpoü_U !¶²£g³a;RD먩—…½x›uXßB²”tñ‘+­-ä{¸E½€àmåLÜ0B2.΢ɿØ=:ñÚÅn° Çlìxdž¿o[V`ŠŒ>h—Òþ7ÉÄü~.ÞÜš’Q®"'..È.…ö~K óôÉ91Ù¦µÿÅxcç‚°¹Ù ÛÑùË¥­øÏzý¬©Õ¸i4‘¯[+ÉïãI‚ΨaLfòÌI„Z|â…mÜ¿Â:³öÛÊí[Œ*E8ŸÚ&dJ‹ Ïf‡¶L¾„ÿàxÊÓö î B=%+ÞT˜þ&|è»4ÛÏ¿Àà ÝZ”äd–µbóè†"Uÿ?Í)6$*9wC{©$¬ÜžFb}‚”ÌÈÎú ™²C>–Mw!©¥ÒWÜG‚8gãçûôŹ=wSæ¦ôƒAqòC‡KÕ>Í ŸÉpÇ £eÞˆbRI r]¶„°o|yèC@7®7¿Ü>a¯ÈhúŠ´ ™‘#i¶ÜHcæœojI‡·OQC¿y•]|ãv¹(sª¦\êµÇAî*ó‹l0!\MÆ•ÏLÓMz ¿¾2SåÖtš ¨Â.7ËrxÇù« ´¦>Ic–êÒ€Pt}XÇF©cúO3hqéó¡@<ó-?$™žX‹×…ƒ‡<Ÿ'¯à”¿îš«¤þ»biI1åjÕ4¦ãå~zp„¼Áþ?ù„Ñ‹‰rûÓwP ÉnªÜs›@UF6ý*‹Å€0õÂsSÆF/5YüDèêè—àžï‡ñý¨Å³;¤‡Á¡½5y >œòÔ^²ÑX¢þŠjA'] IpÄ€k>HÖ"kJ Õ¦ôÓûCÑ~md&ÜÀœ;£Ž¼¼úã‰jYDTíQí7Š…TNšïë׎’)…¸/§[‰†­MaÑéyƒ*$’ÊÞá³ÃœªA¾‡hµÖéï¼Ø>+ÞÅgr©åÏ3eV^…À”{ih1 ?Õ ¹…­$ÀgÚçæCS ‡%Ž30ŒA‰ùn sî}EÇý£ ¡â¸ÙsG®%›l${¿qj£˜(r»ÎVs5ëEUÌÿË|ØÝÌùZÿOIP Àï|Íë*0Q  g¹;‚sÃÆßòa û/9©Cï2™#Ä%Ù¼HÆv(ÿP^K,ä┩ÞÒfuÏëòªÜ™g©SEҤ׷ýpp‘òÇ:Qašïó=}íšmõf‰XÆÆ³jŒîý½’8Ƴ³e_oëЮs{Ê„£¿ Ô4ôª.ó™èüÉ¡âS"–ªû‘%°koosô´Q3Íe^ÿ¯®al¡,âvn¶£€³²[è\q$îMqwî¾U×p¬§ ׎´¤ö¡9õ³“”¬œ`öKZ5Îf`„7O˱˜„• ³J6¦ÏKŸ6*Op”ie¦QWœ¨‡É¯áÌl>·4Õ-3 osp¤Šçs§…nƒ¨æž*oXã•ÉìlNGZi†ÏYg‹}ç]M|ÌNÞ?q'Œú#ŒN/"áÂ!B[h•O"c¿µ{Ý5o|+jò[M±œÖZÚo¢Û=;(ñ&¤< @Ž­ WÐó ¸î½¢é·´6ÔDTùcŸSx­Kµ².Œ§…÷ g° ΟýÃ$.ç¥@¦Æa>}è‘dêK4.ÌEtž¸ùŒ#.ªNgˆ¹¹1ô.*ÈýRõÖR¿‹ÐèÀ¹ú÷Ìg8¨µëü`FEìé9ÕY$‘!pÖâ³Fƒ%ÌkTdB2nóGoz|D}ZÈ3Ã%…Ý׫$þÊôY© ÛùÛþZˆTšâ*™rå‚ç_¯ŸGÆ,|ÃsèÀ"W%©¥pŒªJÏ‚7ÂÖ‚¹È׎Ð-:wÖ¹&%% e–h}E£eæfö_&&5–VE1‰w²LüÕ#yª¾sÏ)àçéÛЫOŸ ÛŸ^™;m:ò¾<ì ì +s¯¥[$….ѬSù±¬BAx:¦“p†~XWÚo£,°M°5)¿´6ÌâÏQíèb¼`7s¬Hž±“ªWþû—–A‡+:O±à¢z_2ŠRZµ&í\çz½Ô8ãÿg]ã+‡„†ñ2=pþÝÑßÞ¼‡:º–¿öá¯DràïÈôå”"rKf«ŸÎC¹âÖ"_­íƒÙJ®¿&&²­LÏ釰Í,½¶ürJûb]ˆCKÁP Ì⤜áw{T'¦ê9C¥¢Ú½ò4‹Ç§IOƒt´-§³=ýõ3ï& Ä%ÐKŠ™ðœ26ݨ~æŠ8¸Y‘‹}Þ]™N}—š–ûÜB}rúƒÚV±ýo)·Ú?Q}ô¸¥S,$YèrÂ.x²"ÝÙY̓Vpdäqà6ºàƒÁŸ°ãø¯[>J8ÿ§óZ$L¿UŸuýþŒå(8¨Fwñ.ι/Ë!9w¯7_ v^í´½Ðu& ˆLÚ,^…ž‹•\V7™ë³ÕCãîãÉÕ]û×`Á|ü^U áQXid[¯)¶ª *x»¬«ÈGc/,BŸ™VŒSi¥2¤ñRÞ^tº²þD¬j£2™[b¨¯Ô÷Ôv* ×Ó0I$"†³3ªlÉÐ-eI¶ÖÃsôP°(Á¶ÿþC•EïY¶¢0JˆGë³`1­¤àóE¤ï®…á³HMKÃzÁõ"_ÿ´ÏséA.tˆÝݪ ¢{žåâRå"^]Á\ûNX×m_qÚ­{²3w³½ÛAÐøÓ×Y·KÍ6†3JÍ,‰9(ÍoEo @ÓáúµÜE¿øO¹NÿHJj cƒs²Ñmߨí: ?Ðf, d‘·Ük`k8©¼‚ì˜U‚ljL1üûÕGÊüµ Ý¡ŠâD WOdÒ§£¿tÏfÌ6Þñ6¯Ê8(›g´dÎ;j)ÆAW a€!ó&zí KûEÔ!¯Z—T/?ge ¹Gâ#Í5³ªwnX‡+eê(aŠÃ÷„îR §ÃÔÏ ?¿©†ÐÚÅ•ö6w,å¡å^ƒT 's_Ý–OxÞ´Wý¸áiA»îÍsú¼ÂúèI‘ݾZ°W¤"ô¶Åë £'¯äˆr_(?"ÊÀÈ o¹Ú¯!uá¯p£Af"{©ÓHúô唀sx{0™—毥í%ÐgtûÒê |2¦`8›¥°©Þ“`Ø=7bwACD£*¸ÓŸn1¯´ˆÆ`ŠÜ­™Áê™7¥Ü€ùÞ# (´«úº«'h/bj¼ÑT!¾væ`…Ã8x©h¯Üí>¿Â;1ÅÙä˄ֲ¥4ȰƒYû™Sß¡‡ ñÎA¢,6­ÞeD4ç|¹^UÈ=Ë£¶´]ñauY¥ivi(æ ýnÝZ-ª;wÇ0J俸‚$¤@[‘ÄÒv¤fRuçíi¦%ò†yˆmUÆä§ÿµßN=¾Óºõ{þ”´0Ó:™¨žoÂóÞoCëÌZUáq©8!ðôo9l@;ôלÍ~=ä®TL'³lñg’Ô ½pãØáù˜ Ê@A¥Š´¯œÞúÝ^ ìi'ªdÙÕÓ®Î(eB/ »†ÐD—Ȇp ðQì’ÞÖA'[vU ˆ¥ì‰_ù6³MO ä¼*°<Øäˆ ßòÂõÎv§Vû G,O•p »>¿jÐà BjaÚmã~WoöK& L®¸4”¢TESïqÔð0Âr*7Õùî½&5ÉB…< íh°ÿwæA)2+0ºÎ Ó’F EKúUyµÑܹ|ôi‘Á,ÒŽ}Nìâ‡7ÒÕx)zrE!¶4ó>K?¡¦¡õbÛß!c.ªÛס¨<žÌÉLJõzH1¿bnƒ#!wµŒ|D¯’¸/÷¿W¶ÍIçÍ<ïÖ݉9×Ð1줗qˆnêwº`0çš%ø=%<]u}i[["Bƒrf€?í #IÓKÖK?y’ÃR«œ5FSB€Rqr™;\ §û/þåéG°U1£(èêÏ­Cè]ž7‚"颙½Š¸(RØI¿6ü鳋4¯<›¡Ð¢tÐÑä:ߎ'iŸ ÞàÍ_²Oû'ð ;Ìd·¤öóüã)e·5 4Ëâ@Ä“Ö|!µt0ìUtç p¯]•è\<øG·Æ¼„l{kã¼ …Ï+}m”K¹^:2Nš¿¡ Ça5®Ø*› ݆l nSûßÜšÔ¤<;·Ãfl¥xk s>—µš—ÍR9þ‹lÄØ}‰fäÓß'ì ¦­Ý¨Â<õ£Ì ;XTRµÐãFÊûb?Vâîu¬ºêňî”P:€ ² —»ƒñHßzÅ÷9Ã?- 8#)šçöŠIm’åâÕj÷ÔÔ`î/8 Ù:c²Ió9äxœ»µ]ãb‡ ëˆýyoÈ!OÚs'[î÷8ý¤¨ñêˆbèþgÑ¸ÐæÊ…è¥cI.r;Ïv? õ_•Ltt+ë¹–Ö©q…ûOSþB<ÒêŒp2ו[;Rïñ´£eH݊ʇwÉëÛú¿Ü÷@:ÑÇkG)~ã…3Cp¿ýîRïÙ“jwꣶç4£$‹^f$Ó³.²r·iŠÞ±%§ô&³H*®uŸW‘=‹ CŸÖRÿ>ñcÊMcBè†ÁOþÕFë²D6ÁÊ%™®CÖó(02­Y3íê¼ÀãÓ™i¥©j“é÷‹öFù\¡Ð42\à_ÏSî¡¥Ï ¥\uØž¬ÕÒ_ÏӸ×0nÜíËÙœªÖ,sŸÊšÚÞAZ îaªÍò‘Î#ØÀ‰ëAƒ%TØ´,J,¯Íêï°WÆòçI=ïsa¹IHVmöcÓðÊÐE¼bQÊfµseù³ÖÛ—G Z«V\ËZx1× “Åç£gzsç«åá¨n¶qim”{GºÞu¹R0vT)ûëBƒ.OØ[`M!›Ê ·ü\¹Œ8žS¯`ËLgÎ;ç׃[Ïu•/GOp»–Jÿ€+ Í@Å,àL×gUé˜ñ©B©—öï›èG´2A>ð”[æl΃%:›„&ãái§j ýe¼î Úƒ{¾H³áLþEÅÓ¸0b{¤JØaÀ›T7ÝŽ\V"6Gþ®õiî%Ø…8)ôQóÓr±»Hx˜_ôa1»8¨ÐñÜr:6цJ2µšDþ ¬Ô3R½ð=7i²ñ*ñ,+-+¼ì=ú¶ÙùæßãF¢tÝèçÊÓÿeFé3cüªgdJÍБñ´¾£ÁÝWÞì*F“ë’×àH- =,哨^]#kºqpt™5-Ù`B ×bn«Ñž³¤ÉSÝ_ ·Ï+ÄåŠã§‘*êÙçq´ë­ ‘§ÐJDØZµ 6mcëÓ ;ÒÊ âb¤Íü>¾ê• ßfß2j²’ƒAEʰKåÖìè&pGÎ[$I¸ÓÓˆ2è»òŒÄÁù‰LG|ÄÝÓi×§p@ÁB›e qŠ” [#[9¢vep“€xŒ<ú{9JCAVT÷#zÌifL„Ï”~€|.N¥k~«Z±1"Bzõ~¿¸ÖT…/ ÏjŸxÚ­æýÏZ&7ên»ß4[ê.çÕŠ+ÎögÖ` k \ˆ€‘ ̯±øÆå²Þúþ›ë«üÃ8B›Ó²„þy+†(ÅRAq¸©`W/V@T¦b‚Ø í!èÞuVVWᚇÃ6žnî[$™/P`¼¨Øm Q=!œ*qfÑã`tvb±9ì+ªoJ>Eåe…œÓ‘çú–7–LöAßúQâå±sÌ.n¨@¸Ï6ʤqC‡€Þv®7¸­¸Úê¸ÏÅmÚÒ]a2 þV‡:1§GumÚô­‚qÜÊ¿!ÔÕ˜_0ÑcÕ<€K¹C)ÒËEùÓQ5·¡Ñ|O*àb:`8åòX™$ú°½åæt÷~—q%BýÚ?¢ƒÙùrB×꧉}°Ýmheu0ÿÂ@W“o›ˆ–Ñ=¤‘'Åõ«ûÜZÄjš_ÁMïa“âÊ7 %Øy¯Á´-Eb—gVì¶aA[¾¡Ø 15o¶3xluQšÈ•sSÙçM–øF …?vñAôÈÇ€ŠrÜÈ»V Å•?ø^c+•M’Ë,ž3; Âãz6Û[´’&˜0¯5~Èt~ŸkåÇtqWT}šÎÔì§®ú@®$ÛeW²»&ÛæRã¾—x§Àadú%ÇS» çý†ëàQâ¨Ä°s¸ZX©ÃW˜Ú…Ó ç(L:åýJÍ$ˆØË ÍÕ<Œ+Ï…dÔÜ'fmE· IÙŒ§…WyB|eAŠ’£©36Þ$UX(ëIGd–Gôa+>I’k¥Šy¤ 4(-Z7"ô5n8‚Ùü@‚zûè¼\ÆADåÌãÃhHó vvÆ`ØCdJìx—äê›…{H^æì2«Êàsç®.ÚsµãGx?>“P¯£wpLñ›föômv¼·ÄÈŠ%ÔÏœ'r: ¬ÍmtŽ8@CE&ub5º©¸eîFpëxOmO30ª>’ûgOI¬ÑOËÕ‰T>Š®2,úh>[’ÈÓpl•ÇÀ–PjhìšÉ]Ì~Dvo·Õ¸‚\phWpâ_¿ŒýÒPºÒ`1I®e»¸'$1H:É%bã‘¡Ö¾–-§šaã°Þ‘ÆÅüçb·Çíä<ŠJ÷ú«/®¢ÀCh!ªÏ#øÀìI2‚³Þë³\ê£B‚ÒyÒLÀ]ÇÝDƪÍ8’$äQ“iÄ_›ÀÜFVùY>\Ç0ˆ¡½óÝðN}‚©Ð ”4ìîÎúá§ÿ¨âüÆ:C!ÇhŠD^¿1RÐÓ[¡¨;‹ÐYyáf›×TêZ Äû £}!14¨FÎ Þ†H€erÛGŸsFø;VHó Fh}ÑКuŸ¢Cô(ª'‚XÎíK½ƒ’O?‰»F*’|Üë_¦_eø¡¯˜jƒ¬KÈTÇÁGa`#'Ñ£Ð!é(xúÔöÒ'b®{'0¤= }+ChÁãq¥j2Ï‘¯óÅ>VhtF¦<…îàc6>Â_'^æ–g=Ö5•ºƒ¯…4ÙgÖ©1 ÆÛa!ì)…e­6µKRXîæU^ ½ð5HtÖ“!­?–t—Š ¼uÐB!J'…gÀ¶¼–.+É_éþG0—Âr”ðs¦§3 Ú\«óš½>ÓT#ËRle~}Þ.nÃËôm‚ Dåñ |ñ6‰³åÝš± ¶}ppþÊ£@ /ÎCú½rc-A /ª5·a4çИeâ¤jtªùíuÓÁ¼6§-Ú¤¼Ô:)Ýð±›F2É.0T¤®û×Þœ”‚ÛK…RA'Óda4jw2AbvQ•ãOÀ`W Áu_¦@5Mª¤V« ’ö&ûû¨™åpЦJNé Ë` Êb»wKFmèPúä˜ú*º7Ò¨2÷€ÜøÊz ›°Zîk:ƒA— ¨¯^UzR˜væ%©Íw$6ùo§±Šrá·xW¨}o„Âg‡ŠÂíl´ [¨Nw®D)R„úˆ3éŽ4B­‹ìHÿ¡Þ[Ò nzÿsNÕúJ@‰K˜÷$¯”KÒ„Û‡¡øµÙª(\Câ˜Gú©„kk÷knl¨ò¿‰É:u›ï•ïb ÌåЬ$óˆ†ë«ûx²®®e¼êá»/‰ ãÜDhK'–oÄKÛý$¯ó^Ã%!dz»>¹¤›÷Ü_OwU%_+¬ ¤gA?2HË>bèʶ!ÿîI„4~øÕ†ïB-P<È•Á”²˜4)s"¡ý–ßMd–„~ŠÔý¸~Ž˜p:ì^z¾“lNä¿ÃìëùY!•Kò¢ivæeÁc«ŸÎ“¯t”_?]Ê‹K5c5S¥³öi™çY³šÑ­'IwOˆ”}yF ÐRPSƒ]úpž]òEQ0ÿv éÒïPÜW…Q~Q½³Ötúáwö絞ÁûöÆ>d–Ðì2Ý[ÆŽpÿƒþ Od> H¹°¡†·‚ö˜2e%ëæ|÷u5q®Š0•BÙO©óÆ Í(Nm@ÜéâåúfÓ¨<©v[ÀðJwªC0 Gú±[¯ iemð¸€"ß>¨& \Á‚/ 쾓µ†dŽ#Q˜ô\{`笷¥ëQÍ]¦ôÄ'ë~”c~;F2Œm.çTÕž_Š®$—°šb«©ˆóoˆFoó˜YªÝÐ ‹ºÉ…]†®Ÿ˜âÈ'œ%€WÙÞ²´t‹'t#ò&g¿Ø4‡@®cMßuÏʼ·•o¡°|\qM‡ü˜nÚ£â55ÏiýÁÇ–¦¼8 `<>¶aËðÚóɵø½˜…‰É:ÎÕ¿¡­JÖ÷d1"Wú·²p”Óáå~|=#–ÑôWɹ$;=8." ¢‰E¹ëÐþeÙÙæmFœçË¢â|rÝÜixÛM˜”̘»üŠ{㦷_€3ïSÌì·ñ:µ«‡àá]¡ìÊQ&Ýdl{Òþ¨Ï÷G˜ 6á>ynµ‘_H³VÏlÐÒ"Of]œ†^¾czpŒ¡”Gå«v—Q`pT¼(vXWW{”'gj¶ïZ`j”Î-@ ‘1ìä<ÇUa}—aŽ”3A«´w»Š"h§õí=Ì3±zæñÑÚP2_qg‡Á12x7h|½Ú]y”¨Œ›áöç– ‡›ÏUÛ<’“aÞSò¬s]|ºp¡ÆY¼‘ÖD¡U€šÎhG áˆ~Г?sÒÓ×!E×ßmúNu~l£Ç“Ù,Žkí­Ãò¿å>äay¬TíÚ™o¸Öw´ÇR=‰à¨%×ì-±-èRžWù•Óì²® Ÿ3²tÚq±öÎ2¦ñ¾`õQñú°G®Z Ár ÜÉn¨¼Ð¨Ò§ðü3O‹³t'dLóà©y¡AÏê{Êúw-‹‹dÞùÑ¡% *ÙŸÃ^A ý•.8>n?9,ëúðx¯ëxD$bÇ£uq@r‰Ã«µ[Q¹›×à:¡Ó掲ÿÿfg‡U)æ°ðÔ‘^Nw¬Rtïb¾ÜŽm‹Ô>kUzóç¦ëæ>ÀN༻SP±†%ö´Ñâ KŠaªÒžŽ¤:·¯×0zþ ýÃ9—ÿÜŽfä°ó_½h8æ.8# G±°ßúåA€ М< Üõ+ÒàœÞ0™ßÑ™#Z4$)rôkå1yøý}ws÷¤í@¾¢89󿨴Vëð©PSÍM#˜ÑÕUâO«$ ê,šÏ“…„4óêŽ$+ cMŸLÃý}®bÄ &½÷õXFöÃÒye 3CmV Rï¶þIâØiEh§X(ˆþ‘m è’|AÆhúþÆ«Ö=Ì6¼ª>Næ]¸]½Ý‹½+¡Zw×çJ]CžûÚ km¡,³™Fï°Aßpä^TYǦZš ì9AÓv 5(3w¡åIa§úæò—Û‡ŠY“©9׫ -¿–“’–·Ú•ˆIŽyš³>S½©QÅ•4­t¹•pÔÛèE?WƒñnüèRðã>зžJk³¼ÔLaU.ak,dn|¯P[äELtNãF3«° mÃKñ–ì6©‰eI©I?šÞ~ ~(ÛþÞ$´ÿ)ésâ v…rKýîh­xæŠ-wz"oèRÇhÿnFâ.‚*³Â³¤0ôy;vv×ìÙ6¬:öî =PÞe31ùü¦wyéàVÒ¦mGÓ ÖÖ5ù„¿žyþ¹CÛ€¡o{Žì²)5‰j+z‚W¶£í|ˆ[êžr8/I'ÚwŸ½þ ½z}kq(9R0ÛJµþÊ&lJuf§d› thõ âH;²ëÞpCó¶F^“;Úr§BÖÕ [ÉæFý zŸIÚ^ÍÄ’‘}©³—€¹'{øØ|øºz­ÂÆd•´·¼su+É<…ÄͦíÊòDõG¬Wz¤ÌÜ­(¦ŒÖmÁN¡5ÍóZ6´JQÀø‚N:jr†bEvTiËlQc|g'êO`²QÍ’›[]ÐÒ1úߤÎòôÜee¹íVy«9D_ÛŠ'f^&9¦¹äÿ˜æE$ë=þŤ®0S*ÿµ‰‡j¸©@€c CÔfx¸*=Z«ñnJòn¾.ù¯˜Ò…^ô„¹ÍÎm¶³úõ’úÇô–I")R̲-纟{XÃfPáz=­^¾óÞQªͱ)ñ¦P¹Þ†J%î˽{kÐ5@ž¥ r¹M°–ˆÅæqWêm WˆG™Q†…‘Ö2âKŪ?¯(é|Ÿ‘ïç)ZÚæ¶œ9ÅŠäð¬ãp”’“è /™½«[K‰¡Ÿ=" ¦§ˆ¨•(–¸äÊ Õ¨ px…ö-Øçd™¾,Z.èÚãü"ÍŒàÿDý2:*Ôg€ž¯šÐñ³ñ»+˜«OO §û„’äþd„×`ww´ð×Ù°gÙωt 7×/]_IáReÿc9ÅzXegEñ—ú˜¦ïê¢JšÂ@Œ÷m]TÌRøµ2½^ºûžé {¸C_mÈ7ïñodç%‘Xö+QmÛdOÐÄZää`Ï\i¥ ÊÖ.!g„@9%{Ù}È™ ~0ªZy jCÍšŠè[ïf~áVÂSàe’SmYÁ£«8/¥Ê?ˆJš¢hïj`¨c,0 ÈoÍ;µžšÐ@t§SÿÃYÖµY½Í×-¬”­ˆÎœÌt£ÍȇX‚Ëž bÑTdigx9ç9‡….Ge•}z>j8`îæD'RvQª´°b-{nOw3ž"¸Üutì«zZ÷ŘÆ9Õ¡™AÇ‘áã CT3´Í!,!¿ž[´Ybìá % (íí{–mL‚íg*½WVæ§~iz!ƒ] }#£\BÂÆ²e<Ù¨n4Õ¾Ý\™úÕ„¿\ÚÔ’Ùʧ¡úk™~](Ã:=¾_q0WA”³ Ä<ˆ|ÆŽh%,¨ò‹hr&áÞz²l§«³a'{ó§¯ûËÿ"/3Í×y3köÎû^Ë-ÇlšL@P€¦;5á2޾ËBî‹þ üÕT‡Gãý¹Ch1« ’ã¦Á?¹êW±ŠhJLWd½Å/³D!“TÚ?P“û„¦¥×#®—¿<¹0ïxÂýž¼¬T9>-ÑÚÂkxx_ŽD!Kçí7”\Šø5¨âoV_™†ÅP@{1P\ƒü˜;œ.ªž…é(3\W£gA^:úÛoÂÄ®rUÛòN² Õbc¿´f›1¸TLwLP9'ý´HÇê&é¢0 ê4üú嶈k9qž²,9gÎ…ÿzo:}"àžq`Ðzþœd¬8䣿¬ê*º&=9/Ðsü±[ØÊ+¹#_Sl!óáµÊ&AÆ?n“7^pßÀq ¸ °Šƒ€ LêG²Ñ¹uò›|²ôÄ\ÄÊñDhjAö“3bÃB¿J~œŽ+ˆÈ€ÀºP+G°oƸÄ*Èá†á÷ÅÈG¦ºZ[ÌÛúשðÝ«ã%Fq&XÕ&–ËÆ^X¼ïî"ªHËF­l ZY¸l™»Ù]®Ø(:ÔžYÉâQÑ+Ùç·ó, 囇ϥ4ÍE)XߤCÐqæ×oE·ì•Í7‚ì}h§¨Ã"Œ©S_F¿tamøéƒ°Šÿ.¯p 5©5!ŒÜýú ÎT"ôVÖRgôf§òçcY1Ÿ¯Na nÇõçÇ}­8iMîX“K>I¡Çï Vºñ=U“c€ÙWOà 6ju˜èÝ-K€j÷^ ²Í§€[»0ŒÖo _^^¾¨v„Œ½ÖvÅij®ÀVsRž©¼ÃÑYøåðœîáü‡%&ÉF¼m¹K:•ŸƒšEý¨º¶&ÐE0ÉCÈ·€Ç½/°ã²•ø›Ü¹v8ÏC“÷½³»ßZNýn¿ï†fãë&¬|äoló¬®ïxUFæ×´YÚʎǼ·òQöŸvRûJÇQÍ'¤Ûð÷—Ò@ø#k7DbKè°äiô¸¤/]Ö'.¨<ƒ@°=r%–ܶ&·ƒòÚëæC¶¦ÿ¬‘.9š°trä뮕ºÉy¨¾ÈŠ(˜ƒòÕü›Ä=cÎטµÎPÓ9D ›ˆ"d|ÒnO.OßäX¤X€l6šI¾öã®P§µ6^aº7Ì$aí¾é!Çp€ÀÍÒ®áT±8CçKä§ÆH¸qvU­·O¤ØÞÓžIþTj§Þ€üt§Z8æŒòõýyf·ÉðàÀä0A” {‚šr¸¸¦(QJÆ^»ƒVjÔ诪£>,™ZÓR©7˜½?„9\ëô Ç‘‚£»ÞuyÎo- ¬É !8{I §1ÅÓëÌ4Ÿ€")'_?8”XÆIr -ýoT)ç ýïÌÚ\Ÿr›bq“ÞÎñb$ßAžÜ·1²ÿÿÑña Y(Xá º\GÓ¨¾©YžRÁqxÕ@G›fÂáKÖ6Óx­ìJïf>8Vçßa6ÐñèJ.?9Û¶¹†í÷Þ—W`²›ö°ÙÂ×0Ùt´ÉtÃ@ÓŠIå{ Y4æRI0€“²B©Ã| ¤ØÕÒ¡sY)YC(Àé /N'ÑLú¤›n§¸X¼ÇFŠž.[l‡)¸pö£dèЮ–Ëš$3øÎ«eoÕ¦,_~½¦|h¾µù'JÞñËÞSýt·Äø·@gÈl`â&ÉLt0á!G›’Ò-§vkÒoëŽ]ò\JïJ¼ŸÂˆT ò¤sß#+Ží­e•KWW[Àžãh…òA(AVZËU³;׿S_èÛ‘â Ýgú'ÒYsBZ”œèÌÊʾáò‡sƒ å?ì,±¸õÏ0Tè~’ùßÍœ¢öÕíàõÛºÏØnÂÎm=´%šA{@g5S¶ŠìÙòWü³ ö_$Ü:pè®×EÜkÎACQûÙßÔíŠ(*¿”3׈.úÿç—´ HôAÇWá/+#˜»`iÕvXwŠæϬ—v•…’ #ߌøä,w†Fˆg†ª¤üè´f{‚ï´y$€ áã :­¯y2fYëÃt±„fÈ,4»™\Z¦È@Ž,l‡‘ ¿ô/v]¦—÷DE6ææžGÌW#¸çÌp;;Ô¾_Ý:2£±®‘ \-D¹í°V Z#—Hm‰Í‹<»ìè¬Èê ¼qµú¶ ×r@"¼uÃ$uÑå{¾>[&âÛ€îkÉ«4OžíK4Ú\©‹4L Ðd笀OÒ£wýàT+ŠR“_cA!y¶â/é ¡’ÍB·ÙXþèxê)/Eo®ÙBk| ã"ÓÉFÐnãÖX”¯è‡ʨ •M”—‹_jo‡¡°,zcNÍ…:¨rkùGƒ.|Z WŒXîa+·lã‚Ýb®¿b„¬ú1ÍA®¹jOâÁ(ꊑ8˜iåæñtE'=Œ_+T¥¶º$š¦Á²pŠæã>Žnh‚¾²>»Ü»ôky’÷üp°Áë,ÇÌûµ¶IŒ²Î–stl icF£ÎËaGjÝb³w€`é>˜Œ%mŠdý&"EDŠPw5ZëW(³i̦Ф脵õ¯ÉVX|ÌíéÚKéC²¦‹§?rÌÑoWZp)§Ú±ÍwNV7‹Â÷ã¿S‘àÚFCA…ÀŽúƒåª’hæ™1á­2M&¦r Ñfõ|“T£©(dp§…ĉr±,Éâk­6Dé2oêE~禴—íg¼.3¸Qã*óí"éeÿxü‘…‹ÔG‰0gô;kêÚ_m­ ’iñé!"{}´8N¼!¥ž ‡q®igÒXùåHx½ƒ2¹óÇì‚W„g£}óQGª0ó"X"sÒCžƒ…*ýS¥ùæQ8štgâ´X4áÛòÏÏ3–e]ÐËÖò–™†uc"¤Ø„°\ ÔU5nˆð;ø‘â xpÞ¤“3FVþk7ù!«cÙN\“kfeƒÌuoá7"™8)‘ü:úÖðß<§‘Òâ· éº:²éEbøß†}þv¥ÏåÙð„óät_Ø)ΦѓÒús〠ªR•˜&8ÌW·{"Ç«õ]°Ñ¼}_a¶í¬Íâq& ´ßï÷ÿÑ^™ÄUèquèâÙ>6:DÂð¢Èi¦”MªóóVìÂ!€îêàÁ“FB£ùÀzѿܔ;^”ìòú• %”óqÿÆCR‡ yÌ<’öZê’x«ÂT(¾cõ7‘M׿óh•’Æþ¸ZcŽv{“ï  cÁ ž tp ¢CèÀèÄ´+Íí-Çe:ÉPz§¶×¹Ñ|!—ÉŠ"ðìNI7K^âÕI):°¢í—\:=bòá8\©Íõž±÷\¶ãRŒöqá¾ñž9Z¬î* Zt¸,²:eÎëÍ2Â'”úÿ7°x~Æ…Sù‰c Ì#tó6ELŸù]¡©Èç×@à¹?]•ñøÓ(l)i"æú£•I“s8̺ýÁZºJŠ­oöÙ€3~‚Nf$ý>«¾qrT tç•dª\ê_on£¯q0‡ŠsµkuÛ×Ý}óN g&ê§\°´±¶Äk°ut¬€v¸u¯àdv+ÚãN%¹¿Állåì ÉM„–”YV>¹uêI2TNU%"!B–¦S›=_¸¤ WìÝ€Y•—Et,éx¯ˆô3³ÌÈ·E¡Õ=ç?à I–ž¹7  ‡Äg’ZsÁÂ÷â\'2× (Œ¯QÁÕi‚»*"Iˆù —óq5Róë³KfGÔåV+ýVþ}¶a°‚‚Ÿ~e—dn)’ÚŠÅÆÿÁ³ÁþµbNXÊ\1üÀ÷˜BŠvÚ¶HlÄåúL៫êHNç¥,#Õ¹*”´38Ú¯ŒÔ§(þοIbU ç³K÷Œ§ž1¾üŽy©H¬;Òˆa„çŽècEÓ×#¼+ëÁP&°šqæTî»ÉÍ¡zÛþÀ,î÷ı­ö Á¶"[jI´¢Î’ŽÆápƒ(Q˵æ¶Ñ)LÛð¿§L –êÓqû‰üðúxöUeè'ñȰ›&~G7ÚŠ=HÕûó_Œ¦L?ÂK¾ ×$DÝì ÁK g“Q±ÐV9¿XB~GŠÁ.r4LdäT¸?TDǯœßF¯àÉÊ{ˆ‰Ãß2™’Ó2BÈýª*¶‰=}°6RH´Zþ$ °Ô¥ß¯ÀUúrõÖ yt®ÙçðË’åüƒ¼~sièP<™ä^_ã2›/Æ‘#œÝåRY-ø'Ò¡ëcÖ#H~ÿ |Ö&E>ÀÖщ^Ëüê*1| bÉ£îUÊ}©_¸õâÒÉ¢ße”^‘ÊöÓ xn™ñ_ny' 7oÃ3Ö`‡%™gÍÃŰW£Q{‡kZÍË‹rC˜Šè^WêHÜòßœ@)T[Óe©ŽqöÜõ˧¡ß6Åt•’Q7êz¥d Í-þ¬e ³rb9pDyöV¦Ž´¨ÀbÞ’uä‘%ΜÈĹÅI^aÈb/'‚Ð×j>„f^’{ŽÓ¥7Ñ^2ö’Q°ŸÛ/ëZv¶z„îSŒNª£Ì}+¤×–€:âò:½'áØ[N|zŒ†á·üÉÌnº+ä5®ê«(b+`AA¶:§ˆʾ 8ÈP­—·>QSRL‡K:3%Ú°­MóÆN²`íwº3º ö˜”÷7eG^ÅOô¤á·‹±®©8—ìRÛƒ”¼‰ÇwÖãO[3%#®&”ÙÞ$Ž> è ¡ˆRB¨[|OÐ;3:*æiVëQŽn”YúθMϬEÖdàv–(Ü)°°;wVâ¼”ùÛè¾ÍÝý¼k¤·^BŒ0I@ Ê7="m#0³¦©%×=o®Oç&_ØÜ›(+4µ/WÉ–‰ÒIÓBî°ÌÉü,Õù;¹ÌùVnB¶·á~gÚõž0ƒ[í«¦J÷aÁ€ÿB£¥Ò‘6™zæ$„V0 µ²í¦Z7þ£™F"`â3nçN¥©(]çµxGQh¬AÏy‰8.õ¸á]J½u†Í‘z©š-©%‚!~1Å=—¡M8E´€×|Šñò ¢#“ÖaÖ IëpWWVÉ 6.N´*ÃIù!á°ÅóWá W$ŒEvÑe3Å”L¶1 3a|]8k!EÌjòŒ4Wø`’Ãsƒr4–BÈÉ¿“ÌoH¼gæ,À Щ'+„ÉrÜ1ƒHŠš€C9s†˜¹9x.?J~]Ž`ÄoÛKFÁ7)ÊTN‚P••^y¢¢Émý§˜"2Í™òXöD©µ‡!Êsz6ø9]„w®€dã¹(%Ä.'MÐôèSŠE.ygôv™ºR+ýgîÔµã ÇG^6pgRãÛCÎXiìPHÆ'{¼ûÒ [ûÑ#÷_ú¡-‰%/î-s»a Yêµ ©ÛÖ3H~:XôÀìø¢Ph3Ó±‹„4åZ©Ríf×to¸ž! /`¹4ä  ¬DqIAöÿS§²‹(Ap2Ý€F¹øæ`ÚÝÕôcWßsõ J1‹É tnIdƒ rž|ýtæè„rG )«ïDÄï〶ÊÀ&$¾lÜ@Ôþ(¯=F–Õæˆêk×ïq\µfÔ`î\E‰áÐ&7ÇN—_kÐÂkÓ‹3ÜQP]Í”)ÕŒ”ü¤ûä¶*Ó‘Ø!=PØ1¿º ¢‚Ôŵ*»dð°Í?OÏ*‰î/Ãk쫌íaùæ5K“¾¨ÅæƒgZ÷ÇïiÜÁª?^ÃŽ’%VöbÈ䬯PD“®ÅR%—„ò„†!Äà]yF\‡”.vY®Å .I(²Ì!Ø~#Î6ÑFBÆU_7žE¤ª˜¦Þ¡" £T 5à†9ƹÖ~–æ `c‘|!”@¹Þøi~«A´Ñœ`Ä6"{I})Ÿ/KlBd,zVØ›½(þ;à×8}øs„$X¶&eHág³¢ 2 x „«y'ñ8Û±6peS=U4D×ì´‚šeaa{åƒLÌêÆÂ"`Æ˽ýKtãîøˆO„^šõ“µOOô€×•¦¾’6Ô‚üiï_™ŽŒij†}o·ËÒ'©*b­x–ˆž<2.R«£-© u ÃF{ W) ©õ^&£nÁåŸ+”ºÖzmk^k­£nJ¾ýëÊ"=«r/ñdf«ÛǬìÀÍ=ˆÂ7’!l´u¢Uu†æ}ŒË·õ1Ú‚™É¥ðD‡Ûwà/ê(£EæÏs1ŠÕꕚeá:xfÚÒ¿OAhâ ƒÍùµSñÂAÞ,p?±ö©<`5v ïðÕ¸îØØÈÿîª}‚TêƒÛàÚNUq2_£Ä›†då§$Ùt4|æ•ÿUăɩ Êk]-5þáb`׃Ôy€¿Öº:wøÀ±PÉq}OØk¡,GQm×Ôn©÷YRp‘¼ÜÊ€µXó7<^ÒF>yR8ƒãª—(93ä ’c„¹j½á0\éûG°O?ÐÆ»—µœ[¦°í<,«H±ÁEš_^8Ô™ò¾scxŠØhõ ìÖGþQ E©$’à¥-?H÷ˆaL"[µµoÁN´øq>coeÚ^ÅIã§<¾—õWC#Hˆ7€Q ¬Hû^º°Ë—Lšs0pw:§ 4æ ôú¿^Ø¡ïúMkdz¸Ñ¼§iàÈÃ4;³à¤Ü¼ ¨¢ídç§…ø'Í;Á}ßø(°Ê-æJ®Æ¨ÇdAºeµü%Û²ÏKÌ$bŸc¤G£wÑ$²§È®lÌ©öõµW7Û<4PªB©§ e;:ÄsùÓÕC1F󃎧T¨>]g—MÜŽ¬÷Žã’aôyœ¦Šà4âí~|â®±¹"++£ ¦H,` ÚÇWHÄÆªlc‹5x&þT×ðHnõNÊaž<ÿÂã"0>@ É«ÝXÁTöØ·†¯›JEâ¸Òþ櫺æ­éÄï«6»ÀwÍà.ô aÂágúm¾ˆ—vòà'¹ñ vÅá 5š9ï­æ¢ì„´IbÒóÚX|W‰NÊõv$Œ!ü}ôc°óe‚•ÆÀ@]ÏÇ G,ºF÷Е\–Ee–…;_w~ÆpM0…ðÄ¥+dÉ”Wž0ÎÚ¿4™Úÿ\1lâ´Ÿ;%:£XíwÃ\,E¹NÓt3@~=Ná_…‰çr}ÿÖyM)h:öt¶ué óÖÄÓ¿ïwAŽÉ\9ìÔúnÉœ)Јÿ“Ó"[¿MáÉ2S̯dÆÎ3³;yöC~OS‹æ0ŸFg×O¢8QŽ5Ÿ›¢Åc EªÞ3}ØîjPn?g ¸13$xÓR5#XX ¯/‡vYÒf\ôãs-\H¨oY„Ec”Öã(ô'ú‡ —÷9Ũ)°Šè±„Vï½¢æœHÄU44î6¹Ý/„Ñ^Û Sa“¨ùÝÅÀ(í ÈcíIêj©Cý.Œ–`ñ¡JØ9Ê€”ý¼-¦ïÛ¥.^zƬ1Ü@!äp‘ê•pASÞu`<©› A“|ªxݽ.6B¶‡äžM'›Í™1‰}2½¨a'Ä› I¹¶¦b u¤oªù0Þ‰ÚÊ\Ó«nÉšŒgê7ôõG~u$’Ÿ7¤âã-x ¿Ên†“d’Éus,ÌaÏ-ý½¡uÝõ{Ð0ì(Dü*AxSäT_„U®¶P…‚8ýŽà„ï·|œ¨7,  Ô¶TÃÁ}ˆBå!ZÒ€ûƒXI»èà8½g€z†8æ%š­òÍ} k³·qŸe`0m)¸±³hÖ£××Eu/x•É-ÝÛìAà:Íš]îwkX°d@K•áñƒ€ñ•Ëö£¼q¼¢¥R‚ûð6l‰}ú‹?l`ŽÙëV¬WêÕÁ™´µ½¸Ï^ût´mAE‰åv¹;\#üHIZ«”¯œëÞ9ó^¢é0„{Ræ;ŹgV;_^Or}LGlÔòJñÓóxBð8„‹¡]ÙéËbõ …õAƒ“ Ÿœƒ×ç =¦ÏøÙ‚"¦©» Gr¿2‰Øq Ñ ,t‰?…u´p©ù=SúžuëëÝjAóð™Y*;/Ècïv•÷z÷y‡Rfzµ8±¢¶Cp ŸHz»"n"èµ¾ › ؉VjK· h*nw˜—9‚qy0À=Kª Åë È=ÚܸÓSɳÖÂ+È5%ŸhNug˜ëܺ±«·óšGy³ áS2gÅkîå‰w¡³àF²ö@Óf›pB2N}ǸFÁöw‡oH:C{J×êëËó¡ JfPA”»%&Š.k0j+ÀHò1ÅÁlírÑÝMËÛ&@¼Upòù-ñÛ‡ÛãøbBî_„ê‚DWïš­ssey­±¹aKìºY Ã99Ù]þïÙ¼MÛt‹n½çr™>‚œüÄ©Xâ“enÂ<~x½ÍY¶Ú¢þ„íÍêyfƒŽ&ßÒmiÂt©ðDæ ønŒ¨€‘Xû "ŽËh¿” e¦VTÝ”ŒÝ ¸ƒXXÐ#@°Œ‚µ%aÓ¡:([Ýf­4xýØËa)žÒ‹z<£ß§gŒº f ¥N¬áoh+Q±IDÃ>În[†d·Óß(µ²”krßGõÖÜ+¬vW%’GøìvÁÂiDôq+ò‹ØIç?H—AøÌ5yÇ1ÏÒŠ%V%×ú6…ùU4-t4Œb*6;ÝÄrølîP‡ÝE&aâõA©(£Ì>iæ¡•ä,¾¥€¢åt×BÙ‹¶4ƒ:¯o¼›ío“xá8eg笑<žƒcú#‚Ö²C]»š¶>Ê 8ΪÈzñ‡Ûco.0±}ƒ(êÈZ»Š–9Ç…ð¡ñ°…èÅüd‡eçfé³AïŒE«d¨Ä ›¹ÂFIÎ5ÑI皇)š¾äü9¯¿§Úâ.ÞÒm¯7V'èÇ#JѳR#´!!œ×¼g:åFÞw%ÌXŠÃŸÃÑ”:û$d¡1Þ}p„)swÙJŒãlOPî³ç7e) U›=µÁ”»3áИU#³ä…ë€i¼É©ÊD ¶ßršÇö¼˜š—xmÉ€qôd @”rb¦i536濼-ß^Цéyr÷í»Kô "¹;.åNJ ‰Ùr0Ñô¸1¬»²ð~i÷©þð0|üH"¶´tð=]PS‡ ?>ÖŽCáƒIb[Îkñ/¢2*ï¹¥/ÀÕ„•Úš Á3æÓ¾@i¹è"yAa½ê'µë‡€EÓ–ˆ*D¿qSuèxÄ]!aÊLì[XE”ìÁË€å&2Ú1Q0'©7L T“ ê«à™†Ù ˆ7>pw¾ƒHYPž¢ zª>Éìw«ÔQ̶+»M9B¤:õµº¥¿à?!3¶Þ\‚¹žëÞ©]3.Ì-‰ÒcG0졯(&Õª—…–žñÙ}µ¹üvЮ/!ëAÏ£¥ñ?ÁaòuõÓÉ ^ÇJi ^ÑÄ9§´ã6`°h¦õ!ŒgQrŸ¾îªóJ‘Æ;ƲàÉò‰¢}.‡Ãž™ã”æ,&úª ²k$ÿï͆ƒÌð>>}°nþ@;?=^÷aNå°‘ÕT[—'¶èK¤9ýס'űþº"(–Í[[6Œ±©Cn‡lKF–WÔi‹¨­¼µ‚~Üx×Ì‚´s˜U³ô#™a˜TºPa×Ü…Š·Ž¥÷Â1{®Šfm$#_ÎHt=ÞgÛç©«63‡^uÛoçiL+×—xBîa[Œ9(¸3Âsû >eh‡›¿Æ<ê÷%pH¨éxK–øó‰à¾ì }±÷ˆ­Ú½ld„< Ÿ¢EÂåöc9¹ÅÕkêËÊñÔdJj_ÚË-1k ðsîUQ‡¯ÄÞh³`‹™iM²Ûf©è4te‹fWí¼*)ABŸ««'Á¸ÒÝ7ZL“•Õ9>8”—Ž7Ç&BUÍÈÆÛ’”È¿$|3Ÿ™*˜TB ½Aãfˆõ’ŸHÛí©¡ÛìÔËð5ÀÚëºÍ½I–*×Vy(Jãrȯ|;}¬_©“,àco;ÈÄ•Á!’é€mûA>M˜±½8SÄZÐîÃvÛ™ÉNÈ¿x`å—î;–®yÒ}<Þa¬ú€Ìw;W µ–øÛe%„¯Âõˆ ÛïWÊfÍw±ˆ)nmp3ÕzÇ‹1¯ñJsB®.H«çœ%p{„rƒ¸Ùh£™¼Â/~ÑX” àÕ2þ¤myùK”»ØZæSõ›oh+}ì°gmªŠ<¿kÙÜxÍov1xʼ‡š¸³ZôÀþžoåtü¾Y @w÷c ç+èQÈÄ9›…â AT¾Ž.‚)šÈ °Êî!—3ç¡¿¾rs! »JÏýò‰qo‘^õu¶»ª) 蚣èŒ.û¥¹ÌWçW˃²à±š°Í@좯ѵ|É›%ô/âuÈ ‹hzk)ý¿™é¬=r`ÅŒž„Y„N¡ù1wÚö ›i[N}w¯.ZN ðè'+.¤!—K…ü›ê»ãùËpë×3`Ÿ¥SÝ… 0Yæ.g.¾9Gu[eÈ:«ØÑ„Xûî-/*ŸG çrÍmo)Vs&JÞ™iEù #Âb'ÒƒöÃÝoá"€Î_Ç}²Ežcà˜—Q^­‘s¤8Éõ€y§— ìÜx‡IoN²”Õ¦ý-šÀ¢X¾5¾ÌåÄ¿ó(‚sY<‚|¾ nê7&/DYÙ×fP‚ÒhvüßȽt¸ÂÕ1(7ne&+€l Tl9Íhk¿U(Gé òRìÉ(`ÐòÞ“o4/.Ç\-ä 1õdF;‚'åëX»î¦Õc0#‰ôõ°špMbúÞlE­vº­½+·â~^Mîd¦½S{™ìûL©‡U±¥èiäQw=øØ‘-„ôIÛ>‰ŽTš'ùóÍ6[bž·(rÅvÌ­D ‚åmé1í¾\?:\7tm*ekoòhï7B‰q`S§Þ‚J t‡XᨧCùÐÁN¥Y"CÎþ}Áb)ƒïü}zD€wNæ~SØEA¦]‰ñ›´[ùHrRR¾QS‚ĆF‚í=F¼ÿÙèɪ€®¤FÖ¶‹øÛSì–ÉΞœ`ÐÒù½È ©âáŸÉÕhj7_ûM;kuO²îë(Ýß•ø.íCt Ö!£¨è´YY_­_C¶ÿÆ]/{«hG»^û‹íóaa”°+xm½ÑÖ~ä¼LìØ„¹`† Ü¥Kû+HêÓqŒ i=uîr<|SK¼#^•éÏT¸Ro§Ëí° Z"$@V!ª>Fñ„HÐñ©<Ä2Ü£º!íâÂ-…åûÆ–ÑÈ}àO„6Ä@J¥î#Æf¥‰%³ÿËW#‹¸â]õ2o|ËjUQ/ÉH›fE:ª“Qc#b"«ÔöÌȵÃòÁÍnvòQø@4.Ï„pÇ%yyˆí™Ç:Á“¡¡ð\SBbÒDI¦Ôw?±íöRìÚFÏ4W¦ ºü¹ÐKé–“~þg3›ÄØ«J¼ùØUbk~ ´S7é60ߦ­ÜÇ|抛íº;¸œu’PŠûùq~Îùh‚8¸ÀðŽV­:À¤ÁžÆd¾J3µ¯Ë1=aN©¯±–&²²ä½›¾¿{˜2]IBà’I=¸suø™\¬+2'G‚p…ΔmâYrûTÛåýË@#oÕ<çÞ^cÕ¼P¨³-Ä‚%Mu±j`;J,ªòõß`¼"·$gøûÛD•ç‘[äèýB@@šåwÿÊEqì\f“¾ŠŠíNü³eÿŒ‘Ôì䨺ð¤ov(ù:?·:­—*¬Û7àkýð™\ÕŠé‰,Õñ+°)8V°;ýi˜ÿ:µ¶æêÜš´L¨MDY¼š‡l¿'±"¸üH½âVílZr}áœÛN°ÞáªB{k~¯Ü @« ö³Ôûü·2Ü1ËŸ>S‹ùsz‘YŠðŸ{Ú«¢Ä«^×tHnsZ"™èñ$ðFÁ6V¥Ódyˆñk„ÌšB T+N­¾·ÂNܯ|¸0<‚u‹d¢çoï º‚¶[œcy¥·oæ“vˆ§ÕÀd“ÍŽã6‹›½¥rã"ËpÊž‘ÞcóÃ*ŒŽ8§ùlaû)yé¤H]¿wu¶Š ]:ØõSýÄd<çò‹‘3¯Ck/Òxñ5¿€¸ä´|é¶@Ï‘R“´uLŒ&—V7Ú/gÄSoc%U#ÏZrÏMÀãôMOÇŒtFJ˜b,7Â?nH”àý“Ì÷ï¾ÅB5|>ýNí*šþ€ †m=I‡Â?‹~üùw…³ÏuMF˜Áa™âkl(L½B=¦Ê×ï'¦MÕDv…mÞºð‡¼³— w]¥º,ÙƒåŒ×'ðÛ© v×Ò¸VÒO«üI MS^Šëz©MVÀÈ¡)¿—qH$'݇Žé'oCÁæµMXZb“Ú|*S6¢Žür´Ží<‚U܃æV‹¤ÿ˜-gá*10åS"ÍÊDg8—¤xTÖ}j¯õ«îNSOms…¤~ðÈßÀ@pöÓ+Óé{%²LEÙ_º«Ì¶“™ém ,qŽãaóA|aÖ:yœ[‚l·êµî±D¸ þ`qÞ‚vÿ›Ãð)3Û-Ë\7¢?›È㓦$MÚoß7cxæþ,†<ç.nS aL¯ºýfФGü?éñŠÒð™+âRÚL£=/Û¸7D$Öi~¡…+ÔãØ›:ï@§'3š7º¥DÈ«µõKSÜ_øÐe"(/jY.çY"Š!DMCÞóùÓa£–qܱÊÔÏÏäa|Ü #B†®Uê(Ê1¥ï4JûžÎq*q‹8ìdÙãôuÒèèN"íã-†£aëÞy¯íµsö£éŒkåürSÀåÖeÀT¸t¸À†9ÇNÙ+cóävÖbÝÈN}; ¬%ŒkÅãåDåZÝ _ðç›¶÷fžÓu vp2*·µÀ2ÔK†Š/6 _Ú¡Étn½qµL¸þfÃmNúÒUâòDBsx(• r^jÐ&Ó€æµÔ$Ï—ê/¥†È|é™Px€eß‚ªûEÌNMWö›³™wí80LÅR“, øG±cHAák;<ç¼e~м.uSÏÑïëzŸg'Cá¯Ím]ÊaSKërÆ0ÙG¼yù³·*cl¹z–;5I;ŒU¡Ï ¢›Üûà‘N½²é(ho´aˆ{³¸C[áöz±†½ŒþPâÿ§S„ƒ}Sà „föŸ¾udл¹y…èþ¬U^Ìݽ¬EØ"/è'/ÞP}mìK–d R~ôÉZõçíÇùêX,6 ƒ`Šºp$Ï‘/Ø”mÿ‚y<Ô-A¾ k{ëxySf[q{Oqå0²îÐÛcWÕ«žþãOŸˆò«{™ãÊẟOɉ<]“rõ¼ùª§„©Mµ@à>ÕC‡0MS©´¢½˜5ªß3Ø ÃëÙŒR€Øs£ü,—®[úaPÅ–Cjc‘9ÎJ”GQ$_ƒVùK4s É,ïžBå}JÕ퉻æýMÞ×òá©AµïϘì(càõî>cV x–~-WÍ÷Gk,m ´zRÅ€ýUÌßëwIQ@M»Iô+åBf¢Ïåžq©a (6@Nj5ÈXþç8Àž&i -Áz½‚ñó¶¤÷_S9È;a °5´k{©¾xð]³ÁýX¶6çYgŽ Lbj¶cè|áÊÔh·ÏÒ݆‡è+5-î ˆ¿j¤K.Qj‘Œþ–{ô;zÆÂ Ÿ°¢ÿȸ³4\}"’sÌ÷¹f'^ò2ü%/´e!ú%¼Tg°úÊ#;iäÐqM[\¡$Q4TW&É ŒÚÅlHædQÞbGØW¿íò^n½‘st;äÖèø³¤ï僸î0()Ú96·MzÍvz ÂÀâ.3y;*¸A+‚W…ïÓ¶¿Ž=©[á{ÊÇdØ a–ðèhª§ÚÏ-Ok+Gf¸Kœ®í%|ñþc- ˜dE™šS†Ê'ÙQ-gàåˆN7ÐúnM£ð¡Xž>u±‹nP§˜Û-Ã5/N>¼OŽ!XM†¨[&,Ÿ9–Šêêê¡3±Š¡r“¥ªHÞPft"¯©·(ß¾q1=›ž8¦).÷Ÿl¾©P(—³^ (4ÙŽ¾“Ø ¡H1Šý:dÃý‘Ù*BOQ‡* µ¸ÛŠ>t¬eêíÿ*ÁZT J¨Ô%ÞÎUœ1?OØ—Íî9§!2äS öD]Jß©¹#Êü•÷&Ü—êrÀˆ*²rÙ+3p¾I²î7Ï~!ÓþcG6*XV¯°Á¥=½ŽÆ€(Xs a­Và³öRµ:¯¶býöì×3ØRœKÓÕ‘¨Œ£úâ¹!¡8è¡‹Eé}Ež„”;E†b&ÏÀ;n3¦mV?$H3蕟ãÐM ç6/)µ[%ëØ®¥…ÍÉï ÅúÃæ>yÓæÇ`Ó¥ÈðŽ ÄÀ ]óÝ6"`-Õ—Ñ=°°×n¸× ¼ ?0ùƒïƒ(In3(¤ö27È¢7On\ ßLB+Vc?¹Ïv°Ž{%ƒû‹‘2uã3‰·sx]´nÙÛ}€‹S-xò VÐñèlM4±Ö9â‘@:®±øéž9ónÄЈ¾j9C_%¯v„o×3ì&§·&ÁDól‚¶¦;’ÍØèv‡r2‣¢[˜Xè¨>I]½wÝÛfbü`W.œC†|*‚³/>BPÞ°þYØ(¿\Åòú˜â®Ç1é'Ÿ…ÉÙx>[ƒdé†óQ5ÁÔVDp££!‚ÚÓ›7ÀM0ëI'Áwù‹±·ë G\÷éØoIP¹Š—"û LJ‰VGþbÆsp:y¬X´Çœ™>ÿrxó4~’ =±Gø£ Û„*vè«ÒÝÃZž^-5±78*Øò|á@f;=û³H‰ÿà[ùo­• m+ƒ¨_ÃLñ&6ª…âg€^‘?´^€Nélæ‚ÕJ(ËñÞßbÖ½'¸6%>¾(3Š PE¹æ“þ)?4Vì´ºa&hnÄÀG¿²–!LÀ¾ EÑ䟤Î\‡“ åÿ¢1›v‚Û:ÄK­WÕQx:QëÉSfaµ0õi+PU“Ê^äDNÅǰ¥œŽûÕʸ®W–]*«8²£ÕZŠ£:Ø Ñå58â ïNÈýµrú«#‡'§ôqe,-Gr‚4ta4r¹3,®"=ú¦n!tÎä¢F Ó³)øRšƒž¯[ùÓ¬øµ!z†è×ĈÌŸîeŽžd2pvGA OxÕ,õ–ó*Ef:ÍÌ87ú?5êô‚CL=ïâ²½PNº·"H·;Êæ^,h$‚?”3†¦ÀN âÛ‡öðáœDšG=Wp –Þ4Œ‹_;ü¼¤:. |‚5ýŸ ˆ_ï1È@DÙ˜¬ úWœZr.ÙÇG޲0ëÓçªó#íÿhÉ+¹%ò@Ñ&™¶(õÖ£©À·ö†x_$/;kÛ\jß„Μª/1iyß¹À a^Ïq6Zk„Ê ³÷€P²ø] C")­ì`ý¨ÞpÞäÙ´¬p€+¯,ÎN·ñ¾†£°ã·;lnIá4ÐoÕÆ…©Èdšq‘ﯨ,*Œ›Å8À`èfI႘?÷hÌ6 ^ÝÝ!ךϖjçp>äa]RäõĦP–Ç«€…ã§8¶awó¹o\l¯KM}Òñ®Z“»¡o$1õÙuóR­o^ü¢èÓw„V°ª“í½žÿo åÍSÿ”ù¶¨íßàl?õÀ_«Å&Á=öÇK€k\‰t»u–ßW#]4“ úå7Ù':NˆóÏBšÒé; å“g<7Ç,TˆÙ¿óN#y$ï‹\Z¤ F]Ö¶g³ÇwGO£Ô¨Á×ZÞ6,Ïä÷ÃÄRïOïN™ž¦—Ì HG–hU¬WGÖ÷&)æ½çM킬Àœlcôo§Û­oÛiEÊ4Ö_A-ÂMÈÍÖ-ÈÍe`]{ §ð¯š£#Æ:³ëô³?ÁõF‚©ƒÞÙ*tÔǵ*¸¿Ä¿M½ÿ‚ƒ8ŸÀÀ.†ƒwçU„3¬ájs¹Š~$EÇÖŽPØÝ¼|^zÅïªß}ðqÝ’lèÅXÚÚúœ€ßP˜ªAÜ1¥)NHÁ‹wFH;¿˜ö¸];Sïõ(Ùb'ùéØí+³úŽY+%èZÈZ¾/Ù€dé ‘Ûò¦úaˆÊ0ñå¤MÁd5ⶉCË6Íþ˜–…ôªhº0ôr;Ué5ÄB°µÒV&ýtX4‡ú'2õ{,öÆæ)e`Юa$-½Z€LkžŒiõøUõ`Töî7e³¥[³ŠîÙ6äØÝ{ðmÚu£·Ç( ïhrXŒÞ"ì”4_COu8¥;Ÿ›ãŒPË#Îæ($ þï° '!ßUÚHÿÅðÔ0;Ÿ¤&U=ðÉ›Ñ%/»*º#(µk§Ëàå<ý´› [¦Ë]|;è:T{‡³µ7,ä$S°ñÞOAш`À‚µˆ+ä5/¦ëeZøøŸœ¤%†œ"­¼2À1žÝüT· Êvn9Æ¿{Î;—ƒOX(ŸIQ&§ô¡#tõ¸`ªdïžñ¥qX#ÌšÓ™Ó ¨#ÚÓÑL‘o))›TçC ÆñôµY±xì)Oè =ìÕœ»ãlÕ^9¤¤›j“2]K¦I°³²m•!(QƒW‰ýo`õµ-ÙõVF:†¯•>䎺™âÁO ðÍh ×|:…ËY.ASôºoù=äÊ]ñ„®§Éç.MS»¿îCw™©Nšñ5CÎFÉîÍXfp]²â÷8§ÀòÀŒÙ:‰jöSµc›šC8~ûoþäÇæ<á$Ç<ƒ1Zu !ƒÙö="5PÄ8¦«@t¿Ñ"eÛPòûcÓ™GΊË:àÛ³MVߢ7AËdšÐðNÿ pÊÈŽ×è/ýKßÊ—È„¬nyæ„9æ·å¬šJb"4;1Ìæ ÝIƒWc»+oy"À£E& Bf0%”]™•Ã:@(u(wÃÑ+Í'œ’úüüTµÂŒ ¬’ØOSû¤åC‚Bt·3Cˆ|Fgçzîßý7Ù\ª¡‚ù×LG³ +‘×ÂqÑÔ îTÍ{1ØÚ%ÇCªïç”ÞÐrdDnKÝ„"ÿ®n¬ñ¦¿„ò Í^–’o±_Õ?k€HÙ O¢¤ÏÄîÙg7Óéž|a½ø‹æèŒP<Î÷Z›Hf"ô3ðºA&¨:Hó%ŠýqVw×{Æah?}q™ Œ Ï­V²bEeµ—-—}L üé{UvAÇbÕ+,S:@œþŸ´Æññ¬AÇ©°4øšY ,¥äÚ2NÐÒâúÕ66|öÈú,?“®]¨ß÷3I†:ã©™<¨pŽp…qV#ç´NdÃUM¹²‡ºë”t2]Ćn€úüÉlxíþ J˜˜ˆ)˜]·FÉWÍ/†`@2’4Xóä3Ô2 Æjm3¶/ä{~çi—Á -vÛ)LãdÓ=À­ëyC]ðàÖ0øÄ¶`µ²OÍl†îÓî ÃìÂí)õQE˜ì'y“ÚA`40þ†¼‰ M¹§ZÖú¶™X6À'Ïj'«IŠ“Šˆ"òë èƒÎÁç=øNµÆÈÍ>ËZkN±uM)õa8§SÀPdÛA­tpæé] üQüQ¶Æõýÿ6Ê´e¬-¨@PΗ²M® ©—vÔS‡¹A Y-«:ÓsùàYšÜÌù(Z¯Ò ÙÒièš©x7YföUxw·¡`‚Ú\RFY©F@޵2R¯ƒäÃù™¸:7D§gç„|3à1Ÿ,Bv@┽é못Å3"SÈñQa zí¦ƒ;ñ똨B?ønÍQŠý{Úb«$²”xóÆÝðdxüè÷uÈ|Z4Å‹U"gÛéûž"úI¼”¢ÇÄ=ˆý•ÀÃJ.ø#)Éý`&Lë=íÄ¡•(Eõ˧›ëMèÈäàUõÈÅ•ùØí/ÍžèöìÜó[d á¶ÿqõxF…×Fù0î’Aà“™h-…¸ZqÓ÷`a¥Hpc(ýn…¤ðÉ\RÞt–gߥŸ"”à휷¢ûAÕJ1‹á¦ñË~ŸéíbR‘€àžß_þ¥¨ßs V™تPrš@=9a3ŸÁþnlÏ–Ü—`EPD_5/Áöù”Õ× ¤Ø—.±£±t’Ð3l—èç2Ž‘@›ßkuãüÄu 4+&… ™åRn.¨8\?àP&«™IƒÞ7Š¢8 ð“æìÅnÇMøüké>'HµúªÖ.ƒDÿÊk|¨zX«­áä?É9Oëî´Î73C•¾s£LäÎ(©‡' kü+AvS;-AïU „-Îo~xÎu·]ZÇo¼d.wú*UU´)\µ ÕG{3l[¨†„üz>ü?QÄpUÏ(Nœ*Nì ç÷6Ox©¸é€Í¾Š+Â{xY[ŠeÃ:ÂjË*œ"ɇÓ{Ѷ¯Î´s˜–šñ'üÎÙ– •›šM×ËéÞ;›ôÚZxa0«rŠŒJØ`ò¬¼ýF%=Sh¸;ËÑÅyK€„ÿ FT¸ƨ?¬ \  ü¯@ð¤ÅDDÍÊü]55dȱ¥%ZÅ+즤D>„±4Žd–ÖäÏ0…$tØ÷Z¦Hvîãq±VÄ$‚’€$ŒÓ«ë_ˆF’À­Ááù9pGüÑËÉáZ.wÅÖ_¹ô8ƒ!tüèJÎAŒ˜èЧA}Å&žGåä!ÎWi¦:œ‡ Àç≰·F‡çhÜ5Õ­žá¡ã˜YàVÅß2§”W_Y[U"ÛràÊøiÒs r«ßÒÙ<ã´)O¦®ª·ÿñ~œÖïÍÏÀ¤mЉg¤NïÚÇ0öÈ-–Ãä92g™å=}¯ñæ“·ylg ¦ŽÃ§t%ís:¤@µië¬4L÷\Äí}Ú&×OG.É&Fã!܉֨õöD…‚ù‚Ù,®_½HÔMý¤áŸ¹ºE†FÒrE¿ˆéYrQGM]“Þ<õ …€PMld¶Y=HÐãÍ@Æ?:gGÒí ÑW8Î/ÏX'ìvŸ˜ÛlP¿†…+´m÷ùè•ÓQ UèVô¢§;e&5QjÆS¿§Œ2\êêÓ¾¸ˆ/»(*}=Š#e};ë<ÙáÃ@DÝþÍüÌ|#l¡ƒAgIM…¥Õ/¡íNÃY ͱ{ £ç5ä¶ýo­ë³5´éßZ¯R¢©³[ST×LáÄæ]\é¯}¦²VaÓâ†0­¹±ÉÓ°€Øø+³% A¿ì èðAÂs"Œ1ý™ˆšÉsP¶ØcGà=zÄ9†Î‡¸dP*mx¬ªÔbÂñ mÒ)“|ëK=s‡™6N«[ª€¹¦Âp$ (ùœdöÁpBûjŠcBÞ\eûiE,@$6èÍË䛚Yžõ÷d5ÊÈÊŸm¢Ÿ¿±ÒÀÄ+ÎÚ¡F\Ò¼ÌÓn»\÷]j¢{s¼?¨ôtÖɳû„BÕAbõ‹Ôdhp{p:°`½.5|<Ø«vuÂSàN>þµèàÅFù3và™,슔ß@Bèçj«¾žMŠ›*SȵB}lò­RÛI§bRÆÔ©c•Æ_Б°!¢YâÀ(Á îÒå%‹þ zì`µZËCŠÚ¨è²¶eÝlkfö؈±™¢ÙÑ…dx¶–í*qïÌ-šM­'ݼq‡!úUÖÓ…ˆ§(§Ö 36ªËU#è÷}š}† ÓÇJÓ†6±Ö7*†ùvÕ“søˆ’}nìl°ô 4L3*å=ô_@rÕ2º(k¶¿±ÇxlÏâó «ep^èhbe†ñÚiü}¯³”‡ãT±Ï*9I—[Yáq©ò$Çë˜oÞ+ÎÈ× cÚ™º&Õ"q¥ÛV)LrVlÖB°æ ©'PïWĦö91l ‡%/¡á6ˆüvGô¤}iTWGkÎB»·Ÿ’FYè¦Â>í"#æ¹½zwñÜ"Ï'Ø.˜ìºb1ר-WRb³¬õi#À.{Éú¾ã6œQbaœÃG”ŠA.‡i—¡"‰‹|ðYQÄÝ]å|é1&$Ô¦+ õÉf`¨æãÖŠÄ“ô.Ù穬øÓ¢[Œ½IÚCË?¿ ‡—A,ölGÇù}'Wóå\/{­2¥L%¿õž.ŸX~Å('n:Œ±D´~§¥ÁØôTíH@)ò¨OÕFÕöœKPGÖx$P<—8dòð:þßCÑÒÅßÄž"]ªÝç"ØL5c2×%| @z|ö—ØD‚C|ˆÅ/ë`þ3ûð1@Lø7Ù)Ð^üÒ(8ßtGŽÜ$WÙU‰÷¶éµpèž umE<‰d…1 Q½9KÝOÿ?SåPr8áÛI"`|`T€ÒãZ¡QšÀŸ»+ÈçÉû×Vü8–³g9©Jéú¾ÿ\ýûº -8‚©,Œú º”ðÀD÷©;ÅœJ§Õ·ˆÜ»”åñ¬‹ÒÀ’‡$††ìQV¼ÏûSžŸ?kÖ¹BߢèþD¬Ì*(u…Ô9EÛ¼pMÕÛß(ܰ°·Of²gg€!PWˆi\hQÀÈ´„å-.¹”à?…QM,c;½ÍP üˇ\1”ˆiûÆt—W|õ>ï;¿ð¾ë®t#¿Äåcn»ÇŸÃj¡Cw6îiǾ³{¥Fçop¥,k[`ܽ+EGKžm2/šË¬ý tËøÁÒ :ß¿kG®ÜôyfŸßLMl$Ôòáÿ[ðÆýd¨Y—îÕ9ö5Üà$5ïÕCóÅ_FsÌÑÍ\l¦5Îâ!GÑã…ˆLúsàw\` ±£ VIM·@„r³š{%µõv©Q͘‰õQK'dõߣe@¿u4qóâ êH›%g¢ïŒ Ó\Hb»îá„Q˜eßNÍÿB 5JŸ’rÉ·;1À `Qœ7mž_ˆúÿç‡Cº…ÝîñÓYUªlGÑetÞ ÊÆ뜧ö;ª(Õ_£‹N}E ¿öshOÖ==G¸VΩ¨³`(Ñêù‡ãèÖS |ïKf„2~ä;”Í4òýEi$Wº}9x(D^'Ù$W£É¹ÂÃ%䯚¼ÞÃ?»úÈ!\Èà2·ŠlvIÂ_ÉIXò\[$†H]7j“>죷{dÎ×Cgöùêɰ˜¦@¤˜‚ÓÖødœ™°ÅŽ [Œ’ZÖ½þ˜¤ÌÂ8Ÿs¢÷.³¡$+¼šb* Oº0;`°m&rï\c{yü¼­äzµn±» Qœà7QìFÝ¢,uñã{zø—ØZðªÓüJG׉œqÏ¿Â8;ê9Xé8¥ÅH.4²¶°ÞÓ¸#7µj‘ç–•y|—¢SëÄèÿ…ô*Iûs8âY2ˆÅr³‚#„ ñrÜ…# )¶g±Æs`2!vòž'Ù Ç­²¸YF0‡kOâ2½¼'JÌîA8i¦¡ÜY–xÎî³'Tf $c‘àßô¶")²:j›eK÷rðáå<òµk–i¼‡ÕçÉ~Û¨$™ݭÎGßÚß*œ.’?žÛ A“œû?‹ü±*È­ßTL:4¥=† 0{Asµ<ù7¯Äé -ÇïbøHB’øß=!XÎ/$å~¸ÂUÙÍí 3ÑúüÄÖrHÓwÁvÚ4ò€Sò³z“„YõèP&ê²¾¯`â6¿ÎÈ(Ôc F˜êÍŠ¸´ªûËhÃT:}ýÞWyKí¸ßul.á®vuÊ]ìù¡2 ãIP¼´¦â|<ÿŕב@×2’ /‡ÁTZ(öÝý<Ï^iŽ)6¢dÖ[WX€)nZË+D’ýãä8pÁŒïbM{†y»äryÅêªûÕ” EO¬ºŒVÉ]h!Xèq\bp|V ±L¥Š=·oP£Œ,u^zÛÚµHÝýš¥%VyoG•)“Ó<á·éšî·1I©ÓîM\-§<Í Ñ´i!þCr¢ª²®_ …¡ÕšÀ—iÄÚš@S&Î`.) »%`.ÎQ¸Ÿ9y¾Ìý•€ P<ÁJ-ú·%ƵүXœök¥zh‡6B^}­'žB`5ôÀ†%ùŠP¤L%Uï=„ÂØçˆoc‘Ona§ÇUË‘4;[c.-¥[ƒPƒNæ¬ð|s¹Zm­{œÆéÄœ€õT €JL¬’æ…9JzÞaAŒ25 •8\ªõï+Ùú\Lš1›Ôˆéê…ÓjÐo7® _»dÊmãê‹ÉÆ_`‘½(Õ—HüÎ\ëÿYž1騉1 `¦nŒÏ"BPt»5Ž„áSûÞ"™­FM >U? Eû·SñÛ•Ï!ËlépŠëuÏr·¸¡I¤iƬf‡Ôÿ ÒÛ¬?µË”·œÈ‹&|ãz–&€p\áw Âþ „WÜøÎj¦`<15R¤äw¯·µ|—´bb…­]1ÜÛ#›Nk­&ÊUô­b'©;‚LBeUT/b¯Riæ– :‰lø¥&£w`*œ¦WÂß—¦±Q›Ò?Ö­™,“ý«¯LSrY"• ׳s •š½ú~R‘\‚¾S¸gìÓ¢ ¯,¤ŸTçÜç×Üdü›˜÷,†Ô•BG—T›Š„äiPåi(¸Ø·o!ÜÐ) ¤G†Ëå{&Œ—Š™&ÝRTw•+“o×%«ãÐ`ל~\ÞŒÊLqœ ¹z›ŠûÔ‰uY“u–ê 7Ó“kdÛ·{^³F*i81ø©JŠö›_Œ‡ \©Ù :íá™d®VfÇëˆÆ¿À™JÌK­gR¿ŽYÑ=’²‰WÆŽ;šf.}æÌÁ`{Î)û÷„Š5ÄöEÑËŸki‹X¸Àô¦Z9ÅIŽ1%-±äz©Ö kXz Àþ;û²l{rvÇ}# ¬kõ›ïЕ¯ÉþoOøÈñ5ž˜DîyNÍñz)ÈåÍØG¡U¸¤UíYkÁðÖ(ÙC¹úÿXã»;°:Œ „—M•"C(X}¿ ÎãóƒÁškÑç~5ôSd–kf§S¢²ÜzuRÝ…QužMBåøÂÕÌ2ó{O 6Q õ‚ß0<Û\³nIQÝž¢\û¦®íRÂ!¸•lpiHcØ@º;¶+«v„Ñ– ¸bl¿ø[ Ã#ÑÞ¥À…_+Ó½ÉÛ';È|l/Ñ72¨!à#’ÝŠö‚'§Ë’PS/®·Ÿì•9>ˆôVƒñuC‘:ã¹¼ü)§¨%\žx Ä¬qB/;ÓÃpF£ø‰noé·\/$ʆî4UQ„Æf‰1} ¡°HXÔó̘n)&ÉfÑ-÷´ã¾"ÈåÆàï ÇÕÁG?2¾lÆ› údbÇ y¬ÇQv ~QõÑûc$ »H6»zþL‘À…؈w²¾ÚB»F^æ: "@jÁyÁj厚/Ÿ„l¥î",.Ñ„ö9ŠÕêû‘xߣ½ôÚ¸ˆüßQ”«ý¼f$D±.…ëbÛ~N͚݇ÿ Š8»„R¯Ò†ó™¢šfW‹Ù?Ú˜—þÊ;°_óåÌ3F£8ŠevÌé|·8² ]é´y37?üM¹ ngc®0¸aôåì ù­È·jo¦ ¨p€õ*ÚG •†æ.‡ÏOÂzj£³¯S³¾ÑïÀÆÅèu€~+ªU6ë‹çÒ Þ|¸¶Kt[û5wzrò(+„²pÐIj©—³¬°,²J%Nº¼ø±ìJÖÙÞ ÐK1¾V iµ7“þño"ì°”HK” ç[ç±géhôÀÎÀÈüJùðÿa¬&× |äi)´¦Dh¦QW7¬+l" û©“Mq]ñ®<ㆠ?ò–ž’šl3èÀR½ê—-ò)w—ä„ímCthŸxg÷)ÀbtßÂkŠÌº pðUÿÁbˆC–E­ËWî9‹;7DÜ7ësÚLA|WåÎ J¹XvAŸüaßWàcÍc§?a¶Ã¦ÏLJ/Š|³¡üÍ P ~á4*UrÚK˜Ï¨Úøÿ÷ÀM¤_I}"óvùWÖ/=¥®¡ù,¿l'?º4`…ˆ[QÚ³mVg mB¤ ¼¤^øÇÄ}†ÁEfi–fVºæ~9R5ùûrÉFù•ZŽà;nHÑoCô_X‰×í7¥O+AñªõB¸ûý‹¨Šù%ñCbS³xÈPrtE§ÇrÙ6á\ˆ`ä(k-¥Õ;}ƒüí96< ¨žFt®xö‰ß÷Zª¿#±Ìï8PÌbýŠËmòAâW^µŸ-c÷ªš¨ŠØÃI0@Ü<Ùz~™VCPòÓM4Í’ –ZøêƒwyTîü»_08R<¡/Òñí>Ø Û ìŽ…Ÿ–“-ï/Mk\ð#‘ki3Ôkóxü¶G«Û8ÂvEnâæ™2(ÑÌb{¨>â6Õ6¥á/tq="³Õ¯_õÔ…Éá°dÜ‚û›e—–…-äs9A¢ûÐñ¶G>º½‘½n޳÷-š{cvQ¢ÿwqÞfådªˆoOäÕŒdýäÚsž·6p#%ÉD$9r”iíåè;Lç q‘2|ºVØÀŸH“®ü˜¾’:ƒˆï2—F=”~VæªS †&Âó:¡ÿ—bMMßäI/g3š9àOuûäÒ (ÍiiO“¶šp˜Ñy/RËM0ÌŒñÍçm[Þx·ë‚ý½Pé .‹9Ž‘¼sø5Öµ±“:a$}ó¥_ˆ^œ^û_¡éWXcï{6 ë9‰’î$‡&.™OϸÓ>Š˜*º'ÅèmÏ`q‚q—sº:lYìØ… TýÊfÅòövêC~#vMtÖ…2ÇFŒ( ‰í|i&9èÖÆ~ZˆNO<˜Ô­–Šl-&R”þ«&D¼¥¬Í.oì~Qв{è€ÞÇšº7¿‘»yAŠÖ‡úsM,þ­ŒºøùÃrÑbªÖ}<¦RàžÿwÕÚe.pÖâ]PI?[Ó{´lÊxéqÀ'¯Ñ‹Içp"³ºzì uzÒo{¯aÌN>²BÈð×Ã{Á¡:8dÁ:èm° 9À# pM`i—Źƒ?…_‘JYLÏ+2Gë÷E²é£¾KÖСm £³Kj»9ù=$ë£B“ÃÕÆÈbšÕ®ø0xɼìô¤n#U£<ÁvÒoÖ¼7”‹LjÐ[Úø?ýPêyûN+ÐØDÁ²éâ+ªš¯çä¬á}ã79Çzªèæï§£†Vw³åD/GöL멽"#¤K-å– d¸¤‹Âó€©bÎþŽCÉÕ:Mhý?N‘ UÏ·4Ò_&téryHëá¬C<êàÈëåu^àv´:uŠÅ<±pfÕDd 1 Øf‰L¿:œóõ²dµ}€œ'Ë Ó+œ:hâHÒ­ûHàJ“s5Øh qþ¥G(íùÊʘ}Îwè „‚-}‡{Ra² é^qU?Ÿð°oÔgвÄñ¹u$ Q•&kŒ¡¹ ‡Ìù6Â%5·˜ÈâÃvMxدY–&#íQ„ZÞR"]ŒhõW-RŽ_­üÑ\š]r„8óÚ(-D¨FZziý™­~§½ÕÝѱ٦€=hièwÇaq÷}ÅåëÖgtEoÏxW óØ_UÙ»2éVëpêj²ÏÎèËní}~¸ic]„iúnš|'¾ÕqƒJëÞ¬@~´ËhÅãÙ¦ Ø1Mé°"䬤ñª7§pF‡¾˜Ó°À0XwÿhM•ZF®Al¨p·²óòÈÊðÛûã$äkÞ¹§Ð›1YÇ  Wj]“²njð æ³ojÌw޲cùJ5pRç*Idü5á9'U…ˆÐ0^9eB…YP,’K|¾ÊºFcîžy5ïf/[¶{ðkémÏ…ºfÕý¸ä#€%Ê6Ãöðxç;jOúj ìOÁä³ ÀK÷QŸ¢á”cfßá]d⦘cñ7ÄX^e€©³¬B’6ºCæô)°¸I™¡¼\òã«Ô³Æ<¿~EÎÌs°Œódî½þ¢Ûîº>[åÖ‚¬{ÏI gSYÐ3îÕõ͉Ô+€°Ì ¿»—§pC—µK«¥PÉ&ù²]ò ›‹Y´W{’¾ÒÀ0³ÁªIÊüî9Ço\_@&¤"…ƒ5nª›CdÏÖ±%óR%ŠÐŠÎ.[íj%¼µ¯MeCódvÀ.qs²ïL­ÕÁ1Eé4]QË{3ö¶OL"HuºÌ®=òº#,6à&°B5I®­§øÎœÝD*:Žœp8ò4Ò ƒX?@2QsúÉcR›³æ÷x½©ž­¡s K"lßõi¾÷Pп‘ì›b•ʾ.E¡¢ø–R§,‹œ@ €ÔâØÌü·^Ù¢Œ]‘Pó&1™‘À²F.×çªè˜ëÍðS})`®¡Ì t/êŒÏ)0÷ôö=¢¼ƒ]¡U 9ØðØp;aÜU\|˜ÍR@Ùn ©ŸŸÉA¹®òçrƒ Ú¬¯ŽRµu’ÿ õIÑ¡ž›»ö}üyðym~å¹ÿX_|ß®6À7Š!¦½dXÝàÑëÐ-É~ ¹‡¾ç?”š<D-qBãqu̺K¨Cït¡ú¸›F›¯™@á$Ójû«üJ±9+–túÐÿöGÚ9 Ö}jÖÀ»r”Û4¶t=õVòÀ? èiî¿éyª ☌é•L)ÌëaÞm¤#zuš„Þ‘ê,ú…IQ… o?SO¨wæáF„[³½8»Zê4¾uÐq]=ê`Lô#7KÚžõ­¸O7İtÐÄ«xôœ ‘×zgEñ^u8'’KU2´Lº•;œ±J޶K¼ ¨—"-µÁtd¿ˆÎ6¸jTüÝo¸ðàQžY9Ȟ˟·]þ>ZúŸpÜ,¬õ±Rh»8þÃ…·%ˆ¤XŸs«U­ŒSnt(YØØgô³AÛ©#vÖ—š¹(^çø3lWKOaNqf ÁX tì"N€ã´·•üúäZ$zwÇô“ EíY›[— åíÖ„t°pêªôËÊ—®õ Ø  ³SMää¿e{]ä)<™Wóïž¶ Ñçë?ÜážÒX£ÆÃƒ-qà(wxáΡH þ6¼ž1öE¡3®ž „|ʼ©!2B•£!5,'(N­Ãz̉;iµ:3|ýÔà ñ3°Ò6\öI=Î5-ìÒfi¨®úùÈ?E¡‹©ô×ÔÐØ}L?ÅMÜâFÙ¹€1c£¡¡¶¨†i ÔDw!ç¹÷QŸÜXÔÓå Ér„–+Ì’gvÞÜÿñ´Uè½!8ûÛY%# 6\äëOms瓉ϬåH0#”\…Ñ”¢Ùnå9(~ÞL5J; ´xÚ)¨F#`ÏkÈ]5Ö2¤6͹"ßµ4Äu1Ckÿ/h\¢2ŠÐÖŽþ@1t0ÛáÒ»®#HÚ2§{±fÎÜäŒåÉ¥±Isºü AyŒúhP°©ŒAiÌB wËBÄŸàç õ©HóãAg^BäʘÎ.á´ù‘æ JKvìÝ8 x“V)І‡éKÎv •áÅñ»ÒUÎ÷x%ß N¿ÆÎz¹ÃÓFÔ—˜Ôù 3U|À ¾øâòʵ©=þˆ aB’Ñ×åa£ø<¦­ž3‰;#¨Ób!=Z•tÉb(’ó© ÂÀ ÞÌ@,’Ï–Ï”•Œ‡4ϵ#¦õÖÇ{xd±ê{Võž‚®Ý‡¶œ/‰7Mçâ±-úyz,€ùܲg莂e‚#··Õ Ч]ýÆñ3´n³*ëAQöÀÀ#Ô–xLÛŠº™¼çP†Ÿ '{;6@çNò@Î{Çá5›xýÎ#Ò–¶ ù0‘Åb$è“ÉQ"Éw[¡KÀ^äV›v“Ì0t:õ¨èu‘uYïÒºŒþÍÔÚøIoXouÛæ¸çŸÜ»¸®ôxX ‹…$ëÌTãÚÍvÀ¡›hp2à£ÎkZ¡èHöÑ6Õª¡šûD”Á–å×°/’8ðîi ‘ø‰ ø‹W’ ~K¯N-V7ìkþ•s yâÔÓƒûÚÕQ ¢!Z©!õ÷æ7pârË•Úy¡žBDsÝø$žê©ÆkóvP~{SÝ»È œ¦ä³ ¨Â…¢žl¾ŸPÁ]%¬Unª‚O)VÝ¢…B¡~-²•T+ó®ãÌ2RõL1uå'5Þž¼èÞ<Íü›Ù¼`°’ŒÕ¡m…‰TüpÝúÌ[\dÒñx‚¥Ñ‡Õ^'·‰ 1Eò²Ü—"}¸°ªË¤$ÊÖ—2h£¤(ë„f´Öÿ2âÚ[¸|=BÇ)’#—ïöäÂ@à'´IxµÝ¼ ɘt.‘IÈDsoôíÿ¤Gµ6l;_š×—ÎÙý„‹×Ì6ýþ½çu~p¹A\#9éßArÈ:%'²z?f—øŽQ¦®Ü@oý¬ýk ïOþÓr?ÐDÑØDú¢\.eOÕO™Än:%³NÊ3¥¸Ô„Ž1áÅ9 ÁÓ±1>c¼DuÓ.ÓZªÂÍ6— /æ«–ßÙM—l•(AýæÀÊ:‡3u×z³Pt­JDës’¥ÕÁ é>V8 I|mµf¯/W ' 6«®„MGHÎ@1 Z7„Ú1 ³Uå0Þ’y>:éÇÀ«£Ø]ÈÞü¡>HÜ-!]ÃôÍ×e} ê”ú$º Œ'÷?J\CŸÂŸq®ƒè«DOà÷Nptˆ‘a ÅhßlM¨9²ŒBsn~M >¨i]knTÔø¢ò®øAU¼"†_–SìZ\Ã`W üÚâÁfExÌ`úWy(€¥¹ÒÇ-ò°õζ‘óolÜ¥e;Á0Ï4N÷Iõ/›ó{QFï€ÖA=¹³ûóYÇÛB*ÛÂ}*º`ÊüRkçú§ûõãQâ+“EùâoŠü ©…=B ÁEº¡7\™ù÷Þ¸õñnµËb `..Ä›ës±Õ‰®Œk ã÷Ö N[‚/d„«#nWË౦s•š ¸(‡n!9Ç™î™`=–HÓ°k÷‹rmõ¬tf”8ò[ äo'6ZžÐ¡£.ÎNËIc‚½¶ÈˆÏµ­À!§-ShëÈíÛ%·XìŠ. 8º¼œ®,Lœ÷…$BIM7Áé²/ÓôvÔ„¦×KÖ€Sì=év~ÿ]%XíSÙ¼†¤-iD©*y…¯«!ï2߬J9“ðÂWbýöB®,Ÿie´Oêé†îâØ4·ºÅo'MZàñÿÖÆë·Ln´˜ñaøŽiýúö݃ ¡Âq6‚¢B<¶Sá_& ”I.ã€KÔõ1M¯ÿñÆâÁo¼Üñ‡v…È; BZ}Çÿô©é]´¡ÿÔ”(ª­‡±¥¿EA—‡ú^e·ÿ0pÝ9š‡ÓгøIP²u Ëîu ±ö-]+_¿\Aþ £GšAì7¾E#}±´Î’Úç;]E$³Õñ5K¨´9uëX[aJÐ\ÅÀ*Ö*+°éì˜e¢×ÝOµ>ŠÏ,£Z%-R,ýÞÉ9u;¼eThsVÄÅ3‘¸xk+e§¬QT—¡›Av¤£Cs EŒ“í‚°{ÝË:JkBxê#WA@L¡5ér“i§bÆ´óÕ2’¥"È/ÀŠ #]sk !}äqJÏjR@+8Ñn(t2}™ ÒdÎbþ 1}Yü¢á™ÂN™<\ˆêƒSáÇœ4×-ssªB¼ï®Åjá/)¾øoÅÍ V¦Ö)®­ qô΀äíÇžöp“Ì_Ô5Aó³¹øç÷y¡dzyn™5kÔR°­–Ѫ O~ôï·áˆÂGL§¥ ›½­9Æ„8m³@ÓãàhŒ‚縃–vÔR\kðK( y5㦰é©zTSª»Øb÷aÚsÑRAl€‰ÈIv]'¸ù5ýЬ K¡;¸©Êº\6ETûâ;5ý<Ö«k|µÊs.ÁôÊ„ë=¢(ñsãônŸ‰6Úþ'>ýÝz-ˆÍùôÎM¾“ê¿â³(%L¢…\ ß~È›ÀÍÂ¥ÌÀ^º¡)öÔª<™¸¥-ŽyàŒéæ–{¡´IP(»µ‘ãŸò˜kzÅ*Á¢z`Q8T%zV J®¶å£;Ÿ½ÓRÄZ ž\ò}&æö‰é_c™@’±d,QyÆ`Ôß7Ðÿ*`Gv ’Óý\¸®Æg] \×tŠbu烸³ëؤ½«ËÏ>ʧê ‚@g?.½—ÈAÛûŸåüÉ‘¡ü3êô‰â_NÎÏØ„•üÎÁ—Ÿ?qà RÎ ‘³sEºh²,ÝO½äDŽm+mà-ÆæzL —#«éö“c·6ƒžÊë ÆHK|z§[@L‹1§í[%\@ޝ‚êpÞYkV.ÄXÙŒX‹ýÕ‘kbå3à|Z‡ª91!÷TœS¸ígx&—Û%•Ñ#wI±ÀáIÆýÄ…?÷óu#4-òv¬ ±êõH16þ*R_‚¦Y10r>Æ%Úï銤s°½ T`P‡6ôj0/jÁÇ[òo„‘§º‡®{½k"G”ÝÏ(.É~½%A|¢Ó[DYÍbòLXZÁ«¹{ÆùK8áOÑûƒ{dÇ`••OHØÍ¥âCo No9ÁlZªÀ „?á(ZUSƒéåçx1ˆèŽ…žìÔ›æ˜3×û1ÿ•%bÚ¢8Osºï‡í$›³kËQ©/n)©Þ|˜°l–s,ª© Z…3‡'„‘€èÔH¹„±B6J~o‹í1;Á€t¶ß©ê9YÖžÖ%8vgÁ|÷i·öGåA”c0sÓ 4Ԝ̀†£®#ªãh¡ïƒ¦7QÛóôl<o¦2'G®¢léë‰ùò^$EΩ›E¢ýQ(ÄGÉ/%‡†½}MúÇ=Q-RóJ¬àzDS­Ü¤BsëÐñâ²d&)€»ÁëÂô×ji؆¸:Ð .;$oÅÇ"/"ªj¶G‹‘xJ@Qœ1Ûc(†Æcù…¥t’zÅiJäo™†jM †Ú¥{c"äã½ÀY¿ëzèÏ 5—}-¢TÔùfyÌ¿dqQè ¹¯ý÷è"ÿìÍ×2¬SUÔ^CšÑÅ£WV©OÝNŠ™-·ŸÀb6c—<‡`õÿô$²Ü\Xðéñ3/ûàVî%â0Rɨ…Ê”È,‚Ôè¼h§­ÕvÍŽ06~"a¤­H/o&~œ+8ó$vm¢Y¬JÏ›cÈn2k~pŸ/üÃ^ÓZcôåqíý¹¾ß¹ÑÔ„ùü´éoÐ1е÷ÍãNБtà´$“¶ì$®Âýާ²À‡¤Fm¾é^š¤Ö „.µæ¯S-ø ,(j%û~ÚR¾ëõ!ðhÊ(@Àf$ëÆ¦xቢїÔé:ó&°²76Ž~W¢â5I±%ØDж8%±¨ÓQ~PNhkôA|0ìðçÄ’JíüjÁ)åBqtª©-ýsA¦,Av~dì ÚVÀ?éG"š Ð1Ü@¿Âp˜®ÜDà­E[µùž±²™²äüÅ—Õ‡\’b˜ýŽÜ…ÄI£†ÒѸȽ3=Öe§  Uä¶+•ÚúRº/ù!ÁÞÙùœ ¡¥´;¥V¡˜K¼t½ó;äëã^Dô¹Ð]K©Â@ٙߤj%ZÈÆv¹áí+!tEƒl±¢â þwæB•@êlQßÔc¨O†±îÕÇ ¹QŽ\æ«¿¹dzŠlÖÌR°~Í”8µ5ôvþL8¹¤Bë˜mB†!u·6®ÅõjU0ìô6Ö1gŠh¥ûF CùEþ¶aÁ:e9^ïÄíËöðÓÒcŽþT·í ÿ!@q½×½ý]‚˜–|oKä 2;D<Ó¦¯.ó'Ä”ÿ‡ÁÛIzËÅm¾Ñ§ªàüûO¾\t!$ÄD+&g#ÐâÔ6Ÿë“Bõcæ^&”%Ð#úÆ›&1htº6: †Á M»öoí{:ÊTØPÈÕÉÍe¿L•,äi¾‡—Ê&HÂN½ÆaÃŽB/ˆ-s¿˜àúä ÑuÙï,æ#^Ŭ…Ç(=Âýü¹V¥NºùÚŠ—­‘úDøÝ±Æí¹½¢ê‘Pµû´×SWû;kÏõY“n©ýnZ£î'¾®Å½™[hNùÍIÀ9˜Ì ESX"s™O]«žïNvP“D,ÀûC U)Z§0·Ÿò³Š¥hq#[N›¨+‰†£ÛoHÐéí’–6”u+Μáº=ªvÑn÷—¯À¨_XcZ=yiZ¹Sbå¤$=9©Ê釷·¿ÚŒŽ3—ás‹W]<4·wüíB4r<¼Øl#˜'W^ò@Žå©`²ÉBÙøß ´óÒñ^ª²ÖèªKTE|ÿqœ‰0¬gÙ8æón>†«]ÉAŒ&EðTŠ)¸pB?n”`’pÑQyʺ"Â68íñ’JB¨RBèHÙ•ˆ¼P2‡Mv¿æЧ¡ ˆn܇øë³/¦Õâå´¢m²ŽMùÕzÖPö&À–"5tOÈK\„™æ;mƒËûIÂFMˆe“ðö²¤w(øoág×}žË¨yq†«Í¸«^ä!ëždÜaå$ƒ ŽÜI§(Uš ÁŒ‹š(Œå½ô+ tÏ)0µNMÆLfŒÞËÝzdÅZØÎÉ8ªÏue2 é£wIä® Ïqw¢oS,(ä³ef­œð‡¤™È|("ºí‹(ñpaf´¦õ„•µX(q0ü¡û6@Á¼h—²4\¾š”»Òÿ²ŒnB¯ù·Êî·…žTƒ†B Ý@“ŒŸ©‡̰æ´|^g&Ùú¯ª|›9:c µÔ—iÐÍtÒI´?远ùo0^"tØiÂx(ÐaêõÖ¼tH×gØ$âƒe.Ë;Ó& Ûq¼bNwÝaÙ‡uêO–¹‰ë=‡ Œa·²Ž&— Ü]§+P1d;1¥£IÚŸóËeGXiŸ!ýîÈ3Å«1;›gP¯'ªy-Âf<. ^l+¯›aó«„Øð«½pÕ÷{J04g_Ã'š,‰¿¨œx1á {ã £*Á#ôœÌä¤Üq•CòAÎJb Éjþò¿ôeV4%á ãa{—o‚<ö¨ZzÈã*Lû‰°1¥UìÜ#ROx¯¢†2äÏŠ"twMŽ{Ï®‡ìÇ!ºv0í`ˆÏtÙñ3+bmù1O©WèŸío†p츆Mn½™ aäXœ'«|³Ç;w3gÍà±ÜÚEþ9ópÀïPëM¯i*..¨óOšKn,¿dHZ€;nàëð€HT®}Ps“® be_¿”êÞëfËø0Máú¶1&?[ëF¸ƒ¦ 纬Öt>Ù¥zÅfþ‹”)R_‹Á¤ ’ Ѭk:S•›ã¸ESçenP1–s{¦‚X•gCljx¾‹¸jh+¶ëYæÒûÞ”J„Œ—˳Æåµˆ{v‘D¹Iš¶`N_Ð<µ^0Uš¾"1ì˜ýÛœ(øÞ)+–ñ7vlħP4j°Ï9t€ 𤀻< µãA¸ed ãüêôÕÝ?èWI­‡¥´z‘·ê•«?Î]‘ZX&}•ák$gÉ:¬D(‰Xvàí¾S'ô3Òü¹1ô|oã|¸pµ/=„ðËZ X`³Ê.‚àudÎ^ØÝÅ&°N}¨¬âc8µ(Š”«ëˆ’ØÑ†g½n¢Oæ_YA²ž[G 5B T¼ç“‘`áKGÛ%$WJaJJÈ_Ž¢?¥Ac!ÎkädáBNm–‹;â ™éØ¡?xÚÎ$K¿ â€_r ‘Í-°[y*«±HÔOž DZfÈÞ™.ÚãIª©·«'_ ãª=‚óÃ?ƒ˜%˜­âèmºéæ1®ÕAš]P±¨XlÄÅ*OÔ`žE• Gϯ{% ¼xcƒ_•n;Æ;ádˆÕ¨fǯXý¢àf4°;€‰Wn¤ÚÂwÏnÉòöÇ(Á‚îj'6q-ãÇfÛW»††¬ö2‚E q5ÖV“ð€Í²^¦n¦ÒSOà°¹zìñ¡P:»ŽæÛz6ÙÏ2i:zI`^J%‹¡Y4Xþ]–Yê¾/d7º*‰Y Wß‘hÉîÛ Dø2Bdíl§?€Ny£¸I„¢×øÁ­·éϸ>Éñü!4×d݈ûL3KõR>Ѻì0Û0ñ¢r¶Ö !•GÛÎìQLÞ4J÷˜ëE¾lÍ‘)íŽ_Œ‚j|ƒ?=¹'$zd?¾¨°b§Ëw"Õ’I׉Ëõ§òº>Að¨õx‰4&ˆ<Ø{&.‘²Úíö%QÖùe¹›QäþëM6AKòÛ¶ÇŸ«ášÅ@mËÙ¢¢=AOþW¾ª}ÙßÉÄš 6NW¤AY-ZðXË »PëÏY‚N\²mç0­ˆ¦üv=˜c D+ÝŠ™Ë:ˆ¦œNR®¤kчÛЭsšÛŸ‚?‡ûûÚs«šLG~M=,UÚñhÝ(m!Šu<5ŒNRI`9• èP~IÇØ*:¶$°ò{¨šÓ™@¸zºà*}»ï¶pjýJ½îf¼ö}KE#¤ž¬ŽÓÀøDo/eè!†F_½Ú*]7yë‹åäx?ªTÂK· l© žÍMq»éîû]c´vA¯ÕñЛô”¦²fìï±¥W<¢ÀÔàž*Ÿ‘§IÃñ<Øâð>‚ W?Ì’»ÚùwsŒëŒ¿Ÿ‡y¹•JÂï¨Nl^¹þÄÞœû;iz–®/äï UúU1ý¼“çò×—‘„µ\¶â×g#oÏû”¢N½sÄÿד²™ìT.Æ[iÐZ¤„e—õý"…6à•Å€0aæ1ýS"z’'_Û0D\Á§)’õÇR ?€ë4E×À •Ž–ã,}ª]ì³ýmNíßa¢gùÓc¥ètÇ]Û¨ºh·ê®Q„€py¢5ãÙ°¼7šËÞW+¯ý¨h‰­Xèæ‚}›!¤ñf ý/ W’Äq×Otq¸ÐP°#'cºžÀ;½‡£éÁ¯ª®’göõ³L0±á‘+:!&˜I²„ªuW…{&¤–› ûþm+¼æ9 ³·$ïÞIƒSŒ…H¢Ã¹9xz¬±á¹À’°VCñÐNqqá2 ;‹,– »u3~Ð^ëÉw-+pí%ÿ€F.Lëä¶yl[¿ª¨{Ì{bÿŠ9G‘ÇŠPì*øÎÖ3“)OÁ `D¸ >‡Wü·f.Ü=zQ£ à²ø!;øèJǵˆ9ÝžI­)rt ¸˜­nh+§7Ó¦«ê÷R`Ê ÎUêg•ô»1¸.EëÿJ´ÕÛa,<^J’ñ³àÉŽì„‹q&¦‹eô¢@(¿1¢æ¼fÂKÁ+A.Tò’<®EmK2a½lí0PÂ'ˆ?ÐcΧ]÷RÒ1“¤hížÿÙû9§+þŸ€êk p‹ù(¤‰þ'i޵³bÜ1©¦úc–y¦µ%YOï$ŠÅ›aVÌþ8=œó8ўĴÉ2K¥û;)yr{pà Yë#E›‰ã"|nys DÓmk´GU, vä ûç§ä6[ÐÏox'®;šwUÇÜ!a&¤íµÁõèU¤F8f’%thç>qóIÅY˜íìWY†¼-f¢w°W¸¦ÊÜÝ6ÏdN៉÷r`³RÐ˪á±Jè".ݨR®{½¤j¼óذ)«aêE(™Î•¥”œ³‹ñèšÿñ‚bõÎmÁ2\Æ¡™µ¨o¡ª•,êQÀŸÒ¬ÿ0¸êoOéÊ|AŒÈ¯ŒðM€ù¶ ;¸¹Šž¡oopéÆ(VÚ#HƳ,njÙŸSP‚©U?m(dލìô\5òÆJ«¯öNoìkgfVë2¶>ß©¯?6>Ùðé=FœIR§w…Ñ-äÆ}…Ý4l8½¨—éÀÔ0¶B²s”æöê}¥]ÌêŒzØk»–7@!ß¾Q “U2¨½ ÷µ§vFE @ï^OrPÕèÛ¯»…PFùs41zŸ‹Æ‘ƒ)œ(ââ‘&–ç#•…P3ñ?ÅËd†5g^ž!2û“[ÃŽ(å°üF©(ð¯¿0Éû$ºœs™ëžB…®.3s,¬dTÓëšàQZ@J•˜ý4«7:ÙŸØèvþa=Lþ9ë(ÿ0£¬3–kä»ÛbKxà­ËŒxK½´R=A|¨s[¹bYÆRÌó­Ò®À¹“’uÕô-Õdè@0aó¬}J®!Nt'´õnvKX¡WæÞ9Ü?€4ö3ÄЛAé]Ô’"Ý2”ló7°õ…‘EKF2å… ¨Áä}Œ‡§çÕîÁåLén<­ob´Õð“ǹÿ\ÑölgUßBžd6µÞ½4M•?9Œš E  ïgà ‚BRðò¹/ÿX AÒ72t üdæ$ [Ð*hkc )QNùwÅÊÖ¢6¾‘?(âey1°?À/ö÷=:]‚Ty–8ël·óÎû.\‹ ¯ Èšµ¥ÕYKÚÌN‚=¹ªÝëºH ã2ásŽ6|™Ã’¡´£€Mž,yLy Ãî÷èÏ?”äÄ(Ž3²³v[ã$à7ý}Ùô7y:PJ ŸŒH÷ɪ‹cø„RQÚp ŠÈ¤ï€´ .pÎ⨗äWýëΘq~oÞýŒ¤«…o€Pâ”å/ÏØÒ–üÁ'ËM0ìýkÖ:{ÞˆÜ'&íKä€d ñ÷4g8¢¢Ñ²ÀxunÜúµ¥²ömÐ)ÁLrŠWÊZ¿¸TZ´Ô鱦~|#Ü5+P¦Ä ZN í>=äDêò÷èÄÙœJd/u %75çR¶ .K]3ɽAŸT^Ô¨Ë>ܦœÄ®üWÛ¨[s#‘Ø:=„LÇn㨽:¼W”ãžI%7³Ð“–Þª JO©¶–')ü=*0ÁpÅ1j ãFa[!œßU‡Ü¬t’Š?»þFg •çiµ8ó#}˜§ê'­_™Ï—f´Ç»œï!THBn@t²Ñå]ˆ‰Hkò /lsD”@}k®µä£ŸËS!Í÷‚OÐw?ýgš3b@¯qF‚TgéÀ”«‹nóÂ>g¿œˆa8u}F½yÝQØõºpÍÊ»R¨Ôƒöÿ®ñ†Y„+>ÑNcL¿™ÃÑ/ê9"‡ö¾bZÓËBÝ„ƒIމ6uh¢‹¸…¾áñõƒköÑ‹õ×%! ß±º›&Em à\qÛ;ñ¶K‰b‘yS{íû@({FOG¸âÊJÿ/~Ô’vòŸçöbŸ y@wôýÌ•ÆÌ͸‚E8€o ã&ÄÔú7Ô…òd·±Z•N8«lj3<zÅGMvZÖÊÛz²H6Â"@ûËïš%P;ÁE™Oï©Ù4uîû­öèlãò_cûaU¦#zÿE†/Wì½='E²3ÜÙì„4b6á݃¡Û30s¨`>,‘Rquß·x¸#¦$h±EZ~»’Šãýáx©Å2L=Œ‚ø¦Ój³9r#ùÛìt60Ф%aobeÀ*I›ÌR­ߺ¸P“Z4“¢ÂFr[&j¯….R"óB«'¤sË\6ì=ös–?©ª´Ô“ôbùÏèd øý¯ë›]þX‡ùº@“ûUÏóñÒ<ÇžCä6{ PÕŒ¡ÿÒäB†Âùå¬ÎöOà}Éh礘E#P˜? tÏ©É1BÊx6ë`º¶9:PÉèXPƆ¸¥®Â釄'#ÈVe±ÂÓí¯Ô[fìð'öj˜°û¤= ®ç-g²]ï÷I¢SKÞJ¾Ù¨âá¾fó>;ãË:ÊÜ<*|TÜ÷Øÿ¹%sÚñwqÀqxAï:R©ÓË”kþC@ZÙŠ¹™UbûŸÒVƒ~=F/X‰8¦œÞÚ jÈuøDýv‰½ÒÑ«|tý¯Á8~±wì@cÎÇùÂq¢}PÄ‹(U‰k%‹¹tlËw6ì}q&վͧ!h†¡Éé3ùA q0 ¨Sžul/»BÃc¥[Ùë¡\@}$N1Q¬ƒG•r3jpÚâ5Ð|bíîÉ›ÒTý½ÓÊ¿1…Ëÿ'UÌr[.ÏÞ6 Iá‰îŸêvbL)­¢˜A]4 ¼ß|tVDÒé.z(Œ©qf‚%ªÀ°pF²¯[sç*U$Pèï, ‹Þ¤“¤:’²LÙCe+Hâü=òÔ̵¦‡½'|}´—ëÃ3þç9îÐ2À¤š¾5È.ÁNóÛôž9g…L— Û´J"ÿÒ¾ÞLÚˆ¤súy÷Aó;÷jhÓÀ”`m:Èú.n ·é†î¨¥ª4V¹H„ûQ=‰ŸÈäœW'ŒÙXˇ‰Ç̰卿áDþšcÌÆ›„—PÉšÁ;áPèÕôettp¨¨ðgäWZã™ ˆ–D}í{@ʹ.¢p&\<]>Õ’øÝ²ÔÒ,Øþ…œ•ÕéîÕJXG‹¶®Mæf‡þÇNi†¦®¿"UiDv° <‚ôµŸDÔ6îIáXÀåB¦>¼Ë¨o~UV#ýÕy±OVAXÄAmÙÕ¸6Õ<¬3”'ïJ½Pa”Í×¥{®tH ïUstÊ3ˆ—'šò¦-øíœfÌ£!ÊËU¬#¡ù}Eâ_€àIÔRØÀ»¦íájÎxB ¾+»$ ö°s.xOÄ‚'¬e´ž37¨X‰œõïÝs,?;‹>ÇáÓ’Gѽ°)êà‚²ùc¡#q,÷ѹ¼¾Ší7«Í%É.Ïl2}uçàAIèj†[•óËÅm ¤lýÛ¬9-EãtUâÊ]T$±Ûð[“G ›­w©ÜùMë}w3û\¾äÌñ9!ç\_Ó›X.¬Ø¶~‰àõç®^ÇY³ôÎË+bakîT7E7ÉqµË,¸U©qû}¯Èkµ²×B(yBÖ"FÝÆ9bØ>y^‰k~rgmþ’`Å´j‰ •í@ …‚±J.ÚÔAõAèZs§bp†‚>t/~úÄ𥮠´³:íÈWV`dÜô}„ƒ£ªɽ!qì”òåakpK5±3Á]8ÞU_D®PìÌ×CÖ®{Fë™™8²,¶ÞÆgøeC’) /d—ÍxÝ6Ñæ$Ï/É]8£Çð=\]zi¼ É`‚p!XšÎ ÂöXŽhN&l8¯-éõ|†|w„ß\ÛC6‘úï+l 9²õü[üã$u€®zg-×ÒL|NNxæ%“¼NP z´Ö»[lÆsÂ[Hª¿/A ØøT(‹^Ba¢Êè¹ö›(zæ¿Æ²·-Ÿ·uôØEV è;wõz J#r¥ß8ƒš2¤üZ¿.—/FlLÂÝhgÁa¿Ú¥¤ñóî ÇÄØ=<,5¾0WƒG¹2ñ³3æï #cõ_ s,røç]ÖÓºž“ÉSý¼®\ÓWo(³”­š’-•7O'¤g¼æ¦†l,‹ o¯8pŽb DË”uê±=4ŠãÞ¶©Ép»Ë|»Ì¨äbÄÖë]¹m \­·¶N²zLì}ÈøröVÑèýþ‡ºš>—5È*æ\ }ÛudlRq²O±Ynœ`<¾ †©§ž¾ê¢xY.“E©ÉR(i¸¯ïüÈhˆÙètÓ±ì#ÆÄ|EÑ;ípHΙŸšÌÜ*5‚:GuâTµ›ó}r›K(¸øi‡þµ‹w5sÜÓVÝ uc¿ämÇüAãÚz©psþä÷Ê0ÒÐ7 ª[w½ê9ž`Nç vè$´¿maŒ‘1Ù“±üœmlÁ^I¹hV ŸJÀÕ®ÆÄÙÃôžl´¹•R³­™;릢 Zùžv¡u¯í#¤ò©èåõ·XÊázÉ-µ»é?¥´2Yc\=Z§§„Lý—™¸5£‘4=»Jhû1Ôd1pþæ¥~ó´ÜÈ½ê ‘qÿ— Õ ìØY$†æ'_®|MµØ»Q•'‹ÌS::Ž 7‹ýžhÂiy»Æ5sA„žR½#)Š¶Ï²EŽ Y4|{×O9µX'8m1q]5ð@Hì}©VC†Úyeó“šEy·Î¿óƨA¦¥ ¬j~Žù_Ké$"¶k¢} gŒ<ëÌ .ðÏR 꾑¢e5áLTnnÿòýd3ÖI5³ß[Ó(WÐØe¾è6¤CT¾‹é£Ë2Ÿ×iZ{[$|{‡?й~. á<ý—5gû«´XMiâ¦ØöâE:oàM½¢íй¶®krjäHʪfβ‡}M<£´/‚*ߌîÕŒàn WkFàR®ú­Ø{&W2¾~^úDœ¨¥êõg4~ü|——_à±êJ„`ÍÉÐ&ÅQQ[}@º[{Eß)¶ù»¡ýÍñsâµÍI=ë_¸ï\Ða÷~©ö¾d!'ÎxG7Ý9O9­N­ŸTàŠKâK*·ìªÇF_m ûáÃNÌCÍÇbÏ@!“UêëŽÚ¨(†g#TȻ΅v1^¶\ŒîCöB1F˜ËÜŠ3ˆx [Ÿ°fe©: ¡ë@Ñ•=H¹)-–Ÿ UŒÕ/ÖWú IaK&Bj˜û³QoD~²üoj‚ÿ ‘ÊGÚ-®}6ntG6:À$Ǹ{¾¢/tV· >,‘÷º†¶U5áÂß>Õì¼)¿\ç°ZÉ‘Íì<;p>í}‘g±}èB†™8ø{‰Êz) E¾…‰1fg{B0ð¯ŽKòmAéÓ™¥ÃŽÓàL.áÉŒàÇ>Eil&ÀzbHžY圬хF M‹û¶Ø¤(¿¢Ûµ|/ŸÁÙ?–˜kÆÒ9t<[à‘9ºÚMxdªz Ù ãûäQbÈØ¶Õý./EAÓiásÆ|S Ûö ÷£õMqн5K7ÈÊo]“Ù™¿Å…{[!ZU zÂHVgÏœuˆù}t6¹¡•&o% ì2«#ÞîýR)s²ìÎ*61«¥ø]b%9g#ØfJ™èLF^-n†ü ó¸bY6h¾¯«¾í„õ)Œ<µ™QOÏÀ_‚*fºrÂiÍ ˜–y11àŠh$Ùºöº0Ué‰J³bh&²°ÓéìÜ+Áøó…Þf"j5À¿QŠLysU£— Â‘>'¿w„걕¶ä¿K¢9F;nOÏÙ~?s@ÆÙPåe±]ËTq«D¿©œà“Ô£Ý'| Ê¬y°&Y¦Äõa̧4§w=Cc¨ËRê/ðÝù­ûFš¢±aÕZI{‘åíç8#}->‚p_;çû’/„ru:^½ôwEˆ| Õ2ÿ¨¡ÏU¶Ûs. jû]<èÁ”G@¡ÒÚMùŽ$Ë£§/(6YÙsJ·ngâÉ]—°1\>õèÖŸ½Ë7¥- XyÿøQÏû¡Ì>Þ’ƒ**gDÆœà;NŒÓ[™_Ù¡RnCÝtM/㤕ø{Sƒë“Ô_h‚žOÈëƒ X\ÛÎüÉ ?›2âòÚŽM'æé¹•€Ž QM‚K¡H” $RZó¥b©€Ÿ“/ TŠðÓ‹íBÓÌ¢dÎèÖ®r­q@{#¿3™r¨Ü¤›ºTeò¼ÄX þš²Vj¶Ü`òæ¡ÀB©ôê|÷9ŽËŒjPû‚Ç‚þûSrØ.–^¹8˜Äʹ›–s+ê%+;Ì ´üÑtþÊB£:q³eÖ1±l4°o¯ "ý0t~i;n«?ƒ]Îûúâ§ ¡/4€ÖÖï„/R>¨ [Ús{n“Ó–£â¢ma¢è~Gן i)îïKp‰àˆ‰AûþPäžÅôB%¼°°`¼àO9ˆÿãÂx>¾Ëx §û¯xN+⹇¹â¸c‚³óoê7‚¯†“½G›½>ÚR³Ö–öÏk7Ý0Ň³/Bò+çȹq?tŒ¬²}k ˆ,sn"sFz6Væ¹?Ô'p5é#¢ŠüL­.ôßµÜk!=’‹R‰¼Å°îº–{Vúß_¢Œ[\, ¯…ù7O¶³5,!¹¶<ÙòA+òò㣠˜çïÖ…ŸÐÏáA÷0I`êv~ ÙÂUB gUâÝ3Ôøb5l”˜’Åj"~>„…•cš’ú-µ7‡H\% Pðºãè™ÝMX÷#XéÙic#R‚=DÐ=nM‘a|neid3{a„aÒžÆ} ÙÙÛ“xÈHŒŽr²âôüÐ)©J› BIÄxгScºwl[{ GOt3 óDQ3¯Ò˜Ü8RÒ±p²§zŠönÏÕD¯N¯ÄÚ¡û*o×L’\ŽòhCŠô¶$ê=¾içÍ„O"Ÿs—ÞVS¯Iø‰sL•‹ÓÿÄňÄO:™"Ë*õN—ëPÛë³Õ8û:ùñj¥ꔥ)F;ëÊßÖÒëd¬+©"WiDÃ\Eß«]±ue36ãDfaˆ=}êµ$ɲ£×XɽŸ"R§ç`Bì´? >T(³?‰Š} 8cÞª)8}yñ –>sÀû—)¡‰Í˜¹.ßã!Lo…A¡í¬³gÇ‚½,ð+?`DâÊ’ýï‚îÍÌUÿÀëÑœaŠ?Ó¹ü|·£:ÿ˜R{†Ñ7òšü”üá$8^—5QŠ:if׈fññä%æëk•ê ÷Uß­h «|¦úÏ–œJg;G^sàCL¥—ÓՃ¨.„V1µ„Q6“µNÀ¡ gµ¢)iâ˜ö†Íû¯*Êå=¥D4?©V¬Kˆ? Ú}×Ë e{Yy­y/@†µ8wÆ>ø”‚ÛÇxÛBc*ìÜ´^ô·Bèeù1|•ÞQEHƒt·CK3m˜§¸4F€ò»À9OéjÐÙ…>a]3ûÉ`ŒœjâE%cñ58Äœ¨+‰Ï7Ílªmw”úÉ+#Y’3Of*lt#óYìù\·ZpG œÍŸÂèòŠTáùìó³^F¶”­±7Цë+6cÙšEÓ¨4$û´£-ÈSj:úBG¶J**/G½{~Nò?U0¹ÎfÏÁŒW¦ •ÇÎ ì–Ó|¬L—}û]WµØÃš,AÎ[¼…Ô4è„ûìt~4Ÿƒ‹Òê ® À†É]?Ȳ’®%lcæ‡Æ«GÎ8­3ʤ./‰6bÀ¯¤M¾]EËòÏqÚ—}ÛYm‚Ïk¡{±yìœ~p€ßß €ÙÄu\ôˉcfBƒÙѹ¤ýkЂOÍ-ç›Ê¸ˆîüKÏѵqO ´—×ê ÄÇÅð%ÛÈzlYI-J;Û»¡aÀ“³'´BòˆPbôÓ‰:'’‹Æ!AFƒrâožéf£>T¶ÄOãæšiëO™='^;Ðÿ9jŒÌ,²™@¤­wžVþN% w¸Y•ñ¦JwCxUñɉóÜæš’¬`ž*YßyÖ6tV6Bó=sèwFbTñ´ús_édn‡“ÄqDÄν\)COá~w{×Ý6Â"âŒ‰Úæ¨“PZ_Œ:ƒ7%²Ð£ÑðòäœZíDç!¨'Ü€Œ—YöÞØq$¨„Ùƒ­×b]j<ÝLA†u£bMrÛÁEŒ{BùíÁÛ7Àä‹ IfPtmÈÜÔý§èÕ•á_Òhßó.þø¥K€ßN<5¸¦ÛÃj¨jô?‡¬üáPx¶×”p®\Q)ÙdžôÒqVXßwŸ•Ę:H³LlÆ =!@ˆ<"jb6ñ;–á¦Ç®.8ɵȡ½÷Ë£ƒuèÙ²R¿ÒZŸÚˆ^ÓT Në”o~¼<Þ— œ†øRtˆÚcQ…äЙ ÑÄ-À3‚OTI h ^Ô ]Ý÷ys‘‹ðyÞ”w©Â7¸ï.ôç„Ô{ð„ÇK–Š»"Z“•ÄÀ0xºÃ¥u&É]lƒbk åc[Þ|¾l'»Ó5Þx‘=(ˆ&a s‹rÝÐûß³AIL©•ÔÏV:œµÆÁiå«”ßB"l3ˆžëEx Ûö<è¥D­ªá $& I.NnUÓ‰·Ç—‰JÚ£!j9žu¦²–u›éYó7‰¦Q–D—&k× ä“N ¿`wÜú"/+' 08ö·Bþ´òy*åWKGayñÑľ®R¢p óüCxÁ°]«à4äE\€‡»'rŸ†ƒ Ñ.i£ %OÈ ¹G ~¹Â©Q*0çÈ`ððx 1˜súé—vM^¯Ém®gC^è%Ÿ]F'ÿO¯¬µ ™¼¯5ÛªudƒøQ‡+GŒÆ|ÇÚÅšî5S'<Z?R`éníЖRš73™Ô–câI¤jP×Ú!¼]v>h]D~nvÀ4“ãEUøT¹âKŠìŒ!–¼ ÞP½ƒÂ¹wÞâÞ(ýFúÕûÑ¡|²— ú¿."Ê{v^à)ÿôÍQªŸê%nm:>”cëC/{‘6¦æ”e´+®_ÖjFål†6œ¨ec7f-ÌZšÕ’}Ž2¡^8«u£&} øëÿ…Jü"£I<¸ý½gw¼ÞÏÄ÷í¢yõ¹k"i®üþy)U…6ñrwGì`¸¸l¥Ãâk¬çÚÏ_ôCÇc7‰ŸšŒÍ 5lLv•‚~‘r£@”‘¹~¶.ÛÔZ‰§ ”Gì7\è éck¢>g ááæâx–kó>ƒ¹SþàaùµºEþ€:Ì‹å@¯†]< ®}aýRšvŒÕh…£|çãߪj7'H¯=íÆÕÉRa2hÀ —FV'ÚÎÍ*ÃRÊö7©o6Ò‰úâXœðæ£~MðönHôŸao¶ Ù´LÞ8ÛQ”|å*Âá,I_˜~†¼‹à ÃöMà'‰¼]$a:6K½¯Gè²*•5WS Ü¿²çîÚNò¯.ÔFp_ôW£”$§¼Çe¨Ž:}>8nAɱf_‘ý§¤*×o8Úƒ1ºŸ_js^Y-Œ½^¨-üÙÄY·ñú¹Û3ºÆ¢­R±À„Œæ{òî,>ýV`,¸›ƒ í‚ÏE‡ÌPኹB»V’ª! Ë%oJ]»" ÚÄÓà¼}‘ ñÚ¨Uœ`ÞUÐ4FV'ÖÓFë —Ïîh Îs°ÃVŠÏÁµ©Ï'›ZV¼¶É$o½ˆþnœS'ïìà0Y­ºN" û©dœoèX³µüê7OzÔVoð!0î¶iôb¯"›8¼Û3«ÂI¯ðm²U›¸›¸Ì‘˜æ,»)±šhë©ò èô^ðÈN´töÔdš­¾è‘°ëOÅk\~‚ þ™go[›ªƒqú¢wÔ¯"•K&RS4FsÚTaQå¥i^†#lâ£R·ßÄŠçîø'Þön éòÕ«a´UÅl·¶ø¢XÚ › ¥Pää‘‚·ú3|¹HÐr—“˜@ìy¿Æ´ñˆþ—kÖ„²–¥™íB‹*=–‘œ§àóZ席³JøQÏÀÒ -©†²–ï}ôÈËø&T†]›ÀÙG‡°óBGWÖW\¸€1å£ð±Ÿ»I•¤01Î’û:—Äô$-h)Š_—0Q16¹Lf×&º–—3çP¾™i¨ž’@o9/xƒÕO¤â@ˆ.7Xz¹Ó§fƒí:n¨tð/!Ý7€Ç•Ð[äAš•8±vnjìÙ^B£&|þe »¾êoîªÅëa˜|[tM_:Fþ©k¨aYzcƒ?û‰¯á ú?3‡DBÉ(i†gëyÈ¡L–ºÞ[×…ãV•~/;¦ò²KÁƒÇ0´ ˆÍÊ® ³¥/€¨•‘†DÆÉ1éͽžgOÒ*³‡ø¬Œ‹¥¡ß2•ÈcfØf!j¡(ñ‹ Yÿדž½k(,uK{D’€ÞµÐ ‘•€NzKfއ†é¡Š”w&ò9TbÉÓ§¶GêÏŠ´è âY<$ž&)vå:(újdr‡ù· iÈ pƈ·Õæˆÿ›Ð9æàšµ¹×ଈÔü@ŠÓ±¦€m[¦wçÑRâ7•ßtm}™®›¤Úuªiá\g2ÜtäÒ2.Ï3WebiC‡;RüNa£¬;_ÛŠ€ãmNñÚÀ4®àÜÎ.&t‚¶Ñó¦û·_0-‹!Dò‹–_´XÓ…þœý[ᵉs¨­Ã»éð9^ýàËg·SÔM„ßÓq½É?¤paIOÃpS}XÇ“Íg-ålZßW2K_NöÈ\d·“ÆÂ5êsÇ5ž oyz°šËPÂÄñ¦Iyxã ÿ›¬0й#£nCQw$œÈ¥ûôýˆ¼®ìþ‘=Üøc„÷±fgÑÒÓ"âÁ·ràkÐ.‡c#Z€/­znh• †ä˜€î³)Ÿt]R•އØX#„ÑÒ…%Ê‹"5×~º"ÿäÖE¾¶ªÇ‰GQšXäЖ{X¹Yîª<¶0J¢WÜúÕ*^øCq)"s°]e ˜(ÌŒê–4æ9+F|êDstÙ2àxߟ·Jî5í Ó^º×ØàÞïâeÄaÅ„—Qz¤½Üäaj•¤‚VÞ) sÉvÊ+\,Ñß—H²=,YbÏʵG;ÏMu› DÐv†£èˆ^=İM²iáêJù­æ”NŠ2 ¤U‡aÜû`LÞFÛÐîI.Åa£€·»Šå yFp)k(ylÄÌß)÷)È'˜ÏXºµ"PÄiˆQe¨“½ðËllÿâo†YXA#›íß¡†¿a¬ÔƒÅ« „ë>B>¡²}H÷B>°6ªh)«@Í_þ yÒoLž½¸ˆ¡$ Úê³âÈŸ^ö–Lk´´˜Lêã‡æó|¤zôËÇ]¾ CÄq#ýHŒ8Py=Ù4rŠ.·ôÆhŠÊ…HßÉ*?±|GÊTÙ| +—xI…XŠŒ‹&PEz­ï=ä‘mw×ô‹_-šÿÒg†§'mu7Ì£þµ>¶pdï‰ËáhFІE«iqMtÕe=û0?Y 8ë ›y5!Ò­M2ÛN7†ÉC£ìyPâZÂLš¬ÑÌUY»ß²òhÖ{_Ì5“…º¤“˜ÖÖ—Z÷âÙY7ukJsãÄÅŠPöê‘«w?ŒØ¥QVãÊ‘%!Kšª3Ë4±ÔÍ~ƒK—€ùÁY>̤.D/µ8IîÒ@bÛ Äý{ž¿ÆèÇ* "gÛ_u&îMy0oóï[Úâ#jÞ`w‹®(R, Μix€_ ÝëØ [U€F·QEʰ.-·ãô9%ºúuS£ Ï:–×>pÎjþÀñÉ(%Ê@;~ij-’j¯(ÂÀ¬Uý•Aƒ¤œïÀ»wB›¦º Æm@¾ãz‹Å×4‚$|œåüéÀx3Ó@øÎ;銆+¼±è—l®uæó}UµK•j2ã<‰ÓŒµúqgèä¼Îïss'B–Pyþ‘l`Ú¿sÏ“ytzB‰yOÒ5¬(§ß<úªƒà¸Ò[2¶ºEè*½]ùmŽÙ±O D4•ùBš¦ÛO„“–í7ü™V±‡Hvv !~»é¶uàg~,ê ¶ÀüÔyè0> ÷tæÏØ?…j¼VYt¡Yù,Ê_Hð¡Ã¶õd9Ÿ§¼*°ÿ—£_ èhL¹ÆƒáåÅIº‹‚J4r]?qøÆS¯ø6%Ý!§L…›Ê`Áè¨!høxþtnì.ßÈò8]>€—«A3ä‹ß ù½|(§­ ÙÌ7†pX1°2vhÇ6h„Ü¥²oÓ`|üÆF¢ðÊ ¢ù¯ÏWr|èb7Ë|Ù¬ÅH—é-\íìž‘[Õ¥_Dt$m“DzÁ[Âwï”o ÙPD•ðµ^G Y; È[ƒ–H%àÀ|Ì|6ÅßõOÖ²Œ³ÁçÛ႞± P;O0SQÑ-ö'æelG¿$Òæl¹@Ä éæ?¡°ø€ƒõÜ„žjÆ…‡ÝÃó»J­:mXì‹È„—%%¹C²DŠ ñaU^Û 6ÿdò{«¾¦hVïÔš^æåèÌî!PNSFœôMÃŒ4„á„&à5›WN”ÔPìW"E`ˆémЩq#Ø,b 4IŒŒŒ«\!‘¤s}(Íä¡tG\ÉîÓJl˜ú´M%ùh®Ý2)i÷ ?ÛÙˆâÓ±ß4ÿ¸Vð°¿æ¨G€‹*³RZîÅKŽTs¶»QØ1Nç™ÊèzViÇÿ™êÕ%H/ üƒþØ¿ç¥ ?0QäÎŒ‡†§Û*çñaI’jÞ:õ³¯2•ýÍ15™H‰ v2*0©ôHCãr>¦qö–Ô®š;‰ŸAc§äv.5M5¨" 4Éß·MáaYus­sì“°ÕÀz¡ÂÚƒSÈT?Ð5 ¬ 5«SDÈ®ÀŒY{ã¯<ìÝŽµê.ŸQjµÐÕÝfeí¬Ý½\ìM˜EÌEY0Öxc¥¦;3ÜiéÙ“43‚eÄ»§+ºokÖ8î÷®¹ô½Êdî½ñ—Bj¡±ºƒi1‰HÀiu¶BÓAñÉJ-°j¹¥ïÁ‹fh”ý×Ê ´²Òã5ôÄûEk†+‹¯•HÌ.ÇCUÞû@4FI·nÕpaÓ,Ð<„K»™š0IºÈíæ%cÜëæ^Y˜Åî¿Íº“l¢Žš‡)pºubÞ“)m®LmÔ¼ÜÌKû“ű¼Ç ªòN4,¡j2 ‡•ßоÚC•ŽÆ© tºŒù™Ê T‰¶>!'ØVU*uÒš”ö9,zæ¾9_<(Ïòn›°/gݳK]ÞRfL¢ ó8Cí¤Ïûk8%jŽUtº®P¼¿„0›Ä©ƒ2˜'Y&ï“QycX¨Pò’óSœE]éÉOJDÊ­  úËŽÁèxY „Õ¨J•Ö|ã@Ùªˆ Ã0ǔɾÁd€êq–gžö® ¬úh£åÁû1^®…jÆ ´Œ—Æ|ˆ’çàÀÊü[UÜ1À—±².›xE•òQé?ögÜK_VQ¤1Ù*‚ïÂÈ›û¬ÎÇ:œÒ ö|zêÜéÝíÑ6Õi¢g›`à3h¿¨°›lÒe›W«úBGøÝŽ® æÁÏ 91³»‰d½öP v[Â?/ã³ãp÷àŠªÔ¥ MVÈ;­ÆšvÌRÆÔ€4ZHv¼KA²Ÿw©’t¼ì¼Y1EñYQgÉî¢Û”{棣س[ÂŒŽ5—æ{ –Íly“ydM,íéɲK£ä¼-ås´„»¢Ÿ~ß¿ç(øz]r}x×äéOgµrÑ3¸À|A¾+Çcr%H7¢¨œ–g­vÉ!OÎè7¸(Öœš€FgáûÝB§ÈoÆ£ûßyWgÚžââšæîNÄ¢HðŸ f°§ýÃQ¦šC5¦«:aËŽ~ûæ¶()×-É}°X4¨ NVÎL²p÷ýG%I×!‰^mJ™­§Kõdó÷{j—³­ääˆrúeüOšk0s8NêƒøÎ‚OÁ\Þû˜ç3´Üé"‰â†ÃƤ#¶Òÿiî t‡I¥|è¤átÎ@‰r| zì}Ï"rF›ç®l¨²¯¶ùo|aÒq\ãaËìùýývWBáðvµ|Ø©éÎ׆-l ,”aèa;¢+ûÜ/Ú-ðîsÙß«YûzñYº1 KmŠ‹ùÅ@À=7lH ÆžÝK=UÚšÒ²ŸOúÔç5˜‘o×CÀ eX©"z?!½‘ó›ûIúg“D7mE%šÂ‚> ±Rvó‹l4ë"€LE"¼RÐcóë€+´¬A{±îŠ€ åÊŒX„”€z4ù¢ŽJ‚Mµs±S®ªÒs¡W£KÑï=¥#îb )æÇûrž©`Ú# eÐÛì£jÊëè¼4çeùæPOÙ¹›îL©Wèò_ЧãBRcÓGf¤fg ù4$÷ÙW::N¦ÓB»›o(³žû™®Šy\xweün¥ÙŸ¯W•ëE?¨ñ¯<ûB‰ ƒÎAE&‘‹îw׺Tò‹èv_ù¾Æ]Ásž½˜r…Å^–lnrs>kçnâ0‰`}é-IG`l‹Ö¾gŽªî³v` šD„Ï[ѹõj@ð«xÃö5 öŽòûsÊÀƒ&¯’ø”à‚rp'!—”4ýir6æJ]“ûZCŸ­¯ƒí^±º€ÜTTŠ]s0Ã*ÞìŒéLÌIåÝ`·ÙÕqyôsJ„oD5¦Ð¦©\Z ~ã²íÞÄv 8«™Y±PÞæ YaîÜ9Ã` IóMLÝEÌ:fŒ«‚Ëþ«ÜôΞ©™Cdƒë1r؜ݔ56<Ý„Š— ½ýéçß°òP( ]T-Úã»§xPûÙ(8qãåÍÁúbuöÊ÷î„¥Ý.§ Ùž©XcúqU>€ÌçÍÒï9ÝP~ŸŽ²ÍFÆòHÅÑF½Óƒs—?Ýa0Ÿâ36<·«àwï&ݪÀzñϧi`–¯m[ÎZ¼¾JÝ~ëï¹§ë.›ATÍ,›bñ¯-piì(K9}œ–’¦Ù?óîÝ"¬¹ÛEDß•’úž’Ý.}8ÞÞæý^ô¦;†õô"{ɽ´íˆt8ש'®F)²5‡XŠg Û¤º) ý¥ÜõGALûðp«Û³Ž·ãøÁßüõš„‚JªˆÝ¥µëôû–‰pùÊÁ£¦6jïRO•¹+dLD¥²/±r‹Óß!ž-˵ÁCAÞ‚ÊÕ áÿˆ>Ÿñ‘ÄÍLn½O·r Ä–eVn_½Îå=#ú3R7Ÿá§¯`©•‡lÇ=Ió[½ {Žà)x ÞdÐ_n|i‘>•ƒÿ§@ L¬jyï•Cÿ— pØSw÷g3Swß?Ø‘Ç×¾5gø}:ˆÞ™›Ålá’Ç×·à,ŸAV}UŒÙ}>‡wYÕH;̓ý¨¯Òë$€gó¨™OŽHþM_>RgØ ¨PYåÉÚ.ÑÿîëO˜(Ré³= 0m·è.ð>çõ{3¯Ù»î¤ë&)<Ó¥Qî,ƒL6s Ø[3.zT¦YÀÚ¨©¾½ áÊb,šHDüRZž.ÜFgã| .\ü~ÀKšImõ§TÄ|û备%\iÃŽ®ÆZœ_ýIÕ¯zu"UPÄøÉâ†ì‰$ŒÜ—”a¦¥à¤’ÐW’7²âœÀ€qŠ¿÷$SkGl*ˆ>7ÓÛ…ˆØPW5 1ªæËh:ÍŒ+úÇi£3‰d,…‰«©žZ_.2Ž+0Kc!ôK!˜%µP0zqSf¨½"øHÓÅhpœsqfò àM¬}ïéÖ3% ¼} ³²7êÂ;ULÊè*´‰ªKXŒdPJ)†¼  –sG§3Û‹„$ªq>à“ÜÀ¢0Q%¢ÊF½!ŠCÔÖ{‘ì3Û™Ý/G{ëDnb ·2zÊlî!cì¹ðÎ »7TkÉ—p¼ÂÈ €%Š ŽD6:Ÿò˜µåâ—‡¾²˜%S5šü1 '3›]+Á­ a|¤¿þnÊUö'q·.ûÃÅZ&xFtݼt`Æ8”ñÿ7Ø”B˜à×7îé´¾©vî1WÖVsïáèýOˆµˆ¾ifPŠ”Yað|ß$y»äæXtt@=ß¼¯«­ó/:“ßUù¶l#lW;ΤÏõéÃ3Q¶þt®Â´¶;$•ë{i×[ƒ¥è×UâF·Pþa©•¼N D#ÿùYê€ÜiÝéÍþÄ-Gd…‰M €n*u¯’„–ä”öˆwŽMCçµÿ«H9·´ Éæ² »Ät9±ú›¥ªà®}Õ¯<Î!îÊ]ù«C8ëÝ3”5¯¹%/¿$!_*WúΠà xúËÂtác:ÓžÎÊF¼’ëŠ:ê˜dÔ3ÀöæÀÜx}›Ûˆ_a vŒ}4Ê®w?`”þÝžÞÆBÑÎähÛYCdÛ8Ô˜¿e«,u{Xç^á^&%¦ët,€P! S¶|9ò <›eÒ?qˆ×‰Ø57¿œÔŸ’ÄW}¾%ÌÐÿDÐâÆ)zÓA |ÿò½Ù¥[)…MR]Ã_@¸‹ú¨õœÞ´ŒÑ£ÞCæ–Sê¾ð¢¿‡QÓo®Z͘bè‘,Åã4ÆÑòŠüœ¤NU uyö&Wä×úŒ•F`s.÷¹&ùUÚ‹i/–Ÿå=¤rƒ"fKHþÛO.c!’™’¬ç’ø³poR/PyÄ©„k¼Ö Iß 1Dæ9í£“õWKœÁ›DmŒƒ¾ÑkST¸£ûAÊ"HöFmf\s¡2úã·ÓºuEZÓ„ǽMÏÍéV1%¿@CérBœÖ9TË ­Ú3(Ç—t4»T\§ž-1ëa`xAîr+¤ðN‚.Zf¹5*x%qŠ&Å+‹÷¦2fç}.Ö3¬¢Qø^ií®q8Å+®>‡ÃVç9NsžÐ ‹£/°­úùj±­«¬ÅnLÜ£ãÀS 윫”!âcý%aÕ(9R阼c,8Y  ùèvszVéC N?ï‚Ëåér3ùvÜ™w=¸HßUW*òÈ3­ÿKÅ?‡‹®µ`¶MY⬒Ñrá‰rùcîó&¨@²ÝžÒjP3#C‰SF±±[„Iջؑ¶óâé5º{U6@„›šƒEâxJLÀ“Ê ”—Ç(÷xÑoœåÛÒ r›•X¨Eb×<³4D)f¢LlWcN({+åŽÁ®'¼«RZÇ«²xìÅòÙ4è¸4s=LZ? }B ê[Ûí#-ðÐ —7лÊ`‘c%Ñ Ž8wÝ<ÈÂ$˜&‚ÖÆ Jy/}] Mˆ˜üIžËè–Ú‹Tl>rY·Š8¢R9›»@ìà‚óUxhù’‚ÄJs/)H?6-XᤩeC‹ç,×ê]C9À¾Ë²Ê¾|èŠgCCqÆÓ,Lf œh£ PS¯™Q†ÐfäLSñHˆ›,þ¾çúE  Âh™ô·×ñ$éæIü ¦–•Ÿ/ ;RÕðܶÌÇÄü­Œã=ø¯ëE%²œÍ®Ða‰oC ú•rÙ*c1ºRÌõ)ø ¬cÂËU‚¨ùIŸ9ÂŒ)ÝË‹Þ=a2ògUìµ|Ê/RR!d˃ÿ. ÷¤›)\Ê s48ÿc%ÌVº¼½‰nyב¯ºÊ´*©îp½$åÀRb:ã]©Öå@ñ$¬‘+·bx] ‹ò»»\çðÅå›Fáþ…61 ¸É™ªzôºM[!îÀuö½ );J‡Øðl fý{¢Ä˜âÜÕõ’ࣄ›Ç©ÏÙ„[µn©’f³Zd“u1õÙ-Ëä-ÿºðc¨–8ò· œŸ10t§RZ&?#yCõã¢@2D{gºßê«ò2RçQ0­Äî3qx XÈ2rÇmT!¶‚púѵՈGBžÜR K4¤Åu s<|Ú²v‚Ü;-0}+?‹ÉþÚåY•šØ®#uµ}þTN N¿¹JÞOÛž>èÒëuUAOÂbßèÒ®ö—˜ÙK?ïNU?~ØA—0Qg\t…£‹já.üôé_ev:AÎ`”YVuH'{Cýê7ŠáZ•O…5a×DÌOÁƒF“Èu`d>@†˜Ï¨VÍ,Ûtó¹Ëê_°y˜—hÈo¥ÚÇÀ—@°=…U™vSU|FV3¥³ÚÃW78ÂÂéf?m?Bn´·Èغ9ëeÞ⎻æž#kèÈ“FÒ bl„¨è èšn‰šdx‘ÕšÜë>À§úÚ¶>m¯¦'LDq¸$tJŠþ›aUÓef‹_Š4¼íÃIbÈä£A°¿Mή| <öÌÌk¦ÉáÎôx tdm<¾Ì׀̓:{cÃÆþ¼Ê±Õ¼‚Þê(¹$ƒR*C‹è°ÇMÙÛý@ñ¾[¦)N¿Z.âM=‹ˆ¥a1‰I-ÚàRîDZPájÿËÕsÿÉõ„¼‘øf•Œ´gvxüY¤YkýD\Û¨SŸÕŽÈ¯±tÉ×c6V­C²° ñu|bÁòLñŸNÀ'ŒVO‰ð5¥Ä¿>¤ûùwÈ>¡™·´µƒò+Ê:{‡ÎéÑŽå!+ë!N9zV޾dLwÈŠpì'›uØ·`|Ô¦¥F•LÑ^Öÿ@’¹»ò^ù¥ëGÌÆý¡ìˆ™ ‘ŽÜtØ(ä=e,ˆó"FGf[3—ÚYÇö'´*}uƶ$^#ϬàÂqr¸KV4\Ù2´Èî‚Ã[겈ÌWëD0Šr¢3ú†K¸Êç±£ä%²ó­Òìdu“ÿo³óv®ïÂÉV`^è»ÛFA‘´‡•Øà¤œDPкÈo<À~pì_Þô#2š£³D3-µä)´©:à€Ãôs׀˖{$`'•¸"#M~qR.ú‰€ £·@IÒè+œýО͓ƒ{$¾O:Báâ®³P¢ºá…Bù„ºÿs²kïjˆÈ@dí“LOé쪉˜,ùñíÈ.$ïepà?¢²Þ_.Ä!0×ïùoˆ8@æàMkd%o—lÛŠFÔ@S‘‘î[ˆ^VËÜ1½–K½ ¢UvVs` p”8•°xÖ vÝ“…¨áXæ&Bñ[9»íHNü‹ÅDŒøí}pÕ ,Kya”ÇF%ýK^Áníê~Á§öDd¼YØi'ˆØ9-]ÒI;›Ø&pDN÷[Í¢Gà ß:‘Ú—pBŠ@OŸü´&p®U„|ú>?„œäˆ|ÝsAjü&KcÉ´mg]vk[ @2×wSo†ûNòý]¾x´7à÷-O3ÃZfXy§ÙèÃÐuNŸ2 º Ý<gþ)ÎQK¤I|'¬‰÷ÖGˆ‹®¦­Ü¤&³–…ÓD *ÚÓ—ôÀM X-(_<›qÐÉÂWN‚à‚X§ÌÿdvÀŸ©êv"!ä…¬–þH5]lLªMh~mž03Ì5ÉÔÝ?q˜Yª‚‚ÈaçÃiOzç¿ã`ûÕQ_ÉÿoJýºÙÚ2›Äµ%² G¥¨lÔ];á™3GÞ&Gñ=d-I”@: WbI#i,z°ííDH7ÈSž‡Ÿxø2ªËÚØ¦L˜‹K»Ý~’#4‡§õúûöÄ QîJš3DîÍÐ^C¦ß¯ÚÿEu=[HtC>öÞsà Þ¬2¡»I0­*VDV|GÁf𤠗¿ð  c¡ŽÞÿ­„{wbÂѯXMSWŠæ­6ún8|”šØ:éû/'6C¹áíÑË.eÄA¬âþ¡y” .ȼÑ(àLjQݲӰ»Où¹Ã*\š bÓ¾Sú0ß[)Ö%` 4T;@eú{Ÿ€¤£Y<«Mbƒ_éµÎ}ìKެÉQZ‹wC´>Ϲs¨ˆ¢€$ÄÈf ÷Ð[[–&Uí„hÝv¶Ó?·vÂÒw n0¹I8ܺ ßfç C±†>˜áåÞ!Ä,Ö õ°ã³<“xX»¨ÓŒá:«Yü[&x:!æåе3@Ÿ’zþ³†?¼£Ü/ ½Žìô½+{¬¼‡ä«º¤ºQë,fT&½Óôˆ”ß¾W|+ÝZÞKÏôìà”äCÞ©ùœ“#wº!)Aî‚D‰ªÄê¢ Õ*ލdûzg ó2oãûè’P™·šGÚQèÉë8­ùõ]ªüLÔæ¹.{d±ÐùaŠ3¿DÛHpï{ÄdAÿ{мú®mÁ/å·+á3VæöE<ÂÝÓ˜´<ïðµÎ|ݦ M¼¼¿YçH‚Ÿ&Û‹õ>œe·Ç“‡7Õ)"+\à®'åøyO3}§»·¹ò/bàCRð¡¸eoéöœêõ®î6$ïPF–ú¤sË{†Œ2®µ˜…<}¤³¤\îqg ÞäÛöþ!¿sì ‰ŒÖòÒ+üæ²GgK«Þ¢l_²Å¢&ð0דzv»Bí+O?‚LÇá%Œ*œÜ}íG3™ˆÓÏëF|Ùr¹]²”€55{ûëÂpÉ¥ù?ºV²„µ¶¿P,ð³'\)É4ïÙÙ–qǺ9>Í”ÅJ‚¬lÄÙ‹_¨3ö;ˆE2L8¾†çŒGauéî#d57ÞWðÊã¨H—\3Ý»ÀNj°˜˜í‡Å}žŠ঑õÌWƘa­8»~7R”w‹ŒUwó[j‰õžf#MùõŽuœ810ÕÈ“&/0ìEG¯ùül{˜Êhp¥¹4 ݄ǚ¿# &~h«ã­ñ‘2NËg]"ˆåaÊ^ÎâúÏáp —ÁHôè\Ù¾þÚŠªm. ÂÉ(™ëcaF|¬»ýö›¬ äÎwný—X†G2S· RßÖþÁˆ-U 6ŸÝPŽ¿bi$×1Öħ¡ëÇ;<ÅÞ)ÈŽóùÌ#Œu ŒÛ'¶\ø²MÅèd 9ßì–34÷k‚2q ‡!²›>©õ7Z„ÎÚe÷ÐT‹Ò§Ðv ÇíHÕPí½ëª¾ì‹,htsDÕ~Њ˜y¼K»•[!½D> pûÕüÁ§·iÉøò»?<ª–3æ-€sú²ÆÈg°¸ûwÚ¼î+EÎ"m˜Í)¦üéúG›ó+˜àt‘©º(­®ïÔÏ8Ì—à~Of]@êsë?â™ñŒIßiÁdð rqà K*¿ô× ?Ùšf½CP>ã”8Ý^6w{¬ªÜzËÐÛtmu–¸¯ékÝi—çüX;mþÖѲ´cq£4óŽìIõøø“=Ò݆?ÜêßäJ8ÒLnÛx* ÿze°?ºh\O› ߪÜUXÿÀƒ Ä 0 QSiKN\NúÈ"Ý\¥q IΞ…ð…ak"1ª²ò–ô¦žüÞ¤tÐË“½å«Aáÿ0»-ÀpÏŸËÅý'Á3È´NÆ„Ûo"vÉ.±‚•§é­@Çwû…ÞDg[úO\l5“7ý?w,dW1Tt®•LÔjöÂÙ]Ÿ/ 8„]) Ñ!ö{Òâ”z­*¹þ8›ÔI¢3¯bl¢ß™çÖKþ?òùƒ”jQ¥§Êá¸]ý°^}D̆B «*Ò±õø†\§Ömþ²Jµ H…;Ø}Ìè4áf{¢BñÌÆ0‹šAØsËKßÈ`p_'YÁ¹Î¿¡ªÎ­¡g`üõ7ôŸ;œpↆ'ð]@ LE¯Ê{ ž-ùmUþÙCkrÁy•}È—8Ѷ׹34©¥yg“aCPÜ©„'OpXó‘`Vå1 P\ºfÃ~Ÿ¸BþåWÄ2è ”üå5ºœ€š FÖmÄìÛ?ƒ¤¯œýHû7?ôë´¤”˜ U‘Bq1¹æ«RüôyKŽLn êõ¬î$´ø>?˜­â;$~¿>I®­)I Ï&ðÀ@Uƒïçýv¥J[Ç®‹ŸKež¼DÉP'½Z\¡ÂL~T˜/>”¤£<¬3!|S3W¦Ò¸¸ÔËð¬4ôƶÐêŠu¹éúC¦D¸-ÀºI4"áX¸ãìYÀ’×Ã’R^U3Ô4³ôÅ3b@œ¤Ö¼+˾rÄï ž&¯pfí']#é¬ra¢3Ïý@4æ‰õ®'òkäs÷ãä´ðEéA†m_ Œràû|¿M òoä”ëëßÏG$¡y¥óÂÄd‚VÂX¾G© “»Ìã¦p.€¼óºÇȶiÉ9•Ú–‚åg<ÛÖ+뻿±Ó»nŸ£ë¢õîÊ`íUü5Æe%ðhÿ¾²Ü¥Þ¦>Bý €d›ž|4”¿ïEÉ>I ¶üËèWÄ6ƒIá7¶¹y€£Éj–öí»rÉ| °¶´˜Ï]†ùZ'> É™u£êaÜVU õ“!Oñì#g ´]Àd¸NÒ!H²8d#3f2¯-Xç«ÑÍmx³¤Y[Sð„_TE•Ÿ*»ë†)C£†77ýé×Z¼Ë¼ðbš_ôOÖÄ \Ü÷Ðãó+”é*p-¸Q3wí¥svFÈ’½M´º ròÙp‡ *„O§[“½R×ÍN"C"$&‡ʽN›ú,`Q9ŸÎgÙ=iø]¨›M€™ÝY–]Aô éD-"³€ö ÉqiKß² ‘®Hæ'V@YÝ1WbªÏ^Ê*Hã•ê<|«ê%øüb­m)¿ýô­9P1B´Aã.‹9¢'OAêã=¹¥a&ŽÃ_ÎâB S¶Æwuï* ¹d¡À}—ÏÅYS›["BeßÂá}êT„U—\®\ÐGîДïV—/DT»ÿG:o¦¦§ÍVw¯6O¹ï>"Þ©yX²£N>¹}m4ÿ³&öÄê÷Œ›†èˆôÖêñõÊ4¨Öó0ØèÔ?ƦøG·FQІÕ!ïˆG”h>Ë pN~û(p]<¬h-ñ“Æbe»¼O¬¢¥äVf⩹r<$®2ÞM+dÊuAnÊAÃŽh\”»&ooo×,'a$½[)ì°Éyޱ}Äù„ãr€´jos”Íf ‚7ˆ6_½8<Â`½Ev{ÿœDà¡ïÆ[‘ÿå«ô¾KR:Ü¡"ò¤6$7 j‹†¶q­©L.£ȳÚPáÂ3äÝM_]>Vm~»ñ3ò$÷{“ñ]×ežÖSvWݰ¼)x@ú欤%×M“ÚõŽŒÈhÈR2¶öÏ5_Ê~6:vËÝZæoõÑÎõ!V5Ý¢Öx® Ó’s¹ ^™ø™Û¥g¬Ðr&e…¾KVƒ)š~f†ÖKÊD—ÍŸ+^\ÒÏ|N‚n¤R©JôÞ^e@zœÖ AúW˜Ê T‘ä ž¦ÿúï>æŽhSeÍá4„Cy^a´$´Í®ŒÅ±»Gèàö˜Cn\H~¬MÀMñ9ªÄzB¾öžJô‰ó¤Š«AÖ±9Ó,ʇKes+ñÜý?L’~¨Z4­À© [f÷Ð=€Âh ’©³ÁëJMùñ¯Ht'¯ª±H2™î¢ƒÐe>:oâ³Q]æŽIÊÊãÈô+{œþn¥®‹N¤T"ÖØ³’4ð¸ÀÂä¹,N‚žy÷”Üœ[OGà*XAìáMì=Ün˜ES§û ¡dã‚Ø.$9¬ËÖ9Ô„ÜÇ*`ùö«*Ù b™Ôcà|¾‰È:äPâ†~ÀR?¨~hâŒP/ˆSi N CØ{ÅHÅúÖùÜXÃQì9xRxäýdм¹_m]µèS$ƒí<Ñ ó»#†œöqÍ”7Cïé;âGï¥ÜçäöIÞ:Ës^zÄìì’ ܩȈìÌ7ã3é›Ë´›o:7Lm·›|qä ×ß>¤aþ86¹£uZ;VfTL×”‘)$ð¼-Aàó)¯2çá’ó͘ÊÊ>ì<ú_W˜ADþ'»ÚX-E_ÀžžHc¤’v†E}êòÁ½*TÚ²öHuÉâ -oàà*w4I pã§·6”›¨vH£á5Ì¥¿|?ÿĕݗµ•˜)y²Üœî¾"ÿÂîX? '©Ci Þ]œÅ-iu¶RùEØ%¨~ .Û(\¢@ó¸ˆÝUõ„ü€å;M›óRЩʌ©¦½{Ï}žv—ÎÉž^‰îOa.—I«»A†¡2²ßKÁÑÖCÔkdlÁcWµãì#‡Œ•dsXIraèà8ÛéŸ ÁµA9Íba4æ­CŠX-¸¢`ý˜µF ^8¿niÛµãµh…ZL2Š94Pbbj–—ߟ/T_¢Û[ØSÁ©>jÖ ÉÅLyþ› >¡Ø= é‹ÅvIs‰™4¿Ž9L ?>Zå”q3_>¦{þ‹D¢e”¸ŸájŠªglt¥¡Õ¬ºxJpÇ4Y®Í»€ëØÚ:¡üØ)Q |ƒ«qì@ô¿€@Ñ;wÿI¥_Ò3›…‹¬Ò¥¡,Ž„ÔùÅàîÏçOøK¿zÌœ´[%{ZÔ…Y|F6lÁ#ÏÞPŠÝë ºÄRfáýXF\¢°Åõž&iþ]U¦ÿó·Š¡7pÄË©ÙljTY ñ« LTÒ|…¯¥_®³tH‡s¢é#ýW±.*ó¢Ì ÉýÎIh:D¬‘SYó©Î1MåI~ÒÞ¸«$öQøß¬¸”&êՊܽ.ñ@?•o§AŠ*Qé!™ŸÕ+ඃ0(Åú‰ÅãfYŠi¢D¦ë˜¾•¬Á;Jì®SNu„ßp_/5Úã˜Ñpü)~áîx†ºS&_]¬Ìr%lñÇ8€‘#ŽP±ÑÂ’©™(X¶ú©ž«w¼ ¦¶½}[ËCn\Â̹ÿ¡ nŸêáÉ@×ȖݹëÙªfFã˜ñ£SA%ZÄé(Á1°ÃØqdŸ_ -PQVíÔÛù’ólðÅ ×7j<`J#0ÈÜaÚ©wü{?`ˆÑ³çŠzêü£Ê F¨D‰ìÝéê[÷,£^k¨äm‹ÿÖmúø€irO„¡ãvŠ`åÑ%Hæ×Lx®4&Möÿ˜ƒa6Š¥,ŠUå“„gõd£íaâ~~;<♕¾,ó;߈\ xÄw0´ìt åDí~Þ dÞeÖM$ìÊœ|ŸªþJ! Ë‘ÐO|]“$n_>¹ûBżåqÍ›Õ^þ§.жQhÉÞ¼ù2ô¬€i„ˆsÂ3®` šLŠæŒq|ëáG1·ýÍÇAކÂÍy±m ;D- [ÇëÓ„2ÑÞêÙ¼ê7žÄšnR2rái‘Ó£ïD2ä`óŽsŠ!Ⱥ"খ6±Ó cjøtK¢µô²0˜v9KÛ? 0n¤byäVGd ùÛ<ûÇ.D‰´ÿ±½ÅC–žAóC ¸j%>ÕbÖT-K³x?2þ ƒßË$%ºaÎîÃ^ZWß½ ·ÌAK¡mMrÆŽ¥Y*RÈ;ƒ^.aߎrmÊýÅá뛳2èrfº­b97K­wµbú \@”¼¿WT35 Àþd;ʧïqz§ÓÉÆA3öÁv¬‰…hŽ£=±bÍ{Ø!Y¾Ž¤Â©«Ð»'`‰FÍɳ—m’Rn°ŽxÙ' 8Þo(yá %L*°µÎEZ¦Çdì\[ÿÁû"§FpKHk¸¥ • ü‡c›˜ FuÇjÔŠ®óŽmrÿ9X6Ëé[îç’£¼K/Þ” GVòF€kMÀAvËß®oDµóÈé$N»(?=¦-%ë!Ü,RÛÉ}Öì7ŠVCxï×nG¯¼o,hËz1lQ[~„ûv£/¨…AÑkØÁÎ TÉÔ´y¶t=zÉâ®5®R‚öñÄòFY‡ÓtŒÜƒñô Ü>æ&ñÛO°»S<¼_R¾€‘b„Í ³#ì›p¨q»‰q'ãdŽ3;ãÊ"éXlFlá«Á€Ö‰æ"ÇfBÚzP½4x 5ô¼¤á¬ÌYÈãñdÌ«óÚ"ãVØÙG¬,Í!Ô`¥]«PYÛ«%øa;Xæ&z[$`BY"]‚ûçöuËu÷ íÙ”b´Ýuâm&Ä)ü† OÑ.›;~=×\ŸŸ‚#vS¨Ö’Tч°ª2Ô‰›|ãFùKŒØKÑ/7m4p;òˆ´Å¯ÏyRÍ@;Ë\øòÍñóÚÀ4š ѱ»¾À‰B¹§*OCÎ7nîûgøÝ’¨êõdw ÓLBHÜ–«.t‚·NöÍF¢Ì^†yo ‘^¦Ô‘Uª:H‡~Ür5˜áñ3ÔÉóLm§/ÂXœy¾ZÕç³Óž•‘²&ÙášIÓUzßHSé;ž£«Ã›éêcD¨ÀÂeÝÉ ÕÒl’úÆñ–_7 S8gT@}Wíw^FµzÆö(`C*}8„!ÒUPîÞ4…¦^<Ö¯Þu˜B‹ Á’|#ÐÍJÅØôÏ'³HfQZJá·â Ëx½6ÓÃU’,éÝ«×5´‡8Á Ã{ÏŽïêio»dsìn¢A8‰¢/0©Zöhf´ƒÝàôƒ$ ¾äMx¸´ò !Ê“×n &ðò7½’2¡Nˆ›ˆnÅ6³wþQ¯ û²ðÊŒ…~ ~p¦5*n;Ö"9Mˆ¤—Ç—Ù™ïiBÂå™"©z%pjäá*âS,GgŽ$°§Tó¿oâPZ[0 äd˜¤³ó¬83=$ºŒ»ëŸBDjy.æ,¾m‘àAž >»‰¦ÑÛE5V“;:(J.äZ™P”í5]ŸJÖ!­·*/5þ}$Ààe$õ#uYßTŸÈ;Ì¡6ù&úÑ«Jx\Ýß¿Ðä Ïf7ˆíd]Q _3}½Ž Ï«j nL¨Œ·Y—5š-¢,êó‘v®>ɾªÞló Lç$U³ë·I¨ˆd“ê*Óp°7€¥4äqÝŠÅš…}‡Èãó}ºwtÜІuNUae;zŽ[øtZżvÍý`x¨·ÚÃᢧ³ä.=½_—W%íN±N½áýÍež§¿´œ#FÝëÆ`é8špIC}®6¬é\prqê°våŠåÓ·)æjº ˜ì£AvƒWuª›zbO‹ÕÌ: t¼y5ÂT,MÀ@je^Tñ×1¿üiòûòLØ8r7»!”’±N§81>§ÈëÁÕï…²ëpÆ·9ûƒñÑÓ¥c ´Ý®â²ŒhiÝà÷}p¦Xñ—¯­7IpV'U P"b¾\/ÝtÏg„»™ì-Ê&5ÒMDñì@ÿZÛñæ,z<ÜöòÔuÅKƒñD®Ù‹íYêËÅq[>ê½Fë,˜¬®Ëuþ’puÀ½Ãôu~Ã3i× À+°=(XsÑ™_*ȱ‡PUý_’âì´¾)hô ~]Kžj¦R*~U‹$»s÷y<¯m2*VEÙÍŠgÃM÷ˆì¥\K`@®)fÍ¢kL+nþšÊIDõ íæñp«.¶[ǵ–ØÆ9ÁŸút’0êÓDSï“ÎÜ„Wf7$@…MpIùÆKº¼P¬ÆÓ¨ñ+µ†JÙP kª93K¼¼Ú«);À¬nÐýb½å2ˆ™GÀ£Ý~‰íßçb;­w5ôÀS>ôŒvü{5jó ­ê’9yØ+s" ÔÈ „Ët>®æURýGdzÀ ÍL¢dˆï†ášÊ Ço§š9ò›‚bw’Í"ÙkON<|‹Ül{*Z(å`VÓÅ,#O*ÉH+¶Õ’¹´;Ï,„ ¤â©ÔèÈ2Nb]~ɺX¸¬VL^˜¼Êez·YÝ·=Y¡’”’fr{«Ÿ`zöŒ|rô£ê}ܺä"S¤  õÄS—dƒ›'oMF1ÑKÈï -³·ýéî®_gb¸a1d¤Ò^Jýì÷EÆZôÂI›áô@™;ð94¿Ã\º+*5Ü+™De¢¾³ ø‚t]z¤…è$—9%åM#óù€Ù^ª³é0ùIyJH•”5cìôÅ8Ñ/á÷U"ÜNR‰Ì+)•bV$góh¤W[_ó)mwõUË!›øk¸–ÿpÞEíIÇœ_”“Qs­®8w 4 /†ˆ¨»å3EƒUï»næø·çiÌÍÃhI0'R¯Ìñ$ä|\г€=`6$âº5P›Ž wkó¼õ&Å™›±³¤X¨)…²ØFñä/ƒx•;?' ;sž_“u˜¼Þ‚”?Y’ó ­ Añn–_ÄY­èÄK‚º‚-dõEP…çß²A®É>{ûò¯f¦ C‘oª²î›ò »<ïU–ÝI¹Ù lßþèßvÙ®ñ6îðÁýŒáu‘4îõ5øû¼s©+H‚¦!eûÖö—…¢ÆÀaäÔ_Ë* 4Îîú‡R錫ŽñïÀÑHòa[¬$ýQ<6ÇÚT#î$è_ãÈ%Ý óÂ`Pò·o¢»lJ¦çUåe±%y ²éÝð8@ÍÒ ¶z@¾X‘ÿOBdXÐSÙ?œ‚—ä{ž;À VgÁõʶ­ÝéÁüµ68ý?š94EtŽŽ3S£xP¾ ‰bøØvNùÿ!•À\« ·¸W”($–v&Ëa· õÎ SÊðÎW«ÌlÃDÇZì ÏË‘lÀ ¡ò`/V=qât|žÚkmS¾éºMyë}ëï]NìÎmùûϰ$ÌÉ5nF˜*~¡Špð#† ¾ŸÒ2!Æz1Ìîrýõ.óO Ua=vì7(,Ýv yìBežä—8OA=ÿN£BŸkûq†É†Ë‹.M`"|“õªíˆßå¹~Ç!BbûM>7©ì”矑/,:Ç\ÆãDÕõ<ãH ësHéÞ¥@D¦ŽJZÒ-ûUn¢¹„µÙ€Ü»Ižª®Û3ÀmW«Î׳Mð¦- ñY®_—…½ÄoQôl›%ý…¯ïÄ¢šœÉê^8‰\&„H3õñç¡F¯‚rk"‰5<šªÒg:jQ£¡qÝl¡·“Ÿ{w<ä¨ö^ÇÚæÒüy_ÍîW*ÈÙ$Ý5Éú·–1Þ*¿“ˆçuØë+âNÖÊ-=«ß¥È!ök¤7†¤,ßâ#%Kä\â–Æâè3 í…H»¶ºDOXû#M™òÞ¤ÀuãqEüï&/¦èh2øÜùè…}ÇñaÛ"ïS¥ ç)­õ{t—õ¿£W4#.=ÞDž™~MÂaüzàðÛÃhív-®­ÓKz8eª½Ð/u¤NÛIÄxC瑌C¹†;"†ãÞ'ØZJëŒ!bÑ"ò龕ÕDý0²ÂÝ/„ÄW£Òü­Øâ'hñ¨È:ÏY§è¸Ü€E oq`¨$^8Ƽm6 aöQ—:eØ4>Sì_Êô˜å:à‡zk¨–Ø‘î(µâ̹ˆ«š/€Z$2.Êœ-õGç¶½a¨yÜpX¨´ÍÅ}aÑ©Ÿb{Îl7ZúÉ0·}¦ß t†<-4ÔÅ#cÉ“F*M‰XìÏa‘éTÜvÓæ:ºIž‹(µ¢ÎYh»Üë[é‚Ád¨¢Ý0>E½?¥ú®êŠ…3Ê&˜ œä€Þô¦MšhÂDÙoýï`„>¥6œÄ½Í]턲ÝUXã=Ãm³)W!aí*lJ4[ó@OüMz<Øö,ˆOª‘„Ï^@©ðÿ¸“M'(¯ïðµ\þVº§5>ý.bûwØà36ÚçÞ®ªD¢Lš8H7ø¸‡<°úr…®Tý3m;ɤ]¹íWå¾g€Ö¾DÉA>ZÖ·4ŸTÄ3®×ï8ØJôtG³l @#Ïô@?ê´Û¼†± aƒ6Ñï~ƒÔHSÊMÇ!—÷Ň¿û† ÍNå¾Ð‹Ìï~'CQM]£dïïh4(ÂÉŸªvÁé…=¡8—© Xøë½7¢JÓ{¸DDF^©⤋9,+fé g|Á¤Žilr|nE+é(gþõ›¸Da É”úÖ‰eÀùÓ‘î¤^jøþ#Øjz›—ûÞXìGOTÞÏBV‚ÂoÁ»Qº¹>x—œˆ¢ÏèOZWÌXE€®¯ê“t/býé­?“YŒÑDˆ¥ÎYLžÜ¿ ¸ë3†¤=±ßwëàCoWFÅPƲ¬æ>ÊŒ€ð¢É[·Ç˜´íúÆo£®òüð9—Õ†ˆúâ$¿íˆ¹7ë€?£A‰nšÏ7ïžúC(‰/íäÞ i™¬/Á¶5ïh²i ŽtÞZ`|@xâOŸ!ÿ°)ªR)ª7v¥ãX¯5¤~HÖì Úÿì]á·CºÍ” -¸îD²Y ïâÇ9ÆcåÜiâQ~Ù…uû±Ô Å™s°ž|u) uÐñû‚ À$_©T ŽüÎ6¬•Ùkü¤‰µõTXp³¤’üè«Rh+;?€|߇K@˜{¼rG.= ”S¢8ݼ}[‰ëõÁu‹#ι€À‚P-o=ÍÀ þfŸúm{µ ­Ð CàŠT¾º ÔxÄã½cõ­gƒ4Ô¸¶Ñ‹;ÎF4L-̾ûyR=²ÁzL­¹–6ïVóî¡óÜVwþ×"žœæë´»ö#4ŒGêm…_]ÏòR˜b9Îßï¿«`,Æ |xò®x”ߣÈÄÁ{Ó˜J³€?_•¬l¦¦ ®â¦Ô5&06K•YK2SLʯñ€JëÂCWÄ ?Œ¼7ð=]*¥¬Ký¬·…¨Ž¹+BP¤‚Ï…o¬+ºm<Ø«I+ØQæj½¬©« å!€rQÒàÎ M±Á ¦^1I±³‹%‘ùv<$†“œÌ«GPF ½”ÒßÔúñYŒT!k>øý×tvBé§|ezõB–Hé¹óñqÜMêÛ២êyÒjµ‡"V¸G\æmÛköW2%œ›\j:b§h¥;=è_/>JBÁéÍé4l´ j. ¿ 6xj&™ß@þ’—,_ÿkSùà ¿%­¢ãU"€³^ª Sï‘6dH ¶™Ù ?V,áûª#°¬¿W')U|VÐÙÁV#VXÎ,aÁü›rJÜ®ôŠïºÁ }[¸!ŠM·à%g‹¼Rô¹-¸[pŒêþ¢¼Àùðd²‘æßÆþ¥®bWëÎÍXacî4µÂfæJv Í.M¯ŽññyèŠÈâŽRh ›úF쀎¼›–qîQH‹q ®MÚ¦¿¼Ð{|Œ ]³ÄÞƒy‰D!Wwº0“ò¿„öPCž›|#ž3EÔOâ6.’À‡ç¼Ðì»,~ àv=‚Ð w¿õ ]Ìïºö%BýÞ*ß»jl2Ôž£};^O²oÔæ<"»Á^nZt—iÔÉ…ƒØMäaTæ¡ù¯ØÆ¸ß`ŸêéØtšôPkgY¢p× žóKJ/-Y2ý<ëÒa©F**ÐÔvÍ5ekŤ>0`ën/‰ÜWCì‚ÑTaî*¤w¸À Xl!íž 8ÞÔnÞÜzÜã£6`ÖÞ¨Œ)Ä ôÙ —ë#Ã8ó¬'‘l2ÅÖ…ÔDLЀ ˆLÌŠao7J-~÷YÎjh÷JBâˆ>1܇aà= ÅÕË„N,a¤QSå”ÈCÝŒ|õ¤ÂîØ€Ë2Aq}-xìʺC[.ð¿rââÖq_jè|(aV9p¨ÊAœË›$YØÞª/ØýÜbi ¥’¥¦Õï÷ ÕìGüOÐΣe.f‹Ô2ªt ¬[êÚØ¢«S ˆÄJ-”"ÖùŽñ”'ŸU9A½ž¥¦ì$1Ü% Éâ!°82ð¼`ìŠ8=3ÔGÖ™{!¨Ï\fåc¹¬sͬ˜±”aŽy §“1.ߪ– À¡f¹YqÛ"+æ¿£wØÞYÏà ¾1:"äU )&kÝÃÓM­¸ú5øbjþoÙÿ7Ù-Š(œ*fFÀ‚ºë<`Æÿ«“ÇÉÄ ßX)ÞÿÓò®_ùã° îø‚>åÐ5ä}ïq>€äõ×SçÌÁ¯MÚ«°/S°QÓŠõÆ:Xâ.Òüå€ç#éëic°ÿLS3*™9q%æª@Eë0ÕC»By3„ƒÄ‹€œù£Ñó‰ºWþ2ªÓ7-âÔáù†)ŽÎ6v ‰«yõõ|àÉ|'ÒÅ_jþ4#ÚvëÀÚå{ÀêÎyS±hòó(;£3Å6‘?P÷qß~í ˆÍÊó‹öìg. DÀެ&4ÈÝsŽç~½ïRÝöj,p2sd_„GÎ ›~í©!$Ë•…{oœ>}—±ŽÊùF@*=:B&+Ÿ©’(Ÿn“5ž‹dÀ5¢QéLD:m°‰äºb9:Q-ˆw9ª(¡z´Öå¯ÐxØJ¢Ä/Ø”1ðÀg‡Ü-=úm¥it™‘þSk× L3#RÄÉ'¶”úÖgkáû™õ#íà¹S¡CÝ›6EÄÃ{` "Ђ¬„HlÆ%ÀWE .zaê(«KvPkeªWÀ¹œŠà‡´pÊÊôtA½09~@Ùž(©KÕ7ǵ%.ÉÄê°ó¿f^»Pjÿ [ÇuË|Çê+ZÝPí!ð•êsTE]ó0V™Ù%«k” `þ±½÷»ËÓ¢ÂßP0ÏœšˆVâÇ·.žg›Á¼`ÇÌsEM…·WóŸj¨_Œ‘]çU}>+ÇÈØhº€Ž2C.F: û­ç žcc8 Å/¶;¢1+”G$ç§4þÎÒŠ²¹,_/k¬¯%G†Ëª+§´ÿXrDÛ$q£$ò¬GåÁëàÐð@KGê]è×Û«JëÖ¡÷ ACXŸ[d¤š[Ûà({8±é0ÖÜ™s¹}œ_“÷Ðá„9Ö‘à²ÔZbÖä9n. *„j,6ªUáÓÔ¿×[ÿ0 {¨=À™bŽuc ËÁÖ ø°Š)[ed_{è§§¥( ™¥ìŠNb Ü_ò Ï;†ú<£…×þ¦_s>LébCαˆ¨z‰z$/C버ñ;Ï9R¥oùwŠ@')¡½&ÐLÌÝd;õA2ZÒ»—`¼¦5(TþªíË_T‡ÅìÀAðW‘¦<~Ôs6É`)Ù«c}½1«ð'õXëƒoêŠzWCsT@Ž-™|V‚hÜ)ú}›D(_•~Bͪ³½p‰ÚP”x5¦цؘí¤Áü˜Y÷©±Â”<ßê„zPEê”Ø¿Ïý†šdUQ4mt¥b†sgëd )žäc6‡·Ê:ä“a9+ý¶í‘|LKyá+õ_Ó uT[›eçÕïǧxÎKáÄ%ØÞ£Ïè¦wà9º…³^ç’/î‘6»Àb̧!ù&µYJ—wsŸ¾ûЮÁY‘ì…ä‡ý(ÇΣô¾ÚhC9ŸÅûñ%W2ÂÇL²z` ¹µKZ$2¿¥ÎGŠypUn~°†c ¨üíáEL@‹r½[ùŠN ˆ1gFÅw[ªäõ—;d^ €L9¥ó‚Ì £–©øvÍãê%z;[(„+@"Äëhò»àVI'å>èiÏ‚8Ó®‡àÐKÎFM‰àtªS¶´iTGw2ƒ ÃÄ‘’¬'Š% ܿݭLm =ߟˆ÷>*ZÌÕƒŒ†bC¯Ø i?äý6¸#êÇJFnÌRd—û†_И³|‚>ËäG»T½Èàª!·úù2Êõ …37…¯¶ØáLR ‡ª)à4ÄK‡@ÔÊmÌrpðb¨”ß&E³¤¿ô¶¯—R&@ŽºW·cNÌÀ@-pp•,k&Uúã~½¯] èm¨ýÌt`­šcÌrñ‚¼ÛDùèÛ8c6‡ˆ[HÅÿ÷î6Nüg”Ìu¼]7̨+éfã%²uÙK鉸ÛüË™Ã;œº ¿CU~X$ÿrmÉm˜î#µÉž`²ï´[^Óô5ÌîØ`èk2ËÈO7F®ŽÆ ¦\®ü+]¶ /ª‡ôÐT®¡ ÓÆȾ7`I“^"¾úGMhZì䙸Œ+X Ê÷ÒXM¡í$‚ƒo ó‹ÔÿôðâmÔ¿Û]“wbqòÓÈ——ÎôÕAdãšbªï`Íoy9%ÏNøž§`lõžsÿÀc'S%Éû WæsŽ–ë{Eƒªâ_5˜jF™_ ^!CŒ-.,ÈÖ‰¤ÀþPg>ÑK-fÙ„­<5ž¬[1È›¹ŸÙp&¡_jy;Ì|Q3K¡:&ômbƒì4GÐýcùdN–\Ä~º e³ü„ “?Yf»Âm «£ÃˆŒS¹ñçz ñ¶í¡#! Àѳ ²bó©v£òŸPÔÑ'ЃßÚÏq½g)$ç´,; ½ÏhýÆøAx}í™Z•et®â;X}}YèâX¨;sOÂ&Ô%…ÙÌlµö`­ßN”ŸW6³0XS PÇíuLßgù«ÖJéï#v§®ÝÈÁ0,üÔ‡0Úûoµ¡×‘ jÜŠÄ5>GG¼-_ѧ|Ì *Ö}Ü0÷æÞcAµ9¤e¿®øM$auh*­!²ç¥@è%ÿÈɾ áßà"ɾ^))4g ¯ìQj4Ü£þþ”‘2©30“ŸÝ‹Þýíº l‚Î9Ä%§CX…¡*B ¢°Þï<âø•6âMöéí—¸²jÒÀ78ð%Ø¥­ºn)žoÊ‚ON×-™8KåŒúóÝûÇ¨Ž˜ 7¨NûTà½ù‚¬¨iÀQw¡ìxÕ©|¸±lƒÚvж­òÃÌôþe?Gmò5nº¥ ž¤«”³–è,çÇÌO- ï“f‹²sbÊ t-n¾wÄ…PÙŠá7ERQÄõ0G­p¥”Ð#çÂWsf9ú:ÿn½ ¸§a€<§Ÿ¨™ÏëÆ±‘BºQ±Šùl¬_¡ùÈJ9› P‘`V㙬›Pô+!Õ*t™ì9¶ÊˆØ±?CïRø”áŠ2A®ï¢T­ç)]â͵ª~ÀL E¢MùÞolhX\N_ôèo¨£K†ir3v ^p÷=hæÑY9#‹¦Wç:x£D`!Å€HQÉYš©G>–ßà§#]@P„¡£ ”Š`}ýìòÜW6xÂp'Ö‰Œ‘üä$éDìö4XÇ3ÑÆÁÍsJîo¥ãÐ/F‹fte~ªçßý(ؤõÜ#1ÿÞ¶¡Þ¶r "»ÍÿBw«‹›ª·`äî—ø FÉÁ¨sÏý§ÇãïúÀ4saE­â'NWÞ¡£˜qèê7_ñ–wðQs¸¼~åòˆ1G^xÐŽqæèɪ1°k0‚;€ï0ÉÖ{Õ|Zä¬AIaYÜ•óÓåBþydžmé­#ã‚"MÒ»úåø üÇôöëHŸ•úÖQŸa¸Z$øL[j::ÖÃ:îgB¢tž:ú¢&²œUQÇMÃéªékÌ4Ä.d¹dr·â»Èé5=øÂ]ú¹ˆÌÜ X¿j]ˆ9²_6c9‡¾þ邃æ†\"”ÖbàëggËLÏ£"SÇlßqgÉø¸Uþ‰¢+þRÈ1L‡•ü›t ECʵ™@Šnýª„èô ­«±2P÷¢è˜Ot‘£v í5_y?¶OȨ°á«ðdrð!B»ù=^‘0m , IJe®ÙW¬,„CL(eiS- ܼ´–õ 1)j‹‚_ãÙ °»¾H©®,7E‚NWH˰ñÍî!ƒ…ÑÛ:Xî<^°Ö÷…5¥QíÅHïsAv¡I÷2‚"V(rå ñd=Á~ª9™äØlCg—“’— :Ó-sýâ¿IjyV>‡ˆÔ¾að0äeq¤e€ d”~{ýÛ•ýKÛånÑú—=Óîð&7ƒ'ʃ¼–ÑâÏOÐ]nú"Ñü^ãbÇRJõ¨”™ò Ä·ûBÁó<`#ü_™]˜¿ðê¡öb/(W›ð°cÍ×ïG×¥“EWèQTY 1Ý5Ö:_u)f ƨ¬í ü/¥z4&׃XG|õÇs¥³¡t Xm{;wûaA«ž4Zq~ÍSqë¿Ú3¾Œ²Òª=ØkÛkòŒôÆÎžß0F÷¸( ðë\á®…§ Ú•ÌI Á`r³5%L—Š BÙy_'Ò4ÜÙº)Û©$Á=i4O¼Z½¯žoºyˆÐ&./a~âúÔé »£úwð)a øô’ͽS'0÷tÙz!g/²!Æk¼÷½ö­ í O¥½Å…}XBê¬6õ0EI¦¬…£éP3ø9†ò%çƒÆÚwK¨#©ó“hyDGwÔ/ΚÂzášMF1Qœü5j·'I¦¼ è‚¡-& Ê¥(mÝ?MG`^*ŒÂ =C­Ô l.Î…Po=éZ Þ“× ëñ—¦À3ç €}¹²k÷Ý%)ZæÓ§ºå¾g6>& ð¯&Ù-:à[ÎCLáIòYtð¨|Šû,íï7ÞÓ¿Þˆ#z—©Y}¼_0„•îü= =.@w!‡ýUA¹©2>üSùP*ørc=Ë—± "¶@(WÌr^Q“ -õ¾ce:ò2йÐJXÌSù&‚qvP71Ûr’Ö³è4[‘¦rƒJï;DÜñÉ—m#êU]•Áž6×]8»­®šu5øçÑøã·æ—Ç41éñ@TügoçÚœ}®®Ž}:!C0àH$øí[óë®3ÀŸŠêajùÈŸ=#Þ.4'Oú+´¯Ž®™¹MS8ÿDKm¸¯\f$v¬‹åªÎ%´Tê»›ù)~ßÙ° <¯G†¯ø²‰‘î\]`bÓÒpo0üloü84'5bùE¢C]LÅ[¹‰ .kÊêâ7ªu˜wƒÅõï‡ï`¹\_#s×p;‡ÍŠŠ=Á»B’¼XZ”Ðt¥(ੲž°i¢–ežŽy¹´δ´ÕÁ^¾ù8ª‘$çXê+e÷`ØÔúÇàLœ´)” ͯ¹Ý÷ŽÖt4 7œÔ&óµ…󥇦C'éšžˆ£ä.o ú˜Š^Ã|ÆÃ0Òê&Ïãµ1‚Ç’¬ 1ÿÀR¸5WjöðNþs&Š/UD¾¬hð‘mž$Mö›Ìz…ºfI>‚&€&²·úkL†%¼>dzì÷ÉÜÜ‚ÇVó4!7…Ó2¾¼¢©a(UÙ4¹ötÇv™ âg¥Ü ‹Þ÷@ 6œ\÷vô(AÇ x‰ üŸÉ7#»º$1nÎf-›N C§îŠŸ;Y•H.ôA¤àirQE'å# ,¬Ã;lõÉë=2"¼¨-`Ú=leö’Cº‘x¾Úà3p›Á[@rÆÞíÙ±67݇ò·3lÕê”)äýŠÁC ›LF7ùev‹pKÏ9¯d§ÎM1´ïû¾ÎzŽNú$d"ÿý±ó#/@˜ø÷E:6«Uf ÚõýÚ)›>—€-…·ÔÒW‰Â3ñç÷蛢<9ô†ÈýÏ«j2‹ë‚ íÔþãl†&Yõd^|û† ‚óW;òIñ‚ éÖ³wÎÛxðƒèëdXa;‰Ä×Uµ"Kš €üëŠs~ ‰þ5qæ|1\üqDhãÿëÌÑG·MWs”ÌZ´×Q&küòø™Âõ5ÐGÇ'eþÞä_²Rá‰Si%ä×KÐÌ›ÉÉó™²åíÛx¶ëƒ'€úˆ¥îWÙ›J/ô+@,nÀn5ro¢ïþ¿uMD"ˆ½WY ¹ ýªÞUë`˜y¡›Íc¶JV*ÿw²…†(eˆQöþl÷(ÿ·€{jç/ЍëZ Àì‰ÌL9<åûFŠHÖÝiFG?BF™}íØÅÞ·! pU¹†æc!1ÞVŒÞZ'ø2ÒæoQM¢ÌÔ_›Ï 1.}à¿Î¾›œ-o…¨†ßáÏuw¾ù› É­îänìþÓ-à×x L°úl§ÙHû*&&·¯Y‘ÐñçbÁœ¯ìûKÙ$â»ài{Ñ ööOŠeNÐí;*¿î¼=ì$ήÿɽÁà,Üý`có† z'aF2U™˜,?‡‡ðYir%s;OðÜø»u¤ªkæ¢Þ!„á¤tûê@õ;Lò¨>TÉ—¢s† 3_úŸÓYnò@C졪’ùUŸÒ–Éß\ˆ ¨¿‚ÝÅy3Ùk'§N”]îÙüˆ!ÔËšq¡Zm4Þ‹OŸ‹ºÓ‘ó9LÅÞ 7Åõðל§Û¢-ˆv7*¯¥½‡/Úೈø£ãtÓSÞ£'¼O ’V¿štÖ€ëpitâHƒñ6ˆŠãžY˽sÝë9Aò!7z¥C^pÕõk‚æº[•’‹ÓÄÙaûx58”ØfMþd\òͤ“KcyA²N®‰WŸÔýsÍèÁ['@Õ6äT®h9¾Ù„hÅ< ]¢p¢Þ\ù¶¤j„(!Ї°†qþ#­Ùˆ ®Ÿ\ß ²Uõ`äËU˜À(Vœˆ^ ÜS­¨ÅN`!ÏÝ¿/'!O¢êªãÅÅDÎ%_&4 ´Ãçòä3ðVñÉá©~ÃJçsMúÆõ¯†XéªÏL¨>X%ÉuOä*ü©BR“ìô(Î;¡’î.¬ Ø-èN¾ÒÏe–+?LjûÓÅu&Tâù„Ô+à¶LÿPCNû|I¹`¨Ï£Ok½˜£¯Ë­QA.%³UwT7Ã{UÀ¬»#Q»S=Cüæ7ÓÚI·s;¥œ£à <+UÕZë(ûO‡"ƒ ÊÎêRëÑþùHïtº‚w6ÿfCªœ²B„!±eãeu( Œ¹3g›åeaÉÊ& ›”)wfìZ¦he·d¹Ž.¤ S»cî Hs+è—¿z¹È÷ÂË{ÔZøôóõ#¬NŽ4 KÂtK,˜Ã"öžÔk·ìBsÚÊ’ä¯ ‡$ÅŽ‰}ð;á¤[Å$ª½Ý URŸ¢óÅÈm~wåjUqf‘x0½>’ä×{›hÖ›P€:®;^A.…ƒÚmµ,þWÊ4 Kø~‹#~ULµtÑçöŽuŽ ûŸ9’ñ¿ä£Ð-:Ê\ Lnç Éš [vML’³¸aoxûnmMݪàü„틵U7ûß}1x­¨ÿÌrEhKÓ#¾]˜ ‡ºÒQišäá9¨a›§-ņôÕ¥Ä@Iª¹ËÞèKÄFþ'Çç¸LZ3uâîbau+ŸõµÄþ ¨• Om¿x.[ü$HŽ+Õ0O­¼ôí T[èüt¢òÚWJÄp&lNŸ'8;Úç@Ô÷FK©kGÌ´‘šê¤*3–Ó|Õð8¾û „Uø~¹Ò@Ô¢Œü‚ _HŸ[é‘`ú’îàÙºy>÷`ûA½à.Pf¦jIÝ9 •táèÕƒvIöFÁÞŒI¼Æ¢zð‚à3Q]CâS}‚¶‰óÕ$AÄȆðeñVœºæyç€teÌ%–ˆR©ß\è{Buͧ 'ç^˜ÐD˜utö, PNŽ÷4SLJ¯€@ýM­dßÝÜEqkŸ«ç„ŽÎÍ^ÌC˜Q;Ñfºð ³ëÈ»öÅØ_—^H‰.zÎm]2ãåöiu…µ¾š<&#¯†d‹`rwÉ ¥­4Ò¤s6ÉÇM‹h &ÚXE¼«#×ÅÜ:ìüZ>æá™Oõþ‚È—Þq ˜v„kåùÓFq¼9M}ã_ŸxÃtýà05ƒÑÈ+8ڸˤ†F†Ù¤RAõã ž‰Yoe…(Üy„m°°u3…æ®r˜¨FJD°Ú¸¿ÒY,sÆ ê ýTÁ×R5ƒS%pÆ¿ø‡¸:«ë¾Ý–|©F©h‘Êßm0~9Nz,9ê1€Ž–R*bÕS¼¡ÐI®öÁÆS˜f“jSåÓ6("Íe>r›éãÈ`¨·-âZœx…¥P"XÇ÷ñ9 .3îBÔòm–~lÝŒ²›_k»¦g&õÉ™€þ,¾Oå6Íäô«sl—€3Jo>mÌÔí•iÑÀÊùãû; dDC G¹"ìLµ¦}ܲ}”$€_ª¦vÿOžœ ¨`طܱU™µ²EUšl:QÁúè?¬S IÓ%-Йb1@áàzd¬,²Q=‰Êï<ðÑF†ã@!躩ÏG…²U&ñØRÅ,>­nïX•§ªK¸!»ŸZç—šÁ°Ô¨GÑÐÀ8öèìw¾C”ºÜ;æšáF䕈KŸ_ðPCýT¼ÊVGÚÇuG˜äGàæKhþòb…ÁóðA§ªÃК¿ # ¯; õí¶ w´‚€G,º®½¢îª&«dù”0ÖQâ‰ÐZrAƒ-”!Æ¢¦¾ Ïló¡O-Ý ÔX„Cî“è_ô×÷Ær['=r0æ^ê#»"t*sñµîµ2Âv¸µ¡Æ#¬‡ü•LÓ‹2äO5#®™ÿH ¿Ï‘ÃC§¼d8n4-Äu~“A—&K›ô…¦Þ¥JÁ½£7ñ³2§©(×ã»hú{¤Ä³Ç欻ÁÀs«ò¢EïæÍ¬÷cú— •'t!x¦ê¶ÔBRïhøÌÇüyVrè ÖYâTuÊÖ4ÄÔ¾' H§Ÿe+„*›Ìc´`KTL£I婊ú3êM}On'·'*QlÐÚuTKû«ô\œEä'!DJiØܽ¯82ߨªŠÒµ“R¼ˆîœŽmEþ]‡T)É £àè½ÑïBðyÍ[„º½9£.çYïVÔý~Øøô¯Œ¸²dƒšC$’JXв3Ëâ¦&õ}oìð4Ȇ…2‰Ôî†|Tå{ú„¬PÎçAÎt§êünAÛïð-aFñÕ)k`µ=UóòI€?½µ•õÓ‚è\g5ßô÷¸e±Žëèë›v8 2ÒdSù›vL ÖZ§/hà±öÀ36ó;¡jºÓÐ}T½$®É7tÎIJ2ldm pt·³c. ½Üõu!ÒiÔØ’¡ŠKAqN T•Ö=¬¾W2öo!œÔâbã€l÷9†Rò±ò®Ÿ©çЧÄO¹tÌË$uê¥(ƒ$RñùC’3pÊÝA±ÑæÆš2_Î’££±ûû”Âó —о`Ö˜×)RçHå÷¤;fvÑl·þ>¢£¿9í ¥Ö³Ž•ò§!IßÃ$ÞZ“6/ ²-–ÓŒ‡÷ÕH`ð%ëB’&®o#<ð}cê%J&ÁÕUµàöÔj[ª¹vG ¶äŸ«ÛKš(amx —aA\ùØç£`¯p@F{g;iäGðŽèL¡J(‹ÃFnÈné DŠLiwcá(zTÎú€H#3Ž›Ë>+pôH¦ÑC¸¸8˜pünÃ`¯Ñy–®(ÞaéãJÀ…™þ'ÿ¿Ä` {ü€KÛÕj骨5àšÙ£G×c$ ü¡0ÜÚ†õYÐyži‘tnÅ"¤Fº£ÁÎ:µÒïûúôŽ8‰/y Ö4œ¶BæOGJI³£rf|ü-f_ƒÀÃ-:ƒ+ Áçêª>Uk›Çææ˜ª&QæùÏ8_{Õ¨lŠõ>¿Ñ9G0pª$9¯HûžYp6d=Ži™a€ÀÂSQ©êì߸K—ˆçú¨…¢(›CÅ ¦ü ð÷ÚîQÊe`¤wú…Ñ왦Íq8…ø©vû¶Í­ ¢:\¡£fŸŠYZt@{UJDèzq9wÔܶla­Ï„D }xíå߯2¿¬“—T´zª”Ú,ò'õ¬økl•fFÝ3·¬ÙDVö˜2TŠZM ïÌdð-ÓÚ£þÞ'Z Üc@!ÙØiTŸÆ†ÅKø<‰RNtÞjˆì¥·\!Øš¸öîÒÓob}«Z„¶j!,ç5K×p)2’À5øÇ¼SuçZ¨õ—t 64·7¹•dïaÒ8‰à„l©7€ ´UÀ!Ôqѽ dB—£³d¨ž¤—ƒ«êѺšÓ ÓJ”Ú”TnOìäb¬ñÞÚ¶6ì ÖPÁ9Zïµ mÊkOHQUƒúsîÁA€5™O»êêævU¢Ç{‘èEeCC]8<:Èq ]X*-Õ±PŠ›í²i0t8q‚•=ËÄöZ:†¾ÐÛ·èÖI_:P©ô`¦çÙ\Úʘ ¬›a0uG ñÖÀþ?Ö»‰Ž,sÛ{^+ߌM‡Ó¾ü/Òún$¾f£vl´Z_e ÿ&côƤ1’´¸RË‘ü¬ù¹„ó@MF_úT){’è=þaBt!‰ãør„UZæå²L 乪F%+¯: -Uzm;æÑýŒOàY Òç$ Èæ¹æi£å­žÔ¾¼nfÉ…á7Å Q‚cš}*üBLäXtD’MÚe„«æÇ:0NïŽ"ây v<àL®}k¶5ûÍ: öGÕm»{d¼>=‹>‘Þ œ¶mL×ÌéºëÿíÓwvÓ,XÉ­Ù€sëçø5}rÜRèÄü‡Le~W ïêmv˜2[s3\ `KJ®t†!S¶oÜUÕHJ8ЪøÆÈò¿®st•ö.Û-'ĶGº%,XÚˆÙ”Lâ×5°#†\¨N}¸÷ŠŒ´—W ï¦¯­õ¡Éi¡Ù •¡jPºè›ÕH=âíƒ[ªO¦µ}°Ø0»þå«5üÛpB[ôÔMi€ÝÊú=…6`kÀÈÐÂJx àÂ×ǺÌÅêåºeÈûŠ uy2ü;.]=?J*$}ù 9ðÁ\è4’´jÍ%´ú/>²*,.µ÷ë|82w=]HþUí®Dh'_ö½ –pþưP…㇠¬2‡“Ì>±£2\Á1¡È4mD8‹Y dµå_FÉYU„#_¥–v¡Ø» ÃüšÁl·æ=ÿú¯ ôFƒL ô,°âÞÙÂÃâ®¶Š~­yÓUû&üOûœQJ´’UÿÕ·›‡÷–doy_[Î’«·kô{ð}Yýç°‡²þÂcœ=°%kõFvÊ|œïã[gíuu!8‚ŠU?qCéu“2,á¹U“ÄíJ[ÃÐ äP ]ó{ .(ùTµ½×±V7k$Ô¼Ößø ×ëüú$-PζWɈ_êwU¼Ì¿ìéÅ›“ÌT¡ *mÍ5Ä #(Ý‚ä9¹.º~(+ô†V¦#èß§å×­PUÿ Œ65sÀêTYL9üCp…GÇèéä õ žÃäd¬]Å€k­þ‹63ðKÏSä yù.Ð~¸?Sš›ÍÊþO¾q85›j3šzñÌYÔ·x'u"àRZ}DQ¥m¹èëÃß± ²uP_<«bì`˜ >Á忍lÓ–µ-(0 Ú¤#K%ήÁM•ÃKë“XýÊv ¼JÂ_¦†4Ïå‹ý¶œ>–ͬGDï±àåg°ãñ¤›zС2G.÷ÍÈYêõ¡ÁĶð ÇÂÝ)Ðﳑ‘ÿ>ܱ鉺.°kÁ˜yç SB4äb8=8kUî&AòõBÔkEX¸ÁQEƒèÁ[‡[GAùP`!Œ¿/sr¼ìr†ó÷ã#D…¢E+õC[©Õx­O—›Ÿ-³Òg°úì«G‚y‰Ë ²[ö<Ž­ …B'¨Šÿï€PÈxzÑ®"‚/BŸ6¢S‹óÔHa`×Ϭ*ÓÙþš%…LFB (¾ê :{³ÁÜùÏ!oõ]‰À˜®‰ûþ¡ðÍù2à$zæylydÚS³«6eƒ]„w;·éÁ©>ŽñïdÛ®BŽM2 ò“íuÒ¶h4gð;¦+Ï{‚¦z°øâ_§qIefqà÷V]c²ÏÜ,}­©GœdÓùX}ÉÀ™P¡ØMy'8«£µöž¹€ëaðaãðÏ‹RÓé ÜK[|sà~»‡KZ×(7hžþ®å7“¿òÍSÿmJ´®……ÖR±ÇFšñeŸ\üP°âõtíª§šŽúÝo²ÀEÆ­Ë*ÇgL­¦œ7IêHÇÁp¬»¿õO+ËDÈ¡ÐKjÉF[ÝÎ4ðë§Þ6F„ö«²¾ÌÖ'h Úé`q+ýþŠÀÀù7…Ý>Åá9<ÓI8,H <^Åü>#5•‹ŸÛj&ùî4õP¿¶˜:|è©üñÌo7 àÄUæ=QÄ;èÿ»#‰E„búR§Ñbm~ʪ8òd^u©•ì¿Sj#VŽ"_‘Ç?'VOŒƒhj¢Q•7i¿±WÔAƒÕf‡æ­OÃNÎÓðG¡ÙAœ'ð¹]`°×ʤwº_Õ‡9×lÝÉÒ¡ùYe\,õ÷eˆäÏarÎ[Ψ©w£ñU™s'òÕ%¼ñB14bzm¿³ºù(r9õàþ=Kœ« R°¡[aWUˆ¿.Q¼I Þ§Yžå×f¨'¢öx¥}”2ÿBö Çí¤þX?s:“±òä|‡žü»Fý‚¦ç‘álé#Ú!ïDPBw¡xÐ~Dì l—2&ÊkŽß ¶h‰mU¸ÑÁ5ÎÈ#Öè]Ïm‘ˆn¬ Ì㊨­Êñµm³Ï‘tÃÐfˆg÷Eª.³Ì"|@ý·šqÅ47â¯ÒŽ<ÇŠV/G¾FäÐüm“siófdG.àh´¢ËnH" ”ÐPMðÜ lÿRwKhaµO­ÆÙü=}kßÑPµ˜àsn–°L¶äMÐQÚk×{¸öQ=ájJô‰ly€¬ð.V¸¸îô!NÉí1EjJíýî@%‚hãþŒ„ýCò¸ýš8I»bÈ  ŒÐï=®XüÌâþÞQ:æ™kNªû þ6;Е£6檶ŒŒ¤5S/†1öͼT9°Æ¯·D™¯í+e}jlÌÌ¯Ü‡çÆ“µ¼¨ÇÝ—ÏÑp¿ÑˆB¢Ï”›—x…äÈÊ+JV»A­.Ö·âÜ7<û6¦¦ÀÆÇ½=ëaÖ]idáîÿ‰ ùZbH¥=®³_¹ÿeýQ bÉôyäT#³ô†§x8÷ÍðÒ Mäé¶“ô\‹OGH_ÝÜéç3³#mGûKà$…·ˆGÑÿ{žHÛ=¾Êáá©;ÿS£êµT•‘Ž„n2—xA0€¹RÕRø¯œj¿}&Jw*èãr–ÚŠã†ë‘gˆ$W:Tvë^Å„-¶Ò2IxÓÂ"’ãÜ2”ܹÏ„ʼÃïÃÝoPVºOAïKs%ã°ÜbG IJžñŒ¢ãèåɃݺkT: áÄLÿÏK ¹aŒqÇ_]ÀDOÃt]¼>tV%Õ À™mÔY˜ñõë«}a¥`žë@9èi52—ûòm_d“-RÝfÌ…†ø­Ñ°=­U»³²(ô+Æi÷Ø9l‡¸G~¯>YÙõ7² Ì›³:>'%_QÞÔ†&(› }/%e øT}˽:\س¸rf˜šXV2‰‡ë’y7šZo[8;G4ÎHƒhGM>µÓ¿~ S‘SgŸ"V_[· Ÿå.3p”?›H J 6( (ÁŸtaÉ.:oùƒ™tVd¨b¡lÂSA•¹F•÷€Fh×4t5Þ1àÎO¸ˆÔß¹¶T˜ÜÂE`={€vì³p¥hyO§t–'9+ >¨o¯ç’ü!–ìN|©Ñ>ÂuíþÁÌŵMQWüÛTÚx“øqsègãC…x#ëô1›I]FBº”cÛÚ‘^*ö ̆`™0EyUÏ BC* ‰œÛkÎV"NÃÿ¹~:qlzåÌãÄ ¤–¡äٜ‘ÔyráR<]kéý.Þo‰-\)ž[ n}OåY˜‹9xn‚½â)uÆ÷:žHû¶Cé G7—”llð†¼yO¥-u>]v¶˜MÏ)CV³zØÍ—aå̄Ċßcõ§B£†JµPK? <ÞJûÅñE²ïÈ1I6‰»¡š·ÈQ28“ËV2Äè‘wsÆÑÖ÷W«bl”j«L3Ãx;FåÁº-[¯\`ЬèB‰îec7©§B.|k¯…Àñ‘%ñÏÕÍTµReàt†F1æP¹£¨s‡$¢îHñ³=ƒ …¦¢øå¯ÅŠvÌê0S…c!Ì OOr·.®ÉŨ}SG"ÿyÖ™q2xøÿ.˜¿Ä÷åýäp3LŽÜMFæ‹'´‚»Ón8¹Ц=B/bL ÖaXqS¶;ÙÉœ¡èm2A>¡åŒ³þ>’'¢™‚Ó¿Xø§Èn ¢Câ ) `#eƬab÷ ×_ª3(÷ŠÚˆ‡ëÏ¿¬¿‹¨)ÄÙu4 `"‹ØäBëØÌ/ÓÐ\E_œÕ'Ž#Û{’su¶¿{"È›¿°Hàžíçî0µF4ŽÜÂgAxÞ-9.){îõé?dޤZþ0áÞ×x?áø+FšðÉ]Ûã? »¬”_‘¦áPž¢Nì÷`1Âý¨ušœÔY†ÊŒ±…ìÀC5+}i•¼X¤Ú¦ Ìõ4šð=Ù_t› ¤ÂiÉ5¯OŸUu1Ò]’ÀáŒí.ƒ¨÷—§Àr¥/}ÜîKf´ØFÞ weœî¾Õ¢ôi×zµŒt'¤‚àš)$Æl(†…kü–Õ}3,‡,£ETY"T­AºhU–Ãç)`ÂrT¼°MHÉŸK0ÿgOUæ^,õ ¬Yé…‚[¿ |l»^,-þÖ/1Åv d $BoÞb/³y®o¥{Êñ#T²œ¦i:UŽ=ô¹ÛE-™/ñÕ+‡GèûUwàö¦î"N$W]?°rÍ^xlGÊ;Æ£þÆÈ@‚HPþ£4ÛÅNŒS#S]î)Z!g˜’³8¨«dGs0‰ ³²¬02 ì?ͳ‘4~bCl°Ñ }×—,¬â¦1åùsQ4ËdÍŸÓë7öËÀª¬h„ ü$K¢ªˆÑ¼°þ6u2MZG+¢“Nl4•ޝqG«‚ÕèèeŽxyª÷†Ð2ÎÊSÝy@ðOëÎêLÙ352;d»¤ð;Ô&ïo{}O" [Ö–¿°aåS œÚê'Íeù½Dãp®™GyG"ƒ”¾I[â"}±­± º‹@/‰Ç; Àpë;fM¤Íü̦Dë[@]â– ¨V†Ãð[ ä+bõåÚ•ô½ôÉfÑõyózÑ|¤½®Í Kׯت¡úlýösÍtw`ûísv¤0pÇ“O »†-Ì+ËÖ( `“_ÃØ©„ý8…,«?Ûƒí,,(4œ?×!¿½Z’¦´£]Ž»•í Út{~ õIá:Ô‰{ÅKïåv†LJÔ#\7]Ðéß²ì'ߎx—wRãzãëÂhE½8>x‡Ä©ÒxŽÑ³öi7Ÿmí~E´l¥þVz`Ëþ;j<~¾÷Æž|æÚ³_4ô'`Ý÷ VÐ@Vÿ `ÝO3ˆÝÞȘ­{qm=ÉÅsÔDü1uÜcvÚŠã¿&°±Hñõ‚Þ —os¿L5[äý÷eèkdWTSå…"¬~åxÇç€ï†~–Ðcžÿ²µ~Là-ò‹ˆC!áÌîiy³Ñm*¨©µàd±Í“vó@%½ÿ5Âð+Äò‹áÆ'Ô®rHþGÉY8ˆDõvÂ×§%™ð+ gø'FoœÅ’FÞîýQ뽯+š¨þšã¬£ˆØ Z¼TÏ‹BD¯î^UC™¬±îÏmìyÕ0õk'|Â>^´ ÿî±öM©ìçš³«™Ÿ“9jt *Ë∠Ê3÷¬RZͼ½€¨”Mï¨r»¢Ø/J”òEÂÙdÉÅŠÔì‡!¥6¦ u!Ù0€–¢°W+EÆ"K,`‰„ó®y\òqĦE‰Äå ¸‡PÎ#ëV]|öüÑk¦Â>²m_ÛÖ 9š˜—¹vJ˜‹I´õ±içYBJ뮌͟yM¯ï÷¶ÓNó`ƒ·]xÆ@ƒµ·HõŽ’ä r>BÙaiï’È×fÃ|±¤¹@‰UyŽË“&òün>Q, ø"öºñ‹6@¸žÊùxÿ†ðr–$Läl†ÍwŸ¯ ƒþ‘…g€nä•É­¤ °Ò™¼\ö`³æ+Ì^r-|¢ÏûsahŸæxgगˆ6%"uÑ3þÛ(«°Ev§Ö;/p­rÏƨÁ9%´¿ «ZxÀ¿ƒÃnt†¨d}ôo¾žÏô\T.¢z¤ üöŠíB°ä̸7=êÿºs6óž¥xw¥ <µOë ‡JùÒÀ+q€(¯÷ä Ö“º\D ‡ÚŠ8ø8pë4Ï`ê§s M16¿íÐ_¶Åð±–/uB›c#vÙÁcãkÞøõ B›i™*\=Ùñ1`ûyŒÊ}æîà_$ÂØ§Ó’8{K+â0e­ö!µi\SNÍé¡;°eRÖR ì˜UV>¦‡ƒ G¬¢Ÿ*Ïä[ecÁˆM¤ûk«qWTï¿HJ»`A¹2hIƒ %MÃë×úïn´«õÁ·®-.v,û£&i+WI é½?BŠâÚƾ7Îv>=•õE¡îè%½|¿Ê»×âÉÔû}ŠJ” ˜²´Ó¹<`н‹ÃùvrT¼ÅJè{^ròR€‡åAcã}l^•ÕÀG“ÇŸ÷Da-–Ä›òfp‡ìË®B+Ž}ñûÚ´mD}îKl€²‰HẢ‡ÄÅÊ$³ ÊX˜ìIÁ8r8Oùš¿¤ïYâ&™ÿ–qöfƒß=ëpªt·½á‚Ÿ<¼>c¦ †èu™°7”PuI[ÁÃ`{á­8@;'‡ð$çÝåõe™l… \"óÜ2Vøƒl°nèÈâ…Zˆ8< ^Û~ÐO=”Æü¬P¦áktÞ “p¿´lU3u,iô0&wê“ISÒ·3° •Ü|z5«¨ubñsE3yvŽ Æßÿ" c"c 4Ì.rv³e¸ô~üòàåü@BBiUuÐ¥ãÀ×I@ôþa;&ÓÏ=fþeŒ_ Pœ?1U»¯‰'v*³(Řð²v•¿,@D:ÜÖg%2yš?Àø“IrºLájiî×*Ýë…Æ}‰ˆeŠØÜÐá¯Â}X›}CåF¿Ž…é@TŒ/½N_Qèãs8™Õ©ï=ܰö¿:I•Ó?ÅfG-­È­ñ÷䊠ž-Ar+“ªmwíüÍlÚI³ø%í18Õ+ kQåß… ÒLZÐ2ðÉ{˜º ^MÙ_F#M8íÿdÑi*C7=þ+âˆÝ9úž°"î[™˜î¶±]DÌÝì¤BO¢‚JäØÁt7à²?4Íö¤”éúH¡iÓŠ1ìbã´þ»úgDU³LSjõ³€¥c‡‚96r—^›/¢auˆý¯òô¾²ieèªtÅéúEuâåKh3±K‹mʲ{Ëæœ+¿ðÅÄRV÷®6zi¢qT•æ!÷€ãSÃ,Æï-æ>œEP´¼“ZžŽÉ §ÁÓÔ—Wæ[>ùÿÒužø),ѽBQüé(¸Ä³ =ø§=i´$¡‘:x›¼ÚÊýïÅtÊ•“2{w¼w[MFd;úà·YŽ‘}ø(%¼Î†>£¬—²hÕ;ÓûÔUf—‹Ÿ³ÞÆ4ÇäÕΡ¹YôÍ`Hµ§5:tÁ¡¥ê†V]=-<ĺF$/6§º|eì+XÕAtü~^þe„Ñëo•uaÿNy®ÔøðE±u÷.ËnòÅËx¨²‘?“Y„Îm0Nœ#0RåZÑ"ÌB 3¬q£\â87£êX´UžÎÎé*˜ ¼rG/fÎt'ÊN±¸òH]QIÖ?D¥Ü)‹éT2ÂcòÚ·¹Šx¥ïZwsvKýφ cßš=ÊÜfjQêµpN½RÝÓ7¥Õ— †ú›†Ò…A² {Î"ÚQÔ§Pô}‚÷$+"‚ȃtGÿ¨Xð¿K´£ó ð!ô¦JCç¾ïTɤAÖ<À¦mL‘ñ§µ¼J!p:~k–=NÎd…¥¨Œ åg%˜40ý$WwŒ*^Åå¿z¨ýÎX{Ƈ ÛßjÜÀÖôËÌ å^ßv%ñQˇÜïŸø)và oÏѿϭ„ꇑqŸøsˆ×t<<Å$Cþ²Í Ö™¹ÃÍQ‡E-iDú,³ŸiH3oî©ÚËÜVrìóŠC„Aù§©LñhÁql¤D 3Ð}Z´Vw¼»Ï)-/ŽÂ£Rž-%.,ˆXG+p( ì%@x8I—Nš×”ÖÑBièÛ/Œ(ý„3újÐ(Ôtc5ò3ÔØyM$óï“ |)ÙLùjÔM¨ÝÖ4½à+1X¯£Ø(°ÚD»Ð½;Y6ÅÇR5GÅ8p1Fî…Ę?°¬­®ßÖÍb”ï|V½3êWŵƯzý &¦ x´5×gÖíõÃ9ÌaÛ¡“]¯QˆÔ!§[ŒêÕGË6õ(´:µ-f&Pi‡ö^#Þ-Xg¦Õ4eÕ{õ-Xã±ðÁ” ¹µ‡«f£ÁNÛr ]ô¿ùuÄbHª#!²6rú]ͼäNlç-xƒ¹vjõì¸TêôÀášÞ,jÊ%Ñ`/wZËw¾bÄFÂÖæq#Lƒ«c“ÕÛ‹ uH,Œò‚ÕÞP»ÈJy^»Aù)›ºiªÍ¡Š¹;5lè ¬TiLÚ"öÙgºƒ'\Ô„ “GèoÙXnÞ,N‡Ž¾ª™\¡.\”™JÖJÚ3)åƒamX¶€ò–x¨”ÔÌiåaä²å;(ëËÞšî¤;Báa…ÅÕµëÙIð‰lönÎÀyk &%gýÁîXšPa…BÓvt]/å1Þuté„©"Œ˜µ’bî¸ÃÂ\"ð™ zØ[+¦±O”~oÖ.œvø½+QòJ &a]8ç”8‡èøËß ÁêW[K!?YÔU;щ½ì“}mý„;4Þxƒ#áœð."ý–7~·âXÍ`¿\D\¶G¤üÑ¡†Ù‘o«­M¶%·ûg†g ^î6àÜ]KÀ+ÛT¶˜/0L§‘–m%#¥æsˆÇ›Jðe9F¼|2²Ò1 rùãU-7Txpd©8ãò…>ûAWᘴŽÀæ‘’ ƒinúÚ€=!…&W[y¯ò‹Ùì÷‘ l Ø[páWXh–Å”Ï-ŠþÊ2‘ŒöqñDäFî²¾‰'IÕ“àù„˜-¼ë• ºž_ŽÖt¬KR?ªe¿é 扙¼V'qì=ÄÂ@WóqO@›ëKGÀzÎ`8‰ávht7ËÂÓd0§1§Ç9 ÐÝÈ0qÙƒB(2¬‹úœót‰ Éê/ (›ƒŒÂ~P¤Ã§ŸªqÌäÊ™Pijåñ©¹ ü±Ñ!¿=~ˆ,÷û"’6—rßiŠóIþ!uáYà2(Ü.S–òÐÖ;ߨžW¾*¼]A9Yj•_J··,‰ïFÆÌWÌ¥p,«ç.+ŽÉŸL.õúw/–¢¬ìlÈcݧ´ðXžŒ/\&\ ïýœ´“›¤‹7§Û‡¢¶œÉîD¤Ãµa0"£æo3d~q®ÆŸ±çøVZ =-2Ÿ¦Q °ÙÀ&M?ÊÅ£{;[” Wù‡Ø˜ö‰1QâA÷À3W–ijcxv犷 ­¡¢…ýÚÎÿZ ¬òõ ®|çÒÃIZ÷÷JÏßC>3u¼G,f¼L¾uÒ¢½T×pªª ²YH6ÆVLAU.'nòÿýPz=Œ”« öòÈsHtÒÐþ$’*Ä:;s¾ázŸ÷4뛥¦×êQÛ9ßT)´-¹êb?€²E~Y¥Ž ÜÍî‰Ø³Á)‡­€ & (<¶y³5µú30¶5I»ox˜ˆ•‘ìÑV_KØ…_A„ÒéØ{Ÿ©ŽÐR¤9[1ûÌx/`§pým¨yŸX&.TwäãÝ ’„÷ÜE¡±‰Ö£ŽµÑÍä*°PSËh¯ì¢ÒÓšý8€â¢ï…£*Û 3€Çý/Ê…/¬rnkT¦¬ßKiuâ_¼X•m¤ï³æ)i_d¸.ϨäjÎ’¶yšðBOô³bŒC²Â“I&e«Î‰‚ c[±ubÑËáÔö:X †”]Ï’ßM»+±HÈä‰Ðí)ÉÐYàú ,O £ÅîºOq˜•¯Þ‹€`+ÑòèÑR[Ñ.G•Úe¡ÿæP/ –m§yG'²œQ ,ÈEHëuhVeþ÷ðÒ-(þ ÷yØ4ŽX8tŽ¿øq_ëcJ?à”ép“}JTóÀl•<8ZÇ¥I") Õ.{j1Ö„·'ÇLÓø#¦¼Ü;=üW9yv!SNWͯöw'Ç$©Ù¶ubýˆP”+ïp”Ÿyp<ȳäæAˆÚ“aý&ìEBZI×ðÑHæuÏä]Ê÷-ð¶‚–jêÜ_ØØ\±Ñ²­Ì1'A® rz¶Á¨ôÊªËÆJ´«Iô²1å—&mí9 ­‚‘¥1NȸÌÖ¡íPß@øn[D 7ëIçÊï+‚rÎÔOÍ<´ƒ&´ôO6´oîòk ÃþåUüÕð•'WŸcn}ö9ög¼gy×¹ …'ÂA˜K„íXïgQŒ`ëxVÑIÇæ+Fâ(ó¤Þd–Ñe{é‚ ýuí5Òj=m~)]É7"@4á:Í1&>¹¹¤¶­«æ{;ž}ÿ4è'\Ä^Úüo©Ÿì'»U— :MäÑQ–]˜†Kz €­€KÞ™†0å|z1T15TLÍÆdá âÀ%打¸iÌØ Ã$‰ ‡±Áý–ácí¸Y±ºü"anŸˆŽ[#Õ²! Ñ^½²ÒT]ýKÙƒ»»JTnšÆ)çÒv„•ÙZw'(ï„^1$ձɘ¼½ä¤Æ ¤Üž0 t^“¥å‘ÿ>M°‹B—Þ_­9ƒQçWHs>øÿw:' )&4ü\r’Àˆ²CºÓˆBÁÙŸÖ’bRó#ª¤&‚+ 2Ùgh î³>IážSçn´-'¦¼~|â âìX«S|ûžò/¥[%ÅØ«žfµŸ¥›Æˆ@FÃɱÕ& RôÚóèâ»8R5E3ür¥‚ Ó3ìši÷iÝo$Qb"œ Û3¤¥’Ò^’Edv"ìÁäÊ<›ê@ŸÓ Yœ¬Ž»øôç¿0ƒ‰}àyÏÔ s†²âQÿ k›7ÍÆ·Ex¶Ôá]B½X"4–¬qSŲÛLn–K5ÆOö°ƒk¹1iŠgÒä4ì¶‚¬ŠP¸†Aé˜IÒ•4Œ4â¶©¥ÑƒÒ¾»¤³£˜© 0Ó¥¡ÊŽãÈ“»Tq“ùÞ 5êí(|+ JÌñüî·xü®–àÈÛw˜Ù(Þq”°ë&drΚâ´%ì“!7OKÄǽôÒ£a‰3ëÙ€Dbbʳ¦ã„¾ñ#Ïz‡3’ E@9”Z^Gókß(·E¶ëÃî¹Yô£?)ú9<®e Èø¢©©üLcNI< æöD$©»ê7§žHHö‚3a[g} c„ªR÷|m%¤@Ñ9æJW y ×BžÛzžÂ$Ç{öxº¸%1M žK‹•hÄØŠ_7XYõa~®š)ÒH‡ Š¿ —£”ªRWþ3¨b>­EϬ j¤¼7,È´Ÿo†—Õc¿ÖûH(>wÃîs$óßÅž1rú‰ 57àúÛÔ3x²Ô9ÂwXÄüý ,i"?AÈ]’ïõ\¤ßù›˜Ð{¼4ç˜f³»°—‰^öu,?<—º=˵7J‚ÏÈÌRÓžŒÊ> &;Mp+`ó·rÉÝ:@ÀJÆ[F|5ç(˲LðЬîâ¡ ¾Uûœ=Ak?î •PRØ<¸‚‹Î<&‘Ù;½&¹ ¼©~—ý«4ü,¸æy‰SÍ5odPdá~Bªþ{èÚ¶™?Ù„êÃP[›âM›]’[V[ |†ë*<¶A%)5¬3Õ(×óˆ§ä‚UoÔ äýÝÿj+ÞÔ4ú$>9Bư<ÿć[cÊ¢–-Ÿ8½1!Ž©/ÈjA±]›‚ ©0`¹´%=Aã·F!CLׂC#ù€2õÀBOQçK°øÝ¾Ûš S:¬ƒÀǺ†n¤ýUp¥¯z¹”‘ó;¸ø†@ªMÉ› =ŽÓÌí½í"fñ*‹ä½˜;}á‡ö 6¸/QÌ35RqnŽûžI†cÜ -c<î¥i’§z˜ó´ N3·ÏE40~½&´6_¦9g‹0ÿ¡ÌÛe jÔ'ðVû ÄÓ8¹ÿ:TRKBÖŸ–7ÅÈYÁÊ€# g¿&À#›‚›P—rŒÜEŠ|F2\,,[Ñ’Kv:48>ïÃŽkLñ2Bt‚{%m~î3ƒä{˜biùø÷àkhS8Jä‹¢7îùæ =º>—…ÀŠ_‚ã¹ ÷ Ç}w%ÂrÔ” ж{!õÝÚÎ^Óå§¶­°nx /ð M‘#ÏðoÜ{è¹;â¬^˺î=²ë¸ÂjìeÚÈâ£Bw--ÌÂË ›±¬æ»YË–~IpÙø¼”›;üR€4 É1ÕbP8gš”,n—ƒsΊÂ]ó· 9’€Ë¡ÛúiPáæí„]y»Ûë²ARÿôUx¤žKÒ;ºpÏȵæIéÕýœa·6ÒW.mOeø«4·ô^¨¨ŠYüËá6y?¼$׈ҳnùÛ'¿±ÿOšše´R†¢GM•°ÁÞ³+Œ­î{£ùŒÙðܦï»dê"dëNÛôGU_Ç\õ›ªhpË»+øÀ¤Ñüw~“`šúÜÕÙ7zývï´ñ.ØvEá²þõÜ5®ÈÅд“çq\ë½eïur˜¤–ÍiY¼©)IJ™~émâ€üá6ü)s2â1˜`^à=¢“ô;î½ëÂ\þ½üå,a§}Ñï_ÖêX4fÉÁµ%ÂFÐE/•Pãob8#ÁÇï×°ñ&ejèèÓ’¶ëc_äH ]R=4hYFMìQ+Ùˆ‚ƒq@W¦Ø¨ÕeãÖ<Ö²©Äb{ãŸ/$í¼ óGkËÒjµà1á2pÇãí'Me ¼q®O7r¨ÁÃ3¥É Ø…)h¦ó|6pj–Œ!qxôÈø ˆ“%KQocn'§ù%iTÅ·ÏRSv‹jíÓíÇ"ÑQÆÓDßeÖMd ÀKM×Q[Žo…U¯ÁÈâIÞC¥i‰Û@sÁÄ$oÒÄ»DEàDMì…$¾ýõt ‚%ù3̵¹·Éö,õ®¿[µV—²Nˆ£öd?o*âA(Ž—ìE¢_í…FãD†?ŸÍø»«´0—lŠÿ912H\7VÑÉ ò[Ú h¦ÔÈê×y¯PÝÂÜûƒéÏ`z0J°ºA£îgCÁŽ¥Ìóàá«Q7'{Ê )¼íÙ|dP¬ÁlZ]úÏLë>j8ÍÓ˜o. «¥Ûƒð fÓ“ö"kŠü5Òæ2’ÿ”m‹Ä:5cKð ?ÄxÕ¢¨;ô+ssÍ=üÞw9ê9È¿Ç,”9¦âŒˆ?·ãb" Ka8ºÇoǨÜQ®<îU”3±§Öµ‹Ý)ÙbKÈëG=Â;SvL 6·¬U™µ÷žZþÈV96N‰§Q. ðúþ¨*Ë—ñ¢ðÿªÇAûõѨ>«ÚÌxk„B¤£Šø¤iV@Ôt¥ü9†È~~Å»áêá£Å}Ò: iÈ$tåY{ŠèÓÛù÷o¢/½Xwìch”Y—ÕzÒ@<RË] ?&GNCÓþ%X/^:ð3vKYw¡S|ù†L0E¶ûÕâ#ÈÄ%d^—b¼ðÕ[+‰Uu¨3‹Œð¤†Ãå *>YkîHë¬8á™<Âæ «D×ãÖ'sÙ0C~9ᙥŠëh¢³×³^íýü˜50µûËÞ5i6þ9öÎÍN 6,TE8ª½5½Ø>F)W8•‹aVà2{¾ìœÑÓ¤¥ Å•¥RÑ€8¬šôe4ÓóŠ»ñËø òšãÿË׺mÒöŠ„šU2[æî!¬ÕMvumAôÄi%’¹Øxß´ìâÎÛÇÄÙiÔ€Wçôï~ªVôvñp ¬MÉÜw†ÜÝe0ØýÖ_ŽÙúr)yEÐܳ«üûìMÐÈYVá6u²åã|5¢å8ØqîZ ÝÊ/¹‡Éy_“L’y£.ç´а] ì½õ–%—u‰(1K° uìÈX[)o‹Z¹­„üÖ#æ%ˆ*(¶×âÙ)’L w4ÿ§HÚq}RŠMÀWÛz“y÷#ÌDžîø/pÉœƒ‚Jç_çIZ{1ô¸Ù…úä+È+Óa€l7ô:‹ô]ÏÁ‚Gšb³‰6¶h&y¢méýüògÿÈoû««hì뇲=iÿÁ/hømC¾U¤Ûïæ²Úð ¾Î¯Ü7cRÉ ·ër¥Q.vÃs-© M9Kçù8ü;}`ë}Ú¦Cl/c©Å{Œ·”èC~ÀãÑÝü~¬®Ä»úÏ'ô¨#÷™/1Â`Î vÁ©Ê©\Ùqv Ô˜œsëà\qL‚7üàEÿøxÿÍŒ¿šä—ÀuwgöYHT*B€Ÿ#% \³ó‚3aí¤³E•ó¯ã›ÙfZý ÑjþÙîбŽý$Û]ZçN)iØèjr`/²®Z©Ñ6Â+!là‰àBxg«Ê7èÝiž¿«Ã×Äs ¸5tå0†]k™SVs±÷M¤0½èðˆVO:A£ˆÉÍô\¶®ðñŽÁ}οäj2ÀxLaðWÞ MóQÜõ÷ öž{›}ìØ=˵eÍ„b¤ÛçY5PÏ‚ÎÆë:”\®r‹åBÐi1wãÝB>ÍP¤¾®Ñâ¤w5ï÷!Þ( $y­OÄie,„¯Ý‰ŸÌ¬@ß(’ïÅ.R¼)ã(È)’,k{ƒµÿ{ÆÕÁ•_BV†L“|•ßÿ§P#ù+ûê}_P\“ïôêÌ£Æ.¸Îaz¿Ó­¬'®+-È_‘‰l38UÂö‰3}b8vÉ^×c»&åž-×}{óÝê2 …Ç…iôlRˆü÷¾Ê_'îC‰pÆe9’¥ovÏa@n»ä^ä¦õÓË^³·•Ò£­?•ö9;¼r›ƒ/Ï6¢Ä=¼ñ§EWžB2ò?Rg½ï˃Øž8LÍî Ç u³ËHÁ4=`–wäda4±ÕÎØMëLßBýØöùÌR‚fÛ&-e”òW%–oá´Îõv›T¢ëˤ[Ax,¯N²úýÃÜJš€â™täÑ%¸«Nå’’ÊëXbW7ȃÅ@©S•$r¸0B`áêÖaãÿ‹œ— ^jÞ ÁƒéO?^3¡{îçÚCƒN¾|Ä]{p«“…Âãe½üVŒÆÃ\‡ÙoaÙøGou–yÑÍD‘HˆEwèûÇzþGòBøuQtmYZ8UC^h=Ký^(6’<Ƙ¨NV~ßÜ6­|õÿ‡˜$Fg„f¾§©ž›eÜ'yõ’ÃUßïÍ0w“±5›ï1l7Ûäû[£€‚Xø<ÌòS#S•Ñ6F..‘æÄß߆fP£(ü; KJ«ckÕ_¶éꮩ¿Î ­éWQ_ú½û‘,~ÌLšþ[ps,ü@÷ôˆÖ ÀÿsùKÄö­s‹€Ã³åfacókb•ˆ™ÊÏæ Q0 @&jÀ8Îê$ôI` eAæÌ¼A}7¹W‘‘LÜp™g^.juµbéÄ_±gä ð¡ƒ2pŠÁÊۦµÌnºÿœý._¾H[gX™ZLs»<Ÿ½íh á°v³7Ñ8<–=ÊüæCÐãHìg÷ov=•ügav‡àò^<ØØŠy©S%é!I­Â^0FDáÌØñÓo‰s¾)·ûo 9 Z"K€¾¹ú—¬QímöqÝ3 Îw*†Xoü¢qc—×AîØ«ÌÙ™»!öì³ËˆBqÏ ì‰C+9„.µgȨi³žñi˜R”Q(‚'`)wö‚(ãÁ©|„#Àµ’Z<AÚT¶Ö9_2ø‚x‹9žYßb+7•Œ`»ØTüW9ܱŸ%:kÆ¥¥¹ÊYTÓ9-oVíÞ?t´µ=¯p¨.–ؤôÙÁE!ªSZ^Ø3én 9Ј ­R»ëi~C¥û ‰ûDCmR®E}¶•¦®kÐð¡Ä“øM:r7íg§ª®£ƒ!°ù" :äŠú3þ­r‹%¨°?PéEJËîåËÿ×dêÑ}ßÞƒ›4„ϪXs¼‚E׋Oþá°‡®[KÐÞ$”þøtW\oÈ RHªâNéLj‡Û~,­ÊchY*C™\YI­ —óX&r.’“«§ü#Ú3ÿÕI¹5ž[!]Ÿ%6{—˜!þ3»ŽÖdŠÊG%7ÝîS@*õpùHùQ¶\â¸ÇÔ)»8JD+8yAá.7d×un­Hy3àMìL pìÃ?Çâò„þgιGO+Â#ß䎼²sË«éËÿ-žyÝž=èTµ@S¸‡é_eå¼ïŽ´Âz{frºØüÇ[Í„3vÍÞÑZ{¹{-:²\òªÆü=$Ö¸FVc…í ©›rå­ŠVvéQ|]Sºìxº˜Áô;ŠêSà ƒkOIÕ¾ ˆ¸K4×,–ÃÊ\0g>•Z–ú•ÀîRNã˜B-°´´ÇÊ)î–,¨DÊ}ð¥†9yÚi¶ÚÍÚv¼ý½÷Ž¥ÈV´D¸XÖ–æ/TóóŒ×ð£Õ£à‘Ú1çç]ÏÌmã›!›Ü’yfEF™›-Ü·¢‘ àn]:Éþþí %bäéà Ø]b¬TÔÞ/áÉ›“½Âž ø5–ùW'«èz«Ký(Ðð2"á«Ý'¤µ—Fð–ÕÏïÕð™þÚèñ Æ’ã:U]òÃÇ¿dÛe˜Q(ÝÂ÷ãë`EV4×>öZΦ[?.OäÓhNÚŠ}Ž!kÑx™Úâ0^t„¼iräÁ¨ÜÛ^B T¼±}£ƒCì¥pÊÐRfð ¡È·¿Ï; =…|3™Sd7—ðlÒ&ЭÒ$W—U˨;Œø§•|^IÈ齨ÛÇUú ÆTøª:cÓÊnnë‚à|u¢YòP7ÿ'Ù&à¿WZγÐyDí‰2yé’0ºÝ—úOÓÜŒ0 Šœ®¼õúšZÌš›u,ÃÑõàýI±þ0ú=Z†½¬©;væ×‘â»-Ö1r"èž ó½Kă}pOFxSÆÒ•·B¨ªÕÓ#ÁÖíê‘Í)Ì=¿ZˆçíK‚ÔiòBH¸´Â?¡Ðg[~dÞfÀµ"žµ^úEA„Q5ŽÎ ÆHLCÐïžðûdÍp¸ \«¬X>Ѧ+ íÂK<õí¥ù—$}EÃÉAt)îÿìB|œ(HùeQ{퀢—º?óÞGíýfrÂ~¥‘¸uªÖËÎ6È2Ó“ }ÒW;µÙ+Hb'Z—ÀøuMså*L;Ñ:qØÿ‘åÃÉÊOg®½52Ë›†½pô¡PV5è`b-A÷<9Q”"@pø;aú×ø©Ñƒºô°ZJo!v¤ AÑ3d{¡»eê†ØÓ3#˜E;Ñj†Tñ_莇èTdÉX¶ÜcQ Ù€¥6fÕD 3Ìu÷l_ "kAÈT¯hQKŠrðV‰>ëË0³àTÃè%ØÕ@ÿK%Úƒüs°ÛŒ.”êvy0ÂÊšÈû8d[Rà$YB2˜-ç5ï²ÊŸš+‰éb|ü˜Óˆ®êpèU£dFXÙKµÒmpqõ—j³©CŒ(ç_`ÿiú¼fÖ$¶ìn^0ý§õžÊ"sHúÈŸÝój_ªMì°  ½LŸh@¢väh|OD;‰)Ú“ì¹ëgëÄÈÞ]Íó G}×zÚf!63ƒH¼O\Ç[é¥Q,IVñ‰VÚ»0º+8óÖ\ï¼qØNŽÿç”Zàž²¤¡T·ÈúFx“ìý„²Q Â|óÈ…‰x?vB5«²<;R‰ß—}vY.ëK±¯£9èXK6_¥,#JЃEX]|= ê&ÆÃL¨Coˆô^™!A±¤í£ùHò’àù$·587ëGWwì!É@pÔx|äŠ+d »ŽâÉl•¢¯d‡ùˆ<'÷¯GÑúHržr—êmë¯m­h¤ŒHÛ‹J`¿k‘ù‚›“ úq6E1‰ñn¥À]ÁÑËĨ{.¬F,/B e— ú^œ•†g„:™ClFµ {£õ ·  ø4{#RÕÃÁÄ ™¾£ ë`DÍêCº/¢åô  Ä9½t‹ƒKùšÜ"ªó•Š~%‡ýÆ,Ðb1“×Ä_¥}æÊ*µÂà=®+ÑS„3n €ßùB£†ù¦ÇøÞš6îVc³ˆ3øh­¯¢ Ëg!óÈÄÈøÔ.€ÌùûztÒ‘”‚¼¯ÒˆØ)R¡È*F£Ó^5øïjcÉyÏÜ(¶MSinö¥8Õ½í$» „]•fqf„œîù`ML,É8ónK*Gæâ¬8d—ÎÕL–ýMò¡Êp$"Æa«hjý‡$·¶éü‹Xqȵ¬µäj“+¼upÈ9ZŸö`Ä}Ø6R¡Sßv-¨¼ÀGŸ#SñcÞ8#íRWÆ4¢þšÀŽ.™Î÷Ô´bÅße±VLB/ÔÖ¡rueœH$sÄ£ê„!8*A3Ó~S¤ó„ùÌ3 8¡ò=œÉš|™5²D4SÅCÂ7óˆ'’k½dW-^ø¬d|Ëï]AgÚ0½Æ¹š·ªÆ5ocoÝ„ûŒ.îÈ!“¶ ´1“uó×ƒŽ a³!å¯9,͵:M$¾îe÷øª r –øv[ám9ÝDÚ‹Ä🞮îá` $M0å7 è}€dgÓNp.Ú©Lè ÝÇ%   Ÿ æD9κ÷쓤7$Å72ÎÅ;ØSÁMš’š^Ü×Ђj¿2ûë0îw Hê-oøÁüÞoÿ'ÆDŽæ%¯=#7 Š+u&‰çÈÎãêÅÞœNrÿŽB èqØÚ¯—:uZœM½:t¡Ù¢¤[$¨-‹5˜ Á,Œsτ٩i‘ë‘ 'b˜‡m)¿"² Ü¡ñæI€hOq×ìS?ýçLÇ=Äît;óÚîœ1¼ÌijYÆm´¾1ÄZÜ{;@ÑÕ.Öqm=Ë7%ÃͤÊJ‘ö–aZÝæê¹ýxÛV™Ucæ´üWƒ3*_KU8×@+“ÜvW¡÷wÌßdž(¦­R¡¯„#ð¬õ猜Àj]l¦Äç¡3öZ¡Ô“;ÿ¯~î÷ü3•‘OàË;@ÜTÈúšô¢¨/ä…Q&ªÐYù3±‰´kî¹çÕ˜ ÍŒî¿Þ‡³ßE2?FX¯4¶Áåx¦3X%å½)çÅ#ؽoN@†7Û}´’‘ÇïÅc/ô1ªó’¨#ŠÇ7j‰©Üx­@Aý‘Àò8ê ûÄ×ÿ”>0·"1±þóý€„5^Ô§–È}—P?2¹ås¿°› §c©ÿÅoû9!¥ JÝX=ø*¥j‘lÖ[±û‰€8?¤äÊ®–Ò3†ÂCúyܬ;±xÙÏ~æX^ÖÄ©”{Ú8ªFŒÀ4`L¯*ðŒA•iyhnçõ¿½2ºÊ?«€š»0ºŒÄú-‹ˆ‚šˆ^X¾)ˆNº*hÉ;\vH]³Ú¡–Á'[aÄ6ßÀùîݳÌ&ƒ*òúq"ÔLÝVVµÂ b{ëQ§A°ì¥Üþ'Z@6¿3 ¸Û»° ‰Úà­(ãØÜ@Qê§ VÁÇAëç‰Lï1¬Ž @Ó¯S/´ÄÊ­Ì æù‡@·Î÷f+»z“îÂnüQP5}“û÷®åGÏߟL¹âhb£B½ö޼DºýJñ‰ù‘£”Ìè^ó>£3aMF˜äÝl#0‹ÑŸl‡ÿt-^‡XŒÌÙ\Êþ¨ QfÖM%RDoqþnG »Þé_Ðs3„‚ãË¡a]þÎCT¸!IW"ÿ‰³„R¼iJ^K¨ÂK šikɲÛ*þ~­ ªh,8«’©|X´êÛöõ<-»LP7¨×o÷7A\\ *©ÌÄ*@¯G…o/£lÉÖ˜“‡DöÑÖú]‘£± Çá®Á´…ÄQPÙáwĤd{ºeP ûb™;Z¥áò¤HTIˆœ~s*s3% ªTðeÄMŒdpGÂz˜™²{2m2áD•áxJ!šîk¥ä¸r/Äú­Áäö/föB¿‘eU d|9‘ºoÄ™™¦ˆøh³, Ï>Èà”+þ°®öïÓ³QŸÖ:j®æÎèžy¬Æc1fKÍ}¯Zò³Êг¤¹ôÿ£X†-lFíŠb]j++ýÕÙRh·GƳ¼—x>HZÍ4¡;\÷S"Iž„°Áع¬Öe.RÃ5·l‚°ªÕ’¬Bl£œCÅûä×±¹'€,^+Âl ‘1ƒ“¨àÕ¹ß/Ë ¶l—í´e‘Ý1l‡¥W_ó̉´ dœàýñr"êUÂ`>ãÄΧ¾oÍ<Ävpg]Áé‹R³ø£¹N{|c§rídÊѨ©“L±×l¾°¯âö@Ɇú(l„€ð‚³¸ {ƒšY¾øÐxo|*¡—«Æ¬’¨ÑÂ6‡MZܲÅ(gÒäqûuNð°´²Ù‰>êÞ-Ää~¥ˆ#j¾kŢؙ+>­µó¾3ñPX°Š«Ü½§€aÍïã6ÐØU næaÞÿ~§ì’’ÍBߤµáü6ŠÖ>@Za½´IuAå|| Æì±‘eµ¹7‹³²”ïrÚ˜98Ï#ŽÌKýÒˆXLÿ¢Ä”ãÒ hÜöæp¬@´¾"龤ñ(,6â]MfÈźºAü.O‘#M…«'™X<k?œ×5ÐÎÕ´- ºµ]6GxçûHF>êÞ- üÕ¯ÏЈêI.«0l»WÍêŽðA2Á vã˜.pìî¿§’-L/pæT»RSZÊ HEžÛ0ÇFP7bz¶{ú»eíŽîmÛ  €–¼Û Ž…½±× G%ÿΙ¶ÉÍ7¹ ˜ÿTT;Sì¾¼}H’ƒqcYŠ7ýÃ…#e?Y"âYrã—Ú\Fj&6ÛÛi£_äMRÐ iDÑÀÞIŽÁ—ãÄÐFѧÝÛòy¶åñïÑŒ¸Pi½Ú(Ÿ‰äæB1‡bbó£–HpÇF’×J ç6aG§¥ŸCä[Ìn)•Ðü¸/Ó:"mäüþ¥ÔÀ>@VÕ¼â^¡{²%`©‡K&ÇÝOA¥°§:¾š-+íyWÊýÕÇF—ðßï›A`çÏ]||W¿¦sD»­s×n½§¸ö në%„ÕmK¦¢Ã¨&ECµ`îl‡8`źúè_nfÒzÕNìw˜!¶Ož‚­"{ô6hŒ‘, Uº _ÓE-ÝZÏ(­‹ñŒUU‹+š5Ž•" ÔU–ra/±­ïöç‡Úte“Ú !íWEó¤Ág{HšS¢Gk’¥¯¾üzmÜlª¢8ª.ï¾]~|C‡3%Æ‚B5EHNI•W¿2FªpŸ)´ôI`Ï#æ×N"9ƒ™Z{ 1oIØrDxJÁ®Æ WŠê\4˜RrÇ\VÉ_Œt Ç>þnvÄ iôïül"£6?4¦?"@]„ Íô!ì]gi©é¿7ºYÍzµÙ§ª„Ñ‹ÝuÀ~_Å8h³\Í0ùŠ“¼äç×ðàN´-#QMœ´í–JudK&«P–Gš²oýB•®%F•Ût î¼ôŠw 3ùôrYX2ol×CóõmP÷‹y·Mñä´%Õ,?ó›–VÇ9HG§ÐØfÃîÁÁ*S•dúiV44&ŒŒÝ/Ü#æ`ci\àª_ ^S« Ñ,±o×ÁU3·sBÌé U’³gZ!éÖ~)o³†^è슾x¦Z˜¢,Nw Ôg+o¦‚ÊsêºC%0_ÒõaHÔÎŒa6ÚkÝ“¶ºý,‡À:½˜7Þr*)#ÍLÅ&ÞÕJ•­°ò¬ö ÅB?­4 ±ÎˆÒÈð2Yù]8‡‰2…IÆíÿU ÜBhyžgª¬Ò]ºO•Û „J`M]ÑíRk2?û–ä}E%ĪSâËX¤—÷è¨ÂðÞ¨Ï!OD§á5 Bvþbk”Bªà „ûþìz''ÇÂØ¦…ü„~Ê–1q—b²°PWTC˜q\j›8X%eü»_DtãjT_roט|U¶ÐÍ’Ž±’1ëIºZr+q8àÑt¹ °PËÿ«±s22Ëí·ìÀ=¨p>Ù]|)`˜<ömfñEÒÔ‚®‘äóÄy[;Q¿âg`%) Û(“Qn±Åˆäî’SÐw{Œä[É Òf>ØŽÿ³‚#¶L½ÔrOØÆØ!ŠÒ#ÊöVo^ɺ)5@Õµ=Ú7P„zÑ“Ýj“?üÈîÎÛ­T†Å‚z8[¨4ôµ{5«!÷ Ŷ#Ú¸}”a::8SAÔý±÷þ!D´Ë9D@bïÀ#BB° À¢CÑŽ ççÎÚàÔO´G|¤‡ªË¬»&_ܾu?EFãh‘Ù.;o@ À5ÉélS‘âUN•¹ô`оۯ'\O)e±¬âpV€8T«™Ã<À›‹œf·aj,¡X¾•qðß«y‰ºïQÅ_:z†²Ÿe¡±ï}ÂYó9ÃtoY«]Í+ÉÞ7öÂþ…^£Ë:m‡s§H9üïÁ[Å[,ZÈŠë hOâùº¸Zw? JÝ)¿à@Vr×|´/%ŠPlþµ£çÀvü§"€Å&lêYEÝlòí·¢«t0ÔÝÖð+ˆB¡ÞЧƒ~èyÏã s—µkÕÈPàKŽŒºl¹D,Z80+ÕbýÊÂÀPÆÈ_šŸ`(ˆÛáÈëv7>gx Vïáwyɉk_js}ÑEôßÝ4ÖÐç¶s¨×gÜi>wn¼t¼Ê\kývDÜ—:>H0ñ,±îðlœÐ¾qèª6”¬úýÝPÔɦ•øF :’nÐÙqÆÄ€ 7·f…zÒ1¡118ƒ7w A:cv†–êÎjC†Šê´Æþ¸àŸSÁ c,œÆvåË…"ˆNÝRk°ð‡=„Å]ËE0S£û²K\ù±ºSâSTG¦úkl‘"¶åéói!TD"Û«»+>Ü™»¦s€¶Nõ¢Â§þNá@Èñ­$Óˆs² y§|N]Ó njÞ3#€ª¢"`ûù#íbc"J<ñ~‰5ÚûÒº x‘‹®#uqçy>Ü0­ÔFωëLù‡¡JÍ›(>²ÎÿYß×IÌåaH`ÝœwKNø r{ªú˜}rȽ‡qÏÇÞ½CÌg’j–ñ0"7Þ_ÊnF,E§+ì/P)Xœ)ÜÚÀod÷:Xç+k ÁŒ0޲§ç-ÉZÞ^wïwÀòî¡súŸíÌ ˆ âþõsÁÆA>7E|~òǵ"úäþ0úù˜Àû>A–BRE›ß‹zKU`aLVŒÏAŒöÚ¶™ç{ËŠb©‰zn ßZ#`¾í0[ïåW=ÑáÈÐsœÓ#C«5·j^(C7ßs«IuŽ ob‰7kŒ *>¿>$ÝÙ×ç5aÿ,ÉBYUl'¨ZýÆÿ…¼÷oük5¶#À»ø6F“4ÿ«+-þ¡MwqÞE¤ÛQ8Â'€’ $¶z=zA _ëöã¾ü ù#â‹ijYnz~{ã$™°ø·ÛT”a’¼ soÁÌÜŽ–F¦©Ù«³jí‚z÷/h·û°¦ÂZ¯§Ü LᔊØËøÀO®à4‚Gv÷óo²ÍNúQû‰á­î_*ïXpLvDám;8i Ô{Ž»¼«}A>]ÔœàùyAႾÛkO„´wtxÇPØ"Õ9GÏôdAÎD©­¾ùOç°Ñùô“êþð«å¿É%ºcfAü8]m‡…èW ^¦³Ä?o”´Æ! é9 ñ_ðe]ž½Fî9µ^rä'$'âkËÊ!ÄU`Öiöç ®U©§Šr~œ¤²”;qöج'ž¯þî­¤àz`嬂ȫ„o¥h#`²]…1d7úT¡ôšèrWy€_´Ï¡î “«½ËÙØý|ü-µÞÓ³O#¹Yœcí…;V‚Î|é(s)Q]ë€_r¾7Î ã-º?¼OÐV»Éu Þù˜¨n½§ £xœT(^&Íhi¤Í…ƒý¨kq :¾¡´ÜDÒ#úµ’Q›av-•¯èKБ•0ª¿UEॖ ×ÖAË(דd>‚zù¯,ÚT¢û°ÎcåZUÌxã2^ÐüH HÜ«CuܘƒZ «Ý<Ê2E»J“S£´A[^€×mSèkº/]) Ex;uÛµ‹wZÚj,º[ô’hÉG#:ÂîSéÊ}V.Kª¸$xvq–YUHF–¿YÝýDŽjNºÔ>e§†N&àÍÊýyê®Z¡…µ¾mˆuõê+½ç¯/Ⱥ·î´ƒANJaA ÞI•%7‘ÀXÛÐ0i2(?¬¦ÖøÀÚÐûß»„Œx·åÑÕ—«<ºs? nË\à{ƒ­q'~Œ—BÁDŸå¾U=غÆöÈ;Ee4xÔ×u¾Ò„¶À|Õ¤º’ü¼ïUî çêʹ#‹!Õç¼8”J›ÒÐßúƒŒE5$|QÁ[— &ÈpE d*;`\»sRÀ¾Cº +“AnTÑûHï¹®o”¹)‹F‰äX8n?l)ý»H:ž=ûh)ý+TùÖ ­jÆGÚgpIr›ÇT‰FÄí•áH4˜‚L†rPÈaÀ€¸éÒàЩז›ñ`$Ò¼ï«5ÅÙy/"£ò:Í‘?¹ VŽ¥Y«Í%™:å ¥BÌ[}¡o/¨‰o'ÖÆÛ`b¯.ïöôU0= ×"B7÷t|ÁÊRç†Ói¿'‰»ÂpžoíŠ>±€ÃŠ(™îikb¿HÙ•PÒ§M'‚ÛÀn(IÝS"v€£ýkblQ2Ù®ï'ÿ:Æ^Ó[™º1SÚù¤c‚˜#R¦}?Á 6nΑþ5uÔ³Yo‚ 7[õI¦y˾ž{Ñ ²’Ážs &a68± ,Ï÷,‘hqw)Gð Õ\O¼\Áø6¬‚¼Ÿ©»Î H܆ôA d(¨åïc ®}ÃÁ\³Vò Cü`žoµÈ»×[,y'º®aŸ¹(üÞ^=¤1ÿB3$ˬŸ•2w“)mj,¸PüWørWÀ…ˆ0†ûTñ®8­ ýËžCöjÕ?®”‹v4Ñkï8Ky‰¬rV´½ÈYkKüб°3º²÷MšH e¿r€<Òå e {‚†vë.&=k‰}Äðêúiö£zÇÞ¥fýÈ’S³U΋ô¶Ø.ª$k€µb|õò¬sc…£©Û Ëôè6<Ów(ñr!eZïb¬3ö:w"\ŽÚS…Æ#Z7'½#ÊkÜ›ÊÞ6ãè!#!ƒ(ÿðW½æ3ÁÏ•1A kqk¯³g”Ë<ÛfV¢~ùHßC%Úqä:¡zJ&ÞÂ+üf˜IÀX¶«%ÐXÂ`Rí0ÜNv ­:GÈ~dK[&+F‡ø™Óc×ȲϯÉr¦ô ¹®ösÄ¿»ü–Ôeœx¼ü×Mêº1çÙ!µ…!Ü[U©·Î1$;zb7` !Ü=§êÎ Õ&\5óÀŒŸüË»u¡5O ¨¥¾.ñì»$±î%Eç>¬¬ä¨”Ú]fL ðÇ•B<+¥N&çwŠZT–«3h<UJp4hXâ$Ä%”Uٲ뒶%Eë*Ñ'[¸,ÕêçO%ØÍ­ýXßß,¨ÓNí±OµÀ»Q­Œ†‚ÒNL·s;w£~(cƸèÐ8Ó=kønQ*tëÃ_+s%ªQ0ó´+€”€UJP –ŠŽKqvñõÓµÇL”K=õ¼"XP”ëtþ‘5bxZM¯ÈÌÅàÚkC­Ì­×︵÷!ä‡Õñ¹†¦X–W~.±pâþgšßæ6—j«6Ë«ªR$_¡×ÿ(¯"éêC½ÁŠgvʦàõ8dø>#Ζq® ºþUß)(²å™q€åƒïY†^ vùÚ Ê­ ¶Àë %ûÎJ1–}@¹OÞ·ù†íׇ4UEØÝ놃NùJ~b7Îü–j€"6M‰æƒ&ÇT‘¢$TeÆ)t½9_¢lðUÿ’ä‰#ÊUµ–"¾HH_:ÝÐ|>ÞsÛg¦Kÿ9ä0i3¹jïï€tN7·:¾¬— R‰bƒèÃ*Úz Ú1 «·ýbQƒf¦[»³2žFMŽ”pÕ¯ëQ-+£u{HÉÌFÅùi"½ìtbœ‘wvüÖ8½ÀnPëôlÇ1ïzß:JA$ãø­æÖŒ¯ƒæ°@6,ãCóÓኧ&Í8:t‹¨ØÜí÷m˜‹6ÐØÄ±û †Óe{C‚ìNÄdùÄ-”­:ú°(¼Fü µUýšIùx̪Z½BMƒN$Â\Î ?Ö“hbÉ ééåhfÊ3´lA‚î¨;EÝgüÖä7Õ863Ò¶/FXh3ÜÙð mBR>×_&Ùwjfص[oˆªï¿”š“‹{[ @™¬(áÒGj…»‰3“-Ë <òê¥\ö±#¹Û'ß~X•pÏ?F:èÜÁ¸‹?ªhùüÌã1æÜÙXÌÂϽ üóEóY– s겑x€’žò¯´I³ŸC1¬’Š æ9E–PÛqfQ}Ð[‰ƒ×ËËL$fàräMú´“ª`cBJ½ ¶lv&4Œþ’Ýç[ä¡[9öÄKÎ%!Ïfés!îµ¾¥Z@'ÐúðÙ´]üaÛ¸‹züÚ=e3få çÂôõ_&ŸçÕΕçm@¹-PÜä»oo ì !Ë{’ÈVœžWæ'l^ê7~Ì…úéZ°?—µ]àRý5Y˜?ñ|…L¡°+è×LLºS¿¸bêïdàñÔëË[«.tªguƒ°xBø žó¾Õ¸|ÿDñxà û`b.z°;™Fg^•n€M;-rDiã†G©_K¾Uj'ÀzÉ$çѯ?žÐr$';hOâ^H‹¡8pè—Óð?cM“ôàÜÚõ#ÐņYN”ãc’!á„ì2-‰ç/¹}1eÚõI‘ØÁE«òƒ§g¸ÐL¨¬p€¶WjPú:íãj:ƒ·‰¤wW²e8í$s¡°Ûˆ¬\¸{+GúJ„¬ÿ„WN„Õ‹Þ3Ó*¼þ§ï šcÇÝþ›V5ò˜Q”&dŒA ÁŽÚrqΚ`Áj`qÿ-eâÒ¾:c £ϧ£¿ 6;ÿ¶ZÐ{óÛ53ò»4_u÷Q ~§ZöKæD™ïÀ”$¹of!È=ÿÀSûýnê„eîÄÖ¯\‹BÓeKýeð8ª9–¾%’«ÜwtŒÌ*·ï(£çó5bÌÛQ³ESÅá`Ð@æh^+þ1XøÃĪ"‰Àí²÷Ž!‘ÚoÒcQÑx ãF&“Ät“fšD‡"ärÞUäì¼Á·B®ÈÑQÆ0Ò\¡¢¼'‡“¿D7 ‘ûÇgTnÞ„ ÎÚ"ž«Yˆä/ißó¤*Øæ‘™yx3´›ñcr1ðP?hxkÈÒ£ÏàEÛùG;ùe @´(®+®[™wvš]‰ºBCþ-ªØ…wfkþYï/.äøa(Ò.‹ž2¨¤ê;i2,øŒ°„ØŽ­R5è|¤ k–_ ©C·GÇj#2ûÝã®þq¡ý¨4ܶ5ÄmÜlßc¦Ž§§Ž#iÄ8ZÒÏcy‰üuÀ´à’s—-žVÙÂæ›l®§ KuÒ¶šœÔs:A‡X–Ô÷ÿbçróî[’ì´r–­|ÃÅí€Á;#3£®Jã± Ô¯h› 캳åö²„G„°ìÕú-uâ¾ #—Dikšê_(y"Ðø€®“`rR?˜¡»Jš¤dù·î~ð#HqËL@`çãXº·ó8Ôɇ,XE C\úu ,ÜRÿ!DcÈ‘å™6’±.VéaÀCà³¼T-bÊRYÖ[H–Á!TÐ˃c8°ÈZ^.€ÙR÷­-GÞv÷4%”ØílC «âŽ#fÛa¥^Ð?Ý X_f_’©¾Zw‚ü\¬¡×*ònä*Œ~]UTi0×MOs Ë”§[êæëîÇߘI4e#xì9°ª’Û º•G×}P™Ÿ5®ëÀ«=X©Ñ\<‚ÚÊ8AþGn‘¹*Âý L$耊¦ƒ[ÀO â£áAïÛ„3î¥S—hWã—âc­É(Š!±… -w.×$×ô&µ%”é#cÉä–ß›ØÉ™Ÿ¬jÖ®6UF•Œ9ÏÓeTRøÊç’µó~ÝÖÅzýï‹4Œé "´À5á‚Þ`Çy&±l ;†e fhª®Ýÿ=´ð*JkF›ò¦q¢ß‰IÄÛO4@æñ´Û:QÓê|ýÊ«ŽÑè£â¾5.%IÄì8zqâEk§ßŭ飃›UT©wHHÚÞÒwgé„w:# Y7 ÍfüØ¡ì„î²`‹¥«ðþt¬:¹šq…P# è¶Sg3Åu]¼ÌVrí6­×lÎŽÃ-ð»Möõêà‰¥ Ìðƒ4¦­:ô|-Æn¸ °ž¼-x~âõnѪµEUo&Q2Ñøé '¤84!…!‚áõøÖq'Èi•-µ¿òœÞX¨ Í÷?"­vʬ’PJWJðÒnpÌ XxÅ!6æ®<ðÛ§áœ!ºžŒ}C÷Ò3-P“!¥½©L àî¿“Qn}Žì‹EÊøQÊ#6ŸÊ»|>Žnjy±áÅ{¢“‹ÜVn£ìIžÇ`Л—?Ô<¦“±ÊmÖ`Mª‚PÖq±w©òpñS”¿ñÝ=,zîe3< XÛ8ô%Àåj¥Õ£JáV=«Œ“¡çs€œav?Ê Ï+‚¦×4ž†6>qmÊbèÒðô;£!xbkVSòÞ½ˆX­dBäÇõ½ñ.mVn® ²0ºXª5;`ÆC/2Ó)‹ú~lÂà@&;Ì6û„KÂçCÅ;À¡%ëf³æÉW]œ7ãõÜ› GÓ‘ŸaÏ6&y]mkZ)L2²§ÙŽá"ɘ+ý/%d¬xT MÝÆË–:Om½°ðƒõéRJéw#‰AyZ K7qGñ¡ÚjÖd›—Å"ÚòeÜÅNãyW‰<ìeyOàG¸½v±Zèïæ&PI~˜T*#3å–îeÖ:ÑÇQŸÞ@"B”t¡SÉÀ•ku2*›‹Ÿ™NHÂ@É ©È«Ìn®Òžüçì*þì¬ÆIÜ~‘ÑÿÔÕx×·¨X’ãß+^¢Ó¢#À»Šò¬El9¿¡oŽþèalÒg¼¤œM¯ÒKžýéGK% ®ú¥1¤åõÛ½&Gø/€®ˆÌ:¿Ž¹œ›¿) ¸7[$_6í«Qñ\ÿÝîÃ|–„K>ÐF A†/˜C×-žô:ä\‚P¼¾ùÉÿ9ò'™[•*)µró.}™ |g{‰ívÍ<"¨(!ïØ½T]6æ+6§6áÙ\¥3«à5ÿõX†@óEØÇiy_VeÀOÏ;¶KqÛÏߦg Òém ô芮ÎU2 Õ­ãO7¹ž±„úý›ˆóö›]Y¨$ƒÌ™´ã"átOÙ^¼1ÿ žÕ®Ñÿ\I{DÔ`ü »FÙD+Ýó‚ºéô-`O@«„R÷¦HA ¬”ök¥îPy‘’ª\]Þ6¦RS@?H*i®fž5þ q&Ù®pñZÉYë`÷?I·òñ¢Ç¹È‹YiY¤R³ä#% ¤#Oþ:&ÀM[‚JÙãýëÆq[9U”Ä´2NF“…Ë4ǺŽ6ÞPßA€Þ/`–JmKøj/ ƒuÛc7t²0‚ñ߬ Zҋɼ]Œ‰’†\¥×¾’3«/‰8bïHb¬4A‹‘k©›D*ÿÞ0fÁ>†Y œ]ÒVå‚ »„£cÀÙÔÂé£`Ô;`w@ºlâ’Cîj¤¿Mµ:¦ÃæžÃ6£s¬MÕ³¢¼É3ˆôzù:˜8·ËèÙhõí{ÿëDޤ÷Dðw+X'+4@ÿµ“>©Y7Üêdåä®’ÝAhÖÕ÷H•‡ËVêÄRLp•£_D[©Ÿ Dàâg»të†0É“¹&Ò1Ø!·1!ú"ƒ óO_n§Z‘õI÷ Yø‘¢š¹É>E$–¦¸%P½Gš'W7qmT? ÎÓº\A: FÜI·xJÏ$b-‡­/ktæ…'Ï+A^cyŒ=ˆ×þL'-²j>ùá•|1·ß±óâµQ­ŒVS\þr€ó”ðj0 >Ζ¦t÷8Òb 7ÑÉËGØÒ³ܯ7†¤çϪOñ¾©?0Ÿ «üF µ  ¾•wì;ŽM8p@é°/fÁ¯Ð÷³‡?½•ZUÇBÜé$Œƒ–…°çÞ×:LÌrvµ}îu¹ÓGSVqQ¡Ì€?êPϱ¿«öƇe1›jÇj[’ ãÆt@î=\¬¤  ÕìÃ/y nÕ>ì ‡1©!eoå³ø‹cð~¹êVÅ{|°w™¼½ÿü%ÈVnÿðÓ‰@ŽÕ¬|+& ⥴|à+Sˆ³΃ي­®?&ó”D#Z Ö‡"’!Zši3Êwß9PÖ¹\ίík@)Y‘8:‚p_)ĺÀ± pxŠ:˜3×Y•›ÖrJÆ+ÃB}B4ë_ƒŸ˜~›mç£Û4ýˆ8Bn–@ªb˜¢µ¸™<òjÚ™]î›R-dÙè.Y†ÎDöyMÎpZ¥eÕ+þh\©å=©ÂX¾›} ÏžŽPH»HÈ^aðœã?€E¬``Ú£&s™­/ÙÀ áˆÂsL®˜¦÷/ Ôânô¨9%ÀN|«\\s5þ^:ð ÿË:oçhÇ5a˜;eÑNäL¸àsaâì=´Žîm¿xâ»íÁÉžýçV÷p;¸Ýù:Œ{]™'mÃëføOÍÉSßR}ò¢`þÎCý@åç ÈCl ÆtÖðög¢µ_\+(±ÇûR§,I3ªðiY§úÀ ëÆ T&{ßå¥ÖüÂP‰«\‚gš’t\j¦@Q°¯µ¢I¶éJ*°g/=mÎàªÍxS™Ðò“)ÁÔGªL5,8ÉVêãfêhR¸‚Ny˜~ù‹X¯á…–vëÚßÇ,øîÿ$ÛùÏŒVœÂ Xeê`2î¹sÿ²Ömä™ð¶{9‚»É)ÝãkNo D:™v®ò!·öI÷92tøf›–a©ñ,‰K¨ëñjl¥Õ0§I9ù_ƒVƒzÍ€ éìPöärÍJÕ æ´ïk5°¼M¸¾–¹q>žÑ³Âë„3Î ÙÈ ÚØ´4¯* §kätJûa^µëºâ(ÎðÃ’²’,b ¡9J¹9:¢2ŒsD~' — /–Aq™ÄX/²AAɪ;‹¡köÝ:öâL*’ÃÌy·Ž6×S[ÆÂŒG‡ÿº¼Ûrft*5ï’ÎÇBø÷n[w>B‘8…:|Õ^#x¼W=v3GÐ3Á >½ž;Ò^HØ*ƒËkâõÜ1æœ/åèµ” L¡Ñã“Dþé…B” æÔˆŽ=çZAHæÖàx1å¤A}!m“f k–£ûÄøY¹UØù0ëE+;vpƒ—`NBÄE9ÄÌl£Æ †À ƒ;vc5=aŸ’{°¢­ù¨©Ë[‹«»ϾģִÈZ œ5‚u§h0*˜î'âÙŸ™þvfé´¿_beɲC¨]Ó¦ƒ²èTYÐxY[ü†ú¡dö|oâhÕvÔG¢“g¿Xà™s@´~¿ª£nа)ð9ÞC£,Õ Q½C@L?À”ýlâwâ}ìüàÚ' ÂÓÆ‡Dà'K,¬À¤­ cmLºÚØÒð8E<ŠtKVÜä¶ÀïNÁxE ž§µÊ¯JðÌÄ*°×à¦E¤TÊ ~¶„Ø äU"3)w<þ‰BƒËk•î¥=@Ž]W1È2èHœ·°½…Þv™¯F!¥‘…\Óáã§tlEî wYÑצä–0^’þå"ÖþÒ€”®Ñl/ÐÜÌÜ«n°@¶WüŽÔ‚õüŠ÷DŠC àdîŸlÉ/wÇ‘;Áƒ¥lçò“ë7:ù‚¤“±˜ƒPp°Sš‰‰Ç±ª*¥ùÔg–g’„&€5ÚÕ‚d_­åóSkGná(vU7G~I\EŸæl€Ô3Ú3—õZ-|J÷¾ÑšúÍüît ¹`Û™È12nPŒð’‡tU$„‚ƒ«žt‘’Š‹ÅÍhqô}w¥F7Y›ÄßÃÒqÞü.ÄI1”tóÚ y"†W Kó ?«\&†$ÃWL¤Õ‹Ä”¿­k¯Õmow£¶ ×%À÷kÕ//ó|;­M„ŸèyÓî_?»Çqö¯wÿ_(€F €´Ì5bÛ½E:úÍBQøBAÑòN’ñص’tû±<bLÄ™éT®WLHGCs ª;„nì Š5yåG Ê:¾i¬ú(È.Zôàgªü`·ìçÈ+G)`Üßþ ø5h"¨³ŸÚµ’£•Tp¬ÖψöJœçTƒ ƒ'Fá:ó¬õÝ"ò‚U-r!Q|ÚC^D-‘vapU`=†Te¢ÈóÊ.â#£ˆöŸ¶jW]å¯DíSXó›rÄúÝVìÇ‚˜LÇc=ß!‘¨æª´ã€%œæŠÄZÔ>À)`ÀœG€œÈÜ{­ ©ë›ó%ãSïD˜Y”$ÇNî´Ÿú¦¼÷Ë ”b—:aµë›°(øúߺ®uüI[ÉtOäÁW—Ó@”øÂÒqg,ßozuû]¡Š'HݺÀ,}™]Ÿ9*`Ð^-Mc`^-T½? Žá€>™™°¡™V–Mcš_sDB­Ï¢ð1¸Y(E¤p–´|c¹%g¹P;­Â˜ñ«˜r­7²{˽ êÂÄœEz~E|—úqê;×MÜÕvÅp]ªmEœ[—È]ˆ$”štßûýÜÆ¼ö¨s1Y¤øÊ”/vÃe‡¦M1Z§û|â<§ý»Š¬)øn¿8‡§’ôÁ°Í±zæ(sgôåÀ–/.¹¿5ö¥  í&?í“™ ¤iÌì´i®s•E^EŽ—ªâlÞ]kg ÛM ®ûOÐ(o•mt )ÙX¨`®¬©‡•I&¦Ú[‡­?}+Ÿ\6GÆdÈcyvXš=ö)•ú;¦­+%]v„a$á¸€ÚÆQ¸ 9?o5 –×€ð!îo®ù ;çÝq2ØG>\3²‡8ÍõH(` ñýe„>9"BSûklA»ÝŸH"Q÷8j{Mâœ5ê;1‹߬9r> XîÀ¥b®½*Û1¿‹K|2SRèîÁÖJŸŽµcZ(-Xè1ðzè6ѯÞS@E'=#صʶ[OÔ{E]-šÕ¬¼p£ô‚®î1†[If—ºDõä7Ö^)ÊåÆÇiµÜÍ….öè{=4}Î'À»Ã`"“)—zæ3b| “G4ê•.ißA`/2ã¡3„þ%:ôû’öÛиZ;ôÐâÜwG׿hºŸ5x”àcÁ#ÑRUæmå—²4X¯u]€_¹Ýš”DŽß«ŸCŠ "²hDgb¼Z$û$f›ÓMwEË>«¼C&Isç»@ÉÀ]`°âq¯ìàŒ|dS¦Ç5Š p8WLS+½ÒÆÙ€Ç–Ú:Ñ›,-,óËnµï e_§¶m ˆٰ÷‡2.ƒ¼6`¥ÕÎ\Í!ž­Ûf.½¿áü²xÕ5ÂЗ$sEq«N³°n. ó-u,¹ÿSÄPi0ZWwg¥—h?­ ü°’¯ŠíS ºe1àr¡Ê…ç¥BùCy k)AÄ ŒBRâîóåFú½°¢¡8=x~œëµVo-šÚ"øùãŽËÂP°Ý}¦`'Ò\üŒ±CªÍâIq OÛiž ê_NdBŒ¥Ç0“¿’"NÚ"³¼Î­V9X}®¶On¼ì¼¹Z,2¹×†A ,Lu¦¸*ÈäLÒÛ·¹ºã^=oAÛSÏ›X}¡sí}ü’‚íÊ–óuiö²=¯3Þµ}Bˆr3óµe¨Mñ¶ïÖ?9˜‘úÀPN^­Úk©D}¿ˆ8 ­Éýóo%SØEs¬ë"ßúyñ|•0ûŽ»Y&ÇZË+ß¾ìP‘¥›,Õ3‡c¹½‹o GÑí¨ðCž*ú¶fV€íÚjwtÖê|˜Ð”TÒiE↞:nŠz '1& Ñæž×°îÛ”lR΢©°lhól1ãïÀMSMi;H{½yŸáÿDÆxQUÄV”*!v PöÛßË{~ë‚ÊH^¤”ò6&ì‡ÙNИ›IT[à€?ÌéE´Îð›0ÌιNUm8µ{öe#S’u²`•î5B&ù RnÊp)1¶%ô¨ª^f]Ãxòùø:«pK]ê”(oDr/®§ôŽ0qÜÕßé†òTÍHúÎâ‰@õ¿à5ø¬"YM3ÙzÑWÏÜaBYv“¦–õ–x¾†eþGŽÃ×2­Q0Uu°'¼à‰› üzÇ:(.˜Ë<ìæÀ¶´rp «†«º¶¥É$9L°ž[!Ö }„õaü'ÿé–¦¶ pñ,'s í¥”oé¿”þÊÖå·ð;“½hú4ðÕlè&*"=G>בРô—”§ÍäwÿtÈ–uSŽ}vÅamQ‘ìϸ§k`½:nB7¿¬€@| L>*žy'ˆƒèÓBÃAÊ‹We¶ˆIo$I}öÙ%×$1$`©ÞÈWSq4¦ì5€àÝf2‰6y˜Îî&¡ |n„8èС‡N”Ó&èk›Ò‰T¸ñ¡çìš®å§öàû‰o=8€‚ìYOèé¤37†3ý!Š܇9âSiVwiÈk?.³Á Ü:í ˜Ý;»V M ²ªþª0®9@çÕ@Æzé@×z3ò¯z<vóVü=E<È:C †3O6v'úý¹ ¢Šb¦‹´ï°p‘÷H˜Ž 92^zÝ›ÖùU–§WH•>Òš3Ïv¤Ø­^ð $8nkªæ0é¿+½pþ~hèO©Ïàhgt%vG% \#{¾IÖ˜qðGªÌ?êýr2›¦É0_œ‹Œ^…t&²>ÚЯÊz° M+}”ë¸ÇN©Jßý±[1ç ¹ÈGáõŽõÇ5_Z¢@äº}O.Ž~¬@ãk’ÛëlYhNÕ¨¶M~æFÃ,`P/—Í€'(Æês™£±Ñþy½Bs;¿=ÃŽvžÒVnZ{©{bÚ xuÖ´¼[ótS˜6ÈJðêb«&WáQ…\Í…½×dùÐkd1'`ãÂ)É= ì×5zþ4ï¾|rÓ †E^±sO  ¨)œ]6kx᮸4¥Î4ç„#šŽöþ:ɤæ3ó99žã*vÿÇpßµdñßw ÄÖVp(JMO%PáÛGík1· ¡.FÄýãÛ‘ºÜCs7!_ÃêΤîÃà Ôjq¦Ó¹ 2$©¦•¨CM‡Õ!¦ü¡²·· õ0‚!R?|º‰"*‡DT½FÂp¸&×tµ@»o$—ºdØ5h6}Ë=g«­}¸ÊG0‹/ýt¦MdŽÙ5î0;7ah8Ù§”mD1¯ïìºË #±åCFõžbžµ"<Б HÅÿül±Ñã*_C²šAû€Ãæè_#$d»½‹õë0e%]¶T"“ÍËÀAU`¨xË¡°B“#4$î6Ã(´ÝPhN·á 2ütJÕb—ùåL'þ%äîJðWú‚ÜwH¢¼ Ž‘Få^,"ÍÅv÷­)rÚ!£ƒÔŽÚx?îîrí¢¡þ´®ÿR¦Á %x²ÿ¯ÂPç³éáhñi'g©’9 Úí]?­«Í™lÈT¸çª=?ˆ>-m¡ì¢"•µ4@uáFÛí)½#HdAjÊG£6w (`gLÄ4–—]”+>pÕñ1qªÐÂsÅŽBA“‘ç{ öܽ õ‰½í V)\ %—n‚ÛûJB‰Å€N™³ÓèÞÓ5l·(Ì3ÒÇÿqÿñ†µêS Nƒýüϯ°Ê­Â¡§@Vå©+>¹5Ù’rN›¦$þuèœE XÛØ7[#^BݳüênyA†¼°RßÈ•ðøgÆÆ×á@L[(uê^{ÿ¦oƒÑuˆž$œ¦KÄUÿÙÿnú¾ÇŽ}Ã–Ü ˜üèµÐòû_ ±³áàcP¹Äw¤â Ij o™IØŒJ‡ *9ÖIMšÑ´ºÞQ^múÙ9Ý„nöm™p~빜ªø#Š`Ѱ¦TêÿhõÐò²—PäK;†k XÁþSžÉsÌ’)P”ç¥2Yvô’p ^F[1M›„ÑöjÂŲ^aå±*ª‹­þ®\,X²àðŽÕnKÿyŠù;h.@²ÔV¦àÌñ@]dã¡·¾æÊ×Èj$”€K´oëfÛA¤®õö¥æ¹ûWÁW’—Ñÿ¢2>š˜fç®À´TÕ±æSJ÷šÐ(‡d6¡µ {`ɳŠš€ø} úè-ñsfýŒOùŠ»ÛÎŒ‹oÐRk­FßôYHCG÷-M+ š]Äs^fŸ,¼1¼¯6²ÖªŸzîÜz“´opE±wW²(yøáA6µbaø/ðÕXrÛ ö |ì<ÃxÞ4ŽœøñPPö#E/S!Bº,•µ:i©n¸óFyXôÄMæZ Õ_D#•ˆe"…ž´ ºØ«N¥r×gÎ&>BÊ ”’]æ ´ŸIÝ ‘×µÁÌ~M |«XY$Ìñ1}:?à.¸»¹w| ˆ-r£Øþv†,½XXg‰ùúµžð÷ ~cRë[Óž„®˜©x çß¹†ÍçHô  ¦á]ëú®3»$Õ’ã•@XL€•z˜ÌEZÉ:ÊjŸu´ÉßAºÀ‘}1úá#Æ=ÝãˆYIÊÞ B©ÇÏú`[äW¾)Òƒ‰Xw G¦Êt¡–É/¤æøúOã&ˆBƒÉJ¸û$j柔œþo§&î¢Ç6ã}Ôb<¤ü'®sîÌi,[H€£UÈÖ4ûëY8ÛÝëÀš„ßU|ÑÆ¨ü€g9í‰(Êb¶Ënq$¯´ÐL…# Úœ¦E²±éÖ>1e$„C° Yø|^¿.(ò„Û*}ÑÓþØÅ<Ÿ¶{ˆOÓÇV""LF¦l>ó¹É9Ô{œ9òn+¢Ùš§9K¸—ˆñ Ou]€BQº´ý<Õ\•ŽüòmVæœÚõçÙ¾»ÃØaÞç†ßð·jØ(…2 (N—”‰ Dîø4ò¥xVzЬÆÊÒóFÝÅ:ÙbNÎbVÁ'%\.øgB yçp&vööÇF“«çŠ•s³Ü%Í ?û€+ÌšÅæ L?ùš£áሑ•ÔMJjˆ8àîbøÙsì´©ˆ>Tu.2@l'2#Cß2…(µ*FÀŠ_öëUÚ0û78 gÉ𵮬'~æò· ríô«†ZÆ;‚¹¯ ا¸E¸´,ùw¸ŒQ5®ajuïž©0ÿÞÛQ"öAS>ã €¢6LDøÊ7ºGS”¸+ZLàcŠˆ¿SWxÁíVL\Nš[[ÐŽ'Ø“tH‘„ÀËQ+\,¸åŽEx÷ÓÛL»åÍ‘¼«ìà8—0Iö)|%aðÓy»zMÓ”©sŸ–ð×Ñõ¿,b*¡œUmÎRú“A¹ƒ€ xá ŽÈñÅO£zÚÚj(‡µs—y"{‘»‹keKŠÝ×ízÔßL¥ "N¨I4”„—DûqpìÄ%¡"SfÆIPli‡AÊ£BƵŒÕ·Æc3fïÞ8‰Mf ‡à¥×*ÙÞe$êüT»±Ò;›ì pLàÈåuépúsjuw–Aœe-±8ã'G{ŸWi=³5E˜Œø©gEô÷ãòŸX,³*¸‹V0êÖî½êO8›£DUS”“£QqMíÐnL“”Ís’ÙPu”æ½ë8{»ØƒŠáN sZýv°Ï¶cO¢=™‡†ÞíoúÍÒ2GóùSºˆR€QO„vš«Pò¨"baÒâÁÔ6QÅ8O^7k¸ÈÉÿ) Ènã.—¦5‰¨x°ÀOŸ¨?Ö]v²a‘Ñæçm‹}Tuþ'; -'¢’fÇÖÞWòWßÔ«èTp þ¤öŒóÈNq:ìgpèDk‘ƒÄšÑòhL¶tôõ|øÑö5=íHÛß6‚zÂÁµPÿé:?Z>®÷|¹kóKOô¬‚åú§z{œnfô§äX^µ6Œx˜…Ï=—¤T™¤©Ž¯Y©j,wNNž®Ìg ß3n°I)2ü$‚7„‡Ñ†“.•tR¼»bÊ®’ò]3¿ ž†Ÿ¶à+{dÀ`a¦[w‰†ˆÃ­UDÉ”ïG3"E–ä8³H{Üéª%££¯ûúïÆØ-n~§Äu]Ý×ø\¥ÇlW€s9£+ßGÈLl má¿ ™ë6X›aiAô˜É”º‹FæËƬÆQж.Áê¾QÈLÌ5;\Øï˜® ?soÞëºêÝ2Œ¬O«(âË›n/Ü+‡^7[ß\WÂ5¡wSáda^‡lë˜séîDËÆ14Ø¥«ìé`´£,’ /ï=Î’Jz–m²û‚=-ÀÏÑô޾ûò 5á©- cæš6ˆR¾³j«Yíà àiª¡ÛžÎ»RÓ…ÂàDîªËpo-š|®­•âã«»«17÷÷*Þ.h/š¯_@®tÅÅÄŽ 59šÖÎ!-‰çâ(hðùøôjþàTn)O'¡7† HÑ-SŽk¾¬ u†·eµa‡ÍnÝ»?µõϯýÀææG‰$è™æ«¢dÛ*%SºMN¯—kº?Ã`º/?^Ìñ˜ºf->(mçtL3ŒØy|ú (Ú+ØzlC,5^óHñUùÃgÎÿEÊJ1ÇFì4nÌï ʽ+ÿ_ R@M="déîI<ÆK6·òv ¿³8·ŠGÏ2Â[Ñ€áÖdõpXªudÃkNQЩÀ7™Åºàô÷«ÎÐMwjɇ3CÉ¥&HØ`¿Å“•ᢠ¨yã@È´ä†uÎx3D!$ÈY_‹W9Þœêþ4êüŸLÁÉ|™gÁIN~§\Ì^Xˆù Å´\‰¡|ÂÌùÄ} mä^àˆ–™žPX£jÀIÌéö&šíb¨¡<ù}èMOÀå¨Ê]ÃÀ”n’´nÃùBüâóÕÚ X1‘H0$ mU˜Œí‘ÄšO€ð Ó_môiò4Ý@n¨p¼eÜL—RU&«bü@.,Á²Äy,¼ç£Â؇iɲ’‘Ÿ.\EáG_<¸œ •RvVÚï³Þ¸~)fþ_ot&Ŷ–»?Ž%guä7ÙkÍNÒ‡ä¡yˆÝlJ´îœ2\œiÁÛ|åÖ ¹äêrçRiàÓj58h9AG,¾/0ŠYÆÞ®¾¢• $#L¦q/Ük^–s.à‹AÐÜz¢[7Ъ¡ñ4Ú4$´¢¢†^KGz¦¹x‘Ò8ÈWUpAæñŽ—†ê3Œ¸©aeÐ/õäYq Y—ã7Ü j<ò2”Ò¾/¸÷äÇU†uDrÍÛb5G³p&Ÿ±½Û×ÝÚuŒ3ùØÊlíLüDz\²ÂÌ5þ{–^÷« *øº}r¤Y鯖ù”è_‹õµ†›’ŠX"e,ɵ8:Ú ºaºAzéì4)WË&SöRJü=ãÖ©{ñ‹¸ªæßºLƒú»„´0MógºôaíϬc‘Ùõ|F@z¤–殹^î¹7€:¨¸SÏÍ© ÷Üw?‰7høÛ'|ówvݧ­ùuœÒ…ߨ÷D´ Õô&Ì*šŽáŸiNÈÇgÐ([4ö[¤3#ðÚ]™ÓkhŠõì¹OÿÂé«uËÁ WÂõƒaã˜-¸€DŸ¤/„ºoœÎ>"I¿CèP±„¼\ ªR=Y˜ãY—ÙÀRÌf‚¼ýÊzïJž¦¦ñ8¶›œ‰dTÆ"<×ïFKj·Stá:á¡×”6î• ¶úñ4ò2òà 6m[uÃûu ›tçLW¬"À‹öZEkI Œ:oõàW"·¾ñkûxaaœíþöΙš]eœ\bì·sÔ&X„Ðqäûx¦&¹h› ,Å&°u;JÙ£êcëÒjÞfMöGûçˆ TÃÒ{ $¢S`´èR?ì“xÌ|YBÍRÿ‚CȆ¼Gw)º©ôת¬ã=í×~(7…ãÿB»™q«)_8T€ÅŽ>ÐÚÉ—óó)ƹä¯V‘¡ ´Fí‘÷X 8ÖÑÛêî•å·›éúvT ÚÕÇI`&LÈ€ÖìÜ^3Ž¢À·N+}íue· ÍUX“›M2}U„%Q¸éC>Q ÏCÜ-¾O/—hïO𢣳»œÌÒ’³D)סÖÒ'¸=6Eµ‹ý.ïcq;¸dцš7*_Õ£c1óÐn…5Vè®YòkÖæ™h ''l®fÿߟÔêN7­wƳ;pØ1© »Ó¹%Ý:íx” (Ïnµ¾WrÝ4^™o+Tîædnj5`l5U!5$ =ç ¦¨Ø%ï¯À#{ÙÙ“á§t-î´èæi~XœåÎóºo•þg€{”µz…·¿˘&®ÿÌÂsÙIìžl>Ç·úÑ):Hbé~QL¢öwÃLy»ªJ4Ò9÷®\ÿèŽ$× À³+˜?õß‹h‚ªu§Tˆ/{t[ÈÞ8²|6÷Wl믗੣mЀBÎ 9Á†cº×ô.rƒî› ÿb(ÃkÐÿ;X ;¹/¢C—Bl¡(JrË,í„Ìúž…žlËDøpGÖTȉq»ýFMýé&òCÓyùŒƒ&±Õ‹Èžì°ùHƒ³¾Ï±C”C¯©Hþä¼zIò[€ÜKq‰¦ÿdz¹ËÅY÷†zΗÀ-;ùè¡$ÌUÌŒåþéO`à:ðÑ#õ%7>µ¥ÅWõôè²êk²yk­®í—(c}ˆ[œ&H¦»}Yi¦©9Å"AS‹ Û˜Ï+½^h1»ÂšYeµ7ÛÅFwdXW.Щj(ئªz: Î)Ø¿{\|7d<‘K£%3+Ð5yFæuQñW7(8vv)áÞ!ªü‡ ÂÐàYÚƒaNêˆÚ¸bˆ—?Ã'ôíõ®¾ä9=Y÷´X™“ÜÕÎQ –ìå2‰„àõŽXZ–íd§ žŠ6 W:¨OQœ¦AÄópVo”ˆ@ê$ë ^Èî ØG¢š5!!Љ¿Í-¼jsT «úÍhr-Í:ѹnÖŸ¥×÷ j5¼•¸‰¢F˜ïëX2)˜‘£ s«ý† 7B ÂÛtlÔà>ë¢T ­Ùé¡Ï±ª¨i6õ®>5ƒÅœîë@f 4ÕÍZv!Kó•î÷ôpXÏT2sy?Ì~y™G,\Ú®áÈP‹4±x1ó0,.¥lÕâ3GÄ3,õ|i=ÆIŽàóêÇ…šdÈÅó믔h<·ÐBéH]Û6|A™ªÝ·u(—H‚[ßVÊãû—VX|A‹Ø£·<¸ÎqGlï„hòªšÂs¶Ì÷ _½Æ.e–4¨‚ÒŠø‹‰å?X ªAunûR>­¶ ¹ùß¿~‘×’ûpa£©á-°×·éd>¶"2Ò¬•Ïrâ”=ÒQ{e²— ‰ELfÜŽuV6ÿÆÓ€/[0Ê“…? IröŒÑHÌË…¤¸ïê6x'³Ê_éª>CqÔGÔ­Ù¼ád1E1x*°áfû÷ÖQ*Èùô° Ãd,ö/"ø8#%­$¾ý½1ð…$A¸\wE´‡9°DœOnêU%9 bì"ú¸#FïHÚeŸ­©þÓž Âýñ< ®KºÂ4Õ…†©ˆ.óè·Roð¯yç/Rq.¤7NäaÍ4wÒTâm Ò¡8cB{-»†ó%Ã1%i³»¢é(î¡eé’®`Œ>=ù&v„™Þ¹Y†Qî&ºã´ÚvQ;„q¥†%·ô n@-Ý`Ð>aö"„], ˆï†FîÐ90pò•ÀnáÈ÷ÿζhãš§Ì…|FÐËK¥&åS†ÒAµŽBþ~„rÀ÷æ÷Øòú”k(CÕGýêï–'*“?1r`×iPƒ0z}EB>.3ƽΠÂõ÷ÎRÊ,¨%‘3>€QSúè_1¡ˆâ#º ml]¥p›1†…ÿô—}GPØà-®ýKà?Yõ™Þ’Q´Z,­õ´ÒÐ& ½>YüÙ8ti±öð;¯2ñ§‹=W­]Ìâ¬Qo •èšgµh¼ÿu oþä±X°‚f˜¨’\•IÏÄY¢ŸLíG‰:I1Yòðëª#ñ;}ûº/ŒŸ&h‰tm×"2í//H×¢¦¾áŒñ˜~‰ƒ?QO’@;#oøÏ¼ šË‚ãÎûbv#2K ÿdOºå-Õþ®~”c‡“±&ŒSš5ѵ[ŠåHËÄl§ˆw³wy€ÊÚžM8ÓÐÓÄ–p$Á·@Ë÷N19Üb–§"LŠuwÍ(—¸‹*p¹ÙŽ æªÐ÷¤RìÑE7³¡¬—Òâk”[Oü«ÍÖ˜ÒT'YÖÉüt‰p;ˆÐP&ùDtÜÛ›Côë”_ÓâVÏâÂ;w{îS÷[åÕ™K|tÿûXuèÓ-™”´zB—Õú …c§ Í…°`^aR·¡¨ÆÌ#‡ß˜ÜîÄEã¤=Y²îƒcK.DZêpv°éŸLc‚jîrÃò”¤‘k¾V Î2mìPö’Œãܦ4.Ö;ó;âÛ /+š›Aù Ëý\¹R†uË =îÏ¡ˆq`LGù à¯åäÌG@îU/ŸŽ‰Õ—…HÓÒëð­œ>î ”/Œ3âä­ÑRƒÌ”0Ùòa^í¶×Ug¯iÞО¿Ïæ>h|\ ò.n~¬F#œlä1’.v‘/±Ë-l]Dv„é®o&¯``H JžŽÓòÃôû30/]4óÓ¬ ½›å}vô‡¥_JtÐR6ðEA—‰ÀœŸ6öPŽÒ˹<ùªS;>¹i›"`ú%ä(µÇ Äé¼`G=^4Èþ‘ßÔö8»[¡†„±=;nÍ+Ù®Ìþ­ŠDŽioNÅö¸)/KèE÷¼ÔÁ÷ÛG‧I†%'Ô=ÀüO’n£¾ +bÚöÑžþ²  ßH[aùîd„Âä8Ää½,óÍë¹Ô·)€) mÏšân²!¨Í—Bùn¢±I²M±÷LÙÐÑ) 8ª®'p‰Š/YÙìs×tÞî_¬k¦…y §.gfÿ] Kº¸U07 ¬ë“u3–DÂs%WëD*AÃiÑ‚îÊy™¯œ°XîK &ÿ2,½r´©¶N,‚ É£¹§C—-#G²Ò— _§7R]xô@9Ìèdv© ‘ÀÂ+ØÎƽ´ÏOÖÚè ñ™3cô*¨rÓ€b_NImGÔÎáÉmw&÷GüÔ.Ðãåò‚ÞKäÞ‰ùð %ƒúÜf÷!i4‚ž¯y®/4bC*æÂßZxyw£žüÛi"ØÔ*@ÌÛÑ=\`B‹Ì[µp¡1A¢‚ƒÓâîrÐVo ;«WËÆñ¡ ¡G^pôËåë UÂ4mOçʼlwLOоz^zZ»– Å`*µ|¼îTæÑW4æ†[:Ù:{Óý¨'œl‹úh¤€¿ý%‹5Jok>gçóhìÝ@¿Ñ©>¼ÐÔóø6·ºÁùß_ÚýY¶ƒ7ïÏ¢#9Sªíó|±Fnu«ÁBd6v¾Ÿ1¼Žbm¶×j‰gîilA•^ÇC|òÁÅGÔìWw}œ [àÄžH VP;Nú » š³ŒdGÕ¤[‡"e) н!ePãK‘=ƒˆ žÒ vAš›ÒNJ-‰!–¡6QïqQ×<óïâÙƒîûÚµ«gòÜ«¦[ËÜ[púF¡—ìë“U±Gte Ô×-t¶sÌ”goDâç¿ëš& ÄŠ™ 5Ú§)šÛÇ'mV©K, ñ qlÞ#&ш £áã®yÉ8NzMéô¯× øžg²Jª¨˜L¾Íè|)BzÔárg¨º´Gï}mÂåo©´°á¬Mß5¥x|ñ6N¶Râ™Ê„ør|ºÝFøžªŸR³BcÖddtÅ}3²·±jÄ–¿£†Ä6yQBËéοaœŒ^÷Gòkõj- 5àiz~RÅÒ8û¡² ¿*›wSKë<õø1…¨Òû2)AZš¨ÀÌÁ‡ð³»@Ïú%¤2)¹oì9¥W m»ßfÐlYØtzBHòµØ\ºŸ ×)îX ªÃGø–ô=OÛi—?–Æê ñ-˹ ¾G)¥CÕ"}q#‚©(GY á˜-©CJôŽ Ù5Aõã$ÍîÏA)§Y2@´C)ïCðY¥ð;›¬âPˆRÇáI5ôkaÛ²‘ƒT¶NÏ !¼si/ê6fé,GªkÊåwÊIÕr]S@Êõ³_ä”›ËÖÚ1™"›ÛdÂIBÎÇ#wr¸Æ_/)éàQ $UåBwùRyÙž»ÈÈÀ?xÛHŠ/êÖ»²ÃÎ<|}ªï|Oé¹)¯Û¢J)À½ë{jz=y¥HÔÑH±ëµ–``âu"%é') Œ|O=2'¡Àâö øþ7‚¼ +!†±4‹èlúGŒç¼P®ÆK–sˉ…³ÚSÎz—O+^e6gù2.жü\3¬ûì„C«œðyëáÌ¢Zá¦%Âêì$QBÐ^(pƒç÷íáÁ\²ƒ^¡/e‚X) -pÜÀ<¶/Ũ¸¶?'ögGË¡ê —‘ã‚¡Àf””rí5¦ŠU˃ „[Ǫt"?ƒ¬KpG³'{½Cݯ rÂÊÒ¸ä Vøúž—ÊÏÞ“^¶6s–\¶{Îÿ‚á¤L0Õ?&ý¨¤{U^~5±@÷Ð;ö|íônõžDù;}›f݈Äxf^ì¼ÖÝfõÊê±øÊ¨ ›¡¶•h•}’;ÊIuËw›ª›sp˜ÄültT¾Ô²©ZññÓÜVçèñÑÊÆÿe Õá&B1û r›˜Dp/RÝ;½S;f’Ÿß6QɸPéí¤~’æžÍ‰”ìP‰Ò"»ªÆp’'À»d7 ®ÐVgíÀ{쎎&µ¶•„s­Ìæã“M­¹¹‡Ð1‘RÒk/Ó—wʾMÎZZˆTÕé ô2K)¤ë:‰šÛG¨ÕÿN>il¾“ < KuÅ5(ƳyZŒ€×Ìæ*±'†›gÃŽÄ2È6H²Z‡Ë ³7.-›*q_ìÕ†Ü8祖0ë]ñ×0'‚•x«X댦qõý î??>I-Z»ìE^sgZŸ ® *±qcºX½íöÜ’3Žk&ÌVó…êˆ @‰*ÁèØ²9ÖŠ˜€¾œ*˹š¹!Cxüdg¼\üŒí£m-wNb5ì[gX{GMùM šÜýº#,©uÌ‘„z+óîaâá-Tl²mñVQ ÂtJG„;<ŒõH]¨ÞûÆÍøY8öQ\g‹/ë¸"œö ³² ÷,"°híµT纂íKÉæÑ£BÖ”³…¿”͉V§ùÀ‡¨±âK U¾£ÄN ?U’TP_êô@v±nÍ6Zç‡ä4ˆ¥²Jɹ¾ÞíÿËJÿGÒdMãeà™°ÒVÁs#Z¨ÀN“,~˜88_~Å$ïwr}£H‡e FÜ48È'6%Eι ¼Ïª²°µÕýºa&…ó:—·ÊÅ‹™ÿX.s·Ò|Æ#Ö¼ãz!Ô‹cç>³Ó¤Ì´"}à!ºÎAsYÊKZE*ùу6¬šªKŎáÙæl†Xú•çýÏ7 ÉAVŸÅêãÈ!ü y†/ŸA)ÑJ¥HÄ™pÖñánÍak¯M^£2(s„ÅùÈ6äÐ_UQ­²J_¶ F”»¢Çk¥%—ZýH8–îs5g<Û£y=_Ò,àeΡ‡‚µ;ûz– “³°è, 3=k8™UœÝ "•(c)4‡ÚÚL7îdv½V"ÐÞ¸agé±Û¯æë!=„ð‰k®®ù€ yüéc#¸w©Ë:³ŠüU‹@ü·°çÖÂï!kšV“ÒÜõ²è¡~‰¡ýn÷=ú]Hwþ´‘ŸßжóÏËl^7ýŽ ¤n©kæµ×n6„“I§— ’å™Wë<ö%(¢ßµ5tܾ/|©0$CS© *Ÿ¡ghúO=S~9†+W hìí2š|'Â%¢‡ÊΘ vˆì¦wÄ˷ׇ¢‘p(GÛúJlU‘8a‹€N_p&6OÙ³¨%¦FôI(,ì.~ØÍå@ã¬7Rôï…ôê’„Íœ”dY©ý»J£¿n™·RߟÙP”‘ùs–®è?Â@‹sÊ’ë¡ðK‘dýKO(@M€æø¬Ã¦K×RÕ~¶A ŽaÄíL ¾üW‹PMrîG*6[[æeÂÑq½ß¡ZVÑ…"%ÊA ÉFŠæìÜ.Óa° Ö3™xϵP™òŒm%v½’Þ­º9°%ÂÎB(k²Ö"¢·€„ì´{· ×ñ3–¶]Ÿ&ª:‰Ëظ’`‹_C¬Ñ¹aTµiClJ¹­ŒäÐÛNÒA½Èl¿Q¾ò^VÁØÕà^¡ÉåêÌ^Ôô äâhÙBï>¤ýñ¨ÿìg~ëD6Ñ÷¦Z¿ùXËÌðT» vZ9IÍ^â,‹›]X4Ðí]Η2¯x’K"âÍ­â„J*ø WµðáÝ`[¿@wèxØf —ß™8/×Õ$Û¬ýtÌiI–™$Wã=³~†¼ºïbè¹3üê¥ÞëI%Á_é%Щ7 ”Rù„leþè‰9„¸; 0~õã-™l%Ûp¥sqqRLbTõÎö°o%$*äýZ¹<#•’cËÉ}JþÛO¦„ÕÜO pPnd„ Ì;»X6žšŽwî#}‹ç„Eó„7¸`l(õ—w8ëòÀÞÝmJy¦ÓØAöž n°³ï"¹Œæåg,‘Œ2Sf„Ä=Ž`Ö—vóÕW{û£üQ~CP•Þr8mÛ¨÷#7ŽB¢¬6Ì𿨥3µy—Y®WŽ–mj%±Þ 'SîZÁ`mR:;ù Ñce8I9±(ñp~<Á'HM~zâ1©ÿþsu”X)RÊ"?røäŠ÷ÅÄ‚ÐàžXݧ ‘tyƒ™‹5Æí§Ýß’ÿ`¿›i’åcmµÄßÙ‘~é†$óY£•Nq|ôeˆ"sœ&t¨ìàѲ癩¸ ¼‰úÁ‘ü0‹ÞL¼¥ŽÄ©@²è.n÷‡éBR+v®€×,ºÝo‹»¥ßµÎV;ÛsÏõ/å™Ï›–(ƒèÍõ9½có§Röüíj¸ê-FËâÿtê즎:#_8ʬ[Rç_W¬%—jÜ÷<)ZÊïC¿ :gǸœQAÃ<.ŒB°¢ƒU@MçÔéiÂÓß,ÒDÞÕØ– Ñ }Ca ø82ª,÷þÇ-äÜê<¨ù‹¡æ*¬V?n !ÑÂÚ£±m¥Â.¨ Û"]ÚÂŒ0Ûê]÷¾ùdÇQX®ÁíÝÎ¥²#éSóaÙ †fG…á»;”:»»Ó¶ñÔÝ|ÚFa…á;-ÛÝ(‡ò"Ó1iâe ²€›-.Æ´¤§U/$U$·µ¡§3}n èFnHÙi»J·å=]NX²P ˜8÷ªj$ì©Ã4†ì#õÖÇEÅ;¾hG΀™Çý…ì³À€›ˆP¿»$}jSl–!éŠ0íc°D…sAÿ>VôѯT7¥±j¹RŒoE¤®!S/MU=ÄvFC¿r²j#B䜼²,ª#¤®œÜ^5Oöåôðcêù?ói†›oÊK°‡ß‘Ëýù›ü—IÈžâÛï ñ*H]3¬Ÿ¨S²õHc£Cå—áR)¥ª&%¼aöy¯¬òÏ`PÙ½=c¦’VY?…‚Bß!†éz·§µd’è¶ ÿbÏÑ¢>›)<{…1†w@*¾x.dWP[·ÚÜ–QLÞ½{†‘çõøÅ2EŽÆXè(¾”ç,åh¬Öu”¤È··d'v­+’§:†9Jú`_à=÷rC‹k¤ÔƒÛ08)°`™X¥˜“Õ‚–½P,Ô…GÊmÎs€ç’PÉüvËêgÜÿ2Y•ÕÃáþ ªy“R3ÂÒê‹Þq™Õí(̽ìlg,Ó&ÏëÐt‘Qéð"*bºC:Áqv§qðœx5ñ]²ñùÒk2°fÊÿq 6+ÎJÑYv³îW£_°¢…ñd˜t^ú[y1…ÁÅiPÆ÷$G•“·/9 ùˆvÞL(œ¤ üy¿W¹¹þ\ÌW‰p™6 §mÛþ…PÁdãGÝà àÃxùõó‰¶ÑŒ> O…Æ.V‡&‡¤Ü$“×vƼ—ô=W±ÎqMž÷ž€!†ðBä Ðy‹¥°ç¥ ¶ ­‚s ڇɊáh: ”¡ 6ÆÍH6GóCIPíÕ1NDñ\ÒQÓj*ÿN¯#À PêìÁZ§A*s šäŒ8¬—{Ž«¸gg]g¸ —£Û&ž î&õbõE"8ÉŸÕœþ‚ÞÀUN0>˼Œ² ÙÇ“aÛ:ÅÁ²GÅro¶½_ý9ž]˜ÉêÌŽBÖ‘ ‰Åª w—µ‘¼¯0½»j^óÌAåËÏŽèJÞ ãý˜Öú#ÁŽ¶Òªþ.üÁyXÏ»»õ"ÂûÉð¾[A>†ÿs™¾_ô)Ÿá‘°ç‚¾©4ôYÍñK$Ð^ò?ìéM‹®$èÈv}KñÐÌC-/Žœ‹˜˜ñø1ûä(Rß|\Y­=d¥²T Òæºú#â; {¼´ÿÃÓÄœ´fœL”˜Tu\ŸhŽwžèËÎ,À–wbOHR©EÐp+1í’Dü«6 쟆A{¸q¦Ï:jñtà»íõ­¤Hß NÉ£5 »˜@XÝ—U_ûÇ9fk¤_±è}¤’æóÒ¹¯'z~\žþ„Ð9 í[ó™’7ÂtpY½Ûêp+¥A͵ûmJeÀYc,^‹¡žÎÕƒ ÎÄ­4¿9ñg'S~Î~ÿè)|(4ž?hŸËØfR§¡H}†¨èÔxMÀz%I« l•Wj㥢.À¼1~ýå CÞ%¹IÑÅ®ÊιәÞÜ}ŒÆõí½°HT½SM¼öP¬lªôºoºèVh‡O)§K£;xBéË æÍ5Ôƒ:ö£ÚVmذµûÑŠ Öá™ÄíÎ<´ *©¡ž:x¨—o_ ùEÙ)›ú3/[.ä&9Åg+ªPêÍ\œÝ?5ëêýkÅwW-s;é¹ôc÷i§Ùi<J©ìšÃX´û42ôËnޤ e]ç iê¤D<6¯"}cIS–gæÖuo²ÿ¬XPCú!!z¡³_-Û)EûÆM7X|b[¨ÄÖ<q2DN¯Z7¬nPW©Ï«·»l‚ÆýÊD¦¿¶ýukKÈ⯙iOiç¾V}úá ¶¯‡þ‘ÿêkçgåFÔü”wò ¹$o_š“ 0Yæ¸T’EM¼‚ÂÉ`ÍáÅl«¦ž~véÊ&ü›žâÊnÒð¹âD•Wx­ëßs'†ü#º¦n*{Œx m¥€"~†?i{™üÓàASž™¶ ieO]‘a’! HkBÙ,ýäõÌÃÁòÐ~"ÏøQ#4ãóš x´ž5Î8ƒFW£‹faIUé$9*ÿ7lvYueë$õî¤Û”c«3Ò³£Ø4”Ì-·©„Go){U@Ÿß¸–ÖÛdQªÑ°3õL¤Éû'@RÏDÖ5aRÁ‘™±óˆ¯–{.c¤hïê„ï¼ìYˤ°º7í©«'Õw›/Ðë]‹22ãØP€2Ô  ½âºÒ¸.Á¦ž)/[ᄂ].—›q$0pýO ʾ™÷šè|éiϪԊm¸³³;SS…\µEýžïßÁ ¤‰Úw[4ÃÛ²MvŶq|¨KF)¨­»‚.xŠÚjFºÃV" BÉ.í$±G¸&ä]C¥[k•>Ƕ‹TêRN!O•β• ¦G_ÌÚ‡ƒ°³KR­ÅÄΪúsUL¦Ö¾Ï[Ú,ÅzøyÛ~=×Å÷„|©âã¢0‡9V'àœ-ÄúÔ™[ŒlT˜ó+ÝÕÖ®[‘Ïãfl—/a92 ¨¼oÉê¬êÁjwyui(‚EEc 6  ToF]À’§dÃHÊÆ'…íƒáw $ïDÂ7a—”ä&Í~ò`@ìŒC~)¶`p¨\õúµljŽ’áˤ¥‡ˆ1™¡ÂÊ4þ'GÔÿQà£A¦”>Èdé’ Û”ŢΘ¶ÜœÈê4ÁWuÕªöŸ›JÓV7þ(_}†²Ó¸P›ÅkÖE”•뢮nˆÀû*M¯ˆlÀä›uKˆh¢u0lO>øxPmIë¶%Æïü µÓ Ð(øÜ¯ƒîÕèT'×>ö‰¢Þí»£ä1Í›RÀÒêÚ†fåh'ºä$˜6Mi„H÷ëQ¯Ž)î±fS•Ü[i…Y¿ Å8ûyc©;kßß§"]ìuåô[\dÌKܳêaßÝÎ^‘åÜ.9°¾/›:Aã³Kˆººšåm>7€á·G‘øÏXçÏÁ`½¢TD°Ñ°Q‰Å49‚³Ýì3hg®ƒÀ3²ô­-:õÝþêõ«[ÉÓ¹Í쨓94ƒf3o*º5ÎÎ]Ïcm¯„û ¥¾c+×ZàµÊ6_‡¿ð€+oôüÔhà&<©9¼)‹644Ã5T»U“µÉÓ·ýNêô H6ÿ¾äó0œ§%|ŽóÀ Ãå•^”Öç34×bºE@läï&Z4x¥Hbÿ¤Û‡œ…—'„yzºÌ…|¼ïûÔõ?ŠÅðµXÌRæ.yX¾Ÿ™š¾ŽA¼„:šòÍÚÊ­TsûÍ9p ÝÑ\Ü=m}¤ÕD¢«Ç ðÖòháDXd4¦R4žRÊ­."T=#Tn`fò×¢& LíÕ]—O3²»\ˆ£Î2íÓ¸>;ÀG!ûT”áÖÁ ¦Ÿ_ÞµÍbA&"IÅyqÕ[ÊS]ôðÜ|€ÄËÌ@Ò°ìœt(Í•ÆXÊÖ"çSGŒ}<çb 샑‚´ƒ³ó›fÕ£ ¯ø'’ISšÞKÄ‘%ùƒP^`˜F4”ê’i2Kv –¥á·k @þVèŽAfEŽI QÔ5_òíš¾éaXCv»Ð Éãpî^kb@=Cvä[ÅÐ\Ò@VíáÇcÞ ÇhÍø™eÛH‰#7µçE¨Þˆ ¤ål X5»lzd :UœW@8C‹hÒ5Û ¡¶ïP¼ˆÝÌ Ö³%S!ÏÎkàË–©œµÍqJ4ì`ý´&øZÝ=ûú«V'š«EØÄYF¡ª–¶Þ[q¾Zy|LÅ…&5¡¨· ÁîÁÚ3‘GŠ#²vÂPS:;dš¢®kM•š&Øû}Ý/žƒ…æ#ÅUÆÃY Ò¤–9e(–úˆWH8ƒã·Q!n ޏÈN<6xi XŒ¯@ª'g(ÓÙQE¢&|h(`'hžÆ\ê="ãÝ—GÀ æƒÒ¤—N‹±Çiéb§=¤ó›Dv;GÓ ‘bÞ~b …ÙDzìE~³‚˜çÔí+9:vÍüN€cïøË}È—¹–í#{ÿ<ïY#ñ€l¸Ç(€pÑnB-‘â„_æáÖ,,Ì ¤ß‹JCÃþRz{ .[9} Ò¡jlúð±ÑÏhäMÐüö#ƒL\èJÁƒ†»q °¤M>“'œ¸ªÙlœLÐo¹lÃôùZ¤ó=E2ÕI¾ÊT^ ‚Ï¿?7gg ¢œÇ ,ì˜GŒ™Fæ%¯6ü<‚ÔÿMš†sØ˜ï¦Æõ‡OÐO½¯©¸AòEÇ‘Xj±•½é!Aôqö2˜o÷³=~7 *½·rz?¼+Áë‡f‡[ ,ÃŽ¿MüÞ1ÜýŽsU_ù§I¤…ÝŠz4Dn»×†‚€$F‡ý ÄÝHòBÛ³cJ0ðd­{‘ÀZ*Ò›ž›#&‚ÜÊeEe¤ý# ¦Ð(µâ€{+éã7¼¼¶çÝáR;X2Ö]õ^ú |âÂ~á–õšHûåâò²³þ…èWXL<÷¿!”n‚n£kr?ñú—ù©Îm—nÈ ¤4ž—s5ŸžmølŽLÓáÏù·-Ñ QêЩB›—x6Qv‰àÙXv;¡?4µ?>hÃ7x¬¼s‡*‘– «À;rË%jý*?<2_!°0œlLÈ>ÛÚ¢«,ÀÒl¯3¾K#EÈØÅ3eن͠ÊIM ÞÿD 0•]ø¢Ó¼‰Ïú‚;€¼!B#l­º#Ÿ9z„4 C@öPÊJdc‰AùÍùc¢.'Úv:ÍWlv®\sf’ ö;\9­tú½Áïã¹Áð×b¾¯ X†…àÍžHgjY‘´xâuyŸú;ˆ»õÂwZÑñcÌg>f®Mu…A‰°»®—R:ó# n+-óÂûl’®i§ oVþâ~d˜ôE : ÐxÃâÎ[ÆÂÑà3˜6Ù’Ñ•v•ÔŸ#öŒþSl‡®4Ö ³MŠ`½.Ù¥x†’Ñð¡Vc~NYy+H—¬Ç™f‰_±4šãBó¥y…´qÿ¨¬pö2 2lK¥ó½J}¬Jü÷֖Ǧïx„†0Ž6²­pÀ{1õDchïLpá…c_ï5Ó)=ô–= CˆÂlW˜ïéQðõ ¤õ~ÀøêU2.©g…A° ¿E;Zc{Ò•)¨ß~„‚O¼büÍX|7E“žb úáš)y „gÉèz$†Ûâ†õtŽÑv,§¿¤–šòÛ‘Œw’gßG²OØ}²v?O©êOü²)¦Qx/T(íÇP…ƒ“£¢Iib«WTÙÝû´ûb£Hµß†o¯¡Äy€œtQ†Óé}½B¡(ñRu±LKé¶£>Qß.ù’WÁLäK˜=œ*{d‰ç2¡~rÂäÅTTe|*6Ý`EZ.¸P±ŠA¸nš°­õ 2o kVŽy‡úëûço(%&‘¤|ò4M tÅøŒw‘,¸–£ˆŽ‡¥M@'Ó‚|m…z[‰ú¥ŽF³ëø[ /:îj@@ìD›ÿÇ$™{iÝèö8ƒ_ϾÚ+ci÷‰[ÕŒý9BGYÃ×kR:ÀûÇ®XÝRÊ l¡Æ°-@<*5"ØŸÞß4\{)¹éH8@ŸLPÅ·Õ{ûØz‚Ïûô1¿]“ªfÙ9Ïõ4Ûa÷½,=Ç·ülb²^|QC;„ F¹Þæ£  ¸Ñ6a W#Bµ2FœªYOÐÑu»®ÎëÿfXý«&*¶9•«ã‹Íðí“b#*ÎjEå×<˜«¶Ÿ©:FÜ\iMxOc{•‹øÅëÏO¹xZ õgïëlÞœPÛÊ_%üFj |‚W°ÜbWà§b  ”¥âÛs ´”žõ´k3#[¦³)Yh¥0t×ôùh¥ú‹ΫÿwÒÓ~A|ê/Ó@Ŭ0zñz3"Td­41a“4ÌýÉ53æ•xÞq¬-n'Öœ×ó£UËUûnrCPju*>åu–'²:õ«>3†¾ÃêÞ}”yN l` yiÚ—# Càmï?Ѹ~árêm$Â+‹*ûïkfëR±`$õ5½ðàlxmð¶ V!~Ó%øqú*E2ÌcÄêcP)¾‘Ø’æùznè€d{x‡Ðbõà·àÉŒÁ›¹¤Îšar· p4ýÁ:ùÜÜÉÌ|a$·{öƒ²XHm­“ZÀÝŽ“ͯxÚªFGU³r<¦¸­Q!’ÕÚ5³ðÿÙoƒ4Á!tƒ¥åZïV9$€ÔYMÃV‡ÍEB )”R^0sœŠðP«¹c|WþYZO¿sÌ—®8O!ó˃TfI ‹ÿÿÒÎ'^›Ç3Àî±J-?Œ1[ÇàTT­{×Aqåä¢v >[>ÀvD€Ø¡,@wJªU%ÍRÚ+àÀªOkV‚TÓîP~Þ¸_†ÿ”^ÇÉÞšwº]nÝeâBó\´uhè:.TßàlH1ÃL;A÷Žpø8AaHaö» +”¼òûlÖF6ÕöQÍrRþ½‘F-…²fr~jFþD¤øoòmkKŒegÔú,Ö.AÉåŽh[¿äŸ›UWLð²Z÷ùU+§c±KJ˜¾ »B{™›hƒ‡â¿}mé;<³>ârxbŸÈb£Ø‘¦*Õ>ó‚HÕ2GÃŽì•fóXß×çÉúXÆá|oÂmzQÅi=¡OýQ̘>;”Õù«§åЏ×GÊ¡c8[ÝÐwø!ThÕº£/ÓˆlæÝ…3+süÏEâÙ®Wbm„ÌGÕX¾·Î!ž.€ãSÒ§EÑa²7œK\{nûJ„µ¢m+wÇŒ‹©ãáôí×Úª‰îPÑeô‘Cjq¸Û9~t]×8oMŸ4\!:£:9? 3ÝæÐ­NŠžnØ”Q–Tº‡ß^ˆRdbCU):â?l‰/Ãâ óç¹É‡Z—6­|cÑ/ÜëÕß>ðúŠ+äzÒ/Ô¶ªûÞˆeÐ}¹µæ°ëoÕÂÆDþÒ¡NÞwÍ•Ý .Ͼ7!“º|¦º&÷³z–rÒ KµK–e×Ï08’`!,õU8Oˆ÷ÿ¼wrä´Z"^F8Ö «ZjÄv%„Ogh LáÜlJœšwè‹‘+2i+É{Þ7<å»÷ûû°ž¿õz<É~É §‰þò |†¹Âäεz‰†ßd!³Èó€1¥dp÷ý—á·§TrhèK¢Ç™ÅÆ#©æÌ¬@—‚w 9Dcç¯äýõƒ“šeïzIeôã h?jHÓÞU‡Y ¹Z¿¾«¡²щ±@°`‡ôCòÜ£«÷K¬¡ÕfX:õAno¾yÝF’a]*Ø(½µÀþC›™š‡šÈÃó1¨‡ Ê_¤o0òŸ·H¦2êù…^h¤nºRAÁšŸU]ÎüóU.aòuÐÏô ªOö;—¼‚І“’ŒîME8Š$ÍO~%0céAšvŒåBÒïq^Fxÿ…PWÔŷ½cÒkBðÏ‹D n¯ÿkç99Ó6妮¶³X©&éBØ7o Èî{Þth0¶‘ƒJ¸/Ÿ'Yò(c”¼\ÉÄáü#Óg³¶ðþÝ»W"oO­Oeð4óÑlÏçÕy]18íJ«á̘ïí¸æ&2ÖßýDzp,ptÉ?£UÉ{5yz£‚Ëå@ï&I];l‹Œpûx°X'äGíD“—¨ <‰³ïƒÿš¨(DÑ2I2ðGá½ïˆÓ@‰'л==Þ qíf‘º5¶?Î:ç$º£a Ò’+*ôÆmm3赇{X'#ÔÖvDñ¤åú¦òœb”÷ÕÛþÕ‘tS/¦ôfÜzwØC§ Vù^„þ` åÈÐÎHyÇr¡JÉ곕ho©² HŸ/lºVÒj ©?“›šNN˜™¯ù*·Ã#îÏÙ)îˆDëªÈöžM•Áۑѯ  ù7 ÀŒµF7b¿FǸlñHP:g¾Ú“z3 ½ë¨Y,À†Õp4wS I€ÃP´v,úBáIH©¹N^ ©yù,>tvo Ÿ×üT6Ð Š@/ö}= œa¼ÅóµTýKÒ?aLª®^xÉ]8„i¼?©œl’Ã+?Ÿ«E¸žŒÀáÜ0[(ÑM<ü!R»w@Q„³‰=KI4ÖñŠî¡eC¤NãÁÇÄýìÅ;qÀ|Ž}9/…Ú–c„´ÎxrßEk‡OJ…Ú°Á„®™úïOaeå¯q2b~­©±KÔ5v‰Ù^£QMV÷Ö¸°KÕ®•õ9ˆ+Â Š >y“f¢°P‰'ËÝ^ 2ÍIõe[DC ax$>z÷RÊ3â £ì)ÊX£:jT²¥L¹8uZ `ûM‹XVííp÷œ£—¿‰è¼^‘í(ľä•©Y¢©ÍëÖG†Ñž¹9Ê‘†°¯]Xx9~«&õëô½åZtz¯®QÕpX,w{ÂÒ™Ø3J£%GI¦œ¡ç·‰ZÇѸ>õ'çö¬¦îj¥ ÛPZpO‹C>v6!UB  ´ÑÇѸ%°`"ÓjçÒsF>º8D…xÎάq«T^š·Äª‹Œõ Rfl úÓŒg¹i f´µˆÆ2Šm$sQ‰& ô½×í  ~ž rÈ[î‚:“¡‰ âL\üq·¿CÌ5ð±ô n“%Sä  „:‚8lGßØÌ·Y“2¬k÷*Ut : &>#¹ø@äVgHúe^ÿI ùá¨Að‰j/8•ܨ=™'ù&B(î;FçåÄ3™m&ríõow5ø&djªög6IÁ‡¤ÊX²ÏÒNa °^a•‡« žw©÷nd³•v¹üµ£Òá-ë:xò“Æ_…,õ Ò´éÝÿþ5¾|•ŠÉq¨Œ š= K«Sý*Å.Í”á ;ñ<ˆBîOÿÔÞñ´lžó¥ýÄö.¯ ¶+ÓTsÀvÁ³üYiÉ ¢ °|;æß«Ý¼Á!Æx>­ ¢RVè5¢¸¦cuNQá‹˼‚¶•°¥ÔgUð¿uO„¹øÇ ©+Ge½,0:Å€#wv~C妬 v˜f°K{¢}sŸämûŸ’/³_…á,±Æ.i|¾™ìx ¹êxn^Âx2ÎXcØÝ»2uKÐzÅSÈôû…±ƒßóKëàå¦t1lÿY»:´_R{,Û ×‰*wû÷)ï÷uñq«#ÙÏÄ÷~”ÐÆë¹Ü%åcºŸˆ˜&·døGŠbØíþPEÔ¦tƒYÍøŸÝN3,ß:?˲ÛèW‚j£,?¸¸w8ÐbÚj”“Ïa¾=; ËÍûø‰6AùOûÑÜ·àŒ‚‘Õ)ÔL¨[ã|úb'-Ç-ƒ±-†6¸­¯×“À¶Z2N™™ºï¾†ün'8…jŸ€àndZíîCÎhBóû‹OCÚwpÏØ«ÐIýF“äÇ–²p…Ñp]à>}ò ~åñèqÙ ¯¦ŠVæ„15Ææq\¤ƒì›Ê—Æ\ðè$È' Ïœ%ê­½ ˆN2u2äe§çŽü\%N÷{²@üYùµ~$ôë4 í,›­çc¢æã·W#öóá=µK¸ K榎`@yEÈìv:Á;Aê³qÌëí˜p–šÒ³ÓY×@Þ|»RC üÎ.ß2ɽêL4;—ø³‡h1 p¤ Cã‰FW°qH‚«ÿ~ð,§eíýBˆu4'»Í1P—ÿÙê‚E¦oMÞœÕZ ˆ…ûˆ_»ÓJÀ‚á•„ WõÆqãöVØ\†èµ ‹=¸`¼øŠvÄ+$ ëzŒ u»:œ¹Y-È‹$s~Œyº{¤eÍ1Ƽ—› ÚþëÃn’•Þú”3abñ;?àå¼€ä###±(¼U­ÿÔ¢€>ÚçÇV‹>=#,§©}¦ë2ª|¸,ŸùØÖñdÂÔ§GÊ;ÿ•òÎU»æ&)¸øgJ•ý€™ïW°/Uî(ö@žqÖYTÆ6¸`96ÇFB>›cý{†s+×LîDQì¨ÖšÛŸÍ¤êÞNW«’µ(øvøßÏ.dκÞÂÙåÿëΡÆL7Geœ_\E‡Å§£©–-ÀTòA#ôEM¤¾±ªç•ñTƒê?àô<#ä^„Õ´h Î·Bs­“,7Óµ¶7aášQ(£azR£TPí²Sã }ýT-LĬ‚ü VÅ&³ç˜ÿw”FFãxᣟ®×ÛÞb)oD¨ìp2×?OQRp‡¸Ã¿;ÆX Ö‡í² éáÏ|6£¦L`Qîl£«n׬/©±ÍF55¾…Fa›®¶-³ÿ™g¯y­õÈ *Þ¦þ°ðŸúDF["½=­¸Ío虩>_~mAqOLžPqƒl‘‚ûW ÃR¬NÎ&8p>6rðáÕtÿ×-@g‡Ëòø×¤3Û‚ ͈´ˆg]Òi.†`yù—›ÙqÆ.( dÈæŒT¦’PK!Q 0_dûέô‡hËËÉ-8ÏÕ"»jKw7åd¥c®¼¤2¶¶E9Á·)&ðÇpŧ‰œÎÝv~_³hŸ`r'1TìÔX>äËØÖl³û…s‚föÞêÖ²“%š›Y¢:¶çvp¦Ã27“¸L¸ƒéöMã—ônU™:8iv©JW¸æ^šÎ¤Èöµ@«žüŠC5£ö~Oe@2ÚÝZa+:rðÅoi~fc1<лñ“jGˆêùtØåÁ:N‹’2+·•o+´üØ¬ÖØ@j£@ÅŸqe$çAؤƒtlu=¶­>׈§oÈù eék2Rì}sÅLëȦÌšCà÷¿6œ&o\ãÎõxˆNª¶¬4<ÉMr²d+`3æ§'ñk_JüÖ±M™X;Â~áyT[z¨Û{pÀ.]§P$C8l­ýf{‚B¡fÉ™ízß7œ’'BÎÓ€²Žt`ü)m£ ø*r6-Û‚‰R#$z Eyp¦Ò£vüjP„ Ó]¿3ˆ_õmP‚Ýø¤Þ¾åƒXëã!«ñõ_á¼ÿާ‡*\ ø˜€<÷4HojS¬š¢>§ì—:§¦~µ:.ÈX0+ÕàY,y¯Åà‰Ès¥Í’4å´ÝÊn†~‰Þ)Ì1Xû÷ró—ø–˜§~c“¦‡ƒ¥Q´ -‰ú¯2^îq¥p‰­ˆ(/e/Ë ‰`ÝÐóù·ùåÀó™÷ØçlžÎ6ÉÙ¸a¿Ì0ÚË’TCO> `ݪ'DÛ¾íý„˜jRHéôz˜`uÚÙ•ÊtúE ÇÂæ°-!*>4›¹¥*ªžÉMx¢„0æ™tïkÎYÄ,$c7ã3þÀE (‚1©’ÇLKçψ™%‘  ôG—×a‹jvæuR°°ûñò•ëhÞÜ*.€%*¹ÿSKNhv,ð%æ*æ¹Fp'Û¿“m¹·§’»!O‚N «^k„·Àⱦ⽠H‹âhÐ6<[å ÅñÍËlë¿O«ð(Ò=%%’Xó'®£ÃBã¨Ç'kÊ'›òO{ä¼îéÛûKK/³èÇT‘ÔI¥öÔôeôâ©‘~ç#h•oÝ}<ÑAIj¹&ûômeR:jˆpbHq ­Õ—æÚK§¨ô0ÀïPµbà„•7?„÷öB®™Â/ÈB£vÅf–©w‘€e>ލ8˜5g³)\Ý_‚â×¥í9¸¹º¡Ð+q‡Óm\x!Œi´F¾%n0ÒõàüEIÁúýa^vº&ÚfEw ee-ùÁIq”üªJÍÆ´ÂÖ—"V·Z8\!¦IÀ”O×d) &²(ª$I€¦ðŒs÷!@|j=â*@âV «¥ ¶jžTÙP$X(v‹èàŸ*”þ§ùRÿo4Äx²&M= ôöBkÞ3ž©—²kñšPÖ‡AœÜ„âG¹ü$³Nû’º)Ñ9çµâ1oK`-#ŒµÆû OÀÀiißëoF› oUßû&w“Ô>\€1:*Ý brN8£jšg™ì¿&…s.B`éìƒÜ…N€i(þÂJ¸â:¶ oŒïþŒ·Ïsm@)ИŒ‹c ÂnZ·{Ç®g4¢Ê.“å„2æ•5«yÑÏÒóà>Í«Ìz¹xw©-CR! ¹¢ƒ6_DVõ±šœ?ELüÐC‚Û.r[ËÀ—†rƒnìàíÊ#H?IòÃpÑd³_‹Aʘr¡ED`Iƒ=> ×ÇŠRË¥{Zc±{|Ïöý¾ßÞèBnºý‘ ò‹w‚¤ØG¼7³Vs©nGþ¦YiJ°}R‹éШ–:×Xl¡ÌžV,t͉“e³“-N¶·y1@Vš(bïK&2rÿƒj59ú€}ˆØ$©&^.Çôë~¨?)µÎmÆÂ 'Yùõ&ß[3¶èl¢”•eû¼’©áѺ•k²fsøªùˆëùÇÅ&G‚àï~rû8ÚÓÙ«}„´mC1Ä›ŸŸÊm6Áð3‰m9¶ ÃÁ@•“–éoЏ¬4­l¦ÎÊp!>•¼¤dÔƒÆ:/ü[Û¯ŠU‡f‹cpáDJÍJ»¾n÷Ð|ò¯Q¸gL1ÔŸB+«+CÃ×Ú厷ÛÇŠ|P<Ÿ"…œÿ‡Áö ”&§rÊC°fªR˜TÉ9%ÉkÞ8¶[^VÈjp( 'bkë8©ÔÏ^G}º*Ö…nÞZÜ5U0kuRÂÇhA1G&=¨ÿf¡LYÞLcÇ—Ô°„üñó?}hÌ‚ßÌÔ…o°e9üþ^KPƒÏïéòZånÑù™ KDÄ$-º€T@ jXYu«+ªÕ {ÜÀ–î®ÕHæ`•(K}ùõÙ.{ Î[¯ŽÚ|ui§z:øõ§øx<ÇÌÄ\2³¯ƒ¡•9ˆ´vOä¯6¥c püyw¿Ä—™i…øÓTÛp©BwxŒ«" áHÊEf€‹„kmb•Ü;þY~ ÖÑâQïa1BC oi^PÞ-!OÍéð%LôÖ'e#ïç|Z‚ûÒ¼Í97ꔽt‹X…øÑ4¯-.KB ŒåÎ\K­#…û_•šoQæÑ¢÷­kK¼ÐÆ{ëD쮸r PN‰r¥´ï¥žÌ9½²úªÏmM8'h(k¢Eá¸'Þ¿Ã4­ß-3D#€—é€Y¤v ×Ôc“zq^i:¿lvÃü’ï\†{½…d\BÍËÖiû‹ Ì©óNˆÒeßùÞ…,ÐNÖy.@RwâÀç0fSAÔlq bc÷%ûih;õ)Z»| óP–tåœQë3þpó×á)…[‰[éy;'H»¡ŽrÎÝ+ƒ4¦+ËAæîÙÞ¼ëÿ"&¬½ULFy3žÞã’¹¶·&frÒ%ß§‡ãYê=´¼ŽbdoH+ qÝ“j4²ÂÙá9%ÍÓáÑ'K‹o¨EÜ,Ì~íÂÔÉ"’s#ìzUó3ù˜‘$ö})u7Å[é¢Äàˆ—¡+RÉ=kÐÕF&,w¶ªÛëÂ|}´yîr"«‡„oHâ&Õ¢C&¸7À“½àå誠ÆyâÔñÊé[ÆëFqŸÍ*/ÃC !iÆRNVûÞpU6ehiˆÛ[ ô¢òçÀʵð»4¬1ÿ9‘Š€P‚]ñJy ÖÍÙþµÞu2%$ ˜ÿP<Í4‰’ãs“tÜc„Nß³6‘jÐìϱÀc-+—ͶÒÝ0¬‚âÖÅ@Œó§À6¥yÚfçA²º‡}ÆPT Ê—ãnb£0>ÒÕñz6ô×§§w D|ô¿ÀÒ…ùuP¤¾ãSÃùÀX°²£âù#ø ï¦1¥ŒpÆ}¼4ýzjþ?:;Ø5¶÷ûSìÄÝ…àÞ«í’ùþÃ…C4]Ä‚qëUýà²÷ôzÅÞ/õl ½€Xñ‰6CâÐî@©Iüò°Z°v íl8¯$,®+‡*šj(=ãîÄ>-ž ÷Z¼£Ð©1Á®/0œFY©[ºWF´áo$ruÅ%5·D %'or°¯ú+iDßdídÇŒ1¾Q'ÉDSS·œö˜HÍÙ­Ò¿v&>í¥:Qg"âÅÍÁ¹0æ ×h¯:£•KiÆ«ˆrZWÁ=l–¯»„ÿ¸¾rÀé÷U½Ên+Š ¿ûÈ6-ór7Gu+/f¡2'Q¿Î2Ìõz¥ráNéô¤ŽvŠÜ´<#<3aˆÓ[ ì6â²Ù––s›ËtŠ‘¤i4msÂÊ^·ÜÚN^×0£Ü ûø«µæ‘8µì¶k“êÇDz399+Zšaß9¾.[ÝÈR£V:H¦XÎsȶ<¬0ªcøD¶™w7#û S¤x/³@U%åŠåd2þìîÆˆ8˽×ì$—ý~nµB*þfüz]ø0Ët·ðyCK¸F ¬{Îë¼/n#ñ¢†1óúÈ•uXÍ&Ÿ½)úk™È#ÅFðHëÌbû°3ˆYã˜CC+ˆVô< ¾FôÊÆUz¥7{LþtœiD¼`دÔwÐ óöyâØÙH I³©NÒ Ï_®ª³r~IêHû{ìú ü›û Ý{{šµ}^¼UZñ…šRD"rNgxOæ³Ê’“êfeíZ_ý6Š„EáØœ2~GÑrNÓZAú´G¡ôjg²Vß”Iû¢ÖÜA‹}¦¹2Åóøðëö6M† ñ b&¨W0œ«>{7¸e²ÀHi^Ï–‰R¥.ø9µ4m)ŒJ™.¥´Rª™Õi2j0ßn)o·HxÉ ×5©M’­þÁßðñ¾·œz´zšP¦É3ÌWñ’_þp2…°À¤%°¤¼8½¾×š¨T¾2à‡œUMàH¶:ã¡4L¹]¤²ÞkkÇËÅ£ÙÁë*|h¼ÿ®lìçÙ hMi@Ûrö“T—þÆ3èÙQo(Ù<4_Üñ¥µÍ-al/ôõh0  ÝÜ…ëUW¾ ºíðå<@kÊ¡†¿ n:JõT0Ûa¾+±Põúº$« ÃÏ«§äçMÛ.™§‘rsjí˜-ì,§pøJwnß.Ô¶âwÙô¶¤&ÆñG†Vñ…£,ƒÇnh™uÝÕ(Óñ;G*wJÓp€Õ–å=c¾dë:¨W4ß'RóŽ£-ÇÕäftu×Í=wbÿ×g¬œ\§ø×ôZxƒQ&L²´´k((l`Ķ:¼¸@¿Ià~ÑYÏ@œöni¾‰²®¬ó®Ffƒ1¤öm·º¸kDÀûN–Û‡¡¦L‘…Û>ªGr]hœ k¯Eµ|¯ŒñþÎÞíÐå£Û‡W‹;Ììf¬µ!ýXœA’")kïÂÓÓE" Qy{‰Ny°Ú¡‘.½TÔ£šAfTJIx.¤ ¦TŸ$SÌû€m©«6oƒû™%D” ¼Übîéë ªv)&\–¯D‰ê¬¢î"¨’D·ž‘#A8¦e6FKˆ”g)keLñI+÷”(<ñ¼ …ò5£y(q ýò‰dúíA‹Ä5<ë4 yåì÷zTñt4›·(kŒƒwrRú¾ý$ÚŸeÄÉ10ÆnÊ]‰ÍãÚeÄV£€ügãoòý«Ë€'±<ÉUù’Î{ÐÞ¦:-QØÀ %$ÉÁŸ = nœºN/Î53Ln´/±Ê:¹äÇ œÒêêñÃqKwÛ©ÃftSEº ðC>Ì€‘sˆ¥íZ•ýšãù3ðü N]Ë›æxЧ™o[š·™wg~ |îÏ|85„e e†6ÕV¼ï‰õÏbßÀ„2Ι(¾nQ¥£!tÍ•ùç!(jù±,Õ’†ÁK›isÈ´°Í3C1ä3ÀH-ƒ3b\P uôŠDÃô“lnI/ùyne©ÄÎÀìÿ ‰öSæ?Ž‹‚<Ãß…zC# Z®¥«èÃý; nœBß1ž°Mº¥…•ñF/ž‡®wb÷Xg>q•r{:2QîEºp±\Xu(¡å½°°(Di’ŸÄÌq8lÕÝ¥]IX¾Rn ‚qˆsAÿÕìd%ˆ*øÓƇÙ< •Ž ‹ ×3nz‰%1ù»Ñ½ÉA©DAÒ³^†óqIÜn+ZqÖËN/Á¤+ÐYfk»Øa'MŸ`›WÂW¼BKaÍ’Ê@º¨ñ!Š^XW1ªó`ìç„úÀê JnƒÛ-xë²ËVXÉ´³±¹¬ëSX %ê5|RN’Užt`5gõó€Æ|Ý#+ó˜[OkYXŒš ÔK8˜ÅÎN³¶ñ;,Ë`@½z‹l¼äO%6ӕЊI&ËãlÍ¿5¹Ôz‚k¤¥.#@§)9°Ô2Å™_q ü7"5°`&ì1gwþ¢Ãƒ eZlMÉ0~Š/9SnÆÛÓ!‘ÑO©_+#ä 5ó¬¹ÊKŸÜg|0ý“¯7#”±†$¾RX§,iS#ÛöÛ°¬jþTr¢H?m‰ÿ”Díu×iDƒoì™Ét᭠Ѿ6I‚޶Ñ”ñõsÿçþ²Ý&ŠÓ\ÝóÎqœMN$¼q›«Vÿ*>/”òæ µ‰÷,g6ƒRåß>ë]¢•±‘û‘ 9ö˜@>¥]fµûÕâŸráÆA}›w#4‚DˆþÂh&ŠQ9œ_1ƒÁÓêmFëнÏWEñ.Úq„T°\Ò)ìÓ£`¤Ï]ó„î³DÖm#¯©Ðœ†ˆ^…øÝÏÊŽ¼»,“”@x’ŸÈ!–vN˜-úô¶a˜ÌžÀëAcßÉgát¾ ,Ÿô„Dt(P?Qź=æ´$š[v†-·Žž¯Ží€×þVÑÔeJ™¥’ˆ™ƒ°êÉ0ÚÆ¾ž ½b'Ín$|ü[Ï£ÇÂÜ“mX%ƒ²¡¯Ðã.³“ÊÔßl3öf$^‰Ë¤ŽKÑQ¥à–‡êFèö|HËhåÄ~6$u—õàWâ[Ѱü´¨øk©%Žã?ó a»Ä³Tîj¼ø üêˆc¦¸ïqüŒR_Q§FP" ¼+élPª?„22¼FÖ¡„„ÌÁ£i%ñ°ÌŒGªµÐâ"§¯ìÿ[Æî(‹$fÔ"‡®`^hÊ•‚ˆ{ò«¬~îÒ±·Ø9=[õ/Û±ü»eáN¥iR+±°ë‡Ý~|‹:Ô¹?ÚTKÉ;-ÈÓ·”èËYù Ç„á< RôZÍÊØèŸ[®Ww°#\[ÚÏŠðÈ+EËRJŸBš×'ßâc|øIîW‘à[\FaB (T·E§ßFn±w†Ú=м1y¶å9e­~ ÿ '-XnZaèÚ¬Õ!,ÍX–lƒÍNØC˜9x‚-¹¢vò©›÷3½RVg¨N´¾„¦¢3 ãxÞ¯#uByEŠO£}2S‰e/èhA9ŒƒƒÌ¼xØZŒ ïf(-^À_ðS(í¡ä„~¥{yPP»ñVÉ„ñþص/řƓ‰{X1íá/ºGçfýur‘Ö½måøÌØå÷ß.ÒÁ€©kJ¢9²™ —#wìú¡j"“ NMWœÉKÐØ‘Èl3Ü2TõãÙP²ÀwÏ=5v¾E ("÷%+¤ *¦P}-þVιùôçÿ· ÃYT¹ø–p³%{MÄ.ðf6“`«Ëjølþ îj¹ŒòYÈqš{Ê^² ®M¢e YGâiçAcM_R&Aƒš¿>AF)a#cDBÉþO!;AP’>_îªG²CèaãÐg&)L‚Ã@?Fr¨ èÛéšøœ Êtm<¤FO†´Á9bíeéJ’ÛT¼tU’ŸG‡p8•#²Ðjq$·†ÿB†<>ÿ®€D(Dt–±~í¢hj!3ò¾\ŽeŽ9Ì_JgÅ ‰ZTn>:ò%2V»¯NZ°¤ì'qØ ÐJ®ïŠ dÆ…–tdPÚ×^Ç3<`¨Q>”7Êz%z#~h ¢–…Ι¡)Ë-»‚ÄX»Á¡b>=#®JÈÛ”@öÎaC{Ã’0¤Iârù„®1C'e=h6 Ê-ù¨Yµ¢¾‘ÒÕá¥L ¦å–(€OÊg»q„LH Тܑ%àvc ¤ˆŽ´žà9ú!rËBÅC¦¥9•\)…š8z±dm«@EpuXõ|ÊaÅÚñ3Ç@4ü9ø<¦Ý(ï„AB…^#éGõ6~¹â×¢±Q H>Ôö¢•0H6. u˜iPÉCõŽ·V [®û qd¾hM¦m)n€×PqSüùŠèð×KËþµá(ÀŽLXî¶´Eyu˜¦ìì$Íé'-B9+ KmÎÕf.Ü,óã_/®·ÏÔýËP|q§_Á}˱9¨É‡Û§Ì´vâJ5‘nÇë”L5q jñYïÔݼi?¿àSH˜âG½oíS6•׌ÜjuJzûž{Km’Ì'õ·"# ø,К–Ñ{`çùÛã>°ˆï…1ñ]Z5Ò¹º…/IÕ·ñ”<Áa±ÞÒp7êw¯[p÷Cù¯³2Ör4âB7Ù©p%‰ˆv½©²T«1—Giµ Káä”-!æeò5›ÈfÁ›ZÇ.ý75]z׉Ʃ¬ß4ÐNǽ˜í6“d Ôo¯)¥Õ:‘œAÙǵì‹îCûë†R“×ílµ³k u›0ù’+ôƒêºvÒ‘þö87[O‚®t@L°¶$N¸ÈëU1"kô‘~}6Ÿ«kx6U>ê,ÐÍìãVŠY· {lßÃÍm?ƒOÞJTjZ_U0a~¨4”ªötU:›%ìqí ¯F‡»)epÚwÿÁ({ÇtÀøFð=™6ØÆýÞç%51A,]Ù±@«¡ÿÝûµ56uñEй@¹4¸›òö¶Ñì} 9’ö“g’JK%\"œtˆa ä%**ÏwQÅã%íʘ#…i ?cÑ-Öv yÛaCX|‰^æ`ƒ™zÚ=ˆ¾Ú'wÙÿ©Õ&LÃÇsÞT<Ë<ø¦¶³õ_7âíÍÌšHåÅ6%¨ª1õÚ+¡ ÅÞyÉÁÛnqxD•û_ú‡ÔÉN¶¥p›2D#Ú£…x©›ÏqUǬÓZ°ÉæßÙ9d'ÐÅBO5~#‚`)oKßlTú%ñ#çëY®Ù•oø0J2ölƵêgoÕ\2‘¨T…‰#wçýß4Ýsà[¬==}Ù¯EUDȵ tãƒezöRI¡xí¦¶ŸO ç¨èq–ù˜›Û=X"ÄŠÜÊHaÖâ~K ÿ-ºe<¯"¨Äv§e€3iB•ÿb²yV2ÂþEd;H»A–qÄŸÇÏ,%@îêcÆ^#îPé˜@ÑUq‘ò{ë4©7ýæ íÒ›=| (¶çãMˆ”‘û'¢Añ­Æ z„$û_`â„(Ìy²;Ùm¼‡~²Û<”š•=E X†Â.× Zä¶é2¹j’…Ä·tËÏ‹”E‡F<².€;peEmŒÑÝ'å-ƙؗÂJ‘q7y~uOÉØüsùÍàQìÛòD?í­tl±• 5P‰×Œ¹.núMÓ•œ ï¶.€†Ïôœ qrù¥kð$6µâÂR¿yhïÎHº1Ô<ãP µÖ¤ ›Ê‘?úòw ç(nî¯j´yÇâ!—Ì 8ÔÔ¨fí Í÷¿[`Ç~gžÅìHv;è=L9p›äÄgá»E޵‘äÎïrä˜yçR÷ëÂ0xyQY—Hà<ÍâÑBCK=ÿUø;Cx2;‘Ué—`ä· ¿qݦIB:?ÊHeÆê\9Ý X>‹‡>ìùж‰*X¹Ä² / Pb+ŸB¾na¾H¦ ްö:“§>žMó›.M4ŸsšàðÙY! }ƒD¢ñÐdµ” ¯Òr¡x6चjÅu]bÊf¿ÜjE&‰?÷ös‚bìgŒ)R¸>ŒÁWunW<ýØ'‚ýh}½Þ!xr'‡G"`k­çò¡Wý ž¯mØx`¨§sLA¨(ƒÐ˜,’™Íˆ3¶c™dx§¥¬ÎõŠü‚n OÔt68ÔÈ( 6gTãN“èËbò9ð‡kH£F«z„¾U4«eÈ}Ãï+­-©%¤ö-i‹rEˆÏ´ºÜÛ7kÀ9 j@í ]lö#Páìßžu4F£9ÅŽ•Œ¢Úœ¹ân®mûËå2΀NÿDâ…oÍï·¢a`¬±¹6\ŒŸãêwXÛ¢Jͦ€Æ¨áIvð³ œ=(¶°H[ «GÈ{RkKM ÒG0‚í»½7¹^—|H9LZ9lCeÿG·ìŸv5ù~~°¼¾Uf%~W¸$ÕAš”$Ò¶‚œ}$ƒBKSU¡ ¨=ßx>£X”ð‹þ-Ù3ÑŒÙá|{NŸõϨq«æ°m©5?!³Z¾ŽZ¨ð̧D £©[RÆÌURòz@3¾ÆÞt ËSËð'BF:D›×wfɨ?¿d^û­ç#Y(‚mŸp™‡îŸ…7œ#¸×嫞sâßYy¸gù.>Ñ“Òãµ0½xÚBè ð]0ø¢&lÌÁHn V ¦Ëó~¦ضè'áŠô ‚îÀ2Â"ò)¤HÙýZöo(:¸L+ ù&°NæB f Oá4ø®g>³‘«â™:!Üy ä°Ý=uˆ…7ñ-¼–þh@`Àò±Ò…Ãu­iÉ»b%ïÖ:Š„Ï£2³4K'öe‚³ÜPc-¡ŒÉø doíÉ«RÑ(èNr¨ÅÃÉÞ%ÂÚ,»£_ÑIźÝl®”uœ4ÆFsúX´íéÐg¦Þñ{ó`jJ’Jö¼½ôÄy% )íôŠb eLý¹›+ò52È{(Ù´7æÁ1d?w5gClÜ>³n)×wZé•X`îoñ¸ì×íèõªD¤\))(ý³¯­DL*ç9Ù?+vëFà9ÃGŽ…ì`“a£ö­Xxf÷¯†®®cv— rË[RrQ—ûZ×sêU‰‘S¹xÿ”KäáZáæCùËaÂܘâïþn½ ýtcHyØÛî¥.8—yEM¡Žê±ÑÿµIºñVc´ ®³Ç9 ð¦1©TR“~_Äó•˜ì|F‘›€bå‚ÊŸåw›~úóeõvFÏ7)n®Å•¥^{æâ`‘NšÜ÷S˜/rN ZpÃuë“sõÀ:14 ¸u©r7mà7‹ü†ˆ…¡&ub ¦¶žBÈŒMìU È;R'±xÝ0·VåuJ¿†Ëûø†yLGÔ,Yz‚mWðÄ_¡„L¾¤›™——¥´ r$ßï§tâùUÔjpjð@NܘFïÄ,«¬EÑÞmW„²L—x‰'™¸Þj—o&‘+†e8Ukž‰ r?1õ˜¸ƒ ÝC’d ˆtZt4¤Ê5’rW+Ðõ~y‚$ Mˆ!%+þñ|3û![Ú³˜Òß™¤ Ì"xL9…vÛ|ˆ„ðc÷úµ*[`sPÁ%H÷‚kÕêxÕ±[Ïü¦R±NAµ èTîéÀ7#Êw÷ M²¾|¬¡ ÂÓ.r'ô€¤‹fd|Íwø/>ó.£xœ¡v3{ÁòŒ€æ@¸NH–=AÇi€vÒU˜pœf=ªã%£ùÁ§º“ùžÈ?@ü°!1P•?¨kB¾ky6ûP~¾v°w¥ú P^pÄ?wyL¤z¤È0ýË7yÅ kŒõŽÝ¬RÓY|Ò©"ÖZfy¿âé³åõÀ¥€-“áêð)‰•Å0ÿÍ\ƒÔ ú¯òùÁP¥›ÂÇL[,sÄj"èÐÑ÷5—´ÿÅ…ÈëÀóÛõí‹ÑŠ[Ã.Zf@#xo2ñì Îáûlš¨wÛ1^<ºÃ UÓ Œíʼßʸ‘ÿ­‘oäšÚ!&‡-iJ!Åš©4ë:˜¯yF/–Nx>êÜt&I –±‚×A(Kmèò_ïxZïQïHh¬Ï%8„¦¤À ø¢ó?N?@Å-šöl ÇñXÚ £ÁžÚV˜òsXL,7¸‚UÙäéMë,ƒô€þÓ3íZ3…¡PtèǽyG ÛßebØH’Oh,›ˆ?¾t¯²å+[þmŒ®bVÀMŠ0][·:õ±C"¨àÐRVÌÞ/o]åU5+Bd9õ8(vi&QÍ8Mr¾’Eœ¿m¢pû焞gÁÐX83›‹5´SÞî¡4žê‚›{8ï.Æ8 @+ðÁ©–ö†}gQ—Ïw›fìé”P ëÍó4 ²;¶²=•ýäŸ>{“Ox£¯þ¿¨ð)< Ù©LŸþ5ÀüwÖpŽ+yÚ²(àê„ö)XˆŸíû2$¿¿”W´òfhÝËÝô뺻[…–7_¤šà‚yá‘‹°©áU/Ää.”§/ú(Û¶§ö7›g–Icô³öÃ3LA‹âä°B€ý–8Ïæ—¡™‡Ñ{Uß]Ñ¿tœ N ä£pïe­‚xaåc§Z|uþ'F¥Úˆ‘½+h§¦IRÎÍp‹We×f™N_1uì:‡ñ§Î°?îø.øhkž ïÁWßü Ç8ÙSU? ‹§$¹nÇ3vp™dOñþl§ÅC÷yV’ Uvé>1'L8Û`Lh“ú+ ÖDù¦+‚ NžÓr[ÐÿÇç:'T£íŽׂ׮ò+“ô õ9iÂû±V- ‚“Ûrk1H^Ö±`³ÞBwõºóén¬Füó!¦ÂNsåÙ ÈÔYh¢<È­7Ú þŒÇÍóîlŽvDT€ÿž®$ÂîQ&8¦]PÏYÈÛF©ä½°5×Iƒ¶ xC)é‰Íg`h6#öYnÏ'\&êÍ’y´Ã…¤ãƒbÉCW€†Ò€…4j˜”ÕZë“°¬7‰£mÙxÆ¿Ö!Šè1Aͯ°ß¢‹l(F†exÀ™²ÎõS‡)¦ý¦T(rõËåÅ=Mck# <úK@¼‰¤¨ºrÅ_ç`ûá²ä¥·Èø‚‰˜„`w J¬8>ò™ ë&ßx)–Æ’D%fÓcPÛë>M+D–RcÒÿ­UÔÀ¡Éؽ¤WÌ ~ùD¿ ~µÝ ÂÖÿëÂoœÙšîßüñá)±â€I˜­ü6"A^NÚù’I‚aе¨pçES˜2u®L­§µíQ%Ïηjð=Æ\Ï"ª²NŸÍÍ%·Ÿ‡G_Í$[?Nò¨ég¾`¦ù¹ì3ÞÛ^†¨^R0Ãp{ôgcIŒ Îõ„LeÑ—´— xîJÇc!‹ÊíÍë‹û9)œµ³5I.ï$mO8£SÂÖˆSaM _×Bs½Ã\õ\+B[ª‘+¢[»b¬tÐïÃK»¡K» ]CHÍjQ­™n‚`ûïøaŸóõÚ#+Ÿ;ä/¶T3ÂÖá­™¢…ìm²ÃdÃúh•ý!Yè²ÐÃÜqe°ŒþmÇ6++™¡Æ¿´×ÿÐ Vð®Ô½jÀ]Ï© ÂDƒ˜µì¸æènfo8¯¯ ÐvÔ¸–ž4·Iúâ]²×óodH ©ÈZÕ¾—›CcªŒB²r£1^r%¹âð.¿GF”£iß“ÄÿÑÕW°º®¹'qü–¬VÇ-|tÊ ¿‰3eFº׿eð¬D›¿f­§,̈ÙfsjÆ@tÜÇê9@¨H$Ÿ íeãÎgÒ!³²¡£8'ø iÌSÁSÌ,èb:鄳§_M* B?ß%þb§žÏÐþæ˜ ÐÔ ƒ¤¨´ÓOñQ|åÅdM—‘©ÔÊ×Å+X ¬å…zvã×SS¢Šàçg‚þ}8£©ž¸ ]HÜËwàw{ {¾§'÷vc€ÞíeÍ$ôô€W‰Jæ}§,ç2 ñX¤öb!dÖø[cmlQ ‡4‘Sûs›w ùE<´‰Á‡;) ›=³@3¿2÷”~aŠFÑž ‚[Q¹<{±k5YF' †¾9[Yøõ8ѶKÈ,ܬ Úÿñ‡»NPTR_Iï¯UõRA”QCé Oòë1£DhY®Mzh\aõ,Åq»Úî_*^Â̯X½Œ~*óqª¸gý-O‹á9Eƒo½ùJÜÓ Éü’ßÉàºYI®ÅŸÖ®Ô¦Ð8j¿6[þŸ­½=QÜ@' d‹½‚>¯1]‡ÑI³ÉRÿÝê˜'<Ôå¾Rá6íÀ¬JýÇ®Ìá|S» üÝ 7º¢‚Çþ¢ï™°«îë9VñêHhH¯[ûТ°I}s©–j õoñ‚Þ0­,¦¢²aá6¿B6ï=Òþ’î3\¸È§ ƒ$ _¾¯z·ÂTúÅ}Ûv%4LªŒo”¶„Ä‹5[ Ôl–_”ê­Z‰`G¡Ls•ä¬ä¡wðT¼È LöÀ7€šI!èòá#ÃTªÆµ'>BG¿]E ¾• ç)àø_à=ÖuïAx §^Å¸Ä éíkô!í„ær§AôR9hYØWyŠÌˆC1ö) wã¶ €Ý:ÿÀÝÑ$ƒ9Ø¢mýœ<ѽŒÿ¥ßœ)aëŽ\vʵ{;'_“]˜¦¸E$\¬$‹Ã€/‘E+x/*ðí#£Dè 4¢"+xî˜L©…#Iã?EâpÊ%û¨ÑRõ»Cð¹—A¸lÂÀ&#lDf"Eã’‡–š© Ó ºÃ¸¹|™1SÔ¯®Á7‡´ÌÅAKs,¨bÆaIò½¢Xö‡’ZóãÇZ}³um(töQ¸ôuü¡­;Ü®›l]•ÎÖ«l”Ÿ}å%Q4Œ~ëlã‡-ÇÚ%o& ݽASø7Ä?뛥©•q¹ìILvCRTSàÞEÈ/<š9ëdn—™%c(ûî`¯±û;À—ú‘_ßã}EAÕ'ÿK RÚšYÓà¯Òq1„-âW¶<°ÍòƒLÒÔ1`ð”Щ€sy¥¢¶Å¸‚ R.Ù—s£°Â­Ü.ë ¾Ë.ñÿ‘;¸‡aB.É™é‚þÂynř̾k~ h„ôê04X«)D…X·c1ݹì‚2ã4ýwyi¿á¶·Ý '㱨µ¿B ©j‚«ƒ¿Zj­Ö£|¨òüqOcJ íëzô÷ë1µIëWåÓ—‚'%8÷Ȃ޸£^1«‘¸ÕØ9ÓÜä¸`ä…š:Èq/¶›NµžˆdMæKzp1¡£—º‰BfW}k.·`ÿ÷Egö5.´õPóØ+gÃ?yOf@¯qƒœ<ÃõGXƒ¹\‡jLC óW$_Ù·Ë0‰z3 \®Ã+°I´Jr®—™¶â®nÑJ1¨@dÜ#`„)ª¶Rý¼È@kTÂhüh™ž ±œ NÞÓd˜Ý$8E‡ ÀRáìµhUµî Ã2¦2ƒAxþ|6G!΄B“ú¨¡\Ù©}l‰dõñwqÑÜX>‚|À}vþ(×ÂDߩկۗH¶(ß{Wê»vOc9øa¬ßF–,Ù¨À†åÏZJ§½NH€1ËJlf^SÀÌŸ¶ð*„Ÿ‚&ð¼÷ÛúcGj-CEZ2¤> >P—ª0ÿ\¼#757“y¡¢—„P/œ×©º7hË|ŠÞl9; U×P¡‘Å9£ß®÷¾´ÚSK¢Ÿ/#4†ó¤•t6¦T&b‰`¢Ûüãœ,Ф6kQþóED4{ô®v¸¡"´ –Awî"Rí®¿™…fG“ÕzÅ4:u€óF›Þ‘tXSJÍãq`e…£%®DF`I$MÁ3‘_…‘éûV“[p6ç°ÿáÎôÊ[9|ÇAdOk•®øÉš&ì¸ÖJ¡þY?ö4N“*Ô¯g{þÏž`Ú®õ¼i=X\¯çÍÌ»¯¢þÜÄ–ˆô9Lɬ[á¡w¡Á¥‚÷l Ér”+395T­¹ÎZËõ3ëø¸ÁMI²Ï´Ï_W“¹ïœ®"~)¢ÌÿågýL:yGk•!Z%° šÐM${³BB½L’5sÕrm¶£ë8(œÐÞ„Z2Ë=¶xÌ̇h´mOcçuû¸[Æ?L¼ûˆˆ§(ê#ÁêÈ¿'é,Œ›¤[ݪëÄK®œè(—ýA¡6×4Ž®n"L”y&XÇtÝ9ý•š˜cq­‚î»Äë)w´ ¦Ô)Šò·öª×ÿ”ÇQ½“¤o2 MÅ1{ðˆý»Ц¤%‰ŽPÆevŠoÛƒîbØ 7÷Ã1°3jy¶)lcà8d ˜cº÷$êN¢ÄÖò˜W¼GÛjlé ê*îò×Ⱦչ}Dd÷}h×ÍhþE^NV¼¼ûÊ_Áñ›ü£ör‰ìEcáLÅÁ¸ÅMwP^0¿ä úä(®¯íÊízdo®•nÑȪ‡0tãÏeà Ϻè&+çÐ4eÆÿ†Ì<®TgI4®ü êsØáä5y»¹Ã0%šÿœâǧYD(@ÕÞ>ûN=o:ù¿›ã ©¨$«>1mè s8®íô pϨå :’¼zfì¢&ÈnŒ‰è(»Ú±ä%Rî´oÒÂI\L¿T#‚²zñŽiøíŶ™¼,PÊòâtqËv¶ô`…Vi½"Û©®y}jr÷é­F¾-p-f&±ú'‚:SqóaÎõ˜£«“&ìw&€ÚlxUedZ`™+ó\‚1€–˜§é¸Çî²ûŒ™í”öZ ¿ ÄMWÖ›l%:½'ã&àÇ];i 0ufv/l— ê!++²ÑãDYX¿Xqw#öDþ>¼Wy¡%6/Gh²é Ú±óÍߨ3‡?,mÉ÷ƒUéÏQÛÑ¥ýÒl—ÍTSïÛ€•pêË,"ˆ8nŒJ2Yí“ _Ñ\oõT&å²—1µ²ÄßÙk¾{ÕPcðÓLÈ,½h}J™¨ÖB…ëP.;¶ÃÀMX#ì„ÃÌmMqÐ :\±!ÞÖǪ)ž¾?œäíQÔ3Š¥F{ió¥~ ö¦sRÐý˜iÅè4Þ^ßШ)BÓêÞs#2Ž{%˜•+¿ñÝÁ‘ùÌt>±³/e,Íór|¼´vŽ7ëóªm!°Ò´³¦ÎµÂ³ &f3ˆ°S¶nÛð —ï¨TFÈèýÉj¶…l]©ô*€ù™4=ÇÂb¯ìÔÁuÃH$)j–‚çgi±c¬¤ìƒò®ÐˆÙ0¯ JQÕÙ2þD“‚eœæ/À`z çsN‡ûï j á…ùCM½U=>Èf0à:| ye÷3±1Á¶ÃK•»©›OõùR1ü˜s=xlë 8aÃ|oG[&µH7Mp•B5ÂR\èc·Fõ¼/6Þ9^xäZÿ¥Íy¡*sgíª[†É »…¾ÚP3{bNá YŽ%Dî§Å-b4KÛÞaº&/ E²;*-,ù?„ÔûÓŸ{t“ü3ë®pÃÇ`‹Bdïªo Y ÷Š“Ù$p¡ÕM'uWC¶tK «h™ùâøè ¸ ¥út¦_è“qó+:ÆÖnè,I<8­iäïÍ#•ÞoiPówg¿xð¢Ï¨êçªóhªÒRñ‰ðò†ŸŹËÏV1¼ƒµ÷I^n‘>œø¸¾¼£œíí°™véÿ¥*ë yþ>|D–šÜ㾃²°—+s –V$‘¤忼A‹´£R©ÕÛøý@ž7ÜÓ|W úЇd98CÏÖÈtF®› lµ@ŸwÒÜiþMð‹MÖaU^ :ŠÉ:4«ßT&­:ãY,ÈíéêßÉ~‚£Þ„Õô‹ºgÌ0îËw£-t;n„¸è0–°¥WÂ÷]+lR¡–A_!Ô9ÈbªìÄÆQ9AcÑQ¸éH‚lzÆgâaÙõ!‡²³.l§´7][,U9W»ãOŸ`½«¶ëüå¿cüñNcUdä ó®ÇS¤•‹ÿ¸°½ä_JqGMÚÞ¡¨Ddž¸»I¢^y9œû¿èËKUÏ>ÂÏ ‡Rè?«›šÜ8·›žäõÈýR-º€ÙøË¯^J ŸÌ£†Î”Š‚Z¬gXÏZdb\Îò2ö§`á®È Vñâ éÞ(XìŠ÷¤† /3jL,á(®ZÛAx¹‡SžŸÕK1òÅO}ìnШBCZ×ú¿Á!0_¤Wƒà‡¡‡öcg±Øœl'ƒõ§3.8ëU“Ø+Õn¨Gü¿Æ¦»K´zN.UÜ_Å‚°xÈðënêb3 ¶/ê¬äjKvŸ® (Š€"óK1Њ+ ÑE|ùLÈÔÚóô±ÓÅŽn³òÀޝäkçéi¾FÁüહóÞv åŸ§û„›¸®g2Í›{ßß AØíÈï“3™Í@¹š"Ýͤ…Z‰œtÿ+,ÏØßÛ~Ðy(ÀyÇ8x×*¤Ã‰“”u^äwJUܨÖ:mH¿ñ`ÂÖ²-j¯ikó»ýX\ßr-‚`°ìÇ  “y+îaÈÆúmã¼lÍK’l)Ÿ…Ô^¨LA½’…²vB=¦ˆ$Ú»¤½hàþ|" ¬R#\[ )àË/1Ê·ßé7§:95P/ÞÜàE0áx–DÍ' ¼Ë+Êä‹ UT©ÒÆê>Þ µ;”NÏ“ø84äCn…È|á Y^0‰†“í iÚâšFñsëü &ëžáƒ)44¤%×=<µZ:åתYÊ(R?‘£±Àðúiëˆ<ðG½Rˤ>虼²gb37é˜ÉY›ò _VAÆâp|CuŒ«­AÈšæk9@µ… `ÿ;7÷Þ•ý÷‚7b–;qy…urçj9X¼ÿhšWžÏ€¯!øË~Ê7²;…<¦%‚Çæñà§—ùâF3.†¡Š!´ò15ÿé$¡xã«O˜f¡mµ’B<¦úKš:XH‘pínY*'œFá"§@ ÷µ ˆ´#³‰j¾RÙ}ÌÀÀ殽6ÉŸ¼~åi½Áã¢æÙ/¾ 8_ÿTŒ_S×2æ¹ ´ßp•3$Ž´„}TG÷ÄòÄ"ÄBݦ=•‰éU$] ±Ï4½Výyz|Ž{À:F…¢TD%ž+ÇFýÒöWˆË1Døþ9ºÇ2&ü¢¢NÃNŸ»GÄåI¼Þ÷t 5E¯5¼´Gokl/ ðÎf8Sä[c nÞÁzV>‡Ã܉–±=¿ K+€y'žÝ·Lµ™.±/_`GU¨•ÚaàžS´¬(e“ 4ÂVv)œÒ.ýÊWGp"Þõï ´TªH}LŽà„Ú;FáÌŽ$ñ|4vdç_()ôª£g×+J“Ì |¸•gy]Øô×D¾8)-Õ[éƒÅÞ•UnçžUÌ'µŒ¢Q€D|>c9ödŒ¢¡HïyÕ±öžØúpµŒµ¾Ùkþœ¿#ò–€ ú¤®0TaoNÁF¾±\ÈEÐ+ùöSÊß«ƒiÖAXêFk$\Ò8¹1Œë(PO¬ÜþJE† _œZ fcÑ—áäÍÀ÷ß½‰Ý}ÁpT]éœI É2´ €’Œu£ëTðˆ –Þ š…NUz”æe±„`‚Žj˜b˜\„$HP˜i[ þ‚C]R·šY5eÅÁ$ìÂ"®ce✫ÏäX1 V‘Kq^ç««,ºV‹NøkZåàL­Þ:7cœ:ºu‚½ûsGàj×fïÏÝeÄs€'ºuOnybŽ>»—´sï øœ6†å­ä#8PüC¸§ë–ã`/³ÔÂæé­ü=+ÙXÿæ5Å*¡p\gÂÛê¼Å@èžùu Az§z8ªÏP?„…ë·ñÕlmùÅh/xœU®`8mþë½߯ӗÄ0¤OÝÒ”»ÕˆNÇ'ºhXÖ…ZùPGIjÖÚ`ÞM%5ݲÜÒèßIÚG˜žÃªL3XÚ!þVp‰ÄYÊ`ü3D”á¨ÎMÕ-fAÉaRä0$ &í!7òâñrt°–·zó†o AÅ|ÝÈ$æí¼ó;†Ž^»ÝÌTT©‡œ€|â|Z õøÌn‘ ;ˆûŠÙèQíT‹•øûyðçÕQ‹ŸÕ”³Z=£¿³á ë§1ߙú«€µìé©‹ä]A»<¤ía¥UŽb}âŒ>ÓmjPU£=š´NÿýCv?/k$ÖC±:H´äƒ/Ù\¦¬n¨²¶9+¢[ö$Ï¿Æí˜F̼ òÂvýÛä’]·¬­œ¼0hÒ×N$TÊ5S WëVk—òhuW‚3SϤlÃVí­U/ú‰n‡˜gr{@Ù¦±Ú_Õm(¦']=åA$3ãÝV(_âW¶Nå‚!¼®v*µsh›k2á(åÌÜq#¤Ìrý;WQ“IhÂiºwš¡ºhå qsÀšì¯–Äïb‘CD~vž£é î²+¯E•òÆ“ ŠÑKÁÚ?î ÒÛ¤˜°O´Þß2Ì)Z=T· ¢i’ntÉQvýñ3î>C¨&’íVèAOf…zlIÜ¥ê÷Ma6îL³4á<Ù IbAf gxø yâ¼|Ççr¦®¤¬L>^Å(N㈥£Ë–ï×ÌÀ‡RI%ÆÅ¤³;²+~ŽøKûáF DçÅŽ%î Mw ÿ‚bÈ#Á±|Íž,g{SÛ©;bׯSGÇØ§ÚbÆï;þàÁh ~ ¢wr°7ÚàŠèÌÎÔÜE|‰ÌõRû<3yÖ½ë3¬¥ñŒyò$*èrvÙ¯‘Q‹ ÕÛ]F*;¨£c6†€æÏéÂêäÏôwjß³ù®wæ9ŸÞX†ã!¡¹x}ì§”<`uÒ5’8ÎÉ™òNUMÿT˜·ÁÈê`¢¾¿Gk‚ªsˆVt¶’€š9”—He39Ëëvßy‘±™•ÝMž6fßÞhˆÏ⑎“ýÐ:;/Ј3#TÖEv} þ¨®Y8 y9;¾–æîNǹÞb2Ž-.vcàTS¦JÄgèÏEºÊ<²¡d¨mÈ[+˜Ö1€sê*®«áºBà‰JG*ìÀLÿ] ´‹ãÞöPÇ'n¿P }žÔýâadø É8Cáœ´ëæ¥oÊ7µÈ31µ.^Ú‚”ibG=ÔÝ®¦ÆÑåöG;¤RïY·4„Ø#ZË'Áeë"Pg"Jôç¼oYø¾Çj­÷¼ Ar¹Àhn+ZåÝ$4p‹÷;@@6AØfön[”a½.fKô¸õ[#f÷šc@›íá6~êAC5L/ÞNñÙE¢ïW¿–Þ¤’¬§Ôä¥èsG/h&0éðÕÜÈG·ÞLhs4Å‹Sú ÚòÊ!JuŒÊ Lãf#¸|<â¼2ö®yxÿd$—¸@¤›±; ƒ6è˜:#bç)i»ßwœÛ:˜]TØæ¬¦…+ü>Ëò¯%*ÉÇBärgh›8€Ë¹"‚È'Ží}ùÜr`’ïYCS€è)¹àŒ|ñ”QÖw­Ê;E úÿ^¦w]EŽäR¤’kÃHòš—f¿¢!§•&är‰mZKS¤;Ö…v38Áš‹ a-[OŸÜ&Ú¯2>ðßÚ3å;så¡iþ F°(2xsã2ÁCÇPµã!’­z+>6»Œ³Ð_ª·ZQàÍâ¹Ëdý¼$Ô¸þÁ%¯MQ]·FÁ’p{.¶Hñ¨4UâDG/Ž çQÕdùÿ†”ø&€2e˜ì]$=.+æKçÄÛˆac¦á–p¯çÎ ½*ã‹)´Çt•C8òIoß~ˆ>ÈŒ{"G¤íOÕI`ü™l€T~LeÌS·íy$Ø>fëÂk™Tòû¾Å pxY³Á‹¶\×ܵ˜&…² ^=†Px$aRgl¦ÛÄo„s–“öàV²0@ŠXRü'1Úé-Cô•¼w5C?vÉBtq¹Ê9h†¡¹v ñÜ@åÒ©ì÷I5£,cµxu—ø -“MÉ39NsÝH\‡ó™ÚDÑ4ññó;0™H£èiI÷¢íôw¬’F·eê‰Û R廿)Y+Õa)|>‡ÒôÆy3” ^vWüúvaó{>{}èçV¤qäãÝ‹™¢õ­ÊóŽ6€†"ÞÓ™*h e:õ±»C7ù EØ%ÀY|}_íU˜§4Ðî^ô“ožobĉï^J%ë3j­Gg9˜yí°‡Ñ¨IJ,6­¹2ª€VñÚ|á?t°ûÙìtEj#fÿü§ÕÊaUUýçY»Â„©AÂÎck’‡ºj#Ž¥6(¿Ì”ïÛª6'$û&P9X\¥¦ö‰îì2¢t5êrÚ™Ý÷/^AhÀP†sKO©kOâi#ÕqÄ¢Ãkí¬ǦE¼ˆèxj6ˆÑ#4ˆ[îï·žù[ÑÃ’Dò$ ¿òa¾Õy,­ðÄpþæñÚÇE>L­»:ÕJhŽ|*âʺ¼[lÿEyB÷×ïã—`i„¾|¡œ™ǵ»§Þ éà-ÏG½åÞƒ/Þ¿ø ùâßBú2ášUUkt˜ÍÚ#¢rP²ût|Ö ?`ƒ½]¿OÒ¨rlu+ýjyìÊð(Ž×÷7Íû»+ÐûÁu”‹ž1¾õÁòÿÑÓY#šøßhJØ:3½ëæŸSåžfÌÇ ØdÏZ“Køå-àÛ%¢/µS†‚ÖÓÞ$h•ÀO`¥BîC~©ïLÁ yÝ%†€óþŠnÝÐ@ÄH)NèkPæšKW¥û︒)ÄTöÂä—ðO—¢ó%øí¨ùÞzÄ@ ÅêALô‰T ð 8ysDÛK©´V´¢*kó°Ë~eZ«oV¯Ã–.ak>û”îE“]¸ì°€-$Ëþ‰ÎÆ"Mi{2†ed¥½Þ~|Ÿ8Õ~õm°5²©öƒ’]P:ëÕÁEoIyÆk»¶¾Æð$cÔ ^yävÂйŸÊÑz&ú÷º^t€AÚ8í—Š^ÄÙY*²êádøœ¡PÊ)²ó‰äN­ †mèærýS¸°ë ÿDŒ]­³m›öÍ´…óÑè”Úz‘XòíW«1F¯<×ì)¸šÛˆ‘áh(Žæ-¬ÌémT*ÝÃð5ÿÇóvÝ6srµÑƒŽ ÅšåN ,GÕ'΂.^.È u„4p=_?¥h)ÓÏ·ý?›N]'$°ñ ÓCœ”†vT;™ò~|ÊlGñÓ‹¡—‰piÝOÁ‘|p:¬YºJ1JOï|z/8'bH‚4=ý9öÕœŠ[dš[}-Ŭû‘Ð^+?ËÌ ¼Ã“GÅ3Ö³©GÇÎ(žçæ?¼´q~¨ÿœBÿ)¤Ê·«ûšÍÛ›A Š/v‰†?Ac,s>Âýßóp!m@…@@Ì'÷©fÌÁ¡ûGx¤‹fK'˜¡ö2OËW"V xz|9äÜ$÷‘,vm_RÙ;}׎"Iƒ˜[› œ2H3Æ z’˜‚ÊH…ÝDsÿ…úº.Nô7x¤£9Ä—ž”Nøß"IFb! Êî09¯¬È·¢éÝ­Èž ä3p“Ö?Vãþ›À–ùŒ© áU5ëÃ;aª e4tÄ4ÈÙŸ.Úï÷@õ+wz8àÅ8ÁÁ_â‘ñ.Z§¾Ž)æFª),[ÌÂOòNhàaÉæöÃø¥ÿ”mZ© O™T{U@©ôÆmß22JtÄ3mÜDb¬.˜¢}Pb‘»jÙ1¾QÂo¸ñŒ®:üõØ©!%ˆ ª~>ñíõYM ú2”G…"ËRNgí7™º: úˆ»#^÷ ßòñÆVñËðÈ=Ë@õ¯2È}]n|VS%½wyHD¿ØQÍÀåaLíêQAqxPêžÅø‚»S—D˜Bû¥ëZóî`c[Î’±3YÞ½mñ±6Qô?åÛÙOÀ,ÒḫX©“0@™­UEÏUÊŠÐŽò®cpä[A"ß ²bn¸Öó¬@oww}ìI­…ó¨,´eo)›ÅüªY¯‰zžÕ­òë ø—8\t³¾x¥ûêÚ _w_ÛºùßgWÜ£Àéï“þ2YÖX‡]Í™‘%ÅÎå.¿®*ãm¢PÝÓ€Ziñ4]äÄS@nu!½dE>çˆð"íy4©Pd-h¦Y)t'âö4j"Áy/9ðÈ ÖE(ÿ’CÒ5ç…ªˆ–ßù”&ÌþÏODý9Lëòëc~ ²Ã…I,§ä7Cú}iˆÂ˜ØŒc½ÜëB*‘øÃ6Á°8à Ž±B›²ã0‹ùÇlþÍÁá§GW-?sÁîÜãæCøŠÈyÈ\ødd‡xýSâ"øSïªR|ØÖ8&S» Ó•áÔ£µ` ”E…0Ú;;ÕÃJTàNÌ”7Öa8· (œ+A6IB^M†µkbÇ ?°ÓØ_³”ô;²õn0Q&&†Ëô;ªµsJÌg ¯½ÖZó‡ºRøÑÞÒX÷Cä6¥(ªµÃt ZásFÔwb¢ƒÇ %ÕËXŠk§j†p†‰x#?3²J‚7ñŒZ%‰:<ÃRl^¨‚2~Â:¬Ó_Š?¨¨xØ{‹Õ 3Lt+‚“Gåóô‚ -®}Ô;"¬ásiN°U-k•Ðd¿>|Ró­Q€#v )nзœÊ¢€ö|ÌæÛ|E¨šân•ód‹=O©ËjIIBâ>×uwlR–ÐK‰Ý?kK_‰ŒMΚń¼Ë>ì0ôâázÎß9 ®ê»¡t'(L:¥¦¡v3Eï€àW}Uª¬f@ò„!èú|×"6tW}rŃ­¸*b9¡<ä>(Å?P겋Ħ2’8…ÔÎïI<‡DׄõÈ"zb¨ÕãOΕñŸÖƒÏ—:{3!þg+õlV¿†âWÊh¦kn³+y¤ùqñµ ï¯è&̯\Ýã<éHÝ@)ã™CÑ[|¾wÙ˜—pW8JrÐeÞx›`"Ç€½‘Á‡¾ÅMôòâBqNߦÛN0x+çæÝ?÷:6tÁâq¡TA¯k©³î.FC±ìçrÀAgTW8-[¢ý€ÊqƒI]$c)&žì&_Î.?6Z«dÍà|ÑiŽsÀÅAð‘xä˜P—Þ‘¬æf™Åk7êî.ãK‘*‹UãÝÄ4_¥Òýü{œÎê—­æÿ™ACâX³ÙO§æÓݬTy«ìyҵ¹cºàŸÒ#"ke·Á Í\z1©Ï8Ã*ßv¼€£^졵⨠“†OµÏû¾X7W&”ûåèÐ@á·Hgw¤±ò€x N#V¥°‚²?•ggÒ1‡Xò¡ŸåÎ!#T)'¿„ÙÎê@1§JìArƳI#J…òE69cÎ}(íXÉBZ_xN½}7Ydšå!üöNr«™*Ø—j¼FÝ…Kò2´¶'ýA Ü×áä¹ÌUDךô…ÀñˆR œú²­ü 6ì¼·F[¸‡½¸/M=®ƒªÛf ÀÝ1…už¾³ŸðBY¾¥‹Ž HN¹Âwˆþʺñ„÷–Dô+ñ%¨ô²?+ƒwíIuìðèè¥ã#³b’P¡|“/Ù¡¯½ÑY•’½ô· ªÕÖâœ/Þ›¡>û‘ýä3…W)X.¢ˆP#ÃC¶®°-ï2ó.¦þ4F c¯4.0!¦C—ï-¯¬ x–ž«o^ØŒª«2.^¶þM˜<öN?ê¾x§õOÍÕœ¶m)—Lùbâ—f;Ø%+}ÜõÂ2ˆ¨g¾ªî$ÏD~?ê èúÔŒåö iþ‡K&¨·äm¦^Š÷Nð=¶i“‘µ1^É”ÄȾtÏÝö³ºá ‡Ë&°Kë0Eí÷ráåÕ Z’ÜÜZ–},(ò !¼E»Iý×ÏŒWéä u\J˜¿Ûg±ãè$”ùËÑbè""ý×g£ èšf™ò(•lóv&#·‡ªf ¿R­³ãB׫ëXŠô¼ÆcPë[(F˜ˆ4øÊ­´Ö¢¾>0:¾6ÀÍ“þñDœZ,Žˆf`¸Kw8ÅÙžìГ¬Ós5W”§I©â>s¦r‚v&{à© WÚ¦°Œ½ ³ÿ« ”“kúÛ•á6ZÇiv Šõü~­cChÚØ3΀ÕV®lÞ–ÊãjMÎÝÊOð×…Éú© S÷Æ·„wcÈß¹åÕØöªá x»$Ù:ÝÀî½ é¸xgf¼U3t˜_­S O»ù9Œs³˜Í³ñüÛñ|k£k„ʵKº˜Ÿ&Ga>þp»¿öØB•vçRdšÜæ‚<ääýu˜ïE~ƒ:õ \ËE5ýYN~¡N'd ©#|Ê’>R¼k`VJ.Ö‚³ÍqpžêNà|¿¶y±¿ Û¾üÅÎø¸ü¬ÎÓÌZ€¿Ã(.߉ÃCP‘|²TíÓ Mï ÀY…®³Ž|QAÃ0þí¬Ü êÖGy$²ѺY-V*Œ<‡I:åB6aJDœ’<·¬õ•Ÿù´Æžç‘à.\¶Ð^Ý_ ’ÁG`¾K4îZyò"MÆ8Tž’’ºœÛËÖ *:qs|)5ï:gå_ ñ#/qÓÉzä÷±„û‹¿éÑD+Ðn¸CÎÄf(¾º#kf]*)i¢µ„U؇ 'qˆÑÿ¶ÖlwA¹Ð’ýš¾ ¬­ã,DFVæ…ÜY-ŒÎÝÈL¬®}P÷©³‡(ƒ>DÊ Nh5Œ–bSâˉ¯ º›MÿD™]®5QÇA#rq/ù&š¹ûƒN fºÓv;B:&‚>õ^ô™zóÖÀIØæ„ú$*¾Õß·0í ³i}—K´ª]èà‘拏~Àáš‚¾äD ’‚Ààæ¦Ø(rÊdø2{Cáy3{’)dY™„®2²5G8]’ÔTµªm ü3éR¡šä^X‰i`>lÞ^;¿JÒÀ?ž×Úd$ÄÒ†xbù^bÅ›Ûñ·,^C›ÏñT}w{5T5¥Üƒ 3BJ¶o%÷Ù‡)EAÃǦ݃¨4á´tUèO䡬7¸w¹ÞR2Ƈâþ3h€}DÍŠ‘V[¹z=ùzõ!ÖŒü5Nk)0éóµGéÍbúƒQ¤Lý ­’ÿ ŠN– Ñ©ê/(À:ßSà-›Ï‰K ×ÕC8?ç8µ`ús”CÔÏ¿8jbK>–çVcü-Õ'øÕ~—À¯ëÞ5Iz¿ ƒ ²fÿãZv(çl}¥|ud_KØ`­}“ÝWÄZO’Ú¹‘¼ï—Jsìú݉ÁMØ%Ýþè>;ƒ¹òßÑì{ët%m­q£At7 $ëGåðËUÍo8AKÁ—5yÙwرq^,º]’Ôû°êðÈã#0MHÕq‚¶÷þàL"`“¥h»Â§²íå‘ÄÍìi{.dŸD_ÎVr+-'€À}ýŸgÌU†«Î¥Õòt‰aï {óê@Á3 ïü nëCOI\Á:·Ñ޵ýÕ¿þÚØ¹ømòù4¾°³éì5÷·ƒÇËrÒãh›öÈ‹Èjº‡NÖO·€/šy’Ú¡iZ1ÿQ©IJYCþM"kãÎêåt,óÁïÎ ïzç1%¨ƒõìœ*Ó7©Ìp#FD» ¡ Mv\Øxsbo0cqÉ8òÕ;´A^ªbÄS¼…;† ­×Ï’¥UÆøƒdWCø’§öÄ„6Ã2Ͱ*Š[e”Ä t6=žzò¿$´ÃáÖžÙûÞ_äAÃ$žëks0^3œ|ýFG'³¦ã×-¯‚0סå_^7hôømPv'6«’Ù¡ðÉæAÉIÍ翪º%k¢'aV™„KE z$`§*3 lîGð-›—©±i;·Ë¤ûW<^µÿcl1¹âÄð'ž¥‹e{fÈî,X zé¨xLœ9Ô´¾é'ãwÉs¦É´²§Geô"='˰óà^™ÉŠK ÃÓ:à 4­õ¯™vU×ëï^ªøå™Pw/‚·•]ù»/‡B-LJ{ô+[DFõ;Ww#s É {‚»PäÏî2}o9iŸ©‹±-OÉlÚ)úïhtâ—‡+t/-k*=~xs}ôª“ÑÈÿG Á^wHÃp#›AB vh€žKgƒ ¼æ–yƒ‰Ù/T$eÊ]¬VA†žžž¡‹ÃÜ9ϵNNÃ"åŸÒ"Œkì½›yî)DòÊïÈ™¨Ë†Ó 1×t2u R7>·Q…ÙÅUˆà¤ûåMR/Ú"‡ÓÆÎc´f†}ίkµ³3¦\Œ3yŸ+äáÚ÷ÜæcTˆIv < ³ ´àä…”ù´~$kõšØpX}oJÝÿ¾²:³¹iA:×£T!WÇ;‰ÚïÉz"ƒN{‹xÀ8Ž&˜Ë¨ù!=l4P„7¼ãýîhtræïÒ¯s©j íÛEnÒ]rL€@—–ᬰñ»\FLÝdõ¥™­Åùe­÷•S?'t"‘ÀíyW¬tõ$V—òIj_ÇÉG”l6YêO7žÆ¾×ߦ±”–ÒÄT1ÀDZW¿››#|WîM2‘Ø^è›0ÿ'”énÊõ›(@þ‰hß‘›Þ€LÚÕ˜ÒƒCŒ`²6]瓞"ÌúIr¯œoYË*‘Xÿ«ýv}éîºP´†9“R ÏCµÏ(Ì@„ÃíeWÆwòý‘FüÛîŠ%‚‡mQö†‚‡Ùç%Ý´²Þ¡Ož%Zö\EÞ%…Å臃-52בv7E“‹xbX%ÂO!xŒh\©ÕPÆVU Ÿ(úoü—%æ~z çP‚^ ¦F÷€Ù‘HÍ7“}¸¢õΉ»@ã>%Õeª {ë•¶¨Æ›ñzØ~ås/SIÓÓ0/¸ÙýzK01YÈjEEÆö~¶þîh™ž¹íQ¼TÜ—›GGÞÚ_ÅÕ$U•Å ½Š×\ë$yì—2Ÿ.H²Í…Ö'ê}ô°Å׌u¤šÇ“oþ¯@›„ú¤s²I¹ÙØÆ½©-%É·ªnìÆô·Ò'íp³@ï%,ß+/·v}HTô‡mƒ ‹……j† 6Uu¸"®y‘{<µG'jù-+ã6Ë4èa¿ÒB‰€JµÈ·¼tì‹×"Ƽ-?y –Îȶ`@HÂY‹ ÃéÙ„CåOÌ®8^`T$´x¢»_N}~r<¹‡)VòÖ¾æ][a½ãÛ?R;ÿ)§ÎØHùç%ÁÅG…0Ñ(å.)—Fò¥”d>ž—‰’Î÷„T[« ã2)¤ÊªWõ? 9¥…­^4£º›úbhÍuºÕqÁ¤Ë¨åûÒ5ïOéÑÿX_+áÚãÎÕ³Ÿ¸>\J³nûûÍlÙ6ûRX£VâDÚü;¨öø`ðQ!ÊRêt:åص¤U¼áÁÉ8ÓNÿ‘c&L2ケõv1õ7ÞVàŸlBÕbñŸÎã#o(÷Ë‚¸Õ֊чTDÞÕGøŽšVO( ; Òæ§j”YsÈÐpx“¡gXŽþ¯Hºøg.ú|T Ôùp õT zžkÉ(Ê%¡Xßï¿vzbc ÜÞJ[­LœÈ»ÚtdÖ©c= žX¬z‹=G×פ©j:g¢ºƒèR‰Å Ÿ“ü AX?œnÅKFMªR–¯ÅŔާ°L¨ Mz,^ñnÑ8¨óæéBX-çN½­ê&{žÈÌÆ–õ'ÛË}¶ËÇòò!:–¬I·‰ÊMö¹SbÈå]ȺGM•ƒÍ»9¯Ù›fë×eÓ×ûðæßuW€±rÇÔ1ÆS%1wè —Côþ2Öm[hé<Û£müË•Ð6„ðNÛ7tþ ¼b)_J ú;Ü–Bع› kIñà rÉ¢2&%ž°SŽ3C±–ÀîÌ ohb6@MÕîeWýSn$¶¾O™ü×¶¹ÏêšÆÏu…`ͱ›–"Díû|zNm´ÖoüÞ.J½»Šp´-Ë ÇÇdÒ_‘¥ Íù;ÈÕ‡Úý# /Ü‘â/i¸ @cSÄíﺆǒ±5diró/6˜`¹½±hHüK·ë.²þ¬L(÷5ë–`¹:Pü¯ œ)›Ðaa^1£eâÌMî2Ü9:úMµ-Zye„¢˜=:g? ߪ߄ˆ’3E9?Ò¢ü¸Ÿ~›µ6oíïðÍ,hºÆpާ®?ïHX¹T9ØØC{ÂÒÖaZëÂö¬|-XÆF:+gšH × ªGZæ‹×W¡v†ÏòѪzº¶{£îž#“‰mLÞkö³Í¼ùX†ÞfNy¸««\úîÿˆÕ¬0»—«¦½«Š½rÃÇ<Ÿ¹Á€Ud¼3¼vúáBÍüßÖ-\eLTb&ðÃH udjÃìðþF®cn·š'älJ…Êú”ä©Ä;l=ÓºÏ8ó8 e›Ê£Y½ˆD1FÐWò ,<™ ä_Œ.öºŒGf#`º¡ñ«u&Ϻ$£úaÎŽCéy6OÏ›44fKÎDyz£ ³I–͌ˊè¾QÚS«¬¾µÞŒm õ%¸ÉÉݸ­tfÓJÝ·€àFTðÇ™–¬ñ{Kª+‘jvFx»)˜ðÂ É ôšx·¹ß:1!4Î/ÓDÆWj„ãÀï8#¥#øíœ›Š¡&‚sè]È&dаÀ¼ëé^,õ>³XKýãØð««KB˜›ß+z,L÷ðG»¦È†"ú(·LqSÆsÙÝ?~,MÏÕo×)4ŠóJ¶5ðCè_‰Ù,¯Õ%åîºcŽÖ'¥ÉƒypRáóék,t„¿Msbôµ² ɯT‰êv&ÞzÕ'lþÌaˆ’ o|(PýTõÙÞ>ìBŲÀ|²ÏŠ1Çt[pW¼ZõƒQÍlÇ)ТWa¨vÈ-—ÂßÑŒPŸ_§³¬Ôô‡ØpN% Cš¸)”uØËA´á¡:4©°7ÿÎó@¯]ç¢+ˆjOdáñÔ*j·çÌÈÊÙH½ß‡k8›Ë—¬ë€]¸Ò?}0æÜ·ªO^Ú›’è… “’jß×WŸðÖÏm± ‚!+KµP~°|bÍ@Œ$szÜ,]ùgºR ± Þ&XˆŸXz=kièd±`;=GÀÃa _q[{…óÒPÏ‹u(Õ†|¦Bt'¶£ÓEå{â~EŸ¯dÎô.ÁeD Ù.Ío¢‹±îBî‚ÏÀ!¬qûô¸ì·E;øüsüÓ+¡­ØóéÇ9ŽLôöz¯"Ð`Mßà2(13Z–äú=m / ±±ohö Ý&Â:•6­kë”Ò…cÍÿp,rð$k–Ö1é9²VÀ‡½Iá>TÐI™Êè”%™ ‰š“Ã2áH)ì§¢ù]ôý|M>ˆHgfûgñX9ê§Ãþjm-LžA·º¾*Þ\^Ó ,J79¡J ðÏ« 33iÕ"ôÊ?.¨”`lÀ݉!xãÂW { úÊLøðAB.~oé¨B –®&¼d\cETŸèe#¯}E!Êe€÷‘$ke¤­êþ1!ÚV½ÛDÒ&ñÜ žèPMZýq‚î¦4 “.õëõºí +ÿ~X¨ñÑM:+G°c±wÍ Èì`âÚw¸óþáÔ4#nk÷˜h8Œa=­çe®Ûô+9M2U­S÷öfa²D!¼`qíŽX¬ªõ¨•TŠrŸ”éc‘è®o“˜¸=,8UYM™ß%#-ð·B£J×{­)øbZ¸é¶Ðæ_ìÊÕ>ÍîÄ/gU¦8 ¶“ícÚylKáWK;C&IËýƒèó7iêú§×Ž?±faaÝ–˜¿yi€Îw»"t^Õ œ’uD¹Ó×Íýåü]¯ì,LâìjýI\2Ðßð‰¯ª²Š–~µ ‰&…‚ì7Á~þ¼­@»Ð e“×Ɉô[錰ÎïCM¯»W|—È%V— ù˜ŠÒÑÙ°†“g –CXyÒæX©,ù_ÇaÍêÌ©ýV]ã6ôq’k× %~uÆ~ŒsuI‹ÒpA÷¨ƒjψ‚y¹¯buÙ r¸ñÏF#•èL¤ŽÄÉšE$gê€ HëŒÎ”´GC8™R.\A7œ¿è=: þLÞÈŸIðÉnÍø–øcË%”Z£E%A‡XÎ9?Ärò¿ÓÒ5À@&v¾N>æë|¦„<áW1ßݦ“¢æÐjè íXMJNXɧ¹&_àäáàu>ªØWAÜpÑ55Rï†óÎßúpe EºÐ6)ÔhYƒ¬-¦)ê$¦NŽËNÎÍ_/ö{:fÄ7æ\ïPï;‹bÄkî¾à8òÍ;„žWK2C)/wéòÙÖ%)DIÍÝÙ¶•®šú»)½Ž2%mCe½æ75œ…šEß½m91Îf5Ì Ç‘5k0Û¢Üd5c¯R7ò0Œ_h¨Ùu EX¼ËÃL ¸Ber9GIáut¤^1õ* >7l4è$ ™³ðsˆ,CŽê‡ÆO #$/ã#ý°èA¯íÓeóKå‘ï•é&²ÜGÆiÂm;‡,FΛWGôš(À·£z¤GðÈý§ÚqnÖ2D‰p>hÒYUϽ\À‹±ïìñNÎt¸"à½úT:ÈbR^!j‘»‚)çý·½ïÐ]ö~”鉸i«+†—iåøäõ„¦D„²KÜ&8µïNN›9žÐ‰À•T“Á_Ld½.¾V8‰· w F L˜ r+-Ê[ Ò“øŽ÷Œì¨òÓ£.J«øþÓEdBÆ•ÊêÉV÷ä÷&ÖóØŽÚÒ?ÂC>°.C¬ç"¹4!ï'ŠÍ škúB!Þ†TÈ"4—ÎÊЫíEoç«ìS'9÷U½B|üìÀT ÏÌÞ!$a=®è~™K1;ãtË~úÔ^”Íä08噀}äF…d©.ÿº¡ÈwL+X ^µ=d°ùµ^©bY å¢ÀØX¥¼b¨‚àþe˜3V­<ùŸRWé¾ » –Cñ¨gv…g»Í©×OG2Ë?€¾Å±7 Ç’þ{éì˜e{eow›çÌèì8‰)†Âî•~ ÄÆ)Þ:ÊØø‡D#ûÐŠïØ‚­ƒú¢]?éÊ#ÊJƤà÷¡kp8«ª¼oYB»12²‹Yë’ïá™NþH0! Ä¿~+¡LdKŽl¸o0sЏmn¦Ì¯ÅÔ×ËB¤g@˜0-1'Ÿn+…#c“šÛ>izrÿ%Y!‚·J“‹CY³_óïTK7”y­fUûya,kêɨqìxcg¤þµŽß·Å†!² fr-8 þ ÄI£™xj»º wtµ‹Ÿ­+ƒ‹l4B¦ýȰò³‚R Lúdz>œýùI43V›Îãì L[…ñ d9®ƒÙqÞ.ÙP¥="Ϫ“5*í" ºQ$Ió[v)9Ó¼ Ké›XМӕÕ5t`È$}Âó6«·eàŽH™Ë–$é <ýP[ŸŠè—/¡žK°_š# ž¸üï)û€ qP–Õ'ÔµÑÚò:dhÅ+ˆ%è§®Š?­á Ÿ;œÆú"e¨ö·n²{=·Øe çJµ\ B8?!×›œn-@Ž$€&e;ðQÒ²éHžx)‡¥}ñ³»™ÂJee\z¢Zröf\†H bØÚ]=dÑV;KS^Ì}7¦Ùô…X”{¸ˆÀ1ü¿Œj&ÿèü“…åjNÅ- ÐhcO×(z‚^ 5_N„k–c¦îM^/]8®â®á¾‹Æ«_:±oji0aÿ‰¶¡º—×°"#Tå+ÎE¯ì¾kô ')éÍ"B·’8S¦Rs]A=ã³ ŠÉ1Þ^rè¡<ß\¸r|e„­p CQŸ°`kDØs “óJðÍo¼W¦c†! ¨Ë¢‰P¹ôj‡®Ú¬¾yÃÜUëómŽ lGYÜdg³¨@ßE Ó®§c+‡/Í8=±Á2v]4în´1”p¿(\¶¥Öâ†Uù/J ½‘f8;u4›=  è2Ó5«õ©þQÒv%hgO®F, ß!ù3[óc)¹ÚýjxÍÈ#‰#ãAñXå}tõòêHµr™¶=³²²®àvwB?„áî3òp(l=^iMÄoÿ¢œ ZWºþòú8Áf¡êeÃÎ ¸øwvŸªPõÄCË5ŒuŠ;ÅŸ`‡wÚµÄàÈJƒç@â’Ä~Mˆ‰rç¢Äµ$²J_S.ܼ·$¾(dF@WÞ‹»€,‚Ž›Táa!zVÌ…¯»¤nGÀ†ÂÝEv¦§¿·Ÿé¡‹Z`r«¢‰„åÅÙ“ç4oþÁU’‰¬Êíü>’Ô¢ÈààrÕ‹CÐ3ì7p)ÎÞ' ³×Wp,éäÌ`¼µ¦1Kð|8“t”~T¨"`ß0=,‘q½¨w[\ ôÚûÌŠÑUô5'ˆ‰\Ø$©P…}X~‹{týÁñ–ÏÎÃü༔.E ²÷fsµµ@N·çŸÌVë¦Ù@I‰5Éz3¯# ­XARÁ Ý Æ1©w™Óä±û厭С÷³‹ v ¡%óŠƒrPúš£ÌÉ163s0k®S:È´]„Ü5U]˜¸Ç0~‚Ë͉mÐ?ôÕÒr.p¶¢¶¾„Kl(£ð‚™}¬ù’£‚Q>hº¯R_.ó*LsËùÊÝÞ1A\<*DR¤9¯{Ϻ9”/¾×>{ø¶år^³xËrU&+;°=­}ÿ€p?qlï”Lë!(µ–õn©'[ ÿËúÿ}Æ‘ÎïôÜò^2¸ K\è=y—5.¬¦ ™"2 Ìœ3úwÙXïeˆõÉ$û¤ë`Áâ_žZÚÂâ|(CüŠÖËiì4zÀÚµY/ç¿g¡"z*ü¾]]ƒ]I½ûËNV,ÑnDíU©:`¼8Û7@†ÀšªhÎ8¾dó(„EèýM&[­}LÞŠÐâ.|ä·53ê%Sî?' ´[$‡üÿÓÝýíÊ7Ä”-†Ž˜ÅW£IÒž#=¤."ù%$w{ôR›ux¦¿÷ü¯Z>2Ÿ"h*Øz'°­ïy|D¯÷¬æt‰X—Ot&‰">„¶}Z­È[ªÇ\¢3Hìd¢}Q¾Ã© \ÏFÎC8f’„÷÷ÆßîЪò#cÜó¨§Ôhp"¼[Ô!Œà´}¥ÂL€ªI¡WûÛ:‚!³ô…ǯký½ú¤Óœ=’–'Å5Ê=uÛòùÝãø°¨¹ž{ývjç=ž¢€˜}™ü䀳h@«ªTÚÉt†A¸Í_ù©$`5 Ƙ‡ ŒŽÀøMB’­ˆžÛ»MGöûÂév*ô—K¹}Ũ aªÔ‡á6L?ñŽEÊ)`¬õc*RMï!™^Æ_Ju}4ý)v€Qp÷8æ¥~mȆÜõõ“Ñ3´ ;2TNÈPG˸²=Y6Ýѳ÷7¹«ÑÜR¢ñ¦ö[¢m½æêSUعÎ%}í‹CŒó‡Ó‹;‹1r(Û¯õ゙$äö#…‘·ýæ‡c“H$ Õ `±/ˆé·1åHÌ‚Ÿ¶ÕàEÉm÷(Ø4CzÁ†§sɶB—`³ÃµŠÅ›¼´Ÿ¦Ùé(’ ÷íîk±^TÓŽX÷<Í['w¸H€n‹·‡ŸVå’bò184‹Ú&¯µêI„Ý •óŒµØ™-–ë|ØÑ'èÞíN²\dY.‘Ûê+’o€®ø´÷É—eUÊuËOlúÏÿê½öt‚NEו)põïÁ©«J#´w¨p”fIR(økäL]otºÏ=ˆ¤KÅ-$'Š¥ÞoósÎ.CÚ ÿ½è0›Rœa#BᜮP«8ü…í®ó–°Y¶.¬žŽÿâšÕ땃ÏÈû¤>­ƒKufsü½m˜nŸgdŠœ~žåžÁîzd$nïhp}báF/]5irT:VÂæðäuúàœwWø²÷‡Á©T€¡¼ ­I‹\5ßæ­¢Ò•søÅ»Ç²™ðë’®6æGd“èDÍ£ÓúYù#[1^*¯Tš6BáÒëž³¦ãBÈXÈúÙ{ânǾOZ¡»%Êtó¢MÁ:ˆþÅRˆb+ºòÇâþ€ Tm>¬iÿ’7ã{œßJy—¿åÿQ;ï+¯¯`Úæ+¦—|͸Z§ÎÒ§ˆ ôajû "¼øX†±a¿š~Õ´²Èæ=¹œÓ^Ì6Š;Vk`^W¨o÷.þ§I×Iªr?íJÆßTŒ–%%,…FÎsyDQ£o~ÅVXêÿŸñ\Æ]ñŸ–9°«ü­‘åV£%0 ãO~ÌŸó5¢“ ªÐ;añm]ËCiº›Kô¾e93sH/Ü:'ÍYô•°=κ bƒüH¾Û i¬M,½îMÜcŸ$òL„n¢uÑ ñYípd‡Áðç% íðàd[…û]6:Í“–¡=qoB~Yµ‡4¯P/ hZCÀtÍä™Äwi|MkaóÍŸ2o‘‹ogÙ.ŠÍ›ú‰•ìo°ë?òHx«ÅÊx_jøÞôÆs >~þT.—zLÊß¹“~ÄÞ:­ëÕ´4ŽÊðï¦;5…cû¾{4w¸Áh™A)î­îû]挃…0º¸$ƒö;žS¡ˆ Ýór›ó'ªÐз⭠^{ùèšaõ‹4Ú‰1Ñ1÷éñõqCâpášaÏvÎ+“u7°-Ñîÿ ÀÄÄ­_5L”lP…û5ýXG>]yÔþÚK¥{>©¶.”Я«”E (ôÇÊ^ÞÛV¼€éx¬CÓéã™bœô1“£’lüž‡‹Ž6êåy3e0j=@/QkQªªoÚK&œ•Ë–#·Îœú(ºï {>–âñ!¤ä³9q¶K:afTÑ×…—÷€ ¨‰Á¹gÆ´­ê«XêíÕRpehžòjÃ9‡™qÝTötO$»ñk°,î”R ¢å쟖[º÷ç(lj_À¹€"}·>N€Š2\wÂTGa›G P‘5W/ž×Ѹ¤"€c¼‡B—µGSòWV½~QŒ(7ð#(dH£¢yRe̓×ê´õ ºvÊÞO& ¨•ƧÀ®þ½£/ÜÊZÎyå£êg€ÚQŠ+¡Âž\¢ìò/‰rß6Ü‚h‘dÉóä1(Eµñˆ%Í!Hºõ•É0œëè‹Ä.J±…8_étPÕ¨m§DPY©d;:q$4¤ ¸”ì'XcŒÚy#fF!à\é¦ÃmñACˆ #'AW^iv½õòP€0z{—ÑÈÑ‘ˆV @Qwô"¼å3 «_eáKv‹}éHÎůIÛ\Èô¨M²LxÙ¢ñŠ:£¯z@¤Ø6IØöƒ Z,ÃF³Äi° ˜"j|±r‚<רl§µ‹G6+?Ÿ¥Efà+  [zè¢Ùñdågb,f `ùdPü‘¦W ° ÛS=@Æ0Ýëb ÿ8M±G»¼þà«Ù!˜£øâSðGçˆ]Ÿ‡øÀÚâ¾æs¯”@µ,Q÷6…l¾•g@Ëžqk-ù÷cãÂ'ÛÓÀ¢„nm«ŠÇü ÁA·ÏO»[Ç‹d$|­Eò^c)€àHû‚¿¸E¡¾íÖЭ&"íyè3íÑá%²òv dé%Ž«&v—œÍ„œv^¥µÐÖ\‚~Rv~bÄr4 !Nç‚tpZÜS¶Þ˽þo‡©Î¶÷2X×âBL³\; êÔx’š8S*àìBtHî2)'§HÇ(á.¸x‹c÷¿“¹ïé)Ê>;"ûsɾ°ÐÔ‰Þ=»’íÌÙ¸ÿ* > ÷òÀ‡’|hª3=þÆ’xîf¼¨Ï-ׇàXò_ŒêU¡sGvqîÈæÃšµÅúz€ŠÊŸç~pªö!æiXvÿ°=¦]fÕÁiÆÏ}]Ū;TMº˜S¥R™]šxz ÕloŒµ:ŽÞ>ž(ƒU À’‰¹š|s¦¢")¦€ÅWƒG.zÙö)Ù2wˆµó„˜×ùÛJ0Úäø0$ÍÔp1fi᪎o#e®½Êw´A‰$ší¯š3rØz„’:;£ŽâÇ?(Ï*L¼¿gׇ’lc &û=Jã¸à4¶wKÓd0(±(&ôË\\ZÌe8ÎHc‹Ééƒ\H¿Á?*ð8óþš;ù90>0«§ˆ ¥nY¥UÿŒ„ fö]…º@Aiφ«Y“‘éÖ^”è#½š¸å9ä)ŽÛ¤u¦ÕëÖ‰‡ú<0 vÖn‰Ð}ä¿À‚¹éš?-c¬e±†­iþŸ®mÈóºª3¾‘í‰ï#—o…Þ„m€ã•ŽöZÚz¨C]©j!C§¥$¡sëÔò ocÎÕp0 R0) îYRÒ“ƒè[+(8sr>ؽh¿Ëj§;&¤(–?>©O¯sà ¹ê9Ñѧ¯­YIDG—Ã!ûì›õ†ý™ ¡>ûa,ÏÙ>þ¿[ŽkFfC•ØÏPº‘Èúºã™Äö á"º‘‡Ôz¿›œ h«}ðNèJ¤X¦þðƘî^^H΋_–îsÛœlkWf)×Rߨëàæ> |h~¼?Ss½¨f‡iL*­žoV`έ6ÕoÜš•o¢ŠØYCQ¸ª¼{-12ÝkÌKðÌU×UþtmÙÑûméÏM”<œ7g² rTÂgTWå®l¬ÁL…Çá¯}é3ŒôÜŽS-ØþþÄÜ› Ø ´¤aÐúœ»‹'xÔåU`›5AŸÂÀP"»J…ïÊ<“ÍOCßµî pÁÁÿlJcËqôˆ¤DTMÅb¥~ TÁù}m¯P¢e«ÙŒßNçcÿRP_Œñå¤7Ãeì³öËž@¦C~,B‚ïß]®»Žà‹Y{ÆÎÞÒ”¿„¹!a ™O‰(³ø]Ó”×ÕAHMÕ§^®Ê³rÆXdì_ÿñHŒôŠ—Ð:4žÆ¬ÂùøxᤑßiKɳ#—ÓPÊ«Á—HéaãmÆf×ÔÆ‘d_hóÅFá~ƒý•s­>ÿýƒÂ~ ð G-†¯Pé0¬ã3ΪZí¡5RÙü¶»å¶ÌÛÉèéÐÕgî·Úž³ÛtÏxˆÎ4iÝÜaKÈ8ó¾gY!@Ë3ø0cîwód Ñn¼Pü—‘ŸÁ/Â~ÀÁ±xz¢#‹]sEÖ]_™‰4qLýÐ:þ4üéjkŸ¥oˆ._C'ØòàÉ1aLh‚j’f§Î6„}Ô'»{8Â%ìÀŸv¶Œá,*0® Däs_0cªŒº,²ib½O&BîXuÁJ4úÛÞîñçó“ï¨SÕ•0i2¶sâ€.&Ž8+{°+ª‹†ußzwR¬ÝZ "t8Í\E1æµ¾3—Ò³›us¿Øbå9¢¤nß"¦ãSŽ"e0¶>/·’*&îèùõ¼î 4¦„„nS”1.æŽP6Ä©¦ç‚|øít+8T¥ê5 Ç[/†Ã qô½ñ~Š,T3:,F€8A£­]phÓ˜W'×⢚;ýOQ™ ÐêT+Eå·åkk˜«ñ‡ojܸ 켿ÞJúòIC$GZXÈž=yÖ}¦ ñåúG)¾}[þcö:gcç§«ã¬}6 Déµ®!zÌQ‘JÂGke£›—¾õ\ÁTÀ"õtðœ'¸8un[0NW õVø’ÐÏ( ÿôI ´ëãîióê’@ŒâFÚy‹¦4Ťé;­éHŽÐv¯<^ÚT‚)Äxò¬ƒ¿¶ Ãø¶cgžiùzÂ3¶—hV­½@»ö‚†yº6Ñÿª=›¿•„½­{çùSE”ìïÊ…Ïê21‘DýZ97¿A×¶Î#Yï¬Ò9›\¼Œ£Dl³Ì*rÇ8¹"ûã&%)È<êù ¨Éø›yÈëzàä[OîfÏr8†I‰A-{5âºzžêQ²¨YÊ´ãæ¥øG©® *u $®OJ•õ¾ìî%Å Æ7™òEOλGE ÎYw½iMF4óB–½H_xxh1±/>´ÓçÔaȸ:ç&7n.h%#}h!Yi ÂÚÐ3é×£HS,’¢ácEJ´¬z(½ •‹ºTXVÆ•M½Ãÿz”qŸÐØ?)X¤zBÕ:'Óþ„Ïça^W]󠆥,Ç„øQzáj$Ôû$:¾'fp"ç¾#€4ò}QÂA>öü€Ë^<_é„­cÿWØ4‚ɦžméïB§¥OúüÎ+­’ÃM!ËZ³“ÇkVâ÷E…Èaóš¬ò§‰W<¤#š~ù®#©Ú3#Nˆë?É'Jöð-‘ ÿ¿z RýÞ¾õÅcCGÉÖBKž{ˆ7¡º|TrùÎ.é=®vè:¹J¡ïTÔ¯ñô_5ºôóFW°ƒwû)Ö?”t¤‚w0/T`-”ɬÔÞxu©IÈ¡ÓG”ðçd¹ªa{I R´Àì@•ñÇŒqW§Û„”Ã9ZÆr±{ÒH9q¢Wl5U…xY9 È%ËŽÐ~«á`}Ü…‡À¬=â†Pß/Ì=Y£|ÙŽ8šE†=Bø)àK¡éé5h6! Q¸A…¹z·“ÇiŒ:5Áw¦9À’úã¦^Þe‘ qFðŸçBX JO¥=E¸ßÓØ$\«¿J|£[¹Ø|Å×é„@&*’ðyÖéb•9nµ”<·œˆb Åì¼w$>4;ÎÖK;gUÊšæŒJ¯Hº# mv u¶¬ Qc]3TŽô‰‚‡D”_œ-oª}îÁd5þ+Ü$<"ådï{ÓácJÞÎOãFE—cø#\šþ—[|òN}?PúßžóC)è?ÒK¦ib»iæŠHdïn ˆô:åÉr¾Öàq R_¡I¸/UÂ×ÿy>É´©ë@ "â:æàÊ¡‘ [øä±ªçó’”{àiú =ööý,úÜÛ™î÷øŠkþÊØ‡ö‰Cô+ÂXÕ„F QÕ¥E;XË“^GZþ·í?\ÃVÛÅ£´eg£=­ßåÐEÈìE¤¢—i ^þ‡·-²# p 6»5òÈž£‘-Äm@¬˜SðF¾ž$ºšè$Û-V[Ùc5Þ‹û˜ðŒ ó§z­)« ×öÏŽ©rZj¯ý7Œk;ùl\A'CFa@¶7—TB5ÏæDô‰|Ï´ÔÀ€<Þú§ïº®õ¯K¤J¨™Š?þÛ˜ŒÍçÝ’p;,ƒ‡¦ L¿UÔ²&ßi<öè40÷­2¥ƒ$}ÐLÞl½o‘ddTãó†68.beøPžûøØ {PKÅ{(¥‹±©Ýõ½«†½¤Nì³÷±B¯Ið+êY­pœ—€>H¶ç?…Ä• „½éƒ¹"ýùO¸ø’ݾ#£ÆGŠ‚E Ý gbÙL¤:t-#÷››*ÀØ/#"8o5µœôh*qÿ!¢¹(@: ±—g)ƒ…ûj؄ėë±Ï2–¼ú®øg™ç°_yÀ}ôU¶}eNô†‰¬uk~Œo—=È[ª‹U¹Èšzé²6åÿoÒÂd"¡µ æiâGpª\¡ ؘ•w'^…yþ™GÖ² àAÀto(“ÎÂ%¹ Œf&ŸhÂv» >sýø[Ú»Çm-chp gG5Û \„‡ÿ)O kmNp[·™"óŸÏ²`\Y™JÊôà‰ ÊÓ‚Óÿˆæ¡ž:ìŸm S- cCé¨ç|µ˜Ñª&¯äÕyÞIzÚh²VxPbã{–/ø-é||ê}©¨½w$°d°Ð¦–ÂZó ™¤ÙìûÚëS†·ûeÊ 8~’' 5V$™gocêjV$v¶ºq‰Á½æ–yuøÚûÑrM b',N¿ÙA^Ù ^ú{z³õ–èÛÞ¼0?¿ÈâY$ˆúP½XK¹{5({Ù‹‹?-æþrÏmP›£ø@^[óQQéûʳ±_5¥‚6ÊéÀ+j$m¼ÐßË_ÏÞ'Ù°^ò£5 T—›Ã@¡d „«Õë)¦§ ¦œµÕkè;L\•øÅ^äµ ñâÙDìy!§¬ t  "ºlkjþõ™ã•ê:êw½ †(‚ûX3©P‰8 &¶ËŸ (Q;¦ø ¥RÀ¸Ú?ñÓ¸PÊMÐ{£C°4|>ªÌvôñð>>U!ΜÊòÂidøJF>uH‡2» ¦$€92o#ŽŠºÜw¢—^a"½:íu¿AWé2’ôê䢕²g9ð•ídšÈÇ"y1òpqK©AqÖ×7¦¨zÂ/FÏmc!H8BAùóä(¾i·Q|Ɔe6mBèFœ<À¯SAì¨%õIÀµï@ >wë¾%||ÎçJ$G»ñA™P±¬§î©Y&CḻÆN§À늹kVZ2Û‘„é7{³7׆Þýøx±º^)’þ9JM³l>‹˜Â_ ïíyÔ™V†D»‹4m7î,KÆx–"ðr,9K„DÏ€¢Œê¦®½E‹V—ž«ý‚ƒ¿"ðkM~’9spƒ!˜þ”÷Ÿß ï%8ŸÆÿ§JîóùÆx— ¨¿Fædj*L£€5Ö €$h’O»Räiõ qÇó[— g©†,ÒVå±B•”{Às<­†ÌcK¹˜Ú6Ç””dý†ïÈïUÚÞ⬉¯QÒ8áýû,+4òù‚×ç‷A‰=øsEÇ<ÇHüiÆã³ËaøÛÖ¢…½iÄ÷ª¬Q±¸‹dº›/O|#¯’…Û’mËI°gf¤бÃ,(Øo i%ÔßFeÈ 'tDtvê|ÞQë÷ëÚCQ'½Ù¦ð5Tõ‹³µîð?.«Mfu[¦W5²ò#ÚCwvƒ[¡}Ë#„ç)lFÊëÆðÀ±³§{B¤‘ŠÞê ǯ `Ÿ½#N{ u.–†ŸêŒßÌ9 °Y}ƒ„Ë*¤dC}o.É-þ„€ü›t+ø]½åÁàç( RÓy)k`²ZƒàH¾:E3/‰ÝÕy$@Áòvì¸f Dèg§´ª’¯9vܾ"1Ýv2|‡»´UXô©€c ØS«¸¯¸'”£ÂÞ©{)­V´Ð9)DFz;Œ5ã’‰ÊNP½²™$UÊ‹‹>Õñ­Ì‹"Lgñlijb?dù Å÷‘ï}ó/sûjIÕÂ>cÍÇO—a> /;òuc}…J u=g²o*\|0ët˜^þ¸sYÅRc“žeÌ–Rrè2@íRÓ—‘^Œ;qG€”‚µƒ*Ad©ˆ»Y`zë„WéÕ›‹§ý¥TµIÔæ¶Kº¿qDŸM†}Ú>?©JéRû$wÝG õÍ5<ôOž’z¨¬ æf­E-.8®ÌÐÇdìYY™Rù;`*³M²!Þ8Wkq©Yõÿ1LÑJ³ªŒž£hoòj‚@6GMy?[âÏ5Ô±b¡PNV¾‹'Q$#3¾ù\C;(ïiQŸŒÓñC>Fúœì ìïCæÁr¢,TÖL¼!²äéÓ ¤—«/N”hkQ=)®7ð?úÉ|Ef×Oû Ñ¡6Ù)©ino­sû²T©×ÜGY ¨ ö‡â·ä»¬C¤Ní‹+˜çTv•¨7ð§Ï:IÊ’> 0/ˇ_3Ûÿ-­3ñŒS ðÖ£ u×Ä]ç•‹Ýn™ìwt¾â1匇óÚþzŸ€ê ¤½oPžBC]d°>YÆöqOu–ùéïV 5†U9EbÌÿ¥”Ü‹•$S·çÛêÃQò®uìt:ë'+´Ðpæ"À?àl‘*Éø˜*amÚéRP­n|3O…¬«(3ƒ-}7É­m«G¾¬QVv3ìQ|ž Ëãy ÆÌYúl`w2LÅç¡å·ÍWKoîdzªaLîð\¥ºíü µë‰Õîþv:I93W<ª­&ÎÁõš\WìžÆ£•n·^5—Å–Ÿ2évô£îÆ“üu®34Ïóæ|µ¥E#³È›‚ºÙ¼Ó$´âÌ ¢›(9R€èfpFþÅEð{îËÐå”­ÚãòÝ‹L0å•%˜½M¢*»Î„H3ýW# k³ýõÑvÄíeaƒ¬Nš¬#Ù÷ãôNµÙ7ì’vkة㷠Ê?#)¥Z¥Ë=ä<%•OæÖ›ùÌTÕ—{æ}§,òQkeÕâ çýÊ˼–T‡£¡=ý"[1¶'XÍzœë3×Ô®×ö4• 4Y: l‡¼Þ˜ôÙ+ k¸˜QZ%w’†[øÅw.üoì–¦Jc¼î+ÕŽoìg±ªI‚xÔgE²¯Â-»¦’7ºD+¿¯—B›álºÉPe3jÞ¨rLoœ³ßv×69Lì,Uêþ•‰™P©žN ¤y§¥Ts×)ñ°Ó­.¹@Ï%7É™¶sG޲žÁ"mÉ5“ÁC•<&žqôÙNj#NnÏn8\˜ž”K5—Œ|JTÊUœ%ë®ÍñwmŸ¥ÙˆBzçSÛ ¶b×T(9â¶Ì2¹€äŒI¯ ?¯ lP¢Bð q`ør•RTǸò’ "ÒÒÜ<4K´é¸GöûQ˜ùü4Ø*Óö^úR†ÖäEEþaö£­@s´:w0M Y&ð‚D‹Æ§0¢h„—ç~³­÷JLX$щGíX+îÔÜ& ñ‚½`ôÁO¡²º·V¸Ÿq†‚p‚i¢÷õ|³”aä‡T‚®J%¦)Ïmy{J$æŒL2°‡×6®jÁTpÙ¨ö´ðÌ‘sµãKá .tw)ÙÆ’ôƒ­>j¼Ô³:s…¥"P‘ˆy’cæbä½·¿À–΂ýïÔQI"‘MÊmÍ;¥ª„2Élw ;ªÆ*Îñ!uW^À¢t«YìÞŸ`$„eNÀ¢@8é.¾aWÌ*¾w^ÂÝQÛ¸1¬Ü| óIÎýz¡Êa Üm™°×RÓe¼¿!)mICtÔ*R:Ÿ–©I© ƒ­Õ´ ~}¼,'ºƒtì;Ó´·"Üt Ç*ü¶3Œ¨uÞ¼ÑÎg,‡ëWÓž.”7”RV¨nì–b™5Þ÷Ù$èP9¾1Ã3Ý·Š*Ë.‡ŠÉ:oñôg-÷ÿû3ÓT}Ξ .p;6M"&}8_zÀXÇ_l9ÇÅdYý]€ˆ!®Ð7îÞ»ƒy²%ñª¾pqË1˜>[úy­Î¹»ÔÐÞ)ù#¢<bÎ$ÊZQH™ÓRV½>‹Ö絺CÃwj&ãs~†{.áPîûÜEµ™Ù#Ûž_ð;|ú¼ýBjnÑp ±Ãs"¯þájHœM 5[š¢S3Hàìš+Þ®deÝbˆ™3[R¸»øZ*ü¢[,–њçS3±>g:bVbôÕœmÕ™»îCƵe­îxþ$å+S ¤ö¸q°)Ç') ¨Ò¶»×º+£òé9%W®òRš&ô â2==OEjM÷S>·6eAÄŒ2)ONñöZ×íˆ8“)>´Œ³ÞŠÙ¿LÜD@“×øY–ÆêS(æx5º$LÒi‡á¤ˆ½n½¯)îQ®)6Þ~Ÿ¤U3yx{¼Ö‘-ÁyúIdu(ð=­Áð¥¹d²<À{u 8ÆÉŠ ýãd⨩æ9ÂAs­)ÖqŽÈÆkB—Zîd:¤_H©e³X3Š ¼¤Ï÷é¥$æo*•(+|ÃG™­%V™ªT‹Áøv"")¹ùëIÍåxå»Û9SÖ3êÛž‚áÙ–Ë(†2íäwß3[Lâ0æ³vtd‹Ç] ¡qݯWÏáÒ@SƒÉêöDÊÀH¬ó¾wðÒfT8¼ûQùJ¼ ˆ‰¤†²#éÈæMÙ#àú“œ‹·¡¾¤„ŠVÃp‡¸BÃÍûžÕˆKNñZ&ê'¾=¢(„¸—ÏTƒø ö]†à´OÅlˆf2©Ñ$KKÏ(t$)p@8ß¹²\òÑ‚ðd1DuaI.Ê¡‚ü >ùm¶"®E¢¾Ž„t°ûö:Ç–ƒÐät“ûcý5'3|Œa[wÁC‹Tˈüshé]6’çžµè=o…y®]‚Öêe½XÔ“f#,JX@Ò„±Vä û5$5{߀w*úùIpË.Ùþ`¡ä#´«.Àà½'cºìM"°x™ï¬câ5`ÀéÑ5M0îüäµpÎXÆ1&D¦Ž=yŠ)d¼Zô¥ÇƒŠÙu†<šÎÚ;¾¯íªéÎ'âÅìjO»HÝOA;ˆ“.þ1JºÄÐ ci@€¦CZ­ëHgÝÄ€tOr7ŒF+>|7Û¯Sgû:‡äFŸíV‘ ºzýÕ„Ï1h J•Š¬Þ‚mÑ·3”­¬ÏÝI1T52øEÒ„¬`Ù*‰½ä¿Z•?)•p}Àž½t0=Íf03¿û¶á0îY¯ïßpê ˆÝß,xþ]"Ìø·Ö¢ gÄ2~3×[ô\¡Zçý™ÈÍãñ>/eYçõSâo"ÉÚ&¹:¡ù/ÃhtYQ„ãß×#y’simyt$ÕN>{ô í»ÐMé^2ݽº~2ë{"@¨@€S[ßMÓla-±ïn_ãoSSK5ãÕ§M½S”±ôfù«˜ëúɘHç]Yè{®ˆEÓ±7†‹V$^scÚ¡5çƒGÛlh07oŸIÔ…®‡xú| Ë}#Âðaºð®dŒµiÙ˜ÐWg2Ñù¿ŽKÈ™=¡)+®R.ãF“€³ô¸úpc­Mb'Ø/žÈ‹8µ+n¿v"+—5ig/¥¯¯ñÃï³MÀ"-ä|‰ -²z^öçÿ×(a¾iÊhõZÐöxç5VZòEúJƒö£ÿ¾Ö·÷ö£ODÌ0,‰€‹€ÐMɤ*Ѐ³<>C=ÜyOᆹp(§Sn×Àùgõ¢â`nöTƒáøfD Öæ4¼tyÌc9ýQ"º¥&û¬É¸ÍXYî‘9°(»#;Òîmþo#Kô†€Ž¤Ÿ0Ú€÷¦÷u¸qMázžžÃX˜h=õ¤¥ÉoÌ}• ÿÿÈ"FËrÛ°ö×C×e¼¸À˜íM,íØg!]vµàë_zÍåIJàz°x†nm·à_ŒNŠæÊXÚóäÒ1êëiiŸEÂ+Óý‡Å¾Ã>íÅÿýDòÖÉ Ð]È‚Í=’;‡¡õÌŸÐÔ{öÇÎu’¶VSJê½JCÃ)¦/mp,Õ´O )mª'ï,冥,ÓÀ¯wÝaÁp+6ú=2‡ÒþÆ+“ÑþÇ_èœì¸ÙíÄÀ3+wÎYGPà»-‡u·«ç5W=üðÒv†Ï–â<ða”Æ<÷¹«—Øò»a·T]SùÛÕ5.³“3;«\ý|‚¹lnK‚#Fö¬ Ø **ÿÈt#¥ §Fê U9ó•?|ÞD¥#‚«B<3Hx[ÊY’^üKþG4j7´›atqp}WÊû!ŒÌm`‰àžsbÔÿ´ªn~œ¹„”9ôœ`ðf VA«´¾M^L +Ô/ÐT·•ƒžFŽcD·n¥@…OÌÆ.±Æ™Ëý¯ßO¼êÊø‰$ñ¿h‹+á°ó–áîÙ›¥« j6Àܱ”àÞ>_ò~èÕÚÅÔ\Tåñ ÄðfÅö Gð“ÁujǦ„<©Ÿ>²›„×—ÜçtИ]µŠvfhhÏ'ïmpù±úZ©˜CÌrsŒT¡Ã ë2¹[\öÎ["ô„H‘Ão†Ÿ‹®¨·•ø{öA|‰îÿÒjF?õKQûÃzÚÑÃ~á’–É5‡2iKUÕ< †òtüfÜòc]k•ÁN}ÃßµŸŒœ¿ÓÞ±ø9D×?¼K9S 6-€ïÞi†/ÐK“–b›Üm÷~ˆGô ñ¶½‹M"×€¯«wÔú3šäÂ>ó½~“³„ºÚKÑCŸ†·d8ió[¯\î3<[¥ã¿¥›Œýïy$1…ºÔ0*äåVÑÆ1ƒ¬6nAb %¯œ”É¿ŽŽü…Ç^d*gÃŽÊa¤[õ7×GQT·›Þû’eôAfÆ "Þ'ôcJíú!7è¯ =÷qwŠT%OÏœ{Bä¬õÙ¨âöçºÐk.Û¸ ]S){æ-<‹ˆ½á¥ÑªôY¡ôûü5Æ5œO_Û¿Â!ZõG ÙŸ1™~ÉZ Iäéc…´Ã¦øÛ·©jjàùMv¼ƒ·é£ÎºK: µ} ‘Bi7¬‰ÉÑ¢8µ'¯ãCŽLÕxI7šØS°L1ˆdÆè¢¡¯ø/„{¼X©å|KV•wHù, i0§w"ˆ €Ê0D8>_4™aî ·C9«ÐK˜é`+ŒÞmŒƒÌ."¤Q”)¸¿>\) žcðjVÝgÂXv™¼Â˜“˪ñîè(UÇ«šœœJLͰ¬Ø\+Ñj “ž2ëÍ÷!ƒn.ÞJ£Æo”ò™%Ç` —îÞåۘɘ…G¿iéˆ3°âã^¶’ŒS¯,N}i¢Dωƒ4"±¬#uªZÚ'‹ÿd˜BÆ4íJ‰I˜‹`v$æ;?.4Âö@Ë}£³(mŒ/ü·Rñ sâu áZÙ('ÜyVçKF2K°s‹Ä«íY.Pž¾?¤y—4–÷_ùfüÀ;Â÷°cÍ=«ñsEà 98›Œ’€Šv…œf˜Äs>Îk Áy¿^'¡ ©®u 3£±ü¡úà €þQÉf»=öƒ¥$àFA¶ò»ý­,޽¦¦là4ÖÊþ/V=qç*á}À¶ÎF"À‹~ó÷–k‘£wFg+‹§3#‚ 'B^N ÌÅÍô×»€‹¥A"¯µÓ¿ "$DðŸ²6œQBDóÏ=ˆ1Ñ1’ÜAMU–OÛ`¥žßR`áðÕc?êúVno4Xö›@ldôV &ϲìC<Ñ ¦‡‹Êáf®œ»cvÓ… èqÈ ð¡f: ‘Cy÷ìG’ŸþÿÀÇÙ°ÎpÛË6³<_`‰:~y»$.¼ƒŒ8p›¡¶'Ëã>ÚlÁÚBw[§|:ÝxïÅ0êæ%ó ùUc5ñ&ÃöîEnYío—ØORIrÑÅó Z 5Èa K¨ùd¡a¡Óx Rí2‰È£ƒ¥}G›®Eµ ÇÔXU–2q¦ˆSÆ -Àpê\uT5PðiÔª!.9NøQÅÓ²ÄpÅúÙÎî%-]‰ Á·“]ûö*Z5kfWˆô3×s.f© qþåÕ¥Ž.°îŒ_3€±"»©ç“¾ CZMùŽ¡óQ匕¯äü$bß+2¸>ZÅC©è›#–docÜôŒUP#àTÚ—¾’}”ÖOÁ².êÏÿrçXb–ç7ƒ¬õþ e¡7ãD>λâ£ôø%‘[½h9|síëˇìþ0;ùçW¾s¸©Èß4 cÜÜ-wZf¿ø1TaaÜ+ä5§‡É,øp{%š0…%ÔKPžÝȯßÎÆÞG\ûìØ´JÈçx ±û/ ôÚzŸÜæì)þÇÆ’¥cñ°{³g†}s¥¸ }>aµher6@Rëö ¥Ë#ª¹L<ü¶à"B‘ûØKd”³xçh°pUQÈ¿‘WQ½«ö륯†òp¡AÕõ<ËŸ©)ü,é¡“>Ç+¢  º‘…äÚ·†k…H¬¤šZ4Ê/0tÝ-Œ:2±srR ·¦UÌrGÅBSñgà`V ÝPJ³ëжÂÿ–¥˜V ðÓÉZê}åÁö- Úx©åæÉ¡üµÂûT¶Ô0œwü)¦í3W´LÄ•ëhƒ?¶'n ¾ÂÜ xiH’õ‰þäO®ð6ð³¤Z€©üÅjô謺OÆ*çÑÆµ-™2ûÁÔ‘âwPû€GU _‹|Ã¥À îß eïʼn†”'t8:窱:T ²§ŽÍÛ:gƒ€¼Én.%…Í©wvÄaІa0*gÖ‚[þ@ú„µs’\€¯0–/Ü,8—Î}fqôùl³ë„«UzŸYã3óÜH41MkMàgÆÌ~Ït.9ÅB±ÔÑ•âSWйh,eC çTƒå›[hœ;r‡FÁaÙOñü„æ3u´¢¾þ·6T8ðø³U åR§¯Èøy ;:ûZ§4Üݟf„b‘o0_/±# ý‹J®V‹¿ÄüDòGL¸J8ôgµsh]„SñÝ‹íÁh{IDw¼ÇFßŸàØ‚¹šñtˆHC²a;¦29…ÉÖÌ›u¥RÃ\³ÿ >nù~§&¼íƒ)þª•¡c8É b+qcYtòîÞdñ€$³â¡Æã0.ÓM2!¢öòÉA›Qñük«DªT·m1p‘šÂ„êé‰âÄÿƒÐ¸GÔ{2 &%Æ v¾åDN}uÁÒª¥MÉ$û[˜ñ=ݶñ²Õ-¸–`h‘R4'ì¾JÕt7g×|`D­;š¡ ˳%%¹E¬oCeeåJÑö¨Cv*Öí(äLñÁÛ½˜³Ãœª;«öâ žJô{é¥ÔÈOq˜ÙÌOè ¦ïùép8[Üî ýdeà‘¿pk~ ÿüÛœ¾¢7Þq óa^®Ñ¾T—ß7“ Ô¾÷[“iKaz¸}¿}…SZ-ðmx¦³¦Ûk›f!$ô$±ˆ&÷ÿwš Á‰¯ÊiMp5¬¥ûbùgóƒhAP_Œ|iÓ=\ˆ›sõ8 …fþ4Šf ·F§ï+³ÆËפ,û©rEÆ!vÌpªÌÝ3ác.¼¶­âýÇeÈÛ/%úûè{†ü×ÕËEΜˆêÚ^¨ƒaOrø>¦–±»r“–¥Åo(»àhÑ˼ÙÛªG ´Á»øÜŽ2gúr_ùC,Ç«Ê4ÏÝ×Dlü÷)»G²;(ïÑIqN:ÃMIÖÐÓooÜ8õ뺉\/‡±Üfˆùk"yQ­âj¹™Á¿Û efë3z#ÏÒA¢´äǧæö6á>Üe¤FR¹ä1q4ëþ·•C‡/(#±å—p.M~ãZÉR7¢ÇàQáœ"ef‘ zÑìéEÖ>v½+øƒþë+®¿M0TÄè!ùÚEÉøO¸lOÐÍÀëÅ"´oš«=T£X¹&ËV äß7^¬Ák'-*àýfƒ.=,—­D„šî"j©o Éü®»”„U¥ ÿ×ÿÄÒ¦Ìчc1Œž)öFèZÎ Œ.‘í±,"rêÛ೜‚+¦U­¥ovÀ-Åþ°¬~Þ¬;Ä2BQäö%’.ÞÅl7EÛGº±†•á@¦Ëÿ©ƒ€:buÃQ-^ÖRlÏ{ßhieºàßãÏ•³ä¹§_ÖŸ1iƒ×n¹1=g ãG“HS+T~]àî–©¥]«D0xR˜‡wW‚½ƒß öµì°ŸòD?B~Ü™ú•èGãˆ4Œ8[FÎuo¬Á¬ 7„®ÅH»56„ìIw ³Ÿ‚€ÌmB ýZL¼"SwÆ.ŸRSP‹|]¥á0> ©ñnK‘‚kŒÌÅÿ‰+áÉ¢Mö%©ÈØ?fÆB™üç·-ð@¯Ö™wàîãë Ã`>iR÷¢7]P‘ذc\ÉuOL]y=ѲÁaoÜür ¨ë¦¿‰¯×5BŸÖZ@Ç”ðÞΦéžTZ$Ø¢å'´þýÔžÜ] +wòÅF6pOd÷ qÛpiћ݀Ç!5ó“6ºŒ¼†« ²á[å] ~*B‰¼Ìâ4‰Iàq¥ô"±eÅmŠçÛ2€àǸ×(™Iù^•Î<µGêæ$ÚC?dÕ¿:ó™ÊÂYà(šÙKB‘¤ïp­°´î æ5ê,ß݃·:± ýÄe ÝBâû´n¡£½›ê‡2Jl4»fŠ×ÀCFú§­ÃÂ|£»QSF°X܉jãеKæ•ü6GH hz‹›7õ†\5Æ|Ÿ?β¤Dü¶+';ÑqiD?÷(WDóF¾f^c„Œ³ì"ç–Ö;hƒbI“@°Ìs"w9>ŸHDDô ®ˆdú#ªÇ/ÑPåŠkX;LžP¤*ËùkŽÀÂì ,Phˆ†e[ž„›x?éÇö[ŸY*hÙ`PÓh©Âà‹H¯oûØ©{BB°óCÌì—ý𓾬8Žt>¼à²Û ün†ñØñÛ0PéhsfM=1@ÉúðQù¤æIýHd%hGA3Cs.!÷¿‚^sþeõ}Æ.ʇÎ/æ…ÖéVo÷ög©üÿ¨AkÀ½³÷žÄrjÎêyWiÌ CRºi*ê²èkŒ6%„í`Ìw Ï©ùÌÌÄ ]½ÎÐ(I׺Ê?úD¡~ó!d)-ÛoÚ“|‚ܹ”‡KëkbŠXxJܨtš*fˆ²LéIe·Q°¨CãN5ð zÇ’ýËŽ±ý^"$8=G<;=‚©> >À/¿°ìaŒnz¥AéMTy$ÿw¯áð¤Ù¬‰QüZ~ä,±Ú.GíµG‡qnÿç|œ…ÓáÈ_e.ÅEî1¹ò+Z·ß"ð3¥þ˜6v¤ ÕÄM4РUIµ®ñf6~:VÖVöq:ˑÕxzä2oõr]ü¥;G¸ÓlV¬K¹ÆÓ‹çmÝ5åÂ^P7×|îcîëÐsÅw°R†%¦bMû"µE‡3l¾ƒnk° æÖ[Øë!Ž.²¤z£@açÕA,U¼ì:w4›~x˜L¹ Ç‘’šÔ§PÿöˆJHg>@ס֤o"2Ë!ö|›J›ªƒòb‡Îrkå»óĹŸHD‡ÈÐ?VS|ŸFLþžv—Œ¨T¼Ïòä½Îs÷“ÜWZqFnHš uˆïû•¦€m!në§–j næ!ßh2Þ³Â/Z_"ˆk4×õšÙhE+¢!¿ ú^âÛ¹¢Èo}Ø à j·Ñ†ðùtÀÉ–ÿd±W¡5=Š”,0NIçÖ‡x¸ÚÀ] Áq&k<ÑŸO;©t¼ý%ùe­wï«>8þÜѲšF­Ì_%ïÿ¹¥1Û¥KF½_—匔Πë>²¤nd[ƒD‹ÙÎåÖÊú—bDý˜biËc2ÁÕzü42›–éöÏ~â¬4ËCmyH®˜ö_éýÞY«¡ëûÇð…>¬ÅúçH€ãÙ¬a-<aލ Lf³ ý2Àe«`Š¦âš«Þ®DyíóÜ\ ©™~̧ã;Už'ï ôs=mÉ€\b…ªÃ9:VÎL;*¦ùÎÃÔPÜѯ n6¤â™ß¦I™7ÇÈ;âH„ÁE ”%6æA e¤ íïf`Õ¤žòAåƒÐÍ‘_Ͷ Ƈ¤2F¤§ÓBGƒ²Æ_²žð>ҭ⺵¯aço¤“÷VÄj‹eSÏ^,ù9ä^?±WH (,>6‹¯ìšÁtg\ÙNuk}~šl;$ ‰Õ{[}èIÒ¦Á(¶âzÎ*òÒ«½Nñ'= ¯•þž-u¸²ì‹ñÇÃ5)¹‚0+®0ÆYüß·j›möf|)—yï¹íãª0†Ú×Ü…xèc²QLèoí°4¨üKt»‘4 k‹ôF¥<ô²ÃYÅS‰YñIº£J°˜÷ôâ³òÇée«oôD Ue¯¨j§8„WÕ¯Ã2‹Ý\™°YýÇ»¤¯€?D?VshsáX轡ʚ¿Á ÍJ»ÜaXçÉöÁ^÷,ð1ݼ©¯õÏ.>uÓM¤¿4¸tm̾û L³?’u¬¦ÙFxVJ/`žcât¸ÿô­ÿ©][²§•qñîD&€ ¿s'E#Ãvù²¬ÏbL©Xý¹9”éÏ0g¢˜„kæhwèYá±+]Á=;qÖ# AÅ¢&f°é°7ìÔV¤–Wµe‰‰2©‘à8ª>ÂÍø¢ïxÉÁÜ真OÚƒAj««Pj0ø¾Çg¾D»ÐŒYBLÔü¥×SX!ÁüFv\ÜH.Œõ9Ñ<›[±æ•É¢…^,2 Ú@J22I®ÅûÅgišÁõilÿ‚…;‚i-%‘ý®Ç‡Ãyëc± ßd&Þ”K¡ÏiAM{ð$ŧ2( 5d+SÅÈ`E^ ™òn Ôµ)ûIÎ^ÃCƒ¬ÎA‚[å;˜ç[ì9ÆMmÏO½jÈ~ØX9cWõJS(ŠöuÔy,´Ñ^³:” ¦AõîÍLV²-x¤ CÄ,d¨G›!‰²/ä5j |›OA›(ÕFš†èÎ:P©A|“æÿM‰SËH¿.¿ëxöSlÛ0ö½yNTt© qdJ—­K0¦tú! ÇOƒü÷$þdŸ ÅÐFÕfÒµÖë=×1EÅìPÁð1Ý_99ø:[á/òz$ת”jÚÝá"ðì >“c'þoax¼¿©ù–”c ͨW³ëÄX¾×ÈèX»‘s dê4<y:Üýï8d—8à aß„æƒÏg÷X1óÒCÍñ/a Ï)¦C~)²a)zÍ»sœ„6mx:ãÓ=Äõù7gJ@³GàS& î2™Wz±\fÀ0‰OâN`C”3¼3† F½äô«ñ»Ä8Ñx-Û: guÓë~ãôuü¹ú™æ´§Ú¹vOÕ„Ë* A÷ç{¥á¯—0¥Ã´Yú ×B-œ£+gz¦ºDY…xžøÉ\ÄÓÏhìŽd$e|ýŽXUîqÃçŽ*¶ufÓ˜/]='¼šÁ~Ó6+ ÒaòS´-´°"*r¹:η×+O1ÎÎíPö­öä´¨‹:—×=QzñMuÃÖÒz§è.”‡¿—ïú¯ª‘\4÷Μ0C{´ ÎUK7ö³›òX°Ÿ¤½±\?öèÁž2ˆî­° 3_Û‰Ëý¹lsôÎPç@ÕbEÙ ÈËÕíøDç×1BuÍ‚mÈ«êñ J‰/7Õ ¥3Õyn‚õx†,úP:ë,NÌ„§s xˆ\t½Ë¤PkÅÅ¢K6ê ãôíÁ~2QGÁ·?½•Éøh“Ù  `×i­ Õ¢e™+LM«kÎÅ•…Ë —M¡7ƒó”L¦ø]Œàz2Éçí,)¾%ÃÛc=Ût Veu]Ù–¨y¤S²d{?ÒŠW´ŒêA$#Ñņ g“6í÷ ‰!RI㆔Ó(Ì©h ö q­8Xt3:/Aß,TõBP%´_ªÓeÇKB¾Ä´gé-ð°¢J.+cO{ÈÀ âýªåéÅB/‚ºûÖ6°`á­¯S`©š2Åî›í¤%9Ñ ðuŒBQ†£ózûg%–éfÀ‡©¶ÖfÂäŠË¦‰µ"¬Ã> ¹aêÁ¥s4üܳÎöÀŽœA¾D¦G%Ò]Â` r9 ‚Êùo;!–d’bÂ5°ÛÏF D¡@ê'ä)Q`µ ”‡¥”;l)Œ8'Âe,øúé[ÝZE«—[¦IÀUƒúÛ‡“†‚64Lu 1¨ÅHT.öÙÅUÚ µ7wqYNg¡KëØÔZY0ù *u·ùÞ »P{}•½Ãç˜ ZI+ÓŽ]LÂ)š×qñ3„•îP7v>¹9ò6$öS„!w» Ûçód=á³,•ör§ ÷AôlÖ”—~¼¼J$ïoþr&—òZÍUÜoÒWA=Ǿj¡.ówÊšÄòp?îšx¸››‰0_™ùV×Ý„šWxÉÌn†¶ƒH®}. -]Ø%ÀA5ÓWF³èe’‚ÛŽ6š¾í × Le²<É1Õž3Ówžìœç_ñye"‹?µõ‘bY–‰FÞÓN;ëï:”愾¥ŒXañüc²ß¶ÁcZ†¯$×4Ì;i‹R‰ì92vѱªþ—2 ³DRhBÜm;Óüƒ`¶ð¾Zòv^ÁŒN—OšŸÂΛæœ ÉÚw}¶Â%ŽK ¡I×—ó÷a×®>1å¤ è)}…U7ë—_ž]qDã/ÑÜpפu»;Dn†Ž²ú¯§èœÄÇ%üd÷H}ÿød>m@ÁC@Yh¡}íŸ/nwçSORht?ºšÛ“{fÐ;`-Ú0vâg_Xq³6ýH›!ÊË*Ÿ%oXÜ2'DVà1‚¡é?ÃÿËVMî' Û ƒÚA­7 '5J'?Bi õ›SGàýàHr–åñ<))©:f^l¡ŽOdÂ…Çíœ*NÜC=ƒDõ¶pŒl a>¶Ž€MËŸd»¨/Eà_™|ùi÷¥9&¼P<(Ĭõ/ᮤ薄ô<¥óf× +ç9ôâú|¯•ÊŠuSûü^Ès»oDŸ,]Í)Ú>L+?m—Î °Ôú=pôÊ7íx¯-:è[Ï۾̀Ájà–ncªVÝ7© k:Þg£½NÐÕb^ä‡ÖN¯7Ò»mªÁ>k$§Mîf @–°ë6`áãzëlk©î˜1uÁ— ¦Ïõk'<‡_»Î Fò¡Ì~+;ÒJ¾ -‘b‹lδ&cM,<ƒª¹ôTø .bQ±}*ˆuµ$®'cv ÞÂ*Z{ü/¡P šfsð@᡺í|1ÓÔ€½y<ÜÇÃæ#ôK©o¿ï;|ÝzALºÇ1â¡éFvØxßùOÖòxvFkZ}ÄÍ· …¨Ç… ´b¦ì~À=äùÔG‚çîÕ]LP‰yW.*©N¦¡½Bž87>"îå¯CC>9­¹¾¿p!ÍÉ‚"‚ia2ŽóO2×|?kŸ%¢ïl™QÆ+hÕ££šš˜~ 1ai>7ÓzVZ×|¨¹Š=£]U^„Œfò²Døf¤Î}‹ô½YEøËY¸£6Ê~[))2„ dqµc©— 0^È"ÖÉñš¸ö[ßúzº«ÊÐù×5{@1™Ùù@Yd0F€û•àtdg–Â` œœ´ S­€Üc lùgŠv=g' pÆQû9_µ¡ƒüÐ@ÑAWS¸u_£!’Íx{ºa‹g= õ‘áAð_¼¨|ÀL„f¸å@†Gi›î6“Ú„Ž×¥Œt—[»‡l*Ä!—7É ?"ëêc’¾Ö.Íœ:Åbx£‘Rc­Ò×Àr¶¤*¯77 íÂ[Md™ÀL5iSBØÆ7lø¼ë%ÁgÇÂÈ]EËÈöûO”a中û`l| h¦v‘ŽZï?ª3¨ñŽ:­¨^£–TšáI9²ïwgÂéYp J©  ×X2Íun஼b‡‘¿1ÇƒŠ´ìõ7¦à·DÄØtÚ ¦Ì”²tâŸõR%Æn.+ BtÖ™jJøÛgñzXÁªu Óù¡>L,}‚yïLä|)/tm×B¾'¾`û¯÷Rdtº¬Çÿ³W°ÃL±b ySI(J:så=&æ™â„ Ê·ûëƒzbÅJbÄåiÖjf­y;$~ÅšþAÂëifUGT£3$˜ ޲Ânñô{Uûøˆñ¸aïÙ•§jaa0b…RàÉ7óàö#Œ"Áˆ¿aOÄ~j‡ÒWVŸƒ¨ï°V~•&ø!ï+§ë "HOm-M“†6Éî!Þ²#(&ÃÚIaDBæX§f¢rævEÃͽ0·÷c<_ *ê½ÑžB‹¿³|±—ÑíÍ‚¢€Í“Áã|ÊÍÏoÞ)g Í¿ŠƒY±åd½æ(Ðݶ^œ .ÍÇx`)ä(™Àw,¡‹êÞØlø›ÓýĶ7\BYÁ‘Ú¥]’ö[/;·I9K˜ }/Wµr`óÛç:ÊŽÅú9fÞ9PÉ~&Ê=‰Baì[E˜¶{²1ð4âp@U o=ì@ÚÞ ¹W´/V®L%s‡×©~bŒ*ÿÚÂU¥gÒIî(í•çXh´ tLW6’µËaG’‡Ö¤B¡wTNI.L•Á-/PG§…ì<ÞL</”§<úŒqO~Å 2Ä„ÆqT¸ÂX405žp XiUí(Iñ†'°”‹g¿÷·p…¬@–ÔA×çè“ ;ØeÆÌ";s <ä‡ZM»½Û¸ý#vÏtÜzQþÍ:‘2é”z"Êþ¹ˆS«þ>#g«óÞ±ä{Ì·žlÔ}âåÆÍöçÑÂi%GKüð>íå~ªFúðK²aì$¨\µ5F! €„g€¤ ¢“¡F}sMØsÂÒS¼†T/P¸%œÂa+OLçeÆžççO¾\0§Òìþ‹¾ɟ:6ÈÌó ¿7l;†ážž¬8ØË]^@~uJó}Þ^–Z\—ñþšn #Ûô={ ßÝG¢*tÅsÝË$—x.£ÑA%lص…øåê‚ïø—t¬%уY^\Ãè¦Ø+‘æçreßBuÇî]%½¬gœi“¾Û·F²¾qXCKå« >Ô¬þ‘Ê…ÆRá{{3h¯´~°¤0Uz‹¿JvV*¶Î2%ú ~ö…×m’ýÎJfw®d;†UBôÀ¤2‡‚MxŸóÄâmµ¶-O ^–ý@²݈ªL êAO¹¨ið Æ…Ï¬¼ã:?\ßõWúIŠXR½²à]Ðó 8ùÇ ›)$JI£ˆ’Üiý@ðà ½G É·ú\ÕDP÷PϹèÒËð¿ÞãVÓâ5šÒË×ï>( ì8DÎ\ÞêK;ƒ¼ŠT”ÂßÓBQu±V9Õã2qp]þJÛ=7´BÈ|sØM—ÙÎêhæÎò>­Ã°êf=ÖÏ ŽæÏë˜~úˆ?ŸÄ'ö@‰-,„{‡ý,Ýc•|ºK°!1î´©°C…!GÄCÁ–—{éåB˜'ˆž|'‘ß/ póÊ~ØäɇV‡ó.±º,vuh¾ ñ‰€™§~ÎÉb(b…ƒ0'ƒtŽGøÇ“cê|QèË®Y9îÖ^®[ T+¸ãy˜…ö¼ã†E™ò•]¬TªÐÅçTVZ{Qñ7îð]¢tnr–zˆQ¯`y§xäÍ'Ê Þ˜AÓ”îì~Zu-NG5…Åî:ûa^î7G ¯iìÀ]!ÝzÓ‘Ê2‡¬d@í7æ~§ÿ9Qsv áöKó(¯³% Œš‘æ4ø[D䢺ĠŸäµ`?ñ¸tˆÁx?:ÿŠŒ,F_ fRzB˜·^®?XïSlE…ÅÐâJB±~ᓪ?'5fFœsƒBîQ$kèäí§¬ænï+¢Šæ[”æ A™‹Gaezr¢ jN¯—’š|ׂ2Ç×·#6½â·À®Á·Yfatÿвæ»o"‘yó® v²£z¶SÈØndäXª«›­"éyF§Ü…š²4JÙÁƒ;Ì‚›ÏZä‘—\äú~yv»®hºÊ"gÔÛ7 »ÖƒžÅZ0’†ð”OõŽ«ÜÁÝ­Ðüóú&ºŠï«Ò+ä8?…Åò€&®…{GìÇ\/Gn×7R¹¥™mÈn^Xªø!·¡CS,»¥ôÂHÓ'[ën*¯UºÒç¹}±‘Iç·¸tÃ|enƒo`hq·¦66}~c€íóë¦ìq„ÈбFrÿÁ¹ŸºA6ˆ¿ä_ ^çµO¬Ì4qùå°³D6ÕL[žë |ÉÄ›8àâ%ó÷eä—Žà!¢æ<@QA\„öçyþi­þáøZB zCmU3s»žü’jÙ>.>¬dwî¬m ó¨*$ÝØŒ›áFs¼½IõBÅ{ ‡hüÞQÝÜO©7õ̳¨¬ø Ä™=gдû'›³?Ë€ó†üieeš£ÑSG¡(2 ~½+P$¿÷.™­ŽȺPh¯Òù†œßpžy˜é¶û͵²ê« þíâßÔ÷‡amÁ·º»OÅEVÏýˆbÓ°Ø.gȇ.T®Ü©Fº“iKP6ÈS×pW‚F¦@…•w 2þjÈ þ ×óÓièË#Öb‡Ø ÖâµvÅ<„ÏŸU*‘™¹sXYø“âD¦Ì\Ñó0G˜éal[X„Øø¨ZÇCÜás9åÅéŠz|7)@"r1‰" ZCû+ ‰'¶ÉO©ƒçÓïs`.»†±ï>·9™®h}× !ø«œÇ’{Ïb{BŸöÑÏb:ƒ– üB8¯÷|ùò”×d@%?÷+ÐuŠñô¦#“â6PÅ „oB˜_¢@² ÞМe_Ÿ÷Q…éAçúÌ—Á‘ºìÔWƒ ïÙ[ÕvÔ0ÇrmÒ5‹Úñ6ò<‚ÝfÄ$Q¸9÷¶yì¼y/~&,€Þší¬Ô8w%ŽZ‚Üv†ª´iAV‘Ð&pQOÜÆ¼ï>¨ªÐ¤¡)*±ÃšÃê`´Á¨av~Ÿ&CfÚTž6¡ÚBªÜ:¶%Y|w”οý7ÅuWŽÙVWY<8ÍMª~ š•ùs/–éæ §+°\kfo¡R9ê`åäæ¶ˆ„A.È‘€–ÓøùLUv«Õöúódd3 'ê(£c`û€\ùõÍ üò!‡ðÏQ¹¨’(‡4ÂÖ>Òl#õù!߸զ¡è«aZFmWׯù(©CízÇ}¸Sèg8Šì>Á¶Ø~&Eæœo]Ì7€X6¹-G"¯Ê[Áç•¶aw´p—àõñ¹Š—$¡¡'g3&Ÿ±‡Ò‘»t<ÄwU7!›fh•„4ÃMIƒZ±®(þLS§ÐŸ‚ãiì{ËÌÅ©õ0>¸};ç†Hx÷ño…‰šÜbŒšÞøzP³ÍrCAq]ÿ„™r¡ý¡FÑÀnŽøCISBØ;H5–}ÿ|™hû#—™–¤çà6%E*Ô›{¤ÒºÂ| É‚ïÀ3¯¢C˜Î%Hù²¿~Ÿ81a‡ùŽ„6ª¬¤kAWr«Ù[äÒò/’¯$‰é&¿ªíóü/™"¤÷,Ç",©¨½Gg«ÇzÞe82®õ`làq´ÁJ2@ ó_ ŠK>{œó²/ʯ'T|‘wN0W÷’o.4˜ã¬Ù´4Ï(þËx¥x‘l‡®äš(á*GüsÝï›h}{¤~çù$Oš—Íò%Ž©Ø_—x°à’˜&é~a/ÜÜ{U ÕÒI™Óª`6[‡BÎüH¡¹HXüÄŠ5¢U²ÿëêMÒRê@ÙvÝO=(ïJm“‚g'k3–#ÞïV‡thfÅÌö:(@ðiNc4$^©kNsËåø6h!šŸY‡}ÃcåNɸBaÁž¡ò±Nb‚òÍ.*E&Pî€Èä㹘õ×ëCÑþeT0Ç[ç6eÉGpÙÍXz—@·Ÿµ>ZMq É›Ÿ§ÌM GÉ‚Âè`g˜é¥—ÍU—õ[0€bYKæê™C Ä­æZ”F‹ˆŸgqiZez´]Jv‰Ñ?dëä:dÇ}|Y­|‡+ûÙè—Kÿòüw–<~Ê@7}–pøð0¢6Îf^wRzZøß·ƒ‚ºÑúã¼·U:°ÛŒoEz%Žëw™ÿ:¾ñ”«0—/²ÄBd¡ E{8¢?Qy^P]ŠfÝDè-Dclö ñÔ½yÖ•¯»·Ó÷êW»ýõ6SdCG ¬.öä/43óµª%,Æ ÿ¤¸.!Çc$Ï­Š–ÚM;Ë+¢~Aîx ³¼39ÖVË7™K©Uã‚Ys"wVgiâ&Ê3ÝÈÝ«›Íưà›ß^Zr³$CNðm5ôl`PÇÇ‘y÷iŠÙïa“m³Ó‡©[ K`$*Õw|øÎ³zçÒØ(PL_|ÊözS kÿJÀ¼Ì¤v¾YŠÁ vqR­Â¼mµZŒ²|EÑÄä3 Kædl8ÖÇöQ§Ñ¸SašÒ»3Yt˜{cÁØì×ã)]™ò]%4~=ôC€¬Þà‡I&}©¯]޾½kLËÀW’&Îw®æè(ÅKÌêdÀÒ±UçÅŽ× ?Û±XI¬Èô¶5@;Ÿg$üt)Îyž1h,š-¨}jÀîxë0„éHZO!!§ypÑëÙsL•rim/Þ@1 PZCÅÆÕFxzÿ}Î ƒp•nâ:¸1`Gý¿:_ò׿g§ЭVÅq¹÷&jKf©ÓÎý¨ì3¥äóìn…í–®6ut¯qÄ‹àX}Lþõïõ×{X\¦å5WØ©e6'»EÀ8¤€¤ðN 5\„VK\.såÏÝòÃgqìË>ZÓùI‹f„ÝË dŒ¨ë”ŒÞè_çoÐÁ튇ÑWÝÈWž‘¸ ZH´ÚîKµ f>ͬ»Ÿ|&©Q\ùuŒ×S‡{½Ù4­ŽGáÆ‘,=#x¿*†bIIôöʪP°l|:BºVl÷¡“!•W…uA¬—i,]׿¿ýÝP9å]6mùËZý$ùƲÂ÷éIDx4à)Ÿ”î ­I÷ž¬àrƒ™4" êéEé¬.FÒdÁÒµÐç Y^ë¶ÙVãØ{¶þe)êìŒ]fx/ðä¼*za€†Îšo$b芄ŽxË¥š.w6‚­ü–‡è ¶éAÝÁd˜Ï’æ÷@¹NQ“£ÙóÅム­ÙgÉA2ãØB,æ8žåª¯ .澩'—Yf à0!› D üB&ûá»}¤?`O›Q`Ú›ÑEî¾ÂfƒlØV©Šíšíl–ß¾@\åÊ!„6Õ¨›GGüžCƒØt÷‡¬ª× «Drdyš­  VÎåð,¥»ì;\¾‹ã &?E)ÌpTÉ“ä¦còçÀpÝ´5hš®o¦5ƒ ò(·ú šœëÇÝ…töhpJX%³ÿÜê(4–¦-˜JŽîNÔOÚ0«7ì'­,ª4‡ŒÚT6ªØçh ä‡f×H)FuDf!Ú±NÊ䆿0‚º+±FíÂe:W­ñS¼N ’ ççº{°p¼—½Ï8{ŽÊ²³ûƒ¢¶}YÃfgõ¾{a»×ÅØÕZ3ï§‘¤—ýÌhäQNJ®§„uhÕÿSñ_Ø‹t“Ô?Ö‡%)†ñó)iú.æþ™Òû;­¥¢í×›¿Ñê›ÊÒa:†_4‚7Øå3¨é> !žñ!íû=¡¼.˯ýÆæ’‰™HÝ €rT‹j¨:ÁazaAÆåÆúÎ⢡ÛIp whnæSli¾3ê¯iÃÂ×62T„1dã\S Œö—©Vô¨´<G?/–õÔ†·®vïÐi¿…Q|—è;/ã½(QóÊ·œ#Q꺔>?Ç̱‚Qç8£°HxÊ2'<à|V„¼9ýÔüIèªÝúVxª÷µyIE9iR#Š8Äu;a§¾~¬XÖx¸OùñŒ0l2m#ÔÇå—mw—én÷¡Û«¦ÀžDùû 0çk'í0¶üîBòVàÑ3Ò—ì¼ö@Âþ]€¸ÁÚ. £Ío]k1ðŽÉ1{êA]êyMýÊQ¹ýãɹ»«1¬¨Àw Å\0«`¦â`æâÓæ8ýfg«"w¿K½W°™”¦¡Vdù.¦Ðq§öRN*¦Ì¨P9È¥ç]~#µŽ83˜O££h°e^øÞåæòÐAÞP_ú l4&/æ‚ö~6É4Â\ ½¹tvÒñ(ZGëS5˜XÖ[#6úà_¤8Õ-g"Ä»R°î-Ò˜× 7| Îâ'E¿ûä³'Ê.` ï§(éŽОò¿QéñL¾ÆÞìÇ‘®ŸrHõôYÉ^jA0F"áSãzkä™ÃŸRI;G¹¤J°ê$5qƒ=b<œ¹54©Ë¼”þ$¬ 8¬nìã C/ÔôAçoˆ,Î}éß©®ýoð>”Ï3'7Î>ª”7Øê¨·£…“ì0§>ÚJìÒE?+kqÇŽò‚¤^Œ7¡<$U§æÐ³ \UÆÍå%5k³ég0I!ƒÔ¯òú†¼õB³²ì£/üa`Æ*'°È*4X8­4 ÕDbžf;W÷ÕiS²ž'=‡óÏÛîÿÐ|ž¾LùÀáB9`5ù® 0ºÍEŒ3´/r&os0ñÄt%«îÜ”;»Î\/*»Óëò*7¼cÇb]Ã'MªnÑ€¨+Ü7ž»§d‰ë2w5r¡ëùX¼)p ”\gð9² *žJÎzá:U°,Ô<Í83Gäµ ¦Yû:«ÔNn~ðëžQž„Úìµ[#Øyõÿ^7‚3$ò®ËfPv0öÐÝiîÊð;A¨¹+tOò³ø)Û(›²±B6@‘$tª ˆèçþžd•É’Gâ–üûrëdAÐŽzÈl_°+£+"½<§›¡qŠ¿Ü˜žVë?àM²ãˆDe£0/ƒ2axOP¾ô”×jŠÅŸ¿ÞFLui7ÓãîV²;ÿ¤ h±0”ôYïøYꇮñìŒ2ƒ•Ü[Wï Æ^cä?µ¼a¬ÖñŠÙN¦ ld·™Xvµq@î ]m.ž<Šq¦g{¾¯I…x¨ÍVV({³O>a塱• ¾vçâê¨gŒÂªHs§’, ©žµ—L•‰¦d÷E€£!qŸ¦ö-g½§žO²ÄÓÌàJlþ?mã[qÈg´YÐefÔ\xU÷­Ëì I¾zL·3u6ŽÒ)5Í›†÷yê•_ï…Ç\@LRï·–„|·†ÚäãbÜÿ¤ì±¬­‚N.žt|6½Ìx› X’A×sÉÊ}u%UH)AŽÍäL5q°å—Næ4n«KMrvV®Z|Iüf„FEAøÁÒìãb˜"ŽbÖ»KÍ@Nví6”»sT5=„/ã»MPú}Úî{•CdœÇC½›Ö è=ÊëH'f$XU`ÑÈ<ðbWíÉ…ÂUMîSӲ˂aH»Áœè£u, ÌÎÆ.Ø9y±ð¥ªëê|EÄï>À E¤ŒùÁ¡‘ •ÁS¦ˆöÒ²Vúá>©1+"ºWÏcläÖ–ÔÃ< QŒÆçO WÑ#xˆŒe}"'¡#µ:ˆPsfñÖÐ?Ó´=î+¸rQXŸµ&tÝÀéZ>u>™‘Ñ+/ôò'ru(° q¹Ç¹‚©Ip^³ï®È…w”µ,™T:JuKõ¢§Éƒ?uÉo4b!/#õw 3Ì%»w’ð¦lÖxû~pOŸYy¢/VíxSw¾lleAñ›¶åÊh¸†@ÖOtŒª£Í#¶ùz¿–ÇS°^*p.WTk É)¢edì~ÕF ;1`á0~Í—™ý§½•ãÓ?»÷¡›:|Ö\ÿf'§ ˜Û²ƒj«UŒËæiSQ"‰w8ãÏ›_Ê{5Q%ØÛaþ$Áó2Û|Ð¡Ü ø<òpyÿn¯@7œüàC€›n?úúºé…°ðûØ×˜´0ž% > G °¿Ã寢¼Q f@Ø–¹TϽU±a_2!kÑøëoe¬ Ø(Ö' õTøo†9†#"Ä#Z*(;ŒX¢yõ¦9u>é¯ÀOñ 5Ib›Ä!¯‚Õ€ÊúÄ'$¬•¼…VÚì[„+ù…v^iO¦VúŸ…¿‡Åt¨´Ä\>ì"þ Œ0çíâ‡p5£ª4¶;Þû‚Û)-þ#ûÿ9àÉ1épUæÊÕŠÅV&ûH““Z×{¸X„bÍi>óðRŠES?—ãjt?]øE»8=´:Ö3”G­Z¯›§ñ±2[|zP¸;×Ç;WäÇgpíã01mð@ñ½ôãƒùˆüãá÷ŸÓ¿ˆªÔºØ‰¯}ŸË¨ØIãôý„Í+^NwO¹7&ÚÔ:Ûº¥ÝµëéZÐ5r®×»Íë;™¬Ô{–|¿³5Ô`žE9†øf7e†êCA"~MÁæÞ¨óäB' i"IÌ È,:S{Ò†VÜnƒCyeóŽÈ³’ê)ÛÆ×å¾Ð×É›½ºŒ‘«’CãÉÝ÷n@Ö`ì!zÕ`Rý^o8|áZt"È€òÇãah ”™ypÈ>DªÞëÚjÃè5]üOö™°¸)ñcåŽ i¢K#·  ™¦ë¶†§S#•|¿ß µô„ømÅôê*˜Ö¾ÃGϤåm­­âsG6~ÊŸqµ¼ê…xU`}L¡ñÛîàÑbdOŒåw©‘Ó19¶dluwOÈ+Õ1Ä…Ð-·çüAvâu¹¿½WŸÎ·3ñƒÄgZõ•…•?¡sœ¾„Dg]öÊëÊÕ­[kïà«à˜7mL+’q• ‰Z³FøbŠEÚJ¡è`E»Óë„ÑÔ°¬œZöÙ.‰>¶:3Œ¶ÎüԪ㷧9ºúª!dÅ¢ÆB]ÌŽQÖ &â2qÎÖ.‰x··çðÍÿUi×–f):¡†ƒ˜è¥ÔMÃŸŠ´V†ð8¹üû,O„(G­xê¹7L2Ž-xƒº²Š%Ýó]vúLór "I¤4t¸Æ·á[·Hôð„þ¹*€&÷s<‡§Äâ¹<eñò0=OɸÃÓe¬£ !µ]VûÌ©ŽxÏa§ø?P‹ˆÒÜß,)‚$\fÊÑVt¨¤<¨e̱€¯\¾"˜‰y:² — l¬†‰è_\ò`EZF6Ë}þ4]kÓ‚Glÿ "‹ú_Å×JT‰Ù€Cpd—ôªŸ2¦yÂŽ‡ÊÚq%¡‚wJ¢êûBZÆ *sÚy¦‡i[³w°”6q`ÝÑ@M®öÙXB®)Új (vÀ;࿌ûy²xVó³üO|ìœ7ÖobF M³xOU¨È—ÓÆ—˵úÂ7ÞGýúᆉWV™594¹Ê@£°ðï®[þö+<¸Bb‡45Ë,ªHkeWû£ò°mVîn?AZ ¡ðŠž¹*åHþnÔÙñ쬠¡Åž$8,‰D“-ÔË/6®Q±>h hò~QªÙwáîJûÞÎ ǽbëQEõ/¹åy½F¤ÜÊwȳ5ù«°‚j)°QOñb$=»luzÔí†îŠÚmdŠrœþ„è{›õ ªgâ‡WÆ÷mõê]uHÛš7i í¬sžzw´·o*sü¨ ØjQˆ$³ˆD‹,Ü&ïx*ç³ ø§Qº\îXmòÚ4~ˆ/Ê'Õò*õ$v-Ý„J›F~S MKíðyŠ•zïçÎÐvÐýåRªicàƒß3î»p‡ÞKöArÆyRFóÆ!+Oúß$æœ)ܼ …`ºS³ûñØt¼¾Å‚³ÿ]e„e Íñü½Ð[Uá ýcÎÀÁV_äš’IæPù¨Ò";˜íu)©eijЂGJ‰’ºÏÖ· ¨W0­yÒÍÚi¡A325ǰ®ÑÇ}á’;›/ ³Ð Xík/BIŽ£¡?ëgqo7Öÿwšj=‘.b*+‰ÒªV÷Èþò<Ê¥72ëð%mç ãp‹˜ß¼Íÿs·µ*8’zõ3ú¤,F|§°ÝuÁ¦V5¾Œ€ ÏÁC})ì‡~0îçg½1´ž ÿõ\ :;ŒÊ¾Ã×ãAì.¤#Œ}û,¾¥ë o¡A¸— ý×·î’’,ÃzÔÎx“{®ƒfD¿§ÝI„ÝÒ.ögïSmµ¡ ! `¨5*ÝÜÇðËÝ{p"xóÆæ3 ˆ6xËÇIú hØ n¸C?lkÇH·ãåïØë´/¶Ä‚z=¼y:2FGÄ8—ã_¬´Ü¾u†¦ÊîmÑ_Åì- Öþ:oCºŽ7ŸÏäÄe“1ZQŸ%™à©¸‚dÁÑ5ÑŒ¯§µYs qÌÄþpvg¹Oa&Ø~K‰ IÆ`âÚ91Q* Ý]-›‚ƒÇ³Ã,­(ù6Iuz]áºif‡ïþ–,B!kÔ«Í,ê¡\*<ã”k»‹øQ„Ýl1E}7öwŒ­p.ç`Ú‘t@RÄØ£ﺒãr¤ÀÖocàZcðgäµù¾€•Ç‚ƒ/œB[&Ae¤³Œ$Èj‘ÜõÖÖpV8¤˜¤Që%™g9Xâþï£.ý´3n’T/Äx€e‘j.ò^_`ç¶«¿0¿yJÙ%E¶ê²5q4ƈzÃùðÓ³·ûãàR{v‚ëÀ_¡ó†.íŠ%Ù ˜ý˜›áuN–jÖc(Õ-)Ù¢éˆ^—P1ßÊò­“–dŸàe§°ÓÏr€©†À1ÃñëîÚ×ÃÞcà,6C(N %k™7ž½Åd‹'éÒß\‰bàÕ»"˜ç½’+¶!šNüà =›ê„ÏS…c[%´!rQòž$ Mè»s«Ib­–œ~/ï_Q¹~ÓRtÖ:>¡ÿG<ŽO‰hãÑT³ëœÝ¯Ϙ +aÖôpËM„<¹(`UaaæôäÛWL_'*WÙS?O¯ð]Âe“Kfš3ÙÈRüÔ žeÌ hwÌAj²èÅ~ÜÁ&+ÆMÐ#¯$e žZ•t<„XBŽ3Äð&ËeÜRb ê©<Û7º‡§aKR^ÒÍ$ÅrŽR©Þö˜¾á ãN)'¢™7ù—ÞËP¥Ø#j9MÕ$¤btñù禊âCšÐ¢ÕÑVF‰ íP2 /—y~ ãj}[=ÓcªõFV6º«Î»! kÓt̘¨¨¡_´æƒ;¹òÖݳþäò4XÎ%“ OÙóÅ´V,BØîçÖz4¦€,­â_6…Xß6m þ»á2%Ò ø¤N)p’kÿ!TÚ¬¬Ï!çN!¸K¸s/º¨EÛ;²¿IÌôM Òø¬{@û;ge@Òx ×lMqEU?±ÊaG¶>¿ËᎠ—­Â—ÐëÅ¥Ûå¶’hü¿;ÀîªnÒÚW3?Éàó2؃D32ÅÃߥzxƒmVÿYX'ÀgX)>ÒÓ7z¨è40õ|F<_”°µ’„ßJ<âÇ@íq“êะ¬~6US"ýÀ?κJ'z…‘ÈIÀ•ñ#¾G~7 ß´CÛ5÷=ñSÊ/Tû1âˆÐ\c¼ûk½AƒÚº.¢§ó’Üâ@+âëGÂÃutäùRFÉ7Uü‚ègEü´SZ¡î´â× 9{UýZ䳩3‹ÊJú¼þ0‹ ÂþDÐ]€}wä·Å¶êiØã2:ä.µ¨ôrÅ¢p6žõõŸåUK@¯ªNÙü³=¯³°4‡/b2©椠å.Á÷f… ³»ù™¨—5£µ'T9UylØ@²±°6ç^¯™ÈŒÒ³óÜ qfÎkK£4CmvD(­`QϦæiíìÿ7JLV*Tr„%ª\fíj,øÄƒPáE |w7½b£¿±a ÔÈɼº/!±\ï±q‹e0(Áñ‡Ìûãó¦]«DœÈv “Ê~*XV”êg_-Vé§î¾Ù(¤ð7|ò·Ï|õ{h‚5+²¸+̘qç1Wš)9§èS#à1&ó„*æŽd^ïtß¿œýþô.äã2ÿê'Æçùp{¢_Ei¤•7úM5R¿HAþàie§¢‚wu$1׬-5#™Á´Ûj?‚kÀIÃÎÚH*+¯Nåí]¯PÝF0 ™ã*!¬¼pÒ˜~ÄáÒºÔ~› sƒàÃmL)dQáÏbÿhŸñí{¢CcÕ­9»¤2§ïþ7/5`G80"Òö¶ÂÊOJQÃJÔø`ü´@ÅÝGß6{3DÖf”\ëKs»îµ±3£¢Úñ s/iÄêhßî,ë\ºçòcÓ5~âñU’ЙQS|¨Bè¥ûxÛÏ“b¶iÚ„%„áLC–à àul0¶2Â`,Û@ÑucÞ­/«À*o#ÜûBBcÊ@†0ú'̉LZ+Ü=_‰lÉ&Ƕx 3DZy•N7üÛ䞈²Ç—%r³‰ûP1Üòç=<–Û¥ˆ¦rL¨¾TSZx×B—‚àË"aƒjÞFš­dÙT}¤»j8`×HùËþ}{ôž|zlV—ùů¶±dxtþ“ûó~Ñ—X--„ÔuœË‘Ï`³ ¡x‡vܳgÓz"á[¨!ðwWv‹¯cuYN*~Åk"/~8M}gkýY)IDÌ¢¢úÄWð°ÍVYF"¿ÌIM:•™W>ÅÚç“]óŸ<ÖRçgÎY BOar¨Æ½ü‰)þœv:Éàh²š‰öI¬ÿÁd–Äá䦞 a‹qÙ¬¢|J»e+¯)Kxi¼mM¹,|µý¨à)4|ב¹¹Iæo%Ù§BŠ“´ê.ƒ ´â ™ƒ d2¨x&¸A}†£™ÉsµæóˆsނŽW½ràK«ZfV™‘ñãx½ÀM´cZ]ø»R·1`o^ 7Í ©Å¹½HxUŸç$®7$hÙ\yvs ÙU–ø0^­†eâË¥~N!Ø×Ôop¸ý<€äúÐþ×tÓc“0;‚§qèšMúöpŽÁ”ÁúÁZOYE÷Ré‘}G0ÓÎÑÊHê÷(Q»‡yú¦½På@UQoÙSïzƒ-0÷Rk+Mçq´¸C ë¼o¡>Ò˜”à§ÿPpÊwðñp›g¬ùhŽ©Ì Æu©éfÚî’\IäX ,æ]JU}gX±S0Ŷ¿SDž÷ÂÞó Hsš€†ø8€PÄ‘¾ÑbÉî°dvs]±¶ !ˤ¾1=݇fT˜sgøæX–Ÿ.qM–Áèß4‹äFÈJm÷¨2€—Þuç¸ìŽoD¬iEWÕ19Kh²¤5PµÆ27ÿïó›GʸÓ9vÌK8[ñ·é]JcUéoíNx²š¥ÁlØz/Y]µ>šÌSíÓc!ïô†ˆGª`˜±Ì »¦éšü‰`ABÈ]ö‰QïÙˆæýz«@F÷ö å ²ƒWÇ. ‚f½rÜj™ô»ñ(¬ñŸ'AOç-·n©»§`Awi“…±›Ì„i‚zðL¯æ@¸ÑäwI¤…޽uÉÕëQlÖ‡ã?·ÍZB™bJ:ä׌%†¬C #R“–ˆú®ë¾£]©:ew˜RV¶ö]Êø”¢ÁUp¨ «Pöv{ï%íEw\´6›·PG*\cKºQd’‡¦výw»çi.{¹–¨ÊóiaÓÖÑ)ˆ§khz$Å]y?_QRsyû–Ü\ÁÀG[„"ÅÎË饛ï÷ž«\“8#Â1æs„·–Íô¿ç±“ù- æeK±W[üÀÍ%K„v)Áï " qÅýØ ÿéŒ6Ô-lÛl—½ŸÃôgáàjCEîZ~]Ô᯵º4”¸5«‚ó Èr§¸Ç:–-µLÕ9©È~}¥®¿~šTŸÌþ¼W¬?š4·^Ñï*‹™zŽ|0j1+XÎ ÃÑ1™ÀD”3gT¾¹xœ‚iúÌÆzìRÎAöÿ…ߨ}h°(zá3¦”¢{Ñz(I.^¦°/*Ç+-‚Tv¹ŸÃ†êïÒt«w¹m‡–bɈ†ˆˆƒ§VPÖ‡Óhꀗ¬À±<\*Å«q£º^¯j¸}íGK·Å&¦I¦†Ïà ‡igî§©ósØ»†ÇæÓƒX>Q\œHMœƒ„–.ãø¹™µá1ºIÑP#¿»ð6UE®@D¤ØÎfçb ÙX̃X6ÙÄóðËéÕÁÁÇÝ"ãÏ72—W7‚föEí®!=öÆdm |÷.òg¡‚¾_çxé@ôÅUpq‰ÓâİMvÑØF†ÓÇ÷›Îfu› w=-îj5*Õ݃Áwäj=ДßíÈýüèU`•Hlx¥” rònýïÈð¡ÄjsÏ'C„…Õ¼Vøì-ÁŤŠÓ¨TËŸ.˜ÆShèé´:‹g'ó8»ºÇ.MýžÕØÒNX³çƒx__2÷4“Æ­(g9šêÞVVéÁlBõ]gè8h'7Pçw…ý¹çh„J–Yý”ªº2C3wQ´Kò8Í#gûˆ?wõÄI›€î{† Ö뺜AØ”Ð_ïX¶­.ÂB™"õÛ2Â"JâÖé±— ë—ÿqNíqÁ×ñ4 4éQ¤õ—ëïŽ$惀Ë]Å©¼P´³h¿·#-#LÄn|ÇF¡f¨Å×öÕãxj\ÓÆubÛŒJ¶qÄûCoÕŽdƘ„l±çß«xžïf½¹×‹k”ójYaneée.¾ 2‚……ÄwµÉQä“ô‡ÜK._þ/HõÖ¶à¡ÿ™D=ö2/ꊋ¼Ÿ6?K¼u#Ä{@mŒíÊítSÏ~=’Å)𨠔yÝ”MV{œ5†ƒ»« )àÍ~P°U^DKº…öu—|l©»xrWm Õ>售̋ë{^bž…w(ˆÐ¦°þ~(ŸK`ŠãRRÈȘê*ž.3°¶F^¼÷¬ñ¾÷ê\† ˜¾‚)4€7yÊ VyW1¾Ž_ öTá;¥”N˜Ç­ù¨¤àªós&y!ø¾¢b)#x1ßӀĤÕ)>šú7ð¦÷”æ3n|(,Ódõ?ˆñ`bœ´Èñ»t¦¢¾ž!¹o«—Kàãû„ñÓëV.Ž~]ëf¯G(â¨D–²“§¸Åƒ#PtÊ¿žÚå‚>®P'ÊXN{û#½öR_ÕákM¼<`Ô šX'd§Û#󣂑\ïs?6e'‰†Pl‚¨“ 3|ßY©†ñ|,léµ1ëxh'ÐIú@>+ N5NZˆ¤ã›¥ÃÿªñgIJ¥=a·¨_ê0¥ÛÖq3°þ}÷ÙjPëÛ$¡!¢þboSkÖòͨöižÞô §]£(i”`ä™wº™ùèŠ s7©þ\–¹†7Ž)5¯ pxv—ز„‡–þÕàïPí¨ÛÖ´JB‰½cÁD$³šBVõ`4Ò³Å÷»Lãòe­øøÙô¤E%¥Æ"ør5&:ºHÓûÌ7‚E,|7ôÔuz* éeÁ_Ë(î©s Û4#»<æ…ô£?[ b¼nÞ>Ëå_6а¤y*dko\dä­/¨ÖƒõÉà ƒSB•Í&L(E´†"HºÊZãÔ- µŠsÒª«Q÷ÇÀ¹>ŽɦÞ˜2™qD€PP™¡êª¸BAãA§-.ýÙ „—¼×RéÆ"#" ìR‹hä ×]ËãÓ•}V>Õÿž„æˆÄìÞFLt/ ]÷ÔÕ‘­Áȇ¬{Whر€ÆÔ¼s­¡¬äº%5í¬É½¹›l’°V¤1¤µ6Îñ*ë‚€Óœ§$9ëéÌ"¡ý.åñ,xôšî¿Ìˆ+LÈzšN|JŠ£P•ÀY·Àغòm®4ŒðÍ@6v¸/F%üóÆöJ€KÂ,ÂHzÿ¸:ÃÝ{“õÍöC îpm R¾ RYËÛ!rtqcVnbüxû(GèCM΂žœºÏ} ¬1SèjésVí±ÝdÖ'@àk„ßIÔžKäÝõKÅco¡1àà 9÷7¸‰‘útWSb ÀQ‚4Ó„d©ª€C}Í$î‚¥…cgŠù×öѱ5€›øÌAË&þžZ«®Ÿ6ÕœÔ÷hqͨ®èÊ«è¿GÍlשñ¦QÜ\½Q÷“”çeEÞjÈhÙG”Ê,¥›^ô¬žl'ÕÈ« j 2Ç paœÆ»ÏÇÀG§žîvíPZÓ˜¥HRZy¡ìHG˜¤À‹Ú2¼×µ„Tüä`3%Z™ÑÝ?ÚøÛkªSàá¶C<°€;´TF1Á<Œ·õS Ú,5wbzñ~€ ¿Gÿ‰ 9ô¿$o¾@V,ðEuškT¨Nµ6вuÏm¾M÷Шð‡t€Ô¤ænC À «ãÍ@Å;W®‡ÄUR}.5"ãÄÉ¥è}m–‡døÆ)@¤ÎX|?kI^J¬ª9ÖXrº‹oQ„¬’Qƒ—bj¦˜k™Ðx¢¡¡wïCt0)‹}©ïÉïD˜³è>W„69P»iÉøü; : éå2EÓÌío˜ÅûobâníË›U1³~rMýØîÊö¬/}L'à%­Ry×@1’zŒi“â•©)ó`È! /}v—è€ê¸Nbð°<Ùi^ogÏ$Ö0ÔìÙvwúFµž®{£˜Ájºø¡´1!x¤Í'ë,B²|”ß)%*4Ãí}gë žçPzŠ^‰3%˜EÄg͸_ßÒÍe¶¬ú‹~ð|‹/H0=Äö)׸dR†ãîf"!ŠN¦²4ßVõꥡ÷TáïHƒ´€<¿Ó³dî4Öå>×@Û„«XW©–ÏöF_îJ9FiZä6SŽGxNQ~Òx pOï½Õq9 ³+VáâÔó ,04yÀ:hÞä´žÝi»=¥>=ŽZîqaîßd1éÓ9+€cóbƒøBç„ d‚·6°–ÔxÚ*;kéì;«%¹Èuy|¥ëˆZÅ!èIm׿Wø ö~{8'~=0qòî]0.GûWérR –š$O ®¯9 [¼rzç8=KP˜y„ÑÜD¨â‘C¬G„WƒÍº²Ïé;¾‘ܽ–¶ÿf†äå™_tF|v|üÙ¾S˜÷Œ}€ˆÇ‘hù"ƒ€ˆ“"õuùÁªÐQÊÜÉë%÷=éµýMýes¬®"’øÛ µK ˆ/CÑøF°¿tDÑЮ…"š‚'êß O#7_o†™Q5nd±ôÓ]}™#îÊ@…rÊPƒô†÷”Bÿ¶Ñl U¿Ø&ühxTÜufaúp ÈŠµ><~@*UÛLN`¥ºhú&ðôèÈðDDF>VBŒØÁåí´¤ô_ãe¥³”ï=ÃàGÑè ­^6çzähÚƒwgÖº=\¿ž&æé¶f?dFoÀTóoMéƒ ÒG½ïŽžÖ¤.£!dfø&*“IóR±ôˆ:d)¬ýÞñÓîs[Ÿ¯®§ sæP댰°aWä«‹7Èä’&SßôÂÃÛU˜=¤ò(wôD?¢D! I¨Î?ʾ¿Ÿ¼—Ë`%Þ¸ÃÄrÖ¨´ÿà»lã3k;ëÎg«É¢ÕèM††QMÜ2:xçV ,ÀÝÆ3$DRÝÍE¯É U?ÆóØÏúòñ,öÚ‘Ü””¸þ¼íÚ´}þùÕI¢í3èž^J¹ŠŸâsë‚3FƒŒ¥·ª¢– u?.¢Œ ÷6a~w,Fúœ¹’œÔñEêùT…©5k™àÌ™–Öã@ó¦y»ò¹ý|KÒBßKïl«-ô6A¬?^!}æœ"ÅÊ·¡í`Ø@Þüfgî#BváØOõ½ÔJêÔ®úç"Ñ:ZA{C¸\’e}jÏÃùÙšüðŽQn†×ÅÍ€5öÊE²›s>\ŒN‡É`Ù£µXc¨ñq“§§*x‰¾"9Ž6 ÌÖÙ”ëï$;2ŸŒ/q8 k±ÃÿôšÐ\žh7yxÖ©©û æn»…]ß~òVЛ Yº«:’ÞXƒ¢Ú¾®ü†$S_ãMtË™#6(Í ÈOHDcI¯½]ørQs ³o6Õ §‘gÿx\É…I8irr"¢vüzŽ~wÓz—ÁXoT1Ñ!øm»æÁ¶>O¤ ž‹åx`™È½0ÊhŠåá°;Û•ì,u:šo«æ¬ƒ‚iØÄš¾ðlÔ<6®<®¡¨˜ù)]3=Eôôt&!!?P=ÿÒ#\þÄà[*BJ‘8JŸG˜óÐqMÚѯ°ük#|cÊöN]%ñ±÷yÃ×DìoÈ3*±dLéYÚ˜£'£‰~gƒÂœ³%˜ŒèsïÑ:¨ÂÚ•naç’"F„UgÔÀëå…)HèIùجÜ ºX'£ê0Àˆ/=±þvÄÁ™˜_wÚÿˆatšúG[0pê~?K¾c®F9y5nÁ€ÈäüÄCsPÝ’½@Þ©—LJòI†<2ëåMÿ ÉœwÄ0TËÀô,¶v®0/5ÖÙ<Žâöw@^x^ùÜ ÕW2]œå@ÍS£ãGSëû½d)”V¡¯©îUŽy‡Ö;ÀÓþM…!×<Ì€Ü/°ç[$M¬­KÂsXZÌߺ3n˜•ÓVNHÃØh>LÑúâÌàxšÜNöÑT6 èWcA‡id:‚ëj"uQÔÖ[A8H£c^P³»ûa¸Ú|Ö ×öÁ ‹½{çn¹Þgƾ:Sþ¬5rM á´&Fýû·ô pŻ٠1̓w®uf¤ ‡îƒê³J½­ª¼Ìx—ÝX꾇üÜ Ïâ *{;Ûms‚C‚›0j"8ôL—žTÄÛæzµ¼µáälÜtØÈÞE†PæÂùpÜâ`®2VÞÇG{ŒUìÌ+›©Ž($–·6óZ޽S›ÊU*LöÁŒšñ¼ “•K[¡1ªM’QÝwØÍeðûqå NikMu„“0¨h¡ˆbD(¨ä d$'¸…kõÂ~Z0U¯šª§8Vöž•‹¡ˆHõfBÇéuþ´æ³›Nª…EÑÄÇÕ>%Å­ T½ý›äw–ÏËÄ-žæN­cÝ/uÑØSšÙµ+Œ×e¶´UŠÚèY‹²0Šœ$åIMî”[œì•¾V nAë$C3ºcqÚ¬±Çìâ-#G?MÜÁ3Ó€šëÀÁJ-*÷3=8,TÊ28`ñ¨Öòˆ9ùµ‰`äBÕéT J§mè xê»ôeeöÁ ‹"•mΧwN÷rææ¡\•j Ѓ¬Aœv@îγXZ¢Y á¦\Õ0LÃýÆŽŸYÁÆ+JŒ*÷&>Þ¹_åÅäéTo!ÇŠA!å¼^óª?=‘jê|€Bà9Ȱ*WD40LpÐÕn¶ª´Ï³ÇLøà¾Å‹øÑ_=èKØ€D[ž$óú®‹×œèfS ßî…°jëq¶=ñL/÷¢^ûuddJè5¼Å.ÌÜæµVa#–¸cÉc•Q4¹¯—êåê·?Egœ¾ 2ÂB XÉ<øôzÑ^¾w«qÂ#D²_­C]ÆÉ®–Ë ¸,Pù©ƒòúQDU³$þ+ Õë)Ó kš¹7ƒ™‹iœqñ⸂ͧ¤`Èæ­î+mפ˜€¤_ûÜÀ³¥Ò‹¥hu[ß¾k³‡rv B¼ï·SÜ¿™Ž!Iu Bªö$«‚*ËÞƒ?=Óq$t•õq#^gbí&m%læÉš, ‰‰âøZÈÞyßsÞÊÒÓh¡¢âGçá„ÁQ:^µŠ4F]Œ6«v|/+LJ ÑĦO¡'ÇÅ'ýÿ±!;õ–áòî»úϬLª¨ú˜]ægèt`®Ü ”ŽU6KÜÿ@€N&6äŽS{aÙG;¬õ>‹j¦ï ܾ-iŠI( $ï9Fx çÕéXM }3äÌúT® |6bâô<ÔAw¦v]mr‘ÞÍËÖéÖíÇDÌ({¾;J‘Aº§Ëšø_ Î*p¾Ä×F °ŠÖî°D6=>ŸêV¤U=˜£Ís©sÊ]©æÙF‚yѯ5î^¼6ÒN êý®v5x÷ªDA)Ö:4VÓ ¡†È™á px¬ÚWóê?uË-z«D¾ßѹ=ÁC„C˜ÑÒ«¬€ß¦žé“Št¥dïÅ|ÊŒ<¼ aM$ã$?uq,YiŰÅ!ó—w·rÇkÊ6š×÷£ó”ãý·5å‚’[aAV Û£ÏlòøZÝŒqôžà@i}èj—ÂŽ>‡=ÐÃÅ¡¨B‡’ÉlqÁ›0HVh´š×`ìÎÃlvνV9È Äß Þ¯´D«®{Fëuû4ÄdÀ !äWE\õhsÔŽí¸´o¶}YýQ꺊«±m#Ef_øîÕ¾¥Û/‰a ÷-þMá¶ ^“„%Ž‹oÿ RØ?Yž{A·–—{¹¨7J&Fàº÷ASjr²Üç™Ô †ÐKÂç³GT–Ž3u”¾qC!Ù–ÔxÍlú†๞+H”†>†i5A¶ãÇnp¼t-ªòyÀwA\‚ [º¼|'Hº4¼.Ú˜…‡ZÁÇK[au2L€EVN1ŒVŸ/!ô†¨^8茓ýÛñ¸ýUì.ê?Zj©%†é‹txÖp„G fG«Yyï†FS¹7èÉä¤Ô¨ô«X!Läª]ó~Õà“Å Ì®o‡‰[åL Œ{˜ùT6õ¹ÓæŽÅU¨Ê¸¸ ÒRvz7 ò©L~%\7[Õ‡ñ¹9÷{P%°“»ÁÙ¿~¶u× à^‘u 44ÑìÆ[5N6H† Í—ºÍŒ¢{áÎÇlZ¼%w­j—FrÒ ÿ'Ý—IMyX\”#,Ÿþv€T’SÄ[ÖÄzˆŽCsJ¿q7xÑcïOë°„NÂ_êsg [é_ä`wÍ3Ôïè#e§Ke–j}…ûHÕn'ƒ×´väNX9 ™ŒN° \‰¢®Z³+ÀRl9„-E÷f×8üÈH²âÔÄDHWsA/h d݈!ÎDWÖGñjEtÙb¬zÅŠ1¡¶tÓ šåÔÂ*{,Ã"‚;&8<‰ò;@`fH ÜÑ –.¾Ëi,Š“ åœøƒû¹mÿË?ñp}{3CýiLÁÞÈ{/G‡+–˜PÑ¡šž¦Š@èº=%(Àú†âR@2“¸’ðIcQ/hÙ¨^‘×ýŽ]8‡îË¿ás˜…:w%o¿\‰p†@Nwø&>ÂÏsBQ=Ú Ô”Xæsz ¬Š“~Õ•Á¯YÈ[¾—¨iö_¨'#UåX…wuËÈÃf?áì/Ãú}2D®Î6úDæ×^û „d7Nµ(¤ÂŸ±%KºÂJeTRbN[ɧ HCÜú~üY¾)µ>abؘ_H€H2  YêÄ'¢›zhhòBm£—@Ì—OJ¢ÚMѵ±&áÀªþDtwn”˜ÀÄõ JÀ54ÅUu®¶Ö:éôŸ¾5µþ¶;T5ð/™Ý¡º3'ý²KåûŸÈ&(‚•þ(=f`hápŽz^5œõs¾Nh~•¶!6Ì Æ™ÉVLî€1/Ô€t4<­Ò‹ºÚ~ß¼Ú ÒŸôÀÍ[C¤+{Á¡˜ceñ>¸)DHQ9) •DÞçÒpK ÄÍG?<š9%9“ob×g9¸=;¹³Â_IBtù¤]˜xÄl*o¯žé>È[ÿ¬ÎjNû¢…ï!ôÆ{…ó†×¯®P‡Ý¥3oW|$45 Gù±50äýïò#*å­D8°·D¾²œ±$ç/ß<³JÌu5î%¨mµDæÆ~sÌÎIæˆð ¹Ýì°µ”§·½2^Üe>™f7By×efý¥»åíî5z"0”æuËPQŠ?{ÖA ¥9UÕUF‰7ð‡™#PúdaßY“úÖÜUdàšµ7`à²!ë¾aµ$Ý¿I<—íù.b \u£ƒúWù“²ðÐâJ7üÊÆêpíë™ÖþMQ@åØèp÷=1ÌêRÑN§W ÁC…qŽKîÍ…'>ÚR)¥³ †Š#©ÒÁksà&¿òY–Vã:ï„´y0"öÈËhn7¼È<¬¼{ã*«&«"`¨dH®ÚâÞ˜Næ¢.Sí—RSgȾ¼RryN'i®ÜËŽûAÖî/‡µ·‰Å˜:g˜“bжJA.§Ø'Êöu‹\0/àÎI1³WÃPÂ¥M¼›õ¨Ü—¦èý®ŠÜÔ¿}¾ ñ^@Úq#¤†¤žðj„Ÿ”*WJŒPêpëZʇ¤–Î|WÙè>¬ì<ß,ö*C¨òï2F›é€¿…‹ç˜£XQa3M,[A!oo ,$Š ‘ñ„L«J-yÕ}!Z¿W˜!§Ù‹ÎÏñJ·aV .5Àé¡©ŠÜb"©¾‘‘ÏÀ‘3ÿ nßZâ•»±Mˆó¹ ª—NºË×kkóÉ À—ȹp(r¨Â‚ež 8“¶ €¡úDHì`¥Õ)Ö›5¹Soú3 u"×AÍà÷‘Ù¿"X$邨f(´h€X²§Fû%³É å%ªºf½¼yñÀ8²e0c³}ÀòËÊ °(œ€)óûþ͇Ÿ=Ï/–œ žÁæ¼BßtcW¬êCRË0ÙìûÍëaÝÔÐXÂÖfËf‡«/l`§æŒþŸúz.”jû]Ü’†8Ñ0Ú‘XÞ3TÍVEƵì\kDXEMÓëÖˆp/†ùcñ²Ë-™^çDZÒ þðË,¬ß¿ÀÕ<³u„)p@1–‰$Ìý‰Óò¥e „UÔ$噼‚„{XÆ>åÊó¨NDµ“N˜­ŒÍÈÛßô>(ªIÅÌFû§!Z<ý­­Ÿ›¡ô¢Z"­)HàTæºk§;AH#-dº5—aæsÍ@§ abÞ{G~êñíhšÝ`Ãe¯#¤WjϘMÑÁs"–I2Ëh$ÉÕ~‡ñ¯ÁC¶— rþci†H_ò©^ûµˆ½=ëÊ"l oEô0nÔ43*(ŒüYÙßAÆ “AÀ]ãŠc'€[|ËP÷)-TØ?Ÿ,kßzûŸB`ìçí5efd€›¢ª‚êàVPÊz¥«ªHÔ ÓcM œ’z‰+GÕèýMÆÜpÚ©óH˜î¦rË«Oß×´Á6òÔ`0®ÿ'HÎ}(6ÏEÉ]›¹R£ƒÓ2p’G¥m5SnË0D¯›—, ªìGA (]pÞ—[£Ë+ á^Þ·lD´H½ëIÿ&êf«†Èžv$É—“¿&wõr˧ œªbëæê­Ÿ¹`;­CÚÝnÖb S] s™Ã*™LÉìôgª5K¡ÿ:”ûÚÎm5ëM}ÐÅ¡ü?Øëç d4¾¶¥ i•¹2‹AvQËZÓd×(ÂÓ¢Åç<Û†mQý"ÙpÑS™°…Bn÷z´`P4àúOLÑp¸ã—ÀîÉ ÉDmwœÒ£”CïMe7¿UþçaÓ¶R¸{ÆìGÅΔ#×™èÿY_¢›R0…Їâ“ýÈ‚—'²,­Fúq°;‰S‹S#W"ÒÛ‰a { ŸQ±]D“RØnFü¾¥w2¡TWî£Ë“É †R•Ͻñ:úËGû_ .[YìO*¾Î°}€Ï" ­>Ðïò4…QÚš3^<1”«eAä ¿“ Ç”#Qp®A)ч@#Ã1¶ÚÁŒh´PÖžÀKBw/‡Ø=Mi«g÷áÌ'‹Éœ¸$VþÐ Ðy¼ª=‹ŽPZäÚXg FL.“Mnm35‘‰ÂP¹b+>ÃÓ«*çBoàe 8¨¥-ÜfDÆ}ìýi‹Ü¬§FÄszfôî±ðô°•ûr<§›Úró vÄáºW‹q—ý®=r.7€nL"[g SÎV" ®‡;Ã÷ Û­Rjês$ðÝ#¬)M> ÈÌ-öœF[’mpj@h¡ ¯H[“W’qØ‚£{>î{ØFùÀ˜I‰=ÜØCÀŒY5«pµÕq“A±ù?#ø^- x¿º¥ÄB`@êÂ1¨&5÷ü+ÙXpÄ' )ìo²fZ1'§}5´he²; ]…¸“rËm #Ud&O°ÎßÂ=ú'36Â%†ŒCxT¹Új%’ËÝ»¢¬ŠL%v lkhêõ©§Š¤5<¬N³ðMH¼‹FQ$ ÿTÒIùgj~CqEmÛ)õ´ÙþÄúŠ£uú[÷›ù2(ó{ö‹if¶;æË\]ilÂÙ¢<Äyæ0ûЏ£×U=½o!óhÿb{‡]»š…ǹ˜ÛÜÒý4ñýÜáÀ3»ž (€Hª° è:”§ˆÆ¬ªvóc-§ºð:±¤B|ÝWjúÉWZyßa¬2OQ¢^êqðÏx®2b~vG)èFÓÓä )b–9ÝÆ†p++óGÔî;~DÀ’ œÚŠæ]S¼B7o¶v³ðåT7Xg˜ÖÒÃHé÷®ˆn´¹ß¡ }þªx€éçå\e×o,¬R+ãdÃò(šÐbK34sô.F»ÑüêþzªŸ‘C:Ç ÐŃy°AÿÉÙyD$Œ~Gr^Þ—¨5Ü4G÷¸øà‚‡A„Œ£à zgÉú3*\Vß×L4ž[äI¸wÔsDyÎcyU+¹<Ÿó y>†Á˜bÍàUE ú:à(š‹ËWé{WOÿÆXô<€-o{É×ò¢Â¶KkÎ#±ÈAGߌ<ú[õ ‘šêÂâ¿R ÂØÇ´a\£Aæ…-†;œ—àìªìhÐÒê×ËT´±d)v; Ø/Ãq“å mÖ~Ç‹5T<´ZHŸ>.=³I¡Î×ïëÈDa–+µT³-9nÀ  ò¾eÛ×ËNÞòºË\»ùvo’xD;b,¢”ÙåДGî$9Þ”t!…K«lÁË·ƒ8tkë•”WtI¬å Ê6Ù_#ieó)&ÏùŒMfjÚïÞÞÊwî­±‹æwÏo5¹HK‹¾sÚß8 ‡YM¾ b­_ìÂÜâZW¸¼öŒÔ‘ÅÅ誤Þ1ëo©RtÏ2uÉMŠA3Ù”pìNëÆvei†ÂlðQD¹cœ´„Ñþc#ÁÖêûI^·íµÆÌÌ}Óº ÒB.:_my5ëÍÕõ ~½–¶ô±ôŽÄ¥¨/`ÖR¢L,¦=ÜJþå׺ºa3Ÿ$î¿çè'É>æ}´<%>©&÷)ÑEƒÃîDZ-û£‘ÌiúoºŸ:•pgD¿cõn<ã!£AN±;¾§Á“PÇþ6’2C…„h#ñv²'ùÎ1—CvûY„q)ϸØÒPžHG©Êà‹¨ê'Ž¿E£J볊ši­äITà %¢@ýDou}übh N5N ²FµN&©~P»¾'®ç Þ‘®ºÚžåK,ËïWˆO¦Ìê^ŒâFB?¬ËXœ¼Ý`ÀÏä; &q{ÝDÉ¿4$_q“mf'4eûaמœ2Þ€wÈâ[¼² WÔ‘¼FÕKð¶€n) âš³¾Á~é n-ήUŸFä–™†(ÆU ؂˔Ã;[*—B6;;=G£ ™¬4‡(RÃÔž`øËIGçŸQ´\ ASÁ°Ëñœ£S•é@ÀS‚flÔ@ËlL…ÛVOÒ‘ºyÊ‹¾àH ž+b_AÄ=|nº£ñümu…ùÆ9òpQ~ÚÜð\H^˜‰;¸à‘ã Â1íFiïS€‚ºÒÖ]²©Ì†Æ˜B§4ä ‡ø Sqxs³ü›?Ë´”Å»ßò=ë‰%2Ñ#ÓÙ»Ý~ö¯BSðuhÿ /Oq1FËZCÀ(Bú« CÂöÿ”C ýr­ôõ0]OÆÑoàR ÑC´­^,ͧ–"Íp>sæØ Õ«Ÿÿœð:Ž= á<¯æüs$ŠÍþiÛ0tªýÏ0ôæ’¿ ÛÞ]Ù`vVþÂËó1㎦žÎgº@½±ôº} PUôHp»(G¨è\n «n1àgãT?˲jjt¸°Ó¦„U_¤ Íõ²(ØêMx9c˜Ö6ÀŸOÙMD ~Høo@[â–C §›Í4bæG'm ˆ ÐÅ ©§åK´M±íZñ–¢(â·ŸÊ48¢kUݱr1°’8žÀXÏE4ç¤úíH“+Þð–å¥42ˆŒâxªÎ‚úË)dW)k;%ÅMðÓ¯ßGaýŸÓˆÝÁVàt=}Äöèùýÿb ‰Û 4Š´£õÔ4r”¸õ‚°dbEêyèA¹]Ðß­Eâ€:ð2X™“y\NVõz˜mæ¸í€óaˆ6m:ƒ@Ö~Œ¯…§É‡ÂqD 0Â>ÆPW_F”¹hÀ.h2ò–¦|õGa<q–þ×wj†Ž•l%îækÓRɸ.xOxÆ6Ÿ´IBYã¡[Ñó~ô@Ó¡‹²&OÆ«ÔÖRƒ»¤ÃV¸lõ±ÁŒIy Ù㱘ªx)Dè¬2`¦äÒº ÿ¦ oóG P0:DZÆ¡ÎȲW^.åvŒ`Þ vàðVE\ y~h×àß-ùÔÉèèšrŸ\¾ ηZ5AŽEh~üŠ.Ö†£ôWf"SM؇³“Y¼ÔóÀp¦ GtX'iq'ÖT¯z¥1Üôlìï8Ÿ^*:ð=ÙnQLä,c&áÒ2󭬓ȹÊûú*ÄÁP<8[ÃDærЉü꛲I[}(-/…Ò|\6 þÔ.¸U"MLGj}|D*ßñs’üš÷Û£P¤*G €s»P‘ßÈç[m@>¯i+z£˜™ãªÓõ¢ÆNyzL6ý4&sø8A£•G.?ðšÖ;ËìÝ €4ï6…—Y+Fšw9àÎA.k^´ï«æMµ¥öWKçýfQ3WÅ9¤ZùM†ŒÏkP´³…"3RìG©Ì°èªÍh†ûï¹Ý ¼5Pk!• 2 "rsbIã ¹ÊR—âDeC»cä¡rÇâWM0þc‚ø#ù ¹uËÉ…Âå€,ˆl5¿‘E:bí€éÛ÷’#B4dÏ1®Ï×>êHœõF>4Äœ´„K C÷*ÜY’È2u d¶N·òÛ"ý¬cÛù)ñ6[!~uÕz^°6ãasHës"áã†Gñ#ÛT«€°»©˜ÀÁFWW¦†+½"Õ³ÃÀÃKRÙòÀ’› ÞKÓÛÜ(Ær:M´½êæ­Üu\& Z±î\ß\_sP“ßQUÌz%_†X מSù¿B‚\E†áÕÌ:Vü;+½•öú‡¤õ·ôûþ;aÚYCIcÎÑëëe¿G‚U¢”Ó'槦ôÀ·©f¬ÜMAÆkC½ÁçVÞs0>X*†@¨g@øpÐÎRðþÈVk Øå™ {§Ú5²cå—ì‡N£À¹¸zúÍ [+C‰ù(„¶ÿ  ±Iû¨Ö†„:>š1šo½;ñWùžª«â“¸/ß¹ð+ðCÌÖ¨¬˜§£  ºk£.oñ0¬GšQM°$BhÍ(¾ÑY%½¬16æDÅÔ{c@,TËK m:’kªcn[îV íÑ Á‘…d–¡€Ü!áZ‚nû²²sŸ'7&cªÃWo‡°À_ È>˜9Ôwní0MlõÞzßÏŠêÝ?˪)’’Kã: RnÂÏ¥^MÚÂaÍ—{@LM;»D‡§G™móŽ­)?|Uxï -o®ÝåÉþH­×]ˆÀÒà K<)»æv x˜*˜<[ ‰¶ l&,XÝfwfº‘¿_áoǘƒñ„´Á.t,$âLC{h>† äÏ"³xq÷Ád…37 !ž÷(øæR"£:Ž|‡4øË0-ÈÙI<0T¶WÀDû†¨@9§c«Lg­нþ} ÅŸKwƉ«y½Óð½Òך0Z/Ö–çp«ÉÑÉE"ˆÖû£‰ú‡¼”¬FÇ”}$êIø¨ Ø—(äó§SZ´t©üÒ>UÖ1‹”€¾×?7‰û7!–G‘6áPsd_쨉ø¥Ó»Ø…Ž )pMa^[½Ûd`#â8'‘ArÒÅñç;EßÕ 2Íd4Ü+ÕÉy(ÆÀûžKý!èP¤b’ÞX뵄,ÇÔ —Ñ)‘§–¼¸çÌR}Läæé¢Ô¥æÊUã(¢úkõþðÉÖ_>Ãv•# ÖhÛlòˆ¾m¹7Å‚#iÅ€.Cƒî°®ÅZ·•£ÁàÛœïÀwŽüIÊc íl'çÍóÚa‘ «¬L%Xi{J/l–ö»\]TééEhÏ€—Ö±õžÝ½€ +» L Cˆ!ÅF‘jmEXËóűGÐÚÞxÏ%~<iƒ1;Ôòý œ±Y”ž¥¡ Ã@ ß‘|:À048±Q]M MžÒâ3'‘ö׃#ªw¯æ<ØãÏ Zí÷ï¸öõʹò‡pä{C¤µ“6ˆ¬˜9aˆ´éÎðWÂõç?×ù§y·òÀ­.Ôáqã¶µ¨^šÓä0Ýñ‡eý4=Qg4¬dEp Äd,RPHÉ -ÿx)\[É÷ôFO_+q²ùÑJiÑk7Ásœy÷’ïÁ•ú,uó´4ÞÀ“ê^(¯ÈCÎÙ©Tâö Êî{°Y# üX·‚OW‚^xÈÙóìIÔ^fG7öàF,ö¼Ð?Š!•÷ÿìFD\âöÂÍðE½Ó !ƒ¹Kîíí)äp °=)‚1ÝF,ÄJŒúà}åå<úá:É›ñù’/ªxiŸ ô½­Ø`ÿ»<¿yUu©±~t‚ÜQ¿î7•õ¢“¯á¿ sbéèV¯öÃü‚|yåšCšŠæ®rà“lŸeù  ¯=nùÇ2 ÍWÅ/’nCˆ:µ™h¨H±FÒ´âÁ1ìm•ëC²ŒÙŽ%i)ëffƒŽZáÖnø¬îg3TìQpî͇ ¼èÙtÙCîK]Ç«Y½;Œ+9ƒ#Îíß’ˆ˜£*6ýæÞ/ QqTmÙôŽ?&ìé‘Fš~zúbÿË#¹%Ø;vaM•¹¨’Ý©&gº4#¿æþn½‡­HVÉ "·QPŒïªoŠÃÖqáË@Næ|BÂ2¯ž+…›9Á^ù~v›IÊ€è¾C™cú)²F,q¾$âî%í)7óF‚ê·çé*Ó5×éÑÛöý.Øû'Ù»ø. ¯¾'ƒxŒ)CîI«Ñy·éHc5­±Ô,Ã%ÊD 3à“˜%'ì#¹fa0âX±H!R7ÛDLmÕ$&É_™¥(X¡¸a*&¢Ø¨æØqgãëc—ª³/Eh9Ô!v¤”ÏçXhe#Z¡ð Òk[_ü~<Ò¶5ú.¦²yâqAƒk–]/ïÎh^ÍÊEkIç1zÜ Dr³9 méšôÛvqˆýÆç‚f¥Ùö~hH2Ûêé JÃ_™œ³J6?–€Å5féêß׉PØõöt»í’åàsgj¸(Å‚~qY[´³ëª! k¬ù°"@\õUú"Ö3ëàêâ~Œ «²6,=Æ€úöÛQåwX®èò4û«ü "˜X|âùLߢvPÞÛ9š@/ª¨”l>÷'™¾¦ÄVz¶ì–>–fÉF‚U» W* .v–8šóéÅÔ+‰þçÀ?îyZeT‹‡“h±X«b`j§ïƒwgÜñš‘J?­WOë¢v¿R¬ŽŒªáT”îxš±`ÂÝ·² ².Äi^¢Ól굟z‚ª:œTõØ‚jÕùÔÎþ˜ÞÎ#Ï•&í¯€;8v9&‘¶p¤Ÿ¬wû°•®X¿e@Dzá¹Þ–Ÿ Ï®ôÝãÍË6ae6´ÔžÈ±ùmV¶e¦3xcjd‰ÌD¡—…‚+ô”€Ÿ K¾¾(|N,=ÿuö ×©A´,fä·гM[Δ${‰ã½üÃ} © ø²Ô»/ì;V8ôœÆ…dÊgUbàåM騡ùŽ “œÞš¨¼ 61ðnP'V ±Pvæg›}ûîÓZƒÄ4#Xò¸dZõI9ýàí¤ifñ‘YKpbjEÅDÉÏ¥ùÞ?ÛDÎq Ór‚1b͇֥qnßR¼ŠPaPîdUEÈ3Ç7‰-w«EßÉè×0}a×4HmŽ R–×0ýÿ 6lð=Í8ËÀÞâÇqïIC¥¡…áDhŒ&–x>3@}rtñìÞÊÌLR.#±qÜw=ñ¹Ã°ñ“{·üá.—XÛ“Š÷)±q=Ú—¿cz^^–í#Çàô%4¦ÆÞ+ý¼P“#0ÆlÙì¯ø9ÒÖýÎfSåÄXw#«8.’ 2"`Ñp€íÎ÷FœíýhþJÿ=Ñzxò_‡I³[ÂYe^“·£¢0¾$ƒ«þ«Ô¿Üý-HÛpt~ÒVê˦Tiåv K¦áˆ§µxîj¦æJGi·´F óøoÉQ¤r?IMÃø5ž‰”æ‡W(0‹u*cöiãrRþ€ËS͉ “0eØ<ß«Tœ Œ)S?.ÏQ¬‚ê8;Ññ]Õ33ðBNVU;B·\†’âB:Ž¾Ì ±Ùqðåá'¿4°âîS\CŒ0üz¸ "Ä]Ü4‚è½—v#Wp½bEWÈNÐ5UÈl0bÉ™ ·{ø,'wký'üHÈl™w4`l #ݶv3—È]ñwgùìc-/×^ÎKç:–šÅ¯¬>zfœ½öQÁðÁ½ü¢Xóõ?Lì“Eô0T‘j>«gÙ<ðýTÚé‰ñØZVOH“lØïœ³^¢™²…}ö“¼Å;Rò\fY÷*ß´€5À=d¿o¬o› ×é˜_3·³0ƒ¥íg_²Ÿ!"ÑÉŸ÷ªC?YûÀ¿½’Žú¦±À¦a ²&Êx5~ F3‹mü„ÛÔmÔõo´„1Iˆ2ó§M¼Y^duŠ·5‡­¥ýCÇé+‘÷ó¿Õ‡„CLãÒ—Ï­æÍ© ú",;EÒ¸¨£ïÐzí e¤¡Æ§Âx„ñOxîjè !À a!,jÉÊE£>53+( xK¦ºŠ¸ ­a ˆJ¬À9 éh÷ž39U÷ ØüàSÑ¢gŸeüÙÇ^”’wâà*þ½ã)€œçü0[:ðvx2íL Sgî`#óûÌÉô%y`µNøL_»ÎÓ[Àµ…Æö±ìŽz¨"FuàäÌΩJšá`gGÄvåîõ] Á„š^G,ªïqÁ¨UŽþœ|’%ÙÂ[D»%…Û¦ÿ9$îþÑ9ÎHO„¯uGÝnAÝ"Ô*àƒ%<Ô_iŒ¸2׬?a+*Êâ½ÁM̃qè³nWü&—Z”Eþ®©å³úúsºO$8ÖáM%ú‰„Q&cö„ÿħÏc@ ZÛúX(Ñ£+ ðÛE!Ë2 JúÞ˜±¼ñxî“4ç … ]AÔÂÆ´²×ùnµÎÏHØÐ­bàX•‡X¤?¢|ŽÂϼȑ²iúÿÓ¯F¹å=¨E\ÛSÞkëæaEdHÿ<$yØ^-ÓÞ¹ú¡|òagQhP *` X8„'\œÂ~§|" ³Ñ+Öå/Q›ø}¿]`8|ðÂQD(Ëküó^ÏœbÔ£2›O׃ն9¥8±Çò —L2Ãa"•9š·,²ShI¾•ÍqØÐØIúh 9ýD¬Ê¦¤Së-¸r-ÓJ’ˆä_³Â›QˆÌµCý(Aÿ5¡]îµ²›ië•ñ¨[ÞSf· ›¡á²ÕÖfX‹Ö´PNJ‡ºç@³L«L'?ç^1ÛŠ ¿™Gï 嬔ÝÏ4^¦¢‹¡B˜ÿ7Ót² f9˜R´9·ûw&Ž~Ýû2û®,ŒÄþˆs—>À¾J×1”öèF>5Ô³lÏÖ[©DÜ^À¾Ÿ¥#9ê*RÖ*PngqN_cšÌ'Óš¼­â‘Þ…Nl×åÜPÓy‰(ýC- 5Üé)~®eÚ‰†c¼µI3è[ÖÛùáÊê쌛‘¬,z0s.RÔ1…k¥3, ¹o«ÿÜ`á[6˜æÛ¾ŒÌø…ÞÞ0æU¢12¥W1½©cr Ëq†t‹U'¹¨QŸi¥`´”“‹ä޶}g%[ë ×\ÐóQUÍz×—úy0oGq^?ÿW¾"…– â|=Í+a¢Ã˜¼K½mìôЄ”Çr4è)ݶ?Qï5QÏŽKòb™ã6·ópö§gÒá –Èàœ—¡ó2gÆP  1Œu¶2Ýå³!º."í6ÆVý¶ R\ÏÉùç~”³Ñ¯›‡dá´–\E-ª Ïýè”f58´)§úL#š}å…ⲩ:‰žðŸ™ÖÁBïïl/ÿ¹(0ïº[$q‚ð#Ž7Š{A‹¢Í–‰É^^ñÛ§~ñ·[±’€¦Ë1¤Aó&’?È´x4cy•ªÇéÉÍ”bŸIJ ÷ÀO<áÓýB+¼È%yE";k´´ktÄþðÑx%ëÏ ¶ºí¥k"!ŽÄ±Î] ¢Ï}¶ô‡)0­UO¯UoÞÔÛ'zYL^Ý&CÈ =œ5ºõ'Ùç"KEõ&¼2o¬vìõö:”h¾JuLÊA]Õ+÷ã2zÊ}“%wÄŸÂ@>O% nÆ€ã Þ§R‹÷5Ä´ëç?Gu Í>¸U™@G –2² oK=‘Ñ!ÇÆC2LÚÕQ Ä«,©b{¾caòÑô_Ù¶A€ÊëqÅù…1çex‚b ¸»è9´–¤O<ß«óØêž“ú›Ž·—Ÿ_/&ËØ7—æÇº>‡ñnÚw]ž±”ÅHW„q£þ³©üÏ…âŸÄøå‡&ÏPˆÓ¾§Õfç—'-ÙQãíÒY*±ü¾ßôzÉÛa€$¢Ÿ›kJ½{>¤uæÓ—Ý?AÙ´iƒï}8çúÀ>©Ïˆ çÐþA½$5ðÒËž±ÅfμÇ3DxÑvÿc§NShß§¥5zèý˜˜)‘ ˜ÐËp‘^’:Iǧ°4f+. ´?g¼þiyRØ9‡Ô–¿pöþ=«WÞËì¹öÚÏU*> ^ã6+⣆‹‚йŽYÃJÖykÄ+±c¨µAWÂÝÓ†~j;HIi[ JÉ<Æü·£v—~VK´OµeYÇB"±ÔW.PàþŸ}Z|\†ëÂÏè…åU]„Ã'cbŠTúŒN††IL&Ê8™8p»nÌc¿ÅÚÙ0Ü&ÍìràÒt†,õYÂ,eÃz-KJr“2vì´@æDnS¸îËáH/ÛŠ”£v²‰¸Ê»N xo¨°èQXœ5ÿÌSÚ˜¤é/š¶#ï.k¤rÒTcì¬D{/9‹K¯Ÿn·º( Xn2ьώ™Ë*'ŠÙœe\½S†pêŠÌa¢ò­«ŒÊ*küåÿ·?±yŒ‹êìa°{È´˜,ÄKå/°ò<¸$WÕeá¦ZûæípåcÛÓ 6‚ZÛ ŽR´Ê€[›Ì ¡ï›BÝ~Ò²e–tL+¿@™H…Œzl ZÂU¯¼u·Do‚Ÿ>ÊŹÇý8Z5õ* ÌæeøÜ÷&*Óy,/ÿ¥Äáüɪ!òWp±¥í³§_ï¹ãD•Âe-ˆ¸TÍN5±çöã ž“'_’—^ÜÃ}ì~e¿Ëv3‡õµTÁcŽ‹» ŒÃPéFŠ×û‹ˆ)òvÞו=ÜÓø¾Ñé/q ÂôPfOaõ"¸–YŸ'*ÝKfG‘Ë¡Œäyý®HFºOáwò•¬¤ ±Ìã2+9ªH¯ÛC¶Q8Û böѨÄ;o¥ƒ¨<Ñ ¾7++µ.,w{¹š ûˆÏ=àwœýÿué9ž.¡×Û¨ÅË8‘ÿ§ÔaëÊB•üþ “µ³,-^s„´ÞÎúŸH…†$£Ïú%RyG]N|Êîæ‡JÓ a©û‘O„¨;6ðÌpH2×:õ6Q¾tØöħÞ,¨¤OrovWqtÒÿP‹›¼ ­Õ„+»ðBïöGÅX“Ä [ÎàXOÒ¥ÄKMÛHý¯Ä€%m6„/]qh¦€YÁ ꞢÝH¾Î1ô÷Ë¢0ÍKdyhF¯\º†4gÿˆ¨ ®Q!ü³ñ¡Íz]wÂ1ÆüÙ´½Á¿N2™Ç #ÿ»L0 'ÙsØ^o(5l¹Rö7ñmå‘b…2æ† ÃN»È|·: Ô„èAra9é^ÆN_äÈ‹.:?ÜÝ¡K‚éxá<õ\xL8šßƒØ9_Qü³ À—6€"?lȈWùW–ÒJy8¹ø^å ìó)À*c·7âF“¾þæt]Öþa…à»C*­$ÿðÆûKHÒ i¨§[ÃêFAŽr9´­’áÅÜxAìÎT-Æš‚—/_¦"ÝCO ÝBÇZ'kâþËÛ{¾Ö*Ä%òÆÈCóSùS×{šF»жã•´•Q°Áx«Ÿ ǵ%Î’¹Î Y®£éÇ7| Ðá±}‡_yɨ1<“,ù­íöO˜À¦NœE¬CpH\릪¨z)ðè=ôÇröÆi8%—0× —s›«M«É𓌜‘@&Dµ˜­/°J‘Á6 0ž)!O¨hDž9dlŽsd¦ ù`Þȱ&þëÉûSÎõ‰ÛiñXÂáI…)YgOc2ÿ q¢þ—7h°Œ;ù€z€~£@Ú•÷ž ¼¡N ;'‚UQmwŸÝÿeÀ75!¦°ˆæ ï×îÈ£ª-¦Ã@TuÃmM-±7ùï=‹6_‚†G;‘­Êç̵ü3ÖñišO•Ôw+ŸEªdYBdÑ‹ow-ãû¹WÄf«ÉÛÌ™XnMœ@p£f†˜ñHfÑú቗aû©”•…VD;?i‰–ì#¼ab Ç¥ùÐ$l'ŠÅ1†]“™e3ê YG{€`µÿÑlÆœ Ä:Äs¡@+W‰õ%’ò”"17ƒ£Ø#&MÉ<.ÈsëÍ[ !—žyXkó4Ø¦Ú _sŸ°p8@ò´êµ:ÝìjêCüò"ø'ºÍ•«™õgtó>nQΪܤªÍ¦˜’¸GRoÇ AdúI«Û#m¢Ú "õïù&ÀdEý%uåDz!ñG@ʙ˗KvY1ÄxÔŸhò±«#sxžÂMý‹Î@¯K)…ûëÁ“Ý ”2K¢H5áÏ›±þ–8îz4†D9AÞÙ5_m®.®MÁH]ç<`Psú’Dzy úà‚™óÏ ¸Ü’/ØúŠB«5O4¹ŒÆõ?„FMÍEn4 mS¼¿ ÅyBöGw›ë”ûoƨå<”UÕã+ó8‘Knõô\E“Ø«\'z€l–jèøI6ÿ»Å›suÍÁfÝä¤aÉ!.ÿ&°œa<ÞÖiu3µ¹Šý¾o_Æ“WƒlþuÒ‹¦>Xa5Ìœ€ƒÏ¶U¯_⹉óx¥|‘?1® ö™hôG“»c)h¡ë”õÎ9¤ßÜ­¨  ƤÜpøˆŽ8éšá:8‹%ð…ÑH!²“˜¸]îl~ÕP%ˆµlžIÎvž{º¦àø&¶8Wìößp–’½™Ž+=—Þ¹þç>šh+‡ÞgoÉB·9 ^Aƒz0É~U»\ eÎ]à”SÁZú‹(®ZxkSÎ4îáð^µ´N ‡¿Và@?šÄb}RšïÓÇ.rxOrÂyŸ–X"å Ø0þ j@¿jk¥¶4|ôÛ£'<~~öLâCܘ¦Í ¼ö,“h8PÄž´ ‰|‰%˜6ùsáå“y&ƒŽç QU~‡Ùk³…yV1œ¾Ð»E¼%FÙNP?KƤ벗ÀƒBÁçi.íßv´ÈˆeÃýžªI&ËZ2zq‘€Wk“çKq鯺±M‹a Î! øÊž*ÊW’XM ïÛ.G)ÈC€dÔ ‘Þ5y;õ`t"Ùáþàv™ ƒÿ’òY+<ÞDÙ“lÏhÁÅ3%?Jö?2’MMöÂl^a6Á¡ýÂŒ½õ‘ÆÃnb–o=Q…¬¯é‚­Ógþ59‡ZGªø¾PQU48ô´ä¡2ÜgÞ¹GM¹nä÷ k!×òH–¦­îð äóRæž—˜˜ŒË´›júwòd;fžžVTÓÔ÷×÷ÊšÁ¢÷äúÞsÒJiüº~!³•tºÓ‘cX-âåª/VX¥\èW0bx@¤ÔIÖMd+ó§íÅ•BnHu²ð_<¤¿ ‡)ßZÆùJ‡=ðV&¢Vk‰^h _.ÇÒÀÏ&àÿïFœMá®jµ2)Ú½A{”\-Ó@jã[9h-=š –I“8Cqe·r#"ÉJ®käýv/|¿iÓYËr5qÒ=ù,½9u²¡²Ëý„C*â(æL™Îl ŒÚyŘr^¨¨9Ô5l;žßþnªþÂþ/Óßå ÑÐô rVÑ1ÊF¾A¬“#õ/r‰àÿPL(YœÞ”¯`Я˼[w¥!§X=6Ü3ÓÝQàØlqf {C¢¯|92ÊOŽ5N Ús×ÀƒÑD†=töœÖ¸”Á¼QM›ºTߣ»ó"U ¼±!•Ô$±t•¨ñ?Q >Õ€ûnÅP.Bbëˆl*(<:„î:}YS{áú·A†0 4Ų1e9òÀÕ~MÓ˜¤’äÞ“£ß@3?ÓXÜÁÃ+¸þÆuÖ›Ï+WÏw=þ^6ü’ë1žRkžaÇLor%ô€2²?z¶Í< (2ZnÁ&K”¶ñ]_ò`n§ê4EXÿaè×lëx€ç–Ëï~ÿÓHï§ïÖ¹ÄÔ™‹“7‹æ>C) ãïé¾±Ì?‰*’)Óxc„ܲiv½BãÔr@¡FBQŸ9ƒºx uÏÃPÉ™XÁ›Ë2`òlÍRø‹WàB‘œ&å}׎éw0ê¼m¿ Û!gΚ¦Q£2Fƒ™]`‡>üN£ï üQE0¦ ˜C"I늵òGÂzëÑQÐ;\–ÕìÌŠ“’aÖaeJýïCõ°JÁ9RÑ%™Ð+ú † (]ÉÔôÐ3HŠ»8O\%¸"@o ï„G“:äÞƒ’v‘fd»2òÝ/5räÂl4wµÌ…µä‘ƒ·gòúUg¡Î}¾t{e¿]¾e Žq×õk@NåR™µ¶bY3Ì”Á‘iÓêdFAqFÜ_¦¶._öæN÷ñA$i5”ÑÁ=) Þ4_÷ý̱Dø-‚°ˆâ‡k C„óaÛŒ§ª±ÃµøíY¦:ÏŽï1ëwÄb¢ç¦]Šèt!FVkÌžGi‹{6-~±-ê%Í¥-è¢ì}÷5¡³zÌó†é•ë†r0äZýÀ€£†6}SË7”€¡GÖ˜']›K'¤Wf’ö–lë¿ès´2®"6Ã÷PÕ‰¢·ll™ t+%Å®DÉQÔT‹J¯¢a¦ó‘‘}‡2sÜLT)9›}¹8ž N#_Ù»ø‚Í5;B¢;²”ÈkV—Ó×P¥Pú ‰òëWn˜Èó˜Õ¿W¤¤LSTLÊVK"'Ó¾•q龺ë3´E)µ;ON2¤†¥·‰v‰Ÿ±ª_€=²U8fCâÍ,*, %VgŒIƒ!o!p¡¨~ÿû¾Š´~©ÉYì…i=5u _|Ú‹±þ¸UÐVÑ‘ÙË-H>$fkÞ ¥ÕDÆxÚª^*R5ñÏ-vrciŠänwMáôï¿afÁ£KÚxøÄ±Þº_þ<²/k“•Dö‹}Oç‘wTÏ‹+Áértt/(ZæcíZXdF)ùW5r,ÿ¶Þ¶” ~³&ì?lÄT̘»ï†Ü>Å,*/C¾P}<‚*^ûù q-f~pš‰‘©%Äå”Qy°;ù¶¡¤J”fÀ*edœY‹dË.°s€,˜Áº‹äs›ì"øïi¿ä1tŽí'¯%¦,“iW ƒ`°i –ÏœeußÍ8RŒ ‘ÞòµAæ(²H'¢ ÁôÛCD™4ìe‘¾ãNš!Ùá¯nG¡öJ®^**[Ư}ÊP2WR˽®ü´ÂCØ¡(Zcóhq~)òïªÄ䇱ÔkÕŸF¶Hé¢ñɵ°£î¡šÌ‚C¬ªÃw`µ«dûÝËËôÿGñ¿M•í*Çûù¬ý…+aüMú²±Ï¢Ž\ u-å‡ÚZ÷¨ÐÝ}¯b“Py,sï)oµÁÑHäèúö·~q}&d¥®¨Êµžœ[K•ÆÔ©‘‡JHû¶`I}]x-+3/);͇æm cþˆá¿¡b£Á Iœ"  MªÉùÚ€yë^ß`ÃWŠnY¡©}áOêù? qÜ;”uð©öz$‚îtwfí{\¨ˆnè66ª.TA­@ŒÑÉM£-1î!ù´™}…˜¹M?[J°T¦©—}Õ6Å* M¾ëXUˆ›úf…2¯†Š2Òϰθ8M—>\«D $ÆuíÍVXÈsVdóz%ƒÅ5±ù$â¸ËM1¼:z§pÛ™ž_U÷¹ÍjCP&l-yÛàöÓ¥ØtJú«ÒÆï U>8ÕHÍ`ªp Ú4|ƒ’ü‰ß†÷ “­¾áÖd_aוO£òw*½z‘h·^ýÍß ž­&§ïQnG¯Þc_Õ\¸…¡å®Úo²Ì‹k¡>òÐÀ¦ËT‘ªÃô—‰Þe4=.†ò⦂ˆ¾JûµßçP<Ù¹L’»E:p­?°#ÿN×k\G‰*l2íeVþkwä‹ÎbëB˜!“†[H+C̸¹4ô~‰P£yÚÖ¦@ÞèŠ!™¶‹þÎ^ïå·-ùd¾K7ù/¹÷)íÛÕŠãDÍ |Žv¤ÆVÏ*™b®`Zú@‡‚Ô»e©õ„ûߺúÈcž«†_ùO"¼£‘l¨¼81À¢ÄxôÃê• SŽ…ºäS)#ÄÆN# Æ'ÏWfÇâX…Fwâ/Bv0 ÿtÃ`­:‡}»«llÙux£ù¬[ùø½2êh\ªØ§²¬ˆ’]*üâàhÂ"GƒA¿Ÿßñì@ˆ¤­¨ptEõBE-´B$²R9ïÜQ¨0=Õßü¨ûú{ÖíEí {êÏ®›6˜t÷Ú’°ê‰Z4¶Üd1³Ü‚޽> 3ÔšUÝ¿j? _Ÿå=hÕª|Í|ÓH²ÿ.Ø:]=Ù8²>žÓ:(`Oˆ NZ»6ða E¥8¡Ã ;¢Q=÷º·/}½£ HLWÊÄže”T®ÝÜÊÖ€»ø_÷Ù¥QÎ"ú²òŠ!X_®™ÓŸpÈ ,†€¡žúMŠƒuˆ­yæ_G´OVR€ð¤E(a;„cÕ;ê- õnoª¤ù-6•ÙÝPÇbt? ð|ZrphC±‰*m…ëÚÀOßÊY¾¾R• 'B®ç@Mã–Ùkx” úGš ![2^ rÃC¶‚_L&D4Ã݌ѦþV:„©íšÙh¡‘j ¾2*!§À{Ò=¤¯¶RÛ½À"/’ÄúFÄ›Ll]`ýü¦¦s4f ˆ‘ba„Ëž÷š¿÷ð·ôJ:ývÐ&Ï^<~â™ÚòeÔ%xþþF̬½Iïc¾& ³Ö«ì Ût`Tü.¤9l -3QOÉ…"û“2csãhý$M CV¤ûJq/ßÇöM« …úÑRŒªCÔjF¦5>–â…gÿu7ÿé¨næ¤+d»Ï’ä4¬ìœS^¸ø°%h)Kz §sF_„æe á5DkŽomH»óEÊ¿óÀ±öV`É4ÿjX‹ÂÖD„½¦“M‹~³>©dxg2‡¤bFñ5´Mg¦‰6}Sl'FÝŒ(éžáY%Âbw°E“§&J¦2@ÃíÚ}õÿ„Fƒ0@HBʬ[ òÛ‹HòÜf£îɰ¡Là“3ú¦‘ 6àY^ƒÆ2ÂM;µËù¸*bù;ø¡Ñ[#2/ñ1°½N¬MYË¥’ÂéGj/Nˆª¬ŽŠ[ Xsôñƈ|eq­UøAœ½ôª©<,Öl<ó°ÉE|6]¬ûŽ9˜Ê‹<™™nº‚¡EÖ‡GEz[ê§ÓJnÑèWu°ês;K)¥Ôî~¥LX‹NÚpÀ£1sÎÏ ä’ïÒt­I9¨ópæ­M³)£`_mC½g"ð;âª/# •}nï¦r’i‡¾\ÒJé® ŒÜU„…|ÏýfnñÙ™ðá‰nª WŒ™:& N\9ˆ|V¥‰¸•¥ŒCâ³@`ÐÄÞðæ3Äh'©î f½ÊO ªÌ ²?jŒ¤&Ð)y®C ÷F÷5ÙõÄåÌŒ¿^Μ€Ø¸d¸  bâQXTŒEÇߨON\í(5¢~òʉݕªÚÏAÜTá,å hÐO¹µ»0{ÛÏ̵¨±ƒà‹õK ß®,,þØ=H•Yy’P‘¯áâò²ÐmgÞ£.º½ÁUžìb"ï¼0ŒêïslD.ïŸòmÇnÎçðIz×Óžr1äÌ$xÞÂÎÂ_Ë)©%Üë{¶J -$øñ៰À²×"H4¬:ÍÉ-ü·Fn1î¢øÀüP8ùºx+"[ d¢#<4Y@Vì· ës¥,ÙÀH /‹òÿ£Æ†0U¶÷Ö^áß÷ª“@oÓä†ØÖº\–ß7xuõL/ˇ˜LD7Pj iZËžpîØx ¹'uì²Û*íØÂBžYõ˺þ¥çìM‹<#Ž‚!Ñ¥dN$5gÊHÉk}Ž"ª·Žý‘ÁÀã$ý±ádЂQ`yd¯›@\ðþGø¹’™6O³pT΢"ƒ‹WÞý¶a=SÎ58½¦Oê,³ÌÊ #Ÿßu1Ä& ÎcîÍ× ­¾”à WQÓÓ«’È[´¦”7)dýDN¥Ÿ_Øÿ[ÐBè¡ LÅ~u2Û†“£q¥þàIíFàWn•TS €CU«T’eˆG}5¸L35…İìîèÖb/_©p²G!`Zñàd WÅipûª£Öf*ݤ[§M¸,R¥ÚÿÙÅ~,àìŒñšÈÍÿQyo3[Éó0Dši’‹>E¦œ×8âJ¨ÑôÀ[¸ÆøõÐêó4S9wbyqGxXÊCXY½Û%Ë*šx½¢)¼0߯=ü}Š·ÉØÓ8ZFÿæè̆úwp¼ïWæ› L‘;GR1bö=MxAfZ0$†ÒÁ%u’c]\6Ñzh'¼U€,÷ŸëÍ»L ±.5w« E>2†EöŽ€>väz+vD¿0JÊ“¾YJ }ñ¬ì×¶6!µ !O®s®-®Úd´ë5ÁsWXÌû+Õi½³E¤b_)?)+éŸÅSßgÛG„A°J{$ßã.l;õ8\/e¿ëvö!t6UÖk_RѶ¦‹¥¡ûùfO3§Ö’Ê‹M×ɤµÅ1o‹?*ĸ/©Íüš µvž+ÑŽ|_{bà™íáój;§`Øh’!(þª¶âû~™X.!‡(·DJÑÌß=ØèWÚQ·»|· ^4A½[H;¬÷k…Bµõ7¢Ò$ËѲ$O=a±ž¸ó»¶µ.V;Í´¢%`¾£ö7u hí‹$¤ÇÝd¹ÃRué9Gã?Vïð.» ßí7ÿ Mó0LïÃí'çWqµ~ Ö:Ò¯AVÎÖÈåæê'Æ¥uáHÖC«%P‘ÚÎDê˜@KÈ6æ™xtBu¯3Õ-¥²ÂA+¥ Æ Ã`iᎵ~Œ™¦û=ðä^®C´ûXš’1/to¬MºßìkMø¸tŸðc¬/¥J1¼T,œÛ<—3ƒÚP÷¶æÆx$æXÊ%h/~£u‡¢Qûð“ýmHAÄÜ"Ànj3¥ûBäð …¸kgHïí;d ž]®R‡wÚÄ÷œ¿Ó¼¨‚·ý\ä1¼‰áJO"¾Êïb¿l·ÑæoðjwÏ(£K!¨ÉÇÜùl>"šet²Eݵ‹@½á[( wFI1Óè9]ÏùaÆŽÒñÑ„\©#-¶v´ÄC'SU$¼ à„ƒsƯ×ÎV)F3%Y¡÷ ×*6÷½¹~1`¶ x–yÒ¤ëu,Ä%|ĵ ŸW=P$O.-&Åàý7á•eÑp<á¨ÿõ£à ¾¢3{¡m¸³ƒ11Û#ÚœSç¢á^³!?ni¯@…SVW½òüÏî{bó}”sx½~i\sI¶> =m²6×ïÏÝÏ4ŒNÚÑÌÙþëÖÝkš{$ÔŽ?”Æ­iTòÙ†3Ÿ]±C`Ò\ÎeÙ]9jò°ò¶ÐL“ ˜ýÓ]~emõs‡ì;˜Hƒž°€§Ðä–˜ .p´‘ú\k5B£!\uÔ—ÖöM‚î{V6Ý“¾9[)ƒl4ž}I-7­(JãûÌkúi6®óÃöŸÌ½­ê\ ‰¡ž§†}ºB”?«]$s0ÏËç&&IÊö˜jämc3 ¼?´ImñU‹”t)¼±‹=Âo§NVÔ–”ŒWzúÔÍÜ·Û¤#HÅÆ‰žÁ{ OßîÍÊU`T(佨Ÿ}Hè@è{C3ÌÑÔV‚pÌX‰ï(Âqhš—„Aúñß ¡Õå©Ò¼(à{0î;Nà^·@ÞéëÖ´ZRó˜oð*¯Zð>~$w& Æ_^Îøà„Á¦¤uò–å Ï M¯{8÷9Þ2[xÕt·u¿R˜8•‘2|©ØŠ/áliªñ›sŠØNªÒL|Ù%½+ÚÕ¹j¼;5¥!4–eØÐ·½²_H*˜²âE//:3Ø‹ã[„î-c_é!ß>^š\ëýD¸¸MŒ•O:7#‰Ÿ6ë6ÔÊŽ !fvŽ\«Âž›²jÝïâòÛ­J‹ \·Ìÿ9í߬Œ—R¬õévÙ°F+ÒŽ¹=×"ÜÞÕUR¢Þì¼àþv šÄS»%®J‡ìý’ÁE\ ¶Ø¦z0w™ÿó UõBþ€ãb€>¦Ã,S4šæ[yÞ§$㢈wÄsÐ7W½-^J…ë?\ÅRJõoŠ}îW 1RiA$1Nž„éòp©¦ù«·LŒb¢ÞÏíôã6y­‹_ƒj„ë½ûÇ/X<Š'ΪV…†ö¦›ŠêFÈâÆµ‡•q’X['ð!44qs±×HÓ9h®AL|ÉâYèZ¥aŸ™pZJxëgøME6 +EÑ*›…¨Ò aüÉóû±6&¡«£uÍ߈r}+ü¼öMÚrªæçú{ñª’žý^ëþ|(L Ë3B±•¯+òV.†¼¿sœq„´.ã²,µ€ÂäË|„ Ø‚3ÎVÝUBýÙ[ c ¥ÓKlUÄàUu°|êwLÿ_]Õ5}VËè×T\ý>ýÚƒSU9GÇ¥y´žô¡?R8šÑüM¯ ¦‘5¶s+g\÷¢Nø†þ Ø­2‰±ƒž ¢@Òô ó¡'¯$&ãz¬üüÂŽqü~}ü'™©1X >(§$¹vîGÀÿ•K¦ü3OZ¼t³z”R yÉÜ ¤šƒÍ5 ˜£½Š¥ÀÁ"¨àì/2pl“Šç±°‡Ò_߯вÿÆ>“Ng»Ñ9$ðGæg›YIÂÖ®…m±î[¢¸šë†Ž#FÀ#y›Ek”™ºuäÿ楢öL{,_Ì]æê)$F“‰0¸1Û¤—jÈö)…õPË^mtS÷¶üözú*$ —ü¢’by"öž`Ú¬Ì 1¢ARjÜ"0­®â_"¥´6— ɉê¤Úþ_¡T }f%SkŽI5ðŸ#£¯Aº/¯E¼Ævx Ãj¥äÂì‹ ÆŽue\Ô5 7ê²YÕQ´Ìo0É0XúæMð{×Ü~Ù'nn…ÆÇìÿ žÏÈÖrºçØDžSç£×Jø\OG²×è/ú•b­‰€puƒ¡C›V?Ð —Ò©*ÍËý+u¨A翤¦ÚÏÏŸƒ”ŃÍpÊOGø³Xö)S3,AÖ*¡€UÆ^xæ€î-)<”ÕreŽKKÚ’6æ72*M†W¹ Zµ@­ÅøˆoÁ&ßÈÈW«˜žY`y5oÜK͵)Y†÷­Oô$o]˜€Ë¨þ…ÁªÔ«ØþöFk^§¿6ê§EW_ì{A@´ÈÊÝŠe]7_&lVm8] „(´¶ÄS$e+­ýN6¢NWFéëëúçh­-OŠšŠ–©ÈXôPø8{„ ­Ê:Áž&Tú: Yƒv´"³L£ØÄš&v?ŽQ® × 6tyð.…«c¥GË]ê`½#T"]ao&Ãã7‡°æxáï£ä¡]@žyö(šùM‹l€MÑž¢ö+/¼•Ïe…š5bF÷üâÏgpè­ÉP7]…ûßßKÝîy‡:›Lʇ˜ò¶&ʦeêI×’Sr‹X^öÙ†¹:h®­^Õ-Ó°“«VjÛÛÓ¤sµ´»ÙV%/æRÐ¥ôH¿„D°xØY¼m²®¿yw_Ée3,^žº’ÿ-šMNcÛÜxKˆ¡¡éÙÄ>TÓ«ëÚ…4÷Tó—DMÌ­¤5HBòd†¤àÛe}ˆº-§ë 3ãý¸þ¯¢ƒqSº%7ž1IfZIb‚D/*é/Xe†ð¾°ª¡hÝ+ùº‹£¦,›ñ³t9»çZ\£þºÍLý°©¦yÒàß:³¬‡p+³9ŽGt}8g:J’Òb1X"ÇžÑñ)~<­>²# ú>Úc–[”°Æ¤‰}DÆÕï=›É{ Öä/9‹ÑQ¬ˆ™¾@àÕÜ™É&#¤„ðA!dð¶šÄÈØóþ Æ²iÌ#ó ©dß³„`Ôõ(œ‡”ù¶%=y3Øl¡žYÖDå?“c×HÇ*ÕÏŒã°j(±wCÀÙT>LQ˜”ˤGWámÄÙóØn‰÷—õš(e/ŠŠ=Æ}ñ¿¶Û˜@N›yu÷= òF:f¶3¦¶•þá­ñwߟ¤ìR¿ÆÑmÂÄ‹@Z5Á.ˆâVÕ ufð%,lÍ-‰lëqœ¯gxØî!¯‘.ÝŸ•P…²Z¨Z!®­îþN ›nþ'/3Èz[ VvPÔ’ºñ<üðó áÎ`€æ£Æì¡Eë=B-”ŽSü m-}7Ï:Uû`Z°Y½øÄÛãé^ˆ&«]ŸðQ¨^Ýžä8Ìàv_?¨'õ☉Òn¤Ò²%€b×c w|ço!åS:± d(m˜(*jKÁr¤dƒ*Q·3çì__k1õØî…Öò`1Œè’FÝ,ÕZ¸…¯eÃhrâQ¾5úþµ`¿¾°[å¨?îsFo‰T6ÞI8,†läÚ¥…aÍ~³£AuÞè¤\pLOÕ ñ.£ûÅ­¾ö9Ú¿Çýت’ï5\™® —vüÓíÝo©¹Ÿñ‡ôò—3P:q™!Üÿ–P]#ФD_ï ¼ÕŠ±þ†—õÊÝŸN,õV)÷F«[½÷†6ð"³Ü4W›€P©T u0@q³bËlÁW…7²ø&—Œ3[@žý˜wZ°sÔ^æaYy¿ÞÄV„àä6¾55žÙM“ÎC´PµÞœÕ/l=–þûeBSŸ„æ‘ýÀè‚A*$VWj¦Åbרö’ 5IÜËͪ¬ø ñœõq+?ÙsÄ‘@Æ´‰ðZªœü»IÀøù"#˜h²›%IÊóë2-LAt§8ªð "Ë»W•…Ï™NÃt¥EI¾ÖŠGØí½ÞSOy˜ÒoR1FmQƒ8cºAU{~Û2+hb(U½ËÇœìú<"Ž–(nP ꘚHÔXž‡<ŽTóÆýÒ ,—ÀÙ\ ¡²8Þ,Ž‡Ø…«Ôv?‡Éð\âkŒ0±žo7T»tÃ]ª!dýgNiâ¨íi‰ìwEW¢ÅQØó“Î3×®UËëË+ ¾íì¼ ‰²ôÎð³C´iÀºa#lË¥Nd=F¤ੵƒš°óåšT¢×M’ù<òWü±®Ý…ô­¾§±Ôä—À2–©ó'œþHfôw 6ÎyiQ`6QGóÜ” ~äö¢rƒv£Í×Ñâ-c óßq¾‹Š®2®Œ'¸©9d|pÅD» ? ¦$•C‘0Évk½¯×qýgÃMTÜ8¡eTuA±så,¬bÞޡ뿹dù„á°äù!ÍÚú¢ñMn°(smt·Ý¡ªŒãd‡Yÿ›9© a™¡h…v†îf‰?Ø#즿j¨h#Ak\ ¤SÞ/©+‚ 2LÐî&Ül³&ûi/;;?Ž ý¾ÊaÏióµgùÐ# ’eäJ³ê‚i}@íMÐ7hÑK×¾\eó÷òg,¤@¬+ß |#Eî|¿&¶#µX·Í# ÎX|Þ¼f[D…¿liƒb+F²HkHÕ]ò­Ús‚ÊXL§ZbXE»Ðdx‰}£h± }”X·|ñ-}â‹ÅÆ‘bâ¡ Îб|!6 5¬Úz0R*u‘‡d’ÁÄ›³8øÏ]é&N¨aÙ該ð8&ç¬ò³%N‰«ƒFr[ª¾-'Ë›íÎ.O,£6îu}ª™Œ‡¹|Õ‚™‹a"U¨ý™%ý«ˆø2îûËN¦ðb~X¯nþÒ© €Ö—ÁL—,Ý Û¯ G4sê§dx£¢o 0¨ÐÝb¥eëP;Ëû~ª;`Èðµ20Ȉ;ïÆ¿"À^Åb;Þ‘ÙÔþ …¯R8d1 †'v“à¢-‡_±)Þڻˌàü´0»C)^vÿ¥@ú×ûÛ=U3è‡KJ…ËPÇŒ§EK×F2{ǧp¼«s*|&n'Ês$düÝ2‚½Úïħ7 lÙ…N;€“ßå*åÓN þ÷Ò re¯øÓ•®!û6ôÝ"‰¾Ûž/ $¾Q¿kË:¼ÙŠCè1âq½îøVÌÁ$m;m££©ÇY#˜8öR§/^§ Ç&[[w„´#ÍcêE"Ù"?5Š EâÕ4C"àuÌö†¹CëÓ&•(*³·Öä¿LAÇð …&Ú8-w@´Ëàý,R7Ê:lS¾G {–ÀVX§±•6µ2Ç ¸TúÕ¥,ÛÅËsŒªäaïKúu†lÄóI/j,Ö!(}P†¨íˆäûäVà— šÔì|µókmTþ|tòYצé÷iÈó>wÊuš¬•:ߺ°×R°¸ŽheÌ*cãU] ¹Ñ«s@ ´%)ÔÛ3ˆ=ÏòÖàÄn¡9è~gÕ›GLØÝÌÚ]¨#«†úÝÜ,w ¹„Ý>šlòAªo¤#_»wÞ»M=d'éÓQô•CýTý‚QJ—‰Âõ°bq„,¢Lu¿.m´ÃyÑIÝ%µ¦f³øæ~–+" XŠB‰ç0Ó «Ì“²S ±ùr >:ÜöÖ]k€•Ï^BÏX»kÇ ¿ MGc^˜¤ë×_"¶°,ß´.Q`ì<¼ìNé=ÀsMTeCºvµœ­`EL5õ±ñ±¸¿‹3sŸÝ REÃAòÿÅ´dGe­Ô ò")_ÑÎ"§ VˆÅ{Šü…zJ~Èïêl i½»OÀú^­é¸‚ÚÜÙdZöBnñ 9vúZJuà˜Œ³d8’šÁƒwTêÙ”—»¨ÈvLég/Àw÷:¸5¬€žvãó·šõ'¨#Qûû¬ÒV·ï1,Æ X¸‰<=fCÏAëÜÞA-_‡i#üæØÿk-e¿žáaG¢`ÇE žbUù=áîAáS‡ƒšÊeÖc;ÀñÖ‘’PL·$§‚BFšóˆåŠôåá0®â­}(ò„* ®E@ÃÄÑÖ¸-ù̈žm›ˆ±Âyg«þvÅ‚k 98Þ¿ ySmw$ŽöŽnCˆ¡ööj…'Zœsš¨r¦& YdÀÊ?Éõõ/‘Ãtµ|¥‡ßÇ”^ñc,<Ê+Í«-ôˆmžd¢$~- NMãÑZ]³«–ÄÍ4aÂø¹©?ÕlJ˜ÂaÛ~l[u¶òUüí[ôÀ‡{F Ï‘hpËìÆ2™ ç@âÂÙ¾ªp¸É¾ñ¤ÕoTê߸{žRvbٹ괼Mà¶âÒÛƒì éô3×#Y–zrŪ”"b²ÕÅ@d}zC§T…±A?ï†ðÈ?Ní˜"Ànºžƒ!ùÍì¹ÔI:A5B€ŸW°Cð«ËäžI«ÄÝ7{—„B‘ŠÌ•H¬%ƒÀ+é?§R;°Jø\3‰;M74½¢h¦Í…öF0L~Ÿ)± ¨A²íVN^Þq+ï"nJH)'£‰¡ÊQ [ 8‘é—^!bÓ•EZ÷ÜW­ù¿ðJÐ:JS1jÒòir­Hx ¡übC}ãfY9òƒó.-åÐH§OfÊ-OÖÃ!.{y™ûz„Ui÷Š—VJþ“§­ñM"1sq‹÷ 2\Û÷¹võ¶Û’OJlì=fPíâÂ>£›¹ÅnÊŒÚE5ñõ÷ÈÕ\ù7þ·×v}9«t‚ΧSy®B'˜%<5™ðW|tÕ!ý%•¤mÑß‚EÒE¢ÑêO1CíÈñ+›s7›Tº±É=˜búÝÞ ªj;` §Ÿ~ŠÈÂ9èaÈüoG·Í=ùüÔÄ ´;L4&gÈÖ‡Ûz™ x±A+éwÉ ‘Vìê}›ó6ꦫAŽ]Ĺá GíGE'{¨[¿øàÊî…SŒ|tÀêJ#NjqC„7uc—ËZçmY\ÞÆnvä÷ÌâùŽ5Õp…@Ì“ER ÓìˆDìºÜUzlñ›Ëq²¢JïKíù¡rÖHu³¾ª ½õI±­ÆŽè@öã¿/9h\¨ë£{8b¦ùã)©ëþèѾ&ÂçE.õ°¾?*à üƒpø¹†@ny²Ò«_ÄSY®©5 €J™îBfhš/JkÖì¶ §M4x•ý5vñf‰Ú#&£·?8Ë0í³ê— Nç§bPލHžôÄö5¹îsWâãXÉ‹Á"8åfĉ²5¦ÑÕgV*Å–ë_RÁÿÒ¬žÔ×»{ˆooߎ|ó÷³ {m)‚挫<¥wžÛ­rf’yO@-c<¦ŽÀµË.ÿo¬(,õ·$aG£œ•çi' 6h}^­ŸeÝ<ŸÜWà«ÀK®æÊO ñàZ} S)<ÜK ^ì·aÅ—ïwLâ1nÚ™a …@ D9˜·É¾;ÖÊTYÓuA^g©„’·lÞ0 ˆ‡MÄ(ûa£6 °ØîÎÕ`i0FMV~±;+Æ9h\ÅlDîÝKV`Ú‡CùÅCùwøø½Îch …9³6å7oͪI3Ní^TýýÒ8ŽQûz%RÝ£yÕNiì×@ÚugÎF¶g©ßš±„kåÜIgÖÃ݇øÁê%lþþU[ZD—€²}¿š5¼Ö¿,¥hðä8#ý9Fìîn J¯sF˜N€ºÄÇvE«D9ÞÁ)¢OÈyý(•\ä3ÄájïϵüÏn›'†‘wug虀àDT.%G¾{«gò$<‘HðøÂH‘1+0ðÿ±·|mC ÆqsQ8 èx7D0ô©æ±eÚ@:\àûq‚´©˜àʧÅN›Ý%v?VíІv¦ÖXåD3ÆÈF¡cgRêÖeh6ÃÒà!ËÆwµ‘ó˜|ntù`Ÿ?ýî·ÚøëŒe¿Ç׎V‹fwì]¹ Í¤röw鋘xºþhœîJÝïC6ž–`(jïÜ®2[éÎË|Çò–ýÊ*”®ùœ òž•ÜÃ(r¾'©ˆ@}ô‘cnŒ§1𬀴“€Ä¿t´‰ï„÷ë¼ä³Z–ƒ6Ù0ìA283PFô¼›å~ܰfæ2kÙx ÐÃòn©™ü—lœ¹iÚL‚Ž0Nîþ­§ïš›žÏÂôžQ‚ôl‘ÝŽÖŸ½‡ìü=ô™r2WáÉd]ÛÛTRjyƒõ}¤E‚ASÈïþéRŽ‚wê‹O1c`Ê{ÓŸóü(>æÖL$˘ø4ß;ÛH’ÍÆXT !ãGdÓ(•¥œÀóßtéj6k Œw “øª°O=$w 6MZ-'é92,P‘%EÉÈØDÁ’÷k¨Ž90‘M¹¹`y`›l»²èÙÆûx>ror;âŒg•A#OŒÏ(ùùÿ’{J”ôUè©nÛÂ¥%RÂ\âR=ÂîìQ˜i…TŒBÁ¡ÝZx¤ fN‹/ Õò,8 Ú×xð2wõoG™Ã31øû†)ÕÍ÷ìÖŔϟzŸ 0}< ³>™ëTñ¸ 2/ò~ƒSß:Z¸@?H†äÎO©Wì39ídòf–z{ýö~ø¨\vCv8­R_ÄØ³þ:ÍEoGV#™Ê‚%q¨g]®—®<^'æéÆ ªz„ŠÃNS‘Ùa£ écÕoÿ$6n (mÍDX÷½à=kÊEx?hìXÚ¸©G± pi$ß¿7so¶@}|óÒË:D.gŒc6è¼,itéú]<8åù[ZåP;ûµO;C%oN»ƒ¯«$4|Fç§^ô#Þ\f’a°*˜/d<ëþ_™"”œ&·åCëo ¨ðªùÕ!P·9ü} ´}{ã]¦;1Djé4Ž:®jãÍ%Ù-àŠIÿšÊ…sÈ—Mnð@‘Ò˜¿‹9ÉsÜ«h>¦ „ Hñk„u}ŠºJQBž¬;Ù_}Z˜Ýø!kç…û6µÃã¹Q%=Ê’Þ˜îÃîý³‹°6$}id3Yð¡¢Ñž|&]®¯FtìÑТ ŸŠ {øRðÂýþ³+eNG}½è$»®àoÝY¬uš3×|.+¤yÅÒ³ø?cgwM)zvã iñ.—‡„,•¢¬ð˜­HYJ?VÅP#¬rkh°)*2ä@ÃÕ¹ø)–'ãjgžÝN½â™•{ÖXmè!±Çœwã£úœN&,BTÚþÈ4{_ÇY~%>šGµnÀ“Ó?‹·~>_××®æ‡]’l©ƒRºêw_ŸÛ¯=x½µãFRUµõž¼÷2.Ý©Lýͪ<Ž‚JßÃ$¼XÓ&iÄõ}ÞœÐÿGt{ÒùœïˆÅÈcHº‚Ø´èRZÊ[Ž3òÊT=).Ü@6úÆáX‹æDgnÈeÉ„0€æF㧀܇³©& :ÐGWm²Ü_°xûÈ£MÅ´Š¥’Ø6ñÿ×e}ér]+lÛT$2Ð}ÑÐÇæOó1íéðñmO„nÒè¤_É.çßä8€ ´4Y¾Ë¤±~ Âlg¨ƒ¥‹‹×K³Ve ûÂÁJb|‹“2|c+/…·s€U†kü¤n­½5è1SiÐZ<ÿa:¦ùqa>¬v¥âEÑ•Òiô=tñT‚L²e ÿ™ØoЇ2xÂÒrb¸ìB«V_t?Q*óæXc¹iàuŸúµíÛ°¡ª# ¢‹XLòú(õKõf£DL_™ø±_º?Ü¡ÍS“ÕË<…¼6ÊJ¹Ýêf$TçÕ„èü°k9Ä–ûÿXö?Pú¨—Nܵ%¶ äPu~òXžùe"7Ü íÛÓeýpÜ?úÖy+R=\]©K›ÊåÝëÅd'Ë}“©[ê­9*ôuµl“O:€R¯ª ÈFó<ü«$øî°}ñËù:Õ NØ×¸2à"Z8÷N\òUÚëÝ¥M‹‚>å«®ãÞrãÞÙ\N¤-³ÏSúßðüè6-c !®mœóÞ¦Gß7•Ê^;K/G@ Œ¨ûcÄi«Ëj7ÏG>ÑaYiCS'T‚ÓæŸò÷刺 b,Gx¤uP<ª dЬ†ŒÛVg~Ÿ(ÛS‡"¡u SEüÕŒ^\@’:AáÁ6Ñçúsž½äÐþ›<»ÐìºH¬©ÿ7 ä‡g]·ÂÜ-Ÿ§U<çe"Pɵh›§^/N+”|´Fô‹bèwjUž, ã «#„Ý+ D¤;ݲ»‚ÔXô\3ÄÝßœ#*…Ýs›vUXù<šcO›³â‰ë”‚+±íUUMç­¼/)á‚.Q½mˆ´xI‹òþé(æbû×%NË &´E":”ŽÚûš‡›Ò¨j™|ŒÏ$GÖžödO/C~ÌýŒƒâ RŽÁ2î툦½s,©-Ò/“_¦*„Ü+¤ˆ6?D ‡Û›A{ª&=çó»oá²6Yï}µ~7®ôü>Ù"‹®ð¢¸ý'{¼xѱS ñYÀ"- º¤ŠºS7Ì ´][/þÄÖ  IUCúеr L˜ŠRŒ‚Éw>eÝKA™œ‡¨/²~æ ˜­ŽîÆ’T+@ܬ™èœ(+¶M6äJÚ¯ŒB—BžÖŸFj¼¡ú¯£×r õ™Y*G=‘m*é÷Ùq²‡_ ðÂóU䑈Ñ׃H–“my÷Êi#ýF—“Xròó½ cÈÖo®ßØjJꊘ$f òN|£î*a´½µ"ïÎ>Ú`ðÍ㡵@HÔÑ‘]ÂñÔÓÉÓ–oí¼E:X}™Ä´t@Ó/I_µfþ$Ïa3æ!xˆrÁ˜wÛ{›-8:¬¾±b¾?Ö£g’*ÔÑ_‘{—¸üVÆøHZ)q¬2„,Ý‚T^@á1L¿×#¹ˆ«Ö5.ê¯ä3{¼Åi²‡|ž”*÷MâKž;¶…y½!ÈMÖÔJÄѯ“P #ãÆµ( ³°,XwYs$òVA ¯ÿÕWóæÕeÝ˶Y„=¾ÁÚf|Â$!Ë»gôŸjM‚ŸŒÜÈM¦ªÿ/¶Ž‡÷Ú \"Ú{…w|É¥%e™çþn‰\< …Þú»9¤q#üª…R *A7#ê0MÜ9%ö>&ð^A˜,¦Ñ8?ÐüˆF¨;ô÷-· 4W·F¾Æ€ÈýþÒž1ƒÊÙÄ?@4‡Zv¥€±.ô 5)¼’\ó>!øÙÙ×n{Gƒ#žgáM ½!E¶¨qÁ¶âìM(ôù'Ó‡Òý—©]öœöÑ6Ã'3‡5ãÝŸÖ?m²’Ó&D]±0Âç_  ,^53Ñí¢ç’üØÈÜï•Iñ´&.…ø=ùBÙ×dA¿…7!¼Û0A+œ!+Ý »>ïüÒ¢”M[hÏüstóuÎ7g8·"ÿ«!±²Ty²æ‰q)ÐvöÁÝ("Ÿr=ùev‚?-28¯?<ëV4É8`ß½K¸y6Bž?tĤ13nX†[4íæÔ8:ÙÈ&æYñ:Å‹UB=_`îb޵N°d®ÂM„~À"½›<‚_˜C¾y…åÖ€à¹pRê¡Ã4„Òó[. ©¤+G·7ÓúëXQÂß§#þB9FµÜrˆØ§·±}¦÷{ ,ÖjôÄ;ÉÅøFø€;åÛ¾©:QMΙ©\Ô+ ÄgÚæH¨óò\Ü»W£´»âr&ÓŽ7ÊG·ŒšàYkÞP[¹¨!d¤;‡ß1œ¦?é®›>›€¾X<ÊÚvr>´ÀGèñsY}þZÝþôÿᅠƱIª‡F£†Næ•{h`ŠUõS.}hãÙ” m¾Ïõ9ºS:šÅoþ±¶‚ovø"[¶ÚgH2ž'Fû²PM°Ç 2«Ó(c*Þæg:'·¶Î`ìppûªˆßæ5‡ÊNl&ìD,“\’ÐO‚ý¨îEtt«{N:jnÅÃ'DæÆȶ(}¦\ë¦m·<©sXÁvÞ%²…cÀÃè¾WܵÚæIR“Ú‘­m©fý×x’?;ð'YñRw¤uÒOÜR×—¥Ã4@<‘Hm}¶’`ž¯þ״ϳ»¸NïË…5eÕ«÷ÏõÄ„è ‰ö FìÇCvú vênXÒGÒiÖüÜtú³[û4áÑV.„ý©fËNÖË̆ l•Ul_ЭgŒ†«ä¤0èÖ"Æ ëyîv¤MTnÞÀämSÆÁL¶Žœ¾hðdôú>óü=úÉ¢f’~c{亢æ3-qÄûT†§è° ™Kçµæbç^±SI×YÄæ¼T-çùÜîúž/j‡sÉ2Á%!¡Ë‡-ýç¯Éž^jJÆ]q׆ K`¹OìÒçG¥cQÎŽD-€~;»Ùì/¢[® u†1WÍ4ƒò —#i¨“ V½ÉošÚX§ GB‚|‹æMölÛoÑK©1«ŽQ‡`—Å‚û,‘M;MV¢' • ²“?e¼’bÚñ~/™4÷¯Èmu­0–;¥Ï‚Ä].7«ã[–b–ÀJBý¥ÑÁ킵¨?‹¼ËWuýÎâ€nåþ]eñWwf—Ì# Ã#oóçæ,³®³cŽ„à´œ;‚±ÒÚ¥\}êwæ§Þ Qf¡÷FôÂòn¶“êU\"Uº?PË¡À˜H}¶‡årCzcË6ô¼¡ "Yí¶Ô;ð¾½³æ`fN!‹ p^’n¿Øò@gà&7öi-: Égް ¨Ù x’Ö3ÕÚí7®’¦ v>nÕÐÜOÿ­ ͉g=¥ Yàµw·hÈIŒ0FŒ×ÌÈ)ÊoP„æô½áþ@ÿnï;-Ãyд¥Äª\žžÞqcGN~Y ä! 3ÀùOˆ ï/#!Ꚋú+`ú_C;“‚ÔY³.v]XôÄÊÚ39ßÑê—1„#¹ù_•ˆ¹û¼[;ÑJiÐêïÇ£«ÚLüX+ö‰¯,Ë5ÔFÚ#¤Qê• à©›õRQcåõGßHT|4Jž…@¤ðxJ 7îÆˆåG¬í3¶P_7Š×8^N)yáãe¿Ð~ ¤({oj‰«-†:ùq#ŸÈ¹:°VY€ Z#ƒÅä¦5TçdÅ9êë}¿õÆX@7ûqê Êh‹jÙÁVk…Ü…—-]„l5ßêÒ VJÕ Ÿ~naP”µ¾C9±“!ô'·XÕ’à¦ô橉±­²‰1ðÝDš†¯jÚ„CšÈNÙ«ÙÌÌ)§ïµý]{ ¾¦R]‰Ü€ì2ä9 "è…ÃÂnP0`…Ô4nÌöðÞ²Çw+TCÞ~m¦Œrï$lN¬7Íit8C³„þòº5ˆ—r *ÖÅxqÑe!Õµõ¢fQµÔÕVL[ ù:‹Î‘MÖè’ G]‘Ô8c’¦á|UÃë|ÈžêA7ÇÁÀÜÀçíoß0ªõÍêPŽ L·yÔióvp5fR£ñIQë¦R‘V½ ]³x1Æoƒÿ:Rr¸6l¼Úè‘þ5‹P?oÕĈMhjYˆk¢÷%%~(¦Ê #Nsú©ÈÔhºr»«9c–€ŸÁç' ÛÜû£µÉJÊvÔŽN‡FS2ƒ±\ ùⱡn߃1IÉw]õ¶ –,7í<ò.ÁºzÀÝ3Ò“zK/¹ ͤ¹ØxuÝÐz}É×kà ˆð/nH@7•sSØ\î4‹]Îo á·¸ö`ú|IÀ¾ˆêÀXëð¸8ûr£RŒ.=©tîôçA:ìŸýöÑc ¡râ+Xä¡û¬!±ýÿ9Ãó«— ø(ä^°×ëØ¡NRÌ0¡"Òk²³½VÚ3?ä—åÍ “n,×oÒ5–Èÿò¯A‚ù~ú4.ê Ë…Šñáò’Qï5Ýz½Ûû•›•(:Å]¯,drR ^)‡ nýo%ê1ÀæüƒÙFŸ!¢íÏdzd¯Ë©\ ŒSq‚ !æC³T[ô?–÷k†§¨u­ñèõ¤ûGò¾ ÓÛ>Àhò¹[¤¨frwwa‡¹W\ý¾§Í?Ùµð¦N¶¾çZ‰IÓº¬kš]x‰µô8õÊM.»¶€¾û*÷­k‚kÛïï™Syƒt }"ȈS8±s¶þ5úi ìMèçtŲݧ`ã›Ä¹$îYyÊéD²Jø#Gºî“»†%4&÷ÜÀàH”©Y¤B#ˆ€ÍŸ™–ôT v=è€AÿÑǬyy¥ÜÉ2å”öÇZ³§tdí³Y`zò} C`š.–Òú)VÊÝ›†cg†²ß` ÚëíM‰Û ÿL±³=Í ®¤=k¡tËŽŽ¥·n"’Èò|v(8BÛËû{¦® ƒ#GÂ?Yá³À Ýs]"M…Ž-(Á‹ Rz€œÎù–OBÅÞ¯õOÈËøZ¿Ÿs;Ä>&Wux„…Ô‹ç';Qö6†N2׋†8s–cC}>–¾±ê>Èçwú‹BO>¶¯Aí´|ôŸZ–áxŸäE-–׊2úÜàoo}+ÔQ)ÙxHüöµšú{]¨ïI¥dÜñÈ©ä|Þ`N»×ž–›:815B4‚¤.üþÞ5Ÿ¼w úo‰öé$aúv¸2¬?yª—h“}¼F=ËÍÿ˜w#U7ðI TÂåŠé¤„&E[4ÊüÆô!‹o‘ÿblšÈþÝPĆ?üM,, w¯8Mt«9',O +ï“ÏL2¡Ø$2ꪩ'õß–@î­U’Έ'š1Dº°øÕ;ÄPW##Óýq•Žè¢-£7\?WM.xȹÌ~‡sT±¼™iÞ˜Ð9­íDCž~—…¯~fÅdÇ~ñx{k:Å&.Èï¼çÝGò烠'hûb’·›>yYâùÍÚüý{ª›‚`B\YWŸQè\覃§äCLTáln°ñœÇÝ02¤ýo)Û‹z)‘ ~ë*Áœ‡ª7Y㢑-7¥?+ ¿x'¹qý!Ç„”Ø¿‰˜FP<ß?èÕr»S¶zäqªx«3¥ À_\£3FÜ©´å(8Ð1½:mO‚YhÊîÊC¤é › ÜöIü¸wÃíKÄŽ%ןÕPvÈ&vª…IÉä–O‰w ’3¶¶½õK¨—ÈǶŽ÷fÝÂÊVÌû9jPÖÒbˆm\gäLÐÈÒW¡ ÂN˸t*ýèËJ€Qüð¸¡D×1^Ø^âÁÝWAŽù£|g4_~ÛBø\2‚´õ°Þ LXy`ö„c?ZjˆÊç Êßý /#À¦Ë†6ßÍüõÌî76\/!æÑ‰úÓ¶ œ–wKO 𷻞•ßQžlÝ‹ÏßÊN銾Ÿ³é3~ Õ_7$o»ÈX3ZøµÒˆÍG¼‘ Ô`µ3rÇ•[\^í9òw’Þõb™þWO˜7ŸJ*øþÖ?ÈÛãÚù²îÓrFóAUâ õ€j°àW) 5‡ Sp&"I»¬.‚[V‰ëªHŽ5`¶ÔQŸAÏÇú«ÿt $4g’/¼·†7G'ÛÀxl_|¼PðcóøoZý½tɼGð0£:×)£ â^&u¦#lsÄ3j¼ï?™&I*TðÓ­æ\1›0ºÎ˱B¯€ø`T‹;¼íl¸Š‚˜-gŽàâvcô_§[\’D)ä NÓ¯ÞáÙ}kXvÞ¼®a`QW<ä×k–Yw3Á$oí§0àã”ásU¼n}j¾qÛ´Ù}$ØÞ«&õ5@ˆ2ÂÝúZ¥×+÷Ó÷l"ÄVh‘^ÜbâR-\ôfÆæy×1©ÁýÀþ5)'0Â_ës¤o¸ú¿0’£ø ™ÚãŸ÷è•ÇtôS ’'ºEù$yuá›ëAä·P©(g®}¥Å½Dã°C’ëǤÐw¢©DêcwŠ. ²Ÿ´[ìÓö ›ªh¼R£/è”LÀƒÂT M´9¾ 6´ËCä£:C}wXyn çØÿâd¦Dë‡μ<>&S×°E"í\Í zlÁã'¡Ôì$¿NGX?5>.ý7Mðùƒ¿°#a)n_'SŒ«Õúw±2ÑŽhú@Q2:Dרo¢cwÐöiô^…áÀXJvÔ<¦¥uW­®¹÷˜ƒ_ðÄg„×]D‹ýÐÉp¿•)żpFÔç>»ýoÏÝ2ÎàP˜îÌßa|Tʲ.ñàÐE_¼£ynðÁ:…½”BvjºD=‹£â±ú%§È† ó=ˆ,crJšìC„úAàßFt}ç[Í­ôf7,)ür“ޱv“êî*³Ú ¡ö&3¸¿ƒµl–Œ9BÚ1•€¸@Àrì¢ÿP!ÓDB<¯/ÈÂ?mH$}s“Z%º4Ы?ìþä‡é ôé˜ÞY^äËl*’\n(Àuõ·ÿÈ^søX¿žiUSHÝÐUh[«i²$SDjÈxížr¾“ÓyŒxA=!Aa„+*BNÖ+¹>½¦©¶É,üÉ½Õ Û9¹YCö˜ä ð+*?tàh4¯VÔ/tdäLÁDz°NJ÷aPž,ìã;›ù6úzðjDðHO9;õ³’¾o~<6\@ýûaŒ“Äþ»!ŠŒÂ¤ @³È+UÑצ@-a|¶4jŠŽT r„}j,ß[]$JÚ<~) ÃRzÀ<à_œ8W&5¾IIéPÇBSÏqzd§ø*†´Ðé ˆqÿÿØEÝŽ‡j™ú!ePCºŸã˜8幪Vk§|ÿglµ‚Έ¡ÞT?-pèfüÏù·Ã´˜!•¦äÖ“×EEç½ò<©Ïø!ˆÕÞ’ŒŠåó¶mª‚®;ŠÕ}‡h%`ˆ$¼üPí\áÆû ú½Rr†É°M_0Èj¾ÇÑ\H|“×ùƒöÒ*zt-™7÷ÌE*KÃ-žp›Y 'YVöê—,‘ÌÉV !Pæÿ2L¹Š‚Ë‹0`}Ϲ2åQ øÉ~ÓT§šªzü]&ˆ‡ÛáÈøÏ6›H¯¼ƒlû¡ó.îJ®é·ü“‡Óê±›â³é% á‘­G †ô@<‰ÂR1øï¸Ùª ƒ÷(¡=ÄÁ|]3Ò|ßça†ÀEkÝȯÉðš¯ÔÔÞ¿Ž>…áš7³¨çvu[¥E—©¾íÒÁ˜Þt¯\V¯ˆ2Q˜®g•¢ÍDÁÇì¿»nºÅ×ù¨°·Ï¬fÅ_’ljSòD+AÊ÷ÏpÌÞñ«¯b„Ÿ2ÙZü"¢NìS㾆GÙ@O¯Iö~JÆÃO\@Á`D‘IcæÓ­õe‡ç„i:™šíÛÄÇXèW+l“%rô‚Åd€ý¼äx#}ÿuN:Dó‰6H­R'º·»IrcqŽ]^(#iç4ì­ˆÒþ=õBt ÷ÇSÙSÂ?.‡`#@uÀÿÈíBc8ââÈ!·bÌm¸~ÊûX`6S(Ù(7ìqòcº–ëïÙQb²Â7˜_$éà”p>Šê EÃUë*ª.uÍÎi†douÑ«’”{¶-)ÙEDѻԜÉ2[#1‚•ÞŽ¤íªÒÀ„ƒúV«´4˜A¢=ºRªÜ`(ñP'FMOV@”9uÇÓHR"œŠÒ3 ”j{¤“Ÿ¬¶àW ‰éña#ñ–ÐâÒ€ŽÀnAî4ñ~]AÂV [íÏßÎäÿ\T,öuM¾`ºýœ&Uµ_ÁÅ-D'êÜt?­[IS_Éšmûù± 1UÕäǰ>äM €Ðè¬gHGæÜ(f‹.²õW'DFX‡‹—f«IšðòV"l¡xåC4'¼³yÕp`¥Ël£E©Ì¿œ« b K~"Âvë¶ài-K±Ïç= L¡#<îªð¹$GÍ“(;õåÛ)ÈϨto‹¢šItÈmyÄ[ Â,Åd÷€ËIÅË®¨óP'»`ðá˺_˜\*3vÒÕæCï…›Ûáëµ4A_²R›Ý)lÍ¢¬º¢ròaoOŽ©„z[Ü û®| ÍGVíq<аF‹&E{t»¡ÀÈ~¶&twûÐJNv\ÁÒ(ƒÆ„›r3ÖÏ—ªÉ1ДSn[~6€ŒŽ#šÿ ‡ ®Ýìr÷$wÙ½g¯“\X¬§€k£t'+øn êrVp 7ðyÂà¥LIžt”láR j”´ëXõ’#pWéeq-S¸kÿê{.¢K½y¹-1‡7!&DVBx±äeé•ÿ;W¯È4oçCÒ…¿ÒãÏT)¼kBVíÇ-"‡ŽÍŒŒ.+ý£T(ã¤úIÇípJÕY „ÿ@­ÊîPß$nºómÈ>Šú,y‡¨µ¨UÚÒ-E¢µÈó¿×$Œ…0!ìw¡“ˆÝ ÃD˜›på*#§z¢ßµ0£íäFÑx "WTÕgÅËÆLÉŒÞ>³Õ$Ä­ e§÷p)ÉRó,ÿ˜Df÷Š&bþÚÒP|«ØØgõ¼IëÕé…ýÓœ ¹%qg±4Ó¡b9 ú[/Í6¤·AÊ3>‚"ŠûßPtæPªu\¸+t-²ˆÍû%°Å½ÁbÊ%©—°––®tu´  Îaöî€GéPÄÒÎ6Øá{ÝÜÔÙÏýôµm°Uu`.®ëLÅP\€p^zÁ‰r'ÕaT5š§wÈ‚ƒ5%ídUjØqêñ‘²A »œ‚ˆ'T¤âÌÏN)PB=$×wEüFÊÔ†Xg”’w0-Fs´¼³½×_~'P† /¶¥Ç—”¦°Ú0œ›ž’éOè °‰ÏÊýqT“˜‰¥š+¿—=¡ãSé‹° õ¼y€hß|„ËVo‰Jc‰/(òJÅcê=åØ‹Ô” ×vö¯‡®ðêb,Äy_£ÙOŽé˜ÅRLbïQtž¦›`JÍÁ[Ô_5Þ]ë¼€ŒðçŸÊÐfɰ kÓ¥ !ò¯z¸®‡Fã÷÷úêñ{:o‘™öÔ"ÕcÌ‚ã/úîtYø&Ax~¦nR7…±vÉŒ[VJ‘ÆóÊsÈ9t÷ëQò¼¿’.¨ÈgpûÎE¥±Ké*&¨éÅÁÿÐá,ǦQ‡|ü!Ñâá4 óÁû¸Ô⬜ºÒ¹ÏÙAÔŠçã$¹‡Ädü8ðqÂÞ¤ïC‹·]Ä~“ ²ì\¯­y‘ªi£:;žÏÈËnæ«åîv©wi¢¸ãqJÖ|p›¢§ÓÞñV>ssÈ[ŸÂOØYg( ÇT·üŽþ´Ïȵ@6zæt|~>è)øÂ—íA‰¼á;Œª˜”E6C¾Df*Ù_²²±o¤žŽFòìÓœHQV( »pÒëäL{^[ÈH*·‘ Íƒa§ôåÿçkVd œ:èBIS×f4W»ÃýdÿÌ_ÅÊŽ'C ZÍž/’‘ ~ú|Y‚ÃXÊ_,H±l¡z1S‚Ñ\ŸšãR˜cmº´æ¨C¢áSŸCñÊ*ÅÁêÓŠX½“ –[ÎruÙTåv9Žd€¹Þ´nÀboùË!kO^|<’ÇiêÁБQG'ü÷fEgè3šº/þeÀ³Ä¦$%<(kSx•.ê€èN}¢ íÖ3]½WO(ñˆER£ûÆÍŒ|€ìg& +BV”XAU„^£Ô¥¥¤ ×]4o0hßÖ ‡zž¨Ì…yÓ÷…*,,{Ïp°øót¥ö3Ž *JÒ÷dëˆùT £(胇äm6ù‡†HPr&n§¨ ² ém:Öôå}ÇO¤œµã»-m[Ð)˜—LTþŸ{‘¡æE±Ú¢¡—¾€yÀ;:Q„ÒdCyãH:ú쌨Ù#iP-1ev|*9·Ë± Cï[ÇÔNt ò•‘BÑ ÓÂ:ðš$ éw¼¸[´Osý’ÖŒ™7™#Áê²Usáw¹º\44kÝ ·zô¨?Iû9bpŠXüXæLT±/óò`*)ôðÈ‚ÇáñKH±ùýÎåEå½Q|…Ü»òë˜S÷q³Î桽æ }Ñ…8q©:ú«'~1\²L ïŠ{½qí!ª*Þ<þŸMœg +ä–1Ü­®úX¨êÜcŸ€™©IÅÖ6eÞ#QöV?S#uVe"øm•r°Sº´;kjK¤Kç?l`¬óKƒYM•rj/…œ‰ìEÍ¥nר…B_k³O¸ž®j~Âpå.vÂ!x«¨{¶ScÍhL»†è1XWèÊÂ’Hw'¨"+!¿Ÿ¡È I»F#œ÷0“áæè¡yðùb5'Ò͇M룮™ïgOˆÞ§˜TÔÅC–íÜǹÒâtnèì4ì{R»-í'=ŸhÈ&£ ‹õ¾aM‰X&·†Ø:÷ÄóCüÚ^*½³ô{e÷û³òßW"ùs(I9EÇ%¼+ŽPû/5î×—³VÇ=› g½„ k岊dWYÊ\]µÖ>¢¸¬±WT€µü¼}Sû [@Áƒõñ ,Æ4¦Ÿ½íÂ4ç{¾&·ÑOðšæF˜äKŸì ŸO€ ˆîJ[HÔÚ ÍY4çýlÖºκnµÏ£¬fú_”µ¨í´;~…ãv¼ÚÈ:DyüÒJú"t[ÙP¾üÊØsRyÒbŽír…¼Ðv]¿„ˆ­ÑÆžQÎG¦ræÿ£m2ð’¶•€wï´–Ê)W;D‹`n+k„.€ðÿ@0_CEê£ö¢Ǽx­3‹FõÎql¡¥ƒQÍO^¸¾+Ò8]ðùç @ý¹Á}¨˜éÍï'—ß|â“q5t=Æøâ®Þý˜fPËDEegOó12A%S ªË^ªKaàÂt°,ÛiÀ±0ûž}Rózî,…Œ?lBR€®e§*IkT7­×Ë‚òÀká®:a–Ò–²F*ìùlöïg!Ýf….ÍÓÕq"èô‰GÿË[¨ïÛ-­{èZÓº×cvÃ{Ìéò1òXûHlvA¤ÝºˆÈþ¡Æþ=ÔQÀ­Øªë< ^-ùåþƒ –WXú´Ö¾‹ÈØJ·nþ½Î&E¦;fÉ\<¸%Vy¦¤ÀUjš+¿Êþ×B“à&:ÁdêÉ0Qð_×åd¢}Öv•Œ¨«‹íâÜ×Õ]©6§©$pduÃ,V}Qjf+û”¼I D À >’f×D/ ÈŸd©Å¸— cÇH„ÕÙžMçR˜¡0N:ÐhÈÀoÐÈ¥2ï˜Û½5Dÿ$_½äšÔ=ïO1ž¡|}¬¢†v•€ñIk³¤àG—êTS‘‹³8cyÞb6ù蔥aë)ëý£,Ï2ŽŒX.guDm}À‡hÿ:wU”ê»2!ùˆoâ ?xx“à‰¼æí¦õÂâðšï{EýSyÉÒƒÏô2:7XðªÍï#i,. „’X[í+ñ^ð:W3Û?fhSD«ì^Xhžs£øôg3éƒÏL᳊Ä$`N#1ßgæQs…¤0ê2é$.øˆyJ°`` ý2ÊlÔ÷TÔ– ¬òYE!^‚êÆ±QHÚ2¾x †28AÃkù QQî06õr±¦ÿY)Óü@ýó-ýJ~®<\a÷ix6ÁûqÀ ‘©œ¹[<´ZŽ/ Í@Ç|}YX8Mßžzw±¹É‰Uls½|r»øâDMwR ÇzC0 ¶©ŽHC)»¨Ù…²ß ÝúýFrœú¦e…á¨~m›©êP…Éqм<ˆ;F‘=j¬øÉÍí‘è¬IqPWWu™ÄZ賟î7„ÇEá {ÁÅ_߀·Ë³¯b%s[T!l¡.EË¥©DNî΄g俉;¨x5p¼¦’.., œ  ê‡ÈdSSQºa}HÿA³ªìÓþøìPÉ!÷xÁ~ö¦‰^>Ô1ÑÁ½@Ûš7è'él)q‘‡gÞƒçœcx4Tpù¦¾õ1J ¾$mY Šà<¢„‹$ì‡7ƒ˜Ú:œ=›—å]÷Ü@ƒ×“aoìZÛsÎ:sh%6â[§Fçq w|Xf;P&/ºcoι4dÁû”Ä–zæÑQ(/Hƒ ¬ ȹ†±g{\!œ9¥ÑÝÿ<¨GMmI*N5eöJý^ºÅuJ‘ô¶Û¤šöqþc±1DÆ’ºj%$>+¢þ$¿kxÜA|•.´6¿"©]ƒ½¹ÿn_`JüéjÏ|Õª©Ä|}¿ÏPõì‹BÆ:|Œ§4®*å¡Y(:c,ãW”óœâÆh™Ì¬Ë± Ï„ÕK﹕ÈIý:«sBKÝÌ3ÈÓ“£ß®4½g'BåÊ÷B•ëÒ†)ƒ¯bÆr³ÌcÓJÌP Ã/M í^#Ònñ@nOÿ$(OÐz «KQx1`O¼ª$àß0Ôò?ÂÓÕ&Rµ¾®?\t\‚m²ƒÑ,ÅwlÛeØšá¥ôš'Ž0Þû†Õל]N)O­Þ§~9Ç%“M Ò­x E;ÐÅgC0m—Ÿ@««9²K÷~¶üÄîíß í<¡“6n-ó÷ÿ9¶ï.œÊqЙMP?Ù ‰ÕDÉð¿:„‚Ô'Îò7”<³h Ïê+„‚Q‹|ÛIp¥• U©¡Ç lxI1Äãƒ"I Èmzî+£7òFvD/m#¢mGÚc5D:î„^Åÿú¾Uñ(\–Ú•3 àúZ‡ý„TÏa·³ã‚ñ™™™ð'è{(0ÞÛϪáð Ö¹1W+j¡™Í“]˜w*æ¾OY›«ù%ǦÛa.þom%Öæ<•ýq/9e)÷RFEˆÂ],iª¨­Ud.·µ6H=Qü°So«ï©ûg/èܹT‰`˜M£iƒ4m˜t³˜Ü(rP8Ì2E} ´ÉG·cAòÉŸÒ¨û·:aÆÉÝ”ÚQ³±‰/Oá‘(^uSj›pÛì°¥¢âøhS¨ù¬¤Ê®ýËöøÍçš"›§´f^ «æ±S!c:›6 YúüM›"û igh5á3"¡ómI8uí n˜Æk[Ñ/Ì­ë\x1ÄBB´,f•¹Dröoäx ­èž¨_°u%¾Œä»”mÌ»³H‘ÞýD+t…PÈì;e£I—gïm·Ã›$ôèÁÔûÆ5»ô±8™én¦Ã+5CxÐÕ9Ò¿9D=6%ø[9UÕ'ÃYË=µw ã«—‚MËÒŽ¶-\‚ïÉ›ÎGŠÚgç¤{7·Öù~è ±ÜÔ¥˜¬q‡¿ô°=á²:lRg¼9Z<£q ±!˜`c¯!1óJ› ¢'2<> Ë=²ŸôSè^™<‹S‘,¬{Ῠ£úFjU߆”–‰Yׄä¢r¶.dùFxGVíâÙ-‰”‡ÃxÏÜy§zˆŒ_ä1IWo·¢Õé ÑÆžPÌfr¥A{îVdö1híiÜÔ;b…,¼¢¼d ¿U$‹ÇÞž_{$ûëi¢QKú sîÝ '%¬Ñyã«æ¡Z±úÊýtÉÞÔãÀ@9åçyý%ÀW…E× ú¦^#¨¯ñŽ«~H ÀŽ0½H–ÁøP7ÿOÍ»°¾có˜Ë¬ ù+Ø:o6ßür­ðÆÎ’jiºwx`¢¤õ'ÃÃX,âý…ÄNê#\èïÓeYAk4‡JÉ+w 3;êm(PÁ£óÀÞÞ £ÿØ à\Q± É0“>©Ú„þ×Küô¢"°eêÇæ}ó\Årûƒd*·^PLšk6W„•ºZ¦¨<ùö"þʇÒä|p1s5§Èú5¿–uÿÌWi¨’š¢HM+P¥Þëlj·€mp²%ãňh+öÿ÷Ô«漡ò{'xLDE”Ï×žÞæQè§CM€<1‹©n:Çuí“á±1²J.C›\éNŸùÑâup‡ÞÕÍid¹ceI\àdŒ±[+»z¨æˆ,öŒ±*7ÔhI¹kCÈCž­ì›«Æê_k$r¦"¯|ÛpHÚ”øDãµÜyÐ÷iñ© ^|Ûµ©ØekÚÄ8"ó¸[‘e×ÞH!I\"Ù–¸BH´4v^0ý?²»z¿.EÜÍõI«™žeS9‘7ùX¢D1˜ya •J\(<'ñÊy¼·€ ñ°)åK½ºß¢«]àØ0ïp¡+ͪݶ…†_,È5¬çQ¤Î ó,ᯠÐÔÁºÜ;ÏÔ¦8\ŒÂç¦çyŽÝ{Šíñn¡Ù0…IùË÷†eüŸo÷ÞYÄ9ç6‡ü2•ácn-ÊpHÄÈ^ÚG=aö Ù Â{´ã1e!VÿàIȮ謈Œ¾É`…‡6Ôˆ‚æ5âB§j©y[!šüÕÙ%M<—AöF‚å0À¡L‚á+ú_À Öh‘ÃM_ú=©Å‡ök?+=õüŽþZÊžÒ!…!ÙÌh×£ÛÚ:˜_0?ñwtI×fº™¹uÎeܹͲc;å5),‡+ÆÄ‡’ÍþÍ0IÓϨÌ]n&ÂÒVãïæ^ÖSqãJ‚pºÀÉ¢‘åÕ›¢‹³ Üü£[/¶ãž[mfIÍMë4ùfsÎwĵàP‚ÙV œ/F‘KKî‹/åWƒ…Á ôncãêEòjš?¢×× ËxºCî£óK6âl%êP@O_úÔ{È }išDQ|ÝŠÎ6€à>œºG«ç™<¿%BTýïÌ”¡ÛGq0ùÝeCš!¥äeÿ;ºˆJ%·¡R0ƃCûJªuÍ¿ªÉu+ɪ·jü{O€b’Vd±í ÈILuN}­–á;vE¢.8òÒÅâl«Ú\!65ž: ©$ÒûyìéD$ÔÞzZ’لד¤Â ÉÁñ½©ý3D¡o7Î}ÕÂ’/Á}u n»*X¡U³Î¬þ%pKòñ°ù¼Oá!}þ#{íÅ%š¶AâÛ² Í)¯ƒõ¡IìâN)yX£å:ˆFJ’fè%Ñ×Ђ„’ÐÍ¿yýϽ© êpbep˜Ø@I/JÞ†%q@µ¶x'€掮«Ú£ÖÈ#qè·¸2`¤´šfí#4é î]·þk³KÚVÎÅcZŸ¤ ¤Ù¨nå¤>Ê@F k³ÑºÿÿÁ´¥g ýÄíÖí—.$ž­¸‘«9¿b,(\0Í<[]ýtxâ7¾Ñ«ÎÂ)N¦°êµØÀ5 Ò…]ú+—·ë”˜¤ ¿ß:..⢦œ^¶b!–»ÎÃþr˜–‘µñÀÞE¥€ä¶ŒÇ)ÈÕ¿©I5Ýg°j¹¯Ø»œ0#'ýß]*U ì_FRt™eC¾¤¤0±ŽÅÓ¸T â0>@a²kgå';弚—>R?¯”h¨2ÕB ðŽÏN=?uKĖ€QØžQ¢èâ7ÖÂÚY½ÜÇú°)pYZ s3òÉ´™tT;â¿k^bÞÇ·ŸM…Ž¢ú=æÓêq´^É à?Zåek LK×c‰r5RÙý²´SÔžqin£Ó"€ud?(ú ïq¦9t< h?#&ÃÇ„ O]dXA°Ã`L9C¶Ü$›axàÆù#û¾D>Ó!æ•™G‘}}…yE ¨9¹†{Q–©Zç›ÄÈmf®¨Mr~'©5Z YœçVT‚3¬6ãÌÝ(9l tﯘ4ÆLÔ[Qðøã¯É‘ñÑ7ëµo ˜&Vtô‹„ù{§2ÿtŽÙeJv( uKæ“èi˽Œéf™X/ K¨fWûí±˜¥s’“=K :igã’Û¸úb÷˜Ý§¨ƒ°T¥°«Ý­<Öþka%GQÒó„ù 別… Ð=º)pHd®ÒÑ9Ÿ›µk„‰ ¦œ—oTï×®U{ð×Ò+¼/C“Áïò7¨a‰ÌÞ¸”õ’ ÙÑIþ4Š|d>´Lêe4ßUéQæ`Ñ ŸÚ´‡»Ý—ºöó‚>3øjJëjášf-d#¼$¿)Ô®9ðŒpv¼â ­k?ö²S9ëq9õ͆nï´¢‰ œx|Ø.K¿2‰ Ò åÎJE*¶þW·\­0 ¸nˆW¸./ñ/oðèÊ «¢ƒe«RáϺö·ªo«+´Ç “à¸i£z66?â*5 ¥øø $óà¶•p~èSÀã­kFö?eÇȨX^£•Y9Ò´„ÐÒcÙ4Ã8D™üâ'}>~<»š–AIü8|•÷Ç,^ÈŸ„88`,Ý(ýwyä¤+c¹jd|X,S“ÑfK²Óhÿzô {HÙ?_Ö,›–¿á.nÝ Î…«–LFç…½ o]„¥œQ=ø ÖOPKgÂO'Æ«.+IÕrßR½g©`gѸٟyb¨ì¼ÿ/Á5JƒùM˜Lp¼I§ÕÇM#rëv,¯5Ým 0Ž.süã¸cÑ#ìÞ¢ã×Èšû‹0.»KK†Q6âŽÅ '½Ñë!Zµ†5ø™¡i™ží¥I¦ñÈì¦Í &êô(˜®Ú¿k¦ÙB®‘%‡l\®øë·^dÔÄ I ч8[¿-ŽO•sQðýžv¦ûfDh‚‡VœQSÎÀ ¡HÜÌ‘-õ…GŒS9Ø{rµÆ”/´ª ®zM™Hä=­å.°W® úÆXñ¨–)ÚƒÌùǶóR§qã>u¢½.sðå©õûo®@Íù ííÍJ ª:óŽ;/Ê 4R9d7QÏùS`ézÊ/½;>3±üßž0Œœüx¢¿pËP{^¯£[5=çlä-ÌГDITs¶m¢!Å;D.ÞJ9¤AðýògÕ-K피ÀWëœ$kÙûU®5É!º3Uhíä&}Átv¤³°ùéúÿ'‰æhºV°1Î Ö>ßs(çZÀÖâ¯Kè#ù àX¥PÌžÐÈä~VákgêewbfPé\瓬FM¾9ÉÍÆŒ’³S×¼ÆÇ±N4${Šu@GÊ j ¯ožÔ@± v<]ƒ {{(y:ôûË3ÿŽ”aŠíy¡¾t߉ÍIù@É ÍëWçJ:y`½?}kźBBÜ;Ƭšl:D„„¹sþ^É «¥:]®ÞO‰ÝØQÌÝWÜ$Ï©ÕT’ט0¹R×к‡ÎLË×z“µ"Qчþ$ ëW’À×+¨¹ê¦_5Qóžg®æ™]™ÌA%*›íÕ*•ÏDB]¶¸\ GÓm ³lý¯`SÙ‡<Ùyã–ÎæB°ÐÇ5!y¬à%)õ\`, ,·ˆ<Ó Q§fK øEˆ”·ß¶ê(ãx,ÙTm¯;Ô¯ Â82¿¤©Æé‰¿00ôj8ªØ{û†DìQ&‹ÞŒ#FLŠktXàºZ©›šÝ™¨êÔг8[ÿåÅ ù”r Vµ7g…C,©¥({?QOGàò7Eð8%‡ÑA¦o96¨v^% ‹Ûù¡[0OéL6‹D'öÂÇäº?¥ïPIà?ÅXE·æ HJ— 9±Œ ŸhXÆž"%åü¦¥Ë"¯.ŸÓÍma&Ù•#¾?–MŒ€ÒÑvxkÖ]o û@S5©ê¼^š(¸xªª®¯câÔëß<ˆÆŸúp:àœw‰¨y¾l/èQUçäK<‘S›E´$tÁŽ1ògWFí ÚlMÛíkKbáì>ã[©¼õ_ÿRWfr‹Ð2é:}cÓÕ:4ej§ PR'éñpÕí葸^íÊ»&s Û^ôÑÖ Ùgê¶ê¦6Ÿì€½‰64€.‰øé˜…4ØRÿ&m½­œdÀÀšyrÿ§Rûÿ+fú¼Þª*üðL¼k Ö®”µ?zó½ÃšÁؾŽì3û®³Ê3{æ×`7þŒ¾«ß¿Š«l×ßqÔº5¶¹¿?yz¦©¯† 6]PêŲÎóßõ”«£îàÉ&Ô••¬WºfrÞÎSÔ¥>L±gî„D+Æà#·/ÂH´í»L9ű¡)?ôÅH¼{ÒÍî!oˆ-ƒ"D2aq—ÿ,!ó¸"·ËèΟðX„@r˜\Ãô£Y»4A„2ßM08ä} 7Q˜k÷ÒÅpsêKŠ4ÅKß[É‚U/’F06Wpªj5.%(qýÝÍõg!ˆZ£ëFć³ÊYĹ„öSU@ ÃßìnOœFj°¦ÜØ‘ Qa@ú`^}ïT‰„ÖuÛ•y3’å¤NŒÐ#÷Ÿ÷ç%f;}iÿtóÌGqun¥’LŸ–íØ·áVö°>U‡½\wª[ƒ,•xU>´¹HC(gö šIT.9i[lï^ûïî’ \RœYi<ì%.8ÚM¢7ÕÓD÷Ê÷V§è’@"4znµ·›AA¤xGt`»?+‘¨‹Ïçî3GƒcJ»£±DV9åÛQ"d•a³Øpç×ÊrOd”£\gßÇöWÿ‚Œ\¬ö¬JÏ^ìØ†ÿ%B6c“)3~+9‰Á©fRj~ï\«ÔÔ”¡°ÑZtñP¾Øµv²ž+?ÄúQê¬þ:”¬]¯"4RçÏ-Dha(Þ´0¼},«øWޤò›8yõ£ª  XÏ(™ì’!fÅfo)Ãlè]Ï$î‘0ŒhU]d¯#3ød;¹n ;²'¼ÒÚæÞuo“jCÞtsÑ P{C#é¥'s©ó2³ïø=hÄ_)oÕÊžÐ`:ϤÅòfŒ¾æI½ YqI8??IeÂùˆWeûû7äÍðŽ[e›QÏÒ¹â¾ámÏa™R‰x ß3) „¾´³KOF9m[“î²Z¹©¢XÐø Ÿà¦l¶Í ˜ä;£w»_@ÆÊú ¬û×=~íñëúФ¾wºòKôѸ.òÓÕ¶‚ÅÝjdz7:ôúßéÀ|""ÂúÓ[!™#NãòD´dFé.À;âHG­¿E÷ðp¯°läìçÏXñŸe™ðçb×!³¦ÿW£Ë8¶ƒ þÄIÀ÷CÞz0íøj…Ãi¨gÒ ud ªÉõ†À¬S÷åü''ÒÜv²7 >W•¹*žîvˆ-²ZKÈ4;„uZðÇ|‘P–áëY«ôsW6T›PöÓÉí Þ®„ £ƒ~ÏaS>jé)Ï)”ISöÜfsJM¤Í×;˜”X¿Ø¯Þ§¥Q¼ÙÑXÕå&íMÊJÓ’¢çuòVK”Úñz—¿Š½·~ší¡_ûF$z^Ú¹væMbu âëk ƒ²‘ãXˆ‡sR/1â:˜¶‡I§oneÿŠ]Lfñ¬4b->¿ V’„Ì@̶’–b¤çšÜ6Âgèü ¢fÎÙHI¸ü4š&³Dq« P¹_X>l&êA·ž‘½Søf‹QG±Þ6 éÊÿX¡BæZlVún¦Š¡”SzÔKcÜFÿ÷¯p]E’™$­Î¦‡²è0Ð&<ä‘™V˜þv¢ —¼(ZǦQ 'QRx˜Óæ”cøçO©‚o1€3,ÜÆ ÂÄ´†N ZóÇ |ÞWP·7 á©Qõ¶qÕª8ËжŽå(==6òð" )´B×”,øm®”KÓ““󊮯¶=Þ$a¡"°š3ôð_ø›Þ@Yo¸<¨Š‘LP‘¼Í¨€Äš$jÐ7N8plëmZêva#áaBæ.ŒþV~¡ŠÀRPÝJ¿× ÃÕÒéñÿ¶ñ4ßІhuZp­~ž}½`©ãyý°óÈý.(µñ=0V?ñäòOqm£QŠFj\÷1A9g.|n‡Ê`õÔëù jÀPºÁ“ù·¶./®Tò9É)ÀNºƒò§xÀé*ÔgIö± ’8¼4Í©’› Ï ]`ÿÀ…ƒîøÒÓ£¦ÀÒ2d=A®«8ÄÔNQ¿Þ†ß žº1 ºèƒÄC‰Â85h§¢&ÆÐõ“Ó™ïÀìÕN+£ËèÓ]W­´,øЉÐN» ZcLʵsÎdæE/axlذœN£4•Ù|\Ý£¸ÍYh¼Öþ¨½$2%~Ñ533Üø9|XÚ2G]ʉÏÁ"„hã_ˆn g¿`ßÕ{i¥x8€¼=&L°}èw‡5ûwÇX×Xó 1ÎOjZ"y›6.xJ'àÃs©à¸Ç÷ç‚ifõl`ù]GÇ€‚áN-y!èȘÛ%ŠŠ¸½Çȸ¨[þ¡6”ˆÜŽÚ1´ïÿôËÉŸ'ëð@}gò%_M¥C4”Ê7þ¦UE±å—æÇ‘§éêQ¸´‚È—ëøE¹€÷Q»YîN Qùu)ºO: YyÒŸ6,(\¾%‡¯T ,žuÚˆB2¬Â§2“ºZ&^¯9. ÄlX!ÚÃE噸ÛqÕ¾öò!È 5iß wIÔ0Œ\ ²-.Ü9ÝŽš¾ê­ºÊl$ñ=­ÁMσ6DÓ7}<´häù”†6LG×Q•ˆôP-MOPVæø#QPe·‘òͰ0!ÉïŒm`R…ÅÿwÇ<ꘓ¹B\ÕÁD+qŸ‘ï3ð†9ZŸi•¸õŠä$ í`óH!˜ÔÏ´/qÖ öÍö1±r¼ù8ó ·ë U0$Íû3ÊÜt “xà>&¨d´†è”Ú ži "dÒyš4íF•Ô»Tþ=›ô“;"ÁîÐû¶ú}/äÚ©2ƒh™ÏçE¢mÁ#ðó +‘‚S0Å!yð ´÷ØÞ{^(rKY’ QjâÞ–Ö˜ø Ñ7·G ªž¯©aSñ»Ï݆9}ýæ5í|îÐ'ºKt®ô×eÓ Èšp°Çf=6Ï•Žìq“·Nïóý>:Ü$¦º†‚䉈ÝÕwÎ-¸„T.v%Æ?¾'òW]¬Ûÿ …ŽÃrr(ú”¹Ïïñ7VpÇ»mÖÀL½£ñ´l“û{Œ{Áé‹2³Œ_{ÈjhÐêsÉM±üz¢ÃG¼JWÈÆëKé\&ü9N²þ£9¼”ºcWñ;X&Ÿ×=egB KÂ3Ù‹¦A 7ï–WRʉRáá[Š•Mï‹ãÀòëÌq½ŸD;ZY‘_¬Ý¦¿ÃõÙ{™Þ­Hû1=—†”É›âÃxÕàªWæ l®aªl™fâß\Cô´¬Û-ä! n ¶Ac\Qw»ÐJB"Ìõ‚írÓqó‹(êom1¾ÛÓñ3_ÕX!^ö ¬m3öZ§~A“RÙ`»¹þ–­7ø"þ!\X×Vfíq8%ÙÁ*!uã.# ï;ÿ¿*@ë.?‚¶·¼+¾Þìvð+P"Irå¼»ÌÀIÌÖ4×êÝ7Â×`˜ñ5ZØ?V™Kš‡Ÿú85˜U\08”z]ÎYîÌ¿Ä^³mÒóY¤•;Ÿ4›Â0–1‰t-€É#ålýªež‡ò¼GöІ,¼švGGg/Ù,›:•¶âH€Ér¼8¾¼ÚWÔ GEd“ÅnõûsÝÑ „p;E:ŒŒWD5HSL¶ÃZóV”%ÓƒÑN £y¨º«üwšäòA2a õÁ}%ü>U?5júb£:¨Êà_/é6g0÷fAŠ®")Ñøç?‚· ±ø %çc(¡Çs:YbÜ4öY ä²cî¹0pèqÇ,û- †ï¹»¢K1Û>ß(¤ƒl»¬‡2¬ÿL( ±õ@ÝF²Ã—÷+÷}A!)%0d¾¦i¦˨٠!,ÌI€U@õ¿X…È-øÀô®Ö™ªhjÈÆÿ•Y㈾’“Jކt:òàÃÆz»U„kI`€I{åo²´§‹…Q’»°îLj:*!$Øjë^+¹šdüb»_ÏSˆü+™“›'·· -Ç€Sû¬"¼ïõìûî¼LôZ÷¶ÝÅøîúJÐŒUlÀH|¬¶.½©Grì‚'m³\¡­vA'ƒ Î/›DÞû˜î·[æ_ C½³»…^ñËÝhƒ…’­áU¨€BkŸàj`‡ÓŸË…5ÅÔTãGú‚ó5»‚ ÕÔá-†%®ÄY‰gp£øŠóÇÌcìÌäQ.º ¥Ø§ã.«&ûÔ ÇÛÜ3yéG¸fù­ñhË€.Üõ  ›Ϻœºh f1)œ³!Si“½$4gÜJ‚ XÈ%¹ÆáüƒböÀÔ`]®± …¯ñDº<-©¼\~«›OÞ§L¿ìµËr ŸrýðºQò¯lby±?µñ<ñÝõCœ¾W-fÙ3*rjŒï€æ’½·kÌ]áPw ò5ˆœ–§6ìðbùghP—V4?ˆA+Gï–UÄjV.âÈ€ý )…²å<²4t^Ù­¸ö»ºÔ ÀI]Vþè › îé'Õ^ô@¸{:fÖoQ¡ìv°þ1ô†ia£XMŒ²rü>äŠöásÔŸV[[ò_Ä‘4Š~™Ó´ÐÍþ²ÝØ.•ªa¶4½­žÒÏ»ÑÃÒß&WË}eÏoÙqîx=¢}Œj ¾úAhPe)´Øà,Äh—ûýÈÁövw\úÎÖèÚû¥­jlЬ!ÛÚm3öª«…ùq ²)©q2ïæ ´».àÒFB Þ&'v*–ÇçWe¾xÌ»)©³Éì‘­[u¯?ê{Øg«=…4$õÕ¶¿Cºh!-%Ú¯e‘r\@^í.˜üµ&Ðbäß™‹Ë؃„ ùlYÞ ¯øh} NõgÿP+놯ãÙ>" &^ö@×gUTwcø²)ºaÑ! Öoñ‰ y^bÌÔi_ÔÿI¦aÁ9Ú«L´–‚‘(*ü÷”!ÆšÈ6Tc]1¸MÑ',Œc¤éFÌ’ ®fsîÍ Q‡`@Eë¯"IÑK;l5Zz Óñ¿¥³;#«àÙ|²qY­g’vMoâN4f¬Ü)„³…\1f÷æ}š„A,îèÌ›O]~ºÂÌß²9Iô|ÇÍ^óG—~'yQ}MlkZl Kþ>ŸôùÄŽÿHøå!©þTÐSû' fëg{o%¦0Hî2×?*~ÆÛ¶Ü…W…æwé=$[ÏZŒ¸Ã#{O“t¸7L6Ù[ä ”¨ˆßmWSˆúç¿°º§’>QÖè@Ò_àU‚bj÷4¢2ãKD`Z”‚þª”Ц²p*5 ¾®ÏÏuðxÝp5ÚÃë”nzRi)õ3á¦ì2’ï‰Î®fSÚÌÉY‹MZñ›1×áÉpS—ŽiÙ°ÍD6¦©‚5¨$7Õ‘^Ô4ž‡2ZÖH¡à˜b! W]® ŒƒE uqIŒqÆ)ÅQfž“åŠÑv÷Ÿ¨Ÿžå»ò!},)ž¯»ä5CnL,üLQesÖ-mËùS] <}´IvqJsYˆƒk‘øÃo@ç%‹€ÿír:aȾÏÅqÿa“çwÄ|Veôˆ4 ´®O7¯t£J9½Ð3[e^¹ùZƒ¥%zûx‘T6ï2ŠÛ(ð…P¹€ÊCæ08#Ú¸ª‡þ¶&s[ͪq5ÇŸ;Êj¹=–ùð´e´‹ÐÍ–Bêà ©9ƒÔƒ_êp(ÃVm ã×Y× õSå.‚Ü;xph5÷4çwIksÆýØ$sÁQkª ½­ý‹´ád/­FõJ.È)x†UØ–Æ›ò¬ì‚ïÝç½ÖhûßïïM˜‡(E¬;yÕ"œ¤bP‡ºËµ™å=Ï6dQòïþ²¿ ³ ¤ÃfNBŠ7ó©IaýS‹‹Î¨’'ùHu‚´W§ß8œ½J+FŸælNƒ0à]ZvFCír¾©N ´tZÑÞ{Þ™ e™D{’|àr#œµûþ÷Ÿ}k€x/^gZ.o\(´_$%‡CZ·U¿‘Í’möå>XXžÎ²ªßðænäaÏ–¾åµ%‰ÐþETÂÁEÀÞ¸Þ™«ŠF/Š¢ÉÎ,Í2¡ö2Þ€…òC=yÑ6—cšæ\Ìγ“_‘úx Uò¤÷‚­ÔóAþ¸\ˆµ2\Á'¢6…,Ðy$ ÓJ$5(®~5=ÄÝ)/²æYt] Á¼‹ P©ÎBÉcï¶%6]÷—Pþ±Ñ¬ßx¢MÑN¥úZXJ‚€MžVÚÄ„pŠÈâ¨Rðb´½ä] -‰4Õšž3îDß$ÀQîöÔ³JPÜ&AÄû³“MBÛ×Ç¿ß/3Ò ¶†dô`ÓïU]!·ÓrsFÉèJÌe{‹j§Â”fþ%[“Txz ™fUÔT§8¢éMªÁvx4k’Cø<Ãø|—@$žÂQƄ֤¼?64Xº.â‚,0 Ÿ‚|%†¤MB–{ø‰Qgä;šÀ¬ïhýw‚6X0?+g‹ª»‰k$DÉrŸÍ J&¨j2ŽÀyõÞÙœCôðdÔ¬VÙQÈÉ%ß{ð\æV"ê2ßaô!Ækx–›2¬[·ëm*Ã-Û†·ÁYòNÈño ·Í}ú0v] ‚ å'ü²*b²M TÐôÖà‹hK]øÞ ¼Ä<ûà¿,|á0ÜËÍ&¼XÐ~Q˜ŠäbYóႊ]ôÈz-Wý\ÖÕ¡j2ÃSºÚIîe03†$~û½WÙuìûçþW¢ÿß™HrŒžP£@¶«ª­|ZýÑ3ôo<®ÄW#|}‚¸f}ý:>ƒhð¥_$­¸6bÂó³ðN{+ò¹nBBUÂ,W…‹Ì¿ü¸]–¹]Ž”£o3 â€éÅMHâK USý9¶S39÷f\f…ubj® èï*\lòå›IL¸ç"güLë•L£"f\SáŸüØ61]jJ÷"8N1Ê¢¡„ø­ôvòŽS58nx>¹0ª$©^œÁñ%îBA$æU‹PÒ 2²€M^”;º ÍûêKÐ}eÈ´¹h8ÜEþ’ड़‡§À½´Ÿ¾Øo­å'æ{4ìy»Œ…å(NJ ‡*ò+·™¼OÏÁh10%q¡!a=G—@䘆èÒì~{?Pæ©ozy 4O XQ{òJÓuTiP2cr,ˆä$NVóR»Úf|A"£C¸<‹«¯¸Õƒüc0÷«ï˜Ço]XYèUgÙ‡5t+ÄñQ‰,ÒôÖÚL•¯€þ¯ËÓT'÷5¢W)ñCÚÐ&ú×Þ#¤âìÞÃdCÀ¥ÇÒ^ŒPm$~’ÚË)CXéË£PYï€ÄÔdW-ä¥>VQï~X¸ÿÙgOfw)+þåéxw2»FNW»?ŠI!ÜûÓÝt”ôǽÔLËÝÙ¢¤¤ÊEUºŸt…®h¼ŒMŠyé;ç!îñN¬¶fq‘(èä§ÁEêJLuPŽnÄÓ$¶„Ñâ*#¾—‘E¹©%²P0Öõ·K7ˆôŸ"’uAPûu0›Xúaq=ˆuR;bD˜;ÌŸ7¼F•ëÍ€ÍòÃûkÔâ…;æ„+º2SÓê¥EÍ#îITü“Ñswð_Øø¸W¨ÁÎÔHd1O¨ƒeHÃe¨Ï öeájÝ•„2§D„õñòòWÍp/†éÒ&0¦ˆ­å°iF“;¸0C¨01-">bí…¦ÿ¨¿ áScM—}%a¨è ‡Œ}REx¯WXŒEݧFWÛ0QNU.àù¼DÉ nÂ*)(ZÒ Ð=Ù  ªLS°1¸ OªE$ç¿Z=Ô„«Þd«™½Içˆ#ŒDIF³åc`'¸˜—ÄiP¢ûžH¦Gkº»žS§LC¨lQÍšcsù2a$Gâ¾_±\+1†ëå”…»zÁÀ”¤“OÕå…·FI>kq»Ü–ù–ÿ€Ýà‡™;gÞ€[mMx?"^ ÕŽc L£€¿zfq˜úò¾† 2º)6IçVÂ!ï,`窖”À5²•8=„ãüYœä64ÈÂ×)¥¶e»‡ãžci G ãP<`Râ¯LÁ|ãÀ¼*ÊZéÜ?Pžp“¦ï‹P\ÚŸï\ÈW™ÝÞa/Ùœª,öŸ©&±¥F$€ ·ÛÅUZu ó V^3GµÕg“R<êjÀ ÚlÑ¡ 5ì¤ðv/mÊР2ùüÝA¯+ à’·[X<Ç ¾@šÈ¸ñ­¡Œ[E\WuÊ,f©æw'¸²PYªìˆÒóØ} ]tzM/‹B9ŸÏ/‡:(õrÔ|ïRƒ~&ŒÇ’8²'¦–üç@®¨ÀÌ1Ä fž¥°±˜Ób³0Ò•Ic•Í4áIïÖ8Ö’¾k¶ªÕýÔÎÅÁ¹_yÇÚò%Qß5EdÄ[P‰Jè©@MÃX·ºz\)j¶¶£1b¾2“ãò,m‡Z@fxë/AtÅýæ±?‡_ªÓGH{ªø…:%•²® B‰k×_&” +Ÿé©Žv ÓG©Zøž2ð0 e$_$ãö­U¸µ'P½9—wp¡¿»ù\ÕÀJóo#bŽm>LñcžCMº! ¹ü0^׿ï¯ù¢†«2¡¹¶´2¼/­²ŒâZ5 ‹õýµÎ1l¹Ê‚bqàˆÎCq@6Å–A Ë©ó›^ñVAòz áÀÚwˈ‰Ï±á7N­ÓÏp}ÎOÍC¨U‰ú !ÏGfKë‡3æJݯHéXv9¢ÿ·ë€|§OPÑ4ùè˜þ^®|qƪá?0ý=Z:Á”1(üZY€ËTu¤% ½7-¾S‹6:XZçâ{PËà?œ\¨‚†´„·™j™0³Ï•+룟 kÜÚ1 Œå+ßoÝ™¬àÇãt©2ŽœñøÞR‘&²Òkq¥9½^T} R‡Â§À’”ª1Þg¥ ëåúÖäú‹£ ìW(rgS;*¾èKÖÚhzk%D׎>ÝhI0Õµ¯_M’‘ε#w©ñÏPÛÍHzšû!@|˃wê\ýJM+êï‚—z0>¾® p£AiàX*´5Š./¸¶W{Ÿ’ ümù§Óº"”­ i6ç^„ç}@ð‰â(6%‹ýmÓÖû$€~}?‘qǦHvçËXöÓ:PœDˆÎ,ǹ䪋àÑ,WS9¶ì^$u­£Ž&Žû˜!6²õ©É9}m¾aºÎJ. &cÙZWvWŠNH³¨ï.ï5xpáå i°ç€z¹ù6 ×9˜Q»dÍÝO`n„»ô=¦·×tì³G-Z{º¬|´ÛïÈ+I¸'ÃÁrQûFñ«^€AC”Á,xʧĉ>Oìt¯®YÊ$6ÒôyÄø3ˆŒÈs~Ü V9«2ÕQf'.˜ŸZE†{6ñãƒ+$úlÓ{Ô¶ý*Vº®3Rwd¶’ȱ*sgX[²Q𬤖.4aäâ@Q[lNµPþ•2ç;^âÍÑ+zZ7íä„×j:Ø åJ©G­ÏÎ%ôz™ç|%Ð]}á 8üåàîÅwÒ“u£™Ÿï%€!ÃŽ¨Ê˜”yaº’Ü‘l½ÚÉ{1›J‘çÝ) ®›x×Xº–…V”~ÊtÿG<ý°¡·rÓ"ÛË„xñ´ó•4|î‘EÒöÃ,$qEø¸’«/¢G.¨idn˜séc (-U¦Þ„š5=d""že‚cµÜå[ìu:e3Y»¦DÊÔÉ]xpñŽÜÞy8:°HyQ)tœÈKh‚|<á­Åþ|—+(¥~­+Î…Œ}‘.7ì’dÛQ·ù¡†üM•†Û‹`z5,¹¬ãâØ3FJµI²åI>õ^RùÕ µT««cÖ¯N7íéÍ6ùýnx37O½%™fÊûQvÆÁ„èð£ptENê•‹¿4èøÄæ„ ÅÉ- uÃöîKж¯èhZOï§9"4§ ȦµÚÐÇ›6 ì4JSMä$õÞqÖQÖ·p·ÊÑT…ØaÀu—ÆQŒg«A8êМœþx¨”Í/ѰžsßÖ`Œ|êÒ÷£¸Ö¨-vuâz–Ìø=û^½3±GN“øÚÒ˜SO]eók(:²Í?nÄ—“‰š.sHæ/‰Dè¡“Z™ö-ræ)sÈOÇÊ'<9X„Š&‡q©&?U¦xvÁŽãw}µô$Ñù 5ÕÆ]8y»nó‚N!ú¿(EoŠŽC/h âVÀ¨ øÞ‚ ö{äG3ò&¡†,ЄWbDá’°OI$‹Jyèzä?Šëzµã–÷jÓó®üijåð€ª^à´íEX™ÎàÉA¢ƒ©Ô@Žñè`³&›RGS^ þìô7‚Áú²6d°«½9zÊ ãf½ïäv΄®ÉK4Z ©#ðA´°522ŠššŠ]ûž1Eqh²% Ú@ŸÔ¥î} –é®Wa.ÉôfzÇ ã}ò½68´¾ÆÜqÙü¤Å„vü ±Ty Ë@rè°îÞuCÆÓ¤e‚ûs—ÇZ­‰%-­iÞ]©ÿ¤ŠÕŽÏ«ð’#¤×8.í‹FeÚÕ°+°7n¦FÙMGj¥c\tèìbÁ¼$rEȺ¥F.Òr±(8×쪰ú(ª…=ë†?  7 ðxg”?æ›”5~=ùvxW˜È5ä&çG"¯bxBßEo£晎qã ›ÆV ³oÁ&T߇¸.}+¸•ºG+†A8‘Zâ?Ù×ÿ^ïã5E³àDˆyYóGHú† {o˜¿ƒöü´Ÿ4G£û¾–7(œù„1Ú€“8¤Eé­Í%·%pX[‚ò­—úyüp6÷vÌÒÖß?¹ ‚·6‘Asár<2­âÌ×N³-†q_4 ¯ÒLDîÑÿþP¯Ž’Á­›‚µ|“ûâ}Œ®¤–§Âj'þ,¨ùHø¥ªñ@=³9À?hGÿJ4ŠáËÔzÑ{7‘®¡þxÀ)4]¸Nóº· O˜jR ²†+ ùÃF—¸ä¬AÓ Y÷ òÃLÓÌ!³§q+ÓE»ßvå÷µ›HKDGN«¾‘—”è/æÊg™12ÁP¯õã2£…3¬H9ïÍhÖ–n«¯úׯV^EØ7pG ®äÖÈ4}C˜‘¾¹Xí’tmi‰å ¯Š¼£ì@X\²å†í¨›ýϹ7dÚ:ªbZ<'G6Ï¡‚˜V£˜9‡ç±ïsï8U9^ûßTô2aU$á kê9€ 4Õß‹ ö¡#õÌdîNѤ¸iEÅëCqóð×ÑciRáþG|èh¡È›“Iõ‡-¬N¦ÜF%1,h2àº\ÅÑ_M&Z³ÍQ¾D3kÒdGпÿé{N²]èë·ÆÄ”"Œ­‘su.‹ ¡7>¯_]Oö¸ØÔ>«rþU~qâYVÑ´ˆtJÔøRò—3· ì¬Í3ºŒvV{+ÌHƒó-!’úàu'š9À¿a³3‹EPÛ4G¿BS?Øå÷Äõ!&w|ýŸèkí>˜åÙæË©=4Œ¾ ø²“«´ ôóã.æèúœÈýZÚ‡ÓLHœ».ã=^rcnø#.o˜3G+ ‰LÇHë©9NRWòzœNæq/Z½·¶«#b¸ŠpFc{ù<ùûfdGDŸÊô… å~^Á<ï*ÛÞÖT@žÇ1ùÃ{ÇÇwË »KÎr¾1q%cP·®QÂ’BoûvbñBRƒ¶‚Ían¦"DÞûãØ ri`š• ;ÛehÛð¾O³ dC‘ÀÒ¾Kèl¯«ŒR8ÜmÙßðÞ¹N ì¶påÃ%L¨áÞ0mn·~‚7ÂoÌ¥w^CnF1t¿P²aËÈõc뎻Iø­uøŸ•fœ¦I†£jþ8ĬEiƒÚ'¯-ã¨Ý›e;{aÌ8/n„œ¤ëÁ '“ù­fj»êwR½¿1€™"MÀ?NV¼¨EPÿÁ»F|EOqÈ|èöM&²&àÕ³8E1v©±Z©\²…ÑMÁ©pÛZ2¹˜ØãšWag$‰K|VðÃXÉ;÷X!PÎÌjp¨l¥§Z÷{ö¿Ã!`÷p×ú÷8:ñ'UÌËØ¡eqy¹uDíGCM2ðÓ8Bܲ?d¿8ó\WsãH%wžOF¢zB¥‡6%Í(µô½`/Â;âb¬¤¬,Iæ&S~'õ›Ð!Ñ.&Bfí,¶‘ÆŒ{šÇ(°Ø>VüCqàÙµ›Qv –ìüº‘~šÆ3jÕPŠèûOÆeÚ¦à-ƒÇj˜”ýŠàÝ+¥p”·kŒŠ‘|Û•Ç~”¥ÐÕû/ 9˜ƒ»07”©çª¤æ7¥Èœ?hÀ.âÑÊ4}T­. ibþ;TÖ¦‡jг¾‘©’u:Ë<úÁë¯û6$–F¶7½wq”aÍUá"/2s&°/(ô^åIãú>iZvTÉŸŸ™ d0ïŽ-C">ä×·;ÿãJï/¦ð§"OÉ3jqÐ(9ˆUÚ¹—i°ËÝ€W+öÊKv—¹(:^S~¡pi˜eÒ³©zÓ²ïJèÚZÓ¨‘21Kç-!^8ËG¾Œì77|¶_/dP©y¾,fG?û€^£øðŒ‰,’«xíê„”H1Ó±ãYpˆÔe[Oe˜Â©–"¿ö—£¨agÞª²¨¡ë<73Ìíf†è4­ÑŠÀ`¥wRÓ¶*ȼ a¨¦¥\zº¬¶< Òx·DEûäÒ¿SÚ@ç¶q+_nXtΙ»ûøíËlþ^¦ÔåŒXÄyä³õî’O’Ý\²o•'¬oqxžÐÔ(–äeÕª€[hçcUç/åÞàmA)pÄ7ëÄÜÅþ“ÆÆ¸¡¤Øãxœƒ,ÖÄe]—ÿ,¢¢¼dÕ2kùž…*HÇDZÁ£#£ÈÇJ}tÃû ¶`|Xn8òH8Z_´ªq„´éSËXaLE+‡0 ðÜê5«q·-o‡JÞU!aR™|wò~^<t.¶‹Üø ¨`}oãoï혧å#³ó¤6•´HÕáÝ”lx`þ&p´]ÉóÛÝä_úºÖÐ1ð¶s¨>ïnõÔ«©ÿ¤ÉÈç\xLR—†4®^»g‹ãÒ¤¤yՑŃl»øqá+Œ¸iì¹—l~C a­înË 0ç|Ñ &mÈûæUhbȤ)¿‘[jÈPœq·&ÿ×n 1ÏÈ¡á W¾WëеíyñÙvë@Iüj05Ò—o•‰àÞÖ´…Ó ƒEQ.ܘÞÌßÛB6ÓeIƒ=º¸†{B¶îVÖŽxõ.Éž‰áÓ <i{ÄòD¦Ø (†bÊèì§‹7 ‘R¾´Bмîc4 ÇÄ‚ Ó&x—aÀöpDzRuD«Y«ß+92ðYŠvݨAº|Ä: Vçõ³Ê µ2B<„¥ô|étVü͉†BTæëâjšÀ­ñ¨îÖõo)S ÌGiç퉕ã›/àN²ä#Cö€’ErL;ðsuKFsu“êÞ ãøâÍòñ®]‘p§—âìG™d7}rñJ•¡Fõ‡®HCˆ¸ÝˆóÌsòÊR`?» •8é¾[‡^ÇÞç›8©®›lÆ·5·hü´ÿÈ»;-©ï½=[×hÀ»¬k·õL¦¥ÊÛ…hÜ—žƒèq<]À¬×rYCŒ»'…Œ©…SG9vÄzòÈD¤×+ÚÜ?ôFhÖxg_á¹”8¢´Ð>»¸X½°áždædû6n·$’Þ£áh Z誖?)zT:FÞñjiµPêçù"ª›VÀm¨3[Î cCŸ‹MŒj³!¶‚p1>j×õüëN8„ÃÀp ub]?t{Êé›p »ñ[í×IrX›çs*š~ý—ŒQRûsÒa¹Äi½&"Ü6ˆyvàŸ O Ú³‘ |tH…ÁV–WÊÄ¢…ÚéçDÝñuJùmNvfXõC€$ ¡R—É ?‚$B¢È1•º¹ 9•€r·Ñ)ðüÞwßÓ³Eá ÍQ™þWçÐ|Àå, ÙSÓ}ø-çnÔoü`‹0m™Â-à$ŒþƒD07öó4;W°8L·W¥3ìmIÀZmZZ’à oXaÂøDY TÄ¡Ñ4IÆ'#<˜räMWü?dù‚Ô—?ôjÞsgd¬Þª Üü³•^¼\2dåÌ=÷,¾ª1ÂBÍq÷™°ÞSý’ ÅØçôQ›#‘),­ úѤZ'² …@ÓŘ1‡PÃïµé¤ªýÿÑ2µ<๻ê²6ÉpÕ×í„÷£Ø]1¯“FèAN!u]Øå™_\öø/ÞüÄ,8¤ð­©2Ø5‚ò×YÕ“ö«‹]öÙÁeO˜î’¼YØÝ¿)™ŸñupÈîú»a‘þäðº<3Pö £3Ε„ì McŠê:55‡2#Qh1†oP â/pBZL®%Œ¬vsV•k+tÔο¢ÖÍ#º~UhJÅ8í„wU!ÅmÈÔ!uÀ:(Z‘3ªú ï!‘W{ËÔrÞšqùSHëQ•…¶˜x}¤ Íg3`mG'2•4K ¡¯BIJâ8ØíÄOŠ‘rhõ¬$Êþüµ)#FbÝù„áx4'î<¤ÆeˆàlŸˆ“Üν2|‡=¹óPñè¥rë@©à;MJx|8kÙ¶Où4É©¢mòAn™Ó;:ˆÆ‹Ürˆ£­Õ0á%²ç`îÚœŸóý3JK¶VÐÝ—üHT© ßïc¡ 'Vûê±&Œ lµüÇ,xp.ãËϪ ‘ÇF›•"81£¼”ü„»ë¨(·Ô¾—ªæn¼yª¢ÈÙ©ÈßËâîyý+ ¼"´ò5'¨/óççéžœì—c4ì·j"É'-Fĸ!ºžÂqÀT‹\èqƒ”_o¯`§¯s”aÚBIâ)`è¶ŒÀ™1×i”ŒùJN¿ß;)hf2½Í*>æ°Úížö<»Á—ÓYÀ˜•¿ZøTϲ~6«×æç…ª½êV¤! ó,Óìsô™þØz\Ý»“{IŽ­ß´Ra å¬ð‚³9"p3´ãi”ј&H¥”|prŸKÚz)$/éE\Lm“’(KµÑ-"jàáî6"S‘Ž €Ý>ˆ" uò¿Ê½¯¿X ‘5ä’+´~M¥²[àZnÆ€Võú×.ª:–ó‚³rßxÜ«mK¯À[±ÿô‚^Q+X[_"W¥æ©¤CÙ˜üÓVC‚rwþ7 ò}¡o2ÝBÎZÕ@—µøÔ^¼nÜÉ«€ÃE——åu&DÔwbM,³BdÄ’Ðà4°¡¿Éç陵/ñŽã½%ð€b¬c.©À*“•IŒàl×=åL²Y¤¦¢Û¬<78ÏÝë”^Fý™š„'¹ã”TMåêe$8K§Žz“3GM3ÊVÕg¸¹á»g3Ö&šÈP68ðûrŠÌ°†ÄÀPs…=¾hÛ\­› \IMàÔÕ£¨™|>Ÿ¢ÌêôŸD¹ þ害.ã½ú¸¸ŸÅ­‰Ú¢ÊØnÓ“¬ƒù8~Ý_ëêH© ¼œ¹Db!ë; ù§›¾óqTo2«bô¨¡pÔço ߺR´r´(‘A¶Éf“£ì”–TªgãÒ÷ÞÈðqò…{á‰eΦ›Ì";)Å4Ï!èzyO9½ÀYý…^‰5 vñ«‡}ï¶qXÏb|È.TJžG©ßygƇ‹¾}_°{p‹IÀeåðd…îzH–fâ§Q`áIÕ( €k¿ü¸7àctÄHF¾kJÉX¤þüÈš ¿ ¢N&Ï®}ÑÔnh+RðÜ':ñëé¬ìq¡lç@KÁ1ÔôŸP;P¥v‘Ré£ù[šUF¬¿Æ>¼¯¶ %~‹kmé³V¾)³mI<©óâ3ç|œcË3&û¦hµG8˜Ê®çõÀMº9Þw9‚0çç3å]°HŸäí÷o/õæ·#á'Ø@¢vŸ^îMø¤ò)põ1Õ]ç?\Lµù8’ÔÅ™†¯jtX„’|°—‚ç?¦JÕ2Ï™7t$hÒVK¹K¡ÚaiÝf¤l…9E½()×ҦȦâ7h·jZ’”ò8¡¢ä®é—‹ùzÀÞÉA¾4‹sÅvMÙ[‘£¨Çæ!Iæ ²80:™—§Í:Ð {Û•C0G[’Wb­ñZšÈ^'‘g¯¦mÿ‚œ(C®Wža¶ât õäaO»û ³Ž@*§ÁÖ›Fá¤Ïµ 2`‚è&âJY]àdÒ¬6œUvO ü/9ÄŸãˆ×ó[Ö1ÂfPñæN™å­¾y4I¬Yù<5hAS¥‘K7Ò4–‘Ûà8Övù[ZýC<Ø&* KG 2<%Š˜kS’uJ™Yx6I•‡_«¯,_½0ŠÔl·JPòŠ]gKŽx÷5Ò’‹«qÄñwBnì¥î“ôqõÄÿKªn è:·§oá;?.Ä=„fpL›Á.äÆÔ‰Cå´Kêý·Âêiõà;Ü;CàlÚÁò,aM•;Ql{|x„H}Ä(õ°컨¢ø¦¼#®ª¾›ç陌£P²Ñ÷v)ùŒ{°qZâo‡ Í.þD¼ÎѲàßøÎg‹1Øû1à*¤”8ä`㸠4gþU‘F=Á<[1”‚QÏt¶O[·0ÙU•,ÜéüÀÓuƨXìäÊ]wiØ—í”Øðû,÷©Aíè˃xkVsÿÍ_šû”ªAo}ˆiZD¨è/›Õ,sYGkÖ=×ÉÁ(vh‚÷`8¨K‘-g•€Z'1Ð2w²ó˜(ÐjÄW| tÞ?K–5BUç0Ú|ŒoFó»¢ 5Ésùƒ¯Ä™Â—¤¢Ãõ´³~¨*Cùkƒ!Špu"Ìn!)*²ë,‚ë²Knh ]ÖþRììC„1}uF²^'.€h·âòdŒÚª±%¬¯öqùÄ-°™ eOW Ñÿ7mç¡–º|±dîO_mì£5ÜbŸ}“pnç½p½‹Ànß<+%ä¼pÒQâ_Ú6•˜ÒÜY¢=›´V±É:p2UšÃ»NèÍþù=Ç .ü†‚vÅB)yšÝ?³ÓŠ:B]ÿ£°IŽ)$‡f£ÌPý=¿x‘k:ؼ:ð¼Ö/¶‘žY2<»#ö Íœ»?:’çICµ“'g÷·e4b1æhxÚ#§&CÃU~[C+¯åUâ~híNÅP…s G%‹›ã¾Iöñ}š@U®+Ke¶kJB$eî|J¯Š>³ÍÄD§| ( Â#7rg¸#‰o§á´4äB&_”° å̈wt•bûüVÀ 2™¯Sž4É£]«Äaßó³Ï®Öç=SÆŒ±²9±éS€†!à÷ÍÀ`­yØÒ_®ÛÄ´¬ü>$kw¹ a®æ™@Êc†ÞºâR1 IŸ/|£â}ø ’Ïó3Ùîlc)H«ë~c!ì³$¹ÙÇ¿˜˜q€àÙ5 Èó°óGöäœÑ|$F½€!~ ÑL`Š/¶f„VJ'è¡<>ѽ|ñþm6oü¼ƒúYSéø@Ìõ†ß©–ÊŸéI'³r®æódþO#næ”îrŸS Ü>ËXí$b¾t«t¯¿Ž¶Œy( š4œÃUó.êl ÚÜÏjt…§„6ëøÃßÚ´}Ý‹/sz8ƒWõ·ué3{&Â/ì™xqÙ8þ…Ë_¾ ÂÔ·™²‘$l»Üí °ãÿôà%¸!ËpW|¿°‹x,“óMÏÁ’§!vwo[?Sòê€k®4©!’k°øZEðƒR.X.*&Ê£°¢’ŠžŠ4^¡m“}UîX“= ûÒä)åŠbÈ˶X $N^òÅEQ0#YÒÄ79¼…0kµò7èÆ…T/¹;H[ Õb¢ ¶g"æ4¡d|–Î(ËÁÂGóËóY´&t²±-gÄ1í[]Ëó4½sVä€ÕfxɈà˜êyž¸¿ûp„{÷˺[ýEH§}—¦0QÞ8ÏgÓ3<%À'ÞWgp÷ÑO¡ó¾⡪.q5í32<ÈÌ Kp¼&¸†¤ÓÉF™býsœøÂh8•,VR³Kíåo ÷n±c[/ƒ''í"ùŠåµsøe—‘q‘—b#Ý ɹN0 BÎþ{^’“˜˜–ñÎ*Åy±HNyÝÓcVþ5+‰§²>ìF2%qàâ Û‡[XÃ*çã{sêPJRmßÿ]•9¼šû~$#o˜Ñ-’œÜlèØÊÔãÌ.»Ê=æt&b¯÷dÀýY‡ €¥Œ€‹ÆÅĉڶ]ÍnAè§ )‚>=jÊe(¤D|yàFÄ€#y1·™: †Îö#Â9†? ±7 —fgñ:é©Zê’bcÏDSŸÂàïÞjFil%à(ù-¨B”«þ?òÀ*·pÕäCZ zÄEIwǽ-@nÃd´”·ŠÚyxÞéY’V|®g_ž*ûqâÊšwÿÊþ&÷lr¿QöÞ(kµ‚yþ¡&;œ¿o € áHÈôƒ@ï‹}è”—=~MµäJþí .B~KA"Y<º}¾gœ§FHIgµÖÃíÂ#)ºOð¾$sø’QT/¯Öɧ\þ¡‚À&'V0¹¾¥ºŒ•šL"Kï@^¦!ç;‹(¼VL;D|}§z/×jδ,)!ô­ ªØ#ëÍ@˜üŠWAyüïôda‘È+ò¬N!TÈÕHe éô}ô^eÇ:“*~žÙÝ©v)[(Òiߣ®Ã øŽ¶×å¶„ÅÓ‘ç—›Ùëæ…’faßæw\q‰*ڶǨ‘ðOawBëƒÂ §*8?Ê—\¸÷܈gx@L¶ÈºÝ cKÔÛâå¹ p? ºˆË–6&Í;„f Œ9Ÿ¢•7…u“—É$» ôÆ&‚ zIJ|s6uâîB#ñ’ `-bÔr¼˜ÕËõ¼ŠÔGЉ:Æ9ÎòªÔb9ÕþŒþâvqöwsy>ÄJèü€à:?Éè;X¦Všp-™–½†”.%§ÍU3¢t 5X÷Zø”έàvÑŸ_§öqdNŠÎoÍTË!f™2,¼.©Z»€Et¿&ÏÎÙCöÛ *‰º¡…ÌQ˜V‡”î]‡Ž¼ˆ DÊ+7Ë·ïD»Œ)pʄɂè2yÿ½˜ŸnàYJ³Pñ÷aÊ}vÃö—a%H²h‚П„nÀ.=Ãu~»®”®OÙu'‹&n“®£ =/á+<÷溾Ÿé%ÜXF¬®•iÁÊE=¾X8Ñ †Š¹‡Gûê½åUþQ*£8JëœuxJ)]úª„®EÜcAåžÔW I6œ0*…¥Açx‚\@êx´ó9eåê›Ê vÚÓÀÌþìkÜwÜþ}6¢Î=Ç9Я¢YGþ¨ ªœd_¾½ÊɘxuÿRÆw•GòïÖœYò§+yï*åDGqKûEfìG¶Š>d€íSéÿ'O„e0Q™ýšIæOzêç(+ŠD„ÝN¿2VÊWJZ ç¶µ}»³kÈ=:œñˆ Yïë¿•(âS[9Yl¯EéqM‡*¢³ë‰ø¸ žÎääÙ¶çÂMm °'°E¾ÑDÃ>݈=„É—³ïç Zɱ»D”Mí  i+ ’KVpíRÙ öâ*ÓŠ›3Íõuli/c[¼‚o‰,Ó3…œ²“KnˆF72#ÕÆý° 2ãrñ­È†e5U×F-“1ñ­Ðaß ŒýÌ0Kê‹c8?š,o¿Þе;`Øë»I+T Ô_¨éÒ»ÔYjçÿ B=7™^^è¹…Ú¸VÔJ:¹Òƒ¹‹|‚?¹8î7=âNJò6Tàù߀ ö|ÐV9È®ÿëÓÈ£ºô—Ûýw ë°ÍßX°Î¤¢ —Ï=Õýäðï§Ã¾RÈ{û«x´Cá™»ågüŸ0¡xØZõy;yÓvÒ…—Æþñ!Wð¯}q32%×hÕñ—ÐÔÔ¶=:Ù¹¹u½e˜vÇ ÈuVã£Ö¡$ƒòP˜/H,wû(ýrˆÚF›?Ên¿€¬¢Ñ@ 4WuªhÊ; ¸ß rF·to¸½’мIö Ø}ò‡\îH”P›QÑT&8Ò«x o†Íå ïZ5%Ùk=ß@öz"`{sgZ7Ôho¦ÌYmÓ­P2ÑÐð7je™¨Ùþ7B(‰9.rX ÌyÑÅ*¿,Ϙ¢Ê³àõ 2½;fC‰·ÐæàYÞ­œZ˜N²LT¯¸ zhG¬W(¬ýh2D‘=­pü‰ˆ¿œ,‘®ÍÕ^`½Ü%ûкm=tm2 (5T¯B¬´d¨8†køéJäŽ o£Ó-‡‡™öáÁ€jj²µ B_c²=| ![³IÉ}ƒ&04G NL’þÙ¤À«‚ˆ0°âu\¿+nßíü:¿r1‚gÀOŒ€ãgq?@Jõ”û5w›Gžì[ÕÊ\q$šŠoZB È×ÀÔÉOKÖ‰r¬ÒÜý½\—ýg6²C;ÿ©˜ IzÆ#NÓ¨Wõx>fþôëëoæ‚«zø `tQ8(>ˆ]7i¿v"VçÔi•N°ŽÅäD¤QÑÌ«v¬EïoFni RÝ©ë–ý”÷Š^‹P½aœªvRCµuWœ¬ªˆM;~Ò:¹­?¬…þ?œ’jßt§Ô6»É»Î‰iŽÀV¹[’öèT»œø¯Æ¥•hÆP÷÷I™“ŽA¯@ìþ-kñI'ñߤ[±ã9%yލ^5ábºÄQçˆÿ2€Ù“T¢nI i´~?ɫ՚eÑjtsù^cá×Q gœb_ µoÑê v¦iÃàgÂN(âæÆ“ap]ì{u–ó°… ¼¯MçÇÑxè $ùêgÿýpÛÈBœahë÷m´ÑÜu h||[«Kü°¸r¬]huºÉ|¼Q[z¢•¦YÆðÀÜ•9H¶W"ïÑCÊõGïûy÷m‰¿;I¶ÜÕã%_‡`››.ißa:ž5"êæ0!@x4ziôLù¡ 6 M¸˜ E×{BxMt³ërà“¦˜]„$Nv•ø9Ø‚c¬hôâdãêss­¬‡ Žwb“d6ñ!|¦Õš×¥±×ÆÛHÞþü¤o'®!N”˽‰í(ø’=Þ÷¿Òî·Š–µLÍ”º_%ÉUƒÇH9#,P> 0*æFF¶HMÔÚ†‹äg è-f¾Ú) ÌkH;÷c #kÖ˜ËXk}™¸G£0Y« Ñö‘¡`-¶¤†Þ¼uÄýø³YV¾¥¶±ý¹ãׄrßåykÑx¡Ã»4üè&9ëÓÂåÒ&¿K–,ŒÕ!–EýßOm)l(»¿8„ZH%›‡f'ì}ʸóMîÙŽ 1à øŸpÆ´°&ðfcú[tL$ #.åQj—ëâa"%Jý.ž($P­NéÍ¡—Ž __·N0Å÷ÆRJš6jÇ“ 'Tü oÆC`«:Õ¥å4 ÆÆ%…Yo¥™ïx‘>4Ü’EÐèêq“Ä·˜þÙ…Ûƒüh%ãú8à±êR Eü½Ï~屯KvlF>d H4 ø²§“]4AXÖQc:xÚ£Š©·sWÕ~Zßè§¡·ˆi‚qÛ‹‡ažs¨æŸã‹È!ÓÖ6¢)¬9)¶ÐcÙòAs¥3°V((S}®?S$E:‘˜2Ó2³×)Ö»~öÀÙ"Ôÿ„GaÛ>9ÁêÖ§g™‹]YB¥JÀqÄ&„îJèÒVà@e­œmg9l[s»ƒMèrWW%Ã]+ísFœ Á1øîWQŠL>V\Î%årá,£×œ¯¢X‰i%h^`¬%û€XŠ9àf=íóIàwÌíràœrd¤ ݹd‡Üµæ‰ÞܵžY¯LX癋öo⚎vàÉ8©Üi«Ï˜–äÂ-.½ 536|ÒàTðè+zß@«]˜ÔÓ·ÂܸP,4)̯@ž*ÜŠ'›ˆ²_d³ ¹ 'ÿHìQ\ùd'\W¼ó$vɳ}Ý÷>±èÌ?œ%Žèé1ÑSN}ËPhOߪ5Ÿ˜=]~]5r®yO¹*¢D”:ecÄ mÓ_î%ôò:óWÃ¶Ò çŠé7Z9¼ÊLrÃã7͌ȈÉKn=hl@`ÙP›y öˆ¡ø OzÄH½ÅðPgp ›J/¥¾Ó…‘_N¼CÈäz}™"Ë,+‘*¡]@tVu‘|=L*xm¼XfY>ÿ™“Ž®êõ‹»Nˆ†×9 gÅBv6³Æ¾ÀµWˆé{6l‰9AHã÷Þ•yã’ég&2™AÿŽ'ýdèãܳ”)ªÒ81ÝñlêªxÚ?TÑáù›r—V¼íößåÓÄ Æöþc“i›yë¹mäÝík³¯̃?ÍòƒdWÈùx="ŒÓ %¥šR I¡abqÇ*%Pb¾•©+wxKq-‰G¶íÒQª¥¶ÿ^µL4–IÄ"°öD-îœUdR‡FdÇ/µß º·Ñ¤4HÔü«_e&ÙßëF3ø¹ÒÝ‚äýs1¬ ¢îT<*,w¬î5䫎n#òØÃ'Fô"3¿¿X—æ½*j¬ÓÊrÐÒåvªŠÂT§áj:Rú¹#é<á ‰4韯µ¦«§ Æ-c.ø$F¦¢¥a€æðDÕ¼¤t¿\n@¥ÔÛ—ÿ íð*üdpkrtZQÛPoÉH¦æUÉ':_«U¦Àö —4!'¤{‰®Æj«gü{Q‘݉À|v¾fZ+ôý÷¹–i+ 7ÐŒóÂ!/¹ã…}N.¥§—滺 g€ÅÆàׄçvÄ>CGr¼o­ShÑCS,ì@ånmÔÊV³ÝRïÀIÖõqÆu@9èa\ò­¹Ö3½’¯òQðÿ~Ë÷Àà¦îòl…‰9¡£Ê)d)òƒë¥=c,ÔåyIÅòË ³Ò¤ár\ÍÔa>d|h¸”©ªçÀý@!6ýX;KI NHš50À¹(ÄÒÑGG§5¡È`]%ÄRA÷ª"¡Qä‚ùòðÒÖÏ-2õá®À P¢ ûa¦‰IúE"¸ M<þk–çWë·Ç Fy¢QýÕ×3—{ò3-ô«¥|Ts˃ìz—ÉßÌß7£àQZ÷†€LDg%]ÍÚê]bTC>»˜æøÉé¢p¨J 0bCR/rÝ}C‹ˆþàèPbìn½{Ô\À†“ÄØ™‹ºñ-OöÖ;ĺϵàäÀO+ßS°Ì4Ø+IÍ{îQûedKÞø2!ržÅ8Ãö„‡ˆ¬“®iNÆ?‚waȲÔ_±-ªýÏês@Þdî¸ ˜ 5@BPò4a;×Â<#"ŸdäÕ@<µ¸6–‘ð-ß² œ ++Îàèñ Ȳ °RûÑWƒãéå?è0äDqÏÉŽoŒ¾hoLì¹,Ë©3 c28*¥g…˜½ËÓcúö¸uc1ÙUìÓ·lêî m´}fï Î让Žo5ÕXo¸ç§Gj‚º«c›Ejló!| ‹'EXkQ-\Ç81½47¼Êå3ôÖtFª+ MQC÷ÁînMa*º1WjieGáí𰓃¦×³nA£²*F6/ J BŽûKî\&j×Þ#rñb¨ù‘23úw´Í»Qг½,‰­ÌHl®f'åÿºÇàƒí|SÖ/´ÅÆ&¦Åµë[8¸õ¯Ò±úí ÌÂ2r‘Wiy~êöÇìO*$yÈ}EÃJÈ”¬)/,G8›×(õÉqøE‹áÐs ¿ìŠVòM0÷ÿ 7À:Tèh•GÈŽ?TåWˆ–ôéuBæ‚Ò–ˆÎëS­D›z_Ê(Âלñº êfŒÑìÙ~5KôwÅÈ'¨hvÄ‹KüÑØº‹\÷‚–¿ ½öœ¢²á4SÚð–åÑHl0æê Ž‚Q@Ò£â e¢¿€Û‹ÖUÿ{®ûW\­WRX?£Š<ã&"åc{4ÑσҲÓ[*XZaô–³9ò 9çŒÅNTxÏ&©vø¸JÈn©ú¾ØoA)Àµ<ˆ® Ø÷¦Ï¥‡»igïSUqÚP}žçºlÚöŠ6r·y€øg“Ù;½*6QÙN†ï9¿×;צD)ƒoÙižè%l»K=ê‹ È%;¥dþ{å·Á?kgØàýt-Å›„é…DÆ6'€ûMâéૈ֨ô/+áf¤YüÇ 0é(° y˱cß…QQNg¤¾/ßg‡KµK¡}×"±å-âLw­:ƒæ—ÞÜ9ZêÝ‹†tv‹-OãïÛW7§W¬ ?Œ»(uÇ w(»Šç‡y5–0Ⱥñ:ÒŠ`¸f†oêÅxAžyÅdÝQ·¬gUài¸† úrã%µ&ü tfÈŒ ®½Çêá‡$Fú¥ã7#Ó9ºÐ Ñ‚®Éì<¶S†Í8…½É0“‡JKZTW‹ÄŠ.Ú°ø`%r4TÏ‘~š‰6.]}rdµ‡†‚‰}ÒOýS&¶zyØ3*pÍp› ³ëv´1•#£ž›/ØWX€A~žâªÙœŽdƒ 004OÿsÂDI‹¯žmìöÊtôÜç³@tÌÏlw'ƒv¶Æü~Pj^,Gã^ô Ö)Ð΢Öóg³ÏJPcÙX£/ë%fî6ÓáUó{Î »IÇsI¦ùòD¥Ÿájš%B!¿8Ê6ïZ}WNgŽš¦®q@oÏVÙŒ s\õ½Ê”b™ƒp¡ê™îë ¢êˆv›9Ô>à‰­] :µuJ"4—ÒQJ´áÂ]Áû‘½h·B*Ç.ËEÅ•„K¡ClEÅîû0þÄj+“{­Oj¾-:Uf·Â%JuÇÖQ<2Ý'ÿÑiÎ?Ô ­ùŽ^•óäaŠ_™e©!¬ü·›âà7lFüå8F½¯¾ :+ %,Éåc™üu±G±nJÂÃÞ__°èAi¿Ò–4Û1Cá¾nü¥%¡p@Ÿ*Zƒ.‡²WvRÑ4 žú? C*´¾²ô ·Z$uß5oÈ}ÖNPé_|$Ç¡¬A”¼¦5ÌUÍ5yÖD‡S¢Ú›qL„•a ±fl"{@=yÖ)>*pÝ`ƒNáÛï@;«Û/Ƽ£?gÐÓ'É÷ΆH̺aa›ÂnŸú×߈'Œ27lz‘\â¯ÐŠ÷ttõÝ]I(l_näî,!<ü%ȵz¾p[?-7†è•ô/»Ô®˜Ý§-~üügæ?+ÞüY/AG2%ÒY”Nš†Òü mf±fä6ƒñŠå†¤)¼¸^¯²8ŠÁy'HLz{f`“^Ž&«5<Ÿóø:{ŠƒÊ­ tSˆmüŒa£ß­péd±Ì°ܺ|ÀØ‹:Ì’ßSÉ@Më}¡ù‡›üÙ™—9®£`½÷o$ˆJ9DJ¦±°0­F:%} ­ÎDl·ÙTù_³~M{šqùÍzˆn*ÂÙ›Ã8BfKÖNp‹Ðø0 A=Ew•í4"yVžÞ¾ Ó‹›!¢ * Jm/³ƒi?j]Pi -«N&{ï΄Ã= æÖ´ú 66yX¤Ÿ8JÇÉ ®Aykkçf´“ú­œõ'Ä)¶êÿSmXóèØÛ'qXÄeµk?혜l6´Ý7f nùídÿ«Ï{\@&é‚Ýfßgwu#zøúëÕ#Ž eC—~+òr䢔nßǰG‚F (œ|–‘d{ĸ¨ÿ¶©¿ÔdSï¯wvöóCHA °“ƒÄü9_ÖjÒ¤ý°å?h‘þ®øçÆ’<‹l$Ò¦§w(ÅÌœ 8CäêdŸ\6L¡Æ<®Œ#I}k'Ôo´ªi!*6 ÝAà ο%ÀöøÏõÜõ¿ØJ]òZHXÛ`ñ¾/CÁdlB­Y/ ï JŒ%ÿR/„Æ´©Îò³ßSòŒèlçÉåéù-¯òæ€N µ+ÉÉG/…º”T=´wPŸòÈ‚2^üm4‘Üwc—&9Ÿåê¸ÉnmšÝÝÞ*¨ï²cFNVÍДðÉiÆ{Y×nJôH›‹N0Ç7 +¸yDi ÷Eá=;n€™æ|â¹>'^“>Â+Ñ3€ùZå×ãO‹éöÛaS¸ÝbŒŒ£]ÕAÕúÂz‚œµ©qž¨o5ùz„¶q£ø¡Ç¯È€Véæ^ůæÊ^hU|!˜M\²\-¦Ã¢û8úxè-G »ª†ºüaa¢éøôДÖ'|¿n]›DU;¼ÍT+Ä6P»éÔî\´óšãj¥Ú‚ŠK>JÀ5±€µÝ1¤.IjìgHÐëE2?¢p£Aч•ŸÎxÏ 0ÝqpºCjX^av«¶Ó1àAæØ˜í>ñ¥é`<òzcÔ®pS«¥´u$Št÷ë¤æú{F¦Ê’ô "Ì`y¥`"nQ„¯x<®ëµËŒÀJÆÏrEL¯¾™ˆâØi§Tˆšiš.æË·ÜÇH©ñïL{µº ^r"à€Ë÷~‡?= ü IU‹N¥ Ò^î@:–þû±•òÕÆÂ˜ç’ù<”\ÝŽ„Þ¨ÌþùúËå'¬Ãª¶î@9þœ«k(Õ^¯™¶oâlô-ÓQ‚Õʨ$,xÍRüôL+3ÇѨ£5^w3*‚}7B£yÊþ‚šL+ƒ;Ðv'‰6~Ž5ëþ)P{X쬵3M<ЙúйB˜ >Ý(ÇðãËVÖ,ˆÚ“´YIZk¬ËY…´1Yåµ›TDýje:©ê-Ç4C‡O¥øPÕ6>F{Eefi(~å[ˆI›û'ñ+šóo 4üÅã~Sáí6ƒBÁf¨Qi'ór3`YÄAá÷ñȬl¶ø€ŽBÒ²pŠáŽgß±"·ãiVÂvˆCvb–S›!žœë¤öCmµÓ‰¡¡uz|mŒLÏK/Þ¤–RƯXaݱOð¥ƒ*½Ñ f EÓ6ÉÐÑÇFÿÌNAÜ̃pÞF§‘o¢Ë䨝i­bŸ1Ñ&‰‹•c§7÷ͶÎ[¥èsS¾I€dL[€³œ¹£Ì ùÞ™µo>D®,I2oÍÄ5Ê^07âyTiûâÖ“?2ýô=2õA®ï!‘K®'th‚]u¶¡9¼Ó¸2± ”B—â~Žeòsº_º à+´®\8û†ÀPÝa#¥íu$f—Hè°ÃqQo:¿uý¨­ .ãÔïúq÷fAHøâz;>Œ÷öEÓ']Äg½E©Óui ­ÿ<‰€:ÜèäЙÀþQ÷6Kx'HbßvE.¯U륟ðGØ¿­w¿r^ºÐ^m<‘µzõ¨|ašk ¶Rõd Yù+Öÿ>Ú’ËFíM5{G‘Ïe‚Mø3dî‘à‹Ð+ÞMÛäi誗öÖŽ¸²Ÿ¨øwYSlEû@à9Õû£êÑ@×½›\Ý4?¼»}öôôïW¤+CŒ,>xÁ $s½Uñ·ÑÆ¿¨ã ú‘À·S,œÐ#xs¬ìÞ>Y{ýGÿ.S‡v^.x P–åwŒG­†ýi'Ëø§îPwc|¸,wr"â× BÝfÿ†*>Ï&¾7vw]ÖÖôAÁ꽋Öv[{ÜÖbVoëÔÄó=#d¡VßߢW£;™½´|ïSDàÁ™˜ð,Kö–>oåÐïc|¤è0,Ú…¬Ïë|ÍfàÙÐÓoádÑE;/»8fý F:™§ZÀ¡FÅŸ°šþ4Zןë\…‘­ÅöQñîCÿ&ćòz,ñú»ïö7—úªF¦”@B¨ºîú,xïËÈž³²i2ﯢå%ªEüzÃ_‘ëjˆ$0ô³gý¿qKO¿þš<3Sʸã3\÷˜RÞIr„ —6’Í@PJÀ—(Lóûa¥0vW±™†ÌÔ¬,š¶¾S " Štƒ~ÖÆ5T¶+t‡hãtS£¬ÿ'ò( bäôÉÈOoËf® ñí΄‰L£ AyÄSăŽ(fý1‰i^r;i%:°Ÿº=ØÔ7gÓcªšÙ¾ï¿¤°7"Û¼¼å¥ £Y²R3IoSöü]é¨MBÎþ)!‹`£y -L›ëG…\q½™×&.à‰°¥_‘é¢âßðÔ¥PÅ'A.Û>»8ºâÊÆÓ¶¤U@FÁ:#œ±(6|¿@å‹ Ä?Ôƒ¢ÙðnRB­'ä¿„Bw)µ´{$‹Ò­>r8oú‹rêÎó€6¡/wºˆiD?þ¾¥æxî§F ËG|âýµ²Qê×þìʉ±èÙ3í¶Æâê„p·éꀂfWùÙÔÎx¼ æû0P¥\SQlbß]¼^pž`=´Ó¥šhG㲦ºûðÅ1âiú¬JQž—-¦Ê(om"¹ýÆÒár´Z¸®ÿÞZQ*„šÄ®MöÔ w<«ße:¢D—QÍ.˜¼¹.Ï[’¥ª±*•Ó¿“ƒ”4ãáö‰ìÏþÔÝŠ’nt›û•æ S°#æ|TFv|Hâ ®¤ þrÀ,‚x™+í)Ò(‰kqÆÄ3È"ÙãY+[0‡ã‡TwŸ-ÞgñJ“ÏÀá¿sÔp'Ú𳧪Ãbôxj‘•X¾u)ö8%òj¤V2Y©h²b*¡Z=¼È7rEŠ&¿àDË8`ƒg 3D› Jà‘™ü¹k6^u¿°:•S.ñ£Ð9Ášò¦´ô°9)е@×W~ƒiWn(2%ÁÍ üêp|*…MkÕà=¨ ³T]~5{Êí¬ƒÚ›Þÿq‘3Y( è¦eZD+B‡»p-íà,Z7 ó g¢}Qq"ÁùŸ¡À‘:4Û8ʹV2|#€mev>@Rê~™¼§&n¸Æ<8že®s'QÎB3¾ô¢Ÿ]ûˆ²Q8Ï›Ï~ë2ri}ÍÚ`½ºÓwŠlÛƒ´Zøƒn ­Y*:T«ÅÌ¢#òžO¸»!F´¡S?’-fuÃï›ds“x½ŒlÃÞ”˜ À­´nYz¹ðêõ—ß—:…Qø«K%cͶÍåñ{‹~”ñúBíÊwh&‡s‹Qï"øzüÜ¿DÆî7Cì|`? üCXâï&Áü°U)MCØGˆ{ú9úò»{e0K“…þ ôg[=îáhø@3.z=‰Ï%Z¶$CÄy“aÌ FUó:;ÃfçFcêâã™y˜–y*0P´5.hÁühâ"5Ån ó™2Áü ‘©±;=çÃ-­_ ?!Sk¶v2LcO]«%j·—zp{õ4§²SŸ°W§¼|@†/0„²½‰ÌŒé´¥íÂ_däOã>˜¾%K‡ÔnÔ±{Ø×ËéM̶ú¶Þft'ì?Ò¥ àý ÿ!þq ܃­=Ù® ú®, FÞ¯(_½iœÛ9Éøb!¯á÷e‰M`?ó|4\¤3YØ×|Ñ!rÙÏz§%a±àî|4Cu‰Ë5¬OÚW…H4»MÉ|ê’]ÒØ2¢Ø†à´3(Ó^lSÝU>Mm/ñMéb2t[pjW·"yÑꆜÄ-¼àÂGüt’;‹¬C>³r‡iÿKx DÔøÁà›RV$oãЛ¿gÏ\ÂÑL–ׯfsfîZ H2ÿ}ž*"G‚æìRl„4ÇM3›4­JØàîœÎQÁ Š[ë¸ç’ª»’cþ÷¨Å’Œ€;"íZÙFlóØüâ-œQ,($>Îq@7cjøæ®?GŒxÃ}¼.¬$j ßÀº2/­Wúø€ãWZ´TK°¢_«þ=â{ΆTˆRkš–˜"£I…8$l‚v-f`ÆÝ"9Jm‡^ÙâZqš;R”·9´=fl«Y†ô `n5Ī žÇlW¾EC‰ÇÄn. HyÐÌxˆ¯ÚÞ"Yðu°r3sQó¯>J™–%Ð~y8š1\g..ìi9š(…Ѫg¼v{;cüC²¢RØ™“lÂù“*€ …kAXµQÞy׃bȇGq25ixi툳áÈœÚS2¥ˆøþeI÷ áÌB¦ž±æÜå²*–÷{‡ÍÅs 9ž<¾­½¥ü»6B e_›qgÃ~ún°.¦}^i¾¢„ˆÙÙÁ"AÙ‡bá¦Àe‚¨Ùe4],Pbk4]ÍÿÁ^TþYßÔ6tAwðtüóÅ×âù/D> ¸-:/.gdÿy•\EÄëî<¡ÙMSh1÷Ž¢Ä& î[{»jj ß}¢‹fH&@ Êª.žíŒzhfõvøš³”@g!‹Ø¿«]^‹iWTÃõ~¦DãP\XË6EÖþ1fŠňý}žÎ¦|Ðr®dshP )Åáo-êo3(k¹3íg%ËÂ+Fæ‘Z*½]*Ê‚* ¤'·J9¥20ZaðÏþo+⫃- œŽ-ŽÛÀ)­ªøa¿×9BåÙÏæ§»ßÒ¯ó½8‰l‚ºŠIõ ™EnÃw÷®2[¨/äàðäbƒÛ])1¢ù9Ò=F懠Äd¬öè-…iå·ßnÏùB¼¤ðöñ§0*µH¯®"›ýEß a"/¾y›Ó% ®Ë¯Á¼‰œ+¡í€õÙä%s¶öÈq_ÁÉ%UÚ#ß՛뽵½Ne“Àù„ ¸òÊÀ-ëãý¹2!¯˜—Mžê©3öœw×"ž`h 7÷:“©4µ©Ô°DWDÔTÂA^jTyvÖqOvÉë/+ê™|“ž¢Ü;05"’l÷…‡ÕfâÉïL£/Fý6ëò’| 9,læä@³ Û6›‚ Ú@§wi(µñ¿õ‰1mÎÂn¸IìD 8¨ÌDˆøíÂE~œÆÐe $}ýìˆBN{>çü(ö[øVG 0)mÓ5ÿ¼ÅÀã£ÚO©¸u©á­'o€+‡È?½ìvÔÒw¦8ÏÅgÅìðþÞ<…O?×+wqüˆ(Z=ždN/`H"º^Bsµ$ðb!Û¤UPôæÿ¥—ú´'‘Pù?¦sÔ6ÇðIÀÆV|ñ±ÀÛƒ†¤U–Ÿ”}ȈìøkÕ¶OXg¯´‡~’ÕÉqW+à±Ãéø„¾{¢•úÖäço7Ý•:nc Á}¶ »Gµéêhrð `„!ð‰& ~óþÆá4Ó]¿ÀÛ SŽ›«±&ÑùDW³ }1‰(H¹QncÞÃÆäÁ&ßuŠÊõf ÓxµÐD«–ýh…ËI^X§¬á!o'ô¾ë-j}¦_5 ¡»ãbĹà}§!ƒ\a Dw›T¹[p}Æ€/f…댔SQ÷}CŠmc{r¥» Ò>}H%\ugpÿ Ë6 3s ²•Ou *ŒTߤÅÑ0XB7ú^HM… È ” 1òä±|ª¬rlÁlõòÿyî\:ÛŸÐe8¼_†Ÿ;¯}m—é–ÇÑ2œˆ5bÇN,Œ-Fbm£Ð‘—ŒÔ ¡Þsº L¯WtèÀ.U\Z«ýé¶I¼ò €ûhÅëce¾ç¢+¾'ûRõ²„ŸØ‚r93´*5謟e ñk0©yŠòâ–9n-Öi ®R"eÂÅgçˆã©ÌJÁ6Ø6ý*”l` I¢zMgfäpe6½~vã£\]%AuÛ˜ ¿@÷ã-›ÖðèÔ&cQˆº;I¦ZøÇ@”Ã*JPƨc©çØÒ” aµ¢ì%‡Ö›7¿¹¥$ЃG©À†æ$Öe7«ð}Spœã`/qÄý€+h\æ¶…qÞ|.?pŸå¸÷Àß¿”ä(ÏBŒ·ûˆ×eb[OݵÛýÍ7^‡6•¥ÙMï´+#ŒØ{ï.[çªv/­Þ©¨+ÞçXX„ {Ž`µ&röæÖFø¾­YÇh,Ý·~t%Œ.¯Û-«†ï`»þXÔK±›\™îXõ€"Øú§Àž ª›0ójšx±¯{—”­Â $˜ÿ¥²$m—^.VïYGJyÊ `Չ̰Œ>W(::?ºmóYâ%ópqtÂ:›’–#Ù„s´X»ÌQ[OØ¢^Ã'$žœ•·¹½ÙKæ¨My/ÀíɽfȃeyØIíÕȔ¼eåU«×Ÿö’Hvö¶ÿAò¾ëéÓâo ˆ}ËÙ‹td+ÿ ÊéXH¯-B˜ ׯ³¸Ü ŽYíiCŒå±"{è["»‚tÄô.ÔÕÆå VµÚöíë á<Ô]ÝEœã´€ÖœÞ­8{HWuãÀˆYº!‹ÙuáÒ¹++#ï¥ü>¡1–²›Ìw$ŒÅuß2¢“Ô;O—9Ìòè­›o¬(x3³YËÌÙPýo¹Ž{EéÍ›÷‘X¾ˆ,ÞÄ%縉 â¶bóÖ»ðÄ”ÏÅf#-~)wúÿ÷ž=J|î¤4í`8Æ™C#í*«±>éRÆókn‰v»Å✀KLüš ]¢ÐƱP¼_ã“Aóinß¼9.ƒaû ÷2ûÉ,•#Û)O:~æÕ°¥¿èµ¯5ÐXtQ댔{Ÿ ÑYÓ; æë¿KÓ?ζˆBlù¦ìÚ< æqyÜÜ W@\Ç<‹uT52­br=•[ ûh¹’üßÂ.´ˆàµMËÇeB‹×â‘ÁqËË'ÅÂùeÝ'šÅó¯¨-¬$¾¼)²U5ôHÅØÔ7ë2WœsÓ$~onÅÛ)j+ÎùÆ»¯ ÕD¯üö¿ù]¾ìÄ.ób‰|®·sT#‚Òï¨Îï]¿3ése¸=Hõ/—4_ ø†˜´q¯n1õLJxTHAR˜Œ™ õq°¾m•uÑ‹Ó77lÑ…æ–ì¿P*™þÑ FÃü*a¬%Ä.‘¼aɉòPެe¨ËO›G¦ Z±H´ÍÝc°–·cÓ&%´mjØk‡¡ô¹³¡Çwõ«:4îdóÒzƒî/f¨ä,±9Ãl ©ô]«_­ðIK¬U'ëúy+Ç—Ív®7¬(¥* qt mgë/€È¹Ïs ÷ÊÓ½Ùî þÝMñßþ4.^ÁO 8•¦öN âÖº‰$@âIÝ’Ïåƒ\÷Í °X@Ä…ê¯)·à:£êpáÂö…Ýlz«,ò”¥ìun>àÕ2Ú”2\éq¾Ú-—Ô%¥„ýœ›Íà…Ï ƒkê¹ÖŸÕ“÷µüÁÍ6–{*"ÌÝó»ó¹*(Å/—³ú4ùÝiF®Ÿ-È£˜2ÕÆ@QGïÏþ"9´ýËë«Ò÷|ýËÔâîè_eÃQŸÿ*Ô÷kñbÝ!âbéÃÓü¦¬'y´gé¦ü\š2^gðÖ‰DH~[G£3\Ü(B6<úì–ËaÞ©;Ò°<ž„_ji¢¹“–X"øWWÀ¤.lÞ>ôÅΰ©’_œ™©Æ²È@G£ ®GiC%Áã_†ðmù×8©¥C±Ô Æ~V6´ño5n<)$«zËg ÄuÔ@ fÍd~ ( 0“‡¬æŽ9±3ÍcæhSóëÍ/» ÝÜe5 ÕK^Yõ2i‡sa ­Ã™‡Ä…¨3¶l×='¹aÐÂ/š¬^}® å€Ý×&®¹Š?o,e`ÚCê  sáÂáÄ®ÇdZ«î®ñ¤Þ)f§SqHQ²)Cþjw `:.ÿªz¢`T±-£žÂ$ÍÇ>éš*2Z³HxÄlíb!Ï!©¶³H‚ݨTºW‹‘Õû_šr‚àøì »”ÏGà#ŽM][î:Æ[ô>œRm, µøÁ<}11åí[äÒó•2Ïm2gªŸ:‘0׿ŸÆŠxï ŸWwxÈ7ù2¡OX‰LížÉîSí66æ^§… 1á½év ¥d«)Ø—ç½y+‡ÀÁlf•„O8ºW>w¦1`öWhjü "ݹòq+¾ÉWw<$… ±²3I³÷³±|dÛ´3g;TŠ-\öQÍt•Û½JÔíeXõÚ·Daöú{2ÏCi¥GÕýÑ®|êB°f.Ńà6ÒaÓlÿ¤ó,úüafäìéñƒ;ƒÚ@Ó~Pë,>8‡Ä`F ™ßSÒ@å1ÄmI ÞnÜtgšûDj!™­ŠlO^ö©n»å§ÑbSMÖòdîdŸíSXÏ:g®–м8­óG¯M¸_ê÷´Z”Ë®×A‹]Îz‚ŽÛâY„ÿÝlÕ½I4‡’˜¬çðFñÁí±~j:Ñ¡Yðr5j"9ZôNû{¯¥a¯HkXÛ²ŒÜÒŒŠªûŽ3ìAÁ(F@ iÕÄN‰PŽe?*‡h‚hÞdŸ¼ö ­žjJ¶ö¬ø2ãÀ4;ó½ùœôêŸs×ÀU(qÏtsją̊<¡˜Ïíâß&ž\ã}%/(|ûoIÕÆþŠžƒÀÚ{äŽT?Ÿ*¶~«F$[´ÚIvÛ«Yª¾Â}j(6Óc¾ÒQÌXtƒúÿ¯+0WHV¶OrU_Zå É'Óê8`¿…´ñ•FêG)š‹Ô?/o ww=ÏÉ&öÞYR:—褟ßz<ÐÝßv‘·‚ž3͇û¸ØL ¹!×’ýçiû‚mÀ Î(å TÄzëÂÁÐ3å2>vèÌÜ:N¸LF„ÓW§éÂ{Ùœ–Ä€5¡Šq(ø3¤ßЪOr3'Á?1²ºŒ?uðç»¶¯ÙÂâx ¶o(02cg€¾t:kîñ¯9‚LP yÄšù6ÎmåE)?ÝDÄÛ̉¶¯ð| ^óÔ}âûE¹Fbè—~8Õæbk¨´ô–©K!5Ÿ„ê÷RÒ<éKfT“l`"ûOnýñ8Mᦶ”Ew=\¸]}„ä«Â Ò{ qˆê•[ ïÛ5þ`ºÜBŲ¥ÍVQ&ȸÒyÆ'BƒÌ-Ù\ú~ŠlÑ'³94F$td±%@XWø/VäÁ’¹g˜º>6²>"¦:zø+jˆ¨±ÀúdžÎdwÖa_ßj9%éϼò{ÒšŠð+rr 7B5NC^¸ðÑξ[üÍuÊIàõÔõJ]N\ïcÞ‹ü®z¥ñ¸g‡’¼X Ûiü t›q!Éf,£¾YZ¦ ÷o®†[Ñ´”’E1ö=ëè¶÷w 4`«ÅÀÞVúƒlÒv°QOv Ñ‚ ¬¾²æè‹yɧaÛò=ɦ/küßW¼P•ô™áE“¾jù™<ƒYüÀ°TTÂËo{«»ÓÇ/…NùS½Üñ¦Òƒháó^”ÇÃ:C©„ñ½Jço}SáDÓ¦£Ä«¬!î×uô§£Iö)ù“§à+]â¾:IÜ킥ܺÊŸÍ³êŠæÒ ">üâ½åޱów]KÇ9ñ$ûâë1<@Ý ²ƒâ§?ÂK™V›ò4,ÄžÜh%b¿sØéšL4¨‚›$‰rÚ%.rúIAÚ{[ÒÀm£uS)¤D8yBF3dÍÆ¶ †-éø²¿²™¿³>üa<=‹:Ÿñõ²£šDáöÈÿ}ÐjŒúVÓÜ6þù~g,@ï(&˜_A=Q]øÎïË–BÁ ZYàÐd)iÖs'P¯óõ÷×ûWƒ7«CÄ3ÎÙ -Ge>(g7müÿªïÚøL7ϵcé9bkŽà—_§ÀBs¢1‰û€˜3ƒt‹ÇvbFÛÔFç¶+”/Æ”ÈS½ûqŒÃÚà[è+õ˜¼L6H½Jçc@b1q…ã}Öîb—;©&À§º2Dé½ÏÝ2äª*‹øî¯&ÎYÎìã8÷©-ñ(º N]p>½"Tì‚eDÉñ?¬<µvãåÞØBp)ì,Þ•ø[êd\ Y˜ŽÌÑXxO ®“m¢+‰¬Öã*rÀ]„k‘µ+bpa¡]×óŤm >a9gDå%Î}¾‘å™Ì\½ÛŠÀË8ËKÓ_Ç\­‘©Ð=àûÞ=n*_7:õ1€jHà=ª\šü%†1(®Hª|µ`ÔóBR(i^‰ˆ¹~"Üã8ãnà¥2~Ë[¶2ˆbÕiROvJÞ¹¢s5û×ÁEJ®"û‰ÏãÄa»k]›íï(@7 ½Z²¢[³‚ÊѲ÷§·ì^ÓßN­DOª¤ý¶×–™¡Q< b9¬p:¬lb[Ê ©«›ÿ>Å€Ì ûp˜÷̃\¿OÍŒó¼Û uŽøL˜kRŽžxç¦~$tr£&Eê-3L 3mÏÓf˜#è‡Év¨‘ÚÕ$„ïÔ½ Bܪ6»ö fžÞB3Ó¸÷oZ34Gñ~šæ~3téDãö£ûDÂÔº"víÑ>: ~Ú˜°8ë{ø"ËrÑÙr*ÕÚ”#²ÒEøñ¢'ûʈÓBž-{6ÐÆt)%½Â™oF®ýS®ødRcظӷí>¢'GÓÔäݬ}òuUXÝ2öþ’ÇY µå¤ØÓE£ØsË’²sÆ&èl=%ƒNËš`uý› )åû®|ä˜WC©9,a™ÜlèYõ²I{k°‘‡ÃáO•h²¯9™PAÀôoäeIÝ*¸`-ðd(3¤õÞÓÀѺ.I²lxhh»PÜ >õ¯Òyiìwô÷0¤ãÁ9®X'9yQ”#zG¢ ¦3»¾ýeÿI&‡¦îá÷&\Æ:K°‡"ÆQ¥.½–ØDÔ" J™wzXaC¡OÚ"¯-k°ï˜šò_ã«'ðje¸¨w8¾ À‰˜î帚øAsup,¤•ÉßôK›.ìY}X“ Eèî/»@ÍN¯¼ªŠè6ý#ÂÀÈoº>=ž,aOŸ*¤Ðv<ÅýÚ]ˆ<§; ÔÖøÜo$TFFK·É¿dÑüXQÒ«®r3^²®#3̼‰ u…9òÖ¢ÏÅ5S£Œ§üÎ!ï¯öÙ×Âg9ö ;‹› 2\©íPÇ’vÂLfÝ¢"nqYDÕðÙ±bº(›‘?†®»$\Œ2™•y <×F…׋÷#ÃÇØyª\MBo MȽ¨ªt&;˜C`æÝ!‹Ü*—ï¸d¡ÇWÕïðÏ“wL@jJ㦃ù`›˜3³"§#µ]Õ„7 ø+ßÔºm^³•ÝOÓêg«°±òÓ) wtß,†ßñ<<›þê.zQÜ[ãuçܼþÆ÷QEùûÍ ãß]*V¦ É8þ¯Ð 8h)J«ùÁ±/A¼b³ 99YPnÓpâÑßÂô¹„Ë> q»ª’]Cs˜‰IæKzļ@‰ºò—'WxðxÖqN„ó`tÁBåÏUsëY“!ÚKóŸm©Å*Pæ(EâøJknøœÙ‹ÑŠÌÙy™EˆoÛÁ³³:ÐùN` ]Iø ‡v½ m•²Ág _Ý| Z97Âm#Ý¿síþ€àNâ<]92EµõýçNåíj öôJ’A­ŒE§J£~â}®(Hl„,ckÒÈatê÷ÌàlVÄ5œì=Ùƒá?ëVQ¹2°¾g!þüÁ2õoPZ÷¸±5rîÌ1”"\“‘–]÷¾ë¡ƒžÉ ¼•ž +nÇ?-ÀMÅ®ª#à*vŒg´€˜xwMLÐÞÁL†N¸ã$ø»Eàÿ •½ÉwUpíÜWË©<.èœ1L¼è wM‚É1·agÌqÐ<Æ[ß·D¡É¿.ºP‚Ú›ÁP>=‰Ž`û§7' ~ÖÃÀ†'á{}gàQX1ùÃC•ã§`ËáŽiT²å,´>{e·ç÷¸fÿÍø‡õH÷¤Æ}¶ßI\°SÑÁsåå5ÈŒ8b5aF*âB¤&NíØV]ac4'~O„½é'y_¿˜¸{Õ~ýì…“’Îc ÎQü'zO>‡Ã³£Yž=0cënÏJ9™ÚË6Ü“‘½–î *ÅmèLD™%!øöø ¹\ñ{Û°‘íçèÐ-›t¨Ï"šá¬»=㋬?òG¬°·ª=:iqµ\bH@95ÆFbÂæDñv b^Jx[Ñça±ŠxµÉ#•;ÆR×üéx¯NJBÒ|¡€N•'¢n3Ò¦R+ÀWP@K%±´œ_~ôšÁ*úÞç}õc÷òNUg+À¸š6“@6mpȶõ{6 üÒʆCq௉S²°È¿ŒýÚMH ùòÿÔ_[WDÀË]K.ª>°ûÔJÑ£H…G"ýWÖèIìµÃø6gYË;ÆIÒF ä|”Ù<ŸŠp-* ,#m%”T^èJºÕ–P¦ª:³‡¥y:ÅVjí–\ÉJÜÓK’ôàbFÚSâš?ArÅå+‰…,ô‰È’í’ծ✆Žh).‡/Ý!íBíw¼ ×we¤™£>f³šŸÆˆŽ ›þ„%Pr}c¿‹?ìô F&gÊóZãüŠë¥×Pº;Xé³S?ÉóܾóLe´ MMÏäŠ3Èõ!Áô^9Ùr¸eâýe`äTêµ—è­'_5SÄ¡¦Þ” tÙÏGjù­Èa„œºFL«?¿Ý|æMš|_-Ù= ÂPhÏÄ:z~ƒØêµ£ÉB(¥Xyð.U‚f[ãþé¸z/öÀ¨o1ÝW2çª/ì†9'ÎÏú¥¥³hìv²4ãâf”“,{©¤¢4›çžSß_ñó»/În-ïÔ,ØÑAº¶ç¸¶â4›Wç¥NíÔÈfËã—CeÐþ#·§x/‚©\(ýꙎ¯±†9-ÁŒö€ë÷P›˜ØJQëÃÇ3òÿI>Lšå—€*ˆ¬iðƒ‹ÇÅ¡,Eˆ€‘_vêä™Ûi™.«]U¶w®¶ ÷Ò¦ ö4»;]ó8ìs£$ÀY„ªÇú„ã3%™"¼3 ee›M}%+šüÔÏgWÓŒbçeù{úáæónD²ñøQÒKµ9N…bøÃ&ÍN@àËF[ÏZ¤Ë¾.‹ÃMAÝÞ'µE&R·øLÃÅ/ú}ÿÙm.yÏ]ÞÖ ›¸€h6d÷‡?¿§Í”]Ôô7܆¯d`À@vHÒ€›U/JZ»5cIó¨„É3<=A¯Éo—Çiá…½gІOvä©NÕ¦ŒÜ}öžÍYcá=YR!¹×{Öb<|ÖH¬fÀÀ*k÷0ñIþ«øøÅÂR ‰–·Ë 0š¯C(Ak Âð¤@µ‰« *6:Å~}‘4P¸ß!½AdÙ¥Tyx¤ùå…|9Žð ¢1äk·õê1 ÀÂÁ£ß!¯×]édþå=sR5êwÓÔŠäCl=²Í\aú-ìÔ³íƒÝxå•CZñ¸wòYùÔŒ9 HŠJú§‡Í$ Žáet\--¯£Ìgõ‚¶@;Fˆj„àu’ú®Vž"»¿6x'e £8Î5  w5ªgý5ËVß;¿€ظ­óÎIÊ!Vää˜B="DÓí âr3›¼ï´— ÜÜø¨U1ËN~íjÊa:…Ñ.Ûš<í#„Û?Ð÷Õ¶vÆÇYçÆ·R­6_a»:¥o}„B½Q—‘:åR@¢—UÛËð iÄóVÅKî‹8ÇÉ»?»aáh˃ÉÇ~;æ¬ÈžhÄr°ÈŽJÍž°>>ºÝÍ óÓº±`½¸ºßž3‚,ɲ6"˜@ÄÍ¡EŸ°Þâô¿Åç(lõwUª/$ÅDÆŠeâü1ø»ÆT¬í7´õìØÒšh“ëßá DGaD”¼Bü0Ú¾uï¹Ê>> ~Âl›ó¿Q;¥íŠôÎ …À€ÏÇÿÚfk€Q~íDönêo€——òÜãÜœ¾£3l/wµûêE_9ëJ„/}ez  B“`Pé%8&_‚.…\0_<;ép6½|–Š?èl šŒ“¢*CWfoΣ â¾¢?„“£Â¯Hã˜T;õ²/¼h°îZ˜í›#/ÒJÜ€^>nÖj P sÆAaÒ¥dé]z'™´ÅÇá}©‹Ž;æ´E2•ÿ+€Wê·—ä-cc“þF+,˜Êã ÏøyO=,³îrÊ$,•ºSU|È GšŽèS °°b„öÜÓôÝKF–Ã\yKŃÁªš—ÅQ ©¾”†–ãoѧ'+®zå£tN¸»­"WBâcœR#…SBä“HuõYJ‡EªëCáì;è÷\¨µ•¥% æ­™SòitßþYªr|¿ *:ùMMݽ•š+-ڬέ¡î‡~ƒ:J­)½^2]?˜]ß;`ëàmiPìp4v»ZªÉw]–`óUa$ÌØ•¨-6Ó $Y4õ„,(¸€[ÿwMŸŸ‘>@º$=§BÙ %ñxm{,]åØßh¦£y˜ÆŠ:†žÜ®Ù§~Ld¿dsPúSiÒ¤­é$£Ñ¹ÔDaïh½€é+íZ¥¨°ÇùÉme{Ëõú÷W‡Ä*ß4çås£ûnŠY%gCfªÛžVÙ~¼F~ 9´…uóSÌÇÚ‹¨ð-ì8«î×þrTNÂô*ž**5™IS6zVÌao¼‹•ç¹-»ÍÒ÷0 yÿ!+@áz¢ôí@0Ü]ð%½\±³ïG©R{Ï,Úú>ÈøyŸŸ±Ið‰Ñ`Nr=[áb¸ÇýÏtŒ]« VÑaŒKÈʇ 4xD»ç/ÀÁv¸œz ñ FŽ{£9Ž»ç@2‰ùœ­5ãaè-¹×?c1Õƒ[‚]W†äKfØ;C¸¡¬ºã©yØFä±Þdzs¸Ü’È6ˆéO5i©Ë3Kˆ½̶ Çêhë .ù[Á‘5—Ò%I*Ëëu5ÅØŸ R&ÛžRWáûÙfùÃ/¹`ÊfÜBZ3¨tR0šÊ‰B¢ÜtŠ˜¹eÁ•Õ2* ¡Ui¦ˆ'ó©zöX”oðT¼oVA†× ­±(jHnX+E”­Òâ‘§3¤â–Åö›Kî‘îø`­éÈY-#GbiVÖ³üý–‰(K*ˆ¸Õ>ðQã¾Õ8¹Ût¶k»á?ãu-ä/` ~ãsԈĿÌ,Á“ÖÔ”Ý=¥¼^Ä?Ø—è˜VxGÁ^èÚ_Oº’6œBÔ>™84ÕþÐR©JlÓ¥øŸòZKû>·ºÅ]sÏÍ‹?0âï\…Þ‘¥Ÿ9†»ôËéÑ9„«5hð¥J]ÐoÐTUûÞœ/U.’~}àöœ¿^’ Â~€b|3û õ¯=SAUæ­êRþ°Æ€ãxmPUÌXIK Œ7D X^;Åœ>ÛrŸ#\à¸-:Fÿß Ì28gµŸCrz@E ¹¶utÏ>~5q§éŽˆ½×ùÜÇä§ÑÂȶ¾‚Ýäìø|Kà~‡ÍFcn|¡Èä¿È¿îµf8ƒy_"+×\NxZ–4\¹cè>¼¹4©ÁÙy[C¥šâ=q†¥…׋]¾Þ÷}T¿Ðô8zOÄYb£â•MДv4+þö®KÔè¬×S»Øúä§x†¦¼$ÓÍ'`—!_‰¿9Þ^=W„NÉŸ‘M)4Î6R8“ä/ÊÊÀq`cÆHá!Ž–x=µ‘ ‡6;å"½²( >¦×Þj¥Cøñ¤bù^e³»ü$ê•ÁÒØõ9󵊽3-Û1>%‹ÚiÉþð˜:Ô»lòZ~4ÀÈDÖ´u²0$üuÆÛ: 0Vä>ÊùÄý€aò`M¹AÐæ>2îÒ_] š•-šÈ«›Nùò§qϧ˜Ðûys1¦ÕÉP,¼;9[¸ë %«×Ûñ© ÁMöB`cýÏ^ ··l«ná0ÀÔ$ÛnáÏ#ÌÿÏH×–44!›Éf5qõÕ½ú‘AULÃLW}Í!ÁÇu·§sAA§&µÉC?ùN82ÕŒ¬óòÅ1àUÈ>É úœÒÇAbáï}4=‚Nç^W¯iºm’¢í_ôo ½¦ï&)R.;,nQ4÷®(»ý†t¹”vԇߖ&)ÂRÛÜ= ší=¦!ÒTI4¦Þðû‹Ê„A8¹-ñ’¥ÃßJ<7ÉkÑÐ,ø\Rª[ˆ|-½fïj,"Á£ä`©hX=G¤7²u×wçb\Šãø‚†@4³dgáE ,üŒJɢĸ”EÖ­?Ö”"¨½þY‡;ëâ–k!C~UQ*·{ðêâèÆƒ•R*¶ŧ99(x°î45Ë¡„ |µ#Ч"'ËF:»“0ÑnºŸì€kéD]•aÖ 0±OƒÉ™ie+§Íuƒ‡‰ f¬§wS欔ØÏhR\@Ä…äô6`†^ÚíójÆ¢ê»ëÑþÕ0ãIöNOXè )Q¿‰×iÝᯠ-]‰%Ç*phZmÙåw`3¯ÌS´Þ/ÚOE–“«´E2ë¹ ˜jIU{•ÅV-ïzú®,½ðÉ‘Ns=X¸ÿ»J]ݳ‰9ò*ï/OŒ]u²†vÿìg¹<íñê0¸‡–¬)U ædF{+‰ÇÑ“Ùÿ †Û Èaï´F2ú™c3ïæðŠWW£ªü‰—ÊgíÇxòû¿’¿;Gȹá‰%âQÚ¯jÁñÝ%b-Šd *Õøšõ‘"’ðï=ò)²¬{~y1¬Óþe(4vëyXÓO} þsOzïçR÷ÄÖ€Žs—H¤)²îu†Ï.Ùµâà«©jE¿„Ö²™S‚³èùJ 0É8ãÞ¥•˜¤?ýã(›é¼"Þö‰ÇÐM}Sú„FRš2 ÒúMYÁ,ž2Ó·žÎµâi J¿r(8âExžç<îV/¶Ï ®€ž ä?µJüç /ð‹÷2Ög—IDü¢/wÆøÏ…„ßÚs1º9”"%ëÒç ö(6!<ÝtW% ûÜ“»†)°©žÖd‡mpR­,P„Y-Ký‚C±aÕS-ÅqÞžoàíËÁ¡6¯-x„ÂzŽ»yKž®éL WruBW\«õ”w˜ñ« ÂVJÌNÔ‚sà¾Øx±•بIY´æDW*óÉŸájûqˆ"F2*ÁdÍú›¥]Å¥~°%ÈÞÄ¿rŠá±7¸ïÈrOd%@¸ÚÆX¢Óþ…Ó®B­Ê6óGç¹d7uh½É9öºZ©§²-B.F­›µÐ Xf±¿ìP­WVÊ+àra^jBAž]ËÛ#Åï1AØfê‹vÏY¾nž$+Èhˆ®P%)ê!íhˤç¡Ç ãC)#cZdkL¨>¶s.ƒ ñ3oÙjŽlÃqÖ%¦ÝFÚÅÃ[¥dxÝM³þ$¿âi¦Ú£Èô6±…y^}R†žºÅ°X—†¿%Œ»3ãbêí¾³{»›qÒ±C9X몑ž›a‘2¥ÛX%Wóí˘—Pצ¤ÐysmèãdëÝ€ $cÓz. P65ІñV¯"¬²l‘£ä®æKþUÿþë>‡õé«WêJï`ô©GÝÈ"6@1þ_=³ÙÏ9GÍøNÿ‘a‡[ƒÔT—§9Z;©ÄL–oÔƒÂÍü¨¶ÞqF/E‹°öÄ}¸º9ƒ[ëaáÜÓ | çZO÷é…bþÓøÐ躨Æ^z°íÿƘ&FùJÒ¬¡‘MÓ«¿‘Áу!QO¤I%‡•\÷4;Pò±1…Oš"`ø¾'vY³Ìg6CçûJ³+6Xó`ë¦7,{?‘ØÉ7¿E¦K®¿[ÎÖú‘,ýàv,ì¤Æ5ÃBÈ=Ž9”3’ü¹d‹| hEè¥MVm"6¤}xiž#ÝÖIµ].É«iUaˆØ_^HoŒÄ!0ÌÁÓ¾qý ÔUF‘ûFÌýêü‡-2g!ÅFÜâÐä]51$ÎÝ$øNX)­îóåãGã2žµe²%ˆNÀËŽ3¼Qîìp™%ž3¦ôÆó”qy£ä>£„q 'g|ǃ¿¼¦;Ó?¶p›/éÅ|-M|,ë¾—DcÊR.I-uLwªT Šî(åMüènu[õòr)–åúl†ëÙß DÕ>Ï1ÕÁ8ÆkVÔ³×7;—’ÚtͲ ÑKk8…½õçž(ªFã4¡Eâ̵²â=J#üUo+º¾—Êma–ÊØ¾U@ufIv#’Šžd6f 1§¹xû«ëóÛ}„ƒy,™ò/¿Ê®HÇ€¨Å0v6þÙ/q…ÒŽ4‚C.+ù||Ó][ÍS\y¢¤ k隌Ç6ê˜ÿE÷ ÆXˆy¸UΩöR04¢àËK³ŒÅUâiÂÛÜt9Ëû·»£Å‰E#GíÐ˦F¡9òYÉtƒŸé%ïD E]cP2Ñ™;ÚèñìÛ+RþùŽ´ÒP TÇôÃÍèÅi¯xøbú°¸ 3î:“ùs#ÿÑ›Ôt ˆQÀ?‘ ‰Ö¦ùZ©€DAÛÂ3¨—ϼ¥XöW¤Ñm3ÁÀÝ[âkl¶sQ3¨D)pò‘û¦yFÄ£ò$KÌ5 &C!)ÎÚoïŽÝy_þñÐ',¼c'ÛsÑ&ŠRô’ ÏÄ[²ÙßF¤×uo×]JÌbW!¹3-ˆ³6Ó1=PïKÂ@~%¿’–E¿>£”R×çÔŸ£¯îBU9 U·Ú3R84´lÄoèï§ì\\„0 ›L†ôAóÌé aý ¤›à¾\«ìüU,÷KËë©}¹Ü±Ã0óë‚}ÇcŠÞäJ¼ÅÕpÓ®ˆ*$H”½ûŽ¡vŠeÝùÍU3Ⱦ³£X>rFà—ÌÿK°+Š[ÇÅU.ö õ¾•D™…4+è1­*²9ËüÅlþϽ-bš«ˆ°&PÈXd&Àü{ü‚hYK°'h ¾>´ªIP¤Á;¥Ì˜9¥Ú#ü à£(ûá%»Ê|ölRs:Í®\ß‹iašz’Û çtë÷¯˜éBG×ïØf¼é{ªµZ9‘¼ªâ‘³p$ÉÐ…"ùßvª¿ 9?qYûØÀ>ÖÀQh5«(nÝèªéÏu‡ }X\(eš' ë6• æk¼Ù¦dEæÞ¾‰e‰ÆW¢š8çu½Ýã¿Gð±K¿îƒ7¥…þ¶¿·_¬®?£S'EgÇžèÝÓ›MÂíè; /’ãR³"tW¶KYÊ0‡§<´Œ)[ËlŒ¿ÕÇ€M¨h12;ç’$,|ÆîšlÙuÔËf°æZp.ªÜÛî™äŽ£Fs ‰ÖÀÿB§ù[h|©¿ƒûW%†âõ”rQ† ¡Ð×]Ú‹G<Ù`ÃA-ý™mßüXdÁØ4u%ŸÜQzzí&· #fXpÔ ”ÿúô6…~”rêá˜g¡Y^œ »¦J[[GyÎÕ4åEcÀŠñ2MãÁÁàUsÌM%¼öKÌÛ¶Ý(ª¶G2ûÚÐì{8rØÃ[ˆM¬êÝ)ÔpDß­å>"µ›³VÌšÄ!+¤w‚âL(h¯S5£ÿ3ÚEÑE™1ËU†Q86 Œ£XQIã¬FZVM!k0Žò°©O(Z<µ†{2k‰úy“ë™|ù ‹©O9B±¶œd‚ÏHÀ.x¿l$ê^žÐš$?5Šˆ‚ú6X>ãKÚ¦ö>Fë7‘:zÍlªù‘?±QF3°ãÿ¿ÄkÉÂSQû}ý,žtà™Õ™ù²%³0áÞÉ·Ì/ °ªJýÄ‚(©ËB¥À"B[ºko0A¯n6µ—1©ÎÂ9ó$Š%½_ð~±r2h§¶ „¨q¤«¦_Ü’2Ÿ¥7fè7Ø5&œ°”·Gݼ»m—À¹d´FËIQ lÔ¿¹GŠ®™‰PܼÂ5UAkr¼æ?›:íÕÀq«®Ú8æÝêc$Øk1$Þ-ßøMʱÛDü¸&3m‡³nÕ!O¼÷ð:ð¡7Ó}†ÚZ?þ7·&4Ù¡˜WŽéb ·u";#‚xëÚ„˜%Úüí]¥Æ zêKPºßY ÝM8 ã$êŽßŠ_®e¶H˜oYûf.YU9Q‘íчbÈŽwé~w‡†a¨»(Œ‡½X¯£ø¿»¦&ìqr.9)׫ÏÃÑá`Šv+·B`«ò=—4 v)mÜv–š†ªâÏ#Z£­×Ô jYtæ™°6а)ºÞÅ÷š°Ën›VÈ‹·ZµÄäüïxøûB­ Én¥oD»ŠÀqx—ábZ"/FÂQéœGÙp¥´Š%ƒtb–žÝ ¼:à-/ Ü,ƒ9‹$o˜6• Z‘å@€ôÒKKázް›;@ªz~^„zP5IºÇ*qƒfNün?yBž#Ïë\•‘—œ’0wš¡Å²Kœî»\$¸ŠˆHÕ‚®âofªnÒ¥='îÉw¶ºê…Oœ0h‹#ëµ; ùù Ã1 BÎ7³V8@ãökzÂÖ!çZm pz)¨frµúˆ;KåpØM³¯{šiö"½Ê=¸r½§Dˆ-on?ZH`éE[zâIRž5È*§‹˜²kTp>7­M+Ü6¿ú(ðXÚX3Äk7u~ÅR‘…ìÒqÉýx j²`u›j蟖îÅ­„Ñÿ^ƒkÍãÕÖþ._,}:6¼Ýugo$¼s:ÊëM8 ŽÑfÊ öä{dA$›r—4¥gXu²‹(T:cÛVÈ O\±ê;&X³ôÛ˜ÖÛÓ;ïû_üüÂù6:/±Á^Ë9ðï´ *ÞØnƒ¶ñ™Ä¸¬‹*áw,ß5¢6űH <ò‡iæ kß„Þbye©9L|øZâHÉt—ŸiöñªÌf¢Q€›?°Á´æL!ߦ÷‹¨>f]bp‡nô„\ƒ ʼnìхϬÉFd0ÖôtÅ#¾º óWóO&oªÔäÊÛM?YáIìtyæd¹W‘[*^U Ÿ˜T]¸i‘àG¨YLnbˆ‚ä²¢œG¦wÒAáý)øU¯®HÍ^Õ™b£Fszÿ¥E!í òþAÌ+@þ€tTCæÑä­aW¹7çö£¤Éß œkÓ~Ö†nºP¨ðø®¤áâΉÑo³•Þ‡L·)ò´°µ°Ÿ/_ÝÅ?#·«Úó/øD/tJÂB@QO?Šh£¹}åÓ+&­äŒÕ\ ò¯¡FŒ"ðssG]W•;gvñ·Ê%"Ä’#Øsþ£/™]!òýÏEðñ‘¬O,D/œóöùŒ4¹š×–÷l¾™S‰S¤”é[òÓ=§Ã‘Ȇ„tt™ß®š¹bœ'gŠˆÞpmCÚöjÛˆóMº>bµ!vtO íǶãÈ`c›¥fu í+ W]ôFù!32dEJz½>a§pµJ¨ÊØ!¨Ê|Áy@矛åÝ—^3VÍ˯àosbíŸìÕä…»ð?„$+U›oU׋nï!Ùá)»T©II§&WÆïä½#®Ã!ƒ Yš(;\žyÞ"ÐwkÀ]EP‚æóKª@xKEŠ"©Ö1Ø"BC38U­(@'O jµ ›b½ƒ°k?Õ·|ìÌ|vJEäŒs›2rÞF­4ÅØîu”ˆáÌ\±šÆh&|•ñßÚÈ.À‡&:ùö +~tÞÁ"†¼ÔÅyÚ<{Ï“T¦d–Ð}¢‹Xgøãš:@°UÏϰ¤!}; l¢m¬|6«\Uî‘8SÅ¿º·‚þp§Áì©$2¬ÚÕÑ1âªg?ObÒž@/þ3†¾ßçùýS)\T}ê‘Á§êž-¤9¦ÇßÂ%µÉ¡ñÈÅôéwñ G¿sŒ{¾ÿú`¬+Wa¬·Ýq.ŽÓÐñ ôÀ‰³qU¯EOp¶ê1/3*ÓÌkw`ŠŒŠÞˆ#:z{H«g¼]Ö?Tµè/.Ê™­48o)ê‡%lfJ)ÐC­‚Aƒúösª%Z§ [!6ÒxØw¯(ÑI8Uè÷…}§*è|N±Û‚ÉB)KÏVW¸ïïÊŠ?72¡i%âñµ±^)éM¸- ¬ÿÄ© }UeØ/Üìj{6?y3íí´ÍIàú7®¡50Èq›p%ÑG¤<·jX [`‡ûpÈuÜQ®Ù÷þ¢ؾ€¡ˆ–¥³"÷‚=ôõé@õ __äP¦öïê˜ô‹¥gªH©¦SN–—só‘¹–ó vÈÐÓçš®d·nЉ8;Jd‡B`$znI ‰½×zœ²ßl’ÜEúOÜD y’=MZÏ…àeÈOèÿvR÷¾ÖÉ»0ê«ê™Ç?53´5ÛXz“*·f_­qá,ÞÏx'vïÁ8eˆ…ïØ eã&·±ÙIFïÄ=jñ*šEY„áhFMA{&´Ia[J´l@QþùML wÖCfšÏ*5Œ#bRõrd4$‘Z)jº0Pã†$Ib2Æ’ÜÆV-‹×®oKì]•hêeA‡PÜYLŠåæÌíÓw3ÔÈ·à™›I.t¡˜ýa¯vÓ@à@3¿š±@! ¡Qÿµî®=³Šn¤Ny\03šè›3ÚtWøúX^™Ê–síúËEzÚý„³gý·Œ l¡wÝ\ö|ûƒ~™ËXñp¢<ñ#æ¦7Œ6Ø8Tþ AwìçÙ‚NÖ¬§ah€Í#ì ,ÒQ·fÐf"…¯S~á 5ð¶Þ!ÿù‡î¿ïõ%Æ"Ù+š4oû|›ŒÃ·˜ åËÆ¬Ÿ?¤È5n®^Cýèài ¾¨îÃhºÅž©–·G ?s ,ü¬èV‹O®•Zpû•Ê*’ãÕ!Þéô?ò_jP mÿ\z<ÞÃi‰¥sí[àÁâßåÕÌê^l½0¾B †þ+Þ ÝȃÕâWˆ¼u"Îv¹¦‘*©/ô®Á[GQV£áøÎØÒ|…d:@ˆÇÂ9]ý!\@ŒýËœÿt{N}P{ׂcù,éè±ÄÓìXOz‚€`ÔÝGÑu”Òʼ±&)j@*6>ö#Áx'ÿd¾ÿ_½p:îœõ’¾I)6óóÊ Ô8÷(DDÇ·K#q€z/‘â_š–Éœca§ÙâNž»×<"”÷2›<9ó+¸^Êûç «öH„.²*Û~“ÃxÒal^E¤[êÌá©_5:OÈÖZ8D†P“{Q ¯áX†6C ë!»ó„L(´·;d@}Ð.6u}2Ó­Œ4/ç—ÄLùŒ›rMàùlß;ª˜'Ï=ø6}8¢Fs\Þ|â¥z€VÛ§ÑJcØI¥…ß <Êcù|•i•6%÷õW­~ÍFRÏK€•¦ÈéY¸ãTß8DwRÆniTÁµbÙÑ%Vfø¦‡I–~¿É‡MÉåR¬–·b¼8P…£¾Ø§3 ñ±ä…Ý ð^ò^× e¾|v°|0›²¢ AèhµÙ´Eá¢ô\aî9׫—ÞlįÂäºSÇaF=Hç:#¼fïbé†XÀ'¹“óz›ÔÄS0%–+&³š/¶ú™FÍC«ë%†Î”Z~0ÛÄöÞçÓ[áméõ£MñX¹LÒK°ú‡APp´Ü¦>iiÚÏß-Aì`.¼ðg¶åµt"e(}iï{*ZÐê@&CEï}c—§ð€!rüÆï‹ÌwƒJåU·K%4㘡/ž™H‚’}“þPöºDüc:t a,QÞRÀ=ì8Íjº` ?¥;¾„ ²ð†81©ˆ ÿOSòÛ—Ša˳í!\|Ö(J~à]ÔEW,Åà\ªÜ[qÝ:ëÒöÇàeœúPß 1͵3…;8Ã/^ãüWtÙÐݶ7%î¬n›§}þ¼‰è@§ˆ­Òƒˆ'% 0æk/°-ŒEµDfU€Zz:o^èèVó˜!Œ¿³Í•3¹yYcïä}æƒLyHЖ²\(žQ1RÔ% Ô›1ìЗÅSL¬%û®×;"Ái¾¡]ùØ·íæ>Í<£Åàa¥ü~ΟPýÎÃ}ÈÒKÔa6úµ’'Ù4—Ø7(xÝ¢Ó ‹û¿-RæÏÛ„»§`ž*öÀVa¾ÂÁVà–.;‚ô‡#–æY¹?J°ŠN*Už†u¬Á €8‡6ÒíW¢”©‡žO2 ¯Esøt˜U‰!ÇÑxöë jŸ×>WÕ0ø0 ¨œõÓÝñ‡EÇíÞ5ÃÀG³(–¤Ö©ÉM¤¤ØP_úîþ²Á nõ[ÅE>¹`½TžeŠÍÕ<É"/~oO53ˆÐ~‹H]Ã¥Cf6 _è…èu%L{^U?àwN‰ ù¤Òñ\…~tXi”BÜ6úQ²úçiĦoZJO и›ÐMj˜Q:£ÙâÜÛÉ2e'¢iëÇ]’8X@˜æ ñ¾à §ÊÂ0f“ÊÔ¿JW<OKΜQ`)ª ¨ÜÊ/݃ëT­\íÁý9"®‹C£«¹ý‘Ãxh¯e^Puhæ.…m©˜ãMÞ@[`ã43X«ÇôºÞ’FɱH€Ä¸·ß寲òŸ€`Ï9áŸ[ä;<¯ÇH÷ˆµÖ·`_Óõêõ÷r5°B=… •ù¨1ÕvL'=‡0óþŸVñw‘jûåE]zKµí­Äc"pfm"2L‚™'ËATúz×ÊZfཆ_Kw° Œ06-Ê·~"Käˆå{…ä;¥þfR™T gµôvYð†$!çl®ˆÃf´®äd-ºÛî®jŸ¨Ñ(`èf2 *óÑö¥n °MÅ”yç1úü!ªN ~zëíÌm²)µ©Šhºb5ò䑳K*Qfø1IÝPhøºÉÂ’„6#¾MÚ¬ ³Ù)ÈJœ—‹¦£ÞŸõ=W¼;¼ö™‚%„1ÆûãÐIêPë ì‡ý®ŽÉP›è(ÞžK{UY>»L ¸¥(è]í=ñ ½a£ç¦bÌ»3-¢NDq1©)™Î:,sJ>:=Uzªä*ð&"º+ÀMšcÒ¬==öX@ N,Äg ñƒµ"_Í¿nš"Øe§G‡IœÉ§á\tÅ~àoíýÌÀÑ£‰ÐÔzxW&UUIÌpmö×=µµÒ8s;¤àî ×â È“§uìIçÄp5ØÈ‚Ý‚$ýF¤ÜÈ™ÙÖÕ2«PÑ.Àcjô²9® –€búÚ ¿D˜"Èùó´eBl¬âÔˆ=™T{qÈT%œ«Æö屯å—w=÷ýCÉ“zv+`ÜeìŒ÷&,Hl»ÁR›i ÞÔ{ œ/±‚ùo5uAzÍE§¯veib”î¬Õ]S¥"ø`ÑxHFÖÀWšߌÊ"«Ýk¢Š%þ÷ÒPÿs¯ÆŽvÔÌÀjV¹a.©Ezg&xöŽÓ'17Áù±xú­Â;õܤu˯û¢ÔA˜+‚îß168-£M'ÂïãÉ]ê¾ú>ÃŽñž8m52’m§Ã«è×OPèZ‚ŒÞ!õÿOÿ1Ê.E­%qÐ\q–JS?š\$²oßý‰„¿bŽ -ú{ë­°?®JLÅ8)` #ÞLöª@ìÁ@µ«¸Œßë×™Ô}—ÄǯE dW¾±Ê=Ž„?«ç+‘Ñ$¡äu²¦º[ì‚å—‚ký >ÇÛö¦¸1ôDÄmâMñ)˜œqXC޹®«äÖ0ô—Ÿ\ݧÐÍ€–ÍîßRО,(+¦˜­Ay‡´!iÝ\¥úÓr­ðú†¦é^IœT­A4IÄnÊx33+ÜÇTî+œ8·˜‰i«³XãÃô ¸!ÿ1?ƒ}@+ÑÚµT_ó h<þÐÙxJ½lZÍ¢¢‹UÞr¿N¿Ò,ΖälÝxV[àÜFTÙ ,2+цO)—˜Zïdñ„óþn!Íã¼Ðñ &–Ü _o4=óé~^T] õ@mçJþ>¡ö¬ÒÐé‰]Ñ|¦þ,¿´QU*P/‹ä…†øÙ&ÎÜ„ý­ZÌXË O‡Ú…ЦƒýS×®À_lB‡ÝÊû']‰Ý¥×›£±Žܬi-“ö¼g8rþIs:üÊqR†Ü{íã †¨züŠÍy#wÔÈÇpÊ:Ü*O™=Ol71xz%OT2òšÊ¦(Á–ÃÄ@nÅ7U5@Á`pP7L ñz![žº¡ÞŸ8¯<‘¢ÐWÍ0µmú½Œý¨ì„Ôïò6‘Åʨ¾)pf®æ_û×Û9u–{ªÌæ‘…Øñ©ÑáùÿõFÜŠò¥còö–ëîįQfºWõ‚`[üîcM¾¶ÁZ½Æ;ù2BÚzò’-¹^”0†çêÄ”éé2QY#ßZ²¡4dŸó>hHP”z£Vr¶ÏW%:¿–:9­ï•pRÍá;€¤^[](²2#X·:[E•³§µì@ôƒ|}ô½ Ÿc+àá•1¾lÒ¼¿“¸9¯BÈsið#JôpïéîOˆ}iÀºSû•ô¹sMºâ)²Ü©-Ð@Êrú4Ño¸X޾QV§˜¾„^7Ä1Å1ü€ˆ…{4«Ú°ÆiÄkäÖ¿}–mßßñÝÚk…1‹Wq:¨ô;/¤­Ïîdâ+Œ@„E 챦˜U!|Ý1^A± ú(!ge õ2•wݦeý™ªLÖ !M5FñOBðøq"É“¾˜ËŒwú’¦‘î^_qÀß%’ÜÔ¹ŠG Ü¯•­ÜþíÚír]éšyDðŒørd‘UîF‰qä³÷ØI6hd¾˜2Ñ…b§C{ª0KXÖJŒ€—Þcì(púSÒƒô'gÖ’Õ<ø*â›tÄõ6-ªiƒ¥Â7áóHKȳÔm^¾dVž™E$êõUv4Os~lÈÂ0Ëú ÖÄѸ¡ƒâ/T4vs†¦,dNX¤³mý8‚9r 3ÓÌkê§ó"êÅ£/i_à’êü‰Lš¿ø±à ®oö?žwG2ŸgjÞÍ[;i7?ŸIâþ7ÇŠÎMzJ;kr A:‘Þ»4¾cª¬ª˜#zQÉVùÜÈ|r³œÉ Ô½ÕCÉõËt8¯¼çû~cZÌ(“×½JŠ’gç)è9ƒÚg6÷˜Ü^ ëL¾eÓ‚-Œ+Ö#ñw‹œo†$S÷&]éhðä½ÞÈô 8Cc_7x!xƒ¡T0& õFgµ\ßúÚ+á|®ŽŸÚÆ×‰Æ¿ìC¶(8sý.t _/sS“`‰|£“‰>|‰0E>ޱメçú¹µ*Î× g‹Á@L Ī+"S[S(€l½ì"ÛJÓñ"’,\2… è I0ÔúÕÛ‰£J³¬Uï¿GÛ7= Aϧ5>h…"†”’‹®?ž_Øk­îœ&AÒÿK´ù‘"ÿ•V©Q¯UÛ}PŒˆò¼…‡O$U÷÷KY½Ïé’!3óÂscÁßB6kÎpöíÄN°J†â€ý +%Ú)gÿÏÊ;º£\2¦¢6(lRÆÖZ€?g€¤f—JéŒkˆŸK/J¦+r93=-ä»”,û4)\5ÓÉHµgïµELæ8‡à;Û­ÐqB´ì’±ÑfV¾P‹Y‡%´?m‘W –7ªxô_¡KÑG·´õÖ7íј@f•€—±™©¤M-åOñÆó¡o0ž/­‹ 8Bµ²£ YþDZ^9ÎÚ‡ ä×'4–tl |½.¿Ñ¯€MmŠÉ•¨"Kú ðø¸åõÄ‚MØ€Õt¯#Ιâ¦éÈ_"ü€zá`ûÃ:’ŠÐËY²,+¿Í“«œz­Ê%ððpç;¯ µ¬ÄŠ‹n²ËÐ!ÜxÜ*Œ˜o 2Ìs*¨øxþVHݨNu(\éÞO:ÎjŒ´ªW„æ&+SâÂÂ%L²LáØ¿eÅþ‰nl æ:í«ß»RŒ¶úÝjÀ·X¹JÁiÂèÑc´)`Ò–æ–õZ4 !3Hðd™® ÅȨ3¡¦–'°ùŒþ€:æÓ9!V ôñß¡ë&O„kUÖ§;e²Šɼ”~æôØånJÈjVjrl¥¯¾]-4%e»jíµ!a€íœÀ% L¸hãn‘Á_±ÖÔÉÑq¹åòßó.ij´Âjp„Ø„?l³œ§6…«*†ªÆôHF  ±·âŸ˜`d)ë–b28^ŠÀû›NÒfÊÍ·¨G ¦@†J‰-¼^zÀ9^‰ü~QgžxÍs›Î,xgÀræçóhvÍéíËÒkXðÃÉ6À¬50IPh¥NV*„ú)¥[0ÁÕ6Ä&s‹Ó<ͲÔáÃ\w—X‘GçíVO¡qKÄöîaÎ…§a¦ì“óMÜæªêÌ/T‰~·gå£Îta)üB߆设`ì´¶3ªK”¦¾™ íÈkþöšYá·Ÿq…}2¬öh˜æK|g{, ~º¾=–±ô*Ö&a[½#i×=¼’$ŽožKéTaÛ'¡Œâí€*)h{¹Ô¨åäfôÖ­—Æà“‡s¼Á¿î½²¨Ùܺ.°­Õò Œêà çwѬG¿c/ˆÈ*?µí݇¥oå‰/ÍíÎ#rݼvmÖ©ß9Ǭj_Õ-NŽÙƒ³ù7µ–tM6ê^7 7ËTJŽlQ¢Fpn†¥Æ$:h/À­ ¬p«²»b‰8ÐÈßa}mKXá!X ?û)Íì1¡ùtrÇTEذ{„·nÂèõ Ôõ Žò ¾÷®ïÙ~ž™%ˆ7p“ø'8Æ ¡lwÜ©æsÀÔTón~Ķ—)2§yÞ þÿðêo™4‘Ó÷â³ í¬ç·=™r÷íÿæà±t\¯Žž !sÆÌ"Èœw²hê+9ðè®}Ìø{ƒé ÍÍžWvÊóºÉQ!í³Í@QÏþóo І9C|J)H/™N=u¿p±Fà—¤­oSû[)hú›>)Õp(æ_»o¨Ùsø3L¥7ݳU©u·I¹ójÕ4ä:æã{mHàá1Ⱥ¼¿HüC5$½|L}ªüdnºKnb2’ðÚx{ü ~-ޏ½ì³‹Ð‚y ÔŽìë’‹p¬øÂ\b¼<$ñË:=‡ßÒÇñÒ,p‚à•SâmÝä÷±•ï%‘“Á_оœþw¦É—š<à ¸’€¬ÿ3¸­j•ªï¤ì)P ^ÿ/ª½kãDÖå½q”øÿ\{>GÈàË=z±£V[¤fJ ÷GmÝ'À%Þ†=fõ®[õå‡˜àž½ºïÇ©¼Ó®g:)Üݦ•¹&£®©È]Í3r )Õ_8»€‰hb­äQJ¸ðù©f„#Òn²œÎ¬ Ýûë¿R^3…‰©šO…ßs;ŸpäE.yOù~¼Ñw°¾ÖÜNÏäÍ7¼^×c،ջÒÊÀÃj€[–$Úc !v¹àªû;„·M-ZôØM & L§&åå!éÇìP,Éçà#)–Ys?éꀋÙa‚¼¿Ž‚ H¥4ð…–&.Gû€ûµz-ïÈ€©U|(âlÿì#£ô¼³³Ur#DAA³X ·wNooÀÅxý pzs8kPBçA˜?™²«Ê@Að^#`u›Á37È=×)dõŽrÝKðœìÒﻲ«Ãî./°Ï;&ê× ®8xÁvm‘}–U£?$Ï. äóË-®øOrëÃŒoQZDÜÕ^h³pêÝa§A' ˆJSLjM²–¯C־уœ’ ®ÌÈá+ÁÑø`Õ¦J¨}n¯¥ì^»á ŽF YG-E±è"(4žcbäÒÆjwŸ19! NþgåÂt|÷Ä]v C¢éº'äiYaPà!“Yº†;þœÆÇD)}l×`Ù‡ðB’åšÑèDÑ"šRµRMëçØ`¿Eïs? ü¤Ëü«l$ ÙüvC[bãôÐz¦èw=ÔTÐfý•1øú×,M(ûK0*]”_‘ÔXöêÆðYšk®[’‚ žžÿÞ8ÄK\3ÛJÓl=´Åˆ¸+uÐ!nûžmD'·®):q}œû.ã)û“}ÄIí"ðhz…ô­ ø<· wYѳbnxÁ@õyxDTúïgçìTÞ+9¹q… W†§LÛùè¿æí!?ë•´Úu\m·°2ªØ­woœ/u2¨±G毘Ò6º‰±þ„–‹Ï•ci ƒÓ›k´~k™ÀU[žÜJý&ej²‰Úô<Š`¸Ÿm¹úÐÅõHÖ$÷ù‘¹n I~¡g Õ®B¸Å°) cû'£jxdÄÜUbÆã‘™4$Òâï¸YV]”†™v†MçwEãRty!‘ÀÜÜÇ|¶^¤vÓ*&¬H>úâºhÅŠ‹‚½7“¥ëA\AÝ/н'õ¥µ•sMÍ…ê­1\Ê_ú?agÄ•ü A¬ mrÝ> |¨‡ðè ± z¾1Ø#{t’`ÖÁÌáÕØ*ÓjÍÇœz§ØêØØ.Òz)otóW°¡Îññ˜B³m_ݰ}‡på‰Õ‡óž¢–ÄþÁBr0®"<Ã[Ý5ññ]ùA(4Z™{?F9¯r÷8 ŽDORÊC¢À횈lŠÚï›)%Þdƒ¬ )ç…ûôîU¸ŒPÞØ7Åü¤o’•håÅ;’ÐÕÇæ¹pK”vñš}:^1i‘÷MÊ5²5—RxûXáÊfLþdœ–ÌGï¹’ðWD#pÚV¹óÎùß%Ùc…k¬ü îo$ߪ_é1ÄÆêÿ‚¦cVªMœŒé wxò±2ºyÎõÑë®C¿K‡t GVû —Dßv@;Î :­7™¹ãw’Ö¶ªÎá\ Îúñ7ŠÌ±zR†ãÄKGÇ!Ç..àâƒèT^GuY¦:•æG/if 18¢B^¯‰˜ÚJà;–IyZ#²7%°éi[Ì‹€Ü?ŸçØëü‡Bb^¼”Ä®©çŸ¥®ÇJ„Ht`jß¿>í4#rÆ­‚‹+Sn5}Ó…¯Ü=AeÚ¢ó‡+nšÔÛ5'Âwõ²^và¬l~|~‘>zåu‡@ ’òÒ꤬a®²0A—ÞìÉJ*¦ÑUY) pÈPr?êÆ~fåjµ›pFàAžIû—)4Á#Eck¨VÄ‹5Ù*`!A $‚I¯/úõÕÓùo*® U‡LªÀHn¾lùyĽ©þ›†Nµ 7Ö×0U¢mfÕEUŠZTTîAú-ÐýêW8’— Cy•r«C©«"å8žEK¨¢IŽî¥£-{¤Òµ‰v Š.š¾Öw*ìZøbái–@*¼[žÊëLtÚ¹2Co"8µ³¹=óóƒ‰IÌû~¾«_2}•þ'¶ ÝSƒgtŽÜPQˆ9®±xøŸn§à®œçSÿiÛ÷†îùç{q—¼“ßùõ’ãF]¨XÂb•ˆQÀU§eº¢~öÞà·™ÿ“}åH¨i7A®ï~®Nˆ:&e]Ÿ‘:¡ŸÁeصÁ¼ZÄ»H)ï6áwi–^DD¦ÆË Y˜öo'>æ¶Ò3%ËTÛø"ÞññRG¤†—¼´6y“ÈÀ]ú³¬Ç¡DŒn¹Úêå£fkZ3¹ªÜ—nK@_QLD8Ñßâ‹S7ia~¬;‰(I£Ÿ˜N®.É–¯ãw¨w­Æˆ… +bǵ—))›îRµŽËøþ3|5÷u,%8×FGø¡€7ç•ÁY1ôY¯vk³á=¬j×éÎ]©nÈu7R0Ô„áÌ@Žú{2.ï_ΰN¥àøQ)kXΨÖ!¸+ÿÖrËÏô àþ¶;¨ýS,׋MCïh(jý+„Šam¸ì+¡• †–ï‡ÅOU8ð‰Ö'Õ*OÉE”·6…Uñ" ±¤ùY iššÂô^2€"dÊ+ë)<{sX›Ëh{²—·‚Ž/â…èö«õ@H¢Oä…ÉÈÙÆ™-…î–^1iJ³F*#…™å«jôRŒ[$xΈtS‹“1ó¢UÕtaü#Xƒ¿Q5ÍŽšçÏdïláÉr†ÄǰžS-µ`:l2â­sÅ>ÔNðnƒ‚Ë÷‘¸[¾6PKðyOŒê‘²W³ "!ÚLi YQÔDSˆs@q ÁÌ‚ØyÁÊ‘¯® Ñ¹AÂ|™ N@>Ὰ…%Mÿcã„þoù’¿¶]éuÎsÕ- üÿPï"êéñ)¬ÿu‰Ø™£š,v;á\˜*ýŠåsÉ8r@ðë60ÍU"¢­Ÿ©k‹R°Õl4»èÕò¡!™¾­pŕѮš¶–m0 ò*&Üòkñáb ƒ*²,/Ø„°ôßñbð×˼0`4® )åkIO†çßhÄyähwÓ3 T\‰\ ½rj)í¥˜* ¶Òe©ß8TÓG .ˆ 癸<š‘uMi*Ý,lLóùN6ýØdæD”A›;u¯Ø¢#Ñ :"U”4||uøÁ޽U®œ#ÚÑúfëÑ­Ø¡‰ŽÃ®•ÁhÄØK¼Y.W Á[Œ¥/ôMöòx‡UO{$¥â@v¸õ€B®†¿ ËLõhq2á}‚‹¥9ïm !E b©Ü1¶[ŽåÖ¦½F"÷² Ûœ¬¬6£‚›µÁz ò.ÂÜhÂ ç ø xèM\co 鯽 $Ïb´¦·»MÖä3媷 GÄGââ¶Z<ý² 3þ<®A­®ux«6LK¯» NT &>š¦YC_Ãþ¨çÓ|{0Á+Ç™LS¿ ·+_ˆíÓqɧ‚Øõwz£3»þz*@^p@,¦½¥×[¸¦{k‚ }¢FÆÖ³~íÜeÒÀýižÛôAäWcZâA„±3”aƒùEô›ÁÝ6" ,šËfäùÌOýòƤžV êÆç‚z³QW‰éöàƒ”ø¶¯³Ç/ùnp}ÁbˆŽ>êJ/iÞÍÈ£$?ªPæ;h¬HÔ|3›Ïò4{-Å¢ü7RVZ½uЪ;%x¯±!Àƒ*ãqœAÃU¸Uêp lä0ÈNrÖ”ÊRå2¼¹k·ñJ5ÏÀMAžõN@}AR™[TM¼6àêŠÓ’0‰Òž^ŸQþÝ|O“KΈÏ×#óÞ( ÑRóýú©D±½;X è‹€(ƒ™^»w„RMG¶†ìЪ PgÒº@:Žû}å-ívOœ3æÏŸrŸ¨åï ¿¦9aœ¦\iQ¡µŸ‚p:¬¬|ªh7ø†#a¿Ôi «Bphý7yôQDûÄ™³å§Œ¸ôaå{VàòZd¦¥_ì?xžˆÂ˜wæº8Ðþ/B ’Œ­¡¼çdB’%ñþc,£ÀBõK¦lŠ6gÍ…:|LóJX°ÉìJtàÇ€Ë]T Ù@ê_×–A°ÍC§‡:b¤ ®Ti=Gë äZ–Œ1ŽBðôEp5"›¼·ð4ô²øÝ€÷^z墚›ý\-áiœoš÷{a ¶¯LúôŠl3 ­-Xý£Bk?köƒ–Рeݲß"*Ù&ûn¼þ%(éWæCÝãøÖØK]%šè-É€»^¡iˆw!×ÚìxൠŽlãr\ź7­«zxÎ"»ÈrV™Äù-:¸#Üa³ujè·à†4,Rh£ÎÐ!¿œ/Q·í';MD \ÓHBec d:C牅ÆAßH›9ö OyöÙ.œú/ƒ¼Öm»üTLf¬Ò%Éu§êB³WŠâÙfŸ©€•CÒq¸2¸°WÝ'Qeç$¥"Êkw3怠'žÔ›eÍRh©*Î[Iæ˜L©è£¶"«Ñ_íî&Ô5Ày%â¡&•öI¢|R8JŠ‹¥Hp‘HüÂóݤ´$ô8¼_ÖòÔžX]}8¾ÖfÇ7ÿ`Å57ìDJgñéãzÌ„¸é«â¥rêLI°oêšp+÷[„ˆ£õ $Ë™€­e¾°„TUA\¾ýÂL¡Úüùux t³Gv}´39¡å*òÃ.§Nçíà'C&ïo±ÖÄo@õRÓ®O‚Ø¢Þ4³&CÄųÈAÍI Ú‹ðø73¢[pc¤Þ5pOðh¶ñì-¹´CD‰@vøT5àhG\; é8s19ÊGH P§{Ï?„Ù§m»Ì¸Æl3ê¦nö%<òÖBBG#³ªe7@˜æêq³Á̆¥xDzš¥W%$\aC º÷b…‰È'UÓ@(auåhµ-ݦׄ¹úĸØZ{Ç!7!Hã¡´5³DPºÝ[9khS¬m üx‡õ×Ç€¾ãs¿ç™a?ú»¢ ƒ‡.vJ1L“ì 31} ‚“¬g‘¶ÖoÿË3 ˜TvKöDë Lã ÷Õ.JaG¯4›py‚³¿ËÆgsDãñÉé¢y„3©ÿrK±^"DW€¸®ŽÙï×a«ÖÆçÈ­ýÕOùL‘dô’`ûÑ œ«Ò¸¯b¡)fÔä|÷5Ío00|?Èo6ÿÿ}- Ï Ÿ¾ 0Úšuª½:¼¡K%Ííš|äVF©æ/þé¹öô^o§¥|©Æ¥-«­ñS˜œ @¥{Š– ÇWb²¶7úVh*hwòKR¯ªORËkWä‡A0˜±ô‰ÈêÇ¹Šš‚п>o\’;í9™>×úºAýþIV¡›Z¯9ôüÞýRôUÊâwMvÜs/6Pð\^eæ_nDIª†¨Øº‹¿ Qö~?_{Îþ¼ƒš †@gµKï Öx@ aŒ4ô“g "ÜÄåÌéXÕ¿`¬ÔÈ¿ ¡¼o¶‹î|`ÛÕß}TÝé(¨zëg°(}o¡¸Þ¾ÁuÏÆ÷6ÕôAóª‰î²wöx%q3b6«æü¹jXkG¶5|󹔓n9Wh»ßàAŽ]énq̼z“z­n‚}ú·iÝm!…:'±K5¿QìÇ •Ë>˜…Ã]¸Úéä›E¬ƒ‹Šï€zs)Ù€ç+ó•P¹W ‹bÂÜVL‘L€Ã÷/á`P ­=ÊüU;›ß¿?$´çµÕ-ß9¾­ã: LÄà&ñ7O0Soñ„£÷k ãPÒN¢…Z(³­@ý3VËÇnæ¿s´gËû…Ü^­ÓÒìq˜c‹X¨ðš‹æ]6ίÝf|ÙδG°^ Êç}‚¸·B«Mýq,J€ùZüpüŽxébÀD-/ôÝÉ(R}`ixdDMq³èÊNß´€_f.è|¥±óIeR)‡Í–Ä'­³n4¡aé²ÀMµÏ—$¯f':ô zc,h¶ei-µ¶Á¸j S[ó´ïÑÛ=øq¢¿¸F<É !œ ˆ{ƒ(qƒøTOŠfšÒy‡ Ýlcô»VðÛFÈL\ºÒ"½9ÅÅ1Ý)$ĺÞnLk;œÛòÕ”§˜ß‰`ûêFX«ÑÜ1S†ÄVé1^娱úwÁ;¼pyŸrLž2g‡H©C ÏkÅ’= ­¯Ö†3û/ûêš„ â` ¹ñÇ6±y:í^3¯'ò:úgÈk€qTLªÏ¹ï-ÔV„4Ü@ˆðE×½YßψH¤£¬õ.*´I[k4±7)Ø®ôñý<—€nॠY¹‹G$f^ˆ}½G©)ZèÓ¬;i{Çæõ/J..X6;í «·ª#‘,1SŒ³Eœy pÉ\Q0ÛéX‡Á–|ìßj…*<1ºÏq­çr§Ô3 ¡¾9âcŠLYûmp^ y"Ôxª“žšï³Z}ñ ¡¨y¡î¬«It¾7¸”UŸ[ëM‰t ü3`"ªyoСãÛžI$’Ú|PV• \³t–Õ›‚6agäWµjÊÙ­pk””f¬”$ 2$.¤ëŠ ·3¸áÂC£þ¦’ zW«$ÖŒÐ>þÿ䚃_þ]«¤’½è+“àþ_tuW&./iÚ¾‹E´ØÉX5µÊµÿÂZ)"£ÖàEÙ#äü¿|ñ.üX»É_cé~X´4³0;¿ï¼ž«ÓgF\ÊÍ,E,Ú1 û"¥Âú,}orj9|íö àª'Áq©€úzŠ-·K{©Í”1‚;)ʱ&¶©£ï˜ˆÂKEØà$pïü84÷Ç}žU|„ÄqÏëÄ£¯ÜžXó'_cƒF¥xQzÃ_ÅÀÞTýýø»B“«‰Äeȯ¼ÔcK}€Ê¾jSÁ+i¥•ßÖÀUúv\®ƒ“Ùí(ñÕu¹ùq[Ä+åì—C0§èþG9.õB¼ú Žªe³"E¡Š`£,Ò´ÆïÈ  ˜ƒåRbØ¥=*ZäÖ·Õ}`9ž¸$÷±àççE€ø…/åÇ‚¨ÚœmÅ™Øi'R×Û `t,T ˜(¾¾‰<Õ‘F¥4ZЪªŽ³Ÿ·|ƒ1R¶u–‚³77â¶§ŸWrÆíµ©XâÁVÓZSêÑ\QìJ&6eøyäœ^ûp§þg‘ðÑ-ÁÝ*…J­]ÖÊs£ùoÿ+Ù,^ßtý¨-Š^9[}O?;„O$Û3©¸»+úòíRæø/1`¨M„;¯´X†]ÜoÐQ“1ðÞ0yyhCФæœ~*Í .Gœ™£v6ã ܧJíËÈa*5ÚÞf)…oHÄPN‘IÓÌÕŸøˆ‘1³LA–o|PoÑÕŠNÉwãÛÈEJ¯FDh¿Š°‚?FŠÅ­Ð  ­oªv ~ãÊI~':9bÀ("#ß>«Xp h©™âWq:r@ NðòBRˆÐ=Fs4|  §‚ä*¾527ݬ¦81M—"`ãRH©*ìÌË®(„}¯ƒå†i%+Ëâ‹c;†!Õ ²¸–î^Ž­35éÔLRL]µtð®ËÔ¶±Çœ?'-0fþÌÌóˆÅÂCdóQ?çXÚòs© ’)>3)FääW{óŒ¡DýTl@7ù’Ú] íÕØ‰ ®àÈ·öÜÜVx¦ëq»¦¹/íšžûæ«î•xÅ\‘â2Öˆ°¶pãš\¶òBÆwºu]"ÀÅÎçñýQ}¤T<ø¶ÎŘQmÙM]ŽÅëš!#âÖí±cGQ]Ú®a’éKøàÇïKúd„ó IàNI¤ÎT ;î»õÙöž.˜µã·™uí«ç0çqÓ½O@TäDíØ6×,äò….m —ÞQ~°ŒB …ÒbÏ„+ÙÎ]eDéÉÑ¥Œ½ª”ö¡Y|Á OK“@ËÌt–ôSñÍÙ òƒ¾‚±±Ù¡~Œ·¡ÔÜ`~žõ…cÇ­ôð7[žf¢É‰Q ˆ•^Ôá´kË$LÞTqÿwÕsŒ4 ãg“õì‘ܘ¶ŽY’Ãz•$vÛùµ0gÜŸDç5ó6†‘}ïEý)™DTE$ZÞ3ª`^qî>ùEÉÑΖ„ô?iA-käN–ȪXõMœæD¼@•ö¬žø´;Ãèu xp08N"„Acãî‘D}](wy'Ýù¹…üCþgëšN/$43!HHÑøûgÉËÄq¨£ ½¡DöŽ7¸a‹_xRÓÓDW‚C¥è“Ѷ״j)wªefñœ »òü¢,Ïv&×D˜b/¥KÛÒ`ŠÎ? 2½Dª9WŒ¨Fƒ™ÚuÅyNháõ‘K8ÜÝÆ}E¹Rî¢Ôß­ŸB™Oû‚¥\¨¸BÉIpTE«¡Ä ²R¼Šà›ß6ª‰UeFF0JQëH@%Nì€Þd· —Ÿ`>â|…ª)¤‰àDNù:9ÞÔš‰°‘÷¿dt‚o2Œñ~‰xÒþšË þW•g[3u‰ÍÜLÜjë=ûürW)ØIúÅ/u¨€ BÁWm-$EåÖV›e`üP÷Q£=Îl!Ä„9ñB+Ëß[Acçñ+cO}€g·â§í)©E¦n a©œ¾Ì¬ï6Ð…9ü›%”žxGbìßh¾#º>qAô?„w²ôpçB¸ºeUݦ"v3¦`>p2·¸]uK KÚG¿ Ïö»cNãî´ePQÖEÞü“¡Igб„g ÖÞ´«¾!Z´0ç|†©þÌÿh(œt‰·žá²ì/z?Ósö„rŒŽÃڢ黠ð{ ,ßL¼¯˜ßxzD½æ”ƒEá² y¼/Šô ƒ‰‰ú ¦œûc/„=·Vù”«\¶^á#òF·€„J¨"‚Öë+Ùç1ú–"éÕ`ÈYÚç7uØÇºŒÎQRÀ–y?ÞFØèy aÞä‹$ÀØïæ³]P†m-•©ü˜ö2¢µ ý³Ë?]2f0\=¤¤³î;š2Èa’Î9À?Ø€ ö1ú½y?y‰¾&$â amžöÒxA$Ùd^n…Çým™‚•!*YÙ«‘ɪºšÝ.ä™àÖ Zz} §ÎŠ¥ w¬2ÍË»(ù×~=¯ù]-lqHvPòv¹3ƒmø†k˜Ìhâ-ñtKj' ‰_‹¥<Å|I}Pðž/údA‘Oé¤C— .úÃÿ]ä|ð°›(ÚG´øÜé`<¨V‹ñÐç¨%§GF †J•àû¯>¾¿ÅÅ*Ww÷œ–[xºœ,ëijWt ú–jî²÷¸·Òéý.0];sNÅq¯uTJ"Ü“y–àmÐõÚ”ÙÜb}Ï_7„Zêýûç~?ø+Ç£8¸.ë`½lQµ‚PaåA‡6Ö–|‘³XJºC¬m¹áª1ʇ™@Zë-A/©#ÛÜ_e3ä‚o‰¨´üs ¿QÂq“N:<´£„3¥‡ÙbÊò  Ñ"gê§…H8UyEŸsæ± ¨R’˜½¼£¤¸Æl^xឦt@³+p—Û¹.ÌÃ(¸Bù›òz68ù%rN%âSß’éÖb“ƒöÆÜVí«_-JbÞ9*¾ÔF’´hyç,ª*Jñ⣩2ŠË›1‡BÊ{ÿ„^¥€Ð ÝOs©„˸yîLy(¯ðvµÐ=%=(¨SJä¥pIOiÑr`Ó› eŠå':^R_乯Ы*nжËC(‘æÛG 9Ÿð´4-Fh GwkOÌ›“’´é)Ö§Pk#)„0Θz¼£¬û%|,ár 0§¢XõÚ#S•4­ròDMÖê¬ ÏõÜeݸ}hVŽð|©aÆúõ`ͳ­}^ã®È#èÔÉØˆ´jÎK·õ¸¯b:Ïl,\c‚8䈇E~ë±ð_’ÇAôìŽ|õìCÏuø÷%\}H°:zÈ*qE²i‹{Ô‡Dn±×Érp}bOð-!M¸iBÅÿMµSÕ@,iÿH‚Ϋ ½,·}Xg@ §®G5ÕvLiªsÛAÒ.šB<i²Üä.Œx52ƒ"¡×æ)—'d0Å ÂÿY«¹¢+š“sŒrJ5d¸Áíqpynè—×$yÙ“°îñÉ 9Q)•#/—{ˆ; ÂeLÂ6InPý¼¹x õw&½K ŠÃɆæ–üÏ=ìiâŸÃÙÆ²Y}ìµÛIFeãº6ÄXd¼]üq`­¹øƒŸYœd9s<×Öº®Eîb®ùÔ%51þ©« ËTj`(³%ߨ]“!s(D’•%|¿ ƒu(·¢Þ‰c­Çæä  <¯–ˆ8ð‰Ú±P1”w-}×,zrߟ-÷€ñ B—UÝÒh³Uò=p¡é‹•ŠwCþÉ„y£„'KMC¿zµ+x-03¬‰`ïbÞì_v0ÉútÝch¼î£c“ß²nÈ¡ú‰^ Dz•‹t±Ów†¾ÆNw ‹å>{Z9µLX¡E\†’£Ì¯µ+º ¾;\ÑOS-YПø™Þ |Qe°…5¤1B)m"ùœq ’¶]gL ¸8o¶ ñê¶¥¬Ê<ð%!±ÉdÎÕàºøP†ÉÒ‹}†ÆN³—}HRE…óa½—ãøâ£í—@ëæë–‹c³e$+"ùiðc÷UÞÕº‘lúŸàdP‰¸n“èY’’ÌÁØHhÑ96bðœrtìç>%ùL®Ë_ñ¥X/Œ)Øç¬)k˜UÂÍ ‰ë‹³Ÿ·ÜõmÇ$í’Ìö oç)§$ñ­Qb=LÓ õƒSÂCý6õªÈæ ¸Ëá™;úX®xA gN¬ÍÆj˜¿©˜ä)jcD*0$üX¯ð#gyX+GÏüß1i#ŸÁçóЙ˜ù Å¢žrÆàèR‘–ñ“Çb­tÚh“ü0,>ÅçB—ªÖã^”'‡‘›ÕÜ™yyú­?œûcŽ,Ö:A…fcëïÔÊ·D+ª5Ý Öù)²ÝUÛ-ØlÝîq^Nš Ï“v‘9=/É¥gŸaRï§œü'ËÙä±PÕ}¨”ò?Uÿ}1î¸NE>"$«"Õq²{m:ñÀ2ÊìïÔ#0–;¡!'Å FzÔØ)·üñþ=§â™ñ,Ì}}åB‹Ñ÷õB#9:‚¶Ü¯ý®lPSÊê³èË™ÉjQìŽ;˜[è¶QŒÖó°J*„PM²¶?{²·.“Dùæ(k6«`j57Un^ÉT­Ï£ Qu½IÔi“¤¯¦° U³ül¨3¸jxϤ˜ïêrƨ§ëÿ;zÉEõx’ú¿Qˆ ÷THÑ&ý"}¼9\m*QrûV·Zµúå·ç/¦(–f!q15^ôÙèÝ\E)Jb…ÏKBWÚLmë óh^ÊHh ¬„zvir‘‹]¡kôµN?UÂe;Ø2A±H7;sâ;nÎq’ 3æ1‰$é_I£ë·-eÙæ³0uO[Ó¿v†¨Ü|Â<ÀÉ?)€#‚fCôK„3 Œu å)ãI¤× 8ÃÞ¶s$äVêÓÏö³u`UºuQ½ÎWáó+ÔZ‹s[·NUç?tk‹—MùX ½$:JÞ– b>ðd%ÓÂnÆ…òCîE¢Î¼ð<^£°-¢å‘!Ÿ¶p‚R`,.Pë’ÙÛá¥úÐG§1²0GÜŽD»ÞY@†yŸ  EkB•˜6ßüáÝÅÑÇ.·ÉÆ»²-"÷’5Êâfö:µZK()ªfMõã0S­<¿”½BìÇßÄ‚u.áÏÄ’}î;Üò×îä[xy,.;q®"ZŸª*^Á8Tû;|·4o;Ù¨¿ž¾Ðò¨G§ÆÚm Ì!rqÖ;gcdª+©â±|àœ!§ò~ëüÞùÜEÓ‚jçûwØC¹Þ'Þª³Dø|tþe‰ÆÛÔˆ{ôêÌ`§ãK®ÖI=¦6>--S±»,hÎSY¡Kæ;.Âüu¦ ÉMY«À³¡G`gðX¾«’bæ }•‡¡L™’`¼_7üpóòCk4´œb&:¡Äi|ýRÖÞäy“¦jÿ:éTÄÿ à&ý½sø ÌøÁ]]ñO¹õâžÓIõït¡l—+e[²ÈËÁ…(pµ$-]KZuw­¨ñ/÷]ßD]ýTÕÆ*DÑC˜ àwX,\+ ’$ 9PCÁÛ$ÄþF¨~ø¾×ɵs+¥Ðk<0u48ÛIàNsh62”6?ÀèiÕšõÄ4²5‰¸M-E‡-MÜ6\Sà”ÕUÿúÄRò~ÊL÷_¾*).¶a¦žc4oj–ŽR? ŽO læät›6!ýaâ{¦ÿÕ’lİ^Ãe¯´¢I"V¬‰ îa›ô:9‡6¯•“"˜•´ÁhæÌZµ—DsùzGjø²/˜]kœÕ…ÌÐTñ1†áHQjá–„;AvMOõ^ä‰\ë)NÈaƳ-zÉ`íœležY™lÈ)¿wâ*>Ϥ‰ þ•ÜÆóö&Ó%eJ¦²4 ¢„@Ào ÷Waºùµü–+Ï¿:ŽäfŒE<ßð'!'F ?r!\°e—¬Ó£`îÿŒ#JI@­˜Ï˜Y]hÅŒ´u+$27µ¶;x„ÈGÇÿ c°ýkå@)«W¨û„íwn¹ëdÇPþ98¤(¸eH.#oxn,4+lé OÄ0$œ‹ Ùé mÂx‹ˆó|̲M‡t‘â›\cc@mîÿn#$¿GësŒ[2v"ØÁ¨ÊlQÍ8J:A¥— Žn? Þä:ŸïA R ?-ì3ô'þ ÒX…Ïg¸Y¥ÀІšÕKàl¸ïi qÎÚx—+­cÖò¿Xv—[0ßùèáêïQ&ƒªvX}ðèü}y)ÊsyÓ*3"rÂCÑÿ3´ ¿LV_Ó¹>×,Ó„|£|‹Xjö´D+T;~Ñ’[ +öÀ3“¢Mµ¡÷2òÚ†ñGH±Õ™o±¾_‹Ù ý¬& 9¢ïO3´LÈÊۢˆŠÐü»âÈ’*c“D#â'„‘ŽeyÎ, [f̓²ÐZK馱>íq2­ÕÀÍɱåþ/Ô“Dd5kç8°Dh°ö¬ß¹GcP–ÌÙóË|œ(+6æfe€WÙ^§Y—¯rºÔ&[NñóX3š‡`oÖE(<—¤r´h<* ²S›¿FK»ñ3&i*ÅVєǓK Â14‰H¦H£¯æLÞHÅ7±œ°3¢1Äd¸à/cœö$§ƒÖä±öIúÊ%!·¾éíùz×¾¹éªÜ€¶ ˆT’‚ßÛ©Tfv#‡yCRß0E¿…ø[°íàqÍ‹÷Fî7%ûZæëzSûËA{j ¯p~2Öù:ÌÌXv§õšUã?g0ErÂJ/æ3¹‰¡I ÜŽ_H …‚›Áo§Õ9±éŸ_úî¹'fUyr€jpM{B_'=ØÞ: z$'ƒð/²ù>Ã7ÏQ’Í/£’TkDljӔ¹‡ Ë|Î餱Îò›ÂÁžoéÔ1å ¶w{¡Ýú¤EFeÕŠŽé¯+½gÿói:` úñ¯õŒw{'î4ÕÕ';³üE‡â`C"Ñ·wõ„X¿ó¨BMx¨Þá†oÿ¦%r *o`–\´®‰e@÷kÎðdã¥eD ‡×ˆ(“¯ô(I`ÐöøBJ*Ò¥´YN§Ú“.çâ”0cÌŽ@GI èþbüÙg jn¢_ê¿êYøùk-Êá]Cÿ>zÑy¯µ?Á-Ç·…¹æ%öe`“êÉ3G©¯wí²|§iQÈ®é[Ï&D_ŽóqgöôK’ƒ{ý³‰˜¿,dPÁ-ó’m¾Uâ|öò5QŽ÷nJzu¶çÚW³hMíH.Ħy9Oåõ˜éØÒ óѪy)bæ,|·K¹„ÂÉ@ÈóMzT±$¨5èUš—c8êjOÙ#—­ÁêäaÖä8>n%o“'BZäg°+5 ¾¤jJQe\`ì-F¼ì9ài8*"Í“˜ŠÕ0kµûãK¨j­ ŠñY´‘RCáô¼ß‚iæåØïæ¤Ï‹G²… ÊËý@¸¥ŠÀöÿe¼ë¢—§D‚"\O0€ÿQäÞwú£puDO¬šèÏYGxg+UCJiÎ)0tTOxLõd úzyÐÅLG¬Ðo†N4Œ×gÔÃ\ÊÄ/ß³Xuû“y)x' ÐY Üýöa0ìQñB¸5Ä‘NA%@£û/”B"ö€UúÚ‹×T`cܲ^¡D‰‡ƒŠkÔs š¹'Ó¸c[«,'X¾EÞ竹4hô-̉-AÈ6 iÌÍýäsê-•°FðwòŠmjÌ«À\ÐÐ +‡T?‰¯ÑY>ÙêjÉTphÑ!ª–*-©D÷Ž?·]ÑCMsyöáF‰ñ:‚_ ‘ùºT/«ìÇŽäò¥ ·jV;VuÚw‚22®pÖúH̶@ãVÁ¹.¢þ>góñâ]¬¨[÷m›‡}Ð{ÐßkÁy’JVîƒSœ"³Þ¾¸¬fèWáå2‚Ëcsc e/:Ùæq^”µmå¸#O••Åï¹–Qy~2ÏÂÂì¶Ë+7³±9l4ûïßO©RThɰ~*ÈàìÈ“–Ôž%É‘«u«.Fbø’‹ªIC <Ã*±ÀŒ‚µ˜Œ¶òçl SÇyXÝùîe޳8+z½)!ÙX’ÌD€ ÖE,n³<±·J½b“; T(SÁmƒé³é£CÔ›çëम5H ™Ôÿõ-Ë!-Ñ´ø¹„/^|¬±eEâÀö~^yÿ“apøÉ@pÙ[¼±ïz ZmÒÉ+:Y Ìöîm –¾ ©úr:ó¥{á`Æ©Ï:ü ¿¬Ô¶^‘Žt$]ç’EA£Ó j™¤ÎWš*c4ћˀý•æR2$MtCéì§™÷+Ñu7ö#V¸nëuT¹eº£< ô¢qG zéKÌy¼pL&P†ú~ÆõüÔw¯\“¸-¡gQ«Ý¢ž gÑ>çŸ6‚bÏ„u,=è8"u~+å[m“"hÀ 8ÏTï¬?‹¹×ÂìVrS‘ž ˳ó# À™?è³×¿ò7„GÕôâòÀÿ²¾Šæáhkdðô6½´0ê×0ÞÝÿÄ”ô~­{ÊnPü}F&Ý‚I˜†Ú/lw¤žà¼Zºo“pã‘Ð]E®-#KXÄlÙŸtF–Ëb„ìš}¢ËÓKðs¦Øä>Ú£?kWÌ‚MîÐ9ÒH/¦pD¾W3˜Ój\ÓÅD™8ªÐ Nwðkøî8iîhšÏÝà 8º¹JöüX„„æN…¼˜òœž-ÏŸÑgE’gáYÛР±7Küì[WGJBæ¡׿,þÆ3ÂŒÑ|‚EΧ!ºCÒ¡Y €i$؉ZB¸p %D†èé_Wš$ ñ € ]­ÊŸ‰xŠÆ­ôå“x€3_ª£f®bùƒ¬|FšãÔšºqiD Q²b)[/Fx=Þº†*GæEpaÁw·Â“uâöU2蟣¾ËúÞ¶“c‚浟怶‚¢¿î°™ä@á=ü×0ñp|èo4Ö¶E·Nùш:3±†Š*GHÂs›Yü&¯|Ò²¾ÕXHþ ‹I=‹ái-½¯HR¥Œí •ær\‹s‡îQ€8éÞkÀïN£æZlô»DBI¢TjØhEª#NŒæ¸I¶Ý&­neŽ·bÞ°ƒÉ¨‚ 3€G…æ¦3»åÜ×P˜/?»J¤O…~! ëË.Ö)ò»¬Ò¤ësì<›8I—¿å=^ˆÙÜêä0©yLT«œÒžoyØ}‘I0@h(~¯‚„¸¢Ø\h(¨Ü½O‘¶kb¤.KÍh`È’¸@,<9}~ß“2{å~ ]8°Î„œÖ’féúõU•W—õ²ì›©ìˆÈÞ6(æ’w…6(Â{Àég0Y)²L1€JëYyäR´7M”75¿õ"…ß2X"7®}•u‚âxÚ42mEŸ”Ç€Êz HÜÿ`ÖéÿÓbáœøuô „¿D)zMóý嘞‰Üì{C!b7Ò,¢NµOh¹uª÷1­˜`'?^¦k’7ÍȆp3S8AGþ²: .fEl7ðÑ}%ssiIê´Ý˜‰–n„§ìå5¨÷^aDç9ûÿdke;§”÷kÿ©ØÍØC ’䆯}ŒÃç-S?Aë‘:Ò²Àè1/Èdq5ZÊm” “?•Éž#_½§ùˆŠ‘ å6óïºØ‚ ë§Vr`¾žøúLSlýeçÕ:DÅŽ[ýôe£¨I5Òa è([tШ =#'‰ç<ž0MÖÌ@Ž<ùPî,aäNïgjãåS´_’÷±Ônq®ë¬†`BÛíþò5â¾HÁ³^ЀkŸþNÍA­àMå$Å!·º€"Nê`”ü€7úqb†„2í_ã,ŽŽ´=[^ðµã£Þ‘¡¡‡®K™¥5òïÅ.­ó®sªÀÖ^Z"5ñf ·<è8ÙZâü­kÿIjñbâ° $M/oÉØŸé;XV#AdÂh8ÁÿpJÐp-ÿ3!ßõÓìÎ΃8W–ú7‚Üæ–ßyrT¦¦ÄJV9ÈØ%YHu‹‰´älô«øHˆù\^/Ƹ%»€×Pvh(°­â×°úþ]Œ6)•æáE‚zkø|ÎäìªYÿ¹K©¡Ÿãð‰“—ñ®úåüg¹º vp¯aÂ…½HùðzC»œ­Ûù0¬Š(78Ž Ãü3†öü}“ý’™`ëñ{H˜'ö†RÂ=c²ÀAHlÿù¶y‰{ʉž¾Oˆ¸ïá«–>²ü'àÒ'¬!áéwOÓÎ9¥!ƒ اo›þâ–ÖØ7ýp±G‚Ý32½z†î•ö‘Ÿl1®î¾9$W¨(J´²”ùï È™q¾¥iÅ `‘‡9À¿`z$Zèâ}5.Õº¿SŽŽ¹¯+×hóâð°Ýt3\°FÊøÍôOÙ.˜@4w< ±Üáðãp'[Kd$ Ü×[î «5Oc±Ž™š$× P†\t[¨éÝe-ãÂß Ñ¯¹þa£TQ³Ý:G3C¢/ß]qÏ’>î.«Œxµá†F„…®ÞFýÆļMt3r,„åµQ/Ý8£;¶mnñsùØ·(ieÎVÖóÂô€W7Xià2ó#²ÓVÏÍ)gU³àçiÈÏÐøÌnp:G’;èÌn†£|ŽH`‚šèÓÕ]í¸}Z ©Ùé;Ĉžþ%ßÉFÑ£prľ¦ZgWñõqøTiØ!*ºXSI·-8¤²ó¾ wE¡&BaŠ­Ë%ý’“ •ßÌ3䀃àî0y«XÆçWŽ¿•aûÃkéú?gÖð.7Ü~ja F€)úMRÙlØšl/mKÔ RÑ:8šPÆÁy] ¦ntÜõCð}ò ÇŸ}¬R;ïþð ˆP{å"z¹'Rq›Ë*çò.PÞHì0¹[y÷p*Tµ8s¹+Úå¿`¡o%pìýè¾Ñï>—åQX¹ Í·c…&‘%&†{Jè¶âÂÒÇCˆúók™Ê)ƒigÈnŠ¢Ar½(4_×Ò…rh……£®æhøñIbŸHt]iLœíhÖ³”b~>ÁÑ&[0íi®Çª+¡D m¤ƒÿT–,Y¸×«¬Qh0¾¡'è¨#K ¸¡L¿}ek®ÁZÝQ$¦žN ßVúÉëŽ)ÛÈ \A«¯¯‚Núµäh$ØÈ!ä^*ë=Z2v’ÃS{ì:yÜ#Á88k¡ËLÄÑAÉõ´öÊ©® äå`Á}hÊ™»H{á½~;І+ý°P@A·®„§X¬ÙíŸXDªqL>=sðl¸‰ùfæÅvKf·+ª!(Þ1V|¬<Ü:†ƒ¡#œÁfYqW^¨ç4à{¼Çv2"º~ÛFq*˜ÚÍM}Iùå¦U_Q9Nå9±ì¡Ø©>÷7°1èØ½NþMß®ŸÓwL|G”w—ø²K^¤‘ýûcñ¥Ï¶Ìææ0é oÄ€«©Ÿm/úbiRy¡äÂx¡ÿ!âC)l/ýÓ² |ߤëSòÂÖO SJU¨Û#¦0DXìÿÃr¥îFþßÀ„‹T+Ô "y»l³Ð£}ì5ES¾Ž·ŒË¡ÑÔZWÍ)+‰hX †— ÚŠr¼¬(±½ó{Äoz Óº³tqêBm~ƒ¡œ§ÿåß ô †g! ¼±%®¢$Ç¿¬NìEÈíj+?Ç•1þÕ_¡7«Ô±y2ñ}OϘþuuYÝ]˜“¤.AŠ;àâ™–&£üõ“ƒ³BA*AJ‡i_€ŠŠÝK+c*\˜]j1» [š&sHÜ¢µ¡ÿ¦À¬üÑ“I5/„ÍÅþë]D°-+Ìâj c(¬Z.hwfÑØ¨Ô+­[ªqÈÌÛµ0û¿Š«äVjòQÖM3ÎUgé ½Ÿ,šù)&˵åA¶´ÀÈb‹â“!yŠmQÿØøôN±ïµÊ !o{ÄËÀðF6çýÅúáÑ‚âÍè*òàüKx –øo&t¢2>lSøÀ?²ù%ÀÀ Î …¼—§Í'ª3¡@íÝ¿þ,B “ø ºZ p÷^b)ÀÏŸ ¹Ç+@Œ»¸“¶ʇ×Á5í),K$KóJ1³ã.ÛCßÅJi<ïu«jh¬ö="d6?òûÇm å“ …"¾K´‘ÿî«"võF£FO×GTa]æ²×ÚéѼ&µG=ÑÆ¤þQ>ì×mòÇï¢;ÿ×j͵Ñôz™Ëï-Æ—×áF‰§mÒS^y–•ØÙ޲íó½0`:‘ùüÄY‘sÎ)­iLÜÅ&š ÿ«­Ï"íß–üþÕ†1œÈCqäß,ù:Öá=>*¤{K]“Ótkño|XÂ Û âèpƼèsM<Ôgžã9†¿zºfUå·‚@å«“è¶®R‹ I5—F#LÄé JÜÙ\+:úEˆfH"Ûü‰±6rF(/[úyž9ò'–÷ë¿,)†’8±Ì t‘!ÀÏ'—í¥ÒÓŒ>Ÿ˜ü:&ž=æ•“5˜À!Â\×zt4~»ŠŸ«HÀ@Ž>Úªm:ó:Iu(¹ŽnÁà˜Ÿm£4}Ëä'7$ÔÊŸ9ö%„4³g;°a<%Á Ëõ]ãªò;RM´¾ÕŽ^ÝéP@8Α0–ÑÙ dâaô¥i2Å@ÈTá~üäI§;CÿO¿§›‚V`<ýÝ‹ÀÓ\Ð;Y)Ê”´~ñÝ_”«Ø¸½ßNÃF |¤ÎF†ÔËÑÃ’ÆLï, ë–gç¹ÍÊ‘ ƒþ*Ÿœ ùÜuR8jÝ/>Ѝ"¥Û=&®, ³àžðémÛ›ó‚mû‹ì½Ÿ€É…µ Bæõ|è;´% ^ÒäbždLšœ_¹à CP4/'Xt ÕÓRWÈ: ×;~šH‡GaZ*«Õ˜Ö®P –Í8 nÊ£’xpÊ÷ù††Ë בۚª =߬á¼4<¹å eö$‰À¹ëä¡‘Næw›$:`®åÔ †òîîúW²<ÝŽ©S:·~œBÅÔ_¸† 7FÛõqŠ¥k¸½=#…N+K…]6{<ÞleO¹”Áû¯¬¥™ ï¬ïqS8aF8¢ô‡ƒº~Bu '“.Øe‹À5 \YL™5U /"³Q—Àþ Ž2l1æö †©[ªÚó¶é'CV0©¬ä¹°ÞQée¦Yû~ŒÜ'7áú†¯ôX(ÐiSð£sn gü ¡ªxaÇV™Ã:¼)â@Ëw²/u>­ç“õ­¿%Ÿé¿8˜rÎ'ŽyÑ`¬B–€­JbFŠÎZˆDHIûh3sÄö„0p2¦ð9> 5D)`Cbwš (Ø| ¥‡„(!oQT¶ò‚~›Üß ^›Ï×_¹ÑW£­DàШ¤4)d›Ÿªne‡‰´Â x7Imr¸ºùôj•ƒº¿ý{£°¦\…«Ûla'Â6EYÐSšbÖjhýŽ2þµß²ó=t×°œ$4<%t‹Áô0åíw¾—ö։ʒ åJ a|\ƒN¨'TX›úZáóuTâÈÈ]–NOÌu*w°Xðæ0÷7¨Ô$:y‘ífÿR A¢úµâb®{’ËaØœ2ÈÕþÉôe÷ÄO\·lsj¿ÏaDñ:ÿȨzX&è„}V%ÎüÉž<ö”‚BåöYs]¼—YR¶H÷µ¬ç¾ö‰3K…}Pj†2ʇP”'GŠÊ…£Év*•úÅKC›gÍcCÌ‹ü”m˽²õkt¥­Ë µÁ+pçGÁCS`3Bl,oyˆÍôq £L¤bpôKŠÄÚÇ‹fê©èHÅò?§å,H:Ži\ô/fC©+ †”>ÄÙùF#¾¾ÀéÂK;+‡ p_eq·iHùôo§Xc±Xê8Ø0~ég‚|û(m{I4Ä Ó¦æiÓ›Q”%úc4´bý¥g¬+¾û¥Š@äMNú ‘p»ºrH¬,×»Âù{É3Ð}8È* ê@¥~,j̦ÑÈßS®Jg3—ÞΊ¨Fpç÷QO&£/SS”«{aò™ÛLŽ`q’tÙo›2 μ¡!Ì·Ò˜v¶ðÙ´"M8k „9qÝsJ•6æ\ìŠ\~œÔl}Z$–U¥Ã7&ÿÊU^¨ÐèË5µòCŒ”ËÍÖX·.[ŽÊ”¾{—²“Òbsì±Ú݆ÎÕÅE;Šb{)zrr€1ó l³C{]ª\]–N ;òÕ!3ê4Os!õäp¶]½³ :¼À ´½öfà)ÇxŸ‹y—òuhBT, ‡Rë®ÝFu£›ýE´p¿˜ÂnÞ¼Xø%‹FDð¢zñNèæàäî<^Ì{!DÕD§½ÑŸ€¹EJ»Wc¦3ÝŠñ´ö˜0äEMãÄ=U‘©þVEaõv‹.æ+ÒFÑó»[õÕñ²#Ž™îÀ÷z‡àø¿†•¼°0>_¨0ñ®6`dFSѾ£÷v½“¦qPVx³f ÙôÙqÿ¼Žr÷ðd¸ÕYµÉo¥žÇ‰H)t* 1É]gÔoøe ŸêucÛº¸ù y&¾Å‹Gã=µû{âìȃTÛÈ5'|#·²ny1¦øÎþê8Nš÷æé¡ä*K‡ƒÈ¸Ôõ¢›S´`D¤9‰Fq“îe‹‘"èKÚf •/ö>B—&¤Éèóìã-ìø´=”;ßiçãÿáða8òë˜rÁÿø_?ÃÌ]i8¼ÇpqºÁÐŒ5]k“CìÖàÐ%“-C¦é£œ‘Pø×IÚbÜðiÔæCi^wS¿]º‡hÂUæÊòf/g¢bÛ³!úç©&ü SwÿSP»)³{5¢¿çjÏßýË¯È æÝ„²‹ !ió¬?C¥acÐ}&4P Z_”ᎊÞ­aDh‰¸2¸Ÿ¨Þ~[û•ì5pJ¼=Sy ~KPÖéVªŽþˆÙ\üͰ†ƒ² ϘKH_–˜¾½`¬žž¨#àN!çaÚ¹€Çš¢ÅIagâK×rkþTbBê× â™¥_gwg‘ Ó ·JbW5J<ç–rÁ•gÐk¼_–Í.Û¬ï ö“×»{ ŠƒÈ:ñƒÚ×õñY$RY[9˜Œi©z†Qò.³ ÍeÚa²„DÕÀß4Ͳ„ºªä ñWXȈš×Öçg€Cæ,žŽî ØÞàø£'¸÷Ó‚r¢í(YhPv®Ú²^íÆ«ZÁÞ/ª«¶!Q<ô[U?—Uk¿µË'¶TjEi³­PI® æ¡cEÃáIDˆ9oéû¹9 ©¼ïê|ÿ¨3ÅÝYÇG`zv àj{&Ò¥)…ÕÑ«ND4S&fûŽCó#ÚkY*žAÄø)bSvD`³Š2ª8ñÔÍæú/~HÍžPz3R '¿›‡Ò…h$øQ¾ûÂù7¾Ÿk‹õ³Òª†/kÆ®pkR›]\Oóy6Žæ35ÞDWT°}Ñÿ²ô œ4² ƒÇ”÷"ìq—µ¾Ù!`)ý³eù ("$åˆÌÜ7óEK3›¼Í ,Î(I ÎÚÀlÛä}=Èe?‚e†’s8` ò2Þ¶ø,œqgˆ0pŠûíÈ‹Ba=³‰¤kÞSf”Âu8½«ê4u÷š5<Áêt˜à=§Ù3èYˆÝ¦…u8ÐýüîËoYÓ¶‰\ûî\낾Êy‰2(ÎʥˆøN%oõŠuŸ^ rö¸\·Ë4„ãT [Jè—Y•ŠFwV† ½T”äjE¤Æe’n&GØHÿ-Uiü›”Ï3ÔI™s ýíà뱕p‰Š›Üïˆèó¾ŠMqÏvu v7gÏæÌz*Ý âjErû¬ -MÌć…^xj¿ò)šþŸ%±æÓúÿõz‚ö2*`Kºá`Õ74_¥ØRÎ ùR ’#¹GKø¬’ä¹Ëçå'3p¡ˆ1ÃmkÒ›u]š®AZÔö’Éu[åëõ,4Á]¢TÔW”\Ÿ»YުƩhÔα‘ØÇåð›múöî”h£mIó×Y›Kb>›KÎq€u4ñN°ä®ã àãÆŸ‡üwÂ4Íùĵ0óîÛ{„"­[Þ%PUD@R@n9žJèÊÃ-:ž4"¶Ìñ¹£„1þœ|Ðp`mÙÜ„«õ] Un¬ç°xÆ+›ƒçXÛ-¯U”gÏ0x(œå±®ã÷ègm‚‹ / ¥_t³p×@]m ”B&+²ú'´z‘™ƒÙFt‹€ À`9€Ð TVm¦ÐeX}‰/­2ÀGûFý¬ë¬_€eë=ØJÁ#µc}€OÐXIÊaL¤òÏF ý£ÒÈíðÿ+ÞVÜN…´âcH€Ô¾û-Ó šò<("0-¿S`sµ6®.Œ¦—)Â’&˜ÔIÅ4T.#»Ñ ]À³ëúÖN%fîtKÏÌ„m²‰ßîÞ‹˜7Я×RñNâŸ~A7ýP• Ýdëü2$pJ9:õæá~µ¾þD=  R ÆÜ›´û”)Ö…Z½ÚržÈÁ¾/.¸iÙÏ—Kw ‡!]«F3.€ä Ÿd ²öÔ ðxG-%e†÷P0°8ˆ¶KÍå`nº®ºa“3!³^Štî©B$ÅÛÃ5©®5>·Ìß¹y|I6ŠTÉ)Í#Ñ_jlµú·C© ¼ˆ’F­Éf]5>WÖz(šúRå_…k€7ÞÀû„U¦Þ¯o*\ƒ Bu€†¢Š¸EHíÄõ+'liåZ¢uMC'2çf¢«s‚瞇NM¿#O ŸEÃUFJäð4UÔ« ß}:†Ë‘‡‘äÿûÄ\d¯%ö£Yع%ÿV޾Š¢È’fT‰.¸œ6iMÜ‹ð^‘5°ty<Qa•*•þÛ‡Œ²£/[ªÍ%q´¦²QýâŒô»6Cù: e@ÑLëš¾sÌ &Ê‚ø‡|ú–¢»—§gÑŸÅDÎF+«%ˆÞ¿î€/ÚáǨ 5"uœêÔÊ¿JGÆÄíd³Ýß ÅUãH½à0ƒc$5¦» }Û•>Í@7Þ1â„éÕèùµGÆíeB­KcÓ§§‰ÀþO-øê8@B"²S `|®ø¦Mÿª8˜yÿIç)“ñ&ÇŒýÝ‹_¶:àÔ>»t©jü’ÒËÞJÖs–3^ôìøä¢ÛBTûÀ JÉsAûº¬žw¸ÄÊŸ£æéQƒ3åî’T—ʹZRgŒq†®pàвÍSÌïÆ/ÌG¡hb\k(|ó:" Û¹½Öý¬ëv–„ö¢.FÓZj"H¥îد‚bý}6B†ÈPPøþ0ø /².Zà Z#3®½•à„¾Ýåäk÷c93§xNgèg`rF~ªŠC#!ç|öehIfΑY›ÛlNAÿ.• Œ*ÍqÃÅò¬.“Ün)Y§*øŸ›Ù§)4ÊSŸ¹b åÇààGERØŒÆ{ë(Å¡Py¼ÀÌEÏ›™î9)tÁM ÝŠ’xÿ’^‰[QÃl L6ŸiÈùX5Š…P*W¨g M´5Ší´¾4[Ì÷—jÅeå[/ÖãH6Söfr}ô%õ:6ÌÝ,ä PŽ @ÅÐeü˜¨ý_-°ÁÑiÁ!…ò§’±•ŸÖÊ %u¿j)¦D •¢úÔ oÜ*Åê¡…Ét Ó7oÿCËÜöðeѲ0)‰âíŠæik Êã›àÞ †ª~îJfïþÎp„¹äb‘´ëëæ§ç»Ùw‚¼!náÄ0k2ü”˜›Wf)0®âäiYðÿóo÷!œ9>'ˆt˜.î¼Çs~0Qc@8Õ âë{Ó¨úÒŠ¹PaŒîuô™\Õ_¥Ñ†ý‘¡!€ëö¢¥Ñ+…3'”FË ™‡^|J˜4Žig¥Tåã¦D9Ä{Ò@´”ø½ÄE"8fæx7&œ+|u{õÙRŽÒMEã#ÊÞEôºóŸûn½9D”¹Ñ•â×ßþ¯CúšñܰaÑÞ»›?ä6Œ;KsL¶îh5”0i° ª$—ñ2ÕrÑðݬó°~±†|^œxA·Â9îoÐ$Dá$q)?îpÈ×jÎHQŽ“‘¾&Þ•¨Õçq“[&³ºwkä¢\Äë3WƒxpêŸƒí» {rê=¨çc}­àp_bø à+U÷•ù-=Ò³5R>ò` z¹ÔåÃ&ôb|¦MZµzϯ$N”©/¡à¤Ï´²€ƒ6„ØhŒná®KõæD8ù¹¼ Ž˜xÃ/ëý2wdò+qtŒŒ»l9NÄìrX"¥Ã%@N&„Ú‡™–W(Xì¹<ï@M>æ9âÁŸY¥jõ‹íñÊPÖÓ®À FéÃ|6Jóú4"hN°8±7…ð(ªOÑm<@ ?ëpµcÚa‰ap*&Â<( ›·ŸdÉ] :rÛ¼æ—/äWx}Õþ®ø¯’A´£•±Ÿè‹`ü";øÀhŠbåüúœÅ‘á‡ÂB´3}pH¢Îi™ßz›4|hæ„€åªÔh¼ÇnýC ïa?†‹iIM{¼Xð±wúÖ­R‡º;@<µ˜0"¤à¦XE‰$Û.Ìý¾N¤U‹§JÅ:⯡dá¢@K€úÃðS=Ao°ÊÓÚí7‹Ê5ÔWÝb— †?šÞ³¾!dûOu(¯MŽûš'¼­½êJR“6Ø4*¿\.š‚Åa^À†)Rî!voäi'6H1­p¹†Ù=%?”}–¼c-ÿÈZZoK,+,Gº£j#L±w¿¡ŠQ–‚ˆG|ÓŸ§¥6H”Ít²@Þqê6¯´³K.ÿÇy»zD„rFZ¦¶°//«û+KžÙ¬»ÜƒoßÃÁC^T>Å4x?5_ØLa.õrlR–Ôè0¸G”¨Ýâ¾èZîxa–l5σ¢ÊPc’¼-ò¥™|c,w²F瘣 ä±á£bRµîˆ`><Ô8øEoSì—‡ÝÉùéÕ·u’ï÷.MDa¡q œ¢©ù):ÆTÎp¼â®ù7ÐÖ·ÿLLá‰ÏCî@•àNWv¡q±Q!ûÖ» 3¸e¬@ër•J“<æÇ~o!žXÛC„&‹ì¹ 6`ÈE+ún!§/BŒh"Ο-œ©dkÇaZàyI–­º=ÛÌ-Zùðë[å“«ŠÏMŒ¡ }f ¢-^OãZcÆÄ:«L8kf$!Žü“#Çy·FYˆ Œï{Zç‚éO­ ! 8K¥ƒ1‰`ׄm4yF<™3®ÏÞIóÔÆ@>˜Íõc¦ ŒB²‰uËŽý¤Šèä7–û#]çÏÕhéè°Êõ&Lâ°bG5¼u³â­¡ÕÜÊZžTŽRwœB ßÑÓQ'µð髌IÓîî õÁ½Íß¿6¬|@ÓŒ’áe!¶SH§§Ù{•Œú¨ó±0Õ7ø3B#‚nvj ^¿EY˜öJnßïÿøu$Õ…v–u (¡v ñøz*ÄüË«ÝxðyÂbF>wfMŠ>EÖjY¦l?¤j! / Yål°|½ZöðC«s„ÿÚˆÌÀÎ~`G‰‘¥†ótŠ!¢ é Mnr;RÐǶÓf¸°´ ¡0О\ZÙT_ê,Íÿ'ˆ´ÍdÓ£‘óæq‰÷ÁZ6þÀ|æGÜíÿÃÃ\ÁÓIÎù%‹'«ßZÞÜýÅZ_Jq²î!¢„Ö(ÿÓ­ªk°%#•ý@œÏ $Î6ööߥZ.Y5‰Î-H)Ñ„µ!Ä÷ĸÚöËo^®½ÇµD_Zú™ü4”oÑd/ä&Ik°ÁŒ’í´žg4'Ö¹ü|‡H),/²aIZ”H@]ØëÙ0‚ô'Ü¢¾Å^"ü[†ÅG+ãÝ’e,tôž¡׸Ÿk÷Ô KöAŠGܵ×7~†¯ëÜY'ð›ðЈ[Ê}_„æ`D‹O¹úƒ›Ñ5:c£ûÐP×Ï­¬Rhüì_{#m+‰£d½ö%úKo3¹ ѳâÊzÌžp ÝÈþ©ˆ´góÍþg¯½w¤%ÍÕälœÐ¾Ì–¬„¶úÄ]ÕóAêôÉ"#ÛËtJçeš©„ô®µ,ÎRÓîäD—[| ͪy„|Uåþ¹¦MczQ)ÖýÛ>ŘKaÃ-ô3x@QÛâ÷îË2“>(8t}“#Ê´Æñð‡îÆQÎa‘‰!Sé1y•+ûŠ úTðH‚ßÌí#&ÊÂ`çŠÂ‘m+E‹F?™Ý*GÀ‘}—K=þ|øpçF NÆiõ{Îzî‘ãOĤހie2hÖÿ$ô™v]ߨÄᑳ[Ú³°à„qkO#mѯ¼Äl'Þ†”ŽY¡4[ù¥Wž?W­æ;þ èì|}%Î£ŠŽ®CÔQ¥[¾žŽU’&°@Ƹ†ãuãä#Â^«31kÉŸ(} ÕöÎ6”ÛãàÊ8¤Á’‰&Úóh¿ ì’sGz¸ÞÔsGÄ"ßE^ïçâ~µ LÇIö£€LèÞΠ̺”’n+MkxàÝ baëlRÎÒˆ£:A9—$Ep\ïbk¿éíáS›nBóNviÔ BŽa£- 7–Ñö.Ê0H&g-ï<?*#F^ÓÓ€»¡çqÒ‘Ü?r§Ø 5¼×Õ¦~çÉTÙHà|D`c‡»¦j‡0ÛQjUXgLHºž1ëõ5VóB%NbRPŽ‚ümsä?„_Ýb²ïZ‰yúp؇«¶Ky×KÏò5ÕX-šv¼Éè¯À)®ç÷^}YME|nKY þ®'—ä]Ù ñóôQÙº^Õôq=¦+¤XfÔ“æÃܵÖý+äÙ B©Í õXÒ3LI¯“dRÈQ}ãýfÑÛú‹ñ 6·#rÒRòÃá>#Ûî`Êí=ÆÄ>ÄŠp_Ìç˜.jØÞ¯·«Þë™ ¿s¤Ýw9°¯nÒNlûøÞéŠÖd…Ä5Í!Æg•8½P7µûöög/ 8á«ÙX ­;ù ˆ-Ý´ÔªÕ’ïø>¸þPضnbp®ñùθ—Îز¯E{c~ÇÂé¤&®’*ãé°ð1Væ¶õ™“s½BÛvæÑ<˜Opâ¤LIG±0?™Ì–‡Ð8N‚‰R®\—¨Ã6„ž‰`[_±cðCñ85ÆwƒÎ¿^7deOÏ'Mf(O2*.| •™ØXòi¸/Y YB\žî fTÄOˆ¶ÍÀüÇ#aƒ¼2ú-÷SRÖX_ü||jwTC^QŸ]ò¦¿¹Ñ1*?ºz·8œD78Ðä=Ÿ%MA|“ñÕ¾ùŽÀí]¢õYMçÅöÜèŒNR'*Õ››¾² @ˆÁ’€5ýK–_aWghô$Û.Ü3Ç®Ö)7>mákÒ±+m®ú >ÑÜÜuD§:Çßq¢W‡½e…Aј÷çÜvzD%×ÛÌTÌ ¸Q ÐjɘÕÖLõnn¦"Ú>¤&Ø…i©>I€¤_ H)‡Ï¶ôü @_z±È€ð{¼’3TŸDX²xà‡>2¿š’È(#s€Ô¶=œã^¯sjjÆ ÏEå¯X¬ÏuÎápânfÏHôoBsŠ ‚»ûp8c¬I?¹èM8ø•]Ö›ù¬f0R›ÂÿÏ ‹·?&ÛÏÛ(Þz]‡ž¥×h/DšrÜnÓìîÆ¦Ë$íg“’¦«[9A4É~#–…7šs"\3J$˜ãû{a÷ÎÐÿ»ùóðÐÃÜ;¦üs‘?»áÓ#÷Jiãpô2ªXˆL€Ógìî jØSs®gWÛòDQ¢ëwþð· CñÎwS&’Êí3d*”ÂÌdat h€!™ÉîØ0¦úG}S¢¬‘V¢ÌÙèu§eeÓt—á\ÍäДUVb+Ë7¼&<àê.¿«§(jªm"œ¦±öF`ß•ú邜G3*¦êZáæ)6n|™ŠÚëþ¡Ÿháà^ ý }Lb¾–f¨IÜãàÔ빨$ÏN.G­ñÄÇÂí"†³¹CLöP(K·Ûºöt«…½”Ú½’S¸9ŽoÑ+ö÷¢úR ¦¨g"óÛ'H³F.O´ƒÞu¥ ñ¼sòâÉAã߹ϟKìü(!HB  Óo²nLN,¾ývæVGûòé=p%HÝôl èBQu¦¿ þÁ5ÉÚ¶YÒqo¿&Ã^ê„*†«ž:´W¿–ØXØ;øi3léQ¸úfúö+’Õ^ìE_+FÀ…zîŒ÷‘El“ bXåýXü‘öÌ ŽÙ-)–œÉ¢-3ªjÃzä`ŽÍr¬À–,ã ƒ8F†ãp3 ¯ä„¡ÅùJ—4ªKÁG?ÝFXÉn=W/'/»ž€ü–”‹|šŠ4(Û¤è«VÎJ:¾©T*" ÒkP¾Î|”(«uÔŠ“Ö´çÉ6OŒ!41Ýé ‹^ Ÿ¿†fJá,Á5áÁ¼Â1;UZÎ¥¬ ÏzŠÐ½Ã1n±­2×@ñ@¹ Cf|„Q›;1w¼ˆ3Í®@Å5‰Ók­Oµ$•q,c AéäJÁ~ÙÕ]5[@sÑ۽ݙQsñ­,bbB’BÌF¬9Vi¥^tóD­ûj“Õ osFèæÿ¥á¡É",¾³Ä¬ø^™ƒãÙ¹ÛùHZûp$õ’£‹ ´—ñsF”dit;P«[3Wªš”½*ÐÝŠwÝ.›ªëýkñ8GÏÒD8¤é€»Ñ n‘‰=чXÍ%†ßÞʳ2ê¹€ñ‘çÝ—á°ZÍΛ»Szh>L1‚RŽƒuAœßEùÝ“­s…Ï{zúû_l“2£É³‡é»ñ}I™® ŒþŒ4éCv6ŒïļìðÖ 2V·é®JuͰœ“ëî ˜Ù™7N ð¹FIâJòJDâMãHeV°(7ÀF¤Ê×7¤}E§Ãóï¦;9_óç-<Ó›}l-5I…Àeó.øu=™K3Càþ˜™üÿªe’S~ŇTqÑ ¦R¨0Vð¤É–c@©l4Ô¶Aù4£ú)/û*„þ1,¿\-l;ÐØÎõ@ÙâL`äÌq9æ²™‡6$÷•üG?ýÀxÔçåªÕîøÈÅூÎbø -„úmf]£dZƘLB÷ÊFiY¨¸Ô ÌÒ@‰ª&/POcIí¹?mN°h+>3{do€B¨ˆ-)ÿh S#­9ŠÂ«ýYõq¨ä‚!Ù% &À5Gxî%+âDÊŠHõg¦VXÚX ¾ T;T΋ç7?ñl1‹M?#Ž­>Ô“põÕ[ÿ.X–\¼*á?Y†dœMtSb·HV(1rÃÄdÕÏS`ÊaÚ8“¼óÉ߽߄¦è:¡½$­Ø‘# hóƒ…ªPcvÆ=%±…ŒÇ´ÈÑÅhe¿ õÂí„…ÁîYätøù§oaúŒÏ\Áj†5cË€ÀOÝ·z•ïchCFALJ\ù€ŠÖÒ(øa)Š<Î#GJÛ ¡L^Xc”7¼¾ƒ&ð¥ììnÅxÔ@5·€*¨´ž/dùƒ½›Gè%8Yº3_±|ËúGûë8"´Ïcè&°÷ùCõAË¢B?øYÓÎÉ ‡89š`öù‡Ì¢À±P€0âg>ƒ£×VÍVÚÕÓʳÔ:ÚÁ˜d´×Nö3Å_Rg½dÿH@öGb~&‰¤4>W­[áZsAQzfA$ÅnÊÑaÙn™‡H>ŒjðtýôwŽyÄ;·þÀ¦M؉ƒ‰µYaæ­¸TwØ‚ðo ðΩv^rÓûx5ªáÚ ím0¬ËÑv4W?àý—^l/Úg•ˆrvoægP&pÑæòM2Ó@€ÉXñéB•ˆÈaä`Y|^åÜe ûŸnë.x†oG–§‰L7.#òò—U4ÅŸáǰwF»åL4}b »5ð(Êa£¨ýü ߺ±@reþ;žm2#Ⱥ¼PnÈXñ¸oŒWñœñäÔ"g2Ra/êÎF§fó¢­Y )ý5ï1@&R;uÅw•+Òoõ0ßTªËGñO¼>´Ï"†É÷ è-^•!›¹»H“ÀÐ ¨‹œîÃd'yõ´¤èu>!—ü nl8ZªçljzºÓ‰v)××[BߎLcÖu¤þ3<nN…œrvP§qî¸Ä ë©7íÙÛÆXøÕæF±™àJ?EÁ»üM–ѧaàtûçüÀ©¸,<®ñÅ•åý~ÌÔ<~ƒ¼BÈ-QÜ!ŽD_Yúi —Ù"Ø=ÎÏa=ÝDøÙÐ_Ø-/(/Ïmw¾M z–ÅÛKì‚ø7Hþl3ÚßË‘Ê oUèY7³_êŸö)ņ×å)4‹_¾lü#ÒŠwÓA“ćÊJ(©{â†4@'àŽþ¦IÑÌ4Ý QPaôGSÊž÷A#–LNƒŽsé.øzÀèeïl ¦A []VD+-¾ºêù˜±šr:ÝîGÕµ×·h 6H÷,¦Œ ¤oƒ^-F¥O¬Ã‹£æñ‚Š’|cɘ‰m$21Œ-bÃkÒǬEélÉ׫«Ù|òš­dîµÈW BÌEd‰›2éËÓêö”€ÒqË;Ïø‹7™2ü–*Á‘ߤQ¡U”SoK¤Ô2±Ë…ÛU;ˆÿ4¬[˜ž”ÝÏú­€âHÁID¸Á'€>®:}¥0s)’K³^÷ª#5ó›OºÎØTÀô-b]äßÇÇ IŠuÚƒÛ€UõLïÒlîp%Ã]“~›&³[w‘¾6í£…—"aȶÚå$vt¿;稛/ÇëÛs=bÊ@¬…Ž~´ƒóüãpo¡ ïÔÊQký(àŸ ¶/€³»±ØvRäoâ¤+²ÛèÑ(A·!‹Nø“U'Â$ýÝóÁÈ, ŸÑ‚‚(Td+!½ÊIWšª‰FŠp8‡Þ”Wáßs]Aá˨s ¿¬úÝÃÓ¢SüLMˆþsOonœÛe,€2a=- = Šû?÷>¿O)m ÷cÕ„ú½ØÛÅíŸb Òå(-Sv 1x™ô?!¯„Þ>ôB(dˉKAý–Òþw¥)QQÓ¾s¹G‹`èI©¡áÅÏögC>†"â?α/Ó€©‚ÁèjÏÑK5$%‚L®Ž&Ùü,Ôí·˜åù^†C¨ÇÓé`)6/‘FÕy<#Ÿ pŠwA„Y0º³‹p!†g’x£J©šZŽ0üã ø—ye>I ͸1=ž>r¢!¼AêŽÐÍ9H¶_L»¤Q lWø¾èIm@þw ØàåÇv¬_{3/l.Ó–çÜ\`:t.?…ôæí2 ˜£Fë_Ÿ¹1ÞÖw"T˜f›ì¬6Ý3’jÄÈõÈ<¦PÝú)_ž«{"nSUs´kרz&-¢1´„ˆ|¸²d'g…á !¢0i¾ÕŠ?ãÅ”¡×z‹ò¡Á»ãh)³ '“®üº¯×>‚æã¤ ô/‘ ºrxÏÄðçµ#¯dqƒÚ8`j<–cSQÏï¼vc—'4Ѐ¹Ø@‚ã©ÀIÎ}¯0ïU-¨‡T1¨ ¾ã{E÷™Ýk=Λ寬_‰$•ÏÀíA¶‹Â?1³žrâtyÞ±öÚØ]©ë®«O˜J]<"s*y´]ñ¼ô{Sàžõ6¦†Ð‘E=[Ex±þA®ŸŸmS§Ã ùXc5²‰ô~ü^mVÖ0ašÏ^1Ø6°¼z¾ÂHã[‚o pªQ]…ן¿ZXк>v ýDºlLhfGxS W…a1#­SD4­¾p²a«MІ'€mÝ@©â8ìyB¡;mNÊ1Úà·Hcw\”uZZÝ"\ÇAUp ¡ˆ@Y?YîAóºdkïïÇÀT*“+-†ƒ™œ8ïˆPˆþ"E¿|4\yL¹@mìΣ* DïM‡‘UŽÞÎw¥·³k³r”{…@ýÕÖŒ~AüÓœß0FûWŹ\½ðÐC[‡nŽÛÎÍTÉÒ‹|Rr³¨^÷crW­û^Z¤ºåÍ-)Ô‚o€ k§pH¨dîi—HpÓ;ÀFT ë-Lã$=4ôýøçžêŒ™ïZŸ5¤°*DàcDÉ;î½ iÕêGä³}“3^¢uSõõiåüCK_<Žö.šò±i·_¼Ô¡f€4,¬n*šD Í›€ž×í_DFBÌ{F4[òÅÏài`H\ô»¦Þ‡ Þ=Lð¨Ñá[#îsîù³¶°ÕM:S×A‰†­ë±Šº\EUÐŽd¦·/¢®Â¿¶:h‡¶Ôù.è %¦ž—ohN1|YCà«ÃO0Ô{-Ix1¼ö1ÀTðó¹«è5òLk÷<±D6ëƒA”,$áL o1äþWPõ×ö¬7)lyB†ŽÇ÷hÒÕv™¨ÆëfNÅÄ;´G°©vŠÕ­‚Éó&<•<#L„{ö•EÈVbz÷+áçÆõ]F®]Ì“‚°3Q™æâ$©ñ§‰©LÓ‹/«É:ãšñV2_ 8åÃóô mµù¬ßTuP(rP¦»‹+êE!5áx_XëÃÅ öˆä~ŸÈ1Êó…c¶fÂQ”0DQûÛ+S€Lù¾»Lô¸Œ"ÓÖÑz…hJ{z#B4¡öÙžm«)Zw§×Í]Š•O5½¤–fG»ÆÏ±|¡¿*°gUùÖâ­Oia~¿ÔóGâÄ…‰åä¬åy¢^(u šÕÊd¬úïkíí9¡ˆDú/ö'e¤èQëý˜ž3Ã.ÛËÿºsá½ [nXä¤`°fNz+ÜøÎÚ%ñW0ì¡Òu­9šãã/NÐ"uºÅÍ\ÏÖ¥0C9€›Pn„¢C-à÷ŠÅ¤­MªÔâ:«w5û×]¤B§¬aO1 K}¦å[¥ÇCJÓMÀ“dî:¡!+ŸkÓ挅,»ìN‚UlÖ¯ IŠ6-ÖkûëÈHoÔ¶2Õòzù* rI¸ö°­Àü$·I•9¹Ü–Š{"líÓw¼º*8Ξ9ûN™÷r4¤a´âÉ4þï,£¦ª>>ÅEÐR÷6æiDܤ’h´ÇÁ½ƒD¥xP^ÎTúÏù!2ãUrÒ%Àáæ-Fsô-ãÌ=ÌÁ¼,ªJ¯ì7P ”)éø]XwË} .Ò¾¼¤èþžI%óþ<•¢TìÕ£³˜¤7úµ@¬ì±ãnµ åm¨ž¼cÔ3·_d%úøàÍ”X‡Ær“ìm¶`Èô¥¥DÍÌ@Y Šk•g¢ñY9Ø«ßã¾Q+_ßßú>f `—ºÐ‘j)A¦ÀETÇ.<ñ÷¶ûw9B“Û…rMwüS—«Jî©^´íz¾ë ”Ø™¥ MÉRÉš9ߎOÞè¤Úu-. # „dãâÏC‘ù ­…ðC¯êó¥Ò~Wý¨Ž[( §^Éð`ŸÀ—á®iKF(Y¢OÊ'vtu&±× WŒ³å(ú9ïßËb}ä1ãuÄ--6Õ˜ÓÄj]@óKjâu.á;ªɘ§ÁÀSe’ 2ÑÂÏx¯+q§ÉÙ„ðxtíÌl?žC°hU½Z(’FdRƒ#“R:†©‘—1ÒÒ´œ»µcUÌJý+™.Ï4jIBYpLm‚Œ‡hZà›&Ú¢âÃZírc ûûVW°“ÒjEM™D¯A6n-åV)åã¹Ëm$_$c$¤™ÍN—ª•‚Vúú¨Èó…wÎšŽ“ÎYZ¡SœádìDdô&M¶­…K¯ìæ¬ÝY””ß I8æ9‘ÇÅb“ôN$ÔgR& ªG+À_) š‚x%ߌ\`¼¨%8ÿ#¡y3´fßnýÛn!ûîæˆ1Œ¤À$9ÌP%*Ú’ý?Q´“Iˆ Àá¿ üim;Mlüð'@‡¹v0‡Û«p;ò2dXm}QUî¾!gEÆûÅöU~Ê" †ìbŤ8Ù'½ $eó=÷ÚjV¾÷€££žu¶ª¤ÂH:ä³m¸YKô; ¾â+–ö º0áëJ]<u™ÿÍ¥6}|FéyEÒrvw.ˆŠ&3¸*7`\´üŠmÎAØÕ £¯Ã¯AÑ_Téä|ÈÞ¾'ßh‡a•£š³kþ¤ûLé{×«Ðæo›UðË'm™EYi-œà‘uï?«Í¢^¸ºÀ%ë`|j/„Ñ5=Œ@Q+¯ m’œ%rï4’ðÙ„,æKõXW¹Ü*U(ÓãbEácïl‡“ÚìÜI.JæZ‚%Ð0 •*gûóïê¶ùYznäBvŸBÄY]0Ÿ>C:"A ?šýmÝ\ãV-5¶âg¨¹ä¦»rZúo%ê¸Èî¨F¥Ð¹†z(Ç µÂíÀzü*D ^’~Ïzp›xvö7?¼”_.u)+«ÎJv¢„áÔ°È“~°ÜLOè\ ¼¤dþÒy¨Ú£*Û®»Ó{ÚlªùB,…ï(vƒ»¦§Û"žìà&Ã(è&ÏžZª§#/ŸyQHùÔèŸN=Ò›‘wv°ò`Ó×»‘£k%vñ¬ñð΂ }Sêy?n@Džì@©Õÿ`Ex*ôOØùÐ Yïö¸bß.']çå=ÞtýE.z«Lbä†àý¬ÙÈ<9™7"QýƆRï æ·s~Ï“ÁÏÀ§D}´hNÓ_ÿÜ ‰I¬RXªuÔäÝÊOÌü—$äOž]"©ïï—9=¼«a½[»éÖ¾ÛG”%8ùyE}­ÏÅü©þ…6 ÈŒçÇ[tn}X¤£|…n %8.QâJ¿óׯ!(+–ô:8Ë~xu§ÈäÜ€¡9é-¤ªo˜ZêêõÖUqÝ¡$‰J –BM*¯´€? ú[ŸNHg 7DWŠ9†&zý"NæP¤»DôÅRê tõßVÐ ã ûT[¾E†ÏRÆ|)j1*«RrยŸJI)ÊqnQ†Õ$›‡©Šr$m]«ŽðJÁ>¯÷ûN£Ê“ô%$¹ÛkðZQFa±DÁ/¼°ùð~ªu•ÈŠ{V¦zê/‡5ChR+cRýµì…匰óñM¡QÊ×êg¸Ãã÷p"‡€¸!¾#ÌøG²Œ§¸|'mw¡¬[ ·½¿µÔÖ´¾˜\?¾ókÞæw9kißUqR±4ÅfÚÀbÈ~pz-3¾ ï:á>\ÛÒ fî+Ÿíâýφÿ"Æ·'?rÅälR«§€¶†—“ÓFÜ“X·Ι‚çºWtúXoà´ô=§Ê¨u‹™ìÇg:²D VØäa-‚Û*‡Ï󮊷ó[…kàf$”¸}§Ÿ‚,cDZrEAÄ+ÚL*Ï6Š'`Âð˜¬üˆAŒ†`€°3›Üm|ÂÚYDI#GÇ{4é¢áØ” ˜WcT?ļ,þŸ ©éyá[5”˜zÅ#¯¤Ÿ:x9k·’‰ûî7ùÍyRlÆ¿cعéXÁï ãþ†¡š¾n® ÑUK2aLºjŽá°" ¤(畯ep-?º VƒöR>Ð󓺭î‚> ·U†æs­íš1(´îÉï)ºè´çfGýÙŽÐþtî“hž³lTͲòØë‰­š˜sY©‚çše!"2+õ¥Ã8’0¤`}ägà7åKQzÍêý§oÙ p¨ÊÀƒÑ­‘ Ú_ª13ýf ’üÖuù°¦×Èÿ"Ç0 s ë4¢£ŠœEiƒã8¢%#a¶Æçð(¼epLÈRPݵ&j ‡ &‘Xp¼šÈÉÝ34|îÃ^ÓÅ‘æÎ„SØͺDÁŠ-Éh\SC}h.Ú4ÕMþšèpËßa?*ã-^[zú¥—ú¤¾Œw…˜0VÄ<°ù×Mž§ŒèÓa`xD±\9GwïÎ2 uŠw›4Îã¼¥‘x_KNÈ{Âz…®¹\¨õ`kŸïMÅ7œw<¤‡…»WÆFá£<¿Ó•bó6ÄǾO÷é™­K'ÿ­k$…ü1û‚øf‰ÆF?}âkÙ”¢îþ*WœLç çOIÏ·&J¥ÑͶ>±ïJ“§4”»C6î*?;1Ì(·£*§jH©¬±+öý- Kbµ´@ë‹E„Äê¶6…Ö;@Àó ÜÖ·:§HKHŒEù°ÝÐ-êúU˜È!轑°Îdf q W…¸TÙÓ³U“¾E˜¡g€tß!++ˆ Ú?ÔäV iŠÔ ßy²Å‚”âÁ&-˜&ÎðÉIUí! ¸Û²ô§"êò}úT²=ŸSÙ“HÀ¨ç’ÒnOeWìº-ˆ/Þä3¥â~³òÖZ”ºìiÆ(0{„¤êZD¨Ÿ]££(uV%LØ ÉÓŸ°Qœ„wšèdvʦèiju‰½ÜW˜ˆq:’&ozŸÿYÓ° !ôw]lZR†àBfNGQ¤ëBª[ c°?óþô°°Ê-‡†ŠêA²oTÚè:kX°šæ^,Ó¸ùÌÆ+—²¹Ï³Ag l‚ û¿(ôÞ‹îAé7E‡8huÞ%PŽé°¹;5Y“¾·ÝŸ…F#ªVKsÒF‚‹öàŒ•ÜÛöp_!d`Ûx[·ZMÚÖò{¥Ç+#’‰±xm´z'ÇÌÓšàƒÁÀ/Ǧ»èòp^Éý¦˜™™öcüÊ(f±ïÕSSômÕ,.‚’Û›gsÃ[Fµ,éþ“®êóý+aáÞs5>@BrR ¬Q^Š¢@qx9wÇ€4¯cü)™1cE;síX˜ ²65?&R•œv+òH,Åò'*¸Üê *$l±i¨}ä“©sËÂG Fh¡>³!5þÕ°Uù„(‡›·GŠ™&æ\ÓæÄå£ó1`×Å„ÄÎÔˆîK‰´¸sûQå`ÚFçÚ3ùtÇ’• &]°¨¿…Jñ[lëìŽ1þjßéÓ2 Êl°:#Q}~»=ÊãçNœr:k3ûXòÂ%ýˆ<œ7 E w<|~ë«’ÓÖÈ›€Ѫ´-ìÝþx?1¥™hpa¯-€s±>¯#ƒ¯g[^|\ÀÉÐO°/°ÌG7 •ˆ.j4nùn*îx?Ëb[7Ñú§÷‡úÈFåÅ-]n*ôΕ¾Ou¹MÌä2¦¶ÑnZpõÇ„…|ÞQ¾_ë4°*¢ôT¾qM&Óö"BÞI‘­»ƒì¤:@FÑ.ƒ@ÒÁ"ä”ÙÞBG—ÝnâÙ îRß‘7èq±µªÇFǨÕC ¶Ì‹”ª i£|ñÇWü1¼÷¦aZ?·åÓÆNÏipHrÑvš r°ˆ ~C9c…Ú¾+!aëpšu—{â3ŒAç¯Ý­ýÒÈÑbÌE•6úÖ«¾ÂʳÆ"âO^~¾¡mîóæÃ£Ñ䃑S禚€7 ;"–d¦!gcÂÌßì›V€žMøP2e8bDÒ(Éaà> uŸb4ÖE –#ÓËä{JºÝ/“Ê^l ŒQ¸Ì¤ŸOqs)É`ë*3BI°Âfyí6p!»1 A{(~jc ªÊ³W—Z‚Z¿·n¹ã¿OòÎJúäÁ[¸¿SR*¿~ˆûŠœÁ‡&KÛŸò¦˜F<$¥©ox!¦r¨Ñ*‘ùtÂUDÊÔÀó÷RCñ 7/«Å8ZHŸ Áü¤>A`H\,~ Ì¹øñ«¨¥¼ÿLDŸãBF&¸ K$xÓ›d¬ÕƒwW?V¯«ìÖVò—ן«|s”#â–ˆír~šƒ^,JÆCj&|é¡K®ýÍã FØe¤ÃûpQ`éÛ‹—£ûtçM]ospÁ^Õ ƒ‘•I!½Ï\R”ÈÐùi¤ÉÝr¨ÔE8Ý!UIá‘ÒœùT1]ÞX<¢Fåq“.FEk‰Ú<ˆLð>Hü0A(úÁ“ ú›]6SÂgˤbû˜wŒîÒÊ eÀÿýõTcÛ€¶§eÐ^&Cp÷”{#[S“C/LâØ;Ûz’º$ØÛÿ¢hÙh—€Jçl9ßH'Ç!))  röýÛ¬A—š\š/ÚŽgÓçi¯÷ Ìää XOÒxk¤1øT¼¶õšÇ‰6³Ì¸ÌõÎÚ“Kß =AZx¿z¨ªó ÷˜È':¡ç¿I‹b·‹µîy+‹½›îSÕ»A°ðì¨LÍÁгív—~0–y⪀6bRÏ)n±ß‘g€öðO*¦´j¶uj~=ºç•ÃøŠWš 0XÑPéߣ¢ÒQ$ãÿ‚«E¤Ó c ¨‘Þïˆ)éi‡oœû9wW|ô "_¥î½f«¾ásFVoKL÷íôÂXÊ™¥°åðòz€_dŒ(Š÷EV‚Ί¶Nd\ÞdÙ%à87.@>MÓ>KàmSÅÔÚ¨øîôtkC“fzŸ”CØ ©÷¤&`2ð0×ò‘™qŸcóÍ£ö’w&/mÑOdXè¡ ÖÎàý TÐDê„ïú#EKk»­„÷·¯4i¥ŸËr:M…Ìf@© QƒðàÆ_߸únbuˆAÂ`VbÞ×[°» s;bÊt_A×ÖBšËIçõÃn\ʽa±»Y´[ ,:#”ãgÕ+C©¤…©Gž7O¢ŠcGËo†BÈ5\£•äõ©Ý â—DK“1g®ÙüƒHÏ2‚—QÿUG5!dõá'‹Ç^Á£æø<Èæf¾å3É_oûË1§wÚ•µòo“hz3µà !Ûè˜ÇST6yÞMüP(‘!ð`ÂïMA’5\c WyF€? x4 þøopl 8|± 'ì€nà÷nâiìY(GÖX:'¶mÍîœG“$ãKŸ•8_âž®¸ï[?,ì" 0ºÉ÷Q¬o©•d áÿ¼“-²Gùú#^®—‚Î~ {¹ÐÏ-‡ô6TŠb»9-øÎÕŠìG1¯Þ3o¬5«âš°+Mt@[T7•—”oÃw•ŒG¹ñïE}Ë'Ù%ŠÖ™hÁ¼o¼|©ö´–håÝ?À@‹^FÆç‡Øü½]ç̹TÝ£8ú1¿4j Ù=›·µ[¦xQ³Ñ¯þ² ¾çÏ4dšç©›ßB gÆq•ÄP‘Ú wJ_à?,¶Ü6H·å’²ÜöirhZ´­ëXA2â#é{§>×RJJâ6ÙFÓc’zMã ä¾pÍDÇ&O#P˜¼ôƒ¸¦‡xÞ?RPå³S©"¨¤~ù5!´9©„lI6n”cìé ÷"ö |£¨Î¦7°’iŸÐ A|g¼£Í‡¾g~|׳A¼.@!ÞI YsŽ•ÀM1‚6Ö7MIAÍR¸K¶'‰‡MËËÞx†þøÇIOyUƒ¯éÿ‰‹•Í„o“¡g°‡Ko[®k~A° Ó 3Xg­¢=ŠÏ3aOBDwìªìâõÙ,¥SXÙ îêz È©‚1»î£$ºW©ÐÜ5mÏ+xi4jëƒ}gU£¡$D€.&“Ë×?\ŒùI‘ÇÛ3 .YÉF“ &¯£«¼dƒµÍ¥«Í`M˯AĉÄÀ¾y‡6{ï‘Þ®}Ç´#Ö“HÒJ˦CV@*&Ek\‰pYÏ,4hQ0g×Wö´y¯H{×ám«ƒxB`‚CmÌüQ [-%Ó5™ÌMî)”KIݒߎB uj‚€ Á¾‡£#x:õ:|©àn<÷Tºm¸F6§>®#Ô©äá‚Izм/ø)¬-¬YT9Ƙí Ó—Ô1ay‚éäÙ¼}Ð4‹¢C°«"öÏpeñµ  òÌïïžïÙb;Šåkò[÷4)péMçœWžß&-T|̰ŽÍü硜ÑÒØ*·»ƒ[w:wèD3-¢8—3¢¿LqdS Á§”º%æªÈ)¾Ä6}Ý—Ss¯Ã;Ì@ßÁh€¤L%Ç*æ3mç)Bº}ø*~t?å×xèy#';e ÛŠh‹}þÜ·ÅÝÔðÖm Q j_&õ¢3kQ?*šùÏîd1ƒÍ¢:ºÜ1M€f³™õÛö-Lô<W5›_&sê¡=[ëÒî8LÈ>K0kË;àÏò¶ ý­ÌãÈ6¨²®0§Ž4$gœÈRÂ)©##· ¦»Î$;j|ºp‹ÕCaîÿ\Sóû¨åXW r\ݬÞ8 ZºØO_Õv/f7Ó™—d4£¼bØýÖl¿“,©o–½‰Ð’Ëçˈ7u˜\¨jâZ°Ü>5ÝÑ&oÌd H"³=oeã«<ô"3âû’ΕÚÏ!¦øÅj1KÖÃt°qÁ>0~^БO][¼iCɳ³ülÿ±º˜"Ýâ<©CÌ`üt¾²%zzL½Í1¯BÙÿü‘vü^Ì£¿=»Åëe(Í®Z&ЍœÚ]°[àËÜæ'sü²óÿÁÕÈz°¡¹ã(©ü¯¾S‡~p•Û:MAÜyóü3Çp¶ SжœÈ`vnb4«©]àFjúaŠ;¹ Ј ¼ärŠF\·™àËîÕ¯èuY÷"-ô#ˆÃ®„±Ïá`ÃbÛ{æެ DBÓįúöÅwjH×2r•ÔJ üH¢é ‘³`×fOº7ºñË:·Ço{(qÑ^Ç)Ê$ñiT×R±úBmïôw¶G–x؄Ѐ•fåü[ÉxÚŽ˜YT`Éæ6…?Îã„xþ‚(ž©! ò2Jêé‚V|+±ˆ“†.•v?å´ —_c… t®öÇ}Ê<üEÏgõW#”Ã,êŽØšÈ[ýª›µˆ§ƒ`»#Ëȇ*ój>/Màu¸ “½ªÂêåÄ#R4a.Ap{bÇû ¿LÒ–—¬ @7ü[´±ìz±Ú/¥ ”¦G=—É\¶¬v¨†_JÞû÷Y%feidèFéÔ#6s…Ùß.œSÁ2+ÅË}s!\ïA*ÄÏ nYÂÒE=cÍ`ŸÈïm×±´P‘CV­• Û&@Û tÇðfuÎV0fe;Ð;:–`B)(:þİqŸZ£gšÿ=»¼îÐ Ñ)¦žûÕ¡‹kHD} l„“÷;¢C–j)±¼ m1êÕ6"³ˆÈ‰A?“ƒ¥òB¼°Ç"‹S:‰®Ÿ¢F»•ÞÁ³ˆòÌ r’óÿóÉê™[TÕ¦TuŒ!MxyÖv. ™JʬÁŒÞÅ!ÔâÂrç½êBÞ15•™õêå,F?#Ï2@~&æ"L»‘סàæ6Æ~}Òá3e¸ô6ŒuÙ,t••î‹\@)éí0Dæô¡“X™Ù~¿$Ÿ°ÝB¸ÿ;z&ãlªìíêýÚ.Žjí]áO")‘ó,Æ,ˆsÞðQ/šê@£ u/ë\vÇ Ñ[Ä‘6V„»®#xPÖ¼vròbPà–…ƒ¨Ö³><Å.^—½ã:#d‚ÜÁ¹¬“ë%¡ ô_gœPëvœ‚¸†yä@ e¾Ò¤õQ)– ýܳŒtôšxn¥v<Ç‘3ÁF±f±äÒ8È_ÅSÎ3CÛ‘ÿÁ–'ëá¢Ù[ù$^Æ6!ÀÐ8ÞHŒÃ;ŽÚ.§¸hðGfwN£ú¦ìbTü‚z~ÀëŸåqµ* R±c–Øð“QЀ–îSãLßdWÛ)ˆim–ö‡°ú9ï*ÞËö Y6Ðèý– šö ;§yzh°k“=¤8Ã/¢»¥wXRÚPÄ;átÑ.¦8ÕnÑí¬ÒeâÞó™´Ê°ìšÄØú)ky„|vT­HÞ3OYù­;ŧòøi àIÎκ‚¾09ru'LBÇt$õù,¶¨«êSÌ·DÓ¡EÄ2~tË–pÎß҇Šÿs÷üJz<‘œŠÖâÚOYÆòd³ÁR_Ëã3aç²r¥ùøW_æÎܰCü!”7X¡ÛÓF€!®.áµôŠãM?åv¿W¿%Þ1—uªÊâ7Žöõ)õ Nœ£ÄÓTyÚE W6kà¡…Ú¶ÒqOsóvB‘Á ¢¾Ó‰ŠÆ«™àçëG‹'¸âÖwà5å¾;žªŒï´!îO«I7xÅ"葸£°Šü„8¸ÕG63ëÝaNw#2¬ yÌçZ¢vÊ{§©Xˆò4>rõÓœÌf°H:£ F¬ý¢¡$ùÀ1%’’v#ì*ˆÎE<' *€øåËi´§%×f<è†Òÿrqèc…>Ì)¦]öŽ´lBöú õ°üü™Fø©ÒX?¹wE²KŒ°ûùë³Ytæo_]¦7’¯\Ûtë­>iþ×é’åÊñä{ä«öÉâ%`@i'AÄ6uö×/ɵ¥«:èRvýù¬]¿È>mOôô§z^醯¿‡ò Ý¹1öŒVfõ°í¥.…m€J‘ÇvþZ†ôHO ¨Ë·30ç¥iŒâ’u…C} (ÿ02†ZƒgG‹v¾ØÃ`ŸK¯?±=Æg”•$À):Àd¢ä‹k û…A‰ôyWøì#²{"Irg‹){UÓ©‡I>KYÑÏ ýmÔ5¢AƒÊfFõËnº¯ÁqɺrŽRÓ¡øJ±’¤Ir¸+wʸ“‹ääé€Ê Ò}øTUÿÁä&ÀÖt“áʬ‚-=èSÉ1m ¨å}ÁãOBþ€ óø(…cÔÖ¡Ò£þùt×"8ø¤zjµ”h:1—Œƒn Liï3÷£¾¿%"b.ö«üåäS»?<³ãT,ö…ëæá¢4÷ÑN/,°½­gÎ~˜-Ÿê}ÈÂ|¬µ…ŒÚ›¼á Cîc68Ï|kZ‹þœõ@ iÅÙduæÓ¶Ðò ªCM>qUñdw]¿ŽÓ@p9é\xW[õq“&~"@ør;¢Ôweiˆ™PEÅD6ê&ùWMö•TSi,`&;w(^x“ÕÖ^¯ÜŠ~g¤éˬ $ ùKpKÈÖ½Œ‰·™¡~b‘ªñ z3% ©®ÀF¹‡\ùH„y::y]­¥Vú:oâßm·v• q«Ê8{"vŸºŽ;Æ<< Þ®ÎO]5%xeÆÿkì<ƒ‹âñþ„ì¦":(ýˆÂìdEp|6MTÙ 0 ð Í,T²+ï÷1†v¶ô퓪ùõ´ûΧæ“Ö\f˜CNd¡vXw¹Þ8£Á-†+~¡”lꆩ Ȧd‹ÐÝfÓ‡†ÊÌ/‡ˆ ~%0ûãD/=VÜž„©J§ñ|Y&+ÕÌ«&¥Á=¼z4W СÚ º¤E®y€!<îÊY*Ź­òƒª}m%äˆW&v:Ô°2 Ê–´ÂCnvΙgJAjta6‹Ö'cí^/&!(SÚ+ðAƪ¬ºXØA%Kþ/JÛÓœw–ÙÈiÌ44m|]z¸•ºgÌΪÂh`Ú› xqU% 7Í ~sׯ_Ÿ76Üÿ;VâYAS>ÅD¨BÅä©·wïlƒÈpQ:³â.c\»i£Ÿ 3ï0pë¤"£ÌŒJ°bÛðè‚Ç|ÝÎ%tþ§^5%ô\ —ºÓ¹ûÈ ¬#†k,»t©ƒ]ÖЕӞ(sË@”øfA*ªx4‘ßB²Úµ£ †EÍ;\RU[(†ù±J®qÚÑa°©ôz‡|2Ó%Ê0ƒaU`, ‹Ó|˜ùÍUÃr;sÙþš5aWPD…<[Ï{­ýjލ^T™ãîÜãwZnàÜ>PÔVs Fp0Þ\¤{E+wXÒ?°ÃØïLÇ£.DòÇðd´úa7s?Æ&‚$Óz¸-V߸å1êÆÃ|Ô¯‘p…¬”ÎÉ'Ì0Öx˜Am‘uº!ón’Ie+@¥‰íjA%zw:Ù?ÜPuô){ßp{^M)ê(³¾ÑÄÁÐ[É Õ„+=í2¨ÐÏ{‚ô|X8Y„S=»W'ØÞH5C\Ƽä=º÷¬Rn芆w4¯*ÔùG¯GᆴÈeGˆÚ›fèk8vnÑ–Óßµ†ôrÆ6MúóçvÓýº}ñè ¾P™%¼åy45ô%ã¬Z¥/h‰äè™øiZ71@âÃÈ óµ¯.i·' :åúhEçƒÁÆÐ·¶î`üÿ';P:¨h î^圎RG€õIÇÆÑ5|±å÷•…»©„ÓqœÁO¬v)½+(³ùéßÑIÍÔ%HW&c°æƒW OÈ( „» ê á0€*5V³±¯¼-QkÂÔZ1²è&VË‹§«œN¶F;P#$MÛÂg¶ ;[."Ödèìh~¢f Ýd0ÁnÝi´ó? R¶s¡û>\†èýøíú¯Ù '§rh°CÓšÚ6>ñÂØý×HÛÛØ[_Õ ÌåáºneF·ÔH)j”¬QÉb¡‹vV ÕÿÖFoºÁo-±\¼¼µáz!…°É6»~ÔŒ¼-áÄ|P´¥Ùq¸üÄl%Š~%.^#.ÂS ý;œcÿ3p¡ÓжŸtñÞ˜´W™½4¼²p'âby.¦C«ºØwÕN [ßx(—ðÛÁ7TÙiT>qÑÒd™ÉÓ ó¦„!g¾ôär™7YÙïî ¨Á‡q\ж·. cG3Qí JtÃ1¼Þ™¶äÈŒanÓÃï–BQæ&j5©dX¯áeðóˆ\1»ÏJkä~ $ýGXo #-P·]•ZÊ!FØþÊúl‘ Mùö\ °ßr^Æz’Q+D÷ë›ÞÙld/,B¡cSþ¬Ëù¤j]'úíÖÞzš+ï7'DZ‰Z×–ØGbnµöQëfJß÷‹§¼{]TKÖ°æ=OmÞ6]þÉiV°»ãÈ  ù k€Õ¸±D±‡Î•ð1Ó˜ðØzü{Y\ü$hލøSÛxø|쇌Ê\cSÇkqÉ£ŸîŒ¡¬€ŽâY:êúo‚Ï)I½LíQåýí,? e?ÿàŽ÷pŒ<) ùFŠ7'r #/ÆNj6ˆåxljð¯žk´ý%íÆzr?*…µ¡; õ À+ý0šÍå‘ká{Ú¶eiâüµXÞÌØ;ÕZ#‹C v0ª³›žSÛÇh̶`œšjÕöܨä®þ—År70›ö^>¤5h³BÓeS¥_BÆ^lº5öo1W-@ÀלíÔcŽÉ¢Ä+cù• Ødo:)²ÿØs¦>ìî9etìM¬8Ÿ‹³áÉâÄp-‰ ˜‚L´ ‘ W“%sú-DÑ~ìû‹%· “¾[y« ) ›+ǹ·šÙâ>~²¼ûjÕSÎ^*“Û´T願 ‹šnÖ\6q·ž£«jsZkƒ¡˜§Õ£¾œ"_§^ÆŽäNô§ÎxÀi8nùEC!r^™›¡Q¹DÓi«Ô.„1>s—5Bßåèbî,Ô>-^ ÓÇÀ».ë¼F£‘vÙ²&Fßç é2aø‹â³¢ú´ñã øÅu,âo¢Ùÿ8¿ù£RÌü[jE›×ïÀ“µ¦<¹:ä×–ªz&c‹‰W,Mgõú딕@줸½­„¸›ã„/šEEóLdÌë»ÆÜû‡Î#¥‹¡Mý‘ NwˆÊÙ¯13³Ê),½‘õSЗØêÏ‚ Ì@=là¨û²·aL2¤!c©ª¹™d¤k¶3¶6e¶Ãjx r ņҋˆ!Ë+«„³x:‹aë{mXˆì'“Ê0,‡®>:TzÞR1J,ù6ð«¿Q3(ÅÆâ.\)w-D9â‰È ˆðPQb›5 äÛVYŒ÷œƒÐE·.gѸÇ?ȱ #ALFÁÏRéÜ×Û–§8é˜×³¶Ây7QÄ'JD¬âý'å»§Ô ±= ‡}ãØnIä—júH“Ë!èfu‰nò»ã{–ƒºçKÙÙ:à °Ï [I(²áÎþ´ØŠHÿhwul ƒÓ¥ªY|9LähÌÛ8ŒÌAß­ˆîejÇwøœŸ× ¯'z’½T…jV×7Àñ„”Ÿå$®6uÀ"hÐÔ„•CŽ nB¦Dž £NÛi–鮑!>Ã7Ä µŠ¢3Jù”tnÚz+ÙV¯¸”¢«¼³ +LyÀXUéP@€ß—ÅÅBEÂÉ‹õÛý‚:Øí’ÁPÀ·Gæ!ï5"“øõIŸdQÀX[ß ÄãòáCÂ÷/ÖÃhjó銶NÓñÖÈÿnmÿ²ñA2é{|bb!>)H,´­ŠxQi ¿S¹¶˜ÙŽ)oöUq c`šÍî|³Ÿ“«-Qà#²÷Fô#_I¹PÏ¡HWßf'H*#æ·ÃÎåmBÍÐ>–Ò$ÖwÊ:í*©£6¬Lß™ Ô)£ÑÀ<‰— 8Ióa{õ®ÍYË×¥ímÁ¼\Hyw£j[øáñù²WñL[h«shÌf,(ºqas0·Æ'(Âû“ gãí¶{¯™e_ÚØõ*KR˜t—\‚ÜÀuù'ŠEo‹$„úò™Ã…ªg¸GâfeÓ§I5L‚HH b„n¢+a”ôeÑ~¶V —•Ðÿ<ÝSÊ¡{Fò¢.©–ZNB×MKFÚØ$[jã6Ï(·•pz%gºXÿN»‡¿¥:67õmí´˜Û`‰-<›c42¿êþáòŽUsôßE£aÝó²l(‚‹LH¼ÜE«Î/wuR)ËërPýªIì$ÈÇV*ìþ\Ŷ޽š‹{s‰^õ…¦,ØòîRÖöªq:†ê -9»Úf….tøÿÎÕœæÂJn|îÒzŠHÛ3­]º\€’¨áÉïVòÝ=¿|zÁˆÙ¶Û±$sÆ~$ݧ¿ÌãÃÚ"H ‡úYΦö 6Y©À0¡àEà ‡W–©ëÕGÜ×ǯÊaÏ–bÕÒ CåF$Ú.ÿꜣ«ýœfh8¼2UiÏ.ܽâå'Šààå9ü) q#‘@µw} ­\F¨$ž\1žÚˆO µ3]ê„£Ú夅|@Ò# :OŠ5 _4Ç®V\ IïA¼—Ü\%få·í mˆXå4‡B ™"ň—ý•²lÁ2`\ÌøèùéRÓ q ä…LÇâãºFÊ1Ûpï5J¬uøÂ¼—ÃxIœz_hxÜfÁr#Ði3?–&ÚM4üHš'ËC>‹W3¥ë°1bÕ϶âßbÛ§™V ¡A< OHï+ššTWe% P¹êÑÿ'.mÇo œA±)±âV¬„õ{gxD—‘ý#÷aŠáz-2÷JH¨Ö_`÷v£^TÍù„{5„âÝV5êôR70xO’$lÄ [a;R®Ù½Œ)­X+½Üûv£éÏkÍ4È3}PoAZ”3u;jXµd]‘³³ðôvñ!ïѸ•yuVÔ’DýóVë{<`났©„/¢±TÛüÂÂ_õÁ¨@xÕ]!óVÿåÖYx2áqƒÁx‰‡ìÜNñ‡ön7™Äó"t[÷+øÏåd¯$HãJ∆„’qIð6ı1‰K%[…¨  Ôöqk@\Ù*ô9+vМÂÚê%?g$A¢‹7?ñg=»˜G@bÿsvx93BŠJß;›sópâ.V4ñµ¬ß¼,ˆ2{;7†×èÓþæ«mG ÚÌ€cµWQmT°’‚ ªˆ í”Ï ö%ò 5wá. ô Ò·J@œC“_ÓaµrÎ%që“hW°øÑ‘²eZc2Vim¢‡VŒ±[;_üÝÿ#zÓÃc©V†½¬<‰"Ä “qJÕ¤á„Åœô½Mk#f8 J®ôê"-Í|.®ZŒÃ³”¾½ý8zAÛù~ íp©±¬ak‰mc¢Kê>6~š|ýZægÿ<èÛò˜ç¾Ä¯bºs$¨4¾~ë+ùÍ Ýª‘¼Â÷aüN# –HþöuýÐ2HFýÝ€äßLƒß#eÌHæ²1çírûöçN—>¡1)-"Aæõ˜ø€Ãchÿ#RÊ¢¥åp[Š—‡8öNID¥£“V@ôA:1–LØŒ©Jaö™Brì<Œ7L‘Ü[Å¿Ùø™•¯÷Ù1ë,µ¸=ÆäÔ¨ôå½ßä„Ì¢›{Õó Ù-Ð.)[Aœ{㤨•Ò#Õs°ú,ŸðFÌßÇyàÕaé‡ýÑsní|{b=°ÏÉ-ê'“8(£xˆz!YA.b—‡× y”*Z‡X-¦¶û¶†òöœÐ»"ñ~‹p܈ñÃÙQÑ«ùËu­õ„3o¶:R€•°¤?`rSlZ¹K·™;þè<­[zîÅKÛ®ÃL‚)Ú’ëØ^Œj3/KØ„R”…äÖ¿ÇìN­ozçØ!ıhZ?ò< "–õØ49iÚÊ þÀ\ÎՌіÙ#{®ÝQ>á‡Ü÷ž§2RNáÇ‘â‚ýi¶¶ÓH»‹þŽÏ¥j¶2FÈ<pLQ·’¬5mÓ·-åvó7ÿh°èáM4¦–ÎåŽ Eòfö@;èÍ…JÙ¸õ3}!®V×;á–žã÷Tj€˜a|ûÜ>‘cP 7¾µmw‹âø»²iœgÅÛa£ÁqÒ@cD”*F‹ŒD1TŠŒ aRÜ¡üG$Ùä@ÆsÚ´¯nµ„ý:uHÚS_ û£J§dɆ8„*©e7Œ G "‡ê·0òÅ’R‡8è|¾72,/ “ñ%*¶í@~Õ,QÕàçw…äë.Ò"ŠZu·ù¬íÚ¼ö #óÄþÔ nñfíòzÀ ÐQÍÍM»Fé “/óÔX)By ¶;DqçŽO³,¡vîÌ¥Sªü2Ý® íÌEö¤¾…TXžÂTªozfìQ'{¡?…;ˆôw°·ÄcN;Ôp B¥ðBK¼TÅßß:„0mÃvMþRâ‰'tÞAß}#Lõ4GÄîÈvÙM°Ì«\îó”þgÕÉ[[à¨á¼­´Ö¹Å°>}in2`X(1“Œ*âú×åà3ïooí/]^Õ>ì_îX°ž=á®…#V(ƒÙ~GërœóåÇi˜^GdCÊ»éÐ;“ÃÖ}Át`báÚæÑNv£…mú%è?£¸‘SN¼9RÓ6á*wF€G1ÀŸ´?·; ôÀûs¸£Ç½…rKþécI÷‡' qª¬¹=ÔÔ&µ Âfq⌞괟«œ¨Î—vìñ£Ð‘ýø+rS›±S葺2É`xç¸põëEuxŸ…za˜ƒeóZOOéËÏØÐ˜r>§ÐXH,lpS \b2“ÌÒ¼›òÁ»6ˆ~¨ß¥_iÔƧ|u=wý¯ù¦(!¬¥kÎBLF ñÞ¥aQ?oÜ]³–CÌ0ÁË#æþ &ò…Y+zŒìšöógUÔä¥ÿ%ÊÚ½Ý[æÈuxñ©/êPÞÞ¡k°nޤo0V$¿‘FŠZ‘iÖ1ÎïZ{´ñ€i#EÈŸ«p­§§Ãt´‘{ÔŒ³®ûR·ÊˆS>7…Ù#Î;ŽuK‡µÁ;@3IÞVM_3¿Î†}—)Àí—DÓ[=hL$'àoÒ8n[|èo¤¹ÅeŒâ®-¬ÛxƒKÄbã¬÷½£ Sˆü&F¸eÔ‚ÛÍLPy™Š;ŠSdßè]õЯ£²Iª]n&¨­¬9wó-ƒ¼¼‘¶;T[ðíkx_º[Îêe7Rô&fŠ™™of˾  j+%áMKŠOÙtŽYÏ]ž¥toï5‚Á5Û¼_†ËÍßÛÄá„Üt-oPný ‚~×õ¥‡¢‰¸QsãÆHÉ#¿‹öŒk_AÖ­øDêtÆTgxn”T ø*ÝMuä ËeÜu5 ý4ýsÊ:mš¿ɾ;ô$`·œ$ò±%Ïã6º¨~Ré¤:îá³äO®-ú*\p#ÐÀÎîþ°«è߇iÊ%ÛeE‹)`ªY¥Ë¡›þµÐ#Ç–Ñpì3m$sCÿW ç°û;ŠãÄ42„¬ËXM”sHÀEÂaJµ½:ö‡ùùtÕ]'ðÛ®ìÕ þø#Ëqj™N±êfÉe¶M{Æâ'†PºÂxµ¸ø y ‘}I2?¢%͆_żE,Õi‰Ì `áóÁ ­~“ R›ip¨(îŽNchCÌ_Ÿ „3ÒžÉÑ(ŒTŸ+<»#ßìƒ<@£¨‰áyß¾ÅÔÍJL–ö$tùyû7Ò]£‚·búY—LYç¼£©^Ðm‰µz;t•qüãúxÿU@û¿Nî­dM7õ½ Ɋ鉸3ƒ–á9èI‰2/¹S:@f¨¸P Al)ÑR†¦†éÙ2kŽøËdmv\Œ]—Ò“ÊÊ, xÎå[²8ßÄ ­ ÁªP\á`¡"bA <‡"lß­ÓÂWSQÁõæ­ž4tÉíyŒÀ™ÉtŽ*4^®š¸¾SR £š{›ÒÅùÆÐ]l ²%§a¥¦­¾DÄ¡yïš[ý³‚¼à(eþ<ܧóϪø]íÿ™…D»!ÖŽ±“ÀÅ"èmÎòzØ?hšü‘Ûûƒ›r'(FŽr[ãNrC¿Á„aÇ:Ý#b9PÎzí[ÇèCnŒÕ¨,€ÎÊú;ÛÍ00HÝM–ði_h•`íà£Ô7Ù‘Õ†¬xÁx— ̈½iyìí*“¢ÂöR ½&â½&}^{k‡@ÇnYÖ¸” å傯ZÃ4Iãì¥¿Ž ¯^yêK )ßdxµuÏ¥‹a^¤Û[z#Ò2ÊÇ(zÂÅÍ2DõÔ¬‹+vÃpáÕÍU‹jG0ÔG“_gÌSÅÖ¼1EÒˆ øÊ¢©XeÐÖ:A»éÙ¤]†0DÏs&nä«§ 9mE0Á</ œn$½‹Í'èŽ)ùšR³Ðƒ/#@ÕÌSÁO4$$µøt†å…wMîshNRÐ; Q鵨ÃH÷½`éØë—ø1Èòw/;pãrBoä ÜÑ ô…~?ň,‰ÁÊa?:£Í¨¦ð·uœ’3"ä(€ØÅ)è—(y»ŒÚ™ÿö!I‘Þ7}Ù?ÔÂZäJ}b÷&}zdµ\‚šÇh4Ó|JUIâãEm§Q+ݦ¿ìŸhÂ?ű-Ü;‹ÿ安;@¿îÈÚ…Þe°¶å5 Ô8 ƒÉK^V‘i¼“5† ËQôã¬ŒÆ 8ýç^K^Ì“RÒÅ-úÈçe€E}ÁèK973ú÷#f‹õ9@¾£;áhÇzdgY¢ €<Ü ~U¦Plƒƒ,±ƒ-Slƒ“ûCdN_MãÌÕN¸€v•)O…(J’R­yúÛ€d6 ·còš¶À’¤6Ÿ©m·Š:² a"P†É>á,x,µÐóŦÓE2Îà“9(­)”Gäø6T'ôt¿Fh³[EÒe¡›ê›‹wØ¡ÓNÕGÞq@Ù Gg©ìü©?,S4] Y|Rn“àH¬¼ÁûIÚ}*jžSÍ+_ê0&} /,­×¾"սŲãÚ¼õý•÷ 5»Ôà‚:ZA„§­A1.®g±æ4ËÓ~*i·ÏiÀHãG¡¹n¨~ÝfÇ ä}Ú`>Ž@w¯{Tw_±v’~æxÅϱ(a/dw¼4°ÒêþÌ+w3ô”>Hoå·£Ûk»†¹C~ÕPo¾|¦ñ’¹¾H~¨RkðÌ£žÈ¬Øì'^ýyy zýŒzPQZ )©Ôwº*­á”ªmö¹±6°YÓéG-·4§ôq ¢;Ã;ÜJIBŶ.[ £éß ?~åv³°³l%×»¸(‘zšFèwnj—ª¬Xö0ÅÏTŸ›JQ0ï`ÂP_ŒºGùÍö딟ïSÎuªªä¼x&p7$—jãF˜c©Hšldü%ªòäÄ  IÇpë¼Lï·QiFñb·âq¨éËñD¶µÝ'õ~nÑyEØ“d´ÀêàÞ%?°E9¶¼\3‰‰9°@‘ŸŒÍ‰$Ê{çŸ0};(Cµ¨øØ³bëè›<µ›×;)ôÿ´xéç~3âñÜ7÷®§p'킈ÐóïŽlÿ'J¯eöçu ƒ[‘^Ί[6ïÞî–jdàÙîˆÐ¾$Å~M÷…¢tØ…”!x&K¿ŽºPñÄ'äŠË-¨Î<‹ìuHlë¤öáñ–a*×q!ï7IÚ,«ž—g·«‹Ç¢nŒë±ó²´=+À_èá tnöêmÁúG/χš°åi+%ÇCËh5µ4”K(ß(dG ÏFae‘šOi̘p}“ÿ]ûȺ¢@ +}ä6Íq½_†L“°L›ä5- ©¢¨×­Úæ‚x'|Ŷ¾À5­¶Ød)›KmOZã5íá ƒN¬å1çÿ·¸ã6½êéLh£üp 8ôfàÉ´” ?O#²£€]ÑÞz0£/º:jàÜPÏkR¶•ŒÔàÔ“ó+8}r^±*ŠÉ­Å.MÕ£„éSM2Ì ÙRW—^‚’aêa=ï'õóR\’fvTÿ‚Ë%„ØYæWëY4ý"GÈè‰É½V ¢ uÄ“éœ öÓÜÛ¾e  …½>1#àQaîh©Ya_øùM¬ ÀãßJ‰tÖ]û¬ýùƒ‡‚†{î-zöÞ¡Ò«¶µþÅ—Dy¼a4[äèlª º)šî­É7\ãdŽÀäó˜‚jzC3w6j31cöŒ¤gö½wž­rä¦Ï¸–ñîKïÒ2ÚKtÇÎVœK´WÍdRhõ=ë¡.³¿¿ YÊÒ8~D«Ð.Íî3ÁAzl"ŠÁ¶J/*Bp1MÆCwÌ|“ “õR4Uk“Ù´D=¡ÛV‡ÁGsï{ïäßÂd[ N={%Áˆ„_mhàÑ{8®0 CÇ+pæcÔ,-\¾x˜Ktƒ‚&â©Öp 82UźÎЛü@åG–F¾Ç“–èg£ÚoŸZÉIš¦:@rZÞ4]+žðð­F ÿ ðzaÄ7TÌÒ—ˆ«RGiwW¤kòŠ´¯‘#^Êž•- ™SvPVÄ6äND |º‘œ9ÔuãH-¢À@ê²%§x”3ŽDÛ5Ô.¹ØGùxuã»ÝD_¡טžÉé¶„±~Žg¹ðOP·¬x< §¿q j¦šK3p¯ŸêËÈÞ±Ÿ+cƒPÿJõŽúeá¡nŒyß•š´ZÚÑG¾E“P'––r-«’ y“¦kà\b¼Xíëé6åù1Aw~ýSÖÔŒ”“<=ö WaDi TÞÙ³7…\;W7¥¬¼?mÓʤ¤(Ô¦H?I)\úˆÔ" )W6¼ôŽŠCدý.¨`JåÞ–w‰ndÛ€ £UO·¨ØX(†&¼øgÛkoRc²t{˜ŽK}bPà/’¥XbÛ%¼t…MªLD ÿ°áXŠ>ðòÕ°¥2Á r¯ÅŠ@ç3Øè]V~qP¿]^L¶y@ûÌQññÃó;w?+tFzÐËiÕ)1w;ˆ6˜9}4¢‡«ÔL cBF‰¥×0)/àÕhçÍ?ÄÚÞ…Gôïb©r#î JËùBJÊñ¯®k9›µŒT'±ùë^LH׫ÞÇÔo‡á¿ŒÂQ¤ â–là ]=Ç×Éø©›FiÈ8Do·ËOá'Œ30Ÿ#ºº<……]Ž^†­}Í©”¾Ât¼Ž|F™²r½ÛÍ 4ú'ÏŸ*ÐKªo»¿QSŸk áþŽ`íXŽàYÚhP”X÷L11Œb*?e»DV`eÙë•;´@›õé2ŠªÀЮѳy¹Xe£ÆJ}oÍ_Oº"“|ÏóäT€X—›zL؉`M¨šÐöUɽ <Óׇù~VÑÛ™O0v_=¶tãøG¼¬>IÓx‹ã¨Gö ã;@õ¿x| !œY¯’--Ò®HJ7z§Â9Ä,·xer…ö™8Å/&ÄßÂrà_NÊÈ!G⑬ƒââÜîØ>åJÄ"R²ˆÄbÑkß³ióõëéÊ ܽ‰îý ûoìÃÉޅظäøu?9HÄÑ—¤]&dÅùÔ dT¼ÖÑ ñDÿáí.êäþr$ïö­d«KÅ”^ªé-Éz(Ÿ›Â´iS§˜*Ôa"j3-Օܨ‡‘“°½dt©j@ÖŽÔWm§Õ‰°>çü_9 _Ð|u^Ÿá—1˜Ñx‚ºYJ­b÷A¡ÌT²þ׎ö‹· éGܽáÿ‰éW2ôž¬ó[úÏ@Ûì8\ïQã×¥ÛD©#ɤÕï¿› óÏk›ßŸ¨Ö™£ÞRàÓÅ».ÝùÝÂÞ1óM+ÝßЩÿßà}×»ùËpöA£’(¦-oFÃz­Á¬£=»(æwl§KÝVß^ãÞù@!ÊV\×½Eå!VÉòÔ¾d8úé¶ŠÚÞLåöšÀFJ3}‰#GnrÖ)Âäõ‰~ƒ-©õëjh9P ¾ågÔ$IDK hè®oœ˜¨ÌP mvü’Î'…õ’=}tÌ¿cVb¸5PAT´ñÅ”UtªÃi b¶z<÷Y˜Ÿ™C¥?ÁÜjÓá5‰®¨ÀÔf³tXáª/î^ ˼îÝüÜz¨ø)`W¯¸ ¤òôò’J“öe:‡üì½ÀJ!¤>íØtŽT´ üˆÇâòÔ¡¤e@Ývê ± yÌè~ ý¤Vëõ‚ÿ)ñ_¸J:'ÆÛÖI¢©3eó¿ÚœùŠ®(éÚ–I9œÐ(÷üN#M€‚@ÁšCåeôR‘}©jO¦­É Hw¸y€äù¸¨Î;]þ.:üÇÆ“êò¡#È€‚§-ºGqÓÒè¼yë-…ìÇ{åtÆÝèû‡·'cÐß‘¼7t×Ä¿v;%p: zÙî’ÂWµú¿aEÔ¸~4o Úþn@z.ï£7¾w«Ð5¾ü-î~…§ÖÀ°í„ÜFÏÑÅ‚çèüßHËHã!ÙQêË|¿q¾ß™2ÿUÄpÎ §Ý]2ÎÛÕÖzÅË»So±kZKD–Á޹«é{+yÓZ§¼D1Ä b&˜ï+Îk¿çO ë$a\Ìî/̈Gî6ðã÷I&Ž2ŸZ5ÒEiY¹­ã¶3ÄÚñ—”R̬¤ §K±?SœÞÅ&yË›×lÆl|ß–ãõã)ôÏhijó € ËÓ¿L­¯~”U¯ArN˜\G8·”(úµÀ&U÷…?,§s°µÏ°©\\}Þ8ù × HúþF¤ÕýÌTIpCýâ Üc9­ÿ®‡Ñ…šæ|ó•þ2ìA²N.Msã‰ÈÉ+R¡”1”`õ£tsÙcpêøm§LÐU ¸²kÙ0ïæ±õ?”<·’!ç`ÝwÖìÔ]f-ŒùF´|OºÇ/y8Žuè³^aH*•Êár}Y”ú-Á¼/sºµ×§2Ý«x 9¸•ކI«q¡¢,Ȭ†zD3V*m_±swVˆVØÀFÆIÀmbkk™“¾0ÂÇ¡häµx¡½–ãæOtœø,ïãFe`e~Fý -–jšnÝFÿ+^4"À¤—àäçÀlM”ÇS1ɼè½Ï ÷EMÒ°h°l=¢£Ó@Ù´ß(4¾Ô·×#å“¢ãŒS;>‹“µ8蹿‚¥a‡Í=ðƒ :ÅnAµØþ oõ €¤ïLg Sì]S‡ƒ/‡œÀ~¼Ún@ N/>$M½PT' ÙœÞÐYã…esS0æì¥‚Mr<ÄÂ:ž‚RR!ˆ†&Š)®å$ýæt£ébüÆ®dúú`fJgFoøE…§¾¡±×i,ø.üó­»aí¥pHƉí’oùôÀ|U:ƒV¼;ÝFÆBÏFý:ù$I¯Ù¢UïSo Cƒâ*’,¿Ù(lïôFìÖG´Uÿݲ×0-ˆ¡œµ(Ö¢tⳚÖÜI¨½Þ̱¯iy8¦†‰òÃÒAÏàX¡áSÞèFmGƒkqþYÖš4ëwg\±-#³çëF­rkƒ Ò®þ…÷’»ø÷àu€¡Œíª¸#æD!w¢9'[ªåÍ~&åwŠ:†tೊçï¹åÖÚLÍÏ7tè üiKÀ"¿5¢ƒ3KvÖÕÞ û¿ø–?#?^’Dc‚Áý®Þ=­ïÁïÞrœØŠ@c[d‚ªr“Ðc݇üœK˜1l w3l+ñÑŸÎFP뤢s‰úòÎ6FCg__Éͨ©½ËêWèìéð%Ý$B;`½o'µoÓñ*´•hÞû Aç!Ì ¸Ó5RC–aMGܶ*zoøB[¬¾yŒ_Ì¢d(ê_ ðîå’†¯R¸Û÷×w’v|ùŸ£‘w¸=Oø3õcXø°ˆÆJñ9æÜ䑸ó¥ëªmSÁ}ã ¨QË¡Émi£Y Å¢º˜úÃdYñ‰6™‹9 ¾GVaã% yá‘PÇ6_€›¦Ó2ÌþŠö8¿Ô†ÚV¹ƒ,7Í®çʤaÊ nè8mttÚ¦eðÆÏůMöË¡ yÑÀN€Õ*Иtó¸>{×Í[<Üç vov1˜ƒã=§=JöÅee Fä "Îoiߪ¤Ý±ˆû¯Åì˜rÑO„›¦®*]˜:üb„Ÿ™ŽÞõ¢äàÅRZi…*m6L‚žŒBy9¢Ûá&CN–U_6d³ŸöÕèˆFu”ÝÞ óü(°1wk4¤)¶µ¨qÈ¡aõo&éݦ>H˜uQ³š'’_Vÿ°†¤óкx5— ­#´–˜‰Ûqt9V\Ã^”v­,_Î ÌG¾ö‰EÎN³Lº£Õ#s%œ6wwæ‘î ©Ñ¨§)7´©#6eç‰q«:Õ¦¯!Õ#@=ÔÈEŒŽ¼³vP—¬#uœXˆA”UÛ–C ɔިo@ÿ.LzI‹^n+®£Ú0¬±[䂃ە ÎÞâÙ†*µ@34³ªïæÛÊi{¨ÂðeBG}Š,ÙC`7”Ñ&ÁÄÔt–¿(Eq#ž&ôà÷µqêœåWìY‹=öéGZˆK‚»Ür8`ÞrÝÀ/­2ËÀª¿aðéU#ŒxTS„8s˜Éc.G-vo{ÿÊN§v ;¡–¿QP/”¹C&«›ºZ ’áð€È!Eø(c+Ãn ‘þ…b¬P%ÒÄ«´¿Yºè÷\Ãn7ml) QR: xh¾ÃóÝä·‰Ø<"󚡜9NOXEº{ç{\{6SH(?š#¡>ªõÔùZ=ÁpÕ±¤³JSkß}å3áM3-'"fRp"ÚÍ&¼Ö¹Œ~x+ûêR)‰o½x¬ÄEŽÌjþîhääšAZÔ›$šy{Ö2$svƒÐh%…­Áü¼C1f1Ýdõ’ "uä<É0¬–=º6ð;šOt­]­.Åu¥âöù£û+mb'±ï«áUøš¸ß–ðvfw PE)öXš ŽÚÓ«â˜cšw0^ 2AœfðWžºÐ»Á˯˜²q‡‹·Ý" ùWöWn9ÌüÑËgµ_­ û#¿{ 7ëz®›ªË¾2° é8e®û…nšÚ™nŒt–Æ´‘Œ"§º&380MÆ.î³Àý}P´ vnÐ1Ä]+óYJ8ã¼?^’\§ñЦÊÞýg8ž™}§“1–yƒ¸þ‹ùvMªuÁS뎥 ežfÁõZ÷Ä©ÿ~ÝÁ|Äa1?Î1éCJõA¸òrR™ˆû;‘ƒÛ¡18S£Ï%~Ÿoí³âî ¯åáF¥!³ s´r ü&² '¢ΘkŒhÂêÒ‡Žùës«zèGµŸ³o$½d®+k¤dRòúÙ÷+ô|D ÍÈU#®Y¯ÏŠÉ¶!¯tj¥?×»d:|´¬-Z‹óñóR|jn£âHóàu¡Ø’^„åVɤ FH>ÅØÖ[’X=–QÂÚ°ÁC›šˆ©JºP‹ú†Lœ>œÖÉ›QC8d˜QâÚ|z¹M¥”™«•Ó‘{„sÚûóåχj{ƒü€þ›¨Ùã4¹Lk#ö {NÇ„£\â°å\$z5'jgí{Rš<²\+5Lƒ,²ÚIØ–9Åð4é¤N;ãm¹£ãSgoʇ.ÕK3Ó5¥aVÊë¬Æ$BßiGy›9±õ¥½sÉ6,41%Øó@NÑ”?§ÁäCF)"ekÍ­B¦¿påÒrh$O(ëåéuCps’C ÆîŠÊN°Ávg]0h]üüÖwÈÊðLõ™¼ˆUãS=ìžM†xJÀ*_е²ö²“èV¶éÁÈ'yå»ÊÐËM :;ûQïwÄ’pLÞwaáø¿; zóÁØGNg3id¡y÷©+5þvgÐÌvUìªu5¤×J¿ b-ªé,Œïîœyíf“, D“8ªo’I\CÆùãÈd.V´C›&p”AüŒÚ9@ºìÕhƒN":ð`‘ÙÚ>¿B(Wâp½™ºì?¤êÍ']v)â’(·±yACÆû”¸ˆ’m_ClpbJð/ÀD Cëg¨tyýõéˆq‰I‚È7DFµ*–ÐRg#¯õAÅ&\kXÛX{Âeyõ—¸Éε×äKÆ qD阊Ó:½<ŸâËS*•á-dO?Ïӑ㇔\.+™kµÌIòX÷XßÞœge”ÏH6j€ïé½ýÜO;Î¥€l.–´-°heŠøß›@À§±ö×âÌšû”ã> «îT¨xl\CçI,A¡øóñPPØ©Ž»~Ï”0n¥}àû`‰ánO,ôÐØ[ô}-š(üwº™/PóÿŠ0„ç ªüÈß°¡`1ìˆò‰¢¦‘9©}K43bМ&@}íjý¡¡´Ï¯9yvâ4@N\ÿ=W’³º—¢î Û»…f# tZÀÁå± üi¨|·`ˆNTß %]/ÌÄÎöQw´ÆþW„™SŽ0HkáæSúx9v)œ7¦ý0Š*×Ý-Aõ×G—3ˆÄŒS±ØMMlÙ°Ϋáh´Œ¼]ìð$5iã"d}ûx ŽlÎøÉdŒÇ¹Ÿ‚»O"m››Uy9û\."q´ouKû˜L1hGÊ Vw‰7çÉFž(ªÁ–i)L‘ë8èõ?„…ÉhÑžÐ8/jü¼Ì²J”Ýë#öãšO1¿«ÛžgÝ1-u|u#A¶ìPÓþ„7S"-€—ÇIúT-$sGi=s"ÿÅ̸f¾”dŠ<éÑ–lý9F4v{g¿À½L3b@ÐÂ\`v”íà!Y(ý…Šì™û_gŽv­6ºžRÅ“ªÐì¥-ÎÈ íi•ÆÎc™?xóçŒÂ©Žo-ßÇ@8ሤáÚAu…óò‰á‹;d|°=sÈÖž{¨°žÚy­Ì;PÙ•Ìey:rx’=³>SP&Ù—(ÿ†>ºf‰M ·Èh¯4l/½30ÀNÝ-C–|?ÐÁÏ*ƒcd–ˆýG\ÅhMÚòzÑÂ^‡#+ÊBQœ¤.~(@L&S{Fýò®9•bîøc$„¸…Y×i%ØõoN[­ZíØàü­0ÆÚsò•)¦L’.¯jHûW[+"Ke7Óx<J¦iš„ ‰î=DnšGÀ§ ‹hOøýÉÁûÍÞVw•”#w·a‡6û‰) Ñ"¬97å9¶ð`Ë<Msì×רûµò|†–™Ú¢ìs0ˆ5 5{ÒçíÂ-2ô;4=ç†ÖŒI°2´ïD`ñ´M ßâx‹% ›8ø*Ö8ÒÖDI¸H½ã<‰¢XÑ6UøuZ,ˆŒ’ Bú½úõÙå¹UÚk©CRǰð_M>Îô±ƒèGÕ`&½r$S¡Ø"uÞSTª´·BK°ý½g’WS ðŠ5ü·ÿ³¾0¹ÎЀ7 ÊëQ¦düTKhF˜{t9…%€Ê§Ï/쮚uP5Õ‘ÌÏW‚GŽ{hAÒZE9çÝÑô¸ë†¯¬bŸã¨»Ëå5kŒ&O÷Ükã6ª…" J  ¡…¯ˆ”¥DêT³îçC Ïgš9¦…vv.:¤g(ÜWh—£Ü û0·0îB ™ þ$¶b·ÞP/„ÕU¬[D=XMe¸Ò–Ù#e˜l¹Î°ZÐL“ŠÆ`Žàˆ¦–-ò[[ÄAx¬Ë¢HrºÏÄìDƒMµ¹j75¾îýrëòðíPâM*u|#‰gŠÿ»ô¤f¤ƒÄ:HìÔø”€â?[”ÆšR3LI€GáBœÓ?KÀ¿£ôëŒ*ÊÏ6J·mvJÇ}n"Ù¥.‘ðßZƒ•Ê3ã›pè"4˜ ¹œ>)dUÓÌ¥¹{«í>Áp9ÌÃbäN¦:jÍÈý´.ûÝÕ½._É•õÀÊ'©ÛVg~G5~Æuþ­Û¾F,š¡é,ÈQï!—0c²m$r,DõÇŒ‚ö!©¯ú¡d³¦ùÝ!aÕúˆ+äE Ñ*ôÀÐÊÖ'ù!ûF5P[EgãäÚž”…*šTRM^Fx»­@s•·U ­ßw-¯—€_\€Ót˾6Û²än/¶\S?ªúÃÛx¨P%ĂͧZÿN'q‹wãp(¸šMú>Y’T.v'ÔjݶMHéýI´o-¢ý„K³F ÇÙð¹hžC•odü|參2íwh3DH¿…|O~ÀÅKg›¬¢µB /`!¦û^d„¶h@K"çá5÷ï¹AÁ…TnÇ“\Ô½¦òz/7€A—Ý€žÉHòV*‚7z¤Ä¡@Èw…”»b , ÉÆÔô Ú£C‡ ùÆHئl %Ç£¹Àko*D· âºÔÊ·ùÂß>%Ît®ZŽ5<친‰Z`k`{;™ÛK$X£·È¸nŠ.ûí/šÁ$‰è:¨çÖÁ)|FÎ +cÄÞ[µD,سÎp´8%c¼|¾ˆ¸|­…T™¥ § Ûð\-æ_°“ý÷sréÇb™±¾Ý¯½¢ÛÇ„¢(Qò¯tÙÕ Jû Ðfà©5s75¾îêÅꧯu˜4¾0‘#àš¥SŒÙ•Žnóp¾EBù ;{=)ƃ10K‘@v‘«&zT(‘О5d›+º‚FQ *J:ôþù ʰðšM_5>¨‘7ƒ»*QùJ§léã 8h˜u,˜ueªgN+Y…Ìÿq *Ä·¡2ÕÖŽ–/i" Äè~BÈ1š¨æ´*}çm•î"ƒšO/¿˜ò…¾„·ýËw±Aœd!Ž-Á‹[´ý"éa®ÙVý3:ï–Gu—™ãWä-òÜÛT?Ž+Í…»`ÑëÙ ¦pi¥b=÷™?¨¿ŽÓù€‡¼¶€c»0£¹B¼ Ý•Þ C;õÃá*¨eûôÕã8Áç!Y›´`ÑVÇÒ:Âüâ"Q)öÝñ+ä¤U´F%¬©§ÐGJL­óÜEk}]G"OÕÞZ† ‹JHÈ/%”ߊâAàq2CŒÆèоáDéí‘‘‘L¼ùAú5øÈÛümŠˆA ‘ø»rºëb«ö7Ñ£ìØEº=~à©Lž ‰ùïhFìz÷¾ s&¸ß´HqCg,ÜÛ¢¬zÎÀeœ_#Ãõþt€àHàCn¡`,ƒìâÏ]ëñR®òZs:%ªŒã—ä%Xšå»„þìˆÕrR¾ÓXÙY´È)“Þbg(Û( ¨`@Ñ" Q¼—§kjV1SÿgÕ¸ÃpfnŸ4y’…êâ7e£¸IdSÚ8„2Ñwþ÷PÆjßœ»Y)¦7tI âÅ(FÎ…â¢ýž¾°¥¶Ÿ¦`¨•¶SÎ àn›G¡Ñc¹0ÿ–Y#^•X@&ó¨óÒPÆñ @w}¿dkØ7PÅ©{ž åM…1‹ôÂŽŠÌK|^— "µ²å•|ñÐ^p¥{xQÜPéæˆø±ÆÚÆÝ,aS²ûO§à7\Þ¯síRæ‹!æ„qý4–ZÅZƒYÚ%S¦3‚o._ ½’>xy@ˆð&±E+'‡Kq/–>CÝAª.qSmåÑm‰Ìý©f,9vüª³{ã-…>?U±Î{-uÊ!nŠPXøŽºÏ<ßÓ©u³tÝOm¯ Ì‘x^O¶¼ÒëžHßhÔëÈ¿—ÌПºÝ&5i­Ÿ›ì4#w•ŽVPm²(îŽakZ A1[šRÜÌ‘S!p~ÓAÐ;@l{Ÿ=®•`Âéy‘f×V„¿¶À/Ÿ½üu=Ø-A|=ÂÃoÂpJô¶\ÓðÙÑä ïúa2 þÐa¬¨8‘ý`Åa*÷æÈPù-ü>?QܬzGñ½Ç½è4“*"ƒš‚\ 2e@@¼õõŸ‚| Þ ëÄd®}Õeèp$¥¶xDæ©}Ã8Ÿ8m†%¢˜š¬ÅeÈÔÛ¶ýûOoV%~&Œºxó«_Gh0‹¶Ëy2•Ã?"H¹Vx²bhºêgJBo°©ç%š5)C&½ãûÛÿðxbíüf×åQÙ=sxöyº¥š±å¬ ÇíBRÃàØIO^œ—(ƒ~t¶¢œ­Da;±ÄO:ZßÈ܈_*I£ý€Ž4J‡G]W” 寢Ç4þÒÖ„÷‰0`AybôÎŒ©M˜ ·²i›”‡-bCŸÞÊÎ¥†šT9pÍ“­–¸5á^:<ð‡Í¾mP{›î{ŸkèP…m ¯¸ Åçñ`9øÒœÖöEë;ýÂM…ªnsTåOŽÛáMóÒc8 pÂRw¾)m^ß. ¿7ˆÇy¥Dût|™’` FyG¤8,뀽~z(xíϺó[|oÐ8VóOxƒTlíÒœâå/KTV³7ŽvZÏßÅ”^IxÓZèhëÿŒô0ïZ×ßH6ºŠéÕ¸Æ0¸,ÛOŠ´¨å‹‡J„w-+%>_ŽËÕSµ*T—zo£B~ýKðÝ9ÁKk¶µÓÿ“Uf¢°íšŠÞØeýÓ~$|ѳÐ-Ñ'Ω™ã__ÂbÆ=¸œÚpL!¡ôî8h°S‘­Â­\¼ï!ãŒzo5nˆ½µ³ä?‡¯œð9¤COv’þM/)aR YÀк™LÁàqžâTúzJPß}”wñ÷5 _ûÈí¦yehOw]$ŽÜ 2 ñ6CaQ—Z±ç ÊP3ÿöH ¨n¿CйÍê2-¤Å=†ÊÙú–xP5ù¡Y¶>*Ì;Y¹U{d´CTò±¯nños`!¥Œc× Š¨5 ù¾¼Ú‚ŠÄÛ±ùêhӾޕá‰[þ‹n1Â4pÀ´oê÷æÜÓ&¾4Ú¢s¶Lt#ø(É~¦N<® ÁËŒµžw˜¤¶›ß¼|ÈÆohTn$©šRCŒŸx÷Ì_´¾{P¬4%Я—6õþøùa=;­ñ5f=WN7/ŸÝ×Â>ÔþÄê÷U­R[$¼ü÷üP¾háeçÊ9'ôIGzö‘´ÜãÅt©½-D@–‰OŒºÑ U°Ü4]gb7#?¨Z·ôÇiå‘ ‹‡Ð6”¯ù¦x.- £sÅr•I¨Úoj>¬å+/ÔÖɰCKèži¯7ð1B“´7ã"©ý{›†ù":£)zq0}§Ânµ*q™3Ï|ù' l‘!ÝU‰þ‹`V³Ác%á2•WfÔQÞ!I;ËÈÃMHµk ¯ê £˜I+-DýµüõF¿µ¾ŒÃ7¦‹î¥F¸¾í~ÚV׿iÚFf¡[¤•Kpù7_†ŽEéòÑÅ;ˆ ¨}‡a¸åÄ|Å…6d[|«­lóÚcé™*eÑ ]:º ˜ä0q´19«v¹9;t÷v]2ͺ§=a°MúÂÃòÃŰ÷À ýds„Ò©1…´jw†ÿɈz‹ µÜ'CÀk‹c+È8âž‚n±"­3‹1 0¼šÌ°=ïZ«Ü²Dd*\-\à © °Ê(r¿Ž¸­jöàåâ¬áÌK$Öqîã[V~ }Á@d0¸1]0üÛÝ^9?d R“:ß~D~6¯6@<úeºl„ § õ«;Ú¸÷#r”°Ãl$—Ã~3Šñrn’µd< ¨ßò[Ì‘¯ÿU=ŽS¸»¤yZ r‘&õ¢ñUn<Ö‰‰šb°ƒ¦ÊˆVh ˆúRÕc®D¨ùc/¡†úë‚þÝñ1G˜Ì^¿CÞ1'Áè,ñ|ÌBß”êZP­ +‚‹¥vaõZ½V@Ca†tù[¢Üo« P¾`„0 œÍÁëQó•0äwn¥–ЗF)‹™:¢ýÏõr¬Yå³±vw³oóŠ Õhó|™y„€½‹±q_®)*™0]~ŠeHÅK¦2 ••é:¿qNʃ lþ×Ê$šrKôÛiðÓ€t‰ ‹:Eæ ‡zÕ‰jaâðÑ¡9f×ÿ|@D^ÆéÅvÊ,Œ| 4oæ®¶ú¤Ô–¶ƒ9‰AK ¶d²\> 'Ÿøö;ó…ã„ÌL£ï%2(i=[eŽdʳ,Å㉵ö÷úÕ@qªùVŠ÷•À*;ñ—&F/€”XÀé_ØÞnµhym»ÔÃCé„© Úv ºïã,IßÛ }y|žŽÁ‹äUœiªÅÉqÑ*0÷SNx¹L«^è6õeEí±c'òGG†~TšrŸOÄm®ÏH–?ýMjEBFlå 9qÚÓþ‡«îÞËq‹ïÛFëóx'Œ-Qåî¹d®ù™¿¿ËMùXC™¬äxφDùO÷ãFµ²è:fÕEø×½‰‹aH“ ¯ß‘ÆyŒþ¯Ù,¯/)‡ý€fÇ£\°gâG ÁÈæû¶DÓmœOÊq”ŸwÐv[Ó´" ”2Â]×o ¹›Í aÞ¼ŸÍgFXP… Í\³Øâü¼ECYy~”rá{Ï*H€ÆÀèâµÎRŠhÿDM#õÍ*оwÖ’ž½|[bo೤‹lñfã+ÕîF.î§ÞyNOÌÎfp‹IES £¡·%þ{‚iÜ0a Æ>Ô§»“èjjR'(þbb¬ÐP*i¡o}."™"29þmñ½Ü¨£ˆGöµ·8Ø‚@Íds¢î7c÷ç64€Ð‹ÀÀ‹®šŸî,Ćñ×ÒŽ)ã_‘×_]!Ñ´ü³;—!÷ù§O †J$…MáÆv§9B,ýç¬Ç\B¨ˆ®Ö¶hù‡]‹…d>‡]ýíH”{»ÁŸ˜^²D×â®zü+‡=ý¨î]ÒÉlëÈÆ²žéw0•ÎáЙ›ÉèèZ {¥é‹üÝKE•‘û·6úþìo–£O=˜_Áã0›ú²¯ëÓlf\æ4D Qør±y§øÐ»zB|ÚS{G—åÿˆ·èä Œ# %‚Ý k™QäFÛB‹B¦âñµ†Ûãé ¶wvmH:<Æß¯dž­èõõdí︙^ä*«ã~?“°Ü„»o>µeSmÿ¿LnÐ8êàòfâ>Sši«ðuŽ{-2‡¯8cú÷½4Ô:žš(znKó¡k}'L;oPc1—M"UÕÕ­Foz«{áxõñi‹äÙÁrdé5,ÙOÿYY'1Ûþ4k~÷ÙEÁV²s/pª&·bk±¨'×7ÆpTÁfpUpžÇ W²”wPÙ u@ü`•D©ÕO3Ã߀$’ðNˆô¤jH…"ZK=T+²Œ —µwÎkWy~áA¢pýèǦu@ æ<•>ô8ÕØŸYÀa"ýk*šoþî° åïÚwý«¾Hû4ií߆>-Nö™Å;Åż©ýÙuäkVIèPöè‰ô£±xk×O‡Wj\„™Qñž­øx¡¶ro/¿åž{¾iR¡Hpcbè;édtVÔ ‹â¡h2´–‡ác‚¼5 ¤ŒpìÍ@ñÚѨGÍRLÁhEăhgLˆ½&“û8§‘uÖf_B@ë‡ã3ƒçêœ1€ó¶ †, 91’I ” ö_Ý´Á¶¢€êyå!:` ËpõüšwY`Üyø£€\þ×\Ö÷vCzó¥°AX>måÃFSéDM²Ö9q£ñ€9Ǿùsk[ñ.Îç|†Ç•Ó ±Å¡Ì¥f[\š½ic"*]#:uúºð‘ý’²Q°Ää+XõÝ:¡ß˜N!„Ý톄¡r—¿€§ó7ØäÍ ýÚ&òç‡$’qWë†÷`ÚL‚0D…›¢eßöûü÷5­±¸•iÞ™~_z»w ]:æ{¹ä¼äÖͬ³IG¸éV„* ¼wU“7ªOÇÄÞÑÔ•×î2Y T\Õê8ËXÍ#Dãë£HYÿ à‡;f™ðÑßPø¼öÞ‚ÌáÒÊiƗ飮*b¥óX¹&ÚWµª;(+c³bu}zÍL„\^À>Ùïðü”ºûì“ãjàšŠMåb ËQú½5jc*ç–ËuÅsòÊœO1ö'•¥*§àX§ .c4Ítªë®rC«&T§ŸÔÔAE¨åÃPÁ&ºf•–­~ëwM³¾nw(_‘»|S5²ý¹¨Ê×KÍ-Á ½rê2—”WLò4ßöÄîø¢Çw[X*DI Rz8Åò9\rŒ®Âì´¶ÏFx@é,û¨ ÿ1Á©ERtH?7¸(½aöî‡8ìN[?xþŠÙÚvËéé¯éì‰eIò_~º€ƒ)”p{«¥RÈŠ1­«+)n a•c7xú35À þr¦1J…N­”E§¬ÈõƒvÃü)UõûÀ•áˆ#·›ÿN×Ü£__PÔ+{xκ³Šöpµ‚}úK_Tëâ´ˆ”²vø®‚2ú0bæG}?2':ˆ›o>²®×¼lm||ú!FÙ­—˜vk¥œ3oŒ'ùÞîÝF“ž†Íü›S¹«ÝkÄèÁ`×®¬T ÚçSÐó€ ¶ü ýF8ë¬6'ù’jÐÊœÒÏZ†.>Ϻo°0Šl5;ØÉPPÊõÐÖû)?|!ɱäíTs˜š‚¤Uý™ù‘ý6½úŽÿXèŠH|}«À«®ñðü¸–D{"||hÄ¥n´ Ó¡¤Ð¤ ¬7•‰ ©ÞTp=ô•èûdRì4Óðºa½D‰–ºý·ôÒ0¥BÃÍ©®9 éÊœˆÚøå.ÌÒ6 ˜âúaëEhÊI{íiKËÏŒQñ¬*RĈÞ*\‡ ±ø.°âŒE™Eê€Âç‡;jµÒòéž ‚Th+¤æçÉŠòX[²{A Z€+b7Sª´Ð,o4Âåmº€••¾kÆÌ|6YA»ÂN\1ñ=ÞjÙðO”(uàÛž}¬×ü6]‘ w@1eÔ–±Á¨Èodlé½Çȵ.Ò‚U–Ôö;«•ì² 0;/á{ôRåbßgcÕ4C[,øa¸›A ÀΧ@_I½ K‰NRçxÿ¼pÀ#Wº´?{DÕ÷ñâˆíºÀŸp„m‚w­B±¢¡ ‹©Éý³}ìyét¡>£õ ºÐQ‘—²FT‘ôòÐhÄìØ œ» Rµ—Äš‘x1r#‰GCç¿Jð4±´PÑø .š¯.¯žx“škUl>•`A\Öe5ž sT:à[^^„ßê8q¥ýß-|[ÑÄ ?°& qÃßè¢7tå[#-ýØCØ´u2²¤2ºøYêíº›uM ™2„ãòs $±Ll‘Ž9?›äžòÒ †Y?Æ¿¤%Å3J°¾îbÖáÚj¶ŸÕøOƆMÕ¤zž&Z…³ÍßSÒ1oCŽ5sÿz–¼)èÃOêË­7Úb“üE$ò ஑Ç6¡‘·àMÕ16+ mªróuÒ-ßÛu”Ö³¹dVoþ ãJ °?»){Ž;ÇhyÞ½`©¯ˆÀVq=ùñ˜íDÔw…©¬\¦E¯Ùp!TJ©Û²šØ^BàéÔÃ{ý-4º¿‚TÐØ õ9üÒ9&k¥œ‡:0_N¬÷ÍÖq66Ìö;«¾É)ôñUtû%Yü'U|7ö<Û6 ûú,´%˜Ã?ν`¼>» JLuþ÷½i/OÊždÐí‰ó &>€¯Øø噢ùïÓ=òdj†²s¸&2È'w©LÀÉ¿WÞÑe[½‡Œ $þ.ç%€X…ø™^\ÓXÀû3vö:x¢W߃4´žêÍ9–1š#¹™GìlñÈO•2‹„ænî°ëÛ˜}Õ¢%øÊ½¨w^À&ˆ• *ËvKÝtülWиJáÆ›å¤Q×Üvû¥´g^xÿ=¶ç½$†?MD¹°Ï#è“iÿî°huµíq'%"Âñ½¥û‰ÉìýUÒ–¿2 h˜é04Kä£RòKù\3G¥ÇP·S.Ê6á_±4{Ÿºm\DA^oL5,ìã4{ú>¥Å©~\›dÒ—›~uÏøD@4u¸¤ow¥l§PFf˜@g•ès °¡ ”ó\f8Èxñ}±üçYãÄQå_Yž;< Â? T´Ë%lB¡?æíÓ¢ßÎnø¥ yïlº}ÿ¤olh¾}‡^ßüéŸG#?­¸Ï¤'ŠÕôÎSñŠnÆifehe<®w üîÅyd?ÌxÐu²Û7Úηւ:tøÈÉ& ×¥þ0 ‹EÿÞõVOk>8A&¡\Yp“PV9Øuiå›Zºém–œ¡Pƒ—bV&µY™7!z}ÐR)ÙÔÌRF¨Ê¥¼ö96 o)í^Z®GD?<î±€ \)¾ÓG†!õÝUÝR êyѼm¸£”‚XÕ•tCV£Î¨nÉöJ“ƒ8'H*\¸œ#ŽF?É6;-KÛøšÂÖý¦Ádªo{&ª Õ½ßá–¨ç IW®¨òÊŽ¦©‚'Â0-žöíW˜M"ÿPK°ÏÂKÓ¨$–/´=Z}D 佇=À ‡‡STИ¹‚»:¤®‡ ä!UŽÎ)ŠeÿÃL§"ß°-ª 'u;ìãN˜à¬¶Çí…Œ¨|¨Ïæ5ÎL’5˜…ô5‘‘޵S·ù8ÿ<lf0@ Ž4\¯Ä}bJÉ ÓØÔÚÉÁûBÏ´÷õdhTïa¯}8[QCYpùá €Í‘‘]yj×›ËNøÃºw¹OãIÕk|]Už&+nF!D»R¨NcÝÏ'D´U1Fòªi“xAì`­ŒÝñÊòÃð.Í1$îY4̃ F„Z`ôaVjèâ㼡άh¯KàjLÜ„{%ï=«äŽ˜´4÷ÀO”„¢„?§5È”ø€:NWaAJ¿.BÊ"øž˜ˆû.ëèîF›‹å_ÙhmS¬ÀÏUÇ{S7ºYêá³v¶ÁM7h§ÓÞàziÝT š{’jöC6AŒ-Ÿ2ƪ¶Ï)Ú *Ä æÛlô$Ã_Y¼çpäñdÎ :nøñ†Ÿ½<3Š·#ð7A§Š5Ù(zT›€èßC×jÿ7ÿ»x ü"åyŸfqf¿ZàÊ74tß!ׇ*‡µ@פzM‚c…YNÜv[×qNë~vcJa’rˆtáJÍR€*dß)ÏO5^à ív¸AÎ+.<j4{Q(é“=§¶ÌàBT_}½?k“[d…`M~±š¼¯`iûŸÉ¹³×¿9ôO"SXQ¶Î¦‹-r¥É-¨=Ôe]}§âÞ¸³{Ò6¶èŒáhwqI§dÞùlW´F¹©a”¦€ôË-ÍŒI}EQýcê4FoP¸Žð|Ÿ·êŠ1P>ı–ïZ`øAôf?ódþå¤Èß0Ä÷æ¹v†!uÑ.zHM °(…ñ&z´ßÀ)S|øÛd{®ùèìéÀkýŸzÖv=¬ËOúÄ=nžrµŽó€º©iHz½²Úækö«)‘ûÁ;éæäA•"¶GØôÖrësËô¤SàªFò¾»ëÒÖf¾sà³bÙC#MK!+õ¢SÙn8kµè™Ùún_ µO?M „G`?]å ,ç5—5êx•æ¡Û+•o5ãù`&ä»Ê3)Æ’º¾@#ŸÙƒµKakò]šçfâÛÓ`ÇÃÌ2Nk¤äÇ¥.(µˆ8¨2PÎ[Ø¢æNê&WÜUEÌ(“¹oñx^vØ)Ä%þ§ßù‘ƒªùrÁƒ-£¸mÊ:XÈbó´Ìó,ÌÅlc#i-Á–‚OqýÌÕfEIm§ÛC¬ï’1¥R(9º† %f¼‰Lka{:3§†™©iþ7å&¼ƒ nÇuâ¹§Ênõœ1²HÑvóµÇí“ugO,Ç„ak ”Ø„àªÄ7{íÓ6iâºq»¶/P1õ£cmÔÕÖ™æ$¿n,Æ£ÿÕ»¥€³> ¬›?€Ž÷Šüæ'm,‡V¾9WþÄŠÌ}ç•,Kñ²Ð0²²|8±Ùfǧ12ÁÍ †_Nd0”TOO,…–dŸùÐöã‹áBo%"Îa•ú˜Û7–Ýå›Y·:ôܽˆ#UñN|wpt4‚‚ª½½.ü"ëÙøwâëÍe1ÄH¶F‡„šHÛJAà.4ÎsÔ‘@tB—w‚Ì,wLüéZâVTYFô%w¤‡ä­€›œ‰?=‚좼 ¼Ë†«H¶z6šF3P¯¹§úN|ÍJ;Ž”(苌!ŒÆ*OÐZA &ZÀY­bd¸oé7[oËüãûßQç#ÎbáÙ¨zR~õûr0öö!Þàwò±\ÊùŽÊ/yg©:XC!ì~òmŒrqC;#ja·&ÔóÎ)ŸmiXÕwôØ+6zÜ:}"ޏŽÎºz€»jŸ×áj µå¤™¬Dª÷ƒ ®tß ·/WQúÕpÇéè‚0à ¨Ù IUÔâ2çñ²Íú?»j‹Aij¬ °Ù>0×ÿfQm*ØvÎz߯²¶Û½ØæZ¼1$£{"ñ—dÕR\Ô#GyãÖ ò“_):תÂÓóØõ­t2¸u›’ÈŇƒ¦ a±œV.`Šü›÷‡eúÙI„Ñ‹ ­²E÷øÎš5âÞd\…ƒýÆ…-5Wƒ+F´Í›kYçÙËOVh,¸d•i¥s”šÒ*ô}ÜRÀã©„8à×ÈÉz×Pÿëñî«Sý—š>´7Ýÿ-ác0f™ZôÇ×%ŽEõXù1^‡CÇ”®PŽÅí;o /¨¼X\?—êMÇ {-—Jô™mýd=™ö_eY”§µE¢°Âi`WpŽá<¤$r»Ô{~ #(ØGa,wÏœ‡£r, ï 9•K¾S–ÝF>ÙëÓayÑý4õ¹üd±³5gôýF®1_ðûj^£/O„• ³¾ pÎRòÿDŽg¹å¦ÊÎè~ ‹¿J̃ªˆ¹P~|á„%ÙÄüÝT›ÀDÒS—Ã~ßÐÜÌdè׺â×!ºaN²ÔüìÞTîäVHzœB2kX?Ð%¿Ò3é•=Ù|›œ“W›”y«H=ru:»Aéé0÷bF ßÛ^MV)§õ–Pž™¯¦Mo»Vz¹€Fî`n‹Ïb%:ºÓ>”»)Æ(îšÍéž”BÊ÷º~Fµ Í*ÅÚ–`@%«Ãô“ðØgïż!Z:ì~™›,÷í½¯›!AÂ6‚ÝEyý²hR× ¿+^·ˆ—/2ÞOþÕ¡¶«ÇûnÒ™·¼ÉgZBƹ·j’ºð`ŽI7€íÀª[#2r1ì¡¶¬;ÿógÌÙ¹ ‚9Êžä•-šs–ÊÇæOæä÷þôŸ¿šgt1‹o.&œÚ8²g!ƒnBQwõH ©I*·]IG­>ìÓàeÁ…`|aìž©ãBQuMOö£RJâZýU,:X¼Ÿw8ž3‡ÝÖ/¨4“ã¼ògSÁE/Ë9wޝ„Ü×Öu¶uªˆ©æŒXäÏÄ<‡Å K‘‚4Ìò1›\:Ž@ˆ/Ý[ðHÝ“ŽÎüà¿vóAÖ/3Öåxzðý(z¼ZŸ±B=5¾æaêÌL³1›UÖÞ%®W6ÖÎR8X‰ ²ÿË*\©)/¿w¹’$6²OÛ¡îC«‡êB±ðûجƒ™ØŠÄfÈïè[΋â¡ïp,Ã9¨ÕO¾s­K’ú0e÷7 $ŒÐÇi3CEÎ TÞ¬zM§£±T¼›ÙUæ²ÊAªù¬ö”’çâ2>__gcÏú^OCülqæ!ÁŒi,—¸á¤ü; )#åéš³¶¶œ1 âZN J þBFép½z­#´os/üñEbÆ"Më#V;ÆúN˜ÍÀ1>S>ȱÞr¡õf~4@§êy^u¬_—źj­Ú>{,&F ÎŽZ‹otŽÊ¸>ªš!&>0Ú7Ÿ•ÌRï®ÓÞ†»÷Õ£´ØgøD7±ô(‰4a¡Å»÷ë§ ´—”h•N½‹Ï–•,$ää=úiS¬­ç4&8Ãa8ËÖ®{­RÌÀƒ!‡Ÿ²Ð4)ÈáâoŠ“ëP߃K#áÓ6Áò´¬äL´oÙ[w…:ŒØÄnI]F¼k<‹ à’Q*Áf«Ú€*p9?+ï5 ¯wŠSßn X­ iŸ÷ÓìPaÐs¤Qº)Ò†CÛ»•O.8ÇêçB3èµ¾d7=¥lÀ=åùν!WãGõÍàÏŸ*µ½ÔÞáÁ’»¿˜‘ö!•‘ÚþV(%-uÚE|¹íäk7>ÒvB~O³`W<÷çÂ0GcéW:^“cd_S ©±0–ü×/I@šÌÚjèŸnØ•ã:ûFf;˜°uˆOæÛX‰Ÿ_™á‰m>TÍ[ÖvìNÒu€ð‡<:r*u˜qXNýr¥Q%vˆ“( iöq# †¬1,x‘ËNI 0.*¿•™j1„Îâh-ždl‰ÊzuNp+˸×Þ½’%’‹ÑWçšßÖaPÕø¸ç {¸™[ÌD§„$ë¼°þºGTÿ›ÿ |x}^Ø]Ô|òy7Ó‘ÔÓ!æódÏ¡ôòÐR5tÚÈ;oy—QܪlËÜÖ?N¾ˆmÞ1øâêžhψL-žº»ÁšY®Sˆc~P‹¾:þ _­†j{¡Û=Méâ‡%U‘JêmSû ›SF®]©Øøæ:â…¤†9¢pÙ5ú7›”õÉŸÂ)Có1} t!I“8 n@0=ÔÑŸ4ÎÐOäÿ!Ò¿·çZ»Mïú=3qáh¤$e—+›~0`¦¨®Î!9Ìg,žBÔutg¼Q\r¥¤tön²1\%ÖÃìöÔª²ß;ÖR¢ Nù¾|iÊ\ðPXYDÏš’œq©ˆ9p1Œ·¾ÓD Û”hŽyЉLêï‰øŸ§!gÀ±v{G £Y*ùèóšgõ‡òPÈS,Z«5/cpÄ™2Pd‹Äq¤oÖÏv~$‚\…n @úŸRÍž}­@Kh_—ejÎ6äÜb“ÇS­Ÿ¡Ÿ ã+ žoÿM¾*×À½åY9)LÜÃêâÐÆuûГ7VšR HyBè×9COH~|ˆ¿³*ö¡Œ­– GÏW$–¸Qåæéø¸(†åh‘?{ãä­ŒpÝÐ’ê#ò~éÉÇyGÇzçñ9ü"ÀfçIDiëïìÊ râ1â?5e DXò+•—rŸü¸KÊ'DíŽO€ö ‚Í·lËå°Â”ŒÎöI› GÛå¢!õá¶æáð-QfÎÙÎáÄÂè6¼\òªvYYíå“ÍSŠiuZV–Ö‰ü‚ãƒê„ø„µ_°J«Ž_öªscþ‘œŽïů3?ëcYP##óÈÿ¢VãÊ(OÖÚ÷åxilàD!××|ÆÂhCÉG·ªt‡® [M1(%&Ö3ØÏn,ÒÃÈÐïÌKf£Wï€w¡¶æ§µ[8ÓW÷I¾@‰ÃlogjÇ/…†^Kg3B‚Ò[l@|M5¨„cËÒçMb,½cTõ»@¹P›°»Œt{,Ç·QÈ8¥Áz ¤š9/·OI©C`.A(6t´G¶Ê“BÈŸps3üˆ‰8Þ´ú©æ®x@. ‰#ºgî3½,ŽË“^ðáóOL ¦‰])gVÿ½Hs%(v‰ò!K‘fwù1aj_õCLì>ÅHn¸dPDE5Q€…‘Ü·§Yãaúùå¥Ï÷6Ðã¯=€"iæ |FI.§ JæðïšÇ»»:sÄq'Û ¬`­=Û¸»4±™åÕànÛ…»=ÁY—­ìñ4ˆ þw<µ;{–òÝÜ^s™B^. -íô)ßK i÷¡­©¹Q] ¨\õ¥<ã¥ð!JEƒJônúƇ±fÆ;â‚"ýá{ì–&² ðTÿàþ鹸œ„FrC„Ê?ïWy¨Bi¨5–÷@ï’VÕb[‚T• %ù,"% (ešß–Òá€ut­ÉéAe Ä4˜ôi‚¼úMMæze¾&[ `LD…†n‘t×D£m:˜}1’«D Ùò.ƒú¡ù0=“²I¡ sV±Þ8«s&ÎJFg$[ìð]j1t^µ§¢H_q>+¡1†3ÈJ$/Ýký £ n…²Z`§Âc‚ߨ62{vÙòßXX„챞SôX0Ì7«_Nu¾Èmèj¦@u-ÀõÆwÒë¿ìX½­À*‰‹G°þwoo‚Å/•²Ô.Ïpµ%š˜W:·J~l,ÂpY½Þ›=>í£4Vß6|ÄvÏëz¿^§t¼½ŽEÉó¼Åp©ìôoãáSßßÀÆ„ŸˆíÔ¾A¢é;8>±¡¨3Åéî]‘7 TÕ¾^QÉç…f„1äüÖ´ÎùU±°.ëPçŒ^|:`©§Ö7¨±uÏŒìÜÎ8­;*· zÙ¨‹ûF=7Á!§ã·çfŸ÷-³Q÷ÍMVO}ò'áFI»ôš‹o>òØ…Ø÷ÂI»›ùw§eŠÀ¹ìQ &KPž\P;G«Lÿ=ÁñÔ@~ÐbF±Ž–×\°îÜY6DZÛ¥š¥ (ÿ`©8Kí¾í)ߣý÷-ýT>2qo”‚ö·\`Ó{?Å{‰•` ‘ÍËïIeÆ.»¯ØÖV‡¹9iÙæ§cÚA>·#s—NQÎ;TpvJs#®ŸM;ÜðÃ~õÐX›U²ÌÕf6ñ3tv6dN-RwëÒ¦3°"ÃUÇ:B~…WÂTIwÿ|Il×À^ø¯C‘út±±ÿ¢,Ð@Bäq¤JÐ…FÇT³X…óKu6iéž«ïÃéyFCÁöüÚŽ}`*ºPðw¼$Huo›‚§ïûgjkvë~Œ¢ }T½umÇü^±*/Û‰Øçm0dl• 8ÆøG€eça׺}:ï½ÎšÅgÌp©bJ(üå wAl}G)úEì>À&®Álïà°šUî©^¾Ù»…ñk6¹ˆM¦âNäÅ8ñ¼§ËÝ'ÒA¬öGzTü¿Á„âmä¦ÝIQ©öŠß!é~®*QP«l„ó¥FympÖ8t…Øì‘ÜE@Š`S ¾Å~L{~]sÊذ»[†Äwr<%ôcˆõæPùá õÊyß»àÿn"Éi‡”#¥DZÚâ­Fg"î>Šh7Um=~ö±Ø/°õ—Vª>:N¢1À¶]5æPðKÒFÔ¯,ZW6þ¥©ª:Ø0¤Þê]8º,üw‘…²°OZ-Ї ùA&ø3{zGáE’2<%},i¦…% B;8°Ê¬œúäu â6äëÔ¶h•­Iûe0"æªÁ×P#ë*«>Ýë[».$Œ|„#áe’SîlVÁÃôæyœ6Y®­Q¨ ¯¯æÏé¡aV$ µ‰a§Sªnüèÿ†;+ßa„‹¦ñº*mÿÆEô(+|Öß,ú™³IèCŠlòÏH+׺›uàBpÓL¥8v‘ÄüÖà˜ËNÌn…à”â¢\­ zçÏÒän¶!Jg¡×ÅýÐ&RÛ¡©×7:Ê2!òõĤÞáQmF_½õè°Ù°Ãuy5"úmÀËmYíÖ~Ó4-8¬w j޲æ×.M^µäð¢%â ã¡r íUP, t©RÁÜÇ1ß/¡É×%÷™ i :¢ße°Y‘ytìÃ2^³O#~Î ù7‘Óð™>Í5J䏯á5@»?Ä8›ž¤p7µ”|®!ò  è`§‡Î2ÉèPÕí>@{¶.Âí…L ÖÙW^^–©ì)>ù²Íæ³QìKß4ºÎ«;¸˜\É/üsÏÂdŸÍ[|!’¨+€®ñ!ەȯ¦Zš¼ iŠKòO28nµSŽ?)öivÑkIí‚´ÒéAnôõÁ*æ\ÐbÚß· nšt•\ÞÀ´³ ½ÁÃň²¬É7 ÃCPJ _–týsP!`ë„<RÓHbO½›½XöH¢XsC<åä ¹ªÊÆZ¸ë»+*Žr¦ìýì6“Z÷z§jB°ëÄ{•œ9zÀ"¤(D°R:ú€9’¬Fßo\&¾\§ÖÕïèÏ%tò¸—›FT³áéëÓé¶öçhO…‹,¸È7|øüàDÁ|J…6âÛ_âEÀ‰û¡DÑòtðMmëÒ?gc9i¦W¨48Nvþ5vë*ª³æµ@ˆ.¤9=Aü ùW½áéè™ÎÄɺì ~øH2Éþ‹àB7÷fƒ{Æ åç–烲Ãõ‡|K'',²ÿô¯ü3ÙÀbà1•š1ñÐØNòX»ôÃ? ˆÈBs©pCpÁ]Ó–ó+I<²e¿Tf¿ËÒd6ÁJ¯1Fdú¤½FH]Ý>¸¼µÜT¨¹Ô›C|oËýV~9ú®!^qó~È`¦¦¡Â·Ó®!`] ZÕP$ã 8{6óÜzsor³œÚèVîˆSè' Fª[ÏdViøL3ïÞdR¦­Fí;š±ÊMXØQ,kÉZý7¡ûó£}Tªè”GÝúÑkÀSôy$º…™Š zðW¶§ƒŽ§"„ìsôѽÔwàêàŽ›ÝG4ðöëQþB*¶´Ï¥ ºC¶°{+VÇ£­´×9\Ã[Q¸š[^ôBÈÊ"·ËÓ·Ð[tP1›Ï1…-wcjÁ/^¯–À-ãümÏ8ÿ MH3 8È™Z}Ÿgðô¡T©dLŠeÜì´—ðy•‰_^E¦rÝ0ÔxŸÍbuDpW'ß‹äU)½É r…“&üƒ‚cƒõÿu$öó–m×”?mõÄ:è¥ó¬ÓÓúbö-©Ìq‹ºf5½OùÆ'ÔgtŸ SO);úÎi_Mu‘=igÍ0Ê?ü€Qìcª4ƒ¶ðŠ_£s(í>RòñBãÛu®]¡îKUýAû± x[âåÍæ¶Ïk í–Ãlðò ý˜s¨»B¦1ÊÀ>åQ°–èÓÅ‚R^¤r)ƫрæÐñÇ“éì •HÈÌj`@FŒ¯ê"[9 µ–H*É쯼#T 0뿚2±ë ñ­‚¸‚~ ÈLÃeìxì¼Z(hŒõ'ûêOè þè ™ÅÞübMƒ•J–´3еÌ4àpà¶edÕìI6\¢§š0RŠ®»¤¦‡­_Œ™€Äè'^©gwý ²,ʶ¦2ô›}>Õðmä¹u÷Øa¸ŠÅL·­1ùÚûf’—TF8ÉK}J² â¿ tˆÍƨøæÎ¦ûy¨!@'¾º~®Á½‡ C«b“DdÓÆtwöAGP¦·°R—šHjPae°1²îJ½UFuàü,#ÑãËñ¼©Ì·úž˜ŒÅ9T‹¼“ÅŽš­øf•RHÉå_S4%.Ã`F|O Ö¯}åÆHî¶:ÏÔ3|˜ˆµr1bÃor„ê’%T6ô13Þ¶H^ï3‚Hÿ«ò ØÂ xâD”­½y8r¬Î`øP/‰œÞaÀš¨µm¢ÇæV’D˜Æ ^rqDV ¿íüýÁX÷Èìý{# ¤!ˆÆ5I[ÛÿÒ=`Ä s—=Š ¾ÌÂñq?ÎË?|X‰Ç,v’\@›²bü½S(î³U»¤;Z³µj™!{÷Ýxz$Ný oh:‡J-äñ›Ýl#~Š·¶-Ê.#åɉeæáñsC;¥Á‚|̰”M1\ŧÍËQ„³2€…Õ™gå—¥ó&pâ$b3ÛpLM›ÍuH©‹¢ —,óçK'm@©0SažÒ %H¯C“ˆéóÓ§þbŒÆì ‰ÚÊ¢ÐIý`F ç¿‹jƒ„ö¤¢ãxýí †ÄmZqÖô=þ«e¼lË«AEÜåqª£GÁ÷BâÄwE9±›’üÏÂþxŒ’wS‡¡v+C~Žº_‚'m= 2³”‘»¢@Ú㿚@'áé­°´aO%W'Ñ©² `O½.¥×ëX’8C‰íŒ¥lJõ¡×Ai¤y•²½x>ÓÒð}4cÅ+Ô›½dž‡°éÿj!ã@•gø >Lå¶ÛН G3lÛ~×OÙäã»}ÅÐ>ø£†Þ’w,mU)[ȸ”‡‰Û™J] ²w$›;ÿö Y±ØW°–£ÿš&‘1hB²Ò.NÌ-P¶–/úZD\ik×Ò6f½x “ „V¸Ü-Õd“ ¡=§šú_z$ëõGš°SÕÇòñâĉ~Íè€ g´ï<^ò¼¢ÐÁó˜‚Ƀ”ÙÌüízÕÀ›¬LF=tSŒFõ6×Óˆ@›.!ש‚eL!Ì<”kÝÛ‰hÙ§­Y@ìUí8„/ —ˆÚ2øoc¨b×ñɵÔ¤ ¥‹Ã ,ãDFøõLRx*@Ǽ¤¿ÙLŒ0é$ƒ¾vÍž~'œ2½{õIK)ð®HÎví.|*µrà^n— §%« MI›€’C©aÀ·G@VûË^‘NÒÿ†ËQdÛïàòñl?0Û¾ô.ãcÈó1ÜLÁ¸ˆón|<(s;ß¾QkÏB’øÎÞkåËBv– ÿXss¦E"r¤¾æ”QM½ñ•V5ã Ê­ù—˜Û:‹ÄF‚]“¤¡yùswÜ&- 5‡<¼Â‘MÈPêòåÔGÿx5oÖåIâϸ#Ðòt?Áøùà ×{+p*Nnð»öÖ¦ïew ˆÚ͘YO+ÿnè­Ý–—\ Ø›—Þ¢a–ªW",ç®8Œ&3ñÔmNI6Ð|ùÕ#ÝñeØÆž”Œ‡oÂÆ5ÑùÝÈ ëšÍÒ˜‰Õ‰Íç`4ýÝ'g³”êfìWm4A.“”´hÖÞúD bÍfbÔ?úrqî#)Ð×BêÎ%!ä¹ô9”Ò3ØknBÅŸù›OÕUâê#’øDZPô¼ lÅ ÙjÝVË߈•HË$o)²µ Sr‡7Ò@øs¬¢¶»#ï~È|åÿÅÕoÄåÛ¹-¿’{ /àÜ‹„ö:l*;^ æòïJ#4¼_²šÅÒâ.£h‹8‡~áÆUg¸k}NOåíîJ'ÌÙ®9ÌãÙ­/™vš€†@âÓëÞ³puÜ%V¤—{×%ôŠÄžÀÈæcù;JävãqÑ íÜÇè‡*9ÈAÐî‹«!åkï\£‘ç ÉÀâ…|ÖaÖæßÛÌ4Ñ2tćSŸO┸çÇÓÓmE½ìA÷ßÖšWÙ¢¡ì½_éÂFÖ#^´}ÊsÙº§oVÅÎööv üwé?ø¯ ›>[ZÑáâVIFX µ\‹¤WëÛ0Åÿú~eW1·vMMúd´¢ùAÀj[amİD¶ÁÞAŽßí€üaóïh³ ­X¹(–©ÔrÌ+Ðg†¹2r“½ÝX#ð J˜YÀEÁÑÐ’{æÍk^rŽánp©u…ï ðöË9$K/gì 6žÇ 9Ùˆ?Ùð&¥Žtä ¤ÊN ý sh¡ˆíF4<Ýß²ääͤ¨˜ŠÍ/#_ëuÀ·ò)á§Á2èm3ž9z2Ÿ¤ ºÎ7÷5V¯ž-EììvÜÚ04ØF!óGºè“„¼jžW±X¿”E÷;¼¾yýVv GqÏÓxH‰ŽÐ·„ë)eZ»õIÁcìýR•¶õ?÷µœSfÈæ AQï¥Ù›¬;2$^È×sè ;^ëámÃ7 w„ÄìšôÕÄOĹI9øŠs•n)¢vÕ7­õŽüî9Ö™ –q•á?JyJ~gW%„g+”›hÁßAHùçO=ö•«¾•”5íÏp‹wì®úÁKM€ ~qA¦ýt­ðJpàN‘BÚ=½\KQ7A "!Ìí2‚¾ên‘ÿj\Ø‚CË4ƒqÔÜÜÄ´.´2VÞJœ‡ð`WOìg\™{ +‘-BÒr¡u"àR ¾¬°ÏƒÊ ›e¸QR™šhOT„³u“y°˜“‘y>d[ÙÀ‘øu]ƒ”w—ePHÇU‡‰dóUœÆßBrêéF©ô3­¼¼Û?6{­ÍPõà´ª{Ë•°wPˆþ1/³yètíFd›«žVö À8EÊPE¿:¯»Á&áј¯ÏØlY< ŸÞGikÓl€.\R¢Ð•¶Ü|U˜.&¢è*•ÓZx/1Ë(¾@œ†¤CñO.¾A-Vüš–wr¦2¡óHÐÎ2²hcŸ…Åÿíí¸ÁëÌf Ô¶7¯9Ix“´‘rìZB>G—¡3óÖwcJŒç/{bºê4mÀ°Š…• Îå‡ãrH‹ÁEP-lÔ¨<ÀyË ŽÚVø::4Ûm/éM¨M´2”DI¬¿ Ž‚x¤Õ’ ;%ý/V*r!´‹.åf;{Íȯñ”ÌQÛ’é0ÑĶÄßVøˆ½‚àLYÎH‚ˆ²¶É¥ÅŒÔ40\ŸoŽï8ë<}’û„PÒïžžžŸ«Æ§J—.Ò Œ`¨I\L5ž£½ñÝš[V‡oìxÆ<Ä„[â‚|¤¹™nòy 0¾îgSšyâ ¥J¼j×>ºòsÈÒÂ׿+™b–FÑ”n"PV’J‹ëÄî·Ká€ÆÖ!ÇUO‚¯^ Ðùøj È;ÔÄRç ÂDoêjeìwé­šBÐôŠ›ìÊ)¬~ L«3ñÕ^.Î œYaãjÃìbÂjÅB©ÎlißrÊbÔé>ÊÉdS“ÞÅýþ\;øp"ê£ëõE­0ýµ"›Su÷ÿöæÌlÜÁp¤UŸy²Ïeúåkœ èYî3 ÜŒh„jÁÆGn}Íj¸…¤ ]ØTS%ⲩì4¸-‘‰¼¶øXåŠ?ì] Ët÷ 5V[AªÑUŠþýG0ɈCÄÔ‰Œ?¿ ÿMN~š|>lC†drT%A=±!]PÚv‚³e^í²Z2• .óPÙð€2£5¿H¸ó©Ÿ:úõ\l†Xz¬®žä  $³ïÝÙIeeà–ŒBCGRÇš¬.%»ñu[›·C[us/tÊÏ8!ÉÚ!Ž/Ï9I²Ññ ±¦á€ÓŒ_8ÓÇ äи'‹yYp^†(:Ê"ޝÙ~r>>à¼3Ò¡H ð#uò±þÓ0>`µýí¤úp/x[à­[ô5ÔâűägwþÀ£Ëu÷üó2‹‘Ñ›t…ërÁ¿'“L˜Ï’}ºwGfÛuyí“Ó²îƒ@ÔÛ¿.@kmŸñ ^ª7¼‰ñ˜Áåë$b;óY¿õ®NëB§·#˜•ê¦~‹UÊ;K¹I î‚»)æDBßjë¨3rŒÁA}[Àš€<•™Õ ¸WT3:3ȳ–ðŠKû´¶¬ËFãþÞú»Å°ÔÃgR3Ûå¹eÿHe¯, ¤¾öð5Mg}ëÄÚ16 å·uÄ¿ì·8…ÙýS¢¹çD¼ÞÇ$9L%‡§à„Ðé‚Ð_þAOK^PÀPë¥Ç“ãHÀÛ!þÖ}õÀÈ”uÑ—œšáÛ=PýÒÎÚDþÕÑ.)ª¶ììR6ánšõ‘ðìºO=mqÈô/„jÙz2Ȫ”ŸßnX”`TCÓààú^ás8³ë×6ÁÙË8aÆÝ9šÈ¸ÍÁóg–m+¶ƒ‘eÂ#@ÚÑXí²ßÀ{øÍ..¿ÏÂÊ?‹ªç_k¦@cÿE±Ýß8@*< ÷_UU¥“\JÉ##ôä‚nljq)ÿì f_ÏŸp³.£ÒUçõ/ÜÙ‰"ÔGb­%ý}êB¼-Íâ£P°Er¶8¥ZU %Ä]ÖKD!ÆŸì`žÎôšµFÑ -®rªã)ª¢‡/;ï’ã3»^dÄr7­B\Õ¾¢4ùíz† “ìÑI”˜ßºY@læ,ÇEôˆ›6nZžf/=Ñæ*›bÂ]à’·[‹²~a¥™Y¡¨ÎçMQý޼kñi²‹QˆP5J+|F»è9;'átðcÕ¹@Úz9`['7>pS‚ÉšS 1/E»¢Åï¸ y0ó|¾ßOÙîš3”§ö·è²xù’Z5x9•Ä×+çZÉÔ•3þô~¬ãˆÍÉ()óüeÀÕ¼¬®yû½ c ê–íl1yˆòýSÐñªÇ„بítÐRéà´Ð6äç¬Îbãëƒ÷ŠëÙF3g3 ˆlQXü»ÉËhl½D]ˆÜs·¢U¼D‰n£Å§@Â+ÐE£Úü„/ }†| }òñäè›þ9üŒíW·`¾Ñå÷?³ 2£$q§Ìö‰n|FV˜pñ:œhv»'Oël(ä¿ |µ½EãûC6‚Í9ì5wBH ÎcúÍB/ÀXüï&IõUie òÛ  ¦5«C¦œ0j_•~§'K.ˉ uV¾5€íSÞ³5²Z¦ÃÊ¢§X¢z´Šï2Ñ¥$ŠT8?>AŸéÊûl6kþ !*àÕant޽!Æ÷5 àÔ÷ºÈÀ¼Úýèžà^ „»°ŸU¶à'APœ·[§9#˜\®e‘?ýJHk0Ö5§øs?P¹&~žCrËHçÊ!¥!å9ùs$¹?&Q»”»yó@æÓ>ŸE‹ºëj¦÷&ùS:>ß4`×à |Í „°A“)«‹^Œg†Ö2{³ÎÌ"ÄýêKÜ4nk£÷Ûšê.¢0ÛÁê"®¾xFÿ‡0À1²ÑMzÏ_ï\ÏÔ=ëñúDò}„­¹3iêæ0AL‹ð®\WC:çÑ{÷ö@Ÿ“ƒ¥Ûk“Ý7ô+s…p©¨‰|݈k§Äú;…öæ˜fR·£êLÈ%¹Z$NÆ•Á艱$üÍ– x6`4aóû¦æ™)t’0#IÀô!~žhг|"̰¼ÿߌÓå9ªP?&b¿áÅ9SE¨ÀNØhšøvÐ+ ‡ëŸP(‘]ºFÑykAý¤:®‹ÍCà½eîÜ—3зú‘FZb6ìjž…ïÐReû@FÊF°ÿ¤3hÒÈ÷:n¤%'þV¶‰“ÅHM¯D©Th‚µÂŒåš[‘½yפÁ7-ø/AÞ‚‰ôö’{ÊÅ’búŸž ¾ÍˆZ£~^V)”ÙÙƒ“2Y{ Š[xÜ_Áò«Ìùç£Vú‹6@VõyàѪ ›Kö¡Qöq%Jÿ_- L~>™|j©æ\^+¡«0‘8'Öù~lŽÈ9À,ÙòHV4­âù5CØkÕšL:?Ü>{»¨† Ë¥®ýšã>6W74HÜðÇ'Z‚U¤ÑZw§©Ë˜Ô< ¯á½¹S¾Þ%Ó`XŠv ®Ê0HmÄ#Ê¢p6fâjC7—4E#†¤Àý‡S­úš>‹uaÅHÿ,B= ú5pÛÍ‘< D¢ ¤$öí·ã/£Äº7„ªÌȰ8 Å,qŸf€¤U À×ÅÉŸ˜,ä,,ÛTbk†ˆ÷R‹{Û³­wZè»ÉJádkt„Zª­’€‡î'­‹°œA´cóG­”âÛÖGùÇ-hk[Äџðîÿ›Úõ7Q¼Îª…OäÁJî*÷Õ¿/ÇʰEøeÿ:bu˜(FµºB% |AR–ˆZÐÛ½L_%‘Š+ã#hçOД1Ãx¤Öñü®a»Jx€F‡t¨Whg’gN¼„˜Ö9‚­óo[HIâÙP¶ZÛªÚÃP–уPFá7žiøO/¬ˆ$Zlµš{4•ÎýTºI‹xÔ1çõ¹Ê›¬Ñv«@µêRß79Ûñ oƒƒö´‘UOÿÚ®²?3ˆs!MzÕèãÕÚVßÀà4}&ñ¬ÝZ ¥+2«9£¬~F‰€i¡Ûÿgêqüsà´d*§Ot ÷Ø2üq(Ÿd³¢K¸­°’58ÙÇCG”?@ª—6¡­ÖL̈†Æú©` ÓJÎ[ùtù“H«l0—RÚª¹” ôMV‡fjÒ¨kª¨ æéÀàí5js¥5’ò¿º…³på æµ(À¯ûyYcnÓßûa劌ö#rÌý›x͹«µo.üN ÊI2c Qfæo!¹y\zèaÖ$|í¸‰Q½dd¯¡FÞcLW›s϶MP+]Â¥c$ žîœ;ëìàñ#-gµö9×pþbû`gz…@(ÓN:îŽ,§³užÓR‘ãÆMòãT‚šÆOÀ_1.0‡Yö€I Æq¡ €ö©ÛŠí´´2ÏqÍ2j/Èf_;¦°ã°dëû‡×‹ÃGR'h=G¼¦k‚ÛÍ7>Íq¸U›ÜVàú‡¹åøu_ÂŒrQÍâiÔœ·²“³~h€œ¸gb@”‡Éðk“»¯ ª#ZçR[0À Á¥K%ö>׊Näýˆ'i ÁµÛîr–ÃÈxÌuÑÛŒ7@ž¼d=âÜÐÞ¨Íb=Ÿl«`ÐçÜê"Õ‚â ýmQ4 &}o¿¥Ø+(u‰½ñÂÒzü™í-«…´†å¢UnbôèRëVÇ%©Ø÷/<ÍÓ^ßÀR ªâ5¼©}EmW ÿU/AY߲Ћ&ƹIXÎ4è“\Jcë (Ë=1³9643)ûWõ’ J%€ñä/ׇh¤Ó Ú¨·Ä3WOõ x[k×[F!׌ƒôWW†å% ÒC˜ðœåØüÌŒ+J}«‚U§ÑÙ³‰_ØŠÈóqÁÑ™ù„1dTæaìýk=¾ÉÑ*ßþƒîÊê" &ç8#3LÊ­&ĆÈ|Ð8¢ ©‚ê¬ï\³2>ñIBDZ»r§:gÂŽ‰A›seˆ¨9Õ ³AŽ0ôôHÀÞ3¬vcüÕ¦bNú¬x'«£u³º2(bõH,'Ö}'±¾}ü3¦4ÚŒ LW$Tx‡i‘€íQîMͽ6QŠcE" å4‘õ¥ ¡|@S³‰0ãà:'x#Cl"v4".o¥G2ŽãØtææÖÑ™;uÇíë“%öìƒÿ‘ŒzÆš~qÝBK1p{˜Dï´ç^6w<Ù¨ç¨7#‰h VF«¼æû 4ïÕ)ÇRi  ŒE]‹åmM^²ÞD^6ƒaælþ=Úq¼ „†BB¨}0¦M [³}¼ËÒ6# ø(æàl¶Ð‘·ë6‰_¹8+§îwŸ2ìJ µ@à2<ÖLƒ¡’br#ÃeytÀm¸1`ØY])¢ æ@•$ˆ–I˜¸ç¿õ>c‹ʶt ”@{Ê.\4Ü(ʈ³QDY2,83 ïá”9­1=M<3Z– N@8b°é™E6^U‹ákWz=*M}=˜Q„|aX­Æ8çu’ùŸ²3\ I'Š%Ž@Æît= *Šy¶(ÛˆŽÂé/M[sïVï$ªZ8@Æv‡–Ù6Ã>W^rüï*$>*˜”D·5;ú«v°$•C£ƒsý¦r§'‡+n¯Ý¼"îuëÝ&9Ö"/‹\áΜ9ñ“åñ{’sŠïÉ=}Ø‰ŠÆ\GLw_6J<ÕP÷ -|c׿ÿ:íh‰-\ó?ÈRƒŠG7¡v› ÔT3à7%•0þ°Hì„îÄx>ÐÕØ¯þSh]IG¶Ž€‘8M«\gCzÑç£ròWMQÐAVZRÆ.*m‰5º{û0¿ªŠØ Ù,ØÖŽsÀã-ñ.>~t»£ü4Þ¡»ÔÊž.¼Àh¶œài×'rµà"àD¼äʼnⅾ„üÃ4ͽzU-ž2!±nSQÉÊæy[•}lØñÖ£6F& PƒÜ—ÞÚ½íÆ,^¼zá Pïš5]¥…UWs‘ó>‹qf4 *Êïíæ˜¸°QÕRÁsç1´c”ñJ,o—.fìË|j‚`ð&HÙTqt›É±Ž›'[G’ÁŸÍ»†îÅá|f`Û “ _œö$µå½ƒÿ¨Òááèeî _ÄÚë¼7¢xl§°)•kWw ‹]¼Dk#a "1¿bfð\Z\Õe¸Ùà§N6ïÇýˆSb§='¨¹øL~ážÅgc{êÀ“]ƒ`7áþ± ªÀ™Ë>ë|ó\zÊ„ÂêâÕfV#wòp}¢¿³rY 5õ@›Í”½€ÿI‡õ–(J}˜wOÕ4n¦÷ø%Ö|SœP¥ÉýŸ·V%Cn[xËÚfÙƒFÅÑ C{K»ö\0=L˜€ã\øfÈÂ^ß‚Ò=íaZqÿÙ$^ÀmØa5°,Úl©­‚]çt«/ó'EO]zAòҺ̻¤w5·–¦ð˜)4Ç÷r›¸˜P»Ìë‚â]Æ5-Ô ó£îõʔҠl¦¢Ö€fœTÔzmQFãˆe\šKv a%±ÈÒh¦×ã&/CBbHm ö fA‹«´˜ól}vF7 :„ª‡ŽC3$¨îŒ! NÐ¥èËõ1³ë|‡dÇgÔyêÅÞ9ƒÐø®§µ¶¡C±ëjÿ’-fÉsò?äÑ‘„¹Kv Ž~”¾¬~0ƱŽy±‰}³¼Ü=ì:…œåq3œÉÛíËÁ/ú™>$Ê¢2—Ìn“)Gõ¿èÕ‘qôOp­¿°W‘¢Iz® ²ÁĨLpë§?ìYHª°„uEeh¼8~2õ.ºôçi­ZvlÀ$;MU"¾*ož•#º6±¢€ÁÇ”(nÍßo«™é%!öû€ú ÔÒà—¬ÊlÄTä“MkÕ‚µ²åãSŸ2F)£:ˆú Õ)—#ÛªdÜ꺶^ƒ_3° Rkð»\þvQÎ ”ªY1ôÐèÇän"Ú âçèT\Km7XòÉ=–z ö—_µüì£EÍI¶Õ§ï¬Å bj§ù³\žû>}ì¤ëKÒŒ¡ì`töí ð)ÞnV£ëØñ^¾ ‚ðð_gÂM빋徛¦ay¦úŠÙq€½‡|¤*à õm’à •hµ¥¢ÏŒŸÑûÈà¶dúçšGÒ…„ú'»Cñ{ˆöQÎB”‡És«`1ÙÑå ðœ¤@ùÁ|0Œ¾ŸÜ\il“á€DïI€Hx¦8ÔnÕˆg»¿‡7PI#Ÿ»ÄS+d!¤߿бNNXä1oM¯!á™å8’¾r¡T_ø€¸ë‡åõ¬m¾I çßx_̇¶Ê ¾f5±ü3iÙ·LÍL ì+‰$h‹þ â0¿†wót•†¼Ð;-dôæÐeôWõîs^®kËÐJ…G5“ä&ù4ü9Œuž¿(¨›æÀÎXŒ[^^:(Ú¥T¥XÁœaF_×Bz Nø¦ò©$°÷y£~/­5A: ‘EiÏ%GÑ,ÃÕ'mûD¨ÇtÈ›hæri"pE3)kiù&¼”œ˜[±Ã ¨°ŽÍÓ´R¨gØb:¦¿”½Ë ®fá¿û¤Þ]A5{ “ Iã;ý³B[Ÿ;b›Ø·»ÀTÙH™ëq&œÔн"Ü k·ìÖ-tÞ‡êD(zÁIh Ûy Zs‘,&¯}«£ XÂ'ׂÇJr!$YÐù;“©7˜‘u¸²À_4ho‚£z^ ¥Œ8r餲ÒÝÒWn›ˆ_¾e’†Ì«ž6v#1ö• ‚ž¾ÞHÝ"¨«é4HÆ !]àîžbYCorzY¼¶M¯ueUBS㬀0v§u•yà›BôD÷džU(þØLOVmî5ŸÿΦxɠʉ.P·pƒ„B~Ù[Múh2¯ç\˜8…5œ ÁG–' Úm¬¹6v²¿Fϰތ,äö9x$ÛFÏñŽŽiÙJÅ>=5Êÿ£ûšk9Úwu‘'‡˜ã†­-Vì’2ûžR»‚FRBž*ÏÛŽ*ÑûMí}'G„ÞÁ¸ÍhWçóVvê\9þun”ŸŠZœ„ OF­ò×Ô¬6À¦h0dZÀ¥Ç/KÄÜ2ÆÛUûóüZbÙp^®+ó^~$-\âŽ*n¹GÐtkçãšHŒ&{ô… û—7{Y@W°“/Πû4= –‘ê/ â–ºö(fÛ¦™ÿÞPùð À³©Áw2Æï·<¨Ü”l*ÉÂôF¬OÈÂÎ'0 À: OÈ)¶Œm¡v½…:qÜë!æV¤<×ùÕeO/Ãd&Ö|šzp殻ؓZHè:'YÇÖ`ãÛ'Û•)ò#)S†`iPüMÞÂzAEÎѨ}ß&ƒ"¥À¹`°µ‡IbcO$Æ¿ž®EÀ䂉Š5îÜ„lƒdzÊwû†¸ìÙèn3¸Þ +>^—„ø£Nˤ«Xü"£je×»„έ¤üîY#ßÂ>ŸÜÏ,Lå N˜´^´i+ÐÅêÀzMqÆNÔf'¶Åò‚b·<–°HB¤ýŒá ê‡{U%%.|‰k‡•/KHH¼ø›û£gËþf‰H ¹xG¿«p(KÝÝ\›”Ûb—ΈZßÍ^ÇmË£bGœVV„¸-•3„gQãS;ÃÅò(Œiu{ "WMûœ_3.zHÚPxRï4÷^iáó7€1bUÞŸú^[ÐÈéâN‚›{ßxà «Ž¡#óp#>ÝRÉš¦¹…Y!ôXÅéùcA93.Õ\H{8‡9ŒÖ3ë~T±.Ø®‚™vJÞ ¨h…±¦EÊj'+rž)ÉÒH9Ô½ÉTÏÈ·YD¦{²Q;Ä;¨ž«€žƒÀoÐC­O[Ïë!òú¯¤ÂeÓGúÿÄÞX8;`ÉÉÛ#VÐ ^c¸soOÕÝ9Ÿ)p[&a¿‹¤ni5pf|£„r’ŒÑKIsxÔÙʪC0 dzíW¡>Ì I.ct•óevWñXYžO,™_ÎK, 6û”™ËŽY\>tEÒØ¼¬•ÛZ·Á»«5ó»Á1† ¥ôxÆAíLBÂXùY2J•/ð™ÂN §N:–I|þ³Òóôm'ÏûÀ¼tåg–T¼^šm«.*6£!(ö ¯Ø<4\ƒ8Ù×îÄjZ# êΕgGÄiÑàyù-jžTñHç,è¤ÌEå€ ]^4_½,jþ¾ŸFÊ\º´u6ºƒi]ßµcâm!÷Ç}½P €O"¿[Qt”¯ô¶#›¹·?å_kìT|ƒ ]§©‰OOâµÐxXüØð ´Š«k ý½‹`-VóÊû´Ü|pÏÖÄŒ¨zÞ"Öq#¤ùÖaæZ×øËVÏŒZÐWÞ¨Sh< ø¹g뎸P"M­©9³‰, “scÒ4|Rri-…@}OèÏcߎ¬ÔÀè?ãŒï°D¤µf{Ò¡™cVue¦ÈB“Z-Œa˰,1•6Šö×±„¨O†+¿|í>~j­­šü§£ŽËW¤…dg©¯a‘êjˆÒ•<ë@…ýÞ“08ÁP•6ݨf-0e»‘Óý#ã£;±Z—Óv„Ïóq³û ×·)icoàšM̳9Ÿ½¨rl‹ŸW©þmZ‹$*óäø,,Kÿq?/ïÒ5³iMuY àÍîZ$ ›ãè.3ò&z4lÌIµë ­[!e·:\¨©oX×ãgWæâ6r…l> œU½BvØ_ßF5…§¶O&€¥¹åuŠJ tZÐ3Œý¨XèøëÑÅ7#Z~›}'*£ï+M»£qÔp K:¸~_›f7Ü}~ßëTþšÎA¶ŒD¿yg2·(ÏhH½>> ÆÂ˜Á9AÍ»ï˜Â›xD-cÅ ¬Øô7 Uì/[R;ÂGU»aÙÃ{dFgh3Õ=sDö‰ö€ÕŠI•BÉë ççõâyG$PY›¼[UýkÈñ\Ï`^âÄFÒIxZF¬wŽ`Hÿšvx›¸å#Þfbn+]„Š¡ nÊ‘»ÐpRýÓŪLÉâõÃIÈ6 åpƒî´34È6ìËÁRk¨š½æ=ß|%YÁoZ6`FQîQ‘ˆq–]½÷Lvu!š>j—½Gܱ˜æØ`ƒuª‰þJcp š%ZÉÔ™{=\Òë# w ¥ÌC‰7Qà»wâR€î gTñy¼gÃK¼D`Ù+ô@AšŠÃ•ÜŒ£ýê ðr“ƒ¤ÙWó ëÑö—²…>¼–3³Ði­äÍ?Š}u„®è>Ó'á²-­¼ñýÌLØŸqƒÏ`á4ISœ¹áH§·Ânz„%arF…îþxoç±lâR`)Ì9æ?íÜ3\]·ðÄÖ£œ™ ß”YN•]Ó2Ù±‚%›å·PÓü«ÉØ~Sv0cioö¿mÅŒf¢u2Sw#wJXXa£ÃÜöê5¨À?‘b,|.¦cp¡ÓÓì ‰“+ Ï*¢–Êy°Ç(ŒÕ“‹»Ä?!$íàDlZ‡sÒò|öyùÉ›U‚íoÛç+ üÏ…>yŒSñÊh3cb2ÌÎú6kãkŽ W9“oJNÑŸÈSßÃáøç%6· (ÆOú®/g‰‰ÜªMÚ>mµ,¦"¡~ó4Lÿ»aÖ'ì}HuT.-?³ÉýбP‚+Hi˜Vþ¤×J6_ÇzmïgLÀÀ;EáË.ˆ•|èÆøI€ã—,ó=’ï“Ȫœ—${¹1l6_°øAH¦¼^¯ÖP.–9\°9ÉDD_÷‚ˆ0!$Ô[ £T‡4ˆÑ”¿ý¹O ÜV  v iÚQ'9±¥‘”uúÆ Àiz „í‘T jA›Ò•ži‚ƒ˜‘ _&q {Ñ]”bµí:ÒKÞÌ쌨«+¿Ù4Ø»BöÑБrkŠÒÒÞî½Åü­aO¡_r²{xà´Ÿ‘ÈWX´ì5hÇÜs‡Ú6øÉs‚À'6ª/»ª0aÿí'#ƒ,¼ÙÅ2vD€ØoÔä_@eÃlÄ´èr(É a¥™úÉ‹?-Ya¤ŠU 9xuµ£TéMyFõÍèù—˜_Ðß7nÝGÔµR•É{ej­yAEÞÈœ?í¾Ë<\iw;m±©m_Y†à|†*Ô¿¥ a--'ËÀÕZwi‰“FgE¢˜íp½û7Ë–‡££•%$R›Ç) ýEil>Õ/ù®¢Ù$³ÁDTßö“|S§æÑV\Â¯ØÆFŸ‚ž´CG¶èW„ç颤——Ã_€›’H–#:9ÅT¯Ý³r™­úm~Ô }1Ù?A&Êh¯,,¤Á‹Õ­A;‘UÖ½ÌÁ$’@u3çõÔ¬àÊn³ì@sÈe¦GÆQdÑûéɇ™'rákt}&¯¤) ÆêO±'š¯×‚äßZ‘ÏdÄÖ`P$¯l˧žA‰æ3Ú¸B¦^¾AŒÅØÖÖšá 'ØúÙ Á°XÑ~i1éo4ç>Nþ àMá–]ñtx›€øZ°jeòƒDåÛ%õ lxÔ°ËpäEr‚ªÛ•nJ0ÌR0 ™ü¥c 6Bè‚f^ï¡çé‰I{#è|8Í,9ÝÜy ð9ìÒÏÈgLŠ‹P©E”`¯SK¿‡p­íCcêÎׇ ãõY˜,4ô¦„&&©2 ¬©ÎQÔøSöPÅ‚3s7o„™` ±±Á`fßLØP|N匫Àcj‚Íþ¬‡½hg9À f¥íÙË.J,Ýδ0CÓ`”Nð…!@LmÕ˜ŸÄ’÷'|³¡xìOû<Ý; ‘Ò eþUÇø öÚ~س• C MmßÔ•‘q7ÃEµ^¹În¿’‚T–BWhG¾’ ûëÙ!_‹ÂXCªAIXÆ»t“ªÂÚÇ·Aíj«Ve“ FŽ%EJÛZþ+Ñ=ÒôqËMß±©”Y8NáŒÆQbèݼ´r¦Â6­Ý®G‰B7•"rQzÙb Œ%C°¿°>DydWÔþé–=mÆZ°óhÕ‘_þ£ 3û$ã’B–6óÖ]‚†¹Ÿ¦ÏuÄ? 㨙|ÎÇüƒ‡~Ó†Am´ýî;âP3¡gq@+žlÒ|•<¤ÂUP èL´¯6Ë 69îÞ{$ïF=*5Ú Ëyj15öÅmß'§É Ó€ÿPkBHt18èÄÎ1Ð,ÆmnÏ”wÎmò1ßȼ6¬ÚºuäÃTuE¿…j T†ª(O—ºb·öè™@ÔéÏØ¥ˆoS"Å7ó“f®¿i~®RJ³õið;_¹D%:QuñnP× )G¶)ãA‹…R”ÛÔÙÁ˜T®)«Ñ9W<… D>0K§¢‰:—yà}¥¿‰¡ 椩߃*Í[Ç+-n%ÎŒ JæóÛ Ûǹº;«‹à÷ ôí@+ÃzÅcUHèë©ôQöñù7¦OŸ|£ËLáõ"/>ç­åh •í¿ÿL’ƒcª<猜’™¤rÍwÿ°‚¼å9¥˜ ³¬- ¤úû5ÓŽz}»2ìÀ‘m}:ªxø]é ŠŸÒW…³íäžÞqýS¼*„|©D`%wûgšå£&pùœ¡a>åalÝtÏ%½i‚9– M‰ì¦n^UÆâ†Ç¾ ËÙ‡½µ‘\ ‡-%wN·¬%÷8Á®ÃЊQ#¸9pVi²€èÿßÛf yÆE1VvBuý2¦6P39ì ÇXÒö7øàX™ pœ‘Ÿäìtﮑ«9ʶÓIÉ_¶Xôã Ù ¿Y»æÐ²Û*84IšÁq„É›–}ç©LI‰ØúÁVšAFÐQˆ[6n§­éBÛæüJ±ºÕôü6õÆ'™C¯p¼ªèÞôš-¿WigùváöµägÊ6ÿÎå/±òçQçãN„X®/5ê6®DL9òp“,óÉ1 ÉXû3âì¥u–±©‹92j \‹Û'ðs“ ýçÃ7zÙôÍ‹6zUbT[7 À¡Ù­­ÜŸ–£™`ýÖòO"U„Î%Eõ…Ÿ3G§Žì·$•ãóS¦è5¹8rý÷ù)¤¨¸ndËì4Ó¼N/Tí¤p=—ª/Õ>(ÎÅ]s––’˜) M_pRI\ß‚'¹ë èä•óÆpwžókzjÉ»rƒÓ‹ì>ݾ@¬„,… «iûÁ¥H¯ù VÔñ¥¼ÅñKï–Ð.ã£(£~ü µ¦º`Á\(ÑcèµTK¡n@}‡|n£æ-ô“ÅÊXŽDyFi¥rýƒžÕ:\h뺳ÄMx)Bìoï9[$ZþAzƒÙ‡ú±7„镊(öî%ˆù(;|gluñNEUÌxùvåÛ…^Ð=ûÑÔ VLÇ¥k~]Ç‹6û_s… =°dýʲ½Ç­OÛœ'Ôñõ¦ÌÀlž7¦w嬟ŒÌ{!Oê5;‘Úxâ;ÙxƒGÿHȾÊ{gv2E±&˜ßý}8u\³¤´IÑÐxçÃtÖŸ jˆ)ô¶Ÿ4:º¨,œ”ŒÊ™ˆƒïÉ  {V™~ŸÎ`±3[©G^ ÇÞ(æ¯ÚLÁ¤ª ×KrÜ¿§ `JÛÏóEüø…™­AšW8–ö㸽¸àìF2¢•ͦ ±Ïg9JÁ—oª½yèˆøég@-ªFŠ] 'ÿc'†ìœ0t<æí¶›B‡56ýSfM¹X®&PI½è«H¦9j ÝWsSÕ‚šÿ}`Æ®jñÔÙ»cÝÎÑo­ •°|Ñ×Ï^¿4˜ÁK^1³þH”ìwQé…ÊÓ¼\Σ8Àœh{ÿ G<žÉYĺ5bªg zWÍa:¤Pø&ä>ûØí²<áÇÜI¾:¹ÚúM=”ul€d>maqP…ðàEæfÅ iâ5d«Å#öÓÁŒ:¾ô õvnøò$p´úËùDkÔN‹÷Zr2œ<†ÕM Jg6Ñ<[bÙq#6þýËžeO_, @v²+Ü)D;&Æs’T)TŠôêzè™ GnùÁ¤3ÃÉŽÑó,åHÚØ`Î/ß`“O—»üž»mªPßóÝCÝïì@u-¿N‡…³Wúc0DŸ+WJûP{½ÛåŒÐ»0?Ü^5‡÷—>Ôy¥Ú'À=½¶²¨ © ´3 MðZÞõx þó’«ÈW&!¦7»’L[1­úàÓ_U4ð$±‡t>;Nò  ¾f¬1CfF%’°Ù¿åòF;0û‘f™“”× ê8ä²Xjá¦bOia[ß[Ò @wcþÝÙÕuÌå¤Þ4³¼âA¹É/5–ó7wƒ—xII°¹ñKL²sÅl¿Ëöx‘6ƒuAb«¯—°¾œæ$<%2íhä›’ƒE€Òbl﬷ŒÖø)â×Úæ˜Šw²cN HWÆ „ôDóœvuÐÈò,#P_1Ìj±¾š'ý©÷%C„WÎß Xñ6•‰iïkʲL¿^b(GŒƒæ Þ4æöÔ†T•1WgÐ=Ý‘ Ð<›¨+°3½mÕ!þ æÄœÓAžÀÿô'¦Ãñ5¬åEÝ+Œ×RÃt î~ñá‹ü‹‚âñ4J±ô5™åQ@Ægj^»nd6â¡yü‘"×Êååö"m‹ÑêäÝjd× 'sHW‘ÛÝÿÁ\¼h„ü“ºÚpûPž•è!*·©²á§÷7Í‘bâ‹’hõªÍ0/Ñc¢1Õ€RO¿?ÄíNˆµUþŒg{XtîËŒè»2|ܳúè’AQÅ¢÷‡±€óópg® ºßÄê•üqŽ}œìøðH”1®¢ÚÃAË@a¹Ó#4)ã|VæâÁ‰—T²öpÁŒ9eïi˜Óu·jÑ™9²tÌУª»}ËpnƒÔ¢¬ÌuÍ5¡TÒ§#Ùƒ¼±nÙNx¸˜¶ðu3DR KÕÑ”Óä⎠íЀï‰Qtåf ó|×’IÊ)êÁSšèŒˆÄĘcPÕð¹ž?^&êtð¥ü´ên2|5‘Åbè =Á6ÎðŠ Ì yPm঻½çõ"¶³2fóÙ¡Ê­ÝÏ 5Ô9_(‚p›®'úâ¿à‡öS ÜÄ^i…¥ã\ {6Ø'‚ï7b¼é¢ðPS\ FÒÇ8ø1gÚ¸yš"Õ™¹»Oþ²ÛŸT¡p¿„äQe}qW‡mÖ]M½N?{­Ÿ*'qª: ×N¶†%V[†¾xÊí^}—·*øãMm2|/´RÚŒåÞ뇅ôúë£v¦e%2®snÕ©}Ë*º¤á~̬ôn‹)D3¹‡k¬IØs!Ö‹V޹ÛUô7§ùDÖ´¦¤G!²<ñ߯L¾À5¦5 ž¥.Š7ЗDƒ5àÖ/ͬo7'k«M®‰E9|î’ =xž†8 ݨ¢DYy¯÷î;‹-yˆaGrÐ1ēܢ‘uŠöòŸ+Íb8?*XTgñ÷šþ²a»–mWôSuc’¸ôèWŒA2§K#ä§¾DE¾žW¬Å€Ëëw Ÿ«n_^ ðÿ‹Z—u7]åä†ÇÉ‹`”RhꈧQ‰jn¼‹{ížEòÖii"qåü¹7|¨;d8Uy-ÀMBV€*ö„†›V@ò˜;ÛÏÙÐäE}^mCat&$ÿ…Ejz‡Húо|®”ÂaÎ×.ï÷hÇËYZ8¡Þv RCù[}@Å{»³I˜Ôk-åse²ˆ¹âÿÏ1‰Ž²Ó€Ô+úÐJÉލðÍ–H«8 3q¸À¢Ÿ1ë Üd‰":+”މ|TÔ'»!-ñ‚º~~ºÊ*—dþ`Lmê”òÓW)^eQ/5ZUôÔ ò?¿Ð“lú§ê$×r«hì)a2]-+ ¸¹â=ÛÇ­^OÀÂçîá¹y}u"j3·Û1q)Ÿ{ cÄ :x !Ý"Ø5ãU'%%NíåÅ>ôÆd¸àTíù…9X½µ•m5,XV‘¯}z7̸eÞc…E›äà5–þ!ìàÒ×9{(mê|g |±wìéN·ͤ•Dþ¼8 õ.N_ÃÚ^âdBr³x‰7'ÌoóA l'‹`ïÊñNKQ ¡Ä·×+Nõ.äRÒØ,ô­%`<„‚µÉkêL¦G\Ü–4Ï -¢}¥¸È‰-y¦ó$Ùª~&†:_zl| ÒΗ‰ô‘8i'ÒpéR0œ˜Çzh˜7¨€Tíkþò—=ÆÏNjmN]uŠ<ÃÜ™owh²+äg _X>à”/E¿4JoSUŒnGdúÄ@’æ…x'žÑÞ0Ã+²î"…*‡6  ’çmVÂf{ˆ¾s!R^¯bKHûK8ü/Á|Z´½ýãÖÛ‰rw{‘ÊàÝ÷ŠaìD.ÂÉ+ßžJðÒ~a¶‡½³¦JR¹‘Z›œFÐÚä¢ ú﫯Y¡×w‡`H{ÒÉNM7à»×†³ t!°´¦¢îÆÝÍæhçò{7ãvKÇôò/KªÃ¤Æø¼ó )0çÄÜZs6PÒì¸-ÞZ¿˜â+‰Éjœ³ó‰Q9·[ÎYÔôÿïÂ*Nô팻¡Œb5i®ž€kµñ×?N©:ºz!?! Wö”H•ø¸JŸxÀ8Yâ8~ùåwØäŸ€(¿ò C6ò_¶B¢\Vv(N—{Zu"ËX›4$—bø×}õ¡DHFaêúAåÿR眕[]Ï…¦‚q†ÑoVL“IÍoÃ2ª¹œ5kk¦Ž§Ì³¸‚{ùÞ8³œœ¥¯[F}Cƒözê[3ÄàËq@…˜ÊP±Û×…ƒAü~fb¯@ÿîE•Ù读ÞGÒóÁ‰]Î=ÅþÖj‚Ìãj‡_L·)»”2ßI„puíéê……<šöSŽ5<ÛOíÙ‹<Öë;/yŸ–]c?'´ý“mÎbÞ‡® à™ì°9ÓWÖ1)šñÞ=€ù7ŸVP¸9òðqq}m戴¥3Þ³Ž—£ï'^ò€ähômƒ©¬\‰¡8D¨dѼŽx½»seÉ:ðf~~¼¹ñ ßÜ´&¤S.‰1”üOÅYØ4}ŽÔ·Øù(ÏÄÏ2FµZù!ÿWÝ›þGà3̺p.ð¶¾ 2Î7ãì,•¨ZH›¸SÄEAoó­o¿Ï¥" M„«×,Ùô.‰zê„7㈨ÙN³5®õf ä<ë® ÒÜ1†Ä{’‘@˜_s§‘¸½…•C+-®˜x3ÁbKÞ,cRH i{Ùs_&2Ÿ²Á TÿÙ£¾’¼±Ìô":Nxê(Ç ÓàVôócw Kµz;€d‹y\àV„µmR#;ÖìtÛs®Ëº%Y)bÉJ²C“g­Á¦q‹õòoù’wê‹LGè]YHÎмAª6Å!üŠdßíÙM»;$£í†P$˜C#F,Ï;£‘Nès )†`íÿø°^ˆ ^¾dŠçi àM™1Åsí¯pÁ–Æ Z4_ ×€CÎyԜœ8pÓ›¹6(näϪmçöqm½ÕâxŽ€’/8—i(e…Š_Å©y_Ú±¢ #AVIì«´ˆøéηqû®¨_¿—«Ð˜‹ýßç8´¤z?Ä‹¦IÖío⥻| a3‹ãÿQðZhòsyeßUuK»û¥y`åK°iÔ'{0Ín­‡~ ËEÞShéÕ< >eUâЊÌr£õz˜M¿x=,8>*ATâþ>©5èO'°Âa¼¶Ãji2òªqĆï˜Ä/GÅ»û’*<£Fº°iC7ã}¥ä§ƒG÷¿~kAÓ *æ2³†Ø‹]Ÿ¤0(= ‰½ò«Û©•B^<ÉuÇ›¡žr`JƒÒÈý–µV- !k-4;½ÇB f°MÜOY³´ÝtW<åMˆúµ{µÝïY•¸yÒàR­Tº'SÛ²Ééþ žhøI™4œÕ´yoÊ ­|(°K¤UºÅ`B|ñ) ÇPpþE8 ÔQ† ¡C½ˆ¶gÞ\›Î!'¹l]¤ƒWy›ÒqMŸº&ªVøKèCQ›SÓ`• êÚ‰]@IÜ@3Q¡.b‘c &ÿÁ/󾛩¹DeZmÆ‹UÃÚ£ù~׳ÃlU xJdP]^!FÎ9ï¶í„Ÿ ˜u"ÏPSE1`§(R eï«ÖúX> ´­ˆ1ây‘ùxBtžI’9qt2êH:ƒ;õO£z²±}ëÉtÓd'MTÕËfZKÄQø¾—Ù+¾íüågʦ˜–þÏ@æ¬?UÒš@|¸ˆé¸}Q¶lcœûR¼Ð„šBJ¯ìâBÕ÷ûOI«]U¿#£‚$¯öF4çŽSL 5÷y |šëþóÆG”F4fv”1£Ýr×é%‡ìΡøSÊÉãð¤'(‰r:–kêmz Zyú}ÞbºL½ØY]Ô´<Î+Šzä“ea‘Îu8Q`‹Oéž¶ {1W3Â’â}ÜÃÈqÉæ|ƵCI?6Hœ/3¤u«ã*$¼:‘»=Mh¬ÖQøòó©SÂz¢Ò|Íg~Û—bÁPÊ(ÙŽ8Q»´þ¶º…¤åfÌHß±™4É£k½×1X²pP£ÒÈ¢PQ ÿ™¨Ê‘i#äã \Š›š Û¼uGYã’j¦§Âwt`öª?kF”ê㧉~¿i>Ô[u†‰ÓUà !Ò#™ù_nu ³ÿ'n·_ÀT¬ó_Bì†"¢ÝÄPiÐSE®ˆ(Xøi¦ò_XëEçïùs3,µœÕ+G±O ÓÁ$¥¿,]…5 øÊ¦éFa#2ÏÌHÕö±g |a{þa–D®ñhgS )®V›øø¦[CôP‘SúâÍUùOõ›*iµ7‘ÔÖt,—€0œt¨ÂŠ C 6v¼Þ¯ô[I''seà‘8˜fÒ%H“ûÝ=jþ/ŒÀãwá;u~õËMN È£Brñyg\Ê(&Îöt·ö>ß´+NݾƒÜøë›4iT^&c¯]UúÌ„°Ÿ=ŠO¨íœ\èÙýÛÆkLdð5ÄXëåZ`תŠ6öA÷i6þ Çת™ÖÆ…—"©®*ûU«Ãë;=œßõ”xÎþƒ;P¹¦íå"ø”‰1fGøÖüëþõY]˜KÙ‡¼I¬0R<õ6îÛánõ¬¯2s6ç‘zß SNI/eZÌ\kð´Å8ã`óý¨Z—ZwKüSöU®ï´Ôžö÷ WLIt«E£i'%vrÏþk vBÀ¢AˆŸ+eïy(#0|×ÓD¨ÏúVŒV )9*蕚‹Ü:;äiéEhT5KìrŒx÷[ê:¼ÚÇWäÃæÖùgR3Ÿ=‰ÆtJ=‡04êMˆ»œKÝ®ƒ²%š"OT›úæ©óq"³ãßXQ1tö_Ÿ$ÛšÞ£ë'ÿ™Œª{xÑ¡œŸÓšGæ¯8ºØŒðr·?›#È_Y_(!³ž<¹zEl’É¡3§ºÖ ^¬²±ØÈòkd%Pçxþ¬”ÙÏt¬Ì?µîzg»JdÄÈý‡°‹<ØJónP¡â™÷õz¹g7çuPK P4ÙY,÷äPqvÓ5<¤4åE¯ï¥=L¹T>'38‘gíñIÛ^¤S\®,dWÚÛóQŽ`”䣛¥©×ü®ÏÐø”hK#´&‚GRžÕ'Õ¶4c6³ÖÂ.ÌÞ=_Z“6^hlm5¼¸d¼¦‘¹ŠGì¨èñ(ƒàùv4¼Ï»Ík:ðÕ’æ8ijêÏœTÔ±$õ Õ ²þN 34¿…{P§åšQ/ði 5“—…#7oRgÃùK^KfÖy3¿'ßr '"M3U8\ïI{Œá’p‘—ecýv>Í­(Ø ¹IÛ¦]Ž™åÆ÷[¨zsýø!%OAz‡ºy}—< ¿+¨í)椉 2@»´ó˜jÞʔς÷È…à9}Ó*+ªEñ´^IQÚ&)ˆÚ¢?i'Jƒ‚`Ç’>n¢ë±û‹?Þ®¶0ÂnOEL¶¥\8“i›Í‘Ù2¶EG/ÆÛ„~<ý ¸}ã½î:€ª{ßödŠŸ ´4 klj¯òd›7Uåjƒœ/èRtÜ|YÝ5@‰¦A(\ÁEñéql©ÏåPî¤Qo…iïÕú"ϤâH½Н%"h‘©}b8‚D&l_!sžŸ|ØR@ñâŠÞvÎù6X‹’Ì”ù;`ÿjÍ;Òjœ]ã«ì¹¤qm¸ÕÁe+5Â}-Z#>J¦óNç“Õx)û•T?¹ú­~ŸM¹ƒwn~+]M”ô~ pgj˜ot½HGÖÒ4tó² §]¿<Òcìpã&7z9_~4ã÷5G³ÇÝd*WÏ!l'WÉ•~àò¿ÊV hÏì$ÿgÏ/{Ñž£¸žA×ìBOµ¬J¡;CøÉ…¡H‰¿?£%pÁõªv€¼¯í2µNˆ Ð2™Cº:£Ñ/ôvŸÔ|÷šÀ! E¼sá ¡‘…Òøâ¶ÆMüé,ÐÑ{?åö‚íí?YÇ‹˜ó,¥^ÿ°mqþ›)CáÆêìÛ£}ˆ¤«ÉgQ†fê~“ ®±oÒF‰ÁÕÆ%8¶^öB¨k/"Iåg áCǬjeo2ô‘[+µ®)¡pK«ÐÂÿ9xcÚËùËÄ·ŠÁbÊ(Û°ánß#×â±à7ubÈÑú…1Ä“/ÈO+\í儇»òz‡NvÌînzG³ÇÜ!ê ª4”C[íß™F4êðcÍàІúÆh¾â26÷“£"ºæºE¦´•ç‡v›ìª¢éqL·Ñ­IFä“´Lú¿ šeç‰2÷Æoüw¥þã÷ƒ1Â(„Z]÷]ôìð׋úý®$\–ü¶–z‚zô Ø‚½ÉÚ[þñªVˉÚ÷‹¨×k¨ƒvòÉÞ¸Û¡^S¬fƒ “ÌE=ÓämZnËùÞÈ1 [ÍßÒtW@vûÊ€L— TUgšØÛ•Dßm¼_ê:1µ)cþD,møö`‚oÎ/€ÂüT²uGѨOÐPë“§~UûyŒFZVM_–$j.Ä¢WÐ<×5™ã†[oðî#BÔ@ëŽLsҊƶ@9L©ìý%wﶡƳ뵪 ûÈ´6HVG£E!ÕŽÀÍ„ˆua®?š”Üz ›K©¡?Û`^S³ä

m¥ Ýâë"çÁ»õ÷7"÷p?‡ü<…^ùè ¼]ðE»îïJWú¥èÍÕì£êgsœ Ôg¨÷?†×’†{-î.úXœéÇë>m¥-~ 5~Ðú;ü\ãŠ&\œïœ£ó]ÓzÏ~×ý]éJ¿½9¿wçoëßìîø›ÞÏãŸNèthï©FoàíøS ~n×ý]éJ¿½áÏìôÞ¿úQøqÒÓo? â܈·g7â®ñnVú ÑÆA ~¦výø¡ð8[@è#Kœ œNŸÃïݧþs÷8ø¾[üÁ¯àù‚kl\×Ûcüf\döç'Æ<ÇQGÁo×[¿Ý”o\ÕWO;Ç–8©þ¾õ³q•µgL¿ø#ãíëòŸv(nmäÍø6>¯õ;åóש_¼ëÈwý¢¥ƒG‡üš·Ô×8¼Ï·q´³ä¯þ -ç·õ'ÝzÿnÉ7>ÕŸs@.ÿ9:¾,W[×ï9xUã÷XÊ›‡ô¿ñ‰Çxv½0É·—¿Ê×ßþR¯yjcóñ<¯;óEïêNž~üå³­/Õ+~ŠÈmäŠÜ’³â üªç[ƒ/ò3Ƈ~Tþ¾&ÿi•ò@þþ¹J½Ö‘ÆIw?A?"§üH‰k} ý䆪¿rÅï¹HýÖËêµñÍ|–ê'ܸþÐczDß­CæÙxgœg¼ùΟ{™/ë xÔówíÕo#¹È8x¿|côãÄr*ÿÞÇÖOïïï#¸ r…òçõý”s¯$z×ý0ÛÖxŒ/×…Ê<ùŽ?$úÞû%üw~Çø×Kª_ü-}sPãc¼ÉÙ㙿¬7½gÃÿ“rü7™Wrm\´K.¾¹LO9-~+õu|Žç9=è{Ów‡ñwOá‰å8GVÿiËyß~ Éwß_üa™ï§–ër×uòežÉ£ùÕžq“æOËý&ó!m=¶^ÐóÀï•õ?ÆÇs÷È÷·Æ8>5òÁÙ=7ÚiüÅä{†œ„/÷}7>7ú{&TüÓsK>>uý쨇oüŸJ»~w¿Eûô§þÏôK¹1äÔø¹·É¿ø3£~þ–¬ Ï‘®ÿ2|ù=íÀ©ðG~"ùø{‡ßêãÊz¤=óýbê=“4þõðcý{vÔ gæ¹vùW´:W#WÆ›ÜëלÇçF¤+G£ÿÇ’>1ÆÇ}ÙÞ×Múù¤;ÿ£^òðìøžN?áŠÜû~¶È»óÈ 77å.$¿ò/›¯äs/—?;|ùݹ¥ûöçÓ.aðMäK~ó ï$_ãJ¤_øñü\ꇻêy¨v“®_³¤_íÁ[±oËKy~ádô.å7ÓïêMùò•rúoÜ´+~Fý¸¥>~Ò”§/âhê—vá5Åû|yæWŸ~ežƒ‡i¿.…¯Ä±íy´zÉÑK£':ç5Îæ)ÏÝ3'ÿøà×Þ½è•ÙýL}ýýƲÝú›ú[|qI;¯¥¾úÈøý$õóÄ¿[õ–z=¯?Š×¿äWž?²úÑÈóø‡)®ŠŸõó+/ò*>ÔŸz=gGg'‡ëšþ3¤Í5ô‘_ ~6êmòõî²¼ù2ƹñ=•Ës|‹õêh—83íß‘ߎ{(~cù3n¡üútüðysÉßåÛK=5~â_µÝP~·êÏnÈ>.›/ãŸúð;ç·þ€´“|õ–úߤ7y^ÿE,ûWQ¿\ä=ùßLûWǸÀiè§ù…‡÷Žß1ü´~óûëøø`ù{qRú›|õþ¿/ôMã|S‰/õÉŸzëÏLþÔ£œþòÏTœ—zÆwŽÇ“¿ä«¿)ã­_ÆoŒ=#ób¾üþæà·|qn{c>*Χ~Îù6ίñ­|Žù¯<ß\Î'þ¬‹üÓÕ#¾èŸòú)Ÿþí-óÕ˜þàƒ<â“Þáèwý}‘ã!ßÍe}ä´ï ó>úÑöô?üwœä—Ϻ¡ü\ÏÈ©öñwiYß¡y0>ô`Œ_å#õaŒ×냒ëÎCÒø©5ã<Ö-ï“ÙŸ¶CÞÌë˜8Ͼ§†þÙTþÇ8(_9SÿËzù«ýj?f¿§<&¯×g?¬Ÿø'§ê5¿ÆièGñàä4éË¡Òüƒyn_ã½Üý]ÒüŠÕ—|Ò)ï½Ùïüg|ìG•ÓŽýuý™©?å½·íCñiôÿúuaäS?jÿÑöO.û;û5ý˜]įúŒSêÓÿ–7Æ7ãr)´82óo|Õï÷÷–ó¦Åý§ýW?ݧ¥½—Æ<Ú×/óì{ õ{Ÿ“#ýÕß¹ïÒïò=Ói×w™y¬ÿ»äÇïÜŸK›r†Ïò›qáß÷ï´ž³%}>Ô÷™ïZßÉäÞ9Äô þ¼òêËó3~O9çwêw®ãûõÅ<ǧsçM¾åw>ä;ßùSÏ3B{zðnðá<¤ßáy.¿v}wö»8ùÏŽ~Sç(—–i㫟öõÆÕùÈô·æ|Ä÷lÏ2ÿæYþ³øIš<ö¼&Ôù=Ÿs-çRüË9Çzyòj|GÏuÌGžûNwNGnsÊç¼@{¾÷ÏŽ~:_qþàœçìûËù¿~ unî<^‚\:£Oá7ùOJÃ3 ?Çýžôé¤Ù_œßj_œ õ°3/çÎÎýÙEÔã¼ód~W²ø©üήÂÿQÒÃYó5žGÒßõ»/ÌFþñçß¹®¸8Ó<ËŸóœýÁ|³#±7°[_r‹a'/êùÞ¨§ç¯¡'Œ¯òI+G~ŠWПM¾Ú§Œ»~ª×x?rÅU8ÿÕ¾~<~cª}Èx³óšGãL~á_þ5ãÍÆÎ8䃾ÀQàŽ…»8œÇ7´vøÛi7Ïìämðõ—Ôk\cÇ*î%´~‡à`>ÜÔ ÌÇ!œÊ¯†œh—ù÷á/|×ÏÑÄ_±—§¾¯ËZãþ:åàIÒÏâOÔûÝeþ‰g)?æùGyNžùOKný)ã.ßÄ?™ïX>7_ý½=|6¢z~›ü¿|{:Xô~Í:ûÑXá­c¿^Ê{×K83ëÉ÷ï.·ÅÑCïë?ìÝù;xbC«§pá«zn}úQüZøØõ8¯ôÁ¢Ýçd?\<|Zä.²ï7ï›·±r=popO Ïö›eù¾7#ïÝ7ø=÷|/”ûZûî±oÞõ8¯ôÁ¢gëyq1³Ô£ý½<÷X|^žû.›ôßfŸ=ÞG½7¿g{jäƒ;ò]øƒ¥^ô»Ê÷Í3«Þ¬ô˧=:9äÏù–óšâñ"Εœ«ö<7ò Ïöʨ×÷9ê<étêsÞ9ñ‚“šrÎ=£ß‡úÅ\Þ?»ç•ÞŸ´vŸœÓ÷yý§Ý\ÈWϽ+³¿Ð'ø·‹£>çÕìεÏ}s~í.±¸¿Pí:—w>Í?Bíz·ß7[œÛz.°Ò¿Bo†Ý´ÏkoŒž°Ã?lµ³²GÊÏà÷âE6r¼Å§-×ýÚ%k48‡æm”gÿgo‡“(>mÙŸ]ÿJïo Ótq@‘Ãú{ÊúŸ*]|Uʯ”rÅ ¦ÜNq†êI¾âhR~à”¶zãwõD/Š«IŸ×–üízÜWzÒ-¾lïÎßVonÜIoqµäÏ{%rX\eòOJï¢O¯mꯜ—8ÊÂw{?¤8Ѷ“tßc¡“oøÕâèÖ÷ÍJ¿ý¹<ö?öWo|ü`‹_´?ó]á÷âÉoä³÷%ƾ ®³xÄÔÓï“Ôggÿ?p[_ÚS?¼¡}(ÜœãOV½Yé— 7¾·}‡;O>y;›´s-xH÷òàøzO}{wþú½ÿBÒêyaì»Ný¢ó3qLÝ[+3úâž}~a|÷ÀÂϽ¸ü}¥+ýRôèxäž*zTû‰óâá_aú)`G©®ìÌÐí\>ïïøøîÐvvϽÍßÖþšßk÷LzºÒ/‘¯§;>¼@ñiwòïíÁƒG¼žúàÓ*çÁsoø¯K=à·dò—P¼çôÎï£üï@¯ÃGñ:»êÍgZ?cŸ+Î݌7þpà9øW3ìÓìæðÈììèY?û÷³_Ñ_íº'ç>¨óX÷<Õ¯ù×?|>à[zÿ4õèçÙÑžvê‡+ôù/¶î—OçÚæÁýàÓI¯8˜{‚ö>zý DŽØÇÈÏk™?ö÷Öëo(zžF/Ü·¯ý åȱûñÓTñ,ï.)¿eô‘ýâÊ(ÇNH¿ê·A{ù½~ ’.†½Òýl´åÈ9}OþKŸï}PÿõK`èqÆ¿öãvr}ïìRoÞÊ|\Ë|lXþçý·2oü®¼9y=òQ\FʽI^Ñä›~søµxcÈ_íÜùòŽOvñ–×ó¼þnBßÌïìãð-ìã~¯?¡´Ï¿‹úñ¦~|\û‚ïø~­ø*^löËøÜ^ß;»Ô›ýÈÏ~äFúíÌÛþGúvæm?rBÞ>“ç?üF®öÑÌ3=T.{÷¯ÓKò?ä±ÏÃßuü~=O»o¥8B)ìzžkçzê¥çíoʽ•ßñ ‡òVú£>ý{s©Ç_xÝÚO=oE¯ña<ßJÿßZ®#»–Ÿ‡•VÉ[å)rW}úEäËóKK9¼~r©Öqï/rû¦÷ùÛ<ä9=Q¾ú3ôïúÐCþûûÐõ{/I—íIŸ\ê÷Tõ6|ïçùµÏ·?ëø×ßcêå_¯ú;ÞÿÆ!úºkùyXéÖŸfæ .—ÿÑúôˆÙçX×ë4¿×Ÿ}NòŸ¨=ëuhýÞE>ìëê—ð½%¿ö9ÓO¥ý^ý˦]~l§D8Ë‹£^~ë0åìŸ~²l÷óëÍØÇªÿJê‡Ï,-|¦Ý]ËÏÃJ+'ΫœLÿƒÎÓœÔÏ]¨ï}çQçï¾g3ïü‡]N½p…îO‘ø«ú…LyßÓõŸ˜ççh§~óõ‹^¥^çÎ)zþq¹ê|ÝùûhñÇöùÇÿýe¿Ï§ÝÉ7ü˜yr~yáæjw¥ÝÆÑ-Î/”ÝÝ%øÂâŸø-dG™~ìØ=ØW#ÏùñbsdW9çì%µ+…zÎÃ~䜸q+BËgò‹KÁo]í5ú›çøå_Ÿ9ånà3?{¯8Úçÿ ¿ÎßçÆ8}±ýáJÿJ½‰]²x&r`ÞN„²»ÍxTìtÓ/!;ªô±Ì;¼ {(¿Ž4½|,ò«Üw†\ ÿ/[?‚ÉÇÞ ‡ðDêÃ/Üz¦ÿÆþôó‹úOªÿ9vÎï/ùj|<8 üèϱÝî×:Ïâƒ‰ëø—ô‹?¬5nÉ']\jÊýÞünhý9ò[ÂïNê/î.õÁ _B^øúݘO¸~þ~›vü oxðd~jÙßÎ#¹7K\BñÅÏïüè ,ʼnyx¯|Ïø‡vPÜMò±ßOüœÏí¤ãç¨qé«rpuyn|??ùɹůq¨ßšÌsø)nýn¼Ãè¼_åÞÁ8yßðø›‘oÆK}V½©¼þ9틇ØxÛC>¬oÆù‡Ërû{É÷hú9ßúQÌïôáûƒÿ©¿ÚòÖcë”}Õô'„òN®Ì‹}ˆy.~%òõ«<'×™—®—^¹±¯!äŽ^z äÐ{"ëNq Êg¿ßuM¿ìÍÇŒãÈRý§ë}%oê¡ÿâ2ÚÿÍ}&>½Õcß?Å]×È œ¬ýæ‰e~ò±Åßz¾ìO×uïmqüì[Izú£úá²?Ÿ}ŸoÞõ;õÑË3KZ¹°¿~ôÃ÷âÙ¬‹Ö ë–ïþX}Ðÿs¡üd‘#|(Ïo0<òÙ‘ß<ž¡Gèý‰Á‡ïÆ=$ÏyÞx~¡¾;È9Ü&9mœ½Ô_Ã_Rý#§~ûwúk}ÁùÁ¿ý™räÕ|>=ê+Ž.ÏéÑ^ÊÍû\C˜|ßüÃÙXÿ|Oë-þæWÿé½ïzÔïr—rôU>õZù™z~Ôo姇ÏN½iœ8ã0Æÿ©Ói.©~Bñui”£Wp+¾»ùÅwÐxÁ%Ñã_œWò;×i<¤+ùÎTuÏù•ó*çe䮄?®âѲ87“Ö/óéœÈ¹Uãv†oøý¾xcÓ_çWüÿ?7Ú¡ÿ—R®÷Ǹ(gþô¯q’nãòðaúÙrC~ñiÿ`èyëK?zß“œ%¿óMåÉ“uòBæÁy›ñÂwã5¼·œOãëD»½—šçѣϬ7ð?ÅC§´7Ôûãï.ûwqæe/˜¸#õO¿WƯø+õ‘rC_Çù¼œ~4þÉàcžŸ6ÎM¨zÙmà–á>ø-RŽ}£ñíB?(ô ~è_øÀ_ãèŒqì¹·çø”_û£ÜkI÷Þ<¾µ§_Òæ'ýf¯i¼™Ð–3oCáûæ8§\¨y#/§c¾G9~ÌçœoãW;@~D>ãã^5¾‡?…OÕ›ÆL?ÅÓÒÿ‰[’.+´qîR^¿Úçò;Ê~P;^úÉßṸeìãpUì~gg¼È_Òì{µÃ+—úöCá=Ôÿ–zÃWã©…ê/»eí…iwÚóØKêÏsúŒÏÆMT>üÁ4^ahㆲß^óƒßÐú1¾ôA>XòÑyÕ?ã7æ¡~p’¿ñ(S/û팧Öv×vàøÅ©_)|˜ã’öèý[mò}n½Ù??æK½cü¤ñ+_ñYI“·Ê©ß¥žä+NìgËrð×G9rZüIø¸>øé¸f\НJ=û¿Üä‡ÚO½oË÷ᆾ¿3©?õ½}lð|Å£ü<|ÒG|¤8ø+Ïñ]<[Æ£ügžÚ.þ«ñP^ýÆC=7—ý0nø.ÞF¿Þ]ö¯qFG¾Ž«yLýæWã”úÚoã0çùˆ~Á?é¿q¯ß¶w—ýœíeþ>³ÞT¬CøœrGÈ­tò_ŸåÂ?ý‡óR®ï㯿ÆãƒÑùˆ>i×x–q²nê½"p^ò[«W?[ÊÑÛæGyãÿÁr]€w,~Ó:>üÞõŸÝXò1õ§øÊ¡‡¿O¹£§#Ý}÷½ãtmô߯Í<âÓ|ÿ–rGœß¿0>-ù½ÇôÇ>©ñ~S®ï[ót{)Gã}÷™õ¦ñ9C§=õõ}›þÛ¿¹¿!ÎñŒ«-ãwg\‹«O;Wòö³pbWS^½ä©ñ¸SߌçÝ8ÂÉ×8óæ/Ï/9tâ±®¡©·ñ³Óû9íÖ^úggßSü›ù …_k<ÌÐkƒÆe'ÚW¿òæ#|ô~ù1®áç⨷ãûÁr^ío~2Ú5¾æY¾âò’¯ñ{ƒ~\ÊÉQø4ãâ;EýäÉ~µûδë;¨ó¡\~ísêM¿G3ŽÎ_†?ìÆkt¾ä<Áùš|=/Êsç=o íyHÊñ·å»Ä÷"½V¿ó_÷§œ÷"ù¿\˜í$þú}‰¿äw^Sÿwá%/p2æïêK;ΗÈqÏ=’Ÿ\8÷¹4úmü{®¡_#ßôs>ýŒ[/8§¸ þ1ì)½Gj|F;ó¼À¸\¼1ò‘·ð¥žâÓ’ÿ>ͼ‡ïž‘ãÔ¯ÎéoÕxŒþ~Îû¤Û¸á×¹7üù´ëœñ©¤//”tíyîüÜ}\õ±8?§WÎëÙ Ø)ØoØÁÙ³<×>;¿çìøí²;OÎ'OéÏè~Í'{ŠñïbÇÀ;(»{»y`ÿa_ƒQ/\q6¡Ovð;í›|æ™}àÌhÚGôG¹ãÉÿ/£¿Úg·vÌÚ‘ÕëÜœ|Íx°ðês>iw3®S»šüøÍ|f½ÓøSèïÃ7û§8·øa'n耖}~%8x~¯Š›ùmê{"4ù‹‹hüÌü>ü1—ówËöô§åØãGœ–Æ95ìpì°ìhì´(¹"§1n&-Žžu=to̯ß'.?ÚÓöMvDÏŸ匃õì›c<Ô›üò6Çåø?óg¾ðõƒå¸d\Ùi78òôxž[?é͉Ð'_É_?ˆðH¿_ökëïcŒGôøóâÔàaf¼VñGë_Ž8ùùËxÔŸœGä÷ÖÌ—õ_|98¾ƒŒ[ã¬fàEäo<^ø.^n*úzðH¨ù_âù÷FŽ¥þ¤2ÿ÷yOjœØÛcœŒçR›ü­ÿס™ïâ-¬ë™ß⺂'¨ü†ßƵ.e>à¥økk@ügÞ‹7Ã÷ßþg¼Ô/î29¹•rðcó™þ|ßøZ’o´×ñx·Ê}Ñžy!o¿rm\ñÿ›e>«¾à‡\5ž0=6¾á¯x*qâ"þ5ãÛçâöš—ȳ÷•ñ×ÏŽ3ÿÑòTyô¾ñ"7ôüwCŸ¬ŸúK¯¼G¼'¾¹ä¿ý˜óõç1Ÿä7ëbû™öŠËúÛåï•ë¨ø®öé¿}E×µêu3¿ÿÛKøÈ7ÕߥúæûnøAì{>ó·K>»ÎÛy¯YÏô×{øÛK¾ëO_òÿãrÔ|àkÄGì:d~à—ì[~õùô¦øGz#Gù~__e\íŸO-ç·ó`¢uÍ÷’~Ù_Ø×ÚÎ8íO%¿ßŸí}c9NÓäO¸ü½ûõŸү¹ïz4¿‡ÎøêŇ‘¿ß }¦ÿâž“ãŒöÉs÷[‘›ãý=´/´?·>…vœÍoö3í<ÿÄmß~¿-Û©þüh<·ŽD^¶~óœÂëúÞ±N(ÿãQï=ø8r Iδ—~|v\gÊÏïW÷“|?‘ßÍö¥§?Wøü¨>KýÓŸžçæÛþ]¥{ï*i´ñ#Óžz«àÎùƒó òƒoãä¼álú«=ß½pqΧAç’æÏw¸úê7Ìï¡Î œ¯t~ð—çäDÿðÓïíÐã¥ù\®=7øþhßÖí8w!/øðÝî¹þ9çTïô;h^ Þ .íÅѸ5ãÕûzø0¾ŸSoœŠçœÐ¼Ã…%ÎAϫɽsCç¦pƒÎ‡{8ù.äyýÛ…>?~Ÿå/öœ<úé\Ñy#ÿx¨~¿žC~Ïåw÷æá1#;÷4ÿ—RÜ|—óMíáÓ¹~Ïão.ù¶Þtœ• ŸÎ›zY:”ü87®ghþÔãwçÖ½g=äàò¨§ã.róüß¹´ù×Nñ²ÖãpcÙýs~®ßõ»>ààÚ_ý$iïræ©x`òúîçÓøƒÆóÉ8°°§ÆÝ1žÉ§;û[ã2&Ý{íÉßø>¡üHÔª|Æ_ öœÚ¯Òv¸âBõ+õÔîøÁòyí˜IkwÚiÙ%µ /Å>X¼¤z2>ú«þú/L»Æ—=¾^}YŽ]–ýŒÝóJò³â»qÎŒ|¡õ« øÅOžŸZ~R¾þÎôgðw€öçÊ >̯òò§òÇÆ~;Û7ŽW?ÊK·úùñi©ïÚ†ïø‚ŒgûiüÞ[ò?ýÛ±O›8óY|‡~%_qïJÎÉÍÈÇþO/&±¸–ór?oÌq×þKªÜLÃÕèçW½i·ÏÉ‘yU^}äPÌyS¹Åç7>ŸÞèçoÓî¡|Å|°œ|uÞð¯Ÿs\’¯ø‹Ô[|ŽþHÓózm¶g¼ÂOñ$ä5ý,ÿøQ^ÿñ›z´C^:¯7—ò[þÈÕЇÊçê3~úi\Æ:Ñu`ÈIý‚’£1΋ý5¾}·´ãýðÆìyòÞù2êëlùžób<<§wøÅ×ègq<ÊÝX¶Ûü£ʼno~ÿì8›ÔÓ{'ïZ¾û™yßÁþ¬û4ãV\Køëý ïËKËö퇕Ÿqë‡9íØ'¢ö¾7ðã{¢íé7~G½Wô3ü6Æ¿û|àÓ>"í õòö;óªž÷—ãéý7f¬;änGû—F?Ýg ÿ—Óoß3Öz“¯÷ŸŒW~¯?)ó‘qëø¥}é¹?mö“Ëñé=®ü—g=ù]¿ŒãŸË£½Ÿ|N½©ŸýÔ›ïµCùœOÕ}øq>VüOøpîÇâÜËy@ÏOò»ïåž7% Ò{Šá×ù‘û©Îq^ü̸ðUî¥9'š~Æü®¼sç/™üÆþ¬çøO¾3£œqtnçœ>©çƒž¼¿lßùƒ~ù®w®Pæ)×sóê;Ý9ÕSI;ïÓžó±Þ»L½¾ÿ¹èy@~7^Î…zÏ6ùŸ|™¿Þ£<¹ü/˜çì#ÆÁ=Æ—||v|Zê?½ŸCùœã«ÀÛ°;Ô?Fž³wÀ7ÕO@èôÃà\°v²”ïýû¤Ùuœ{:§œx­úAJ>ö…ƒïSƒÂ]°·hGýìÎõÓø8§­_‹”?žßõ—ýï7Öäg§Áþ{nòÓÞÞãÜ]='’Ã<ËÇâüÚù/»¡ú‡ðÒ8°“ÌùÓïðS{°ù:•vþ‘³GÔ3æ§þRŒ{ž³+ÿ§eºòËn2ðEŸYoÔÿᦞÚeÍ»,;+Ì_2ï¿Þ¤ô'ã\|ÍíÍs~ÄQd/]7õíåOºvÄŒwqýÕ’÷‘~÷zõ÷ÀüŠùÛüÎNÏ/Vêí|Ó#öQvìŒ;îÄÍÀu¢½ôƒ~ÕÞž~WnÄCþ¯*gì ôÍ8ªÜÿͲ_µÏãKÿKÆïÿšñ2pòãN#åá¤Ê'½`ç5/ø ßÅ =>ÆMû‘³ÆòS{=½|"åÿ¸y¾×¿oüíÞÞ#ÿ¿ÿÏ?ýû¿GþýßûïÿŽííýÍøwúŸ7¿ïýÍÞ7öÿwú?ýß¾üþ?þþÃËÿõÛÿõÞÞßþóÞÞÿíóy!n+}¸èÖ5î÷ñߨ¿øýÖÇÛ£äÿýÿòïÿïýK×þ§ÿûì_–o“>lJü?ý¯ÿþ÷ÿiúÒ&Ýò—þ§ ½øÿM=ÿýÇÿ—ýË/üÿþ÷?î_üý7ÿåù¿áÇwþö/ÿWwþ¶.ŠÃwëÿn~5õäÓl{ ßÍ”O?ÃïþOþ—M?ó|×ó²Ò‡‹îŸ^\ˆ~½ô­|¾ò¿.ô©ù_þo6zÒOÐ;oŽÿvûɘzúiGÏ“õö÷—ï”ûïú)M_Ž~ôŠXôò•ðvw=ŽÝšÄ#22/糎ÿîüí¿’õô…Íüî¿¢\æéå¤ÏgÝó)ìhå\êy)ë->¹ºrçÿï›ù?>^ˆ<ÔeùŒ<õh!ï—òÜ'yDÒ^‚Rÿ¹ô䄞œÜ_H½½úH.ñç}ö~ ì¿þ^!Çïo~.ãâ(Açãüò½×£§—µ—÷åÅPã ßg?ß'ÑJЋºìмnæó·ÿJäÄzõRädóü‰žüû/DÎEì3Î*JÎ_ÎïçÈù¦ž]ÃJWz?ÐýèUÖsë/xdý=oÿ}¥ÏÏg}Qù¬ÿ/…žËûO;/g}x!ïûïSï·“~)í7í}™÷ÁóÊç=sV{Þ¯›÷Sû#馽½gϦÿçð£~ï³»¯3}ß¼<êwdžvúÜÑúK›vw-+óy*òðläöéÈÃÓI?9ëóèÅÓ‘ƒ§#GÏæùéÿ?{ogÙu•÷^«¥V·&÷XÝÕcÍóxëÞªöuxØ‚ N‚Åd°q 6BCØ ƒ † Ìh‡I“ÅÅ6uóÌ$‹ ÙŠÛ„ŸlÙ°l¿ê{¾ÿw´×­êIê¾UÕ»~­ßÒ9÷œ}ö°ÖÞk¯õíµ¤¿ ‹ï1¥ÛT-¾–\õé;@çlÓwè÷žã=•7$¾íƒê½Ñãz~”zKž(W^Ùþ×®ÛO#ß e—ÜŽª†S9ì(gPýŽÊw›2Ýœ´’üŽ âw\iå›+yòwLrƒ\ªœ#aŸÞ¯ç$ßCoK÷#ýZ7qi_3(¹8*Ú'y”<"7¡`þà®ÖAÉ+ë óGI¢\åõæœøg½HóøLwôö)èCs²w¢/ÌjÜØ¿Ïí@ûö)ì;â \äSè]'ËqÔ¾Ùߟ ×èo!S¾çß'T¾ìOÝîßLŸ^ZŒk¾E-ǹèÓüÃü0¾¶ýòÒÍ˚ϰ÷Œ©žèI“š¿Ø÷¡G°h7sçÉaö¡<÷ƒÚ= Õ<Î5© Æew"5¦ïh£ç;Ú3–Þ÷÷ã|ÁþD¿©üqÏèöQî#¿žïUÎDØWh}ð5zëzå®ùzŒ©ÿŠ^ý4Ê~}!ú¬ê5®yŒïP¿‘tÍô"ÉդƑ}ë(r¤ñB5¢ßÇ¥ï”ûã†!WØ)…ù~Á^Ësø+tù2èÐ]zž£^¬‹”Ãþ~›Ån¿Ë®8Ÿ…òg˜/¸V{,WA>hû¢Aõ> €N¢ye ; ÏÑ^ä{¸ê9®r§Ø_ÑíùèmÞ¯MP~Y^·ù*ÓÍA—ÿ±äïåG5ï?_#þt}ÉWË¿Åyfɯ†rí,å̦k$?ÛU¡ vª¼Gt—î_Yò½C4=‘ý,™vÊÎú–b†}vfQìás÷”ëËë&ölüZ¬›ìç´°_Ÿ«µÿ´>Üd½oŠï‡u}Jþ+û³ÆXWµnàf=œZ‡À~rRzîv{½7­yÁ)uôÝéTÌôò¤U(pàÄçØ#ð룯Ìï(ùªô½Êåƒ(ùñm¾?/; þ¤ó 9›i¦O ¿ËWñ?ó88ð=•ÌËoǾZÚýVåDó/û ºp Èì{sºïÍÂ_Ú~Ç÷5_Ï•ëEUOð–ào´žpÔHvÄŽö²ÿ˜~QÖ‰íGR;öºý7/{&ý³€=|§ê5üDÆ{b]­µÿªõIóŒqCŒæpK„ a.÷‡Ï¯B¾¨¿ÇTê‹ýœ¿ÇþLë&ãƒ}|QoÐÀ…ý3ûÉyö¡<¯úúv_õ !Wf5.”ËQVôðVèÔË©Õþ êþ‚¾ >c¾×Öa·ÿÏèyãÀ>œÖ×)Õðñ84üùꟹäûo1nþŠx1D¯R9Ƨ©Ôg^ò‰]Ÿöù(£Êa<|DNå‚‹`\è_ìSÒ÷æÁ×ñígGßÃî s<ç_ôù§ÐGX¯êÌZÿ­§êÜú¡ñêj‡õQÎ÷°rîïžÊëM¦Ý“CB"¢×:” |+>uJ#­sÈC;ziØ÷ œ«áÜÝ‚h¹Ÿºµz>•c?ïòѿߴ¦¿8ÓLÏ‹ÿÁc?Æ.; ;ûÓ©€G`¿WÊχ«TUè‡ZW\ŽÖ3ÎßàÇŒ¸fÖ—:ú0çI¹{‘×Γ²®.¨¾Naµ6¾"Ó³ðvpì»Gð[0Žø¥ƒ^3§q ó¢ð4¾&µÕLà/üôs©½É!mìŸGŸè^»öü0¢Ø°‡€?¾L|Œ¿ÅûsµsHø}À­Lc·¿–8…»Öígì8aŸ5";~!ãh7ëv ÎK”å¹ìà|~Oç¤lo”d„u-ãÎK^oæËºôá&ûhôf̓óêgε±®33ž,ùCú€¿‡~Þßbת³Ï–]ÊçG±÷bF?aU½87|psAòe»@Š­æoôñ-öPö u•¾Õ©õýF˜A.¬%í}­ûÝöqõ{çMë²—-„òçSýÊvÞzÀÅbG¯§rRíoMÆ+ÓõäFë7¡àlßçü0r½;¦Ö!ì¡Ø¿9mûèíÂGaï¿×?x_ÎÆŽfû3üÆ>ýãMOöë¿\8ê[៎vcçsh7ÉóˆC «Ü9è£ÁJ9²»¡Ï¡'ÙÞ­v¿8ÛUö}Îëàÿ§Þö½$åBNâ7°]€q’<ÚÏ€ýàÂì™fzÆùå ø•Ðtû4oÔ_û· _w»}™^ _,h_¸§”{RQà/µýžç5oø;9þaøKóú5ëcSå5vµ>ÚήßÙ'§¡ù€x=èõ„yþ&ÛÏœjGóÞœ(íÕøw[n3ÝØ´Â3`7įÂüsK‚7®âú`W#¹pœ)ì_’ÇzNzNÜÑŒÖkäÏ„îÇxÈç_‰—Æ~;á¬Êgÿ8â§…Ç~¾å'Ø9;úËûÚÛS/òˆÏ­½¯<çqÁ~“}§Ï3ŠŽ¥v’ª}ŒOjŸªúŸõ‰r5þ>W¬vù¼2ëý/;%x±ø5ì?|ŸþýtûOëÍmö£1_;$8ëõJýÑÞG£qö>]ë>ö„™0îàßš;ó9üßj< ì×Áå°n;µ^Àï€ÿrèsÖcÖúKåL;<ë»CÌ‹os£Ä'ÆIŒÕúáuW´û x"ìf i»2Ý;M%÷È­ð£È±æëê=É ¸øØñœÉërF<'p˜ì»f%Äu"N¬æ3ð z;—Ï߀_+庪/óž¿Ë|HÜ@Ÿ‹E>uíó¬zŸýãD°sþûvPÇ«Óï襔ƒ}o*¬[œceþœJíç=îØ_‘wÖgpÆ_RY2Ïr 9q½h~bü9GþÿãA½Øãß¡ß4OÙ/G=Å?àà?û£Ù÷k¾'N28aæ©YÖÖ1ìþ*\¶íÎ’üvÓøÅõ>þTûß©rÃs´¾ÑzÂzƒýš¸–ðíœ ×àò™ÇùqæÂºeyÆ~ò¼'ßqßã¡}ðÏ›a—Ö}ʱ?WüË>wLåN>/ïr™OTOÆþcÈüœãWfÝœÎþÏ­D«”ÀìwÑoÅ×è)Ø8€_Ê~=ôYìì'ØŸŸ,ù¨Ý½.ñǼÏòÃù7pÙÈ-z£Ï¡ðôCæöÌOâãˆÛö>Ÿú¯­gU©˜ƒ_{„í¬÷Ï{rÿ5XÇ;ʵÝ»Šê‰½Ê8uö!QßÕóÈ7ß_`ÿ§ù§!=˜TXŒ§S_«üÁø§æ{ûÙ‡Ñßì[Y_µNj—8÷óa¾±Þž­yØû:½Gª8ìeðQ}!ã'ýˆ=‹ö£_ÓÝ÷z†¾Ÿ³¯aŽÞ/{’ýy²s±¿0.&ì9çÆ|Ì8a½~üC]rÄw‰'b9Özɸ€W‚X·àÛcù®úcò}©üÎËF¿±ÞÐoì?Ù·A±¯b?Å>±€œc'V¢?OøÑL77õþbZúUðoI>öçØÀI¢:\9ÿ¹œqø½½{¿ÊwüôDÉ—ã`ëwâÅ€ûA¯ǾjýK¿j€vi^´žÊ¾&âezþùT¹Æ?‡çÂu¦[‹Wˆ÷Šo®–)Ùò'Å;%'WézÞ»VϧFqk–?-ý¡¦}à>=ƒžÛ!yã»ÏàûâÇÝåw–oßÞSìÕwk©=Ö÷wC5ïo—\’Jz^!¹äšmôþõÁþÒӮî®b—äíÚÓ£ïÐŽ=àR;e¦›ƒÚîD\epÙÄ)Ò8kþ$oqGÅÄQ•pn¼3ñÃFØ‹z;˜ô› ½Gj×ñ!öáŸmç"U%ö¡Õƒöß­ï‘*rýRz0q؆u=$J|yì‹ÔvDÖÁ1]c?±Ý†~Æï¤vÝz^ëN…¯ƒªŒS×ünú‚SÇþÁ8 ÇbOWýÐÐðÇó}Úá¼?Ú‡¡à'sJTÕÓçÚÑ/°éwÊÃÎD;Ñ;ðßc¯Œ=È~ö±¬÷쳤{_Ž>¡~¢\Ÿ÷çw]»žŒ?z8ìjÔþ ÿ´ßBïqÜôí±ÿ²o2~9Â_~wÞ}‡çSœr‚}úýÃþ—}—ã $û¥*åò$ý köCÞÿá—R9ìS½cÿyRò#> îý‡ŸUííöe9&oñ-|>±Öþ³]Êç|ÐKñ/£wé=ô<çcb¾ï-×)Ç£R¹ì?¼.H/g?Ÿ}¿-þfüÓ¬›Sø{л™w°Ï©ÜIÖôY}‡ü ®·ÞÇŽíõˆõ==síuÅzû=p=ÓyÚ´Ú·‰OìÿÆ®,}eþabÿ¯õ‰ýëVg³Ê§É~GÈ’鿤•ß±»û¯jŸ/ý\:û…þÍûÖ÷¥?{~ÃŒÇ>UzñÇÐ×íïgŸ‚ˆŸ¿#ó6õdü¦\³oÁžàóÀ’'㛵>!gœWFŸÄnÀþ€}Ã\h¿óûê}ÎK€÷Ä{–xËþ½WíLó'VçÌÙçÐ_àeÀùp^<‚ñµØ4niÞéWÇsÓ™fº©óõŒJÏÁ>ªù¿(ùt°‡„õUרçGpŒ¬Ï¥{Á¸Í§­ý‡R{Šï£— H9$½<–ä‹$Ý€æ‡zn0mŸÏÓ’×îˆÞã|î~Í3ê§QÙ›Ñ×ÇS½Õþ _ýÜǾBó÷G?üàaÔ|;¨q¤ä%:¦z h¾¢¾zsÅäý#/§ë•Úì÷Ð}çõëíÇ/ÿ©ÿÕŽ~Õ‡|}ôãµo„ú¨É_8¨ûÇõúo8ÕŠ­[ø'åòïñº§ì/_sžúˆúñ8ãúu€þRýˆ3¤v‘ßñÓ¹êbPíô9j•{,­G¦™nFê¼ øëðÍh~e¿~»¾ÏÕÝödÞ‹¼¯ÄàsvìK¼D·Û½ÕiqTãq4ø†ð¿kœëšõfDûÍçÎï¬õŠù´ÿò¶ïûSü\¦™^¾[ÐüŠë†æéÅ“§¬^—þ²¨}}SûpâØn!{ç+ke9à'õ\CóDS¿75¿7×önUZíËÀõ¬‰Ë©ò,ƒ÷ˆçùÀË‚ãÆî1‚ÿ0Ø]Ù'bww ŽcLãb?#v\½}×ñfÀ7á |ìDà†ÀmðžøÎxp à¨ûTêúkJïÑ~úÇõ÷"j|z ö&ü4àÒöÙØ»Õ?|Ÿ}48-òâ/!È´üÂà¤÷3ô/ùqÀ1codÿÏ9çi£ŸÀÑág¦ŸÔ?~û½Ê÷Ãù{ø{-ú™û“öóµû>xÉŒï<·ùXýE\:âóœ8™EñYS8+âµ07)Gó0”ûàj˜õ¦øû)xâ-¨|×/àZ8÷ÒÔúÀ¹•ê©zS.q‡8ÕP½ˆƒÀzÒûíeÏò¹4Õ›ý:¸MçƒRûÉg︦jO´ ÿŽÆ‘8©ø#zõ>qXjžéÕ÷é>çµ°‡õŠ?ûõ{Ÿø¨Wï?•øª½ÒËùþqýNœØCÚWõ󜮫ގ·ªvR?V}ô>Ï÷«ý|—÷×UíÁ/ÒG½éõO¾‡_¤OöÞCØ÷h¾w?“®{ÕÎóp^ {"ïã¯ë“œºÿQ­Où‘úË~.õ;íâ>þ-ü:ð#þ,µ÷þ›µýL™fz^óë˜Ï%ÕÚ^_°Ÿ8£öWø™9oCã´_³ÞÈ:ˆÞ¨ù <*q“w]ï;nhŠãñ9ÖKÖIâqbO!/‚ãj…ö`—a]—¼bß Þì¿Ð÷œ?—öb§Oíc´“z¡cÂ…~¡þ´Dó稾ë8{ÁBy>Ç…=‰þÂî”Ø{^ãzá÷¢]Úß:ž™êÃ>sŠà”Ácsœ½ï¼2Ü×w¼ïˆß·ÈçÌćØéÜ^öËÚïšßÔ~?‡>§ý„ãbT;¨ïao3/ò~Hê¡÷8·Fœ´zèw׃z‰__â”8™gTü ‚‡V;gÇ?Á.~R||çÕU~l®Ñ_ÕÏéy£‹î/îðÖê<õǤúàïu~È»ÒûØg°?ÇóZ>פþd~˜Ów±“WšóWÆ%Òßê'çcAŽDëê÷E•}œ£q‘ð‡êm>Ó¾žr8WeþžEû$7ÄÅ™×ïþóŠø’sWΣ#~? "·Ä%®ŽóØJŽmgb|°Gé9ò”ù|ý¨yßñ¡i¿úûý_§ù¾ÚGý°;àg"´ó«è9ûƒ4Ï ¯Ð&õe¡~Ô[üý û ó¤ìvÝ^ï3-©×mâ$¢§Ø¦uýÄqÅw¼Çùäý)æMCn/ðåézàuKrKÜLâ [Òsø±ˆÏ7Áwô}¯«úÝq(iëë+þ=çø•Ø5ðëð;v ìš—˜bþ:~·Â|B=J9ë6_lVZÅcNñö¿ :.¿æ-pþŽ<àWW¹èÙä/g>g¾‡ßÂÂ5íR;uÞÀõâ¼ú×´›ü¾Ä‰×3„ÝJýÈ÷ð+ÐÿØ—&Ö–7ë§ãôv}Ïz_:Odšé9Í>?*9b=!³ãó‹KDît_øÁJÞ%¿øKÁ?Ÿ} ë–åGõ±½¶Öþc¾©ä‚ý þWìºØ)±ßj>±V;×|×ö»l؈´X(ÇmýçN–ãÚ¼ýŒãX,•ûl_;/Œæiòb/‰•¯ÎÏŸÐï‹’=ßí~ÊtsÐ*ž™öÙ‹ì±÷®½®Rªø»îùájmG%Ïb‰—ìúyÞL3=3ßâк½ˆ,«<œÏÙûÙÊßýIí©Ÿ<ý@Íq÷íÑúÇsÆC«ýà¥|¦ìQÆEã·]{¾ŸÝíþÉ4ÓL/æü#{MŠK¿Ù禰3€Ûñ¹ ÍGøëxŸç¯<ƒìŽöÛÿç¢Àµ;¾ÇþtHõeßG~3çCg_ÈþOר³8§Ëøì(à‹4Ï’ÇçÖÁ™`oeÿL{ÕOØgÁÙ8Ξð8Ø[}Î ?$~y=ïs\üzàn°kQoçaÂÞ«kâWQoö×z܃óMSx'ìÌêOpÒàqÀ©9>·ðànœ—öá¿Äî¬ú[³¾ÿÁ9ö<Ÿo¸1-ßx·ÛKû~/ü¼ð_çÁ…`Ç„ñ÷¾>±[fºÎ¼‚}ûæXÀSa†?ˆG9Ž|À—È/ø-æ'߈(v`ä:&>ÄÎK½ˆ÷Oý1ä»*óvhÑ‘§çöúœ,ö#Õ—8LÃÌ+Ì£ØÏÁ`Ï–½Šs Ì#Cð­~wü&æ]c7è|ºÓ¼1¾ %Γó¬mó¼ >‚ù?²Ï'ë{g‰÷–©ú¡ã„‹ÑÏ,9òy(Í‹àäb:ž3•yMó7xãjÁ0oÞšø­+|™ê ~Aç@;ÚžÅqU?çÓÃo.;„qƒà»^2æw^]ñÝ‚ê?ü÷s[ïYጙ'XïÕsôï£åïÆ/˾‰_Éú‹ÞÿÁýÒ.t³ñ€Äwu^Çw¦ó´qç’{Æ ¼çÌáôüfÌWè/à\ðKƒgaþô9AÚ«vKÇb¼1¸&ê§ú;ïåN·¿ —ƒ¾èüÒ/ÐGçÅwèƒÈ¥óïB…—t>rÞ§_Ðǘ÷©ãεÚ> ÿó=Ëôoüózí òHþã}p úy‘=áÏA¯T¹ ’oð»èÉœcà5ü ¾;xaò}gþUyÝ–ÓN‹£—>ÉÏ‘àoæ¼ÕPj'ò91Î¥q^Šxvì×$ŸÇE9ÿ†¼sþŒ¸O>w%Ú§rˆKÈ÷FÄG}<¯r‹8‡uLüȹ2âðqÎnHß%.b¯Þß@|Â#z¾,÷}>Ïw(ôËðéz¹Ù¨í„ø‡ÉÇëùQó¸jÇ-@n™'X_ *×ùayÿšæ ãÁ™‡´þXO`þe_Í}—ë¯ùÄyðce^Q}Sœú[Œãó¼GýNê;j?zÍ"ë¬ÞO.~#^y`™ÏèêC¢r|n½}Œuý{ýù¾P^:^Õ8²/Ç.ô'ä‚öâïÂnÁyLçó`@ï_Ù.¨vp}1¶ÇzªÞo„}N»ú²ÆÓçGGé.Ÿçe×ñù\ÚM{UOëùêâ»ñ»÷!Ø Ðkác~Oå6ÓLÏiÝžÈ|Ô]òëýó¦žã|2ûAçÒ|áý*ïéÚñ¨Óç¥ó)û#äÝq™ÿ˜Ou¿É¼„ÜhÞ¦=õ“åwÌóÈk)W݇ËúóŠk\ä×ósýAcÿ2”ú9Ÿ‰øF}â¿ã²óqˆüìk°gõ‹ïˆ[Åùâ& ªüñYé}þ¾íƒzþ˜ü¯ØýŽêwì}ìÇ¿Éå×ú7ÀþLò¢sB¡_nö9(òµS{$×ìó|î‰v°/Sù#Ò7±rŸøOœ?¢ßF4~y³©©Ïkõ?ñ¾7Û¡%_äꟘo%g<’φ8u‡±»KO ßÁÞM<2ìÖØ«yŸ¼9äÉqœ2ÉåÏŽy€÷è>þòê ϶—ÃÿÌ”'¹oásp\«Ÿ˜O²=-Ó§ ·œg δ÷eÒ‡l÷¨µÿІ®ýœö-Äo°]ºêYèaò‡t»ý™fzNrÂ|«yÛ÷É“€þDüÖ)ð{àIÑ{À÷’÷Ìùê½èµ>×?Ö壢¢« •|ŽËˆþÞŽø £úþp^o¶­ò”ˆooìÑÆY‹ÀIrÞ™ßOC¿/J¹£ØÁ刎iÝo nÊqeç"/6vnÊÅ þ”|´cÚ¯9¿'|®kònqžÚøqÚö…¬wSA¿5~—rTþ¨úÍq3Ër»=îÚ¾ Ξ¸,Ø[lGÅ Ž{ ~ð]áwüÆuâ§Ñ5ñ9÷édÉàáòD<Ÿã_Êîë¼6úç"ø.ç°;ãOÇnNLöùnO¦™nFj¿óuh°ÿŒ}ЩRÞÈËáxrø58®»0ÏËÿäó;Ò§Êxž·Vq=ñ?ãb_%»9~+üˆøiëŸÏ±¦zj¦™¿ˆN|ôpÎw`%¯'ëyËF‚~>¢y»ÏPØwpŽlTü6¡u‹ýñްó;¸r~g½+ãõØvfp‚¥^ó|—‹=»3ß'?v^ôÁaµk$è_ÄÅþ‹»çˆÈÿ< >Q}ËsŠïóóØÕi/ç©/ú]¿ÊIíÍ>Uîãní6?m5ês_cΑ¯xfæ'ýŽ?Çç³8ïŠÿ!õg<íõÖùÑn÷_¦[ƒVç‘Ù¿j>$¬Îûyö >7ÎKû öÉìGLû_Ÿ–Á9èYù]fxNïq^Ôyô;¸sŸƒQ½˜_c^Kç[åûàœµ¿çüñ¿Ö>Êû¢òºÛãvÑùûÊHbg{~oûvô†à_æ1ùwÑG ‰Ýð6Ÿße^ÆOŒþ‚ÿ ÿ¯ÖÇâˆêçòñg‹†õœýw*ó%Ø1©?ë5þ»ãâŸsÁî‰> ¾ÄŽÄ{àeu®¤Š¿)J\=ì§è'Øi‡ÚÅí±Ý”swôÛ(ý¦þ ëøðÏÈ%úö.ë+*‡sר…±'¡wqî˜ñÁŽL<ô´Aée»Þæ8 œ#"ÿ.vgô1ô"ú½}–sÔðynG5Äû?€žI½mgd~a\è_ÚÞ«rX籯Ó/£ysAó | î9tü|ñ'óÈŒöä þ¿ó`Ge=Àn%¾ŸÇ%WÄKqäùDn¸V=ˆ§>Žù²Ùw8?4òˆ)¾rÞhæ­‡øA¯€çÄÂ:ǼM|ðæ\»_èÏO·ÿ¬ßަv½Ž8&>ŒýSボbo¤Ýಱׇ¸·ÆE€#bžgÞåšù“ý+ódÐÏÉ?~aý Æ ÜñX_Xo—§kæÿCzŽyžu€¼z¼ïür´ƒuAõb9¾Ãùâ8Ûo¦ß‰C̸1_’G}Xó¡çQø‡ç™·wüzšïÀ‰€§rýh7ë“Þçù~p+´Kï3Œy!½Ž"çˆ?¡þý¯ü…´Gõ&OáPxžrˆ'®_òH^Hò‚÷¯ö«>WK^Ž«á£ÚÅ:ÿá!ô•Çûô þSò1^£ï1îàv¬7éýu4õešéV¢Ö±¿`Ã;æYâ!/ÄÓA?tûRŽÎúý†äÒñï‘ýüêÅ9.ôÎË.ÊÏ9YÎ/ÊžÎ9Ç»Ð5ötöœÓÆ?G¾/ÇuÐ{ä)ó¾UûkÎc55¿8>­žã¼qèìë±ûk>§]MìüØÿÕ/ÆÏó}Ù8¿Œ¿“ó»Ø|ÞZåÒŸîÕŸ¼:øSo\õâ9Ωo¢!~!‰óZªþÄ £*QëAC|„ÿ£y²ünSß1.þP½À±-ÒŸŒ¿ÆÁý­çšŒ#¿ë{>·%;„ñnjí_T{OÜ®v«_á«EÕ‹üjŒã¢®ñÛpÞ€ó? üCå¸t{^ØèÔþ4ÇñÛ‘Økeg¬âÀJn}. ~Ò¸GÊñ°›iÜíŸ xÇ˧oN|0£ýri?¢ø9â;ì¯|.L¿;n|¿S®ê³À<Ã|¨öx~Uy´¯¯õžýžÈ­¾KüÎ!ïÎC©v€— >•Îz||žï ¿Wq€°Jž}nUýމüÂu›/3½8Ô~CìWœCáÜûÛÛ°S±_õ9öYØÄOØ£ŒÇ×~ÇûC•3);yÏÇ%÷ÃgÞ/¸ÞCéþ«Që•Ø“Ø/—þè·ø9Ç™e¿­ñÅ^ ~–}é$øTì¦Ì²ãàOß7,;%váã'âG7}–xÞ's=IíAÆÿ;{;ûqâÄ9îf©_Uýļ¯ï ù}(v2ì¨Ø§i§ù]ߣÿÁeÊÞæïŽ¤|j»­ó@‰ïË÷Ÿ_½‡@ß'Þñx°gù\ã¨ç'ža.å‡L·u|:ôâµ¢;/³ô0ôpçdÿ¿¡o¡ÇIOw\ ô~Oõ‚j¿%~ç/õÂoS|Êw°+cïu<ÕÓq"%'üî¼Iè“©>äá¶*¥Ê!®óqJ™~QûfCý™G_;¾Ê!n®óAÜ^ΛÎkÍ>›ña~bDûŸ“íe™n9Š\œõ¹… wÄG`>;…ÏÛ±_ß„ûέyÓÍñw(íYg°#6Ù‡×ÚU\ ì>š×±Óy¯y^q$œ¿f‘õƒuJóºíaÒï°Sb]Òý¦îËŽåv,aÇcR=àOâÝg’uö„ÖŸ¦ÖëÅÞRï]ľ%ûA³ÝOUܨ¥×¬‰ã9gyR~:Ç·ÁîÑÌzc¦Oƒ\ï“„ßxWê÷÷s$W»5Oï“\#9Ú#¾ä¹å¾°ÛíËô"ó㚉X׉ÅÉöÑ ­âö¾Ö|Š{5øKŸÿ@o`¿Ã÷Ù`×U}œo'µƒ»¬?ìSloÕûÞg±nàb_}™ýJl7ûöÔ »5ë ~*ùab;ê©ýÄõwÿ¤íòïìñ©UûñëéwÇ××:Êzɾg¡G¿~}]¦QnÄoæ÷“¥¼Ø/‰Þ¿²/GOþü/øc±ßÃñúćȭãeK¿*ýž7WçÃ$Öãáÿ·¥v‰œôëS¹à|+òŒþó8Ù«v;7þ%®õrIûµÑÙoàW‘Šß„÷œ {vi÷3^yEž—TßÁ/4ðfôO|JvYì#j_·ùr«QŸ?&‘ý›Ì÷ð!ü!ùr^ Æ_ï‘GÂñhµž1¿N»r<÷LùÎw‡ý;8ó¬Ê'ÿ›íi’/ðØŸÙ'ÃÇþn(ÇöFü®’öAÓòë ¿–?Í#ÄïµÜàǪò˜Ÿòþ}KÑ*¿ vfÍÏèMœïm>§ä—ù¸n±~€OÀߟê^oˆKMô°Yá lφª^t^µžŽøýMô#Ö9}§~²äcâkò<8‚ÅÔÞó[Y¯[ç\²ûAyƒª÷¨×Dê/dýXëL=Ì;ô7ë,礭–×Ýæ£Lצö›ÚŸYò›Ç߉¿t(埋V/ðÊÄ À¯;¢õÁçðCKÞx>à"}Þ{œu…u4´&ùµð‹…} çŒÀÇL®m ß¹ýJƒ*ŸõxP”ç†×¶dº1¨ãÎ3³ŸhhÞ¯èøòØt ¾µ!>Çh=;±Ö#DZÐú‡ÝcñdI±S°_IÜçöI¬£àã°ƒ³~ˆ/Áoª\Û£YÏXÐ¥.yBŸÅžßÔú»¸¶žVáIiëŸä|*ù}´Žw›2Íôi_œ;§äl)è ù‡–4×þúTÁ›:¯™æ‡EÉeãâ®7>Ió80ÎKqþnT8/ÖÇaÖó¬G^¾ã<ç¥9GÇùlppàôÀÇÔÚ.‡ótàî¥w¡G2Þ1îçœyo,ü޾.¼*|B>+ÇÏÑïÆ9‚ó[gŸ_—‘ø7Æ1¢oªŸÆÖ¶“gzySã7-O’â´sNs<õ¯û<°Ïµ‚¯…ßõþ1ñé¸î‚ËÕwÁÛú\®ž;®9æ¾êÇy^â"p^­/ì§8÷<$y§Jê‹«Uÿ¤zb¦ëðÑõsÆcæ3òNø®úyèuµö_±G|€ß|§æµkõ>y(®×ý«D÷k~T~OâS9Ï”ì ò'»=Ä­"®Ï 㾡yjBóšý¾à±g€7/!ý®}>øy±·pη©yqÿ¶Ê³½DvÎÑ-Êî²®‘}šæYâ/ãï ¯þÃ&¸<ì.ú¾óâçP{çÀ)ª~ä·oª<¾‡ŸÃyë°K©?šªïßÇÎC”½fQý`ûv(ñv.ü‚¶cƒQ9ØÏ\>~ìhþ§ ê=ÎMsn>×i¾Óïœ g¿î<‚ØñÉž¶ÑÏoÎCsþÿ8VƳ þCö~ŸÏ+¾òøÒêŸ%ú]|Åø/…ï.Q>Ïé»KúÎ É ÏŸÐwNà/ÃBÿ¹lˆ_ôEä‘~„E}>ùƒï†ûØ=w\õ¡?ž­òŸ¥ë%õû³±ÿªœg3P/øOýÈø'L௤ýØm±û"ŸŒ·øÍö~Ç®«~k2¿é~Sý2ü0ÞØ¹áñõ‚Ÿ8_?•süð¿ã40oyÇþ‹Ýx1Ì; ¾ _!?ðøn‘ßÅgóØãéoæG®“þXågú‰~T=—øõÃK? ——ÆO¶Ù©òê½Êñ“jØwÆÞ£ß‰Ëԧ爇Ìïýº&®ç˜{Dò¾Ê%¾Ña½O|Åšo{Tö7ì·úC}ÙGí¿°Ÿæ½cZoˆ£D\§cº缟ý<ßÑs‡±è>ß%n×1Ñ}\‹/÷_>º8šúù3Íôr¦–¿#©½nÝç÷j9,y•ðûì'5Χ&;«Ï€Óþû'qÑ8Ã<þ|²âÊ/=ü/3ªùnf¥”rÛ¨ò‰ÇÄ/Îsì´à*±`Çr^Bµƒø’õ”Ÿ\Ï™ìWÏ´ûÔy ‘+®9—NØç{°ï³>'ÌÏœ«Ñóä¡<ŸoÅo™y;%ò’ÊIΧ“i¦OAÞYñ»_™‹ë&ó~wþÝ×:‰þƺJÞ â¾‘_UëdU>þWÖgö;Ú×ȯåç ¯››‘ú<3û&âÛ²ïšûZö[œëŸ ø*ÎÇ'} }‘üŽÖ'Î¥àf=ßÏ{œï͇”¯çÁ_’/ |z¬ð •ª¼ðo¢Êçá÷œÇ#¬ƒ1ÝÔÚxÏL3ÝÌÔûqp;1žõd˜OÐ+Á5xWúû;ÊGž‰9“åèé7Ö}évë‚öáà¶ÀÓø\ó·ægâw°ÿwž?}OçĺÝþL3½0¹AÏ7¨ù \ výÒny“q_è1ØÙÀ9YÉùìPØëNž®@ÍqiÁO"¼}ÏzÜ·£÷«žØÿ{ö>äÜ vXöšß±£g×qCÐé7ì¿ÂMÑ_êô2ú—sbÄÓ"~ vp:œÿœ”öcçÄÞâsèùPívþw­;Ä7°ûöÄ9ùc/wjÿ5x›ƒâ·añùõë`ØG€O!Ÿùljä7næ`ªÇwÖ£äßn÷G¦)ÍGì÷Èwèü‘ºÆÿÊy;âÝs®‰üœd>£ÜIÍœßc^eþc¾¯N,ì®ä n?vUò=°?¶ŸXó ç±·’O‹}4y}?úÛŸÝãörN~<ÌÓôyØÇ².Œ²ÏÆ£kÎ%Nÿ´ûYõgÿLÿNÊ>༶ø‘B=È›5¦òb^OìKìãÁå—Šq ?哇t2Ø«ñCRâÌ‘_¼>ç+‰S?`O£žð!|3)¾%ÿy뉷Ž}‚|«´Óö4ú—vÃ×輯òï*3½<©óÒâ÷ùhÝ\›O<ú¼ä„ù¼êHª'eši¦ §äbÔüN¾¢¨ÖÉ­ó ao&/<ùqûDgÊù‚ÈkM~cô‰­CàØô¾7*|H?óÀ™õèL//j‡í è—ØwÅŽs!»ß\jﳇކ:_Qå ¿Ížù€ã܆üçÏ7„s¤èqÎ+ žÜvŽv{ßWLªÝØAÑ+y?—ì-ݯ˕zľ \—÷øÁÇȾÄ>ü#ûôsøÿ$v¬É_·úöºž¿ÙŸÊ~ ;—ð:è_Pç]b‚‘ýð¦ĵªÝïóùcËyÞ×dz ùÐùweÀ~}™u,â]ÿšy?àb°çØžÞòÁ7—ÏwÔ‹¼nìûç7§œoTêùÆù4kí?û°Ù®¤ù×öAüØ#ÙOc‡Syä—å)ú vÈõâ“A?;·ó^™fšé%˜?Ø/€kK÷'Åä;Ü:ñªÙÏwÜ’žÈ92âVR.ñÒF4g ÿqØ^ÿ„òV{ÞÂ2ŒXóçà†c9ü¾µqž^çÑ»ñpN ÿ3ë5ûGö‰sòãO*×ý[í?!>xKâK€«¯‹ÿ™øö/ÈnžŠý(ym‰;ãüKZ‡ÐoäOw{í÷_€¿…ÊEßñyÚ«z:ï‡ô¾?‡õÏyxN–ą̊=Þ÷ÐNpj?ûlpKÞ/¥ræ}û¾qÖuÕÛqçÁO§ûö ×™êiU\+ùÉŒoï¤òŸ úýåsÓy=¿$òë<ÑØ“ÐÛ¸Þ >ß«qžÐþ}:ðÇT˜8? ·ýü€~ˆtRû`øˆ}1ú%þfáøý]㡵ÿ`Ÿ€|§ç8«—y~v]ʯ®U>qEíÇE.Ô¾Òs׺åN¥ö:ÛY#öMœCœJë‘é:ýÊ:…Ýÿ ø)p ع˜ñ_3ßÚîT΃|¾~&¯88øDx¬ŠÐ3 ¬'âwü⬿#é>¨ÚOKn˜×Ù§ƒ‹ ç2Í4ÓÍO‹m’û«…ó¼AóÂ%]þæ•©}¥Ø«yãžß«yƒxÁÛµ^öhÙq‚™^~î‡#>쫵ÿŠa­ƒ}âSâÎ ½i@|Û/þÆ^àôÓ~•G¹ßS ¯mÌô";ú ¸@üŠägBCÿÁï7…_}¶ìì3ñ?²ÿ&vÎxŸNÜ!øÄ€›ÅŸ)ܤÛÁù¬ ü¦ìwSÿ½ý#Ø'fýñ6ãz‰Ûá}:ûjüüºoü?û Ú­ï“Ç…}xNìÚ'UíP¹Þ¯á¯aÂ8pž!Øý8¿€ŸÇçW5>Ž[#»û¿œ?*Ó-L+;$xsäh"±ƒy>p¾ð“§¨Uñ¦ñ‹bÁΙ÷y™žöKpÎ_ëúÔˆö Øy‡Ñ8/¡ßÁóáÆÿýûzv/ìµöŸp/²] ^»ô«¬›§3ÓI­¡_‘ïžuÞ~› Ÿ£‡¡¿áw#®:qÎðçaW-íÍ{Œ³äü ú•ÏÉP®Þÿ†ÏxKÎßà§;¾“ô%âµñ¿®…y\öDDZÔ{ÖŸð÷H®°ãRx9Úk¼œü—\cï£}ø©°[ŽqÞKߥ=ØÃ§ÓõÁú"þüIøñxNå„=mÜN¦™ndZùgkí¿êÜ›äl>PpÕÈ~ZûÉäϬã߯þüB³Ÿnÿu»ý™fzArCòчÔy<´.,¦8¿¿(9q§°‘ߦ¡çØï8_QºOÊ4ÓÍ@7¼ öDÖ‰Ýo;@iÿ¼ËùÑXŸ2OXï—|ô¬7䯪Ÿ<ý@Ž«¾I¨í­kûÝŠQðZð“øˆûìWÀ]ƒC˜Hp2¯©öåÄYÐþb¸Í.5çuO‡]›ý=y˜9·Iüö œ§ç€ûãB¨Ô»Ã„Êå<(qOø>8tìæø ¨‡qK²k i?Åy¨ðìªù<Ø—d{ZWøß¸-íû}2àuðà'ÑþÚå„ó–¾ïøÁo¾1‘â—ŠïNƒS¯ƒžÎ»ûgöÈrÎ笠´ §Þ'ØUˆªïVí,û±j¸4õ¯ãâï øNâFá'"ŽUćÚn ñ˜NqR™Â_©«ÊŸ©y›<}Ï’ý¬®~%]Cý[:ïv7Wÿë&ç¿tÐÄÚç 8ÿæx5òƒvÊ·¾?žç¿L/"ß[_¿•ñe«õÿñlÁ­G—<öä‰'N6z,yéÀ±ð<ûŽ:~Sé ÄËuÞðsª'x²:zmºóy âÒ`s;tŸ|áè}øc•GÛíÇÎF\ò˜+^ïÓ>sê‡wøábý›öªŸÑ§'Xëû¼ì ø§ðK±¯å|—ã «<öyóò‹M‡óSSWôvÇîM¯‰ëÎÑöö½ìcð§Ã/´Cíš x\ö-øß9—+¾òsÆ[r.Œý.û ñƒãP‡}6ùûêô|”ý™njùóü kì ù÷êì—Ã>œ8âsÚ×%ß ºçÃ~Ú¸EöášÇõ½j¾ ûjÏcÁ>°ÀüŸƒyûûtð•Á>ÀyäúÚzZ¦™fzóI}àÉóÁ‹¬ ·Ÿ}ÀúöOìpèWšwšØ%£»xÊ­µÿºÝ›ú|>z=þ ô]ü>g.S÷ÿ\þ5öÁÓà ¼hÃße¾öyùöçwUñÌÁeBñW²_r<,þ$Êž;.~î~Müôe·8 ò8ç‰á˜ä¦_t8ð™fzN|Ž‚üGØ—ÈcâõääéjE]ó4ñe_2ž‹|NPð“ì°ÏÔñWj[À_‰ßUÏ7Ùñ}Õ%ß§\ì=Ô§‘¬ó/ò¹ö‹Í÷¥û3öqø§ëÚO6N¥8 ìø9Y?ñÓ.äs™n*;õ«ÌßÐzj_­øû"v äùZHíÈq³,Çöã cpèq*Ïr“ú3ÍôâÊ…ø{:|ˆŽ}’ñ=Ò»œ¼sÀ;9:þ›לi¦kò£ãyjß_§ä¯*ž'85ìÌ£óà.¹¦ü‘âOÇ¿†o_•ð§ã÷;žö •Ë:À¾û4õÁÏ7Ÿò½í1œµPß›Z—Põí ú'rŠ8+ÓøsÕç;ÅO˜õ´®ò{ˆ“\~î(øxùÛ§ûe?? ñ>Îþ[óxŸø¼¿ôòŸõûÕ±3ûM:â-÷§w/¾ï‡}«_õà<ƒî÷‰ßÇÔ>ìCàËò:Û›î÷m8’ò±ã )îqªßÕƒk'ÓL·-À½a7ÓüÒÜ"wÈ¥æ!≇Íx:ÉñÙ8'Á9£ñ,W™n]Z r®§Öþóy™)É y‹ÁIÍ'ç•ÈgHyØÉÃúÜñ}äxHþ¨¡3ë™n ª<–ï6Ny8Äg•ÞƒÞØÏ¹SæÍçÊYŒÂwZÀ)‘ù~î×wÐ÷8ß9¼ö9ó7åð>~%á È'N›øVÄuºÿÌûë½£y_“éÖ¡äËñ5ç½w+øSÉûÈùZòˆ` Žvº±ZûOø„Œ8×qIÏ6Œ/Y”½»Kÿ€ì2¶k—º'µã\žÿxì;ëäÏ3®œx±Æ§;Ú\<âö}Ÿ¸b®~шÃ,õ_ WïúsÞÔñ}é?øQëçWáophàýçñ;\9çZ‰;çsÑàãUžãw`ç“ßÕçZµ.rž³!= ¼Æ«únZL3݈Ôy×ûjí¿âh¿äñh° ‚³Á~7Ä5ú¡ð cÁõÄΫj9†Þqàà $ïœ×ßàsî²·×åW%Δñíø°ÃSžžk‚ÃP»u­x=ÆEÚ¾Ž?˜zà'Ó|%¿m¶©úGÊ<çu‚óHà™gÀËb÷ÇO§zÎ â÷ð7Ó~ÊÇïŒß`!-¼½ãtç×÷Á±0OR/Î4Á·àW§^ºnÒêWÎÝ㇠Ôõ¼‹ê»(?>|Àw–ôýEÚž…~ß5ôû"ë§Ö§Ep8ð |?âŸ×w‰OB;èί×lP>ë ~TõË’Öwôú~äù&ã¨rUnãÌv‚L/êsmŽóʼ'Š\¢áïw<pÐâ3çuÔþ\ü~Öz€·&Ïy8'@|sê š¼ÄÎ7ˆ^~{mýÊqt°WÄ8:ôC¶ez&¾U¾Wë5Ä5CA?Ðsø‡äßìÕs}â·“8¢rÈO³KrEü”ãÁ_Ëw£¿•.ÿ罈“Hœ*ƇóöŽw'Jþ!Î1 ë»cúñ‰›7.û—â›8î}Gœ~ôýNœ»÷ôa>#ÿ,ûð"i|¾WÙÎIÜ=âÛáOàûœ_#ÿ8øøý„¸ûØI}žK|6ÎsôŸîO½?ÇX¨ùªð›Óä’þÃ2­þRûàüˆ´#ù X§hy?h§Ïý‰_ˆSJ|)ÚÍ¸Ž¨ÿxŽórÈ£ó£ê}옌#úí$Nq œï;^YîºòäsuØ'Õ¿Oùøa¹F_DF>ÔŽIÕÇxÄпœ·#.ÆT°›Œ„y”óŽSéú‰Þú´­¶÷‚dþP=‰³G\—÷yÝrK;ÃÍž'ÉgÄ9¾KÞ ìµÄ‰¡>à4}nþQyœô¹PøAßáyÖ1ŸE™×4^õä½WWó<õèÎþ¹Z/µßšö3ìÛ´Ÿ8¡ØÝ™Ÿ9§ä80²oLçýN¦—€½Ÿ—\ÕÚøí×wœ\æ æÍ ÄožÍ~”§u|¼¿÷ÑŽ=½Êq=Éƾt;¿Æ‹s»àÙ'S>øcåSWзÃú¸@p¿ƒâAÊWydz=3Ó­K­G:.~‰ÒàçØÇ: öZé£öƒK._Rò%}|ÝzàGpü4é!Ä{ÆŽ€ÂóÄ“Òyë•3)Ž ÓL3=Ÿy;vÍÄ+¯cçbþÐþœ Ï9ûöQøeµÿçƒ?ÓqeN–×ìÛ]û*•ǼãøAØeð»ªùí;Ú‹ÿ˜ùÇ~löøOé»Âó¥þÐíqË4ÓLŸ$×}²s¯ÔQ융öŸýQWË>ÍùDÇÂߥç{¤o ²/áwÍ7Çñß±ÑzW±÷.J^"ö#CìW¨h¿~ÇÎN|$ð÷à¤È‡@\pÚƒ¿î˜æ]Åù/ëyûï’çoò¾¨_ïÅó‡ÕÎcò¯p„öƒ×:TöŸßãœ×°Æ‰ó`ƒúû?ü„}ø'4´¿(çVðsªŸ8opTíU?ã9ø$Ïc;×å·Õ> Ÿ5þ\ÆSãÖñ>çhˆ?åþRÂÙïyNòTûÆ]ç–í·:(y¶@~T.]碈¯ÏsÇÖˉド_ûô}üáøÛ°‹þüj^ëœïT/¾‹¼ÃǼ…¼y7‰\Iì6»gÍyY#É!rJœ4æ;êΑû|8çÂNÆþ³!õW¿äz”~Ô÷Ft<xϳœ×ÉtkRãÆfÃ~œ?y£ˆÛ¿Èsømdw§ÛW)vð­ìcšì[d§X.ÈÄs|ÇqÙdï \ê•8¡Ø]Àõ.J>høÕ%후Ï,S\AÑÐï‹*ŸxQàRËø·nc¦çÈïÄ£ÁNG0ïƒÅ¿Œ;¸àFêï¨âÞþlè¼fÈ–i¦™ßn;ŽíÖà|4†¸ß 4üžñºöyÈì?|JãD<êqüyšoÀ™iŒßƒÿ7ØëÀ»›á9ã×°#j}ÆOÌ9v— Ü”¾LåŒ —>ЏCÊÇe=v@Ï b·¤|ð¾ú.8©>ÊÑü .Š<|êï¼Ömìà1ÈÇ ^Üí2þQåƒ#4õŸLžã±Óéø,8>ÀÈkÒ~—äx±žúý n߉—Æþ„}¿òû'v›ö7ÛÞƒ½ïƒñb¼ŸÁ Œþ!¿³ã0¾ì÷±GhÿNü3vð@Ç =O¿3/Á‡àšF±'Ðßé<•é:óŠqXÈ‹ô^ô{â¬r~Ê~qý|ÿ%Z7DñowÌñ'ñ‡Š‘Sü¯à°À/úÜ‹öÔüéœø{Ró ò‡?…úNó=Ýw\Lü¥ü.>,qr¯r\@ü¯” n•ó}Ì¿Š/hÜ›×ÑÒäþgÿb?ïß’î÷Ãúóׯü:ޝèó™ø­ÔÏœs3ÿÍBÖ_Ÿ¹òyyÆ äÂò¦þ§ìûò³WfËþxü¸Æ×ñ\á7öÇŒ;ò*y)ÏgÞì}7ë„Ïå£ÿ!—ªÏBÊÎSû'pÎ_';€ó_1ŸÈ/Ê>žös>v>ð³ãšŸÙn…¢ã>åêürç{A¾Ç8â)ôaõcö{fºi…?Ò<€œÎ¾Çø4é)²{ñüðaßãâ p3è”ç˜øŠx°ÑSôÞqí{Áç¸|ñçéû½Òó8×ëï< j~pc‡8ÿ¤òуŒcÔ÷ú%åûv~Ä~Ù‡ë½ýªÏýÞ=‹v§Þ¡G$O´ÿˆìÓ1ox!åY<ïq/ý·>íü4 ~ öôsì÷è±øeçD'0ã4ÞJý„_ ä4ŽOy&…ïz­qR”×§q#†óZ€ç_…ßGõÄÏŽü$çù.üˆÿ‡x CââŒÐ•nÜ~5ðpc*\ªñœøuTÞ°~'À(r¥q— >ÿ8TÇ“þüBàÐxßx0Í#ê_üQÚ? §ª/ߥ¿ÑŸ©?þ/ü}öß%v‚»·ÿ#ño8o:¶6®/ÓL3}ÖòZo•B‰Oç¼rµöŸãÔYï7";ŸqUøgù~ ö×’÷ŽüWøë°b‡ÇÏ€ßOz5ûhâIâg³^®z¸Þª'û|Û'õÜ‚ôrüÌŽ+I;‚_ø¥ÖÇñÀ£¡]ÒóÉ/;'%~ì«ä½Äψ¿~Sûñðé½iÆ þXüŠà3õ]ò©ãÏ$4ûâ¤8ï.íäûZ_üŒ1O›ÏËêyâç|^Wú ¿–óÃ3žøà µƒøÜôã-b—ÖóÄ1ÏëÍE™g/ç_f #GØå4^ÄŸD>êÁon¦Æ“øÂ>7 Ÿ³fQùð)rË9JÎ;RoÇ'V9àˆíÇ”|xÿ¾Ÿâÿ¬9aÞsÜbäúâ'•Ü'¡÷˜}~”yFå·¡þ¡ßëš§ïÖ<@ÞQâëúùò{îÇ1NïgšéSš/Ž¥~ïã9¿Â~î@ØÏûÙþòw_‡sBÞ ûÓuò;Uçf‚èÜMçó’Cö©‡Êõ9¼—ý8缎`Õü·„SרYmÇľË<©u}Ž8íàOæß?œ¸ð² WóŸÊqüxÍßÄÅÄÛï“'~M½]ñõ"öWÊÕûÔOvÝnO¦™vu~X½ÖçwÖÖK¬ï4د¢¢GJîÈ3À|ãùGzÔˆxÓÎßôIüRò‡ùüýWy~Îô<äƒýð0üËþ8ñOßVÅ þpâÙ;ÿ+þÊÔoë8.Är }ï â×óÄâ{Ä!n¿§õ…8¥øéÇôþXü¿È#×´‹y\ûyË3ý¤8Õü¢ß±È^PåOWýg„õ?®ê=öõcjñ‡¨?çÛèoü²ÔŸóvòw›¿6;o^]ãW9•Ø]ìHí¹•ÉçVÒó'ø/üùðŸÍi<?ÏÉò¾ýAèwèYøAð{ÔÂóz{þ1â¸;¨êMüg×Cï;¯äˆ|ì‹°/»¾å÷ª~Ó~‹óq¶¯ÈÎ]ŸúbŸg?”ä¢üœs²æTÚ_œK¢¥ÿiÇËdzyRÇ·t^YùCÀM.âoŸ.Á‡AN,¥Çy8ƒ›|’òu»¿7:­Îñ‚(çÏ{Â3T놞wþ“ŸŒo¸Íy8?À9vòB‘''æ÷0.ÿ¼ø‡ßÙŸ;OþJ­'ø#‰ÓÀþšsÙ¶O?}=µ3;o xüöÄ¥žø7©çœênŒï›V?Ìy×@|ü®ä!¾ûMåb§£~¦àèOüÈ!íÖ:IÜη —Ñm¾Ü,Ôü2…#œã)k|ñ‹€D~ЋЯÉó„¿ÛxDô)ð‡Á®„žƒßßqRô;y°ÏŸ¼ñ<(—8ä·‚¯§ôÜLòÞ]®úØ4ö-=OÿŒ9•%õU{°£‘ß {"ç’F%—e>¯‡œß‹ýò‡Ý ÜöÙ×<ž“é:SÝ×wËq}~5þéú“éæ 1o«ïÏÆõ|ÜÉ6ŸTñ¤4¯Âì“Ø—xÁûºf]™«•å‘wÏy¬³ÿ<ÓL7õ9p;Ž¥yuÝvÖ'ìäíçÞfÿçI¤Ÿù;è#yÝ9§qÁO2úq!úÍ4?£Ÿø¼vÑZû¯²¯Šc?füõ¾âzu»ý™fšé“惚wk^>*9ß%y¾Aóï^ÉóµòCíœ}¿ÊÙ§ù¸Wû«ëE÷&þÖ·×j?sTï]Ykÿ­[OÕoÝ߯W9UïZwÈA\#ø­TŸ#çÉùOÚÑæÅ^~ÏxèKʧÄ)%~ ñ?ñ_2Îø9J^ðÅÇ´¿Æ¯xLïÃ÷œåœë‘|^䢌§óã×R¿Û®‰ýD¿cÿ)ýk*Ÿ4ö@öΕ`wÄþþ{+¸,Ÿßýœ籜ß{§~g¿;ŸŽvHuþtì§âCì‘Ä…püMì]ô öcðÍ*üߨÓ|¾;0õÁ¤÷ø.ûlð6اÙÇcŸÆ¿çs\Ø¡±cÑÏzüiŽ+ˆ=ïáÿT=ˆ+Mühòbc?y–‰[Š_…öa?œ ý?{1øm×SöIÇů‰½_íã|þú>mhã\ ~Çç ]ø?ñ3•þk¿¬íÛj×:yÜ2ÍôŒó,ñLjÏ="¹"o0veân€ß7 î{ûÀo“x½È)ë¶íëê=Ÿ×Ív÷KÊ>ï‹„~'ý¿£ãŸl—ßo¼ú‘ã2KOâš8æèŸè'èßŽÓ >'n:qà9 nÅúÎ%6^\‚ó[£Ÿª> ç¦ß8®€ñrè¯Zßhço,ozžs„:×W•«úù¼åP¿ ÿœ'"í˜ËvL·.õºHÞâa‘/ÄxhÍ<ׯùaXóÉ1ÍWØÏ1ßh¦™nFêøˆÄ5Ü+zPëiÖ‘=ZO‰G½_öìÖ»D‰O½¿”¿n·/ÓL3Í4ÓL3Ít³Ò¢_zvoŸ+•Ý‚sœä±w~wö3z\q¦o»ÛíË4Ó§$;NÓÚ3Š}w!;À!íç‰Û†üÒó»%GµÙ-{ÀÙÙ¯U9àvçø™n]Z\Wkÿ W·°üè§ÛÅ.ÙßÈn°WvoáÕŠ½wHv5ì=ú}ÿ­ùÜZ¦— 5n“|œ@_¿Nþ­3Gù]ëØ@Š7È4ÓL3Í4ÓL3Í4ÓL3Í4ÓL3Í4ÓL3Íôò¦Î—|HxNç‘Æ/#ª¼RE¯ìÎÄÍ–¿¦è•¿´÷Ìñ2Í4ÓL3½h^o2Ý:´Ø—ž_.¶•ò°üéG³üaÉA­ü[þ¤äã¨päï8–žK[þTùbÑW¾WOãdšéV¤Æ1G£uå¨îqÖÚEŸö9à×k½9”æÍÊ4Ó­H+Z­ýç|vœ ù‰[7¢xÇY8'ãÑeºõ©å< Ä&ï#q¥Ç$Gäc$rÃ9ž,7™^ÔqkŸ)}Ëqykí¿âz«!Îéu’¯º¥âHŸ÷ÚlÈtëSÅy¾ÍçÑz‰¯!º›óm’¯}Òë¸Þ-y9 çd»@¦[—9Ÿ¦õ…x6‡‰Ã.?èa_#7ñHÙ÷—½OòÓ—ã@eºui1NþòÙ‘Ïý qÒ´®7ϤÞ#oñÎÇs¼ÛL·>%ïÈòÇ$×HNØ·ìA/“\í–½šüÄدõf_¶Cgºõi1(ý œÚ°(ñ7Á«è#îä ?Ï€äJöìn·+ÓL/мô×ÚEù¬È_ þïÓïà5e_v\[Þ;ž?žõ´L·.uœ4â?“ÿqDòC¼häk„¼"ì‡ô{ù½ðŸ–ö„n·/ÓL/ŠÜ“vŒü…èaøk´¿9 \'rE¾;ä;öQ]ÍyW3ÝúÔr@ÜÁ¾ZûÏçqÈ nàçtd8(¼ÍQ]ÍñÓ2ݺÔögÎ Ë>6¡õ†üUè_àlÀ¯ÖÚ–'ìÃåýn·/ÓL/ŠÜwSùŸ‹ƒœ§‘œôJ~ˆƒK¼Nòkƒ+wÓ£|ÆûrÜÁL·.-Žk} Þæ~É y¡ŽHöëüZyqJùY~ }û+½-ÛÓ2½ ¨ó JŽÆ$ØÛÈG0 ~ ä+< þFëRŽ«ži¦™fz9Sï_JÿÂŽFþÁÃá\ç­œçÄs|qld¶5Ÿ#È4ÓL3Í4ÓL3Í4ÓL/--†å§á|Í ìÑ#Üo¦ýϘö9<‡è v¹|n-Ó­KÅ÷7ãµö_1"œÍqu="ù˜ÒþŸómS’ηp$ÇåÈtëSç<ƺ#ÿM¿ä†8ÑÃ’Ç} ç©J~g|Z¦[ŸCÄ ¨µÿ*½MëG¿äbLò3$¹‘Ü€Ÿæ¼[ƧezPó=熄 þÆqálbÜÁaý~”s9µöøƒn·+ÓL/ªÜ€ï$ÿ:ùÕÁ¥ñ;òrŒ¼Zwð£‚g;žå&Ó­K7ø›ØÅˆŸŽ~F¼´âsr.”øO©~έÛíË4Ó‹"7=Úç÷„x=Z7öIn®‘Ýø{jí?__'yÛ£röf¹ÉtëSçµ™”]yºÖþ+ÆDÁEOj]™Ô¹é‰ö:õ6ÛÕ&µOš(qmÝnW¦™^T¹qü&ô-­;œ/ ÎÓˆ(ö6ž#Nú^Εée@Ǧ¯Öþ“󦢜´äiHÏ@\œ Ó-Híßìc}a ëò¡ßiúÃùÐ>ìiÒó|¾ ÛÓ2ÝúÔëË€ÖQQü›²+;NÇ0q<°ÃÕÚòû¼†8žÝnW¦™^yáÜþÎcµöŸ÷9àkž!?Î@ˆsK~6âFs¿?ÇOËtëPãÇ7ÃrÓWkÿYsüZòÛ‡PûÝ_!û^ém‡µÎr“éÖ§:'}³ã=!Oä ïšÖÇíÄžp;ïç¼Q™nê8Oå>~°è߸hÇ¥§±þìîæø§ÛÎ+…ý¿)ñ=åøi™n~Z[Û.,¼ÿ­Ž«AÞµ~Ý?*ùÙ§8¶ØÑ8¯& > 9êOãDešéV¤Ö¿Ð×ð˰Ï?$¹·F>òæ(_®ËÈö´L·>-F9—Vkÿ£ñïcZ&µ¯™ Žt‰³ñsãœÍ8›L·>µÿ†ókÄåd}髵ÿŠaü3áœñ<‡ðûäø™fši¦™VÔy8XoF„sƾf¼€Ö—p8Úÿ`w÷™žËévû6:-êÒebâbá9e?.>Úîx?׸½Ô‹ç5<·P>WÔ5.õ×—ëÿ‚Ƴ!}`VãSW9‹úî¼Æ«!½›ßë·¨¼Þò÷9î¿©|¯.þhœ,ùgAõš•ž2¥rëÒ_楇ÌIoHoi¨œú©Ò¾TÒ›×ï/}¯®rhosâŒû‚bîž’©ÿ¼Ú;¯~˜Q}ê‡yõqg¦Ô¿ ÷¬é_q,¼¤¬×<ý$º 9™cÜÔ¯áÜ@QNÆCgzöyÃr#>ªK¾d§mÔÚÈS%¿â¿z)/ESü>—Ú£ôzC?jþ^¸½ÔêšÇ4?—ëÔk‹:óó°ø¥~c9N3²ëÔ…÷hè¹Ù—'ó{1²äSÆùxVë å΋ôüÂÙïi¦Ou>“^3'ù›Ñü0#½‘õbù¬µÿ*ªyùœg¾Öü='ýÉó·Þ›Ö-ÓE‹yñ ëÃû|ñÛ ûzÍÌÓÞg‹?' Ìßú}Nr2#ýpAü½ y¢\éùU½Xoôû,ëï…ýÐŒäÔó¾Ö·yñ/ûuäz^òÇzc¹×º0)J»¼ÿûyôZä‹u«Þ‹ 0W^ »“yÑõ˜_{¾ÈtsRÖÃj^Öø7Åo‹š/á7ä­!ýÃûqí¯ÅÏK’ ÊÁ°¨}›×¡¥ö0öUØ—.©œë£êG½ìѱ/”óEÅçkŸ¿,ß´¦½¸h²ïc=”½£ÉwTÿ†ô¸ùt_ȾµÛã½Ñ©í¾¬Û‹Ò N / × ©ÿÑó Mì âìKè²Ó ×XOè=cü¡JïÐw蟚áSì·sð+í£=’ÉÕ øUòF}¥'ZÏEÏÒümûTSò´„=DzØ úïêwëµêGêUßXüZ,bODÞ±¡7ŠÖ¹>κM?éš~óº¨rè·ð•žã>ö$ÆÇ ãËþ”}|Å|Ž­úà 쮪×óz óûmñÝ‚ø }©¡ûMô1øý4ûXøIíe_¾ v¹ß©ú”ÞŸV?3ï²oGÏYT;—$· ø¿Ž(rA{mO`} ëãÕÄßÒ[Ž;|ÖD?Ä¿„ÞIÿp»vlõ“÷§|Ÿ}!~$Æ…úó]ô6ña3ú³XG×öeæËÍsR=}yc¾†oñ2>PéØ)Ê>}i¹ÁN„„]¾_ã¯ó¼…üïNç¯ñÓ¤ød^ß—~6Ï|ùªt^YH×;¯Ö«^òdù~絆äx»„¨ìú&óý«öM¯§,fÙ§½$­O3ÕÓlgcÞ£ô+úçã¢q›fÕsšo»Í—™^\j{,ë“ãð±NI/œw€¼¡—,ù©öø¡Ø§ãÇÂnQÇßöQó¬ÛâKüàXÿì‡Ò÷g)ïJ¾§´.̰¯¡>ÁjœëóÊB°°Þ»H¦ëðÝ:ó vhëÞ«±[¢Çð»öÝÝn×f¥¶Ó74 ÷±Î.J>—4°Ïb]ÁžQOõ-ïOXŸ×¶7³nw»2½4Ôz?öë™öåó½ŸomF{ëôAö ¬G ôPö§é>Þö<ìÖögé}Û5Ð+áw][_>ôÛ`ÇÆÎ°ˆ~¬}ªõ7öUÈŸÖEäLëœÞwýÙ_.\Z|š÷sŒ ûKÇ”êË:Š¿‚u˜ñâz0~ôPõ7þdú5–Ãþµôgße}`Nú¸ñ+¬çš§À_Á73ì'ñ{c¯`?ýDõBOð‹àGç=ü&.þP?¢ÿ ?”zL£Â]É.Æz?à™D¢ŸÀõ;Ëzó;ûŸ——üh½ŠrØ7QOÉ‹ý÷ì×ù>Ïéwï#‚5  ùÓ8M«Œ¿í‚·¤ýf{ŠÆÙv?äÿv>ý>£y|m=¯7[j^¾K~îWyÞohŸÏza{ó4ö¶`§_·¨yÅ~ôÐPö öÿöߤòQÍÛ’ç%ÍC <ß³OÇÂ>Œz†õbŽy½¸¬WÕ?ØÕ?¬»ìg/ì—ÈYSò„ÝÅý´öþ)Ó§ÈÇØÕmßT¿72~ÖW؉–XÀ¡ÀOâ»&|§ò±×ñë%âü1^§ÑkÂóèAè3KØ©°óë9ÊÃ?žÜ4ö(Þ[Ò|Ï<¿„\áÁN,9`þÇþ=¿Ž=ÍçÖ^ü>vü¹ Ø›Ñë¨7ý‚@òk»áÚvÀLC¿£·Ù/Ÿ¡¨íwÂ_£q± óú þ Æ¿‚¾3'½Žs,ué%öÛ ?Á÷èOzß~MüQ‰¾ûj×ù¬óžäÔþöÍðûì¶èiôCº¯¶¿ ½’ùÁøqø›y€~¢X'¸ü‹¯Ñ›éþ£Ò—YÑwi—¾‡~ÞH÷«uRïËØm¾ÜèÔöQô”¦Æa yѺ€ÝŒkø„y Ü$|× vNä²)þÆßX׺bü£øzXü1Ÿ2?/£òÀ‘Á ]{ÞGÿ¯¯ub1Ì»àX7šb¿¨äýúXY?§}îÙ篰¿G¿›O×™¼«q›ÔyW”~¥×Vã yF¿~5ùq»Í—™nмuð—Ïu²ÇŽ0ðµñœ7ßv|Ç8ü=âó™d÷jë{ò‡ê÷wWû:­'á|¦ç§ùpýy–ù\…ìŽÔCöŠnÇF§öË{^Vÿ-¡?àOÃÞò¾'ë7y¾c_`ý »®žÇNgÿµÆþóùhì½Ø°¦ó õ*ïK‚¿‚|b”þ†Ñúv@ì è—ø+_žÊ“Ï7cÀÏ¥þ°_ùR¿ØŽHù´ý œÏí©Ýp¿'öYÆ =ûiZÏŽqg†}³‘ʇÚs³öQnóååFÍ—3šgÅדâï4Nf{2ò Ÿ½hZ|‚ÿÝçTÃþ| ñÂæ4¯2Ï΀sAÿƒ¯‘É­ã$œÔïìÏ5`çrýÑ{>Î!„}ö~ÖÙ¥òîxªÿ„ÊDÞGÕK~ê}õky^â}¶‹c—œQ{ëá=ð“såïÝæ£L7&­p)'OߨÙn1«u  ú‹q+ð¥äÓ~ÖUì½å}ÎûøüÞ6):J>ðCj¾˜û¦ù°þÎè½ò|Ї¯í˜ zç„®‘§™sÛeº9¨qg>ׯº õýƒyy\zϽéšrà#ðœw¶ŸXò¿cwÄês>a½‡É:8«u׸oÖ+Ö§”o]ëÙ„öSØ1Ëò*ù þaôGŸÏÆÿ£þ™FOU?§½`>Å·fº?Zï.ÇÍ»Ì<û‡tŸã÷ÁqøüUº?ðsSüõÍËœs¨ŸLø'Ó.ñö ökÖ«™·Øjà,ö â¨ðëù®W_°ÞáO`ÈzN…ùa~Ò<8NDå`¿ üíý®ê͹à4^Ø«;ãA 7 wèûŸpneN×Ère{s¢_Ýæó03©d«Ð ÷¨y“¸‡ÌóØ]fèwömÌ[ØÏ՟胣š7™¿Ð'Gñ³3JÿÖs“Á®1†ýIï›zRþ¨ô\æ7öèñ#¬š?™÷Ð÷á‹ Öƒ°NŠN±~ŠÇ“uíµ^o§¾”s«èáì{§d?§¿YÔð—œ/Á_1¡úŽCµÿæ>ã6­}0ëñ\yçYÿOëÿê/ä’¸K^Od'˜”¼0ïOð<ò¦þ×ïè-jŸùDåsuJã1ý~S{FYGÑ#°BƒÞ>0~úŒÿ ýFýMýøÞljÈô"ÍKøk¬†} ü1ŸBuýHú2zñTð› È?veûëÄW“š­çŠb×b_ìøœ|>d=ÒŸ+>÷~S|˹°Žýûð’Gû‘+øŒz ç~ÅOèyûäÕ|ŠþÃüƒˆy=”ý5¿?šîË¿]|å}ýÀ¼¥z<™qÊž_h§ätþöÔãø ¬ŸúúÖ¬ôtÎ3„xMUüÚÇzÊ<Ž\”ýà÷Ð39ß#=±Û|¹Ñ©ÖÑ»*»ÑsÒõßq[ÁåÂOŒ3üÆxß’®ß¬ÈŸÏ…±nÁOð¯ø‰}ó®çcñ“ß{}*ÇÖÐû‘»T¯qûà/ø“õz ¡W"'è)>gÈú‰¼ª_¦‚Þj?ÿDê‡a=ŽçØ&ƒˆx!~µ}»)þæ…[R€íi©\eºžÜ`¿`½ÿ¢g¢§ú<&ã¡~¶Ý= ùþ„u6r·ñ%©ÜÚO‰ŠÃþBÉŸq'ÚO ÏZn´OAo‰ñ[ŒÓÑw|N€õ>g= ö7ç')Û]ÍÿÏIí"èçîGæõ›qÌ;è›èÝÒÒyª’cŒ+0/ÜçæfS¿i5?ò{–›s’ïÏ4NÌ{Anªç±¿0¿±ŽÀwòcZO×:Áþ9@OÁŽŸØ¾Ëw‚}Àûqö!â눛~uñeÅOÒÓÒóäï6~Íñh©󸮧ƒÜÇ|"¬/Þg¡wª\û§$WøØÚž¦zaçó~2Œ‹ã ¯~8]O˜Ù£gŽbGf?¿5íê[zü±3OÂWص±3IoD_CÉo9†¾¦u‹õ޼°ø“Yí§P9ØÉ‘ðöì³ðGb_ñúÀºx²¼¿{Ÿ¢}–ñ§zoœyûºÞÉýu*]o2½¼i¥§ ÇÇåu%_è%<¯yÜ~-ÖQìÛ²³¢ÿqžóÆiàøèÑŽÅ^ô7Ç©IírÕz‡¾…÷y©Þ¥õ»Z/5?4B?€—ˆçpl—Q»È‡ÞÊ9@ì¥è§²/v›2ÝØÔòãx>ÚßÛî¡õÁûì…Ø ´,°ŽIžˆóËzè÷s¾Çº¦ý÷‰’oòâOpþ®T«ä}»]·U~#ôÂZûÏvóqÉ8ŸY];®úeØç’îiÎ×å¸η¨úúü=ø$ìBØðk1nø¸Žþüôk˜'ñ¿9þ/û`ìP샱—é;ŽïÏ_}~+Û¿n½æïzZå¾£üG#Ó§‹Ÿjí?øªºž©u€ó£Ž³Ñæó·u”·ø'œ¯­ÆSó-óy(÷¾Ûý’鿤Æbw“ɸQì€ØáXÇÑëįàÀ;§¦õmjm}+ÓÍAÅOÊW©uòviì<É~òæ*ßYÀ…ø|#ךװËÂàà3ü-²«¹žÎw¦z?¸xìOøó°ga§Wƒ>ÏùHp»Ø•± c÷Ç….´«£_ÁźÑ_íɪýŒrm¿V°#o°Ž{·ã|` þ¯€ïÆ.xVþP?jüúTî°Æ£Oã= ß´ŸÇ|\÷Á9ª~GÔÞ~õã úñ¸úiHü°_åôéz€çtPõàûýúþqÕ{DÏÑû#gÚÓ¯úôëùË€øï¨ö“ì/‡Õ~Î÷XŽôvÖIÍŸƒºQ»àßA}Çå©>£jý Î?þ‹aÝQÿM¨]#ØqÕÞAÕü9ùqÇt=ªqU}Æ?µ‹÷}nTõQ!Ãjÿ¨®Ù¿I¿âý!Qøa ;¹úeXý4HýÔCúñU;GÔãª78xìîÌãºÏ8€ßÇ®Ïø²2.yý;7}„ùRûD¨ãkw~¨Z2ÿ8ŽÔñ]4.Ät\C•ã}«ü¤Ø›sÞ¢L»!äCßÂþüáiž˜Û¬o×ÅÇØßw…ìàM°oÿ¤r¥o¸^ÆCcE)å«ÛývÎý‹=ظ죢œgç >vçÀ5zvnðIømÙ¡G@êß²ÝÐóa˜ç²}'ÓsàsŸ«‰û$ìÖì£?¦~–×Tr¯ù"îSX_'J=È÷Ù?øœEºžVçü˜oðçÔÚÞwú<þìáÔ¿í õ3 ?QjŸ­ðÜÙžöÔøMëÐþ7ÇX²/ø‰ê¼‹ÆXϳŸ`Êþýûû’olO­p)ì t=Æ\/ûìUà­FÐ×±ƒ­½_^·ýƨãÂÙŒ²¯`ÿƒ½ äK¿Ï{Ãa_4ÊþGýÇ~Ž}ÚÄÚþú¡ãþþËD/¨úÓöŒÐŒßX°§x„L·&­ü¿ÈI›î2.ûà\­ýg~&>"ﳯǾa¼2åI.yÏùÙ¿•÷«z±×><æ1*ßÔ÷^íyÇçU>ç'z0¿Ð>ü;²:þ#ßGO£Ýš¿°øüSù½nk¦™fšé¹RçO"¾ZŒSt~é*-ö>ù™È[®ËçN4O“ß\ 8ç³Õ¼Ï¹üéäc y@ºÝ¿™fzArÙ”üÛjJÏ0žI|o;9r€½ \ö=ðoú]ù/*œ¡ôã½GÞ6pk‹Ú3$]3ÅÁdši¦ ÿ>Ç žSrˆ½l.ìÛ!àÀ‰.2/àÀy„ôù±Ç‘ÿm!µÃuÖ{9vBÍ œGõùXìßš¯ˆcâýÕùÙi2Ít3ÒbñÖsZ'Á‡úºÌߨy.ùµÇŒþî8GÌ×éy\Çs‰çƒçÊkûé/¼Oð“sžÑ~ú“åµóg`ßÓsœ‹ÃŸ<v8ìtÄg·þÎ<®u ?ï"v¸ÐNü(·«vÐNpè¬3øWw“ýxÕ}‘òú{>ïÆþ‰sbjyÖXÏêÙn±¨ýoãÂ;þ©ô ÇÛh÷âbø}ð`ø½Á€§ó¹p zžøÂ#TqÕÅ'öâï' N¢øÜõĉܛ^HåyRóÁTíàó /z²œ¼Ïù°Áƒwž^7@¼)ÎÕgJþÕ)Ù÷7ü9xÕo<ëi‘Vó<þipQ؉õ»ü*~ù–óÆåüøZã)dž°SáG×w5ïúœ4ó8ó7ûÉK3¬ø…Xðż'͵ý]–_ÝÇ>ìèŽÍ9ìºO»}>+ã¡3ÝøÔöEâx‚óa?çøÒìOž~ñIöFÉ1vCâc1¯€ t\$ýî|Âø¥ô~8·Y©Ï[:Î=öOí'\ó[“yåžtþ vߎï,¤v᫞W,껋Œ‹úœF“ñaþÌç 3Ít£Qür¯ý8ûEç¿Å/~Ã~•}ìòÇÈßB|üAàAæn<ã¾9Ós¿AÍ·Ø×GE‰_C<$â±GfDãP9œ쯵ÿÿdXúèþÎUj= É ç©Tñu8×ÇsC”£ß¹¿7†<ŸºæÜ¥ßã>í×>ƒö â?sîSzçyÎqT!Õ»_åõëùÎIª‰ „_‚þëW¹Ãô·ìGî7ÙËÆD‰'3€?E×´›8BÃ\ë¹ÕÉ€úg‚ru=ÆŸ¸ZC”'ÊyZâöÐÿޝògGåÿ2õ'q{FèÕƒñçœmy¾÷²ÏGP,ªŸ›%?uüîx±šoÑ¿žuJ¸ùÒîç—ÖÞ7‹øn¹¤úqå‡Ií¨U<\ðXêüæ1~%ø0ðg‹âWáʪõ.õo?¸$¼û“Eùa8ÔL÷÷Õû·Ø¤±?k|4~·ÞÜ öågi]<‹^.¼%z}·ù4Ó £>§/ûùKý»ó•bïßœ}´ýázÎûCðzž¼Äåàù ùÕ>³£¾äû >ØÓˆ[†_„ø6ØÇœ¯MëÀä™ý&Õ÷¤/‚;à|ôôÚ~ç…t¾nµ; ¸ÿñTysžöqæü7ùˆ³€³Ž]¢ÊOæÇO…8£AߟEý ¿çÊYÏÇ‚ß*惢ÿÆ×ž»M\ñ1ª~Âß.>Q “Ÿ†¸0“ëÌûcjÿèùµ?Æ©E:ë{à‡ÀÏŒb'Ïì4“göú9ìhSÂñ0Wtrís/—ÚŽfœqˆ×~!æÓvÞ^õq‰Ÿ¯8–ÝæÓL5¾œëšb‰G£ñÄÿ|b|ÍTð«G ñK§ÏMî¶ ­ôJÙÅŸ¥þ8!ý–ó4'ôû ù¿|Nû.ú0vué¡ä?hj|Ÿ»t­ýWœ:/4¸ÕRódù<ø0pZØ•—¸¯ùÏû­çÖÃUòh€?#8/ðhMpbÚOÙ®¥yÜÕ¢ž÷ùDé'äS&¾ç–xÞù7©ý ŽCõã<Ì"û½NxQãÃ>ÅùO$?Χ¡ß}þFã¶M÷ÁÕ1Ž”ÇøãWh‚Á£~÷ùíEpÍð‰ÊŸF?Rç½|þGãêý“~_Hõ’K.G'4NKšGà'Ÿ3W}ÁÙŸ€ÄÏMü`’âp6#ˆu ùÃÏÍþùÒ8"¿”Ïs쇵e_iù¤œ†øÉã¡z GuÕŸqqœ[ñ×¢øÆõB>˜7n/×ïÅ—?Ù.ñæ3盀ÏÔKØÕ>üâœç²œÃwª?ó ó ùpÈ#³„vèwòú4o{ò<øŸ^¿O¿3®’OÇ;PûØÁ Êc¤?5nŒ³ù@úªóßHΘOÈ'ƒ½ÁqT/Ï‹e9Ý^‡.7êõ;ëyËšâë%ð‹šúó.MÉαZnXáÖ…%øO¼$rëõF¿/&üþZ­ã7Á¯ÝîÇ­J«õZýžÅ¼´„ÿþäéj>áóª/p ž¯52?÷¶½û$zÞÇ.Ä:¾>už1ê‰>ƒ^€Ý–y»4z ó<úz íQ½Ê~¹«Ò¯˜§™Ÿß”®ÃàißU»›¬G¼O{.¤É:¤rÙgÎÕÊß-ºö{jòÛd<¥¯,jüÑoÂzf9V?,é»àX–¨'ó8öp½Þd\³Ö êÑgçÖTÞ—ô¼û_í[ÒºÄyjô9ÖWëªç¼¾_˜}Àúºõú> ú§õ€ o¢7,ª?Yß)—óuôË"ûúCí#žça;r·ÿI.èOðG‹ìX§ÙŸ}Ýz‡Ê_B¿HÖû›*}¾DÎ5>_B½Õ.ò‡Á÷‹êgë¡ôŸêãþFþÐoÖ5=Ï~Éq)i7õ=%¾`Ÿ¥ç‘ ôæÁ&zOÐOÁg¤ñô< ûK´ŸzÒ_ð5ícd\˜ŸØ÷¨}Ösõû|Î<È|Äw4ž–öoÈãÅ>¾~ÓšvL3MæIÖ'¯®ô ñ—ãÉŠ¯æÄoœ3õyñ'~üIœ-ÏëtÄuñ÷8‹}gæß)Í;óØ?(Wõ!ï ëvòc¡×Æ<Óy?“éÓ(OK쟘×ÑC´~ÔÑß°#ˆúü'ó9ó¸ÖaôO¨q²Ø¿jí¿ê<«Ö½2oíÛ”÷5¬ÃëÖ_ûÀn÷c5=/©O…GV{œïï¶tÿ`ÿ2þäàÇ&θ%çßÓüâ8áø4€_d^©³ßÑ{Ôœ˜ó¥àçÖ{œ+Ä?Á¾žóvœ¯ÅO½ʼ‰ß½eŠz¨]ذ'7ÜçEØé»øÉˆßÁ~Éyh¤÷¸±0c×¥_5nð5~üñį°AÏag¦ýÎ;£çh?øâ´;ï7Tï3žàoÿ=ë ¿sÍøQOöÓê7âŠÐ^Û½ÕŸè÷œÓdŸ¦<¹Ý–³­N«üðê{²`Oÿ0~Ÿ{özñ›ó,«Î£—,$ú‰õ×ËçòŸš?ÂõšC>Uoæ™ù3ïªüŸØ Я$Ç”þ†¸ÚÄÍ!ÊLœ¯©W¹ïñýúIÕSß!ªú»Ûü’éÖ¢ÆsAׂõBóú…ó¦íHå•õû:qi$'Ýng¦™nŠ|úû±ì¨¾ {x#¬¯¶“áW-õdÿnû}ð¯áoÅÎXOׯL/ês(Ñ>Æ>(Ü÷ïÆÉ¢GI_ä=p»³â[âëU\ãpY8/…¾Å~…xfœ³â<çîÀ£ý,å8=ûRü\ì¯õâ½y_ªrŸy¡.-¾3ÓKK2® üü4šWýübЧð“ØßðéŽçü¾¤œL3Íô<äTú“¯í‡=yúF­8p öwƒ7ºçÉ8±[+\zWMïÉžG¹Æ%ð{”ÍÈù Ùéˆëß½î¸éqøs±£Ðú£¼?ÝîïL»C‹1ñ ç×Ñg8ÇUü%çÑe/9àü0zûü­wœó™A/“sVœ;ŸßNr.Hר9=œó%äÇ^.û>q{mŸÇ¾/êrðè9οcÄïŸ`*ÛÝ2=½N€gNö½/ªpØòoÆ<…Æ»`÷–Ò¸hÞ_/¼8)üÿàtØ÷ãçĿϹ~R½7—ú/7ÜÏ}ƒ“§u‹¼rÆ}Ôøʹ팸†LŸfþ¯g¥Æ4yÈïî¼bìÃñßá_EÏŸ‚;ÁŸtä/ üJ”Ã5üŒ0ø§9Œœ0/ÛŠ_?¤üS·€h¿e?,õb_Ö›ø•ìä¼@Œ+Ë9kúËy×ègúEë‹ãOƒ Ô}ãöøŽúÃ8ÇT®2]‡ßgðWkÐÀ§ŽsÎVTvêýtßlûqY?âê`ß™??»ÎoßTL ¢ãø5¿Ž¦åz¾G ç.ýÜh°ëªÞÕ÷S½ßç¶G«¥Ï#çØÃJ}ìÖnw¦™nªsõ·y^'JþžQÍ쇈«;ìÖÆ…‚'’ž9‰\kÝg6§kâ°i]ëv¿ltêñÁŽOœÎï2žàçØ?ò¼Ç}&8ÞZûÏx³Qé7üÎú.g*¬[ÓkÏÏÖ{À¥‡õ’¸`Z7†ùŸü3Ž#~£Ý¼‡~F<²÷AÏßUá´_ÓþÛël°À÷¥¿eÐû}úËqgt? Gû¡‰÷ý‹õOߟÀ¾=°æ¹…ÊN-Š?×ùÚ87´¶\x_5“÷7çħýZ¿ûÄ_}Á{L÷‡ƒ^5(½jTøDôÇIÏÓ¸÷‰ÿÅýPÉÃÆý¸æÁ>]÷‰ÏދЍ~C’“>}§_üÒέ ÔÚÖ†‚ݺŸú©_ˆï>úÑãõy÷;qù‰ÃÞ§ú¥õ.i@ŽÐ+C}†Ë~¬Ö¯ôºãûce?Tõ¡_Y‡°£ëþ¨Æ¸òÄ}×¼€^¬r«|¾j'ñ쉛Ïóàˆ—o;‘úe@ÏSî(å»üÂ÷°·P.×ÌCÃß~}‡y˜ý÷¨æ1õ‡Û£úŒˆï¼Àχ~­÷Ø7’¯ ¸ôôÑPôöaôiì`úñ{‰«Ì{Œ 8Þ³]û—ÚÏ~PíßBìH´ù{"åÓ?Æ©ÐÛ¤ø˜z“_€õ¹§_†Øo°n¨ß°CàBX×À[#ÿ®ö6ð:èqØW’ùìy¶‹€ÏžöÑ?ðCˆ‡œé΋Câï»5¿—b{r(z“ù™}¬ôä »ûp^Þ¯#ïú®ù¯¬O5oæqÏôÈyUFkí?æéjýzŒã´³ÏÀ¾ÊºÉzƒ|H.ðß!GØY‘7æEû‘À°®²^€CdžfÞÕ>Áû"æaµ‹õ’} íàyë%옯™/ô~ç=R=˜çÑC(=¯ÜW]6qŸ·:­ôZñz?z&ù¡àkpÀ¬øÕð{£_ ¡ß°ïiÓ{ÿÃ~9Iäë'”_êåÖ‡œÿ =KõEÏDÎÐ+9†þ…~kÜ3ú¦ê;¨v o¬súû±QÉ瀾Ã÷xžý‘õFÖÏ ï¡G[ïGÿD¿d§öYÏöð±°t>)å0 Å}ú.õÊxs’›]êÏ}⋽ìÇ4î×h¼©Ë뇊Cz~@÷Ùï‘àˆ~ǰOß9 þf?¶Oå÷Šo{Å—Ä?ûUî¾PÎAóA}ÿ°ÊÛ¥ïT¹=ªõ?¤÷ŽJÝß+¾ë ~’}zÿ¸~ß«÷y»Å¾òºÛãši¦ç$ÿøKY7†kí?å#|‘íèuè“øM‡ƒ^…ŸRö‡u{Ì(vÖIð¬3)N;x·û+Ó§ÈoØã´®c‡ÄŸ¡y×úy(±²q~Ó`ÏÄß/;ù:ñãbŸ’=Òy-Ñï‚^¾d{ö7Õ«_ú zócbŸH÷o™fšéyÌÈöºþ`ÁÎÎ>n ì¯CìèøaØoiÞ8žî?6 õ¼7Ä>MóÕôÚ>æ+æKõû)öËìOÙ7ã·ÂOE¿õŸÛ¾ª/üèã¬ïìk5OcßÍ÷ñ/ÊNu<ìs§˜kµ»Oó:ûÑÁÀøÀeöãÿÁ¿¨köéλŒŸ0ìs‡Ã:€?õ‰ïQìî_ê¥öQ®íz}¬Oõcß_{=d}ÿEýho°‡QÊã=ü*ðö8üÄÈ[?v Æ{vBê©ú½‘}^vLíׯ’u´Q§ÆÞ@ÿ£'ÒØ é§`Ïßw[n3ÝZÔû&á,|ûà1ýb?AO ö/æòƦ8—â€Þ;Ä|Á>MßÁÀ|?•y‚çÀ}jžë\SD·ûy£Ó çÕž¦öçE>ŸÏÔøƒŸ*ã뿥µkÞšÑ< ÞÜ8æiçüÂèznGÉwÄMOn‹ý–ãd‹ˆ§Ëu8wà÷Ái—t;N–Ï;ß°ìåÄ—šƒïô]â8ã§çœ õ¿°ýS1®ïgƒ8kèÎÛ»¡üºÆëÿMרWð÷¡g9¿ƒú}¸Æe¾VóÏómW7o¿ûi­ŸÎÎ|?Ho³¿Påàwçü;üßpŽ {xBðôàìÁã¿»7à6ã#g¥ï8îø-ÂëÂÏúçl¨ççÁ‹¨Ÿgõ}â¨Ãß莃ŸUrHeãçEU‚Ï4Γïá¯Aߦ~jϬ¾Ã÷'ææÊW¿"—ŽO¨þ ߆ñ2èMü?Àg*ó9ž§n/Ç‘qà|ñ4ôú‹¸ŽWø—_$ÿôÍ1ÏøYå\È0ú¡úÁ~+ÕÏþAôQø_| N9dú‘+Ýgßyÿ0¸'ìœè·Ñ¥|ð.ìw©ö'µý},´=wyÅžF;؇`ïb? _Gœûõ+v4öì‡è!ÚG|Êþtýz ûöë”=Xózü>büö>ñúr1šÔïUÞ—J¿ã÷_¤÷é§QÍwca|Fô]öwøs©—ý«ÌA^Y‡°k‡Á<¯ö2_9N•¾Ãw‰›¥z×jW^Q«mûôê#ׯþ·úÿµ›kµg¼z•~ªü­öŒÚ•µ«tïgáÌ+¿á¥¯žyÁg½`櫾þk¿á¥¯|ÙêíN?^,üògþÈŸù†jyzƉ½ßub¯¯§þñÀÏ}ÛŸ+ßó3Ÿ÷±Ÿù§ÅÀ¯~Ï'þmÿ>:òìßú±ÿóÅøý?yü{ÿ°¸ò3þà¯þ+¦þàá/ÿÅïúQ?7÷wšÎì÷¾¾ç÷¾Þ÷ç_ø¿ÞÐüàõÅü[ŸùüËß·:½ÿØê?ÃDæß=úß1z÷ê²pÅÏ®þ+=ñc³wþ«OúýúþSí<4YÌ>ôåWýú—o/æ~ë#ÿrÿGþe1õ¿ýÞoøíÿ]̼à+¾ñäëß\Ìï}`µ¡ËÅüLÉVSKe7߀x¿÷¿ü‹þè{‹ÙÖ_¿òú_ü¬b~þžÿöÛ{™¿3óæçßüÚ·üIÕž7¿biðK¾îÿÕŸxàWâï:¦­Æâ—\=ûÆ—SúþŸ-þÔ¶¯ý³bî;zë‡þæZ?wütë_öÙÅì—Þy öŽGйküßßø÷Ÿï°4ÓϽú™÷·þM¥†Þ,¶ýëß|×ï~ö3ŠÉ×}íö×}íÕ߯?üíWþÀþŸ®Æ·}9ZŒßÿÈòW=²ìe|þØÿgÿ=Ç«÷þì;oyÉÏ©Ú;ñ¹_ñ_¿ùïŠú_òïý­{‹ú×ýãÊ[þ±U ŽÿÎCïùW?YôOô^ýÈï)êoÒ6ü9_ýeGþÛŽbòs›?ðžû¥Õxÿ—Ú;>þ“¯/F—f~áè^×QßѾOýïÿñãßRL|ëç¿áŽÏÿÑâø[îu«5©úsùwN¿XÌß5÷×ÍýA1²xíWþöµ/}Ò¸ì{ïcÿzÞ×ÍC_9ÿ ÛUßÿãoüœþÀ§‹¹ßÿ¡}ü÷‹Ù'þòû^6X…kùŠv?Ïý†/ûª¿é¯–ŸÝðMºáßC§›ûÆï¬úsêM´ú¯hüÇRL¿yÓ«âíSþóÓqÎËÛ̳ÚÅô•÷}Á꿎ßç~ý³xó•ÕøLýÖ·þîŸóŸ«í䃧ÿþ¡˜þ/yÁä»ÞXñÉöö_µý‚ïúÍ¿=üÅÌ=¿ð=xU1ý…ÿõWÿu|oPêäÌÜèß4zE5>mñÜSL}ûÔþþ]ë¶Ça™‹Rž~ö¹¿úÍ?|eÇsóÿâõ/~Ù³zÖW—ÿÝñßøÄñ·}mvýêbáGV¥ô³>ÕYΕïºé­ïý‹©Úý±¯ûœßüºÏ­ž¿å§·ÿó©åН>÷‘¾çn÷±Ìþgý·[Þüï*fð›N|1ñëš_VgÁÕëÖWóOÕoþ_×|Æ7ý×ÕåõGëk_W,ÜöÒ{_ø?‹ÎþR?Í}Ï»ÿÝë®y°¨Öéiò€?ô?þþWÿÇßÿš¯ž÷×¾á¿V¿ã›çü¥¯.†ß¿ZìòïTíû½_üÆû†Šú7'|RµwÛO>ë~òÙÅÄ·½ÿsuß¿«êûÅã¯ø/ãÿ¶¨ïY•ò±7 oùè—¬ 1ûÉú«OþнÅÄ©Ã{>󥿱nû{ú~û´@Výqê×–ZÿäÏ‹á’/Wùûà¼òí_WÔ'¿òôƒÝÞŽeÚºÊ_Ïþøà¯ýó¢þÛÿñ?7û5¿üõÏ÷í+š¯ü?o¼ûÛ¾quÝþ®Ó IÑxבó®#¯(šÏºý«ÿŠ…’ß‹…—êÝü_þø£ÿó+÷Uòñ;?ÕÿŸ¿õ/Šyé~öïVÿöt=],Œ¾ð›¯~á7Íç_ó¿_ø+XÔ<ÿÏ_ù’ÅüÿýáÏúáÏ+æ>ú7Óý›™bnüË~ô—¿ìÇŠ¹7œ^V¾ ªg{ø§Õ<ûºözYÌ=úûü3ß>]̽|uuûŸX-ïÚ?)Þ^̽⯦¿û¯¦W·±úéoýÐO¯nÏ>ù/ïùäWÓ­±W~ÁK¿¤˜ÿê+ÞvÝcÿ¾˜ÿœOÿ³çþÞû‹…£«ZÂâOuôÛô?¼þk^ñëýÅè¿iwHUŸo>½ ­ê Ÿ»÷è—ý±ÕÔ™?û¢ßý•«nì”ÿCßÿ/¾ñý¿Üy¿Ñúª·7«yä¾ßylÛkŠ)õKýÏþö'ÿ×î(æðÄý?xâÿVót9O®;Þ#¯=4ùÜ|EÑø“_|ë{N¼¬˜þëŸúå¿þ©Ž°ŒEãsîþÙoxöÕEãÞü뇿ýªêþoy÷C{Eã·¿óžS³?õ…/û¥oZ]wïyÇ—ß󎯮çeÿνvÍù¹˜ú¼ÖOîlý¤¯›7­ª‘OüX1Y?­w¾¦Xøþ/ÿ“×ýá;Šù¯ZÕ*®›ï|_jùÔo3$f›jýnÏ›¯(ÇþpñS‡¾¿ÿú_úêãïý/þ}ü³ÛÅÈg'åcŸ:ý÷éÎõjgÙÞ¡mô¡/íûŒbú³N/Ûß]L¿bu:þÏ-FþpU}÷CAÕß×Võ_öÒ[ÖÔõ÷|à篻ÃkÈòßþéí~ë>ŸëÖî·´uºÖ®ûÚsx«¯ýø+üû Cï›=ô3¿ÛÚwçÐifh þå|Í_þÀ×¶v}ÑUÅê?—{ê_ò¿õ½ŸXþH3Y{V>ü[¯ØûûÿÅËÿ°Ú°›^ýÆVmâÿù¯«ÿZWë§Þþ’ïÿøò'[³ßqóЋWî>6ÿê¿ÖþÔD°ü‘ÕÒþÓŸî]iðç}|ù~¸½FµvíÿŽ;ßüÛ¿Ò:øc¿ôÂÿú{Vþ|øóO|ÖÛ?½üÿi IkO©;´O«Ðßô©ÖáïnóÊÊÇþæƒÏ¿ù?Wÿ^[Ù÷w>ؽm®÷ý¯¿ãðëï°¬µŽ|ï]ÇvþP³åXþÿÃÐÝO´®.÷Ë.&ýO¿ï¯—½çgù;¾ì¿ßwý/®®ö7¬ÜûìŸþã¾ÿ +?½Ô÷üÞòGÛCû¥­kFþ×W¿é¾ÅÏ_³¿Ík­«~åîÖ=ÿ5­~ÿơ߿q8~å=m^þ>×çþÓÀ×üJëÚÏk×Ê_ÝZhŸµüP[E}†Ÿ{àu‰®¿ò¡?ùÒ'>ø3R<óŽ—úw?¶§xæï~ù÷ËOµŽí9¥uø´æüC/^~¹¥nõ”{ÀÖ3RÆòÇxÇÒ/|ìoZ»×6õ´¯~t¢wGëêÓ3ñÕ/l ïOu§íínùúå‡Ê-|ëÐÐÕ?ú'o5Ÿµ®þŠ™ÿ÷Û~ö«ç¿÷ooYýçï?ªzþC{oslå£?ÿ“}ÿç;mùÔOµ¸ÕÓ¾ýß‹kŽîýñ=:êr{K]¾u ñþÉê?—÷ðÞßxÎê¿bÇé%åª__þôêLµýîŸk/M7çºö­|èæö_k÷êWG~ð½|ôÆ£Sƒ_øo+¹;½Ã}î |}ì_µ÷X­ëßóÈ—}ßu^#ZW¼éôß›«vÌß|ã—Þ}`¹½c¹þsZ»NKÛÄgwŒÃ¾+Ëö>ãôÊô­[ÍuZé{]ëŠ{®yÆô vÝö<ò§m]³µ÷ÏxÉ÷~ûr±wmyùƒéœÙQÎß´—ä«[Ïß÷ÏVÿµÕou·ÒñܥɦµgmHG«÷çÿèÅ?ÿG/©ú»ì×ãc§¹ðù+”º~«÷çþòÝÿxôVþñµ§žy廾¸µó´f1ó ­Ó³Ã“öüíùØK¿÷àê?·¿œ7Z‡Ï ýòÍ;ŠZ)oõÛÿö®ûò?yýò‡Vw«Ûƒåß2vӾ疪œ_ÝwZ+¯æ½Å· ïýº·¶F^ÙÞôzÒ=ÎòÇVwô#¿vbùÑ҆б–\ñ=û«ÿZÏLå°u¨åÕįÞù¼÷Ûý§/úÆ—>°òóíÛ_Òzæ³ÿÃ/­þ[¯ý­cå¼åïlûd{3ÒÚWÚVþª­Š|ãòÇ~ñuÿô[¯üÅn뜙v‡µ7|tçöýèò£$¶Æå|׃ÿþ]~g±ûûÿã_¼ýÛ–?ñ§Ï}øOŸû±bÏi­ã/)®iOçßWì*çñâÊßý‘Ó%Ûzÿî»_üy.ÿÊßlËEQ{°­s;¾ý‹ÿpõ_qÕíïýŒÛßû™ËO<|ºàÏ(®ý×ßò‹«ÿ\Ÿ'ʽÅòG—NKþU+öKלü¥k¾kùÿk›D^èz>ÖžŽz>¹§­zí)jŸxÿËþôw¬¼¹Ý®^~|uÃqðw~jù¡ÓËø—¬,¿ÿôj¶ÿ£+÷·MR_°ò¡R‡\~ì'~ùC3ËhÛ2ŸXù‹¶‰«CGo]ñÿœzÇÿ¼ê[Z=© oùÿœV‘·¿§µûþÇòŸ}÷­­žw}íÁ⿽ªuÍÊ_¿èï?ùózA{Ùü¶Žùëÿ~çÏ]5ÿ;ÕúöÞÛý‹«K~ëÚÓ¦·7ܱòø+ÿ× Vÿ-ê3ÛýîçN½óÁ/xçƒ_¸î¼ppuÇð}¹où±£¿ú•ßrÇw·vhO„|±ýGJ›è®¶MÊå{¦þåÿáãSÅö¶Š>·òááÞÇÞpóŠ=_5R_ýWÔN«?ñŽåS§µ­¯©w´÷ž¯i+¦Õ¼ôŸÛ6ŒÖ弿üþrœV*ù¢ãý‡>8óÏ?8ó/Vþ¶mb¼nåSés+ÿ•Cþ+‡þ¢uÃ[‹o}ñß­|¨õOþüK?ðuÕz]º¶[7üÚo¹çüÞcsí¿ŽþÚõãßòEõg~¸µûá¶K`å¡¶‰xqå¿÷³VgÔùÖ5mµ÷K‚®u[×ÿÚ[jµ+n¨]}à+»-æ™nlڒǯ5Pšf[Bâ·ä‘k AÙ÷÷ëþ¡ô„FKȼ–<ý­€mÉó׺Fßâ²ue­ý×:pk‚Ìhõê÷cz^'ÖZ{u_'ÈZBZñ½ÖqÑ>Ýß]>¿ò@¨ÿ•jåHë›i¦kÊÍnñÏaQHl]%ZÓ}øö Ñg¹Øê½=zn›Êߥßåšlé¤åÊãz^üízl×s{jí¿–N,Âÿ+O蹫)_ÏñÞŽòzù^=ÿ°žÓ÷WîÐýSz^rÔíqÉtcÓåGR9XùTI—E9ÉÛñœøoå#éú°r_­ý·ü ýþ ø9/ÿ’§•»Ey_ü¼¬÷WîÔµ¾·üx*|§¼’óe•[H¾ýþÇô»Þ_–Ü,?¶'ÓL×¢>)uºn‡… Ò}CWŽŠÏ$ÅŽZûÏr¨ù¿ÞUhþ.®Au_y,®Ó}ì×Qލ䮨£kéU>I¿WõÑ:Yô¤ë†‘X;ù]åQ¯½k·'ÓL×”2€¬s$ÂZûÏ[Aâ`åò‘ò¹þä$0/8ñ²¹”~XÑóãº!>m¯âKäFN;Ês¦æoÉO ©Ö N@ù~x~g=˜Sù¬‡¬+ó¬3áyäÐrF;õýúɲ<ËÕÚíÊ4Ó„ÏÉ D„VŸèZïéMùy8]W\û™°O°¾†þÆþ‡U>Ñ®ç'Né9ö3D å=g ÞºÏIÓø<÷'uMý¦²ž–éä…“ ð!"á{",p2“ ò¿`ïŠåÚÎvHÏaWÆý »˜ü¶ŸÁ;0±{õˆîå;*ŸÔ{öÚµ'¼/¿#jÊ®×íñÉtcÒBþLü~øÏñ—,ß~ÇoÓ~¿VßByøOV>¶¶<µ$+÷—ß±Ÿ?é3ô=ü>”×ø_ì· õZ‰¿Ë?C=7û]%ÇüÎwjú£ÜnO¦“ =Éþ}Íׯ«ÈŽÕ’Êþþ=éþ¹%»±q/GRùqùवQ®(øÉYëZ]_êG=¸>üAKöjã´žº|ùA[Z÷Z;Óù£Ûã“éåA[Ú_´F‘3]¼ZÇ{Ú7YŽB„p㹸¥ý‰ù¿?È/ø7æêÅ}æ>ÝW„¾Ö8Ï—´Ûý™éåA[GS¹0¿›Ï×ÖZò“¶´òº¤È.^‡À«ÕzÖ õ½.ö³éyðkŠXÓ å²^[[ÏÌ4Ó‹"7è9àдÏoi_Þ:˜® ~}þg tG­ýg=Mß1®yw*^‡´¿§ì›,?”·/ÔsoÞßdzé)ûíåûjí?ìØÙâóàÓØßcWçl;xL=OyØ1\Þýº½7¼Çµ~÷wT_Î7t»3½<¨3"aÿ=ˆ½W×ëÌã¶3c³ÃÞl[°'OËu=°—ƒ?Ã>Í÷tž§Ðºãß÷d¹ÉôÊ 83"Ê“ˆ•Ck¯7Ž îÿ¥31ˆÉ’—cé:c¿-ðsâ?ůI&ðrƒºÆß;²v=3Íô¢È xbp”D*ά=;’µ# ×Ú~¼Îô:å:¢yøÝx®E2\óÜd–›L/¡ÜÀ—à[FàÃZûõ¨ã=ðȬ ãANæô¾Ï5è~|üß³\ˆ²²ñ8p×ãÙ.é%”p8}µöŸ÷)ì7äOñó>£ß9oÃ}_«å÷¥û$îw»?3½<¨ñgòïsm{Ù#©žæsزCs>Ùç›±Ãqnû¡Zûûñ´Ï??¬k•çß±¿ÝW–SlÓõý¢á½n÷g¦—mi^7ކ8Gu}(ÕÓZ{õ¼ì]øSˆo`¥ý9*ïxø8ü6ø}ðQ~Xê£õÐø¸Þ´œn÷g¦—mi_ÓÒ¹æ–ìdÆô¥ëMKû ûÁ™9~“øŽrõ¸ðsà dkiÿâ¸UÈ3õãZvrgˆë,7•O˜'‰—¤ýªãÉÔ’ýÓ8-~×¾Ù¸ðW:_ÕÒ9â–ö³ÆQ)n…ãik\ |Cœ3øWç]Às™fRþ|ê=ê3êO<6×¾§¾ºl–þÐ5rD¿°^€»Iõ(Ö_SpœÔ'Ê-ñÖŽ¬]n¦Inª¿áop½Ìgðr }€yþÇż¿2"ð7z ü‡\p¹&Ž üêyVï¡ÿ€{„ÿ婸KïõÒÚæïþД î¸'Ì#‘áwÊÝ›ö‡ÇAõ÷µìgî_ãu‚žñ _—éÓK}޼qøÀY¡—0oÃÈÍ é8Z> ðRèáÇð>å!GèëðI_àSô p[ïx$ðõÛ©ç®r‚\çr›®¯ åÒPö!”K¼LùñïG^(‡û‘ÿ#>þ»&}ßç ˆ ŽîÚ,/—‚rž ûŽÏOAï/ÇÁçÅOà«8ŸE|¼•c{ŽìE<ÇøÖô?`÷á}øó`+÷ê÷Gô¼¨ñcâ#ã¶ToÇ ÷Áqœ/‹qûîÖs´‡ú©=Ë•÷‰Çæïª\¾C|@Ÿ? õ¡?BýbüšÚoªïÓß¶Ó=žŽW·ùj«SÇÅ#^~îÑ8iüm—•^Sh~,4oú¼0x.­3Ž÷§õ¢Ðºæ¸yœï=Êß«küZW:ð_|‡óÑ´‡òð»ÈžåóËø9øõâüåí÷ñ—ôJ=#ßÎ,ìS ­«nßáP/ê ¾ ÊùïŒG»4rc<T㮊k2kÿ^ÅËÓïඈ—Çó”Ëóð8ÿI~ð£ãG¤<ûË¡”C¹Ôïëw2,ÓÞ1}g ¶[t\ïÇ8Ô“x€øçÇB=À‹ÑNü–¼ç Ú©žæï·ž€8àßh'ø‘,7—Dn´ßwܼYñŽŒ—ÒxM‰‚?ŽÄ¿ë>8•±ð¿ó>x.â&¹|½?è 﫾ð켎#že.Ö7|—x7÷Bûgã{ôß¡ýN<§™ð{¼V9úk*”Ï5ïqí8„z/´¯ÛüµU©ãr1¿’“yÒ¸)øN¿[Žàs݇Ï'C¹£”»Ž<:%'óuä¾äs&ü_1ÿƒ3s»hOàë9ê¼sÍúD½iXoÜ_<ÇwÃz2\«œÈÿ¼ïù9B.è¯ðúm.ËË%‘ðè:gk½…ûìsد°_@¯fß> }½ ¼úw/úœhÀQù9ðWì+ø}߉¿£ç8¹¾ŽŸxÏÔ ½éˆ¾ã?SCáw÷“úúŒ„úQ¾Ïð}½çöÓzŸ}ûÚ…Þ:žNÛÙm¾ÚêÔû|pUର§u·ž¯õX9þà©ØÇƒ›Â>E/ß¿SÏËž`û߯‰¯ˆ3¶M¿ß¡÷8Ÿ%\—íâoÇ=“½<~{݃zþ¾ðœ¾çï‡z`o´Qýçv~*}Ïת·ó€ƒÛúŸïc¯¤ýOè{»Âûœk“]ºÛ|µÕ©ñPøçð3âß$>‘Ö ûOv•ãcïûü½~'?þûwTßç;øyð§àÄOÂ}ü>²SÙŸ±]÷w‡ûø?$×ö[Rþ®ñ_âg¡_ðÛ¸B¿Ñ~â¹iÞ°_Œò©OŸ¾n ?Ïs†ûûC}4ëÅ{Ëôi–øw(Œ÷ñïãÄŸé8FÈ ü¦ß‰¯2îkŸPÅ3R9àIˆwÎJú“ý¯È þQð*øßcžBä| 8êó=èDè‡Où†ïÇác]ï åÓŽé0?€[ŠýK¨=^|ŸøOÈ©âà¬/$Óó”‹7–ã øùÆ™iÿØjêzAã¶x²ìÿ¦Þ[Ô865.Š÷ÝzVoùžâw·'¿UW¹ ”Û›Œ{¦™nÚj= üÙX­ýךeÞÓsKzÜ.ò¥xû-ÙqZõ“åûàÈdjMéùQ¼ün÷C¦™ž—Ü Ï ß÷‹žTkÿ¡çø=ž7ž7ün¼°èñð;úR¶ïdº‰¨Ï9±—½Æ÷Á ³Ïd_ãØé=ãÑ´ŸÅþÁç³ÐëÙÇæ¸w™n"ºÜ¦•}ÅvãûÊûqìîÖuÀIbg5ÎñNÉуåýˆíÈ|o–›L75N²§”çOæ>¸Dìþ๖}ÆÏsŸ„<àÈ×Þð>þ…ë²]4ÓÍC¿Äßlÿ¼ø[窌³ÄïŽ?¼/<';ªýæÑŸßGyú8‚p&ÓL725 òc~G>zÅ÷§~0È ¸Þ7.DïƒïÏñ‰3ÝDt¹MOëYÚŸ°ÏnÃxô)ÎÑôè=ô-p0OˆÞö1º6~¼Žö?죺Ý™fz.ÔøÎíÿŒóàwÎïÐïØ×°›=ýM÷9—Ýs¼ø«·é>þý¬§eº‰¨ãˆüDøUtÆ8•qýÅùÅôñ6ˆÃýI~%Ž„pñ­é¼Þdºyh«q{Éß:_Óš;yú‡šóè/I|ÝÒù(ãqÀÉ€˜¿±ü}QïÍóÜ©´œºÊ!þMãÆlOË4Ós•[/kÕ%§sµö_…ß9Y^³~éüY«Îµä|å‚~_Ð|°¤çš’ÓäZÏ-êz^ßoè{È;x"ðz È=ó„~–Êiªœ*¿¡÷š©Ú:‘ú«?Žy‡v?GtŽzˆ6N­©×ºþñ{ ½§úVßMû¿Ûüé¹Qóø7ô@ãÜÐûD×Y¯ÀçÑùÈVSü¨ó”­AÝgÝ4>þ òi=½•ßÑWõ>å 'è¥Ci=ÝO½¾ÓnôãEÕ\ŸõåµõZÇrI}ƒ>L9ÌKÝæ‡LÏ:>qÏÀËs.ý¿[>D9_¾|ÀÃùœûª¾ÀßàñØç9NmØÏÅs>O¤ûœSès¾`4ðk¸æõ7ÞO×½ô“Êñ]çlb¾^âÑÅï"×!oB¦›:^ö;Îõ`Çó}ñK´ÏqnÏ:ïû¼›~¸:òÒ—p¯~çüÊóð_èîPrsPåQÿ‚Þâ0¹|Êå|åRï«Òöuô§óí–ïû>íw^\]ÓoÒõ)ÓM}¾Z~#âí9ñþî-iQ²C…›{¼¼ïó×àë.'çkÞ{Låĸ}ªwëù;ô;ßQ=8ŸI~gãõTÎ åëZÕ6sþÙו¿S?ð±>÷òqÄ÷¡Ô;úÃŒs¢?y.Ô»Ûüé¹QãÝ4¯¿Æ9|pàv´Îø9ð>š_«8ˆá>¸ðs»Ã÷Àáí ߉ø;Þ#.!ø­ާÎø!O†ýÈûB½‰O€?™øƒø™µ¹ßb>\êðåΧK¼”]*‡ïg<ú¦¢ÆÝ¿\Œ[Câ´ß%¾,ü~<” þ‡83ƒº&Ž ñûQ”ûäEëÀ#é}×_÷‰¯8ä&ÆÏ õ%-÷Áo”y†kpK|¯/Õãªx«zÎñxDCžžL76­âåJ.˜ÿˆsĸ‚ í |Å:2ž‡ÏŽ„kÖä†ïG\]Ì 8êž5æ d¾ï å†ýxGÜ`çD>Sþw}hò¢¼;þ>ß=ä¹¢ÞÌŸÛm~ÈôÜhQÓ¸_'þØ^Ž#úv±£üÝq¥´Ï·¾ÿˆž¿OåÄøIzŸ¸GŽ›ãXÇøVàí¨Çδ\ïøž®ï#6ñ®ƒ]ÀqšˆßD}ÐËÐó8‡ÁóÚ¿y߯÷ˆ3E|hõ#ýëþŠq§è§œomSQÛ°‹aâœ)çP±oa‹ö4îs;šø'ÆsrÜ'Þy4¨—ï‡ïé;ãI‰¿mƒb·Ú«ò°³a7ÞÚûƒvPÚëk{YYŽû9Æ—â»Òúw›2=G¹1nM㇟„¸ä?Ãσ_fD¿Oé}ð;ø%‡R=¥#^þ—qQûEÂwx޼høðw‚k .•âôÚ_;ÊÅŽM¾OžCüGø=ñõJ>,êI¼'¾CÿÑ/ãá{øO/¯7›‰'3¯ñä>ø˜ú©ò>8ü÷u?|HüüŠ/îÄr¶ ~Y⾞ׯ£x;®×¼îS?p0ÂÙµæõ~SõOD¼,pEø÷Áùðx!pàÀG€³¨Ÿ,Ÿ#Î8›¥tý0nˆy yš¡ŸoÏr³iåÇgþf}À/¬¬'̯èeøñY˜¿É« ކy[qÒ=³[á=ÇUÔïàÀ p.¢OïÇg8Ô—ùŸvO‘¼ŠÄ o§uÀý4|æy=ï¬ý=¨òÁ] §ßÉtsPë1ð'ç |nAãÜ‹ü@Ãs{á· ±/€\qÎyìS=Àß(o€õ!ôäÎõFŸ åS|ªëJô»ó ªžà~޹éK׉Îù½,ýNÇsο.p>™nêq/ãõG|DÎ#ìCàOÝgÿ:ä€}AŸ(ëXÌ[K¹¼oü›žCoÆþœzƒŒø5ÇofŸ. ¿²!'=º¦(ŸxX‡SþvýXG±wLyý°œbÐùönóA¦çGÑsÀËØÄ9Ó€»2_a‡’] \‹ífèoð{|o»(üÎë:½ÇùSøŸõÊø5Ý'nyoZOÛϸïõN÷Ésp‡î_wfþíÈ‹J}¶©þÇϲ.©ìÕ9>Ýæ¤¸­Ëq5.L÷wVòáü´¼'þ«ðjâ‡ô»ø8Æqó÷.ï»>”Ç÷ô¼ã¾ü–W95ýù;ð)rE¹§tå¾ò½ØO1ï¦û|¹”s_úÝŽþý­Û|éùQç_Ù[ŽŸñg༤¿àﳟ;ø1üƒW†ûà¯ÀiÃÚ~ÇÉwwêw­?._óºq\ÄÁ‰2Æ—ã>íovPåìKëyÖ~Ãÿ‰vWhgÐ댟 ^øoÏëÍf¤Æcß¡}‡qYäS>(¸/ð1¼g‹øù£ð ÇÂ}Ç‹Ó}p*}*‡÷àCî“ÇÍùåB=hüM{ýÝ´gí7ãìÂü‚F¹ qì|w^o6#õø…Å_àÇÌÇá÷Ãyä~þQ÷÷‡ëõðÏðg|Þx´ð>83ÖÓˆWfA~ö¥úغýFý‰C‡<‚»q€b¼Ç,7››ZOÓ¾Ø|Ä|޾„~q[Ž£«çÑ«^Íx1ô¼ÝáwôÉÇr<ïƒ^ëÃþ^åÖôçï? ï>’îƒü>ßå\zâ3ÏÌÏ…¾CùÞ/Ý¿ö{ëÉcŽO·9©Ï=&>ÿqN 꼘üþ ¨ÆÝûò;D Ï*ùÆùÿxþc)¿ƒoä9—øÞåaçÛU¾}‹ßágêe¼YØ/ù¼Û'ÎÌÇÎMßWÖ{fýÎöGRù9›/ÓEm†ï8ï<ƒâÛÈŸøçñ—pŽû3¿ûܼ(veü+Ø£ñaÿ¯©}@wQÏáOòy]‹oí‡áwÚy0ܧžÔ¿NУÎÚçø|kxÁä5ì6?dz®ã->Ã?i¿§ø”<•ø)9¯Þ0ø):òà—ðù¡P®q&*ÿ)8òaG£ß‰3”ò+þCû3Á ĸ/ékpuà‡®=Gy ÆÏÌÿÆ»…sh´·Ûü鿤­g‰¯Å_Ä]g)§Ÿ'#¸6ð–Æcê}ð¡à:ÁaoÑñõ;qÙ×Må€Û‡ú\Ý_TýÀ½>ûdYá7Ý.çMÕïÜçÚñÙT.øÓúY®2]_n¦Å'àÿ‰CØHùÓχÌ{'OÿPÅE$ÎÚ É‡ã ê9p¥¼‡üç´®ûà›É _ŸÐ5ò Þ焞§=wM<:pҋȓޗ~¼™å&Ó3ÈMŒßËü¿(¾ zçcâöÁ÷œËAO£\öAü_r½<*zrˆþÊùâWÇú¢ï‡Êsáyðæà~ÀÏ‚Så¼SÆ}fz&¹Ù+>Á>Á~‰}M8gïýÙÁ0O';Áp·hO8”î×½Ÿb?ľï(òÈþIß÷E.9·i'õÓ{à÷zÓzKý²Üdz¹‰Ý í×yJ¿?"ÊõãåsØÅùN·Ç'ÓI×O|èø{w–×1•óKnb_pkø%kúÃ_ÞÔ~Ü*OÏ;¢¨ã ~$ýÝ~Ü«Òï?@ž/ü`W…÷EƒvR®â–t{|2ÝXÔ~zñ­ñ–øíc\>p,ü>Æ8N=C à-ñw‚#ÝžÛø¼Ûuáyê¾<à á\õ—>êòh?¸TÚßSÒnO¦“‚çaž5ÿG>‚Ÿwùàyñ™q3ð%åg—øLÛt<ñ¨ ÛÿS>r€ü°Î 1^(õ0Þ[σGþ(¼Ò9ú2½<)ç]}Kz ¿·JâøÓà|îçô=Ç“Öï¼O>Gÿξ‚rÙ· /=ô6ô4é‘+©þÒ[A¯r9ìc8¯Ã{œ#B¥=wg¹Ét}j|x‚]µöŸí±œžƾ¼W÷‰¿qD÷±_ÛÁž{ZŸžÃ¾LùPp àŽ…çÁYô†zRŶý¬'´|ñ"îHßëöødº1©ýèÄ•Áožøƒá÷)ñþOð;Ämj–Ïû;czŸøJÄYßBœ3ç‡å÷©@ñ× …r‰‡Ž¹×óÄW£}szßqvx/¯7™žAnŒ§¹QrP*NÆ·€_©¹ÀïN<5çqS9àaðO:žšÞÃo n`IïG ÿ'ß#Žø¾O|¶ÏÐs Qò0‚7རÄ7€v^¿Og»ÀyñÑ`Ú_^·ÁG:>óUXïшK‰øNÄ›‰ñÈ‚Íó¬ð!¾?¾‡ßîxZ/?â“u»3ÝšÔþ1ôsø¿8~né~}zLü޾=¹çßä}…ã¤é¹è7G~ѨïH3üâ!?_¦™>­r¿{_Zkÿù÷ët\ûKâ—ã_'þ÷^Ö]÷¾gŸ½=¬k<âzwÄãc?Ë~8âaÀ—œ%>R¦™>j;e©æ¿;庿CïÐý;ÅïøËußöÔ'ÄßÈ~É›ýð!‡¿ÿ© 7Äey¸|>Úƒ#~¤Ûý›éÖ¤ö{á_Þ—Êýz1ßþ8òæáÇÆß½C÷µ®Ø_¸SÔyûD{ôq-´ÎÙO(½ÌyZ¨7ïiý±üp–›L/¢Ühßí¸J²ëÂ;oŸðì…p¹…öýëæÑ# q–·I厬Í×~OöVßçû² ²»:îÓßÊr“éE”.”סP‹BöþBö­BçN Ù+ýü8ï‰ê<¤©ìl…ìæÿ©”¯}2}¿ª'ß×ï²£º>ÈM¨G·û7Ó­I‹Iø>…ÿ¦ÂµÎ5šGXÄ׬Cc‘›‰ /ð½ìxÅ(åèZþ×ÃrÎ{¬a½œHõÍL3½(òC\¿!ö-âKçEFʯèoÄáC;(J¼>®:èy<Ç÷œïXÏ»¢ì§ÈÛ›×™L/>u\qp»ìÛ‰Ó'{–ÏmÜ;çCŒg'® ìg5ýÙNÀùÇS{@‡ïKíÆ‡<®nÇc*ÿʼÎdzñiGœ Î’ç‚çëÃù{ãÀ¬¯Öþó{!O“¿\W$ž¸eü±Æçè~ÈGqAÝî×L/5Þ‹x*ÄõKÞÒùîÚSã¥~ÄCíÿ+¼ Úaqfœ÷Z×äk›VÿpŸ÷'Ã÷žÒíâ=âß̦íóó<7µNÿÍÄçU¯±Ð>æÍ n‡tÜòó_ïE»f»Û#qŽpšÄá¡ÞÈ—Úƒœ÷ïI¼±ñ0îÄg|2¿ÀœG×Lü$ðk)VíIû3ž¨ø9ð•ó¢³~¦|æuœ4ùDá{ðwÃA>‡ƒ9¿(ÏÃ×*‡ù…õ—qï…už8Pü5Î*•ŸnËǺüè¸Æj¿ñª?qTC¿^òz¢¯±¿`¼\?ݧÿ™÷™ïXg˜à ô<ø þsžè È—ÏÁ/¬?zŸþ\{ü[!ßEÏ6ð3ú)z+|ÏüÀ5|IþCú‡}Yhçpü~cð¯ô·ùZý@ÿì÷é÷˜Ÿ‘óoŽû¤÷à¿ÞÐo¸ÑèÊce{ç:Õ»7´?äy¼är³]ýãïãqžÛ¸ƒ¯†ÈÿJÞYì ¼Ç}âž;ïfyí¸I”ã:­“Ç{CGûBÞ Ÿ×$nû­+Ãw7ì(Œß^Qì*ô×UA>ƒ½\ß;–^ÏýMý‡J|%û#òã÷(—v]Ú!\l·åc=Š=•sâÎc¡~s¾Š{»»nr®ÝqŽ$ïü£ÄNl»õ©T~Œ¿¤½zÎ÷5 ¾p&ýîóñéû¦õr<§uúzyh×Ý)ÿºü;T¿;KJ| ŸË5ž•þøHøýÝ$ý>qâw]¾®ï‰ú>ȵž'úÁå<úOåòŽõDwçé³ÊM¨oG\“ñÕÝ‘Ç=!n ñˆŸ‚~"îõ'þ þø ? ñ^$'Ž+Fü‹ÇS>ðw5ã2Î3Üyec»|Mü™ëÓ~¶?Jó°q¨1/(qfÀ§ò8×''æM¼!È18Yžß¥kúœ+þeñ‰óÌ‘WëPxþªÐÏämc|yîàÚý¶QhG¾Güâô‡â=t­~ý¡^à3ÁD3í'ívè¾ój\{õ>ùcáCÆ;>§þ0. äÇ4¿Nïw´+ø«ŒkèüÛ§ûäUôwÕòÆ|ˆGøû¢”C¿ö…~«ýŠßsÇHé]÷ÇòC½Àï õxŒóÌÇsÉù2Æ…ƒC^ÉîÉMø¾ ¿‰ÏEü.äˆó1¯1r€|qͼM\Þï ÏD®ÒõÂrÎø~Ìw‰<9«ÎW ‡ð±îó^”“#¡â¼?ó;ýx,­Ÿûyê ¿Gy¥^‡Bý(—ö°Î0ïP>ò{lƒëi¬÷ÛËv8Îè6µ£Ëqz]Õ/ê3è/®7|þžõ‰´ô4ëÙèô8Χ= ßÑck¢äÓ|<-Çx A¤tìoö¤ãàûì'd°~ò†Ržõ3ú }ˆrÔ_žÐÃÈsõ>ë¥*'ıõ{!Îa¥w…zé9ë½ÖU/Ê9Ç<½Ý¢¶o¨Ÿ± €cáœe×ê'~µÝŠøx÷êþýª¯øøwìÓmפ}´{íßWö¸òw‰GÍö"ìQzÎïíÒwõR}°¯ùû’'ÛhOèo—v‹ßlßÃÞ§ï8(çVum;y@%צԗ¸è©\Í Ž/ˆIýK{°g`Gpÿ`gbžb\hüFýè¯+6¶ÜØóØižˆþ±K^?ì®Ò‹ìÏÀމ¿?ÈžÇ?€ÿr„_f$”CÜ/¾‹ÿå;Þž®õþbâž9?¡~ïKùÁþ–˜Çch'ߣ<ü½àƒúR½ Êë©ßñóp ŸÚÿÅ󌿾_×ø$¼Gûéü>Žƒú!äµqù|ÿΑ´=‚Ÿ|þ.dzjÂ×êO®ñßQ_ðü><þÏ€ñóS|G¿8r>?9僃Á_NÜ2p Æ©ð%Óá=ʧ>Ì_ö÷ë9ÞçwäžßݽÇ5ý3äv2È›ãg…z†ïy¾Q¹nïÑ¡·X{>v¿mp¼ÀV¡æ ãKtm¼ŒÆ ¾7¿2žŸ¿]|ø~Á8˜Ž³×%ä Üü®g:|||ÆzÂû÷€ïƒ3åz:ÐÑ”+þ­Ÿ,ëEùSa] _Põ¥hWÀãY®øy€yšq‹óÛXwçëË…zï¸6òM¢— Ÿ!Wä/CŽFByÆQ¢èyÖðŒèð?r^ÖyчDáKäùÒ¹S×Ûú'rÖê?Ú‡^îu‚ßC¿x} ÏÁßÄ}¤^îGQpM–êÍsÈ(ú7ã4žåæ¢Ê ú0z%ûøƒq¿çe㮘ïtŸòÐÛ#n1âËb¾K䯏Y]óÝÈ'Pô0ô?Ù½Šå¢×±oFù‡ÂïCA/cÿÁþ9ùè¹?ú7î×Пè}ö;ìÛ8ça\¤¨q…ºÞàþ›­Bm_ÂÞžw§Æƒûà¶4޶ÓKƒ?¡œ“cŸθ0ñﳿ…cœDÊCÏ—Å9<ð›ð?x:ÞC®NÛáóuØáÏøR×”q—ÔçPè7¾ÇºF»â¹@â,îõa¨?ã@ÿRúq\Ç_œéÓCŸ{°ìwÇ | ì÷õâÆkðgàÊL/ßÇÎZÓßÊc%u>}Ïx0pZÔOïÛ>KùØqïÔ}(öÛxý°Ê»Oõ =ªg‡}ù^ñå6]?ÊŸ¥=á»ÎÏ©ûø‘À‡ºw¬ÓÕÃùp('Œñ…wf¹¹˜Ô¸©¢øñ§áGÃïpƒös^Þsþ>ɇäÄþVüøñ›‚³ÀÿÇwñîß­…rñ׊¿:ü’¼G¹Ô{»ž7A»õ¼>cÜ¥ýŒø}ůªöÊ|ô©ðkC?ìí¤]àÕ® ý¼'ôÇî´»Í_[•wb•ú_úI~‘ûïb[ĵù}=ÏûàTÀqïoÀ§íÕsàÖ(œÉîðü±POp^Ôó ÊŸâø¥zúöBÃ{ñ¾qUzüí¸îSŸˆ'¥üø<åò\ÌÿÉ5xœç!Ó§Yn×)È |r Œóâá0~ðüÍ7ž-Ì·¬/¼çx¾z.â5-7c¾Û?8þκ€Ü ýƒ¼Åõ"ÎOà°¡Ãýˆ#f|h_À½fú4ËÍ.sXß'ý‘r<:εܧ÷ÀYÅ<²ñý;Êkëéè+Ûô=ô•k}]ûôããTÔzÑúŽêk=Lß!ï'ú•÷+•×>wô¸î?¬zñmi?¸=úžõ8ôLôFök|ïÁ ÿ©Þ¦ú®ãtÑ?±>W„ßUîzç/2}z¨qfàš4ΦēZïÜ%v,ìP؇4ú,ö pnrEråüœ²‡†ý »ö%ìM¢ÆmÛnE;8‰Ý û æq—ï]™~¼’ÛßC}D„úíǾ†ÝŒöq.•öa_‹ùUhy‹vê>×ôc8”éE’üø7BÞ™ˆßò}ü‡øWðc`WŽ~ü&ðö]ü÷øI]ž®cüªAýNÜ‚Áð}ã´ø=ÐõâbáßÜ»v?¸UöepÄ_8®ñÏ:ÞˆêgÿŽîsí~á;ôKìŸ ¯¼âteúôR#üg¿>ã©q!o«üŠ~ŸçÁÉàGD>ðË9n‘® ü7Ê_À8“Ê!¾ ¸.Ê÷{¢‡‡œ ¾ŸB~uñhà;ð Èþ ã‹t=Jý@?R¯Ð.âü?Æc"´‹úÄ|½!Þ}¦›‹2î—ì{ â/ädA|>Ç86Ý'æxqâïùÛS~'n¼ŸÔÐ}Ç=C^nLå–÷o®Ûã“鯤Ìß—ì{ ñ-8µñ-ù™YOÈç N•øpÈù™ë'O\ÅcÝu|ÅPžqÞzÎßáZr³×ƒLÏ$7—v^5¿³ø|ú‹ø˜çÀW²þ8~h­ýW'ò~ßѳÀsÆs|_øènO¦“FÜâEÿ^Ä9s ž’}¸JøÚ8Lä}û ö[ºÆŽáó}¢Èø;ä5ž'Úàçÿ3½¼h‡=».öà^ÝÇnŽœ$öažç}ìÕØ‹9_Ís|Ïvg½·W×ÇÚí~Ê4Ó'Óˆ»´ô¡Zûÿ¤q›úÝþÕGJ~wDpŸ_ãÈ«òðG«ßkúëv?ešé“©q+ÄŸé)ù·Š?Xkÿï>ÓxSÑët<év½pq Á'hñ}höãgº©ã:wÙQkÿ·ü¸îƒ§ïEÜ%äê† o;õ¸mžC>ùÜÙŽTN,¿×^Z;I¦™žQ^$ÆÛˆ¿Zz¸ß—œû‰ñœWEß“èóFÒÛŒ?»¯|Þ×Ò }NæYn2Ý8Ô¸-ð=ìË9Oì}»(q¬° ïC±3pn”çØÿGœY<' ®|Û@¶£eºq¨ãV€o‡Æ¹~ü01.Œó0ÿ$åa§Æä¼YúxðÎóÄó*×ùÜÊß»Ý_™fÚ–ð3ð/|¾¦.þŸ×5¸0ãkt .~ƒ¼Íù@Üð–1>Ïr›í™vQNâWø|A|ZŸƒ‡Y8yúÇ%k-Hnðós¾†ÿ›*§¡ß—ôÞ‚î#/à9›*õ‹õÌySu½¤÷-ŸªgȯèvF¼Ð äPõçÀz6«ï¯—0ÓË›šßÀ Ÿÿ‚oÁÓ GŽ_Ê{èOµöŸñÝÈrCüBãuô<×àßÀ)8n©(z#yT©ñ«FÖæsãÀƒ åp^Âç ²Üdº†Ü|=¸ô3öð±ã¼¥üdÜ=ûâ r~‡ï8^[(û@Ì›Š}€rˆg5îÃïëoâüçÝh‡ã¨é>v‹¾ô¹nS¦‹úü$qЈÿp>r§(Ïst»(ö1p4”·/þž–ãs¡×©Ümz޼ wêyÎÃR^(yQ9W«÷b;m?ß[Ò•öýê<§ë‹½ŽûÙ¿šéþ˜˜Ô~“{ËçbÜ4ãcô»ã˜=(Ï=¢rŸÐ÷×ï’â,Ä<œöó¨^Žë«ç;Úù ¾§ßGAõp^êq}ZŸnS¦‹väm_†ø5àhx~_xNë…ãŠ'ÆÏ«|âœQnŒ‹EâÎç <ÏžPâô·g¸MÎûæ|’ºv<]SOÇÍÉr“érs4ðìŽK¦ýG¡}r1¨ûÄKÒ>Åy)xkĹ"nüéòDcžA¾Ãïý\CùŽ®Ï0]o ùe«|¡A‰sG}‰7¥¸î±¼L/ojþ…À‘73ÆA ùu—>&nq‰ó§ùÚë”øðkˆWærø}>æ¾ÞGΨßÑt}¨òá¦råyBåøyÚc9Ëû›LŸ$7àÁS¢Ï£ÅøºÚ‡8îyJÁ£qÞ€ýϱ¿Ñþ‚}¾ãÍEü&xϰ¿·^âúz¿Þôá°ÞìÕïÄMDŸ„ªü®Ö=Mßévû3Íô‚ä&Æ…q^Ï ±î8¾¥~GXŸÐwØ· gœÇÑzÐívgšéS’öœ'C\k~ß ÿ#ànx\ÚáT>:ž;˜÷×™n^êxLÄoÂŽF¾?pZyôÞöT/[iÓU½-äYð¹iäç™yÝÉtóRç‘‘?Å8¯;Jþ6>ì”îƒÿzDôý~)àjb^_ß™Þïvû3Íô‚䦧äûývÕÚŽC³^>6â8ż~àð÷S>8ü˜y½ÉtÓBùËKƒœ€û×¢sb…ìÂRÈOÒ‰ûJå¤ÈçX2ÝÄÔ¸2çÕ5øp”:æu„õüïEÜ$rvD¿ËþÀ9‚n·?ÓL/Hnj©œx?roзØ÷ÝyÎS904âÝd×ަÛíÏ4Ó ¡Žˆ½k{j'«éÏ÷Éç %é6ÙÝŒOÓµîcwðw¯Híp™fº™¨ó(Æsüœ»ŸÕ§çÀ}öâÅo3¨rÀi‡°?•“õò{fšéF¦Æo‚¯µÿZ“¢ÄWï…ßÓño/)ùž‡Fò^<Žñº¯÷»Ý™^^4Ƨô|Ï|€ y¿J\*âáìÐu<—°w!Y[ÇÒò3Ý\”¸a¾æ¼ ç­à'ö!œ#Ã|K1ä< qšÀápÍúÄy1Îíüëï¦|güNŒ/…¼ô¬=ŸÇ×÷ˆG@^‘•Çõý{õ»×ækÎc»¿8Ï-Üíì*—ö®„òø^·Ç?Ó £ø}Mü–ƒ%ßÙïO\écŽg$=Ýï—Bë„ã`@‰A< ðÄiÂoÃ÷øþþð<¸êãO†zìå}Ú§ß©ï.}_z_õû™÷9öK׿-ø âöP?âwÈr³i¡ýt¡}q!½©]«˜Ò}O,´ß/t®²Ðþ¹P|åBç2‹±ð;TvµBçkŠqQ~á;*| ÷)wœúR^¨¿ö®·ìå ÷º?˜®ϳn?*þsÕ~¾§ú(~º¯©Ï乕ŸéÆ¢Å\äAy0 .Dë'Ëñæ9Ù ÅÛ·\(?F1 ŸÌëyÅïw9:ßYLÇ÷©×©üò”ï ï¼ïzê}îóýYÚO¹ÈÊßgíÇê©vº^ºO¿ÐÏÜŸÍëÍf¤Å$ë ã¨q‡ÏÌ·ð;|_‹¿ü^äg݇/)—õBq2¼^Mpž§ðõòÖ5æý‰ðœË¥>Èõå{¬‹çÇÏÕ|!Š|[NèäS×3y½ÙŒÔú ”ýøäá w¡ç8&ú‡î÷‡ßÙ‡ yï̾Âß×5¸gôBö ì‹Àw²ÏŠñh‰8öïÆYëwÇå¤Üô;gí?úk4´›r„r¹þüH™nZå;?_<Ïœ‹wÉ9š=á½må}â¡gÐøLâ:Tù¨\žã{5½/êól÷ë}ÿ®r·‡zßQ–ƒýÍö;Ê×óÆ™îÐ{wê:àÜVxïª3¯?nÿ¡^œ"Î:õÒó1.a¦›ƒbµ¿¤7½&†ãè‘ þŽèÇášòÄŸößHî\.þDûMtýÌð;”<|ŸóÒö³¦õ¤½öïà'ÿÚO>¢çüÖûi(7ÄuûñãìOû©Û|éùQûíÁ€›$®qûð׃'€\àw~%½GžAüœ#*Üx®ñ¯§Wåð]é=ÆÁ „÷]OÑuðžUþ&½þaŽz¦òvÖ~”>ëüTÄKtžŸ ŸƒáwpJô#ïƒG"¾!ó‚ëú×y†©ý' ®~§¿™‡ÀA¢çõ<¸ÃÞ8‰ãá;c¢Ì£¡<æÙ#¡?È#IþGÊÃOÎüF¿jž3nœ#í'N*ãä~ç»*~Þž£âE’?qà¾äbå1•·yÐóàÀs‚`|ÀASâîScœœ÷\Ϲ~¡gÞëS9ß‘Ðç¯F½Y?GêCù¼Ç:q0¼O}èäÕ¸¾pÍ÷B;ˆ{ŸÂðy#þŽòÀûðâg!O»• %¯"óå 9d}d<¨gOhDZð¼óßé~ŒÃ‚ނܯ¨çX§ÁÍCéúzñåÀ§ÌK\£·0o0¾ð+ý޾CÿDÜç^(úIð¯ûûôÓv=ž†~g}ˆùÓèŸ3àyæ ý޼÷„z!?;Ã|Â8!oàƒÐã¸Ï8ïïç׆öÃ÷´#ÊÏp¨7|Á÷éß¾P.zåÁPSæQúËõ£_‚¼i¿Ê¾ ¾Ew^8â7HžÀ-¸½èŒ«ø’}&zûÄŠ¿5ß>¢r˜‡SÆ~Ü™–oùæ÷}Šï¼ ŸÞŽ´ý”þÉ”ö»\½Ï÷¡Ú;_ýL;üø¾ê¥ïyü ¼Çø¡_ÐO|‡¸O±_ø>úqÏkú}›Þ£Ÿáoñ ö‡Žøç×!¯zOõ`eܘäÐíWÄ8Poì |~¢ýŒ—ê ¿€/â{æKâc±¿Ózî¼pâoSÊ»Sõ»7•ÇóáZßõ}¾Ï}ö“ª/vã¦xOüe{ŠÆ {ϯ¨_°Ó0®ç}iÿÙn¤ñ]¦ý’Gú‰ö€ûàw?÷`ùÊáÚv$ÚóÊ×wÜNúK¿óä >Àþ弚ÿ¢ø¾ê`r;‘Cõ—ßW¿Û¾Eýˆ÷Dýõ>ý½B¿ÀSN*On'|û~úTÊ'ƋѯÀâ]SžÇ…~â}ÆU|H=Ìgzßç½ÁÓÁ7w„vóüÎ<Ú N”úŽ„þ¤^Œíƒ?À¹ÅxRæ Þ ó—ù >õãyø(´ ô¿Ã89î…ìæ‡ QðD8Ú ßÂïãð»Þ§<ãyŽßß‚™ë-7‹ïþqù*œx ðž/BûMU>õ4+<Þ | σüsŸz!çñ=êC}¹f¼C?Ꜳ¿ÏøM…~§ýqœèúŸß+£u|ã4ÚK½ÿ‘ø=Þ[§“¡<ÆoŠòéÞãùÐ|'ö·qCô'ãÀ8Q?êÃóôSh?÷鯱pß|Ú ßSË[¨ßgÜc}'C¹Èy”ë9俤æOÚK;‘ æPOÆ“y›ùp"”ÃsÆ ‡çà7Koøo$\‡vy¸ŽrHýé·01šƒïLûÂ8Æ~¡ü¸Ž†ß¹ÏüÛe^õ¸†ùn4ÐáÐ_®?ò¬òfÃwB¿«Üˆ»ïQ/ëŸð]èwúƒò;ÆCÏû\ ëã«çÙW ×Pïwv²/@ýÍ÷7êÑúß×ôCè7öoðcã Õ{Œ+ýÁ8ð]öA”Ïó”¯~Æ^a;D°:ÿ©ì„¶w/u§~µ=‰r9W÷ žw~{•ÿ„îÇøÞ<·KíÆÞs[ö…ĹãüÔvÕ÷n=Ýò•Ëóà‘®ïQòSRûUðK¡þÞoRpb»ÓzØ~Âï<~fK½N1¾a|Ø¿2ÿ¨¿÷™ò±Ï\Æ)ä½õþ¹|f¨Ïá=üêãÉb?óüž´~¶—ñý¡?ùÞõ¡}»B?pûSˆGíû;CýÏÇÒ÷}”~w„}{>vD­+ÆCéyû£U_ÛÕÕnÛ»ñGãP½l/ÇϳWå_•ò5vN—KÿòåâoÆOÿ ¿õqœ<µû5¿ãëKÛk çˆV½Dýû6]×è=Š~_ñ¾îÛ¿#>³ß?~CøãSiyî?­Øu]NOèç‘ÕûÂ}É—óá^™Rì½¾ï8úÎŽðýŽ?gg Wû;?îJ¿g~ؾGyøíÏY{|ðSØ¿LýðâGbü(Ÿ~§á¸ºO^Pã'DÁ1á¿æ{àQàcüiø£ñ3“_ñˆ~…ßsD”¸D}ú}q ü„ßúôŠ€9Ún ÿwl'õ'¿r?ïÑPøÀ8µ¾ÀñbðãByÑ Nb_ø÷ø.q,ïªrç|·zÿ7~yüâÁk¼ |d.ã¤çÁmPÚÒ/\ƒËóV…ÑwÀ_ÅñfÜŒ³Ðs¡|Ú nˆkû§éßôûÝÆ)^n¾êÀ×…ûç].ó!8 äþe=@Î#®Œyþ' ŠûÈ óÌ®ÀßÌÌÈ¥Ö×÷xzi¦çÄßàçÐÏ1~Ѻåþ4>%¬÷¾O=[pŠÌ¯ÌïÈ!x_p‡è ¬ÌÓ¬sÈ-zÁÞ,'™> rƒ~æs,Oq½Ñû+íëU¾ûùÝý¼ñÚáùí¢à ÐëäøOwªœ+£œèþ޲|Êévÿgº¹(ö1ãͰ«Áïw‹O¸°u§¨•ކ] ;×ý*ÿ>]‹ß]ìž÷ê=Ûùt_õ²é¡²ã Up4¶oÑη|_·Ç%ÓMíÀe<šèѧÆG¶Ë^a?8°¾ZûÏx¯A}Wú–ë£ý³ËÅ/Üá'Ñ{ÆñQ®¾ƒ¿ÜYÎé…ðuŒ“!;b…G¸0=Í|ß|NåâïÆŸÞ Ä¯ü誗ã¢é}pÜ·Ÿ_ÿá¸hŒ§6%:þÔöo™^žÔñ–Œ‹G&ÜÈù—+>åøO½%;˜ø|øê3žƒßçuM\6~çä8Ojq ¦Òö߬Ûã鿢øNæë™”ÿλ\pwæ_Ê[[ï«ä'ÈQ”›¹Zû¯#>¡ãV¦ë¤×7Ç û™É¬§ezrãÀ‚×2®ôBõ4ô*ø¸Öþ³Þ„^\¼Ï Wé½ã±<=îý™ÏÄïè~ˆ#À÷»=™n.ê}ô®@÷Š\_U8>ö÷ØDÁÅW—ÉwÁ±¿Ç>ü&û{Î]ê¯ïù|æcúÎ6ýÎyÂÞ kg¦—'ñ|NùTy}¡yb»ê¿>P–[Ó_‡ßF~Lû?w•ÏÙO®Wõr> ýîóÇwªœÇKJ=à!} ì†´»Ûã‘éæ ñôÀ§wEóñy—ñ^š÷p|=ýÞ?'~Wðø-ÁkRõ8MÇ¡<Ýçýý¡Ýß•éeDÿm0ÈÁàÚrPåÛ¬µÿZ²?ï6qæõµì U=Ty{ÁWNç&ë-ß¿L¾Sâ«QOðzàôÈû{žñ 3½¼©ãqBÇ?†¸æ^‡úRy3îøØ…Ù×ÌßàÛÁ©BGÃ5øpê3™Ê“ñÞàR‘+äÝ8qÑ£y½Ìô<øÕçKàKñ›p<ÕsÌ×zþEoÜ¥û˜'³Š‹(*û„ñ¨è‹>¿!êóz|88:Î 9¯'ú§®Ñƒ³ž™éyPì1žŸÏ‘Éî]ÂçÒóØEÂù³õ¾·^žNðnÆ‘o-‹­Åøtñû1Ï©ãû=Þ§ÄMã¼äYòdši¯ػ9/O¾·s޼vqìÕœWñóÖ“Î#wÔƒsÚØ×wª\¾K|4Çs«µÿl/ç9Ω;þõÇî.Ê{ØåŸâyL//ZÅG_Æ<²}¢ŽÇ¢ß'N4ÄÁpù½)?vüŽi8Þ_ÛŸ¬kâ´9®õójñü·ø¥GDG³Üdzòâxfâ§ñ°.€' ÞÖDúœùÏqyàËÔ.àçß.|Çy õ=ÇéÒwÀýÄï/1êç¸P”îƒóp<· Û—ezyQó#|è<εöŸçsÇ•ƒ_õ»©ø•÷‡ƒ\°> ¯Í—^/‡ ¿‹:ž,rªûŽÓÇ5õ⻩ץëMÇw÷½} 猎‡òz ún/ûö+zÞñŒõûâ¼QNŒ·Æ÷Î\ïL3mó+y—êá°NÔÊ?pmÆ‘ïäTI9GJ|¼XN¤Øƒ}Mü;ÊÁ.vwYN´+8^–êŸó¹WêC=yŽú߯ëÒúw{\2ÝØ´Šó%>ܵ6ß8.ñ™ð7Æ<ˆ”ìg­þG¾Ó§r©þ¡˜—¿ ñ ¸¯uÅ~ç¥þà˜ðéùnK¦›:nx“uö~žü–Ä¿#ÿÞ4|-zžv©*_¤Þw~Oñ3ye¿°ß?-yühxâô×c<õ çc‘ÿnK¦—'u^Gòf2Ï#gàe”¸Öâ‚O v>ûù‰ó6®çˆÈ{Èa*ŽÓåz!‡©ešé%•ô5òØ¢g±®8Ÿ¨¨óN}*äËtùÆõˆßyßùgõ8›ºÂz>œïK¿“i¦—TnvÔÚU>Yñ/ql·‹¿9·î’ó Îשû×§ëEMŽÿãÃíT¹Ø1>ì<Ç{Χ]–ÛíþËôò¤ØÃÀ9Ÿk­üsþMÙ¯°k9œì[ŽSî'ä?d{XÈ#ó1P¿Žü©§$_ŸÊzZ¦Ý£U~XQðaøW®#.~Ÿë®µÿŒû_Ö§kçÝIËu}¹†Ž|¨¼wçÙ3Íôi‘›˜ßÓyRůÎ{…?_÷ªûà œwŽkQâðP®q@ú}$È‘ìU~Û,/™vŸväyMc~Pò‹:o£î;?¤ø_qÚª¸[¢ÎÊ}¾Ç÷בêµN\­L3½¤rN üXÌ÷q Ž'Š OÈO3çÅE>ôëñtéºãú!Wοšå&ÓîSãÝØ·Äü¬ì/8wБÿ“ßEÙ×ðø2Êåwç¹ï÷¹éÓóü~$ý=ÓL/©¼p¾Mx3ì\ØÇ°«-·Ÿ_å[ž»{[jóï÷—üí÷£½l{I;òÉÊNF^ÐX_Ÿ}<µsgšé¥¤>ÿ߆øSkí??ç¼nå}ûavê¾ó÷ÈC¹ø7‰p]êßñõvê¡û1x4üCO1?Q¦™>%¹±¿¿Öþ3ÿ÷œ¸ð»ôå‚¿\LùÚ¸3p5Úÿ·ê*‡ûuÕ{Vå*o„å¼è¼žÎúZ¦OƒÜ?,¾7 žßyÂkí?ã•‘+䎸hð;ëå=Š|¤¬;!Oˆõ/ðnàG‘Ãq¾Çº¤ú²~ …úO¤õìv¿gº¹©ñ“è[ð3ù¤}¦Öþ3³Wiܦžg?³KÏó¾ó¢†ýJOXoØ¿ð=êC\_pn{Ù_éwðžÎó­ûà;ÏrŽ"ÓLÏ(/ðõ6ø»ä3ÇgxJžc_Ï5çIÑû¢>—ùDº¯¯éÏòâ}{j'6n¸gÁ.ÇùSŸK¥Þ*—|¥–[ÇÑÎzZ¦N»|¨Öþ3.“¼ Øyyî~ÑR¾ã>yxÁ]:ÿñÙˆ¿¶'”/ûpò98ß/ø6Ù™+ªr¨/ß§’oËïýyÉô©Ó oYkÿgÉ58KòêôézwÊæ[ð™øÁyî üM| âò½½¡\p˜øAûC¹àGc<­kÆ…Ÿp{ú{·û?ÓÍI«xƒð'ò!þ’ßÅùª§Ï¹œð8ΘÛqh‚@Áí€ëW.“|pŽ7¥kâ#‚ÏÖ:ã<Ü’GËQÀQgšéyÉ |„\/\3뿳>ëçzácQÊ#®q Ÿ³Öþ³8O|ãltm9§üð}âV!7ÄË­¥û§L3½ ¹AQ¼ç•;á»ZûÏùØÀ½p^LûÇqº¯|Þå]Ÿ>_Ôô;ûâí†Èßúkp=ì— äÔ5xÇ™zPö]«Ûýžé榶#“¿ ¾ÿ‰â:OöߨÍ|þŸøL؇¹Oì\÷ëwí7œ‘øj²¿!¯ØËøÝy +ëe{³Ú㼑œÃ&~GØ?ešéÉ þˆ!>þü æçðõqžKÕÇ¸Ç ÈqüxžrÃä9ÑPnˆçN¬j§žcš£|Ö¥ð{À‹¹_Ò÷ªò?ÆuMå‚Gߥ¿¦Óò2]Gn†ß͈ÏÀEuðóœè4óŸ(òÄ<‡žâ|•©|ºi¹Õ¼KùŒ¿žÃO?ƒ<ªÞQŠrÞ½=Œùx(\ó}ä~Dâ~_ú»ë¯øU‡ub4”Ï÷™_bÞ[úÁy9Ãïôó@ ƒÈ ýÚú=Ó³Èó «Ù'‚»8îGý>exô )z4¥?¨Ü¨¯Àçð[̧ÿP?~GÏaî Êï!Þ«¿C=9×B?Àßì7À­í]§]!ŽŸåp_x¿Oí?ú½Žû½zžs9!.­Ïý@Á¯9ž´Þ‡:î`–›ó’Ù1kúƒ°OVyY5ŽØe(7¾j›úoÊ7Î n¾ç-§!‘ã÷§U^¯è¼c…ÔsÔ“çõ¾íT;U‡žãûØ¥ÀŸaG£Üí¢ðµž³]«'ÌÁØ¢Ÿùnˆ+ÈùKÛí¤×Æ£‘7àoˆcèú¨ˆ¿æ¼¡Ì”p™ž…ïÅqé°{Jž8Ëy]Ÿç½;íÿå'rù±”£üÂ~þ‘ò¾qTâ+ü*>̵êkü~•ƒ¿Ü£ý’#ãÌT®ý|—ü¸©< í?éöè=?ÿGß/$Wïæ¼¡üþ8õ)¯=ŽÄ-¼3·“ñÂ^M?ùËô,ò"}Á¸%ðRà¢4¿¢q©â牂‹ÚÆqÊ7Þ“Þ_wÔïÚô¹ŽxøãÁ‘ß |ÈKQÅT;÷„kúÃ×ú]zŽ¿òÇÚßOSgÿ>¸Ú…Ÿ¿ÿÁPƒ*‡û´ƒïJŸu9䛊yvé¯#é|Ç)Ó³ÈM_/üÕê× _‚¼hœoEÏõé÷ãŸúQN_:~‘ßü<ù`V¼ÖñÀƒºã¾8¯¬¾K½ßO´?|ÇïqÚÏ÷ùÎá´ýU»©ßóß¡]àjÈ[«}eÕ|ŸçE]?¾£kúõíMÛÓm~Ü,ÔýöóÆg1¯^ç9øÕãø!äðø‚‚Xçö‡çáʧ>Œ;üÁï}¡ð‘ëü ß]ŸP>8bæÚß·N»xÿèÚüg<õ@hÌKHý‘æðjÆÅy!Ìî'QÖ¿¯ò߃éú“éYäFë¶Ïe¨¿Ïîñò¾¿:¬ä¹õýz>à}Þd›Æz]ú>ÔúxÀ‹Y¿á;èsÚgYAÏA©©¾àúÑë® õâ;zÎûíã£^i}ìªTž¼¯Ú¥ß‘ðeÔ}ÑúhlGù~ÜŸ×F¿Zßõ#û'BûØï…}e¦g¦>÷'¾±½;vìF–÷ã9CŸ?Ty¶³]—Ê ¸-óÕ½zŸs‰§ãg{ç&ïÔø‹:®¾¾ç¼–â•ÇtM½°oÜ/y8¥ïò×<Çw ýòlØnøŒµùû·ËQ?Ûî…]†ñÀ¾ÆïšlG¤’?Ç}òƒH®<^üŽ=|…ëägÌtmj>~(þ0ü.øwŒŸÒ{ø1ñI_1•^äïáÏ!þ ß,¯ý\´ßâ?Ç7Ô/žßø-ü•Ü84ÊÇ¿‚ˆö;ÛÚ…?>äwêèoÇAÓó1n ߥñKQìÆ1^~˜}Œgh~7ü |÷ާýŸéY䆸'Ä "Ï+~Häj|y4âLGEãÞsÜ”‘ †ßÁQÙŸ. ÿ Wø/þÀ?>Ê >#þËz8øö‚Ÿ0æÊÁßJ<&ú ?åp à“Œ»Ñ5ùD‰“F*㌨¿~ø¶ˆsMû?Ó³È ~qð1GÂ82ßÁG3ažÇ¾Éó˜7c>¾¸ž1oÂàP(‡u­#>ŒhÇ:èyãcŸÀ×´ÿ,ïõ¨|ú‰þ‰ùe=ïë=®‰ïGæ£1QpÈá0Ï0ý¡Üá¹ ×胡¡?}9Z{~Ì4ÈM<Â|…ÿ>e¾‚ÏÑsàô‹žÀGè ½è?úkÇäZå;>˜Êaýß{ÿ„~6°NùÜg¾w¢uµš?+Qô—߉ý|‰üò<ø—ëCyì+ÐÓ¬/é÷˜Ïû蛌óMˆoÓÇ–ö_žã»14òä)Óuä¾`>Ý®~eŸú‘´ÿ½¿=¥ç´ï4>%â8Ì<_–ãý1òÇ÷yŸçѦïWüÖGäŸûð±ÊÁîЉ‡a^Ðs«¼š¾³C”ö8¦¨ž£¼hÿp½x~›ÊÁî¡ybå1}‡v²¿xž7‡ùÏלw‹x&Æ+âsÿÏ0Óµ©ãàkËPÿrÎ×x—ãá3ŽäŸäÜ.öÕ]Ÿ$oøk|Ž8Ø‘«á{JÞx¼ v8­?ÑÎÆyep¶£=‘ÎÃ>·¬úº}Púi§Ê¿Wרé/îsýÚ‡ÝöeÕ—zJNoR¿ØÈïØÏ¯Iù›ñóuMßÕýˆC‚z\TVðdº6µ¿ÿþ2â£à÷ n þ9ðø ÁÝà§Îÿ[Ð/Œ±ßOï—¢ûàÀ»à—=êÏï1þEˆçÔÑΣzöéùˆW‰þÆÞPü¤ô í‹ñ:ð¿â?Âo{$Œ¸ü®ø?c¾Î€g6)ÆóÀßÚž§°NÿdøeBý)»J1£þ#—Î{ø¾óJêšü‘ä÷’}ªÇå’gl —*™è8õ òJþ>òññòM;b^3ètíù´Ð¹·o<´‡¼|~ѾÏùÐÜŽ²žUù¡ÝSôý­kò džz»_õW°˜ åO¹"¯ùߦCýæé×´ÜLבÙsй“e¿q={9^sêgŵ/ænOåJöÔBç Ù³‡Rç×,wӼ׫ß5^3á}ä„ßÉ×§¼Uýt>¦\ä ¾tþL=?ø*–W§þªo¬ý€ÜÐ^·ïT2Ÿwö·ê©çªï«}þŽÚO?ð]ùªrÃõ õG‘7•3•ÊMõ^–›s’úþ˜ZGà‹yä@¿ó<óçL:Ÿ¹œ©ðž¿1å;çq |åŠ\²®Å¼•–—Xnó?ó?ë×Ô~rB½iïD(ßõå÷Яôà ýÒ›ö·OëQÉ í óíí›IëSÕsmyÊ4ÈÍ˜Æ Üíˆ(ñ*ÉIüGæuø”kôˆA=ïx“zÊ>&ê!PÇ¡ õ0.˜ïëyô¸ˆ_ôûúåöˆ†óÇΛ÷!”CýùnŸêÅ}ú‰ç¾Óõf¤?Ñ›èOúßiŸû%í¯ªüp~:”¶×û'×7ÈßÐÚzl¦And—±Ý‡ó5Ø}À5>¢þñ'wèù=P‹üÎ7¹K¿ïÔ{Ø¡Øÿ‚O$¾ø^}7ž;Ó}—s}¨¸KÙ÷Ü.ÙW—Óõ®0ÏR^8oj¼§êoœ«hG9ìã÷¤ü×Ý®öð<íçœ ñ¢©õŠÝÄvËмí›|—ø‡O„ùc< ™¦œ•ãÞ|¥ÏÍãÀo‡_Tããrj¢; zÿÎ6½‡ö×t5øS×LjŸ†8=¡~ø'ñﮃ³¿êŽtþµß ?Šq‘j~õO<7îrnÒõ¥ýâgÛƒ©쿞´?å»W¯ý]~'Úue¨WÎóynrd<Œñ,´®TñïÂ}äʸQüêÒ üxäæpx8åƒ73NGõå½>]õ°¿4|<~yâDÀ/âðù=ê}<åc?w(ð!rη÷³'ôí¦þÄ颾|—ö‚kê 僧a|†C9Èe¬ï¡,7ç&7êßø!‡Üd~O3®ß?Šßy_|€\ßu0§–ö½~œX”Sp/ઌÿuü£”ÿýíÁ‡ù>í'ÎYðsP_ƒ³ä»àãÀmçªòø.ù ÉãbϧC¼-ÊAn‚]¿#Nóê>øOÇb¼ôüp–›s’póÌÓÄ߆܀·„Yÿ]£GLi|®Ì×Áog9¢|æ}pSÆO©é)^à çç£þéwü½#¡¾ð?ó4òz<Ð8?ÃwG=?ª|¯·ð»®Ÿö ga\ÜN]³>ï]GÞè'ôXú…÷c¼Þuæ—Lב›ž0nÛÕŸèíèá1ä6õ·ôdï7Ð;(×|¯çÑ"ÎìxZ^G^Môö¬?C½¼¯Q¹ëø¿­¿±~!Gð-ûpvÌ#1^ó‡óuêšv0_ÀçÈÏíýÕÚ¿+ôýýÄ:r¾~"ÎûãºfÜŒçU¹šé™©ñfj<*û{8)pTÆwÝ©÷ ºo\˜Æ;Žq’7ÛñîÕóªø4Ÿãä÷GÊçãéôží<§vĸRn·Ê1Žï<œòíÇþÏ}{_þ•¼÷§rdÜœ¾·(õ.júøWì4i¨7vÆ»S~ïˆg%꼇á>åÆxU™ž™…߃kâG`çe¼–äÂùðt_ë€ížØU‰‹½{·¿¯kðdØU{(W÷¿C×!ÞS•70mWG»ÁÝsã;àЈ°Cårž?Æ%Á^Œ}˜z“ßyØ¥rÀÏÅøS{U¾»'” zÓ!~ŽÇü'ãø€ÓÃ¯åø kÏ/™®#7àPì—S?â#¯¸(®O÷u§ÅÏæ¼a*~¦|â#¨çÛãy]ãÇ ¿S>þwüƒø Ã>×þ>ž³_0<7ê‡?³¯üžŸ³?–úò¼®¯†v„~sÂuî;¿¡Þç{ôGÈ›îz¸¿/Ú©þ§<]®=¿dºŽÜ€ÿ0žIýñ<^f,ÞG¾ zÎ8•qR¥>Èñ-¬¬{a¾á=ä˜õ>ŽòL»ƒG¹‰xtÆÃóãÇ9¯7ç%7Î»Êøê=ßñútm¼üÁ{§ï“óPôwô™¨W9Ï²ÊÆø™è”Ã{ìW|þ%¬7è÷à䟎ý‘Êíå>e¿ç8³zŽ}ûúƒïr®Èíý­ç…~ŒñcFô`ô2‡þÐ}ôß`Ìôå&ä#ð~þºr|Îó ËNõ7öðOÛõç&±—=¬ò®HË©ð]åwmâÜèžô9?/{Âòcª/ß'ŽõßVRâŸÑÞ?»BŒ«Ïaò}ãqÔ۩碧ÊzÙ.¨ß§þ>µ»åƒ¡½w«Ü{u­ß?Nõ²ûš¾ësª´ƒk•ã¸ê¦óJ¦çFíW!/v}ü Æqèwü‰øe$Gö§à? .~ü:’û]À“ÈNd{õ®ðžæëêܼ(þüøoð{€ËÙ«ûøE® åà7¡b=cžúÁxQ¾çx;ºžá 劅và/£?ÁE8.GãøÂsøÿM¿ã¿Å•ã ^˜Ü0à à;üuƒa¼ÀyàïŽxp61>žýñïgJãÚø ¼ˆãGé}ûÃuþÆ¿Ž¼;”Ê3.‡öé½+âO†B=ÜÕŸøXøãÁÛP^ÀgA¹È½û[ïé\›ùDPÌs Þƒ¸jàÀ/õÅñÊr“éEœ_ÀÏ Çà2oP÷ÁûÈÎófV80ý®ói¾?X>ïï"Gı2¾L厗×~žçˆWˆ<Ë~Ù’]Ãó$òDÞÞÙ´¼L3}Zäg,ò©ø}+â(§ÃzñªÈ›ãêwîó\ŒÃé¼¶åórêá¸Ô‹û*ù™OËË4Ó§$/ìSˆûëõ= ~þÿÙû»]»Šk}ôž‰ÇNœ,ƒÁx‚éOl0à Yë¿·â Èu¬ëà6ÖuäÈGøiŸùˆ3$$KH°Dd-´ô¾Ûãù=s÷6<“Ó6}œ4UïõѪU«Õ«=ÕÚø.ä7ºû½”·ßùš÷ö—ö½þ¿äó]zeü?MüzãWÿIûI”áÕþ¹ÒrÞø¾¨ÎèÛôÏY¦Éï€ï9çÎ]àÑÕ¿³ùÇlè{R{ýžÿ¾+áVÍw÷ ÿÚ|ßso/çáJWú¯P¸ÍÆç¼³I‹7;ãôÜZOóüþr~´ü—©ï‹ÞîÇ ÙYüfœ”yŽÜø·ã^ª|Å»»?Ú8Åy?â@¬t¥ÿ -î’½ˆýÊ=8L8ÉœKÖŸyzäƒo=í}èNžó·}o=ìOÃogÛ;:qП¥>ö›oò<óÑzpØò^éóA‹ØÛyô«žý.{àŠ‹ó®?Nåò¾‚=Ÿÿž‰óÖNñÔ¡ÓÿéÄ+œLyö`tħî:pdݧ­ôœ7î-À³À¯¼2¨ûôÐ} ÿ#pý'Çsóʼ˜xÏñ4ãZk—?jÿOóK>÷ à9¬û´•þp´ûø¡|_tß3ýÂÛ廢þÍ_\ÖÓû:Mç=ýî~kóë½À|'i¿|Þ·Ï #ÿ]õøžÊÖOTô”~ö>©8¡ùÞh|ÏÌÏ~¿Ã19—÷O÷ã8jw9/öqCÒißùÝëë¼YéG÷ãÂí<úUÏŠ»I^FÅéÇ .ÌsvÊâôœç¹säé×c/ùÏ-¿GÚŽòø`÷¬=)õÖ>”üãÞÅJWú/Í›ü¿îãl¢‡ž²c6n£÷Ñ[8ë?ÜåÐ÷¶w!ù®Œÿ¸öËøaßÇd^ÀéÔ/TÞÃÝXÿožlrœþÓØ¥ÙŸ{žuð1îÅ•,×Õ®ôy Å³/Û7À§çüµóØ|ò¼qeSîêã×ç•®ôy ½gå¾ÌÉG¿~WNfpõ=æÍ™ÍûÃîßJWúcÐúû4zŸsÏúû‚ù"ùœ÷ðs–ó£ž9qWWºÒç‰ÖîåÞ=;r¾sz?™ý®÷æ“VŽ?0öê_¬ß—+}~iýœð Q,Ñ~3ø{™þÑø¨ŸŽ<ç£+]éóDë'Œß°é‡¬q~¾øwª?¦uÞ¬ôù¥õ§Eÿù«?@ïwý¶üØñsÆŸ]ýv­óf¥Ï/­¿“ßúD¿N‘GòïŽ~Ó±¼?íyhýx}¥¿êU^ÿôÔ¸ÍxÄï-Ç©ãÏ¿hü¶×è[cÜáKŒß^èôÛ£ýÎ×ÑŽu߸N™õWŠ)/þNÈɸ«n·þUòž?–Ëã½}œu„ü<‡W³;3øRÿƒšwô>ÀÉÃïÀëÓkåéwゎþLü‘õÞIž¿8ÖÆ‹M?´[µ)Ï/=²_…÷£ÿõ{“üäJ?ð7ã¤Ó÷oÚ:¤¾ãIë¯uCÿÌ/tÎãnÜPü›W3­~þ<ô{ò9g’yÛûLGB“nÅ}¦Þ3¢_ÖóèŸûwÚo{ýʼí=&8Jx1ë?&sÈŸôÑz@Ÿ2þõ‡£ÝðMë¹£ŸI[OÔ‹ò¯ò­ñò¿÷ŹYWèAêÅ¿þží’«ýâŒO*î¥ñÿ͘Gü.ñÍïK¿ëô¼7íó“îYýÊà—ž¿6úYÕ‘‹ûnê‰ü×3éò>±Ô«ú¹1^ê‰~5îá?ã}ñ¾q!?Û¼¯÷ô«”ž‡â«ñï,ß;WªßŸËþÿùaÊ«÷Î’ö~ío–røD¹Ì7íV>ä«_-åT¿$ø4oSã=FN½ïk=ˆžôœí~òñg/­ýð[¿ý‘ƒs8÷€;>G~\*_õêOžÛŸ6fÆ_ÿÜ?®üÌsõEŸ{˜tïÛg½ì}fó`èƒu¢í|¹ì?üQÛ%—á'Š\ègï3“Û©Ôùö~hÚƒ_ê9'ùà?üõ¾¶v³žöþö·Cñ).ÿâ®°/Ô_Ožï†Š£ÈŸÈñ<Ç$ýª}cú;v_\ûûÊ¿‚|)ß8¦võÀ97N¬ñ3G¿Õ‡’‹v/Žüü­¼6úO®ä¥ýÓáçdä6ãS:ïÆß+ƒïóØöàéÈE½üÀOqd^òæ?†Ÿ˜Æ— åW=fþ‡¾8ÚÁ¯ø7üÎh‡¼äO;¿/þ²Oê¸êoãÝ‹qz;ÇÙ¸?þtðKè¿q0Žâ±ã5Þaê¿8êgǓƟø–¯/åPÿ@ð\RîrÒ­7i8/ãV½L½ìï©Þ¤Ù+ÙÙ+Os¤Õ¯ßðgo¾á®ä¹xN3®¼šy€_õ’_ùú Ï6ãAMJÎ↉Eù®l\¶ö?iøã€Ï|Ç´ø¤úIÏÄ—¢WÊ‹{Ôx…ú¯Ÿ¡ò›WÖ'ü/8Æ·qUÉ[{IGr7nò]ãþÖ'ÜJ?.ígE?ðo\¥½'ÏÑ.94>Ÿú“ÿê¨GºñõBɽqô’žùÞõO¼˜xœâk¢#Žcë…O/SúýÔ?õ·¯‡ÿÆýÔŸ¤ßýÇGãVN=›üãoŽÓÐ ñõðñýí\“N=øˆÿýýþç½z¯ *žãõ¿¦}|~ϸ§úc|/Œþߨ £¾Æ+Ô”o\SýòS¯òä;ã›VÕë=ýN>ëÆÛ£÷£ÆEœióEZ?äóëò¨¿¸cõXŸÆºH¬‹æmãªÒýëŒõ¨ós¬ôˆ¼ÉKOóˆ½;Þ¿=ú‰_´ã8ÇmèÃŒZÜœçä(M?õÎÛѯâRµk¼”'§1^ä&γ~_ërå…ÿ1ðOÿì߇tÌsõ4þ¯ù;ønù±þ4ßkû?Ö5ÏÍŸ½äGýOùß´?±?ò?lŸx:ïßõtŸ–´ýçÙ”gÑ~Ã>ؾôQýNã0&Ÿ}‡}³}I÷1Éo¿.¿çø°Ÿ}}ôß8ö>@êµ?)Íú2ô¥ñÚóüÍÑÞÙÑ.yMùà›|§ß½s£?Gùs£~õÑOûßú£ÿöE3þ§ú<ï~ðwqä×®~»§1¿Ã.|æ[÷ûÉv”oüOzžzÈÉ<¯þÓsýW½[ŽkÏk¾ýnÓ¿UÎSzþàäá(ïœæÁ¦ýÆuôü³”ÿ|Y¾ç[_mÚÙÙÑnÞßßÔ×x©¿þ?M½{™÷üv©_wÒçV¾¯$þ"‡â4}g÷{7òäOÏùØÌï<Âw¨ïhçRß&¿zN.û­\Ïõ¾Tú?ù…‹›ç/øqm}á³õè=R߉%ÿí7y;…Ãs¾å<//ǽý¥oôàÅÑ?~¥㯽Œgë~;þÒGÓÿo–ýmZ=©·vÄé·-ç3Î}k×qþÏð»å󞋟ñ${Ž=®¿,çë‘cíìFì3ÎïÙ;ØWN§>ü{OvR?Rž]’ðÉ®9ÕNåõ‹Ððéü´vö!v.ýˆüÚÿÿòcÿÀ¯þ±#¦?=7g¿Ñþ“†þ–ù¥}€Œ#>ø¬ÝLQ|³‡‘ÛÎçȽö‘Ì×-@™µá/ë‘õ½ãKÞú£êùõ Î¹»ÑÔ'ùèó¯FÙÓØÙaù½b7e‡…C(ĸ¥åµ?Ëðó£5ãAÇ*®ÖùÑ\~N}Q åS_û ?Oa‰‡D¿èák#ÍîÇi\Î&­>óܼ˜xã¡ÜŒïÙç)ÿ½¼·âC{Ö)zî9ÿVp òÁ—¨ï…¡'ÙÇO0ç©þâÓûúÓ"/ùÂoqÉ×õ?ôD;yNߌcÇ5”¾À}hw–Óé®c›ç‡[éÓMïÞøËFßø¯„ÿ;·Ô£ý8»Úç—£âý‰Oظ…ƒZÏ®oҭǼ¾<Ú͹OÓöCæ¡ùe5Ï.z.Œ´uÐ:Ÿù|Øã²Ò§›¯t-úï)Þóô#ë¤û¯±/1ìàCûa?“÷{K=-~È<~ºšÏÿƒï7Æ<ÅOþ[îüèOñËÿåו>Ý´úoCïìcNŒÿ•ú{N~ónâñ|'ŸùvÇz/ßÜ/©Ï|;;øðýõÊÈoª¼ï£ãôÇw¯ù3€t¥£ý~ÏwúVú³¥ýÙ¹Mô°8Êo–ß)=9²y^|ݽåzÞs"8¹o‡¾ûž}aYÎ9áŽîóG?ç=÷}˜ôh¿~ðRÞùÄaËJŸNÚsÞq®ßó]çëG–zVûÏ<÷çËpež7NT¨úëÏ88æ›óîqß¡åÙáæàÍŽöÐS©ïÌh}j7+ý;´vUöͦ£‡µ'.õ¨vmöç™fUû³úàÌ.ŒöŠ? vô7Ƽ¹œ÷µC‡ÖžrìÙ{ƒ/vký‡ƒ;¿Î›•þys~EŸ&¾çʘ7o|pÅMÒבïÊΣß>.,ùû>õȇQ|Õ&ù¸2æGë׮硣žöÿ«ÿ®•>ɼ±.Ãûw¼óè·ÿ¿°I·ÜÄ™‡4þ7boësë~ÿ'R¾øtÿ7c>ŒÿòAï᢮Œ÷—Fº8|ëráïòòýaÏJŸNÚïûû~ß ð`/ÿ›yŸÆw‘ïxß5ã{¡8²_ºï}wÀ«Ùßýn|giïÌΣ_¿»Ü·9w@½ú©~¸Fõ½¹îÓVz0í}Û£}rO´xÀ/’þjù]Ñ{ë)×ó²”ÛÉOý=§r^v'õßK¹/–óÁù]ëý|S|QùWÏý ½ÏŠÿÏ–úïü­÷“¿ÙÔ×û©é§sÁß•>tßD(?ð.Ń… ±C*wfçѯöRÏó=_¼Ó«³½”ãW䵑O;ìK3ž(» Ü\‘yýoKýo}¨þó¯ ükë¼Yéß™7ðdüiÁzÎneçÑïnðþŵ ÿpwsOf?ÞmòýRóóû5Þ¿7÷~Úm\\ï¿(¼Ì[ã.P¾9?÷ÏçßpDøg¯=?ø~õ¿o¼Ê®Wäý®~¦ðÆ ¾cö›ûõÁuJÜÍ·†Üùi±nÁwˆ/Xœ©vǺTÜjèûô,ôÒÔóoÙ:lõëò²ßûñ›«õ}è™÷ÇFýŃŽq¥ÿÚ½–üð1þàcÎqhüÚÐú‡3~c\õ îÞÒÿTñ ¡/ö^rÑÞ«COÕËÏý2ßQ~9îß{½!ï ä›zý_‘Oî þËû8¢é\è÷À_o×Ù¥\û~×þ!õžH=èKCßèGýÙ¦œymÿn|äÇ·} ÿˆ÷äãlâ¨è7\Hý@Ñ_ü$?<¯÷ÓâåÔceß‚ë–y¨ÝúUëGñÛør#îkRnâ»ßý.ž&ïÉ®òwƒ?óþToÈ1¯úà»ñƒ?ò<àðê³uÔ8ºÒ8–ËqP.âIÛs(žÈ8Ú‡º·ó íZÇF¼2z}ÐwýóWœ‡{?yÞý»q‚c‚Sr¿E~ãí~†´ý¿y9ïÕï]èÀK•ïé¯P½3~¨ï‚q®T<–ùò‹e;}Nþ;Éz)Ÿé‡°þÊîö”Soæ]ïM‘ŸqÇǸÕ{>¾/ŒGøë=ž‡c};2Æ¿ôè‹Ñ>œÎ¯–ýúgñ4­ÿ³Mùâ‡>M:úéù?ûÓs‹Ì·Þ?„Ïp¯3ïç¼,JüÌ/ßßÞ­²´÷]húÑs¤ÌŸžÃ˜opÎò.¥ç/äæÊ9çø¡ÆÙ=×áÿÎ}µÖóÕh?ýÞÂwéyä8Ƶx®{£½ÏC;?bÒŸ.åÝ{µi/jÞ{­½ïGŸÆùUq3ü™á+rpÞÜõ/å+wãéÞiøÑŸž¿‰õÛFG¿žXŸÓ~ïÇN?eï5Eý LVð@ðA¨û«ôι;?e§ÏϾŸ³ä㟀ÞcúsS¾É½`÷ØÙ3zÎJ>ðQp!ìú£}òåG¡òHù'Tyv õÝÐö[{ì'SêgW9=ø©?²”#—W–õµ½7Æ{÷ª«?iǸµ¾<7ŽúÙ¸©y>û ÇžÔzSN¦Ÿ@í'í`Wzb}žþêøA€×aïýãTÇP?hÚKÿȃŸ…‰‡’ïeù¾‡;ºvàŽØ‘á=êÿ"õ¡ò©_úÜàkúsóœÝ];{K¹•Òcú_ò7ßù·«ß:õëç{ýUý Å•CÊ_Æšrðeì’êM÷åÿ”¯°”W/¼Xý >ç¸L¿CÓßßù!‡ŽoÞ×/œ|øëÇ™e¾·>ãÿòËôÃ7îÝ}ïvê+õßþMÿEW'?ôöñýí{õò+VjiŸ$þ…ê÷'‹ß úíJ9ÏëÿoÔË/QýWzáRÚoåÍwõÓƒä7NÃïZû_?Oy¯>ùëÿiô{úiªŸ·‘~gÌÓƒäUrc<ë*õ]íö=yño¼ÈÑŸúrÜò›e~¥±î|o}VŸñGé÷¥e»ÿü¼y²òíÿ¥)·¥n—³ÞáèóÅ©GËy¸ï¯l¹ŽìûÛúPbcþ×o›çcü.XÇxÊgý… ³õf]ß×ã<ïÿ,=ó·þØð)í}Êû?šþÜÈqêû–ŸIršý4o¬£_W¹?Ǻxuðwy<¯ÞZ¿©›ô?­Ïõ‹œzí“í[›~¼¾>q;þŸí7'ÎülÚ)Þ|è…ýSý§üK¾›ú÷*¾p)¯¶çÿ¼þ×’ß>vÆ÷œ~¢íWôÓ~€1õL?¾¨ù1ý­Ù¿Õsè8‡nûö‡¾*‡Ñ/ßòŸ? ½7‡Ï yêçVÔhýïÎö•÷¿ ëLÊy¿;êþ®“zõ·÷tþµySÿü¯O?üΉ¾øçæMÏ£¾õ}švÆ9ZýÒß[¶ç^aëMº÷ü>¼Æ¹Bñ†¾[ë<ý_=wK?[ϸ‡õ燡ß%ÿÃQÏ‘”?šòÎõœ3ò%‡|÷ÎóÌéï¬çGßuB½Úulúù[çAÖOãeœŒ‹~9¼¹‡Ïú‡óÎZÖÉž£Ý|’ó‰e»=g“ÿ·Ëzê-úÛs›ß-û×vÉmœ‡þ³ó¦vBçýÎǧ;×÷SŸx^¦ßµ Œ8ûçÿÉÇ®óËe¿Ø5¶øgg:¹y_;ûJÆ»|$];Ýiíç¹sþi7T;Zô´vDv(vTyýšqqØM½gOS¿þ'öBv¶Ñ_v?òT»OqX›ò+3âÛ4îÏ·ƒèwëwÎËîUÿj#¿~’Kæký–±²û°;×ôP?iy>ù{a”Ç/»é8wúÞó&ß[õ»Óz—Ïÿåy).üÜÅŒ·UüŘ7#žbŸü]ûÁž]¼Uêçw‚žF²ì·;?jr‡¿¡æ¡üÖ‰Ì÷-ýJîD>|‘wãæ™_iÿÊÈo!¿â:C_iþgöÒNqky~Õø¦]ãüOâkVúÓл·2N72nÜߤãÿÿî7ãÿäwo&ß­èÍõÐk¡7C­wp”ê‡÷º™önæù»¡y#üÝ’/iõÞJ~üý1ü^]êÝÝÄ%¸{#ôßSßGÙðùÇ<ÿcøþSžÇ?ýÝÿÀOêÉ_Ûù?™äó~Êúþ=åoéòéïÿ‘&'ëeÞÃkF??WZ¿{ֻĩ(®Ò¸ÕÿÞ_–óN.qÎ#8-~ÍGø>ë?œ¬y  çÉOÙ­èúÍ{|¼»ä§ý”ßÿÇô3óÇ|òÿkñ'ü&­¬m磿.׃ £>óéFžëün׋”Øÿ&²ë=éÃ7c?°Ùx5>öØïÙߨÁSï%÷]¡æ}¨ö&^sêIã§Þɧú|Ï]ú¬}û'ó¹þü’¶ß´¾7^ï˜Ç#Îö–\ííC‹;µŸ«dëSÒï`÷å¾OÆýÓ•þ´Ô9DÓÎNmž×ߘïqißï¾·;øöë{žžø.ñ]t:içÇóÜùïú£^ïñ ß­žœK´_¾ëáPé+}¬¿ê”?9êSÿìï«Kýí¹œÙéÔã¼A| çó¼bœsmátO®û´Ã¤Å3~úÕf<ê·l3ü;¨rÅUÊÒ‡Ôç|xâ:{>½*nôÎò¹soí÷¼ö~ÞK+¯ÝqÞ9q’Å¥~ªÝ¼o˜ÁGÏ·?[æÓÎôïÖshöŒðÙótõ¦?=ßõ¶_ÎïµÎ›Ã¤µSÀ-Â)_™qv¸Ú-åcŸ€g„Od?ÎÿHñ²ð•Ú=¥½äeÔ{É?ì\¥¯,Ÿ—ߣ—yl“ßΓúØÇȉ='çiæmÛ™q‰àQÏ þŠÓEó^»ã^LëvÿÃÖŸŸ+­]ûÍAÙ³‹cÍxžMšý¾qÓò¼ñã’¦7æKã²Ñ§¤é™úÑ7Fþ ƒ/éâ–Ï·ú9ãHOœ½–ß¼6Ÿë‡&tà/Û>œ(y¨΢rmÁåúÑzÉÑ8¼±|¿ÒŸxÞXÏ }‘ÞÂAû?°®znžøÿJ9~\Õg~˜ôeÆ›„‡ñ7c>á“>M\ЈëÑ|ù“…ë?1Þ7n]úã¿s~šõ•rø:;ä7ï­àgüŸlá†þ{¥?-ÝŠã2÷''ÇsóA9i¸ñú²?+nf£FÅÁôûç³e=åË÷‚}ÊÉèá¯G»â Ác ?1ųdViÆ„·ùŸe½¯IS®â5~>>O¹óéøì.û·ÒŸ–öþ»ó²‰kwy°yßsŸ¬{ÿÒó²èEq0ΟÜÿ޾î—ÛèEù?ñz®6ï›Ï7õ´ŸI7nbæ!ücÏÛf\¸“yŸù_¼œŒþÂ¥ß=K¹O¦ýÌמrt~øâè>œc®ç‡J÷ãñe<Ø%ØØ=Ø/ø)®&ïá®füáWÐÚEäí°³fßS<Ñ›£=ø§-\ÎhgìŸÚÜ@ãK¦~öÅé‰]ŠÝ¿~¡´3êí·~wjÇJ½êáǦrÎ{ýxµ»ã^äJÚq‚w¹õ—èJ3Î×CßK¹iOg?¿•r×ï§½H>x8vröT¸‚›»›tí÷øüx£¹ŸS<ÃÍ<¿>øáw ýcê¿öÿ,Ûù óéOã=<Žùööàß|#/r¹J^ð@ðFð2äõ§ÔçCÖ©àÖ:~·þº˜ßß{üáÿŠËL¯1Ïý¿šçì\ð‰þ—á8­‹p{¹ÇÔõÂúå99náöÒ.à{ɧõ^òáãÒèy嬯֫ó£¿ô¿~Ȭ·I'f]Ã×rœª?ò‘¯ùà ÖWvmöuó´þØÈ/å­¯æ=-.%rÀ·u^»ú ï³—÷ðäeý¾žyæĸ}/.çþbÜ·ôÏÿ >+œ-9ÂÛ‘'ý°~‰×¬ŸèQOøü§ç œ‡zíSÉŸ¾:äëÿ”ÞÓ÷✒¯ñ£7ùö÷7Ê =4_.zÅoþé—y-Ÿu«xÞ‘ÆŸ´ñ+Ž[ýä=ìþhè'¾ìÔCß»¾›‡ÚM=s=gƒk¡‡æÉÙ!?åà&ýÏÙ·˜ŸôÒÿ½7Nò‡ú´.YçÈÑîw>Ÿr²þKë÷Yó)Ï÷ŒÓÐÛÎ+ó"tëÞ„üú?Úµ¾Ÿúr!üÐÛÆs&—Aé½Ñ?ó άú›çòõ¶ã®|ý¢ª?iëˆqžë¥ý¤ùݸôä4úßﬡ÷Ö!ãryÈÑsõ×âÐÏ·ºóëÊRo¾÷¼éyLÚ›içpEÎAà“æ9sç;Ó|“q:“´|ôÈÿ›ó–ÓæuÚå‡ï¥Ñ®y켇_‡ޱ÷ÑF}åß¡ÒÓ¯¢s¨îgSØ«CÃ^ù¶®˜¯Î^r£7ôdú3—oú}uögÈϺAæ½ü™çöQsIê¡ßäþ«Ñï7ßä¢üôËyrЃêgï™á?ô_<¸½)¾'•侟ºo6üoôeôñÞæyóÁ[y>p[ŸŒ÷æÑŸg=Ÿ¦œv½¿³œ=§—_>íÝ¿_,ëq/Ô=ÄÚ?¾\ò[üàg£¾ÈN꓇‘¿y‘cÏgÕŸþlñùÝRîîƒ2qhá»~ÙIäŸÎc[ßÃQoøïùôçË|}þérܪçÎy§½#c^†wùmò[Ê¥|¥þ<7NÆ!íU/Éï‹eýw×8¾—|yï¼ûŸž7ÅCENnê¯}vâ…Ø{³.ìûµ•/ÿµïª·þ“Ž"ëDíäìÍÚQŽ8ÿS[” _Ågäý‹£^õi÷ÕQŸòú¥ÞÆsü“»âV:ùÙñá׎y²¿{Ï.ˆÏ#<ÛÉ!oõÖŸBž³wʯ~ã+­þRµgZ¢—ûrKûÚ«“¿AüáG¾é/òÌàW¿£çÃFùbßýßqÞG•vŠ Ÿ}?Òü•ðCRI›GÓ ÿ=Í—v?Uûy¾7Ú[™þóà­øÁküÓÐú ½àýhß—G[_ÞŸ }uôϼƒû¨ž<m´×thýAyê·y¯£¼uŠÿë~ê&ù¼WýŸŽúÛÏæÃœwæ‡~“Cýýèoò7.ïxo½Õ_óbúuT¿´udòc¯?ü‹ó¦þ†ÞV/ÐSz.=ýPNÿD»¥‡œ_í©§þ‘†œ¤§~Ìy×xuCÏ˯~Ïþ'ÿÄGµž¡wú5õ´ú:øõÿ§Þéï¨õ%ŸõyÎÓÙžôéQýñ?è¹ÿ¿úÒ¯¤ë7,Ï•÷ÿe}ÿýÓñ¤_ý¯¿)ã<žÛoøÿƒ¿&óÃÿ·ñÐþø,Ÿê _ÿì¼™~¾»ŸÐîŒwþzÈ)ã±åo|ȵ¸&÷'.ûÓôÎãËõ>Éoåwɽ—áçªüégþ÷ýz_å»È¿þ¡†¾FÞý®ú|S¾ß!é¿—ÈW½î‘<\>Ÿß“}ÿí²½îÛSñlyßï5ß—¨ï¥;©Ç÷€}Öý¼Ÿã£]òÑ¿ÔSü œÑçK¾}oõ~ùOüÞÎàç‹ôc¶ÿõ²þú‹"G|5.C(?:øHýÿôyZÚí¹ÅŒ}+þg¦En‘_ñCÎßàŽœÉŸ}i¿Ÿá¶œë(§=çB¿|õ/í¯y}ï9’zðs"ÏñA.ž÷|0Tû3>ˆ|ÎmœâÓ¹žïçoFÿ”w¾Gn»Ër•þÍó8çû'G?Õƒ¯y?ÓøÏ¸ÎÓ¼ßtÞ÷®ŸžÔëœòõQÏ©1^ô½Wš|ä8ï‘ê7º—ç(¹“ÓˆKö½çÍ<gGcq>èÏ9<¹¦ß­ý…Ÿ°sK>÷ï‰çyíûãýðW¹Å/~ðG¾[vðä«]#ï•›~—jÁšúØÓÙo× M}µëåùÀ{ôüÎA}µ×‡âƒ\Ú~ê¹zÙ'j·ÒPüG7ô«vޤÕO^Úamüº¤Ù{ØÁïÕä{{”«ß…´3ã&â·~’~sðͯû{¯vŸù¯½øÿ§ç ~†¨ö<ëü_ímá‹Þ”Ïä#¿·_ž³÷šÿcþXoèWõ*ïÙå‹RÿözùÙ÷­³F9ó©xŸ¡WÇ8V¯êý˜/ÓYå:ƽvÔ¤_õL½©=Ýü>@nÅyŸ´ñ³~L\†zØñ凇1Ø;ñ ‡¢?ÆÓÛ´óÂÿ{ãÄùœ õÝP|Wè´¯Ÿÿcþë7)Ïá¨øÉ„Û0?w‡îÍù˜üÊÛwÁ Ø/iï€xýÿ…g÷7§Ð>x€î;ÔÓø¾ëÿÍóD»¿9:ÆÛ~yâo8ùè͉¡wôÙ÷}¦x™ðHÎ#æw®ïüyß͹…s|úî‡Ó’ÿ¶|¿¯÷yžvœólÉI?ç÷õ‘”w^â¼¼Ì÷—×ÿ›ç‰Îø£=_ýl3îÅó8W~úõFÓ×ïòiÊ=L¾{ÑŸè™ófçµÎ…ï{»óÛ‰2ÏwòëùwÚ)ž ó q8Ǽ¸«ü¸W=åÔv>ßÐÊoö%'þÜ3{¼WúÃÐÚ÷Ø»Ù÷¦?›Fº~¥’Ÿqú‰ò¼8•¼gW?¶ÑöÇNøÛÑ®ç#>HíŒù_i½/Lþ’oÜÇ®ý²~7–û°æñDú¼¸±Ñö7rXçÍsEO®q÷2ÎpâÕS¨râcÁ¯“4ZœDêƒ×âO3ïû\ZþÐ-þÓŽò  ß Ž¨¸râÎx§Êïûýx¬)_¥?íÇæýa÷JÚ8~âdæì~<ÂèŸ8„Ûè}è[ƒ6î`Ê›â 6cž7n`êkÒÔ{eä+øï—p™¯ý¿6ú§þÆAL½o:Ê_IÞå/tä|Øã½Ò†nŽ:ôíòÐÏ+SCßú¢ë÷åQŸõùÒÐËÆMþ·–úºÿçÿļÒþhoÆE}g¶§|øi¤g?ƼéÿUÊ5në’Ãç•þ°t Ÿ>ñÚ'½ƒ'müͼ÷Ým?µ»ün¸=Îc÷ý¦œ´ï…‰ó„ã÷ÝÔý]èëƒÿ7G¿ô³8ÙÁ§zÏèwhã´Žyã¹ïBòØ|ÿ‹ñ¦WútÑâaùÑsOïÛŒ·ó®ú)ÜüÜË›ñ>g\Îú‡·ü,i÷Æ’ú-+Žõ»Ôƒ/Ô9–v¿\êeË¥žòygäK¹‰mû[Öƒÿ–ÿjó>b)n¶çä4ÎVúlÒ‰{¬ÿBq'ØGØcägOŸ÷Ÿ½gG©=c£O­ÿä¨Î/ÿ3µ“(Ï^9☶»_Ç‹scG9¶IoåË|­½–½êT¨òúy"®bÆŸÔ¯qßæîðs¿Òg“WÂŽ wöúÐã3ѿΗ¤Ùãë1õ‡–zä3ÿƹRq ò½1Òp`3J_ŠÅÞhþM;??`ð?íÇhnnâêÌgü³ï¾¶|¿?7ùva¸8¸‰ú ÕîÕñ¾öåÐúJþÆíJ~þSà9Ì÷7—üëÇ'ϧ_8FøZõÀMî…žåÉþoà¯+Ï÷F?ù9𸓉?¬_NòÉs¸¨ ƒw¨¾Á/<‹ÿ—é¦þ)éßà»þ¥È;õÀ7ÖÏeÒp¯Å³.õßOfÊñ's!ï/Ïþ‡êñ%O¸:ò›þ®ÔsiÊÁ¼Åß7zèªþÊB=§w#þò–>è?ÿ‡íÿhß¼Òorn\7õM½™ó,ÏáqÉ ^qoÉ÷>g©ß»ê'Gëdê9™|öðPÖWxC÷if\t÷ ìo¬—p´ä ÷r%õ’όà ¹¦¾+CŽhåcüõgŒëÞ¨þÿiG}ÞÏñ1.oþgý§¼q‚çÁ=0~þ‹_O¾ÆsK¾ú]KzÆi? ŽGëñgþ¼4äìÿÀúžùÝ¸óÆ žhúÏÞI;ôøÂà¯ó%þ‰þÁ;ý~ٟ⊔oË”#ûzßûOÚ%ßQO÷çy?ïë©ïhÒä>ãJv=LÎ÷…QÞø^íú_*¾7ióEzê‡~Òßq«zh\ñÑõ8õžHzâÈŒŸõR}ÇóܽÅ#CŒGý]%ížàôÿ>ýˆ½¼”›û£[þº”wÑÇô£¸;ùÈ#ç+sÞÔo ïóUêã—)|}ò0õ朣qé¾óhøs/^êo£ÞÏòüÓ u^S9“cÒ;úù´ý¯Ãß—Ëçõ£ä<çþR>ú[ÔðÓD¾õ7õmÞßK9ßó¾°ó´W|ɯFÿäý‰%ÿ³‘tÇ?_„ŸÐ۞ãeœŠ÷útÙ/ý©Ÿ­ô«çkw–ãQ\›úµ;ý6‘;þÔûù’ïÞO¿?ñÛ%¿p:×á'¬¸žÔSþÉâ÷È¿[>ßò?5⼡=w¾Ž:÷o¬Ð“›úz^žùZýp*Žˆ÷pJÓ“öø+xaÈ÷ôä'içï/ú3Ïöã+~œåá¨Ðú·JþCÿÙ&¾‹äT(?0ÓÓ”ûôûÄŽ0ýVèÏ”GÖïÚEê‡$ù²Ÿ™qÆÚ.¿1Óoÿ3~•þM;ú9ãTÍ8Xõ·‘òµ‡Ö/H({Ï›ã}ý¤¤½½!¯3ƒjçä(ŸþlÍ›ÚW“¯öÓ¤³®_¦ì¯Šb®}*Ï/ÊþËÎ ¤Ý>½¬½äƒ'Gb—†Ï`ïEÙ·á1¦™vcïÙÛÕÿ®~†w’rWS9_2ä:ñ&òùÉkʽrN=ìæ9?)Ê¿;úU|KžÃ°§ëïÛê!où‡¼ôƒ>¿´q(.G>Ï×(‡ý‡‡€g(_)‡ãlÜÛÿ©Ïò‘wòÃ#”_ã{Àÿ }ÌùÏ~:4çL§k©ŸÇÓòpKpSô¯4ùs~rû=rԮ瓟Ý̇¼¿®ÝÐøI¿ó¡¦ßüh÷}ùð“~Å/òíœ{ÜÎyIÛ»q?ùBñ¯¾ë£Æ¥¸*ã‰_rýÑÏ+CŽžç>òíøß/¿Æ‰¼Š;3ïF»s¼õçÚèÏ»ƒ¯)?ý›ý¯zaü’¿ã|Àsë>õC~ý6~ïòä!¿ydÝA›Ÿ›|[óFyýÕŸY~Η–ë¹Zo¤éñÄã©¿ø¼Ñ¾uÔ¼Võ×ó÷‡Ü+ßôƒœÞ|LùéŸyL?0¿’¯z3ÇaÈÃxÒ»æŸòW.õ_ü4ŸþŽòäÙ~Œ|mßÿ½3O“ÏÿÕÄö×¼ãööxeÈ£ësÒÆ¹ã=æùlÇ8w\Ǽ}o<ŸïéÏœ]ÈiÓîÖ¼¹üöÉöÅüäÍóÆ)Ísùì/§7Ô{ûÈúÓ =*¿}éÜ'û®°ïµ¿²oo\a4Ïñi__ƒ/ßüóÙçàC{/vü¿‹¯ŒÏs^¾ïo0íÖß¡÷)o¿f ‡µ7äuaôÏþ¢8µ¤õïÂHŸý’¶_ÓžïŸúo ÕûMýô݆¯Æ™UO(ù\éö_=(¹’Kê-N/´z6ÆÅºs~ÔÛ8ÝCŸÌ‹ÇõÝíü«÷î¾ ½¿©¯çŸoê9Ÿt'é/Cù÷Û¼îyEÏï’î9HÚ﹄¿Y>wÒø¨êÁÿÄAMÿyŸev–ý‡ê9Pø,Lûä¢'_G"wç$¿^ʯþ#§ú±Ìù\ý£ãëø’Ÿ–ƒ?;>øyÌyyË;Ÿû4éä﹕r9ßužZ|šv“Ëâì‡ó ç<ÃóÄ»Í8Áõ;©Þw—rÊ¿°ä«ýUÏÑåxíŸs¦¼ü–|’Ë–ý†¡v¥Ì£üÏÔ¾ÄîÆNr:içä{¡ìxÎçÙj§ •}Á¹|í)Éç¹úÙÁð7ïÕ7>ÅF^ûñ%’f_Á»úŒsQûSêg·˜ïk7JºþäR.ói ïâ¾ýé!Ÿ3£ÎóÙ•ôg7tÚ'Þ|x%µSyξˆýdÁ?;Rí4£Þ“CNø›´óƒ^7¾/ýóÿ1þà&o$¿ýjÇØyùÁîBJáaë?4õ7qê¿ù¦ÿó1ßÅÿßÙÿªõaÆþ`è·ÿìGÊ?|­ù ¾èeÿƒ)׸ɡõºÎ›ç‰Ÿl?qnè;<긧¹…K/¾Ýþdä¯Þ¼?Mßèmô«ûÄäkÔ±oª?ltì“ì¿Pûß“'S~O9ùÎþÏ ¹œM½/¾ìߺ?Lz½ïù\Ñêšïô¾o¼‚ŒÿëC?}÷ú†w<µI·žÆ1¥w=× ==ôïÔ˜?øQÏ cOº÷áRoãÆæ}㤜ûzpŒÃÔÝÔ¿â(ÀŸ:ŸøÝR+}>hãtŠ“óÅRŠO½—ç_å¹rÎõïŒôK})nöÁ¦W§~£wÕÇàìjøÂüÜèeãržH}ŸçùgK¾6íx¿÷0õ;GÆå¢ÿ©w?nÑæ·u_ûÓõæy¤sÅîð0ãï9ûñÍóÚ“øÙ8Ê®r&å¿]êKõkÚQÄÉboaÇÒnþ?jÙIýÑóÆ £ÿi·þ¢ïÅ ³³À?‹CÆîÄ~;pÿûvžåwJëaR¹¬÷£ŸKZ¿’ìóìÜðÞðìøæËnžgŸ³ÃH¹3C¿2ŸjW?»Ô§âäS¿6Û‹Ïå<­ÿЉ·ö¼~x’¿øŠQÄ©ÑïâJR_ã§&Í/(<ƒùwv)‡•>´zi=¶þÓ? }2_èÍÉPzG5ç?Qî7¼6þ^_–Û»rüÌæÿ§ó½ñºékøÑÎÉñÞü¨ÿѤ•;;óù†ÂOYofœsýÙ]þo­ôù Å#Ùï|±ç☲¯/¾åëèÏÄÏ|¾y¾ÕŽïßãþæV|ÏyïQù;ãýô •÷;ùIwÿ$.zöqÅWÙK9ý±ßSÿÛð=ýFM<”ýÚaóJÚó1¸xÏ[¹Çþ ÏŸ9—:!½Ñ£»îm¿þ­¨ç[¡ÒSšz2Ÿ{Îf¾ÕÿMèŒ×y*õåÿqž“µŸðWù+ýi}'#¯—Çû££ž——õöx¯ôš7£Êþr~¹>_Ò¸‰ÉÏÃŽ3üïÇŒž5NfhýŒä=?3ì-Ónº5í²ÛÀÅÀ«yßø­òé/~’¯x¾Mým·~p”7oñç#®Ô¾_­uÞçɵQ^;ðhðmplþ¯ä׿[òkïãå<¸¹™ûÿ+Ò›|ú³5/­#)Øã¼Ò–vÕÿPë/}2?à8á&}'Ù×ðÛY¼µÿ”»4êoœs|Œÿ;¸Kßepžö}s~ûß4?á¯ñÕøÔö‡öuËy»/ŸÔϨùm^ï™þZ7Ò¿Ãß•þ8´úV¿Äч Ñ—úI …«ÜùàÈêw7Ï{ÏG:åè¡ïl8Mù|—›OW†ž_íøná/×¼v_HyýÕþëƒÏËZù˜¿î7)Ç#|õô«<¾¯Vú|ÑÞ“ƒË„ÄWŒýνï­û—ã~dã¸/éœØ}R~[sî\<šüÎqÃÏû²ê=•çôØ9±çðÒÎÝŽ&ÿ¯ŸÇÇ÷Pï÷¦üì·þ¨7üºßØã»Ò‡Ö®7âİïÁמw@Ü›úeðõäyí¤áÓ<$¿Ãß•þ8´¸Ex.öu8Hzp"ó>®ñè ð/hÖï-¿¦Ú•¯õ{žúàjfûø<9ÊÕoiž+ÿÛÁŸ|pê=¹ü¾)^M?ò\¿"Ö•é/dÜËXéóE·üÓ‹¹ŸzLù›ùÍÐï<ÿåÐË#Ëõ»óÃ|2O̓´»‹N=£½-ÿ6ÿ6ø7ÏÌ'|zþÛeÿ*í¨W¹ô{úîüúíºO{é¼ÿ2÷!öMwÇ:Z¿[Ù§À™uÿópó¾ûùíÛ>Ï{ëuöWõCÏß•üöY–zØû5ösðjøHÿ¦ßýîë’î}ÏÃGï )÷?ËôN~ý.ó}¨¾ð}Øã¼Ò–öûûTôßy€ï`¸2ßçü6¹OÜ{•É—ÿ…~çû~vÿQ’úGÊs8÷¦}÷¿°ä¯|û·ÛQßé”oüšPùÏ ¾àaôólh㌌þî¦>¸çÓo~¼¾ä{¥Ï­ýÒy.='‰Ý„O¾úéHþ«IóÓÏVÿSÞ'?|›ódöú§~øçÀWGûì¬ÚsSîÊàƒ]¥ø¼<Ÿvöö%ö-ý…K¸¹À9À5\Zæ?ìq^éA?µwó¯É7Ê {ìaóJ¿ï¼ÈxòoöïÑþ>ʸ›7ð-%íÿ(øÉ» åÏiúOûãýe½ÿ‘4ýû?yþAæÕŸèk(jÒ…þ)õÿIòü?ðAoó?‡Úéÿ‹Þ‡ÂµÁñ÷ïI“Ç£>üòïVüé²?‡­+}ÂyßBàáŸÿd^ØŸÑ»¡ÿêywè=*.Lš¾i—ÞÓ£¤ËŸyk¾šOÉÏ_áÿ>?4OF{pfü^O?ÕG¯ý_™êç?®ÙüðâÔÿ–}¢üü$ºÿÖÿg‰v\¯Œq¾ºÔÿ­rð"Å…EÏÌ+ßð%ìKÒŽüðÀð\ö7Ó?¯õš¾]Mºþ‡í»”KzÞC€Ïi“ž~tφûF¸ ÆÏÍ{ýô½ß8»¡ð òù~ƒ?êwÜæùaëÃJŸpÞ8ÿ:ñ|qÐú“unæªçfIOì§G=Ú£—ðeÊÃËôþWÊ©¯qåÓ®ó7ø±Þ í·“|ð.ÊÁÏ4.öÐoço¨úôÏ9ãïFýî:¬¼óÞyãËëÿͳDáNç8ãÿÉÀ‰ÔoÙ§¡7ãß|–åz_Y}ß&},徎þз£¡yßùy"úg>;ž–ùÕ“z{î}$ùïçyø®ÝH¾_þ~žúðYoï‰Ã±‰Ç’~Ö>ydÿ9l}Xé“Ñé~ªvNöqT<ÌvöÆ¿aßþ6þ‹rћڣO+¤ýèSÓôNn%öÃâÖäût™«õ ~뇀œ¦ÿ³ü5 /€fž¿tqp«ßÎgŠ·5ãPó³ÄYö;+§vj¹N¶>~“àn&nE¼izwfðÁOÒŒë?õ4>¹v“Æ÷¬ò#iø7š'~N|ÊÏ8oòÁ­µ]åCÏ.åyØú°Ò'œ7ôÎÿÄNÆn‹~ÓKiñ­³ôæôÐ_~ò}R<=´[w¥ý? ýê¼|¼0žç–z~5ò{n>½<øÖ/óÈ|ûÝȯ½×G?ü¨Y?Ì£Y/9Ùä;l}Xé“Ñâ³ì[ìs¾É~"Ô÷H÷;öA6éâ¾²_+.ì‹”¿¿,gŸVäÙ?•”ïwBøê÷ œdòÕ?4~Ô÷Ù²½~_ÜYî»Òø;ûº;ËtñpÞ«çÄRŽåO})×}âç‘ëð›»Ò§›öüȹ–sŸÑw8\âkã½ï{çbι T®«ñ7RÞ9¯{¥Î™Ï¦œüù¿¨ÿçhΫàxÄÉz^¾g\çÎçù¾gZ>ýý‡ç<5¨s¼3K>[Vúæ ;Hïõ‡²K°[Ôî‘ôŒÏ¨|í@Òê¾^Y~ÇUÜXÚaç@‹ÿÊ{ùÙáÍÌ“«ÉÇ¿ÁˆcV;¤òµi?ïï1iù´iÔ3ï‰×¯Hʹ_ޝ·”ÏJŸNZK±Sßý`³‘ª=ýžæOæ[(»;Ü<—÷ìõp7ü`(Ç:q0ìïøáÇ þF¾G>õÀÝL9z Ô8qC¯ñ7ã¸÷zá‹ðs+éÆiL¿à ðÅ[ü@ÊGÞO<~ü#°¿=ø…¯³ð® ×Á>u%Ïýï[Ôgݰ²g³S[/»%-n˜õÏ~âºúÉ;é½PöàÖk%?õ&]»uò)oüëWb¬ßpÈüV¨‡Üø‹xwÈ×úLîìøÖQiòT/Üæn(¾.~K[¿§Ÿó¬ãdò~øk}Öw¸ó žÆ<-¾'z¤¼yíÞy_|Ãï0ôÕzÑ8‡ô"ó‹~ž|ÓCãýxâyCÏgüfr¦wþÿì+ádë5”=ûüx_<|êmá1þæ³},}±ÿ=?ø0ØÏ}'Ð+òáo™ßaûÛ¬§õWaž6ždòŸ}ÔÏîl^ë?}gç†/ññº¯òÜw|>½rO…¾^|Ùßï 96>¶vÌzŠã5ä*½—z<Ç¿}æû£?ôg=õD¾Ô{6ù¬+Öµ_pÞ¨ßßä{eô?ì·‡ }ây‡àûlâ:Ø_¤}ù¥‹_ØðÕøZÞ×?xø.®!ùNèOÒÇC}GÒ“£©gâ:ÈÑ÷èôß½“çæ‡úôó”~å¹ïîÆÿõS^{©§ýÀ~G{¿Ìº¤ý¤û:Ö•“£¾×}a´»;žãÿܨÿüàC¿ôÇx½>ÆÅ÷µõÀz–s©Ž“ïç;£<~OŒvùC×yë€õ¡ç"K½ë:ˆ/õÒO÷ß¾§Ý³8qþØ{§ƒöüð³ås|ô>ígK9F\;µ_ÿbä£ìß_¥ðð$ß…Oüfs_{ís8zñõX—~±l¿|·ÈÁ|«Þâ{ø+é=ð©øþqþÝ—½Ë|¯= ¾£~D"úkþ$½o/K½pµ+/ûS ìqüGœœõ%}tÔÏÎöÒ’¿Û-{œçúw|ðŸõ¯~TØ/2öý³à3”}Íx±Óy¯ßø×/vºÐâKNŽ|¿XæÛ÷_‘÷ú#í}Ç-íG/+çcƒj½ÅäÕ¸4™¿ÿ³/ÏPíéÇôÃΛ筷ñ§F?ÓŸŽ‹øIŸù;.“¿ä›és£}0Žêñü<9Žñ}sðui¤éûý…ÑŽúÈA{³¿Ù?V?¼W¿úä˾±r6ž#®û?œ79§¸ïÁÛùþ»s‹Ûùž¿}yèWiÊç{·ôò¤ÉŸó…>ϹÐíØ ¶øÉùÇíË£Ü;Æ#ïß‘oÖ—üùNÝçS;yþ6:Úï{rÖŽ÷ä“|o¡Sžž+ÿPù+OýÈûœ·Ý~[}É7Ûk½CÞò]˜|~Ú®úÈMûCOpÈÅ8à{ö5äO&ÿÊã“\ͧ‹ä6øóœ{OîÚñþá¼¹0Ú#Oò2ŽÚ¿0úE/õŸžãköG¹‹¨úÓžçÕ;ò: óCž7z>õlÈïâè¯yÒñzN¿‡|È­óÔ¸ŽþO9÷a¬ç­È©ósŒGŸ—QÞzAÏå#¿¹ž«_æA× ã6ôÀ>äì˜ÿ/ròÄÏUã?ÊÉwqðmßáÿ­ë<þG¿® ÚüúÄóÆwïÿ‹Åá94ÎhòÙ?Âíù?ôÿhŸéûÉþD;öy»ê µŸ™¸?ûÏ}Wì…Âë5îpò©ï4}õc<É?L/ºOñœS¯z´?ñÂËšvì¿ÉU»äI?¤ç>çÅÁ‡vì¿|/¡äÿoƒ?üjÿhòáS½¾Wú<é‰ã§¯|g†¼g¿f<ÛâKóþäÎâ×ﮎӣ~íª?Ñ'7[ç@ÒŸnøè9Šó¯/Ò^äÙsš¡_mÚw~1ã W—÷3îëíq~V<_ÚéùQøèùœs´ðÝû Úû2õÊŸïÚžâÿóð~šN=Ú)N2|o™vŠGÔþ8¯ô½þÉäK=³}ã3äÜóçžë?|äEÎÆóÁ«ü_/õ²ç™høn?†¾|~ïoéÁýe?{®y$åÉ囤Ç9dŸ§_=Ǧ?ú¯\òÕ¡vôûoßoÞìû— uîü½1óµçõÎÍÙ Ôã^`Ë%?÷ê¯ý*ýúN:ù^Zæïü­ûÔ+;ûê‹îǯH¾Ý¤§ÝCÿôG9ç£ìµ§ÅÏñPv"÷vóÚv^]Ö_;»9°ŸH~õÃQºO\»[òÕ~“üY‡+¿“#ŸqcÖÿiO"‡é×pÆ`_d—+ÎT¿´OÞy.9ׯíMZ¿=g‡e×!ãÇŽ¤þŒOÞ³#³‡ç;£vv?ökü’#Üû4{2ýã®~ìR_íÖ©¾ŸÃ¯cí®Ú÷úQvÆËÉGßÎöà&ŽÆsr¾8Ú»<øê|K½ð$ü…Á7ÁÁ  Æ neæc¿‡ß4^ð#æ ½°Þ¼?úKçcÜóœü‹Jýðo >ám¼¿:ú‰/ëÜMôî°q‹?7ºçÈ8eÛú_·îÑç½1O÷BÍKëïÄÁGú¿j]ÆGô¢íû¿ðk=4Oý?â Έ¾ž’oüÏZï¬Oô½¸3ú?Öw¸Cÿ?¿ò8´ù„÷¬æ¹õäìàÃúîÿÕÿÌ–òYé!Íömú2ö;݇7ã‡D_íÓ«ŸIG?k÷?IovƾcG´¡Í·—çWIãó8>Sÿ—IÛÿÙß™ßú!Þ”vÈ®.ì(þÓîä{ܪÿS£ü[Wæ¾ðHò³/¾y¾¿X¶»Ò—ö{ÿNÆÉ÷اIŸˆ¾=ÜŒSÏ'¾È8zgèÙNÆ;ßûõSSü×òy¿{,ç>G ën÷½¾+Ì_ç+¾§ñý.>å›Ís祽Ÿ:ù·8/<2ú£^ýÐ.ùÉïü£ú¾'~¥ëˆñÁ/\Áýô÷×ë|9 º…ÿçñ6_œ»9‡7ɺÙóø“›üÅŸDߊ¿Éÿ@Ï÷ànø•I{óÞoùsïž&z[ÿ5pOãüL?ùcº=ö9ÎñÚûÃŒGãÜè…!7óð^æK(¹´þÌ‹ž':·oáS|/Ÿ“_×í|³”×J\ºo̸°Cä|§¸ö5x¥ ¡ì’ì‘gÕ—üìÒô þ…==~Hý—ú±…ç©4õ°gÀÍøÐ.;-{ãë# _sy¹~WøÆ‡üÚe·|sè;;{|ŒþZ‡Ø¯ÙkÎ yj=õôrž¯ô'ž7ñs^üIÎ%oç\évî­WðþxÒKx!xƒÜ/»{|gð!×Õ—|¹7y;÷Çn_ËóÜk=9O«}Þ ¸“¼kð—ó±ò•óÒâ8´c=¸1úóŽzò‡þ[.¹ øÌ¹^ûñ.¹u >)÷¬º‘×åuý¤ó&þÎoçüóvîóÞ¾I_î/Ç+÷›¾!Ÿy}Í ‚ê[iÚ‰] ÏÍGõ%®EùôÜ<ÃGòUŸñ«¾÷ñ;Þç^tùi½øÄrÞ+7øÍ}Ð}9x9ÑoëŒyožêÏ»æÏ˜/ÆçæÇËrø{{7?鼩ÞÒÃèUîwù_2/¼/õ$m¼“ß:ëÿ,ñš?ëìþÿ }×ý?æEÿÏþ—üßt¾ÒõŒù^½÷‚r1ý_ùÂÏ.󕯿.çÅÛC.ž_[Ê£ÿCþÏ®ß_ögü?¶>ý\hñþ÷áÕŒ«ñ›øßîçRÞ¾ŒžÂOm£}Ù¼/?oÍzB}7¨×~ þÑ÷…ý˜v|—L2œió/Ó[òygä·¿º’zõïÒàSþ~Ÿ¡ø -¾;éÞH=†<ȧ÷UÖyó“Îß©ÎÕÎF?<÷= ×xU{–qȹÞaëÓÏ…îûãÀ†ñƒƒegdßæ¯> z\|"\`Î}‹˜xœèÓ–K¸ÇÚÓSù¿¨}þrèÞ¨Wàz.Œþ„/5ÏáÒrNÜõ þ‡ò¾~WR»,¾Ï4~êpS_Çé”ú–ÿÏ}?üz­ô}ßË8ñ˯lüŒ¿õ*ߛŗ™/üZ¾¶”{Ç>ëÍåz¯uØrXéJ¿×¼±îûÿ6üoÔ‘ÿû±.^ë]ý"«w¬çð”ðkëwèJŸAºåîØÎ£_ñ™öK¿]·ÿ~˜rðŠÝä¹}˜{r¾?N¯ÿ7+}öhýžù>„gü.4ß›ß÷½GúMè/óõÜfÄô=ë|ÇwðaËa¥+ý>´çÆC”4;ÇÉG¿ž—º¯îÜ® ž°þR>ßÑûq¿’ßó×ÿ›•>{´¸F¸ÁéŸ NjÚÑø‰™þXØ;Ù ÙÙê,åêÏlyN°Ò•> ´vzþÒØï§ÿÚ pšÅ½ì<úõù•¤k}k¹/[q+}龿»G¿þ¯¯kþ˜OæIæOýù™/þ·RÜüLj۴ҕ>‹´û+ß%öe¾cÜC97÷aöqIÛ¿Ù‡ÍóÚwΰã¬t¥Ï¸¤úï†g:žçýwOÒ¹˜ïýá_¼õä|Û9Üa÷¥+ýgh㪰«ÀSåº~3ØEá¦Ø}Ž„æœ¬x2ñ‚àmP8‘Së~m¥Ï.-®†?$zÏÏ{èŒßdžÀ ÀaÕ_^Òðeç–ó>ç°û¿Ò•>tÿ–ùÇoœåŒÏ>ãÂ3Âåü{«ë„8ËÚ³À]ò¯gW¼Pžgšô¹e»ÅåÁÕ¯`žë¯|gR®qßäOýŸú 5ãÒ—£ëŸ~‘Ûùõ|óY¤Õ?xå×å×Ì~qÆ??9ÊÓû+ÉÏŸçö¡ôñüÐkxVøÖÆM5Ÿü¿&íÿ–þò§WˆÖƒðÕ8ˆæY¨}­uŸþÏgüÄËɧýSÿ_ï|Ã÷Ùe[Vúýhõž?˳Co|7Õ_sÆßúë;Ê{¸8z~2ùwó\šÞñÿj>ñ'(=çQþÿöïÅŒ´~Àé™öÃG–ú=ïmùe ¿½gS¿æ©_y÷s~õøÿÞÏ;4SÿaëÁJ¿gÀ}”­{bßæ\nøÛïý+ñî§žÔW?h9ï˜qüŠ»s.2üôµ\(\*—½o§þC·Ú¿B}iÿöŒ:Îizß.r(.P;Þ?Üð¸%ç 7wÅû¤ùiœ¼<—æŸðâhn¢ü§þáøÇN½I×ÿHò×ßFÞÏx|üˆÔ‡þ¥ž÷rKÎòÃ%–ïõÿæY¢õŸWüNÆîͼI¼ŒúIš¸8ïá‡èõŒk*ÍSâšlù-ä ê¿–|ü˜áoâüŠßßz´—|üR½;ë!ùÇ:õöäwÉ÷ö¼òÁÇùWútÒŽ¿uwÆ®?Jú|â¿õx})…+µžû ÏWwe<¯ß¦¤ßéò£~óF¿F?f\âê­ô˜g­gÈ…Þ7Ž1¾¥7õnÉ»óyðñöºO{–h÷õ Ú8ïööcìgìï§ß©éï¹qn“ß{xºÆéÍ{~›ì»´ƒâ‹3í¾1úchtqôïâàÏóÆQitú½¶ïñê—ëüò}å<üo­ôé¦=zñ;½¡M‰¾Àʼncàþèô/vl£=§‚—û2éøA¨~‹ïÿúIã¿ßùòýðõEøÁlj´ë;Ûy‚v?K>x>ßû9®¿´¬ôÉ({ },Ž]/ú]Ü\æQí4»ÉŸùV;ãk¯¯þ£øQàw-úÚ8N™ûqf6zU»Çô;òÛQ®ñá’Ïsv[vNñ}²N´ò³ãL?WÇÆ{íï¤~ò;“49‰·ZÿsÚ]ÿož%ZûøŒ3 ÏÂƒ(ßCߦ]Ô{ñ-Ù á äg-^&ïÏvÎâ#éK#-ÿİ/Š«JŸé¯y¿TÜ >’f‡%?x‹·–r¬œ§7åõçì:oEÿgÜÜøI¿ûQè¿nÆ)þÅw8ñîÞüx£GâüŠ'Û8¾y.ž­ø²ð6Ù×ß½¦ü›z[>+]écçMö=M[ßoE¯¯&-î±øÚæQü÷‡•s×»ñŸß8Íþ—Ì»ÖûPåÅSNý‡-Ÿ•®ô‰æ‘}žñ‹ß8Èö‰?±k\æo}öAç)žxýƒæyþ[+]é“ÐÆwõí{Âþ^’ÃúAÏsßëü0ͼŸ™?6øGõÃ?Âs¾°üÿ[éJŸfZÿƒðŽ÷6ó¢ñ™¿Þyô+ÎQ\×ÍãþõåoœXç¹âß>Ø<÷>Å÷ \ãJWú4Pv÷¦‹Üyô«ö¸DþÙ#áÅm™qcà'ÙÙIr¾Úx5pšë¹êJŸb ßÕ4|-{6=nܤ¼Ï¹ò>. ”=2çÀÅSÖ®žôYåCÙËá‡G|„•®ôi¢ÅK]óB|<ófâ_àOä?´ÿ«½<Ÿø•³ž‡ö^@æ œüzq¥O1ÝŠ+hr$óžÅ{¸÷Q„~h‚ϯ½Ÿ^Ä}ÿËIïí<ú5;ûéÕåwÖj¿Yé³DïæÖݢ׎Œù'“û0ÅÓDÿ‹+ø õÝ}Ï|vÓâqBßY÷iÏ#5þ?y»p_üˆÝØyô+.ÌÿÃ^žû?¸šs®âYü°ÿ¿5þ?.Ž´y’ûX}O`~ù_{„ð¿u*Ïw?êÑ^î“ÝÍýé»×Ì[ÿg¡Êë¼ÏŒ·Hä•{žÅåœDzkÌsþzæÿgîgß}{ù?Üòäe}±~ÀÍq&þ®ž\ž¼ ¹?^®?‘óÉÈ >öæò;£z“ÿxvø0¸0õñ“§^¸ä“Cï'Ñ|Ê{8bíÐg”_¥¡å›¤9ðã>üóå¤á ¥•ŸþØ&ßüHYg®„zÿ‡ÇëeçqãC[Æ|2?ÍwýþK‹'OýPêùýËÙ§sþtüýïßü´û‰ýøã‘?_ôˆO,û×óã3ÎgæzrèóäÄr6ý_î=V/È/ãWÿ__GîßDÎü–…ÿú5»“ç©þÅýÄ·ž'§Þ/—íñc×6ïWzÇã¼­þÖäûvÔ‡¿ô§þÔ¼ç‡Lô;ãE>Þ;¯+Ÿ©útŽxÐ8´‡áKûôüÈrâw'¿žSJ“ãýåz']¿o£ÄçaQruïŽä°ì [¸0ø¯È³~ÈÄï8:hƳv–ßêWÆ%ó¦õ¸oœÿ©ânØ7Ùq²Þ–¯S¡Þ»gÌ€{Éê—†ßQ?»»{Åmð¯Ã^”õ¯Ï;ä/åÉá»åº¹5ø gõæ±rÐ÷Äo%z”vgE}è©!ròþßžÎyS9Õ>žþR<‹-ÿôloŒ?xìþìòð1µû‡Â—™/üLLÿÓDýL¤=þ#”ãwC;põ'‘üêá'#ß)õ¯qP|+å^Õ¿¼7NÒOš|õ·‘òoŒvNoÞ8Ú×|îêþŒÏ²¾ýöŒ—ñH}Ò¥ÆSý‘ÏÞ†öüh¿®.çqãÍ¢¿üûrýÑøªŸ£È¯~ê"×Ë#í=ÿLæÑ[£žé¿!þñš?”3øœ«£½úùÊóÆKŒü&_õÿ—çõ zžË7øês|å9¿OïP¯öë‡êïëcý ò«óÎ2ýR]]®¯í·u©q —rÙo'ùÌç·Æ¸\ùûÿ‹‡M‹G´>œüûrýáçËЫ‹ÐúÅ4®)W¿‘(½õ>åø!¢ßæÓôKF߬#俉ß9¿ê§rü¿Ô/Ùx_ÿzÊùáI?º^à?ï;oÆ|’¯úüdz¸/¯1®þÉßPý!ÿ9N¥Êç“ÿ‹Ëyö´Ñ}üüáðY<²ï8cû]ûû´ì3º¯·ƒ›´_³/poÀ¾Ï>®q>“ökÅOç¹ý ÎÚ³2¯¦d÷ìëìGåßýä9ÒÓÿµzCòöü8ˆö¼ç‹¿/Ï­ý{›vùw/ÌyïùüÊïgy÷-ùZÎy¿])çܦ~ľÛäߺöUêñÜwñýÔ§ß±ÊáçË”ãìÛ´÷0içHîÓI}ÿ¶ä³q ´‹>Xòᜧ8Òècã„çt‡òäüçy~—~ôÜñ›Áçq œ¶¼ŸýìùÚý§|ÞD®ì?uûµkñkî…/ö”ÝŽ¿ vvÓúçJzÚØÙ;Ó^ùQŽ_öœSI7Sè‰Ôƒjú]šv8OþΜ»kïLôüëÈÁûß ¾Ø[¦}K½ú‰ÿ`ËcØo^õ©§vž¤ëOM¿“fç¬Ý7ïÅ‹dçÁ÷°?öü8Poá6Þ=œù]ÿ2Ù×Þ}?r•Þz(^<†qáOæ@¿bÉo~±ÃûL\ þ^ùkÇO>¸öK8 åÌà Þ_pè}ÒêþÈê.ÂûéOçòr}¬þŠOˆ/ëTñ/yNÎõC’÷Ö1¸Yøãxm<‡KÐß®—yþæÓ=oVºÒÍú½¾¹»˜_ÅÓÀZg‹kÝyô+^íý¤?¡~´à•àf=¿š|ã¼ínÎÿ̷ÖÏJWúØyóÖÐoó…ßDøZÿ×Cͳ7Æÿ&§ù‡Úý‚ÿe»ågůô Ý?’ï°å±Ò•> íýÌœÀõ~¨û·îտܭ÷H¿Ë9Ú7Ëó8çh=_sŸU~ï8GsîvØòYéJGk?K㯆߂úÙÏÙmàáÕ΄™±×ÀõÁãðÓñ„÷VºÒ§‰_ÆÜÕa·ä žL|9þ²øu‚#€;È=§Æ’Ÿ9åÆ=ÊC“Ã;ÿ|¢~’>ˆþø—M?n&ýQèÍ¿núõQú÷ÁÀAÜJ¾É÷'ßG©ïÃÐëÚÛ]æ¿•ôyÿaž£e>L½·ðß”§óVÒ7ïo¨8ƒúC/ø•’ï¦vþkÉüÈò¼ÉwsÙNåÁO˜üp%ï¾oà?õ·ß£Ã×{yþÇä»JžïŽ~_O¹K=¸ûGí©ï/Ëñ|©¿w¯oøh?ÆõÿN}L}úÏ¥¼Ë„~”üÿžòJ?àÞþH~ÆÓøüçBÎ?Ú¼9à~iÇ›œ«‡Æ-ýÒïñkȾÏxÉ÷Gå½§'ôÈ:e>Ñó¤¯G~ð³…¿+£^ùnŽò ½§GÕ嬛£ë \•ù-ý~½äßïCó+í’Sq¡âãò÷ Çø~éÕ\‡¬Ûêñqk9¯"çò÷ÒNÆ‘üúþƘ7Žò 9˜ÇÖÉòmÜè=ý¿ÆyÌ“÷ÿkÉç‡?Í>®në9üùôCÙñ ŸþgÅñ†ÏõöH=úk=»¹ÂãÓÿó½¿`>уŒÃÌÇ^½6†ÞÑãh\ä§ßïæý;£õS›ü—Ó^÷K¹íË7åä»6ôR;õš´rYß;Ë/9$Ÿï ùàŽß]¶ë^Áþz:Ö‰ëKþZg·ÖþÉ™ÜéIÿ÷Òžþ¹àÿ·rýƒól¿–rüÑæÍ©ÇË£8=ßeî•ø>óÝoçÞ†ýÇ«cÈ­÷>BÉA{Ão`ýpyn¤}Ÿj¾Ö=*÷E.úúèÏÄÁÃ+îÒ«äsÏåäx¿—z}¿1Ò{c^¸×E?ô¿÷c’®Mýi÷½Œ“öÜO9üúå»›ÿϽe÷÷cžNþwGúÊ(o|á£ÕCîîçíþ;/qM‹ãlþ¥\÷ÏþþüþáæÍãçgýBšè‰<Ï}ßúg$¸»á®ý:ž|ü`:G9²yÏß^ï3ßÙ¤ÿüuò+¼Ó<÷tOP=­W>ñ9ðùMÞ‡ßÆåÐÿäw®jó£7ýj‡ÓÀOõü6õõ¼V¿ÒÿúKtŽû õ…¯òë~§çÎqÿwÉǼg^Üñð·Ú÷îÎøô¿óä×Ë÷•?½!oã8Ç/íõœ»ñMòüÞ¨Ç8¨‡<ÿÁ½îŠÒËù¼÷ÁñóÙ )×{ÓG—ãr{Žƒ¸0‘gÏë¿Zʰ÷ç3O‹ïsÏ¿qh7ï뀆öÞ¿~ÈÇn Ÿy^‘ŸªÜÈ5Ýéü®ž‡ùï-åQÜcô¾÷ì‡Åâ ÿwäÓ¯èaý ú/æ[ûmøtYÇß¼%·Oÿ¾>N•y~õøqê{|’WôªýSžžx®ò•ÿCÑ¿¾ÇçðGÜõf¬ó?Ö¼±/žqÆú>zlÕïOûþô£û`ß9¾WÇ|¬½Ø÷2÷G—ýôTÿßö·c¾á»ûøûËù×ø‚Ïâ@”»·ÔïÎû´ßü™×ݯ[ä²³³ä·ß+©×÷`÷µ[®W½ÿ5ÆcúM¯?%|¢™ÏåãóPë¾Íký3®ǹ_¯?t~¸Ó^lj¿'ãdðõÕRÝöÃgõÉ÷—ýy ¹t\>]Êcú¡úÑΜیx}ïÜÝK?}ßóÏ✩ñeòžç*½:Ï¥œß\]ö{ÛŸÊÈï<ȹ©s¶×Æ{çKÎÙæyßé”'¹ԙQîTêsža½p¿q7ùœ—ñ{ß‹zœc¨‡ß£žo¤œïòúsB“Ï9¾?g”?9äÒ{ÍK}¬<ÄÛp®7ðûûçyä<Úsn§Ý3áS?É[ é³#Ç-õ½.þÍ÷žŸš§)¯ÞøM.ÎäÝÑŸÚ-Òv ~—¦Ÿ&ö,~žðß+úeÝÉû1Ž=—qIÙØwøoº4úÅÆ´½=Ö³êÇýÈ)ù¬£ì7ä÷Þ˜wäye´oÝ%Wr«]úã¬Ãøã8øüÁçÍ;¿þ}ÜIø‚¯ÿøcø‡ßø ùGÜ»ÿ®|äRûqʳßòQŸùÅÎÌô§ÿZæÃGqAc~±/³“¢æ•4ûYí驾€ýS9vþëcþªÞŽÀ<Âý¼¥½1Š‹ò±Îܘüê·ug¬?Ö õé7¼PiÊÕ~ŸçÖ­2~ð2ð=(=áÇI;ÅÕwÏéýˆ<ÿ”úà‹þD?’†¸•tpqxÅIüvÉ•®ôi¦ÕãÆa5O’6oöÆ{ñëg-iÏÍ#órÆe½°îÓVúìÒú¥µï²Ÿâï6çbÅ£ÖÿZ¨ý\¨¸ö§Æ÷Ì™<‡÷=»þ߬ôÙ¥g ÏY¼gèŒoÚrŸæ|-ùà¿ç} ânSnS°Òg™w × ÷šÿ™¦ÙuàŒÙiØcàèÙ?÷Bá9áWÕ»ž ¬ô¦õ_gËÎoÊþ_?Ñ~ÕàIá ù{‡Ç‡+€Ã½¶þßü$ã[”ñ4ŽyÎ ü-ü.?5pÖÅ_güÞšå~Þß«p6‡ÍÇJ ñ ^pë9Ü03GæMÒðVGÊ…ºôÖÏsäGç°ùXé<®öo,õºó¡ñÈwý:G|üß¼¹Ô“úOþ¹Î›á—m¥ÏíwåˆÛUûè^£{Þg6zQ¿_ðXîuúÞ=ù37ç×ýÙóH{ÞygySÿTÎ=Ñœ›ÖψóÐ/ržê<Ô=ùÏ~Þç;ð‡ÍÇJXZÿ(§–û«Úåø¡ï•_8ÃØêŸeË_ÌÏóf¥Ï7½ý&¼àΣ_qƒp‚ð‡ìÝðŠhã³&ÿÞ¨~êìÏsþÜ^¿ožkZ¿ep·ü÷íù?bž¼:æ—¸—žÃóþ\çÍÞϳßÏ;í}tgóƒûè}~Ä|·ðƒÆO¢ÿ#û7û¿#?ïsXþ!›•þ°´çfŸoÆ·÷&íýƒPÏ_Z¦ë_¿Ð|ïÜýÕÏs½åç¿ÃÃæg¥?ðøžöÍW—ç¦ÅGñ‡ÊÏ?‹x;îÍóoêý埗þìËëçýû¼Òýx<ì˜Ësãâžøq©à¦ÿ;qM†¿½Ÿ ­øýuÞ¬ôô>Nž±¸Gÿ—¡â7ÃÛñ“s‰ú§…¯ô*ͯÙôO6ÿ_‡ßJþ [^+]é#}„7ð?g^ä<¯8øû£ÆGó…à‡ ®~ß<ã—kþÐÌ«5.úJŸBZ}5OøW·œ¸ÿGÇCsžWñæAýÅçû=øˆ­¸rüÔ»OÃ/úÏ7´ÒgƒŠÿѸ÷s¾í|<çvóܼq$^Lï[Š¿6ΧŸ³¶#¾È—?Ïï¶•>´÷êw£÷(ûlñK\Bí´îí£ì¸ò‰»&Ž]þ‡ŠƒÎ{8 x¢ãëüYéÓGoç;üvî5ÔORÎýn¿íýΣ_ý-]‘N¾Ü“Ü÷£¤\òçžÝ–ßþbrNØz~äx+]é¿4or?x‹&¾ÌíĹø&·÷ãöõ‘/çk·ßßyô»ýž÷I_3´“ç9·k½×2ßßä°å³Ò•.æKîÕß~—G_æöÕ1/èyîéWߥs?õvâæ´Þæ•öÿ¥ž·Õ#½¡å÷Ö:VzøôvÎwû=" WjŸf•sçâKù¿œ~ü”ëwŽú’ŽøvÎëŠOåwvÄÉè}‰ø=;l¹­ôçM‹Õ/¹¸åÎÍøïó}Ï¿xhã…ÃˉÿùΣŸøÏ~¸I;hûñƒÞøº¡OûÕú}³Ò§6î-œ›x¹ì7â8‹ÃœùU;Lž7N Ü{÷êe’Oœö ~ÐvåO¾‹ËÿŸ•®ôPç =Î9síúð0ð3pqôšß¾ÆóN^fÖ»»Ôÿ>‡ËãD9õ½ûóÚ—5Ž+ü<†8®âϸÅü¿‰¿ ç(N4Ü…zøQú õ‹Ûxi¼¿’çâ®ÞÚœÕ?ÌåAsÔ¸¯Ã*þ­xÆüÙ‰;ýAž‹+‹ñcÅš'ñxùʹRù$Oq^ë'oÈ›>òGšžó·&þ¬~ˆi<'ÿ>?ø…Ï!/òßWœðkÆ!å_×xzÅ¡6nðsüÿ;¿@Œ~ñ„ï›ê'ãa\‡¼È‰ÞÁ×þHçãÕú`ý¸2¨q!ç«CÎü,òÓGŽø×/zwX?~‘—zê/i¹Ž¯¬>ržþÃÍ7ù­£š÷¯~™§Õã;Ú1?ø[½J~Þç¹qUŽÞ˜GæYýQ†ú9¿”GõH?÷òÞÿý½—_=p™çÆsø6ýÔ|ûß!7ë«vðcé‹zÕgÞìúÈŸ.= 7úIïr1ÛÿÁç ¼“qk|ErN?Wq)·ÖK.ôÑ|˜ÿÿp÷p‰Ú!7ëáÙQ_q‡yN>êÃÇÞ˜¾ Ì«q¤¸EùáµÞõÖ?qÒ¹÷\ù›uÏ~ þQ}F~Ïé>vÍ»´óæxŽ^åÞZêÛÝøó/ž¬ý¹¥ž—F¾Ô?äEŽüg)o\&~^Ô:b\ðunŒ«z㥸TzcœàæN‡âïG:×+ß¹ßÛï¿Sä>|? ŠWzbÓú;1ôNWœÇWG?ÉE9ßÁòIûÇ’ö}¹~ò0ϧœïeóÕw³òô€¾»ø üŒïfø+¸®Æ-ß?¹“ôסßýNzŸ4õTnä ú©½£¡ã\ ý'/ý“ÕãG®ÖéÊÝøå9>N-ëkÍ9>äçf\éÁ·ÊÉùĸgÛzN&ý•ñ å¿îw£ßÉÿCÍñÄMÜ:W4îI÷¼’þÜ …Ô¿Ô HüŠÉWª~õ¥Ýâ3~Ú)~ѹìýÈÿ^ÆI=)ÿ ?Mô5úÝþ¤\û…ŸèÃÄIV^òá7ò«¬'ÎéËíè׌g¡?p›­÷×£]ü?\–WïíQïðƒÐók8Ϭ•Ÿräþ«ÑnúÅVó‰ã©Ôûgr¿3Æ1ó­í©÷ã¶ä·Ï³~wœÔ“vï3üüPó†„âýÄÙw¾ÏxŸÊs~]^i¸¾ß(¿.ÚÕžxüXh÷LÞ{žuo?÷ÚU|cô¶q‡ø=ƒKT.ÿ§}Þ÷êÑÿ¤É!ÿ¯mGûð’¯ÌvÒ/òxu”SoÖõŽ‹òð•ì’»©Ÿœôüða<^žýï~¤>×)õ7%Ú៧ã2ÆOœÎGýø1>ú[ÿZ£?5ÊrÑ8ÔŒÃ6oΆõ³³ï¥}q¥÷È+þV¼EócØ“[ŽP¾ÆKýù>ªŸ± ɧ|4ÊŸí¡ê‘_Ü®sƒ¾:ú£z¡¿ìì3Mn3n«ößrP^’}~oÐó£|ùÓ~Ú{sä'Gã׸}£<ùæ{cŸÏä'/ü/ß•·v’®¡ñ9•“ï½Úò›8|¾1äsvôïÇš7æ+~CÍ#ò¶î½:äÚxÁC¯¬'Öã³¥§ä¦¾1¿äë:6ô¢z5æ½òÕ3ó;”|ñ7åqv´g­7çGßýC».Žy?ûw~”ïüíoÉs¬õÓF¤ÿ_äD/G¿¬÷oŒq¹0äÕrôܼ•ß<ëùÑþ¹Á?~÷ÆsüÉo^î-åóƒÍÿ·âÈóïuádÔ‡Oã\¿gáWþÚÕõ7ùÙsá& ®~…¾±·k?÷Xš_ûÅß$­~öaí^ú÷A>ü–½5äFŽ›Jžú‰âÒÞõ±Ü$¯¤Í“Ëä—4¾¯Œþ_|Á=ÁàûÆ ô¢¸|§ÞŸ©¿ºï½Àg˜ÖëšuõÍ¡_þO.x:ÿ×êWiüßÀ«4®ë?ù/úÃ×V?ŠãH=æ)=m\·±~Ðoúèÿ®hÜ—Ùÿ–Ïÿí¦æËº¸Å§õ„½ßúÉžþæ“ÿeó‡ýâ%¬Öò³Nè§ýù“Ûùeÿ[/ŸvÚ}#|ƒõÈ>Øüs0/ò]ÖõѾÿ¸ñN½¯½86Æiîw¬÷ö3ö7{ËrûzèyÊÕ?ÓØ÷hg7Ïí_á;¬ïÖõó¡ü¤¾ïÛß—0¿­#/,×õâÔk`þxÿûå8lÕúß%¸†½Ôoüïzî‰hñLp)ü 6ôË<:š÷_d’î÷å·C£˜gÏ¢<‰óóPþSÒCßàẎcCßÐ#›ò­ÿtÚÕ?û|ÿ9¿Ò϶÷Ú¨÷ì’ÿæ;Àîn=€sè:BŸsÜ ¿¡=x¾ÈyÜ—ëø9‡R_ú¡<~{žàœ`ÓõD´xŒq7Ï‹Éx7nšs_÷"3N=ÿu>˜vœõ<7ú\ 'ò]è×›q†qN†éüŠŠ^µ<|“öáe¼¿?ÒŸ.Ë·=úêÕùÕå|v>·%ïô‹] xš´_<”qq^g\ÈéËþ´þ/–ãB.Å1Çð[Tú9û±ÒÇÓêoÖëžç³«±Ÿ±Ç<Æ–½õlô¢ø™×>ûLù|·ýð­]vÒ'jýì9ä§žÚç‡<à|nã°õòi§·/‘kèeó&”=>ßÉÅ™H÷}ž?zaÔo^M{>¼ œÉôXdËÿ›ýöF;ülð_T‹þ…îòüoœóÔü¦‡ÅëŒyóú󆿵‰ï!×K£¿³}üw3æuhoä»8êåW®ãG^ËöVzÀ¼™þ¾øùâ/ìÚ¤yo~å®õ~“ø=â7æ*šò9êûúSRߨ÷êÐOõÔ? y瓯+ô$ôíÑÞUrÀÿh§Ò´7î‰ákKÞïŽù/ý®)ü…þ߈T|Îr¾4ÆëÊr\[ŸÚq'Wr|gèý¢w[z/mÜŒóГú)3Bé±ÿ­âé½ç©÷ÒàÓ:j_ýò¿ªý–úïyý|Žyƒ¿®×cÿ×Ûòö?b¾‘»ú’îúµ”ë—Å!.Ç­ïÉïZÚA¯.ûsØzù´ÓîÇì—ív#wûá-¼çÜä=œ§ïŸ×ÆsûÏáíÇŠ3Ïsß_¾£àÈæ÷þ½W¾û–Ôsf´§—_üãÐ;ïO…½2ôú…eºÏíë|O¡Ý¢á³ûØÑã3ÎÓŠ?+^uô¿Å‡šoãs¥Ì›œwíä×s¦/7òܺwæÍ}«;‘»s´“›zzZÿdÎ˾I='–õô÷F¾ Ë}]ñ°üa½4ø±.ÏÚÿ«ð Ÿ¤ßpê-~hùÿ¾/ëÅòs¥O7-¾ßÿ¼”u±~£2î¿ë¹ÿ³ßŒòôhÞS ÇîY|°ùj=6ŸzŸcü¯YÿOá7ió è…‘_}öQž«>ÉÿŽ~ÚïÁâïòhÿXžñµÜo¶ßÖƒW×ÿ›g‰v¿·æûžGêwÊ÷¼¢ï.zâ»éÄøžPÿËËv¶ø˜û~ß{Ö÷é‡løaª¦ú©^Ö;ïõWöÍh÷7ƒ¸§/’þͲ|qf™'½Çx?T»_y?W‡­+}2ÚûÏÎóŒóè ü\ž÷î»ÐO£_oêéyÚ½M¹Æ÷L}mçoË}‘ûÏ=/KyúXT߆¯è_ï{&ù‡‹s> Ÿóë%=ßËÿXñx_Eϓ޺oþëQÿ¼gï<Žó—Ï{Žæ|íËåÿïJŸnº_‹ÝuϾöŸ¤Ù+øAa‡R®~?Ô›ògǼÙ]êoý  ìBÞ³/É{´ñACÙöò¾~ò¾~i’¯~¾’®ÿ””Ã';Ö´³½2ò×oGÚó!Oõï®óæY¢µÏý]޾°«oáo’½~¥x›<‡W€s¾­8„qo¦¸‚é/ ÞíBÒì¼ppÊOšöà”à)Š£È{ü^åàzà ¦<Ä+~(åá&”×^îÏ¶ßøOþÃÖ‡•>á¼iÍŒ+|Oî·•¸˜·soüöûæMèûô(zp-ÏÅ-„×q7ËGã{~¼É_D¯µ'î!½-Noðc>‹#ª¼~é÷ ùÒ®ò¹½_nÊ%üéßû¡ægã4¢ƒ/ÏÕûîúó,Ñâ(“ÞÓoiãKORÎy?ýƒž|ÚWÚ'z_?¦IÛOÖ¿lÞœèJŸn:ãkÒßâÉà²N…O¾yïûÙûÜ×/ž.ùë¿Ñ9Öé±Oã'G6åÿÜ{Ç›_ñeü£+7é\kÜËì9×ô©?I—ox3þÃÏuÎö«e;-‡çkü;>ïãaëÃJŸŒö¾û§½©=½0ëwýè}½ßÚÙ9;(û÷™'ŧ±ËDÿj7Q^û/zðÇ>s&ï3‹›~Ø[Ø3ÃÚÎŽrê ÕÞ٤٫ðÍ.¿ùõ¨G¿Ùkõ›½‡‰î©®ôé¤õ¿²·Ô§âT¦?D~4Ø/ÍŸÆÙI¹íÌøhð-Úoܨùè}qÉWÄ®o¾¾4Úá—ïÕÑÞC>õ㈟PýÁŸöÉ­¸¼¤_[Êk¥ÏÝ÷‡½°Ïº—ç¿z`=¦GÖSïçiêWÒÖeë÷ôwjžqÀŠsIyx‚õžþJÖoÌðÇL_»Ÿ³þf~Õ?œ‹ÿó‰¿ëü5qÈã`Æmã·>ƺ}dÉçêf¥‡A»o9¹¤ÅeùηÐwσñ>çQ½ÿÿïˆ/£ç™õSo”yÓ8i™Ÿõó>¿sàU2Ï‹« ‡-Ç•þ¼hý|EÿœWÕϜʌûñYž;ÇŠ>ï²É¶ï‡)ÿ;=?˼h»â_8{eðåœ*ÿ3æÙaËo¥?OZÿÓŸÁ®ç;~µ?°«ðOoÒ8KÑóÚs’ŸŽÚ‹’ýD{ðbõ¿”ôë£þ7×y³ÒCœ7ðìÅÓäyíù¡ñ÷ßrÞÃÔ¾z5ùÙ×ù«*'ù.|—ó¼xïCWœÊJsÞ\‹^šð]7>þ3ìܾù×ß0o¼O~¸8•ë› ^çŸç7Ñ1ÿn)çy¨úáãÌËu¾¬ô) ý€S„ç„Û„¼nÝ7̧Ì#óżº>ê3Šü¯e;©ß<½‘v´ÿÞòýaËo¥?OZ|¿aõkˆFO‹¯õ]â>¼?ÜW¿’¿û¯¤sžÖýž}Zý\¦þ§vøÓ=lù­ôçI{ßÊyUýGO9ƒ£¬öG¿â®ÜƒsŸÍ¼<ºåw<ÏÅ7¾“rp`âÛŠ3;üj¬t¥?%¶öÄÌ“ÞKιpïåϸÀÞ眺öÍÔ׸©OÜàúçKºñtÿwYoŸ¾¡mçÞ†¶üVúó¤õ÷”sà­øhG•ù!n•ù1â`Gs&Ïá"Ï,ë)ÎN ~M{3®<Â/ÖóiÜon¾;÷ïVäúaÒâ.~ðפåûx3>77ß±wÿ}¹•qËwçÝ?)—÷Lù’þ0í_ùrnT>>H;òk_ñ…ɧq‰Óãy}ô×xwœ>^Ž×Ñ÷FsÏ®q‰õƒ?9z¢r½á9>ð›÷òkW}êÏùÈÝœ3ª÷ðæ >ÿñkÿ"/z‘óžŽOõüãÇ—WîCùQóõ?—é›yÿQøÿöÝ1ŽòñkiÜùǤÆíCϯáËøk?õx“žÐOz ÚÑoúú®$ÿæiòóŸ‡q¨Õ7ã<óû÷áÐ3úlè3þ¬ä |朼úúöè§ü©O\ÛΛ1ï¬?âñvÿu¹¾½;Þ·þPzÉ_¡8Þéß¡Íqƒßzè»þ‘ <;¹èß{c|ø)¥¿SŸÄá¶NÎøéôøú·v×¢üˆwNÏøO%oñ¨áâ/ç½õÛ¸Íxç<7Žä¥]ò¡¯æCò‹Ý8ó)׸ÊÖí¥\å}Õßþ/g^4^üÐóþïXòž¿NòWNœlýWŽŸàÆÕÿ§âq_ý­Ÿàä''ëÿ¥ü{Òþ¿¦ü1š×‘Ï¡Í÷%zO"|ñ¹9ÖŸÝ'rqåÒxÏ_)9\/¿|gCùa&/ùÈ“Ÿtzï; qÕ:ïËxï{ž¾~ÏCÍ—S£^|ºw‚NÈêÁߥѿÆy–&ß!××Gûúã{†èyǸÒÇÙo÷”¯Ý<ç—\Ôo\O›W)§]þjéƒ{ ä_¿¡©oúÇõ](?~Þò»pÈóæhøB}Çú^Ý þ)}Îû‹pñò»÷Q¿®©ï؆ö< îý›ä›~0Qß¹™O-ﻺßÙ#ÿAq¦µ3ï7†¿®úå;ýC?ä'Ç?©·çoòÍsü¸Ÿ©½ãI»/ }*|ûîað«>xmùÿ0ÚŸã¤]õy~$ã¤פóþºçôßGôáo#ÿβ‡á°æMýL·™tž‡ýýsL矑۟æ½òŸ¦|ô¹þJǽáÆCN½ß’òŸ<\¶[?“Òá³éÔw{gYßVü”Ì—žã&Ýú>{¼þ<Úm\ý õË9ø­œþÈAùÏ–íÖïëAií§øî¸‘§z¿^>o\kü¦þòc\_î÷W®Þñ˜ñ½ë·“<´}) Où¿ZÊ÷°æMý>ürÙ¯úQ8~ë7!úÉ¿? ìi;Ë÷õW÷¹ÖêÀ··üÉ‘/ëVÓì‰ò…ÏÚ½ÿÕ¨‡=Q{Y÷ëâØÈ*ùÄ=&ýýå(bÙßÞ#˜õ³ƒ²KN¹»_ÀïÅô§ÑöÈ{ôW<7òÕÎgõû«òž«‡ÈY=[ã2ÆU¾£tú½ÅçðÃ1ý‰Ú¼1>Ö?ã䞆¸ôæÿѱNŠoÆŸï/†ÿmÙïúöÞ<‰¾4Ù©‘ÉïWCþ/ :æY×y|Z¾]΃9Ï;N'—ýëÿÍgËtõŒžà“ÿ—¿ ¾‡ÞÖï ùßÏ{ýð–ç]•ûÅàwòc^F[þo£žËçÓÏsç«ù#^ý\?ÍÔ<úå²?õ‡c|´cþ¡ê=äyc>ô>|ÆwÆÛ »ÝoÖ.ýyô1ã8¿#ºÏ¶>¹¬¯~¿Ó¾ý_÷Kþç3Ÿìƒ›¶ï½“üyÞÿõφ>ñ[~» øì¾EûŸ.å1÷GÝ÷'M>þ_û=à»Ú1>[ö³íŸ!õÕ/ÌñÁ—ïƒcC®á~tMžsŸmžq/%§ï–åªäkÜÉKý÷G¿¼§æ÷W‡;oz~3ü4ôǽtqÆN§_Î5~?ò;÷Ø•N½Îœçø^­Ÿˆ¤Oi'ÏÙ¿_ü5¾EžÏx¾k½wÞv2ißñÒ§_Úsžæ»·çD¡òË7ãžÐ!—ãCnÊà 7yà·þä…:uþ¦}篌~ÕqÒžñHºñxòÿÎAħQ?¹ãq6ù›sµG¿^ù_]ÊçÐæ ;´›±kK;ßg7¨}!Ô¹ºóçÈììóΣ_÷KöɧÆ>Ç÷|ä;c>Ï0ösþOÔ_¿›Úõ7ö%¾·vǼ±_…/èwXêƒ×±>µäÿ°å¾Òg›ö{ÝyÕ ÿ/æMžçû¿çpÎgŽç=»ýˆG[\Œyè™÷ùÿ¨=YœöföúYÏ´k7ÞHòiG¾—–ÿ7ó^÷íìç¶â†æ\»vwq^^ÿoVúOÌ—ØqŠwØ åïƒßƒÆÝyô«_5þ ÅÁçI¼&~Dï)T>õð÷Q¿‹I‹ÿ$Nç…å÷Í>?y/եѮ÷øÂïˆwºÒ•>Ѽ©ßœèýo0çî÷×8¢Ñ¿œ3oÅWäGJ9ùø/lßAåó^;#Žpù¯ßª´Óö’?çy­_WuӿÇ•>[tßoîX‡/ ½}ȯúûŒú_¡§üPÑÿKcÝçWGÎï¶qªÍ£ÐƵ½2ùI9ósÆ+å§®ù–ÿ_+]éÍ›“;~öÿõm^Í—Õ•r¨x¢±›ô{Â÷’ýà^ÞÛïÙ—áÚñÝÚ}Wž×µïõã'Ïå;¿ü^ZéJŸhÞÀa~–ïœûù~~°¡ÅI~™÷9+þúHôÞóNò“çpßê÷>ôöÎæ×û7p¬Iß>ø*®Z¹œmážå»¿œ'ÎÙ{VúlÑOÑÞ·d§ÉÿKñ¡ì:¯Ï|y"tâN§)vÎüo7ÛöB½e¹ªÉ½RíJ¿8êcŸ…+qpõã°Ça¥Ï-ÞÞ .>…?€+¡òÁsÂM–šg¡üÁë°kžMš½N~!ß%µ¿O›|Báíàtà{ô¯~6ü·ÿ—ó_¯z<×_õÔß¹ä=¼"¿ o 9¨÷ì|ÃåQ|+|-9M|3¼~öB¯-ÿ_÷ýÔüeS?ü |<ùÂuðÏw1ñ~õ‹2ôáýÉ{ã ÿDîô¬¸çP8âÉS=ú?Ú™¸.x.ò« í½ã pZ×—òÜÇ¿¤<ܪþM¿8úyyôËsõÖϽÏsúí .æAùúJàM‹«óNwâxÜo¸8ê'çÆñ =c~¤}úXþ“6~î?¸Ïâ^É1^ïvÿŸÅ¡,Îi¬ø''x;óØÿ,yÕ?Lž[¯Œ‡{ßôLýîa|î¼Ï¡]ú@N7F?ìS̳Üoõ/z¤]rþ‰zÿˆ^ÓòvŸÅøN?yØ/Uÿû¯äkûÊ_XÖÛ÷Ö'óÞxG©Ýeýûz@ßR?½@O…7òïý r ¿þ×ô;®§þqRï‘ í½@ú@ŸŽ†Â ñ_b^À{„-a?™ý¡}ró«Ÿž˜oæÃó5ÏÝãôÞ>×¾{Êawð¡~û[ûæyïI9ã0Û‘Ÿÿr9‰¿Pr‚w:;ø~uôWyïÍ'ßöó½zrÔ{fô þJyý3®ÞãG¿ìGÜÛÇqž÷µoP¯ï÷Ø^ý6ß|õžý Wý3®ÆÇzi]Çïñ±nâ‡þ0žÇäï}ÑO7õü9ú̼“Ÿó‘ÞM¹âyPÏ菉”›øžY®~¿•¿þþ{ÉGñHÁ9õùô'4â÷~µú¿N¿ä9¿Çî›ë/ê{ø÷£?Þót|ÙÏÊï³<ÿ<ò½¿”õÄ=ø‰¿út´‡ïo–ã×þ&_ýOéÿƒ‘þvY®qlï,Ûé}fÏ¿Z®_­ïÞë)\§uÃ{þÖn­òúvÐÉý×Ï)§/–òè9]hquε“qê½kãëÞ»ónø ¬ƒÅÉ' ÿGäýô3b"çǵç“üHЛY~Ä!®¬/õ÷`^¢ÿ»¬§öóƒÿþ'þ¶ä³þ„"ÏžwÂYáûø²ÿ]/ô×{~8¬ÚO=]w¦?r¦‡ÑŸé¨ç¾ÓOÏô+òûeyx̦µ?ÇY=ä®þéE=ÆíÛ%íyóðWÔ|ßy®e>|´¾áG§ãŽoå3¿¶üÁègÞ—ãGo¼?•üìFüÁ»±[ñ³Â~t:ùÄMáÇĨŸÞׯÒ_ržöDýšãY¾ó^š¾Ñwü¼9ø¤'ôì ã3Úɾ²vKù¤'nóìÈÿÊhwOý#?y±Ó^–?åá(àóÔ›ïÓÛù+NºøºIG}ò¼qÃÔ:ãËoª¼÷X}Òɯž×G~ãß§H<r˜ý“®|’VŸ~Â#jnQy¸‘óã=yïÕCð&ú-?#ûwãI«gÔKð4è[ƒÂ±ÀÅ\2>䦑Vnò­}ñ©Ù÷ßã¡Ï/úɹøÍA«I“ÿ…‘6?ªÊv:©—œ«7ÆôcâX«/IO}0nô¾ýM}öƵ¸ å‡ÞïöÔc½³NÐCõ[‡”Óï7‡\ðk:ŸðI?F¿:OF}ôŒ|éIqUC®úfÔg\Šõ™ÇôÓøUNCÏçzz~ðQýë–ye>T/ƺ|vðn´×õwè}í¼óŸÆŸæSׇ1¤»«w¬“Ú7ôÇ{ßýþI»3þœÿïú‰Lú>tú¡Ü]êÁþ>uä«?|ä½úr^Þ}¯}v¿?òÜ>lòc_Úriï7ƒOû2ÿ»ö“¯¹o›ós~/Lÿ”änŸd>“/zbóÞ9NŸ+o3üLVöSÚÕÎÑ±ŽØ—Ìï`ãÜ}ìX禾ø.>¢¾Ñ¯WGùÓÆwŒ“ý˜yg<¬›ä?õsÆm´.œò˜û깿ÌzÝïßqIßߟýν·©§ç÷7ù{¹ÔoqhýÙɯžá¿ùî†ÔÿÜVÚw÷çÉŸq–¯þ¤×8—r?6ü4Žžóp|)ŸyR>ªå¿K½Ò_%úæyXï=ÊïÜ!éúQt¢½È¿÷?_–o;yÞó@ýÃÆ·rOz‡üŒ›zf|Ã/?ÎÁô¿ß,óY¯ðS½H»åŸ´ŸzñÛø‹Ñ³žç99úÕ¿%yë7ùEÞs\Ú®~Ðô§çã™ß=Ïfßq¾ë|Üùý©<Ïz\»¨ó~çìÎÝÙ‘¦Ý'ëFó±ãÌx oŒ|ÒÎåÙiÙÁ^|³Gxoör€K8?ÚÙåÔ oÀž†öÁ¶Ÿçì ¯Z99O{ðéÙߤٵØß¦Áó#­¿ì%ÒÚe·¸¯®SÆÏ8M»ûôôó7í*Ó¯ xì°ø£W/Žçê­§½Ú‡Œÿ¨§rOyã Ç¢Ôx²[Ó_ö]~½Øí/§½K£ÜÕ‘~_w!þ}ó|â>øƒ£GðGäT|ѨWÿ•‡¡?pÚ…ÛP/{xñ'Égþ×®¯ð¡¿ø7à^äïü”/i8“úCï¯â#Ï'~D»Æ“Ý]û¥øÊûàPj×·Ið¥~¸•â,BëåÁ§~(OàÌŸú±±î¨ðOÌr6Œ3ý%§k£Ýâ–’ÏøÎu3õÿè8@ãÜù0ôÈ¸Š³vuȯø­‘¦ÏÆÍø+gžgåø‘ƒ³èü#Gü¤~&¯-õºý›x%x¹éÿÈ8YŸ.½À¿ùdüà‚è™z¶â‹¥\ñ*æ§vè3¹¨7izn<Çnwô×<Ø”ësòÃGç¥ú­+©Ÿ^t]0ÎIwݲ~7ýÿÞë_qDä6Æ­þÐF½—ßþÇéߥe¿tü,zqÈAšžÁÙÒ‡âáPë}ë¼Qõ1ùü_Fî£ø@ÿëø¦ôiâñÞüÚ§À‹Z/ý/û&ëÚŒßfÜ:¯†¾L¿ÚÖÉ#ôÔÿW¨}˜}¾é±ùfÿ³ëÑø ¹v\f’Æ+›ûhòUÎ{ÿÅi&=×»âè™vòÞ¸ãïÊà˸œÚÔS½-;õ™ïoüDóæÄèùˆ`Ÿ|nÈÍþwúQ×_x²ßz¥û¤þ‘ÿôÐ|ÀÏ}¾ác¿2ÒùŽ(þæ—£ü·á×÷9œL~úKŒ3¡sÎߤ}¿ô{)õWÎ_¦ß½Ê_?‹‡3_óÞ÷,}šß¡ø€ƒûÝH/óÙ~}'õÁš×g†<¢¿ÅãÈg¼~5Æñ(¹/ûßs&ß%§Ÿ3~þfœ¼ÆÉÌû?Ѽ9=r.Çòižß ½·y?qkÅÏÈ÷Mê‰^ö|%ãÛs•û›ôÄ·mÅ; í9Ïg›ü·'.|w™ïvêëy̓´÷]ÚwN6â»à¼Ø¹]Ê·~¸ŸÌßâGR¾çY_-ë¯?°_¨ç|ø%ÿÔãü¹çqp*ãÞ#œOå9Êõ§qÔߥ>÷¼O½p0ÑËÊmà+oéCƱrÕÿðÕ~©wœë5MoðG~‘—óÙ{ÞèïŸÇ9hqlYGzÎÎ>ÇèÞyºóuùØ)^å¼wþŸù»oOI9¸éi<”È·çÿìkìGõ ‘zØ=ØõØ%ØýðupßN±l¿ýfo@_íìþØÈ]¿ì{ó^¾÷ì™ó~}åúâàW½g¯~N; ª<>ÎŒq™úÁdÙKå—.þFóüÁ'y°{¿0úýâOóSû*ÿ o Ê|ü•ðÏ3ýš°Ÿ¿ãAýÉÏŸÏÛ#}e”›þTØÕÕóÞà˸ðs”{mÓ¿ ?A·¯Žy?"íý•!Ÿ iÿÊèwëU>ßñ³_?/¹ßVù½¯=ròÐïi‡÷þòèqŸ~ç üho®/s|ù•á÷Æs~r®%}Ù{r1~I¿=úñöȯ_êU½à§ þ¡ãõÓüßÔz=|å<ìvâ?t¼ß§·£ü µ|Òï}ɽ²úÇ¢/Þ_÷^=yÏoÑuí/|j?õ$®Çí£Ý£¾¶û×Ô›çäQþÌGí©gèýõ‘_š¥ozÿ—¥ÜrÞ·ï?L?}oä¿>ø¸qkÙëˆõ¦ãˆ_ý&ÇS¿þ’¿çc<äÀþVNÆÕzb~ŒõEÿÞrð|ú“/ïüyƒï¡ÇüQY‡¬3]/ǺFoÏqöœÞ‘ßÐÛæ''T{£<ù]YÊ«ïo×è9WÏþºœÿcÞ\|©®æ‰~¼}@¾÷Æó÷‡¼¦_³Îcò׎ñ2>á÷êwÎÃ÷ùQ?¾Õ?ø¯´ñ¼ã<Æ¥ëÛ\G2ϺÎ0Oëo>ŒõÔÿ÷;#å¯üOôc ×]Ür¨ÿuûYûõƒpƒð}ö«öÅ;§\qªy‡gŸç9<^qê¡ê›¸OíÙûž Gp“ú;ñÄúSÜ»v’¶.¾0iøCßgB•??ê¿4ò§MN¡ÅE'ýògù»ä–ô^ø³%÷×G{Å‹“çèO÷wøÏ¥/vìS‹ë&¿Á_¿×ô+ï'¾þÕ‘>7Æã'ŠÓó¦;¡ŸoøØŠ /ß½ô'ù¾\æsS¿ÞÒGRnÞ‡‚×ç“=ïÇxg™¿çA_l¨sææ“N»=â×ßÎÇŽ-ù†wt^ÓsÃÑÿžáGþ|÷ü'rÝ¿¯>á*áXÝ÷ú.íkO?2=·É÷~ÏËgKùWžÆ5´8Q8V”œROqé_ï“çȳñ¯÷Í{ó~ýr.õí²|Ï9¿rw~‰¯ÿY¾ÿÑÏ¡ÙÑØ ¦Ÿv,çý'ò¼x£ ŸµÃxŸõªö¿‰£:™çpS§Sþ¬òyÎï†÷øa墳V¾Pí¼>ø?•çëšzÔïœîÔ(Ç® Þâ<òœ=NUÿÙ-ÙØôÿü¨w ÷—4û ;.;ûùö¾}ò³#õþ½ñý$wõiÿú£~ü7NoÞ³O?í‘û›C>ž³w‡ÚµCŸÂ×´û {Ù>oàšè?OððXðõ+Ê. wÁ®ÇW4ÛiüÖ¤ù¡€[×Q/»°ög<ÉéO Îü1±OW¯ÍËäoü°±~(/ÿôãÃ^¿7i‡½Q=ÅÑ-Ç»ãÏÞjþè7‡÷‘{û[ÜÒÚáÍ×ÑþUã™÷—­cCîÅ#’OÞã»ò å¯Ë¼¬~ ½6NpXoŽþ’zé\Ý…åø¯ôphqE7þº?~ÞÄûmÚ<ÿèþ&¿8´p}·Œ?šçFOà­næý‡ož«ÇúÕxÃy/ýÁR_?X|Ì[áËzÈÏ›uÀú¤_3N¯þIÓwýê:™4Xo/×ÿ>7Ÿ¬ÓøUßÕ!ý¨?¸åz±Ò§‹VÏ'Îþø¿o¼™çðÇpÚôŽÝºû}ëfãŠ[·Sñãëó`Ìc|4¾m¨õšþÃ{‰ÃiÞ˜_þ?® þ¶ðÙæ¹rÿµœo×ìóÇÿ2\fþgöëÿ‹äÿÖr>®ôé¤û~úÆþÄw}ñÒïú’ñ®_å¤/›/£œï!zå{dwðaÞ»–¿Ð—G½ö[Ý—æ½ïHíž^Û|÷¾^óA}òéÇô×Öû=ã{Å÷ä©ÑÞé<_‡­+}<-Ôw(ý;¹·úƒ<žñ=š÷Î;¦Åy/^*7õE9ßãÊýj”;6ø€÷>–|ð¬ÿ;Úu'éû¼~Í“8ÍâbñE>½×˜ræí ËöwT?†t÷•ÛÞ›zê'mgù¿´Ò§‹ÖOÞƒŒßMº~ÐøõÏ‹kýf3ÞÅ/~™ç¡½÷üßËçõÓæžsêísù¢_ÅEÞÏï,iq³Ú§÷R¯vÞvË?^ê¯]!ýíù2>Ѭ/=g¾Ÿ|ΛÙ%~9ʧ½žßó¿°Î›§š6^ËЛúû8™q促ŸÕ̇ڭ؅êo.úÈΑÿ•âgåç¯b¾Où}ÿy¯{?ÓïÅ¿ ¾&.W}øå×ãÌè¿vØiØ%“O꩟•ÔÃN­žú]Kþé—­q{Sîì:ožfZœ<ñnèôCåùÙ1îìñô²~¼R®AyõeŸÓz¼/^xÖ‡ŸhÆ×û<úôp“îý»{õ%½“_ïëÙ÷±Ü'Í{vÅù|“|¾7Æþ¯ß7I÷;E=á§xœôóÏá¿û9û8~°¾Ís¸&ëÆÜ_üRÓ;Kyu½ñ?k}€«I?[/Vú÷iÏ•ÎlÆ·çTãûºçd΋áKœ·:/Î:Þs$çØ©·çTÎqO†º—=ì=ÝoF½ÎÇf<ô8þ’Ï<Ò÷r3_öïi«/iç~î‹§¾Þ&·#KÚþ‘߈»ÐóKtÆŸùÕúó4Óâs¦ÿËÏ­øhyϾÁNç9<Ðô3RÿRòGï<Ÿñ¹Øå§)ïÙeø(î%ïÕÇÞšïö·þšF¿ÚïP81í4>U¨vá”&õ×–çõ—úÎ.ùÛ'†uÞ<Í´8öòI³Ã³[²ÿÃÓÀ«Ð3vòþ’÷yþQêiüÄû›|Ǘ¼voäùµÔÃî~3í)¯|ÁÄáà/÷ÍŠwÈ}¥}Fò›7¡õmüí1ø1Ÿ.„Z²O:lù8.þÉyúQì=ëD(ü[q9Ë~ïcßZsËytØýÚi¿­ÇüÁ“ÉøÐ~¾Èóq®ó°8“”ƒSù.õ7ÿR?Ê—ózï¢çiçÔ’ï~·{ߢ¾óxSþ°å¿5Å…Ï£cýâ×îÛåú°Užü»ìgÏ7¦¼àyޝÿ7OB{?õëŒÇ¸:ïaß‘që½ÉŒoÏs#ç¡Åɤ>ö–âGþ¶íÔ¯þÌ»ðQ;¼scùÕ÷ižã3üx~û)=Wš÷0û¿ê¾ìðϯS¹M¼Qêé¹¾rY÷àØêŸî»§S.O-~#ëzŸ»§î=»»3üÆÞx^¿aI³7Ö™üð+Òã|ªv v>xxøé¯L½ì„ÓÿÚS¾?«ÜfÇÆÓIš|2ÔûÊIÿG>8…“c\^^êÁJ§Æµ‹œó³ï"i~]ø‹¸š÷õ#–çìÜêãç£qÐ’ÿ­‘¾œüâ€inf¾—Vž¿~BøsÓ~{.-ççÓFë'¤~UfzŒÜ?Ö ã6ãÂÝÿ¹!·ŸÈ¯ú³N뿈Ÿ´k‘#:ýI›'õWd~%­<nüBÕ¯›tòó‡´åGÑËwCôÏþÀ÷ËÅAë?-鯧L½öðÃöÕ3NìŒWë{J}ößõ?—úà%§_ì½e{íïîÓ½žîÇ_î—ö㾓Kää»çtÒŸœz|ÿ¼Úq“×}Ú“x¢w"_¸eçUÞ»u<ùNF_Oä¹ïБV¢{(Îá¢[~¾bßi<Í/6´|IÚùß±Ôë»ø÷£>|?å÷µàIzÞó~çiäñYú)ƧI‡Vn‘Cýç;/M;ÓßÚaËái§µ+F¯j‡ d?t/>ÒyÿNž³›Â)—ôѤǸíûAK¾“Ëq«]gØYØöùOy÷ªá$çÒ?‘¿ýz<È_¿ÎDpì–ìdìcäEžÆsÚ¿àòÈ…ˆÝç)µk=m´ø¸,ògÇgw~mÈß<ùÅŸ]zŸújWÍ{ú@¿áø·`÷ö|o¬»¯.Ç·|L»©öé}ɹÒaËýÀñ˜q…ß]Ê¡x˜âfq]ßå¦ßBò¬ß¹õÿf¥O §‰»P?QpÇp’#¼óè×ù ¯Ù¸ÇÑ;þààAáZßžéPíç<ã°å±Ò•>Ѽ1Oø=+Î9z]?§èØï˜Wü’½=æÅÕñ?xaüºgpqÝ­ôÙ¡ÅK?|Ý/ú®€ßk¼êG¿ýýgòÃ}×ošÿ±<·ß²³¿M}‡-•®ô‰æMýœÿç#qñ¬¾¯Ž†Â‹úÞúÝr^ô\äÁ&q³Ç×>;´q3àB3Ä+)Þô³œç~¾óèW?üdlÅMqÙù:p›SßS~.¾Ò•þéVœ\þÅÎ ZôÈÿœ <ÊK=¿}˼ÉûΗäãǬõŽòêÝ[çÍJŸÚû-gCó}^¿º§3/ro²ß'pÈ9׉œŸ9ÿú6çkü$ÛyôsŽVÿñ_%s‡–s>7ýž}ñtãVºÒÿ/íy1ü;Lí*Ñsv~?Ä*)ﯻ \»){Ïnò)Ÿï§Ã–ÇJWúDó†Ý_œSþÖ̸¸þùucç§¾€_³wÇ|ã·°8žä~šVúlйîo;ü.5?ÿfìÞôºº7ôIÜÍ¿òÒ(ÿörÝíúÌÎ>ð†ûþÒècÒæÃôËÉn§j>øŸÀ'Üé´ë“ÇŒK½7ä£}´ñ»õ'åõ ð?äo)Î#¼æÉÇÏ·úC{eÈŸ𛵻îÿ¥yCžöüAž¥?S?éKÞÃ76®ôXoÍKzÙ8ƒIÓ¯+C_ÀI÷=Ü;=²ÎÃÇŸó„ß>iúÅœýæ³þ ­£Ÿç–ú»ï.õðÏÙþä¹ò¨}£q /|òûëùñ8êïÔ|3¿Í#8º7Öÿ¹dÞØw·úíKþÊ|±îZ‡áU/}¬«¾èÇ¿-çÃÜçïÇËÌûsã½ÿ©©×òÓ/xÿOÚ}ô¿pËæ“{;Êû_Þ[Ö·ÿÿü'è÷X?ÐS£úý õ¾þ Í¯ÈåËÿß¶<õ¹—Ã?=j½ùýã˯ô ç 9þfŒÓ‘Pç@Åq%ÿïF¾¼w¯mú#ÔÿƒŸ¦ÞŒ³s¨òÅ¿ ½ãÜø•'†žÎ¸žüñúôÓ}­_.ûÓ{u/Œþë¯ûFô:í4®‚çGS/}‡_Ó®z¤ÝouoOû½o”v¾ \çxzÞsÀÐúcû6õg¼[ÿžUÚ{·÷—úÓ¸/ðUîI³KDï‹ÏÊx—õŦžÞkÎ8mÅ·ŒÞL¿ƒæEïóŽyõ燩/|7þLò5̯F>ñcÔûÍ’ÏÞ×Fõ#ü·–úê‘<>O{ߎòÚ ½ÿZ?êO¹ˆm§÷ÎÉë?ozü›eÿ§È÷¯Ñ­x”»‘¯øEæÑË#»!;ßé‘Fùà?OëVëyy´sÀ÷MåŠ3¡êøº•þ“ó¤q(“ïÒsø«—Ž„¿»ú­I9¸ã ŸʫcÞð¿¢üŒ_/£x1úIoà/•o¼D|9ðï7q6{£ŸúS?>ioœÿµžó£Ÿ¯y“ã &}aÉïãY8éïÞìçãÿ§Vú=çÍÐÛê¼nqTs†~žzY=ízšòÊ5.îø?yaè¥úàŒ•çOʼzcè;~vGû÷9úáÿF;¯ŒþM¿V3þ¨çþG”'ßÑßú±ªá¤ÉíÜàûõ¿¯÷3þí–¬7×ÿ›dÞDŸÿü0ãÅRöáýN°_;9æý=´Ÿ†Û:º¡¾Ë‡’¨ÆEOÚ÷‡|öåüK æþÄÕSÇB_üOÚ¾F{øžñܵÿÂ2_ãÊÿÕýž!Wý³o‹\|ÏìË5ýiü÷”ÿ·±®£ƒOò±ÿüíà/í¶Þ=ëÔ},ç:?ðéFÎ=ÚdÛéwoÞ‡u'Þ në‹M}=7s¿K;Úq(¿ éúÙùÝx?ó2í–ø¯Ìÿ™oúó¿;î™mÝ_û6ùœï97g^½:žÓOãÅNa~œMš›óͼœñÒàØoÔ3ñ•ø™öÌÎ×PåÙ5ám^ú¤Ý‰³+«T~ñr3ŠÛ3ï.ùeþâóݤßüé—yÔy˜´xÖ×ðµIöø¬ôé¤Õgÿ·übÒ«ú4_B[.ù®ì<úUßéÿ•¡×Å—*§>ûPíxŸz&ÎtâUájõCzÆÁÞ[üy8Ü+ËyºÒ•.æÿ ¸KóÁÿŠ}\ïÓ˜Öëôº8YûºG¿âôfœmßMöe97îwÛ›ãÿ&û¬~ï˜Ê7žñàßþðåÁŸöÍÛqn½Ò•.æÍÑè—ï{ßEðb'wýúœz?šó‡ÖK‹«õúnƒ‹s.—|Ÿ<íæûLý=÷ó£ç)ÎA¤\óéÿ©ÑÿÓë>m¥Sç¶µ³|–ôýÞláÏ<ÿ"zèùƒ¥žµ^ø¶OC¿ϵ{/TýÎéµóíò;¾øÀð[;Ò—yžy§ÞÛ›äNíEy_?nŸŽzFVºÒGzÇn —' ?–õ·Ô󉻛ñ|N¢½+î í„ÂÀóÍváØGÇÿYq•4œAíÑIÃ=w—4<Ð ƒŸ\éJé}¡O{IÃëÀÑL<ޙ䃣y}êoòÁÕ_¦Þä/n&õW“üpqp2å'þÅA¥žéǪí$=ñˆæ!\ÛkËÿ·•®t3o¢WÖWúc^?*_(œÙÄ‘MœÙðë¹/¾¸¶MþòU}ócâÔÌÓ×Ǽ™8;ùðyf”‹v«Þ½uŸ¶ÒmÚ{8GìO²¯§ïëG¿â¿|Oø^H¹Þ£ùb¹¯¹½)¾ãyqo'2Ÿz&íÏ{­û´å¹@ñsêu¿(ßEÅÁ¹G ­ýÉ÷ðw§×y³ÒmÚûªð]ù¾î¹TæEq9Çvýz•}MÏ¡R®¸–ߎtô³÷¾3?Úþ·IŸíÃï8ëy_êqoðëÇ×_~¾IþßÎz“v¾÷›õûf¥™7ì'góF_ØÞm«;#œúÖ¨.§~ÔŸtý*Œ4; Ü{\ѹÁ7¿¯¢y>ì?ûñ óþ©vœôc½Ÿ³ÒÇÍx8øvuösöükyry©ï­¾~¦q —åšÿ½ä+þ-ôâ’¯æo\¶ÁOýù ú^ÞÏüp /$½âlžJÚ}NýE¿þñ­õÿìãÇ·ÿ#ÅG¦þ7–í5?ü½ýݺޮôé£û8ûè÷¸x÷ضü. ¿jý^€€»¶ß÷ëû]·¼úã[éSH}‡ÿyܿښ¾{áëÝk»3ô~œ7±›w~òG•ïb÷ÁÊÏÄ«Ä^xØrZéJÿ¿´ç ü8ïúÚóÚp¾ÓsäïrŽÊ^?íôì’Îq¥ÙWØýÙuÖs¥•>EtÆcêó #]û_ôš½œ½Ž=_Ü'ñÑ<Ïwyã£ñ·Ó8k¡ÁÏ—†Õþ·Ò§‰Þν”Û×£Ÿ9ºýî¤É¿³·oäùû}ÿÿÛï¨/Ïã÷ýöõ¿äyòÅÿéµåþîvî™Ý~7í½·Î›•>=ôvîWÞ¾¹›yðñÿûbçöè÷Mó$ïoþ5éè{]ÿ¯e¾cÞÜJý7þòØï­•®ôpçÍΣßÖóêwæÍ»ãäæÇÊmϻ̟÷=7ï6íHï·¯œ÷æKæçûyþÞãÏ+VºÒC™7¾7â§£û´«¾Soǹ;cã;_[î£ú={æíkI_óÆ÷v¯-ÛmœçWd¥+=”ùR¿ÅÑËé_ó·ãýÞΣ_Ë;;³y¾åßž×ý~ûÜ“QÎyÜãù‘Ï9Ûjÿ\éS@k'០îÞñÈæ}ýôõžñrÝgÿ)nòß–õßx4ïs]}ì9_%ÿføŸµ+ý÷ãÿïVºÒàÅ3½À/²ÓxäµïÏ8€§—ó¨õLÿiÚcÏ„/†§9•ù¶·,ØrZé³E‹?̹m×ëÆ]‹ž]ú=ü7®×Þ†>qûpÅð”§Ö}ÒJŸ~Úûðîõ ;üáoáË~µ¬ç‰Û?›r»ÙG}»î—VúôSû˜-ä_Žï‰'ƒûjÚwıï·ïé}ß[÷M+}úiãße¾×%ŽÆñ|7?ç¿îûžçbÄ ßjWýî㻯»žg­ô =æ…$û&~V¶Ê‰Æ |ØÀ÷Ø.1m?åß\çÍJŸ^zûÝÌö>8-¸°+ìŒØ#á)c‡¼sƒ'µÖš{’·sß^à°å³Ò•>Voáá·à\‚Óº}}‰g9°x—ë;~·¯üˆþÃöá,sÏøvîÃ×¶|VºÒÇê-ü1|ñ5ÿ;æÑr^\½Oþ÷žì<Ìü’¿ÿ[OX~¥+=”y'æ»$ö“úÇ»h÷þoìÏ.~¿ï’}ÜÙΣŸû6‡-—•®ôïêíôO7ãÝ:';¹Éw`=üA¾ðýô¾çâÉ®ñ'Wú P~*j·¹ý½¿´§ Ö“sêyÿÿ¶/‹sðÕn³Òg€Â4mžˆëÊÝKË|[õÀã|O|Lã'ñ«÷ê“ít¥OmœÊ YÿéñËõÿî§ûÿ ~ÿ¶âi¦?âuæänÎ ›_Ü]ñ9ùããŸÐû«Ôϯç;Ër‡-—•þHú2Õ;ñ»_x4þ‡?ý§…Ö¯aýf~\Iÿø;X~//ý翳ñS^\Àó# o-}aùþ°å³ÒXßø3Î9@ñÐã»Æ¾Ê÷Ðaó½ÕþÖ†ŸçúAÖ¿³Ë}eý.û¿åqøU»|DýN¹å;¯÷Œ´ó„ø‰•>[T½Þßú.ßé_mè'÷6úá¼`'¿Ãæ…?ýsÎ%ê?x7çtðª˜r=™ùÜ£Ë|ð¾ir å×_ü¿Æ XïÃ=—´ñÀàÓÜO<28²3O×úÙxHîI³?eßÖ~HÏøKÊ¡îuÏ8…òçªqjܯ~ùñóãö‹O—¼Vúé¿ïDøÉÈ÷Ìí·“ÎùÁaó»Å?\Ý|§o-ÓÍÏ?»+¿ƒ—ÿþ}»lò£žÃñ5žàzðs Å‡Õ__(ü ?Kðdï.Ï ›Ÿº…K]òyûmëCÞ¿Ÿ4¿ƒðyðF‰ÿ±ßNÒ‰{Ñy£þ«ë¾ìç@÷çƒy’ñ‡³ä³óçéÒ‹úõ¿xu¹ÞïÏ—¡çpuÅc'_ýT™ÉÇhΙ[÷øŸ:l¹¬ôGÖ» ö'ÿ³CïøWŽýã°ùÝâß÷ŒïŒ¹~¥áö†žëÿTöaü¿û.‚ãóä;G;âé¾´îÓ~ÔùOã ½ú”úé‡ÏqOÔ¹ß'ú•ó/ç…‹DÏÅ&ýuhÒò;Wüä‹Ð!·ÆÏ= >‰ò‡-¯•þ0´~È~ûøsŸÆ‘|ùé÷ÚIøÝa¯É}Rþ£ú\sÎ~7ß-Å\IýðòkÎF¼Î·G»¿­t¥+]éJWz´þLÅU?‘ÿ1û?q¯sNÁoËOÿv/-ÿçì·›þž÷¥VºÒ§‘ò÷Ëï"`¿·‚[p¾×sP}Ÿ|·<Ÿà¯íÛÔ{Øý^éJ èüßyç‚õ;üNã›pxMÿœÜêïq¥Ï2­½.n0þæ{¿=ç ÅÍ}ÚVúìßÿZqt+}iñpµwýnçþ\ýÍÁ1À-\ËÿÍŒ“QÜÞx¯ÞâøÖï•>»´x8qãÞÔ{øAñß88<8ºwÿÒùzmݧ­ô٣ŋúÿ(~nçѯóÆÿÿvð§o/çEçÍ•ÞóW÷öú?³Òg—v–ýV÷iÁCÿfoê;gØ«‹»ã¿Û=¤a¿žq!WºÒg‰6.©¸ â/æ\º÷èŽ&ßëcžÄÞã>]ŸŸüûßû~Jッt¥OB{ß:8Aö•»Á«²sÂ×õÞPý¿öšþ'ÿ{øN}ä%-î!ù^I=7ð©ä•üüÊÀ£À]¡W8Tí‘=¸ù—MZ{äKž¹‡Ö¸£ÃŸS땦Æ•üÏë'½ 7Æ]:ï÷ŒC(ùzò׳7ø•†Û&w~¬Œ7ÿWò_6Ρô˸OÿzEè[Ç?ô~’V~øR¯ñɹGÇÝû÷ÿúCé·qWßù)'íäùkC^pïô‹<®§\qñ¡úaÞ6ž³yš÷‡¼å?÷ðÔïš©‡þõš§úiüå;7øSÿnÆ!øãúu*®{Ì{÷ Gzè‹þÕOyI'ß®ñËóê±|CïÌ÷æ#ýL;§cPŽ>‰Ÿ­Ÿê1/ÕÓ8Ûæýз3c|ðMoêNÆ:¢<¹q³®x/^¬y0ýkáóxÊÌsãúÆè/=—_܇™þfÕ‡?ë˜uûÔà—¼µçd^ȧ¼ýóÑ”›z¨ŸâèÒßà¤Z?½2ßÝOÑûõ³©Ç8¼˜ôKcÜè£ö¬—æ=ýVÞø7.ûL›7þ7‡åË÷CÇC>ëNú㻽ß%Æ“ü´/-~09ë×.?lÚ‡Oû|ÔgÜÈ•žü%®dëõý¤ýß>>ÿ'ü_ýrŒßNÊýbÔO?¼íw¾àïr²÷Q~˿٤•ï=Â<‡ÃÛj‡¾äyó?H»ü„ÝO;ŸE¾_¥>ñf¿ÜPq:Ëßeýö<õÔ/™r7÷@{?òβ~÷CëÏ,òv^ľëÏ,õßøiø‹¼Šß’_ýü•…oý†ËÒ_ýû39ÝKZ{ú¼–ñó.­|ó}·ì×'#òÐoåñ•þ9ãomÆ)¾ýKõ ù+¯~íF.ÎßðÙvñ/ý·ÑœOÖÃÆyÍ<ºuªï3¿éCÏ÷RN}ä¼ßŸä“_¼×c£þ¬³\ùí4¿8Î#ç¹åé¤á—ä{yÔ}¾ÿϾ—ÿµ‘ÿÕQyeÝÝò?¦\Ö½ö[ýüŽyÎ_YÖÿÛÇ<õ\ùÓž‡¾6äÃ/ÀéÑnùÌóì¿ú\ÿ”#wq‚ó?_ÿk/ >ð)ßF¿øŸ#?õó‹°›ö_åµw–Ü“?ø³¾?3ê'ãg\áÜÈßsþäÏ~«v ~öBáwæû7G;”Ësòɾaß¿VÚç§‹½jO;¡âÂ*ŸÇ/9óûÇŸ>.¤~ú?I«W¿´ÏÎÆß¿,¹ÏØv¦}-ß×û~ÄF=—õ?”|ñÉž'®®ü⌲ûx¬·F?ÕS2òçý•Q?J.Ú»0ëý¯ÿ4ýÊ{õ•/ýòÑ^Îöljü߯›½R{Æ¥ýJù«Sòy?ògŽ«z•Ã÷¬¯øºQïåÉÒ(}º<òó4ÓÚÏ÷Ó¾°!WüÃõi߸(o<ëßH½¡ü"¡×Ôƒæ9¿dž_í½7ø-.DþÔÿÒ;ƒã^¿‡CÏÔ ‡Â?œ–|ÒoÏòÚ ?WFgÿø»"ßwFûð\ð.õŸ6ø(M½ïvPþ·ÔKnðiø“Æ|Ǥ;Îô Ÿcü®ŽzÕWý¦ïc=íºgýHºóeÌ÷ÒQ¿ù‡¯ÎsõŒõÏzd=ëú>æSýq©èëô?Ù~Œuˆ>‘+yVŸ¤éj<Æ<+>wÌò9ôtø7Û÷ j¾¤9w뤴ñö3õŸÞëÿ¥!¹ÞvÝ1ô˜~¹Íuaþ/¼5ä7Ûi?Ç:%î©þXÿä#‡9?ôW¾K³ü”Ï|§tÿi_ÅßQ¿B}°Ãæ| ùZŸry/=÷Ûö‰G’nþÐú!í÷CÒö‰øóÞwÅôcüƨ×~õÅQÿé¤çwÀ^¨ï1í솪ßþÒ>òÒ‹úOå¹ïŽSƒûSíò_f_ÙïÔ÷êà›|½ù€òo ùéÏù‘Ïøë}Ñ/ûøú‘ûlùå³?µÏã¿­ß)o_·7úyvÈg>'ßÖ_ß?oŒ~(ÿÆ,·Éç|ëî&¹ã|£éï6åz>…~÷ÿ³,7ú×òò=Øû®xÚ?¥\hí©¡ì*ìHäw:åÙ+”÷\ÙcöF?Ø؉ØÏÉ}F¿^›rH¾é×lÆCd‡cob÷úõÃäÛø‰³ÃÿÚ«£¾ìD/~Ø_Ù%µÿêè¯÷ò«ß8gþï§¿»cÜÔ{lðKîìÉô~Þ®þbÚ÷kÏN=â×Ñ£|7gO =8vðoÒÚ×.»;»§y˜ýwíqìƒì¶ðïŽõ^a⃔kÔ{3ïÙ%ÏuAà?./׎'y˜¿ÅwŒuˆ^¼>ø°~¨W?÷&óÏ|˜vÌâÆxÁÕߢ>ã`ü­øšùòŽj®·µ·ã3ÏOçyZýý.~d¬ËÅÑ›±.7q®È§iã¹áë°ñqO;­>q.ß5¿èÙ˜¿7îgÞ™§Ö“1¯®Žymý€ ’?q:ÎðeøzkÔgþ£pQôÙºà}æwûûÎ(w#åÞ1¿Ó¼¾­——F¿ðmÝ|/íÃSIçübg•çÅ¥¼ù]ܤúôߺ&ߥ¾7öžñëmû‘öý¿¬÷¤ŸˆÖÎn¼àí?È^Ñÿµuòù‡îý6¯à½è‡÷þ__Çwþ&Mï­³ðvׯÿ£õ~Îë€õœþ™Çþè»ýaÿWÆÿˆúì'áLí'èµõ]Í3óÉÿ[q¢ä§Þ”SŸýüÝðPyO6þ×í7üOÛÏ^^ο•>ž¯÷æc¿a_ja¿LÞ¾}ÿtýãF/^å‹?óØ{ûYÏé³z=Çõy©ÕúS~C¯åƒSS¿}~¥þ}ÜÜãÙѯîËüoä¹y<¿×ȵrNþßyŽûk[û>ßoäÞ{<ÚMúÕåú³ÒÇÓâáàõà.«8?úq$rv~§ž£ÉÿUž½êwö&]¼™ïW8GxCßÁãrŸ™ô©1þð†¾s=ô)çmå^’ž9…Ϥ¿¾ûàý¯Ò?r™ë‡~íÂ=Òÿðí\±|œYÊϸoH.#þóWò©ŸÂß >^ò<¾”×J˜7w6rÚÂõñgýÞ:_ý"4ãS¿w—üzŸzz®œyå<»çÞæSô¬çâô)úQÏ_r*N7õ_öüÈ¥í°Ó?¥qZž6Zœû2¼'|{:ü¡|ìéìßð<{‡âVóܸÔN®ž¼/î5”=^B{ò³¯«WZØÑáháGµ‹¿â­FÿànÚoùô[½c^âßð[Åj?és³þå~«å‹û"×жcœ†ô_æ­zßõŸ_çÍ͛⭇^VŽÆÅøFÿüÿw÷Z½z|nŒ»qUß\W‹ õ§"ÿ¹¡¯çG>ý /Ö‡ÎW|é§õ}”7Š—ÏsÔÿx׃äÓžzñQüó†v|.ù“ï…Ñ/r~sÔ‹Ï=ü‡Â+^ã:Ú_éãiÿïç>-ßÅÝOLžÿyza³¯ÉwCñ|êëý¤Ôgÿ2ñ¾;ä½çÊÛ×K=öGGÆü³/ÑO¸Dólî›¶ú÷½ß”öÒNq+ó>–þë_ñsy׿žvðMÎ3ÿñ±ÿ¯û€öiÆGyïzµ×}ä:ož„'çûã^ôáÎF®½oýèûO7Ï}§û®ÜÉï“Y¯t¨s³æûn“vŽU|| û·ôU9ç_…Ï’Å †ç†ýÎrsâáÒ>9õÞ, <‹û¤É_þcì,ËÍïðâµÿå²þ`âõ—Ü{¾ù`ÈG{Æ¿G“ïëMùÃÖÇg…ö|¿x¹Ð¬Wû¸½È9ëSíŽÎg×Â]±ßÃqh§ö†{Ký¯=–½ªxå“~qÙÏÃÖ˧îûñ!×È™½àýJ~øéI¹ó#ŸzàUŒçÛã½4ý.¡×óœ½Ý|¹º¡ûú2ô’ýŸó•Ýüê¨oâmàü&ÞNùwF=o >ÙûͳÉÇîànŽuoð[FÒov&.nç­e}mïò:_¾×¼©d<é¿õ­x”ŒËͱŽÂ)‹œã´7ôaøëóú‘K¹Œwß›Ÿ§Â‡u÷ʲžæ/>Æ<ؤ·òÁ ™ßú wV¿PcÞ¼5ô®ú9žûº²ìÏJŸmº…k·^Ù×øÿ‡ƒ4/¼·~ÙßÙßø_1ÿèÏÜï‡9æÉkKýësÿCìù—˜7æWÿ÷ÂÏ™Ñ>àçôÇÿ†õÂ~OûÖÿó#ÿ“ýu)õÍ+}¶iõ‹~À¹Lÿ]pÙ÷;®N§ß öõc>îýíã·ò^ùÓC¿}OhÇþÿ¥¥ž6¿y\IÒð+ÊÛß›×þw̧“)jôG~÷àeFœÙÊo÷ñëÀJŸMZ¼Ìƒžô^éwËý®ó¢üŠ ùz¤3ŸzþëÜ,ïé­óàÞkt> wõÙRÿz¾çìHøùšÿÞRO‹/Iþ?? ßIO¿rwÓÏ⺜‡Á‡Áûèÿ§ËuF»Î¯{œWúÃÒž÷óŸÅžÀç}í’™§G¹WG>åò¶e¿€/©±¤Õ7ôo«œü¬ãå¿8 ägobñþ¥Áþ§¸3¡ø>:p:åcð\Òú7'á'§~t¢'üÕÀyð—rA>~³j·V.ïÙ÷ùu)¾e¹OÛ÷–vàcÎÿ•úýÉ{|ó×â}ý’¥ýóƒÿo©¸#4ù‹Ë!ÇÁ÷›ë¼yiý ñ Æ—øxüå^â¾²<¯ÿ²è ¿Jõ‹”tý7åù;Ë|å‡_°q.Z¿q¹OvûúÇ~Þë;þë_lg‘¯~¨Ì?ýØòãæ½rú9Êé—ufœïY{œWúÃÒƒýý¡Ñþð:ÏB¯ ô‹>å¹zùO»:ôñêÔ3ëüx®þ-ÿ…ãÿnk›?ÞÿõÕÿføîÿ¤y¦åüO¦¼ÿ³+ãÿoôc¥Ïíþ ÎÐ~Ä÷DñÈö%èr_RÿƒõWýSÿ^¾'Æþj‹¯é ®SýÓϰï‘ú5Îóæ…·T/œ)¼ÛüÞ“Ï÷ ¼¤üpsÚEOåù‰åÿæJŸ ïWfG2Þy^?ïpG£GÞ—çî¥ ½—§–üžãc¦ûüΦ¾ú s÷eèá?ùŠÕþgy>pi=÷;¶ÉWüó²”Wÿ½ -®Ž_üýmÙ¯âÞnê9ìq^éKkïg7ÉúXû ü WµÚx2yߥ>ùù{aù?S;¢ûÆì+§S»bæuí@Ó¯;Ü%ûLû‘|ÚcWboRž\f|i‡b:7ëKzœ¬ôù µÿÇPíwìÜ{y.ÍO;¼ùCÿÙ/ë¯0é7q¿}ÏCá7ÕS?ê-cÒÿ3á_ê÷Š€-ž-õóŸÓ8‹ê …—|oôë‚üÏÇ÷MqG(¼ž~ÂÂãÁ_ðÖçò…òSHÞp)žçü§øø)ãòþRþMã³~¯Rÿõ¿f“?õñƒÖ¸˜y§¥¦<yôGÿè­þ]MúÉ_X<Úø_àOJûp+ô²z<Ú¹y?ò _æÛô?ȿͻCïñQœcòÃËIßÚÝЛ‘ÃħÁ¹ÖÿUhãÛ…ÖZ¨~ò[&_ùM=òß0äIBÏ&?sW_ôÁøk¯q9åKúÚà>ç7òù_ý iý¥Çõ~­3W¯~뉋­ÿ½ä§Ê›·¯öÉiú‰¬>$ü‡u¶ñ-‡|øå´¯²ÿÐ.=lœÆ1¯ÍGã©C9ä&=ÿ‡öƺo|ßùÎòø´Ÿ2üž½4úUýòµÞ¼4ÞãúHð@Ý·”#óC>æû¸Ÿ±¥—õŸ¶i§Ïá„æÿ6½)þ–=¡ýœ÷Or9.åãQ¯yyjŒ×‹Ë~6íþ”õÛ½$r¡?ÇG¿¬wpßä?9Ɖ¿!õ˜Xöo§Oo“ÆÏ™ÁŸùtvä¿4ø8‘ü¾Nç¹þMÚ¸’Ãɤ§Yýþý›ïzã;ˆ§žþjÔoô‰÷ƒãè»Ë{ü¸g W?J.ÚÓ¾}጗iœÎ ~õϸ!ßQžüáñôC~~³”£¿úc|B{O Ÿê/ß§sÞô¾Ü½Mþâ‹lÊõüäó<—ÿ~ÚÿjÓnãrò3–úzÿïÛ”C§ /7Ïá0êGè‹e½Ò¾¿·úOÿ’î}ÂðÝøâ›âŸ_2ù¾\Žcï#¦ß#yùÕŸ‘s*þ¢zow™Ÿ<œ{õþ舗Ùüá£ñ3S¾çräõßðûßËü#€Ñ‰ë½Ó”ï9Yäøç‡)/ßÃe}=§L;½×í¼/z¡¿äÕ{ éß–?.ó~zO^äÏ—v‹'|¸lgÆ#ó¦þOà‘œ[Â-M¼ÕŒŸÓ¸–yîÜõdÞ»7ï¾»úéQÖŸò7%ŸûâìÅqå9><·"úR¿Dµ—$~³ŽmÅû9ëyÊ¿1äã¾ÆÊ{rƒKÁ?9ï>f|ïÉQîìèÿ”#û{ÌÙÁwíIÉϯ…ú_|Âoò±͸AäS{ÓxŽ’OóëgžOýk\¢äÛý(ÿCO‡²ËágÆ©„7dßJ»[ó¦vÝÔË>Ì~=ãûÕOPò+7ý4Îaò³{_M=ÍŸ|orpR£˜ò˦þ”«ÿ¥1pRµ»'_ý%?œÙµÑ¿‰‹Ñq½¿rÊ‹\óüêèGíðúA¡WFþ·¿×R?¹i¯qФµŸô;#ÿʼncØ8££žâÝŒãh÷­QÏÄ4®Z(ÜRåCÞ¡Å?x?õ1õõÇʼôwŒëµÑß3Úš7ðïŽöàHŠ{ý<(¾^î'wr}wSUËk/ùà½<¿®½Ô‹¿ëôbð7ñ$3Ž^ã‚ù½;ú?Éï÷F~üÎ8“ï«G¿‡¿?ò«÷}|‘KÒê!_ñ0ßå®k÷¯á[ýCÎ¥C_ÔGîíÞß(Ÿ~ùÒ8òчQ®ò&gÏGÿz…ÏoÃGhqsús/éï–ã]¼Ý©¥\Ê·ó9òºGo–ã[¿åî«ò7ˆÏ{£Ñ¿žß9ç$§#Ë÷•9üÏò}Ç…Œ‹vRoýד½¼3Êý÷ãçó÷¦ÙQœß;gw¾?qìì ìrì@ìÎÃ/‡NÖ´O²'eÜj_aŸ« ÏOã7´þ´R_ô¡ö åáŸ3åõgàÈöý… ¾ñ E^ìúåýðOP{Ê´ÏLÿì>ìrÖ ¸7ö¸Æ1ú—öŒ³vOŒ~NûÜ´7êÏ”>Ù×È}ò7íIê§wêÓþ˃Ïä¯Þ6NÑà§ýz‚/vùÍsñ ÿ>ñûaøùSÊß ý åÿOÒÿ‘zþýùüz?ÓøÔÏôÿý¥žÝýSøøèþc×í•>´82ø3zw•^G¯¼§|¼yÞ¸¸þw£Wôÿý6ŸàÍ;ióòÔ‡·D?POÚµîþ)üýiÌ'ñg?ÌûÎO|…šæ…õãOi§ü˜§ø7¯Æzó¾6å{|WúãÐúݤû¸âlóNÛþ>˜~ÚOÁo·ÞèŸy¨úgõ<ù‹¿6‡~Û7Á³öé/ËùbßéÿíJÊÙg~4ÿÃç‡æ•õ$åü/{3éì£öå™çÃïÁJŸ/Úý¶}µï5ç ÅÁF¿ì‡í·íŸ_T9ß·öϾ |×ú.ÞõI{OÿoÎ ®Îúóܼ¼8Úñ]3¿ƒ..õ|Gžrpíý^õêûª÷IÖï„ç™öœÈùËnôáXÒð²óžæV\Ú¤Ý×ôüDôÉ{xÔŽwßGÀþû„Ý™7_.ßwŸï»Â½ÄiïŸ÷ZÙ±}ÏL¾N†/çó^)¾á'ä÷½ÅÎlô×wÌü‚?À¿z_ýÿ‡=®+ýqiõÁy\ó$çQÎÑäw~ÅN_é=n|˜äkŒèýt^¶eÿÏû·_=¿J=¨z{ò‘vœƒ9GdwÞ׸qÚMÚùZñ )çœàøS\éóAk—¡wÓŸHýäìnòyÏnÂþ˜ûM_C“þƒ=ÆsñÕÞzYüÒÇ›rì%WR=‡kbïd?)©/÷[j×aò>iâ¡ØÙ‘ŠOJ9ùF¼µ•>Ÿôî‡ÑöoãÏï {ù­¡—µû¥<^ñé7zw3úXLÑgöÆâþ>ÂO¾ðïþÉõøŸ"ãÛt¨yMÿñE¯}¿Ÿ&Ç1øÝëIñ y>ó«¼éƒq-Ž9ÏõÛxì ¹[‡Ù[W>”]Ú¼·°·:_1Oì/õC~|×ïSò 5þÆ‹^iÇ|2^äqÿÆ7ùôߤ{¡ìqŸ½‹ž:×¼»y½ã<³ë̉¼7ô'ýè9yâ‹ß,ë†uúg´ö¼Æ»¤ÏI›žùɉ}„ÝP?ðŒå;ëÉíÌÏÚÄ=`Ï!Oí‘üøM¿jÿ ¿ÅÜõ°óDžµ¿(?ü°uü´>z_?_¦9KG>µËwzõùÎâW»-~Ô§ãÎ~~:îìÊYw*ïÌßúí3¯õÏøà“}Ëý]þ­ÜŸ×~Äø±zÑø'ßô·¦<û:û7zjÔ£}~¸ÜK?µìGãa ü ”æ9>òQ¾Ý›wOß}z÷Ê_å[OžãÓýsÏݳW¯~ÔÏW(>øO›þ^rv/þÌ(|ðïyÖÿ¶÷Ò঵«ß½ÿ?äVùŽ÷s¼5é—Gyã=ýÜñ€ª÷å!OõÑ»ÙßÓ³?“ïÐF½ÓßEçAÞÓÃò“üüt|“æç€_·§¨~ Èmèv-§½¤ù;¨ í‘çÐ#üò·¥žúSHºþë’ŸŸ=þ!øk»0æ“~™üÜxÏÿVû1øÁ¿¯týgH§þs£¿ä­¾úÕ só=;ÊŸíñ»v9ù›ï§ŒÆÇJšœ¶ÒêM~õÖ¿ÉÐ#õò¯Æ_^ãr…þzÈýü«ñä_Üùói9|êþŽþÕß ¾BɱsóýÐ3þŒ3ÿ9›šço þùýÑo~áêOO?S¿~ê·v<ç÷‰_¡·Æ{õòëÃÏ@oyN?DïŒþò»Tÿhêó<õx>ý Ö¿\ò_%‡”«ß9ÏG~ãD~üûMÿ†õ'èùÈ7ã÷^ýkÜß!§ÊE:üLTÓOÕìïôÿ4ýQ]›rÒNÞ¿7ä4ãCÖÏ“þ—1Þõ_füÇ|­_Ió`è-½¨¿HëƒõÀü›r¥ï³ž±¾Ô#ý¡'£½éçQý[ÏÇ|Tã8ñÓ®õ­þ"Çÿ‰úð¥ž-ÿ’ÆqÌï9Ÿ/~.Íþ(§?äkܽÇ_Þ[ù粪O?Ïú¬£ôÖ|©œÇ|0ÞÃk¼ÍCõy6ý¥é9ýœëbýä~i×|©3ã0Æ­~Ñò|®ÛÍG£ú1×—«Cžöqü"û®·‘ÿ%ÏO&}<é­ýoø°_SO÷ýèæ}ýþt?¹Ø—Ù—t?Ÿ´}Ðô7íÿuîG_|M?kõƒœ´ý¹ø?V_÷Ïy®|÷ciß>ǾÊþÕwÑ™!ûcÿëú;ËùÎíwKžŸõ‹ïBåÉgo¤[OÊÕï5ùà7ïWý*'ý8ëùW㙾õ÷ìhÏxØNÿÎý^iT{ÆCùêyá<¬'›÷=Ç;²©¯çnÎ7ç½s«»;¡‘KËŸ\>w¾Ñs<~ÍíÌ{OúŸtñêì$S¿ÂÇ>>/ùœ·³M¿[ì>ì#ì£ìïì%ÎÿáÙ¿f|›÷ȹ¿ç¯~²nmÅïã_Œý m&ü‡âsÚOÜoÞ; =í°7ÀE^eÏq™}m7éi_Áu¥÷(ó|â™§?7öNòeoa¯šq·ðýêè'9á³ñ>ÉkÌSv!üzعðoýv¼–×ü³÷œõŸL>ýŸvÊyßÕ{ëÏ룟ì;úI^ê+Þ=娧âG¢¸›âV’ΡqÛÂOýB„š7ì±ìcpº3îü  \Wñ»æ›|yý-¿ø4¯è}‡G¨?³ä/þ#õòfÁ¯{òúE®[öð¬~hÆ~Ìþ¤ÿI›Wþ—gœÔúÕÿ/Êû¿ÈÿÞaËáG—ó«C¾——ÿK+}¶èþ¾Å>qçѯûõ~ï&ûzßÅi§ü+£>åüoÙG¾ôóXw÷×'ß;?~?¯´çp•Ò§6z_\ä ùvýºó;îu{ç’ÅU&}üùÞ§×yj)§ƒâ]¯ôÙ Å[ü¬óðâHl(\àŒwÒóÛGõîì4®ì&¹Sü׈«âùaËáÇ¢õGB^ú@•>´ö9ñ„g\/öNö]vÂÓ¡ìì…YGkÇdf÷ƒk„ß|åùÖŸÚ9OFäöòú}ó,ÑÛßEõ.ý»qvónîî°v÷Љœq„ÑsËú[.?š¼áMg<¸7×yó,ÑŽ›ÿ…³æKžÃ·Àå\­¸^¸â‰¿í¼3_výöçÏ(_¼øó­?ûø¨È㵥ܛ¿•>á8ÂiÁùÁO¹ßt&㋚_öiömù¾/^ëc>ïÍOû6ïwŸóy“ó”âëÜS‹<›¿•>-¾îëG?úß{#žhïÝzþM¾ÿsNÖû—ò;ç ôÇûúݽ÷|Ï›ÞιÊ'7rç?ñ°ù[é“Qþ(zÙùòÄ™Mœlã©Ê ¿Åþ •ÿú×<–zNEàis>}ØrùÑäÍþåü>jý¾y¦èΕžÏø2ð2ð‹ðµæÍîÐÏùgïzi´·7žÃé¼ý|î[:oÈ—øÊ:ožH~W£ühJïí<úíÇc ¯¼‹Mþ K}ëó+Cÿá^àdÐÄg+ì÷Å‹«'Î3x€–Ó^qiÉÇOœ&|«øÁòwƃ+Àÿ•”ÃGüäíËWùQŽž×|‡ ‚[5p«üD_òÓöf¼ÑŽ«ugô£qƒµ÷|®?ø¼ç¢ôÎn Ž î>…Zz`_Ô¸Ûwz¡=xaõÒïkËýuÿ.q?MÿÍŸPÿ¨ÿ™Þ¿?·_õ¼7ô NgúÓ>«üÐ[ýª_Áñ¿H¾ý_¤×SîÊç=|Þ‹£½ËcM»õfÆÇÿë¼y¢yÓýôÂ÷øƒÈŒ~e¼zOÅ~êXÞ£Æ×}“íè(G^óæT걟rÏÄ}ß7ökôéä’ÿO&?\ =†7™þß§þ™ï¯úÍG~ÐN þÕÿÚR}G59¹ïö]øöûúíû:ýȸµžñ]Vœ‘ï6x"q°¦¿¹?¬óæIhï7~jÜ6òœ÷{ÔýÃ;›ôŒ¯4ã=ÍøNô¡Ï¿\–s~†¿žƒ¹Ï(ÿ½Œÿ¸§Ú{¨)×{”êÇwÖ…Ök8’z»äü+®ÿ1xž;ÖŸåúÐø9ørjýîiâ[¹äǹV>Ÿ-çÕLã{Æ¿êyãA¿\–_éãiï/ŸÈ¸Fê'`ú5à‡ v–͸lùß‚ûbOQŽÿå_íüj©ް¯iþêàjNà3ïÕ[uú#>Roñmô4zT¼?îm5ÖËùPûSÞ·?¿|ünùÿ³W.åõãÔß×kònzú_3ú]IÿLpàÿò¼a7Oêç,éúgKz/ãÏÞ\ÿfIóÁŸÈ룞3yÏ.¿›ro.ë+pTêç/Ÿ õêÇÙAëÇnäcÇŸy§ÜKC_ÏÒ¿ÐéOþ@þú#L~ëÉÀ³T~ê#í½:æaä¿?~C^¯ô–¿Áð[¿’yO¾?“ûzÿò¼á÷©~"OôrÞó#Ä/| ¼ÿPð-ÓTž×¿RÒÊñc‡ŸË£¾é¯¬~›F{Åãxž´zèoýXi_c=€{»8øU¯þ ½+~Þ§ò#åõ‡|øyº:øk¿—òjûõÏe¾è·uEý䳜w+=`Þ\z`¼êOmŒß¥¡§Ó?ॡƃ_´éo®øÌ¡§çF}òÁ“ñ£veæ÷~èŸúñc^ÑãéµøkÿSá¿~:Gùîå÷ÿÐÿ©yúæà?s}àßmË£v¥7ümµ_¿šä`]œëŽñ~|=+rµ_±ÏönnÒýI¨ÿÿúñMþ~OØ—Ù§ŒçÒÚ›~éí û•P|Í{žûž*ßòçù©ÐéOÛ>Ÿlò8>Žåù©‘ú×NºòåÏ÷Ö™!ÏWFÿ÷ò~7åºÏJúåÑ?õvÛ¾{/q®¿êñÿtîñõ¬tIùÞFŽ=?»¿y^eyÏàV¹¯2¾;Éÿ0~ ž ý,ãèÜ5õÝUÞ}µä«°/‡{VI÷ûýWË|=gKýMóŸ&>KøíyíÑðãÜ=õןމ¥œZþÒ‰ãéù#9¤¼úëÿÜÈ×9fòU®Ã/[ýµzç}´ž§§O—í¶^>ítßV({aí IËGØS¢µ«©îɹ,ÊÞÈ^!ÍÞ£84ídý­ˆþºÍŽÇž£øªÊü”åO _ì-ì”Ó…~jŸÝøå¥~nÙ5ÉEû{‘'žù6ã[7O¨sðc£íê9|ø#Oòaõ¶^>í´xx’ï«öÀP~Ù¡k‡W~ó¾õÓþáN½áO†¿9ó¤qñ’†Û¹œzøm‚ÓÁ÷«K¾ÊOý.ª7õLÿyü¶‰›ËOQ¥©G|_x~ò® þéñäwÆ5#w¸óh>×üÁUˆ·*ž ~à àkÎùœ_Îû¨7Ö#8&ø þêêÇKû¡ìÁütYȾP=úÇ÷dÄÕ^ã1[·"§¹îÁ…ˆ+;ýÕYgàR® >ðKÖÝúëè©1nÖSå¶Æ{¬ÿí¿ù´Éßú;ORõ®¡ñûBÙë·1õO™Æ>‰/ ÇòÒxGc^œõÜiù/κ@ÎyN~ðqþ‡ØógõgoôCyý3ÎÓ¬=ýÔ¿ï釤ñ¨r«ñ³® *_ã&]û÷ÈŸ{,ÍÏî+Þ–xi¹ˆC–ïªÆ­kÜ»Ð÷èwê}#-¾]íÏy®¾ëMÿ’ιBùï+÷Éúü}ýI¿ígê›ý‡ïP޽:ó´ã‚_rçï½1âÂÍñ#ÿëyOŽž7!¹“ÏàûªvÆ87®#yãkŒgq©çÆÿöcðGOÞò3¾ïç½8†×éyÉ?ø×ãyeYÏÏ›©½™ñ§7RÿuýÞ]¶Ûò)w3|Üô|gYž~Ýøë²þ–Í9Ïí[iïÆÐë©Oþ¦Õ'¿÷©Ïû›yS¿’ïVžv¤o ù´½Ð[ÿµä³õë§´zô#ôú˜7×½×Þh¿ü¨ŸœÆ¸i§í%ÿõ)ýým}³?¡7w—ò#—#_å•vË/¾ô?SÔKR¯õ_åo´s=õkõl©_OŸtÞÔñ`S¿sðÚÅR_ï©ÃÍ}÷ìNÇóœå«”coŒœáúj‚SŠžïìŒvÙ¿Ü£Åç/—Ï÷ãä&ß·áçÓÐô³v8öLvWv]xÉ;IÿjÙú7ËxÍ{Ãm÷›eÿÚ/vHv6öÜëjùȵñ‚ÃWã +ÏOÂβÿúÙñÇà^øÿtÉÏ™ó¾ã{d™î8ŒtýùiŸ¼#»–ò9_o[vš;K>:þè—K}«}‰;üÖ¾ÃîÊŽË~…ïqÿúâ.§Þ½´ŸGïÒ¸Ký¬=[>¸‰Ý¤á4ÏS{¡¯ŒöØ“ñq}´oÍGö`x'88Å/´ýK>åà²N‡ÂKýœñ`å/N0”Ý}â'àƒ&râÈôþå,¹¤¼œy¥?[»\ïêOcø;*ŽG?ØÙ_ýÜèWämœô‡ü§˜üCŸ5iø©½å|ÚâC~ò gòÓ/”~Áùt¼Cg|^ã¼Æ‹Zé?A‹4Ϻ^& o ïb=1Ÿá1á²Ì7xUø?ë¨ùOkž7îwÚ1O¦Ÿ5|ÂkÃ/š/õÛf=Üyô+α~zR~?+ý>󆞟:ýbù?ýÅÐkû\åì;¼·O’¶_½8þoüŸûß±ÿøÔæ·ÿ0oý¿u¿j?~ÔüÉþ.ûÔâÇwæJWúwçï½ Ùéý3ø°|O˜/ý®Lþ-Ü¢ï`ß9»˜üoWàç›tq€yÞï¦{áëè˜oƒâßÂó©âÜæ}ÂÔ»Þ[[éߣνšž~žœ÷9u.šýUq—plÎõœ/I¾¯RÏÄÙ9sîUüZÞ§|﵊Ÿpjðé|­ç†yŸý\Ïogæ{°çl'–üö¸¬ôé¦ð[M×ÏUôŠÄ9¹sñúÃÉûâüvý¶pwõS¥þPõÁ¹y^¿U¡ÎÃÙ‹·K~~6&.îÜÈÇÞs!”]Ì9wø=ìqYéÓMÙ›f¼²y^\»4¼;aqlIÃÁ¹y>ýÓÀ§§¨T=ɧ½«øH>ø|¾?òÁóÁÁ¼3øƒ/ÿ½õÿf¥O0oè]ñrÑx”ƒpo7?þ+Øùÿ±÷o»z׺ø='ž&qƒñC¼ÃØØ€7dn¾?ãró:rë:rÄ>EZgq†„d ‰"–ÖDSßš~Ÿß3VoÂy=ìÞOšzïµiUÕZïUÕžjí> ލ¸E4ù&N‘^Ÿƒæý|’rR®zÚ¿¹Ÿ8#ø!í.žëÞª7+ý~½ë*ÎÚw{çÁu'GTùŽü‘ëâóþ0¼tðÐ7S_ßÓÔ?ë)®1ïßü§'ü£üz¶)gÛã²Ò'›7σÔ?¢ç¹wÞž¯çÌÇB¯±~˜x²úG 5OêûÜÃ9—Pœ\Þ×Ï£zCåsð?Ïeµž%¿Û—•>Ùtßá΃«ø;ûYÓ"œÞ/…#ƒOƒ „¯à뼟ç‡áæF<àîŸÙ§;‘|òÏóõk=ÒŸ†ß¨wg§xÁèió}¼)¿v¢¯G¹ÓŸ…òð7Ò𳯃ïð1㧬t¥ßE÷ã‘EÎ^«ø~«&n Þ ~^^ .瓋ÑŸ|óÏ´¾ø¿‚càg Žuú¥‚ß»’çÓ\aý0†žYõf+ò—õõÝìKÝ}o³Þ¼{g³.½ûîæƒv÷íå<ºïÇyûYÇÞÍúön·Õ¿`9·¸Ÿ|ï¦\åäÜ×Ý?…¯?Žôïmî[ÿ»©WÜÏ;¡ð^✒ÿ¬«ï¾;êÏ9ÓâÖ²?ïÖúàÏÒ?õ‡¦]9÷Ûr<×?ÊÅoüÃe?£ñ>³Ÿw7û#­÷ú²Vú˜õnÐ8¼y!×ыƅÍ>oã½ÞúÄ?#z|ðŸx'å¿›ráÂè×ÍQ_öoëÇ?¾÷Fýê _Å/ßòªí;·Ðz•syßýòôSíDêÏóq¾Ó=¾[ÎÏW½ù)iíkðøü²æûÜtÏûCüB4~Uô怟_öÁègýɦ¼\•ëÈKËËóéW¸|5Žu(œ¿ó¿Zòóþ°ÿð';ãgOÆ»~vÐÚIO'>Ø-Ý;— ?>-õ©ç äÇçð7¼ÒǬ7ô„ür9î•ëÓËq1N3~yý›|“r£ýŽæ»jü{>ëÄHoþØ÷Ëÿ¿0¾Ë勜ÑzpjÈ«ïþˆ'×òéGý¥~ÿãËÿDõ“~À+F\›î?ÉgmúÏ™ñg´gø½h{§ÝŸÿìèŸ3¹W:ã)_¹åoäÏÿªíR_úoÛrõ´Óâ9Ðk‡+ËïV÷‹›>ãÆnÐ8‰¡—2ÞììŠâ 6^[ÒKwcÔÃ.ÂÎy}Ô+þì÷Ú¯æ'‹ýž½È¾1»û û~°/ÍŽÃ>£þ¶+õœO=ì¶ô³q“þâ(ϾõÀ5ïÛGŸüR±(ïxò+ý‘õ†ß¡ÊeƇœ=2çCš\±ƒ³»³o_rUû}Ê{7rÄÞ/gB^áLf~vû‰ç¹)]òõùÎ’?÷·F»ÔwG$ýzŠOåùïw åÐs߸õû^¨Wßú[ê¹—zÒ¿úNÇx±Ÿ&ݶåj¥?ŒîËëfÜûü!Op-9÷\9#Oìüï…þi#ïws~²é‹ Í9¯»w’ž>ÂùO½>¤¯>ÿm!—ý.$îÃ8¼pq³\x!x8&ß…;ã;×/ç{໦<÷7×ÿÍQ¦•¯á'¿qÍ¿Èwüö÷?æÿ'=y!ï¾³ä•\’orïÿÓï8=ôõž|¾G>Õëÿ™zèüå ÿ‹ÿ=ø¥·Ú;æ™ïà[©g”ã¹öÓ7xAÿ¿;«ÞeÚùLä{ÿ“çW#/æAþ?ÖðcôÂzÈ|HÜnrD¿èùß%ÿé¢GôVùüýÑëŸ+C/üÏf\ëø4õçÞÍÿ–]|Òlj{³ŽÔëë§Ë£þÌ»·=þ+ýa´¸«‰³_e_ȺÙ>’u®s-cŸh–çÅmr¼Ÿ~­_òf¿Ìþ 9?©î7(×þÑ9íüxNÎ/Ž|ŸwöûÁÏù<·oظԣ?´3ý¶íñ_飵ü×òûW{Åg›çìµo|½ÿâ`¾ŒÜÈw¤s.sÆSðþÛñ>õgv,|$}ã! ?´Å ¾‹÷A?M:|‰§€ŸO’.|5^Á½¼ÿ"ù~=øýÑú>õæý¶Ç¥FÙéÜ×.÷ñòyíß±‡×o&{<œ |Éo–ék7ÿÙ(‡FÞ‹ —yßxæÑç>ÿõ2}qüÉÂKœ üÎFæû釶ö|íƒËѾü_Š[H¹Å% ¾•Wþ¥K¿m[Vúhô>ŒÜÜpý_Š·”ù×p$ükŒxóÅËð‹!Vã0¥|þ:Ô“yMqf-/Ôó—F:å¾²”óq¯ðýé{þ=åWþ™<ÇçÀå”ozv"å¶_’Ný/¬zs”¨ï~ÿ?™oô{J.àç-ã}2ïÝóK^á·Ä;óßâfâ!éÃï†|ћƣïÝó©G9ôÂsr^ÿ9øßú¢úãùÑ/ÏÉ¿ Ü vÒ·é§zÄïZé“M;ÏŽ¾ìä²^è|泌óÄãg>gžßy×ÇËùT矘§-ë+¾ÚüÌ:à«ä3?SßßGúðÙö|°œçu¾‹?Kú½ðQ¿êp¡¹ï|îg£üðÓï~K6N]ú¯ýÈo»r£—Û–‡•>í>˜}ø*¸*¸­ѧÈQ÷B»Ž?•tó\ ï霘ý.ø:ûOÊ)¡øÌ÷½¸Qû|ø{iЖ¿ä£í°ßà\œsrÒ œlããÌþßýl¿~<=Û»¡Û–‡•>­ÝÃ~ì´‡$Þv÷]Ï…ßyâgbâÜœ¯¶ ÇÙ¸‡¡s?[~碯¤ÜÝQü˜òàÅÔwy” wuð·;ê³Ï?øOíwüµÙÞ¼W.{ØÕåÿ¤íPÞÅužv”hý<ÁÏ™ñdW÷Ž„Ý’]‘½¯~BßšïÑÈUqm› Tëþb®¾jÍ{ϯ þŠOKz8š‰Å—ïBñiÊOi<ÿÏû~|´'åêGx8߃wÖÿÍJÿ =î€þŽ{xéâˆw\ÅéÀOWÿéCÊq®nι…WÖïýJ.=à_ÆzÁ|ȺÁ<Ç<Êü²~™’®ñ½CÙíý߬çV2+=ÂÔ~@qÎgÂÉX§ŸŽØß³/qbsßse//õ§çCéŸóÛ÷×ÿÍJ.=ßö³¼Û¯-¾Gº£¹ï¾xôè0ÿ4õ£ðùæ~ú1YéJ­½òÌF¾×£vOïóœ½}‘ýeïœø“ò¥\Ï_^×å+=zt?.näX(q™Äm7JœZq¢ÄÉõAü[qšÄÁýCèùõ?³Ò£K§,çÕ?0ë÷ÆDÅ_“Oœ4qh½—^ÜÛìûV®¯û+=ºtï r¾óàj¼gqÅù×™^ЗÆÌsñØýâG~/ñpZî•UoVzti×-æcÙ.®8vþ®s¬Oâ×i?Þa¨uÍù¼7ã—Îô•UoVztéÄg‡ùEöÅì—Ù_ûj¹Î·oW9ϱÙ7ƒûl}Ÿ­z³Ò£KkW§<µóàêùdöÊèIñlÞ³ïÌxðpž³Û8Ͻâ÷Wz„iÏé‹/ Ç5ýƒÂ_ÂÕ¼>òÕo•r“Ÿ¿ž×—z´íö¯t¥ÿ¾ÀÅDîû¼xëÈýÁ„Â9×ogžósÃøpð™õSEϖ娟¿|Š›6üˆ6ŸòááðS?‘©Ï}ýÙ¬ú»Ò@oàˆ¯-וûúkÚypíëOÞÓŸëCýgÈyöŸ«g׆ž^Y>ïÿ Ž >œßœ7F¹m‡ï€ÿbòùo6.\ø“nøÝZéJ¿So/tÈqã˜G®è 9t¾Åº‡ß3çd.å½ù9·Þé9ÜÓ¢ôæ“õst=¯“÷êÿàÎíÌ8ñçV½Yé? 7pü§Çÿ†>ЃS;®âŸ­ïù-ãÏÍù³ÆIýý ö Èûsy.?yVœ(>ø[SŽrÅ5ÁŸs¡ö-œ7ÝÅ_òu+]éwÑÆ»üz¬Æ~rÏé‹kƒ~»Ì?ãÜÔš}:ûÓÿgÐO–å‹ÏÑzÇûq¥ûvYnñ©oô£ù¾Êý—;.ï·=+=ιþʆŸµþÓF|µú§áGƒ_¶Ï"—ü^À{þrYnËñéšO¹êះŸöW~âă;™|Ç–õ–í„[ýݪ7+}tZÿLg"?ð˜Åä=û~ý0í<¸ê¿mÞóÏD®ù]šñ:ë·-åʯžúwSnÒó5ÓñSu6üL¿jå+Ïù˼mÛã±Ò£AÄ»zuCõ†\’{zA.Gð½W>ù®Ÿ¶<Ÿ~Ív‡©¿Déœ_ØzˆßúGK:ú¢|T¾Ô³íñXéÑ —žyÕÞÎæªßµOƼÍ:"ëŠú]³Žød™®xë‰{™}ÊÿlæSõÓf>¨\åuHçƒø—}Ô[¾¾õ¤ë‚ÞÀ£Ôîï>òŸÂÎ'Àî ÀüçpWw\µ“ÞÌ=œû»½úáØ[ÉûÄ#à^A\¬â BÅÕ‚Hyí7×ÿÍÓ@÷ñ_ã»ížœÔç'r7&®¦8…3>,¹„ëò}~güwÔ×ymèÿ†7RÿŒSظoyξY½Íý•ð#n)}ñ¹>æqêKûû\ÂêŸÿZ¨ÿåëÿæi çxóþüü¬ àH|ïéÅœ7)çúRnªü Šè?3üœµœùŸ¢Wæu÷ž÷ôöÂ(nÆ<Œ>À™G^ÿ ߉᯶Ï}‡®Œþ‚W¸¸þožZ¼‰ù=ÿääÞʼ>ç5‹×÷¼ñù¬’îìø^ûŽ[çX‡ŸOzr¯|~Ñà_¬+ànvSü }>9äU;´×¹øõY÷óÏþÚЛCÖ÷m7œòùS/Ng©¿+=š´qþ¾^ʃ¸zݲÿ…>ùÈûæwÿyÊñ»óyJzûV¾Óü Þz‰/ñÕ;âÞÝI½±çØ·n>z}(GþqÞ­~Û>^Ê?\Mã5Î8Šî×xkOm|°èAí‘ÃâJÈ\ ;cô¬xvÈ]훩§ùG¿Ú7~½¬¿ñ¿I~÷ì"êÁ§|÷Â_Úµ·“÷Ç#ÿÀÕô|ö/–ÿøùûœ]U¿åÕþ„?ûÞ+=š´8þ1øÅàß‚½;냽ÌËêŸ,ëƒú)“陋¾þsÿÒ¸—޽>ó¯âSPñÞàa1ù²±üþÞ«ƒï§Ãí5íúÌk›®ùC3Om=üÆ}÷•Mº—}žúýãÏïÊxN¯.¹à7ŸÀKä*ï³nßÏ'ÝR.+ÏÊã×é¢|)g¬Ó÷ù}UoÊ˾Ãþ{õhï¨gðy°¿òþòhïåѾ £ü¼ßö¸¯ôŸÔ›)Ÿþ#Փȃø—Õ÷ämèY¿»ã?Tÿš¡þþWä|ò…üõüžÓr\}$Çãû@ZúðÿBÿ[è¥qqôË룾ôç¶Ç}¥?P_Ç9ãÙxБ£‰÷5?çÙ¼dâ˜Í³à§Ÿ³)oÆÃ¸ÌßúN‡Âkž|™o™G׊?Ï‹ëíÅÿ!~<šOüií?3Ú=ŸÃ¥¾öðrWz4(z´ã¿F}³þÏy¯½Ÿ/Ëëù5ù>È{ûpÊù4ü~~×skG›ö|/»GÏÕçy¾ïÅW^éØAÄea÷±ÌnÆ."¾­ú^éÔ«|vç­Ùq^ùg¼]vÜsÉïyvðÇŸ€~qÙŠÓÁ/þŠk ÕŸü&èGý³Æ{;Ò´ã wr#÷pVp`ônîŠ=½ñgóüFîéràrÈ»zý(å=ý¨Ÿù“¾qC½ÇîáHÅïTÞ¹‘¿þs𣼤‡‹á—F»®*?õŠç©¾àÚÏŸ×W½y$ùDz8ÁŒy|sŒßŸôsžÃ‹ˆS r‡«” — G ׯØíÍ„£qeá¾”ËÎO®o>nŒr¯þÕ{'üÞÙÔ×þ8?Ò¯¸“•>Loüßá oúN{y„ ¤/òùÎú¾{.Þóù”{)å(÷õ¡õ'fÞ2¾ëþææ#j~cþ§é{=ýÁÓøŽûÎÓ»5.ÍJ¦7äŒÜÀ/reÞd~½³¹:Oÿ…÷¡çóÜzÃw. †ü[X_H׸˜)çLîÏ÷ÚŸÝ±Ž±ÞQ>½‚Ëšçl²Ùöø¬ôɤ=çûIä ~éƒÐ¯7òÓû6ôÀ¾•{4éàBŠsîÞe3MúÏúwI:øîŸÉ?p&M‡¦þòþàNº¿ômø¼¿l<Žr¶=>+}2iíöýíï³Ûñ'ÄO »;{£üâÀœL:v—³ãž]ž~„}ƒ]dú™ÁÏ™Á;%{‰¸Lømú¤;w8™mÏJŸLºËˆüÃdÞ¶—õHïÙ¯¯ÏÈ%û9»³r½ggggç‡ó¸¦œ¤ƒaß¾:ë ½4óKŸrÄ7›|ß’÷WPíߤÛöø¬ôɤûñ*#GÙ¿l|Jr'¾eãUæ>û«oyMºäÏþèÞ5åª/å4>&9WNò©G@åÇ/ão*÷­ÁçµAgüÁœ{Û‹?ò¶ÿuž¶ÒïÐñ,É£ïtÎóöýÕÜ_Ðÿè@zåÒÈ¥ûë#¿ï½ÿÊUßÿÁ§ÿÄÔÇyzœ[,N꫼—Ï~Õ›ûúáû$r{bçÁeÏ>Üû£Þž‡üzÃ_ñehòõ\Wžw? ÒeßN²þÆ¿M½é‡mÏJŸLZ»&ü{ãÙWíƒÞ³—°Ï³#²Óôœ¼ûPçèá¬àÎç^ùüá±·¨Ÿ_ö¡ÝQ_þ‡=§üÊà/ÿÓâÆØqà²â/¶ýòüº¾Yéwè ÿ(wèGäˆ~+ëú‘=“½~€óõ×>Îe¼§ð1p0Ê­Ÿ¥”SœAÞ_úEŸg&xxzŽ_|*ïòª7+]é?ý}¡¿çw\õûT?UÑ¿éïÍÿ¼q}¢ÏoïE¾[­×~S¹¾oþ§ü¢ùn§4ÿÛþû¾_øNy«¿Î•þ˜zC͇-rDÎÅAóß4¿4_$¯æ™þs½O~¸&óRø9õ;ï@Ìð‹¬_‹ö†32O~aýÏ®ôGÐòÆÓËCÞ²*ŽN‡)ùø}ËzjÆi«~ÄÿTñ{ÇBO&ÝsÉ/éèMöMšO\BqÝ>Û<ÿpì×ôžr’oÛý¾Ò£MÅïƒ[…ê~ÞW¡öá>ݤ/Î-ûwõÛ$ÞÙŒ·öqÞŸÚä§õ·öñÈoÿqÆá—Mºðsj¼ßõò÷Á:O[é?O‹×ׯþ;"™w•·ñÃÁþ…²WÕOTÒ5ÞšòRŽú‹£KþÚ¿òœ] å· ~B’޽ëÂàOºWW½Yé 7YwŸP9‘78ƒ¬Ë‹“@‹£K:xø¸øø~¬ê?'ÏùŸK‚?‚{èûPø¢+ã}Ó§žâ$ÖõÍJ½×É>ù^ÎÇßCàyï`/ç¤÷q|žË¯¼<‡+Þ.þOº£þ#r¯|ô¬üâ/å¼½lß¶û}¥G›ö¿â»^ùœ/Jnw\ýŸÈ×ÿRÒÁáÁÕ7;ôãíQnqx¹÷Ÿ£?ð{×äSîÕÓò®§Ûî÷•mZ¶ðoÓ?¬u ?‚Åû%=|õ…sAü*_yÖ%ynÝã|Ò\·(Gzó±ó£<ë¤ú; ?=/²¹ßv¿¯ôhS¸»½±¿Ü}²éþ¯Ü‰C]î›çõŸöÙFN»öUäÖ¾ZÞÛ×’®ûfá£ø½û¡üÀÃåyþuÊù2ü_üËóŸýðâmmè¶û}¥G›ÖÞȾ!®Í‰qÏîy2þmƳi9)—_(ñiÙoÎŒò•wq¤>Ô¿ƒøp~êabGJþÆïh|ÜMùÛî÷•mZ| û:ÿ ð,(ÜÝ¹ÐÆÁM¾Þç=ÿZì÷/Œ÷ìÿ7¤K9ð8ôG<6xšÆüÂלM>¸†³#ÝKëÿæ'•¯¬/ïÞÚÝô?ÿiâY¾û—Í=\%¿güN½“tï%œ'ÿ}ñCÕúȱø˜—Bo¦þ[)n“ÝN=Ü]”{÷vòßÞL:~ånnÊiý×F½ò½‹¯Ü‹WÈÿ=€‡¹­_è=Ì{øµ÷ôWhËËû;ÝðpwßÖŽ”Ï¿]Ÿ/õcüV½ÙÊw™ßHz}¦ú„S®_Á¤#§7‡|‰c{s¹ÏÓï4=%ð[ð–oŽú'¾›¿LzL~²/\9ƒ›|gÈ7œ%<ø»IWÿ‰Ò…ONß´sð…kÿkùºù÷ÿõ¸•~ßšÞâ·þ‡Þô{³êÍOª7æ þïŒù\0¹ñŽŠ÷}m”_|c|ïg6T¹õçISï¹e½ý˜ßÐ+ò6ã|j=†oFͳ®†š÷‡œú}_¼Ç¯sæ}ðop×WáË9&ß'ý¬wÚÕ_úuó|ÿ»§ÿ–ß§•>f½±nµŽå·n?Cò{,éıq,»~îù²åw°8JùO&}Ï¡å?ðŽ§’^ýðüþfðážœµÞŸëù×_ðúâ‡Z·Ÿ|g_¹q;ñ£ë|?—{åé_íüÕ’ßž›Uî8—×ç«ÿ«Ÿ”v_öó mœ‰<‡KÜÉå½ûž¿þ$ãëyî•£¾÷¿ÉûÏ6ùœ{nzxǼð×sÚÇIwoÉ_Û÷í¦žú5 ß½ÿ"|¸—O?¤žžßþû²]p£=.r¿ZòY<æ§éõ¤Wtà8õOûSùŸ-Ÿ¯ôñÒÆ[bȸ—{b9îÇÈGñºùïÔ¡œß ù:½|^;#†×”{þ6Ôsb¤ÿí!T\øÊ“øÌsåÁaJ/{ <õ™‘ÿ7Kù¯ŸÄçò\œ(éø-aOÕN8Ný/øQqpó=Øçlçêôª7?‰¾vjãÈÍÙŒGŸç~Æ#wõƒ“ñ¸áÖ+Î^æ/ûvt÷ò…î†/zaäË<²öóóá‹?QϵWy꣧/ÊiëQnÊñ_`ßWü2>Î~P¾~˜ß õé×ãÊŸå,õzÛrõ´Ó~÷é Zÿ¶'þ—Ü×—ÆxËg|Çw³õ’ï? 9ó'ä‰þ§ÐKþB'p5õï;õÍ󳇴W{Ô÷êxŽOÿú·ƒ?Ïç÷Ã÷‚þê¯SƒçN.û­åh÷Ч•>&½á¯9óŽú‡2Ïþ ó­/7éf<À9)Eú1¯ÜXÒÎá^œÓʼëýOÃ/½$/ÇÂ?܉ùüÊ×ô8F}æUʹ—÷ߎù¿×øNúòùü’ßÎïÒž¶Ÿ_úôsq5÷–í.‡Ÿ¯¿/û[?´ÜSËû•>Ú}0û8ö•ìóاñ>E¼>éÝÛÿ²O¹²¯¦^ëqøç‡S=òGŽº¿D?í_õ…ß¿ÙèYÏ3Û§Oк\½óœ´vØWV¾x ‘÷ú‡ËwFÿµýóËåûÞkßÜ ¿=Wy±8¤øëxþzýßü$zÃ>¾ÁŸ{Ný1å9»JÓçžý^‹‚=qÆ×³?ËÞÑø~IÏ¿/ö‡Ù[ìÛòp>å½°”¯æ«¿—¡3~&{ÉFzv–Y/»>Ohžï&=þ؃f\¡Æe̽ýoõèOv+vœççîX?­ô1é {]ãL†²Ã±ƒßH:xöÆ>O>øòÄ®·/óÎЇ›äbèÏ>’oÆ/„Çaχ¿‘O;¯ª<¸éàc^åÐvaøúà½rÙ}õoûy)ßwoÞK?ìnÊU>¼€~–ŽþïÐrÞZõæ±ê‹ïÜùȹÿ û6yñŸ©ÿ1ßï¡o>Þñjý°í~\é³E;ò½®_1ó&ó‘èÇÄÓ'zteùÝûÑùõh\õÇ[ßJWº?8,ú‡r"Ï­GÍË¥£?»#<Ìcö+ÛzÐ ëÿf¥?ý0ûÁ=¿x?û@ç¹}ªÏ7ÏíSËg_L>ûKþ×ã•c~ö¶Ý+}6iíîì6ìiì~ìÒðìì~p4_%]ös¥\|×þrbSß¶ûq¥Ï­ÿ~½ØÏùKaß®¿‰¼gÇ?“ûKѸ›?<½i¼Q¸‚Këül¥[Лú³‹Ê~Äëg¥?=-ž$úq7ûiµãÀ3ÂAžÍû {lüâëÅu?`¥[ÔrÈîOÄ몽3”þÃà׿òxå¹8…‹ë¾ÀJD¹‚?†;æ…]¿qf“îvÒyÿ{žäNš¿¢âÓà’®ž˜ÿ4øLø¸izÛ¸½¡ç–ó½}¿8©ž~™ÿøËäß×gÏ“?û×ÕÃø¡Ùöø­t;´r?ì2ðÆÍ'¿øw)nù÷£œÏ’>Ìsþ[‡— ? 'z&éé½ï€÷ø Ïæ“­|ðoé»°âÛžiz@>ùQ2ÿ"ŸžûþòGìü–uŽs)ä— ?ª=‡å½ÿ—skôy̳ÊOã9Ó4ü(·ç]r¯~ÿ|X¯ÑÛçBù‰¢_çï>ÆJmÉ#7Î+gßéîÎæâgÈùÄâÓ’®ûV¹ÿ›MzçÙ÷Ï#¦ü¯’þ‹Í}ËsÿmÒÛ‡ ¿ÁƒÖÿRøwî±ñfÃ/}n{ŽoÞO¿OËéüfÚÙ|ú%íÚö¸­t»´çð§#ö–ëùw~Œò_©?Žü¿z~>íTÊ· ¿½ê¹{87çñù?—}oq'ê''Ï•‡8üÂÕ±ñWÇÞÃÅ¿¾ëwc“~Ûã·ÒíÐÆ­d¿ìRäÞìq/Þ;èëó}î[NÒ“Ï‹ä;éÅ1‚{sÏO”8™ž×OSÊñ¾ÔóЋƒo|Š‹†ŸKÒá#÷ÒÃÙ]\çkÏ2-þEJñáÊŸ2ϯEnÐ'²qòR®ò¯ ÞÓGz7ò‹KéåÕÁ|OãÎú”*Ð(ÿÛò©7ôÚ’ÏmßJ·C/ÞÒÿ§ú‘÷âªæ>qí*ÿW‡>\òzeÜ«çòÈ×8zC¯^WÎcÿ‡‰‹›úrmðq}¶ü‡è+=¾±êËJÿŸ8ãÖÿØuÿzæ-Å¥ y>3Ö õÇ—ôüÅzΠùÿòóWÆ¿ÞË#¾ÎzS»’Þ:JyôQ;ñgøÊàgŸ­ôô‚¿¯{¹xÿÁóÿ+wüø}¼‘'¸³æ³¾>¶”·žGËþWσ¦ÜúïN¹Î‘ÕOß'‘SûcŸ¥~||»É¿“kúûë~Aʵ¿‡ïú囸R~fùOÄ7ÿÔüÝ_–·Òg“Öù+ž,rX;Ì ËùIí+Ãßyíì"'“ŽßÆ‹Hùì§yßxêe§d÷Ÿñ+7#”étÒ[þêwO\Kv(ñ.?M=õû–Ï·=n+Ý.­ýž_³Ú‡\×^ž³CòÓW{zä^%rËÏ]ë­Þ„î¦|þ¤ê—Þlž7?»=Ê®Éî 7ü×¾+»©öÒ?x õóÓ÷˜Ï=<)ôî{ÛôÇ»é‡?¦?ÿ=ýðǼ1qÚîþ1ôÏyþo¡wòü?v7åðóöo‡wóþ_SÏ­äûsî•£üÿ/ô_Ãç{)÷ÿK¾?%ß{ò%þ”ó#¿¸šâÜý)ùÿmÜãOÿˆÛ§ÿÔûoÊKºwSÏÐ÷òü½{é_íó<ýþ§<2‘qúü]õæþÿ¹L'nå¿&qÀ—ö¸Wοíûë²ß祿ÿ/í•ÿßSßͤׯêýcîÿœüJ»þ5ïÿCÿ’£<Çãnâ7åÝ2®Ú7äV|Fr ~ñ@Õj¯q÷Üjÿä.ÑøjŸ|â#Þ4ŽÉ'¾#ùûsò˜zþ4Þk¿þ¿ý¿F;ò^=çäW^Ç'÷úë_“Ž?È?¥}ü=ŠK«?È%—7”OÎsïBîߢgy®¿ÿ ßIgüÉ•ø³âÎú¯ÝJ}øדÞVŸÈEè»égþ<ÿU=ynÜÄý¬œ§¼[äóoËöÿ™\ø>Ë1.Ú/þ&¿—¾øû|‡òA/ŒÇŸS>ÿ úÙ÷ ¾õ_}Oüÿroœ}_t|g<ÇŸçäF½ú›¼gßô@RïëW•œ¿<‡<'Ò™\ÓIÇ ‹¾=Ú)^²x­úž˜¿ÒØ:Oò_¼ôÆOyÒéþ“ù“ÕþéV;à¿ô‡~Âÿ¥‘ïjÞ_Iùä’ÿYþ_ù‘5»bü¼§_#}àŽ ®Y}Þ󋟉ÿô?×¶ñxõ·qó<ÔøgšòÍ7—4õ•ÿÈcãpêã‘ôæ‹ÖsÖŸò9q^§|íÅ/zeÖøºú5é̓ő7ïü7žêÝù<ùàÏæù™”[Ü}Þ[ÿ¾2Úk`~/î£üêWŸr^íN¿šç7Þe¨u†~6.Ïò&¾ò¥Ñ^íPï+#zøõƒ÷„ÓÔ>íWÿÙÁ·õRqšƒ?ãaüÎ|ÞãÏþê»'½ûò¯¿¿äŸžŸíxmÔsað­×P~Kõß”‡9np·•GíJ=Ï>¤W®zÈÏ\Š!nÂW¹?A¾6éŠW×A<×¼o\ûEòÃÉÃÇ>P\bƽ÷p‰øx.ùg\ÙÐÆy86ÒŸXò]\ãç¡÷“N}÷ßÅ=‡¯ãËq+nßúÏ>Ôˆ#Q<å)×~×Ïÿö¯äû&üØçŸ0ýÚøÚ³>¾H9)W»›ïˤSþ©Ü‹‹qb”c¼w–ï÷ÇyÔ3ãÛü“߯Ÿq"oøI»Š“ÕÏúÅx|ÊÿãGyŸrôKê©_ÈOÓn÷韖‹¦â‰wÒø¨I'¾NÏ¡ø:3Þ‘x¥ê¡ŸâŸ†ÏÆMbà·R;Ò^å6ÎQúñý´¯ñŠÄ}õ>zÑvê¯È]ëü5ž;{|駤¯½ægËûú€{ÄŸòvFÿ}2Ú³ƒ&=¼´~KûjçÑîô׌ÛÔûÈMÇ/ío{•¯ŸôÏ/ùÇgåH~«})÷W£¿é…ö~´lwÛáyäªqqë=¼=Mg|ò?éxèwõ¨7r2ãtu\óýìxú‡ëå/²~%ó\þSy?üJ4{6Ü,|.»3{óYé“®qåò¼ñMCñ!>úvSÞé¤c·S{»ô/Œz'Ð}Þ{®|qù¤küÊÜÃ'×~8êÜ2;ýéGýj”ƒÿÆÿÌûsÉ'Ð8€¹‡(K}l¿Îxºp3.§~xa¤ÓO/ >žõÀW“¸lí;‰¿¼ÿðô‡s£Þ3£¾³³¿©?ß—òAîÏŒzñg«7£œC.?ž÷Ïtê'_Þï$½|3îñÏF9ôR~zõ«Ñ¾G³ß ï2êi?ŽñÒ?î?¶Îh§~ÿý(ož3 ß¾Cwr¾ìç~¯¿ß5ôדϤÿïQ>y&GÆ!ß•þ—èÁo–|ôí÷aÈiãCyó½ÿ2íºŸ÷ÎOŒøƒ­×8ø®Â‹ë¯yîÃ÷È÷çÄhñžã†oÿÏÓ_|I~7éÍëüÓ­G×yShçAŸ&Ÿÿwúß|±ó—Ï–í1ßì<†|˜¦œþ·åç7 ?éüvÞxÙÎÎc?Ø<ŸçÓ:ÌøšÛ´Ý?œ¯Îèƒ8{êù:ÿ|é×¹¾Ä_ãº'ú]{ÓŸwõ‹qTOÒÉßñׯêMûæ¸ö¼>ñm^§]Ÿ.ë±¾éø|»¬¿]‡ø^h½3näïóðkCÉùÏ–ý¸1ý§_>Z¦“¯ûbÖÁÏ…Ú¯b·¾·1ãÔÙ‡8•öÚ¿²þµßdÃ>½9—çö¬ÿϧëGû+Ö•öI´#ÿ“Öï½}íìþMÒÛß’®þh’ß>>ìG©ïtîí×´’/åwkÿƾþÕÿîÕ3÷›ì›/ãòíãñâHÿÝÑ?ð4úS=ÆËøÌ}Tõ^ê[÷×´›ß~A´‡ü¹×Žž7nÚ“tGb¼SŽñò€vÿŠ>$_åVúÔǮڟŽ?‰îckû‚8•ì=ììö%ÙÞIúKú¼·Oo?š}À¾;;ä•ܳ²ðÛÂ.$ZþS.»»2ì9âò±›±±o°g±Ôî0ò_õ?Ïõ£AnŒ~®Íö‡oö›¡ì4ú×8Ÿwð‘çú‹Ý†ÿq®ÞPvè§äcÏhzã{ûËoÌòr¯Ø]ÙgؽŒ+»ÜÕÑ®Žó—úÓ1þ3_î=Ç—ö³OуŽþÏsv÷â8þ²yþ§ñ‡<³³Û²ï²/vóÏó‰×ßóK{ÙÅáOØÇÙ-ñ÷'ü„Òß⤭Ý:ï§½ø–róþÏ¡LýäT9·“°öþô#»ì;Cú>åÕ~çÅ èÿ¼W<<…ñÑOð2pÅKeÞåß”=öÝÜ·>íKyppì«Þ÷¢¼ðÿaÜõ¿ï¼ˆvÑý¢?õ;¼~‚;ÀWùN9ø·"ÏÅ“%=y‡¯Ø$[Ï?*ŽÏøó'æ¿`œéÏ¿æ½q4ÎþâÃVÏÈ»ït¡ä·úC~|¯óœ÷¿J?óþ1þ¨úÕGàßàhnvKï¿KßÝû~_éá}7W¿ùÎã÷/ËÿÍ𨽽׮â8RŽï-}*¾ÃóÔãÿŽoÿ—kËöo[í÷Ø|›ùúÞ'rî?oÞæ»GžÉyç;¡ôÀxû^1¾>ÊŸy†úŠýÛRÎÍ‡Í èWç5)ÿ½ð}Ïûâ‡òž>]í4%¿Ê¡7m7}!¯¡á¯í+îl©?}¯Üâô¯ùù׿¡—|ð•çp ô(óÐmËáQ¡G8+ëNòi]ÓyvÞÃÛïfÜè›ï!ü“u°ñëy…¡GÖÝöÈý«_ißIóœä«_Aúã>õÒ'òcýgýé¿©^ëv¸š·F=—ÇÿÀzbú›»<øè~€ç¹·Os&ÏŸz¥ýÇéý‡‰ÃQϯÆýóËòÛß箯+=Do~6Æm'ãq,ãü›ÑßÎyÝß<ï¾­ýæÏóü£ä³?È®ýAžÃŸØo†/ùåÃßWžË{úW?k©Êþ ùÎ>1ùûÅh¯ý'÷ðSøÝ?Ç·}·É¯ýïÏRÎßGûà¡<~Ùã4÷ǧ}bÆ]h½¹/*|´ß¿]êçJ¿›êçÞ§—ÞæË\M?ƒÅ›°çÁ±|>òÁ­ {GíXÒ“ÃÈCóI—úkwùxð‰8éÈÓÀM;k©÷Ÿ,ëk¿°³:¾ßÿ&÷÷—ía™8¨úƒcvjv*ãÓúågÏŒ~£ì¬Ïô3߯–ú¹Òï¦p8Ó~®áw7÷§rŸùÕ¾Ÿ¿1^'Sî¤ìÿðpä)ÿƒþ‡gðp:ï_:¤ÅÇä¹ôÅ'©7´8¨ä×OÅ+…Jï£à;Îë?íå°ß¿°ä·ã¥Ÿù£«¿ÔS~ò|7ÏwøÃÇ8»ÒïÑ›KË~;?_—ìóˆŸOÅ ?3燜ßïso\3¿®\Ö/ü¹çœyϿΌs=ù­_åûK£<ýÄ_Õ¥<‡¬?EtæKy¯ÏþõÕïâòyÇ‹?ª‹ƒoõàk–Ã?$\SÇ3ôÒª7?H¦ÜV?<ÏxÓ¯Êû¸—ï09öžü’³—Æ÷ð´t©Wßû`ã|ZëK?ö>åôœœ÷á«8ÙŸ-Ëß¶<ʾØ{ö›â)3þìuìì&pÒ§™{å±ßœÜ÷|pêœx[vöuå+·öº¤»0¾p\F½/~•g~òâø°ãôœu(\šöÙf¯iœõj_ž¿8ÊïJúüçjgyaÔãÞTºyκqî|wRþ‹Ëv®ô{ônЏ 8vnöÀköhòÌn:ñ§òÛ°/Â×/EÊa/U®÷ÅI¦¸8õÁí©‡œF¯Ú^vË«ƒ/ö~õzÇ¥ýꃀªåŽþQû¤|ÒíÒ£ñh>¤£w¾cÒÇô×ô³t)·q#—ßÅöÓ{£]pNùÅæùÄÉñ/Ä_Týså=Üÿfðp“p)ÒOštü8ñgUG©ç?ò^ú–/_Ê/4Ï• ¯ÉÿBpü~ý{ê«¿£”o?òÿ Ÿú¿ý“tðkpõÕ›väþö¨¿þßRžþƒ#ãWJÁmõ;`\ÓŽòõŸËþÀkp¾ÿ–ûwõ§zG¿ß äêߣ~7Þ÷–í€ûýWý«ýÊMyúï@yÆÇ8hgÚ­>¸Rý¤ïÒŽö÷à[½pXÿaÉgÚ}gÔg\ùÃ/ÿAä¡í4.I×òé¹þërüà˜Q8hýx{Prï»H®àé¿~àÌ÷NV¾‰«…ï·þýwí$·ôîoËv+øP8mãG¬ù‹ƒëTž~€«ä?MùðY·Œ«þ§ŸÉ§=ý®é/z”ökg¿»y~s´‡üù>ðXÿŠIï?ùÇQqjÿÜY¶—œ×aÞÃãWÈeÒ+_ýNK>Íê§Rùã{6ýÊû¯ËqU/>àøŠß3¾òå¹yü+ý"Ÿê÷Ÿñÿ%7Æ_½pþ¯êƒö½5.ƵçR~ýÛ ½©_´PøGãÑsyOÞÌàáoµ¯íNúŽSÒ›§#|i'~é¾:I:øéžsH>í2?3¤çƯò’|Ê}sŒ›þPþ<¿D¾ô‡ï¼jå!ãBÎèµqîø¿ÿ½åãÇ8t¾9úGûõù£þ¸jüà슃M½ä£þÖr?Ï ¡õwZÿr©Çy¤ú3νtÚ¯8¾®×rCýIo½*_Ï-z/ô]wæþÕQï\?Â?Z7£ÖÓ—¾I×y°s“iGŸ[Ç:GH”cÝmŸÁþ€ú¬g­«{3Ô9NãoÝÏ©?”¯ýG¤¼ò}~ô‹rÞõÙ·j9õÞ¾y³¯`IÌÿ. ~|§áPñ×óoÆ%ϧ?´«ã9½r.T¿ëïî é‡ä;ê¾ç]Cí§Àõ©ïLøÀy¨ÿ¿äC{ž8å6_ÞÛOµ¯CÎäÇßÄ'âß>\ ¼kýè§åJgß¶çiÇsõ<—rNæ¹ý\´ñ¦—Ï»üÂàë÷£<çÄá7‡Ÿ»òWl_X}ÊÕÎߌtÚ«ãã}z¼?ª^㦫ﹷïØ}®ñÞ8žü“ƒž'ãûû‘Nÿ²8Ýýø‘_»"§ìßú?%göÝáïØµ>ôƒÐ/’>åמõiêÝ|ºïÝýñãy>â×ßVÊ9àâ³<¿ŸrÈ˰¿‘'òXœcÊ)¿©oâ»O?Ê¿»~¾Ìs8HùéÍðæ>Ùw¦?Gí=€ÿý6ã£Þ¿/ù¯ÿüŸ½éWõ×A~ø­Ë{|ÕHÊcw­_>r?}lðýF:ví ŸÆú«¤×ßaý|èíþ2¦¬íÖOÃy©=ˆÜ±÷¤Zž÷éâj#§ø¨=œ½uâCáSʇ+,Þ•¿¥òYGâ_ôûÑoæM¿íŠ|Ôï=½?øè|?õF~ÛÆÝ¸á£ë”Üÿ˲§ê¶Óù1ú=îºàÓ%ß÷ß.ó?}-ÞgÈkñ;©¯þÛô“}¥óËûîWì>üýþyÛ™þׯúoðm}oÿW¹ú§ç¤•3Û™÷Ú¥gG¿Œ8rüÎÏ=¹n?ø%÷øxuô 7;|»ûJñ ©Ï>ßÜ_÷žÿ-¸ùÙì;Úßç/æÆÈö8 vüÁ¹L*ÚÃnfŸ•ýKûÙ¡ø}a7i(/ÏÙ#kHþë£ÿkwÑþÜÛ¿m<¦ô»®r®{ýË^k\‹£ãÞ¸;Æ!´¸Ñ~rQœþÒ/íwüèÇPö%òÁ.aÿY;àfø=¹6úÅø×^ÊW.‡~¯¼çžýlâ¨È9; œ »1¿eìæµ«'ýí”ËÇÉÿ@ãŠåÞså²7Šãß‚'“{öböÄâTÂ|ˆñgŸf÷Õ>ã×x|áSÃÆUKûþÃøë§¤c§T^ãÛ%_ýœ þá,ØÙñ,åÐýÆ~«Ÿ³|ÚÏN—Q‡ò‡ú^²[ÂCÕœ~6ži·z+7ê×»Ëz÷-ùÅQkÜFíL93NbíÔÆ?ãq+÷øq7É~¦•·”Óv¦ÞÍó›Sž6Ï·›\éJ ÷Ê.å¾ó“è…ÿSçþþ[þW¡þkù¯n»}+]écÑë±Ê{ô¼ۼmúïõ?2ƒ'sÉü|Ûí[éJ‹ÞXßÃëø¿ô<”û¼·þ·ÏaÃ~Ã%ùþs§­ô©¥Ý¶¯ogߌŽÌ>çŒ;0ÓG¶Ý¾•®ô±è ûõGù_°‹±/Ò+v²¿úÕ&]ÏcºÉÏŽ³íö­t¥ƒÿóå†Â©7gtþ =¶Ñ#¸•m·o¥+},zs:r^5‘¸(~pê7'tâ(vYÞ¶Û·Ò•>½9¹?‡[¼Ûï–ÿ‘ækèPÿ›èÛ¶Û·Ò•>Z¼]ý\m®®g>±îÙèAñhÖ5æmžÃþr§­ôé¥Ý›ñDÝÃÃÙ·>÷4ïáQ×yÚJŸbZ|hýƱׄÖ.“÷ßv%ÏéÓ9ö UoVúôÑâcn'g g7ý‹4>tÞÙà ¼óhzS>Î'¿òà¾áÉßzÚsì°ž'½{öYøÚâæá‚rÏïdýÖyÊoGýé©'´þùF?À±³Ã[ÀQ½óW"ß<á»Ç«¿àào†Â¡7žÙ(·ñ¢ó¼qÜò\»®Œçúë÷ã;:ãª)¾ßx͸qpŸüù¨ýpÆ¿„kËŸþPÈÍô»?ç2®’§Pø±ó£}øö¨ŸäÓ^ýjœ«þ`ÅWõ†^-Ûû½zóÎõêíÄïõÑNýTÿ(CηÞx ¹rŽÂ¶ÿÛ!äT=䀼ÿa”‡ÊGŸÉeç·¡ìÊäe7|Ô 9 U¾þWžó äD¹¾³Üž[r©¿Î{甜/«?›PçÈžË}ùóü³ô_¿=¬^ >f;§__þDŒÓaí™~xœßÑúÅyvþžûÁÏr_¿Aóœ?)¾ƒû8¾Ã/Ñ¡zÃßLj×srì¯Î•ó—‘~8à§zSÜNÏ¿~žçâÜ};Æ5öª>?õ ¢ÜœÓ«ß†y¾?É·ïW#åz?ÏøwI»¿H¹9?X{ôðsâ\`Ïêí8‘òéå©Ü;o¨Ùµ#=ÿ9ã":Oýuîµ\9_ûYê3nòŸ^¶£ùðéf]½3Úáüê+ƒ¯q¾´~XÈÉñ¤çëÃxK¾Ï—÷ógýs¤ÿ«øÒÏú§þkдKœÌ½ü§—zxí9mñ(Ø‘ò=šçÎk‡åG þ<ò<ý\û“ýó¹_žþkÜ”´³~ Ô“vÔo…òç¾¼|ìWöóñ™~o¾3)ïWK>{ž]àøà×yõF~vçèIùÈ÷ðýoùε\ñÁêO"ý=?`ßf×ãßáWƒ?þä7®úåä2ãnðóð•~ ú_»wŒsʉ¼VNÒÎúqŽÿ¥Á{$¿Ò)/ßöŸ8?ʧGÚ©}úuúAH9=žvUß¿}´yÚ^æA{9÷¶—yÇ^·5ÎŽ8<3™¸Ak•üÒŸÝ8C×BÕ+¿òÅAº”òó?Ý»$Ÿ÷£ñó,Ï_×®”'Î>ÅKº<øÐâ ½9øiü°Ü‹ã•yÞ~|(å‡Òsú+|6ÓH/N˜¸Gâó‰“$îþôÇ5å%]ã4©/齿Œï”§_è§xZWFþÿ Ÿâ;‰ë$ÝÕѯâIµƒ¯ó³½¡›5Æ_ºÝ!ÊÁù9;ÞŸyD½É9Ò½œ³ÜËúj/ëø½œ_ÝËyÛ½›úmŒWö!öóKÿ×”ãþ^Ò)?ùr^hïšrÂOÖùåÇó¬g[ïÛòåùÛƒâ3çv÷ÞÁOڇߜÃÜËùß½›Êí¹9Ê!§åC?ŒtÙ-ÿúW:ýº{YWíÝRîï(7õÞþßË~g¤Ïy”½·|ô_íP¿q¸âyÊkðﻨ]úå ~Ò/Ùh¼=úE97Æwëªþ¦oÊß å¿=Þk·÷¾å÷õÆxÜŽ<¼K~"79¼/ïú-õå\p˹ƒ&ÎåïÝ’.tÊ£|Ù?Ü‹_‚½œÞËþ×Þm|DÈ }¹Cî½'w)‡ñ¥ŸÔ£ÿ”ƒÏ)ßã»AßÈ#½0Þ¾#ý^Ç!—ú>/ï[ïÔ¿,å¤éGWΆø^M>ú¿üÞ&7áÇwßÿç¹z=ä퀜JŸûCžý7ÔcÞóÖè§øoyêëÿÁ==RžôþWôB:|“GíßÐïÕëëÿ-óÑs¹7/3Ÿ?8í¶Žð_ö”Ï<úJÊ÷ÜüV>ñcúu®sü§ÛžQ¾uIöÕ;žžû^üi‡ñ1^Æ»ëŸ<7·î›qõ³ù>92¯7±^h¿…ú^v~¢>ò”ç]7%½ø¾ø!O]O÷ò] 5ß³>´^¸2ʱn™ëMý¦¼7ð§ŸäÓÏC®Œ³uu—~µ~Õ•йïºyÙ¿¼Ÿ6÷7ì?|žrOnê)>.t?þêæ}Ï9ØŸ±¿aiÓÜý}º”_?›_¦?Ä-µ_t&éï¥>û8§óþ…ey_‹¿Sƒ>¿¤?k ¿úÃ>u²}¡gU¼éSi§} ßŒôö¥vÓþ¯ü|ÞÏûÐò­]ö¡ðk_ôXî‡ÿWûOÝ—<»¬§ã¬Ÿík*ç¹%¿ëküØGdPžö“ ~Há—õ«þzaÙý9ý;×óç£Þ¿ûúM9‘ãî³E¿×~Ã~6ýå³+°sÙïg÷@Ùóì‡ÿr”—ÿûI÷åØS¯úÙϦÿÀißLµ>ûùøeÇÈx×W?ø)?z¹÷`ôÃ,Ÿý‚ñ´r“_ì}ÊåTíÄ~”N~ö¥¯ŸÒã>xžÆ—vÔßžËG^åœ|ëOíÔì=ú­rÊd\”Ç^›ïªûÚÃäÃ/{ ùÁ;¦öoãÄ.?ìv-'ýý½zSDøbç/N!å±Û³Ç²ÕÿAø/`—½–÷pìèùÿ–éàô.ÏûAñ‡ïá¿§x~MŠCI¾i§çŸŽ‹·3ãÆª¯ñt’Þ8ÀMȧ=©çÜljçQ^ùÈ}ýgjGîkÏOºú U_ãï‡Q;<\ÇÄ}ÐO|S|²çã‹ÞÀãCŸ|^ÔøûÂU‘ƒ+øQ®vq!¯~ë×cs¿mÞQ¡ýDŠ 7Þ‹›×xCéþ%#-·qjSιQîÅ¡ïüZÂmÁñëúÿÍ}ãQå9¿—äž ô¥ø0r”ôpE7•çä´ßÓ¼‡»£/ÒÕÏq(ÿeü¹ò{6ýÌÀMúø>ÍøµðS¾'©ÿšÌcôãÀIo[Ÿtzà?}}9¿íÿ†?×âKóœ|™§ø.ú¿Vî½O>ßõÆ#ó½ ­Ÿîäƒÿ"WæC3>žÿ̹!üƒigým§rf^Aßüglù}hùæƒÅãÿÛiÿEß÷Ñ?õí¿ëÿ–r±Gv¾eïÿä; Üã¾ú+Ô<´ÿÏUoIoÈy~:o&â¯È÷æëÏrÉ›x ò×xÞÿj¤'gôѺjÎÉ)>é©ôäŸî­Gée¾·]¿XçáËÿ_äîXÚõMÚmtÆweèéŒ_7×G's?qª'ÆwÞ¤¿ûœx@|i?*¿ïÔê—ã‘hñ£÷7ýe~æ}ñšI7÷_'銓~Rš^kÆ­7çÛMýâK|±ïî%?¹ÂgãX„Âiµ<4ínü8Uí¿,ﵫå¤Ý6ú·8±ôGùÿ*TùÏö²¤öI;~鯎Ãýe}Ý?S/üáÎòšñè¶-—O:í¾tæ5S”ïo÷ŸÏç9¼™ý^öƒ|Wk—Ï>6üšçùOuÿØ{öxTåÞ …ÇÚü)}ÎLzïÙ;´‡]Czéì—£peöÛõÃî¸g³¯ì9¼šþ‚3Ó¾ü7Kù›)ŽqC;~ìŠð6ìJú…݈=Rýúgò•vm[.ŸtZ»_öwöí—¡ìmÒ] ee½Z;¦÷¹Ï|ºã¥œË#=Üûé…É—ôcüá)ð«ðŠvèÏG¾Ë£_´{ö›òØ=›~òß<Ç';´~êxlÚÙñ+~qô\[qsIwUú1ŽÒßXõæ‘ôfâ}Px0¸—â_ÒÏ_7óÎøÂËÀ%’òÞãkü'þpÊGùÊsø”âd’âú¨?-ç^Ú•ú´§|i·òñ5øm;Ýç=\ÅÄó´?¥Sþè—·–õï÷ïà¯8"åëGå{ãÓñÞäß¶\>ét'þô=$Ÿ7æ8çý;ãýЋýqM>ã^yRθŸÿÿïÕs}Œ;½(ÿôlüGðíœþä#¯¾ÿ}>ê+~{Òñ¿éÄÉw>Ï‹sÎs|ùþÿþðÿAÓ•/í§wy®Þâ·ç÷KûV½y$½1¾·t:ýgßT¼UÒ]ÊûkËt-ß:É:å\ò)¯8°Ü›×ÃýõüSÊ·þQ/<—t=‡’tž[ìŽ|oŒò­GÌ­ôƒy§õ‚òÊOž['õ¼‘öÒ¯ÖC㡽êÃ×Äûõ¹váËxEŠ›Cóþò2ß¶åòI§Ý?Ê>ËN®îƒ}´é×_¹ø°¤+nìä¦å·¼¹Ÿô-ýÜ”+]Ÿs˜Ý¿ÊûÆã•¾çn“î«äÿ"éåûŸá+rÝ}&ç±»ïz<ýôÁ²?ŠDO¤\øFçïáÑœ7O¿6øÇéGñìÇ=ÚïQøiœlíÇGë[öÿó¼£}ðwÛ–Ë'Öþr*TÜöv‘âœ"ì#ÞµÀkñÀÞ:üN¦¼Ý¼g—„KcOaGQ{Ç™&?Óž©_µÕù®Ôn G—ïAû•Ý(ò^{û™þ>=úûå‘N>üŸ^ÿ7¤7ìõü;±wOûeq|ä:´öËPvrúÕ¸ÐúðÚHÇ^OnØíáàЦ_½—†œN|ÂùäcŸ÷=PZ<Ò‡Šƒ‹¯ú¡ÊsñeÕ£¦=¾8ž¤¯<'_q¡ü¡WØq›~ÈàààÑð 0ñ ú ¿¯®zó4ÓâŹæ‡Î½8´ü¤ñÏ÷Þ_6ùÄ ~½·yßøÕ¹ÏOüZõŠÏ}5õˆg-ŽqΛ5n ¸âê¿1þËpv¯¯r»ÒŸ@oàLïøŽç»éû ' ?Ù¸ìyÏ(Ntõ&ò.¾7ÿ„ü`ƒ*m\oüílÊ…££?©¿í¹±œ‡­t¥EoÈ-°ûâÍ["Çð¡æ#ðÛWw\õ'y‹Þå½y)œ5=¤oæEpÿÙGîüÕ<øZÒÇÞÕv8÷€¯Õ^¿ÒÇ©7Ö³æõóü=™ç á'­›åƒ×$ÇÓ?¨õÔô{©ü³;®®‹ä—îùåÿ¥íPÿª/+ý hã¶Ø§þ(÷Ÿî<¸êGï‹\ð+Š~¹‡×ûÆ?\¿¬ôŽÿKûjô™ŸÍy¸>Ô¿èýп/×;+]éã ó¼ý<7_;¿ü=°[È?üöÖ~}jº¼gÿ˜´þ%>ZÊÿŒ·Yþ£§µ+©ÿ÷ëg¥A_²Z;>¼0Ê_Í©P~}Ùeá ¼?“çìúpÐÅ7zà¢Oçüsx{”çÚÁ.ÉÞÿˆ~2WºÒ¤7ã{\/üûÀÅÓ8}øç2Ÿ*¨þ½•—çòñ/£<úCåƒÈÿªþ¡Ç|Í|¯íxn§­ôñÑž{Ëü©ç»¬g²^0ÿÚÉÕóp™ÕŸø7›÷ä¸é3ߪÿqç̾LúÌÏÐú?ÅØgÈzG;¬{æüpÛý»Ò§“îãdBíwÁ¯À¹ð—t:÷öÓÈñˆÃQûù CÞ_ÏQûÎðöç&÷ÿÁöŒsÛÛîß•>´øøøöö~àjøiº:äÙsø8²Æ‰Ësqìø!±ÿݸlI'ž¿5ì³ñÏÛv\ÃÊ»´î¬ô1ê8–p/ô$~¹‹w©?r¿Ú§#}ÎmÝÍùœâo<ßíÚEÅéï1~éûn.á½Cþ7ʹðlè;ÿÌÐúò=÷/˜{ödßOø*ßÏ×)÷µ‘ž²þS._p{Á î—ïjäˆýÛübÆ;ô†Ë—ïþ!~…‹g„‹ô¾’ü¾Óo ¹¬½_„òë ÿÈÙù´ãÊr°_ÿøÿŒóYí7ㄯs츩߸LÿQÿ̳N÷ãÆ†Âc³O7>#ùúâ^ÿŒ÷ Ëñj=òŸòÿÆ#ózóòW†™gÀ§«Ç:áÍq¯Þú³Ë=¾án'.7ñøõª_ÎñÁüñôßIÿùu.î 넎¤ôèÒè—é¿°ñ’7´éð —}qð}e¹Ÿ¶my}Rh×äž]™ýNÛó_ô¾ß'ÒϾã'Ç|Z=gG¹ÒÕ?ïcʳþ­¿>ëÙ”3qõÕ÷±î=1îÏ9—ûéÚºÜ{媇>Ñoéë8Ô:Ûú_¿ÑŸ3¾3K¹®Ïÿ*ýÇGý¤-ÿ#MO¿ýWžŸÿ%ú¯¾¥¾–Ÿ±ö¬Óâ"¾Hÿl†cG¦û,ý‡qlyßýÒO†žNº|O‹!ŸþôÍü¥qoËB¥c§þ8å `õçýUÞó;öMÊ9žtÑkû°w‡=¼q_? ?ô6rßx°þ×p,p.p+/.ß+§ýÿ«!×#®k¿?æwúṑιKõãk”ßöž^¾¿;ì›ð>Û–×'…ÖΛïñôsW ÷·1qä.òÃ{Ä<ÿÛ{~÷àC’¿çláKøýs6ÿ·âEÄwøbYOËq^8zÝòÒîÚ´gœóìùä–zZÿxÚýz?röþÀ›5¿ï•üì)ß,åS9½WÞ—ËöÓ»Ö¯<¸ãöÙRЧa¿ù`´/÷ü3l[^ŸZ{s¾›ûþãòœýNãÕ‘¾þ!òü…å÷¬vkþíŠ÷ØŒ{ËWÎi4é_´ñ]“ÿÅÁøCîùmàî„_ˆ³øPnžuWŸ³¯‹CÏø#Ìw¿¸—'ºþ'ùëð^»7äzàŽÛÏ3ΑïŸò<×/R>¾Ÿ|Ÿú'\ödzN÷ýˆ„ºoܵP~æÈ?#Þ‹wÆßJý»äyýó%_ß+O¾¼o¼­Ðú9ä}ã®áË=þñ™ç¯tâ¿]^¶«ý„?|ø~ÀÁ—M?3ô–ž¼2ž·Ý)‡˜ÆñÎýïSòÑ÷ßþ¸8ÆI?̸ØsüÏ…î.õk¥CoÈ1yhüíôûëä~È—ñæwÇûúwM:ã0ý$5ŽxÒ_"OCO*_¡äԸϸuõ4îÄ}'Oî‡üœ§COù1¢7þ[³JOêÏvü_óç4õ?SO§¿Ý_üþãpmýï.ÿ§õ§¤ŸÆ>õÞˆc²Òô‹ñ.®/ãd^4ï}ïŠkò@>ÌWNg<<—®wâmá­?Ì3”G^ÐSIo^R9uŸzͧà$Oû)çîáñÃ?<ÿ烿¬Óg\Å®ß>üé—ü/ºŽÔ¯£Þë•7íh>í±nüB{Ÿ#ã£Æó[é†ÂÚ/#Óo~ýç[o”téï\Êñ\ùÖ©w¥#?öãìëDŸº?eÝšû®«Õ¹éþƒöÜÏý7‘ïÐú×^º/“Žj‡ò¿ µ.WÏÿý’ôs¿¯û‘â~µ,ßÝŸÌûî‹ýfÙ>ûø¿ûËq™û3Úý÷ð»my<*´ûÉùþðóub)µ+دô~úc?;ÊÎÃŽáþ×£>v†¥q-ºoš÷ì ì£ç_CÞöñC¾ÙK§ÝFýì>ì%ìgrÏþ1üuÿ[þi'm<ÌÔ3ûgâ؇FÜÊýýþP|§F{Ï.Ûqà»úñ²ž•¦¿Ù·ÉËkƒ²;Ó'ø€âiòîƒ]½ü¹¡G3þ%ù%§ä N„žª=‘ü^õ'Ð8¬ì“3Þ$ûÿôç×øSä8ÏÙq¯$=>ågGŒ‹öó £<¸!í½0ø87êåO­ñ9óþ‘Þw¤8ˆq—Y<|úu“nÛr¹ÒŸ–Ö?Ø»‘ƒÛSßsO¯ÿ¸} ïyO¾øw›„W¿ƒw©¿%ïCŽŒ¿ü⊧ß$õޏ¢ÕõÁ M?Pðy·þ¶¡üÔÐë›ß­ý>jGqÏ¡ü8òûÄŸ|)þ¥÷]8†}¿£ýSšòF}?Uy¯?‡ÿ•þ@½aÇ÷=ç¯Ï<ÐwÙwÙÿ‡_=ßõ³É‡ Ÿ)~uq5Iï»î¿cœ‡—ê‡ÿ×äÎ_3žõÑNó.x%¸ezßx¹Ký9à¿”\›7øÞÜÉ÷åúò½¯÷ä}üOéãÕÔ3ñ}ò5ndž_åëýn>~Ù¯+ýz3ã§Îøåð¡s=ä<£yõAýNç9=$îÏoÒ•óPÿ®SÌ£èG¨ySñ©yþÒȧ}Ö33.îœú^Lœ¨ÿ½=?ÚsF?¦ÜâãèGîç:‘\›_êwé<‡šñpÓ]_ò£}:å6Žè²=+ýa´ë™_.ǽû{_¦ÿwBŸK:û^öɆŸ¥îÓ}’ô=‡¹L×ý)ûföÉE굿Õ}ŠçÆ€|L{Pûǽí!OöA†_§ßåÐz8üŸWo=ÿÕàÑý¿Œtø²_zo™ï€¿ªcI/ôqòGŒÓÄÑ­ô‡Ñ¹oN>k‡OÉøÖÎ}xÿ›Í¸·’ÿE÷¿ÿ{™âñÐòs?ãû³eþâêRoý à_¹Ÿ%]ÚQü™÷ü„¿Úuìoã볇ËWý$÷©GùõÏæùˆã{À_ÔçËüµ$íFúãËô;;þµwú·b'[ýü(´vNvÕ|GÛÏpZìï‡Çn8ãϲ³Â·M?4꣗îáèè©÷ìÄìÉp2ì¡ìüìÎÛ›ò^˜éF½hþSm¿|ìÀì¡Ï÷Êí_û7£ßðY¼Û²?û½Ñn8Œ³)¯8ɼ‡oP®zŒß™e½Û–»£N÷qjéïÆS …+B¥‡£¹äyîájà½^wŸò‹7éfœ5ø¡â–RÜœxbçGùðrü?è^ùy~§_È{Ò‰O7ñJßž_ß‹Ë#ߌŸöúxn\Ä…{ýáÿ‹â·wYÿäc¥ÿ¤Þè׉Õïôf¤»¸—޹ºš{ßËKCÎÎë@üwøMòßæÿç¹|—%wôK;䯜ú?…<{ûëJÒ7_Ê)N/tâèÔç{¤žâùŒCÊõŸÔôµú¸üo”ŸâG¿]Xÿ3?ªÞOóó4x,ó.éÌ?ÌKà-ÉmýYšW%½yŠuÐsC‹;Û¤ï<ýÞ²¼óóªcÉ÷_ãûnžçÖø„ôÃ|/÷‡øsnypptß&Ÿü;y7Š?ýx:ÏͧN%=ª_Íïð÷òH7â¯À#ú¾œÑ›|Û–·§…Z/wî~ì‹Íøö¼Ø—›þŸçY{~ïÿ,ÓwÝüyî“ß¾QÏÏ&}÷³œ ¼¿Ô¯âÕ"å9O÷iø‹¾ÁõYÇ·œä/ÎM{¿}øw¹û‹é¹µ7öìÇ÷qAÉ·~þϲçYÛÿ¾úý›M¾âõóç³ÿR¾ýÌð;÷!VúÏÑ}?›ñžçô‹[a·Èü¢ö¹|kïag`wyu¼¯Ÿž¼wÏnøêx®>ï•snÈ;ßäŸF9ùþîûÔ®¤ßñýu>騹´ÕŸÊø ýu.´|?¿ìâöØÏØÅÎ,û£vdöŸÕŸáãÑ~ÇàOŒïÄsÁ³‘rzuÈ; ¿0ô ÞÞ †ž°¯_M=ð0ø¸µ»I§~|^_~O÷ýaI—üð4ø…ß+~á{ôfâ[à‚‚s©=_¹p>ï÷syðã{g¡>z©|úQœSîá-øukÜ«MºmËÛJWúX¾c¯,õíÐt3¾4 yƒïÖ÷;®êå…A}§VœêJ í¼rø³:nú»ª?;ÿý1¯ýåøÁáÁ›O¾öðõÝJWú$Ó‰:ŒÎ}Ž®wNí<¸º_’òº>šçÀv’Î:v[µÒ#Há }|#÷âéDŠú:ôþæy÷é?IºÏC“®~z³Ò£Gáˆ}ÏN<ü×nœ}µÚ™ê'úÆ>T)ãýéUoVzôèÞÕï^_ïpc)ß{9_‡³—s†Ò—?‘sl{Yí%žýÞÕußz¥Gî½ýÝr»—sz{7ÿ²Ð¯êÁÛô%úáþºç¡Ù¯ÛK\†ý|«Þ¬ôèQßýCß¿ù~k)ß{9ŸºwÝÿcèKÎqW_”{ZÿK7v\Û®ôқ׿{}±×Œœ×ïdhñªã9¼'!\­ùÛ!xÑ•®ô(ÐÃâ¶÷=?ùÎflogsuÿ,¸Ð÷¿ÙÐþùáxáú’ÎþÚ¶ûa¥+ýGèıNZ\œóØ's?ŠÆn³SÛypÇ;Mã·ð¿pú»ë_éJŸD:ããxoGþëÿ-ú¯vuçÁU¼*œü­ràsVÿÖÛ8Nøx)xáócÜá§à$á6åñÏŠ§>O>’ž&¸aøQÏá±ÄŸ~;ïÉÝį;~Ÿo2ÏñI^‡Ç–#ÿÄŸŽõý÷÷룭?ÚÿÚÿ‡Qï!ë(ú³mùyViãíòë„ÂÇOÿ¸õw›ûÓ¹7 /¹¯?¸*ùO¥^þmàìá_åóoÅOgô·í¨Ÿ²¼¯¿,åûNý6Ÿò˜üÔ\ž›O[ÊíôgÜçøøÅè¿«£ÞéWµqg—ã°myYiÆÕùryþð› ­ßù‘ÛÈYý@ÁOÑ—ÌãwrÕŸyÌ:¸óuïáÅ_Tïé1¿oá¥|öœõ=7ϱ>O»ê'ßy8ùøuJ;¾/nnùúÙ²žCû›^Ð#ñ)ç;s/å9_Çׯÿ—'‰ÖßLð¶õo¹í9eç±w¥ßŒcã8Wy+>‹ÿ—øë>Qã)nž7>¿/Ê“_¹ö©¦ßüOêO‰¿™OS¾ú²Nï¹î|7ìOõ\4ÿ2§’ßyjíÅç±Íóϱýã<ô±Á/~œ³Ö_žâjÝG{2è?ÓïEãeå=üÊ4>œü¹ç~h’îjä¦~9’®~DòüÒàC¹â±‡Ðëé—„ÿŒÆµSrФŸvÏ¥»8ô@?^ ýÿεËð—¥=ßã—coõûDÐÚ­sþ°öè¯Ú·_';vÖë{9߸wkó!ß»¹»¹¿y}{/~–÷®¹OºœÝ»Ž¼?éÖî~=åz#Ïs¾uïÚàwàSöíô¨ô#ß,?þÓ÷r¾µúx²·.çåOÿªçêàG½×V}y’hÇÿùÍxÞD3®p·rÛó以œÐœëÞ»“q¿}RÏ­”—sËÕ/8,|áƒ>&nÀÞ­¤»3ø+ŸòyOO7´í¿=òãÏóœcÞo—rÿòÐÿÂ>ê{ø|«íÖßÅŸ¹|Ò¯ëßý?Zéã¥×·‡\ö?‘q2ž•ó!ïpŠþ#Ò‘×Ê¡úèCä±åEZÞ¿½³LßÕÿÝàCùê¥wÒirü×ÈoÛã?°üoÐéÛŸôÔóÜçïÄ!øÌþGÛΔÿæª7[Õ›ÆýüÔeƽþ$Í{ÌòܼÌså™·˜çIoþS?šž[¿¨?ùë3éÍËð3ý‚Î8Çñ·q Îô\÷XWXwÁ‹½1껂.ß·?õÛÅÑþËK½8üêÐ?|ñÃ6⓬tËzc=zj3>ü“Ù÷ª@Ô¾ý·Óÿá·ºûeü ÚŸâOZùöéø†ÃšqtùA̺¿ñsíSXÖß}¹Ÿô;©Wºã)?|Ö¿ùç©oìgíû+üîïý£úC?€Cùø¿Û¶œ¬tIkwa7‰¼6Î(»{\ÏÅGÎ>ÝŒë8žÙ­½3òYûipU=G¯q±N&»Îsy?hýþbð{jð圾÷ð Þë‡3ƒ>f;cí8¿|¸ž±o[NV:ÆE<§s‘öp¸—Ì{dž}½?Ï/Œ÷»ÉÇ¿Ið/â&±c¾8äZü1þýê¯0´þs8ú3Ôμo¼ÖÑN8‰ &¯êûÁýpuSŸç\ÜÍA}zøó•®t!'ü-6®éß.OâòËè>ûc*^âÍÇû?YéJ·ª7ühòo™}í»Ù×n:ú .°¸Ÿâ‰Þò>÷ï<Úe¥+=Š´~iŧçwöÖò¿S9G;Ní˜ì¦ìžì¥žÃÿÏf¥+}š(?È+ÿÕæ¾ÿ qÓóÜ9—Æ™¦_ôé;ãJWú4Pó°žóªÆMÌóÆYtî=^|Ã÷?^çg+}úiq4Öùg–ëœ}¿I÷{û΃«¸þ ¾çóJWú4ÐÊ»ø‹â)Áëˆs/#~âÀ±4þáõu}³Ò§—ÞÍ9—ú·wsœkiQñHsÞ¦8Ø7‹·¹±âkž%Z;[W¹à¯è¥|ÕÏ\sÎÖߨ•å:¹8Iåòcv)ßuõµ¼5¾÷p—ð¾Ò‹§ ÿé¿`ÅÞ_\£ÿCʃ“áé|ò‰÷§^ýßIï”ÏÚåñ?‚óÔΣý£?ù‹»6úÏÿÞçÕe9íí†cõmÏ¥½·ùùº²Î7IoÄw„+Î9ÅâÉÍmóýšs‚õ‹OL®ØÙÝÍØÙéÓ…Wwæ·Pùü’ÁéÓgrµ›{üÓ/éW~Ø-É9£üYï4n{Þ_üúnàƒBöÔ݇ï»5ÿ!8ÿž·€ß>?Öcæ—oŽþ=3úk|?ö¿ki×÷Ä]iú žåÜV×ÿýÏÏÙ×#ýñÜŸLºS?ÿ—–ézNÆøú>>Gÿ†žD¾ë_ÍûéÇótîÏçÒïëQ_ý{†’3þÆN,Û þœÇé9£ÿ×”ÇoáˆÝqÐßÇyïÜЉ ewí{|ú.íȾ_ûãù¥~´=ëþÆ#Qû§{c?ÕyÆÚÕ?ý"û±÷’þóÍóžë̸öü%?bI¯¼½àVœ?¬=䨦þ?|x9ä?¯öFéï§<üãû³´O:ûÉì3ìŸß¤žÈ›ýféðÃÞ‰þàÞûÔì@ï‰s ÆAÿYê͇iþ¯ÿ·a/ú0ü׎ˮ´“çãðÙR?Їøüáÿ»•.iíßÎÉ‹ é<{Æñ€ÿ2ç˜ùËÿ¤çìŽ~ìO¹üêåѾ_©Ü×ÿØ_—ïsަõ‘Gþšð]ÿKi/?LÚŸóŸûíåWJ;èñõÑ?·ÆýÍe=íüׯڦ}}_?VúwèUûmü?ð«|ú9â!ì§7Þ»ëÿæQôÆwµ~+Ýg¼Or9>ßÙëC.ë/l¾Ï=¿•ä¼þË|_Ý«üãÏ8Ó“Q_ý˜ÿ•|¾ÓÚÑï¾{ÿŸñŸ«¿ÄèÁ[#]ûeü¯/iû¿~Ú–ííûÛ¾cC_Ê×ø>©ö¿ÿâøŸµ¼·–ýºm¹|Òi×#æõæMüÏyµù}ý*ç}ãDæyãI†îæ¹yüÅQ>¬—ø³~‘5ÿ1Ã'ÍæýÖEFýÒ›i?ÿbêŸ~žµÓ=~Û?y~v´¿íÜ”¿??Jy‡œ›«?¸s³¾ðyNûµ3÷W´3éø»Î¸¨GÜÐCÖ_+ý•}—â¿Ê8e¿ªøÆ6ýY¿aâBÚâ þÞ{ùî'ü±}þŸ>Éûcy>üôwß/õìãÿ3ÞüïŸZ–ß}¨Y¯ý¦¬¯ëï_þúGC7W÷Ão÷ãøe;š}·÷¿Ùä³ïî}û?û'‡ù5k9#Þ†þT®ûâºïmÒwšqL3ÔSþ±üß­ôá´öçOmúµçáò¿84N»àÉ”ÃNÀû‚s‘ÎO²7Àd\ë?iÚ;Åuù—Q?þ§ý >Ý‘Š=D¾Ô÷aäü@|LüiŸ{푎½„½Jÿ±‡Nüè‹Ëþ80>ÇFûÄÕb§f_H¿þfðŸ×–úw€þ~¥£¿àhÞòo|.åù¤p'ìÔ¯|äyÆŸdïæ‡Œœnew)G­—}R}Ê¥Ïä”ÿå!oðÌ7˜üÒϸ„po,å©öQxxOíx}ð›}éý?â¹xÏÈ•”s¿êÃGÚÃÛµñ½ËúmÆ+l=mÿú¿y$½yeÈÜÍüoŸwÈýøïÀÕø?L9'§ä²ú–òÈ?eçÉïø/9÷â¿A¾_ßqüyïûà;MŽÔ·à?¥^íÃo¿)÷0½¿:žWOÑÔ£?}‡|·úý姳鉃Wë˜~7Ô¯}ôE\Õ¬·-—O:ÝŸßÏôcýÄæýÕŒ92ïñýó]—nÍü¼Ò«—ƸrN?È }Ϊq÷ü?à;ç¹yXñcÞ¢§’®³ñBCë—\ûž(?ôôh—ÿy5ï¥æs\\]òi7½†³ÃÇô[zÍ÷(åâË÷Oÿ滸œ_l[.Ÿtº?¾‘Gëi~˜OdÜÌÛ'+Ïá\ºî Wæcç–/þ%½$/Ö/äÌ÷?ÿ—âÚÈÿéÜÓWq4ɧ÷¾ Ïz­‡^^ÊsmåóXžû?ê·”‡S؉Q>¹þ²ûÿL~íàÚw§~vÒÿÑë”ÓõÚ²ãÜñÔ®oÇwÍÿ3|n[.ŸtÚý°ÈEñ\öq"ðPö}ºo}é}h÷•†\Ñø•ÆÃ„»²_öIÊ|Ÿ†q àÌ><†vïãÔ7ö•Š‡Û 3ÝËr”»ùœ~nìGÁ»êWz×ýºÌÛ_Ò¥qGëß^8ͧŸÔƒ/Ïõ·ü÷øö=Jû¶-—O:m< ö8,x ñ5Ä¿„ƒbGh<ÌŒ\Uô¦vö ñ2Šß ÷_çF¹žï&]ã}æþŠ}hÚvÚýÊx¯#þní$øQßî¸eð;qjú‡ ޝ÷¡öã=g_2.gFÿ4înêc—Òÿgµ#éìÇŸ\ÒmËå“N‹+¿èF蕌ëÄ;O–þרx1érßx·¡ì‚ì—’MþÆqJ=êÏù‘ÚÙ'ÙÇ/÷o¾ÞüÁ“i§8Qâ8eý´—K¹WF;ô‡z®i_žãóÆàOzø5ÏÙ/}¯ÿJù>¤f½g=üh÷¥Q¾yÙŒçé½~TŸuè™ÑNïÍs­Ó®…G¿ÍóLácÛrù¤ÓžÇ´ïòÂS‘ƒçÒßÖÉã9îáÓœ‡ËþL×ÁY_wßÍx)ŸÿXëgëVë\ën÷ø±¶^Îz¼¸+ëzq;ùÝ<ŸçøL»›Oy©¯ûh_¦ߦ<íµ¾×öý¾Ö|„ÚGD½‡‹³©^ûioÊí¹Óá_´ûk#¾jÓ}´¶'ï·-—O:e7ПöMk_°¿Ï®r2ÏåËx6¾¦r"OÍwl3>õ÷ù¬$òO.jg9•üÙê9äÏ’oÄm>v$vv‘ç—|Û7î~¬öüb”‹²«¨'ò_{§|ì7ìPplú“½…ÝŽö~îõûrøb†+c/cßawbÇÒì¹øÅGý¬zóHz£¿øÚýØñI?³ûñóB>^\ö{q }žtðdì€ìyìÕìû7;Ò?ô¨ô7Úøžá>\*Ÿ|U>S?Tð+ÒÕßOÞ_ÁŸúF;ôœ‘xoÒO¿ðübÁé\ÂWÒ7üyÎ_”|püT'8‰ËKºm¹|Úhãb¾6äÞ‹^LJpðõ‡i¼òž¿ìCÜ}Ãx'=|‰xOpUâ:ÝXŽ{q)Y—õyöÃøìó–KrOáy. 9æ—L{ø_+þʧi§üÓ¿Ó+ƒ?xMz¿®GŽí÷”ÜúNú¾‘ßc8ljC¦¾×¾Ÿõ«æûê¹y`𙾣Moð£üÜ¿4ÞÓs8Pé}ÿ/ ý£gõgµ¹ï{ú6æAm/=+þÔó”§GV¼hîÏ®ÿ‡£@û;‘ñ„;4Ï0ÿš¸hßgãßùHÞÃS’/ùÈ÷ôÿÇ¿¥y”ôäÌÏÑ|èÌ(Ï==öß4/<ç(=6ï4ï2¿“ïw£~z%=½—OyðxÖ}Ö7õ{˜|?_õå(ÑÆûh3~=úéæyq]wU¼eæûÍo=Î_›õ¬uîÉ<·_rzžÑú?r×8¡Öï-Î ß_…Ú§ú$éþeù‡½/®ó¹Ñ®o“/õÁûu?,Ï‹?Ã7}Jyö#ì«é×mËÃJÖnwÅ`_8ßÃîãFN»ÏÿT÷os_|T¾¯õ×—ï|÷›Ç¶ïù:°ß>Äy²onŸØ¾1¼Üé‘N>ûãöÍñ…ŸãƒÚ¿Ö>|د—Ͼ¸ý{õjß1|…êÿð³myXé#ê ¼XýUäþRÆ•}“ýrâ%á=¯2ϧ½ŽîlÚ3Ù§B8-üÀaÕ.;øV#å'é۾䃋ôœñ¨_¹ìoŒzÙIÕ§þúßõÖ®¹ÎÓŽ->Þeú¹cÿÎ~Øþ{rù`Ÿ¿<ò‘3¸¸5¸+C¾ÜÃgNüÀë£|xžkãΞ@{áp&ŽõõQÿÄ©âhâaàÅ&®gâjFýÛ–‡•>¢ÞÛk¾ÿä”Üø>“›ñ}cÊíЫúåד÷Ò‘SóÅê£ïòòûÜô¾÷ä»þ¥è™tyOïÈ7ý‚g©¾Žÿ[û…Žÿ¦÷—F9Å¥ªo|—Â÷¶åa¥ß£/ïdÜÌ×Ì࿺>Èýñ¤·~±N°’ß9ëó7ú`^_?ÏÉ7Î'vÝ£~ç_¬3ê.ÏñW¾R¯õ¾Ì_üâ¿Ê³Þšçˆ´ã\Ò™ÎsJæ·êƒWzyýßZü’õ½s‘_g‡²â`àº>ØŒÏ}~•rœÛµ/õM깿IWÓs”Òå^úò™rí[Ù//^ëã¼ç-8 øšòóÁHŸzº_‡Ï“.õIWÿmúA}’ü¡{c¯ïÓnýXüÒhß¶åb¥ßM»/ê<; ¿2ÓŽÁþïiíì5üHœéNç>¦~œrÿ\(ûû¤ôìŠ(;©ôøTOîáÏàtð…ùÔ7í™ø~ä«_’P¸‡Ú¥Â×ÄåÌô7±m¹Xé÷è »9ûå´·gvÁßœ¿"x›Æ¡ïÉ+»yý¥åþÂ(Ÿ]°~™rÿ‡Qß•Á\œüøeŸcðA_åc/íVžvúN¼9ÞÓ £_ÞõþÛ¶\¬ôŸÔ«œ_ì\ÀòWYÓeŸînιÝÍù°}œ×æ¾õ]rÔø—ô0å‰H®ÉyÎy5Þ-^ _Ós*æó¾×ä‚f½©Ý<ã]»üx>ýO¸‡§)ü'_ñ0¹¯ß³¥ü—ŸéÞnNàú(O¾‰O¨¿6õâ;ަø õ„!坸ŸVoøçzkÈQý>EfüÛk#½ñ„¿ág¬z0äâæRoê_­þŸ’¿þ­ò¼ñ/óž+~¤n¹O¾úA“?túe»‘t³?füÁË#]㋆òÕ¸ˆ¹{YnË«ºÑã~_oRÞŒS9Ê]éã¥ûr?äŸ6δï9£?y^OÒÿŒtÆñ?À_ý«ï4ÿ‚ÕãÑŽkƒV_Æ÷`ê'>‡?¸}½ÁwòM?iõ÷8¾ê{sêͲ¾©OúcÆS=$žõJ“¾ønš?ÀÿÃaYtþŸq7ŸžþÕÎDîþ°Ì×ú”Ûø )Oþâå–|4ÿ,>;aý3ýÀÁ·™?81òi·ó™/Á³¶Í·ÌïF?YÏòÚî¶?庾9¤ÿGüÑ•> ÷Õñ°žÏ¾ ?PöצÿîWÁµ}²¹Ÿ87ûKõ/ƯØý”ÃÿeÎo~»Ô“Æ€/åÏ*Ï[ï)ÿóAG€éç¬çÔœkM¾–¯ýÚ#îÃGÉ|ó¼~ÏÜãK9_-¿Åÿå9þàéôSûažGվϖå®ôñÐé¢xµúÚÈQÏɳƒÂéxï9ûÄŒçöˆ~½Š+ûµcŒ86ûø´Üï.Ëk»´S»Ø«·'nJ¹3{Ó1Ï“^:ö.éw—ò½ï§!´~–íØ§”÷òàsõóñÓè ¼=¨Ÿ¤Œ\¼8lõ«‘|ð#ð`Æûê±_TBíøô1õ°›6þ%9Éûú±‘N;ò…÷9ï/ϯz´{ú)Ó/o¾kÇý÷ÖøÎÀÁóÀçèWéßšý8ôæÕq5ãq~Ùß+}²èÝw3žÙGº{'ãüïyžõ÷Ý›[êMÖǯìcܽ­þðó§ð Ÿrë¯ø¨^á÷_7üÞ}/r~;÷wr+÷ׇþO¹¿¹i§¸¸M§ŸÞÝ]Èý¡íyïÞ¦Þ?á#ùo¥žwÓŽÛ¡i×¶åc¥‡Œ'¹„뼓ñ}w©/wÇþØÝÛw¡üÊywçÁu7ñLîÞÈ{xH¸Ô÷èö$ÿ[¨ÿÈøÞg¿»øÍ[¡oŽöÿ9Ï/?ÚáîðskwÙ¯wþ²üŸÒïÛ›vl[>VzÈxÎuŽï|ãÓF¾¼÷}¿ðhòòÃõfgSü¤ùÿš7Ì’μÔú¼Ï:dâ(ᪧN¸Ì±Î˜çl:³îúžóåË<Ð<ïÕAáÆ×ó O4Ý÷S˜ñzqȿҧC¢sZÝ' /õ_m]ê¾~¥ÓòyÖ½}„¤ãÏú·cž&ýŠág°éø©ÿùÃßh}ŒËzËoýÒçþôw—·ÒíÒÆ=¸—qÜ Û>.~ò‹Í¸J÷ØôåxøÈ~v÷ÕNløª?ÁûyOüË¥\~8ð›3ðÍ&}ÏMÿb™®ç¬¿J»?íî{xÏïé—îKÿyÚñAîÃO÷ÿs?¯ô‡ÑÚ!¾ÞŒOÏù8Æõÿùeè÷Ó8Ëø"OÑ“ú5„Ã&‡ß,ùÆoï#§Ó¾äýÞNÚ—zøùh¿Do‹“=™çù_ÛâhÙÕØ­øYäǤqŠ~šÿúJÿ1ZüïKcüž_Ê[Ç^wÌãðÍ™ÿÀk÷ý8ßR?3¿YòÙvNöÄ+ô}ôà…åw¿~¥Ø÷ùoԇ̯ê'G»&ŸðÚ{fýß<‰´ø”ŒOý.ÕïëfëçÖx¿ôp¹øÑøš~mÙÿá¼~q›ÿ×_O÷Ò¯—òÞ|äÖy òì\CqKËÿÕs¿{xýÅûü~ô'=ö^9¯<Þ~^é£=c“yJý›‡ÃƒüýñŽgëWï§;®®Gàzò\¾»›ÛúšëöÿÎûF;7ð«È-}=þðï~qJúíÛïžWõ_¾CÍ?æ¡ûßeûVúdÐîŸÁØß™vsûiöxdzõÛ·,.\Í!ó¡»;I7÷—ëŸ åókõ“À/}¯CÖúå{Ö7ݧƒÓiÜÃÜÏ}îñ]é“AkÇ€ែý¿øvÂàê_‘/8—aǘqÜä¿2ÒÃ]í=?þGðü+h÷,nçšt‡Ä¬Ÿv0õßÀOÞÜßÝCpÛ+Ý.­]œˆ{ˆÂµ°/ÞÉýÿòX÷y/ÿ¶ç½­ÿæ±ÛÙÇ„¾“vÀÙˆWûüø½{o)·ú…Ÿ¬Æ3Ì}ÎÓá÷ÐöÀ-¼›zñ©=·SÎÛConþõA»¶-'+=d\ëGpŒÿgp‹ümÂ÷šgÔ_žó÷Ä’{~¯,ë+¾‡|Â+«Ç¢vÿè ?8þøã=´ñtSþôGåûÿÎУƋK9æ­æqp1§>ŸÚŸo&ßùÑŽ‹ã½ö¼¾ÎÏŽ­¿(çÌ?Îçþ4y ¸wç{¦~e¾¿ï¿)éá_Øû­+æúŠ\5nâÐ'åÕoî­¦Ÿ_rɾ/¿ùÓ¹¼?w[{Òîâ’nìS·_}7æùŽã¾ú9÷cŸ}¥O6­¿5rá{Ì^ÏýâI¼ÁSÉçÿ#^áNžÓvÿœ‡Ùƒ¸)·þ©è¹â_ý«Ô›}½ê-=ŠüÖSÚå|Ù¿jüQ}³á³þ˜Òžž?»—r? _¿X¦?Ô¿¿X_&=þ?^ö_é×׿•>™´v6ökv…|ÿëÇìÛ<²‹¿y«Ez8ñœÃŒ¼²ÔîzÔ[;zä^9ÎÊ—}®âòiºÈiã˜àƒ?'öv˜çRŸóã<šö¶\öžS—÷ÚÁfüDõ±#¥_æ>ôJŸlZû§óûüˆ/å=?Pâþ9?ßxˆÒòê·i<çwªñ®Ü'½òø¨¿µPåñ£Æ߸ˆ)G< vK”¿©ú H9#NbûI:ü‰;7öåšž_ú‘Ó¿ÉOåók+}²iýC]ÜÈ8ó×Ò8¡üºð‹Äÿ ÿP9ßU9ñã_Jüëð/ã^9oüüÒsåñ‡ÆŸ?3êáW‡Ÿ˜·ÔZSÊÑÞåûö?>Þg_=Я×Ô;ú¡~zòü&~W½9Jtï–ñûÛRrΦãócÕ›Û¡w2îüœõý_¢GÊO9õC6ÞßÉówS~îH—z¤o}Êõ»Ï>ïÞÝM¾Û¡·RþmíúÏeúÛËuú^Î÷5ÿmý²ûPyß÷‡¦¾wæ}Ê}{Ý8Jt_ÿºÏØ=öýê‘CòE¿¤—|Woç•ï‘¿zªž¤ã×1ßgÿþ•[>È¥ÿÉЋ›;£(¾éíøßЧù}H{ôkýª7úÖv ¾n­zs”è~œæÈ“ùЕŒ§øÍüŠÕOmÒ›½1Þ›·›¿YÇ4þmÞ‹Ÿk~ØuGÒ[Gð‡¦\é<·Þ1Ÿ²¾°®PÿÕQoã÷ªŸÞ.ç_Óí~|Ý ú•¿5ýóú ×»ìŸmËÃJQoàáqá3±^†{·Ä?»üp¾pûöàûç~Ýsy&÷ÖÉÞ×ÿ[ò˽}¶o7òÖý5ç ^åhþí«ÁWŸÌ½}.qœ Ð>~çùuÿí øSΉäÓýª¾ÊÛ¤{ÿ› ݶ<¬ôÑhíâì‚öw?ÚŒsí‡ì3‘óÆÃÍ>ñdì¡ÑöÒÆ•ÉóÚ/¾Ì{å~‘tÎqòƒ6íAìE‘÷ú;s¿“ö9§ì5ëÑ^øÏèCíš¿ý ÞÆ?íK¾mËÃJ6n,ü»§sýð%ìö¯Žq/^9t7ïÉ|yaŸ‡/`Ÿ‡ćr¿sÐ?TœÝúe …;˜þán7-”^ÂO('ûm•¸í†ÇiœÔP~èè%¼ìŒg<ü¯t¥O-~~ÃYOÍ5úL_èåH7ðÎýÁ“ž_×;+=útߟÿ˜ùãF/š®ñ?w\ÅŽ8PS/Š{ó{iýÿ¬ôèSë¯é/gúézŽÍ9Ù/–zSÝ—Ët¯·ív¯t¥ÿ ­ßœ¯²?—7ý…ð—cmàÓšngsÕOÏð'äÚv»WºÒ†6ž§øˆìA#.ý<_ö+öƹÕ}ü\è®|)ÿº¾Yéѧµ³W:üfÀÞ ?qs¤“^ÃýÀl»Ý+]é?¥7ŸVüÐ߆Þx~/ú²yÿÓtð@ð67sKùY×7+=²tÿ™ÿAqt‰¼/å{·æ#ý_ÿ'ÁÎ>>~åDßY>ßvûWºÒ¤7ægâÆ‹Üx÷c_ çs¢ô~κÈ9 –³óàšø»m·¥+ýAz“}°úû}nì—eß™?ëâÏPx7çQ7Åì4½s²Ÿ§\ûo¿\÷VztiíâvDoŠÛá‡!zÒ8 Áõñ7Z<\ !'òž¿~†û•®ô(ÑâÍàgàÓø„wƒoCù™‚›cçjúE=ïæýãÅ ÜÍþEýÂå\_ã‘f]Wÿ\âß½þ_qÝ¿x¬ò'® ÿ{ïE^þø×Í8ðÇ÷'ã‘ôÞŒSË1nÙïm|Ò·ÿ×òþ_—û\}þGåG.ÔûÇÍþ׌_XyɺþîŸÈYÒ‰ó(aü$h??ƒÒ‘[þ ùŸôíÇ;OkÿÁÛe¿¼üˆ«Çï¤÷ø¾“~ü¿‹+ý'lj<ø®ñËIÞ}Ïÿè»F/–ãÒñ&·âdʯÜ÷–rW}ÍþVù¹5ôˆŸÏØeªïâ‚Òwq8ᩇ_Óíç?®Z\lþGáÃù~ôñ€¯;“v©ŸŸaxTøxÿÉ«¡üEÆOï¶åëi¥ütöžÿNßwþª}Ïü†ÿʦ£o)·ó¡Æ)õÕÿuÆ=þ@êÿ“?DÿxÿK)Wœwóç!à˜¯/Ûq ýÊye”gÈoªó Ãê>ÇR?Ón9ê ¿õÛxÿñÈeϳ?šÿNñ¨Î›·ºéçý8Ši‡óâÎ{Ÿzøv¥ÿäx9÷/®[þ/µkÔŸ@ä8zu çð ÚçÆïxÊ;¾ÔqIù¥­_ù~1(¹á`ú8yªßï–Ÿæãç€òÇÀÿ‚ûCüNÿÓãÀânøON¼E~!¥óÍÿ·8Wüæ|ì¶åìi£õïÙñŠÜ‘Oþ]ŒÇîr[ pÇîÅ äÇö@üÏñl¼À<'7øó¼úÝägG¼ÂÆ÷Ìýà»é´WûGt´÷â2ß>‡Éÿ¹Ñ>üI7ý¥jwý±¬zóXõfŽ—ï4=çZÈÙüßtüg¼YßñÓãÄḬ̈Ã÷ûOïø±!'ähÊ9Çwõ!ù¼Ÿñ}ËwÊqž ûí§?<&½™þªÍÏüWǼ˼­qý§Ÿ{8‡ù™_é£3.­uËÞNä%óø“Ïw–óë ó©ž§üj9¾ÎQ6ŸyZòWò¼ó}òC®Ì‡¿'å8oÖøÖkò“¿iOæcï“{õŠ÷kž8âzÿX´û)ùOˆÁoOøŸqßòøò¼ÒÇC»ŸY¿N‡ÈS×ßÅ™§¥Þt¿)ÿ«žÇ?›çò½¼×î߉[óó!á£ûcp1ö¹ÈÓéq/.ÉýÈ¡}ûmð9‘³îcKûüFéŸC¾çÿô8Øÿž~…ìÃ7.Wîß”.÷úûÒª7U_ vñÑ®E>ê'&ïùqº¸|ÞòÄcbw»2îÙ5_úvã¹zØ-ñG¿ð)¾ùÂïù¤ eŸº4ä”݈½§qTS>;cäùG8 8 ö_¸8|_³»I÷î_7ùn¯ó±Çª7â¢ñ3]û=¹WôÝ{¿4qF•w¸1r æäâ¹øÔ·’žÿÁÄÞ׳¤ŸüÁG¾}‚w]»n.ù]éJÈ•ù>¼ÙÕW¿»·Ys냹ççïÜxïÞú×úˆÿY¸ëšY_ýÖFÞÕW|Ùò?Ù|ÖGð=Ó?'~”ÿ§vŒxo+]é¹û:±óà꾜™ýÎa¿ì>\—õùéÈß©<§öÑà§Ÿx÷ø¯´¯u6åy>â?—sCßfœì3¡ü²»¸ºæå­t¥ÿC‹OûtçÁU¼ çpb,õ¦ø´‰Oü<ô³Íûâ½øÅü6ôƒe¹3þAãP+ÏóûyþQèŒ[ýÕÅÿ†§ù´_)÷ýQó¼,o¥+ýZü {ýÉÜìÓWíŽÒÁ¸ŸåÄÞR{âŒC}¥xž<‡k«‚S®ç/úáåàa_ê›õx_|dÊyyÔ‡Ÿ³ËÿÍŠ“\éCõ†<Áƒ‘S¸.x±ÝÈé+Sor/nü+#ÝüŸLü'ù†ëLœžÊ19§'†>úJ_\äÐßâßRòÎO½Y®wVºÒÿ¡üø÷ü¹uÎå³<‡˼§þ“²ž?à—<ó5åw=òMʇ[t.àËz;/3Ÿ3Ÿ2_œñGþÖ£|óÊì˜/çüÀ‰¡7™n{œVúdÐîSÁ¡íl.ûw3ÿï9ÝÌû‹?÷ûZ)¯ñ6øaº?Ê÷Í~šý.ø¹üŸŠ_sï‰#‹~‡¶³ä[¹m¿ý4õ_ÖÓtãœëJŸmz÷ü΃«þ1÷ÃoÒÌ×{þ02Ÿª]>Íyf”ýÅùýi_áç¾Ì¾µr/Iþ‹LþÚiRÏŒ Å^Ïöæhß<×=ìH+]鹈_ñ}ÜÚ_B#wñû_yöŽîëZä°¸·<ç_þ‹ýŸÞÁ9ÞrO@‹#È{üþ鯛v(÷ÝäƒCƒ³ƒK»©}Iÿæ:/ûArToÚÑÇ÷ŽœÇâkkò‘GÏ'¾òù”n”î˜q-¾ù|ä^|Y~b¤‡›!go¬r±ÒÇ 7äÎâf¨yBßû~’ÏÈ=¼ Gðîð\o<ôƒ|_åÂIÁÃxIÅQö?€ÃzeÎSV½YéãÐÿ9ÿ&Ÿ‘KóhéáI. 96ö÷œN¿Kê¿4ôF}oâoçÁµï¿,´8°QÿŠ·ZéãÐç·z.1ôLä‘?nx&ëáÆNz8+þ𤷵k½êÜâÙW÷±”kßÊµŽ—ž_²®óÍçRÎcò¶Òg›ö¼í½ÈÙ©û¹/~˾ìsy/~ñ·›çüyõù×)×>éñÜÛ¿M=Ó]Ïï³)çÀ¹ß¯Rϱð÷ÉRŸ´ož÷_éJ Züû¼Uô¢öµØÃêçBzþø}ˆÜ×ΧœcËyÿ=âósÜ}Ø÷ï•rù3»Ÿ÷ѸÆÖóûe½+]é¢7ìÊä˜|ÂcÀg°«Ÿ ¥Òï’÷\ŸVºÒJo^ßypõ°xì1ì9Ò‰û3ñÕrÜÃWM»$ü?`ö¯ñSÿtcŸÚùa|² ±§žM}çV½YécÐöFø+ò^¼À΃«r‹ÂYñ/AŸØ7ÙCÙûá)áÎ÷¯=)^€^äþ&~”Zœ½ _+^`¥+ýñ¿ôÍÿ‹cöUøÿì_ô}í»ã¿çûá? gq>ùëO3ùàäûý¸÷ÿõ=Ó¼xüOk—ÇÊwEi|á[»à.®ÿç•>‚Þ8¯âÿF>é <„õy³®›¸ ò¹k~š{é­ã¼çútè™ñ¿<µÔƒòýâ’¯>¯Ÿ©Pçuv6×>ž"”žÂ]<¦8+}ºh¿Ûä&¸»â¾Éóccë?}}œDžó[ž}ùRûÙä'§x$ù”c_¤çê6ü8gj¦íÁgô°û/¥¾ìwo¡ú;ð+]éÃh÷Í#WöÓ‹ÿù<òÊÞÛø€¡ïÓ¯|ßë‰ÿ(ûòìS‘ïî«;o»Wã[’û/7Ïk7Pnä¿í‰>öœö½Ô‘ôÎK×Ö}úº¹ßö¸¬ôɦ;Æ/;-?ü'¡™ÿÔKÓ.ëýóã½çì¾gF½gS/ÿpGøã‡ƒÿ±?ÙòŠ ÕN¸ þHø—bw~Lq WútѽœÚËz{/ó´½à¶ë÷)û}û÷yŸýŽ7Üç½çñã¼—}ü½ëÒG^ÑœÏÛ»Ê z)ùrž{ïŠrRî éóüª÷¡—’?žëƒ¿œ¿Úöx¬ôhнįØË¹×½œÛ»šsr{9ÿ³÷¶t¹¿NîÑÈoöõ÷n(ßóÐÄÑh97ÿ¶IŸsÐ{9¯]~n Éï½ú•¿£=îéÓÌc9ß[éJª/9_Ýï»ï~ì§èUrúÎËœß{ËdèÕ5r:êõž>]“/ï=§òMzcðù&¾ÆG{¤k™oÛã²Ò'›v>c¾e=c½b^tÑz'Ï/KŸû³#õ‹õ¿ƒâ<›g]¦_ÊEóÜ:ʼ?OåO¿¢ðåÖ-±?ï§ µ¾1ïô|wÕ›•>‚Þ̸êüõy~VÓØypõ<ÃÉÈghÓÏ}¸Vçì—}°äÃ}ËÉ~AÏCIÇ¿`Òëýýe{ë‡ð\ìJWúÿRqj/y.rôé΃‹£ööQvKvxÓ3¡ì0ÇBűÍ^£Üì‹5Bä½ø:å£ùßÔ®3ÏÑž ÿì;â…d»v§èí¾ÄUoVúý´òîÎAå3~†¼ŠÎo'¼ œ ÜüŠôCž|üzNþácØWùÛR?ÜŽzáƒà`ë%õdþUÜ‚{ø~!⟡ýÃ?ÿ+âÿò+ÄÏ|B3î.?]pŽâÄÁ1Â7À/Â!ÂÎ8tõÿ¾à*ùgŽŸ£«ÉG)Ž)ÿK‡ú×ð•ò&_ÆA<Éú_Jùœ{xKåhÇôCɯ9Ó.íÇ'<ØÜó'Å_öÞã =äF´|ã7ÆÃxÞùijä§\À}óϧp¬ða­ðyÜëGüßãpsô/ÜšráÔ”§é‘þWnãL÷øÍs89x"õÁ¥‹›{yÒä×opèüÜÁåz,N¢û–7ä­þ÷†|ñ“h7oô/<2¹ÀïyåÓ{߯ÑOÇ÷£þX“ß÷ÔwQÿÑ×úQ¥÷Ú§žäóý©Vãn|ÈûRïË—þÒïä“~Èí€ ¹æ;•ú|‡ù‹ÕøôÝÉ:}Ÿz¬‡§â»Ÿî_ÓÆ-Ôw.løCl¹Úëûå¿CO?=ÔüKÿÒÿ­ÒäÿÃh—ÿ¡vÀ¡õoä}¨ò&nϼÐÿxø_ÑŽÎWÍ7_X>ï{ý™ÿxý¯ÌùAú¿þeøq9“{óqõÁÿ‘cçÄœ+3/x.ÏQýbM†ïú£ùÍxþAîO%?¾ÌÛÅËãŸÉ¼Èù¸oswÅo“õç”×ójð^Ú‘óÐåߺþÑ{~Ëé•{rI®=ßí+.:éÓŸ·öéæý¼š~9¾)wÆuƒ3+¾†ÜœH}¿X–[|ZÊ븦ýÖI­'òtÀ_zèß±Í}÷IÄ¿ŠÜÃ÷¤[vºG>œ×õ>ýZ|~“^<»ÈGÏ{žvï¤]_¦ò¾x£ôgÏ)ÜSëõ<ãaŸGü¹â6øƒì¹Ñ>û-ÊûzYþxâ^ð×aÊùçÏ–ý_ÿø‰\O>¬ÓËÇ)ÿù‘ž<}“ô÷G{´7ýTËsËvVN2nøR®}ꎟ}°È=~ÛnåðÇÀÃï—ùÚp2‘ßî‹©?ûåðnúnû{ѳúR®{üã³ûàIg¿Q\ü¿öÎ'ŸôW$½ýyò¡=pCÚ/žOãmzàˆø±È8v_}ðñ‘ôüΈg2÷ëÙ)fœ/~dà¢ÄAÂ\ˆvÃsÀ¡Hwa´Ç{v‚—Æ{ýv&´qÂô{òá«qÐr?ã“e=Pœ ÖÏCÛÿú¿£;^)'ÿËRöö|É/û»ŠþÇ×ñ0^cœí“ã3óÔ¶w¶S:í|?ú×øþšOÿå9;lÖµ§f>[¼û*>3/>áÊà³å(7ùoâ+÷ÊWûSËËsx ü¢7RÎÁ7;»õõÑ>8$íʺ¶xvd¸8ÚÉs¯\öìÖ“|}?øpÏÎX;ºvïG»àP²¾¬½þš÷ú)÷øgoWûùõÑ^õê׉O©=~úO¿´‡üã›ÜíŸx¦›£½Õ¯Ý¤Óî¡wÆí–tC>nŒþ»…r–tÊ»©_ò<ûK}~;ùoçyöÑö·`/ûåGÿjqXÚ¡~ò3ú©åyŸü‰SQ¾´ëŽô£ÞÛ£ó; Ÿ½¿ñN¼‹–[½y¯}øT_Ûíù(W:rå9>•—ø ûüã•Í8ÜÖžÝ1ž£WF¹Õ;í@óÞ÷•¾Ìïp¿GäPyíwˆ^Ò?ï‡\¹—®x ñ£U>œTõ™|Ü[Ê!:¿çôšž*·8(r-ÿ(O»+¯Yö«qº¥=£_”ãûI®ÞïoŽzÚ®ÑÏÉ‹ïŽüž¿=äªrD~Õ~ðm¼ú=ßUí:€¿üÛÃûóæ(¯z…/ýAn‡þwß©ÛôUþ¿,Ç«òžöNܨòÍÓ|è•ï„þQ®y–y93ßí<,å¡]„šïÃçÑß×G9Å—ûϤ¼®r/rÌ+ͧŠLJòµ'é&.ªó±Á·y²ù¬|ægʇ—‚×2o¶¾_7¿¼f^‘÷ê7ï·.¸0û¿ÊËs|ÍuTÛ›çÅuåž\X7¼qH~ë é}¿¼×?Ö'Úoåvݘç—¯{|V~¦|Ž~!‡æ]ðÿ]Çäþòàó’ï°ç#ûôóëKþìv߈Ÿã/’îxžÛw°ÎÿõÈÇÿ°}·o“ß~ÆsÉ,üد±ïc¿B½Ê¿~ì‹}<äfåý|ÉGëwžOþã#Ý/–|”ß“~ì‡îí$Ý©PqUç>šýíÅÇéå½þ?Ð~å¿°ä»ø)qfwü<ÏÕ3ÇGÿd»©¾´·ûŒú#û7õ»¨¿ÔþÐџݧ³¨?2úá¿T¿è'çÜŒ“vM?¦ÆN _3NoúõCûÆïÔh§úØ=ìÛ7®Ã¦\öâs¦¿v€ÚeBíÇ7ži(ü’}þi‡à÷ÿ«¤cWQnö‰Š›zaä??ÚóÛÑö-ù¤S{» |ÞËïcøK9gF?œ÷/Žv¡»£~÷ì çRß«£¿Ùõ¤{e¼W¾üð-øe7b,ÿÆC»Bñgüõûé1NìR3½úF\Úâ_Ø ‡Ÿ€òÅÎo£~õ°ïáçô¨G{²ÿ[û˜úõ»~<©ÈËèWövvfxø ø†â@’¿~¿’n¦qñBÙ»áà ØŸáfàKàØåÅsßøføUNêÁ¼œËëƒOñ‹cPNÒ±‹ɾÎÞï½öÕšüy¯g¢>ý{%ïá%Øi¯Ì~–^¿…ª^^C>¸K᫸ ùô >ñ£¿Gûà0ŠgP®v']qEøÔž¼§×¯¢äèÕÁ·tâ|gçúÏxß ýWP?QøúONà~PýDñ1ýS_räÿ5ñ Ê?ŸüÒ½3ø¡çÓ__õ:ù´Ÿ]ßwå†ö’‡Üg}Øzµ¯z ß&Ž“vïà;ïýw鸭äG:ø8ã¯ÜßX9¯r}§ŠßÂ_øßyeôsñEôPýC®ò|ßàä×ý{að§Rü¤zG¿ï6ÒÓ[éߦOò>ñã;HoüGŒóõÑî˃ŸÊÃÐcÏý7è¼$~êÏ5T|áÈûÇü€žÊ_½¥Ÿä#éÿ0ê3žô›Þ˜‡L¼ˆvÐCø âF†\úßø®’.ïñ£?ô¯ö›ùžíÒÓ¼§Gþ·pWü„ùŸøÏŸ!ÇyvðcE¿ðçÐïNÒ÷«’îôøÎùàCiþéÝ«£Ó ¹2NŧŸñ­ÞOœ4~;ßí¼0øšñÛwñkƒoó>x+ß r9qdú•|*ŸÜ™ïâK{É >•wj”Cþ´7ã_ãúÉ:Ê<”œÏý‰Á/¾ÔC_ÌÛ/Žò|ïÃw×cÅó‘礯sü‡º?5ø1ùÞøÅæ}ןæÏæõé¯âÖ´W½Ú¡ßŠçR¨ù½ù´ï«vÏuu¤|î}/ÎŒö+—¾âgÆ7üÝý©Ý¾]wåpsp^I_öt‘üpZ_-¿Ígm½cüø¥'‡¿ã“ö×?ZÆuŸÏ”KN¾¯ñõÂ_ñ8YgöÅ’x¬âì¾L|<ÞÛ“?ü–çÝ/BSý—}玊ßÛå¨/õØ8pŽO¹Ú™ôö³Š?Ôß&Ÿ}Vr;Êm¿|4ê‹\w¿'òkߦûv#þGéØG›¸ºò_\Üæ*~Oÿï´»ûVÊ;>'νý2ûNòÁ¹iGêǼbñ‹éŸC÷ÇàÉ|þÉïg#ÿ©Ñ~ûeê±ÏgßÎx öI?YŽCë9™|ppöç_^ÊEíìpBòÙg”žÿ«î7çyã„åþµ‘^ùøP.\ã‰Áü{ûÜœ¡qž83¸»ÝÐÓɧ}öÉáÈìç³Ûjoí/êïÙÃ&¾lwÔ‡¯‰ÔN÷öáõŸ~óœì‚ñJyð|—Ô›÷gG9ìe¿'Vùý£}úßçÆaŽ•ûsc¼§¿€âûô?9M;Ùe´§¸¶!/µß„öí½<êaW¼’zØïØ‹7J}põ¥½y~-ù^üÔ¯Uê)(ïÙ¿&ÞìÒà[¿°÷*—ý‹ýš½rÚáØu¥×^ãX>BÙeÉ!»sìÕÖ{µ#O¼zcð…× Ýú{ôCqi¹¿õ·´_)â–ðƒïâìФoùúÓ÷aŒKýÎ ùp¯?§_˜â×’âá@à&ê/Mûñ;ä³~vðç7F{Þü¿5Ú?ûYÿÀ‹M| »9\DÇwÈÍ ýŸt“Ÿ¶sȇ|Å™äù[“¿‘nâÝäƒ{iþ‘þŽqL:ýB¿àÊŒwÛEŽÉå_–ÿøùSOõ¦xŒÝ%_ðeðy?V¼ÌàÛóâXî…?ú;ôOyÅe%½úo ~Þ|÷–þ¡Ÿðyÿ¹,·éÿ²ä³åŽò‹cC=¿7è_–ýR¼‘|êq~‹ßIþâ|þ6Æ…þŒ÷ÅI7èåñ~â2ú½‘nÈ[q®ã;A}o«ãùünoçð ¾Oð¾_ó;\}Nº~‡’߸ùá«øgzM~õ§÷ôf“®zÓ~M}ýÞ%½ÿòÄOÞÎøN|Uqµþã¾xTòKO†(÷ÆàO{æªß5å*oŒûÄ!öûC.‡¾÷?¨_Ô7¿_iÇüî׫ô ÊÓô}#?î¯|ÚAoû½Ë½y5<Ü?<ÍÄ™š[ߘw•÷_†š?šÁ]ÍuQÏ{¤ÜÎË•O”7ÒŸ|ª¿ó²¼?pŽHyô7÷æáææu·µ{ôSÏŒïÐÅQ¾vL?dÚßyhÒÑ¿+£<ã¦ó¸°‰ÿÓ.ýe<:ŽêÕïyoýC.Úß©çq_¿jøÈ{ëí¼<Ú;ñe¯vº¿¢¿ôóÛö·ï—ï¼vÉ—ç=o#½÷¾¯›÷;¹º_q|S^ýþ|’ò†?ªâ¢>Èsû\yßrGœÊžÇü"åxžrì öýGyŽÞ?pVÉ×xµöïœkü<ï7êÿ:õ|š~ÅïG£Ýöeáàà«zž,|~±lwãÝ*ÿXú×ùÇçG¿ŸÊý½”Ûøéá;åw_ n-ýÑ÷ö]N¦þŒG÷SœÔ^ø5x¶¶;|çéwí²Ÿ'¿òœ;ý|Ùõ‡†ÿß/ù>Ðoê›8¾éOݸèß3ì> òG¾âÏäGý$ûpôƒ}‰âLîÙùí‹ÛŸñ%k× µÏmNË={ÀéPö(å°s²+ì†^ï(Ÿž+¯çëS»;û û|‚þ`ÿ~uùq³v.ýÁnu~ô›çü‡iÇ™ñ¼¸4ãç—BÙ;¼×>|Àiýªõ¿vë?ã6ãûžò<åÂ*¿x¶Pv#ùØ‹^ïÙSÎ >ñO|×Ñ?ì¸õ'¥ž¤g§Â?9d~ž:nÆC;å×.vòú¹Jºús¢_¹¿’{v88éê/$ï»òáY<‡·`ǽ–tìýÊ…3Áï´×ΛçÅK$|þ†Ç€§)ž'÷WGÿ°» e_¤Ïüržôõ÷¢}y/ruŒcÞïûÝÉ{ã«ýìºÊoÜ^éCé/95.—FûÙíñSÿ=¡'òÚHïÞ¸z¹mûf\ÓG˜*ÞE{êkù½iùä®ÞÂKt¼ôÃÿW—å­ôáônö îfª~®ø!â_Ž?±wÿ²éoøL¸;ã«<¸/ùoŒñ£çð¤ÊÉzêî[K¹(n­¸ÂÜÃËõ;Š¿ëƒ?xMß“›ƒ_¸Z8Y89ùð_¸±¬³ïÞ¹—üÊùÛ’Cíݶ|¬ôññß…'½í»GnÆ÷‹|‘Ï;ä‡Ü%]f|}~À`(¼eõ0T}(<8ܸï.ù$·ôìÊÐ[¸ðâ#“Î÷9û¾#Å©Óý…/ý¾ï¤žìGÞ½óÃä_l[>VzÈøÐ›âëÇ<Ƽì*y!—C>'î•<Ñ£æó&òK>ÍÍoÉùÄ û/лúÿ™kK¹-^ÒÿÃ< þÜyí¾0úÁSº7G¿Ñ«ž+¹óÃþ7ásÛò±ÒCÆÇ:úÈx7™çsý?÷Yàsáƒí{X·^ô·£œéÒºAyÅ‹‡ZÇ^ü[/\üìæù«£}ê=?ËÉsë6ë9øÐ×ú¥ëT뜨7Ÿ¿Ò'‹v_þ6û5ö»¿µŸégóÃoòüËÐÏ#ö½Ž¥œìSÁ¿ÖÏ¥|ߌòùõä÷Ôóì+ö\,ÿ”Ÿäþø¦ÞÆ­…‹=6ʃþlÉ_Ïoò×éþä²í/ýgÿìdžÛgûñ2íËl[>VúpzX”Ú†Òât¿Îý½PvÈoí¹¯}lØ jÏáoòg#}äŸ]ãßÃgó³§x>ð×µ{DŸØëÒ¥Ã?jÛw?÷Ñ¿âãݳÊÿÓH‹÷…Oμ«8Üé_äT(ûÛóƒÂÇóÿÀŸ+ÜzfP~QàÂá9àÊ¥Ë|«¸ åÁ£ÃEœyøw¾~/è•räÓ>íçÒÍr¢í”ë|ëi¤â‘óÆóryHÏ?øŽ³›{OßNÓ›!×ôÃówì¸ü)Ÿ^Ð'éé“zg=ä¾þ„µG;SŽöøïÊsvt߃F»Ô;íôþ»_ü0½Áï¶åc¥§õôiäî#ó1ó–ž{˼©óº1¯ê¹?ùÈÏðST¿R;©—ûÔ[?ìê•?ó¢¦ÏºG9µ?ÌûQûA{¿N=_&ÿçi‡ûЮ‹”›þèyÊãÿß­ôé ÅïÀçXïÂaœÍûž'Ͻý‚âNò^º‰³±Îv®ÜûÌg¦_¬®û¥Ã×o¹ÇOäµç¡áTNþRoã¥ürÔ÷Âèí³ÿ7ã“ÕÏÕ²œx<òÿÞ¶\¬ô{ÆÉ¾éŒW¿3‘óÆñÊý¤çG‚ýPºú…ryƒ ²ÛøZ¡äî|êi<µ<‡§³ï 7Pÿ])‡¿#8)÷ìKp+ç’¾xúo姜ڟ†ÞÔ/βþáñxmŸZ<ËÍŒwýE>Øõk$¡ô…<Ò§i—l|Ȥ“^ýp4õ[–ô§Ã.8°â’Ÿ>±WÖO–|¹¿1òÏvç|Xýí)ÿÍ¥|ÃÜÍy»»ãüÒ#ǵ–o¥+}šiãŠòG™¸‡×’Ž^ÂÁ%ݤ¯;›roým£×pEhâìãSŽü¾Gï¬z»Ò'ÊOcþO‡¦‡/‚w½½üßí—}h\å<§_7È—ûâwC‡_‰•®ôI û¸ÔÐÌ7Mo\¼y¬y«ÿOhý&šŸZwæ¾þ|Çzͼ÷õUoVúäÑâ߯~ÜázCÞ#ç3¾4\sŠgCáè¬WáíØ÷€ï{m©wÛî§•®t¡Îažz´}³îóÛwGí{Û×Wî±±ožçõ:ÎÅ7ŽõÀñm»ŸVºÒÿ—N?®ì‡¥/Îí£äËýûóù·ËòZOîë¿âãä—>|L{ö¶ûi¥+ýZ\¿'?{´uDýÒÂÁûßÐ}üÄFÞ÷ýçæ~âøqý)^è_ÖÿÍJŸÚ8hüpÿýõfàßðüÿÁÕÂÏzÔtùŸT¿òœ>Ž8~{+^a¥O­úBÿÏwχz~Á¼+ùÇÀzĹ!øÀûc~öUæsŸ/×9ðEåkøñßv­t¥ÿC»eŸëÌwï[4ã•̸cý¿¯1Ïç¹ÛG¹á£ø¦œ«Ýv­t¥ô ç§CßøîuDñIð€õŸÀ“çµË(?òϯ—}lxöPå9~iù|ÛýµÒ•>Ѓú™b—ÿÛwë {þÄzÎÿ?Zõã=ˆÿ©âzøû9€+ågäÖª7+=útßß\ôãFôbÆ …?¥7õ{=áÿ®ñ™óž>ÒÏëëúf¥GŸîãÆ£ükÕÿ(=óµÞ‡öœGÒÓ~às®­ÿ›•}Úó@ÖEçw\ÅÕX¿8gd? ñ££_ÓÏùôo.®ìÅõ³Ò£K{Δ9þë<¯ß®åóúË÷–~Ho?ï9ûo)ϹÙ×ÿÍJ>þêßࣥ=¨ñYØi>Ž}–|±ãÔ$Ý£ü{ß½?¾Ò•>É´ö|þ}øâßgú§rjçÁUÿV'7zq‡ÃÏÕñÜ‹_|jÕ›•]ÚxÓçw\⸉³Íï8jâ²5ÞuîùÅ¢O¯Œ÷Ê_ãx¬ôÓý8–¡â¥“wz1ãË‹CéBÿ^ùG<½ÆÉ<·î ¬ôèÒú5ä/Qʯ#ß?ôXÒÃiòëhžÇ/ð·ËòêÇÑÈû²ŸùŪ/B?œñGÄ™û<ýh?,ýë|?œYÏ5ty>ýt\”kÑ|çÄk©?¯6ïwrñ+µí~{Òiqµ…f½ØøJçØÇ6ýº·þÏ­ÙQ2_ª½ÒýŒgõâx*ùÙ1Ù7‡¥öÌÝPå²oÊ/_ ^œÍ™u½úHãšsL{‰ûÝûìËìå¼í^ömze]×qMön yŸsf{o¹ß¤ß¯Çûä£òûî½é>´õàký>Ú¸¦ßŒËuãh¼‡þdßtïærž°ÒCú÷Mß}òê»î;ï=¹ÞypU¯â— ã ÿµñ_¢ÆO½×Õç'=Qoèu\i\³º—}ü½Ø :O†+¼”çp³ë>ÿ£õïK£/ºóª‹hÞŸG“Ïú£x̱¾ùÃÈwù°rÌ׌gžg?U¾m÷Û“Nó°_6ñ}ömW|åGô þ¬SçÁøý;ß÷xîÓÏõ?ûuäÙ}ú¿ã0âVÏ8ð=§&}pkõš}ê7Xþm÷Û“NkïìùÛMÿuŸ]ŒŸ:éVÿtßݯì"ìcì3žë×W–ýÚsÎì£ì<§R¼™ñ×xØk:~ì:ü¨}H<à³¹ÿñ|Ÿ5Z;5œSöMîþ.ðÂÚ¿ßÙ¯âΰóë?r/»(?š³¿ùwʼªxþ/ŒôWR>ܽ…£‚ß„_0Îðë¹µGßô—¸[âùÞ%¾QÇM|=é|¿øñ‚[ƒG¤gäÈøÀm‘#ò¸|åïjÆ¿|77êiÜ0r´œ¯ß½”÷üWŠc w.ÏßTïàž‹¿ÌK«œ=‹tú+îwðÌÐxDøYò Ï&]Öõo§\8wß»êOÒ‘ÿËËuSÓÁ_©ß|Î.qâîGü°ÖOïbÇíwcìwT_êG)üþaÕ—g™öûê; õ«AŸú5âuuþ}:reh>e^nÞï”y÷¾ÞлåûÎKPó!8n÷¯ =Ð>í¶Î(^8Ïéeæû]øïž_÷Ežeúá—;®ž+´“ýŸâÓò~âÕàªzî0éz~÷ø†v½+^KöíÄ»7þÎ/~9>–tøN¾îgÌ8#Rã\hOîáÕ_\™~±ÿ¤¾“«Þ<Ë´çÌ3/+^æÔ΃«~Oà×Îä9?)pXpnpmüå?U[´ø&xrÄžî=ûûÅ!W熼²SÒ+8ùøw™vÑK¹Ÿñ‘Ü¿2ÊaÇWßk£>v}åÂ˼)ߨO{µ~¡þ_äË}øÛöø­ôÙ¦ÅëÀ¿åœVõùõ¡—üQÕï×΃ënö!êoìjžÃÏÁÓ4¾ì_6åxNø½¢7W†sÊ+]évô&òJÞýW&½2æKpÜðpþcÅç=½™xcÿKxák)Wéó?Ûvÿ­ôÙ¤õ»Úø”;®Ê繡/ÅÑÓë<Ÿ8LóÁç‡þÐ3zAoáæÌÛÌÿà¬/¬ë›•nŸÀ»e¿«ø´{¹‡kû$ϳŸæœVñf¡ž+WÜËé>­8½cÚzÅH½p©Ûî·•>ÛôÞ,ò]üÜXô ÷ðrìBž³Ç¼0Ò»—ž}Iýì;Ï…Âs~>àಲí~[é³M‹‡›¸5öKö{¸³âÊ’~nâÓàÙ”_ü\ÒKÇîZ?yŸõKñküþ½¶êÍJ·O«Y—ïãÑ"×p1pqõ3–tð3ÅÉ ½©¤PõðGvc¼'´8 üx¾¹ßv¿­ôÙ¦õ'YÜórN¿Š[Kºì³õ9œ<™|ôŽaåÃ{øl¸¢â_×ÿÍJ·O‹g+~íõËôGæ¼uÇÄŸ¹‡osŽoâ¥:g=“ûìíø´•>I´þ÷?Ž\ÛÐîwå½}±âÖ’¾~À‚‹ÛÉeÿlÆWxÿ›Í{z…ÆÉ´ïv¹ßÖý½äßv¿­ôÙ¦µÓ$ŽÅA¼Lîsδ¸8vþ5FœÊÚ)w“~âÓÎä=œüÜÙ”W?Ky®ÜÖyÚJ·OïæüLãóÑ#þjàl²Î©œÚ!“®~›è[î'Ðû”?ï“çêáßçÍå|nÅ ¬t¥?†ÞGϲ?1ãËVï¯ÓËècÎÞ½FŸ“Î÷^U¼[x†³Ëÿ¼jïÅσ~"û=~²VºÒŸToÈ»ùÞùWßO¿mð£ð=ôÃÎÞžÕÿqø7 '½‡#2}n¤¿¼,wÛý·Òg‹ÖO[ö×z¾â7CNé=þÔ΃«ïù&ïÖqp{ðtÇÇÿƒ^Âïñûœòá–šžßé—ÖùæJzÊO?tõ>âo¾Ÿ}Áú}û"ùPçV³oØs'R®}ÁÏSΧ›çåãëMú\Ýg´ÿøõRoÄõTî¶ûq¥Ïm\~Öø3øµ>ßéó_’¾ÔóüWرƼë€_8þßø‡+Î/éÎ.ëÛv?®ô٢ųÁ¿ñÿqaÈuýÀå}Ó‡Î8žpyçG:q ^_ίZ®ú³?QœÑŒWuuÕ—•nQoê7*òÚø²Co²¯}ÐÏ\ä»ñÉõ²œýx‡y>ã^›õò¯ŽrGüÝ•®ô'Õ›Ê!ùÜypÍx}Oþá±ýwŠ»ËóúAzEÞ˜z³©w_Ÿ“ŽÞð/÷ÆÃõn¥+ýIõætäNŽ7ç}²/Öóæ]Ù‡+ÞM~ï=7_;›üg—ùË?sp~üøÂáK>ëš×V½Yéöh÷«Ä3È~˜ý«âëîçýgùnzçL³¯Öû–å5„çÙWÛÉU?rŸæþËPü©ÿ“‡ï¯­t¥?%Ý÷‡°‘ÛÚ_v7òY? î§?6¸ ÷â ñ >'»zÜç×üÒ×>“rØ™àV»ÍJ·©7ðlüéÀÁÁÝÀ/Ê\"ôH<Åô2Ï•o€Â½Ö/Oò³‡Â/»\­ôhÑ»7ÿ¶‘£[Ïw3Îü§ÝÌøós—Â٭俸œwÜM<ú_{;ùnýuSÞÝÔ—òo§¾¬ßïÞÊsåÜIýp¦ô;øÒŽPíÀ|Ø­{©7éÞò<í‚gûSòÝLz~­n.×)wß ŸøÿÓºŽyiç äƒeÿ¨~ÓÈË[ä.ÏÉû­å÷³~ŸÈãͤ¯ÿ³ñݾƒ<'wð•ð”âåŠ;êû^…hÒÓ/üÂsθÒÞÃkߌ^ó§x›Þç½ó±µÝwòþíÞ]ÿ+O!m[þ:ù73ÿq¾¦øà¤‡[úòr¾Þõù‘ô­/÷ôèýð|¬Gà1éy<§uyÎ9¡ò㼃ù—u‘xÂ|NÁøñÞ9¡‹ã{qqüέÿ›§‘ÖOÚ©È“x»Ö½'#'Ö¹ä˜ÿszpzè ¹Ìóæ‡û‚{¤§ÎË©/òÖómÖÕñßÖxºèñ¼'ÏÚCŸNäUÿ™1¿Ä¯ÿYýŽzÄ3=1ôÄz&øŸÙ/+}:èû_mƵû°¹'ŸöMë'P:÷_oäH‘–+>‰tmhãý~°¤óÜ5Ü£ø&ÝGŽs'¿„⃧é¹ýfûÄêý,÷©·åyÿmäßymüÝ_ò#þHõ†¾À~¼êÍÓH7½Îx/òTœ£t¿YÊQßÃ3¢ðŒð’Ï/ó7.ÜåsKyìó%ï+N/¼%¼¦tÞÏøÀâ ¥~zUœ¨úò)ŸÚñⲞù½ ßÛß•>Zû÷ÙÈ{wâæì½<(|"<%9d§‡kTÞŒ—æ½ò¿œ®ôhÓúe¢'ðïäÈwÿ呎ü¾4äJ|ÂÆÌ=y¥ŸäÖçü(Oýô–<Ÿ™r;ôмŸO>å??¾ â3ö¿á;±œoîã éiÞk‡þ{qù¿ñœz´íñ^éC§0ëãâN>Ë<ÃúÀýW¡™ÿ“»®+>Þ¼Ÿø”éOºñ Í‹Ô/¨sfÞw=qjSŸ¸Šïx"ÏS~ùHy…:çÖzÓ.øéÞÿ&÷ÚaþfbózÿüÚWK=™ççVz´éŒÐ}1ûS§Cë*÷ù~;W9q,Fκïw÷¯Ä“_À~ÞÄ¿¤¼ÆYTïô%(ÿjöëò¿,îÅ~œöØgSîî¨?ÿ•îÏýËRÚ®³ë:æY¢µ‡ˆ{Ã_Kü›×î/ 'ÂnÈ®_OÀ¯“÷µƒäyãJ幸„ô³öŸÐKy.^ዃ_¸±óîóžÝòªz—ßÿâsØ“ð pqÔ¯ýø|}”wmý¿<Í´òPÿd¡oE~àWŠ“‰Á¡ˆ3H®ÙÓÙóáâÿ¼xq ßI9pìýâŠSx+éáØEá”w;õÔÞOïåßݤgÏ”¾¸€”§Þ·ò>þÝÛðÅÙhʹý·Íû?®ú³Ò§—î'¢þÃçÇ}ÿ‹;®Úiü×r>í@ùþcþßþïž~¥+= ´8"ëx=rn½c=äe5ü(ߺÊ:êâúZéѧÝ?€:aŸ,Ôýñìc|¹óàÚÛ»è¯ùßü|™>gÛí^éJÿjÿy'×Üçî¾üG›tµkÁ1$Î(ÜÄ,_9ö±×sž+}hñ@ì¾™¯/P{nÞ³ÿÂ%œËóCæi-ôåußz¥G—Öß |CãÁEøÕ¨ß›‘.û õCuý½á¿F¹Ë«Þ¬ôèÒþr´´qLw\{Ùwß»=ɹ´ú[Ë~þÁzè£úžn¥+= ´ßÿÆëzPý O‘{ÿ£ã~üoúŸ‰ýjÆIÝvûWºÒ¤7Öð×ðÍæcâÂÇoBÓ'nA×-]ï ½Q\ªõÑð»¶Ò•%Zÿf_e¿ìãPçg>ÙÈûûÁÏÕš{ûm÷¢#®@ÏÇ¥ç}fƒ•®ô(ÑñIÙoàœù`ß<ûÚ1‡ýóÔò?R»ôp¢çÖÿÍJ.­?)8MòÏïÆôËv~P~Öàêà<ájøs=$^áJàøÁßòÃte¹ßRܼòí¿nÒ‹c ÌÏØåQžñ⯦ñm×ñ[éÑ¥Å?ÁC]ÿ{ß7øc~þpHzßOz¢\ñ$}/¯z³Ò£K+ÿΕ<¿\_Ö_qöoªg'v\=‡b¾Î_«ó.=Ÿ’÷‡ømZéJí:”¿¡ÿZÊó‡Ã_~é·ãþþrÿ¦ûE_GøûІ§ZéJuN½q\øMª_™ìsºÏ¹Ýú5zqäãßâÄ΃ËùüúE:™t¿Xñ+=º´ñùM—+û{—ص£'îÅ¡¬_$ö5ï•›|ìnX–»íö¯t¥?HoèCñp‘ø¦ÆÍ /ïê΃«ñð®çpQêÿxkÝXéÑ¥ý¯TBé |SŸG¯Äaõ_™å\ùßåÆÀ¶Û¿Ò•þ ½:»óàÚ‹¿—®cÄ<Ÿçæeòñ‡çÞ¹”ß=þüøƒ=ä¼ÈJWz¨s„ü‹ñ;þþƒ÷ÿ~*x§Æ‰Ì>ÙN®úi†ƒŠbç{ëïãeyÛnÿJWúChñçBÅ¿8»óàª?08'éøqbÿaŸ™ñ$ƒß­]Gúu_`¥G˜Ïtëo »Mýð‰(®äÕ×~ºz0ý¿ÇÏSÏß<·y/Ã<¡þÔ^~Ø´C½3>#}žn[.ŸtÚ8¤ÿÄ·û:úñÉæyãMÜËó¤·×ý¶¼oœŒÈœ›ñ«?¯¯Rÿ—›qs±ñúð÷EÆ;qÐCºä·°q=œŸ„³ÃoöûÐîóå{@.g`s»3ãzÔ¿ÙW£¾ÉmÊÑú×¹M|¥üBÍ8ŒÇxL9)÷£¥œgh¾I:ü&}ã/¦_SÜÎÝ?g¥§õ_w6r!þÿ\peâ“Á¡Á¥‰ëTÿ_#Ÿòg\(ïóÝnÜ%q‘N†²#½´”«æSß«£xž³£œi_¿øM/Œ{ùð=ãWI×8g¹Wîé<Çÿk£´ÃûWFy'G¿j§ñzm)çûù¼W>þBµÓ8hÏ©M¾mËå“N÷2n2þàÐØ3¯„6N`Ò×î™q€GS¼{ªq„Wƒkƒw“OzòŸõÉ^ÎÙíeÝиdWF½¯ç—ñ‘çM—ò´kÚuÛ/É×tøÎs~Í.úÎvÁ3Õ¯Ùhß5åíÕþ”¯ñÆòÓöŸ7F;à½o;–r°m¹|ÒiÇ Ž†ß.þˆ²ÞîýUr’çüŸ–çäÂûÞ+M¾–“üW¼?Þó;öÖ!ùñï£ï‹“Ëó©~¨~ËBá‚ð §Ÿ‡¿7F:õÀóݘ4ïÕŸø¥Æ£¸@íö~Ùûãi|F>úõú?å]Yçi¤7äŠÑß³Rz1äÅ÷ÕwÓ8Tî—|S|ï|Oý·¼_~W÷õŸãûþæà_:ÿrå»ìûßúW†¼M=P_q®ãûíÿXýÿ'_Õú;ô¼ã°ìïýñÌsÿGýÛÿÐxŽíq¨VzˆÞœO¿™÷š‰Û*Ž1œZçYîǼ`®s”{&ùNç¾ñŸSÿk¡]wä^yÒg¬ó3÷Ò©§ë›ÜãÛúC{ÌGåË~WùÒþÆÑM>ëë鬧Ôs6åðcÖ¸ÕúQ{BÍÅómÜß”‹ïsË~îx¾4òeŸ¬ï­»þã¿m¹|Òi÷s¦ß®û¡Ÿ‡~±'ûX{Ùת.ñZ7¢qm?J~4ù•kß û?,ËÃOßãç«äû`Y>ý}ÿqäÁ>~å¹8ŸÊùf#OÝO ¿;¹ããÑ_úïËÈ£~˜ü£áÏù½–£ð“qèþz¿ZÖßýÃy/}Æý`/íG·é¿YêÙJNk_aç@¿uÓŸµ“°¿Ôšï߸¶ùÞÞ_ýÆ™_}pÚAäcW¹8ò£ò¿:øWžçì'ì6ì"ìEì:êÿýÈ×väþTîµ÷ü(ï÷£Ò‰ßä½~8™çìSgG¿°OÁ5(½ýE>Ïw“ŸÝ™Y;ðûò²?·-—O:­]úÖ_#éwþ¹.‘ÛÜo–~/® ÷p3®,;7»"ù…À‡ráWıþoj—Ÿ]´v}õkOžÃÙ°³Â)Ô?™ôy§r%tâXõË[êÃwžûžHï;ׂ/ßß±‰#Ò¯Y/í_Ò‹wØøŸIŸ7•“ûúií_ý =šÞÀ-Å¿}ý©ÁcéÏ7‡Ü¡À¯À»À©\Y޼ɡ|d?gÛý±Ò•>’ÞßÇ[‹¼G<ç3ëOpâ9éÝ[ã{öÆ2ÿA½Y¿s+=:´ÿñÄý¿á=Í+.,ÿÏ›·˜wõÜÁ˜åþp½Ù¤Ûv¬t¥¤7ð¶smÝ=ñÿwÀï7<'×W¹å»õÂ:yÛý±Ò•>’ÞdÔ>§}øÊ»ÿ²¹/ž“ ?…Ýïü(娝Í>÷÷‹¶ï»íþXéJ… Âïg^;Böýßÿ6´ûÿËçì!½‡„;ï¶Û»Ò•þ(z“ùUñ²Lþk7ßypíýf¼—ß}qI·ú¯YéSD‹»˜~hŸ¾£~BáLüWè!œ½9¿êÍJŸ çQ¼ŒõLæ[Åa|–yØçY¯d=Ôÿu‘røö_úÝwï§­t¥G‰öülp0~³¡=Çlßì…å>@ß‹/u?Ü”òìÌúéç¶ûa¥+ý‡ô†?ŠžÓÙ~ÎØszGÃOÇùPûÚ/}÷æîŠ[_é¤ûþˆ6ÍÅm \z…N¿7ô¨~k¾_så»õj¥[’ ~qà§nE.ngÜßÝݼ‡7¹ù×ÿɸs÷mx½¤ççêæß6éàøà»n.å¤x/xïÓ¯·ôãÿ^ÒÛ)ÏxÜùµW¿ÞLúÛéW8IüÞN;ï„ï÷ð›r”ßçêKúw“NýwÂ×uý—÷Æ‘|ü1íÔ¿ïå¹vé_ü'ãÿNîowýžrú^ûúÜègõý9åyþ¶zó\yäZ=Å‹æþ í%·ã¹þWü¢öЗóä3÷ôS{ùÏ¢äüÍ‘¯ñiS>üy¤×¼|ÂOâ~þþý ¥Ïo;äÞ®^™þò_÷®~!w?÷ä\Á½½5ê÷]y{´³úrä3¿¤wpÃÚ{Õw†¼èwý“{ßxpåø~jÇõÑî+ÿ¹l§ñº•þó]1îþßÚGÞè1|’ï¹}cŒËñßåão¾'oôeÄ—®\;op)í…›‚O7ϰþ8rïáâùÑ2ŸË‚_'¿Î…œM=ÊWïä—œêOë í‡ÓOyûóý“òàçé·þPnêÁïÅ‘oø<€ÇÏùÌ}¿~&×Ê£×£üöóÇú1Sÿ(n®óBüŒrÕK¿<ï8ᇌïzáŒô+¹š~Ïò¯ñüÂèoòd\ÈÙ¹!WgGû»Q.ýñþŒ|¡ú®Ý<Ÿ¨q1®Î Y§:×t"ﵟ¸éÍóSÊËû“)W:¸¬î?%½óQôÇóØ;ì'çuv¤·o¥ü—ó¾¦ß@ý ?•Ë¿úõóÉQž÷ÊùÝL§]¡ÁÙðwVüšqÀ¿óU³¿ñ5ÇÇøíèÏð#÷gFû•ï|ѯG½gF:ßGçÈŒëñÜ“oí"Oêþ;êUŽ~L¿|øÍèGzóâèí×Ò+×ø¾xH}'ÆxjGhý·}µ¹ß¸©â§Pþàîçýg)M9ìË]öiÓ¬úë“ÿ“Ô“þñ¼Ôþí—Éïüí§£<åÜKúP~ñZÿzÊÁ7ªÝ)î¬ç ?åHŸü=OýG{ÎX;>Ú¤ƒÏQùRŽöà_})§üâ'ýÆîÔóÅêU.~Ô›~lýc¦?ÂâïFûêï0|·Ü¯ÓŽÏG;Æ8Ïä}äbž¯Þ‹<¡•Gå‘Ëû£ý©çÊùlïù;„£â_‚ß~ øk˜~íê7.éùͶþÛ’Ž}¯öòQúÛ‘Ÿÿ v÷QOîùŸË÷¾~#ÐúH>Ïwü.àÿ@ÛQþÜãG9ò©–ë¾ý0êã÷âåQßéÐéÒç?Ü÷ùÎÀ3¼4ÆÑ}þ÷Íwf´ ßÚ÷¨÷…‘^{½o{õ{žO¾øéȮ탳(Žß³ÿG¹ÓïHýDŽtÓ¿GÛK>G~~ù áoß;~YøËÑ.éå'?ø”_{ùß“žß—Wg=¹eð—Rÿ}áÿ\òá[¹—F=¿‡¿úùÐúYI½³ÎãMzíÓîWGyw3Û黦žÙŸøÈúzï2þÔ“{þúäoyɯ‹Ÿ›4ù¦ÿEí¸<ø9?Ú¥ïëÆQ»Ç¸¾>ú­þ“_9¯Žö4>ñhïk#½úæøñ»5ÇA¿øë7ù|'.Œq˜ò@ÎÕ{~Üë?åžú¦ÞûÞà÷Ìh¿Vô_õ”ò}§~Ëçý…ñþÕÙ¿ÚoÜÕ;äʸ´]Ú1ú•^÷~Œ3¹Ð/ÆÇ÷O;/>ÉþäÃçùÑÞׯýéÿ¾ûÚo¼µ—_´ê‰þß ÿƒsƒ?òï¿Ðþß ýv@´'åàïÂà¿õ{òS}OûÛŽ”gþc¾9.ŽêdÊ5ʽyæüÒgQÿàæ…üòž M}üW[74]Ö“Åñ§<þŒÌÊOÒw~ˆëõò'Fo±lgý9%]ýù~(O¾ÊO>ýaþ Þ_«/íʼݺ²ü›×šçÌzô»þý6|~+ßè/~žî-ù«?sëùñ¡î¾,¾®ýWôßK¾:¿üùx®<|žõi÷o†üò¿¿?}ÇÒ>MÚÓ} å§?º¯¾í¿Ô_¿}¡ðÙý6~ýáÃìû(ï—Ë|wÓOû€OýñëÁ?\™ö+O9áwîÌý›Y^ÛC®??i—uøì7ß™ö›~WŸøòe¼¬ÃË¿ý§¹¿(½qµæ=úÂ2ýþþjÒûÞæ;á¾|4þÌÈoÿqg´ÏýÉey}þ³Ñ®Ÿöêwã¬û›3޾FúÚ9ØEì£óï“ùKÓo•úÙûØÙ)ì»ø}µœùØÿðÙ¸~I^÷öÕñÝ÷¹gOcohü¥¼ß µ“ä9ÊnqE9øK9¦¾é3¾ŒGãí¨'é.ÏúG?©¿qŸ’Þx°OMÿ žK_;”þãÉîóÚïú‰Ò¾1úwøa/¿Ê­–ÜßÜÝÐâBá Ø‡Ù£oyžúá<ØÃë?)騇ßK}ÅA¤\vá÷BÙÏáWŠ£¹³¬G¿Â“'¸ ro_vgí`oö.Ά}û­Qœ~oêíOÿ§Šoøø“Úûÿ2ø ½‘ôø‡¹eR\œŽüø(.)|Àß´|4åxæ#y—qs´“œ‘ãAÞàÞM9úÅxW¢ü´—ßxrGn‹÷ÑžÜÃßå;ê»Â¿]Ú±m|ÜJ·KûÝysȽóxg|‡N»zä{ yßv;WºÒUoÌCáná ùû„º9æëCK_’Þü¾~åV½YéÓG«֛֟׬CÌÿvǼ?é§_f󚮋þs׬ô©£Ý?ªÿô׌G{ œÙÉPëf¸/¸Êõü÷JŸBÚ8·÷7r_Ù·‘ÿcK¹oÜ‘/6ï‹c|ð~Vr_®ƒVºÒ§Öžý¨½øxèÎr]S»-{ò±qÏ®(ì6ÛnçJWú£èËÄ5ÀA°£³Wþv¹>)þÞþñLÒñìæý÷øOXéJ-Î>®þ/ë–½±¾)ÞN{úc,þ/÷Ãn¾Ò•eÚs6¨õÍ'¹‡t%éàc:¿ñ‹Oûû2ý¶Û»Ò•þôÀùÑçroøAôç㼇/“^+ë›R¸´Ó¹ÿùº½Ò§‡îûˆœO˜{ûÊp›Î3÷<}î{þ~ØEÏ®ú²Ò§ðÂþÿ×8ŸÑ§âØ7CáÅàuàV¿o+]駯p÷£_pžp§ü´ñÃO;ýÕÝN¾·G:¸XxOx^¸M~¹ê'och*?påp¬ðyÒ¿³îs¬t zŸ Ïî÷\–¡Å›ÿ½ë†§ÿcÒ]ÝÙÔŸ-}õ…„Â?¿5ôäÊàïÖª7+Ý‚Þ8_ÐsDþä7N´ñ¸Ý'ýœ7Ò«žSŠü+¯~“Îùÿ¯óc}—wˆ?ã•®ô'Õ›‰—î9´ÈénäþÍszâ\?=ß7prÊ™~§=çäø©sN_µó׫•®t+úãòÜ¿¶?Ž:Ç,îЗ¹ïyéPåÁ•:Oþuʵÿç½ýôÔÏnÕóíÎW§|ø½m÷ÛJŸMZü(?‚â¶¡ü(~¼”kþ:êç}–ýõ£äO=õËÁ›rêçñg£¾rÿmô…ÿÆV½YéOO뷆ߜ/"ïðpùÔÓÄ—ò ïÃo¡ü }ù¯å~xýÂÕ¿PôãÞ¨7ö^õm»WúlÑúíò}ÿdù]ï{òÏŸ|iæSüˆÖoèæ¹ÿFý5ôôçCàZé‰zë·4ùò~Ûý¸Òg‹vä¼jžöéæ½ôæKõÓ÷õ¿Æ?›yùœyUô²~¢ò¿â?«ç„>ZÎßÌ#é™ùÿéÛîÇ•>[´~ãÄ!€oÿÁ¾š÷üíÙײ/vjçÁÕ8ö^ùÜ+ß>ÛÙ䇲o7ã18ËÕî:O[éOOë߆ÿ‚+¡p9#NSí,7w\ì8Ê“ž‡ÝÇþ´rÙuÐúÅËû¹g÷d×á.~á¶Ý+}¶è¿uð-ì õ÷¶óિ9qÞØG‹#ˆ|ËOÞë'-åóÿ&.Ü@ã,†¾›zÅ1|kèQì¦ÛîÇ•>´ßíú—ŒÜñ»HÞîüuó¾þ—óýÆÉ¼Dž}ÏsÏ_éÿöHë„úa{/òÿ=þ¤îþ>“M9ø„_¥?ï ýþ‡ÿÇmÛJ·K÷ýôɼ‡Óþž8Ù×.^•ï÷«Þ¬tŸ6nι¨]ä«üÕ^}™ø•Êùg›ôµ3æýŒ Úxž·Þ¼ÿ€þ_=õÐ/õ¥¼÷³íùøáéf< ¶÷ËÔ/ÿç«Þ¬tŸÖ_¼ ÿ4âU5îeîÑÓK9ª]þeÆ-=*Ý÷|¿‹‡9ùÝëšâ ’®õŸYækܼÓK}=oV9ð—³íñZé“AŸß¦±nÙwùðÒH÷ò(‡µ¤£7Má{ô†ž÷8ÿÑCqAot“¯q ¯Uú¼Ÿñ]é{ã3†žÿîÿÞJŸ-ZùÎwxïòÐqhgœÙ±Nï÷ZÜQò,ÿŒ»ûûïž§5Þç÷éMãš.åºq[Ïÿ¡·â®Ò#úÿ?øìwó±Òg‹N?hÅ=ß_óþ¬oà•óá7›{óž®k²þh\Xq?yøÿæ€_¶¯¾gïöéàëƒe=Å‘æ;ÑõÝXˆ »³,w¥Ï&íyÇßÓ>؉WãpžÚÜvžl?žAÊ9›÷Éù½|)ÿ©ïÙw+ßÎkFz>Í=<œv»qð/Ÿsqï¶íq[éviÏß×Z¨óÈì/Î_r 7 GVÿPyή"ßk¶®®uàÆM?ý¶]XÖ×sÖð™—rñáå6~æµÔÿªþX÷Vº/oõ{ÆÿÑÄeÁ“] …ËiÜÎ<çïEágø¡‚j|Ú{ËvÀƒ^YÞo{ÜžUºï)åN¨ï¬ñ#£ÊO ¼˜øšôAâz£¿éÏîò¿³mþžUÚuyŒóXÆ~êÅqoa]ûÒxi;qgêó\¨üÒ{þúà^ÃÍscôÝÿîˆÆïàW¾û'—ýºmþžUÚó¸_oäþäîñÈaö…ìŸÂ{}øMè'žoƳç¿Íø¦û±äºx¯c©Ï>š}#ÏùO’Þ ®K9ôß‘³â¾¾Ç>ó¤ÒŽË½´ ÎígGû?zÔ){_ãd~µ¹g?`7¡7õ/‘søîùQª¿‹/6r[¿1‘ƒÆ¥qÏ}ì9ýä¯Fýìøˆ¾”ü„ù·ÝßÿðøœÚôÇô#ÂßͶù{Viq‘¯â¿à¶ØýÄ=O~,z±ÿ^¾ÜG–tìïì˜Ò±›{ίûÿ‹#ÜÜŠ/8·¨ÞO§_Ò»Góÿù´ÐÊwÖÅGÁ±À£dý^œœXìûév\}žuù^Ö#}‡WCÕ#^gìÅ{]|½îyîÕ3ðlÛîïG—ó£?rn§ýviÕ›­ŽÏÀ;_µ;ä%çòWÿòMÿ^3ÞÊO:ñ<Éù¦¯gÇwÖÿ)ç>·Ó{z§|Iwˆ]ñI¥ûß#ßú²ü®l›Ïg•š/ïäêz ëúž{±n1oøýxþû±ž1¿;n>—t©§~^?ÊóéoïTÒ}¾ÌáÍÂW×aògàýo’Ïüñˆ®øýý²¿·Íß³J­çëϛ߽¬£»5üZ‡Å¿øçIyžþ¿»Oïe_ßð;®žsŒ¼t^R9yßý%û|ƒõm»Ÿðø|>úO»×ý´­Ò}¼Tƃ=…ýƒ½²ñ'rÏ>)=Ü#¿/üh°ßd_¡å]ÍýÅQAÖKµ‡òÀ®#]ô³çñɯß›Ÿu\ô3<Ý¥PþŸ?ší:ê´8r~iÜ‹‹ÄJÞù!ºštW†|óà \¿Kô^.†=TO8õˇ3ðûþkFýGÔ?_ýÂןWµý߬ô'”Çþ/£_pyï ½„£ó€Ó†Ëƒº¸\ŸGÁŸ <³8RW¾ž/î~èæª+}rh¿ÛÎ)ð‡VœuÞÓ 8žéïÖ¹òþÆÎƒk?áøÿ ¿ÓøR/ýúê7+}r(?iÅõ˜7ž÷——ò» ˽u–u™ófÖkÖYÏ…¢ûçã–û"Û®ô|þlìöÜå΃«ç4#·öÅÛ°ïWÿk=ß™{zWç¶}Ÿ?\ì·KgŸ~ÛýµÒ•>ϯ#—Ã/[ý—}¶¹¯ N.éÄsâw`È{íWÊQî!v¤‰÷›þ¡VºÒmÒÚmá ¦_¶Sã9TÑKëÿf¥O-žM|Yç‚>Ýypõ<…ù˜yWöÓÌçÌÏÎ&? ¿×uÐæ: 7æƒçRîéõ³Ò'‡ÖÏ¿}€{Ù/Ë}qröÉ¢ÝË~BÏ]ÂëÁ÷Ù§ûh¹ÿVœÜ!x²¦ûlÉǶûk¥+} 73®ìÄ¿Á¯°‡ò{Çîî—÷â(gÆÍõþ…‡Ï¿jâŸa=¶Ò'ˆòU\?e×ò\Axø0vKþÜàíØGù·‚s…¯cÿç§êÒÃÿ7õë7üò¬ôGþèøYâoú¥»‘çïe|¯f\;Ü&¹Ÿ<¸JrÕúÿòP;DùäOo]ç®ô  øžÝó†+Þ‡Â'óãÇŸeñVyΟ`ñ‡)Ÿÿ2xä7–zv(Ÿü±׸í~[é³M‹K„'t~>êü΃«¸óõâóÞ¼Ú|Æ?ç[ÌoŠK\êáþ¬z>`ý߬tûôPÿôös¾Íóì›o%N¦}!éæyÍ¥ß\Ö«=Çù\ôâ—‡èÍ©äÇòÔª7+Ý>¢q#³OZÔ§;®Æa‰ì䂃**ñ/èKñ[Ñ«½¡oòÑSö û§Åkáããuh¥Û§õŸ5ðûþrÏ¿ ûÞ™Üç5ãDîØypÕžœpqŒü^ÈjI§Áò÷ëUoVº}Zœÿ|o9½ä>ïQ8øxªÆ‹”?Ôs~™Põþa¤ã—°q)ó~=µÒ'€Å¼-}©å9f9¼³ÚypUàqá«”_ÿ}hôdÆŸäWsú?{iý߬tûô€Ÿexvó£ìtž$8¹ÞͽÿAÖù —Åó—Éç½òÍÓ²®ª¿ç¬»àÀ¶Ý_+]éÿPëlç|»?v?û\ö»¬×³îèùÆÈ9œ•ý€é§ë€ÿ´ãK½hàòR®‹Wôžÿ#8vÐëׇê|ÏÛK}ZéJWº}Z|üåÝèír]UÜæõGÓãâÞMywò¸‘úî„ò³öæøþÀùÝJ9ð|wÂÇíäsÿî†ÿƒíKýð‡·Æ>ñ溎\é? 7ä®ñ—Éuä‰?Ñ·w\•sóÈëËüûåFÞá“鑸½·üßS®ÿzq°¡p°ïúãsèÙÛCÏé‰ÿ=Ü-ýƒ_ò~ð¿Ò•~§Þðh^ȵù"“篭z³ÒG§Ý~NuîŸ7Îνñ½fŸú(ïáîŽ…Š³;ât¿þ‹Ô÷Ѳ|ù[îW)ïør¿~îßßÝÙ\Åâ;írÎÿ­ÿ“åw`¥+ýN½Oþ¼ÿÁF~j¯¼6žîÏ—òØ8º‘»âQ#ïüÖßàð'P<^ðzÅÆŸòw;ð~-?ú¶·³¹j¿¦gÒM?Ÿ-Óm{éÛoÖyÚJ¿ŸÖs¾»Å yUõäçËùŽuÏaå[íäšþ¡Í¯¬s:ÿË:¤rî|ahqMÖ%ã|Tõ7ùÍߺ.ú|9O+np§­ô =žïs÷«Üÿj)Oü3}o¹Î—ó¿`¿lÆÈ¥ëvñz9}Sý¹ç' NÉ~´¸SWB/.ùp_;Oã·å¾þOR¼>Ùy.¬ë›•>‚ÞWÂÕ~\¿¿ÙEÏŒö±cyûƒÏôqO.è#¾ÏþÀçùgDoô¹‰ý«÷?7¯5ž¹×Ë{òMŽÌ«ÙŸ½§'Õ×Ôötrgž}6rá¾åЯÁßð#P½Å‡|üQ÷¬sk/çoÊ÷ ë˜äç'‡íšGôÖåäøøÐå8åÉO/”C/O…ý'ßéå÷¦ý¯±O^½ ÇêiüzíM}Ú¯Wžn½éºÐxå;Xûó·éWçÑ>K¿°[ó÷M¿ÈÙ¦;wØá:ŽôèXîÉgîk§6ÆûDƇÞâ›ÞâÃÁýsãûêÿB_ÉñVžúÉUÚ×sxä÷…ÑîÆÕÌsýðAú“ýßÿˆœ'¿}«Úí?ß飯ìòí§ϰý>Ø÷Ù-ó]èóŒCÇ_ÿÔ¾ sÆé¸‡O %ö? µß}Lé2NMÇNà<ò§)ç«<Ïx×þÍÏŒýÎŒO÷;£gå+T9õÓÏÞñ¬;üÖŽ~©7ìçð*©·û¹Ú)ÝÎ臤c߈Xîû­Šü·Ê»—úéßôOõMäng”‹ïÏ—íé~³öëç“£^zðÁ輟ûäÝW÷ÝÃ'\v/ø›Ò®§\ojϮߊèìÅÁñÖ/F¾oûqY"¯ôˆß&å°ÇK:þ4ØÓø¡aßåÔ(W½g’ï÷ƒ/v>é~?älw)Wõ'ÂÞÇžÎy>ÏåÓNõ¸Ï:°~?Øßõëé‘_<Âdž}Rû¤ûݲ}mOížúkðuzôÿXß´Þß-õFÜB~ìêg‹}uú÷:¶äoï;¾—ý’½ì{îeß±ïsNdoœ‹êóì¯î]Oÿ‰§—}œ½œ/Ù Þ}/ëϽìì]z%Nžø{üØLÿQõƒ“ô—–å•Ϭo÷Þ@¥ WÕ7îÛ¾ÔëþõÉg¨ïEÎ 4>¿<ÇsýöÆ(ïºô¹¿2ÚóÆ,¿á_È?ÎÔ׈WØï@¿—ã»GŸ_÷â»=cxèŽkö+ïÙgܧ¯·Ò_Ù¿l¾wÆsér>ª÷±;ì½íž¼ª'ïÕû&J?’^yÒÑÏ7‡œ]ßoã#íKº½kôZ½yþ~ô‡úBßÖüy.Ÿô³¼ñ\¿á¿íý(ËñßÊô­¡¾#WÆL}9·ºŸÎ÷b|é)þ®.Ë{Úé^öõû¿1úÍâê”ã8ô‰œËw}È«{zH^}çw¥r}}ÜóK(߬ïÚr¾ÐöTOW–ã^¹œõ_ý3Ë«þÑËÑÕí߃7G»ZnÒë÷¶sè뛣]úWÿô¿úúø¾øøß˜LýÁçõÑŽ1OyZiçñü÷™—ûÏûo_šïóÜüjÎ[¬[Ä1æ°éSoãç¹òÍw2¿8àÇÐºÇøš÷a·îsó›ÊÅR~öç5¡Gû^“Ÿœhߘ·\ý$~-¹3Ï´ÎÒ>óTåy~iðÙøÒêÇ·÷Òã#åX§dÿÑ<¬ý„ÿúIã²k||¿Ò//ûoÛrýØôåtúí›vïÇgÿmëKëAëʼn¿µ~´¾Í¾JqÁ¿å¸Oýðì§òn¿ö½ ±¿ ü0¹r[;ÄŒï¾j˜4zUûEäß>sÏ;²ÃàS{>HùÚþ'=ûGô¥ö%ò“òíËÏç•;íÛI:xdýÍ>ýlÜ[ïsù64ãPÿ‹i÷ƒµëز?Ûžyz|'kŸc·a‡…Ÿˆ~מ6Ë?¹¹ß¶|?>½!/éŸKä/Ïë×!Ïá6è |ÊÄçv@öö|o‹GÐï¿ïáPØÉ3НŒÏ|Î+ƒÏóãýkã¿p,ê?1øa—‡cÀïnÞï¾ëo1sà—‹ÿ©ßÅܳ×i׿4ø ¿ìÂ/zÊWÒë'xÎâzò<ë˶÷Šû”ƒ/´ýótëÍ“FïÞùëf\ø=º™{þâ׫~Wø+ãéÖæC÷νå÷nQœB~Wn¥þòŸQ|">øwz/éÞûKêMýüšÝrÝr•—ôâÎòK“ýòùnÚ};õ¼·)ÿ@M¿lÃÛ>Þ4õý[¨~h¿Žþzw”›öï·käçO þ3ýºmyzV(ÁÝiç¡§—‡|Ã;_£÷iùJy=ý©]ïñ§_ÆþËêê'ÒóÀ³‘Wÿûé·Ë9Ô|B:~2Ïï%Ü6<¯y‡r:ÿÈóú å÷lâ’‹!ÿ×F½Êc3Ÿ¼8Ê3ß5¯5<õpù+ž|àŽáJ{oþ¥Ÿ|ðßçËrÔ÷ê(wÎsÍ÷ê|Õ›Ÿ‚N¿BÝøt3îÝ7°^…C6ŸŸ¸Ñá¢óë(òißY¼oʱ.8jÝ0×eôý̘'ÈsxqxLí}q´k'éO‡ëwí…WúT\í8gy@®_]æßljŽò†€ïç¾ÐÄ…?¿äc¥‡v7úR\"ÿHÓßÑ×›t³îÏî,ó)¿~™>ÛPû_½ßL_öq¥÷–å×_@êí¹zû~¹/Nò~øæ)÷_jß ~rä«= ý÷¹·³”Çâ=ÑÏ—í®ÿ‚èiëù`Cçþ[ûë¿–ßýÒñb70.)×>øgè§¡Å—²G°Ë±‡À)Ö~ä>ù¦ÿ¥–ã\9†{œñB§Hù‘ƒÖï9{ʈÃÛôì.ð‘ù_ÕÎGZûQÊ-¾6éÏŽvæ?t jï—zUý{nðÇUîЋßþ_XêÁ¾¿©”¯¼üw÷Æw¥Ioààfàà5áà:ÿ0Ò±¯Ç1ϯ½nºx„<'¿gGyä±ñ s¿ëyø;æ9jñ*)¯¸ƒÔÃÞ¯]ø“@廸py,?OÙççF»àb½Ÿz1ùþÆWÅ_êymýßü$z3ãÝÒ‹ÆË5C¤'¯p»gÆ8ûΫÇÿN€ùΪ—_òÔï¹¥W¡—èÓø.¨ï•QžûéWüW¯•7¾/Ê=3òí.çeÆ'ý¾ÿüâ¿Ï—éWú˜ôÆ÷ÜwŸ|ÎùüÍNä}Æ u?ü-ÁÀ·˜×÷Ü×Ç›ñ®ÿäÌç­OvÔw,é>I~ó3ó·ãcžgeþXœLèðÛùÏà¿íñKûþK~Ûú1é»þHûæ9¾¹.lùÇ—üì¯ÓÒ/'—|í=¢«•þ8tú.®ÎåÓÍ8Ýͺ´ûSÿýýœå87“ïlíÿçîkIg¿È¾ÓðgÞü‘ûž7>ûo£Ÿð0(>Õ9ö¾ç@áp¢Ÿm×ï.í'ûZ3Þ<ÄÉÑžùܾŸçúÙ¾ÙNî'Nçù%‡íŸ¯ôGÖvö•úËx\Ê{û¨YÔ¾"î’¸ˆãVí,Óß»eÖµ_ò³Ä©~÷ÒO¿>ì›g#_öÛí =ÊÎÂ.3üZˆ33Ö9w¯þà/C?M4—G{Þð>Ôs|^Ó¾ÜK?ü¹íó÷ðÿÖJd½!/üq±Ç“ø™iGgç„'ÇŒ}}Æ ~g?0Êá ‡¾ÝNz”>Šköîß–úËàä^Â9¨.§þÑî-ôåÐþƒ›¸šòà.Ä]Ó_üŸÝ Ÿ7‡¼Ãõ¼“rÜÿ1|ÁÝ||ÀÝÛ}ð~Ûrõ¤ÓþÈ û{íÈé_þ¡ŒŸï[ñ*¡ÃŸWë™øRÿvjßÛøß÷ðe>Æÿï©ÿ™ôìøýïøŸÑKz!ÝÃù^éJª7äþžƒüù®Óé}·ÌgÌ_ü/ê¿,ùáŒQz·6ð¸õ÷"~ ýñ¿3ÿ²N°î1zsÔ_£Ü5ÎûJÿ½³òŸ9 ¯ïá{OÎÈ¥óð+§‡¾M|»u©õ*ýô˜x“ú“´Žõ?±þH>|ò?ê?Ùø€Ú—ôžóúúú¿Yé? 7pSÇ–ßëžO³ï?vQèå‘îÒ(·vÇsö•àÊZÏQß×FØ{öp’ÿQÇJºµûhÞÆgø|à¯ð[í5íÝÿmñNä#é®’Žü°ÿ4í6ñjò3q—Ê#oì"M»T‘§£‡•>^´¸Fø*ë+ö’¬ßàå­«&ñ\Þ÷{ž}R×o§Ç{8ËÃݱs /mW<©üߺNy3l?¤ÖŸ+¾d¥­ÿ‰áà½ûï÷öêõã¼GÝCþ:ûöÏ—ëž+l²ëý­y_*·¸Ýଜ›Õ.»ú-ëÙs xOõöÎ>ñ¦]ò•®ôahíÑÃL­ô+™Ï«‡¤—É÷£þ“N†Š'xC¸Åy/y†éƒª7]Ê·z6¾òéièyÔ_~ôOGyÔã°ÒÇ‹ŸEŸ9qô‹—ÆûúÜ»ÿ« ÏëŸ/”¼Í{ïÓÏ+;–üß÷Ó®¹>=êufÔ‹ý™Ú Y®WºÒ•>9´öµØ‘šxÚâ6=CÙß‚³…W…‚+„‹º±Î#+}rhùšý4xÁ·òü­ñý† w 8õ!7ð´ÑÏ£nïJWú£È »‡øÖ=„; OÒä†|°ÿ&= ¯{~=W\é“C{¯®®µ÷@|¾Ñ÷ð´ð±ç“ý¦üÖû+}‚hýB8÷˜þ°Ý—šç-Ç6ñëÿ`ú•xn„­ç‹+}rhõXoøºú,4ú3~»›nøµ©ž+ú‚Ú1‰¼üËú½Yé“CkÿjÚKd'=¾äûÚÓa'òÒü<¯ýǽû¿£nïJWú£È <;žîEì-ñCï}“çîgÀKýfÈ \û]îy¬x£•>A´þçÂÿµKeßS{OÁ}—u˜uݰ?g}WÿuÖqþôJWú8ÓúõaW >Š=¸S »Wîü ß—ÚSƒ£nؼ;ìæ®t¥#­=žÚ‘ ¿³¯& À.ZíÚ‰gÊŽÚ¹qþ¶ÞCZé@ë?ß¹ØÉ*žæíàø¬½·!Oð4ô§ì^zÒ7×ýÍJ¾žúv80z|vÙ©º1âóŸè»AŸÏŽ)»@ð¨7†§ý¿k+]é£Dïæ>ùÃñ¼?ÖQµ»K^òœ}*ru)añs/¼åó~q•›•>>´8ûl÷„àWÈÏű¯¨ÝR4ñìKjo>Æ÷ç\ÀùUnVúøÐúu?ÏweÜûî½9xç]ÂI÷á7ÉÏ{öÑÙGtÞ<îï­~Vú8Pzú ýjÃǵoH¯r&úvÉ×ÞæÇ/?£Õ§À“åü¸8ñ¢¿q_žæ¨ûe¥+ý>ZûÇBÙ/¤×ÇÏüãD®jß„„O6ñ¦ŸÞò`oó«>Ÿ¸˜õ;³ÒLjÄ^vå^%ë«»£ü³—X?Àž‡²ÏÃ.bô+µû#\¿Ž›üŽº?VºÒ‡’›òwøÝ÷&róÞ½|O²î*N,û˜ú#$oü^óÏÍ>×ù½û¿Ú½oØÙ:êþXéJ†òCˆv]y©ýøÈ{äÅ>¦ë<øføK”¼Á‘GôëUnVúøÐú9qî>ßñ¿ÃßCÖWõç0ý”ò×àý‰MøÃ/ó|úí|ÆùÃ&|Ôý±Ò•>”ÜTŸJ¿_¿o ÓãÀðÓ5ýØyNo#v´²«ß+ç×ßèJWú(ÓÚuƒ“d/Ž’ßÐÆÃ÷ V¹ùÃ'þçøù¼0Þÿ¶GÝO-NöíŒÇí1>ôÜð€Þߌ—ù•}"zqv½Ø'‚+©?Ù¼¿‘÷ü…òX;EÒ㻽û¿ú̹TÛaÝcþoº?ä¿ó§¨SØé´?©ÝܦïÓíý!7â%?ëAò¯اÉ%;Oýë||ëß4õÞ[æ·ÒÓÜSúwGo@N"Oï…?‹abðyý{¸×Žo’OÓŸ\¦ŸúŽæëù±%¿ÕŸhêÙ°v%]ë¡Ýp0_nÚÓúñ‚¿ó¾õÓÚùiÞï%ù¦œúOõœ}ÑŽÆggC¹áköjŠÛçÐô@ükoíÖ×|Ç:¿_×gCÛñ#ÀLñ™G‹É:ÿ`øÛØñ'%ééÑ3Þ-÷tâýq”CNŽä7ýU{ñõ+5ýŽî'¾ò¤v”Ë¿{Jâ{ŽN;0Y‡îèóÏŽúó§pfYnÛq.éä£_õG_\ò{ó_=ÕG8ç{­×+ëwæ¡ä†Ÿ¿úÝLÿÕŸàx_¿…cü/Êïì¥Pþ Écýk¢yÎß¡zyΡürn{0캶~>åW¤³žy>ý‘*—?E~=×?õ{˜÷Wf½õkÞó/zmÔ'çYmÇkc<^|þÚÈ÷˜ǦŸÆK£ÿ.z¯ßó~½/úprÃ&ÿ¶ø‡?éËCNð¿~“¹1Æ‘œ½6éàßúL˜?èË#Þ˜‹{,?‹¯}©wΧ+7ø«ír"?íœ~CÕ¿ñó^ý_õ¯êK¾[¾yað·ùBýÈÓðßÓþšò«^õ¬>Æaóü¨ùòQ§]?XÀÅãÛì{»±>™ë¦WG:xwëv!­‹„­Ã¦PåÉG½øeOo®åçýÙ‘õþéä«üçF}­_¬—ø5„»Ôž“Ëú´Ýðeõ'O³?¬g­§ôëþ¨¿xò~çZ_ó‚~µ}vù]ézïô2Ÿ•>˜ö>Ô§Ú{"múïîæqÏW>ü&ñ>Þô»ý²óù4¿äÓó5ÏÙ¿ãws>ÿnCSü^Ï·à!•óùrœ›_‰~ò?K½¿Ý<ï¹€üåý©‡z;Hyê×þ%=gü*ù:¯z&é?õû$4ñO¶>⫯ø÷–ã¥zª½iOÓ¥ÿ_;?^ÊÓJL«á~‚žáüˆç¾;}3ý½š0½"ý=½½¥÷ò§·Îwb«WÉsz:zú”êeÕ[úÄS¯Ì»Í÷ô î#çÜ¢ú%úMúyôùÑ>ú!åÓÿÐcŠçü:rQ=¨úÒÑãÐo±3XýšöoÂWzMýb<ú|)7íÏ¡çYé!rÏG%ŒOéá§.>§‡¦ç/~*ñè»Ùi¡/| 'LÿOB¯ßá\¦Ý¼+CÞáyjïb9p#ñÍÍŸãçÄ=ïßLX;áÍàÞùè782vÌÈ!ÿÚAoLþå£}ðjp çG»á’Š+ÚßPãÿt`µ‡³Ò'™VÎNíÝÿÍù¡ñàp|Ï|'á²ù1öý½–ðêom¥O íwǺî½Kåžæø!ëî¹Ý_î—VºÒ'ÂïGÃÕ8W+>ɾÿóœ 8çø:rò/Ky™¸Ÿ•®ôI Å=9#Ÿ-ù½¸¨¯6ÏNíÝÿñçñÞ8Ï+ÎðËM¼£nçJWú£Ê üLíᄞݻÿ«ž‡ýÏó]©^š~Œ^j]§­ô ¤Õïço«ÿ\Ï“pq ‰?ûƒ[\Tââ—z¥+}œéÁø;üO>r^~û£oìÝÿäÝAΡržp=ñàŽrNpc=O[é“G+/¾/pfäáurDNȇxyÿ†ø¡WÈÍú½Yé“C‹' ûø:øQøSrç/jŸc]fÿ#ÿ×V¹Yé“C‹§ûb¹Žr>v°·ùÕ~á¸_W»»Â'óþãÈûl'ÖuÚJŸÚ{×ð5ì„ÿ{_;rÓûÜÃÿmñpp½ÿ¾wÿ'ߣnïJWú£ÈÍù½û¿âùàákáFáÙàq^úPxZ~—\]¿7+ý|Ç,»jpŽð•ð£ð§ì—ÁgÂsÖ~TòƒcEá,Ù¹z=Îþ“]¬ÛÉçÊʯ+}tèÖ^YèÅÉ÷á_vá–Ù7ƒg†ç2¯³«vy¼‡c&—ìÿÁ%“«úK]ñ”+}„hq÷Öõî¹çÀþ²{ ìºà ü°ï‘{îµ°ë7é~Pý߆ Ïû1çW=ýJZ¼ï´³÷ËA{k„á&Ù!ËyT÷åâÛWÛ·»·F.¼‡SfßÍý·ÕžÌJ!êœv/¿â?XžËÖ>¢{áŸ,ϧêÇ.Ò½nxã¯6é{/Y~ðËâ§ÜÞ{þb•›•>:´ö(àá!Ù3dÏíz½û¿Ú-dý4v6è;r?¬vLØÉ÷¤ö'v8~³¬ÏQ÷ÓJWº›Ú# ÿæ< øß¬ª/?»wÿW=ûÙ‘ž%~:«·Ï{výØÃaˆ8Ê–·¡GÝO+]éBnȾmxïþ¯þmk·3ïK—ü]~g÷ì¥!ìAù.ù¾+éÙqòöGWºÒ#•ë!ë1vÐØ9óÝɺ­ö¬¿Ë>å~>ÿ¿b=&öÚ"MÿÅrŸ´µ+—ü¤;¹Ìÿ¨ûk¥+ýoj_o¿_JöñìŠõ¼ÍùZø›½&vÞê_3ϧý±æŸç[ûNË}Œô ÿn•›•=­~„>’~…¾…>‡þŸ§þo¯öË’ûqÎÉ}§çìf]Zåa¥-?ÓO²ÿ÷Ú˜÷¯îÝÿPµ _òÇ~¢xÍ—ü„ÞH¼‰Ûyey°ú|¼éÝ[ïoÆ•Jó%»{ð'ïnø¬éØœþ;áLàZ¦¿ÎÜK䧯~/Õ…]Có9\ }þõPúDþÕK>üò3[‚ÉÎF9ê+Ÿ·ÈUâiyãÿóŽv$Ì^!ªòvkÈ1½©vÁ1À·±wHއ_ܶ³vS8¼‰ÿì¼zqý>þ]rs>ãs;ýY”£Ÿo ¹Kì8$v0å‹ÿéϯšoÚ½$ÞÃGÖ/lÆù6~Ïsë¤úC'·ƒ?Î&?ë³ø-éÈÿ%í÷ •Ž\¶Ýø\»>Ìî­ïu òŠ'•y"ñN'ÞôsHØÅ5.¾“(¹::ì5?>.´ø+ãk,lfÌoûƒ_+?‰ï9œØK#>{ÊÆ®eȇ|ëW4ñàÁŒ»û&Êyu”÷ÇÁ·Ú §IÞàËÜ{éú,ïÏ™F?áû+ò%ß¼¯=÷‰SCÉ<þÐ~ãóòòûÐs_|;òÿ|)ïÓo ýKqn¨øæ 86ýIßÃj¾‡m¿þ@ùUI¸zž´»ú¤q¯¹öдGÀÉǸè‡áWñ¨ùñq¡;¸ø~ŽàJ²~i:¸útã3ìØ±ÙqƒOÁ·õÓ”÷§~a”_üKÊ¡O<¿äÇÚŸ8?Òy®¾Ê¥ç‡®Ð!Çõû)ŸÄ«ßTý&~ý#†j‡vžåž^òñv\´gŒüCíp £^üêI˜Â—ýpòÂ^PýB¦Ÿ³ÝÚ³ÓßËqj>ìÝÕÿ^—B…ÏËÇx¥<Ôxâ÷«òIxú­Ä„ù=?ä©þ•—0ŒÍW¤¼Ö_>£\óŒù?×_¢ö&\¡äèÁýÚøêÿÚÈO=Ç>¾ù¿6ê«>õ™0ùººì£æËG¶Ÿñ>¹:Æøÿlúò‘|ƸÖmžËŸáoåã»úõã;ä¯õð]¬?Ï¿~KÇü*þô¼å¤]æñúéM|ß1ß×G:íÆÏ//Û±¥ú}È'»œê[ÿÁK>o|rY¿¸£ÿÙñì¼(ßõ{óPrcœžãgýaýŸ8×icÐç]÷düÎ$½uŒõŽu]ýšç}qÅ¡ÃåÖ¯xò9›r¬á&•3ý»Ë·õ •~à;íwšÏÀ³uvl´ëô¨í7zX¯ê'íÙ—.aé´ïô˜Ç¤;?Ê}q”+,ÿú]ŽïJLí íkí7»ïýló¼çZ÷–òÑx-ç½÷F|û÷úÍþµ÷¶Ïsòå}÷ë§>Ò%Üýô·y®Þ¨tê›ômoê×ú|;è›öÔ¿ ó6ò£þü~“ö~•xε´#ýÕv8WPNä»ñ¾ý˜xÚÛ~ÿ`YŸž 8÷ÑOòM}z¾6Æq¥¦Õ«eÞ©Þ‚Þ„~døûnúCðï=¥Ï˜úúvÜ»Ï|Y½Ã…Qþ-éaèͳ.i|zå¡iש<×nçÆðô$ŸFï#½’~T.|Ûôÿ)_í£—õÞ½kú¢ÚEÈsíNý—ýßþ{~ä[»;yO¯äœÝx ?Ý+=DnàgÞJ¿Ñ{Ãß8Æ¿¢_.ŸÓ{£7ä—ôìÌÀ“ÐûãozòÚo’_âãgx úrå§ÞÅ À\VÞh'9æo>G½á!àøI…{`Wêò¨?9‚Û¹²œßùß,nAýk?gÌ3êY{9ÊÏs8 Ïé—å§ÿèo¯­r³ÒÇún6 ?z=|ßV;œû}¶áïžcÞO·½‡Z{T‡òãùA¨pòq~éÜð¨Û¿Ò•þ=´z-úø¡ÈMqGÏ÷ôI—³µ_%ýò}óùÍ2ÞQ÷ÃJWúwÉMõü¡ÅMB«ßO|8¸8$~€ž+#¿Kë:m¥­ÎØs?¸¶wÿ·õǽAñƒ×Ѥã§ß\éàá§&}}•›•>~´óù8|;•ß—Ê9Ú»ÿ;ÈýÑúëŒ?‘íw‰<‘Ï䳞§­ô1¤;váÑÜǰ±ÿ9›÷ðmÂö;ð©ÒËþï\Â9o;Ƚף®ôúIλ>Ý»ÿ+^ÞïÛ幚ç'Øs³oÇyZhí"Jÿñú½YéãG«Ÿ¡W™88ïá‚à×r>Vý }Œ|ØO`ßN­ñ“ÿþ*7+}ühùþ Nõ­„éùáÎàáôØ£‚7,n ñàú&þ5çh«ý§•>δ¸2rOSÿ† ò}¨Ý)öÝ&ntúQ¬,嬸´•>~të×0üì^œšïÅþƒ¿ä¡aßøv¬àÙ¦¹ó›üºVºÒ¿KnØmN .s>özŸŽ}5ö¤Žå9üŽxì©ÙG=»®×VúøQö·öòë9šs/ør3챓5ïëöý—É×û„kë»u¶ÒÇ_CïÂŽ} ûgÌßõKÅ®{[ìcå|­vJØÃ‚·yq•›•>~´øv𨵛a‡fìcšn  ûýâÔàsnÀ$^ìNä~èQ÷ÃJWúwÉMî]ÜÜ»ÿ;ÈýNÏ:ŸÜ??¸I>’¯üÉ <\îm¼¹îoVúøÑ~oâãàMáP|þú÷ówñŸñ»S»ŠÑÿTNâ¤Ïo®ë´•>~t×^hø™=ÇaõÐ|à>ÙS„[˹Yí«ÕnjÊ‹|u?¬t¥—Üä>sí²GV{îŸ<ø;óÞW¹¨}¶Ï,WÞ³è¼]Å÷¾Ù”sÔý°Ò•> -®ì7CŸÂ^;‡áÎ$]ÎÝšN˜]v©ø%aÇàtò?»~oVúøÐ­¿³ð1{fì8±?xˆŸÝ->-ñáÓê¯-ÏáàyØMôüÂ*7+}üèÖNaää‡+ËïJÓñ×Xû§‘¸Ï‹#¾çµ“˜t×Öó´•>~´v=á7­ß¬ÛÈÅôKí;ž){…ìžñÙE½”÷òþBWºÒÇÖ^3ˆö;ìª=“÷{›_ÓÙß°óÌ¿§tÇ–òP¿ÇÓééUnVúøQç\{ùÕÚ9 îó`ÈAïq¢ß.ÏÕøClüœ«±/ß{¥+>m¥!­?zöø¥‚O{a)7µ/߯nZc?Ôçì§±G°¿îoVúøÑÚ§a߆Ÿµì{¶öh–ü½µw:íG½6ã'þö=O[éãC‹«§KëóÐ7Cf‹Gƒ?K<¸7Æ÷©ö×ò^¾7ÖuÚJ ‡\~sÊ þO¼×—ß…¦#?즱g8üÚ×I®¢':¸¹ž ¬ôñ¡½7S?¶¡õž÷èÐOnýZç½ûž¿<÷C‰Ç¿ký¯û›•>>Ôù–}zÏÏö6?çaì£ñ[Ðó2ø²àÙàØfü–÷qÎéÜý&å|º¡GÝ+]éÃÐêQØà?°þlrnì9ÜMô-Å™±«FoŸæ9;S9Ÿ+¾‡~õ{¤+]é£H+ìÕÔ¿hÂìÒÐó{gµïÄO¿ƒìà\ÉóúWK¾äˆýœWV¹yœhù„°q¿¤8-þ‘£g¨KóeýKËgðaù$éàYØÁd *—}&¸b|Ìfíž©—r’îÊr„ïëoó•AÕ^¾#êUûjCž® y"GµžS;Öslj֮+>ë…Ú„ßµná'òTä€ÿ¾W‡| ~ÊÏ$ýµ¼‡C®ßåäÃ^,>f—é0ûdpfpcÃ_}ù–X>¯ÿäßtásçTìùÁ½÷Qž³çwlɯř}šú¦wO„_“Îùן+/õ­ßíSçci|'¼{i-'~Cµûî‰Íû£æ‡•>=È}FöôvÞãÛŒÿAøé üÞ÷ìòyÏßKø§~4á²Ø'ÿòÏûÈi©üø×ü—‘ÎÃäç¾óAä@¼ž—xi—ú÷ù×£=ùN´-7íàçS=ÔSÿ g«œÚk;µÊÍãDk/vùÆ}àÚ‘€G¤ÿË>£ö*ØÕc"ëý­¾0ñ²¿o¹ûy.¿s¡ôƒìöᯬÓZúóÊåïI9³|~Ÿ²>¬ž’|N¿Oâ)Ž“_Oõä'´øÎ„Ùÿ¨ÝAñ—GýЋø;´éF¾ÊÓÎÖW{F<õÐýpuÙ¿GÍ+ýyÁ_ÿ¿:¾7øÇwÄx“ø’˃?/~a ?á7å_òÓüÉyÌó×Fü¦;DþÙwò¼0Ê×®ÊÓœFýÉ—ö5Ÿ)7£?êT?x¿y~Ô|±Òï§]YGXÏdýÒxÖE/Z÷Œu™|Ü_±>™ëëåá[ë4÷VÎò¬§^áÓ£ÞÖ=ò›÷d”k=ªÞc}Ú|^aû—³iŸòŸõxu´KÿY‡j—þ±ž8¶•>šÔ~»vò? ?ä\´öÀæ>Úþ9ﻟ?6â}:í‘ÙÏ»6Ó9—R~ž÷\løÅ¬Ý³ÔÓ¾|žÂõ@~÷ÒžO6ϪÇݽ¤sÞ÷Ѳ½9—–ÞyÚιIêSÿžÉ‡5ýÔ|±Òï§ÕƒdäžnõpXÅomƵ8.úúÉì{{ÌNØÐgàÿž'^ýȆ¶Õ“&¿“ ÓÐÄë_sêoO{ŸzÃ/È×¹s¾'-W~Ò¡gÐÄãïFû=§—Ê÷­ý~<”œç—ëÊ•>štk/ ü^?”›pÓÑž]¾¯þ¿‘7ù\òH¿Oߎ_éóáZðwÖ=[|MÂôùGv~ɇÕ_^S¯!GÂÊ??úç¨ϥ„'ÞŒ]ý—pyY¯mÿx¿ÊÍÏÊÿ·þºé÷[ÛŒß;ïoÆóvÆãÎþf¼îd|ßÍów3~±Dq÷vòy;ãûNÂìƒÉ/åµ|ü}uÈWî{ݽ£~÷’OâßI~ï¤~¹ÿu÷QïØ!/~nò–úŒrØý{Ûó„ÕÿJžßÂßÚzë—Üû¼û§ÔKø¦òS¿wÇwíÿ÷Áýøú&ŸÆ#_¹'7߯ô'–››æIü¹ÁWÆ¿à[~ޝß{K~y;ñ*7ÿéÇR~c¾¬ÿWüßè;ã» _þ›•Y|òÈßwnL~S~àÍ”_ñý•‘ï­ñ¹A>ß÷aÈ_ÓçžhåûZò¹2äëÕ‘îê*7?«ÜÀKZguñÅ/äª8c|÷àñ»{Ÿô—füðÅ…ñÜ:Jyð\ðϵký“|¬gŠƒòae '-ûˆéï>.nà‘wúÓþÄ:Í:”ßv¸ééçNt™¾ñêw7õYï{þ<òbßlÂ-Ú?»äƒsîT~ï¹1ïû‘å—gÇs|2ί»Ï~nðë¯g½òü™„íÈ Ü£z’£Þ÷JúýY¯üæÁã¹Sžóᯟ…/œ«6þg᫜w™ôóüµõI»Šý.é“Ïõàåÿù²}mgÒÕmÊé¹ð¬÷Ëpã©§~UOõCG½{n?ú­çÞcœŽš¯žtZý¼ þɸÃiÒ'G˜tôÅ!žXŽ¿óÞêåž³ã/ß_/çûƒÌÇ­ÇăÒ}»¬q˜‘ÇÖŽr/ÏÅWÏ|į~‡~‰¾è—£ú1çÇŃÂkÊ?ß»êoóýjÿ¨—zÀ¯þfÙÞ~£7ý·ÒŸHnjG_d|è½éÝѝÌýÅú5¦÷¦çÇßøn¥ö^–ã_~÷«/?›|Ï%_úòÜûi|øõ>Ÿôp0ôñÅw&Lÿ®\å½:ò›øí.>3ïõ¿hpFpÅ7xžtpGê:¾ã•7ã·ú¿ùyä¼8øÁ8^tâáÓàc†^»ã_àjöÇ:Æü|~ȼþ˜rêýÄ¡Ô9šxÅY§//ãµ\ó‡röGzßùÂ)«Gñhy®<õ{eÄÇ÷ð:gÆ|õÂò}ëyq´cõGðóÈy-ûM븙®¬[>ë¦|'º~ÿ¯Ïw¾;öîѼwoîo¬ß­ºrÿžJ}ád¬«àgÈqÖKÓSïÕ¤¼¶_~ÖAÏŽzXç Ç<<í¸i÷ÙQÞÔÃÃ÷À1ÔŽÕ¨?¹¦/¶¾‚€oöÝ ÷ÕúçQžïêõñ}³n£Ï†#úä•~È:Àú¸ûŒ×7ýhÿX½úq|JmÞ¦wa7 ?IÇ^Ë·É÷LžŸHz|ˆ¿ðõ:ùËú»ömà\Î&å£_Žôs_pl)Oí'õÿÍ'åk‡ýÏΌøÚ¥^Yïµß¼·/ÔNöâ"7Õ×7ròâÈgØmk»í3ÎݲzÚ©ñiØxÒÿ}° ;Âέz,ñŒCÏk¾ ÿnHíMý|϶ïý²äŸlª—¯~ü“”ÿ_#ß”ßùÀsõW?zü/–ó½~é¹Ý”íÊ{íšúBzýÆÿ.óŠó5çcø_ýôgp=ŸLôüÎüÐþÞäòzþøÉRž{n÷«‘¿qý÷eü•¦ßè»é œÏ>¿·ê-œgÒGˆïüÖy)=ÅÉñü•%_õ\:ë¨Ú[’?=`îß4_zŸgGý”G¯1ÏkŸï…ó}ª~uœ#õÜxê_óý(ªÿ¼ý»å<²-7”^˜^I{÷G;ó=î¸UÏ4ú§ý’0}ÌÄOœåýn´sÅ í8ȹÕAΫrï¬ñµ+÷‚¶ïó|öGü´9?¨=›ú'Ëû·fúäËN €êù¦öêÐÜ«ÿ´Ù/o-ËkûôÿÍh—ñPŽþ­Äõ{ó@y¹qxkð·~¿ƒ¦o£éïœkܾ·yŸ{ZÞoËË{ù7¿ðï-ï“>çÍåï·ÆÇ¹?yð¶ü”‹’ß[‰Ÿû•¥w”«I—û¦­÷Û‰'¾úæ\¼õ¼³lï¶ÝÊÕÞÑþ¶ûo©§vÉ_ýRŽ~¸“ø·ðûÿ»l¿úÞY¶{;γîþ|•›ÉMîû¢}n~ÃO×÷—ó˜~'øݘã4æÉ™ï­e}¶ü0ùKXý†¼tÞ—ßÿ^¦+%?ó1~žý1åÛ÷ãŽyŸm‡ö³ï”þmyú#ùWΕ;êÛyK»ôWäH9íŸeúÖË÷©óÀR^ƽѕ¦ß¦=ºq¿¯ßqï¯9°n°>ã—Ø:¾¾þÂC៭[¬w¬ƒ^ñ³Þ뺞\¨ßëËú5ëúÚë$8Nû~d‡>}ëo9ñ^åÖÞà¦~M×ýCêÍ>ál×k£ýöúQ}g{í«ìëØ=o\¬Ófª·üO;=OùGͧ*uÏŹ@Ÿ;ßáÇâóô«ó¬SŸÆËx—3ä'ï÷“îܲ¼žC¹gà¼ËùÐùQ®ý±ó¤Ãì5ŸMý„Oç}ÏÿFº #_ç\ÎÕ u®U»ìK>kû¯À»:·:;ú¡çj£ÿäï|Å=›ÚÕ¯¨÷Î'Ó´—¨=òQÏô×Qóç£J«'þí²ŸªG;¾¡ôÞÓŸÔÞØg›píŽEÎz/ñË ­Ÿ þ2ò|êÉkïï“Äï}ÊäóÅ&\û{ê›ô­wʯ?áŸcÚçû°÷ÄBS^õD÷’oâõù>˜ÏªÇ<‘|¾J9ú#ùћʯzÈôs©ò?õ_;Ò¾ÖÏ{ýDßšûpí‡ï›Íó£æÏGö>q‘Ë~ªÝ28Œç—ë—êÇ饧¼“K9(¥ï>?ž¿°,§ñÈ üäĵäNõ¶ð&Óž\ví„%?¸ÉÚ[õ‡S¨_ÃÄ;•þÉw>¥ýSüQêS¿V¡ð5piûáWröüÈOÿ˜ç¤7õ3•rá‘ÆúqÇ;ƒð:Ú?ôP-~Œ•âÈÒ~xC¸¼¬Ó‹SšvíV{rßßßÙw7üvú>Îóíeº•>´òq ÿgÜØ1ª¿SïCk‡2ôê*7ì_xÓ·ÿºü®ÂÃK›—à²ßXååQ¤[û­‘÷Tàaáë·8aø¾é/õÜr½µRýœ~ú¾~¯{%ýìþÃÕµ?EÚu¾u­õòþXÇ×¾VÂðËîZŸÝ»ÿ;êv=j´8ýKCnÈ“ýþ¶ïû•>N·çFÎGœ›|±<×)Nv3œ=š8Ú£n×£Fá¯'N¼ó¹Ê9Cí¿ýj]§=J´çëìü8W‡W¥ßÈùIñÀô3Þjñ{iåæ‹e?ÕNHæ›Ú¿p^}l‡%Z\,8¯ÂìÿÀýÂã¦[dyÿ˜Ÿ/þèý<ï Œù¥zAúQveÌK×ïÍ£DwìÑóÇìoŠÿ®}?ï¥Ë8ŸÝ»ÿ;êv=jô`Ó-{½O4ìXÖŽ!9ùÕøÎ¯ö+)Úu\Å´·e]fÆ*\Ɖ‘îwë¼ø Úû¦Ãÿ¡÷ÝÒGº'™}ŽôGÝŽ•f¼Æ=áž§ýjœ ØŸŽuvñ.YÃYu»5Z{ap'Áuõ½ó~v N/ÏgŽºþ+ã9Ïécœ‡fP½ÂÙÍxw|Ù«_‹u^|`?ÃÝÐó¯ÄÙ°«ÖtWÖõÙ£H+ð4ìͱ+d¼é=ëw+á⩾¾ÎßÛßÁ×Ô¯[íˆå9ÿ‹ð6Áõß½ó·ûãrÔõ_éJ%ºÅ+ ܆ï|Îù½û¿™®aó×…Ï_õGÈ¿Üð£Ûxìp^{ðû•®ôQ Óÿ_å…}¾œ_îø³%Oì&Z<ÿàõÝŽ}\¸(øëéïùÚº~Xé£K‹O‚p¯‚_Ï——òÔtì¿KOÞÎnžï”ÃêÄù}[ï ¼°ÊÍJ]Zÿ9Ÿt‡¹Þ[~ß=DôsÍí=¡½û?÷òvüuºßöñzγÒG—ÒwV¿s/ú÷™O=xŸQ»î»?zˆŒyõ½ûÏw¿KÍgÕÇ­ô¦Å/íoø´ø'8@x×Î@tú†¥Ge§HúÓyOŽàcÿY¾GÝ?+}²iñ1ôû¯ ý;?¾±?^;OøN–Ý-vlÎùNìÝÿ›s°ú¥%üãƒògëž‚x¾7ðòóy}È™xÚÇnžv°·Çï0Z«‰ß ¿Æþj¥Oíýšò×X7ÁÁà#öè&޳vICÝçp¿Ãwn½º·ð¯uÝÈܰi}ÆŽ¼šçòwcÏôYr0äªvCC}Ïä—sŠÚ ýò?ŽzüVz4´öjñɰ?³ÝOìÝÿUÎ,ù¬þuû.„âWë5÷ßøÝýNþcžO9î6ßß/Ó}øÍ¦^½Ÿ×ÃÏé#þ>g„:O¨_Ô{)GøÓ´?ùÎó‹•>]tÚÇÂ7Þ³'Pûï¡ìÖ”¯>ü˜|Ù©›~ykwý®œ3ÔÏí¦˜=çÝÅפ\çݵß W;‘S~LÝÛ.'r¦}îÍ;¬¿Õ/–r8ýè®ôé µ;þIý^,×iÕ‡ˆ·ãÿVºäÇ/F¾/õƒÂîÿì|°ƒS¿¹Iß6ü×ßÈ ãù©Ôƒ?ìwZ¿VNõC¡Ó ýý»c/­ró4Ò­?Ü𢗖üP}>;[ø*ûŠúeOn¾_|þœè)ùç‚Có|ØÇmþõw•|•Çÿ­rámà´ïÚ(¾çò¨ŸüàzøÿÿʺN{iñ/üŒÁ™]¿ð3†ïø¥­_³P~ùÝ­Zaü‹O†Ãá߬þàBo(ÇûÐy?ýÊñwc¦O»øoóž¿ß›£¾õ»–t7ô‹ø §^G=Ž+ýyéÖ/bø¡øL|è;4äÎÒ¼‹¿Px±Êå”ñ®?H߉!¾+ê%½úáã›CÈÉô3èýUõ$7c¹6äP9âe9êq\éÏK»_±Î±Ž·b¿nÿR(¼ÿ¼'`}dßwi_`_t~¬•cß`=di}hf½GÎÔWý¤ï½„ÔãUíôܼ0ÖaÊ='œüQéV?IO%µgG°öœyžs(~Lßû:é¾Ùðc©{kŸoâ휛}~=•øÉŸÈžç}’xìCžZÒÖÇ9Øär“oÛwr™Ïìÿ'çn쎒sçy®Ýµ_ùËey+}:hý%VϸáƒâÆøGáWôDÞ³+ømhø¿z ?ŒüN…>?ÞÓãÀ넯›Oä·õ}a™®ú¢Ô«~9éoøiÙ[æ7õGîogGo{fÙ®Êæ‡Y¿•>´8xH8³¬?îf?²Åßä=½úÔ×ÃÀ§yÎ?*{QÙ_&|áXðí õü]ìôüq´¿~I¦‡ÖŸo†^Үć'bO >Š_Iv‰ðƒñÒŸÓ¿'\†þÇOòɾ±ñÙÙ3žÆÏxàø‘±ž/©°6ñú‰ßÒ7ð§pò×?c|õ³ü|7^^çËG™ÖÞ |ÿÄänɺÁ8ã_|xfÎcø;|p>ôtò3_™/È…ï³ï~ì²×ÿ‘õ y?›÷âãÇ¡Ï ¹8;êõʈ¯^ð'WRŸãÝÎ3‰OîẮv½8äÆüªœ«æÓä;üʯôÑ õsßðQÆÏz~âëM¸vƒò¼ã}|Ì“øœÜY·’v€ä7×ëä8ëÔÞ#a]=³®íú~ú?O}>ü&õoÜ;éúÚ:~/é¬Ç­O¦_qûò¬Ýp‘Ö+ö §‡Üé~Ä»ŸI;ÿë§]g¬ô£pM¥‘—÷†w/~ï9‰÷äá^ä ß–÷äñøR›ß´S4ÏQvÔxðJü|œrÙ1Ê>3â°×y ´x¦{£ýÊù.í<±ü^Ç|œ\Wê#,=¼|Wý9ª×ˆ¿ÒGƒöܯç÷áƒÌ“=_ä¿©ø£¼g÷‡]Ÿä×sJß«¯ò~_º”7qGðFâ½2ÂÓï¡úÔÿ!šüGˆ/åŠFO¢]ò™~Í&îŠ^D¿ÌzŒïMÏqéGnì¨ùc¥¦ÅùœÇ§_¸;ïkç'”ŽùRÂô_YgT.驦ÞêÒrþ>ÈyÑŸ —§U»^£žôØç¤Ë{õB/«W¨xä–>]¿T¸‰×úâ÷WG¹ônäþÅ%mzø*ýB¾/¯ró(Óâà#ŠƒJÞ¡ø†<‡¿(Þ#ïáë²ß.þB©8§QÞÍñ¾ñ“?¼‰rÔ¯vÀÔ3ù^ï=‡çšvÀ.,Ëïsr«¿Ì¯ú\ïá…½Ï=É-Î+õÖ¯«þGšvüðCq|‡ð9~»:å_ä}qãû‚/®Œt7†W…Ï„“¿ôðOêS¬ïá¨gù_ï©ï×óÀ¨öï;Êß÷Ì÷ ½2ú[;Ì?¯/ëwÔü±ÒÓ-ž<ãe]QÿÎÆq¬·ì ŠWñ­Ó¬÷Ïä½ôõ'ñ—÷#,ß~Ìû—Fýí_¬—^aë&ßõ°ÞROë³3ãûã¹|ígƽö“ý¡pÛ9ê:6áCìîôÑ ;çEÙ·Â!ÿZ;ÛÇ6´÷þì§Ç%=û\½øIâ;¿³†cúj™ñIäP}Ü“‚‡úÈûMyï}™rÝ<ª_'ݸ_ØòÕï|SóýÅè/÷Š?Øóü[4}|¯‡²§AOs6ùçûÛ{ð™·ªå¨ùc¥¦Å±‡@¯ ÿÃÞüý<;>×—ÿâúpv»ê·3´úÀP8“+ƒá²¼¯ŸÐ[ÊQ¯äGÎë‡/îæì‡³ó}ÂÃnþ'–÷â™/^Õ)ŸœdSÜ ¼Rç™e9+]éãL‹Ç1/L< \žù„=³qß°rB.÷Ǽp#éÈ;ûJð{ä³7”—÷oªÏ˜ïÌ3W?÷Ç:O^´øÃ1_ÜÉ{åäÜè¨Çg¥6-¿[×YÇù^àCöþnŽïÙ¹ð+¼ßË#þ›¡ð§Ö‘p8ggyÉÇzÐzѺ`~'¥·¾`§Ï÷¾¯øÄQrgý}~•›•>„ÜØŸùNÀÕá[ûñ~3ø~Îwî]~äÊ~p/ïOú…îÜ{Iúimؽé~–Jw*åüf”;í´‘Sõ9ÄOÛJWú?iq¯_ê<¬ø68¹O÷îÿšþ³ ßÕÎYΊoußì“eþµëŸt= íýMaô³eºæûmègËïUϽÿ!wÎ[áïVÜéJ¿O^";vÆàj‚+­žŠþhâÙ&Îy·óçc¡Îç•s:Ï¥Wžçp¯Ó_M¾ =·ÏsõE¥;±wÿ'ÿÖÿزܣ—•>Ú´ö^üHO oÏ3üšoýZ†Oé?éEk‡#^Naâáê¦Ý T~ðoçŸ~U<ö,ŠGLxê¿…Ï-¿C+]éå¦8»ð ~…/˽уœ3Ÿ4íòÕf(œœMñ©)Güiïštø\~yC|r¼¤­{kÅÿ¥þ;öÔä—ç××õÙJBn³ÃÇ®9¹u/ü>÷œ·8Pòç»2¾WpGÊ«½0r¢|ò†ïñ¹ïÑËïþO~µs¶Œ×zûîù.­ø¹•>ŒÜä|·û‡i‡ì¥Á—p ö ðjöðlsŸaŸ3ïC½:ʱnoß:*aùÛY¯Yg©‡ufñt¡î‘È_üaŸù¨Çe¥6u³çgÇÃ9WÛ˯÷>7Ÿÿ ä|­~¦Ýô»M¼âøäç¼,å_'üUø9rè|NýÕ¯÷j?_ÖÛýÜÚ{~oñ«Ÿ ú¤;ZéJÿ'­>„þž^žŽ¾’1ó~õšìuÐç°Âî} ûHùîTïI9ËgÇ ÷\[_ú—á/©úùÿ~ÔW˜ô¹¥\4žú¿´\®t¥”önð;ð{pxp7ìH±GE_ï‚òûÇžù¨¾?arøê’_ëopâoàÈÉð·^\üCë­>£œœ?w¸Ú+_éJÿùy%߽ʭï(¼œ0ĕЉӻ8¾s9·(nÎü'ì;y>åïïJWú(Óuª{)ðn¾{'öîÿúýõ=e×V>M7äÐ:žé™”C>­ßÁ•>>Ô¹DïS¹_Řs‘œGàïú?ÌyEå€ý<ç¡=OþjäóÉr=ºÒ•>ÊtÞO-.)r <Ï{.9ü{Ä?»‘/çûÓϨû•GÝ+]éCÉÍ K¹©ž'rS{ ôIô_ôPìiÑIO_5í;°!_~AO¯ë´•>>tkkïþ¯øø;øvUà•¦=éà#¦=±Kƒ²?'Ÿõ>ÐJ#ºã°ö¹ÂÏìÃñÓ™ûyÅõÀÇÕ¿gâMû}µ»EîBk?ly·Ò•>Êtë§×ü~ö½ Wüoò ÇWwuÈ‘ïRq‰Ï7ð©GÝ+]éCÉ{ ðܵ'<ž÷>DäaÚ­³Ÿ±_§“ξ†ý=öÁàïö×ýÍJzÜOíà}þæ—ôä87ƒ¿û&éáZ‡½¾éç¡ï?ÎûÏ×}ÍJZ= ½Ìô·IŸÃJO'Êî|=(;aâ'ß–CúìúYéãCk÷î…}:öJÎDØÿ8=(œê°c×üÙ¿bONïÒòû"ÿ£îÇ•ný‚f¼Øƒ?¾´wÿw7÷,モøì¡±{vûÞ2üfâÇn<¢-—CxMöËníohý⯔W;ƒ?ð|{Óîãk£œ;¡W´[{“;‰üµòà ·yñÁüW;‰p1±«€¯ïæÃÃÀ¹²ßsað={¯úƒŸÞÊ[ÒËgúÑœxv²^~p{V:Æwú÷Ì8Ö~&;¡pÈøE?ßI¿“ürÛx,ù®åG,ßÄç÷ÜH¿L®áñ5?¿Ö#ø„ܳ³§}a´›|Â=_ék¿T>äðÁëâ1É;ÿŒpc¾ì³M»lø[:ϵ߸‘íПõïž|'Ý”cùÿqYÎQóå£NÛæ}ýøÜèÿWðO¨ñÇîÕð'}aŒó´ÇgÝ¿ÄûãàïúµV®òÆ|INð{žçFüú3Ïûý”?Ì/¯|fþ¯vÃ[»kµ_]ûpc>°?ÁÏÚ5÷%s<²Ù˯ϭãì‡Ø×ξ§x·Ô«öÂí—Ôó»ø+]Rþ:Ý_4nžïìCí?íGñ­Ý3ûÜ“Ëñ€¯úðËÍsÔyϼ'Y»eɧ¸HõÄGƒ_<çT~ó\©|uo™_ù‹?ÔOÿÖ®ÚôCšüñiŸ§-?áâÏ~?Ú«ü88/öØÔ«ïÙ£“ï–ím¹Ÿ¦??J;VûnE½׾/þ)ãU ‰_?&ÒgÞœþ:¦7pïÞûúg^Ž{í¢Á%ò‹Â®¡pWü£ÐkÀ9ò¬¨ôêÅhž×_Iä³õdîXÒ ;gÓ/õd_A=µ_;ŸíÖ¯üÑÇx¯òÝí¦ßa?‹>‡?”a/á¨ùòQ§µ;7x)ý9ýo²?¦ÿù{ÚñÎ%¿ú±ÊsöÊŒ3{2ôxõåù‡Ú)KùçGþì=y>õ…ž×_W¨0;õƒª ×o©vŽ|ÒoíWvFäÇ® »<µ—÷êõz°×·Vyéø4ø³éÒ¸ÖŽOÒéwå^[¶c¥‡ÈMñøoô;>~ §Ýé‡Ðókc|ëU¹É·þ†;„‘.ç[?ƒoêÏp”+¿â"ñO¯ù“?þ¾¦œÑ_Þ_rWgÆî{qpfpi9lºœs6]ã«wÊ­=*ùzʧþQG¹hËÙäÔ|ù¨Óíü…Oð[ž×¿gž›¿ëW{3ÛyÖ¼7ò½<ÂWÿuÎóúÅÍsroÔÛsøùOÿ«}?çéñ^¾õ_*ÿQÿë#¿×–ü¶õ?*¾úŽùÄsò[ûløxòÿœw†|™GÌÒµ<òœrÌCµŸ¸ 5_>ê´|Q?šégû’Ségëpûž3‡yÄ:Û¾âdâÛÍuyä®ëëÀsÊ ö`ú½³ŽrE9ÖQì›Y7Úoì'Lþÿ8ÞK/?ûå ·=›ô­ßK£ÜÚÙ5 ù÷½&¯µ£›÷Ö‘³¬­7§ŸbþX•§þµÿ«’nÈÿJL¯8/ë9Ð'yî<ë»Íû¿ÙôoÏ™N,ç§ÚóOüžƒÞÛäã~áô/ê¼K£½ÕOžÿzÄ?¹~o†VÏrzÓÕ7g>Û±ÓDÿGïžyªùÑÏ P}¿ïyò£§¡œþžfzöÙÔ—þ”þH¹ôŸê;õ8ø­¨ÈÇÙ‘®ö¥’õEy—àüÜy8½ˆvÁÓ8Ç×Ç"¯÷Ôcį_ÕPþbs¾HÔù-rV¼½úË~ôô²¿WzˆÜàÿ›ø!”_M¸ú>x4ç0Í…⢤+_“¿ŒŸúàÓ¬7*Å+»ÔS|öÉQå<ïáš_ž_ñáw®tÚ5ý¦ÞrÀÛÔ“[8 rE.¦ÿ68(ú`8òc~ÓþK£žô·Ú%Ÿ“æË„‡~û¨ùr¥½û§÷7|s+ôÏáÃ;Ýð×Û Ãµ½³wÿ×øo'Þ»yÿöæÃq÷Ýðã»ËõÏÝÛžË7aþŠßNøvøû_~g“ïQ÷×JWº‘›ðù;ø?á;áÛ[™—ß}‹\áï)?IO~nŽï.¹y{¤¿ôwî-åé]ù.¿ï+]é‘Ê \4y€o…3åÚüÿVÂoY&üú ûžüuù½)Þ;ïáf¯íÝÿÕßµòÉÓõuÿ±ÒG‡v_`ßo?à¼Â>Æ9†}šóñì[†Ýhùµ<ûå¸oafÿç-ß]éJTnìá'ŽΞ_…éßš½çS¡î]:8±yÞò湚°s­yï€\çt«]ç•>ôîÞæW|øWþ,^›½Øo6áÆ‡KþdC#÷|—¾é?—û’ÆSÞ·ÉçÓQÏó<ùÑ?u­t¥ÿMëú™ ŸV9õŒì[Àï=èw‰/Ü÷ñåúªéá»…žÚÔƒ_÷>‡Ó^ýO­ô åÓoB}?ò½iÿnÈU¾'MŸx½×’ïJÓG>{†¼ÁD¾ªß‡;`úƒõ\`¥GOñaïIÒ?Z_…ßíwzÿÍ~ƒÞ>rÓû}òË÷^¨ë·ùž¼‘³Ô«÷é>YÖï¨ûm¥O7í>Þù–{ú—3ï;ƒ{øåHç<`âŠCJ¾õØzÌ{ÜîOŸ[žÇ­t¥G*7p6ìqÀ§Ð›8o†C¢·¡É=€»7’îRÂ⿾\W¿Ã½ªófx Ø¡éWºÒGÞ}{ÿ·ÃÇôóìôÜÉs8€[›…TõŸô¥ï¼¿Içù» ç}Ë£W¥ÿg?ëúKzN8¸„;ëyÚJÿ ~§O¤_œxÒú½Mèé k—/a8cö§ìä#9RÎé<‡/¦•ýʹñ\ø£>öIöOäñìxN;åwøßâRy{eÈ »‰ærnþ~vWúdÑâáí£éç÷Âî»ØŸ“#ç]äç·æç¤3Ï;OÍW~òú|zJþ4‹×‡/ÀçüyþÇ2¿yo°ö¢•ÛįÝ1úvš6lW;nÕ¯$]õ2‡éNlÒÓcöþ+û=Ç"?D~B[o锓þh9Þ»”›öSÚ[\Bòw>~Ôã»ÒŸ†ní8…oÝÇgWŠÝ$ö¬Ø“Î={v ØȺªü+,_ö”Ç.ƒü”ç¾ÿ~Âò¿”xì+œ;¤>ì°wV»W¡ì8hOÛ—÷켺”ƒÖ‡Ý÷«õãzß󉦵ÇÂN ûJÙïný’å}íE%\{3¡ìMÿdµ?3Ò³ÿÒpâ]áPö6ê7-ù±K¥ì=)œ²{3íûˆ§W¼Wß!7¯÷—F½ÇýÝ•>Yô ç·¹×r{˜¹_vðVø‚=2~ÿÈ×›á“ÛۼϹZiÎn‡æ|øàmï•+å&_õ¸•üû\9#ßÛï‡þïe»rÞvóïÖ›|¡µÏ–øõº¡ÛùfÈ;{ƒì®½±ÊÍ“Lë'ÿá|ó>Â?ƒ¯oŒôì²ÕnYòAÍçwÞ_ÊUåõ]‘^¾yÿÖ(ÿV®Èkä­óBhí&}ë+ßñ}º1¾7µ3˜xâûîÞXåæI¦[?¯oëû‚ú·N²OÙÛð#;¤×¥Ï{û ëK#L~Ø{u”ÏN™ýÏôã)ý×¥‘®þŸµoäÃÛùQ_û“KÚ¯›òÚoìÄÙ±ËÆ®ðj?퉦гÿÅNù™Pç`߆OØe?ø°‰çŸçuµ§Î/'{sß%žýµó²èazžöå&]ÏåÆý‚úá _÷<]5çuòûÑvãø#~ ô›óqõw^,ã¯ôÉ¢Å-GNª7¤÷dŒ^ݽÊêq6¿âšO$ Ÿùû‘ÿxï^[ËϤŸ¾Ó{úõ¤eg1rP{R'_½é3Ÿõ{n”§õC•xð Ón\íO­ró$Óâ‡ñ]õîø.áÚ ŸÀoÒï»·/LïP{kƒ¿Î%Ÿæ›÷ÅÙ¨_Þ³[À®ÚµP¸òçƒÏ჆>²xš¬Ëjÿ^4ûío:xˆ‰ÿá·+í?êñ]éJ¿Wþáã®|?¿φ¿O9g‘\úM?‹p:ä ¾†] Kù\éJT>ÎîÝÿõûèû5üêÂ¥6l=öÂø>ÀÁyï»§ë4x:xòW|‘ïçòû´Ò•©ÜX‡¡Ã^=|YãŸØ»ÿûð› •®þÇþ½û¥ì÷›¯|²ïïýÒ‰{#g϶ҕ%í¹»ìl„{~Æ¿çסŸä¼à^âŸJ>9/Ø9×û—‘ïçËsÀÚÉsvv¤ƒK=êþZéJïË 4Óßæ‹ËõYý!¡Ñ;ÑßÔ¤|’oý%üÊ(WeÿC>«ö•>B´zHøøzNx5úÿ×…+€—«ÅP¸†âã”9š88ïékënS£î¯•>Ýt‹O ÿ›÷~Žu¸¶mú¿nâw—ôp9¥ykÈ‘rëÿsÊ©zI·®ÓVzôt‹» …—ƒ»>ø¾²r°ÙØìÈì}ÒÛÐÊ~^_T¸úTÏá÷.g¥+=yÙ°œù€·toæùñÞ}öÙí[~;Þ[§X×Q+}rhñ]÷Ã{{µ{–󯻛ǻ÷1¿^žkÕÎÛg‘8ÍÜïdwí¨Û»Ò•þ(r“ïJížÝ»ÿs?»þ×àÎàÇØ9C³Þ+~ ~,ûuvÏŽº½+]é"7ì) ;æµÛÁÎߕȜØkã9üYì7oíl¬ç+}rhñ,µ¸Ülí¹€©Ý³¼Ÿv£jçi•›•>9´8eß v@//ù¼öª|—رšøev@É#ÙŠ[éDkÇÌ}ûûûö §ÝiöÏØŸ†«}´¤;¿~oVúäÐâ»r.v°·ù½÷͆º§éžrퟱ£–óèú#à§C¾ÉgÅ­ôI¢õ§C?s:çÇ\~jg žŒ?¨ÚUú÷ýÙ#8½~oVúäÐ⻲/©]2ø0všøQ„ËÌù@ãÓ‡²×Ä/Zö7+Þr¥_òOûîþ†¿ØÓçVÅ¡ÜÙ,Œê¿?ßù¼~}ûýåûœsݽ•ð;{÷wÿ”t¹G|÷-ò‘xìýýÛß6ïÿœ|Õ'åì´O¾üW³ót›<¦¼Ô£éÞ$Ú¦þðmñ›Pÿ½üì²·˜óŒ»¹WwwõGðDÐÎÇøŸ¾°<_ªŸ[üÌ&œ>„¯d§Ï÷€|IO>s>¼õ‹Ê.&û™äòÏûËú¢á·öAùÝ$‡¾;ouŸ{ gR?~qù£&Úé;f^€ƒÛUîõuõ$ÐÚëc7Ö=“Ï |^õV_û÷`r?†êÙ/~<ʑωMxk?mCÙ•êzðxÂðpÃêQûJÿ9ʾ^í}å|ÊùUãå<ª¸®ÌÇp]γØÛ;ذ×^íðKŸs+vÅÊßîK&^í«ÿî·‰oÃçü¶ÞŸnâ8ÎÙêgW}þcÉϽï ç–xõs0Êí}Ïô#µÏ–~>LNWúxÑâ½²©½¾3K¹ÙÁ}mØqï ß…úýxa„é[àÈàÁN†N;êqrÄã¿Ã½gòþé¨Ç¸ïyïEý„ +W¾‡|ªRo8¹æ—úò ¤½/-óöÚŽzÜWúÏÑú5b7oØ¥h ?ùÞß|?vØüÎÎlùšÜÌzŒõßù¤óö0wä“]Í7‘—Úáí{cYŸÊ£zNÿÕð¤µÓ¹Ìç¨Ç¥ÿue†·ëõ1¿³ŸôuÞuzýÚ×ÈçÂ!ü™ó1á÷¾Ù„»oàçÐþƾÂ>ɾäÙ±N|yÔËúL¾ÖâŸùÛÏÀ³Ù—èŸø¿éüq>a>κSùò½ôàþXéãA ×ïŧ›ñw.ÔøÎ‡Bï>³yßó¯ÈAϧò|Úáïùmüþ9Wƒwi}œ§ÝÛ<ï9Ø&ÙöœÙù.?£]=×JùïÝ[–#þ‡ã~(»hʱ¯öù²Ý¥ì£}•|’_ÏÓÄþ@WúxQx®†ééàµÎ„òwD¯B/Ã/ûÙ·×.Ò™<§7¡_t¯žŒ¿Cv5äÏ.Yí2%ý9å„7“øìo°Ëã9=úÒ’«¿òX=({üJå;T?žüžO}O'ŸCŸ¼ÒÇ‹–¯ne|s«¸þýÈAì”ß½‘ñ§¿,Þ$ñéÕߘáÐ+Éïíäwûo›ò_‰¯p-õ‚xwó¡¸;èµï¤œœglñÉÿÍ1?¼¦©÷¸¯Öö“ë©? ì­ÝN}àwàŽ®þ1¿d?È>ÕQÿÓJù‹l¸xªŒþÆÿáËÆg/ ®NÒ< G#?~*ßXî{î;É;õœ|k>¾ê{–zÀÓÀøžÀç»7Ô7áKyï{ùúRžg=+çärøÛ¬ú®Œ{ٵ߶Þ×y,)Ïçœ?¸×sˆ!Á¥9/„ãܶ'õøÝú½y)¿Çp‚õƒy‡„ÃÜág~(>Núœ:'®ßØi¿ïãe~G9éóxhΙÆ9îN9ã>sý5Ë'õhþðôšÚE¯ª½ô¢ù.§œzíÔC¼|ê·FùÊ‘?=éø®ä;<ñ£+}/'娾%7êóÇÑ>ßÏãŸiú[ß™'ZΘÐçg¹ò]öËQÿJÿ>:ýç‡òÙ†Š“±>?dÿÚ}Mè{ß„/N„Z' Ÿ ?e]'_ÊEߟJ>C~Õ¯í°»·\§ ÷^XÊé=²—´ëÉ_Ò^xò¦hÎ ìå3÷[ïûv+}<¨ó ÷¶èYœô*üá|h7ŸÍïî©åþxç&?¿^>?lÿ]>Í{r×t‘çlåÇðÿÝ-îmÜÇt^ÐûÈi÷¬WÏÏÜsv_Ô}i÷HO/ókúÔ¿ç&ÿõàyb¥6½›õyÏ‹ékøK¢_§w¡oçwrâÊþ¾òory¼þûù§ú•ú½$/¡ÎŸÏ$Lßäܙޑž‡G|öÔèI/-ß·ôRò‘?ýrèe試]õ_ÏKZ½~¸’ñ¼™qfæÊà·ÚmÊû³‰o…ø÷ƒ7ÁŸSïÿçÕŸÖ¯ ¾L¾ôúä~“œÂyÁ½ñíÇ+WôSôŸÊ¿9ä …€3Ó/¿³Ò•>‰NhÊQÃpð3o& wÀ>ÕPø ‰ôÞ<ðæ*_+}|iqȾ{ìæ~æV¾"/ðx¾¿äÇ÷Çwþêøn‰·ÚXéD‹_ƒ?sǾ^¼8_±~DÙG³?³þ,~:å\Zåg¥?-¿;<ïÜÿÓÎ1r®ÝsÉéG÷XÂÉÇy[q§ÿ±ýØJWú(QvÿÞ´ú®òü£Ïù³çGN>Oø“P÷¢¿ ýnÝ߬ôñ¥ô™;~rá%èwţυ?ʹsÓÿrä'~¾KCϵҕ>δv¦j71ü>ý¸±çϯÆN£üöó<뵃qa¥+}iíæâoøÌú'ŒœÔ{žO¼èôƒ8q|äæÙu_³Ò'‡v=ÅþÚïÇz§¯§ö ¾Ü„n©ø½½Ä_í<­ô ¢½ v2x¶ìãá>ŒœÔ_?9è}Uï¿]ÒõèJŸDZ= =(=Î…½û¿âÒà„ØÁ†;‚t~ '8p+]é“@‹×»¶wÿW}';$Ó_œ@q²¡ì‹À÷Á¼µ~oVúäÓ­_ÝÈ ÿ¢9G¨½Ÿâ"7µ·“÷🗗ùuûVºÒŸDn¬ÓÜc€§qoàÂXù^Áãt½F^BÙö„WºÒ'g6q6(üšýËÐkníYíÝÿuÿãù+ë~g¥Oí=>÷E?Ý»ÿë9Ù7›pñjè±qwo™Oíî¯ß›•>y”ݹÚwbW.òR{Y‘#ú›âÕr»ö œ[žxŸ¯ç+}òhýR±«CÿÏÞ RÃo|qìãÿ\Ü\Îo×ïÍJŸÚÓö-ËmþÓ¾”úßH½”ç¹þ¸zm•›§nù3| / ŸÅmù=ïïà'ñÃWotå·Ä#_Ò“;xÌä⾆¿,ßJ7ä›Ý¨úq -þ3é§ÿÝk#lýwí»r%av©|¿®¯ró4ÐÚÝãwÖ|ŽÍÛµW›÷ørøE/Áñ³¯DžØ«­ÒPòu.ù ×[{h‰×|F?[ñ\;Ò·ßo~ì@Å帴޳~*èÖhøéìÞýßÝçBí¯Ýÿ²ÏÆ'p•Óî9¾†KoøA/ÞòÌà¿Óy?öµƒ¦”Ÿ|Ù}Woùx~,áܯžxç‰GÛ©äyúYì}ÒãËú®ôɤõ“ ·åüöþû½½žÏòŸ!½wÌHÒ—¿OŽðqùåù©ä»7â =­ï‰ç¾´ò£¯©?á<¯?ϯòþ³ä¯?`O@½à>çûê}òž¿£וþ´”ÐRvú2–ïÐ̳å“ðaýÕ~ù÷˽ÅOþ G§_íúÓA?ÝÄ/Ÿ>³¬ŸzлÔO(ýçÔƒò'•úÀsÚ?©—rwäÎ@ù«Ï§‚Öß ;1˜|píþ%Þô8ýÑF¿R{3'—ü·ã'÷Tâ«Ç©eºÖ÷Lž×ßîRÞk—°öo’ï £\8Îò£ª?¹O°ã7øü ­ôÉ åóé/ôX(~ûÝ Ï þκ¨|ý»ßÊnÿƒìhÊþeÌó•?rœúîå×zLœ3œô/,‡SN~q)‡;ý7ü[õ¸®ô§¡µ+f]uÿùÿý$œ}BùûÓÍû®Ã¬×Â'öAÓ³}ˆu›}Ñ\ö¾Ë(_9­·õœú§|vÐñmã}´,¿í¸·l—ü'ß×éGþ.uŸ—³®ÓžhÊïf÷í™×{ÏñÄæ}÷ÿΣàS„íËáWœÏõœ.û—ÈÁÖ¯@Êw^µŸ÷ιÔg¬Óø,nFý穇zÁŸi‡û¡¿RŸ„ÿ°lçNóåžo;¿˜ö¼¶ÊÍ“L«§©$|v%aö*œÓóÐÃg_= |ÊÔÕnÓä/ñóœ~Dyäàú›WF9Ê¥w…«¡WbC{W«7¿TÕ÷&>½’~¸0äæÍMº†oNX|´8Ä{+ñÂ_woKZÎ(·8ÍBªåÑ‘öÎèWá\Þeêñ·íIøVÞ×Ï¡ø¡äèÆrý¶Ò•>Ît×O'y ½³wÿ×÷Žë·#‡oGN}gÈ;9~c)GÝî•®ôŸ’›Kcýtçoÿýgëýê+8Vßß—k{›tÖ¾Oö_ö1¯¯ë±•>þôî8®}èÜŸÞ‘+òTœNän;(~AŠ:÷àó‚•®ôq¤pt ;GsÎvjÈ•s@çÆI_¿9+^ÈùâÐë¬t¥3ÝËO¸~?£Oöžž NÍûê/é›èm>ÞPúÔ£nïJWúcP8šÊ ;‚ÑÁ#ô=| ÑÇ𛼇‡€w[õ™+}‚(»i óWg3ô¦õWgôBžG¿ÉÔQ·o¥+ýiäfù=)¾màOûîS¼ý!Gûyήû„ñ¯{Ôí]éJÿ)y9½\_y^<Ú½ìc²¿¯Ý¨ìo‚3š÷'¤ëúÍ~ç?ÖýÍJêgÃÎÏò¼çÇpgóùô;çžkö9ÅÙ_Ï¡WúøSz–†áÔØ`Ž} x9úø5¸œk#½÷«ÿ¨•>të·3´82øš¿näâÚÞýßÝ[ ³u>-ø^ŽÁ½^[åæïŸöwú>žžöÄ/î7ñjO(ax'ó\¡x¯/ù`§^Ó®\ä…¡ç»1ôåêseëü2ì¼² Û0ÿšÓÏ&˹‘>†¯Ö_ðúÚ³oÝ4×c©?·û<òµÎ²_Ÿ©ßÛ„­¿Ü_0>gF{Ü7zy)¿+ý¹1Þü?žÅwé×Ú uoŠ}–œûôÖñÄcïȾóô¿cy~bɧ­W÷­IGžß›G8v\&nd»O6$¿Æ|fäÇ.}·}ƒüð¿~a¯F?Žû<~“òOŽò®½÷ÑäŸúà t\Œ[ú¿ï#_ÅÕÌ{x¿Zæ{Ôüø¸ÐÚ "ôПd|>H¿ºOœþï=Ý{yþÕ&ŸÚv¯øÛäïžsÑÏü½q¿·ù©ÏwƒÏŽ-Ó‹wwØqÁG=·MýœÛ6ÞKþaÿ¿þä¯å›~è=irî9rÎ}Ùij½ÒÞò=;My¿—_Ï¡?ߤïóô3¼@ñ8yÞûßÊýøÁý¿Òï§µOáŸÝ”|2Åid]P{ìµÐ7°§Â>GæÑÚs÷8džk½ØvŽï™‡áP*Oá¯ÚoC _—œVócWãÙþÕ³›‘þ‚k<ý¦ýÓÞÎsËz´N~6ÒÑsžJiú¿<ÒgÛqýµÒ›Ü£Ýѳ§ÂWö¬Ã²N®0úixøŽ3‰GŸû‡Úb‰œªßX‡ïØkaŸ%úïúÃ/µß ‡¢¾cÝ×rµS<ý×¼~ëõXõôÚ/>f‡åP=•£¿²_„#¨¿µË£Üó£žç׆îô÷êýï“›ì?®‡ÆîöÁµôsì\òuyÐìKr¤~ó._ò—°ü_;d/{?Ò]]ÊÙÁ°gÜòÉ?¹iùã9~»²¤Í/ç¿êyðšö†æ¼ñà5í½:ê/]ÎÄÛi÷ë£?•M¿þ˾ÿàªþAG¿]ývÅü÷àïýJ@nÌKÆ=ç ×ñyÒ|l¼–ã¿•£ßøóS©|7ü¶ìÌ󸽏”³ƒao¿ü \ó­yØ÷õl¨øå¯ñýRnÛ3æwùá_4~j¶ó½~ÎóóCÞ/ ùÊ9ýÁëÆC9òQßÄ«{¯ÿ|Ÿ´ƒ’Ïõ;óÉõŠõ·uV×ã›ñê¾NÝzÅ:Á:>}Úñ;ž÷Ï$lhÞ?3Ò[ÿä|¬ûœßŒò>?A.òÞ>Ë~;À>Ǻ ¾xœ_·?Ü_‘oí&_ñæ~Ã>ÅzÕ¼3îqvÿFÞô+y·n{~ÔcÚÕäôù‘N}º>\¶w¥uO°ç•Î_Ãç΋Ø%ëý©œ 9ß‘ß^~Žs›ÚýK|rØs$Ï?Iº6´öΔçù°OnÞúªÇ×)Ç{çy_%ì|ë«åz¦öÿ}ÙÞÚYO=Écë—öô\Ùypêõá7æ×ž³~m£éÏ»†úM{vÎ'õß8gYéCÊ‹ûçõ»’ñ¦O+j)Õ‡Ògœïéiè×èMò)±úÕ„“Oõ#µï•°ôÞO0ÒÓGiŸ|F}«W¢grØ~øã¨ÿô #ÌΟüàXØ7£Ç|nô»ô§CÇ9׎}Då {‚-ÿ¹1NôHg—é›nÔk¥‡ÈÍ­¿mÆ‹_°ÚÑ ?\õ|oˆ¯ñ%~MØ8ño"žôð<ôâ쉱öú¨Ÿ0ýzüï‘ûÖ¯zöÐÚ{ •Oå+åÁÀ§HÏ¿&ûlðBp8peüC±ÆÚ¹äç#>üAýç$žyìü¨ peô\ü@ío.¿/wÇ>k¾_éJ%z÷í¿ý÷Ÿ½» Ÿ¿ýþ†¯ß^Ê}ãÿ%òñ§½MºwÿOIÿNäâOyiºÜü«tÉçÝ1¿¼so/öÖŽºVºÒÊÍ»ùü ÿÃ×¾³äß»&û›÷â±+xgùÙÊgÒÍxïFNØ!egíËíJWú(Ðâ¼ßAÿöß/¶ëåCnà¬k¯Öw#Ô:p®SåŸ~Óº5áá¯÷¨ûe¥+ý^¹qŽÿOì^rã^} ýŒ}}ÿé!7Î{zN‘°s’ú)]îºVºÒÊsç&øø™ðõñqÎå|Ð9 ÜwôBw7¯÷œ›7]ò©Ÿçç9W‡ß®¿žÕÎÀJazwoó«Ÿ8Ðð=>nü_-å ¾•<Ôíðƒ[ýÏ—›rŠoþ˜§øÑÔë¨ûg¥+}­L÷i„á žüÿmø{ú%Gðp§Bá#àµO†Š/\¼Äª¿Yé£K?¼O·8~÷“ŠoxŸÞïï‹›»Îw£÷|dž]Ïânê÷7ùŽýÑJWú(ÐÞ—Ëz¬÷Ȳ^*n&ë´ú÷Ì÷‡¼õ¾á‰„?ùÊϾå?—òÐõÛçËï{‰GÝO+]éÿ¤=€É÷¦ø 8¸ïÙq.6ã»ÿ\œOÒ³—çäýévîð~ÛWºÒ#‘v5n†ÿk¿#|_{@p3¡ð:ìòÀ-½úÚˆO_Ã.Ðí÷7áÜéù7\ Ñõu¶ÒGÖà_ÂÇw¢·¡Ÿ¹3ÞÓS²#|ÌÝw“Ž>tàîþi³»û§ä7ñ9ïßзS>œ\ÿº¹7XûWôMõ·›÷Ã\í˜ü<‡g„ûƒO4¯Èß¼ažHzr¯¿ÌêŸk>ò=‡O„Ó¤W£ç‚ï»”zÔž™u@êûêh÷°‡_»Oü³w×x6Ïé£á%áD͇õ“<âßLXÿ[ŸÀ='íh»æ¸êϤƒç¼¢¾æáYNòÁOô‚ò-ÞSyhÊÁðžò•^=®%z¨Wýù†^åø¾w|wcðá¸G[ü«þšþÕÙ7T®úã#üJ?JÞÅ7^ðïú0üª?ñù¸¨¿Æø²·¤¿ôzèŸÿßI?û|¹«þ ý…AÕŸ\âïS¡ÖÍÆïŒöiwÞ“Cõ_ztÖ[ûŸíÆïõ[>ú_ùúE¿YÏyG{Ù…SûkµÿjÞò'ü—ìƒúœõÏø°[eÞПG?6ß!—äP;å;ìÎíÜÃн7°} þÄ—å'ó¹~ÂÆ ÿ j<ç} íe‹ÿ·ó‰Ï^–{¾7â±§É­rÌô¿ÆÃ½1÷Tôô+VÜ{ê#ûEñjkȹúèwõÕϹÒ}¥ý¤öy~"ñNŒrñ%~ö^ú)g'GúýÑž)çû£^Ï„>7úIùÞãs÷XðÅ…Ñ^úF÷Xô3~Â׿Xöˇßä¹t§Sþs£Ÿöä“°|ôgý æ}êS»jgFþÆO½1è‰e> ›GéC?ؼOõêç°÷êî%ÞG›x=ür¿úÛäÓs½Äïý½Äï==ù £îßõ|]þî¦ßÕ£~åÿyê«ÜÔËù¾úöþ£ö¤>§ýŸ%žr•3ìœíØMû6ïó|ÇÞSä¾÷S/úµê%ÜfJ¿¦Ÿô›0{nß,Ÿ¿7ÚÙø¿ýï¾7>×/Ç–í® ý¦ÿ¿]Ög>Ÿõ­þ%ó[Ç'|©ÿvîoªÏ3I?ìLu|„¿K>ê}l#rk?i”_þ½<ʹ6Ú;Ÿ ³?óÆèOý«Ýê­>¯þ2εsúƨ§÷7F9ííM½çx¶>øbä÷ú(çMõÑNéF6ŸÑÞ›êzsÆSŽq }s”/Ÿœ[6ý[Òåù›ÊIøÖ¬ôò_¹òUî¿9Ú!?òùª£¥c×èæa4ñÛ^íãwëýMy9—ÝÖ[=”küð•°üÿMå ç}ÎÙ¶ãéýì—<÷^ûßý/ŸœwÜåçü¸ãÓqõk¾ê1Æ÷Mõýpc´O¿¼ŽF{Í'æónåkÌ7ädRñŒåŠüÍr¡êIîÌÕë!Ó~–öw¼Æ|W:Û)ý¨·çíOõÁc>ëxòÊŸêwˆœwíÀϨñh=Fý;Ïñiþs~rt}äßï¬ü“ޱë³c<;^c¼Í_âI}Œ·zèòSyžý<úñÆxÿúxΞdëAÎf?çyí4æù•Ä;êý…ߺÏzýQöEÙ¡³~ìúRü¼÷]·n–ߥ/ç¬Ý°gj]¡üÚûSPëák#^λnm½óþÊh¿òÎxìz©_ígŽrÕóÂhwíï…ª—ö_Jºó£Z㥣~õïšx¯ô굯½âÉ'Ïí7ä/?鬷_íóÜ8zo¿2ÇOùÊõ^?¼6úûü¨7>œûBãd§=¶É÷sß”~ÛËÏ9‹}{ŸÃ²OꜦçTîûüçH?Ï·œ? {Ÿò{ÿᙼOþ=çP^Îzîã¼Á9’x9¯„‹mþ㼩ç/ßæ={~ü|òôÓñ”ë|ë‹ÄÓ_ê/çaÎ5’Ï¡Ž¥|öñÓ^õïy˜ø'—ýÕ{&ððÚ§¾É¿çtÎÙRþÖ¯9èùãÇ©§°z}¶|íÿ݃ǫç‚ÊEµ'|Ôó4ãøËvîô_ÞOþ.Õ~í0~ß.ëÙñòP½Dõ?›ôÕÃ9Ǧ'˜~RèY.ŒçôìP9ÿ?5èÔÛ„ßvðwÒŸùe¾Ü±ËU\^Þ;ÇW_zš_Žôô@ôlòŸö¿¤ŸzËúKÚôóŽþ =5ÒÑsÑœGó^=~7ËI>Æ‘þ£ú@ý”p튅ÒoV>>ñQú2ý ^퇼×>ãPûmÉWjŸöʇ~É8°ÃvbÆK¸øËѾ‰ß4¾øtG_žòŒ¯ñÿÌ&þgxô°pð ð7ü\ÁוŽtYO4ú²¬ïûœ88$¸’Kê•ôÅI$^êµ-'ÏéWé£áôŒýyÛ™x—F;èñÔÓ8˜'´»öºð{âKo~ÐzÅË#;Õ§K7ÚYaÉG¾âׯX(}÷…‘¿zÂC¾1â«OýÊ% 'b\®~h}Bû^:ó~Uøýƒ¿'Ž+û“nG|x¸QøŽâËFÿL;’ÚsyÉ×+}:iqj(\OöÝÅÕ™WÌÙ7xåÎKþýÁz§¼Ì¿¸è»†Ö¡ÅÝ%Ý©ówëuEyÉïµå|¾íŸ‡«ÿJŸ.Úïù×w‘|ø^y_;¥{÷ÛõƘçÑaïòÐzÇã»GN|Ržõ€ï–u¥}ù²N<7Ö=¾cÅ…>8^ã¯ökVú ~µnöwö]_%¾ý•ýd÷cß2ìþZûû-ò{2ùÁ­*¯÷ÌRÏa‡ºöiÎnÞï”g´Ÿx§—õì¾ìÜú½Yéøžìãðãñ Ÿô^ñ·áŸœÖÁôÏg÷ñ’¯á»-œ_ùu~×x©óµž#…_è¼ñÞ’ï‹gSïœO¿¥õK<üDN;ë+}:éŽÝxÅéÎPü{÷Õ#„Ÿ‹3|fI-_¹ÎÏásÃÇp¯ÛsùPçù¿õ‚S?.¿#ô3­/üãÄQæûóÞ7›÷Mb^éÓI‹O¤g½þ«¾1”^¶zÞЗGü—ÿÒ?»Ì-ß{zM¸8úJúëê“•›ðÔ›Ò[ó§6ÎŶúÔ¼?Ÿò²ÎÜúk =7Ó?ܺs¥O6Ýú¿Ä·á«âó¼øÔ„oä½ðµ½û¿âcnöÐò‹CMz8¢\hò¯xXõ U.ÜÏåñ½‚ç¸<䑼¯2äæµïÿ~®ôé å³â¬ÂG‡ø©-^¦x÷1¿ãóÁLJ–/ÿ×–|Þï rç{òse–'œ÷—ßW”³”†ÍCîWŸO7ízƽ+x,ë|ø18À}û¤ƒ3«}¾½û¿>·¿xîäÆ=ž³I?qŠÂðÖQ(¼œ{Vû£¾/ ¾Ïzòt¨{DðZÒs€ƒW¾¿=+}²iñWp^Ç6üòá¸i¿]\Zž;çí½Þ6´vþà‡=æzH—òážØì}Ý”×zßÛÐÖǽXé?IüaýCéáÌ´ûë<ùÏúþÐùàJŸlZ}ý&<½Iæáâ´àÊàÓ¦_Lz”ûÁzH?í@¨}ª0{Êyn”GUüZÂp=ûÚŸpõµËvíÔ÷•uö4Óò)}"úÆ'zNøúL80x68½â»–ë£Ãë‘ü‹7 ->pÈ<~/Î ß«_ž›Š»Lý؃w€¸øýßx…£¿•>´¸KüÊN;iøÌ¼Ì> œ$ûdð™ò›¸1öîøó…{ƒCƒŸe7ó6ùÌsø›£Ü·÷7ùñ ßvC>‰Çï ç¹Ûv¾9ä‘Ý4ø»›ë÷f¥ÿCnر4ß_ ¿˜ÙkÄÏ ãû!'õO÷•ß:¬÷GÌÿyîÞ y$Ïp›×F|òçþDí’ËP¸lrüÚhÇz`¥ÿSnN†oì—íÿO ù8µwÿ×û.¿üwÚþ#ïíçá1ñ¿{tÎà(íçŸñÈ5<çù%7M>É»šçïlžõÖçkûºß¹ÒPçѽ¯üñ†ÞÏ{~»·ù9·%?ò©ß¼/ŽR8ùWúMòËsù¶~yßû¹îƒÂ“~5ä<çjìöœùËä£~‰/ÞN}sW?;‡ÜëYéÓIá'‹—toà*kâÛ m¼ðûµ· ¯É^Ã^ž»£ÕÁYžZæ×zžÚ¼¯ÿ'”|´Ì·v1†=ƒÚ)P_õ`"ç×ÿLòý`=O[éÿ›3áêÿCk¿3|;;›(µtôîüûÕ®§rfÝ»ÿÛ±Ï*=;›äpàžö¯x…¥ü·>µ»’òØ×•nÎ#ì‘æùQ×J ºÅßãÇPÏ÷µG“uNùëÔò$~%/ý® £üãËïBùZ~¿òp,ß“|oŠBåï;çûæ;âû©ž'Ôû?€ZéÓA§Ý«®¯Â‡µßľ9NÖ+µ«ÿYž‡ÖÎþçÉÚƒ—Îú(û‡i× ^¦õMºƒM5»Žêýº|÷ºnûfO½ë?TýÔ#åÔ®UÒµ>ìKú¬ôé¤=7sÏòø’ñQíñ[·â<íDž;gs^u:ï#‡;ûnv­œ›±&ý´Çä\îÌx_{8¡Ó¯ ÿ.Îëàqê¿%tÚ9Ó¾3ËôG=n+=ZºõS~p~œ}Mq8ä¥úž„«ñ>ùÐÏÐcÖîÇÞý_Ï}g:üGP»VËù¾v:è[o9º2êá|œþ‰}3ö¤èUoïv®þ=Wúß|ÇÞÛµPzB|JŸHÿIHÿIÿO/ŠÒ+Ê®Ž€’ž‘^.Ž^¿öø’Ÿxðdpô¬·óèæÃEð'y#é=—/9.^N¼Íû£·•.évžÎ8]XŽSùÒ|ë;`Ýe½cž´~ê¼›rÌËõg‰ßQü“pý2†¿ä_»JƒÏ|¿¤7Ÿ—?Ñ‘Ž\¾øÊÓ/Å­-×MÅTÏ:úoøc]é“Ak¬~MÍÃ߭ïíÈ‘õSõøø'Ïk§Öº(aßëþéDzþxÉMÞW¾—ü¸ë¿–ܪú¥=ʯøer–0Mü(øþ´\òyÞß÷ð¨Çy¥?.­û™ð >Æßì4›O_ñ¦ÿгá¯iÛ~Åú}ú Žk+ÖayÏç¹ý4~'/æîÓG=ÙkS¾|kOp̾£‡Üïi¿ýrYÿ¾?ñàt+}¼©s)z‹žÇ~½á›ÚûÏóÞOü8ü4ìŒíåw7úÀâJò¾÷2¥O¼êÉ£g©±Ï/r üKÏÉœc¥=Ê©]@õþt™oë¿£þ™/´ë0;fÅ$ßù~ÚI[é“A«¤÷žz;zëc>›þAª—¤§Ç;“çìÕ?gžËG|õ ·nä›y½8z÷½P|þIä+ü^\NÒWÿ(=|ÍòÏsõ ¡8³_,å zÕ_çð é¿£ç•þ¸´ü;JýÓ†²ûÅ þ¯]#ñ6ü±õãšøìlL?L‡ÙEã§Š} v0ø3–¿zÒßgý·µ—¡¾#y€~~¼WNýr…*ž@=ëokÈ ;6îÆÁjÿù‰ [{Lá‹Úe ­ÿܼç_oúoåðÚLŸøÊ©Ý%TþáÏ«£>ž³gV9M:vqØo"§çãÿÚ—é/ŒyàÊh甋iWM}ëÏ94ñšîʺn{èÖ¿uÆÿ#<ù´öýð»pâ] ?y^;}ƒ¯êz¹oh>üšÿkg3ùóCY’ä$ñ='7µóéý(ÇwTxÚëœvÍ®Žv¿6Ò ;q³}G=î+ýçh×5ÁÔ¾×…ñüåÉ_¡øÓºŸãKûaë"ü9ìˆ÷9ùµ.ê:,ùµ³Ÿ°?—¶¾úÕk§}œ}ÐÄGç\üàÅ!ßÖ‰ð¤ã¼Müƒa§†Ý¶£÷•þctúM÷Gzžöù’_{¿,éÊ¿ÇòܾûØàãð¥û*ÿñ˜ÇÝGûvÓùs«ž³¹O–séïuÞé9 ?pr'_þp•é‡úÝLüúýàÁë®úí¼·”7çoG=þ+ýÇhùÎðLøÏ}Ýè3zŽÄ/Rã%}ä¦vÆèAèwä§œG~ô)ô¦‡ù¹”?=Qí3møpëO5Ô}ãçG½Îå½z©'} ý(=Оú&½;i/,å¾ý{z)—}þº¿yœiíí]ÊøÒüõÊàKü„âÛ}ò—0ÿOå甇Â÷ðWèžþ•åü\\Í…å<];ôõSŽàvjç#a÷ûë1”ݦ×F=áÈÓó ù|°‡ðÚ¨÷?h·¶õ€—€¿ƒc¸ý· 5èWxÑéµvèò|úÛ…«2Ïèoö{à°¦ ¸ZïßIºÚ›K¹p æ¹[¡ð}ð¯ÅŸ'?xÚÚ÷ ½#½þó,<ËíÑOÍO;Ö.åù°¿wm”_»-¡Å/ù¥r¥>ú âKv4j)ïõ/ü‹~¾6ä^òµÑ¿ä¿8ù&ŒÏï쇾þýO§©ýê÷£~šõ 5Þï¤<õ.ôÝ¿nè-íýß°~rŽïáô'¹™ýO~Ø×1æÉ“yÞ¼6øY~Å3êÿ!WÊ'‡pèä›Ó³£¼úóðÄ_wž÷p#gF¾úÇ}8²Sò õ} oúå̘Wäë{!\<Ú˜õOíÃÎqÉsûŒ+ÊK~N|åâýÏ2íiš÷ð…q‡÷Ôï¾ý^þ"7×Gý+ïä1í™~¨á®µ÷¶yU=?™‹ÃƇyn¾V?v=ÍCøNû”[؃Ý'‚‡Ÿáý7ØûAø+ñõ³õ¼ñÅÇÊ7žäźÅ|c]]9ãm¼‡ËÅ·øƒü©¯ö\õŸûë|ïÉ‘|åã;~vŒƒygú7GGý„ñ˜÷_*OcÞÒŽéSþúÉúMÿ©ŸñªÛ¼×nûã7í*õÞΨ—ú—óÞúíâl§òÌ“c^ÓÏíwŒ‡~1þ~´O{ÔS?‰oüå[üÑæýÄ-•¿÷O¿úޏÿ‡oêOñÙe¸÷ÈÙÇx¤Þ+Çg%~êU?i¯{ÜÎï«–¦ß§6¿Ô£öµB{/>ýÕóÔôCí¥žÅ99M|ç²õW™ük÷(ãÐóáðwÏ…Ãopeí—Ï—íiýôë½Q®çÒé'ç°î÷ó¿Aâþ~ú«úíkýÒîðaóC•óÕHoSnÚ³ÿwËú;§n?f\:/ÓÓìçÚýEúEÿÏ/–ãÄïfû7ãÕ~‘>|Òñ•~ŒÚ|ôþa¯„>•~múA„‹ ?*¾)ax ú¸sɇ^n?”núg¬ÿÈ„é•ù :tpRôç/r«çËûú!Ò®¯úBí ¦§o¤§§gk¼„•£üF9/þ˜õ4³ŸP85úHz¾‰s©ý&ã%_ýZ½¾ñíxi”¯^õ??ãvÏ—Æø°KÃï”t'Ç8À¯ÕßSÂô±ÒëG|¥¾Sïk\ÎxžxÕ¯ŽzM¿Uð ð=ðNÙ_dÔþå7~!ç[\aâO¼ÈÄWñ#Çß"y…÷¸j¼‹OJü†Žäšúæ9|Vñ\y¯¾ðÊ_ýùÑSÏIùq½:êyiä{EyÊ×ãùl—t—fý½—ÿèÏú·ã¤=—g>y^<œþ˜üj|®K7â©¿v™_;ÎcÞéû1¯WïëWŒñƧžO<ÏÅQÎ…Q9ïµ~ê|´O?§ò½rG?ᓎ·øæ_å Z¿¤êmüä3ÆÙûækœÿ_Ï'^©ßGý:øÑxÇ4ÆA>mÇ”¯!×Å)N9RùŒ~žó„rµÃ<®Ÿð¹þÑŸ×F:ý;üÖv=¡¼‹£>ø ò6Æÿá媗ñéz$ñÏ~õ=9êÏãý‚¯Åü ÿ‹S }q”ç»ZÿÔsGû_õJ~g†\ £Êõ½ëzfôûÄ›GŠ£ÊóS‰vÐ~OG}'®ÊwVû».Êû?Ž~i~yn}&¾°þ+ž1Ïç{òí;ÞõÐ7ë084ùk·ö——G½¬#NãÑ~âϬWê‡sôóìGñËò7?›µG>úw´Ó{ûãŒwï ‰w<ái/³÷f¾yï>‚}Ž{FÖ{7§ÝÂÅÓ%ßÚMÍóOõoêñÁÈÿý±©_í‹—}[÷ñ‰ßýäWËz©ÏÜ7÷ÞÔ‰N¿8¯s“Ôs–ß}%»ÄÃÿåöÞ׿}ªQ>OÛÿÜhgÆ«ã‘ö´½ê‡/ǽÐÖÛ8;op~”qêù€xú˸~žr·ý¸ó*¸¸{ÚsLç‘ð;9çl<ç`캧µãŽoñ›óÊÔcë4ù ?ŸÅשGïÇ&ßô³þïùÚùІ“ß×£}µÏ–xÎÏwמJâ9wtþíÜ<ãÚsçÇêë|Xzú!ç¨ûê‘°óP÷Ö{O]ýŸ^áLâ;¿Žnõ¡™ÇwìçÍ{þô§ÎÿéUôÏ…Ñ꫟”nä+üÊàå«'}—þ?.õK|aíy~Ô¥7xvŒSÛŸxò™þ8ä+œDýk„ÂEhç´ßQýæHW;lø#ñ«w”Ÿr—|}wà©‹Û)Î%TÿÖÞaò§_…×€÷`gGzøõ‡o€× ÷…Á§ðôË·÷7Ïk·+ñÞL>7GyômúÂmȇž—^P¿ÓÏ6~Ê£æ' îâRÒñÃg—P½yê{i”GÏ9ì8uœõ§ñ†O(Ž?h÷Rnªç>¯=Æ#ôµQ¯iÿO¹SÏ[?iI÷âhÇõ‘^þì9៩—îöûἿ•tµg–çW’nÆŸx$úQã®ì«ç4(>T>œÖÛޫdžnñhy?ЇâÖà:N©ÏôWþ ½2Úo~#?æ|F¯¤ÝsþycÌ ÊxúëïÉÿïÖ_êwy„õ“ñ©_Ëåü´ÅAJGn6íêû«#ßæ“öû¾ ;LÕ#¢êÑùyÌ—Åõ™ß^í1/Á¡ÀaxOï~ùûùë'ÃÇâûâ,–õh¿v¾1ß§=žO?oïwhùäÄüež1¿û.Þ µ^º8øÜóâ^’Oí:Žyàê(ïÂà7zäó¡øîܘÚoßß·© yôÝÃ/Åqù±þ‹ÇøÁ‡ó¾»”ç—Fºâjð±ù×|<¾'7Ç8Öߺr‡ü’¯3IGþ´C>æõ~oÕ+ÏÏ/çŸMn®Ž~yuÊvyÐ]ÌçæÉïŸÚ_gfëßäk}n½ëû>ªþ÷dÒ7~úÛ> ¾È÷hà·|“r¥×?ÿÂÄGýÓãqnÔ¿ûš!WøÆ:õû]wY¯[GëçÓ ×nsÂøù…eþ-×~U¯â·Òoø@;PûʱØÁ±O»äòWœ~ÿ»ÇI¿ œbßO\ëÜŸ£úiâ[OÿÀ÷ƹƱÄwÎ`¿øLúKØ{çð;÷’Ï^â ÿ{éG—ú+Î̼`ò3ñG=ÿ£‘>ùöüôë% ~ýGiÏç'þ ~*ü¬>Ó½ú°;¹šöÄzN<χëÿzðûöêSü˜|7ò ?ÔîZêÛtÚ}b9.Õ|³lGùÄù|ÞÿÜr3Ïóñé‡ò‘~œ¸EúŒÈWý5¿£;åÓïì'ÝÔce~ïszª3I?T;v#½xôhÞO\=ýWÖÕ/fœé3¶õÿqÆmkç+õ ‡ýý²Ü>†›Â¯ú£þÈFÿŠ?íOÌçgF=ô¯~kÿ&½rÏz O=rñ€ÆÝ8÷ÐÓ£Üúg;"y™ýbÜξÐßôÛÕ‹‡¾0Ú…/éG~;õ¸”|àAè…'~Q¿Ãïâ4ó^<8…ó#¿âÅ žx úx8˜Ù?—~$¹ÑÊöø¦ý£‰Om¿åyÓ'ìù´÷ÒþO?%žþ“ï+3½t£çg~Ò ‡÷•|‹³IüâP<_ÆÿÙä¦x+|’z¤ß¶ãiØÏÚ|ÜþóFç­¥î¬ë­‹O&}öÃ]Ë{aëñѨ¸£Mÿ2p, [¯ [Ÿà“_}{þáñ࿾8ªÔwî{¾Kx¬'·ùäù±åó¹^îz×úκôÙÑ?pSp/ߦÿùàþí>èë<ŸvbÉ¡ñ©ŸÚ”{:Ï9ÆÁþ(åO~ùÙäF;O„ªïñÁ·ðjø_O¾k;_øóÑúsûàâ;œû8§q®¸¢„³¯*.(õïùÏô éìò»ذs®Á?uÎÑr#m7\üv~{Hÿ~µÌg¾¯½°/"¯ÆcØ#ë}@ã>qþÓzKçt~x/aý¡2žÍoØ‘jùé÷í}ëôÓ94ýTÿ*yN_Ôç)¯x—Pïõ?=‚süG(ú©ý¤‡ç W ç÷þÿéñ¨]‚´{ÚÑë€ê1¦Ÿ4ú®¨Wù¿v.Fÿž:¤Ÿè#õýñ£÷6pdô0ò…;8Ì¿\ܙħ¿º<ê{ˆÿ™ŸLnÔÓ}kz+|¢=øIüÚ«Êsú©ê-óœþþüƒç»â9àà.àðÿÄ-ÕîÎègõžv«ŒÏ­Ä‡O¹“|Þ$OyNÿ>õ‹£í——¹i¾ìJáÉ;¤_¾´l÷¶_õó+IyYßÎ[pMÓ>KíÄ$Ì~“üèÅñ7<€ôÕSJ§~ø'Ôø/ø€é¿óµ·¿ÿîñ)>ä~€w€S*NlÙÿÛùe<7×–ã·Ò•þ$üüâ˜g:ÿîÝÿmçüžxæ‰×—é›ï¥•WúäÒâ}ß.OþÏûç–ïç:x»>Þ»ÿûgq‡+]é£L·v¹ì»6´ç+Ö‘õó›°}Ô´ïõø°•®ôI 'Øsã‘ç]pcßF®¾HÎ?ÑÏÖõÙJŸ|:ïoW¿äž·ûö‘¯êIèQØ ØÛüÃÂÛu{WºÒƒ/Q?W¡ôúµ[y)Þ%éè]Ïyÿàsà•®ôI¢[;e‘áâØöîÿ¶ö«"Ó?(|Ükë:m¥O>ÝâI­ŸèÈCñ¨¡õû¹wÿ7íu»VºÒŸTnÜk±>;5ö1Â9/(N×úíäx¿¿~oVúäS8°úåü`y>P\ܼ—é\퓜_ËùÁW«Ü¬ôɧÅ=Á ÀÒÇÔUâå\¬úœË#þÉõ\`¥O.þ6‹ƒ‡ƒƒÌy[ý½Áý²ËCž^^¿7?ê8Õn^úùÖû›pqªیíýMÿÃùW¸GøÍ‰ke}Dó'{nìXÝùëæ}ý“ÂYå=<áõuÞ\éÑÓÎWø²öÉ…õBø¹¸W¸ÂÐ7ǼXüaÂì˜Ößòrþkz8i~,‹gÌó7W¹YéÑÓâh_ß«ãû_;µác¸|~~ÉÙ¤µF¾î= ”[ÿ¾‰wa<¿¶¡GÝo+}ºéÖîöøœ µ?;²ø(÷¿Ü«qßËýUvõÜ_‚Çu/uø·œøÃÚ9Ïý¡ë÷f¥GOë¯á^Î;Cëÿ"8©Ú'ËóÚ{ûjy.ÚsÐÏC?Zž¹W¿ã·ä˽û¿ú÷L~Ågý׃ëwÔý·Ò§“V?ÆÞ¼| ;ÞÓñG‘óšÿDì…y/5í—ÑÓ±§1ý ‰bä*ñòý;ØKøg¶k±Ò§“Ön{Rç—ìå¼skï-ñk¯)”=«Ú’_¨ô—B=Ÿvì²>ܱƒÅþPýê†NûoGd_y¥OÝù>À5M¿Á‡øík>äH>ÓnéþòYÿÍÒ‘Û!_Ӿܰ+9Ë?ê~]é“Mß»Oÿ‡ÿHþí?¾Ì{ë$v³¬æ}ìƒj÷PØúÏ>‡½1ïÙ-ƒË²~cß–8å)ÿ䲜£îÏ•>´vø?_îß{ŽÅžÛסٷ׾ÿW ³;>®ý7~®½­ð}írÙ÷»§ÈîÚWã=¿”ü˜~½LwÔý¹Ò§ƒVßÁÊ´ï@“uWÏ©Ù+£?vœÎüw׎[hí%ß鿆_!çâõ§µ®ËVzrÇ2ýeÁ Ôïbøþ…OöÇÈç7’þÍ„§2úÔú×L|~îàÈÍkë÷d¥O>í÷É÷n€|N\Ü;ï/¿kì/òëçû4ý²7ê;yi©×)Îîvòkïþ¯øåÕ_ä_ß[ø»‹«Þh¥?¡ÜÀ ÀáøþàC|~'üìûcýÅïꙑÿÔìÁëbgtë74ù[7N¿ñµG›üɹþèºWúdÒò5Ï©ÁÂð9áÇú½c nþ®ÇºÏ>(zÙz+vµ§>å{oÿU;щç{tn]/®ô§£{ù9ß.žæ?–óõÅÿäyïSòÈŸ„{•â%Ýj‡l¥?%-ކ•v"øëƒ+ ·¤Ï„ eo‚hèk­GÎÿj÷…þ îAþTU‰'ŸÉÝJWú@~Íýƒì[rîvó³ƒì;r>wû ×_8÷šÏ5ñÑð9¹º¶”£–“ûnÍ—üÞÈsõËyAñ@7…“îúú½YéO(7o…ßÞ ÆOÉÁ[áÇÜ =xS¼¼ÏyYùõ6þ Åß9ß>¸!ü–ç7÷îÿZë#ݸwp;ñn'úÜRÎzž¶ÒŸPnn þ÷ýÁÇÞ“òts|§¢_jü×óœÜUnò>çm­‡ï[Αë§U>ê—t­_î‹7ù^åf¥?¥Ü°Y?×{÷Ý—ÀOÛGä>çv¿c½–xÅg'?xN8Oû’ì§Z8ì³ò·_²ïv/•{ÎûUnVúÓÑ{fÎÓBkGßûóþ«å¹[ý;—ãoó£œo9sþõIø<çîÑ9wƒ m=Å—¿ó³¤+î4çÐGݯ+}²iõ‹î;ÓƒòçÿFŸŸ@éÞ6½ ýŠüø¥¤‚—›z˜{÷wφzÎ_aä¦÷ÁéŸÜ?µÜ­t¥?‰Ü°{óæ‹Ú¹ ?²ç!Ìÿ|{ì€oštìy°'BŠÂ¹Ñÿ“Cx¸K¡ÊƒW ¿äu½×³Ò•þóóyƒS…sƒ{}‹|ïZÎó*¿Í'ò)\yOØüÂÎòZnò#ù²{'ù†}:~¡áx¯,ë¹Ó^¸(ëø#8uõ/Ž*ϯ-ç©£·•-í÷ÈwîÌ“gñuøçòäÏåw¬÷#¢-ßÉ×÷º~ÁC­#ŸSŸñõ%7ê­~ò÷Ý~ñÁû¸Ê»|¬¿­]Ö¡pIÊ_¿×+ýo>ª}ªP8:ø;÷ÿ^ó³xÏä=\œïù.®÷òrîáž_ífÙç=7äHùìEÿr¼Ï}Äîçv>sh{-ëÑ{ˆÿ2ÞÛwÚGþúÁù®ôé¢ì^9ï«]+ç}èW‰9éù!yøtïþÏyžsÆÚ¿Êù^ícyžóÄÞ;ϽݾOþÎ/á‹êÿóËM¹ðz=·<ö`þ>ØDß{oÔ¯x>ÏÓ^ýó^ÚGþzÜVz´´ø9z£ìêÏ‰Þ >oÚï‡cOëåŸ}öHäÏZí’$þ%õtPz/v»àóÔ7ùí´W¹ù¾Vï5í i¿úë§ýMú£·•--®ž͹ÝAîUo{ õ<ñàøKƒ·ƒ“îÊHwwmïþ¯8»‰ßËyüEëŸ{„­oö_p;ím½RÎ#=FÛ-~ž§G=n+=ZºÅ …Þ ÿÀÉÝÞß¼¿å}âßùR8#xùãOñš_(¼Ñ-ñФ¿µYŸ§¾Åóå¹òßzðw¡åÃ! «¼<ÔÑ/o=XWútÑòYù% §j~î¼;¾'psø¼øVò3øïú!åÞåáçÒ‘?üðË|vÚ 7xsÈ…ïå½û¿í|÷­çæýQÛJ–Gç^¼œ›õ¿èì1^ _ÁÇÙWXwu_”0Üžrì'ê7ñ¢çiø5aë°ä£|Ô~J{.=ø»Ð}KΛ[íµ¿áïZyöAWÖýÍJýÿuÿ³v­…£©]SÏs^Üû§'ò>ç½OúùÈýÃÈ?çh=W‹ºÞ‹u?OúgÞιó8ÿëó¯7´rãÜÎù™vO:ùžÚÔÃy[Ó?³ÊÍÓLïžÞðaõ,ô!¹¿Z»ˆô#áwç¾}§Gÿ9ªÿ“ðYõ4áÏ–GßOúû‘ï~hò­}HñéW¤ƒ;Hû¦ÇÖ‡ž“^SL/9WoúCì?¬ôé w³~ª~³öÃ7ð ôœžŸüé=| œ|½>œJqwòË{8ïÙ¢oTOzþ¬§îf_³ƒcÐùñÛU»wI¯ükä{ÐW†Üì¯ß›•>9´r÷:ì\ÕÏ.yÎþ§x¸a²øÛÚÏ[åe¥O­.ß‘W—ë©âí¼‡?÷9ßwË÷õÒº>[é“GËßö){›_ßÛ_ý~ă‡~ vp¦«ÿ÷•>´x¸Ï6üýÞËuÚ‡ã9<Û{,ÏÿÿÓ½û¿âQ?Y×i+]éJWºÒÿ¡ÏŒ=ùƒËËuWñÞÃÉÁ¥ýKqÕ¿.¿_+]é“@wð>×§D>àtr¾Öt O9køÆ2¼Ò•> ´òG}uù}¨¼Œ÷µß8qÖ7òþu_³Ò'—ïvvïþï`è+‹—sO'çн3íÕMÿßã\{¥+}hÏÑrîßæ¼ îŒßñ>ü(áûùü¹ùÕò;3ÏçVºÒÇ™sŽ'úú8¹ÜG­§~€öîÿŠ+:?ÒÕ¾Â&ÞQ·w¥+ýQäæÖÞý_åþ ^†]xv¦ŠŸø·³òýyÏîÞV¿Ôëí÷7áܼ{'õ˾ëî»ÝÄ{'ïcOÿîÛ ßOò•ÿ;I'4÷ïþ)éÅ{÷Þ&ì¹|ø¿m½R·óü”«~üÆÎÿÝÜ›º{G¹‰w[¼”+|g<k´çÖ(OûµK9·ÿºÄ_%|7÷k'Q¿ëçáçànîWÞ}G¿(7õS_ýÅžÚŸV¿·óÜ{ã{K~cÞýÙñð>më}oÁÏwÿ-ùüù¯Ëþ3žÿÛƒåàîŸ_¾«ÝÆóÿ,øã'“›ø¿¨ÜÜU¯·æ¶|3ë‹?CÚg|ÞþÛæý[£ñðÛòO½NÞ”›÷ìÚáãú½Mü«£~oñÿÓÆƒ[rZ¹•OÊçÛ8áÿÎ?iïÍåøoç%í#³]›üwämÊ9»eþÈûwð#>SíJz~PÉ;ܲñy7ý!¾ô¾äŒ{Ïæ-ß“gñ“¹|g™ß¡ó|äñî» ›¯SÆ÷'“ö}}õ'Üwqèúw<¯sr‘÷×ÓÏøÐ¸àçk#?ñ®$?ørø=õå¯ÜÜT|íbײßõå¿Y}àuñÓµ!O×G»+×Ò«÷œ½ýóÆh×µÁo­Ÿ|Í«á7ó‘ùÁü£^¹Y\qåV$ ‡œûÏ­§ð­ßøó<¾“»|¿¿Ì%wæ¿Cìj´ýo¤¼ksÌ'ËþûÑåf?õ`OŽÝ8û.û3û1|åÞÄñÍóÚ©s¯ƒ]IýjŠŸk§4å³OnÝê^Å3¡Ê·–^ýÝ ±´~~a¤wŸ¤å%xÃÙ~þqí?­¿Ù‘Öoê]щwf9þõ«ÿÎhWÂò™8ax`ö(k3娿zk‡øúÙ}ó“þQŸÚ³ã&ÿ±ÿžþèå·™þÂ'Úuˆ?à¶×½s‰ÏŸý¸ô“ÉMÎËÅ—¦¿¼?1ø<çptõ'®]¿[>çïµù¸‡(ó÷#ø’\ò“Ñ{€ä”\JfÔÿ£}Òç¾oí¨:ý"騱ü`)Çp„Íï_ýŲŸÚß¿Xö{Žm¯úþv)7í¿ßøiGß›gŽ¥=¨~ÿeÚ3Ëm$ÞFøÄò;Úü~ñßý­¼Ó£~ìÊ?ûà|à>õSÛÍŽbÆ ¿üTrã¾8þw¿Õyyý/£Ÿ‡¦þÙ{²ßl¨{ßµ/ùñ&]ýÉ$ï'–ÿ˜éfÚg,~6ñjÇ1ýZî'®GÓÉÏó/7áÚ¿Ì{åwœîmêUÜnÂÖõ‹£Ÿô«þ1,ùfÚÍìx©ç¨ö©—þþ`™Oýh{žþ긠äbøë>ŒŸã·òÏ7Ëz›oöò#ÏÍ7ãÐöàõÕýôù÷×㟥µŸyg'¡~ÊN…o2ÏíØ[à_ì·ƒ¿n¾ì)f>ª½v&²Îhúô[í>ò;êú°Áž„úFîÚ.4óÞ{C¾[ßcI—qœv%Ú¾ÌÏmÿ|?æåÖ'ßCv4wÆåÙ%_Ö®FêS~ m{õ§~àGOXýQýn¾’¿ñŽÜ¨ÏN»~õàö4žz)çKy¯ù¦íú̓ëqïhÛõûªÝÓi{¤Y÷tüñEølòCíÿçèor’øµ_¬ÿŒ{æÉ¯„kOE±³òí!ý:刼gújí’ŽÜ ç–åñÏÞ~<=êùõrþl<ý+òžõ\¿Gc}§ÞúW»ÚO‡ðã™gÌ‹¿_–×~ÉxÍõFõüÇ—õ{h~;¹Ì·öjþg^øh)¿Õ_àÛç—ó—öýTrc}a|­Ûû=L?í¬÷­{ÂoÖ͵§’vwÝõeÒYÙ¯°Çb_@>ñ?ßPûfßyëwë ßwõî¹Eê/^ë…ÈÝ臮S"Ï]—i_ÚÕuYâÏuÉìﻃ_Úö7¿\Ê›r;NÒ©¿ú¯A­kZîlûLÒe~ëþÁwáÛe{嫯í7.)§¸ûÌ“c^ÖÿƒºÞãs0î…þèçöÓ‘ãîû¯¸ 'Ñó©¤óÞ¹Týû%}æ×íùIÒ;§r>ðÒ(_~âKX¿²/äÉ~y?ñOÀm°‡¢þêå<ìüxî\DùÎì_3Ï5ÿiÿjßéQÔþxž[þnÉw[ÜÉHßz2Úå½qÙéÏä}ÒÙ/u¼õ‡s® '7sÒçνz>˜rœo ;/sOzkþ0þ‡øÕùÑäæRêã|ùõeyÅEÐ[87çGȹðõ¼¯¾ ùU?øÎë£×èóê¦Ïaߤçö“Ê'õp>]‚ê¥}ÊO|å]UNž£ì*i½} }ȵPíÅgÎWÕ÷õQO|¤}±/{wØiÝêƒR½pÏå“}‹y Ž…þF;õ·úÑ×éÏóÚ£ýÚûróê{úèòQòÖoôÒÂÞzçÑOíÏŽÓÃÕó–znú¨?-Ç«ñÞÍûê‡Cïä9½MõØâÿuóþmý‘øüÛч§ÐKßN?ÁÀÐÁgx¯>úŽ^ž„^ð­1^䎠õí¹3ÞÓ¯ÓãÓV¯> ·^ï/ËW8„ú!”Nù¡ÚO ^ú³ý˜ò¼¿¡|í }gÔ~)xCùHýÊßûK¹™åÃÇÈÿ¼‡o0žNüwÒÞâ|ðÕ²¼òWøó§’›'…nq@æógÆÃwÇwåúó¡o®üàÃŒÛîü#^Ê3¯Ðÿw~õ=Èsß|×z&Ÿ[æ×-ŠÜþ-ñÃ?¾;äþ|ú>™Ÿûý—.|­_;χúnágñ;ïîYåß÷óæx¯?åo~ÒOÆ·8¼¿±ì¿£æËG–ß­7Í;ÖÇøáêàË~ñ93g|áÞ8„募Œ390ã+óûÅe~ýÎ\J}/R^×'ò×îäO~}‡ð1\’ö “ òE.­“¬K®È´K}¬ÇŠ;RÎ’û8­í{놤W¯¹^'7ðýÞmÚsÔ|ù¨ÓÊ…ïGýš§ñ¡}×~=Ô~õÒû¹Cüƒë×}™®ò}n”S<˜øäâ09M~¾äæ&yIX¹ö;×¼ß_òýÜ‹ùÜ9ƒy¤8î¤;?ø—¼¼6Ê¿8¾'¯ér5䯹“óxó q3®Î‘®,ã5_>ê´ç*Î[ô·ó,ç1§?8WrNç\Êyšó¨ãK~ß)ß¹Û©Qå(W=àÐànÈ­sEõÚ?DNµÏùÚ™¤y´­ö ~^X¹£~ì4{ŽO_\Ö«ý^?ÖI×ü=_ö[ßë÷†\L¾'G=&G?ÏóÆ——ù­ôÁ”þ£z&ú<¸%çþŸ„Šÿù&LÓü>Íx‘£cK:˯æëM¹ÅQ%þNé^âÍr?NüPzâö¦ÅÙ$^Ï™÷òüË´ƒ~,ýR= >ÔÎgÂç¿XöSÛÿ̲=Gwár”;ÎÕ;NpS÷ò—ß×ËxÕ;Ñ~“öê×{þN¯tIëï%ãA¯\}4½8==üLÆá`È[qQáïú1&op!·êíáðuÒÏpìÁrQ|Kê-¿Ê'Oô¢ÅÛÐÒ_~›ò½G‡ßéâ¼Òžêã§ÿ™ôëŽ ¼Ì¯~¯µ{où½).b´·r3Òdh;õ÷ñå¸OœÖQóå£Në/™Ÿ±3—†CùWfÿ$òVü ?Ìðcü!‘§ŒGq*äŸfþ”^\òïN}àîÔK¾äêÌ’ÏÚNøåŸTPxõ?úüŒ7Ú ŸBnž“.ñ&.ˆ·_–òÞtc½Y?Óúíw£ÜSËr:¿òd\ćwß·•"7ÅY þàO|Ž>ÆOÆùÔH_œëàk8SñáÞ¼Ï8w^=~î׃“O¿3‰¿ÓNùŸNzø3ò8ùNU¸~Ô|Öü}¿çwõ?—å¶}ù¾'¬Ÿ_róËe»'rg(íñ=4_žÏ™wVº¤ÅÓe½ ÿ¬ÿ{¯ 눮KöÂÏ™/»øh9_u”õI÷IÊÍw¥x1å%Üô‰ßze¾n¼/7ÏïŽûsöaÖ)ê¡Ý·%ëª=ïÇ:§÷?òÞsëží}›Ä×Nûø¢È‰}ÈÁÀÁŸöçÇËqع?óïËôÅK{Ož'ª?N¬ró0´øCç*ΩÆý±ž¿dœ¶~î¯ó>›û[9ÿQ^ù%çSÝçºÏ™ù¼Ï奞=O ÷Ü.,Ç¿çv=¿K»Â÷ÅgJØù˜sEçMYö\Ïyý±Q/nι߹äÓ{Á)×yð|Ù•”sݸ'Lsu”S?€©ýÇïŸ'«'¢ÿ£ÏpþL蜘_JžŽ>V=ªÔ¡ôªÓ.ÃÄЯÊG»è™.ù'çG?íÜwÎsø:ýkœœ{“Orû÷¶ŸvºµÃ’ñ3Å#†^Ã7¡×–ýÜqÇWäá{ÍçþO:üIýúRîZ_¸>ürý䆾¡¸õH>ô§ÓÊŒG^áНLz8 zY¸|Ì>Oñ¬ÊÏ{¸ïÉ=-< y„ãiù‰_¯D|uäKŸúæú½yi刾ÏwÓwÀúêòRž·÷9öîÿªçwßÂ÷É÷È÷Ëw ÎB>GyÕËç¹yÆüCn¬;}ç…/ŽxÖÏ/÷gSë†aWpko$éÅóýù™í®ôÑ Å'<7øÈ÷˾À~AxÇ^Oâà Ð÷O»³}ž|žñÈ«{NÒMû8äã¥QŸS)ßzê|ÂÊÑ^ï/%½r~3äÆ~jÞ›vZŽzWúóÒêÙí“ì{üzð•s|¹©>ý«ÄŸ÷ñÙÉMºÞóüfó¼éœƒH/¾ó=¸ö‡>Oücɰß.Ã=O“/<ƒz—|‡ÞtBî"OÒõ8®ôç¥Õþ ÿÖ®ÎÇ Óg¸—oÃ?;ö Ø'øh“žþf/¿ê9¿ïù.½ }Ù‰¤§ÏI:z±ž#ËOùôH‘¿Úy˜öVØÛö¥¶÷Ú#?ÉŽÁ9öQãJ^Z\CÖëõÿ² ïs§ƒœOdrõãå»TœYÇU?|.|¼?ò§_ä¿æâóW#ù ôËÓO¡úfÄ„ÍoܧØi·ö]Ðî =êq\éÏK²ï®2þûr®U?˜9÷;È=•ƒœSñÿ×ô9ßêûœ/7}ý&þ4å“}ÿÁµ”“ûÔ­¿hÊ»)ÿ<M½GýßЮ¤»1ò»¹|ÞþQ¯œ›5ÿ×µsýÞ<ô ÷¹ËøZø¾Ú»ÿ;ÈùôAÎr¾}{8¹ÇÖô¹7wûaoÊ?Ï…s~}ð¦ò¤ûÛ²ÜòιòÁ-ù©ßÈ¿å äO}–ßæO~ßøþø+}:è–¿Ì«ø!Ïo>Çwæë7FØwJxò¯ïUåq|OÞéñ÷ ßCõPÏäG.oò*òò]¹Y†Û?oŽ|´G}†ˆ•>Ù´ë¦èQºÎÉyk×Wö—­§¼·¶_°¿° ?Ú§Øw\ Í=µ–›û–—­ã¬ÃRžt¯zw}˜ôêW¿éI=T©÷ÖcÁ´Ÿ.ŒtöCêym¥O6öo‹>¾€ËvŽf¿ÍŸlñÛÉgÿ¿yÞû3ߦœ¾Oz8iç§’îë¼/<ïáǹàÜMX9žÏs5å×÷ý&ßö“ö§^=ÔÞõÁSE«¿sóø†ªœþ è1¾ÙðχϽã7A~ô?ÎqÅ;³¡;vT'n’_ƒ¡·©½Õÿ·Ërîn’íUôLè¸_ZÜõ½ä[{ƒJ—y åEz“þž<œÏÙl½Bác”W¼M(Ü {p ì§’åœ[Öó¨Çs¥G‹÷‚#…ßÂ_ûyo~6Îç¿ÀmÃO¿¼IwhùYßu?¬t¥—ÜÀNjæUóºyûøRŠË²®zqÈ<Ø Ëy¸é_Y×'+}üh×öÖ3Ö[YWôžå¸¿Õ|ìoö—ëÆwkø« §GÝ+]éßCk?âXöçöé_ä¼'òTû:Σ†ß‰Þ#þ$ûììó‹ËóâÃòÝòü¨ûa¥+ý»ä†^%÷²ÿ.¾ îÌùîÀ“5¸¬¬ÛŠ7ƒƒ Û_åd¥?ÝâÇ"ôíWB‹kI<úð×–ë­Æ‡ç*~,ñ«ô>áá¿}¥+}hq$_6ñY±×~{Ý·öîÿŠ/S ^þ¥å4^Þ'vÔí_éJÿ!¹™¸ªëS^"'¾7Ác5½ïÊCNn yš8µCì¬t¥-~ nL  ~+~'¶ñ÷îÿìcšïùï_Y·uûWºÒHnØ«|&Ô¹ûœüg×~ëòœmÚï,.ÝÊqî\œWî;uûWºÒ„‘lý$ïÝÿU¼æ‡ßäù±¡­ž'ïékàkàXN'ÝÉUϹÒÇŸÖ.Ü ü@í8E<Ÿ808ƒÜ_n¾ðd—¼;Ì/ÛJWú(ÑÚ¿«¿ÚÍyVý–å< öðج44ïÙœþÄäòß·ÞËZécHËß•‹PøMþ2}G¦¿sòÊn'ydçµvtóž=Ë+«Ü¬ôñ£•›ság8þâžç: ÿK—xÓeíq&ß᧲뼱Ž[éJ ‡Y|¦ýlj½û¿Þƒk÷»¯÷Þ¾ÿTÒ³ÿ:ðÎMÿüƒŸ¯t¥2­ŸÎ¯7ü½—Ÿ{ŽìÿõþãK|fíä}ùûnói¼Ï—ñ=gó¨Û¿Ò•þCr~/¾9òR=ÍðŸV{—ô:ãû3ý[®t¥O"=È=̓ó¡ü ²'=íY¢±^œ4ý(¼ôðµÒ•> ´öTÙ‘a·•~DáøÛ­ÝÙÈÏóã}ö=ä²å­~)VúÓy¿¬ë®qÿ¬8ûë4~/?Ý»ÿ›öÐßûf®Ò„ºÝ+]é?Cíç{:8Ïë/6÷œ{ÞÆOÅïFzö‘Î8O˾(rÖó¹_®ë¶•>¾´þbøõšúIþ@ÙÝ8Ÿx—e‡ ~Íòœ>”~ˆ¾æòºN[éãK«·ç—’½&~2ùµ¬¨„ù·äGVz~3ù¥ä“Ý'xå\[¿;ÿиéï·÷7ôNÂwþºÄaä^ÓÝØ‡¿›ûRwïŒñ¹³wÿ×ñ¹ó·MøÆ(Ç{~Rßy“¯rÞI¼[yþNòQîŸRÛÊM:¸’;á‹?åýí‘ïmùÝK»ï/yÿNÒ¿“òn\Š0¿¹ÿª=žãï·Ó/ïê·¸=úíÚÞ²„ÅÃ×ü`ãW”\¶ßôã ðXðúI?óC|ÝsýrÈ9”¯öwõÒø > þËøX7‘3v#Õë-ýÊ¿ø ÏGzíP/óÿÎøû<—¿túS?™7ð‰zà?ß·#~¹:è»ä4ü[?ÍÆmð³yÀ8âW|ªý“_õƒþº>Âæ]Ï;o¦Ü‰wÅg·ô›róþMåÎï~¨yH{êo;ÏÑŽWêGË¿}ý·„á ð)ü”øøëÒˆï½úã«þøI¿Ôÿö&]ç[ƒßð‹u¾yK}¬÷_ù“›9ß©÷ô×M~Ù}Õ_F;Ô+÷—[ïëy>í±’ôgãk~Ò_ä´~ÆÉoò»2Ú«¾ÆÙ8X'öûª¿Cáæäg~~m´ø©.¾NyêÇ´øìãZoÚ¿Ù§¹/¡þð¬Ãnû‹S8?ãÂÎ)»üþÎzö‚Ù}<›øÊõüTžÃ;M¿ÃîC »u}Ξ¤z°?̮ﹼçø—ƒªû&ÓŽ¯zË×þ¹û蔣<çOâ¿0Æ“}>ø°3)÷åÑoí—Põ¯ÝËÄ;9Ú«ÞÊùã(ÿ™„§ýfaéOúÃuêwçÒáõÜãaœæ8ñƒ‹;7ÚU¼ÜOü)ß?Œö+w?aÏÉOí6'ì>žsFõ—nÚ•ÇGìÁ??âËïtÞóûÍ&{íÅ9±?ü’:Ǭ=÷œ{ʧá¯óþDž£ìÛ}—üÙ}ç?øÛ„¿È{ç©øc/4vëµ=½ú–ïgK9áGµÏ“_q_ò?±,§ý‘þýðƒ‘?Å©wÛ¯éWx°úC–þóѯìù9úõÞ²_›.ã2ãé×âÐF?µ¿öF~ÚñUâ5Ú'üïK~)ÿà«ÄÛñ €†Ú_.ÓµßPå+W|íÓîo–ãºÓO£½ì5Ö#>W®xÚÇîcêÙþESÏúïý÷e~—ô{{£Ýømðgó•_ø¸øÅ)ø!ýô~šú>ü¦õÀ?ß&~òçW¥õ6ÞêóÕ¨ùП‰W<Ù×ËrÊOèlç/|­>Õ[ÊWùß.ã×Oô,ûµ|à½ö§¿Þýr \ñPþ˜é[SŸÚ)@ó¾zXñN¦üôoíŽêñ2/½7ø¾ýü»%ÿ·Ç?NêOﻵŸ0Ú;©qNÿnÓ‡½3??Õ/ëŸã¡üæ »m‡~þ|ÙïÿËQ>ÿ;ò-^1åÍú…j'âäH÷ÛAéÓõ×éôGä¬åßg—í¨$~…Ntɯþ“Ôë ºìçò#ÿGõ·4òýåh§ç⩯úiÿì—¬·ØÓØñ§ôü(oúIªÿ¨„ùjû¡üQ±ªý«Ýê§Ÿfú³£>ê}V»–ãÚççF~§FÈŸ}Ré•£~úW:í€<ýày¤üùЯÇ_=9%wæ|ÿ‹eþ[þIx·äÃ|óuâÝ[Žc¿OI·‡ßÿe¯|—vønmåv™Îw³|úÛÑžßùí¹ñÜøêwý6ÚU>•oÆgÛ?ê?øvoùÝï÷(_ûãëÑ?3>¾6þáλøq¶ó䨧þ€3OÀÕ)G{åoäË/þSßS#_óüÝ‹£>s~#7ð}âÁ1™G<''/ŒúÛß|¹‰‡Ÿ®¿ÃoÛý@Þg\ºÞÿbóܺ¾ë¸¯òÞx´”üjŸÝòæ:X¾©Góý4õßu=÷ŸËrí§¿®–/“O×ai—}fÃÖƒð.õ©¼ûîzOîáfø9ûåÈϼ“úuÝ™qò}oº¯–ýÒùàóQÞ±e»»^žýþÝr¾ìúU¿¤»î_<Ï¿]öcº¡øž‡}øÎ‹ê7æ×Ê™ïyøÁz¢ëk|‚=LJ©oëùÅ2ÜýŒþθú~ß½v¸WëüéRøë|ÞÃÌó«s¡Ò;'áßM9çGyΜ9Ï89òwnãȹHýx%|&ù8Gr¶Ÿxη^õuÞä|Å9ŽóçUõ#–|öGºÌs ;'u^¤]Ò÷ Õþ¥¼îø_<ý­Ÿ¤SýàÜhŽçaõxÆ8igò}a„{T¿¦þEÌ_s|ÏŽú??꫟œË©¿s.çt§Æ8I‡OÅ7ÎSñݳcµ»çÌ¡øÄ¹õe#L?áüÜù;=€óÿØO­çJž;¿•°çÎçé•éE´cêçèQ{Þ¯å†:_§ïRoùÓϺ·ßsüÐꇕ³Ì§zrI¯KßS{¡Ê»² oñ5ú7”¾ãÒè_úÇÎs‰¯´ký5}$|†q•ï•ñ^;àåèGäoÞÓ.úÂk#ÞäúâòÇè'í¢ºž÷Ê×.üGß"¾q½0úÙûaïj«—Lþôp옷õ»øpÚM ‡Bon\ª—Ïóê{¥5.ô®wÞß„ßM˜œ)ÿ{©OÊ‘½«xú[ø]íøÛR.É)œÆÔ/ãë·þ³r’ÏŸÔ#õ¦w§Ç.þ õ oÖOäšô‡tô»ú±zEíóFõÂòÑC>î¤?É\ <ƒþ/þ'ùÓÇjOqžñ¦?¯ÏÓ_·GÿÁKÁowõ¿—õ…G’¿’#úÜ×GÿÓ‹ÃS(^ x…¤oxÙ.øú]óWò9j\Ü£N;ï_Jjž2oþ)ýk^5ÿáOóùð½ñ½ºd>M¼~§Ì?ÿgɧ҉ÿÊ(îƒ^œ¼hGqã»-ó¦ïŽúÁÃhÜéô*\\Éû|¯Ûß76ñ&ï×G;“¾ñnŽþŠœmß|[ïäïûb~xñÎcݱÒCäÆ~ºÒ|[ˆù=|t}ô»uð~ÒYßøŽØ_Y “7ãêûƒÏ­.øêe¡>ÆÝ:øå%uh]çszÈñ´ëv>õξQxúwV?ûë-õͺ¹ý¯\ë4rýƈwn´sÚ¹º0äHûì›ìõ³yÇ~g죚/uÚñ6ÏÚžÌóSé×îÓÿÎí“ç¹ýçKc\ñÓ™Pø"üç{aßï<¥|˜|sž¼cw¿ñ<áúÍMøä¨¾ûrøõ:›zÊî¹Þ3ø0aóÊsƒ¿ÿèý?åK9égç‚}?ý•ê§Ô£ç±¿ýX|PÚóì²Ü•>˜VÏå\ûó„C{ŽûQŸmâU?uoÓï{ùUßE_2ÎÃߎ^\zçÄ_%Ý×›ü{,Œª—t§~ê™réßšî õxåÓ³;/¦?êyîÐóíô_ÒW>Öÿï}“üôƒùä™ezåuÜÆ½síì{ý9ôüm¯ñÖO£¾GÍ—:­Þ,ómõÇYU—ïøAÖ?µÃ^=ZÖ ÕgÊO¼ÌÿÕ#¾0òÉþ¥zTÏÅ£ç¦äï“^’ßúsú=zAí=¯ý£>/ŒúÒ+fýX¤ô˜ÊÑ/~¸´äË]A(=¤ò÷½Ÿç—ß—¶ÿü¨¿qT_ñò}o{³?ß¹•"7ü[Öße(¿Lžó—ÉŸSöñÙ÷oÃÞ'ý•ñœ\å\°~Ÿ²¯9¸:Òe[¿œ×G¼×Æ{õÍyFý„6þˆç}ë‘zµÞ 缩þ©®Žúä<¼íP~Û•ø7Çw¡ý™÷WƼ¥}—Gÿ¿1¾?üÉåü¢þärþ¹3>7F?âƒ×—ò¸ÒCä&çüþmý_¢y¿™9Çéûc¼ø¼1ÒK·“_ê!=>ȹìAÎQ·~=óßÞ4þƒ^Ïü0ò­ŸÄ”›óÝmû”¯?´käwsÔoú-½5¾õcšüõÓúI?Îñù¨Oý£Îþã¥ÜúkLü·ÖïÍCÉÍu|k¼ðmÆÉ÷?Oÿ˜¾+øÓxãOã&Ÿ7_à‡×G>ægòÓz‰7äÙwD¼7F¾æ}íì¼;¾3äÔ÷¢~¨—|µíõÓCNg=ÆyñÁµäßvñ¸­ÜÑ7Æ÷†|¶>É—œÌqž~S;_­ß›‡’ëëßK?ëlûëbë&ûëbüöêˆ_{› Û÷°·É¡õ¶ý‚üíoìÔS|ë>õ==òU®vœ ¨—õ}ˆ}—ô¯Ž|.öÔNhòµ¿°oO=/vÙÏÍ}’þË9ú¶ý‰qù]ØöKÞ«'û¦ö§ê«ÅÓ¾õ{óPrÃá›þìyËÇ¡žxßmúû½qÎTœ2\£s«/7ïç9œpã}š|~9Ò¥üÞùlS¯žc¥^½/òù&^ëýUâ¾l£vöÜ-áy?¨¸Ö–õ(¾UûáVõŸòCwñ« §¼âÛtúNW=Çý½y³ã6ÚÝôß.ã5_>ê´ú¹â>7ýY==IïG'>ý}ÜÕ™_~§6ãØøp—ô¤ôô ûy~.éÅ«ŸÎPúÍ|GŠ{„ËÓ>õ/=“vª7\%½Tq” Óãhxê©^p³/ ª^G¿*çü¨‡ö‰O_IŸ9ïMÓ? }kï]/:ò{~•›‡’zt¸ãY|kúS¸8É!?ÅI’#éžøJxzjúFúpúÎâ3ó¾úåæ=9•Ž=BúRz{x8ø¬k‰WIŸ^œhòÿ·ÿÄË~bû<åT>’üáì.éGa4õ¹ýþæ}q°£_‹ûI>×ÅãOHÓ/­¯~|yù|¥ÿ \ù.àCøÂÚåü×aœ_ãg¾6Žäç ò7ÆU|x‚ý‘Î|u¤›ø+üûúàs¸!ó>¼Ø´'×€¿+gørÌÉ·åÀ—ÁýþF[ÿß/ÓÁíįü’·QíR¯‹«Üü(rc½×ì;B^à³­{N/û¿ëšÚyɸ£ÖwõüæºÊ|Œî%žyòâ²­?œÛ냫éåG|Ǭ#­3_:$^ï--ÛÕrô“ïÄùó©ybç¹ùè…ñÝ«?àÑ.÷}ŽûŽþ1WwÔ|÷¸ÓÚå9iݼéßÞew»ÇçÞ–ùۼ힦|É%>´N¯}¤!wµ§žüññÄ‘‘7å {?åÆ{û‡‰ã²ïñ]Cå—ö×Nѱ<û…Ú×ÒΤۑ½C䆽¤Ïù¾œòÄN½zõQóÉoW¹ù1hï}³ßž‡õþüfT—¿&<ì´´>c^Þæ—ü‹Ã›ù¦>÷F4õMðr¨þÓ¯g—üßô‡¬—ª¢ï9?ÒïøÍJ¼ißø±kS\Ûú½ù§ä…¾Ž‹Ή~ûZú½x¬¼§Ÿ®>ïñ³xðVÅŸ…ŠO?7ñVÅ£å9ÜÀ•Y¿ÄÏþ¸zÞq?«8°k£þÂôïʼnÉ'a8µëÚ'ýHWüß²¶ý¾¬çθ\ò>Ó½eñWRx»›Ëòr¿Y¿5ÿ=®´øŽÜ›=ȽȆ‹» ÂsÇþh8ñJÉãKøüU\VÂ9¿=È=òŽ÷›Ëúìð!ZÜ׈§þp4òkÔ«ø4ù&ZüÜß6üyKý¯·F>o ù½%ý½ËÍ­ÿÆ!ß%åÁÁû˜wnŒ~~í:jþ{\iå¡òqo)Gøbà¥*øÞü&¬œâªŸOeœ—ã[üdqt£rY¾Iüë“ÿ<r<ëS|©r?VžFû}ÿÔÏ÷rÜël}oûÜõû¥~§Ìï[¼ÜøÞM¼éóÞú½ù§äÆúüÒX¯ÍõGižÛ?–qƒ‚÷‚ônpŸ\å±u}•÷p÷Ö?YŸtßá9<ÜÖ™e½Ú^ëÇý±®¹”üì+ŠÃ ¸¾è+wöêç‚õçÐSµ]yÏ¿û¿F>êç§_‹³SßeyÖ¹GÍ+íþyÚ…{Ä_ì\žÉóÓâe<ᶤ;>ò³ß?6hòë}Eù8§cô£<öR¿ÝÄïù–s¬ÏÿWKþèù sv‹ÙÙL9=O„ËÛK¼“)ÿTÂñsµžrÞÛ~’ÏéÇk½Ó¾û Î9¿J{œ§}—zÀñ}òô{ž5ÿ=®´ú ø¦©Ç ß ßÀ9M;⦅ñês8­aŸ°öô'¾*ñšä¢úùÐã¨_íæ9=Ðð—[ÿ᣶sê…Â÷ÕSÁËEÎû^üúõ«ÝÄe=œwK¿3.ã»2íôyä õšz²c<þî¨ùïq¥ÕO;–ôcô‘§"7SO^{’¡YOÔ>γƒïáhàÎ&_¸éÕgÈ…qÏü¼Å$øx»Ú L|8åÂw7êO§Ò|¤Ã·‰f”{e)/[¹8D^´§ø„„áî&~žÎxÀóMûªµo²£æ¿•®ôGÏ®Œù ^§ö[ó|ú„e.wÚ‹\ÏVúÒÊ<œïµï8ûž¾w¾¾+ð„õÇ ÷:üJ®t¥Oµÿøð~øØi·þªÿ̱?´¯²ß²Ï«½CëÑõ{³Ò'Nv;þóÜ}ÏéG²8ÜãÎBOåùÅUnVúäÑÚ- ¨«½û¿žËï%\ÿvã<çæ•³áçè¨Û¹Ò•þ¨rs)rAJIoL[½l䆞 •^–žîõôú½Yé“G‹%'ðìUÁ×Ö¾b(ü<6|\<Çj¯s¥O ÝÚ ŸMN"ðNðIî ÀÛg“ôµÛµêoVúäÑîoàq^û÷kàòÜwšþÌቲß)þæ™õz¥Oíý[çjŸ$<ü1ÔîwËçÅ užtfýÞ¬ôÉ£ÅéßZÜÛôÿC¯S»A¡ìzГÖnVÞbg¥+}iù>^žæÊÀÑð“Xy~ ù_¼‘÷·V¹yœèÝw2nÿšñä¿•?Wþ_ëÇ5ñÞÍs~:ùùýsÞó Ë/íŸ÷îÿîþ«øÉïÏ ßNú¿ÿm?ù>t{Þýëg©öùÛ½“vò:p.[èI§~7Á…Ž{¢[¿ÃËúßÍ=Ï-.-å¬÷=+z7÷tïþiàÿõo›ñ|û¯䓦ÿsø‰fþÀùu~'üñv(¾½÷N¹ï “+ù|ÿ<\Îêñ§Áÿ7Ÿ–ŸÉMžó;O¾¤3o¨ÏµïCØ]m˜ßé7—ñëoÜwÊ<”ùç¨ùa¥G·~ÌÃ'ü3“ƒÏúc9þ§ÙÇ$¾SüÝóÓÞzüŸÞ½óýß›®Yç´äuÚíd×Ñ:+z𿋝‹g~ðw¡vC­ãÈá°çq7úžúÝfw½ïùXÑÚI®KáŒëô³  Ï;ý+_é‡]ÌÚçd/Ô:ßþA}.ü}|T>½2æw÷ŠÜÚO¸÷‚òSùìåöþOÚsöuÚ´‹jÿóÇÑ?ês~Ù¿öCGÍ+ý>~Dz¯Ô9ü.ûŸÑSôžâ©å8oíg†Ž‹úìàOå9:ú/ÎÿÐvHW{¥£^žó{›÷½÷É~âW#\ó±ÍóÞG}æÁòüaî{·ø%¾·”ãé÷>ô¨ùa¥Gk_󓌟ðG ‡Oê‡æ‹ Ñ_—(xì°¿Éžfø²þg’~úUžþ}~°òù6õþ¯ñ½‰»÷_»i÷{ßlêS»¥£µk ]{©ÿ°¯¹cO õÙ±:ü|³¯pÔü°Ò‡£õ_”ñ­}v1N…²ÃÁ.ù~~²ÿPÏ>fÞYoZYg¢â}5³½Ú§þúK>ä8åL;íõcúá´s¥í~~„]vœÂÝÏ{ÎN•sþ­;W°/·ÿ·/Ïú¯þvìÓ=H{bÚÑðóËõ“s¹?‚ÊsÆ®¿\Âì=;òQO¸³3ÉO<ý;ìµµýâýq•›Ç‰nõ›‰¸üÂþûõ³·áãúƒ¹çô!pXÎoéK¢ÿ+;§~‹ÛÊý°lGìÅ6ì<:x¯ÖC¹—S_xõpþN¯âœºøšÐK¡ì@ ‹Ï.‡ú‰>Êyÿ~Ò¿ºÊÍãDï¾›ñ»ó·ÍøÒ[Ò¾³áÇêÏé3árà°Þ ŸD¯_ý{øùîÛ៷‡Ò{N<=ê?¨?¯þ”^Ž…¾‘?ÕøKìwöZÂô³7R¿›#}ó ~Ö´ãæˆWøï/æÃŒçåe¿wœogÜ„ÿ”ü»ï  >‚«).ìÞbý³Ò•> ´ó ´æ¹êÑfwË:Ǻ'|½õƒlžN|ëøë ×G¾±ÿßïBý>¯óàJ=ºÃïðêp,ö£ÓÎêÀeTÿn½lÝÁßmÓïÝÿu,û‘³yoŸ~n•›•>z´çLµ;¾wÿ·s®·áüåÄ&ž|à;œïöžágIÇîsÛ¼ï¹Ø±Äƒ7Yý´®ô¤½wûù†~Xÿ¾®áƒÄû8aÏ7Ë´ú³¥—›v¹š¹ú"ñ÷6¿â\¾Î{zÌ_¬ç<+}ôhõÑð(pôæôÒôÜ(ÊÔ¯ÓOÓ[×_Mò¦/g/B¾ôäÞ'Ÿ£î§•®t!7üˆÕNÐÞý_ýB{ÎOZöAÙŸlýA'þù‡®_ç„Ù»Ÿz¯êø pR—ë| å:¿‹Ü¸ÇuÔý´Ò•þOÚûÁðLî³gS¼ÿ^ô:×öîÿz¿WzúÒìKšž^ˆžÆ=]8³+Kyš÷zWºÒG‰Ö¾ Ê®¼aìLÔDïí' W?Ðûùä!av&~þ‘ݸ«óëyÀJWú“Ëqräzïþ¹ñÈùÈ);P—Ç÷Ž<Ã=ÔŽG—ç<âûœ÷WÇ÷Õ÷~(ß×<&?¾â¿²ü·þîSøžÃkòãËÞÆåøîâ?àÈ/¯óÕÓDËÇÓNÇ‹#ÌÏ%~´¯›rƒßÈIýk‡Ï²ï뽆¹ŽµN%wÊÙëÓú±N. ÿ+ç¥!ÿpM𕯄µS}Ny€\j×ùeº£Ï•þ {ãþÝJŸlºs®ýå†zÏø» ¿°‡T{5‰'8ñ6¯÷œÒ+Á#Õ¾‡û×pz©ÏÄñ‹eúêr¿sç^têÙô‘϶s¶+r2Ûï^8û6½‡žzN;<+}²éAÎëà ª¯ þºx"úUz[ø„ýñž>—8ë¥êué«à‹¦@áú©I=è“é…ó½ª_õR¸#þlà,ÎŽú¼8ÂÊúê¬Î'?ù_Pÿå÷z¥O­_¾Ü¯>È}Ê­²¼´é³?¨ß2áÜ#:È>ªÔûëžËW>#]î\ïc—³ùÔoZÂÑ\Ušö¥½m…×—ßú7l}Õ'ù\]î£VúdÓƒœ'äì çÚ¹W9Âg—pîä^ñA%^ø+çò}ž{ÚoŒòrÿï ÷£[åäþ_Ÿç>m룟ò¤S¾r•§žo Ú¯^ä&ôšöy¿)ÿ¨Çs¥?­˜Ï3þ7ðsÂøÉ÷ß]]ÎÏå3a¿âçÃäRþ}>øûõoGÞÈçùi¯öÜrá{£}¾'Ò›gnŒün,¿[+}²iñÛp¢Ö9öö;öÖý7ö%Ñÿt_!>¿´9¯mü‹ö!y^œk(<«u×%ë0û‹Ð˨ú%í¨?híòÞó”×v¥¼WGû”'÷cݺÒ'“öœŠ}J÷ˆrþúÞ¸ÿV¼é^âå¼¹Ïoò«æcá3v¦Ï}¿–ëžÒ‰‘ï·‰ÿIâ³7Z|lòý,açiêýLÂêÃn©úhÎÙÞû&ÏÙU¼šx[;¨ÚsÃ_,ëwÔãºÒŸ–VŸ’ùýµ¾§÷co^æd¨°{Üô&ô ô*üeºOÎ`øºåÓóÀ±ž eîtÞG¾ªGŠ¥zñÝW?•øÚ£µ/˜çôXêq6éØsÐ_±sÛtòú¬•>™´vAžmG¿2ì„ÁT‹¿Ësøê×CÙÍúm§ä•=A8þ_|+Þùă÷™öKÄSo8 + ³Ë&ÿöÓ(÷²ÿ&¾b¥?ÿåo›ñú·Ð?eù ä¿ó ‡ÞÍó}3®ïæýŸ3Îúëf\ùïdïíßÂüx¾£ü„ÿ”øüyþ¯ÿ³LÇßç_äŸôÿWÂï&ü¯›Míª·øê÷o©¯v(Ÿ¿Ð¿¤^ï&^Âí?éøIüKÊýNnòÏúÝÿ;|Žþ%ôüþ-õ2.J{SNãñÏøÎ½Eú•þ<´~:;NÿŒGåçÏ {Ïoå¿’“¤üUþ`¯“|â³Úó ÈçOɰÿ)ü—Èþþ·„ùëTÿ¿„ïø!õüO£Ýä“°'ÊϨù€<’ßø½û¿È[Þÿß ÿ_‰'¿÷”êù»ž›Of¿óO㻨Ÿÿõ¯ë÷æ(ä†ÝB|á~»œühú>Ôß+¹ ßÝ‘Î÷Çw+ÏÝ7`§_fòໄ²'Ê~m¿_ø*ï•«>7ȇïþO¾êÇn¢væüwë;íb§”}^~Dßý¢^ìöúޱÓKnÿ?)ÿv¨ûðØì?²ûx;åOvû•›#‘øaëþÞs ÀùûïÇkßnÝ §Ï~ô~âÃÕ×ìà›K3ŸÄƒ;V?÷„ÜÈû¶ þ_ûÞ<$ò2ýÞj—ý¹û}ä™aùÙ×ø>³ìž?ºæøgxÓ3 kW÷aúy#O;ã—~>j>zÚhqº9g­}Áß.Ÿ³7X¿3ß-iÏ»à…Ù'Ì9œcß×gÞ³[÷[|sÒ9§’Þù™ó©gFº<ï=pøcxâq¿»ùþaÙÞÆ›ñá–å6õœóÇôÿ{>ñø rï]ûrîWÿBÎùŽ/ç…öׯW¹9 Z|pø¾ødò‘ñ«„žáÛM¸z…òþ£<Ÿ8âáßlG?3ü³ÕN¢ò>Ï#ïµâ¹xy¿ƒ³N=«÷_{?[æ_<ò7É'ñÚvRø¹J¸rr*r’òŠÓÖß™wª7ÒŽiÿä»e¾mOÒ5=mtÇOåéÈ{ƒì o~(.X¾X>ôýpÊãwŽ8|T;ˆÞÃ/³w( ß 7=ñÎèÄ/Ëÿ÷#?þ…Õ¿vCÅÓpÒòÓ_›êoí ¹ ×<©úÑË&úÔ¦o}—ß¡•þ<´ü‰/ðÙ±ŒÛô[ ¿oÜžY·;ñÅÃWðóÇ•7øT|8‚ýå÷a§|üõÌ{?íÆM?¼pôûÒCåzúÇUŽùB8ý×û=ÿ9ç¡QÞ‰”Gnf{ž[~oêwøìòùJÊNÚ^~õ§îþÕ7yþIÆ‘Ýhëˆ–ë¢Æ—Þ{v¦åŸuF×_%}ò©OéSÏ®k>_æßxž¾¬oï¥}»,¯þä­Ç”#^Öc}þɲ½]G%¿-þ`“_ïeféþð“e=»M9³¾Æ§ß¯/–ßý£æ£§öþoæóî³áXP¸ûç|vüWç"¿Ä³¿w.çÞ¿ò§OáçF=z_8ô#}iÊëýè”;ñ1ê9ýv“|´×>?ùÀ%ÔJÒ;cK}3ô^öR¾¯÷µ7᎛v­~¥^yq>?S}Îï”ógúç³ð)Îu;ǥ߀+áïZâõ8ÏåÏîË…åz¤ç×Îs{ËçFÞӻ𛩼櫽ú#´õ…ïagëõCê‹ÒçˆOã\=÷Þî¾6ä˹³skþ k¿&áÚÙYåæg•›ê3nw2®ônôÑïÞ[Ž?ý!ý>üŒ|ÞMú?gœéQéñá\þ’çÕ&8zXzôêSSzÍ·ÅK:õi=Ÿ_ÒwG}´óO£>í—¼ÿsÂâé'å+Ç| }p ï%ß;£<¸ í‚ËÐ~ ½o?%¿èƒzÜáY«GK».™ÇÌ3ÉßwÒüRÿ¿ÉÇoå¹úðHn~aGLýé ¥§o£?ã–AþœÍSwÒï×Ǽ…š7éÉÍŸüFO¿®ôçüÆÒ÷+_;PxHýCþŒ›y];j?1õ¹=Þ Óóû øÎøžª¿ï€ïÝ-íÊsí­Þ”çûé;¥ÿûùê?ã£|Çfÿ(ŸÞôÖ¨¯ïÐø¾T/}uùþA¹Á—Ó.[ý+'á®R/~*;®C>ÔëÊhWýsË7ñ­Wð9Õß—G¾õ7H¾ó^½É#¿Äò»<Æëå“ßÑ®¦Oy·ß_ÊCÓi¿rBáÌìêN? ø¨ë8åç¹úã·F?àåÜJ<ý©Ýø‡ÜTžÞ_Žãl¿y‚\uÞø—ùX¿é¯Î£Ë?æYÏÿQ^í+_¿öO;‡úÙWu½öwÊtäX¹ø¾2äJýñE¿; ÛÏásü5÷wø{ú³7ßèñ<ÇæÿâL´‡yIºîK†üÀ“ô{§þI¯}ß²‡Œã˜×fö;aÞÐÞ1þ;íS¯åw åã?ò§¼ÎGCþÍcµç›÷öõøúÑÔ¹„öuý‚/´Ë{õã[¼ÿÈ÷Ò»W _üË^Üþ˜?Ýè½<‡÷ÑÞCð7‡Ês™FùgÒ¯¨ó çìÁ¹gäçìç$ÎqŽËŸ\¦úõ£_ô›vŸó£^gFyÓ/í¼b?lÜZéGX»´C?¨¯s#çVÚcœ~3ò‘Nÿ;G;3ú¿Àí¼8Ú3íeÎ{gÊ;…Žúé·yÏL»…/ŒñuÎg½ ?ñƒþ˜çyøÛ8Â!i¯ñ–Ÿúª¿sGùO{…ÎÏ~5ÚsrôOï­mèÃÊMõI_%_ç£i_ñ;Îï¿ý>Ï+᯾K>üb°k÷yÚ¡=Ú‹ŸÒ.õ)îèXÂôêqbC‹Ûúõ²GNç9å¸ß¸Åy$Þô“«àÐR.}GÇEûfºôGqiú=í£¯è{íÏy*ýJûC¹i_õ0'?ø­—ã\ýRú§z /Ržq1žú·¸¶e¿¶¾êÃÏï½e¾³Ýâ·~)Ç8«ç^~ú£zýÿé²<ñé‰VNÚ]\Pâ=´Üè?íPþWË~n½õë±åû¦ý0ù·z=õMØÏ8=cËM·ÖŸà¯¯—ódó׃¿ª/Déëñàz§æ3ûw´§ã.Ý'Ë|«¿Uþ¿­ýÏÄÓ-ÓÃç•¿µœ‡/j_€½€Ë|ëÿ ¿iø‘óÚ5ÐO)ïaåNP½«·þnÉÇX{iGñ'M?´N%<í:È.þJzÏÃÅi4ßô‡þÕÿß,Óµþé¿â&'N>RX;ÕGûNŽø{#þ°û0íM¯ö‡öÌráFÒÅãÌþUã¡¿žõ¨?޼ߡ‰§ŸáîÔ=9ê£|ý /dü½‡ßƒßñ>ëå­Ô„Åžr¨þ‰ÕÏxI',]Ê}h¹!÷§ÊÑà‰­œýײÜòÃC•c>ørÄÿtðÃ/Gîkð“y³öPÌ›æó¢ï >ó\ùÉø“+õÕÎ_.ëÝñÿ岟vìÊ<;Æ+åßœzZ/ló_öCû#üÒïßwË|Ëä&üÑxø…<éíF¥/>44ëݦWžþúbÔ~Óøér Îy#Åÿ•¿!/¿õøÝHg> gÆ<|zfÿ¿Á^Iú­ßÛð[×ÁïÆ³N““îßÒ¿ÕuÑW›tÖ5¾¯ÝÁi}2Ò©Ÿü„ÃO]§Ûg\ÖÓ>û½îþÄú>ùu}D.íó¼ëzíQÏ´«ýôéèOùÛϸW ½s‹Š>ÜËo®»ÚÖ{ÂòùdîøY_‰—úöù'Ë|»Ž×oæÅ¤kýŒÓ©OúkǺ|ÍêñÍ2Ÿiçªå|¼lß¡þ[#Ï}ž9,;'qþ¹ì9ŠçÎ)=wîäÜÏ9ɹÄs¾«ñ‹S u¾àEzçVÓžJñ~ ;r>&,?çÈž;G¯ß‹¤«_”„õÙQ¯SIW|YÞëõ~~ôï³£^òsÞ4ýp?7Ú5ýt(çc\…•{bäsvÔO;ŸõP_ç}î¥M?¥‡ù­™~=æ¹Ü~žã‹‡k{j×J}}~¼Ÿéœ¿:<ûwÊMõÉŸ^Ây>}×ÔÐw9ÿ§WpnLKÿÄPõ¶‰O¯&÷ô黪—Íû‰ºž|¥+îA9¡ôñS¯Üúç9}<}ÒÔwN½úU/¥?µ7ééiô|<=…rÚ.íI¾í‡ä 7@?ze´Ûxè7z"åM¼J¯!¿ë£ôµôÕëý›x—5^ò»0úª'þ©?¹þ¨z5åï¤Çwô;—í|x¹™ã0þi¿%óbû}ȉöÁ¿°Û€¯-ëW¾2žíI¾õ“7øbÆSoxõ ·ì½õ{›çðQÚnŽü«6Nc\«çK||A^Ê×úgÌCÕ+æ99‡W P/ãgucÌSúQÿý>úÎçÚÈ_}½'7ÞÏxsxcÔK¿Á¿ú7óqñ¥ø?õ(ÿË<¿5â¿Îcüšÿ&ýQãWºÒ•®t¥+]éJWºÒ•®t¥+]éJWºÒ•®t¥+]éJWºÒ•®t¥+}šéö¾Iè3}~ïa|½Ñ÷ÏìÞ€xðÖϬ8€•>=´÷_áÓá@‹o~§÷£÷îÿz_¾ö…%®k¥+}’iñfðÓð‹ì,°?WÏ gûÜÓïè?]/¸QxjxÖ‹£^ð´î°ŸGW -ž|áùá`õ\r•çý~žŸÎóK¡ðáðp•êóò¨Ü+œßùP¸L¸í€CnQ}‹úêýúÊÈÚ»ò¼ö€ôⱿ¢ÙkÕîQ¨çÄ3û,[<úÀ‘êÏÞ«Hùî èG8|÷ð¯°ûÅ +^sàØÝKyqä{V?I—0>À‡pÐ/|à«õÓË#]ýñæ}ìü ÜÀªö¹ïÿü›Qo|h¼ð‡ú]ã¥ëWlȃöN{4Gÿ¹gS»6‰çÞ¾­fý gë»ï†{zÆsÚ7žvˆ”CN•oA.ð™øÚW»DCŽ^í0þîÍœõ7%}ï“õ¾~O|rŽïôüµú û£>Æ[þçFX?ôþR¨{3}N>Fj/Ü»{4çFý”§úõÒ(_¼çFÿâ£Scœž¸ïRëk8îïÔnöw›÷îË?÷æjß$ù}8Ÿ¿4Úùür\j·"ýØ{¤¾'ÿÞkÔÃ^Vïwê/ražÆoøG;˯G¹{£Ýéçi?¦T?âsõ{aä+¾~0ž'Œã!ü=í°÷VÞ»¯ûüh7þpŸÌ|0í³›ŸÝ3½—|Ÿ1?8ÿíýÔôtê¥ßÕG?+ŸÕnRž‹wfó¼vQŒGï£-Ë­]|ûMâٹǻ7úoïáä¦÷Š¿ uTý¾Ü”×{ÀŸmè{³~#\û!‰ßû©)¯öP’oºi¯õøvYŽãÉ_½v϶ön¾îA3^í礒޽ƒÚó÷kN¼Ú]`Ãýní¨=ŒÄWoö ä÷Õè7íLØ}ùÚAJ»vî7ÿô›öDn?u\Ügθ¹Ÿßr#׳^ì2à÷ÞoVÞôÇÞ‚y)ü­_:nß÷y®_[Îȯçmê÷ëe¹½w­~ø+ãÿCrS{%술™‡k÷ ò^» (;0ìvØU¨?­¼?»lOíK°C¡^Ÿü¤c‡aØ!9È÷·å©‡ú±ïà¹óË—O}Ø÷¸šòPn²ž?Èþû ç¹ÿy{xYGdppE¿çù%éÎzùàš÷ÉO¾¹wypYº¾žrsNÐz©gö]¹Ÿxðºç¡¹oÙü.Žr¯Š¯ß’î\ÓÉG{Ú¾Y¯ÄÓNí™ïÏ+gÔK»´Wÿê×)7vz^õ~c¶ÕOyE¿$|c´?H/lÜ.Ž~½2úG¾ú©ã'ßÑ¿ó}Ç#á øC9¡Wgûô[Âúc¶ë >0^£½yOú çC×ËàwåãKã‰ïrŸø çS7sò½©ã¹°ñKzï“oÃcœñOîïä>rÃ×'M|ùÍ|<ë|sßvÛ^Ïßûò«öçÂÍOû<7C^¼W¯[£>í/íãwc”ëù[ƒêùë'í½©œÑîö‹çƒ/nŒünŒ~Tî~ÓóÙž„ßíŽSûŸ<‘ÓÁ§É÷åFÿ’Ûë£ýÊE¯Š?ž·_gºÑïäE}Í3å/áA¯þѿҽ>ø’œô;1ë£ÿŒ“|Ƹ¿1Æ¡ü2æ3ùåW†œÎy í7¿yêwfðý£¼Ùï1ÿ¨ÏµFËoc¼Ì‹ò5^úOûõwùs̳ó{®ßÛoc/ÿß9ö)Wý­|§:ž£^¯?¤Ü䜰ëcaþ„­'»^Kø\âY¯Zoæïµ×ú¦ë¡Ä·N}u”'ßœwv`=7ñ|G•_šzùÞ_R^â[·hÎQë÷¹ýœçÒk‡°ö_å^”N¿Œþ’ÞþK=µËxØïXϑϋ£žF{^í×ß/+oij/³“ßeã>Ê™ý€Š?ëñÚ·ÞcžóÏyLÏï¥~ú^}ùkP¯ðmí‚~6ò9—÷õ+‘pú±çžÚAÿ)½öÒ˰ßW;~yžqÝñ#‘qjÿW‘úNýTõ—iú¯ýpU^¨~¡—1~Úáü÷kãpøÌùvë­_õÇ¿,ëCØz)gô׉Q?úÇä¿§ßNòÔã”|ò^½¼¯ŠÄÓ?ôÅûÆ)ívTõûÊ =ý=ýsíZ~ƒgPÿú‡ e·‹¾—ªÚ;Kº×F:8„âr†8?ú Ÿ¾:ò…K3™~“ÚŽ¤£o„‹À_ð&/xçGXý_Tÿo’øð+øY?™'.Œrwìz>úsê[ëozôcí¬ŽñžvT‹cH¾Sÿ®ŸŠkÒNò”üÎ/ëSþ3ÞÓòŒëÄÃ/“çŃ÷Px„‰g1ŸÁ7Ðãf<Ž—÷¤Ò­?¹ô?{†õ;fœç»ÌSͯ~›CÍWs>!øþü(·8¸„kGtÌ3ו—|&î iâЊGåvžü{~Ô³x¼¼‡{eYNûÅ|¢Þìcâ{òpu”óêèõWŸ‰Ûþjš¿ž4Úùîô_ãn¾6ß™Ç&înàs·~ˆ“®øØñSŽuLí¬†Z§Ôîrâ‘“úgKØ|ÛïròŸr¤ÞÓÏžúüq”ç;ƒ¯­o½7ïû¾L»Üp—¾§øNªë勞DßuõKºóy9lÿ«×¹å¸¬ôG’û ëaëtûBüŒ/÷?áëãã{c}V»ö¡ÆýÌ(Oß™Ÿ!)§~üò^zõúÍÈ_þf´óÄàÇaç.ª~ľ[¾/Îöäæy÷q{É—¹î7¿†µÏ¾ þQŸí3¿[Ökâ Ûÿ§óþ—«Üü´ø¦/B¿ÙŒoñ]_oÆ£ç:ø/Ï·ø´åø?&¿O6ñà‹WK¹Å•%\œšzI÷é&?çtõ{v*ÏÕ/éëM¼ÈKßÛOç}Ï«äŸv¶Ÿ>Îûqεã?Kþ§—ýXü£s»úíJþðnŸ']äµå§œsÿ7üÁù‹å:b¥?-~̹k¾ëʼnÑ'Lü\æÃâ¡r¾½“/}‡óج[ª—¡Ÿ^ŠžÈù5}„ôâ¡ðZÕÛ%œ}tÛá¼[¾ô$ôm§G=ôÃùCÞÓ×è¦õ¥çÓ_S_ÔþJ<åê'x8ùŸ¦þ£}Õï¬ß›ŸDn®¤Ÿáœ.…6œþm<§¥§þ¶8Á¼§Åÿ—FN'oUHêCoN_>ñÅá…ÒïW–°öÒ—Š7q×Fúâ²B‹çazõ(.M=õzåýa8…k£_ä«éUõKêsÔ|ö¤ÑZñWøuðãÄ£µ\ìàn®‡Â[É'~<ÞòR<`Þã¿â¾&Múø 9ÈýÅ–wKùäv”û¦ü—íÙÆ“_ê÷Ö¨ÿ­¿mžÃ»Ýúë†Â)6Þ~ꡜ1¨/üÖ›£ŸõÃÄñ4œòÞXÖÿ¨ùìI£[\\Æ>äÚ!7ŽáÛÍx5߉ï4?OüiñšøÂ|=ø ŸJÎf=F{Š÷2 ¾{sÈÓ#þäÓâ2Éÿx_<æh—ð[Ú?¿»ê=òŸ8åâáôS¨~ØÁï­ró“Èu¼Tï?x>€C³.‡ï+>o|o¬#ÐâÅä&½õžzǧ>cýrn¬ï¬{”kßÒz¤<ûëœîs¬F{Qéå§þ;÷WбN»’çÚ¡_õqfê-ÝèwíÕÿú­ù,Ó5Ÿ=i´x(ø+¸¨Sé÷“yÿÌf¼zžå~Ü^Âÿ²œ×zOÔ9ÓK#þôO‡G6ý1óó;ü]7ï륾ŃûªÅÑ}’v}‘v¿9'qž1ü°·\ý£þ´¿NºÓ‰w"íL{ŠŸs.wlPù|]Ë…WSÔÏÇV¹ù)hï¡ÓG»7OOI_Pýc¨0}ÆÙ¥ÜÐîàÓèéËáðŠïJ}j'éÔƒžòxâ=·,gÇxäbŸ§ô0ò›83¸1åÏ’ôp‹ÕC%{Ê%ÝÉ‘_ä¨ý7íÌøú[¿ÐÏêÈYÛ‘ycâ€Vú#É œ¹Á·ÃNWõ×ôøôæYwTÏ ?x¸*áÚ½Ésø|°ŸôêQ\LÒ«'<@qeIŸõ[ù{Ú©‚cxi´»zü„éoáëÿ;aóœzàcõׯþRŸ‰ŸÔïõÇk–rÐxí8¯½ë÷f¥?â|qûý ß}sù3ûò»wþº ¿øüó—|;üÊ/ñŸÿÖ2ßCëñîßþûÏWöö&¿‡n‡zðÎO0ÿÅ7W¹Yé(7üEGú|ðÙÝ;‘‹;‘›wæ?úvø³ò“xw’ÿ8gÜ©Ç;ÉNõÖƒå¦r<åœ?î[‘çëãýíUnVúcÊÍà¯ú]Ïüí>¿ìÖKù®4Ýãýµÿ3Þ/×…[~ÿ~~¾{m¬Ç®y{ŸEþ _å¯ë´•þ˜rÓ}Wø®û‡<·¿b§·÷ì7–û¡ÉßŃÛç{0µ7z&ñá¤Ï=x}W¼§{Î3f}Ïïå‹ë¹ÀJyé=Ëqþgí|ëÙñüô8opÎá|ιà±%ßîåïÜz8Wÿdóœ½T¸ÍÚËüx¯÷8¿ÍóÄ/5ñœã5ß{·ÏZéJ¿ÒÿÀCÃ?—Ï.~=ÖIì-|·áÓê·Â×½ïϾCô+­Çg›ôÕ[Ñ?å®ú«›tÕѳÑë }SËO}轎ºßWúxÓâŒ'.Îùxž{å[vQ=?½äËê9é_é{‡}óÚó„g/‡}Ð|>Ðú>?Ú!=­rÏnÊ9ê~_éãMËWppýøÐ|ŸïEï¿X}=æ{x‹S{÷øx‡Ï_òå{rˆ^²vË|¯Èã™CòßWÎRÞ³?`o+ë(ë±í}Î Mòú OùŽÈz|ýOëÅþû—©×ßÏïµóþç2ß®Ÿ]×i+ýçiñ0ð*™á ïÄÞý_ß;¿âçÆ¹ÙôôßrÔý¾ÒÇ›×âøR(\QðüűГÀÉÐS^xð: ~è'k‡sðkËz÷½óéàÙºßWúxÓêÕáQnÒo.õšôìôówsínî‘Þ½õ~äëhöwsïgKS_r„®÷Ö®?á §}!ú2¸Ió+ÿžôôž³ûÄΠõÅù ÿ´\óðaó/{Fæwóaõ}òÍ{åÐOÂ+^ñ´Ë÷ÿà ׯažŸzpývê{qÝO?MÔzw˯ä"|7ÇŽ½G8á‰o¯}Ëe>->ºöø6á¾gGŒ½%û8`úHx÷ NŒú{8eÏážéÕÏ'|ÔoÜw8´_^åæi¤åóá?“»ž=“ó¤ÏŸ.é„í§ÉÝØG×?¥ýêŽÊe:÷Z÷€ž_òõÖ/êˆÇ>÷—›|¶÷avwé33ý`ÿ­ö“ž*:ý!T/>õ%ÞÞæ×{†ðîÒsDîÐÚ#ûÃ2]õ†r…oQõ‰¼Uÿ'’z·=ôóüF¸7™üª‡ägà‹å¹oÓE^Û_CþWútÒò{KôÈΞ?4×Î@ý®$>}ÜÀníŒ%ÿawµúp÷ôÝãWvÄêß&´~ý¼OzúpöêOÇû„Õ×½üÃôŒ¯¬ûç§™níŸ„ßØ7a·åæ’?j†]"vSêWpïþok_Åû„s.µ[ùIGCsU;Iµ3¦ÜPvu¦¶a¯eǯÚÕ‘^üÀï¯ô餷Â×wöîÿÊŸ¹ou{Zwö7áœË6z[|Ïÿ–üBßü~þÛúÍ e‰]3öÌrïëàöûËçì0©_ý¥¢òÙ_ÈCÛ«þìF ßþëC§­ôé¢å/ö÷ð+þÜ‘“„£·Øú»Äwø1ùÞ~ðz†=¤­ÜŒïÁ˜ïñïÖ®˜ïWⱃ8å¢vµoù­ÜÔ.bÒÝ\Öo¥+]ð¯ù˜}-ë*öËØã_·ëüxõ+ŸøìÆ=x÷ì°¡Ö[µSfb½&ÞXM?–ö-×ò~Çße—Gý/ºî_Vú}r“ýyÏ“ž ßí‡Âý²#6íuà Ÿ e·ûÔÞýŸû-Oþ§‡<K¾¨}üÀ7—ïÜ^¿þ:C?êÍž™0\¾óvþŸ{ð9À¡ý÷ûU¾žFZü!»bß„FŽªÇ<™0»`áûê ùIúêoN>V_4õ3g–|Ù÷ðì¬ÑƒÒ#ýfٮꕴwo™5ΟÕçëý/«Ü<´ö½àدƒ €ÿoÃ.½&½áôë|ÌN¹/.ù­å'“ü¦½0ÏÕKX=¦ß*þ¢È9<€ø—rÝv=¤ŸË)×+]é“Hkÿ‚_Âa·¬x;ø!rËÞ†y&ëØÚMd‘ŸSþAá–„Q8»×Fùpu×Í©Œã>Bq׿½›ã9Ü ÜæÉѾÚY þ'WºÒ…\÷ý|ë{Ÿçißæ¾ŠüŠÛKøJâŸMzë]ß;ëÝóK>íw’\ˆw §êÞΩä÷êûk}ïj}Z»¼£þ°lÏQÓJ-Êþs×sûž_áÜà‡êgÉ>ËýÎ/÷îÿàöìë÷ÿ‡OÝ#•OËý|™íE'}Xï›’ßg’î^òÿ avnÒîæŸúŠWÿŸÇn_·Ò§‹Ö~Ëo—üí}qsÎñàÜÂÎïêß”|9WŸ×ßføuëß3ùæ»Åþ@Ë?±wÿÇNSí:%¿žûÉe§æTÞË?rÌî@íDÎvüµ~¶ÊÍJwéAÎæ9{ßÿÑóL›ôC¹gÐslö0àîàêØñàWîÎ9û87iýœÿ³›£psê¯áâñF9ê}^û’ÿáÐCì®ôé¦ÕÏâ£qnV}(ü@õ½hÒû°[ÿYI/¿QüDU_›ðåñ½óž~öâH_çê—vÁ ÃSÐÃò—'þ•u³ÒÈ ¿€õï7øNèö p:Å¿M~|üæL÷·M¹üv¿»ìõóYÿ‡áwx¢úùT^ÂÅ)ïýeùü=Ç'½üÉߺN[é÷ÈïÈäÿúáüß ù(ßÅßp¨pGæñ×_ãñë?zÈÍŽ_]ò¢^žKŸøòm9äi”[¹!ßcÞ¸¹ ¯t¥÷ù‚½Kû…Ëcãþ<›õ–ýyƒ{³ŸÈ}ÙîOàìÜ ²Î‚߃§»4ʯßú±>ã”ÿT÷‘ÜCze”ggv)á¿££üá×`¥+½Ïü^Þ ?û›Å¯¹ 'ì½s­¡ü~¾L¾ÓΟû­-Ïo’ϼšü·v¤oÚ)<z,å¨ßÄz>ì´·>ÇÖuÚJwiýXÒ×ûåôµ“þ݆«‡¡o„oã§àë ¿Ó6LŸx:4|¼—_ŸO?Ê¡§úŸ»Ò?3âÓËŠ÷Ëe=‹ßÉå÷Eº£§•>Z´88ö àŠoËsvpص*/| gÿ'<ü{:WG:øö|èó«ï=½œÿ‹ €gçØwsߢxõ¸4Ú—0Îá Žzœþáñ}óñ®ÛÁ¿Üû|¹‡ÆÏ^ýŒñ3)ÌÎZΟj×_ðW‰®ä=hÙ¯×>`ðh[»¡ì ²»ùÿcïýv«:²íÿ•&¡¡›N &ŽMb066ðÒ}ÎWúÉûòç9x~®rå}‹tî¸â)iÑBDµ~'{ÏØgNÈfáå¹oÆ®µªjUÕª¹êÏ5'þñƒIù±Ï ÏŒòÞŠçØŸ§Òcw?†~ŽÂÈ1rÈs‘/Úm‡zR.ž«òßëλüö~ )ÿŽ®ÿʹÜ#7¼'íGÙ~%ö"oðýÕuõ³izõ훎uŽÙãÆžú#ö1áWb×?‚ôgú;ß_úë>ýþü }ÎùE?ós(ý’~N?ÖuÊ»rq/ò§\ăz—ïÒÙÎbä‹\ïÄ8Å÷Ë~AU>Æ#ìXŸð}hêÑw9Þ½z_Ìè?ÌOVÞRà{‹=7üfÞŠþâù¨økÑO×âyôäôîw‘ß"å +?øÄ”ÏvJ»§ÜÇo!åZ‰~ü2ÿWt^'ó>xÙ”‹ò0¿ŸÁù“å¹ñiï·'í:žžÓèç|á)+ÞQäçxÜÿ±[N·Ã÷*·ÐÏU½\¡í+Ò´íDzÕ7퇺]ó=¨\yžý¤!ü×Ñ —Ð~ñ´ßk=v°@<øŒ\×wÜö °ë=ôð%Ñ·À‡„߿ԹVçOø<ùèúgñ¼ q}1ò'ô7’Kû[£üèSÈo!òÑ.—£¾ØIXQøR·ÝüÎ(_øÓ—¢¾q餡õØÇ؉³íØ(½ÃJ¿NºÃKFïïz*ê“z}ò·žŸr*=ùS¾kÝþìrQÛ!z„?uË#¸Ò’7pÒ0¿C}—çëƒ|ðݧ¿mêýÒO¾î~÷ÌÛG,_ôϸÎ÷ÖöwS.‘å¿rL?¦ß¯F¿§üëäƒÜdzÝ×úÝã$üÊÅ}òEþi¾aÿ`ƾ/åü:ê™<ÆCêM>ð·ÃÎðICÏgŸìzÌ|8Ƽ*ýç<„yóì8-¨_Žü± ÿÿ¯‰ðÙ˜.+?æ…ÜgÆsÉ—rrëðeþõ…çBþÌ÷˜—å|ôrÔó1´Kò€x¾ÏÃ1ÏlÓñ¼~|¦t´ëb·¼}÷—ߊÞ9ßGOzÝù\¨ï@úñúþ{Ýÿ± ³þõº;âù¾ú÷ )H¼ôÜ—ÝrxÿJùðò%aü„H¾X³®æœñ¡ò÷>›Ð<Ê÷}2µüŸëÆÿîwQ¯'Q^ö•B¼ÿÈ~%û…çTÎðƒtÒpª;Ùó4óVØ÷L½‹õ zèØ÷eyM¨ù¿÷‹áaÁKç‚>c)Âiï‚}eø,ÞWV˜þ¯½ z«ñ|ö±[Eù¯Æ}ê±íA½ÒþÏC/RnôRèaÜ.Ýþ4¾AøÍùõÝo~s»}²Ç×{EèѱGt7Þ3ü0üÂ㢟Á+߃ñmÞ{äŸþ¿4ä½;ù¡ÝŽü¯Eþðgx.òÞÝ<"Åã:ñmÿIaäKv¬­¯D.ð‚þÞ}-é¶£æûU:ø`:Ïè~ý’‹ÝÈžØ WJœ¥œ|£|7÷ºñúnÿ“‰æùÂfþ³¯ëðÍwo&? ð˜IÇüë¾ÂæY*=¼5â3‚™ö3áO~£tÌÛ”å€' Íò­ø·)_w~ÕwûžL4?+í2Ãk\Q?ĵù‹BÖ³œcaÝËú=××ôkÖKäÇ>û“¬çÉ7÷ ¸Îzâj÷y®ŸÊïðõ’—ÂߎÞÇýNýÐç)ÕÿÎ+Ìþ§ÐüDìÈž¡_ IwV÷µßæt„äûI<~$|ÏO»ùø>üRµé)Ïån¼¾Û¿ðd"üDó&%GæÆu‡ŸHµ˜¼DÛ…xÖ¡Ï{Übò-Í+å>é_+½Ê7n=ŠË'9uúçÂ'Ýñ§°ðÿ‚ÖŸk&?ëµ}½íwÖ—/^´¯K^fø”èïñE¾v`?>&ø™ð à¤*ø”\ÿ¶°4~ ýUú?Ûc1ŸYýrIx¦;n˜ò2µë¢ëJïÀ<ú9÷_*?­£àá›OŸñëµêÃó©å…ÿRþÖ ßEnà…h¾v¤~Äv^~Œyó æg’óY°£t¬?ÌG9׿ãuöÒ•/çÀ’c»ý*?¯›$G\ç¹>/Ãü/ü þ_Ðëdú/ü öÇ8ÏÈ:Ûûn Õ]'Lý25“Ÿín°ÿźóõÄã¼2ûcé†ô”oQñȽ<~år_ý¼8‡\Xø›ä=$öfàµ`‡ zÙ]±¾Þ‰íxè:veÐ/r é÷¿m¯ï=lÃÛŠ~èVăƒÞ} ú!óz„ð„à±Ü¬q¦ðwôýØÚІÿÖNˆ¬ç¿/Äþü›û ÿ§äÞ üôýèáÇè¹â¹Œ/õù÷•î?Vº× ÿ‡òƒ¿ç=Ä~Õäé~­o ƒ¼`—ˆ~j»dúîÃ'„oãqD¯àžò1F×eÇßòb{3ÈãXä‹|Ú®“ò‡×f¹SÞã"ã|Æ=ž})ÆUê…|b§-ÚÇíÆ¸?ü2íy ü‘gž§úM߇â3®»ý «<Œ£Œ×¤»Sãè\å…~x_ȼ;)'¼'æqôæE|Ç‘#óxÉO÷É—þKþXòˆáÑП=ÏRzxÄ¢ÿS.ò³\+öÚàï`ï ¾œì˜»ýh'æ‘é7—çÐ|?gì¤Å|Ñå1_ 9g^,¼íÄøÜ-gáï,7|gᡳž¶=2½ÿM!¼uøa¬·Y'¿Ÿsœ3à{Ïž~šç8@³æHÏ8€ÜПø.#Øcó8Äs^Ò?}.€ïIôoêy#Êé}åÏy%ÊCû²¯²ãç'Ò.aòˆÈ‡}ž¿VãÍ\å†ö^T{ƒœÇ®¼øa¼Ï?EzΑ¥Ÿó%Å£Ÿè»íüéð×Hç}0!Ï÷¹1Ê¥0<6ö©¼·ðS>åà áÑß)òçýýä‹ïü$öó/ú9Ï_ìÖÏù&/ò]è–ÃÏ÷9>Ýÿª›_áï‹Öƒ¼lÛÙvÌ^¨ýñ³ü¬}?ޝxæÇ|§ë¯Úx~æ¡=¢Ï‘|YŸ#ý éÌ“!~Ø÷w9('ò‹Ã³ sîù¼ÒKN}™x‰ûù\éµÒž™yxè—Ðý ø¤ƒÇG;ü¤rá×úû›ô/}ºGÝv6êy~O¥š+Ú…Þ£y+a'Òv#8O|ì‰úbo"ýÛ¯3ò†}¡õùä§~ ÿÆö2à㨿ºÎï|·=É×¼ ÊÁ{ù8êËuÚ ,þÃ|å†~¢÷g¾Ø¥@x_؇gÃõ¥èwðÅȾLòÛ°÷‚=pYùDq?Âþ ÷É^¼Êoû0Š¿¨ôØíK»5\¿”ñCnøNü9òãù”“ö¡}±ç”v‚(_Ú]L~_ïû”÷³îw¯ð÷–›øNg¿¦¿¦ý"Þ§ísêþ¹î÷Þ±íÅ÷ÒãùÑ.2~1.Ás{ý†ò*ŸÃ×ÂW!_ô?Ê…üÁU¿3¿ûe÷{îqáÇh7¾÷„‘ÛåŒç¸]B¢3ö­À‹Ñ~~_mº¾û×P¾1ýËóŽÇíûðú€y¾ú…×CÏ_ýÒëäFó Ÿ‹‰ó2Ì×Çê^§¨?xý£ç*Út]¤rÑ¿m—ü…0×A’ç£r²Î@Hg>QÚc¢žj—ƒöÐuÛV{úv«(÷9•Gï!íj{Ýò]·|>gÁ}¾#ªOßýk¨8ŽñÜýšs_ìÏp®’ðbW¼Îf¿‹}-ö•Øbý/òc?(ýpÞSóï£yßMñÉŸý«•Èô¹_Gþì«!·Äg¿n¹çvbß-÷ïÒ¿Ï£|¤ƒççèú§‘Ž|hø|ħýhgò¿Ô-oáï,7ð½Ð¢/A_Á¾êý^×Óžzë¶&…áåX¿#$ôúèSÓN˜ý¤q_é°§„Þ–ýgÊa;OQ^üRnüE¡Ç¢\Û!7”½Ônäƒ>Ëþy”OÚ½"z\¾+k`–CñÍD®iOÅßì~ g¹A/m;b´»Âè#±«±r€üÀE_Hÿ§Ÿã¯ð@éàÍÀ‹!ü8ú‘ísá# _Ecǃþo{:Qδç†>6y9ØïØêÎ{lWÞñ­çU~Ô›üí¯QaÚÁ¼Xâ+Þ^´—ýµ)l¾íHýÚx}÷¯“ŽÖGàgèz7ìþ°¡~‹ÎÑ_˜ß0OÀž%×S/®õ„ç1œßy®ùÝkž§ûž)̼çÐ/W7bœDëzê~æ6ʽ ç¤ž÷eÔ÷Z´<$ëO…ÌãÐ3þ1þ°~´ÿ^]_T˜öƒ?Àü.õ¾Ìï(Ÿî÷ÝïN:zÝ’ü€»íëþ…ŽëÑ?xo̧™o§}VõŸcË}üŽ=Uˆyë`§£_ñ=µßh!õa>C~ô£%Pñ­§«^¬o¨'rE>wû«Û%×1´ò}!ú9<ä;×'ëÑ¾Ø b†ï å·?v]?áön?Lý>ýƒý/Çãû¯÷œ÷}n“ý úwÚCæ;Êw~£~N¾î÷ôää“èGìkñòM{9„õ=÷¾Þzù²n¸ÜÍ×rŽŸúa/çœòYèöKë÷ÓÞù™î÷ 9±Ýùïc\‘üÌØ]W¹Üîð⾟Û³ö~#Úßzxõ7ëCï`ý½Þ+úÊù#ßÏ»éˆ7Ò{3?àqäÿDù£—¤Ÿ’ÿs……Ê®ñ>±ú[êñ‰G}ÌúG7?ë—(Ï#]§_Æsœî…â¿êÊÍa”×ÏWØûÔJg=Kê³ôÝrû}Ô}.zë±ÈWræ°ÊÝwÿ;©h?bá÷ÍþÐûãçˆëkzoèµéßšï8v-¯²ý(¥ÿ=üI]úyÒuô¨_uË?ãOëäß2ÊÉõ‹­ýöé<‹ÃÚOu>”KvCñÿ7ÒºÇé®çõ(?þâÖ•?åÞˆüñãFù¯E½¨'~ÕnP¥ÇŸÚZÄ£^:¿0Ò~"ïÉåºIýIO|…oQÞõè¾ïÂß(7:§â°ö)GÚOi?zt‡þ¬÷Á÷‹~®}ÏѶîËîÀè6ñ µÏ5ºC|…u.t¤ýÕiyï6ýOaò±¼E¿¹ÃsK…ïRnÒqçð\žý^ûÆ®Ïí¿wÛIûÚnGÂÚ—Ý&é¹N˜ïI<‡|(w–Óï!ÊM¹âG¦7ya¹r#=€ûñè·ô¾ËÙf0ä‹ï&ß?ä…þ};ÒÑ/¸\Ð_ßÏ[ù\ÆäDñnFØý”~òˆ¼ÞÈþÉó"ÝMÚïEä;Òo;ê53‡œð<êí÷×KnÞMnì÷¹;ϘÞùZŒï–«5½Oæ;é'šyó(äÍ~gsž…\ÅuÒ­0ÿ®2Q˜uþvÉÏ~˜¹/´j…™ïØŸ-ré—„<¸¤·ꨯýX+=×IÏó(–ë´«Ÿ«÷@ynÄ}°ìô¼›ÜàG™õ'|ÊwåÇñYïqÔ(}ú¯]Ðuø¾ìQ<äë¼î×_R.óý¹¯øJg>3ûç¶§+DÎØ'dÿþ6甿ªc¿ >ÏB<Ò‡ý]Û¥>ðÈϪ\ð»/Fyþòæz˜}¦[¾™ó y¾)öCÝÜ?_ãÍ» õ/ÚöD_r\|ëþЕ+ûƒ}ݦ÷þ*z6ø‡ðÝÙ}ñÔŸÒŸ¬õ/Õ¿ÑǺŠo½Æ3!çžJ.ÔÏ­GAÃùÌõîkœ±ž‹ö ~œS…/ž ½)çÓ²œÿŽòc>¬žo÷Ë6<ã—ýúRµÓ}¯ë%7ï„ÖÇ¡7üË›ÛÓú@ôݱ¯l^‡ýÉF¿GBzäy°ÞRaÒǸæ|B/o^Oúçå:zLøÁÈ<ø£ð!ÒŸ‡óÑó©'y|gžœxÁ#3_^|·µ(çÖZœI_öl O¹áû¾ßoÂðn/>þÏ8ż,ô`S¿óô_õÿÏ"Î i\›–O×á‡3þ\ ¹ùª[._÷ù¤n¾……ï‚æq¹?ªŸ±îÒ]wyÞ•¼qÖ; 1^`ÿçi3ù™¯Ãzˆõκ¯xžW²Ž9£|HÿS÷9¹^šÊ®¿êÊYaá» ÷¡àÕM®ÿÏ:^ýíÉ`ïçiÏù¨ÿÃ{ãº÷ËØÇVÿG½ÇþaØ <3þ‡Îvå`ÆnÏKÅcí»Ú(üå= úôAðä´¾q<ô?É¿ƒ~@ЫLãuÓ[³ÏѺÄz.ô?ðÒn„Ü çAï|Âpaá;Éù<ê_ðcädÊ_P¿…·€Þ½¼ù £§‡ç³›Ï‰tðàO$/¾øQ£8¿éø²wm<›[µ/Pø;ÊÎAdÇ}´÷Lr£þÇ}É.»åJvÖG²>Ú{؆u{´G:õ{ãJ7=ÏÛãyÊïrü_Q®•μk¤óÔæÙä³[rSø;Ê ýK~sF|÷ÿòñ¬;~Ї—àíÝy@>ä9bœANïvåc*7Ý|§rƒ"—TNäº+g……¿I^ày²€Ÿ ¯uó#óÝtó>o ð&áî:dÊÂÃ#Þz¤çÜë.Ê Ïs#ÖW>ÏÀóŸznwãþ&¹±½^õ+öÉþÕ û¼ÜR¬'šÉÏvµ?œçÙ¼ÏÏçÙÚô¶÷ o>¼>xJì§?ù‚ìÑÿY…ƒ‡×w»žl´~äLÛŸ|Nrÿóztÿ…Âî«_š÷#¾ù˜‡#ý>çÓ­I>vEÂnÁŒŸí_[o ¿f±û|óÜ”¼º¾Û½ðd£í(Áo€þ3ý×À@¯Ï/ykØLÿ5ä ŸûŽðÈ4/œÚ®*?K5/Þõ _ø„±£x¥äæ­úþò°C ïQó ·'öK‘[ÛE¥Þ5O{+¹á=ñã½|ï×v%Õ¾kBìl.uÓÙ.$ïžVð£Ü¯RNÌ_F~ã=/*ä»°ðå±÷·÷±?†œÀ³Æn"ñá_R/äühòKÿm<Ÿ~м_ù[‹zæ;ÃwŒïrïûرE~\nä?Þ«ÇKòíÞ/ü¹aœH¿cðú?‹÷ïsm<Ï×éÏîçÑ¿˜oð˕¶®çòÞ_.( ÏŸç\Žç3N€Ìgl׳;™ŽOº=¾FåÈóËQ¯td>„œ]Žñ»oKºïs;JŸöÐYG½R×öTaÎEžSø'Õ—|âùØôy8Ú+Î˺Ø5#οq^GíH|ç—í”õ&ÍÏöÈs‡…oFÛ¡ãÜ0v¾àGqn—ýQν§ÿ±Ë‘û¥ì{rŸýQ}ÿ¦þÉ„<‡sƾ¯0ùyß”ò íMé;¿(Ú/»õ¦œ”Þ—÷‹õê}7ø™ä‡]´å¨GÖûn”Ï~ܨW´ãR”Ié(7ùñ\ʵ¢ûŸFù4>öÝ/?tœÚ T»a_ýµ7<ñ9/ÃÈÉv ïþvö¬çV<Ûß#¬çnÆ{å>ýÉzmú!é‰ò`ý8ßú·®oEýáMîÐA=ÇöÈ„\ÇŽÔvÔŸr’Ž|ó¹ŽL~\7 êŸüÒƒÄsy•ž°í͵Ïë»_~èèï7ýÊí­ëØërûGÿ¦?éÑ_ùîmDÿÍ|ˆÇ8å~Îw9R>Û‘.åÃò™v*ùlF:÷CÚCñ±ÏæþÌ}Ê›ý“~I;PÞè·3Ï 9¡ÞþÎD9Íãáùñý¡}çí(Oì“#7|™Ÿ3þ„þËó1æYÌ_r¾³¨ëÚß™YGÀù<òa^Äú€ô¹îYÒužKyr½a¿ËŠ·ëÒ1ß²iåϹ”ÕÈÏvÚ(î3ß¡(¿í±EzÊãyf´öNyù|ÏgݲÔ}oÎgEÈ<”r‘?å`}þy ߌ¶Óÿ\í~$¼óª½~ûmÞ¯Ñþ•÷Ç”nÆß«ÂöKûj¾¿ä…ð±Ò³ÿ£ëäg»ûuËëzÅ>œy]’3~¶ïÿ½úç#ñ[E=uË1³þÙ}^“ðSÉíL¾/ºÏ÷¹kêÉsy´Ë?»íA}HÏ>žÓë½{?”ð÷%7oƒSÞEÛ^¶¤ó·Ö#¢W@O‚>½vTз @Ÿ`;DЇ>}Û²Þ3û¯”GßCÇGO‰>i…ôQÊ ŸaA¸¤ûç•îBÜo+åGŸÄ¾¶äkjçIH~èeàåДÛvqtÿ‚©ע½Aôa”‡ö@?D=¨ßW¢<{zOðoàSéÜ—ýÊê<¥åKç°+ûáÛˆþAÑ>†ýÙR>Ù‡ï+ååT<⫝̸”ßå ûl¾Nþ;_çŠà‘öÝO šwöÿžu¿oðºàÁØß:ýOéàEáÇ™þoÞ(ß=üÁ£ÿã÷œïjÆÇ/2ßiäàßSÒë:üJúüb¾³ÔÕôwxªö7MyÏüUäšt!Wæ[RÚAù!ïßhçè׌;ð©ÿN·œŽé}ùÂÍÈ9 ¿ñ…¿"7´'ýùŽý33ÿPØ~m…ö—Ì|!æCŒ¤7_Q×éOÌ«èÏÌã2Lÿ"ü\“/òFy('ùsŸùãßc¾#‹<_aäz³Û¿,ØíÄþïÕ(7ñ®D¹lOP×á•Ñ>´óQÒ!ÇëQžàåúúÕnûûúõ7Ç/ü¹a?€ù¹Ö·æ+þ)ð|ÛÎ3|Fìç½j¯OÏ[uûËÑk½ÖÏæ‰ò|!ëÞ8wåtç”Ï’Ê‘v^áCâ?yO~#~g©O¦ã;B|ú-ëñ3!—ìÐÿY³¯ðï.’?ûbŽïõ|”—rÑ^iÇðã®ù:û"~WûMO0ù˜ÞgÕ>lò/½o ÏMòæýáï•ÂÞWÍ|$GìÇú<âc…U.ó8uÝûªzŽýÞê93ûÇäû\ù‘ÂæIª^öWðTåÓ÷Àûæ”/x­Þß§|´‡®{¿ž}ý#ÌsUŸg¶n¯'Ýñ"õ.7åù©+7ì÷ÝOÚ¾#z1ôè WÔã½õ¥è3Úþ5Õ#¹r½(×ÉOßOÛ±D¯¹(DOržç(lþ&ù IÇóÐË Ïäùð@áMRüê\Œë´éò|?z"ó[Õ>+‘úʯ¢ɇ°ýE{¨}ü>)'üW·“ò‰yÜ(ìñ¾¥ÜÀ4PíbÞ'ñxï« ƒ©ÇÖüÂáÕ¸Ž~½;Ï_ŽûW²)zÎ'P>ú1ýù@/Nùñ›F:û£Uÿe©×O}>ù,«ƈg¿mqŸváºõþÂkQ_0ùÔ﫨§ë¼…Ü”Îß&7Ù×ôþxoð4¾Š~FÿÏ÷B>ðyŸôGú˜ãÏÙn:î»h> ã ýÐrGÿä»òãþýËòK9¢ÿÂObEî—BNIüÂA®¨wòûyß-êI>¤·¿D=/ýΓãñW]y™¶c· ßmŸèrÌ´¾t?fÞÀ¹ä‘qŸõÐ ½Çô«/%ç3Ø/‡òHÈy6Ê¥y¥ù#Otÿ'ås®-톓_„Óî‘ë圮ßZô:í ò®ûð|¾Wùtßö׉w>òÍy#ó¹´ŸÎù9}_¼>ûAñ™§ê¾×5¯•žø g½ûî‡' sßlæ:öŽÔŸÒ¿Ä¸} S¿aê_3v‹Øƒ–ç«Õ¯ì7ý3öÉ4®ø9ðUðc¨÷ï}.öÅ(§Æö¥|Nôr7Ÿ™ý:Î]ú\³âÓŸE¾O"ö) Ã[¢=ØO#ûg¤JO=¸O»Å>™yRì·v9Æ¿Hßýð¤¡õ×è7ѳ D¿Ã>+aô è5гh~e{3ÖCè}¢Oå¹ðHg;8Ї¾ý¢õ%ºŽ^ýüµ('ùZ$4‡ç«|ØÕHÿièØ‡æùèmé§×ây7"zǸñÐoÒðåܾԗø¼7•‹÷b½²=ÓZ·}úî‡' Çk?tÖÒ?ÐGò~x úrø-èõ·–ýññ=ú·Ò™'C¾ô£è§ðXà¯`·i‡þ¦ûûô_åO~‰\Á¿An÷²\ÔKéá= …o€=窱WÐw½  Úžv8δýÙaìu`ïDû‡¶3(y°_"ì(x±æ•?‘^ìbíž\´½'ÛÕR¿¶ß5ú¿äaQa®‡ßlçk{ŠJ‡]"ìç”ÿ›ÂŒæ1¤·»ãËŒQÆ!Æâ}ÒOlOn!ò[®õMáÉEŸ§ÓüÉö¢5kô㼸í´3¿ÚÎ5çöö:çEw|á|Sßõ/,ü-h^¼ì?±/Æ~Xò&Ø㜸÷ÙN‰k]¹!ß¾ë_Xø›ä= vx°+‚}+ì‘lJ¾°K‚+ìxa_ëŽÐv H×_2\Xx’Ð~ñ/GØ~ …Ø¥»üš¿=ø9£fÊ# ½âãRvé¦Ï­}è·{?j?üýÙÿd·ýÌëØÿ¶£W¶ýGìnâÇ0íÛa÷n]ïíV}× O.zœÇÏä7’‹ð+l{±ÈvûvÆn*rjæžO(ÞÍú®ž\4É~Œ%±9µÇ§xð2ðO^¼¨ô›Ž_ö¥Úï,<¹8=·"äœË…ØgÁß$ñ/tùã¦ýùœþ,±£|ß¼ÿYXx’ðH< ö÷¹n?)ê÷öK#}šý®„NßW:ø>ï êqÍÓ O.úÜ}|ÿѳÍúëìίìO*ü!Ù¼ü^§Z,¹)<¹hy^’ùPØçþöùð‡‡<âÁßÀO!v}=ò])ù)W…=ÿ ?Uøyw¿­ïúÎEnàjžf^!þá ¢ßÑüËéVb¾á1þn OÚ/ä7Íä7sÿ™ð9ïϽ¦ý¿*œ×e7^Nßõ.,,|Ã÷Àþz5â/žñŽä>ýíbïåžä{JäwG×÷ÄGÚU¾Ø9#?üðÂ7Ú{(Tzx•÷_y¶ÊŸòìt¿;S¾g”çåR=±WC{ào—ï&~¸ïÖ<à4£û?¼»» ßb¼ ¹‚'Œ½%ú!|cx«ÈrHÿDžî„¼!Oð˜ìZùã}§»oy€{WéÓ?4roúNW¾ìošïõ¥Üðª6»éú~…ý åÃöÃÔ¯àãyü¡¿ñ=f^ʼ“|ºßcËãë6ùÑ1?ëôó]ú3éC^2̼>múF(—ü,8Ý­¨ß ×üiŸîó OzÆ~ûØë㜤÷5tµ™ü¦~Ü鯺O:ú1v¤ñÏk¿ÔÈÂ<ÿ¾7ºÏ?¶œÓ`\ =û4ðe±OÏ–ýÖ—‹ºO»\íÎÇ|}½{½ðt!çìñ •ýtö×ñ‡;nÚŸ÷ÝŸ*Œ>ñˆl¯ ¿Ö²ƒa»e¤/ýÇcåb¡»Ÿ?s_ü$×Gûú\·ŸÊAýàÑž—à™ÂçÚz¹¼’'ì”~àt£í™×þÐÇšúc‹Ø{qø¬â=Vú3ê_ê#ÙéÃϵõ½ÿèæ‡@ôÈ–Òÿó—å†ü/úã—º®ï‚ë÷(ÊÝ4¾è%W|7(oßï­°_´¿hù»±}1ì!OØû2ÂØ_"Œ=3øCäŸ*ä”üt~Å1~t’';s1ÊE9‚·aä¹ ¼Ú‹‘þr܇W¥öêûýöƒ£åfòÉ>‹û3| ÍÛ/†¼d¿#_ûwW?Ä_ýùÍ›åÆãˆÊÃxázÐÏ/†œPNxç\缇Æ—ÿB´Còxi§²gsªÑó­G˜yÞ£ë¶Ó§þvø´™ü<Ò<Èç~|óü‹y“Úϥ=æô'Ç|&ÊökmOûÌS_tëW¼ÁÓc½Û “|õnôcÿÀëeõWÎf?Ž},xGì`—ì\›¯÷¿Ø§Žu7ër‡9w˹sÎÙ²OÆyÚãê¥ù£÷3þåó}aÚg+{§ÝÏÐg°/Ì>1ýŸ}jö‹Õoì¿ý^ô¨Ö£è:ü¡xúù«‡ŸyÛ/Ù~ó¼Èöƒà3ÝêÆ³> ýz(ÊEþè3ÑgQ~ô¥Èÿn¹û~…ý õŽôŸ;ѯàÛ¡¤ßÓß±Ó· ¶/óYá½ÜU>Øõ¿b½¾®ß‹qFö´Ž-?ü€;ožÇMË¡ò£OE»òþöÂðhŸcžWøŽýÿáÏÎúæÍx_ôCÛYÓý诤¿­t[™®›¿Ÿ‹>ü:ßçú^~xh>Ç^ô_ó£Õáa™ÿÄüFß»”+ì²ò…O Of;pMéÍêïdᇋîÏ·c¾Ž]4ì«1ÿ!~ŒSójÉÕµGÖ#Œ?¬;|nA¸^rSøáâøÊ1ëXéÑÌï‚ÿ!½¸÷‡àsawÍöõ{ùì±ÿÃ~–ôsæ“|Yó²Â“‹è!¬Wà\u»œ6¯Êú†8w ßý‡÷…¿ïÆc?ÕÏ{ñf9.,< Äü­côå¶?ˆ~{øßع¸~Aaì´…~¼ïúþ&¹Á|ìF­ªŸc ÿ”ć&=ÞèJ3ùMíH‘®Ûž›âQëšÂé÷3×µÞIÿ¶£†üïj3ùMý¼"W‘îrw™ÆWú¥Ã¥özßíTXø¿þýŒÜà—Þñçb^Å<ë¼ú¿ù‰Š¯yžùÅgCnÒ^.ça´.ýÊ9–ÂÂ>}±™ëgºëÿ©­gØ`ÿºÍ‡õ½÷ 8ç¿Rë ‡Ù7`AaŸ;F® {•éef®k¾dž“æaæ3^A/£0ú¶¥ëÉ[$>¨ù¢y‹kzÞÆ›ËWXØ«ÜÜyó÷Üþ£’Ïh¿­Â ݇_ƒ¾<)øŠÈá–®C߹ѕ»¾Ûi(hþí oÔv¤â=rž)ïÞÔv¼oìôÀ;…/B<ò…¸-D(û%¶/„žýžòGŽ}9üAôôðùà#rÝv"¨·ð€ï¹ÒÑ/±Ï@¿…F¹þ*Dè¿w#r`{ƒ”_å&l½¿ÂÉOäùÔ©+noì…šßí‡<ò<ú…ü™:¿5Þ·òå»`9å½’·?8ê»*vžh'ú›ò¡'¶h!úbüÛÑ_yï\§Ü¼WøÙ„ý>x¯ŠÏ÷Ív?â}Rnú³ùØÈñéß ÓßÈ/xØÎ‡rÀÏM»Vž¯ðÜx?3þþèѾ¼oæMKÔ÷ïÝ~œÎØ¡ï>íÎóöyñ~ñ£Ë¼ ^þfä-üW=ù^×uú éó™ÏQx÷Ì y/”9å>öe˜ï]ëÖkf<µ]Å£}WÊÇùâÁ¿¾õG.é¶ÃuÅç}"'´»ö}Þ‡ù1ù­Føc¤G~ài\‹öá}z^¬ûW#þ¢òÅÎ瀈¯~ˆ]¿­[ÍQ>Ø·??äŠr|õý”÷"Ôù&Ÿ;¢ÝΗ¨‡âs.*ËM»œû_F»è=øÜ<™³äýÆåhÃnÊËóx¿ñþŽ^Òou_㯟O^î¢íÉpŸ|‘#Ú‘~L=´Þòþþáëø;£òÀ¢žE}xþ§Ý~ás™Oyÿ‘ùpvâýJÏëøì³ÐÏb?Åýîb·ÝÍÇP{Ú®ÏG‘?å`=ÊùW½÷CõcûÍlóI}¶ÏÃ~×¢ýö}ß"û¬ãFíôHñŸ“_÷çs©Oº÷Ù‡á™(ï+©ž.åÑEöké_ìûr^×öMþõÑwËö^¨¿êm¾‹Þõâû`»*úNL÷§U>ÉÉ!íþµÞ£÷£…®§ÛKýEõð~5õUù_wË3s~_åÂO|ØÎ éÎG9x_OI/¤=õ¾lCém`©[nŸß&îû|3ýNèü°‡ÃûŠvr¹¢~~Þën¿¥°_i=~Â4®Z¾FèÑ4?°{%}ò‰}ôåèÇgô|НyÙÔDô'ôã—l_Eóß§<Žòë»éç_çc‡aQé4t{i¾éç¯E½¹N=W…írå˜ò¹½£¿’û™ž{5îk~ì~ÇuÞ éxŸô‡Må£uÎh+ÊA»Ó>š§ŽnÒn´í©øšG4ïm‘Ÿ®sÿíD{ð¼HG9)×unw´M;(]†©ýq3ʳõ×¼ÛèxÑßÈ—0÷ewx¤u×Hû_#ÓõûØŽòs_믙vÓ¹ŸÑõ¢½uý^¤ÛÖsv¢ü®¯âÝæ½RÚ—÷ÀuúO´?ñw¨/ïÌçÓYÿȇúñ¾Èþ¶íz'ú5õºK¿£<ŠGÿ£ý¸®u¹ë»CX÷é·¢wi/¥»M~!´ÛNäCùé?Ôï.ÏU9îÄstÎËýƒçÞ‹t÷â¹÷â½Ð”ãv´«Îóº=yÞåÔ}Ùi_Ïx‡v‰çÉ.ùHç‰ï.Ï¥üÔ—ëŠO=iÞ—Ó龟C¹tëÁuÊ•ío$½Ê³åÚ'?®Ç{"Ì{ôóW¢œŠ zî)L:Þí {ëÓvâ=PΕn;q÷ãøôÊý›ïûA´å'úŸå\h9R~\÷w‡ïhÈÍ­È~µÉ÷‡|¢¿i¿ÔãÏcœ#ù2îóý¼å$¿[Ñ.|ïü]¹â{py=¦}‘Sú#íȸC?'Ë_È‹û3÷ÕOü¼hOÞ#ý™ró>w#_KôÊM¹¢½èW~ï¼'Ú-Æ-í[>,7|çxñžS>Æú ùÓ.3rpL<¾¯– Ú—úÒïã;šååûB;1Åïñ¦ÂÌã˜7k?{fʼpf>¥ëž—VzÏ…ð™÷ÓßxÞ*ù Y?jÿÛëî߈r³~BîÒÿ3÷וŽzÑ×£ÜËQ?ô俦rò}"=ù1¿§¬Ôoþ@½x®®{=Çû¦È7žK>^÷D{ÓÎ*ŸùOÛxì³°¿ç}+¡÷ÕÏöscÿÔváÚÇ4Þ×b?Bû†ÞRþÞ÷y¢ëìÿü ò*ÌþçÀ¼/‚cêCüÜGS¹¼_EzÖM7ÞŒ½äsÝú{ß…zâ÷–ç\@Þu}±?í;ý²žÿ(ʹ¨öÕ¾‹÷“.Fù©v2ÙïR=¼_x^aÞÏÑzfß~áöP9y_ÔëŒòƒ¿ŠýΰKÍ>³÷±HO¿¢ÿÅ>›Û÷ãîóÝè_¼þ›ù€<‡~ä~#ù@o†^ ==zHö¿Ñ ï@?²LXù°O޽6ôKè!>xØé"?ôTäËóȧ‰ü¾ŽôèGÐWp~ýŠö¡\>â¡·AoÞOýÄz1öõI‡¾ö± ÅSÿ¶>ŠôÔ“ò‰vC’ñÐËÐ’wëwÒ>ŸäÔù _¡ü Ê}õÍ÷Iùy—#=õYˆë<÷“x/´úxÞ#z0ôuô/žOÈv¢?¦”ƒ÷‰žär<—ö¢~¼g÷!zQô`ð°'…¾ÙöŠ”væ¸?==zdxðjàO¤"ø ðà¥À#I^ zfôûðÌK ¬tØw€ÞûZÄszâ ±Sƒ<‘õ£üØc¢œ¼_ó6â:a¾[ðRïL¹àûÐîðeà ÷|÷x/¶£Ù^·¾=åµh7óWxŠGým‡G×]nÚ3òå>zSÊG?Íçãv ?Öï…zÓ/Ö"ûcôcä’뫌Q^ò]í>¿°ð­øŒñ¢ÿñ½Ìï$hûXún‚é¿Ð~…ûBø†È)ñùNiÅþCõ=q¹w•ŽrØßÅ®ÜMyWJGýîtó-,|+¹¡Á»ƒ'j¯þ ßùaÞpð M·ƒ¼!/1Ÿ`܆?·|1Ržgmüƒî|fÚÿ¿”ϼSaòYÇÜîÊwßï¡ðdáÔO¦úáJô;Ë×ùÏA0¯äûÏ8Åz‚çÄ<Šy ¼mæ“É‹ûçæƒ&ÿ,ëºðßáùžæ‘}·áÉD¯çm×Mýuû2¬'ˆÇ:üjÈ üÙ ³?Ãzžu;¼Sx¦¤GÉ7ö%\nö‡ãÜ+ûNG¯Uþô‡À¾KØs(,ü¿`òIíWSh¾ëÓfòcÿØüãï…¤¦tÄWþ>ïÍu¥³¾â'ÉAú±Q~\§ÜÖ#pŸç*ݨ}Œ÷Ÿ]_=ô}·áÉDë]¿ ¯ƒçÕ ÃÿÆ^vGÐ?naÄaôOøáä~–þ0z£«ñô\ðc)_øéµ}º˜¿¾•¼ ‡‡_€>U×á›pßöß„i— 8üø 仢tÉ#_?Ÿ›<ó/ã>Ï!å_ë>×õ¦ük]y*,|+¹¡ß›ÉÏþ<—²_"? Óÿül^ŽôÈßòOûqy¾‚t>¿¡ûK!¶Û¨|ŸkQîkñœcì~þš—¹¾°³k çûXï•Ï1k?‹}/ø3‹ Ã’ù\üÙîºÜ|–eÝg?î\wÝo^ÏGÃùhxDŸEzö$§ÓsÖ ÃCSy¦öéUxFZ_õý Oš§CÿDß ëkÆž|œôÏcÞŒú=ú˜ä™¡GEOÃuô•„Iož‘ò±Ý!!ã úXx æ “N×áÃ&Ï3x°–Û«µ?PørCÿ³Ÿiä†ùS÷;ìyRøg°ÞÞ³í!êºö·|~€yý›ûðoxå×#þ‚®óIú?ò‘öÐV">çm8Oõ-,|£ÜÀ3áûK–ÞðèÇWèoWBžØOH?ŠÈ%ëõߣ×zîRôoú/ëzöÈ'íÏÁóÑ8ÅuÛKÓ~õ€çc~×ÙÿоEßï¥ðÃFïGß«?=m&?¾ÇŽÿcW>¸Î~•íþOû[äëóÄì#§ûðd(‡Âæ½iÓ{ßYé8Ïêýiðß]ù`¿þýD€TŽ5O+üuô¹qôè?4ïÒñЋ ß„ゥú«ó[Ðux0è?ÿå Ïù"âÃËÁÞü›¬ñЗ»%æ9|Þ­oaaG^ÖšÉÏöÑócÿ;á¯zj/P÷áÅ ÏÇÎáf7½Ÿ·é´1µ·"LŒ”‡øF]·=]ÇÞ‡óQ¾ƒËG|žSãMá/È v˜Ò~ömß+äæVô3ÛWÔuìûÙ® ÂÛ‘/v§”ÿÔù4“Ÿí6‚¶ã§|lOPél?Lñ±„#ä…øØ ¢<7Kn InÔèô+Ûï¢_µètôGÒ»_6“ßÔÎ&ý?ûg\mg/åVùÍÜçqßåîÊŸbOÍÏ¡>-öý~ ?L4ÿ™y ó5ÖÁ?v:ìÁÁÿ™-ëþב¯ížé:<Ëõ¼¯ôØ5sXñàI¯*¾yÏ*oÚÙÆ~›ç£Šo{ÒäÃój}Sø rc{øê7¬¿áqÂÇŒ}Ûãû©½Ÿv×¼&Óû‹ê×z¾ý9ÀãT:Û{®0|3ìÏa_þR·¼Fö9ð³Às•ï•®‡оßOᇉöƒƒž„sÊß ±Ó†^CýÜvÖÐ7ÂÅÞÓY…Aô¡ç_ýÙûÌ+Bâ£bÿû~èqàuR.ü×çp›r£ ¿A3íç¯ ÿ7úÜú·ÃN¡ýÿé>ö7ÐçÛ÷¼ëñ£ßÂ¥?ÓÏÍ®Åuͳ¬ÿO»šðJ±;—¼RxžðW±Gh;x%7ïµÂwä»»Õ¾‡™x¶÷G¿S:x[{ÏÚ0öá‰Á;A?n¿”ÜW>ð½l§¯E?ŸtØ/Ãîý‘qžYòìßZñÖ•¹;Æï¶ÓûÄîösà/ÙrE;!¯ŸE½CûgTyà­­G|Û+ŒöûR…óÅéø¯÷‹ýJìI^Ì?ÁŽ'|vú?üGxŽôSûò}¶?b¾ÃºÏü9ÅŽåCN>ÍüuÝãO·ù»OþÁÛÿÕv2“ç…\f»p>æ‹è÷âU;L9ào"œºõ Ûëá;ÑÍ·pÎr“ü@Þóú™Ï]I®è¿Ìw˜§Ã×ú2Ò“?ãï›ù†çºN¿£q {ÓÿêöK#g#=놯">ë›?üßæ7æã<y¦}¨'Ï¥ø«|ãÒ¥®|¸žø ûP^×,¨½hß?vå³p¾èsÄìãèý~ð9ìôºn{I ½nÃ>¯û>äëõö£mÇé±òU>özFåÀn åÆO'ùüØíßìo9_êó–rc¿*ÏHå÷ykúùOŸ_)üc¤‹}>——öi×´E¾jW·ïË’›÷‰æ§ H>”íQ(ç÷±/ßNô ê_¶3±,$?ÂégFßmë=ÐkïjêwSé5îMíÅtåÚü2ìYð¼•îóµÐ Që‹Tž•¨7Ïå>˜õù2Ú~ÜZ÷9Ž¿®xðéB¿Ów:-hÞüÔã·†¿e«ŠŸþéðC‡~>‹Ÿñðƾ?yø'Û 9 œøAÛÈò+Œþ=¿ý¨R.¥¿ýËãë~~S˜þBi'êA¹ÐÿÛßUÈùâoŠú›Wr†_¶-݇ç³óvãfáïƒSÿ¤zßøßÃÿ ý:ÞÏÔñxïÜW|ü"âÐ~1è9ù<ÒeúÈ×~FæùøWÄoŸý£~ÛÞ·¿®|Û>é7ü(þKí¯‘öŠvGv;¾ÈGòßü½ ¹ñs•Î~KnÞ«ÜÜŽ÷l?¾ñé?|_é'é§¿„)O™ÿÝèôsâeþÈ™ýåòñ,ý=ÏÈ­äÇÏû•ñÆã›Pýx¦§hÚ/ýš¦ÜŠü¶£><Ÿzã÷”ïýŸÖ<í½Êýdªýá­¯ê=Â×bÃzˆy<±«‘>íg²¾XtÎ_ñ™ÿ|÷Aø÷[*ù²žXW¼ä—1?4ïKaͧŽmŸµx®Qùø®ÃGËç°¾ ¾ÿÔÿ§âã'4ËŸþUíOTñb>W8g¹áÜÕy!ü¬—z?ø§ü¾ {_óÈœwÙ7Ó~)ç/gøcM÷ºù_Úßò>~7Ù7#¼¢pìÚ>3çÁà…)¿ä¯QïãÚÇvê–Ï~Të9ðÑÒß*çD_)<¶TêûS7ÞŒ]už«};Ÿ¥¾eGí½¢õðªàqÁÏÂú~Û·hß“ù!ð¤°/ÿ™ôGоýýn(œzûUUzõ#ë‘ÈÏv»ýÇzô­ z–•_o¬BßC=à¤ôVħ^äCø¬0ìš·F}Ñך§¦û¼—%Ú­Æ›÷*7èÑçë;>µÛ¢ûð9ÒO úsì¥?%x(æ‘Ohÿ²Ñá¬)Ýz”o#Ê OKÏsýˆ‡œ“ß[Ú#7Ï 9N~ý}.ñîF9àÛ˜¦xäO;Â×€W¤}çžTóhËéj­o ‡‹öw¼ÿ°•ƒƒfò›úÂÛÖ¢ö/lÇpG¨}Eì%ö]¿ÂÂ¹È |>xwÚ³]PøªÈ ÷owåcÆŸ¸ö¥û®_aá\ä†ùvp‘ìšgÞL~ÃM¿¹ð©7jžV8\ôzÞ8ëÖwì“\0ñYÿÁgs­»ž*,²_ïÓûbÁƒ¶_‘Ÿb?ïŒä…ûðÂ?®ñ¦p¸hý z$õô@¾ÿC3ùÁ—¶I÷m¿óY7¿¾ëWX8´]‘sÍäç0úÜ !O¡µ7}ñ¯èo O2úýž0|€¦ý™W€ýîÃX9úKÉMáp»;œ³õ97ø9ÌÞk~ÆùΦy~I×wý O´žQrÃ:~Ír3ùMý-/ø ܇7Á~\œo+,Úž“ý\5“Ÿíl܈0v†àèœõ7ðpˆ¿UrS8<´~sO¸ÛL~SžŒäÿ¡{º~ÿ»Tø3Ôyœ¾ëYX8ùIÞÙòü4“Ÿù4ÈÑNà]ä¹Z©}ÂÁâXç;ÍOÓùM7È ö!'ðÓñK­ó°}ׯ°p.rs#û{3ùy½³%„÷ /õç ›[]9ê»~……s‘Î9]ä\¼3ä{Òì¬uy>—v ‡„ÞÖùsïK_€Ç)9! os¡¤Ã>1öV?-ýMápÑ|2üï Ï„oöC3ùÙÿü4éAá XO*=*~vú®_aá<ÐvHð eÞL——fþì&NÒÿ/;&ðkd¡øi…CÆ?ðð:“ŸvNøQÈ v±ñœý¹ö ‡‹GlóÒÄÛ„·ÆüÍþ㘧‘Nó<Îpާν/f»4ZïsnsœØ}âœ'v¡°;ä|„Øñù{V……'DzÇk»ø‰Új&?ÛÙÀnþçÐóÀ3à:z ü²I¯Ów= W¹°ÛL~ã]ôÿ\ÿ¶ ï+|—ëð ”;7Æ.Ï ïzþ:Úß"|³%ñîèºxÎæ¯q® {j+„‹/PXXXXx€®ãç>zÍ[܇ç©ôðmn_ ðä£ûóžúý…·$'»[Ô8â0öm‰û‚JgÿÒÊÜ)¹)<ù8¾|¬´ýz/ÆÆ;ȃpùÞn&?Ë v;—xNù“.z>u[ãÁó2!öjeŸv¬ýhŸ·¹¥tÍäÇ9ñM…·¶¹^û…'ݯ‘ŸÕfòó9üÀÓÄß|Îuö+½ô:~ë£o O>zŸLü²ñ' *ùÞe|AÈþ²ø2céiŽ´ ¯Óaå”û}×»°ð]ðð;éaÐÇüÔåiŽ>n&?xf‡èu$?‡²/Ïóð‘ô9’³#…ÿ¥û?ÖxSxòqt©Ë·4/óSxº_`I×%Žw6p¡™üFŽ|‹/P84Oyáür ðùîxbùÐüÎ÷áç|rx¡æi…'™—i¾vDøi3ùùú?5OÓ|nôQÌïu×1Ìÿàë½Ô<í_5Þž|4o†ý³KðgšÉÏûì,¿Fó7ÇÃîÓçÚ7€·³¬tË5Þž\ßT?G/¹‰~E?fý¦âéüõ7è{vÀ¸nûjJ·Uû…'ÝÏÑë£ïGéû £÷„W/Ç<ÅßýVzT]7ß,¹).šOs yø¦™üÆ’ä ¹Û•\ÀC»ñìO÷Á$Ÿ¾ëWX8¹a|q¿gœyðs„ÿå7:Æ'§S|æ}Èáî³I¸ïúÎEn6c<ï ïŒõ>üš£ï»úÎâ§m»GÌŸÃuó@…—¦ü4áB7…ÃEÛ­Õ|˼3ñk,OÈÏ ?M÷á§-4“ñû®_aáóºÇºÿBó;®ÿ£æi…ÃÃñ*ûeÚã'vŸVt]ök}ûhœeûOì3¬ÖxS8<´>} <™øl ƒè=ï6“Ÿõ=ÛìC ṬÔxS88´]øû ï) _fÿa‹æ<ìòm°µÓL~ãá¶ñú®gaaaaaaaaaaáéEÛYÇ>~p9ßIûjioýµµƒZßž´>ç‡fòsX¼ìXÏóZñεˆì±õ]ŸÂÂ÷ö?Mþnh&¿ÃçÒЧ/y1?íUéo Oޤ÷´5ìBÁ·I>Ú¹fò³ß)Ò}ZrSxzpt©™üÌãL^§ÆÛUCNð?½ ô‹gSxzÐvÒ^uùiðИ§y^oMéì÷ðµ/PxzÐöÕÕïÍ÷¼Ð½n{jœwkÚŸí°/´á¾ëSXø^ä^æ’‹/%ëBÛKÓ}ü~ÀûÄ®áZí§žß–\ØþF3ùoé:ö86¾!y‚Ϲ‰|Õú¦°°°°°°°°°°°°°°°°°°°°°°°°°°°°°ð¤à‘x›3öe׺¶³†ýu+_êž í»>……ï}šóÎW‚? {iøõ\n&¿ñšðz¿)<=hù¸)¹¹)9¾ථƒøÅÁ.é¶k¼),,,,,,,,,,,,,,,,,,,,,,,,,,,,,<)h¿žØsÂo§ìªa_},û¶«Ö´?óÕ._ ðôàx+üz‚ðѶšÉÏákao y»^ö: OŽï©ÿƒ{ߊw†ÜÀC ~'vÔà}n—ý´Â“‚Gò‡‹ý³ñ§];iG“xM3¾~?ñó‰ßÏÏŠgSxzÐþá]“<ྠ~ ‰ÿ%þ>»þ û®Oaá{‘›;’—;’ƒ]ÉvÔv$?»%OÜo&?ǻՆû®Oaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaᯣý ®‡ñÑìßsI<xj—uý2áòSXxzÐöŸn w$ØÚ†Gƒ?Ãà±ÙÏaÉMáéÁñþ³VNÀoºþ:Çw‘+xiÜWø¶Â·‹×YXXXXXXXXXXXXXXXXXXXXXXXXXXXXXxRp|>šø‹â,7“ßá ]ß?àÏŠ¹½?þBá…òïYxzp¼.yÎñõ°uK×ÿãÛ®ÿÏ/užÚFù),<=8¾ Mý_ò±ü´ÿl&¿ŸØ'¼Sü´Â“‚㿈°*ýÿšÂWšÉÏþ<äo ><›ár¿ïú¾¹Á¾Ó–ûO»âÛì=ø9b3þOü|6mx](^ü›¾ëSXø^äfOr²'¹ùFvÔ¸~ 0rs[×±›†Â»Åë,>Ž÷Oð{+¹Øf\aÜÁn'ã’â3î˜ÿY¼ÎÂáãÔÎfðžwbÞf?ìÂ;œ`ÜÞ+;·…ÃGŸ«Ù‘<\Wÿ¿Ž½çfò_²Žáü@¬kÆ7j}S8|¯ª¿³oÆ>Ù¢pMòñçÓ¾¢tÜÿZò£}‚¾ëUX8O×õÏ^Ðý?*¼ÈuÉË’ðR­o ‡#ÍÏ,?ŸJ>.! #'â Œ–›Éoô…Ò-vå­ïzÎ4Ï:zÚL~ã«’Éó¶ÃgZïh=tøJó4Ù‡jô«ñ¦p¸8¾ØÝ8ú·öÅ®j}5âi?ÀöÒ.jAãËøsöáj¼).Žo¨¿ß@ï‚þ;jº¾™ü°«öé$7›%7…ÃEÛK3¯Œ°p?ô¡w"þv ¼‚²ŸVXXXXXXXXXXXXXXXXXXXXXXXXXXXXXxbp¬ó5æ›qî_s¼÷Å—ѽÞw} ß‹ÜÀC[—<¬ÃK“\ØîüÎMwÏG—ý´ÂÓ„¶cî os~šä;ðú<'xVò²O&{5sÔ~ºçØú®Waá<ñð¹ì Ⱦv°‡vøì `GíqØÐùjì«ý£ä¦pø8’€‘ô2#3¶û„ÙW*Ý¡äÆvpjºpø8Òüj¤uÍHë—‘Ö7£+ÇØƒ²5áj3ù–k}S8\´ý³Ë’äûË\×øâøÈ™îƒÈÑr7…ÃÅCÖ/?jýò˜§Éž“íàb7z¡Å‘ìBþKó5Ò/ÔxS8\„f»éÏbMëÛWÑGÌWÞšæoãOKn ‡‹Ö» ŸÁ.vñËœô5«½ôž…ÃEû‹2¿ ¾™®ã—Àíîþ²¯ãWê¦ÒϦp@8>Xéö{x4{ÛþŽAü{ÂFžîéþv3ù9ô Ø%¼Sú›Âá |f‡m¿Þf3ùÙOîãä~çvŒ;ØfœºÛæÓw} ¹Ùê®×í_s4œ°Ïfòo‰£;;z¥ë›Ü¯}èÂá!þÆÒÓØO'<ÎËì“IØ'Xh&?Öÿ–öá¤ÇÁ.{ßõ,,ü=ÐûÍâ£?ްü¨o|®™üŽÐïÀ?{Ý^'_üàñû®oaá» |1ô›øé-4“ßHò¿5ü@áÿÉþØÄ‡FNœÿå'ÿ¸øýì»Þ……ï$71o2 ?„øç„?¿†°ôš#ùa‡×éütþÓù–ߨÂàèzwîqf±;>XŽà=dž· o:x4#íL嬯›Â“£à½p>ÆçlÀçÁS;ß sÞ†|ÌK#ÝcÉÕKïYxòqýx¬ñb¬y÷ÇMû_Ò}Î^Òõ?„üá”ý7ü{j^×w½ ßIn‚/ÏÌü² õwô4ØASºñf—ã|°3ÂsÛ¬yZáÉGô™ßn&?ôúS»iêÿ²G3ÞƒG y¸<ëMá¾ä¦pø8¾¯þ~_rroM×÷ƒ×†¼íê>üOø9{Å(>ŽwWºüNp|ðsÄ)ó^ðAá}"?û%7…ÃGÛëÜ“üÀ3Û’|ˆïéøØ‹fþ†ÜÀ‡¾]ó´Âáãøºæ[œOƒ_MûŽ/=çÔžºÂì'ܬ}èÂá£Ï`GðB3ùùüsØuò>6ñØÏ>ÛÝßî»^……óDÛœ„›†s¶#ø}Wàmú¾ôŸØ ¿¾ëUX8ODïos$ž´íÕ¼ }§øæ ÿEí Í£ÑùúýáÉCÓþàÙ€–³3¯4.a¿³ïzΙo/h]#>šíCÅ|k,ù0/‡0öÖ5NqN§ïúΧ~:c_€ý´ð+`÷¯4“Ÿyðl¾.¹).ZƒAìoÀ—I»5»ðB³¾žMÉMápq¼ÿàç?åà@r!^Íø~w2Þm6ãýo»üøÈÑþ$ÛâCÇ÷‘øiðÍ‚ÆuÙœú…§ƒ<=«}ÂÁ£yš{ ä€q{ƒø“N^'vØîýwg×w½ ç*7âý[.ì§Sr½Aø4œÇaÄùÖK7Kn ‡¶{vU(?6ã¥fòó¹4öÛËŽ ûnÞW»^|Âá£Ï;£Ç¯öç.ï »èi¬·9×L~ðmHßw½ ç‰èùá×À;³þÿ¥PzP߇Çï,¾@á)@óeÎ5“Ÿí@iüÁ>íÊO›í j|qºOj¼).šW†?hÍÇûºækð×,'øÆ¡ü¿ïúÎáýûÜŒäˆõÎáÍäw¤yÚÑ?»<´#î¿è†_·Øwý çãϵÎÇï€ìqŽWØO“œÈ~­ýw.7“Ÿý¬Â[Óõ/k¼).Ú¯ xhãMô5„á­…¾ý&úÎW£÷ ?;……CÂñ><õû}ñÏà¡}#ÞÀþÃV>¸¾÷àç ók°»&ÿŸÜï»~……s•Ÿ]äGü2ìÒHïÏøáëðŸs|²ÝÚO+>ºßsÀö^gƼNÈùƒk’'ÛÃm±ïzÎUn6%'ÛÈäâkäF÷ñgˆý'Ö5¶¥ø×Jn ‡Þƒ—&»Oöç©ý1û/„—†Ÿ‚¥—¿)ä­ïzÎáÓÀ+³^}¼éol7аä ;øÉí»^……óDûQ“ýû•œ‘Æûù<§°øÒæ8~ÉMáðq¤y–ýÛ~MX¼ÍÓì¯ÿ†:w0Òün¤ùùõ]¯ÂÂ¹Ê ~9eׯaäIçsì÷–qFû#Ç}Ù•·¾ëUX8´½AøhZŸÀ÷´iÂâmr®À|iÝ÷üîbí ±‹n{МKÓ9€±üLcg;ÑcŸÓþað|ÍÓ ‡‹ÖÓ\—|È_ûÔo'úÎfò›òìKsκÎIÇ·šÉo¼-9€_†'xk7ã:< ä*øÛ%7…ÃGóÓö$ØwÂ>MúÑ…"oö«[ûÐ…ÃGû#Äß öÒä‡z:ž GðtápÑò qÃ<´ËÝþo^ç)'BøZ'–jžV8\Äníá$ü?ó3æ[g„œ Ðze†Ç†ýN×ñz§©yZápÑþšöwô\ýž}3î˧×ýo|Ÿsžœ-ÿž…Fëaà™a/m]òþf«™ül¾í§é>ûØ›5O+.Z¿¯™üì?jG×±“†(x4ÜGް[x§Ë»é»~……s•üâb‡{œÈ~ذ3ÿf^ØL~ãû%7…ÃGÛKc±ßB¡ùÒ û¾äûƒÜß}ðsÆe¯³pÐèqÿЬo6»ó®ñ†ä¾çà¥q.a£öÓ ‡>§†ÝMü}â·ó†ÿœcƒ§†OοÝ,½gáðÑç¡ÙW–þÆ~;Ø—ÆŸ'ç¡eo{…ø¿!¿¾ëUX8O<”^;hØL>þ;áwÂ[ÃN!ù¿ïzÎgüyÂãÄÎày]?ß•#£Æxœ#Oø/ì»~……s‘úýY!òƒŸNüÞÚ¸ tðÛŠ]x ðh‚S~íì)lþšÒí!wJ·K¸ö¡ ‡‹æÕì}ÛöwäÂr"9`|Ù“|á?—x楉÷¹ÿm7…ƒEÛ«En?Ìãl&?Ïß|þF÷áµ!7ð¡o—þ¦p¸8µØÝð}Ÿ[Ó8#{¶7È}첟°Yûi…ÃEû€‡Æþ²ìØØŸôEøhºN˜ýkö­ñÿ±Pû…ÃEü×`7ÀvÅðuôèGƒ‡†AëAÕxS8\ÄO”ýEKn_µrp(91_ÿl/Ä+À¾ÍË.¿~hßõ+,œ6úÙ¯ºä0÷mï ¹Ÿf$?lð>*¹)>âÐëÙK‹Ÿés“øÿ#_’ û-Ô¸dûÒØY«yZáÑþ ×$'WšÉÏë{ü pî“ýÙñ_r|87zµö¡ ‡‡3úìrà ;6[º?)ôðH‡(óØŠ/P8<´Ý§ɇV2ãxâÜG*yÚWü}x5 <å³÷¬Æ›ÂÁ"|˜ñ}'²{6þ«®ÃOCNîçi&?ólx9{¥¿).ÚŸ:ãÄøeð=s<ÙU<øÒŒ[äC<åÓwý ç"7ðc°¸ÛL~æß¬k^ÆúÆþq¹®øðÖXïÈîmßõ+,œ‹Ü$ŸÞÍr3ùyÿ ÿØO#ûhò?`{jkµŸV8\/4“Ÿí aGí|—g†ý4ûñ/Àh{j Ÿ©ý´Âáâá3ÉÓ.Ÿ{hæ›ÁOû^÷•ÿQŽ_çIé= ‡‹Øy:œ„›ÆöŸà™iÜ™ñ·ö*Âÿ|sü¾ëWX8¹ANÄ'áyœÈÃYɼ4â_Ð}ùcCŽŸ¾ëWX8„ís3¬Wàq>m&?ó¦_·a⛟öƒâoºïúþžè}1pQ(»›öC€ßNì¬-j_€ëØM»ÚL~FñÝú®gaáï*7ò³a{iøõ¼)ä\ôV3ùY¯i¿k’ì?¡Â/Îví§ͯÁ~õüÍäg~ö¡àìK>ÌcÓuÛ¹)¾@áéÁñ7êï“<|£qåàÁÏš)oS÷±ocþÍîÜìÖú¦pøèqçãÆƒŸ#LÏ0O3/çYg^æû{%7…ÃGŸ¸/ùÙA>ÉÍ–äe[o ;kw„ÛŇ.>ú¼ë|x›7›ÉÏë}Î…²°.ÜÔuxŸ[µ/P8|©þ/sUýÿš®ÃSïÌaì°/Ý´¿ñBñ ‡cüzJ9–þßzÌçº/þvÔà頵ݨg%7…ÃEÛ’<Ø~ýÞÌ'nÚŸí@‰ߦüáA›ßÌx/­iæ§ý+äDvníO÷“î8Ôwý çæÍ\n&?ŸWƒ§ÉùPòåyó7îÃ~^rS8\´BÎ{²€¿ì£-)Ì~ÀWŠ¿¢ôðÒ¸þUí§§|3x2»úËMö§%i‡½÷­…·Kn ‡‹SûN’—øgÏ:<³)¯F÷áÛ _öªø»µŸV8|ï?øùO3>ü˜ïù¬ËKƒïiÞ ãòEºÚO+>ZvC°{‹=\Æü"'›_rÖw½ ç*7·c¾…Ýõu!<œfò³œlV:âϦð Ïs²ö…ÆÏ†ƒ=µ°“f9ÃOÁZßí׿¼ä;hØEK{i—šÉÏñ‘/â/µ÷û®Waá<ý¦ý¦=b½¦xG“tM/=¨ý|–]ŽÂcúãtÞÌ…á×4úÙ¿'<6PòT~ ‡Œ¶xF¼3ääüM…gwù7Sžšâý¨üÎÖú¦p¸h¾YÓþ°›Æ|Ìó4Ö?ÌÇðß.99z©ùšäùê»~……ó@ï]ˆ}üh}ï0ëxiØ[[—_­Æ›Âáâx^™ú?ç¢ÑÇÀïÄžü4ô›·CÏOT~qú®_aá\äfïÁÏþ—§ÃOïÚü3ø’/øÛð>ŸÕxS8XïhœÀží?5“ßÔž xi„ïtçaSûiÚt»mú¾ëWX8¹Á~ùÎBÂ9ž`ÊüçíuìC1+¿¸…Æñ¼4æ]Âð5›ÉϼOÛb? ùcüºUûi…ÃÅñZ3ù¯«¿_—|øü¦ä'ûfØM»¡xì¬#o5Þm_àÏÂK?d_À~>¸/ýŒïÃWc?[zPî÷]¿ÂÂy ýsÂG›\oøh‡/ÛþïxOu{iè=I'}'vÖú®_aá\äû3ØEKžšÆû-ÿæð‡fò›ñgˆ=µ¦æi…ÃÅôskÿ·/C$O¾?M<4äÌöÕJn Œ¶kËy›ó]>çÌC‹óGüŸù™î³¾!]ßõ+,ü=Ñç;±§~IaÙC·µ/µþÇnú¥ÐwÂSÃþç=¿ªõMáðpêÇS¸ÝL~öã‰ßOâÝ’ÜÜíο¬¿A¯ívñ: ‡‡ðd¦¼˜‡íx± @<4ì«ÁG »hއ›{|ú®gaá\äyÀ?!þÖ¾An¾m¯Ã÷$ ß&ýz:~7…ÃEü NùÐÈAòžu„—Ãø´õ_Ýqé ö ‡‹>o“rÂ9übg0í¦ÝfýóßÝqèVí güb ûhð<±« ^éá§­—ܽïü'á§Bxg%ºo= vÒà£iÚv>®}Âá"~8m§Fú~û_ƒ§ñýà ?%×û®_aá\äf‚ÿÓÿáÓˆ6:×^w¸QZòÓàŸÙ¿§æq£Fá?Ö~Záp1×#¶‹Æ8¢óÌð«6þ¸™üŽ~j>Çúçðû’›Âá¡÷Éà—ÁO[Ô>~ lG}Åg¿mIéd/m¼¦ë«5O+šw¶>Fý»ðÓo£ÿ„GÃuxlJÿùý컞……¿«Ü`m?ä`¯Ý³_Âû’ƒ½‡ºÿ÷.ÿ&ý»9¨yZápq|Còr'ä;O[ÍäçqäVŒ/ŒKð©¶jºp¸8µsË|óÁ;C¾Òî-öŸ8wÃy‚[%7…ÃEŸ[ƒwÆ:†shkÜ—¼pžÍµfò_ïîÀ¿é»~……s‘öÉð3Àþ™üF%7Œ'gcÿ ØYC×j¼).âÏæHúô9„íϾÍc…_¶ˆ]ô>ö—ó¬ä¦p¸8’½À‘Æ•ÑR—70’~f$~çŒ_C/æãÈÎèRéo ‡‹–“+BÍÇF_K–›Éo$ý¨å y’~t$=èHëQé= ŒîïZߌd¿ÆrÁý+Œ?’ñœ]S<­{ˆßwý çÇò6™-*,þÚèÅûWÄÓ<Íé/Ö~Záp‘ógGÏ…Z÷ÛÏ'öÔÙ?ÐzßçÜÄ{öù7ν]¨yZápq|½™üÆkÚgæ<4zö›¹n»jõÍú¾ëWXø»Ê ¼ú¿ìšOc§ÂèEÓOüìwNù÷]ϹÊüÍûÍägÄî ü:l»PºßsWéöJn ‡öwk_»jæKÿ½{xð9‘§ƒok}S8x´ŸuÎ`WÍö%øùd^wGñðëy—ù\­o ‡øétØç7…ð£ñc€¿\xÒ›‡ðûy³ö¡ ‡ìÅ“1¯ž'üNìp^šýgÎ]K¿Ãþvßõ*,œ'Ú_§ô7G“ëMsôDzñ:±Ëa{iºýAóCŸ”Üñk{ø´™ülÿ ¹œØŸç3]—|9 bçeÍÓ ‡‹é¯óprýäã»îøsã rbÞ4<ñðÚwý çã¦ý™OOF<ŸÃa&yðzHéÓ[ÍÓ ‡ŒöGp™õ¿äDüæñ•fò/ 9ÊùOø5«º¿&¼ZãMápq¼ÓL~ãÛ’ô—ØUcùúNô¡ ãÿÆö:ÐóÔú¦p¸8ÞðóŸÆvÓ–|Àx(Ô}ì®a7øØ%ܯñ¦p¸h?ž•\|#ùù«úÿ7OþªqäoÁGûFaü‚ÞðsÆÍø Ö7…ÃEûÜÞg¼`¼‘<Ý׸rÀüNÆ¡oŠŸV8\4ß þ¼gÖ)œà>ë üâÞm&¿ñ=Ö?¯îÖ<­p¸èóië’Âé`Sò%ûNû‘Ïš§Í;ƒW†?øiÞŸÖý‚—&¿Qæ«q~ú|ÉMápÑ|4ø5ðÏ~h&?ì š§&žñ±G€¿(‡•ÜmŸæ‡fò3_F¼ü Ú¡äjæ¯IŽFg»ü›¾ëWX8¹‘ŸÎ”óÑñgÛëßf¤søÍÅ?nßõ+,œ2³Ý§°ïOÚ~=%gÄó¹‚çÝõãWßõ+,œÚOçBü °¯†xlÄû’tº_ϯ‰_ó´ÂááxCý?Ÿ[Íäg~šíBI°ÿŸDoºñî”ÜÇûêßðàÁ—9Pøo’ópþ›â݇'@~’·¿®Ô~ZáàÑýÝØÝGžñ‡«ñÄv£îÂ|íϦpø/Ƽgû[0öÑn‡ÜàþÍî—ÜÝßï²~Q˜õÏ&çi$'ØÅå<ë™í'ù—î»~……s‘ö¿ä×ÖöÒà§qŽ9²ý4Ý¿¦ë]} çØú®_aá\äÞv°Ÿ†gIx©™ü°3`þšüߌ?W>+^ÙO+0ÚþÌã.o{¶ïôøgŠö¢à§ÙžÔw%7…ÃEóÎàÇœiåÞŒùfGû_Å#}¦ôgkžV8\œá§©¿›Ÿö*äFãÑHçà¡> y*¹)0ÚšÆÎáØŽ­æi>Oÿù‰âqÿ…æwÿî¦ë»~……ó@óÎX÷sníªÂW‚—Æ~À _Mûø1X-ýMápÑþmà¥Ýj&?û1„w†4ìq`G }͆ÒÝT¸üßÍKÃŽ |üHá¯ÐþÕ@Évlðu¯›¾ïúÎEnðÿD¿ÇŽ øeös‹Ýx4ð¶tû7ŒSÛ]=haá=ÿÔ¯4r¡ëâËø¼y6ÌÇó7ø—¾]rS8\Ÿ!Ä^´ýr_òp]÷YÏÀ³¹.Äoáµö~ßõ+,œ‹Ü,I>ð3}³K!/ç%’ §³½5öãj?­p¸h¿6ÒÏ Ç9zÚL~öçI¼G]üxjØí€§Ówý 磋Ò÷ËŽ ÃÒŽÄû´=(É•yWºòâøKn ‡‹#ÙáI9Òš®|Œ¥µŸÐó¥¿)>Z߉ß'éql×ýèÓfò#Lzä ½çÑw%7…ÃGó°ç„'x5Òƒšß‰ý'¥3Ï“ôŸ”Ü-:ocÿØÄ¡ø4ƒð¨±Ÿ¦ù]ßõ*,œ'Ž›ö—þ×AÍ»|Nç\Ï<7¶wûc7…ÃEû÷\h&?óΰ‹ÆzŸ}µ…Ðw.i€óÖø+ø²öÓ ‡‹3vÓÐ×l§Aƒ>t¥3Ž˜ŸO »[%7…ÃEûñÄÿàôŸø½ý¾ä'ýâo*ü¬á—­ïúþ:Ú?®øÍcñÍ[“}uóÕðW@<Ÿ¯³ðôàø†äÁ~mÆoöÓìGJ(;·Nw£×w} ß‹Ü`Ï ¾æ®øjwt}Gr±£0vÕ¶šÉÏüÏÛ]ÞtaáIFó/±/xCaäBöϹ@Nl¯Féͧ†=¨âuí7ñ»NØqÚêö÷»œÄc¾†ýNüntÇ£¾ë[Xø»ÈͶú5çk®…<„Ý3Ö)¶‡Ëø„}5ÖC›1ެ׾@ápÐr°¢þ¯s™>÷yù˜óœëÝûöÿ\î]òR8<´Ÿö“ñÃÁþsØ¡±¡ýxÈ®í¨Éï”ý}þ¡Ö7…'ŸwíeŒÎÊ^(ùÁ¾éì7 {ø—Âî“üb·Ãv¢šÚO+<ù8Òüj$¿éFé/G‹ Ç<ÍvžšÉÏö¢ˆ5ì¦ñœ…’›Â“öo›rb_0ü@{ú4Æ%äéRÈ vÔÊŸtápt®™üðÓyôDë­GŸt×5‡/$šoyž÷¢;Žþ |•ÏÑ3ÉQ­o €^dzŸLëyöž™Ö/3öÖ¹¿ñÄKË}¹Â“Œã’ö£å‡½Œãá×óšä}&úŸm¥Ã^vñãùžDt?ßDï OFr±<ø3ðÕÌ€GÃõàwÞîbßõ.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,üuœú½óiâ¯Áå|Ûøã7Çãœ[ßõ),,,,ü0Ñ~pá™Ýk&¿ñVð9±¿O~(|·›Å‡.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,œ¢í¦wÃ>üµfò³ß©µð+µQ|è“‚¶‹&ÿœã¦ýáïöè;즵×Çç„…=µ²ŸVXXXXXXXøN8Þs¯™üÆ÷‚Ϲ‰ÿ[üä*~uoo†ŸÜ[5O+.Ž×Õß-ø—¦ÿã·9‚}]ñð˾ӆû®_aá\äf9øÿ[Íä7þJáÕ®½Úñ’äbó _C~”ßµ6Ÿ¾ëWX8¹YP??â_¿’¯£Iºÿ‘+äí/’—eÅûBéBÞ ‡„øí8|%¹xÔÊÁ¡ö›þÙöÿC]i¿ùð±ÒýÔÞ?úQ×åçƒýê¾ëWX8iÜ]”\|ÙÊÃHãÍhQx©™üFŸ)¬qhtYé3üyÉMápq´"yuÞy¤óÏ£/u}U×—›Éo´ˆœ 5O]~YrS8\]‰q9XAn„_‡‰O0Zã>ò…ü´ùõ]¿ÂÂyà!ë› µžÉßàHûg£³’+]?œ¤ÿŸqçB÷>ùŒ.Õ¾@áp1ùeðмßìOÚ7xûl’—±Ö=cÉùö]¿ÂÂßU^ÐwZÿ‚ÞE¨yÖXó¯ñ …á l 7b½ÏõÒ{í¿>Àífòß& ÿf¥?`'ì«!GðŠgS8|4OàžðŽp'Æøgw›Éo¼¡ûðàél ·Kn ‡‹ã5æaêïÈãó±u…¯1OSx›ùžÂÁí»~……s‘›ËÝýâñf3ù¥Ï_Q{¶ÒgzÃúçjðÖ®–ܽ/¦ý2ï‡5BxjÒ×½ÐõÏc_Mzбøìô]¿ÂÂy rp8 7 ¼4øhæ§=×õKO#úž£§JO~k?­p¸l$´ù6²3`>Ú‚ô›šÉo$½ÎHGŽâúR3ù¾êòtú®_aá\ä&åá üM䢙üfxðÙ/xk¤_­õMápÑë~ÚGð7%²û4Ò~Áá?tŸóPúu}±Æ›Âá"ü³£WâŸÁOÃ>öÔà§±Ÿ/MòâsŸœ=[ë›Âá¡õ1è]R³<µëðÆoáºÂKÂ/ÑÖxS8<ßj&?ëý·¾¥þÏýÝ-ÚÎ ¼É<Ù¹qþų)<h^Ííàm2Τ4Þ <ø[%7…ÃGú¿ÃŒ+ðáÕ\y|4Ÿà~í§Ç×›ÉÏëÎÓhŸzÊO^‰ûÈçw¾ªõMáðqfÿŒsžðÓdíHüÛOãœ'ûðÔJSx ÐúxgO›ÉÏûÓ £Ç9ü^zö±¥·Á÷û®Waá\å»5Ú0/ €ÆóÙÎ ±ssAéVáÔ¾@áðq${#íŒn_ízÈ|¶ëBÙƒvºË5O+>ŽÖšÉo¤sSûƒÂuÉÕµàn oÄ“\Õ¹µÂã¨iæujãóÌߘ·a—sÌߏ޽[ñ£û®_aá<»iì 7ØI;úIë~ñ89—ÆþÛ‘ì šçöSû®_aá\äæj3ù¯ ‰}fô3ðÐ@ók$7âMuî¾[ßõ+,œ‹Ü ðÔ´N±´{¡Ï$v Ð‡‚\ߨñ¦pø8Þÿ¶íïûê÷{’ì¥{’[!G;J·£ëwj¼)>ŽwšÉÏý÷Û®l ±ãy;ä„qËþsKn ‡öo‹\¬1?k&?ó;±/ž4v o”¼žkßxü…ú?ç7µ=þ²»ooÓ|4î/wå«ïzÎ}þùLð7¥§9šÄ›ÚWî~<á=?­ð õ•òã‰?)ë;ÿ,Ä^¸Ø^Ç.áHvF©ñ¦pøˆ¾ßax4øñÄ/¡ä¹0Ï€ë_v¯÷]¯Â¹ÊÍBWß‚ŸAóg>ïŽ/£‹Büᮄ|-•þ¦pø˜öœí§Só.ì¢Ù¨â§Ý4x8Ìûú®Waáþ owå¨ïzÎUnð+m¿¸7’ŸvS/ç¼háVw¼ê»^……ó•æW¬SšÉϸÉuÉë uÖC’ŸË)½gáðûh¶ƒ†_ì£aó\3ùù|ûhœoîúZÍÓ ‡ðÊÆMû㜳ùjÒË ·±½4ñkû/k?­pøhÿž:mý%ü4x5á'j$þ´ýMÁ/Ï­ïzÎUn¾èŽö?ˆßAÝŸòÑt>÷±·Vþ= ÿ6ú±NáºÏ Àöïîzßþ×µ¾±ÝèÏj¼).úœg S~<3öÓÚûG¯ÿ\ ñÅ“f?®ïúÎEnð“vCûÎèc° ÿƒ¶ï„¾Q7bÿ=ÎzÉMápqj·¦™ü¦|á<´à ?øù„ß|›¾ëWX8Wùù¦™üÆ•\üMˆ=µ}ÝßGn¸¿ÒÊÏ]ÉÑ.á’›Âá£Ç•ûê÷ûÛñÜÕxrDN”n»™ü|}¯Î­Ç!/öÇ.¹@¶%7œ¸ÝL~ŽÇ|íVÉMáðqêšu=û’Ö1ØWc_àZwÿz,½'<оëUX8W¹Ï¹ÚL~öGÿyQ(=ùœ²5–=Û%¬}èÂS€ð4ýÌÓÄïô¢‡ÏZy8’þ}(ö ÅM=jaá?Ò£¦ýÁ H»6ø“É>‡ý²q]~pFçÚpßõ*,œ«Ü<Òx¢q;µŒ/æC¼çËÍägy¹ ûj_ pøh{OºëÆ!äèHó/ìB%wG¯”n’o7…ÃDûãÀO!ç>±ÿ´¢ý3ÖýØM[n&?ûX»ùõ]¿Â¹Èõ—’ì=¡ßDŸ‰ì@aÿÉvÔBS<›Âãø¾úùÐáva3þFaøðj@Û_“üa‡m·öÓ ‡‹¶¯aý?¼L]Ç> vï ÿší~nËïZá€Ñþ¯wû»Ïl€È‡»ƒœ#àÏšÂJ×wý ç"7œ3³ý3…eGÀëx5²`{Ðì#,ǾÀríCñ/8Ö¹èñy!~ÎJ¾Ö>ôOÁSƒwƒü™wSûi…ÃEì¡¢w‘ž»NöóÙtù3ès°/à°ä&í mÇIö6G²Ë9’žÆ~Ô4ÙÏ'áµfò-¯tÓõ]¿ÂÂ¹È vÒÀë’‹k!Gص‘ÿAû'Ô~ÂHë‘öÕF×j¼).Z^¤ï]“ÜxüQ¿ØÔþÀH¼‚Ñ:r¤ëkÍä×wý ç"7Ì·’·É{âoŽ.4“ŸýFI¯Óè‡Þóè™Ò“ÏÇ5Þñ_kþüx6ØwÂÞöÒ‚O`¾À—ðrÚø}ׯ°p.rƒ\ ø½…wƒ<ÁOÃ.r²ò²Ô×wý ç̯|®æI‹ÉGóùœIº¦Á®šÃßk¾&d^×wý O´ôåfòã¼'¼2ÛM¿ÜÝ/€6þ\ëÎS/±? ü¼ôž…ÃCóeàÛ˜_Ó]ÏOýx±wƒ¾;8¶ëÑÕëô]ÏÂÂßUnÜÿ…Ø4OF×÷¾íòm°Kˆ_Bø6Ûä×åô]ϹÊýß¼Éý§!W\×øÂ8e¾'ãSíCÍ/ÃNšù4’øŽ'ù¦óÔãëÍäߦïzÎUn'°7˜vÒàÕ|×e×Ã~ÙÖ•¾ì ž´ý³Ï„ŸHØwƒ·¶ÜL~öO =Ï·a¯óJÍÓ ‡ökó£ð±äeUràñ%ä žgtý‚xk?•ÜÍà_ðð;ÉÏmØã zÉÇáKé;_tågÔ&+žMá qÊ/“ÜÀ³ÁŽÆ!ìuz’ÞÓr'~zÓâÙGËðÓ$?ðÑšöçñF¼iüE3>™7}Uñ_tyŸ}ׯ°px8ÁÿÅ/ÓüÌó4Î× 'ø™~Ú¦Ã.ûHó3ÖIeºpȈ<I~Ž´^ñùµsíuü ¾®sökðç.ö]¿ÂÂ¹È úJô/ì#¯è:ûhØyBσÿ(Â_Dü¯Kn ‡‹æÑl©¿c¯û‚ðа·qK×ñ—k~é.žMá)Àñžúýúý}ñ9±£¶¯ûû~NИÿ _ ;8æ¶á¾ëUX8W¹a\Áþ vÑì/ä~ð¨7b¼ºWû…ÃÇñ.ãËŠæ]ðžOB.n7“Ÿí§qg»»îé»^……s•Öý |x›Øƒf¿¾4ûð£áCߨñ¦pø8–½'û€w¯FzÌ©Ü৉€}ñ¹Ú(>ÚÇ3éi„‡Òÿ7úaW=¼Çÿ©Ë[ë»^……óÄ‘ìrŒšögû_ð/ÝAøö“ o¾N7…§G²Kk»OÈIÊË?»ò`9Šý©Ö7…ÃEûÔü »ÐðÒÌS›ÄÿŸyÚO]¹9?úèQ7öÖú®_aá<Ðç4á™±Þ¿ÂþY÷Ü€ï/)~ ±³Æþ›üô]¿ÂÂ¹È üôü¡™òo„èyˆ‡¿5ünv±ïúÎEnà쩿÷Á¯ç®ï¶f¶§Æ}ì°¿^Aßõ+,œ«ü ðÐ_„{â€ø)Üm&?Û#Äîà’›ÂáãøNŒ3;GàmÚŽ§ðvðÙ˜Ÿa·s·æi…ÃGó3íßSý#Æ‘MÖ;œˆ0<µ:GPx ÐöÑ8¿†Ïe!v:Ù7“]AÛ!\ïòÛú®Oaá{‘ì¡ÁCûˆ°Æü{Jÿ‰Ÿ–ÝBß/¾@ထñ„|ì=þ ëè7Aøl¯BO*=êá£Ú(.š‡? žÙñgàÍœÂÇ‘=5Ò›¯&{Ø/ì»~……s‘Í·,²m{OÈò%þ¢‰ožv?‹ŸV8`4?Mò½MÛAã¾æeŽþØ9wsôº 'ÿ³°pH8–½N¯ÿ9¿†]'xiœgãþ’Âă§f~Z7…ÃEÛûMS?ºŽýçmÂìC“^ᛵ]8\4{5„á h&æëFÉüä;7²ïÑwý 9¹/~Ù¾ú7vjà¥ùþÃVà?#÷%»º;8ðvkºp88ÞW¿Þ‡I?o&?ÛÄ?.|5pOé£Ým:üêbJ×û®oaáï"7ôsæU¬k<~°^w†Üè:|Oæuœ¿¹r(;¸}×·°ðw‘›Û’ƒëêç×»û^>ÆyOì®{@×±§ÿÓû Š·UûÐ…ÃAóÉþüô æ§)¿¾ë]Xø.8úK—ÿb„ŸŸoÿžÿèʼû/$ßj¼)<ùh¾%þéç⥙‡&þ¿ínŠwÃ}ø8æu&ž›°ïz¾ Ú'<3É…ýwjܰßè§Íäçt’—±üLýØ]ÏØ¿áÍמ×xSxòq¼¨~Í~Ù²äì`õ?ü5øgðo8ú•ÂðØà§]íîÓžD´½Œ[èmæ:zNü²¯Ì¾3~¥àÀÃÁ® ñÈWzоë]XøNrC¿·õëÿºzOô ðmàÀ«Ù{ðsÆy:Ø2/gr»ä¦pÐ8µ†¼4“ŸùÏ» c÷)íw"?ؽÙiã÷]¯Â¹ÊímªÿÃ+`ïŒë[ ŸsÛ»µ/P8|4ï Ä_!|œm¡ÏÙÀ»i&?ûc‡ïVö¡ Oz_ ä|çåfòƒÇæý6즱fÿ Äo±ïzÎUn¤·Ki} <¶³ÒÓ<ëêylgMzUì Çé»^……óDüq³1 »6ðΤÏ<|üÉÓ¡ô¡‡ÿ¨õMáð~í9]Å«Gs^ò¢ñǼ·soŽßw½ ç*7ȃü®™wÆuì¤Éžù›È—ÎØNáBñ ‡ðÔÌ;{,ž™xÏœ+°OæoÌç¸Ï|¯i}׫°pèsk¬ÿ5ß2ßì²ÂœkãþZ3ùù\ü5xoË5Þ­¯Ü”üàÿé†ú?<Îäè>zô:œ“.ýMá€q|¯™ül÷Œ°üsÚþ ¼ÛGÓuìp`Ÿƒð½o ‡‹ãƒñÏÚäñ¾ð>ü3ñÕì9—#¼òµSûi…ÃEôÆó9%ð¡‘ìHÁ«æAù÷,<èõ ýyaÂ9Οë7›ÉoêßS÷·Kn ‡‹æ™qt­™ü|ÞsñGãþ¿»Ž_“<‰ïÙwý ç"7ø¿…ÇÉþ3ûÒ«º~MaÙÛð}ì§±Ÿ}¶»¯Ýwý çÖWÂãL¾¦øØïÄŸúMxkã6ÚÔŽÇ£’›Âá"vÎàiâO žñOl‡P¼ەž<¶3µ¾).ºß#/ðh„¶ƒ#?ëS»kBäûl\?[ú›Âá¢íž±.áœaÖ3«-bÏ–yœí§Iî°Ëƹ„¾ëWX8´ßöØ_[®7“ŸÏÂS Úx…}]_-½gápqjGMrÞÙ6¼5x6BìtÜŠ}hëwj_ p¸h;hæaøi%7…ÃA#öÝL~ÉÇ´\0Ž0_»Íýà³q?Ÿwk?­p88õ¿)9 ¿#a/Ð|Í;Íäçuã”í¦é>¼Î’›Âá ×ÿW›ÉoÊ3S‡OÃþØ•ÏC®Öºr2^W~µŸV8´ßÎ ì?wõšcÙÙËî†õžø'”~Æþ>?éÊ™í§ý¹ô7…ÃAÛE“ûS#ŒÞRñì‡ÿ„âã4úa¿½§ãÿ«ä¦p8hûh_ì¿»NØCþӧqýì1ñ°%~5v£ú®oaáï"7ðɰx¾;® æibG 9fùÓuì§!’£¾ë[Xø{ ùš¬s°S‹ý4ÍÓŽ¾oû¿ùÏßuùžœ8|¬yš®cy_ßõ-,|´öË–´~ç\'ûœCƒwƾ¼4ö ØW¸ÒL~øË…ÿ ­ïz¾“ÜÀCKÜb/€}êì+ o?‡ø …ÿ‰>èféo O>Zïo>&¼2…ío0øf{ÏÄ€€ž”|àHîàÛÜ)¹)>Ž·OÔÿáÓàO »57‘ÆøŒSŒ_%7…ÃGëû±k˼ ^ÍZ3ùå<Ì|xø]»Yë›Âá£y4ðÑVÔÿ9¿Æ¹š¯ï*ûBö®w÷ú®Waá\å†ý6ü œa­™ü|Þ“ýkü°vUã ûtWk¼)>ý£Ë/;|ÚL~G¯»h=úôAÒsbçÿ9}׫°pžh~Ìrð4®Øß¼x²O€Ý§‘ô>ð ú®Waá\åFv9GWAäBá/CŽk½ãð5Å_­ý´Âáãh¹™ü,'_¤œ ÿ+ÅÓþåo¥½Þw½ ç*7ð;ÏÄ| ÿÐÜ¿ó2æoâçØŽçb­o ‡‹cñ9WsøC3ùÙ®àë6|ôTø]ðBÏwãÙÿç'5Þ­‡µ>™ú¹Eï‰^TrO½û×ø/¨}è£ùðfàp¾ù4º¿òƒ¾s«›Oßõ+,ü]äd¥íç»~¾Ð˜ç¹'yØWÿß×uì ÊÏ­^'|6âÁÝ©ñ¦p88ÞU¿FNà=ß ùà:ö¡à=ÛÞ üg]‡ŸÃù„°'UXx’ÑrÁø@?O{„Èó1äÈ|èfò3ÿ“ùç jžV8 ô¸q½™üÌo^rn>§ô3æu⇀smð9m?ø5O+<ùhÞ%ûÄìI?9^n&?ŸàÜ4~;á}Ê~öÔÆç”Nûn؃¾Zßõ.,|´_§çÒÓŽæm~ιZßž|´¿èïµn'#ž™q)æ]ÌïHÿPre»iš÷ÁÏÁ.nßõ.,|´4ì5±þÇŸçeÉ‘Îáxߌ°ø›cÍ÷œž}òÇÛ•Ú(<ù8ÞRÿÆïͶÂÖÇHNnuyÌãÍäg;kiÿ ÌýèÍ6^ßõ.,|'¹±?[x0v›ÉÏ<üx À_ámaø—ßBÞÈ—ûm¾}×»°ðäæÿÎoð‹»Û.TÆ÷_à gÈ‘ä¼䫸i…@Æ…™ë[1n`oóvÎËf<á>ãó3æ÷Jn O>Â3›¹ÎúÅþÔ%7×%ðÔð›k>Z†Y?)¼Yû…'§q^}µ5õΫ]§É>u3ù™ÏæólŠÇ9œòïY8L¶¾.û¶/ˆ¿ô9øû„Ÿ&ý öÒì×Cù£÷)ÿž…C@xe3×ÅÀÏ“ùO›Éo†Ÿ†ÞS¿æèußùýІû®waá»àèr3ùÍ\‡¦ÿAüvÂ?;«xçu?ý~^êæ×w½ ç"OØqJ^&þ>á¥!Wš¿ÙŸ.ñíWXó´Â£ÏË„?uæc‡Z¯4úùÜñ+øZñ^ÕxSxr‘ý°™ë‹Z¿ÃCƒ_†Ï/à 9§Æ>À’xœo[U~+o^OžD¿2{½™ü¼¿ŒOô5œwæ<´õ8èi‚_sý§°ô7…'áÃÌ\G¯ž>Íýfò³žsÞYðmÄ?3o íÝÜ-ýMáðÑ|NìCá'ù‚ŠÝ›Mxi]~ó»õæq®°pH˜|LÛ#¼Ý• Û‚O³£xâë8¿{µ¾)>zžÆø†snȉy4±ž¹Ñ—Õù›ÂÂÂÂÂ7áÑ7Ä8ýz|¯qGvm°Å9jò7µ/P8|œêÿÅ/ûIzÛu þšäg$½ ö9œ_ñ OŽd¿Ó~nñW(û6£%øg K^ÿRw|!~ßõ*,œ«ÜÀSoÀ¼NÙ¹±_Oä…ûøýÄ/î•fòsn¡°pHh>šæ[¶C¨õ ç ŒOtsŠ_­øÐ…CFóÒ´¾9ú—œ_ã\vÓ°«¾Ä}¡Î)øúRí í;Ø×€ov]×á±aÇ^Zøëðùécì§~ÕšÉoVÿÇrbûkðÚtÎÏvÔjžV8|4Ÿf§+7¾Ïù[Íäçq»6ŒSŒ[Çð° ‡„ö³†°Gc¿Sðl<¿ÓuìEc?êf­o ‡^¿pÎ&ô/– ìCa?jUaübGjµä¦pøˆ_AöÍŽ´¿<Ý?/@þ9|Þs¡™üœç>¿¬yZáðÞ ö°+`¿7èu´Om}Ï?ƒ'pF÷Ÿ×~ZáðÑ|€!~ÔàÛÀ°}(…c>6’½âÙž}%y‘›‘ô6£¯æ>r$y]ëʇÓ]­õMáðѼ²¯‘…µæëȼ´k1Þ¬Iž¾®õMáðÑçðƒ‹Ÿ[Í·m&?ì®Ïì»ÓýOj_ p¸h= öà¥é\€õ5šMí tåÂûÒ¤«yZá€þ¥ý>Ù”äÄv8àÕ€ðšÉÏv _ÉMáðq¼¿Òö÷}ÉÍA;qÃ~ ýã~ÍžÂö‡ –Üm ¿Òð‘ü~"²+èûøiÇþínÉMáð;FÖ978? 9Á!r³ès9µ/P8|K¿i~¦ìt˜oÆ:çR3ù¥§ñ>rvMò#{…}׫°p®rÃ>òŸ‚¿ç£~h&?ÛO{­°ô;¶§öQ7…ÃGû÷”<˜·ù“ô6èo^¿—Þó¼ô=ŠŸ6ìtô]¯ÂÂy¢õÿð6Æ_'~<áH^|>ü‚°ßYX8D´`Ÿ9B.*Œµ…ðbWžú®Waá<‘u h;hÌ»4/³Ï'Š?GHzæ{}׫°phûi¬ÿ5Îøºæk¶£ÆýËì¯ ÃËYn&¿¾ëWX8¹A_ ¦}š¸½h3ù™o³.y »6}ׯ°p.r³«~޾s÷aÛÿ±›¶/¾Í½fò³ÿBâao ;Rw…»µ¾),,,,,,,,,,,,,,,,,,,,,,,,,,,,,<)È9ì¢Ù~çqž6“ŸïG<ì¦Ácë»>……ïDz /ØCß|¬é>¼4øøÉY-žMáéAÛwB>àq¦5ÂøWñÛv£ä¦p¸Èù³ñ:ò/Zrýë!O×bœ¹ãMØ[/,Že}|µ™üÆ_!/ÌÇ„ŸkÜ‘ˉüæØ_Û]û6}ׯ°p.rs–õˆä@~;l—Fç£mGZç -'ø™¾ÜL~¾±ö ‡‹GlŸ“~‰ý]Ô•öÛ°ót${7cÙëÀÁøB›¾ïúεœ8Z–½'Ùs:Ô>óèÏ’«3Bí7ãÿÃv9šÉ¯ïúÎío„ZÏLÃÂ%Å“<Ùçõfò³ÿOüÖ>tá€Ñþ<å§s¤}µ‘öÕFÒϵfùØ žÒÝä~ÉMápq´®~¿†\¨ÿ3ÎØO.aÅ'rƒœÉ;rÖwý ç"7Z¿–„Øß\Qÿ—uÏËðÓ¾¤xøÇeþ&}éú®_aá<Ðvñg+9:z¬õþ3ɇì¦BÇc?ŽëJn ‡‹¶'¸zLí›Yƒ]Aü| ßÔü?¹cø‹5O+.š'€ÿ=è¶äaMñ°Cˆœ­?ø7k5Þ¼Uûk8Ö>‹ÃúîLù cïÎß/]¿ï ¾Ôz¼×ðWìë𬰇‡ÿ/üºjßÔ¼*ûQÞŽû¶_©ôð†ñ ÿ‘~´öËûI®Oðñ×ìðf—çeÿMø±Ý¡=e?µÄÛV¹é×´ÃÆ›Ëg;œÔ“vÁ^'<œ›Qâc¿³ìu¾Üà—‹þoöŠÚsUˆ\\å>ñùŽ)|(æKñÞ–èÙ¯øî ‘ǯޜÏÐÏÖ"ßcúrŒdxöÌwà£ü ?k¬u´ë¿¦çä÷`¹½î0íCº-…é×´r‰œÀ—a¾u½Ûn3߯ü©Q¯=û·»ß9çó+ßÂîû5ïÿ]a—Þv¹5æÔøc½­OámÀ×pÿD^ð öâÞ}SûßÑ¿%G?*>rNzì‹Ã»¢ßŸü÷ÁGAퟌò]ÿåï­ûýb<÷ÝþF9îR·þnÚ›û„ÏE»^ê¶ÏL¹(Ïr¤gs&ä¿…Kñž/wÃ…oFöSàaÀÏmÛß~»þÝ Û‘âñ¯‚ß½7äÌ~&Ïù‘®ÑõGJ÷LÏU¹ì/LüDžƒŸ±‘Î-zÿè_Ýr°d¾ ~•ÊñËýf$²ë¡ï¯e&íõY”Ÿr¾Ð}+~öŸÆóþüf¹9¢ž¨>Q.·«Þ7ùrîÓùüë—¿…zŸúÎZŸÌ¾¾æ¿#Í‹¬»N|ሷA>º¾"D/­qÃH<ôw:We}åÒ<ÈÏåÇÕé®)L9Ðÿiè ×ãùÔëê›çCÓtB?Nó5§C‚¾qMåD²××£x?׺ù»žÔk5Úy]¸L½@=çbw\äy}÷ËGZd—~$¿ö£{B®ËŽýhG×e¿~¤õíèŽðé6v߇ãi}4ºùmé½ÊOøhWxW×ï*¼­òk}=ÚŽ|('å¸*÷5ïi}åu¹)åuþªÇv›ÞñµÞÉÏÆèånÑ~´+õVù(×6írs;ÚƒïÛ­xO<¹å½nD~Û]9*çÐN*§Û{¥[þ{Ÿ÷~6¦õŒòùðäûr;äü^7\xŒÜðÝ¡?Ü~À{ä½"O{ñ^îEz¾sŽï›tÈý›ï6ã‚û¥îÓOÜŸIN¹OyègϺrÇuÊÉuÆKñ]¶Ü=ì¢óíÞŸÖSå¢=@êw'ÊÉ÷æ^¶ó›ÇÑíMû“/õ2îiÍãñ½oîvÃ…ÇÈöAGñ>Y_0f>¡ý#ïƒyëæçæ*=aæ!<„W%ýˆ×+ðYÏh¿ÜågýŸ~+ž·A¹„¬O˜ÿä|…üXïÀ#f^¹®0ë'ÚéFŒ7~žò1’z«>ÔŸõ£×mµ7÷g¯g8’ïõ('ç hׯ»òÈ<´ï~ù¡#~‡9h?ÄçÕΜwÂOñ‚Ú{Iï‹ý+í_æ:Óû_ÊÏç«Èw¹MçxÚ§õþšö›Ø/òùª Q^ž/ÿ–£Faé½Çs´^öù.Îs½$µOž#Ÿs‘ß…®ÜØícå—û|´¿â±ÏæçÃßzMòÁ®õD¯‚> ýíö§7÷ç·KQ~žÏuôôÃbWnȧï~ù¡£õxè‘Ñ“]÷j^í¯øèçm7E˜|ìÁïXå¾ûxëBôÜ„‰‡þ?yUô ä—üÍ3ÐsÍÐw0úv¾ðàÿl)¾ŸõÕ<0ù]æ[ÀSá·Ð~äC9Éœšͼ?øAšw™Ÿ³åÃ>Ô×”“öŽò®¼y\+,ìô»½?ÿiÜŸÀí#ä9½r½Ñý8¾?Z¯ŒµO=õC‹<µ×nã·}÷§ü´äÑö£œ”k«[ŽÂÂ7ö3æaÈ ö,sä»n{°ÜGÞ7ºßkË ó2æM›Ýþ‹|NÓ½y^ö«õ¹…œÄ¸É<>áfŒ3æßÖ<­ð-úë%ú3ó²sÍäçõ’Ö-þn³®b£x¹Îö<ŒuëÖ¬Ë>ï¦ûÍõA®Y.ê¹Ôƒçæ:ôz7~ßï¥ðÃÆCñ:½Ÿ(y1Ïë¼î?WXrâý?Î[²ï÷]·ÿç¾™ùigZ4_ìÕo_9·I~æõ±øHáÇmúZÊOyy>¼››5ÞþB?ƒg³ª_Á/‚¯h·™ü¦ü2õOóbþÞ½ïl÷A›Îüµ‡Š¯|ï‘ï»­o¦|!¼QêyG×y|ÐÿîÖóÎï³Î*&ú»Ï~æñCx«ÛŸfåùBN"}òÒr¼ Þo®Ï ¿Nh§ž—ãùy*Ÿòéûý~˜h~óøaÒSš?fžšú|6ÖAðîHŸç‘°û—¼5Öà1vÞº>ðÏàçq®ˆr³~a]E¹ÌŸÓõ’›Â_ègœ·d½Œ1­‹ÍWÓ>™ùzgÔÿ¸n^šÒëӾ2ûmœ¯äù¶oF¾ðè~ã~–ùgÊ×Èþ™êãý½³ ߆}¿øi…¿€>o}é3Ž&÷›Æ×á ¡Q?·Þžü2ôAê—æÁW²}3!÷៽u}(çÝúLyPBxoðÙ.FùŠŸVøKýlEý{2ðàëig´!zøåfò³½©«y_ß;5Ú_3¯.ø•ÿçúàG {NÛ!Gðá5|Ñ}ÞxSõX©}·joú qßvÒºï{|~G?Â3¡åó®ÅûÃ>Ñv÷ûk> ¼óH”?ŽÖ¹Þ'žü-íÃx?æìGqŽÓvÔ”^rF~Ø ãܤËÃyKÉ•í¢5ÝßÔ¯žòù¾Æ™Â÷(7ËÍäç}~ìpa?ûfØ?²>#¶ Ä.v 87¯u§ùSÒ—¸<¤g˜sðè%(vÀЄ~¤°p®r{`ð@¸Žž;2¶—ÖL~Sý4ñÉû ¹°ý´î8á|)ö¾°Sc;4 £·”¿ïö,<h^ˆíw©_è:vѾmûéžä Üôæü½›Ÿí$=S?§¿Û§Áÿ²]'ÅÛS»Q÷£|J×w{ž4_*ìÎÚ!TÿÄîྮ§=²´‡|ÁϺ—÷‘Æ…)—ù’¶½@î×ú¦ð=Ê õ ÐL~ökϾûføOeÝÏ‹ø ô“æy]ˆ|ÌÓuö㈿K|ïã±ÏÀy«%òiÓ÷Ýž…§m'MûÇøƒ9zÑö_ó´Ò¿ zNõsŸcÇÛyÅGÏ‚¯äya·IùÛ<xT²+ˆ?XÐÏ­ó½…ïSnÐËc/>`øk2 ¾ <üÑϱ¶¢0züU!ü›e!|x؃_ y›yä /¾Uø?*,,ü ßxŽöc‰ áUj?#ýÚžß í—›ÿy3ò…OIþܿ׵ßa¿¢ðý°ÃŸü’ïG}ø®…¸¿ªZ?šgH½Â´í§mÖ¸}šqÊKn&?÷7ú¡Ç/õ#x§ØdœƒgG˜qÐ~yé¿ä¯ôŒƒäw9®ËÏþuÍKEÎÔ¯m7 ž r ÿHë¼Yy'ù¨ÞØOÛ¹á¹á—ªðt¡å€õóEì/#?ØÃ^î~g½Nóù!ö:‘7æµzÎÑ#Åã¹iG>7çeàõ±^„ŸÇs)/éY'6Š¿ý?ý{b/|ynœ÷ñwàûí…ÃFÛûŸ„›ÆþJÕì ½=åÓa ¡êÿœ¿lˆ/y2»dÚÏ@nl· »l<ûiç”~A‰§~ýBž›~ì'áÝù¥ËŸð'ÅSù° —|>ûMˆü OÎøEŸ-ý•®+ ÿô+JÏ~¸ö=̳#_öãÉß~IûjKÂôóCzüªÚ¾™Ðþ=›ÉÏþmìß”z )ü@ÛOb?½®÷õˆÇù ÎUQï+ù<]çÕÍn¾…§m¿ü¬°i3|9í›Ùîù1ñì‡ ür:ž“vÖ8Oþ´Í—ý1ï³ý¤çjøð…¤ã>ûpqþ6ý}ú\.øº}®ÏÙb_|/(L~Ú׃'Ø÷{,|¿hþzôäi¯ìŒÂ “nbÿ¦¶¯}%úô*è#Ï_aô>èM°åP¿õ}¡í'ðÜsñü¯ºõp½moAÏ'ÝR–Cé¹O9Ы†_œÂÓî'«Ñ_±;…NxtØOã:úÑÿfä‡Þž0ü¾µÈ=$zXxðsèÇ”‡0üí_˜Cºµî|jÆ¿'<Ÿ!×Éû@ð¨OèOZÿ‹^~&|ì”ñýå}áOïç_ºß5ç»5É åýÐÓ¿nÚ\~o^‹ý“©/ïŸü‘¾»ðQ²_"GÛ‘ãÕõny\.¾ÏðtÜÏ»ýn¦þæ© ±‡0åý¨¼æ× ŒGo.Ÿóáý]U> BÊ _‚÷Íó®œr¹aœg>A;Â÷Ã?ØO1?€G¿ãü1rÃ<þóÆÞÏY½—Ï"LÿäýÑ¿.Å}æEä«ùˆýƒ!_’¿£×ÊïB7¾å)Ï1€ö÷Þíç3õÎù åæ{|Óõ½òùžwŒÿNôcórÚ°ã}þËó©<¿á÷‹œ#÷èæŸ|·Ó†îÈÇ#õ«!Gð–$_Ø5ã| ëàÌŸu$ë]ú«ûùÒÿ±ïôXøî{eüšúËÓ{d|Q˜õ³óßäˆuïw1Â?SzÛƒSÿ‡o’~6i¯cÇYÉ ë!¯»i·—ê¯âáø\Ó3…Ÿ½¹Ú òó9#ü‡Ò~¯~¹ïè©Úíy7=íÌûãý³Ðwÿí iÿ´‹o»cúNržr¤ïâHý‡ðqùtŽÌùqŽ“óžš÷x‹}#õ3óAô]6/„sœŸuŸïëçÉ·[NŸ¥>ê×Fâ©øð~±Ë¡ëÞ<_ñ}ê˾õ¥áåü%Ê ßåR·¾ÎŸvÑ÷æPß#xpy®öØ÷cûuô!þþí†Ü¼üå÷>tô>>z ôð¯àWy¿_ï÷†Úñu¶ @|xètNÅz“5]·>Daž>‚çÂßR~~.é­_Q:x%ðaÖ#l=÷)§ÂðOnF;³¾q{nDû¡Ÿ¹å¢<öŸ£üÝ>ñ}¸õ@ήÇûù¾¿óÙˆô´ãf|¿à﬽¹ÞCGó7Ð_›¥ö¯Xê¿Ñ3›×ñæñÚúoôï;Êý¡yaBÛ»¢·&ôò¶‡£x¤ƒo¶/<ÐsЧïtËéúºœ”‡üiê¿¢ú+õæoî—æìtÛiê·,ÚçnÔý?özn‡ÜP/ä ûpö§ÖmŸcûý!Òδ—ž¿Çùéú)õ·f~–ýè=kÛÅö’"Œœ€Jwÿ˜ïíýXñéÈúánÄósvúÈÇñ «œûê‡ûZ¼¯rb?ÍvªxηñrÊ÷êæ7­—ÊO>÷W:ý|6ù ]?…‘sÂðÒô|Û}‹rîÇ{!Ýn xrÓïåîü!ig+óã;i~ܳ_”Ç¡âô;úm÷;Ëw5ûµÛvÕýƒî{qþ÷Õo‘³”OÂŒô³xßÓþû_Ý÷Ç÷Ûßg¥C^,_`¤óû~gÞ&ùпyŽ®ã¿ÓvÛ¢?"/ù\×/¾[¶CÇóã;r§û}òxãïï‹q÷ãÔ^æC=WºíérÒ.ÝzRξûñ{—Ùóü;gÌs7õ^˜ÿï*>aø½Çø›4ïÑóÅgaÞŠ’?ë Ò1¯³ßsŃOÉz‚0óó)ÒQOæA›‘ßF”Ó|úHÏsàño©¼|—(ë9ò§~7¢¾äÇ{až·ýŸçPæµ”ÛïOñlW® OßS¤ßŠr¹^ñ¾¤×뻿o´ßHö±8—Ä~á%Ý_UøÓHwµ;?ñû`ʺžøÒóy }ö­–õ¾W$û~ìK±À¹­ä“áß;ë<Ÿsbì±oÅ~û€Ôƒ~äëÂÅ(/ÏaŸŒ})êÅsáyÒ´ûyžOùuŸç°?·íÆ{b¿ó¢¤;æ\ótßMå§}æ9´í¬çõÝß7Zß…¾â»6l½ˆôèG/Û°ý/q^WñØÇÎü§ú¥;+l”ï=Oé¹ïrèyÖó ß7Éõô§ƒYåo½ zQôTÔëÇîwÓú«Ô³€º¾ÊzŽŸÚø.?ù¿nëKyÐù¼1é©Oè“ü¾.¨=?ê–}ϳŠö@õ‡7÷sôI©ÿ"=ý}×Ñ¿ºõí»¿w¹YSûÀë°2µó ¨÷~[û¾~ÏÁtþéOu!úù¡†‡ˆ}AôÕð^ƒí þòw/íú:rÌóЫ.¼9?óˆO¹(·¾¿æ?P?}ÇÝïá5Ág¢}Í3å9m:??í{ØÏê‡?;Þü·cxdSû:JGùxï´3íd¾«0x …'ÇÚ¶$ì7Ák4ÏNï^"|ɾºŽ¿Wxšú>Ø^˜ö½§þFc<ø*úëZôKøbø»µ=)Ê©ôðx®Öuã;¤S>ò¸ÎóÖéßQNž&ø~Žwã˜ïaøî»¾NíˆéýÙN™úQöWÆ7äþ”ü+ÒÑó>ãLØOs¹à‰1nÛ¯#ý“ñI×á·­D¹‚¯f»‡¶7Jy»òëñÊv¨N»UŒØG„§ã¶yÚÁ+õsC[øa£ßÛ…”!öüà‘Á£™ß1?$¿Å˜71?áûÏ:ŠçÅ÷Öå!ý“þÏúJ÷½/I<æYÌó”¯çÅ”›uLò1cÈúÄådþïUëêçxgt=ü º^e?íD¡Ï3ªŸ¤}wóuß<0õú«í‡=VXȹÌä«úü¥ž_•rùþ=ï³îsFmwol?íY‹£ØÇð~ÚgÝçºʇ}-×Cò‘ÏgÿÍåäœ'í£v™©õé©}_·åè»?¾zŸØ3¸Ñïö3ß-Úk½+®WØ•¶^¡ì§(´ÞÐ~?õþég¶£0zRô~ðÁÐCbŒtÛêoèmÿLaô“ð¸ÈŸr`_ ½(zÃÊÃuÊ*?^Þv~ØhÞvÉ臶S¦÷mþÊÃö:¼øšð‡v²ÿÿJ›|Góôè¾ú1ùÃó4oE÷Íåù!¿ö/L|ʧëÔËü®SOåÏõäívû÷ÔN›â›ã’íPµåš‘»»%7' gìƒñýËþH?5 9QzÛ £_’îóä‰þÆóvâ¹ßü3ž×ý~»_2¾QNûá¦ßª>.G~/”î Êy¯[Ï©ÜP?åõu¼;ÑNðÕî¾9ßÂÍ÷âëÖ öª°Ï ×uõBÚM&|òcžÄ|žÍf>—ù•â]Ëü)·âÙ3åQ˜y^ž_ây7"óDò¥þaçlj—M÷·â9¤g½¸×i¿›%7' ±3æó˜ÚO…/b?ì'aï‹ó©ð×ðŠŸ€—º¾Ðæï},Î;j½îëø# œÏù8Êy.îs¾>¼–'º~>ò¥\ÿŠúÉž”yjöc@:å&®ƒ(oÌçØ¿ƒ_§}ï̧ïþPøvh}"úôvè]з ùc\G/ŸD/£þiýâ9…ÑGb_á'¥S¿³^=+Ï?+„'†~FýÏü•EáŠî§6âÁG{¡çÙΚÊI»,Gùþõ!ô7Ô í ÁvÖºÏí»?¾¥Ü`7 ~aüŽÁ 0ßEaôêðl÷ ¹Â ®Ã#À~˜æW.—í©ÿa_ zMôôðÖC>fì¸é¹ðȾzÈê%¤¾þž&_!þ Óß¾SöG}Úë}÷‡ÂßÓï­û=ý”÷-úr¸¦~<"?ðÙèOð5áµ1>…̙禟Mø@ôgóØ@忇ü wŒðó̫趇ŸËó@ê{9Ò'¿y>†×Vx21yŒžÏdÿ<ÃüD÷éçŒC\OD±çÆøÀ<‹0ó:æ…ôóä1B~™W’Në?ïr”—ò0¯c^†ýÄãìA^òÁÏ9G½BÞÓ_áB­o†„3ï—þÀ÷RýÈç~èoô×óºÿ\ý)ø2žOa'PñàßøœR¬/XÁƒ¡|>Ô¨¿†·™sJðr~hãc÷Œs?þ^(û3íë$?ç‘ëÏ»aç_~ O4¦ý²<×èýfÎS¶Ý¬ñ>ûZúΚçÂ>–äÍ<x=_D:x9*y4i?m±ÛßÌÏaÌ<=ž ç29o˾»Æ9û;~&õŸi7ø@ص#νæ~\œ£Cnû~ÿ…¿ gì§%ŸŠóöè'àÕ¬GxSýÞ÷9WŸvˆÞ;dö£çbÌþm¢¼Ä»ñСgq¹Æ zóÒ(§ð8û”-ò±Ÿ•ƒòÏðÜj¼9Ɉ~Üaì;¨Á'AÿÄvÍÚôSû=ê?Ö§G¼{Fo¿lß¶ýÛþÎxn7¾Ë OÀöÛ”íàèú½È¾þ<±/’<€ý•7öoóÒ#|8øØÙ ;§Õ~ÚP0í™bûn cG {R¶{¦~“ö—¸Žý#왑ù¼O<¥'ÿ®«ßÛÎSÌ+|•Ï}Pr@}¾Yé–Çù«<¶#G9Þ¼~ŸµG§ç¤=»ð/:Mÿæ| OÎðªlïKý`?ú—ýËêºÃôä§ÛÏÝOÓ.cú¡eðsŽqm*ç<_H¾ûù¼ƒ®3N`—ùây!³r³Ò­¿í´E=ø~d;¿y+<ȼÂaû7W¿Ç ?Ò~Êÿ»;Ÿ‚÷¯ ×VÈö×6…ðö}€ùéãþ­è¬£œŸÊ‡½7æ“.¿òõ9†˜ú|„î߉zÙΚò³]aÒÅý-0ÚùV7'Ó¾·íñ³ÞM{kœûZU?ò¾’}1ö™8÷Æúÿ_FxIñV”ŽçÂoãºô0Y~ïcQ|ŸcSþ¤g?Íç×Ov rÿÌûrì'.æ~ÞçñÒ‡þ4÷ Oš÷ÅyùWí{æ<¯Ïᇟ)Ÿ×?+į~h~jÓY!œ±Ÿ†ý1üüü¨øqnýJê!žr\ê–Ïé>éækÿ>è{ž¶ýzêˆûº~uìgˆøðêεñÍã/Ûûn÷Øï.OöªçùÿOÝùyÚƒõzâ±òc¼Zþå~C9mŸ,Ï“°b}€\1Oºåc½ñL÷9?ÿŒõíA}ä“x*<5ç{Fñô½8ú¡m¯g)¿cxš…&š¯¥~==Ù¾ç©HÅ3/«}ÏÞ¯9Îo&û=g%‡œkd?K×gö©°ó.ù´=²ï}!üÛ>‰ôÈ·ú½Ï~Où…Øáÿ >ïI9©?åäœdð½ü<Úrj<1ÿŒû´ûëöù}÷‡Â·”ö#á-q^þï}Ç&ñ…œËÇú ìy­Fþöó¡~J<ÛPØöÔ„¶O÷ɽ ñí_SÏ£é÷ôfäC9°@:üŠÐ.ظJ¹É_ùæ¹~Úý ×iß²/{¢Ðú1ôl¶côm¶]½÷ôßf{`zÿèmßEaø`[Êß~'…;Ýõ°ýW¡·C¿¿«ë¶{Ãu•‹ð(/å±ÿO]G¿žå¾aê‹>”øn'®“>žëv‹v¶Í6Üw(|;4¯Ã¼%…퇒þ¥÷m¿”ÏÚøÇùÓs¾Ñ?íQýÍvËBnÒïàŒ?Jä‰r+?ìž?ýãb Ëù‘ŽzG¾é×o/Êc^ËÃ(ŸžC<·§âQÿà»~Øèïžýkªíçû¥?Ñè‡ô——¸n9£E§e:xÀôc÷Ë”£‡ÝñÁãR<y¡œ3þ8•ŽqÁöÚÈ—üȇxYï•îu˯ò§|9~«}ûî…o)7ð­˜Ã›2¿J÷·¹Ï¼LýÊþÄ…Û‘ç<6•n#æuäÃú‰t¶s+äÉz<ßv¢ܷ"¾í¡±®ÑuæWÔÏç\¶_Tų}]Åc³åfÝFýÍ/‹ö¼ÙM×w(|;„ße;ööó©0ûa †?Åþç Y·Ãc¿‰ûì#‘ϵnñ¹Ëõ'ñ§¼_Æ}žK¹lo]aìƒS<ÒQœ c?ý5ìŒÑøõdŽ}Eêµù®vËáý9—_÷/´˜þ ?lœáqéýYÿ€~½¨ÞsòÂlç ¿¢¯Vüi~Bì~¡=¯çg<ì.¡§‡Ÿ ý>zU쌡—’ü¹|gT?øcø“y¡r~§ø*ÏŒ]5ôBÔ½ÖÅnù¬÷!ôLjoß'¿°ŸPøa£ùJðèÇð_àO¡¿Dï·¬0z|ô†©Ôw×ý¾ ü(®ÏèéUø,ð®FùÈÏ<-!<„E!òÃsGÛMS9¨'~á!¬G½(ò¹å‚ßF{\‹çà =jßýÁýÞï™v€×„<ø´£ÛAaìßÑ¿àO¬E¾×£Ý°ç¦}Uó“¢aW –·">ïi‰þ$¤Ýµ_;ãÿŽþO ^Ö®ò¥¿\‹z™÷¢ôÔëv¼oÆž/9tûSÚ{^´kÚÃÿ%öóxißìZÔ“|á…ñ>×yÈï¹&=÷Óáõx®í¶!*/ö ± ˆOêgþ[Wž¦~LõÆ{äÞŽý%*ï±ÛÞn/â­S/ú‘žgûk|ßtÿn–‹ú*?êI;Ák´¿SÚ+Þ'ïü¨Ïm¾7ºÏ÷ÝòLÿ%¬r¥Ý;ò¥_ÀÃd¾B{Óï‘7ìéaß;I”ƒþÂsàÁÜ¢ÿë¾ùi„yŸñ=à{ ¯‹t¶ß§ø´ãjÔƒq yQ;r.ÀíH{}Ï£þô ò¡^ðìx¾íç"/ºO»]Šz¸~ÊŸñŒvÀ:ßKú“ùªºò~yå¼Ú-¿íZQ>Þïá‚°¡}£\¼äþQØÉå<ƒçÉ”“ù¶ž(çÅœŸâý™§Ås°ËÅõgŠÏwˆþM{¨™w¥þm{W/»õ9$¿óôK¡Þ{ÓtËëy¸òq½hWú…úö¶˜‡Ûÿõ†ï¢õ ö¿|äGú‰ò§ßë½Ó^G°>RûLùcÑ?i×G!Gô×쌗ÈÇR´ ë–<§Û¯f쎽¢œÝòøœŒâÿq¾¼'ÖQœR?ôyü4Ò>´;ÏW{sŸ} ú]òi_Úû0í¶=éÞ§y#µït¿CaöOØ7aŸGõ´ý-öMà#ÁS ùð¾ <'x‘ð÷Ôo½oEþìKá9jµûI´³Ë/Œýê£þAgÈç%hnþÞ/¢ìûp_r4ÝGÒuÛßWØç0¤Ýhoɹ÷·ØSÿwý?êÆ£yÿLó÷'µ¿ý˜Ÿ¦öWrýè¹oF;ÀbNóÞÓ ÏÌí¬çfŸ1žŸÒ›C˜çÐ/)å¦Ýyÿ‹Ç û„ôÓð§Jþn/öëákؤî³ÿ~#îsž¾v´Ø·´_H!<#ø^«JÇóá7Á¿‚×åò(L{¢ç˜áoQ¯¨ý=úô<úò\p#Ê>Âv¿tý¦ÒÛ? õ!åT~øÁ¤<´×Ý”W×)WòÆà¥™¦tÖ›P>ÊO;ó\Ň'¶­x‘ý—sÊ|߬ÏÑ}üe®G{¢oâýn¯¸n:ñþ¯F~a?Íïi“xô7úå¦=•ñ)?ü¾´Sg{[º_,ôx¶Ÿõ­®«<” ûS¤£<ØQ°+¡ývQ_!ü(ôÆ„)ý}7ïõŽâ¡gNþ—ýt­´÷Éo'òáya‡ËúÏÔ££7·0âE»QO—“ëßö0hWòUü|åÞÐækâóž¨v.ÐOÎø;£ý„èÿ)÷xþN´3ßÓÌŸúó|óÛ¢]à-Ü‹rîFùh'úݽÈÏí@øÛn4ovVþî'’ûµ£]H¯ü쯑ëBøc‘žrØîíñm·=È÷€z®tËuŸúNå‡7”vÉÌ¿¡þ¼Ú•vä¹ä£û÷‰Ç{ÑóÝδÇÃn>ngÚ‰v&LÿxÐg~Ïã}(ìïê³î÷Ñü;žËóHò€¼SÛ£Ê÷òßÝï4Ïç;’v$ýÝãûõ¦ÿðÝI9·¿ÖønÙÞ$ß«¬ŸÒ»^!¯~´ý‰÷Fyˆß=ÚÍüMžò¾õÚU>¶Ãrè~ϹùÛßl–3û[Üçù/y?¼·x_滑ï=ßS”Ÿvâ9È™ßßÞÏÍvÈï!ý†öÐuóºã}ñ^Ý^”Ÿï›òc\ò|Q÷™/¤ïM=ß~ºuÝ㨞”ô-žoñþY?1_Ëy€ý}ë>ózäs[axçàvÄç=À£¼¬o¨ó{ÊA;Üz»žŠÇ<ùQÎG¹n^VäÃüÖ|6ÊI:Þ‹â1/?Ο9é)ïz´aÞ~6i7äÍíÄû¥hŸgÛ]Žö¤Þ¬KXgQæÉ®7õ žº¿÷É7íÈ¥}kžGû¦7êŸ~æi?ÞûNœCbÊþû#¬Ç°s¿¤ûìG°.Œý4ÇcŸþ’ý4*>ûäÇú–ý'®åa¿†÷ÀþË¥(ßRÜgÊû) ¯pŸúG½Ø§a½x%ò¥X׳/Çù®UÝ'_öß>rSÖÃ磜ìñÜ&òeŸŽø¼_®'x‰ú³N^TºÜçú<}·äÙQŸÌç¬â±/HùÙ¤Rÿ´‡æzÑ> Óo“H¹©çg‘|¾kñ~(‡ú‘íFÁ[ ½ú€é¹øöÇ~¹÷Çá7‘?é·÷ý<Ê¡úy”çþ¨xé¿=z…à‡yŸžr£#¾ÚËz½?ôc~î¥ãüûsÝÆó”ŸÞ«Ãðd(§ÛAåz¥ôèIÈïQ¿¿tËa;aèaÑãÐ>/OåœñãD¾¤Goå·ôN [?F»ü±û¾­ÿ ûi~ÿ膧ú"µ/ïòéUÛ-xÚíiÍú³×Q®§ôú©þƒú«y~´ïQß?ÚÕ|x kŠ!ùöC§|áG ÏK’ðMà À{áy¤[|‰Gzø#ðbÐóò<ì Á#Ø&¬û< ú:ò…/a»GЇ½4< úåW‘DÿjaÑþÉ7ãþJ”‡öþ2ëí<òã»aûiJ~¾ zûu¥·ò¥üBx|7øÒߨ§ývåe–'¤øèéí4ú v„y/ñÚ$_Ú™ï¼òå:zxÛãi±o~܇޿©\vÿ2Þ#ýKë!÷'äFë‡ù.˜'§ðZ>÷*Ôüz¬y¾ËI<ø$ôcx:ðõ´®4¾å§ÿ`¿l‡ømz?OëËééÿȳùnÊ×ß»gÚ›ïß³;ÑkÝ~;å#ê9ð$ÓŽÜf÷y®?þyö›ïÿÀÇ”»0Þ#ß?¾?ô»ä]Ýfüe\Q»«Où:1N“ïßãý„þ¯ôæCñJaøiÌ“é·×âùioñ9@þ–»åu»0®­Ä8G{.í¯ñÝ;˜Î—ñ…þý7Æ«k!7ŒóŒ7Ô÷ËÊÿù¦àñLÖa'²ï~ù¡£ß#íÌúûJßé}0¯†ŸñH×Ïè:öŽ— Ñ»ñ½ŽcÃüé,ãJôsɩϭП_žÇú†úxž&ô¹6<åF…¯H½˜÷§½ZÖ'Ï[ôº¹¾ž©Xïd<ÐëSxœÿî–Ûù¦Ÿ_Úòý 0ï—÷F{#÷šwöÝ/?tô>ç_µè}¨°3h>SòÖØïbÿ†}ì–é=>U:öàU±¤þɺ“”Ë<4ÎKÂS|xYnÊãxðÍ(ïÇÝ~ëtði¿W<äMýÝûQg£|´§êíöd_Ž0vÐÿùf¹á»å|>ë>Ïñx.åá½Ò¾”OßÃ×ÑÎÊŸý›¾û凎Þ÷„ï†=°M½ö›Ñ ‡J^YÚ%cÿ”}kâÁçÓügj?LñáÛq?í§±?¾ùb€ül¿Lù®F}ðƒÞk½ûývù)íDým—M倿ˆ¾`½+ÞGNþûá_Åó©ÇçßíùÛO¨} ¼Áµn:Çãù´Ó•’›·’ôªèÉl/Iíœü¬äyÙÿùŽûJgû¤¢·K}.ˆ¼šO¡0<왡çNûf<×þ˜¸O½º÷Ý.Öƒ+í¿ºo{kBûŠ~M¹Ìg‹øáWÓüOô’ÄCÿy·;Ÿ2%y”ðAÐÃßꦷžÞöåºå(†yP ÷6_æA7¿´«f^ ñõ~¹ožŠÞ§ùEJ?-ýš_¥øö+K>ħܺ¯|Ü.ðƒl¿)êkûNj7óàþÞ‰7í×´íB{¨{»rs/Ú#ýó†Ý¨©«øîe{ò<ÛƒlâýtÛ¡ð¹±_än»Mý½ª˜I?ã}Ò/Á|¿¼¯o»h~ùÄ÷‘qjÆ/4ýŒró§ŸP•.Þ‹~c{ôŸè‡Œ£þ>G?&_úóoóíLzåg~0ןuÇ;Û£ÝVºéÒßvú%µ<m4Û5ä2üª#7|Y0_c1cïLaχ?ýL²þñz@÷ÍÓû4?Jé|Nˆ|rÀ ã¹içÌöÑ„Ìç7•Þçv¢?ÝÌû*7ù­G= û\M”ïë˜w‘ó<žO>7b|ÚŒr{ýÒ-ï4ÿHÏsÈdýu#®›Ç÷f¹/ ¹Ñz×û5Øóg¿ žü5øw+jïÏ"¾ycm:ïóäyZxV«m:Ÿ‹äùK ³ßôBùó\öߔυ_G:ü, ?Šô윉z°ž×_"L|øa‹‘oèݽÇ>ÞŸÞ\?¿Úö‡Ç{ˆ}ë<ʾ§ß+õ¦Üø]àþYå¶Æ›·AóÞÔOÍ¿S»Où_íõ©]³¸žü ½ë!m—B(ù±FýÏúë…œ×{¶~…û”Kõu;£Ç"½ý—v¯;~Øc³þ ~ÍBÄç¹´üHÚŸë赨w¾¿côH…!7è»±WCK»dæ轡ŸF~ÌKS^‡ÆëíáÃ.í¦ÁóA /þ¼Êaý¹â¡äùÈ•ýÆuôöäK¹ÌO®G?$¿cüab?ÉaÊO½à¿Ðþ韓úh5c_Êöé”zKøØCo¼‰Üè>ï‹z¯ ¿ê–£p˜èþM?†'„ÜÓßí3úÕâG¿Þîö#óÃÒïhÚÛ³·Wž&ß)ìÙ?o÷{?íßÈÛ1rz3äŽçÁ›Cî°ó¥u£ãovÛ©ï÷Zø~pjSï>7o‘ù ý¾ãŠùšŒk ®¯„Ü ŸŒäoÞ³®3c>oyXÑuû)Vþ?ó©ÐwºW»òäúQæqŒ÷±`9ûªäæ4àÔ¿§Þ;üEƉ\¿ÁƒïöJ÷“_üIô[Ö>¡t!ûqì×Ù_‚Âðû´H>æ©>ì«e;P^ó)ûo”GrI~´‡Ïñ½¬ñæ4 í´Á¯ÓúÀúÛ¹‹ûÁK3 ûk>/¯øØ§#>Ï%zöµ¹5òÛäz܇?†½6ì·qNÝõyóx`}™yoŠþ‰|©'שß×Ýúöý^ ç‹Sû_zÿèûlÇLaüHaÏ‚tèùá›Y+4NáÔ§4ÒÁ³} ݇†¾Ùå'?]Ç>zæåg~Z·›€þÕöü(Â[”ƒ0õ£^%7§gydô—@ópõ'Û‘{¨ûÊÇvÃN^›y_ÿñž±?E¾ÊÇö¸VÚxé7ÔåÐ}Û"ÞJg^9åéùë9ð[m·RhÿŠÝvéû½ÎÍO3+û aú…ïwÚÉäºý1*|'äbÆ^éß»ýÔþ¹³<*çq~¦Ó^òk{³ÝqdFnîF>öÛÍõüŽp]å*~Ú©À©ýcÖ'Bæ+Ìû±‡Ç:;bÌ«8³ù]džÄyÖ1ðãX7±ž`‘öÏl÷LùÚ¾Ïá¾pr°NjÃnŸ‹Rþä ïõÑWQ_ò ûz}¿×Â9É |-øaðÓX¿sž›ý,·žS|Ò}Ýo{pìoÁë"¿ÛðákÅã\«yzzÞç‘îŸý4xmö' ûŸòÀS#Þg!7Ô‹óžÄãükîßÑì·Õýcöë ‡Ök`#õ,„±S€GýeÆ®þR^f|!¼<õgÛCóù¥C¿ˆ¾ýçR<û’Û={¬ð‚Ò5Â3ºþwÜ<»k?©œ<ŸçÀ»9ÎOªžÛ÷û-œZÿ¯…~™<9®ÃŸ—³¬þOæzô«ŠÒà H»TðY¬ïWþØ Iûpë #——£¼èûá§™¯÷)ÏŠ{6Ø{‚Ÿ€=ø†ö‹§øäûEw+<¦ÿÙžÚÑýï•¶o¨÷Àuôà¼ßϫݗïrÅxl­+N.ýÓå{pí—ß|¥¾ÛáCGç¡/·=!ø[ðsœO»”—ªÝßInl×PíÊw‰ycð°=OCÞO9oÛ~ÂEn‚—]xL;i¾m9zÜ7Ã÷0*í,=Ò¼<üLö]¯“Šö{ ?í¹ÂúN5úaÏÉçšX/ý±ûìßõy¼§°;Å÷õZßíð¡#ûA3×Ûö±Çž û1œÛ<Ëõj÷wzKñ]ÂÞûq¼ìºqžµÑ{8'Œùƒ÷ñâ»7#·kžýVï {d¶7¦0çä±#_Äú½G­—­W¸YíþNïÃü1µç ïEˆß‘´»€Ýô8ðÞ¬‡Ò}ô[¤ »¶£Zß¼Ý{ÚQÿ·þx¥}?ðC¸?ÃOQ<ëßõŠßônïƒöGª}˜)ÏŽ÷ ÷’~üàÅÁS°ŸÔø:[Ý÷•vÜ {Oj?üEÚ¯¤ÚÛvŸüœ Hžì×SélÇl­¾W¿õ}Ø/¨Ðü4µÚ‰³?M¾{ ÷ù¾…|ÃGÃ_jßíð¡£y¹{ÕÞêÿög»Ò½¿XüæÎØ«õÍ»}ÇÔŸÍmÚv¶5Ææjÿ´/·«tæuvåžèÌóC¾ {Ozð¢à#®¿ù»3µ‹«÷c>¼Â[µŸöNïÃþPÕδ+<³ä¹ÁC³=6ÞuLøµá\ÄÌó·j¼y«÷ĺ>¼/®‡=#Ÿ£âœ¼)ì†/wã¾å{ ýáµ¥:ö/¹Î¹Ñóº³ñ¼³´SèëÅO{+´_Îÿضîï;~úåDg1í¯ïz4¤ý8¯lÿß·ïÅí~VíŒý¶Ÿ¤wÚ>\Ú7{kÜŸ)GÉÍÿí½ÁgÒw ;03ñlFïoYïó;b…oÙþ´§íÕ),ûNæ™Á³Áþ›ýÔé:vžàåÀXëʉå)üÂñ~ûnÂ÷ƒ¶·´ýkSý+æ÷¶ ¥óÄæµÐÿðÿIÞ#vr°æ~ªô×#½í% )ŸüˆøùØ¡Ânv¢#ø§ðG—£|Ô¿‡ñÝ3ÿðýšíºm•Üœ&œñÏ̸ßKûS¿ÒÍäçøô¿äGr{£—º÷ý|äƒï;¼Xä1ýZ§@xͶª|Ò#õDž˜'S^ÉýR?ò ¿ ~¾í2Ö¾ÀiB󆱋Œ=Wø©¶SMXýëµâ™/ÌúBá ¤S<¾ÛéTϵ=%ÖÈYò—56/“sAZ_zúq¡}¾ùeßE<ä> rvNé8¿÷q·^ÓïNWîû~Ÿ…ïY?ç9Í´Ÿfÿž¶ëßÞO;g¶ƒÆ¾”yym¿²¿ÓÊûdðȰ—ÖFo¦öÓ¾å|¥ü5ŽØªÊOÍûiá—ÔöÕ(§ÆM‡i—¯ºòMûYÞÿUãÍi@Û €Og?£êGé·þúø^𻈇}3/æ[ÒÙ‡_Âû‚ÏçóüºŽ=3üòP.ÎûãÇ»iðÏì•tB⣿±¡¶œnøi”A؉C­öwNZ/ˆ¾|[ýÀöÄöªþƒ=4ø)¶S&„F~\§ßoF|ôÁØ)ï–í–)óÆ"ÛcR=l¿C×±o-ý„šoF½Ÿç‘nW×á»QÛëÎß ‡‰æÑÿ±CânöËmÿ€¿u_ýÉù(í²‘N÷÷õœôh^˜ÂøqL¿¥äk^™Êƒ?Õ¬OÆÛ#Þ·Ýëé7~åÞú;Ò´él‡êYGû~¯…óE÷ó´é1™ïM?S¿ƒÿEØün¾ó 3ždœ±ŸFzâ+ÿôó{7Ò™‹<<ëʳíµ)¿½WûGr[Jgû¢È%ãV3§ =ÿ€Ÿås@±ðúGaÖ7ôoòá>ç‘Âo†y_¬XOÙ^Y¬'|NIùaïÖvߘ_&>ý]÷Y±^á¼€×wº¿Næ‡^ µï0kÿM×Ã.[á0ÑûE¬Ÿ—Õ°vÉ_ë>vÏX³ß%=‡íú³u^÷9/ùQ¤/¯ž§}:û7È|Ø¿{¡tØ_ãœ-|5ößÒîZúíôyÎö‡ïÿ=Ó}öÿuçeìãõý^ 狶Äì-´ýfÊ ^ÌxºŽ?šWm¿2ï»R’£äpFBø|äþûè‡àÓH~fžÿI<Ÿú’Nò’~~lGŽø<ý,ù…¾¦ì@´žþ ztx+º¾ª~‚ßBô¢›ÝyØ”×¢ôë kf½þõÍ“¦¼åþÑ~Ût^vhèßÈ9õÑ>ö¹\Nì<}ùRx3ä‹rë>ù¯wÇ›÷ÍOs»\‹v£œ;ÔG×Ñ_SÏÛ„•þV´oøÉ³KøØiÚ‰þ#=€û‰æñc­oÍ7÷/„÷‡ÿ?ê³Ç}¥§ß܉÷ý;øZô?ì°†7‚=)úÉVÄ£Ÿ`—Ê~t¦À K;ƒZÿ¸áKꜱó£^æ‡é>Ï¡œ´+å§ýàÉðž)ýƒö×¾·ŸO>È7þmáë ïðäè?Èñ6Ïu}#Ú‡÷B}¨7<»ïYnk·c„í·Yå…Èxlÿ«¼oê§0ù[Þt>!ý—ñþìj´#íËüù ßE­OÍsæ½Ýöç:ý þ“y»zÎRÈ'ó¥+ñþh§Ì?ùÁ Û-ß%úkòÀ¾ŒþB¾´§ý’Ÿò#G´ó6ò§Ÿ#_Ô×þl•n!êÿœò“žvBÞyŸ|/èÄ?‡|Ò¢<ð¦Ï(Ÿ´çI{ÙOiï½É ü(üF¦Ý`äïßeä}!Þ<"Úk9Ú1Çæ̇)éé̃ì§<ÞÃy…›«> ×Éþå-º¶oÞáçÑÌûéßÑ^nWú'ß ú¥ì<û;E½ioúÏr”9¦Óþ´‡ãÅóñËù“ðE7ìïHÚ—V{½V¾¼Ú•õ÷UóÓž+_òã=¨¼N:Óïökºùºi_á}É ýˆó@‡Oþ^åþNåVøPaÛ«Ò½¤ôð–Ü߸Ž]ÀšÎý”£g-Â_r:µßHýË|*íߨo%稨ϫnØ÷Ù/ÂŽû=ð§ôióÃ$ׇêÄã|âa´×¨é^÷¾”äŒú“Ÿù]jêëvQ2?Œr|õT»Û¿§ú·Ãì_aßòÑž’óÜØÇS¾~>ïAßûÝ%nßóÝró\óÔxÞ¹x¿´Êeÿ¡È£ž÷¾äÆ|½‹ô Õ¾’¾Þ×'Ì9cνê»äûìC:}„9·üÇÈ=Äšžâ’}[ž‹>bEéЇ¿õ# ãÏ’}ø\ø!}—­?Ð|Çû¿´ýÒ.ÊízV|ôë ¯Fyѯ|ϳ_›h'®ÃSCßA=(z!û÷$ùú}Ó>^å}é:ùñ—¢èc¨íÍûH?£<ü¯E=¨ßõîóß›ÜàÑ~U¾;Ñ¿ì_2ú'ú/xƒè©Ó¯ý0 wŸx;Êòàï’|¹N|ôÆð©ð»_i[Èux[;Qôèõ(¿ýfÆ{„çÏ0õÙÖuô•i¿íN䟼.ž‡žžö2ïLש×vÔƒòÐ.\ß$Ê ’/í®x´?Ï%Û|Òžï‰~“öS¨ùb×Ã~ÙhÏèOð¶x.ý« ¿7¹¡ð„’¿çþ¨zpŸþµ÷°ϼèÇ»Ñ.ð2ì/ú9v霟žcÞןuËý'xV¶×ñ÷"¾ù†ôgžý?Ÿ—ü*ÛÓC^”_òÇìÇûÚçØ.åˆö#_øfæ{&_â+_ólžu߯ýòåg¾ïYõ2¿Må3ï-êk{OÄç}ÐÞ¼wÚëÛˆ¯rßxæ½RÞn;¾7¹á{Cÿ„o›ßÛQâ;”ßÒñ]Q˜ï²ý™F¾|§w"ß?Ûy¤ßªÝñûx/Û‘~ý&íyù;rËsˆÇû2Ÿ‹~Îuäz¥\ëùî—ôcõ#ËÙ·ÝòÌØ[é¶ý2y[´ãN´‹ýÓò‹ï#Ïߎ|-_ÇäO»qrú;ÅwPé]NÚ³éÊÇL?¡}SÎùÎtË÷Þä†óÌ‹9׊yêŠÊ¿ÈuæÅKJÇüù0ëŸ÷Ðu¯Ctý«È?õÄc¾Ë<Èë]çùÌã©ù3ïó|B_Šç{þå"ólòóùåÇzõÈó˜ßs^e•r)çmàwQæù|·ÖOûl^GäºïçoV#>ÏÁ_b®á©ÑîôÛy&á¨7x#Ú•÷d¢Q/Ú›öŒó:~j×÷%7ì{°o¯ÉûcOÚr±¯xûnì±o6 Þ…÷Ïž·×ý¼£}ïçñœ„äþû,Ê»OÓûÔ£›íqiÿÂç$Ï«Ý/(_…½ÿç½ÿ&}õI”ì¹]±ï–~)ºÈ~‘ó¥<ÔƒtÚ§p=~åä\%íù¼[/· û]”Ÿ÷ð]7žŸÇ¾¦êé󜔛}&âýÄûŽ÷ʾæ?»íâp>—zú½*Þßïxc=“íù( €0úôìï£÷g?Ý~€+zôè9Ö}û &¿5!zEõó§Ô®Öƒ?úÇ´GD¼ÅˆÇsÉïr”½ åÀK拽úÅÔŽ€½"õFH¹xù\Œ÷¦ïÝ ?Ízž£û‹QôGŸg=¢œ´3ùà·Fr`ý6ú¸ó´·®£žz/ò·0Úûwúι©üïMnÐÛã¯ý5|ú+<‰ä Á»0D÷Ó¾úgòƒ—ÏùC^á­|åÊx;!_W£ÝéoèGÉøÈzwë-#?xô'ô¢ðà±ð~á—|×é?\G¿{9îÓŸíÿOñÛñ~(7< Úÿ˜|—¨å§²é‰O riþ•úýh]ñè7äp'ú)ßúò•<8ž­ÛϦö¤èÏB¾ƒØ9ÛŠçÃ3b^A¹ùž(ÞÌ<‡ïòþ<-Ÿ×£<È•yaíõ¾ßwáïƒ3þ+™¿ð]§¿^Œ~’|Æœ?^Šþʸ“üjÆ òe\Ð<ÑåÌùòšòƒïÃüq#ú5ñ)õażò똟™ÇÍ8Ïe>‡¼Ø/«â1\®ñfèu댳ê_ô[®«ØþrA¿S>z­ëêÿæy¥ýÁ6šù`–SÆÖ;çºßó©ž)ëÖìæççk½Ãúþžy|J§bMåôœîŸï–‡çÃõ¾•öŒ?EûüXãÍ^ûBð&½ï¤ñbÆ.ÚõõCïoÅþ£y\ì‹åyOÉ÷•/á»rÃþ¨ùvä«ñÄúÉ“ù‰é¸žo¢ôæFzÂÌ9gÀüòf”uœí· «Ýú~ï…ï†Þ{¬÷±õöÕlgL×/´ñ¼Åý3ä£þ´ªüà•Á¿=«0ûnðߨ¯cŸŒ|(×¢òÇŽ:çC_(Ì><;ÊÏ>×RäÇù>öC¨ß¥Èä<)¼6ÊŸûj¤ÿ$êq¡äfh>Žú“y\/[´~½çìÑ®´ýÂöRÏC<Η¯0úôõ„SÓ(_øfðÛ@Û+Qüó “>ì qNyjß¡ÍÇz¤ËQ¿?Äsiê± òÁG»Ü-Ÿó…ïVþ=3v°lKý^'ýÒvLˆ§ë„Ñ“£7…ßÎvhxžžO=,ü4¶ËF:]§\ð¾Œç‡Ë~M¹±‡E<óz?íq]üáCp}ð_"½ÆÝâ§Í©c^ýF矦ö¡tÝþ-¶}9Þ³âÃÒüßvåܯ•Žþ’öŸÈþý¾|ZxjðmïRúê…=ºäŸ!öïÉséŸJ·}Lý°³¥ó„ã»”ÿ—ûkÚGôux3Úgž~oT>ä…÷Eý×#>òùží§œñ£i;xz/æò=S˜û|ù®#W|¿mŸªûýówš~ÛF›òMø/<Ï~l3ßø®_r'o¹%ýZôGÂ|·¿®G}'-ß\ïöc×kAù_z³\yžÆx¶Ï¡žÌÃøžÜ _ê£ôJ×w?Ú®×w1ÿÆ.×µ?çJxoÈ‹ú;çøÌKä| üCæñô7­ü\úÁqÿŸ!ô •gjMåþòЕ3ó¶¨Ï9ÝGngºõç|Ý4òa=_í¬â?¢>íõlo—ï˜ódÎÿ¼â1ÿb=‡}ªg|oTÞ׺þ#ß7Åoj¼™z?‰}š BøQìq]òb{]zæiaïŸýxRÄç¼¥ú™ÃÊ×öü㜣ã?oïÛçãn:?—òÏÑøéü ¿R|ɇíûë{`ÞõÃ.˜ÆOóÍ‚7—íMù»Ÿþ¼/È~Ÿäqæ|nú#Ež¿Y> ßQn6Õî¶; v‡Ï…þXžg‡µJ:òÓuøVö“©ëÜ'=|+xU.—Ò¥?Êc;mŠG:ûÏŒçÑÏ©‡í²é¹i?ÍåæºÂæ‹‘¿òåºíADû²Ÿ­yÕÌû°O¥3ÏLažG;Zåçþj7s‘ÛSQØÑ{…ÿ„^Ðü,]G?N¿³]3]'ôþè۱ǃ]&ëß¶ˆÞrOaô}w)G"zòðk9µoåI›Ø³¡üè)m‡M÷iôýðߨŸí÷PïlŸ7ËË»õ7Oâò'Ê¡ö$ÛYjÓ÷Ýφ†£}½Ú~˜ýjFÿ0?T<óJBàaÙ ò1êþ}¥‡G†Ü¬tûMòr\.ä1Êc~ZÈh¾õÔuól”ñîE|óͨ¯ê™|;ÛqS{‹¯6û>"Ÿ~òídÞ'õë¦ï»Ÿ GÙïÿ«ÛïÓ­û1ýŒ~E?¢ë½™ßÅýè–#ÊÁýÿîæc;kÄ£|”›qIésu|Ê¥rØ®#ã…ÂŒW»æyæ“oÈ™ëG>ߨŸÝnn‡_ÛqL9á9ÄÐiŸ¾ûÙÐÐóÛ§þÅuì¼±n°½3½Ïä—a–y·yg snÅö|…Ì3l¿yå aáF”ÿf”7ù`æÅ®©›žé¸OûÁ K»ÃŽG=¢<¡Çqü´“|+ò#=ë'xt›„•þ=Qá;Ê |)ì~³ƒ}vìöqý¤E½7Î'²Ÿ¶*ôyK݇Ov®íW>_IþìOŸë ç½ÿÖæg¾ü0ÕÃç-9ïùHñÒæyÝ·ý³n:×Oí4co-ü Ø.÷©÷B´'þ<»ãÁôü¦Ú;uª÷ýØÿ$žÚÍ~¸_<›ßͳÊóþö›©0v ÐÇ™ÕþAáôƒÞý ¼ô/êŽg=âå¹Bx$Á¿šú"¿­/‘œÏØE[ˆtèOˆ1êCý(úô9¡_2ÏŒv$~>ý^$ŽÏóhŸ´{·¢ûú¸<Ø3O©ïþ6œò»ÔÎæa ÓNÙÕ¸ÞÝv½ÆnÑ1öÝü|Ò£×¶ý7ž£~Bÿ„'@¿±=]‡'`½=ñtßþÐ(·â™_¦çÑñÿi}<Ï®S?…ÍCBþ©í(Ä®r•þLÓ?&¼"x3ËÊÿˆ¶o§ë´;¼œ8÷]xŒ<ØO«Ú‘÷ë~ªëð+ïFÿAžðSé~"¼ùÚ^"ý’~¦ëšÏ»Ú®—î“Ú÷³F¡ûƒâÁÉÿù(Ì÷`;ÂÈý“vû—ùjö«©øÔ×¼5Ê©ë;ŠGýõq¾Èí¹Ï¥Üø{¥-¿Â^]<ÿ•ÒŸõÝ/?tœ±× oÓ|[½Oì~òž˜¯ñ½6¯†ï¢âó]ƒ§Fºäoeÿ·ÊSõCóCÜß„Ì)ýœþƒœ3Þ1îðÝF>œw¡†=&ò1Œõõ£³¾:ÛâÑkÅËu ퟎ矉çz]#äy¬/µás6œO ;Ю×B÷zá›Ñû)zöO~'mŸ_rdžšÖ­æ9I.|>RýÏþ:·Ïáü¡÷¥àsq~ì»n:ûK%}ø­„éý;Ê¥tæ=ŠúI~½ïv®[_êãv¹Ô »áu~¯|°öƒž½4öÅ>î>×þ à§>ŠúSžàwÚ®œ¾cÎÿ´/õU{ÀÓ#?êÖ«ðÍ8õï©÷½ª0zû¥õþÓí|)/3þ)9ï«ñÂ|³äéûiÿ5ä‡_RûÑuô$ÄGoA½Ò¿júÅz—/âyìcO@ó7·ã×ñûKÕõ/£œ”ƒö ~Ô ä¹”7æQæýÁG£¾”›öYú¯uåÃå×ûê»_~èh¾Ò¶Úý·ý{ê>ñl‡K÷áUaW"ý—Âç²= ½?Ò¡o´Ý1òÒÿí1ʉ>Ô~ÎßvÐÈ?êãz‘ñމO¹¬¯ŒþkÿyJG½ü<Ý§Üø?ÛŒvCŸ»©0ú`Ú/öfx}<—÷çvŠrí„ÜÛÿi÷zá1rc»ujOÛ!zؾ/ø¾ÿ¬½oû[`\7¯CéÓNaûÇ‹r˜éÌgS<Û1“ÜìSóaÔÌ›QüÝÀýÈÇ|"=GÏ›iǬGÖÓ¼TžGûª½í·“úëz´ŸŸ›í{'ž·«ú"iïÐ~&ù.u¿…ÇÈ ã¼(ó y¯ô“m»Â;οeúô<ñ^x¯Ñ¿Ìã»ýÛ~|³œù<úYÜw>+!׊Ocü±¿æßÌo‹þ›þ;)?å܉zïDþ¶ãõEŽîF:Û{£þ¤'ß ÝߦÔ3Ú'Æ­¾û凎žq.ƒù‚×joûug~Áû2ÏÉuëŸuž£øÄ3Jùû‰ò³ý4…¹o>ñÉ_ù0a]þ0múYßÀ×b}ߎúê9nGóÃtŸó4´+ëBxtÔ÷FÔw#î3/\S8Ï=Q_Ö…¬«°‡F{S~û7÷D¼’›·’ñ*¼Ÿ¿ ÞWÚˇ7Å~ñ97É>vÃ)_ÎW²ß?LúÛcŸlQù~ùðöß(ÏÏ~Ï»ÔíÞߢ៓z'/rUþܧ Ô›r¨Ü?¶ñ|ôœâ‘ü´ïõòûSä›ûì¾T:íCæþ Ï‹rý•âŹn¾}÷Ë­W@Ï©v3Êü¦¶}­AïIýÜzô@ðÇЃ ‡¹éµo”þX\®,ŸúË^$ížÁ»1¿Láóºÿ§n:?Ÿü.G|½‰õ4BÊ•õÍ|ÎE»c×ç‡ßOóÐl¯|tý×£\èç@ôÇæÑ)úßà#7«j·Û¼…±[cû2zk £G_ ùBOÉ}ø؃I¿–É;[r~ <x+”ÛöÔ3aÚMƒ÷?zQø]èiÍÏQ>ØO²*¾äC¹õ<ôïÈ ü ôËð‡à™!é¯Þõqùy´âÁÂ"úß͈Ÿþë¢<}÷˧þ1i·îwÇztúïyá{µÃwRÈûµ?[úý8òE¾6â=¦%x *÷´¤ 9¢?Ó?ð+ ?Ž~ÉwyFžÃÐ×ø¹_wûù8z’c߃íJµÏŸù®QÎäÅñ½A^øÎÀï‰uö°fž¿Ñ}}÷ËÓ^‘¯Ã/G~ð#Ëwû³nûzÄüå«Hϼà/¶W½7ø5ôû‹_óÛ¹å;Ž\ò|ó|„ö{©°Ï/ð=§~ñ½÷y†hŸäÁ}Ñ-¯ã…ÛcßÃŒ¿éÈ7ƧƒßÄ÷o=Û3Êíq\ñù1þ~^róVrC<ߢù0ê—ðDì/òGÅÓºÿ”G¯ï“þ©ù·ó}¡ûz.ã~.Ϋ°ÎõüÝçv”¿Êk9f¯ûjì[|‡ü(¾ä–r°žŸi·à™/í5±ÞûÕ÷€6êOûµÅñø@û:ë3Ú)Ïï–ßï>“Þ'r ®ï~ù¡£Ï†ý²{÷œgT?ñ>ñØâ&ü}½/êûî}*x-ØÛ'žŸ×^÷~ü¡¯cw;h¯t]ßí<ÿér^Œ0å‚ïýÏûXìÃñ¼çÝx£è÷3íŸvͨüºÇ*·pã¼÷ÇØcŸ‘÷Êûcÿ}@øj*oÚ·ë»_~èè~a—j_ôè!¶…œÓ'žõz_[ºßk•|…èÌÓuô)ØOÃ^ú ë!ô|Û?S¾õ;ÄS¾è‘°þ^¦z¤xúžð>ÕS‘¯0ì<›—·öæqÇù_v£œð×h_ê·Ny£ýÓ¿'ñÉïZÔ—ïùÅùŸÂcäfWï };þñ@û {ض«õñjgóY”=»yBôÒöǹҦƒ×åø Û_¦ò7ïGåJ?bðevÈ_×ïEþöû©ëؽA¿¯!ý»Ý}sšÚ)SºcôíÓç=ëÖžZòb°ßA{Q.ÛGSû™§ z‘.ùLðÌ_R¹á¥¡ï~ù¡ãÔ^˜ÚÛöÉÔ®ê·igÌþô¸ÿm7?äŽþÍux6¾Ï{òÌØOÓsïóÝ? ú—âaŠëŽOùÉ_ýè¾êaœ{m¶KÅwEùª3íl;iäK»ý|ʯríG¹Í¤ÿÓŽÈ/rÄ÷#¾Sæª<æótëÙw¿üÐqÊcä½ÿW¼Gú¥Þ‹å)Þ/ýÒvöè—!OÈïÝÏå=* ïÐñ¢ÿº\ôä•þE¿¤|<ŸçDþ”×vÞÏãå¦?S/Õ[Ï?¶/(oŽé¿Óòˆ<¨^öKJyi—¨×.åRzóÞþÞMçztóë»_~èè~oŠqŸu<0æ?ðßáÓšùléý<ÇþÐÉOñ±#f{a¤§<ÌÏô\ŸWP¼qÝþ0uzñÛ³åy?ìš¹Ý6•¸Ý>ïØv¦>´çÍÈŸò“ŸÃÔCשŸËG9¢~·£|äc~ ï#ÊQçÞNnØ¿gÆ:{Þìp {^¬ëÙ—J{hð×ÎéýØ?¥ÒsŽõ,¼.öµØ ö­x.ûoìå¹4öÕ¨×J\§>kÊ÷|Ôƒx‹B®Ã_ƒ?F¾KªúÊ?¾ù9.¿ù€Êý)<>Píó¶ú¦ÓŽæÂÓ¸ ÷>'ñà5Y_®ø^ù¤¾]ß;ë×">úsxm+ñ¼´‹O9‚‡€¾Ÿþ!ìÃøyèáýðÜàŸ8¾íÄtë7ÓÎæ³µñ}{$iONãöø6í©ðºîð9å]6ì¥!gðÈ7Û{$Ë]ù/,|cÆî•ýîÒïB~áéÐ?á¯Á£¿Â§ƒ_·ÖL~~vÙ¶•^ûÿS­pK×ù>¥¿[Æ#ä ¹8†—iÞ]–3ý®w庰ðrCÿC^ƒµø>§Oø©ŒKð2ŸŽó×i»s1~À[ÂcËþ!ûfØi{©0õ¹±¿Sìáa_z¨~ìsôý> ?LÄ€ÃÉ+Ãûݶ3§0¼2ï× Ù>†çe=þF5¯szößÉßû劇~†û›Qnì h_Æ×á½¥½‡¥¨×JÉMá/ÈMè÷¬ š3öàà}¢wÜrßvJŽ‘›»‘ÎþCy®Âè1Ñ“Ú/—Êe¾Âð%ˆöœ¦þBUNx ÔÃvpjžVø r+ý‡ÂËGß1ùCÿ?{³kW‘¬‹ßk—«¼í*Se0 l/Û€mjŸ÷}[ø¸Žsuç:hÑÂ]¤=$K–h°Å´õ·çó{æ1½ÀTÙ^þ³Ê1ò#22"gŽÌ'#<ÿpè½çÄÉܶC7 ¤-Ž(í'ôÙ¦Þé_­~ßäG—vÑv‹WýtÓNñCøÝ[”?ìñYéÓI·þ×¢ð[õgž_ÎÃ;qJ;ïçýGüÏT¯Soãf«7vp}ØÏÇô;ï‹מòãÿeØmë­ßºÏ–óFqë¶÷•®ô¾Yo± ÷X|wô^KÞÃuÁÇñ³Æ?›ïß ÃO@×ðdâ¯ïÜÿ‘NýÖ]îϸOäùûKÚö®u¨|ø†GƒßÓþŠO[é¯Ù ¼âðožÃµÁsØèëNÜÌw¡ø³W—ú×ý2ï틹7{4õØoK{åG>¸3ø´#y?ð1½7;ÞS)ç^«~¬q Wú+´~N«ÏO†:qžã\NgúO‹«O{=ç‰}4|šûþwóœ¿ç9Î]àŒàäbÊ·ê™~Q^[ò·gôĺ/°ÒƒiñpY?õ|Þsxø8–çT~8ƒsÖ»mÜÑä{o”W/Ü|ϣ܅‘ïlêyci7õ§U|MÚ9;ì$üÎ8z‡=>O;5[yG¾Æ‰?;ñsÏk‹÷ȸ]“N9x±înþú÷ú@O²ÜxœÓ¯ ÜÖôcÆ?!}¿’ôÅÔ«þì3íÄK̽â·¯v{yðë}¾¿ë¿pÆÓÌý³;7¼—È«þÑ’e7ì:8·ñ½<úÇÿÝôÃveYÿaëåÓNë7Í9ÁŽIúUÜV(œ u‹ñ<ŸüÅs%}*ïá—û»KýŸq4ïŒ{-ÅŸøŸ¸0ôÿüÒsv Uv(=c_Ãßà6ÎhønûÚKºñ6óüõ¡§µ³QŠßú$ï¼×¯“ioœÛîŒó‰awW†}^XÊå°õòi§Å™ÓëÞȹx«cŸü¿óÖïë죩ϺÙÿ–u8˜w‡^ÀåjßúâLÚ}mèuúé¥þÌÿÑ~Än·þÂB${‡c>ž÷ÇF½Ö5Êë—ø‚ä¥ÝúÿÃç2íß{åÌc¾«|?%í~Tç«áïpgœµóçe½}ÏÎÿúëö·Ò ­?1þîùáâçŽ ®éËü‹wú!å£gÛø›qv¿súùÒ~ñT½º´Ë⧆?¼îEïá¹f½í߸÷¶õ÷¿¬§þÌÂ©ÝÆÓ$ŸØ£úÉeG>îmÚ§Ãçwá#ûpõç˜ù¥ø8ûcä”v÷ò+ßG–|—Ï—üö}êÿbŒÏJL‹¿r>ÁïÞ¥¤3O÷¼ÃùÁŒÃÿä órïUóã¿×5ý¨iÇýãú1öÆßØðÖ÷êiÜÒäWN?œÏÀ{5ŽfòõÕ6>gʹïm?»x²Ñr€/#åñ%®¹¸' Wöîxï¼§|kO?“V¿ó›á/·~íRî°õòi§=‡Ëâ/Ås¸¦ÆQ 凣x®äãÂy"¿4ÎßÅ¡´ñ8Cë÷cØïGÃnœïÃsî-¿i¿ñCÓ®ú½oOýÈûý¥5žœXó›7R®~3¤—ýØÖŸçŸÆ® 9ŠOÅßüÓ¿ÊõÑžþ_YÊ¥ýý>l½|Úé6îdÆãæg›4ÿHq©ß$éŒßÇcþ*ž+õÙ_¥ÝO“ÏûðQ?}ìâÓå8×™|÷î§û¾~ùRߌӹƒOK?øGú8ïg<Âúcz^œÍƒùÞÁµ_ñiä9Ô”ò£žâÛÐÏrØö7õM?äûá,ÿÅ<±Òì†Ç©g;þ¸ò¼þÎ"gú3õºöh<èIÚ›ÿ}n¾Ä—rÿsiì¾ š;z[ýÐÏ¡·Å¡±‡¼¿:í&ý)ŸãÿÒÿ@ÿGÕ;ìÊüÞçóÂütoiçõ7šrÓŠ7ÿ§ðÔµoã~GþÃÖ˧v|û}Êÿ?Ìþÿ­;¬Gº.H>8(ß™÷Òõ'–òÖ+¾søŸß=;|×_õÐï+Ã./êçàÏzÍú±~©ÓîðÇÑõ“ïß-ðc¾ÇàZÜãÑ^qløö\ÿñ7øÚñoíùè9ïø¯Îsß—‡š´v.-å¼Ò_§ü"u?Æ}Bûj?G®ôÁ>?ú¾_í‹yoÎ>’}¬ã©ïì†6Ÿ÷òÛ7º;ô×{8¯á÷Ký›9ã”Ú—Òþwy>öÓì‡Íû_|ž4ÿQ©·q5ù{ŠÜìSµÞoÒþ‘äü»Où}ÞŸ_Ç6éŽÃñÁGøœ÷Oõ¿ü¯Ô«ß•ÛÀë¬ôÁ´xç!Ÿyϼ~Åø‰°ßÏŸPô¯÷ðSðƒ–ñèù›{ñÞçyÏ%œëàK;ö¶qv<íàÈÎ%ï×G>í;ÑO¸4çH9žãÏùî©ÁÜ‚ó]~©œÇ¿4ùM¿V/çäC®ú7pfÛ¸VÉï\ËûçêÕ帯ô»qnžuwõã­1NÎÁá˜êw,Ï_ùÕ' ¸“é¿kú‡)+ÔsvPÿ/y×àœÑ9ꬾ¡çù©ž ßâýáŽâ|òg=Óó}8#çùü—ÁWÀ 9W½’zð×8‘ì-ô¦rI7éËÄÁ9™ÏôCÿwp›|‡­—/­žÀ;Ñ/8.8´‰×º<æ½|÷ïÔo¾¦×ê5Ÿ_§wCßè1œÝ>½dÏÊ%}Õÿ*þS?ÿgì ÎF=ÿ€Ý9À­¡·´ŸzôKûæ%õæ{lwùÿ°#<ø&ØëŽ\¯.åtØzô¢ÑΗðƒpÀôGzâŒá´ê¿l9ïíàâ^ZŽsçӯɤ·ôeØAñÌô*úI¿ùÉä­xaz9þϧüÄÉ’ƒõœÿÉ«£¿Å·š’¶{ui'í×ù¥ܹ¾”_åa=ʧ½ùq}Wú„ìÆ8ÃM™ÿ¬¯ü_À¡5nyhã´Žÿ#övd9¾]‡Ð+þv­+O.õ¹8-õ·^4ï‡ò×ìþ˱ÔÃnüh×}ø´?>|ÿøŽx½~‡ õý!N©y"Ïûxnè¿õòñeþíw¹ ùZ¿­÷Ö…ÞÞˆ½~öíwÙò=ßý®Ï7”¿1ûz'eß§þÏí Á•F¦¿±Ö{kùä/>ìîæ}Ë}¹Ì§üXóýz¿ ŸrŸ/çïÊåè²ý¾·?ñÓFŽÅÁ¡pfèWËÿ·î«ýþPû|ßo굨\†m[^Úý`ç-7;q.âž°ýlx®üoôœbÌ{ŃÁµÁ}:r®âünlÆÛ(Þ+ÏÏòù?é¾:?cÚSnÄ1Ù‘‹~‘GωBõß9ϙԯ}òòžÿýqÞû^½ï¾ÏPÎó;_éã¥õ/áüÒ¹\ýLÇ<—†“TþÊò}ëw®ê\¾qžRÞ9ºsPq­®¾à´¤Õ'Žï4ø{o”¯³¤ƒ_+ßê%çòúyyüß4¾UʵýÐ £½ý¡ÿä ‡×öR/>®?Ø>¦?•>^ºÅCeÜ&. ~„~Ã…Àé ?Jp!­¿qö>Ûä/¾M=iþfâǦŸ³âƒ’ÿ= q0áYêg,ϲú Ÿ¤¾úY ŸÅýÈ/ïG&n¦þªÐa7å7ýSþÚÇõa¯Ã¿ÚaëÓ‹B;ï64ûv3㯎ëò£õ?5ô†~ú߸1ø ·Ó^ü_©çJòù(N|üoM?}“oxnò€ã™8ìâ³§^ù~SüoÀ©O»%§ÎËÿ¥mÜìa7Å»-ç«•>f»±>ðá{ÎÍ÷ïßîƒX÷´n·N¯¿²èaïç¤>ß pu½o’|î»ø¾™÷…|¯L¿içSߥñ^ÿæwÄé<÷}Ôû=øËû¶“÷禿ä2ÛûÞ½GóÞ¨Ÿ¼‹§#?4ùƹÚJ³ÝÔŸÆÓ>×W›ñš÷ ‹³ßöÍfüŠ;’râ&ÚÏ‚—ûiä×>\œý£/S.û½ÝGsßrø9ë½×oó~/z•~Ù¿ê¾ÕÏò…ñ2§½¯Ã¿üiŸ\ô'Íìµ_)gÿ ½OšvíSz¿ƒSûrÙoòlƒ¯Fþq¯v¥—ö<Åù‹s¸çÎoœ3*ç9\™ó:xç©óþ½|=7JÚù|sü8?rÏ.'öÚ瓯ØOϵ74îç·Þq>Rù87:9øšqå‡p® Ïöò ÊÍx’ÎËÊ?9†¯3zØúô¢Ðê§sïâË2np,û¡p`pòÁ ¼»¿üHñUì3iúæõÍÑÎ{£žKƒ²OçøûÞ§<ýñüŠïG® Ÿø‡Ë¹>æ |ÂÏà/ûÅñä;©ø‡â òžŸœâ„ò>hÄUë9oå²I¶>­ô餵8188úY¿Oì:Ïé?{¼4ì®râ&¯ÒïÐÜÜÚAêåG®hâù&ž"ßýÅ͸æüûö?4üqöø¬ôé¤ÅÓŸé-ûyÛùÙzõ¿üÒò±7óø\÷Õ {ñ?•öàÓ¬+Ï.õyÇÙ½ÿ=ÿ3Ö‘ür±Oÿ7GÆú`õ×¹Ò_³ëùyŸÈüLϼ/nŽ}¤<¼¦ï ß'Ç}OY?¦x6vä;CûìJ~ÿCŸí3´?òYÿâ׾ˈÚø å†_µ•®ôÿ¦î[÷öõF¿ì'ÝÉþ|[Ó?'ýÇå{8´/n¬ûhpyê‰ÞjW>ûqÅ‘ò×6ö¹æ=M¸²½üŠg»›öÑ´Û¸¢äÀŽþm]§­ô`ºsžt:úÄ_âÄÑH¾âÖB³ÕsšÞÛNýêŸÃ¹‘çî{Ãñ‰§¡]ûÚ//ÿ_n{™=—y}´ë¼‡Ÿ¼úw ?psùõ®t¥ »áw£q™öîÿOÉ9ìŤó²õ‘çÎAù3™ñæ9'\›ú{Þ˜ö=‡ã¬ŸŽa'Óïü…úŠ ½4úÅ›þ\ÞaÏJŸNZ}š¸¯ëyç5q1õ·˜üp/ð9õ#ZÿK¡p/üo©¿~§Ô›üW–ÏËÿãÿgÆS¼:øÀ'~ê‡*ïëÇpÙÎJWº°óqñÐcž†?®ÿͽû¿êýƒsc‡ûÉïÿiæKyþ ü\|°«Úéò»cíÿ£8é”cO—FúƒA•»¾þ߬ôWì†e8ë~ñý¬Çä;Ë’ö]à»Â=ß pnâ ZwÁÍÁÑÁÏùÞR{?Ãï ÿÓMO¿Ò½¤<Ÿ÷“Š[®{|VútÒ‰O›þáì/M¼œýÛ/²ŸÕ}ª¢—¾ãÝ#ýq™Þkí}Qù>ß”ïþÞ·Iû™øW±÷:S_ýºÍ~ð‹gß ýšñ{|VútÑ|ÚŒG³·ùÿæ\ĹŠsiùΤ?§’nÍù½s•ƳË{åçœõâÃy(Ü™öÿ<èÑÐâ—ý²¯]?t£¾Ã§•>]´çñYOGçUkÑ#þvP8þÐà à-'Noú£s¾™ïŠæ?ŸzÔ«üÍä¿4ìæÝ‘Ÿÿ~}àÑŠ¯Izúeœ~ïÖ{ÒÏ->¬ø•Œ;ü"ÿc׆=À‰Á£ÁðÃtÃó¡‡×ÙÏÐׯ-]>/Ÿð9ÊÃïÈòwn¤½Ü ПÖŸ ¿œ}b¸Øæc·ðŸì n§qRG¿¥/é¯÷Ëþ¬ôÙ¦]_Á#›// }ó¾þÍ’Ž¾íüŸÔmèå¡çplõßæyê߉c›÷ô[·ùáŸO»[ë=…¥Ý6ßô·eÞðä ˆ?DøjëGös~ý¿yžèÎwIñXI×ÏóÐÏÉç;b/úÄ~ø9SûÓ¿5œ»lÜÎM¾ò 'ß6ã«ãžÔ÷ÐëÃ|oÍï©W†}±Çû<áŸ]áßwŽçø«}­vó<ÑÛ›áÞs/´ûV§øÉO›÷½ïùÆ6ŸtðYŹˆOp|Soï{Ù¼·ÏÕtÞ÷>jÞ×›öÕs,õÃÏYòO¦¿¾×Ç ïwâr~™vµ>*‡ïC“¯ïóîNV|ÚóE{Oæ|£ñ]B“8g©¿ƒ¤4ùf|Oç6ÎSàºÄÏu_¼ÐÓ©'ÿW=â_Á{Ïáoœ£8çI}í¯þÁµÁ™8éÅÍœ]ÖS¼jêqÞô|Öý´çŠŸâ|Û9ºóýé—Œÿ~Zêÿ%Ïë_,úÒøU#q.Éàœ?iø®|'”/ñ8áf´o ÿÕåz¯v?q§6ã¯:Ïøœÿo×—ümë[ÚåJŸmºõïýiœÑŒßol[Ty^ehž7Þ¦r©ïÖ¬G;ÒC/g7iþÚÚnÊ5þ£|áãæÐßö'üéGžoó ~êŠ}°köåyê›öºúz®èÖ/Úÿ\ê7=l|Í¡?õ×ü7¢/õ;˜üƒ÷Åyùí~4ò±í˜ß½ïÿ¤ÿ±ù~èuã£ÒóåÿaåR\è¨Æõ¾<쉽â×ÿTìó°Ç{¥ÿ-®ªþÆB­oàïáí}XOñ3Ö8™ê±Kn촴ÏY×$í{õå{éäÈwa´[>f{éÇô7¾ç*ß{ý>å|ú~9=øœ8·áod¥Ï&…—²ßÓ{aG£öÅN„òæÞ%aÙOë½ËÆ÷LþïR^<ѯ7åw í÷ç|/õ‹“}©âÎàÅì¿é|_.í¡|ù'ŠÏ¤í5ŽCêé=Òo—õ‡—}rûm÷Û%+}6iïç»Ïï>¼sçÎAœÄŽzþè<îE\çùŸùâ—”s¾â\ôLò×/Yêá/Ày¾œ‹8u>âì­%ßí·óÈãyŸ{¨Åã¼6úq*iù?áC{ü¸Yÿ_žGZ\ ¿0p/ôñ½¡õC–üY_0ã\:—‡`‡3îçþÐ;¸x–|W”_¸œúy …ã¹2ÚK¾þg¿b‹J»ð5­7í ðcç0ý©ñ7µúµýçôÒ‹=X×ðÏ7¾#;/¿2ÊM?šõϵ—âŒGéÖˋJçø®ô9YgûŸ€«ÊwDýnY·?äõÇ%ßÑЗ†}°§ËõH×ãÖSÇ×ùn¥O?ýä>ÝÛ³?Õý&éyoðîòÿ`Ç¿ø•¯Ñ{‹•·o»÷àuþJWú4ÑžW8/€Ërþ!î |Æðw¾#_ÒÓ¿—s„Ó£¼s…ž,߯t¥O#-~Ãy|q]Ñ÷ëÒÃö—ÿ+»þ‘–ÿ/=_„÷º4긕®ôi¤Å™ÀgÁuÄO~q`Åq ;¬éÆÑ q·å>Íûõ{f¥Ï-¾©ñZ£çâf²+ú¿c'yßø¶þ¯þçómÓÚ]Ö·Ò•> ´ë©œßè~<¿°—bpaÅÓç9œÕ¸'²Ó®ï¥‹ëºl¥Ïx,鯳ü1ûhÿµ¤üoíì‡ñÏ5ö“oøë¾ÙJŸeºã,8Êú r¾Ësç=Îf='Ç9Í‘pë}ö•>ƒ´¸-þUØÓŒ7ÆÏÑÛK½/.àü2ÝvÞç ðpbï¬öó4Ñ;¹7[܇tãžîÝÿ‡Õ8¨¡üé\ åÏ ž ~¾PœGøxÄêI>ó-ÿVÙÿ-Þ/÷жz–zΧžì ÷œÞç{›Ÿ±–ç ÿ·þ±©çLêÓþÉÔ«ÿð‚ã#ùáØ>v¯Sÿf¡ÞH~y~3|©oÆñ󿦾ïuéð giüà*ë?-í©äy~ð¯_ü³5®à˜'èYô¤ÏƒÿªßÁê!Wã¹·8R¸?¸¨æò7nô˜¼•'‡wGùÆßÍ{ë ù̧·ô{èµv÷Çs~ãø¹›|’'$¹Ò{rgQ¼<åécý@&ŸùÙº ?æz~2å^í6ÞkÒùþ躊½°{¸}ø´[IÓGÿCWF>þ!é—þ_|à—¾4®±ñQŽœèqžã¿ó–zåö³¯_ô(ÏÉSÚ¸šWµÿÎè_ç•åÿeñØø…ßãÉÿ²ñ7¾äc>&Æ%/úçîAàsðã>ƒûW_Ƈ]Îù\Ž…Î8áðäb_? Zùº?טu ×mO~ãFŽä¤}úËoVýçýÑ¤Ý ©ŸÔ¼oþPz1ý+Ï>Œ~ÝÏ8’úÙcúéžTó“Éa¿›üpo_qeppäà¹yoú;;3ä’‡û2ú‡ÏY9¼7ú{bPý1OÐg÷À~íœãã¤}zfܵ羑û4™/Ÿ“]¹/„åROï©—>Xg³ñ2®îÍõ]¾ë'ývŸ¯~äï&;¨ÿwv9Tƽ<þ¾Šóú24~±øê}¼ÿbðIß[_Úëý¾Ï“ÿØ’O÷Û¯ŸòÜýÇÈ¿x4|dü[.z^ÿûö×~^æïýK8µèAãY†ÿö;õ•Ÿð÷ÊØOË~u_/ý£¯G'~eï7ªo”¯\èAäz{/õã“|Ç{ãIúÄ­rŽ—õdã í=ª?­”ã«ñ¼RNÿO.ù”ßë2þ´‡¯¤g|¹ƒú‘ïŽ>ßKš_.~MÈ>­þSòüzÚ¹:ø/Þ+7øRù“¯ýÁŸñqôêw†_±G¿ÉkŽ»ñ›ýš~ÒÊ?¹ãwÔcùõ¯qÛF=ø‹¿ªÆ]¼‘r7‡Þ|4êé¸*?(¼ÊG(}4þ)/ý‹_úÛ·È_ÿXŽ?ü ¹ãümá»|%¿Iõ‹4ä¿ö·?-NÍûðSzoSoö ¶~–ÈsðƒÞø,ýËûâxÈ%ü’Wý‰¥|ñrÿϲ?³õ{ff~ý §1òÏ⎆ÝÁ5Ÿ~ÊŸþ’ÇMý1.c<á÷šœÔo™¯rÕÿÁù»x¨aÇ7†|ä¯>§>~åZÿ§ú‡óiã-’»íÔ»K=7ïÉ)ã§Þ9¿š—ªïú?ô¿óʮțüÕ?Æeâ1;Nô5|Â{Þr2NÕKõ¤þúÅõ~8ú³ÿ¿?äBÇ<@+_ã=íÇü>ø½6©qÇï˜g:ŸáS{Êí=ø=>ÔßùÁûa7懎y}¬þêï° ÿW§¡w×G9ë)ë|ÿÖ©ÖÖ«ÖÙövâ8Ž|Ö©ÖŸÖÿÖ¡]G¦}ëïùýÑï’”ã—8ûÙmßò)ï;ˆŸ1õÃé‡ö•S?¾ù{eôKœrëMëå­gàÓÈU;Ößs‰¦~~ɬÛÉÏwCãP¦>ëæúIKZ?¬ÿÞý:7ø±>£'¾Ÿð%Ÿïëiúr~ôÃ:´ßmêKþK£¿ø|oäC=?oüé>ÆøøÎ»¤_I£úO/ùצOÎì·Ùç²ïñͦ\ý±']ÿñ{I¾IÛ÷°Ohß$Ùöø©’nù7åš/û6݇åìÏÁ‡5Ždê)ý:åïFnGÃ_h÷ GœIûFõSÿKÚñ\}öeì‡Ùo²?ùÚR.ýηO¦‘kã„6ÞäéðõeÞã[»¿,ǧû.òÙ¿;žòü‰kÇxæýÖOÚR¿Û?þ×ìêß‘<¿~¿]ö§'—r/ÿêù¯ÑÏïF?è¼?j)ßý´ðQþ·ñüa)Ƕ«Ÿ_-Ûwß·ûÿÎIÕŸUÞ;¿tä\Ày\‰óçBÎOœ‡ô¾|¨snõ½:êun%?ýwÞ‘yÁþiÛ·ïî|Óó3ƒÿ×_αÞü«ço#}6å8/˜ýqŽ_¿dž'}ØæÏóÖŸöœ;Ìó%ç9êáÁsçM3Þ‹ó–W†üœ;ÍóèeŸ;ÿò~àïzÎCõg†ÿ!çÿÆ{õh_ÿñ1Ï7÷Ð|©ÿo£rwnybè‡ó-ýàWêtêužuEñ=¯Î{q©fÜ®+c{Μ|ÊÕ?Wø`§pð0ó<ëÝ-."éë£ü¾(Ç.ù›iÜGüä9yã·ø†¼‡O™çøÑx çµÎÿÞí°Kùñ —Q<ÀoÏé“Ö¾þàûíñ¼óþSþìËû£¼ù”Î y×ZÚi»ä8Þ{îœûÍÁ7ùÃáÌøšïŒüù®)Ž‚ÿ7úAà® ÚøžæÿÔ;©þ—œ6>n¥†OÅÌSôþ$û9Û÷ч|Ç´¾ìóܹa¾¤ynþcïŹå}ñ=IúWºÒ§v½æîÄR_û¿Ðÿ¯Aá8û:ãôùó¿×ÿ¹<¯?På–ÿ§‡-§•®ti7Ã^¤Ùï3{÷ýŸ8=·ÎÓzîh¨õ™uïß'G{g{ØòYéJDíûÜ™8«òüȆß÷yÞ‡Úïjùï÷îÿæ>¥ý9û¥§Øø÷RîçåwÂJWú4Ñâ¸ìwŸN:ÿ=G™ç&Îsvâ‚îÝÿ5¾Nñvy®~ø=ø_çA­w“ÿ°å³Ò•>Ðn²¯¸¿}v~¯¯ÖøbÉŸw±ï}ÊÃi9Wþßšß9kñlë:m¥O-Þ©x’èqqeI#ž³›â`ö6åŠÓA?Ýäk|Ï<‡{º¡|ž_[íf¥OÝâ%Ù=…{„÷*Þ8´þG“oâã>ÿ3ÅûŸÉûëƒÚ熶œVºÒ…ÝÀNœÜÜ•ï”ÞŸJÚ÷|›{;ðeÖaØû;y_<_ø÷e[N+]éÿMí—¹ç[o¿,iñtpWÞg_ ­÷}ø®Ï¾Øw)ÿÒr®¸-ûjöÙ¾ÙÔgŸî°å´Ò•þßtëÇg£·Å§Õ_UžÃ_MoÊ{ÖyÌÈ—ý³žïHÃÁÀ«À ØaËi¥+]ØMq4{÷[|\ÒüÁÐëâ»òn Ž«¸‚Ô ?GãäXœ»ñúÞ¸íC^úç>‚ræ/ú}*iþ¥Øõ»CŽo¹³'õ¾1媟þðyz¼ç+óÈ? ¹D_¿ø1åÜ›Ó_úE¯­ ާ¤ÝCq¯^_;æ›ÞgH¾“øÏsëúS£üŒk_c)Ïy7Þ}èÑ´÷ÊÈÿêhŸ^±÷HN˜¹?öFFÿ<'/ruß„± ãg¦ÿóþ•ùÐsý£Ú~ÔŽqýÓÿéGÛ}ó‹z|w©§÷‹6i÷$;®óþ•ï/ã{o7÷s”k™¿~»ÒNéסß%ß7›öÜ£„Gâ_êÎ^ìÿ­ïÃ_øéýQ~À¾R.ýü~iOóþ_ÛIzÇ?¹¥ßõoÇ¿ÜÕÿíዟ1ñ;µûãà7ßÅ{ú›û­/rk¾È¹r ö›øc‡m߽ʌ¿dí×ñå8Õ¿Ÿñq?ñÏK9ÔÿXøÀ—þô¾lÚ«_¶ô£r–æ¾âŸ~'r&÷Ô3ý–õ¦öSOïíº—GßÝWÖŸï÷?rh¿3žôõ»‡þ¼´vìÞnñF±Çâœøq;›4RîÇÇÞ{?Ÿ_°q·÷pé‹öùC;™4œ“öÅÍÀ‡ýTù#ÇúÃωe}Ý}uð«ÿúwlÔ£}åTÿ.4¿Oõ¨<Ÿ~†àºàY®ëŸüƒN¿ƒòÕï~ÐÔ_œ‹þyNnê …[ë¸ÊoÜSùOüŒçäW¿\)_Näžv*/í„^šùð›÷(¹ª—ð1ý–/iýr–¼ðCŸñ;ýA^õ²r¥Gôïê(/ýÕ¾q¤ŸÅ˹wi~§.vkñµI›w¦š/ÕWýb7þæ|dŸãA>S;ú>ùç2>Åû¿4òÍq¬Œq2žæ}r︌ñ¯ßÎa¯W?—G?ÍëÒ—Æøòw5ÿߦÝìþ¥;êLJúß3_ç%óòêr¯>ŽöÍ—ô§zHêò·¾³.´®±ž³Ž·Îå§ÌúӺк¶þ{óÜzµ8ªðëÿÕ:Åw?lêÉþÞÎ}’úaÃêykð oÕþ¤ÏÕ7ý·Õ°~á7å|à³~˜“~w<·~{c´gÝî{àTèŽ?ºäsjð‹ÿéÇN¹ò=ø~e´CŸ´s¸’/=HÚºM½å|É/ù'?ŵ%}~èUýð¥^|žýœïßí¼;Ûý”¯úœ÷YWÂ5ÙGóÝÞý¡¯óü« ¿Å#ýçÈ÷ù&Ýý3å~Ø”ëýÂ7|Ϥž»É§~ù²Ý÷y'Õòß.ë×ÞÖÿý¦^ûaê­°Fÿî¥û}žùå;¸8­o—õÜûw;¸1|ª—|ÉS;'—éÊÿ‘s÷ýÈéËäK};qì/%?>÷òëýÎãËñܹÏiœµkjŽ{úy;õ£Ý<>ôó®q[¦¯B½ßì-~Õí“ =¡wéOýÒ;ûÃÚM·þw6å¶ç”¡‘ÛÖXòÅ·ñRòÎϦ¼óŒ[÷ÝH£ö•ퟦî/kßy“}yûñ™·»_YÿY)¯ÞŒWó;OqN¢ßcw{“ôéPç2=ÿI}õc–rääÜÃy«£?Ó_“ö•wîöÞèÿŒ§hœŒCã‘%]¿vÉï\êÔà“œß8w1þ3ÎÎô—wläs®¢Ýž7'ŸóIýùÓ/ù+w‘þy>ƽz–zõ£þ¨†œè!y“#¼ƒóoéý´?a\æù²s.ç¾WG;“–úÄwË:{_¥]¸¸øçÞìü’|¡ÅgzµË./|ÂaòwÏŸÛŒ§=ú×xd¡ôßø—s³\êWnç\ßx$í9¿_³_s7Æ×¸;ÕλC¾ï ~àô[?éË•ÁwãêÑ‹Q/>ëÏm¼‡½9÷ŸñTůÄ7}ã߸„ø1卵óÜù?0qïÚJíüÁï!¼ \½{oŒcýÑ =ˆŸ}x½¶CßÌ£õgȾéËÐ?ï?3ùöß윽²“s£<<ÖÅ¡oð9µå7´ý0oòÏ7í >îùi'ÏGîâóÿÖçæã$Ÿöf¼â̇­WÏ;íÿiý0e<üo[g²ixÿ«þÿàµÞãožN€}*ïÿþ³/ùŠ—³Î vviü_±óguú-õÿQo;Ñ÷¶CoéSöQúWÜŸõiÊÿ8ìù(½§—I¿4ôÍw;ßmÅ«|·©·ß©øó2ã¶j?ým¹c‘ŸøŸòÛ÷ùfó¼ò‘_ö¯ì|›z}wéï&ÿ«ZíæIÐÆ8²ŸÛ#žÚ}¼¯7ãb·þñn‰]i瓟boŸ§<ÿüì6z´·ÁýN¸¶/“†‚—ûÃ’ïòIO\òÙz£÷·3ô¹øc¿±ç±‡–ƒd?éçÜ+Ž.‹à³àkà‘ôoâ¸þ4êÿ>ò½»”ûJ“ÝOêüpžã ?°;çîûß¼¾¿žs8iÏeý=¯p.3ãšf^ÝÁYM<‹óü;»ˆ¦þÆ?’O½£]ÏßõÏ8AÎíP¸¹â“’.íÒà§rH¾‰r¾è¹~‘[ø9l½zÞé”qiœÔ1næËê§÷Ëy±íÑ‹§V<Þý¦¡³þÚoè¸JüÒC”þ³ú;þ×/6Ïýÿ™ßoS~òŠ]Ý ÿÚýp´w}ê={•öÿ›~êÿŒß[¿ŒK¹¯ôÛMã»û¿üáá¬ŠÓ -nݺ'Ïá åÏú»ío™z‹[M=¾³zo$T{ðsÅý±û”ßï'ù}O¨¿÷´—|ú­œïß9ä‡9q›ªý令ÏÇzñ½!w|u|È'ùfœÒy¿bãóxíÆw½}÷¡N…±Ú×q+¸‘î£ù~÷õ|ÛòþtÊe¿z{ßkY÷ì›Ù¯³¯gjß@þ×G>íÃ÷î¥=ûXú{\:SüNûj½ß–ô«£ß¨úf^íòP¿ôˆ—ÚqÑã§žôç°õëy¥;¸3ø(ç ÎaŽ% /ùËfÜvüØïÇTùW–ë†Þoÿ2íÁoeÜÛŽ8Æøü÷%¿½/?îY÷œC?Ž/Ó½ï ûCÊGß{>ä|„|^Ïÿ²|þÅO)/ïÓÿò§|EäJ=7‚;Ňs(ãyµ^~,ÈéèúóXíîÅùcÏË3^ð¢ð„ÓÕkƒžK~þ4ØüžúàƒÃ“±[ö¶w8駸þ=ÔO?Cáàœ‡ÂIz¯—¤“_{’½‡Ëqð p1ü5\Ê©÷LÞÃ_ÀUÂ#¾¼üÿ(ngÆÉ…{ Wø6ø;~Éà“à+‹‡K>¿pšûƒ?ø«Kƒß˃߶›zÏâ/ùó=W|ÕÚ§OynÜùá:¾¯ þê?,ÏÛ×Ú§K½™~ý†ßãâÿžrçG½ø‡×º<äJOŠGãBàµàÆ´k\ÙYý”Ñ«ð“ïý­ß²”»lÜèAÞkO;äq ¿©wê#ü)\ÜŒ~ñÕÏZÞWþÅ´oÓú†âŸ6xùáDÉ‘^týë%=qÁôøzhã;›GèϘ/W5ùù…Ã÷ ã0ÆóÒ¨GÿèùÃëÏ»C^úqaŒ}$/ÏùÌ|Øù8|tÜBÍÃÅDz»¥ÝTÞ·è¿yzÔ§p^úgž×¾úä3ÎðŠô¼8ݼ/nkô³ú*ß²­Ý›gÈ#ió—÷:ãÖ“¿vÚ¯1M9hÇüÎ.ë·’>{îÿ/åßϵSü·yC:TyëÅÚsÒýßÿ?ïŒñ¬ßÓ‘Ÿ<ŒsïWÐËÔã~þ¨7åSqF'èÿ7ó&»³Þ÷Þz”~Ã}Ã9M?aæÉSä•|þµg½;ãcš‡•·n ŸÚÇõÿ«£Ùžù€|­Kަ}ðÿøÊà«óEÒŽ)Oÿ‡žTΩ߼ 'i}eœÙ‘yõ$ù½+Î?åè¹é×ñÑoü“#}‚;S¯rÆyÞ7òÝó¥~ ½®´”W¿ï£cziùü“|oõÞà7›tý[Ù‰þ÷^\òïåW¿gw“oøë÷bô©÷ú|ï}šú{¯2r._¾ëøù"÷?áôäÿ!éÐûŠú©éWÛý.rúÚ¼|_EþêÓÿrI>|ußþjøÓ¯âÊR¾÷DÃwç§?~§Ï7å›?óN÷ ÐÈ¥q@÷–ýuUÿê.ó^qbIßû;þù’¯úöí’Oúè×|ÆÅüi^"g÷2ÕyCåûí²ýOÁ½Õê'½6ÞÆ Î;¼}Æú¿Êû·G>øŸéwʾ§}Õ‰§Ë¸vŸPþ—’¿û‚ÇÉ-ùícºŸŸ¯„ÿä«ß¶3#ýe >NŽ~x/¿sïS;£(”~ë<Ù+ãù©Á·sûÀ¯Œ~(Y? i?ÿû=ï€ÿzuPø0õr7îösícÛ7Woý&ëàwŽãù¤_òоñµÿlÿølžŸý¨ÿ°1¾Ê7r¡ÆQ{çFûõ“üÓ¯”ó±úM íyšüyçãüɹZý…6ždÚQÏíå9þ¼‡Ï»~寿˜¤ë&åÞùßý¬Ÿ®äÃý¤$Ÿv§ß—â³ðƒß¼ß÷øü±Çò•÷•Û(g<ñÙó<í“shýÄèÇOã[ÿ-¡ðW†œÈþ\ò«ü•Óžz“O¿¯Žþ÷sèÏÔ+ü8¿¤_ÎG›vÈ£þz†¾Á»á·~†Æx„3¬ß©”ƒ·’¿ø9í û»>ø.BýÞ~á ¤á£f>ùè퇃ïøÓnÒŒ|ϱïRÿÏ.ŸÃmÀ÷2ä"]yèèŒ;(éÐ/ã/ª¾ÆL¾œå·kC¾Æã£Ñ.þàeô%7ùjÏôA½ø1ïä½qh=£~ãùáÈOŒSý»~MyÔ¯}˜ò™rùÙͰ§ý!ʇf{c~›v©ßÓOšylâåƒã2ïÔ? q™ývQ?vÃÎêgN¿†>OÜpõ“þñ‚gªÆ1ŸàW½Ë©¾!ÿÚÕèŸqÒoãß|ìṽ՛!‡«ƒþ¿joÈ¿xüýú`ö7å¤/‘ohçuí~Ê¿ÎGc|êÇP¹¡'µ“aõ?9æ‡Îä“ú§¿±‹yoWÿg¡ðDõWœ´õ‚ÿmùÞïµçÿÒÿ¿uoýž†ZjÇ: ÎÄÿò™Á§ï¯ÞãÀÊO?]ÓÿÖìïºòëù#þÎzè4ùhOýúUÿ¾Égü}7è‡q ÏÖ?øPÿ™Ñ>¹ìø µn9ôËC®³ü™ï1ß ä ÿvJG?Œÿ¹!üŸ;à½väó]szôÇ÷×Ä£ÍïÒú;&ïäϺ¯û¡ÝG°or/Ï¿K9~ÁÆþŠ÷;û9ßï-~;~Âдk?£~ØSo÷ÅÂO÷›ìO©?ï»Ú}ûEøÿ6íü²ìG÷[ò¼ûaø´FNá»åY>ï÷«ûÞkü¹åyý§yŸö{_2õOÿqõ›¦¾ÿ³ä£þÛðý¿G¿Ó?~Г}™ÿiä‘tëÅ—ü?§_/ùŠËÉx5þñ7^ÆA}ž¹ä£þÓÔ÷åOøêóo—¾nê«ú·~{BgÜ ûÞsÞùƒýîž+¦\ÏOÔªœÄÅ‘ÿ•ÑžüΙœ/L¿™vâÙL¿dêóÞùƒ÷ú­>ç$ÎMð÷òèZ¿F©_ÿË_ÚÓ_r89ø;›÷ÚwÎr\;£ßÅÓŒ~ï£]ãg|RnúÍpŽ…ý3ÿ_ý˜åù+ã½óeç3ž«·çˆ¡3—s7|Ó7çZÅÝÐã¡õƒ—çø™Ï'ÎG>rÔÿé?­ñøR<‹óñÆIKº4ùáDŠo‘?ïõç#í% çãÜÛ¹¶s]öìÜÀy,<ñw¡\ñkÉÇÞÌ=W Å·þÑøóøã᜽çă¯úWJ¹ÊǸ…’ƒq1ç_ʉï‡SJÚ¡ô“ü72ùàvÞ´ñ5—ö|ØøÇ§îàLè«yžž·¿yÃüù‘ÿó‰ñú5ñ±—òCOÔGè—ÿ³é—ŸôǼTû£GyÎ_[ùÉ{óÿ+vDÿðuqÌpBô›è?a¾ÃïÜü,óâÈ/fþŸóúéÍûÊ þ³vÈþÇüqy”Ó.¹í/߯ô»9‘q°ð?l}býpkŒ¿ñ­ÿÒ”ƒÃ¡Wg‡~ö5üÜíàr&Ž_â¥Ó#õ[ÿ¾=žÓã‰ÿÅùžÕ^C•;(N1=µÞ!¸Ö“£½‰.n—ý%m½|jÌ/o´þ²kó^ÊÕîþ(wzÈéåû•`7ôÚúÛ÷Uì©÷4Æ÷Sïw°»ã©gâ¢Ìßô.éçaWorýIýòÍ{ziÜ­Óé‰y×w½doÖýêküuýÈ{÷d|w4®gò½¶ä«û;îÿä¡ßEäã¾~æ=¡âm” å¿éË ÝÎáÏ8©×>‡{Mÿ7¾×ÙýÉuö0´ñàÀÆþTñYßläÚ}™ØM÷›ø ƒ7‚O9ºÌg_¬ñ¿ÛP÷/â^ôðâÆð GÅ/~FüÕ<ÞÏËvŠKqO»_ŠŸ¯òþøRoë_\òÜ}ÖâõÈŽM¸Hû·ä’ïõÞCÓÿÈ£x¬?,õ¿ãè~­{žÃ¿qR®r6ο¬vó0´çâÙd.¾ÎÊy€|Î+œ¿ˆ¿s1ù3'u>õ»åa'ž ÜŽrΩ”wn¢~í;PœJñd©¯ç\Êç}ãéÃà¬åòÊÏó©y®ôþh§þÓBóÿÚsªWpIãû}ë'-T»Æãܲž–›ç‚ÃïôJ°›ÆóŠ|‹ÿm\ÅÈÕ¹yÏÙ“î¢Tù”«ÿ‹ùi)—œWø¨?¸øIùï7å»ÿF.øÐÞ)ï}ëKûúk|Žÿ?Œ÷pŠ¿7÷áînžÏz[/ŸvºƒOsnàÁùˆóOçÎ÷füÏèïNʹŒó‹'38ºø6ÎQáþ8øsÎéü¹zn´ƒÏèáÖ¿TÒîgãsâýàÚÔø,þ,tØûuþ ï”ï-^nÈííú÷ã|ŽÊ|7ânçÑ%ÿ+=ÀnŒgãý‘ë&Ý|Æãã1ϱþÀœÓׯÒÐCzçØ8…ôä³M>ñ`Ù»ªÿ™ä¿2ìêÚ¨¿x±¡ÏùN¿“8 [ün(üXñµÉÏÿ<0<¿ti§þòÞó9}ù>¿ówý$õ¥ž7fùÿ´?ì‡ý½?äw€ÿçâ«VÿÐg7§ÆæÍúçbI¿>Ú3oó‡éÇ NǺÆzrƳœ~CéáÌ×{%ô;”?6z'§óÎèÿóÞÿ·QïË£ÞóK¾[/ŸvÚ}!û8cÍ~Yóññ{žúwâœöþïòa»ß™÷¨}Àȯûÿ{Y¾üÿ¼´§•>˜Öß–ûêc?e{ž=s>/5ãgÎ82õÊßÜ[æëÖç¼áTÞOܘüõCçê/Î-|8ÿß [þ• ÕŽ~ó{Vÿg£üè¿tãƒnÒm·þ"&?C>õo6ìÎó±ž*>ÏûúÁÓÿ¥äoyüŽýµ•`7ΓáÁ>v·÷wGå°q5“mÆ»t¾/åŽÑ¯âìÔƒÏÁÏåÑþ_^í]R.õ¼·´›¶uù¿¾õ?„ã2ôÛ¼òÁè<óg¸xrÑOý¾2äzmÉ×J°›‘gñPc<áXŠ_‹¼ð³¼ùûhP¸œéªø´<¯Ÿ)vjÜÓ.»x2¸®Æ³L{Å­,ß·_ŽüÅ‹¥=ñ9ùUšþçè]ýn±Óä¯?¶ñQüÙÒžêì£!ß›£|ñ>£?7†¼'‰]Ô•ùfÈoànVz€Ýwò«ÿ®1ÏW®Ñ'úe¾­¾˜¯ÿ§Ëq)ÎpÚ »J{õWÚø žÓ+ú?z3ø™ú;ñoú±ïÿ2íø¿iƘþ‹«6ï,ËmùVïø"߉«ãñÁ²þ·ŽnÒ‡­—O;-NÊ:Ÿ?±ùÝc½4qié•u‰ú’¶n¯_·ŒŸrp`âTžó^þÔßU¼œò¡ç“ÿ­Á¯ï› CÏôË:Åý~õ|àçì¨÷Lò¿1ò©Nè¥ö~@å’rF»õg6øvÿhâÊú=Z?ÍêÍóÓÆ-|ú^%ÇKËzWz€ÝdߥûQãÞfýÜçÙü?EîöÃø çŸëÛPx«½äo¼ÎMzâ½ê_.|¹Ø{©ê;’v¥^~ÊÓÎôǦß-Ÿïým<€e»ßEhú]?g_/ûYÿqß>xÝ#®C÷óî‘OÒ?<øÿ¦ã–ó«îoþœöÓn÷Ýůvݯ5>)¿âÓŽîøeC§ çg™¯z.é½sˆƒðg?õê ž;ŸÑNÏ;“žqAg<‰çÂç©Pç–òñ»F±×ò¥]ç©ú©ÜÉQ^?ðun¥ç”ÅA¤r:›÷Å™-í¾íÇηñKSÅï«C#~jû9öïVz€ÝÀ¡8·ž¸¸ÆÙJÚ9¿ó?ú-ÿAþ áIœ_µœ—[/¼ÎŒ»v~9/nãv…ÂÕ½>øjüº¤ÛO¼Žó{ïácêç-içúûá<áô»¸¢ä‡'ª?BýbO¡âóý·Ú[ëO=pFgˆŸä¯_rÊs~ÝÞ|ðÿãJ‡ÝÀŸßú5¥ïI‹ úÎRÎÅ[OþGã{²‡¤ë_-åø›º9ôþŽàÒÐ#úXÜJú¥^x/v ?v‹¾³›¤ù/«¿ÊP8þ›ŠóMñjô9irÊwûïÅþÈ¿áÃÿÎÕÑá' ~à.>ø½ƒ£9À?Zãy®ûÐg7þ¯Ù‰y޾åægK}ì|j½ÆŽè[ãGF¿Ì«o }hÝ”›óhýé%ð[ýåü/Ñó¯÷ìõìпâ4ÙMÒÖacÝØrSçû‰w~þîŒ}‹þÏv]8ìðâhÏÿÆØ7,¿pH×—í4ߥ¥|[/ŸvÚùÛÿ¶uò‘Уy×ä;ú›äþÜ›=ÒSë%ñ)¿Jº÷ –ﻞ8Ÿv¬ûN¤þÆ©Mzú‡®Ï‘ÿXò±oë{ëIx}ýhœÍa÷ôñô2å:ãˆâ§qjÓ¾|Æ<}¹Wä{.û/p8mO¿ç< ÇSßþÑæÕê\“Ÿ=õ] å7͹žöáÆœó7~[茿ÚxhCõŸ1ø¢‡Î}áõö—óô6gÞõ]õê÷þàK~ýïbÒ;ø6õ’SÒðIÎ[ßåÚeÿ[/ŸvZ?LõKyÿýìFÞ·ò>÷"oÿ=ãŸÁÏEÅE}º©§~Á2.p3ÅË$ñkCŸáwf\ÂÆQM¹â­†]³úZ:êÃ7Jquì/妫ÎCgüÎÆQŧçÚ÷>.oÊ©þ6ïÛž~ÁÛÌxªW‡® Ÿ—ÿc+=ÀnŠ?ãRZÒ7c7ÿqv©W3®¤q§/Ó¿™öèÛŒ+ g~q…¯3ÏéUã—²új>7ÿú¿Â7¿R꩟ͼ¿²Ô«êõÕe¶ó¸vÍçãÿ¤~E‡ÝÓãúEÿ÷g¾ý¿!OvNž£½?wC^××ÿ›‡²›Æ7Α·õ»u\›çÖëôzƯߴ䷎>ç}ž[ùž©¿ç¤{ï$ù}gôÞË ¾oêÿ8õ5¾©uMêßpbpvgÉ#T>ÏÏ =>‘ú_ýo½Ò)~È ÿärfÔ\YÛÓß9ýMZ9þ«‡?µ¦‡_¶•`7ü§}ù‹^óÿõãFžõ¿5üŽU?|7ûž‡kÜõ„oÆÿþOá#ï{OÑ>Ï^ÞÛß ¿½—y/åÒ~²ïußë»ð!¿þ¸w|7iq2R_˹¿ùuÞÿ8Þ'?¹öžè/¡ö;MùÔÓý´¯Â§tøžñ JZÚMã|F®öÍŸU:ùŠKüvi'3>ÈJL{¾àÜÄy‚s„‰Órß9žûýÒ7v¥ÞóC~ÅÕ¨/ïÛ8%/òqŽ{v©ßÛ8 c|ÎŽôù!¿q^³úzH»i|Qz9ÓGçÐõë5ôÁ¹eã{Ò¯¡/Ó¯?13þgñ¡ð83ΛsÒâªB·R:ü‹{ƒÏ+Ú×_ú™|Îóá"ô³q6“.îp†¾³×ø¡7Gýד6nä…qbáéfüWi¸‹KÃÞÓÿÃÖ˧÷Òø²K9Öß»Aç¸Ç÷GÚ¹4=¥wÆŸ¿)ñ…áÉè³yŸ½Õ_hù ×£_ô1ûÚwâ¿|oÞ=Æï%é¡oÅ ¥ÞýaìµýK¾?Û´ ÷†ø¸úÕJûW—ýkýæ=x‡éO°ã’÷úé¹z‡¿·•`7g"Gÿ#ôÎü=qWôÎÒøžõìõ}˜~6ÙËŒ«©ãëÄs¸—êkèð+²;¿Ó»åÿkß—äcçþÆzo»¾1§üÄk7¾íÐxÏ©çyMüàì¾Å~oô‹¼à<Éëô˜wÞ\–[évSÿ´¡ÖWpMG†ü£÷_i]~4ôԨǺ…Þûžðýäyï¡,ǯø´³›r+ZÔwK½-N•ܤ§ü·Ëzê·ñXòÃùM¿ñæ#û’äýõø¿ùË’ï鯰ñYõ3üˆŸ7w¥¦Ýwv®é\ÿ@÷ê§dþ/¾ ÎÉy‡¸¸ö¥½Ï|¼}ž4<—ó˜“É?ÖCõcÆ€óžÆåÌ{ç ø„7s~áÜâ\ÒÅ›ü;þÓÂ>O% øn:ù¢ÿäžsì©ûûðhÆÿ@íÀ™ ?Š;8Ú_–v]ù+‡è<œ†Ï•`7Ó?—scçõÎÝø{sº”ñå/ƒöåœTyç…Óχ÷ò¿?êwWüTòÕ?YèõÑ®óçñWòüÊè?/G¿‹OËsxž§¼÷Ú+þuè5»vÎÌO »WŽ\7tž¾?êoü+ýóÍŽ¼µ—rÃ_ÜaëåÓNwãÝEžõtv#×â=†žÖOXž7¾_Ê?’ñ„›©Á¼/M~ïÕ—÷ }8ÀOÚ¶½˜~òÓF~ݯùöÁóMñO¡½wèþæÑÈ}øÿ²¿³—_÷¯ROï7†â§ø_SOø²?×{–ö¡ò\¿`?¦/Sn༺߇§ÝâW§ÿŸ§ïÃv†ÿûöÁ»Ï&þèK=­?´”+ží—Mþ/F¿º~ŠOËûýÃχµù“ÃaëåÓN{nàœàäƒç›žÛ9ïÉ|¸Å‘mÊõ<Àù¦÷pY3¨öÕïœÄùOý $}<ÔùˆsšSêOûÚq>R¿!É÷§Q¾Èþ¯sŽÿ.mâïðá¹órq.9îiö¼ß™*_õ£ó¥âò†<'~n ­ß…È¥þ –ãyØzù´Óâ\Ä<}€Ý4.`äMŒ<¿jM‡ox3çlõ;z‰¦Üûc¼‹H~çµS¿œó¿1ò•8ô^ ññ«ÿI+wiôÃóÆmôF=ï.çï­½…¯¹î¬_ÆôäxodÝ1×ñ¾kz?(õùîf§ôÙ÷ û¤¿þÇÞõhçøÐ÷é·öÜȯ}ö4ýjûŽ›üì­v³Ò-…»*îóĆîåX|\hq`?nô²ñ1“®Ÿµ#yþÕ¨ç›Mýö¯|/ûÙG°ßdÿ x8÷Ráä²ÏØ}³/Sž3åò¼û…GÓžý þÞ~I=wÃwätØãµÒ§ƒÖÿ?†phðbÇò^¼x+ç)Ó¯š÷ÎKœ993òe®÷¼Ú|=ÞÞÏ{¸<ù_T»Å¡…:ŸQ¾x>ýåð»¹Ò‹ö<Ý9;Ü›óÊ+{÷Åañ&ß~ž_Œ^‰Cå|üRòy¾ƒ;S¿ò¡êÓ~.Pßï“ß¹¦óÝ+£>çÈÚ»4Ê_Ôyìåõÿf¥ÿW¼Dø©ðVÅÏO–÷Å¥ìÝÿmý&œJq?)W¿ey¿s#ÏÂ×M<~ÙïÕY>ùpÐâ‚ðû˜þà‚FüÕ¾˜´¸¬Ëcþ.®-ÏáŇ–½íÝÿmãMÓ/úLïØeêù`ê襑¯q˜µÊN&ž ¾yâÝ®¤ÜlO¾ÆáLº¸Yõ«oµ›•þw¼Í½û¿í=—èÇôv.î¬~Õ’öý! /&Ÿïß?ì³xº¼‡_s¿ètò[‡ù>ñ=¥x2ß=¾—ê‡;ùKóܽ¦ÞH9|Ôõ²‡=n+=\ÚûŠßFoìC}·¡ÝOrónè÷{÷õ»6âVÚ×*žîËP¸¶Ø‘}-ûY-÷yêAÝßK9íßÛiåàyÐüõ\¦~É” þà¦ÿ7ûÏ=çüûh+}±iÏé;Ÿ}£âàøišv&_ý’åý¥¼o¼Ñ<è1Üš¸€âc6Î=åg­~Í´Ÿüü§]L𳬷¶ø´äÓñ ÉgÜÏ]éJvT`èÞý_ßÓÃý¡ç×£g–z¶Å]*=ÿømÒÐÆ÷ …ã—cÓnð[¿IOÿOü5‰Ëûmÿø³cWì}äÛÊkÈ> Ÿæ ýf¿øÇw½'ýLÒ]sôeú+;6ô‚þº¿Ðø×c¾†×éú-´¸É¡ç-þ;þmâŸýÏÁGϸèì{ÜËlÿ†ÿ¿ÞwŽn'ÿÀ«íø{;®æüŒÿã·×ÿ³g‘nñ–ì ã¼gÖú,ãÏÅ/ý†ïŠ>ô»ž>³½'3ê9¹ÑÓÞ³Q¯véshý]ñçÔ|ÊT¿[Žèïè߸o[?n8àùŒ/ª_Ç6ü—¯ÔÛûGðqÖ½'V»yiý“}¹W÷íg5_ôÍ}î¹?µã×Þ,õµ<œ‹ûŸ©¯ûu?Gß¿Jþ”ë½É7¡q Ü{åw-ó}ñ@üÈÁÛý¸´‡yï²÷j‡=µŸáÇ~\ëÿËà;ï•+N/tú…[é³Aë?Ây?Pç–úRœ–ó”ú™J~xþ–œÿôÜ&Ïáe´3ãîÔZòós üŸÔ?€¸¥Ó?™Á¾[zß?¸¼¾~r{Î3â¯oýe¥|Áù‘‹s óCnΛœ}ðºq¥O7­ÿ–yNÿÑrþ­ßø3~fŠˆÞðó4ý)¡ÎãÓ÷ðkû9ž÷’÷ü“ÀÙàoÇOÝäcô¯þ¡R/ÜÍô‹Æ?Ï í‡~0å2äUý½ùéR7ñ¥]ù“VÿŒ[jÞi¥“ïÖèÏð ¸Ó¯©·Ôÿš÷ú‘önŽÿŸÖÿ›g‘ö;ÄwDãOŽÿøãú£µn¾x_¿¯¡Ö÷Cë'Ð÷Hžó'fÝë ßü¶ ÿ¶Û8¥£¾úɵîJy8¹»yÿî’ÏÊÁ½‚éÇöòx®Þ~ß‘9’ÛÒ.WúlÐî;ñ;þ݆NÿûÞ×oš{i§£ö©~È{þÿ°|O¿í›u?íÛMºq@í›Á­ý=~ÐÊÎkì_5Žƒò©þ³ýÒûaøN¾>Ïþzqu{áÇ}¿#i_ÇòžÜ^åÔœÑaëÁJí¹ü×8¿k>ø2qsœƒÂwyïœÆ9Žs!í8§×ùÎôów¿æÜC¼šÓ£ϳÎxVÚå¢÷mÏ9Kì¦ýq”y¡çšêÍ>xû1ýÁŮڮöÖxÏ$í9½óEþÁØGã#fÜáN=wŽyVyõ¥ÜØ•ØóN81xüì÷p¦p¥p9ž;¿þÉê¿jÓîNÿ³\œZ¾×vüZ™OPçÃÅû°çÔ“öj7ÅÃégžû^éJh§·öîÿŠ?ã*ßñÅqy/î'ýd·žÃóäû‹oK=â–§}üM{ð¥3Nñ¹a/ðv?ÑþÀÁ'á[<Ô«£ø xº7ºÒ‡±ÿ;þצ_A8·‰?ë<íÿ'ïá¸ÍÿpsÖAþ÷ø)„ß¼8ôÙÿ´Ö­ìëÝÿ/4^hã& £=øNÿ?«?õ•þ»ñ=ÐøÔIŸ í÷KÞÓÇ·†ÞÁÇù>ñ]â~Cý¥YWŽï%õàÇ÷“ï¶wÕwÍN¬¿æwVã{ê×X×Zÿžzp½+]éÿMïàóÞôþ¥}/¸³ßÓûï6éúÿ÷üû½û?ï»gßjÆmøjCíŸÕoÚO›zŠ¿;²É§\qe£Å×ɇÏÔSÿmW7ã¹®t¥¢ÓÉï\ÿh™Åéy |fæëú!Ϲ¼œÜ\ã¢*Ÿ|gó®_6|™]®ÓÊ÷äËùΙÔ/¼þ—gµ›•>„ÝÀ¥Í8¢õ¯“4<?gÎ)•篆]ä]ó¡Å!¨?®~L=õw£þÐàèÚ¸íÖ¿vRߥ¼o×P8¹ýe½+]éífúaƒ§¹ùÿΰÕ;z 3q8ìÞ˳›tã¦\ña÷’N=+:Ò/ºyÞ~h§ürp¦ÛZtÞ/ë]éJh7ôÜÐnìë~};²Ñ+qf|Ïú?³?õÃ&¿}ªâÃf¼ùÔóUô7ûk½wyŸ¯½½âê²×ø¤)/>§~O>Šëûr™nùðç>mëùe]§­ô`Úó‘ì?/3qcù_)ÎË9Šó~Ÿ'iå{nšçóüÆ9éé¼wžãÜÔ¾ô©ð5ü–´?øv>Н×G{úsbÙnëñGWºÒÚOÖÿÅ©ÁÔ_YÒùn¨ÞÂ{±8çýüÅœùø¡Òî™a?Á¥•¿Ü[Ûú›Jû—ú]¾á{&@zÆ;õ8×…£“fÿð?pBü5®é’ÿ‡~á6ÌpApzäίÜž¸p‚ºy>ã÷]3Ž¡¹ïxçfêo\Ôѯ«´ƒò®ëïŸ.ùå‰>À_^üÑ¿úeJ}ù~í¸Ò7zûÞò;µ~WèãÄužÉó÷Ç<ª½ýPãŸû’§i¼ð Ï ¯Ö¸¸ì#ùáÇäo[ýWOÒþŸ¯vØ »‚ó„ãðœ~³+|]åè}ñãÿŽ´~ÙóWòÉ}é7êÎðñÐvC^æ¯Æ%ß ƒÿ‰›¥×úÖÈW|ìÐKó ¹ÀÃ#ÂIÿÄ®G9ëã7E?³/Úõ¼:{1)¯^õÈGû£Üì—yÃø·˜z‡žýÖNã’k‡¾™'Ìyo¾Å·vgœOó7¹_õë>'îš_µÆ_ å·éüGü„”ú_±.3Æ×ºÔ:Pàxàr¬ïø>‘÷§Rþlò±¿K»ùWé?møëwáŽöŽ…ÿ“É|¹ô^¾S®qüŠ?¹—úÜ#!§<¯œŒ¹ËGòsê'?ù¦?¿¤ž#iW>÷Z^]Ö×u?½VÎxÎq´7Žô®ãhœÇ¼2ü†õ¹~‘ {Ðÿ×G}äOüÓGü²¿¿Žþ»ÿ¢¿Ã^éGû§¿ôÓx‹(=éøà#ü·'8¹úOs?)û Õ3ýso?÷¯ÒÞÄå9|Ñ¿j/­ïî’væóM;·£Çüß§„¯ØGñRìý&ùôG»î'Æë‡ÿ»èMÊ×ï~ÚÑûêýFí|>à™”‹ýt?'ýí=ȼ·_eœøõj?ÈË8éÏ·CßzÃOã D¾_ ~O€>cô©ñÈ_~óŸ~·´‡ê1~Ì'æ)ú™þäqñf;qHñ«^í‹Ã _Ê·)Ç)/ûqÅáÙŸKº|‘7?\s?=ócã9x^\Ò?gG½‡ ïä>.ÿ[ðF⺸+î‹xŽžÃež*îH}ðM§ÒŽ}ú³i‡.÷öO/ûßûÅÎ-ÜÓu~PüT(œUì®ø&|ÁY©_ù—Ç8ˆã>yá‡<'òÕ9á_ù7†|^ùìÏqWŸç±>Ÿq=õ“ñDÅEÌzÓox'q-ëo,éâ/ÔŸrÅ#%iÚÁÇ#þá6¦_¼ò™´öáùm‚+)ÎEýä8ääyý7‘Ã<ÊþkCÎúñÑ ò_6ä_¿Ná¿r&ÑîCO&>,ûGÅùðEo+Wã‘öÍ ï ùÑÿâlÈC9üj—¾È§=ýúøÁ´“M¾¦ð?ílË×Ð/íÁ›ÂµÖ£ÿÁ¼7Îüÿì|ä{uÈe¼'þ¹¼‡‡Ý‰;ô²zk¼C_í?Úú¥þßÎúõƒ¼ŒoÚ›ü’‹öé¯ñ¯¾;äñáàoÆ­ŸKvnÞã »¬ÜÉgÈE?Â)w^Ï‹3Kù÷FÚÿ yNýœþàŠ{#פ»¾I>ë˜sãÎÿaösVÜOê±^,¾(íú?·î¶~ñ¿éÿÛsë¨ùÿ컥붤ßïåŸþ±ÊWò¹ßoÅo˜õݹÁ_×mc¼è…õÑùQ~ú-¶îêú8ÏëŸyÈÏw u•þNÿÎm7ïwúEþy߸ë#MN?ÖãGÖqË{ßÚõ]¡|XÇ9ùÏòM>òžþœÉ׺Wyß?õ»FþIOýk¿Í[IIç‡Ð¯ò<ï7ò!ï»u_‡_÷o7|÷¾úuè7~ºeŸ$|4ýeú~÷ò³ÏS¿b©¯õÛWú%r:ºák‹gÊû¤Õëû»ûV¾#³º¥Éï»6û¼ö±úýz"ïåË~R¿_•ÓßÅÙ/…óÚýŸÓα%ßÝ'8ž÷¾Ûùáw¿’ØÐîéÁïÔrñÊ¿ú¢·ðêr|º¯EŽÆ5Ï»%>é7ú™öþÏèý0ñ2îÕï{ËçäÓøöیߗå{>`Ÿ½ûè›|Ýg·ž}—ß<ßtÎ`¿¿~²Ò^úÛvÅ_Þv]»ÎËŠoJ9ïÕÇ/ØüÍs°Ëzzžå¼Çùë©MûÛóºÔO¾øúãè¯qÖï?Žö jOý¢Ÿú£Þž{%_ã,†ÂEÄÿnÏŸÏñáþo´§øñ­Ÿx tú‚“€/€c‚Ëp~W_8û¯R\Mž_¢þÁü<ýs^\yåùN¼¡õ_1ê»6Ú!wxý¾0ø‚)Ì|H^³½P¸/ýþˆ|’Æ¿ù$ëÝŽ§öàWðMoôkòy1ϵÓ~‡~0òM¹9Ï6_˜ßà^œÃ7¨> ßçpš]ç=z~ÙÿG†4?’׌ÃujÈÕ9>Ü?=ÅqmòíŒÓÿïlÆ+õø_0Žõ7—úþ¾¬ï7ûsõáþ_wÊ¥¿‡Ë|ÖéÄßõ9û§?æ¥üÖ?Ô…å¼?qfÛúýïX/-×e¼ŸÓŸŽyàµÁ/»öÞüh¾òéŸýwÞó9¿Bìòœõùš§~§ÝüåŸûµ>:l½{Öiõ÷ÕåüU}0îp@Æ{Æ1´~yè¡õÉ‘ñ<çý.ÿ9õ>&ÿÐõŸof]x2|Ókß‘_E.\ÚW)û9–òç7´¸¡½<ÿó“õ³õúï´—9>¿™oŒëJ -.çärŠ»¡?ѧârî }ÈwIÔ¥zo?Â÷õøóMºx"¸žÿúçôè·èÎþÜO>‹ƒ‹Ýâ¿þ·Øµý¡áç¾ýO9r+Ž,õVnS_ýsÿäö›ãûŸëºì‘êjôdާñ¦ß_ohË]êwqic~í¾ßØïêþZÚé¾\ôù‘÷ÎÉ>¼}ÃØ59tŸþǾ¨ýÓ±Ní½Ø/¸÷×íË¿¶,×}Ô—ÿ9»yè~Ûß]¿k‘<£ÆïÔrüŠGCáœÛÌüÎ¹ÆølÏF~ç`Y÷mÏÓÿó4çðGôzÆ%*~ ÿ)Gäöê²mϹœsƉkè9âãéï–ôóòº^{¤ruþ;ãv:n¨Œ3?jûÃà.çÅ«Œú¯GŸ¼oÒ½û¿GÞÏâ\ÒΈ'ZüÅÄCÁ#]åÏïÚøu¡õs•rÚ¹±é'9<¶ñåïèÃÕn­\3žÙ?íóúkËû_pâßêwmÔÃ>&sÆý”¾þxÖµ8¡âºè{Òp[—° åá?Ø;\^q`æ—ÐëÃ>á£~çÿÀí±ÿýÐå>Z×iÆ^¢Æ}â%?öÂ.Š;Mù‰g½6ëI¹1¯6êŒ:âvÿËýô¿àsâÊ|‡À}YÁ™ç;¨ï­;ǽçí}ƒÈE»ðCsý*ß›¿OŸ­/·.=Z¹¾¨”~4ýÞÐó©õ õ~ïXÿ'ߌÿY?»ã;¡ënõ¥þGÿ¦~®~H;Ù?G»oøå&_ñAw7ù»oñ͆¿î—|›~¹Ç›rÅ¡y'öÒÒ>Zïç¿Ïnîüá÷ÙMñ|'×uÚ#ѧC¿mô>°÷)Ý'³ÏäÞ´û§2>ÇǼÚý‡Ð¼ï}JûUêýÓ£]O÷sd9/ô\“Ÿç1É×sªìwØ?î9ÿ™\гPÞùŽóx1çCpIpL¿3¾Üïõ;ÒóØ?ÿ¾r+}0í½ôâ3Ž™/{/ý~ó~>7ÿ÷H_èEÏËó¼z“z~\ާsÄGf7p›p øƒb77’†€«É:s‹ó ~E·~²Ò¿k‹ŸL>vù;ãÎO|Ïoæ‡ïú'×w+òœø¶úI:ÿʼnæ¢xïÏå=Ü<¿Jpð„òÇÿ¶ýX×+}ú 7JŸýïÃß»ÿë¼ eý`~œxSå®,×/+]é³L‹#´Î€KfGþïáí«­»àoáÏo0iõžYç÷•>?´~²/ÓõÒ;Þò}[\äŒóÉtýÕ-¿/þY\íJWú4ÒúW ßñîËÖ®Ü÷MþÆ­…Wüfïþ¯û«?lê³_¶—ßa÷w¥+}tâwîU综÷–Ý/—oÆÙôž?þ&^~´û¾+]é¡ÚÍÅØÍôâ\ºþ2’æeŸ˜r‡V\ÈÅu¶Òç‡÷ßt%éâcØAhãç&Ëy»:ÀØa÷w¥+}$vWÈ/Rã.'Í?Úûãÿcâ 7”°#ùÖó°•>?´ë+÷Têo7zŸóæ­·<ç—Ú{ß9ü­õ~@ò=æû+]éµ›c{÷õç~¯}±»±þÓŽúþO~¸±ì3ß7žv?WºÒGI÷ŹŒsKñcf£7–8²úAƒÇrnã\g“mý®YésEë?î ~fâà}ƒ:…sÞYIÿ“q0WútPqW›4÷¡êO<¿{¿÷;7ÿ±¡ü½}œ´zö£G·6 œ;ñ;çú_r'÷ [/ÿyã>^ñ¥ð±×žNRüNqNñy3|åþÝÄs¸“ûaõ»•{¶õë((oãé¢þN¹ó~R.÷5·ýÿGûø†ïýä#?~ÅÄi½•÷ã^áÜK»ó?ŒGøà§/ûoºÿà~¬tŒë©Èÿüÿ™¥ü:®Æ .˸_ãÝ8¸žùX~ørqqù…ƒq‰êÏî+÷ëÓÿœåù<ÿÐ<Ÿ÷ðcü‘²3þûôsú+åµ~2—ííÈ—Hø¶9°OÿgìáÊàþ«|àœÿzÓNë/ÿì1´qK“ïƒû±Ò1®ô>×/uèéŒGö‡Šk$ïúÅqh=¯¸ñá½ÌŸÉg¤žqu‹ŸG­—Bùqd翾7ŠÛé᯹ß7³þwôø?ÛáW¿Î »1_õ~@øç/½‰Û]ÿ·³vp€ý’óÀÕµ=ïÏ.å½Òß°þµ3ÎÓ]¿s%Ÿ{®Þó¿Ï5ãaÖzž¹œ‡á¸ŠwñeËç_–õ÷ߌ‹~‹#ãÇÜ}­¯RϽ´ã>/;á¯ÿ‡”K½_ÜMúÔhççë{­ß»–z½#œz~LÚ¾ƒýþ5ÿϲž~?ýûƒëG[/ùÚŸ89ÚËø¶>>+´q¢Oü±5.Eä —¸—_÷aùÃO7vQvÑ·¦¿N9ñDüÚ~é{ã~ÄÞvøwØóŸ—í5 7ö§eûÍ'žGì¯÷ŒåO{ä²£¯úýSä7üaöyæ—ÛcžhœØ§¸(½?ãœYòQ¿ƒ)ß8)Æ“üøõí¯ô×iãìf±wšÿïú½ã_Ľt8ÈÆëM=gÇóc£>øFxGqwÅ]¸Ç>o½iÇù$~ø1ñ¿ü¨(¯?hŸ§\ý®äý룿äsÀ÷Mû‡ï‘¯q†ßÀöëå!ížQ.tø…iýû›ú_ýòœ¼N¯vó»ìÆy7¿Š“.ŽÑó¤G,ãи^Cá›/ï/ýiüVõ„Žïèâ'/¾.Œtq—i¯ñÓô#´8šPõ_ÊûÊ#õÃË4žòÖ·m¿Èw“û~´Û8rä¶,·§«ÞQßûC®çSŽ]Ìñlœhõ.ÿWúëtW¯#Göcü‹ûó”ro÷§Þ =¤wõ«•´yò˜?ß=øÿ;ƒ8øk\ÔÃÏŒ_­¿æüÕ¯’~Žüç†Ï8ÞþvÚ«×!ÿ K>¶õ/åÓç#nǶ1ß5.õ’¶>>+´øÿ÷ü\Y/ðd=a=$®¨õ©äƒ7qÅóúÇNÚ:Ľë |_•/ë‹yF>ë#I[—üêÏ\ßXŸáS>õ’Çkƒ¯¹þ~ºë:˜\õkämÔgØû<¿®×í‡u°úŒ‡ïÉ“©WŒÃê—ãwÑ;ó;÷ËMºqîmÆ­qL¾ÛÈ×~•ü{ùuÍw¹z¾Ïû±? þÖgßȽÉáÿõƒä½zÔûcÒÿ¹l¿ûÿ6Úÿ!íJã[}Òîy¦>ßmÞ“k÷ßìw%í{ß>‡ý-û'ü8µžÙ/rþ<å?òúy´Ã?ÔñÍsûhÕƒu_à÷Ù󸑬7¶q¬"oïÿ97q^ËçÎEì§z?ÏmPñ÷¼wnêüï‘ùjœ@ç¢Î'Oã7ïÝûw®Óø¦ãýéÑç“öo÷8çw>äܨq—ÿ+Ý׿´|Þ÷âÏêïq*çéGgüo4^eã7¦Ÿ#~úAç·+=Ànœ'Ãa\ …/éù5=É8e?RÜÿ]O=âKНYÿrÃnœûÏø›p;ð*λá€?5iöľã~{nîù²\å¡ñ3^œ‚þ9·‡ƒ[ ·áßžg+ï”ÓóÔ~ê½<êsî¹?Ê5þåи¡7íÞ¹•4ü€úÞýŸ–œá ~#žå”rú÷9&í9}€ã ×ëS¯òü¦~‡âÓ|·r#íߢi‡ÎüB/õ÷òhŸÞÃÑ{òð¾îfêïø~¶¤·Æ|7GøU¿q¡o#nȎݘïØ=zä}ãªØ >Ì›p[W‡¼áÙý"?üã½6ø™ñ§çÿùÖøÓ?ëëÿÖ•Û°+óàœ]ê¼”4}POå8ú]|$ûH~rhœä¤Éßø³ó7Ç{õN¼(>OíŠyŽÿ‡CîŽþ’3;©þIÓWü7r6N‘«y@=á³új>rÄêÿqâaéAõ$íÕoó²Üv£^ú‰oëä³ôc<·n¤¯ô®x-rŸýN~~O¼‘8åôں׼Ýÿé¼·þéz*ÔúœÝö{`Ð÷G;äɾèÝùY^ûì”›8OëkëãkÝÕñLíúB»cœŒË?õù£ožÓýSÿŒO\ûcôŒÜS¾ßoìŽ'í;«rü¿©ó;«¸qíNù¦¼ï½Î÷ÉnÌSÓ¯2ÿ¤Ù÷8Ðnà}ÇÂ9ÂåÁÛù^„ëñi¾;åy¨~žI}žÃUÁëùÞeŸêÕöH(}:ª¾ú‘åÉŸô™Q/œWå‘zŠËLyó‘~‘ üÚÏãýÄK’¾‹+M»ä& wÚøáÉoߢü$Ý8Ä)×ENov”“>ÊïûI»ò_Ïé}ýzëß§q'÷uŒ‡~0®ú¾¤éñ%/é×gzÈ%åámöö~Ý^ºß÷å¦|÷QíÂŽ}Ïê=yç|⋟B•³ßiÿòëä‡ëûó‹z¾M9û²IßIŠ×‹àZî‡M¹îÃaÂq¾ô^ªû˜á·8È#é>¾ý‚×´OZüfÊ—î;«'ür@¹îk‡Ïö;^Kýä×4\—z¾JûÆ<’âA‹‹´¯«¿)_¹ü’rôÉx‡vY¿y¤ÿ2ƱãcR?½$/õ¤=ûÝÕã£á'|²‡‡=Ï)~Îùœó È­¸:ãš~ðãØs9Ô9ÓÑ‘ç„^£ó­Ö›v{^†1þ=ç‹Ü·Wüê¡§îÏ‹{Ýs>ñvðs2åà¥3õ¿wdô‡Üþ°ì/Üå_™|Cî}ï2üV¾i¯þýêÏ/Ï_[¶×sÈ£–cq©Î—Pã@S>ø>h|ï.Ÿ·Ü‡\§ýØQÇ]õ_=Þ§_ÅŸÊ?ñ¶Æù¥e[çÅ]lžÿ¦ÝÀS8wþêÛ¹uñ|y.~\†óÝsêK~çäð)ƾ¿Ê¿=ÊÁk~ñ GW1qŒð)“ßâIFyý;ê|œGã—œôW½ÎïOnôO{íÿAòý>3ò«WûÊÉg<ÈûüGü¨_}Îïßò#™~ó |Cž¯¹j÷õQθÍþ™‹{H}Ú/®“½Ñ'úœ´rpúùîCÚÍÄ)±ý/nwŒÿì÷Ô¯ÓCôûTê-®bèÃ;£½‰3RŸvª/£ãpn<—¿v;ôFúÜHÓljgžv3íð"{z9ã‚ÏÚ?9Ž|ç‡ÜäcoräIúc^Ñîk#}zÔg¼Úß1?Éÿê ìÞÿ«|sª·c~Sÿ”?~ð]¼ÎÐΗä‘tqà£Þ:ÐnüoÂ1|—ú­CöòÞ½ŒÒžç?¦Ý#yî;"ÿë½ÿ ÿ÷KÚ{êÍÿm²ï)·³øzÉ_ñd)ßÿgõãÃ÷Ì/yï;é«”?žüÞÃYY—œÈó£iççäï½ñ~¬Gº.<™úŽ?XÎÖE­^,rÆ_Ç«õ$}bŒu›u8Má¿ëëòÐëcü ¹–Ÿ±îxh‡žìþ[O ÿÔm7íøïwƒö¬SñÿÝ_¿;Ÿ§6´ßÇé÷oî ø ÿ½§jÿÁ¾Œ}4ßaö#2þ;ûlžŸN~ûö´ghúÒßqʼnä½z3®¾G[ïÞ¨?¾oí7Jë¯ý¤ŒoýîûîŒ>èO¿‹µ3üùw#|õ{_~÷9=Ç9èßøží÷yì¤ýðþèh—}ëüøÐ/óÞÄu\Öû‰~§\÷ŒÏkËþmå<ÆS\Á×_'F¿ì»Ñ£©Oäeüþ2úeϾŸúfÁ‡\§ÕŠ}FçÎIœØ´/ß¼§î¼É¹…}?÷Ô{¾÷=IûöÛµ§}ç¥ï >»?ìI{ÓßÃ<‡Ÿþ,Š;Có~žÿ^ò!?ç‹õc1Úï9ùè¿|äÓóÊäÃý÷ž¯¾QûÁøqÏÞ9†zì ÷Ì8ÌtòÍóUiò+ÿCŽö•á‚ì_¿3ùãG¿Î>è½?1äÕzÈ+ÏáMFÍíÆx]OÿáF&¾Éøê7ÜÜ„s*å ÃsÀIÐÛ‰k€³ ŸÅÙ¤^8 ùõ“Ÿ ççð1ðäè|_Î÷œÓ üVûå\sÚ+ûw.èÜxÞúN®ÎÑ?jG9ã¾Oõ˜Ÿ†ÒCv¢òéó¤‹Ë3ÎI¤?øãV\×лF¾Êá^ä¸ÔÏòQ½ó~Ô3ñxgzHõ5¾ä5øÉ¹ûaã%ŸvZ»íù9}‹|OÓߤƒŸkyx\8çÂÒŽøŸðÿôàñ1_¶\VºÒ_µ›yÞ}yè¿÷ãÞåÎÿ3\Žu4»9¹wÿ×skõ:·^±®-®"Ïß[ç¿•>}tëÏuïþ¯8 ß™GéužçœDù~ŸÛñý\\I¨z}gËÄŽŽ…àl¥+}è^~Ûø¯{‹_ïUÚþ|ù¿Óýú7ùº_}d£÷Ýçþj“†é~î›tiê9l¹¬t¥¿F{¾a¿.£ç^yßóÚ¤ùq˜ç´oòÎO ª=çuÎi×ûí+}莟0þaœ+×QÞóÿ’ûMõ»Â?)ÓŸ ê|ÿ½ÑÞ{ãù{«ý¬ôé¥;qöÄ㻼|ÞüÙ—½ûoâSÞ¾*zij¼ª¾¼o¼¾¼ǯq/×ïš•>ý´ÿµútý%ßõaG›÷ûÃ>®±ä‹]ܾ*ÿxÏïÞoÜ/\éJÕnê6z^|cô¹¸~v´ünïÿ•uÜäÄ#?¬[ƒyŽs|¶œVºÒÿ›Îû!3nåö~ZôÞý8Æìÿ ÷9âaîÜI½ìrÇžsÎ3÷ïVºÒ§öÜѹ¤s—9Wqïùâò ÷®ÝWVNœÔù ¼"ÜàÑÑîËÿ±•®ôi¦Ûx]ÑgøoøNøàÁZ.ûpÅ©6^ÓÀç8ÿ¯¾Ôï~=üÍÙu?`¥OPïáÍÂÑÂ˽ÀAÂ]6nàÐs¸—3{÷[?{yo«~8Kåá6§_—ü¶ZÞìýÝ!ïóúOîIË\¿:‘ÇÕ!OóŽñƒç€³žqÉÎîÂ8À§«wÄùxQiåæþ|ŒuÓ¹1.Ç{÷5P¸wöHþüCù‚ç4^púp3ð»§ðûìð€øO+­þùŸm|ÇôÓ<Ãß»9™4œ+ÊÎÜÏgš8=ùÞv3ãE^rn\ô€¿ÜçîĹþ|¿ø)ò1~õ³4íÉ—û­paõcôˆW9‡6âô¾ì›÷ö·z_÷óe{{ù¹÷ÝñeîoèaËí¡åûoKyTÎw‡œ¿Ùô«÷Jݫϼ6ý‘³ûÑüTõ¾,ùÿ¼ü¿™~J¿ ×ú-’ŒÏ‹FῚ†cÙñ/±‘[ý)¹·î\&ógïÁócÿ™ÿˆ·F}piùÚ‰s<õNÿLö¥_ZêÁÓN·q­B§¿)òͺ´ýÔþ0øå¨Ÿòã¤<ÔëKyUÞ§—ï[Îø߬f\©NLŸ7_Æ÷|(<™óJ¸þ™.¥*ž\Àåa§âõ½7êÑ~¾sZqTß¹gkü¶¸»ôç}ò"‡ÑïÆYò†C2ðpG»8êñÚàá-Ä3„ÃÈý쎇8qûÏÖ|õÈÇñºñ8ò$ÿÜË-…»NÞIÃÇLz=ôªzF~ãNŸŠ»ñ>ékËôaËñ¡å}m)ç­“®<ÓÏö7ùrúvü 7î­·Þë#}Mþ¥¼n ÝQnòc\~#Ç‹B·¸¯Œ \˜yÞËün¾ór%ïÍO—†]¨ßûÜS¯½²óé•YvRzùÙœï¶vc>0?Ìÿ“!×ÎGÊü׿¼Â¾”[ÚÇvüÙ‰væ¸qºòlÊý‘ãðÓÓõƒõ’ï‘áW´ùé÷ô ظåyï8ªÅýuÅÙÑžû5üûñÓ{~ÉdzB»þ‚»#øXé7FzÆ6NÖUÝ«ð¿Ý¸»c¼Õ~”·~¦ßæaËñ°iýÈ ücï_z?üJ×"¿ÍüŸ¹§ùý&÷eާܩä³o0êå_¿µúsüjS®ôçgk»ÿ…~ù1DOFÙ±oÙ÷\Ê»þO„ò{¨|ÆSþÚýIù"Ïúüe´ó_ËuÞ‹J{Oÿ7â™ö\sœ{íœ{:OpŽãüÎùËŒWâüÎÍy\¨óÏG<‘Ößï–·s–Ì•äѸü“œÎ{8$çÑç>çoñûÈùähçhê8Øúþ!K— ÿ'‡-ÇC¿‡…_¯w,—â[à.àà àdÈÿ|ÒðcΟåoœåx”Ö?TÒp ûIŸIýã;÷i§;ñ‰ôß¼Òx¾é¿q"?vÇÏÜ™¥=mãáä9<;:?ÆÃxÎ8\ÆÞÎc¬Ó_Ê/àaóñ¬Ðúçã?À[Ÿn¨¸±â¥Â·Þ:»sã®òkÈþùolœÏåøÔÿ_é¨Wyx6~ùäWðï©üš/ÅuÕŸâš¿fàÆ'~1íj¥Kºõ§½oüPtïþ¯þ6½~×#\,\ùûý¡Çã<­õ_êýVŸ?Û”·ñ¡wâÂÇú_¿°´ƒ-îo”³.)îêß÷Ùúÿ_éã¡Õ÷w—ßçß]γ;ëSï­›êÿzè=û]ýž»°Ôó­>³ƒÐ®ÿ‡užzNúÞviÝø·aŸ¾/åeð1¾c{ÜVz¸´øQúæ{Â÷8=ãGôxôoÆõ>²ñMG¾q¨å|ŸökF=p·ôœÝàëØ¦Ý–÷]4â]~qwðaŸæä¦<ü[ßû®ü­ôŤ;’ýÆúW<¹wÿ×8Ÿ_ohãk~“÷?/Ÿ7(Üeô¸qTS®ígßÌþµ}®ùýfÉWëUÏ·ã¹tìD¼ýQoãÁ—~¿ä³çë>õJÿ[_àÿ¸œG‹ Ž]|rÿùÞ^ÏM¢g+Å? ü¥ó¯Æ?ÍóÙÎŒ/õʯÏçÞ—¿ØkÏuàeµWÜgøsþ6Ú)N´ï—öQ9åÿù°Çm¥‡Kos¢ž¯‹ãWœæÞýßö|=N‰ßø8I¸|íœç·\ê÷5«ÿpÎùOŽú/æùÀY‡ OÀ_×{“ðw6tÆËÔÿtŸz¥KZüŠx˜ìÁüí}ã·†Ò³þE=ìâüÞýßíq¹ÿ£ž¾§ÇÚ—¾~‡âïÒ(ÇžÍ êé|0êCÍ ì~쟬ôŤÅÀ¡ø.ñ,{¯ËºÍû¬gæ:k'~§ø ß-ë)Îètô~Ü7*>éHêqoŠ}ô^N(?ZGÃ×Ýä³®l|éÔóÒòyqAî Y‡Ê÷ŒÝ¿]é㡽쾩{Åð.ßæyqFÉ?ãcFï·Ž>lÄ!õ}Þsø$Tý'–ü5.è¸÷i ñQí£‰gjß#öÜ{Úð;îq‹³bÿ-ö<ã¡ö¸­ôpiãZÁ½ðwaٹˌ/Ãï†s~h¦ùø­{¹”|—F}ìØ{ç1ÞÕáÏ9OÖuåò+Τýë¬ÛÊ·s`ü97‚ÿyÆî®ôÑÒž»³q«´øÅΓ‘?|$|×Çhì$ñ=îÜ2ošçC·˜}x=4?Ã]ñ‡xmè¥y“½Õ?[êå÷-úû[z³µü¤ÿKþwÞrxÛ;ÿyÜJ=•—~%­>ÿoû¡?»¬ïïèýÄN\©8ݹ¿ó<îL9¯ô÷Ñ~8ôeçž@(=3^Ê_·žH>þÛ¬#¼·Þ¦ÿÊû½]×o™rø¶žqêºÿðží'=÷ÿǾ“ïÂÐ˵r2ø©?Aòzð:ÉÿÓ®ÝybøÓë÷Ò|Þ{ c>zµ›‡Òø¨ú L®‹ß;÷8à­à©|θԽÿ–|î­˜Wá¼Æùtqdöàµþ2Æ}âÙí™´/fŸìµôñ€û~åN;ÀÉÔ?lóù¶O.øÐ¯ÓËrýÎ?‘ôîòÁúÜýƒ±¸å#|žóŽvÆ=aò;l½|ÚiýÚÙ_µÿy7òn|<»Ojÿ“Ÿ½6ùá¥ìkÂuµ|ò©ÅOï;_–·_Ü|_¥žŸ’ÿä²~çÝ·}ùÁóõl>ïþsø*.m/íÚøãöcîg+ç<åóôS¤^ö×=öÉgËç=|[Ç÷Ëñl9ãþ„­=÷¹[/Ÿv ÿÔûí[Žßמ«ým©ŸÅSÑ[¸¬œÔ?hòß6Nž;Ëÿ[Ç5ãØswq­µ“÷;q­Cë?áçëƒ~ÎçÎ{¾8ø¬ß…ÈeÇ&üdì½ývÎéü2óCñn§†|Èeø(Ÿði//åÔ÷GÌ_ýè§zþmµ›‡¡§ú÷Œü3?Ã÷š¯šØOqƒâFÑsÏOóG)µöœWŸ õžŸÐÓ©O.ËøgÝÑúçó??xsûÔƒõ¤øüà“ß~{ð5¾gêŸS?œ÷ósóÊà÷LúÅïÏëCÎÿáЗ?ã{¥ü½<ì?Æ.to÷pvC_û‘ö?oÞ§dž~þu9>µ/xEzØx…cüáIÔgl|é<¯y2|Öo =99ôïÈóõÉëIídâ^ΥƗr1¹°ß7FšŸ!íéç[# ‡ùêÈ?â×ëûÁ?ªñ83ì×8°ïáGw¥Ø{NÖi¾wîe=òÍFo¬ã»Nùv©ÇÅu}¿Éß7Ï­÷[Îz+úîû¥ë»ðS³óïÕËO‘óšœÇõÜîR¨óJçƒÎ[“¡Øvþ¿}~e©[\I(œÌ8·h>çúÏï{Ð_çDìÐ9ç~ÞÃ8§97Þ+ï¼Å{øñ_ù¼WïÅa7Ρà+œóœri\¼ÿ/¯ô»qÞ^œJä\\ÍÙŒäûÁÈwó³ÍóÚCèÿ'ãëÔy9{º•òpðì^æVê¿=€ƒ¡ð*Úõœ]~0þ' ^Þ ®Þž>íÃÑ®s]rƒ›øÿ¦<;dçõÏd>Àw¨y.ná–ñÀ_ògS\¼šüø¼<æ óÂOŸÈÿ û=l½QiñWþÏàŠãÿ½8ö ïs+ùàt>NšÞ²Kù”3_O<Ý­M{å«~ÚÌ;Úùݵþ„×ûˆ=ª‡Ý%;ñkÞ‚ÒïÊa΋yï ž÷ŸÌÿuæaëÏ‹Jû?H¿º~ë1óú¥¡?ð3ìÄ:̼\=µOt2z8q.'¢7Çò¾qgC݃|iÔC_Ý‹´Ö8¿ã;Û÷ûÉe{Û{—y>ïÂí᫸¶_´ñÌÅG†{4þ3 ýôÜÿNí"zøöÐ3z‹òkÆ>ééˆ;T<Ù£åè+'{à·-ûÔÛøÔy^;üÊw>å´ÏOŠÚoüWÏÕ³)Øã»ÒÇC»Î9¾üŽé:ݺHEëx}v¿j”úŠ+… ÿ)ú¨Þ#Éï^ÀÀ·ìÜ€¯ÔÞ\ÎuŸÿý„/U¯{÷’þËàGÿ¬ÃàÞPõ¾6ÚÌþ:×}‡Ã¥Ý÷²_Ÿ=ê¾Wô»ù£ßî³ùnï~ÕÑä³ÿf_ Þõ?Gzà#í×ùîï>zc/å‹?3õá'v^>3/Ô/š}†_ÒõL}p®/=X-g ¿ïr¥Ï6íy ÿHõgýp®â¼å·@ç1ÓoY¾z¾RI÷}ôíÌÈïŸÅí¥žü•_ç—çÃwÏò\ûð¤Î{Þ|9WõþõQ?9àßùÏŠ»ºÆ¥z:è6>ZÆ¿¸OzýqÎ~ó³Í{çéõ«za”sN/_ýª%]?i£|´Ý³±Ÿ<ÿ`©?;ö×zaè7||­üõ ”þÁùÁEÀîûÛ…‹Ø_õz¥+}ZhçvìÜþþ£1/Á‘OüÈùZãå®ô)¦½¯u:ö§`= W羓ÿWëÏKæpÇ_×þã±Ç•®ô‘ØÍôOeŸÆ}¼âèb/ó{ñŸ¼O·ƒ´Or€¿‰•®t¥+]éJWºÒ•®t¥+]éJWºÒ•®ôi ½:ýQ ¿÷õ‹_ÿýyþˆüˆÂO¶6öÒ{bìçß–vRÿ7Ê­÷WúéŒ#V¿JÑC÷¥¶^þŽzO8åë ýnSã䈢<ÿ4îC£üã¸O¼a»ñ<qnß”ÿlòºÚÍJŸÝäžëíćéü{¯·¯ýsëÚÿ‘ãÿæCö=ϽÛÚÓÁWí=³?õ±÷”¿ùÿfd݇^éc¡ý~¨ÉèÝ9ë³<¿ðûì§þò.¥ZwÎoN/ÿOŠpù;q®;q0œ_:§Œô\'vÆÏ^ãK³y߸¿â|»I‹ͯ`ýòýçÖ—+]é¯Ú ~ü”œŠ^óSÿÊ_Þùßg7ÅÉ8ßþóÛ>\|ºüp¶3¾lö›ë§SZ\Ù‹ÉŸþ¶œWºÒÊ>ÅI7½ð{Ûx‚±öÊ ?€Ù×®ÿ.öͯߕ¤ÅÏæ÷K\ÌKƒþÀØ÷åeû[û^ÿ·VzvCùµdùžª.ÿ;Ù—‡o'®½‡G½0ò[ºOÅ펟ܤáæf\À심÷§Vz(v#®Ÿu`ì£~Ç}X§Á“úþ—®}õšû‰pp(;;¹wÿW(¼›ï/~Ý{ЉxØr\é‹Eo[ê_ãÞË>@¾÷?¹{Ê{zÝrÉ׸ƒ¡â6@ê]z¾—ŸxÝO€ý*üýçj/+=|Úýañd2ÿWf_úXÞÛÇ>*_Þ‹K#. zN¦œ}tø7íÚ×ÎÿÊ6ža¨x;ðy¿sß}¥+}¤öR|[ô;ߥpfWöîÿzîzA:ïO-ú->ÚÅñ\9ç¢ÎAßíþ?ìVü¶÷W»Yé!Ø < ü Àå<ÿ .N:çýÅ/—ôÕ¼/Î-éÄÁèsx¸öîÿŠû¹:Ú½&_Ò#~ÇJWúDìæÊÞýßíÜ[®>ÃÏ¿æý°å.|—¢ßp5ðtûò§ÝâG“Ö¾z³_ÝrðÚûòoÒ‡-Ç•¥wO¼ÝÆ¿>J»ã>Ž÷·œ4MãHç9¼ï¢Æ¡ÏÙ§x¶â¼‹Cí¾‘ü½Ï#ßj7/2õÝûÄÛÝÛüć…‡é}Ìðõ <ÍWIÛgû¯±/àµ}0ùí«©ÿÇÔ÷sòçì~Çþƒ{ÛêÇÏaßJ_,Úó—ØGqü՜ܻÿëù‹óMçŽÎO~Éûì“9Gµ?Ýóõð“Wçüèå‘ß{þ´ÏOÉ_×‚ÝÀ­dýÔsÊ|Ÿ“û¥õ™õØ?ݼw¾'óÞÐ{ñŠàÞ×^Òð8ç†Ý¾;Ó©ïÝeþÖãJWú,ÓâyàÞ\~7òÜ´yaàÈëŸÎüÀ~Qóü8{÷ûö’¶\VºÒ_µ¸#¡ð8ü‰xzÅ‘ÏçÖ‘Ö•èô¿¥ü¯—Ä_שÃÙïYéJ—ÝÐãìS|qÿùÞ^qAw—û_|™ý…¯ÇÿP¾›àxz¿(ßqÅ eÃþÇÉW<ì&¹þ߬ô©¦ŸÇfŸ­~áìï}»´¸¼ÛYÚSý¿ÁùdýU?r¹§dŸîè“Ø)>ì¶\VºÒÑž39çqO[úLÒ¯,¿czn”s«>wNÄ_oóÜ)ß5=¯Â‡rë÷ÍJŸbZü\[î¹ÁßÈ{Ãn”Û_~ß7¤üõäKœ™R¸9ùÿ^Y–?lù¬t¥´›¢¯ô›ÿªëãùÀ³Õ?Õcýæyî±Þ¾™úà‚&^î£Pøº¦×ó¥•>½t«ÇÑw8¹ú ¸–ƒýpÚͰ»â_ó¼øÓØ¿süÌyþáj7+}ziý»Á‹/g]=îú*ïݸ8þ‡Üs€Wµƒ+U¿ï÷´ãþÕu_`¥O/­ùàt>É~1Ü\Óp¢Áãuÿ`àu¶õÅ.ên¹ŸÖûuî Ã?_e¥+}Ô¾sýïDo‹Ýô^·sÏÚäsþS\]ö§{O›?‘Ó›ò=}¶œs¤#Ëýí•®ôi¢ÅÃÀÍäÿ 8zî9û‚‹ó>æÔ—{z­^Žx‚àuŠ»û¸ÍÅíð#Ä_?@ügñ”ý¿úýñ¾áÝ_oo¥+}híU|T¸7vÁ޼‡â§‹¿Öúƒ\íf¥Ï?­¸—Á¯±ûÅ×…æ{©q“Ï:ò°û³Ò•> êÞÿZšï5÷{ß/öÒ{~ßÅn>_÷VúâÐîïñÓÖûèü]ñÅ¿ÚxëÿÍJ_º=Šþó·åÜ >ˆÿ,ñ)[.”?ˆ ëÿÎJŸZ<?p;(ü›x©è¥Þçþîa÷k¥+}¬v“¸ Û8ÁÑÿ—XÜâý‘Ïóá÷î°ûµÒ•>V»qïÞ'çF½‡à}ï5 ||p=¿q^´Ò•>ÔþÙ'¹_=qAÝ_û2vqd“¯÷K³¿æþÜa÷g¥+}´ç2Îmø‰ýÔÏœCî×ïÃoÖ™ÍóÃîÏJWºÒ•®ôé¢üÉ=t~8´—8ú³ó$žñÙüñÏèé¼|©—ß»SIÃÅñs÷ÿøoFúV\]ü¶\ŸuÚq N¿ÏsqgàHà$³¯ºõO¸)ßñ1îêg®‘ÿ4~˜ÞYŽçv¼COõOý.q•-Ÿó‘úQ´žº0òÑ×á¯í@y½¿ÌGnøéóó›çüMõùÉä¯Gv>‡ø7xV¸6võÚ(Ïþ²±ã_«q+×ýˆGb7¬/õWfá‡áÍŸïŒñ7—ž³zAÏÎŽúÙÙ¡çæe¸Èøµ®¿]õ½:ìþÙwÉ©¡Çâ*¾t€^þõùy÷4õóû›z‹·¹›ý¯—í‘SãÞ}zoôÇ÷Tðá½ùÀñÀÅõ¾ÄËr•ók7O¬ô€q?—ýÒ×–úQy#ç1¡ü`?dÛø»Gþþ¾óò‰èÁO›rôÅ>”öëÍýšáoð‹Ñ÷¸x‹ý>;Ýï™ò™x2v°“ï«¥üàÔÇ.v[?õ•ožÿ°);üðo¯>ûsî×ÉÿO¾ßôË>_ï-ñsE®©÷ÎzOï_¢ôÊýÇ9îÅ-Vÿ¬ß3Þ-{¤güœÍ¸õ'(Ž‚ñþÏe¾Ûi·z󿇽·>¢·ìnâúüãƒí¡~©ò¿Ö}h¸ø4ô¤üÔ÷ÚàŸü{_5å3ÏlñpIËÇŽ2ï4>$?Wð<î»Â×åþžç‡­Ï½u˜q¼}f©O—Ǹ™?ó?ÓûÆâ~žÞŒû?ŒñB_¦¡ô$ÿÅGò3¨ÝsK}lüõ9wtïY½ðb§Sîì˜ÇéYü¿ïÈIûâ3Š9ðhÊ~͹çù©ßI«®­~´—÷âé¿óWñîøË‚OP/|Ïê'î_³›‹ÃNÞ[®3Š_zqûbÆ«q>3ÎÎÉßõˆ[U|#}¦¯Ê±Ï“ÿÒÐWxþ×öG~|«W9ñ­Þ[êMË_z°þkÿ@9Š?Ç~Ù\xõß“ô¥”çççzÒô\<»ëúŸ÷×'Í{þz2ôÃ帬ôŸ£õ“Dÿo ûøÐxæ½ø¡ü&uœóœ~ˆHo?HZ¹ÆÕîÙMy~Ìn¤Ýá÷iËϘOé þêßiØ»¼6æ þÖ®/Ÿ÷ý•M»Ê‘?«ýQ/ûnüÆðûáþÛ¯Pþ[?ûPïÒÞ‹‡›¸Sø¹Õ?Ü£µãt})×Ê~Ê?õ×8±ó£õñm<Ðñ?rmäc/æñë£<¾öé½Qß´kü†Þøt©ßõgx€Ý°ßØuÖ‰ÊYOY'f?°ø4볬K³Ÿ_ÿ;o-ëiýg’+88þ°vüe­vóHìf®'†\»®¶þ’öqÚzh|_œÏû½PßÖùþßø{O~®Ë¬ÿ.Ì|c=çûW?.v޲ë5q€­‡ÿܕڳïÌ_¼ý2ûó¾(¹Ù°`_¤ãcäÇôÓxä{Sû¾O›ooYÏJõÞýË_®íóÌý¦Æ 5±÷‡ÅèyÄÌŸñ¶4÷O3¬oGÀ=Ê?,Ç¿úc?.õ}2â™öóÏÉOOs®ñ¨ð–Î;ïäÿÁ¾`÷Á‡ÿ·ž/9÷±¿žó-û€ÍïœìM=αú>rk½ÎF¾•þ“ãë¼åTÆ'vÒsæ“çsp‹s|£—=ÇyiŒköggÏÆxö¼Î9dì£íigoè™óL¸Kzãù™ðí¼)zÛóسvÿy{I{7R_üÅ×ï¼ÍûY=ßÍwÑËKûÛ¶“|püå$ßö}¨óåõœóÑØÍ¥1OÑwþÈŠ£Éø9¯7¾çÆø4ž—†^ÃáÀ°õ±3çÛÅs…çòø /ø… :Ÿ¤ÅÕ~Ìç¬Ï/=lÿTÏì7Vÿòý|çÚÃýoÖ]¾wï\I=nÿVºÒ•®t¥+]éJWºÒ•>9zû_Üù§Û…ׯ5û;Å{e?hƣةN¾ñÿ<Ü÷ÐJWºÒ•®ôÉО¿ÿhα~wûÃ?Öo´wÿWÜêõß÷ÿÑsí+ëÿÎJWºÒ•®t¥+]éJWú¢Ðú“ȽÃ'Þ>üÜ ¿ÒpR¿Óÿpƒ‡-ç•>_ôÎå%¾å‰·gżÜ\Õo܇¸ssïþïέÏÖ}€•>·´þ€Þó¿àgïþïNöÃê׋ß/vu)åáù;“rp¼pêÍ=”ânáâø+{wÔ o{MûçÈ%>ΆÂÙ¿Úø´p”øL~ÿ—è¾rð¢iÿoŒ~Ágòů<çùSU<*?ipËí>W¼ß¡Ø <¼q†Ç5nÆÛøÕo^òûŸ:•4>}Vî}寑-~άWÕ¯}¸òW‡>×^ó\{øâÿNyóÂÙÁoõ3Ô=v@ì¾þ؆<^í´Ö»ìai¯Ûylà¢'ž[ÿÏ.Û;l=zÑhõÖx¯7Æ8Éç;Ç<=ïïê^Êéåú®óæ©ÙnôÆ='÷ØûÃ}rÆýzož®ßºäsæxêßË{åPþÓþ‹<’oÞ›q€Aý9º¡_üüò‘φ\ô{ú?Ÿ÷z†ÿÃÖ£öž¡û°îEý”q¿‰~ð?V?sɧ>åêï1úr;úÔ{˜y^?sp9Ê{Ú{Ñ_÷1ႇbS|ž»·«ÆUÿÏËòüÝ}2)þ¾Z–kûw£Ïôú£<þÓNãkü°œw¾øfÃï ã—<ÓNº¹÷¯Þ[[é?Gë§¿14óaýljšõIߟZŽ[ã®N¿`üÛu¿x½‡ÏÏXæÓ¦§_÷îÕ‹Ï“)§üJ¨/óýÖ?ZÒù?›ø»ò•{bõ‡§ÓÞ‡êoþOo¿¡äç q˜Ê'l“?üók0ü•®ôÉÐúãO¢~(2>ü…åžåÖIžó_Ñx«É×øxy.ÿó9œÿbüÑÀýðSÇEùN>þ’ðÁ¿½ç×ßüyµ|žóc†êÿü°¨ß$þ_Þ|¼7ä‡ïáO­ãQ9 ùò{c|øß9ÀÚJ³ÝÀ]‰ñ;ÄOÒ~Ƈ¿9ùÑkC¿ø%SŽß,þÄèÍõÔÏ?™üôyÆŸÄNÊ{ί?JüáóƒÁÿþh%‡öGyùÆóÙÿé¬òú¸?ìf´Ã_YýU'õ.˯ô Ùq0.ô‘ýïÚÍÐ+å.|ׇžToÆ:H;S?´Óx­øúiè“ÿ'þÎêŸ,ïå/nÕ¼­}öªÿ_ã¢ó ý^êqù¿²ì÷´—éÇië÷uØ¡~_í_]®óVú„ìÆºâLƹqSóÜ÷DÎUº®™~ãø ãÌzì˜Oᣭ{ø#³®ñÝ¢½Søa'¡Ö‘õ“œörîÒïëL|ù.»˜zôŸ5üÔϬzF¿Úïe?[¯õ!þ´Óç¡Ö½ÖÉçg?ð1Ö‰çSîÒÒîVúdhý€ÙŒGýÌóûÅo¿äôX~þåè£ïb÷ßNä=òÚóœ_ó£›÷öÛ¼¯3ù|gOýîÉჟ²Påçþ[÷9ô+û¿öŨ?3õŽý³îþ˜÷éÿ'?E¯µ·—|ú‡|jÇý@õØçœþúÈyÄ)Xéã¥=G˜~¾œ×ðãÅßÐô/–ýžú‹ž÷\ãlžG_Üûìy!?I±§x\ü’e?©~"Õc¿üÞ¦¼80íOô²þÔ´ãD?œãèßÉe?È«ñŽœ_ÆîÚrúóèÏéQ¿sf8 |*ç܈üÐÈc§Ÿk\‹'k7έ§;wwþí<ÛùþéŒë>Åø&­ü;#ýɺcǯüÉkC_æy;~-´øŸä+.@B7ÂÑxOä½óWüÁÅàŸþ¿5ú ‡£ÜÅÐâŒäïßrñþÜàCàÞXíæi õ·øAh¾[ï\Ïøí{¾\4^æ>= …#óž6ö§^ø³ì_ÝÉwõøG¿óQÞߤoøK>8¶«ôoÔã=¿‚ø¹ª]õ¥¼çüXòk ×þ©?ïo¤üÏÿ[w>Îûø_oûÚÓkêËsT;Í·ü_\éáÐÎÛẆÆË¼k—óÜv¾…ï¿Ö|+^1}1¿²#í²›÷ÌÏ£þ[ŸÆŽ“ïú zÑÿä°õ²öaž8?ú;ç…ö3ÏßivñÁR¯·ö›v®ª—=âKšãK¿’/ötØzó¢Óuƒuȹ¡O——Ï·ö3Ê[OXšŸýt=F’¶ñÔº¾bïv¬Û. >'Ž»q‘­÷R¯u%;ë7ùÕg]9ýãkÊÇ:ÎÿÆÄ­’w׋©wú˽°lï°õæE§õ×í{$ëê>?º¡óû¼ûð•GBO¥<ÿöÇC}ÿú>VÎw¹ï÷¿Žö<Ï÷Eñ–“/íþÂ.¢wÚùãR¯·xÎM¾Ö³—râ®ÏýŠ’¯þš‡üR¾vóê²_­Ïþ„¸ËâèN?ìæý8 çJŸ,ýä›Í8yoCëgíØ&Ÿø&ß=i”»Úçѳî3K‹»i_ö§Ô?âÉv_®ôë§g>òç<Ÿý*žu“ßþrÛ‹=—™ùcƵ'¤ñpñ9ãÙâãÛ¼ÏôˆÒq ¿_–õ¯ôphñ‘â½:ÇŸl|×PÏWÂ%¾½Ï|èŒoë|PÜTçâÁEží*/¿òp¥¯vò?Ôs^ý”ÿÕQ/\¨óP8KøVç«p˜êƒo¸M|¿5äzzð¡}ÏÏ‘oòkwÔ¿Òá=ï¹uÆËù5îóä%ŸÁWʶ޼èt'n2½žúobßúC¯ßYÚQß›?›?í¢ôäâùé¡|ÑÃöcâƒjÏy>ãš¿ÏÐ^ó…îèû þü¯˜Îz•sØSñNä3ä:âP¶Þ¼¨´8˜¬›‹k‹±~±ÎymÐÓyï;%÷rz_ĺÃ:§íE¯­O´+ÿK£œvΤ~¼ÙwEÞŸý‚OQ~F?ÝÛéýŸPëKõwݧŸ#ŸöŽ&­]ý!'ëºÓ£ý‰Kr¿çÔ¨çÍåÿúJŸ,Õ¾Tq]ù>¶/建ÏLþ¼/Æûoó=«¾´Óïïÿ\¦‹›ù<Ï¿K»÷F;êýzðóÕ¨Ç~ÛñäÓÔkŸï“Ÿ6z_<ÍŸàkÊ)íÙ?tonÿwbÇýþWÎ>š¸³?lžïå×zÈÉ}×—ô°õçE¥Ý7…;qžÐs éPç öS3¯oß{žz‹õ¨ކ¿€ž_Dܧ¯ßФ3¯vfPçêy}9?÷ü$ÿ_m¿ñÃß)|'ÿôG"ýwŒö¿xŸõÞVþy_:CNø"çO:lýyQiÏï;Ÿ«ÿ´P8øçþô™ m;ô`Æ_¥wÎÕ£=ö«½çS=WŸìnàòàOóHê½f>0¯ ûs q ¿¡‘gÚ… ¸:hî1— |qIɧï¯ë´§™vüà¦èÑèÁ¸µÅ-Žñžx¯ËC¿èýãÇ0÷EïÜ<»lŸý•íàæ”Ï{x•êõ¯Ï×;v?G§ýÂIh^aÆÁ½ºœw¶ö~Q娱ù¡òÜä;lýXéÐÿ3sþ§ïæÑËC¬7è‰ÿ‘Üsî|:ý“úÍËGÌ~ýOЫâ ÔNZ/=L»¾Î+zPýòž¾úî¡7æßÞ |ÔßhòÕ_bêqÍwçÔ{*ù|GùNƒ×yY=ú)ÞÃÓÔcÞOœÑkƒž ÿpBÚÇÿгy*©ûWðÝß¹;Æ÷ËyÓþ|•}¤Þ÷æZßÞò9\–}©æsoíçM½ö¡ì³án¨¸°ÔÛþ±Ë??XÿÚî÷›zºvãh^¿Ò¡ÞÃ÷[¯÷~è?›´ï™úCCSŸuÑ›£}|[—i×÷ƒu|Ù«Kýk}ÚÑ~ýžYW™G’ÖÞé!—sIÃó¹‡aþÐ/ϧ|ñk}‰ŸÌ‡­'+]Òâ²¾ÚŒÛ'——Õ{jŸoÆÑ¾kï‰ÙÿáïÈ÷±ý2íØOJ9þ“z?mì'§õæý;5ïþ“ý¨îsÙ82þ÷–ÿ7gp7ýJýöçì³ùÎǯþ†½O~ UN¾Ô·³o¦=χ\+§ä'—ÃÖ“•.é6Ófœzn3üß¹ñÍ{çèð(§¢Ï3¼ÀŒèœ&ÿ7Åßd¾î¹Ç™M}mÿìhǹ‹ó'ÔyÒðët`ÿ›Äζ¸µè±ýaíøV_ìƒ;/r^å<'ÿ{=‡š~¹ä—ÏþùЇ~*iñTαáL®lž7ßå¡÷×èghý%½Ï¾òœÿ¸åùyq¾ÎÿÑûK>Š[‹AáQÔÇ^áÀ©´Ÿæ‹Kƒ¿ÆÄ_ê…¯Ñ/ýg·ðgõWJÓ?–~²ŸéWkŧ­ô÷Ø3}šñIëç&Ï‹s g›ç­G9ÿ£ìcÄÿ-àRèñ”Óþ»ƒzîÿVyÿ—õWÚø¢iÿühßÿØÉ¼¸õÕ>´ÿÓ'=m\ÅäƒO°þs¯À½„úiK9¸vg½vqÔoÝäÿ^ætÞ[_tÆ…ÔŽõן–ÿ#ê/Nžâ¥õÿf¥¿ÃnèýÉ÷Gq1î«™çésÒÅçܯïÿÿ=~oü ?Ͼ¿û/gcŸB=ö/¾MùÏS^ýð yÞý_6õz®¿õÓ#߸¿vØã±Ògƒ6nÿü=¹¿ùež³§Ø‡}­Ös7ú›çÕóÿZêcñ1{©GûÙ'ïþXÚu/´8¥”«¿ªØÇö^÷Ò^àÚþ±e¹Òo×ÿ›•><­_â€B³îéù¼Ê™½û¿­Ÿ¦”¯?§¼wÎ3¾/z£½¬{®¢=çMõËá}Ú;(oþ?†ŸšöO?ÞYíe¥¿Ã^®ìÝÿmqѳìûmã¢å}ã}& 77ñ,p0Å)$-î¡÷šzö=Oº8˜´;ãÎxmïÏúñ³yß~ÃÁI\[Ö{Øã²Ò§›Þ¾ùéFonl>$n'>Àí›ÿøï {·oD¿¿ ï? Ï¥ÅýÐs4zzcoSÿõ¤ÅûL|„æóü†ç©GÜFú®Ü í'ß³›|‰Ñ~ç|¬í$ƒ¸…‡=.+}ºiõ~ŠwKïgœÍ±³ò¼qn‡>‹Ï+ž§zØ©8›žÀ>´÷ÿft«ßêÿhÔÏN>í}´äoÛovúÑj/+ývÓ8µÑxOë›ïÝ:¨øÍ½û¿â.ïÜ:ËûÔÛxéËï‰\ó¥QþæwŠú×3ùºÓžþY_&ÿijþ†„•®ô¾ÞÁAú¾·å™{nãÞœý®Öãû[~ßéö­¾MzÜ Û¹/—{kõޝú7L=ÇC¥_ü¢p®î9ÕaêýÃhçøº?°Òߦõû··ùñG8ÏM¶ñE6ùÿãè’~ñÓæ}ã}¸¿ŸóDxÑÞÎùgË}·)·tÙnóý˜úñ“ö'toðñ—e½îk—þ¸´ë•®ôA´8ÐsC¿àÈ.Foá Š—\®g¶qICáø©Ôs&”ýÕü\¿‹üvàÆ…›SÏù´szÔ'¾.ĸέ߸äçM»ÅË.í®þS*ÏÛåÖßdøÂwãÚ yÀi÷âóñ?¹õ?”þÁ¢ë~ç3E‹;šþIÙEîßsyØ\ùþJ:_À¯6ŽržÃÝÑ'8oóÎs'®v?H®o­öò,ÒÿÂþ§¬_v?ôõ¯ë5¼_qBÖ§þ¿çýÿÖ¯Ïɹmû‹Žx™‡ÍßJçx¿\ŵýœqåŸËwÓWƒÆà$fýõo•ïÊOî?ß~'ú^k=¾ó>>ì¥rMÿṊ_̽bò=l>Wúptg1ëªîãÍ{Ü+’|·Sÿ±^lã¸,÷wâÜÈûçlî¾)yŸLÿÿ¶Ú˳H‹¿ƒCÊùSý!d_¥çN3žÝoÜ#Ýñ7ÄO¿Wâi·ñáž/}Úú™H?ϧß瞯ùáE¡=u¾»ŸôÄÇ9Gå×êòí£zN GQ|àhǹpqxÏ™ÝÔïy§ßë=Üg’nÿoè7;‰K_^¾ßêïëwíäò¨¯~Ý&eO›r‡-ŸG&góÒôÓwyý¿yi×aüHuýêþ„ï™éoõ€ý€mý)wa”_ŽÃ=þ]Ÿ³ø×;ñÍëíùú_}Qh÷¯²ïUÿÞ¾ÏáÆ¾ZïáýÆ>ôíì'÷þ]¾ÿÇ2ûiõž|üg¶|mœMû†îùþ†üVútÒúŸËycãŒò/ÿÕÆNŠ[r¾#>Ä¿>_ÖÛØgí=ôûé½½ž×Àu5ô.Ñ}ú<ð"õãö—eùpk7©ç߯óØ×ô[_ú§%Ÿ_ U+}¾h÷7íÛ}•qÏÿÐÄv?/ùn8{ù‰› —k¿“ÞÙ/µ«œúz¯ìË´÷ÝÒwоë½ä¿;ìãëèóˆkPÿn{K¾w`´W¿kö‡ÃWÛŸ`¤{|WúxhÏ…ò¿ÑûΙïëÌ{ùÏ97fƹ7ƹœgêáß qÆ—ñÞ½dñ ÝK´ýsÿyø-_§¿p”g–ÿ•¾á"ÅãÉÿhý%ùàÇô¯þßÖï›ç™ÖORâfÔ|aýµD?‡cë·/Ï뇌}…ò§¤~vwu<ßåÔ+ßÄ)zÏÿSùvãýÕa7åG?CáŠGzyð‡ü‘ÛÕÕnžgºÕ_óå˜ÏéUãÐN½–öáÿ‡žù_ð<”>ó÷§ÝïöÒÐσâÖª7ù¶ýËû«ãÿcÆï-îqù|›ßÿïøße'õÓ™|ƒ•>t»>²ž²nIúÜX¯[Ÿxo_?iÖCÖýI[ïùnòܺ qÄÅì÷Ò›£ü»ƒÆñ\–o?{¿düˆÇéûÉ÷Žï–‰§l¼ÏÑÖ¿±“Ê-xÜÃç•>ZZ¼mãÏ&]?üу£yÎ?˜ïzøC÷é½ïjßïÙïj}#NFãƒf?¹÷òò_?éâ¤\óH9ûcÿ¸ûf'†Ý„û~Ûø©oÖóïË~}ò}ÚÏþsåt$ù’>ìq^飥O½müþ œë9É<Üø5±ŸÆ—ùyY{¨ÿ±úM u®ý­Ÿ´œgÚó$øûáÑûžÃÂG~™râåüaY®¸ÆY¯üG–ÿ7=ÿ…sPÞ’~J¾“zØã¼ÒGKwÎç{žŽÞ8÷~mè•ótç–Ê‹ã—uÊö4ù³.«ÿ¯W–zÕøl=ÿOÞ®àìà‡?,üþÛà®@üDç¥ð0Ú…gà ~èü¨Ï90ûQ/þÆþÝJWú4ÒÆË~æà‚<Ï>Ú±O\|ð~(;㿬ñFóBEq·å»¼®ÓVúôÓ\ü¥ñ?çÀÿÈ…a7ʱøT¸=ñqýOËÆ{ñž}¿þ߬ôé§]'ÑÿÞÇÊóìwt5qÐÖ]Öopz¨zÄ¥~yYÏŸºwÿwç7î3¯t¥O-þ3ûXóÞãνÉìWÔnƾ÷{ùÁ·Õæ7›çü¨·^ûGÖÿ›•>ýt»ÿ½ÑÛîkÛ»ÿëþðÀ£µ¼}ìãy/Ÿz^Z–»}Æâöb¯Åç­qØWú Оžß»ÿëy¨çð¢ââÎsMþéŠg[ækÚygÛ ç¶yØrYéJÕnøËjœµè÷{y1ð§-Oßáàà=g-tÆ]ƒWà/ð½õÿf¥O?­Þ³‹âˆBßz=â¼Ô¾ŠÿNþw—vPû`W—Fšýþ†ÿŒ•®ôi ý®°^²ž‚;óÜ÷Èé½û¿–ÀóÞ3‚“;;¾{NÊ»ò^é9ó·¼Òç“×óó†ÂÙgë}Öo6Ï?ù)ï¿Úè÷ÎýÍ»Ë}·Ö“ý´‰çéýØ”÷ü°å²Ò•þíy#\ݱ½û¿Æs>Óø}ÙŸö\>å{“}eø éßǹNã0¥ÞÕ/ÇJŸbZ< üKÖYÅ•Á×äž]Ïÿŵœ~kÄóÌ} ;Wàb'âßiwøµk=Ïø:íÎô~)û†Û÷é÷ûC~û)—ûGÅqë•e=-7îùUþüæýÏnÒâ¢ò?öqZÿçWzˆv×—{yà<‡ßëÿpžOœ,¡W—óYÛ;?çä›qIÙ¡ù+÷•ï¼oý°áã°å·Ò“«w ¯OÔÿsÿãyžý‘â̽þîvítØ ;l\Ûñ~âãÏYo/ÿÿVºÒ'b/î;ï`ߤzï»pø¥«ÿ¬ä·OÒzƒ¯¶¿Ò÷ÇÆÿ{Np†GCÝ›rŸ ¿ø¸·ÚÍJŸ<ýä‡åÿAqGõÃê¯û±òÁ#¹ë^ûôÃut©ßó~mãÚjÇýd8§à {_×½Þ3ë~ÌJŸ~Nü†]ñ[ ÷äÞFöÍŠkÂoqT›|‡-Ç•¾XÔ¾ÖÄ-m÷³–úÎÿ¼ûzžó‡P;öÝ|ŸòÅ9¡Ù/¨¿"~¹òê°å¸Ò‹ö¸óÊâ—²/ì<†Ÿ¡×Æ~rÏuBßxð÷Í6.Òƒõ¼x(þN.Œv/&-ÎJ×°Ò•>»¸²wÿw'ßùõsriœ³4nfʧ”òÙ?.¦å¯,ÿwŠ[bâèÁ%àƒÝÀAÅ?ÊaËo¥+}è ¿o]wç€}îþÂÁ±÷«c>‚7ú0tßÿfæïá‡ÆwâJWz(öRœÛÞýß×{pþþÿe?¥¸z8=øÓ'žèªÿÕØ×Ååÿè/v¥OÝâï~ß<>ãÁö9ÿ²ü‚±vSÿaIÃ×»‡âÿŠ¿Lßwü­~ÅVúÑ/~øõ}½ûøÃûölê›þÂÅÙ¬?±ìWv0|4.gö'Ý·„Ë;ly­ôŦ·³ßo÷ÐåŽpNëœ+ÿ'ÅýÀ 9·ÊÿPãz¸ß/~ÌÉ‘¯|®ÿ7+=|Z\Ýðö›å.=ØÎê÷%ß/Å+Á1ÀaÀ[dÿ½iNNââ²üaËm¥/6m\ÀË¿Ón®>8ñsâ¿§¤å㯬ñ“O\¿ë{÷Ûx¡¿Ï•®ôñØMôó÷ÚÍAÿ7üˆÍøžõç*Þ&œÝ°‹úS¾5~ßJŸÚõÔ¹G³þéý÷øÝß×ÓÖc{÷·³Ï\~àú²?Ýz.c¥+= úÉ·ÙÏúùÑècãmŠÃùýÞý_ýŽÁñÝ]l7ÎfýÙOûÍ«ôžòê(GîÞëoýÆýº4óᇜð;æq岿Öq¦oôÙ8ñà ‡}–<•ÇOžŸÓ ­ÉÞÔý+|[wŠ'ï~HöÉû?F=ÆÃzT~þ%óý©âß_ðƒÆ¿@¸Aóƒ|ÊùNµ.¿0ê}5ïé ½>3Æ•|â»÷ÜÎNy'¿~?§< OÌ¿ ïoã)N+>à)µ|Kñ›ÆÇ½7ýzcðs|÷JïuòËŸ2¹˜wÞí½1ÊÑ—Ó©úM”6¾¯ŽþJãkæ{Ô‡S£¼}‰7†\OŽq7nôžœÅýÄ/= ~¨þÙcñ®Æ5íÎñ‹½?6»áoϾ >ÄëÝ ?Gó<÷óÝsþâ—ð©Ÿôëåe½_üצ|ó§Þ/~Jþ¿Žvƒ§*=žçâ§Ú/2.ìÂx…Ÿ/þwž‹›š8­½· 'œú?òOCü$ 5~'Ÿü³égúßr¯ ùÑíýqY®üjO;úm|øQŒ|—6ínåŸö^¶W9ñõÓ?G–òª|¿YÖÓ|_…~—öå4Ç·c¼jÇx¥\ñ­ß>^»ù$rœûûâ‘òØó¸BxBþ,Œsøý$úz;zVð…ɧËO€ó þÿœ_ðKøIÆ£ù¥ÃgÛåO0|×ÿ`ôs·5õjçß—õ|’ñì9Mhý„=öA/ÈÓ8§_Ÿd¼Ëÿ—yÿõÒÎ:éWŸ“×—ƒ/—ãW9*§]rRòøûeðICÞê…Oý$ö­ÿmçÛe¾ú4G†žð7ylÙžs²¶£ýŒSËG_—ÝÔN¦=8ZçÓø/ع3»ys)§âoù£ïU_æåú”ŸMïáÉ>˜<½Wî¤rI¿¢þÁ—ÿ~nþ:ûŸçœçú+?¹w~>c¯olžÐÞË£¿¯ŽöÐWF»Ñ¶?ç#ýR¿~dýX¼ô+ã9ü4>^üžõã[¹Æ?åÕÏЫ£=õ——ôe–Ÿã7ãKÓ·ÔûØì†\ªIë7þèÅC/Œ=Ò?ãûòÇÌç½ü{yÎ^éý1O)OŸÐWG?ŒÓ™9ŽÉ§ÝÙδWå=Ÿñòè¹ÿiÿ{ü÷N»Ö—–|w>®]4{‰ÜÌ¿mŸÝYæÛò>vî »þË7ùóÙPùþ6Ú#ŸÚ{öÝ~Ž|Þ“79˜7'ÿÊi÷1ûñêý¦¯6|~ñý¦½þ/ÿ¸ÏúŸÿóÊçÿ¾øŽPúÓõzôÊ:£é¬¿.õá£ëò¯7õ6^òߎ4þðs7õþš÷]~;ò¥\×Yä•r{ã§-GNøõcÝùÝÈŸv­÷ɽ÷Ïf?¾ãðýä(õ|þÔ;øo=ÚKš~´Ý—v_y}¹|ßu“u°ù`ðÓuïC×Ícª/åõûç¥\nÿú~?-ãè{¿ñáB훜ŽÞÚ7SÎwªýBzaßÊ>ƒ}ûB¾_Ï…Êo¿É>}ûjâ Øÿ<›zOÉ7Ò¨ïgüv?&ÏõWýö9^ùð…ûÊù®Æ—´z澕ïí×ÿÆCýö?ÈÑxx®~ûJ¯~jÿ'RN¾Ìçì¶rË|²Ó®}$T}³ß¯Œ~’ë¿vð¿9n'OÒÝ"¿ëc³›úKI{ÎìóÃEåüµïí_Úww>çÁ>ÏS´£~ïóÜù‡sk£œö.¥~ç$Îmz~›÷¨~]ZÖßþãwžŸ8×08¯í9JÒärmÉ×..#õ;ŸrîsQ»áÓ9óC¾•+>B'îF?ë·Î8*¦~ûËúï¼èÁ9â»çÆKþPûÍôG~ç æÙwG¹oÐyyÃÐçúy~ÙÏÇf7ôÞÞäïCnýcóÜyöÇáûFž+ï|¹8šO7´çèŸ-õ“:G?ðæ,woɽúü%q1yÞò¡ñï|0ÒìÖùîGC>p>ìH;7ÉeÌGð=ê!ë£ÿÎ3¯Î~Œþ’¹À/˜WŠç!çÔãœy¼/Î!Ïõ£í½Ö¿ë‘ƒs¨ž‡'=çgõ;W†¹1(~ÛŸ¤áCÌ×ôØ<óáãý¿yÖhñæir¢þ'œ›w™|æ/öïÿý\ÊYZ<¡8Ÿý°þ´þpŽ_?5ô†=-õ£ó¯õñçæ]O wÿØ“ÿ‰þ›BO,åTþ•{{PçüÖëç–Ï·|,ÿwø·ž3¾Öo?¸¿/*íùu-ýñ?oü|]úÄ^|‡87ÿËÐOû¿X‡Iô¡qÿ}©wÝOúa9_lõ*õ¨oœû7Ÿ}ó†ïiòI;ö·ìÿÕÏ/õ¼óŒÿxûsø5/}9ÿœú‡žwßò7Æaîû¶ž>mtž³{>ãv?;ùº¿üãrœ{œ[ÏAœSàßìQÑÛc-¿Î{¢¿öi{ìüB¾¿ }»—~éwôyöß¾ðÔÓÛ{ÑçÏ—ö)½çý£ÝÌ7þ7&N õ|ŸòÉïX.Î7§~âSœHóÖêíìkÞþ³?½-7Æ?ûRò©÷±÷ëæg¾Ó¯Û°“PzýáÛÙ·¾ýÑ’ÿÖ‡ÿö'rùwÒÙŸCû<ç2·÷—vØ÷õ?å$ôѯýJ;ìew7ðž]ÖÃÜõQ¿yä¦ñ{¼óÞÓN;žÓ¯žqðœ~]ïoDÎôG¼ÝëÃþ®W嬗¬_úqžÑÏPzOn,õáöì†ý©Ÿ^š_øUËýõ½þwâûŸ0.—‡Y7]a¯i×<†ãpÍø ;7èú“÷Æ7÷©oç±óäq”_Úq7÷üfúþÜÐß Ö+s=b]}~èÇ´¿ßÏæw÷Ëw‹y:ç,]×xaè;¿‚ó;/ç¼kßõlžçPü攋ï!å}âCÜSëµ÷ñ»IÃûµ>|[÷ñÓk½æûÄ÷'\êôãËï"Œ÷ýëóÚí+¿þþy§öŠ/†óûyóÜ>ý'û5ÝóÏ÷gï¹ Ü_ñÞÊgã‘õË~XìÜ>aù…þ1üœL¿àƒŽyþÍe¿ºïÆ›û*㾃ò}Ÿs“îãÙ7ŽÜàáfùî£ÝM=Ç#oýr¯)ãÖý¾{·ÏÉ?õ§¥G<êÏ•?»g•ö<á—<{Nà¼Ó}éŒgÇ×ùñ¸¿Tüæ©¥¼‹G~θ½¼_Î3Ýglüš¤‹MçyË8çk|ô£÷åœ_)×óÄÑøÑ?.ëé}ÛÞßÍû–‡£)3tÞ—÷yáFOŒñÍøô~쟇ž\Ê©Ïÿ´ìÇaëï¡Ùs~øAçêÅ9å=| ¼=Tž>ÂÔoAò©¿øíÇûS\f֙š\üŽs÷–Ï÷ïVoÓ¸òêOš^ÃáMüÀˆ›¸=ÿôú¯ËeëO#ù§‡9?ÔOþà}àáà?áNÇ>|qÄI^éÓI·¸±Ðý1OÖO=ÎøÃA‡–4œñÐ×â0ዽ—vSχ£ý¼ßò>ƒ×¼s3~¯¸ÑÔûqÚã·ŠÞ|¸ù}ë'Î<‘úðÛ¸í×àcúïÇ…¿½¾ÚͳD‹³¦ãû»xHö o ÝÿËñ?p}è[qúìïìBïüÆ~zí›>¢ü½Á‘Of¿ƒ+}´´ë!÷vÆ9úv}’qžë¸É‰Ë¼0ê­]å½u•|Å#ÿ›¹k¼úÔ£]÷u¤ùŸ³”ߺè€ýÇÝöRÎ};ô­åÿió“‡ö­«ÕcýVÿÚäµþßXÿ·í¦Þ#ƒp¯¹ûîK»öà^ç÷Ó©_çãE¥Ok<Šâ(áKŸöoçþyý=Eº||C{þ«¼ÿqSn/¿îë~—ö?Où<çaÚ7¿õ·¦”ßñW–öëO1íÏó›åóý2ý|ûàÿüÙg«¿)|à3åë×â€úVútÒâOá_]ΣÅkžÙèËÖOVò‹×9ãD‰ÿ¤œsJç…Î=zþ”zêÿi“oÚ7¿A=WáÌ9Pö«'®šÿ™žû8/û¿Ó[ý÷L¿M/=XÏÛ#cžáç®×¹¹ÿu9O¬4ò¼øtÍ'ÅNüòÄ%À8o‡_)þtÐçÑxçëð#>îV^y^¼ñHÃÃzÂ]æ;¬üÈÇÓ[¿>.ÅœO½äõúƒËuž9;æ~¡àáÌ3p ã»r¥Kù6Žsý¶Ñã1®ÕKz?ž‹;W,.tq(ô/Ïá½Ô?ñâo ½;Ÿ|ì tØ{ô²ñ‡]æÿç·ÇM=þ_“>÷àï›¶‡ÿÓáoÚ³~ú¿~Ì÷@žU:ï36í¸ÖŸ¨uNÒÖù~ÿä§Œ»yÓúÅúh/ïéíÉPz/ÿ™¡÷ÒÓäØöë}7ë2÷Î¬Ëø!ëÀ®—þíáæ±®'ጎoÊáãÀüüãëûÈ#ë¶Rõž^íæAôÎc¾ù{©ïÑé½üÚ‹¾õ;;z9÷ÇzOµÏ ¿{È_/õ»ßñ?ŽöO.Ó݇‹~Ýé÷Ɇÿú¥¿»¡Ý/æ/Ä>–~8»™üWcÿ"óÉŽŸzû‰GÒ®ýGï'Nâ䦞ÃÖ‹§ÞyʾozÞÆ¿Ú¸Ï¹õw–qvnã¼Á¹%¿;ÎñœK:O±oì\‡>Ó¸š1ßN?/­ÿÝÁÇÅѾóñ€÷&í²»K¿>Ís͞ˌû£ÅÙðŸ3âëìÄ'â¿gž‹­ë´Ãå§K.[ÿk·q^]€¸p#ÎÍáDàFÏ+Ïé ûƒ³qY‚rËyåθWS4üáŸõæ½ÐÆ9”>ûPó×6^>ÓŽ~ÖŸàhOüËÆQütCg¼¼Ïí€{}l¼ñ3ãž½?ÆÇ94¿oðL×—ýk½üÍñøñ˜OéIý¦¾[ÿHýÑ/þýÈÝ8W>C?n¦þž®ÿ£y_òj¼=ýK¿Åí¼²Ô‡âà®ûø³ßäç7ôK<ÈßÃÙð—HoÞð¼&^åÁí¥¾_µqAG¯=˜¿ƒž?²q¬ŸÐôîŸJ8+ó»¦÷üªÊoóÎè³ÿÑÆó¦uBýãFŽpÌõùüŸÞ®ÌëÿX<Zè6¾å°wqCÍ£æ)zIþ¤'ކ~=$Î²åø½´Ž|ÈøÓ-'ž¨qñ¿øñ§K=¯Îäþ3¶þ}#ý¯dÿS¿ay=RÞðî§XïŽ}˜mܹ¼ç¿Ï:|œó÷ñþ(§ÝâüGú¬ÿõ”cÅ!-ëÛÚMÚ;À_ÍaÓêÓ~%·þœ“}L<|þ¸ï_Ü£yç!÷ë{¯f/ò;g¹SÎ8ÁÉéßðßÑï”9¾g†¾è¿y\>ã=¾ãvûñxÿgÚαÈɾȑôß=”៫x$ûG7Ô>aýÐÃ8…ýŽ„C´?£¾¿.ëí¾Í‰ä?µÔƒéÇ«ø©3OF~¿[Þõ§?ô…\^òñ½;ðn½÷µ·´¿í}—¥¼“¯ù}N_Å18wVœ¼ý¶O}wŒyù7îÓîàñÄuü9íéÿ8(?¯<\¿/mü‘ô«~á~Ü´W<Ðî_ý»÷ŸòmäöyèØçïsôÞæ}ï ÇnfÜ™O~ZêÉôCØ8/wÌ÷aÓÉoíÿëô/r+~ìûMvðg/¦ž½üÚ§X¿–·“üúù˜·èIø¯ÿÌÈâÄvÒÈ£øµ¼/ÞνùÔ?Ï*Ÿï—zò¨èN<:q³œoÁ)M|¿C¸ä»çäõçüpD3þVýÎ-ÛsÎ^¿3>Æ|ºçöxæ›YîúßørK;€)~Œ¿çªÎ5Þ¤õÏóHr?ÿÕrð§–ùáÚvü6¾aúãœÕø©Ï9é‘¥}ÌsÜ>‡0Žð?Æôaäßê÷ãÿêõÄ Ÿ‹y¾ƒ¯ö0î9ì¤á ଦx¨wQõ&õYñ$c][\‰úŸRüMù…99úküù³¤/ðO2ä7ëh~È¿~pBéÜÍðŸ³-OoÂOðAÛñüM?¤Ó§÷Æ›¼È…øµ9àœæö÷yþu»a¯øÐrŒ<¦Æ7GÎÿ#ý9;ú«^8¼sãù°‹¶/ ç5ç'ùßYÊó°íã@¹ã7ÿ“;ÿÏž÷ÿØ|ÀNè7}z9ýç¾3ꯩ9näŸq'ÿßð³P{ïxŽzG‘õÁœÙ+Úù$ýÕNçWýõ<¦sϸÄÓ_÷qÿ³K9ìå×uÄñ¡ÇGS¯ÿùÆ}μó©|ü¤«gÄ×µž9°_G¼™Ü#¿ââÉ~Í÷Þwß8ß‘ãæ&m}s®ÿtp/‡s»^\êû3ýN ¢}‘È}‹¿ÚÈ©”¯Ÿ—rÚñóò˜ã¡þËrϺs§p'Ó¯QþŸ¿øi©7w¢o3®ñÜ_ÚiŽçл>‡³3ãûa‡ï3NcŸÌ¾BóÛOómǟߪØQÇÝ> }~Óväö8Óß=~ö+7Â?ï“´û©Ÿ{ð¼ß}ü¹_ÏÏRãqi'iç@ç†~L\ÖX—ì´û”ú¡ßž×Ežök{Þ›~:G„˜ñ¯z¾‘÷gBøþxhþf\ÍyNv)éüÍ÷üÚ:Êÿ;qþíüú´~ŒþÕßW(OôȹìÄÑ«7¬l þœÿÃÕÀÑÿBü–HO%ðp}q®\½ÑNhñ#)w=ù´{í{…?yjñ5áÞêïì#iv¥ßp+3~ß~äT|ZÊK_ÿçìç ¿7Åyì=8šâÊ~#.-\ɶž¡?׆\‚ó)žþ\}pý­gàñõü·3¿À3ˆïaž0¯ÀIø€«»ŒoýY…^}:õúy§ÛxÎ/ç™æÍüOt<ãø®ß‰Çmþ»üxôôi£õ«ƒ¾:äZx¹óÏéÿõš}–Ò±.-^;zßû1p@pSÊÉsx¤ßÀ¯¯ô 7¶u™q²þ¶Î:3q_ÅËM¼íéçk]á{½û+üpÝÝô¿÷“²OÒ{Kö'íWÂO ¼SýaÙŸÉþÂÄc­ô ·ýžŒcãf¼íƒùÕ¿ß7›ôN}?/ë›ïíÇÎû:Ï:¥zŸuÔŽ¯|×»Ç×óç¤c~’ïÇž÷€kZéco÷ŒùÏîðäxoœ^·çÙðcp½ÜwžñGŸuZ¼<‘s«óÃ.¦ß~yøáG ŽþæÃ!øš5þÕ!wÆ®rú½¨Ÿ‹¤ß]ÚÇn}cý±Î‡¹\"7ÿ?I‹¯ÅO”8vpÌü3ÁsÂ=±O~¢àV«] §(ëð­ßË”7Îð!ðrøi\Õ¤ýß¡üêÐx!ó®vá‰:ÿ¦ÿ˜øð¿ WáùŒßj2Ok‡ÞÕOúS^»p0¾òܹ?IçSîNªrïÕãÿļZÜíý„C5Nû£ÿþ×”{s¬GàxÄ{¢GúÉŽ7wôCßp ðDOxÿ©rg7ÅqæyÇÉ{|êoÒúkܧ_re_ÓÏ“q=iœ‡Þó7äù‰¤Å)3¿*OOÙ5;øÛà£ñÄŒOò³;ö¤ø ãÌžôïØ(§ž3¡ðîU°¯?Žrôå!WíÓ¿ú­eGÉOî·†œñ{fðo<´÷çÑÞÄët¾óÂŒÛ6ã»M½Ú›q¿«äì3ùŒ9OçÓûkÇ7íòORÿÕäûD[~7Ô¹ôq~\Bîkú>­¿(úÅÄ7Z~èêÛâ~ØEêÉÿGqÎÃ}£î3ò £Ô_¼‰~½÷},^XÛÞw¤øòÏÒçrÕÏWFÿõWÿ‡ŸöâŸè¹û`_¦½#ìhä7Þ߆FÝb/î†ö>™öÝ3»—ç?þð}àw¦vß”ùdoù¾ã÷ÓrœŠqŸ”Ý4žUúcŸ™=Ô¿Š{®½¯›üpò5®EêMÿZŽ_û ¿Þ»×Nž×ÿúí£ŽûÕõ÷pbÔ?÷ÏññÇÁ{È©§x£èSãlàóÄRnÛÁ¿Lô¶T¼4÷“Ó¿O¢¥Ñ¿ö/z×ûaø¬?¢Ô—òølzâ;àEbŸûCÆÍ8“—qüãà3vY¿`™'ŠóÑoçü\·¿þU_’†Ëþoù#Ÿ´÷Äì†ÿ‹sáËùæùôÓ¹æ<¦ŸðÎ.ŽüïrΩÅMr{)|À+8ƒCÐŽüð>Þãÿòà+ß/·³ÎkýïòÞןHøÃ‡ú='§ú‹ ¯”/%¯¼/>Cõ/ïçkW{ÚWŸømß3Ô¹)×´çýù‘6>oŽçâTÕ¿KÞÏxsäòÚèGåcFÚxœ¥G¡EBá_è×¾¯R\ÆÕð?Æ·ãßúv¾3oç;ôvî«UÏó;~Vo$úÔ«Üué”ÏwÓíÜ3¼}ÍûË#ß¾òi/ßû·ã'ÿvöýnç^êíøí¾{w·?TòáÍ=ÍÛàW<||8Ê©?û&·o~þBã/¹ïo¤þ«³Ï ¾õßsòãÓ磽ýQ¿üÞ““vÈ _ñŸ;ß¹­'÷o;^—G~z¥ÿMÓ#ã–r×G}ûC¿èåàÿ‰Ù~WïŒwžgúvâ 4Mú!?=¸ñÈ•ù6­=ã9ô ?ø›íÄŸúíÄ˸ýqôó㔋ÿòÛ·äS>|Å/ùíÜ/ß7µû?xþÙÒÞoŽò·<žxë-ûÑþ+Ï>óü£‘¯rÐþ/íéŸúÈ¿Þçòíðuv<ó=¿ý!Gzto)'r)_Úúaü=¯>¤>r`_ú÷áþ¿©ÝàgŒ“qÓ/öb]c^î8½7ïýŸí°Gõù¿ðæ=ÿ7s\n¥\õ$ï'äöÍ1ï‘»qÂgõ˜>x>ê­œ]ΗúÉ®[üÿXêIßöj7êÿ«×‡œ*Ÿ¥>mí%åÉOýò)Gä¤ýþŸ»ì¸ûÒŸiÿ³ßÆ»ò3Þ³ÿÉ_û]êݳëÏúídáótø:›÷â#×ÿ_òõû ÔúÏz:ûþ]ÇZ×jwßû<—îºq–Ó®uþs¾Tþ}?i×:ÀzØÿ¼ufÎ{‹‹ìwK¨tëýVÞº¢~Kµ›rúI¾âàZÿ[ß*W9æ¹ï ùÞÇ7þ†œôG»óÞó~÷¥Þ~G$­_—ôž„Z¯é‡|û£üÅÑÞÄeïêAÒ-OÞCnòEOÊnº_ôõ¦öUº/üyž»ßt7ùǾO÷½N…ÚW;š~ó?w$Ô~ Â{‘׉<·Oä~úÔcß/üwßÌ~×ô˧û§*hêé>Ô_FýòùnþãhÇü¾wö¥ìƒýuðƒÚ·ª_¿”³o©گܖüOÏ·³ïßý«“ƒãÇþ—Qÿ¬WZÿÕc\ù]ýóè/~ŒóK£ŸÊÓûiôˆ¿Ä?Žü¿ïà‘Ÿ{žÞðÓóçK#®LýÊßó“Ø—óñ¼çêŸtžc8ãŸÐùåùäwþhßþå%öù·í ¾œS:—sZ¿‡É=j<ž7å=9¸'üUòGŸæ9cã?„¶}ýøÛ(O#ÞIï¹GœÏô\cœ›ôüF½ü þ’~„¦×œýÇW>ã'œù•Ü{Îó_Kþ[/þc—­ê9üÿl\’?í>1»qŽ ‡‚òëÅÜOÎÛ‹+I¾ú‹<Î¥þ³#ŸómxçãÓŸŠrõGH¯’þ‡Þ9ÿ#oç|êÏ€sh|š¤Gkð_vl\‹kõÍx¶Ú;Ê~½?5øW¿óÊó£_ð0ìKy8ŒúùôÞè|ÞãÎpžÓãó½!ÿ—F}êÏú·çÇÆýÌGíÒ#xý,Ã<“v¤Éç'k7»ÿ?áË<wïbÞ"ïÆAòRŽžÐx¨¼àNPúJ®p¥ÆÓx˜‹8Jæ84ùÌ{æ ¸íÒöJÞÔÿ2í|¿ÔOFûÅÿ}wÈv½ì~TƯø!ÎÂ}¿ô·û ì(ýíþG뵟Oe¿‡?ªÈ³û1Ú?±,ßý/ûAÚ‰Þv_Æ~ÔË£^û]ÝÊ{ú•q龑}"ûqps'G=Çâ§Jþ¹ß‡Ï¹ß8÷ÓÈíÔxn¼ìïË÷2Çsîg’ƒý´Ø[ñ>îI“›qu.1ðÝOT}6zbß”üŒ«´þY¶Ûx$ôä—C¶›ž·„¯îÓ‡zÞs‰ä·ï?qSÒ݇Ïsç@ôȾ¾óç8Ëz>åÐâæð-_øÛíùÍl'õ´¿ú#<§=Or˜þ^ä›8,ýuåÜiž‡Ô_zGž·_øJzÆ)ë¹Gž“¿sçn³~¸7çRΙF«­ßóÉ¿yÎôÞà¯z”|ÎÉæ¹’~¼3Ò‡w¯ç¶·Â¿ó5ç¸ÎË‹Êsx&çÑί?K«¿çÏI«·8¼wvʇÂ'õþÞ†¯ž_ÿcó^{þ\|îðÇþÒŽ~À“Éw}ôïjòÃ¡Ü λ‹ËË{8²ž«ã3íÀchçú>ïÃc(m”/žGÿÈC½)/Øsõè¿qOÿÈéÊÏâð9ÞÃÁ? }ü¥=¸"¸¸ŠŒç¡ÙMñ\‘WégçØEqRÿkI•/.%z|Kþ¼o9íE^ÅQÈ7ì±x´”ÿ)÷÷”û8ù¼—ÖöËx ¾vúAÏ¥ñ£ùÕ¯É'ý÷ðùñ§C>¡Ò7G}7GÿÛoùÃ|^å«ßæCõwò—ø¿–üÞ O㤩‡¼ÕßöÆøVNÃn'^°x;ã>Ç#ýůñ»uÈÿ7í‡yfèWqXCÏŠSúx9ûCÏŠ#ßù¿0æíÅCNý -žsÔ_{vpcÔÇNvÆ~G|ÇO—ü–Ya÷ê“.¾mô¿õÿÙ!7χžÏÿõ‰Kô¿ }ÿWµ3ã<å"­½1>åô£ý#G|ç9yÿI®Æo)ÇC³›âÆC­;­›‹GOÚ:Øÿ3ÜÓ\Çùÿ/._ýyn½¤}x³®ë“Ïz‚}Zß~8Ò—G½ÖaÖWÒ(ûVÞ÷Ǥú)?:ñîúǦ?sÝd½á;ëƒQÞzÏ8èñþ¡¾ÏzßH?F{ý~"ï¤}¿ºOóîÇþàÇøYÇ+¿?äT~´Ÿþw?Sý¯zç›c|ÉS9ûtúyjä'¯S£Þ‰ç›ûzö=ÃÏaÙÍÎ=o÷y|¾á³ïÝÏýjó¾çÎWÔÇ•qèyDƹç:îóÃ)Á‡e\{n¡}çhá«÷ê3õãKúxÊ9oУ™¾M}ò;§~ìÿ8ç+>mÄ‹ÝâÖBç9ßø%ônäxoSÿô/X¹Œó¯Ê9ÔϹeÛ‡»§Ëö{¾s$|¤Ýú ˆœœ³T~ÚÓòþ~ùܹÅOþéþ«?OØ¿ÀŽÝÌxÍp ™Ÿ{® ¿×Á<<=˜ñ©œÇs@½™Ÿ¶x”Ë|Ô8¡ô^I¹úÏH9çâÊÓOö…_çâÅÍ¥çâÎÝOŽ|ú?ð;øýÀ'¾ðùÚ¨§~lÔÃòœŸ§‰*~%õozÎÇÍóžKÂ3Áè¹%×ÔGðŒÆå!wýVﻃíÃ%°£‰ß{Âxè•nhõ þÀ2.ÒôÕxÓ3vÎÎÞúv2ùák&±þ“èsòíÄÝfyWÇW¿Ü+= »W¡§Ö[Gõü ÿ±s6ñ8_±“´“zêGjúÛÂϱԣ~ÿ/Å™­óíJŸ<ݹ¿Boál²žîwÞŒ8¿ƒèµòÖ=þwÜ[‰½Ôo™rü°Mh¾|ϰˇs¥+}´ûDö÷ø›¿>Ì~|›}²ég ¾Ë~š}'íM?aÊÃiÙ¿ë>XžÏ}ʳ«Ý¬ôìÆùBñpI'ç}Òp]ÎUЧò<ôbÞßMšó8,ç3õ+ žäs^²Ÿ÷ÎQ.­v³Ò'h/ÎK#:îùô?þ;ã^ÏûêGF:å‹“õþã䇨?™è?<ÉõÑžsþúÙÁgò_ßÍóÖçJ_,Zý¸¼â>]èå6ÿ§¡ì.úþqì¾îäï©÷ïž§<üÏįÅþò¾­í|¶î ¬ôì†DOû?±wÿ·µ§$}åü/°xÈÚÙÿ\èùÏ•öšÏÿ‘vä×þ°£CÆg­ôŤÅÏM<™ï ßÖW(üÝôë[<[Þ׿iêí=‹<÷}ÇX|]ò·¾”ƒË„¿»²ÚÍJŸ ½øîvÊ~|œ}«³öÏBçý,ø.ûðWöŦÿr”_EíÃ}ÁkÁÛñ¯†8È×–õ¶Œ¯x†øWïrM»;~éÑ]özÍW3ž§xšÚ3.g–òª_üô»öwùô;‰|È#r¬üÒïú13oý2ô)í§úŽGãú.L=—Bë?Š?·Ÿ—ódq‚Õ‡ð—÷Ënvâ9ÂYe|·ø¨Ð̽G8ïWòGïÞ‘¸–üZ¥ÅkMÿûÚ9yd~ƒ÷Ú‰ÛýØñ vD>ýH>üÃué§û¥øâO L=Ç—öÖ{ŒÊ¹oØ{©ÉG^øî½ÊÑ?ã@þ쟜ùSÿYí%¿}=q ìº'éýŒóàÞä‘Ñ÷KÕ3÷ñaüÞõª¼í ÂýMžvÓéäŸþÚNzµ;}lvÃ_•û¦çCí‡ÖZèÄS9g° 稾tÆ1÷‚·¢Gõk¦õä¹ûåü¸Ü¸:ÉçœC?§¸ï>qgî;7nMž“9ä~Xí¦þdž¼ÊGêó~'?¾†¼œÕ¿X軳Ÿä«Cßã³ãL:ï•snT¾Cùƒê8h£þØàô® þg<"ïoý ŒzñG——å›Ýð{á¼îFÚmü˼w>·/|Ϋg\Éâ·>ÛÔ{mÔWÜÕh·þRþ1øP_ž‡•úO_i÷æÈ×8ƒŸnäÝøb¡×-.LúÓ¥ÝéÏô÷5ãñ÷QüL(¾®{.=ÊÏ8nS–rÇ&_å¤S®qK“¿þiò>nú_Snú9Âý7~;GnAýº—ñü^üê7=¥ÆùÚègü±=6»i¼Æ´_¿G÷–|ÝŠ¾ÒÃú#ïO—ãWüHêoþP~Ãê/ìÓåøM¿AÅ—ü?£œúSŽ¿%úù)?p[Ût䌟Égqaô=â+r)ÎE=÷–åùkSn§ü)Ÿ÷ÿŸ£¿ø0/ü¯¥\vüÃ…ÖŸ9ÉçùßúåÂ7ýð~ÈÓ{õÃÛµ¿ò©wèGýpr= ýdM¹ =HþÇf7;ñ\ß?†½£Æ‹˜ƼWÿXä—|/i¼>íý¨=&Ýÿrcï䮞äÿxŒÛÄSÊ?qƇL?†®ÿi:þj×g—ü±¯½ z³·”ãô¸ã?ÿ£_—ä7®CŠ'gõynÆÓm?F¿§?ÄùH?¤ç<•ö»ž|}<êÉóǾNãw˺uú9£WÖõo5ò]iëÑâÞSÒžûîð]Ѹ·I×ÏZèÕñœ|»Þ µnÞõZw´ŸyßõKhýÃ…?iý¬?ÛüÛߨ_¬<·?å;Tý3m?̽Ês)"TZ~þÅ|ûÞîyˆoóÕ²¿äØó7ú½1Ž{ø ÿöå;nÎÓŽ-ûÓs%ã~Û¹'>^YŽOq2pÎߋ˒/ò„¿€_iü´ÒߤãoùÎ5z3úUùj'åèŸùèíÁ¯úµ /ÃNŒüWð?ìM=¯ 9íø¡KzÆñÕ¹L‰äsjögCÚn¦ŸKã“ïóÎ úÍ>è¿yÄx²‡Ê#ùgñmôY¹Æã =è¹ýÄú)K=öyÅ¿±mŸùÁ<|šý݉sRÿ…Á¿÷äAžöÁµçyñyøÆ—v’}ž|ð]ÎIì«o–|îS«§|ÏtòÏñ%¸/ò×|êßÌ÷Öàëüè¿q‘žq[»q,>pŒ/Üy_œýROhãÂ&ÿ¹Ònfœ¤žå¹s«â3“o?ôÚH_O¹ÆuJyç|óü‰¾:÷“¾:òy¯þú«Ð~ò Ûø”)×øI÷Ü?Ï‹÷ íù¦þæyã Iç½üÎùàLË:¯½6úAÎêë¹;z6ýJ¹¦GýŒ~÷|”\'ü:W¬ßã0ô¡çßò§¥s܆^‘§óåÆs¢GÈUÚùhãÈgýNϹí‡K9=´½Ð#ãÿÁ¨¿ñcñ“vw5å&®fâîìRÅ}= C³ÞâFRŸòÅŽögSþÐ[ƒ¿éçoú»1øl»ä¢Ýð×ø²ø&Wö®Ÿ-ËüÇä=9¥\ùSoò5NïKq'øÕO㩟¡ÿÔqHºx&íŒñj{ž“øïsíªäŸq‹wòø’ê×OãnêûÝÿ7æ÷§<Œ»y ŸI?vvi¿;ñ‰˜oÿwØëÌ߸Ñä1óãO¹a× ùGÿÔ;ýŽ/5í_³ŸÆ‰þM;§ô~È­8iùF{ÕÛ{Kûk{ô†½ >;¾é×ühèѯò1äÛxª)W\ø½å¸tQ~Ô÷ÑÛÍ!7vñÑh·z:ä߸ÕÚAÍôx9Ÿün»³nt¾«÷Býïuý¾äó>¿Äóôl]º/_ÊùÇ—÷Öó¾Jqcò'í{­~˜Ç]÷¹ì‡Ø×>z"|¢¯ðµObîɾ:ïíÍø“öKÔ×|áóÿeïßbô<¯;_ð£(QE‘”Š,²Äâ±d‘ÔY””4f°f'ÎÞh¸ÑÝãc§»¹èDé‹™›Ýñ¡{‹$NO½Ñ0bEN#ÙAÐh»ç"0hÅNª|‘ M;Ù0„ Ñ8Ši3Q¢DVÓ–­P±¬L\Ïï÷ÿò®%‘:øãá) °ð¾ßó>ǵžÃZÿg-ëQãlZnÁ)¦^ÆôÖoo©¯ú¹ö>ú¬C¥c= ù™¿ãå}_qf;Kû&ê#ò~¶¶·äoûk¾þ¾wøþŠí7ä'N(ø²PqTâµ*ÞƒtÁMiß›‡Š_zŠßµ#loùæ~¿¿k¡b?(x¸<«ç×î©=ã~ÝZí-;‡éÓŽÖ—tÛK½´‹h?õÞ{µK¼XÚ[ã!Ú?ðWìhÁÙP¿ÏRûŒí¶Ÿâ·€tâaôò2ít¼_k¿'¾©ø£âG â½bÿоRq‚öŸvPù¨ðIðißÖ?í¥~)ßüéÏØÃäà "WéÇ |Gºq\Ò–îŠå¦â4Ä͈Ñ+®Àú,”~a¿•|Äs¬P/íµâ L'Žà¿¯Qʉ}Zj9~_êm}Ä QäHœ€üVý I-w¾ÐŠ °¾Ö¿âðÄG$¡ýu<‚o"Ÿà ,Ÿr”úXϽ¥ö·vUëc?:Xnå ûÅq Î$í*óƒíšwÊ÷ö{ÅEˆ÷Ñ®i‰ƒpÞ±<ñ✴ ;þïá¸Ù_Ý_i§W2_¢_¯—÷úƒfÐÄ+öwžÅÕq®ßà|\âžÂïΫâÈЃW¨ÜéÏú¡ô>ÓAïÊEÚw¯íìrÓéÈëÓJ᧺~*ë„ëG]W÷I'žlùù1ë•éÅ·»®qŽÿ»eN>ÊIÖ{×'ÞŸ.é]§º?ùN¯FnÜç”ýIp»á·9רû¼ê7µî»J\Þ-ë!žÎsš”óJ~×ßÞËe¿+õ¼:‚úÝN~ç\–r‹¬ÓN¯„æ\üt‘ä%ú!ñ’¤Ë¹e[áãªÇúìååfâ^õ Ÿoçwhî×Yoï±½ÒÊ'¿øî5òWÏðìPΦ=^_4zô]Ã}JðµâÕ«¯mþå½úmõù¬?ÁÓ¸ü>(úcóU}ÇPbO0=ëPì ê™÷”zØ>Ó‰ûT_-žufx¾ë´Ó7”›àq‡ëAìz¤ÐàbáOíTâfõºE¼ƒØÝ(?øM¿ÓBðÔK\§øSí™ñ³`~¤[*õó»}}ŸÖé[›ø5ηÁ_ˆÇW¿©¼×^/ž@\²vûUøs‹8Õcü߯–r-Gû~âd“¯¸øá¡žg†ò Ne¢|qÒ[üÞi§—•›Õá|œ÷®âr|^-ïŽÄo-üí½÷Gèß&ʯþu«Ÿ[ñ;Ê¡÷L—xöÊ/ß­¼ñ:2ö¿Ëww_~Ùi§¾qäþhgݧÁî£Fí/éÅ·xÎÇä9£œÏŽ$ôþÀr/ŠïRnÍ?~«Ê¹eÎý[iÏÜç+ï=¾ØÏ7¾9Osnóy¬·Íïð;¯Ç÷Õ“©_ófñCÿPÞ·Þsù}ZüQ¡3¾Ep0õ÷§†ùÔø!⤌÷RËÉ3¿oôóM§WAƒkwrd8ß×"þ‡u&Tý±öñ9âcįÄ/SËg¢þ.nFýöáò>~AxŽ(ëeüñ±¾„ÊÇØ ¿êòÓéÈ8šêŸKœçníèñ×!^@¿WÚõO¾"]h|–x¦Ÿ#4þã——ðÓÃ×ÕUâXò¾ú©J\UÒÝ{eü®¯i÷k§7u=˜|ï|¬|¸NÀlj3Ês/ëzò(rRý Æ_`]G,×uÄü•—Ï êµµœ(Êÿhóo"Ý£Ôë‘ËÿÞéÍMÝ—äyõòò’ßÅGËÇ‰Ç ?º/s¿czñÊâ™kOÏC5§þaã/ßÅ[šÎ|Äozη¼7±ÓŒÛO½î¹|?lõ¾Ó›‹®|‰q¶L¯~k;üu„gõêÓ<×{ßÌ{2â.õ_Nyê«£ÿâ}â5¨¿Cï¦ýeì'n´ùç½ ñk÷†‚ï½·³0œ?’¾è×¼7íqëtºtcÔþ|®¸ÈJƒ«|¹ñYâh´íÒ8.‘øNñœÚWàçà1M‡|ŸùJË/~é¿Äµ©q”¼M½â¯í<õ¥ÜøS»0”“z¯{ÚãÒéµM7Š]c+\M~Ïyð½~àj\RýA‰×9ÇïâGõkÆü>ö#'¥\q›ÖCÿ#¾OÜÌ·¶ŸÏ9µñß·¿ô¯TÜ~ï¸ï·ñí×úÁô+þ¼ã§ÿÚÁI‰ÿÐßãľy½dð|úÿYä½q Å5Zûù öåÁSégOœ!~¾ó»ø+ë/ÎV‡G,‡|Ä‘ˆOÔß’|i½|/Iíïà³ìgûƒïû Wʵ~ÕoZò-ùŸ!?O|RËá½ø´ÓÐÕÒ¾UëÏ÷§K»¤æ;¿“÷ú' ®Óþ´>ö3¿›Ÿ~“tŽKñ+õŽË óFâÏÙŸÖÛþv¿êïŽ[õ)Ú¿Ž·xÙY¾s¾9Vú-ñ0KyÎWRçÅø âÙü±ÄŸPüH:oò»ó¢x]ý"9ë·Ë÷âñoçUqóâƒóWþx¶ßô/ì|äïÅoï8Ž-å)_Õ?¯ýÎ9%ãlýªŸ&ý›Åi{Ÿï«ÌÚ®U?R˸8^ÎSÖ;þHù^:Çïæ»gûÍsûÆø›ºÊxÒWJÇñ‘›WË8Òñ/t‘÷ö;ã˜|l×¶a¿Dí7å4ûeç­ÒÛJþî¿í÷Óæ»¿”¿F…Ïã—‹zÔüÏSïy_ç•×~[¿D¾Æ9µ}ò™re}Å+ÞQhm§ï§g‡åFnœ7JüÏÄ¿|¾ðW‰£)¿yÌüß³úíö~¥í”Ÿõ-îíežÍW?Ö¼÷~fîg’zGG;òüTùÝöYïg†óÆ;E=·÷C»ãתÔ+ýùíáø×à|ã¹S> ^Ðgú#ýµ|ûc ~|˃*â²ÒÏôoô8;‡ïÕ÷ä~!rHòã™ûûGƒ?Ûo<qW5¿Ä³´>ò…z'ê—ûµ?™¯ò=å{nO|˧K;ý^¾e>0xLçà$'ÓË—ôGîKSoñn)|R¯âç,ýƸÆ“þœý>¡ ÎÔ8ðKÆ×þ°è·wZn—Æ×úò°>ø;ýa1¯Ö8ùN?Yê7Å3‰Ó›7òWϨ?"ýEOÊwÆÙØ*îH³j|IõšÁUYÒ‹C»Ÿ‹ß<ÞÇO+éS¿3_ëÉ{Ûå>Ïý¡û»ø,õ·^öͱ¼wœ-Ïýµþcí¯êðDé—øç´ÿKû/Uþ*ã™ý½ù)”²¦ó½ã µŸN¿;ëMôXê3Œ/x¡ÕW}„z‚çΓÎïyŸû·èUÖÐóª?ˆÞðU¾ãš{®Ïò;4zù×r¼‡ˆ°Æ›Tï“snâNò½úÏûžw·Y/Òé×[ý‡ùx¾õÜ­žËòÄ•ØN瓤“zÒyÈúì,ÏûJ=ÅÙžÃ8ñÞüwó~Ï0ßèݬ§zÕƒ%=õÏ=MÇÁrïÔ}PƧöƒý7ËwΧλö{â ò½åù틎zóþ·w7S? úÑïˆöí­ž±S*_ð{ìr~¯}M}üò»ö!í/Úkn-ï•+ä3ï{©}P»šv@íÝŒOÒï/é¬z›Ø§J<ŠäcÙnä4öí×ó̦³ÿgí¢±k|³´Ï~×ß„ã£]D;€zï ¼†rØ Î3^êƒσ÷Ú_Ç[‡ùGfýýŽüƒCgF?&N'r;R‰;ÿ ~‡§¾þnjw’vÇ/~¿ýÎÊMüg­ ûylç¦_ÙïŽq3Ô[œ†øíâæ+nf‘¢à´ÓÿÂ{ñâ Œ£%ÎCœ‹ùk÷g=Ý_ù€cŸÖN.Ÿ+wÚÃý=~’J>Êëªóé¬OÅGؾ“¥_ôsfÿ*‡Ê½åW‰õ³_ì2ŽRý˜9.'KûÄk?Ìcÿgüî3zýÈ‘|`?ÞZê]ýK‰3¨qVðìx'Äïw—ò/ëayû‡õy·p6Â'Î œ§6tþ`\”׳ :p^N\IÎÿ‘îáϵüLÏ}¬àÆä÷‡(‡õ:õºÇy‰ôÔçªÛ÷ õ'ãžq¾ƒ¿‚<2¬¿¸5çñr8ytÖoÛ#ïðsÊ/ç‘ô›ryv(å¼ÓéPÇ%ë¡r¢‰< ßÈ÷âÁö9B_œuÐuEÜ\õ+‹>Ú}@êå<\ð–Wݾ“C¾Ì{ç{ñ…Ç ÿ:Ÿ¸>7É{ñ‹Îö‹õvÝu½z¨ðÿì°ÿÆåºŸQÎy~“øþ`©û€ìçw0Nî3<·9Îò™ûúWx®xM÷ãâ~݇ˆ÷š%çÇÝ…ü^ùÚ>”«+nß åˆ¯sÿãþ ùñ<‘ï(/ûùƒ%½ýåþÈ~²}ôcðtÕà³öÏPÆç-ëIÿÝÑåæZ¢kmx¢ŸÉ½,õHâ­”õoðUðfêMÿêpþŽî߉G{º|/îŽò?ð-ÊMpjÆ-¼?Šo­òb|Oê•ïì[†4úÐgZ9ê-í§Ü›{fXÿG1ã!îë5äù«ñ :. NL{ö©Ù6~±»˜N}­úTíÚMÄW©7V?¬>õÎ’~Ž÷õû‚K{ËíÛ[ê³H»Œ?Sâʦ~§gûY§ÆøB¨íó9qmH¤È‡xBõÏÖ‡u-¸Hí[Äít:4ö3q âïä›ê‡Lû¬v¶øÉƒÆîʳv_ó­ö»ün¾EO׃«nŸóAì³”ky‰_H½´›iόݖïµGkw­xEí³‰‡H;N\žïƒc'gûÓÎ+}½¹–è/äø§7#¾C\‘8?ñ õ½rùà0]ê?š…ïî{kólpAâZäÏû ÁÑlÁÏâY‚—)í¿·ä<ŒåBƒg®›c\Žå”þ;=œ/Ä+L›_nv<™87ǹðSæ×•2ÎI_媜„RŽëùû}âÒ:ÿšûîªÛ§}ÝöG\ê{_YOÅш¯N¼ZòQ^ç–÷¶Ïöd>²Ÿ·›ŠƒXâðnµ^uúƒ¥Á‘…ž_êyÆs‚çàØÜ‡Èÿ¤ßezÏIÞ×pâóßÉïdžõ¸êö‰;óÞˆ~ÓÝ?{ÑÄ÷ž;*ÎÏ}ÛÑÚÊ©òo¿,98ZžÅÛØ~ëy|ç‡ëO§Ó¡¹‰^+÷Ÿ†OʽåÜGõ¼|Ïê^SÎÈWýS¾+ßÏ@oÒàÇJ\˜+¥¹·šû¢í9íùîÏßêÔÇï SÏä[ÛÍûÜÓ¯v¾}—ú™¾ÄS°Þ¹?L}ÕÛM›onv»eÅÝÌ5>‰]B{‡q”´szÿßï´ÃˆoCƒ×Ÿ¿Ä>Â:?âQÄ í{kólÅ×Å¥ß Û¹Åþ'v£»‡õH~ÚAµ Ûö‹é™â÷Ãv[?ý0ÄJ:ñQöûR—›k'">D\âNBÅ‹°?î@yÖ®~ºðiüA—K~Ê¡¸³CC>zËíã¼!ç˜àvN^Ùy!¸ûK?Yø[^OyÔ¾k9~/NQ_LJåëÏ*ùáO:¿w|M§ïÆ< <–õiŒ…Êߦ/úÝ Îý‰·»búá|ï¼2ívwÚéÛ’ýô?ìþ‰÷îË\'ÝW¿ËÉÇõQ9+q;íôF ‘Î ñ'ƹz|Ès„ç²>ñ½çýøw7ívvÚé;I£7Û=Ôש/TŽ&⃊+qâ‡]½\ÓÜé HÇöžÑæ_ì´ú1óÞµvWíOúCÓŽä½íŸâÎÊy¦ãÅ:½hð9裂Gˆ5~/¦3qaâ*¾(þØúù¦ÓŽý§6ÿ&üÈ%ŽàB{_ñbñ›…Ü<ô³äÃóÃ}}éôÆ£Á{Åœòߟ)rq_YgªŸ7ŸãŸ®Ñi·³ÓNßQ¹ Ìý|/þN¼—8kñeGÜßñì}ÜàùmÞgè´ÓëŽýàÃÿóè§Õ“½RÎùØwÆñ5¡¾ßÝå¦Ó&~Œ~ÖžÂþòvšØq´c–8™ÚAã쵡œ¨Çžv;;íô‘ý݈88Úü ^T?NÕÿ\ÁåÇÏšøTýâé׉ýÜ[Å™vÚi§Gn‹~:~XõïÃþ0xYñÍÕ_úóÈyÅÿà_:qßœ'òl¾]ï×éµO½g‘gý+?Õ?1r³~©|§ŸQý>Õ}¤~vù.q$Ÿ%?ýöÞÕå¦ÓkŸªgð9q‹Ÿæœ›H_ïãyžŠ>cGÑ[èw }FüRyoîé!v¿tÚéQïsæÙûåÆ?(x·ø…Ò/Uôw<'ÌpÝHüã1Ô8™ú¯ºe(ovz-Rý(äY Ï–¸ðûDÜíKÐâ¿flŸ‚гÓ‚8£î·Óë€êï'Ïú¹ÒŽZü¦ãÂÁïâÄõøžç|§Ÿ¸-`ñ”xq]ß×éµO?šg㊗KÒBõe|Qâ=¬}þ²ëEpCÜ—6]┞Ÿ×å¦Ók—Žq£EnÄÃ÷7ñUáë‚sÿn~—?×'¿*'ÊÑÔûPß§uzíÒêwpâ½þGÅÃéOÐóÉÏ3¤7Nçñ9Çñ>ɧúÇ-ñÛ§Ý?vzY¹™G.Ž6ÿò¾ØO&ô]ú•óž)¸†œïï¾¼ý%¿c׌¿zý¾'.ê°>vz-ÑÄ÷,qŸb§1Ž'öýè¯ ñJçI:ãt&?ã WûN¾{¶Ð×úzÓéµKãÍxjòµþYâGG?Š3á·±øõMzýÙÕøž‰ÏÅû…n÷¼é÷gª_ÀWtâ;ýêø$ùs@øT?›úQ3Þ¨ñ/Zó±ñžèƒ£‘ÏʼnڞSÔ ¿ÑñCe¼Ð!x5ã êÏQ?U¡|o;º_·›’Vgy/ÿ½ü|£òÑ©2'Ž4ÏâÇü]ÿ²ú]Өϻ•;ù³È‡~FÅsê•óøZyPn”3ñÚK–;”ƒ¬kægîÞá~#ñ?Ø/‰γøHÓ¯G$þ6?Ó{Ð;I'ÎÒ¸›~ϼŸx§ê{YW¢_†¿ƒgž-ïçË÷¾7Ýí¥qΗJ:ß=L—x¢gÚéÍAƒ‹,ûôø4ަö ö9‰ÛdÜ%ÎýÁë¯#ù“^?Æy2>”þ<Œsjü)ü­'^”å$ލå[ï9—$žiü’oµ‡.×ÔCj=ÅE¯ð|l¸NwzsÐà~Ë}°àOyŠ~lœÃÄä÷{¡5® ñoª}ßïôG¨¿)óOyæg=ø=q K9Ê_âéB-·Ä+ î`e˜úÁzŸìû´›‘oRÆ?ò$~%ë”ôc Éïò[âištµðëD¼ÁÂÿ'‡|šï}¯\™¿Ï'ë³õµž¾§Vù=÷ŠÜž.Ï«Ãy¥Ó›ƒfß!ŽÄó‡û÷ùžŒ?z¸œg|vŸd:÷I ¾'ïÃèW-Ô÷e?´ÈwîûÔrʾðxi—~§-ßöèßz¹”oüÏ¥>îëÜŸv=ôMI£7zŠs±ú¨ Šo1îfäM¼—þ ž…ÖûÄæóÂ0ŸÈ£q Ðç^òÓäÇðwã–ZŽq;Õ™ßz©õ‹yO½_書¡çG›iÇ3З‡ý3íqìôKcÑï‹öJí’Ú)´Çloü¢½'x.íRí'è¡â/Cûˆñ¤vóÌ:;'ß«çMSqÚmfÈ_û‘v'í’Ú;-GûkâY‘.qz ÆIï ä-åu¿7%3íí>Ÿºü<‹ñÅÙˆ›aÿ<‹rˆ+vzã˜úv{ñâŒokœNíøÊYâØ’ÎúÉçG‡õL;Œªß6üÀ€`ƒsZÚiý»¼Ü 4|È=¯ð³ø˜¢/J\kî3np¯rã‡xoüNñ,ÆÃå?íövÚé;"7î_u¾D8çÖxÒÙLj§w,>Å8¶Êãòp=˜v{;íô‘Ïsž#8Oë?ïΡÜ/ã¹ÄýÎá÷ño;;Úü3^ç´ÛÛi§ïU¿½QÑ­¿}k£ö—tÞûòY½×ó…>ÝõK^ÿt ½Xp%±C ogu|Èï‰Ó)Îd;ßqþŽ]£ãµ:½èØÞÇOrfx.ûÁàwíëÁ­ñ¼Å÷vz=Óµ³ðù#ïm|®1qcÂ÷÷•}Zü(!úë3Πþ‘ðùg¿ÿa÷OÑé AÇüÿ?<Úü ~2ñkÛû‰ïüÝxÑú+»¯ÈÑý}½éôÆ¡ÁKº/Ÿx›<?ÇÙ×yž)~˜ó½÷kŠåN;½žið]à]&üõß9Ô‡å;ãX<ËzÂýàສíÙ.7Þ8t|ïê}üòÇžSq(¾¿æ³ø-òY¿D>ÅnÚi§×3 þe»¥þ\ð3¾Á=Ìø“ÑŽyš÷œ_6¸?œ˜þ•I×ý!uÚéÛ—×GF›ñ«¿cÊïˆ÷úkSÎÑ÷mœá¹ø?ÞZœ%÷Iƒó|xˆ#Êwâ4ƒ·ûÙöïï/óŠø"ñDsâ‹x°•;íþîôÆ âmÂßâÚŽ”ý¢¸ã‡¡â÷ý^¹(~œ'mþ%]±ç§§\`ÏÊþÓx¸ÖO¿VóPïxïà@×#vúÎч3÷hØÖø›ñ#å}žÃóÔ¹K¤eÈ¿ñÇ$þç)ž_€~³È~gÉ}†÷ÑâŠòâ¯jûðwïõUÿYvúvhî{¾Œþí…!Nàå^ƒÂúmÊýKýHy¿”ü’Ï«%?¿Óß“÷I-ç»Ã÷¹Ç­Ÿ'öcÞûT/™r¼Gúr_o:}åFœ~ ôëä½|ïýä½~¢”ÓÇÏœ“rÿ_û“åïV<žþâ_ ªßýèAœÝ ùé7ª¦óy ?Àvú–ä&¸8øTÿJñ Õ«ýiˆ£‹Óó»~oô%~îdyŽ¿'¾[%ŸûyŸ¸S<‹»ó{ŸÅKhG>Ý×™Nß¹1îìò)üùШ½7žmÞ·ƒNpoÆL:å„üÄÕYŽñ;Çs4|¿òZÊ5Ë·ñEÊ›ñ>•û‡ÞÛÏ5¾{ò#_Þ7Úü[{ø½<Ãÿæüoœ@q¥®+÷”ç{åkò}°ÈqBŒón®7÷)'<ûõJ<韥>~ß×›Nßyñœí~kv´ù—ó÷~vyö\$îÎsëŠþs_Éý™õ†.õsM§ïUßÿcè›ô›ÿèÞ{S…]E?nÞ?ß²ªÇâ½úµøO3?ý²ÝZÊ©¿ÚŸÔ{¬úi‹Ÿ÷C91Ÿi÷w§72í‹sC¹‰5ýhOGÇ:•xjÆËQþŽ ß§<øz}³£ÑD\Ë›áw¿ÓÞ©ÿí©ú}Ó^KþiÏö¾Oëô”q4‰'ȳ¸8ö]±Ë+ú=ï".NÜŒñßÄÑÉïæ‹ž:¸ý\i÷GO?>úy“êŸG«8†Å"Ïú'™oùN»¿;.Ý@þ/&¿Š÷zøyøštⶸ—ø…õwñ×Ê…üo¾è»â—m•gåO¾?ËûÓC¾¸Ò=ÄóC”«?Á,÷Z¨øëóßgTŠÆÿäý´Ç¯ÓéÐÌËò…þ+_õki:q—®⤕Ÿøå„ßÄ‘9‹Ã~H>äY¼¤|^ãèïV\ÙRác¿¿Oþ'½õ6?ÓëWÑz»*ï»þ¹n¹n:¿ôuçf¦‰3ë¾G|å|‘#eÞu}Q¾Ü'‡Sœrâ×’xÏE~Ÿ…ê—M9‘zÈó…õõœcy¦«~iÅc*g‹%½ç1ó©ç÷}úÉöÜÓñ75õÜžø•çG›Ñk=Ź[kÒgàå`4äÃà0õ_n<ÏWáË=Ã|ó,^óõ >Á'[ߊœÞ5¤–“tÆ»ÝÁ÷¶ëe¾#ÿÑhX^êgù|¯Ÿøi_§Ó¡¹ÿ,ÞQý­úXãÜÌŽ6ÿŒ šô>ÃçÑG«wVÿ;âw¾‹~Yþ¾@~â7/ 뼦zä¤{òŸ¥ñœÆý@~“éÍÿ›Ãú%ž§íŸ¡Þä“öloßO{ü: žQ{¢öGíþ®ÝPú-Ô³ÀwRãRigôY|&ûÀä«|²>¯iyÆãÿi=õ¯h=|¶¼ã¥<í§â@Í¡ÔÓò—zÙ¾#}½¹™ið½‰ãŸS;ù*¿Çï Ôø™ÚյϯøÞg¾7¾™¸íýæ'®R¼8íøÕOå˜ÞúæwëEºgQÜ©õQ®+®@¼ƒõ9Þ×››™Žq$£Í¿±A]wÄ%'®3ïÑ—…Ozb ¹ÊºbyÔCüsâTóÞú,9Y-ù.–tÞ°¾KEN,/ñK~öOÞ·tÓ¿N§CõëœýûÝî{à#ï»gsMâeºr¿å~gG{Ÿó qÐ’Îó‚ç’9÷I¤ßYžçHg=³_ä÷×ÐóÉÚJ}rŽq]AŸ‘sÜ-¥¾öḬ̈Ÿ¦=~N‡ª7ó\}Ú+ð»çmõK%>Aôd~÷BK\ ò·^õ¤¾îR{næâ°¹OmRêýå‡$Ï~ï{Ë£¹ŸÍ<ûÛþþr+/qÕnïû´›™Æ.(}…çÄ¿„_´hÏ`þ½G{8ñaÆ4í Ú}/‘g߇Ð8p¡ÚWüÎø<ân´óXžö¡àsxž/ém·ö^ñ>µÝ~sSÒØ-åsùD|Kì›ð‰vvq2ÚCשŸ5q/âÕıˆ3G Ý½@p2þnœNñ –«\ˆ¿Gp¦”ozÛ#ŽèÊŸ†¿ùûHo=Mü‚ýdyN{;½6è÷–ƒ—‘Åm…¡âθ¶Áý¯¬_‰g¨<ñ,Î%8KùžgñqÆ…> ÕÎo~ÖÓuI\fÅuºÞ‰7_cùÊ—x›Ãõ$öUÛË:7íñêôÚ ‰cÈy 8•}…ïݯ%îrI|2鎔tñ£Fz÷mî]W”ùYüx÷i³¤÷ÿi—ûMq3Æ}·ÜꋼT?Oi¿qêô}ÚÍLÇç÷ÑæŸç‘ø ó\ Žká_ùzÄ÷‘¨ç ùN=‚÷cêÜæwËg<‡Âç#þäoÿôsýüËóD¼ƒ—‡ù­oQ¯èüZÒ©·ÓŸ`pBê +nèéÒNË{úB_onf:Æ4þ™ÀŰnÄï™x”yÒ³_‹ÈôÚ}v7>Ìï{ËïÚ;µ‹XŽx™Y¨ïw•ïµ÷”óHp2³æK:óÓÞ£=ê®Ò¾Ôƒï½ïm»»ŸÛ›’êw"Ï虂{Ñ¿Œ8“àTF›Á³­ð^ü‹ö{Ÿõ¿¡=~ÕgòÑÎ/Î@<€øË×N¯|§¼¯þׂãŠ9e{x¶¾ÁP®ø·“ÃýØGÑ÷i~ßïÙBããvêO,~Äà'ý›Õx…ÜŸ\ãždü/é·éLI¯œZž~î£Üù^¿gú+”ïãß©|¯_'ý¦égJœþ,Çòõe<`qkúŸÒáÃúL{Ü:ýÁÒÌû÷~À'®Ê…~Éä_ù:ò¡Üð¾Æ ÕŸšüšE>ä{7.éjáïÄ1õ™üó{•Ë)û:åÎòOÛtÊѽ]nnf:Æ-JÝ÷”}’øL÷?úqöY¼³ç÷uîÓ܇¹_ó¹âD«?Ûì›  îËþ0ßñþïÅiêgÚ|Üß)uvpø~¢ßN^þ}§7Íù¦¸Ëƒ£Í¿àË^€Š;Sµ£}=éÖÚçñ—žûb³í½õP_Uý yoL}ï×sïŒt–çý·K”[îã¥~õwã›ÚÎçÛó†õßN{Ñ×M{Ü:.­÷™'î1Ã/Ú3sÚôÚ5g†ç™Ñæ_ì.úSÓG;§vRíHÚyôcp äï÷È{ì­Ök'ÏþnùÚ?ÍG{+ë™õIÿhW*÷µ§=nN—ƇøqaÚß9Wį‹ü%R»¿xíñ~oÜBñcúŸY¶òÓŸÇ|)W\‚功wyïöùYÜ@ðoÒÕÒNñ ú£ ‚ïÅõˆ ]ìû´(ŠãŠŸ/žÅI=ö¹F}> Å/ùÆ#<ÿ=¾ûaÒ?ý¡…6®ú'“Oî+6iàÀ8'ÇOþþ7µÖ—zÅóÅ6~ÁMù=z°õKŒ?ãn=ôãŸs²é_(Ô|IÙyò…Åù,,|¾sø½÷*s~Wð2ùó½÷MSo·];ËïÔ;ø¶©ŸÔ÷ô“z8û)é)wâûW‡ã0m~ºY脤Ým¯Pí‘ÚAÅ¥‰[Øêûò¬%ñbÚ=µKÊŸÊ¿vOí”úYÓ~¹¥üøe#ÝižÏØ^ÒÛOß[.éO•|ÄÁˆÿ9UúÃüÏ”gãóÆVixˆÓÃþ™6?Ý,4|íx;¯ûì¼'_ÿâ<ìü_æqåM¾w~4Ý*åç«\ð^œÊ±Âoò|hº?P¾®ø•Ô«¬c~çzëzYý·?Sò·ÞÊ›ø2åÚùÅv›r±n:~ÞJ¿Õú ‡›6?Ý,4|è¾Ü}µç ÷éîÿ}v?–{%¼÷¼´|}¿“÷‡¶ÈWÿgÞs©~\w—òÜ/yî÷üTÎU9—‰§)÷ÁRŽç¤<{žf~¹o3œß³/¬òWýÔzïÆòrO¨Èÿ<ß×ô¶ï ý4\¦ÍO7:U_¥§Æ«TO4¡ÏzžtçÛ¸‰óH¾œÃÕ¯Eoªžˆü£Ïz…üž&þý«5Ò©¯“ïs¯¹ø÷Ç÷êÉJœBõ†þ®¾*zeq/;J½hÿzÕ?úl}íßgKûL»sÿÚ{œ¯òûSå;Æ%÷»7ò™6_Ýè4xí$Ì_ñO!^E{‡8í,%ž_òÕÞ¡½Aûecc¼%öI±sÄ_˜õ3?Êb}õ c½´#-BýN<Žþ Œ»¦ýC{ŒõÔ¿’öN¿·¿´»Ö8Ÿ¶C{í9PÞ«¿8ûº`y<[íV¶Ëüº_Ž ¿i—oô{$ŽË8ÆÉ“OôÃd<=q7Ž+÷ÌâL{·xý1…VÉG?hâMÄÈ'ÑŽÎý®PqÚñÍW¼Lìð<Ûq÷Yïk|@í¿~®=‹Û‘Ÿ+n.õµ? Úõóv_y~ÄqáY\PÆ…ßõ/UpÓæ«kÆþíøØÏ‰ï*?ÊŸö3ý/.E|–ë‰ë€óäi~×./Fy©¸’ÃyoìOþ“Ÿxvž¶¼úý©7æ‡ îåyµ<Ÿ*õ³â ıè§P9?SÎÛòé´Ç¿Ó·F³/qwÞu¾h|4Á?¼w¸ßçá¾ÄýÆráãg:¯.>/¸ÜìÓ”÷IÆ»4qÿñ;\®¸_N—vV<²x÷‘)ÏuËvQ~cvCÑà¶:þŠÇîi–ß•¯}CyK~žƒÝ¿W¹”¿SŸ N$ú§§áôª[¿z*õiñãõù‹?)þíÌßçÑhXNpb· ë=í¸8ü.÷6I/nn¢.•vm+r2*|<œ³½/ Óç^ÚLû=ú°ç¯nÝëôÚ¤ò_âaú¬.ö )|úÊåÇ?öïk/zÏ>×ÎñfõÌ=eÖÁØkb€jÏÑ~Qü†m™¿ö!ñdÕ¯ëMì(–¿ªÝ$¸7ž·ó}ü®µþ™ö¸wúöhìÝGÿØ›oqL«åýür³Øø"|ëóùˆO,vÀ7­gõWf~âÄŤÞPñ8«—_g’¿öÏàˆé“oü«Ñûïdi¯¸Û)^aµ¯77ûýbœÅèIÿAúº×ù|È/ÉO¼Ôhõ¯üïO¾ñ>?ßÉŸúYÒ x”Ô“÷§‡õ¸âþPþŠ~mì'òÄé×É~Sý.Å_Ú0ßN¯O~OÃúí ÞQ9¨ó°ò_ˆß:Už•“Ä›½²u`,ä—x°Êù+W¶ÇùÿôËå–åÜSæñ_ÎÎ#â-­‡ýUñwöOÇÝ4¸ãÃ…ÅÓ'¾øåù/ß%Ž9Tü˜ç$ìzâHrž(vñšåˆs·^î÷²o²\ÓQþ~¶ì²o žÚ{:Ù§’¿ç×_ïϸôÞCðú]v#PÏéU?óû…ö,Ý*ŸÜC¼Øø#÷Ñ£éß;8.Ïßw óU_0QOqTüž{‹Êávê­¿1ëýÔ0Ý›ö¸¸Ô§êëÄÙÞ—)×ûv¯Ò.ôÁ‹½8Ô³L{Ü;}{tŒs‚Î6¾ÛAhß›ø^\ˆö íŽÚSj¾â¶//Uß›÷âw´ÿX^îÝ“ÿÁá÷¦_:‘oÕ£Ã÷‰S‹ÜÇ‚õßÙÒã-ñ^i/éÄuîërs#Ðà½Ä«$žëåõ>‘“ØûI/$~,|#M¿5orÞØØÂ~ppÖS0â)õ§‘8e”'îêî-äfyXž8±qÿ¯87ñʱ8¥øÇ¡ÜÄ/¤ü½Çí´Ó·?o¡Ÿ›ˆó,NÐy Æ!=\æŠÿAò‡ê:8¢eÞX½ü¼Õi§× îÓýò¨¸¶øût½†Š#Ê}å*N\¹s *ñ±ÁA¹nŽ6ÿ¦Ý/vú†r3¸Ïõ~8ˆœ3ë9t‡ëGÙ{îÚ]ö±è;ò»ßo/ç²ÝýüÕéµKsÿ}…zqnñÛ®ÜÀç¹G«~=èDœRpxâÕó™.÷lõ/‡ÞP:íþé´ÓËÑĈÞ.¸¾ÂïÁŠƒcˆ_6ý±Uÿ ¬/±wé÷A¿–—ü/¯?é´ÓkŽý§Á·ñkÿÆ~ ­~Њߵûš¯þk´[‹ï[ÊEð§~ßã{vz ÓøiG»•ÿ9qIgxçÿS£Í¿±ÿ4~Žçøw+ùé_«ûSïô: c<õhó/|-Ž-rÀûð¿rÆûä#廸1$}p´|wo‘ÓŽ›ëô: ¹£ÿDýݺŸr_æ³x?Ï'âà<·xîIÜwžÑkGè½¢ÿ}Þ´û¥ÓN߈Šç ž½Xü¿qî?Wý }{˜>÷ìÐ3ÇŸz¹”£_7×?Ïâè¦Ý/vúF4øµÄ Dß,>Hœöí›Æ ÝW¾c½N®ø?>H?â ´•{ëvz-ÒÄsÏ&Ÿ‹(~¢âD9ï'.Oÿ9âõ³%A<ç£1ž`´ùg¾Óî—ë…fþÑÿþúÄAk‡¯¡ÿ?ç+ÇO¿Oú¯ôÙq—©?)ý«9Ž'†ó]Æ{¹ðüÿ†äçüë¼z¼Ô[¼–|*ÞSgâSloêÅï܇M=Ä«–û4ã8™äwšúIãgß•Ÿã…m—õ=3¬ç¸Ÿx¦PåH…‰ç©ÜHË8nçí´Èø$×sñÆú1rÝ/çÆà>ô{Éù3û……õc&ß‹û×Ok¹WýI.îÑ{ â•åCóó¾x,åt^J}ŵÄO"ïõ?z|XÿÔÃò–÷Îg†r?ÑùEþvHyå½óYñŸ8ölþ®[e~9\¨éw”~¹Ê{~7+ÍxÊoÚ¯/>Üγ8&ùF¹ÛUÞë/Íô®_ò«~Éw÷Ý©—ëÇþ"7îÇÍGùš£ëá{óÁ>žûAʳø-çaÏVãÇzïÆt#žm·~äö–þp~ÑûBí/êUûÇòjÜσ¼‡Š“‰¿8ý·9~Æaµ]£RÏâ·®ÓËÓè]ž¡ßèß5ø ÷&/1.¦¾õoüç?ÝÞ¯We¯0>®_êôÏvž|ŸŽ—õªzžÄÁ|~8î¹oF}s/ó)ê^Šz—å÷©ÏËe¨üjý©ßVq==ÿ‡Fº‰¸¦ê·ùY~ßÉï†å¦]Žõ>Í{»¯Ñ~g>/ò¾ÄA˜6_^ë48&æ5ù)z}Ækâ¾|âBò¬ýšø0ÁCAkœKó+÷ ·ò«6׺}˜_p_úØU¨ån+ùìò—íË=ìâ‡0vûç–Ò_õ{ú9ýkúÝÃüƒ/›¡=ÖgŽúë/îöòl~ö¯ãzë°Cíý{P_o®Hnô£}M\“ö8qÚ§ÅOù>~1xÖ¾&Þ*òFþÚ÷L¯|ŽWõÏ;x,óW>VJ}‚Ûâ½ÏúÇ¥_B튉·é¼0,/õ©ùé¯ÍïŒÓ™8OÖ£ô¯ø0¿7Sß;¿h­þÜjúºßükzžÍÇ~9]ú¥ú-ô÷¥§Ë³ù)5.hõÃ%n³ÆMµÇýäp~èt ¹9-ÿÙÏòy}–_žçµòM‘£*7[|Ÿz}ëDœÊЇ\ڢɹüSΛ~÷Lëïà¦Ê9z|Îæûí¤Šr¼ŸõÝ"7ÅÏaÊ{…ògÈópôHêÄkQ¾÷¥9/S¯è1ôÓF»¢ŸóùéVïѨ”·³½×¯›õŠÑv¿ }•þ¹0ìè'_öoüµ½Èï>[~é×”ãïâà/ÚJ½Õ¯M›/¯uû…vÿµÚgÔ¯jO4öí#ÚYàË ûªv ýAT»çmåÙtÚ5äKí›Ìÿ±‡˜ÿÏÚohïú%ž‘ÇÔßö3oÄž£½V½´ßÕvø\íB ¥?´ïhÕN¦Ešxžü®½ÈzÌ•tâÛ&ú™rØžÒNûµØË:ÝBnØÿ2á×þ•²ˆZ{æbáÇ'ñWI'žJ¾Gb\¨~—?´¿'N!ïµ»[¾vò£¥ž‰OKºUhÅ å{ßCã¯üä·ÄÝ…—Ðvˆ?o$nF¿rñÿDzíš5_Ûy¼ÔW\A‰Ë9Æ•þg´RúM\øâO®Ó,M|Ùê‡/|© å)ßs~N>ò±óp9§g^w³(‡Êø5ôqðñ:ËMþ棡Æ÷t~˼L:ñœÎË®Sò§üêþ¢ÆÓ•ÏœG—Kþ®C‹åyµ¤«øI×Qçy×q•Gãzíüïúz ¼w}‘³Ž¿ß¹ÎÙ?©Giÿ=%?÷Ëî ã_”üÍ×þ-x»N@r#_È?ÁÙò~:[äÂtóЧY>ß]ž¥âÕü^y<0䯜#Ü¿¹T¾\ßj\ËUÞëz#îKyª8=çå©âϬ¿çó©çý]¿8ü.õô\ãzäw#òÛAþR÷åå|:m>ºÙhâ<ßú­è“ô ¦~'x³øîÓ1îè#ÄMÉ÷§UýèU¿è#ùF=õ¿¶QôM•’¯éå{ê|Z}F¿aùêí‚ç{aHÕ³EÕǨw|¹9O~†ëÄ_5ÇCüÛSÃúØ?æg»¦ÍG7Aüü|•8Cõ£Ì·‰ Êz1¡‡nY®÷õÅÃi™-ùø¬½"÷óy¶>Ç™öì+åÌ”rLçóNÊ5NÎByÖÞsWùNüŸ¸3ë§]I{@¹g{‘õ:H¿Šœ/õ0Ç­ÇK˜ŽÜÔ¸˜Úµj÷[d<µ§®ð{µÓË'±ûCM¯ÝR\‰vIãU‰_ÑŽ?a<û»ø2íúàû…’Þzˆ?0åØë£ý>¸6žŸö/¿`»ü®ÔÓþ8ay¥^އõÐ^\pAÓæ£›·“¸–ðƒxàÆø]¼Š¸’w0¸,ÒqOn ¿ûÆML~÷*Wäc}ô'VñCâ²î/åß7Üÿ¤5~¡|)M;¨_ðo|_ã&nj©ÿË3?7_¿·ý¶³ÔÃ8£«¥ÿýþT©ß™7^×;}·äF¾¬r£<9ßþJ\PçË2ÞgJzq÷9ïòó®|XæÛŠçÌ<~yþ _Æÿ˜õ¶½<»U|kðœe=¨íw>p~Pn‚³³¾¥ÊÃéÒÞ“¥ü꟰Äï6Ýltoå~;ø*Æ)û5÷G|ç¹ähù~ÂÏ«ïy®x4ññ>û½ø.ï;¸Ÿ±>ž ê½Ï®cžö•zÛÎ9èþa~ûSÛ“{|'.Mêùc¾ä·À{ïAè?m¥´»âÐì?ñ‚öw‰‡Óé†F/öj£¹oiœÌ¢OJÜÏçùš{^øýYÒ«W¸Ÿ  ÞL½Ó‹íY½VðrùÎ{[œƒ­wâ–{‰Kª¾Œ|‚ïò{ñr¶W¼ÙËÔëÞ“êe¿½RúÁxÏ–þ¤ƒ»³¼×hõ3}êe¾ÕŸÚ«ÃúL›n6Zã§Ä>Àû±}¿ðÅ —·àÔk«Ö~Rí7ÚkÌ_» ó­÷¢S/íâï´ëhg·œÐ»J¾ÚçƒOã;íYÚMë³öK¿ÛÎïÚµbáY܃ýWüD¿£ôƒýc;X£ïö¹ãÓ¦#7Ç˸;Nú›‰_øjßµ‹K‰?&¾ÓnªT»eä‚÷ò‰v¼Ä僊§ñwíæK¥¾â¾´Ï‹8h= ë·,ñ̨Gp`|§œp‹\*7ö›TÐr¡‹¥=ñÇE¹ú}ÒÞ*ŽÆòl‡åX¯#ý|s-Ó1¾†ñ”ï†êìçÙyÕõ}ÀØé"'ò¿ïI§Ÿ³³ïmïå?ñ' Ÿ¯(·e·"gúm²ÖG\œx´‡>Ç{~'qzÈÇÉ÷Ìp=Nÿé¯M›ò¿ZÛE~ñGÅwg†åN›?:ÝBnÄ©T~ï(¾28h¨|èþÅuÀùÔù=ñžMçü[äÊçàH¡UnŠÿEÏiOÁå½òã<ïþL\xÅ£Éß®Õïcáëȇí¼ßôÐàŒ¨Çji§ë£ò³…±ÓkƒŽý –}”8Ê›í>Ý÷ίʙû/_ ¿ƒ¤«÷ܧ(λ®'Þ'ʽ¾[(Ô}–õO)߇¿=çÈÏ<+wÎîC}v¿I;ÒÊ¡ùß]Òû½çAÛ#~Íú/ûkÚüÑéåéÚ>FÏœÖÓeœ9¯_"=ü™{˜¾÷<¼“ßõ¿'¾íE~Ÿiéó¼ƒtÛK:Ë1ÿÝeQ/àý9ýYßWxo>Ïóþ<å³^ůé xNžgù®èùâçM[ÁýmÐϹ7úÝay‘ïη÷ÓæN/OÕçY¿fsm\£§·Å<™ûÌâªÄyiGA.bGBŽb—±œêgÌ|v”ïÔÃgõyðcêu­ßîò\ãmê/ÍòüÝú‹3µ\ëoù£ÒŽ]¥õó{J}íOñ±âZÆ¥Ók‹Æ§½P¼˜~Éâç*nM\Wµw&¾eÉGûžß‰ïÒθÈ÷ÕO…öØàË Õ.\[Io{´¯j§Wý“˜å,ø]©ï‘’ÞúŠo³<íÈâÒ¬×B©¯öRëSð…^[tŒOaÜVy®~‹â‰ßƒ!øšøuây…ï·Ïtþ=#µäË=æ±ß¨R^ÅÅ/髟«ào̧ä¿LEÄÓœ.í‹?,~¯í¬~ìj=ó=õ¾¨=O›?:ÝBnä‹Óeœåë¥ò\ù,üXùÌt…ßj>ñ×Wֻīå}üœ•üR®éK¹K…_O>w} ^»¶Zç‡øy+ëFÅ}Ÿ(íµ]Êm§ŠÓióG§[Èx«º/¿ÑŒ§û÷Ù繟ƒ?Lï¾È{9ú9s¿ïýùÛsÂv¨û0ñ^æë~ÇûBž*~Ìß½OcùâÜ–v‰£[(ù›n–gÏ'sÐÙÒNË_,ÏæSïYÛOºióG§Cšx•Ï3~œc£gº0äߪg‹Ÿ6ÒÇO˜ï_ƒŠ óý+­œàÉ^/å? ÿˆ£5ÿàlŒGÀï#þrž7.ùä>©íyŠz¼Ú¨ßÇOõÇ'àwÚ!>.~Ùl×…ÒoÖß|ùÞò¢ÏTÏF;§Í'iâ±ÄNe>ŽØß«ÿ¢oÎ÷5ŽŒ8ž#¤×Žáï³…Z^ŧÕ|™çc:PêY?H=ü~Ñg¨v©àÍȯÚcôã¶b}ø^{‘v)ûWûÑB©Ÿv2ý$Xÿ§nÚ|ÒéÆîWý¨ˆÿðwÇ[ü¸šåòão~Ê‹ïã‡|ÍO¼Bü»ì­|¿ZÒÉgòŸTÜÃRyy)ïÅYÞ¾R¾õ~zˆ/ÐTâ<*O<‹{0žö]ý·‰GRNÄéØÿ%®h§^ËtãÑæ_äTÜÂýÐÿÃB{ÿÈï£6RN "'¾·å£<‰;RÎ ý=]n:½~hpeââ\WôëùÃðý# oÈ×gIo<\ãîº^>L¾÷–uG9CO9íþè´Ó+’ñaž<¯¸/¼ß}êhóoâûÜ«î-ÏèýrÞ;PÒ•sÔ´û£ÓN¯HnfG›ÁÕÉ×ÈQüÇÝzy¾N|Rõ•êWзÅϜϗZy¹·¶E¾vz-Sïu'Îè³ðÿ…¡ÜÈïõûàè¾Y¨ùŠk›ißWï™ßzùü;íôZ¢‰ÿ©=S{¯öYí®òu‰o’|´Ç²>ãwñÞ|µú^¿!ó¼?|ùü;íôZ¢Á¡Š—#ÎÒø«â H7‘é±ïWSãé)'–·H¾%^ï´û¥ÓNßPnÄWW¿P‹C½VÒq"ïý®â•‚³†ÖøÞ‰É÷W>í~é´Ó7¢ãû:£Í¿Š“‹&pnê "7Þã‘zF?iÞËÑV½$nz¨ë:½öiðBâ{|W#ŽÆûœ‡/Ÿ>ú¶7y–ßÍ=øµi÷K§¾¡ÜßPü˜¸3í–Ú?õ£ žÀg¿SδÏèoAü^ð@ü^ã#&þâåÏOvz-Òø«oöÐóàcà÷yÿØrŸŸŠÇÑ߸‚³Pq4âVI¿u”s_× \4þÓd\å#ýDiÿ§É=Êॵ«ë7-¸Mç]ó‡_³úKLœÐá~?ßÇoSá÷êÏJ¼¥8Ìû¬·òa;ͷȃþ¬¸ª¿Â‰~ówq3ñÛÈspœ—?¿¤½'/Ÿ§×6;DÜ®¸eåB>,õ8Öõ×#û“O‹üxO`¹ð[äÅý;érZý³ù\ï (—;¡Þq³\åI¾”Oõe;rדræyÃô>{háòû¨øK›%½÷‡Ì;¿Ïl±Þ~7m>èôêhâgzïJ?jú)Co?kú-“¿' Î ÜHðYÞÓ|q¨Wòþ©÷B£‡z™ïv·ô5þhâc&^å]„‘ŸäOû¼Ÿ™8œÞKµ]Ê­|oyÏ\~½È÷O•|©‡q|?ñý‹Ã~œ6tzuÔ{ú‰·‘8šŒ¿÷›«¿0æù¼×~!~¾Ÿð·&"¾EeƱ\ïã›öë¡?5ÿåï¬{‰º³äç{¿Ó.cû,×P~&âíXÿÄ/å»·}ü=¿¿IÕN¯M?gúÅ`_2öŸÕßø’êW-þiHÿiR¾Óÿ‹öõàSø.Ôüy®ñ7õS³XÞkÏ×^¿ZêQý¯éW&qµl/ï·ðo6ö£C>ÖçD©Ï8šê7kÚ|ÐéUÊMâï1Ž>¯Â7‰Wðo?"ÿè7ªúQ3`âŒò|yN\ÌòÞz& éJýSo¿÷=éªÿ´“¥ÞI·ß'®¨õ…ZN‰+<îïÒ¯§»Ü\4þ'ü§ÉGŒ¿|ušçø/+ò$?(ïõCf|O׳ÌÓe=ŠŸBùLù.rxѥܓE\ÇÙz˜¿õ³\çƒËóõD|Oë?oö[K—ïÌ7óBß§]4ûý}UcúO;\Þ{>©ñ;çyï>I˜þÊÜŸxð— ÖÇzè7íÅ–¿¿«g«õ÷Ü|˜íä÷ø•Sïwa¸Þœ+í‰9ÒÅïÜ+Ãzæûg(öyßmÚ|Ðé•ÑÄq1ž„vœ×H»óï>K;ë̤Ÿ0ù˜ôÚ9Ìþͽ{훬±§˜ÞrµOïUêçïÕšöÆÄ+$éõe{V‡ëÁDøŠ^fŒëåwã ®–çɧʑø×ù\~Zmþ¥ß›ï=¥~÷ñûÃù58™Óäg¾;JûO¾½ýLê¡\Xï¥ÒoÊ¡ò+NºøŸVÇçMÇÝy ýdçN·è¿êŸR¼cÞ;_ɇÎÿ¤@>ö;èýÃqËwå>aüEV9rß¶\ÞË_þ®0ç×Äó³¾<ëÏuÂy±ò©rgû¡¢ü¿õùŠ|­Oü|Ò¯Æá´ÿ”Ÿ‚#«r¼qòù_´´ÿÌð¹Ó7é?ç×C…¯Ý—Ôþ•?Ý÷çþ†üYçgòwÿ¤|%î1ïÍW¾Î~ÉúA­÷já;ó‹|þŠ\l1¿;Ÿ‹÷ôœSü$½]ÿ|c¿ÍÃzf_åþÓ}•ýµŽl¢¿¾Éz³PÚíüt¸ËÍŸø§ÝкþÏ0N;Ë|æ=Ár_pc‹û¼ã{U-?ýí‡/-GýÒ,ÏÁ?ºÎ@M7Ç=p ½í;Pê[ð*Á¹Qnâ`V¹a½}Ëýn¿Y/ÎéÁÃYO÷iÎ7Û¡·—zïV}Gù}¢|ôˆÑ¿Èo"o6šxç7øD;ñjÜGõ¼ÑçJÅU¾0ìÿÄ­PŸª¯×ÚwÑŸ’¯xÉÄÑ žë—Z=£7½@=ôö ÏàÄFüEom9[´ËzÕüj{¬Ï[îwó…Ö85îFêm?\Ê…zïèŸ/¶v×rÕƒGßîwЭpŸiü éŸ}CüzIÇ)q’˜ïÇþ¹ÈgoI¯P¤vJqŒúûÒþ¾2xJÓ³ŽleœÀ?Úë{Ðúñ| ÔÓr‘Ûà#ïò“öÑ«îo팳[´G{¬øTÖ¿àOÅ–øNÉ÷Ža¾åûýB)Çz¼¼¼uZúq…þ÷'Σơ=QÆéxýÎç!MzíÕâ—Ë÷ú!?©ýZ¿Fâ#Shüƒù=é|Ö¾¿XÊ?6l_ê©ü‹+WýŽL=â·ÉvP®õ«õŽ”v•sÈØùná—&òa¾ökúq8În1ŽòGø³ô¿~¶–Ë8‰¿ÊxɯŒ{Ñ#Œã2¾p¼ÌÇïk?Ç÷H)Gù‰œñ¬ËŸâPä;סÚ.×;×߬_—Ÿ¿ßòúîúg=î®|lýJÍ—~Q®¯‘ô⑘?R¾é ž¦ËËUŽ£ûý¨ÚïÁ¡@˹8ãî>Žyl+œFpaîÜì+åº/a”s”õ^«ìwØ7e5Ky3Pö9ñGf9‡†|ÜÌ·K}nygø*íßN»ìÛå~vfX¾ûÕœÓÜ¿ú»øÛo¿–ûù}ϰrNÜâ~N§Cê8¨_Š?îgZ?&îcÑåûâ°ŸMŸçWÚwÑ <3Ì/zäC=™üísâU^j|žûŒŒ·ùË÷õþ¢õÊ}Ðg)çµÂWÏ–ò^ygçáÜ•’¿z½ñ=U~·ÞƇd¿ÐO¹ÿªžÎ{°Û‡ã‘þ°œê·m‹{Ôiì$êkÕ {߽ƷT¿«?ŸµÛ¼mð]Ú)µ‹.ù,"ðkôËÚeô“!þK\™zZÛ±Tó·äk~[é·Õ#ÊÏì«Þ±þÖþ¤ét)ßv‰ÇОãxD/ÍïÁ•ñО&>£Æcôý¾R~Ù·vºÅ8Æ?T~].|èxö‡ ¿Iün9'븒ìæ<û»q)WøÎ¸`âTª½à¯†ëDÊ=UøÒz­”ïå«j‡?1|¾úyŠüõgæ³ö“ã¥}÷Õþ!ýiúE<„ñB•Cq'LÇïÚ{—K¿™¿ùÙ_Ê¥ùjg^-ùç`ÿšéù½øÑJ¿˜^üHp€–K¾Ê·vtÛ)Îë^¨¸@çKë)ÞÊùËzÉ_¶£Î¿gÈÇxuòÉ=¤wÞÞ_¾[)ß™îx©ã ý¹È‘øíÓË¥ô'æ8;>~§}³Ú»å¿êGleXŒó„~ú².9~´Ãçø¯!ÿãÃzDþ÷”ë¸Y?û‡ú(Á™Ïó>;Nä»›ï‚(ý°ÔÇq”Ž—òâÇ“÷ú¥[¤½–o¿žõ;Ó—úˆ3”·¨/ û)ã(Ê?Êoâ8–|«?R÷/ÅOÜ8#éœgW™÷Ò¥a>‰¿êzî>ÊöŠ3±]–§\ß%ÿ•q9Têy/ëVü.9Ú/¼_ \ÇŸTûxæ?åÝï‹\ÊÁ½•~:UÚçwÙ_¹º»¤«ñ±}®q¨S>ÔvfмY?Ç7ñµGǃ|î)ý¦ŸÆÙ2¿›ÿBÉÏ~¶¶Gù±½òÿ\ÉçPé·ƒ¤Ó¿µëqÞö Ç%ûãòôˆãPäS|„óž8’Êßîǃ“ï žO&Î%eþ:VÊw>™ã;ËÑo˜ýâ|k»\—¬Å­1Ÿ¤žÖ[?Oö‡û&û9þöÊüè~\¾_*åY¾ë­|ü|"¿šž|Å_Û¶Ëù}±ô›õõ˾ò\ñxއùÙòŸë©í”¯œ¨¿ú€-qEÕÔÞÛùØqv/ÿ‚ëÑ—|©~å»åwÓ[Þ­C~ßã+rB§\¾Wðâ&Ð%ÿÙ!®»K}Ôƒ¨_¹}XnôNêM˜ŸÕã¨WÝ•rö”öÝVÆÉô´7Ôv½H»žn飳ÞôzÓè….ðþé’^=“ýË8'z#ûc¦´[?N/ ÓOèãJ\?ùÚßý.þÕwõöŸéžÎ¹Çúl{Î8‘N}Hî:®?˜û§ö¯ßÛÿÏPŸ†ï­wÚK>éÿÒîèßµ0nÚ#¢Ï÷½ö.øV¾6îáí5>bî½’Îñ žD=<飧¿³|?‹KúÛJý¥Ú[̇þÈýxÛ33lwìß>Çn`¾ÚÕ´ãÌ—tâ9¼Ï¯|bò­v ‡åöò=ókì6±Ï@õOf~–¯=Ïþ9T¾ÓÞ¤]³â[¨wì)æë³ýh9ÚGìí!ÖËrìO/v•ôgõçf>¶wo)W¾ß;-ï·—|m¯õZ(|ê÷ò'çæà:´‹kGÖ~»ÂóÑò»üc>Úmã'¢þÎsâÎñþpÉW»¹ü¨}×|ã‹çEÛAþ±#ól=—Ê{ËÓ-þD<“~VÌ•òìíëúa N¦ÔK\ÎRíÞ/í³äïà Ö“}Pú#åØžõ “úñ»~\ªÿ˜ŒOy¶þK¥}–w¤ôo-Ç~ÑÏ¡Ò~ýÖ8®¦¾‰ïŽ–ö‰·0ÇÍþÐÍRÉï„ï·ê/Þ[nÍW¿8ò±¿Û^ùD¿XÊ™í_.ß/×|¨‡åè·(ãUú·ú Òïþ½ì_ým,í°<ýüpžN>'KÿXþéR^ñË¿Hø½¢ûJþ§¶HoÿöÙ~V¿añOæø—öU¿gè[Öî³Þ¥¿Óþ2œ)ùÛ?÷ÖßÉ÷ëϳùßSêïøÊŸÖ×þH½H?ePÛSý¸)ýg?¥Ÿëo~ʧíqüåûµ´×úÅo–ýä¼Sø*rYøuµô‡4òXåÎ~rQŽ-ß~5Ò-•rœïâ/Ï|¬Wá󉟮Âg+%ÿôù•~Ô?]øßñVŽ ÿÛoú5s<ͧΧK;ÌÇ~©ó‰éì‡øE³>ÖC>¨óƒß×y¥ôcƳÌ3uþÍüRä:ó–ãë÷–Wò=QÚå8Ø~åã^Û[øÿTyN?–ùõL©_Gì¿ô3ÏÕ¯ÖÞ»ou?Xãao‡ºï>Ð}bö¤›ãÙýû'ÏecÿÄüîyÄ÷â´fýžüêþ|ÁgÒU¿`;¡s…Ö}¶û÷÷>ï >æ7ϳû*÷QîCÜØûÃvxΰžî·ƒÓ,í·Üì·yŸòyŽß0LJ÷ö¿ýfzÏ)þ®|Ú?ž;’¿ý\Ê­çºô“|g?”zÚ¿ÁoBåK÷™>{~™-ù*í•vy1?ûcÑ÷Žã°>êÅ¢_z±}}œú•ç[zõ #þ¢à÷è¹^méòÝkäãy›|’Ñ×E/òù¨ÿÏXýÛ?C¾y¶>ð·ú õ–ñCÏw8.ä8zôñgn½í7õMê1¤¾Wßðôåû/þÅ쯆|ýïÅgñ½ùå›ùÚŽ‚k¶~‰žÏö™ŽvÅü‘{dß-õ¥ê›rïÌßÉÏ|rzæÞÞ³Ãöä;ò .ðÕḬ½_ú“zÅž®]$q‚àqJóü^ífêçYGb¯Ð^»ùyÿT=¼ö½à¡xÖn§¾_{ zÿjÔŽTýkù¬ÝÆú톪§·Ú«æKýÕwªÏ·žÕ/YìB¼7_ûÙïôÏ¥A=ºí¶‹]C}í8î ¿kßÙYè±’NûRü¯ñ¾Ú™b?a=©zûØ›lϾ2ò…åΖtò›ùlÅGò‹zèêÊ|\´ÓXžõ‘´+Zo¿¯öPÓiÿ‰½¸|ŸxVPí¦æWq@ÁUð^;¿í/¸¬øU±?ÄWÅÿïÙ¿Žq |¿X¨¸å'8Fó…Š/©~ÆÄë(/éžå»{‹Üh´Üj‡ô½ý-ߊ?‰Ÿ»–.vj륜&nïmoƒœˆãÉ{åUûlµûV¹«öçÄK+õö;ÇÏvÇ_¿Û/âM”KÛ9_ò/~µ"OʱßkW_¼…üVßó½øñZò¡ýªZnâZ ÓO7y½Óq¿CúÜPnåýoU|_ýé-þ2ýÃPq35~ ó²òRîkn<8”ÓN;ŽÜÀ·÷»8oÂÇâÙ\·WÖgùŸçâ/~Ó\7]—ƒSÞ¤eŸTü„mǯÓN r3V?Þ \ïsŽrßî>¨¬îë=?+òPïýä~¿×xÒÕ¯X—›N¯}Þ«ðgÕŽøý5Þ¿ÜÞGï£^p'ß#‡Ñ×ùÝEò¹@¾”›s«84ÎÃÁ—½ZÖ¯}ÞéôiôµÚ[´§h×ÚÝø9v!ä¢âÓ¢§¾8Úü«÷ãk¼˜èÃõ×$ïõRnõÕå¦ÓkˆÆÞ¬ÝO|•x>qÚõ|¯}O»¥vAíœñ3ÃóbI¯¼—f:žµÛ•ûqvz-Ðà§‚ï(Ï5æ*4qÿ Á‰ 5>§4øÈò¾à´R¿Õ.7^{tŒû’áwqx‰ ;Úü .®â[#Oþ®Üð,nKüop°¼7ÿÄñÊ‹x¯i÷W§nò£÷Гeæ>K\«çþ-ü›Màý‚×âwq]îçĉŸ²<÷‹ÁW5:í~ê´Ó¿Kƒ_ò|ÿJ9¿‹«ã9¸¬gÑ«ù½ï¡âkë=Åøý~žrÔÏ¡?G5í~é´Ó7¢ÁÑi?Ñ>3ßø:¸õÍõ^|½?œéôËð¢ùBÍW;÷¡·w¹éôÚ§Á$>¡rUÄ‘ÉçâØÄÙˆó»øÍâû‚¿MùKúâß°ÓN òð|úÈBãÛ‡ßÛøSÿYâe‚oØßy/ô>¨qBæYüì#Pó}ˆòô—fþ‘î~ž¢<ý¶Å¯òãï>?ò<ùñ^Üìý|wös-Ý“ߣüþ˜ùQ®õw÷Tø]ñCÆK|ìùa{ôÏF;Óï'»þïz¦ÁÍê‡ïQ¨¸\ñµúiSN\Îò,?‰7>‹\ˆ?ßÜ8üVË7¾hÅ­?¶úÃÓ¿~ð÷™÷ÖÓÓ|/nô‡)÷Aå•gñwúû;óxrý•éÌùá‘Ï Ûur¸¯Üèzó뚎ïU0¾ò›÷8ªYùCü˜çœê·+q]•øÌý]üD›ê}óOïúVqkñÈûøÉs¿XÊ5ßê·ÕõL9É=—²?Ôa½%ÎÔ}¨Ï[àòmç´Ç¿Ó·FsÏÎûR%ŽC/|˜þàž‡ŠCÓ—qž&_qfsæ¾êvÞWÜÛ~÷;ïçÊÇâÕ¼oã³~ÇÄÎÒ>¿W¯ ÿ8㑾J}Ÿ¡<ï!™yO—{GöŸ¸VõÖcnØûqÄߴǿӷFsöøÿ…öì}úÜ;æ÷ }°”t‰ïiºy_qjÏRN¹ßý³÷“-·ÄÉwÖ×ûÍ—?ÖûͶk"ž¨ßÏòél—ùœo¿§Ûg>Z½S¾å<;L7íñîô¡ñã0 Õ¿Dõ7b:í™âÇÄyúöLíœJ~;‡r<§~A´{n/éµ»VÿyæÃ÷iWõG¨ý•}ZÚ•ø¢<ï-õ“ò~·í*õ‡··ægù´ýå´Ç½Ó·Gã.ñ:áß‹Ÿÿ"nL{½øLß×x„>)åĤéÛïcyæ{ã%ZNüxY_åj~ E¾•ëYýˈûI\SëIyK¥}ÖËgëgÿIãOpØÓ÷Nߟ#iüiÂ/ÒÄÅô=éï.üŸ¸¬Ež9ˆßRçk~¯ëšå‡­Ê®wÊ—ò U>\7äß}E®}VÞ]?•+×»ŠÇ®¸lÛ‘øÕÃýYËÝéõI³¯÷|aœÌ—áÏ>{ÏÆý‘ü&ßÖs ç„äãyÅóPü1“NÒ3Ã|â'Ùû@îõ›î9ãéayî÷â'ê…RûÀõK-?ÏUc¿âäṵ̂ýæ7â/ûMëC='T?Ñ=~æ A÷ ÿAê›ÔK‰#Óÿþ‹mü7Šÿ3óM:ä&z(õmòñyÊW/Uýü[Žz]õ~ÛJyò}‡ ÿG?‡¤]ê½Ï…ïÕ§ÏX?ÒÕx(ÊóNõ¯–z«Ï/ñ…;½>iìÚ=âϬ¼7>ŽãŸxw¤cÿû¸íæ§Ý³ø£Iüí95î’q¸ÔóêOI»ŠvÙåRoí)5žx¡Õ¡üÅ~dýÅÿÄ?õ0]âôYßiÿ±Ÿôµ8,¯Óë“n<¸?¶Ÿñ|†q®xšú»vCñ4òUâ:Â7Æ©‹_/ò3_qò¿òæ{íîøyŸˆ‹¨}Þò´GjǬx q8ð¬ÿ)ãn>H>gIw–ßňÛÑ^ú(ýg=Å+&ù!ïÓ÷NßÍ<.®ÄùQ¾_*r"^%q]ʼ,þL¹’_ƒÛ¡\å2ù“îTáSýÿeãÙtÎóúYô}亴ã!ëI>âÐ\7•oŸ]÷Ž•túƒ«x"˱_ÌïžÒ¿ÛO®_f|\Ç”Çû‡û<ç<7òÔ°ßÇû‹ÖÞ<Û?öשaùn!7Ž»ã(>Ìõ ñ1Ëü/ë‡Pá÷/…oÜ'‰g;Q~—ï•ý˜*_ÆÿÍzE}Œ?ê>r®äÿ@ÙÇÉ÷ñ‹YöS®S–—}ß%þoÙ¯‰ßqýõÙ~4½óûßøg-rn¹ö;ëaÆo¥<¿õÞáøå÷Ó%}âW;Ï å¬Ó-ä&8GhâÀ–sBüë2~òmõ›q–/?óá9q6•ò9ȳï壓å»Ä v]¤\×ùQ¾°žú-–7lÿ}¥Ýâi<·‰GU®-O¼òã=‰ÅR˵}õÜ¿ä<{Þ³ŠÝtÂcün—ñ*q†“~|mï¡.7W$7;é¯Äµå¹ÄËÌ}3ùC<ÖˆßMo<„—Ûïâxrž'ÿÄA°üâOm"ívב–>z³]…ªTeþ‰[ U_èwÆá|…÷Þ·³Æ£EOùǦ^Nÿñ»‡ß¥ßì§ú^¿îâüÌ_¹Q>‡ŒßÌÏã>÷¡ê!Å÷Ù/Ê·úÅn_º"ª]B{Dì³mÜrÚx¨ðU¾Ónò<ïÅ{>=”Ø?Œ[á³vW)WùAî´Û$ß§†éòÝNßS_í,/4ÊëÑD|Së/}jº ¤ã½þ‚?³Ý”<څἑx*>9Èûã%Ë ÎÓry®|\í*éO”ú)ßòѱ"ÖCù-çò´ËyÝu'|K>®®ïµßV¤– îËÖÊý·Ô»âkãÇ«Œ›ý°®¼ÓËÓøs~Õù†ýoü0·~Ìïî'Üçä¾ß½@ºíäk>ⳤ;̇gÇÍøšúƒ¶\÷-î+ÜÜYòÇVÓ³Ÿr_ŸýŸüc}­¿ûK÷/3ðÛ¾a¾ÕVîçOÎqæÿ<ù‰ã¼—z×vÝ1lŸçFÇO?[OóU^m¿TÜÞíÃñ ž®ÜSìôò4qX¯ÕçŒø‹^F|šçIõJÞS{¥õ¿ø¬è…<ç3¾¾O¼Ê’N½YâžšžzÖ8 –¼ßEtK©ïG¥|ëm»ÄÉYø?ú')üý¡”öFϦ~XžqL¬OíGä>Ï{‡õªúFÇ3z2óEî2žâÕë9¾%Ná´ùòZ§±ƒ¨e1ámiد±§èÿL;v€ùò{âT’¿ùÖxiŽ{âÜ@µ³Â'ѧjW îŒú©O÷Yû’v$Ûg»µ—ÞQÞ'Þ"åiš³½¥|õÆÚe´óhg2öíª±›Qžßi_:Rêq¸ô~B|.ü?a?²j\Ê3}½¹"¹Ñ®ýPáëÇ•÷âìïÄ”_yo:ùYù’ï埅’ïÅ}È~²Œ»éå§à‚x>Z¾?MùâN¾•ŸK\ƒàdNù)ßÇ_ViÇ=e>Èï”w_‘«È¹õ‚Š—óY\žã"NJüŽñ@z¾=‹÷ü«ò©Ü“¸½ióåµNã§L¿cß$;~5ݽe|}ÖqøÙFãGlü(×ñý?òþÜÄûH-'¸Ò=,ŸšTœ˜~Ílgü»YOèC%_ê9ž_䯒Njþ~éŠø.ø›G†òÕéõAƒÃr¾yä½Ãùý¾Ê¼—OõWù‘çkýœÉ_Îâ’ñ˜z­–ï(|¯\Ÿ…ŠKv>u½¿<³ßKi÷Yê«ijuÝ!Ý=Enœ/ÄÏ]¸"9¨ëà´ù Ó«£áñ¶®ÿKåY>;ã:ä{宬7ÁGáwù„tâ+Ý¿ˆ³÷\$_º²~Õÿ¦÷”W÷?þ®¹¿·|çÛcùÊ{ñ§ÿ‡®ÁóûÂWdË~/v—N¯/:ÆÃ¾t¿}´PÏ¥K%Ý4ñÖ¡ÞO[U)Oü˜ü«¼ˆ;TøQýUð™ün=<Ÿ{>^ÒgÛG:õÁ«’^¼eáëÜïó¾šç)ëáûÕ+“õWÓÿN߈﬽à‹Põ©Ûá³ú^ýfô®PõRâ=ÍW½'ö‹è«Õ £w_ÃK¤Sßµ›têQËýîàëýoë7*õV¯$îsׯãoñUêo¹Ø!SŸ¹~^¹hð}O7:á7¾ ŽÒ÷¯ÀGÏ gÏòÝÅÆßá[äL;Dð‹ð_âã ÚSc7yrÅ;ú½åBGüé¯ í±Þ´ã\­/ùÇö)¯öÓDûŸÖ3þ;ÞÄ¿ öÍi{§oÆÎ®¶Ãú•s”û³zþɾÍý¢÷V.6¾¯~áÏUüQ¹O–yŠu´ú±êôú¢9×.|/‰«Qß5Ûø&ßÍ‘NüÔA~'£žÉø%.Fðd꿪?õnêÔÏ™¯Ïêr¯”çú¾RÛaý¼÷èwì#ó>þ§jû¡å>æD«w˜{ãt^ÛTûEžÕϼÓÄwú¨þž‚‹ªwV+>E{£v}óó>pp0|§ßå’¸ñ%Úq£W/T{mÕgk²ýÁ—ñ¬ß“5_ÒùûÒå×™ô›zú]n®g{¡örí%Úå‡Õ"Ú%õ¡ý3xhäÂßå3hpü~ïµSÿLy¨~΂Ó*õÔNsªä#ÎGœKü³ñ»xóÓnk{”»à ú)¸´‰þiÚãßéÍM'â¶ù¿.®#ðyõ_“8i~7Üï¥÷ ü._+©óL‘ãCyŸv¿uzsÓðé…ÿƒò¼E:qóñ+•¿Å!¿H‘GÏ}îãÜ×¹¿5ë”ò+¾âL—›N§OsoeÎõþô^„~ü]?jª|Aõu{Yo”/ó¯þו ÏÿÁñ@û½°N¯!¿kÁí´?q1âäïà ^æ}Á(/ê•-G;Qp@ú§z‘òÅë(G¬oѳ_èú€N¯:ö»Ôø4þ'´÷Ç_¿ëÇÅgñ~/^9L9¬WÁˆ‡€|äY;ìÞÏóë´Ó©Ê ç—øÛ‘¢—‹_'ýÐèï%~{F›c?U<Çïõw£Ÿã½é?G?Qæ_〞èû´N¯º†}híŒòߢ7_C?œtœc’þ^Óó;÷ˆÖÐW‡rÎ_;e9Êߥ\©éùýTß§uzíPùqÌçð-ö§5ü$ÝjåÒ£—[Þ»v²ü~ò©’Ÿë™ù-RžþÏ,¹ËM§×¿>ýù¹ŸòÜ£?Mñªñj:èβ/Ó/Ÿ~mõèyH|ªqä=GéGv®”ßñÐ^Ct"ŽîvôaÏÀ¯þî9Ý{ œ;r¯}ØDü\ý‘¡'ÎôYÎÿÈGü§Ïä“ûL¯u»M§× Îs:;Úü‹ý¦ú×S®¼_Ç=Ÿà¦Å·²^„ªçÖ¾c¹ÞÓ¶üŠ3H½º^ ÓéÓÄÖÎ(^`¾¼¨øêĽ"½8ig°•?qÑâóVȯÆ5#ÿi÷W§ï n¹âµoç _éÿFõ¼{¸ê´Ó·$73£Í¿øw‚ÿsßWf#Ò™ÞûÆÞ6Þ¦~˜.¶tê¯"‡ðuâxþ.ñ sßsO9'èà<ùéWõ´~žÛyŸöœf§¾ª¾t_up´ù—ßÅq韢ƙÑ.Âþ(~›Ì¯e—8/‰ 33|o>#Ó—{úÕ¿Fêc<žG&qf†õœv¿wz}ÓઌÇ%.‹}R ÷òYûŸøIí„Æ5ã|’¸—‰«É³ñÒÄOïL|ס¡<¤¾–kü3Ëa?˜÷ÁŸ•|»ÜtúÈÍ*ü$~ ÊÁˆ7ñwôo‰‡éï~|–¿ó^¹[-TŠøÈG”|R_q3gJ>ÆûÄoApcæÜL—›Nß¹q>7qå»7áûàùN¼–¸Êü.•ß ^yX¯Ô÷d©ïiÊWî,O9±¼•áûi÷{§×7Í~È8–îovBÅ¿‹»r¿•}ÏâêkœoóõL=mþ¿¥N/öõ”›øµ|g½j[Ò?~íBû=q8y?ƒ/ óQç½IõêåRßç[9ñÏI9yÿ ô<ß¿<ü]¼Ú´û½Óë›nß;vxq*ú¯˜çY;Žx¬E¾Ó^â³ö•ÄYå÷ƒüŽþmìÇ‚tœÛ×/•|Ž÷U~k<ô)_;¬í92ÔÏuÚé[’Î)‰{&_Æ?T»¿öD©~<yªñbOóþdáëÄå{q>Å>;§~kÄ'ÄÎI~ìã‚7ÓÞª?¸~ß²ÓNßú|a\ÇG›â‚ò»r¬¼ž,rZã<¯ åq—n8L»Ývú¶äƸrîãî/ë›8¹²ÌsÁ7×8æâŒò{±CuÚéõHã7S¹©qÖ½/Pïíˆßv½q_èyKü¸¸Ò£]ÑéC7Fí/qö ÷QÁU{Ïý¸ñÕ"'êÑãE^¶“ïÞá:Öi§×3ˆ—V⽉×K¼6ä"v%ñxEoŸûÖ~÷r_o:½qhüwh÷Ý?<ÄŽ«=Ögýoè$þÖ âÄßÍu¹éôÆ¡k‹÷³:ÜO­Ý3Úü‹4q@úy¯')ø:G~Nu=Z§7 >Zݱ²OO§?Ïå*7Pñr+Pqqdžr9íövÚé;"7âØÄ­•8ÐÁÁ¹ŸgÞ ÷ޤúW«û½ÙÑæß´ÛÛi§ïõÞœqűM¤{±É…zà„Ð ¿'þNÜùúý´ÛÛi§ï þmN;&r^-8=ß)¸"ãûÆŸù,;P× tzÑøÕÑŸŽ~Òy_sOI'Nü€ùˆÐßï¯Sÿ9ø•OÔ³Pý€Ýg»¡>'¾+ßë_LÿF÷ú;ýô ÏâïÛâùAÒ;ƃ}ˆ|ûÐ϶túG2n³~Œ×*nÒxÌÖ×rV)×ñ´?-|ñ0åG6þÇJ¿œ¥\Û¸ÐÖgq¢ÜÇ¥ü{J>¦Ôï,—ïlwÅž)õµžúosÜ­Çý¼„gýµ=PÖ ùaÕ~%ŸŠ/õÙú>äxÛ>ÞÛnëg½±?ÊûĆØþß:ž3Þ¤³~ákÓ[å¢ÔO¿F}nÈWò›ãðý~å½ø¥GÇ~?[¾wÞIpË-|¾{y-òP㓟.|qªüî÷ʳ¸CñôʉøÄ{y6óñ’Îï¢~â’•;ù·àŠÓ_)Ï~,rç<ãúe”ßíÇÙyã`©x¸“åwïC$/åÛÎc¥>ú{Œ¹"?ñ?G¾ÆçoWýúz~3ý î-õt2Nª8¤ù’Ïs¥_ÌG¹PnLg?Ìø;ßù»íå¾püŽyΔoâŸÏþ„Ú®ù2®âõVý&›ï|{N<ÌÚNÇkwyo~Õïònò±M¯ŸòWx`8në—ÈÇq0Ÿ™R¯yû›÷ŽÏ­Ãö$ÇÃò¼¯f¿Øÿ;¡–kÿë/nÁïÉ×õÍßíwÇGüç¡òÞ|Ðs§\ý¾Ý9ìŸÄ õ;åÄv[ßÛK¹¾7ñsðEüÒ™ÞrçÊ{ê¿~žñ»Ø¨÷|£?|¾}Ÿû¿<¿§?¼§ùŽ|¼\ã:Øovîò~oô7#Æ~°ÿ¢7=?|o½Äž³Ò§‡ïÓnï%Soó×?ßš|ïïÞ‹.ý#þ*~Íì/ä%ýþLùþÕaGßË{û!ï­?ù¦_¨Gð`ôõH¹ôCÞ‡ åÓŽ´K긿P¾·^”WÇ%ñ;ž-ù½Pò½0ì¿ >¤½éúÇq×\½/¾^ý×Ù?õÙþa³‚¿c? ú¥§'NIú‡0þ©ïO•ß™G&~×/˜þÄ´›ù;ódðƒæg}ý.õµ¤‹?²­(é¬ÇŽòÞòôoa;”ïL¤ûßþ3¿ûƒ÷úñ'VË1ÿÔ›÷æo~æw÷åy~‹üÓo<ë÷C»¨ýã÷Ž3ë@úWAå?ëáx8>þî÷æŸò â䬟8:ù¥Æ¶çJ;Ž–z.>_±È{㟊›°ŸãOOþ1=ïõÿ"žO|ßR)×zˆ÷ówÇѸ_ñ“ÇïúU²~5¿ëWúÏgëo}—Kù>ÛÕo’õÒ_Zâ¿úìï¾·%}Æ¡”[ãÉZÿôùXžýq²|oÿû|¤¾'½å8/¥ýæµ=¶ÏñX)üs¬”cºà=MoyŽ£õ‚š_êO{å‡ð•õ)ý”þ,ù¦?É×ùÇï÷öOáSû«ÆöÙü&âCm‡þ ƒ“õ}éóM>öTys^p^t>1_˯þ––˳õ³\ùÆï¤UžåŸðS‘7Ë—Ÿj¼fëYã.OøËTŽÊ¸ÙáÊwþ=^¾÷wçù8ó\‘_Ûeý–kðûC¥Í7~K‹üØÎÊ¿J¾Ží1_¿?Rê¹R¨ýè¾)ã^úCšq-¿g~µ=esFö æcz÷ùžt¾wÿÂú—}£éÜŸ/o;ÔzºsýÜAzãIΑ¾Üû)£ü;K9æãwîŸô…üæ‰ûO¿ßWÚç~æ`©§þ›oæïþ<ùÍjÒ‰;8SêczÛGf\wRŽãI='ò³þÞŸy–ôŽõÉù͸†ž^,õ²OÑžõ[-Ø?~'-~ã²?]¾ÿ2Nö³ãê¼ã³ù[ûßvÊ?êUŠ_úVÝQÕK¨ÇPïàyÎókô(ê•Ô—ù^=ã}‘zï ò]ô ¦S?4;üEïQιiüãy_?Mú KÊ |§¢è,7çVú#zëM¿ä\Ë÷¦OYNõæþ|'âÒ®´“ñÇE ó£}yÿl)_Ù‹Ãü}N9Ì7éÇ]¥ÿl—úQù ~4Þaø¨öƒz=Ûay¦ƒ7Ñþöwõ‰êåäûÑvØöËL©üäsÞ›|û¯úqõ¥«Põ‰Ê|_êw½7~„ôÚ9´“h¯PŸ©^Ïôê3ç-ª~Q{‚åÅ¿ßk±þÚ+¬Wüˆñ^=¨üh=´Ëj—Ѿá÷ޝúTõÒ‹PõþÚ ´‹ø|w©zyõ¸Ú¿´›8ö£õ]°ù]\ãUãÜh·M\+û÷ÖÇ~s|µ+h/VOmùö¿v¾ÅÒ/‰óf{K¯>4½õÖní¸Y®vÇ=vêRŽýf}´S8N–c?k×4ßý廨~~|>ûÞövíÝÚ%µj‡Ó¾)Õî¥jG׎ûèB£Ö3øòÓ^+®E;¯ïm¿vqãÿÝ3lÇGD¹âJ‚c1_/ü©}Þôgy¯ÝD{¥òëwéù¨È·ö=û;øÛÕ§}2ñÖäcû¿Œ»ãä³r)¾B{‡ò¢]þ!ÛÅû“µ|ùÕñ‡†? ßÚNë÷ÀÏò¿ù˯Øõ3޼Káwëa?ÞSžåߊ{:Sú1þñø>qòZºiãã:½±èxße=‚ïĉGúàyï<ö¨óœ|?”Ÿ”ë¼óðóC¹G)îÒù'xSç-Ë–8ÁIÜsùò;íômÉûŠà&˾3øØ²?qý žÐõhÔÒgŸÃ³ò}‹ùñ{‰«0Æé•ý…õr(~îLùÞýÌj_o:}ä&ûŸ²¯Òo¶ç§êÿºÆçõã9H[ü–óÛ‰ò{õ{è~Ëóqâ²ò½çÎ¥"/õ>ÄÂð÷N;}GäfÔþÔOäý,ï=_«ò·þõývhpdPòŸ(W¹šã»7ÛøÚE¯›ß‹Þw"õuØ}¦ÝÏ^Ÿ4vˆ§‡ó¯ö í3¾>Œ÷Áû½:L¯½%åœmþEÿ>]=¾¸JÊñý>ïFü­AcçÙѾ«~ÝRþó]n:}ë´Úcó^|—¿kïe¿;µ¿‹oÓŽ)ÀßçyïïâPnòo줬[Á—iß<2”Gq yîïµw÷FþÇû>­Ów@~G›yŽç`y^†÷úU¯œù%n/ŠW2_Î!w“zZ?qAÕOb•£à’†óD§^•¼8×8‰òqÅ}¹nˆS÷"_oÌ÷ÁQ»ÞŒ6ÿ‚‡©8TùÚõN|ÝÝe=tÝ“*oâ‡ÍÇgqsâé®S^[Ô}ø¾Í=~ÞK\øÎù]\œ¸9ÎÁŸ‰¯ówÏSž“6ëñwpMœ£òÞïÝwUÜž¸² å|óôP.§Ýï^ß´âÀ‚Ë·3;Úü‹~ 9È}Yñdw—ô깂_ã™sOõ5/|Äx¦üܳµþ–³»ä£>O\V—›Nß 9'ã=vý ˆˆøPûfµ¿hŸÑÏvŸr.Ÿðpr˜.ø›¢?V¾ó?E¤—jgÒþSìRvú¶äE{eü ù,vxßë×*þj6Û)*|­ˆÏ¹§È勸gq3ÁéøƒUóƒÖvTü(þŒ¦Ýß×:Í|fÿ;/j¯s^”?ù\£Îâœã·ˆïôü ùXÞò¦>Ão_ë÷îoÄ­7^ø§ÚÙã·¨Ìó•G—tâÍã·‰v[ÿÅÂß'Þš7íX*ýqòäó{.Ÿ¿íž6?Ý,4x ©øhåAþÔ/—|¸Tøô´Î›î”³ø‹*ûƒøëâ9û Ò/B}ö<¿ƒ~Çïñ3UävÁýÔsÇ©RÓÏólûl·Ïæoº·¨J¹+äï:!NÆýß½—Ï_<ó´ùéf¡cePχÎëÞÇ9PøÌó¦÷7rþ%]ðY<ç^ é½ÿ—{CæWÒÅßšõp}áwù8x,èñRëí9ÚyAùs½RÞmoü%9_P®rÍzûfw½5þÍ}û½úÛ²Ý%>}§Ó¡ñó„2~­òÜ~ÎÃ{/ðìûI÷,ÏÏ´qö>ñøcKQHGyêw­‡òÿ_»©/ùOÜÏ´<óQK½rò)êù<é­ÇSCy±êÓÄ¡Ô{££ÑP~Þò8¼Bþê¹¼/<Óòïñ ® š{åÚáäkíq>³‰ÿ¢Ù6ŽÁyè÷I»¸Æ;~fJ9~ç=ÿù!ÿLàUv’ù‰&ë¡íà~ç{q%‰WÃïJ¾{J~;K=Ó¤·?ö\Ýzûÿõ¾¿ý¥'þ´xßõÅS¥kè{‚¿ÐVõGµÊx‰ßÐoOð$¦ç½ø’øÃá9~oH§—øŸRn¡ÚÛ¨¨ø*ï㯉òl_üÃØŸù½úשþ—Lw¸Ôßz¿Å¸jc?Uö+Ïñƒey¶çÿpªt ýd(÷d×î‘2^ÜÃ^CÏ´všç3RÆ{Bâ[r^ˆÜqÿ1饧K=VÍ—üäüïáW>¿Ÿ2èÉ!…ZŽí0Ûë÷˜i÷=µÜ¡Ü_ý¼eù¥¿N×þ¢<ûëž·¶ìô¡ñ߇tÌŽcyo:©ó6úÙð§ü€¾+|¿k=­×¼å¸Ÿ"½øEËÙSÚµÂû9ëkûÜ/’ÎsÅb©—8Ì‚¯¼òþ/õ´¼C¥ÜÝÔ'¸ÎVÏióÏÍJã'ógâTª—zê{ÒÇ?ýù6~ñÃg:¾S/5âïú¯àw’8ɧ ¦»Ðø*þÎ,ï™ö>õá9÷²üîò»Ô¾‹}qŽú1#]ü#šÿËÃr¢_|•ï¬ï3oMnlgô’äcÅ/š8QëC}·ŠKÚé»Kcÿ«÷nõ§ýC{‚v¸ê·M;Šö›ƒ¤gˆ]FêûãÃïâ//÷äÉG;Îl¡ÖÃ|µÓÌ×ßËsâð^{ r\æÑ’Ÿý2WÊe}¸êþ×eyZÜ‚T{‘¸ûyß[+·Ó·)7ò£þÛäö/“q§ Ú3µ7V?Œñ¯Çs/æ=|ñ<âÅÃh÷ô¹ú©7)•ªŸHiü–ï*nÆvš>qÆJ»Ä5˜ç«îÛŸ~´~¼x¡QýIé·.ñIÿˆsˆÿAúSEõ׳j:ú×öÈ'5>£ÏÁ!™ÏúÅÒßÏC Ãþq^Š?<û—òõTýu9®ÚÛõCøïÅÍ诨úý“oõäwÆ9³½éósœ ß/VäH¹9û¹–¿þ’Ĺù}âÍñœxÔG?cʩ߉°|ý >\Êw¼j<ÀäSä9þDKÿé2~D'ëmù•/H§¿IסS¥?\ç÷ŠßµÈ·ù˜.~G ÆT£W,7¶çAçžÏ~Õ?•í8Rú=þ¯l¿ãêxýlû½â_±ð•í6ë€øVùU9t¾Š_×a?$~§ó}æ7¾—_«¿ ³ò…ü_Úé<í¼m½P9ƒž(ýeÿž)韷<;?'îhùÎy&rKyâo”;÷a•ï7Ñ|åÿòlþÁÓ‘åØûÛùKÿhþžø•òωgȳó¹åØ–—ø½ežqa¾§J½å¯å!¿\ñz™¸ªŽ;í?$¾I¿ˆâ!œܧ_äy?§%½üà¾Ùú›¯ãj¿¹Ÿöy©ôÇ‚ípßÍûyòµÜÈ™rJ9‰è~Šßíù(í&x3ûÏq}†úòþ Û“çKÃz¦\åI>AޝTn&ðFŒOâ¥hÏ(ñqÄ ÚÞ5ú1qF*‹~О!+úNú3úTÚ\•ñaÄ3Éð[~ßä3ófôÅÊ-åÇ®býY—ò,L{ü|™åîÜ¥òýŽÒ?ÒIJœa¿¦{JÿÇ/R©G´§¼7îéï½%ßÛÊw–k=íø.ýQãN–ø?ÁïÅÏæ_üdücÿ"½íÐÎc?Á_ñ—VãWÖ8œ5>ãtÅr#~IüTâ`Q¾ö(ñBÖwgqK5îž8©Ø©ŸöFÇW>_(j"Þ¢ù—rÄq-’Oâ—)%vDÛmºàÊ –¯]Û~©þ„&â·Ùo¶ƒïLû¿ë¯Èþ­q<Å$^ùLÄɳÉÏöÅÿ’¿—ñL<4žK?˜®ÚeÅKH”ñ9\ê)¡Æí«q(å—OÏüÅg8^«µ^ö«ü$ßúžt5àJËçªåfµŒø‡ǧÔgµü~Êvð»ãm>>›Îñÿq²Pñ,æœ"ùˆOQ΂—*ýœ å?Vè™RÓ‹óX-õ ÍöY^OåÎþÇâw¦'“öØ^ëç\ùø½õðwÇËz”|Ì×q·ZÚ™þ+í\.ß§_Gß—öf}_ûÕúÉ_¥Ò“¥?ÓÞRÏàzÈ'ühú–îŠåFÙßÝ÷»ÿ3ûp÷[Þq=O9îÓk¼sëë¾þÔó ûÏì«­§õª8ª¿Öþš-õ’î.õ¶îW¬‡ûÖÙ’Þö*ýé¾?÷… sün9ž3l—û"ûÅó…û½Ô?ä³Ãqæ›ñv\í·…Bí7Ûe?¸ŸµþŽ_ðp|ïï–ï>r‘úšn¾|Ÿ¸ô¶“ßÙ^±Z} ã}C‰Ëý)é&ômÆ{|eø\r½ÆwËïÈ…8¬ÜÓe|’ïvÒ«¯1=ã–ûŒêQΗrÉ'úïKŠ {tâÔÄQ‘>ùÓOIÿ"éž%_õRfºøéÛ¶E:ÛUœgx¦|õ„ãïàcê=&¿+G¶S}†ùñùøþ«ãa\MûÅò¥–÷Ìp|S_Ûy‘üç¡~¡ð õKÿPïÔ³êËê}]úGü^î÷Z—Ûû+–õ×â2|Vÿ¯ý@;Aµ{¬@x¯]£ÆCÑ^œÉ°žqTb/à{íÚ-”cõÿÖ·â®üN;RüePø°þ¤_„&^'ÏÚýŠ?áØ3´;GÂwÒøË!éµ/ÄžÇ{í@ÖSj=ÌWû‘ùk7Z(ÏÚ/j ÎÅz—þµ¼“¥}§KùŽëJ)7ñ5må+·ñÏg;ý½Ì5gâ‡Z.T¹s>—Êw§Ëw§Ê8ÔøñOVÚe¿›Ÿ¸™à†øÎþIð^\TììöÏÚe&½å…ßJŸ(õº¿”ç{å[œHp(ü^üP]±üè/N—|+þ¦ú}Ÿö@ã<:â•ĹÈŽ~ôÙ|ùÎ8¾Ê«rPß?ʳöîGÉWù”oÅÑü0ïÅG'X¹8]øÀrGiûM'ÎÎþq°ýΙŸO¨òþˆ|\ø@\Ó¼|åø8þ¥ß­G•×ôý£+ÇÛõO9vŸ‘¸ö§ò=œg“Ͻ¥üà¢L_ÆÍò”‹ø³ãY¾””‡ðŸåAO—z;îöÃr©·ü¿_±¼„/Ëüzög‡ã&>­âðä ûëŸË8œ-ý—øÅ¤?Sû™üõ³èºg?´âãO˜÷ä—zg ~¼=ß¹/w–Ê89þžƒ¼_â÷ñsÆûœ  â°²¯çùd­Ï{K¿:XO÷]ò…ù8NÁ÷¾ôü¥œ:ŽŽ¿Wÿ‰ÎÏ÷”qñÜa?Ôýšüëy"~è _V?ÏÆô;çøŸsÜJZó—?Í_<šã7Ïwö·ù{ò|ì8”xðoFãŸËs©x1õh;ÉW½WÑ¿ã4òûˆïÔ¿(oæ[âÝïQÙnžÅ Ùö—éfKzõS~g½íGñs¯ŸÓûyTÊs°žêMWâGV}Tú > ^L\]Åêÿß~Ýá<ijý˜~ð¹¼·ý9ï—òʸF¿iÊÌkù}ÿ°þ©¯|+>ðÀð÷ààìÿí¤£ÑV|­ü.?Vü$ù¨o«ü}`Åïe<‡rwÅöÊ îLý"|­~Q>¾ÎtðAÅïEi>¤Ó>½äkäsç§Jyê‘ïÄs´<ß“ÔqÐ¥þ5~iGô¯¦i}-ßgõ¡”û‡x9ó¿H:õ®ßÜ¢]æg¿¼Hù¯ Ë_/ùÏwëpÜ´·¤¿È7þâCq„‰/óê0ßàŸ~ŸtŽƒõ5½å>[ò¥Þ‰kc}Å3š?ßËGáKóeÜb7´ö—õÕŽG¤Ýâßàë|•~cÒn©=(8OÊÕ~æ{íQ̧±§iwǧ=ÕßÅ]í¤ÞRínÚ¿´[î+ßUöß|-:Sêÿ‚C9™°gZ~ìs%öbíϱëò¾Æ³œ…ÒßÖ£ÚgK=gŒzÍó¬}8v<Ò[ïØõ,Ÿôöóò}ü–zÝU~·]–ã÷¶Ïú›^{ªý—ú’N¿iŽkmgìšeŽúŸG}yö{ñöWüÜ9Þä<ŽýÅ{Çßßñ‹~ïwÖ/q)-×úX¾ãUqæ/îP]üñ•ï¬wòçYü‹8=ûíp©oõ[(ž%¸LÊ])íM<ÎR~p0ösyO“úÙ¾Òoñhÿ—þ7œc©§4ø¡2¸2/õów¿7_qBÖÛùÂþ\*ýRâC¼¹Ü”vmW7ãá8Yñ«öŸóÛ¾R_ùÌôûËóœóA™ý½ò¿üåøB+b¿êùk{û=~“ÜÏ{>yšr_àù)곓÷)çŒ×†üz>_êuG©÷ÞÒÇÛúP^Æ ¾˜Ø‡×}ó,ÔùÖ~­øÅ´¿öÏæ°äo{8'ï=Q^âø¶ôW«O ÂÏújæ¥èkÜ õê©æKzõ0ôCô.sPú-÷¬µ³¨?R_6O>s%õ®ôëXŸgùPø4ú!WߢžFýíƒ/jºÜw,x¨ Æ5úõ=È?õŽä›{Ÿþ.> >Lÿ©Ç¢~UO7ßrfX~ðc¶TúÛö©sœÔ›–zè}YÇeo©ý¼!íÉwê%ý}¶ä—û¼”g;ìÿóÔ_=ó`p€æ[Æójã)¤”ƒ-Î7ÑŸk÷ˆ¾Ó¾!ÿÆ éý]»ö¢Óå»o,·¤]þ¬~4Ÿªþ_ûâ©R®ò©&¸8ê¡]C;ˆíÖ^&µ~ñ«Vòýª}Y;Tìñ»v}q-âü^¿DÊË=å;óW>µV\‰õ¯ððçZzqÚ7ø½Ô‡üYhïµhßÓo[¾vð¥a?ñ¨ü¿PÊ)¿W¾ Aù£ÝÁu9/þÊÆ~aÈW9 îÄgò ŽïN–gó§aH­·é‚ÿàYÜTü>ÿ¤\Ëï‹¥Þò›óœxŠêWL~à¸ùœzó>þÅ†óŠø–ÑèÖ[F£íó·EîùÛÿíûÿøßþÿíêºícK_o¿¶níü[ºëGÿáÿêÿú/ÿoüƒÿÓ?n¹s4úÅÿéj!nÞ\4Gý}?¶ù76m|þû_»ªþÀ÷ÿ>¸v˜÷» ·7šïv6ŽÊèönþñþ Ž6_Z›]Þü;÷úKßÿûïÉoŽt³ŸùþßgÇ®šè¬جÇÖö·ú®íkù 2ÿÒÚ¾»»Ôëå˜~zõ;Ès ßi§?zî+›üº~î¿ÿÍæßúK_ÏýÎ&»ÿó‰ôßyîûÌæÓçþºñýú—÷nþûÕM²ëÜŸn~ÿþs¯mŠËžû^“ŸsµÉöK~ç¿OGÛ¨Ço™Ò·ú\<÷WÔOÕÖ×6Ë™CUðè´ûñF£1­ñøúæ4uâÜ·Ûx®·qž…ê*é T%ÛŸÙsߨüþ¹õ‹?¿ùç¸kÏŸØØ?½Òø.WÝÚÑûKɯ•ûcëmüù¾õßÝüþÏÖÿ`“¯þç¸ZoôQËY5ºþ›åïI;[»V Kë­º_ƒ?¼þg›ù~ä\{ÿì¹WàG¿{¥­¨:þ*«Ï²¾¼d¡"|â\«çGÏýM“ƒs­þÊw¿N¹XÛÞø=ëȨý¥Þ/498÷›ò÷ó[» ¹ù.ëÚmŒßÓ›éqÚ|u½Ó¨àè× ö {Û¸rôbcW{Îw;ÛüUÞ]Ã}ÂXEÙø{㎶/Èïw6ùPe8í~è´ÓënìÞ§÷lìAþØŸoì•ò^ÈçmÞŽi`/r~'ïïlr¹Á~>ªòÝ|ùoªèm íü²1‹\sÞI}樇ïUÙ yV•ëÕzæýÌ;œ#6ö·õ5í¾«Ì?B5ç¤ÔKÄ­”ϼµqg[W&ú“óÔÆl›òÞ~»£¼·]û†ï;½6(¦'%ž…”‹[à3ÆUëã‘å £?¿±¯ñaÖ+UÌòù,¿ÏÀÊOLcEŽ’çö|·o¸nPÎZº1Ôšß]J„÷ì ]—·ê§õvŽyOúín×êµöyãsüÆö¹ßjòå¼0m>èôú¤¨ŒßXnûþ%äârv¼ñiÒ¯0¿C®OòÝqäçï›éìñ|‡^.¦´¦×z)¿kzZ&ŸEäÂul yQ¥ï¼pòÎð]“Ÿ/eìzx˜zjBo9<ˆ/ Ê¾JhèÍJ×Ûùü«œ¿/úT~W/óû›Ýÿùý—Õµÿ4çòÿñœçó íü½þrû~ý;è^æ|ŽÞèG>ó뛯·üÿÐ¥'R>ççð™®qÐ7Uh¦÷G×ÿrx¾êôÆ ¬Ã?–«Uî‡Ü/ïòÅ|^ÞÍü»ƒyjõ»Ã} 4.êÝÇ3.ñìü&´Á«hûÙ?8ZŽófòmþ±ÿú<û§÷Œ¯º/ãû¹&W“íîSÝ9Xô泃uI}‰û»MO•sÕmž¿h‡û;Ï)wQïÙV^ÊÙ3œ'¢1_Ïî'·µþRó¸úûi{Ðú_;^Ôk;ýè~wý~‡ýÎ8b_š¶|Üè4ç ù]9‹k#øržç»?ÇK¨Èò¸ñt|÷³ÀÞ§<¦|å¶ñç£LÜMz!(ž/æàǤßGþî_Q}õ™§¾¾w~³žèyiçã9Ÿa/UÎRoÛéü`¿Ìò½õug>mÞz¿ó͸Ê9O9›¥};<7šN}ŠóÍp¼¦ÍW^4.NÂGËð³P–UäÂsFB¼Áï‹ðã)äa™yþ|¼‚¼ ÍY¤œ¸"ý"r½Âyå¤Ï}ßÙéåCý´ó;ø–÷ƒEŸ¦žo®è >œãªîÙsðYÊ_—«¼ö+r‘q·}~ÿüß®®=±†þþÚ§þ^ü™Ïk·Àâ­·ñ8Oåñ;ƒñ¸8íyóf£ÕåÑÚ>þ“ËϳWJƒ›„﹂½-|öâPzûx®Š‹CeŸŸú‚_βñë‡rµ›s ëÕ£qÉõ=ä;ÔÚ-ŸÒéÍG7˜‡×™‡Õ§ƒ{~,xpbëße}ýkÖ%íºÅ~|Åóƒë5ëÆú7©WÛ'¬0ÿü8ëàgY¬»žµuqûˆ]àªÿ0.°³ÿÛuæ ìÎvÿ5íñèôæ¤î KH ëùèœûîFÿˆ}àQöÙä^ÁÇÙïÎûj¹?à:èþøÛìïGí}að£ºòHý8þȯþü&¹y;0íþëôú¦Úç7¸× ^s_ô¶wBµÇ—ûŸâ/Ñ·='þ ¡¥˜ßƒàµî9O¼èŽ¡½—óîsÞCÊzù5ÎíMÞîJÈúï O¼ƒòÛ:ú‘´ë®¡\uz…ü±ÈÁ}¦'bG¯aH8Æ~ùv‡—´W'ßåY»È®Â_ÚëËý›Ø9Äè2Y½¯÷´GèÊævð·²ßò^e«çűK"Ú½W íÕÕ®pbÿªËðt¶è­g˽øvƒóPð9–Ç=½àtîÏùkåëZY—7‘§KÔC¼4÷3b¿o®^~/ùïÖ³Ó7¦è]1ûøk üú™Ï«uÿWÍØíЃ}”súŠß©ï²¼ª@ÿ4Wfè…Ñã=ÈýÍ»oÉ}Æ‹›ì± ýÏGÎ9úBöíÞ×D¯úùsí¼°¯öCîÛ>õcÌÑÛÁ—è3™ýÎÇÕšßÚÎá³ý“ßÑŸæ^&t ü_ôFº¦—xÌßñ ÜÎÚ­¥Ÿ9§±Ÿ{iâý-C{i\ÿµþþGÓæËkr®Ü³®¾ö|ã \Ù} ¹údΣmŸþW¯‹}½æ¾ðû—ÿî9uö;ž³ãúÏsl;—¾_ý/zëyßY;Jô²Ú~Ÿs-çpÒ{³Ÿáýá‰v7¾ÿù~-÷¬±»˜û©'7F´·ÉóýãùõL»€rüe×ú‘þÊýj~§ü?Fÿý ïY¯ëŸ€÷ë™_ègʅߟL»”ë èÁ¿£œ`7ÑŽa?3ŸÐÏ0m~ìôÆ¢ÁuŠ=Tðàâóïñ>æ1ñÈ‘ûM÷yóPq¨îc^—n–7G¾ÞW?8Ô«÷pˆ|¼Ï#žû8ûWñ«Ëìwâ§å;íþ¾ÖiôØ×Å5Å.êüÛÖ˜û:ØåÔÇ0Ï~3~1η÷Ón_§ojgf¿ñ¿²Oý…ìgøäƒè»¿~N½„ë*û÷%à¾Ê~á º/°”u”u=ɱìHÏ>ã}ڇŰßk¹ëÚ»]¿[½þµûœ„²âü§^‘ßPÎr>¢]àùžçÉ5ôDÖÃýsìÖ»_ìÏÚ¯­ïŸö1ŸJûùNÿGëMÏúZö-/º¿aŸÒÆëãó\úÃö~‹ýͳœ×6Óï},vtì–ñŽfósp¿c;è'Îî#-w]»å®qþ~û×Â>ë.íñâ7c¯gßê¹(~ƒÜÏÁ‡žÿOÿããÐ<¤·_įx^å¼=¶zñÖÏ¿Ðñ^Ñz{q´ù}¬z-]bm¨Gðþiîé¡—J>èÉr^B> a‡ü}0ùý뼡µÀ5ñühpÖõ¯>¡Í‹{×=Ïx®kò6œûÎggS>ó¢ëûŽmÕ_õ¾­öWΑ;3¿”r®z½s^y–ùKýŽíhõý óÿo´îŸØß¬;o²NLü.þDWþâ—°%Ôz¦aùÏéW,¡ð+¡Ý;í ]ôS®Ó®7ߢÏo6c[pr_dÛ8ïJÿXçy×Ó§ÐW¹®3¿{:ߣŸC÷[âm¢¯höñßνnñam=º7ëÔïöèú«ž/å¹ßhëß_z®.Ìu}âºå€Ó³¾è',¸5äs ¿q‘ õÖ?ë:üÔÖóŸsßõ“u%¸Æ¿ìS>Êþgâ>l§Ó¥ú¡É³ö;±óhOÜ=äËÌûÞC¼{‹v ﵈ÿÇÞ”{Œ ¡Ê³÷™±å^º÷1½7`ºÜ‡¤ž³mKý«ß·yòÁn•|‡¡aϽRÏÿÜãßÏ¡{‡ï'úÕÚ•öðõïóYý6FÏ Þ¢ØiâwG{ÏíoÏþÿSÐ_x¿Çþ÷ð ýzëª÷p Õà}qïÑû{ IlyGèß;íoÚ­Ëzï…x/ö ßößDèêaÈÞG3nwcï;@»äƒÜ«•h¯÷ùÕ ©÷ÑÿJžÕ7‘Nÿd‡ùÝ÷‡Úü‹¾ê3ã{b´×{ÉÖËûÃûýð‰è¹Ò™ú,ßB-—ß½v„üçáÈ¿ÛþCöý´yÆNôY =AùÇx¯\¡æ·‡~Ò¹õ>uü¸QåÐþö{ÇWþó¾‘~é¬÷’üL½ßžÜtzmÑø¯A/À>þ‰^}CpŠmßrÂÐ6Ù¶ýß¿gÿ³?ûñW˜§¶QŽz‚á¾ÿ£”ÿ• pÞÙ©ÿp×öA‡“Ný ûíè£Ø‡‘Ï%¤nkÇÒþ¶ßEóòåù›ú§?ýåkìO‡}qkßrîz2íCŸZóL¼ëv"ÏEîã¿=+ûý'ºHÿƯ{~£]ô/ûú=ôß{ôOÄþý?¥Þ¼×Ÿ"å|2!¤Ñ›üÈ'ÿ~;?Ð/àMþÈý ûà×ÕG•ûX¿âx0ŽKèïVÐýføÌs‰ûuíÖž_8§ä~MûýãÞg‰~Žó“vUí™Ñ§}³íëc¯„â/﯊ýó+œW8ÿR¯æÐÎÿÙúÒîOk‡¥¿ŸˆžÐs}ËÿàßóñKŽ~I½ZøÞò=Ÿñ~÷)¾¤ßiÏ熠K;<§ÀÏÚñËý›¹àv´~MÈ7ï?½J¹žc‡úÎÏä¾xvþÝ—ùÄóW›>=íy²Ów†f_¥ýq¶œ‹âªñaÞÇ¿&ûýmtÜø=éݺŸÑÎèþÐý²ö΃ìŸÜï¹ßÍ>ŠïÝ?eÿ¤ž,~Hyö|çyÀóAK÷¥àðfØçͶçÔ¿áÕÆ~¥Ø_¯_â;õ€· ׳îÿ鯦 ¥LíÝúÑŒûöe÷í|·Èïy_Ú*¡ê 5¤•¡öâ§¹0ÔÕäs™ò !uyÑoåHO" ñ†œ ¿ÏOünûO”ùc…ümgêÍ÷+<Ÿæy•ò—†¸ƒN¯šóí!Æ3¡ø‰ý|ô!Çøî ü×ôûðsöÁ„^ﲈÆó8~–6ŽÂ§òÝ1ôòéëÔÒß‚—q=òüœr”7ñ2®Kúѱ½úe·?\_-zõUê ü|ôã:·«´_½ë±ï×ß7£œÿ7Ο' ]Dÿ±sü*çGö¯õ\¥ÝD»Mð-ÿßò>ûîˆß3$lÎ!Ï”s×SœS<—x¾rŸì¾üO9ïZëí¹‚òOÆôî‹ÁãÒ¾ÃÁ%ÒN÷ãåÜýOôá}“œ»9OÄžøœ‡Ûyä¿äÙúeÆ{œ+/æ;í;m<î\×.ñý†=÷SlßW9÷qþˆ=Òý‹z§mÔ=AΣà™=%>O;_ÿxîÑè—|’þpÀ1|Òsª8Žà–¾Ã9Ãó`í/êû…ÿü×Î8—ûú§_Ä) Ï=s¾ÿ°çBìº{¿ðIêÍùsÚóèÍB‹·†¿{í¦kèÃõ38~Ú8­íáœ:Ûøw}>~A>˜äœKâ—‚ý¸çñ5ü_&”9r°Vâ\€cyNÜÉç—œÇ_â½ùp¿H»ãv–ø‹A¿›üÛ¹áƒýN‰ü>º†¾~­ÝkÚ—Pê³¶=ò«¿•µâ/-~ZºŸZc}ö~gڃߪÄ)ä<8m¾¹^iôMç7»qëß?Þ‡y<ú™¯C¿ ?ëƒuP½[ü¬·yðï9Ÿ©¢üŽ¿í´Ó·AƒcQì~²É×ðþ»xäü'ÄG"Ÿ‰‡ä»'Ï)·¼çùAñC|÷CîÑ;ÿ‡Ô½:ßýðºóû­Ìâ~^+vü ~4÷˜wÔs'ó»ì)—}ímÁ¥š86}<þƒ¾M=. ñég¾×ZâFžÿþï£mÓæƒ›n2öþ9öãúû®ñÌvx>æ¹Æ;伫ý-ßKõûï¹xn¨oíôú¤Ü ÿ=ÎgûàX=8?‹³ þ–ûV±—Öø8ÎSêÚ¼xúÕsž÷/Ž6ÿ´/&>.~3/›=Œ÷2Ö‡q–ŸÀNüïôËè½€œ›]¾È9÷×9ç¢g`þþš~={od]{®ëÈ9··uàSYÿÔsp¾O<æ–~î³>…€sû–ã žø;èžb߬~¥àJÅcƮκ¥_à©[½Yÿ®?àPŸJ?³ª?™¶|tÚéÑàMÐF?÷ÖKôccÿéè7ÕÛ*oœ'7nY{§¸Šv¾ø¯ñïÀù#zdý(ý*ú[ìïè߃žúýÈ¢GøÇÞ+E/üsÞg˜vÿüÀäf´ù7¾Ïç½.çOöÍ3ì=×Uü®÷ÒÄ#aÏþ^ÿ©ÄMþ;9~€~)÷rîa=Ͻ9ñ¯ðGô»–—û‰PîEÏ»—ý/vìàwã)>—snú¼@ü”§\ž[²±?ÌÛx¿ò¼Ïæ=DÛe=w”öè÷rzÁô›÷w”﬿÷"·9Ký7ëãûúß{eŽ;8ËÉø¢×Ò?h~·¿°çƒ/úêØßü¤ßƒMþm‹¿N¿'½~ßÝoé_Týdü~¢ßL;Š“îôò{Û¯Æar þŒ_ã¹ GÎDüŒøý¬ çÄyš}´x©Ü§÷^È­Øí°wÆï¾öOôÍ©ÓÿîI<ôÖêiã¯Eü‚÷­¬¸ô¿OWÈûþ5ÎúÚßöžÜKûÓ¦ŸN½°CNô·ëœþÄ]ˆ“a÷éZy?ºv;¸äN˜þFÌWûŠõ8^úO»•ví*í7Ê÷{ë­ÿ ©ã½D¹ÚoôCr;ª~â7—|Ó¯Ú㶸çÔi§WBãß—ýYîá´}“¸¡'õo‹q\Ù_Å¿§~[¿ÁyN¼Î·Øj_iö™Ÿ>ý›”÷ø hç—Åâß#çxýod¿Ë¹0÷.^bÿw ý…ûÝ_Ô½»¸µû79>ÇþùOãoßsa{þÖSœ{üÙr.ß[öáú¡ÇÎôžÄ}à(îi}³}ñkÿ°ñlƒ¯ÐÖÅ–ÎófΟœ#£'3®8”~|¿þÔ« ýñ`>‘ñÒ? ý§ÿ§Ä'Æù<þ½ÿæï-ÿ÷YnêÛÆ}6ú<öã¹·ç½2óïUqs¡úÑg|ôƒb¿¢^Iû÷àÐÌçO<ßÓßá׿Ôç ðy/‰‹Ðø?Ž‹þÍ8ç8N¶3¿·ñþ­Üg´žÊx(§èÍäì9S¯áyî‹ÈÙsàÝÔËœ·}Œ?ü|òl~ïú~l8¾¨×Tþr®ôüõÔP½—}‘ûzåî›þ}.ñ3°'$.öëE?ÕøøŸ$þ†çZø{ Yiǰ¿—ZýñŽÔçÄoÊ÷SÆ?vŒ—9'cÏȽÎ6î磧óÙyH~nçû0ü³üÞäy6zç±ÖÏ'â×µýþÿmçöÙïï¢øc~Üx¶97y¾—{—çW·ÛgÑC¼¹$þPÑ'&î:ú÷ÄÑnãùs‰ôêé|Ðòwç3ѳ9_·v}(zÇYÿ£®{òü²Æ|?Ò¤W¡ÞB¼h¿ïymѱÖµ»ÐK1æž;÷"“Þxó¬¯Ú±À9ržû¹ÜÃú¦Æ;X'õǸ“õÌß—æ¹@{–ñ×´oh§1ZükB‘‡Ø…´é'Óòö0¯;Ïj÷rŸSïÏÄî$Î9Ûcø¾ÄGÌúæþàèoõßûÁ¬+7*_5hÖìs¹ß©ž•õÐyZ¿ö¹—«Ötۘ߇]¿Ð‡•¸ ŸÏ>ýiö¯ÌÃÁÕ?ͼÊzûÌ«¬»mý=˜yØõÛõò¦Ýï[ÑÔ}º84÷Sú Œ¾½Ú³8x?ÃøÑù½­KŸŽ_µ/²Î’îfÃ1túÖhæupyØíÅIÌŒ6ÿ‚S—¡¿kñ샂Cw=ò½8ö»Óî‡N¯’ošŸ¾qü[âr%.ö±ì;Ü7¹ž{7~Ëõ—mÜYñ.3œãôÿ¢ô=©—¸üèmÿãïØ7µuïbðCú⼬žbcD»Ô«ˆšuÿEyîÔ»ÜN»±ë$=íJ½ö ô1O$õUî”›ìçØ§W¿ñúy§£þ†sɾ:žž§¢÷Pÿã9[}ÃË]ßÜé[ž/~)÷ªõ+¾Ÿóó…rÙÖæ~“~Íð‡“|=§éÇ|–tøÑIüã9{îò|†~Žô\ã—6”óxÎOê-•ÓíêÝ\ßÐûbß ÎR3Æ  OùvÆógâ¹|½ú÷ø‡öžÑ‹àOš½ø¿¦þM_ò3ÁulGoÅ~‰~~œÅˆr~RÿGÁ=]´Ã¸:?i\hý*gÞmÏß‹þÆW?°‹#ÁN¼—øxq,â¿´·ˆñ÷ï p'¿}Ðï`·ÿ3ôGê‘þ¼ÉïÒ ¯ð˜ñžŒW»EËç·Î'¿»µö÷»ÙA~{ǯÿ¿üíã!x ßÀ&3Ü?zOâ`‰hõ;›}´øê—x Žƒöê•x¯îÇŠ=Ê6q(Óž7®u:Ž{‰Þ»8÷¸~=öwí·#§ê‡ÑGsñcëßE?¥Þx‡sè‰Ô7©g®ñ<Õ#ë/§zhôDâzÅ ìGŸ¤=E½®ö}ìõioâ{½“ñgô‡`¨ÿ2® z6í9{ÑOÏ€so DõÖê•ýžû1ãtô“÷Fµ Ùôàñ—NÓÿ[þÄø—ÔødŽ›ó}Ƈxeêߦ͗×:u^ENþ­ó÷›bOIµßgžr¾Úüýoç©ÜÛÂ.¯]»­·»Ö=o´uê_0‚uñ+Ø#f Nö%ËÏ:ÒÊÿpè×/¿ïð~ZyŽßWý ù Öç¶îý·àj[½{Ç£‰`Ütíø¿A>ßò¯~p§=Îo—j/⸲‘û¡¬ƒ®¿Ž'rÊ:ºË8ì þïÁAœ§ŸÅ¸Ïbö~zâv»~{?¹õﭦϺ̾G½>ûŠç~ºöGô­ñÌ~,ñ"܉wiüð$û“‡ƒÿ–?µ›}™ýJë—O‡¿ÅU²ßã¾áÇØ&ñ-÷‹ô_«ÿ?ZÓ® ¿¹*õ ¿¾9lÝý\ðŽ¿J}ü¾åw8øWÛcú6nÿšýÈ÷Üïøc_÷Pðó´“÷ƒú-Ê™ ÎTyôY>x ½û»àHÅý€G7.¥qoQ=óŒ÷5sÿ>3~JpNœ+Ü—åžß¶Ö߯M¿Ðý±õŸ¶œ^ëtgŒ}q¿Äå¡%÷ð–‘[ï=yßj…|½Oå½µöaÞ;ó>Ù2û@ý æÞß{OÏ{oú/<Íû”¯ßÆ“ìClÏ¢í ßS|·Êû3ÃóóÆ*õ8A;OS“”sšvÐùî$ù¯ q;×+Íù´Ñ_ÈyÜs0ï½§¿?m>©Í<¡<{ 95~QÒ»®¸¾³/Èývïíü.zÏuΫè!rOH}§çÁ6Ÿ}2ñ‰½ç«>†ydmD»8sïéɲþ}FÿÆÞ?Îzâüɼ—ýú”øK*þ Î Ûs~">¬û;×/÷?­ŸöÐ/ÿ¿ø«Ö_“ë|ë—'¾@¼à”§þ¢µï·y~{÷Ÿ8g»‡úã]çÔ3ØŸžçí7×ÁVþŸ&~ãa¾òAÛGž`þH½wâØ¿–£¿ ×·‹ô“|úÊ`ú@¾—²~eüŸÁÎÜΉ¿”rígø'ñÈZýŸš¶¼vúÖhÎÅ3¬_wx~eÿ¨¾SÜ›xIõ â÷õŸÄ|=@ô¬Põè Ö‹›•Fo1Ãy¢áë¦æïÿz¡¹ßˆ> ~¸÷\çX/ä“ÌsCûá/ÇÏ’÷ _¬cÿÙs|Î ž§Õƒ·åãkêm­_ôê·ÏS_ÏE®¿Ïúð4ç0Îñ'£þ›õ4÷Ú:÷¿çÞò9;Ô7$÷ž9'*ŸÖSüe¾{ýÕ«Ìÿê_x_òÿ…zÎa<ߌoô‡®äckà‚yÿ󉟞/”ø*køŸ[c^Ë}”yòÿ„¾7x©¬›Ä}Ycœ¼ÿ—xr gø™øýÙË: Î{ãÆ¥;»vïæ­?ß[oãÕå™ï-}éÚ1ÚcÌûíE/»F|Ö5ü%&.!xFêñ‰Ä4?ôÑú=¯|¤8›ø¡o˜øÜkËsËfq ?5èqSŽãe~ŽÇöOÄË!îág3þè1Ö«ø·ÑvÀÔŽqô;ãZ/ó·|÷QûËxdüww ®n{kè7ã Ç>þ äKýªížï:íôJhü’9bÇÉ<¥Üïã½ó˜Ôùb—ò?ŽÈW¾6®(ñ¤õïˆ<~&~©ô7•ù‘|œgå{ç!ÓŸkx‘+âd¾s^wþßwcè1®7š{Æ‹¬Å±È}Dý8åùú±6çý1Î#Òĵà|r”sŒþ¬Ô—%Žˆé[½’oâ©“îûû•ázg\‹‰v.ª/ÄÞ¿NÔãdÑ;.£·;F;—q°ô‹úÁyò=Lýô#¦ÞÑøíÆ11Žûqú ‰3P¾õg&_é§mþ:$Á·ÎñWF9Ǩ‡|iëÿrü®~?å.ÀïêñÅ?¤¼ãèïÕïσKØO?,”yd_‘[õúâ/Œ©ò»ÉÿóΑ֮i§×'UoÜÙ×96½ÂGb7V?­Ýó~ü£=‡}¡éCŒ]ZÿYÚcó¾½Ï÷^?tã0û–#C=Zæu㵡çˆOô"‰Wà<.ÞíëëãAè>×)ß³Þìu]à½õr]ðžª÷§÷».ò8>ô ño >_?AâÞ8'¥Ü}}½¹èƈq?|c³ß|5øÒmŒ;8–¤ç}ðd¯Á/ð‘ú䔾ûÍÆÏ‚¸Kñ™úí¸­Qïëãßêc”ó¥Ø¡â¿ƒú|§{hÇsæ§Ÿ¼øwÒÞ6vûo#g»†ç7ôÜÿIÿ…¾ìUÖIý;WT{î_u<ô•ÐÄC¦¿rK¿–ßa<¿Æ{ì,ño'î¾íSž .¯á ~J¼½|ä_ƒOøÕÍlw·U{¸ö ìJÿ ÿ©ß/öG'vÔûÁÿƒNO{|³güTö[Øù¹§öá¿–Ï´ǧÓN¯G\'öÑàxÄï€Yµ¿oyýˆñpÄùÄߦ¸­ßGoÌ=ˆØ•Û¹è1p4³±‰ï|üÍ¥V^ü¬²'ÃíTè©ÅQY_î58N»ßoê=Ü?Qoê>{®è©ïîÆûs÷ýîÇ9O?¼ÁÉìG¿äýôIœO¹ú—IþÔCÿšñóÏþg–}–þfô êwÔ_Q?ã¶(?~rоLÿ›³ßÓ.ýUé‡ÊsÒÝìGwSð~÷œŒOw—ç-úáÖÓ¿¢<õÔ{K¦~m^˜6?Ýhà¿÷~Lð©âlš¾è.ýÌÇŸ·ûÁ×9?´yôÑܳ(~ÈÞñz¿ÖÏ»¾ƒüÔÖé÷ä|ÓÎ¥_õÜ¢Ÿ»¤WNÜ´sȧr/·í7>œõïnæ÷ïa'¾d{ÿ‡9ëOÿèmÅaê·Ð{œmþ\áÞãO'Þ‚ønöâØ×ÍÏó´úv>úgñ'ûçè ^§åyèòM¾è‘¯û{hoF7ÀYí\ÌoÚ¡cÏU_x¤¤×Ž«]Ö¸·ÇÔKòlü!ã0wÜøQÆ Ò^¶¬ j=W´s‘ßÑ6n±—b_±\ìâiŸû"ö‹Úµ´Ë³ßÐ^¨½;vtèõ×vT;õòý1Ú§pžvØoÇx¯ÞÖ~×^­~÷(õŒ½ßµú¼À~E½¬8ã/YŽãè8ØŸ>/ úóéÇÃ8U‡hŸãe?oé0r=ï~O»«õ¶=|gû÷ˇòõWϬ}Ò8õ±k’^=¶û[í»îK¾vÿL¿E>,çàp¿:m¹½ÞhpôêU7[y„â‡=¦÷C±f­÷ãÆ!`@?{6ü ÷ÿñÿ&¾2|'ŸjßA}kí»Í÷ž_´£hñ>‚õ×çë|7ÓòMÿaïßs0=xžíE®Þ¿›ÜúXôëÛ‡|ÿ0Øaã‡óVö Ø]WÉxLì ²¾7ýãsâÉ·´ã4ãpšv¯"‡§¨ßi× è)úïýœïè§ü¾Ê<³Êø™ïñK”ëýÆ3ÐS´Ó{ˆ§àÏü~?åœd|½7y‚ú'_Ó{¿q…ü–Éo™çÓÎÿÖŸïŒK¸\Ê9L~G­ýbAî?¦—/K¿Ÿ ¼%Ê9e}¡‰ÏG{ì?Ó/’Îx€ÆWtÝq]9Éz,̸„‰;H»'Òò(¥Õ?õ>IzÛå8žfð÷Óäïïöç½›d߯Iû¿Œ÷2íXe¾‡v>_-—~ô^êIÚ}Üñå;ðp+âßûªŸßX-û£êY\¯ýú-ös`§7.½ß}­óÈ–{úK`ÝOܲYò¯sÄ3ZÛž‰¸ƒØ~:øò¦§|üù‡ÞÞêžÿ¹ÔãvêçýýÖ²Ÿ®žsLî“àÏ)÷CØßå^‹þ»°w’ÏÒ.üŽ'.3ûâ©ÿ8v‹çrŸæNòÕÿúÚÜ¿Ï>'÷`´_8~Æ#7ž]³«~(~ÊìßK´×ñµÞì§2^w û7ü>ã;ÓK›>q_üX{/†û¨úëÈ}í4Ø‹ÕKrÿ|[øU?ÅŽOî§o>ÿfpw­ùd<ËiÏ ×:å>àO£ZÓÞîïñó'ì“¿ÖÆ7÷5Á¨Ž\ï}þéæ8¼_Kú_’ßÑkýôW??7-ßßs.Î2x†¦ÿuÆùÿLºóèÉŸNàü&›ÜÂóœ÷!ñ_ôXîá7þ9îæ©à Ô6½ùYü,ü´þpµgÆŸ ý»fkï!üH\Œý,ê/áÏ3çêɽÕ=±OÞ:ÜG9/Ô{ cyÌ£ŸÉ=;æÇÜ÷l|ð¸íž6_vúîPô?ŸÈ½Ïeê7ÕÓiÏä¾dâtˆ¿tŸï½˜èOù]=Sô{¦SOIyêÓ<Ÿ©l÷^Ú²Ñs]Ùþèz¥ñs뼸ù>~ÓrO6þUñ÷ýΈôm¾Z1n‘ñ’7X‡çù»èÐ%’zý\²?Mü&ã!%Þ çXã«èÇ¿ºà?h¾úÈ÷ÌwÆßŗOºø ãáCöMñjüjõcûÔC‘Þöqo9vý=ô§~-¹_™rÑ{åÿ‰c¿šä³¨Hzöá©7û¹üž¸6ÔÛq%߬ÓzcËÁÍNÿK}+üeܯÄí–Ïõ_aÜ#pMÚãõï—÷ÁÝ’~z¬mäw×P±xåô6ôT³Ô—}ûX^”7èŽ?㥩çæܱxåe‹8"ñ»ëº%žGý¶zpqG{å}Vÿ1Úu“ïŽA;÷¦þƳcŸ=4úåàfœ°;Æiûݶu¾›6ßuÚé;Iõçù¦éšü¦ž;=gÝRô@œñÛœ(þáþ÷ ¦Ý7+‡½TpÀœKõç¢ÞIýâ>Æ™}fâH©çÓÏ zOýN̾í›.F¯†ý>{"~…ô§1Û¾;×Ö¹ÿ&¾8íð÷¿"ÏÓâñlßô}êͰïòûK©ß]êñÚó›õ#z¯Ï_¹<µu=~‡o£^øµ™6_tz}Óøóçrr‹}Ùqí®œ·´7®Ž6ÿ‚ׯ]ýÞvzcÒømûáøùežŒ¿Ø‹›¯·éO|mDº¶ø=ïËgg~ü‘ÿχ[º—пþÅæ<ý_¸ÿñž‘ù4}Ë¿Õîä~>¿ë7X=n;w¿/þ›õ_¢ÿ½øÑS¿Ú迈¿½o±®a‡ .µíWþ/ñOnyæ£ôv^øCÒÿ3ãéïÜõRÿÇúÖ¿T‡Ô§è5ò»ßs^Áž9O{͇ûÚ—â—Y{íÉ÷àsôŸ?m¾¼ÖéüúO4¾ÑÎò-ö=øå³ŸsŸÊó¿~¨µÿég¾!Ÿ¥sCÎçÅYë/0v7í¶Ú»N“³ÏÄŽr9¿î¥^¿»M+?)v“ÆOãïxnüÿ¡Ä#¯…ç‘Ä3øýô4|†E¿‚‘¯v>"q˜w°c~Iû¯íÒvî=ƒ^uhû€þÈ©÷{Ë}éì@~ï8§_ß´Ÿé/•y²ß“~whøê|ã_ýÉêß9ûqîß\oøc¹Ÿ/®ÑøtÆOBþrGœ&ç¤õK­¼èéÄ3Šûo:¾ÝÎÉÉWý ¿·óñ,ëÚÿ ÞÉúªÏ÷žQîg·uñÿ¥>+qê´Sš®+¾Èþñ¹°?þø]ÇÚ|ñ¾´Ó{—'í Mλç„zNÆ?À¹×â}õ=Í®ÿ+ê©ðËè›Ëø§¬ß>ø/ §þ¹~”Êù÷9Ö?qϳÿú³¡]†ïo3ŽfÒ³.y‡ýäÿ9yL¿‰×ÐêûÁµâ'Ú}]ÖùOº~ _FÏÅ>µ¬s¿•u}¾ø¨Ìg­¿‘rþ(å>ùs›û[ãÏW|Æ´ù¨ÓËÓ൫î·s¯Ä{ ÅŸç»V/ñÒG)W?IÞ£— =„=Êv4œÁØ?ޏJõÞ·Þ;´[qú—r?¿Ðé¼Ï`º¹áïíÑŽä½?ïI{?Äûå¹?ýÆùu:]¼)û¢àïdÞæü¥8Uý“WêôÏ·a—¾½³øKõ꣹ߗßÛ¾j_ôßê»­çê×ÖÇOyÞ°Þc\/ë‡ç?ýKão ~¤ÑG‹o[;0Ü¥þêëõÇ?;Ä'$½zî™–oôôâE­‡¸ÛÖ®>^I§7 žû6öúu/~Ð×Fí/ö-ômú[Ë¡ö#ÎK¯3ß×=à»Õä=q‚È{ÖAîÄOñ¡¾£Ówiœö ÷wÙwyï]üÛÒPÿë¾+ÏÞ{Žjö9Á2Þ‹ÿ³È{ïâ\Ü×å¾·þo¼m=’N¨÷m½÷}p û“~wŒ¥¿qAê_šþôQèÙi[§×Íý,ï÷+G‡à[ýÜ]äÆûý¦×*sO)~ |6NÁ|/^Û¸îÄÛP>Ærëù‰tž·fG›9Ÿ,–ï|¯O—øuðÚû­ïëè­¼m9¯¢'âž@Á7ü·à/m?÷‘Ð/=¡YÊù…ð§qÒÂoèÓZMÿ÷p;”ûÁ#gÍûæê¹(mD>û†é3.ø‘Ë=kïK[îð£êɈó›ûãÆSè=lõ•ê ±áŸh)v«à×oÒßòÍËÈÑ×ÐC:_49ÿ'Ú±ƒo€_‘«]Øþ]ìzâ!¼Öä늜‰?yymv«'õË—û½Ú‹±G…ßZú'´ƒ«Ï^Wùù+ž[;?î=rÞÿLü=ídüÏ%(ú øxEüˆxù÷m¼£GÝQð,Úï^…/Å·/ôÊúQÞy$÷š-7ò³YÎ7¾•óØX>˜ß¬‡r+¾†~Ë2<ßDæ}gï9/r^2>šß{®÷þ´~õ·e;=·‹›¶N\ÞÎòæãÒÊ™6tÚéµ@Çðè•Ùåã×N9>y%^êÆÏêUÔ›/1¨O1΢ñ ¯”ûcoMÎ;íôZ¢q8ŸÄŸ©qmõ3Áù8~î&8›}ÐÄ;@ŽõOZâƒvzy >ñlp‘M?ôÏ·ñô—œ»~½É胻ީþZ‚GQîO<ܪççóßÿ~´Í8iŒÏáÜãl¯Çz4õ_ßà¼æ¹ê¯Õkpžùç>ò)ñG“N»ß®u|};7¯€?~Ÿr>ó°ãL¿žÍý¯?眮¾ÐqC¿¿fœÏÅG£ù1ô¾¿‰~âlõNÿ?¯snO>¤ÃÏÚ—ôd{ÔƒŠóO~­¼ÿŠB_á»—ÀýïÃOóÇm¯qi,oã]Æ£tÚé•Pï©0/ÿRü´ð~=<~±~k}ó»¿ÿš÷èÛrÏ¥ñûßÓoLî}ü[äý‰ÄýÜŽ|z»„~©â7~ÇоÚi§^9ܾ€ü¹bÿL:ä^ûeî%iO@N™7>µÎ}ÚÄ hë뇰[ü𹲟J\¢6|2öEì­çJ£Ä‰/~ï:½>hü—Ícosjâr~«¿²?ðΡÞ6çgãwˆKÜÎÍs”/þÑ÷â‡ÌG\®þÍWÙ çqÏÝÕ¢ø^õûÜ‹˜ˆS8[ôûâ‰Ôóßny<ãw<߃s—;¬G§Þ”sàúÕˆ¿gñ+â+¼Ÿ„?“øñ×OÃëC|fò×®‰?Fq7Ón÷õNsŽ?ä¾!ý.⋜ Úùà®è{ÄS´ñŸ7ñkñ÷€>g¿gÛ|rÚíï´Ó·BG`ÛuqGàÆÖÕ§5=ÔHÿ“Á·\ߢ~íôTè×Ö›^ûߘ¯z;ý}á“¿íÏÚïÿ&ñ=[}.¢G{¹ÜSâü õ[ˆßFˆ?DÞçÿ1žð÷9/üÅgþnùI<‚/“Ï7ѯq.±½Ö'~mÄó´ç_·µ.>‡~ þÉxê…g“ü³àêÔ_h ]Áßã›ÃsKüŽü÷¿¡Ï€Or|žÀŸÊm™ç˜ÇÐö{o¶ÞˆO?â½,ã_²¯ÜÓ8Àúa|Á»†ç”ØéöjŸâ]&êq°×µDsoÄsŸ÷å<¿•8•ø=˜åþÏã9ÏiŸÕÏ¿çºø5€o¼¯büHϋƻÜǾèÎáý¼üî=%ýç'®¦õÚ7öSùU»pËi{¼ßh}Ãßâì7ò°wp>)ý§=Ú¸•à #?ö¯÷aõ¯1K}ýÝû‡žÇïà¬Ûòr®æ™{ÿ‰#›ú*çƒv} ýa<ÇÝvpIo¼Ûµ¯ô«÷…—ÝÔÇïôï¼²‡òWóÕφߩ'A¯yG}8møï3á§Yêu õÒÿ½ïM¿[ýq¥^Ögוá:½±iâé:/E†¾l«ûÅ{ _W<‹q˜÷wÜD§¾cò*nÒøè+ÈkÃ? û=ÁY.!×ú:âï£Í¿eÖ‡£ì דïVx6Þ•÷±Åm²n¥~î+Žˆ÷¼¼>®Ó›“zŸ‰}öG³q=¹]û éŒÛÎ~*ùx_ßõÆ}™ë×Ìhó/év¿1®8þFw¼1Ž2ûBý¾¸ÏÛÁ{ç~Mðšîç¸Äý³ç²÷œÁ=UâôtÿŸS¢ÚµÃ?ú±5Îûìuì‰Ź;úÏqî—ô[¾dÿŸ¸rØ1£ïö|°£<ßÊüë¹a'ë÷?ñÃû™ØEõ‹n|»¼§ÜÛ¯ÏsÀº8Ò¯Óoú§¦ÿ¦]¿Noj|4æó?Îúu{Yçvk'#½~ÛüñÕ¬ƒÆƒÛÎ~ÎuC9~ýü¥öì|0!¿‹Áx ßXŸÙéUŽû,ý¯ßsôIŒË¶ø-7Þ¦zõ4Îç¬âªrwü±«F?$©oÜÂÿÐÃzpçåÏñvÚéçïgž;rÿ[=õüåÏ%Û÷ï—‘ï{z.‡§ýÌóÓgžÑß8µä{”yi }¸zoõïêš~ùóñS}¤ÏÆíó>ü}ÎY×þ­¸Ù“Gú_ˆå™ÍnÞ¦¿£ØÕÁñ&ÎË_b—nvö‡×Xðoÿµø·ÑþÜìã?ûv»Ÿõ¸þó±ÇÜÔO§ûþc)WÏs¿Ëû3àl/~+þwqÿñÑúa.þG|¾Øø‹r~+å]âþO³³ïËû/ò]«ßbâ^jß§>ú÷‡0«_ýÊbwR?1ÜgxÄïlOî7‰[hõÞ³6¢Þâ/ÀEè×&ý!¾\sòeÝ÷ž!øŒåÄjçšùžúÆoÉ—7??0mþ¾ÑiöiúQuŸ®Çs}Å‹36޳û:ü½$ÿ9q ä;­ví2Ú;µs3¿Æ?&û<çsñÆÎë[=R®x=ëùÞF}´ïr¿8qîwÏ-WÜûJùê÷lŸþlÕŸi·=ðÆ8Míšy޾„üÑ£ÅîyG×\ÑxÅN̸Ëïmû'Úá‡};üè9•uf}3¿Ñ6peßHþÊ‘ñÀYFü¡ýŒçaýìe]e]!ûãêY³”ïG;ýX§Ÿ)ãT‰÷°¼K<¿‰Þ¸ÓN;½þhâïJãφuçôåïŸnc^‰¿aÖ{ÎañÿuˆßŒ6ÿ¦ÝÞNol?ëw ö‡_Ðn?NÇ{ý²‰k;̹~žý—ë¾8<ù{®”Ã}šä?{y}D§ïÒ¸/5ñ-·ÜãÅ_nöAî“8_çþ÷mÚùrI¬çÒè³Ý÷ŸP»"û?÷}îÇö ìó±‡\,vUëÁ¾î§Ò®;ÈwÔþ‚ ߨÞsšßi—âXÿ{~Ÿ¡¼òe_ª}Æzè76úú? }Û‡ò¥ÿüünž½7ý;Ø•õkýúpÉ}mî-PÏܧ¢Ü{ÿ!~Y^¦ë´Ó‰êÏÖ{›èÃ>e<ݤkúÎSºÆ|¸6j‰#ªþqS8ûý3O»N—F§þcf´ù}˜ú%ï™V/®’¸fÁE‹»÷þƒú»øùSÏF>úÍ4îŽ~LoýÞä~R§×&þÉøuØâ¯E<Ù­C½“z-ôUfÿÀ{ŸÁ™€`_ðKÁ£À—úuI:üÀˆ £Ïáïi¤;û™K¼W_̽ª²/|û1õ{à$ÞÑû+êk•3ñ â%Ôk×ûIÊ~0ooÙÚ¹¦þ×þRÕ÷©'W‡>Q{MüàÐYgZÿïºÓO|üÎ}™þþ‹Ö^öÖÖ´ù±ÓN¯†‡Aùžð ùEìš_kv[øýœ ÒóËú7‘‹vÎù4öèß.÷Éë7Îr¦ÝþN;}+4qE.Ž6ÿˆòUý&^ÍèòûºÄ;a]Ñn~7.È%òÿ 8ü8àçà}Óî‡N;½?¿ÿ<Ú†¼糆?Qã‰å»¶?ûß× ½ø™õIÿgœÏŒ·ÔÖ¯ýúë˜v?tzet}“þí9å|£¿»Ÿ0¸­àªõ/徯x[èc¹o²ý®|Ùæ×Ÿˆ¾½÷º8®/ú~€gø¦çqú¿ŒÞýVôöž£ÔSÿ‰øõÿè™9§EîùJ=ýóìÇÚùæIð=ÛhÝ6RNÖ=Ÿâ7|ß—â§Ýýçž/üúO´sr7m~¸Yhì-âþr~Þ§¾ þ;À¹?v=èü•ÝÓ¯þUò;7þFÆþ+ƒkÇÆù[û¹ú²ƒâØx¶¾³œÏl¼^ï#ßM}|Ÿ””·ú9í—Mžó{¹Gš÷øͳþG°w¢Üg6ñ*Ï5ü]¬5>dz¿†þw }¯ñöÖàó5øÜø©kÄ!_C^SŸ½¤·þ»†xÒ5äj­à&Ó>ãjG³ø÷XCÄ[¯!¯øÙ|bùb{ kÜ+Xã^Á¸ŸùÝtþî÷ðyê_¯µCöãW°Æü´amß`\?±6w}ÛoÆøaæAý0Ô{â7œwÔŸª÷Ýë¼Ùq—íç™&GKŽ×/úss€q²þ,^ßüÕi§ïM\ÎéÁ‰ëO£œ³#o¬çÞãÏyçâhóo"½öÖcqIé<'ýÅåïËuÚé;A9ÿ®ñ©ŒKß›þõ·Ô?_×ôLÉ=6ïÓ}•óu;ÿÇàèFíûî/{¯Ÿ{a/oG¿µ‰³Áy>÷Åže_‰3.ÇÅ–¿q¹×°Ÿ&õðžß«Ç6nu¾ÃN;Ž/O»°g«×¶^ïôx¬ÑO¹Oi¼oï¢ïÈ~žv&Î_£¿IüìŸJ¼wæ7çŸÄ%SÔî >?õ_EߎÒþÏùD;€õd<'_€‹Äþ¥ßô9ý8'®x³¼?ñôšþéŸ:žâ£×Ðûú?þ“áy¾:ÏýПŠÞ´év¥œ¯ÃO0Gô_ïÇþýÕ­îSvÚéõL½þu9™Íýnæ×ã*ENšœ=½+z_ü‡?š8hè›™f¾ðIôÆm>8`œÅÔ ½4òjüµ÷|áÿYÊory–8¨ §?Ìó£™/¿¼™Ý]~/ÜxŽÓN;½ž©û¤È'ûDü-ìsÿä~½ÜçÙ}!û ÷ ìëÖÐ?¯í,z@÷?ìoÖ´wnþÞï©]- ~P{œvÃ6OÏzo>÷Œ«?Hý™ëOçî?o﹄O\?XÀ~¼áþàBÿÜá_¡Ïòœ­ý’}`ì¬ci‡ß¯Óø¹¿°ïüçiÏN~ú q¦?|ëíø»‘Ï_õkò£úßÓ¯weÿÛÎùÿ\ÙGωÃlév«‡H‘¿2ò"¾ ×žÊ¹é/9¿ao%ÞÔ¯z|~hëçcÈçEý©L›/;½>èÆIôùËØ—±×or´q»î zýUì£'F›øyþù¿C¾Vø}¹Ø%õ˼Hy'°›j¿]¢>+ä{‚üŽבN;½ʾä7oUõ,è)5~“óóëª~«ôo¥ÿ§à!™ï§ž ûâ^ö9ŸwžW/²ÆýÙè«ÄQ²W0õå>¦÷Åbä^iôemÝøøØ¯õlëÇ— ?Pû¼ßf{Óoâ”\Çл ï»k+}y§NEÎåãÛÔ76ÿ”ôœOú¯£'U/Ùö¥¿·F<#qI‰ünGÚÕû~)ß©Ço‡ÃxÓêï§Ý_Þ4þ ýÝ·8W}kè·@;DÎÿÈ…~·Šýæ #þ°ûüºqs§ÝÞN¯mнçr>þ z Ægãûôí|ÿ>ì=ÿˆÞa_â˜b7âýœöMòÎû‘þ.8³¹%xüm°Oz2~°ϬÙÍ’öªÔ»Ù¿>;vJã-x?mKyå>,úú?Ò¯gü³²n­ÝAº?Gÿßäü÷b×Ån‡?ÕÅiûÍJõ¿™gÏ¿wcw¹ =Û!%½þ¼Àù&ÎQ⇢¿;Êyyv“ŸGú_×ã÷¸jã@ >p/ú€Ä]'H»¼-¾Û¸—ú˜#ýþay)W|¡÷«çvdx>‰Ÿ¨èf†÷×âzo_—:½ñiî-ˆÿ×ïGäÓùyÃû9â½á}ý6ìg¨_矗ÚéKãçM\8…õÍßGÛô›¢?BpŸÿ9ßkª?×­æÿpK¿iþ´u\éÍ@³ßñ¾Û<óùaæñæùEžÁÆ7n´~6Û¹ä3éÀ‹äh´ù·±ÈþË8úâyR_ï·yî0ù/ò½q:¸GÄ>ö£iŸvèýC<–ýs7õÞ"þP§^tâüâ}ÏÄ_(¿ïC¾À74ë’~Soqc¸íòçÌN/Oõ{æý}ñ-ú ŽÒ{êâ˜ÅMmê_f¿c<ôJO€«þ8þºÞϽü‹‰Ç¢}ñO‡ú¦Ô œ¸ËãVaâ€|6^åç\=YÓ'ý‚þÌÖ7û ¿“üÐ+ǯ~è ân‚û¤]Á¡bo-þ .ŠGOþ+)O|ø¡çÀ}·v]@oøè¿ýHðóâL/n¶kä¾-¸p?¹_ñôïÓ:íôZ¢+ì§î/t üÎâp~Ø8úp’ýØ ôö¡Æ[/û³à|‘ÿ2ûQý’.‘ï‘r߃{*Î?ñsØäì?¿ûYpàÚMÿéž`{>8<âa1/îa~øQç•Ü7_"÷–Ú|¾‘û,.nï<6{Á{2Ÿ´vübæ5æ¿à\mOÃg|„ü~}þ ÷¬>É|ôÿþ‘_¡¾_ÄnǼ >3÷e´óùžu ¿#žÛgõs¾ã¹5p ÚɽG»C«Ç ö˜äž‘í'Ãúö©sà5ã?Œu”uðÁ-joãúïsÿ‰qäý“âVÄQæþ8HúýÓÞGË|_€·ùyÝÞ+úֺ}$ž5÷ÑÏô÷_‚ç÷cœ;ö_´ÿ—'ŽøÐkmÿ5ÐmÝ})÷±¾Ý‡ôâ¦=¯t:]ЍO$nBó¯÷½ØCáóèmc·lóû»ØQ_<ðJýøgŸªß&ÎÈé/ÆïÓÌgm~xlcÔþ(çÉÌ/àu¾ðÉ¿Yý–åÄV“ßOåwæõpÓ§N¯M?JsÚ!±‚ÛŠžUÿNуGqÙý é–Ø÷âü­¥Eõe”§¾Jûh£OXÔÏxNÚ{îù¹%äØ8Qêû–¡ú 9J9Æíeßýß¿«ÔÏ‹q€›=÷KÓ§N/O½§¢^ÀûÔž_ÙŸÝ?è›ß¶OF¼×ºû¥¶Oš5_ïû¨ÐO`âò‚;QϾ—bØ9‡8~àïlëFü ïâbŒw=xëÏ~;ñI;KÛ¯Íj·©ýýK;7œŸø½íÿ?ÿvÇ)v#ýáUý›q’¾§=–ßwsÿŠýzâgi;xíHàÆûê=ªøôwýÚ‹_ª~µ/ŸH¿NU¿hÛ·óÑw†ãžø³3Œ—ó§úHÛã}4Ú¯¿ÊøqA“¸¶‹û¡ÄЮ¦=Ázhï¶_г¦ß·—þvœ,—~LZëaÿmƒÿsåþËòŒ à~l†þ°?áßqÚˆu‹ó-ãö™Œƒ~oyÎùýrâxèS>4½óëòø_¯µ \Ö'¿½ŒŸ÷c=ßÁOãïég×mÃu¸ÓNß šyÀ}úý‚äþyø•}ú]×Mù·í_?4ívÝ(tãûý »þ‹ÏõÙýàî‚Ûu_!žxŽñÚϼt€q漈¿˜G‚㽋})~PsþÔϳñÅöR-pÎvz#P潟!ÎÊ…øÇkûš³¦Ónâý ïOGÀ:¯}»Às_øõôý FœcŸÛ²¿¿)vÿPûFÎóœßµcéÏ#q[þûûì¿­ýlÚýÛi§×#-vÃ/h·Æ®ø›Æa î§Í ÷&~ ënî-cwîåϱsâH±ƒ6ù^Ï{ÎÕÉ×yç9ì¢ÄÍö™yj”r8'ê§`¢½¯cßÝ|þ~üÛV^îg´Ë¶ßÅ9Å]Óÿüô´Ç­ÓN;ÓöûÚ³ŽrX>Úü‹]ìçŠeìbÞ3:ÈïÚ§NŠ#â{íTúZâü²(ž }×å[žøwí[úZæ|búeñPÐeòUz”sË¢å¢w:F{ŽsN²ÜÃè9­§÷±–é¯cœÓŽ@i/¤ž‡­ïÐŽ;ã1ú×8ÍK”»Hÿž«6ŽR¿ã´×zkOŸw úYóþ´óÔ8SÎsMÞÇq°œÅ?,9¼“ö¾Þã¶?íGâ¥>.¿ÿëôƦÁ›>¸Ôöü!ýÄèG ?e/ÅÏL;¿üQüö{¯‚s’q5õc˜·£·ðY|-öbðªO€Ëü ¸Ïà+¿N}îä2ùÞ}œûâÆŸÍìCÊ>®Ó«'ãÌyòÞ·çxÏWÄ]ÌùŽø‡GWÎ÷y^¤ñ`ùòɰ‚ûÙWÎy¾ßC{´k‹ƒô~µ¸Kñ’ú-Ø?ÔÇtzyšxcÍñ‡àí~m­uÿÈxÞìo~ûåŸÅo¾ø\îyŒûfÿÆrÀùîáþÞ‰/Õ옟¦¸ñ=?ñií|ð/¸WvP»Fî/ûÌïl²Ãû¸øŸrN»û=¾Ë=Ï+-Ÿ;¹_sQtö‹_ä;p•œo>t®Ýçù›Ü·ûöWq5Úc_ÒŽ2Äa'zùßí}Eñ’IG}|¶Þù½Õãõ<ó}üéÿCû¸6úóýÞ{›ÓæËë'"þW^ðÇרOåþ¢çPðÃñ{Ì÷œÿ…þ'WâEÎ)œçå?îÁþCü Fn.øâ­êçáçŸnû&ru~˜—ðaóK;ŸBž›Rä±þ9rg<ížð½õŽ]¼ð¹ó›Ÿß~oùm‹ŸÍï å(õ¹4”‹|®ºÊ_æ§V¯g“žûÇŽã‘ÿ6ÏýÏú;6ßuÚé;:aÏÚß`ÝÕÏGãû7 Nt ÁS‹CŸ+û¿âg Ók›nœ`ÜV KìÏO0¾Ë—·ÿlûvíŽ%núÆ)íÀœ{Ns.:ÕŸÅâ•Ù%“ïêåõK¶‹|ó®ÿßeÏKƒóêg›3q¿´Ù—'ãYëóçí°wבœsµCîv›«âWñÒâœrÏ„qóþ‹øçC>Îýì&¹§ÖöÏ%›¸lï“yßi/åùìïì/¦ÝOvz#Rý¶iÏÌ{í>žóÕc|sñŸ—óµöLõ ÚÛùç“ØQŸÔ¿ z“ÛôOÃ9ûkÑo4\çoÅ÷mÖFíO@à7gâ§F{S;o=I}g¿Êtê1°ÛO*nô{âE9O¯½ç½÷qÎüíÙ5íñ¼ÙhüG¬¢ï·ê>Hû ÷«¢‡?Þv=ì*Ô}”¸6ñ|Æñ;ÁþÎòOBÝ-Sî*é—)ÿ”éÑ+Ÿî[6NÓŽ“äs/í¶Tê§Ÿ²“âÈÜ7‘NýùI转Ó+ÔÿÊѯÚÃÐû†çú³ô—~C´g¨¯?)~ˆ÷«´¿ÄML~'®n¿~?ÔË'‰}¤ú!‰_ú]œ£vq@Žó·õѱ_öC¶Ïü´?‰3‹ÇGõ7bÜQq~úƒ9÷UöËç¿_þèýËy?2þ>±shÿˆ¿Hôïîw©÷?Ö8ÁèOÉ}¹þD‹ýò<÷Ù?xÎ}8ûÛà Ù÷j/Hùî¿¿9°÷­ä=zPí3úyÒOhÒµzÒnrns\FÛìOêù'ñk,¾ ¿Ôû¿ÆÞØž3zZã–½J=õKÙê÷3‰‹‹Ý'qbÿ{Ôvê=28HùÃsǨýyIÑϱ»ZoÏ;ÍNó ã°ÇÏ'åÄ¿lë§=Áƒ''íb×ðÿ£]3ñ<µßˆ”Ï2¾ƒ|Þ?m¹¼Ñhî!›ó©øä;|©³Ãûô7¡\Nœß}ßøI?TÈÏÅïìsð›åÁW‘+å{dæ5ç1ìûÚ‹¿Ýz.ŽŸÜ×Á‰:ß´yðãÈÂ;x,çñ?7_øÚúk×õ\¯=R»*rNêÇÕdž Ý⟃·¶¾Àñp>û¦rDû™—”óô¿q¦ŸéúèNß9ZíGã{dœC<÷œè >¶qfxþ‡7~.úϧ‡8±ÿ¯¸¾s¥âCå|ìyˆsrÒÍw|ÚU­#ê3ñ‡©ž2ó#~ÕrO½Ùg>Ÿ÷î8ï®íVïɾæ[C\*óêOe_Ùöñ³œuäåÁ¼úAq)ñ òúо³6C=ðÛȺñˆé½§gÎÙY¯Ú>òßzŸfí®Ëë:íôf¢±{ àQþõD:Î=Þ˽0pÄÙ—5¹}|mÔþ”ãìÓØŠwKúYäû–á:æ=3ã$®ƒq¼÷¦\»Ï#~§ó@î·÷ý^üt8ï#Ìy‡ó×´Çéf§ñ£}*úiñî·‹W€z¯Æ{4»ù^ý±÷ƒõÛ«¾Wý¬zcqü»°'¨wÝÓô-û±/ì)úû½èßMÏú´±úîã½í!ÞYü«_ÇŸû'ê{Ñoãw4ýdÓŽv‚zXí¬Ú_µkÕ8èËC|q¦Ýï^4ç`Ï—ÞûÓ~¦S»›÷¹üN»Ÿó¸öA× íú©¨|¯}4÷ÌŠýÔ{‰ÚO9gÇ~-®2÷‘q ‡µƒSeÚ§|zŸQ?0®+ÖÏuÐûqÜ{Kÿáÿ"ù{_P|`ÚCþÎ/X\O÷UYO¼÷¦}×uUû«ã¶Ð/Ÿízw†®•õ;ûå™6>y¯ ½y¿Æß¹×ñ¯¢¿öÜŽ¾tœçÎó±{' ;š÷[‚»RÛ~ìd£ÜcÓs=3çqi±ß/;·Y¯ {Òî}8÷æÔ«hÿyýuÓ3<™{Cßö'zýßâ>Ýbì1­Ÿ¾M»zóø ÁÎd|@ï§é—$þ@îÀµ ½é°å|Sô7vú¶ææ æƒÜSÃ.ó¥5ü.­ÝŽý’ûÇâH“v”fÇóE_tðyô‡ò;绵=<[/ç³]Øq°s®µu&þ…Ñ'~=aÊß»»º{7+5¾Œ÷›ô£}P›‡s?7ñ3Ûû÷gïÓÚÿÁõÎý(qÜ£6® þ¶—xt]{¤qS¿¾ ¾KÜ%¿kóëï­c÷K¼RíìØûˆWó“Æ7ñ?BœuãÛ>ð?ͽɯWñôéÌ뉗ÝÊý_³Mû¨3¸‚¹*G¬ï1.4ëÛHIâjÙ?¬CY_Ÿ£]Mþ“à/v²Þ >åõøïnã2Ë3”ÓúáCà~fÚ|y½Pâ]ýOÈû0êÅÚ<7›xEÆUÊ}ž=·0ÿf?®ß;ýB¨?ówõ]ž‹r¢^ÞKô`¼'WO¦~ì.Óñ~—ú6¨8Jýùé¯Ï8ƒÆíROæù«ž+ô³ÓÎGߥ@õVÆSOgÜ!ê‘x=ÆU϶ý¡qŸvÚož+«þìòú±è Ñgçý®¡´Ó냮oáïŽyþ·ó ÄóEîý·yø×=§´uâϼGœû4®“¤K¼hçí¶¼˜øÛ}¿ßi§×þÑûê]õ§íý"õ†ñwFzõkÅŸYÊÑ?÷ÁËÏ_–qQÿX÷;K¿¿Ï}ø“q|Wö!¹çá>Dû"û;÷e·t;[§^k4víBñ¯È{ï¥ú~ ù×O…ç£Eì%ÆWÐÞã=Tïê‡tÙòÈy¨gŸ¨çÒp~šø=÷ ]o´Kq®Ñß»qÙ½w„säçRíEÆ·8\æEûåèÇÐé»Ì§âA¼ˆÑè†ü“÷î<ÿî-8^ýXzßQ»v¼æ¿eeÚí¿Ñ¨÷9ÀÓ¾?÷*š¾pWô†ÚÙþ ý»ñ³¾Œþ°éçþ—èóš~ï{žCÑÇþ¢~/õ‹è½)ýNê2÷+°ga¯;±þçâÉ;!÷–vÅß¾zÚ¦ýùuqú»ÃŸVüàé7âùcßC_9Wñ}¹Ïõ"´éw×ißsÚï8ŸÇ/!÷©>±¶s ÷Ü‹žö'ƒsÔï öî¬Í‚¿z=«çtýc8Níý7ÒÏä“ûp=…xêÔc_üW×,ñ´7RÏØKôki½½ßõŠv^Ú‹¾.öEô[ñËH|ÔàÀ­—ã‰{ ?Ù¹GƒÞmD½wÚ”}PÛoŽßݶ¯š¸WÑé»Cs?eë>û³Ä“nv—‡§]òYø·m—¾?ïâ °§ÃGÿ^ûûgö™³ñ÷Úò_Éý}paî§S_qn»ÙßÉïÍNÿ°û²¤_÷*ûjìùîWÝÏ]q]lò~nrö±ì§ŸsEÛÿ#ý½eÝö§‰ó{ä/ƒkpü:¸¹ï Û“}ôÓÈ£¸¾‹Cüi§ÞH4qB«¾Í¸ŽÚoôÇeœEýi é{ôo5íöuÚé»"7Æ õÞƒ~µ³¤_ÃèÅG›KÃûHÉo½6þ§Ý¾N;í´ÓN;í´Óë•®¿¦ÞÜþ r;—¸kô+?¶±Mœ6çõåÞÓïø§N¯º±"޼Lîsѯ·þ<ø õúk8Rîä¼Ôò™v»;íô]‘§eì¢+ð»ñŒ/¼8ÚüÛXA^Œ_,^í˜zƒ"?ÝÏH§vÚi§vÚi§vÚi§vÚi§vÚi§vÚéÛ¢ñc­?z￉‹ÖÏÀ,öqŸ ØM}Æ*¾zÚíê´ÓN;íôÚ¢‰¿£ßâßáwk¯qwðÿ9ö›ºœš~Jý¾øë´Ó‰&nÕ!öWâkô'¤ÁCú@>¸‡c>úY‡óQï±M»}vú®ÊxNãñÖûŸ+C|sÒ—Ëçeäje§ ÓNoDºqœó½÷8²oÓÝ1ÖýÙ‹Ÿ>Âû#£Í¿ø#<ÖýawzãÓÄK;ŒÜxƸ ž_ð3?ê×ôs¬«»û=éNo|ÿ´Æq4£ñ½W3Ë:d¼Cý¾ŸQ¿¿‹Wç—§ÓN¯Gº±ä¹DÂÞÃAnðOý›þ¦Ý—ç7þ´—úzÓéK7N°¾ÿúÔð¾ÙÆ Ö“¬+ê VxÖÏÍ äÊøÙM/ð±i·¯ÓNß¹ñ<¿Äº²Äza¼œäB}ÁÝøÙ=ZîKÏÀø9Ǻ¿ÛNo|ºqþ¿¹9‰Ýæëˆúé#ÅOÁ~9N PîVú=éNo|ºqT%žÚAè"ëÎBYgŽ»Þ{çi·«ÓNßy9î¹Ä8VÈÉâ^‰X1NÏKú¹Ñ¯‡û9Öåa¼ëN;½‘hì™ø£q•8oʉú²¬?â§y^b½Yò¹ûOëôÆ¥‰#¯½F91®üþ‚O3üÁÑæññŒß˜øþ>íöuÚé»*?'†¸˜ØmÔ£­êGÝýräþíähó/ñAWÚó´ÛÕi§ïм,³SN€;7pl´ù·qR;g{žø^¹YÑ~Ó÷iÞ¸4výqž`ßuD\Àhóoc¥à×L¿xy9Q=íöuÚé»"7â0Õ/»›ÿì½ôÁ§!Gû°ß¨G˜ãü3ßí7Þøüًȃ~Ôx¿Fçña¼Fõα{.÷{kvÚi§73å>ÙgçÝ{iåþYÒ/hßd™7®§qåÛÁ>íPߟuÚi§vÚi§vÚi§Ó¡Äçü)ð2Ü8À9fçš;‡v˜õ¿Vÿ̹fvRý¨‡>ÐïIwzãÒ™¡¾Xÿ‚;ƒÝÈ8´õ¿BN´ïìÄî¹×÷£Í¿}/ÐéO7f°gî-r³‡ç¹&ƙޘEv›¿‹ÕÎçÙi§7"ÅÞÿž£ÈAðÈ“x€ÝàîÞ”“Ïmþ©§žv{:íô"7 ÈÁQè>Ï+¬/Ê…rs˜óÐ>Þ„ê Å)ø¥i·«ÓNßU¹9 ¿Ÿ·)>šgñ·Åqò\î§mEŸÐï{vzÓ[ÊùÞûj#öe3èô{³}Ù¾–ný5Òï÷y ø´]ŸÖéK³~×?r0?ô«‘ûhû‘#ïèçÓ{ÒÇÀá,ö}Z§7>Ý8Ú¸3Þþÿ·w.`VUçù?Ãm`€áÌ ÈuП¦µÑ`â?µÙ;UlÓÆÄTEMLÛ´Q4÷¦^ Mj“TEM¼!jLâ=iÒÜèÞ¦µ)ñc¨ZD@‚‚¹"b7g½¿÷<{IÔÀ=ûYœsö^kíµ¾õ]Þï[ß’C>Ïq’7ä“eÓ”ÿæï/Uêie¹ÿ—ÞÐ >&ù2QvÏÔü¹6éÎ+”üÁÞñùå>‚²ÜÿËt²ü–œ_Cþ4ç³ÑzèªÔþ|(ë„çËó;Êr?,Óƒ ù6Tú÷õ;ùmÉ7HÞ%‡È7Àzw#_nwé÷,Ëý¿t~AòŒ”<éªÔþtNÇâ|~4ö献VÈßQ–e¹?•õ¼ZSŠúy£É#P©ý¥“ÐËòùÓÿvry{Yî?¥×‡å‹ö{N‘ýßð1ßOÞèîÜù7u|z¼ð4ü¤äRž‚F¿oY–嫺ž:ÉÛ)}k èŸxöCåCÉ¥*úq¡èy•Ú_£ß«,ËòYœÿä|Ð’#ÄÑÄy…ä…Ò:™Êú)ø9¿SúÞDéo“K¿gYîûe_yg­‡ù­—ÑòƒZOÓ:SÀdߤSô½Ï)Ü}{eY–eY–eùÚ.½_ Cz[¥€“…´+O¿úw!íô5^±öE;D/¨ÞA¿>OlòÉÌŽ[ƒ+F\Q»kßßWÿCýÓ£_Õ^cgô¬Þsðîé: ëàlÛcô/ìhg˜Ïh‹~ïÑz õ¿èõ¸²Ö|{£é²,÷î2Ÿ͉V‡õ}™®µžà/ZÏ7™ßôÓz¨äéú„n¡{ø„øÈ2ê{ÙrhqCÑfñ‹J®ý Ѧ€;kÏòsAÞL–œ*÷ß¼”¼YøQ\ ñ Àßãª>KnÄò7[Þ W$7zÝ':ж…z4G¹剈6æqäW´¤F¾=R#ƒ«¢ía^EoÓÜäÜ€2Ž·,ËòeóƒÀç?'þ?]|v¡øì9Ñ‹ßZ/ zЩ…ç/Œž•~sWN-“^4ýÉò#Ô{ŽôÆÑÊ\ý§Å-Ò;ƒœš)þrsôtèŸõÔ ßo¹ö,òJzfñ'½ŸûM{ÏIÕ}‘ò ˜OöËó«ä۵Lj_ÐèùkÝÈžˆCÇq»D%ã¯ü èù±ò×Å£~=ÿŽ»t¿â™,g´=!ú‘\‰•?Â÷iU¬sŽãVéûÁ1—ûÜ^Uí`´é9åÍ‹_å²Zx¯²wFp¿ž×yeqˆ×Ú·Šž•ç¢×{WÕ¾òÉjÝUãÑÔ£÷P¼˜ê;-n×sn¯ú•wVöå¯Az^ûâ‘¿Þ~§~çÕš—l~Õïö¼?ˆ‡„ño4ý–åž•ðÕXyUìÖ岋¬M÷!Æ1Û_*9ò#ÛÅ+jË«I¿?*{ûÛÈ‘ N•·Rúàuªœûî뎤÷Ë^˜cyª„¿h[h߸ȵú:ô}Eòæì ßôÐnèÖvüsÁNž×ý¬û!ùxÿH~MáÆríy§í±þyü#ZZ«7‰‚}4¯ÑôP–¯L‰\ôçvѱüÜ–kŠ6Þ‡ƒÞ_<î’ÞÒ&9ÀýȵNèUv•å¨ìnî™ÏwÖ}Èwå?»DÏÈe³ë:ÖyPªï4½×=½ÆcÜîó5YÞb*Oºå8ò²Czê nÚœßP–»/£­Ò_æðÔ™Ös ôôùŸ­G£B‡ØíCô=¸ú‚ô{á²Ý}öSü¾kû¾Ú”£ûnë¡’È1·§¼aq§Jú)<Øz×`µ38‡ïÞ+\z–ïkÑø±®ÑZôY~zëaÂû±‹M^?Úg u}š×3v•Þc„ì2áÝ^Œ~é²µ_Ãø¢êÿIOÿ¢í5èŒû4®²Ûî5}b·nÖ÷Лä=ý“=X;EßÌS›ÞsXŽï7«þþôW¿«=ë¿íú¾8~:Õö ã fÝ5«?Ø1ôºb GÆw»ô¶@Ïí^×èûÍj˜Ö-í@ßàøWd£Ï˜ŒÖ1OüôlÉ)– M9ügžôû«…ëœ,¿É4ìü-^7Ì;r„vƒ}ðŒýÈ)Öëý©)#™Ÿj]ƒ—›?nßdëÜ Ïˆ<®QçãЧèXë]|±—>æ÷‡´2¡ß·þ®ßñë¶hœñô“<±?gCŽoßÝhº,ËW·Ô:¿¼èë–ºßRôñ‚âX7ø›Ð“ÂóöºÊ'%7¨ï9ÙïÐ+rs€ÖìÙõm’wÝ–ßÄ €;ßP õs¿ýþ¬‡a»—è9êÏ=ŽŸ²ÞŠ>Û\x_p‘Kûfè®y÷q%ÖÓÐ'ÛˆKÑüÒ|vð厽KOß×JËkÓ9òQrÜ|9b}9\°÷Ñãð;´æq¶ê…—åþYšïn„ßq§ð³&ɇ¼¼™ƒ£çïŽÖ*>û•øø4¸ñƼždû ýq„ô_áÔÈ-ß]+ûMzò ëø+‘›Møá*µ?Û)ø‡Ð ö‰íUð“ñjoGþ>É™7$OäqÁW»¬è/Y-?/þiõCq¨‡&¡‡F”ÁO;”x¼}s“üÏkäÇX£ñÇC~lÎo„_Èÿ|ñR®y¤¾à¯èR½7ßX÷#äí ëØãð/ÙÝâwÓУ¥ßœ®¾îä¸0ûÃõ^_­õkŒü؃ýÞÒ{Œ¯©?ZËì·ß®÷ ôqd´-ÌûÁ:\ûº)êÑïøU4Ÿ?ì›@Ÿ·‡Éz°½°ü@óH<qØAà|Ä¡‚'ñÜfµË¸o î^ ;Íý ß¬cãSÈ!½v$ô¶-7=æƒeùòJ¯Ù«Ä‘˜Ž /Ï`7çÖïi¦?ðfè§ ¡JäÓ@ìÑ“ìžóºëWðÛ ¯ÇÃϤçÁ±; ô1çdzGN ‡ËëQ–'ƒ ÷¡7ãÏ¢4®Š¼@ï-þ×èyßßJãlÒCìO„N±{Eæ³à8Í/¸RÉÉ ôóAápÆË°¿Á³¡oô3ð=ô%ø:8ö2ôØ‘“«3µ~Ž7.&¼Îûåp„ÙõýZ¿Ð!tžÇ:Á>´<ý . ßÀO¥~ôšáî/þ#ãßyþ ñ[èñîf\A~’FÓÙÞ^¢×ZOÛ¢ñ•¼ ûÀtæ»It?ÍvþsðåÕâ㿬‘É[‰Á¾¨ï{Ñ|Š.“¤‡S9ÓÑKŸ¬äè®Z÷_‚o‡ï­¿±oFñÕ–'èoAý¼õ²¦\ÿvœÍãy¾Ì:¬ãÁÒ+×é³ððúzÒúCÎ- úŸüÃ'DϨßàÐèÇÍy|¿«ì2ëÕu{/ŒŸí²mêçóyÜ,YP{ükɽµùYÑhºÜÛKËâà‡Ä:N1Œ·íVâ_bûÞpp ôì&}¿®™RòJxœôª ös8þS|Ü ½Føì庹B\ ~(Þ ÿ-õ¢Çø}v/Õ呞ËëWöÃì©Þcûÿ2~£My¼ÿ¼?V»èyŒ/øÛÐÂóøk‡£ŸJ/@nöÛ=ÎV–e¹[º-øퟮž’ü÷ÝO|†ãö¹/Ïç{Ç÷ÏÑé-’/íÄ#à¶|vÿ­ŽkA?kÉÓ¹õÄ¢—8Öþ[áN*/*î‡*Ë>èe5qÒ?¶À§rûŒ2^]TÃç^öz³øºæa²ô¦*xS>¥_ç%û9"ZÏCG~Ž}ÄÈKõß¿}åTïo=8®üOqjEüÁãQì/¸Ýbõs³ð:ð;á`Æá–Éß NÇþpâ}šTßúpŸqKéwÒßjý49Î9Žäóú¾æÙë´¢çä卯ûÅÒïÙ˜’y‘ßay²ª6‡iÿîuÊ'q%ø–óA½úg¢¯Û“"ÿ÷M-ÐÓ½¯l•ìÑŸ× vË2Ñ'ßüû"ÛYÏ?YxÿùÂño÷zÇãþ_åé, ý_V$øá¯òø€+7.Æs’ÁýU¿¬·B÷à)ïÍð8±Ob+x qr9\|¦Úí~Ê®‘_ãØFÓQYî¥ð†ªü6MIÐÃnMºêÖ:¿\þ£áÉzѱp”D¸„î»Fëº;g 8‘ä½P=%ïng%w†õH}Šw™—HΥ»Šûþ‹ò7YR£÷“ðçi½â}£ÔÿŒÖ?ú yQ_h—߬³ÑóS–¯ot^±¿ü˜ý]Ø%à‚ÝäÈy–OÄÉË>i­‹?´\RÜÚ7½;ÈäL ¯IŠ?=Îý|2§7^¨üKóè7þï×^›§[×èþ˜#.×:à¾NÌ:LªUw&ëÜö—ä¾øÄHçkŸL‚|]¨9©W^#ü øðnÉëγä¸`üñ…8éEèëþú$~±{º,ÿéBúµíµ~è·¢‹Uyÿ˜â^x_ r7ÈãëÁÉ“máù%ð•K'S׋ů’ ·N?œ!yý´åúõã ñ?Ú‘àø‹$ßÃó%쳪è½V¨Ôó¢Ë£½ÿ6Èëªôïk\¯ì ëÏÈqü zÎ~Eð ìmâFTíðá7àÎzÿ_²¼ÇúÒZ¯àYØ7aÞ±¾þ´ôwâáÃû77¢ñ|¿ý"öS©Þµ’ ’n‡<hÞгBûoÔø°¯¹Çù7ä‡%Ί~Ú?Ã<'¤yß¶\“ü²«9W.2ÒOÉ#ã%øƒ±Ë_Þ[rj¶è`®ô½×l^Žý­”þѦy=Nüb™õšÞT}ZñvÊŸ×êõ„Þ?Ú@¼§Ö¹pìâHzë툛ç‹oˆ¾hÿ—y¹º¿”Ò׎”]õL²b×÷™¨|)8à2á à‹²÷ø2ãÖå• xPÀ3NP½•¹%}”yÖ9XËœo"èÇÍo5 ó¶(¿I°—‰ÿŠ?‰OI'‹ÜKñc‰/Ã7è—ìÕ×c_Ê_µÜ%Йôo¿·ô+ÇY>%¾¨úõûøö¢ù'…z¡³»öe#煛ݫvï ¾Tøw*~šˆ{ÜÅOÙ3ÒÓoIï’G²ç—ËþªñÄ!¯éõ ÿ6Þ'üKúÀîOW;”~ ·\Ÿì—þw˜î;^ý=û, òî~Ñ_ýv¼úLæOó$z<z’þTÛè<‡þ¤öi¯Ñëv/½ïý¸5ôá@—«Ñ;üœüóàYÞo*ÿ„øÊ`îw^ûIäGBŸ ßßä8+ÇKAC¯F¯UÞã A/ú¤óÁ‚ã·Â„ÿ? q…}–ÎSž¿ÏãÃ>np ÙãÄ)9ŽZëÞûë‰Ûúçñd_~ünÕ°>êöj>ž]8öñÎÄ:…¿KŽˆï&~½<¨qƒoûãò³9N_ë=4~#¹e"ežô\Où«çÀÍoe—‹ÿUSâ¡Kßý¹Áü4Ü7Xzé?;Å_F&þý¨óœÃ7ƒÞy›Öá÷œvÄä7™ª÷i…?ƒ;ß–^n<ƒ¸âa›tûéÔq|…|Õ3À—ØÎ}ò{8¨æ =€ýúÝr¾äûÅß®j4]îíeB|E+‹UÞçqÕz`ÿ£ÏŒž!ûšý0¬ô'ÙUÞÇ^G¼Iàû'9¾= IòÃúûÅžÌé;GJ¸@ò®ÉqÄ;„ë‰ïû½Äçï|—ìé¢÷[¡[丹Ç-hë{ÈÉŸŸn‡}Sˆ²&»¬Ñt¹·—â£×’ŸÅü’|Lç^çgäó&Ýì}ÇäµÁߣx/Û1Ò׌ƒBA¿™Äü'y¿Ü-ÆÝžd½I¸×¢ùòKJßP;×±o¡¢?ý¾B|öbëóáû%è)èwÄ׸ŸŠwÁÏè¸Î°>êþHô\péOÞw!¼ÊvLx¯¿tE=¦Wâýe÷/º¤Rûs^Ù5ƵƒÜüý/=ŒRúêu>7G~'û[Á»… ÊŸúhþ!}–ýêG+þÏé¾o}^~Ùóß ¼?HоbÜ£'Œ—ñtéŽw_&[¸üÃ~iÙƒö{w>Lþìù¡ðs?Fûi/ œèõ/¼Ç•¶SÁMÅ÷ׇýèh’÷­Pû¡ÿƒ7 : í]ãø üàZðóð{7x Ç›zÁs¥÷Øž€ðÿÜ%9#z`ýÈ¿t¥ãˆþe?”ô)ë‡øÇ¤_Y{Pz¤â.ˆƒ°ß)ŒKö%e\Ñxi>Àéíça="Ãû¼Óqo¢7×¾¶LxIÏÃ^iþä<ëø/ˆOY-»7ÐuñÚôoÑåï_N‹õ§…óöœïaYìÅgîzuñCìöFˇý­´ßG8‚¿G^…rƒãÎÉ‹"¼Ò÷ íG@œz{ÁßC¶B¾«â¹8eY–¿=ÏM\`;+ìzí‹@žçSññËmO ß& ÿªýÈáû“ý¾eùÛ•i°g¥Ã¤WHŸCŸQ¼ê…©üü©üÚÞ(¾™Ê/êá_ÝiµRûK‡’ýžÊÿ©8ÎéiE÷ÉŽMûåùdªü6‰ò¥­¡áVoHåMdÿ÷R\xxªýèMêw·ñ\Ö‹ä¬ãKå71Þ§}hɶÐï^ãÚÊ8=Iï=£>îÁ^!.ýÏ¿+. Uë…Àýز{{Ãó¨yf½k<ïUÜ1øå¬Âx¿d¾èTç+¦:G&Õ9?©ò"¥ÊÓ“*?¿×y$éšGåkL%Ó1¢—Â<º½ÑAަ:2¬v»Ô®ò-¥ãuŸò§“4ÿèód}ùRf¦:g+%zÔ9+®§KŸG«_cÔßq*«}ÞKù¼õsSg™Ž¡>ÝÏ}cÃü§#xŸ ×¦:'U\g}<õþ.ƒÞŽÒ}ÌG—îW©tLî=ª?¯þð=õè|Ìt”êïÐøŽã=4_]ú]ùRåU6=0ŽcÕã=Nõ1ocµ^F«Ýb½E:Óy;ßQz~”Þ{8t¥÷êRûÊgå÷n/¼‡âýþ-ª·ƒyTYÐçÊr÷%ñ¨ðË4çù#.?I°³‡[Ÿ!¾ƒøâ|œÀýÆ ‡ºSõ‚€›H¿/iô¸”åk«äüï¿P©8‘ì÷o.ã¸â|Þö9ò»]m¼ üU~Ç5 r\îŠJíÏrUq:ZŸMŽÓÞ‘—¿{{){ä=àÐÄãïq^}ð6Ƴh×#NU8áJûŸÀùÀ‘îs,¸²û¾ñ Þ7A-á‘κnßï²lL™¶ÉÎéÌû;ÒIÒo”‡TúåÂTù®Ó‘èëú¬üÊ©Îfü+Õù€i[¡6éµ:5U>ê>û‹þJ?°ßÿ—òi¦òYš÷GqûWпçPïg‹Úíã<¤²ÜSzCßU¼Ÿíæ_öö Î¥Luþdz€æº™¨rŠ~ŽþžkOué;@ôíût³é~’ú‡þŽÝ‚]1iÏì[×o; ;Atu€ÚÃľ]°§Ûòt›ŽÖûŒÑúÓy[i•~뽫ù÷¬?¿{z¶ý‰ýS-à jOyý½òk=;_cqœËrÿ,ÅŸo¶<€o².•Úxžícñó¡|Öýò¦Ú™jÿ¥ñ³æ‚<*Òk„‹ÌJ•#UÞiôVáeÝÆ³ÀÁåg¡]äH:Hõ UäO$žÙõh|üõç'=ÙòMþÂFÏkY–eY–åž–Æ ØÏ«¸&ï“ä7®÷yù¿‡s;ŠãÇùÃ9gžýAäOÂOÎ>"΋Á¿>TÏÉßáýú*=¾eY–/§$Ž ¦ÏÛ ë©ø,ü¸ÄßÉ¿ÙCœ£ã‰kxß™Šoë0NŽFœtxþGŠëtôP.p~†ð{wg,˲,Ëß¼t^­ä›ãÖžÉÇøüAáf®Gy|O•¸`Å¡µKÞrîõ(Ãû©wüzüÄy@_’Cùë¶9Ï4x<úqÇ?±¸°,Ër,‹ù«û*§ÿF?§8σÓkÄa>ç=Øw>·YÏð¹g¢+ø²ó×#¿¾óP½P°Ø3BtÖ’ßw‰¿ÿåç%—È+,|z¼Ïƒ!ζGïK¾_ú¥8Möá{_Qþ<÷ùã<ÌAþâüÆ’óŽë•"or£é¤,÷Òù D¿Îó«}ÊÅß±Ã9Éõp¾Œð]ôºâyì>wMë=©×÷Ô~h÷Qç¥(|™ó/ÈCÞv­_ô³8ÄËyŸ½Ï¡Çÿ[8'·×zßš¿s>*âêɧôÙ‹â±Ïù<}ÖÏyÂðôYùÝÈkäøð§óqwûzéó3ß{çZ÷)–eY–åÿ]i¾øÔMλ¹Fvµô/çë#ÿ3*·À¯¥÷ÉVÀ:Ûùµö2ýùØæRç­‘¼ñ9q҃⊞ûe^ïñù5Û„3ÇðPÁ¹2Økäëñ{“/]ûÖͧÀYžËïS—éåÏP¼’ÇçYÅA•þȲÜJùêyp¥ÿ8Ÿù²ÁçÂ:õyØQ²óg [e>À~ÞðÜ¥Ú·BúÎPä¿Ï½Þš_¿ûj鼪ämÎ+\fùÈ_áý™Ûóû›dwö©_‚«Ô?«]åáPžsïÓ"„ñìaáÅ·²,Ëý¹üMÏÅ#s¯ïÁ…ð³}ézŸk¨xçoÞ*»öáTð÷Òï¨'ðíâF=^ûzé<%ìÿ/¼s²øôháä©™ û&o'¿ÀýÎþÈ)úÌ>ÂÄÏ'HÎŒ.9VøüDµÛ-<ž|*ô‹r¬ü!ËÂt²žŸ¤þNâwÕ×É{H®±_xœ>wðWòû—eûºôýdõ‹úÇk|ÆÓ¾Æc’~g×½—߇ýÍúžqaɯÃ8óy¼ä2íMÖ¸ zhŸ~ó\;õÒõûû@;ôüDµC^ö…’Ÿ†ý§ì£-ìãôþVðø.ÚÑ{’'©Mõ‘‡ˆý¤Þ§§÷¢Ý6ýÎ>ÖvæGí°ÿsdé¿ÙU:v8#yE…{ õyLÄÓn,à§ÕÝãûœÿUŒÓ}µKç æœ1ùù¼O‡óy´}žÙŽ‚½ÎþÎ/ãuy.|Ÿìþ¶ìjòâ—áÜÃÅÒ›…£öžŸp¿ë{Bv ñМVýÀŽq}mš¿Ö|æŸyd=ûÀ‘×Ä­ gWç]Ðx ÉëçøÏýù¾‡óø¾®F>ÜçïìÛwþ Å!8¿¨ÆAù(ÓBÜs=¯ÈËó/íi^‹´Êzý¢—·íÞÞSœÍœ—¬—õ=J?s¾Ð!yœÚϵåõÅW}>Ƀ ¸*òƒ?Þ¿·«ß²OXïäy%««Ô/÷¦RçÍQþÜ£êyaÅïå¿Hí~þ8gÎŸ× XC<œâa ÷íï¥âNp\ƒä„ôîÓ¿!¾ç}}òÅä gŽ•_%)ý\z{,{3n•>?Bñ±<'¾iý•x ö×sžBèF…ó_|ŽÒ@ÚU?ç+m,þ”Ý$¹ç}!ÒCbÉ7Ç›°ßHrý[ãsªÏ •^ås“±ÏB=Ýì±½20ßN¬øJòì©ÞvŸÿÂü°¿‰}ø?ˆ7ÆÎ‘<ðøpÞýö¼}àñ¦}‹÷aaÿ¾>spœPöP,y¯ø—¹œï‹=+nÔôA¾å醜g¡Eñ7à;}/¿çYsîôKí÷|Õ×Q‡ÞCzçÑxˆjeœµÎ8GŒñÉüˆÞuŸçIüÏçtw²6ŒƒÇqωþYìWb%ÿ¼^½~5î|Í:QýÒ cåUƒo'˜åöóþªŸsÂ9W:q¸}ÀÜǺ¦_¬ãÔ›Ãæˆ~»ÙÇe~žo×yÏ7sîs,<Ñ| úƒ™_hñ*¥ÿx„ºÿÌ'|@øšøÓ Þç PžíxüYtÆüÉ>QœÚ9±ð1—ž_•Œ ÷¿žP–¯¿ÐþFÓ#t+½ÔŸ•ÇÛ|Dv©å|Aö»KÖ)ëþÄz•Ýb¾#;Â| :…nƱ^¡»ÝÛeù Ñrsr½¾§ù„~ø~FŽH¯ÏŒ«ðA݇^a¾ Þø§Ï³DOC/€áÿèQCuÞ]ЛÌOÝ.÷‹NG¢æéË뾇Üa=_‰ñA€?Ë>¿Ž…«˜Î‡äü›~"¯[sïÛm¹„ƒ\@Þ G²>@ÿuˆÛEΆ÷\fù†þK½¬wäÜÍŸY—cô¹“ñ….ÔîXøˆÞ ¹Þor<¾£RùvEos-‡˜¯.½ÇhäÆ :A"‡ÿv|ÃqàÕ0^¦Gè:Be^ð ÷r¿Ö‰íæMú•éˆu³²ÖíŽÂ{TgN½ÈWÙ-ŠKZêq)æÌ|kž‚^>8Àºý€Þ£y~¡S‹íèYú¸èjŽõô÷ *Ñ÷EOŽËÇߢóm8ßÐyZŠùЇA…yÀ~¤ýŠ> G³ؤ~·Ož·gÂxÛ¾ð~ìDõ/|(Ÿíï’ßÅú¢Ïß•¨¼žÖ[‡ÈîÃîbq˜Øe®~ }a©æ7zoä-òšñÑ~>lj¢7•ò¶,_ºô¹œ›ò~ òÇ:~GüEùÕîa_¸¿Ï}_P|ólÅõ½Ay‘Nì³á÷ãåç<ÚûNÄo\. õDàq+v=_i"?‹ótœnŽü®s½þ6ü›Ãºkô<”åþQ:ÎÀü]|}4z¤äH§>ëü/ëÃãTÊÿ`{ù€ž—3ÜŽpëià(:ç‹<£}ö¿kïZœÕ>û<Þ¹ì³ ~ÐqÂçÉ'¡8ñOøÜÓÀ§¦±ïAçë-rþøDP¯eßœâ+F(Ôrå™8Þ8­ôn_ #¼õ)ñ/é7Þ‡ˆÞ€œw~"ÏFp@ñ#¡¾›ØÈ~CÎBoÕ>¾Û}î4ûg4žèÉŽ Ò>ïÏ×Õ÷îû‰ÁÅwè¹-ú^ûcŒŸ3þèk|ÆñHø·ûý¬Þ =ë‘Úû])ziâ-p-çËØTÀ5%Ǭׂ3£ßû1ŽàÉUÍkÁn`=bGÊžó>Q쇀ÿ—û _m>"¾QÈÏÕ¶hþ»=ɞ¾Cïá>ÿ¾¡àÏÐz§í«Ÿëý¹ZÇŠo®÷qÙ> t×þ[¿ŸÖ¯ôkÅÿNðùsÂÿ{=§uHþ2Ûw¬7캥µúïÐúº;Îyu8_÷‰|ü ù×Xþ>ô¸«·`]cý2e¹–Æ À7±«‡:FŸòs…sµî{Ðï$Oì§jô{–eYî%¸½?ãon/|¿UñwðdíoˆÇæå¯üTõx„.ü àèz®x÷²Ü¿Kã_Á^¸ÝßËìë<âÐÈ/¥ýã•p™ó%†ï«>uUÎ[(|îQå=<Œ|NÒ'Ûì<驲wÏQûäÓ=Îû˜±CÕ®ê}“î›áþ±aµì6µO,ç5zãUœ›Ày¯GH¯æ==eùꔲ‡g‚?_9Ôç /ñýÐxr ËÙ+§8Ï~ÀÏô~šPïa~ß²,Ë}±Ä¯Z_‡Â3‚`“8ð2ð0ÎÉg߯ï*<Óþlü¹Äµ/×RÐÏȯN\£ö™Ø/Š¿[ùR_ßxðÐðåù<¯ÑRy.'9O¦ðnö}à—”Ÿs!ûÀØ7@>Lò{úò¥aßø\գ߿l»(è‡ÃÁ‘? í¨^áÒ×b¿ð>λžë–s8v›ównUþLµË~éŸ÷¸>úƒžZh¯,_ÝÒóÙæ/Áî”_Õy½¡cáºä-&Ϸý´ØÓâ³ÓÙÿ¬üXsÙßH?ôü ØçÊ‹îóɯL^+Ùõ‡õ:‡þÖÏÝn9âý¾âïĵ(€óè`OmÓ¸hýqÞŸåã]–(ÎÿóS…xÙë×EäÐû^ÌyˆäáPüŽÏÉñú ã:Bëfç& ïMO{{i}EãŠA¼zŒòñžXÌ3ÞkýÜ)¾ºYq ›¤T×u¤æ÷š=ïg òµ9_“ês~ˇò~HLjïi{С? ë5nÈ­B~9p-ǧõ¨§Qó\–e¹?•œ{cyäIâ<›²°Ÿ8WS8àñÈKËÏ —upŽ y>/„^äî<ä‹ò ¿ ½pE£Çeo/åשñz{|E¿·:žKq¾Ò«Až/¢zÆÞô¹QÄ ÿÊ4ðâÖ¤¿œê~©^ýÍë'óL/Ä +Eù\W’×uÑ?UjŽ#¤ô+C>TÓ£âVÈçæ~ÈþÁc\›z‚_dªÎŹ9ÙÚ·Þ¸Xö ñ†äZ"¹N¿À3°gçý+öÿ8ÞYë„qEæ<…µn4iÝ\­öfh=MR¿æ5š._k¥õm­Ó…ò, ·Tôgý-Ì÷dâf•g†óìnÏëû}ðínñå#ŧdÜ þ‹¾{'x’ìšèWù¸Îmã|çÉ‘þ±—‹ýoü {ûBïi¿%q¬Zo–7¬c­#Ÿ§õ=O?#Æ;H|‹<ò>„ùÙ¤uÚ¤v®j4•etôŒcùì},ÒSœßGq]·&'||×ûa„;8ïøÙfpeÑévÉÎe÷Uü™û#?<ë£Þ_áÀÜ'?)yn|.Ö}øÀÕÆòt;<`ä'Tž°›µ>ÛýžëòxÏÓ?ñ¡vçag½²®Wª¿AΜd<<»pVY–åÞ\’§ÐçÈ‘/q˜èš<‡m»¿®ó ÉÝ ßÍd] ×9Ù|$èË-_Ü}½e¹o”Ò³Çø¼ÏàÏžì|e”àÒòÓ3ÿ¶À±°«ƒ~túžó¨½ä>§ä弯µê›L—ò+ÖýŸ×äž;\ó"|^öÕ#ÒÓ°3Зô»òI^ȹ¡öSÊž*Ž›óÀcO†û¦Uôçso~¹û¸MÖk²ñ×ëÃeÊt¤æIy ÒBœ­óxâLœ÷’ó`ÅÇäOé&ÿ¢ïø©ÏåüÅ8Ox¿|?RíÇw>påópRÎeq?ùf•Ÿ£È×g¶x>g—Ú' ñ•B=c_ž>ã÷G®ð¾œg«øf彇sqÉ»ZÄ)”ÿÓú›Î žÒgûE½SûIÓ­_Ù¥ÆùÄêú¬Ö;ø‰ä›õcó•ðǺW^Æ Ò«ò÷ʃâu/œGó3Óú§Ö?ûž§¡¼$¶sŇŸ!û™þø\bÑ£pÈNÛÃð?Úá3|“¼ÁŠŸâÜWá1gØž‡/ÃÇy?øl°Gç›ÊÏésdåwñy´áþë-Â8->}¶óD‹>$7n·=±?¥>|lžç¿£ä‹pÙ6÷Wv8û[ñOÖófªÝ² ð+>¢ÏØ#Œk°.gÜñßÏÉ5Þ{—üJA¾Ð{’ýmžwô*ÞGýñ>á€k ŽxÄ·ÿ"È'p…ðû›§ºBýãý‘sØYz®Ñü|_/mGƒó`o?Ö|.þÊ|öúVÞHò4+þ£Ózz‘èØ|WëÂõà÷ä~ù?Í7u£Ç­,÷ï¹ì|ü…|ôà8þŒ>UÉñgp*ëiÆk‘ïÊs”VŸÏ¨æø·õËí·ržyÉç—R±óÍW‰èóÔíó90z?g=ÅãÞÆó´ã÷Ðx/ª|øžç²|eK¯Î+}¢X·>.:UÞÄ:½Šn87Aùôȧdý\ëÆçBç­Z7;söÇ,¯åEt}à¦yûk¡Ëa² †æê™›ÊŸkû†ú|Ά~g½±>éìp-Ÿ"<Áõpîëñhϯ#ãeØ]Ê#âs'8÷c4ë¶ÀÇdOú³òËù=h;TýõýÕœ}áþ7š.÷ö2ªyš,:š"z)>:^ü•sÎ&Š^&J'ÿç¿M}N½LÑ|OU}“tßÑW·èf¢>ãO˜¨z”ÏÈç–qžÜ$Ý7Yå$õsä&äê¹:UÌt’Þoï#ºœ¢ûT?t>žÇ‰q™È8‰'ˆOtj\¦”xTYî;¥ýy›„;ƒl”=ìéKm?¢ß×j]M\v°ÓÏ*î«ntºý¯Ïçꛋܕ¾:ÙçÛôá·,Ë}³´Þ!= {B8ͰÏÉSi»<`½ìšõ¢ pAô(ô~ö{q.v¸¹õ âñ9?ÛçåéÖþvÿḘ9ºŸYŸÏ;^@q+÷²,Ë}±´>ˆ}&|À¿ƒËƒ×ƒOà§$|°©ÀÄ|Þ”ì¤F¿ïo<>>—Wvç¢7sÞ1ö±Î™³?°û{PãçïÁ[п÷ µ_ ;¿z9ŸÁ‹è?ç<Ò?åóñ¹ÓœßF?uΊû‡}éqQ{œ—Ì{çÈøp ÏÑÿ¡…Ü€q´½-;©»]ýÕy ògÎòùŒœcm§ž§}ì]Ú/c>Fæ{¼\a”äñ,àlÜo;[ãJ¿¨§YýÇ¿;DzýwÎÀQªúúçœÉQ…ù”Ð~7pü½’¿Æ„;à7´œ¼½CøG£×mYî_¥×÷¨B\r ¾=.еֽŸ'„?ܲګݱ’oæß¿Ôû%~ƒŸ=ü?ØàÝû5ÇÑVú¿öˆðG³VvµóÙãçöÎáÎüãW)~©ó¿|G²-ЇðìÙø×ÁC½OúW5wéNų·îga¿ô³²× ûØ#½èç .€øà·ìýÀÁŸ<ûŠyúw\ExïCìúû„£ßä|àøCyêo>Џ3øƒ½€ý±Â3B|Au¯Ù7êýGŠ·`•Ï!nVÜ:8½ðâH3‡ùæ\\èÇò˜xoôæþâàëŠ3r\<üC~Žz<ºê î®zÙïŒ?rgÞ¯ï8ü'Ä“&;žýSŽ‹çyâ‰OÙ¢úzrtzší}öá‡ql"o q+ö+b'¬’~†^ˆŸÑï«þÎyÞèàŠsðçí…õ@ë¼'ûÛxôü6õºÖùBÄY™ŽÁ­úåÖÓèHãuõ|ë#š_âÿ°·Ñ³Ùׂ=‚žÎ{ð¹UòqÅÿÈ8b¢¯äÏí¾EúP»çzl‡¨}ü²èQÄ?VÕ¾ÇCíPë ú¡]òDI~ø>ðë-…ù©jÜXÏ-ùõdþ$z*îC2®~Wíöãˆ#7?Àžê¯yóuu¥2 _¥ÒÿŬÊáÙ•ý¿23c{³²rgø­ÒTP’•G¾óà3?|ÆG>æ­Çü·:ãÃï;óÔìëÖ]·ÇíÏŸvÉ‚oA®ÑšûoûÎã^Woٞܲ=M«+¾?ô¯¿?4T»ýãu5vê²?û•;Ò‘‹§~émS¿”vÿ÷ŧÿ÷Åg¤ÕãÆÙ?×ûÄó'}ô{ç?=sØì;úý9/ë ßûxÇŸ>1ZßÓ>mƬyiåwÿøëÙ¿´yöÎEïýü–è…ô>5sê)ɃY•ý“ùíp™è™¬¶‹îïH6åmÙ¿-Ñú/]ø½G~g^ZíüÔâ¯}ÿ¶´ëŠòó’üóÃߺèÅèWüÝO²iû³Ñß>½?ín±*ýØÎtÜgþýì_²yyS÷ô™ÅÍw²äÖïov;«ûŸñ³7^Û¿.Æ/]0îÒx&né¸gÂ/ÙV´>úÏÏN}pGÚ¼ôÊãZz~´!~Ý¿ÞÁÿD[—\Ó§ÞÝâç' ¿!þŸ3[“GÞ|ÝÝÇ®¼,Ùò¡Qwfÿ¢'%~nãÉiËA½ÿ_>|¶ïoé ä5ð¶ÓŸNŸ“¶þøíSüö{±Í_:býÝ7]àþ¬:qÞŠ©§ß–}[m¾’‡W}áðU_øÿQÏŒYW/ZÞäûÖ^rîGÞûö?t=OÞwòŽÕ_¹/±à}cÿáŠöxÄïY}Ç{žH'ÄìÇò;[~üÅS¢•À'½ù{WüÂ%i¿%-M¿ìõ}¾Ï³÷w좴´ããMï=ÿ“QÜñ¶Ú íõ^Á¬è3Œ#Y~lÒ)ÓG¾+ûWÖŒ{ǧ¿»¦×}k%ÞÛw¯V¤cæÿô”ù?}o}¼Ã¸›wQ÷t«Ÿc¾úß÷nÿádû…OŒð“Ó!ÇþWôƒƒ¿‘îâÞr__ý6¿ïü®ìŸÛøF:nÜÁSoš98®„õÖ«‹Ö{Ï}—FO¶üÑǾöPK´å#¿3ãñó>R¯ç›#?±òO¾Yç{o\x`Ç¿“tæþîÿ$•7ߣÍw^wз¶îZý§öšß¸ßykþ2û‡¸v;ceV­»ì˜o.>jiýêëÛßùõíÞŽm«±ƒñæ'K2®poO{\y~å©÷ß1:ùZí½¾=÷¹Ù?ïúÁµQÏ.1~R­Ü%Í:7&«F.ÝöCÞA:hÛó‡ßtÌÔƒ£Çw\ñ‹ÿfGòó¯Öp¯õÕý¿žŽÚôÉÙw{p—àùEÚvñ¢Ÿ}fn:ê'gtÅ·ž“¶$ÿsÂÓ/Ìï­ÔÄæ'zñ¯_žûÕ‡ü .ß–^ÑvC&òÓ¡~Ù‚ì_òÜ™“ý‹v¾¥6î¾ï‰ÿX÷ŽÿX÷Î>ùB×¹ú_ðÌŠhÛøoþõÙ >“V¯1Â^t1¨VmWwqùq®/nÿ½¿úÒ]Ïý^œ]É®f×Dzëï²ëãÙ•=Û|fv•]gg×9Ù5+»fg×'²ë²ë“Ùõ©ìúÇì:7»þ)»>]ŸÉ®Ïf×?g×yÙu~v]]s²ëÂìº(»>—]ŸÏ®‹³ë ÙõÅìº$».Í®/e×—³ë²ìº<»®È®+³ëªìš›]™ÙÓ·/C¼¶®ì˜/KÒñž:zj¼êÞ<§—z|¼‰lðgvó­u[²Øo ñ^5^4Õ<]âZÞ-æëi¼GxÚž&êˋί®ñÛg}7•V½z %A£‡ •¨$,Q[)HëÊ©jòš¨­2é­r¯Sð;kÊ–òZº•®•ž~·tñyY«Ç¥éñiç\ €²•BÄ’Ë_B©d¬ Nþš,ýßOX±³ª«^6ïeÕ¼T­ä­ÔÖTÛ*Zɶ–j×.²´©µ“m™ZÒm͵FÚ6±Qµj5ª-£jSmEXÖ5zê×6Ñ«¢®VæÖ­ÓW-wv×wWwjÕj5´jÕËW-Ém4j¤Û[•sk­%F™EEwu²jï¥íâQ²mF¨Õŵákw7kλn›hª)-—u\—›Ç‹viwk³I©5§v¨·5¹VMºmt®›wv´kUY6¹slQ¬ksmÓQ®V£Vs«®wwTQ¹mÃE==s^2ãů.ÝÝÙ»•Ù3§W7rñÞ<%ÃÅ×xÉ«¦ww]bab®îœ¢4n”»Ço»Åâ*éQ·7Mwu;´î'.޹w]Dmjô]ã«]xÖÞ:N«júªAZÄ`E õëTVg¹¢†Ù~¼T(( ·ˆ‚˜š©{ŠÀˆˆ¢—(mýîcqãëí ¿#^¡ºâ( ¼Ž&†'‹Ûk"&Óûj"œDFý!%æˆh T„P:¢=¼|xŠª ìDP³–vv*;F'œcAŠ,²Èˆ¡$!ȾÚ&?7"ü)—é¨_­©|“"±}LЇþ¦W¹^å{“Þå{© žYe‘e•ÁdYdYe‘e½ÊêW¹îW¹^å{•ï1{•Ô¯r½Ê÷+ܯr½Ê÷+Þ÷½ï{Þ÷½ï{Þ÷<ˆˆŠ÷ºdW½ï{Þ÷¿U0±ŒcrÆ0˜ÁåŒï{Þ÷½ï{ßü+kkkkj[[[Ummmmmmmmy¼Ý”@ÑÄ@ð#šDˆ§´‘¿rßÇÛFµú´ 4QFk ³E‹cIL…L7ØÔ(ö43:åE5AR¡RÝ d•+ï½µí¾W+hÆÖM­5¢±¬ (QF$Ö4m ‚µ¢ªá‰JQDDFm`»X¦×"€=B±(T‰Ôv è5 á÷ýª„©Sˆ¤­C¶‘V²ž` w µu`½Ú®‰R¡q½è'„Pˆõ¹ýæË%ÜY¹Ö ‰Úªá"‡€â)a]ÌGhCV€ RaaÉ*Ù c „”/‚Vð|!_jöªxí?bmGÅG‚ï<` ˜¢2¥È!*EEò<–ŸnTÚêç<Ï‘WÆ;q8Û¦Z¡ÂÂA!$#"ÁbŠÒ¾»k‘5ÍÊܲƒo[o.Þx1[Ä ¨®x&ŠŽ‘”cWs²¢î®;®mÚJ»¸Ù´a/Ó<Ÿ-üÅþO—Ô¾óþ~þ÷ÁÚßêÕîÕR9Êç>GÁ…U\Ê œß¦Äüº¬6ÑÎÞ©´ÕCºÛ„zn°AkDB‰øxÍnój©`P¾Ó¸³Æøg“Q¬à¿Ú§ùé€HÛ¤ƒ¿  ˜Óým·ßqò<Ÿ+Ëáï_»ÌÁužoêÿœî«ül[_Q²bkšÓ§G¨Sѱ¸g)§f›>Ïy ž")¬Ž¢Š1f$£k£khPÔÅJD*9áõj®J7À‘„VŠ(OÝ{µ|TjŒœ±¹*gDsÃkTCжoß'³Vùŧ7ÏSâD@ùý£ì{¼w¥w칚«©Áïêô@’#!Ô…)À"Wè€:°è”8€Ðô(÷¨Z–Ô6ÛãP£W¶[›gr5RˆwK´r.fîê,”9vŽhwtW9s@"R”$‡êè…kçÁgU5yÐ †èV{0»²û`¾²üh þ•ÞóX-¶ÞTr[¸ÿ^¶¾'»êo]çƒØXú8Ï#*¨xHÄd; G°æT³ÿì‡àøùŸÔõÿÇò>3ÕòUµî–‹#XA)ðýÇ2"¥P1Ø<–2ë¼âò[VK%…Éd¹ÂÛ|?ƒ›å0ÛfËwCÌ¥ÕPKÕ ÏPè• âFe×áøåpE grð=>Óð®dÚbÂFID@$÷jÐCv},K{Ä5ó>õ;°‡ð”*ÓDÛ:JÈ7h’1‘Câ£W6¹E1[¦ ´šBJ’(]yÿð÷þÿ9ÿÉP?¶/Ç$€ÁIÝÆ‘i ¡•A@,Ž‚a}¼ð±þðÛíµ£…ÄP»£Á¶ (íõþæ.{?ï?‘üïWm½¥î{–¦¹´ÔKŽÙÒî®PÌÕ艋œEÝÑ¥ @(òöm°ƒ§P=Ù —ø°4Q^§†Æh?Ƨeé‚ ü‚>]kký¾ˆG4%m™4/ï@3`=ЙP‘ f˜Ò •{å` ($Š„Ž"ØØØ5‹2J"šbh"Ñ}b墨Ém±µÍ\ÑîèÜۜۖMÉ1´ÉЍ£F±´Z$ bŽ55šÍo\Žk5šÍdñ®CwÄ^ï½ ¡ø”zÝb®™ÂDå±–Pç`A f?üæ „Låo8:Zˆç" ‰$ 5#üQîT80<숼}6Ž÷Z<<F„FÝ(E´qº·mQ×—ô5¯Þ&áVŒC¤hvl² ÍÁ’5¹W4¸c‚–‡½U^z *+QÌ|ÿ=óàö·?×ÂZ6z:3ŒAâ@Þ"IÔD) B›°(•ôÛ…3ð¹Ëý[øb „!’A…°XXËLÑNUTî R¨¥[¬ÛºÊôÏÎË„ó®\/W`ݧ›IDe¶Ç]÷Päy{Yš6œ ƒ°9âCÁUÆûöF#!$$ B[J"ÄhÓc$ʶ -˜5ÄÓÕŸU¥98kçr0Q$5‘hÆE‘ch£I&´ÚÓ5FÙ-´mcX¬UŠÚÆÛQƒmc”[E †H±“h1-wv¬Ã[Šƒj+cc'uË–«•ZæÜ뺷5.ä4˜—7wE×ú.îå(b,%’ñ×Ý›r×f-b´j6å¹nIo xUá“g.¼-àxk—`Æ!¼.³ Åo?§¿ÛøªöþÅÍEûsÒUy1h;X†¯5yUËlúþþ×ûŸÙþ·¶½Kd"¾º7vìvºXE’lc˜ÚæŽ1b®LQSºnnNœŠz{õŸ±ÉVÒM* –D€$dZ¬?]{n²˜Äx¥¹W²¶©«æðþïúÞ9±m¹—ž[U«á]—q ³w±€l©Ç±N=0ÜèT òñ 'B’2‚†˜-š5”!4 ™%) 2A"e †Bh4bˆ ˜lL 1fQ$@BBH‘0&M) &10‚’Dš"PdXŒQ"SL”L’Ë2b J ¡e³”i‘˜ŒH‘$DÆJÆÒhX6Páζ ÈB@8C˜E 8¼×XþW:uPÈàý›UM'\"Ž„ËB/á²ÿŸ§3§üÂÙä„UÁ*×A94 Yu“ ðjÞøe]1µ’ÝÕQlp³â+=¼~˜—8€¥Çg J”š"š“75Í]3 ºkÇ,ÚKhÔXÛ«•´,íöºÖöø®ÞÞßu·Úp—›ïo±¬ŠŽ¬Ÿ4Åutä.6]·eËú¶6¹ÃœÊùz†C¶ o`¼RXøm V–™÷{¯¤ÿ—ÅûcW·Q( {´\(ì&çLS·Lk› -®qÚårî+1¤# †JtŠÇ¡à*†Q5ˆ*½µ—{•ïéz×SåŸß1à"X‘H„ˆudˆRF—…@ Ãø–’Ôø©œ¨ß·ú|]÷¸ELÖèýEL°%ä³»oí?Øÿ£Õ½Ó_Ú4¦I·+»×mr¹Ý˲mr»ºŽÕÍ»QamŠ *«¯Ë¶ßϵèÝùM`¯X©èx5öÔ8ˆ¤Qð<@}´NâE×cˆðD{¡¡CV-—’‰ýTʈ¼ACƪ⊋ó fÐ:1mŸóÂàZ÷Èê½ß’¹ÈJø!PtîmTúU¯qqq¾àî.>žkƒÊÜ\\\m}†ãËþ-Oçºã7ÏjË̆ÙmŒ‚ÆF@&ØÈÉ$Þ}‹.}ø QíÄ !"~¤•a•4Êp-?.¯*>NSL¢gli€ Î"õâœ=]z§½Ð Ò{6 . u©LYx×õ^fRïút!÷•<Ÿ€U Ùó^ªØÌ|àxõ ´C.&ZGÿE6Þû_ÈýoÀm¯v·£¹¶áÎɱ¬n#äE;»b4îîžÍÿ×öžëåÿä L4U ÄEI$TT‘AB$ÁX,ns š1£QÍW65ÊÜÖ£s•®Zåj¹FÑm‹PœÕwu®[œ±XJîê)$)Di#3E £bØÖª6¹tÚ9cUÍ‹b5¹ßªª"ú(óIèÛÑ*w¾]åŠx¿»ÃÿyÍÓþˆkQp}ÆÔ)ÜlöJvŽaía$$“씕"žêkãýïÅ}=|^þ×û#½_‰nî³\ 3–᫚ê6ÝݸC&Árè(svw'.]×c®á3í?OúÏ/Ïë^ûK¢8럛¦æ8‹7¢Ñh¸‹Œ¼h´W8>Ÿ“øöã™Ç"(¼j&¶Æ(Ô¢%\ÏÉÚzŸRâ¬6تy ðFUKx|Ž÷Pªí×߇¶ØU?¾#ÿÚÏ>èìFBB:4AO—/Ûíxz³¶_€^ó~à<ƒØA»™P†ê \÷^uW ëå•1»‚ŽmÙt›zŠ¥I’HH"¾"(Öí'6æÝÝÅ\§+™±lRïÀÕ«_kóõ_²Ë·…Éœÿ6p9) HOÉRy"ª¶{©µôº«~w­æ{Kݽz!º€?;˜âv»-·™ îíäCúÁ/†Z‹ 5ˆ´dh£F$…@$›ü_…¶ßÑ­}yĤdµ@×}[ͽ½½½½½½½¾çÂäm÷îO]ÿ›Kž¾÷^’û½e8®ãUÂnNûü•}¯ÂéÖx™¾c‚½[0G÷Ùù 'Ûdg™r(öüX÷C~, ^`! A)1Š‹¢Õ$Ù Ja3E´ƒ Šåº„33mÌfÝ:iæ ­ö<¼ç뿯µ©×z.7‰ÿÝñE+ò-_½aŠ¡Í·¨ÛnêûÖîQÞTA÷ºìÇîµÙ“›ëöÛhŽÏJ+I$JA$’! o—AN0ÚD>Ô9_kÏâ1Y»–þ|ð%ηÈã~O S¯òe)Ei…T šaC'…ÀŠîоnøØGŸÌ®G#¼í™ŽG#‘ÈìÙ!·eӊ̘àÞÃ0?¼4!ó…å°äz»Ú©Z@ cX#hŒÅE_5Ð00²—E}NßQoûQ¿Òÿ6ÚÙO#×á n}SL Aü²=ª—·îß~¿gèý™îÞݯíüUMS±:QbëVˆ(rçm`ÕT;4ŽDñû„NËrDÕ©ó{7¯{òhêØ` *É,™–ZæÓºÜs\ëºç\NsœŽws Ò}õMŠ>Vävتm`€ñ—°žH͹C†â¯›ßá|Ú¿mêyâ!çœ‚Šžþîkáúa:`ëD¨ˆx¡Ñç•AwžËdÒìHˆEHr8ݳöú]GµÂ/ãp¢«µ]ííò7ÊÞÞÞÞÞÞýoo¶õ8N¿¯ëð÷;æ[ÿ¿ç-²ÿígP&¤PŒîGÇШ[¶ç6ŠËÌC;èUZß%‘˜¢×͹ºne2BÒL` ûxûú¯Î¨' Öª;}ÏÇÙ@O›ÏÖÿŽGÏÀŸdû~xÿ@nëBƒÁtønÖ k÷yzÛ|N°±-4ÁLš]T×ì÷³W«äªÀÂÊH’"ŒaTh*¯p¶¹Û‘#Qµ—"Ñ™wwv%¹±h,+ºäk”± íГœR`¦™DˆÚºP:î-rîîd„aíøœM­­­­®õÃZÛøÝŽÖÖ×å÷ÈÓTŒŠãŽú$“iEC} ÿÛÌk6ï+sÔa;ºÂç "H!ªü¿ù5^ÿþíö´´QF£¨µŠ´VÔEPXµ€0ˆ¥J‚„Å&ŠŒÍI¶5E€Ö-‹FXD[Å%¢Dd$YÞ¨”sÝ@=EW\¡ôþ®Kì4 ó"˜( 8½Ü@Ýï[|M®ä¨Í£f#ö¶ß»6¯Û_…„¡æ"Ž{8Ûq}Ûseà+ÚòÑ,ŽÐstùó:NçÓÇ{Üìþ[Æ$UĄóÕPYÇà-;-£iT± *b´`›c|JèSºîA5ÜoÃÕÞ¬j‘pçw@‹ù¸ª€!~‚M»dÃ|Ÿo!÷jñ=P‡@"š€¡øÁpUñw;n/‹Å츼^å…Åð]ÿïõv{gŸÖÜn‡åËîv‡®õs¿ÄDÇHL)Îï©Áœ—eò:¬j,Œm„5Qó“$5;°‘ E‹fµÌ+ŒbAEMÝÇFKNµ@è8ÞR¸‚d”4Ò*g¢I ´öb9à§.€tHÈ¡8Ô½¢£ò"ñ~Å‘L ŸQåÁ^%M"<ô€QÜsâþßuFö¡Ð. Á“°ñ: 1¢ªë>ˆ E/P³¯DæDà÷4 ) ;¡ïò¢à;ùг"áˆv. ²öv8ïÂ×Z¬“Íýh=×y}Öù¼WÅå šOóÝ"ƒ_˜Ìå1W!PÁˆ¾Ç?Ãs¼B»ÈM¼TC=(ÑC爙û¾Fý§¿ü&ƒ¥«_è"lo¦*Vã\Uß#È—~³÷m·X©"˜øÎÜÜØ´KiÝ \ªû¶GšÑ÷(q’!"B@$Dî6ñ06 7›Û3y¼Þo7›Íæó{uÏx©˜Ål¾×•ÈÏ2ë_=Ê3Ý\)ÓìýqïȈþýW l¶#$“Ì¡ùPu_•ùžóà6·»[DZ)5ç’¸r®µË‚ˆ£Œ’‚4IÄÞÏäëü×Óû»[}í¿Ulº ¿áÉÏçÑ€ŒS ÇŸ”ÌßN+ÂÓ"Ì…Vú›f-^a±®ºñjÛWÛj ŽûÃph—äK4yNÃíUι{*פnGÈ(ÕÓHÒ&æÇJ¸ç*‹»º×!£7b-΀®\å´Y4Îë§ ÝØîsÝJRA9ѹcVOÅzB‹wT$A‚ómø\hcPïô/[&rÓýò׫-{Û|ånjó£ÆÓD¢©å²øNøc¿7Åúp€ x¶¤ˆDdy4^Å?Z½H*?Ÿ‡ú×ûÝÅÅÅÅÅÆââã‚Åasü÷e¤¹ß7»oµ®Õý¼z~ØŸ”$’<–¨s *l¿æ“ûw^·ÙÉà‘=¯O¸åKèŸ>³¸`T®Œ¹¥d ’EJk¯3Ć? íõ›ñèy žŒ@ú…AíjÝ~_ý[žè;kÅÿOi¥ýžŠ™¿UvÜ6®ÙÀï¦Ñ¨h(´XªD+CD„$a#!ÈùàŽvÛý¸¾'ݸhÁs:1ÀÓfõ`š±mW¿UΊBœØ'¾w°NÕNšè+ùAw¼?ª¾mJ9  h^wãӢÝ×,!€?–!\Òø}¸Ç%}áòY,–KŒÇíY,–ý’Éxà9Ñôt_ˆu¯&«è)èB¨ú` †ä¸Ñ«®ña-ôV "HH©BëË~þÍ4j&GM¥¨{ ¢¾æ»`ìÃuý¾‡¢ä>ß‹9Àm`¥µ±úm5úQQÙ@#"¬LM÷éÏìÛçŸá«0¼4J"5©1Ñ|Ímü›úöLw½îj0Þ®årœ‰Oæ [ÌÛpA{=Û¦Éøˆ§¬ë-DÌ‚¢fvW®I!,m R5<úîÛ‘Ñr¢·]Ó\®fiI %¿¡ì®Yím¼Ò! @Ó' §—Lné.˜Üné¶cx¬n7tÆãq¹þëhÓx·os¹Ãw=ßSŒ¿÷]Õó×å5ö3z=võø7ÏcÔã.…M_ }ïåèïX vö@(o1$‘µóìeŒt0UÒK®‘D.nY4î‡,rÝ1¦K;¹¹®\±Âœî×%ÝÕÝvtã.K®åÎ7}·÷ï¢Ö¿ù€w+#I@ /CÆüýz¸)ÀêuÀ€˶Ú0 >ÍËgŠ>d™( €H! ÉD(}i*Å((<êžÍÔT ŒˆH Œ$I Ô$}6x}ÇœFêó"˜´æA>ÃkŸEʶÀ𬏡Ôë®ýB%Wf¨i:CÇPáÀË,ŠáÍÏt_ë;™Àþÿezw#Ì/»éâv?·?׈<&j$‘²’„«µA ½ïûþ÷äü’/t»»®»hC& Œ•ˆ€¢M%Œÿ_ºlL &ÈA0™&$1‚kþ¢×(Ñ&EÈDL5Œƒ÷N¢dÌ™ˆ!~“®J,£&bŒ¤,"jXÓ!DÈC’l0f‰4¢’‹,R4bÆ)€&&€ÄPFÀd‹R؆6Š—ÏrÛµ1Q˜H2! Hâx}7  Ðh4 ƒjÐh4¿ÛÖ "}qLÃÿTÁ¸d>nëêqêˆ:H2J€1°„ …8¤USUíj¯ó¦Óñò½ÛM’H ŒŒ˜c 16ˆQµ’H0$’I"3•ñ•/Ãû•‘8\ÅàÝÃÝÖ"aD5Gd*’‚ ³ÃöFÿŠê1^é«ì¿~íWDÆz"™o•S±@·"xgûÐý¬€=¬Û?í¥¹Ľ7£Ý6„ ºE:ÅE¢Š"U61¾ï‰ÌùT6ägQ«¸í`š ¶qT@uy;ŸÇÄ€ÝqãˆÕ*~¡1^ò šì~Æ[±øü~>ÝÇãñøû¦ãuà?÷鲿׈t*˜¤§B©‰;~ˆÏ à ì>^ÿÛöV¿:Ôm›E£  £å‘:N»˜@Öj‹T9ÔPxÔPK€ç1‡]œn¹¾Ùýœj§ÄôE=ïÑÇá~ì>ÿ›ÿšÃ;—ÄoÙßå‚éDY’ D²¥BYEkû û»þçµ¾;ЛEr®n5Ë0…È¢Žë”Ü«»¶ÎÝ3;ºëº9u‰uÙÒÝ.Óˆ›œÓé…bé¢{ZTDˆ¸.Oˆÿœ¤Š; Ù¢l… æ»Î(ëQxth ?èGÞ×uBò§ðÇàÉ‚p&j+$˜=íKø„k{›OáÏV¸Ù­ÎÈEHmlaE±°Íò}¸\®I)@¡BÏú~ †ÚnwHæ^ÖÜøm‡Cg¡Ðà4:ËC¡ãô5Y{»§þûzþö ØÂØAûd€2; ,M¬6…@ maE ÑÿoÞ)¾óZîZ°)Ê¢kpßË_ÜþÛ`E/’D‘a! 2(ø¶«Lǃü1Ò"ëY ª™+Š(®;xÉ+ø‘ü@ºŠT=üŽm2]ó*<ð¼ 7Éôž]x ¾{Úæ˜Ì;€î/½Áëo5‘.# ÂI—ÈaLu~OX(ë`„!’gED·ñýŠÛÞãðûWÏÑüûí÷?åô}N+\ þB1ìó…PðpüãpE·ÂtžP†$ñC. î² Š}ìv.­¿j´’e0¤4ÃDm¬j+üçvÑh*‘sED“œwn0îîÖÅ•¢Êi  9,¯šúŸ®úïÓä¯öù«{}¦óxÄgýo[Yëa}nÓì:Îs3¹ö‡aü°8\Iàÿ]ÿ\‰Á ^¯¨ÈöÜOöÀ€ª]|ŸŠXI }±I@=iUÀ¢»n»à㌛Ø@²’,„dYª3h¬Ì“Q|ýôÿ¨úÏÏs÷ºÙÖõ½yš_6û{5[~ÙÚêðvý»ëù÷›Ÿ?ôkùÁ\­ðKh²«6"ò¸I]QD½ÌßãÀñ{Càpú˲·A!‰ ÅI{þj˜ €{oÕÁä­¿GºYª”¥$Qz ~ûÇß1Ëw gßY“1„Âæ8ã1¾f3ŒÆcˆ¿ã×½‚}, ¯ë-x D+ÜLTÝ7R˜Ïáa@¤Œ`%Š4øÖ1‡:[¹ÔØÑt×4n;I•Ê‘i»˜Ø·4ˆQ2Tl2HÊRR”  ÅÏÖ§ 9Î5[„†ŒêÑJü\ôíztNjµñEOÚÔ vʼà5ü ©V›Ò/Tc*Ý÷ïÜÄt:Ÿ?¥Ý?§Š‹¡Q²DТÜp<ð¦1¯ V—ÐQ/ê‡\'–!×)_?\S÷¹tU-н€Ùh„"ª½õQž8‡ª­5¸Ûhãvü}ÈE7˜‰HI *U  ÚI¢ØkF‘@Üî®þׯz—ý¾°XˆÏ„R‘%.Ô×w,}>9éB÷4ûu-÷öÏüDP¬jgI’ *( ˜I C}ð‘T*ãÐTžŒåæä§¡ÒYÕE Tyh‰ßÀ7˜´ ECrRÁò˶‰øí¼`&‚žFhF˜C.£L²'NtFøÑ nø•/¶ñ'Þ4 A!#¤ìT¯ˆÙuoÖ·a7úq¶~/Õñd4¯'‘ÆÛtá|ºqÐDè³ÉûÈЬÆ@ þ,¤ux›J R ‚o*mFÔmQQ¢ØÚ4m"F"„¦1£`6ߌµÍ£X±hþ mµËô-­sj2‚-´[ ¬DcLoQjh ¡黵 B}žý•ÌÜÜÜÜå6»ž2爹¹¼ž¯­ÓíÈ×+D‹¹ëÔ .[i†¸T6ª=õÌ]’*ÔZÌ"-¥?OŽ*y ÑîD+({7UQåbHÄ¿¬k§ŠI”NæŸ$ÇÖ§ö°]ÛBÜå‘·.p¨«—!µÑ¤daëC$" Lþ™E $U-‡Õ:ú›ÄÛv3mœ¬6±NüàËØ!è×;oºÅÿèùŸ†¿ó^|lEÁõ!ÚÃUШ‚ä| M%BÑP8OñNúÇ›°ÚÀlÐÄÒ„‘¤d)” Ò]S»(5¶ØjLÉ Ä’Jçdïrí4^ÒïöàAøX¶è(þxvðçfšoš$Q ,@’F$‹4lüJ*´NhC„M6)úHÈk¥hèé@­´ÕUS<Ê¿L%ÿkÿ¸°ýÉ”P¿Ó4V¢¤ØŒü‡Ðé“Êgà¤Èädeø?ÁD“¢dc#(ø™tþôlDDA$€ ¥™àê3Rü5¬rÖÊ?´9LÿxíÞ£dPg GöÿÖÀšF( °LŒÈà9ˆ›¡ƒ2LÀÕÔ1 j†æ„ˆ4USÈdP¨ f€c#ËðFFEa2—ðd•33"ˆØ U·èèÊM0¨¨ˆ¨I21“%cAŒQÞ)$”Ñ·fèÔM¢%ΪíB…(²&fªl’´Vå ¤ ´JÛA±¢ß>Š©¤§=´ƒ¶Àq;8˵ïdm¢8&& {€\ý)¨…™b‡+*Š[c®ÀÙÔ¼ºZËÉV屨S`¡KŒ(7˜Sö)V"ΕFDÂgiZµ!.6Úq6Õ÷ ¤ŸÒÅ,„±u»R¢¼.2©½VÉJ€'G¨dkkià[èV±þzº«R™ÈðÏóOùßÜ)}a €ËfäL‡í‡R”sûøÿ)@¥þiÁþáý[Ü¢%ôŽ]³þd#}Ð1Sš§”dl:Âðy#!/å¸ÝÑPèe÷¿§û,JY?ìaúäÏÍüi“Cô>Ù&ZtÏïµÓŒìîöœ]¥ŽªÊ¢Ê÷9®õ_ºOjÇuÓçÅÒ§!ùTSžê‘5€4G&ž³¬Ãm}fãÖugY}Áß²w>O[åðÿ޾CÀì{o…€Ý·}F܈™|…ïûoŸØ„J˜÷¢¢²ä1/ÖHs2&õPÉP,@ÆYX¯b»!b?lj¨ê&ÏýUCg¸…MA n¥* ‚ØÆŠJp©¹¹#7E ¹da‹÷*¡@) ÔhCå–µW„¨ W³âªÒ¼ [%$$2Üm êd™žf_z2àÄG3?ÍA B§ãBG?ã.ÞZ]¥ ÷µšÒBµzª‘$—šôJ†”¥úª57¡èWË~»ÓâôýÏ©âkߺìBƒFúŽ×Ø+üMäˆõý÷Ȉ½ãsáýãÊö;ößðÞ<ò<ýãNïsë÷ÁyöŸ®öªGc §)b›‡)b«"ÅV1µÐ#Gÿ~ÈzO¿iéóøuBNsä{üÜ¿Tž ŠiBAI2j—äk½`.÷›jÕ_hÖ«EDÈŒh $0Á•ÈÝB“©¢#22feø.ø¼à«‚¹Ï2Eƒ¸$RPŽj†ˆË’«™²«+ ‰IŒN¼Ûxgyxñ¼—+˻˻Çw]ãLJ\CD#3C%df¨jŒÀ+!¨bEhÀË%Cûe8,©™"˜CPQ‚E#TèEJæîסƒsz<¼¼ç?:óñæòîóyy[šô† #ÆaÈ;’“*™MÜ1  æðñÞK¼¼¼xï.ݺ^;¼qœ^xë¼»‹ ¡IYL"y3HJ 1"PÜ6N€ƒ€ŠHP# A ½- … Kßû¿ðÕ¡Ož?—û”E±fQ°Y<ÉYÐ:¢À‘ HÍÔò8#0[Ä–@Ø€7fHH™dÈÔ‰¢`3FR<ƒ £9‘@ÝÌ‘Là ‚±¢†6#16Uus53S`9@F¬•‚#:Á‘`nÆ À3%ĬÀG%v"43a†Ps )©*ä ƒ±9¤`Ál†A]Ó"e3s%NÔ[ˆÙn*Ì/iþÑhÙÁÁpÓ|õMd) .Ê24Í5(D0rTx2³Á3c3Œ4W çc%$³h“q®”„0HŽT3+*0Ì¢HÎ@=ždÈn•< Ú@ÐɈ"NIµZ@¢pUP n”¤QÆ)•A®g$X3*³A\†PCcDT644ÈÂAÚÆ¤‚¼Z1Ò' êè¹E[ d¦äà™ÖF®ŠPƒBF¬¡‰LD2¤‰L+IÔÚUx:¡¤U*“ʌ²Û Yp¤ö£«’F”vDyÊ( ‡„ÂfÇÛöñˆ¬R¹ ËsF çŠhRD¢£éw´!”-?b4pÚˆ›‚«›Ò•g³Æ`ŠæÈÕcYª¡Äu*B,±%‹În""(§$sU L„c#S55G7B@2èé”A3¤`ÊJCDu2pщÊR”a(¡,… êI,†@q6V$djªFÄ8¹, ‰Þb´t›©šÄ€B4„ 4!q¼.A¤2x–è–¡“ÎŒ„fP"Ö+21‘‚¹²£!)<Ñ8FN¸3ÿÉgZ÷€¶Þ&¡^°2¤uÙ¥áZi7ZSUUµ$Ñ„2SHÅ£YìY²ÉÒ†ŽtIŒÊkÌê]‚Ù™ÚS2˜±`fñ;$’3‘½AÄ÷ÕRh†M’¤˜°°%PFtDA–°Å£§†ÌPˆHÜÃÁEÈ‘8ÉT€Íp®îfFY„Q&%LŒÀ:ÜÖt(Åâ‹ufB@o£=$(ŠL“‚¤Äõ$Á©±j¬M´ª‰<(Meg>É2f(©ÁÈBL3ÍqlΕ‹ßH›òT~`î-3×BP’ã¦øS'¸Û‡XAöEš–X1β='š¼Aî„P‘¢XÑjÐá ÑC;0V'frBbc*i&Ê+ l²E$Ú ”@ PæJîçQ ÚDke’b‰H°f4 §4o)MbI¶p]”r•£ 2RG éˆ v‚¡DÀ‹Á2…¾rbVX;Çt §4É%"F‘:&’HÇ0”0fœ–K(;‚k!ÊôÛ…MëP(ÓA>Ž{ h€óÍfØ¢à³9Bz#ÅJûbîð%‡¦l¡WYÀÍR~«JDù~d¶ÇmŒ… Xã äØLî#hAÕCáHãES€ƒ±!È1;.W´VF™Š²}Õ†jG5ŽàÈð©šÙšB¢ÆvÁë¶5¶´Î ²Ti¥#¡^P‘çz-u¬Z›¡!=——ñoݽŸþéÞ{dª~ßÃé?»yÅöbø“tòÑBðóáBBö ”н¤8Aă5¬ËÅBÅCùDüÇKg{jÜ¢nêK÷p‹+HÉó9JI?UN¹Û8ªBEoéVCæ‡h´œØ ¤=WƒWF< Èk&VFcµQ`ɨŠz“(Akv+MóuŠGv x ãœIµclKï1u­¤…¿5Œj·Š¨€°„„ujO/òöy»Ï½½/õÔÃñëõ4Þ{ |>P©¢„4HcÉ–¨òxA|ÞØÆ%â)êöú¡î…5€‚RþÕ¦-³ZèÐ)þËkCRÆhÂ-ÌY€$ÌCaY)*½>Zæ¥HLÖd‡ pºµ>I<ÿø†Bg†5(+niˆU6Òw4I-$R 2VΕؑ¥±0³˜a3yÆrÄ¢£ƒ”ÁOÑgšºž—x‰àŽÚ;A3Büœ/™ÞZ/öå~‡ÿ‹þþ¾wGß„øÿ–––’M--/¢SXétÁ Ó ö™ ðÁ $(„âPž¤õͼ=W á(i&2ÓÓ:ZÍ:§¿× –‰K²{£Š8bŒÁœ­#)²Ecº){tÓ$#Eš³µ®Ó””«(0{Y"’;Y t¢Ôe1±gµ ÉÄ>hR¼ã7}’¤^IKQ®mµÝãc¼$"Ä 6 ©N3G<{ôéAÁ 撚Xè¶íA‚ÛÜ\0â /a3þ¥þ?“ù&B¶ùíV|U/àeOœD>Lhó0Û3m#Yç7¤3¤ °Ò7±Îä)X¢²ºÆ5“Æ3ÌæX•êK·÷ˆÙJÈG¿“³TZ±¶ÕKéƒ\<—B•ë$Û»H‡1#‚Q¬6ÉŒŸDÍ&¢ÑÖT%p‡-ó ¡_鈡=.ª./n U©ã|¦³Ó@¤Žƒ0AQc ƒD’ɉ××× ¯¯¯¯¯®7_____]&¾½ÆŽ³äçÓ>z<Þ‘òxúÂ>Žùz©2æž„´xz”„hî…8bѳғdŠ™^‡›¦ žä`„Z´\Á„ÛNµÏív”sUTuÍø—ñïfþñÿoô-ÞÃàüßîë¿ôõ¾oÉùÿá”æàN,|P–ujQb” µ`€`ƃZ< á:øg\Ô­¥¾J^”²—¯Ûëv@1f£û! ”]ôذhœ,‘7ÝœÁ~šá²iÇO<4‰²$k$b[mL±Á`jÎÆÆk îr^uÛ2‘ZEKg¥àãKÏhÝ8ÐV;á Bu%'J’6&hMîÙÁm²w´ÝpxŒ‘U‚†;U8( /¤šŸË—×÷~o÷îþnú?·QÇ0k4S«Ç‹š{Œ|~Uù½ô÷·­ì#óf´ùãÙOž1èz¼³4\£QZ¦MñÖ¿’ƒVÙ ·ìçº%X7„‘Ëç8aÒ!q¿Gy1ìѳù§=«DbÏz‘½ •…QÄ)½F¤ôn }Q¸úbB?¿´S Óu´•'Ë^J[vg·S=鳊_¢ñTÙ5,­žÂ´¾·2žìn¥—¥÷k¢òyY[>ú¿©û‡ø‡ø¯îþè5õõõÿ-}wÍ}}}}}w¹hÞ߆D­2ŒôÂÔ½¨Eh2økÔý󜽕œbՎˬut ”}ËwÅÍHuó}‘©Ú{ÒŽOí‚.˜ù£<Þñd”!PÏ®pBÄ5kSí@Ëmo·(m¹ÖsÑiLG:¼„n´R€è£oùö©{Vóß®õēޑÝfüµ#ð’coç'įž-®²šÕ×èùþ£»èú>£èú>£ýß–Çåþ_åþ_å€ETòØ•W‰Å5U%*¨@r•;dqbÎHžÊ ’±;’WË·õ¾§]û'ƒK3ö-_@Iš•°lå½ÕiËLã(CØÅ0lµ<éžvBÞ÷ÍäWM©-73—É:ؽµ˜1¡Óߦ› éŠT{=ÛC éž“¤$§4!ÇÆì}÷°ƒîÖÖÖÖÖÖýzÚÓºÚÆµµ˜k'@þ5šPB1¡pC$†ˆô¢3ëõ—«ÝëŸÌ>?/Ãt6|k4W¦xžñµ»åÎ/n\‰Ëo΋y‚D}ñŠMÔ‘i.&k48!oBšæ>›•cÉ·!®s°GV‰cemÔÛЉ+Ï t™ZÓ™N5»Éƾ¾…Z·ÀrÚ75/IOªGsÒ½$£_´,ad" Ù§¯¯¯¯¯®g[Y¶±mmmk ]]]]^飯‰V"LBÁ>â@¡z¡ì‡å=É8?©|DÈI/òC Oujª¿©𓸦ËæXbyÜÈE-mb¤Í²Ecv)6mî@f$Ðþ &ÉÀΪ‘tÇ+DZ4XMI§°"Ò^a”XT;q8…¦ÅiIöby×t4Öâ”ßuWœ·íß»t…¤ü·iüív‚Í&ô@ֵή®®¦¦£]MMMMMN‘í]^–¶·ò<”ð4IS…{V©:!kWc9ùÿ3î·’¯/o‹²Æç·CÒ52}­Tâºþ¢V›™Øã1P{> ÐB¾ÍšÙ¬¡SF7‹d–ÙDJ:5‘·}¥%,f|áŽÉ0RÛI=ô®û$ÉãˆÂxùs•Á. )2`ƒ$(  ¤É= ^è{ëèñ¢‰Ø ¯¯¯¯¯¯üÌëëËëê¾jêêê¦üÈü X#,–ÏU#p«ªÜ¾™&a·w–¾ºJVÌÂ}„¨iŒàdµÓákÁÚ?‘›ÂÞ]ðyñ§¹Üc-`>ŽI¤…¥‰Þ%÷{çi–HlbIÌÿY³ås#N­bµÑ7¹ôK9¾Ûg!³¡až+ŠÚ[-®tTOÀKnÕ–šW6hý­½èì‰qã®Ý»¥ªŸíN×-ç”;W|û{z3®sÆí½t¬vO’ü½;&ôý'í~×OèþÍ÷¯¯ývllØðìlllZllll"ØDuô#ÚtáB­[ÎH˜!¡‡ üÇéÚkñø¿×Tú²§¹¾”óœ›ë!œr»›Ô8TØ¥¤ûÕ µ“g|þ¼´rx‘«IÕÍm‚H:êQyñÐõ”å:¯¤—ÑC9™g~" ç³v^TvD®¶Z"篽–±i]eµ!¤,±„„’¥hô} Ù×’gD®³§ñ+²òJ:@K‰V6}²èÒ¼¶§.8±Ã¦‹]3çõÍùýgD(F¥wìáÕý[ñ>Çâ~!ýŽ®ÆÇõØØØáØ=±±°_cbž@Ë$hª‘H$.‚&!×­4!ªÕ®$[Më9{6ëó n¸SæzjVÝï¦rfÂn©¶ršãkˆû«¾ÙÆtu`¯j¶ ®zð÷šKD2ÖôL÷MÇBð¦ubÕdUæú$t+'ãðSÄBÿJUøµcÓn":_§ªWY¯IbE{$~³àØžá k­¬O²ùÝ"–é«]ºþj±s‡ ÷¸€£Æ„)(i0‡§óû66 llCìkk-ÖÖÖ5­¬¥YË–@l*€bT#Ⱦ³VGw’5¯‡ŸÙ×ã4xÈŽùÊwo\¬Œ=MÊ¢nŒÍ©¡Ÿ®VÓ7”ª%˜$·É*N#äfô‘씆_ ŠrèÝ‹“`ÊyÎp´ý®”³W|·ÍØ—~Ëi[GŸò^õ–gYí LiÕoêÃ3ó>…>¹O¡ŠÐÛ¿Ö\󰉶äO< º‘¥:0YEGƒ ­¬g[[[[[[[[[U.®®®®®©ÍTlÖ„V™YðI×¢øüÑ2¨!ÿ\ÇïãðtXÞßÍûïÍSÕVºtõç³Hÿé]w×J½è|oòÊ[k¼ÖŠÖX’o&!„—Þ9SJbFÔ3Þbiñv¤ “qË3@Ò îà[íœKþ1óobË™Ý&ÐÚ;>xð(1SZ®œ;ºœÚGÑXôó¤—‡?/9ÎÙ<þTp Q±±±±ûÆkëžÖÖÖÖÖÖÖÖÖÖI­­­­¬«[[X³i˜v T¦(úµùø(u²ØüƒIÔ~¡ÑÌ^]KŽÞgTÕ% pí˜z¦$ËhøØ¿€ÄÜHÁÆRûçõéå¯-”Ú›vrû/³|ù_æÖމ°5¹FëÂúêp}'ÂP¿|ë6‘RŒ±¦eÔn#b?ÕËìÕdgß›øoéç¶q*pûu—š)e¦4SsÈpβxHyX]@©ÙZ%1oÌüÏ3íý·~ßÛŠÏ·ý“öþßÛÅöþÝ7_íÕþLdRf£3T*mC¦8ø&ÊQø7˜4’®t™H” ¬=µö|<üRƒØ„¹ì{ûµ7X› §:• ç-=Ûhµ*žÊ++‰ïÖ8îÇè­§(c ±mùøbõz6¿ŸÁr`…4 zÖ¬R,C v¤ÊI(yî耣ö8ë±¾›D‘ù§Qþ®¯Ì™6á#v|ùC­¹ôÀP¼¯Ë—؇v…vêçØ|â5Ž¹Ë²»iæ—ºbEP·aø1 ö‘K½ßÃÙO¬Ô—=-çÎ^‰Ý= ‡Õ„jj_c‹SÇ¢6dÇdoµ»¢äe¹%®Ëuõn¦;"Cu»nöLz#È'~½NèOw|{Ï;#jìñ×tÊm„©N}<ûàVÞ+åRÆ3ò÷BÍ-ê'ËC%¥`‹T4}ˆ€ºèy!Z;“7Ú3•så/ÐÐXO³¦[´Mú.Þóã úóãäå²ñÏUá,üÓì§fû0éecHÂÃâ/Í»/Õ!Æ._ýoæÿF2ë Ã)P>b–]EèJ+ðå„ÃKm©GjR](’@uT?]iÖÎüqôïò÷qèsv]R·`‰µº¼Ã}øuÆõ.Dv³µ̼ü(š6»,^0ĺ%·}Z\#'×vývÚ¯ šC¹ç:ן)K°k °º¨œ?ò”J¿ {ƒ$ð ²”Œã¡Ž#ɘ‡ý%:úå¶ØãØtow“Ë,÷y¹Ï¾ø}íÎ=&Øìï†Ëxî®w¯„W‰tœÇG;ϧG–³f˜óÌnÛ%¬:§ç[R›Ía«•xêâÕ)¬jÑ÷·Sx¶ÄÒ6uñÄš¸‡;Uüv&óÏ·ç×ÑÔå>dËYgâ8yn;7G§vÂ,ˆ¿²Ë",ò.Ý¥gžWíÿ›c‹öGÏZíïîÒ…3ì†å t¶½ûzKœ:a)¥z:x÷²ûû4Ùm)ŽûC†¥Ä¶#¶{3®w‘èÑhUç(uO§‘r™×Ø~ôÙäÛò­zßÏ×g¶ÊÊ<·\þ]žytÐü­).æq>JÎ%ÂíGäÑ)'´tS¿@Ⱥ@(‘”>‹„ ;ÃË4È ÂånO×è·t:|ÝDiE¹m‹è=ýSšwôqãµõ¾º=íÏ<þíøiÖ‘—•ÑSÁqÀ„Wsƒ,W“*K£à}VêåÂ%Í”t4Nã%³Q #M§‹0“j…aOžÝؾâeRèÕ¶E,Iv‡‰lùM>ÉŸ—·sò(K¬º{oäò[Íä½iM•™í¯M# ÒZÛ[t ÷,”Û½Ú jãÍ=Ý)ãîµ)Îqç Þ¸–,<ï¶n%•·_óoMøçÓ ÔÌ`¡™ü7ñëß5öpÎ]ÆÛÚÖjuÇ‚öÃ| ¯Ñ.…ô/BZ›¥AêŽ1§agÑñT5êÔõÔ“4èÿF¸”DCm6Kd2µ .°„LÕX¸ËbP ñ‰ ™lF8QØÐÝÃNéf»ü7N›|’¸ÚÛø¦SÞ¾NVÈ[[Û‹”Ï{º=T‡yüÕ¦î=›Öý£Œl±Þfˆ^AóúiÙØe_šwIô†ˆ¸ð¥¾¼aöŸuõ\¯æ>•SÄmî×Zvs•Ÿ¿•Ϲzü3óÞiÉBD˜9¸ U!Ø…ÙMG!Bû˾}:lãèé––, )y¦2áÎ4ºSÖ“OãI¿´¤ Îa8d´&Ê*¨zCMDm­2nžýÜgác…›»·AyÓªV¼÷îhwvóÔtÙÖ:§3ûîF»wïÝçÝ´zséÞÔ¼–%­$Ìf¦š‰¥˜±iq¤Z”ß¡IçªuçŸM¶?L+ÇÑ|óbŽåònÑ8×çJøZžs¦³Ÿ;ðÝ¿äÓ¯¯LG5Ú°ôu5!ß)ög³§.¥ëÕ!OnήwŸkDc.@ñ”tÏÊC¶RDjœŽ…fUÕiµ˜Ý9âHÃdFxØ™3Óg•›=ë,lÛ®•¯4¶Kk`ûº¹¡ÜÔX­^‡Ü\ÊûÕ {øã^+[nÜÛa¦Ø"y—ò_wvݵ2éï×¢4ïëó.Ú]ùëʬ/kôÃw«JB§ã~]¦¼´¿FŠË^Ÿ³u΢~sÖ7‘àc‡v1²oÙ •ìîŽòÏ”`ÿ9½{ˆû'ÙÏQ.gÝÆ~™øyþ±D_à—öe–DD¼åã³»³ëuíÑzñççèÍ:vó/&¿ fXõS1Õçõ›è‡~>mvm-8ßo½ývíµ=›7ø]x…˽©æ,o?št|[‡Ts ªœTRbí¤‘=õmÔà]ÑÓ^Ôi!Ôf#R}$q,̸:w뎚æ„Ð\Wsõó¼+˜ò-•zëõ:¯žÏ*y'Ø6fú> œv÷u~㹯 ð¾ÂáøÌËdèÇLì tlÂùqÔê${µ@}ãÕ>Ï*ü_wŸ½ü;ßÏÓj.äÁ4üﲉ¶œßÁuÛg|Ûw<Ï…o©®fP‰é}4ê5µJšwn‰$!ÛÙ£nÓLmźõLñ*r‘¨é’  y®¼ôi$ˉVAÃh‰W¥šbcâFŽI£!‘RÆU](v(ÂÙh‚¢‹lH–ßj\0‘a JÐÐUEÆPz)Ä<:#54;¥žÂ œÂí´s§Ð‰Z¯7¦ÚiAC[w/@ðûiFRâ0’cçÕNÛçoœãØ(ÙöõI?Ùëã‰_±gÑìá=Û:xq=äqãj¾éÓMÚѡį ù¸•uQåîÅeלê{r®c2y1IJS ¥‘¥Œw+ö+A…ÉxHtÔÑh½çà,‚Î%ê™ °PvoÓz¥²?2°ßT›@ÊH"'i°’L²Q=%ê!~=ﲡ>c£Ïd+·§Í>ߌÓä/NÔµ<¢¿!®ß¢¯Žýý}¬Ýüôáåà}{_sCY¡¿wz¬:úaÏ ‰.˜’„ Û2œœ„æ\¿ìhkƒm¾¥ üË,©Ê·K“ï[ô FˆË5’yQœÕc&‘àzt±Ú$Dô7ˆ‡b4öl1UÎ#°Û8ôì_^wèíÖ‰§qçNI|ÑG…s߯¹á)_öw§W—±>¯OE«>sòœ6'Õ‚ÊÝüóNPóf|:|«Ñ#ê¯oV#Î:ôF6%£a/ÿ÷EÆcIWbì´Iî·°pR›JéQ…‚‰It$b A6¦%ÛÓGo¡ìòÎ]^~Ìü›&€¸ym²œYPóÙÀ¼ºöoe«ihâ0'q”)ÌjFD2§I",¸A1ÏH¨& œ:D$L¥¤YÃ`""cRaê¤ùx[RàB»A7þs§m°E5ÝÖÜì‹e2<ç+‡\¯’D-O]œ,'ü6«MK¤±wP†1Ò)ÂB då(ºÛÃoÁó}‚þ,ѺQ;[›K’ù{·÷éëÝÂþœ÷i¤vÇtöÖÇ=émuLã°ýkªô5åÓåüe  õöR–Ù°¤óŠ—Aúººz†ÏI—ÕÏ©­Öb±Û±ºû¨9uëÑÜbWñîèéø6•ÒñÝ×Û)m‡›éKÊͯclì_;uCž²,üŠËÒË2Åü.Ü¥¶{÷ïFïßÇ-ÖT¦Þjôm +Mûôì(ãnŽø÷­ûÿV]¶ß^Ôë9%†Ó=ÙI¢Ç‰RãgŽ”•g¥›“T„7eõ x¼K9QAøµƒ ÌÚgBC°UA¢«Uû½1RÉ—ãrÉ1¶fªØJ7L äÑÀ±¬ôzºAV}¼ûxlª.ï]ù?u“›mßߟ )#µü9£ÛÃl¥ž¾«sáå.¦©°mÚsν9ÂÜæ|xõùþo“¦ç¯/ÑtùÅÊ‘ïÓKçÁü¾ž)Ô{Œ®²8tøSo}Ç÷ºÿ¥3yay<=Ú ÌcðcSÒn§áÈ̳¼ó,¼¸æÂYð@‹Ã±f>JÐ.ÅM_ L©št.êjþ~½û¸Á·uz±óç¬w¥Ó¤u×>îYïß°ø'½_”÷"ÇžÌãÃÅ:3ÝžóXÑô>Ïd<‹åNëy;ŽÝ•œñädzÄÄX@i–X·É%æŒI>ÑH*UL%:1² qŒÿÑÐR£Ì–;÷É=õÓ‹L‰Ô¼vÆ3¸bË»&µ|‘µ¸¦Yî°ýÓÆ ˃W®]þMžn{}ršÛŒåÕÒÜ](¼`|¾XK±³ÍO]µé±!ŸŒ¨Ð€—9 ,·^e‰cˆL¸‰H4«¢}Jhˆ»É ì…b²8 x©.ÊA-ºA²ûG›ƒœÑ#MI©4V;P4göMä9Øá‘Ö¿-xtôj[¶zË×å…—Bö¢^\&½Ùž•ðGñVåÑŽI^Ï+7g£d\$^Ÿ ·ƒq†Î²OzcyðÛz7tõËÍ»®ï+òqn­f¾kHD¼5æn<ÞmÞ[õy:·ïß_&͵¿†Ï&îý˱Jm.“,I…C!‰¤ô$‰õpŒZ-iûìKB’£+8;çÌCQ;9§(q.’¤(Ö㌳pD¢0S.]¬È£àEà$iØù‡ ›ï¦mÛ~•òr-ÚÞíõó‡)Vk™ôíÜ<õ>©Ç‡×>\kݳ”â!i”‚ˆŽ(uÀøäQáÆX{„¼Ã/+ïº}÷aÓÜŒ`VQmä­šñô.\(—Õ¶Òiq‰RÀøêÔü>¾<s Ç÷l˜dU $„²m&²B3Ë!E!Ôé3X[ Š£˜ñ³ û8usá‰ëµDØ×ÎT¨Ô*EŠzÅÍd ˆ«Æµ¤¦Ž™qHJ6UÊÖ9ß™·~úm×¢ Úüá×쯒‰/SuiÔrëo. ßäè×.½ëÄ 8“D4:có02ÜN¢Ðq:®Ôlö¡¡åB%ÕKMnOB>ãÃOLü ‰uiš%uãU. M–ËEÒÊ’-Qæ#5€Î‡.±ÓÊT¯KöW°nÝ™ø ¡Æ_Xû1å¶sŒ'7ÛÔ«»@šõe&3êj58 4„ÛªTb“Úš uTÜ¡_Ð2ô†zoω9Ê¡Öé_YŠžòcW¦ÜêžÄ/uÛˆ\¹ êê<‰UñÞ15æY–1$œ-nÍ‘¶zn|«ÍªzD‹Iïã1#p'„×ÊŸê£%Ò Asñ ¯Ó§”ñ­|Q³Ûj%²°m³_>¿SÝ^~ý‡»—˜Ô»{s/gÂû1ÙïäG§ŽÚléì.)ÝЖץ÷z¶ââf‘ì]ÅW%.Û·w]½ÙùzøívéôÁ[mïë¤4øñÍzøéú°^í«ÉÇEVTž3\OJ%0;‹à*¦È)w[19™GP•R)•*™1ž‚,²Rµ‘ ñ.¹•2›vYg Ë®ãÍ9Ýx×§ƒŸ%Úž0³›ˆgÅíN½žŠ&ØãÍÕ7oò™º÷[^·?_¬†¥¹#Ž §e»wZ'\Y'ƒ{}˜Ù¾¾ô`t¶y²V›0 î[»¸õöt:üä«Òöðîm)ˆy<ùïã¾—Ÿ——gv²…Ûè«ÂMãkðêçn–~_·Èˆ¡Ýà}zýZK¸º™w¶¹è\ÔáÃgZq8×¾=Qúu­o}6úO^žh‘ëójZlÛÔ’¶ãàk<ëæ‘Ý'«ÑÓ]Cn?.7|½i¸|k.5˜S1ã (”O\G>áãØQ®½N”'&ü Fåº ×) mãLÝ\‚W´£,]A“ éŽ,Ü•’ÉÇqÉ“ØÔ4¼0Íž!B 2Ó·edü¤šÛW5Z%…y4­TdÐ8óe¤rT‰ïß móÛÎ%ö·¤ôõR=;8ÍtááÑæÛ_v<Ûí!|?–O=<šlÓ±7½»ŽÕÅÓM8×}a+ráóoî‰pßN‡MžoL›othÚ;C¢tQ¶B a«Å‚fr WÝž®™ÉLÜ0”4¸Yz׌,u\¯ÒþaÝéè/&Þ‹ðîë/nʤ \·øìfº6æxyZÕÞqðèôò·v²Ÿ ³ž;M'kj¶ KŽ5 k› 4„ªÆ©Hi+AŒøC¤ —e|,;.\L&Y樚ûFævå©Ñ•i‘•7¢"…ï– âHÒUUûWõ©úè’–Ù‹$úž`¶'•͈@zÄ“D׊uò(BÊÀFÀ,ç›6ùi¥8Õ¸„5Ýrù²\7*¤3C¬ ëÎá|äiUœ&'°xWéæ{4ÏŸ{KʽKUžÂÛ+ëì…7rãÕÛÂÒ.²ÚûFMgÈE§\Hã-Bv&j`èØA} ’é&ºšO B`}C&ÇReçQ†‰nRV¡ADšZILƒÑdbŒ³›`&ŠZ—5"×Vç®ÝëÍnɰÒÞ¾;á§«ÄúüÏmtî÷õÃRñõŸ\8Ö˜>c4zõÙÄê[§Û-½5.¿‹¶éOg¦KŸ~Üüší¯¶}¯™'ºéÇH{xúuò;>&,œ?{înQ¼—«oWÙ„G½°—oÍÙÜŽç÷/â)±˜Rë¡jÊ´¤†©í~Yº²!«®ÍcB‡Š}¨ÏÓËí‘ÇÈpòÇÃÕk×vî˜ø§v³qBþmzýÖéÜò}ÜxÚ Ý!œÆyEÍäŠÑ@Ö&2`¡ôÝ#!÷I–ê˜F?YS£aÆÄòÅrÎ1.›)ÐBsNÁß®RÅ>Õݦ«Ì•pdsßMmY̳Øîg ¡ŽÒ‘)¥Ö1xòEºuåuJ.»æ$½~#Þ5ǰ/ßRO8ÅÇ/Bç(u*J1v€å,™b™AòÔŠÅÍãšeÔ©'e—ö>–¦Ó…dÓz^¨é=®áoÐEE¸ËSÄ~fWM,•T‡)fÀîïC9Ì Ï n2àäNã‘¶ùré™D‚åéA+ 4×P|£^‰ÕРˆˆóÇ-„U%Mv6‚†)Dƒ†‰BHQI–¡ k%yr«8Ž+(Èœá¤ØÎAêo¹MJ¨øÒ ¹e›;¬»ª¸XE¨­e†â!²*\´5DKæÇ€ý³à-Vc†Š'8c ËBq¥e›IÀ”sÅ+âmì§v<¯¶›åê{ß;[ºhyéÄx7|-½q>E-)*­üÝü¥m~½ -u!¿jïÙÑÓݾuÝ»†i§Ë×Þ©áW5CI9”yF †4*@ëM0µëŽÑ쵇¢A3Ô\áÅu]# Ù€p…Çg‰â]‡ÑÜQÛèëôRÜ»âZ|•¦ÏÖÜ‚´+ ôÒ.„WÉ: ˆ1KöFÁhE]Áœ5”•'bdP²S…Í~{ˆ:u„·Ã¨.«’§+d6Ñ'ªQø9rà2u’¶›HÉÀ¤lç”YViÚ"ð£dä×£œýQ Q‹Uø¸{ßÁüļ)Ij¥sԱʓ:˸¯Œ¢õ†Éd‰Ý©”ÿü­eENÀ²ó ˬµkº|ò”‘RžPÅFcVµ äøÍIägg‡Õ;ʼnܽiè0F¼rs&ÙPÇNždȈ¦#±4;x†Q|‚PåÙüi&`Þui•m˜nâ6³:‡\ “’¿|r`Ï;ùÈ^g­&¢*Ú]Ç!¸pʼ"Oµ'I[*×ʨúcFÛ©;XèU#Ì]hv>‘ÙMaIYL& ãY|ÄB«0c›r9ïŠÄý=½<äÝyæ½Ú3ϨޞN^|çÓ¦ëÍ{ê»:9bOÚò?7nÕß‘#,©1"ÁÌžvÚE³0ã2´©\õ:ûMÅ Ì'PåÞreä@}§P”“&ÛD–˜i­-Òäkþ+7¥ìMiÓJì5 K ½„¢à„v%îXK(šI hªm(®lªÉyÌé£#Í”ã¥-ºåÐ\d–Ã\(žë}€ØÚ¸"HšD³×Oßl‚â¿Y0 wáXŽ~g&¡æn§pxQ­˜Œ0ô’"¯SÙ}´Š 0}Š'JU/dÚ!Q;¸Ær^Ãb „·ñU!8-¡¥ØÁåÛ–y©žÑ''Šñ1g"ý"TåæÐȼ%‹]+u2ä~ÆQ LG^^÷ð^ølïÁpçºnÖOÉWÚÞ”ßp¢ ÐX :écªÎBÙ”àÎã.¦Š æ¤1Ê5†r¶V<·L…Ó!h¼ u <þlû$pô‘|±£b˜Ì3ï^³øÞmÙ,<›ÅàTHa~ümL‘· }4œt….5ÇDâmœ‘à„jЊHQ!E6 ƺӢC#Ï¢óìÉÂN''šãÆCŠ4~Ñ—‡FêW:æŽÅKŒ…)X¼®’À«&ZMJ¦(ÁÍH¦k<öØiuÌuBdZba-vÇä‘¿xÄš`Õ>ˆ‰5û¦&:‘ækC‘ñ¬.z*n¨ÝÂÓöÄi¦V,e ò·¥NV4˜4hÃyb MuN;* ÜË@”‡Q ÀBÕÌ·•j³‘¬R²AE¤‰'c°ÏH³p‘zz™yn{UõX.ÎbJ¡‹Ý«t¼ž¸ ˜•XeqĽéLб+d³n¨„ûvÃò¸hÅ™ï·} ®hTãhhý ãµQKª&¹¶¸Ìø8ñF Xø™'™-¢ý<Û¶ã‡ÓŸCq,ú33åàœ>§/M#ŸLp¼¼×ÃÇÆï+$§Ú¦¡Œ“èÆ4É©)n¸J”ä¶3&'°6)Q¸©ÆZªÔX×O0ô—d·!‘ôc"gJc!Š­°ú5Ƴ‘…¬2¤`“,¡ŽD˜É”jd+N%¥pf°=ÚïÞ-zaØ_7*À® ïÄcMÌ:Ñ&'ƒ.ŠñBE‘#Ó|‹V²«0öÆbŒg–äÎZŠV@Ísºb—O^ÂÏ'q·ËEluFjÑljž –£CØÃSæË*.¯zƒŒ±EBb =¸¥Q¹]–¸`̘•N¬^–è±³ UtË:¸GºáÊEš~‰óMžNíXééô_ÜÃÍVN§¯kO”¾H¯{Æ%¶ý­Á`ºqy32»*±4Ë‹þõ–|Ç+¸~IN“]´¸u«É©vÉ©$ßÅeœ8xèÓ2¢>xÜMÌ X24ÁaéÄó8.èÂZ4ÛFã«“ Î=!Èbäñ¨É(CcôD‹HZ© ¹F¦åä6ÂjX˪´'kiÚI¿ úÏy§F˜qÄ­žâçÛÿŽIŽKlõ˜ÅT3ù˜9Í^n§‡Ôœå\"R­"60ÈÖZ¡gŠXbx+¬„H-d zDpºÉÖ7È& ÊÉêWu•g†#JÖ‘b"M¹¥™­ºr8O7¤àÒÌŒl- 1åmÙrð.0\˜Ú1aŠî/cÀêCàFG¤çç&ÚŠ3+,³¨ÒÙº2Ö]O% S+ QS%eŽ‘­Xµç¬‹¬i,y¯Ý!ýk=%‡6‚µ Ë#¬âƶÐðVÊZ"FÍÂTH…ÅúÖAæÉaŸ<(ªENÛÏ),ú—òZ îI]êQ(@à8æL'²Õ˜ ?M»vi‚é(âÆ²“h–@ë%"‰¥®‡Ž•¼ãû IŒ¬ABaÖš*0÷ï2RæxâH½Hùò·B1¶ëe:NËêD‹™#=+z.´Ì5",Õ(rÏ5•2YŽhlšK&þHb ]øØ‘‰“u/n¼œ#“"1]‚³ ‰gÁb´’ºM 8$"WÙ¿`^lœM)ò¤n2„PÆÃ ‘®:ù,™¶Fh"Bmˆž:Ö2¬X˜âÙeÊ>ŵ£-|(.ØÍËELÌ4E‰nŸ+™€fFÊHÕRô¡~XuãL+ ª¨KÞhä‰rIwD›¢ñ›ƒµ þ ÃFì%²âŽy& ¸îÔ¨]<†c޵ðQ,Ø5ß=cOó'¶¢ËvDçÊØ6_ÆÐ-[ӟŒꑩG—†5²å¼ì§6¡XÌLóIœò¬3{¤»ñSaÁAùÞb×½£pÈÆu£ÝÊêÔ'•ŒÇ-ŸI'•U§ 3I]3¯Á$Q²29’¥íÈR;oŒ“Ñgw°žÙI@ÐÕ‹G¹•VŸÛ#l»†t†ÔÊM”S8¾>9,-×]»pcM¶àX™£ ¥‡r«!a³¤lžU$Õf%ŠwÓe£–Tù±6Ÿ S·"H²Ä¯“>‡”–™xiI’'Òk"t¶^IÝ%U!ˆr[$ÆZ(ã,¢È¿Ëý_YϨK¼þK…ÌòÍ!µ;-PUV<É„$òªÑ»Ìnkg¶£W±†j¥…\`cŽnŸ&2ð8ëî G¦ÙW)t dýæpŠl¡‡}ÀnBਰÚyós,ºŽ A äaÇ 6בb*`iñåE¬ýAALla¸ b×!‚Ä[ä«–’z0òK8›{S80;ýWÇ%°ÂKøG5:b” W)Œ¡©ÒÓ4ôʸóÚ%EèO9AÜO–Éá+ËÞ¦ûù&ìdÅ>Bi8…O:—”’Hå9d#¥a3.H)Èuâ"žE2ûc.ät,ñp^¶ñSæF¹Î¡#¼eÉé,¤‡¾„«ÓI×'Ô‚‰$Ù¬‡ÛÜ"¦ €¬+²ô ®S7É ]%ç&´i…øy×^6Æ.·qX¾s·k¾¡F¸ÒsZ|ƒ òéP›”Žâò¶5Ê:OSçT™áQ††‰¯¬©žìví‰aïÙ ·ÛƒHI¸u`*ËñÝ(pµknÍZ‰I™ŸRƒ†î®îEˆ6 Õ93qÇq=¬5¦í¢§mi9%†EB-ODê@Hwºó¶n×âÛw•^6ýÂùvóñäAüà;h™‹¾ÜaoÛ¾÷x¹gƒ »³Îÿ'VžÒð9øÂþÖù¼Ûç8xb|þóg„¸2œ7x×ßè6„ÛEæ‘>l¥”œ|I®co`y\CŽ9Q™!.ЈÌÝhl &ÆhòvÒüéÑšd¥ÚÙÅ{7,zUR½ Nº}©]4wâ-il«ˆÜª¬íòÎzËU³Så¢Á‘×q<[¬ ùeî_½&™xŸéÐñ—ª3L•¢ÂÅ%®!¾— RX uZ¦ÕAv–ñî¨×. —Õ ƒßfHfÂ#«3;[££Mˆ›3±4 ”“2úÆQžî 2Þ<š.ât¬·UñRk¦S=Kpšy¢zädÕM1J©Œƒ/μœ×d¦_„¹/3TªýK›}°èËm ÈžAQÖIôï*[’¥«Â²—‡¬j "†ožæYa1:ÒÀàà=ui,däÙfÔKžÄILÔK44Æ÷Ÿ ØdrâcÜÁ•ÔF9rYt›ÆÊ447SRdp™£BÆ­ªœrUš~9§R×9f†\t!¸ú­îQ–Ù6E›u+¬’¬ò¨áÇZ]ôп–9çþ‹1w8¢é‚åçÁשÓW]økNãž§ì·¼²æÈí©Jéï^ŪóÛ)ÙEܯ…ø±ÆÊø†øâA÷˜Í¸âê¬ßl”ª§—UH£2ä:x X“Æ?h1Φ–ùñ°RÕ’’»â^'.Di¦{ 'ÒþXN„^“Ð]±©-FÙCjñú=[²=Áy¹7£èŽ›§PˆäFý)9uÃyh¤8hÈxT±LÔR ^{"ÎÖï!’È‹ª-€u%. ¤()Ó¥^Zzf}´Ñ*Pvï9ÙÔºR ÀPf"Øb |{¬Êmƒ$‹»ðÁ»xš‘™T©u§a&ϵÎqµg]¹ Îó%Ÿ¤‹å`A1ΣÓ.ýÉ gsA,»ÏêäΪ² ᙓˆò¦Ìƒ ˜>d˜4·Õ#X¨3dó¼LÆ!]v‘{‚ZKZH–¥2Ì*˜ûFÔ*©hVC·!* ‡r°ºÙÓYʨ]J@ÔBb™ï´ Ü»qÉí°è¶ õTï1z$%‡µÐFªu•–‡ië!µÏ|vM—˜£0›VÖÃ/jÑ¥™^¬àOW´*¤ñ¬KÏJV9ÙÇs\» i9yή–“†Z8"¡¥Õ¤µÕBÖNÚ§=fêqRaÃ’´ØjBÜhƒNÃé–8¿ÏB¼[ ܸêFf>m $i5Éw>9j?4ÛÞdªð)}¹à95-yœKe‰ú§Îª©1á#8³a ¥ÓÃB ( MÖʸá@ŠC7¦94½Ø×²«¾ÑœT,2÷Üe ÊðËÚþ†È­7)›rôì9®;ÒpdÚÁisŒÝÕ–ˆ*©LØÐíö6ŽlEàÄ3¹JF؇Š%J í!o?æKk5¯§ÛLv™<H= ã„»1—µžFÜË¢g²¢Ú²_/!©KuKšÛ–ìMµ|‚àKŽÎfÂAÌ‚Hq°'¹s?›%ÆU¬Â’­ƒ)Mq‚E·µò’jáѶ323àîãÙ+µŠxH].µ¯Fù™'ئ7…µà/F ޾zT"pÚÈÇ`ù‡"<‹¬€—‡qÏ_3ññO@ë6”‡’gv ²é¶@[³˜ÓüdMµúøõË»mX?GÕyéìy™ˆ²cqippØJçæb%â îZéÚT¸~4ÓrlîA™ÄS¡á÷cå®If÷wh"bE]ÌO¤B• 3‰îæþ¨)‰Ëg×"ÃN\²xî•í¦«Xÿè¼~Œ&CªŽÍ÷©%›öÙ‹^g¯‘…;·­CØsáð“|9ÞÊÃõRvé ©[^ÜE$q£`A:¡zã<¨›^W¹a/¡æÕ¿"´w6Í1!Ìðb"hm$¡ø­Ïöv×võÍè+£<ªèd‹š1 ¦tônâ“6‘º;xî3ˆZ lr`} J}†àÁÑÙ"â=2 >ܪè7a¦PƒÍ¥y"dˆóåÚt%:QÇÖ}i'.ú´PòK¶©s™´Á'&ÍÂ*VJM=^#Ôv7oÞÝNêra°ÖɲÛÍzÓiMɬˆ÷¶›¦K ºzóöÇki_³C¥ksjbY—²Ó‹†ž8/z¿°Ž‡¶ik —hPí·P±Ç N–Óo$©$NR9VkI(YΤנ»ˆ/Hç¦Ò8¯Ù²Ý‹RÒ]"18cå°õ×2ôíS…ÖFT²aÈ3#òެ –Mt£jÊµÒÆ·Óät‰Ë…É,‰Q€£6®¹jÊP¿ ë”ÿ-“ AïZ7Kuõ4¹µlÛh¾…óM‚eãÏ& ‡æ 㾇y¸á(n–aS‹‹,¬Çfd™wž˜¥ÆnÛ æ ôeâÀEÕž±¥wÔ>ëøú:¬—¯ž¤Ãã Å Ô[42âË S÷Y8¹,ƒ9ž`àæ|œL«Ÿv„T‘¨UÓÆ†V°£9m4’éÖR•–°á»®Q–õü·µˆm|ûåÄh÷›ˆ‹…/vRãmêMK¼irÁ’ &N«ëÖ; ¿ÆQMp{¦©À4%‘Z‰-+ô¹ççIŒóÚɵªÜ«Lä¥Dq‹ra¥;ê¿Tví¨ýÞ­7G7ë² îŸ/ôây¹À—øŠs ­¦5š¯· Ýæ#6E¬S"ùÆQ5ŒÓÍ%!Û3xì¼^;ÈÖU8­G„PlÝ'— 7†R#Wd†©µg[Yšvú6H¿MŽ­m°Ÿ~¤Ÿ.šÚ«ê¨d꾫•Þe,k`ݹtì&RÒ×q9ɬ¤Ö;kÚoÙZŠ–äŽó¥ !œÐK"ïñ2xd¨ÖøšqWÂVä ¡ÑÆÁÄÃÐôû‘-™T‡å¤Ü.d£ä\‰YʲMCPNžsµÌ6{º!|¢3}ÂsÁ+Zð_‰ŠWÁN*ï÷ÔÌþÔ-Näxkná žÖI„xh5‚ðÙ\Utyµ71 ºˆÍ€åÔfåjÕ“©=®<ëFÒù×`™èO_¥­ö‰ÄŃC]éd=%5幘²ÉaÜ•!~ê~{D© In±MÂÏû¹œñaëÔ±Ql¦’« Ã=(MB a&å«¥«g:ñ.„yŠžÚB›ÆÃ‘šÛ¸§ný¹*­ Ï©æ(ø O):w©ÝÒaK.d Y–ð`>–Z¹’Ý8˜˜Ð]5#T´p‘è¡–ö¶ÙZ>§L¥§®)äZX¤Bñ"Ê&uº[I/¥íuêØO÷\ЯE×FЋ©Ç]üÙò6\Ù¤YÎ72ͪ‰û~oÓóÿ2üí¥±g8{0UŽî ˜u8 ™\Z.V<Žß+Šf(y²_LÓ/Ýì`;$Fͦ4Ê.¾~\xðƒWåiãéo7&`{NOÀ_ÕËæê|víUÁ¨ƒ Ý+VK[Rò—qn¢· æ°Bc\M2¯Xo4ƒãž;Ur^ZniMì66F•–¾çIä'¹¬SÂLã¾F÷Ì_Z¶¶â4]^»³3—n ®«B¦QìÉyMº<æœ@ä0qÜ¡”Ôo 1°U„9¤0¼¼‚+ 6êÄ8µ-ûnd~Ä>ƒf~ÕÚô=­mBûãèÚNtk…:>E÷˶üŽ·uAô<‰.[I!ŽI'S6ÜˈP¬ ]ОXŠM%MÓ›)Øw“#ŒÉ‰[îr‘sá’ÏØ·î ¶ºö U®:ßñÈ5ÒU?)W•®³.ŒCã&ÅÝ¢ {R†÷1Uj'y"[Ð$¡ÓÛ7!×(éKMwNÿ”G½ÿËÐûìì_wu s“"É è¼ËúâvYM•ðÍj¨ázѦBv5¡xY4e¯Ÿ(óa^ Z›˜,åVfWzråÆg‚Ò¾{uaTÅWž;6=C\ºêXYrIHIsäe6F.•MÝÚÖz7Q›¢²œ$¦ÌÀë÷°"QÛ*FåÏUÔ=HJ±>Ê-¸l®_!¹ì€Ÿö`ÔœËÄ;è´ëSJiÚ!6é¦ÔMüŠÃLE$(ëRÒS¦é#6Z”Q{4ø 0|é*µ¸òn]Ã^õÝäKEgM͘Ì&C—žy/@ItÅFÙS™f=e(vR¥IÙÏqçÛ"7ë¬Î1^(‰æ"5à=ä EDL©Tií¬º™]êèí˜ÊeeÆu”—B+ cˆ»•xè"É‚–¯¬”ù º"¤Ø!ºyKŽu­È04¢(Tsr‰éœM—’û±C‰v‡¸zCs=XC)–¼öŠX»·Ø“ÚÙL΂§ZM´C>½Ø)a¤Z:¥äa¦€ÛUøì¶ã'WT?¿··ÒÑøÖ`ó^Xºmž rË)0»ZÕ0ºãH;9õ6ûÖ^v¸Ø‰—ˆz,¾ó¼ZEãÆ£FE <Ó&û¦”µè͑ٛ™gh kò{ yìæ7,30!Ó“‡ Ÿãm2HÜ(áq(’ÇÅ\z.£ˆ_vCƒ™¹wjýò ðGþ(ÌNwn=C?l¾])†¡&Âgž!°_ ÔïÕ†ïB¿*.†U¸hh$jÎw/Ÿ E]tb“óøh#L›H##É)f´Šló*pÍR»¼i¤ ƒ;ÿpOÙ¸«Ø½Dß¹ª6dzZ/ÁNLÓ—íð¼KÇ¡!]Ĭ™Ôµ· ó‰,gY‰Q+Ç[æ“‹)ëq4,{Ö[†ÞÚlÉ &/–a´hï©.98ƃ½@[—Ýc8ÛÌ >‹;7y!œ|DêoQN©¬E1ÖÞuQ{ËdMd]çFx¨–5üÓöo9šÍ 27ÌAô 'åÅtRö•z.Žˆüj‚U»ÕyàݲAŸÉ>Ögšý ii¡{woE´fîbÑ2œˆ°l¾ª¸vŒçMeXÐ>jMÇ+TA8éY/+¶&2¸ù§üØ3Û:‡Š#^UâË5s»2_0¸M òã ’™*¤M9Á×w~ßø¬Lm0¬fXQ»ßÉ÷b}T"ÏFÌ)øQÓá« _èÄüÿ‡Q$ÕÄÓñÝÓÓqy•E󭗌݆i©¶5 º]l*{ò .Gú8o¢¯|üß%3z´ïGè?…V ¾‚ò˜Yܤ#,g<®TQ¿|ìÜù"£·}+ý÷™¿èrï¹*Ê,þß2+ïj3BñÉLsz[TaSv /Ð8Êhëqm×P6¬ê;Þ÷¾'“k¨ÅUò;Ôþÿa%ÂdeÉHæ¨v¨µpÚëN·QÚ>Ä®v5ñQÅòF´åé^¥/•uÛ¡°½Q‘„qŒmq²Ž8÷q> îäÒµŽYpv’/‚X.X‰ž^êÝS]ƒûêàiQ·µ¾Ná_"“¥Bq^sÒâ~üï÷kyÆHÉúÛ…ä6äì–ãt*•á®^ʼnÀ‡yÕFŽ-޹‡ƒa_{jVvlö&!ˆóC«hfÚƒ—Wíyƒ´ï½VJ<çr˜3M³üB²üÇ=rU¿—B ;·òµÐÀ©ý‰øèZõZŒ>5èn<1oÔ4…¤D·¤ÂzfçBƸܰ¢šÂ!°„Ò`þ6·¨Ç‡UlÛ¢˜D]ÓCÔ[4RÃø@õŸ®ÕÙ‡˜#–ðšÈZ9 Òræ^ÿ­fáLÓ(ªñ²z¢C°Ê7=­»é:ŠÕUz ~÷aAâh½¯GéõË¥a†ò_ɪH)*Â-£§A,ù’(ÉxŸóß g&g¶•ÆØÌþœc»²Y’-…îLnOÁC¯Œú;ÉăDT9X¡m•Ϋ8¡«–1¡è=¹;kþ>à¦ÂüøM®-€¸ÅB.O°Š>6¼XäW˜«Ï1s 8ªzû«4YOA`o|½´ªâ?5ì˜,r!<ÑG­êú5?ªˆúû W©b8V0[p¯Î¢àʨƒønÜQ´×ý—½®nƒ0Á•bYMÍxyäi=ÔÎ-²¤/‡pÂð(V ·ú÷ǣѻÿ“OGÆ7%VmL–†ûïìߠ߯ÔJJ›|¸ÜÉÇ–ÄEœr–ÂØc²¾Ç'Îþœ‰Uš ,DnwÈ;MÓ÷ ŽÌËî¨ŠÌ ºÐ÷zïzÑ}„èRä@žÇ©Íøø¾rG=“|Ô æ»‘–{bØÀB7(…ŨÖõ½¹]ºû½Ó™ãÎnå.e’'iµ½¬¤»;…ºnÕ mnãj·¨2 Ï$p=u+·®ûDl¡÷° v! ùTã'ˆÅî9ÖÅñÕöŽQ;º¨…ö‰aiŽ,”Ÿ]Geÿv>R&èMe-j"ä&q ÜÝ-Œªqš5 ô>4¶#!ÍaÊ߃ÐAßlßÝjkU£Ñvæg•ø†? 7”uךí#ö‹þög°c7Z3“kÙóÿ‹¸Ä™M(¶íåºÙ3TĘ÷s½R±×gê^Ïcuâ^U¿¨›Ы=WSÓ5ƒãËVoU<6î’a%´ÁRi!¨Ì¸¢’þmýTßQE·JöÛéÔ¹¥%—[ÒŽÿchŸsª{d¿€j†{Yfâ\:<r£ÅÑÙc÷œnèàY0*/–C»õ v—;NzÑ{œ$ü ûx‘›ìdél¿s³ÀZŽMÓ¯iö©èŒóuë͸NÃÕÏÕµ{ÇîæÚŽN‰ÐS›uöòBN~›M»ËÏöQÚ[i_‡ýë›iyÈ]û†ÖÝþL4W¼7¼Ó]+¬vS—æö-éÏBðÃ6Ç»·¡˜g-î“øîÍËÄÆé½Mws‹,?îò^x›— à`åF£ª›°+YÈ6îÇf–IÙ5£Ö*ƒ.ˆ¼ùfùѼûÄ•VNd¼Ë;¢ËØÔM6¹PYV#–M¸ï¾pš!#:\2¡f'¬!-û椣ûól¶ÿŽ\¥aºAg —N³9“weúd_Ùñ`’Ëž3ud1£Ó/FLÏK›¼<òÃmñý`zžû69Ñ8×Ö…K©ÝÝØV(q>¸õÀ'or;ß ƒsb¿<2cô…T‰`>H+í- ,ħúq;ÙI^¼¯—ÜC7‹Å/«[-¸º¼˜~.ÎQ“>¹œâßfæ¾xÞh~<<\/èWéÚ6]ήÑFEçyEñUÁ_gu±ö7ø2µƒÇg ïÆ¯æð=ãKT\¸:v©Œ®ƒÏ”ÏÐQkmšYñ3åû=¦‘õ:)ä- °§-]‚ÓmÐm.t¸¤c?â ûžVåÊþ>ùäfÒuqqÜׇ«ÀöçùÚåêç=‰£}®Dʼv V³w:{)Åx¯ÅàäÍѪ¯TtÅ#;{ Lôÿ“ÇÉLûÖZJf6HŸÓñ*r*ÍݹñP› +)ãœeú°ûýºñ÷ücèmÊþ%'µ‚ѵêœÚ¶âÒÀËLfÛìª5ÿìnèÂÒX{tƒ½)8R©âZGÊUêÏçæÈö%·|Ÿ«ö4½sâPk]ÀÖ§“wcc6?lkܸLõ¼õq]ßo—³½£ÇÓƒ³·‹±»¯ºj’ô§<3’NùãXúãqLOo2ý_Ñòv5N¾¸ »¼XHˆäöj]ï½±¢ˆ~Ãæ 7&³±Û+fíÏM/G~V©ö8?|¬›Ïc=Á·’×éñub;QýË.¶>ZO¹äÏîŽýjúòò¼¦·½ÞPá9ÑßC©§¾Yù¼Ó¼7šóûtE>AÇáÐKJbéůŒ=sߊOÀQ¤ÜUòäªz ·Aà’¨Kçò‡‚#Qg¼høv†ãÔy$žl<ýø®Ú%ùQÓÑë”wtW=½e»k\#õ÷†Ü¯W gÄÁt˜ùç膋үN úòCãðq^ïçé»y”äºcöüz²Žn‰a¥ü@Ýã™ÖWfí+»¥ú=I{Þ‚\ùÕÖ²ßúÐ]‹ÔNóüÞŽæáÖ+¬¿*4eÞÍîúÜþµmþ.×?°ïͱݴ·Ïôf'äý<;Ü)Š;7ëô qêgƒl­¯•Ènd6ͽµtþü»ƒz˜…ÒÖ&JŽîX^ß@Ïíx|Wº¡Xoi5ëá{}F®nîqéKˆÕã{àÏ„ì¾=›J¿Ï§ ]®ò÷N%-||” ßâ½]«–wõ]§ÐµƒÖ쇗oo(\÷ûñy Ҳ⊣ÖkŽR„VæãÓê†p:Žôó¦~¨òòQª¥šmÙ÷ÿ!ï¢xÇ‹¦¼·Œ5¼æòùBâ|ßÃÙïï©VáRp*î—sÄó%Гë}MæSñ{Iõ”‡9˜ùl;w°Ö\$–•ü§+£ÙÂ/œGŸ‹]ÏS#4ãåÛ@ íó9¶„ÜHƈa? WøH-J=µMw&üc$cÓŽ6¥ó6rÝl®‹ØÌ%Ö’u°âÿ,ŽL—ˆ»p˜\k=™TÍÚЧW˜çáÕ(ÜØ™|L~›Ä ø¬-âà+_‹ZÐö¤ŽFÖÒr=Æ ¥Å×Öjíë@“±'Œá¯}è½d[Í 'Šôêne¥¿¼„¾® W0—Ðg÷ø-Œse qèlW_ç¸Qñ´ƒ×î6ž—Š3ÝÉ/O§{jûà¬Ok œiêþo­‹ï9‘ª‡jG.¹­‚Öû'ü¤×Åv{ؽ4ïü,þu%÷ÑY·HJ#ŒTbëçÅ0Nb%_ž‰“°¦Ïov«†ýj­J¶çý¬B16ͶòJú”-껯ëî9ó>¥åWFyʵîÎÐ~õë waTÙ÷ïzz¨¦ýô >§]}S¤hKàxh/‡¥êÅ}õɰæ(&EÍÕÝìGZhâßyt3F³‚Ë•GŸkëçœe<))kµD.V1ùd73¤ïß½äÌŒØô–;Ψ®ë3àϵ{s–¢ ù§Ü‘u÷¯ W®•]f- Ý£&òM$.Èó%ªBËQsÕF$JÉpÊð~(t¨sÊ¥‡Êäo»C“ºá9ƒÖÛ…VÝõýOÕÂçHX"\ܺú˜ÏQÀ‘ŒÓªG׿(+Tû×vá»WI/$º¸«™¸NuG8‰Kqr}5!:¤ŒD]±…àm⥛.\&ASðKy“ÅL š« R…(l¨ç†ô#ßúúÃóg~­ ÛÇ­µEÔòý ºÄÿb[ò­K[ú™KuÛ«¯¼ŸÇÑ;Œ`GDŠ"›®ŒýjB9‹(¡ +Äì)z!ßâøÊÐhÍà€ŒÅd®RnfräË÷†ýúÀ¥{°NHi]é53K4Z‘6:J>­fÍY2EfØLÊ ,Ìã0½ÖÎ:I« IJ™(Nÿ£8™UuTêD“u „¦µ¬1Y3(fç‘PŽÙ+Ȳ&C¦û!ËœÀ*¡(ºÎFäª'#·L —Z,­@3—3ÄC-߯ÃÇ›2õ»"àÜO4>Žà†=³ŸPÂËQCiW¤¹ïÞ½bd'IÙPF¶zz%Æ<8òÏ)+¨N!=õ³ZnRï ë™M^éï ϰ›¹#B– Ž#pÐ1Åá¢ëŸí>›íH*aÊ®g™l{ò8\)@T­sK”¤g6ÕjÄüJ`,ÁÞ¬ˆ™1>!íù_Æ.§¼÷Æ–ýë j…¡¼]—§‰#à?Es²nïoØÿƒ}\©äâï,Ç¿ŒÝ¼·P‚5ÇéÍIhgó3댎¡øÊ±ºÄâ†ñ8–àr#$ƒô“íô‘Á®^ÁX&‹ž/'—‡ÖÂ>æ•QQm} Ný/ŸTt¹÷ZÏß-í'uùƒ\6•Èù˜Ù…|Ò¸VÃüÇ|U¶µõ›b’Œ$Þ7¼]ìÓi… ˜ëZmÖ¬¯û¯,ºÝŽ¿$ßO÷çýNOú¿iî>å~[å`‘rŒÇè1G`ZíQJ‡®S_Ý׺¡wŒìX·"ñwù)߯ƒobCÁ,rÈÉÓ—±?ãdà0ä¥áîçÖ6—Sd½8ùÔçËSsÛ¿æ “ŸÀª7]Š'm/¹ð‰·"’sQéý ñ?L?óüyê2ƒñô“¶]mÚüÆNà«Eš&ó}ßžBÞ+ú±\)Ë\êgw9NªýøîÜÚAC J¦¥;Z«’½}ÂbäûÜ}ÛŽ«¤»8ÖSÊ¥Ø÷EËåC3 Õ_cçI®Ÿ§õi"ã¸Ô}Y1$øÞPݧÞýØÈÏ{üÓ°÷Ó÷õÛ¦ŒòÏ®+SÐT}ôðü½£×º&,p–Ö!„wƒé|É£2ÿËùZ½ÅHý‰;Q£Ç »²5Õã,™0iå®oÀüÎ ­•bJNdÅHÅg˜ÛRA¤5i$ÓS×ÀÛ˜=:þL½ïMˆàÏŽÂÆ Ñ$¾¾íWº<1sjË£î7|>ݪÝ{HÛbü-Ò Q^Þ › ­jgî}Ü3õP¶=bÌôsÞ</š6Ðú˜Òý³üÒÖEäo_3šý®üWбÓ^Ü|®uÛu÷øk'çx~ããYõ2Åžu_=|ÃpdðdSëç†Öªeåx¬¥õuR^—çœÒªì˜_ÁÚöbÓðκW}]²“Æc•GN!Š“;e¬üK(³žM«Ÿú´ŒÒ|ɪ~j#+ZY®ïÌÇo›miívÁ.A·0‹ áEáÊ0›,¹"„¨̓&îJ½OÎ½ÝÆ„çàUD˜oY“<:¿ú#I

6ÃùáÉ£híÛèBPê5r¾H}O_‰"üB;™TF·>N˜:˜Sc!ý­Ò1ÚKþ/wtþÄÔ’îmÇÑ#$Ù‰kçHo^oë«eüA' ‰®ª•7Œý^MüÌÃýÿÿºj®þæ|¬äg óáØ5ο“×ä=¹¹Fá«3wb ÂhÓÚŸ¯ü¼RdÒ”j'§&Õíè¿ùZ ÕÐÇrtKfXÆSw›£ù´n¶ßú}¼6}Üuüï&ô÷U?IÛHÂî|Ñâ©nÒr4h°¢_‹úÄý-¾æê÷ÝÏ׬,^æiwGO‹WŽ2éön'c •?‚µ°(——ËüÛÚ¬ï}Ùö²Oþ~ô¢ÙÏÇ;˜Êaßgû õ›vÿ µá9Í#µW__yÚ‚¢`ä¦ÝB‹(ESè'“Ò¬zE‹‡’8€´† è0í P¹d:GEVFõ¢Û+0í£B ‚„ ‘P0„i'ûÍ ’bÚÑÐÕ ¦-R,¼ÕÎ:ÆÊK†ÒSL2õĨ|]â+ÏÉ—!÷sÌÓ‘~vbûw›f$àç£ñ݇o©R‰ìz­ßçŸ7u9=LÂ32 ¾Gi b{³ú:!U *ÄW_…7ÏÛ½ÿ“äèå¼ wa¬o",ù ñÇâd_p£ž`Îdž5ø¨a(4ñ´ÿ^ñűq8Ž)¯µøzf¼}c­ã¶Î”ƒ]ÿ?XÈï!âó xm³”ÿ:¤ï‹ZE|•UÒa;È*Š®½«&B5½bóˆ•Î?/p©)G¥J+Ñbª,@„r´¦]µ†2­ô”oxƒ3v½Y½5u’ÍßÝó9:ׯÞуϻºÆ¹¹·Y]S>º0ù”ç×Tâû²úL%|¦­ÚõÏgŸ´¶ç¥ïô‘™í¥wCÙ…þ–ñvn_êc/”¯¹øDv l'wL:™¼eWô«ïEãô¶½?‘§.æ2x©ÑЦ|õß9gP¾÷"®µ¡6r«×>OHˇ¸9d&ÉO7Y0ÅøÌc“Š"1áÁ@T^%ý¬ª˜Œ¦°£ª–œ2¨Ö+e §(öy«óK LR Ú³Žo H9ênÂM± dòÉè˜hHDA¢s£-wÿ6@§‰1]v}Uz¹ææl³šTtAU< }¦×&X\›Õ4q±)Õ8fÔê[C¤„k.¶%#w»Ôª9d¹K‰ÅzôÃϺ! W2Œ­Û„ƒžæ¨ª(ß!cÇÕßÇÙmUn<‡Gž6æŽ:¾ó¿væLuòyb¬óy¦– XŠÏh­ö×¶ŸL:PÒSÈQ6>I¢@Ë,+?L@âKèà×½ìV®,¥0‰2ðѪ’ÀG;: ¡äS±AÆÀÓRdôöu@çåUê0ìfoÎìÈT*ƒm[7 ®j(2Àu…SÓ³e2\cU*Ò>\ÊèÁÝÜœqI²•¦\º “ôá!pÎBç)ÇD>¡OP˜ûe ˆïÚË+¹wÄ6_kݽž’ |~\yZn¶$øï7÷›-[ÊwØk‡ú:þÆöþÞMO¹ýI‰ƒçö_ãÁÜèSïéý¯f:¼c²þ[?ŠB-Ò_•¨1´´'ŽQ3¦J%ý”´&LA=’*!õÕÇèŠÎ êì”\äTZêµAMŠ/¦¤¥òƒÐ$rÉ‘´u‘å Å¶‹ ÙwY åtI—x‹è /p"É1#É8ep".šAâHŸ—“)0ÜÈÔ¢ƒXa"íÿZ†=¦«A5,–ÔÎÀÎŽÙäìOû>Æÿ8 Äêpïòü¬|”ñz–ðúú2-ï^gW¦Í½¾?Ïà¹_÷| ‚#+W 0š£KNeˆg4÷(qr%W5/–ù“ÔéKæf`ñÅ &ÔÁ±_tŒmÂò BDG-S31K5*NíðýD¬!Ú*“dù,Ä“âêé²#¥·\^ð¨cõÐâ›7{ËñdÚã+ÅÞ®œdq¡#ãȧ_£wèúù¾3Ñš?ú<ÅãÂâ¡`ÔÝuHœƒ×*UñLùR-¡ÉzW)ÞQ¯¢è¿‚ AȉŽbº¢‰þ”‚” KŒ“m%5hâ">Ȧ=2äEè&‡®\P3KaYMÛO VÐÜÜ_µ„6 }P|T Ú0²aé‰ùÌÒ´# ~P‘7«’“IAE\5 õ i)ô"Ï»°3Ø×*è¹Z"Å5ƒ6¿=9e¥bECD“p1rÞÅL²2’ -ôÊ G¬ž"`æöÈsÑ…;+é/Úµ’ŒÌNÀWÅnärXa шüíâçd˜Á>—V\•ü]=9Ó *úzS‹"E‹Ë@Ú\Éñ©Pup9û*¨8éyËDƒÓL†9s³N°ÜYdHº¸ú£§ÜÎ l'\*Š,v–4"%"! )WH·©<6¸lSèwÕkFÄn`¶"Ë{ä*%KÅ ŸÚ BqdÁÐ%Ä’L|œ™è]‘35M'^¶`ô3WP‘&aÕ7<™‰qiä« 0Å(Ošq0mqJ²lÕ¤»ÐÕÒRsq/½ÆëÛ˺UŠ>½dªô‘,SÆw˜ÞçÛFÓ…ŸU¥ÀBàªÚd|ä(X «£¬£$Æ+/»Šüh~˜âÄäX³ŠN±P°SG–íÛÝ& ¬EËÐHKøg *ÝÐh&¶ÁH«,=1×Ú¶¢Ú6Ð m”’kßF¨×{B‘FHŒN|¯LÌ=$úñÁÙ™A6ei¶qqå §uÅBÒO+YHãáw²Š0I0lÃÞé¥âš0,æ°Á«Â‘³* ¸jv¶>Ölœ2EQ¹YMΟ™'%륱Dî´zvmæ=>a-š`¿ œ€ï‡÷ºg'Mf E¶¯cÝJŠL .M¦kÑIÃpÎ#ÈÆS7Š4;x×âtò#ß‚ @tÙëųʙLMH‚[èú$ªð¡¢ J›+Sn¦žšÚL-‹Gₘ£W1hÈlú{Õh–¾â#UK‹tŽ Y2õ1ÔC8¬ëÁuðq%Ûʲ¡‚Ÿ¹,%°‰ˆ7’ÏÝXâ H4öcšù*`:íÁÍF‰Vï ÄWTA¬“$õoHÆåL´ËI¸¬2(!VßX8+$R»ÒÔ-fuà…»Š„Pú¼B³7ñJø8—ç…{O‹þG›­>àÊJ®U/~)¶¾½‡÷«¨³rÞWÏÚÉæøNö ì†o!ÒIÜü9}ÿ¦~<÷g’m8ñ\´x³‘›ä'CÛ|ÀƒØ­ƒ«ÄD£!ïdGSIN/ZlB剂>Yõ $§Ì>„sÌ ° g)"Æ%J¬6„`Ò ¤î”샗Kà@ ±YfS°´p™”„êÄ&üf^Å´„ ÑÚ܀ǰ@î5Vßü~“ÑK¶!µ—»¼Õ~·†Ö;_}±úÕO~W¢?¬žëŒÖðß…çö›!j§JŸY³üc¬Ì§D;ÚŸ] `ôè7 |ŠÔ"Xg5¿§òŠí>]ßþe™GÞ'šý[6JÃDK¶€YgLŸç‹ª ~Ò[ÞvnÇoŸØgS¤êˆc ÒWzSC™K)3MÑN7š—K€]OT•t4±N(?ŠS”…ˆ¦~nL$ì‹ØÙ@¹&j_Æ“©}^zŽ=4•¦†´0c.¸ ¤~3d² §€ŽwËI"uN«¯x8óp†ïævEõösÕÞÑË‚ûžçµÑåCêtï¹x¼ä|ÝÖw¯úeÈyuA4 ÝM‹;\±XR)£‰6áÉ0¶o°ñà(¸OD‘¥›C-+޼…#¯x§7ªx†Ž›Ý‘ǰºú5½˜ÞÅ>ßûÅi¦ù%þO¡¸xïÉÕãÍãÕmÍ—ÖæA³s£‘Ì×AB'˜ºš7U'Ù¾FßßÓSKQ–¨‹˜W±G(N …„Ž"$"´>S(`OHCưlÅ]⥨fKÎ@£HckbXIÏ=¶¢˜/½TfÜ“e[@¯@üBfI’i`†ž†8) ª9h>ƒôâØÒèÚˇ¦œDTRÿýëÿ€·ó¡›®Žé9½[o6››\½Í7!áù|¾†Î?CçýÃ5ÓëÌàç/h¸ùes å ¡²Ä? Õpv‚>ÖÞ¬Œ¥Y ù<Ö›ˆoÅîøýSc7D{þÇü‰óP’æ6ðÁ7±îô€ØÍpžýSñwû^æÿjDjWË2¯­Ü› êsËí³Ñ——ܺõuxoxŠý¨úlµUˆÖò}_W£¿›Óƒ¬!íâ›>ò0{Ö·ŠÌ;}‚ [žõƳ{¤ö<ï‹¿;‰/6¾ô·ìêZJrìÿÇ^©¾(ëÛáhv•#²Çoã1«§§ÇÇiµÛÞ/NŸèªÿfãKèU Úüi«ëóvø¿KÐ9UüÝ·#ÈÎþøÝz/\Hzj.¢0ú[¸KCaàµØ;c°‚ø“€¯Œ/ÝÿŸF÷_»ÅÜòúÝ_ßN-qËf­ÏG••´?÷3lj §h|}îå¹dh¯‡‰ñrŸ›OsÌî§ùmÉ*6py8ntAÈÜ<Û$÷Üæ"籿‡·C 9åZájmµÙʶSF2o__§e}¾ðâèð³Öc›mnµ•G6tdûÖqö’=Nmez]¨3L¿Â‰ÒÜÉ«wV•zfð®ÉÅp÷ =Þ¾Ûà¥róÄÙâ·'#R8¯ç뿸0ü‹x=ø »Ë’G9Ô˯‚›—û:&dÎЗ3>%ïsª·s¹Ó¹UEù›ìjÈ7y¥Zûä˪N¿c`ÍÞ„¯ Ï“|ŽùÛ$âáV”…“¹wÕƒîKÒ÷î1ÝèçÏLm”ÖÙän (§K°ÉÁôæîrôN¯bï{zö6ÑEý>*x÷hñ½þ_/ÿÞï}[n?Þ¬ÏÙ¡Iÿ¢æN¥¶;Ó)»Œx]ÐÝŸ{Q]“´£wxÞ¾-ÊLÇ€Ž¨ü'rö#LÎDŠYnç«Îr R¿q›ã³N¿ eò»åÃ$µShþ²¾÷·öm™%ÆŽUú»\HbédöJçû¶Ç×ßó<Îýíeswtyyx|‰Î˜wpÖÇ'n8åßxg·$± n_ûfÁç­G‹lƃ;|Eí ¥Mǃ>Þï\™7,—âöçûJ!Üõp]ðúº{¯ÕF‰ÃûW‚tf¿<|E·¾OÈjÍgù»íÁAð•ÈŽÖþ=Ÿñ¿©<Gj.n&»^ðµ¶fé=Ž-5oôÙÝðrN:A†UA§S0ZZ)ñz^hlÈßö½]²ÜèÇËg‡i}Ø9ÐÔŸ&Þœ4Á{áÊÙÞÀÎÈîlü¼˜‡ ²y´åâïá>ÈþgÌäkôÝŽ÷z§û;e|8N³qɽœ>Ñ%B¨v09²ƒ;|û|—Q;&ìy>wøOgž78^ÞuqòmêÏϦæFŠÞgO’ïpé´mÑ R÷ñQòºä_˜—¯Rv/³×V"å Ÿ°×–ƒøÙíjì´q}ÎÖ íâÕû¼µØ?þCêô¿'3.\ÅÏC¬÷¾Õ>-; /‡³æ]O‹&®0¹„it ³«{óöúNÕë~•]ëíû~«0ó_èàp±ýí¾#•ËÚ×'çï÷øŽ§ÑÌ¿µê)Û|l$³âöfè‹=|ù9áð;O÷Ëõ^+¼>»Þœ6t²ïÓ/Ä]-®; n_ÞÐ~¿5¿rãü_œ?ôàæÔçÈýÿ Ñ9FcóŸ?ÃÿÒ/y_1 Ñi›ËÇD¼™WêøËÇkVó{²Õä[ÆP˛ȗœÖ‡¼£„6yÑÎ?¯¼jÙI¢ì7ÜHTÇrÈŸùEËfcߦÍP®0DĤ'['ðö/‚~ô¹x{—¾gÏ”m™tÄvn«ÎLæz9iÔïçëøÎõÔ躿nD½­íIʉÙ1½ý=ÉÇ·å= |ÚØ:lˆŸ‡=Í_`ŸáS}]xZ«§BÑà¿×‡fçÄMÍËŽœ8r¸¶ßÞ)Éò¹™:>×^kþ„¥[æÂV/Þ7k±Ùôé)J˜7×è<72[œ«èÞÜðÞ;î󗆔¤Ýìl"¢ÔæÆ÷‡½>Ïþ%å¯û…¿ïlÃç`×(k#nÖoyÄvhÆúìïÆ»ïæáäwwGn U÷Éã‰ú'Ñðù³ïeüüÞKmn-EYN­¬äß÷7<_dé›üù9‹‡®.|wj#’æ&wÕíº²ÝÉ,bî݈ÍBß‚÷‹¸¦ä,vÂvsІ4òg¶9ù!U*›¾ö¾Ÿ'×s¶5xœº' s®b5šƒ|{ûx`«îüuäkØê+[KëžãXxܰyòÛðQÆ•}tÍËü:›g’Nxýfï¤Â¤€óAyuµ/™áþ%ööé;_nèÙ|ûw½oú| qrø6»ÆÙ<´øäõï—ÉØxÏ.AjîǽÇÁŸ»ýî¼¶ÿþ¸~þó—/wVËþþ4¾×íjå)®+­ÁͳOªº#´/2D|K@§c¿N>ÉÍ+_gžëu~m”âùîômïo3ðÑŠá-«{^õ:ø¯~›j0ÞL†üyYóü¶/³Éâçký]Mîq > ÃմLJfßèíäí´i_—Â|ÔÊmÞdÚIÝ>n6¦S~os®H|“Û|X 8œ‘¿ö¿v¬¾‡®g;Cn*@‚‹soÃDà±ÙPž j¨Ê®(Øü&c`X¯Pý 2!ÀùE¤±ÂC'ˆv,„<¿¶5õ„K¥JÔI$eNÿ Ä$Ò)І©xÅÌ¢‡†&REo£ºÉBÒu^÷Û«1í^1;ä5”\CE“°S~oã=ç|m}±«ÛÚß6‹ÍÃßâG¿¡;¡»=>è[ÆÏ‰ŒÛÞÒ‹AÆâk—Æœ- û½ë¡©VýŸÞìYã_gY¨±þ⯾Zôî™'³¹k£êrúIsnÚqû”{Ilµ5ÏóyO2ŸÕÔ®Ë÷‰··Û­0%Åz¹LÞÿ×Wôk2'¼§Ø3l†|ÚUƒ„çåѽËëדÚàòýà¿o‡¼Ö äYÎEØÒ7>q˜79É!ºöº?Áôù{Þ<Ù—ðup\ôË/o»ß[¶ å}©ÇKp¦A±q;ã4ÿ{§Å»åóeãI°KÒÀ¶ä1hz鈲5ñLbQ’n®aðS²lᛆ¢7ñµBÛˈ‰î½ö8ëOI°BW7-» ùp T‘¶km'0œ1jB†f †…VüÜå´½­>~þz½ïã²úTt«—n]î|L°ñØ_¬^çŽqgOýþŽ×G7f©0@®” ,í)ÀÙ=¨x*±íÓ GKš™¤l¸Â(‰WËóåÐËÔ¥/ÚA¿êN’&xŠûÒæ&‘i7 8\ºg3z± ¤WN6ŠŸæ½Y‹1ª‰Ã=ΈœÙσ v™Gì—r­¥HÝɪõÆ}‡wúøùé힃­WÚF*û_-îMí]þï·ßDé0¼ © º¡#gVÖ§ðœSXG¤í¨3°jKydó©çRÏ7Ûª÷¨§¡Š(¤tä"¬¶~”™‡­}æxFVI3E(ŒZT¡œF™3œ‹+—¿è™‘rŽMÑM¥VØÐù¦£ŒÎ^K( @$HÙ#…&X¤# íE!ºÓTïò ­¼Åxï÷W{Ö»ßáç¨ïµñõÓå)“k²w³Rsøu̘3v¿JTïjÝ“­œbIö£$cøÀD¥g^Ç=×5PŠb\qW–Yç¯_ŸFÄ-–IHÂb< ÄoÖÊTìØ>ßNÉÇÓ÷}ÇóÀ~ÖçÛ6G£m¼²I¯ï.O»]Ðå§eìÒâÑL¡"iÑ©¾20R1‡ÆŠ8äÖk[^VR('cþ÷9o‡e59YBi(äèXµ $ú^:Mó±,·{²(¥*5ŒŽÃ“\:8ÛC’!Ò,&8Ë*ïaŒôŠl9ì>ã2L¤o (iøz‘#W ÕTSrkdìæÀ+w|}+âÉØJ¤[Å«äQ=-—t\ÀR9rB!ÇHÕ(ë7ÙÿzÑŠÅ´>ÒiðÖ[[1— jGPP¦£^<ÏÍõ}ųÎÚ#•)Lìãò¼ÏË÷Îm*ðþwßû,qè;%cÿW˺ÿh"Ð(ø,_FI'f¡Ô«‘æMFºVA iê%X*%ü ÜTâúˆªXÖVÈM‘ mÅoá‚¡¸WK©¸8©˜2¥B«‹IVèkפì½CÆ[ÿ&¨“‚®Š˜ê¿¨èD‘œŸ¤}ú:r¢Hy—ȵcŸL?aÍJLi5ú+‹»I$ž°ƒ=Gßè Ì´ «ICGEH,¯¹wSßw„N¦•³€¥†´A&l›»ìDÓ‚ €–gâÆ1ÛDS6s¥PtE<¨Óñ°%i©/.ƒMzr LMA5®}MªSª 1°Øâº±JçIF.–}†ô*µr‡QÄC¿»g©(0a: ›8 <ÉZJó¹‰1æûç|:=Fá`‘íУž¢ƒ|iW™~h(ƒ²­ñþ JxZn"7Ô•²†Ÿá$‘Ó0SçePetD×Q‘ÙIbÚ†¬#JjA28¬kwë¥ÞÐ5q€§-މ¨cíOS‹¢ø$@"¯i^—K_?Bèt0P™¸’b„Ù… ›Ã „j^ÿšüÔpÍ[—XTuòNUBÎÝ-ÔTÛã¯~„­Ly‡¼)›“³(èkG¸& „¼ÕÍÇ1ÔHˆÁ¥—› T 9‘4ì$}Á ‘%d• mÏÝŠ=1`ˆÈF§|@ ˆuGßÔØ°”›‹GjÂQ>ÇÇb’þ#á@ïæBÖ®¯F&@<õÊI†SæØ¶sxX#¡€Í­tâ-£1DA' snþTŒ“Ý—.pL9«@ÇAÉÕÛ†iŒ ËÐ"EˆTˆ§Ú”E3NÌ<“«¤ë)O <ô8©< bñÔ ­ Ü›ëFIEÓ/nÆjÂMÞpNc/‡>ü@ärÓaËÅ! >dQ*MѦ?Ž¿ÿz #FªdÝR¥N!;ùo”t8íÊ{x'i¨‡øiþ—qeÔ5UÅë4Ÿ3ëY"3{I‚¨‹<®¾qéR‡``à‚W&á Qa9ÁbZÉ L]ÚœÉ]:CâÁÀ Ž/{»Ñê¿R¾S•‹HTƒ"¨DÀ˜!siÉÛ‹)Ù©†ªÀKÒíâ†z¼àöGæ’‡?K|Ñ»œQ.¤’Ÿ¦Ð£‡ZŽ'j™ªâ „ƒ‰¾ âý@<ü. €õ[ã4# •«‡½(‹|ŒÒúXA°–Ê_¸U².qþFJ¾­÷ õ‹™¡X&=ò¥{øë“WÔ·¬ª–Lb]¦d™ìD%Ĭ¯9x'@þ²jñ­ý_Âò¤ª¤ï+õS«Å|ˆ>/¿ßçû§Ìü=íè¥uf7"îùû›¬•/ØÌ"YT䱋GgÅ¢†|¤n‡™# N‚ãiЏ5IfqÉW‚@*ŽHê»ËÒNê„W2eëãø•¨9©²µ› Y=ÏÝžÑ5íww5M¬ÿ×2þŠÅLØo Ø¢ÙõgYÝŽ˜’»i?{±2Mh5ƒF4)I¼N©ùJ¤ê8Yº„,AÁ ‘0¾æ©# £¿e.7t‘aeã[nuug¶\ÃXá9—?‚ 75½kPD¸Toz…aWèîbG“^Eÿ_¨5—Û¯¯à‰ðZæ!­ÁíFGÊÊn}É? ¢µ¸|téwí¶ÖЦj …CRAÃêée÷¶ã+Ô'44-³ÜÁé(Ñ&{Á$¤5Gsê V¤âA$ú¤D´-'iÍŠ†„ZT˜–Š€E!j"Q·2ˆQ×E]˜¾"µEÞš8ÉS«=ZN^oFžÁþ¿Qõüü½Í¦Ût€ÂìGß$÷_ïÿ+Œ}•âïN“{lÙ ÅŽòèK5ÁÕiQ3"Éý‚˜v® Ô—;ú¢RR/ÉY+2W!|ƒ–£XÁI ^, Ø(†ðPñ=tò‹( æÛ•†(0„QB³Ð{7_v4Ðã´m÷ ¡c>uèôsºCA‚L­ˆn2B/·«pð‘ñØ/Ù»ç!±Z %2Áõ ÷ÈéæAÊ$ÏIcu¥®Ÿëþo—ó³Kóò]ÂæûKæõ¾ß§øýî5ˆgA3õ•"¾'v¦À„C‘˜W¬—ø„4y ÏKƒXÌ„zŒh1Rl¬œ¡ñÄ„¾ÎÚÛ,ÑЄº¶…ÊÈô£@Ò¹wCâá$ ÿcš1éýµ¸ÃÅ«éZ†p<úU^y&ôç?ÄÜN¢¤°ƒr„®[Ðæ÷éÌA¯?E²äÓæÕx½í…SP·qgï Û¤Hy‹‚Àìi)㥠&!CÛ_âeå;³@•[èÂ5\ÐCÎ’üDÿŒÞ(ÇÑEsb»_ÃÑ~?"Þçœ×[I¨àÛÛEïcÇøo‘üOkKϹñã¼/TþfíêOVâ{h¾˜dÜìÛõ jõU¡]î’ –`ìù½LõVÙzâ«!½,r;7®øÃ÷´9ëf_öÒ›Õ%ƵÏÀ‚ð`!"|…û£¸–ÔwÜý¿¯Ofnç¹Ôû¿¿_†ÝUvgÞyX&Ó}½ï³êO&ßÅ—:N9ѧçøs`‰‰X:'cŸï;XÞQîÇYZ¶…ÚðnÌiöU+ƒ‘ìDC³×ø¶þ}Ÿ¨Ô|¥²±ZpEçÄl{yÒæô{}&í+ƒe·V/Æ&uÆ õ6¦uÒûŸ‹ÿaQv}tãÆ‚Ñ'Ѽl<è wÅòžÙ~õ»&3aöÜ¡Üï”\Cw4ö;W«Ë5îí»¤îž\ç»»Ù$™??“»Yßj÷i»Äó¦¥B£ªÓòv¿½Áï1N÷s¾£'Ã<ÛíDLã‡Ò@ùóyÆ `·~S5jyD?Sã›hAûþ¶ßÛ”&yüŸ/kÌÞðõ÷³òÄ»V)AÞ[.˜çió)Od¾Õ…«ÄO2¥›ƒx> G&@Pti$Ýw0•í½Íé>+bè9ÿñóþ:§Ÿ¸¦…Þ–:­X±[æ·/î}¯7Éñy²aþßó³5ŠÛHîû ç4Cwõ~ÒBáSUˆmúX>¯ü™µ'«“ÉéÅ‚2Œ± &û(øåî÷=lz~o㦾¿ª(°q‘#,p²†ßC'kþ_ã×&v–®]ÅÓisŠ ¥ïð©¼G/éGñüäÿ·÷÷˜Ê;íq6Oø½}+ª|á D{¿>ëz=+œÙøýÏ€ÞY¯€÷—'iÓ;åq ½¨Ênxd'ûй*ÿöy}Ÿàô?7ëŸwr ¢·Ö—šØÝ±àHÒ uƒ-ºÙÿ'S°gø-ýïÛìxcÙc¾Ü öðÄI„䌤Ì?’ò¿õÿOͼVjŠYs÷iÍó~§ÞîkZ.w¸É{o!­*Þ"s<Ù$§ñ¨zhØÒY“dü îÒŸ+*o»Ù)ÆÇyÒð ­ïÖ/ÈÓ#ó¸u—R6ÿÆÎøÐDDcËÔ^Ôûi5ÎД9r¨}ƒÛ°qsáKFÝBcM“`ª|˜ÄÂ+2_3h*Ý¡—È$~²ò^Ú¤OŽÿ.PÔ†Sìm~jË3sãH¡_£wõÞêûVäØÅ»øSÖ¾Q§íÇøV|½~z· w´¹lºg¨Nª+äÐub¦×ë¸ý-Á­æ¸q´·‘ )ÓZ~]Ä8ˆ’÷§½ñwy·Zßᑤ<óq+À:ü+gŸ°±º“)Ì„/õ\VP§±ûj{ÏP‹[6*ÀèiƒIzŒZç¸ W MÕpÏ#ŒÈÕÏxž×w ‹ÖaÁê|šúýú|}V0Fa#µÉ®m9Ø{C—¨!úF@ïOØûëŸü?çÄÛ཭÷›e¨"vŒäÍz¾’ðQ/­ÉÃ~.ÇÜ«å~ :rü4 µ\¥/í+¦Ó>·¿Çù_ƒïw½þ¶©Ùåº^Âùî÷kųldc• ƒ¯ô8I“Q Ó¡7{?§éÿÚ©&¥õk_ÜóÚh û×JÎ@|#%§·YÇvœýT+Ýáâ}‘´Ït“}þ@¡œØê°7Ø‘>|s YÏHòU@'$J ô MPÕÃ-Ñ>¿”œ&¬ sç|¡U—ÁggJ±œ¤D"Ø|_l‘wPÙjPEŒ<¸Z©ÀFá7”XB‚7¯D˜+2°q÷?Ú 9‰`ƒH¹@ÚUˆ0EÅè tÈôz6B„z„H32õEèU¬Ô9ô£ÉPzH6×åŠ*1éJÈ :Ô¤¢¤d&z“ô!%3H0½(ÀøÔ`Ó® „/Æý¾‡Ÿñ¿µéNŒvça ó²5æíwdù¨nHÍŒ#Æ´qùX«aÞ1ZºÒ[éù¡çým(87±ñ84öqÎÃ] ¯òeîQD§¾ƒŸƒsÁðGs/£·ü=&íÝý´œ¸Ýcàx;g6žt{_ðàÙ¡ÆìOœgÏ.¿¡Õ<¤xtÁ—4‘¯ý?Ê2TiX4@”JM1ª„Œày¶N ¾ìTZ*È»Â7 û=¿Lö¿›Éú˜†ûÏz¥¯K¤ ­½\cÝ‹Ø-oÉ<ïô÷y1ÉĬ¹‡É¹d^Â3f†[r:ibrò¡Éz`’O# 1 •)é{…*è"«¿jÛÛ,CÊ`ÿ€ùB²re¯#áήÓ¯bN]A:ÜÕ<_{ô]l^d¼%,xÓR7Œ’ðAQÆH~©h´€‹¾¤¡{ ³£)õs$ÿ‰’¢"Ù1  •Ô¥ŸžŒ_3á_ý>¯g¶:÷ÛŰ¯eŸ‡o"í|EWFü _‰Zïv'Çñ¸âýÿìÝÛsÕÑÎÓI * #š©Å»b"JôÊ\…:0Œ‘Ò®a¡GÛQqÇ5oŠ¡²[5RpÉΚFù߉7ÚÿgsóÖïìGyA¼î±ñaÛëçú©®&ßw™}Ã×7ð½=σGo™…Ëjèʸž.žF1ÊðçQŠR&NTX"!ÆïíÄB ¼Qg¸#D&•|~:Ù83é¸FY§%’¥_&õ|öuRbçCF/"FVŠ;:-þpe¢­iLVß%ˆc¼ôÑÏZÀ'ÎÉîAûÿßÕÑoNH‹$FŽVîËÝo-8x”Ù’ h†.Äq ‚×¥!Ï{‡{Yêi€¾…¸uðøÏE݈“-n™£{)aVóe3ùD?=ul&ÃÒÃÈËÍQdyW¼pŠ0PCç&¥„Ï–UöòŠŽkØŠÂÙD/+ªÒÜ%ìð”ˆ_¬yÊ“ª Z¾È_º1ä_ö$8aXQ°Ÿ‚!†Ò„ÜòPê¦Õ(Š`Cc¡)˜œ6Ž2<„MP"À¨}×TN»VcÜ_(¦8XiW¨l3v¦{戳UA _Ý‘AðeÈÇùY>ÓÒ,Dÿ“lчðb+GX*Oñ‰ëâ$¾H 5¾4Bƒq󡨗—*çSbìTVqŠŽ2!„ja¬]ÓŽŠFÀ_+\w £DJî”*Àƒyá¹y.iÜv/à?xÕí'E>“zJ®ØÈ33[‹y«ECávòÍðM|cŠ85 Ö‰Y,J\†G ^aaЈ%jrl+óóÎDSón6Êò‘K!!’K(DÑ"(+¤É¹& Óê©zØ«ì7ÂD‡²R ;†Ÿ%µÿTAå–:ލ4Œ¦Bá‰Æ…Ì>A”PŽu´!?fFšòëþ’)Røêïà5:@ TÍÊ¢b9Èd´ß¦Å’âáoCøDtôi—鈲gb¦žºþjéjÅË4X‡í|øìG÷¦ v¾‚œƒ=X+èŸHN2-Œ =,®¬®Y q“>Xª“½…e0\¾“”KJn/ÑíƒñmžÊ…)º…ì>QaÓÄMK5<¹âüÖ/WÖVv%,8¨’Ó-ï’"ô²ùõaȻۓø4 ë( l‘¼“_F}øJEìNä·‰ÿ¹Í—»»½¦pÏPÀÓ‚ÑÉ2•¿2lÕU’Uþ¹?ZS¼²æbfG4ŽGKƒVsâ|æÐhSLÆÞ„¹>së˜AÕbî’uÜž<»´4ckúq6´Tv ýÜɹç¶qïâ¯ãÅcû¥"½ƒ¯×µf$‡j-¦²‰ZpvÉçö”>¢ò–—u}?ø|Y舭1‹jw¥[þö;ì_'acö»Ûª•¢D¬P€Há§þaø¡Rb‡\ˆgݯõ§öé,h­h°Bë|ý?þe[U#¢t‘,”y/öÅU`óo€¹íW?ÁdOiV“ØüÀ†è Uÿc-!êeÌ :»!„HQðö­nG!N-;ÞôTqîªè”Nc,e‡Rò~…¯±ïZ_{S>/×A½Ô£O‚ºÈ -íÌUxVª#ÿ0¢@ü<ÚÿçÆGû„…2ÕYÀoêòÿ+wp&$¾öÒR0ÞÑ%–ÞãWæ©â#½¡þmÆþÑVmvE‘Ç«‘8ÉéÉгõDüñAÚ2|¤çPÄ’ õ#δ—¥ìÛ#£õÇ"\+:^‰‰O^W áõš_¨P`Wp>ÔydŠ-€ù±Î ¢UïsPo8^Çù1Zk’ˆy-guÎqøgŽ;š‡M7£ÉÚeì‘R‚ÎI¬7ðï3‰o‰TÇ:*&K½ÞîIpó÷†õâ(>¸ a1¤XÈv¿9+ û‹’òqºìPÇ®l5´ +=¿Ê4ЮÒKòòyļÎ j.Eœ>žÛGÅæWdØTs˜•òû^®g:¬ù †šþ¾„Åê_ ÙJH/áYh.£Jò}?È„IoÞo$DÉiú.É6D:ŸÑ^Wâ¦÷Іëþ ¥ßgo—ûd/bQ-ÒN[)D:Mq€ûrR–ü4”Ÿ’@ÕgÃ-HÁ𪪠ß·ª‡þVÇ\³g/LMXˆ«À…¡‡†´Í6ïZ$æ1ÇÇñ9ñ@½JÀ” þÃpO ˆS£Ð(c&Ç[ÎÚ"\ù—¸ú¹ é0ÉŒ‡¿¿ÚDiŽTÙþ«Ñ€¥Ð³8ŠVsçtobâ@½\Ü:X‹ Å«Å±t‡.±ÒG YÊ Yû®ÝSIs·*%\•­î?3žo«ÚWµ(— l~62…Áš Vð|'ALò´É˜2´…ºÃÒ-~i§\Èáep%|nœËB'ÔdrDh¢Ü£~WúñcÛMãDæÆH˜÷¬”e ;ú úå?ìµö1G7&`(ÈÞáb ïDqÿÍkW.ÞX[—,Èý³_Zªà? è.þ}ºÕ:UÙÆèEªµ‰íö#~:Mþ—Á냲Â~7k^ÐeªOs#ã¯g5uM*P“J u,òO'…rò'nª;Åvï_ùî„Ü„°U„‡aOÄͲXéÜÜdy±C6üèîVuÈOL1Àš.Ÿê’nÅlG¶k«0¿âH·´ lÔÌÜÈ2lÿÌYß#ç%³ÚPtÒßÕpÑ ¥&IÛÒ|Þï½ëR÷·ù .ï¡,†xÄì³4aÞôoä<6¤«XÝ(kÛqŽ„)œšöýVøHÕ‹Ïw‡ò:§ *’m6Îj‹ÄÖ†¼‡qäÎP~âˆæm‰¡_-¤KÕëþÏ`Àz (EoÀù]Û.ºž§k§+8ÄøÒݧÙC޶¿çÙ£ÖP®:áïãßsçÈÙînAB:Iç.ëÄ&|„‹¢FY©×¬ù)ƒg ­A#—iôae[/­˜Ì%zTÓVBôi±§þùBk™Œ¢É—XÖ¡ ñ‡à#}ü©rŸëÔôv(pF*O~rsÞ<Áé{~h`Úd®(+Yø¬›Œ"øÿ„†Å¼•€üýì{é:-ê@&V;åþWQt«;êç•å—ÓýŽ‹}øÅ,£Ò›<Yˆ©vR4ì´›ÁšË옒ñ³ú)Èx¾i‰Í5n¡— B^Õ ÜIS³´¢e­Ÿ+ ƒïŒÃ9ÙüJ~CŸ\¨+Jhzl0ü÷Jr«åR¦Ìcw°Î!cSÒ%Â3Á¹4aaL«‰´e®ÚùºÇ'^né$•E^ü(“xVY«ÁÁæ '<ç˜áòl ã ´°þÓƒ¦'ýG\ý Ÿã¼®"z òoP_QI…\ñÿ¶ÑœL„@P]tUAXÑØÀ²÷¥)C@ìí ï>_Ñj*Æ|ŒáLUŒþ;øªÎ úJÇþêáVßoú‹ú'<_ÝmÄj['Î"W§to9Õ• þ^îc&×–›Ï9($Pf¾Ío BÝÖ¡í‹«† *4õ§~´ÔXÑÑÝ‘Ä]ŤƒêìewtÇ~ê}¸Ñ™á0lñ±ÌÏ/•f ý÷1Õ]ê~¯}j„¡eLcðÖÆlã«ñæ£ðBž#ftÀ}– ¿Ðž‹mû˜áÊV=x² VI~†¤ª(ñâ=õ±†2m SÑÉ>¥ÿ”ÜÏû˜hbgeÆíISón(,³-ݪ…óÚÑÜöÏ[‚R½ÿšä}ß½:ŠMþ›)ñ §¿›ca¢ ¿cÆrÇO›8´4ŒÙŸ»³µðyÉI)I±Oð™õæ+±Y!‰8Þ•»Ü¤Öª·øBÛ«WV½Z¤¨;AËð“ø2»BùúòÚiëËŒù9|ô‡J8E·þÁX‡Á”(T:ËîÒ#É U7•nêåú¸8BÅ4>‘]rÎñ§VܹëÑø½¦=;|[QRM¶ÈÑG­žë¹ øüµt^;Jé¾éý‡FÕKø¥ î]!¦\Kp+¸Ðq ÇÎIúW Ü¡×Ú5UòÖ>GÿIC_þjÅn‡“2>„iP¿&È9DNý°¾cº0kùõ÷9(0o®]QѺ~C:y‘ÒP] ³¶àD&¾NÒ*g£aêk[ú÷ÒD5ÆCt—4Ù©ÏæÿNó¶ˆÞ“èw2# ö-*‡”ʘZUk’ñ2å*(ߌ”œWdPÒN͹5¬ªóÄúçw¬ŒÕv?x<£köÇ ¾Äî>Y‘k±6Qœ6y1ÑùTrÙVÌ J æbÌüxÃ'¹ñŠªúžio{7¡µÜ p—X½…\%D:oÚÔÜ÷WùÆd~ÊØ)0Œ«!ùóA \C.?Û®‹ýþzHø’´RÑ–´Ú’úû×&r襫'êŸÙ­÷ë_‚‹›&Z $…0öC—cO³ m6E¨Fb~OÕ›;ÓÉ:`0¡ôh–a:r„…l\œ<<ú xèX¼)ú.ZÿUþÍ»»]÷2v ¹Thço6i‰ùYøÒö×^/©Èûx^–Uq1K³ctz•Ða° ”ÛF}¢; ¶^¿é¤ÿšþɨ!‚V^7ÁõSw8̧ð«?Ò‰ÝÏ-Ýl~üMsªøxƒÐúõ6½_>êl3ýÚI W¸üÖ}5!{ÊËùíõl¥ ËÔFƒöŹ]ÙGB&Ã;çèšø'Kguºu½mpkÎ(ÖþU)9¤Áïëì§É9Ñ8ýþö/Ëé•*BµÒ»ÿcKgÀ㸻)sÒ Xé¤ùº{UüãgºY>ù‚P1GP3GzÔhÄŠ_¨ûÒ§ äÆî(Ö«ì,3‹ãb¼ÕKí5oí4–œæÛÞÍK¨ ¨ºDø:[Jù×ßN/JÔ­¬ÀTŸ}]‹~?‹Þ"¾ … £kî-&Ëe…þxÎŒmXÞ ‹œŸå}² 6}çHˆ˜<¯¸nè#i:]ÃôD´nR×ÊìÜ&7=*Ú"fŠ,¼˜fƒƒü5ulåŠÑ” ð7/ÂÑ– ~$œ~ô¤—©Ýä=^Ñx3C‚X4žØ´=!˜,ûhûöŸÑ)Ù¤pFB©|™¢”:ªOÃs‘Á¢Öj‘ÝZzùÿm²rÏT¸ÇˆÈ;tôó• `bÛDQ/‡­Ç.F¼MB«Xy<¹øÌªœÉ64)ÅUÓÌè5amÄòm•wéÈ8ë KîÁuܬòŧ76ìЋæ‘Ú9àéE…šõ“R²FF^?FKÿsKj#ݦ”¨! CÁlLl35ñjEY>t&22І帑é–Í+…ÆÞ–[[îKÐyñ×s&-}-–C®¶¨Îã#Œ³Ÿ(‡^Ka^QÎb±fûa³jÊ?Êb*¾0œå”#[ÈSÚ¹[Ú-n+Äç#˜Œ‘ƒ¸çÿ¯Ãp:úÞ¿muó9bÅ$;Oñ7…VæWnNßqÔUQÖJePâÿ k•wpã®5(>] ‘‰¥{аbx¤â›Ç¼—!<[×jUBÏøHÝÖ“CÍPQé8øº‹|î·@å¬P5—pcH’è±!”2+8ôÏóE½*^@Ùçë¼Hüĺµ4z¤F¶>Žˆ±&bHÊû·µø{ð4êÈ}ðàjâ¡bìrOPÖÛ:®êÚö⑘8 @ŠiPÙþO†æ»Ó³:fö¡üöuá€QÎäâè$õ÷Ö|îÃÞø™¼»zÆÙÕᨌ39*ôÕÓ¥íŸë-‹~½^²åËa=óJuÒä Å)˜EwD䥃EWüç}?’ WW»“_t4•tlƦEøXt[ýL).Ö­¾#Õ‘{‹ÁޠЭr ÏcWS°„Gu+SuS€'ÁиŒ==y:ÃÀÖÎL®Ü¼NÖ>´ÔÜXíè1B‰öêÙ£ò§M38ÿ(zžUÕN6¦OÝ ƒfËõ1[Âý.ÝâB²”÷¬-© È+WÙ÷~Óÿ3ë^ŽÎ\ÞìÁWª’{¬-S%¯þ¬<ÿ9Výýp¤jʶԋÞÁ®ÉœqžY± P‚l"úT¼š|pÐ)È“0·ã]ˆM½Aº wçùºpŸžþÆŠú6À”x9ÐÒªÇaܵëO‹«§¢Ìº 5 œ¶¡u˜oR P|O‡îÖ¶¶EªícQݺm½ªÚz;[­ £åîǃ¯¤z;0Ηýˆ5=IqeK¸$ÜífÔ›S²rÞP—ó펨šÃ2׿]ÀUÖ.v˜Ð¦úЙèø>älôÎV hztK Žœµ€ 7b¸l‹ÒÎkäˆñ›”ê_ëˆ]¥OåÛ! ¥oE;×{uëüP4›˜ '†ä¡Ž=ç¸ i“>Qƒy}ÓA‚ý­É#ÎÝmfK`Ù"é뺑H\§šã¿k)r,R…Fò%Î]ö¦X-³<Åœá3=‘±T1»sÅ5…Ë(˸¾Mª ñ!,Í•ø_µ ;;‡W=ö2u¦nbsFá÷ÙE à4Ü:ìBÕØ¿Õq¸bӞϙ‘WXa0zóå„—hÿ £|cÇ Uù´‡E¼©:\Åòð² ßgn%6º®ƒ5”w‚y䑨ø6æÀ”¨+”œYÃïN.]Ï«hÒa%4`ÐÈàc¤ÉÀ{ÎØG½þjCv«ᢎ|Ô ÆyT"±ŸõÃöÃv( ¢Ÿn§†ß¾²n6'¬{Dßt{ùé$bc†Š8Taz{ìwÃüŹ„)¡mà錹ÃKò¤J!Ǿ¼€²2ݳx“D‹ÛŸ-ްɤ3ÁTªGˆ'ÛKá}g-YkÛYÐJ P´á¢»µ)R^¾Ã6s6÷‡ªNX¼”ð\¤3UÇå¤V$þPS´àß Ÿ]ÛÈœïÔuM´žYow2˧¦³ÅTù ÍÐKVõÑŒUX } nm6±imgÓÒÁ†G˜¢èŒš^žU}´LtŽ /AûIËÏäöz%ãæy!é\øM˜é¡Ž{95mäqg.0)Ôåv20Ô/ëÐc$8rZ Jx˜÷^®¿ç]¥>­ÎäÝ\Ê·°•·ÆêÒ½ì²@\UÀK qµ—ÓG¶º8wò<© ;ÑKܘBT[…Ö_¯«§Añ%²êÞÕ—F[„S›ûF$1JÇ?S,Oësâ‹ aƒJû6ÒRn?UÊ”Ð#®#úر—ß MV\íä¾k,»­(+Hhûtˆ‚5ýYgÝåx¯êÔþÒ ·g¿Û±æ @Þ©½D¥_C‚Øk3vüVQê¸K¥.Äsäóücå3ˆâš34ÀäN¾Øf^*ý=|Ši˜æ 0{n7éeàYS=Q®É„03„D„GÓwn¦P7= ²)ûÝËÚqDù¤Ú™‚C@Í͆6‘ÑÅTƒ¥à‚Þ䢰ZÿÏ©Œø¨æ"x`jb‘¦ƒ›è¿3\’'Qúª8‘Ì»³þ=Üyâ¾]k÷ó2€GoWHˆ6ÌÂf1ÁA× œ>åñòX{=Â$!*“( ˆ3£l PãK3%#«Ñ[X3DEŒ”átëz”Ûäà&3ØæV:¯'i]FÑÀóq'£|ONðŤT^#:7ÏQCwyÏ´Ü}¼Ó훂(±È1ôÑ-žC*º2— `^ÞGdºòÞhvÅ}î¡_lŲÅ4[d|³ó2®Åf‚FHñöSçãËE·qŸvè@+ð·izhÑàÕŸ½Z­võÿl³B°ÞRDž©€© ¹— È-l,Sb÷H[êØÄíœ]R—¥mÔýY¶qƒNˆ?$þÎÖ`TVæRvZ:ü8ÂR*¾Ö ä„qÄ…ªâ;½Æ‰""±A*¨ÑVmï¨áŽØÒ„Ó²Ý-Ý”kU#3wŸùØ *1!l¡lê'yËÚ‹½£Ò°šQÚ¡.bÀµŒ†Hóù«‡3³Ì¥œm'ïú$”‘†¡”dÔÁ„©;Aç„39–¦% î‡X5õeì M·™ƒ™QT'Oâæ˜œû€N/¡?[q?Sç^Z‘Œ’;‰16>)´€‚®•³7"Còî}áGvPÀªbX•·¸»ŸAIý²<ÃÝy.”»* ‡Ÿ×Ãçoˆ«¿™\æQZÕÃLIÑ—(.ÏÂ8̼!nçn˜{±°Úw-Ù&N°N5Œ)Á¹,$!úS)m³ ;›ÅƒÙePI4‹lÙ°IN‚¿¯ÚÇï”mꦘxI[ívWEž£Ü ö矜ïnFBr@+•¿·Õ'°¡$*Ö¦cãl!0ìÌ|…Î|ÁªÉPÀö©ÁЯ†6öŽ÷'–©ú,]dZ (&¥§Ðc]'1\òy¾‰h¸X*á´óì¥O‚ßÌÙ^þ5 µð•~k&q%dQ&ªÌÄy¥µê,vv·Âì3$²b÷ËzÖÄ8“m Á?‚ÎCè—$õa¾Å”C; ¿V%¹ÛZ™+0„§ë˜‚’/ÒѹŠ?Wo¤ýmYÑÚz c{YÀ¼GÞ §ë‡Þ·ª yŽlX­.zœ€ Ù~9=*ÐØBì§ê¦M7áêÆÓ– ¯òˆÝ˳ËÈ·‹GÅt÷€ôp1XæÞ„ópKRÌÎw‚eº1Ö¦€àÏ¡}l Ë@oÊÏ„ µîÍ #¬˜fÀäuB¿=Õƒi,¼õKñ_û‚b„¢¶o õgwcKªF>ÜRn¸pú+PàÙÙkáY‚¢:‚Z0Œ+7ûÍ5Œ®æ=Ü3BW¢/Ÿ9éÌLqê0úüæïÂåµ#¿„CfauÆugÚʪ°MÜ©Knß\¸¼acüd³sPgüc1/æÏt^«_šl î®1´ã±¯ÃºB¶ìãÆÿý~N'‡Æ÷¡x°sÊ6Öª ÍÐ)dâš­áÚ¡í^å¸%ÝrTÃb˜í:מªspR2.m(›]¨OK@Îck Ã&dg%ã³¹„¯ÛªO2@™¥Å•/$ÕÀ1âb¤‘plä µQ–ÔDûÿ]ŠÝ5õ†ÌœÍ·tñ“ÈV¼õC%ýk’™Ûœß19qÊÞ‡­F!¦{Er¦6‹yÛ³Þ!zÁ¶è  ‰¨È‡œ)‰|™å»îÜÑ‹ßß¶is™0¢÷©ÅÝÈŠ¨7©Ro¢ÜPçåc:|€ÍŸ• 3v À;íbç¡6Æu`[RùI[]H+ ¥y#rOøC*)˜a9jðaêM OhÒ£s7kÞŽÉc鬾UùÙãà$10îö>ê ó|kI°mñ+uèû0 Bd˜¥÷lâц{ŽÁÑš‰Ä :àCåþ Ñ*:²¶tâ´I“½Q<9øþ<~þ„½ýÙ´¹±à¤žF5:̈́³Ó8ŽDæÐlÌÒåÂUzQ3µ`¾FïŸd&¬#YœvI6ÉCÿS ¹=—3VˆKóB\!®ˆîÜS19缘d!<¡±Z`!9×NÚÎÔ°ûÜí(sN©^àgönðNG¨èX¨?ÔÛYòÃÁ:€Âψ’ÝhõO—~îƒT48f;E1ïC¢Æm=ÓI}'K’—Ò^ .o¥€¬‡F̈6—Å)ܽ™Ù;§ ÅËÄ¡eÀGX¦çóõ°suºBò´ž°N2E^îu?;¥,̥ʀ ÑžéÓ#,Tƒ¥XÑû¿$—C‹írÀ!2Œ”·#õ8øý1c+cFà÷öfCuùÜ5ÏJXo!ùƒP@õʬæN±€Ö=й¡QÔZŽæ4J &*]zo9—6ÀÚi[â*z‘µ™«Éî4žžn×c¡il‘n“0±ö)þ^ŽJ{‚w|!„¾íÒaÑÖWåÅB¬§·DÈ>¬4…ÿDöˆWýmŸ)GɹÃ"Ž÷h•¬q“ùu‡Xf6 ?Ìu<¶?|" ‹ÛÏ~–Eflf*0éïy±0zôûà‘vŒÄ¹ª)À¤²‚“KýuöâEuy5]«*õGïƒ^¼‰¨½¿¹|®ßkÈu8(†A´©”ÉCÎÒÔú§.`‡Ïúà2¿]Áv—š.ù[ê Í%!¶³£R16½á)ºZÓÉ$§&î)¯­‚k«E& ñ„%½Üµsߊr¬C¥[;fæ#^…W"—o*“PˆÁu¢£ôê9™ÝÇúz–dêÃãî0zº­¨‹œË‚çÝä7Úµvˆr½f»hºøì„•±Í¼²±’×M_fèÖ[W±UOá€Áš`Ý8¹³f«2Ø¡wñÇ/=Òš\S¦OqøÜ´4Q¦*óË^Çm†ÏtøüssË­ä-s—Ý;Ï»±Ô‘•sMk¥‰‘†i20q2§nmÀ¬Ü”ŸœÆGfU§ÌEÁí‡ýJ¥1 #c×éåƒ n,>àfÄx‰¦ÖàV%é0¨v :ý].new¾ì½³`åž—JUëäß?´¨Y€L…Åg`‚„SÖ-u`îùö­F‚»Š£?ÓÝthÚ)°7 ‰×°Ôšça/mÕ¼Nê¶Á¶Ô×”|1¬H2²zZ6œÇËh¶¯¨nœI`LÇ)邽Ç5Ö$J˜t¦€C•ê]‰Ë)ÍÜ´µßÁsÖ÷ûê쩲šº—ê° â f[³S)—GYo¯ci\'MÁëföñ¥2t%ÔMÒñ@XQ#PB ˜â|¾¤Ìé¼?¹„r³Œ©æ'^æsŒ³ìy IEtcµ‘O|Nghõ>ÓÊ΄¬,‡Èm0{&ÏH³tF½„ÈL®°]ÂLèçVbnc$«´|eúÏWO›"ôÚ¤£ˆi7Ïu}§Ï._n+TdsT§qå$1»¹Vø$dWQ-—/*NNë.V³Úä`‰Â¾•‰1’ÎgI«þ¼Êþò Î¨œˆJéôí|g[V³Jõ¡ Åd³ ŸÀµ¹iÕºÏÕ¼³æ)2õ$û„sMÞÀZ–`ñ¶kóà"ö.åVè}±ü™™%–#kT¡$¨œ4@áÔ9¤ªU1vÞïÐóC$÷ñ›‘Ÿè¸7ªs8¼+ö5ãêk¬ºÊWÄ {9n‡Òr±çV×µ°)2Þ¸³ÌDJ2”†ì®ŠÎԕ€×3Q3—«8%€ãœâ‚ñ^_Àßµ™ÝE Y.çØKçÂùj®‰¢K5±yú8ôtÍn¥ ±=câ£Ð¿æ~nÎUÜë÷³,ЉH§@ºÖŸéˆ§±† ²]ÝÞ-£¤ÓB„<+¡I Úæ®pYØ5J+9þ IÄí7$ö$t­”“©ÏnµR}ýáÆ80q58|ñ¸íi)ï ‹¢¡yÛ2w›6ô¨£hžàŸ-3•.S§±RºBz>› ¸è¶dÓ0â½Î87jkz‰öLLæ‚\±Dvècakù­u ‚ìkÒ£·ÖÕÔ’X“TxWG (}®—è:`ú"ð°W¯ÛQÁw¤äÍÆï6`¢ZzúÕÃ⾤é¤x¹ÙÙ&ßÐåä±çX¿;58ß_Ã;6MXâm¦4ïÕWFW’œE/=_8ÀK#+h^Rùï-—'Tû˜gg&=¢êÕA9ïqéé› ~«ìëé¾zÏÄMbæFœTœï b@ÈSC³” °­§I>kÝþµ¤ƒEl>‘Åõ—a&.ï’íà3Î]¯nóR“ŸˆKrš–p¨8VOw8ŠmQ]M»£ .,­ŒŠìT²÷]aby’×/A/"®szúΧíô°wXîÜÍ’M}»<îž—§,#†SM{9 |ã&µ6Ì„™ŽWB§FÇ5.™ÏMŽ“Ò@õ¦ÇÈóÝ>D…¢¶qŸ‘ãbî‰î‰]nÀJcÜ…+`[¡‹CT~²súq–:‡ÛŃ)Œl b1}5Ù$[Eóu¶9”×¢/û†A­I¬’òGF¤½óî*™¡ ô'Iܬ>ü~¼D-X™¦åîà §zÕêÌÂ?KäM¹G 9ÍÖmÀóå3Å™†ªv8ŸL?g‚]äcìôóQõó—´ÙÕž·–>å¬6®òYÛh`J³Ÿ£mŠü1ÂZã;9ñ·ëêãÎHa âH%¾<þ÷[ó£\ª+f*6„Þcš¬kMÓèp组Ý\He“êÚew&P_{Õn¼5ŒüUˆ—Z5t-a÷ãX>ºœ¥?kV}|q×â*¡©¬jÃûNc {e2/¼0¨ÈßÍ/é\ÏîäC¿ßé„‚ pÈvôÀí3î—¦ÀE–Z+=æø ¢,Iß¡³ J껬t3M"‚`Êž³×rÂÒ$Ÿº€ÿƒ?«Ó·9õñU„ÈŽeKQ«S ïz+¢ÇrvêùôfBsäe Lq?hM{7‡ÐÊueuFö¾ÁÿbJ&€—ÁÚ!2àQ,{£qaߌ¿ÖT¨ý=©.dæF¦ìz]Xi£4ÑüòX‘6&qZÀ¶3>þƒÒ« /0E»í;r'`YëT£¡A0Ž[g¥ëÃpžÿB››T(œúZnlÑí†fß%A'Ò“îÉ4Ñ””ÇîØÊL8Q~H2»Ï&P¢¯4«g”íSˆ§Ö!‡-$7tÎîî!ˆ‹°õ–³.ú|Ôö°Vg€S‘c)OVЗÁ)Þ’¼±û WpÓý})­{Sà±­[* ²ôsBïRpìžSjúÞö`¢”ÉÎæJ\¿Ui¢’ô÷NÝ–»"Á¶€îj5:Ô‘Û…6W Ë],¤/o¶ï+¥ãÒ"JoT½²Š–&m%ëžg,›ÅW‡L¯o'Ÿé{ÌÔÉB3³Ò§-Ts¬:è W£ØySe9»ÉFm4EÒ’/²ÊÒÒyÌ{šÉ©ÌSùšöd» ¥Ø¼ËÅÎÇ‘¿½¸7ògHDãö_¬P{ÓÚ³4Pû ·'oéȾ'ÎŸÄøuØõ¥ 9è9ìp¬1÷>†¢ãÏ’b`ýFIÖ8ZÐ ¯ 's§ }âWÑnŸÝgSts.…Z¿ðSå«#{Ù9{'Œ˜ÞFœµ:8+Ùõ°×U–iò)Þòæó:õ:9yÐu·¢b ǃŸ‚¹YDe76w´Y4$âär”m߉/=-o1Wb»w_c±d½d¸¥¶J¾æp,4Ä¥¶vÞ^Z¢˜4ï¨'cs4åf¦°Óêªä/ëVœD·Ìj$°Üªn“”±Y]¤kZ¦¬s.«ž÷?ºLöl y¶Î]ÂÚ=ÙÈðåIêèNt§/ ÿSÏľèT…ªíh[é5 âW„éjºü`¡½Þ¦ê=\j©Í:Æl15V…c'ë²±†¨à÷|^3»qegUlgoÞ üá¬Ú} ÛÒ„·%î'—È”øA%ÚoÃ0O+e™»­·êõ $§¯•ªÛÀ Zib°­ úYœ•vô]nšèVQ,è±MÕ>ZÔ›®×¬„÷ŒæLÈÉR‘|uÞ|xylOo“6ù)”›Ò‚÷ò›×^«øñmal›yÖz¡èöû°¦0<íÆôŽÞ0x¶ÑÌâ9É*QN‘ï@gYÇΉȇI %]^ë0²u°¯xµÜÚZCâaÁKÇ'?Ýêfxmï‹ÂÁÃ6>Ò †öPAv[öz^þå²EDoÔ% 8>Ú¤ñD—q[˜&0=È¡ÓrSÞ¯Ì3qÜ÷dm§PÄ£º„Œ þgCMv¥V ¶q=Ñ9†2!Æ7uÀ_ÄfÌe¸âšf±t0Tç‰:Yø'z‘ºwÒázS·Éé;n\3Ñ‚ ÕI!#!: ”«Ý÷Ob™V–v"<&Dºuî¿Ã~¯:¹Îu*Ê9äe»=;Áˆbo¡¨ÅZ†_ožù%¾2¥ºÈ„2|åñx*r? /‹:!¸Ru0‹>ô.vƒ’ŠéþèÏ{pÎx,MœJÀ÷ðáu1ïö´b&,òcÞ„ÎHDtƒºÉEŸ }mYå|Ó¯…6ƒ·¯ªH༣ÚMT²"4ñ…é±V™ÿºPƒ¨f¾ï ‡± Iž½ƒ¸<Þ‚™ÐL ±5­S™¾¬l»;P§"q‡YNWà‚Ø— p)ë‰9[;+ó€lŽYÜšø}uÏÂÜÈ­îÚŠÓ5!A…K  cp¡:l³1³j@bfa4¥8žH¡zãOWF\>HVkÀFS}ZŠžÍÄøYûJœ8*ú Í…‰`bKÒ¹Ê=·ŒR3˜’š$йàX;›]žþì]‡Ž09*¾z1+% ZïÁrÆ^UÕâ—®¡Çx;5W˜`üÊ0\V‚ôö‡CQêÒƒ~Á iøèsRàyçFD+c2N³JHûX*ÁQ÷ûFfpõ½ó³¥‘ÖÄm‡%_;¥™Ÿ¯Ó‰@)ºþy¨šú~Çñ9¨Ï ÀÙL3:DMZœ¦ C£”•Æne¤&—Q“áEÍíø(v_û L؃ܤïl†šâBϽŠÕÖGNPúÝ8»ý)¦#•‘ÃÞg–6Äñ|)­–R;¶OÒyN:ò¥/¡å®ÏPvxMIy=TíÌ£´¢Û÷à0EÑöÍDÎkN-<³;ÖÌu_<—ɨ"Óo[vÓ ;»õ)Öcˆš6­PA1]HU×RœM$,­òßöPé'Ÿ}7CNÈ)ß¡WÌ–'2ÔÏ3¯~tÜw¾‡Ý ','èO!£U5çÎmçeØÊƒ¯ègÀmk޾¯ç8?\<鹿pÙÓ7Ñ+{µƒ'nàÎȵsS«bŽ7’ÞBíÆaC:'>‰ÁkOó¯'Kyæ¿¶=N_±¢…ÃÆ8y¬âìi Ó‘¢Þl×Î[›Á™ƒšlLÙê8­1Xãô'ðµÞõØ•ëëYðxa†É±N…ˆ#éæ[®Ú¸ËŒ»¨%ëZZÒ EOvŽï‡Ð…¤À>¾¦Ã±¾љ־†õÛ˜W3ú$‘V´„g0–l/qý tý¨ÈÌ„r©7Z¼#6‚/g"øQs_1´*‚åTÀ’Δ³“Þ] Õ—Îê“Ù}¾=f!X‘ô*¹õž®Ûš* ‡lÒA¯À C¾ÿdÙšˆÙ±´×èÕ¤›È{ÐW*Û3»‚ß:ɧyµO1œ6@hA´ £÷|ò>u·±™Ç·Fäž×OíŠ8]YKZŠü,NÄ#£Är6²·ç6LS¾Ò9LàÓ(­+%<“pù=c7icQQ½I‘íö;19]K2Õ†úqTF»[œÂzRÒ˜}ú†¤f ùu1ƒ‘›#K ŠÚÚþµ–…—2Ÿ˜o¤:»5 9 áNÇø·TÁ²ÖÏ玂½´é[m~é\‡Ÿ¥ÉAeLíóbä¼ _Øaú•¨4/ÕvÛ[ ©ã& Úšw)5Òá–¥–Œ¬[“–_¹­o_ʬ…@©ûJ*3b!ôïsá-¥¤3MôÞàÐÌpC÷úöìèzªr°;fˆe´K‡=úº1—r2PÞï)¿·Fy%¼6öRdøÝÝûP¢g|` CèüCäF_Õï—šÊêéàÂŽ©%¹Ü›¥q—G†§1þ«Ç]-0œTÞLní‚=Ê.ä]TvÏËÕÄšÜÔAxˆö7pVæ_WcÎÔÛug»Du†™³èãx£EG8J˜aäÉT­³0¬ oŽeÜ$ZIÞk¡ÛÉI­ÃŒ¢;±¿Ü«S¬sØ2‘1+-.죯ÐiO°^Ï¥ñ‹Àí;I(ºc<%ÔîT¿C¿V¾¾Ëa š$M¥ª¤Òqò8ZÛK']‡Ú(ã!`€ ¦^mÆoüY„eÆíäe”íÇTQˆŠ¸hèÙNîOÉ?ÎßàîñPIÏ‚vm²ðð¤dúrýÉp¥ ¾ñQìa}e,ÔcÇm ºö±Ð.+a†Ô]YÏ?²ù#ƒÅb×? ˜içÝÚp#TÕâÌ¦ÏæÂì =Vêp†kÜí•ïR”ôuMV=z è^¸úË©ÝObíÞp¾™*®—Oè ‹ vÕ£}¤'˜Èýì\‡%¸—¹ÜôHu¬dn«ý<~˜™­šY(¾Ÿ¢òƒ[R}+á e§ŠvÑm%%@ñØ1ûöw\2pèåß7áýãý”5.L°÷¦YìÉ?ÝOúuùÂðÞp@ž·–.Â’R7R„Jú= ¢P:Æ‘žä·ÀæÉlÂ$È(Ÿ€nJ6|ÒZ‘td3åųR2œ±BcP*+ZÜ-¸_1 ¬¥é7¯=âµÑôó°OØ“YËùž2óÔ·4’0ˆ0o®™˜©DiÜüßÓœY'uvæü«cp¥ñ•õƒ¡”hë‰ÄùoÜ%²®Ý}L ¿Âo³+ßó€^5²WÆ ìÛšìBúß>çon¯¾÷§¯kcÙ«?6•l@4ô=éyû`rôظ;•½€ó^ž~ëu04Há_ù»ÔHþàó~|óš–¤eaMOV¨¶õoz#OJ³³·œ·‡|–%®õE G«.N¥!\ú dÙZð¶kœ:Îv„Î!Øâðù×7{ÓË Í‡…NY?V˜Œl.S‘ å¥h’HvÍu`jg)²òÎx«Yøz²~ êmÔU•ã*òa¿êF÷rϾӭGîÉ’B×r“‚"¬iEã ÞÀا§Þ…sÌ­PEæô°šO«mCÖá·Dô¶µu¬©+_ߦ8kíÑ N/žIhÇrv}ov<ºâçüÝÖ±¼@®…¨·×èÏE#Åv[£ÓÍ*ÍUeÍè.|Ý3Qs…Ø¡ðóí,Ÿ‡w™P¯¦1c…O⬡bH ¬›A§¦S"· )~Û¢ÀäýæÄ½lýwTç£D}!1p¸v²Ã Ö©› θ.m”xÃÚ ßCe U¹¹yG̳A=v"@EF„dJÙéÎÓ’Æg|ó Äô5d4*!±ý™V/ñµo¸J‹•·sÎêèãºNõFGš &'AMõ‚$sh.´b±™Þ·ª•ó¿›SR“ˆÄ_:cáùú¹É|»-è]›KgV{)êŹùä»e¥…¿ÁóÚ%½n;Äÿø9ÖÓ5ÓɰqÜjoŠô¬È7c6\[G\/ ¥`>µG¥N  Z ÓTFÂÎ1“nÅì B~Jºü?=wZkT%S,ÝüçÅ· f!Ðó4츧®­ŠYÆ —ÃíšfFR&:þ«ÏÚvh•ÅÙ£$ø×ÇSáÆk{Y*ßæ»z^äxŒç—ðÜû®ÉŒ~œ:‡¨iÃV= ÚiÓïü]‹^»ÞèçØêÙÒq8~)žp‰Cö‡ëJ _rNµOJ%ÐXVù¨Õ{òë®·I‰q%yç‹+ÅUâr» «¤—×}„•Åém¹4'é{Ð,ÄÉlh@¦âíîqM­œÌñ°ášŸ|Œ²–اL±¶í–#m~TxUíL4MQz¬†/o©=¥Gå‘{ÎDG±ÃÎÿoåu£¥ùùEÛ[‚ÜÅÖ€øúž†]DåH¾ã#‘a®¦ž–ôm/šå:¯êàí;ÌXÇÌM*²ÓÓ«µ£µyóW•±û?-n=¯Ž¹ác«iùÚê*m´–0«¨Ä­†£(E›9S·~·ð^ý¦ÃªœOtüõx4—¿‹}òðþô>aÈ) Èn´#@XƒÁ•.¢Z( ¡ÓÚ¹Òì˜^‚\cVvÃ&ê]Z®ÆpÑ—èÁÂLãØÝ”º‰êþý$ZËœXPQ°“ÃÖWÉ÷ûe Ù¢òe/&ÙlDýŸ”´–íD+™•0Ýî…mcôÿg¥¼< Ûç˜ÉÁ2A¥ÙpšÌäNFî„ Î½=Ý|t„aÇù~~îË^ÌŠüÃlL½é雚ôÿV–z'MÛñ=x[¿›R .³Ñt–æ6ÝþGn“hæFM;~I*u±ê^ª¡Ñ£í¹Ñ´ðhþ 4,]ú=›yö‘&5W•%- ñÞzŒ|<3áp!»;ØR²“l¸\Y>ùX¬ô¨/®‚ªC€òPÑš°ÃÉ©‰Ð¡®]Õƒˆ’^ôO›#i#ÃJ'.k` û¯wMMÉ͘.´±ìÒìsá´ó„^_Šw4<”ÿw¿^üŠÈº÷"°gòXOˆt£ÇaãM[ÓyÙ]®º‚‡Ýíh/+ÑÞ©`w´h….|SK9õžð^–pòŠR­\­Ñ‰J28æf·kt}«'žwg¿ãW;CÔí¹ƒéÎs[~–æ_ñpLØÏÄꆘ¤º=y@ÖNû-nT~! ¾„¿ÁboªYþŒÂœyN[äõÎÄ3†ÌIô,/SâDKÛÆÄ–‹ßh;×/#Ü#EïœÕÇéQw© 5øæ÷ëþzY]qUuÖ4Àïmû¤1úþ{žHØõ„“ŸroëÍÑáç¡ ÙUê\Šü›ô…›ŒX_ã}í÷çlõgÑÂa7lÕ÷»/܉¤›»e;QÑ¿Õ{óå«é †×±vËáŸ?_ o¿Ò€ÄgäMLÇÖ†0ÉJ®€&ÎSòãуIœ] cÓ™P‡¿„vŠV6÷ \,>:, xßWÈÁ|U'ÉõðLßî¿Ü} |4ÝEÆòùõ6_’|¾i%u:þŒ•«Qp’“Þioð¯ü^Ö9^ëöó±ë6Ùôú —Tõ#£Ç+ôú*çxs?|R3Èú;‹©´} ×Þ£³Á/F!! ^öd}E§ÊBûçõÚágs¤…ç•M]}m×}Õ>”GµŸöçL©§9”! *R:?¬ ‚¹‚¨w0Uà|=µÝš+Ú`–#*5;(r½ד¯]™­ãíBØ<øLv-&$Ý/Ц£äó—à'ô<³óY9yð{ºvˆùý°Ý­®ü8ÍêB¶ýÉaÐ0 y¥¢¥k*à{þ¦3l͈ûmµ+ƒ•Û…jÌ!ÿwNÙEÇLÒñÈ!›UzGK“ÜÏ‘,LÈ­·_ „37íy8PEIz/áïúÉûWÉ£žñøÜ¬ÑÝß0×[ê·ØÖxÒÃMGá®–xö0ßž½0Ý…ØŠ_?²’™Ý#]{ß'ð5— 8'æŒÜ~€„×Hqöd̼}4f.=&|üíÔü³á_/–¬,AÈÞí r©þN¾5=óÝÑð©_/ïžG•æò{³oÜûŠŠJJékyŸÁ´OphýT43šs¤–x>HÏ*˜oa+ÈÅ›0?hæ”–ØU‹ít÷sö'P o‘]2cõúT|ß% çÔ1w¸åýà“ûJŒÓtÓÊ9#òÔeÛÈ—ëÑóë©r1¿k ¾÷ž`§Ìÿ¡™„3Ì\ã<è—2o.^Œ|kqâ` ¤Ñ`†„³+psäQ=ÛzgJà|q*h]ÂòCôy|6Œ:*¼p©ø=# ‚çÆOØÛ'7êªwOw3¤ÂhÚÃòô/%-þÈœësç>YÑ+'ËÁWïé¿Ã>8[¡]ÂNÞß"”äÜ÷‘&Ùþ±}¢áâôRDÉrƈËfîj®RÓÞãp¼õvErú¯Mš3Ü+©Æne6Èê`´†ãËQÝ-Þ€ŽçéŸxAföÓšmÏ¢ã?åß×êUôówÉ߸Á‡&é%ÑZ؆ÔínþÈÏ™_&×b?” t 1éû5½Žé:QÌãø%ÅíŽ[qÂÇa‚²Z×Ï,Së9WÐAÿ7¿êXUÅÂ$ìä6ºD9(>ß’þŒwõÚéy5FÊ”ûž¿6~v]6sŒ•y²º°îg\×¾$úœÆ Ôüq~ÆÄç˜|Gr!¨x?Õç€øÏD⼇óƒ{Uó#u‘R@ýå#AÙ@ÊDì9'{9_ì´’öQ…N¨;®§\M/éñ¬æV˜Àx7§S[¥ »h}|š·ÉãÏž¯š›9¯ù<+Óíýf¶¡ï~¬ ›ÚDÕW¿gÔvê°'û_`ø»*;_SOä¬/Ê“…ï[üWWqE/ûAÇ¥7ÑòáÝ”ïÚWO‹Fw©H¶¹‰ÿyC&Ô“¯¾×áÎèÂyøºµN'D’qkJ»à2Ãþ"Nø¼ šïËÿäÖ­üŠú‡kNþ¡R‘_S+ÆUÛî7ùÉéeh~‘i]Þ”h–zue¯—ýw¼ÛœßWs¥×FŠIÚ’¸“>Ð]óvìŸìO~«×­‘§ yIKç‰%àŠKœsŽ­qOè]ßš™âìdóëéÁ{$1®f:˜K>Û¾»Kjôà!huf ¦Ÿÿ¥g7W­D§e§~ï»C)O|’RÊ:µÎïqºžz>ç›[Ý?šW`üdî?TU#åtO—Š6z/·¢` [ÿ”œ?jÊ8‰22ðsý~qÎð(ÿ;ßD7þûàè<ß›ü–EÊ‚­G ÆŒ¢ã~ÜðmÃʲŠÍàM°îÇÝÔ €¸«øƒŸ·á¢á Õ}ôæx?,K¯í—¥òü˜#ªzÄäý8׈(<Ú[úø i]T[nå¢ó$¤ˆ¬Ù§ê2¦!f¬¾úÈâÕê«MÖŒÿ°ÙGÎÇë½gÉÚܳԟ³™Ö¶×Ý„[^‚öž7æÿÁ€ÁŸä½È×c“ù½èã»R‹È£QýÁèáÿ{Ì/{¯¬ÿCñýµ5—˜œˆäM›ÚþüÃÿ4^øø8„œ†è„•:‚wþûÌö=þJ¤t0”{ìñ:–ûX`ù† ö‘G›÷èr”Wß&d‡Gë ŸÿÝ]xivßßPšë”#ÿ¹ðaã¼!¡ˆ›7%¸­öïS—Ú­É=O5×ù§¾“ñŒÅÜ2£Gð¼…3I%ÔFÊFŸø~¹ªÒRVÕ¼Ñ,ü|ï[ìþ^Âç |ûÞ4’t­OtÓ(×ðæcö}›¯+%àzX.2Üã³to8¸ð±U„?hÈŠ­¥F?ñ=ð}¦Ü¶Ú$6E 3mð½¤Ç7ALѬnQ “¹W9X­ Ï~…®5¦ÿîÔ5p‚2A#®$ pt¡F¬Èˆ•Ëœw8ÿI¸ü´)8ùHnÔ§¥) 2¨!ýuè¢Vó¬PC#) u(IâNƪ•(IöΔºòF$d–+’ÛJt5øp´¤G#CâT±×Ž$Ì¿=kw'B‘]0¦ãMªV±J*)wDpâUWÓB™äiºÊ§ãèO>AdJ«/ÝŠòk|=?o ô·îïÁáïÉkå Ð¦Æ˜m³‚´ø3>>ƒÕ‚´!" ²,€¥H(ï:™ $dIó}jªl{$< P“”„íhR«!'])·d@&'§QÒøóGÓ{ŸÛ}—¦ùÆ«Ù÷uÝÔp;º¹Ù),j3œ­Ó;—1h¤»¸sW+»§uÆí¤gw3»¢îT,g­(ON…7*†º”º”€¨ÊÔä¥Säû]Ò5VŸèRS`#O—³§‚W§¼LÍTùÄ%*—œu8ÚÛØ5CU/y%¥Sâ N‡Å*På·ˆ ¢öÆAï©>8BØgz g/ ¦²…'Ü9ëÿ“»Ãê©ßU¾g^?UÿÓâë|¢€¢ÆŠ Æf"RÀd¥(S$¤JdD’! d$˜‘d“BÃDˆ)…Jb1ŒÄ€X׳QCXÖ\ágv¹çw:EuÜ—<ý§«ßNçøÞžð¼ª·Ükêmª¯//‡rý?tU­ˆü‡?;) ¯ùýájÕ†Z”$¶æ©_©ø.o[Gðò¯}VZñw¾JBMRæ1hùµ·*òP§ü¡H(¬–ò“úÊBBæ¢-F«àu‹ÐѬ-fØ¢DmIMX±#&-$$’‘„uˆ–ŸúDÝÐ{ØjQ·ÅSsëÕj¿YÓ…GXJ½Õ±Z¨}ˆ”§¤#E§iïÕØJÞ¥”ªn b@iTñ@e=± ifC䯒©íš…[KíR\ÊBK´þuPE 2ÙlZ¾[-–Æe°v[-x»KŽœmjŠ!Љ "™· bø,X$Ú%!>Õ2ûñMþo¸h %ª²R;±.m¹\åf§uv‚ÒS H”Il°HIíJC’êj«›Æ%<ûâ¦øX­•2‡Üˆ5DPæ X¬ „”Ÿ+vª´ê´"´Í‹¬¯Q¡D”°!B4õ½_VérÎrü×A«ó3Â]ïoõW’¶¤(SRÔ­wçP„ˆH覻¯T_ïc¬%œëqT‚¤ ‡B·ø´p‚DYHV:”9!OMt÷Õ Ÿwx³/rŠ‚K¬Ü`wôE9Dg #٢ȋ>è{è"ß ƒgÄÇ%=ÎΜrˆ¶Å5³ãùÀûоP'õÔˆ­“?ç1‚¨µ…#H“"àÆ21¸\©IQ®‘¹v`äîݘķ —ë¡F¹‘Oïþ—­ÿO«ôaÑÐýÀPç~J_€—dÇÁHòÒ‘(ÓÖ^àoÒL'ÊÚÐÕµµµ©kiTVÿ9â¢$Òïw¡ögO>tXtSœÂÿxxí[‹AöÿNŽí¼C ;¡>ƒ"E $ >IPˆ»B 5ð³öO–;^–B|1 üPï"*¦ï$˜ÔPÀ¶E¾º×5Æݸ뮻nî“výg¦ö•«ß«[ñAI kÄA Þ<­YJ;œèõ´ Oú?ôQÆ…D,kcìKüñ® PË/Ó‚@üyP [[̈vhì_Ñ<¤UTÉ¢Ùñ¨‡BÓò}^ÕRb•ÄU…=òµ}¢ 5¿žð#W½šÆÕšߦXr¡Nd½*£±•oAÙSü—Ы©ñª©CE49üÿöñö[ÿ-¼ßý_vßú#ã\é½lª Rð€ju1ŠÄhPìU­emE=ٽƽµíß1ã­µ£EZõ1TŸ(í§rB” $F„!! K/WûÓ½Ûr»v†¾KCÅä´:‡!hZ÷b?¡G{ wH …•ŸÉJûR´0ÂÏ·-çCì >2¥êª¥k\ø´2ˆo 8ÐüT¼+Íè¾–»Ê©ê%º"ÿø+Š·ü¾fÿƒø?G.jŒs‹WHØn[—varä±±nLÉ1´‚,—\tŒoWäã>û¯ÎVŸbŒÝ'v!èo:`@6YD!$„€¨Œe( )ÒÂB”–ÑA³Š¡¨@¡ï€_¬öÍËú3¶6—Çò¾ªþH$õ§€©9õÓK˜(8ªko¥Uñ'õ*m×Á æÎp—7Nφ¶,Àù75Ë’-ËHÌÐnîjd,j œ§]/GøŸFûŸåuí*þ•MâJR¡­ü%¸å5q·â©Ê#‰§>¬âÀrÈ´Ô"mú„uHªøÌˆ–;\Â3 3.1Øë×[zÇc¸\v+òc¯]¾ÇÚàû\þ>ÿf"&!¤¹îâùôçÄšDØéJ´©4'GwAR¬©ñúÃaºoÂ;œ€ÈHEIžE,Á’w¢qB#÷kè>:TÁM˘§u9~“ªê"¦ÿLŒÃdÐJ£ôÝÑsn$úÑP¯e:xÒq›×³©Ê~ ·Ôd¼›[ú(Ú M…ÂU»Ð)G>+)aUJ}2ù¢DÄ(TXš$š‡¿6”OHFÊ£U¥€>M$Ÿ•·uYekÓŠ‘¡T÷a˜•hQ:aJ‹¢Š“H ú.ô>Ù~‰¶ÕË4`”–ƤÔÕ>G´¢5Šf£uÝÔFç.‘®msn™ÓdØÎî–EÎ'$ÉÝÞ^çóvßÔIj,æ R4ðÐî`„©÷Pei«›Ê¥õ|¯”™E}Ñ mMiqõÇm[[xmµ§Âíµ§šûEÊú®ê(ßBæÿ`T5Gß” I•TÁ?t:ÁÍÁZí”lÔž­T8ÈR!ïÏ÷*…Ú •`ºôåãý_à}·ÁûKÙµˆX´”Ѥdd!ÇühZÞ€A¥¬zþUA4BH)<Ð÷D¯e?T¨ÛÊ@&õKQcTÿSóB¨9\®7+_+•Êår¹\®3+q¶Í²éT/`†äï ¼òœfA * 3#wÂõ?WúÌí­nÅnÝcHûÇ7³rŸ‰Þÿª¶o }÷W(¼¶«ñ5_‡ªµãö¯5ùëû¿3èõÌa&$’È“hÔo–kA]ÃÓ轋V²çøÿÌï·^J7“”WžµmÝü¸Òn§2#ââ %f¼^”-ÐÖÕ@ÁR…’€?(y²¶òQÆ,ªsPèU÷õU¦yg £´ )YXÅ­R¼(e!TÞ}éVöóá´’´;²Á)Cyd ¾›BˆŸ «*&cd²×·çh…qt]Û†4néscnW'[»ªTGpì¶¹Mèø_Sàm­¯Hu0Ø€}^V‰º¨ŠV±;Ò? ¤-€‘ñå Hg¡ÚUCߨ2¨v¨ÅUh¥[p¡ f?íï<ÍÖå¿êîØäñCrÙ«@R®¸RW†ü N¸_ZX5©œ‡XªoѤòc×ÕM­HÒ‡e @“Ä@ b†‚%”))AJÐQž´²†îHûÅeùE³m¥R’+»¹MsswvêK;‘Zîs\¸i)®lh›–ìRs•ÒÝ-;¬Ø±Š„ £H\ärHï¿ú¯}ôßÿG_öÈæðµëÈþ?›ÿÒsÜ÷{žà/ÎŽÜùúŸñþ5³u³˜Ì¢D‰$H‘"D‰$H¥–YD!# B„!B„!B„!B„!@!B„!B„!B„!B„ B„!B„!B„!B„!„!B„!B„!B„!B€> „!B„!B„!B„! AK)"„!B„!B„!B„!„!B„!B„!B„!B€4Q/Ëùbù/Ñù|V|¿—g˽üŸÉü?ÉùùQùPÿ'ì&Ÿ«Ðú_âõgɆòÆši¦škçÿçžyçœwlãŽ8ã¾z¨X¡}z—Õ±}<Ëç¹|¸+ܯr½ò½Ê÷+ܯr½ËÁcŒ0XÁcŒ0W¹^å{•îW¹^å{•îXÆ1ŒcÆ1Œc½ï{Þ÷½ï{Þ÷Æ1ŒcÆ1ŒcÅï{Þ÷½ï{Þ÷Æ1ŒcÆ1ŒcÅñùá–_c³,²"ÈîeæÁ–è=#øŽXAÞ¸ñP³…¹HëeÆt°"P Äú‘5Ê › æ%(G+^Þ¨$¶|TTœ Ò÷el…ó=Ëo º¢ÔÛqL³»4mÍs„Essk„Æ5Ýr,izk÷Ëlå¬M¥$‚!Ož<ÀMÊð ^ÖÙ«]—xlàÿÔ œ Ó|‡Éß°½—ûùø=e½ÙÚUTŸÔ*ì£$?hPök7¸Ô^Æ6Š(´ö ÜD÷ f+Ð,„í”?ñë‘T>M¸±³Û½ »Œ‘„ŠŒ‰Y&fVˆÕš l"$M$+ÄÆÄÖú › $ »Eª*K@çeœ Ô-AT‡/–…x£sõo·6.nnnnpWû››ÅíH÷rï0óÎQÑÄ›èÿ@¢µÃÊk eº…ÀHq5SÝU¯TÑEŠa,OêáÅ4˜Q«™ rå¢nmÙ\wt—vë«Å? ­îµ~£yoÁÔóà™§øq@¹¨Ú'ˆ©ù ÁQu<0N6$8:›•[”4Ąа‘èµké”:Aa!¦W¡BôФ¹è”6°©ó:1(ÿKˆ‡ZÔP^°éªt¨¥•ýAx©îÀqÁëÕ›àýO‡³èö«ÿaiµ ‰?€…(飿À×¢åC_ ýÑý^‹ LlDµBd§uÄBÙ=èxV²Ÿ,?Þãp¿ª! "I¨¢¦ÔMb±H²c X÷!×9Ã">¨MÔ®7hÜct‹yŽÀ"„kkhøAÝu/Ì (V+ÇKÅ]…Dæë<|n¢Ø†ûÿ¡aHµ¢iô@w‘BH$’‹ÓýobÊCäŠè›æ P­eˆž¶ã@ÉK`ˆ¯@´¥n% JÀP‚ªnMh&‹B¡m|1RmݯàZDùý»Ô)dYÇIÉ£ÀÊ@ÝéLÂ^J\t (_òz³  Kt3 )7Xå” ¨ôY ÐDóÔ¸*¡VT6^ç, G÷…lHpªbmÐS's1Ç®E+ª8ÖŒÚ6²•LA‹Q'¹ê6å͉Îc•"ƒZä»bˆd¤TmEwwNv×)$¹ÌîÝräwRrtëtÝ×mÒÓþG·ÚP¦, w†ŒHý÷þS ú0£É¦R•¡YôJ KxŠ C'7uâ@ôD/p!BeH¨Ö±:Ò!f"):Û—Kõôÿ†oÜ­ž-Ð Vÿ)°©×€y†aåP~D "ÚD@´ Hup¤ÀCÕ‰V‚¬‚’­Ê–‚‚´€ ëb¯Ëª ZIHI¯•5sr.Ås UˆÂD¤BØ·ˆ 8_eœ¹ny.ËpÉaøœ— ’»ä®/FŠKt=UE{qB"ÈŒ«õÉ&Uk– HÝPVyb&Î%=Ø÷ö(ÝJ@ðÑ P½AËÕL}ª¢jš>VÀú² Ô¢ˆW )ðΖN*4ƒwQ{2¬½òUï)ù0¿£G‘#uŠRP¤–ÕQ½•;<Öü8W`Dß³Vé ®mÑ«vB¢Û—QkuÍ7¯vó£H–ëpÅ ÍJе\å/LJÐ'IGT(ða}©S^Ê(4ˆïñ½EççöúßZÛmnj‹)²¦Ó9Z HŒ²TBf-ÁÆ’DÔ×,áðB$]¯é¥Q¶ª-Æšë5šBÓEcJ+4ô_Dû?ß÷ûÖþŒŠüG”¢m TvóÏ«§žgÜ4 ^¾’(i$Î hsˆ7°ù"¦u¶rêš`ÿz¯îð?P©³@Ö(ƒvµU÷{1t6~ªœ#Ò(æ€}4/ÔÚ5—ñy{nYD x¨;ê2=$€Xð2û@Sÿ¿ ¡À†)”ÊXÿÝ)”Êe1øL§ªø;ï3qø3ºä,kR! bˆ÷–Ú ß·ëõ\  êBH´Ó¢ f"œM–O嬛åcûø9jâ¡Z¶ëÁÖ@»Èoèج “xä¼à÷”xE¯aû”wÛ`ªoµÿ_zúÛõ‹Â6ÅÞðVŸuçaÖ!!ˆ´iª6[˜_ÁÞĘj4b#`¬l[ "`SF¬Xh4,Pkj ,XÀQ£j6KY Ñ1“QRQcFÁQcL¨¬j#dÑj5«ˆ4THÕ&d¡#d“ 0š‰†C&‘’!• iPÅ ³I †"Ñ5ˆ(ÛBbÅc@c %A¬ÑFÚ1X¨Æ‹chŠ*Å­D ,ZL›¶*£Dc‹dØ¢ FƒiA¥Š2Eé+hú ×x×äZß¦Õ F¿‰BžP¨Ê₟ènã+ozçŠUªTØmŠáدý+ 8N"÷½ÖµµÝmmmmmx\€¯®Ìüˆ }‹ÍôQ7Í÷ æØß-|ÿfívQÍ{»­U€[Ü(ð(>œ€B õ°¨Rýªˆ£ô¬RR޹s‹›F‚æÇusW4Mgv†+\®‹¢î*éÊ0ÙӺƧ\Ds³º× w Ëwwbnww\Ü»ºéÎìqÅ$IL.~ËÙÖÚµZ =òè 2€¥ñYX ÕÐÜjÞ0XJ´–mZB£sTJ6×ìX»¾WÃÀÞ-ªÕçðžu€ÿUjò•€¾¿W¸§Û¸Ø· v. ÂRR§;¶âîírÆ&nVæ€$Xé¹vuëm«ûžÞµ½·ø=ƒò ƒdÆ+/•P¿H§Ád;… 7p¡°pèµúÛŽî«ã~ž±²á€{qB)¾£OŸªÙõ¿¿Yˆ·ûH;ð‡µ">l„” ¨…Ñ.b~•Ì[;å¶¿¿í†Øª:Y~S.ckªšÿãMJÊåÃ Ä ×Š×ä~þíþ?wÎ+ÀÆHŒE¤Ò2Èm’PdÅ`Ì“D™ÌK¢LJd!Á†6e&EŠI A¤Å dˆH™F,…cD“ÃkL°c$¢Æ]ÝW6’ˆ”ƒHA FXµnÙÌæB¾s9Êß³™Î!xë³½w]ù/)·Þû°©iu[?YÁ…ZÎYUý22, ·TéëØA'iãìëµ²vô¨P÷©˜¨âÀàwP;¡§ ßY¢šêÛ ùYÒz|ukÿ±o˜s]Û°¹Í¸æã6.éUI0’@¶|{#ÁðX¡¯pE:½Œ š‡R¡ ƒÝ#]žn[ŸÁU@{x«}â«‚›kåãw6ÃâwwðÕ=_P eÅÕÀûþÕ@ z® èÄqJ›P‡îóA7å$"§›9püÒjÖÞ®ª÷¶×Ëø|[cI5ÈJX[ª(îuÇd†#$lw;H)*æ…HDîuuÝ»ú¯òÿC¶¿­ûýU°Dç{ô<Ú² Ò ùj‚ub~¤:ëÈ%µÙVžÿøôºË&³é¶ä2ÎõÈd2 ÷Èl&YCR#è@VkÐ@Ñ@À¡Ï«”MåÅ¿”CŽ8nyDÉïgÖÝ/y-eé79"A$d$H4a$60¢@1ˆ=Mƨ^{+!S£8­X%â]ÐÆ·,À]¿4æ›@¬ ôùþcÆ×öú¯g·æÿ=¹í¯;’ƒAFŠca#¤$HÑãöõRÂíûTûïõZÿËó_1çmmê{†ÔQ#UÝܘB”Œ!%€R)ÏsVEþÛg}ìY¨˜@Bò Íÿ=…´ö¨ ‹ßTuB:¢@ÏÔ¨锸vV€Æ*ÕJãÏë¶œNNèVtB¯‚Û}Þÿ¬€ZqÕì“nÚ2)%%E®¢¥Ê)ÝÒw]·76Åt…Ó»ªîÜçgv-ÎëŽéÜë€:ø/M­•þáýþÖûû[ÞªH4”£N¡P°xpGi¶[âííø»{{~Cm·ý;3¬Ý¯Ÿ³¬ò7 ñä¶Î»®ë¶Û¸·ãðwî‹ìv¾§óµÆÞQ:ã"($·®#ònT8 ÕµH¶j°’opdqE¹9¹®AM¨š ]Ý‹õ¿£[‹_n½æÕˆ¶(*€ æä2HþJ µÅ³ø÷{Ç*!öøt 5C0(|W@C›Êªs™P[!‚=Õp{mÀLN%Ú¤KáM© [¾~¿Ükì·¹ô|GW;³ûnRDϯîÐ øê¹RP&?µÔ(4cZ ÊI±ŒË(·Wi lbBF &L‰¡2˜”¦I3*(ÂfQ€S X̬[Q¶ØÖ­ïíQš(ØÆØÒÛ™%È–×7\©=›Úábéø¸Ë€Î\J¥è ûq»«Œ $‰’Ëô­ž~._¿æ»o£%{è<û²!oz¢.ËíùŠ9ñzÉòi$‘@ÉDç:/¢ [÷G¶˜!uS-»h”!¸FEZ@„ˆYª]e6›««[îZêêêëéò>(-äª؈ˆ7±oÖø5;,®‚²Åö_Ò¡N+²QÌ2 È „2Ôk¢æýº*é1¾B?ÅTO"Cs¶áÄÙñWóÓô.;›¸íp°%Ú‰ %)-Fw[šîêæ7.Ë¡Ý\×4 .î…ÝOÚí¯Ôô_ôöŠˆ‡ÓâÔ2>ÚŽùÍ_l(اˆ'rƒê* Õ ùr)¾Â$¡O‰Eëñ ¸‰Êöª•*|þKýé{¬§Ûø°üf.Þ£òÿp|º€¡XGIÙÿŠ„²(sÃØpP$‹ºA$FHFd§úûv{0CiDÑO)B1€O(©D ž¢ðX2^¥8U€6áËÂäÞ{5Ï }UPá]«AG^x €Åèö÷¥û_^Þß„·Ý-ííííø+{{æ#Q¨úºŽo”Ü,ÁôeÓ’*TßíÜ‹¾VËîýÚŠéËÄ$BPûÐA_²ÊÛ|רü¯äú¾×ÝÖ¯FˆcE£&E’VA0õ6·å6·û>ïµ·í‹´äbœ|)ˆˆèxÑzÒAlá8áOvòˆ®LG¯Ðȃd«9ëÿ?çó–ÿ܈õê( £ëÁn>ʃô*z`š‘à»Õ éº|Sa"¥’¯~eAiSN¡ìˆí`¶`2I6(ÒQ‘ZI !)ݪ‰ã û–Á\o°!ðT‹ñÿ! ø5î@mBHÆoð¤{»réq‹wuN˺ۂe’R6ÝÓ&³cB¨K±\¹g'(è—w@çs·wRã;¹]^+oÇý×a;¨)ÇEO)ÊMTÏ«®ªì .ÊóE_7Ùñÿ}tC‡Ú”¦%CΑ_JQ+*d#²Û1MdÛùèŠdà~úˆœ¦‹öü—²×èM4hFÅc`Ši"£I¤b ˆoæúº·ôþgCRmE<.Šˆ‘W¾ýºJ2y<žO'“Éäò{†fÉòZ¥tJ20a5PÒPÊ(±ªDRŽñÐiøKL.›h"‰èÝ9¡bpªˆ!¬ vਉ{¯$@‘dŒ IKÉQÎ\ݵ$2P$!!(T)ðÄLtAõ8UA/• œ5ö "A‘3J¨¼¾nõaÖˆ®GÉy\MpÙ€ëvA.[<¢©ÁØ}h+}ˆ;ÔTÍ1xwoFêûÐUKt‚Ä„ Å(RR”‰I## JFŠ4Ïm@ÞÕL‚¡Éª^C¹çD8bÌG(ƒu๥^˜® Í ôÜ/, VPÄ¢vTPÐ"jP5(T£_õðmd¦Ð½Èàû‹|FÈÓó^õxÉœ»êAÇ^.à>ÆRˆ!ñýÞ¢.ˆÎ@Œ h£HPŸU]:"%qO¤ü¸Ò¸Š»´a„¢0RfÙ4i±½º)L.\:Gvܹ¸nšë»´mËtGuÜ¢²•ÝÝÝ+å²\ØY ™ǧjý­óÿ]oooošÆÛÛâ>¶'èú8ÏFâùÍõ½F3÷s\žÙÅæ¿ªËž¢†!"ìÚ€‘#"$$@æsÚ@Uãl^ ¦;E^Û˜ätU”{©~Ч2*‡Þê€N¬Y!R "{?-€\L@qÛƒ¨R±øbŠåeK<&»Kµã`BB !$ €ëÊyB"ñõºá<Û-åß8:…vè:Œ½HãAÂúõÕ/âVAÀu;('f:“,*%…ïx(ƒ €§WæPGCÿŠJ™etê†Á"aàR‡JŠu:(}ÖÞËÞ·"svÄ¡Q¬™å ÜXÉ©P-·³ag©¹HG6PG0œôJ©xDP®)ÉŽ‹Î¨Sɸ'cD@±yø©TBÛ~(6@„vÖ÷VÃ×]"Û¦åt;®ÍÍpË×:nnî ÅÜd¤)· ]C¿òûj…<ÈÝÂZ€%öI7íÔJê¸x«©€%Èß;³ÿ?ûþë®ÖÅw( L 1dR i•¬‰Õìô*ãTðâ´‰H„€FF#X¶5¨ÛlTh¥"¤Š”æ»¯Š¡½Dò(hab¨×ªöðŒ)ZI1& CA%C%c ™B C3cCÃ&ab4 ™„ÄdIHÙÁ¢™"0’C‚adÆÁ#VjIÑ‘JmµåmoõØèÀà¿ØT´´´´ºZZn–––› ÿ„5K¼¢ïGÖÙ >Ïx €p‘@îÅ‹`0aœDS’ÖÝyšûDSëàhƒŽ€>dE8”ÕÐ@Þ8!@ÍÄb2D)E€’)Çö`"·>ïC Ú¾à8k0p0¥„!J=Ü´ ¥Ö¢9ºM®k-… …)}Wjè= Tôà~¹õF°Žq1g*ÈÞ?혧i¶¾Ï þýf;‡¶"a"‹­àÕ,€ 94D®‰þ»Ú"Hˆç ¦üýK„H¤ƒ[›DFÐ"„f¾ßø{h|ÐNØRÍ_1CnùT|ZÊšS‰ÄoÊ*‚{v8å6è"HB@Vî!ÞÈ£ç*õ7cäÑ‹lTÑ‚iïJƒ".QBº§Z tÔQî.U<M²²½¶ŒÈÄdÑ™š!-EZ6µ® RIxEt è>J}›DMr®ø­D¾")v‘FH9ŸúÊžå eµþX£u©s(–Ò —Òöß@K¹T;]“}*PºCc6BíTˆ‚…Òë­â늨ÒÀUúABEEÞ¢²mUV1WúÍjÛšãá *¹Ȉ®>H*sQdõ $TFE““,R•Rªª¨ž¯-U¿ŒúwwUV}OUVµ½šÇ²fASð"’" qŒŠˆ^âµZõ‘ªÕ÷7óx#köKh­­Â½‰µ¿Q5«xoö/~ã^mòshQ¬DÄ”(ˆ6D"" U6Ú½-¢Õhç7-UçæyIâQÙ m"¢ÝØ(˜’*Ü!"†„¶¡"¨^ã"0€%î$ÝJ-D,„Ïw½îZí|ïwí{Ñs7} ©ë¾oÍkµb·^Çäö8=ïÑý6åOÝš"© `q †·ˆ£XTÇâ¹ïwÉé®"ÈÏQW]ÜŽ Û¸‹r®î¹H­ËnŠ Š „þ'«­¿·õ|(ì0ìâ‰ËAL¿¢!@OCAOM c•Wšþð’+>HUN1w(|ä_Þ+@C\iýÊ„~âÏÇ|·¾ÏŠÑùà6ÄW×쨋ë°SÖH ¤H ˆÆÐ‹r)­¢¹ˆ]h‹£Š'OÛù­m{å­ü_F¿:¢ŠÞá±–"-Ó¨«±uÍPYÁ"2RA¬‰áE@ø …;ÐDê‰!$¼&¥è,>ˆ ÅÅWN6x߯áõv>(‡¤ pðB‘´­}[k\Ú®kå·#Q$”@14c£ÑhÖµÈQ­F·ÿ¼hŸàèñP;ÐÐÊ₼½¨«Ð ~#éü$€”ÍÄGîA‚:ˆ ~T.Ë ¯Ò‰ÁVUr 0C§ŠºC!µÕo¦úÏø-|x QJfcRI$™AS4ÈŽèI@ðÀÃZªý1Dí‹ß‡SµÔ “"Ž**fâ#âD…ˆš(ƒhº¤i ¢ ’¶Ñèí4z=ÓÅhù.waÒÀRË¿¼ñö¿m’žŠ§Ë^ª75Wó«ô¶ÕjüsEcLTgú, ¬E¾º‚cà)«‚?Ûj[`“ò½ÝE»Šë7wr4V;¹E‰›ºë˜uÉÎç ÊwuÝÆt3ºéžZµßVÿ@‚œ[Ù ‚ BWˆ¹x ß fb'§¯Óq•>X£…ˆ¦ý?ðVè‡ê‘ÞW]AÝ~*"/õ€Ó«mjç€1«D^÷SU$`H,„šE×Ðü…è­¯ý/ìù|º¬RH‹Fš’2HBFÂŽdPò@lŽàQw,€\Ꞣ¦΂ÑG:)w`yÕ .±U þ)$$„dDöL»ôWTàöÐSžrˆ9•€‡ˆ lÔº5ÜZ¹õÏ””'B¢t\Î3®Îô>æ»üÙ¨êb`¢rÑn"抇‹Öü¨ T ¿Jã;8(%öºÈ¤$d“Æð¬€Œß¸¿©›Íæð¹½Ï7›Íæï’ëñõÛg?õöË1²ˆú(¨ê„yÈÁØ€ó +XD=ËÍ4T¤7ŸGçí|ÚêïÄ@äb¯ET¢!\ZÅCꊘˆˆùðß?/k_2Õ¾›î¿sûb«ÚÊ’‘QPÅX©D-誯³Û_Ü5d!"‡š!Fž0 )X^Z~È¢Ü&ú†ªüÕ¶¾R¾mhÛU£cTFÈÐAB!m€’EdD‘‚)»ÿOÝ‹û,ì"ê¾0I$ ÚTDÏÖQ}È(üƈ¡qJ X T-WéÅ {bÝÎ(I= 8J€¶@¼ÆNîåÔîÖ"î×K\™5Îê »®®êæäç]ÜPSº¹LÄB”L;²wt`£JÂ?vˆ†¦ø°T³Š¥Ç EC ü`žÀ @ƒ½ÿJ"W6º«µq÷¢/4¡ÍDq—<Ê H0 }àÉPްSˆ@:uAÝq˜ÌfͳoËöý¹c1˜Í„*DL ¯©@\ª>Ý0CÔÐÔ=o D ¢D\ @OšÿžÚA Ü„@ª€HÂ1›EénÕ^Öú ¾÷Ô­}•+_eH¼é¥S5Œ .û¾Pçq…[ÔA3¾­RÏëýzüÝòÀ WúÅyô<(ŒS÷¦ž°ª‹`Snˆ¿LTêb^òôÃA€SŒþð%dMr PÀÄj,QÓ*u½©Fâ~TUl*ñH#}Å]o@°©xFÀ§)s€¨a  …&M«TUlþmãUþò,AíUþ·ê„=`HwA‚'´OY"ö>Ø…5qW)M0q‘„Ñ @#²±îêþ —çÏÙª'¯‹þtp1FúPŠæ@¤Géò¨ ÚDmíýë"èmˆ’dÉ£SÓãúRŒ„’R’Xœ %JŸãmh!w€†F(~Åêу¥‘¾)]¹Š•¢½\U ¾æææç‚¹Þ®nnr¸Ÿ¿¶v;¥öùêáº>ûör}3×ᾸÓYPÿ¶Ÿ¿îÊuvó7ÁÔ-JÄE^:è ®õ“ÏgêØ(àDd±„cTI) ^ÊÕ½d**ú ž¬@óØÝ "òت ŒNED[øy÷ùkæÐ`%¨7Ïgìä8‹ ™´`¦•¥C“¢‡›‚{o‰-È/nŽe7ê•ð↲wJ>r‡!iAU+*PH‰•`‡ @ëðàªó~Nõ¿§ß¶óÚ¾+[VöD[ù5rë†KÜØ²CcPu­Üj~(p1úb¦uS¯BŠÛC¢ÑdD øþ¼ô}Æ{ºì,Á2€-üÐCØ*P°@"‡™±E$X–¹QÀ¦Ž(fâ ^wº+œŠ8ý¸ yÍUo-S{zÚ‰±QdÔ"¨²$ÔV†¶hWHnj¨íꊛ-H¼%Çÿ.–¼†ÉkkkkkÁ\•ñ ¨b ;}Ü zÐU¶s”EÑ"vëäÂ"q̼ ‚œß™Ökù»r·ˆôp±ãhw¢¸vŠáöçÞUáÊÈ»4@éÔ1”@ÏAx!PÊÔED¨ü‚CwÃIáà âDW÷à6ˆ€ZD $0´ 4eݸչRÆÜÕÒ¹w —uŒl`nr3s.î“uÝ]7~§ë®¡êõÔªÄCëQŠ¥tµØF«þ­íŠKMh·ß6êÿBÕU`Fýü\ %]W²ˆsJÂ./)P¯Å äU >®€O}ÖýÚÊ–¯‚cDm%M·ÄºÆæ™I!R«Óø"’²Ûk €7‡ç"+þ ¹;ÿ/R*l§§ß÷^ ë¼U{ÎìFÍ_ÓÚQUúÑCïÅ ªû¸qXMË-Ëe·]£-Èå²ÖÝ_Uù?WëÃñ{1E÷àƒ¤QDÒ ’BFr(-@ñqD-~Íè¢m’ƒE„$¤[A6Š(מ­~Á¶ßœ‚»p§:¡n ”™qÊâšÂlG ¯'R¡Ì qJ<À.¦²¦‚tBš0¸‡~‰Ó™]Váé(. xPZ!®Õ‰"ò‚êÔ¶¥r`z‡YÓ(uÐGØTÕˆõ!R¸ÞŠf¬g.º?¼¯R–9¡vBšuz*Ê'^!¦ ÝaT5p"9À¬j" o€3hºÈBD‘’Ma4B ×DOZþ %Î'Wµ‚ß,/T’DÆ£&ÈØ¶6†±_'w0ÝLîì\Û\íÍ…ÍÈ´Q¢„QS·\·tò§¡Š—ˆˆŠ*D(!ô@GœŠö ’⢟_Vçàõ:þÒ¸»ÁAá`s aP×DQâ «‚à`‚õ6‚Ø¢fddS@ @œhk¨/iLß=¶´FI!"„ I$ ,…8è[DS®ÐQkÅÖ ÖÅ]d{H‚åÑáÄ𠌑| AyÚ꣔üyL¦S)”Êe2›¥ßgÊ\DPÐÁCôh;Ÿ‡° Ùæh)œ‚!êÅ/ñW4(,LlALBŽŒP üQ·€ T"†éµÒE‘I $ £¡P«‚‚.(Û@?8 ª \HìPAÿUÐ=h ã@ÓÁŠž§c]Å×QC²€ÏŠ ×gÕ•¬¢>|@Ç‹´Ÿ H!œåè fà ÂÐ9ô‚„ª¡Ì ðtT À¡AËнe­?÷Ÿ›ðzÛ{¦Ñh‘­ŠX¶2sHN¿iïÑ"öŠªê ªWȉC¤@0ñüÃ]á {ÿd(ïåÚ å`®ˆ"ªLPC ¨'ñ:h‹G±ÐÝ>m_9`ùà(=¤iˆ‹“ˆ¸øªŸ² ø .TX ‚H’CvŠÖš")·ËUð?Ók[os=\ÚºæÑ»­r´\&ÜÙ4s®î¹\»·.D»ºuÔE\]¹ptêcLÇuÚ ¹×vE-åj¯Ò°‰¶æ3ŒÆc1m˜Ìf2x Ç{ãñûîjùûo+çg¸ý×±ÉåmA^(¼¬l@/ˆ"U[jˆ•*¾ ‹‚¨ià àºþgãk‚ÿß.ˆq‘TǤÎHR+#I”¸¯ ?_ŠíC݈cu´Plæù­×ûm`ÖŒ@’63Z6 X%Á@²û €~ …¶ ´Q>Ø¢rPl10±J@88*¤_ž ¿i³’\(•µ¼d~ÕuSô@DÎEµ€•‚ ÞDGÐ¥·ò›[–Õ>{µ¯ÁþÅ¡ ´Xb4‚­@µà¨OFŠ&`ÜßKh$lP±]<šP@$û±BT$Døà)H gà4öETïŸ D#Pƒ]@âlP»Òˆ„ º@ª)ߢýõ±P©»ü¼v«€ýÚ±Nh»æ®Èº´«A+Ewô‰A*€ùj¹”Z"YÀk`¸„F° Ï(ß”(bd¯ÈtJ‘ýJÿÀElT¯n«Ì©@[ xå¹n[–å¹oÇËb¹lÅM‡ËPÌ­HÞ|úû‘3BQK('’˜J š­D|pN<¢][ǰV@;¬:™¨(« ©£·×p€‘„„‘ˆÉ @ƒ²²Ê‚,* -¥+ÔVúíëêߣkíÜb-Ë–êÜԃƨ‰\_ºÎŠ> ŸŽ€8H-^µ @lP¤S犴€;Å(ŠH¯kJ?ùà.ŸâÅ€|àS―AÜ‘›}D@1¢1 DŸ‚Òqð@_jH¶‚öŠõhÓ§@V½µèø^Ú¾Ãõ>ÿm{…^žîu]Ý·:pçk»vèŽr墻·—c») [gdÿ0J@3± D J k¢%" ŠÈÇÑÅ.€¦#^ Y{  ½|Z ½.'1Âë«cz¢¥ ‡¤ER@YáQPTà"1$6¡B²øÖTC»¥$ÊDp1b VRµA;^²ƒäý¾ç+¢¶0t HHJE¤()ÜܤÑbìkeDÙúSo^È›li3ñiÐ ­Q5Ad@Ÿ¦ˆ¸Š¨Œ‚::Ps9œÎå™Ìß38¬Îg3™ÌÞ5=GäÔiô˜ü š%þ ßRâ&·ÅØÝ?]’pRAÞ+ŠöÇ´ˆ–¿ÿQBK_‰T‘ÊE¤øiE¿Ä¤Wè¥ÈA¤nPvï^ÚÛ¾E£rŒA…Θ5Å;¨ÖíÚ„sk…ËbÚ8è©‹—dšjº+ÅÏ­‹î–ÝþZ寬kr×Ï.kþ6®V+FÛóÕ¯¼Õ WñÙÝu¹§ÑRÖkÅò"îUQ@êù»…ö+¡¡MD)1€ÓQÖÀ*‚H—Æ<«Ø¨ _Á@+EÑeAØåQSUF¹e$ @ ¿¨·Õøø†ÛzV±m ¨ÆØ÷m]"Ô–-Iïzë1B÷½É0RK2Fþšå&Ø£c[à–«š±F´o[MW ‹ضڙj![äÒNêJä`NíŽë“6æ®eÓ—WAÆqÝrì㨃@JMâÞ²¾·+滵|Û™÷{ÕtKœXƒo’GeÀÙlE¤!¬\`•hb„iÓµE¹Ôn¨VƒÏG­DrŠ´kÁêÅcHyüÇú¸f¾Þ°@²4] oV@¤çE¨¯ÒE¡Õ¨¢¦î«ó¥Õ"³@­[ž ¤D8ªPýhÕ¾‚È‚4‚ƒpJÐPæLÍElFÑc(*kÅoÑj¾&‹hÁ÷uµ¢Åem---6ëKKu¥¦õiiir¹ÍÁ/ÕP $è(/3¤L”èê dJ@$4ˆyˆ?¥P©+EÄmU|x*ãþ0=]•eY‘ ¸Q8˜Õ÷âR .Ô @ó;¸’2EÛÆî X|ÈšÛIv£Èó4Þþ*Ëiµ…9É0nvW6ŠÑ»j(“F`Ñ$»ÖýožÜ¿íúð¯zÕH~1‹MÚŽ>šÕ'?ò½‘*J÷äCV µ&à Ñd@Z˜Ú€¤vO›Î|ÕìD$zHÒ/±Øê¢‡^(¦•RBø5»úâÒ)…¥Üz9 $P´©­3¨›½«×0GB#XzÀB½Ó g€iT!’«×Æça<‘l ¶n‰µÂ@"5bI ¯ø*Þ¯–¿³UüIBëÖ¢ú'šcÁ5‚û"×K/ø¢uB>jµ„­áˆP5¨ùɯYÔhÀ(Aä0–Š:4 Ë^ H¤ E¤?¬Z@dùDÜ”uAœ¿À"âá¾ÏS©Î[Œ$.w:QáàˆH ‚üQ¤l@ÿ­òæç¹ËÜÜÜÜÜæo—ýfÏËÖï÷ÝŸs¯ív|Þ[‘îõŨm±ü@Y‘Ï¢|ÊpâƒPÀòÓX"= Ũ¯‹³÷û ußyGºåΗLXäîhÚã—4Ww$‹Þþ­þfíë5¿[eè PÐA7èt¢µ¨‡ký¨R!‘:„N¶€•u"Q ‚:ΨJ5âôpê†#¹¢ êÂ! ȯ\ vjV PJÌ: £ÎeRˆD­@Í€R'JE=~Ï_‰èü»áìè,Š’ Ȇš-ÂDLR ˪ Ñ*‚(È©>úѨââ´Š‚WÚUÜD¤•)Z¦%#èAiæPôÐJHÇD%f"1kÅgЃC½Â´CØUK¢ÈÝ­EI˜Q¢”€k•OfAh5C½ÇPúP ÜøBD7_“;àe󞈌,-œLˆ¦8ˆUì«‚-PÉÄu5€‰D­ÖHˆz*¢Áß U‡H:ʨpÁ“… Ò!9õ" nÒ(ÆE§´(WµˆYsÔ žÛ°ü>=š7è±dÆFB! P(Bž:æñxñØÆã±Îäî"gq¶å\ÕrÖæÑµáËœÑn`,ÃÕ‹nߨ"’ òÄ)i¥€D©i tùÕGEEj õQýR©¡ÐýK]‡C¡Ðèt:‡‚¼¥´Y±ê÷™s?ðØK9ÏA9/еA"H먜¬j…˜ `å¢Ày‚@¹C’ˆ‚Ê2"}qÕJ Èy³èª…€Bù 0±¡òÒî¨8äîÉkµÎUsr®r+];»®æ's£»¸åã^M?óö¿ºú.±ôz¶ UÙЩ­9JS-{i$dz½û\ ‡Ï²ª3ª\™H’PÑA ” º€•Æ¿ -=ßX2("]ì¬47JªÕå NuãA/¨%jÛ²¦Š˜ÐHÕ Ð·ê¾Ð\º`lVœâËò‚`,’A6Œ+júÆÿ›Ü{ Ö·™kù'¶àåÍfEq.íÈÊ*ᩤÕÍ·c% +Ù{¾Ÿ¼?@dÊ‹îúêË0¤“‘¥I)Z¦?ùõ9 dF>Z*…‹)J_ïß³–½Çá½â-ÖÒNVž­E'èÕPI'©Jw·ß TZŠÒI:Šcïµ®Š ½Å¢ÄTww&Ч’ÿ|ÖýoÖüÏÖýoÖýníváñØLvÉÉâù¬¥¯5ƒÙnÆVfµ´ØÁvä!:aB¢ó²”äç— ­Âœ„¾Ø§š)æ‚}PâWõhRoT¡¹ài¹â:Nvï›Ýî"…ÚD¶wj*‰ê! žDŒ…J‹ZÛ}¶jû; lá| Û`©Í˶Ά‘SV(ë^·š±–Ã{þ§mŽÀå­nñð²”á½J8­@h‚1*[¹Ô’Ö˪† 0*®2 „’ĤµsGwJF©Ý®K—v ;ƒ\Î,îã®nèåÎp»}•‡œ‡y0™ È-h‚²ÿw”¿H¬æUvzºN–«–ÊSÜ4úÛãMß:žHN‰ßŸªÄè‘¿ÙçÆ”ºBï™ÌîyœÎglÀæpœÎgéÝEïÙû”/œJ”ÂßÉÓ¸ôz=§½ãoà»äÛT!#$ˆQ\ÇHË6µ×û_å~±ñ_IßO´kE§ô•åþ?_C+®å¸~ÇÇõxÍ’«™Y)³R $Kª…ß{êØ5|¬P‚8Ô¡D+{ >U;гžÊ ³+[ØA—0Yå*k)¯ТÓAç«O°¤Œ‹Ö€yâ›çŸ½Õ}¿ãÖñèÕ«åTi5¢* jˆ±VV-|F4îÑwq7-¹]8êå±×9jä™k9m¤YI%FBi¥Ö<÷<:46¥QRÇ.}òçáS‡îžìÇa€ðE-DzP¯m%ÃC1çs㮵ûmªßˆŒ’a!($)B…)ᢱF„É"×ÀÚDôföˆm€’,„Cx~¤ZÙø ¸Î °6ÿ›ñ~Â3N?¨Ñ¿Äϯãÿ‹¹:û2¶5³Þß–¥4T} @ û„!B„!B„!B„!B€0áé“ÞÚ÷½Ï^÷½W½ï{Þ÷¥úÇÿ£ü}Ÿô~§ú3güGæñ•ü^ï­õ~—Ëïöú¡B„!B„!B„ Æ%ÂE×2ú”/¥Rù¬_Ëßr½Ê÷+ܯr½Ê÷+ܯr½Ê÷+ܯr½Ê÷+ܯr½Ê÷+ܯr½Ê÷+ܯ{Þ÷½ï{Þ÷½ï{Þ÷½ï{Þ÷½ï{Þ÷½ï{Þ÷½ï{Þ÷½ï{Þ÷½ï{Ü®W+•Êår¹\®W+•ËîÆïõ{±þÿç÷Û}ÿâ*Y€}B(l=ÍæõWŸèÒÇ–½)¶IpwTëì#HŒŒdˆÒý?]¶+—6º6£¸‹wu“EÅÑdÑb£ YóÙ_º­Á}mH®•QÝöÏÏ«yýZº[Þy0)Ü‚þ××z~ëÓzrönuý~ëôÍ÷=Êé¢1 þ# › 0Wø\”L  ’ 4M#Â!™E…"“#0TÌjhQ!2B HRˆÆ ˜ŒQ¢Ø µSÙ\®j\¢T‹»¶.]Øæã çZNt°v·G,l¨Ékutoö?øWÔC—=D^ YB f@EÏ l™Ýù»\W`£ïö(›Ïb z´ìTÇö c”íúí‹ñ2ç[Ûv«•þúŽ(WšUô|I!½µPq}»oS_á«wÙw²Û‚åI `Ä7ÒrÝŒŽqZù¶×æZ¿7TWRÙ“Éð¶þ/“ÉäòyžO'“ÕþL¾Å‡»›G[ù·$Nnsèöp×\ÿuŸÎðwÁpò!¡@"BDaŒŒ‘ô¡$B’Ð =|<:™¬ßhm(–ûJ*æš+˜îÅr®Ì¤Ú˜™‘’»¹ÝÕãçŸñ|Õ­ÿ‡U­¯é 'Ψ\ÀMl}Ü­71@æäWÓDèä&±ä±ÊC7w Ûò%sΞñLFì É ›èëZ¼¯ï_à>‹ÿz=ºµÉË¥¢é¡¥ÝQ®]pb¢‰™NkFÜw¹rw\®„ÅÆçwh]ÔîÕÞ§áú¿î?jþ/ö;Ô‘œB#n¡‘dXB\Q@­vö÷®W+•¹er¹\®Jù•Êå}e]ˆö~}_mÀwÜUø|6úÛ=¾2$RHb1Wçûªb‹DlmF¢Îë\6£FµÕÎ…cZ5±bÔjÛb«ŠI… ‹˜Ö£X¢’,Y©(“I£cD•Ëdš‰&ÑkFÚH¤#—k—ÆÜwmbÅr­ËZ+5srˆ¬Trˆµبۛ¤bŠ6-ÂθaP¹×sºËs´‹š9Ý\Ù™9]•¤Žî¦[FØ®sEŠØÔb³6¬\Å´V幫tÜ·wh×KInj惻¤£¥ÎºOýU¶Ûoölˆ’E"‡L€/GmgëM$9+õ1vc #lùŽ;ŠåˆwnkµâûÏ×êß~倒m“È²Š¢ç¾ýFk;ÊÀ½%9 _B€=äG„UÜÑ,º LÊLÒ3—Þ›ÏeÆÆ ´Ä¤ÛG„vÔ÷t62i?RgD[èH 4±YN½@Jô{/ÛÅø˜ÄKÄ€°³ÿ˜ÞJ­°ôj*Þf²q“F õÂÈ‘F>eB¬/½CŽþÝßÛý5;‡«¡ü>OÞn´ä(vJ·¡]¦G¬¿òþYjŽcdUÆ!$Œ’F@¢ n9Îsš #»†3–%qnÕú]Üë»»º@š/“Û·üÞO7¿áó{®o7“¾æùÝ¥³úÝ·/Ñîymž‹%ÛöøÜÎ$â¿8&YWîTT÷÷ËIÓÛê/[U8ŸDDð”6Б‘$ŠHД…¤×-t]ý[ÚM¹ï^§ƒîd>«½È5†fÑmŒLQI$a×Ë@pUJ¶:*z¶/ _ù3[]š3è:^׊ "¨ÁŽù¿H¼²‡‚ ’E{`\¸7@åzWÒ6ÄBEì8¼+ôPT l"!Ógç_´üÛVÅöp½Ë¯ÿ»~R÷ù2ÁGn$ÚŠo_?^µ÷¼áE<Ø„„C”TQ½Ø)‘‹m´m Õ2¶Œ…hŠ£X$4jwniD£Da %dÔh(´fb²j"£Th“%IIª"6Š·5uòUP’Ñb!`©5û?îûÏkè÷ÿ£÷žóÞ{ÏyÉc...>¯´ÃWÑ|åE3çq"dÊÿ}ËaÝyûÿšQÀ«"À‘^ú$iD®(&Ó©úKò}¯óûú>¿©«àV‘cVhÈØ `öÞ¨V …»†Ã•Ùýûò¯3‘ÿ\W»_½Øm¼Ö÷‡€ªzð¡ ² J Ž¡8hK˜ ¿»p:ôœW­¹àPDúgìÜñžè‡l¨{¢8ŽèO ÓÛËà!Š$bb²SIZlQhH'ˆeâ$‚H]`*_ðÂl¸.W0¦QýèM¼Sìöq‰L£”G-H Ü QåØÌ̉™™O2ªf,ŒÍ//.ŒÄ_.Ï.]•L~Ôfu` @½ÀVÒ½«ãgt•úÜণ&+¦FéÁv¡@¸%¾Ï:‰CU@έ¦=0ÆWùñŸã¹) 1$M}I6ÝÝ1a¹wp.h—.î¹\Ý76Œ!ÓªîîÌs³1·quuÈNºçv—šã_»÷|È?Œwåß‚†N)—›Bkßÿ뮚ÛçY}þªìïÑþø:tÿæ³™Œý=¿{îþÐ]f¼\ Ïþÿˆ[-½U̇6¢k?à·é/ñðïI~<Îÿ†¯;JgÕÏû:”×þÏ–î¿ýöuOWõõzÿ/ðàËèöú7|ŸXKݽ¬îÀó¹ëõrø Φÿ§sLåõy¿ýŸ÷qu@çü?oÏàünvu;ý`5>¾O{ãû@ÔÛýÏÞÔSÙÁøwµÔáû¿ÏƒP OËÖÿïó¨Óú}Ÿ¯ßÔýüÿ—ÚÀ¯§ÉåSãþŸÛæSü¯³ñê©ðÿçìûõÔý_ÛöþÍ@5>¿³õþ]@9yyyyuåååå༼¼ <ûþŸçùÀÔÿ÷Ñô}@ŸGÑô}€j|ÿ?Ïóê©ËËË˨§///. ¼¼¼¼º€ròòò€ð^^^PËËËÊÏûùþŸççÏóüÿ;Àròòò¼ç'''#Àrrrr<““““‘àœœœ€iÉÉÉȘœœœ€iý\¼¼¼ <ååååxÎNNNG€<ããããxÎ>>>7€qññññ¼Œ 08øøøÀÓŒ ?«“““œœœœœ€<ääääxÎ>>>7€<ããããxÎ>>>7€qñññ¦`qñññ§ý¹999yÉÉÉÉÈÎNNNG€<ããããxÎ>>>7€<ããããxÀ8øøøÀx?×''' Ÿß———” N^^^]@599995ÔääääÔS““““PNNNNM@9995xÀó|ß3Àòü¿.˜`|Ǥ×ð^ç·ÛÌ™íöû}¼À9žßo·ÛÌÛíöû}¼À=¾ßo0 =žÏfˆ |?ã=£=ëõúôg´g½^¯VŒ÷ÁÌŸôúgôgô}DþŒþ£ÑèŸÐŸôz=‰üùÿG£ÑèŸÎŸôz=ÓÙÓÞÿ¿ïçOgOyüþ|ùìùï7›ÍŸ=Ÿ=åòÏgOgy<žIìùìÿ'“É=Ÿ=Ÿäòy'³ç³üžO$öxþO&xàgøüyÀgâñx³€ÎÁàðgœ{½ÞÎ8çp à3»ÎàÀgnw;€gÜîwÎ;¹ÜÎ8 Þ.,Ð3@âââÍ4..,Ð3@âââÍ4. 3Ìø»À3@Íîw;€f›ÜîwÍ7¹ÜÍ4 Þ.,Ð3@âââÍ4..,Ð3@âââÍ4. 3Ìø8¸€Í7‹‹ˆ Ð3x¸¸€Í7‹‹4 Ð3{}¼Ð3@Íív³@͵ÚífškµÚÍ4×h À3ív€Ì0ÎX`eö;`e—×ëå–_[­–X|<9`eÃÃÖX<<9`eÃÂP@pð”P9@e•Õêå–_X`eõ:™`e—¿¿–Xûàe”þø d¿¾@oï@ûàd‘¿¿’H=>žH dôºY d“Ñèä’OD €2Èè@ˆdÑè@€2È{ €29üü€2Èçs²È#ww €27wrÈ#t €2ÝÝ €7w@È Ü€2È›@ndFææ@dnndFààc¸0ÀnnŒ0˜ÀcŒÞ0ÀcµŒ0ÀlãŒ0Àcc3½_Ægq™Þ¿œÆw½Å7³’ mð$—¤-¶¶û:¶ãç|ÖzoéôÿWOÊký¤_ Ù2I%>}³I†âð(ºÅ@u ¢P"rÈ›ŽSýýµíuUìÍ…¿·+«•ÍÝthB%ãñj?§Ø|…ðÆ"´P†¡{À"÷âÉ".[ y[ Q"ŒŽåJi*TÁ(yHÒ¦ò ÊjðQ øŠñ’¿~•¥üúZ‘yrI! E‘àÈ‚¢…Ï}­·oÜn!«Ù Ï-éoõÀûœîo,*Þé'‹êpïìå¹CUeñ)ý‘óR ¨gSÃq>×=ëèýŽ·sÃñÞ®çkéó'»¹á{Nw~ì±ŸÏ ô0?Ú܈~õ{Á †,DÜT—MöÔ–øï–[q d渗vìÙÕØ9×HÝÝÒîþ_ØþÏö•W¿ÚßõM­0ò` <çg¯Õn‡‰„$„‚‹á æ3ºu ‰;Ðøé€¶ô#ßÁ‰ y€(ƒ¸‹ÞÕódD‘Sb˨CT‡BˆbŽÂà?V,0æ›gÅŽw÷¢¿¿Î@$ ÄÂIþÅ+?©ý\5â¯ëÔß•DÚdY„$‘!–+Õk—nŒÎqbݸåÆåÃb6K–ãoò+®'êïöË/ÉíÜUíÅ‚t’z¨ |>їߺ¯ƒƒä1ïWÕäñÜ:rÜï ¸¸N A©ó*[¼QÛ`Š2;C!š(Õ–öÝÚ®ɹ¹È§-Ã7Q¹rÆ–©HI¾üœVo‚»áò¹¼ß ›Ýóx\Þo¼ú[¦_·Ô}ì†CÉEPîD;Ø$‘Å ª)ZôÏ’çKÿµê“ŒPX 3¨ˆï\g“€½dCņ:¬Ö(¾4e­´ü«[ã£bŒI5VؤhÒ…(š ·}Óyû<¯nëz…™i mÇ]ÇLlÚŒîÆŠRP¡"PŽ£)ê_8Í à•Wêwß©þH@I8j@¾o呯ü^ž—°ÿíÚíi¨ýØÅ$¶FHzêk^çõÿ ôþVÕðj¤BF33*|MλµÌ]t#nW&¥9qQ»Ir»»¢whc0CWsƒw;v‘!II)Nk„Óßüæƒó;0(6÷Üüþ–«ËÃá®™¿AH£ BL¢ˆŸÊãŠÅb±X¬V+€ß±\^ÓŠÅb»¼63Ü_‡ùŸö «o‹ZÄÚ)Œm6‹¼Z§Ç H$W:tU^ «3€ðap¿"çU6OŸçõ0žÆøš Á ²#·IR$’ ñùŽ+êÿ¯§Ík¾.£—ÚFïI$$‚ÂAdI #!Èq¡Ü*þð%íP.»Öƒêøu××ôFìlJØÍXØ»±±kb݇ˑð~-ï>ÓîÏõÁƒÁYѧÿ¾ï²NÙ_ö_ÉìÙ÷{—¹$@´wµDÚâ ëûßâ½ýŒ•D:$˜k aVù¸¶ïôí­_“ëû­¯Ï\Ý71\Ë2Åqp¬hÝ×JÀ~÷øß™ö¿¡ÿáëWôv£HãTÀ`¿WÅøy€›ù¸Ä ×QKê%ÖwƒÚ•2æ!€ ¨¦èóʾ<£¯é¯+ç@TQKìK¸H(ElBRIå @9‘x™ä7ÐC³ÍÈɑ˥BŠäx}6e+®á»%é2ÆY;\&ÁúþžË¦÷~Ì3àû{.ou8Aq@2B@X¼ q¾þ·¡¥Û¼ ¡›_¤ÚÚ¯—ùõ±ƒ3c1–1h‰HÉEˆ È‚¦b c2FD4B™¬Ä3C ŒWê\Y 64‰’JHÙ$†?åkHFŠA¨bXÂÍ’Z"f,U±cjÅ·¡lY„(›I±Rj+h²åÄØdkF»œ,A # HiF’ ”m-8;nÓgàm----./KwÀäzTð¼XŒOüÿwœÖãyÈÆ°‡VÑ=x|€*c;‹íÇþ¦cp¶] #FI¤H #Ê£šå‘pÛ•ÍËq\¹s]Ôs®è®f]Îèßÿ}܇Œ€<$œò€+eÊÝËN#CûýÿÕ²Üq;?÷Ãõ¼mŸ|Ô*!pP ²DzZP 4‘=aU=Íòߪñ³ÛþïëÛ6’2+!$! a«Ô@ áðˆ!Óìïøc´ÜrÒ‰ä¢/1-?"NPÄ{ß@‡š•Ù„r ?ÏÑú<¤LÁ"®‘C0¡îªa ¨®•WËãñøüVãÇã÷\~?Çá>„ 2'6¯eýyÛýOCþó{ø§"¨¬‘@¬†·Z‰$%ÜQJ©ž]ø_Û¯BΜC¢^Çû(i„4çÝ9$ £Ãœ]» ©Å¢E!¼ uBS¥Ê¥·(r9DýG¢ƒüFBH’ª‡ïk ßÙèm??øÞ8=wô«hTÆ›\×*§íßù-§Þß÷+0º’$-Y K2…ö{÷Wä5Iof8Eñ4_V¿àñ7]¦ Ȳ,ô×yP‚ˆç~÷­ßä½l¢ ÄD€rÊ"»ïæÃ7üŸ¡ôWà ÷öÊæ®î¡3E\Üj)e×E F„·uÛŠ¹¹nD7qû‘QEùzÖ‹rë»?üP½üWÑWâQšØ$ˆÀ (½¾¯j‰ëÝo·\ÕÕÕÕÖêêêêëøÖÙ¿ÃÚnVøÛ€²ó½ËÓEà/‰ yðŒðŸÃq_)Äé¾-o7äÛ‹üµ!#QQ‘ª¾v—û¿ÆøjÛ~&­÷;36®UE\ÙåÂÖ¼æ³|×fßø‘Ó¸DO*$VF  R "4Oò «n;»‘—NqÏ^çħ)¸¶'ÏÆ òœnÅÈq®B È0Œ!&K‹cH ”$¥,–LЉ± M”Œ†M Q"$˜bJR”˜É±ŒhŒI+@Ú67Ä(ŠçW*ås»¦ÚæÐLEÑ_7î8Ö¶n€› ¯ÎóŠ"ý×ÁDS[ôö ½‚›è¾O­ÐYìxó’Ô€…F6'ËÓ ëíà“(Dá@Å€‹ñoV+ùél²Vh†2±KF*FML’$ܨHQ¥ BFeÖéÈnù †C!È~L†C!Í{þþ—ßä¶^ßßè¯øýǸî8œ?3ªQõ"¤XB Þá%÷;ù»ÞçÔÙj$KØŽó±Ü·œ³ŠQAÇ¡{ï|ضšýÝmm}Çõ¾ß’¦±"d¤ZÈcJ²ÌÖ2¤2HV$’v߇}ÏoXáÚ³éýÈ hÈøèˆ¼_ÔxØ'»Ðæü¬}Öý®ÙÚŠ#åˆùj‰@)´Š q¹äSL‹Ãi‘4ª™m(®Ô{>6–ó÷õ«Ùí¹‚&ß(Û˜ë3wuÝÆÚîí·`W#w[š®ÚS)\DÒŠí(¼¦GrРwè§ ¾„„ˆö½â |Г¬@ÖqÞ¶.û²ËáÄQü!ÞÈ£§c ‘ÑÓpÜïÔäó¹Ü~w…Îçs¹Ýë;ë]ð›§ŸˆKüFB ÆHHÀ„+Ϡz ‚|†€@Ð^Óòá@z@sü¢§@×àÎ ðbÎ' Ô!¨óÕŽPC¢{|`l¼o5ü==ýèm›"ø»öûÞ&›jȪæd ÿÊ*œ‡iÄ[ñ›Zë ÄB„‡n]ݺî·5ËŠ.éÑ7.qq×s»¹Á1Û»]~ŽoÇÔå…‚MM sˆžßú|?«Šý=ûÏŠö&ÓQM’Ó‡àG€Á·ÎXôì[K¢„s%Gm!!$ ø*Ç‘îëÿ6÷™Ìæo;V3™Ìæs9œÎg3©Ûõ}?Kžß4ûˆ~ø‰pAzÏ ÿ틚ÆÛy/¾á²ísH sd8´“(¦¯=û¿Ö~ê XŒpi’Œ€IŠÈB‘$˜_çwÊd¯Xï2 "ÅdIjAÄ ƒþ¸ý‡öâó‡ÕÞ¹µ8 ¢D} ¼"Y?yC%ã¨.q|¸¡“yuø9p<ˆ¯2‚îʉj¡·õW:IJR2 ”†É>'®F£i(‰œåŽkpÑFåÌŒLÙM±B‚F"¢ŠØ…)IB"$«— H£ÁBƒbH({žÜ F’0Tb2cÃk•6A¨‚æì»»ru®G4îºG&ë‹»‹wwkŠîÝ A¹º% 4ÌfDlš,$”AЃH#)‡*æ&”3"d¥4¥(¢ŒˆH2ŠLÔQh,6Ú5ÍsUk]¶Š‘‹5£EKŒ(4…%)B…’oKäýócáhÖÑäU2hãdxûç|£Š »wØåÇCÒn{÷ýì7œ÷ƒâ¨x± è>½®¡¯¯½â9ØDHlQSÞÈýJÕ·¸o²_jÕý†µmä¶-FŠV+|hÕ S´X›E“FK2b%†÷øû[[[­¯ kk‹Ùímmmš½EØ|Ë °0€¼gäÛö=åÿàÚ¿|ÞrÊèÞ€D·Êáo§•^÷ÄÀ$^wqšÝ2¤ÖI3¢þ¯Ü}U¿Aý]§çEþºX¬QÒ’2IXÐb ›A‰¶ÝúùÎ8ê” Œb¡Bïç*̶ßýžsløöžëÊÚtH? éÈ¡ ‚„ŠÈ#FµŠÅ¶ÆŠÚI-£dKRj h*(±´‚+ÅEchÚ£Q­Å£Š(Bÿõ[~þ6×àmkø«LOØ §Æ£õôÖs„Ù´×ÐC³„ ®’‘(þ¡Q[篫ÿ¥ú ÈÆH6% RýÚs^Þ¿ŽçÔóÀtƒëª©üsªÜ見nTóúî < s¢<àø/ ñà† J8änÎK”äsYlfk5šÍf²9¬×mŸðý¯»Âaý®·zæ8óÞg¯†xç½½8œ\"‘ãNxo<ðàªÍ¥ÁXWˆ!$$# DI!Á ·94å”Dh1·1]mp›3›—DË‘Îr¸&s»¦'nuˉ]Æîîý¿cû'µ² ¡†*$SL2HÊ€@ÎÛ¬ËíŸüìz.ëÜÊdûÍO³²A^PÃÖ(öP‰ „ eENÙù-D|L¢¨nh) ¯ˆ«‚ù?ˆ.îv |EOa¡ÛT9 CöÑz1"I-4/c ;´(b61+5³WûU¯~´ mIìÅ}iö5–¼ÏÃæ9€ï ²EÖÄ!ê*#ýö}‘äµy çµùÐò ¨ù“íª“íþ#[o ƒüâÌUq®•Îrh’HH¡),·»Õ‡†Þ…° ßä> >m‹vÑh´Z,¥çE¢Ñh­öîSèáw¬¿ýn¿óçèþõÿë‰û=Õ0x‰$e`ACÃÆó·_¯ï6vh(ââBŒHÌÑf¤Ö‰™£D@Ñ™îSºè…{JÕó¬‰/ìm¶ÀP}=Ÿ×=ëΩPÕ`;8 ±Üåö ñt˜à¼þ?÷¼ë 0³!FŠŒF@¤$Œ2B#úöýçÚÐÜÁKy¤„¥ ×,hîW+•ŠîÕËNäš[»¹Mt«s“wvMDY¡HQ’I$¤¹§&‡åÜS£á‡¡9Ä5*Z]áÔ¥Oï’Tßtº5ß_Åy\ýqu ˆäñÜÒÔ:¼ _Å„$òD®àýïKÞ¿ø=·µ¿X¶Õ^±¬h†"ÆjŒ$m"£H¾ãÝýgÖ}gÓb³ŒÆOÌ^wüNc‘Þ:¬§UÓç1Û÷©…;ˆ ‘a‚Ÿ@ëw¼g²þ6ÌßIkÅ (b‘ˆIk$NØPÂf~-ž3Óè¿é?‡$ {ªa½v«À0HÈH¬‰´RR/oç‹™}Ì¥‹ÎGû ¨šA<è$$Yõ5*¢÷÷Omñz]›ÌÕ|úÌ®ûÃk:ÁíÔÍ:áU=>SÛËúy}³€³@0BŠ5)’šøåŽv;:.qHò[ñ¤‘yuÿr8?OàÊüã5÷Rð¨Ÿ7Òf3Ž'hÌf3ŒÇÌnyŠü§l#£„S€MR%ï ²§ ñŠØÝtèùYT ¾ú‹P.Õ"R$Œ‘…¨/<£ÙîÙŸ "÷ÜʉšÙ3 ¹µMŒG6â€óò oè(øâ<¸Ÿg=Êð‰sîs¼pJg"Äç•Έ ]_ŠŽx:EÓŒŠ„AÈ,ƒ$Ñ¢ôMžÏÞbñ=Fw…æ»ßÝ‚ât*†Â!"@$_¡A¹Íáñü· ¯ÈXGŠ$ˆÈ&a ¡¶4k=ºÛœç\µÇh¹ˆ Ó¶©»òÿ+æím^¿æjT;ͯ_ÖeušýOïEÍ9Áò“mÿr?ïcÿ=˾{“º·µö[+#QX©mhÆI±°XÁ#F¢ÆöšÛ[ðp/sÜþÞà/sÜ÷=ÀUݿɼPðªêØÕ«¨iVÆ®¬¼ÇâÉñô¿OÎòÕþþúšéàü¢’$VH 4À¨cÇò—9g»xÞÞZó®÷:®øM(iŠ*ˆº}?œ¼Šp0OÅ­èTî;›s[–UÂÛ—bÑrLnŠ×"¦Î.pÜâçcJv)×g;i u<ý窸*mp†ø‚&¯¥ö®õ¾¾Ï£Âth&C<‹æ¢þ4>Ö¤áz!ñŠ÷†@ê½Æ<âwWIyMâØÑÖÞÒ‘DM‘F‹|CFÒÑQƒMiöÕz~×_em«~lXÈ­*0‹iô=(hz2C©G•Ò‘›Æ×Kp¶)çKi•—xœ?z‡(@ÚPT}ÿCIú·?ËáÛÿ›É¸Ã%<™ÉCˆžø‡eÔÁ"†~BR„0è 5âŒÁÌ#vÈ^,¯ä!`HÂ0’Htû "–FÓp™ìfÿžÛsÙí¯=žÏg³ßcs¼ï3žŒÁ¥÷÷Zbæ³ )50HȰ¡=`UA®ëôÔz‰ç̼Ī™¢¤Pöß3|ßòò|¯ºõ5¯¢£pÐ'(ÝDJÒ4h Ð$d’–ÎÛAK^rì€$Õ¹6Üb6>$¹AÝjòU7ú|@=ü‚2:a@ÓAa! }qCö÷ê64"  3ýø¼Š{^À'ý¦ÿ`·_½cÁQæ‡ù x ™¯ÕŠi™O8G47 Þr¢ZÖú‚èÅݒˈPÙ†™,–K»d²Y,–KwÉd¸—yƒÃu]ևſ®ÜúŠʉªÔ‚![3‹5ÕdO¶–„ÉÍߣã­ÄŠab¤” Ñ@£H×ê%PØf ¯ GÏS²k(ŽºÁœ›lýŸUÀuèš.¿þ`w¿Ÿ¾Þ:•[oóÙUiØ ·8ú"–ˆD¯ŸAñ²*•t“37™õÎÚ,Ù¥Çúoˆöðü_jº#fQÛr˜Læà[Ýun–D#;±hehîsév«üå"¬×Ý[^2 =©ùfû:è¯ì¡¶ ¡’BçÆ¢Š5ÎV×éñ«8Ü^NRÁoõvª“ 3þ02B J¨Ûcj-¢VeEE·Ò¶ÜÒl”jY"bR)JUÎBEŽîÖ-Îkœ«p·+±Z±«&Üæ‚wNꈵÍÈ×nq@ 0£$Tnnh¬m‹[bJ‚¬bŵÍoÿׯè¾€ § ж}†›ß¨× åé½j16†HؘÝÜ4W6Ç3®›—-¹'tkœ›w]¸f.U]]œ.në¹ÜèfiË·)ÎspîŠú:]¾ÁÝÿz®ÁçkDðxZÜ|ö'ò‡5uuuuÅÝ]]`®¾¶êêë=zéçøç7 >ÓcìÚs6ŽÏ‚ì¤PÀÒÐNñwØ  dþøv ÿ±øñE™ H$d¡Š)VcF´+_»øÏO™ÎƒSªÏQñcóóô.…DÄB£‚)¸ÉøD²ÎxýOÏ[e0òÄ6ù=*ËÆ"DZ+ÂÛW»ï•y¾î÷Þû×öê-DLÅŠ V)³Š”’Š „24ˆÐŒÌ(0T‰‚I›‚«^­T[šëÑ}„&%1õtÙ… îÝÉŠô68Œ L Œã€ 2oÛm·óKF‘Q¶ŠÝ¹?à\ã0,s¢ý_âF·f,é”–‰º%<Ο5"«‚Ö‚ÔZ5QFÄ4Md¢6´kbª*Óã«ú¿ïwÕüý®;‹p•uiùº°*u;Ú(-2Ñòço:é¼å9œõ ñuŠd¬PX‘¢"’ ¯‚<}%%$]%%%$Û·4”•_BŸ¡_J^ÏèÓËšsÓéóÑØ‚ Ü÷=À^À@œxH‡5J4$IRªxÛôú1ÔÞa³ÍLÞ}Î*­lõíQ5’*HSÊ Çöù©stø6º ©Îª@èÓ¶`~ÉKùŸ¶êmð€7ÂM-EMŒ›!‰W¬¡ =<}+å#êÐþâºÖÈ@F£§áhq~_­ù|íúÁe|§Ö~z¶¯úÍQ¶¨ÚXCŒh0UµÆþ¶Õýý«úšÛñ$drR†å\U6+,MQsÂÓ¡;Ï^N®lVøføßõþ¯[ †ß„”¤¢ÒHJR‰H„NíBNâšåÌ‘R€~PQ4T/,ø4T»Àá¹ü†CÙÉÙy(¹²BDd„„‚È‘òU Xy°D®ù£ô©œÎn63œfsœÆç7Lç%ˆÇ ‚ˆ/ãW ·¾u"SL£’t‡[œÏå{b·:LÝZdOTGÈO àU¯º«½î[Ø]$5ñlK]×w]™ZîÛ"“bb´QÑ¢‚ƘØ`êR$Ïež@ØéžIÊ6YP« ÌÈL[ÛØ3õŸ]Tñ?$H’ã%<+þI|»Óåù±>‹SêX?>¢…Ä{!@=$À s¿¦¹íç(y€8ŠY^—X&µƒ$LF T[>;®m†wvs†+¡Ý¹ËtõҮî.ÁnTTÇ1º&C»»¸nÜkºéŒÿSâ-œ]Ÿ€/¢K¥Ð¦±ܧ\€|ú‰QJe(¤B …U=ÛAw“V¡ÀW¹í 4ë…Tâ‰$!! Y`Q¥··‘Ä|•½Kzz§[ ODUÿoÏ}ƒå¯oÌ~ÍþÄ^¯ñù¶äºãHQww:Ajm˜µB߉[~"€@²1ðâ°©L±>‰ÇÎÎ7;ÆBûsssss¸\ÜÜÜóûgWÏfúŒ†÷tîÄ1¥ÀDWe¾OWq½Ý¿çŸõ}v~cGb¿ÒÒä¦m3Mk%±mEª-mE­¢µhªµV(Õ­¶5Š(€EDTj‚N”]W$+) Iõ•B05Ê#^"ÉïÕ¢Àз(‚Ž ~ÁEw´Kl! J’Á°N%G9ÏómÅR¶²t·fÀ)Ž7(ªHŠ2Z±µ¬[oœjáVÅ“ ¡ ÌÚ ÅhÂhÙ•µ]Ý ÔîÄm©(¹Ýu‘$îèl%‹Eªæ×4krÕs[ÏŒ€!H÷Ž©—;) úÒ™1Dl„}kUÜëëüÓˆ‡—0ÈÊ&Pÿ(^bŠÝ–&©NÖ*è *1Ai AÚ66_Ͻç‘2nX†}=è"@^Êô[AaX¡2ןú_wjëí¯ûªØ«‹[ ­cVŒE d FÉŒ[m¤Õ½ÛmÊ×*Îì] A4V‹Q«›h¤Q)1²+TC´×T{3"Œ ò‚í0U¶ý*3ÏŸÍDÑ€å[ªDÔQî!òû7 ƒÖø;¯ÚA^è ]Žî72æ$ëæø/;‘3R¦à µõÊêxÎ `½+Q`£KÅ_Üë\µËXäƒØÕ¸Ò R„¥,xñõ'§ÞSz‡"ViÐ*ƒ«§Mù" WÓ¢ª´=p @þí0€‚ÊϾ[õ*Ãûý\Ñ×»ªO‹è_ãëæUÅwyѽ9OÍóÆB„!B„!B„!B„!0ðD!B„!B„!B„!B€=†B„!B„!B„!B„!01B„!zW}è»TÖ¶©fímmmUÚÚÿüÅd™Md/抌Еÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿˆaðú)óVŒÀc3fË@¡³%¦[1@ÐXÈl ËBld(Za6¶–¬1°S#lµ€––M‰˜fË6BÕ-k6À ˜ØÐ–µ ¬5¬e`­M›LÕX2&­ Ók6bÏwaÈ ¥@>€(@€ $ Q%(¥$’!JP(H’RI ¨°4(ªŠ€@hЀ  PPP H( (  @  $(©(*ŠJ€(@ P  JリÊÀ6Ô4ÀH5 Z°Ù4@´Á6M–°¨‰™a`Z" LÈÙ–À‚jÖÆÆ­b[E°‘¬À M@-[kT!l,` ¬¶¬Ë+KF«+lmc4˜Š&Ô°Ö"ÍS ­`F°[4LÛBm‘Qµ´$4ÓjÓ ±‚jØÙŠeaeŒ6Ù³jŒ)¦ -Y‰±ˆ Li‘ ¥ceXÆŠBÄ„&ËŒš¬l1 1†l6•¨Ù…£F¶5Œ ¶ÃXªM©²øàG5vY# "¶‘´¬ •CM†–…i-€È D"¨f±«A(D­`bͬ[6ÀZ°2hmh-Û0fÚZ˜6`l‹ZÁØcKYT–Ú†@B²°›($h¨uTÿÀ “MhhÈÈh&M4Ñ ÀL0MÁ ªŸø24#@2&di’`&™4¦ÂmÓ&šiFL òjhõ=#&zM”yA É£hÔ „SôhBžDÈ úši Ñ4bQ L24È4 =@Ð4ѠѣÒdF†§¨õ4Ѧ‘ ž©RDÄb4SÙ4 2šzLôCIä ÓÔÐié4&i5(fÉ¡<Œ¦I™©©¦SÔÓFCL  CÒ4ÈÐÈÈhÑ hhiê ©R‚†4ÐÐ'£ A6Pô˜É‰ˆC4L¦Ôö‡¥O&’¨ÔÏÍ„ɦU?R~§¡”ÓLÔô£iªi£ÑF˜Ÿªdf(õŒÒ2iåÔf£!‰ú“ýT J”HIè`h€4hha4 &§€ èb¦F†šj›4z4Œ “@zde45<ÐOÔÑ4bžL¦Äz§§©¤Úžz©ûÛ[_ÂBÔ Uû¨×ßð›Çÿ¿x¯äÌkù/ŽýÛy(Ç›®yÎy^W—ì¼Îýw‹Ê¼,îæ/±ñÛÃø/­yo.îíþ?‹ÇŒžŸË&,Ê|ßk¦×Ÿ½?¹z÷ ×…W/¿äâ<r÷Î'ý}ûšä¹˜›!õõrd‰rnÎî¦SºåÝNºM±š&–5£3fNpîÜ1QPn\ª-ŒRQ®\ØÞKtÚ‡ŽÖuî9›¥ÂkqÃŽ oT ûæ©ü–Ôµ/®¶ÍwZÕõ*ˆ±´h°’@£$&ÄÌ#I %´ ØÑ&V(b-5:·ùjݪzèOê‡ôÏèíÝÉUsÖûåU”j™”hÅ´ZKm_r®m®rhÚ1Tmlk_©]©É¤¹3“8ÜgŸ•KaɯörÒrë‘ËæGÓ¯%¥2[‰} £êlÙ¶É?Kcd¿Ž‹—÷ò¿O4ޝûí#c66Cbþ.ÈþD«•_ž/öÈýúGç¤þ-NGðOãe2qw‰÷u-c ­GìW:-¶+özköÃ#™?N—áÉÿpC’óñ.h<èqq–ÿ*JåÐMúe_ÅSù2qÈOåmSˆý"WádÊ_~/Ô‡)ü¤=R\OåBòR~•N@E~.N)ý| ¶ý ¿’^-³êU%ë16†Æ ¶2h¢&$¥“›"’A¢5&³æ{îç5®ïOƹFðµÌi9¹QDa…˜šåÐñÝáµÎŽêâ%‚Áµ"»·+ÃxñÛ‡1¹ÛÇŽsž;s„G‡Ž×†»ÇoÓŽ¹¹62ÌÞ:ìhñãÇ‹®ÝFñÝ#Çsž;¯:N’ñ*åx[•໼+ÄŠñã²ñãÅàÀnlnî…ÝɬNvÉ-]Ýv*4ÑÕQ³a“Çæ|K»xºžO†éãÅxtOGm~ž*Cmñí\jùcFldÆñ]?ùÚAߥ>r|—p*;ÝM¬2œm·óÔþ„¿¢¿¥?r¢ÿˆ?núkShÚ\m¶ÛW#‘åUíiúïkíDQþ+ö±ýî7ÓUÜ¢OÔ’Wó¾±ü¬[gm•6FÉIq£[&È«…åªÞ¨ZÅ,jHb’U°ØÖ/ÌU½f‘FÌfõj58lèê!úЧô_$˜¶–À=Z½6‰ÆlÝKýªAý žë[aúzã8–Ó‰6(=ä=°½ì==Ú1ÕR}§?@Ú¬Ö6ÑT2“i”aa#LÉ"Ð’Q¡"Š&"-hÕëκuºTb£fl–X£Yb)ÍnUÅc]Òä»¶áÆÜeÝÌEËŒh¨…¢6(Ê 1ú;m}%oè­ž^ûâ®›ïIÓû’zN’—jWž©ÿ,?@¾­ýº${%=„ž¾/Z—§©áï¢ñµ´ZºÌŒ!õoWPNwlÙ¶ÍAP´E%# ÌÙ›l¶lÓ÷Oýµ­» yº¢^x#Ä»Xr¦}ßý´¯ì¹i~¤KV-’A£V-TU±–ÊeæƒÌ£Ì'{¯)?|9ÿ6ëm¾Žúuéyz¢+•F×wnrîíÕtwQʤàHÒîܵÐF,i ¢6¤d± *4m\Õεt%ðöÖ¯€ÑXÔdHÍŒl• %hV‡è¹ÝÆÕÍ4jº‹á¸ÎOÜJSûå ú•x<Ù¿ŸœqÆõ4%yž›r±Îák¹ÎåG.ÝÓºs1« îäî¹9‘æáWKŒ[¦IÍ€JP0ÑHîk)E*Kñ¶ªßÞZßÄÌ—è®6íj#ÊùÔúCíµ›‘à…]B§ˆÛm…ßJt›(ìj*ŽÆGJ'cM–ÖKž¯¿ý ~ÆãM¶´hŠŠdÄb®ZÕÍUÌÂFÑlV6ÛFÚÜçÄÔõ•6®~åæÉ+g#ÖìW—uêzé;^½…OasØ×£»)_k2¢)F¨I¿ ZBbÙ¸}rq¹Ô ò"öú2KäÃïTý~ŸÓmmW¢[¾»»qŽî´lWg;FÄk®¶ÜÙE¶º·|][ÜCµ¥îv¼*ö׬SÖ¬¯V>Ý îªî®àÂSÐÐyÙ<žmŠîbæÆmìsÞm¶Úöž†ÁPeŠÜ®-²Ö×[m–çW:\ìÏqöAGƒª{¶Âú\ppÙô[“k« ^ #ñªî]Î1þ”’¹Ÿ…¶cVŰѨ´ 5’”M’KX Û*4É%Š@á·JÜlc]h¯›µ|ÞÕâËÅרzeÖ:¾ë?zïÇòtLÍ«if¶þvÑFÅEF¤”iS»“0a4¢£»±¹wuÌ»Š5sJ&DÁbG-« µËˆ’Œjƒ[cmF¹¯ ¼6æëÇ‹¼ñíWê-òÜήm¹eò=É#¯àkIß)´ê>¢kÀþÕ禾i¶ºW+s\Û]NîØÎîF”»§rŽîjç6wF¹G#š¹F0A”#·tÑ%År¹W.h;wuÊç2¢ØÜ¹+•FBE»§w5rîìç2¤T‹»¸•̈¸[›n¬h©Vm¬ð¥¢† £Pé‡ñJNÉŒ\¹]….Â/k+Ù ód•ÔË÷[6öðC§H.‚.ûåååÃËÕåõìïÎm½5½’e˜# š”²I±d†‚ Ø2b°ÌH&Te QfUŒPQT…EŠi1(2b¦EŠ#FŒ€RbP‚”Š,¥Ù )£FM€I¥"I&’Â, Ä†#W5Ô¡m›6mM&þÁPí`íö¥ÛÔÙÁóÿ.By¿ê<Ù]ºvûy§Å‰…CÀx ¾Ÿ¯U‚n¢«ß‹¸C·Úmf“fmm·¶»Š] ï-íZÜÄØÚ$‘$EwX5ÅlwbµÛP%ƒF6Ýl«g„•òçüˆE̽ _RSÞ)òö­¢ùšÉÅóÝP:yÓ§Néç`ì.—žò6±z£»¹\ÜÑ1mΗ9—\£ºpåÈîwvwn®@F ÝÝr뛩¹réÝrÉ&î¸uÝÛaÎ2¨l[œwu·4rç8wpäÉJfF»DR"lÖÜàè%u3î?š \éW:VÍf« o¼9­ÊºÛš[ï|yíZ«êO_k6Û6M”Ú¹Ôç\ëøàWi ½u[Âí~¾óW8Ö¹«ÑE@b®t§v×e×våݹ£»µÍ»ºÆÃËw4Ô`å¹Í‹Í£,‚+ÜbÔŠKš(䛨‹—"Œ”îw5£S5²hj,j®¢€•µ[â­_ÛoU:k6h·hG‚Uu¤í"ÿ¦(ýÚ—[m´>`”®ÅWv'êÕzŒ·ÕŸÒh¾©Ýw´’ûÒŽ²Ú‡k#çªôEµ7„¾²c£ˆÿ—¹o÷Ê;*žžIö·W…›/FN2áĹ5­?õR¥Î µ[|ã®îî[æåÁ¨®wW6á)#[Ír6š¹­Õ!®ÿ¯Çmj¥ˆÕF£÷ŠÛš¹FÑ(“IÍå­¹[•E\®¸éù-mÉ›“YÞ!í*ï3]áãUû²ûÕ/ü">ü/äT~D.µÑ‰öµ[- «´NBHþðžŽ:]}¼3š6ã*(ÜÛš s.î®î»®h§uÊç.»º“š,î®î£Dn•ÛŽäæÖ7w ÖW64ºd%Š5¹bå»­»¸Û-¶ãŽ&Ú[ÎÑç8rü[È”ûU;ÉîЕ×þû»PÛëä6²6ušhÙ²q¹8q—™JÝAÝèÛEÝ«»»¿Òÿ¹suwÌ›SkmScQÀ#ÚøÚ•-¶¶ßà$¾žÆÞ¥,m [ Ø"“تñðõ°y iÕ'Ì{~I%:šO$Myzu;ôêQÏÝI:’u>f¼Bï™M“iÆÆ¡‹ ƈ×-s± +ˆŠ°“La Ò˜Æ,Í&±Z+b¨¡{WNj3»›n¤Šæås':º‡tE\îëvNí%«±Y0]ÚæÑPTU£RŠ6í‹'ÈÚÖ¾`š{{{=Œ=Œ¯\Nè]Üm<=£qò„“ª¥ÔCõRòýI"s6ÑRR2 ØiŠ¡&"(*XÅE­ bD¾ûUkäÛ_˜¶®t`ÖÃŽ2>¶â®m ;©?:Õṳ́G“®xòN’yû»Ñ¶ªîÎÛÚ ÷ï)½”dÖ*Ê7±lšA˘#hŠçw\Z…£bÌ[*ˆÒ¤ØdÆÔR$ÙA%wIôö×åjúmo¿´Î{ÙÐù·þ©ÐP¯­NÓ%¶ÌFØŒD‹YFѤù=ÕÛbë톈Þ –ºçÇûê¶Öõ•z3Iæ’îÛ–.¹mÈåwvæÙle¶dßr£»;½mŸ¢•Êÿ%$wâºY:Ñ]à_$;ÛYµ±ÞÒâÚ¬Ü_פ:z®ž.žW‡“§'H§HŽ’"ž6§H.’¯PNÖ'Y-—ôNßF]¿~[[W²ÖÛŠSj*°hŠ#H2lZ‘0h™ˆ+Üwb±hm‰¹´fÔ 2k65r‰ª/W—,Ž…=™ç𩙦ôkÑú7¯ýÿCëÐí$Ù³lNÚ®;N8þ¨ðÖKìÂì b¨võ_m]ÁÜuÈRø_df«ß©öôˆçâûüdx/ÂÊ«e+ƨ¶ÅA‰Hj bÌÓ4m#BH›QJ±((ƒÙ÷væ4 “ºåÝÒ\D»ªåÚÅ3».re­ÖߪվE>O¶T/]JñöÂðEÁËr::¢}$+Ö}!¯¥úç‰t NP”;ÝVz¸ÛëkuˆêŽžSQ, ÖÓÀh©0ß¾ÁøV¶Çm.Ùqæ•KþqÚ•¥®¿…Ú‡m¶_ËUko;m’ØÄoQÇwc—,»WI$«Š±mv6•j}“¿*í]«´ý‰ýô'ø!W÷e +ÊòÃÛ¶¶¥·™àqŽ3UÄœGqæRUÏIÏCžNyy¼¶PÝ ó³ÎõßûZ¡ãõ ƒm²Í`£Z-Q‰F¢ŠÆQˆÌþ=Ûrºè–-Ë®œ¶sh¢&£FE¤\Û—”mœlÙçïKƒ3™Õ*÷Ñ{à{ä?uC¸ª®ÞŽâœN3oð”ˆ^¦O|Nÿï¨ñ´{é{à÷Ñ{â{å=Ø|É_3jß¶T.U±FÖÆ¢©),`2‚Œm%¨¬cQ&Ñ´[$€RJ0ÈŒFÆ-±¢¢Ú"#z˱aÝX±snj×9«»¹s»‚„D!ÝÉ×NìÎnk‡9™¹wwI79EcF-;¹£dûšèȹnl¢Á¹ÇuÛ®Nírçs±®éØÖææ˜Û%¨wh×#F6l (æâ1Y__tµÕ†+ã6åÚŸív ÆQž û³Ç¥j+ñ®Â›M¥Nä'ÞuÝÀ­ªÛQ´XÚ,llBHÅcE´Q´mcQó[mWâøÜc“q©\j¹..á}F¹°AûõF?‰Øí6JðÝÕS´T<æmŒÚÆÆ¾%«|Fö‚1lh¤&D”d´YŒÕò5Wú-¾U_#¹ŠÜÓVäîù-Í\–Öÿv½Œ{{ö5Öº×Zï¥rå黈'†ÂlÃáä97'üP—1SkXÓQ±‘hÙDZ›^ª²îÝAÜÝ3 Òß{ª¾–ûÕmwÓªW¬O£iQ»pyI]ÀÛ‰ùÛ[~ä» Ok­­'›+œˆì™¶Ú'®ØO«›x-Um±F°„LѦBRšfKi/U®Tm‚*ƒmÎj»´‘XÛ“»Nënîèîâ)wl›rît6î.¹tÓ(Úa®n.çDZŠF-Âf‘cRK4ç@ÔdG ,ÖØë*=~ÀñiòùH6"ØÙ†Â_CQªu2¹éô"zñsçKî%l"Ñ`± ÊÆÛïG©çq«‹é•Ó¥}¾R³moo‘‹Í=Á^Ò/MUù´]˜=¨zN¹OmKÝø/È l—¸mSÕv’½Ì=çê"Ÿ«¬¤}ävø\g÷‰+™ðÒ)öÿ)'ÑØ›> ]Á|z?Vûý-EßQñ‰ó¼<ÖÂÚÖËn÷)§ òŠ¥Ø"îÇwq)\²@‰Án=.­–ÙßÂô½îjœ]E/ xZµ¿«PžÔuÂöI÷sî·å¿CzïgéW(ç6Å$¹ÊËÂ-D]4Û–(ªÃsàß]o®X–]OªäG…m¬›5µ6Õ±á7pöI_Àô!ö<-&^ï/ÝQ?¬â”ùÕ®ªï;½“¼ŽMɳøÕ[kÑÖÕz´îê,gwX‹w9ĹdЛ–Ò× l)*b¨mÍËšKiÆãO®Uîæ6¶ÎðÿLRŸ…ÀKŸz/(óry_q+Ë<ô¡ìŠÖfÄÖ®V×mXœ]–ZéCï£ÜG¤ºUI³Ÿ‡j«×*è;"vÓ˪UëãæásX¡ÎX®hݺç9k—6víÎçs³¸ÄÝTCj0+–¸ª5Êã±ÊºçÎs(K‘ÌEÌ]ÜÃ8ÖÜpq¥mf›ÖÅêÊõbóÎAýÍLÙ*j^À½Õø¯¨b]bÓçfÁ©xtp«ÖíoÁ‘…ªÒ¨#ˆ 4EBdc"/â[o¹ýN¥ùª_©Û >r^µ´­|ì[^ãjq–œ›]ÞåþiçÀsûÑÝ?Í)N÷Ay<s„Ú­³fɱÑh–5&ëW{W™£ª§S=Rï‡Íš—€­‡µ³g€¹FB»W¯›Jâ—BzÏ®\Í´A%QE¬Z5 Q‚À„&ŒY¨±TQlA‚dQ­Ê(†Ð†¤lŠ£KYmg‚“Úeµ­‰¼g”€é‘vÊžò“²¡ÙÕe³°¥ÒTõBòVÅ~z%àëjšÖkF±¼î¶t)%Ù¨óÁåSñAÓìNÊN»i]ÜzŸŽŽ½/»SÙÅø¤öˆíÅ×%܇^§Ÿ'窧Gƒl7ƒ}{VlÚÛ‰õ¶òê¡t2tÐÏåFÔizé[ £V¹TY:íß&ö÷QÙ xÖÔ}6¶Àúu{IÿÐ%{ù=ýþþ§x”_çµµ”ll,›E¡Ú6íJ¿7Þ”—áiŠØ‚ØÅ‘f!­J-$”E4–ÚùT|£ÿrR½ˆ_vº¬4¶OWS‹ÌfþE^:žJ$¼‘ãÏñîÕî;l¨_p~·ÞÚ­o©ÚÛ}p–õ}®e6„Œ„F‹Fm k,Væ»Zå„“—+»¶˜¢6 ÅÊEIcPÃE•¶¯ˆÒÚ|Fܳ‡k‹“N-yØUz®´®Î–«[y$צ«¦¢ŒhˆÒš`F–C1FZ+rºj5ȹ'Nî%´››\¶Œœæœë³«ºîéλˆår1cœlRWéÍS»“®wuÍÈÕÝÕÍÍ£pcYw]»—NmÙηwsn];ºTj囜ṷJ¹É€×K޼ƒó°ÔlÖ츗p`Û•É«Âäoùˆ?褮ËT5Ê“òÁ‹¼^$l&ÙïÝç¦;=VÙc~y­%š*‰AmråÛS¿Šñ.„RÞ;µq½;jÛ_QW«mZõñX•‘ųfeÑ(òÅtR¼º:%^b]ž˜õ¼ÛEê=ØûÔN$¯i[ ÚogZvJ~¼QáÒ÷2½{pöò½´žÚWœ£²‚»%]ŸNqŽ2Üern#ŽOÑ­U¯`"H#EFKÝ÷fbaQµ£lË2c$š $VDÚ„¢¢‹F–ËL¢hÄX54ÔbCRc¨-0’Ñ‹H)C  FM¢ 5,X±Q4d´lXL´(AF,c"Š$1ó·K».îm®sg"ØŠFѨ[E4l²â»Jмö”ÚÐÑÚècµÿ!Î9êtbNÉ[Z­¢qy‚[Uïµ²½&LPh±DQcH#fdÖB,ш¤–ŠH‘°h”Vˆ“DȾ’«îmkÔ;̼iIéËÓ+ÒúKÖzÏÇy\Ølnëqª›n7¸ìxá>¬¢^øƒîÔ®ÎîÒ=ÅWi:;ùæs7ÿ*¥ù>+dùe}Ø_2OH«Ãª9³ÀfÔ³n7NmLj…¡£E6ÛšÛ66|zO˜Ø=ùŽ«æ¶UØÄí”vØmkµ/Ç»)Uæªnñ¥±µ¶#v1Øßû(—šQæâöt<Ý=˜Û{ŸC“]ÿëѲ‡’GÝ[ ª¶´¿sU÷»›AHÇŠ|œ¶ÚÚóUµøgø=¯Êú‹êeÍÔ'|ÆÒÍ–ØÔˆ•¦Û~¾Õ_5oŽ%ð*¸Wmµ· Ü«ÛÉíÅíèéQíév©v£µ§Ü•ßÉ;óº_ß©JõÚIÚTé"é5Ê™Úh/:§šðª «ð¨á•±3femsêzr'žw$O?²_Lq›Ú^°¤¹OZ½k¾ˆçj«lz>žû0‹ËQßIôp¶Öbw;mS„î\r~¥-­½mbÛcDSQ1F+(Ѱh*#IlDJQ@Œ bÆ4j1QY–6&¢*ô\Â]ÕÄ7+›¥7 Ënnh’®lÉ‘ÝÎêà†FwtHšd®mÜÕÂŽswv2RJJH¤ ÇwQswvÛ›»¹\éÍ$QÍÈ’´ØÚD›FÉi®sr.¹»ÍvÜ”ˆÆ|}þÁß—~ïÿÊ•%^FÚý»ÚjÚZLb›"«õw.Z v§‘ôÜcþÕ"ñåãÃǧáxM¤0­$‚Ñ´¦š‹2ÚɲͳRñþ1ãhùýAõôëêk3w”‘àâGñ¯¨-™YF"ój¶rÑ)zn H¶5 cjP„%¶š00lOZõ/jžùeTø Eñ)v8ãdÚ¸ãŽ3ͽ÷%v£˜—¯+ׇ¯“Ï*óÅÞéáR?ÓÆÞ6vûêv7bñÒQäoGä¼[•<>£`l[e´lÛ DEŠSDJe†&”,Z6(6¤ÛŠínîºæ·5uÝ-"¹&Ç;Šãºœ¸¢æºîì²TguÒ؈ÚãÊ×#9͹k»·væáÍÈÝØˆÜÐîm¹dÊ®î¡F5ÝÌs¦ÜV%[ˆÆ¼Ó÷È» Øeh·bãk7\B…]®›¯R_ˆ+g·“‹¹Jëmª|Ò{R¹ò=­1mKæíèù”}ü_žéOñ”¯5'»Ú§Í©îƒ®Ì»7Ýû‘AÝ%ïîó²G;˜¿9ÄçÐ^‡Kh­•´ÚÚÖAÈD£l[±¶‹Hl‘‘¢ØL±l5dÛ3B¬3+èîºîÜ-]Ži‘9Ѧ »Nk±#Ƶ¯»«";vÎ1š›qÅ-°áÜu’ÿ ŽÝWX½Û·ôJ¥à`<XôIé.…Ðm}^­ïšQ¯zÐÖ+uоz/pòü•µ¶¿jõ3Úw\Å®l[£µºíݵuÜíÕ¨« ¸–ÙšÌÜÚ,:TégJý©NÖíq¶»d+úð©á¨Wkµ°fkj»Q±ÆãqµË®àQÊHº>D¤¹˜¶Ó`Û5ª›6Ó¿?f©:’ñ#¼~F¾½Çú)@®ìi«¼•ÆÐ5|F…W&¼;ÇãÕµ«Õõ­­¬þòQë•~ÁÛèÚ¶ßå¹»¾a{ƶÚ1hŒH†ÅÌPBLÑ(˜ÔPhÓM’†c1h“±¬’TlQ‚Ä™,(ÌPŠ0a–MXÕ¶Æ«mhJ5I@£C*dSÇg\µ»»œÔh·0µ»ڮ±Ë‚&XÂF9Ã%.„¢( ·ŒÆÓ½¥ ^ÎW‘«Ã•äSÙä‹Ê%Ïu)yÏ`;ëáëÉð½xz;UÓ÷ù2¯!ªÙ‘ò‹•õꃷK·‹âæÒñ¯—?sösŽÞ£·k ÆÑì³^%9€\ö–Ë3ccfi"Ú6¶¦ikj52f`Éd(Æ ÓHcÉ ”U»¡d¢'\²bníÑTˆÕ~&ÕñµZû½}Ú5`¾u\š·o?êÕZ«üÍ*~A÷Í”7C?žR»ê£ÎæK¹;–Ûò’ƒÂžŽþ–ÉÅG–mAÇq©.¦—R®¡z7ªzßïÖѲkæíÉÝrÊèÜuÚ2Zî¹%T D($ù•}Q°ØÉv˜ÇU æ•Rô/uu^§ÎC9Ù¯:‰OªJœë£Ãi¦ÑµßN’’¼Ý Ê9p96M‹ØIÝ·N\›”w\®è®W,\ÜçkBÐKÅL2ÙÝÜ»»œ}í«÷^Áµjó;?½_À\é6ÖÛ%¶¶ßO‡8mš­«ƒéøÊ„{D.Ó5 ž»cb¼”_Ìö¿«æóèî_Þé×ç5ËýžNOÇåròòâoíÍ‚‚°˜Â4aó}™B?²y P¦>@JA”m4°6²  ™2“‘©ØbÂýpTtJÖª¥ÞCÏáæ¹—xëÇ…Àƒy8æ½4‡ùô‰œH Hì Èé-düÄSûF…no±ÙZÃôž?³öÿÏþSú=ÇÓòÜ÷ñj]¾ÁìŠò _[XA»!q—¶®…HèpÇ{ðœqųÎ;ÅlA@N(º*‡#þxÌ~ÃE€°™„4D _‰$ Y`™¢£!x¡€@Bh ¿®ˆÈì(9C±Â~²LŸ¨þ?Ãåý'×ýtWaŸ¡²Ë¾ò¼­ ŒvÏR0Z†¼Õ O`$-ë¶^éæ]#ÇNåó¾8׋®Ýô>oKÊó^kžNÉ“xz]Þ8×vëž¿¯›»È Ì2dÂ©Ì e;  ,(²%ŒdfÝÒ-b™²™"$ÿÞ Ÿ>Ë,"³¬X¬³ô@XEg×"¾ŒFV™•È€TEfèˆbõ= c¸#ò8vh»§q®GsÖñy¼y¼ÞO7ƒPLj ÅÑ5R2É•ÃþÈ‘…üéYa–õíw«~Cð¿Ë,²Â° ÀXVY¾KE£Û~.Û|j¯ÑW¥í}Ÿ§ã×½Œáª,PÛQêg„ @Ý3° ¶BLa‘Í,8C‹º!“¸ƒÀAbë ]QIÈ‹ fò(+ 3ƒ"Y#t%öô!@¤Õ£F„Œeú6ƒ32^! ‰MØh(w¹‘Ìœ#¡£Á™ÁA ˜ jowS¬Ñ˜::¨H ‡f3ØŒ¬"ÖŽ˜Ïò?«û\¾IÒ¡’¡¨Ì謩j+Íbñx’9Ät$fˆÎD§d Cª±“»2¹°‚r‚’3¡@‚ŨììÌ×X1°' 1A¬G6b0n̈náÜBu0Íÿá÷tüiOa$_ ®6Ð! f !y¼ÎYðXAÌ¢Ê2EQ,0¤±2HBS#&e33PN 膩±•d  f)Dà ˜ÀiX7±5VxŒ§W²KY”õJobk"¨¢ ‚²£(CE±‰”žG8BDŒ”A¢ÝÒŒ¤ÐCää¤çß%ªÿÙ!Ê^Ÿ?÷{?Ut"U CÇ<íg`Hæ™!³"í™È¢Q`(JbÀÀžµ”áØÄŽÅ‘c°¡ƒ¡(„¤¨¨lh‡Ab9¢™¸G7r5 d¨P ¢ lw<ÍP±°VÝ?J\@ ßdªŠu$4Œ PÌ͘ŒËó kiº” jÀÉÈÔ#*%nl@-0ŽªQC e"‘’¥ˆ3„ð‚'•N’Ó7’I¿ÜyþsÞVY¬²Ë,ý)XD„T)im–¢åfHx­©É”®Ss&Rct8´ÍÍÙÍÍ Õp4,ØÈ@¡D"x«šªƒ†¶U°Å¢!n‡%¬Ê¨&¢köªw² à“¥+#(aT8 º¹ ²œi!{ÑJdÕR£M#°9BDÐ&Ui£À—èp¥NǦ&`2ŒCÉì3¹Ê$ö d@ZÌî"’аjÁÈæñww69œfŒ¶4¦µ¢Ô¥e²f¤PIØÁØÝª"âÓŸe”Žó¥Êòu8Êø²˜T2•Ë%©89ÝXA£B¢”Ã^´‹ ævÉèTD"xMŒ­ýSò³öêZ_4oµš¦ˆÈˆóX»“nH`UI d«#(VÄ,{ À ›’™¦QA–M{$-ŒI(ç)`ì Òë¦+êµ¼QM(ŽløZxÁ¢íIà·Â‡I`ÍÊ2“Ñ B”e"g#H¬fg ŠLÎJBg6T57Uƒ-YYAC¤j¬€áZ›M»ÚŒâ6‡([wÍîì+,þ´ ,"Ö…RÊìPånÓHmÁw“aWJd ÁiGMmY«Àá(!KU·Ð¦Œë#œá;‹ˆepýí´‰}yÕŠx’V Uà󃜀8HªPíÎ9Aà¨UqDbDt[X&m8´as_%|¥(½dщ[ ‰Ì‘Z6–ªþva¾±•?^—åL&QJº­ªz™²\Á,u#€(Ö ‘GbR’Á‰ƒ3­ÆŒ“B aEb†(à„Ç2µXá#¸¥ R&±6)AÃJÄ„Ãèõyÿù–ϼþ#F–Ý’ ¾ØÅâûѲΈ©Þ@àZ†×$[5ߢ*¶¨‰&S:4™˜ÀÅïzŒP˜ð«”ç€4qrRê`·‘DF‘hßW/°/^)8òÿWõ8EòˆŽGc®%T– ˜œ£ŸNÜ*´-©H¬Õ·¹Â¬Šhʤ†ç•iåH(ÑÕHÄØ””9±+!ظÁ‹•¯v©§,8"aÊׅɪ¦+ Ë,-ÖÇINû³· ά5 ¢íXVÖ¶(VΖŒ³Ù;Ù9œŸäëuZÙ ¤¶AœT!EÁ@‚c ýKk±;±^êR”äPJ»bÏ›Hž”ºÜsfÆ;+Zâ1YkbŽêl»JLŸîF:Kò;ÿ”#!F--¡F+A«L‘ª)¬™"…–VX,  D,Ù]5Kkm[³Ówê6¦¦¶PúWm¼µ[2ýÆÁ.ÁÍuÁ”Á C0š2XÀÐHXHç’¬DUM™~, « ñŽõÊ"¹qZw¥ÿ’yõ.–ç·s^9mÍóË„ÔæVç®q½N`¥¨ŒÎj–.ZFYJ±(Îh[ºmˆ™Äƒ‘K•\™…0âHë“e‰®`©•ÌæH G*Á˜EÚ4]PÇu°!®kEއ?ñ£^¦Rž<é(c(Ièz_šž³¼Ø}»v‚E¹3ÚשÙA„ÍlÁ&6ŠÅ$@  @osr€ €”Í •72ÉR&‘–Aå*â¥ti ®«œµ–Ð[cA‡åx©hå¾ëKV¯ PÚúR¥H bËX§ªçu„XÜ©Ä/®VÂ@£¨ìbê¥1~¹àº ïåFÆì$Á±åñŒU§‘—ð>êø®Ìþï“Ë[ôΔiQ$6lÛªdïeÉ6Ò’R€k«ªHd²šàà*‡ #±IGã[z(u(ÉàË0ÉT2tv†;¡·+äRÉ6ÊÙ ã®æx{ÿhVX_-–TµJ’¿:jÅS9bì{5äš×U­Vg¢m[=ÀŠ¡Aƒ9Ý%ÔæWs"ÌÁ†fPItJ룃2ÞrTÛ½î¸á9¥–ªªm¤$7Sí2\ci½;ϹúÓoÕž YÔýî¹lÉïØÇ¥©5ÆBtXï´Ø–Ù!(,I Ñ&§GG}æàÑ•\1ê ¹®D¨%IFD–Žò]g®Ó­K¶9Ý2kGqõ~ÎÙ]£Ê¡é¸E_=m`[²ž©íÐöD¥)¶Œè ʦ„fcL!(Xäp=Ñ2 3GC4ÅL«œvD®ÕE‹w®´qˆ%c3DÒ%eª…z’2 1bDÕLZA(ã û áŸ"¼ÜÒ¬äÎünóÝD#º7݄į蘮\)&íå ×]Æe¹1¼ ïº¥ícÉ’&hÈ„,eK³T ÝÐÈÅ 9 i± È ¸3+% Íï¸eU óåÑ6XõÂP]vݾk¢#ÃMã°m×¶´~÷}%‰ÆãšAʪádHY.ùÎjZFÄH§#4Ú %>¼W^*M Ϧ AL¹ªõ`ò 9ôªe8—­“xß#Ya…m8ÐH¡zýof ÑäÿÍuãù¿Ón™ž®]¼ìKnì:ñ–ÜWD<>W[Å`PE(€׊1¾Õ$ï¶TSh‰§±âÌæè1Fe3Uc”˜¡BXÑF‹, íÐÈ¡Ê24 B#8·_<öQ½vo¿¯?Vë÷=ßwâ¶Û=·xÆíš½r†·±ä4¯ ÜJ®/~|á]OÀ@Åôv´œ[$¼Ô®2#; Á\ 1ÄÙæòbeZ"š“0aŽÀ°MJQCɱlö!I$H†1ê‰ov–W¨™ëKmœð4ؽRÕ¨ÏÙ®xXEeŸ°°ŠÉØV¼‰°…ðBZ7}QïÞX•éÌ)ÐA¥"Àè¤Ä#”ËÇÀ#Î[~÷r)þó‚vNMº"Ü7\l>SpœÏ=ÇQR/M¦«œêË@èH-@” ôÕl鼫ó©‹/u©tøé5Ó(ôòl»÷èZ·gø­<>7ÇvÑïrê+—¯”x®{T°×´Ioyiç¥aî9ÊæR3ªÑŽŠ)¢@¤INÈœ‚‚5ŒWrÂQ;Lå“AŽ¡ËéM°Î;s««ÞIÈäÊʨbÝGêØ°[:5G® ?_áì}߉>{²ëÜL}ÝH|‹£¦)éËe»çYW\'G9cwVÙå‰^!Á_BÖ0H–C©è•ÆûE¹¼u–°Œ®J¦—¥Œ~ŒìV‹¢¬ùãiBU/i¡±T¤—h«LéZ¹:VE?Juí+ý×[%ipî󤾆iŒõj…S“sÙã̶m¶¾»u—;qû™Ïe!(qÏ=Úgîªj®—ë˜*eábnÁK"iç[n•õ¾ù5ØåÑÝÝZe[¡Åj7Bã¸Ë©E~£)|¥|ç¤`ˆ¨IlÇ"PFM9 ˜ezª†šÅIœÅ ãVײ6]_`Ó¾Öœ ¼à˜îÜ»Ÿ]Û´¸ýšýzëë®̸ۖ(õð†\Z{9—O=W'Ä?ø\ú>‡4Z³»«ßìèm`ûO–ú' ”5ÝÊ\Ca*§^®»¨Ò¤”„#t²–öJf‡y©Ñ*Ú¥Xm!¼^³Ÿ6ÀY´Ž×¨Jn† Ë´ÛwEÜpÆYR«†¢GXÛJg~™V$—r…ø”5óWZRÆ8¥CÊݾ \ý¾¼ëç~s§àþ䬲ÏÜØV´ ;KøvXVŸC»¯Æ¿?ìÛ݇ž=û˹nçjÝ¿èw÷rñxi×–¾Ü{»šÝÓ«–íXa]•~аÇÄ+x¼mßz’¼ý.ZIâ¸_öá8BG g’;ÀÉ'ÛxCpÕ-¢ÙÍ!]ãzR@¤Áš[SÇÔÕA…o¹d=/Ê MZ£·,y?¤¥ïÛ«Aq-£ìÏ<¡Â­6!Ù\-ÙN¶ÕjCMÂûVêd¿?~Ï"²Â"³»£–½iK÷jÖÏ öO ½Û>O˜V[6÷›ûú¹Â/®îX`59yÛ=ö¢Ë»hÙ«©ÓwÏ£cÛR\<†{å‹ìîúÚ“8½±´ëÔ—£Ö/LÙÄ·Þ¤ÔxÈÃ’eU‚€Sixn>¯o(0 Y¦÷ËÏ6,Ì7É<66zØ·-Þ:ùÛ…o›nGßëuM X[݉}¼—§ø¿VµÙ—~˜ÏŽeÏnÚÊcgGo é—[ðLÛŽXs›j¼𤋧™ÁÉ#t·|fí;PõB©´wÎX7ž‰[í9ˆ“¤ÌKª°y] _k.¾˜]mý\W]ä;mTƒã²}÷íêŽÍ|½ü!ä¸pÇ*%žó…»ø$@ À-@y—ƒqG`èÝ,PÄœ4f9œÔŒ:qÚó,H¹öJÒíñ‰wÀ¦’‚ÇjkÎô¥týÔ‹9ÝB=°Š÷4t<ɬ5Öã5™ä Ä ÀÅ®áù±ZÆp÷ø`K=•9ŵ¤É·©â-‚òñÎñº' {zmç·Z ã·ÇuÑéb膽»µ×¦ý×ñ¦Ì±Ôžùrîå„§[mÙw^Ã^YÏnÈKDº57+´íeÇŸWUüv…ú›/Ò6:qþšüP„39iܸ6`«ÐÉÔ8gO5¾¼àL•¼A°å0L¡ NÏSI£ »"÷ŸKc€¾ûÔí%迪2~á×ìǾ’ú5ó¥oëèâJŒ]ÑÉ=~zlí;G\cÏ·øÏâ~†îjòf‘fÝý³oÄx9ãÙÑîßÉïÚ}²x³“?STÞä¡LÏ´­4á(L”ÁáDï¢;” vä·94e(¤p7× ¶áIæj|ŽQÒ¾J·¯®ÔÊrL¼ÍÑã®Ká-yýßv4˜m¨‘Ž€ˆ&ÚRO.påæ Ê–V¥4Å4h tR"…¯ëž­zW·MWž£õ/ e¾7í ÛŽêr¸öåŒwNµÄö¦Zó›Ü‘à„ÀƒPjj Ñ–Ä=àÂ8…ׯLböÊ(Ãf++€®Üîeº8ï¹·ß³eøkó×ãÃHgíÁ-Ÿ:ßø·ÞëÓ´µúl<ƒCŸ-‰ êòÇNmíÖy„èåhÛsP¶õ[€ ]1®‘;í>L¶ÌÝ!Š’‚>£‚‡¬ÂyŒÁ+¯¥àòDu›dÙ黪æÔøµiО۰.²®‡¬·Æ±G¸ê_´ãLuLËÛF€òrŠ)´2&£k餩´¡‡ÚåKB &>}enî3ÝѸ‹~üêrÉÖöñD ÛÎú¹Dû…I ¤`—C%Ü뉠‘ØF\dRãspShY#.TnÕ,·‰^¸L)Ò Ñê½Ù_«ƒøøq뮹ʽÒ~#xòäÙëäÿ§mÉ»„︆>þh¥íã x[¯7òßÊöhºGg{}Íe}úå—–ì¡¡ÝÛã³QFa‹ÃVPÑnì›r„'¤{µµ5Ï•·½© Šf@‚  €€"±“mËÓòºY|^Qº ºE—tøiá!8¡Ï… (lše‘bVñ—;“ Ñ÷q¡_).WöCNÏã»^SÎï–½8®ÍSóÏž\²®®ŽZ޽|sÇ>>½}‡gÉß•Ý}U¸¼jZgØ|s±ÃKû#s˜ç-šlðÛ¡çìz^}^ó]µÖ‡³(-‘ó6&¯Zà˜¨@U#bW±úXeÈïã3Êôi;p=i øÓËíÏ¢ìLúSáØ3¢ÁKâq£*9O.þ4תd¸WT)»*ȼu e¸=ñ÷CNB–E8ZS£°½ 2·„l´ y˹IFXëËÎ;:Ò»·{“·÷xßÚÜ<»¸Q¶é žhcY§Éýl]I껜-áÞŦ­u·qåãFßO†Ë„rèLµ]Õ×Îh™ô·?]Ý1—Søjê„0¼`H—sÛt%úŸL¢ÁDßT·ujŒ¸úŒ£ŽGêrmšû}[Òr.Gá Pð#ÌY­L˜ èb´bdv ©`BÍêŽê'nþȲl¨Šío\Jýœ¸ú¸gÂßN\ôÃbwO¯Ž‘¯.‰Êq>¶î×-Ü|—IôyiMœ«Ï±wæ8ó¾/¼sú‚²¯fþ½½×&Þ·øÜ½·¯>sV‘lDNŸÑ._q¶U¶Ê©ä§b‚3°àf-’"t÷¶©“¡C½ FFÉæ¸B 7ôxMwÇ×µ•º|i\|¡TêIãôùûõõøl.OT–\û8®¯j*O¿e2êhÓ“®}ú¹a–}ƒÿÍ—†3—§nVΞ]¼{4íS޼{gÙÀ½/ÁgŽœ:iwQÞQ,6?Í—Î4ÐCšÃ¬É“¬KZ±hÙÍo°X8ßEéÃÒï&¤L¯KÖ€DøF C¶ŠZ¸I.qëµÊ‡-†gnÙ*8Ô‚²qdÚп☸áøÒ+,̈¬ñ*v׆zÿkòöЧ,ô§W>-Ýis[S÷ü*øý>7ø{¶ù]l.~¬z×U#¶:8$y­ò50%œ”ÐŒÛr;AÖÂôøÁõ‘Þ𮨑ô§† ~I3 [Ä>©,.Ë'ÄY {•è&é+Rïó¥ ³r 2Ea§Uè?>çúšaÁŽu—ýw§¢1—QÞ`bXz}ÄI…×Ã@Ó+CÖ*y“ë#§ÔíÕ÷ŽÈGéáÄDøwº ÄÈýÞEE÷¼DpB­~”úV1þ§V¨ßâ‡uÅnåŸe~‡–`©á³Uª—B57oH8˜¤k#ÍѬq)"=Ô—Ùzg?ú5‡PÒLa[å: õlú_G¦ý ô{[9o/,"]ÙBí}ùßã‡<0cQ”Ü ª8¶ûãX4‰OU2Iš<î;RÛD=öôzñÃ,ºå*zñõ‰ä[TA@•uwaaã(ÉÄ–‡`œÒß"ÏE7ÃæØ”ˆ{ÊÁîìÞÙó׌ŠÞMÁqé<ðÉ/A­Û­ôý´î¯ÓìÛÏ ª}fà´ÞY‡±™Ç!RK-t’–yªYl!ì÷ì Êyüµû²Ô}4ܘYÙ¢xÏ$ÛöôØ.ã˶þ[¯ùÓ.zïæ ËêõŸÝvtýHÛ‰á¢@)¥e¥M€akD\ém ñ³9Ä Æ‚XÑXÚ!±Ó×ÛŸ"Ë·-^^ì²}6¦ÀM™íÕÛ£Ù‚Âέëi¹¦®h­å׿>³Ò·Ô~·|×;[Oêµ—ImÖ>¾éü}ßü~L‹_ÒØÊ«ÛÒ6w† ·ÅDPïæhpNZ¯ Œ9E0»Ã>RÃQû¸ŒÂdyV¬ïO>ϲù¿ÇÈ˯Ü^ÎÙùËbíÃâó¾ø¶Q‹Aû/h{±˜×¶Öö{NuCîTéRKA`›ÕèÄ­`ù•>×zÊÿ¨wb½—âÓ—y!IA'3ôˆqqÞLÅxib}ÓKXÈ\8ðQLßÌb…&'µlí罌@;5É]“ ¼"×ë^¢Ia! P  Ç ha©/<=··RŸÎèŸú|‡T¿ÝOL'Îb3Al w…c%ú Ü`hîJŽ€Eï^ 0Ôl6&Â>ž ˜u¥ûêÍC:D†&9 (y7˜×G¶^7{gõÛ´2Z¥«ÒS¤*V_H€°¥%f„€àþ—À0’ùOWU¶"¶‚—Î8O2V©J’a秇p$‰ù %²vú†yîO`bž˜;ü¯UÔp€ÛŠk‡âÝêwuPÒD=hŠVú%ôõøÍ"Ývøÿù&ô¿nxÛ‡ãºýÈÞG°õÞÀO€ƒ4¨VÎX¡½ ç1Šø 2¡Ìpϼ,$ʃJµ§¹8ZLË´K¥^z€±¨Š +UXÜr©CXȲ*pHHiM< ¼Òô¨P Dùr‰DˆJYB YÙ| Ž alˆ[¤&ýH…öÈjÝÛvßã×\Oà~z»ã».0ÏQ,––ÔI5úŸ_MQÝÓ}¿$ôÆ=½ïZüK øð›Ç“z_éã“ߎûpëøñ{oµùÊ´ÇÔ}˜ñV]}ÿ˜†Í;RjkÍ>®7ûºÑ×§M´ÇLã„éj˜ÆW{ð¯ õö[¯¼Œ­$ËÛ%å§n+üöö¾ßK¥ÃßéÓ•ØîP`PäDç!x—×MÌ­×Tí§j`AHl‰™†RTU’žãÃ"œlBÀ|Õ L¶y€ Ê¥’ †ãd!9 ܆ãj_æÃ¨ý6l¿ÙŽÜk‘Ng.ŠôåÆ%©¯µÚ"U½^Ý/¹v=ÙÞe²î§é©¯aì‡w^®ªÃN[§¹/Ý=°)düþ$ӎ~®è¥°Ï¯£—=¹õ^ü{p‰V2Ï®­Qí÷r„;tä[urÖ8K4AÈ@"LIJ†BY70m’,‚šì(9KŽØa˜‚LÓKj‘£êá¥Ð³9Ÿ´KŸÇ«ÙnÚ_×®‹ö¸oÏÇ_aÊxwÉöTíø®T™CãÌöEÜ£Kàí¬þ.dÅò`å™­ÖÓ=§±:¶ñaz´Ìl§çM¶x‹žƒ³´".3‰#ŸmRD|a¦à"Ô‡¾½ª²N»v'^ÜõgZtÕ=Eäþv§þÙôô󞈔¯:ïÔpíœó<är5ñé…ßÈO«OˆVñ…÷(/Ùg¦þåÏ÷"¾ðg¶v×ßIRÀ¡W) Á"ÊV~áb Æ¥¤´æÀÈÉó‡u“)ßç•Eu|^ëÚúÉ÷á>!Ç/Uç•/ƒìØþÜùýˆ”ÞˆT¯OĽw4xaîLv픜â} ¼de!hí´ÉºOϫظÀ샘麫!!Qh³PÀXU|ŽÂä }š½êÞϧ­ôÈ»p–cV³-]—¡KÓñkM-éþ[Û„;L›ªÙ»D MðË¢Sÿ»Ñ. [Eà½A·ç5éíô¿«®û<Ø;I.^Û–Öw¯Qç¿Ìà_×+/š[¦y [üõë‹èt@×®u¢©.Uäº\åY 5 æô”}ô,¶¤?C=ÕM´à§©ýÞqèw»‚Z>On˜øŸgÒ÷}åœs † ¸¯¿¯ØÝë~_røw7¯šÿ!¨’ÑwìøûMuÄ3-f<8'ÃÊj,¾ãáÑ5€è·²Õ+o2ëÓ7Šœ:©súî—D>.ÇÛñ ÓËfësöiºR™_‹KØ­ËÒE‡v‘à ~gp?Ú.‚§”(DB‰*`Š©eíMbÈžæ%ºÆëH—‰þÚìX5 ¡hÌC¥"¥”hùŸ-Ûç®f1 P’A#­Áa£EH¯9xå5·Õ– ;v„5û8?¯sÃ_¾-Á%µgâm±ÈÀ‹0Šðçé~ÙîŒÃÜÒÖƒ.b|‡,vLô‡M†±5Î0cÜ~•2]¸j.$üÍä»N¯˜<¨T™Èé’â S¯„ “ÀñÇŠ¹3‘Œ¢$¿RÁ€P ŸwMiÃêħèÆ.îöñŸÎmáOŒvg z[ÀÑ!§F]ÿ&~³ü_šûý/†¼íÚØ—žZ]5ÕóSå·ç]¿ ü›á?”†š¹ß¾…ιùZÕfŒ»á^=¼ߺ:ð@ªgr)sDaùÊ&v!>óÓœNÅöUrõ3a„`ˆ—ŸFÉ@p¡±T‡l3GŒ¸“AFÍÐOI¸ ¿"ç-ååÊÙ&1š°JsN·fº´Ô¨è!ä!…Ñê+ÖZ±¤aNªW P"- ‚Œø‰Ù-p¬ dtW\gPÀ1(èZc?PJ\_J(<®úX|†š©+§¤$ˆÿ=±ã4¥Pi¹¡ŠÅ  5s°¹ìDÓòó¶Ñ®uu¡§FqÊä(Ú›UÌ,VFÀqi .îà§Y§ ©R„¢‰Ex¤Ä"æªh¸Œ‚ãäv%î x7-…õ´°ºÝ=Xø[h³12^K4Æ·¯^çg÷þqoF½$N™':§¯¸õjñŠó ƒuúaôÐÓVß­{¸OWÇ,-Æ^b˜îömíˆxG?°ÁnµRI&ýöžùªîäZúÃËÎw"Bï"Ô"¦a­Ï9íÕòí:¢V¦Ü6óíøGµCºe%3yY-Þ9‡—'[L (¦`u*$<ñ)n¤ZŒ&%üK yÅRÆ Ø/„À‡zâ°J™-«7+º S5„ØûÝм6v÷Ò>ËñÛðöJ;"O¾3Þ9yz¥¶}–û]b™6lõ¹Hø›.?-Iï¶8Ó^~‹m'`÷òŠ?¯+ð·fÞ÷È>ÑŒDàBy Ñfr‚Ë EÌi°”«.´…oñ+TV¿(¸y aDŽ3Ä]긗´ð¹3½ ™@WßP¼Ò4ØY †e…q.€Ío¯§j%¹û4Ž~ÿVþës,Îƒâ¶ø²fZã9é² «HŽï“ÛžßWQ isá]ú‹‡*u/w¯\5WÛvìu÷k_Ùòaó^ô³ôó¶^4¼c‡æ(£AÌR&±€ÄÅ‘@ ÿâ-'!Ô ÁÖLêIA%1ø¯]M®ÑÔdã·/^[K]¾²ÉhöºWãMó .ó’¸ËäÇH!Á+Ы›¨ ‚*žÑ Þ„äHü¿ä$6 IHô³B¿¹J·“:V)|á°!ºpñneF€ïg™ÇÓ î¢(9¤8`»T‚ÉtŽlÙe€×ï¸7÷Öb²nî9Pë AƒÃ¡òºI®ÄšìÆrOÎ÷ÓRÛ`ßó…I±¢³&cQ¥‘2’.NÖùq’2G–‚ç „4`#3n=ÃŽ“¬Y¾F‚+*†)‘!£ªo¹ªsÄ›B7±²„=²¤M KØLúK" ¿BÀYë÷ÍáÐi¤Ü¢G aq1²’þmÝóF É?ü\^ž<ä⤑:àÇãlµåÏ—€Nz‰ ÀÔƒþd1¬Xã•hzêµ—…u´²ùB -畼 äe?1U—l2*sì†Sd†„Ò‘d1`Øx7œ·7Pãò‡|¦¨Xt¡i¢"@ýïÚsìLkðÄßžœR[:ô•y~N›ôíë×ZõÞ}œ£¦¨õ}©5A5±½þä¤S@Ü;uì­2{Yhfº"w–z‘έ˜«ìu_{t»ñˆ«Â²âÝW[ðû^R©}îÄAŠKSl}›zõyÃç‚Yõ¬TXn¸0ç¼QEƨ@6&qQ5àÁJ|ð$¦Ö\PšA •&Nc]<‹Ý@ÎdáUf‘…y‚n¨çSí†øé+X&ÕÜ=}ä Ð *qàA%tE™ëÅ‚Œ€)RH`R£õŒ&€ dˆâã‚é·Š‹‚0Ð%“q Õ¡jLLê*%¹C·ÄØRÃc¦ÔàbCµÌ#†ædåÀiÅ?jë’ûDáE˜YX«q0ÔÍ"Ç(œ¡ÿfvß%Z ИHïÒ]?Í[š!nË–Ka’)ØaìžÙØHa¢Š47¶/$8Žp‹›Ómaà$JP Œ=JˆíðQýb‘¢ô_!b°¤-“E2EV ‘]™Å@u"ÚXñ& !Jãs É Ì»6eål=2êÉ"i[n Q·GÄEcHÏ#Eýć-¡›|8…L.¡&¯Ãµ#—zp6`£GÀR6 \ëhl´³!W § ‡›`oÂá"Æ ± Mðˆlë0¨¦P|`ÏuŒÆ‚.ílZ ÐÔIÛÊö:ò)D=ÆWæ)•ã_(ÊøVÝìÆP°žä3Ö”N8Më”Wa—‡ ÐYBÎx¸‰Ÿ8ÓiÌ9*Ÿ¤EVV¼ ‹"c†‰‘¤ ¡;kÃêH¢°žJº¸Žå̈¶eÃÙ\µŸ}'a0š)0ò¶Md¯€$ÇA+'ŒÆii6à±R6œs–Žà54P$ûÖæY]`dnâ3¦ðíz—&+iúOÄ|OW"F•É‚«’ŒÅÍ YµLH” Á_vžaGKyÎ?"¹Â ˆP,•…ÃSÀl߿ĭs¢Ž ¹ñˆ›B#8¬™0xò–¨—Š0². ¨±J¼Ì¤Ç”ÂA-&X0ÝÂ#f)xÎᮞíÍrøãþw6 È®ç Šî-/ôéH-’PÚ*Ð<¯Iî ¸D°^<0.ÜQ7LNîöãè°2ƒ),n¦1[ |³O „ÃPdÁ&8$ˆÜ!á—Ô!qÂÎh¦åvYq€BÆ Ü!(O1–ˆEôÂÌè˜kzt (vŒe“ G*›Ä³´7‚˜Þ*¡TfZÑ)ˆÕ,ˆž+Þ“£‰0®# -šô€#7·v]k]A #Ç+ˆ&En'? ܈,¤¤£‘¢ù"í$1–X…ÌSShI[ i“cìQ„d ²`GIGqqö€vP ·û^<“êg[¶WÕÏᇫÝß™ü{µße÷~òý/?¸þâ_–ÿ“ð–Ye€€¨Úµoܶ¢ÔˆØÆª÷ø¤éö|ôî\¶²dÖýto”~ÜGÏ»}Ü’°˜(3þÅù‰—Vqƒ},.‚Fc²ËN”]`4³ž”3 À†°>UЉUC=Ã@ ì&Nâ2 3Š¥b0)†,!“W Œw%»!ˆ’3Ä›Æz~ Ⱦѥ*•Zîé3\äH‹v÷œa¢Îj12!ŒL ¦Hr DAT¤ˆ&)Ž ƒ.@¨€£ØÚÁ»»Q(ª¨›I­(vÓo5¢äm°³ 4_IUàŒE’¥3Ã4˜@NíO½K'…©CaEAÑ(±$»M XwDEÍ´7ˆ€$S6?/‡žîN€8Fáÿ¼xx»‘x{ùB Å¥Ã\òà å×rZDgµ›€™ÝU­Ã“ç¨ø´C”ACä•GR[ÿtì<—™›À@CàWQlŽGÑbàì]U9÷3”Z/ƒJ£˜ÅwöÎ"1E…Z¼éîd4É àC¸JŠÐ®”Ñ1:‚cÊ0öj¢Œð*úoBû^uo©×&ð;»åU°`¶åÚ^ÒÛxâ̆W!¼LùçJQ ±sÝR¦ËXÙÀ…z1 pfñd’»«â xê™FI0§!Å€×UÌi½_¥ÍZO#Á(%£×<ôÈ›!éŽ(‡žð‚„Âa¡S66FŸfƒ×yu+ `ÓùeŽv[¹N‰³ó' j¡NùHIkÙnyðˆ>êµÑ*A04áž:)ò&Á@æÃq•Ó±¥#ÐTt{ïèÎŒõ|AÝôº¨cŸdJÓ BBJ0L%B‡Æ˜â(æØ!FÂsÅÖt)”]ÕVŽÓÌ”·åíî™JÈu–rMk¶ôÆÿ[Hqƒ ÜÑg7Ø÷#íÐî7ÙwrcÝŸ ió·‹*K3V¼R‹ÛË&J…ÒŠ!Q§ŠR¤9õj*5”ÀŽ|s{áÆ×¡.@xË¢ÕˆŒKÿ6&O§ô1ÍvüÜ;ó)¼XïÛ8Aý;z›L~µ¶÷ñ¿èʽM]Ð+F:h¬5$‹o4“a*–îè|8lkvq«<Ø·°¦Ðe×’€Î[x¯ÌÒŒ¿·ÛåËN+Õ·fÕvÝܼ²ñ_5ëWd«÷PH©ò©%0ÆåðîÌ1™ÖMÊð’8˜ƒÄ¡x<'oƒ%sæD#s#˜K颰@aÎæ:µ>$Ç eĨ‰`ˆ0a9 g€=tŽÌ8À§ÛH4ß’LJ8ʽ].Õø}çæðÂØ¶ïö§·$”«Çïµå—ãá¿W>é e®`„)ŒïÒxØCzb&m Íh«F!9Ø;pyÕ¯ªŒÀî}ÅSµÀÖ¬FS¯úqfßÈ †Øf·iÁ÷¼ùbvØÆ6à0×u\Ž ‹m71Ä*8eU ¸šl—»ÛlgÛÀ#G²óØdeCMusq• yºs(ˆAè@5çAáÊ#B P"Þád! ±@ns å¥û±žØJ%ÎÔV(¬Î·ëL"¾ßxh}9Ÿªâ‹ZX®¾‘į)£ 1JÀ(ð’`ÛT‰a5Gîf²no Ü%CJFÆ?%šÄ Ù –&ypHTÙç&óEÛžWH ¡¸ƒúAÅ3ÍCƒ–}ÂI¥‹$=+ˆzŒ dwȬwX.8‹»3¤À'b 6!Â:^ÀÀ¼i6E6AÍŒ@ÄiAøZlÕI `íÈ+`÷Èä?2eÞ!@Ïu³ò³yÎÁ jÆy“ÚH13‰½ÆÊµu/+x5ó]LF½= „k€“Q«ALË›6èËЕ'š#Y¡‚xp} ¶!‚¹Ô4º¬!4Ô®TÒØ¨iËÛñ{¿³‚æœÙ_åÕ[Èní–7ÜœÐýñ÷pæ0µ~ÄSËáì¬ä×a’;ä"Ué•Dâ‡0&Û=u^I¡ØàDXAÉ ’$ß4má`ï[øˆšñ¾~¹a•ô_Ÿ…wc®*gnù{,'ì» ›K±aG}RÞ¸ø $ñâö-€9pH¸ªà&…£.*½jÏ$ Œ’€ÜPñwCÿ>+[«QnàÒˆlaK5ž69¹9ƒËU]aý˜oÐsHVf€Lk!îä%ý@@î±$T8“_4Ø­}ÃÎû¨¿u¬ñåé!Y"©OÛ¡¬x B׎D_äg6Bo…üƒ¶*9¢ Œ£áÒ›ñîÛbªŽe†®R…“ä8æÔ úž‘¼na‡¸zŽQIË_$ØyÅ>W¸„_14ÀeåØ)Nx»0º%Æ1œ–Ê¢WO ÄH¾Î#7±Z²’œ3“E37ð*ÈÂ@NûT’gÇ +v<ÌDÙVþ“G >]"7FFŠÃ!&8 Ùln«£å ò=»·I8çâ£eP2eòÃ~'ì*Ý8 6ÁR1™iÁ"-ò±9 Í·kndŽqšsSVÓKl¶€2p$‹Æ†%ÀÊ^ªdq2v#¢ã”1•§Ý&´± {?ÖV•/ÓÖ£D9’Oƒ •µcžüͷȵýPû2HÜ¡ ’êN€7rä°Æ ¶-ìÑxì‚Z߸X[o³§~«;Qá¾–ÚÌËf„1¦ T*FuØÒ…øÉÊ9hpäµtÃæµBR€ .ë Ý?s±\xÙ\ÄÜ  lÕ°Ñ1“(ùæG`Ê9Çh?ƒh{y[·–©×¾ƒ±æFÚ|ÕÍg@1Ë{’y× l¬WØ?¤½°æ¾ûº…•˜*_Â;YBŽcóÐZ«„V’ŒŽì´ËthÉu|+Ë´[í:žNuÐI‹%ë–*”KÌ€ Þ4’×j#bp…SrËÃê&™”m á§[k«SEVwÚC¢Æ`õ/4àbu=£o§Îg…ì5”,Ç$¼˜³Ó‚{PÞ3 ›,L·ukü8Ãn£Ñ€¸!LD2– ÷x ĵt4ºŒ;Êœ¨Êc Æî¼AøFÄ%xÒX0äá1–FÊe‚QÖ:äÄ×{À!m!ZR7tžPšÐXá$£‡@Zȸ¢cEsö†oËeD}éû’5ÀH lÏû¸ßX·•ŽÊ•ÍMÕ]$}Û5JàXkPÕÜ>$njÈ€–Ä@¡sªuVB‡¼ºì%#Q渣×ô° qÿuµŽË1ö5²Úõ뙊_O O‘³&h+,8Û€‘Œñ¤)x@x…Fh¿ -@oXK†Û;"þ…ß‘Œ 'Í~'NYN# T¨@Lב(îüB#ÐY<ªÍ‡ ’)]qo¼0Í$¦†‚¾£®'¦÷¹ˆ'Ûp5ÆFzÏDýîˆMºs“e–¢#\\‡kƔʀjކºI‡R8èq&³C¶†]O6À\… éÐiÝJÉÂî]{!F[·4žcËs^@Y$ÂBÀFUýá éF Ét¹šaêdBRewìƒtXs»ëY‘q )C¼¢‹­2@w6l-> Ä:]-"%ÅuȰ¿=öJÊ£½·ûòš©[_w©)¿·¥¼0IMôvq† Ù@O³K` ƒEÝ¿&)«.‘šê!]¦ŠLÂW¯RJÜ{®á¨,´aYÙŽèc˜Ä—ˆ/eŒm]õÊšB¸üÑ”N6/[ô·ž„³XݵéY™q”»YJÚ%ÎÄjÊ:%¢1ËÙLí'ÛÝ7 ¤9¹oòŒ#«ñê¼n(ðÐvMóà:bo- f>©hñžÔ4_ÂcI#yônëròå}ØÏé ad >@ñ®é|Ú°}ð–õXÞ•ŸZKÖHæ+¬·%Ðr¢Årheô͆ÃdE”î‚*°¿Ñ¼W~v2ûg»E8GÄ ‚²VŒÅ 8²¤È¶ïuôò |° ÀžiйÔÞ0ÑBÆB®Ç"fàÇÝÂÅâ^ °l>Å´pe4SÄÈo1h£„V}þÒºÝ8ÇÅmÓ[µö߸º) é œè.ï\Þ!äß²•ø$Ý¡9Ë+- Qo&öਨ L¯nDˆ`“>€£œLU÷G¥µÝ=iâƒ&|ͬÊmBj)ÉŽMyš ¡3*e¾6Gp@ ÓOh'f<£ŒË}¨1‘»fK‰ÙÐ¥þ\ç¶î¤œüÒ·" ³¾:>®Ü“óø©* ›e7Ðmš°—T5®CíEpiRjö}PLVâ çc¼a7‹p€2¸þrô;|@ö)I½¡Ç?+˜Ã8{šœÎE0ç mô鶅v%¸TóÔù»‹Þ^Û¶eHz7rooÃ-î‰ÛçE<ãÅý|›=mFÒ#gM1Ppa«;1§yZ“Âj"GIô8à²hÕPÖ5ß—Yÿïz¬;UØq°yÇÀX/*Çuã“n†IË5v¹®‰’D–ˆây¯¬(wõì,ݧ ¢´Ïh!§™››¼[ Btœ‡î²OK ›Ü]ˆãÇŠ]z_ƒIÉ I ‡H a^Úl‡¦ ñŠëìëP‰) ë Í–!×2˜dä–t5MD0¡ÊX;έâ7ÊFgÖVË¥2t•Ðkæ4–s› ‘ËÅ7…qúTD—Fc漩ìB¸‰$PqÑr8/…ì'™€rg²ÉéM¥ƒZQ81Ú¼,&!BëbÀ¨èWd!" Q(`Š7Ф¡Ô"\IÒô–ÖƒFLÖ-ib/QÝiÇÜ“*HÑL#l£Â¦ð“[Õp$[L&ORNÌÑq>yU{ÿ³«íb‰ÉMÃe´>ƒÁ%üïé„Ùg6×ñocN­¡,îe&但"*NR‚‹…İ¿ A`€ôÌçЉN Ý”„„À4ìðs²â³³”çê±þ³&ÀÁÝ`À G‡×_tÀl°xxuÉ€ni«“C¤ê%ÆW=õóƒuA¨á3&J$NAZÙ"í%IƒŒe1ºirió`Éx.›ž¯­FBϨǓкâCz“§mÀ¾¥† úWw Øž»JéŸÛ FÄC¶N¦CœH6ÛªÍaÁÌÇóÞ½oo<·²:âÓ"8QúMl¡¸Z^0üT ºèBż£ä&0‹ ƒf¬Q5´çO8ÂvÌäY{ /)®ÉÎPà¬st  ×¾>MÁØ$m¢Š¦#¥§*C¤œ¸W,Ûä‘ÁÓ‹$ï ¬8 [%HTÆ„d<å°c É÷²åù·Å™_ÞQ?¾.ïŠE³/t 5Â.Gh‹¼)°•Ÿ vš¡mb<&Ð BîeÜf¬›á¨R\Œ¬Ü¸e‰2Kè­´{ø(¦¤S¤a0á“ –«‹ÀQÏxÚ‰ÖßdÅ0¨b ÄÇU縀Ýg0ú•á!£ḆpmG&zá)XlÇ …:2q¤% #8C» Nîßñõ©Õ÷þ&S†Ëóg5R?ëÌ+Õ¾d;ó;¢¹Ê¶`‰w Ø'†DG$œOˆeZ'¢“Ž ½%g£0ØŽ2p™„EˆöJMá™(%!ޏ˜×†wH‘No0ÞFº:¤>»ìXñ!ðòBð“Ï7ðcÈž}7ºñd™íQª Ö‚Ë÷±r@™´X¯+¢›}úTRÿƃdùÞà•ý ýv«„‡Eˆ0ðgÜgcB|Y¦ÍuB&úNoËåT‘eÜÌ27.k*-ø€ ¦VÁW4’lëhO.^"D/,˜LE$€šTÁØ ¨¸·–#…Ó§m ‡¦ó² ‘SM É eD"éb[¥qãÍŠ÷ï9C7BlŠY~6uŠ;óWýLÇ>ìu+Y$Jd'¥à±6¤8ŒõÂÂ"Z7´ëUJØk2¨® h»™ÁÅ1#8Ä.{—M'YÁ§1É‘5òßÃ"É!®`[ì²Æ7ÄÉ6dSiåÛ ñ ©º°Sž“ìX¾ß[ q B*Ÿ*’0UWÝž ìN°¯ˆ«Â÷¹S‚\PÀ¾ÉC FO|›È>$ÜÖC bàÆ$έ!PMxKIy,ΠÓRP"—勞! 9—T1ƒqA­¬äÌ©"ÄÈÞqè¬Ô„ÂKö—<É}–vKøÊ³D¬‘ÎEŠª»{ú:¹÷ÃA—¦âÀ|EzgårÄ$•0·8¤>J‘µ\JŠXKË\™Ðë sW´SœBОá = éHײ¿Ñ†(’º² g†˜»PlÏãYv Ò³&Šõ&=8Œ¬QÅ%0’!¨¤±ÆvX…ÙÐT+,¹^Sò #¹®™$ž™<+BkCw³N•A£”…KÃmÉ~Ÿê ñº§¡×¸—©Ô­ÉÖ>¼ÕR”.Wp §¥ ë¾/Ò[’Ò•é¨1n\Ê jâVùò»>á¬ø®bAµÓÚJ÷†”“èNAÄ­“’hÙŠL& Áp‡‚“"¼”¯8B¨¬°l¹•áa³]YEÌÄ‹ò‚ˆ]ŒKá¢wŒ× ¹•#AVZæ9cÏÔ§ÁO8.Ò‘ÔxgTà§|4<M÷ ¸z¶ UÈLˆ‰b=àò>îs{—ìöÇìU; §N p‡r3Êàš #”í· ^c¯a«÷žÅ˜9M,аiK2‰Uån©}/ Ä'Ó¯ø <•žÐMDSP„m(h´Æ°˜7½n*ïzv.XRÕ¢SQnÙ¢]„4€vH->hÝç72Û½Í>‡o„ý·ýš§G;Ü—î|“pìîË“kù!³qÜB2dÄ׫ Ûpéø›ëiº]½9õtôgwT«—µ2d>1ú>—ÝtÕƒ ].Íx5Â!Ôª’*¯;! ÂìÑ"€Þȯ®(Y)Á†W Ä®ÿrõ›ÚÃN˜¼âJØZʘCTÕ î½ âÞÁBeÀø®Ð8‘"¿piñª;ªÑáj]`Ù!R¬–fIcÉhÿ‰g’t~F—d@ìaÑ¥NIÔ²í;ëÓõãé¼§vÚÙ鯮H–á,~ñB·¯!ù©çlˆßd4‡ÖÐp¢$ðÀÅ+¨D…ZvK¸±¥uaè1ÃMµêE¤O B†)SÉœëøGÿ(—õ*k€šuïf¸dÞ¦ö€Æ´¢b0Ï¥‰°–Óv5*¹fAÅåßbùxN.öQ'RÒ>‚º¹·W»Æˆ”¸G䪞ޡ@¾EQº_¤$†bÈp…„båé”°< ᇹeÛÌŒ½â2'XÃ|ú¼Jrß<è¾rá–éçGÓ†1_Ž´¾õQý:7¯§žóì÷ðOoªíâ6V<9Ûª^}tÖ„ ~.¬ &‰° Ì)”‚P %$™Dxƒv‰ÞxÕ]E$¿× ñÝ]!G]³E Hy…#.’à;£»6mN•jˆ/Hòàûæ*”“Ÿr™ÏXbm,c›2U ]ðS jÁv}Òð"hØAžÏà JiG*¼0?h§ŽÔŠáÆò>W”­kƒâBËì¹Î¸† €HÙfVF2M‰àH«b4„e@4d¿>ÑV¨-û]`ßÈuÊIªã#3-FwB‰zƯ©Åzâ±æSÉIk_Ì—;Û&ô‹ÙrüpZ£Àt`ÀçdWIE4l…jÁeü\·æ'êàÃ&ž…g7cŠ"EðeׂÂlˆphºó¬sçð2ù¢ƒen:¸lœ»¢‚SòŽú´Zɂϓp},°êöÔð²‹DºÀirr0*®€„´,&£"¨ç»»À7q;S‰€ö{ü³%ó~”0`*ÎõöÑç]m»¹,€ÄjÝú•fôú,óRé`º*– ˆ3–8¥îŒ· ïŠb ©yy×2xÓ-hŽ‘ÔèÀ7!ÁŸ€÷¯ed½šKo$™Ž‚dã„È\X+c¥dˆa3Œ"‚Úë¨à:!J¶dÛ—¾W#­BÃGydÛéù=·êYß”Ñi°Ó,¾Ýue½áÉn¶¼+ëT’ÆâÎÚ[*KÛ`샷ª}Z0ëT•s#™(½Ý‰•ß5Ç68ÄxÁvoœnò‡î3Š8ø“éM„E)´êHðpn¼ga×,ŸVe×»eÇC‹”’‚aÆ„v,€êû›ºjPküŸKé}/¥ø€ú@Ï®uةщA%w`KAµñrá"ðýæ÷@NVe¾"ª(ÐFårü€B<%Þ‘š¯¯Šªã}Dj75ÅDéBúd{@Aê+÷ÔŸ6ó¨uO†reœ¶Uµ§µˆ¤–€ >ùœ„öò½eÝyÇ®&zˆe¤ ÇßÄœµ¶'f/ò¡ìQPý8a·-¬Ûº«ºF»¸s-AB‹T-Ó{Õ¾Òð¡p2®¤D’T‚LÞÀ Ì&2@¡Y˜•¡„]ÇQFԗ̽ÈP¿‡pâYƒ&ÚÈö?úL;H2FLKÆ„9nCÇ6 ba¾S{·‡"£gî@ªX½»-åFŠºVq£]Ñ5ù7”Û¡Ã#×ù.1 ï÷㜢M]²4Ü ð3f&ŽIS\AÃkG@R?‹üpŽ‘óNvyòé}Ú6>²ƒL±’”Àë{ä}‚7oH~KWµTÙ¿¶! çÃBIRôú°˜†.䪰˜ ´I”‡%Æø)øØ»eiLÖ¾IGŒM;[NÜ­#ˆüPà_¿ŽÃ •ƒo®&òÖƒ0 ‹àã6Cn yçXH@²¢V\J°¦ ƒ%äjð#ä'€–³ŸØ:‚óèÎñåùåÏ”µWÇ|Ê‘âv²K/¿7ð7£œ ôçBÎ×¹ÿ¸ã‡¯=Î{øˆ_o7'18¦À6dÐV½µjÑ2I䜣0 ¯vveX;êaà*äWz·Ê^ÍŽ˜8˜ÈQ)ø ×QDö):‚CÓ¦š¡3Ý/9›ŒA3ƒœÓ+‡tÜxZ#2öW-«áÅdmbáwjt? *ºnI@Ôc—=$Ñ|£ÓJŠ-;š Ìx /Iþ³&æÍr$÷ž·;X e„—Íb\œêœÉH9ftñô¢KŒ¢kêÈI 2¨›óS#«ì\´;o ’¨ ³\®!2sj‘íS´l¬J¡ƒâ¶%-´gw‡÷á4 <^ÕÂÍ_ç\®Ãjo8.˜&q(z·9‚`¬§Æ47nÔÊ.ÌÇc{°‰¼k;¨ß˜ï­ëI¿—Æ1êÊ:|XdÐq“Óv½7í¨2c©ý•ÌØÍ†4($t«YW„Œ"ÚÐ qÖ”:n*Œ^ýÍB¥çM'³Nà¸@ÐÃÌÌ/&™+~aÛZúŒì"R(ÙýŽÈ½d5p`פìHµ‹ÏètQ/þÅgª6lØÆN,€O‹€Ëö]¼g.j3„ð³À'—3w/&>ʼnõGy :òrã@ q8R`ǃÔÊ)EïA¿»IE£ |S ¯P§ˆ\"HHmÇ‘ÛJ$›„Õ¢”²É¸ÔPÇ‚îj–Ÿ®+÷g,b Òö-×(.¹SBÙÁ ÊÃLê!y^-ÆV¯„<"p¡yæKFøGêƒHjƒx0­ÆÕ¦^öì¬N€ec{)Z^GV$îØêäaIܦcͱrò½ÖæDDZŸ»˜u*™y‰Õ»ÍV,<Ì”Eå‡íÖŸ½Wwˆñ`:º72.„OuÚÖö5¹$B˜LÑW—ÞíoëQ©Âj{¯ã|ugœÒàÊÖ$tbraÒ ß*ƣǟV3ësû98›ûØoÔýëÿ(¹"åííðŽë±–0ŒÞ3¬BEQ7Û IøY¾ kªžÚÚ„¬ LÎ:ÙÝZÃ8îd7ºØDS)=.okÝ󜸰$kZ"¥F±ªUøäì¥ä…YPƒÝÑíÔwJè4oãøÄmÿà º«žõßyNó‡LxUÇ~¨õ’OŽö;jìë3¼WAýì„ws]Ý!›ÔCþ<ÏøVDešÈ¶Ìû½¶™St3ÜžRÙŸ“€á¹ÿ óMÅ=pœjðZ±Z“ë´hyw{Àágˆ éÁx”#%3ö5˜_¹ù5Ô|Žyêï‰âF8jäg@Þ¨—3É–µ`ÆÄt­”lŠ$;©…Ýl‰MMê…7ƒHµšáHÆ“qž'v$ÉŒôË/VE0tä4ð3)ïÜäN ôîw0vÛMK„õ÷|ÑÊÿ² €½ðµÃ59wp‡…U¸Õ•ÜWLk)ý"ð\€ ôãš/sPwõSºQË¶ÙøáæyV6ÂÆÛ¥iÝÚr;Ëg„×%™¨Ž[Ä´ U¹B«3Ø×¯«ð4#=~ÍcíÖƒ„ϵí?ö݈ÅT¼xüÈ4>+ýØ/ά.ià%,Ý»3>ªÕùdÅ£ó n^”í›cgváOh§›?À‰ïàÚ”î‚;(Î4®4ÄÓÑFGy¯¦bµ£ ;*C5û„íU·DK¾|W ÅÚ´é<íš“¬ ×þ»Y ÝŽÏr®Ü RââÿÉžløÎŸ‡ y¼M÷–Li‹ª<“Þæ,-ß½{ˆÝ”.e/ Ãm K‡‘#™[‡‘zl=â×$!¾âx™ÆgV …vÒ^ªx’ù(Þñ;ܬt€p¸•ø©ä¸5*hÆ`€Ã‚[à Å îÏh÷ð•È¢œé¾±îßæCÕד uœjpÐo¨&xI?ŒÉ èÊ0l` –Þ¯µÖ(]ÃçB«Bà'[ˆBÆtá&ãíŽe .Ì#Ú¨.r‚3fô©Mæ»^7Cñèø°Ò¼å4%‡tƒ£'jÞ×YFá>rY3O  {êXLšs0ÚU„`C©]ÙóýáÄçȸÚ÷’ì븶‘–“¢ÈŠlu å ‰ŸÒ= e¸Îñ¨ˆˆfùº/ZwG´” é& …ö<û‰ŸÖBü˜_a– ^ûLª>*§Ã—¹¾QWæÇ»ã¸½øé÷ÇV[D°Žý\*¶éàQ›µX·xÂö¹-jº|‡i)¯³BÉa Yüf˜x ÿÏ[ɶ¦ÿ{ÿ“mŸþY¿è:Šò¢Íæ¯r’ û¹èè@ âøŠwYÜ8Ê’¼Æ…v¼{˜˜(–Á@þ¾ñw1Âz°ü«8Ä ¨4šAš™Ъ`øPɘñ-æt6Òúc&_%nÁÆ „?1mPüH’*8ï#—1ˆœyB[Ä;†)Ìg?FçÐy"vKHüß>!B4ü ÝÉØ<hIÿ(ù£ñkŽýÑœu™a‹q‡ôIÉû‚ÔB—°lÁ¦,E}u\ˆ™‹¾A¸-?Gu3–¼ÚòáÐF ë©ÖP¨e@'R˜Ý ÕÏ Ÿ¿±_ž.$î²ÇwˆRØn½:ªæ%+dïo7 ÈaÑØ gý_ñ!›¹sg‡×o§ÇœÄD·3þ¾ÿ«Šý±ã3×¢ ˆê²ÍÕÏ»m&c‹pƒÕ«üTJÝè5stð-?¯ÚÊ%Ût¡Ì-Ö6o2´%"#)Ä£`ëˆ>#0­s¼ÌŸ'l¼jgâZàµ,‡ãÃY)hûC9(§Žõ•ܬI‚¬l˜ ?«FT°~öã)1ZÉ+Øæ«F$B÷ Çn¤·Ë‹íµcê–¾ë}ì劺è(†N¥@1r÷ß‚ ù¾%ýmêµW¼Àká×vMÌña¨­?6Œi(Ãz ø5Yá¹C=<#.Ì: CúÒ4¼öç„9n]ÿµ ͯ¾%•0㳄f°~²E#~ÆokŠêÍBË»£ìT€Âï Sò+8ã…Ó$•õ ±{Ö-ÀNÌPˆ¥¥ZQ-ÖÄ Æ„e D<$5˜:¾ñгg öR¢Q{^¾~=<ÊeCÞ`(™l"‰pœ;%ë]ß§'ÛÑz'+*õåUDñ ‘ε[Ã_:A"*þiEŒ€IAá AÈ#~%ºœqܬ;ê7žÃý¾/€5»äNÇØá)T†eeŠÉ|ߎ9ý­Ü¨ojù¯l ßÜL +¦¡O¡ì‹PÉïÜ þn+‚!ô9 ¼­w~j&3Oä¯IÎ=ŠîØÖ×aDHæÛ¿î*oÁrÊÏÎ¥Ã6‹JÍaDÝrøöz¸r9±î¥dâc¿óûhc‹ÊK÷:™sÏû"VIJH ›ÃÀA1ÞÇ(º@ ®;¶J^i@.åôÂG8hˆ9÷ƒ_œ+lËãrÆ1S6µ„Æ1„ÀŸa a8r„ë€ îãQî;1Q 7ßû+£^fýéÝãP²ñ,m:d¦1B7}˜)ÅÇís‰{ÈK˜"JÛÉiãë’÷>røD«·«0'(¥ Ù§ÜKIH»ŒŸ´Oì´RZu°o ²À†òŠ„^œ›ÒÑ œ ðÙ*D¶5]—Ô6|’ð¿ëïóv-iCñò Ô²VQg핸ښÏ.,*ûZ)Çh« ŒB¡ä˜Tÿ ëæFÑ8M*I[—d§á 烫«Òg²1Æ;{è4.šùmAnÖÑ„ÕÊ{½ßÛ¼kƒ5 œÒÐ6T'Jè·7Ä}æíǂع¦í _‹¦8¿^ï›»~¯ÛîaÉù‰{¼ÿ¿óè¿õBJøü~ÆY®ûa_Q]èÇ¿d½èw¸']·r‡±M(2€] !©³#q+±®‹*K‹wJ¹{Ò¯(}”ºSÕ½m¤–N•èZ%(Þ¤+šìÒ¨.>+ɦ\†ÄûspgO/`sED„µ!É?ßø;c+÷Ÿ…!Tg+ºú*ƒÄ¡÷« ézüŸ˜fBÜO²‹–o³ñõµF>· 'O…°±-ÀFÃÝœm$ÛC>€ÃÀqÏ<` ƒ±æÌ¼¶Ôæ•0ÿ Ífá7‚µá$üÁôxû|Âú«'øøð˜sÿC¾>¸Cö L¹î8'Úî/rÀQ¦é·ÙµL {½ÍpZ}JàP¬?m…ì™aOZw[AÔQ8¸hbù·ÿ6º°i=bÚˆŠP [•yð\óÃZû'¡“β >H#9¥åeÒñ^Yל @tkËJ*Ô-n¡Í}5")ÂÖ9Ç©méʺL²}¢(‹¢:ª!óbñD;j¼QBâaÍÎíÚŽ³²çZ Œd0¿†û™J0À÷Ž˜ãóɼ/ï6­³HÒ T@p!{g Í<0Wø–®Zóöª½ßâVû]6‡P}¯ÜáÿƒÛ‹˜ûúòöÙHÂyôûÙ˜ÑMkrî{ Úw›PV`È›ÈÞ2ÛñÞC;[#päT­Š÷"S½À¯ÕA'Ýdõ}êè-V$õM±nÂs褮â½/93éâàrÚFî²8H“{?ö;;Ÿ3ü¶xêJ3=~¯œ£“\•㣲?™3š“0fýéÐ…ó}þآèöE$Õ‡"êofÝ™ÑÌö¡Y`àB)?'ºPÐw%Ü_uí^,ÆÔw´­WZvLƒ>Ž/†:Ózyt±2 RÄø*pà«Ö²hÍ„“€.œ+T˜‚L §\((†«K‚+:ªÅ0Ö kX>|ö–kßä~Ç`Ï3Ñž¡•eT¸ò8<+úËFÿÐvÜdvé·:$ó%5$·ÚÕîרeÈðö‘ƒ¿Óö[OO¾ÁÌ ù$ºã¥]¼RBöèvWð}&kѾ¬ÌZc4$ä¦,Öìm-ÎN|.ðoñ­7üä`S4²KGÇÈvш>1{m§?aùþŸwS·r›",,ãÄèsj­Ô°Íî)áügû„¹¯ÞS†WéÐK~ ±±ò¥—7œÉE!"æBœðDa+äÑê]ruJÅÆ~C»w‹¢0¯=2:§öñæˆå†’Þa_Ý@D• *9sÁëJyRÎUþ”e9N#þCL¹<ŸÉZ÷ôz!swp ¨w9¦eëƒÄ@Þ>V¹V.›Ç¨ÅÁ“R,CUµ’ü¢'—Pf÷Õ™O‹R< “. K$2]Ü-rŸËë p¨RÜ$ˆ­ƒìQ>áKh#Kþ‚€nJµ-ïY,5û™Ïû'¥ó¯Ì@Øî ¿Zøx¼‰¹» ù€|.pŒæ——6‡ï•q] î†ÞiR7õ²z–žˆ4‡RØ~ª?WI«ÆÆÂ;Xð ¼7œÐÁó¿Æ8¢…‰¤ë‹iÑS!Å~çh3™Ëº$UÛP5-QI_±E@Äç :[äô“·„úàÇ!¡ ½u%öéÌ1‰Ñö\¿Â#!xÞSâDo’•¾ô{ßúݾB¡qî>àŸŠM¥&»Ú8‚ ù ¯&<Û"«s8xõ¹]Ô?¿á/«¶º„öÝ¥ûæì×Îbb˜&X4âcnN’s˜ÙœºZ¦rb'‡àG|uÿØ|—]¸³¦™Ác-t¯ºÙêâšF™:œ.x° É9'¡:Åcu“&þP‡õyý¿_Ýú÷ù7æ¾?“ÓN6ñ¯5W1ÖÕJË@npJ›s)ÌS6DkYQ-Q‚vƒïS7œ[vo‘—rbζ™¾T_l½ÒN~U¾ï¬àý,ùß ³Š­v–ÞE]”óͳD d^Û†¤íÎ)«&68ÔÁAõ†hÓHÚé›FÇz/8£i=}q‚¦ƒ—ê.þø¨?~žq§Ë/øqÌSt ƒ'ùz>M§AiÙa`D æ ¿;çY6|€ù5žnx;ù³¬¿mÐÚ-« #d s†DÑ8!¨¯Œ"›B¢Ç‡p(p(´fi¡S«á\«¤Î$¢éÂäq¿}`–¨.ÃŽ ž3•&/ ÐR1º®Î*Ý›&DDDлž§ð¾Qä ™¸ãá,ž Š3ŽÀwÒñ©®æ«;aÉŽµ±¡˜pµv;·ž'^êÚh°-¿Áöûøi\(nãXMÈÁXKÝÊxùYäy;˜¼Ï¬oÞž©ÏÛ/;‚T#Ë´úx‚€}£®ø[¨¶Lœ.’6Á€ãT"+Ñ?Ó%¡R„I†õ½ž ]ãsŸ6^Žzß¾Cö™r{ï•‹§F:4Åw2ØÛ?:oµÚý/£Ñâgñ½‡·Ñu5œ”âl¿ÿ[{‡z‡ŸØ!õh|<ç¤%J6*ó¥â„­½æáîîr2 ~ü¥ÄX­íl¾ÛeÆsÂþ¾B‘;0 !«˜[¸úxmËÐÃk¯åŠw ­n¥9Gí£·ák;ëÜ›Cð‚½üoÜ¿vÞdææ¾Kíšo¿0y¿žƒæþöêÍ•góætϺç-O îšè#¤û:Å–Å2a÷JJ™Ì["æq…Ñßc÷Ö†0ŸÎÖ|ɳŸÙ¼¾ÒaCèãú©»"ïH`7(§Aò¸g§‹. ²ãûªlÐp-ÝYHðɦÛk„0À!5jâ#¨>G9yšÔŒí¤£€ûO;y»¾–ÑDð«Ø\ô{UCÄ‪’rCóÖP—–/ß›«‡kÂØn ÛÀÇ{@9ð&׋{sB@<\ñ]ºF‡s»a<%Ë G؆2Ç—vBꄯŒq”‘ouºþû—É÷;ª£Õ¸Ö?:œø}IVcð“ýdzòkGèyÿ~áñO$$Òg¯VØN¨ãWš¢ò•”a;è lI`çÏX©£» ·=ÄÎ "tmïrùµ¤(:ܦÎP™´þÕ¯ÒЩ·ÖŸk.é¼åá¾V5 L' ÔÂò4¼'cwî©Ý˜lïKRëKä}3𮬙9÷¯¹êZ]æþ;pÛñŸ¨Nfîãù û¬¬.¦ÂôP z¯”båZg¥dûÅâÂ’ÛB-ȳ½˜¾3’`ïxn0Èç¡Ç óûøB{ídÞð¨W&B’è2VÿaåøVâÒœ\êÉé@JÃÞû‘ ”ŒÍóóÝøÇîûJªÿ‘?GÃÜ| ñøúï.—1õFîü<Ü(´b?¹óaê ìã™ÛÇçO0šÆ]pù ð^õøî]ƒ„:+tø­æŸÖ9ïmš¬©fèCyñÕ»˜¿Š¶÷ùäà0êÌ'6!’ö<^ÙXy\,š.®¤ŽÒ‹£zÒ”%¨ÀÒñÞ:^e=€Ô†ð~¢g»?¨ê¦ [Õ…7V»ÁÆXŸ»Úïu4Jþ¼ú°zƒbin¯Äs}]ò ðQÄQ s?ŒD-Ö![hõö¦uÁƒo|b ßæñV®··°ßI¤„\·C7C¯]L§UOn‡ì]èÀÝÞMÿyÿÐ}7$7cô»o}@ÎßÊKq=}ˆfû«†Âsvø–Ü—Ålúk¼€Õ9xÓ¹~Uû×÷sGüÔ®ëö5Ðw$Í®P¿#k FsdÞÄ ¥-|Ùô Þã'ÅÞ#Â#È›¦˜Àðeë±úÃ82íÞBæötÍ­;¼n?7Ö§ƒ¨š›sÂEm«:6tÆTG>+— Ì8¿›mÆo[û~{Ì·Œ2ýù”fVèË{Æå#ÝÅx fzð‹ãoG£ˆCº3ûT¨Ná)SyQH€QÀÉ2÷lR/ó\Ýó?Úw¥1{ 4¿½Ûëñ8Üw~âïòè¤r]uDQÜF&æx–µÈsàÉt|N…»èYµKÒÃêî§èÊÅÞóí Bê9^¹sÝ7;æ|I¾¯¿§ëp+ϹÒâ[¹â¸Ù‘›º0vÚžág«Ë¹w‡]‘çÿêãÂu£yޱZ7¬d?¯¨×5DŸ´ñg‘ã³ ®àÛ3©!Ú&…'7),Ò@($‚(K v(‘µ¬w+ ¾àø3W“EÒà€ÖGD,5APt´¾ ÉóÔÜKèä+Úågké]r”å—ºL0…°"‚™ûØ` pÖÖÒ][ÝEeñ9¸^î0YÞqýííñ‘Ô§/Ñ(Ækï³ÐÇL/˦¡&–)§P5òØvp3V"¿l9}¤õBaô¦³¹ëx'sÛÝF|%D/]Ïo|;˜Fèr¾‹:Sxùô|Ò²·†wµwqó•<¼-ã“ Ü**|Êï2fqÈå¨Å¿I~‰P4„i”$o :G·O™z|åá#©ëw_àCÏÖ[IGÍûÓÿE‰âC.§>©>÷ŽzóHZ†3æÙá5ÚÑÏŸ[÷øói£„UÍÑ(Ôuƒ™‚~ršÜ \Îz§Ú¹TO*È/‘ÜGßdWSØEO°²&i`99×ôós6^š׉¹8aö9L,édßVæ(g(n@Œ,…ÉSœý=­ôó}™æóðáçñCéKN5ÖØÑk¬˜ 3ëß{‡ãÙú}Tå¶s”ÐGŸ'„Þž-lǰ"7õrrîoñóÕÀÍ8DŸ½Üò¬Æù5ªëièÃÊŸþš˜Î·ÕPú¾^žê]kcøq§êb›7Á3öÇ&"_.˜æ×Ò·ìèíÏÓû1aÃxX^Ö5C‡RÐBéD×´û{ÉÕ–C1­ÞÎ~þs¢êsÄ0œ:?x«ßeÜ!iãE¬Pΰþ¸.iÔùF–'JéçriÏyÖÝA½M~>U£Π*~ž-ŠÒºz8¶‹ì‹©Ü±[Ïðmyœ~LMnß5Ø£¶¾å‰ÇÿtTï^m+úC°5C¨àÌphB`•¡+žá¿;Þ°#l åv©fÑc‹›Ö!UäÑ©3X„ÎÁôÊ[™ÊzŠ”D2MÝP„ß®E20B<+šå°é_÷ÇTŽg8H¹b#êò0ö}O¡Sœ)±Pôlݘ0r‘Ûƒ5›†òÏ›,ÀòÃPÄb÷³×®N Cà—tx]g/?vÙÜœD|êÏÎÞb[_ûKmw‹ãšÜ·ÜßuDÚöƒÊ>â8·Žš­àûÿká]«’[í ݺ‡|$]ó`¹9‚õueìaœûâýÝJä {‹Pµí6Ù—Vž'é’b5G‹Z×µ!p´«žÂÛcﻩf!q‰¸_©öÂõT°bB £.@ûÒÁ™/æa¨HåÌÌlT†”—^¼a™}ÉyIågL½dî>”lÓeÝÿ^_p^0P@¾2CÚæÔƒž*HßKNÃAâ—ßë×!"æckW„q"ú-”Ý*¦—N ýß'Œ\6œ¸±ÒSñ¨óŒZ$ž»ë{¸€q[âAz PVü<î÷[æ.£Äô œÆx~>̽ýôŠ#«wµ:L¶ß,7Q§Ú‹½Zfï‡bq·ZkHŽU>É&T"î —Ê´{Ù¸÷J·.aXlH8ÄQMà,aÆ;Œv LFƒ‘7»÷ã÷,ƒOAÞ«ƒ=Ïz.èb e; ž_/[Çñž ¬!¥mï/Vÿ©džÏø™öœ§õ0Ò3\ü/oŠ'šˆ<ÒWWSôÞ{_¿ˆŽC(s³{«ÒCÝò÷ÜKÌÀŸêç=¡OŠ€¦¸ƒ[‡|~Q<<ù8Ïã Lõ¿êó4öÎq”ð.0“g bâÅÊ·;¼(–¨ù·‡1?Ö¦2·¹»ÆƒäO#{¦2Î{ú9Œ Z!Ï)ŽãÊËi£’ÆâÆ{>&‡+J# ¦Ml߀ž>SÃ2LÍ|ÜéÜÈ©…Û32<ýñÞìË£E± h[•6/µÆÆÂØNеê¸,0~¡¬ÆEUÑæ3+•=O3{«úAÕ¡?±è®>ý˜‹z×§cœ_Øà©,Ë#À*¤,ññmkÔ'¨vpÝš J´hÄš¡sMý(Î4§ÕœX[o?§÷™ï9ƦõŽpÚíÍÍä½ìa-|îàÑõU¬Ì¾‹ƒî¿E` {‚S»„ŸOh¬æüUÔ_2={õÐw«ì|ýßÏ7p³Bg^dÊCžíãnOÀ4R‚ Yr… àö¯ç”¥ »Nô](ö ÷Ú΄’Wï7¾ ÿ³ß7ðôïæW¯Ó AÑÁS^Í¡5ã½Oçøø·6-~r¸;‰}LÔå7ørœªÞRD²ËWé’îó¸Ê9ˆ}fýWp§Ïò×À¡xŸ3Séa‚yçÍ®ãfö±»ÛÎ '±™ÝûÞ‚Åò_æG0ûÎ-Ì2ùù<~èCÅãçñû:“ÇÆïÈ?€ã™ó}œ‚ý¿Â¯âÆû?Ìá×–øøðbÏá¾Ó,QèLjaþ’'ƆOu0u~ŸI ï–Ñ}œ@àÚM·ÆêøÈW„ ©+ʺK3f« úh…ãç>§å=× î¶7ŸÏq¢Îå€ÐÎj›3€j½ó‘qÑl Sx÷Wùü*}4/ë{’{—»¼•çôŒO¾´y°ø;Kœ—쟲÷ct=Ë® þïVpx1˶©{­TÁ·½E™4úü¼ýY¹å[ lFñh¹d ¹åãV¶ñ÷ب…q‹ÈIu%Ò”ùˆ>§Û¦ˆ"ë4e{Ã0nr_ÖŽ>ïÛpëû xj —³á¤9Z)D7Ej72Þ©ß*ݰä¢NNS?&Ž}ÙZ[Ê¡·ÄÃôÑG·Ýì„%ðö]ÌVT³wÞŠ"æ/Üšó0;áÆD%‡¾sxÈæ{[åø::úõÎê”Èà ÌÏtêµ0Dæ~ëîc °ZtŒC€åtòƒÏ®æqæ•£:o·_i:Q–[Ÿ]ôy<гª|±èVç­à~\,Ï~7oƒM¸ˆ:ÎP@ˆó.'Ezõ÷3 ÝJµ;£õ|³­/°×\áåÎËmL8}ÎÆž?65±}wÄwaˤýJu!1n†ô¢·l³ïå^®žÜ<õéÚhB犞óÈMÆW«û® š‰lAG/Ó¯ÏÞù[½ìvìTýï‹?«›˜Çü>ìj=âÙIµZ•†¨ô!Á§ŸµÀÉ9áïsf= }¯ºFÿAg7ÆÝ¯¸‘ú3Ãà)8l¤á yÆ7•4”Õ{ Zþýü›`åâ$Àƒc}çèæû9°øp’xâØ%|º×^ÝîG;Y(ÔB~­à¡³µ£Ç <Á}¯'oxÎÞ¿I_ßDºs¯Œ=Z±ÛnR8§Ózž¼ñŠ>æj¼²­«}À›X³ÍèŒMº¼Ü‰ŽŽ¥õñqøTº1ÉáÙP‘Qzöµ€Iú]g<7®¥¼Ô‹©]ð¥0YˆQF–°12ÍvE‚‹H²TtEAÊ›¢ºLíûº+iœ4±L#\øÚâí)ÇG‡5¨\Q³sƒ»º¡Iö f†yOðëÛ“sÈv<Àò÷øx÷ÏÁÑG˜vèÕ¾¿U˜íi¡¹x&’`O›ˆ,ýC®óðu˜¦™ó'ÌCyü% ¬˜BòlË€Ì9DcY~dÜ <¿w™¯È_g¿…/Wþ…ßÕ‘ }çqˆÂûrÛ|3òIóàï¸aoèÕëù ‡“`»Ýëk€úÛÂ8ò€÷Pðöä/à㌧ùºkk®ojï€î:!‹‹¶E s¾#¬¾c[)›´OЭºº”¿›·ÏZ®c»\ñrUiõuûNó:{y¾¾ßš/nÕëñ{º|߇æ‚ÀXó >ÊÚ7ñW@„vèõ*ñÆ(—ZŒ{y8dz¥@zD‘œØ–/qoXíúïÓÿv(˜ëí{}÷øq3•<ùü>qå’÷ ÔãáÆÂ>Zʲdf:÷¹=¨ûýŸÏå|vKž*Öù&ðž^ŽöžÿU~ËnÍÛz®Š»#Åð·Ï‹ÓŽ_SsŸÓÂ’þ !÷®WxÖh°r"FŽ4¦ïÜRóp²*º€K>Å„™! æä I%d`˜#¤©%×%‚yŠÔmÕ?Ju½UÜí­´H7§™£ì/<Ù!‹S6ÚŸ¯ µã¨Ãßê…¨‡' !·NÓ*_*Ø Sî(]Ašˆqƒñ¹§Š&½ÃØÌ°§iìòî“’âžš<Ÿzßíø; ãú§˜­ww§Áæ¢WËÖØ­®ÄifwiÄc Ò€ eæ¹£^Ð ^³}×o?«g‚Ìx`$/ùIš<¡¬þƒvfïáê‘Y|Éq> ­ömàk‰+ÜÞ„ Ї†çŽÐí»ìüÑÛñp\—& ›U´ýE³g° Þõƒ¨©y‚õ¾cp‹s6¸²ã_ÿŒ>h/˜†/xŸá‘Ú'.áEbó¾ç2§á!m0é9q(ÝGG)`.ÅÃ!õJÝæÌ?l§ûÜ„£É××,TBçöÁ¤¶d!^É£«SeÑáäízåž—w8î_Oÿµ—|îû܈•ÁÊ.$h§7Ë_ÔÀÎü\¼$>Lj`ÑîáÏ<ôðF°ºíz2xfÔ6C÷N·‚±þn8E ZQÚTËxõÆ-øÈAÖ0nuÑgÙÙÂÉž·ë5Èo<Øïø„õ#è÷ú|÷°*Ã<[·nþ =ÎÕ0ö€_['&âßâËæ +<7[ôK¢ÙpS~U;¤i;VÜ EÄ¢ÜÛÑߟ//.Ï/›ó;|vFc|(¥K‹íX%EåÅ,êìC>¶TÍÏã¯1×3®TœXb!ÏnÛçÂ~(=GØŽOJÓ¿l3r廼;Âq=„’ zQCä—y︄þ¤¨€FæU«8µïA·5>†OXñÆA#®ù™/P¼˜‹˜Îç¯S71žk›Lƒ'æ>b±'·VÈò<×·T¾ÉHo|ø7MÝ€]Ñôè!Òæö1:Ý>Ѿz÷´o¦ˆnÅÂk"¸ˆ˜; ^_/ì±Ã³qªoâ®]ŠñÅ*æ;“—•¨|º¶Jõ5óRZ4¿Ñ\íèuŒ0tùÉOV?èÿÓçø½å}C«þ'C·…t6ÃÐ7˜‹ûE»ñ;Zù¹ø»úŠ«¬ö·7¥ãVåhRó¬S´ŽýyO`iÖ§@ÁÛyŸJ®ògå " šèH3½êlK&ÎJªL^î÷7‡¡BÔïþ]8±qâ8s¤×+9…f†Ó~¨÷dîô^€‚bBk¥z;­+åÕ¢ªØ.~Ö® Šö…AS Íç_ÀPo€/°ùp§/¶nóh“ìäô÷5É’ê?9Ø8¡øP”þá䯃ÄO¬>-@„%9üÝE¢ð[–m'Qî÷75u“Ù:3_Ý|5aÆ£ˆ‹ú0\ï]-eÕQj¨ yŸêHmÔ/"M%»d7²èÅþXoçEÙ‚ßZàgχ¼W«Kõ¨Þ Ž'ÄŽ }„ 5~Ä„÷‚¯>øòY¸!2û<{ŠàÇ8Þ­ÍîìíP}Ë3&iûå½K×;„eŸ…Þª|9 ͇J±”߸¿>?_-Ëé/W ±jñ¶µ!´<‚céî^¦æ]=Õov€KÞ¼-x«1Åç;„rL¿€ÖÏâ'm¼{™®Ç“|¦aMȈ#}j€]žNà Ù!ì«N%u |0SG.ˆ/ªŸ^ì?59tóŸ@Üí{|Ûg’Û1œÿeÉ;RB ôɘëøÞDúz9éíwñhb¶o‰¿¹¢O^=FÛ5ÁˆÝ`íû”æ‘7”ò!qдèg«¡ŒÌ¶iRCßÇ0ÒX_C¸c&7§s‘!àê©Aå"~å?™ú|éÇήŒ>ŽÎ«W¤-G Úó~eY|3öðîæÆ&œÜš8FÌý¥Û;"@‡§pܧ#•优†Þ3Nt[KÜ`Ò÷¨ÊMA÷}íc_Z¼Ï¢ó! hpï&YA ‹Ó±þ«‚Mòì¯ÑƒŸª"|}Þq½­ç¿w˜|REªýU~[÷{éh‘ ‰fðö¸0¤]òP\Yïe­•/jæ?tïœÅ7³Þ9da$ç·¸ãË´ÁPå X¦[Zú™žTöMÿ­líÎP™a r"ê¯×ö&þ”Ì[¼Àquv˜éâ#®Í.†JÜwIíÃÜÜK1Þ¾RqˆÅÿu ‰z×mʼn͘„ÝóÑÛ¿FHÅ0,š|‚'$Éd∼¯²¬ZV“Á¿ðè¹>«Â%ì oÖ$¡Q“YÌr0~´Vï6ÇLŒåXÑàP!®‡MP†ÁgpzRjT–;Md¹z‚AÁÇÉð§a™ƒš¢:¨<2ð£7pÓWô6‡Ÿ%þnéý –¦ Ëi…"fN.§ŒÕ=…/Ò(;Í0Äîî– ‹¾Ù ³È¿Ñ4¦¶$ø9»^M¾½µžììáÁy%#‘]ùÝžÙÏçòdõÞû§ÿÕdÇòÙh}õeðô0í¾×ƒ7°dódÂ,Ëœ¡‰qî¹Ï?N¤ ]¬¼nÚPì(÷FuGÛ*º‚äèÿT£´½~ ó@‚ôǤ¡}lJåÃÃ1mõ Ùäý/bŸýRßœn’èTÎ0ÛoLt…ô zÆëåÚñòná?0ÙrîË´À +ÂwIb¡½j©÷;ʇ ÅT²BsˆñÍ/¾oU\6F5vKÇA°ùá ž6µ$ƒ÷|ØâåHo/ןü)þ·[Ÿqµ{rÆœ™è7ûyrz—!ª¸Ê÷vt"»åuµ­·ùÒü ä{ é@ˆéD®°„Ä“&ŽTQ$ È¤HpWsõ‹¬ö—\^꼑V§«ÁÉ kC²éW‹‹Ýß_‡˜n;ô]ãïok›¹nú§#1z) »®ÁÙp|UÒÎK²4†·†£ç©j¶ v«S ©&AùùÓK-vxe^Þã,lÏ45][½eí¤½¯xQYés:͛ÚXŠU“Ï3O>Õ²ïsl˜ÅØìQÁG\=Ö…!ì ÛÈ©œ9¨.æÊò¼à²>àþ™Êû÷-y☀¾Ž|ù–g{‹/t×®„³AT„î€xlsÑŠ¸å@Jsa¢wÀϽSª‰y¹uVÂp”:nºÎp©í¼&¶!"Ào?&‚Ù_¥ „Y&îz]X$ŒæœÖÌû㥨£Zü•þhzZ@íß¿;[¡î‡À#Kšíb=Œ¼©·šîܜΓŠx/„#­§d"ó ")˜\ÁÏ®ù"k¦+ù ýnxiÚ†õ]¿2'’¬t“Xaõ”!¤6”GyTÉ1Š©Ñ¥•ÝH‚}q»Oʈý3¸¼1°–]}­¸Ä›%G'N)Îã<•¾ÉHLà TÃ'ÛÇYÄ J¸ ¢Úî.½²¨C«”d÷Îâ ¼×®œÇ!©7¢Öeé±"ïaä@µyˆÊ|nôwGî>¾¸÷z1[üsõ{êq•™¦ö®C¤o³ÝrÕÌÞ †G.q‹i‰f¦òèŽHã.'_¨/!M‡£PòΉȊWµ…hüb³K ÊØp ·]ÙGÍ…ÅMÆ/nüæ™jFñÐîQ¦×NµXà¤K»V°ARiÇ-*yñÔ¶¦¦LjàÞR_P5•,~D\³lsãJÔëñ %‘êˆÌyõäÖ ÄÕÕò§^Ã7\¤ÎÞ'FjûزqÖγL=Ž6_¨Ð×Q´•5eT|¤âKƒŠCßì<0Ú ÷S…½î¦žL »éýú~‚º·çHÛ{ŒGÙ‘à,|%Á´‹"©ŠJ«×9à~ƒ¯‘öf+«lMCk¡V‹—Q%õ•óÎÀj‚+Ê^…“×K3%…‹Ø Iþ;@Àó8&:®7ÞŠ¼·nL(ðxL¡ÌwvmeŠ?æ …ÄáŠc¼ûÆNØôfñý_o× 1ü238ˆß ÙÖÎC”`nôã¼–á×è\$Õ”9@ÌÎbÁ1ªÿ¼ŠãUd® sÁ<@ã§p\Úðwê\ï)/ô*Üâ©Ê‹À«»eßoÍË_®x:~… ±”CÊxs ¶ˆ±-H{àèÑ{~NÏØŒœR ¡›X [®yNŠÙÝå·‚廜²ù\ÄZÜÏ5ª¯i¢¯¯ú½­îôöŠûÑ_Ãì /Ø ø w •šTÙá‡e;^ö#æ[×3‘7-Ú+ã2â>蜋ã÷úÓjù {U-*,T*Ž\å>!ðçû;¾JF ÜOÇ@æ4D/Ó6î÷çOÇü]úåw’ûÐ'kæˆúI-~ØVÎtóòYJæä:q3 DˆmNjåtV/ŠEx ã#wOUr‚R¼"çD±`SÛ8{¤’^°Ê*NÛÓuƒ?׃ÿRª=`“ÊŒÉGÞ‡&}ÈÀ"¾3'62\âTªÅ¨&xãÐO‹»S”"[âì8áóÙ~ÓÇkHG¨¦ß$»ƒ…‹°%MË­ð#žæêm‚`þœå%§å|eÎÕ‘XýOÜs¿symÛ›<¾,3ÌDãÑUž Âma=Ü\nI…jéBœ7¯Å™´ C Æ0áÝt¤.|î7Ì[Ñ^}„óH•êþynpº¼;­Î.Í(¬8A^k…©³ÿ J´„¿q8š&8pÛ€<'0lœæ¥±•_"ÅA6F=RY»„$Ñ1›¥ž@VlŠ4Ä#`?Š ÷ñ@¬IØ:½ ‘j×—Ù¥QVý“N…ÁÎŽ(~E(ßéüú.QÈBGÜê©RIýëæëòW]9ÉM#+L‰ŽIøi¾»³bšÑW T9?Ö~ØH5uÉUMŠJaDÁÈ€ì #M8[ÿ0}ý·ôgG©Sý³Oö„䦪:Y=“›ë¼•Âòn P/ê–&ŠÑbûaKrÍ–+*Sºˆ+^¯iüX(L†ËÑ{Ó…¢;^l¦%Ü¿‘xoE–Ì1ä¨~±a¾kS¦§¸DÄ꺦Àpo¡öÓÃ~¶D†«²8âùüLÆPðÎÓ^:iÏUÛ̇B ˆo}r ƒß 9‹357Ÿ¼Ä³†;Ä'Ú´œÄŒs26þ_g0›„íMže§‹«¹$?ž/?ÏÔŸê}‹¿»Òž;̦ú#sÕfá33^ñÓHf˜xd½¥„ØRò³qáòÖ^=)Ȳ-[{°xË‘ΰKËÇÝõù§¦Æ}—pUd¹ßUJxE÷‰ºzM'ù?y©ªˆµßr×^¼Lmù ŒÆE~A.•}‚Œë¬þ9ÊÜX‡‹FUÎd™ý(aBb$§Á9‡ð­]ùº¢ÑŠ¡5.®û·ñ•q#G±_еõE.©;._>·hHaöxÓ‰,¾8 ï'>„ Z›ãcX´/°0¡N:Ëöj*þH|Ý5·m$½™Vȶüt V†¥°GutKÈnsä:b3T`ÀØÆ‹pº°…Bž¯päU6¦ ä:g?Ÿþ¼ÛY€¥W…²JÈAêM¡\=Cf‹ÖŽ­&>aX•tø:‘1.såQŸ¯‹îj2–s‰|PTÒwòåÅ—…­Ø˜x\OŸasê±ý-4&Ý.®îˆgÿW‹êIrÙ‚¾ànt\àodqÇQC–„AâkÞ)îd²Çæ66ø“,u¯]óçõaÁ‚ÌöJvåºEÅd)Y‰ª€2ÑH°<íðÂ?M-ïpQQ?ß9™Dq@°ýkcèF6î]l€ëfzÃ&dvcfÒÜ`œÀŒ7–ýÖ ŒˆÐ4  Tf‡Kl4¯‡ˆ1Ðvä­k³áZ\^댵r%öOºª>‘zÏ€e?£aÜì:mùѾ“¤‰€*]ÒzaÝXe{—Š’<2…8DUò+9ÍèQëßdGÇ<}ÆØ2pgÐÁqUšézpXŸ&UÀuUO<ÃVÙ€®"PüÇöÞ#û?yퟃt¶—Œª3Œ*î•á+”¾FÆíL>õ@Ãr‡ ¾‰68ؘWd­ëàâˤ´7€qb¼\"]øÔ kU(LqÖR5©I=rO H·züR€É²fŒ¡×ë Vˆu',~¿×ûÉ)þ½:5jòÇòšwŸz2Ο]vô¿± °Û¶Ú—¤¼9wÃP„‹,e¦Tè£}‰¥ ’h(ÝÚÍ„%ZéÌ:óæ"Xê>1Á´&1DöÆD´JeåŸ!FÔ*CÈ DQ“޹wpŸáöáá lëü~'˜# ·›øÆº5¹;LS˜QP1VÖÊiDϘ¢´.ñèÝüGŽ0°15‡ãz{Š4Åzîí0÷üœ_‹ËytJwu¯f½ÍwG?–vᆸôÝìL0åã‘ìn7cöB^O/ß¼÷ˆóì'í©'·}Ý Ý¬\^°?˜[ó@8$&(@* ¹å0Q/ ÐÀµj(‚êÄ]ü ñˆ»—F$Ti' Î'c{#‚¦ó¥Îèä¥wgï H2ž|`²ñð ij…SÜó¤§ÉâS‘ïCe•)GêÛuÙàu‘EŒ¡Å i0‰G¿ »ƒÉz ÓKEƒ1Ÿdñ8Ô¬y^%2FL¥ © zÈm@…×#—6ÓìfEP®;Vñ’*ç Ù“°’4ŠÁÌ7N–>ά"(qðù÷¿@ðYr–nO@®[<Ñ©=…šë`é!â&“ËëȽԫÄС·V> ^¦¢àœ’E+œ ð¨>UVlÕp$Ñy2„CЃö§%Ç%9Ï–úÀ¼ÈYøzê?wr÷ãYäÌy¡Ï²ñd^b@†Â(*b¨Æ±õT…þ+õ <=ïcKì0³]v |4Â2öÓ²f»˜0ĶžJ!íòW¸mætòÍéç#îø{”³øzÒêá»=º¾‹ö»ÊPcOÓ~{z\“íoÿã7gÜrW¸ é¹Ò²¼{q­XRñõ<ÅbÆX{ÖÌ Í3H›¯Z`&)…Û¡oxò8MQqÌt (ź8æ;PD `R(Ði$8P…‘ºŠ¹®6‡àÖ‡Õ× jw?@õÍWI]õédZu²z"Qàß”ËÇÇi1x6>5*n"ÈÏsù ñTCÖŽ Æá ;‘$Ê(‚ñ) .oÒ#à-ÒÑX£! é K‹Ëðª/Ü–b€çÖî½h¼ ÷™áÝbÈ6¼³[€º¡Ÿ€å_^WM8yœ“Ù½• &t XAA™–ÚÍˉ0¾å¢8UºòÛÞx VOÜö¥fFeÆÏÐ7꟭S)¤ÞeàÅ ÚóöŠàmÉ€rî–§ˆ.t—,CuÞ þªëF²U¶ô6Oº+ r囿ú>ʪ5Âî¥``·‚‘”FÀ}†Ÿ ª‘ÑšÇyK"J Ã\eøŒê]{‡Tè7èkv»í ±ƒ{Pî±}¡<(¥#è´Ô^Œw?Ò¤Ws—8³Gñ|$Ô$¤g§…gš`š¬iŒ7®Bt)èH›)QY¤D21.–!a}ìEƒu•ÖÀ潄¯v—@ec‘Í ã‰h“P.þbùúÖͪ•wÂ]$r‘7 »÷ɑՆ˜#å±Û¤t‘(Ýa8W¶¨ $æòˆ¸“¨š"¹è[ø Th ê³ÀGÁ}¥íÜìÿòJ¼W…Û]½§-ï8†Qjz´ÝfT•Ué›(v®ýãÆmãr»n 9T±ðѼÖÎüØù0šôŒ:Z B€F£|ÔÓ(*iŸS6ëf9g } Ú•aµNMÊ€¢–Ihê,—4X k(½5‡¾Êîô/0ð³Îø ™Ñ7²Þƒ—TÀÞ¨—ù sôÆ–â,Ü3JоNÿþO'' gÆECáB¬àé¾ÌLVØfdôq1âQžˆ'½WLþÆèD*jH'yW¼B`ͦ´)*45©ØEd§N!U1'(¬5’YFlR ð4JäK"ÙŒ1{×!4³)ø0Ëî8mÔ„¹Ô‰#¤^‚û•²&“Ÿ'=Ð?ä%˾‚±È«ÝßšhݾüwÊC Ü6oŽ-!.á%ÎY$R–ijH¾”ïé w; "²«–ð…&îÙÌÐ)èÜ"màË6í›Á|¾]éœ;DÒn)cIƒ²è·ýÌ7RÖä'´7¶Bpº¼Ãúæ½r[¯s§)¬êe÷|Ê€ºx—TxÉ í¥v28<ÿO¾1ÃèÂÈ/Ý!k@Bô§U%öɈ`‘Ú «¾xŒ} ô´_ ¨šž†ÃhK–¾œ÷¾Š­crÕ71+%nÐÿ~<ô‹Ô½$ßF¤Iޝ±é߆َùNl\­Í ýÇWÖÎwCªÊž ùB>°zš \+UÆ®QöqÏ=—åÈ¡žàÖ6…ÏÁr+X#˜Fg¼âä^„#,߀5+¶›±ö×3 õ._@–çÄKÆK+6´étr(ºxøJKíà݃zÇ@>h:t£àM>×în<äS}U´ñF@.ô ÕÉorûžqgýähιð¤aò\ ‘Æžb7ð1xø ç7†šÂÇÀ¡Û|OµÑ>Ξ3¨ùRÿÒR:AÊpd×n_cÒF õõÝn|zzÇdé8÷¬W¼}éqÖú¾«mâä›!áùFÌ+& ‰‚•»˜-kÔ;šûjª<Ö´ $·ÿ¬'Ôû¨ÏyO©{&«)W¦ûûÖHTðæ ÇIÛ»€4·’îDï)h¾Zªªp½üÑ%ÀfÚ?aqhÐ?¶ià¶¹‚}Rmþ– $¬öKÏïØú“ò(lÁh\[ûÂ8 ¨ìœÊ»Ö;7ˆk 1ÌÊ]‘„qŽÄÍÖ™ gõᅫ,bú’˜5£‹å¿”Ò?mYõ-v ­"D=%®yäW˜^× Pâ<¬^fsm„殆C o* ä’kÚ´.¸I,™º€¿»þÏ™Mïím_¡(|œŽÿA³æö¼MôŒþ´òí–sÕ­ç¯:™]žÀ›âá¡{4ø|ã†ÞæN¯S^ ^ýG}| Ü#䎿9K¼ÀÜ;”é"2K[go¶ã³­$;Uõnþ²PÕ°ÖªÌGªîïzùÿg\)…Ú-¡E— ßq¦Î?7‰ÐSe¼EHÙfE$ ¤ Šj ˆ1‚Ô2VdéÂŽÌ»ªó“àKµÎ¼>-‚î§È߇s}m~Ê/WNÑãHéTåá÷8n¼%ãHtHý#z¸CÀ‡Ëâr xî¤<ÝáÓj>`,t«Ñ%JdÝ!ѨÞgëÏ^îx9;r=«×î >á¿åsíá ½Ìl >¬Ml°‹Keñ ´`«á 5Ö­Ñ–G¹ ¹È›yÊí—ºÔìNjÞUjebO¿…CV›RÂd0$õ„ÀÎsõeèsêÜ™ü]šNЍÕÇ~6U"Á凴ÅGÇYe~ç1T®BX]ˆ$]9F‘L¢£ƒ‡%@Èv@LÄÎ`¯«N}ÏÚúÜêâî¥êI¶â¸•XAJÜJ-,€&^!{uð F£L`61®ÔP1§¼&ACq×·t—;‰<FÂÆ\6'õ¶hùw¹ÑÃݺzÑG(gë@ćäMrÂvÈg£!ê%=ÚHï„y©`‹0Úõ^Ò/xÖd•´íÑ—Jºç< 4ÂBɼ˜Tøµ\¸CÚâh¤ß—ÕÔa¼\ý*>(œ£wû\ÿô –õÛ›ÛÏø"Ûúaa°*,yÑ™$#y^œ1Ú* NÑ]±(. ±‰zÄ‘‚YbÛASquaÆUôŸg+PCÙ&Ó52ï“ì<·úS3yŒŽCHDÜ’·¦Ô‹t»ŠADÖ¥ “Ôt¡uo ³ ür²fµ‚`à›“©Àß•ÌÜj™\ˆÙÊJͤa$3òN€=èœðS!x¤(&LÌrT§…×å PÍmVÄMA:ì=i‰IøKÐÄÜyè7¿ŸÈÖlù ÒC¾Ò¿1ΛÚÉ8djÎ.ùK>ä:MÛ÷N›®º¾­É´eƒ¯>çÝœÕ6í= s}ëœkõÂ}¢Û?kœˆ4%ßï0}#á7Ý é3þ í=ŠjååûòPžs«ûEèƒó¢\lëÒ4_5 4pxˆº×G?åÚ^|câÅgz'¿€ÞW8y ôï Ü8Lìëí»”7íïÈ_^lØÚƒÃõÓ†ß']ö¯+yÊßßoìAªH±¶Ø6Ï„3»¼år §ªj=–ƒF§û…­ËÃß!_öHÁùpÞ×2/GèËìm¼¿coy·U=ÿ­Ü!a SV½9DÞÞÛÙ1:wD«¡[.çíõçÓ’æ&½:¥gRÝÔT=U´Þš†ãébúÜ™ùcºàéßîÿ?àÀ2ËÏúpÉI¡ºîûûò«èè¦lµ€ïo0s³%KH³=ÐÒç'>Pµ /"Ý]„PE°ì!úXöÄWõ>·²vOAo_ÑÙÉR€­ðwƒn9ë­ÑíXì0îíàØ®ž?ô¦!êÊßf-m1ùn§^Nü<ÂëCM=|]àÞè57¨‰]22࿸F¡»WÉšL5¹%íËŒ “l=G†êE^3Û’ úª*b + ˆmæ¿¿íuótF øVú3ü©éFXî 6Þû\á;ʸ9ø¬X‚НÞü’ÓÑb\xQO¶]1Õ ô î­j¥ïy?-ÿÔgEßn_6ž1½—ïÓ1S\¸¸ãBÎ2¼1À¸Ž÷A7”Œ8qdk^]Ô€ò,ÅÝ9Ño=¿•ú>ÚN{ªúÞÇÿ¿ì°Ýkõ5ª=¡û%[ Çì“åL3܈ÅYbæÆÊÂ$5VŠ)|æÑg_ã"sy ŽþÕÝÿ'ã/åóàëcäûé¢äk]¥óòBé;ãpø8;£ÊúgÜ¡+â/{„0I#€NG%¶»µ¸Š?{ºyël1øçü·zr|/ëõ<_ÅÎW· §!«ÏQ¦WíàÖ¸@ÅOŸ”Ø“)—F²f@OfìùAI÷ó»yïåî`ÇÎØþpih/Ѻ•w–@¨÷@-½YÕÙ í?Mé!>.~ùò„3m}BT‡5 jɰR,ÿÄ×Ö@<ø|¹¢W楚ȹ„Üâé®Í ¦úB~~Íœ(Mp"]ü°È¯…Ñ(@íáزA.òÉQ—@Õµ ë¸*-(=Å~wßq: žï±Þvf›Lø£ Š®ƒâ”*èJýo}sÃLkn~ØwJÜ߀ËÿL ÞW‡D 8hèlî Êl*X šrA@½ò¦ŒÑ{ €š«Iµ]Ú s„bÁ{kúÀ’<ì]ÎïØŒ§ùêAŠì_ém{¸|{–ó’Y…ÃȽx#'H¢tá·õ!³#:ý?TlDøò|z) “Æ]ìðû·44 Ó:H~›iÇ3Þo±Q±sšWl«"D«×J( ¯‹ÝÚu-Ð6~’v÷¿þµüßݘ–’6˜ˆL¸,b"½$QQÕŠ@~+”¢xÂ@UU$<÷Í  ›Æf¶(´›h“$÷qêA¸O¿%^\†LÞäï}V)àÅÎÓ TuÍpðæ€Ì+›k¶vy‘¹µÊªýD›uF'cÛ‹2 ¨P`:Ýá‹èÁæá»äxŒ|Øwt`‘bH‰°PWów/‹”ý$Ýëà,Mïÿòæ[tÿik:|4§Æën_^˜0?Ì Àß º„·¸¥Õ«´ výÇùê“{ôIý¦5»ÜÿqYû†¥î§©Ÿå&»=­Vë:MÃ<ü EjXBYhcjËb5§µÿ ªo ¤Äÿð|á¸Ê|%Ívì?b½¿ÀÇűLíþ¼÷+¿ëï¸ø’lÛeëÕ“ «ä½µ ÂNõákÕë/˜Gòµ›xýÎ.TÊxñ=@ĉ·û¨Û@b—NÈ‹E ½bÔ¤¬‚8°‰èÒ9ia­k “Waäü³Ÿª/|?ÃW=•3EóütóŇ;vsVT犄—. ¨£¡–rS>€cÎRZ4¹¯A;þƒ{6qbɵž.ìþØüÿÛ[o§Û²°3Ý¢jÔ®½’®vì¯íºì㙥VcŸÛà_ˆÀF‰p;7ë†\Ëôÿ;+¨{Iõ¾?ÓИ߸£Ëð õòi¼^à<8•'ε{îkÞÉ‚NŒeñ$A—ç´ëM»ûûç~%G;Öoqå?“Þb†¿Ð¿ígäÙü^„óÒæ£•Å4Fî/E3E›æ 1¦QCT×WÜQ-ñ Š­Ý¡k]'¯“Î-ţ鯔ÿÍæŸË]*#â_-$È2pbœ$õ†ÎçÆtÃàéN»>]$#vèþ@wò¿_°gP~·{^(¶ø¿…2r~\?¬}ªhòìÐ$Æ7ߌbn6îžwø‡Ì2à7|/Á‚é/þg~²0›lú¿¿y˜µ™e;•v\A4×ÐóœhÚž—ùüfhâÀΛâǬùAÀMÍÄæÂn#UoÁ6FÎòŠ´ñ®ãÌ®ÁRŸ9æpC_pí™ßAö>y•8=ÿâü7ü¹¿©âÃ#-¨Ø¢+h¼A Õ±ð?º™1IÔ_êöJ ©fþŸÅó§èïÚµªï÷øx6êü>ºòæ`"ˆ'Ũî,R·±&Þ"ãÑÁ›^mˆæï >D@(“:n”ø§It§eYrÈy뤳0Ml”™í«Öîå¬?£æ¹õãöJæãÒ,u>¹qb^=›×й8ÙߎÀýùV¾Ï®¡-À]¹î¢¿ÙùœùIþêCh¿çpIpªPÙ@öŽÎµAã¾$™ÍÓýSP­Al¶.“;‰ÿ†œùþ¾k¼þ_äCâgý¼à[ònæªÇ‹Á¥û†ÕIZc´ Ù9‡ÅRN˜h}ªùAAÜºæ¾Æ4{Î!«¬¦Ü³-˜Ý2 ±I› âouS˜Xk1R¾œþà”L9É+X Ÿ¿ú<;<^•ä÷QOî‚€ñCÃãØ1ܘoue2‹gûö:ÇÑë Zt3n®æ÷|êÿ§þG[·ÖÐ$=nJv=VNƉ˜Npàž„Bó‡¬èU™È~Ï«í8Çä÷<áü>vro}þD$þ˜_AzØZ` š@Ó+·iq ¦,Ú“¡ þön1 ~µ7Ýëæ}â<½ÿeW¹’0Þ(Wïuóó3YsÃNšyÒ§H:±Ïj†¦–ÀÖ¬jÉæ@ä¾§O‡»èUùÿö>3ž@\Œ`YÐÀr?²\Ïü Í%4ìôbø*áûat3íõ9%Ba¹¨AU—BeÐp n„\áY`ž¦ÓÖ*Õödª5¦5©ËÅÕdJDXuô½¬r̹EÍ«—ÝNd'šnƒá·M½WÆTR’WÀÆïpÕ˜:×=ª°š˜’ðþȇ³|Z5O4#®l8 "aéšòäÐ;z~`ë°eŒ³OL°5¦…6–RÝ]¡eI?ßLÙ©½ ‡`>=ëþs˜½béÐh€”'èÄ*™:‘˜&ŬĘÌÌw)áüâöÒ1±wëÙ×ýÏåÕÿÛÝþʃ Öu¸už`F Ø´ó6¹Í ‰›É9EÛ"äÁäbOkø%ñë/·™ý 'n!â€ÒºÚ7sž\üñÿhkeÒÕ©ƒÇ,Ê@-Ä@ÎÂ)|µ½79*± YïÖÔ^ˆd €|Õ1ÐUE«‘ñ+übm½ñÀ¯aþo[oãÞüWäéqÕöRW4ÁœÁ9aYØù4¡óÔ­!‘J1Õ_¾N£¶#ú’×Â;izKÝÁíþ‡ÎðBö@P²‚ôÏvåaG›Œ´!cœà<ð|’m~gL³~€õaK.¦’úßQ~×Ô3Å ÜS:¹ËcÅ¢b$»9ÌÏÅ x- AÁÒø³4÷ên]œ{xŠ[7ã‰F/„¢.‚¯^W£_7ôønφqÊØI)¸•:Ò:µk‹8½m\À7ÓW»2Gpý\Ï(ÏÙ^¹óó?˜ù+LG˜*†.òQ® óPÝõè^…ðWšO²_ïòYë¿$ 9ýs1ðŸ öèZl2 ¢:Ѥð; ©ù¤i.¬P” Èåj€åMI<ƒr%ãÕà–òŠþ¯õï­”¯³üœçÏ•ÈNÉ3ÄþûeÅnƒø—nøž]ÁÑVÏl”¢6Ù«dTi1»¾¿®á^ŸÃÑ}ÿö¾§ö÷þl<^3³#É/:y+“$(qȈÁ ᬳeÜÀ9ªCøsº¶Ø\ñ¹8([ü»Ûþó‰…]k™äác‚!’ äËÐpP”6Ñ… œû&°Yw€ÙsÆ]hxì8sRÓ‘v“P²•©‘^L!×.ƒI ‰ ï^Ÿ;T)AUT^£@JðúÚ+{þY=ž0jë|™ ñvÔe€!îìÍOMí!ùh"NN©Có sŸ#È_ÓÞ¼G²¿+kÁΆéA¯"XÛ÷â7^æÀ7Œð¬uÊ ô€J/Wæ*xm|׿Žâä4™•™Á«ÄWó»Î†Ã? °Š‹T/dõD_Ão¾Ð—NZd;Q³Î!ì-€»¿úÝÅà1Tc¸þçæ¢Y2}2¸ /ÖqÃߨÄ]?»IðŸü\¾Rðç`ai4Ò‚ª<Ö&ÉßЊßÓ:œ\î~wõÞQr°máÕ»òߊ˜¤Øòå¹×íæ 1!' ÅT1hÆŸ»…Q ú=†Äû¾Ï6nO™œßgŠ‚xÈúù•dìÛHá $±•«t÷»´}ícø£þª¥Œ¯öµjKë{ þÛ™¾ø±äˆ7Õ'8eÒqÄ£Fy=”ÎÜÏF‹¬NBí)®è4@ÕÃŽ µ1›!añN„g b"Á=jQJǘˆjÍߨyÿÍ*mõ6R¯ÜòC÷ZÏ㸗b¶~·ç¤"ð÷½>Cmý.šë³lmwŸ²ÖõÀ,—ˆÚº}XÆ} 9ÔC{Ýã/fÿØO¸oÕ:ŸAçÐíΑ£’|ÍbÈu‰î“X/Nu^ö’IÎSxʦªÝ"m]…Mñ¿¯ük~Ë^Ýà€œ™"ͱqhq<¹Õ­þ1ÔÈ™6~è‘ÞÄŠß«üT}qlÊ~þ÷‡Á·ÚÅ'0²dâ¥Û‹/ʯ‚O°®Œé›ôÿ?ôúäÅà¤å0?}¨7W±w{/†Û?˜ÔF͵}#‰mRî|‚\ûO}KyÊõמ¯ÊÆÐõ#™<™³;#µ Ö“B•HeíÍ<"¥ƒ7#ª¸¼OT<ù>ꊉ}©\^L]¤Õ$e£¢•t”ÿë2ÖNÍ[Íâ´  I·êÃ6^$VÎPÇ…É¢ç¢FÌñ掳ÊÐGO•l4¢3ñ.¤› =‰ ÈD+A®HŒX$0U¢J DªÃ—øŒn4MDþÎbÔ–ŠU'•¬)£©À¦D’o¢F@4jŒqçùòA•o˜·6€ªã x…ïØ‹Ø^ ÔÝ)§lê†ô@órÓ#üq ü=•/ÀGÝÄç´Ü¸»œ €¬tU¯DFnØÀhJ‘±TJ+$ÏÏv‚ÃFEâh$“ £eÒÒ—Æûq…‡6¹*€?\(‡ûš þŠãʾ"meYbó„psoß“iÔÓp™köÞ€ômK'Žo·çŠ(H]{ËU4” ÖÁ=ؘj‡—ãƒP‰:¤ O­Tõ0[•@"N'‹PèÈfM:[Wà ämE8ÇÞOžzQêÇPÓÉ¡87îüÅÝð¤xm"Ïœoõ*»_¼kŸ?Ä—•óÈ`·~ßÒLö˜³¡nö•DìÊN]¦n¹ŒÝõ=ÙݽõòQæ§àúîb-šî á½g[Ô,†‘« "´]q ·Q­Hpó$ÄžX>ð=‹j1ϺÐ[ñг*ìÚ0‹¯A¨uŸQ¢7«sµ¬ž‡}@*Ó/Øé¼OO-g‹ý}é·ƒ>œ­l°÷³²h›– µÛ?u0yR/^Â¥/2T9€ŠÕò7ÃÃÚåò[Ó“jÌDÙh§¥æÃÓk?ÄLwdäcÕe$ÛÛθ߼åC¸¹M%ä¾·²ÏÆXöä²Ñoñ«èv‡4ˆ¤Ú\P¤VÖpÀ•MÉáY¤…JÄAÅaŽ­þIB³^”HmgË.ÑÓܹô*[ ¬Àœ ¾¢Ò¹+Žª­CO@Í‘…¼Ö}zÎ*;Âê’N ¥…;8̵¸ Nt4#KJ tÎ5m#I ÈHô"§ÜˆÎ®.|%²å‰ðªLaÙèrB«<%ìxà×,´ä²³ë‹…W= Jnm¢°V‘t-h6ÃLÝè´ÈBÈ¢y4-’cöö‡rã—¸Á(ú#pvù½6’3€êo 8ÐŽ£=Ÿ+µa©ÃžL!f¼T„}Õ—zWçØÜ=ê/& ·nÛ_«ˆòH¤œ#ª…¬rœhó‡ÆZDýrÈõEUeù,J)§œãÞÂß¿nÚIfn„¬ÅÚáÂÐGÀ:ûe:‡.1 ‘œª¸zíªÚ‰ôÓù tJW32αøA:õŽR¤Èñ`çdTœž§8R^tiy±¬ªå—_›ãAÑã¦@ g”oSQrÂËbôÕx¨bCüoŠPèYy¹|—]V¥pˆ’®K·@æ C!è`  xna˹ƒà±od²òR‡w2ôëTsD¾$nÚ`i»éÊNúOAêb)WªÈgv˜¥°hR ÍÈìÙáu'J»åh €0´› jR$Ž€&d(\RBΞ˜™°~8­ží]yÀGc?÷¿áøŽHhm Èp„Rõ/a˜ˆîTŸ¤(äã̱'!š@2¬ëº}p¨49´²õmãjpÈS_:m´¨â6§QŸŽñ€l^]¦ˆ¶ ÎMäÒÒI‚p«Ô’­¬‰sjYà ´ ¬›@%êU‚W(ÆpZf2ªª< ÄPi”b<`r’*UrE˜×ɤ™ ëÕLPõ‹ù×Õ4Í‘"½©:ÀKlµÂ³ÉG|˜er§ÅÊÛFc¾ØQŽKÐáòæz 'ê:ŠL-¢´ý2wñC–^€âŠÇÛÈÞy*Áçí‹Ö°ÚTiLÃ@4s:!W{‹uŒ7©B_0 vµÙV¾¢KU#vñ‹°(âL‰E¡{BûQN¼.¡•©8hÍTpøA–¸.쬳ôÁ^·3kbJÕìøW¢¢f+b)ÀâcD&;(½­Gn^½EgFQ|J)}ƒ0JçTy 'AF¥£Ž™Ùåð““³Ÿ(¿aÔ~7ŠÉNæV`±ªÎE~¨í #à‘ )ÂòÜ&ºòB•ÁmJ\˘µ‘kªz|©Ì¼”mHeýŸW’§/²8˜C ©£ßú£xÅB˜×ÀØ%Á=þ±}õrz;D-œÅü”’72ãeÔ½Bžð:3Ù7»1ä$Ì#±”“eŸYœÃ?9ô}áöãÿw3ŠfšS7qezO¥V! GU‚&´[ û(ðȧÐBL;srÓЇéÎO8ùdˆo;gÇ P©ŸDbå/+œolaYfº›à2.%•Y!+8íëqKI·x^3RÀβ0QIó1¾ä\E§ A.¸ÃÒ©)ig%á•”…±û2ˆ ÚÜm¨‡ÿ¢½7GXSÉ%c¡?Ëh1f ­WÃn›Ü]_UŠšì–|KÀ~·ü©åâ &­Û8vÕ1ÐÐTΦI‡Ný0NM“ ‘ð_ ”2¥µwQŒø ?Ø fÐìJCAÕœNŠ)œ”-¤Œ²¿<àDPm’R]Oãáâ÷cœË¾pîÎ\Qq Z¾§¸ƒj¨ QµÀÞÎ+{q×è‡[;4 ^¶Oþ;ܼ° k$)(Ý4–(}Ú£6Ûîö“Rމ±YöAEu}XFªjV¿Ã„¹ÿvv‡+îêYÕÓÔ@!‘Bc)KÊOwmÁÛÊnUÍQ+~¥ðå%ú-û>ö|¢M!ea\HdB¤[¡HÁŽˆ„ùÒ[J`±¦3'Á–’6×¥¤;$N ŠÕç‹7“({Še'RRU0óñçM¬ HµºçÈÕÄ Ãñtqò#q¶˜çY3$Œ½¢“øÂ`œ®zöX³ÒfJÒë¾ ÆÖù8IŠô‡‚ெΩÀI+TD‹šœ‹ê&8Òüw&vÓ¥îd‘*©½cƆ5PCK–F|p‹mÁµE”ùR!ý‹Ä%€lÊUÞÜoÞ©+%1Ø.ýwÒNœÀ`°"ªFŒ"nÏàz¸=ŽG­d¦AýÇ+:mç=™„pkÿÉ&*"Àmª»Ú½P{5¦ÅU_L¨f¾j̳uÀΩ 4—™¶Êz™WO4sXY÷uV‘‡¼?^Z†Ø{1G©‚t9Ùu&/½”èÊ:rƒ®£°/o¬k&˜ÍÍ3 p5¬úâ"³êD¬ VUä[tuWv˜ý%ÌS­«BÎmdI&Ëõ'/IchÄ4ù‘s!¢Á¯çì&}ב§…™†á0æANÈJÈÒ‹SÁß9)g…ŠàQÑ­NKóñÝ[[ ܹx]åîg—˜«—•|Ðúfj *äHÅ7 âËsaæ9õld=› ¥0~·™}ïOGý¶Có¶ éy$`viÝ~ö(uú|¾»{~íx^Ô$xX–Æ4×¶Àkè²{š«²éÇvJeê¹(3 Ò†=9 yBØëžóŠEæmPlRlÐ&ºmHm‰}Zˆ…5‰SŠ+M¶~²Pò'?:€Ú6¢j˜jÐŽáÏ(0\ fý“;¸Þ”RÒ//î”Æ¦1Êj ‚ØAnßCµ2–qAgÒáÉ‚`'—¸ùÈá’Öµx¹ê=½¿þ¿}$Õ“¾-yz†à–18ºà)’ Z"¡GO¿~YÉC!™î‰Ÿ·Á’s:œH2GÍ¥£‰#éËËP,êQfqË=¢W‘±tpí ‘Ó?ó·V²ø…¤4¼@zâ`ÇÍž$ Ëi ´–uH•®Ä›Æu¥¼û-{+;N#üÐÿÕx¼­j*¶ûHiæ"ûö =Ëu6§ŸZÝ×ù£üZ¿‹ë (ͪƒ'KË ¡2㘃0óõf ‰¥Ÿ|Æ_vq=¢Ÿú3°‰üÄ»D»QF¤ ŠèS‰¼ ðÒð|6õG¤ïÁô˜H8±ï-Ë“YRÀ›*_“&’H$´)€ØÙ#ÊI;I´µGâ˜=ÕiÙêI²æ&[óQ ­-MÿLQ‚IÖ@ EµÇ õoyEBàF ¤óN¢+.ÊIéñxËEUóð¸ú.°“–¿Fâm ¸q9¤€#£G8þ¸H.×…Ä„Ço$C* ô\=n6-Õ§ÿyN_f’é_³ˆŠÈ »À¡cƒ‰ÊAx•¤×u;Êíj5sú±§‚wwÍòKeÀô&Èæ¦7©E¶‚¥ pìJú+sÝß@7­v{Ë×dy¶EäÎ  OXÉ®§äÍ? L(„X:>mȪ:f”’,ÅC »Mdå¤É69E÷½Ú"TRÂ2D ñ:!¬­S^J-…ÌIcrZK@Í}ß7.Ô¯·„ôUc„ŸxÌð ,dÒ%\ú3¡†EY;¼¹ìÆéV½O§Qèž/|d£R癆S`OÑK4D®–ÍQôÃÞáQ¢‹âŽ,ÉðË¡\-ã1­îEÁ9yTµLÉ™|è¶7%æ?<úKQãéŠk_™MÆ«‡)8òE=LG„\ªzj ÍÂsŽÖ€p…QÃ]DJUü”ƒ-÷ Ü*»Å ÙÉij@¨eá«¢4Éxç.¤í~¥Ô7ʯ5]lŒázÜ’%*mrÀ»“"Ì´uoæ ©Ò‚Š‚z£žÞëÉûiâRÞè~éA£‘ÁM7™C4%2±HsÞCEu‘XK®‡^¬DÛêÀÍ~×fÇ‹Šó]½1…Í“W­ŠÌÞ±W¡J”«™á&a&dFµÇ˜ õtï:Òæ”ÛKÄ!êFnÕ»·}{ˆÑó÷4Y ¸¸éŸÔ›—¢9< BÖ™õDìóC„À bÀüã…¾Ï_vé'ÛI¡,:Á?GX7ZËÛÅû@¯\At~X Ow]4^]™¾¬æ$IŠÊX$ ´iÜ[¤@ŠI8Ê/øãÁ*¢|¢AFâeÔ™Þ~hiÙ¦W0^0¶Ã&Q©F–Ï™B] Þ;Ò–& ²¥™§ªC8Kï‹_6*g&Æ>c¹òÓA®¿Ä¿m&cVÏæ NVIm› øˆgO6.ið%È¡Šƒ~=8 ¹Ôéâü9‰c™TDôådÈB­‡1:ùëhD0®ÞÛèÈ«Uí‚ Ì,¨b`Kvµdë“[QÖ¦ÎOœ0  –§73Hˆ1–4†‚ Kw2Ëhì6T,ÎS×£³ð¢‘Nž[4dŒÔÓ\àÐ’‘²Õn#"H„"’íZ‡-£|>]J`],‰Ø;G+¨`5d”´-ê+›žA2-ª1 •;¶L„€K ô(ç'ÜÍ&Nb„ðÇ¡$ŒD¨¥fj‰Ðn>N÷©€¢ò‘$”€,Êòt¯$å–ŒDÌeâcTÚªÚ0L­ÀacêÞa"µÄU‚l&]Aš‚ª`íÒÌÉŽvd³PösVѲ¤-äÌ¢ h¥Zkù`þTu,)²Ó¸ÜÍäÕ@10`D”Dj Z©ú&HÁv„¤¤žˆI{ýwmB"NEt­1‹¨ïñÞW\€ñ$âÙ*Šó:“?œBúeЬÝ_Q5ðï’î»w{ئ'tÇœ_Zõ5PPÒøŒÎXHžoÖù)äËÚÉÓ«PÓ\äL~ú¨ÑâÎLƒ¨rx Ž"›Œ†# F-”y³dz$½æ¸NÓ.‹·hï¥+šL¾‹µ‹Ÿ^é©ÜKÞ³G£êA¬Îª}߀ÞýpaKÑÞ»ÍÄÞPÜúŽP¼À{ÎŽ×ÚÓë¹}j½Ñú?‡´zÞLLþc­· 2ûÿÇ—‡s(ˆ×ó´RP~Šyן›u:S:Dxà¨Í*;'…Ø)GnÙºc$.è˜Øðèdeç€ùule‹*éŠèÖõÊÍp¦&øŒ'oN»èO¯>˜tª¬x¨‡µ1YƒB*碔²å1›!ÑÈôÔåNaVX튖$Þï®õçPº)75aµ “Ÿ©ª n5"i4ìÃ^DŠÍÔYªç&ËŠ½9óã#GL1zãÇd ÝÝMŠ'¨å&|ïãX0mb£Ç«£¬lÃòïÿòcZ¶=¸÷n¦Ív©^$«'.@¨eÀ`.èϤúëX3ö®A©b®+Áá€ØU`IÆZô0c»ýTôë¯ÐG*&c’ðâQ 3+GÛ¬(¶n^XiŒª¹OþýÈG“¼-6ARÑ ÀÏ:{ ÔÚä ö)mȃ„A¹·dKJc(¿fÖÜÔŠ{+O-•qXløÇ\#±=È ]¶30°—N¬ÚTaªZÓ¡ð47“ë ‰™„ÜW—<–nš qU‹›ô®kÚÊÍXRʽ^­å7!ÞñØnºŽwéxbA•·Žz£¶¸ÝÆRàú3#×âOÇá.¿msÅôD*»þ@¼­­GÚð·ÀE…R¼*‚0Éž} ævÛZâÏBõY2öqÖ²xÐ*ú…«!”¦fø…¥ÁU‹ºü±~€”Wl· !ÃÑ@‘}ˆ=Ñ)©œWSžì(hÄÀ 0¤Í‚p‘’kðz_9Ðw#¢CÅÔ®Iµ†QK4rŒó0”25ÃMÂGZ¥ÆÊ™¢hR­˜rb',ñ󛙢t‚†Sœp`RŸÅß‹ÿo­ îYĵ‚<{ôÐ3¥/ÊIz"X‘Àwþ´—ß qV¤Ó½zÇÀ=v+塽ÕOLì%¸L4Jq¢Ì˨9I‘Ê”K¥JøDV^ô³•1Ħ‰‰6zþž}bBhè#®¤e‰WÊ÷¨5XºÇ•qQKX NeV‹û¹Àe`XŒœÝtÑàŽ×”nÒQáÉo _ènÏ¡?£5ó¤ø­^…•~©%â2l&`é³Ò ÇM>u|loÑñwÛ®M>.t‹F?-ròã …Èɬ«@‹­îk`3@€Èèꘑt1¬Gg¥©r¤”‡Z[:9 ~O¡æàb­ÉžU:! Œ¨ LD² nh&æ“‹&¦N ˆV^Xl”¬Ll%*qt‚O`M›¢5xê‘DgtïÌ WVŸÝŸ ?Ñ©„Nßh«ÀT³™~"69§Q«,ÜP6 ß˜ˆæÔøë(ì⦯ ß•ÐÁü$lŽKWš\¸9QQЏ-â—it‰óñÆÛ=dÖ<Üq7Rr¶ 3Q0ÞÚ²¬B$Ÿ‚o‡¬o©—8¬ÍKYùÆÅÂG£“†U\Fžºy¾Wùµàë™t£ç+:QVûmÃïÛ‹NÓ=û°ú¿ƒ§®ï996<üN˜íú»oʸ*€ÁÕÑ1DhFE4ÇÌ&™S V Š¬œˆ$rX©€Öë]ÀE}úfèž^$²{RÆÅ¿.JÀ¬äÉÍhÉéÎ4@GœU<‘hëÉ9HyÚˆÀ4E°Ê‚©É3ž{Ò“ ;6²qiɤ=„ØVÍRPРܘ" CDü?Nt—4iÎ|á® Á&TËÐ>lІêR:¬`¸ž°F)?bMö9sÁºd[¦}Rº-8p©% ·¡£j"(›{€/£Z‡ÅKs0ZÓ&†â¶#@c‹Ï3¶Œ]àpÙåGÑ–’1”xL/ùÛÒ4l‘´ÑÒ±)~À:Zgvkýäþš¾5ý5Šˆm,ŠÃΑÕ1”ø.¼‹ 3tLü ¼#·SMz”RvïDXÐ'ÇÞü›1QM.Ô¾ÑuŽƒA0ŠBl<Ég‚S=Ôîöâ„Î~ƒ•ÉšŽYEU:*ů¨ a ¢© Ì${&õÓõ²8kY=Cu,ò::ÑPš¸jí ðP•Ÿ·Ã˜È~j&Ÿc¤ö}‰*©GŽŽwé%i(*l´üÛÕ+¥nÌ!÷Ô_Ú–´¦µd`­¨Ò‚à œ)È{ÎÃ9[WQsIÍ*%ìÖÁœöméÉBTRzŽƒbÖŒ`!Éôeií@$4ó)ÛÁe Ƚ08‡Í”0`2 *§Ö@{J"z+U঻}e-‰Mb¦H š{ ×RÏOšF)º„¾Úg¹ä&%È·<<ÕA’¯(sJ¬eSFFL 7ÇDËùTÌ~­ëlßcºŒ¹ŠAQ’Œ¢è²4ðjiÐFn’Pb×ÐZ®¸>†ˆ² ¦fÍ„ü ´ 2è !³¢fÐØ:Üdâm(ˆÂ•»èB£N\ÎŽM¯¾ÆG¯Jhؓݦg¶É@ékkCá#²p¸]SB*h ×-^êù|‰h ¤Ê•låtÁ¨ÍŒ0ÔA;ü‚n.S.ýåY#쪊'”™X™$§>E}-EÀ¡üfße¤³åãP-  Aï´«¬Ôùsw'nÚÏù—P•èÙ y:HÇf6>Fƒ¢;†LãØ—ÖôUÀ¯a“V†©ýlˆÉÉÐhEl•“­W.T©u‘CÚ£V¸vj„Vä–+o,~ÞÁ/¼Y#H© ÚBIG.ÛÝÖ†€À äWdÁ©-V%OÈ¥uW$ ÒñA£ ®TuHyh,ÎÓV¦¨þVŠB£1gDèÀ¼B•Á¹Z[¢Iº\WæÐ_8kTÉ®ºÇ!L\´‘'—P+* ôY“¼‚0îY}1Ÿðª&¨lPQ[Oas|P’ŽÚD~óËʀਾšÊ;ÿ]}ô ÆbÓ%–\ôùÖá@1‡o‚†›¿G­'NúÒŠy@‡w26¦AÎMÌ£|¢Aï&æ–h˪ÚÅU¤Ä0l$*à ,˜VÕv Î:Ó„¥cSõba©´©ðÜ~ý©`ÇÌ›/Èví«©Q-æO 'Ù øÏB…Þ§ÀÔÍý°œ4È•öeˆ°g¿ÆËÑb’äââJœ(TÛ¬JÖÞƒ>¨YDÖJq¼LR›¨"RMª‘§Åü…µp^`‹V%êÄ\uHhé/£’f*ƒ_£ÌùpüxÅúG3©tþzZ¤çè%’>ºÃ© (ZXϽÜÎW3·€¨Zè…q:x¸ÃÔÉn­/#›1TàŽD<! {­p˜WG5Íñ&ß‘«µ·( “–nŽÝÒ)!L½¹0–~œ3ÍÜ'¡jÃùH<0éðl’–ú±ÉÎ^ªл¥Õåç4h}š»ƒóμ –¯bŠâ>+µ Ѷb~8GI\žŠ¾L¾ë­3v¼yTÃX·,± 9´#æ-ˆÌüA3ÂS…šÃ¤¢M6\¦¼™š$¤‰Àª.÷áÒÉÖþq³‰}{&©wç)¢&^½.›°RÀ;…cË*N턵T6H\@£ó²òŽ' ùžàƒdš•a«J5\ªé€l$ð /xôønÌí#st/£%oÉÒªÁã>(Ý| XÎgŸù*#qƒ×u¯ù½,C´gþ¥“ªÓ’H!7T¤YëO–³!'7¦'¦ƒüK“Ì%G!6²Q¸H:¡$M?z Œ’9=´9xTCË wù>DíŸuð>¤GUl_ÄZBuÄéVÍékB‡êçÏM»ßÓ$;Ü矬w/E0"ÆÜ¦œSÆ1«a³¹qhÌDq~ÇI_uKÈ’9À€ä)XÝ¥‰ÄW–“éw­äæoÜû]qtŸ¤î²±Rö-®È5S¢›Ç!³³¥#âñP¢Çɘ´Å¯Tú:Ö d¡0ÂxÍ€kæúîûQ¤Ô? Ú=…Çl7ÑÎæÊô]0½‡0@ÑIG¤n¯UðÉÑ…ÁJ¾²Iq ÑþR‰d¯lÊ+Ï+ÙÎM-€Q¤÷– ‹—|"ÔM¸[jF¹ýŒ àUö_¤%®ÔŽT¤Ã©ˆ¸SÝ;ÅãF²žcÑu!0l¥–n ÈÃ7­™‰|Ôo×Âý)è‘ã©m',#~af½&‘½rý–p‹©Þˆ|PéĘ PøùÌG fl"%ãa«8NE…ð¢G0˜8î—HÿW¤ÊÉ´³íªJ¥Q0¦'f‡G<ç’S’è@úûʼnsfØ«HBO!•’+‘¯²Äœ¤b@ËÓøù¹ÒkW ANMpBpØ›¨‹g t¹£ e¡øø9oëT_Mfýù +$I²Ò¸KŒžçu¹U Ôœ°‰N—a–SjšnÈŸH»ZZÀûT €Ñ'lM2¡C…N¾w¿v ï×â|PŪæb&Q¤ X°;Ì W/ˤ·™_­-ÈXopÝuR-Û:•`* èÑJÈÚ4(€¥ ¢Já©ïþä‚åï¡1µÝ2®\½KEP%á¼—a:z`øQ´Òœï®raöšºlèü^™¨ê™ð]8l`èf¯%†XØŸRÁ·lÆ…?€Ç‹{™ÜèX̹83r'ÏhJ Ñ €€˜µNSË»öÊeÕϸÿœ GS ¤jv³Ô:©4òøÆ a„j[ˆ|M£ëôé{ƲÕ¢ã{£h,˜Ói_UsŸ#µNlQÕn ÏφšÍš`Ÿ€\áU²Ͼ5gÈ’¡Ì6.Àt@…³0è XwBœ/0Þ…”!î„.O#D -Š)¥Rž÷%CŸÜ£W¿x¶¯><Ã#G˜°‹P-¥ê ¿qsÒ(Óu·çaÐ@tmtH0­µzltV–ƒ¡”¯§òé,¿Û(]÷!È 6@ÌDñæò2² ˜ïÙ„ h÷%>%‰sÌ Ó¨ °ïþ2›HD¨•ÃÑÁ‡n½|’Öà‹º:0þ­quCè-Æ<¥„©~©E¼ð§!|®ƒŠŒþìXìh¤Ã?itáSš«sÀœ£[ø¼ºÌZn¨áŠSN¯Øæ5M3^påå±pÌÂHíx8—gS„y;9׊â[¼ß¶Lã(…"Fƒ¤:Q”¥\Ãý3bOЇ`E¨O‡²õ²æó®°UŽC|SuAGyä‹ù O¡À½íåóƒ ŠCkDgéÛê.ÃTøôWd×ô8µ)ׇ¼7¾‹øpo3¾iªö@K¾ƒJ–gӘ闉2MqmÂëÿßYÝ~n_“÷X,¡bv56°ï‡ÍePCìWbÒèòKïùpº5-’¸jv²J˜ø—«‘¤»&Œ } 4´D|?¹G{Ö£ï+›ÉS NìÚdvRs³mjÍL®`,bKX¬„†!ÔÛ7Sc ÒO¦®ZYòµyšr}´V3¬ÆÜHÙEgá:]Ûh‘Õ çZï—›xU1Iž×…k¹HíD"‚`à×,Å• êÂ%¬ë¾%Îb~À—Ùb|-•€˜3AÆšeÎ9 –TT/E  ‰~÷asÕ‹úô\Ù¼ †…EÒpé–¾s¼=¼ú¼Ñ¡~­º^OeX„JŠÂå¯V<¹ÊÉbB'óÆ2°bî?ãN!/P–÷<:Ð&/ íÊ5‚— õ rwEÊ#=Sc‡Y}騺Íí®sLÀÂ{ÅÑÔLÐtÐFo=ý¹u¸òí—4m³+Sš7ÚçýUé865®w%zfš¨´²i 3㽓Ï¥F Ó4–&Œ…ãPbþâ-Ö˜$©1Åêů2*ŒM˜ºG_Çð½Ñ {ÒiQÃÇZö~ࢠ"#v•Æ#Ô˜?Ȥ†‘UB¥3e)7Wk°i6ôÍŒìú\µ¦?ÒPÑí‹*:£€U¼jV12ï—Ñ@Ï’©àX·BòöŽPñ‰Y;töR+fG .xüò¬þ²&߆÷ï€îñŸxRV}žmvµiP'¥huÚÊíX¸jó½<>l»ê‰ªîî‡ÄU£`µ{L>±®•R?—Æ]Ú0p˃*áT`\½ZðqLß>3ÁR¾ÏŒjýæH«"¥ž¬ª2ªk›<„<ÒT–³°i¥;„${÷:ˆZŽéÖ>e)#pJ†âÔ7|QªŠœN…Ÿ: ²Ù2¸¸…A×ÕØâ·.h Ka×&‡ÈéóÖ€¬ÝÏc¨§~g#½˜ž#€ÔPÇ•€]ê€G*«ïRØ`¾MciûT¥­©zDìyÆuåç“O<œ§ôÕî0WwéE ß!’èò¤ó ¤ñ&THbÐø™LlTæíÌ(ç›)s3W‹!0pL9K>üךî,Œ¾0UE¦SQ|ZDØáÿ–ªÀÉR2¨æÔKSU "R_¢Bti†Zämû/®C‘§lé>˜…0±é d…„´çm •¤RõœdûV]6dÊXR›r¼Å‘0 U[¹T7 //ã+9A}SO» Ù±0ª åV.»ßØÇúSÕsµUº€#Ìmm :ü–©JÞ€©ƒE6кtÚt&ËÇß`çG‘Ÿ‚¶îñ0‚^“á …^ Ã½ì?ÃßÎêvh1A~sYµ‰ F)Œ*ã`‚Wàáæ„–¯‚-ë¬ÉàYLží™¥Œ·# ž·vj¼ˆ ýû_\|Û+«v0€È~ ³bóé‚äø‹÷€ã_þl{3óŬè\«·bj’42ÆîÛ¡Ôt¿Åfvø¿.ïIÄ ÌkFHHtMçØ‰4'ŠzDXÚ{Òjœ»:ü’¿¼u" KPÒ$›2øVÌùâY•1ª¥ÚÌC.4÷¤>¥šc¡ß40éà”Ö´ãWªãÜ ÷w¹…àro¼hrÿÓºèŠÇÑ)ÀMðÛµ£‘ÝZ°^žˆž©K\H OJºVŒyymŽd؇s#¢ yÉœæ`qxž|ê½ýœp³Óñt,ˆJɳ$]´¨iðˆÁ(˜ÞßZù}¼ûÏ ŒéõêU>QýELî¤ú*áºI;ôÇþj1-,mÒ§(„–ã0wÄÌ.³¡”™¯ÜÏ+ÅÕ²ÆÚÆü•޹üŠš¤]:GŽÕ2x±‘ß>«.kû^~ô¤Còu‘`3@‚MJ(×´šwٛ؅ú³6!42÷qy)?–­dd‚Uv¢péíCÇyv"‡‘Ð<ý/6ÊyX$Ç*¶øšÒ$ìpÏÔbürÀB;z‚¹t¬«?çsoq<2ÛS¶[Å LŒìø[S‘…²;^¯d¦÷Ó@Å€rWvëP‚º›Ã‡?zs.ruOlF©ÿo#dئýÊ<å>&B¶fjææŒ XÇ¥UM‡ÓÈ0è^¦þžVž¯ù[h’…ª²†ÿ›YH|ãâøº^Õ€WɵyK$6Ñè¡ ):*BËxÎÉõ{ô÷þÃÙ{²ù—·Ì˨b!|Ùîe}µº ®àŸÌ ògö¥²R@c»`§d+¹ç-ª(¼5æüâ,!Ê•OÐÞJñYT =³<¬°sƒ8ÿ¯®(þ$õ='1,½\CT€ÕÍdÌô‚yÆ}²CénCR©zTᯟÈ>º±§2º‡™KK§jRYOi¼Š*$Γ…H"wp¹ø}Aý°cMí ö/¦È"rp*kìT±ª«)ó'¹l(ú¹3E`Ø´ñ2&\*ŒpfÄ ö ¿Ù( (¯U8äe5RBRÉß÷ž:'•úfD@7uÏäXZÐÑ€ímƒyúâèôñEË>9ý:a©é䦟¬âz̦»Lß%ÝC÷™~r»ˆóhtý?ýúõ@Ó®[ÿ¤^U¦’5»ÌóаU…ÃË-ã,ÓdÖsjVÓÃå,ØìØs½u@bMà  Öö¬)ä÷1 ËvÞÍ`g(nG]»«å9áéJ·–.z†oA5° ãã1dM[9×4 y÷÷ qñ~>X0ã“®mð³È2A€â¢˜¸¯˜çúàÝkÀ¢ü£æ¿ù»¹ë²ƒ+.Tè‘ù•ä1@„U¢ ˆàøôiŸ[Ûv’ÊP*г˜l‰Ö1˜‘bŽy|dOž««g-¡¡[éQðŽÃE@U!è¶-¡µ@ÆêJQÿoý=FTC>V츱´‹¥ÌÅN‘mvgBû_còQö÷è•™7œT…ð2AÅܾ¼ýàèKæF¯¶™3Ù=HÔÈ‹ZLt~†3uš§(™õ¹ª3þ ›ÑŒ«ù59u2f%¹†ûóu¶äG… &Ìï9FWWSÜŒµ"²5$ögƒ¯Z&èÕA_þ@žbÿ lö…°-:—ÍibëD—žãñõ:à1”¤Ô¶¸/טœþ 3Ù²*êP$@»`î‹ÿMY=êœut9Žn‡ÝO_ñË¿<íÌзYäÛeë¿%$(!J"6nëÙ–·:x}>Šʈ¦ ¶š<)ÂÑø“µ=κ#K¤‘ãÁ`ND¹›Â`§íZÊ ô…kcø¾g’%G;&…c 43x YðŽCeHYðÿ¤a„Š•–`.né±Ç‚`­§Ã ÕÍÖƒ!!…lWlyÃ…âÈ©3¶Ç…œÓ]›¬‡¬ì2ór퀞>.á†x/HÌ’ôRSsO*m)é/E¡ ÉT¶ÂiT(Úú$Õ úÖÈ+|qá¸-þ&i„¨w€‡$Jŵ,¯‰]‘3}0þPæ ù½KëfÆì½‚s¦g{U–iRLõ«þãÊ›Hœit"‰VEnÌ“r“ü7d¡ÙóÀÛØ2ÀØT5+ʺyòÏè°è\ù Ħ´¶‡b/>fÆAìÒ¾_kã’¯|@#ZïgÀVÚæ%uvŽ]WŠEÖZ_^jEÖ!ÁQ¡oVºtQPæÍÔËÓÇ –ökma„“&ç6ba§ç÷PNMiCð}rgUIH0°É(¥ÆŒécTÌ8„@T¹²1qêfÛø';^ô™¦C£Õ¯ h:ÀŒ,funZ–^È6Uß 3;»+XQE¼•=SRRèCŒ%¤F;3¶芭s{El¦OûòŠYïÞ °;$ï%ÏTU!_§ÉÝ”ÀòÖþPs´Ô?°%S‚d¡”‘“àVÃH1¤ÀÀŠ5½3Ÿ˜/h‘r®J³²½Vµí ™6Ž®Ÿ5—âö)~zÕ»)dÊÒ}³$qñI0µÑiBr…~—;&õøîtâÊ=嫜Í5%Ë6?S‘pZWêùRS>³êP#-®’`ƒŽDš £ÔŸëBD'A[K {Vª<á¸F­èЯÄÍ6%2k€‘˜ØšmHs•ͽc(# #¸M!'%¿V~1lé㵴ωʷ^´z;ûñ"rlþº_¤YÉ%À ð=œtËÙ>Ø “¡¹‰70Ún?z×>S­i!œò1ã&gžŠ”µuÔ÷¬l‹bëDŽ 9I‰°`+îK½"“ñ ¼iÙK*QSpNˆ³† ™Á†—Öþ%ŒêÓeÊB”dŽ]ˆ±Ö¦q{i ×ÇŠQ F‰å¥ðÁM}ã9Ân5(é òW­üô ÆÙ%‘z„¨°þª¸J:ßMl×  jqøp_hŽqs•AÂc£½ù&¢áÖûÌPx¤¸aÕÎúôW:÷*²B8/wáÄ4ƒó|Õ¼ªçˆ¦ÎÍ^?ÊW!iÿ@pþ¼äÅ0K ’˜7 $ÀhËb ðf¦Ê®a•þz¦*ÎŒOˆ^‡XÅ«®Jãžmc}L4žtk¹9Tphj\]È7)²ìþÞê j™´Û ` {£&Ìwÿ4Pb¥cP‘YåAçû¶I±Â)ŠÂbÓ>ÑàóVsWaÌžû2`fÌ~üÈW‘ZŽ¿¹&š6ZÁ"<&F|+xjOaïhJï…&'%ÛPs!sé¯$X"°oõúË¢¯%¿«ëµO5óq‚ ºo9Ô:úVË}ÊÜÑz«ü廜í±~öPTðPµzÃ(Ãô"U…¤$‰°©Ïd5›ÏcôGÀ+•üà2f&20 ËC/ «:0$±bÔo–‹òOõ§¾‘ƒ»37jmð®C`t$DóåBÆ);ÉmeDï¾E‘Ü:)©«þ“Iº-IרÈy‰±+ÊzX¡©)»“<ëÇ_«Vè„Õ¸ö4ÕljªÄË~ÃBGx±9Ò¹k2NÏYõIÓvør«½Ái+¤;E¨Ê¿€~bN`eÏ™ÍG¿Õå8´÷Œ¸Ý¯iEVˆº`«,¶N—ØÌGMúE†—3ý¿4q¯S¢‡O>ôªp´~¶Ux§ôu'êªŧH f«–õi»@ñ:ƒï#Û÷󧇴Qc?£KT»a¢Ê˜ÐBð1ò")­4w ÛÁÝL«æ vU=£&ù'xú;VºoXe!=3/‚µ5!vi¨°týÝ:-ÝéÖZAíkv!ý–óIáVá¥ëüÛ²õàA—f)4 Ìzà˜Tâ LÓY~ü!Ý–þ±$U^¼< ËLs.):Œ/â¨Àòóc&˜¿F£ |ʳïömêUÚÏ{Lß@ð}®;å›¶@ÙÕäè§U^̯ÅH¡9b„§œ¦Hô—¶£¦ÓÀ´-7¨¨äZb™Ò ¥ñªxùÒ)\Þ*üRCý¿û|¾rõ>Í\:J–éSÇô/”AÝ”cwl%IWò×{Ý)۔˨^Ù ò»Á7-G?¯ïüÇ{©%bˆºåûÔ¡rj:q¿iÉ©g/À3Uv¡zŒ.f0 ¯£Zé¦UÍI;ØìR…H±}F^ h_´%î÷§øÇ+ bÁF30ÓÈ®ñAßfEö ÕøŽ0£H®´v"òÿ¸žEìZ` eå’Ëç8Úªˆc öQJÐP?¶Ý["?Ûr¶:3CT­ö“8µò¼öF±©ºøhø*½ÔÍÓÃÅ5h"XÁõÃMÔ·žP‚)bÐèjëÉ›1G+û¨Þ³xî ¥ …‡ ^÷ò£Û?¬Á}’Av&•¸4`8óB ¾eäØTßæ'жô·ï±ÐžçXªEó½KÊËUK*ןr º0©1ID'o!<¿ûjM5ù=VüC±øÁ›áËlP9³òm|ÁÒº#iF½‹I ›#=Ž b× X‡gÊ´¼éPÛ˜ôåJÓ]3–Œ§!Ä0æ¡H!.Ê3HÂüÑâkUÔ^,¯ë¨NX7¬ÇM  óåm?u‘ºŸ×xšÒНÌ'Ù&h9ÐdÁƒÁY¤î$È-jv}cº?9k¹Cí*P᫟!°¿¬‡=<ϲ'¹ÃÓ'ÿ)éB©­$1ÉRÂÙ ©™Ñ¿£Hðȃö€J ´ªì’MÚË]óoDIé´h …ãaLú¨YiëÝS$36Œ ð "Ï#*Zúæ´}<7~@¨Ïè _´L(2àHÉ—41p¡X›Â™Ãî¯FÑË™VÎ OᵊýczbV‚ 4„:0Á»bÝóÁ<#›ÍM3ój—lF`€eŠp+V}#ÛAòZ’{ +§‘H˜§ž=¿FˆoÎ%ÔÍ70 šÊÛ)4]6à$Ò»øÇ+Xß¹XylPòV'=ŸwÞjLÀºŠƒ]™é¡Ù´ÿkܧÝl´ à )ü§Ëwš0¨¼?ÏØE½bB5Åň ,A`ç|O¾^˜òÀ6ÖÓ_;Ÿ68/¢5ÿRcÙ;÷Ýœ®ä˜Æ ¡Îx˜ #Ÿä\±“*%ÁUøèüN ÒË.¢bà'iK’ãkJ(`·î´B:sp-Í1jܾ:’#€–nž "é2òøþŸtc½×Í'Ù•̯”(‰žñÇwyÌ_)ïâmôÛå¬Ååë|6:*æ¬IsP‹—ù“*iÜ™xÄ©|³H8´D@À ÉZ <ôùºœ_öð,ReËÁÅ@’FD P¶f@v˜Xüª³BKÃIIç=u9R]c pî5|ô`˜?Üù9=µŸA‚2¬BC4W]£ ägÈŠ³Ùãs¿Òk_Ñþ ÿ_S¾Q^.”¡ÙÉ“ R~×ÿ]|œ«}WÛè|£L% Y“”·+iÚå˜òW.ú°Þí–Ù*M15]/i$’—~ßenÕ8Ù¹,XvR]©LvNãÎnÊ~õšY™¬[ m x) /LƒÏÔÿÁÅCþÑ}¾ÕWI¢°rÂu‚á~`Ô xpä @׈5î?ƒ"¼"ŠEo.N©! tCÊûÛÊü¿0.Ê$¶¿xß”Äܹ`°=S“Á‡ …ÍïX¯ï2GÀ˜]“sCØIíÂÅPÇÅÒ×Ã?òHÛÍBÏG`à¹{²àÓrìÈŽ‘%Еóñùq¯’ÚuCç÷¤J¹#¥–¼DEgUíTr­¶chû ˜ÒF€¿ÔŸ`\¿ 4 ‘øì"rÎS”Œ° Ò%épmÖ½\86¦T‡è‚ï¾Ó1pA:r€\ûeeàTi·Å˜šF>ì¢I7ÀÔˆviŒŽÿ–Néò“Ζ“•¦öüåŽÔ˜zœÓC’`·KìþÅ…ý¥ ¡ÖJA)Ä„{掗ämêòÙ}ÒÝQ§™O¨d?.c'Ÿß©²ˆ [f­…òÝ)k¦43@AÚç{ŸW¦!.@Ì_²¸–ï­b³ÝBÁ,´Û¢ÌÍ€@DÜ<ßUÏ[àߣI– %áË$ Ð&Àn~0BxþŽgh&vgÁWé §ßøQ)hUbÐ ºjßSsbù'Þ7ž(E¥w4°à²3j–„„ÚúÊÑÆ]ß¡èÒÑ'Ñ¥YÀ5ùBë l4ùÞ*d>€ÚR ‘ §#û¾Ë«ŸyÑârHUxCz¤=¹ }{e³/Q«(h›Â¨Š—~ŽÁ€»ÖНŒFö‚ó`Y¢^Ÿàí 5d¿xð+ó+Â?B " Hý13{Pâ·CõÛu×± X Â2ׯ¸Y&ÅëÄ5ÚLAÅÇ&Féë;‘”äíµ±Ê!ú®½LÇèw¨ ØŠNœÎ‚š7‚#ð]ƒ?àWäÍâ¡ñYÚeÖú¨x§WÄ2Ù€ìÀ 2õfÎv]M\wïηD±“7€—€Xr ̺vòù+†~ìÇó|°>x›ðl‘éÖšhgÛk8ªR9]Ç‘dù3ªËí³©0y€4k¦‚ÂðAÿPY#Ãì);z¸¸#§’íâõãT)\œÌҰ­åb("Jl'ßø½~zúÍþÇ÷~Oô·ÆÔädž| @HÛ;Ðöœ®iŒgüð®ÅÓ #¤D jjV],ÀiÐ¥!KhIõõä·ÿŽ9Úqwć‘1.l_ò:`¼°5réOÖ{üìJ?¤wšúIƒI2æ2x˜J¬{)âAžU»¥â%õ?3í–äÒ®½ÉŒ¡ç¿Xƒád#kè÷Ƹ8K#3WôMOzì¿7_±e ö` î€"Ô&ˆõÿ°_²›™õÿfÞj_mt8wQ –^¸’¾ÈáØƒ:*ie8nq.žî ôý|ë±U¢¢r+Ê.,h0ù“o„¸9Õaì׌¼C#£ðxáÄX_,ɂܥM1»Ü "Œºbÿ9±ß˜ãl`Ö\W-(ÿ"¥þ{9«ž®ÛßÜCEUqà‰@€Ï¶ÓJ3œÂ9²^z8´”:¼ïwÁì~7ÅK3úÿ¤è6À2ÑÁ³˜‰¢>Rø¥ï§Cw”ÕÇÕlÖàÀ fMû¦„hOÅZ¦{Á›ðú3U§V>ˆÁ ˆ5•h$ 5C tæDî©ÎV·¸ÑŸ\–ãO›·ONÖwÒ! G# ˆ³‡hš¿½ëc”ÂñmW<²UÅ@½ÓÛ Ÿ¶3¿g—ÕÖËÑò‰YÒM?Nè“bë2%!36âðB­5ì,ÝgÌb”k¹âÙqØÉœr€°[pÁÎðóôýèýÚìuTv`¢žà>; EU/B6˜a@Ö T–™úIØ¿WæeÔ4X¡-0À ‘(ª¯òCŸ}?3ïƒ v5ä"€ù͆½j·ù$ ÍÞÀF²µŸÁ5ñKã-Fy ‘ÚçF=†Ãé˜ö‡w¼™ÇÌÊþMšç.Äß]¿PwTè#ŽIY„)þqŸR‹žª¾pk€¤½uÒ®qþ$zk …"S¬£ÈSóÝpÚÎ0„ù4A•—ñM\¿ g1ú±{¬8ïúËvôMLtJ§ª€ªV´ka(·¡±p³Š)^SÀ`:ÄKp T´ƒwRÉT¥÷º¤‚ý$ Ð*PJln“cw<¥^Ä/t•¼œ‚B¥*h“†ƒ†ÅL‰O«ï˜ìôâtª¦ì»ßGyŸÛˆa´+Á×—Û öb @Ä¢®|ˆpÊé|< &«GCÿO£Ó/ãò}yÄä/êì›@à#Γ& …µFŠóÚZ1–­Ýð!¥ÝÞ°%XL–Ûð.Þ- hÌ'séùþGãµOü^ú7Z„›¤GKp JÁžÃ­æ 4-pÃÀ‘¦<;¯Ág¼Š|á'ßþ"xqàteJ`úP.}…Ñų vTDlè¥$QƒD%Áv§[©2 )å/Œø_ÿôÎÿoüÈ”ùÍwˆ âàµÉ† $ºÄ¡õ­g¨<]Ž)ÿ¿œ‘ï¥?'¦ûÅØ1vu[!@P4hVÖ¿“aû:<º;©§e®§"Qmv_ãA÷Y{Wˆ UøtBïO_V 9P²äè Ç’7ïW÷tpx äúï»ÿÐŽÂ<-F;¼4¡cγÕÑÞÙš·êñËHôT~¿t´ïsó—~³¤z…°S 7¶ «íp.WMÂc‰1'¹‡û'VïÜ PÈL©!1‚n@GÃèfÿG¨v*Ý÷^2䛉PKâ}w¼JßÓÇ]Ѫé2ÚÆÓŒÞ9ˆ¦VSdžƒ 'µ¦ã öghÆ×·¾×CDÉJ@)4 ÅÂ*Üpι¶µˆÉ2ޝ‹ØAïºÏEfiCË‹°-e ôFQ%C4 úÇ6m¹¶ CÈ(àhÅR+‡C!y]ѼųŽÛó ä1IAá»õqÓMt»—D»øßÒ™kÕi Å=Íý)vêÓ§ËŸôWfý¾Ÿ‰"i»ÚÖ'mÁE2”K£ÇA€ò;ø³Ýa\¢ òC{‘xð°{@ë+2O^Ž2@7RVŠãüüˆ’ÅÍŒ@@^ž½$)Ï 6áê)dÄ×4& 6ƒ$”°ëõ®ÒPY3K³äûØÞý™%ºÔ k¤ %_3—Î\5÷A¹ _p Æùú_„Q%à•*²jàçÅ2SBwš‹ýRVV,ÐG)Ê85ÌÈUéälh]kd^Ž-YrJkT]@Ïå— ­Pœaé©Uþ®çZ|Š¢ÖÚ§ Yø Uzy6O/d¹KÅ£16?ƒ?ƒÈÊ#Å)lÀÑæä|øš¤¬”~×»ÖÒðŠþ‰ûï [ SÔ°¦Q”>îSçhDžÑ „ˆ”Ï~…øÈ»õ%ÕÒž*ZHÉ!0„/>`þØê;¹^í„ëÛˆùƒÀügmm»âG×*T±¥Ø4 ¬@”á¥m.`ìg/bÅ AÕòË—ž‚ $©`Aƒ„áÆ59è7•;CŠŸè´¡þ†Éh&T¤ & 4YkÁ¬ðœþ,þ¤Ÿ ^B¿7Õ,ÐÐrb€¢.’'ã“\ÆÄÌï´Ç‹€:…-T©0Ú™¹”G¶ÛS~—˜%rI[|Ýa#‰'a´¨À¼ÿ¨íçíÈE€nM¢¥ë‘¦dU©P R‚l-üõ»Š@œÛOÕm¯$Øæ¿LȪÀž4~Ò iáÔóÆ{¢ü\Î1»¨Ò,² ˆ§žîðuxeWûõÓˆ‰äÊš(yÚrÀ@ `ÈO?Æ•¥Ý‚I¢ýOÿ2éðõFI– \Ý;ps@©N–átë~üùÂ1¾B’G‚”É&åÐeÔƒ  #€ÕÊ­«Íó{]KJ oêµaa “™ÃZˆ¢Ò‹j_0p $BžÝ@-Mß¿ÈéVE1" UA*|µŒ‡,”ëýÖ2ÔÄ¢“ÂoqAI“ÁJ> 8U†œ¤¶w«xïèšÃ™å{ž¤¦&Õ/4|¶^^’ï@Oôø:Þmʤ{.Ô­, ÅÀÁ*6KúH}¼í`ØöÝí»öõ¢ 1×kYZµ8tìÛ%àÁ„þ¨8 qM¤Iw~D 2Ÿ‡Þç/ÄåcôÑ@ÂE(©×Ê$&ƒé-—Éþ“þ?®ÍU}MÛ&XÉš\_Ûú3;czuz!Tè " ›NƒüÛ=ñÓ×?, šÙe/ö;K&DtúJˆxlðŽ †ôa¶#<ñ~’4”LÆAl.„Ÿ”+ç¿8°r½šh%$Çs µ ÕhÉ@˜*âé³™¢û[à ä\™-ò¤Õñ]ø|숮íõ(éLáWL©+`ÁN'|dÞ¨q/)P@K„¾øÛ¥$Ú—,ံ ήärŸçŠ1w×ä¤|¤Ã$Ù¯=WXÒ×í.ê‡ o÷c¢ŠŒZ¯÷#þ?ø¿±ôýw®m«5ƒDg°Êí®dƒÑ‚Ú9Ï85~ÃË·ÿÅÝ·Ýfi‘s7#€›0Á¾`,ÃPäÁ÷Ýo€îÓýÕ=ŠU¯€($²¸¶E oÁ2©íNÍÔjvzo™W´å)vP¾J)@´q¨ vÃ!‡fDýŽ¡àíƒHL˜RŸ^%y07íÎrxt$‰ÀñFQ0å×Adš†'%²ø,B ö¿‹ÉïH׋ô ¯0 5‹c<8 T%,Ùp=Ç‚s›ÛøDI:K ­Mé³@ÌM€ ˆcÆ[ß°û •f‡äü2ú]6˜nNš9ZÀAM­ŠéÚÇiul£ììSôÿôþÐÿ›ÌE¬×r„; B{ƒA«_ëoé ±›ÊÚöÿ¿OÁƒ‡ÍÜõäg±†§e,MIB ¸@‰%Q@¯Ì‘òž>„ižòµ~YÓíÁ4 'ùr_ÚÉÚÃÑiÈ,äq¤cHû˜oû:†åÞbSàLÐ1°ÔÀžé@ÃÄè9wø;Ýd¥žËr3‹¾-,ÀÔR£eL}• °?4[|™%Á_kFX¨åDŠ„,ðë«0Á]É9Ê‘– û :Üë´¹äËÆFc¨aØ>óÂÕ/¤ÓÿÛfc÷34dÁ¢0Á›*lÓý'O‚¯Ý"BÞ÷“)£M‘<3¹ŽC¢‹¼=8(ø¡ Æò¤•¾D4e˜@¬?µ_¦—Ã1”±‚ 6ŪðOP’™}›>X™;ºgñKŽY¶EæÀiC³‡)ÈMv¢DŒ¡‚n4¸PÁ P•s¡zXNR¬$ Á®¯n®N\¼Ùtj@-;Í 縢Dö)…é~e½*|O9¼VŸô0lºâŒŒlçžyçíìÍø<þعù™‚°É)4eØS`2i=]ïšÖ·ë‡ñ»™Ã¾ÕöN‡µés@Lv¦]™Ï boéÁŠs½IîX”’É¡• a80L…v{ÜßÕ-¹c¥Ø_Ô¤ïãõ¹@Àan3"á—2…¸†öêÓ!& Ç­,Éaiü’6a6!U¤ß¡Z¼( ÞÒú¡ î~’f{¾ƒ:ZT@âœÒÂ4”ï6Rõïðûý­ÿ>h¾ó&€gô¢2^²saNê‚V“þ}Šžî'Ÿþð:«~|¤È_€(ùg ðZÐfÕÁ˜Ÿ½< ùá?k(ʬÆNó™.k÷@Åò¾àR;þfÿ¿‹Ê®%¥° Ê>@ia¶'{X)v¨=®×ÍÕVY¸"€ÿU–d½´fo*‚Xûm‰Ür‰Ž(Hƒä¨BЃ$”¸t9§d@øÐ¶-OÄì'ý÷º/à¨ç§FX¹ä  Ý0ô‚%®B=iÎ…Ÿæþ]¯¯Ü¨];V@ ƒ6ø‹Ð÷÷?.ó¾—’Ònyî +‚æ‹*a@#Ëœ ¡‡Ð_ã^9Œiæ  …¹.“¢Öªô\¦å%$ÊDüø ™/Ás9¬¾ÿlî#«»=ÀËÏ^{ÔÄ,°2å·ÛXÅB±£ÒÂ…¤# ‰Q‹S ßÒ³¿Å Òd£ýd¼ç-Žè&Ë8m1—Æ@°4ûE_rY# ¨]Éê÷î57÷ÕB•Èhx—ç¹9.I5±Þ×ðwÜ—ÜÂ,^FÅr± *X0XFí|1Zû¿‡3fóG⸿¯ž$eº¢ÆÖƒ~ |ïjщïsö]}tÉ•Ÿ/•÷ZTzcå!& 9-ï΃ /|ùG踿×fÀ‚õ¾0a QŒ.p%ÁÑt$hjê>«Ýf{ørêf1X*°Ý´Ê†9À:úüžÑ¯Äʋųò”€\ªÅ²fÔ:ÐNwƒ;n5oëáçiŠjÑ@ý[)©,*cÂñ<+Ó`|’¹–[n ÉÍðø^[·’äJ__´„ T@&uÂ¥oZû‡au”ªâ€_K#–¥Ö7ËÕ•Чü8€ù\&keu’*~jú0æÀhùl7þtîds·gñH ¬„ªÕÇ 5Að_¦N(©Ò(8 1éÑÎýÔ#ló½{ü•Ç0² +×á „b QÚ7k÷>Måwκ¦Y1Eã2kB˜ ןþû†¥àÿ7­ÜÇDH@DÒ}õt{å†ýüxà±áËσ#MzSïÁ‹ñu?ûn³}àq &“ù KÜÛ|—ŸÂï‰Z%µÉâ.iÉúŽ÷ºGSä¥ÞîÐb %Æ QÃÀØàdŽ+ÔÏí~É/ñ1ZØ ‰#M+‹keªðèê;[Ýò$Uáƒvг@åËí©Ð–dýwÿì’~Õà,H…£`EÂ0@ YðTX*Öe—ø­ûH€Š’0ÁƒŒ™`¥gÊÒ/%žMÈßõšÀ4Êù‚cÉB§G¦Ö`Gѧ§“þ¿£ýÅ#Ex % (É6àìMˆ†^ïé#9΢ù©½ž_²J“ŒÔsrWOùûÐ?½Þ‡ßo×öã’eïápD}û€^ñœX¥šr× ÷㉔1ømêØÞûÛ]ÿ))×Z—„v c˜³`ë° …åI€1Q:ò¸a`J¡ø‹“Tù;5Ü™ uó<÷k•;)áf„óë6 ÝE# ì—9n9ÀcžÂeW<öáPy_<»Ù¨%\Ë$f‡O¼¤Ð)§Æo ësÓôùpm~$ÜRÉ€p¨@ É#D‚zC5bg‘\Ü?ʸ¬øâ”X¾–f¥vÿhâAKã-†|›Ë˜sô|‘ý_îe÷Zqå¤} ¢À ¹³IÎ@’¥ùTÒã¹ï=Ôü¿™’kû¸ àJº,‰y†€ž É´³@‚¾ø]O"Pà¥{}Xju&ú¡>É;öue••mà ºî¼x$sIŽMšáZ3KB]O˜ï ÔÕY´@Aë*D]ës`œcÌQaÙ¨@ÞÐú ÐÝ8=ÉÀi,„yNRÆ“ÁÕ§$Ìýb’©é@#>P'9°uÊ=)Ä`_¹´+FùE…OˆqVâK)0zòŠNì‡yl[®hP2X$£ `@€€û6"vç~!$»!÷\É r3)ÔfƒŒ1hƒ"o(Úw·_«Ièô¥úñyØsd€)º4X"Î%D³-Ù'™9p;Cô…ˆåA|•^»×Çl ꃩl+Ås³ äŒJH@ d6lY¤:Q†itåûÕ÷—¯L¢Ÿ‘õȉðÞm)Í•`°äÁóèС ‰Fšß/–€n6ØžO9u'†ˆ­Êwñw†nj­µÈl›‹•ˆºø~Ó¢“GRCZDƒý¾¦µ˜BÛU¸0€‡ Q€ðézg6ŽÃ_ïOxCfw™Z^ª'ÏX6ež ‡áiñf¥ó̾¯Çõ2@Ð…W{OM^×½”BÀcP„‘’9ÙJàŸœ®F@ Ü,àéê$,¥Ûs¦É Jjÿ@ÔŠ…{ Ê8>YÒTÀQûPÌÀ\|²¥|jÈi.¿çÑÚS›YÏ|Ô±pç,dP",T¡ÚÒ)n=9çÿgÏIÏ$“,³ T†«#.$DÈÇO†nX«h=¢zDÕ“Ú,øož0?±W¦©à/³Ún¨ l¸Èž%U+0–‹û¼›Á“?fÓ4l˜2ݬëjË¿2lÂÙú¡‡¸?Ç¿ˆ§Á"{ ZÌ0†·Ø P4 *›Ò¤BȉF‚".²„ÎàQÅ Ÿ<œÄÇÛº ªn„r·áOÁåÏÑ6ŒGëe§Ñy„µ=ÏJufZ °ÅåªAÀi ö@ýmÝCbn»ïyjz¥[M×À 9f9±„Š€VÍ4O 7D¢Dj ‚ñ^þ/V´»—˜Ò<þ}°l3åTÿ‘3`ÌWB¢ÌÙlUw=Ÿµo@QHR d œš4¥ÓS,VVØ@o獵üÈrŒÖ!‡-cð !ˆè3ãTâ’Ù£“héO!2…Ý©(u\ƒ†‚ÊÛyå:2µøî}Ýâ—†e£ª)³s*Õ\4 ‘2mRNYR&§Êñ ‹Ëõ›¡÷¹M|cë”k‰ôƒT^Æe»¯Å}ƒP: ·‘À—v5ZûzNŸ½¦¦G£†X!°M„WY0²ÜìÖºœ0”ö™!¨äJÜùp‘2Ǔй‚]¢9M˜Ç«"pˆ(„çæÓçÕ×8ûÔâ=@Q¼ð3gÒ tés`8Ú“ÓØ1$rFœ>E)ïÍ+ˆû;=ãË_Š ñ`‹aÉ@Nüƒg£ë«èឨ¥»‘b-ç÷‡Úp¸ =á Þ0ù$ë— /ùGï$Ì ÍÏUý;P?…ÁþÝÄïlþ&DŒ5:‚C¦XKŽÿþê+|N“^Q(÷T7 }IMdÈ50I ÉhM6˜óîÖ eÒcz`?îšÒ'ÁBeM~B%¸Že¨‡jªäðÿf>ëFtý΃›06DðÄœ=¾}mZ/M‰­£ÝÿƒÎwãMÅd ‘Áî±ÜW ØwÈÛ>ÿí‰Íw·þ·eîC™ó‡&Ö¹Í 0ó«(n}-_è'ßóÖÉ”éáÂê€`lPEŠÁ>ÜëqÉŒÉB@6#ç­ÃÌž‘R „”÷ÉÕ¾zø˜ (`M‚ _r–—ߘ‡”`7!$¥ŒÍ'^‚:Ãv놭vupOøq÷Sk ™X |v+ ,¦šèÎ- Û#<î1ž%)PŽ †‘4¥""IÉ–t U}cÅþ\®'»¤E‹ˆF%P^¼É‚6»SœÏŽb,l#³í"•â«UÞ€ FRà Íà™aº Gß÷ïÂM½Éòà[íð¥B¥+V¦‚kà@¬ÁÿxlÂ)Эéo„²î§çWfi½eUo,`FJËLÈ¡´ÝИñg뺆 |€=籤:¬ ßÑÅ‘xåð`ThªÒB·2!Ê2UÓlË^z’Da l0%Á‚fùFi÷D˜APÀ )qàËÃ÷Ù$ý1{íâ§æ§¾ãsçƒ*¼ô ®tΓÛʶZ›5Ÿ"ê‹ÅN³6˜C5CÊÅ‹-˨êð'c©7ñÂÐüªÚB’.±iZ3çÔÅ ŸÀÐ?‡…âü0ËÕ‘TeSÅ«],Aæ')ÚQÉUÇ´o>¤°±€äJ3r$BÕ&®‰öTº°!2D—L¢kŒM(mÿ;u_ï©Ýýý¹ÜÞ‹J¹ûk¸›NXž\Щ£à¼øÌÃÓH©÷Ý‚¯¡µ2­mЯ Ð¥?8¿ËäI•Zy(úRˆCÛŸpÈ`s°§¯‘«;üa¿¯¸k$6!Lr&TÅ‚²,ú·à¨ùTÿŸ|Ÿá©òïô`iyú³é\2M &ÁʵvQŽ;nGèÉÐa×óZzüÚ}{‚± &Á°-ÜEI;uþ»»±Ä©›P ĤüÖ}±å©îú Ä}6Ñ€1†nª„asº(šÜÒafÃ'Ï›6¤¦¬N±X&"c T©@.5‚J_aÖý}Ü}©†ànpƒzA<Ö©=꣪ô ƒN Ä‘C¹]ÆßõEoMèõ',Œ“ 2À*8  &¯›øÏz%š{9Lò±QQÌû! ~客«ð.šeX#—.Ó ^Á³#%Ò,NÜÒtI צ¿²‰o™³E6¨’ŸƒÎ$'8—Mê"aÉ„’>”i,$ŒZ.éïÛ>®t7ÀÓéùŽ‘~©Â£û3 [˜oRD`‰±”=EÒ¾g0À †eˆ®W`‘䥡§N†¦ÓãYn©ÛÇU,äÁe±ÀÅF$Èq8‚]м«øg¤»QuD½Åë}ÜË8n],x:á$®é\ÉeÙ¡¬òâúûÍÊÑZN™{€4¬BÝWhüÛ9Þèɇ»uI²f ï€BˆÉ©Rk*ÎI[D!.”MÜYEÝo¬øúÀ@ŠšóI›fÀ̈Yà§nÔPx#d¡‚a®ù€Ý¢Ò @’5щÅ«‰ÙWªøˆþü?ÄÛ™ŸbSàÝñ—Yc¡Jž"‰c^yÂêv?‹fë"Üx ¦Õϰ¦qm¥|~ š¹ H{|$ÔOë"–Hö jketûsÀùÝ<[‚êWùÅ”s3|wÞ¦“Å] gÚ$¤V`§1[uRšéãù~ïGåý²d#ÞÎBi ±µ6³Àžë¸¾ë5vëU,¦\,h6%*ÐÿU-ošñ¾<›nÛpÛé›íãçØÑÆâúø¥¦Õä(«ž~ئ¼øÊ©¤ìÆ¢Àp¯3@6‚f›}H°9XÓ€Qð¯ø\ÂÎ<öÅTíÆ!„¦”ËãÙ„ tŸ# vWcYN„ï½Ñœë|?\úBªêGð©W¤› =(ÞAâ,Ñ#‘ 88qS³˜ï¦ŒDÿ6ž¼f6Õ|ŠtÎ4RP ̨¡h‰ÆèöèLI£„=5 slI&ЗºÒýG»=Õ¿Žßq±ó-ئ.½FE‘”ã'³ZRÖ÷© ó¥?ïE§”±IêÜÄŒƒ†T!štÍH‡XéR\§ƒ²¼ü {¨,FB!Ô[þUóDüL‘ü e½ï£Q1©’“ 2ê¿K ×iù/w/Ï_g#(P¾i¿ B T°¹ãw7¦ˆMåqʇܘ ‚*H3mâPžšØS«±/û ’bЀ8uÅDK¤I°ø Y£þ;@wÀ|=RÓ§ƒ`#qj% ó%&cÖÆm‚›#g.Šæãô7WSïcÔÕÅoÙ¯GST³rrcQ:Ö¼öW\7Å4G³ÿ+‚Ò©Ûi·ŸCËC,ħk*ëc¹Ä§. D¡J³2“Õ’’t¿·£z6?¤úÝ{R—5)hêÙS¾òÿɼ ZÎõÓ¼»Aƒ€PE@©©,AFkg·ºÒçþœâÉñ(œ–2vv«ì‹¶pUÞ+çGy`¹â §¤ e ‰N^t«q¹µ@3ms©‘2^¦™ h× !›ÊNó…G…‘B%t¶$­-"ÊÔ^ku¨åÐì÷®q ¡e,¢|*ºï~P¸ÎotLè·½…‡$ž²ÚÕ2è”'ç+Õšãò ûùeKÛD =¾ºvszÌõ–¸´*!‚voüs¼¥a ÄÀø`øÙË êwŸ"Èß“š–zÎÀɇû:Ç1V ßÿü¼×:"eYæ4q–Ô÷#6Àf>Xó]܇rìÝUšK`¬‡5IW˵ÂÝ_h~¿ƒvÎø¼ x7={Ú»§,/‚aQG•ÜÓj®†õ|K¹Âv凫3Ìÿ¨íºåºîÌåI28ÿ–JÞL:²tRޤÀ×ýüäç#³+ ½Û(•Xr7ŒµšÞ}Rÿ}gNÏ¢ÌY¦fm»rĕەc]cØV«Õò¬ÃÙÆ!TþuxfN]θ¤¹Æ·­œˆ€$1ßWÔ^DÿŒ¶ùÿD,‰0Û˜3äæÛ”,B §µ),iç½"2G þ«VÀ×µP!™ *IÜàÏÚgJUsM‚$MY®’¶y5™Æ÷G?J.£óŽ' PâYe!KŠ^þm&µ'Gz“^V;Ç ¥dŠx<´+aÓ>Åï»êq0n&›³…ÀÀœËG»N¹æ8¬•0C…8$‘ ˆËµÎ.¦<ÆK³Bñ8:l…R/ÿ…ö®H ®m …m­O+‹nèG¼ƒvÔ^D¯]DªqàŽoûUŽe~KÌŽµ¢ˆ†½o¢ëÏÆúµÚSÞ…Ì*Dô”w“9&ºòHü3“’ªy=[ðz°éð:ovQ@ùV£¶Â#q„ƒÅ1•ØœÁ²œX¦N¥ üm? ÆhtÖõÕÿ"ãàëhÕ*Óq#Y9„… æ¥é'DWZçÆ„Ñô­ÍÒgžÖ»­(ô¡­B ©H6q¨íUªCÄö’‡é€”=Ð#_yÿ›s_©ÄéôX–'K •s’UÆöD…kApù}"%®ÍåòKîÆ€ó€YžÍ´ec¦‚Zgƒ­µ`t£[Æô˜Y1Áºøç¡_ë1a±—êÒ(9…ú™ÛšeÕ­*·ý©õ†PK ”î 3Âoír({´~_°þÏÉß?³uѰ²ÅêS ì,lÃ+J ­çF_[R+µž­6gòéÑ’cÜC°S½t‡Ÿ @£T´³Äeä\èmK¿L>´‰í €SäÇѽ”ù±¢ö9ÇW¼v¼CîN$ãÔ«U›”zîü+üm2Ä'ŠÞ5ë´¯«Ð±×ÂÜ|˜¥€†ø¶ç½~‹|¯A[Ãô˜œÓößeo3{ 'V-¸þ{~&\†ÏjÝRåéÀºd¼àGsB( û Îe°r Âð ñ¾Àh|¥¨â:ž{¬{A¤aVvj§+Šì2òX±ÞO‘ˆ#ŒêäD©…6ÇÆ3 7%‚þ27ÎÌž‚¾žT‡*„—³Ñ[»wWÊò ¬ðé÷æùVýÉvŒ²ÅÌLl÷­BXÁºF¿™Éí‘oïÕÁ2ÙZu¨?ÓÄnë’ˆÎõÌ’:Ú›fK-Ç“ÏÂâ9âT¬zúëŠÅÉÐ3À¨‚$èÇ‚Îw9‰¦Ê‹F{8íÊ·+P~nã´‡æ½lH¯Ž¨³ƒÉš—1ٸݜºéÅ“ %`àÜì^UI³›"Ø…Q€>l*/{ &_2¼FÉS6¢ï¸žeÂT–'mX,e„@E[¼¯dÄ÷õ¡ß%ư8‡ks¨¡ª7Z¦¦/í-i]ãÅ ¾72€Á† †Ý±ãbuKã{<êÝñkÕš™£v­G°³Q»q:ÕÊnD½ò,ÍO'VÓ·Q9²q!J®àéä2iJLsËdò±/ÐqÝPâ]÷dNKPp¿/I$©÷†6Á}°²A®"àä!¤7Ý'^>l £ýë]Nž )ÏÅÂt<Ùzn.}è¹M·ù—4pÈp•2ÆÒ×›õݲç¡]Îð?'Ó§jç_Fþ7ØüŽà¦ÓµÎp¯k&4ÇgèÆë3Ӭ̦ªÛ;XvPÙTJY졚¢«Q횺 ¢ØR†)öh¸B¿aNþ5Ï_m©jjÆ„Œß£ CÅ›!¦/¡0?–ÚbôoS­…hî3ÍÉå¤_7߬îlaVT` pàr´¸nÕæ°ôz4œùe;TÉLJÁMݼ—^ "ÕdÀÑÉô@†[šA( ½Cnñl  )ØÔBü¡3GøÎ×[³ŸÀÖ¨#@^Îý²&ª·¿¥”ø§EöN[ò¯í ñN¬Ë†¢œ{9"O~ö7Z½1Å[u3¶†q‚Ûî'Õ˜ðàü·ÊEÉNÚú–àUmСICØÝ{ÑÕF<‹ Ýaû;~IOƒà¦¥Ø¶˜^O–í…Lh-çGSäw&y.QYyÀ#öCP]kOr”˜•…öÄ´úAðŸû¿¡dà9Hî¡L!³–QšµqêÑÛž?~â8Ý&ÓrÁ“Ó%|=ÒÚD—þvç2ÂI7ÜFR-ëNPèòYÝu-)X>%ç­ð”r̩ں•®„U–(Œb6ªôŽ¥¦¬Ë[¹º©€áü›JªR5˜u·L~v¨aK7#ôqqúŒØG€ø¬ ÄÔ™ãœö†‘ÚôÛqÈPÙ“;ìWB{\À7IÜè¾bŽ &TO3Ifˆ)µ2v²-Axª[w+6š£ƒú±ÏÖ¡ý ɉ<—B@Œå]s>)ˆMCíõz0ÅÑpê Ôôìá{7(*êð l¤1Èp*cóï6Ã^ù~éiÙtR*øPòpiÙCïϵuïjâ_½Î¶œ¥è·Î /ý;ØeˆåBG*pÕåW€o»ÉÓ'Ñý;é%appOD]Ù+tÛº®X*ºÝÄ‹ì<£h²+9_éå È£‘lù‰ê#1«â†­eqÙ(®í(ð@ÊÁZ=CK[»Õ¤ï%7Í4&nù•Åä•%`N*Î…½Óª²__RüĨŽQ<ì ä@µ]âÅŽ¹œª@@ yúšk‚8Òõkt-0ã ßZü¾gJÒ—D~f¥ç‘äõ¤¾wµ!ëuî…I˜V–‹h>ðy©ä`Áî1GKÇ¡4D‚ŒèßßÁ›ÿkutuêæ{UjŸÈR¢ŠÛI»L£8ëiæ‘é™lâ[h˜·è'ׄwi=YŠ X”„øÌýýyÓI-FH- J¾v…ŠLN¯±SÖ vÈ)µÏQ²:œžÇ~{&]€A) SAäÃäò 2#‡ôõÃâµqÄöCÉh’G—gng-ÚÇö8(Êth%ð)¢£¬ëàZ”ÏlQ@׃åóºÓ¶,'e¬Ù÷"šhë5ŸŸÂ¤ò .CŽÄÁ…åè.CÕàkõo$t®é¦Y}¨èΘ¸ãZ§•BnP BóRÅÂÉÃHÒ.·âeÁŽ.BáŒ>0Ñ3LíÑÖuf/0r«&ºXÓ1tùœýI¸0$Ǩ}Q»Û:CµñÇFÃæs]QÍû–O#ADÞ*ûyQ\Æï£¡ª‘5Œ+b—&)¼Žo¦X ­›8µGªSz~ Ž`>÷©ÏeÜ»dàè$*J ©®>צ¾ +ëkEËwêÙÜLîî‹:jZUÍþ´öqZÑwóú¼óÙÍ/KH¿X‹Ý‘éEa»¦:¥Ò}S É!(¢.¯òõ×ü¿•êz.­¤*b91ÁÐ/ £ÈnÕE¤wÄÆ¾v¿¶Ã=ôáÓÝ?{?UÅm%˜²†QÜ“#›ºÄÂÎ(•BqÉ”…!ÄÙ·,úÊ?ÅíæÐ ² íNÇ6 80`ûvãùðu –~ž†#y硞FžX:ÔÖÇû’ù0s˜Ó]“&(Aí²3•C€ 0lDNr«ïþ®ìöWèLöm n!šÔ¸´°Õ£Ä«5…dv´; ¢èèªq#â}^LsÍZÉ‘?Ëùõ'ÐŽg™Éìz,ã%m%„ ŒUÊÆ$S›‹,½¯6´ŸkŒãžž×£¯c«/å¢+ຽ/Ï#ü«úª–þJëØP‹gê½Æ°¡^ [¦ôìaD\Öqé$rV×y,à—z¨:ì`†RüK™ÌåÎŒt÷ƒk®¢ç"U[‚\©ÞÒ’.>iúÚRyÌ5(¢fiæ2‚‰V]üƒâÃcfŸ B(å© ©²š^y° `ñæÕ=íðn;à¦n{ä-“Eod±` ùWÙ6üšˆ³õÄ4µç¹tŸ¢—ÙAL¯ÀríD4͉’’ÛîßQ)²T°µj›·˜Ê¤Ñ9] Ú aR:Ë/™±²´ýâîg„´-7<¤•ã­E9s7™+쨮'ÂÄÕ㈗,¾Ç«®'6ÂKæÍ³{Í…×isU&ˆUЄ±¦uë6]Ññ£æ9¯g=ÄôÏæ ®–]Ú`õ}6¿ï´*G ncêš^×6ïW’aÕYÏW~ˆ†ÇcUfo-(p'RqfŒJÏî ­|s¥ªctp¿°MÞÎÖkwWµ¹ Õ€*]^ S)Ig¢;c»å)‘gÓGß×_q£Ô±Ã’œœë,õ%ÚŽÅʪ¹Óåïiòü à²ÝÀ©FBÚ´FÀ²á my¡Ïó⽦×7½Ø=ÿËÀk$Ç{ÉŒ7Q>üÝ{˜:˜5;²0q7ÌÖô˜UuqÞiÍ8·‘Uúã~Ûù#±%Æõ5·øVbåu-ïyÇU¥¾ýXšÐm¡ZZË[e2£¥`j@z\UÒ´ý²M»)O3= =žõ—CTk}`hçº(W.›•f‡ˆà£>gýè© b…望ÐO›:Â+FîøÅz¢èÍj¾‹±LGÍÑÀ¤E%Õh"I@œÉ èî0ï ¯uHBÛh¶rkÿYödVn.#õcIGÅMx{L z{FT„ˆ•$ã;70j–:LôKèj ÅÀâÊJnå§… mç3o:‡ ÆU'D ï™ÉëŒçY‰¤¶©íqaöñáh–™¦êß:¦™åóž>¢§¼°éÕ8é}•™yÚÕ@—Í+3\+û¸½Þ¥ˆ+u§pCöŽ¢SšÕàP–þ\É^xãò'#bshiãu¸Áœ ⃜Ù`&T°ÜtþÄ— Þ3|’p=O¢H±>Ål]']Ç?é¥@¦?(1E©+5 ê¼ìt¸“û;GªÜ'uìM[{®¦­¹nǃÃ!ÑS|>£òúUÙµ³Jhpø‘È¥gÀ ¼7?b<äáú³TÙ´Rîè±@b­C8ª¼¨Û‘×rf0ã]rNþd„ï¼Î¿Öúò¨ÌöøÚ$P/mÚ?¢©}ïp!ós³ax1ÎE¬¼î ½V6h<Ù‡MéÉô}ƒ7QýÈ\~Ü?|ä‹^)aÍ!­Át~%"/ gX)ÀÇ—ŸLüÑ6ˆÎöm” jî,ýó"Üõ¢™‰x'KŒßGŸnV±ÁΫ×|µÜ[F8žÞ6mkñkÂÙ Ÿ¨ÏåÚÌOÒ¡Ÿò\îꈳnüwX‹ªŸw_îËKårq›ú’\Øö`]Ç#­¿Ýi„j±/´”ৃÒâQ½+W†9.1vC§pjhÝT¼ŒœüÓkŸgÀÀ#¯y$£J"JÁAq«ÀjõìW8£é¦ß²ú¬`®ëµ|@SÔõë¥ ôµÍ×ü‘Œœ.EˆÞ¢ã2U'ðø$7lVð÷Ÿ‹3‰9€¤µàÐzü_l¥;ºiìH¸wÛGíJ¤:Ce5WY©Û"ÚŸ¯ØC“Ð"ü½ïL)Ø [pe > dÿÅP%iݘ“µŠï¨c§Ck{áâçRgñ/ù˜X©û¨{½×z,oꌂ‚ IdøÆ•?BÓ‘ª™D™ööx#™Ý£§âqG=¤×«Jᥤ‘üû=cþƒ¿_2¾æö#Cý­R‚™JÔÒ^Û›IÒHåú»h¥û‘bjÇg§däsy[â1°(·íÇW}UªF#(5Ñ7){ôW{º;4”÷¶U¨½É™ [hD”Be2ÜLB”s³Æ#ÝÕò.*sÑ–2ÓS×u{Ú¬=ý¤ªõóÞ‡SGeÇÕ¢»ÿu‚81D+¹ͳÊ{KxznÙ±õ¨êíIÐHúYÔF\\I)ÈIò!ªßxäœ=á…Ö×H™qf¸¥N_\ñÄˬö­.Ã' ŠŸ¶¡žŽ†ˆ^‡:JirÚ×ò—@%碎ÂÊÅ™èíµÀ t­…`8 Ü~Ê+ý¾eêýi¸¢kÒx%‚ƒœ@݇°èˉaߢC¹ÑÀ²‹Ó¥¦,ÜZ UŸjh¬ÒT)j[>ª2biC£vïÁ©†´oeù÷ÐÎd]„÷çujß/­IÌŸ œP œõ®@ ”cƒ¨N. ˜ìHõ2uÁ#ϱG#:õ¶9˜ZÛlè¡…—ɇ6 ûD1­>¨À櫇x‰)#É)¶a¬3ó2Ž‘Tãû0†úHŠuDÚýÆr˜#gB¹ës+'ã¶gÝí\Ó›'š×/†’ÆÐ´&GaF¶ ¾-´õl€;Û•–cI€ârZ!¬%‡bA¯:”ä^ÖâXøþa7ÜÜÒ&ìvÍf壒Ô-<ÞdÏZÏZ&U†séúà]eUN L—¾mÆæ ‹×ô¨9bS¡‹Ç ö¥£ _ôK< Êw—XjwbÐeN?äx0mQ–Œ7¹ÑŒÐ3Íi™K·à¡•0ßÂ&ó_w3ݵ†žrõ Vc ‹„`¤ƒÓ˜s%PöJÆsSCÓlŸÜ¨_“”áÉøÅaÈz€èl–¹)kWÜlÝ¢ðûf¦É•&o,€õ¡ì7çÃTÛêv®<y‚ÑWø'YÌÞôÍÁàÌÅAf ð•—‘ch¯Êw&jñ—±7Χ1eŽ,Èà©Á–Ô›Ãüx'5oó¦úÍ Lä„7Q³1Šœ%è¶kuæÚ@µŸ=EE’Nrµ2ê˜ttWEï:oZ… &òá>%.“ÛP튃8Óm}ëa¨ÒC¥w[òY ¦!ëÞyÕÌ–vDã-x·tÜA:Gø¶À©Ð$€¶©éFÏ‹\^0‡:GÊâ³µsÒû¥å/¢²D—q ©§pT¬©c‰Õ‹ þôø ï9¢×o¥Ò9z=5õ u°"!T(Ì3“K¡}-ÂÎA%mËv™Ñ3¾I.Ð\.½|Ú2…Ë(êï¹_3ÃÕœ¿ðéÕ%­’ÇNS‚¦Ï¦žs~ñÖ¾èn\‘P2r LSÒ*ÌfAíX4X*s2£¼Íä-w§O)AmǔΔ6n÷Î|É—'`¡ÖÝ´iwLžœôÕLÑ u-[ð¼}Cÿ‘-7ïrö^Ù&õŸVƒ!M=q{4%©1­_[DÎD(Fl•ãï0úLîY‚Ç5l‹+~–O™KCY6å°ª y”Þø­GæNKާ…†EdË]ÞŠš‚|ÆT§¨¹£nϸ²»k¿UçyF°$L/mc{U±ÀÈα™º}î°Ô‘S3MâÁ+¥ÑÀÁåe¯Úýòa«fû—òhc’æ:“o´[׸„8YQ‘º¹r5,¼*{snÃÜô–Ð4m(³™^âpq¨Eä¥ù@i²Ì˜Î0ÆC:Kg#? Š{YJ^Ð2q?iàæÀS"9·Ó—-éc õ0~HéÜH2³Üzêɵs¶ç3vøåH ?½‚¯_ÈÁ=n›ÜÅá!]jË­í®“EÓQü‚`xîI—¨uɼöÆÎ—öȪœ¯Ç5=™ˆ2Ðeõ«Ñ)ðNÑÜB¸So¡Ç§­˪ˈaaÀÃo(0­WþC4™sµ¤+‹¶3¡vÓ•eמ³Jç¤pÝw? •`¼šÅQÝs%p>骛íQQ&p6²…d¸Ï9PkèÙ¯ìYÔfmbIóy5-o­,o—Ú] ¦7¬B¯àB>Fg'i•F!eT¤xÓ ¥»=].SkÒg«|S(qDrÊêz"¢pÝr³U=ƒA^S¯|íñ¥Éަ½&Þ¶aj½pëê8—·ö91µå¬Ùå1×OekùNªÁc‰Ö†²êæÃiÌ•é¡ dÝ(FÔá'#ãâtc Á/Å NJ=¥VìáÊÉ[]¬ Fµ_k¨E,¿~ëlá*HËð{R^ʵ“-Ï¥D"ŽÒú=‡}5™ê¹®Ø9X }Û+ïŽ!õ6͉º +•›cêíy.ø»¨8…:¡”ß‚s€L‚(ÜÓLVLë«^ ãÓ4_¶’a¹EôÆn-E¸L ©0楽]a]º « Å”Â.è˜Å„4¶®#Ðæ¢3)°Ú©éYÐøWm\g ¤>œ¤°[MÙ©óos„$×il’Zt·¹ÅÆwÓ‡Y³sG•“oÑf 6BnÄÂ1 æCSü_dø 6òkå€ÉÝ`“7°0ñ ÒÃY`óE,ÚQq•\>X–®bqýu91žHCŽb÷š`ÐЧS¼Mg$µ’)|­žÚÕ}GÙÓÂ.9}W Ã{8–¦`·Â¡Õ”³BGbk ªGä’‹8,7eSØyá¯%Eì •?@ã½Î8êU¢,y”È럔Î9X©5&•üûKÚ[ܬ±‰ZG¤ä ¡ªë>ÒÎôbr–u.[SÙ “SXe°¥™ÐÕK¼3<áõg´¤Æv{ ØHòI9ÁÑ÷{:QÔÎÚ?Èb•µt ~~6„¨)n•%™C$mHr¤éx\ Nrykîd3ã7)úæTOèpοO:£–TR ic<(±q“¤âh1ÑMVû2©œ jLÚ:<Üäb)íÕ“m#‘MeÉ?:».zýæ¤-/GƉËߎFpÈØÃWüz·œ“~¶ßµÚ©‘F–—'¡ré©i×ë+]ÓlÓnÔJ\ý<0dÍ7ÓƒFEÖê¹8ß »täé*½a‚ñQ0E¹|U}Ýqð5Üæå]x™4 ۥ”?±|ò›l. *šyÜÒÆn¸•|0%,¯À™¡Ÿ ïɬ®,f¢ô›Ðsû^?„fN•=·W£oŸO²)-9cM±™RÉ…Ûl_dˆ± øë'“ÝÀÔQù,*´{–õ9˜WØ1S×å幫Ðoå¬É¦Ç'9Õ´÷0{5MC‘¸>2f»v902…AVN¤i.ù¼Û›•}M7î0Îø»"3Žñ¯ÙÕêÇ%Ιå¤e™Æ¶ÛåÞäYÓíyad.ŒAþèçß–q —V;3tKU ç]îëUÒHßXÍ¿ C‘J˜±ÛÌ,®eͽ7 ¾Ò¶Dá¸ÙfXÂ8e•8°{3ßv1Ú¨rú²9)‹ŸáÝ3oŸKq»§íjôìÓ ˜@§+'•Ó¿1+£1I×¼ùÑXËÃïñ{œÌì*XBèº%š€n¶&«‡2U:­ I_cßÊŽZƒ†r‘q¸£7ò›AÞæØoÐ+èSkŸJÍóù@¯=šÃ™MaÞŶÚô—B¸ëþøVѸWòÌ ãæ"µÞ-&éò·Ó‡µgjÉó|Y9x{½C~ )´ÔÚS΋ˆ„¥}Å•ûxU—Ó¹Õ=X,ïsijM‡KØÓ…ÇÏ8ª’»ÓÓ3J«Ø«œ†[=J"8Ò8“}µœhà"p¤,`häÓ7L¶Þ/Oé±ð{˜(Uaó!•>™Së}«Ú[SR$«DÈŠæÓ{—'q‚Þ3‡ð¶Í U–>æ ] $²’¨@ftG‡S&-®®(:ÜÚFqRGÛø­´ú +xB|Cè¨,Ô;î% TkÚ-¥ÂÃ2–΃NO«s´¦¿£´b“¾S¼p¤^s=Œ@D:uÂMq°ssj³ºˆ½¾òòŠÑÍÜ/è!»Wàu%}E/Ó±à‘u• ÖL‚Žgc $óÒùvn$F‡z€k |kÍfó6aÄqux.Ësæ¡,]Fs½Ä²€²á–ýÒ}–É+¬¥—ͧiȶ‰(;j“¶9Eu7Ù‹êú¥·ù¶ b=¹èô¢f:á€ÈßËŒ§µFŸw™ÏÔ#À×s6žzÏ#$ÍL÷O–QsN¥˜DY—!%Ïšû#Õ]!'ÞžäîÇЂxž—u.ϮDŽÁZd¸u{t–*ñd‰ëªŸçfýòØÀõÅPgUæ:} º}®"„ ³ú k¨½ÛMÁ@jvYàCRRÏGNÊî…+z‘fœ{éhÈzØîj´öð ÈO n#{»³yYз¨_ÐæNH„¬* ‚ƒ%?DYn#Í vûÌ: ÊÑ%v#1æmUd-|]`.´ÞÀ3”p¾;Ãsˆa®šÌ>Ö¢Ù`ȹÇXtÇØÊ’q!µS×¼V·ÑY…ë'd.xº†Óã&v•W!YMr…†:ij»bs„´R_éÚŸYç‚ÙæëãLºsYÁ•†hÄí´eÞ^×bÜn|í¿$V°„]Aé^JÝÆÒ\“e'ïR‡¥ hlZmD ЍÍñ´lÍ/2·Oݱ‚kIümÍÀØ2±¡Øû¼ýL[˜<œRUV-êxÔÁó\Õf«ãsKTmêc²ŸRHÑ꼇í¢Ôß4Ã/þ³>Ç·AuÂ=½6‡†Äí«åÌ`>„U-°»6—“A+™ÇR¾°0ÈŸ*š7?¨9`>Ðõ @¢Ï$쎞™Mm*ho(CèdPr}¶ò]2f€t^çú„_~†ms¬Ü£3uÌ›îQàϧš`6ãÑ1šªOD…uOzŸ¡âE0FK†CLu íŒZ/t–]©"P­øÉë>Îï¬{‹Ž±ÕœÅ í–»ØG‚h¶y-@êw.–g,EEÄC €›#ðWoq Í`¹yœ]N':ü}.D„Â%¹e'qåm|+y …õÒÕÚ,”Bì¡\Y.•lƒüâìg0ëžK’±Ù¯åP°U5ðwÄ-QóSMÖÎWÈR«“µig»±ŽÁ̤‘o&vvƒý¦¸^4Tne³çŠÍ{Å¢&–î» ¯ÉžK%ÊíÕ¶•¸k*²™6\SAóWu«×Vs“C§—ܰk–™ÛD;„h+HšÇfÜOj¶áT]RB TÒ鈺S HãÉ!Ÿ*”Î_&m|ÊV§½¢+4n+-S£\1/PYVØ/ä´ñÐdð¹Í“µfuè•T¯ÐÜ ãÓ÷wÈv/‹tH‰(";ü¦bj¬å\þ¡šBûÑj5:¦ðä‹Ä¸âmÔ"9a¿;17ÿRðÛ?™;+4f2Ç[>ˆYh¦¹¾pSÖ0FF±Ó]JkbÀpœç–S)΢ÂêvònÏtëâì"àe¡âPúrv~áfYƒÖ³³âpß| >úª%Ô*Úe¦BšÒÓV. à²}êF8“ÂHÎÊUHÒõIˆØ /ɾËF»Ü±~¯‡Z¶²¦8@nôqµZ.>Ü|õÎ_ï·gïw L£¾Ò¤Gz[Jb5‰O“ç`åwòVOÎNcjºg”»¾íéZÁTá=áðÊ[Êê]ÒURuýþ[ºžyâÈ  aôÑæ¼^¶»Cðçœç†îšME§Ås!gz‡ÃºeÖà™½‚§h=ŠššÏÅìM»6f¤E%Ýjå C˜=ÄÁÜ hô|×­eyÓZÒÄñ®DùÛ4ÖBä†ìÝžªÄ ÖÖYnØP[ù,ÕöÑb•ùRÓßÐTU &,G#ØÌS¶“RI«{<ËÈ¿2g~>ã$f}æaOíkfÀ2Ö³¦ÖZ<Ô9 ¹Ç²Ó2‰ ™ ePÕ:î˜Î½ä”¤èàöŒ#-*¢®ÑÈn;lnüÜe8U¥êH/%| ÔÏk ØÕœ©@ô&ûNæÒÈ·;ea´v[Ï¥¡“n¼ÂY™ŸŒ0äÕ‚·E÷ÂÊñ„4#ѬSA¥ƒ™~¯§Êä¡yrYö´‚C€P¶ñdŶöƒÓS÷ê`O½rǺ „œa¸×*‹†QUïOŽ]µÅ$c$Nžž¹7 ~òĹ^““ü66sÜ>U5½AÉóœ >òªK3G7£Y›°•T©Yå¹A3k"Y.“w¾[ªÿÁwf¾Ø²m:¬ÙŽ)úTNoÃaywÅ` ý¯ Z:+³`ñœè`ÉÖ„L—€¶~¾Ì Ûe}‚õ¶ÚÔkÏ¡¦¹ú9cCuigmÿ·¥8ÔRuü“þšhD f"u3Â8˜kÖ€á¶ÔªNڒÓŽÍ–±*™A\'ªÝø"Pþ¯í}« ›ÜþQ$'Û´3yx6PÔ¥õF2ë6vaùË×NŸäX®Ú9¹hëœÐ"’¾æð !¸\cä¤wiCon6o ©Œ¨KP½9è’jžOÁ†8 FÄœ«sd¦¼×ƒ7”ǼÉù7S¯åÏ··-¨Un.µúÞ<ݺY (ÀjLËkÌÛ kà÷Ašr‹nÁíÖêØ%ø‹qT]¯›4Hh‹š›Uò£Iî0[~^懽Rã„4P䃬¡ÁêfWñ…ÈÕ«µ§13Ä07€yiÏsÿ$G¨°è/ù ûUÕ^EpõjƒÐq'öB’öhcE÷ª¸õ4®Èlz2nwÍdãA g„M2ÄH\脘EÑĈ/¬^½¡@öð€þi~ç–ij5(ýùŠÎ7[–kgc<ÝŽÀ[¬ý)>å¯Å›as?%UÈ…˜l ´kËjvž¸&/ú>ÏR^8SJúµxù|oU¿7ªåWõ°»o–\ŠuaÙ< Šô1ù§;èïÖnë Ê—ÍO«øQñ‡ðWÉäölÔ_¡ž§¹ «'Smý¶”›a7‚T~™†êi*<äµÕ}Õù*…ÌêEì\P¢•#ôųޯ›ÆÀ%ïKàwý°»gî3ZNi5=Kimº\ò÷ ,ÎJ%dn­FÔ¨Ýc!a…”¢»¼ ذáq*3l’f=˧Ó/®,ClGÄIv7Óûq§Ë^x¤ *Í ûã š}¸¾eÉŒa! e¾2D÷O—Ά%·ªäÃúNOK£‹Q5•‘zg_0çrÊ€óîw@NcÓ¬îözÿÚ<î¶Uīָ3™t 6ËÕ»¨·©å_&Ææ$VÜàÆí€²®Ø¸ò²\^>—rðbIº`QÉŒñ–r.¤ç·´†{Ž›4B…?ºè7zຠtÅUô÷«˜|âú:=Á¼ûPÜjô8Õz7šþ6x´Ò0h$P¶±+“¬üOÇÁmÈ7زdÈiyE×å(fíy jÕ’ú;¿Ñ­-tQ9~ÅO_ƈ–l–+î8<Ž¥Oû‘ë-›2r—^ŒËsÍŸí®3ß$ÚÿOܱð¡÷jU~3:a X³£Âái«)æé•'Îëaq^@'ÐÈÉ‚\rÜ‹ü‘LyôYS¤©ö2^]ã€Ø/•T N5ª5 î®:Bßvη%Ç)Ò~yrS о<» uV»¼Ù±´:ç"o[7¼Ó‚Ëz’uNnª `wûý$Ù¹€.2yµþð4“#àQWϙԀ¤»ã([‡†$?ó¡LÈw§§ 3[›oñ9£ß¢r‡‡ïSBCáOÝâœ( ÃÒá’®Ã7áëÕÜÿîÚyIá:¼^\Y” :=i‘Þ=é'õêÍ÷µ¿~ ;fT³ð{îMnòɺ‡ŒOÓ„LÕÉoȼ2Rî:Øo½ÜŽöïY¥±…¯Ùòóùí¼ßœ¿ ~6{È]Œ”ÍÚ®‡¦~^†Vάwõ½ÛwаÚÈÞ ê«hø‹ ün•ëc—KÐè¢ñ§S92N°žæÛÃ{ ä63¹6“Ñsdú\ËO.ûŠÉC{Z‰©ÏPSü£r·†õÖñ}‚÷Õ+qjñ8HEMÂ9eÏfà ÿ>øHL÷±€sýÇòyÏ<œ%82Þþ²¨®¹^sá ‹_ÉçE t×åQ­‘ÇΖyqo&­Ž¥TÏ'>§%7ƒ•éS_àt¼æ ÁÖúÇ0øÚ}ýíÜDüÐb%G&(Ýè™Y.{…ð8ùX0`ºå_êzƒw™Ò“Å‘Ã^ÿ0HºoúdãC˜ë¥p¸OV”nóêLûo²—ý¿ß‰â¡þLÎ]½6Œ²»V•Ž;“†òoþ6H'xÁd1/$³ÛWîeOblnÙ?ºÔ¼Ð¿z“Q×'C[•=@N²ï×!ñÙêàrM¿ÈÓ-B¿™AkË?TxdzÁ]Š.âÉØ_Em3XÅÙñ’¬”¤À Õ ­¯ÍÄù4íhÀ‡ÉYΩùüRÜú^IæÔ ’:½lç§töƒfMMd›%ôj¡Ž]§Æ/çø»[¸ëq´%¬yöÐΉ¬\SÓãåRw„:ï1KxëÈËN7G»|³4ŒÒ ~“{„Ð)ôôUB 6ŒãE`ÿïh[^–åRב…ÌÝkàbM²Þç(ŽÇëØµ´µùR¿ë×ú.†Gêz°½ÁU…Î(ïø$;Ù‘˜~Éö…ÎLI =Fº/‹ÅÛ•¤yßÝó8OÇ/vX‡!_U¯âQ.VCјlîtd8,±€0EOvQ•ÕSêÜÍÊÿ/zaƒilâº=Sw”hPúqˆv½k ä…Äš)£X§x­ ÈW7û~È›â¨ÊzÄã\Ú_^ƒ$´ŽSÓ@=z9“R“e'È´‡‚W,Ü“üäü2 û5¶:4-d$(«Jgï]çÖÜ6wˆˆU_Ÿ½„o{‹z4é6Ñ`mO! æÿnÓ0Ú®ÕyÚn_‚Ãñ!xÓc¼Ã}U+Úõ^öTFUÌC¯~1ߦ›ø‘òyȶtrP‘?vM~vöáîÊŒjšÞœ}×÷5›/¡íóäêñ(àüÍv- JÒ†çÐ%¤hgR¶’•§+¥@Êw¬ …6.ÐMcÝ·BÖcÕÛÚýM´úÓfb€ÁÈúAÙRÉ£ßlX{'žL-Uèv·ÀÖºÉä{Âè>¶4–G¸x¼f©cºA¡ópz>Å Žzûõ1–«ÕÉÏ^ñ±ì«êØÒZze'*-—²y>îŸ BǼ*.üæ§ú¼®í~9ýG§ø­VJ?µª!hË'Õ-áXâ¦óù\[áü[Ì%KíòéózÙÛg!þ4þJí:’,Dbñ¬^á,P•§žÛs¼¾7ÃGé±—)sÔ1•¡ÑÎ6þÜ_j|-XŽÊ©^˜Þ§KËÛ|öôøYöÞ‰…/`Îù÷ô"Ô,¸”‘p$ X{JÉš= ÄSº5—ùúÜööú–±½ì“›äûh7ènVÈ Ö¨ˆÅí ;ºa¸¹¼«­"Rz\N2m öT‰”ǘÁ}èûòlÀIœ) ø¶E3Œð`wèÆ«íÁÛÚ‹Ÿ‚~RÕ)-Ø©@ÑøHkÒts¬eĵ¾Fjæê”/{C‰zÚĨ9ì4/›aò3B…·øù¤²;œ­àS‰Å>¡ú-ÏRr//ïyN£Z¡ÛãççòùúÀ3•êé’ÜkKúrÒ£ìSÝÔ „¾I£Ãh§fUi”4¼í}F~ÍmÖ)ãk¤Ç_‰ð•KïŽ*¶³/Mh*¥HÍc~jX8oSô°•O¸‡ç´ü)²+jÄËuÁ !€dT%î¡}.Y’®(m·›NÜ=S}iq}%ºÅ_ ><©V7GN§õÀZJ Å­!F¿ÁÓíN„¦o[ oXpù¯i¨Çé¨|2ßw ôÓ8åv Þ\lrûº yn#}N D“Õ³vál®ÖH³výôð£Ô¢J©°ÜÊ3GSÒµçíÞ~µ¹ù¤>4÷fÒúse¼‰d¯µx’xʸQ^ûË$é;W‰5Ìw’”¢ЦM?âéýå©ÝUÊÞ"C–5>I3[%eŸZûg<§ùûò—V×T‘qt²ËÜ…Cm>aîõ›Œ´]c$x}Œ|ë)ÉÕQªÿdÝú„ã®ÚL#”9€ŸáB§«F8oW6FÖ¨wœ ¢j‡YøÆ-€6ôÊ\ܺFòšQh«I8KìØ_!‰¦÷“¿ïvëwÆmÓhmP3!±5+DS¥aØïôøUüê÷y䥟rz}çS¹þkF¡ïÃ|ë†áÀŽ™:â….ð´{˜^Ä{5ÿîšX+Ñ'Š#÷Kð=þ§¿‚¿UÏøXpv™·^Ÿš§Rn•·VRþëa‡!4¦¦üõPŸ%a#è°&íæç‰ö9‡íWôUò¨êŸöjÌ_çò}R|¸>ï7¹±Í²ö™Î¼¡¯S«Ï›ó9§Õ Žéÿ*BmÐ|îV·…ì´ŸëõÕ'‰³;ÁÁU!‚Ÿ ãߩ޽ö¯Œ…·kV<¹Wf‚MbÛ9³ð’ì)ÙÀ3'¹Ä¼å,…">¥ÂˆŽoårzB|¸ý_ò\Þ|§ã]eé“!]ÙßÀ´:ièÊïu”´°CÁ?©]-,¦ÖrëóCŒƒÙY#•±çAv¿§6ÿw·òM'DÂÞ\.Y:; œdN0C"ÀÄ@ò%âŸìI!Ás¡>¾Åø8å4*d@6+šNE…Õ5té.¹©èÇÀöå9@©2Ò­YÔ;ˆyèv<‚›¹Â¹øåÏIU­ªQŸ>,®2/Õ%°ë»È/ò]˜Lš&Xìmm+¯F(Z-¤ed¼\_÷‰ÅÈÏ´‡Ÿ:ü GŒæE4ÉeÓ9ÌÅ÷&ç$/Ãz+YŒ*¯KÆÝlïŠh’ñ´žò1ªðú=:He/1ë&º xã~ßpújì»… ŽíǼ©ûg¬v´[]ÜÉp´èoáD÷¼ë2âàÒîüßoíœ.dÜÿ›çŵr15ßÕùoqoðÄ]ã.T&»Ðgn>|þ^sNÖÛLíôd0„eÉîZfþÁŒ[)yŽ˜Kœ hŠäH5Úz’=Æ7é£âðª¾Ýù9Ô:Fr÷;eÄß8¬ÑÊÝI}­X#j¢ÉªbÙå~Fooç8ÙŽ—?íƒ7Ù¦\¿ð™Y®<ù®–=…*÷Ü'Ž7J­³ŽÄ“aáá¸,ÒïtÙÍM@%Ѫo?«;ܶùEÔ£çØñü¹¾ú,á…÷/ŒöÁ9°çXÚâ½ÔJBÇ—ÆY¶Ôø†C·Iü¤Î6 ,Ú?´Ýþ$ÇòãXáépÂA÷+)˜K5?Cx¹’=Î÷þv°W„ÿ‡ŒssY\úÚ½ü\l&AiáØ+)ùæSÙnÔ˜ül:˜~§m׿Í=¯2ò¾É4¡¬¦“¥4èo¿#Ž=þ %Á®/çÜÙ= `J**Uôº®~~?”ÑàÒš0©éÀN¸“3C —/òηåíPá›&J¦Ð­³ì)ù»ÅOœ¬,n#Z[¾%'èãÏÏÇ=‹^ä³µµy—=´ÇK¸úPÜ“SÛí[®aXWÏ“«E¿3¢?a¶Ì:†©¤~ "¼B%]ÏõßzÙ¬_Nsžˆ ;YÕ'ÜàRk©ïËÿ]99¸ã¦“†ÌzsØ—!+Á[ùºÆÁ³P£ûôÒy²gýRßI œkOìçHsºù³_¸ö7M/î…ÈÀžWÛšŠkõ—`•Ô‰09]¢àܤ’UyÐe#á_Í À7øþ4`Åy`DÍw93:ñÙpq¦‘ï[õy:ÜŒM.¢ñûs¶v%ÔúI TyF¹y¥EÊÃ%+È ô-øU¥îüš¤8¡ª•%! ߣt=ÙjÝß¼ñŸYPÝq Úx{¢WŸ@扴“¾uÆiÐùoíð€¿J:ÇVܦ,žYÔEË"‹p /cnSåË •Mq‚2p<éè —+¥‹¥0»;aT¢„ÓÓD²ªÉßür©ø4p¡GHüm9Ò²»1`ö”ïû3l?Úë{ó Í…õÆ0IõkõÀ½®…Øáëˆj#çÛì ò„/îYtWƒóSòÝQ_;'‹ÍyeÊËöCTÒÀ9AtÖƒ³ð x'Ÿ˜«s… {¿£ß^ÇÏÙB_’Ë„Nšñ98ùþ¼ ~$³ÓUµn‰LÙŒáv•s™HÚ}ø»ÿhý¢¶< ß°nN"c…Õ7[!/%œ…‹î’r]ö´óbíg¿hk<ó±F!”¤Û›zé9‹ê-]b™ßѵ•دÜåÎÖÒ*˜&x¦¨EmpzVr_”Òz¾`Iå ¨oi@úõwkLî̦oø÷èÙ£‰äÀ²¦ïƸxÓ“ƒz|ɼ oª+Ÿ$þï¬)ÚN´õO“·‘¹ö$7…¥Då;–(¢€‚É`£Y¦ø»\ÉbÀcNžýgsSfXºèh½Ô]œ©$H·‘~2ÃÛhOºÕöþL9­4\K\íùÏÑý8ã!gý[%h‘‡8Ÿ‡‚þôVP­ ÁÒW¸}Äq]-†è°åÄüª3ÍBOãVØybÝ¿‹·ôgÖÐIPöt„^÷oW_ÛuÑßþ|Z˳¶Ö¼Vs¬rè~¯—ŸÍKa‚Q —ºÇ[гž^ñ¬kÿýô£ÜA%Ë–ÿˆÞ®¨Ñ¨Ôpz=ì·2=T\zž´”皇Û÷Îq” ¬—ÊÔGuͬÛÁë½ô‘“(Bn½“ yo#?…dEÔ‹¼Í¿oâórþ(€-‰ð—“©=ðTàMªE? &¼çìÕ"¾•¸‡BŸvN£'Ÿ¹›„|… û‰ê_a$°tNÎòþÞÍy˜ãbÚ  ‚stªJ"É2®ÚÚ–³6õ]fþ:rfW¨‹?¹wåà HO!cñ¾ªnà ‰?n§[¿÷Ðÿñ‡Î_´¢¼¢Çº\—ê{ú»€¸*¥’O]¬€uÿ ”ìzU ãZç73+òõ „Ì¢ìMìBã­¦ë|ßOÊO›Ð‰ŸlüMo$á½Pó= »­îXåó3û,µtxx¶KmH\en}ÛúÛ¶´¶zðv?qÑyYÞ”Ó2ÖvvC9ªËâÙQRì˜Áò¿£n’Ù;•MaίèB¯ÛØçcåŒå#ãm×ù޳s!¨DLDõ Õ¿’lröõd–ùkÁ9}µlÊ—k qY{“iÕz±G@Ò2¶ã±ß'ª)æÐ’rËôýXÞPb»ÝsnÀà8¿–×UxOý¸ …Ãou‚B¶cdy¬Í®¡vh^ *ù°GbÜÀsW<Ú½Ÿ Cœ0µR:Ý/&_zvæt’úQ7{ËëËQ¹ÊswÊ®°šx¤ê ý¢z‘ð˜^ÙL‰XÕ m%¬7Ø?»N'Õn×èËŽ²ž•)Q|hš@tìghÚ˜½'ú0ù;òð¼ºb<¸.vÉ ßÕ»TgⲡF"Ì ÷ÙNÔ7ù¹Ã²j´è&Oí(§„{2éÿ±L£:š¾ÙèýM£ä3./êwÏÿ¦–!,:ô²fDÎèÿŵ§è#ja |ßüãNÏ%¢ÐQ)ëð¤òèÈŒ›wIø)ŠÞÝ€ð÷r`0í:¤Ççî’Àqp)ŒŸßl²&• ¿¤}l•Êì©5\lä`Êf»ÒdRµ‘wx·ÓSt„„aüÓøö\¥ŸYþ•ŽG¹Ê"&ÆÎ¿µ—ÿYP†u¸XÄ=æÕÞùb‘µòïêGn9R*’u<ú›ã9“Z‡¶ÆŸÅê53Ð$2÷ñgz,2‚ê]ê#“¤s1j"gÁæNŸ¯§~ÞçðTï¢è÷36k_©¶‡ÙGy(ÈÆæ)´ƒçîÛUeó¥ìšch»Ó[)µêèwšúÁÒkƒ$çóæõ×ñ×Yó9Æ}ûLaè—Œ÷}¿Nn'X ‡¦‚cõ5”Göf,·ÿd÷•&—Õ6Õ!iiQàü^Ò &-øáƒ.¦õãâq )ù>pñmŽËÑI5#÷Óù{#Ùu>KÎí /ÿ<âò!ÂJ¦˜ž-œu9ßåø½3ßÍ»L美C Ÿ2ü!n/µöTž xpZó¸øš²‘ÛXÁù,q«°ýöbV—è@Qw'µÖ»üì)lóVyM,$º;ÞvÂaòA¯÷Œõ¿[éÎÑ4 ÷›G’û?Êáó `y ªE%xñ¶ØOùé«qø®dPK|Iäïl2rc½¬ß ±ò*ée?u˜fmË›Õh=¤‹)t¿ƒ….ÿŸV%M˜ý'þr­<šò /%ãÛ-&ü }Ï¿=ôM~J†l¨ÃÝÄëDæ"™¬ÄjË"#Õêkì*бãÏçý&È yðŸ"Ý¥fy¿ÛV~W¦AédèÎ/f€?â,ŒÅ{DîçaŸd7Á#•ÐúNïuäF¦¾ Ìç+×7;Ÿ2Õûøõ±|·©ÀõYk‹¶1ƵD¤ölø.€ˆ.ãò8Ž2žÓÓü}ƒ»>ÔÚ£:~lAÒÿ7Ú•»þ^ Æ6_ª¦d øì;À´êõl@ }?±ÈÍ¢Úíâh!ÆøbÓè|Þʯ¥¥d£è¢m±?1{¨Å ÚŸÖˆVÙÀÇâ1—Y ÌêmÓÛb«<Ÿ»"ýͯ¯ólùQ:‘™š ¶<ÁÚþNYSÈŠ¤ö)K¼»ž©ã\ñº_’KQ†¸l:ï´¬ÃM‡X ûbÍ8mE—ÕSö{\l/Egš‹õËQ($$ã`„7'gÒäÓÅø·¾}_Ú Í±èü]ï«çUÌWã£á o“0“ãmÿ[ttU€ÒÃÄótv×ùð¨û|ÑX'9ܬžÆHžQÎòKS6_ºiå«ö×Ê->Õ5Y=[.ý‡+Àcö¢‘)úßO÷&:W¹üì©í´ºPAàÙƒúéÕéÉt€€å‰š±[î3{îNKy,ôT°pÝvKÝI¿<åð}mD¿Ùú<çÿHïžù8Âû®k–@úÏbâ»>ô&- 7ößû»È·£VCóÞB+KÎ×_?.êãØç{í³­ðww.³„ëÖêtÉ=nóœ'RSOô~}P˜þαj¾\¥)6|ÒÕa²$@B•þ|\ª'¼òŸÏ¾„8.M”3¾æ¦-wïÕͱæ×Áì… Þðv‚ÐFÌÞrÈ:³ùÈUŸÇùy±yó˜Ë¿š¹›%4 ÎyÃ~Gż·ýopRÏú33p ±Ÿü|YGÊÐGß]™8rOúìË/‘(;ÌÏ×bØ’2?„Ÿ;îçRΞ#šºQ¿nèEš!•æ3{ïm%(xFAtOHï»ZÈç©U£eW耼ßÅLc§Oïvc'¼øÅÜöGÎrBªí§µgKØËÛ]Í·ŒVW¢lÿ÷Ÿ=ˆqŠnåæz»?1¬¸ªÜ^¿ó÷#“ÜÍvJB|¿{ªi<ƒàLÔñ¬î%ÁC.ŠÉÓÌÔ~¶œ"\ËO-Oí¦á¹ÑEí“õ’»² 0Ëž]è'ÿúÊY˜¯K¼:klŸê777ç£ØjH|…_$u]Õ<1¿vœ sö¡hë1öÇ|6Áx’„9ÔÑMl3#—£·æui¤%ÿl /ãÜŽg_fïÝÃgîJ¤ëJÜX}ú’—ýtظ÷jí~ÿÛIŠå+,ousWŸ âÿèMÓP5'£ü%犰¦û÷@ý0GG›É~ÅLtO‹!ø>K¯-Ø`õbo“ñcìI\Ž-Ÿæóý}…Ek’Óè8%ÁÖvÿéLŠ–°UÌûRû©³}ÝÐÏïbó}—´æ„HÜ}~åùþ>Å?BÓ+ToBsT'©†*5ʇ_›’)‘‡Rs;¿oÂàÍnWÌŸ‹3ó`þ3WC{ÈVá—¾É ®#꾞Ǜßç«ôüV·ÕK¿ËGðñ/É[© ɺðïR÷û«ýgëÚùúÞˆOÝŠÿÙ,=CØúÿ¥½—ò§÷:oîu!/XlÙîᓇÞ?û-‚çx¿Rãê¹,f6.¹³œë-Cåu*\ß(Q[ü6ç ¥¢¯ÿç$ƒV­?Së…íôduåª. åAÿðž‘§§¿tç˜8›þë„”Å/âÒù¿ÏGE£«D§¨܉õ1›ÐþxjP.‡è©ò"Q”gú}wìþ+)Oî.Ú«ü¼,‘—ü!5ú»ƒ=~—û½Ë&WÞÙ|¿‰ ÿë¾\Œƒ…úô™^õßßâÓ⟛û™`'~ÜÅqEÜÙ­ùÆb:Íæ«¿ Ã*Óà¶õ|²D|Ñiÿ³¯íü<ë©Å̧³E 2r±´¿¯>B@+î³y‘üÓO£ CÇ î ¿ ûg ý¶ý7Tq¨—ùñ~Á!퉓7eâá‘OÌ6ûµä2«§WÒBÕŽÆÝ¸JΧµ¥*íIô%wëƒ&×ð…Q{Ô¶²¢eç‡?³äåþ/ç+ø|Ø]´·aû?5PVC6²¾@V#»¿_J´<Ï—ço)ÿN¿«¾N¿ó5'Š‚j*«9ÈRâ+sä7¿4úeÿʇÝMïËe퀑ù»v“Š]ŸûŠ]·¨ÚöúËà$-=ÜÒý19·tKý¡òq½Áä5/>ÏSk—Ùùð5-^Pܬý¥¹± ¼´D Wãú ƒÙõÕ*ü#²×â¹’ù…åü-‹þŽôURÿÚ+'å1 Ú?jo+óþfö«µ½Òwý¸üøžsW?›pŸé•:!óðàìéñÛ‰7ö­'øÙLþ¿¶ŸgOžáÓi¾Cÿ,W£¤b5üx¿/`Ï m¼Ÿq¯àß×?ÓèðÁh+ˆ´mKž–7‹ùZö«|g»Ó?ÛôN‹þ‹¡K ÑäÄÖ ^3ÓIùý^$Ý3ì÷3¹ø×5÷„ÿŸ‡õÿ¯$•õ0Úé´žàR_W£þgÄ’ëõ¿^ÿßøtáÜ,ör–cóUï.è“¶†/ØðaN”õ¦äý'ûžòÒœ®Z+ÝŽ.Žho]ß$­–“oh÷‡4Œœ¸m¯º>Z9Ì/·u6¤¿÷ë˜ÇµKuò#þþ÷ì óœ÷>‹ÑéôÔõîWb~ÛêOÍ錓Fˆ×Óêö¯×֘̋‡µ#ýĶ~Óý`„1«›ê7q?î«Gåþið}.svÚÚ~ö¿öüc^êò­=xŸ? ‰ð^]ÅO—9Ùn+7óá{w?©ÔÄ?Ýü‰´û4ÂJj–Cåé™ýº¾ÿçÍÿDÞ÷Kª1ÃÓc{¾Çc~n½÷ë;@ÔÛ“éàçzï?×¼»Þ˜£öV:ßñuÆÌ²?õ0¬òË{¯•Åê˜ýØÒR pŒ²jV}Bþ"ÒZC|ü›3W]óúsõK_ ôàm3ÍQTÀ:ï—ò{Avÿ$DŽ»ñ`$çvN¬©ñ¡êãÈû<œNgí%7Áôû5ÁY¥ð&Ÿñ­˜—-ýÿ×Úd¡#³ýRˆ>o-÷zWÁð{OâOæRÑèò›Ô¿ò}Ë1ýM ÍØôY~ÊP³tá+A÷ßGYÆæHäýßI¢›œ¸_T5ü6snõç3øFþ{[¹Ê^ëþ„ºë¹½/ä’~—øû“¹^]`ú?O…ÞžÁa•éü>oÄKkšYòšÏ·ÚçñÐ"f×™¢G…ƒüÉî>dº»c¿¸«u_ š1ŸñúêW ;ÚwÊ3‹«w[Г¨ î(ûdÜÕ+ÎÄãõ˜¯#CAãô¦ð¾ ­"Á÷éêáÿû¿sX°'i§EH_íþìVЭ6 j£iûjwÕK¾Íç"¯ÊŸüºÕTìó[_«™´Ùc«Ÿñ>Rú?­s€þ:VÊ}8Ÿ PÿVÖ¨ØðåÇZãØ-Šÿó-ÉÃpÚ“¨ëù›mG¡×ÝoÆæp…ѼÎKçk)¶M«ä׿\›šÛÏîû†æÑk– Ѝ‰›Aççb.pmÊÅ\Œ›œÉMuÆQ‚™¨ÐEÎÎl–£)îãs†msrçr.Šç78ê¹Ë‹œW:æÜÖîäEIc 4–9·gv™b;·&BóíhæïZ«¦Ö:Ææßù)S÷Õ_é+Ì#µKýDý˜¿N”—ª+ý…_ —•)^V¿ÈÕú»kÀ[WòþÛ·+_)xð¼æW°/a=‹£ù¢FÒQQQŒHF$È“&FhPÉ(ÂY0F’I6B)’(ИÂIŒ”¦P@¡0Pd#XŠ #$Fz4ÕŒ+ÍÝÛ¨ÑG\Ç7,jéÂ\å—w²wdQacaµ©µÑ]¡è^Šø!>¿Î ¬ßÛôµñPï§úê¿,§íÿØAßëhØ·Ö„?fOç"¯^Õ‹e&Ê6›-¹ÔG^þ £úøÕCýJWòò6mcj½üÞîˆ]óX Ñ¢‰,Db#QK2ÆŒ•‹d,†Lf!…b ªH­±­ƒ‘1€ÔQEdˆ*"2%À±¡D›M¬h£m)Û#¹ õÕU{ýý”ƒ¾Eßĸ¼*§8sT'5äèòuùPÞöë=Kø.¸æʯy^^ûûŽLm ÝÜ’(.î#a§w#\àk»®àn®êºQwHNéÎs¡wJ9ÌK•Â7QwY,çuÓ•I\Ê+!2¨h±²Öll-´Ùmq\{‡ê’_ÉRþB"­Çw]5𾿼kêõDx4©Þ¿Æ¨¿Ý“clú¿À¹ª¶×¸ß;m^•å°kbÆÐhÁ˜#E¤Œ66M£$¡¨ DIƒd’Tm±DÚ0Éf,c,lU 0"üýjÿš­WëªÞz ³Šáÿ÷ÿHTºâ?Q"ý„¶Ÿ~§Ö'U}xï&©[÷èù2`?ѽ0¼é_ïªùé©To ¶ÌÂûEöëÒ~ùD_È¥y4•äïJ½+±v7‡GDØÙí;ˆoªÕáª0 Äñûï¬*ú±õt}õãýý¶µW±Z½I³’sräDbÓ»s]Š#¹×WtÝXѤs\Ú —]Ȫ]Èå¹d±¢Ësb²Kv××mqœkø}îw½ŸpKñT¯«­ªßDm„Ikï•s׊ÁÉÅrn5­†Í³‰õ¹É ýª©ÔùD?Ò‘ìè9’•ß—Iý¢‰õã¼Kë߀¨9ºM¢6ÞŽnp²G;\ÒîÝ`´eÛ®i"–\Û±%RR‚¢š1¢Øº€§ë6·ÊR66==j8Ú__1·'×ÿ‚ÎQÍi l½¡^Ñ0a'pou_¸‹é"³'h.Ò.Ò—‘òB­¢š½hè{4vu^ؽµ”®ÆN€ªt5v$ó KÖZd*R¢5! ‹S)öµõdÖ-²¾^X\z%u…Ö˜]aÖ:Ï#+¾ê#N“µK»gú%)ÍÐ\ÙöaqAq?@‹ídÙ¶ÚØ[O´WèûVÒúPúxm«céñÄn)Æ\ ¾›“ÝQWˆUùÉO¶‡Û#ó‘_GXžRIyKñáÐ*ó¸ÙŘ¢©1Š“h,É„!#C6J#Æ MhÚŠ1½¯;rÑÚå´VÒ FC$”i É£ ÐX¢ÅE“;¢¢ÆÅ.[–â6Éw-ÎW\ä†(¤¹·MIt1nFîî±c¢ã[}Q^U¶KÐTú?Q‰ôC¼ Ë)÷ê*>åéI??ú\í•%øjKðÌI}„_»l«ì.?…9J/¨N¡WÅè3mlËkm­”Q³!E•bÚü¥zV·= ©u/JxŠlÚÅlÚ¶m‘áÓļOþ ¥÷¼ñð§yåIÕÊÛ/7±ªé•nÁ®z……X µÕNÔ­NÖ;Y\Ê%•_à‹Ä«Ä·‰ÇìI/KNž®˜éžç¯/Ï× ²ÍQhµ¨Ûb¢¢Éf° $ÒL‰ѵ& ØŠ+D×µ\˜îº9.Në»\ÑÓœØÛ†K9uÎëºBŒ·#wqÝÎîÑW4W5ÝœîÝs›r4[¹×Y4\tåc®åÚ®—wm« 6›R=ÏÝ~„«ìªülÙ‹aöKŽ<Ø#ž’_ >|:9*‹áÅtäîÉ?ÉzÍ]qÆíJª§–T§UWT—{P¾°§w¦Æ[ñ¼pq¶ƒ@BÅnò·×Õ[}]ëý³V¶ñH»®W"ܨ®îÛBj62L(¡wsbÁ¤-;³)±Ë»«¦¹r„K»˜L3(Ø2nX‹¥.7:;»›ºrÔF%Î\4WsºÇ4œ×.]w æ+vÜÚåÑ’Úä؈˜£SV,µÍ¤Ù,M šz:ªzLð`xøòÕ»n\ å¥.•yKóT^/›àî5W qf§·õB£¶ÖßFÛVÞ·ŠõÌ‘±lЏ]îîn;µ“¹;ª-•Ëfa¨.n‚Ûšåw\Õ’¾M>¶ðR>·¹ªƒÎz¨ržqpP|ÅUßÊïÉÆÎûø0’å =éW;j?f/…~uüRˆô<ú’òxÙm¶XÙ)$4ˆás%—væW®ƒÒÛVßy¶­÷»mÎSÞm±Érs»dJ¹’œ¢¾ŽlÙ¢ÿ ;–Ý' ãÃñÿb æê“œZ×-«ÖmwpuÄU;·*MÇn§®íÜíÆ6åÜŽåÈÛ»µrç:Bc`]×jÜʰ\ÝΉ×$×)w\“Î&Ük¤`Šsœ¹QNå¾êÚ¾© «Ýk_ªõ4¼t»Qyê]ðí"é´žz;:U; =I;š\©dºéÆ›)zI] vt¨ñ “áEÑÔù$éäïr½ÝNºyS®½“®¡ïÕP÷òwÕ®‹¤“¹K¹ŽçgöÔjªU¹kBÈ&ÆÑPhŒZM„“$Ò’ 65±clZ*Œj¥š64³ ”k@¤·öU|Åíp°¹ÛRâžl¨9à—†´í4:?ëħ1ìÊþöŒ,Û`͡ڶœv°~oñ%Hô0óèó±æî÷ßÞìÁl‹¾ÕÁ²[IÅÃf÷w~%>æE;z®Ž»_î\¢Žýz-VØí±Æ6Ûe¼b’\ËmkÏÛ×§urÇ,Ü®[»·îAQtèºîê±ÅŠÕÉ¿ WYNó5~ÿE—P.ï"ŠÆ´e¦SFÑMkjîéql›pø–Î7%ïQ\F9a929^6]28ð±xÞ–õBê Ú®ïºã^µB½”w^Èž³Ùñ½3žÛZ½Ñµcj±2Q‚+Æ£F±¶(µ¢‹b£)4Ì(1°QFŠ4bÅb-¨Ú${žë»©ÝPU×3Øê9£”R››;«–ܦMSBåѬîÛ‡51II9r¸îp¹Òd-¹Ü×5s&ˆ²)0ÌÚÞ äÅÒ%ê¥zšž¡/УóQý³¯ÐÛ6ÚŽ¿0mpfmNÁ±É¹aK˜¥?I×Ô$waÝߤ¨UÌ’_™"¸åµ)W¥=«\Æ .w1Fƒ»UÍÝ×8íÓtµw[;˜($(Epî·M¥¢ÙæÚ‹×;)ìÖÑci<žq+Ž\oᨠm>'‡—Ö[mW¡mªô"NĉÅw¸þÍþØ“¶#¥ê3fÕÊ$.d”ô^ÛBùBùVŶɺ8Ç˾f9?b à¥Ñ£Q¨4Y±¨Jõœæœèj wnwnm®ë‰&Nêå»;¢ãÅõ_ ·ÂÛϵm¿.<4ôNŸµªŸÈ§nîýÁõD^|¸Ö“¸. R¹d.ˆ—5K[4›"£LXÔd˜ÑXÍöºÛ½I]îÛ´ïv.õmw·æþâçd§Ï)ëí’ýiCò´i6Q} Ð{žÚ«ËfÚ/ÊëòƒÚ!ô%{]’ýR_•mжÇ8á’Ù}ø¼¥Ivð÷Y‰ù„®ê6žâMά/¨Ú\qÆ×[ê}ÄTùBô;-ª¿‡Úl6±V²|öÛ½ÙNܯy¼'q¶Ñ{仉ÿi^*zþï$6lÍ›FʾŽm‰ðu¢ú øTz OÄmš‡ÂK uñuñu)y›6Õke˜¶!š¢"‹M¤>µGÖËm³i;¯­VooÆöŸß\èG"ên¦ê\µC©ùõÉTŽŒ‹Ç¶…Dî’ÔØÙdmùbC˜¥/¹UÙ»·öj‰s"MÍ36ÖÊÉ15웢$¨¨£Š(åÍnî†Ôn1X¹)³NB²ÒÞÜpá²N5Æ—æ8ÏìÂTy¹?;ë´µw›<„T9’G}T}í´ÖËdÚ)èer‡ñÀé*ætŽþоËjGx÷“„ò¼{³M¨ÖT™”LD`¢ŒF„,jƒ-!˜‰£cbA“b¯ï·²L¢Ì¬d 6(F#6Ði1‹E¬TmF2fR 6K"e„È& QµF,”a*i¢-‹Äb‹úÝsmbµ_;\¹¶·yÞX?WØÖ͘2ÚRœ/°ÙÚ ö” SùɬØ-¯ÓªrÄO±Kú²}›ìúBQÌU)éQxò{¦Û!â=^ïå4J^'œ)90Þn8¦UrºZæ«–Ûncɉ(‚f»»"Ê ºêQÎ.èÇ1[œwnWwt)E‹œ´•Ž؈Îwknq»åq:îÓ(·wK›…»¹Th¹×hÕ‡w;µÝvÅŽeĤh‰%ÍÝÎŒÛ¥Ít»®',h¬`Cbfã\lÛ”ö{øðH‰9R==­ìUrmlM¶m¶-ÆÌã8þî–¶[LÜY)yS”‰ÏÎ|ðG¦rÂ;Ïð)'z»îáÖںíÍÊŒ‡u®wwE×n¨ì®W.»»­É (’Fd#F×wG ÜHÅ-Æœ&ÆÍǪãù<ÔQÿ‚§Ùµ·P‡óªˆæ*,Ž>D^l|‰_ä”_b‘äüT|Q|ðO‰GÀ£óê9ýö¸‘ª}¼ÕÆL6ÜqößV©G{„|4¼Ì_ÆŠ>_9uïÑïâþÀ6UÊTWÑsumXÖ›¢Œh"Ekå×Ë¿¨­kkèïZ÷lRa1±L‚4‰iDË4ÄÆ¢Ò!V&FÔÍL”À¤D1’JJH¬BHfR[DÈB0d@KÇ ¦ErÜŒ$£`Mw]6+®êê]®X‘]Ý\æ¶Ü»6`ÝÛžŽ­‹í¥>Ö3e²¶µWÜÜgàß%B9aÙDïôx¥ä›õÂWÀB¼õj¯Cǯ빉hL„\ªâ˜Éœì“QÊæ+™1\¹‰!Ú˻´sFÝÝÝÚçw.”•¥c¦1²Ø· åQå˜Hè«›!>ª÷(öé¶ÇÐ6-ªâ®Kn­]\êÝ_B¢z_KÅT_b'ã}ŠgØß¡Ãö¡h*ur»y;uˆNØ%'ÅGØSøh”𨆵øTšº™Qmø[6»Ù ç ¯œ«Ë¹;ëM¦Í–ʈ´Zæ®l% ÒAR0ˆî®™!ÈG s»«»qZ6¹#¸Žî»%‡5ÐÉDn›š råÇn`ÛH­v®\¸T]vÜÛ™¤‰¬˜Ë—4EŒuÕØ\Cîšw Î’ï‹j—g+Ü•Îve0¨î‰µ±=žÄ¾‡ÐË9Wì%G1wä>ªŸâ­©œ^è®èŸÅU'5@öò=Y_|D½j:™}í+Ô¼×BòyVÆÖÓc`“g¹â6ÌmtM›m36±´»Ømœ½´^wÛ#Ï^ÙN§ŸUWV.Ò§¬»âŽr¼º…^Ý.ŸÙ ½@{*žÊ—L.ECبīçm[_×–Â#kê[·\µ[™ca繌Xuðæâ‘ö©9¢GبøÊ}ŠŽJÎ }ã6“[ScèŽ>,‰s)œLÎCÍË :e>NÅ~§ý•DógA½;j¯}/UµzžwÌw;»sk;¨¹Ë»•Ë'eÕrÎŽ—vínŠ£:îåkÚîãnk»®¬n–ÒÛ›r2®swt¶sý_0IÙvrv{FÑmhp–á~¼¹i"ê;¯÷ë÷$SÍ[kgŸ#zŠÜNìc¦Û£»®[råÝEr¸´l#2&ÔíÎë®\¹@3¨ÛzúÛÜ´Õ}H•·-´¯´äÖÜLçáGwG¡Þùœ?ʪ`:W@GMC’TtÔ¹Ù=Q©W}æ*¯TWŽõU>HŽa#ÁÇöu.Õ²]©~!ÒÕÓ%ã:atɼõîfÑFÀDPš€¢*ŒÍ±±h(²†db ±£I“"ÁQb¤Ä`dLhI€Â ID6…6G|ÉÆ«Œ›S0lËd‹QXÚa¢ eI¢Êj$’X¤Ôk ©"¨ÕFÐGw,b6¹n[—7tåäJ]+ÑÝ]ÝÝ·wV¤ˆÞ¥V®š†(xú=½r"=ç§5Û`ØÛ”k†µü{kã_ûßàkTz÷Bм“Ém¸_¡)ò‘ÞëJß/jq£ªù{/(¹’†í1Fmá,m­£Ò­«–‹dѲVåܸÍCïÕô[[õ>“ÿ9*ŽzQ: йÝ^UlÅ­‡Ò\qá¥Ë*—ôÄNæ/%'œØü=÷ P:R¹øK ¼Ž¶[•Ä[qœn*ÝÝ;W1k±NìîÜk»®-]8 Œæ„b6¸ÍÆq¶üÂ~\ý|x§0æÈžR~Z‡’¿.C¡è\ÒQùt_£I?1'Ÿãí£öu¶×ß±5¾SX!ò™¶ëq}0QЩWç)wH¸D¯ H¼?W6”ŽT„Å=ªÚ[llÚ_0¹¶ìËEdŒ¬mm´q«rúЗÍR«ÀKi¶«l©8ú²¹EG2ç¡¥W¯Þ×ÉÔ'åEóÌ¿Ì$®Ä; :SJö©q@õ ½-\R=)yyÄ•åï-:¢ƒéIôa¸ãq–¿Ê*ªóëVõmm¾ehˆ¤1F©l„Ìeˆ1fŒÅbØÔQ!AlÚÖ3M{ŽA/2ʪ;P ;m7ç¿Á$—ævvÔ¾d9«Ÿ‹àê[[`î¿;"i7j:Ú\“™Dv”uXÐz ©ô[ ãIÌR¾åŽ—VîcTêö6§2û‰u„÷j¹QË(vÔjUÒ’ú¢*ü-[ÛÚ¯@«5±'­ÝØp«†ÜcŒlåäêÒ«æU=²›]è‘öèÐOàR¾åWÜ¡ÈAäP¯}émÒwZámÍpѪ5ŒF±EÝÖ0b;®T›ºë»­‰ÝÍË›»«¨Æ“9ÔîÇ0•ÌW5æ¹¹wutîÜÛIKI˹ÝwlÝÝÜîîvt9Í)›E£•qrÛ˜¹É¨Õrîét9\Ì›w\TpŽíwvÝ0$4œÓ•Ò &ÔÚä€;É;üճ]æßÄ 9„%äêO>IÿŽŒW‹«Å6WSbá‡&å*œÈ«ébâ%ÕÓ«qHêë«âQëpOyiQϯ!¢IFÅVF1F!jBcHi‹iE)‹Ò¶Û~ yáxŸ.¢ñTu©ª'ƒ|ì¢ÖAj*ýOïI£F†¼.\]ærÏx‚sBZŠÄ…ÞJïçïx—ž©2ž¸Ô/#§¶dW9M¥ݸ—4X¸EÊI¹r¹ÙI9·-M£h1‚Æ©v‘KMµ™·$©?^¤b©ä]ÿ›l6õêl¸Ûcg“ö‡-R« ¥çªèÝ¿ÖJ\©ûÆvù%½­y-h¶ÖޢܢmÝÑ6-4ÈfuÆØ¹`ѺÝÝ‘®î¹R;µÑ×niưØÖ+al¹@¼ZŸ?*ÉâÛ/ÓªŠõÑyHëäô>Rë…åã§CÌ.X/ +Ì]*¯3Ê%ê’Èj¯Qð){€§-U_œQ=ðx¢ü ³b¯?5¾ÑæU‚ÁUÍJä ÔÞßíÅõôÕÃY˜ÆläáÀâ>»ª¨'5 åx½ÛW5¸kTmET$IIŠ"R™$ÔhѵëÛ¥E±Q±ˆÔîËv 6\ÛšÝ-®mÍÍråtÜîë“29Ë+•б·wpèjåN»´Ê’ÛnñÜѱ¯gtéÉ7;»nb‡s·*ææŽ¹Â×M»¤ÅÒh­ÝÖFÉQˆWwd³'rMË‹¹;ºãwMÝåµ­«äï”M˜h©†ÌØÙl6GÖ§uÜUK˜ sœÚá r¤þÅEÝ6úªŽè™墓™^^ŒTòÊò£€œë[Ó”lÅЋ辆¹HsçÕ"¹ï¼¿#ÿZ”sPœþ$û*—æÈ|X½FÍ‹àëŒ8× qÉÓTæNذµvÿ·SÉs{zІÅ1 ð×+››œfuÓ®Œ¹nôvµmñm_ Ùm•²lùT¸—Þ­Ê"ŸëHôÍ ñÈäPíªvÅãNÚÿÆ(ŸßÔÀRûÅ=ìQçó)z9ãàù® ¯*rò”tåyw\G«¶Øžfùê:€ö½êCÝE_ûáµµ˜Û6³IµMªU°|„vIvNWßQÕÌóô²ú&¨ÔF6Š6Š Ú‹EA•3I’Å!cI¬k´ZÆ(²½ãEÝÄFÆÑÝÈNF9«œ»QmÎ[±¹“»[FçE¢QkwNãEÎíÑÝr.E“D ¢.s[ôy]Mßš!ñj{$uÑ{=’úÝr]ìžóœªºé=¢_œCè»&lMŽä¸ãÕ ‹›Tv­¥%;=Ò9•ç@ç.v·9þuPå¶©WË@èô,“j†•µ“jy¼ÛO£æñá®`Ј×oõ•U¼öÖÛÖTš ѤÝÕÒêåºl‡\œ¸ms;;°°a\¶î 50îåQ„Àk3›’/ù)NÙ;k«QýÞßüõDst¡çô«Ï¥ùÀ;„»†ffj}®è¹EW¼æ’mà¹Nu¬ÖËjÇ5Û•îéÜv#l»·c¸v\«–ç\­È£¹ÝÔb¦ÖÊc5[\6Ü¢®¥KÕ§ž‘ñ(î6ÙÜ>¿çx* zÓ½Pu õoyP8Þ‚:ìfm¶ÛkiÅ‹XÆÚ´Kãk}ÛCKf';e±ÅÎä÷ôR礛R«%*ñø™´\DëÑÿòs·;‹¾×oîªTæâ£ ¨Ð¿tUŒ¶G¹•Äö¿ï=å+Þ•º\ñ]²8%ë‘ {ŠžØžÒŽJ—;S¿¯b•Øš¥ÙI× ¾“ïçà^ý ç‘v2:@ÈdO,¶¹Z—‹t9¬îÔMn;²çqÝÖîíÒç3rî옋»˜]urváNê’Œ’×9".‘wvb6ë·13æu_“µæÚ«ßj÷Úì—˜çŽô¹K¡þeK¡ªîr´žln~{®mKæe#ÀŒ%àJ•w;k¥Lm%ˆÓ«é.çY³óÿΔ9²-þz+ããc+4Øm#dWü[M©-¨på"}*)̧M‘²Ca·mˆ°…f‰ŠQ)P•Œb£jB±F™Ô"`M„Ih+‹”(‰’iX“FÄÇ+[€Ú2ÙE©-W¶¿É‡ôò”ÚkalªmK€¾­Nî¦Ý×Ö—ôJ§×£Þ(Nm(w¡'w¢ú¿èUNüeCU9ªHò°Ò0é•á)WÏ«`ðöË#ZËef¸SŒ28Žó““åŠ4ç*·¿÷ýªÞÂóSÙq®lk›\Ö¹W.Zásƒ»rS0åÕ.ë§JépË»—urÌÜç#»™ºæ5’e˸Q¹ÆæåÍ®îѺLI.ºiH]Ýs¸áÃmÃ5rÊ«î!;Ès’z~âT®Yæ…âÑâì–Þ/qq®NOêE ™­¶½ÁFŠ¢¡+¢£A Œ¢ˆdhÛXÑd²35)Q­ˆMAeFØÛÈ Š!lPKE!J¶wÏ‹ïd¦Øªîñ”ÚÕGÔ#ïU/Q˜­£/´¡ï“ímö·üÒªæ¥?^ ð8#m¤Ø©Å²Ú‹j¦³äc狯Bïæä}x¼BªìvÚShõìm¶¥ËC­)âÀî¶Úê.A=uØâ“ós[‹i[AÆE´­®8ã ²¦ÂãKŒúalyÛ•‘¼)W2›)àkM’Û¿'gZùvµ~¶CEWõwrÑ·?svK!Ý«–,xÅxøµmW¥­œ0žœ½:á'¤šž2/HÒžºÑ?ƒaO¤~JU~OäݲTü @Þ}[^®÷ôÑIšâ¹ss¹cWw]̜Ƌn»º±§:6J#-˜Ø6²ÌÖÛZûœ©æRÕ_1 Kå¨Áj¢}ÆÊ§îRýæÛ"“5¯–؈ksJð·:eøÿŸBœÜ§^®½. :ú™S¯S¯'G^,'^Q×É”uåeN¼¯”ÒžÔš¥øä~:üs¾)#•R™âØ6«Àj¶ ®5Â;®ÁÍ\JŒqwwpâ¨çnQE6‚mÙ±\’©ì„¶Å6Âò‘Æör|zPs ÞPb—þ•#þu°kV1ªÿ±B c[XÛ_ŽÖw\îï·6Ñ«öÊ×6´ ÚqmNN8$âå¿ëˆ}í—äád¿ºVϽΫ(þDªþ™Q÷õ5#…CïÐiÎ)ýÅ#þ­…FØÖ‹jÿUci!µ0œ‚~ïR&©’?VHè¶Ú‡[oaíѶ6ƢѡA¨™6ÒR”`‰!_°«Zß—Š×ìm_Æ®6Î58q®4ämÉ¿]Dçª.¼d:ˆÊu¥u¨eA¤=^Ì¢«Ý‡ÕS꾯û•)9•T|å¶Ú¿¶¤h´f±ŸÉfæŒÚ¯Ì8܃ö NeJqÍTNM°^ÉŽî£b汬PlTî¹ÍÒ5ÝtlÓºædœŒU˃—k’Bc$çNr2ÝÛrç77.\¹ÍswnÝ.DZŠ¢W5§.»¨®î®Drk7*Gws6åvaÓº$±·l»¨·+šìŽÝ„&A‰<µ%ù‰~d>Îm¿½±E㪼-WNlŒèÂ.UTz$¹*á/c„—~² ¶Ó4Õm ¢ÎWº¯gæ¶ËØUë•bªRa›F*,P6±¯mõ¶ÕóšükWÅøôì6¿ý„ O%Þ€éRçœ*ôJ'K'½ä•ìÔò¼*öt~_ =¤^íÂÃìe «fhÙŠ]ÆVÒœg6‘´‹ŒM½À½?0¯p{Å/sF“ÝE`çH¯:ªâˆLΓ±ÖÙ6¦Í’®6_™7–äò£š©º埗où9@ys ¹ìVÖÇB@F´Ì’Y“1›YÖ…}Ôtê~L¸~OŠ”—2"æ²þåI÷o»}ÞJ”“×Å¥^¸dzÉhº•¨õ,‘ã¹åE¤d¤¨©«D[JØØ¶š«ŠUçò?„ü¦6M©¥”j‚I­—â*æÔivämp¶¾ã‹¿Ó"‡0¤~àœV¨©@„IjÚ6ÐÍÚگĿâÌŒ¢¢ŒT*)²jÛY²-êúˆË¢_´Åœ§Ò+ý}4Ú6x{E¾róÅ5^}U|úªïHõºäcc ÖåÜwNvç4Z".w]›F¹DîéwUN‰ \¹ºÆæÝÝ+3Ö î»J3Îâînç'‹UWáëðß/UøZ*r¤UÙIÙ‰WbLÂO=^¬^AËK¹¥ôö«fØl3{€•9ëaëxSÖ*Äê*Äx¸º‹…:Š´0µWM&¥ÒÊñ<½¸cHÖ‹cRTj‹`È`Ę@š1`‚ÅL4llbÔkolÜYÝQ¦-“ ´­&æ¬Ba±®Ú4_Y[ykoyV[o¬†EðbúgÓÖß>TNXOEV+Ñ-Uè‹B©Wo¢£m'ÌåQ.Hôj‹ÔCm_JK‘OnFŠüx±vÅw2ÏsùH˜ŸRL¸¦£íÔҾ܌/µU„ûPÈž•Aá)´›zòS¨¼•àj[Y´úî?Ò„åŠ_Ìuèmó+šÓ´Š¡v,kºåÎj5ËwWMc]Žj‹6lœrÕyPò¢à^U4W¨L«£Âô¿ÆðîÏC´Î6W2™v–Üž æÑzÜ#ÜåÆC³v{ýÂK–†¥­µè[aƒ@Û#MªÛ%á=.Ûl™·h+ÄÒUÍħQGeUØÿÆ 9HõÔ`zê0v%`ì »2]‚«a SÚ©ª{Qb4‰ØJÓŠ£ýÑ.ÒO) †y$rÊä£U]521¡Ó4]5y¥öÜã€W¢Ú5¶½»stÝÒv’«–æØ¹s )’IE:ësG »¬Á¬[šé0ÛÝÓºº8„w%©F·.95®\ºãmm•ÓrȯAŠwpÇ×îÑ+RóàüH¸‡âA€üD2Ä+IÑ‹èQ²ÔuÙ­©×¿®DrÄ«í8¢qF¼~ÕLN5¶¶#QQª#Q ‹.vB’£m%£$D†lTdʃ%&Ê­²ÙrUuð/ òu"r_¤'û[#ècëäã¯ÿâ¢W:¹º)ùÁB® òξÜKÈÇ-‘²ZKÉ. ñö/ê%OÎRw7ï /’ùÔ¹ü`ýê— WêÄŸOKm±‹|U\“–W©CŠ«Ã¡Øí+ªG%@íéKƧÑÎ5ÆÛlW rq¯]PÊ¡è2›V4m£›&a 3`’‚ÆÓ EFÕóÖɵbÚ#Q‹h´h®Qº-ÍDU;«–‹hÒRh¸›¢HIn\;¹b3Ý’îêÁ©dŠ9ÊJ "Ùwk—.bÄÉ$jÜnWw[¹¸W ÐIÓºGs†Ûˆ·wGl6äUú¤/¥ÿµ r§á¢žKÍlWè¤C•éZ.âã§[ÈŠr•ÑI…Μæ"fÅ eÀI²¢±Gm·åõ6ÚúzZž€Õ/;a_º`=cQzÌ(|­Ù„íí,ÅqñÕHå’G±€Ä«¿Àvwiï¢ •´K^z&ˆÌIF’$ÞÓ»¶Ù²â®6-™¹.¦ª;šÖl¶mi6ÙÙ͉ě›QNRBîà]`Ž WISÎK;"yqTõÒ^6CZËiµY­›-Ï?ø)Håˆs9ÖZËm[[[mâî°CÜ»]9Ùwj­òõ©uR>gËŽ2á¶ÌŲ܅T9J§(\Ú\ôŸVÌ"ò„s­’â'U¥S‰W¥ö e8 ñRôèâGâ¡Ñ¶‡]½;bq)ðêº96â/—àRŽ(ø€õ1qâ*õ@â'áÒÁ ](8Iðét²p©ð`éeqEðÓSm·»×¬ÚQ°ÛQ³ÛaÒí­ÅŽ5Är ½:­N4­ùm¯Öê·Ú$[D“Zíck¶ªÚ{ G-K«4.®d®®´©Ñ`™ˆ]_à!\•$ñ¨±AÕIöU:ªŸ6¶i?àD^j­zjäoVW-nrånF•Í®n»b# ŽíÒÐH2ll4Xш¶cr)+œ"ùȸQ'Bªxüe6¼î®‚6çÿ©.b#Ä©¤º:¬'G4adž÷™Vb¶aê«§;Ž»)ÝÙNî]Ý%rnu•×q[ºí¹În]Ë›Y«& „W·×•ªöùh¼;D÷9Kªˆ}¿˜HrPYæà¶ûJWUñ¥­›m[Sã7(ˆs#úßÔ ¹9(ð2‘ì‘—±F£¿ÎÿÄI2Oa&TûøUí¨à.©,*û(Tì•pK×Ta>|¡ÐÐáCÁØñ\Mª‰À´#›Ì3 ÛRVƱRH¨Û1“dm$m®Ö×é%xj¶ÊÙlüD”rIIÕAñ²Ét1ÉDææªSÅ1IÕÕn«8­ªã_eÕÉC™B¹Ýw¥qb@XÜ»4&㸅sݹÎwqs¹p.mÍΜ¹KºÍ²jÍ»»³&Z6&Mb1œÆ‘ÛŒÜn.8âÛ’¥<…@¦AέП°Dÿ‘ÄiªžjÒ|HJæÉllÙ¢êá'%ße0ŸN‰•MlG¾!L'åʧÔÌÌm±Wâæ¶6©qÉ ± ÀøŠqEñ!•=—éÊ­¨Í€øØÚÙªr%ø}ÿ„ksA­­‹QQLhÔFÑhÚ0T¡ (Ãbh¶ÛfÓjg6’žG6ÍSn{X=—ëª&’Ú†óü´”æ¤þrº”ëJäQÖ¡Š]ÑO“¶Ò¸KãŠÂ¯Óø”_‡Jä~î y%|ש͑™ßÌJKñ!öQæ §!1+B]Uðmnª×Ÿ^MU{YNî±n\º‹sÐ:®îíÚD TjSRRîí¹%§q¶ÙÇêJóåÀN¤AIu4½ á#©£ÐŽ:•=Ä_'¨pC×ÉíøòRhÀ‹Wf¦•w(Žä[Mw ¾Â$å&*¦´Ãq!ìÒ÷I>Z‘ð)dO J‡•U?Óœ‘…Λ6FËg•Æm±¦ÅÉ*Õº«íi| ÅRf«ëµ­[Ëæ%z7®$LbBBDC(’Å– Æ4™1BB") „ÊX¤©bÆÄ¨f$Ô͈ Ç’¸¢£U·,˜X£n\’·6æ¢,jA S6„çMÀ"™BNí®X1Z‰Ý\«6çHAÝw,c&Ýݹ­ËE&;—9ÕÎã¨îݺ\¸çwW$Î3ÎÊK·uÎsY'*î¶¹&w\ÖºÖæ% ¦ñ^ÏUxÂqïP÷ÓdÚ´™¶må*©yàxés<ò=qëey­©äN_[&õ°Þ¶‚;¹;­å¼µØEÉè¥uäþb§ˆ ßW¾ÈÝSm´ãJåP—d.É.‚ä’óø”óYE|e²ÚÚVͨÄÉ+»©›šBAL"4¹kŽêé;¹·1r(¹@€—7X±®h®håÆj,CLÑmS)Ýñ´_áÛj\ÈE;!)ðj¾ bkdoLr¾ W»¡ï•9>d§Á“àé¢Úôª ~v­{j×´ÞºÞJ¯W»Nºœw[ÓW9nã›NÜ„#q'(¹r;µräî¸Å£]Ûr¹ÎP—]9Ò;ºÝô•¾}} ~Nü®újŸ6Ûí’§Ãð_†Á;þ"s)WÁUvû6ß\q“Ä6ê£àÑ¡EøªuhñÒŠxG;ÇÆËhÙ8f¸\¹]˹ÝncW"qÝÓŽº `¥¤UËdÆŽ\›®f5Ýrê(°çJ¢¥¨¢©0$çS?øx—’R:I44دüIGï%O¹mµúÏÇ¿}ÕsLXÆ X%hÆi˜£—%Î.u)%\çuÔQ®]0–wk²ÝÝ]w\ÜÎíºNíÎ\ÝÝk—we9F¹±¢]ÕÒ`ÈnEÃÆ¢«rådw\8µ¸ÚùQDùt¶Õ6Êhö¨m½z®k…Èwld®c®–ÜLpÔdØq®æKåíòÙ,ùyZ-Ÿ‚Šù/dGRê•û"©Ô¥ëI냨'™©Ó)ÒÒz˜uª¯8^½O·$ó8ÖÕ²­·ËÔfÛ ÜÕQÇ…“À”ÆÐèàáÐG@èÐx”ð36•¡š›?¿Èˆù2|®ù‰­¥Î+moc¶ª¼÷[!&Mˆ6”&ÆÑ­ÍÝÎ;®Åt:\Tns›»Ww9ÚîØänuÝÝ*îêâ×-¹k—W ‘®n˜ ø{WÃY­~Eµ¶ß¶Õú&}¢¹krÀ,j€š³·9Ð5t˜Úß_µV½=kÚÚö»^*ô5¶²l„­Ši6jl'ƒùŽ®Ûbfc5_QO0ó'~èƾ65l«ýˆSÖSééE6ˆ¿þÖÖ¯™¯LQmÌQ¨ƒ6#ÝF×wH˜î®†®ssrî㻪î;\6¹Ì.›E· '3»nmÂܹp;vÜ×6Ç]:W ÂsnT›œåÉ$m£rî—2â9qϰ¶×ØíWØëo±¨ñ`ëÛì©·Ê¢Sƒô$N°¯‘Ȩøé|x:¢½Ð:_ ^¼_œPø‚ö¾««GneO”/Ï¥¶kl¶›[_*:è+| ^þ½öúKê/ ô}Ð5”kœ’ݹW.âî×-€¦ F£#–Ý¢Â-‹â_'k^Û%môkñ)±_¨‰ô»U;Y;YWj—á#ìÅ秸¥î$÷{„½À{‚{Š«ã¥¾Ð´kñuªÕzifUH'²uݺ ”—6æºC͈®Û– ¥®Tbh­á™”ksw;´cqÅÝÚá]ÝrQ·Dm£H­LÒŠôko²m³mô¸Õ~j~è)Õ£«Öªueûd/Xùýóûç¯Ü[[__ç×±‘zö4cQk›tÄ sœ-Ë¦ææ’ìÓºî\Q]ÇP†îçuÅÝw;¨×È©!­ËƒŽIuÅ[«nþ-Z­ø[í¬â º º è@òqN†›Gº* ð›6 ¶µZÅu$G!ma“Ÿv¹mÊ5A5 ÔI2rîq„ Ý×få\îèé®nnZåE`à[°cNî\¢¹ îë–æ±±ÝÄ‹›h–®*ÑQ¢L†ùUª÷ÕðŠßãÍ—¢!9‡ón‹üÒe\F¶ò²É$™ ˜Ki•ˆˆØ’ŃdÐÍ¢Á Q,˜Ì˜Œ,²A$‘0,¦†Ú6ÖÒ¬b‹=6áG0ƒÜBîé]Üç+›ÇvîîW+†¢hÙ˜“Ø[od¯7SÁKÍÅøsôÿ«6a²mC`¯:«7K¢ï[mkZmÞ¥ÐËjöƒ±-4R&McQª0±FŠM 6o¡y½kí¢§Ì•_5ó²6Ôb¸ÕqÃUý‚%véö}Þÿ¿ù‡îûZ¯V­Dçþïvê“ö<¾Ðž¶óœÏïy“¡ò½¢½“—Â÷Ç4åöÄ|Ål™š¯æ"½d îŠË êáø?ýÿîÿ?z¸¯?½²Ë ìÙ®!?ÛæWëõoÅ~úË Â¿—ÓbÜûÕWú_¿ƒÃÍûhG,¿,DVÕnt¤sY=?ËÔÜq!ÿ¤¨_ѽߙ"+9ÁšøK];5¿Çù°Ee–YÜC)÷… ìÚ®–wk•tt's»c›Ž»ˆ”§v7£DS¹r.s«IÛŽíÝv,kš#;W Ývw7p»¥·k»¥Ë§và“ºênìã°s§;r.î]ÝØÌ@§ø_çþï±N„Ý)«ŠßËf»múßþ³äʳdø¾ìÎ?{ôë×ÿ×?øåž½³ûâ>¾‹¾^;l+ ö™Û¿{æ.µùuBæòÄôì™G‰ñò¹ ýî¦{Ü,°ˆÁZ‹Q1î^@™ü·ÛTæ¥íiwÊwÔ½Ò>ÀJñ¢»õßáj8A9pÿ‹ú9µ,ÛklTkU~ÅXÜëZ߉EE¦Oɇñ ¿)/©][m¯]®3Ž8ÍCt[êb[&­Ù›Qûè?¨)àõM£$Ø/PÙNó“·Þ#¢¨üz¯H!ÏæÍµI+¡‹÷µÑ¥flÛk66-†È½í±„V“v¨øÛmµàŸwÓÝ+îìÙ6vM¯ENm¶mg¢±°SÀ2û «úí·ÃŸ Ûüà×÷¢üµ³%õu£iãECàøôWáCµØ¶[0¯I.Z›F†±E $½ŽæN•ÝÅtî®IÌr8±‚u¶ã…qޏâÍx1–/¶±0Ù]e}yU~¦”ÚlÆÕ±m*¶#Y«¹'sGr§@©]ȽêŸ)>ìŸu²m~šRR/Æ*?­†(ml|è>i..²—º(x’{a{e=´<µZP~Ly-¶Êw¬fÜjãUø Tåšñ€ž @’DŠ ˆÈBÒ"6*˜d’——vîèÔX¥ÝÜ®Tsk³ºääÆ76º¹hÐîsnXÅ™ª¼ÊyŸ2ïG”u½êªWU£66M¶ÛMù<&Íò”/ÔʃÌÔ~Bª¿#Vr<¦Ê3FÐl«›X¢Ñ¨-IHnëv‘™ "J"’¡1ŠKDV* X6ÕÍ¢îêë§B75£QnF®˜£`×wCºâ Ì—]®¥Ç.ÑÂNºÌ‹º‹pÑEkš®T”Q®.éÝÂ:+š6‹IœäPdÀÖÑŠi’ý¥mU|?×ÛD[Koñ!ý´C¢ªûÄê—‹S£ŽŠº)Ñ.³AL)渿-^“U³hQŠEù4Ú¹®ëW?KUµ_7½NÊRî¹iÝɹq6Rs®æåµÁªæâW-¥EK¥tÑNì$È롵«iã¼w«ñbOÖ ûÛm[}åNÖQ}Õ;­6Ðûª¿ÌT;öœÍ̩ڹD–2h™ Ý\˜ÑˆÅˆbÌÜ¢\惻®](¹Ñsq¹W&àj܉j49\Îw5¹Œä]ťλÚS§s».ê˜I›¡ÝÑ¢ræÑ¨³rw.îîrtqñb«Ý>†m°ñŠ‡Ð‡ðm’Ñì:EÒ]%Úôœ¹Usû6[kf±³d£he†*,hÐÆLl‘ BljRµ/œ×êÕc-H¾ê\´s4[GäZHúO:Ûj^R/“Öì—• ±‡¤ËNä]¿—¶•²øôvdÿΨ^àOdØ:ºÄ<ÅUµ‰Ø¶KgÞ*‡Z—WGµØ¯‘Uí•ø¡ÚmއÞÅÜJûí¢ýt£÷Áî…ì{ü¤^ç5M¸@ê…jÂ-£}”[–ܤ­EÄÜÜ4Âw\m9Ûtänìé;¹7#±Í·båNî"«»vÝ×lÓM¨Ð„Ñ‘)'t¶äL”¢|{mkíõkíÔ-mTŽgŠƒåRÒx0Úà0«Uùÿå½ ×…1£l’Emmlkadó”tÖÒëTëIÿ°•<åtwGÑô~ÃäÁò[ÉÖ6W|^žÚ¶úæ#[-‘¶#LÊsûn8ãq¨Ùõê#–רÛîNV'vÌm»»7:êæ„ÕÊfÚY %CÌlf o²Õkìų'‡¡Ã!á¨êó3QþñE}°‡;CÄIÓIÞ㥪ðôéñةѼr/%…6Ò¥³mCíÛ †fõ)x§G'‹ç’õÞ•/§Dë$äÃzN&ÅÃjœŠŠôÅzTrRùþ>§D/FWB/ñ€‡YUl¬Ú†m.³g8ý2½í³E³Vü¶Õ¯={H%ŒTb Ú@’ª(ØÔdÄS$Bd«‘¤˜E˜I¢J-«rªçˆÚ4d[1´R$†‰˜ŒËÂDD IE¡1bÉV,–´”YÛ†M°&;¢ŽG&æÛ—v¹uƒiÆ—3f£oÚQÕ£ÑM“yáT幞Q\üy:ý8Ž­ÕæÄÛýȼa)ÓºgK}½x÷/ÈížWq¥m5Â0jæ® ¢ÜÎ×\Õ*æãºÆ7råÍ®RàÖçw +§]͹`k›HbîºlP]ED•%6¶ºÄGY˜^ÆDT¥|lµ ¢ÐJ׿ø]-\›Sò-[kÊ ¤k ¶–›fÄøê¾<<îÓj?I(uT¾&Êmã‹Þ%u{kQó‹àê‹m´¯N—ÃIÑÈîÑ>&Ù¶¥êEñõBú¥Q¨ÚºN8á/‰+¥Sê|U6N¶Àé|R>Õ]K¹Tø­¶¶'Q™b®·il²¶ö*/‰*ì…çÉ{Ñ^ØŸUí¤ïŠsbö4º¥^Ë4¯,c ›lÛS˜6¢‰¯Rî’!¸Üg7{ZTOiG«“Õ«ÕŽ’u‚ëtÑm¥±ÖÑîJ«½_„C¬ôr*jÅþnÛkyâ¨m1hÂSl‘2mú«:ÜYš¶£­ã‡µz@HêéxlÊh¾*^ÚõOAµN¶ ; ­½¾ÛÛÛÏ^W¦ŽË“º®UÍú뛨Ñ×]Qd9ww&$£\æ‹&nÝ›»"w\®Zwrîî¶åµÝÊåsråÛºë+wt¸r¹dÒ1ÉÜnK–"çç(PQY$ÌMOð*Õ{¼BðU…x^²•{&þ¡úe^Ïë§ËËÚm ˆ~ýSô¤³ïQ;çk_l·m¹hh¶‡ýv«m½kI¨Ø³(ØÅ&†Ì ¤,h¨´–ˆ¨Ñh‚"d™ƒQX6«Ûâ¢,¡+q§ÖÕ}U¶5~~-bFع]Õpã6&ÏàÄ^¡OM+çÔ{®ã†j‹[’ç ”[Në+im…¼`‘÷jt¾åe/_S é“¦Ž–éWÛß"§ÈŽx ½Ο/%„,X jM6 FÁTšŒU‚ªŠÉj6‚#cF†cŒi (CRi‚LØŒ¢(KS2 ‹†h(L˜¦)XS {EsZîêÄ\9vS‘[¸á“ZwQv]5ʺµ‚Ú^»Â½]ð§ ¼[?¨<:¯4£Ý ÜÕ{ŠžÚOjB/d/T|Ýem_;eÆ2·žH®ù…µE‹lÑU”QQ¤Šö®Ä@[›œŽéwtA—-Žu’338ù²§ÎÌÚ«l_8_I; ®¸>{[anÚžFyÈž=é¯éz/å€>¶V¶¢m&×\uØ›Y²·#ðTQá»éàllQ¦ØÖ³4T Zb &(A&’Ö%Q£"QFD4Z4^˜h÷ÖÞLŸ:¤tùˆÙLÛi?ß¾l¶Õöøßn­HÕ‰s‘«8Ñ·Wg„OkQò ùE|šÕö•Wö޷¡ë‘®Q—v+s`Öå¡#Ic»®îëÒM&bÜ®îܱ±FŧnÅ$ÜÈîînæ±¹ˆ­”j §7W —wKº®î±dÝUÌ]9UÙÎ6×m›3q¸ÜqÖÐëëêÈøð{‰=ìΩó£çc\i?ò¥ð•_Ÿ9µ<²ò2~{ZŠU¯wér*Ä’±(’§×÷AµƒL]h×_ûZ«_kQòÉr‚]8<žÐéê¹útéz ÓÔñÎODtñt==GN.œ³ÛªéRèž²Ž­.°[ZÙµ<‰{j^ؽ°½±<¥Ðå6ÊÛcðJ…ÍÒoáf¶‰#;µ¸Õw#Q¢ r¹ÉÝ®LQ»»u¹p×4Ás”‹@¤ }ñ±[X|d|){eOŠÅ͵[Q òHò0òãÎU9¼Ù-¶™d¼qã^2/C¡³Uu´¨{©ð0øÅtRÅ_SkSeñvØ_ÃZ«ym­K«”TCsî;²m’€NíhŹa¨ÚæÅ4 “è>h²Û6É´ÛQ·ŸÌV•¾‘A|(_!”ø²/ö#š•âCϩ⋟ýHGTO8º¢®‘uRy˪‡I}‘+®-¢¦Åèˆò÷—BOôþÅÛa´`ѱf%©”TXѨ6’=›Œ´gwJH*Í£IUÝÚ-Tl$iݹÝ$Ó®I®pš Ü œá„†-ÇVéJ`Ù(´ˆÞ;¢L¹ÄÙ&Ã%¢1±°L £I3œ’R@‘EŠÆŠØÓ»msm±ª­Ã-Tb$F$,¹tÖ Eª,+B "ÆÆãºË¶2SRîbeÇ1¶Üg Þ/çJ§¤'¤z@}_t‘Ö)Ö%üµEé”þp‡§G§£ÀxÛfÇä*:Ú<.ÔŸ‚D<"_h¢©¶¿‘µVÞÁZŠF1`RÈHP ›E&-b± ÕÕå£FÒŒi#QF eP%" J‹•jú­§YF×Yœe›lm-œGçÕ4zN®W¦–Ñ·úê!ß=7|sœ«k`ÚFžŒè©Ü‚¢,bÂv¸e´ÛfͶó¨úb]Ø_ål«­6‡É©Ê(¿†ˆÅlTôCÐt ÐÏAúO­ªVÖm½ ¾µCô¢ÛjyøþÃ"mÒØÙc²m"2$"`Ú)4m%6Ô[mEUñw-·à-­Å$Ú£¼^ ·]*ºí©{áë¡×:íµMmVÑ«cèaœqÆÀÜÚÒ¥yªÛæF ‹l´Tî‘«_+öˆ:Ðí'±©Ô¥äåu%vtvUWd«²G`=­|]tW²“¸­Vϳe±³ix¹*]0ºcÏk_Oå^álQTm£h"ÅHV"´Ò˜¡&ˆ¢‹Û9 e*66«•r¢Kœ9»¹¶’‹››•Ó$çLk›•ÍÍËÙ.f”cW:n—9pÑ;»4Ó\Öçwp¶å\ÚæuÛ¨$\»7#Lœ·.\îîwh·]À×Lî$W»°&éÛàV¾ÞþÞþú[êÀ¤ñè~+jØÙÕkm˜™mW!D{/Kú%3µ¶Ó2‹âä¶ÄuR¾2lÙfÐÝ|yä¥ÙfÓC»ª—ÏÑM–¶ChmÞC¼ çÒݵ,«ïàm­[fÑwš¥¢ïóÊsvØŸ?CÄ´#"ëö'ƒ©/U´ÚÛj(-¤Ú5Š„Ì–©Ø´lQ¶+,ÖdkXLŽñ.~)W™£)/Ý¡Úe¢Û´UÙvYµNˉ²™/‚êbõ5]àK¼ÂÔÚ}RSàíðwÁ¾ò¾ÇEm«×+ÐáØ7v£i¹‚r·9uÜî»V-®ä%")1—ÁøZüÝjù¦¨Qã~-+üh+èMj;Ùwº6Å´ä9j!s5 ­Œi‘„&¬¦ÅPª)4Ô…ƒ{ssšç$E6âÜGêÝmå ì¾Äƒ«•”®yWü€:u+ů¼‰\ïq[_ƒZ4iF¨Öû½Ë›gU»ámª×Î^¸¶ªó´^9ÙuÓ·MÍkrÆ6’DQræë»f\…ݹs\År¡Ý8æåÝpŽsr®wNsræë”m¹Îîº\ç»s”j5ÄPksn±’ŠFÛfÑ²ÑøŠ<^á•]”¯Š»j;d»dvÄí¢éU]´]´=ÕOtWŠ'ºCñÅÅN¼: ®®©OyO*:=@äÄ٬ͦÛV FÒFŠM ¦40Ö,P”‘EX*(“D £(ÈTh6b6²Ñ²› IÚµ~á¶°E¢Ö(i+-XÖ¿‘VËóŠ}å2FÛlÔlÍ›+¯Í ø*½ùDëû XŸ’? ™¹¢¬ XMéö©åÍFµÂùíoeW¾¯}¯{~{_—µ#ñ…øÛ6–Âä ø¿BVßž¶¶ÛÉ6¢‘^²¹¨nnDnkºç74•Ó— —.îæ(Ñt]Ýs[®îEu¢¹Ã»1݇u6 ×Ùê×Ã[Kyõ(|ãå1±µ_T”½²§¡S˕ۊõ¤è¥ðd½el—G/S˜…ïêu­kÔ±qœJÚrÒGË[ej/P×5CTU· [ÓÈè•xóâ éeoˆW¦©ÏG§'?ßàôûTø5:::æT /U+‰ð¨é}op.š\]0><Ÿ£Õ‡ÁIêÔù=lŠÔFØÚ/“°m2Ù²½|ÔTn3lͳVHj|7wmÈjºZîd§£Ãi[¬Øl­šÍ¤H4JSchÙ› QÛ37š]76`]ÕÂuÍA»¥Ñ¹®­¹­-vÚó¡.ª•ýsIþ‹¸ÅOF¤žŽ zÐ^ê¼Ëšs¸ØY˜3fU©QX’h6›!e²ŸÅ _¾ìŽz…zcj¬mFË[Éq [&ÕÄ;ˆ‡à#ª'c“lÌÙ8ª¢{>T¥Îñw;¹.ºb¹9!Ò ·s¹¨‡MwmĿޛ•»»qh.$Á»Ã»¨·BfGdÛ‘EÒuıX$(`d“m¦vô»}†Ûú“ÚIíìäûª>FÖÛãäe8Ú¯íPÈ’¾ÿW&­ÓA.]µµ-¢ÙAg¯îF‚ƈ$¤rv豊1 ºÝ.TFÑnWs’îÜs®î  ÝÈ®k”P[•Ë»ºddV TZBEA“FÛs&奨áMª¶Ñ]¸x Uðô´¯‡#ê |E°¶êÊ^Œl-üiøjRuJ>¨§¹ÈÉ|i]0¼wl«®‡p—]«TçTwuéîê{U=0\ÕµN§6+±Sïý6'p•Ö•Èî!ØÃÆ¡<0¯šOš9WE‰tGEÑŽò\ßœÜm«k\º]‰×vî뫦ŒåÚëˆm¶ÛlÎ88=½¯>©< G<–LÛw2»˜Øå ½õú/|øžò—ñaòÔùXÚÙ©;yÈDº˜|·xÈzçEËšåt´e‘¤˜ÜÉ‘®vINìÄ\®P1Í´5Ë×wWK„¹UÝ×cP-msN]±b}vÖ¾Õµˆ62Ú_,W*T»ØS?3A¶ÚfÚ™þ+Œr¨ õ k.Ëlhv{&ËqÃŒŸùì~Ñ"íkÖJªCï"W-~h-ˆÃ(‹d" ³±D”D‘0‘LI`ɦ"Ædš#PÒŒR2’52„ÆÑŠ5ªVºÕÀÛlm²\g¦¥ævG¦'™®Gšž™ ½2]¢AÙJÏYWg¶„U‘mÍH®Vš¯µlÄäÚÙ·H+îÊõ…OOÛ'»‹ïÒûúo÷¶ÛoþTlQ’`ÖØª6«a²xÊœ8Ûf÷½¸½¨~vë!G@ȼ´[3cjÚefH-3ÑE’a)£lüNÌ»þÙÚÔÜ#l\’j¾ämF3F´1%mê¬ÊÛ'‰ã?›J¥ÙÈv‚Ú6°½ixj”yAÏ—“ŽõÞÑwªØ1­m i l"Åa% ±^|&_?¯w{«åíjøšû­LÙø ÐOÞéFĶlckjØ£e°Ú,»9/áB¾H»Ú_ßë¶ %!Ýx<Ö¶µ¾§R:J_!Oƒ¤K™wÏÄq¶Ú¶›8âÎë;©ºw5@£"û ½JíhÔ;ŠþAÔ .À¯.–Í´˜; ±ðÒ'Hz!N:A9øé)sÇH—Iy¥<¥Ñ‡ô(_)ÿì!^»ÕÞeW+–Ä7§\-ÑÎîîíÒܤ\èlEˆ®ºåÂç-£+•sré¶åÊŽîH®å,i¹·*ݱ]Õ¹hßYUÒ©Ò©ûßIS¦'HWH.’޿оaû¬LNƒ5\=”|ºþ*{ãÉÒ­¾Ë[K[^ÍXÙ„ ’I$4’ÐFÆÅŠ6‰61m±© &óÜ»»»sYN»º×7.\q+š×q×ʸŽÕÎbŒÛ››´mÌ#»®ÝÕÊîà®ív·7 b1#qéÚ×ðëRúp}:Žæ£ç¤úE|áçVÔÛff£ç§Cn3/È® ž —r—r«ÜÊ[ ²Ô&ÉÜÑÃðü•°ì²×ÒJ©ç:óÅå~׎8ÆÅ#b¹]Šéc&ƒamÆ\TÄì†SlMؘ”y ¯¹N±ukûjŸ‹âß‹ûUõû6[*m!6UVÂØ[Jl=ªRè¨Ø¹Âmm¶“gÒr•ÔêÛ”äž2‘sÒÉC‚l¢îÒP#˜'Ü[î5[ò+Z­õ»[â~Slm[Tbjeµ·â5¤À&Õsb¶Ñ·ì–®m^âä–ÖŨܮãŽÍNW&œ®ÎKÇK³‡géQWh.Ð^]/Û(½ÿyƒkán#q¸Wq® £³¹|L€ö2ÿPéâÚ¢öT½‘ou«Ï4’hÄ%2 Œ –f*‰6 J3m¶Í=ŒÆ—ó`žJOe+Ù›½,)£S iHÌaI)BÂ&ÈšDÑRI„1“ØÕKdÚ1ª5ˆ’±cQ¨ª6ØÆÙ Œ%bªa" TkEhÚ-Tm¬BL‰¨±ª6#lVÅ 2’d d‹F#X×Î÷Q‚¨æÜÉ·"æ¹Í£UÉ)ÀÝÝnAæÇ.&çFDå¹;µÚîÉ×u8fLV2Õ¶ ¬¶Ma†Íæ¤óQçÔ~¸xíÙÙóâKμÍzCÒ>UÑ;ï¹ì¤ÅjÊ6¾+st–mùݵ[^kÚ&$‰oSÉÚåh·ë6µûzø­¿äòÚÖÛÌÖ-ØÉLżêé]ÇXÀd[»”Æk˜×E8Zæ²nÝÛ¡;´rŠç.®;:îìç;’îÔ·w".îÅÝÒnNÝÊÆ‚Ä—w[–¸)(Ý…2svf'9‘a"wW4™LíÝ2`ƒM‘5ræÎQ›£®†‰–åÒJ'uÉÝ9tçvîs®éºuÝѹºËœì*湋…nfhÓ§!Í\Îçæîjæ.uÝÝØ76æØ—;„Tgvtî$ëµÑw\m\Û”V™Ýܹ°LÅÊälåÓºéˆ+NîÝÜ¢Nαg]·[sZ¦8Á³Œ6&Å8Ô\jV·rÑ;²¶åsQ\Ö¹Tk*1¹uŒwmË»r×6åwh7.s»"$‘“F¢,k®êÅFwk²tìwpˆµ$É­…ˆ±˜µ d £c[ûVû­µñ°W¬ÕˑݬXkîo¦¶ÕW¡è磺çNîå[êš$W<󻌎+ôÉUÓü½*?Iqˆá™eÖÜææØ¶Ú>.G&¹ê~QA|ÚCò›[- Å^ó×^ÎÒ#Pˆ IŒ‰$ÉF "3Þ_ÜU[çÿ›¿`­lX£˜ÑhÚ6µûvÛsQ«Û”n»µkü¥VŠÈ¯ ¶üfÕ^®kwr6ÑQmx÷óy¼Î|ºÛ_'o”µQCh¶ww¤ ùh¾ÂUùz›fÅ6=ÜOÛ®ò®òá!]ÕÞͥݶ«¼ÎN/Î…ø ÔÚ ï˜qª$Œ–(-Q£i¦.uŠ.Ç)Îæ×MÉÈwråk¢Ñ%”bÑh9‹Q–®ZäC‘ssg]è]ÉW7\¹s’d_A­ìÕÝ­Ýñ½èÓ©æ–¯+_ÿÌPVI”Ö~Yi'*åÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøw:z%”«UH’€ŠŠPE-M‘ &±[j-` ÉmcSFm•T[¢µPlS@B ²lPj€% a-µ m‚ÛH•@TQSc ¶€Ð3,™–jÚ†µ­™R ¤…lÀ&ŒZ–‘dÁ­«…\(d耄>€k( PAJ*öjH¨A*…U(*P)TUTª’PT¢•@ªT¨¨$‘I)J R”‰I(¤’I$’I"P¢’Š$¥TŠEJ(Q@ £€(’€€ RDP)")UJ¢ŠD‚ª©EJJ‰J(Š$©)•B’© ¥PªRŠPB„J R€ ’U (èPPP6Ô !( hª(¡M²…”@¢€*¨))RH hÑ%*¨ª ¡ Ò• ¢ª¥$¨jƒDJ‰R’&†!¥I@¨ PT T÷¾€­a4І4Ãll [5kP ´ÚÃf i lʤmU›3XÖ RÖ °mIƒfˆ€Ú) •#[bÆZVÖ³P¦Fm›¬Ú-´™µ¶­VÕ„RT*&&°Ë[l6aµY TËBÑ`fXÚ"™ jjÙAµ4m6°©™­Xcm Hh±µ©VÀ°Ãi2Ó Y¶„kk6ŒÄXµŒl±£Z‚k,Í„fc Øl° Â2Ì!š˜1•†jk,Y‚¬˜bK bÆh°l&Â̲`aiˆ!µƒ@CX e° ¦B @,˜Y˜fÚ˜[44ƒ0Âl¶%¡€[#c6´a T 3Zm€M´ÆØ‰P ¬l°M1l Ya“0Ñ«$Z°&ÀlÒ–Œ²¨&°´`$4dÖk` ¢UE$¶ÈÙ†´%URª °d5êªø˜À&F€ÐCF€ ‰i ÄÀ& ‚b4jTÿhÂ4ÈÐ0Mh4@™0Mhdžš„bbi20 *m¨Ó#SÐõ2ž™Šž@M ÐÑ“SM6¦“Ó&L(ÄÍM4e?DÓSÈÔôƒSÒlˆõ L&L4Ú“M ƒM ¤i Èh 4 =R¤ &Dô˜ÔdÚ&F%6™ORxSõ6©²z§”ò1¤Ô~TüšhM=4Œ&1¦Úd1É£žÑODô z˜“L)êzP4‘= QéÔ©H„hšO4)êoFª{ȧé2jxM4›LšdOJlÔ'šSi2ž•3ÍL$Óɧ¤dà 5Tü4TÛhTØ&M=LCi6‘§¤hõ6TzCÔdÉè¦ÔÓz RT¤‚L0˜˜ dh2dÑ¡4É´4˜LMO#M0§‘ƒM20Q’j<ÔѦ=&4š2Ÿ¡4 M‰¡ dÈÚI“hi¨ÓÓ?UOö­VþÓi ­þ«@¢Û¹wõû—5:îñÜ»Žîoïßÿÿ~‰Ñ#è»Ýý—y/ÆðaôëD!ƒ„-+A@H à11$F!DA}úëÍÞSÇ9©rå=/žñ{G›ÇÉñçkÉæñç¼wz#!?Çc0ÜÀÀ*†CŸÌÂ`>0#Œ.4¤c*L2´ 6žÐŽaG€½PÀÀ% ·zäÍåÕÍé5áh­U‹F¯ ×5%´j6·)sÏA¼ž—tÞw\‚ƒž:äæ]67„îœì.éÝ(k“ÈÃuuÒî9¹y¥ÓÅ^þÛ[V¿Ÿm0þlj?JÂþq£ùö§éÍ.àŸìÜG£øÖ­oϪ1¶±°#+2É"5²µ"ˆ¢Å±%4ZŠHYB±d(ªÚ¶ÌÌÕ·û\«÷pþs窗c%Q_ÒÆÑ­œ½µúa%Ë©ñ_‘™kAb`Õ÷ìXüÞ­qÝv+Ã[W-¶-rµòÖjÆü-‰Ë¼¼sdàîT‰¶Ø_Å®Gé!¾š—çl§å•W7mj&Äþ\WçÅr—ÔJý.+Æõm¢Ùú%rOÙK÷(pû=öS¯Ç ¶ˆq³qÂUƯæSô¤¹kó¨òáý²‹ÕP®r.±°Ù8l®6¯2µ¿l•9 ~ÕUüŠ_Ì•Ê$_ÍðÂ9ûd[_Ï•êêrŸ¦? UÃôâ¾×m”ýÙ…DýÚ?S¦ˆŽWîGá×>®G'[ÙÛm[Ð_œ›Qb¨¨¨´X6(ÐJ ±j4cߵʠÖ1A0xU¼K W†ÚæÞ–TL„xpÒ"l†ÁŠ\ÚeA´dæ»lnm»®µwvæÜÛ›S»Kºé$3›»«¢7ŽàÉFÈRh²tÜ-Þ;šR2+Âঠ±…xW„b.î¬nW<97EÏxñNëoç»¶¯ ׉ªåxîmÛ6¼wtmfØŒh‘DhÄ™^:sÂý ñåÓî;Þ;wŽ»Ç”Dõú#ìÿE¾Ï{º¯-j½¥s1²Bdkùô¿ ¯è£÷ƒÿ•ý4í¶ÖÓgùdš·FR™xY%â'ÓÛR±vÔí£¶±û5ýóûÚm¶_Û¼ 9*°/ålÛiüüWlá…ª×5ʳóWšÛ{P£F(ÈBŒk$Æ‹(Æ&ldÀM¬ý«ÝmeDoMš®8Ü6Ôê'ªR“ú!/çDºlšÊMª=Š=G¹á¸×í7$ë—÷mmµ~Ú×ëÍlmù&Ì‹æËý76æ—+Áemk_°µ},^ìt÷Póðò‰\ÆÔCFѳZ-£A‹DRiIQ@XªˆÅXÛcSÚõEËŒU±¢Š &ѱ¢‘$Uw[œbÖå\: Ehç.9®V)0J-HL  ![õÕ·B¯Æ‰äáîAÐ'¸UçéíÔèkͨèOk#ѹ¸œÛ‰?ØOÖÃfÌýLÎ1ÿ2¡;Z‘Ù‰×{:_Öõ%}J¾Ö¶ÖÍZû±]ÖæåH‹ðW3ºqÃ3aɵô§²UCœb—ŒÛKlE `Ã# Pfš€ &kÿ¯÷©öšãŽ,Ö¶Ûg6Ч SûðÓæÌØÙ?Õ­µÿÓë®Ò'7²qSòií¢½gSBrö&6ÑO­]Ü–ÓlrèçE¸Ã”p§«ãÓÛ‡ÇÜŸæ—rNä^œÂx%àëÉñÆ[mn<ýà §[!ÔíW<Ÿc'ãZœi³(ÛÓMwv¼O#³èê¶ÛмðÚ•¢ëkr$ll\Œ@øUÖO®Öm{xÿTT<Š ßTl¾µ±±}nN4Û†ä;šó^ZT»Ä¾Ãciö3Wضþ)s‰Ù¡³*"¬DM˜i)˜Ke£j2 £Y9ræãL‰,‰Ãq»®f»¸äçfŒLNÈm¯ «}WÐVú ½E:èóQèeè°êÏ|†Íßg6›Ž(été‹AD!˜¢dMœ®çiÝÒÊ s¸.ìQs[¡!ý6ä^;vI]κ]Ü'‰k›Ãr´à’ðïÐÛºï ü-_…bÔWñY\(Õ³FÆ5üSÁwÁx¼ÜHìgcj>¼:¯à§ÚÜm­´8§ÆßØÕmW†½n[å2£h±«k—" 6Žk•™1²l¶ç-ÍΚÑÌhÜÆÇwk»±¡4JçR)0i˜‚ÙšÆ*îíÎE@åÙsUÎuW\°Wwb®\¹º#¦Û¦v.[œº]×Bnãv9Ùšæ¹.Ëœ†ææà„‰΂(e Œ¡ˆ¶2ò¨¯\† £ñr¶ô'&6m–Ç&qÃÞI*ö({œ•WoÜžº+Ǿ车¶ÖÏ‘¸ãŒöÔ”zÈV“c-–⸱ò­fÜŸ`@é¨é‘Ó#¦Ž–:[ÏùùÏ/?<Ÿñ;Á›`¶æ¸š)AI¹É4hØã§cntqÆÜ;·%ÎÝÝ:®jîm‹˜â±Œ'qÊäZÝtÆ)-×D fj 0;¥×w9FèÝ×]Ç.»…Ê:EÛ»¹ÎíÓ»¢„,Ø„N_M_¨ßÆÖ½¾¯ÏdKô5ù§;ì?ëʦÿŸìªûZÐÑ}•´8Á³8âík˜øÀ/{Km¶×ãmªzµ[Kæ™lù™Ÿ3ùÒÇ~…¾êÄVß­^Ÿµó®î‚ÕŠ¢µ°6B FI%t鱄¨´Q«œ×@ÇwnEtÆÆg-ÝÖå¢ç;»L dÌ¢(ˆ·5Ò5;­rçuÚ+».âÙÝTÕuÜ‹aª¬[r(Bd˜¢VÕWäæ'Ž ¹Ì—Ç'AIwålú„þ¯i*óú¡ùÔ_Kh};É_ïmoÕÛoRsÜ®m‘Š ÖåÝרðáüxís ×©¼=¥¶ÚßÊ­>”6ú¨ý/îIëʽ„¾æ×Üÿ="½!éHzCÎxéfÒÎ`¶³ma1ÃÚn¸IùÚ×ÙÛ_Ú·áí²Õ|tÉ_Þ]×E‰ãºçDæåv‹Ô.¸ãýßæZÕkö~š‘Rvd¯v“±w'd; NÉ~bÎ?0ÌUù~b¯OÇ#ö‘<*yáÕÒ96ÿÆ”¯MAÐU¬ªüúÜݲm¹/DÒñÖÙ±ëîWõêEÓøis&äÁ´Ìi*3®iwQTW.#—uÕrˆ³D.îÛwW#©sŽ]œ6:\»ŒÝÝÝÍnK_ÑÖþ³WúÊØ·.Z-E3fLŽq!£snk»¨L]œÜ0ÉÓ‡+‘eÝ“sÖ¶ã‹VôðŽh¾ö9­¶[9­—Þ¶ñ:RŸÞŠ_ó„ÐTÿ¥÷Ê¿^£æ^©KÁÓ êç‰pÛ~§œ Ê*§ýR½"]Y<³”òÚñ¬ÛdÙ6Ž5­ÌMÝWY…‹–¹rÇ3º0· ·5t.NvÎuΉ5¸6Ä‹p¸„w]wBÅ@î]råÝÜÛ˜äë¸ë»¹…Ün†s¨á*îìJ»’¹F ¤HÆ™¦fÛkuPêaÔÓ’9Ó¦9Ù_«'{›oÕÖÛõwpÏ÷}ñ)=|zùëç¯tïŒùžÅj«Ø¯]­-û¥¨×w#±g “‘ž¯-ßÉ.ü;ñßhÌׯà×ÿA"æhüBÅqç¥W÷E_Skk®JÛÔËîu¶áÙÒ”öÁг§ŸÍíßó±µ6›cñŸ%Ê{etŠ{j-^Â'Ž/mK§lŽ¡{jMsjy¥±˜Û&Ú5²Tl– E$dÒ†MF±¨(Õb ×¾tîŽUËœ›S«•8»6TV*†ˆÜÎtœÜî;—5¤¤ÐF׫µP%ÛPé{i^jvÊ:uÛPê'lWRøu«å[_%™1m½tµË»±|¾¤Þû•¶ëD¥êU]ï¤þÚt8ÛZÓçìÍ™·»óþ¡ÌhG†ÔÕfd-©2ˆÈ`bÆB30Ù‘()!†&[ZÖÚµ·zßEëe‹e8Ù]¯ xsÂÛ—xho_ïªÕ«×¥üix ÖeàwûÀýäJêN:déc¤^~ÞÅë­FlU½•¹v7cofBñ½ô•<ÙÑÝ’¼_‘á\`ÛÂmœ*.s›«&šÈƒXÈ‹XÁ±£H©2Íše bf@‚“ƒm›XÚè=8½2žW#6lÖ¶Öͧ]»>/‘þ0 °ªŸ>ùX›e hÓ^¿U9¶¿Ðw8»·w;¶ìmáÝÒÆù×W’zëåV¶«ÐEîúëQ5¹ÌWÜ»0&†bIJKH³4‰ÝÄ?ªö6½…§îIrž¶³ÇøU È´§d'Û¡z»o‘­|ƒ•É*5t½^ÕÊã7&nV›•Ë® v¢íBíbó íAÚ´K´´U̓´íyþÒ§²£çwt›dV]æe{'yÆnñä 'âªÒE‚QVÉŒ1P›ÅP[5ð–æî·7.W,Nír’±¶jçaʹ¹uŒwc›8ãŽ6¦ÖÕ™N:’ºšº‚zŠ=à;5vgg]vUíj¼·…¤Ú㥳';«ºýù õw«½ôÁCíûJÕ½]­üªõ•‚õŽ×+«éoxGÆ•úÊ~´ŸGà©Þ¨èeÙ‡à›ÞÖ­é44kØŠÆŒkEF(-Dł̈JcmQ¢"Ö*VÈ7æ[–.›¹ÑÛN®Ü廸Üì"ÒNgg]tÓÝÜ×:q»»r»‹«»«¹Üîvîv+ N5™ÚÑø!à#ïËÉsÄâ³k5{,Z‘!±UÂMÌ»‹†läg+¼éHïd'{Wi;Ù»×{ôÑS¨¥ÔUÔK¨/Ú#©ŠŽêm´®ïYq´wzÌäíÕ%u©×&¯!³X6¡§+f6ÜaÆlÕzç«Ð/A=ªuWHõÉzˆCº]ÖM¶Ëºlw^‚E^·ý —‚[6Ï‘¸ÜW‚ð²[lÉjÍj¶½ój¼þêåµÓ¢"Æww[»®«rµ®wmÎ`’ÒYñ5Z½ý¶þ=¿Ž‰­¶ù»æñ¿Y¿½%_`þ"‹ÉïmoÖü‚ÖMAðínÝF£D4E~Zî¸Æñ;·š^O¯­htŠé*ñ'H§I.†…Ì}9ôçÎ~çϦ«ÒbE1«cUµí˜¤†£Ų[FREPj(%Y)LÿóQ®ã®Ö5qµÝ™‹‹’SF†¹ÝÓº¹Ý`ç]ÝÚîî×9Ä ¥F"ÿ ߣߨ]—,ƒ«Þ9Š…y+UWJé])ÜS¸“¸~.ò¨wŠ]Ù˜6ã,7 ¼kq¿íªƒÖŠö»Š¯'Üçî îî$wwy±w‹¼ÝÞpq¸× ¼7ðQTóÆ*‹T%¨-i’M33KQ²b£Q[dÅé®—wswv9¬[®—5\«Ûåv`K»”)2§w;¸ ÛÝÝÍ¢ŒF¹Ð4î»›»¹nκêCråF‹E's»\—]Ì;•nXœ­;wQE§mKf±«s!ÝwuÍ’,4ÊÆ4¤Ø(Š™"(I-%ÚçÇ­¾F¢³%¶õEþßrîñãÁ3ÆFÌÍrà»Ç^;×7­ä3Åä×>|…SïU²+jCchú°Ošv™³a±±´mf62(ŒTl•$ŠÄZ E“Q¶ôÍk›kx[@r`®ñt¯ºû¸gÝÔδ*ßÍ]ÎPeDy“« êçW}©Rì5¶l[[Cî>ãÁ‡’óVMl£i¦L 4ÄRD!([õÕWõoµVzÎm·77m\Ü¢íÊæùRZðsÇÊíÜ¿_«dî"îq+¸NÞ®ÜíåÍ.ë4ÖÇc þ'îmU_ ÛWΡ«ï’.ï¦ñãc´xï[¡µm·maQµ€¥·¦·"™9tÆåÌX©‚ƒ%ÝÉ®‡ ¸¹9ÑÜÌÑÝÚMНVÕõõz²*m»Ìq¸»¾88Ûcî~úö »·U‰^¦ÕÓ+ÈÇtçÈîtþîÖÚ×ë(y ó”»Á%õöVÑ{‰9±sGmF±³66Æ"ÆÅE´E‹’Y™$ÀU6£Q±­F´DSRm{†»®´b)ƒœ¢.[•Îî¹\Ü®K»²Ì“ºîEÍÝ´±Fˆ°ÌPšA±Ž\aÝ%¹Û¸Îì¸wwF3ºé7]ËqÜî$9»¥:í΄JÓ6fã~}W¹9W 'ÐÛm—ÕÊSm³4Ÿ±\ý_Tãh^|¼júšEF¨Ò QbÊäîõ_qlÝægŽ~Iøb\ö¬ÈUÔGåUtÈu4ìGáÀÛR6lßfg½^ŸU/}UØO¨òAùU^ÂûH÷ê?¡TVFÐÚlÍ[JxR½ÚW±]ô®ÖÚÆüÑ^ì=—‚>I_ÕI?M”îáóÁ ú€Å¬OÎbÏ™Æ}þµ[V×±oaˆÃ{ Ýó®çþ]­Z¼ëZ¯«µµÈ¦F¹"¯uö¯„©F6ÆX‚íj׿m·ìä(µÚém¶aUà#óm~fÞÿŠ;½ˆ»zº=U== z៉‰Æœi‹s°¸ §uª“q–̲ë÷•Xêç¢r”ú ‰±ô8®1®+fð+øQ=ý*žtø¯Òt!¯½•½–×!‹ÑOÚœ^Ïz­GÃIsP/ñ*/“õ(x-¤Øù¶Ýx Àß•j¶úGmV÷j¥±<::èV·#-£fÅI(“D2c—.—:Pré‰! *»>e[W÷µ|ÙŸ5ËqÃ~®ÛfþJøaÜEðhèÃßÅÒ#­)ңݦE!vÄÊÙÊ6Z¹J*MgÄñ^ºÞ!>Ìú+P]Ü««§ðÉé•Ô‚ò)^™}èuRìªB]íÞí›Mfåöï[àŠ^2-˜GŠÍ‹ikE¹®c4fF6.åÒ‘Q͉™ƒ7™+Ì“®«ÒG Š=>ò}ê_w½Üm¶ÈÔš¼,’"ñ¼]ãÅâù[ñ­­µ×θy»ÑÝòŽO­–flz ­ž›lßêm«jôE¬F‹cdeEFÆ6‹ Q ”!ˆˆÆ1Eb´`ØÑ¨­’I–À´UF‘™´[S’ÙA¢ÉAELÌ @‰°ùUUö„m¢õèÖæzîî}²òøµ«ó¶ÕñŠ}š_\®eµÕ“±“¯GŽKùúµoaµBÚ±­{o\ö.ë\@}˜zYZ©òêöÐ}‰;dŸa^Þ'éÑî{:¹Ø?H;j¯”NÚ§ÔWlNr.ö)wô離m;…Éœ5ÝÎï«Ù:H×›êvµUö5u5ztṙˆÙ[T8Ù¬N===:zq顯IzIëý{¹•Niøô½»Y¶×¿Éßqßrr_ÿJßü@ø’øøŠîm_þöÚDZ³|³N;Ó»ÝÅU´5³4miÆŒ& ‰L‚h–H,ÐmùiWûþ­µêת3+m.g(¢{ Nã5޳m…°ôM¥ÆÍV¸iʾ´ è*tJtBè¥Ð—BºЯ¸¨ü îöߥ®'8ãw|\gvtĪõeN£¡ò~C6ÆÃmµf±F†4V+A¢‰­æS«›#lç]²XXÖ6Q‹fwq«¥%ÝØ·*utH›„KfM¶Ö¦]AÔ:ÏtO)ÝÛí趤[š-Ӯ;&äÛg‡ô’ŠëÐ>„î³kk[Nêûm»)(ò%ÌcdÙ^?‡aÆWlUJÀÜܦdÜåLB™1åÍÝ· ¹Œ]ÝÝu!LçHa’3tìØÜÛšÅs[¹qQ.çv'gNJæ¨ë•wvË®ëskÅRåÕÕnmÜBæÆ»®K¦\¹cn»»ÕË\Ž—.H:çp¹q.#£ºæè5;©™$GñëjÛùگöü4×6"‹º¹¢Ì🆮g—Žîï._àÛZ¯êm¶·Ç­wWu¶Ûm§tÛnëo㔓ŸŽ~¼¡‘ûï=^vó·OxvÛ»Õ†Ö.6sýïVðÁcÇguË›®pI…xñ6yÜÞG¸ÛV­ðmïÛW¸Ú‹ŠÄl¼2† dç\7.b"ý.Õõ•¯Òí¾.«Ö+ª'¬S«—[#ÅSà¡ÖÓàï(¿v•^è¾mñ{°îߨ y‰ºªÊ#ò”{ê¯}Uè…Ý©Wx>ÖÚõPkÃxÑ;sFxºçA|Žny}¥[m½¹ "Q”Ädщ$‘2É $ÉQ Å¢©gæ;w:×'nsš®H­vªL`$X´A ,QGZ¹¢/‘ªÚ¾¡µ‹[ú›ÕÓf¶œÍ¶œÌý ¿¿TªôðG†/m3+E|˜«“G¬SÆòª­·ÕkOÖÕ·ë´»±ÝÕwdôb»¹Wµ£ÚÑíaÛ)wä®þ__XÝÿÎýúÿâTG¤¢êOvWT÷j:ŽuQîÔu7»=S›b›^ÚÖæÑ¨Åˆ Dh4U¹Qüݪûož”¼ ‰é´Yµ²ðw¸Ãhqœ9 ²/Nrï_ãÕ­e·Ù[ìªû$õ¨NýߣåôÁ¶ðýŸ f͵ìœöª/,CÀ—´ŽûÙ8ÆÅ×./ ÞŤµm¯Eµ­¥i½¹¬c&Š4Rk&Ñ #ººE´Ed4ŠCb×8L[\rìlEK»rDZ‹nî¤(¹®ÄÃÝÉEši ÁL¶Š':ÝÝ»»Q¹bÜÛ©Ó\‰#b»®îY$£d'u­ÍQÝÝÓ­Í¥Y’Á£X¨ç2f]݈‰¤çwιut®£³­Ë®ç;»—]ÓºãÉzû[ܲÚù~¾¢Ÿ-\i¸;ûwïóˆ/•þ*®×1´²´½{WUÏenN]¤›s\Ý4×#fÏr¿­R—<Žx9éxy~#i¶bb‹QIA"+ %Û E“b¶ó3}"9ʹÈç#œ9ÁäŸ ©ç¯^Û<fׂÛu„'Vý.ƒËüõ)à„©ÏkŠíüÝm¾e|ÖÚ„QiyÚÕ­^’¶ ¶„jˆd¬d„a$H˜ARQ$I)ɽНŸùÍbU×íëøã¾‘J~a'ÊÚZWsÇÆ¥}×v‡všðþmåöÛVÕznÖ+´ÒWOœ_i+Ì•^~«Ï«æ‹úw,ÎçŽ6Í»ž7smÏNŽ]tkËÏ,å–ÆÊØ6‹¥Æ‹eE¶#ŒhPÓ$i4V$Á¶ ˆ´m6£jŠ·5¹­Í·+–²guvCwu¸UÍ‹›œÜºuܳ ×;»WnímÝ×.:îÕ›•wc[»•¹6†ÛœErÆår¢ÝwP ÝÝÆ¸báË„‰èîŠçî~úê¾ÈŸg3m¶Ki}¡ÃMÓèä}ZR¯MCòrÁîJú€÷£ã¢îiñè÷Tº’{ ¼~}Ú^šWðâíå>}/ù©<Ü_—‚/Ê }µ}¼ûxáÆÍ­ù\oØ*SÁ“á!DïQúPûÁÌó1.o-”m[Q¨ŠÈÁ0’LÍ **‹kˆµƒ Ö, ÑصÛL&˜–63ê–®nmÍs¥Û»ºî»HG;ŽÜçsË·R€,PWwnõ-¯š¦Úz–ÔldhÖà4_"3Ç›ÅÜýM­m¿õTwió“»Ù}Îïmmûñ)äuã¯W_uñ×]utåa’®6Û[Ž8ÑÆ1fH±£_ šù÷“xW…ãr<¾²¡=Ÿdø”y¼µÂl®8¸ÕÆÒÛXb¶9Éιܡ"hÉ$Ö[\ø»„î î)ÜSþ©<"ðW…n8ãg^¡á¿bI? ^Ãj›dŠÞ¤²"·^§JçxïSÒÛ[lùÔ¹A8%GP¨§3“iamki^ðfÿWm¾ÛUUýߎÔdÌo—©ãÇ…à¿þUV¾àCî¹u›nãÜ-—$ûœ®-8å=ÚDxáOuÿYK¶ì«¼Û ]ÞÎó7þ5!å6ñ¼pÍ%Æ¡ BÀ„"bQkV5QHm%TQ¬E¨“A"©¶ð‰­ÊŽí\«˜Ñ;ºÑh$ Ç.t®ì;¥¹ÝÇnç1\»\S±ÎËY¶™œq­³mî•ÏÑøðè)åªè(üdyõÓÁЫÜ#Ñ×·•él»i}è¯R}â.Êv(ì—±Ư/)mml+Ã\km\½8Î-Éx©wÁ÷=õ/Qñ`ê’èB¹‰}Â>ây©íómùD<¸)þ—õÛfÌÚÚT~ÖÖÍ8ÅÇ^.º]q]m?ƒN²¯wÏô;†Ëš®¶»FÅ.îMËk°… "ŠS614ÐËØÛVÛØª˜#müTÜܸÞÁbÚÇ1W£¯D½ò‡WuµÕ^Ã͇{]îkïf×{LJ9*£î }ä}Ý5´în5rn‹‡'PærÈN%dØOwbÎë®W5Îu¬$£FÉM "K IB )“ާQÉÓ¤]Ý®îírìÌ‘K-|om_ ½ÞÚ™²ãoJÞ³‘Ç&rqþ¥}T‡ÞmXZ–+zóº…ò”dÈÜg{ɹÚ%;t]¶Ò»MqœQÐØ0û8?Kô]!A<ŸƒÛGùŸ@C9ükþ±Î—/ëÿ4Eÿ,1Ì¢€ÆˆìÄÂNQˆæ*”Q˜"ÄT$¨Íq…_IJ,¢c&bîÜö>Àÿûà\%È}æèÐr$ü1-ùL…ø¡C‡‰_¥QJÁEp:b°¯ïÿcýoW£øŸúýÿáþàŸ» \BƯfpEÓíš¶B}ŒÔm=îÁ€;0`.À#Å0b&Ô!–¢mÚ?ëzJ$wˆa…`p1”F/#F£€Î aãÈ„p9Á¥ ˆð€Ï£1̃˜Ñ”£# )]ÎR‚™Ÿúå0„Þ ý€ ÄÄ!`)'àÿgú?ÐËþV `0}¶!lzyMÆý… ¤ûr_hÓ ¥(“Ì,Â09 9/°ÀqX€F B.qU Ê xJL„€%Ó”°X '[Ð,&1?ª‚S¦_ÍÛØ ‘``°ï„ % ÐçðâŽQE§²JLg ш-j)± P‡)Q1 `1BÀ2 j1Ìb d¨f ‚ …T\:’.ùþF'èà úá€0w€D¿ò\†a˜#Œ˜8‰W¨Q4JÖ”’A¤S`cy„1 Ààˆƒ^) DY¢¯HÈ1Ï[öÇv7¡sóâ#Jd’á„(ÄRDB‚h þµ BAˆ…cDQ`@)@‡!¼¯/.÷ž;ÍÊéäÄózãÉ‹ºø^ÛÇö_CýÏî|_ÛU_ìÑj±mò滸E«E~î0ÀG ¥¤r\'… ¥Dâ ÎAÎ „BÃAF#ÌSœ¤8 xa ÈÀ!à H„QŒt¦»XÆ"\îVà°¢qሀ뎃@âAÊHÌPAJ‹Î3,`D QÀãÈ!@!‹F2ˆ¤º! ¤INQäñù?h·N†h„ÌÈAç,L!¤ªú?z ÑÁ ûbœÆ`ȃʈcÔ1dF3˜(!#L”‚ŸÈ´¬‚EçP…†g…*YËß_éðDq¸ÎH„|ÄH9š$H!Ä`ÅB2†AÈ`HŠ$d@rú‘ʧVáÐ|ÎŒÆ!È3¸L¸‚˜†!Æ#j8È3d91ˆ¤ À³$a„à3†1,b EI°K…~T8 @i2LAÈhFGPD¾3)ÚˆE‰/¤dÐq¢:TeÐAC„r)ñ GR²¨å‰d#¡“ùŸ‰î¤?Z®“ÞŸÄñþ+[Æø¿#ÔãÉrrܯÍqÇ' äøF"ˆ‚“Š2D4d!‚ˆ@ Œ! @Á"ˆ!¥8Š(ʼn AÐ#´†PŒ€ÿœÍSéÖrˆ©ú¿Ò5‡Q2@—V`¹&#pÈÆâ"I(uDDEŒ—¤pˆä:,HÊÁ•£ e§*ÄaþIsb "÷-í—æï7w·òòö¾o5ã8òí'’ðôû´òèó€ 1ƒƒƒ€¦C†)˜i , +†WÐ0ÂQÌC”¤pdA@ÅY5 „äuóþóÄ?á\×!âN<ÂlóÎÁL5„Œ*œ9Gî!‡JcB”:Ä‘Å<ÏœYF  ª9J–™Ò e„ÎÄz=ÑábÆëʼŒ;ˆ’Pe 'ÖÒ`ˆÃJLR #1 fˆ`U“„!0EJ†“!¿å™# PiÝìzJ!ˆT‰Ð" àä@€@¦˜k4(+ȉ"PŒC @e çH# ÂF§ø@áàÁ€~L¼/º³7â'£¥¡œXlÃ.˜kt²%äâ¦u *†”™I ކ(T)Ñ8'ÞaŒ1g*RHLè Ä.hJ”BB¡$€e? A Àd-!Jsn.wå!ÿŽòI!«”t± è™ iŽEÀY^"Èì¯ ¡D!¸q°ÂLü£ÿQW¸´ õ¬4. x‰ C@S¸s€’ †ƒ)«8TŒ‚&Y-WòÎçˆåø! ¤ ÀpÂwÍ0Ò –XØg¢QÌ"Œ)š³& ‰ZÖcd\ÃXdn ªLôbRVét¾!€´€¦Î*5‚Ä7FPž[ ùÃ/n‘÷Ö!J'àÇ9à| ±)¥@F#8'”ôÀÂ"­¢Ë™e†Q ’,jÜJh 0_Æ‹ûIx*Âpqè¤v£©²¶è:àR—ŽðÉ'èxèz)ÎñÎíÇ”ç=;r¿:DëÒ&ÕóÈdß”‡üHƒb~Ô–+<€1¬på=E¶qÔ`Y A¸ xÉ ÅŽ!h-ÄúŽ>A7ðÄ¥Œ Ú7ßÊÒÀ,CB!0FC1ˆ‚ ¤‹kÈLÊTs$Œ8%Õ‰° 4bHFû°¾§ €e#J/Nwåwø;d‚µô³èHy ÚG£Šs˜ð©ŠIu‚æÊxÆ8åRšp€t B¤çà0’A‘á„$9r §)UKî@J†VQ_8èõ{ku×Ò t„¾‚”—Éâi@RH”€È†e ”ƒ;£xyD8Ì+_`44 €À6‹D!GÈá0P(a`9LA–²àÁá^Ÿ›Ññ¼ç£çtöýÈÛÚ+ÏhðôÛÍã(X, ‘(@ƒ¬€ ñ abÀa@a”„¨ã $(Xp)Š!>_Ï#¢À‘>êPS`&F4€2ŒÈL%Ɉ'š†“Ð6`RÁ6Ï ¨Ž†ožºLW•úÙЬ¨z1ÊFjŽE‚¿²00°R"Š€ãÀëòR¡…S ŒS¡1D"ÍJ~áŽS¨8²&B–6ÁÎv˜àÑjÎÑ^, œc‚b,W pßîÞ ?VCÿ:DPfÏŠ²À›ò® °‚'(\Ï\4(ÐôJÄÄZ_öÞ?Ëú­ùßœû‚¢Ú F²5hZ‰IZ6 i$ŠLFb Q1A‘”šQ¾£íïÞãèþÃé½×¾ø^ž&–’¹ryR–R{m… ;ˆ¡:gn“Ñ™àT‚°I‚¸ˆÏèñ²U`ªe+ŸÒd°<ãg!¤+®˜dº‹gl²6,3j[SÛõy¥€Rûõ‡ú*s±÷:óý,9:í‹XŽ*¥zˆ…úÐmJ³ö3˜‚Ä|4K~O3 güKIÕˆÈ,€ÃŠŠý$Ÿ­*Dz{I€x°`ÀpD Þ442ì€XÊákÇu¿OûG$9ßÕ¤¯S£*%GišžKgL¯°QÚr´Ô÷ÅŒÕo—ÃÖ‚²§/S"d :ˆbLf­ñd‹«éLJÈi+½pX¨‚dRáiã©L¶?ÖU«XS‚*]å‹»~K0í§NoÜ÷¨“¬D³]¸*Ö#8Ïõ[WF<´ Ä‘ÒîõZÒ²€j^q[Pí>ri}á•Ðå¸EC™aû+B€ò$ÄFá?,…s\«8’,\-Ï Êà %ÔÂ`[äÜXÜ_á>b àž—y½·ýõjßÕÛöLh‰·×õ×qC£À/×` 0`æèÔç–yD!y´’‘b¢‚a~Ü)5u¹÷òch]%j³z¥< SoÎÕßëªÐ#*Ý‚ÝÏ›н^}+¤­?ÙØ W4\Šâ©D±€\ð‡k¯^¡²uÁ?e-k„è hÈL©þŒã9¿tÍìê‘Ì«p@-q[zHnú õ=IÚöz™ðtÖcÜÑf>ºöêÓM‘—«Ê'I‘N8k_¼lêèž,è& ö¬ ¯µÕ¨¦Ä†Ý£c´°=N§ó&³–q>•°7ë?NŒ8Ö|³Râ0Pƒ|Õ5U¦\'B¤K\BðœA”¹+ÐÐaƒä$3‹JõBÖºÍâ²·BÓ’Âé+.ʤàÖÛºË5W0rÚs®}ô̳½ÓmåÀ¼¼i\3û^œû¯¶›ûš:"é[ðÑHÏê(fÃ^S$é¬Kæ9otªºü‰ÍȽ8LþóÉÏíÔ}¡Õó=¿/÷9ýhA\µO>jYlÊpå¡1q—¼€_øQf„\'?à D(dÜ.G«`…ÄNÜÖn]ùg%±ûLãß4VÝœ7"ÎÒ½Ït¤Dú°Ï{^“™UÒëøß“Ç2„!bßWÔ}ãÍ"‡/òñ‚¨ÌY£ø²uæªýÍ5tRàñ”2fæ„ g²X`ù ôÐGÜIܪ  Öüd—85Rš:tx !¾\±’YŒ1«veÙ8gBÃC†Áâ°xŸŸ1d…+·óXá+¶ \ôo«UFŒ}Hçµìh†ÆbÉ ½šSƒtÕï-za1¼æX/Eq‚v &ˆ=w±·(“[Á‘²R”Å€#D:ÔìuBˆñDÔxS†É=¾CYÿkìýÜ¢'’›=Ú+ !bfd9´Z5W‘Àø+| én>ŒÛzÑÍûɺœù¶Uvi×9ª™§5•—ßœ ÙJ-¦,=¹÷c®IÆŽ¸ýý:T±à€¹¥ÅH‡O’!Ç£A 5ÈŒ´MŸWÞ]mºÜG Ø©­}3)¯Bàiçg]"†Ö2¼Á£²ü@F¼Õ݃Âc«Ð¢XxÞM¬™;Ø/Ö‹BdÎØOé®åöBI[ƒ^1B—¶›|[yGvɬtÓ¹ 1] Æ.³8׸:Á‘þõ±œ)‰ž’±\îö£tü6âûïnO? ¸ËÓ,xTK(lëA±Xü,Už 9úx‡Ö7ô­ ¨”veËTÌAš`ǼfË™) ¢\/ˆöÌ!kFbVZm"ŽûM"iT°ªn 9Mh¹­Ómc Á¼×‡NŽÍ!VwÑ >y»Îk°Rå¶/ñ¯z¨½î¾¥³Z[9Œ˜qYvÐ_=ª,JN(v#€%°»,n:SV«¸Ž…€Úû²nÖÝm Â:S”B”ƒ !qÇf?OÌ»D=ð’:» Ž“¯´ã•÷éómö¾oÇÿŒôÄ~Ö¡8ÑÂQOéæSçz.ƒ¤ñÞÈò·qÏó~s§ãpÀ¨ÃÈ€1n„w9é'Âx(ˆ“)A¦ºáTÑGÆoÿlœzˆªåmµœè»Áé·hI(äAÈÂ;€_ŒôSEš÷1gÖæ*—söNtû|Ï]狺Ï#áJ3÷ÎbÅ0L,Y dx›aï}ýþͧ^¾ta-^W&‰ƒßY’iƒîl0D$UpÞ@àá<¨Á4é{):Ñ(P°ìãœf>~Ì:ëòÈŽåx…5PÑL4|¢L.<^0etQ`y¡ SgQž¶˜-ËìŒ#ž·ã„u@ˆ €:„ôȲÞü“§@޶Õlòt» + :u)Ì6ªË;Œ;ñtË(Zf° ƒK1‚AL`Å@ZC€HâY¥-ŠC•DãÏ‚areèÐHèË„MŒ,A¬÷E“YFŠ©ÃOf†lùqéÏ8«Ã–atdž£æ‡³åA ò¸>¥ÏÚâžIK3ýÅaŸ›TVÝÅZÆnY<" 4Vº¤b3Ò¤@áˆPa¯-ŠÁAàm±žôéúàǦr‚ò3Ï7š.÷ó 6ëî©Ëû¯Q Ð#Li‚LPš´ÕoûyœXyÞ_ìòP¸ µ Ãn®„zÓ ën§-濆ØVÄò÷Ôå,u žyŽà*Wä™Ó#V)cAÀ¶½á,#1ÂMÇÍLëÙw23bY&nkÎP’À‹Ù ß´CIìÂuzºl a‡½ ·ä[*ÕZJmÅH×X÷Ð 9*A€$‘0jLZ«Ò(C¤âèówtI(vGƒ9M¾¢ Zs¡ˆ©óãCJÈãøÒ¥EȼSSÅò³)ZH&kìÀ2«‚Æ .T"g0^EÞ w6Ð'E‡¢i¶EÚ¯I–eª1£#†éOK=Úc‡ÞSµ„‰£-Z õ¡®8ðRwŠ÷€üÚáû‹zº¾5=£!$ê’mħ¾_ß »âuõ-Ófœš³ãá‘ÚoC®ø$àl>œŽù6ˆv!— fìê=‹&cä4’KUÂZu'ʇ}Ìçž h nY¢¨Ž®™°·êÔSóc¿#æy¤–HïlÍ , ^£m_žQ…+¦ËùÝæcUÔZsX€G@'×DÝeÛÀNÒ Ï pEœ®—ã †|Žxy4¶ã±@*E)>C:Ôê±xªÅݾÊ;||÷”jj«kÄ馺ÆsA²…&ú%æä:ðž@ëy`6±:Å ŠK*þ1’o ò¥“°Õíèl¡Š½þ6XŠ\T•îs8lØ9h Å À«¨ ÜÑÓÏ{4Ò+-4$ßyãÙ¾+yKõÎÇÛ¨ä“Ǹ€ AÒû8DÿÒĦÙéaš(êqÐ U¡Ã ‰  4““7 dŸwÙXÀìfÔI™EÕX eéä Ö,ŒaG$É’çldA ÝÁH’ÏYòЊ¨E]ÿŸŸúö2sÑÁ…Càb6–2@„ë\õÑŸ¸hž¹Æ%¸ÿ€˜5AHø8,øÇ2ÁÎ\uÐè•§`RÅD0 H ƒW„R¸œgo r5ym^ºˆ ÞâÒö!O’Å..27tã-Y;*Ò“_]«éZ¡·Î¼Þæý…J"âZ3=—>xø7`*5Îh.9•ÑR,ºfõ¢ØtVc”#¾­·¢1è]mÌ\:ÍD/£®-9áÏ-ÂOº Jó2¼¢ØÀÆûC»‘:<Ú’ÎgëÏ’e0,QëYJpGÆ2üdÅ^-Ë5 ²™çTBýv-Eˆê‘­ PÒö•ßðìm¹¦¨ìÓ»J¦B/lyŸì.TºM<­RQìWèC⨠z-–rô—mÆ*µ›;wÐ9Á˜sŸ‹œÃ†âÐ*oÔ9S]Ð{‚F]úù{›ˆQ•˜˜º5}tSÎŽíÕ>p.5¹8À†ý2Ž [²5 ­˜9`‹wt“ÓVê"ðü¥vÙL¤ üØÔº9¥žã·Ç]R樈­sâÎeéóêr•B ÎÏ’YT°öQñ_µZV\¾i³Ù&M§Bé€'RÒÀQ8/aá¯R5q’g`»a(épÃAÌK¸·oÏÓ3¸q_‰ô9*Ò*x¿d1oɨªÜ8J ðÿxrr ¿zµU³m«,QIHG›yÙ#n'in.5(Âa:f¡VŽbšl…žà&Žùl¢‚àéÄw‡}&-ZWp½:ÈÒÍ 7ÅðWvª¬Ò =; D ­–tA2m:メRx4–ÿcË“¢ ־ɛ¥ð  Lœcªµó2ɸ¡çÓ¶~<+Ðx"êƒd‹ªÈÂG‡,½êþ,|ØfCE·ír(²¤¯òtã~ÙÒDtÆ >šâ¯æ)séúIq{•øÇÜÝGã‘bl÷Iì–®%Ø*h±œ”½¾_”™xEßA“Ê^°¯:¤¡gí/ ÝŒê]mû)ûÊëbæòËò¦lQ‘ä DZQˆó 発/Di fDœåÛi°æ ÖVLqÍš—ˆk)ÒhÏÆ”V$Å6âGªÃBL·÷”³Ìlê—ÇÈ“ zòQ;»‡ ³ÌXUâ"8O˜íï:>v^GÑŸ½ÉG½ÛÊÿ£†Â&jîÔ--¢Õ.?gt4z±M¿wE˜ó¥=Q§-QrnCœ )d{SF¨¤;Îô.;øÌ)T+½LÐfhÓ_Âߞ常淿ãô]§}XÊ?•|øfŠÝ2_{ÒÈöKlsýEƒfÈŒ™'2—¦À ¨¶O‡VÚ% /dL÷`u…F÷0­†wÅ9¸Ù®Ñ N’”w¥uAm’æ¢;vbV*RA­ ýJt¤ìu$*¹»AaÉc>ºÊÕ7\•lŠìt ܈+W‡\3îqø«3°^ò‰ÝªÝÙÇîJòë0¨r-ÔËqµ+íhƒ &W/+Å]?;\Ü (Í×uCO̔ϟ!UAè°å‰üÄøgÀ-;nÔÜÅmëÈE£­,ÛÓR Å$ø–LÊGÍB¬õ ÈÓ§¤z‰+&á~øØnôûøú7E®?Ô\Gó— »XåM hkõ—RWͶÖ3F¬YA¨Ä­•yõîLÞ6åÙ—\yÝhï玧·þžwt©ÜzÆûQç³>ûP¼—,zb­ÒímäAuÁZ®¸ÙÎ-mÖóbÏ,Ø*D¾&Ü÷2þ¿™'c*#rk””_*@ÖÀ¤“]Çâ„â‹âa’IÆœ5l%•År^|^Am}zŽ1'"X:(ÛÎìb{£-ÌìOgI^ÍŸ?µ{]é/UÖÓ¹¯¡uÅ´°‡ nÖœn¯X…¦ 32\b×]¢Ö1·¼³MuX;É®¢ÊÞâ;G—o¹¡Ç: çP‡˜÷jÝ6=ã‚d:1¹ç!EZ*î)&Ɔ»ýfuMNÿsŸŽµ‹PÎûfñÚhïM°à£!DÚïdÔ~ü3…ú6Œ¬AÏ…[(¤º¡ßuÖ§Ç%ùQˆ>ú(¿VJ½ÛùÔiƒCÅ.êýH9Éq%ît4PcƒOZz(±e 9ãÅ#ñµNMA¯_!/L¬º0`Ôµl–^(»"ýó ¾•ÛJš=Ò,1uˆÆŽxÌÆÁ¤ºcOÜL¢ë]²â›ä!t"ê21†åßNH!¦ûòíuÞ:LhèJ»ëGÒ“H0£jã û‰Ë á•€(°=l y F¿«!_”‚Ú½G]Ù¶15÷ø—`ç¬ð†7<Ї;ˆ|†â×RË<'òäÈÍ 'ß•:.ÄŸ©µøaC‚v·# 6¢I½K^žfÞþ5Þ2~ʾÄdˆs/úûc¼¿GvÍÝûøs¦Sàóõœœî•ûb§VœˆêÒ¾UZq1Ä•éÚ;¨0§1äT–Ó¡ÑùÌçWy²æ›}ý‹¹Ç((ìXˆžÈ\'Îó繚%â]>ye‡ŒðœÉ5Í sòO#O³oTò•‘6çg¡´qô { i®5[Q¤hÈ î#9á“{İ…„½þîÁtÐòrFìòÄWDAøJtƒÆ"ÄÁtí–9ÕbzX:Å(º,‚’¼‘Ñ;åñ1~¬A¾9›MSÀXC;r»)m¬ê#¥Bc”º] Ñ&p)ñ@Ï¢l°?m^fz’hÂB[Œ1¦µbtO Ízbëú…éõfê‰ã][c¡^þDOun ¿¿aWE·ö»T‘cq{Sïy:ŸóåÉ·‘üEïäF’ÜUÒ.(via‰®Ýµ³çŒF¦»}x¥TS¨ÙXEC9&xa¿- qÔdFd…Ò?¯Jû@©!a@΃-TSAM5zVõ˜Ò§—Oû¿ñ©§¨Æ¬ð8þšýÈ㵜wënLÛ³ìÉ»‡ñ?ÉCr,os.AA­âoÒ©ÛÍͼmrs¹ŠÚÏeüzE˜êD¡ÀQb>üE—à¥Ò8J˜K¡œ ð“­‘ì7îŠlü®ëÞ»ÔYWÊ¡ÏÐUÌÊ©ÍvAä¿ ‹’CX‹º•Û·yE;‰3¶›LÛfªÁ-a’™ÍE"]ð–4´”¡nF`ΈJ™ñgЇЄxû*£Yôx]¼Û+Šèê§U7_œ *«lϦíf‚]së}ìj[¥m£¥Óls¬Á+.2L (26pØùÙ `–ÛÝ ú:ÏbºUp€›±Vµlvmâh“¡´\˜t±ùl~õ@äU:Ãù”Ìd¿R/2|}¶X™\©è'?»“BÃ/[/ ½NDTlið±k0£Ô½@ÚS`[à­¼5Ÿ%ºöé”ñ8¥TQ ð#JÏ›&Áj7Ll{TgOsu ›>¡[¶}Ž%V£øê\‘,犖HsÃãÚ’ˆTM7)sˆÚKN_`'=3¯C­T=äj»&ògìOÐNz99€ôeY‡¹ûk/¯¹¬ZŸ_&¿Q¼:ׯ[_‹,š2EÐ1úÀj«Žþ…Ç»•¶RGž–C^Lvư¥õû}›¦c«ÓXµÇ©žÄ*XZ3Ñ«žÏf°®¹t€*޽q]Zc¨—=¦ª—¢²lÎ}XÁón—3ÄáÓVdÊmñËDuêÔ&?>÷ÿ[';vIBù„Þ +tÈÐRôguŠ“™ìú6üý€(]+˜[)WoÞ\Ú·ŠT=6 ›Z¹VÆ &ýBÝ”«@”Ù¨s,In™¶Ð8$ï…!VlÛЫeÓŇ|íí`©oª>\`Ôe„ßnαRÇ'¯R––ɧ§¥µ\"±AË›4õ霵е4$C¦Oš±ãïN1g&Õªè7Ìš¹ËJŠã¨6ûÔ[QsÙÔ,Â|‡#y{\Ú5 ÷¥tá—# ïw;\´+P;Åí‹äÐ.SìP M”È´E»†ò HskƒVñ«ЈJaJbý®×1·Sއh|›¼ï»ÉÕ6‡.L-(ŒýLµ—ÛZùº›G¾æÄ¢QÑé!ÓƒGÁÐêp¨Õ‡ŠlR{Bͧ%%§„Ú"s'Ô²ãMWóÞé(5J(¶nxÓtmB%1+à—|ÓçCd×Ѻ*®¨(qòA7+‹á8p$½ÑQÝå-õÃÍÝ«úzßx.¹ÈøêqKñÖ ô* h¨m7®EQ/ߥB•*‰kb°r:Ð\¡ò¯L‚ªN§BEÆ ú”Ì5–%õš=̶ŒOgu…Ñé—‰ÑåLÓ’R/¥dǘG~ˆ ÈRÔ©'S˜g‹kym ЪÅîr6‘“VU§4ˆ2PÙuàAñëÍ’š±ájÍqñîQ?ª.Öó˜ á4T‹nÜX ’U$¯VÂáG—SšlÍ¢O€o:Ê\ÓÍ¢Ú†?TO‰Ôgƒ©o¢Ü÷¬ÂçÓÐ~³¬.S ´ÌÒËN’¼°ßáó'úÆy!¯g§+xíó´ .%ïQïxtûå¬Å«šõË·~…(¿¼ ¯Æ;CM¾‰½¾‹K^TJÍùjÇs^Ä)êê«Tº½Ìsöc.Ns;ÐCÖíÌÖûwÁÊAïCÍé½Tné>iJ×ý·q­J ¤FºÉË×ÖpBêCd!O3E1 @1 [<×ÀI)h[Æ1‘ë¤âÌWÿ†×©w_R‡ýdçhêY[7’úO©}š>{µÂ;[»Bý⯔E[ú,†¦vX :—ΨlÖ5ÑO– PXNñëÐlà#dDךwG‚æ›ùrÀÕu2¬ËŠ„ØÝ%¹_ÝÅ®U#@ðPè OÎ"‡ñȃƒj½l 9*Øå­YI2½Ñ}ô"Ô)I?Œ}¾S *ò5a#³»Ð¤0¯U xŽ‚;õeI!žQ¬g €L„;mt­¼d,íqÇo¤Cu*ÕSºÈ\IYbãZ¡FEÈ9b¢îµƒýã~zÆT¹ yœ³À<À6¼½7ªÍž§F†Öwëë»·Sr’îÛsœrX"ŒC¨ð\ :N¡Ã~½.B·hÇLìÙ¥dzý—íxzWs`K¶"#Íõd¶~ï› Íî(ý$*Üsýé˨³6fŽ4í§”Óbz–ÛÉ$;Ɇ°õT³:\³Æ¦ß ¨V7˜ÁÒ>CÖ·ãøÍç¨ô6–¶@ã`!Dò.3Ä0|™ÌžžÞ®5™ìÚ:ôä 5Ὄ[JЂ>öXóéê)ÍÞ‹'c:“Öù„/Z1„Ž™}Õ,†£ÃCËé)Á‰$û¢Rb§Rdíò_&ô“–|¥;!Õœ8Rkƒ_°þ¿÷~ë65m×½Ù ‰L ÷jý·‚sߦòÌÉ¥5¸(ÓëkÐ"åêÇ’ÀõÔ•Q¢dþH Âk°‘@­µtXÊ%.KÐsA}Qæéîhe@_4PE2È™'LeU1 llÄúCøÌ(Zs@X_@àñCóeîõ­Ä«ôJÀy4ùn`¸‘™^!ç¾{Ôˆúü¾H›HK‚›ï"#ä(oŒ™êƒºŒØÞ×1mEX"Aj’±-ÀÚèȨβ³ÝûÂ… 9Ã`¤&ÙµuX+£ßçxY~w·ÿi1ûåéòjÆ#‡//²‰ØP.µ*y+œdxc«x€© ÕÚÂ2ÂÎZïaÜ#¦ mBX˜dlGQò PÄÀ̹xü‚¢^Š™fZ…Üá–‘›Ì[»0ãïmÞ{tšdô.X»ÈÅ6SÅB#»<†!T¯—à—ÚžQ“Ä>{sÞÅÌ‘ÔXKyòXc†X?cÜ¥ëûº Õ·t/’c§¾ Î`ÍΈ‡­—Q-QìYï¡Jò1W©ƒzOcЀkv·l.O'Ï{¡,jvO òzã!”/=DººUØîÓ2#FY£J©QU&” ¥ÔÁ1ÅœŽ*ö"y¢0Œ2¯°€€ˆ(KÜÐÈò*ƒp"3ë1I(6âÖ™º731Ê6<§2+Ž“Siîž‹2Ò©züÄÊä 䣬öö@©:Å’ÈÜùoz¬RY!Àtô" –ÙµÈ`ÊãÎùHK7ã|B„Å–x¹jlØI3ü¾d28ì› KháQ…¿h‘Q$‚…ɉI7`uEË3zIbkQ[»Î¦U( ’ömÎJ`‰éõ¾wÞõS6×,=g¼(E6ª{Ãlh]ÑèäÑ£V£†¯UoÙ`zs‘2ͳÀ4|UÅçîãyC{rú#Ýaíú$¦7Š«{˜î¾Û0û9Oîq¬ò‘ĶPI2ð -Ì'uRvA Üm<ÐwZ¢ pd–€54Oúž&’Dg#ïm8*¾ ÉA¦Æ æŽ Cøq/aü{¶Õ7n¼Ç‘P™ H›Î³M Éݰ«­ägzô8B*£ô‘Rœh™À}ER"ÆS®UŠI-Þˆ·uHBÝ$¾:™‚E@S}^žÅ†¬òpy$'› žÉ–­ß~¦‡òû7¶5K¯-°^|‚`)[Wö›bo‰Næ:Ùƒ7¡ñÛÉæ¬KíÆ zARòŸg²Vzä}ζÉËAkÂØ”³å±ÃU3Ùm™mÊ}’“MäÛë®Î7µµoY•ÑìV¡{Y”´ýßsëdc]ÈŠ7aª½nJšX_ %= îúþ €Eþ +U{É^âoTP2DÖDóiÄ‰Ž„Þ“L1ËÃq…!ã“L.{¤¶|M™I“nš[¸µ\µP¥£^<óž-mâ²>wÀ=·§žéœ&[y¹àÅÏ+“ãE·)!I:v_ÓK¬ ÆøU>¢Éàï´­tA TBvÛÆòF>9øÛ‹Ì ˆÇzõTЈÑ3¤£/c-¦ÿ'Þî‘’%Ò†ú hYÙéJ3òZgv¶¹µßÑJѹrr/S—Íl#>e¹yLÿg—Ä[zLA]ŽßQ€Ôš*Ÿ–ÖP AÅß"Áÿ¾)æÿ·HqÅʸæµ*‰VɌޑ3éšõ>´PÍî׫ě×êâ¤|ŽuܡƟåú32Ù›¡ }ü½Ár-)³Þ6¥”„£M#»©…rÅZBh-•¡ƒ³‘Ô»gÉç]`ªö åöb_j¬ÖƒD 粋»€ñÔ^2H péf¿Ž Nbùã+ÖØ;àLJÚäLC™£që ©Ú//œx"1ý=Äðúݱ)“èPÝ8Ci6†{§ô/¤eH“0Wí« €¹p”­BB·‹ºêgG`0¾ù-:’ë;0º>1¸Ÿf7‰†˜Î8ë[ï"HH? ïD™Z‘—7VÁ#Îýi44ÙétÔäñ]ŠZ ÏOUž·ñ 5Ä:f—¡Ñ¨0=/'¡cJµ-Âþ†bz|Žc~¢Këá髞šòc9öüàNxxE "@=Ô‹á´¸éö CîÛfÒ¨Ÿ}ÎiA¿$É@<Њ¯fRšÃóPQ/ L:Hgñº2Aö¯*cõ°cct¦ÆÓK,ziúB õ*€h›…µdNy9|×ÈäÞ"FØ:Ã5®‘ê‘äÑ^Ô†Œ§·y X ´ðü§ òÙâ#Ëf·I^£5ïC µ­Z¹† `²ÙÔb¬’zÀ`l»Z& [ÁȈÊAÜ'¨¬RDú$ž[!\º®‘Ì«©ÂœÌdO$”XXÑN™G…HËÚ#¶4¯1+‚(ÎïÇ9ݘŠ`úO»‹¹Ó"òŽ×ÿS$ƼZÎt2F¿èŠ£vLO7´/‚vÚÍ-Ë*{Zc0>Äú UñNÆ"€Õ»Ba«±Ôš¦%nêŸ[{/EÜŽVz¼gçP¤ÓbqIçAx•wwâÊòN1(rLT‘D[‰PŽYúpúÇ`%XÉaY·ëêW#©;LEK¯¯Âˆ×‡fy®KÖká†Q0Hã½´¿#-MÙö˜Ù$0t¨lÖž„™IÉ$Ÿ:ÕpÎ×7çqM©{D¿ceºÝh%½ÞJŇ­ ;TùÕ4èW6)¨Ý¾g96´¡¬Ö)ËëóVk@+€” jW)’B5PÀaœžŒ_jdà•#{°aUƒÀa ± ŒQ”P‘#"&TlÒ—ÚdºÀqÔ°™Ê=ã€K¨­ëeÍv$µ°™å:þ¸a…ñ– p”æÔ`›ŠqpëÙæduöõtëQÇmÔ)õü®¼½ÒƒÇ¥ã[ð¯Póp5‘©Y¯qê´uîÄRYùgø7búyM^Ð8|€ò_3 #B #àTf° GOrÆÔwÓyÞt€žÆ–x€ŒxŠaèî÷Té|pgT vÞjҊຢ)7!S°U\-›M¶ Ôê&`€²â!½ÒØÂæI$8Øq¤4 ëcâóîÄm`ƒŒ@u"×Û®¬°/è횥ƒ ³W’›Ö‹¼UÓ§eö~ÆÅŒ÷£oz;‘D.ý‘…® ·MØVbàw”ÃØ)(‹a””±ÅM¶3›‡Ja|Ü9©ŒŠðt›éq‚&+¿¿—M?'$L„@fÛrv4uãñ2Â{×ïNpÝÑ”#NÉ÷ë&è„ÜߥūGV”à™G ãÃó—Þ®pðƒIÌ4&>|½Œ;R¶Ã3%Ï׊tj³Þ›¹[SÛ»g’ÝáYÏ.xú ±¿Zi²vò>¬>ú|Oói?‡Ü—‘¤™òØíü½o¨OUhØC Ùné:£S‚Ê£ï*­ ;1q•4º ¯‰–˜ˆ£x†TÈ“J,l©©B q[9ÃëÅ6{œ¤C”Õö Àâaâ>ŸÔ€I®‡²w5“þЦëæ; ò‘—ä¬[V"ƒ†}$Ì8tijâ¡wìZz¼O3[ü¸÷&&Â%߈,ˆ{ <Œ:ÈÁÒbvµpº¸’tzåbÜñ rLf! Òâ}aCxë}vPGÑ#Œª´tñ­IÓ"X6^·•‘A‡ÑäJ?¬Ù´b}ƒ„ðPÔ“9Ðçê ^W¨Ýîy_ì»òºgs¹”0F¹wí¨çö‘õ(c¦8º<ž´ð­‘EØ3oáCW²±…‚R “È~¿ õø˜D-r¡É‘¾W°d‰ëáX»)í"Y)|…5Ct®”jŒ§F“ÄߨÇçrGˆ1ºïôùÝŒï4Ï=粑ÉD¤ØÔô“k¬q·ðX–º œ[‡MßN,¢‚Û Š)gí…\®—{_k—‡·‘tt¹ë÷r‡ò³ôœ‡á«Ê@4/k»nAu_ÂÁ hÌ·¨€<†Û;>îëßʬãœ->åo— þ¤Œ”®d(~…(#ìK†ËkR!ÖaòÌù|Fc¦hýHªã®ÿ6—‚hW`ßdeúô÷MKŠsdªCÆfÒ8ÏØ@Eé×P×…©3ºsWpGq ÌR½^ÖØHÔg¸‘ƒquqtýŒ¿go™½B¹ ]yp0_V_ç¤ `ƒañAº= rKMzt #d{¬údϯiÐó÷¶[ubíîèî•$•”AC§\Èò¢Ã?âCé%^"& `cû5/ñ7`W£®–Ež7ÁÞ×IU®)©½·ÒRÇ,Ö] îÂÜ@­ŽÜvjôÁ©²°ûË©Îj}&%A*[.œ Ùö\¯~ËbaN§„ç[âS¼x§^xëÔq>°ËîÂE¹.èš©à#óD] ¿O­Ó“&«·.‘O… är ÅŠ¿²A¢%иˆx ´˜h…ãœøËÎ^±K‡ _Xc1.ŒvO€KŒKîýR¡wŸÛa|5¡3 QØã™!æ` gôÍ ¢S?[Ä4 Ùá¤#¸sDàü½EtÝ»Âo«;­.åa-a.´õ1Ôʼnç¤Uð½w8K ½Öb`VHÝ^Žá£¤#cD 0B ÄøÏÂc²D„ñ©É˜„‹;£Š$3SœŠÎs‚%âWZëÃÂ(Õ¶e0Ž"Þ¦åVhK­o_R<•0-{À5è‘ÖÙÆs礢u$ÿd%€V‡so ëvBB›ýÇd·¯F¼š74ú=];ö%(²:tÑî5RËB”8fR6ÿ{„&LÂã$ýÃò.€·×<˜â˵u ¬|d/¼Î̘”öŸµÉ]æèž¾žé^S¼A-ÙB)úõd7fïP[_‚ÑšŠU¨R ˧’g®uw!Ñ9[+ÆþÑ™&SZèâ&ÓZiè=U|C0ô&Ô¤Û'óêC(ÚÙv=µ—שýŒCshÃõ±¨:äþâÔò'ag…>!çZ)kòé¨CTK(Ú¬¶ž!PFž7RnþçË¢ðñS«³9Ò—¹\SÀMs¸P0í¿…ÒÓQÂ6‹˜OáÓP/£‹Ç]qêù*’*T2}¤sø†ƒ ƒx¢žy£y«xÕøÛäÝ6–(]¨s.®„±Å[{瓹0Òï¯9“™ÜuÆL,Qˆ\²/¬‡e†|æTŸ"ê^6!Nƽì½ózÍxÖIyî¯æ8õϨI ˆ‰ËÌÆà”úV¨/*´ór¨V2øz,\±Ã5Ìve.å‡8áü=#û`Å—¦_Ïðv[@ó-JL´ê×ܽfz\ü•G¨IöW½QØ.Ñ’ºâ=.duG4Ô”à!ù$Øç?ªißWFÓa-ÏSô 0û~Ƴä¼JW8è÷caËß®¥8*NÖ¹lA"Pϯc”öÁ«Ü¡–¾÷Ãå@ÑßM€Ô=8ab¤àë4˜ls„ íT2ÃmâÉ©“RçjÅý{¿²òÀØQ©·í9tÛìGS d ÇŸ=bP¬êi ˆ«%ní¨NWJÊæUÌ}»&ìÂ4:â„›PBÊúð#l&ù·Sž S™åq†!ð 2„ξ#œoL€Œì%9æxwŒ„dÙ²¥hhÄbH°°)®Æ i&<7D¨R†ã㢞0 SËŒYÚéå‰9×–ËWž|Pu.ù¨Éž%YNÉ!ø—¦õøÝÑÄXqÒFâ@:bÅ*ÃÍiþcY÷,Há·x¹ÆH—A2ÌÈE`²7] >ùtL ^ÝJîHâÞQ µ^ Ê¶&Št6p1ë»PÃÁ~ð6ô}½|¸ñ'žþþN#'ZÅ`XísÜ¢©1«¹ÒæÃ;ãct+ ÇIrÆ­Èe6DZ¦7wv?R½x!ZèÉ) øˆUÉ/®•A,ÇvÕ²H [&— ðW2 bØd‡äA,Vµ5õhÚctÏhª[LÞíCh}_O¡j³mwuº[ür8ûYi0󾿬`¯%Û`K©‚ºZتÕ9E®é‡<”ôÊ?©"VXýÞ%/Ï[½(¾>¾ËNfù‹ÑçŽ9\t5 ‡æàñ+bwGÒDÔÏ&¬Zޏ†¦Ô‰C¨L ÖˆÔ•ÛçÐh[æËpÐ&;mÆÔ rO'¹Ü¨,•©ÓÌ3ý¬Õû}ήõßìpÐHPͲ§Ç!ÀÍÐëc±†:Pd—a3ujqOPp(\7;QE¥¯É‰¤µ3Á ™Ž¼'›F‰uNq%¾Ø<Ðy³åéíž-—>^3s§¥^e…ãYŒ=qýnD«,éñR Š¦¬W£/œ…ëÒ”÷”¢ÚoŸdtWÛkèØÙôõ ô5Æc~ZØ‹.‰µ0àPØ5-H:\²ÿ™Äo|ýLÝ®,6®f´³öÀ·5Aú„п<¯Ñìv…â%‹QF »l³b-‹ä,½2œ²þR§›…Zö·Ã ±*¦Q~idÅ–[ô:Úå¶ñfOsô;W‘)aÕÕÑ(Ñò4²ieÇ÷d¹Ìboø6¾wšû)UÓè(Ýo­­‚,ò¼¨ï±Ú¾^›³}Êÿ`jû;Òjb´ ÀŽÿQž†ÿ'Á͘hñhÞ…ºø Äák¤O"ÃËÖ+÷ŠÐ(쨭” @ñNù|ÝÂìäý<¸Ê0éäͦy%¾ö²{›c ®ôÑL¹@fH“OþºCh¦óއIË*tMIG^H¦sÏD¶ ÞºÎ§º,×øêL"Åã"Л彜NF?E¯[¿Ó‹²‹]Gob`Aé;s~¤:²]Ù\ôú-ùEâŽ=P²÷j¹ÁäÚÞ‹~~´¿|b¨Ñr¨x¬›‹–JámÚDáöíàIVßXÃDüP¦È/ÕJ‚­÷Pa,½éqÇ<@™bìlþ«{¢©êêqL¤‚Ξù¢}iìùr|YÎo—!@ÀwtšñصÍëo–™ÿÆÚ~'ùðßQ†´,4À‡Â©É®ío^Ä=ø«f6=(ÿQÓîC[0§9z¾!hžò3ïfÎeR#ÀÌÐÅD2YCŽ‚´Uå…Åaäê­Îæ8‹WÍ%FÏ<’Fi[[mÉÎëªt„¨¥Hq' ÚÇGPh h4åOLüå61/fÇ=X¹™°tÀíÛZÈßg¡êô©÷[Ë·LS ©î @tŸÖÍÍm;>%n½ÖóÏb[Éà@êdE¡…»Øy¢5¡¿lsŽÞ¸†57ÇC@äeâh‹œù¢:®‡¥•Ž´œ,RЈ1÷¹<Ñxøf˜»üNt®º¤&ËM³Q:(*wá«I¡h¹}ÕÊ–/-ÖtåœX¬…Çk¤¶½ö;4ÇZ¥Uµ‹®=DÛÝÀ ÜîÞÜz›Ÿ+ÈSµ´M¡ÙQÜ1Ã_¼¬çnM ú ýðãγøðXÅ‘`"8+Òø|»8)·¥^¹!t¹Q\Yc± ~Qývµ3ÔãÛáã™>×1"ùÉA…s& IÖUÀ•nwÉñì´˜d·ÂÇ:v+LuõG®J‹RN`(eï¼ôÚ*~>£Î«OÝ$í ¼ü=ƒ½eßztºæŒŽ«—óvv¢íߊ¹jú45>Ö⟓º°‰z€Õ*¥Xˆ¾•à‡ zæqß"¸-?©ÕŠ÷ ÍÌZø?ѳiW×g®X>Q˜š’Ù·Øs,ªÆ4 (à V”Üv„©Èóð5§…]K϶›^/dá†Fc™À²ì4ÝÒŠÏrY$ °Gêz»šæzÚ– Ï×ê F—‹¹˜«Jý®§nâMg|.{¹7h݇gONÞÍ^Ê»Y³|¤>HÛÕÂÞ[ªóÔ––j噎 x…"]F)œFþ‚IÕ6lº0LÀÐa‡›¹8¡01#¨€ò;Ntû[çºM­XÍi„5m‰Œ:@¬iÕ+ÃÚGánÏÐû>‡‘Û¹K‚û*W³n/…u©r°@äàvüd÷ŒÉGl®ÂJ4ˆ1#–뀫Ÿã7fê¾wÅñqéÌëÏ?HÞ¤¿©æz(Œ¦TKÉà@ˆ1à€2 2A EËäDÆI¤±˜CŠ¿xÉÈvM!õWžLžº"ïÑ‹•Ô8v©ôL•µ¢µÊ î#œN¢±/B¢ˆÉJ RGÕ¶6*GŸJÍš{†L–ªWÑÅÁµ´G¥ôÚG‹»Š•} œÉ~ hèòMóþèÖµ°—R¾¿«¢Aw4,qîNþ~ìš”ÚõÈ]H¶0 Jo‚|ŽB\Äi1´ w†¸ë!~âü¹$¡Æx¨€0›DŠÇ…H (÷>~¿mf†ñ[ê„iöq¼'P¬6<2ÖޏôÍv«¬™ñ$VƒÜMªCjB>½Jæe"¥F”õûôÐvm"plÏèo h2í+¨<Þ-…höçßÅ? ¼Öì™aã{+j2Sso ]5Îð…Ñ}Þ›®]~Ù©WšÈKÓˤVÚ9ð8LuC™é·¡U¶—§ N /_ÓôyùÎ÷b×zê^*ú!0/´¿Q^±Wn›üix‰_®Ϩ!tŸ;–H¢YÔp,\k¢"˜MÆ#)¢!Y©dƒcÏ9 yP±"Š, «(¸’Ž*Çœh ¦ÛÝÍPÀ´æ}@•ËÎäµ×ǺëîÔgZ5WƒN¶¹# R@dñ:*<ænE²pg¬~¤ø½žÄß'AÓº#É }§b;.:^Ea‡R.dƒŒJAr_€¾œþØôS Þ§Š2eŸ’¡W-BÌ1)NÃs9obFä<–Pò®uÀÏã_w¼ÈºênQh°¾&v™qŒqBR;p(ˆ¶á•MJk"s¼^V ¸òEФX¥s Y‹­Î+œœ[d„ž¾žøµ¡5´žÚGIïÑÓ/àóQop6uÁëððê)Ó°Ê¢öûøi/Rn‚¦ZÒÕ'¥g@=0tõ5Jjp½M; a¶=€«] aô¯l°(²yƺ”g|”Âè|yRßÄP~HÓò,qÈÔ¬¨¯Š©S"ýÒý^>´V¼^«°¯•DtXMÒWPòe ˆæ $Œ{‡F_-uQ¯•éJ+Rä?2¶ø•´ó\ð÷3 Šö„µµ[±W œ›sÓíÁL¸ú©V¸K5´WYÌtxÛmfSaЭ½]ÌXAE!M~à˜Ü ønY‡Z¥,ª{l1Ó!pSVé,¸Æ[}6Ð#é:fÔgxŒœÉAㆢ¬« ’ t»Ð­™ÒçøVXÔvyпûªöS§ÈÒªþï‰×+YÈv²¶Î éñ¯ÖÕ"]þMðè×Ý¡Z¦°KoHa”±•)ãÓg6æ]3˜5¦ªà´N”;ªÖÒ3ª‘ÁŠ*&&:Èï’o:½ªPGà{ؽ÷¾XìqnÀ&û8NôÃqõOœƒÚ_W§ÖûXn.N*½z´žù9}ú{4È7Áþ¯47}½zÛŸÖèS›6cøGyeUGdŠ5£ç£Z±Q)š i¦¹7}^ªuBØÒ$9ÁÑ\ùóç¡'¥ V¡*•TߤÊg’„Hë:TƘgü–O<¶Ð]ÑRàÅ–9æQú9Ä‘{‚Ъ£–ÚZ¢ûJ‚y ªä¿Jμ·c–ÔQQèskÞçƒ$hU¿Î¥º½î9<év´©h]XÛ°té[8óƒfp .&…æg£îû)§¤éU8595B÷Q/€djëŒÚ=¤Uœ\Æ ?òb‰üxëqp}ñUgJ±K²pà¶çjGAô”K|IÒäĺš®kX„¸·¸¡#tÂkFtìÁeäÁØî_§,ÛôÔ‹gìà÷yƒ¥åòv™îÌÕbºq¹žP$â^ H\w«g”ÐÃLa§ÞÝ«÷ôø´r@¶$©"öÞº' УººEïëê(<|MUSÕ„úMFŒ„0}‘4wR8²x& Öy†Y÷òØõHÜÓœ¡ùïîU$ðkùBQðÞ Ë!$B„hMðó‡YM¾ÔBñf à)u3Àac¥Ùñ‡`dJ€´¡'äÒ*©‚a ¢h,h¾"sÛ锾ïÒ_{¾ޜ»©\ú ~§Ùñy›àq::|Ô¼Kºtñóæ±p¸@ˆq.kk¨T7õ4&G³Ò®x–EÑ”¼6Ò¡|·|fé_ÿJc§–Ÿ×T·Òæq¶ŽâÓZfÂ(÷|‡?ƒAjÆ3¾»‡²¥jì˜;¨§Ôù¡Û~ŒÅÅ|eËâqS&g,-!þ¶¥‘é¡IXCÝmh®§~¯MʆK­³GÊ¢»+jÄ·3΢/g™ÆÖÛ•lÙlö&;bæ2kÚÍË `b%†0ñà%m}ý¶òFã«8ã´‰¨–‰f.^aqš°å‚¨7’ÓÜJý"Ù£ ¦â¢Ýcð([/°wC<ö ÕæöŸiÏ=0Ñ7„§ ›˜È5âÈŠ"ìÏ>.zS£Â<“7_’»’Îú£Ðc|ÑZ·V²ÂÝÖ\µíYûe›.¥”ì”ÞcÁ¤)õù˜÷½Hývså Ž(žÑZ8ÊW”Ó2ï;&²aÅvð·z‹ÏZîc@ Óûþ»ÊEv”¤íE­éÀ ή7>=hW (ªÒÉénPÚš«I‹cD¡40=ÝÔëŒä[£U Ø•cÒ¯¦ÔàrOÙdÊ'x+b‡”76ÛgYÜåL¤ FÀk3¹¢‡Œ‘bæX¥B·OfG8Ô¹c¶ñøjöëw_¼ó¯Ý7¤êêCÌ –L5y[ Ô[ƒ´浦ð4o¥-4rƒ  y…ÎGêèŠ b¢žÏÙðªu¨wÆ‘?š¾š—Jôûù ¬–Â7[å‘ ‰.R¦§kNÌåq’iÒÔˆâyŸ;ÂFzáÈí_DÅ/sïT8ü¼ŒÇ|.†bžH™„÷À7ŠÎª5B¤Vã„—Fi{óçZ‰û^õ­ö%oy3ã8~l©ÓïZC *¶EÓ¯²> {$¸û4£æyVsȹ‡K=•Y<Ü%؆Ž. }ha“hà7IRW[(õRò•Ãz†+7uêF¿û—Ö´èìN^c"Yb¼*”AÒ\+M ¸ÅæÀùžÍ?†½©çÍ3>.ÙUN=•õâíãhÍ[mÇ£ª1þ_]Œ÷0z®aïïáíÝ/¯5êècoÓãÏÌÓìá”jU5ŽMÌÏ þ:›5H`ça·î3x+À°¥Ps85»¸5È+MŠZe# {2×ß•Æe„·]ÐQ„|á¤V¹dÍ,@§0:m¢Ç²Ð¶µ¨»û*rŒiðˆ—RÑ81äŽÊf!¸Æ:Øçz\Œ–u(Tò¥w§¬ÁŒõéøø<>¬Ò°ž=—=ª•,ã ÃüèÆÞÌšÁ½&À†cW7”sÂ\X¥ö8¥âRê—‚bÉ¢܃¥žƒ§ zÀqÚ]}¥Ãe@EDu!wÑV_q 1Yãm}`…qÑÖŸ+Ôຄ5n“Sæ„ÑrÏŒÕ]2ÇÆucK~BP³×!ZüWKîÜú÷xWî\üút¯èrq0å.]íœzO(+ÔïßáÆcÔ8 G)ÆÍ[%2µîÖ±£œÛFoÂ^W’»Œ,Sçr¨â€²ï€0BRg1 Úš\´‘7Ž=^Ά=:I½Ržbèð‚SÌH|FoyX‰*sÝ¢ª‡q·e9( R3y ú}—GÃãÖªÝ|È `ã“Dæî9súñ R~ŸØöîÍzƒ Rûµ’LݦÈÞáà…Žbù~uúõ´ÞAVȳS%àÀ¿¥ˆ¨@µ…îmZ íls‹ ,&7’O>ö)bäíº¨ûf“aÁ-ݼÓtØÂŽUBчÆÈhû„hü¾³Q‹zþ“Õ7Ä#°a€#tx0"I ,D¡`a€FRoA„ðð:!lÀJ†˜>5ˆÀ­ƒ¡i TSÇåw*aè§ÒAOIc„GÍñÉ_]ŸTR|†ú!|ãÕ œÄù€Q,+Âìâñ°`˜³áƒoR AªŠ/¸{Ò¸]`m ‚¨ã/°Îûª|ÍŽw«Í6x³±ÈŠ˜x°r!Ÿe²µlÜäã‰EÔ[>à\œªä@Eh¥v 5õê7( ¬y÷‰ÄC£`\_@¼»5ùÊ»0‡’Ídùú“7O–¯:§4&H Ü›­i{;Ð…VYå YŸ™;Ô£®Î:Ó 5æ'´áé·]iÎïÉx½îD v#3ˆ–i*,ã@ûñòu+oâÝÎ5®*–$¢¬á±áÒβz˜,A¬žïYKi†ødúµò4)ûÈ æ9H 6Äpü˜®Ä®:£yF^E°‚$;ÁI»!˜¶ƒ) H:Λv&Ïß;: F‘»àíL« ;o„¸Ñ„Œu‚êßjÒÕŒ¼QÔÊDDɘ3.h‡ëì½—­|¥qÂA@uŒî%ç—¿qÿ›½}´±Û™±üÆÊ†âš;$W¸…QðíT¥±Â,š;:˜¹ íã¼Nnð…_˜=6KÄùKè|My7WGb±G0˜(Gz=8ÍÇØŽ·ò À"b|,G‹Çä°súpéuÑ® Z¶§9ÊWt«jèÆ}õ6¬CÓTHç=)(–⃟u{îq+\¨JâO»=vÙ¥ôèÛaùè>_èbC–^ȱO}…\wÁzÁü•!ÆÍÒ³v”vg¿yÖÕ@bxu«q4ôN߯¡¡ŠÎ7pÊ-ÑE±ÀE÷X°6äÖ-Bßœ¤øâH~J6c]¶EUuèõÁÍÌGŠvƒ‰+È›T»ƒò ½¹®”2Ã/Ë65ù’Y¾žØ÷lÆE…ïi+¤ì·vìrÛ=}ÍÊ4°}=Ú¶/§u,ä&vóAoCG‡‘.ì%äÁ®™¨a’i“yk÷6÷”´î×±o—<èÑ>²¸±†Ò)´%M3oêeìjŠb#IÔ±´UnRÅgaRfƒâà:pˆq´³Ö+<›3ôÇâ‡ÀÐ{ÔTFšÓaú7ä"š禮ýrcZb®ò¸…¶-†“׃êêú7'*K×eãu+ÇY1¦HJ(Þw@ s=½¬„ê¿hQ“ºÙ©¥œzÔ®3]-, ]³"‘X=ì)>­‹¬ImÒͧA%r¤íŠõ² ª“"€¢•€¢3ÉgCèÖtÍ<°£5.5)$K•ŠË+‘ºóòv,Òø1νAìóÞªÿ·ØµcìedHý“=­KÂÐÐÌ;µüŒr¶[á6i^—l¸óÌg¤•qróª)cI“¬NC (½PFG Æá›V5ûÖá#ˆe$PÑÑÞHˆèe«aNw´öw’Ṉ¯k«)e0m›™öÐL«BeI:jÇ—PlüK!æ˜T€ŽBtç›U‰ƒ7˜»°{[³ÔÆ=îà/O!ñ¤£Š¬O .®Zp‹ŠÝÁo;hsÖi4ŒÊ%0BÏÑW%û÷[Ð!Gªœ½ø›ZÑN[{‰b(G=˜ºîi©On@ëyMôüNsž`ÀJ›í³ ¶ö ÃA"nhõ5†qçqO¶oÚª‚78^Ó~Àö‘r¶š›±+_k›ºŸ™gãÿ‘Ö«1¬ª·êR·¿flgúÈ|ÊÎ…ýU³ã¥·BìÕ²ºV«¦þ‚»‡¯ r‡¬m“Sø`YY|ܺ.ðõ f;›+¤Å¡aªõÊúSc‰Ú šq[ÍJ<`i´m„Yq¢t ¯ ¡¤oZXiѯݮÝÌTÄóè Í&IFÛw8›Vú;N׬ .(XEô«Íà—¢Œó¨»ŒLZ›òH•A´Ýg-3„JØz\Î…®No5@ŠXÏzœEöÛ[L11CrjBR¦Å#Ô®³Õºv>5 Œ'¦9 ¾qô¸3Ä}ï™vôòWÜRx‘äW˜ñaöóyoxÝgf¹SSeÛ;ÞJÒØ¸ËG4ºï;ªÄrËCžÇu­îîšGϦ-1ãz·l®¦óCÎÍ‘òq;Ç‘2™ŒÝ ʧßx LL¬g•F„¯LãÍÐ$¤œóU»/ž¹´ú±ûôZv8¢ÕßÖÅ=»·Lë7áp¼UµK¥´2Т–¨Ëµƒasd ”ßÉ åκ–Ee‰Xˆ’P Å‘:ø¶Ì[jðæè|ŒØõ/ao/t¤Òkmp9óJæ×®Eîø!òëZºŠð¢Ø‚ŸU(ô?²1ÀÀ¿ÛMLâx¬54×ës äs:~ß ”g"…³•Yqª¹P™û3³c0Ô·JžEûÖ]¼‰õ…é^‘§Gݪ8»ƒ’Ï_#Â&æCššq°æcv¿Öõ>ñˆ’Ïs¾Ôúyû.mNÈûh4#Ss«#•+³$G„Ë‘‡1J¸W1±Ñ„ãÁ Q†6TÇ_¢ ìL›‘é̤ÔÊòq|³·A¼’`Ïa·wj¨˜’Çà 4-hFì£î8mrZ;»¶)Ä µ*•7ÂsÚÞ¸¶–²õò­~øÕÇ»=©´€…3Þ13…°+§ˆ£—ÆÃ‰bÍÎîg4†˜L”!{Û¤¤’°xèÖ'í¬ðž}+‰¨ÄÚCYtµ|¹Ã­Jæ«ù·¶Î( Ï¿ùLK.ÆË·¢‚?¬nQZ†þ*Ø'‘±tÆÄ1¢ª“XkKAJˆÃ˜4ä =‡ï,Îá=õˆDÅt¼ˆÈ­ÊfÜs÷/L8Ñá‹ÏMóƵIÚÀÞ du¶›.O¤LåE!ò·^ ÛB*b2‚HD"ûÀ‰nxš~¢fÄ<ÆÂM‚˜l‘¯È—ë}±Ô¡ï>‚lUœ\Õ]!tm ãà­ùñÆ Ñ´¸„_*‰Ž!NœQ$¦gmÙ«p¼iæœ÷‰Or(ó½ø«¿/¾ê¥6)FÕc¦sƘDè³Rä +#žIêA¡ÒÚaò鎡qÓ§²@ù…¤ŠÕrÒ ;Q§[Ö»ÔsYnûë‚8SXõ2dS”²§ø¬[—jÃ5OœQuë‹KŽ|îè„ÉkY’•çu¬¡p–zÞ‹ŠÉS¯QeçNÙ@c¿aeè1E{Sö˜(ÒÅPXG¡Øh¥Lj{Ugc:´TÇ¥·_;ñÊìHYbÏLgÇ·d3$‡®=–KxqC=jŸt¯nï·gË»ÊÕ“©šê*¯ ”ãÁm±hK¯”Ñ1{¨Y¾@u¡RÅ;ÔWJIž6Éâ4Mh#×Ê·Ž„q>sìRhx—~}'Þ‹4”Ç’:ùÙy•º_'Îø-ð0~úí]A$¢Î J†ÙÈØ1٤ߴ Çô7—âB]'W [õÇÏÓt?Ä·;®~@{Ž=òÕŽ.Q­JüWHgpèÄ…g»Bxˆ±ŽÄÕD~Ý¢Ñj2°åv{¹Ÿe}%îC‹wb5¬½"ƒ#þO“ï¥Ü¡Ôk.ÃÐwëÒe%:þ•êŽmCŽÃðpÌV&+Ï™éÃ?z¾ø¬n ×[M¶Ï)Ðåø²ädÉÞ_‡N!>–eÆi\ã…æÌ¸qh8G9>Õ9:$«Ên0‚Ðͪ ¼2OÏáÏt¿3U¹bžë®5Ž—ù3/ÈÏÙÓ÷ÜtÍCJB–ÅÇÀ1 oR) »^Ò^¨8¤ÖOnÔÍâPnKÖ¹M°ê¤û/_ÓãˆÜy¶»ÏþÐD†pfσr%“Ž‹j†ÕÛD©åc®bØäÖdåXÒ2=.ö–høÁ8ž:ŽgÊ3bd›HsˆbÀöå†çq!"vÜ™{³• Qd ø•F6œI“)¶6BdV¥EŒ>báÈâ׉ôI¢AåŠÃºi¥ dV°Á«l¸AávøÊŸúbxß|toxŸC†òcph¨ÏqÞs.~òaå"-Úq1V¬Vˆ¢Í”G)VÃ8º„•‘°–²ÍKl´æß # VjÉ]nb#915ªžî‡`¡\–[é É漯§œØAˆQ9¦z\.â±Ù©W„ì¦×$UÚ™`B펽™sæ–)…šIÿ‰Îõ%j„j¼^UNè;q#B]~þ|Á¶Ü±M³9.ÚQö—H‡F0w È”þzüS7†¶ß¡Ã߆·ê—b¢‘"ÄWví±ª¾á8É®Âô¿££ìG­÷¨Eùw¤VW·ŽL2Û–˜PÃg ´Å³Mãj gãúœyŒ³B«äÄæJT¢Î{Ô)àL£T¡§UãÏ2á ‡ EÈ;ÐøñŽLâú•í¦:íáÊ(0ÆLÀh ì¨x_:ˆbH»!±TŸÇ E2õ‰ÇîËF gYJÂÒ× œûÁˆ!¹vØFT±¹$¨äY6FŠ’Ì¼M“s§8K¢/ÈŽö#yáé±rÎË› R E¡IËÜW³Þ b‡Ù¥×ˆjïw$-%ƒ¸ˆêX8ö¥u:°¼"ª.RÝ•~£ÍFCtË kSÙ¯Ùv³a¼kוÙÝ uÂd¶³Èj¢í’i|;K‰Ž)pÙÏ}nQO¬$¾úŠø·14|$,«ô ˆ Qpt£Td4 J»ENØ**û‚û ÁÒe¸é/5&D0ë^à RbuÀn¯xtÃÈ™[¢ÕZ£Û&² 2O\ž¼dZ£bD$mD*VÏDÂ䉀zÈF4ºà•–ñ:¸èÃÂ:¡1Ûr3\´Qz"Î(\)šx¹…áH ™ÑÛ”L¢î êئϸEX’3ÛœùíªAÓHNJ´Fœ8vwÈ×–j+60¥£)îS2YÏ î•W „o˜§:—†„éVqhÓ˽žAY-1¦VÙ"sn}y6mi_V°tÐf8ÎÇPîópÕðf y*ÑÞ¢MȆ™¨vøkÍ1.1Vj_n¹”Q«…ß•_i!kÖhêYA|Ã^$D¦%G\ºÒìØb$ puL˜˜%óɇ›æúžø2{öËNâäÜ}–~²C ƒM³ò$àVá aGË"tÔÜ0ÜÔèåf"æ$®êÏÓ»ZÃV2Z<‚ÈŽXœd¢éÊš˜?cg™«’ %eÈ' œ‹èáJ™¤ÑƒŒ–Û!„½àU˜°ƒ_aÌðnÊ5ÆÐ(wÇŠ 1Æ« áçnÔ1L©ì.(HF†ÍÖYÒÆ“ÙÏ{ÆÛ5nFäâ‚zT¼ïá˜*´ÚPb#,ç¡å¨)Äâ F'Úç1j" r4dÑ.HG# }Œ„q¦í;,ÚC¹Eyc¡»¶C˰î¶Ì*¥{¦‡S3-ªŠ,hÃB IE¶ZdB¼å}Û¡{üßÇ󖬿ϼ!ky2gž$ÒMäœ1¼M^B†”Ø\i\ÄD^!½”{%õÏŒ ø’(gÏY—¤™X-¦†b³NÈË‚1K¼“¨Ø>‚0/6âà¬@¹DÂøWi#õM®SäÕˆuLƒ£ta@ cw@ÊL¢;ÃE.îAŠ,ˆ·šL´@‘`aYFq '9,$ª÷ØZEo”nƒ£˜¥a$¨òºÜ©¢QÖ,d”“Ð00³ Ö,È äÄq¾öERŽ(÷)™Fˆ¢Ñ:g (pŠcQmL! æ·g›aï°lÏœ±cMt¤OŒÈ¿‚׊ƒ åYŒtGZ,WFzÕ.]»; ¬?ooä§Ú¬*|_§Æz—"è— UäÜ ÕfG6ïä¾}÷˜mÜ¥›V÷íÑvÖ¨ Ö@בÂI(öák¨tŸaXŽP;(ªå¹#´?Žâ2Ë„¥†˜PÙÚ0²š%@RÔÂùÙ~åÛ"l¼Ñ¤ëtívq“™G8æ 2aÎùZ,¦&LP¸8pâÙ]©Ue—˜vá•(ÞÆ)Uhz]Ûz/j_÷…‰`êMW 7 ÁAXÃn~.æÖ]ÍQY;]^û Y(çf[~ÜÒÜ£%†Ï¹uÆKýyåO”ÔÙ“1dfNÄKê“Kt&¹K$(É#-P¢ù*Ót4Gâ'}£QùÆf'þÞ/¾ðÙ÷¶üïÐ-v?‘Žp¸lÓ›Jä–¬<›ÜSÛ}n0œ4«H‡‰6Ù¶ÓéTÐ ÷qÛÞ&šŠ±=Ù#´îãïU<¢¹D®[O)(’kRô뚬Í(5.ºðÙMª!cVpňö¹}è¦òÐ:`¹\"ÂeÊ@ÇGœSý4nR•>Z…êÆ]oÝVÑÀòRV€…F‚ –ž|a1å^Âãk¬™Í:Ç%вâS§&®t8 “Yô¥ÂQÃ\Tä=ײí…cVTôU•éU¾—­º* íEhœßBù1îÇ‹:^\õ¸ó'":LT@«"Qá2R½2/ëe# FßõæMX'èŠ5~š]žçšË¯£E Q¥`@»&sG05þõcpë1ÔÔj@E”í>LÉà ո(.Öm¸—ºˆíã-\™)¶ ‚I¯¯ðE·z°ÞŪVRÇ*ÍPüDÎ(`~¹¤ÌןTžÆoĔܬ Á‹?Ä'ã;²ÎÉ—Xe–îmÐøÞ°Û%C‚*4OI,(ŒE)£pJ˜š±U¯Z„%0d͸¸e"îÄ|Oá…ŽŒ:¬‹eÊ´NÄážœç€*š´ $ؤ¹aœdžX$ˆÂè†"†g«ew~‘ÿšh4ŒP¼”T¤dÖ ó32-V‚ ꀈÅB6¬XÐûóë–­iâv2¬©EÄlô§#Û窆¶•hlè])ά¾.ÛlK²ÌO0º4×}I•2Ð{‚7³ëÙv+©_ \ËÉÅs°¨—{vi]V‘¹¤hÀ¶œELɵԛ¶ù¦JË]zõbtz5Ä¡?¼Æ`øèqsä„ÖÛvm5l£~æÆÀà?ôš8»8Á â¶Âˆ5Y3$»0ž½ø´0’ §7Ó¯æ dxd‡"¡šé^õ°íÓü·°z¿nÏ·Ó£ëLªI+’Щ޽¢ .ÔÅD&:‰s¼P5á©AØYóÌBi¤yWõϯY›.ˆI5lEzò˜#¸£!,²š»’ƒ,¾ÝÂJ-5”D[3ˆn‘ˆ¹ I1Dá¼'ñ2jîÂn\KëÑðõª}fž1]x⟅¹á¢šqð›S? –²ØÕ©˜îÂá°–G6ëá‰ÉÔZqjNÇ•"qÒÏrGµqI$D.¬Tì´Èyk+ÙoÉ9n†‹ŒQg”v&˜Q-‚ЈÙGgPQ$ °Ý¯©D˜ÿôüÔ¾NùÉt. 4#L{2ÓY›³,á= Ý¿6‡^­ h0Ï ¸â.úôhŸE‘Ý É¯Kš©¼QÛ¶$Ûhß¾½D¯q*wgK>è•8ýwÑÝ[*ÅÂ5­…1!YúóûŸè#-ŸY‹”»gÝ€£æeX•ªàxDd£@9Ê6YNŒM‚"GV,îM6ÁéõÍ%[)Ó Ü·L'{ä›bìiè¹aØ;x­ºî&6©Œ`A:ô"_š’±˜óîC9Ÿ¥Âq±íSÝá¾}ugã‡"SØj’v|Õð¯[1kd´æ0I¶·F|z™›Œ.¹äŠÊ¨¨Ò:ç3fBÙÛ¹4CdÉu9VÓaE-®¦ðr< ªo²‡ÉûN¹?±TMÖ¸vgÆi±{êÇR“žŽû†- >dÁ®DÁ°æ宜ÝfL4~¬‰"§¢:jZ§6·Ü|]3á]€…µ=}lPuþ&Æ[;o€ºY4 #•œug\u„ш&ä,Ã5Ç5ÐN³*Æu`2^gV•C"Œ¼m¦Xâ¢Ïò£^.Qa®™ËI5Ý™)y¬QBû6b|â’üAžBlÑb V—0âÐ –èѦZ\]ù¬*C˜ÙºGd`®ÆW¯3†A`*M .‘à2hð¤z'aê£âFɘ¥R8cï,ÒåðŽ –”qö¼÷þE$¦¤*WšŠ4.3sùŒbµ6šƒ5ˆ XR”íÔÿ ÷ŽDbÛï£UÚvéb¦Þk„a üùßÞ¾ðÈý‘ÜK Ö°ÒEÆ"褲P½ðˆ0Qæùix^º‡V.cŽŽa+5t¶[ô«RMWÜ3è#*ÑÖá¾@]3ëÅ¢)¢%[ß”8çò_éPKÙ^-Ltkó•êÆRµ†–¦u™1—š*bÀ#"³N±ˆÓÖ´Žû%ƒåÂhô@nN߯ôký9lYBSZ>7mßÚw˩ޅ,Ÿrõ[“Ÿ§z¤Ó+x4<½³¢ƒuGT;ãJªxIÕ]{åÅô'LûBù(d{u•ê'‘6ÅE5C?žFe¹çóT¥ªñüOŸ³—ékÃýÆÜÌ¢Ìí̦lƒ5ôk×0ÆQë„Äb uÔi1~Í;¿)S+W?»oB&ÄçÞ<úH;xX.Wø\à·w '>…eõ¨‚èð½!’c2[LGÏ<˜•#]\#ú™7ž^J§9‰½èá“~,Tµ‘ Ú2ÿD‡bkk’¦åÞÒm»êú¿" 1M+±^›€jéÕDz L=y«9ñRŒh+…L{.Êh#‰†‰×ñÉïÕÒ(çw–KdÏdÅGÀ¾M¹ëU $‚Ó’]õß³×¢)4,¼[W#qš×•Y$Ïkþþš«nñ>F’¾•Ï ”ÔÙ$B‚þÕ&‘× j´ÐN,j#TEª²:t¦YX0avðFЧÍÇŽ7.È«:èTûvˆwèŒÒ쬳KØê…ÎëŠ ï"“Ä×W!†°ÝeÙ˜’ bX»¥4*Å !9‰k–ë6ì¸ ™ñ‹+5I«•‚ý²ÆìÙ[ò>š‘›ÃC]cíÕ„ú“C Û;’o~&æšH,‘ì#—-yíÑ[ÓUôtS0²÷V©žrÑäˆæ¢’ Mb 'X©·õ‡AR8RN5xÒ÷Ø¥<`ª­_p`ë'F]z¡xq£c‹Åë]E8Wá~„keFAWÅä X¸1Ʊƶ%9ЏF@‚ê²ð„°=.Úñ Ë#ã¢ì÷ØÝíµm]$»•°áùáªå1ðY0áQRFÜ jßݘBD‹Bj[›ãÁ«CH+­Ò³°¬Uá_w"爢O˜à'·æGJ/àHWBŠëíU³\yê&X±§)"h%m0¥\‚Ò Ä ¡òâ¥ûeIVZ¿¹ÝÓÌk&¿çÖr+Õtá¦SçXe÷6Åx²gŠè¶ë% KØ9ÅåÝÙÐ'.ͺÑÍ6bò–Œ0/qx?ÍÌŽ›Öû›Ò;0;#(L°ÅÊ:6ê˜7º·“‚²[J²¡°bü޹”拉ÖlDW¸Ž^9Xœô9ŒˆÍ#C„Ú§ ˜ÈÇ+ªÔ"×d.qIéõ®¾”Å­ª[e©'U)ThHQEp™¥¡ÂÕ¦ÃǨ@——ª´„«¿gÙüðð<ýqe<]ºm[/´Înc,eêÅ+hÃ.½<“s),zªyÂèœ4©ÞÙ•ÚàÁ^GVåÛëà~ØzF—á»ÒÖ~løwSëH_‰þÆôÐ^2vS©·:Z.>a4ä2ã´cj²eJ=éDëa±gYQˆªnfiH–Á"ÄñÝ5]w€Xz= ­a¦ ¹{« ¥Ø6&fEôîkm˜åÔ”†·@€Òµò¶V˜]tC¶i„³} ÔÀ³Š¶Y®¡¼«³Ýrq·[s"îQ•ãï›TÒF®;ÏVJãFÁ¿HDÄ<•&?¥tW%‚²” •Md^[¢üE1þqûý¬;B2ÖèhUÐPŠå2°–-ýœs óSRelÛLÐe6l ‹‰ƒèÒ¸{V5¤êÕl$X6†cnãÇ-hË¢±ú;Ww³¥¡á«)» qÅf®Ûh?±â}°@å¼·ôVHÄ¢¾†Ü쉮ñ¨ «¤âD¤%ÿšFg§mD¼Êã£o~ZJj¾7Ð52cìÑ}*שiáͯJŽ^$¢1L·’Âì÷.òsѩŶ¬eØ“FŸV‰/ÚW¿n¹ÁXè®%ª±æU R¬rœ+£èzž¦í@L2ÂEQJ#O,ß§ÏɃ»[« ‚ªè¢º¦5FRÓ1íRKm,Ó×t„iÛTÁó f5]¥‰ÉàÑÑéïªk·•ÛRY­š WÇÒ1Î|û%€_Ë›¨ÏwÅÿÃær,­l¨aÁC0ø%Ïf{‘ò­Z[kF–ñ£_µP¬Uoú´ÅU›ÍÑ Ôîu™P\”]³Dw>]:0#ÑY‘´¿¿a£5x>O‹íò¸Ü½÷àM›¸yVìíPÜ jvvÙ³tdØ/HÀm•[T[S"x›œÝcX nÈ{x†«ŠèiîÅ\A¿´"yƒTº’PÛpÏ“žÅìUÚSø«A‘ÔLâ!aÊuI½¡-žPþ,úæÊ¼‰hjTÃF±³´ælƒ7”vóžWí/pš—Ä&»Xí‘m<€e?hÅ‹“\-¶ë ƒçO¸yI™Ýò¼n²r:_¥©ûÚqñ`2Ç«‡5û¢¹×Т%CMãoÖ9£Ž¯ÄÎM‰†¸˜`Y1/?!u‹ªg’_Fù¦T-ä×(Œr4&íÀ¨­ÆÊzšv™O¶éŠôs0kÆÈf”¨—…Gh@ñÂ7kXi€GÄãÅsYŠDËjÃÖ°‰dYÖ«CLJÃȆW€Ú@n±ƒHôLãwÎ’« ‰UÀp@iÔ±læ=ú‡rc鹿†Ä´nð F›¼Ûb ÆT 1¦wº®× áÄgŸ2&Ñ»8ð ®:d¸QbtÞZhÁYÑö­w–ÌV¯¹v­[;]Å%7†!Ц˜¥5ÔQÚÛ'ü!ôNÁÿâ]L †ßеAeËAðÚZöz‰døGZ,)‹Y*רãU;A}C\™È\‡W±¬Q2«W=Á,dMš4p“ngBýfù~ÇÐåA±öøær÷C¿_iÈñ-Ò 5ohù›Ú:frok™Bø÷p s£G6ñÚe“1¯v"/ÑxƒRM.[`Ëå^e;BÕgCg±‡G»“.MhÓáy•U“ObŸ<…‰ÖýMvV}ùZš—ÛA9V´ÙµƒD „^­¥æ˜CÄ¥sqªø À“ýÑIL»©”G ±íœ§yóxLRäI‘Vhs?ƒyúcþüË|h¹Ç£eQœŽÖCµdÏ’}]ÑpqZãOŒ|áÛ¦ÍÊéм„QT»Ž[‹.‹c<üxÙ]Yp=z§"5J ÀõZÒL©aÍ4&~°Ï þþžŠÚŽvrš»ïïM^( ª‹ólj±mãpUV†ƒ®K54YcC$ Øø(Y>APe/mÀm™Ó3V7²ÖÂÂYÊ%Š­l1Ÿ@ɹi\¹³C¶¿m':½,ÐZƒÙ•ÚÖM¥¦M[–wû›ßÃÁgµ³ëK½^îÉÔYÅe–ÃJË×äÊ-D_§[æ›H:9p5ÖÂnÛ…&¿wJ¾Ò¤hÉx˜Øà¡I˜™>N¥¿ Ý¢”Ý­®î’ÖÇÆ¢¢ÄŠWn¨ælãa©\;Ø‚µ%,w[HGÜÇ47–gÖÒBÀÌÅw_gAËîh´ÉeÄ,€\Á~ÝûLƒ8eìOQ~׿Eמb&‚ØsA X &…ðì¿ l# ‚ÛºÓkR€²Bµ -¹2T¸ªBÁ˜¾V0Ý`W×îÙŸ©¯žµxÞj)7SŸ½÷‹€ðÂ×"@¯EMä&/N*„С£`´„ØL?füd“©¡lÌLT&†F(t\ £®‹Îê‘=Eõÿ{œ/KŸ/A3û¿%ù|žÁŽýM-«Q­](jß1~!vóZˆÄrd„y!q¦v¢ú ×ÖÑÞ¼ƒÂ@nž]ü¤}z)&†=ˆÄWB7S"¿•8Q¿˜¯ëõQ%æ²õPHÎ4 MNd1ôß:¨ì—{©ªî LkÔcã¸ÅŽôlÕ‰×â"UmÈINÁ_ZVáýôôþôß–M硈گ]¦:Ðæس  tP ô &…©·fåb½Dåuã¹R^ý­LÁqØòËç_s¤ãÜ­Œÿ®ùè¨þÍ'–t‘O‚˜…%m(E/AƒÕž-E+¸=þecÄ™í; Çn:j—8®q† ÈWbžOp`ÿwKÞ3¯°gÓ£§Ì3K]¹¹Ið!QÏÐ`íÚ¨·ž©·¹s\ÍŒk[ÛyJ`$M±qkôeرldP‚Þ tNŽì™ ßi  cãù˜-áºpj=J>iPÕæÊ¿lNô¤ŒÝiõVÈùW\äuÍìnÌrÉk=µÃ½dˆ—ÎXˆ>D{¯~Ñ<èØ¶}öÿ{ÿ‰%‹Fþ4ï/#—es^»6¨DÝó +p+´ÒM–E3NË7" æ£åTÓ>¦ ñ£ ²WˆñþÞµI¤T&ô‹ÇǶ Úøôô+l\ÀÒݧûŤ<)š 3xxgêw_RZŒÔÛ]J¼§õÖJÑ›ù6Hïa›r³Xÿ?þíÿ‡©Ç%ËHã9º‘í̄헷G[ ƒuͯg cðcص£tJxDvƒã‡U°ív”{†™ŒkWøì¿GB‘þ¹í¥—oµNzÝu ’„ rÛçP•™à£Êï SB½ÝSžDÁŠJ£‘Þ¹–õ>ÒÜJŒ@„Þm´X5„©kÑèúa9iN­m¥«z¦@µØcÄÍzÆÿ÷öt&+¦e›;—¸lÑÓ•iéÔ®»„ÛB¾÷‹(ê÷‚IJŸ<†Õ^’eO‡ÀÙµÖ¶­ofñ“AÊŽŒ{+æL`ñÒñKàÅT|žÏšÌ8lòæå”ìò ¡âŸUlÜ┈[%Tj•פ^]Å•2i®ÓÝ6ÃÀŒÚÓ‚„š>ÒÔý‹*•?í¡Ýàúu"½r»tJ=«±”,µªÑ'¥9„BˆlÈæ¡FµùŽ4úùmÌ3-*@ÉZ"à6ÉpgË-ñ0«!R¥RB$2yüý/‹ŸÁW£Ø„EYéÔ„Znj"€+Œð.8IZsV(Ÿ-$ÓŽ= Ãc'YºeS2P²•ÌÊ ½ ñVÝûbƒ'7ô½Û|µ“a6 ANr¹JùIõ¤ÚËØf8Ï ÁçÌzCííX–h‰o€'˜u7ìi>,®éÚ-5[5^Ò™¨|¨ Hø‚ l «¡ðjìYcžãÈFS)h6.[lnä£ÃNikå¢þ@: E>°g1n‡"ÐJ ñ(¡lÐ ©X:á¡çÍ¿ x.V.˜b ‡øÄµsÍKiß#6/É èsJžTôéîAʵ„wu/"0àÕ.¶mƒM¥)ÏEë@b¼öuÁ-rŒõÆV§U'ìWèýÝ,€Ê8UKŒšy4uqÐZÒÍÆùƒ%£0¸Ãw-¹dUz7v†¬‚Ì,a&(-ÂW¤™¢"¨»zÞŽ§Ñ³¼¹»lxxÿš-zð+ÔÅaê•ÛªT2-`MÉZPë#Ze ²sÀ#Ê++bqªÿ+½dº{<¶µxúÜŠHßÅ;Z# ì.°å Hfd-Ȧ¹Ñ,NqwB ©¯ø=kw†‡2ï#IF*¤ÇŽ`² ÌrÊøØ§™ÕÒ•d±c›"Vãt!ÅYjqÆ2£òÅëS±ì8·ðÎâ°Ú¨Ôg}:ÂHfçþÿ¼¹úŒÈ«–úz±A$êì‰Z!I5‚*†g9‰˜ÿ^ùgƒ”½0­–ÓÂGïÔÏÏû¡|Ë^/uÑóÖüÞþe¨w­¿†Ó«YÅ¡¦’ºr6sÎi¨ ô-)O|̬:ʱ-!RÁcWæ ðI/jBzINoi½¾fªÃ˜VyyÃn+nŽÚ•]õ#Ž08H„q)ã@ÑURââÇ@¥Å¡†SÍ…%Æ$ÓòF2¹]M]¨¬ê"R¥ßænfîC  X0ezß’­AÁCSsÒR|0òjŒ¬<Ÿ;dú9û³§—EpHÓ4²+oéSûÒèôý_ˆš«—üÖƒ…å”âÏAËÒc2Phò]ñpS">’ *lCT‚‡ ÜS(Ý6ßN)¼“›犔ÜÁšpëÃÍåŽFÛ"t[‘OÙ‰³âmÚ–Jðÿ5þ§tº†NÜ>UÌ/õ°–þÿ4¯V‚¦225²Ñ¥0ƧE Õ\2¨å¥žŠCSuÇ ±…PH$R:Üÿp`þŠjÀ™Ì,@@ Ȇ†hT·L(Œîƒ$O„׎:M¦€ ÁÏ¡ô ê/°Îï^²»ÍƒÅ?vµí=Fu¤µ4oø6äFN M’‚ ›…uÕºÁÞ"‡Õ¼?ùs/úäY¤¼ ÕˆV#u»M¶4&DÝí¢Ê&\~ä„«Á¬ËTZ\i^˜ë*÷»2§t_oÌ÷ì|rAùµ¶zà†»µ °·H4ÂŒÍYØ„„*qKQ±y“U¨ØErø4þóäê¥HE&ËAêÙå¡"²$•ebhÈùT(îH¡Â”òÅÝdÔ@Œc)%ZxßÐïu¸ãýÐn_þ~ß-|{WyÕ©:Ðrj9v„šSX2©õ&¨Uª²‹šaŒlu“„TÔ!­I{¿Ó?¥ü~­ßóŠSa†UcÒ h¨;8U«ð¢˜š®iˆ\µ²'&˜-;[<ŒÛ^É:{¦P¾ÚÅnÈ+’²#X",ý`Çžà÷è<ô¦‚!°ž báF’ÚúCOR’ƒ¿\§¼ú¨ÍõSwãÙ”v˜áfP*#uÚ‰Rºj½XM•âJæœðÍùï0©¿b3—T^–ñURïÚ_—ü î§9ƒóÚX2ˬæ¶b¿W­”z±±•Ð…ôAuâha±à†;“3º”>Ÿzþå^û­íšl6‡Á±]Œ-*àŒÔqQ²ƒK¬ 8äŠ4 H‰P°Òj™ñÝ„þLø ¹‚*5P>‘OüojÀê{+äþ}O¶Ò“ ¾=’cè;YêbUbD|î81áæüjs#þìI[5ƒÑOÌŒñB¢rc­IETNßà,-Åš¡¿¤T.qïxâNÚ‰ñþ8ù>¯ÕÜ¡+“-³òhEIOè[\˜q¸ 7¢¨ñ¿):bÎ þô’EZDZ±/ ÐÏgÜö/÷Ê"-*Ðv‚¢;ç÷–ºËs†ŸW1kñòÇì ].KÕ8½h:Üz̦_ ªd5FÝI™ðê„–Ý8]ö®zû«ïc‰ˆ¶ÚNá'¨‡±!íC•ðGþt¼žM3…G]”a¿èÑå+ÎðaöžììqýY3:¤bS§!ù°ç‘žbr±ÿDG9»ÿ/Þ·h¦Wä©‚@­Æí6 ¼ÀhQæ¹#`}˜’C®’çd¾Î8ôOàðÐÁÞ\õµksÙ*µp,ëº~ˆ ­I‚" Ò³AB\å ~eÆ~ËŽbO;íÒåCø æÚ¥­H ÅÓD„ WßZ'BBÈlp³Ìš}0n/L×»×ñÄJ£QKK£Gn#)Þ¨`[FÛâ=œVÕ©%Á(¤Op¯ Ê–®Ð:Œa¢ 5JY”Ðàö5û|Ï®ïén~šªÞÍͤ~¯D:3ÈœT«uÛ9Kàv— \^¢é÷ì1T¢/~ݽÇ_YUNàRï’š|»•ºHy‹UMœ”ÝXŒî HÌxKzšÂº3 T‰º’Ÿ£¯EÊß5“|E¨è ÖvÏŸVýk7îœ4˜"@Ô‡å^b›üs cÙ*œôhö¼¬>÷áõ¤ËË%.>j!øîD¸/ßšJäîò‚qn‚å:˜’À€–%u+ÙCJµ`;üa/½[îõ|îµ !/…eZf‹–ÅŽ³B"È\]·w ƱF¿3IѳœNf†i°ôÂÔ:ó_ñîÖP|wÎÌœÃbª‚ÐIn½ˆZ{$`FJÎH8×È cMn‹¨ª  ‚ T#gˆ ^<[÷©Ùìù¶h[ý¤“MOš¯º¤MÑ*ûÛjCçV‰p eè‹ÿ=Æ`«åÐ2å_Þµùÿu¦jϧnÊà‡;ð£K,ŒÒBëÅMã×—¨ éìˆ.ôQ_ÃŽoê·—ñ¿C†1Ú7÷À§Gªš™-‚8ë§` ®‚ûÐ,óv„€+fö¼.ç¥ñ¾ŸWíx«HVvÈy0Y(GbÍ'À½n³<ŠLíšh´‚/òPbç„»w coÙÏø?Ì»µ ‹Ö»]ÜΔ½à¡p¿@)`žÜ¨ºMõZ'€¶Mž~Å€¢kÈúA Õ¯-_ð"Áp¢¢¶#bQcøöê°nië²^±Qµ4hÞQóƒ_;6‘ôýŸ¾yõ¬Lz‘d!¹³íR>H-f OÆ÷ŽT€±[‡Áqåºþz·Ë›îAí׆½OŽ.‚jvæ±–‡ñÛ$Ÿ1K¦e(¤×£&„Õ?9­!iéÿ§«ô?5ç7[Ëä±HÛÂXvgª™ð¹h¸ï…Iú"Ÿ=°=m-ÎN݃ü>‡·ôóÄš;@9@G´ÝîXÍ)¦ù¿AÜÆ~Çê÷ý¡P?Q`Ú“>… F³°Ø¡êo†›Ýð}jú^”üUù-ñ~] Xëy¥`ƒò²µqÂò¡#¦s=äÝÿ,Ùy^;Tg6r>ŸÜw›`!ZÈøÃÓ‰ÖY"<ªåUhÇðø®½oÿÜý¬PñþÄ þ®5oA`2ý GµnϨÏÔ¿…ãA˜o¹o„\8jW?ÆÌ°Õ=І·ä_ÅGªÛ«~VÍfDþ6I½lí—ï W ]I Òžm°RE9?_†ÔúÎn|àÙ‚~1Vg´+æ<®<Î:GK6ã,)` àÃöûZ‹MùÁÿsƒÆÜïaC¬“µòwî`  ,A1M AEǶz"ÊQaàÀO^Àÿ¼ú}ëßB-Wþ_Ê­ž^Uõ¡ÒÒâÜÜTH y³ü"Å@r2¾‘„u„ö!Ûýšåêy4Ñp+Kî\Ó¼DBÓŒošø²½Ôî¡OîþJz~ï(74°¼'GWºÓ$Ó†¸º…ñ0ܧ~¤il§÷þ™µrOåpAmõ‡bŽryN¬a;Ó G€!6‘Xq­D| -3e(¯Û+`ß0?{­«®Ö×áâu( ,“³­Qíl—q±çy¹HmÝh˜eºdÙÞÅàÃáþ& ??ÙÜ’†Ñ鶸a˜×Éwšú¢‰P„Ú´m…Ád–Aû¦qÞër­©Ð¶[gr- éFËXáT€uýxÊ;Ýú,¿-f–¾k¹vÖÍ0kö‡©£†C?\¢nþxÔ¾e›ô*.w}^ÅÿjTºöyÍt>emw¾uXéç&:ïúšÝñÙS'Çûÿ¡ñÁa&ˆ˜A*th 0§yA#Öå ¾«owNƒñÔúŸºDWð„•P4¨ìW¬Ð‚ÿˆJ ›–0BùžéEÄÇgìÒó´‚¹”h)²âUZtññcI~#ñF︃éPèW&4"å5Kà÷½®eÊ[ rË/¯¯^#˜?ÔYÃÚ PÒ’×E÷Á›ui‹ŽÖ <ú\>ç¥ë}þw¼ÛìÝÑì7=6¨ÆØ›Mxá0È1Á¦D´EúðÝýoSÛífÒ±GbüW$^ìÁÓy¨S‡€ “G¼‰6íß{ÐÕm·°¾þiþ…7š:¡þ¼ƒF qŒAž/-îÅïáò<<é­‚¦’1&9mŠ;ª¸2ªãš}pc…:F¤õ:¤q; bú¼]7s´Ù‰ .æÏbiÁ+¾F‚‰Xòiy@hïð÷-BÐkPê<”ŠûÙµæÙÔ.'àW[®zL *VÁ~,«‹åÁ—‹Áä2&hg¬ôÄsŠúAúº^Eš¼nW#÷dÃÌó¥ëa¦³+:b†þ’ëе ±Y7lë¼7L§¿"]./[•|„}³v´sî\`$€š%A&YIò-Êfo ‡ð]O·êlQUA€ƒ¨˜Š³R°Wë.+Zw<ö¼Ê{îøŸ+åû;Ú¬-—iÎe-LÚ½¿n^ kP¾&ÖÐH%ê’K~·¯Æðy§/mZeù&äx ØIñÕùp–+º–2Å‹Óþx„¿Õ12éx_øk}ßÅØkâ«ØDúÛ|àëpš2Å.Ù‡–Aa¡VZ¿áàNË®¸ç°¹”^{~}OÎþC@™B†h0H/L~(îã0Ì©óºßò¡¹Ç#ôi×g‹Ao~‚·ÉxÀ÷tÉàâŽH°kWŒ'÷#ãðLDyUvJ÷Àúœ~¿+CMéFß Bß¿®ƒ%7k‚,Ã_¨Ä£\!.•>?>cÏñtHZ^Èö®êá—?µpÇï- ç:èMÁ£¦ÿ‰Í\¶<Š>ÇàÍ«âð…GŠJ3ª1UcµÚ€Cu¨ñ4M>ïÓò¼î",¡ôòø^W,{(zî—mˆ­òbvd· ÀÛ;?ÈãëRl38ŸþqvÌ÷«×Ý|ÅÁæP×Û4¿> ÀÊjó^jEÈ‹©Æ¥¸±t/ˆ¶n¤%réœÀűNõ0mÈáÈ#®ïA( äô{>Jlh«{ÊØAEcX ×Ắ1ÓæÁŒoCå^ìR•9Õ?ŸN6Ï¿ ùþá £¯ðõ@ý ?”ãÅ'©$!ÀsÒU÷œ‘<}ž)G÷37QTXÑ'ÎK[?\¶ŸX0]°ææíô¿tH“ìþ/—Á{÷Ñî$˜£h«ª6g ÿ”$ý‹ox yxþ‡ñ[±ßø¢×3bÇß­I2•.}Õ•g½”+ëüöÿíôÏãW‡ì»Û úbJ!úaŽ1ñQ>âÀ&§lq*WôWØyÈg&„É ³¢Ë²ÍÖŒ|s­i+'–¥ç@—Ojw×Föm_Pzçà1…î½nÊäo¯ëç…_úëùÞþ%{³¡X&ó0€Ð+üÆÛ¬½!8)±µé$Oà+£FÐÊP¸@$¥kÏ­&K@iè”3óEk”25²µJëì…耘ÖHL2N¦îGÆÜÅêa¡ÈŸ‰âç©!’}*wÝ¡¢ÄL®]á—ñíõ´l†&z3᣿Ãò½Q ô>:ÿƪ?rׯí¤·L’…PÙ”!’A½ßO­“<œkúþj¢WúWž¾eo~u@_Îzû¯ŒR!nÕðß5‡:zVi­Ï3=_¨½Vo£©ºº¡ÂïX}ønöþ§úÿ“¹juB•úÝÌ£* LTû÷JvöY3ó®Ùô~7–瑚b'*È ‚LA*}qR÷^¥íµˆê½Hù½þ«Ÿ§C²­Ý9‘&i™ZxOÈÔ`yi sûÙÙåu¸íºœtçKqÁg`[k*?ª9yž³ì{26j=…Å8*¢:§|`òÙdQ@ ÎJ~6†nt÷è~º’¸B¬ŸŸƒ°ÓÕª€ [XŒGõ*F5o•™íoò¬ö J½{<ìB*¸ Ýl¥JmJÝŸSŸ^ž øêïx¾7Öë¹Q>?sÆmð™ \Óÿ–|»¾MN'‘ÍïpsjÐònªš i³v£©£ðêôøÀf'$˜Á.;ŸÜ kì0þýL±ƒÓh†$h“8¶¬S À–s¢+`aå‚vxêÚ‚Ypœma€ª˜õ|°Œ@^U±|žËßggWsÞ»ës´ˆÕ½a…yWMÒågÊŒ°KŠ m` ø·â ÌÕÀõÊŸ3n|?"à6"íSÙàp =MTIS|¯ö¥èy/ÕüÔiRP•EFŠc,Ò~Rœ B¶g|UËûœŽ_!4ªH° ŒPØXTþb¤ö×^ÑZj}ÏCUVz‰Ñ‘–Ûœ„°Ý6ü7‰ìMúQaö¶|ä…ùnZ7|ø(ó¸S» Ô¢Ú < ‡¾Ì*ž>§æU#ò\–:^›ü™1E&%lú{WŸªàøÑf/C\y†i((xB¡äxÞ}nŸOðxîu <°Ræ~ÔYA‚vÐŒÛ ÀºW‚ÅälüŽG'éígWæêwôž>¥Àl!iÉ[ªBsà$ìr²ž4îñ•"².°‡-¸ b.`Ä ÃJñг ¸G;ŒØÚ‚Y]•"•ñà&@Åx„›D¸I¦È®©jf*q0è|CjXæÐ‚ ‰õg0úÛ)LbKS£’¡L\Rꀜ+PˆЀÁP¾yú-•ÛS–›ïœgƒÀÙ&Ï|À9¸ GØ'‚ ý"”;·©—Áu¶`]E=Á]]¾€8R ö„¡Átf«kíQMŠÂ?NBaŠK©@p:U] –ó€ÃîóþŽ¥zØ øz»›"Ôo[ l¬²$„*ä…[^Ågõ M×úÿ$ÏwË©šhh¸I„*„mïeχbÔ_0ÏObž„}ˆÃ#.ÈJÖ,´3 [s UTÕïš¹¹ê°,¯à¡íy%‘îÆAY:8V á æ®á ›fuiûã}¨ýÊ%®Bs"¢0%aT+õê·©óý@m¾WkDII4"Ó=mÑSQCÂhÛ#åtêÿ¤§•Ú^XFú–8õ=FRf¤²ôo QââÃKSBú^•[Ý[ÑÙô¨ÅËyÅ­ó¬{cÜ #þ+W$ ­«¯dIìnï¹ú<†¾Ý3{n÷°]Ðjû}\Zooõ‘¹YÔÁ@R*Ê®¤¿.I:¾éKøDøýFŠC»ä ]pg\”…¨ðu‰ ‡=í}{N’‡.}܃`!]³Ì/Ñéx†ò–[?v/™]=Àaq±{S†!-„0eøfj“ô¸§à­ö|ð¯²O˽û{Ù„0­©â²3rûÛ»Ïáèþîo+]ӽ¤/ÆñG!>È+üqc!ºý”²eYúgD®瘇þPû|åÇ·ÕúÿÄü#þË—ó±c’¸‹¾Böäh8(VùPb‹v×—/ÿÐBø+N²`@Êô9þOçÁ?íêrt‘)Û‚Tí7ÉbŽX³ ôZ4\NašuWP„‹èQ éJíƒþ¸–<­¶*‹;gÕïùž;ÄübqÛVP@j¥·Ù0ÀÀh_¶9>Üßò‘÷5éZÕ|ß[ã_³Ùý팾–­S¶«:‹ÚSÜ…ñÒÉÌÝØ®Ž!\ÿ‚ß©ð–qZÀø‡õXkÍñƒu5†#Ó;ÜÙùjC°Mä@<çÕIFÉ,Fèj¹|¸6;ÞŸL¬;o§Òû–ªÒ”^“Ì03è~žbô‘µyBé³d  ! E2íÓŠ 'e¤ÙÚ½ýÙ©¾ UÀ^{® lÓö>ç‰ñÍÊo­Å~ü½íÝÌ:4YføúýqÖýÂüUðŽTG$ "è€DßW XLHù€a,l kTÀ?ýŠú}¯Bб4¤Ü&¾¢.EU, ƒs¢—ðÔ«\y&=|w¾­ùÿí}CŒ'€> ¡XOò„FßÝn‘û?*_Soóz^ßíw¸’ü—‘]Ë­t}°áäíøuô¿; ¼o¾Ÿæé@–ÙMþ×s,Ð\Bä€?NxQ~ëCŸ*¶©Ô(¦Œ« Á.`‚48µ5ö’Ä„îAàU£|¤IÒa:ãi€©@þ åδ=NšAô²ò°hê%LÚ5T;P@Ã|9k€U]áþNîïÿ^ïíñ99±©§¨ÀjS zôV”x§²¾úA™Ýãõ‡Ïs‹¿Ê1 .¿éY|‹“2ã¸À›¦às»p/¨_õ[¦Î1!¸ÁŽ!eo̾’øüÁÄÉxÊSÒ8°Î½ÃÏMþˆhA¤Q(HÌ\BG0JA˜¨#J3@a›ˆÄ‡Ýê ÙÀ1E²‰•Ñ»CDDÁ ÒÃ0~Nþ¥]Zþ«óü~ßê0¶Í0-þ½÷jº™"R_.éýÝjÿ÷+ô#ï•CÿœèêéÍ—Êá,îŽ?ü÷Öøz¬èGoNâ³Ï}`¨RÑP~yÏz+kðâåþчßÙ*ý„§óŠƒªÐ„–¡±KÎò>ÕïC³/TîR8¡$•ù;KlPÒof›$ÖkÜGÍsÏËû'/-€«>ÊîhóÇÕù>=ÿ4ÈÚ“.ð#[ïÏ,¥ó6 xíâdâwëú?­ò‡cÅóöN„j)$ ÔeÍpXJ$¨²r‹üîˆ:” G“5 ”êƒP -}Í_3…ÞG÷¿Ì_@®W0F K5VàÅàõW(m ¿Eïú¾†X¬mëkVæ Ë.Š!4ñBƒ?B»Àr49©ÔŒ³‚T™.„‚)üöÔ”–*jú›U~ð}ÏÑô¶58eðæ7ýI)à.ÃÀñÅ ís©ŠÿÐáêt–à ( ‹tª'E>sdOgÊï&wOÞÕO¬ .‚¶½å¨½Î>§ŽöO+@Ȱ¢øOV™2…*ì®@$qʲ?ıYˆ?WÊÏhØ?Cÿ³ÔU9€XÕ}Á÷ú(oÑëPwQbn`p’ [weôÿùáçµ±çôþþÕ¯·ûßãþ4˜È]©Ú‹²m…;ÀÆ;¦/j€=Û=›C]€\‰BjGa uùÙIæc€ ¿„©Ÿ¼â6Þ°k˜ð ÁI–bMŽøãýãG·Cñv"ðÆA?CÌ&kl3-xC”}n—¦oW_?{Öü$üÿ,N먣‹N¹uDz±|ÚŠï3ÐO±ùÞ:}î†ú“gT9.dÉpá„-0øÅ檌ÙÁ³‘3à‰$Pš¸@ÕØE§ó'I è—”¹®L§›ñ×Û=€Û¶×®kRéøünøTü¡F%3<?÷vïjÿ€d–N¤ nζ¥nGˆ€óBñ ‘Øæ”gûþmn6L¸X7XVÜÔ€°57ƒ¥gP^Oð|û0Ì„‘7 <_KOÖòšûêtp‰›áyCÌIæ*%V'®U8róm{=O`ûG}r’þ55‘e•Ó_ĨXâ”,wIûÜürtƒ¬Û7t Ø9J’︜çÿ—Tîcú¿³[-é‚ç —õÕŸÉû2òzõnv­Ç®¥ˆæ•p é ¯ˆ°*°!÷²4”F÷¥q­ yq¤… ›f)Æ,')tÉ&©ÖWîZî¿bvçf`G¿YѪ `¿nŸém¯½CÓúŸ—ód›×H¤Ò"z¥yôÑ¿¥ëâËù#ãéxidÑd= @RfÕJkîþßo^¯Û‘(v#UED’%I¯ûýžÇ‰êèýݤh"ŸÂ‚B‚%a ±¤Ž¥¯GÑ#ú®žhxB@» PÉçAÈ\^ïõka¯s™æÃÈñ¹^ž"ŠòtNuÞ(~Þ¾ ÿ©Í"—0«tm(>4ÆaA"ˆ¿XN?O¾¥Ï—¸F§»Ñ­fk§áYpžäΓ¾_…ÝÐæe;Þ:º"@­×þ²~<ûpü2›ü·¨žÛÜ!{ð fVlb²ë’>ºm@¾Eöói-L?Ú®§º‹¾+{¡Œ ÀÆô]è8ÇØëÑoéêølMÌ45uUc‰Q w‰ã†5ö_óõëǽîO¯H™<×J]'EE"S<„+¦¿·¯Æ Ã7ü-Ÿ[ûþ+K›(¦Ïs¡ƒK1)úÖŒOþÊd¡Ÿ!§©_ ‚–“K¥KƒWü=\ÜŸ¬µO/L;Q°wÄÏ{äO‡¢S`²mç¸Ýíêkͳð þ¾Ã&I\à"`h§SÍýùv•s†À$iŸ$z;ì-;|Ž]J?Ö°¸VÆUÑÁoâhþ¯©Ø¢OöÎ-ˆaAW~-ù¡zð1åñó¤{è*(tRðtˆŸá?!Pö‡t§ËÔ®ÊnãmrF2F’¥ÃƔƙiï Í=Z{cwTÓÔ9ƒd RºÖ0ô‡‡½ÿ·Øù>loéõû€dÖ˜“Aˆ ÷ˆëi}’Y ¨:Ê*=.g'ÝnOÆÚ‰_CA7O™§h¾¯ðê}©„é0`¿ò"€QýSó<®WײAD³)¤J-ÿì_Ù釯å~Öÿ{ÂóLº²S“£Kå¯b?µ¹»Ä¿€nªd´5ͧ›ÉÚÿxp6F®ŽÂHÁˆpc[VƒðIXÅ&ÁÒGàí2mOŽL¬!€ ª’'$X*º¹ˆPGÀÙ i;)ÞUºz×ÌåË£KÉbýëÿE`Ü¢â,v߃—(ÖÝÏ–Ç{­[š)œ¼Û5U¿‘q€ ~'±w÷4Ÿ˜ÀKá^„衇üŒ”Ï‹‹'«ûǼüè( õh@°÷Ä3À Ǫ/«×þ¥hÇ;•©M{éÆLÐ/ Ó4žcUGú¿{Û¡˜ú{š 2`kÌ8TXrE“Wû=éßä~šG¼Åjɤº¡]€û’‚ÀïzÞ½G`0ÃR$Aùv³ýì^Uvö§2èMR3ÇŸÁ½È|®™Å£ýYÄO­7çå|<9Ä]ïPªJHÔ*ÜõOóùRó Únµ–Ñ¥ëzÜ®Ÿ›WQÃßr°«£,fHƒRôNQé–Ž«3HŠ¡ó—ØÈ—lò3IÊ& vpŠcï†#‚2‡´¿ÑõÔ­dî‡æØöw¢ÂÌ¡±6Aô4}×çŸñæÝ­(ñNˆU”¼!-óÒ+àëÿ??(n=xâ‘:°;€÷Åÿgðn|_؇ïgšç Éê"7"Ë1Ä@ÊÄî/{áöD8ßËmpJJ¶•þý Ùˆ ú?ÀeÊØt%úR• T•A–cZÈÈK‹F¨×9áZÏjY!™ð6,°D Gc ½%¶Gê Õ4œµMn+QÄ­¡ó)¯&ýš»£ñ?—èñüÏñXŒâÏù·”9Ñ#ŸžÖ¦"~c•=ü゙gˆÌDÎëýxÚsö?WmS8÷ä¥,yZî²ÈJbÌQNÎnƒw×»åùÿ;7ˉfSýrÖQt sè¶‘eü´žÞìÓgoÓÿ@)|Þf5öå¦È$sšö9ZÿS–[6ÀwÞ¹'üüL Ò¥9õ&ˆ1}!{ ·;çèq½I.YM„CdíŠöoÿæo·¥ˆ¤›‚:üwÉ`zàÝÿh§VêÚ£þ?£æR\¤uyènÂN-¿'ﱺÒ])ÀߡǙlK˜V~[³nñ5'LSÎIÍAÐkª5o² ÛßÏúÔôF¾ŒJ@°yÁ‘iMÓÜüÄ 0ÞÐv­Ò© leí˜þÏñù²¢NådXRCÌc^6íÛæ¸Ñ·#ß0=e¾€”ÉpÚhù5BËBºuüéS¦É»¢&ªvP†7õœm"ü›A\Ȇ­(¬Ü£{Z—fc@ëR“ŽÐ9ƒ–ßBy½^+£ÂòñA"X¬äfáã`²­£­•` ñä9·âF¸Ð/±«ã>¸w+”½:ï6Ô@›€Ÿ ªþ(Ñ L§‰¯ k‘m¼u&¼ Ê¡|Îcjd!߉jLln(µôÙuq:u$FŒœhà¥PeUÜÐêÚ*j²tV]m^$œç4¨Š$€›ª®Ì­v?éZ^h0ø° Gbôá0%“ìñzR.h¹¡%…‹Ft«YîŠE‘‘É›í»þ¶ÄwÞñÿ«‡¡k4f%'f=òÒ¾Ácá‹Éih=ƒö~:É%©wº·{yw8†ANò­­¼ w/üŸÅç÷– ?¹{níˆ?Þï-žÛs5ìMc!Üà‰ +òY4(¡6a䊬„E‘Æ'x¾ÒÒŠÁWLÙnld¬*œ+˜‚¸.-?º¡þ®°ŸCÙù»Ë%­Fàm2%Ê@-,5üÞ|…µ.¿Å´NN-¾¸h ö½€Ç‚àlp‰_CÞ^Û$|йðŒ®j‘è/É5 ¹k!f¡Ô$¹„KJXâpØ•–xÇå·¬ÖÙ@¼±“V¿¨Þ~6×Z©b€ÁÙ[ö¿Áô|¥U8kÄÑUƒð5zÜecrY#O´­zÞÜͼ+2`sÀËàgœ+óä°. <<"»P³³a‚,- 4b;ýø]¯ãÛýOnò9«ÓnÛ-ȳ@Ñ”;<=‰ñu“Hù*ñbRƒ.ˆÕëO©ŸôF²²EæÑòÒ#9ˆ' #v%-`wrLð‹¾Ü¦üÔûø$I™•«§ü9 ü‰\ÀEBˆ"þ¬†À½O7£?½ÐÛ”ïSwŠº~]g¤ºÏù¼*t(±Ä֣ɣ ~}¬¡Üç|Ÿ‰[‘áòò^XKaw^ú„Kôï…Ùód¿+ Ö,Îq“œ"Jx‡; ›]»>ÑÒÆöÒ/Ä4ý»­(úéXØeAü¿ä½Ø~¿·ùu”›¥Ü@1ùªx¾‹/¼7Øâ;¨x3Ö‘u@ tH`"ÑnOŠa-dôôÙ2â“*2¬QÑxq1$›T2 ]|¬‚|utÕ­­€‰xQ- FtôCœ5ð|J»°0véåë}¸ ]ÍpÇKjãʳƒ—äcü[©sˆßßòžZP'>ü ÍDDp1AäÌG[Ñðü~Χ"iI\OšÚÀ§ðñ{¬’/OÍ©Üþ*5Æ_Æ„ãR‡þ;Mq;î‚úCcNÙ«“ÏKíz¼O¦DeÛ=íÑ«M[g_ßäwµ‰âÝ‚ØqÛ¦ÀªÈ>¦·ÑÞü>—ö\õ‹¥öåk(xCå­û´ìØsøza/‡vÂ…žXBP &”,cÄH²hC®ŸÝ&Èël1¬RaT1ô9Åþ¥ Æ`Èâšn€3‰'Og«èrµ>o/ž§ÈpΨ5µÞƺÚóXe¾& ·ú½¢ÖézSWäç·};v Ÿn¬YöX8Günw›û:ø‘²°HË¢È$‹UmÁžáá*ìy]# Ÿ0–é/V‰¯µF¹#ÚM ¶¬Ý¹œK‹T›B‡Sv$fNÄ› (¬Ô¥‰‘ÂðƒÙe†03¬Æã“ÚÈêʃ£w]…ç«ËNDx7p`±Uý˜˜»"¤¡æF@tèDh^nßž‰ÖöZã\µÎÕ;ÛÒ‘Uð•ûah[P³„â/$«íšæÃÝ% à`ŠeLnª±­62M 4%aÐ 84µŒu ÚÉǹ8™¥I Aá2ÙK´»ÃMäç/T­Ë³#-jTÔ?ŒÎ×KÐÂ~Ìüß“ãíö1ñÂË­Ÿ[?#Ö]ÈUÒq[âk`¿è|“²ÁH˜@ÀÚɦuÚÐlãg¥2>#Ÿh‡ª,-ö' Òñ-SPP·×××@Pž„ ”!¤}Wüagì5Òµ.ž5jªPlyº[cÕþcÒ«]ZÀUH6äFÃ}&«ë‡„ÓG  Ú¥¢Hô¸Ó™2vpë|¾”¾gé§ÁÊJ¥ð‚äF ¦µݲˆJŸñðºÕÃP¨b€t©(Ä].3Ë(qÁÊp{ ÓPs+¡I@EξËY%á˜{PLzaΈ @6Ú¼ª˜‹4t9fQ‘”ÖHÔå4±Õ!t°n¾sHIöUøœ' ®ÏØë[íýë>›_[èsnR©îíð/’ûœŠ·ž~€Ï\ȧŸPŠêà£Rs²€}/æïk——2¾ ܇k?¡f“M¯ 3èjðdôñ¼•nzir‚NÞǦ³nSqèÙÌ91ì èW“¾®°) °Y˜d%åoL+õ½¬ZH8…šµ’Ë'–×#þdÚGzFn[:ÔE¦Jø®u€ËÄ0bOqŒFM_oy¦Qa¢~…æñd¹E³ÍDž ëÃ9ž}¥Á£i²ƒ8ÇÞ\}µ4ΰåèU1Âi×çññ$ªõ#ߥLMeŽ\ß^8Þ 2ʔ˦CÀ‚Z†å`ax µ·oxH2Ëu:gÌÜnuþ»îŠ£¶2bMÃH£yÍ67“KK€Öž@®/šr²€üÚ  Ùx5—ÕÊ—˜«bÛ)ѵ¤04ÀoÁ,ì;s`‹êªò£n¸ ¸p%¸t\•¿Dþ«/Á Hõ•w-Ã(;MSïyüŸ›tú[ù Ùœ>iÚÅÉ¿¿ó:装ìIq, aoƒìèßü˜¹ãŸÚkÆ-lÂÚòJG;ÝV$üñ‰œëÔ'_û‡ÛƇÈäeßÓõ9zE\«~#՛ܗe€}±ìz03êÌ—“ue5O]eþHº%kÉøü›R^ÂGyK SãA @QÈš?©/Æ—ÝÂx”Ã?4i°C—Vg‹ôù¹Úq–ìꀨ‹/BDˆMm¸ôk!ñ™ú½ÅÕYÔTzŸÂ¸I£ïkØWçúàxÒD¥ë‡å‚E<“¾ß+Õ£sÙñ~Êuâ0…0¥À+Ë<¢³œêFÛ¥==Bw9¿1QìËD…ì‹Ëô­ÙóxZÿ¶ªö¸*6±/ £y¯Ҭ ™øápŠ¡ä: ô¶Cü>Ôºÿ3ì¹èwð8éhYVªlïÄÔ’bìÉãÚü>‹ôãýï&å°h5ÿ:FÌ–¥¼' ›þ ª§d4ÕàÎ…`†cå¹­°Âääc/`'ŸØWôþ"[–Á²€7cV6ÈZ(F×éuË{kÓúÂðF|A0°«’© Ÿ§,.¹gŒM}*ß¶¿õÅ›† ]Ê4Ëé:Ž¢áaý|Þ?ø?ÑõtÆftJ5¾IÏiTå+àý.Þ°½®ß6ØÝ^:wI åÎ$ ìŸÓ͇A1Â>. @ÃÕ×À§•ĸ%’¯†â™þ‹±,©‡‹$ 1–‘e/Ô}^/åC= ìtmÉ“÷VWmŒÇZ….S4Ú¢!î`@Znps·ƒÓîr,üϧ³ÚitÁô%ŸíÑÔŸ!ŒÓ—¼ˆ`WæVù·žïòe-“ðôÃmêÖ^§Ìçñ¸Ý¨òàTj -h¬ââ’†ÿÖòuþ–U¸“U/ÒÌ÷¦À«È ™žO^¿¡ò>Ýça£æàRØ¿d}ɉ(¢Éöu¾þK*?”ÁÐmÍeþKϨADHw/{2×1ÿYÂ’ú‰ÚE*éõtt}ÏkèŠ'›Mh&H³Áõ½ŸcÐÁ.Ž(¹ž·0Bxþ§ò‚/Üu#Êâ/¢‹ºY2Y¯öü¿×®–¬Æ²à@g¶ß/æë¡·õÎd造º|ËÙ‡CwW·Ëï]u\Þ«¡+ ÉWàûÖ¹eW’i¨’5ÄpZç|³¾Ö>™²Z¶Ïß?s¾ûê‡È)¿¬~¯@ ÎC+‚ʺeÿ? …K?Ž\Ä(-GØ¿Åí|ÓL“#·Åx8P¸?^ÍBIÊ B÷>ð{(ùM7´ugâ‘Þ>“,ÛWÒù×?÷÷-# %KAJA+”ÿO}³½ô~tÂJì‡ø•zÖ9 ’®ÎK÷ˆ vÁDš,™ÎiϤ—“ßn°a¼h4oÙ­–¼^§ÙìÛñ<®§µä³ÙC`¢Ã0iOd¯Õ ž¨àa£z±`pØ€ïy?Ûíø6ð}/®%@06HIJy"@.Îo{•‰T‹ðI’E ñD½¯±ôou>9C` Í,Íô…ÊÍýêewÉ'gk²e{Pm|?A{Ük¥HàC¬­òÊ™Qj… ¿ÅúÆc8at¾ÏaB>—ö>¦Cö£(|oç"9ªƒÂØèfÝD{cœxDÁ6>/KÍ’•y Îr<Ö¢°Š£‰áåMZ®”@. ü|Æ ‹”KCÎH½_â@Ð1wÃQ—î5ÜUâ>´N œF³Äãqº7À}€ú¹E¬Èi!AÛ‡0^ß´;-X*=EÂ×ÑTÔuHOBðçUÎ5–Ü '&¢žÇNª´³uÔ K ˆœ9­$¾Ü?¿â¶PxF;‡ d'ž¼( Ðêdç¡ÿ_×÷:ô¾èNRA5ÜHx¸Ânjdþø÷&owO"|8¬½Á€ðÑ“FÛL¡·‡•¢d/÷Cý,bCäTOÂý?‹qº§q‘=­H(Цã…ACV4&ö6-›ÛÜÌóôŽB%²ÐP…OeDRð¹ 8fåcàÓ: pŽß§¹Õï)Þs^óȤ¡CëPƒß|Åj ×WÓÖªÃC,å…äë]ÔßLnößb’&×u“Ä 7gªªâtËiøß³—ÆÇñ‘}° $)WÔ“¶&Pˆ.FYÿ/[ƒÈÉ™U¥°,hgÅ‹q²ýÎcÞþɃHÁ<Ûf½dµÿf5PZ`­£ÅíwqÕ4Òê{Níþ>×g½×ÓFF0ºR3‰ð¹èS›9vi¸n «õÓàÜs»½Ñ•t»BíŸ}¡EfWЧ'ªà­ï@ |³{Çú_Šoñ†ÿoÒþö>\5›±XX0WÛ§Ðé¯Ïä\‡ D_=2¿Ê æÅë{Øãûšù§¦Ïñì YY3šÅƒiÓ?gà¹ø‹5M3¯HdqÕ—Òèü‹ v37r$%à èg[ûÿçþZÆrš’ÝOsë.zðúœ+ö^gýêkú¼ßËGûª†áLÿ'—â$‚°zÐXéz;¾ûöÜdÀ_ ™sü4 %|Z"ŸOÌÖc¢÷WæœdÀuš×QÏÚ/ô¹ôôëxm#ᔇ3ØâïS¹0K˜Í'ïâcë~A= Í‘´õŸþ\Îù=IÄ2"¾ldÿn©Ýw gí_ móŽÚ P»ôýPô0Ê.Í p¯©Æø*Ð]+A¤@Nj)µrm±æôyÿ·‰{« ÄKH ”~¤Ju`Fæ{ú¤1+ìßtêDpk$€|dJóQGÒ÷× “F“Ý€úË@˜Ðï/Xg7ƒýÑ[àÛ7P}|ýCs‚ã¿[©¨ÎŸÖÿ¸Ð½N>kq ™þÒx,ÚÞÃvfÓš…—‚®Œòäó6g ªtÃÚùhû&rþàëaÑ,@À >æþ=jÀ5Âò‡Í9›¤[8Gv§ËÚå•@Gè¶Û¦·h8šÈa…Í-«ƒ`Ú[ˉB6…AŠR( Æ`L‡ ôô;l,KÆVB6Hã¡[:ßç:qXr஑ªØÖñ‘›ÏÚ;v¿å;õ‹:j”QÜ"D[ÍãÆÏª£rѱ§«õîÝd{I¬%OœÏßècÀ+~±÷щÅ#'·ê}ÎÇ›Àu6’ îªÏ£R ¥Ñ¡Ãæx„`-è@ý#68'C @ äË5õlHBgšÛA¬Ù)aêñû\Öb8?9}ψ¤É$浜ôƒ m?ÓûVh”ítò#ŸÏþ¿÷ˆ$cî`§šÏ^¯ŠÉŒÜ¤ÿ€I”ÇÁ'/Ñ×ÔEƒA<þgc ‡8`Ö_ôÚXŒ­€Jý‘¥[,=q1nÔeßçÕ(mpÁE DÊá3OŽ9W[ Z@„õÅåÐ <(º`Ä*ÿ£Ì—ø¼k¾î•3 (ØÐG‘Ûf$­wæH}—÷¸›Z†€^% F˜,´w— [˜áÅ¡åÓ¢+»,y¶Ž-Ä…Ä™™*…ÉU~–!O_ò÷oÓL‹µìDUê­þ@Œ_jߕϣQÿ‹ ÁŒg9¢ÿpŸÙò£ûé~oâz¨‰©V`@“& åÛ=V`ß&Rg4.Ò7舦LvMl>† ;.é%ZG³l0€Ñ^¯ôÔ OþχØúÛ§ª›=ökU ƒ.ËU~“—úÿóô¾gíà(=PiUÂ{n»ŸOÕê8ÞcÝ!ÓGîWUÜöÿ/LY"‘¬Y_S÷~ß‹é~8Šíó|?Òz[`¤P'‚7ÄéÜsú ÿ©€#¯“a¨ŽÐü$3p)É»qŽKjE¸÷¹]¥ùcЭ4±BÆþﯯyúuO€ 1æ‡=Œëb>,œv›¬g,?ÈœÎä* päxŸ#ªîÁ|8B Ñ}AC±ºD&9#+u –#ªM=+¼´•Y\iŠ£¨zX•j¥“ ?&8¯äˇªÙ츉=üäøÜ=/@¯ƒ†ƒÙÖy(O=ªsÈÓ³sÓmtwGõ~ß®iJfpšäF!!Î;IKÖsHWÌŠÛßÕ¿T„ʺtòájÌ–: D½Â1½nO°ý“ºÆ¹ xÿƒ³fö §âÁXñÿÏpʦ"Ä·Xv@}6]›øÇù9S8ÿ>Wi !XM% —ÒýŽÞ0©Øý1€ŸMÕ$³ßWQòÕiˈ ¤#3ÊÐîsyêq"–BN¢óëiØWêßþü§<‰  'Ø·õ4ÿJb¸W&‚CÁ?übN‘¹ÊœRËǨbNþ§?ÊÿàŸ–i¥±¢°¬ ¥a?säX§"à tªæÁü~â{¢fë+G„ükß­øÒøÂC‘i$»›å.àHJ¶» Œ`«®’…@P0"ÿ;¾/)™ËÁºK‹ –Kó)ê|Z¤hÂSÎh$&vˆ?[ñ}´ìT,“±ìi è>§_ù½šÈÕ* ?„õ2ª) ß¹·éÁÛñ4ªxgœšPHõƒ…aÑT_õó’êdÌyÎæPí¾g ¹+öšûæs'ìô ãø¿öKˆùK†>15ö¿ºãõ©ÿߟA0dâJEFN•¿šçû%ï21¨‚+ý_‡êyëÜ£K]žÉı,¤Äí]É_òfý?ÓÄoö–±°ÈçÚu{¢4ÆŸã YËqCÞ*_GíÞ'öþe'…±èôþfï-E(@ZLÛ ì­þ¿óþƒ£ûÆ—;5ö„h•A?Ö¥¤0#?êña”¾Ò”$# Ò‘Ð ³ãd ±.žÙA&ž*>OGõ^£guVf¶öÿ Ÿ´vß<ç)&8nŸÐÿWñý‚C…XØòEæþ׌‘pxP˜OÿãØ²Tóüß±Zà X8]—x¾¥ú¿é°|öì óüªŸ¯SÖªlm4%á›õEýé?T'þP’£ëxÿ·®n1áIÜf¤˜œÊ‰þí¶é'½&‚ QGÊ KßýˆÀø” ñY¯£é÷‰ƒ }°bÆ2—²“Ó–ºÿæEÀoû~“õÿyѳ†Éz_èÓþÜ,ù\ ø‚Ù—Ã÷ýòø4 _ˆ}~çÐé­@Ðà"‰ Ì=Ïâëù% ZÀÄ$šÂþ íÏÏV£áLé0ûÿÁë&`' $æxÅpFdžnÒØÂ¥ƒCÒ«—d3Añ•×T³Ms_笄ñÔ¡S¸Ç‘ø~Èó‚oNqøàñ©ÏÐÿÿƇ˜áM° ÝE½ç"Ù¯¦_Ê€¡ÅÕDMXÔ”APkc'~»ü?——ûê¬z¥(¤mªÿ5`8ßäÌÉ|9øm…"8@ÝQê aÐ8‹•YˆÅ xÀM¬…°â§>(îC3MêfX™ÔÂXÙþ©”¦`ª–K´ß¤ë?Õkcðÿ™Ñ¥À¡øÉ†—þJ°`8Œ4__Èøý ¨Ë²"àu¼{4:0†ÄíYõvècÚ0w†p`JÊ­È‘Œ)Pÿ®ˆ@é+áù¶Šf«æüê Ǜނl ¡cžà€pB7·‚YHÅÿË>%sйC–ÿ©_U¯gû?ºÉM¡¦ßäû9nYд˜úÇ„p¢° M¯CüûdÔ +§hÏg‘î G¯‚ÖW(òBuÃç‰áµçÒOÏQÇãçW–?´£¼«´ÝíÿÑ8`θ(« wìq÷?ºå6KÙ àx¡çC‡âNZ=¾ú¾€'ýïí"ˆ¶»ž’Y¿®pƒG+?Ü;æÉÒ¿è>ˆÚ[ª`~·úôþiŠ‚iFÏŠ‹»H‹Öèíþ¦|Ï—òmÄO䠋Π`ÜÆæX•K`N˜\_W튌‡ALï¿{Aÿ¿ý» XVà'PóÓS­‚Z÷ ƒp`ÍdÒš¹bUÊ%T})T½§+—OÑ µ°áÉ•‡"aÈëé>ïúOysÿAˆ¹}¿ÖñV·,åN§†]¥¼ßÛÐu óVêw/BPï…SGÝ•Þ_ûSב¹P#ƒð¼_'™‘j¾Gâ õÓ\e›£;rÚâhdÿ÷¼`f!×¹ø0MÐû¼=Ü4€ñLf™hìrv¾Ú=/Àßþ±e,ncT/üÃÿëËë ¾ ‡‡pÚåˆN¹@GåÐéö9XÃ÷ìZ'P…ŽWË2ˆL7ȱ¦¦€»#;g¥ÐÙôû¿šnz¦è5êÖMèôGÌðÛ¦=œë j»´Gb”¿ØcŒGÁ !£•Š~òŒßfT0Ó K Xš&ž“Y° ̧>±‚éT؉ŒÝ¥„‹ i`슑þïk!ÁqŠ …Ôª¡; ¸¬4¯HDÚ^r”6yðÿ§êàå s½HÍzióàwĬn#,„ºÂ³ù¢hÒ…¶ )åi¼úɃuhÇ‘ªeyˆÆjÿÉTy‡#°‰‚ç^ÿ¤çÑCüv1ÿ¹*Õgsñ•§þÏâ“rÕSüMæÿ©¿üf ’ßÙȯ׶âY º4»aI‚>jÑ8Г‡„Õøz1üî.m"A%°<Ì—Ð!•ÀB!_ž| 40áV|m¾`É$åAOË5Ð+¬!«GÛü+e[ìb‘‹ÐÿÇä~áh™2Kwx¼OgËãE–Œœ—[ðñS›1J–¾ÿ;üᨥ'¥Ž¨,ÂòÑrI¡ÿ [ªFh~ &M”!?­øwÒÅÞ¤4`#¥qãÊÆöžŠ<ÂÓƒ¶†2 dŽ‹N|@egÑCÖ¾K†¬”É’aò“NI±¾ïã¶+Ä®Tö´©ù`Òٟᨣ¤h><¼‚¯òû<Å^^aÏÑþ‹E;òü£ˆ8 CkÚíãT³ýÅèø5ÔY£ ‹±½ H €@>làÿð·«ßùbWÜäÒÏ Ùšåo°ÈaŸ¸‡:$RÇɸ9.7†Ë;Gî3-ƒ®Èƒ…™ÌŸjÿ% ˜ÊP|àf2>h!ú•"˜¶.ëE ’s“€ÒwR£À±š …!#® ’œ=R¸,»ÑE¹M=xú¡ÿ‹õ,ÿœC÷À3Ôîþ¤‹ÁFœt| ±à³h¸]Kx¿àIĘFèæ&I(S.‚\NpâyK"¹2tSðŒ騄ŸL™; qP½ôAßT|‹ç0ö(ýd§¨Qÿ§þP|Yzô‡+úd ÏWÁò§gÉÓþ6Ý@8éYüŸÌ#ÎŒExЧàÿë|nž‹09TÌõÐïnuŸÅÿíœ|Œß ùø¯uiÒ°E;@´bX¾SßpO'Mp«×Xsŧÿ@Åf•h+P˜ó€€w;ö}­+þîÒ}÷ÿŸû}ú–° ‚=?üt­zòðeH pù»ÿ}Û¢”X1ŸW·×±ïáûpáJºI²'pNËhœ/â‡ózLüa|_à='Ò1d^ }$ÿó 1ø¡eßâé )€ÿ»ÆÐDê!Yj j_ÏÂ< ãü¡‡‹8œ}éß €,p^BN—Ÿß ù,#TCKéH·LoûÉ…ã’LhÜçøX7S¡‡æ¯8ÿ«å>ks¦¨?ÄÃÛ eë ¾5ðwÕ’ê:ž,—} ^(ì¡ù È-ÆÙ{…¿cú+ˆi¨H-ï˜óEç•àÃO{ÿ":²¹is¨Q¥è&¸iÆEßpï¿ðvWDæ°™ÃL]åÄ—uin÷ÿªº4E”Ðél_îãÏ|Á,³ê?°§÷ýÝoƬ6X4Ö¥ì‰z@«ÉÅᶪ¶ÿ3èt*xH!bé"h„ŸOÈýŸíÝëþÅŒDÉC#r.±ûU¸š¢°Øn ‚æ&§u¡¥bÉ]µðÐÂhÁæ5¸°aÙÚ¿pn[)îÛ¼žæ ú›;õ¼Ur´±O0g)%jÉb¢ßµÍmó'œÎÅ|v5”n "}äy›£ÕJOóH; qsÝZ)Џ,ˆAµ£»ãYž©ÛT?ÓåüŽŠqL€aç–FGT/í‹w5~`=:£óÈ3zΦܠØÞQe‚ít€4i‡® ?·G»0ƒCàçuå`f–€¯f°t(/$¯Íкʳ9[ <2 ðàPµ$Ó÷QƒX€@‹1öÙÅL$Ú'?Šw¬!Ý 1€¹oZkG¶,"æy>‰ÛeªQÈø¥θôÞ(`&XX:õ’â˜F\•[y8ÀA€¡mH;›æpù-ÌXTH¤ˆ ·,}jH³îèôú£Kò¬þRý{ÙøbĆ4N†ßýüª” r6t£ÆÔ>Å…Á¶ š’ïìIL–ý¯¦/Øþ7J¾/8 ”ÂZžäÍ¢õ]·œÙ‚ÁÛETd(y ŠÑÅU¿AާòÞkwjyu€`Üà@E„>Hë?ô(Œ Pû›,x£e©¯0"„WÞ¼>üŸÍŸöxºžÛš€¸;‘yŸ`´¡CøŽ‹˜”¬;kâjH{û±ö˜DºîÇØåÁatDþäÊFÔ²r‘éd9& 80!òÄçCLx¨Z”w*“ ðu0ä‰I9!,¯¸T¨ÑÈÚ¼âJ•õ~ì<XOšãjã 5£‹&Ù$A¨Ä64ù¯CÛ )²=¾ï¨t7ÕtîíF¸;|Ûá¤}nÆþJyåÀà{¼_·ò6î»ù8æô[ÜkÉ Íh•öÉÕû~?âû”0q•ÚÜbOž™¶·¡ÒúLõ}_c1ˆ«—½®°fõ»WîX‡ÖX3‘2¬#o÷äA»JL(à…Ø&ëáO/_º\‰ž1NG˜•„éWß;DêÀň1íÙ³Daþ$XÜõîÍÎgÒ¶x`à-**ª6å¾W¿ü½oÖsOÓÿ·m4“ãz>‡Ç2çR†pL7<‰u)&cØKâÃ@.î¾ ’záÂêÕ+*Ã|‚iÁkÆ1ú†cÙ²)K-$”½ÿÎîÚ wð¦bY ”tȧl§Ô‘†¯Ëq–p¹,@ïuž ðú+§ÐÀñÓ£¦?_Vo B9«w™Aì^1à&•ýDù…k™Îòš¥8óÿÌŸGOÎFnUn?¡™òQiØ‘:&6“_Ò^_åæ±šFÕãNªãè•5ƒ>þðalrŸq ® Í-1Õä6E-”ÃfÂU±ÄðhúÄBØvoÄŠÍeqæZ6P³U]ýí~#[I7|é!äñ³´Ö hk vŸ/å~î”ß‹ð_ã+—¶"ÞTÝ‹%oþ–ß©û={¨ßRƒ5_CB©5*ûÝ2Ÿ÷O§F6s+ͯ$SŒ„Ó§Âßï‰xD§3òÂ-S€Ëf‘ è_BÀy³ÆÁ+WdqJh2“TšŸ…ôCqÀ$ZH£êfUÝGü¢*ò$Èy&ôÀÏ8s˜¾TíVœó-ñ4ÆU— w\¶Š­ŒuîÖpiXâÀ¸™ƒ¶Z |KíW ™ÝpߨlC<õ\“ßœ³ô2Ë:ÔjIoÑSÓäW»Ô‹¿U>'7ä½ \~Fh‡fÞ$ŠÝï¿Áúù‚7V9«§²åji™³Û¥]“¦â‰¤¥CÐ…ZÿÌh‹Ñækqúʳh>°>ö¿E#­µ__uGñ2ñµX‹áôÄÒ`(ƒ IÆð°\ €B|w“˜\€œ°@×¹ `rzQ‡à:žÎŽ{u¯^ý]JCšÀ^^€Uÿ>ýŸPwàî?ènók*îÎÀuChß~À`v+ýõ ãzüÞ–N†E°¢’qöó1†Ë?ß[G._Dÿý9Žä§5þ÷]ÄuÐZ]:T½Š@0Aö>°ß¥ñõ|~ u•ã©R­ï.ˆÏõCßÍÇú 3¸_SÞé‰|ìV•4Ë`IÀãÏÂy{\ô8U@ØŠ² a,ŠŽ‚àU¹½½ÀžÊÇÅ0Ó ¸°¬\ ¢¢zA8SÐÛ[N6tXÑŠn=‰y%“"y‡EèHÀ*!XŒ:60e ¿6€„R$[9(›\€3&˜¸ö§žÏ`rêÕFrrÆ@XW‘º€ÓÈIRΰ€«+Þ¢•˜Ó)@fFZ;Ÿ¸k åõ+¦©GCú¹i}Ù;cfÿßã‘_@^è45À"äÓ›]€³M­Æ¶î„oD…ò®û-C‹Nws¶4Ÿo«oáv>PŽFô`ïEærp ÷Ø÷Cý*ì”ZiçCkÍ¡Y`i°ˆA! ÕÌD^*†nXŸÐ©ù÷ŠÕ}r=MYó¸4Cì„!Tí ‹™î[['¦ü×pAüJJáë«}Vã+ã!@X,¿(΢Ëÿ ?ÐèðŒ{½ß«æßrx\:b¤Û3@ô±êˆ <°_$ I0DEp6¯™sä~¼¼´+üíð0_ŸI.’ÉŒà 0 ‹ÄX }nü]N4;[ܾ5í<l(5«"`Z€x¢ìŒ +ƒA±#Ÿ3_àýW"ýïä·|cû¸íÄa=|1 ÝB K눞Z„ˆX!Œ@a†@ »Ý³ƒ£wãrUímZƒ<ïá_wõ¨É¦²ªŒ@ I‚ªµ‘J ß—í+ù£¿ò?#òüeè=:wø_éÆcª™±Ñç¤oâ/½?³þºÏ_šÿ¼k¾ŸÉü稙süyK÷.“„!Œ1zO!B“× \Fh} í»çë—‘â[Þÿ®ªÁ¦ËL« 0É)‰z[N},^<üOŠÅ\÷1o×àÜ=»Äƒ^kƒ¬P|ˆ(F>@„Œ0_>—„éü¨–¯Àêù¿¡üŽÕ'áþyD¹SÈšïñg!=º]_ð.¾ô¿šûúÕ6é4§Í  {‹à}¶'¦…ˆ‹&C~ÂA #FÜ¿gáÑ‹¬ÿ£ù;|Yët’æR°³ × 6‚4^.çŽ=//„vTºÌý¶´bó½Q¸ô˜êœ'a”&E|$,ÀÎĵ×Ùô:åò_ƒÈÉÕõ{œ pîÀ S]~öD}¿|Æ«ðꞃ•]øo¨µÿxfÏ[ëkŸB`=O|<°}\+²#s°K(îŒiUÅÆk¸À*”®K¦£¬…qU2_œÝ±ˆr‹¬ÀXVMꮣ§ % (ûeó›ZXã°•”[“`'#¯>||^Tð8²×®¤¤‘A˼ â0é» f0¼¥¨™¿ÈŽ(ç(IƆe€¦S1>ÿ2ì=kè'Ä¡‰!Ú‚¨…“‘{ˆÄ¹Ö_n[@¾p ä.q’Á‚ƒN¬îf²©LµÆÛU•­2¼Vã=¥ÈÇ{ž¶ë}.gC‰›rž‚áëˆh—ŸÐ Æ>Iôyâ£÷1múŸ[a>Št+„6íIOåŠÎEX®±³«¥€vT?B2QŽ€2Ò;ÇeèãB/ ‰+˜`±äYŽ´F±6¦’À~ŸwâxÙÖo¡å[MÄþ¢ž'B¯–p²ƒÛþ*BÔJPrÁ€,Á¡¯œqÞaÿ‚,ˆ—èÇ·,à¹ÿë@¼qx--¦.—·÷àxNeiH¶Ä²M¹29O[n_1~Þ-Ùޑαà•i§ÎÈus5ëìmAÕ hRf`Ø¢`,$îöU]ý’pÅ‹|í8«±Þï.ˆkt‘tg(Èn˜T^Ÿ;d!)ÞÈò;Õ+âɬ>ÁÂ…áÄÊÝ‘é2Ú¿lH¢êɉ@I3•V¼ÑLGnDÅ^87fƒJŠ•Ÿ-‰P›Èy<ÖÊ K„¬íFd\™J+Ųˆ®H÷?¾HÜ u©8SãÐ ÖEÞð»HHV`¡*ÚR3Mk$áîŽVB V§&JQ¥``ÛæQÏÖYwüûÎK3ŒìÈŠÀ³â‘ %Ô¥ÂYƒQ«ÌÍ€Û8 ‰²ØsÍÙ™èä.øËËK:ÇèÞ)ìܶÈHÃÆÞ áWÌlÔÀìV•õÏ Rï\l`¯ÀRHD>ÛÙmÚxäI°Mìð)28š¦Ú7‰"ċݘ$(ºyb’U.j6¤GÑâd=‚àÆ=è÷B)Q%YLº pÐW€C~ªÚÄRÎS:ödmÇ$oè+Åk¬^ d I°ÐÌ•qä©xªå­|‰RéÊç³ ` ”¬a€X¡gÕ -§0o‚¦˜DoPf7MNÏ¡4¦ÙÌè†Ò‰ÜŽå¿i БK•­®3)/j){P¨\ù V…¼™#èà‰[„bog&påc—,^Uy:1åMÔô-Aaµ6MéÖ­šÃ;ó}ö˹”€heðï[V@9¿ÇÏnžTǽ*pp·e-ÌÄ‘§Iü¶¼D&m$`‚Mko@ýêžô03() <Ô0žêí:1æqÍ\•´ÈÙât§_’‚¿ /!wÇQ]_ Èag€†0"d9–*ÀÇÛ_ ZÝ1‡ž@Ó¾Â%AxÔù×T®çcúÎuæW7 ”¡†P ²5PHƒ«zF½ w ]yèRõâÏÓÓŒ,EŒëx@faYžT¸&eŒV³˜h`°°­_:¥!ê¦h–˪¶h à&¢ur`$ãŒ.;‘*ñŸhuMv.F#Þ³ ’åƒ rsæ—XD|"v$"‡¹¶Ž#cõ=D§vräîškºGxP•§Bs*l2h¨7“Q9óI›­\J PmOºð0JÆgø¨Bð‡OͰm×Îè!çg[&´æ C G½–ÀÝ<%ƒ£`cÉéÁpýï=ÆË?«Dr04~–ä]+%kûõÖöVŠCáD­ÂÕË­ÛfNÑÑ@à¯r$¯´Úaˆ«”„•#ÚY‡–• åͺ´â1í8ºD¯rW¥“–TßT;¶GfÍßEÞs$Sf£aÈ 2±E¤$fO!tf ×’¨4±›„¸Ýûg0Gw×UØ\„T¹¡±$/#]dq¼íö÷-ŠQèŠ7V$²á f(nŸ‘l,~.¾ ëïñ‡îéŠ $ûGÉïb~–夯ƒ,Ûó }©v±å.áO"Â4:úÔ‚KˆQõÜ#³´‚‰uñ¬ºn+À§v$äöCuÑÉãE¢(ep p½vË0æ‘FF»#6 ¼R&ºÜ§J¼&6\úLjÑèic`Ä03B"⇄£f`V›Á”F‚ÝU~xG.ù5+VX5¸’ÁD¡H¶;ا¦¢ÉhèR[.…®¥è߸7n†2¦ñÊ©à¥1£ Ìb( í| ©´ æÖÊgãóÇ\G¾0NJàÄN.ESëîHÔ¬2­nI,)S#P8£--Œ+ØâX¡³­Ðè‹qà 6gqhÈR Y^-D?é §-}•l;ö|“ ÃLD§OôžÒ:'¦±B¨6¾¿Z»Æ GfÇŒÜÛOŽ-‰¡‰^¯@‘µ¸²æÌÚ7‚Ý›Š“^X[X·|ª‚}¼æ)‡§&˜roöK.5@¼J˜T¹Ö¿,ß‘·™ål)wÅtzgi•UÚ?9­À ì;J³ÓPs#¥ UÀÂdÌk1Šæ^‚¤ÛŒËÓ¹SNß$¯XÒ3´¶7îL‰ edjíÕvznÐKÂÕŠµz@æËyxYù½Â7æȈ¦é£m°8ã:Úúà><²!‰p#ÄW˜3Õò®¬®úBŒ™Ç;Èm–¾‹ü*Å© r&ГH~@܉JFšô3H¢/‚l©ß3Ô™b|ÈøÚI÷Qqw¹]¿ƒìaËÒ2Y@Ä2!˜>ǵE±SÑô3¤ãŸO”ÿÅãY¡Åòlïís§¸éÊâ#Zj£:Àxð®áéVU;!`u±ª—z«ò™ŽÁ`²–k®dóidÇBMë™»úXÐ×­+Á·ÉØ!ƒ@-]zÛÚÿ@£‚àã~YíþmžTFÎ^z–’P˜vP<&˯g 7^ø2(uȇ­BÕã‡ay…ƒ×Ø×y¾„b2‡ƒ'µ%f•›w¾™N§WZ¥w ’¬*è!õß ‰f|é«2 áÛ:m˜h~ðİJÐ7âÒÅq›²ªøÙ4Ë¥`Œß±ñrwÉô® ûÇã_ÂŒ~ÊY¡È’ºfžop>…½›‘$\$å:Ž@ó뙫O™0N"ûg¢M½¦¢÷ÁBpÅ @ðï£( Nl²ä7¤í GU<Ž6] б>"Oº¬>Y²ÄRÕf’Ìv¸—Vé‘r%8IÀÀ"‹n)Ù³_öRÌ;[ vQ?T\ç=*³¸åàÌ´<£ $NRR˜@ ‚Dî:o @¿l8-3¤¶åQfiI¡Ë€•Ö‹K³ÆòU9€Ð‰žÀ`Ìׯv…€Ö|º‚í»lˆHØ:q»q†Ôª‚zV Üš ãKQw‡«h{ER»ÓÎLo É'Ž®„Ü1C[§ ¨u\<Æ.h²˜mMT.%iwT@Û{k,µ`RÄŽ+/¾ÆDƒ£Ãx¸LE3 ¨ V² [òWÙ 4\_<Ë#›¼.‚Ü\éˆ DàE´ÀΣ`BDxÚ ˆ™wÒZ¡Ç qâT»Jüðg”ÆÆ=e¶=Ú3ל£ïÍJO Œ½Ž¬RF<3ÍÁ(ãÐî‹3­ëó¯ ø×éñbúp7ˆP8e×'¡Š¡¾nAf{fOCÝÑGÔNÏ>¨z)TK¬å&Îø)‘µ;bdO™s3a YÁ”P ß«1-Bb5l’¦ö ­ë†×ÁÑÉDCɈè\ïÊZUÛ [‹¥À’_” û,DÃe³ `+-N / “gì-(Ê´³$]Ñ9³ÇáÁ¢+@³ {’†=ÒY—Óx¼á°Áx‰ãkYj×§€¡(izh"ÛªÃøºúkØÅÌ$ŽÓWŽßÒ§€KxÚÕOÊ‚—gÓ¦t®X …¡`1Õ„ÔF, pÞÖΰí^®ÀÆ>ïG&~qù½àá5hIåJ+_Ø€`G¸AÉÀ²`f8šEÛetK;(Ízòkf9›¬ölžr º ©Y¦ˆ©rŽ'[YC¬'E,`#ô«Òó0ã <ù„®/«Q—qçc¬÷+!Ù?15iŽPLñ©e¡FÖ¥gO*$£+€@fgÅ…V¼µÞ2¬8‡ÀQq£¡×¹„aÆÞW‚ó–kÈ\ZF3¥L ™tª$ó7Öyœ©—§b×ï•ç´C«¸¢¸z‰Œ0|áSá¥Ò^t^¿&ìúÁ_£a§e­…0.t«³”C«­1B¦'´¿yž q ‰(Žqbã&7Òª*hG!‡¼Ø0&0å^1Þ§gÞe×LcLËëý.r 6Éž*i}ögö6G‡âdtë4Oá´çËÆ»å¨ªn•šÜÄ’wl:=¹n­˜ø¡HÜXÇ QŒŽM,LZ=ØñÅiûîp†¬²±AvyúV˜k¶¸ÁŒç0\;ã`# („ƒ…DRU–9æºFnôÓ,á ûBð¯é˜•™D1nňÜŠ‚™AÇI‡€o»'l•ä:›o¬Ror0…pjÅëû¢É7‹IHîG–P⃵)Ä_§ȾÉ".y{4€S‰–X“ÒaWFg5,Â’È}뢧£n]¬šc–‡£ÏeQpo`ÛÍLk%ÄÜíâêUOo}VZXê÷»<ƒ*€?É8òyÝÖüç¶—é'ÁêÒÌ/ÕGÑø¦3ø}n•W¼åëýa„†ë)`ºš³M›õ¶ÐÜÀfÈ\]²µƒ‹DòfV^Ò9„±wÚ[¬E%ŠÄ/ Oƒ¹wDÇ~žö€=ï_ƒ’•ÿ w=n³^ûy­[\ÉüÌØ3‘ázü7§ù™… jœ.ŽÞì-ö•'˜¹?> Èp¥ØÀ6²"Îí©8Pé+±ó+#×* H]Cï _ž$¼Ø‹‘Œ^8ÆÇP²Û¥-+±…`¨ã"+8uj•Ê𺿢9Ò‘›E|ÀÊnFGÈ$Z}]!9B»`ä§›!ýÊ>JF sÄ» LTyÃ*šõM„bt]°Ì±¡Õ›ÂÁ%›˜è\–šiÊöʾ@ͼÄÝñwù‡ÀÕçê _‡€{HvL]ÎQYKT²'ìYµ )ÊË6µ<2ÉtH`ì,ƒÕ#\–yÜ¢W^HÁ­NiáœX:,©—9hÌ¡Ö0‡ÒÈÄÏq„I ÿò·¡Š@­Öx÷Ìà š±ÈÊʼل` Ò$³˜Ù„1 ©o:îFå©HÑÅì—P¶&ÜøUbÑñaA€²HFÌŒ¬Æ„0ŽÃzžxê }ëB™ö;þJZ°0lÍ ¤NÓ»!›|dÑ•‘R&WF³ŒZJîä{øF …|¹*0XCsÿê7ŠB:B•«œéÅlè|ŒrŠIFµ ®“6)…l§V×ù²ã‹µ(!­6™„ª @&˜‰‡%fJd¼\ÓŽ¡žœäv<ŒseÔó䛘i×k‡F 7HPot~C­ªŠöˆçSY¤ÚeÓ‰NÜÈ<ý RqŒ'…§¬2œ³+k1i¶âáeê‚0;pSbç$Ø5Â= h癇ª‰M/Ð[Ú¼ ±qóÁ¸8ÂÁJÁ¹»€Ü_Pëní¶BÙûÔMÔtµ!ºXë„TÍÁ›†{›Êf°[¢€GµÖ\S{ñ¦Æ1„®äq [€k”‰/M/+Ša¶$¸šèØ΢²½BÏfÞ‹«‡‘®æöËWXœ¤M³›ó}ƒ\œ›i÷Êw¹‰Û(î$iƒd-&·1͹œ ‚$‹íbÎ"ÓZ³NH/niqÜúNBÌ0¸6Å•¤ÞKcRx4<Š€nx3ZZš<¢PŽsžLÙª *kBƒ—Q(iˆH@™«å,˜á°,ãÁ¤ÍC§‚9T•B;ÀÓ2@̰Ïþ¡¦­ugŒ¡,+aU‡Ìûž›g+{¥›ë`cXV9²ÔÎÖ‰íkê­‡o_ì=«/dl[žŽ$HY£†Üeý¶ÙÎo1êKryKá'BD)¥”µ¯N/Lc8#â–ŒA…rì,’“k­NŸ¸ã?Í1¦eyhêd!Y ‰b¯yÊéè0xØ@.’%6XàR.ÇÔ;IÄïç±5Lo@5Ä\s£¡hÓ(zª`Ò'¾7&êñ9ˆi¹w÷lÈ qÉ0±Á]IÉÇF‹âÖ[pËǧ«Â¦ŒæÚþ‰89#©–5 \Û5_Ú.D@ ¬0ÔQÇP%<¤Œ®dâó«ŒWCͿ׿oPž±õž9#óì´*&–ÌBj¢°±¥ÏîÓd”U¦ÞâÆ¿Úf¯Ô‹Òä Y„ãд |‘j•¸½jgôc»¶"ºËèœÄ09?¢œc+%¨q-Ì Òâö+oÁJÅC Ñ‹¡cE20`% ti¬ÙaòLJ¤Ú´Ý[†§c£ÅŠÈ"iç™ö¹ÌãÂ:upݘN–‘Û²oùŒÅ»ê²¢é!]p/0BdµšMj¡’Zzp‚BVÔ´S=é²tdù3Š‚¦\¬|öÂÓ:É»)×ÖO ‰\(yé—'ùø`&¥‚¶šëÁ–€´Ð%?ž,-¬ÍÛvzsð×7àÕ³Œ8¡™~šITs é5G$[õaLÎ3ñ TA­ø¢cd½{—•Ë☓â[‚ÍME-0m% k—j”ò„½^¥ÃK¶ý¹RFr“55D]K _6¬Û˜6û&žäÓœ¾¢ÉÏ\ýÛ™+õë:÷sV2‰¿Ý˜ð4ÄåŠ+“Ò„k ÿN³c†avBý„eØ>íÌ\ÖŒk7pïÔ€t„ŒHoHù1‰•àCz ÔšwY³¹‡WÌ[˜mR’9TøUñ`Lb¼_µ!œ.i~n2ZpД¯c ÕÄ ÀÀ.èðfž% }Ïž¡”q&àohÚÖ C »Lt[£ëLº{Þ8}¢ÊöU½{w;ÁØîÁ‚¬$Ä8G 1Ö óõ ‚ùßCªèv+¶ U4zEo¯ÎÑ<¾½ÍÁ YífâV*¶÷/µÜh^ŸÒmBå@K¯ê…w5FjUÌ;´zôÍÊú3lœÂé!b¦ËÅ_r\n‘nœ? "îám§fWXÖë¦ÛÉp m°»Fmî>#vY+jÒŽ~á®_Rí™V<\ Ð-ÖèÖ°–­rpÄl¬îËŠ½$Ym’¾Z¡^Åè˜÷c@Û¢b*«¢ 2TedRjŒäøOÁ¦c (nb-c„ÎÃÕT»ˆZ†p:˜cÛ¾=KÍ V#X’8²>Ç4lÓJ©oÔÇ’æV0¬Z9gèkÙ¼HZùG£8;sgŠ¢¸Š&ãfâ\ßrPEóÜRp—F¥¸à¨{3;¬¢lË!cå¨iŸ¥r_ºËÉ¡˜kõô@ñc)5*·$ù¦¡f˜¦ë ®­¤|º¥VÍ3nèsÿK vëL œxuÙ¬;î9´™â¥U˵9Ȇ>ë²¼úp &Ôj÷;5ý|±˜/Ža1´«—OHª{Ú‚a²†L‡@óÖKX³Sƒ2Mäž›pDã3ŠbB uk»B@’·ÈAè¼à²Û8¨c¼D²os®âÀ.]v¨¾@Q&ž%áj-Ý¢•é¤ô#Q/§À¬[ÞÆ!  Å¸¹c­¯ °säók¥Ÿ,Údø§bÓÞÕ­ëï²€»ZÎ+,é¢Ä ’eb-ÜÖ,Ål 8 €Ihö¬¨$·”õo2SjË]ÎfSÐÈØVy‚Ó[Va™MÑF¶Ûs>kb€£o2×ã`ìdÎÏ.UÖ¦êí‘(JÅØUó4î¡í,ÂŒ´YiY壕Œ×:m¶ùæZ±UΛÂSNÀ)b€e ªpHcT@œ–"…cLJ»Sj`rà^ÞA9^X!,x+çt¯ )ë\ǰaR5z•MêðN2`eÝ?BŒã3É"á9¼qˆåÙä‚ÿv|ÝjY™¦c§œéÅۆšYÑ#ÑVìka.h,VNÐF÷¿ËY3sVÿc£Éy²ý×—N’7†Ë!5Jìeµ¹É²Á›äÈ8ãJj=ê¨Ë…œrÒôH:e>%×£0ø­ za Š0¡lÕJéAûÏ)ÂÕq–•$¬‚Á9ra¸ %‹©z1x Ø¥7YßÛ»P*›6“?xix |•¯g~E/ ›7K¢‰¹SIH&!Ö4TîŒ×¥3 ‚G··±Dߪ¥Ð%ά§‹qm>…‹ êrt”Ù8ùÙ[îÖ;ê»%ïpè"§ÕÚË ˜ÒXä„i‚Jè¤J*Iàk’Á‹Šë20Ôáx@æt<˼¦xׇ˜C­a ÅrÆ\ £ m6¦%DÎã¥òãùv)õ‰Ç) ¶+Z &:v"rã­¥—ѵ• Òv.~*Á+i8=ý¤S‹Jê‘J¹ ¾_x4^¥ž6¶êe*€^¤$a%ï [îr¦ó ðÝfýv¹ÕÄ']—«c‰Œp‘†Hòõýñ~DAÃ+[JãF@†­ñùìïdí½TÄ9ÅËD ŽbºaqÄΆ³¹‰‚v˜žÜmѪ!ÇWtoªÔÁT®‡-J$“Ù±ûå÷o«\â &RF=¢éy!ömBÝ?‹oU_¢Lñ¨‘,Z…D«»fîCf…[¨#uëŒRïêгێz—m,±RÐô¨è*¾WPƒ)&|,¼Ì.ò»/+—'©k©%ã«Ðš}®v‰epŒ‰;ÖiÜ‹)µnRžç>‚ºû¤mЇ𿩇­Z6Â3“¡cÈ\ù¼ºÖÓ—µÞUfzXpND[E7Z…²a" å ñ¸ á±U`Ñ E%ö+@%²×mû^‚ÁíË ^ê×q¥á¾cÂÛÐŽA30B^j&¾-pä¢áòY1L“mÉ5ç“«Yl]ŸÁF;.3ÏÜ—º­€g~«k•ŒË[yC8جŠB¶wBôUÛÂŒG:ÖV7úîÞ|Am­ÛT‘-6B¹áŸ¸\ãÚÏr© z6¦Ã€ÇU“j’ª†Uø Ð÷Ì´ûÙ×Ä`‹­ÏrÞ\kìŠéWƒ1÷› ¯E²Åͪj™êø 3>Põ­Ýg[>GW[z§î+‡˜yH@/ZKà”¶¸iiA—äy–¥¾mŒc{…ô;!ª¼šI°Œ$fºb™òI°ñêïe9¶ÁÈW [j{2¼ZlVçåžÝ#JRøe•tœá^,Úã´D¸³5ÑÉÉM_À äµ6©oczz¬X'D…ß*c+ëååQ3GD´W‡Ø‰’™ü›•ç2‰ºbÞœä'O»¹Œdfdh\«$‰c¤ívq³jcJ¾2žß©ÌHÙceÍ nbe þÄþ²°  Xãš$ïב] wTÎ ¸ ½ª”w¯×³~Ã%Çq:ÄÙ.Ú+p4%“sžA€ ±B©u â.sq"0iùó¸#k›õXäÕì yÙƒzê‰ ²6^ÜðvªŒxQ_¿ÄØ\úâ§ÏgƒN] ">l+ÛI—e·€˜mªoccl5ÇAm8i'@ mr™+aû“í¡gcNT'›XNˆ @×8l¢Ze-[¤gʤ¥‰yzìÛºÅîËp.È´­w&e§]pÅD|Ü”Ó[ÄyÖ¼ÔKÑÇÒÛi1w¥û— ?©ùHê–ç5BÌ:Nô¦6¥%YLËYˆ#Îìâ‡ÕÆ÷¬—: všždù=¨®;í¶ÈEº&”´h8BW>/E,iÀ[£‹è¹BÅ ®i˜¸½š‚Ê1‰*$Ž‘<>ÒZíSÇÖS;A:€¿‚zÆ™CD&QÇùÙ8Ìè ®fƒ¶)±e8›F“/R½Ô8i›œa’ÎR˜ÙÐN€Ú9öé!‚—ˆ;H°E›o¢Y ¼ }g¢æ‹¶UÓËüÖîÖƒ évÙv3A"3XrYÃÊF‰¡bslÔŤ£ó¹‡&BÀ¨PJ°»¨²Ê6Ü›¸ƒÅ\z4’ÌWsmP‰ƒÏ_ >n*íóRä„âM•Ž‹+ANGä Àl©0²"{§©Æ|–„þU5³H’ RË«H tÄ8ßFÓŠÁ£€>Ñ&›òÝ)æ_^X6 õj¹52®0ïÝækšóblÉ­ÿOWqÜ+9çf0O^“)s“ÎÄ}V=ɆõêØŽrX,¹Ì¸0KÔ±MN¬‡åìço`Ü»]‚6y» ç™R³>ÏPÑ= ŒÐYXÍêªðWÚQ] ù™Ôû'ï`Y•¦ŸØGÀø¿.±Ve¦Û¹ü7t¶)vh•L£àë274@½KÓ¼~ÌuÒ–©ªyâ\ѹßaHke÷i—´V³æÖ1ε)ÕDúvëH€6“Í%mìçÈ7˜š¨’r#D¸> ¶”:“È›+†ÒWÐ.¯vN`'³.· ±ˆî9§¶TÔHš#(º1VÉj€é4In``¸Œ°Xs:lIÄР/´)ƒnieÎK 3¹©~,“3ôT Q$¦šlæ6ì1Ùá,Õ²&Wb r¯&\å w(áøi³ÜÊòõ%0e˜…CŸ‹Zjq»¹ÜC Ë+r–òѨ¶é¹[q p@2´†k¹“€~¢¾‘hf¤q‚ϨØõš©®ù;ùÖ|W¾M†cyaÝ™Îë.w€I7bO˜-QkM'¡&—å°Yg–å.¤RØ¿‡li¬ÁÒJñ«UÀÅÑZ¨‘JÜãmîüªÕ=£ÝµÂ¿4Ä»+³*)ð2ÙTѨ°^€]H0Ø„‰A,­A&¡¾ðU°¶?Ò@ÝèÃQæVêu³ö-¤Ñ,©¶‹Â[‰xYrôK<Äæ×%ó—=û‰¿©Ù ˜¥³öP,T…}n9×fºK 9yjiï_sÃÙòKØ™º"¾Eñ‚´Ø諆²¶7Ы#±2%P؇ÐëéÛ0ó'e³™† èØ`AÑað%{âÞ@´‚fÊ’ÄHÚÄ»> V%cR&Çp<=DÄ“Gb.ï§ÃNI[æ•v5AÂ0ámØ„Ü/[6%¶ä¡[܆„ŠåÏ·¹’{×áz’»£Œõ,@]².1#˜‚ê0[î¶Þ³7Álô‡^<“æub§EއM“°­EÙ[­4|Ž‚aY‡R´h YŠ~s }| Š_’~ˆ—Q…øå½“ʼ„œgIh8 ]Ʊæ3Θ?¦òþÍ-â²ÇÊj~^ "ƒÁ1Ì`t`¾_dHüó š‘ž—ƒBÂ.«2T$aFaC›t; ˆÞ*-Pà+ÖJ[I0ñŽAkYà[ž›±E7Ž„ЯÁEhðHb*ò2qrÍñTV…âuߟ\²¤Zêšba‚b¸¦YAtjt ¾ž§ îº[.{üV>݃bX–LçBÌÎM6¯,[ôº-L øÀAèYB4±•h¢“c´ƒÀ®7î®vtý|ô[óóyç.÷Õ¿Ú_«Øc}rQ8ê9æ­¶žåTEÚejPP¦â\lðpÇf·+ÕèÓV/½ôy½§:üÃÇ't玧@‚ÙÍÆ2M²™mc©`ŽÏÿ¤à’”qx!RÆ8¹¦>¾Í>Î_¦¦a |4·­†ù—ÖûÏ“ïH.óÑ6. ,DYÊéÁvg¬ê¨#˜¼Öx'²èF߉kÐv©¬„U]Õv?ˆL 'ÛWYhãD±—1Æc¨›9|iÊJFsJZk6‹CõxÐ^‡Ž;•´¦C)¬—ø;»–H'©ÆühXÀm©‰Žs6õŽêz©ÞèÂõ¥*…ñó2Ðqxîai©÷e;[A礘òÁ}1i˜†‘_ !Ø‹“(v¤OÓGß²ÞÃÌH9¼›d‰ÐWÕÔ뺳’HÖÞ:zD`"Ø÷¶nb5×-$†Öoˆªg‘S;hQ©oV'…ØãÑÄŒ…˜:Ñg»c3C4ÜäYúÊeß8äMÚ6â¹R8<ôA=žšJ–{°´·Å¦Ë8ø„ªÆ9™ºvFöÙ¦þX>,£¤5b5Ï>N9A8¢@µ9ßôÛ”oËr\Ýd ý˸‡J]¼ »µý…ÆäNì\ÔË·‰ÏšW{ƒ~G¢Aì5ä\N‹ÌYwøœ†­¾æŠèF²o`£jê©Ê!h5€:f }vgw:mãƒRº¸_¦ŽE¦ön}1‡Îàí]¤êB#‹”æºáÌšËq£'Þ,§ÝeeC½¯3®ú+)kžZÒïRÆ’tÙ à(¼‘‡|ǽ±1x{ŠüiÅÊèÝ#"$ l;"'Wi³ÙZl¬=˜’Ï“²ç³[Ï_ËqQ[w”ÔŸ˜:ÛõTÔšø( !o2ìÞ›ön/.¤p°:Äõ{0K1™Kï“Oáâ›ß&¯N´†YBĘû8ø³½"Îlm¨×‹Ã®¶ëª­Ha¢ñMà(Eªë†èj™Ú9ŒÓíÆçëDçÀ0I±¸/Løì°ðŽ´R÷‹¬[W/ !l­µp-ôJ4ˆÒ[»NºÙ© ½ôËTíìº{ä!d9›ÉnÙ\Nh;Ze5—! œ.Ž—«Uö˜[ꙢfŽäA ¡PÀrJ§]jÅi‡ÉJ° \săÔ †¬½”éÕÎÈ‘¨7 ŽçD;dózrŠ´Võ!e #•¢ð¸mW_+c§P"ìs/xB–uÖß&šûgbé38S(‘7'UÈØ Ê’›Œ£J<çaÌ5‰ WrÂ4vÛrbœ› ]ø—}‹k]š›†A8 ˜É­²ðš+,ô²õ©ww)6ÂοJNJd¹ ¹F{\¸Ý)E㈩ènï'yX¨¹Š®lžÈy±·§ˆk†Ð#‘¡2m$+¶Îö#¤î ì²qNå –eÇ[FvŒnFßs¶~§+ üºPqUïýÌíÃij&Á79˜-sp;º[jûÃ}uïxÞ9˜é§‡²èœ^qÎBJ͹N@eùˆ;>­å¬eâw&â¢í›uw Ý%d‘Ý_Is˜¥ê÷O»îòиÍxkÍk4˜.öœƒ3ÀuªÇó%Ü×j¨>LK*öÆÎ°©'£i4D¬lâñ%ó 4NÁiX@'t§„Š˜dÙ¶ñQ Sžà€QæÓJÒHU¡aàDs㘠زŒêÚÎ[Ö.Å·<¬ŠíÐv•"CÑ<Ú5Ê4@kŽª|zM_¸mùYkyá³K DÀém­©;áPŠN·(C T Ê&Ù— YÏB[$h<:Nôùø¢—Þ—{t0öÁû,¤a©Í´.D Š­oâ·Vß6 †ÒŸlPÚzuª‹öÈvG%É<µBÞÖ¯ƒz`¶±¢Ý œÛ£Ôíîo‰CWi¶Ép°Aˆ¿qˬ~/—jÊ0ëõž–iT¬ÃìÇ  ^häe๠kŠºJQN£‹J1ØVMáƒ]¶~¦.Ç5ßKu²±ÀkZWÜv*œ d“@õUº§>«²Æu0 Iµ ,Â3æ½. ²`Ÿ_ 'Æ¢…£~&†ñZµT`êk¶FûGlóŸþL¼øL=ÄZ Y8ia:S¹Œ»Ü‚žé*d¹á98!Ë—}XË[ìÛkÆrìBóQÓ6ï KZsŸìtÅ‹Vt§\äI+·!¶œ ë`T­«D£ˆØ–‡¨Yyè10ƒ•†À¿C, ƒ_bv£uà,IQ[tÂo—CÔÜÇs*þІ+-˜Ì-,.°‘Ðl¼NÄ«À«œouqO_Ò«•#mÌܱJÚ¸mM#xjò ÙÓ„ZXa5’ú®­A_(ìTâåð×qÑcâJÎñ/<żäß? ²èƒ6ì-«¤„¯›§`SñÏa¥ª‹µƒhƒ´Ä±CéVòÖŽÙ¿b£µsÃ1©L6­Ä˜ÀÒí4YP²~6¢Êáf|4a$’pïnù†#ž:fG_žy½)vñ=•\’Žé@êKW" ÇÚœYWÕ­ƒà4ó5z6¸LêääÀIà•Ó… À9ÐY3n–åξu¶Ba­©!nÄ5ºJzµ_FL ͇(™DqÜb3ùòí|Ql‹µ’î°`™™àêÈù ä⣧j9©¢‡6η6s*Þêë©t*yO-r§Õ“É ê]5aOÙµ»Ô¯Õï ´> BXy›D.›vÞ$ûÊ´í4§´è­à ]˜41Fï,écذì`­j†Ìq›†Ö3º%Àéys:J dÌ·^a¸”¶Gz“…jäÅŒ ö;‚§ó%à:˜tcUÄ,(®“ÅÈÙmÚ' –í2é‘Z  R-¶´ ôq1c1ïöFCÆLY´¢­%—ÚšëÎM›ƒ1пœZ´7,¿˜u$I˜çso‰ÌOúRDqEÍtgÉêŠÊvå–Á©µ^ds¥[Àb9LˆñÜkéÉBZ«Rá8Z†áÎ#]ÊÊѵ_ŽÀ]¢²2ÒY¶Õà†õíq«ü ©öGSì‰(zî¸ä«{Û«n;âž8«,Î:B/À8ÈÀ†Å_%&üí"âˆgAi»QMáJJÖÍ›0Bÿ„ñÒí¢žÍa/í«j=¸!ŸåhNˆéV…N²ãò힣hõÚr/2“ìYMGŠg[~´—f´V°Ö¾vn‹6©Š:üž>=HûŽ‹û¥Å-[¯K"|(X¬S»S"ÌœÂM¿šÑCG„×8—n!-‹KZuåP¢Æ»ft”"Á5+ßrX×¾”UÅ1$ùK2TܳìÑe nsm¢OÓ£ßO¼J‘‰œD}¦˜–Òf,àëƒ@µÎÔ ë ¨‹§aӒу^¸Ym^ÓuåG̲Ñ~ÂAï` ü¬€9Þ¥Ú—ýõ,‰pS^|Œm†”Ϭ`ZX‹U„¢g jf¾t¨·Ž6,®¬²1Óx¥Â¿JÏ2j †®T¦2äã\ ±î8@" #Ý Ñ¿ãº\KÕTÇYsK`Äõ«nÀo“À­Äq“t‡è!±^Á.Bêì :êû«qùëùw%c}¤û[ ѨN=SºÛzóA;ÔË-M}qxš\Ý9Nʇ-`Î6n$\Iæº3dbôãÀ ¦Ñ˜zé»CáÏ÷ ·sã!CßÚR\If°ßh`ÎÍ?_üÚ…{/Z0{Õ£lÙGj{†„¡gÙî"ëhqel&¤¶hgä`Ø­bðȾJ„TcIÉùø¡!vGKØ*"?BêŽñ°ÏhšÊá(—žw›H¡é$V@¬`c*à-r ‰§vh'X Ò,z!a(;VPÀש-«3ØÖ°h5Ån° CÅã0f‘Ú`ɃK3Zâþß}o ky-ò9ØŠZk¤iOšÔÛ„¼sZyd§§Ö$SƒcEkóÔMßU¸§_ZGÏÁDð`œ-ªA”2»ø˜ÚR;ü,§Y'"Ÿ]Ï- ª~4ùLç¢~%™+ÿøÒëX(´šzι;XÀpIàÓO„ØYª~= óýç'ˆ(ÔÒ\ç„PMÿ_ð3Á ÇctlüS,œò2TW¨(ì7XQ_ã_سmP6ß;vXœ•ío=h¸—¡çï#`5³ó:•eP9Çt²oŒrÊ‹wwk΂½‰ß¸d ÉëHlÆã;˜,Y+N à\ÄOX¼Œª¬Zzÿܺ“ŽmpJ›2¢¡%'C­Å­ü@í¬]ç<·øh(­ƒüÔγ/°b/:õœe,gÂñp Q?Óí Rro  P?íyu›èý¸½³vô½;RähÆQ¼NœÙp³;æ³GàäZà‘;²;QŽjÆcŠ5.[‰™uÞš<—;¸¼Kn¾L ¨:ŒšÖëú]Õfã-¨œ'Vaò7DôjúÒlNšY*NеY§ÐàoÕ¾Ãw­«q˜´å¤ºß·V˜¶ËÀ%3Q–å£nRÁÎ@èGŠå†E4T£2×Mƒ®½¥˜?{˜«drH/î¹+ ݼõ« í?^½ßTßZ+ÅØDáÔèÖ¢”w°æ¬Ü,Èá»DÔ¶(¼`þ¿v2[^”loUªG¯#ÁÔ¤´µ¦*ÿO=MV\Ùt¸ví'°<%/BÐÅñíPy¸&$÷RÉÊuÈ•èPøjøuv$äÛìX+ôšdhƒt+×8ò•† tJJŠÿÈ‹uc°.í™Ø|½Ñ B²Ed¨¿Yx£Y€ƒ“—*I{ ÐÓH ^amªS¤>$Ô ø#‚Všãv¢£Ÿ ì5DgÙò® ÂUsËÂ_k)‹ix®RžµÔ‹Í­3F1mÞ¾âéæb©)kÚ4Ž+tc5º\N üdireŒUÔ…“¸è¿@5!9Þ zÂ_ƒ_jB÷+jb"¦ràH!QÀ8W³³ê×MìÓVdz`Go1Zr›ÖmØwõÅŒBÛ§:|¤â›T¨@bã«·Ù4šL2[lVtÌ4‹ñåå¡×2÷ŒÆ%˜Ô Ž{!J5¨p#…µÞönƒ)&Ç}­0tC¶åƒIÀúÐ=òmr»ŒÊ#3™Áïå@¼Ž#V!ä­ùj7C4KOºZ­ tè9#ÍIÿ‡ßŠé‹£YVê}”µ®S(ؤm¢/"ö\Ü ñÅxŸ"ßœ¥v ´?a-ìÃc „aŒˆƒ0áÎ#Z.zFª‡JQýþKÞ÷SXèoü~°§íJZ¿(!1ˆS¨*ðÊšÇd“òáÑ#6 8/’#Ž{UQRZ NýûEO5™gA†ÿä¶ògð8LvH³Þ¼ðhjÅX§1êûÒ`è*ÄÔ'*ëRAǰ rÃþhnRÓ§/he¢¹G#iygZ3m”¡=j35IunÙóaq­4³I´užv;-È‚¯…‚ºtˆåeââ£@Êuæú«mo ¦úñ”ÚQiÃŽ‹É³J¡À*œjsöd¤ö‹zk¢µÐ°RŸì•­å*ž“ø¡ÿ*Ç”zÖ .F;|}¿ýÛÆ‚™™ÌÙ‡ÚùaÐýY¸×-•2~| p¨ ò*¹JñŒêä˜=DËúž¢ú*ɧ–«ÁøF›PñrŒúÙ©&ñÙ¸5n€ØÌ3NµÏ¤¦^9Ì*Ô*P7ž5ž©-¢MadL8™[÷î§ûœ6P /„œµ-Ë‹ô3IfõöWû”rn”ó«°k…È'–ïÞ'÷UTêx‹ê:wàç!¤Ä¢sBÔ鯿µ‹X$œÒúÊÂi ìr Ò÷cš-FÒT³c{a» „Þ; ÀLw‚ô-fû·nQg]©‘ÙƒÐ?Ñíõâz+õ}Œ¹SËm„ýv<ÁŸØYOaH–„è`–,Z¹¹;ûŽ=h‹ˆµRÅ“nvæ€p„†aöÆIªÎ‹°q{@˜ y}oÍŠ&µ®ÒP²³ˆ7¶wL4Ì‘¶àâÌvnuþqnË[´ÍÐo5-¦Ÿü W£oK­gh3qÑËâ,1ôPËy;\Õ¦9VÃj<2éÌBcYÈ %é1ÓªÝø÷©êˆÛ{™+à-|ñÌ?wjɉ¶_t5 ÿÐË«ˆ‹íE4»Ï‚¨2ü¯æQÍêæJwêû0Û+GSN½!Žcáo dªÚ¡¥²[ˆ_>k+~h¬Ÿb^3S`†õ—CÎq„—Àg“>t–Q.o4"³³ê‘4RzÝŸqknM£qwg×[ “P°æ@Ó໳!A`æGZ…ô*¨KÉÚIÚ5¿®„£L‚&õõ¶µ‰'ùþì&–3‡y¯…Üç’쟋ß;0±œ•…°ßó¬–ñØ6Dk>]†%a ²µžˆªUÃLøËX6=T—Þ ~¶\_w¢Ù<ÖKGnôäª:Óþˆ­¨Ö†[;2®ÍÀÎC9û¦¡²¶[WDÿÙ_+n:z¾xIæÁ×`SÇÄxOCJX¼cÞTv§heD”Gt¢•~³»Yv$DÄá§‘†¹RIªý¹Âw»¶¼`†_äÊvZ÷TŸå¬ñ‹ž‹‘$‘Á¹s«Ÿý2ÝB9Xã«)-ÑxïÒN†€_»uì–kž¸»•̬çz|JFËÅ·X°ú'C¬A_TµÙRñߟ›Im.!ºÄ»1Éc)«[¸Føõ5 B`p¡Í&5 wë¶Ç.í‘7öÐ;£»nqMËÐR˜lXéá,•¡‘p5pZ–ÅΠ/»ïXXÛYÊòC wÉ‚ÚZ6~õ<"YJ‡@VÉú½Û¶rÏt–rÛµš ,_cdÙMè®;+@ W›öIt¾¯/)é$0FŒ+GNHÈ`y ~ùMSܾM$`»^1ºÔŘj 6`_óltܨ*ëöEQÞµ$•w9½Ô còô¢ª~LòxåmX-°úᔑ±MF”ôAÄžYM%гÓ@£!¶5zU®6#µÙ{R^÷­Gi¹~§æYS1Eú´¶ê]Þ+¤x[ÆÑóe~¾È¼«O!Ʋ~Ûª¯… 2­Ù¤–ôã$’é[ÆÿfF™s/pGi¼Íêê/Ë_´Å‰g9;•×=BÑÊ2&.÷£=ÆQwa>ñ2Çb/ÞJÞ¾+3…ÛÚJ+Ñ]Ùu©D×ÔŒ¢‚· MÍô6#ÛÂgÒÌý+3€•žˆ‚œuX1Eo™ü£ò}W®çn¼ \JEfoÐR.¤P éÙÐ ø©EêÞ^Hc°ÃÀ$ë Nž­´wÿ¼“”HbO"fÏѦ_Þòìãµ–½÷ˆ ¤m6ÜÍîaxÏØG K’p³Ý‘óþ‹Xô6XV´å›®j‚ƒ "¢ÁÌaUWKDÏŒ â7_ W]4‡kúºî°—‡¬/8ÿXã5CÓáGpsEJÝ~Âa¯l´ñyíÆÆÁµ• zîÕ’±0f®¶xØÖœ÷5pA~áëhîý˜÷‡‘´AAºZ™~ OPäcá,[-ÎFµ±CK†k õÒ×¹ðÄ2n$e`ìØÉÑム—i®ð1ØjÏ/wíDì*ïù*–†N–U‘7¹Î¬ãÕù,ð¦r•¨¼g{YFWyîæXkÊÁ³'ÆI(¿]0Iî #Kü@Õßvï-]îú¸¥aa¯Éi¦pņËäG¤ãâÈêz0LC/-whû<Õ¹Lš+Úàs€µýuëˆZÒ9äæm»À5söù‰ ¯y`‡cõØH®-u¢Mé{òød ¤±£ïé隯r/Í¦Ž¹1ÊÓôÌ[¡el†Á‘/ZWÞƒìJ‡ÃTa0h´|Ø‘µÉhE'ÙÕ =æÉ”æ|(\¸ëõC œ¾NJÖÍÜÝ“[<œ ¹k·œD”°0  ÛÑÖ›ZÍ›_ö»P‡ ² 7aû¦cd¶bð®Š÷(£nkvÖíSó"ï-Rkì×DŸ<¬pp{KITùæXÉZÜ¡çÖåÿØ«¨¿B®„؇×I¸«i*‚XBê$W4ZlõURÅØRóØ™º–‰p¤µLB5Õfqí8 r³‹-ÊÍø9’X]g0/™2 ’®4”«îì,”ö~˜{t¢c\Ì[²š‡ª— Hé°aɾ`ÌÞÈf†µX·Â§-,ŽÅœÝñ¶çÖP÷ÉGlÄ2»†pL®¡ü—d„tsãc ‡Gyøÿuß8þ2º z³-Ë]þ­A®E²í¥Òć'í qÌíyíl:ƒ±'3[ù´/V2 §Ù(ë²&uRóÿ‚±»¾ÎyÚ…]o ª¡¤´;å›°Œ˜".7 ÿÓ4^Ê>Óc*õz1» ÛdóÓZy4º^{sì·÷+ºPåR21Ûʃ¹9`‰¡iÝlXÍòjÖ†Ý~å¸2\7 +N›¹ŒåÙ_¢Žˆ„b}*4\¨}¦s¹Úsjü!Ëœ9ý·1WÙ‰jÖ.8±ŒˆsŠ!aÉ›^PÞ®–¤}k±I{åó» ¬g úA»ÌAêßP[Œ„úÔ¬^ÏC‰¹¾øP”ûöÎ'­ˆU8SŒ¨Z¡G¤·ÆÕ¥t ù½É䡨ãi‚àLÔþŠU‚k³4æÿ9ž1²z«/ ÚJ†ÎÓ+м3V¤œÚŒïÌ1(&v]:°³0aì»ßS#È^Ÿ±Ì,VÞVõÕ4)­©W©&¼Aø ±›Z¹¿íÓÇ•Oþ~ï‹¿ÎûP$®†œ³láE3À›¤×-— ¸¯ãôJÝHkè(‘Ž,<½ø—~KÏõ&x+,\®+6R¡°Ô)“ñÑ2 Sú×°t÷Àv„5AG³D²8xZIwfç‹uçVÖš¶þırâWƒT47÷ ‡î[V‰P=Ÿf“^uøÚæ%V]{ 7”ÂRÖÉz?4–Ó‡²2gÙÑvš#¬¬'í!lÔKK—¾Ô8+vˆÃA’ç´ávæ‘g† àÿo³ân{Qõ‹wˆ¾øƒYíD69EŠ7Cã½€}Æð}pWó-è+lÌË'Ø®`û_­å³ñ¹eÔ÷>¬ ÔFÇ_ŒÐ´I1âWÃ÷NÒY³I’ñ3+ÿóË%û_G+‘Gáb1Á 7šó·®áLåUE£lÖþÅÖ”X²P-øW HŸ"-›{Fýr[²ÎFÒ²äÛuÉt ?ç;ÏÛ ‡ÌÅ´2&ùU³H¹ÚÂ’Úû÷½E’Îç=îÑ|CÅVñc¶ž^´bصe‰SÝã7¬·ì–=FsV²Æ &éà!Žø2ßýþ)KKÈaÁ¶Ï÷Φèw©€í“P5ŽÊ"¡•sºî‰ÌL!­w.Ç4×ÔÎËPšÔ<¬ø 6qØ%ãÏóÁ£¢ppé™:oi„élã¸S^A”e‰Ï1NÑHgã˜Ù×=G®š0EµñÅ{q£ÿÂö ‰ª§ o‹ùDMÿÂ’º?A+/Hv^ìÉ[÷+‰û‡Öãýeë ðƒ†Å©ÀÃ÷übn:¶0â³Qv ÕµO÷­¹x\uÖæ/=9 ŽTwN{8~ì‚ÕehÅgh_¨,’òl˜«)fú誑hµn¶3›y¬¯J· geõ׿“Þ§éLÁ(°95óûã5e2ë.©4}“¨Øj·_ÞVß& * êÕ~ô1sd1 ÎLå¯YŸú1Áí¶ÄŸØ0ØèοeÖ"çRüûÑï`ŒöéÞƒŠwV†¯ö9c»dÁ°·_öE½ÚÂ/=úχ,ÖÒ¸ÖFIm cö/õmî´bP^¡²Ï؆MSm£ ãmÆh¨êW'¸ƒo]Š »¶ö±–Ãv\ƒÃh:`±r%jÌyðÑýòa¢`¾Êë @Z€Oôä^½2.lÃúhQ6äªié"K ÕŽzs©ÄvJß“B|—»= XArކɪgñ ´€ƒééÃÙh þ>¿ „ã@y´¦š'5©‘ËXKMîŽõ¿’èl¸\$“ÜKç_W¸åMÛëÓ9C­BÕ!7ŒaâI~*pÂÛÕQ˜¨gøWX†à•u¤5Q#“›zz¦|™3ÓÑdåOÚý¿nCOG ”Ê÷ÛG5õƽ¦ÂFPõ\ƒýÆšÛF{æä—jâK˜Û:TuÚN+c£ú‹F"ÊmTê~éÒ*oêX9MÁÇ®9ãÞ®Y,Ϫ _D6_¿BOÆ›GèS+ÿr!j.o¿£¶7b%—‰ÑWÕ”!"(r𸾟ÝߨßÖÄ ’æÏ-ùº×ÖÕÛr]Œú&#o$On¦w±Ù§Þ°íW5ÅâUWdð}“…ΓrZ–)¯˜ÓåF|l–yY#úÝý…œ \¹µ“v¸T­Ý­yyž§¢ŸàTŸø®Pd\ο‚:­ÌÓ±m’ð‡mÊ÷Oß|¦åãÅ2ït¦ìH¨}‚4ÍOs¹?Ò±ƒœð½i¡ŽÉŽˆ0A#²ñiÚ%Wº]ÝÕ†KÈ 'ëþ­ÂÞ †fæê šÅØÞÈUŠéYÓº¾ãG|ÙW~Ü‚(be^°f£ƒ ³AGh­uî¯go¢Êí¥’Àʈ§Ã R×è‡Í@“óQ¿šª¥·T›îlºŸjÓóÕÐ2&ævê$­e×íÚ”dÑntWGE/·[RÏŒ¬êsæs×oaÖjgŸï1¨EûŸa²AÍD[EÝþy¸žt"bä™ç@ëÕ‘²?2Rb“›c–66ê®(ëv#=Æ<ªó‚=³ÝjÑ3aaZí’öHÁàD˜Ï΄Å}ÈÈ™®Ê£9û,~èÝòƸôµ4•å\ÍTà ¤Cµ*¦CÒ””Ñ×£†²±·ˆL;»gñ„½*CFô1ÙÚsÛ½é.›:ÅËQI­_£üÁ5š8GôV,KûÜaÌ*Ú˜”ÿLýåÌ5‡iBdû¸(Vü_§ýH`lD÷«¬ü³š”:ÓL«³ènØë¥‘mÁzÜ¥?Ô´7ôιÆWïͨA݆rððêáÁ§·ß°apyÀÏ…=¶*0ú‡è”R;†:ݸ·¦¬»lÛœæmmÂÒUh k®;šáXÚÇätï ÙR–&ÙË?“ë¬WrˆY,´«8QY£³ ‰ýovWÈíÒ?Xëv;9Eí§[Õ_†“ÙWž·G¯ZÀgf@Ë; é6Ží¯XØùžùÜz¼bqÌô–<£¼Ãd`çµ¼±æ+s«˜Õ}ìbïãyü7Ãr1ÚT?:Á0~_ǮѤÂÎê÷Ÿ"r P:æµú.!ò¬¸÷ЉèØò5ù$D2ºú7k\ôg6Û¿¿Avߎ›Âž„ ­p$ýÊðr©³ë%)žüÅ'<+V!ó¦°GûOŸS8q=C—Qò#³À«=Ìõs*ßVKŠ=À8 O :+Q.[AÕöVý¯2”Öò+@ÿó'»ªUņ?ƒ’é䯆?NÕ×ÒÓз¾ããÝ÷W“ËWmòèµöF°á»ñµ°Ê¶AÞul‰o˜$ø›À ì¼?eÄ}mý”*·¯'ÍÔ“¼Ÿ7ÙQ k†bº#¿Œõ÷ w–5ök?kán¸½€ÙPñÁ½ë¯ ÝåÎæ¼„’ÌI.ýjJ(Tðm鎴Ó:jW®Ëwnûˆõas7øç«v9­Õ/[ ·'Ll+; Ç•‡­Ÿо/ãëÉVÿ½+À~s²ÝÎàç;(¤¡:`[ &Ä*†rÅ‘nyÝziÎ §i=µO{ Ì+Îôµ^³¿ãæCÛÊ»‚Ö;›$bçnfzñî»þæÔRÌVÊ«N>Þß(ÊÓ»KúÂÚæÍ —}Á˜ à‘/[=1mhÒÓ¼6(ô£ôÕpg]5Ø3Úox5ªòçª,ºç<à³rp vühw “«;B²ò4áàf<ßµ¶îé±0¶Û÷æ5”*¨iÎúó'¡Ï#£ ‰9b«8ŽÀyÞ[?mfªH¿5lô„ù*ׂ¸¡ÿ·¹amÂo0êöúyí'w±ÇD;&¿_ûXhÞW´¥1ªØ¼ÿ`®Ð߸®ÖǶVGß?oíý¼(¥®Ö¢žþ W¹á[;öšó‹ÿË믗oWP÷8ñW½„_QŽ+¶i¸­>Â&ZÜø¨{mRšœÔt{Îo½Äl—ÞUàBÛNÛé¸Ú•½R6~™ÑÚ–-î÷m¯Äv' úlÝIh¶œs—»·ë÷¬© ÇÛJ.}0×6¨Mw%ÙšL+¢ðçóÂ1ßK¬?ÒR©Ë¹&2²ÅÊ)èO²Úwœ¬Å3ö»eVJv|€ÜzSÁfé(:BS””ãÐØŸÍíàêèì|iÓÒÀ…»jTO¨ë>…þcóCû¹GíêH[d¸Zw3ÂÞÃjÍžûåÜàÆ}([uã`×CäÛèÄ”ðÎÝi~ *€•ÝÉg\ž•ràÖd=íàïøþÑŒ”44ÓŒmŸ„+•íq‹/Ç¿¼ÚlîÆ±j’Çç¡ByysõÍÚÚG“U9²ÌÍႤ Ö„W¶CÿM´ åiж»Û¿{jK°ÙŸå¿C_ï¾ý!1Ú:g¼¡Ìo[„ÅŽEØC]øTNFëv¹+<¬»kZôpN›Ýô—講Ú'îÑoC ¿eSÍúrtvŸ5 næhí1!¢Ðè9^÷"[•~;wBUÚ•öÒQq{Hdþ+O’ö­~o¯·Êãò5ÅÓodfÔì“z˜b‡ûÖºÔ›õYxn2ºÚ"Þa88·o•­usÏÔò³ÖšŒînÎ7®e³ÐÀ˜ú4·d$¯±ý1z~–6÷âX!â¾|è¬fx=¬ðzŒªm"êB?åÔŠWòw~þ‹±X ì †¨ÇîZ­ðx$.Ýc}_qÀyÜÍ--¯~Y:»q¼R;<ýƒŸW©Ö¼—öW`ˆ‰éºä÷cáþ¸zæ2º?=H?§ê:!£ñÿW<|»>zmŒM¶n–úEÞ¿…‰„ïG*K.(80nÕ °ýsÿñ{+¥O/UŸY#Ý©ž\?èÈK)åÊ'ºÏ!è´žð>¥wð|™kÕÅeŸcü¿òíÑÝìN×bÕYÒ ¥åNßy{^ùrE¬1âÆ|!ú£ÿÆÄt¨j÷f²™>¬åˆ¾ÜÕù»^5¿_í•PbÝ,¶¸~°O(-öß{ÔáeDÿWé×yÈ»³¡8ݲ]öTÛVý¾,<Ÿr êéöÒí‚•^—ÇÁ?‹E÷3Íb9UÌ¥ü‡«ö#”á,[$†RCûlˆò»u+õú‰5“ÉIä5f蚸˜,Il˜P]^è—XO¡ØµFø~Ì×d{iÒƒ¢Phó!¼À)öÊÊ¦Š´7ÜêA¿~ÌÛ ½ìçOgã3ÛUoW[®Þyõu¿ª¼ZÒ­ïn4Í”ý4Z·Ôû‘ÿfr¤ª÷O.Í6úÓ~öä¬<ìì…X^ÍðUˆˆSàÒäYå˜Úa•¸ßå³¥-±Å7ª:cÓ”Ÿ%/õ¦‚·¤êÖZßÛÌû nàwS;‰®¶5]kxFüíNÖ­æ*ØÚ5¢>Nþ»«W‘œÖO¯Bt ۔ˮE¿ 'ý™ER8ßUó·ö>+Õõœ~…Ü…Z,#û²$ã~Wj‡ž^çISsõ*ó[òŸÏæ~$ð(÷zª(.¥†íÿ„H‹‘¯¡G`ßøJAZÙVT2ƒü×±hº¹+Ë팎–×9ýÉsÏŽµÚÉéä ²»b -ynG©˜ Úì•™¯ÃÏ-¹Õ˜jï!™MËLÓc#xÀ·ƒøG›ªîfá^° I ±›êý¤Û Sö¾ ?H}¨f ^öKÒÎ’s}ŽómûÐÙÅ ý'Ô'~@KNñ‚ª,Ç<ð,ji£P4Oƒ<žlÞëµ¢Sa{Ø/ À¼õŽéŠ39Ív’ ,»ÎÌJÀÇsÌHIMåÒÊÌÊ’«‚e‘îf^öþµë+ò,JÞkjVù›†’Yš¸˜ÇÓþs†^>qÔv[Û¾[à Ôé¾Ylb\†¡e,ø?ºlOþUÆËArƒ%nõ9…{ö!ÇŸa¨Å²¿I%rõ¢ í®ß³ÝœùQOMìYD¼fŸw›°éWìE;›€~Н¥¾Î4‹¿NVË(ì†Û.©Ú½y’û£’ñê®&ZaJJY°çQÉ$¹ò>g™mµwû,Ù×IJOÌâv5étáY'*nir¸£(ÁýExãîéE|Î)…õ"Ç3ÐkÑ×½uöw³T}. †¾gúÝÈæþ6^Ï(d9ªÿi|ïdåÓéÞý´~Ž«ã´/•Õ¼o°ì"™*Nywx jm«roCòiM÷}QÈ {1Ùt>.ŸåÇÿ¿rÏÿJÕn׎cžçîÌêˆßÿ0.b¡‰ä€r›fšÌ¥¼hÀŠÝšQEä”&×ÈÓÇýWbÁ\5÷-?ÀL×…tã¯w£´®_’«Y!¿D}_æwb˽½0ÍÇ÷4ýkÕO*DK2=õ“¹€ûu “AW¡-rh*¿Y¬Çs ܼ'³•ì †c·Ž>m%2€u¼ìœS,/ƒ‘êµoŠßo¯ ×Vïü½WKxµ¥Î¨b Õw=/Ââ߬éõ#[›eÖ䜤­›DßGÇxëÒ¾ewÇcû¨ß*V N0cËápä3S¸ànÿȨX)oö ¯ç_q«—B!ð,,ˆjSyqùG@SŸ}q`³š¬ Y¾.°„µû­±%§Üu÷¨—iÌÖúú rvå2˜ØäfÐ>6œ¸ïjNÚ ˜9Ó&Í —ºÑ jËÙû8ÿ»¿ö1ÏÛÙ× jˆ¸ƒ.×WE½d #~†ÞÍ ÷¤ÿGË÷³²ÒÇõx›³|.¬\ð'2~ w³‚`a<þ(+…x'–råÄzn]VjÇÂMËú¢ïþd–¸è^–z°œ‹sö%ÇLE=1—NFÄ l²~‹mí`÷£Þ¸¦g2X Ó kìÜÿذ§Ll`oæÒ7ƒû4Ñ@Á¤^¹ÅÂwÁ¶¾Ã™õzÉôÂGJ[û,°]H×7.Á‘ö²<±•Ë;#°.f©tŒÿËÄ(î˜ò¿ ÉÏV²Ä„’nž+æ­†ø™øc~(Ù}Žþjýèòz–P[LùÔÙŸ9–$»k8'5>&~“7ÛÒÍë4…Îúñù hú x^ô|¢)Ý& ï,Ög#ýÚ #lù[TîõçÀ_íf3'Ä;š­¿›Ïæ»ƒOêÇÄþ‡ÁÜ·”{aýå]òƒ3}ŸëEÞ“~ë>ÿG§¡ŒP©>ßcËÓsóý±Y³÷_ùñ=¨ÔÂÔL˜i¯±º)Ü\Ïx¿ÍõÔ¤‰þA,Þ´øº,/]dc@ÚIÊæ'—z»è;ÇǦ›þ»£(lLj5.Áƒéåë;Þoí*n¨4¾ÍÄy³ývú Þÿ¾£ÿ2´µŽŠ¥¬ÿŽØ:Î0óÓX]óëÏ÷,ûøþÌU§DtLt¿>¬³‹iŠÇ6ØåçÉ𽞽õ_¤ŒNÙVgü\ÿbÞ‡?ûU]^â+¾æp­[dok£ùýµ™½œ?ƒÇÇôhÏó¬Á‹a1X:`/úë\ÀͧÒív¡’i³²†%áÛ¡õƲô„|ô¿ì×R^A’‹ìOn!•o55Ó<¯¡s¬öñÿ)1/{K)Ü`)ËxÁ¬1ÿ[ßv…¯ÑÃØùÂØi-€H!±R’šw0ÃÚÓÎýz¿áNˆ&<}­a“Î=gãsŸ·óGÈUKÌñZòG§`|È­S¼þRÚþvh3í´êÍטöâ#ºù7h*šÇý»Ö^¿c‡U—^Ä'pÄ.LNívæo}µ»ïëÆ5,óÑ=`æ2ó/çéùø™˜ì|¹©óloOæ? [iWÆ!µ°M[‰2$æ¯ÿÖB_ítThYHÛ)ÀÙ r?×´5~7ç˜õrs'¾ ÿôÕìõiÒ¶ýŠWš‰oôf_iÖáÿÛ·¼ýuÍÔé¿G˜ô%Òº,½G ,« œ‡öÿ%ÇÙcý¨VšøFh®¿h~4·‰ûÛà®"·‡ë*Ïhßnýöâ¥ýN·‘m&Ëçûda%˜9ÿÉPI¼Ëo{V …U{UêV·ø ïþ‘k.)ó£{$ }œ*´#’ÚãÊq+cén®RÛçEä¼¶è@z»†ÔOÃø»f…ªÏϵ-ß÷û1)÷Y½-E¢)Û‡IÕã0±CjJE:èg×üéü3tR¿Öô·’;£ö™‰þ`?îN@_Óü‰¥"K‹%îë”ïÈzL‡`Výxjk¾-^‡Ýô:ŽrÎUÍqøÒÆBÚ/çð–Tþ²B¯Œ¥ÛÖÖŽ:Ó5ÏD¤ÓÎ?ááçÁÍk³C@“ ÎçÝ ƒ×ÌÜ”Žºð9Ö·ÚüÛ è÷JiZ=Ô§þxªYœ¼|ø>} ¡}¸Î¿‡Ð´ÛY÷ˆ÷†¾Çñ‹Ü®ÅÅ\ÿ5ú«O“ß_`iÂÏ›’ªwûÿMíM ÷ˆÇÇùÂìx®ôèô\ê즶1_|{4?ˆ_éÿ– z­I?ÀT_W‹â±Ú/ å\õ_-ê,ëÊÔÀ×Vg©þ¿ßßþåÏìÚâÿ½Û» ‰ƒ‹›Úøž‚\?ofÙç¤1ž÷£D„"¶O^í¹î$ÛÇÕoo”Ñyþÿg]¯Ëi»ÿÒÊ+¿ŒÐ"¸ÈRï°h­Ÿ<­?àÿ«Q“½¿ú_’g¤\ÜÒƒíB|4ìå/â"ü+[J€2ÿ·÷eöÞÛõ‰;äÒîÝ«"þq,-½ú4Ç^™¬}ÖšùÐ&*l*4« ’õˆv®É+6A~]ȵ¾‹¦ªŽ¨‹ÀjÏüKݼâ¿Ç ›DŃÑLA£^Œ'W´*ÃÚöä—‡²ÊRûk˜þCLo7Ì!¼àÍýïñ'üº³; +éתÿ_Æ~#ä÷ß[öbÏžiuýWô»½Õ „¼K?¿Ý‘Q­Jmi‹ÑYþà~ÚÌÓÍ‚WýëÝÆÌ»¶»8tïÊ?l¡ÑL(jæ´þ×êþ,Ün'ÈhÃÅ}»ë»“$çúskQvH.)Y¼·ë‰f}¯þôyÕQyï"5nÏêÅ{ñÄø¬á°ÓCÕ‰·¶õ½Ã™ö![0öûkÛ7ú<8T»<ø7¹#ÿ6Øn'þ­:á÷j2)  …OK[µ ôM™e‹†{ÐÍX-oÝSÇ»Öý9ÈùΧýyï êÔÚÂÛ§²WÈÞZCßû>ÈqDÿ WA« ä÷ªKCl…|#c¥æ[G•Šo.ãÙØ.y2/ß *®¿C@r\/ uÞŠÍe†çÁ²¡,fSjÀe×ê6=ÆvE C »]ÿ:À¡ÌöѳM«ß«¼´ƒÞ`ž—°;­“O+i?Š·Û ¾Ýöõ‰ðþž¿ÚôÀÁ, î5ßÜŸÓUh †¯Î¸û€KWÊ,ƒoÞ{1jÇâÓ2çù5Jå±ýÃ7µzÙ¿ÿ©€æ¯J´,ßzõÁs@‘N ùòCzuVÈâ.þ5ðÆ™`™ÿ°nÏ7ó>À­ÇÕ,ÿ* ¯}Wã®ÈÉ#Åc1^ˆïëcÉǪ¹ÓÛ¦£ÓT^5÷ñ‡˜$¶rãUºüëÒR¸u0Bqå$À™ƒøÈØyun)Ýc<°Z³ªtŽ0VjÎCžÇ²`ÜêÉð¸¬ÒF5vµn¯.óû,«¸‡“çŸeªoÕ©¿ÄÇw¶×Ëåže³eõué?%ô£—ÙDX¨†Êø ØgÌíuîÑ¿%Ì=_ß"®rVÞfÁÔH—Ù{8nï½½jßSήg¨.Cþ¸òfîS–íîvoéû ßìåAOw.{ToUõYú‹Ÿá°ÁoàâMÈ6Kïæƒ9óbc$îiýl7«(‡záZi¢Pz{~þ| œõÇÔg:ko„Rkž/‡hejT7•ºTï´T]Ga®…ë¡®9¾YÃ&Cøñw÷‹.î}žl»9é=ÐõÿÃ@0_µÕO~Ž™ã`Ã>1~s‹ÈNŸáß8«7}¾<ʶ÷Ù’ø!ÇUZŽ•ñ—‡-ÃÝLJL©m—Uþ.x5èÚ“ b<¯O™ÉÓI|Ól¬ÄösÖM~¥~=Þ{B§–»›Ï¡öÿUñEZV>ØzÞv‘œ¶8?e¿×ϸõÚuÚoÑFß‹5ú?h8š¬Wùi}ß«ïÚùiê‚q’Ï«=‹C%7 ¿Pަ·!7ÚN®)‚lw2…)eò}½®w.×ÚçmÕÜëdy©úÓ®_E¦[˦¿w?¾A# "×ø7Iiæû»ÓøNöy× –£åõ>©*˜žHbÝx=5ωÁy.}y°=ÈwOµ_”ŒçɃ쭑ßÊ+ë\+][í´Ð ÁxH]æµÞî?ÇíÿŠAA^ãtcÖœìðNá ±öVŸÔàšÝÅdáÔ-x.'ÇðÞŸ¾~îzZ±R-3Ôv$hµ¶×Á},|Ý¿ëýDëˆnï¬zÑ@Egõ2©l5þñ5u@‡йˆ QÀ8Èÿ¯·e+¢È¹ÈA´ ˆ?ñ—ƒQõJÕø~ÅB8–½ÿõ¯øÛØçŸþИÁ6CDõž°—×@-jv @«DŽ4µš×DþNÚ€5`zÀ8† ÜS#¬ ð):zÿMîã¶n^ÿ|l€ïÛ[c€?**f.íÐ"!¢ð Ù@ˆ@rÝ e÷J½ù¯V‰~;ÉÖš­±ˆˆò?(øN†MÔ^¿i»«C›¡Òfq{€Ê‹F]_רl¬¹7ã#òýÛ¬ö§¤oâ²MS¬Ä¯ÅhŸøÐrËç9qñõ6Ì]¶—›½½jó#)ýâÕÝb®òñ5žf“¥„Y Õ®!Š¡¤ê*@4UÁŰ7¤Ê¦¯y=ØXû¯[˜­½{kÐü.œƒž—÷w&zb•¼.«5¨-I.»k¬.¨L¬¾´îuâß%(Z£ù—‰fs#¼–4ÏòŽ·;QÎßÂøÊ}5V¿:¢Ú¸Ý–¨ 0ü2?’¨È[<´CdKò¡˜oñ±× †ýçÎÐ keßõãSð9°yF\;ºö£YbÒ2Íû:@,`;?e¸q9d"ý£CàÈ#ö9èë1Û¥ hÁÛü¥¯V˜äX/î)êÖ0_—¥Î[QÑÿe>+½øA)‹yóˆ´ÖýŽžÇì=×ä´ÂÁ2|Eý»ßZÁ’5¹KlìŽ,”ÝÍô>(—±¹0e.jÝz?“ð©‹kÆÖxfk„ß´ÿŠ=ö(Ç(] Ï a6Ënó#Jõ4é¢M$ñ)öÞ¨7•ó¤Ô‹«‘4ÖÛÔõt #ËX˜…ô±ÀêF8¾W]Úä`¸ºjŸ¾O »“Iù#=ž‹ÏïýØ~O çyºâµ•12¥J|‰²THô›ÏªÏÈ…šM(<Õ/;Èë‘ҿ»fÎGxƒ%õ;Vîh­¾l–(p7ß_ïÐòйØòCØEUÉ51gGÙq~é;möBȰÔÿ»(GÊw¾5®¾ˆÿÉÞ—_ßK„ïe‡?ÑOL Ë&*‡½LÙ‘þ ¿€Š}ãѵaÿf¶%ê½ïÓÀÿÑUOá\— 8ÕC&&n€ß¾ /$Ì}-òÍž‹Ý'úýefUþ¥×:~­H¦©Ö3¶éX4ú>ÍIVLzÒ蟞[k+:Œì[µK+¤†|‚x¾ô1øÿWëí ƒwþlè;ëµîè0&à.öCY¾™<æ%ôLO–hYbÝHx.hm#–Õÿ̇Aþ'ÍÃ:ÒË•oS>P^­ãavêßA‰8‡}¯âk.ËÍ&NLgDÏËcµÇg5é~‘óoeÁ£açºn'ô^æÚÿ’ÕiVÏ`®ôõ-»W_3Ø”ìm+ZÑ÷`}r/ŒÉNu^å: ³˜yŒ÷íæ¶$ ­ŽÙ0å–1iõî›<±—/{ ökGÞ‹ŒÓ@½Xüͦb¤ã0‹í6Xµ¦W‹Ê]›…«3$îLì–i^3GÓ<§ÒЏçÐÏ8Ž=\ñ.Så8ÁX³”Vß¹åÓ0ãGvL¼ª‚ ü¨iƒ~ )g>†Û3ªe®à§uñéK¬{ᩲîRváU‚K9w¿I‘ð¡¥õÌÇ%³…C ˆçÙãÍ+Ùi ÜÔÿ`±hº±»GR}|ämD×¢ý;©“TÀ)­ƒMýÜ(SUôw~½\ê?³}’@‰Yûª@‰ð-ÿ6¯ãÜâ‰Î¤^/±!û<é‚¡„>/Žê²%l†f HöŠ'`>_çóÚö~ÚX.ÿgÝø'Ö æl„ ÄußÁö,ã ×W+Å•×Ãq>ž¿ÓõóZs8£ƒŠèug÷:½?áJÇÉ«nÕxû½µÕωú¸V³!Ä?øø¼Ío&+¿²û,%[Æ‹Š¯?ïoÓÜû°\ã÷x›º>ÅEúaðÙ4:¼Ôù­áp¥e&šC¯¦–áqÚ†d¥—Üû{æì½ðLjyßè‘5»‰úEÇNÄÀlÁšË8ü—s¢¾îME]²ã —dŸ€ÏF= ڮ§í—ê·+þ5í§<ÓrXÐx\?©)Xc±4|oí(´ºˆ‚þÄ/ëôáþ4îT‰Þ?*å¾´VÑãâd—’ἂptvI·îÌnÃfºC‚½tõký¿Y“-Éâƒ~ô%ôL6 ×5ŸâR6/=«ø—vCšÿ׉'nôèÖ†æsúñû]>¹ 9Œm/f ÅrWaÙ¡t­ã~®Ùqý¦ßl`•û¤>Øó>`ÓO4ÇMfÂŽÜÖŸÍm¿õ6©ÅÛ{šEF <Ë¡ƒ’!α$ãY¶wסÔnÉñn«.fta ÜþU þž&ký ©=x7Ï»îßs‚°"³¥ŒñcÌjIvýÝwf¾ÃøJßÒØø¤_ÇñU[OÒˆQã’éWÃ}öUÖ´ Ü~ܬû§Þâó‡P²µŒ?_î京ùÕ}s¾N¾‡;ŽˆédúlÎÉÁ ìÅûjñË$ó5ÊÿhkÚJêTô½Õ„ùL65tA|}½,ŠÝ`dÌz]6ønoÞ„]G‚~·¼Œ'=ïGR‚ænœ¬V ¥ÆQ`´W1z’G$º=CQž3îì¼Õ‰h÷@Z˘§êÿq’2;ˆëéÝÐ|*J~ÛnqÙÿ‡Ÿ–/Ôšõ„óý[mø‘Ÿ¾¤ý—òÍ?êÅíh˜Š‡¤ÓW¤{ü™v-C?ïLGÔnbÍÃÏZóÑújŒzšt¥Yä©o£`ÂÛÊc3óº>ˆÒ¢yÝ{Í&~ã Z6Á'úÐîôðÿpOã YbEb©ûªÙ5þßR@ìUüµä¿Æ#7Õ²Áú˜€I”­ŒÑÏWÐfu½êŠËF»Í–ªv¦VšTÁ“\+ónÇ:k¶f—¿ »€z·^½WTó–b§Üê yóì1‹+ü^{8 hû´û´Lü>´~ê^Å€i¿¯Ý>ðRqbÿ´ ³±?Š[/?ÉØm% ^À•`4{½ý ª¦ß…‹¬k[Ì$¾‹ÿÖ|¾H|5—¨3ûTŽˆ´~*%fÝ6÷íhØ ¾–xJîØ?6*õ^•P5ük¹Æuu· Î;…jØ£á?}A)®b¾ì¨k3X|åóñï<3}gìÛÿ$ŸŠ’}­Òµ\ò¿ŽW×óÅ$Û †}ÓÒæÌˆÆgG•1;ún)9m›)%¢ÖR»dÚî:]µr]£2?_]OšhÁvŸ<×Ën\u‹ ¹ò´Ï‘«ë˜×¦½L¤)4J@«ø¼PŠÿšqÑm›1 ÔJ#ˆ§ ‡Ÿ}o†ñÿ¿Jì÷ÉiýÖý’%š×˜x³y^|1ÔÍw}ìèX~ä¸5,B”øZ£'w!&ÚÙ»SÜŸj>Óí雵¬äÌ‚^~*4c>;UŸÎâéÇ¥;i ’‹•Û׺·ÒA$Èéuöä#§¦çBíÒZŸý.¾Óß(¼ÄLò5ª´,²>}ÜŽò6ÐíK«€í>?ù_×ø_.þŒíb$¯zêùþv—“½)ÃÓÇZJzX:—DÍ›½îIx» ûxžŽ&a-¼±ù_µ~óYÓÚ°ËŽ²»k01ô­ðáýÚ øšpêtI²Ö3‰ ¯ 6Z%ÁlNææKŽMS犰+½a·¿<µ7÷nùî"Ÿû˜ŠÉËm‡LØw?G‚W9m¿ÐùåÛ®aÖ¦œœõ·‘Xwq¥cxŒ¸õÐOúM !ÚìžûàúÞOw¬‘Ò79ØùoMN·ÝâøPÝýáÀÐ'ûÏMÑ~—°bÙÑ.°¾áö÷@o,Ãy¥¡¼tº…¾,§c„ÖwaºŽô>šH`|[±ºx” žÈMNï… Ebæ\V(®¶Åç·Ð“#0/_r÷®ÈÝÜÝ‹etµ2Cµæƒ“ôër ~þÃ?…óƒ¯ßWÃôúßÍ×§]ßÅ ÐåÉþ9TºË ºš)ŸaÔç‰êÚÿá}‡×Ïoµö —°·û¸ªtC|Ì{E¹Ÿ 2ì]ZææÛʻֳë’ñ>axŒa ØkµþºìëÑpŸØá“f â~p½Šè­¬/3üZJ,”ù>üD.ð Ë_ëùÍ5øm(Lñþ½HNQcú ÏøšÊúxü§Qe÷M3I ”Oö9WÜe¸eéò/_îaÂê`KUïÊ,NáV%î¯Æ‡ãS?ìø¯G V‰¿âÜ+ýþâs\_]ÚÄ;èì.4²g=r R(´Õ­¨fÏøª3~‡ifÅÎÞ¯gv²MÞómŽy¾£éQ«7³I àà”}îŒùµ‡@€çS‘ƒKÇéß®I+¿)£áÆŒú0ÎH·Ù9×4†¾îå{÷3üö¶ÁjY`ðáïlf ->Í}Ò^ ¥üÂoÚ}VG¾¿§F *_î,û¶|D¨ï{îé¥ÛOãºíz¡ÌaýY\5ß-)ý.Vé'GOÙLƒèÿwàðVO±WMyƒ¯ùõùÞ~x¦ÏÛðjÀò?»ò5@?I;ëþZQç|£ÛÕÆÜrjü{B¹Cvûœ]08Da³}\;žÊ¬>âÓçS òñöþw‚@Qv(E¸Ùþ¬ªÆÿ˜yC*iÉñ—É:rƒ×*ÍbšR–Å¿¯~šÞâLÿÀÆCÓ·œïqÃ)B±½ˆ…ÄP´Ê°+Šò¯Öêáõ™Žxö¬X½ý+ƒ¢ëà0ÍÇú¢³!)öó¶,©ïñÎ]ù+ô>ïåi cÐ’ÑŒ)‘º5—r“Ýë¬ôÛAR5Ý•:RJÌMÛÅÁ·reëÿàïhšuåÎ ÿIÒÌJ¯º·èdya¿„d–ß :{ªÙ|í Ë,•¶§oåëv'ÒißòHôã#*m^í+à&&Ñ}¼ °iîÂ4@lõºA΂ÿAáB˾cøþ‹–Ï¿/ŸÆ[õuWŽßßz:µ‘ú-¶Wç-òôuê99оFÅ2Pã3­=×K|ÑÞäö)CìtƲu„ûEz¹½Õ4UKîí­'ör[¸ˆà–Íûiìkò]f;¶Zjþž8%Þ¹[Ÿ~쬇RŸ¡ïL'6c«TFˆYy»,ÑlÏÿ£ Çx'g¤ÄÑÓ+­ý2J$­Ká‹lí}~:ôíîÜ~&=/dÇ,¶#µ­ Û ¤>U^ÿv¾¡Ùá|þh ÿ{nôE„u/~O±Ñ~ë)j4ƒu>dÓZWHصé­-Ë*FkmoÇîùVb¢‚ Qñ»]{–¾z-&ãÕV·UÖØèþ6tüs_Wå¡ãfþJ²K*î{Õ=uÜΪüH|¿O¢õ6.t‡Þòc I7àYñêß­ÙÐtWè¯RÄ,4_ÌÕ ÌÍ¿rÆîMð"†§:ÑprSÑñõojb0|Ð}>¿4¾) ÇÞ>æ:î>†b3Kd+šVßßá`½›ÄöëÊΪ’ÞX[oé÷'2ÅφçVÙU©omw§s8Ó.o3àù‰EùÏ=›ø?s3ån·Ëgø¢þèFZ«Å“‘^jl“Ù²™>åÿϾ§ã{TÇA9™·Í …z‰´dgæ”›M8Œ ÷¥1µG"›¥¨"»äŒMJ}h#Æú¿i{÷r4tmöÙ`VžRe‘èÆ@UYlÎG9u&5ºþFέ‡Â Âúsk§!CêÌúC¼MOëêúi}(‚Œú÷ëkA¤óئ¹‹æö™ýtÑ^1ÊgóF-Kû©f‡=y1r]–(,µ¾%ÕE û[œÞk‚ábr¯¬úx16AL„õaÒ’¶ð©äçâû°…çùÅ"òëà»Å•·ÒéÝ66£¢½9Eå1ʬëMÏcl³rMHt< ¹`¾éÎÖ7gêtEg¾Æj|Ä:|ÿ'¹’ö lÞv¿Ý=C…WSú¡‘d¯…Ž+ªðK3ú uìF{S|£¤ds$ê½´\—ÉU/G9dÎ;ë7Y‚V3вûVB‘­˜î±aÌ×"ÐXî-…e!©[‘-Æj>{xïï»–Òeù£üÈ’֚̕º"‘rGG¯öÀ°`kX¯Úm:r4d|T\ÇûV/åÄð É-uˆ{û%ízàE †zþŸ!‰Fy>‹ÞÉí™’2¶ú*‡Â¹Žÿ ·kwÈ÷{U^›³ÌÝl©4bX–ó}ú^ô=l›þ·Vçë§§ ÎóêE£Ø "ë¡VüD!ô—˜€®–k‡´ÌÊõª«ñʵº}ÝåäÖ> V:Øì’L[±S3Šp­EnõšÈ«z]ÝJ‹Ê˽þ¸Ð§ÞÊÁÏÙ¨Cö:f‡úJxhÙ“Ël”4Á<Þ<_Kitn&Ò{väd1òìÖpYX\dT8Î~ÈDa~LZ©š=GPXlõ_½n–­f æ–§§"„‹cÜ…IÂÅõ¦ÜÒLQ©§6Uu—»t2oZeÚCðyÃøOm`m#ØZ½WcaüÖô.ôèKõæïmÀÄ…îк7Ïè~óqhàúw^ù¤PÅåg]¿ [ëq9»(ûŽ“b‡ó||5»_£×p„Ͻœ:8]ŽGœ, =8™d–…×…Vè‹jš‹‹£;&OÖ˜bŽ@1“DŠøÁätå ®‹ýd|y S]H±:<ÎèOŠT‚Cõò½ô>§)ùà㣤¶Ýd£ HèZ†÷fÇM~ßFBÒ¨ì‰â:TIþ©nZ*zoUÚSs7®Ø µ²§¢«³² ³¦mQ»2Ãçñ1›ö:P!\’öÈÅ% I8Ë?uSæ‹ÿáPœ5òÚ¸#ûÌòUb‰l5öh!MQZ(A42wyóK›½1›¿™…ÅQýãyß›k z¬l{jT—¸þíaîŽqä¶aöEr•y1ÄåÜ¢Ïêü5$³60‡Aò¸•a?'z¹W¼³Ÿ'7ÔAf(ìïx‹Ýà¾iî6t/˜¬lC®ø>?0Î j• ?|þ;3ü{®VŠªªwÆÜ¢Ù=³AM{Õaþô¤¨ÿE¢ß7ì{ê;iu?„ìÞlF‘?zÀçÉÙJÿ—.ðn YvþÙTŒG¥hyg²ûûsÌÌþ¥]ižGü¤yz²p’øÔd«6gè8…±6Ü—ûç”&”p{£ Ò…ˆ„‹»ÿÞ»ÈÓQd£\ѥƄmÈÔáQ])cÌ oš ’DL—d¯³Ó®?/A:˜2îE™i'GJFIšyé¸H‰ ~ÔP+ì°µ;ˆ<"É:Jžú€lh1b.q¦3ådê^Ùîxû øD·ÛfË%¨Íþš!üo“x®ŸÙÇöPÔÑ@ü}{$·g#uUJ΋ǘïŸw&ímÒp2­íY“ŠÐy ™úº ü¬'x¹nG³ëƒœåÙý÷/¯Þ÷ž&·^z²¼.-Øy^ɉ ìþoä”O2éÃz³Õ˜t­á£hývÿaÚí Úä?”Ö4'ó÷ýü¬À¿Ä4ÒzØ b:™ÿk^š³Õ´“ik;xß‚„o¼_·»µ¼s­Ÿã¶pënûä8BR„ð2Åo+ÏyS‚Oêä4Èx…€H™ÛžXiŠ|[q©À¡Ž OË÷TÿŒX¥Išé:^›-«ƒÊMËnöwðlGÊw¨Ej/r¾ë·ï°ÑÒÀ ¡ÒóýÍÍ‘Ï}Å–Xv¯²~Vy©©iÖô竪#7îD±ñÝîýMRWn Áàb+¹@ÀüÑZn€7ˆÊ7½/Ÿñ!¤S¶üOµ4¿'ÖÓ’žê7|©9?ÇÒ¥md&Á½H7¹äéüÇí¨4Ì·?ß­‹£™œ”½›ï ƒo¤²:ùZ!Á,ð>GiPýxçœ^_Çà­x¤örn§mƒõ¶t¬v÷<³CÍo‘pw¬ÚÏïG€ì¡–-ûTdðšvX;2pd#"Û© ¸(˜È"¯pݕͥ‰ƒ'39òŒE¶jpjÑØ|Ö$+ ¸»Ï¶ÛÏØýož×jŽA,ÁTXóx<~ÂÆL=ccQ¿•>vmŠOÅi³ß½ùãHB«#]Ý<^;˜ÿ·GЦ3¸yÙèÕŽ#æ,¿¿ã5ài€‘À–ј½¹47Z?ÚÛÇxÄ#xŠæ÷Oà‘«« ú¿ÃÒ†if+ÍQöö¹=R·^CmGÅfåýxÐ}Ï?ÚÀÜv± §T X¿R"y¦z»ŠÑŽ>ÏAÍ6"¿aÃE“¨N?Ãemû»{f¥=??ÀPl@UEDX3þ¢²øè—oÃjºì7^;ù [œo® «öèZþT•_¬Qksio|ù+xã·xòB·þ§~• Ÿ£{¾˜º=Ëðª?yCÕ·ê,ø˜!{ÎŒþ0w濼5K‡•r²Çš ŸËnOx‡k~GRHR ëÇ=óôŽH½nä·QZ,X^aÞ Ÿ½ÆWV‘ÂÉXÞC`>¸sŠðð7p±«Sƶ.;~{—'oÉ'©ÓÕ"Ãm¹Vèõ â'“®:ôGbç¦Ã ]ÒŒêèôUæûÒ}Ü&€Zêm!áC~}m÷F¾¦<'V;|xá• ×LŽZ¯¤ãð#”d3üyJT™ûVz.rP}Á7èì3íÊà»q¼¿Þ‹÷jeâ‘c[™£s঻›ÿÕAk„ ì´uK\8@|;ÝúXÇ—I/ãÙjµÆßqLïôÇðE^-ñü) íÏÊû€#Z õøÆ‡ûjâ<øþu޵Ê=g{õ…Ô5÷±Ða‚Ô³CåŒUvݨ»¼v‘ìbŠ{8ýY×7?ÆMÁÙ öÛ¯Â./Ÿé|4ýf?¼¥Ùê«¡ëˆ[BN±žÛ¦Û®¡”¶­të½°+ñú|ÍYse§Íï-m"´tη¨ñb9ùZxí)î…â¡ÙwbAÅ=Þ^Íõo%W |ŠŠÂÏæ‘sÖÈzO3M-ÏgPÇ“b··qÖ7í½'‘áàŽñÃÀ£Î’ñDéfþ/g5GiuAÞÏ4ôË4é‡vsï~Û¨jnÈYg©Iü¡;È(Lž¿6‘ÓjŽÄú£˜>TÝ ¥ÿŸ¢®I\ŒÔ« °])Ú>"Óç©ä Ö…þ w±+{‘ºŒWþÑç«E%3óbûÀŸá¾FǵյöýÊr‰£iJ³#w“LqÇ»µ[lævÅãî†Ï4VOækÁiÎ¥ÞYÃKJõíGÕ. µÆ×Ú ×ØO×ã‰=ék´ëbÅ:_úbeeKú–ñ:<“Ìÿ?J…ÞÊŽˆj·£ZÕ7;Šfl@,ޤ(z¯¶:²žµÔ6© Ìñ¶uüÞhk ÏÌ?O 6×;ZƒE¶&—*|fó ·CWówZ9mT—NÕËš#XÌ^ÇÕÔᣠ&p s6wFL“3 è-¨ø–µJ;R/í=½¾ÇVaBK1½Ü¼Å©„ØæËˆþŒ]D žf›äq…¦ý5z±¿ÂÒ4½BÛ¡)U™Ñ°È o£4Z6êRùµ ó–Ñ¡"ˆKhÒ\S!KÚ ÁÔÇ÷Vó ãú¸¢<¦›ìÎÛa"ƒJØ¡‹ÆZÒ„ad4›Ïª+ÆÛƒQ_Ù…å”îtm6­\ç.{õúòÍQã 8cÎu@9>9|ýÜ¿f žÔšºî×»Ø"i»±ƒâÐèÉ>Î\óµ}û©‹J&ؾ«¤¿~Ãñ·ªV'ÒêBS W;ÒbÓs¥% (ïÙÜå÷êp_i>6h{\ï­¬zOs á¶ùðì08cl-Òžù¨9–eÓCÙN¶5ƒ9bw—?””c—ëE- [Ñu0ûÚhi¨tÖäý°ô|?WA›qþ’{Ö îLædzÏIõŽN‚!BºçF×é¡SYëgºÉÍiö?õ™A±VkÓj«±™X¨%øÕÜ~Çc—q½ÏNýLÂ`§ì Ás %E'ßVøwÄÚ¬Öç ŸYŸ·ÇÏ3ÆöWÚ5p{I7¼õÙ"Ö5Ò+½ÖáÔsô„U*ü<ô›+†^éž“·«Gì•_ï¾uwåû|üv¿f–®ÐÛ#‡„)7ú ¶AWY.S-9V«]¨ÁÝr¡ÿšÙ]ZËŽkBSÎ`ãýº…òiv®y™šCÊeúUEéþ'ä¯séí½~=~ž|–cS{Ñy| »ÿ)u—¾§8£Üï5@SõZÚMÑQßHm«=ÿÅis©G Â^VF%µ×ž¬nX¼åýh6úoÙÈC–5ÙNh€pFTɯ·†ÿÐ7=õ€'cqü_]ö¨)/\…­%÷ñôB._/¡Çù4™Rt4v—Í*à§Ñ9ŠЇÖÒ)wÊf÷«éŽeõ´S”¿Ò±n¿.w½Ši”áÞóÃeËím†êòz(x|,Hz£%à« ë|5>"Ñ=>깂î8äwha;“ýn}æŒÚ¬ ýÔ-¼W«ò±!‚º*ISïŸZæ›z&Û[õhâ!ýNyj—/|žON"îáÖáBŽÍs®Ù{\ÇgÏñíÈ¿×jq¬Ñë¡p°¼Œýžã°(dsæü¨2h÷ƒÅ~65›rj¡¡ŸòŒöx•³ý*¢!6쿨MFN´þu¯Ãù6˸ÿý:šs¨!éõÑu †$îv5—jF|,YKêžÛS!vQÑ]S+ÐÝãRÎãéü÷}ÖZÅUéþìØ26(^9R ËܼÉ(·Fy«ÉKßYÚÒéØ 㛲w¬XY;U]T*Ð!ºPߨì‰þ¸$û^|ž¬§CªH¡=¸,’–(»ÅíŸ –/®¼³u„‡ýÍžy¹§cuü=ƒ7»o'>6ÎþSjý›';¸]oÑŒ)6_GBê-œ×Â_øwšêjû˜×çÕ¥«À¥¢32–ÚÊn~å_„=ײOµõ>±t4âc|:«¦ äpuM¥£–I"^Ð]=y%\`ü´Ú[iê핞CÑ‹\Béxsª¼Ñ.Ä^gÓ` Ñòýý2ö?¶¸ÌK©ŸµÎ­Cæ~µw_ôè}Ý —Oþ|}ñ«Mù£¿<Ë­ÔE’Z’]|úíþÔ_´m ñ(§ÇN¢´vÚžµ œ³¿ú´wœ™@Ó¾(Ìëÿ7¾J?¯æÂˆ–ý Ý{ü°“•­ ó3¿OÇW¹ ýRý­¿,„”2¢ÎÑ7Ù†;^í‹»ðµƹÿ!(¨ ‹8÷̼í£ôÅ٬Ɣøv’Ãëø#ïæ÷ü9—e¾¨®Ü“ÝÎU”±~_†w®ï (yK(Û?(ynq9á®–:óHá-¶º£.öÔaÜÉê`¾Êï^/¹^Å)¡Ðž³Ôwµb\㇠¤]®{¾ÎÆ"ùuÃòÓñ&¬Yíuûб)d›;Ú“û†¨Â-ý*eÌa¯úŒ[’óý’rJlHjèýÏÿ–Ç7[®j]ZMC—†|‘Á=sîP[æÿ?;)“óÐAâuy z õÖø÷úM|þic™x9ò»§5³¿ßÚ›Ѳ•H7x„/¹TÌ^ŠØ:‚žk†GŸ—'üWÅ_mO|)Á/cké%§Õÿ°ßmÓ‹ÏæÆ_äÓa’#÷í×ÉÌøà²K-8-.¸?ÈiÁ³©óÃD ÏV;2$ ’=t+ÓYŽ=¿ÖoqižóS’wÔ¶˜uœ!Ó IFþ´ÇýSxиM•`€ÅŒñjaÃÃ>«&§Ä¥‡Üí´jÅõ×Ç[\'l›WÙþhclÀ¯N‰?‡Ëº hîŸá‹úÃð3 Úê{w {Vk£¹jAGèǦj·²¦Ey|7ÒÞϵ…,œc`=‡!W å'™Ÿ½%‘ÇeQy2Ý…çã¦þ×ù?Säy¿ê{ÓäþÄÿS›ö>O¬î~·{ÛÃ使õcùPñµ~§F^6ð¹ÕÍxI¼wöº!¼¯p¨Ø—Á‡ü(úcü—£ý…Þi´±¨¶Å¢ÑFÒE Ì †ÈldƒX´j‚ÆŠ4V§¡ÜåÜå§vÓ£˜Öãrйr¨®kUÉmÒ2ž…¶¿Éß-A´l(¶‘3i‹o‹ÝßuÔo ¼/Žîá¼ ðºñÝAyrû*¶Û{͇òËôÌþ§k줽Ä(ñ%?†süW¨ÿãÚÕ^}±ƒ,bi Ö›å[vcùµU‹¥¶6Sýõ®lIÎöés)ã°¼¼¿_ZÕ_ÙŠzœM¶Ð¶6 mS¤/ühñõOêDñ¾.í°/ú1›mBíׄžþ#ð†~ýìò­©VÁ¦Â|T¯üª©üów ªe.ÜÜŹZ*ªæ±ý„±ª»jß©Õ_øv‹ð?!·û-Ì×? èåÉÇÝrk¦€y¤«Ù“ úÙ4¿o\œm¹8ÅÝöµ¶Ûè–ó›rÑQ¶¹j5ÊÜ+D˜ØØŒS)‹œ4 " +·*å\±ˆÆ¹ÒåÃrîîFH’„A#K»±¢4‘j’ЦmÝ.§sº.î;rÛ´W4Zî¹"·)Îë¬mš%ÝÍr·sŠIb-ÝØšJ6sw.‚ÜÝÅtîâ'7M;µÀçJMÜŠ¯Û‹ó×õô³gØâá¸Úãs¹ì÷Ø€¿­O±'Rôê|@÷äýÊ/Њꔽ©.þ+ó#æ‘ýu>·ãç[Kß<)Ý.LˆÅã®ç5Îí%Ýãô9V¶Úåÿ†¢¯ä›d€ì%ìžkÍí…2Q’ͱd€^ƒXss\¹ÝÒܹ£W,¦ÝÐEEwtr¹p.îÝt.k¤b’åÚAIm6¶­èëч u·÷"?v_ûèÙµ›_ó-ŸwoG½$ö/b{5×оz¿2«ÂÓ ¿ïJ<†S9Ž6þAý:ñŽÃVÉ´Í•¶ÑM—?Qþt£þü› ¡±+e[¦”~¶buªüÜcû”sç6çß•ëÿÃAûõ_äM6›\fÙqƒQ±$µ¸¯ ¢¸ˆJðÛþ3ב0£ùBþ¼?Ñ™™³ü®5ÿ.þêŠì:q\Bòm*ÚmM¶‚‰(Ä@ J&b45Ñl[&Å2&ÆÑ–Šm£lÆ-€Â4Z ŠË$#X˜¤4PX€ŠI‚F”¤&f¿©µ_âP¾y?oZÚMœf—µ³‡ú~ÀQ}&öÁÿê—øÕuŠ¿§KÆ«æªúÒýÄ}ñ;]rúÉóÕûp—ôèþ":mŽ«.7ä94ù!UûêxÙN±]e:Äëé#ÊJʽ‘ã†ã…³“\rˆÌ‡Ns¿÷uÚ1åâ¹×?"ÑWŒ®¶ºÙÖiÍį·0¦ãŽ8· ¦îªÖÐÆ¨£m\Õk[Yl>îW¬c¤¯×fúøÖÔÞÑý­­þâEv”óTy‰_/Z®°¯Ž—Çã¨øô>=/Cãªçé|z]À_ÈÛ|ÓWÌT×(Öå®ù36Ó’ß89\œ3‡ÍT/Ä'y&ØÓm ¦*H‰¡¤‘Œ¦A5ümªÿŒ[_ÓÛ~"0 üOÜ7¹ÛZ«Ã óå>†#f̶«mŽþ•^Ô™´_«–§oÔm9ëðÒ ÏÃ*÷—øª½ð¼X~ ´Û_?ìqÇ&ÖÕ½ïoo¼[Þª(«…ËskrèE»®‹nl»­äK±¶îݹ\¡ÍPHæÚå§Q¶$EŒkšdS»n‡NáÓ‚+© »´ë§9ÍÍɶmkjÍ­³gX§§/H/F;ivÓ×G®¯ÅUêO Kª•Úa™§\gÕ´ÙǤãŽ5¾êþ$Ú«µv½­ù£ÅUöc ²Dµ ·­Uëg­Þ³xâ¸ÖÜ“œ žTžsˆy=*Ø£eb¢ƒdÛcPbÆÉƒHƒ)ŠH •b+Æ¢£Q£š£5@OžkšÓr‰IÓ¸çNÂÎç9vî;»‚vW79ÝÄæãéLh™®Z¹HŸÒ¶·šª½kQ¨™˜6¯©i·_%Ò-ÛÅÿÂÕ«èd^„ïZëw-þÑ$åê»4y”vrç‹ÙKŸ‡wRw‘;ÓccmlÍ»ºí¾Mò”j‰a(Ñ£Mò¯BH¯d§£ŽžKÑÕÑ®_–ÖÃhÌň¤5’³R(6_¹Nu;—Úíoª¯µµ^m¯µS¨{BO´•Ó®¦S¨{B]KÚ!Õs@ëb½”«ø$æ©Í.o‹Ç8æñÅýÁQy<ÀSïmµ²êlÄmÁ8qÛøŽïÃÓGìõ­mçÛmFUð[nuÖÜÝÃE‹§ÆÜÔk&Mˆ˜4 XÖë~óm«|“VúžÑR‹îÉw]…>÷œqÇõbR†„x~"«l§3*ÖÎMrmn8qŽ4äâPhºÂuŠs]-<óëǧ?sãž;ÊŠîë¼Ì¶ï5¶ç«ãÕñÞKm[[è7¾ê6kÞPb¹¢î¹ªwWæ®YvØê·b´Æ4îéÍ[“$QÝØ ¤)Ó§7»•Øç%º\N¹ÝË»—"»$šLÛ5¶ØÖÛtGCä ½J|š»s5imZOöµq‹“G%œqǃÖësÉŽòñnr»µy&ðéâ¹|ð¡ûÔNêIø°¯Ù*¾øW,?+ÿ(ŠæÅóª¾sçi¶½ÔΩimð;°ÕÉT¹kr6F¢ŠŒ$h$A ‰4ÐmEÝÛˆ–d‰0"±W«ëUŠk\Óo’FÇ#lûÜ[•¶ÿ*9™âá]l=¤»šOµWS àØîaì~Ø„í”íjíi;Tž2QIá뵡ÖÎÔN¡Ú‡¥ûBz[ÙÃàwIy2wJ~ü)åöÛZÚ5H´–La¥1ˆ`£&4ÈÈ• Ãē؃l–û\8áµjèvãNN±ÐÔKÖEë ̇¬G¬/YOW¬±}šϯ´Ä¾ýÎF„þ7iñ¿¯­µ·£«{5³Uûd/ÔÚÔíÒOÔÆÌ‡Ý«¼–ùÂ*ç+p¦åsÖXîÎç&û­Ã•ïé#Î*þ4KõpØÂØ~A?Œ)÷ÛU´xâ¾ s*sZmm A­Œj#…&a(´bÑD[FÚÎ5rîêÛ–±ksmrÙ4•Ä•E&fiD¡‚Û&Ʊ¨Ûš®*.Ñ£ˆÕ¹'unt3s¹ÖÜ1Ýt9.»Rî îésr"âB»®™¹Êåstå¨Çóv¶ùvÜü_J߇À€££¬iSï“Ã(¾„ú8Û[/™¬ý=7âñ¿¾%N‚SÆ­«ÙHµ|ÕË®[滑“µ\«­‹­'=,[566šÚMId™@J13ÊÚ§™ÕºÔçÖ—[/¢WÑlÚMm&¯fÞÉ'³Ý\Ƚ£ÙþåH½)zQéSÙŽÊñ‚ìOe{aí<¤^°Ús©^Ö—M™±]Æ6äãŽ8ÍËÔ?EãCÆÍUîë¼Å¯}qo[õ© ècQ@ 1T‰Z÷Ú¹[›:›&Ædɘ3cg†TðDð׃£ŽÁäÜ¥/“PŒ/«Ý!îî”{¢{©9ÉVý‰ãe›ŽãŽÆÿéÌ£©]<ºtó뛂œÏC_‹©yvÚ±&mÆJ³*MˆÔj,X¬Q’¬mb±¨ÖM!ÝR\ÜÛ»Š¢«•Ísr$ bƒ»­s9s(dVæ¸v¸VwK]mÛkr*B˜@±$X¤­ÛÓµ_¾%ñ5òíW̽…XÓlkæ¶·wNh[m¾“†äóÁUé4OGÏÒ÷Éïª÷ÉÈ&Žž«ÀDÿPx35µé|7 º ?6OJü§~K¿£ÉÔùÊCi4¾Ýi#b[r\ÛØ6|ÿKíõ¶Õím­F¥4¤µïÚîìTjÅjæM“E&4‰Š Q5©-Ìj±Ó»¹EÎÈÎèîíÝÕ((R 2a $Œb"-ÊÍ‹hw]w&î·*åAwvF£]ÚUÝÛ£»£mÖȶ¸-ă‹e)Ec7'n®•réÈwQ´‹»¢;0Ò‚ws§'w ×.T#Э¯—VÛÚm{Õ>ØC_±»úÚÚÑÌ%ÑO.Š;å# W|‡}¸Î8ÜfÖÞðcå Õã$|ñ«Z§†#§N˜é’y9ÐOaÌPæg•Þ?+Ž5]´UÕ‡h¢æµÍ…´lŒ…´”c1mr‰&w˾Ŷ͵·–£¾úž… '\]u.x…/Ncmg[5´ï3\Œã‹Åýù%rð_àÿDŸ„l%ëõ¤¿~M«jÞm­éµ£E¢lXØ,+»t©ÝŽçJi;DW7.àêf»ua¯JÖ½]kW­µëmë-X©¢¸O^»¸º½köšÛes€ñ@¹’¿÷9ºÚ[1tÛ^oqœooÃmûê*ç^¿ÃÕrx„6²Kg»nB£hÛ›—7+£®ÜF£cD\¹®“»Ú-ͧ"º]Á´µ‡qÛš¸rŠîîîœ ·Q;Šî¡;‡\7.wwWqÝÙ³kfÖ¶ÑutvçHWÊS¸nŸ*/GWŒ©õÐöAèáõRì`ë‡ÔUëö'e …ÙQÑ•x÷e^ý=ä<­UàUw!Íhæ®n¬æ­ÿe%\ô¥ÑãY6-¦Õˆ­ £FÄhÑŠˆ˜’ɃZ"ÅXÚf¶,h˜V›Eƒ#ch°£Éb"!‰E2B°Â2_üvÞ¶«õ›|…° nQ›Õ͹6f¾ï:¤§†#Í íÃíæ;qÃŒûmŸÓ•^íÅÿZlÐ}Ìà¶ãXpÍµÝ îmüÚI=I=:ž•]qxïH­ \¾,“ÅQ—ã6›YŒÚÍ–ÚôTñ`êéÔÏ/:n’è¯^æðÉÛ¯ -­¼ÃÁä¼.?ª•Çž’è¥~”FÖ÷Z¹$}‡âø¯¦ªÖ«ÎÚ³ÐËß ©ÕÊ®-vî.Õ\i²35­¤qÈ'ܪö íèB[ãÓãö_û6¶µ¼ýk[|t[cKRl kã¦Ö5Ê6[v}ó«tĹrû»[jÿ#^í—l½3¶§C'¶—E(WD=¬WC™/7=P¡öû¥lÛNëúàî’žÕ.¤v´TíTusº\Ã[J+o¡kakF™LlU£m`¶MFÄb 1ADc0I¤F"ÑÆ‹i-¢¨ÐTX¤ß–\”mʢʹfësdÇ]Íglënäî.M·75ŒÆ –¹Fææîë…rìUÊárwN¹’È Û››\®í×w%a¡Œ…"ƒ"‘Gm¸Üyx®Š±í%:ÞÑ.·g+É%Ì‘ò‚Oñ•ó6G̸Õlmówk“Ž5O™ã®çIrW’y7-kmæÖÛ÷iw$ýêt.é}½f×ïR…ÌPß[[µµW¿zGuÝÛq¨NÆ‹vêÝÚ×1€kæ.Rwp®¸ì`‰whÜfÜcŒÍ‘³¨u@ûr‡uµ´-H¶¾#}ãÅÔ¯vÜ]9Î3ÁÝ®æ õƒö›Vµè[ié]Ì âRþÊ—ùaå.~ôðsŽ5›Ž.Ôåê*裙)tQО-ç—´?QðuUò+z·«Íc[”"µîüvI'.QÅyw•áxáÏü›kkokjÛÞñ½Â1µÜÝܬ¹‡:W*å«§™Î§tn\ÅÝtçs¹n¹t»§K»wuq$2COS'¨«ÔC—Hzpó%ég^?áï$¯çÅÞÝîMfï[ù<3—H^")uÒ’ÕˆU¾[R#nMËÞ;¸¯£¤Z9rÃe²Ö͆ È¡5bÅ+%ˆÆ(§½")Œåmjß)‰Þ÷­LÍ;Ýfcw§{œœ8ãíT’ñ_^NÙOߪ¯Úm°m-’ìð6ÆÉmîaïUu0ý¤'ÚÌÚ§¶–W·+õ‘?:Ú)àî7Ò{‘xè§£©ù0¿Œ¡ö°Í2=Ü^ { ¢Û|ÁÝsb*éãmµm\›ÆÜ8ÝñJx‰ÒŠûâ~nÚ›#f+a>¬mðï"íÕ~Ô—ÝÓTø*{4|<˜/Ç‘?Y¶izŽáOœ†«¬‘ïðáá©Nâ§qS«kbض͵ªÚlÒ¤˜ÒhÆÄÅ £$ÂFˆÑ% Á%~%µøšß‰«ñ"×ë˜}£››úúµBä.Ì;8ìéÊ)vcÝÇ3\•KÝÏw{³Ý¹Dž¤.s­§¢’>ý2&5¢„†Û1|ÒövÛVó´%õÁ}:]ä}=eôõmœçîÂSU«ï®×‰h‰F"ŒMl‰,Uð;r«‹Š­ÚÍ›%ÆåD>M*_I6¶´8wpn  æ³®ñEò³[D<ú<øéª—B\ÅZß?ó—µ’6,QRllEE…ˆ±h¤-,Ê 5 ¥h´È¡I…Rš¯ƒñ-ý^õ0²QDŒ¤ŠB€™1Dd… [ I,(¦°•ŒbĤÐZýƊگ̪îÖå¢Ú5õø›[ù6­ü–ýÓ<-¼¶Þ?h¹ÐG­¶ßMVûr¨Ú}lpoÕݯ/€Š\â%s ¸ÛÌqÆÓ8Õ6Úb-¢ÅwvÚÔUF µ±6¹Xå¢ÉI³¢3ºá¸‹âáAE\®„î±r‹wuÍ;£\¢9È0%b 7(lî“77*®¢îê¢]ÉÝW6ˆÍ6JUÚ®t]\‹nå±®ëš]wqÝÃŒº4s@˜”;®„g8ÆîèÈÍÝ×:d»®e×s£ºÅ\wiݹt‰˜X M)¦Ū?1ãËëe¶yýèö¸ñ%9!^·ëm­ü›UãXVü^î#r¢Òjí×ta;r^<.s§;ñ»­ÎN9[f?_—¨WV½AÔË©¯%,å º=ç¯=u+ÊP¼OmÃÆÍjm¸Öê6A#i»¢MÝs¸ì*ë»sÎvÑw;;sww]1ÑÝÎçVî­n™äçJñÕxû+ÙIõú¢’çTŸÂ-. > zðe~‡À'- ¡¡òù4>™#ä ñ *—ëôÁ­ü¥m®k Eü´‹x¤ß‹åçEäÄ«Uu‚¿R‚÷¨ïƒ—(ï!Þ%ýáFŽRU_Zïô6j[µ_²ýM›4þfü/éüu*<{~b’˜ Ý¡*4ÜÝ$Y!lS§q5qw Pt;Ó\r]ÝÜ\ë¹Ê)KkV¿[kòZšØ–+cùŠ‘1¹x±9'#ôD.Y¿f’ò›Ñ¶ÆÄ×Ò%Îýï?ˆ™õ­[ZûÛm­ííùëó¿«ÞÖÖ·îÖÛoyî=3Ðr®Zá±¹·4P%Üë”´Nîk‘X»¹·vë]ÝhÙÝÅÝtë‘Z"Ì‹I´“!ƒS(F$¤4Sjê)ÓÕËP;ñ%Rý‘W¿•þQWä¡r±Lh¯ß“¬ì°`„ñG`; v%Q?f«ëŸ[_]¬Úãmõß±H®q"|ZÚZ„~¨»ŠŽÍ/Ù«öY¯­Æ__lß²©õJÎãk\þæb”ü4¹„‹ö(~…Ø‹’JmJwÊï›f¶+À6lð1Ɍٸۆ¹3Àá¹j”9yQu°Â§Z®i]\½»þñƸÎ7³À¼ ÏþT ]hñ0.°uqÒ®JRñÜů-¸¦Y;ª»»®«˜Òº]6º*ç9Ý›œÖuuÇuÝÔœæâwcpé¹NíΘ¬˜s—-È4`’d‹†îíÍÍ®5ÆŒÚÙ¶k©ºZé0BûÕ ÖÛ_'m–®X‰PNê¦ßÁƒ‘wÕU.YDs!̧2Ëk\ÍÆá°îÝç÷iÌE#ÇðÞƒÆ1qm9c—[u’X¢ÅF2#téK»—tî8ë”p8Kqƒ%Ý“¸ªå¹[½½[èb·éIÍ£A£)¢Î4Ú¸mɲìu¶ W<^- }Ü˼ŸuþX(åÒ§¤G NÈ9(.É2«ØÂö"xÔ娗±EÎÞÆ“Ï/btåâO#Cû¥wš-­™ë+š·ÉX0×+Ç\Ž"¼O“þ.UŒ®‹±Qç‰;²SØ.gÍ5µ™`ÄŠQ4¢Û{•›\Ũ¬mE¶‹BhÒ`Û653$IšZ5¢‹dØ­´mI—B¬wEb×,ã\Õ4knDfÈ)D£cÝE.å”t°ì“²¥ÉBvJë‹Î½jU@Cj*cX¿¿WÉVfØûØÓgÞöù¯ðª£Ó P}À¯Z«ÕŠÛÕ”Ûrs›Ös\Ö\œg§ÿ´rò“™ÔSTpVÅ^ö©­rÅ‚5!LÆ£m›.D‹Å•x­‡õ.m¦Ù³5÷xϺßú%˜¨Sî§+lkC™q•«s8ã‹ÉµÑW, ¿^J>é9Û«ÔÛvÛ?Oç¹99²*óÂðÖ­·¥mî o-´îcåc»¡rîíÍŒmÊã&K—(Ñ.íØ9‹p#»¤;Šë·s»·qÝÌäW]Üè‹§Ý4m³†®k6kù5)ÏG=Oœ¤rèæ W>Ÿ¸*æç_¸Q׎¾æ$©û•¼ëÏÝòJ½ýŠŸz(wåßTö‘w]*»Øë¨¼x£Ë¹K»íò’zo)_¸¦¿M'$Bð`O¼šÏèñÇ?u·ËB.aTojZ X¦[(ƒ5E e&Æi™™2%¹eµ¶ÛNJ”úЮö¢;òÙ¶š§¯Øœ†—ʺñòí·›VÕ¼íd! ÛAؤí?„~¾æfÍ£»Ûn3»µ¼;ïP.ÙGl‡‰‰=­N/C²®"“¬§”NN®]R~j ïu†Æ&m]‹»­Íb3oV8üm­U¯?P¼l§ÂM™¢Ú†hb‰±A¨ÅŠˆ ŠDU›b"4i€B€S$É'ØZúú¼¶Ö××ëë·(mÕ¸¤+P¹'îÉÝ»¼lÍžø¿é¢+âÕ±”ØÆj_äE/E½OË…üԖнþ•¡ÜJç*¥òáï¤õi/‹ßÑˈ¾¥ýâQ=˜üM•\°/©SøH~T£õͤå¾Ì0KÙª»ê~±<¥cÚ-±Z=Òq˪>i=ܯKöòéÞ Ü\€ý¿lQQ"ÛFþ–Z±_­ ô]O”«ÚÑ‚úQT ѶýËõºç6™&Uá¹…ÉÛŽ(»ùîí¼“ŸÈ¿¤ž"+°&¥ØK°'z¨É=±=eY+ÕËJ½ZÑ^¯ÒÓT>ú}ýŸøÿv ”œÌNÀÄ{»âªÂÙåµÝj&*Æš,QŒ‘cL…3"5%3Z*MƒD¡’a’F"A&ü_-ª¾éVÚûëfGç+Jõ¨Ò?ÝýM¥/Õÿ0-WÍ\Üsl*ðÅx³ïñ³g®NhBæ*Ÿ@ŸBNŸB†#èAô(p‘í(hŸAFДø¡…|TjWÅJÒŸHxÅô­šûÿ?y@8 µÑï-”µ×mnwFÛš+r;§NÛ"¶åQ1£X«»\±TÛiND'¯¤0l-•fÂÃÝ똮mÃ5ö7…ݾïVÖ¯6Õeõb–…%ÿæÛk-ŠÙû›[Ž+•ͯö1¢-¢Ûoú«NVªá~À+Ç£êG¸zì­ž>88ã=Òñîx”¼T‡ôB±_Ø~ö¨5llƒ3‰W•XOÞPë.ë,ú“ûZ&Ùµ´Tþ” ­r’¿¥Rô Ö)=08KëxâóX†lfÓj‰)5IÅ2L(H¥ #oçU­¿?«ùÐ[_Îk5Ës›2UàLxÛϾ¤Iä!]ÌZÉb®ä°w#AÙ eMd0”ÔNa[UþImÏ×å1±—åOÊçw_ÒÓ«Ì•“¢/Ú–ÆÛ2?¸â7Àß¶Z~ßöj'/Q9~c“&Å$°×½scUQj6£k•p‹]ÛŒÌÎXÂçWwf"¹­ÍÝ×wn39ÕÎnr wnŒ  hÐFܹ`ØÆ¢"wnkwʹ\pX®\Q¶(ÉÒF¬ræ¹ÊîéÝ.DTŽîÝÝÌDI;ºé£—,R»¹Žî[»¦äìÎîë»…vIÝÌ’ å¶µ¿Ÿ­üý·²oÊßλŸ÷*¢åÑÙCÌHö™³6­¼¯.lö~ȉ9r¡ê¡ÊG?^aRýª¾Æ31l‹h[ÝÉÎUÊ-íêô¨Ú!±†F0Y#$I…$Fš6ŒÆÍˆâ—·•Îì¯ä)òéõV³äï¸äÎ9?ùJ"‡BžWiD8£ÕÉ¥+9 ÷bt·=Ý'©\ îàõ+НáÒì7ØàLØl+h[(¸ÉqÆé!Ú×-/¿‰÷ôžzâ/y)ê¸Ú’§QÅGÉKRý¸>¤±¾w²6¶jq–ų ­¿ãG&Ç@sJ”åé)ù2?~ŽÚÛ~áú7ýà+œ ÓR¸ç±I,j„,šBÊéÄ#ºîs8»ŽI-­·ãê¿S’ÑcWä"QsUÌîüŽîê<_ãçõ)råÿxWììe¯ØÙûÛ• 9`v)b½EV‹¯‹%uµX:¡¡Ô0Òt«)âü9³mµª¶lÆ´–kA¨ÖL$¬Ì¶ÌÆce²ü^’r•tv'Ÿ°¿_~BJKQ¦ˆ±¬d2°µ~>.ZÉÝQ´u%¯ÈÛÆñùÕ€’s:UŠé2ؘ­¦ÚQH-.«kò7þÅS6¢¥Û)¶¶‡N=±ø´’åŠå’§V*úñü°ñ¶'ÑÖ®Väœ\›o‰Uj¼íU=6ôfÕ×n`º®s't¬Ü®Zæ.Våt®1‹s—uÊæîí¢ÝÜf k—7ss¹ræ‚éÈ9ÎTÌW E×rîë»®ÝÂdGw@Þ-U_ËÛ.†µ­¯­OU_[õ~¬¤s =˜öc{!eNÒŽ†]ˆ:%ʪïQß–ÀÉõv;ãÞÔå¨ö‚ê+ˆ»J]LáNÒSÊyØ9Â]¢Bâ®Ì¦¥Ù¨é+Š]WKÅߎ •²ŒFÅ“m¢™ب¢1¤ÐH b5¶6ÆÛ#-óí©‹fåÊÊÛ–îê†N[—7wX\Û“\cŒWð…zN\:„­Uü É_Ç'}Nûjï{çú‘*åâz‘dz•jWf5$ð¨x¾.VÚ®fËn7Ûl®6­nVã“‘I+–¤uDëÛ!øJrKò`Ò? rNö‘÷«½›6»Ý›Ï=bR9ˆ¼à`ñi¶½îÚò­«¬™1²0bQ’Aù¯-oÈÛKoßmû6±¡³fÂÚøjrè‹'F«ö(ʾª4¯ª˜ž8µO¬ª»B£Ékm#.gMšö´+•;ò~­»úùY³Nûgäÿ­Ös(êr©ôš¯iZó_<µÉÝ¸Øæ×-ØÄr»º5ÝÐÆLm®tæwGW » ÑŒ¤Ähws»—t¸pçe®ÁD’Æßgoèÿï*£˜r«CÜÄÂ÷51^å,æV©îTb÷5ZOqCQî$h¿«#Ü•ÅKþú¨ë Ôfl–Ódcc϶Ü?ŒT9ep¬WT˜uR´º¢ÁÔ9ø¼•2QÌåG˜Æãn5›n¹´VåÍråŽî‚&AHÄRræL 11±µÎQÒç .îæ´Ö—t*ÝÓ2l°) ÈØÛfÇR9Hx’ÂèÓQÑÖGGX:6GF`îAvcéÉ¿ÏQŠÑË¡=I|*p_ ¦…Fº‹æíM—ÍâMkÍ\Uó_,$rñS$ñ;‚n6RÚKc[FÅEѨÖJ IÄ` AP’)’¢*TIµFª,`µD5fÙBmª’ÀT,ÈWÎøÖ¿ªßøø4³w;lÎ8éH',оÄûîçV¶‘ÜÛ6Ù6[¹?ºH®\Kù‰'D§è‘áÿÙ*:9r¨trÈúEˆ¸•èeªú¿ØŠé@êUÈG0ðùŽ‘+˜'M‘üÉ'Nqœñô§ÛV«ÎSÞõ·LcAsv·i*çu\Ö6®5'³»¸¨ÜÕÍÎÍ4T;°s¤:\¹±srçX¢;¹4P”Æ*æ‹&¤ÑÉ»¹—\»´îw]Î.Gw9¥Û†\ºîãq›ëÔrÊê2WLq/ÆÈþZ¯Â+»¡î“Jû™™®3qœj7wÆqwyú —"¾áNÃÕmm¯¹G£ý¨…sˆVRçvÉk-²m³ljžùµŠ"*"$Ìm‹8œrHçïäÇÛÅx[l͵M“¢qšðÙ¹iÎ) IñWZÖ¶¯åQJåR:F%ç¦*óÓRºÍö·L‘\´?Š‘úJ½-.B?J]O—¡¶WÀ‘È'ðäø)\*ý˜Y]ÂŽB¾±>N"þÚ§áRùT»åW)]¡8Gš©|¨Ú½ê9 W‡(vÉâ[Qâ5¶Ú9+Â㎥$œº¥u¼ËkfÖÛÔU˜” Ĉm’ÁTFŠ*(Ö¢¶"1O íÀ‘cÓW5Îmt¬TS(¶0Dh6œ‰¤4 Î9E]+†Ó»p‘w[™ÎwW¥Î´š2hª¸msSW[("«™Î;’Üîë›]Ýwpgrs,œ»Ü™ÝLåÉ—NÁtæ“«»±jëŽÇ!ù$«Ä^ÎÙþD‰Ê”.†¢ô’;Z ¦¼Ï?u®XJy$µ9Šs˜ø6ٵ̶·úNpß¡ÔÚööÞ”b¨ÒR „kAL¥%±2С–L$Fl¤’][ü=©UèÉ•z(Éu«PêÆUÙM#²eNÊ`]Ž)=Ö+¹ˆûk¹Êb¸[1ò'**^ M xùUà«ÁÚðvò@•ËA_ãb¥yŒžCSj誋k‘Js«œÜÑhÈçEŠMF¼¶Ûª)ò©—S¶&Ùòü„AË”SìÐ}“ìÞ®‘r¡'ž‡8%=ª2¿ãM˜¤å%|{qïÑØ…Å#å¡ÙÒ\„>ZžÎ.™ÈÊ'g+³äò¤í)p¡òQíâ)xþx³eke6ÚÌÃmñÜëœrvwnîá×u»¸‹»s6v[»®mE«ÆÖÛë-H—¦+ ½U_YKã[Fl[[ÀÙM¶Èð-odA\áK´•vŠÈ=]ˆz³*=\Àzµ¤=ZÈ=Yª¢ù”¿Gôu½§ÿq!ËzU‚—ç¥ó(|Ô¿>ÙZÿ´å‹jóöÖ÷‡†´(çws‚æ-s–`Œwv DÈ$H*"™$¢Å… ´m$‰˜F2ˆ”VÕ¶Ú¶Ú܉Bç¤>nßLJrÔ2©dœÞ¨uZ‘ÔêT_‚„ù¿3#k5¦Ê|/§Ç¶^Ñ*Np*=íðvþÉHè¹T¯6¶×†š^ß­guEd¡1cc¨Û]ÝÆLƒ“L$a"Årå&ßøÛ˜¨Š¼4î’ˆÜÇwZ5£PbN]su¹r4ˆ’,srå¸X¬k\º]Hç9uÝq¬gtdcåÎå«-Èœ¬´ØÙb¶m¦Êr•(åʾVýÙµÆÁ´³æÕµ«Êô´0:éZTô‚Òƒ›©‚æäåø›“*¹ºÿ–“æ¡ó._ýhŠåʹØaìµUÎPçVˆçMRçNfæY[VÁµ6fmãU5[˜Ûo~Ø®]¨ÛŽkuÛW7s®:6åNÜ&ÇNÐ\îîîEAË»¹Îç0â%Ó„w\çw]p໸w]Йrë‘sh0JMÝ\ÌKI4Ä™‚×%!é1# WáQWýÕrl.ƒa^Oyrª®qÒÒ]A\AÝÕb—µ&‘í…|OkS‚s ¡î$iOoU~MJ{y)z0b¯ô’«æ°#Û!È£ºŠÐx‹±%ÁU// •KW´V*Db‹ÊÒe­#hÔSYƒTLlkRàWÍ¥ã`ÛKj>o¿*G*ª¥ü)>fÅó™–ôЃ–<ÈÀsó çëT¹ûR¿;åüÉm¶M‰ó3Ser(W*ŽŠè¥·´¼½ËUÍs\¨µ Êë»Wkn\¨Û‘K»rkQb‹š¹³»mº]ÛW[.HÇCµÝÒîºw]Ðî»›mÉPtÄÑ:¡’t4Ò—UÙUG¨üOÿ’+•Õ–’ºµGË%_Â!¶•ê ‡"#ÆÔ°žEï±–Ñl¸¨÷ÈÔŸsøàÚFʳ4CóUr$íŠwdŸ/•ħËSDÿyOcŠØØ ¶Õþaµ«{Ïs¶ÐDm£F`ŠÀ$‘±¢”E&رQb‚„Tm k€‚@£,k[cfÖÍ«fO%S˜JïäáJö¡ýOÆ¥~4®Â½_MTNt?ªBæéƒj«áæ•ÈKáÉ”_v'çÊŸ+¼ˆù:6-˜¯Ï—$‘wä¹Ê>ŽÈv³6Ûe[Uøß=çIñ‘öj|o7Hr…’™){Xu²¸æÉW-¸pãºåE×ê.mnWvìÀ•`’ƒ*.W#» b åÒwp9ÝÛ®¹ÛŽîw\ãºíuÚD¢I¼êl®¯5GZ«…t§]wI}Å\D»¢u§«º‡j® »ªOZœRœê[pQíJzã…'j'k\Ä©_«ùO‰U?´€åÔÒ¤Ò=ÄO/8J{q?OK*Ÿ«åð¤ø1b ÒRžœÆ­«M­íÚøxÚÜKA±¢ÍšÓ1šl§%àI>|9¶Ód¶~ªQ\©XJÅZ¨°ÕDúù[(ÚŽ*Ž© ¾¥xxeâU_V¨ÅWôÐ…¶Ô6ƒcg^?·BN]ì,×ÒÌÆÚÚ£EÖËTZ´GU¦YP“µ’§¡‡4M¦Í.1[5+¸¿ $¹aéé‰]Yšûï/tHª*Š|÷vÅnw;­UÕ`šé%& X‘HQaAƒ<µµõ³U¯Š¬L±+ÒÚ‡PÕF”/ø /Ê¥þ¤ ä‘'ÐB¿ã—Ó+Ûm¦Ö̦ËÓÒ¥ËC@Ò…ãø«mzm¢ô(£cª¸ºîå®rFÖs¹ÒîcA¹r.qÝnëݧv×k›p髸íÝÉ ëºë•É)Ýh‘I¦/-­ª÷;WÏiUô¯¥þ¸ƒ–Fª5Eú-±¡¬M¶þB¶ä‹_7êm©µ#ÍSý´«°W‰D^0\äp•ë•t«ŠºŽš8’ñ¥º,rvâºeq%Û£ÌÕÂŽÞ©Ó.*¿º*{œû’“ØU:€=l§Ÿp_U)>«`ɵšú½š$æ¹aÅV×Ðxkkn ¯£WU¸qÎëF';¹#–ºÜµÎâå[ˆÅXÈKh±SQ‰Í&Ñ I¢¢1[ËVøµo©ºKöJ/_/^–%ÜTÒZV"~EÎê`ä³lÖ-¥ùt„å$}”¥\RO)«” “Êaq:ëEwmnBã(Ø F"h‡w]ܙתÛ÷õ¯àVÆÚÃcÙ”…ñäüzڗżÕ@åU”–æí›i>Õ \©«ÐA‹ÆÆ±S'>ú’}>޵±µ_GÖ"Aʦ¥’üI2B´9bºeˆéVGX®ˆÑt&¨óóÏâO„Ÿñ©Rr>zƒïèÔ²—ÄØÑUr²‡- éøb¹¹eªåÌîçls•Ü7w]ÎÜåÝ×+3Is…ºçwN¢u×£h]û›—]Ü7wdÌÙݸ’\®ã®¸gîs®w\çwNÎéÜä]qv\ëœîîî¤:îæg­[ï5¥ûH‡ W^V£¯¥×QªuÉd½ ¬BKEèÄôL'œ#)Ô¡Ÿ1fp÷l¶cm’Øqh ËZKTëJÉ÷Ò—J«–2](ÈéSW˜­¯E­kø#k›‹Q°’BŨ‹w;XÝÔlçnîÎêœî§uq ¶®5o9Ùbs±ªs£¨/„ð¤—(jªšŽ}5W?bsí–jt­'JÊwRü,±•éu«`àÙ/(¨W*É\§­¥ÉO¢«ÖÅÁ>Š^¸8WèªÐ÷5_=¹Äi~€0¾tš_ ,í,¯š,O›&_§$?bˆrM7ªÕ>´|•ú7oËÜ[cX±¦Àbh¢÷îmF5b¢Å¹È°ŒmÎVåNí\¶å[›lFÄ‘DŒÄš˜M$h¹n!FÁm‹\ÎãW'w64”\Åt’iC¤","m¹\渚+9»;£§qH-s’f-Ës”ªqÝ%Ë’•º-«™»I#$É )A "ñ[Zõõkï5­÷ŠF­ª¼ÄTœª%胛Tï$ÿLˆr‡NMNœšŽZ^)4t‰‘ÒR«éìÚ¾Ÿ+Ýû¿qíD¶›aÛ¤TîvVI± ¬]Ø»“Œ]×.îw&’+‹»I£VåŠ/-}=•¾ž[tV.‹KŸHëU¶+ÖØÙµ[6îE#”øPÞ—…¹$¯jIîýäÖÁï7ƒem/ì"®]¡Z«Îe¶ç¢ÜÚ,ŒU»¹¬mÊ.s»F«ŽÎ]*¹Õºîm®Q«HɬR"¤˜dŒÑ1±¶1¶Ûm[3)È‰Ð‹Ç «ˆ—™–QiäÒ> 26–ßÛP.V™b8^\ÃÊZ¼¥¨òl¯ñVm±‰$@Ýv¸Ð‚¶¼þq2w]jdm±Y4h¨,VDE’@ˆP5d¬¦µE´bÚˆÅAîš»»\:[;­r6Ž»²ba1bÉËr¹ÜE6Æ1®YÎçw\!tØ©'5vucb­Ü£Q°€fQ¦h©^6«Ì)Ò)Â÷PükaºŠî)}¼rã­«‡ÙÏ+ŠvQsÉÂì¨aÙEŽÊ£ÉF’Ù$×d,éé^ÀW«GЍü<æ`ó:³i6¹J%˽ŒZ½ˆ²ƒj/ÂÅhLR+Wε¹\¹ŒZ£X¢TiÝn 2d‚)›•Ó†ìŒ\¢ä›“® ÆÑshÚ-‹¸TnrˆP®ìt¶£Z-Ý.B¶‹P’4m\äRÿ@܇.(9DwW¿£·•³kFÑuêIÊd?†žöK¦£|¾À¹ä¢r=€1yx·ˆ[NX¶­®33Ž&9sW9¹Ý:㫦ṮXææw.‹‰r.ºâ$wvcœ»¥Ý“®wwwW ±ÓŽîw:W'uÎpQÙtç8wcuÝ2vv.ÉÝÂë»»>“m~gUù€ç!Ìõƒ¬\u+¥%ð6Ͳ¯öÊS«êî_«ž£ŠòRð¢©Ã@®`£8íÁð*Ò>Mµ²]J(íÒ’sUOm¢2—`<ཱུ…?K–ÆÌÙ/£!NÅ.¾n_‡¥W.b!ØÅ³Çªæ©ù zr¹Àò1'‹ÄÉŠ‹y͹ÌÇvÜ·9©‹snDµκpéÓ»¹;;\È]ÕÊîç9—\–ÓèÒ^ò§©ƒž½á^ªG@>‚SòAëù1zÙ ú*÷mŠì:G¦‡M~d—¾`“×=ñ=Š®Çôj?)^Ê/«ÜÿÒ¤|ìâø1qVÌËcmVGq·Æ'lÒþ^–«à£ÓJüÄ"Ù/ J:¢º¨uRêeÓÓ§žtöüµè¾‘ÛRЏÖîë¶ÜÒÜÕr j-f ŠM&ØÖ¶ªéã§}„žL¹øùZ­šGõU'UÕu_í#´WhWh‡Æ•þ¢9¨¤»R;T­Ô¬ŽÖSµ‘ñà||6Õ_Є/ò:ãl–f6Üu¹hÜˈëW+§væÕ×-ÆæÜ´»‡wm®ZLˆqÜ[¸9×1gqÝw71]×.\%Ý®ˆNî"5‹e)0‰2! OB­ÿ:­Œ8¸TK§“§]Ö#q¸bÙJ¶¯‰lUñ!ó>.HÐîü›Ò§¿íÝZîÌiÎvì¬mš®5›f‘ô"þQK¹Ul ôi|´¯–G5ESèÑúˆŸK0>•bðvÄÙj[E/6ÖÅ>9>8ì|íªyÂþLt­¢}}Húu[h™­&Í[.cp§ª!uOÒ»Ñ_Cèì–ÚØ¯£¶fm«iµ´<¬Š½ÿ†g‡ce¶…dQF“ 1¤hbcvRvõÒõ´õ‘êëÓÞþÈ}çÐ͉ÉIUêÏPíIéÒÚÖfÍ­F°ûªªµæÖILª( Ú/uÝÜäΗsºnîîîÑ×vK†Äë®Øîº‰.k—K¹ÝÁ—#Žws™×K€Šc·Õ­~ÿmö¤[ FÎÉ)/«ôVÕlmd¶¶Ql©Ý*žDGtŽéwCèÕ}u ®~—SúXm©lS¶#¶ƒÛ(þ¡IåJöÑ{j=²]t“é—5˜¶/ Ì›ËiáPK•NÇÌÉWÍffl›+f‚Å `Db(ØòºÛÛQ©G0îé×NíÓ»¬j7tnQi6$H!¢"ÑcÖÕ:*º$è‹¢]ñÐN­Õº·Š•ÈM›b¾–6™6lÚŸ¬’¾Ö•OIOŒ øÚµUÞ¤Nƒ ¶3IFÛ6(²ZLZDžg0Ê“`Ѝ±m‹bŠ6båÍt·5Ž¢Ñ³7-¹b2lbŽQ¹¢SL„”b4]ÝÃF+¤»¶9\Ônî@ĤÂB›&Î]sn%2£]ÝØÕʦØÂ hØÐ‰ $S.“åm¶Õüµûck~ÐU?Åz„¼ m¨í UçhóJóÌKÌ/0<ÁðiOåì¶©²óGÑ­¾¢KfÚúÒ¸Q­Ë‘š6-¿àÛjÕí÷¦å\ØTeÁµÛQµÈÆÎí®P‘„šÁÝqÝÝ݈évëœ!ÍŘÛ6¸Îkš9§4ò~f)ûj_SjO¨ùѦ_*GÓÎ3†Ñmm?ÇZÖ¼–­mˆŠ±I=ÇuDÐV&cº¬«›NÝ×s‚î»X•š«›²N»»¨¬ËΗ(·-¸îºtº‹ww+œ‘tË®îí¸s—sºé+ºåÒr¹[¹v—wr:»±—:ë»]Ý]wvæ»§Î×uÎÜî;ŸqmZýe[ïš”dxE!ùÔ~x¶i´¯I*8žp¼äyÅæ§•ySʼ«¦ðð­¡±mm£mH6ФÑdTTV(hÕR×Ðí¿v—ÌͶÕfðˆO—C¨—@^J¾Z:x½ôWp—P?UëʽêžÀ_NÄ/à¥^Ø^ÎmCჲ)ïå~&Ãe>o¶ÛRúª…ñåÒw½¤Å­Ü®È"®Ö ¯j—öH»‰vÄì©ÛIá ùÂvÛ5¶³Uºµm·¼üÓnZÚ.íÌçS"ÕËk–£TZÆØ¶ƒQ¢±ŠŽ\åÑ bJd;«¤w\™I!˘Œjîí*ç#¥Ê’íw] “`nî—."';lQT[S9Ò‹b¥R”ëWwr1%$’&sq­²Í´ÿ²ò¡|­›P÷‰Iåâ÷»Uat±Æ¶µv¡Ü{N²çMåY€‹d¤ˆ"Jm01XŒD¥5b×ÕÕ}L»ä»ë¾ÅlÖÓjÙ¿Ë K™vuvgf]šìÝ›³v}ò~}\b¸ÌM•ûâQêÊsÚ+k&ÒÚ¶Ãm°lóöÔ¶âÌ«±„œ¤¨ñÚqÁc5Ž×esW6Ü¢cQRV,XÁ" 4‘H†L6QC!Œ’Dw”W{l²ÚØ^rP¾t+Í©ÞRÚ_íIIÿAEÏ8;iy)zÑytõ€óÕ‹ÌÎkÄÛ(ñºÈ-6µ¯yU6D¹E$ˆF2lØÛ1ꪼÚõyÅÏÐyÕ×Êy‰ãÄäïfÔĽE­™mM•È"zYO<ëà眰9뜩ÑúB:OEG¡‡6¢Ÿ §–+DÛfSáµ–bÛjw¨÷u˶•á S–üF6Y›Ti£b˜¦fkwuwvíi6)1k3b)E‹Qkj5îrÚwv°ê®vÖ®d¢Å¤² ÕŠßíKáÁã-¦Åy "óõ:çéß•>Sáì—÷Åþ¹(tEЧ=^z¹©ÎÓÜ|ãÑì®QmÝТµÜ+g8çsXµË±krÕÎ5ŠæråšäN¹Îîf ×nn»]9ŽWH¤Ë®\]w]ÙÝ;u8î—w#IÎ#!Ë¥“.î… ÎÄÇ\î—KòõþoĤ>&“jÒ;4ª„¢î2Û*Ú6Ò5+ô\ásTj-q¢ð…+”šl6MšVÑ3áÃáÊêól[[K½J >©±›$ð•!øõ—4¾°“ßí›m’ôãß¡êJúÅ]¾ª¶‡ªn£ÕÒú¢Ÿ-'«UÛ¥ë%}DOš/]#ŸÚy„=qô¿®Ô;ä÷¸i[fÍ£jØöâ”øAì¥t·6ºÅWO|(vUN«¸Í Ù¥ð¨ìÒ讓66¶QC0­=Îë¤ápæîë³Ý˜$L%%  ü|žï[j{!vÊvÔ»bõ’ï’÷±lÍ‹o»îà_äj«_g¯³·ÙÏ%SÑÇÅÔl3`Ù?l˜LFÄA„Ê(¦“FÆ¡L¨!ƒZÿ[îï»Ò­²mUØÐ‡z/3¬È»Õ^Þ*D.sXØ^©TW²RžWmó»^w—¥Ý4XÕŠ"¤Èh±š0”k»®\ç4\—:fsu(£›NèÛ—,»®s‡vºnT—k\V£I;mçN»›–+—]×;¸’LÑÛ‘9²QuÑØƺBI—wÐP B’dÙÕ¶¾ WÁÕ{½j<šòeñªW”.²x*ެu~UÒß§%æñöfm)ÅR®šïèwÑ?P)ï•{ê—¾µ–Í’ýÂ粋£j5ÅFØÄ‘£2¤„ˆÊ¢ÑXØŠ(µDj66+WÁ°bÀ) ¬[¦fˆ”ÄD¾»jÚ÷*[_kIÆV8UÛEW¯[KÓ×Iò„¿…QùºÛF↳6l-¾Ì¨ž¨<…Uêa؇\‡@Ž€žx<ôs¥ù²üÝ-˜Ö“Æ©EÏ=ITõ…mQ›Scm­«ûõ@ùE+ålîYµk±EnU&Óey0”ö€øÈøÔ¾-WÅ¥ñó½$žë»;·6ÅXÆÑZåsQb(¶Mi-wr”Jcr騨ÅÕ͹rîâ×$0Ó»¢‘Q!—vé¹®Q´ÍÝÛcX·wNë…Ûh©Ü»º®Es±£DG7%k¶Š6’QÝÒc›s»§v;—eÖÜqÅ­qqÇŽ8ü0ïJ»Ðï){²¾ð=ÒKä—ÉŸ'-œfÊãfÖÈØÿó/âUw±ÞÂN„¥>Ò? «ÙëŽ8’[b¼Zµ«èþ«½-PØÛ¥¨Ù$”múæ®f™rèNë†çLîŒåÍ;ºí¯ö*ÕŸ'Ç-B½póÉë©Ï+×+­Ù=r®Œ»hºäí’ºúí•;í‰zƒ¶•v+ï ê]ª«²íèïz-†[J½mE=ªžÔ¯k#Úá¥èÙ¶‹dðŠÕo>Õ~]\©ÒQ®¹\£ÝvíW6 ;³»¤®'.fwuÎç`Ý×.[—#9Nv3¸Ô9׃‘ºç„f#d”ˆÈϹ־ç_rÕmœbq—½§Ÿ+áÉ|=´ÒØ8ŠWžW;QÎC›NT¹Œ&¦•¶éç§FŽ·³ZÛ*¿ ‚ºC¤¯:ó6ñ‹UðvfmGB¸íñ­•vúѰÿ0AøüµJq›Åå°¹YÕ µÓ ”m"dÔ™.[€¢Dlmõ^ÙµI"ÔiE±ðõLWy(—o ·Ù[#·‰ç"—,e]Yy¢IÖQ笪óµu„ó²ëæ¶¿îAù¨«ÐT¹´çTs‡ µoß9óìFšùÞ·É®ë‰%.d˜"”[&ز›&(ÅÄ騮Üë¹ØÊf¤%ùnÕÈÖ+VÆ7‡;"j„k2[ÌŠ(±,ÜÛµÎÅ$¢æ»ºîÎîå\†»º¹wrèw\ƒ"ĈŒƒDÉJúú«¦~m®Uz ®S²®’§OùEWz‹½Ö›FÓ~í ½Eœ*v0ìTöÕåÉålSª¡äÅñQ´ÍŒU¿áÕU{DU‚65‰›TFÆ„Í$fQE¢’µEEŒ›yU"XF65+RM¬b44¥£d„Ñ‘,Æ+Wè6¾á6ÍU÷‹MмéÜUyÚÒÚ¿€¥OO;y——ßyÞvô}Ç*ë­¸;…¢„¸Ú颔ÀBgweœãÅ­¸páqÓ¥ôªSôÐ|?,¯Ë³+m…ʯÍÌÊ¥Ö#« éã«§×DüVɵmi6µÕ«$ý…Tý-6 *~0Ûÿný:±V+%Š‹cD[LÖÚMPlfPd,ÌjŒmbÅ´jÛER2ÜÚ­~ ˜Ú5FÜH¯™±=°ä¿ª—¿j6®ýÆU²¶[fÂû±%ËIt[J4ŠÅ²B»®Jfît:멉šÚm{¾J¾ŸžQ;öEyé^É/eTöžÀ^ÀO]­¡ëRzÒ=UG—ø%æ¶l¦×Á͵[C‘]¡;Azaz¾Tó:µ£bÖVËkUˆ± Š÷ªá™ b)2 ÔZ¢¨ÕËW-jç*¹rƒln\¨ÂB×9wväIwhÙ7"Ç1É¢‡u±·wkuۦ賗 »k§]W,Q±ÎEÝut2›N\¡’é‹¥Üèî2wnwç'uÎsÅÎns»wrNrâ]vëºà×wwc1›¶qœ5mÒÒK£.:ëHIùö©|úOž¦×)'-¶–a›dQ±‚jÈ £Q²^›¤J3(Üîº7qÝ\w¹Ý;§nå×uÛºìîã ¨ã-¶ÏŸé›Q¶Qø²þ„ô]ñTò⽫úUë”—œKÍ+ÈËÍUâ—òêýçâ1µú8q-Ç8ÆÕ¶Ö&ÝŠ’¯´b—G:=úMô~ëZ­æQíg]ÜUÍUÊ#f”lÎêînH§upÆÝÜÛ—W"¢®h6»"îv\­Ê®*vŹv·tÚ(h ­) #IŒÉ!³m}ëu_Ijûj||- µmÔû(¥ÝÇw'v•Ý‘ÝÃЋ»%ÝÑÝÊwhéîä~5\ÜPù´<䶆Ëâ ê«Óµk•QRLm’1‚¶6ƭňM’2cAb!ƒ"L°2Ѷ-%¨ÉKXŒ«3+MaHŒ (Ì–dR1|õý¶ÛV1µF¬X²/Ý üÉU𫨪ÛGÂÃŽ8¶Í–Éá(+œsz”?:£›Í›1<G.Vm°m²x‡3 hÚ¹¨"†o£ØüBtÐé©ÓG>ºiäî÷KæÅóJìsfªäTS§öt‡¾»ÅflËD_ªÛkjó%²z}slg.D1£†ë‡I87.;· ¹£œç)Ãts‡sc„ur¸W.dww:ã9×t1:ë¤L—]ÝÜ]Æänû½­¾íK%­öU¯¹Ø~Ûem>š {jDžT¹ޝ/'¿¢©æKÂ+— ü˜¾5WªÃY¢,h¼­mkÜÖÕ‰onªæç]a¶·5°“bŠèÛì«Wè*sríèôÉs©Û•éÉsÃßÅêè+ÇQêʺyøìè_Ш÷Iv‘]D÷JzÉ‚í¤õ´:DzÙú^ºW½.ÀG½Ga/ˆ…ñ¶ ¶‹l_Fm¶`ìAON’¾"²>/p§7lÕÒŽ]0Š’ûÝkWÓ­°V¨£bزPJ$2E%Š,b5±¢BÄmŒF/3‡qªEnªæs‘¨­n³»IšFm¶Ö®hA+üŠð¢ÿ¥ÅNã6ÚÛml¶K§H^¢.—\ž˜½"t£¤:!çÎÓÃÏ•dÚ­­¶dF¶±°±V4Å&±F(“)Ú"h1¤4¬Üÿß• /ð¢‡gvG‹Jºš›+ XÛâFc‘b†Å~þ•<">~v¶¦ÖÙµlÚn -½Ç‘Z½-xmc—ks·¥`-Ónq«œuÊ™¹¢3»!Ý\µÉ9ºÆ+šuÝ+·pÛ¹Ûš*h‰C¤±& @Öf±´÷þÿÚM‰ûÕ(õòõêvz˜¼*&Ž®ëèfjr^°<ÑWð%Ù£í«¢¶_rUÏ» èÞ¤]{¯KÎ^:—œôŠ|g+ÌíU°FÖò­©FÚ0kFÒ€ÄÀˆ!b&—øZ¯ÏkoÚU_å¶ÐYZU_¦ ÍEœ¿âî¸ë%ˆÆdfeOöö«UõZº`é‡BŽš?y.꣸©è¶ÍmKÊ@§–¥_ô÷–L›Îìq¶-‹mO$9m&µ…š›Vm°½)9Mmk 2þä§qCŸ+©Eï K¯¨ø1|*[6Û)ôõ-¯¶¯&cÛw1­hˆ1Då¸ræÅ\åÂE£îNÎE°Éª#aݩݻº—w9.s:íÝvçÜéÎ72âwb»ºáG1v¹Ãºîs®ÝÓ·I®plŠXáŽÄøß[àZøßÛö¶×ñt±¶Èþ²©WNtÏ&é:;¢è<˹¥wpØ[]ÆÓe´q›kjxB¢ûµo¸ßЄ”hEFKâm¶ªòºm­ËDbÖŠ‚ˆJ$…0ŒÄ„'væwn—+”jæÑÌËt´m®mpÔæºX±ˆ¨Ò4“2[wqQXªæà;ºîâÔÛTPf#TbÄ[–ŠÆ¶¦Ü± ÙÛ•õ_i[OÔªŽßVÚÚO‰T>&i°?mQ|*_U)î4Ðwõª>¥Cá¶+×{ÁÛª¾2Nób¶½x{B½€:x¯‡/eCáñ¬ªþ_–OV‡ÃS±KªŸ_e)ò”|«fÇ!R½,=*=,½)zQ×'/Íèµ±ÒëŒÉv­ÎM\¬Q!w]I$”äœwFî®íÝΜîpœîÎ:厸뫮¹øW“I<õ6ÃkåIò²Ú3M›jl¹RW·dŽËܸ/pp—·©~xþB«øúÄøšÕ˜r]¡ô§%ÈÏÄã3lÉÝ·$…Ѫåqs˜Ô]Ü#%nÓUܺZ*¹ÔQj…ŒHjN踜·\ë3ºì¹Ê6æ×ë6¯mSm‘Tå‰+ÄÄõCðcelÚÙ¦ÿ›\\Vÿ @sˆöÄNv§KìR鎘þêþþÙfM‹fÓü;r¢#AwW&mrØÑ’Ç´ãqŽ/žªtçÀ¥/jWÀÆÕªl¸ÌÛie.¤/ýtÙ‡Ùi´Ù¶Ÿé„‘^eL6õ¸lmÝÍ#E«²!nÛj¯rÞe¶h¨Ñ¨ŒQQ¬ˆ&2È22ˆ°D›TllZ+ŠŠÑ‹bD$¶6š£J-‹i³fß8¼>jÚzˆ”ýD­_ø5ûÚ¯Þ«@ îëAý¦¼ci® U/*ò¿Šý{$SÌ£Rqà…µ|íö>óÒ÷,l¡LÙI‚-ƒAT[[FÖ¼ÍQ5XÕrÅ“wnQWwk“j¾Äºpôõtèë*º„ôâòõzq:‘éHé—Ρ_ «ô0ÛlŒ6¡ÄØEr,×ÞÕÓ†®¼/ àñ×wm±¼"%z©]LçÒêǪó3ñ ÷ _mZß×ÛUÿéªC²%µm3šƒÜRíí¨ÿʯ¢­^:¶¬4VÆ”b5ؤA†bÅŠÁ‘b-ˆ¡$L2A ‚2O §ÏGÐKÇhÜkŒ[Uq™mÉ·8bj­Ò¾—üù¶¡´j@Œ+^æTWϹi,ÃM‹¶m‹Ž9RR¾z'èªfÍ£jìvm(JsêsÕyèñ5.d4¶ÖÙm1¢ÑH› ¤·™BBD‹&ÖØÌ·;\âs‘æãǧšGQÔtýåèÇËKgÙU ÓõÔs[Kd»š/[oß[_Àeüiýh.îh®îrí\œ86ãŒã8ÃŒrÄ¢ôÊ^¶/ˆº=*x·/æ28Í ÃŒ·Ÿµ$% fA@%Ý:G;î5¯àí­¯ßj•¯àÀF61³ý.ôûUjûý[êËaµ¿yÛ—+Y–Û&¥<Ä)Û Ð•ÛQÚ.zé]zéÕ‘Ò©S¥?Ÿù"Úé ™¬×ÿtŠóR:•è¼±T÷Þ`åËI7*¸§.]Îå©’+u;»QF¹Î’-¢¦˜lmÒ¹$#Yœ©ÜºwtEÝÌçmD5öz«¶NíŠuO%ÚÉu½ª¬ª<k~·ïm`$U}XÄ¢®Á¢¤>@øê÷ŒÉ±ÏЧÄV÷×jQQQ±±±¢Ð3DÉ(l–K[ŠX°<èUчZ »¹Ö,]¶6®îá)wr·,ŒQQÝ×IÝ»ŽŽœë²å´@¥Ówu¹Ý]Ýpéw'w;®È®\»»Jnîd3»Ý³§E)¯JÕgUü#[ Uàâ#ò)wâUßám­“f—â#…µ>†\›qŒÚÛ÷"¥y`ð)x{Käåµ6[bmOW@¿m-“>vÛfÛkéT”êÇU]LéOÖo‰¾š¿5¯ø·¢ÁQT‚Ø¥îú…FÃÛX»ZU¯¾ª¾úŠÛÒüæÎ6ч,…shôÔzRëÇ÷ŠùaòÃå—øU$ô­[jÖ[1E¥0¦µª¢Ûi¤ÍÖG^§3±mel\3oÄãÜ¢"¬<~uxåÞ<šð’‹˜@xÄáp³[6¶Ê’A†"ýÕ}úØìvÛ «ØËª~†[VïwÙl6CI„j]Ö‹›….[›oÇ,Ãg&SŒQµÙ+²ªñ=•Gd‡óD½œOg’ªÿ¼¯µMƒ·ÙiÝ÷ýpθ!·ÏjÚÛüm­ýªO]µJv’;B<ÍËí¦Í›lÙ‘,&„ÈDÄhÑM«jÛa˜Æ»AvŠ¿t ÎÒýVÛ~«myþ| ƒLÉ"0“bÈ3","ˆ%µ šŠ±‹$QmE(У ¶‹bÖI-$Æ ÆÉXLZ-±X±£D˜Ù4LÌ¡d¤P š ØÛF¨ÚQ´o \w]kŽìR\Ô•¢JæŽ.ë§.5Ý×-\Ü,QšÆ±têÜ[Ä(Lm0Òa5&i¥“Ä”Ä4Ñ™Š)£&º:X?ÝGÆÆm¶Ãþ?6 táÐÕé'¤zKïzG΂|ý³l[+ñ´¶´p¶nÚ$^^~Ÿ ÷¨Ýwn\çwnîäWws»v ›Ô¶¯èëüåD`b?À•­­^o:n¢4Ý5Û–ºB»ºq×6]rw]]Üä%É.vîêîåÚêtäw: “»†îêî¹g]t¡Ü™wnˆ)-ÝÀÀ:Jæ¹I“wvS§.wvë‘Òî¹"2êîÁÇ»­Ò »®îîë¸Ñ×uÎǰÈÜ“Pîܳ»Z¶¹\å·:´E´[î®Z-­DmDÍ\Ý$Á†IMëÑH²Z+˜±2®îÙÝnÉ‘ÌtÃM"LcݹT–åW2bgvÛµ¢$‘µ%ˆh(²BfDi0Xà Œh$’Õûkjÿ?m{¥äa1/Þws+ê¶Ö«yÚÛô×Ãc@†Ä>¯¬n8¾5¿iH½]?Ûa™¶Só5q¨œA8Õ\äsŠýBŠæ¥ÍSäZ¶ùŒYµjøu{KÝ Å¢ÄŠ(‰ &É(3%)@‘)ba/wŸß3mkó{úý7ôV«ñ¥cTXÆEÊæÿS¹ÝãmÍx[¯ ¨¶«xkñ--ŠÌé×1%ò%|•65›fÚÑl¾¶eÆ­”Bé2÷?ƒºlÙ¶…ù½ãÈÿÕûûËn µ_ĵ¯Âˆ«ðZ³2ܤÆo±Ãõê<(”åèM£dñú\fe£QHwmÍc]t«¤ ÎÖà´¶åÝÛF É"€ÖL »¤Îë¸#'ذ_V¯õëðZ¢~ ‘³ÝZ.š—L«¥§ÿó’e5‘y@:47ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþ ¥À}OІZ!³A"jYšlÍŒH˜ɶ"[ÆBCVÁi€K@Í`m‘¶¤m­³bÆ5M°J)˜Û “cAÛÍ¡ŒÊ¤Q*–´Ø`&͵˜@›iÖùÛ(¡@PqÐC‡`t(TUµŠ•Ѐ‡®ãœ}´ã:ïyJR€()TªR”¤©E)AJR”J4ÑE)*)I*ŠRŠQI)E)J(¥‘JJI)%JQ$’…¦E%$RE$Q@(¤’¤” ¢E U¨))($ R©JR‚” R”¥*”*„¨)J¡T•*”©Pm©UR©U)¥R¢UR¨•)RªED*ª©Rªªªª¢¢•PŠª€Rªª*ªQE$(4P@QF P¡@( hj5T¢¨P*€@Р€RH"ªª„Šª*Y@*¥!*„!U@J†Í¡@*€I j©Blj¦õ‡@ÊšB¨( $*”*¢@ Ï>š­š€Ô1Ø l4kM€a)±›¶Å–Š@B­˜ˆ@©k[š0&¦Öª5¶ÆA¦²i Q™m ˜*TšÍ¦‚ cÁm &LƶTTŠ™´M³fkPmX¬V”Á6ÓkhX,Mm4clš±a€1LLÓ6 K,M‹b°3`š`‰FlÈÙ…5Xc lK ˆƒf­`ZY›b¦!¦)бˆjщ´5šÁÀbØÑ‚Ö¶KMK0É l ˆ€‚ZÀÛ °-†‘VYÖ Û"µ[fÌ€‘°°Zc`0¶–¨Ù¶ÌÖ˜ÚÃk ˜ ²i‹"˜Ê¥¶ÖÓ6¥†m‘kilÈl’±lÈš±``-TͰ*´!Zmªƒ%¦„-¨5¶É–Ì  ´mL6:ª§ÿà`FšLL!¡ Ð˜†™4L##CLšÂL U?ð  @@h12`LA  £xMLÔÄÓC ´›(ÔÚ4é“ji£!§© ©ø @4&M0*Ÿ ' M1O#L§¡0M)úM'êžÔðÉêgªª=#'êž“Ôhhd4iêzCM6 ÑêdÉ “Õ*I454Ñ“"OÊa¦@™&6”ÑâhÑ©ž¦¡™M=& šd2˜M‰=G´Âš˜I“õ4CL@¡é†4 PÈž¦šhÈ ÔR¥)’M4Í&F=©§²h453SÐ1&Ò4ôÄ †SÑ¡©”ö†¦Ðé3Iá6L!4Í#SÒa¡'“ýS ê=54mOIššÑ¡ =Fž£Ê2?Pl¨•)M 4Ðjf™ ˜CCC#d&i4žI§¦˜1M2ž˜LM2hjeO`šh¦ôšl)¡ê`'¥™OÑÔVÒÍmb¿`.Gé©þ¡.ôrضmcd›mCô6Æ­«aµIü]h¾¨\¯Õ' ûµEÉõj•Óó©[X\8ãŽ1œûü4AËþ<“þ ?âKù2-/â9ÜØÍ›@þU_«'3ùhýapþZ‡Ž×IJýxýuEä•ú„óóø¯Ë€¹¼ôšØÛi¶ÐIEì¹Û¶PÑ¢ÌMÎYÊ5nW*66¹W,k&ÑG…wâlj®Î—uÜ®‘·‰¯ ØÚ¼JÞ•%^»º®g]LårNttÜŽî›Çn›E¼-xcFºo xk›œ®¼']ã¸Áxr ¼.cm­¼7†ðÁn;—Žx¼]Ö¼wnjð×5vQ­×H5^ůW%ÍjO µá»º»\Ú«"ÖcE!˜ˆŒiL>‡¸«›ËŽò]åÛ¼—"åäëLJŽììïFÕ}‘­6¯|š6·Þ+ÃÇ,YãºD6ââ¾]뤕ãø£´ø6ù"Sªê¹ärkQ^"\kmš×íTþª_¶_ì¿È ÿ:_ø*×7¹¤’¯»^7¹Û{‰î/q?IT¿¼~ÞÙŸÀ‡Æ¤‡ëJ¯Ý~ø[¶å[Ží\–Ö ò­W¬ÛCZ ȵ˜5&&ŠŠU{½¶õ l«'ö¬6£†ÎŸÖ?™$~²Ž›6i³ki+b[W¯=Î ´ÛÕæöŸé(¯×SÝŸÄÕfÚm¿–rm‚G»«ÏÝTèâýä:HzD9¥O#–ÆÛVÑZ6Ôk@di$5Ñk`±¨¶(׬FDns$•±Ù,‘‚$ÆŠ!1Ì’6vs”h¹³¢Úîîk»¸¢Æ®r®S&Ë“- È!(’**+RšË6¶¶ÌðGš/Á¢¼uñ^b÷y÷nKß] Ò{p{ÿ=“ôdüýüûhIíêzj—´“þŽšŽÆ§x/« „Ö-_ª¾v6Þ#FÛÇuÛ^/¦ÚÖÕíÖ«Ô›!‘j4!DFh1R`ô-¿¾Ïml©yá<7öŠþé6ÓþºO36Gý×y­µ«øz×öj$fb-£m—TWS¢¼\ºQ÷jyšô.±ø¡Š=Ì{KÊô›×Âb‹bɆ6:¶]…P´fÔc,cTYÍ!#Fˆ¶g4TR#W1].Ëåþ‡ì5µ¯žIµ‹cack)m+~‹·[Œ›løÜq‡ÎOöÅIûb'ìßÛm§ëìý^ÌJ9™¶i6d¼j¸‡9ÌÆÚç4+œ¶41‰–åç ±I¤Çv7h$&™Is÷5j¯ðí·î ?lœÞ>œ‹ú‚ü•ymoþvo÷q¼1CÚèCž*ö)òb{(»ºOT¥Ý“Ճ͟Ò?k-fÙ¶´ýÍÆãŽàãl’ãŽök)è£Ü‹¨Ú¢ï ì¼û¹'±ª»±{*>ïºU× îŠö%{É©}Ûèð+k%ÆÍù<6ÎOÆT«é#°Ù’G{/vN™EyÇÏ-rÆÔ*Š5Ö1W‹DŒU·0¶ïµ¶ú­«éKð ó‘vÁÛEÛ'²¸O ¼^ðøt{øªª=%ÕŽÛa}LÙÆãÆVÛgAÈääÎLåyÚR¹©Í-•mmmħ•ÆùQÊ• Ç‚{ŒÐÚæêÒpæÞU^J„üš_+wû[8¡9^%•µ[ –ȬjDbÄ@H©6Š,X4Ê4!h’Ì-–6±’QQc`„f&fUÒ%©-Î8q•å”KÊO(^šé¯¸^çîúOðu³}/ëñÇ' Áxî¼;ºlx›ÂñxÜç(xíxxî¼OޝÀª÷Ú«àlW[àgž\ìŠÛRúy‹ü˪ɷÁ»?éîþUmµ^Õz*#ŒÎê-Q\ÅE­ÊÁÜänr4Å(L4[–66Ç-¢Ø60œ¨¤îÝ7w ;¶+\ÙÝŽlm¨·;wTK·5s®%ˆîê”lm®i1]ѹ¹\ØÆÜ¹«®\Ç:n• »®sºîîÌnº9\»º’AnnÊQ‚Ðc$–_¶×ÑkfÖ’m^=q›k¥Ïj’޲W)˪'fS²‹Õ©ùð=”÷9¾ÏnŠŠ\õ.¡N•-:Rég’¯w&ñM›3L@¢i™-›–La€cF(¬¬Ö¯8ó‹ýù{a7{.5µÄã|kônëXöºÎù¿[à%Gá¥ïQïCùò¼'j‹ðQ}$»íƒDÊï³8ÖÍß“¯*‡‹ò|pØÙµ –i5š!M¢ˆÊi’MÊ®\²(’Ü›¸[šVH±¶4K%£h1«”E ¶mW}.û¿ßÓRWŸSûHŸMßä6V¶›Tð6®5¦Îß"‰/E¶ùo™«ÝWº¯”ß'ë}ìV¸¸PmŠÜÚ(×wZ %¡Ý·5r×.TG1W(º\ÆæºwrI3%tÝ,DîÝÝr9u­DɶÇRFâ´u¬h²MQ[”®msd®®rãswtk—8n”‰CdW¿¶½+çÖ¤~Oœßžÿ˜ïÊ}56aßëmKe™\lÛes[“g:UKóˆ]89£›Í㎮Pw W‰UNÎÙ¬S¸…é®TôýwnBl˜­×6Šæª-‚ÔtÚæÁ$¡NsDW Üu¹¢Š¹±ÝÆîê-Ë—wQ‚’œåÌÙ7.™;®“]ÝQZ§u\ç5Ë—K‘»ºusr å·.mÊ sW7%»·b,h%²m$±kDUv„–û£èc[%±ó¤üô£×¶Gq!ÚÊîöiz¸¼ž¶Ú;š>•ñÕ|d¾Y/öðÔ=uþZ®6Ö› ú›m9©ç¤|µ|ô|ˆž<©à×a"óg‚~èAèÜî·¶Ke/6Œ2‰’îŽ=l^˜®dúÙµÍâ¦þ,µ¸Å³„äÇŽ9969\“ô•D÷õµ=À½AvåvIÛ…Ùݼ.ÑØ(í;„?¸C¸QÜAܯ‡ñ ^xmþ4‰ðÕ|0éÈ<’=L]vN3ŒÐãqDZ'‚ðËðvÕ[ÏÕ¨Úù&cœíscIË«›»ª64îꈃ.î³4iÝÒ`®ws»Š¹Ú-wïíø26²hª %þ×\™ÙÝÓt‹…ÝÙ)¸qÆL«“ < öÑxS<.,óH¥ý¨öÂ?nû•÷E?,'â=RŸg(Ñ|÷ Ù¶o³r¢'÷’ºå¯Ö½o“ÙuÌnW å«šŠØ¶"1È‹v]×$îê)ݹ\£5ÝÚˆæ¹u#ºä—6Ž„uÚ.c–6.EssqsQa¢Õ%….v·9QÜ6æ8Û”j#w:ÆWwrç1FÐ.jåŒ'ã*ùͯœÛƾcÛì>Ôöw"ŽÆðê•õ¢úÍ›ºà îëuU¶ß Õ[á3løYák^¾_÷Ä.v“ÅJÕ8(åýÊô窕åm’ØÙ›#hÞ‘ëÕRvªt"í!÷ý—¾ÅͶΠƒØÉçaìetQ׊ñ¯cFö0½±­_/}Eo¯Z±[&@¨Õ¶,ÛAm&Ø-²UۋظÖîí¹(Åa:æÅÝ®îd¹ÆÄwvª6Äm £®p†s¤àm·²«_-~cVíhíbíEÚ“ÍEàÑáe`ðÙ¡ÃÂw@KÐ%øåWüŠsÆùn>_ïBUÎí¨Z† h†ªÍ0ŠÑLÌ…eFŒ2L·­µ}Å­îÊÒÛtX.3>®V¾¯Å/«CøAáÏ«›oÇ2ºQè^€óçxu^ÖÓj¾µq÷Ê­^ÖüŽïY˜Á¬UŒ¶øÅ•¤n\6D)S¤‰’¨ŒŠfÑ„RlD…M…‹³®¦£­§Õ“#Ðlu›ÿ•ºÊO ¾ŽlSiµ3 Í#VøE[õþ;]ÔPX¤ÔâæwÁ¼+î6Ûj¼ö/_*¹Žîk›–¸Ñµ×4£&4Tl ˆ”Hï5mðöøwßÚÕÎ?ü(Yb¯S%Ýȹƒ¼¶÷jí¾Û»\ñÇw<¾÷mmù[ó6—¬•}—¬%ÖªºÚ:Øu¥sâëCØÊìÒïñt°¿¢þͧÞë¿ÍÇŽV¶¯a¶-UbJ¨ŠÑX‹cLÆ Á„•%±I«A²h¶/jê´[»hÖÁrî]ÝÍ„¨ÐGw$¢Œ˜\ØEʺj4gP«¨¥Ó£Ô¯¾^uó¯_íèú4šÚÚ.ñ´¸|Ÿë•'Þ~Ÿ³J¼0¼0¿¹wû îƒéÏÑù´½ù“SòT÷ò~E<yô½‘_pžH+[3f`”Q¢Á´šŠÑch´i*(Š#›‹IE&¬hÑi6"¬ÆÕ?ܹ¸r¢¹In¸IE»¸»¹˜]ÝsíÝØ¹w[»­Jçt•ÉËq]OªûË_q¶û½«ØâG]‹l6©á¶¶KŒÛMdåµÈóJQàU#À¶côþJ¥:z=]:ºzüñ:IÞàØÐwµÆgzýìI]aÎÉ㔶ܶm¬Ë¬:ÇXë?{êix®ðï6êTþ€;ÉV–f×ÍqÞRúU6·e9š&ÈÙ†ÒcÕäQ®G+»[h§)·ÎƒÈ ¼®îïôJGýê?r þýTs²y(wÒ»}³ S̸áÄœkfÐ6®h¤!o£mÇw.<6’žeO3+Ì3:¹nt@誯¶l-µ½Ej*Å Q‹cdÕ‹b4bX‹FÄmEŒVKú}ÊÑ7,‹œÖê®TÖÜ«‘–-IÜ¢ M(lUÓ®ÕÍ×2'ãµ¾e›³ÙË€žð=à{ĽÙ]ô‘ß(ïôØÌÌÊq8fÛYýð#ÔRu2]•dËÙC²S²‡d—e$.ý;ím¶ïö?ÍJ£Êƒa›c1˜!¥V-[×­\,gv¹¡ŽWRLë¹£nîÆÜÑ®rÔFÅm& wtºã"ÚårçvÛ–’Ø®XÕs\¹\Ð 3»¶*8Ur#\«‘-p¸îÎëš;£sV軹Ýt¹­ÇrőՒƒ 64I1[»×6ädm¢HÊ*¤È¢±$Œ”š4R5½îÚû]YƒkÞ­ü‡WHdÚ<>Û¼x1ÎòûoKmk_°«_˜¢Ñ«mŠý}V××}3#34ŒŸvî*ß»¬Tm«[ßksUs{í¼ò•/¨ƒWë]Þ›-f³fØÙ6VÊ®ƒó’{DušdªÇðþÛmWÇ^”V¬0Ðh1X‚LÆd’”øR_Óg±µõpœ7ãj>®Û\‹ÜÔ'gK³#³NÎ;%Ù;)áS—ªÞ—â ] ÊìÚl&Ùq¦¼ñ¹?ZHr°l¶­™µlضMl‹×«¥¹Ì‚®b ΙÄÚc6m›eàÐê•x3ÁÏ©üÙJ¾žÚ¾ÛæµðUÕss™à›“ÿäR;bŽÛZ§š‘õ WÑlUí÷•<7Œf&ÒmKd[P2idÑŠ4›QV“j-Œj(Åõ®Ór¸9Û®îÝ6îîUÒ¹ª(»º(ÒÝÛ“F*4PW-rÝÎ,–'wE…9k¥]×nc'¨\µ”š Á”Z-ÊäFDlÕÌnAn땎ºæåÊéÎ03kløq_€Ø/)W$íµSmllAótf²^Ø]|Ú×jâ½رŒ[j "(£M[ÔL½×qù¨Só¯=š¾û#U:‰î”ôBu.ÁùšÍ¡[wu~ò'§ùŠ÷@÷Ÿ˜ ÉíGà%Ùw„ýê]ŸòÑû0ÚEùÙ&Û3ca´VÒÝð~W­£ó€ï‹ßzŸ _²Düý³6!·ÓØ>-a)ö6ØÚ6-ªm¦ÈúM­Ÿc‘ñÊ‹çT_X¿Iõÿí)G-K© ÆipôмÈÔE7Æ[m_)j¾­ 5®íš‚úÐîkëk>³ÿ¡=•Oadž]Ié/Es¥x¬6¦Õ‹e¾ÕÆ®1Î9Í«]s|÷¼Úß7ó_wã[}ÑM´,cö6øÔ~ ‘}:I?iWÙ_g^õÇþ’#úµPždCüQÛ ùð~N³Ym6>…8Üœ7ôT«k×M²f¢‹rUÆ‹bÝmÅ(Ú4("’jéIƒJæå1·ÝêÚ¿¡÷F_?è÷bìê^äžj;"º*é<ß`WLu¥SÛÙNR®6l\6ÆÞ‡ÍpÙБ'¹”êÜDz9²;l£ÓÕvÊ=ÝÏÒO[lèrq“I%b»rÒèîÚé ×v®TIj¹«•ê:î®—uråvœ¹ÝWWnËrîìnu²1±·6¹llÉM+ÖIê…ê‡Ý®¥ûö­¬Ö¤4¯Àcw?‡}¼¥.¦H®ê?%?b¶®“Ÿ’í'Ž×_¢­ªóöÔJŠ´ÈÅ&* ŠDÖÌÙþ€¾á},Ûlt¾çÁŸZWÝ[YWìš9]¿e6.îc^»“ˆ^˺G‡^ü‘Rçi´a[ÏÛZ5¤¥ccXØÈ£Q º[r½–ªöV«ñâô5÷s¥ž~¼ßÂðs&ˉàßÚãö*Rô§¤ó7#dÙ›]K®ÿ…*¯I+ÑI±Z EFÔj"±ŠÙ5" 6 Å´›bÆÑm(¬˜[RI$ÆŠ £Q³EE4j4a,’ÄFo¹Õ_—E±fka}iÆ­}mžXTuô/¤K»•Ý¥ÙÁô´‘é‘ãÐþ/ÄZÚ‹Em…¬Ä×ÃjÚgÖzξºä:ª¯†.ÕWxŽÚ«¼G³Ð¥í)zðè¥|ôvÁÝIìäùª{D¼ê¯â*/¬/ °úø63ø×rÂ!1 ×…ÝwMÃ…ÉÒ ¯UKª‡ª¹<ΓgŠá6Í¡°®1ƒÕOT=S®»ØG™ÙW…¶Òx%ëëeþŸÖ¤‹Ü¥îj{‘{”»ÂSë°ÙªNûqÆ¥­Z¸sbÞÿóúÖªô…EjŠÅ‚,TTÅhK¢"F±„¤47¿«{ú÷Í{ÿçØ¥ëBv:ÜÖÔÚ®¯bãY³¦äã¹)+ÊÑÐÊèc¡:Ð]ò‡å©ò76Èý¯‰õÛU}­ùÍñ·®À‘h+6Š66 i4–j6Æ"0PÖòr]ªjæ¤ •b×:C¢È1¢¡‰4h¹]ÝmŠ Ðdd ‘!}}æÛU}³ Ò5ïZå·6îåm±»î36ÎGZ$½-Pù wÕÞðûhú]«Zó›ÖNjwwqncs\«š¹hÚæ®ZŠW+r4EÝ]w]@„ç;ºˆÝ×Zç2QnTW6´]9§s+Žv¹›»³;º‹ ¹·*—u±¶å£`®p¹—s3¤érähîí¹4ËsnkŠ£ŽÝÕ\Ò-NêæºŠ„×@„»®lY6*w]Ý"fŠÇeÓrs£Ž+¥Îî„WbÛ‘É?½ª­÷ößjmW½m7.k”4X·à7×WîÁ9йŽf¬ï+ùñôëӾ؟qsÝ%s"½ŽÉ³M£Œœ8•5üõÎYl^»9ôêÚÕúk×ÛoYl±¼ub$8ã\2õbé•z´=¬îŠ»Übl>e©AÓfª¾mÒŽÕVùÔU GîÉà¶­á{£Q~}Eê(utåëÑ^ž]¾ ¦†é†ÆÜþ!“¯Ž¿ÔºëÓOKø>9<Ž©±™µ¦Ëi0Q˜Ö‹hÑf©˜¦F_*\î9vs‡8™ŽM'×W˜­šúßõ†Û}&Û^®Ûòˆj‰Z¾øcEG.6ØØ¹6¾³”Ý )\CþøO'ÂßßFÞvÖ¶õ’ˆÖ6Ôµ¿sZ·Â­}ÌccZøkºç5Íŵ>µÉ¬Û”óÁ)íÔ{x½¹^Þ§Ÿ·#Û í¤{`zÊ !áŸG?ÃIªG¶KÛPóE{j=°¼ÝO&Z¯§Ö½msch lXÑ’]LŽHôŠú¡OJmUáëMªã7YžÉH¹C®uÏLôׄ¨¼-)¶“Îq´Úv¿ß¼µO O«¶ÉxI[wÜ÷®/ûýVÚôÖÔˆ¬cL ¤š,Â'žäÎî-ˆ´0wQ¨´›r®cj¹j¸mt·7.ë­&¤ƒºèî¹”1HEE¢Öäm»¸Æîê"ÎÅ+œY»®LhwnmÊæÑj³-͵Ýu©6cXÛƒECºÜØë]®ZáÓ®w\Bƒ3o WS—…šð|/ðPñµ_å úZ5j¾ÍmÍWk–!³l¸ÔðòÜÃläÞöi)ÑAш½*ÞÃ%XQ£mŠ’’ÄS%‰Qo7Éí{m{mí¯§¯b÷‘xhðLJ±áßVª§•KÉ ü”‚“E±¶x[~‚/–_3CZʶs #«ÎsÚ“6­‘ ÌƨF ±š>â¶ùË|ƒ/‘/~ámFUôscl8ÜiÆËd÷³¶ªQê¤z¥=Tžª§FGF/yè*èuKúrî°Õ³¹¹úó|µ|·²òöHÄZ¢Ñ¨´ZM´lU © ›kÑj6£ã\’(Çw3»—s«Ñc\´•ŠÝ0˜ÀØÛp®戺i ÍÎT»·7*ånçh¢å¹Ût£Z¹»»QkÕ+ѹ¶Ó6Ë»¶×5ÁÊæníÃk.î+f“¸ÓGIó*5?C[*Í|út¼¸Ü~hQzz‡¸l§l/ÇE÷Ðù2;=d|™_+£#ïâ»`övÁu±ìÕ]°½¡W£±’ÿäf§à á«Ý‹]Úwz™w~§òˆSÃ/y´^ê—Yԇʗ€7#6ÕFÑ[F´j0Ñ0† (Ø’6‹lI±±¤A£h‹¢¤QU(£F*2&67ºmØÛ»µÒ¹sr;ºN\è“‹»·9]ÝÌ&X‹–æDïj¯¶5†[Þ˜µN¹l[\6ï¸âãfäã=}?p©Þ‡âýÖ?š¢^:§§=;Ó½=×;—Rнu^‹6Òy‹m‡¸è8דÚóä^;ˆ¹\­tîåwv×V+›mrÚp $Êó­«è«_Ekè¶ú-¿íôiô]Ùýr…åªÐlVÖ©Ýkf8Ûn9R"ø¸+Š+U5E­lU-­ o]m·÷zÔ•Š;6Knçºßå…Ä”ö¯¡ 'Ñ\G&Û3}jD½Ï ûˆvÒþ”]ÞÓøOñÒ‡4ÞªI ƒ(ŠF¢ÖÔ¥@i+E´d¬k(*4j*6ˆ(ª$[—wm‡9Æ¢®k™snWKnVç7!ˆ5Š…ÎÅ˹\Ó˜(wmÄlš.ãn!^òÖöÖ׿õ½½g•©ç*ö¨ó³¤)Ñ/f'UvÅ:¾ÔŽÔ®³ÙHêJõÊwe\íòn8Ùž“û‘ïd÷ª{Ôºi:$\»Í}%KVmN‚íp×ß^:懴ÅÍí­†Ó3m$DhÌTZˆÑ±ŒQQªFѵ"J¤d…”ŒE!bÔV*6Š(Á5ájšJ6" ˆUr6–Ù)¤“BN]R¡¶_”—Òwµ;݈뙶“‰É›ü¡Aû*_øÐöú¶ÍišI±+úÕÍ u´æÓ›¶ÜßÎy*Wø&¿Òm‚(ÓV+m¿nÈ-UøÚ]e]`usÏMæ_¼<^³*mšÛ/)œµÊÓbѤ‘‚ÉŒÀø6ª×ÁlMªV¾n¸á·ƒ!Ì=÷.³¨ówåß÷ý w¨]ð;ÖÔÚý´ãiɹ8Ø*<Õ',y<›(œ÷+58Í'gu¹¬ãn™m†nî„Â5ˆHÄE¡Œ`îäd‘ÍË»®îº[šæL;ºP‘{Ú×àk^¹dmí? B>,Nù-µ-¦¶*ï­ŽûoÎë—x¿«kWÕk[_fƘ¢©³ÙRóÂíû¿çÿgùÿßÿ/ö}×7Íó|­ÉÍ~wÎåø§.û¼ß#ÕôÜs9Á.Q#/•ª'ö\X‡Ðé€ñ“÷„”D‚BÈ# Áûi "Ž$˜?×q%+¢J„ÿŠUþ©ÆñÎÀUÞýÿ—òzÿì~ñÿC~Dª÷‘êG°Ÿ«¥m› ©-¥ÝãRÚ~:¹zqsÿ+yO)ÇòWCåú§Îô.˜éò Æ.¡YDÀ„_Ñ,%@„ !âß5ö÷²(qxɈ‰i Ïý> qq}p€Å냋QÎ×0@û¥(¿Â$ܯyÉåy^;“¬ë9^/Ê<_Šñ¼ÎW9ÐsŸØç:ÏFª=Hڦ߀]â_û,©ÿä„FšEüa$E0Ä ,MÿQÜ(_¦oý]ÎX¿äƒˆû â>q-p^ÈAÉ¢’æ¦õ:‘J’æ‹° s§®hÿ?–|ã\S |¤‘‚HýX|¤`X¿îïû@@ âââB}L®4\5fÄÚ#añ[8¸÷ø€ââSÔd†BrØ^$ J¯Ó‰U:R¢¬³›ý£ ºÄù"ˆ€ÀA ½>×Ï/ù ž¸–¾GL`°$héÅ÷>ïe@qOâl©S`µP¦0J,ð +"P@R ç’añ”¶N ë¦™t5×ÛF£‚§ PVÀÂШo¹šDC„¹Ä•¸žånWþþ_Éx®wtï÷„¯³6–×ÐC‘æ<¯–ñ›Æø®<_=å¹q‹ ÔaÉýÃï ÖMf«Ð$¢¨‘6%© À㼇.õu$«í=¿ÝgåÿÆppSKDÁŠdŠR€´ >q¤|ÐÆU¡HVÓ8.¢:®ïûpÜJAY,‘˦U‡A ¢x£÷ÁÄ~ˆ8¸€ç0ÿ£Òbz M0 M!…®I'ã P²Îéùœ`“Žƒÿ”S¥#JŒ#b@.XOfzFyÄ ' &¹ Þ9¦@e``¸‘ô¾ø'cïÑ-¬´‡U õ_Ð\ˆú߉Ô:˜FÛ™Låx˜Ç§¹!Aª°@L:%†´Ëp¤ˆ¥<ï8ÑÂ}÷,**yJŠOÔr[²㈅٫jL¸æƒø°²c°+L¸×òÜ,WÝq29Oz<×Üt‹Ÿ‡ ²3߇濽jp}hz*±ÊŒ[¿†;÷žž\·ìâ²ðÑŽ Ô0h!¬)4âJ ¾=ªLˆ|Ôœ$©‘›ˆ¯|Jè*ÁÎf ‡t–­ôZñŠDˆ-ÿ†Ð à¿ýíHÑOŠfÛz4çžc×[Î%í4Ÿüó»=o…Ä1deƒ^n}ƒ¯ýètXŸC¸ˆð\m–Ý“˜ê9DhaØÅ„Ô„(ÏÍ«x\Ò. óCœhŽP¡›ÿɤxã4 ¿½.ÖöÇDõs%o¹½Ôè—56 Øìžœ—©Ý¤ï]po¦³Àöó÷¡ÿCè€âââëâââÆq(-%ÁÉxñi[‘Áâ WcDÛÛÑNÀ¤i Bcå ùøåiôÄGDqÜ,žÏø ËÛ  ­µ{¦SÔa‡ï‹.îm%¼#Óa&Û/'tŸóÌŒGz#—a–`»ÏèÎ^ÈÝ“b˜ÿÍù±íÌ™¿wm&r§0[TmžéiVŠø¿©=¾ÿ7q4’r† O!.`"*™GøÜ\@âÿD\Nƒ‹ÚAÿ/‹ýð@â[‘Ö>n¯[̯²uZ8ÏxØm;ö<}1ñˆ\@›ï–_;Ê|9}^¾ª@J(ðåDÕø[Û¶¾nYEOŠ¿TD¶aέ]:W÷*›.ÆÙ9ÁD¢–“¨Ú<£q¡ÇL!¡;tR÷ô•‚ß&•8OúEôAæ‡ÑgDY<¼}›é’€Ø—=#œ&äd?éëhV Ç,“7A/%lM…ÑzáÒ_ñ1Řwy/ Œ½sû6ø+v>°6âMoÍê/ÖcµòÊô—ݤk¢Î<½“ÕT‘è(éK)¶Ý|ÿü;•ES!ß«èvv¡å7!&Å5Q>aE´>KJÑ£õŸ£—Mª¢z'“hÝ\ Írþ_?Ê÷Gí:ŸÉåü¬ã˜Þs‰ä´r²x­W”Ê9x„ôx—/Íi[Urô9ÍG‹ÑåtW;ªt˜¤¹Ì_?Ķ¢s˜¨q‹Òd­‹œËesZ¶ªõ;¯=Ï.ëÎo’îô›òUkÙ+Ñzn¾OÓñyïEù(4ž¿«Ó'vØ$Ðïf ê‹ã Až`„@y„%vIØ+1<Œ`Ÿ®CO3–¨ŽƒàñA¥]ÝKÏ&h¼C„¶<Á2@íä8!Ÿ-©8ï#éÚÅÑ(1ù3 š™ÈÓ¦Ô“NG„Ð :QAxŠíÔA º1áí¡¸‡³àzÍÞ qDŠ6j˜S´^ $¨Å,Ž$I€bÔ2»ýßyÏݹÏÔìP{ÿ¼ÃL´q‹ÃxK ÅüÅÄl‚ýKïŽÛýÔzÅmÎhûïG©^KäÌ–úfÕÁ숇˜­dÃPVR  €“¦ º6Ëã‡þ»AFZð.7Ü6̃ –SÏÓ9³’aµÞ c:TfòÈ’÷}W®ßÓ;ØÇlìnŠÜ{µˆ: ®¹KÆyb1EMFl]\!×ÚýV|;݆ç[ÑfÂo¿o+ôØ+“ ̬ÞW^»o¡Åš±Ï†¡ÖGLuòýãÜÄz;ÝÈ'Íýl­/|÷$( Ýúý¾-?îÅo¿èè·£'°~n2PyÌ>+åߟG‚Šr,{ÞPpP£>Œ Õ e;ŒÌJ2áÏ_›¢ütM€¡WTMõ/—ÍŽ¯4ߣ~Ð>…ÌÝ0ãT =Qb ÛÛRe—ïÏVøñ°Ó!U@hTf†íútÇÝúœn¤‡Ù´ƒßé¡tzù"fHƒÉœq# ÊfšðÙ÷áË&ÚÂg¬‡ü"¾Œ+ÑgUÒú2µŠ³˜ËP¬6±«Æ"WVb"ÿüœ»­ãí$&ÇX>–öó0Ó‡(@E†æ=’#­"¡(÷6æå­Ý5.¾^} ò˜Rjˆ8`F-HåÅpß•ŒÀÓ[‰ãG¾5ø(›Ɉ ‘ä×Õ [©ÐYSú­w¢‰@ôï—ƒˆá–‘YV+~^^A#úFñž÷òç…çÁQ¾¯b4ppO²¸w1¢«ÉU–îù\œ}ÅùˆRóÓÏí …5NølÊ¢‡àTv°Ù„RO Hî~þšSò¦#/M[Ðë£]øÅ" |uêiffu…$z[>þ»^ìo¢@nÚ/åðö笯?¿,Õ¯í{›G£²ÿª./ó £1Š¿~­W6«se!«RCÄ ¶ q¯éä·ºãèË>Oç½n+–ÁÄY!ù[³wÛæä¸¬²2ÓåÚ’—JÏXÜ2-#‹'»Œ}ݲ|\nÙzNZj ‘OŽtÔ”·ªzÖs€qù},Œˆç£ˆP±™á•Ê4XôšQ «l½ SS(Ún.Ö~07* ¨Þ×…>½f<§›‹H˜ÖâkTéÒ{•K(¤&Fè@åXuÃ,;—ŠËìgæÍñ•Pø;2¸Oðã¿´Óô¿Ž­Ù¢ŒFŽÓäá•þGý‚b@ogÓrçÏÐ"ò§B§«3,Âe¯r^" %cËΠϪeP‰§÷~·azõ¿©zhóí™ /?ËÍ"t ùRJæ®¶‡¯q¼•:no>φ¿ñu·nЇÊzAFL»þ¿Ì{«*ЧJah³—´QÞƒg/RLèKú‚µ¬æ¡Þ#tæÞ¥–d½U R¡äy™T»Ô‹ñ†;ösÓ`í‰Åt¾ Ýš?$I‚Íÿh !@—ëJ;'!CÁ "´)®w (;ƒ=îè‡ ZEø( Xüb¶Eƒë™’úøìêÐu—ÛqÁnß Æ¢×Ù‚3°tj÷Ä‚î²*ý儨0JÎïfˆ½ÃËÿùú¸xÇø+ þ\Zù…´Ä“u%GÌ{•ËdÉo]¼(-ËÁjzÐC¢ Á2P¢Æ¢æ«MÔHÊ}œ½ë›ÀžIª6—‘kQG`¹)5»àKL,¶»›“ܳ¼ž†1æÕ‰Šxð!rØÛ’µ ³°,væò<{2²_À°Ke ½úbhÜþâ]žxðtBè;I>Û[’­Èíì³ÈÜ;NC·†þ6¶((þˆú­á ~ ôÕP .tÆ‹_xhŸCI›¢RÈ‘ƒSzåN*¼R9ŠÍˆXìfÕI{Ó£;´ÃËËC¤¤@q†>¬ÈÊ’€¡ŸãæF‡~¼7u1–³\9ž–ÈaM—zà9õyïmÞLÅ»$à¿É«+^ {D´Ó;ó³sm§©Þ Ê­§0öu¹×åøP‚¾î+ØáΜ‡ýŽ­ïèSç z•åê-¥QkwöÏ‹TûSthòb›,©2sEW\e§‹i·žØ05£ÇÜÛ°)–ŽgVgW¥]’S+ 9Û ƒ“B…RôJ§1Þéº'ðc͘wfÚÍ¿£CYÚЇ· 0ª‚^(aÞ¦úFAùô;|Éè¬q:‡VZtµ‡)aÝÝÕ·¨÷w&kOéÕªÎîð»TîZBÀ˳R•Ë8S®éTfÛÁhÚÍ¥´ï ÔܵëÄ{óüžßóþ³ÏFÍáë ƒù– ‹^zzÑÆ i ÞîË÷ Öx*Š‚ÌM1lˆð1„>þ~©[€§JüéúRáW¬ÏHe¼½8A´ƒ”ã<èÃÈÝwZ­ºÈYyåín³ÅzV\ן©z¹NÀŠA§/I‚œÉƒ~GS»kéÓ›Ôë ŒÍMÊp ”²Ÿ{iÅ÷²¦1%Òí# 0FJP ×ëa¡"s{›y½êVy49sÁb0ù<¢½ ê…HDVy€Ž°Ýf\·ã(·ôô@ŽBËÏS>úéMËÖ˜‹«»5øí*…\w3®S^%ç¿óóuvhHæán…Ýüøx5ŸDA1µ‡«š¶øP‚£“_M¨=‡1KRÂMÌ´¸õ›Î«Õ29›]¬@˜} ÝÃÌÈîOÊ•ÁiÇ<ö/Áƹ;ÅYYåLŸ³ .¥>¾ô|iK‘TO†hAg ]í[DeFqž9+ˆ‹kðÜ*Ö$×F+Qt+k;}©üÍÏ0œ4ñçî‰OÌò‘ÍŒÚfÕ·‰÷ÚíU’É,;žÎž.dn:¯DñS—Zž´3ªQJˆY+¥ÌÕ!ž šzR¶ŽAÉgpÑݱ_.:m2/IšOÓ‰qÄ„9Rý ¼! £aYrÆ¥L@ôZN…~ov»eýö€ÌäF[ èˆþÎkì«ß€ð7ŒÄM»¥%'±ÙŸÏðö| Èõ¸ã%çœîyZ`pë^…”+-‚Ò)m[AÍyéѱ¾FÄfqÛíj)»½,=Dìeò ="65xëF‹”@À](.è.Ë•ÆÆoi«qZ—‡ZäûXó{œªdò"è‘·û0 n¦NÔÒ_âÿäÁæò%´¤eé›Óú&É|°iÑLõM{·èD̃VãÛ¯wfÍë›ôºý-%»BÝÔ/=©’\…Î÷6r|x˜ä³:‹G¦j=º ã±ëç ±ãì?¥QðU…ú7Æ|qÃp°#Á§É|{›Ü9ѵ3OÆzd¬¡Výæ–‚C![ªÜÂí´íj©¯8˜„~Ó«àáõ½žõ‹šû8ìþwOL~=•É…ëÀ¼ @ò¸0â2ǶWÌ«“mã)sYÊ׫ӗ§©ÁÎ`æ´W+PÚ¶TÙDÙ9­K“lš)±W;ªŽ73UÃ)Ìã„›TÞ'\j\ÕEç*¼ÍxjÅ+iåÛ^Ž“—£••Îc•¶^cKœ×ªæœç%Ñdæôç3?@Áà@ÇÆ @@à@BÖ,ß.©‡U­\$t:FdØjÈ1üÖ)L‹¤õÎý± ¢ؾ –šCPl(D „c(@1ñ „¦!A€` CYÜGŽHN@X踊{ÞöçIå{îÑõÜÛïò_?›ÖÁ»ååïÎô~÷×é¹åpG¾S¨È±ƒ Ë-#~;¼|Ãå›Ôô<¼W™^½^eé¶ W’µx[Óóûèü»^ÍîÚôšô?¬ëè^r«Üªó0{¦Öóš{̪ñX^£Çî‡Eç|_ y<<~sÜßàrxÍGŒÕËÓšÊã'’Òòzž7#œÇ“Ê\a-€^O ñš•ÊñœÎNf£©Ñ8ɱMÊá ãl…ÊÊã[l‘Fˆ‰B¶5mÚ¾=Æ`rôœ­ÍirðrhÞ[„ãšá´ZÞM‰wrÙã·—vügxòóy½³Ðóº¼åó‹ÃË×vó>uzõé/QñžwWÅúžùßkÛÌÏuô_?åW’è@! ¿P`ó{Bð"?CÕžß.ü7öX~«ÙƒdõÞ îND†à_ >ÈŠ²ôb^—|¿ÎîsÖã_Ú â,¶Æb qq1ˆ›d1¸€‚Q‰^råÔ4M(â88¡ƒ‹×èò¼÷ãKÇno^S^7ï'—Ž^91ÌÕ¬"Èv ÿÕ1Ðé«KõÅ@Êt@”$ñ¡&+e Ù9ë¼|"ù6õ>›$“׆7åùq2þ[ó=¸áSöoZþ(̵±&\2[浕ZÞ„ÍÌT\z@£½©J “ƒ( ›ñÙc µÐ æÎ@€-2†S†t%âÐ ¦ùÚsP=x7¸žõ¤€ˆëPÌ¡ºØP•g/°ò†Gì'Ìc}ñS›Ýøºþ½ž`…— ¥ÉE\”°@•–8rdðÁ,0Od DÞÄ…‚EËmg N0žq³A1)2i‚d,„ Hšƒe1T /àZo;Ý} òã% ×å$@âä¸ û—G‡;ƒ|Ý>ÇÁþ’<ü]î|€ ûp’·"ЛÈ{€ƒEøÓ<Q¤xN8°CIB=9ÔB´AT'.N¢±ˆ!„" €'ì ¤ºÎdd-±d8Ä€‰Äìxf3²û8Öû 3…ö§C|x¡?8žRŠü&„‘x]ÕèýƒŸè{ŠB |odü3Uï[á—â¿pt•X»\ðÉ„@äZÂ1dK9ÄKxÐ5„Œ2ÖsB²Œ¤Ò10dö -ÁbC{„fCß®(ЉðÀmgdh+„}Ã{Z —Ò%ÕÚ…Cíèón#ÀO#·€WßhtÖ*%üXå¢`K‡WÅ_þµ\šßÙ3Ÿ°õû1›Ù°LË3’fW—G|6& È™tg0‹×IÐQÅÞ°d¹àjÀ‘:éÃô:uDâaV€å Cæ&Dâ÷ó¨´/$†c¾ì=®»<ã|ú™é5Ø%*Š!{_o×ÄM ó¤BŒÑ÷»™œFÂÛÝ.ô–xvgH~{0ÃP%H}'Óžò”`4•s$ìwS^4Á„†v=ŒgcéŠx\nôÒêÃÝ#0J§!ñPåQË2 P¬à¾GœÿÌt÷IH1j´:4Ÿ«ÇbÔR#]ùh“P’žÔãƒÍðF jÃr“ !½Ü6@‡BëÉÃÀ‘ô¡üxŸ1lÉi ×r'£Ô”˜•»ZK°<è[žKOÐ:ÊÛ +" P $.lMŒ.±€‘æ„C;îq~uºfôĸç™ï9ˆFð ‰E&Æ"ø!iô™²ìæÖ^¿MX±P^8hÇEòCŽºD–"‰ö Ò1¢ÆÂQ„0\yµwøŒ„¥º ¬3öÄkG:€àuò›Ìˆagöþ-ÃÞ–Sx”Ø/¿]¹MºÇ.?æsR5hvû8"{kyŠ6öKöÊP'I$pçˆt•Î6D`GÛ¹‚„ô›„®ŒÚEN±Äú4C–ž‘ | BàáTùaX¸Ñ(r! "‘ž‰€:ÏmÁ+hÒ.…m,l»ŸKÏþ•H‰²êÀòž¤¸Øä¡}w3ýï¡ Z îKÚ-놞â(°J§?_7n¢¨Â…&Í¥"ãL¤XI²¨šXÖêÝ z• Ö”¤°Ç@²°@¯K¸>_³¡ÓS׈6í‚§7+Þ~f‰ ÐÁ&EÃð †Yƒw²ßcUôÄ„»H /XÐyDÀÈ8›³Â4á ŒÙוy÷ý:‘¢özeèb÷;µøcBå7ùþ „~¢K¯OwH/рĊʀ¢S ÉÂl©Ð<00ü¹RÕ¼™À‡#–X7#9"Ï_È )kaŸ)XŸo{ß[ïÆ¯¢Ž¾¯Ýú¿‹+Ç(¨xµs}hŽËÔ~§ë-6g…Kz]]¤A•Wªœé;Áo}D E Ó羈K±|œPB‰lyB·BDTèø5Mø†§åÆ@Æ,÷àCé32~âîé\adpåÆä'øß“îså ðl¹ VÜ?‰ù DòéM²^³%÷¸’骦Wô%Hs(gÊ‘fÁ}@(èÐ{ïÖ%xÄŒ1€J ‘¢§9˜ f Ʀë€` ãQƒà}2Àtbk¨#‘]Á$#UÆß r¹&$ëcíš:ÉD¨J¥TCiqÖ„=Žš[;ÔÓ æOnÄÎõlÝ3ÄÄwN8…€ÆÏWw·¸/bîaÊ„‘bPŬVh0½í’ ”ÌÆ‘s~8.ÂH[xgÇ‘OQ÷Bþ{7.,€ï><.Ç­hõüŒ“™á”Ã,Å˰¾/ˆKv^Œ}µûx£Z…ô(˜³êô™ešÝ<êÍà䤊E÷³»J˦\$Ø„â /™¢`¥Û­^uãäY5‚"@ ò©Í•!}¼å€Ž`.Èë†p¼y‚ðÅ`ÓKù§e,`5%GδLæCóiíòüy2©ø8Ÿ‘jâ†2~VÍy×é}†XëP$B²»Þ Tçá®RˆmM4[<$ÐŽ°Hlæ³õ²P°')hÉöv…Ÿ¨«*rˆÇ 9Îsl˜ÖQ>ñ÷Œ°<´¾ƒú¡*®¾1…âõEÕ¾7¿½¾?’æ¬VÛ»OÉØúßÅz.0åçº[A£xêƒÚ®{ð{Åt€wì ÇmƒV_„~…F¨“d¸E£#i`Ì`gÎRÀ^¿tSt¥tDø\V„äzäNHíI(æŽ ë4íÅ<=4“««-Òãs.‰_aû>–?1’ÁŽô¥0w¾Åë㟟ÃM zpÓ”¡1‚êÒÉŸ`:weRNYÀ[.¶*‘ÆPÈÛØòÈ{pÜãg¢ÆÃêô9…b EaPº”f†î…Èt$h¶0å|(亹b4-\‰Î:^E«±´ãÛ2òP!Ù…¾Q¦•¤Ç%'§¶ïÕËÊ­]Q¹L9p'ÛžÜÆû…LŠ:‘hÛHº —n ,$ÁH;/» °ã÷¹åá"ÔgQmB£{_w{Š‘±{T­¯~ò4®þ* ½Q01àì.ØÄ"•jG$ìÑóJRN¯wŽFy\7-ñ'›ðÇÇ>^Sòö2qÃráÁØ6ÓuC͈úÄ È¯bÍ“< Uè÷ìïêt»Ðì è]zÌ[àHV‘# ¾ÅÆcµè–c«Âr6"ÖÁrDª¬GT¦'4}Pè9S½ZÚ¾’GØÕ±`>/+Tªý{Ðg¹`.”Š Р<`^«¡DH <„ÙÓK™š¤ ÃŒp›#I„ò êÏÛµ»­:¢=/l…H2KðxgÀq sgº¡†ÎØ‘ÞRc6¦6þåÂKw¼_aò®‹Ò;_éLŸÓÃìü>Z)^úÚßYÂc9ËÏÆ£¥6L†«Â‹1$`ŽÕ”!£ t°N0´$n›kÑdäÖ°­Ð¥“ëêt¢ X-›ˆÚ¢(")R쌤0!¯•#Ô>>²'ñÌä(Ž¿)³Dý×á[#ÑfBÞî<îÀ01ìý û¯Ã6>ŽÏ:oÃ>zûÏÉr´‘Š«•=‰¿(La£»ß›©Õw$[0:{kòG­NX³%€p46 ³ÇBYņ Œ#èéÔ €_-$€‘y!1Î@‰œš4Ôµ­Jƒ¦8Ê~1ŽD¹qGT‘ókE‡;ØP 7ËC×ËYÿMžßãõAƒò9Ój?›ÚåÕ'y|Y~ñïäÁEæcr ÿP¹¡Âvçm*Ìbe öìÛ‚tŒïrB‚: µK(S”)Êrò„@g nxRk¯p‰èF—KL'Až:ŸÖb”‚VÉ•¾xÁ8P}Cð_+æsÍz¹Ñ-B 1ÖŽm6 ­ªÐpè*V“}¾™ÝÀXôgÙpéÄudåÉ*u—«·ÓVcJ¼ø<Ú〃—ij–=`òíîi$¹°Œ…H"Æ„s:€8„ºª×ÆR½ºQ„Üc7Sƒ°¸Z  …Äž‘öðÞ«Ðzׯz—kÑ=ê‹Ø-ê|—z~nõÏ¡W¤‚ “ôáKPÆ€/ãìx¾þ­}¾<îs¯Æ_ òôýxö.ô›§-9cB4i!Žf5Þ½k»æFµ™)Äà"æ,މ¼_ …2yvOü&ê¢mÕÎÓúFäÊýIç®~Éì¾Å€ÒÍCàP§ìŠuÌ䶉',=Û­¿¥4/ÓUáâãwQÆ'.,¢¶o;ñû¹ÄÑ9±dÍŠÄè4Ó­"sÂ%ZáQäøÐ‹¼|@®Dêá\@ÍÃÈ7-þôGe+'¯ò/÷¶úòƒ…‚Åîé@û"Ë)`Ø#½@¹+YV{’RHN‡ÂFùÕÌEÍ&µ/Já="é7!ëÄjŽ—–aâô9ÿ6<…ðåXþW Ù¢R¼Ëƒs^]]JQŒ ƒ²Ÿ}cèeoV9fÀ®,BðæeZ–«“‚T&13Ê–៞Ч–S0XúHÚ§>Ÿ%…¡  KË'ÅÌ|\˜à„¢ÆÃXcÑà‚0l æ†äloo72h9ø¬£»îQ{Œ´L`½Î:9¯nå~+Þ\~¤pàTºNÎ|G³™óúN·—² _,¡ãäG/HÇGJ¶ìß¿w¯¸VuéÜPì˜l™ïiDÀZl:;)Œ‘<œãAÞsj˜©þÄiºwl0EðºÃM0‚¿uµ–/1êa°¯¦¿IEÞ°42|ÉBw3Ëñí|»0Ió9\<ëÿ * ݱÁFf*µ•=©V©æBઠ¶ÁÖ9'ãBôpPTèòÂA™‰‹^àW<~²”ÅúšñM›µþÃq>¯€)åm—åqAd¬¦¹Å4WȘ÷¾ÓÓÞö;†k©„bä{‘Á£òæ‚DGËOTᓬïw•éö!P/~w1ú`‹ÊÂ1U3ç„ôÖgUdåç¼Võîc¼ÄJ{O®þ×!xÎüI—õ<.ÕÇ%¸„¶LðD( ƒúIÐMf?Ô!†Mp¡“&*’0Îd½–'_l‘6†Náâ5¹ú)¬#g–!ªàXº4[pé´»9Ö÷¢íÉñ^;âÛs*h²È \Gë•×çÖÉU³‘Nó+S @¢«ƒ8‹´‹/‡;¨E>Ú§ZÞÄ)/ÁÏÆKñ” ãgþÑïóÚ³}\³:å冋¯.]Å!\ôH†ÇÞ"xŸ™žü pÌ<ÿ;¯ieëìÔeP Iîû‡<]—h=Ÿr9Û ìG¤ Í>kOí–0“|‹|þƒ×õj)2`ÑeŸ<Ô`ã i+Mt;Òé‚>d½u&϶õ¢) ÿ¶r¨8Muç>)<Ä¡J"±¯—Iy!?lÆ`€´ 7™Xhˆ<ËK°[² †Ð×ÈÏäÓ娕™c)>ïËBA“evqÙ’n®8¼ŽËàÒ¶ ÃØB¿?nÿ§“L­{ŒAÔR-á¼>PŠCU2ÆP@¥zÙeˆ.gÑÎ5{0€üM>ú+K˵VÁ|ÃÇÈÿ±ÏrÂAd>-ôb»ýkØŒ¸sìÝËÚ¹‡«œ6”P:a8t*öÛÈ£µbýiEÍÒ³Zx‡ÀM}C;ë}ð§ ]˜î”»Ì;äå~iâ·ÆÕ=¥å²0>§ år_v~WîVÏò_€&œMžfòÆò0•o:çqÓùû£Eƒ¢ßõ¬^éÊ5K¶àíŒ~µWvàx²/åEOê'rŽÉ5U›ž]4lÍ!*a4¢‘iÛû¬éFëE‹Û/°ù̘M±ÀŠvyÆ“¢9VHË‹2EQ{¨N¾Ü2b¥¡†i0¾1xϱ8‚O»3Þ~1®)ˆÇ׎jë´ðyÄ„0ÒN².­kRCùtÍv¯3;8õëö}=[}^6¶”ÞVû}üÿ$xãÔÜ÷®\” º)CȨr]²lpo"+~á~ÞRz5Ƀ٭Ÿ›ÁÚ£G%K~¯2Ä‘%âÃ?[ѰȶëJ+Õ>Åáé˜åÏe¡9Îíy- &¬Ž–Y;®uÆd…ÑDp:’üE–E„ ¥ b%†€ xÎï(Q!º+pŒ ‡íP÷¾±4îþxŠˆ¢\`Æ2 òÐQ†•„`P€)à7UN‘D;1´pÓ[©žzÂnŸr({ìD¤!š˜CÝtÒ¢â”À0íAÛÔòV9îüffhíÆzG§£bsB¹L¶DÖLÉj0cLj&gÇa†!@éè3J#800 (».|2ƸÜ…â× ñx½\ÈVúgp³é ÃmÓÏå\f¤€ÐAF2lyãÛ´íq¡Ž•¼O”Ф¥X,¡º’„-‡Ñõ„Hsئ:ívçÁj>¥ ‰`ˆÀ°ˆoìõ„ Q§FïB{8Jî@ô©èªìa£8¤Tù±“›àm=àhÒäiÄ8|Û¥µW™!„ï@UdY5ÍàŠß œ-/X˜ÇÀåŸ+B¬ç1ÄúÉïù!jJ‚* DRZ¶iY­ÉS¶ ×8Ü;_M‰+Ös?q”§0ePß™œã†‰ý±Ï|¬Ñt4UíÆÎØ×Ðm¢:rQz?7Á–77Wj«@EJ’(ã) ò+Tδ¥v†¿íðFÍü|–Kn÷ ¸ô랣5•í -5óNÎ>Ý»˜úpÙ ba¶ƒ–)„†–‘žˆZBm †óµÉâ°‡·Q¸yæ¡Dý™ ˜©D”B ‹Pâ€ðÌ`]îu [‰z6=¹\Ï5]gRÑ^›ÀòáçÂÏŸ½uÚ¼Í ¤VžHm[²µz!íê<ˆ:\syK·¦_…qñà"&jbÕÜ‘Áy,÷ºÕDPóVi‚óŸÆìT„)l–à/^.tî˲AÓ0ÀÊÁâ£Ë2aä+£a`“MïŒèL›W§gùCh2ÔëÝôCN/KÅæiçrðUû]›v©ÍjlÏX˜•Ö+}\õôm‡ØÊ8sX<ÿn7½;ÕW¸tˆäžœ½(â° )áHڌϤœ°œïžsŽÊWkç—t%L‹X;e: ?hcŒOÒ"j*¨ˆ`óâá´‘ã³ Å‘oîËÒJ4o“»ú t>$ š\>핾 4cÅϵ´k廦ò¾ß­ï¥ÔÀÕ4{@±ÉÁ™µl…•IðЊž£9,ÆV‡·Ïž/ÔÐ]®Æ2ôoÍj H"À%ÜÆVþu=éF‰ðú2â(øƒ²vŸµø[~[©Ž$ 7ËžÔù ó!ŸÛæùu9ý_öy^L“~,¡Á¯èS±#š [0¸ô3¯ñGo J×qƒÄ2á$vëë^ãß×w ·¼:&Œ"€íO, Y“™8ÁÄ<ò~ÅmÇã«cž‰QÐB¡°©:mîâš%†‘ŽGM[¾C»ú­tÂZ€Oð™Í‘÷31¥cÁÞFAvMþI¹¾–pœ{¿O¢*«L¦ý “eòÒ’Ë—b–EZŽ¡$àP…6tð…Bµˆ¡kšˆlŒÐ=ý.µe¥ò‘YµTýû. ×i„jSÃ'¤QO¤ÞQÅzz=(ä}ÇÄUT§%cÿwâ=†½É®ØÜÝ©¾Ct Òämï!+]&Æð0:… ÇCÃ&~óÓÓ[IúùP„šÚyáPÍteÓ›pzSÊZ Ýçž}œšeøy·¨N§B·çÁëc±Êê%%’ÂèfÛ2·ó?§,ÛîÝ¡ÌtB.BÏëpBàyRõ;AŸš•Ž ?š;S¯Ô<0^tcǬ,FOÓ9=Ìv“„‡™´­ž#ÐÕ—9þuÛ³9}Ý>>Ç6èï"ÖCó`þ~ÍyñŸfÒâäOÐ㩞Mѵê£jt›#P¸g¡AÆv—§ŸðžšØ6ï{¢â옴 ×@ˆ#¼ÙCÙùë~ô>íµ‚ø "!b€è|0I–£Ll0;â5…—x®Àâö<„qÉST@r/Ò§²1†LM}žÿ-Kš—'Àg‹©×\î—8º¸µÃ+«4¤\ BwÛš]‹‹ã@¹N„óþO£ Àát:7ÅäéÊAXuÍÊÆ+gfÔãŒvöãzDŒgð@µ}\ÜÂ&‰nTž‰L´¨;mAn$ü6r쬥=†Àº‚Ì9J/Âm8ô¨¢‡ÎêÏÇ(9¢fÝü/–T÷µ¸Ô!¡øÊj“í&Døòã—w5‚÷eNNL·)S &æO³ÁA0fÏy2k@›¬ºÔHþü>ÙVV©ë¤A=QÆÁüIB/ïTŠ‘ýå(F©ÌÀP“Bág>“¹WÏÀ²¾¬[‘Ž%Íz¥éã³ëÖj3mÒ.[Ó9[;J˜?§}Žª½ÈÚ5ðûf;~^¬\”Ö¡ Re…S§ zù·TÎß“Ûv¼Y]W Ýäï:3o/cº‘'U¦WøR¾DÄ£¸Qš®€o Ù·pö#¢R÷aÓ1ßr—S!G5k{é½;êuÙRÚ"„%”­ä Teüï+äÏòBÜ>@PúšÑx+7> Ú´6Ì ÷ŵYùS {ró ” ”o:ý—E'c«Þðj\Oé`¹fPaŠ'ösë™´(¡ž’Á7ö2ãØb Šeh§ŽGìý—tûðÀœÿ*oŒªCà ¸,¬.cDd ‹]¢Æh ƒ%™ïÜy6¿ö¦&RXq…›ãP^=õà£?JZs2{Âß°~\YdQ?;!IÅÆÇø‹þ…B. ²§‘ÏbξSìW Èšêöü<íëöƒbs1¡ë öT›×é(²Ž¥Ú¹$kÖ­iÅE£8ZV‹oÖxlпÀüv®wÝÊÞ»p’­—–u†ÊñÙ•?L°ÕKØú…m§lƒ„6$ØÆãEÎ,ª7æ3RøZÛ£ÁRŠÐEó;\°$BoI[ϳ]°Š!”Kº˜”hoÀ8^‰˜`hÅ1ÎRoLI(×`®æH @m“!ÚŽË£ {«ŒÚ–|u;9Ÿ˜1dAV>07ÏzZ„A‡~¥ŠdHµ·6Þç643‘€:ÊÁ€„J¬[XÔ¥¶Ç8µ >jÉz›LÖŒ†!FshäáQh™>Ó Ò‰@3€ç¤« ›Ò-•.uÁ‚Þ¤0/KPŒŒAÌ་­Ùó»b»ÈV:Añz’—œC{¯õú%y"¬ŠÅL”}üþ’åí=åVþè¨úåÙëáÐW¬/×jÇHÊ1Q0× Š†¨bVKcVðƒ&äñuY·J©ú2Æœcú|’‚¼iš2në@gís÷Þ,s˦8è™7»UW¨só9+¾w&qnœþb¥p­4&G1b7e@˜ú£2î[¸ÉCõ;µXéçe©ì¾Šñ=€!éjÉHc1Ù5ÇT‚ÐeÇHO*MHý¿<èva ž*Ð"‹ŸÚ2,¢Ç8A}Ðæç処ù‘˜@0ZN]|ËÃǃèác|»‹‡b4"du õªg\7,y9y‚ ²øˆ@mãºÝè,§©Mëe5Ô ¤D#g\€n¨6ÃE݆B  Äë/Âé±$=õÖ˜ a"çpX½§ "ÌߨØöØÃÝü3ºÚM\¾Ha‘eêrfÓãÞÌrâÛJ$³Ì ”8ŒFR<èÊQ.j$¢ ·ÎE¿ª.©ùœ:áã½|OÓL"gWê‘XH"BD¿¨·kRáG7uFW ØxòeH¤«†ËɆpíèIrOÚ0“úþ“"¿Žvz‘ó¢›Ù³_ ¡dͽ£˜°ngîLö†.9‚ ¼ÿ—”š…ˆÜN±ï÷‡ígD èEÚDb»í³èõS­¡Ú¥3P1A÷Õiû½kƒÐ7¾PŽ8-GëªIíYðw‡ã³ôlTÛ˜\OcÏw¨«Æ,¾\*²ÂQ`—‰ÂŒád|‚gçMŽqÐq–ü yòÄ™åkmæÆ×ñtìNYÆ,ÇÀD}#pDň)1åŒÌ1Á@ šfËs6*%QÔCWN#¹àÌMÎBs—3)‡†šÃÊ«›(z3}:™M À½™isZ×Ú¢W8mhFeŽ î*3,-ÆÕëò2%Ö,¨‹*2wçæZ5ßį²2Žf¤µyãwråæä¨YŒF2‚Þy–odö]|{·‰›Ô1áå žî;‹TR-µ{YŒ´ék³ÙÛ úí^˜„(°¤2ú׌¾BÝðrD¿d‰Óñ'Û¹§À7ëÒLKÀ½kŸJ6}Ó(qÂâÕz!i†ô¦Ò2R¶e©Q‘yb˜¨‹T ™§ 0 ˜IÎi„¹£`]]pSS e÷’ ‚üÉÝŠ&/³ãŠ:7<W_¯C V(GPÍC×xÒ©í×í4µ‘ë#uìWÑXå~\Üäúqì^ÄÍ* ã9aY¥æг3ó}éôýµÿ';½[Ÿ«<þ@ÐÐÖ¶C jßÒ§’-³ß£PV gΟ2(t¿i#ª•®ãvnAØ"m¶Ç°°îË9.º8¥ã?çt/×"y*w’+\½°X@ÑG0{ö>}”Ï0E/$vÜ÷Ý LP|ÝâÖ oQã(°Qn=¯=ÚÚª¬>æ¶aäÇ¥þô#b[8¤X×›> ¿Z¾ûnåó·ÌÉÝýÝCêÐ E¨!Åí;ÜK%€'8š)ëÃ_Àuàßä{^ú46ìãû¸}<Úª‡ÈýG³8 ÅÒªm¯ôÖÞG%“Ë×f«eEBs´aX =f$Á !„@x¸Ü ºƒ2˜w!R"™vÆRÅ?ÀfÂäA|B†0„Cp«lP>€ôÌ9Åc™§jE—¸\zÀÌ$k)CG¾×rñ!ï–äWVu"öbk&!4ï1~×7ÉÌÒ¡êóçQŸBoa&dÐd·^[0[NrKê¨='¶Hù1¿ý>\£³²Œ…ãÞæÆSÖ‘@mÝã\…Ħ˅Ìè”orÃ믽vWMC:ZK&Féãæ³T„ #Uq­žª’Þ¢Äà–ó%“­¤p19^¶~r´)чCE „L•D$>;̤ވI¨CmS-*‡aSѽƒž)¢=`Ëj?n“êå·^9i½åöR+vèë¸BhG* pŠGö'Þ„•D5T §–7µÈ·®ã“¬l•T"ƒ)ßyößóÙïjéÚðAÍΫw¾^®ÓÌA9LjšÊ î&mŽZ“£¿9,‰qÇÜ_oÚv…Ѝj9Tr™ƒéâîØŒ‘ÐnÖyW9jGzg;šÀòCA ~Q 8š$ /÷h,&²7rÎ*+#¾‹!§Õš |¹V7Ò’†aîNܵZi™ êêu²¹.Lšl>64°Vu‹\4A ª´ÄŽm¤âÔè®Ûð!…Ûå;üÚØÏœì‹*qx‘Õç³ÝæÚ¢Å¡ó»@V),$Ý߸>‚ò•Ðþg Ïã].tÁô„è/0SâŒ%›¦!Pp9½mFrkÛmÉ &½>ʈ¥9§×Lx'ô½RlW¹gáýmA/9—Z„V.â9ÊŸüÚÔ©‚9N+¯ÂF©PªM±{õ\»('±¥Øå‰ ÇêȾu²ão´Qï„<¡˜VÍqòô8(¥ö¸‰}$?ž¿´¾Öa>£;4A|öÔ& kO Ý_E„" ÓSÄà™É¦ÓVvCaɲ‡ \TB߃jÿW6'´£èB·~–¸ý/]Ûx¬Òü^dÛ—R•bÒÐÛXžTG«d• (P¨ÀëDˆ#ü ›Ÿœ•}oæ[«fÚ!jÖõ ‘žh9¼ÁRùŸœ +æ}ÈÝ-ŠÊ[Ƽ–+†•Ø ÓV; ŒfBŒT€_f!ðj–,M ¡æaµ¬$g¯ÔØðFÆÈ}XΗ -}Õ³Y£aólóú²?̕絬ĭAÎ’Ú¯R¯#E“2ýUMx–ªäœƒ…~»Ÿ‘&uN¼Ñ±ÈzÌDvÇŒ8R*ðÑÖuC#à£jMВ˪ä¸çî]&?ïZ¤ã¿Ü _cA\¾-èº<ÖîöÍôòq®VQU\“DI¯‚¢±Í.Þ½%vÏÇ«Ïútkê²í'Ôݯ4zi³Š%\ƒ6­1í€ à ZµûÝyxøi‡4œÜgÐõÙp¾5è¡Jˆ6ù<æN nÈ-”ÖußÜx58¾ô,”…Õa¯SéªÔA;`ø3èÃ6`öR •¨Nx4.Kóê +G{FeÊ´ÌÕ[&…ITjê-ôúRè°MLÇÊy%€`¹\¥ÚxýqåØÀnb¥° 0àJÜÁ_H¥VœDiˆ¿Y¹SìÍ× ´' ýÁ¹ØIㆠèÅÇÚ~ÿ ¶Õ4¤ßrNœIzºS3&×Mùê%ò™®öˆ}ãÚ<®OŒ`y/^¡_Sf]‘Ê¡¬%ŠäœÏüöU<óà¢Øa°¦i™ª‡Ëf;Ñ]ço¢ˆ°—ܾÌ>lßr1îʵ@žþ£ÉìFÎ-w¥É;6´q3Þ» q¥Äú2­Ì¦5²(³e¡µ s–V¯œ(êºév$O /WU™s¶c³[ s8ÞýØJD8ök§ßêç×zsqU8]ŠrªvF€Û‚9&µXîògÒ[7¡ß4‘? {4¦ßˆJãH|çÕWM.p8".ŽÂÇ ¶¿O›o$ Þ`™ÚŠø4)ÉWn8Xü–³ø§æ ÔvÚ_(ž×èš Û¹Lù£ê÷gßyGôŒ«Ž9Ÿ­+åàý²éá«CX:1ÕÛÑo(0¸°t-¦¾j:;ðÛÃÓ7`Cö»‚ît × ha)ŸÐÀõ–wlÌiÚïÒ¶›÷œ†óAåúlv× Ž«wÑFí.þ§mÍòÑ’øwwõ梂×zyî^{û/)â;w•ì´ÊÚ·2fsJÛ³Ö}ÜuqŠÀm˜’á©ÄûÄZU¥{ÇwCê…èqàŽ*í}>Cûð´V“¦é`¶Ü¨¥ge,AÕk#ÙR"Y°™9Þêç'Cñ©VH¡WJ’>“çÄeh’í¸„-‘ÖŠÄ`ª:¤*Eeõ¢.Q¼YÝVæññQöà «¹Èå>÷&KÏlîgf…J+¾ôºšÖ Äþ‘œû¿†mcÎNhÎ<ûùÆïZuéåÛ½TÙó|*eŸGKä„ïÔ*㦠_vGÁCzH ¼z^ú©ø–e´™ÈL^ˆµ™±ÝÎ*ìø@æOr?sHIì¬^£ð½Îlø0èðb¼Bǘ Éïˆ}M?ÒŽÏÁíRž­OsöÎæYIªÙ“1“»AÙöýŸaôj/A5·+X+ž.{ʳ¹ ùz©_ç,LâûˆHŸuæéãÊnµJ~q•”¾&Œ2N7ظüáSçvÐIÖ¡ËÞ‹]“¹(‡¸ ß=±„"°7’<3Ý µ¢Ê•q ƒ“ JJëF÷²Æê¡¶n]c+ÓÂBù!rL„RÿG3²1­cðÕ…¾K0aV½î©P0•˜ŸŠÃy̓õ=%Þ½x”ŽŽqdâ „žõš+•?wè^(u÷k¢nX½‰kî7¤¯”ýÌýߎµQÅ1m4NöOÛŽ q]Kü·o¸`r䳎's•ñ÷É{SŠ¿’ëº-‚êùøaðK¦ãÜ~t‚c`hñùýLŽÞI)ô& ÑëY ,Ó§¦Sõ^&ɨø²òuX»\¡®Õ…:ÍÜ©oír–uˆÆtò*sɹ ì£C ä‡5ÇÁ=ƒ·³¢JÉ|1S]÷ì9£–y!3‹–*-ÌÌ‘ˆMqoY›Š}´å¯ ƒ¹ºà¥Æ®Ó£`¡ÃÈtÏW-Lˆø…•ŸˆŠ‚–¼Eš2÷?ð"uœ‹g¢y§©Î˜Cž‘9.+7PK®A®ÜOåq™î‘¦øï\Ûo‘CÜò|xϾ ‡ YàÒ—5…)ãyƒÂ‡Ø» 2ÞÃÞ0 j¸1øÍÊfà_À²ÅOtÀëeÉ=N˜7U`²—)Ø$Â…AÇf )>'Àƒ#ðM¡Ë)ËËtn¸äí~Pž'Ašb=bÝÊó“å‚Äðäž—<0ÞTõA‰^¼í9³U£›ÈˆcÇ;ùˆ÷VŒ‘ÿÇpb°öÛË뽩ì“ǃ ;™4U 6Ôšê íh6 "cîE ÕX‹Ë˜Tp‰¦VìÖçv(6CˆMYmˆ ¨$]Å0» Vß9‘ ›t€ 4°)k‹•ûƒQ yˆ¯A;gƒ<•¸®C'™«K–€p”ŽîÊÒAË@²®Ž1C‰cãO)ëÞÅ“—v+Ç&:X(¶l'&™ÖãΛ$°ÞýáµÆßJR”—8¦Ï:êÅ÷!6«Û®‹j7\wXyä5MídŠ6{ãù[& Ö´•pÂVËs¸_Ø¥­ðM1ÊKs·Ë ävD:(2#–wvò“Y]ž- 3zÛq7à_ˆælžíø'†«žo®M.ËNæs"Ì€Æ\6…/×Mç®Àûˆäz#ÔŸ òó¡otÍ\>ôœÉÍæ‘è›?‚T"„‰Û óïÌ,‡ìЕ>xÅEœõ[K†Ù •qY4k8]-ªØRO $C«RÁ$°Ü鿯²Íøñ=GŸUÛV—3G˺§_ƒ2MNóõ^ LšœHXæâ‰ªð¥©&4×Cè$˜Œª>?9ªšó †Ô'GÛ0ÄɨUm´_Ñg*>7Å&>Ë õÝvß ×O½»®½†u‘a\ql _zŒ]ŒÁ6ïEZà…ÔyaÁÃEí3’9Ï{)_LpstÏØ²ýœ÷!iûB:„†M¨% ¾{dgE‰ë°Šõ±\JlÕ[0ëËšSw±Å×a: ÃŒû)Ö4„r¡ÄÏ.MInk ”ôç¯Ir9Œ»û×KÓë„x¯ß·è5Û¡°ô` šÖ7*…ê.¦ËE™¡ Ýׂð+o+98ÅŠÔd ¼êàïÏ•^KgñU~Á†°P›WX,Ù2!€6vƒE^ 9_">°³%µß±¢ÑذàÇ6^]¢#=ä‘è_®8G¾¦˜Fö¡¸ãgÎåÁZœ÷^$ƈà¶Ä┬‰2 s¢k±6%{xÒèkòßy8ý…íj|)Á3×0ü½YWh:žµ·*7g&üî0i8ðšÒæ]; wKUŒƒy»ÓñLÁ åµÚñlËTá*ì¤ã=RØÂqö*9Å ¸†[ù…zôvñ-—fƒAW)ÞèXvµ§uçGÛÆž|Mºæ1Bl¡zÑ'ZÏýÆ»-yÿgÏÍïhÄ8ÄŽ‹«>Ôž€y!¶QÇ¢Êùòh‚íè¾ ú?$0{nUÀ$»”ãüÕô©þPñ–ns2ÜX6h*åvj^\íÔ'ïSÌä}"|"FÚ˜H+ãmG…¸)惑Ìn&ª§ði;±FɈûï–sŽ$¦Â£·TVÍþW_w¹ÅäoÙGg^Ù¿ŸcDlÅ–†í«ïQÏ$Þ,w[…ÍO÷{Òé x4op×õra± ®äu×ev¬?ó#eXŒ°;²?¦x™†Meµ®½Wi™6™ô!-ÖÈ:®‘×µVš;¦JèêšãÖöÂûSc—Çõl¿6jã¼,XŸ7ÈÔIÎVR/6+ãŠAEW@Y‡R†D}0Ö稔¦5ëMúuhWc(Ã×FwWåÕ±]zTÜ7ܲEÞÕ¦ân:èV`AYŠe}òg ëªp’twO U¶×zê6ˆ0®ÐáKïW›:Az†Lê-žªEˆdˆðUÜ—MU"š\¢‹3žB€EÎ}‡æ7ލ}å|÷ÐI)róX* ô¥ENMØI» VHjæb6ŒÜ—Cºt>Y}…á7=Tœ¤* 8ïx&hݸþ›nG˜oŽô£¿„·dŽm ç[%ÈÍAB€‹6½ÄM’iÀð­“{X%D2ŠÌàÎ+4ƒc™£,&yᮆM cL6¢ î îðî¶øÞÿoYUú-–úyïøò´-ÒR+'L‘5„PŸ(yñZ!"µbîqcÃ¥3“wtX ¿Dö£Gt–l¥EÁ».‡¼/Ø\ÒÚðZáÚôƒ¥#ú¬I"*›dvg‹v€Â ^ÓÕ…‹3ׄÙÛ#âžRŽ&K¥ÈD£¢ìÝ.Lív‘rº¶‘e‰iC˜9x0çÌcƒÙ×M~{+`ií·Û%.GK ùP}J†O{û7ßß7 âµâµúÔ•êòj uBö/­œÏuáÅŒ¯,Ñ~‹ü[rO;v^Îkx¨AiÝTÑA­ù?0T¼ÉìØtNàÉž+mŸxôŸ7˜ê}ÓÏÀÓb±óZBn¢jø¢)¯‡ÏÇ‚žðg{¶L‰£ÅW“÷¢ÿÌã#·.­É>}IVM¾"ÁïRðï©a”ÐØ°H,Çä(’šPAŸ5ÑÅqÌ®¡s6ÄÝ'L&§´Ä³[Ýš#¦[J¿—n4êC³iÙ˜Nl¸ø.Oé_³kgd®†íÆ_Ц#—HNM7"”äHd5mœå¸×¸ÙMÆ&tÖ·t”'´$oR_öîäÝû…Ý5¤qËoÉð}½¹®ôuáÑh©õ¦R®Aõ½^Á±rCŽv\Êávâ }¸qê&\v §ApàƒNg[7&¤<]Ôå‡ðÀÉD%Àì.VŽ!íT¤kJuÒN0»mMŽÂç3kÁé®ç„+æZ>Zù§»MðR0ú‹N J¿ö[†ýæÑz×Ö¤ÆTGtYf2”¯÷Hއ"³c/DOÑhU‘M¹TÇŒœðHJ gÃòžÍ[¤¹ì¯$ˆ‚­ÕXN^W;EPÉBíMr¦¸PW)ŸèB±Wëš™q€Œ°í2Qí½ÊS«FZ:DÏ’[±aäK)3½ÈkyÜ»þ¿_ðê…¸î=lã»Û24Uvs"–/½9}ÈöËC“’ô²À–îp®=xjMÕ(Z^#ú¥23˜ÝÜãk„K‘暈·"Qc¹q)FÉ5má¬-‰ëßyój¿$"ˆñCäÉ2´”OÓsÛó톨9¿ÁávYñCó=Š}=ìðfK/dÎKdÒTéšËzîkKÛÜ{ œÞ§êw÷´tª~=\'E/‡}ÒSÆgÊÌOX”î«ì‘Lùß»}TήòÂvŸe8jˆcq›ŒJÊXG¬†1É×d–خ䉹 N¾/ÿ|ïà×”÷L)i1`)óôyôà˶óSç-rÊXL÷ÙÃE¨d°Ù¹ƒc «ÒÄ¡'½DyÒöÄÂb41óin«óUüý¦½a£Çóû(HAê‚A‚G¦sUmxIxÉnpGÛ-„êL /UjÌÉÊ÷à²ú•ŸbÔÚè,¶OÐ@*‰ÝÓÊÞu)W‚åª%²aÂ@1`Zc²¢ðj…ÄãÒUGuÍI¶.ùk2Jq¯x;2úmC*kw¸<6Wä”Äf¥Q“I¹¢™D¹¬¼Ñš>A‘H$È @†ˆ$p#aܺËÄ&L£µ¢ÌÕºG´©ý±þ n¾þw¤TkX¶Ö´HzÖW€µ@,u´N¡×ã¡—è±ì¸Y~ºÒ‹Öh|È©ß(å䓞Ü Ë(ÖK'¢'XSÅžØ^jߌ݈šJ`eNh Á%!áâ·3£ºð®uHÁ*þûîJ–`Àü=¸sVhZNDón+†Ñ,¥Ï¶hsêë½{tEz[« ¤%…ïîBRDà}8o—•‘2¦Û§±Š2¥ûdzrKq:‹ µÕSÓ-Æ…’Žï<•ÿGs(<6ñÛ¯GÕÏDr-ñ§öþ®•SŠ81Å–ËÒˆ6ÐQÞííŒå îÑc @L`Ôê¨ê%„ÌåœN˯Ù%,Â’œD¼<Ù,¬.h ‰ÏM6óB[Éœn.@ãæ´9ûLëqZ ‘똀R]C®C®W… ©6^>£Jæ)Ñßeè`+£ÜT`E…s ‘\Ð gcÊ­õå?¼£Jº-vÓ‚äŠa6îV›{±öôšƒ'%ùJ¶š“jo) MX3ͽ Öüî(ª…å»)ˆêGAQÆ­ÇAfqøvpwA%)*+÷›ªX§J€°G BôºD¥¸G¨ÿ;j¹cØå1d~XŒ>‚Ј¸¹æ: ’W¹!¢Üób¦Ô›ê:ñ)³žÑ}>íÂQ>¼7æÑQd5É9ë›ïcSÏ\´ô}ÄóNv‰®›KoVø@àoé%²#ЉŸDÓýçŠ-1ù+©à€È±í„e¶©j¤Î•?ÚWjJ5¼‚QÚÔ&Ì}øfwû•æ#!-Ú vÀÉ^ ˜V!³N÷1µ€(ð̉ùVa°Í™„.ü)º¥j´|µU2h¡ÛЦ¬wìf— W-—™[(¸¸Ó§CÐb3ºØÅ®&U‰° °Ð§2Ž' Ð vgQn‘D34“Ê©‹pâ¹F¾ÄCnÃµÛ ²ÒƒN!Æ$ É¶£®¸ Æœª#˜‘ muÒut5>á,ÚSÝ ;pŽk€î/?Ñ—[|˜ñc¿½•aKJ”"+T:ŒEIBêÎY_Þ®¼¯p+Ûó¢dF^ƒhn¸¨¥«g{îÈI7Ú^è‡,bD7-qÑU)FL;D´Úµf+Y:bÁÁðÁ…qá©ÅûÂub2‘@ð"ŒV‹<ñàà Rz¿U/w›ú! õý¬–¾)&uä)p Ô7$‡ïÓÜ0V{¶W‡)µqÅE[L L‘ß+q]qksSj+r¨š«|áŠÔÓ˜Îw]w’QärZŸ~ J Ñ~Ña•ÓŽÛß™UÙà~vÓ>— ~ܳ’µ:8V›”Rý0Ýî|ç$†ÍNvÐÂ7ÓE •g(Ù½p˜µ5ÚÅtKXR®sDQŒ ø‰Ê—*)±—"Œ¬–‡ŸbqC~s¾-ä\Iz9.î‚}¹‡šï.ÂŒ6auwíÛ2×µ£Uf³²hTâÕ(–—rŸ\¹cñÉ2î2.»E· ª^{ ¦¬‹Â)( o1þ|È?ÿkòy¾„æ5}— ”=BO‚¼i+S5ú•ëÄ¿@7ò‡\Øx,/< ß ,C¼t¢‡ù #°‡; #)±,Òf\¦Ð-*Þ!Þë\`Ý2Þ¶ö yLC‘é«Dh.çcÖ{ô³4ÿHëyÕeÿç\š ü}ÍUì_±:µøb=QöµYŸÒ¦³'Ί4Þ¡8¶Qª£4RZ¨e£)ö±U!Þ}JÉE§'&ϣɳ÷á¼õ‡h†¾R˜Gv#)$R&Úøi°#plúÊAW¤,Ö¡yêx`ï^\†o| ÓGWE5Ljֆ¬’ݲT¿‹jÂLX,á;}x Wlp°®:ùÈî“Uy=1鮘ÍmP¡H]G`z:•%´³À\Äf{6Èü„H6Ê#±ÑÚ`WO’¨©1DœT«ÿòvG+íZµ—@¤E²ä+„õ”®›!ÃM°¬—›SoÏ”6KnâÛþ!Ÿ>@1%KµN控ݸÞéyÇr3$w¥Ãùrºí%óŠÎæ{7uìèä"Fw9†åÍnì!]ºë&ª,PÊtóð檙æÌ›/´·ÚþÂ&7ÑÚ7j<ïÖ²T8ÍDb#%»sV\N¯6mØ´XÇ>MY¨Âôóí4Zâ#Sݨâ©*¤Ï,Oh‰Oj”¶£Rh‚·w«YUŸÄ °6Õ&·~)¤ªZenøðz÷Û-8‚E?Sk£˜j Žn_“ÖK•Ò{üû—GÙ]ÁðJa:[° ¢Ü×p3RdׇBÐyè2lRPù¢²¨HÁ–ƒÄgk>‚@©¼g, ,¼ì-Î01ÈëRlÔ:9Zì•pD1†Þý0ÓnÃîÏf‘S6tjö U!iØÊ3yŽ ¸bú?¸Ì–â­µ$|e Æ6(í–$“°ÀÄ1É:6‰ÐDDjÎ «¶S‹.¬®½Ÿ‰‘ÆeÓJÐTÇ„3E 4a¢?b› ‘ËeŽÒñ²Ãeû¹I4²É)| øþô’øTÙ—ü‹ç µYÁúŸ'Ô¼¸J}Ý9m¯ç¡É/RÓ’UÐ oÒK¢ÁöŸ´úõ‹D”ED%¤‰ò˜8O¢£hrN8¯¯›0!#µ4Ö¡T& ´‘í†u«Lθɓœ¡É< c­Dº) W#)\ʼn6pÚ‡û¿¥ï_ì©×>¯ò¦]¦ræä¬3£1Î]6EuÓ©HB¤åg*X³‰ÕA( Â_jóiÐÇ" õËÝÙñ¿rfÎ Ž¸| lOÆ5ÏÈ&R:û7PÇnWUØÿÉy÷ŒrqÞšåW‡×bû¯„%‘ÁÚÅ'ùÔüÿÝIš I nPŠQ9ÚDÂo ¢Dežª  3¢œKˆËxu˜Rû_×p·¬Q—ä¶Rˆ$Ɉ)®º€gŒB#À|ê΢D™øüJŠ(­Å¾Û³q4Èä G¡nËq6‰+#Ãéšúø>.ˆhÃ,ãIzÄ^TSô½Z¡"ðSëû- t÷ÙQYQ†<‰kB&*û¶ ‹}ÕÏnûL}—&l‡˜ q7†7ãó´ UnM\%Ç+Ð:ðÔ+n(æ‰Ô84ÛT¬B­)¬[ˆþÄ%Á;‚c´‰èkUvò®0l/ÎTdÉg-¼‹FÖš–ÑL¿Çª¾Ûãq5؆ٿE¹tUWîZ½ú9jEùm‡à»‹nÈóãe4󚙎mJ¤7/ç‘ ûÿHΛIJêˆ2 º£,ÜG €„'YĽq§!F  2[òÆBRÛç¦Ѥå!?Ý~¡Å¦'lè––§b†¨\ }pB˜H)j¹‚/Û"2OsmïÉöêœÊ `‰BüáÑj|œù—Á2d¬HMY]EÄÓù¤–ùxå›·Oi„ ó{ÉáiÒYö÷í<Îào‚«u·u¾9³b¶&xžÈÑš0€T#%Q=rojv¤y(±ÖWÎI)'Ε Úgè3‚"y®ˆtÀ¢%hÖl2wvG«qç&SEÚÔ];T®½"X«ÆÅîÜ}¥D=[±ÌY "c)qk`{ #× ŠfeË×lþÌèáb‚¿Çïgí7Ëáɪ_hXÓ+øú ëãoÇ{Ñ–&㆜ø¯³H›õÁ"é“¶-Í>D Ô«k1<1›BÍ1£Ñ.àEº ÒôíðÓe2å¶Y.k‚È7¡²Ä3½Âä-Zæe…ˆ÷Uö›äåßÀÐþ@χgí]õvF¨ ¹ rrÍ?b¥.6ädâšÍËÊ©a½þ”6~És<þœ¹´js¶„3°ò€õçÈ=P_½uPSL£I‹& àõ+’6% WGSšª/Ý¿7ªÝ?•="q,Ñ49­B.hï}9.3³êAÅð8"éäÇ‹BPÂOR‰úg Õ\ÃŽ›/ƒ$.¨ObÒx†rmv“¼#ʽ&[À8œ}ÝO#n qêÆôõ'RP³Ž-¨±1¦£ãNå&ß°F65>wÙ]^L.¾cPk0ª[¸+ ü´V ™.Ûrd•÷ß”Ø&-æÀ'ôjÖLRË®§£S(˜x´-YíX å0Ð ™ \ tµxÅå °h³cº\ð3X²ÿC–+ß2µPY*þ!"Aw%¬¯Mnøð_Àçz|Ÿ0k=У©Æ-XŒ v ØqFð/@^C9ÛŠ†˜ü‰ l@Í vÀ•ëHkiŠÛj>B£Ø@.s×P,“Ó%‹LÝÀÝôs•û‘¶è-÷üVÍñSWÕ*ôg–b#òØ–ºõ¾Ô‰ä§0΋’ãžefÊœ æÜ*°ŒÑ&ƒUÓ5RX¦Æâ_Úb:°3Èp Þ|k–Yj(ËÂfŠK O¸>f\@Qt"ÖäÀ 6ïöqÆ.É¥ ²ZS—KدËôàvÎj&›YrQV;qìÝÞ :YŸnì'’ïaòåÓ»¼…ã&³•†«$Ô% š}82ŠœyÜœvÐ`¯–¯dBþ”ËlÑmpÖ7û~ï®ÜVð7ö6Yµ¯KÜ`¬†&mIÅ ¸‘ “]Èõû¹ÜåÙ‚Èõ!‰ó3ê@-p¥úåÓeŽÊÜãSƘ:‰¾õƒo;Ãͦ–‡¹ #ݼÅÄ( ˜¨PæÍ´HÍÌ… “YÃ0y;©[cñsݶMîûໟњà»-ˆ±‘UcÌÉc~öP;ü{ dß-»íjvïl¼;÷k S(­J±n¸µg»¾;kµG—Žú ne9$È©ÅÌN÷΢ïå\G†¢BФ£X_×’‚\Ý‘¿¼Ò-ô5(úÒ¦ëÑ_zWV¢3!úùrSF ôËéÚÁkRÃ|Ç×w¯çÖ½qÊ1ø7éäÛ&±»Á$¯“–ZÔ*9q@Ü×À䶃G šB*¨fG-`·ïðþׇñJõ¼ý«ºãø>î2aI„ùÅr€±qÐ(&4&¾ª­ËÂýy*“É L, êˆÏwèÛƒÝHoÂüffhãK–1·T·~ájë0ì©Ï?ëí¬÷¦NKNšKû<°RBÑ"1œ´9x% @ˆç$ èöbi,ŒšÔ̦­øT7‘Æ ;ÆÌæ¤õªuh¡Ã_¼Í¹‚>Ó ®Ut/ÇxyÆ€¬ÔÈç1ëJí€Beø<ëÿßõλ¹ØYLvàL²¼m4ïï§¹«DÒg #Ò̰'€±B Ãqbã,î`ÝÆ—ù>6æ œ¬N˜ëä~BÃ(ì°"ý±ÚEb1ëôÂð=@õÐýËjž[\S}œ\Ÿ¿¡, ÓñÀÆ (0Û¢r%cà˜Ôç·H‘(ù¡<ÔÎ\£E÷P¢¦Û›jÝ´‰¥ç–pí¾6Ç íy3‘Ók˜Ä;ÌSYÕTBIMuÉDl-)‘¥±Ã ¾‡bwoÒfT¥vR2Ðø^Ès†¸¨SVÑßÞî`A•Á®K­D7úÝÀD·ž‡Œv<ñf¯Ûg³!2²¹[5&PJ»e‚(µ³Ck”o­<Ôé´½'Ö„·ž:-ß°*œ§ÄÐ÷1¼5´¿bWM8žË&–ñ´Ü |ŸXÒÎm£³*NH ñ ¼ ¬y6L‘ƒRÕ·†°B6¼kmÌÇ.¿©à=aOÇlwqëqÛ·ÆìP¿b0,“r É+ªjP«ªñœß>þ+sͼ±X×ËÓbƒSëîÇœÞKÁu=ýîIr”ÃE°`—ñBA#Âá‚™–ŒÂÝ:i“¯³¬ýkí&X2DI¥{T°²OkÂý ÍÃK¢œÇpÂFÃ8”l%#[!³—E§mH’‹6]H¯Gs¹Ç€ö"MM§£!™|­fƆ¤úc7^mAy€mOÞwÊÔ 9WSŒ,Q#dË!´Œ>€DsŒÓ(W/í³±„’”î¹EŽ)«ÔÀ{6//oB»?¯kÙ“† ºî[µ ^¾¬ üæÞý«¿{màþåͺ0fêŽ7銗À“fÂ[JO>í0?Hœhö # š…yÞ5E0X_—¾c[u06Qvu,"Pvf@Œ0ÍòãÚO9W¸n]|T1ýà |´—á"ÅÄU ØÆÍsÈ2 'éÜ¶Í Š­¥:¹÷'S²öžŒõ>KĤHz6.0ƒžÈãLº%’Á ! ÒY¬¿"€ƒŽŸJ)êåQŠTP[ä—,\‰0çÒ=}5½Õxfåׂ"¡3)æu¬a¡‹±J‰Â Á3;úþ¾7¡‹¡.91(ŸKþLwË&/W&<:u·÷}h´PSÅïÈé%:”ˆ8 VŠv#Ž,,»ÛëH §C¾Ùæ0Xw•œõ|âÍæÑÜ<¿S³…Zö¹+Ñb±@‚ɰ¶ÏÉ ÖßQ,kÿ"²x¢Á\Òöaù´ªã®]…tÄ2C2#άâŽÍŒ¼u§ûý„#»ÕA²» qezþµf–ßD蘭þã÷.ßšˆ:n•¬°å‰ ‚Ë=à'±ÌëBUz¹YKeW—xm¬x¦–ƒã7•¤66ôiÖâ5å9âÈÞ† {&H1µ×;†ïi滸é.†Ý¦èÞ*hšjl yÀšô›…K%蛽xÃéq/äÚì”™ÔaU\Gþ"¯k3ž;«ß6.ã¶=¾þ½Jȸͺ}¿›¿¢­ëEEÁä€áu%îPñî*˜à)'(½£µ8‡ ¬V[E¡f„\êÐ×kC?;aKbÞPíj/°Ž žçþ•ýúa”TïØŒ–aÖÞR>QáO§@açÚ Ú“÷3,­ úCÓž`=ÈóÙ'èJ_uýáæ‡hÓËŸãQy,‘u±s™S`{Œ*Qjžó+!2œ+‡¥ɶ§…Ç—ÿŠ\¸npqf’¶T<´£Žôúmì»ÓÞåÛNWíP? Ð;hV²û$¬õùGfl*h2G’‡ïG7ä‰TÇeÀ«#\xêNaN_‘‹¶…Íí«Þ·Ê]ˆã'ÃômÁI³ÖS Û²I-zMÙâ¼6£0¼Av®ô±gÈdÉÀgÍ•`LЭԋs–ètžmÊóͳbé0SN¦øºJ2Ñ0)ýdóÑ"9—U¤I½9íM®»šLÌ'wçËÌ7c‡ŸM›~u_+´úbyæÊÑs\x¡ÀÇB˜¿³¡*)eáR–DP­EZ¶\dÐt³Õ§Œl¦Éû{Š\¶Îûª8‹:9þ¥ëƒbÑ ¸ )9ÛÞvÄÎ$…nØ*VÃz·³a•2A«kh§g1LÎn”Y†iå§ ãï§5  Ü­0~ÜâÔóô×ãñò;¿`Û¸~x paÊ“h±ÂX’Ч7¤7Kàîxͺ8î0/?GU¸M&ðCÏ‚qkd/²¦ýÛ_Ã/ªÖÅgD…@nINÝìú?G/ƒYüÜGøöÕ—5: ÅTCe±Ë@ÀU2itiµÑy7߉Æ\Ës3¥fÓŸC–IEîí×_•:`Û4úc 7ìU¾܃g5á!¾:ß~MòÌýÆYÞ&“_¼Xjæ«/›û^t?éËN ÿ¼è7ñ4}ßµ“îÁ”ÂôŸ‘gÛÌ¥–ÛjKÍ]UkZ±‹BÄJùů™ØØ¥1í¤‹ƒÏí†NAª8ù¾_ÍÑmÜaöOÝS"×€v¦m¯ƒÚYhˆÖVkÏ^Es•;0!«Û\Ý$†ú{âx9—ÙbX4“9¸i;Ÿq…ÎvLëÔ¡6õ ¡LMŠ@2³j}¡Áš~j¹å1rÙêrUœÎ÷Í–C|Ò}#ÁÊת¸£5™¼<\«QÍ4ç·¢F˜•ÍÊìyBG¶×°´Ò¹Â$2òe?z;3èNND]ÊÀÈUP*é“`év%PN•qàÖ@cåØd¯Œ *ÑZ¼}ÏZE@[ÈnÔ¨„C²àʺgMÕ¸²çXwJ’?åmˆ«k_‚ç'c3ºµ‹¡6L°ÁiŒÏ§(–\W_œ%ôãEþóÖ™àÂwyÅO%ݽ. Wu¸U ÎÇа:YôDU¼Ň}6 âçùòàªï³Í9«ž!Öà ·ìŠE&”Øã§j#LÖ3™Ø·åîÆ>g²Ã½Ë;Zû6äÑf‡â¹,h@e}“8îÇ»bW–- ­Æ£¨ëGêôTOÜ+ ¤hÐÅYR/>|;Û©H‹»Y1¡lG!@`& tZ¯[î«Ð æì%`Á®-tAWL-ÚtÈÌZŽVÏŸ ±¿æ »È;˜XÊÇe¯ÞùôfÍ›· ƒ˯½°Ü £-<Ñ¿³ ™¼eµ*ø±¸Ðöó ¼,‰;Þ¨@>rÑ]Øa}©ß1U6é_‚¡ušäµÝ¢·¯|œ™›W˜Ö¦Wƒ˜T˜Ã_ãÌçÛÜït=HÙ Øíä|ôá«t¬Ñ1>Vݰ€9³„-$¿8oo?7Rðs&²ȃ&{‡Øá*‚ÈÅ¥î;ÓÕËiR²­DÚ÷Co|Ç`ïOÞ[&A’t’õã<ìÈ,Œ°I¬»8/äˆ=Šr5ä‡è¾}éÊɶc†J¥ðæ[¹-ÛùÅÖAØ,d¾oiÒí»ŠÐ²ß÷ã–>±ŠŽ6øa9¡BµüÞ_·{˵ÿ vN/~:±Ç×Í€Õu;ïÒ;Ùëà=+îå€Ï0Rë!Àk9Éä“C¦ØÓ @R%à"’°é ¥)Âl¶2‰TòÑJg=*5aÑÆŽAÚ5²=£÷™Õ$3⃱~²6ù>ó8~dë¶ÇÕhÈD—©â*€¡·AÓ$^(“Ô¬§H5µ ”|ý{9 ¯F•ÖXzøAÞæ ¡šYƒ™ðòÝ®ªVˆÝ®fÜÄx‘ ©ì¤ˆÆ‹P£J½Tñãð_¥Ø2î;î4Æu¾RÀ?oܯɑ L`µ.]‘äÙ”Oh‹0«É¿Òà¦f°¡·uc2Ü{·Áþs[ʧ$“|®Œ•ƒN ‹‘p$—œXÉŠáü^igO¹lvâ§Éæq¸?ú1[“ìÇùƒÁZ#³ ©ð=—«^3žò_KshæJ’¤È~`óÑF­C†àFæ>ECÁ8¦ sŽhl˜…€ã,C·Ý·àqY¥Ï;JÁ?½÷’`bÂf[Uç ¬Óʧ¼xáí41ò;Ï䦂_½=QfK׋¨ÕZ±Hˆs)I‡¡6âסF‡¥$œïlÕØ¤YC§…¥z;2a…z9oJ´ô«xo’Æ#ÅÙl®TäÓÀZrÅ@]²m ¾žNþPLA”~(ìQðÒÖüx–~Gî«càñŠ¬Ù !(R«;û¾¿[Á²¼¹Ñd}ø³Ô  Ûü¶·wf°Ht.š6éK,i"Ö9P>(Šè$¤¯ˆáQ`o…²åRå‡oc_¸íØuYÂû½XgòMqÙ¶›ë³…¬®MzàÀönìb¾©E1ƒ‘^n ¬…9£$ÑhWb‡Ìª×e‹G»·wÞyÛŸI9"pÖnÜ.ñM{DÞùbËòA¹CW}ÜñïÆ‚|®\îOCfîÄuótÎjÍÌl!bª9š&JótlHºuùó„ËÆÁ@v$K€ÁtZ¢S6•¸ †¨m’›ɫf wbÖZå|Ä~»¬ï„Ú‹«Ü¡Ã‘CØÍN¾ŒÏ2×ʳð4¤'B5‚Ì .Aˆ *Ž úâÕÊÔª(wòsnŠ |¨Á­ùá ¯OUtIV ‹˜«ðOY†¨á¶E*¼«p‡µì:×4Í{ž#ÓØ³G\nÿس?SòXùøä |.¥”Í6^ U«ìeäÀS-<‡€å‰×áu”ç7Ïáל¡Ë38m§5Ý ,{%?è"«5nžNÞU<ÓxQ~kˆ€úýñ_Œ"õ¿&/ùOÇÇùÂëUNÿR|¹¯¨˜°–ˆÑ»sñ\{-8=9 ü-œØ3ZrºŽÑà†\¡é¦yæÏ/%pé(4Cêeî‘<>6<žl6bwcòpZ÷ÈõÝê|.JQà«ÌŠüÜsçÕš\ãäU^ÎN¯U@É‘R=׎¹uk”ÒÀlA²g ˜A ´^BÇ®=SãH5p‡©·jÖ=âjáŽmŽcüï„xÃ{yv7FK„5IˆÌ€,ªW*/e3$9Ndäf阼gîÓC&µ;3xàäðShôX€†ÝnX5ç’¸®NMo)ÿC‡å÷<;ýf?YëüèhKsQ0÷(5TœŽ²YU“zFÍhõÄ¥R}ISs!O¬d‡VMÇ)M9•Ûzôæ!„`ÓÝBW· ‘tÝ&Dfºú¸4FǼÐõf—d{nŽ]V ÛÐÄê£S-.]7/°û&@9GJ‚;´kOŽntÝ…Òé_$z1¹ßs»ýϽ¦Gáå«nÙQùrYÔ;XÏ^îåÃÝÙJô‰ûGq¬)^uf^÷ÆÆ¯¢ E¬:ÐÚ$²6»³žö!y5£¦+¢™RÕ†" …bÊ ~§ŸFÌíì4>hiˆ÷”,wz‘øu¥R¬=·é¤ ³þ‚¨É•0çº2Úý è„â¸êóqÑ%Á† d2AË+œ “?ÌñÑF'À=ô½º(¦åK sÀüɆo6§1ë:µÄYù’›Óè¹®(ÂÕÏL¥{N+¦Ñ¦íY¡Ã…„Dd5wh…®Û‰È½¹{8Á{fŒe<¸¡]¡>tÖ½$‚X±_¯€rB²&(Ù’§/ÌÕúáT® Š¡nëxõêU‹”õp‰˜ùÊœ¹ÄçÝÙ™R/§4#Jõl¸ì;r#D\@ä½=x̧C r„Qe'›BʈŽ.fìÎ\°ü&‡b—=f£È¦éLè’Ù·ÏÙ ˆ‰K´bk­¿³ý^ DÂ_ä²Ùj@F^›¥E“¸pÅ–«)ƒ"sÄ,KÀÀK ÎK—Q”·ßçw9äYð;óJôÀw5;„Í'šSÜCëšÓĹt‰½¿TŽc4¨UàÁÄð¡„ܨ· +-D›$áMŽ$â@à AExœ~Û—&[0_dÄÓ+È 3JÕHËQr&Pز5gköú¨Ï¶¸™0©! œ™ ö7W¢Ç1ˆÉø\=H¨C•ûV¿*óƒ”CIKTf’(V…qHœwð‹Ê xF]ǃ¶S»ÛBš Í®vrøqåGXÓŸdá–š ".H¾•ÂÞÜzšsµ›PË"ÉhܸŒD&ÁœËëC»½¾MÖ÷ïý? ‚gZ àî}oÅסñ+>Aš¼Ç0ŒôÞ}Uü;H$5CIé"X‘Žypr'FíUDý’¬úªŠ¾>RoßÊ계ÙL@vwp<Ê  ÚCs{ °/ûàò¿j0{T5r>—»º Ðæ„ä9Zo Ò ¨]ò ŒfÙ-®izN°ªÜ ›Éy&݃ÝÑÆ@îï¶9ЫÐ÷Я5ÓL-®é»p:Cì³`Œý8’Ìpì>+w])äá[xÓŒ„Pñ¶(°`Ó{Hˆ‰òÝÀ™€20ÂÊfM  Bg¯8VdòŽç-‘|%ëz¡UÚéÓû¦ÈXÓJOR#pŒÁäÌísbH‹-Ë…ñæÏLgÑÑÒ{…V7‰˜¦R£@ä(çÊ{;fÔ¢ÙW6WgoÛYL0°ðqØH¹‘ûþ£Ú¶\DæDõ[ɸ—‹œYZ7åÇåH¡&–´I°Él1± dím¯_â2!Jªç€š2³Õkާ¦ï×á§%°JuÑôÚã³E¥/»!ía#ó‹9> ¥Ä›qÞüþFID`‡„‹ø± ò9}è¾;ö‹d,Q•ÂßNXÜ”%û±æœ`v^S_eüªæœ÷®AbÍX\‘—*Ë›íüéa fHŸ¾aÐaö,ˆ•ë¹ÅA}Ã;Á°BçÄßÙŽB ûч ;P×aÄ‘ñHMõ3Ux£™Áãs“Ais]Æ(g¯Nü6ád®–Æ^yˆ¾a³†–Váp¯ï¬%R~¦²që`wª…E éÑwKZN¬sÄN9¯ƒõ µßAq¿Ó€%PåZ9ÞÁH1è…„oã`‹cwâü¦Ñ²û$þ?‘xó âÈB$iÛSÄfȽ |²gžLA¤lÛ¬´´•ª|ˆ®’dÍ9Rÿƒ9Õ§ôµJÒö[Dtéƒ%ˆFoß²ï»úŽx‘õOêüyMô§Î#(¨¨Í-çBѳFBzhP¦;:@¥ÞD˜æçÑ3!C’üªÃ. Sptà=„À>·.ŸYÇ£–ÛuÁ ®>7«á•ÍÕôÙqˆ;1ô•äcÞ²$rèo¶åÂJŒWãÑÞúÊÒþÉ0„¦Õ€<ÛhÀÐè5«á8fy«”!QlµòлþrŠÖ «þ8³t¦Oîìrð£Ù¶ÏKìî±\â¼´ÈÁó'ˆ¬á‰dl`*Î)!&(€ªä[!µµF¨Qv%µ2‹:ÍÁxl˜L½í-âz¢ËäùÆb4 /×ó¦é^ÏÐgxT±ó'T‚¼WéSŽVdžá¡Q,¦Ñ«Z|ÕA¢d¨Šƒ 5!ÌêÙ 2+Ht¯.ÃÓ™±$74â&­ú¥ô¼>gÂbÇcñ`éùõìfÕ®+ï_¼þ‹DÅ–ñ­?°û/i€#ÓŠåT»¢ñ4–™,‹[ÏP&ŠB&„jl·õ}8F›DdnšùÅ|SaFÏ4žˆ MÒ_¤{®ˆï´¯gO,prÊ=›‡|£`éR6ð¦Î÷…ÃÎ9ù<Éó­}ö~nû:SØë2zf- •(Ɖz„–_DÊ¢ Œ‰ržá±,:Ë:ŸY- îª 3 ±m¶þ× 5#zõïÅ õï b·…X GÝûò%¸‚â#Ž:ï"_a³¥½Ó—°ßÝË÷>Lul“×ìûåÍ›ýSd‚( ÐqIm·ŽÄLºÁ›°s•®ä^þ8öByÊùã¡<œ2r]v'©Öé¤ãåX>H-HÀª§ÝxèÜ·:·*ßnWcç`®þÇG “äÞ_zŠ GIÊ0ã¿_‘¢|N$Aá.–¾vß#n·gý‚ø[y=Ò$ŸÅõþÎNSŠ®,š«Š:Q¦¢¯·j /h[O2&´/9/Á2Å6¹ÇýÒŠêèáƒ,ê³p•g‘Ù\×ÎßÝÄwÉïa³ ûƒŠÀ‹%Û9cW‹1iþªÙ#Üß#ÖínÚø#ï_±oøýìqþDA7±U´K]›Ü²†_‡“ù² x¿zÕ¿G‰ÈµMqÇnvSü¸On:±»,nÛ' Áƒ«Ÿ'â¡c!¥ªé`nÄÙCí_ý%-ômü {Ÿ5Bȯ.”O²¬&Ù¥7ÑvII0á‹cÿO%ÏÚÑ0ñt»:àÇ܇„³KpûùÊóémÃíw´AC{Ϩ¡"»U ©<âü|ä½ÇOåÛö¤’ƒ^¹ BöŠŒìv‹ƒÜŠtÇ0ÍXõãìs,9{L›Ñ¸:0>9òþaÙ¦›ƒv¨>“à-s¶Üø%6Õ ¶{œŸûø`v_“´)à?9#…¢ˆ /î;Ð1I\çOz(!›î‡mžEPõ¿ÇŸä6ײUN|}0äÖš£pdƒâßóüš×èbºžDÿSû~ZÒ­n&k­È⺨›d>íàe¾aQ;Ò·‘ùMI÷ üC´ Ÿ ¬u|Ò…"ÃSObL85`4”dìV—ØY‚ãeAÊ9‘ö¨òxó³›ø_¡Ö Ÿ’>É$™thùÜ i-H´R÷ÈöcFæó Xõ·.xáïETJTCÀ,–†0l.i#ÁºR{ãìoWêx ïu6zÜ+gæ÷Ö{L½÷ä<îHrcÐb‡Žûÿâ òU-ÜÂ`ÔÄq"v`?^Rk —ÐOe Z£Æ(íWeŠi9”´«&&4™ß¬¿tx 럷’lu2T‚qð^e"M¾ËÁCöEìÎâÝ]ÌÇ~ gý*ÒÀS–¥«‚ȶæ…èoZÝtÝæP?ÐÜ÷Ëg2¤ju"~¼[_ï´ÔS†hYºE×e×rßPYÌ8~ܸdJ „³„*ꞌ.”•)w°­3 áãR.¿¶6Sš'\¸]°"Ò•ä—d’Œ3²“¿]= e¯Ò箫Ês5 mÉq§Ã^ƒac¦€‘³§ <@ʪD%šIO™V§ß$ã…‰‰T%R¢Ë”Z=}ô»Ý¿¢È°uhµr8ÀŸÂá‹íÛ`¯‡¦næs™a%ðÚÔ›I ú)%^ ™  mLlÑŽ0âE 1 -@ó‡À<ü[ZhÂ%E”§ƒ†›«´És>ð¼®·™‹©ï|ð€ì§ú°w¹ ²sפ[¦“X1mP6.ñvlͲõϹ(Ã5é~'©üyÈI'“B^cÑìDV£¡!Ž0Ø™GòN²zôŽ]ÿ[ùm}/äûß”ú{M¨PÌ£ìÉJOd{ƒøî`_oÀxD8êQ„‘±‹$ƒiÖÓÀ!ÉýÚ¦U†‡†ë%{žS‹+•Ò§59窻t¦CµJ ½Z·åówõ½ßÌQ6,.¥çâ¼ɯë_:\2` Œ¼94+Zå< !cŸrŠ6°Ò§O48¬“°>o·¹пZÃíÞ~"%_1BGŒfŸegÃ5pJÌÍW%ó)F©@ií0Q´–(xòòAµW,œúê?Uå.U±aŠkˆÞÈŒºs÷aeçþŒfþ5¹©ÁÂýóðàìsî%û©ífž°P8ó^®Ã^,úNú¢ì´V³¿zÛðw¸ëòÄ®e>éž sàdýO³¶Ô Í›¿^ÅÖžM •{A>ûÕŠ•2¡ú2Ã’³¢O‰p??]f-ßè3O¨’ ~¿DZÐ+>=8„l“UÌxÔüphqRµ$ß_?,_DÇÛÀÅvŠß+ì Eª7íK‰ '¡1‘É¡¹sòÔ¿ŸÆ3î…hÌÛÑ’¾:C¼†3%Fx±’¼7ìÝËúœ¸A“C¼'jl•Îcn «ÞÔýµ°™îwëÑÈÃ{·½‹d)Ÿh´IÏçiÄ>ˆl‚66êfbÉšFZ¶ç“`ŽLìÆ6ó•3œ¹™¹[,EâÂwÃÅÕÝ{Ï¢,ÞàÓÇ0}F''’ô«"2àLa¨&<ŠÒ#«Î<ÞR¹ ÑgÈà÷ZÜû{òö:˜,òÏúWû)?[ZímŸQ¬Ú°÷¦QÝØ—eCH¼kS8åô‘O‹€ËC—Þ:ÞýÀ«¡ä׃«…zsg`ÚÞïì4Á‚Zž}<È54þ"gâ›™›SƒqoV§\f­Q¡s­ˆ5Ú­%öÀ´ô!jtµ½¯ÛÀ™ÚøÔ2|΄(ÙOË×ôÑô Ëö-ù÷U²ãÝ <ùâ !tA4)rÑ},û¹{†„I´‹Å´.‰ƒÅ¨ Išìÿ“À–ØóþBÍlxz‰åÖÔGÄæ7»*Óó¦Dà²ßŸv§ge%Ë.œÓù®Éžq:Y+ÑQÂìuÐVq9à@éîo/<Ë`IH@’Æœ ˆPG?:.‘"pÍŠz'ÂêÀìÐϧ¿‘ê`PCC»EÀEÔ+G­6È;‡ j4׺Íýˆš“jаh–3*›®¬!=lêš·$xÙçÀêAÍó ð¬? Q/ks(üÙÚç9é¥Î;ûêKjË@Ô(é¦ÄÛ!©B=ý7sÏcF_ÅWª²½aÙ«nÇzÒùßÄ[ zXhJ>¿ ¬mÆx$B3±¥,zaHN}8$LÍ8ÇϪãžW¹ë䘩~o•ï5>½;Gh>:$Bà,áàÄxàwÀ@¤lGåÅÕ¹5AÉâ£J3˜•± \Ïj-­í­Õ±'1õruñ×ú=Y@m›°LÛihÚÂ#qµg:n¤êTÁÓñoX_@¬ÜDË¥·× ØhI£ MˆK>{׫w¥F¼ÍZ{³Ã‹äÙO+Ìàì—N\%fƒ¹0‡…Ð{biR¥_«&’~ðÓ»@çžû—”ý¡mçHÞçó×ÉçŸßÎ9̦Ìe¦ñÌ&ìKøò1ŸjÝ R›”ïÕýmcô ÛzN¦ý„É«îíLœ~Ja¡Zÿ‡Ì«òö~Äa¤§î Ì—ö`ô’hl¬ÙGê:X·fÄn„£ƒbS`yÀÚ¨?‘ufÉÏÛw õ¸¸näuò|)cNõLL‘âqL ”2ÆÒjHZQ-MÄB‚3åQ(H”0†TIiDSÏrŽd¡šÔ…‰í±—šéçÅy6vÆOgh„ö'hZÒ_3JŒŠyX¤ÙÞÀ½=ɼ æ­…[·K1ÈK^¨ ðpB’ð¼ÃËB³\>ïÊôw™éïËbþQ ý#‹|\¯$ÜŒ˜ÑÖ÷EŒù›ñÝ;²¾‘0¦•  «Ëð+SêT¹¢¹Ö¸¼ŠjÒáï¨}ÎÏ/A_¿±GHpfµÔ—,P#»*ɤI¿ßÙ™*3‰£+›štÍÄC­œš³ÆÆzGQÎþ?˜HÎt9úØúÏý—9JƒB ס7xZj…zóbN,앆œ+©è/¥œpÊf×oËWîh[‚Wû•«}ŒÛ¨˰ò*M.:ŽÍ »stn¨ÜƒŸF¾ÈÁ&+G¢ðàͦ‡R–äÂ?Ž™§@°îÙ,6N$òXÊÍgìÝ쟡Îîï¾$öÒŸà˜ø¯ý2<©“¾Ÿ†¼÷CF0±Ì ¥ôr S~ŽcUñç¨SŸÎy×*ÅÒ}+gÛϯõ.­Ô£JοԨ¾ÓPú¸´y™»CÆçz ™¬á—¿G.˜9[SgÙIfåèŽ&§Ý£§O•eÃA±D‚;£ ¶üt£‘ð‘Ïû¿±{¬w§ŸŸì?õ3ñ~]Ç2 _¿g@½33>Ö+ŠLúáóU’&ìœS½§( 'E¹¨¬œ|',þâr=m)i[%£¯/|M7Õ_ulö,£L¥?Lue"]×m(_SFg›„’À±0éôîëÐ sûùÜéæI©«eÊÓ¶t+ jU†aúó3DÂ:ç×ðG¿½›“ñh;k¹g’2üùS³‘‡sÉ;гù ¶!t‹*†–ÅR4pô?ÅÑÑÞ…î#]v«ƒ©”á;Q)§k,ƒ¼O!Næ,D$„3çÆœ9°÷޽µ|:™Èäù_Ÿ À1w™íìÖ}ÄÀáYáÌmˆº×(O ¸I~iÃóÐ=a¦…²*L}ò3^×zæ¦è}ÎÝÿa]Lë‹¶|@Æ õ®ë27$é‰ÖÕÀ?Œéðvg>ŒI0–5Y]w s.³:'iõqWÄÇÝà×ѨDÙñröwßs u-1fYá”^‘(ŒÖÆwzqÙ@ÐÓb…MÚõCÓ;4ÐÒ¡Ì®Z¾’áÿ1“ícT넺ȚÉç®b-8 èã™O*]C„âÀ#ß<­AÌÈÆ’ŸH+O xô"ÔY AO3ªluk±‡‚†BÙzà1Jœ"­CöOó*4~5`á¶ù’Õ]ÜTLš7_IîÓoL3Iâƒ?øõÖJ<­¿JÒQ8{~ÿö¯³HH½Ímð8š4ÍnéF ùºâLÄœŠ¢†õ\=,ùXΖhÒÈÀÄ à†§D›Y©b È2nOJÈSRìL¤cU>dÜvb• j§âxÅÈÚÜÕ‘æô[zE,äìw¡ÔÌ$ý*ViT¶ËúT@ ,]ã0O&ˆÉRŽU°¡‡ ]Pó9¹ %$SÀ÷Ïî™øù|c3²ŠŠ1õ{–ìã–Þ|[œð)a«¥"8p(ðD’©=a‚—G’VsäTà[³o½žV­§aíäÎ3ÚáÛ÷ÞêYˆs‘|ú„ß?ÍfÈ„] Ì H×´¥¹ÜÍ‹c¶¼Z[„îøÌ‹}„”Q l³8QžÁ0u ‚Œ©¢;WÉš7_øoê|'Œßþ+XUÅà¸êyØrÏÓÓ¿•5剾·¡Øƒ=rŒQËG‰ÓÊZìÛtj˜ÌDÄ­Ö‘“nº|ñïÙ2xuøìÍçBÎót Êí]çn…ÁJž1²:+byzaHúÃÖ  €SËž½G:¬Rv YÞ׊ |fLëüú#Í—Qêh”,ÒO$š¹n„=Pšò6Âmä ê'vr†Uý ¨oæ•vBêHB¸¢wÔD½m-µæêº|·/mOxçÑüè೩öûü¿ªèwMªÓ¦Ÿ9ÜívvÚ±;3¦ìŠ"—Dtb $“Îñ0$sgQ+ ˼Lî¬ãþ¾J¯øˆ•1BÛº¹ßüžU´…p±•ÁšUñ*ǨLé°‘Ó¬­©ÄÂHjâcLƆI•BŠ’qJ§ C`]zõú›þ}¼åõ{ÒA÷}_fW£g~ÕØvËœ\ÙÄ ü–dÜp¬à¥÷O¡Ô~aôGºd)v8&‘b¥XŠx×êäb§ ³¯•ÿ8½S)ÿ%Ž£ú˜•󵽇ºKCIz)™£,PÖ3›.‘@ò¶å U\ë*Á †ZBfï'¾¿7HˆÿÀM^ÏfT´³âm]ðøq¢“¤›§È.té%ÉŠ €…:oOBšQšÆ!—¤ðf×ð;ù5,ÖÏêíW°žÌ¾€³ºû`s8®Aæ‘“&‹Ì…8Tçžõ&Ë£%ðÆžp˜7Ÿœ#<ãHÃMÎø£NÉð•.Xp]FO)-"Ÿ¥±ôûÿ™·þŠé?×T ™“±±D…+Š7u¼Ì’|ŇLZ«»ùtì÷”üavt¹°§ôáí1¯^¦xüEîêØËÓo=›Ñ^ÓLåb$õ(ó‡7œòÙ¸Œ9F–28ÄP\Più”[ñqšÐOpø.NJ\-IH`¼îq¹{8r‡Œ›¼@+Ê-N‘ðªf‹R`:¥J=,ù¾:适Õjß‘_[ϱ'WR¶€©ofÓßq€üK{““Ô&?­+µ›uläœ(SÈ¢_.¡÷¥›‘ªª¿-ÒD³Ì0®Ö~݉öJøi¼êþ—ötý°1¹½3Kç,hªÆ‹Æ!#HÈI9±E•R#ž5ÌSàd)Ì’,ÑRkÓ™µ£Ú••¦NGÅëbâÙNNóüØ_·•'•Üt juį.ŠáTÖžÙYÅ’°ò…á™Ö²÷¬²r”³ž…ÁÖ ïƳô¥=jé©3h§¬ÐÐ).‡ö»¢â4u†ƒYo«x˜´¯ÃC£x4 [@Šg(æ ¼I1êhA!´Tô\‘xeé‡Á<Ùzé}}ïÇFTf¦ÉÛÇyå¤ä².È¡MÎFdïLË?BYBÔËÍœjÔ…@+êÇ¥Í0>*È œá1Pz8·w¦ JB4Êø˜´·l …{¶(#Ñ‚˜5Q>5r¬Ÿà·ŠÏ”´’+ 5óóèÄ6 v³ØøyD·M’ïøõj+äKSùoðnt¥9¶Ñå²K}iæs~鞸.͘|zqÁ€Y^øù¨˜|ú¶¨÷~C®8Ê ÏÉ‘‚_—àÚä£mxRd]V~<@÷ÃoPKAêÊOwòi—­¿r9YÿjØ9»ÜŸÖ—¿#±†1p@¡¡Úñ Ø¥*ØŠ«m½hÒåöå1z§Ó™ÎªPÙÂaÌzŠ9ònÄa ÀæÛìTZT!ÃÅÖÁâjmȘ <5ÄEé²Ü“]§Æ‰G§SOõ{¿µ^ï0³í÷ EëO·â‰¡Å뤸Âd.‡ á‘—›U›¶TiÔ6Íç³H9Ýÿ‚;×›¶ž•_Äy·Æ"ÍÑV^cOÅÚ§+(™òÀä…Jè˜AR¯—K»Œ‘‹T®vÇ;ZO¿à£¬M?æ­ò^›‰&äÍíÕêCˆó´©·Bv³³ªŽ0JŸ[X´Y“ŠDتÀ6L/j˜™Z J’…IéÔ‡Û~¯˜yx¯mÞ*GOêÙ=k°úxÙ‚lÚ5JÙ°ö‰#…ž<»=l©ñŒÐ–’C¸ïKÛ¢fD{˺Ÿðbúˆsüƒ,†ïÙóÇö›äKÝëO#"^ž~>””âé«ÖÈ•NÌÓ,gíMŠ ùVžF1ºžhæ{‹ëÌOà? |;˜Xäâa@öÔÖ~@$î'.ŽXÌ·?º¡1ᇉ~-¬¬NuÆò•öo¡'0©”š‚—½ÛG–vu`+-X¡ß±k5 î~|Yw…ÙF9NZÐζm\,²sdéÒä¼5|®›|vU¡1}ßKµÌ‘Ð:><”Æcœ‹ùrÔ–Mùž(yÒ‡Ž T»n] §%8RɨO<”üàë ŽWêó=¿~ñçöUÝ¥x|“Pœä}kAhÓ§ޝq/‹á(¬ÔÅéˆA>€ÂG“ÔXi‡¦w‚Ü}oªÇœbÚ¨žŸ½_vO¬uõúP"ä\Óp°D1îݤñ1oàG Û¨«ð‡5E~ÝÏÕÃ{oÎêu}^_ñKþöÅ8ál1¡§…ÂÚ“ñâô˜CìŽkÆc!˜“ò|Ä1¸ pÑlªßÚãÑÃe›: ÁP;<¨Áò͈·˜Ä# (¬¼zÈp‘BL¤1êDX*À­=óydìFG†w¸O cã‰ÜC­ŸL£ç{yüÄ|ñ¬+ÉPþ–,š®hà ÿÝŒ0©N5­£úÀÒÉÉ)ñæi÷êR‡tÚ}üœÏÛ…¯œ•ŽWêŽßÅEô|÷«]+ñ½çðŸÒ™C]Žæe¬Ì~6H̺ì³ÌÜ×jÕÌ/’] žVÅ;øCaÔÎõ3‘¯GÏÁë_„Iz·õöj’±?ŒÈ©²W›FD¬ÏàÍŠÈD(y“ "0lF¯*¾+»#Qàao¼À¯äAÚ÷iÈì}U«Iù´55 lpåo< Ä<³¤4&>X³ ÓäG›%ŠåÇÊ¡¨k7ïMî÷…w~?Éì]£óh}§fAFØ>ˆ†5¢Q•„‹, ¤÷Ç”›ÌI¥‘îOÑšíÁ{·üi}/Ÿ8²a黣fÙ¹Úùá¢#ر¦hK1Ò“Èò"ˆ<»÷uˆÆnkþÿ]?¥‘SÐ¥ ºó¯c#ªiÞ£§»y'~ ³´j&’Þî!9Ñ‘D-¹ÍùÀ¥M޶þ6Oëøawa¢šnÛÝRÍÀ|+3Ba^”/w%-ÝÔqsè#ÝÞU~°K‰Î.½Níèß´¿üT˜­ôî}ê9«ÂÞb0—÷Ž[:A`vwhuó†Á¶Ä˜­ÞIxãë5Ü——&šÝÝ@ÒϹ´OŸBhjVênê§íxwËÂf ôy–ÿ.äzsþê'©úÞ3<­*úóøô°3|eó“Ά>b“—oaAß´û÷?_tEçÝÉÌòŒ¶WB§½'^çN÷˜l$wnpJs!J‘”§t"ƒXŒvè ŒSs¥úþ^šÞüÙü%¹·æJÒ_š£ŒØ×D¥Ï$›>´‚¨'€«LõCªœ ½ð3=쨻nexùÎÁ$Cµh'cÉÓæmLðBLào¨~Í(7þ;r@ÙÚ_#D¥Óδt£ì"¼à«Ï›-+9ÈHk™@·“ôòÞ¿°¼<¿0òØä³$Œ4}XÖÉÑ`@¤(Õ˜N©(Þ"KðÓ" ŠU2ÈuxnÛš øèÎýò`ÓY’Ð@(— áçFç7ªItP.n¹väx…²"é:/]nWYn÷«þr„»3¼…§Zq @˰}oHœÍ·aÚç«yFõA*±€¼(74˽ML+†½ ÌïôÖþÃÖ5mhûî×2\—n’ðè¾,X°ÙX•ãrûïàõfsÜ|i´•ì?ÜY¿‡æí›?G£k-„¶þž!ìw" 7ò:pùp€‡J~ÌʈªT=oK¦¿JÏBÝß±©ØÛ•Gc…sómÉÚáï=Ú~ÛÔ¤‰&T´néa˜œ tf¼‚2H¥ÇÒ?ÇRÏÍ̼½À£\a ²V¦vLÃgˆ™Æ/†ÞMÀœòËR¤ R¥XÝxäÆ|(Lž¯ ©§tk4ÿ7ëN£}j÷¿2»’·%,¥1ä‘áßL¢´ú¸ÀpOÀR3*Ã(¬Ùšxu©B§˜ºÍÊ[Q„Ô„ž)Ó—hSŒjzlåFS½¼ˆiÓÉè 9]­(ó•öz„v»„ZÍ·Ž¶<•­×Û¨YH…«èÈË`y†×Ÿ¢nv°wyÒÿcW©ÝsšàÌ‚“·r§‚=º€A1L€”Þ¸ mIÊÃél |bøÊf¶".Ѭ皽@£û#¹—–Ìpïûp²5Ó½å¾ Á6€H^zS¿kÌcäˆþ Ð9¨Wâ°­¹<0ăÞ\qÄ'Û&—OCåõ3ñœw¦)ÔÒªŒs¹:êêõ³‹ÐmD¡¬xT탗-)fñÕ’NÀGàGÒ$?ã g2›GB„ùÁà†Ï˜A8ªõ° f wÛÃ=‰ÔtGXMþ+,çêô9ä‡ú3¦ím³…[ü¼Ñì]“Ùmž–P½”:óœ igoáôJMˆÎr¹¢pn6QJˆÒ–¾²¶5}¾ûÐáb¾f¥ÉqP&*:Ýy|:˜øïè ï;—½KÄ¡TøØ‡ÃK´ŒUš*TK¾´`ßì,ç9µî\ÒõúíL”¸(s(¨„¼2Q ü\ªHÑÆ¿k¥öbŽ$~%x⯢ÂÁ!“§šÎ§_"$Foŧ¡Úîü6ŠpCcˆÊãÂÃ|4 n~|À– '´ -ôTmQ›[ùw–rj¦VS2 uÃí›5Õ Ã5]KIy"Œã¹@J'vŸ…2{žùË<Ñ@ä¯CoÍŸŒ¤HHVŽô™Ç¹)™2…RQ™Î’é" ?&¦¾\ÝŸy¯Ž<©ce¡¨¢òúYÁª¾Cï:9ij1`]xôùú™0ãÅû*ýa†ëjÉÆ£íÜ• ›ñ6ðËS†ð‹õ¤Tã,ΗÏúb¸!\=TMø}þ bݯ»#‹pÐ1º×™0^ ë¤cæ·øèZ—‹áÛÕØÉïe@ö5{q ¾ƒ•¥{º*T‚;‹2ZšJIà”$( ü˜VMè=æ³'0úÈz%@‚¼ U>LTRw®ÒêNŸÊ<åfbÂö–6ûU1ùÕåän ;ÓHýð}v~øyZwx”L 0%¼õLXÑuô«f^Ï+£õÄ“n‚ºÒ ãöæÐò€S©x¡³=¶zœ/»Ê!¼cÛÜ«³£éÿ¯SŒ¬Ün¢±ób±w© ìGXåà\i(Yì…GBÍ¿–Ö• ¿eÑ/aeN•ðñâíæTzT”6 jë'·¾ôý<¾S©»¢oú#ëp•Úï§(( ÖnÍy;“{UE@Jù·Ü…ýޝ.Tîðkç¾%͉>ÖÖ-îô.ÏÅÑFõªM»^5× ~ÂÖÐÎ{ ß²©!f°¼ÛÉÓÖó̺ÅÀñÈ7W«ÏRhÍòœÖØ—LÌþ:] Ò/N¤=wó{˜>ï›ðfÇ´š×JúpsUÎÌêÓí2vè˜!VÆÑk—_hÏ:’a3ÊKƒ‹o¾¯“*ü†½å”er9Ï]foXû:$7l1%œ\ì=ŒiÚÌ‹ý2yÛ5ò)Ly60™± §‡jYã³uÆÓìÈÕsK>¨ê|Ž4ʘz‡öV¥¾PäIÈÃZÖ¯/>MR¿x ×þ>….f€Û>ü[lØÔ¨ÔíyáâØ—]–þŹ[V%ìIç÷¢{_Q*š:W´'8]v2µxó1x–Y"NVUÐgrÐþ‰?o”n¹¾X Å·+¸¥¨rbFŠ¥(ZÔµ £åonÝÈþÏ\§ÔÃp››Ò’ºTiT™¹Ïî¢a?ÌN¯ÊÀŽdiGcÇ™á$Ëøå4{9n9Â’ø2ÿ0Ûi¢½% ­õ=Þ¨žïhîL:,…ޱ7‰Ø‹Ï‚ìÚס7w!I›Ž¼(µqº³è Ф•«‘VzmežZmB…©a)Û¿Miú3F,-¤…Ý4éÙß( iåûàÎ/Cùß`ßc2>þ…ˆú3cËZçÞ礙‘+™,¢{b°÷Úw.)ú‘WqÌ›¶,ÛétgaÜÿ­ùv ǽZ1æÔ°;i¦Ho ‹œ›è%¢ïòyq±Ðâ½¼x€VÝU @É,DÝøùIE›Ùš8ºètÅûËÁæè·y},vS©ƒq¿bŠŽ þGô¸!—œ—±ÙÏBNèõ+M.Œ†(dH35û°Å–Êô½`kaûöy1Nõï.ãT<èw)!»—áÛæÒþ{ ÿY—{²¥k5Nn‚2ƒ;¬ßµÒ{ ø7þ/ NúРrË.ÜÉ“Vxb|a=œ«¹êÊ–¯˜*Ý&è-±WWžN·ˆ<€xÂÕvþtŠoÅúñ?¶µ|¢àJ€#*äО²Ý˜³´Æ;p=žÎ¦t‰ˆ”¢Œ7f蟊ƒ‹I·x*:ÀÇ™¯Ø… V-ÈÐì*'î[RØÝ•bè1XPæ‘É5‹»ºLÚ ~€ï÷¸3ñf7gGâÖùýâñ¸Ü‡û¾:wÂuvFÎÖ–ïöÞ”.î n§þ øè“ï…þ‹ÄL„¼¢sÍ ©¤E_‡K(]ô—³a­ó+7¥×†Ï‚5vD˜2€š©Yû= á~¾Ÿ ½£€É€üÊu¬Ù޽  OqL³­µìùe 3=Ï£UñúÇ]ᥱÊxX'îRð1†WXJÂý>¹t¦s¬,çõ¦€oS€^[r Äã2}±Ú¡½™|h¸È†à©E«ÊúSK˜@×rà;KÎÑ&곉þb³£óWl°-7§U` …v¯8m59™6\ƒ¸Q[¿$Ýée†¾°3¡]‡‚ï"„V@¾´ŸäˆËÑ•#§k£¦úÕæ’ô¦»#/üîÒ蟓wçcó!ì¹A<—˜ÎÍÈTü7PÕáû—ó8zä^~Ll—¥Úߟ³ÏL¸÷³·xµ·¿íMG²²¬• ´%§ \<¨ @$g¯èþ/0/Hë«íe>;©Ùö&kcÍ øs(Ú%ªé)7LS(/CM4ÿÎÓ]Œ[SâÁ¡¼Áò1õú´W{/„‚_~;‡üȧ¶Ç<‹$«·‡Vmi—ÕJ'+” Á±¢:^AUUCaø‘¿ÇEH:·úôö©9Љ³É©¡Q’;5qÓ%瘬¢éMq1ÐIÍÌfºRlP„­€Òß8!·FA‘æƒî»ý%ôó¢Å]~{ {Ç®¬Æpä|aÒýãJ©©Ë›;-x‚ƒ¦l©€ÌbÈ õ7Å—¢ž†„8™Ûs°.ˆãl-sÒœbæè²ô¼§Ð›¸8ÀÐP Áú-Áâ0©.÷dZݼù™4µåL¢sˆŠböï7"z¹;v<àÕfc€•)W&¬Òé‡ã“P!‚¶•€_³Úq7ܬ$×a"àÔ,¡r`ÚóuSDÂ+ˆ{ù±»¥¡óØÍóóø1\ëÜqÊ–2tJ­Iv5cA¡g¸ØŽsþ¿:‡£ùõ¨Þ’ :³_r.•A¶<†kCN]d}q¿bdx\âù3îP>r¥Ã« äñP„6ìëõuН²*øÒÁènzìØkO- ™œ†¬+œ¶š ÌÝzy^ìêΫêO‡­ý*Òí3‡£o.¼6nó„•f=¹è¶Þgø:GÏ¢7Qqè'2`šJŠ$°œ@Þo¾çà§Ó§Ë|+{–lÚÆÒNŠ{LÍܽÜ*¼¸31ºå=õþþÄÎÙüøw0í=±z~¥ùò çäg­ÿWŠÞìÐ Guí 2“½TÂ6ÿŸ¿tº¥cÿ¯˜6ÙõWÉêÈ¡ºlX‹hP¡Á’iYÛ}Q¾]C)ܹíBJ+n4QFƒÇ‘ÁF ;>%ïÚxט&dËûØÔòÇjZ¨ûZöº&TÙ(š+Slð_ðeg'A„mûY?i›¥ð¾£ß‹ ·àÓ‘?”üJ¢aò¿gí jJþÈQÈÉÁD(Ò̃ÍólSYž¶§½–:V|ÞÌy·¬ÂµµˆOͤŒž R÷8þ©¡Z¼ ÉgEØÉMà3³Û4~ÂyïðüÛîyè4réϲ)or‡& wy¸É>¼®®|uÒÔ@¤F×Õ£ÃÐ~Tòz(|p×;W” €Wé¨RV¹šï¯$j[ æ—SP’ œÁñ³šÈ¤Ô<Š«7ÔKQ<Ô©ì9óÜ#t}D2#ºGXX.Êr.^ûÜÉܨ-ž*‹«S¿Ë¬×êß§ÀÃ9P_5¥0dÁÉžŠ×~LÊ]冑†þÎNº2àK·ëárµè£Ê×Õÿº76,ñ¡Ä´b¬C %­¥YÞ +o/Ñâ‚28_Z®¨Òí‘ûPqáGuÍø»%fc…UDé…*•’­»ÇÿËMq/ìôçÊ#v(»›·"Jª°TÃ$9eÒôl+Ä;‡(ÝÐ’ £f‚)T°^lÕò3·tv¼sd)ŸIZ 36;s.á3cÐUÐ{ 5g¸ ©$…TÔ ¯7bCÚ ëø&"Te¸fJá,-6ו«JÙ4 ¿¹fc°QBtU¢i·C è—Òpi«AT»'J Áµóÿ—Ÿ:ôÄ«ÍÚÈ—Wî@Wä©©Ö›„Ïw Ø(s ÍÞÐaH*MÊõªË#ú}~€ìاN£^T>¢YVF;kà¶%—Fæ½-U-ý+=õeKæÒLúïͪªâþ¾¡c*JQòMC0 ]˜êt,U‘D0$A¾B"Ö¯±}&°Oa÷—Ý þý9£GD5&DÞÇI_fK‘UÎ4jóÂܺõA7H&õ¼Ÿ½¯éuïÔ•4eDŒ‹¬VUÎ7¡èÀžNù‘hÈÑ–>W6ÓÀɹ\èÀׯ ¢ÀÑ2T&Eɵk Ë°ÖÑ’pBÇ7. øPEÃøU*ˆ¤ãç}™¾‰ZòÞÓ(¼b_ ˜¯ÐÐ?†2³¤¹ó¸ùQÁ¯˜²·ç˜URŽ×†C ±VvÏoþJÄó©óJÍf„@­ç‘VêB/ÖÕîè˧ýίý°¿Q(\žšï裼7híhxØ›nX3y_[•¬¤Z×g’v_ßRû Øflì8•c¬a!.·½}bøúÿ4-ÍÔ²î¡α.¡\Ƶÿõ̇— úDÉÇÑ×eÎæ7^/²gÜìAD¾ ^dܨ}ë_Ϭv*Нœ”h€Ðâ]SÍK¡7@EK‰Òµ†™m2a:›³c2^ás¨å’súö]F $@_KÚ$xÇfÓßÁø?’/é‡ûd7—‰kŒ—øõü½¿ñ ΩÅΘÜögqIÕªN“2#FWgÓÓ͸r®ê+ÙkƒÛ?ÃÓ¤ç3¥¦ÞÌÛܦyÙy8³±²ŠŒ _ÑWKÈV߇w–Œêéô”Õþ¡MÁoÖJ¯—ÁÐB* ƒE¦©”FH¼»âS_—ÿ¨Ók@¬£=)¼Ìrv:˜æCÂ3¿fËgüÝ?iÉ™þÊ,ð]ÌÍÿTP;èþe(%È;ÏN€<ËmÐŒ…µ­Ã³H¤»W寶,I©åC$€­s¢$ãÕ…'6uo$~öç)êl¾)èÿ‡Ÿëóózq2§<×@¤qFF˜äòS^=n}9S4®¹íJH\]*™€A…6øSú¤™Zïov£w-X©ÃNŸnn¤ŒU‚½1¿óÞüõ3j/÷®ØBî5rÂe3H¢”„¼ý ƒ#âÿÆÜ‰”"ô©$œ b‰SJ³Ö©¡ÛËšÈ=¼ñ˦’Ú<‘9®ÿ0ÆXöæ¦Ü¾*„÷g²iT{oY%¹ê ÅI(Ó §µÛì…öŒß©æfkx®6­AŸgÐ_~v´*¦÷5[—‘#ÏÎèv5NÈÔ½ º7~²y]‚a`gaŠ£T†³r†¦ ùÙ“ÕýuÏ\óqygoŸKýD)#þ·oÞª4ì’,²!ân ñøÍdZŽT¨dTK´‰ŸÐ7WkÆn¼–. ,¸"°•r´ÓÞ“¡ Ì9ìoC&aÈ©¾<ØÞÂaʨ"tY HèJ+ö)~)DðH0&·WÅIp(³LúÓù’g 6„xî†÷‹v”ü”É÷ÈTš[%m™‡Ã*s¹‹+lÍ¥[ ™›Iæ†4®•HÐhËœ(@M™÷˜Tæ‚ iB8qE•§o+ÇO¦OëR&þ–ŒàÃuA‰ž}7ÿÓ¬ÌtßvFM ý~êß‚c¨A’@.Èmút²ÿ'ÖŠ±€8¤È¿Í—¢8}6ýÎWÇ^tøš«JUy@,æ"€ÿåùøXóÏ`“¿GxÓû³pÐ#æoÅäѽ• ÜÖú›…¨%´YXæ@ °ºº|4?Ç÷!ÚЕÁŠ ÀYÌÇE™bGîrù!Á¿µÛ€œ—ÿÑõ¼ÿ–=I4²Ì®æ{…iÂûS„á0eÈáí¹(2¶¿Ï äïtcr”@7&#%¾Ř“3… Üdªi&KQe!,eiÌ­¡\Æñˆc°L 0†g¨¨E=.P%¿a<ÙóÖäÒò“:Ž •ÿ½  |.¤ ÀL„¯íôëü1‚GHµõ´•,þàoPT¢‚ýxš½Š’‹?6Í_¡G+€¿ö“œ&°z—}íhæY–|’ë2ay7ŸâCÅÎÿ™Ò½ÇVÙ Õ—úˆ>T÷aYr€Þ?¤Ù~æ67õî‚`t ëÅUvS¸®gôÀ»±ýl%Àx+צwñXIÚçH¦q¼yÓ(™jXܲTÊQòYS¬4°U(ã:ü\¨¹š›LN®Äï*l\¯ò~mŸ”cº·ÊágN UJ­@q†þb Lû9€ÝëœdPÚ¦GÇ®BöÑ>´¦]„4#¡5à1G]8ø¯ùf³Àaëi»ØZ­Sà·§äó¹6'D°bÄÊH^YÔlj[¨‡Ü34¸9”ᨕ¤ÂÅí¬Ÿà:âëq FMúJ¢VNcó¹–­M0ôM^UDwºƒ[½ï|÷žíå)YÐÔU fHþO†Þ¹’NÐOæ! Tf ROcÐÍ\jC‘;D¹µhÑñЈv”« nRRNhÈÅ‹›‰D¯÷»ßà ñ¬›é‡«ÏOÂÇaYQÞ·«êU;°"° 0‹ÊAéfñÝ=ª†ãM°„£]áày ÉçµÓc>¦ŠW’®q,‚kW-š8-+LjKéÛà™Rùœ§-h©¤µê£â¤ÑeÇdåÉ€RÀŒr}°YO‡Ô-³ñÃÄ S×§$FŒõñÔ1Š»å g…¹Ì°ŽjM“É †? Ey6 KðÈ*»J¶ÆdèFA¥ BiKÌya Ik¾Iþz¡ŠÝs:q;:^+AÒ4ÔE¶%¨ž´˜Z!÷†t“@¸‹Ò•³Þ¤årÉï Óº ŒLCZ•ˆ9òìeÆ1(2ú.ã!RÝX/Fɼ–ÐôL‰G±/²w¡|bYV»F@o†æä¹˜ÒsR‚q_:*™€p*[¾|ænˆv|ßÌçÖP.ÌD9v±K×Q¹Ð®PÖl-ÿ.%<’2²ÖÁÕЮ1¯*©Ðq5žù_k;ôÒG¥‡,ñ…Ð4{ÅÊ™0ÄXø–bÏ’ÊTj5H!×ÎhÖµ¡ž'f°ÙRòfD¤ž“@Æ ÛŸúó¶ãbà#›ešdeªx\vàÝ™îÇÕɜ˫€Ò|À¢½ ²b{ù»-eרDƒ¨2º—`ŒP£ðêÅʘ&\ ón’h(-ðýß-)ÎÃò¤è2l9»hÄ4 XSD…àk—‘Õ>öE9ñùÕëùö½÷XnÄ~*kQFÎ-@ÕQ ß'út_µ‡¦§'²æÙ°³ £l?w?ãnû5Žˆã´Ò4¯_w`ÇKÀ Ѫ0¨l•.J¤‡ÚéåOxä%¬gjhû§ ¨C2&ó䛌T\F¹D«^Çñ¤>ù'= h„ñeérƒqôÊÇXXÈÁ& —Z¡~®VCˆ÷ÌÜ„¡¤ bì 9f½Ë¢G )ݾ¦—aYGO 3ù@½ùû²ºjìòz7Ž)ã÷W+<€æåO_dñ™HuÚ=¦ŠC•úb¸Z†òtªd<!ÔÌÛ¢õ©µ®wÌöš¸ä@Ø–Ñ$Êð|ߘ2[AE„ˆB¸Éc}ÐèFü.r_Ú[’n¿ÍgapÊßÕ‰¯KÇCiP¨A›Ì°pù0!ƒER—÷YÙã®1V6Ê“ѯ³)ßEo˜¾ÙªÕöl“5ûD¤DæceCD¡ŽRŽ"¶B$)÷2oÛ¯*äEˆxBy™®ík§ZÕAÙEÐ|{îMeMqÔ‹Ædí­>÷AÖßë«" <[zª;«r˜¦y§åòýY]¹¡c% ÓË^’¸š¨ x™žkLì¬ôE­î¥áàŤ;í_—Õï%îi(*IÍh>tîéK?W¥²è Š¯óˆ#Ò©xò„ÎÎ(]ùÃEÌ—çs?'¿½úçòÖTÁS õ,éUNçÂ^Ò‚ðôHäùyJ$WR<œj¡A„œÚKP@x§À€8Qêòëÿ+û»¾/v¿Ñ²¶3éÔ‚¬PGXŠ‘EßÊ,µ[–½t5Ÿ  ËÕ*7 $d4¨"+Žßáe¢Acäþ®_z{¾Ûÿ· ÒÀ¾jž·Dh¦ÕgJó[Š(zV£Æ™súh=xcÒñ4ñŒ¼Œ7 â桜±6aY.¿*0+c̽þ³7ý5úãµzp>øRÒ½e–÷p3œùG˜íy4µ˜žPô¹ÍÿEÌ›ñ;Ìn‡Í²3ûz]*íIŒŽ1—Ÿ)+Ê•+KÊ£>Š>\˜,nc8Ÿ÷óZeÁ‚\\ã¬ïtÿðâíœc™€!AœèÈмxO‘#é¨Aæ— ‹›1vâ*ר^Qk"7¬¦¡ÙÞJ0¹A©Ð”1TpÜ+7ËÎáÀ5üì=ÏÞbœ¾:ÊCÕ®C™¶ËEBVÎôun‚[ó%zî A(?tJf’l€šÉAÚ´ñÿ£Ò"<ùï+UÉÀøAÄ<ÉöúQ…ŸÒß:æÔ§AQÐjѸ>Š¿ïJøÐ H¤J–J”Ä)#¤,˜ÃÅ Ã÷£f´UͤÁxióàÆø•>¦É¤EKw ¿~îÒ_‡G·8·µ”ìù¶uM%ÆÎtØòtÙ+ýCSS^– ; ”\\qfD÷{GÂ2c:ŠN\;'ELÁFLP‘}݉µE ·˜JHi^vÊ ¯’°²ŒÅ‘ˆbQR/™A„”)_Æõø£>~Tx±ÈTW j0%½TW  ⩺NQüHÝÓ.œpr ‰¶áð8Yqàùøto‘Æ»›Ò¨ =ØßÖ3פÓSO1rpú$üÕðѪ¯éá®xɼÃÅôÄ^rP툹s1÷so¢$~˜CØb=ÌSίÃMvzAL‡“(MÉ’sÎç¢Äí<’^©ñ¨á+DÀ°íx™N¾aR>EMqêÚ»ü²šþjÄʤG6‡Mñé7+*fò½¯fؾ¿…S'‹_é=³¯l‘­‘‹Xmà_«kœk`{1x¾¢{ZÝ>óAaÊP/7³oœ¬Û;ÙbJP„"™Íy™ÎÛŽLx›•»ßã{ìäÖC÷ôϯÃËë¢è"]‚¸ é}n›µ:SD(÷B¨ ä ïZödè= ° aà  ÿjû%’@+<„!Ïåó†s “xÜÌû²¾×.´ßŒ=? ªûA\vžw؃š¹ Ò>PÒ’fKÄŠ3qg‹‹©ÀÁ0ÆÍ4$9Õ ¼†Þ ½W5¼ÑÔ¢("B™gápùÖþM;UÔ«-´Iê! ã€ÒíDvÿ–½Ùçjüq)@H¤' ›ý:¹%³Qb‹dÝ*Ô.cmoäáÍùz1sóRÍM+^Ÿ¿ç+æH­!˜4 &è<­²{˜Õk\–BÐNÉÞkQT°,>shãÏÖêÏhÇZøcx–§²Wœk‚€’"’h¸×ži¤wkŽ¾Ò¨–!~Ÿöxt3GûÜ02Ô×?z7&éú|›•t.C–¨¸–åÅ~¥à˜4ëEÁb XÕâ?T£‡É­ò­&<“ú]L’eÆ-KW’t,ƒ(W‚!¼áA‰ŽZ.pòñ事y“úÕÇÄc!$Ûº57ê +k`õÌì*‘7}÷(Iʃ€?›jô…L“îÌ×ëÏùçõÞ^ÀªF9«PÞ&<£Fïà]ÐÑ…¦¬É£Bð…Tñ,bÊ+O¿ÄºZìââ¡Ô²Q ‘ıa3Öƒ¶ðt@Ñg)N5ÞÈü7‚€,2P¨ÀŒ½ ×P©[ÒÏÀ,¾›ýÖ}ŸŸ³þzXâYÉÍ{]¤üû^y¿Í©ýZ/€h­Åëܱ%(’<¦#×§*-fÞ¡×ý_Z A,{ „¨@ ‚Ø+Sýø}Ÿïøõ“éù¦î† CH}¥E @t aë÷(‘P32ÿ‹óœ~¬ù$h U©M(2€¹škôO"Aì{ÃxàN®|±¨HÆp9̉ ¦0}!¾ò)áçÄ0š¿ôDä&Ë2å‘Cb ÉßK|Ó̶ý›P, ïÀ¬‚XL c±eƒ>8>Ð ³лªê[d*£ó¦Teõør©f"Ì4ÞÐtŠ\®¾bùñC˜>•2kSê˜+V‚¢Zº0G-°£ŒÇ=ëA‰k5nÚ?ZÊSÒ-¤rœ‚ïîèó?Íþßâì÷vmÜàºô†i`§³x‡‘̧ú>ù[^X«up²¥Ž¦±ºÛƒ=ÌŽQÄY@ä°yx‚°3ë䉽¦)e¼LÔx?ÏÒõÞÖ²Õ¡Rvg™-JD}.v»A{©éÅko®yÚ¢he~Ì/q£ÿ×ú £búq­¬» ©æ²*“`sšOL:…PÇ _”ÀhCbGÁÕ‘Ë€@š@¶å±åàÙ3ò­}¾<\&³È^‡&ĉo4)³¥Âz¥',Û*+9ë>˜œ%3ÈÙ ¬^ ò”5ƒÒQé°vé%ŽéÀ°)rö4/ß:®c< ~åŸÅ8Ð2µsÔµ>h“¡è¾ädã½æ„ôt«œÝ™0Æ%Ñ®tœœFkÖs_ "?©šÔÞ˜Š\-uÌ÷c¬ªHûqÿÛ:n-OÚÒÍòëÊu3ÝJôBbÜàô>ĸžžaê)Mh{áe¬é¿sã¹—Øèëÿ{ôogœƒÔ3yw…r%+qÈ-ÐË›#V`õõAB@/Yþ鿪†Q´0)"§Tµzgø<ÌÛÇUž Ïe&Á€ªÑv3°ÄŽF^„o¶f¦74QôgCG|‹ Bsn%«LÜÄE 4yõÁh¬þ㢛eÿ ~ä_ˆx±% ÕÂefó]§šš¥‚¡‡Òà®KÕ;õ·NéaÁ#Œžf~n–< ìóŒÂC…$¸ ~1¶ƒÙX†"ÐAÒt¦ÑV[ÜvœÝ匛ùÿؽ¢D=q1ý¥U¥è2ôQµD…E$Å$áFÐx Ü»§ö3¶* ¹0ªßŠ˜XI™¦ºjÇS"1Hа2[PÞˆ:HùŽç°##¢Yóàcþž?óQœ¿A3Œ ’àtsÊŒ?Øï?äþÙ(>Ùã€S‚劔[Î@Eü‡› u ‰îu%rê¯X† ˆ‘äÀ$ë]"AXôãÜu YO—†>··•¬~aF1œþ1&W·á»»ÿOÖ"1ð°FêÉ¥’Íîflƒ!sAƒš8¹_‚%Ð’ºF5†GµËÊZõúŒ>Èña& pùÙÏ#`‘ù¼œ £B󢀕5)Ùú\U®}½æâU§PÐ> À‡—:¤ÿËéÿwóEJ…:g<ßZ!\´ÖÏþ•1;ÿ“‹£0I‡ÖCf`Ó:ì“~( ÞýngQÙc—¾ «ÛpkBd`§68]æhÆö~dúSõ<¿‡|Dö>h>œTÿ5DÛ,ø¬ü¨j äoæ=^e\ØæÖ.„.Èx`†‚Lh “JÏER$‡†[#Ù‚ÇVìeÓê©£ÌÏ–…ˆÂ[úÜisê¸Í©D«À©! d4Aƒé¯„’%b™O“›ÿªâåWÜY@A Éíqù”kq©Ž H˜€­¦œ¯ç"ê´Útb àz0pþ-Æ2ÄGKË&Nž–¸“9ÀU“ÉD(>P¿Á{ó©ÔoE j‚.€É]'ªkŒá[€›$ðq!Øš5TŒ|“ËÇê Ó G_fO|›ŸÝ2hÆ©HÌä0êÄOÙ ¢wGnCÃTpÁ÷r= _°”À:g§Äš¢•cpÔùò ”óµod>‰o¼/×ïØ D´È!@ ÷,^Ö?~&bÙ|yêÈp=”MgŽoç-ÀÛ• 4¯;G ¥KñåCŸÌÞƒEûWéú(¾ì»UŠ  Ûà²è öc·j S‰– ÖÀŒxWV^wÜ’Lð€ƒ©#Ls7…øÀhC € Ÿû@t+î¾ÉËý¹ðg«GŸ‰%S ü”Öíå#v"l@« u¼Õ¯½"Ü©Ó5)Á}Ž;‡d¹Pˆ/© ‚æÿ¨B‘eh‰‰%h9C1?%dOXt[ööÕ±‰ÇÏ&ÖèV(¨üýâúÕaw§­æÿÑ㊠ŒØ±Dc+_T~z:_úÌž`‚µ&d€4Æ=_?þŸƒùB£T $ g@á4ht>—9ü¿¿}yU4”Ì­ã†=¹ ã»[B¦ ’—(d{ŒæF$Ѫ²!œówì‚ÝúË¥}Ÿú"GæÔ+ÎK`WŠ-^¿°ÎáTC)]t¦¸ðÐ…õ¿†Kí`]žßÿzkü[ÏCª”°YuN8ö5n$¤Etß™L×Öëvc¸Ñ• ƒÑÔVF·ü]X~Î Ò ^$vÒ}LQ*Ššõ½Áf$ÃzV#¾À¸ÆRˆC:9äX'•mMÜB‡$,_½­¹ÿwýG«Öf2ÿ!çÀOrbÕ @lkSˆÍäüz^ ï%sðk›7x;ë/"c"ÖŒï“(¾v¡F/˜`‡ r½ƒ®ÝTeþ±ÜCþÏëüßøÒ-ìá ä_’0– škhác•Ÿ”GC „cIQïQ£Ê.'I¢Ã9Ùý ŽbHVb‰–œ<žáZìÿִФ.!éYÆÂ_ÿ‚÷ž¿²>Lüᎋ#ÕýšÖ/z’óqZ¦D:b¿2¿ø­K­”x¶ÅÊÂć[JÇïÌèeó!ÓX‘y'š m½‰ûv N‚ IbQQÀ×",H!ê3ÃÚ¨FWàñU°†OK;™ ˜¡Üßâ[»_VÆËÂú;¶)Ù@'%‘“›2¾?ªüÕͼIÐúZ5O˜†ZçjÖæAAÈñDìhðÀº†I õøå~¬dla({õ¯C.Çx3çúoªïìÊÅÕ a߈„13rÄÃlK?á.V¿Å…¬¦½q&d±âµcToê±xÛ‡òïŽ|%j‚FQü­=(tKãægH¸ÀàL%&þó`)¼à5 H€ÃøDßÐó—Æ`jbwö°@\a1ÿ´ÇÒ(ä[û©_U7æ!ÎêˆuEÁ:7ùì#š"Ôeb%/M‰°eR  ÁQÕ¦,¤ àæ“¿_•³þ-¿âÙ>ÉaÀçÀ aú ýO±þxXmŠ~3±€P¼1ŽãõÕ¹rŠdØè`&JßËûzžZý`,Eœ·A7þp¾Š-°ÿë—É*´J(ÚÿIVëá õçþa !“¾pV€°(T·?þKW§ê6?Ø4’´' Êæ×¶6Ëüe´†Áñ+Y÷˜[–OZuð6Õa¤‡þ•AŸ®%i©üû7úaA€–!Í–Ê„rØ„9è˜fõ/Q‘wÙÅÆ7}¦8TªC„çˆÿ¿KôÄÿšH§§a"—E Þˆê*ÀȰ\dkøÌ·à•§'ØÇÛ8Êv8‚À˰شûq™Å‹êù±šþp)eÆíÉåÕÈ]œ‘qª¶û™8mŸ™ʾP=z$Ý‘ðPã04sXMüT>d¶}Ac• <vG²%Äx¯Ÿ=ÿ~Äx u¿ÿ,‚êÿ)¸…%P‚®œXÇä± ú;ÒöZ™Bó '@ÜN7²¼4 ‡†Ñ€¢b¹;n@ñ+¶×]h>°† Ž ;»8¢ò”PWYž}Öªó=W7 +ج¤oöIÿ·“6ÕÊQû½2­±Pò¼f)ÿKÀÿ÷SC`\Èàì®® Dè ¡€–ZÇ .:¿˜(DžK:¹?I™ó—û]ûÚÄz˜P÷RŽÃ ö§<ê’/D"§Ïì"€ÂWבá#d÷_ýÃÝÕ2xˆÓˆÒGšn?ûµ* { erò˜åxQ˜÷èB¥Ùø²Ê3Rdb]·*:·7‚í áúJ‹"ÛÛžôˆ¦­@¢(+hhÀqŸÍ97“ÓðÉä „ ÜûþšQ±ë_ŸL’zÈ&ÝØý1ü®ü¹—ÔÀK$Y”Í×2‘à à 6tˆHÕ#"é¿ý—öîî¹›Cd¼HºÃMÃG²g£„:ÂÓô‡·ë–Z¦¯å¯ ‰ïNNú@©ˆ4=þCŠªäÖÄ´êÑ ¤£œ ;0wžŸ^óÒ~Žá ƒÄ‡6žªDkb<)bµ«Bš¼¢H z‹áÔ.P q>DseÅ¥êÈ5ñmß³¹1ÃeÙ¦#¬0˜^›¤f»ñàmn|¼èÂ:Q6Ûâ éf™ýVì â·ÖD”¢‹F-w?œw— ¬àãœÈ0ýÁˆò¾eÆðiµ_ìO6¯©›a5$$éx†?•öÍ|¶vî’…~(‹yc*V¹­¹ƒ›¿À_{SPûŽI •©¹Ôíô¿Múw^z$¨Glì´õÛÈšù‰2Ñ.à̬ ¾ ÏÃìyøÏĹR0jÁ«BsI {Í.’ƒêàXÞ6´Q ){ˆD±$\¹pœ±GÃW>ªé …»1I‡ýS—(ð<=P}ðú}ÊÜ$D%»…ˆԒâSzÐeøÃÊà¹Wÿ‹•Irî‘ÏcØö`ž\æÈ¢|ì¿›²Ù¨~Kó@RÄ04PSÓ fPz×ÿúŽà¡çŽ™‰ñèï­/Ôü?Â$ŽêŸ£¯.&&3@¾[ë%Yùî@“»´&(aô@a\ßÀ«nGÅAj^V$“q­Î_aóââô§NýF^O‘ȇ^ö2ˆ—{'Ÿ„ØyN~É·cÐ&¤ #xÂBG©¦Ye°Ò¯²@µ‡|ˆ3“×`Åu¨ƒ2÷³wœ| ù=,éãÈø"p¤É˜(=TÁM5o0 œŠ1 KÆÄüĵC¦\¨ê-@MÞ–—]Ø¡ìù×I=®¢¸\ Ì–ÒÉ 0ÀײVˆˆ}afçfåû»×3Òñ¯ n~J€Sô°&.Ü-\öÖ”!ã ßáªÇxâîŸîk¶‹œØ“§ˆ@ƒ¡*ºrü¬©y+QcÇV(TQÿÝn ~äï`J¹ù˜B'¶– à ñcs»÷‚GçËǼ¡6†ëOìý‹Ý °¼t°?Ì%M¸—æîXÿ­Eùá”´Kð–FO®¢ßÉ0 ÆãjÔ“ÀεσY¾ŽŸ[ª‰˜±êLZóbU‚¥!'^q¡¯›ÑŽW õ·Üîþ¿©Ò *¦@¤UÑ[Y•Û×þ–IáNÒíÉdUµ™KrŒjO†' ´²Ö1LN„b˜@4$‚‡\€g¦G'LNưŸ—Ûyº¶ÔÚ#‹,4 H£PˆÑ•sÇÄSNšºöÌC²)@O%.ïÇ® °dž]èõáÒ¡´–…9éPx×a¦ç³£åÂ`ú!>¡Ç£±´ªIié”Ú§¹ D!Jƒ3¤8#…൥ Ú—þín!ÿ"·EÞý¯™2%ÞÝVuy{ÏÉ*Ö³ðÊ%UÓ°UXž"ëÄ÷š‚| ä“€Áú‹ÞYL—ë8här0ï²²!„ÛC0@蓺i¼|ñÇÊpNú™/NjöÚ„AM¨ÿÄÑ|²M[?èyaùª ü´š²Ÿˆ¾­ê$ãlÝïSÎÎî§BÍ -ÑÎîâ,ñoM£(bøëóÑþytÎåö©›”bKÐrûÊðü§jĘS¾¯»¥v~–¿YUzWôe À)ÛW|39j#Ùÿ;ÌèCAuÄ‚,W2¹qº§ïvʺoÑS=/FUü¡\ªË¿ƒ©™W°†6qœâ’[0€ˆmî¦ÂtÈôVWH§ê&,›L¦µuR±ûqÀQ¬IÀì…0—Úø) Xôº‹„­s=ŽäñvŠ‘Ä T’XÍZKÚ=QÿŠB.°Q7X„™0àŽ‚* ]¼\·nÇqu×¢ÑSâ+#aá‰Ðõ¼F~¼<ÑýŸ” ô‡ 4éÌ’Jß—­çü”ûP"ê¼ýyP®«ësÕrº<´|îݨ¬åSÎ"›Ô‹GÞkÃþo®ö¸»fæD›&Ìá¤fÐ$”fGÏ„rNq_`sÙ®H¹ ý¯§3ó3 —4O (Qˆ÷±¢öajtÔgýéU¬%c§q\œ:¹)’OG ŽÄÇ( 0j+Í›¸m7ú±ÀN—äŸ Â@FÝØ©?þßÉú}Û®ÉÐÔ†‹i±uéñ|¥Ã%’ÒäÍ\ûx!(ÐEWÞÃ×ù‚1ƒ¾º0Ì™¦EÉ‚*%ÏrßîÈé$¥è~’sY—h,º|¾8\ŽQ£1átcù÷ýĶt7ãþF!'X(YŒ—HE¿Yi6æVÓ*Ò¥d””ÈçÕ®¿•4 kH¹ÛˆÕl›Ye¬­³K¼ŒæŒ;¾°Œ–3>ǿصÌhaK ‰á ÉÓÆÁv€Øùd(¤©ûù?RÆp‚A·5%‘ºñHª°ÀjÌ*û3ê.TNxsXgkœ O5Þò TÕF'U oПLø8À ÜHiå~‰¥S9¾B~.U¡š‡ }ìƒã$™^É1UOåOUs1èOzvWÿ°¡,êÀŠ(Š|8üÅ3¼4…Z1U@@ƒEPC €3GPønMëæ Smÿ¶`QÁÖûÅeWTE*#’RQ£P€GŽíoZæ«<ö'þFAœªSP8¯ŠP÷Äê¾l_cìg@ù{ãó4>ß:ÖWêæg×Ó‚Œé<¦}xc4OÒ0çTf´AFÔŽ–¼Ÿ:ÙîIÃÂFçöƒ»¹õ0¤c*|G(8(kçLøÆZ¬¸Ý©3¿úÈ…¾)Ùuf/¦ÆÍ¢4‹ß—í¤ˆŒþ1¥ÿBˆ•³Î¶Ú2¤}aãôC8åatiѦSpýtÔ©±Ñ°)eAö«'xbQsñ(©¬ª+,³Âþÿg(UŒŽO2wë˜:®j”‰?’‰ô¾þ†íº 5^І-ÞÈ¢{ÿîá ýÑdË Ïº„Yòûå»E88:“ôÙJŒ¡>6YqÐVÀ×ZÈôæhžï\Ì8Øža4£bư)‡¶ýBà(Cýô­”Æ—[Ÿ“y4`¬Ô½DFV³^Þ8©©¶—Çûy“GëënaL‚0Öú. (>ï¹bÞ° é#%0Nf~250Îå¬Ü6å ü¼˜ô›4(‰Q<‰?±L*Ý.ÞÇû®Æ§õÔ¼lnˆ¥¹wÚé‹\€¡Õåi`ýŸs©e LB›†ŠW‚½TZÐDIBzP]uœLõ覿Œ>[Dc­…f{Ä*T¾$Z uÈDò¦#hz ,t>†¡"327Û‡…«Á£ºI\„2NЀψ#᎕±—;W^>‡C+å øfðt„rF€ê ˜å”eÃBµ™ YÈÖ† ‘©8€+Ó©—ÁèÑQH"ƒÌ£´ T IP)M"| ‹mÎcÈÈEì £Ø´}Š`YM¨Ò aá/"5Vxs©ÐSÓèKqX_Kóªõ^º–Çv "šŠûqë`®¸dRltB5Þ^ȼ¢9µd?N?ò?dÁÃüýóÎ Q±ίœ9©u½òE·õiýíÕ¢O6nõ@âœ>Å•Œ9GÃG?—Ưï ô‡£ûoÍ©ý߇iþÚÕ7Úµ:ãe =âuY3=GÒéMxVº•2QðPÉ$!S(pfä…RëÒDÓgvodúÓ~†ÕñÕ@˜&hë•ã }”ÝÛC~OYX”¦è¯Í ½hñ›V2„ÓOÒ÷W[f¶€á`šY½·ªÐU­ãëîbô%1¼jd?l¼‡É¶å¯²‚c!s‹(£¹8u&WÈÌÂ@Wp'§ê†qÍÈà¨ÿ×@%JËÿk_á²8?¸ÉÐÛà3Ú `v]â4­ D¦@C]ö$&´.’,ozêæÓô¦¼(Ù· ¯ßʈޣv\Ûü“m¹˜>a¡Ò~árm‹\¯ÃŠÙŸ÷Í5½ü¯Ûý®[ö{ÕTq½ÿÍ'+ ‡„.!‡ˆ A=žŽ§w~O‹¤ê8W±çx¸Ý~œ÷æpê·¼Þ‹çûnÛ±Ân?òý“çuGØÿîú5æ§à£Ÿì‰Ðôá@Â<Å)XG¨p²¸B'üŸWù}mÏ'oJµº¶ÀùáÔsÚcž J* ‚'‡O ¶MéÒE<ý;½riÛPÀ¥|9˜ÑÔDêÁ‡9Ošœ/È•¿ó«Ò…ØÝü¸5¯ë5¥ËëÆØr›Á%âÅ¡H.î; ¸4SgÌÔþ38úd¸ÊrúééPÍ~K¶ñ°j0KQˆ m@‡u¬ï¬]*ú3N›ñÌæmW ã×!Â…¥z lk‚y$ ×§R.«šz–V¦0¢&Ê·¬;Ðm$ ˜Q!¦ªåž‡ÔjÓZnîé0Ûk{ôa»ùAƒÿoÌŠ ª!Y­VÆoµVfC–S\¶†3¾‘Çë’¬Â>]ÏKßó{ÿƒZˆ¼~«"þ•m,›*1ƒ.xP—Ð’NÃæ]öuû)S¥Œa“)þŠÞàí3¬0°Yÿ¢˜E@÷UÕ´yZ;$‹+Á7¶È‡ø©Aa}ÁÓ¤@3@CúC“!B9bmן!}W¿«þõ/éÄ?sÏTÿ/¥‹S‡§ÇÊu¸ðØÛ &>Œí1àF ˆjüæ€t™îÜ&¥jþ.g„÷h† ÔМaÁ?ì’õPÍ”fa1@ý€‹÷…qfúö:!–Á@÷¼ïþ‘çMžù~÷Žã»bX[íw>Ÿf ?=Åà]‹wl Ò`x»ßØÅqkÚš?¹üϼà“áTPÆœ óоu_C¯Ó›‘’ü#û¿y·ÇzÔ:½¿S—°Æ7èvR_ýb]×R;ît}Ux^î…¿œ h!úo•‚ž¥$‚óϘ¿öA `+áºSãõª2V@¶bïº} ´¾­¸ì‚ï¾—Sü=öñê'å§*Þ|„j§'Ä‹3^|í¦Ëš6óý°OöP4@è³Àä'‘TáÕ4ùäуêJÚéèÄJ¼< R¼=÷ðˆ*ƒPö[Ã/¥Qƒ Ò òGÒE·Œ´-ž&í©ÈWÚ©¥ç©,ñòš6˜FŸM<yœ@çÞ!Cq¶S‚*{ÇUŸ8ݼDH¸p%ŸîЫÓl–Ý8•dÉNKÇ~)Á÷ȱ‰Ç¥É•Õ¬¡‹˜éÑAdìSÂMO „Ÿ´X,LÑÌ•ÄhŸP~TÐ9#yØVmFTÚsîæ6qqŸ´"}ÆâÃ× ÔÕÈ#ßÇcÂq¼´»i Ê‹¿³³˜ç Ïƒ·~?«zJ0 ‡vîE5Á ½p¶õÜÔ1ÂcäJ³‘ÚåÉ)lwCR9•¥¬”†Œ<ÄµÂøçìa'J«%4Ç5|gxÄàW‰šBr— žøÂ£ ïMætQôyÃ%eºÌ¥|„$v©ˆ{¿[ SsCo»ÕJ@à;¨).‡1òU¾é9®œM^dñ`JÒFÙE@WN° @<Ó(ù7««ï‡c¸~ó0t„DžèKC³›.fò·yÍPc …Ìu{i^SÔ’´±’`•©ˆx—·UØŽN§Tñ,›ln¥Ã+@»Êãñ„Bæ ÔƒZl º¨ÀxÁX‚_]îHÅŒ«ŠNØ€ð>ajn¿Ó.ç¨"÷RPåLÂr ­)–pMÈXIs…Ô=k# ¾E¬‰Å³—Y¶yh$• \HËcšŽ|À€=M"Ú´M?-ìêívXä"b_ í! \§ÏüWAîE9y4n…êÀ®”é?õbüX+g™GÐ?Só¾ñöõA^[•øó¤ÅÇ(Õ ƒ«Cc“6ÅiîçŠßz7!‘¥¬í'“JuK9äÝRÀ® .èV“€Û/M\['E©0aÖ[ç]D7ÒÂplPô’ÏÙÿŠÏ" „t)Õ^Ÿƒ‡+©ˆäýfñãèEÓA´$íþ}ÊòˆÌ»l§ÕŠ*;Þž‘Ü«¯Jså/οڀö5ÇOÐb&"¤ðG¼ ˜Ðj’’”1ÌqÕ f· {”¥ô2låRk%ªqŠÑ*§«yÖRTÊ2R/ž¦VHƒqÊê·ÕHE¹6½Þ9ӓÎã?Í>ª"ÔhY¼å¦aÎT'›Öpn¼¦,xùD&‰AÖ€p€Ó¦0à\-¤`ü ÖaçuV³NÓáò5®„‡‡Eˆlrð±¥¯Ž‹£ž…ÏDe¤ôÀÔàôïAèU[“©¢‡‚ œïH«7݇˜t¸¢To'$·]6'’÷¢gr°$@1ƒ’ë¿Ô0-+·DùÊC£0èEsÓ)dèTdŸfEø;)ña(8ø‘a\õ^[º{€Õˆ}ƒâòi5ÅmŽvÙŠ€mõÏÁÈèÉÕËŸy–@@zÚ´ϪЋ«ë8 þ”++±[cL@ÅÄW&½ŸI 0 4…ñŸÇŒ€‹»wjhËï¾ì|c–,¢®±Œ§‹ðGK‹El â™( R«)J¼[C3VŽÆþRj¦…û©ËåÛ`ÆÈÌG¯gXf?Ó& r€UPàŠ[Ì£ æ’Þ)KÎêB ?õœG;—û9ˆº|ÐfóvGˆm`e@¹º\€ =ddmX""ŒL§Á=sÊ#•}).âƒÁÅmeð³¥æ@èM´^ ›‡Ø†qî¬%a·FO34gúSC.ä«ẎZ¢=®;Óö“Ø.…=2­ƒÛXN’ž_sF÷¶'gÀzk*}ˆû%0ú”ï²ö§%bíE0L™"€U`0ƒ‡Cx0Ç!í<¾|N\8šG>¸³týîa-ås=<žÃªÔSCñü©¯Œï'‡75&Èš—ø„åJµ¼•¸å؆ô«¥8h†utEcú4A® •–/Û˜¦uϘ˜¼‘ƒ§Å¨ÌÛh_Iþ\~j-ç%¤Ö8"¥Ç¹ Vº„-§=þs±"Œ»½Þ„½ˆbÍén­ h´üUꀶPr 7§èJ žLÊEŽìTÖøÂÕ>XK¹Ø…æíå*µ¸Ñ>±út%1B1á‹paÙ<>akÆ–×Üê£Eu•QŒ¹2»X»h›ÆjBº{_½*Œ*(ÑcÙ5 N™> DNlP—ªÝJÝD±]lq¸Ê¨­kǦlºŠçG;.©Ì` ðÊËÖÒ¹Ž—¬5TªdäÑH‡Cÿ’æ¼€îVTášœXøÂ":ò°T˜`c">5Iš´pˆçvRaTèßœŒý2ˆ¶ ŠÚ†ÜqÃϱÕ|²Ü<@é´Ñ©Ÿw³ŽMÄuN®I®™PTWKÓÉÕ á¥—8U³DepݦHuðÀˆI™$ªšÓ܇\©Ý+©¿ú.—»§©Êðlõ±¤;“»‡‘Óü¨æ›¾nHÕFÂpö²2„åùÚj–yHYÍOÄ^ :ÉŽðº–/¤ˆB¾h"·Å—ÀÄ<5–¶)I-¸*(ú§‘hquWÏC0s˜õš5^€`i5°!|A $áJëòÇòBÖÓ;¦7 °\äM¥t© E&#§EÇ©p»˜×ˆo•õ‚ˆÀ=gäF®­Ä$™¢z]™”V‚VúÖ ^$ÀûÔpbíâøTd²2"jª¼2"µO?M’ˆGòÿ)\èCþÄ“…çFx‰ '-1ê÷™`ØÕܬR•ž\NO›ëÙëiþå8v³Â¥¦TYô–tß äA`°À(„œ€§v¯U­öX·fªGRã–êæšœ9™qÓEˆí%­!®”[É‘€\ƒ&)£°–Kx‰É7Àe›ÒšzNñ%ƒ"Ї*ØÔú8«{!?¤à8¿*JvW»¡f)W>ô&zNN,–$† ^3똇iÈl\l‘³às¶ã$§ M4ï¨àÓ˜]—ìbÌŸ^,*äe‘íÇÒЃ"ò!¤|Ì %µò-°ù™ldÏèPìAÊ““Vóx—†Ñ2j¸êW†éptk‘^Ú*TP+ ˆnX‹~Çdn~ß²ÀËæÇ-{<­cÐ@ŽK$—O2Ž|wŽ^ö^‚ºKlŒl"Ïõëz"XÌ@’± ò9!«7A–"Ñ×Ù¨¢Íå˜R_$¾Ét“Ýs öuºêâv§)\P‚4òÙY(öpêèãÏÎQÃÎqÜHLÞß‘w%-(ýÁ`ùÖ•…—r…‡N²ûó Ñy[*P<%Qƒå&]=Ø óEžUÈîáÙ…ÔñÄižC1ZäûmTór•94Ói®kâ:$¦xùøÖ–´9¼ÞP|¼@§ÝT¥µ‡#©< Ð#³õsÝֽǫ2Ùô;ozÊÛ*}O?+On­lRß5LÔ¥]ÍÌP% òéÊ–‰‹?É,nñ•ÕÖ׬<ù™™}•¼äè9“çÕ§…Ü?NŒgE³VvÂJd.%¨Ù|”|ö,ŸeÇ=¹ƒsײeEœ--jiôð…W% ]s8âµq©áüûsÆöðÄ œû ŒÿDõ¸AÕ•û€Í s7¡€0™àX¿°îÉ8×<°b'ǹè^¦Mµ0ÿàÓ„ËU)ƒxˆß88 ×Ýed7È—œ–4Ä|"kPÔ<˜2ïšð*e;sú7;´p-»Ü”´ªÚÞ ÒnØ1%3TïÆt-ÞäÇÃZ¿À?øçnÆâÐsífH`äüÈ)“µ`ÜQÏ—ïH Gš!Ø”Ø2á*žÍŠ¼Î KØœ”С¼‹çæu{W \š$ yÙÀLœ/ðL d7¬²ÉS¡ò—,±} 8 €?ÿM¶‹°z@ŽkYÕ♆¶V)ÓHÝÜ–´°Ï·•œäËe¡"S©KQf´8c°àóv³±u üJx£äÔÒ•Èm{(íð¬Æ”$âdK×ÒQ3ŠT£ˆz›‰…¨‘ ´ÄæK ±q²’=ÓþClz»ø8àµI±v‘çÚ?pYá9kú”˜]ã'B¾æQšGGj’=ýl‘–! !Á':?½Võ09h–D_.uªOö Ý*pÒ6ДÄy:Ö&±õO‚Ò~¶%tþÖ{»D±2}YY¬/2o›U·³BfÝ)v"ƒD²Ÿ"NÓ(ù¡= 1’‘Ÿú•êvëBSMÛÙƒÄEA kÜð׳!© m5•µ—QÓa}¹~eÐúH¸›.€ñi)·œéúÇœ™Ê_&ì”´’óm2+€‡OC€¢w§xå[Q+U±k‡B‘3èH;D·é:®”Ew2þzÞ&j¾¹0Rù÷rbŽžÊ®Ößñ>eñÓÓßB ³”"ÈËáŠæŽÆ†^2eøCûÐ rŸQ™{Þh.+U7ëoYO¥Ð:Ãy·;)3Š#GbhÐ Å+ƒ®¥-?jÙÏ]PÔÀ_Ÿã‚BpvÞ>þ¹q½cZÊ"‹lžŽ4òÐTÛ8g:Ò»…ùN´ï§ž§´.Ƹ9d872Í+ŽÊÍ?ÀZ`ÚQ¢”2‰§"Þ hôYÉé8ð±P•ªytdâˆ÷¿ƒ‹"íË©¸>Kd¬HcJ‰< ™U*€Æ¡˜Vú¸ºÇ-fojè³±©kךּœé’:BÞFµêÓWì絨Nwûœá…X](Ï‘sûôni4ÿÀ,á»õѧXŠ!¬¥ý„¦|ÁdËÔû›·OtŽ`~d\…åNÚ BÉtÇØ†“¾íý ¢˜E"PŸ=IZ·±Ò¹ w>|ɤ€jÅÌ¥K z“ì”Eç<~ѾIÒ”LN*‰Çwõ¤ïn^Ô•§ÍàËV“[(x¢ÍéãýA"çМ2¤óáVÁJ ÁsHd$ÔÑk¾Ô‹$8­púfC ÷å°…â Š#5Ð`‰€ˆ¡‚@î(VþSù˜m¾F] D0zŒN^Ë©äÊäèþ™}Ÿ­¥·ÔÔO“ëf” ëÇ`v¨¶?cànéÖ ÌÑ|ò/Ï^?­Ì 4Âk ]¡g€„2wZ@™d´Il €ôÏ0)s€gÔ×¹lŸXÖùú›Bo|y%eö·»íz¼õÏÒí¯š~Ih¡g »ï€Î¾”# ¨,¸Ë£7‘]HS½žk¦?€yŒ“ºx†mÌ›z!‰šãÂDCDº¿B.)ÔŒ>N.ã2¯ÖYV>FMöà¹"¬Xv6°ì…Ôdxû´‡ƒ» ^±È¤SñS¼È|®§ˆ%ÅÓ$×ÝÉÅ΂'Ìk¼•WNœ=PQ(/ÊxA¦¨ú$ @·¨Ë“wXð¾rµÒuó¨ù•qÑ8‰µ`AhÐ7ÅÑÂÑg”€¥c¤áŽÄÚÅWš|¸3«¬BUÇåãá?¥—|¤ 3HŸzqx›™ì>Wm:ÉhŠ«d1ô2—u6y Õé’Bnjž’‰õ@@«­@8{š [XäϺ”Ù¡n $–nC§ˆ±{²æ¦“×»'  (,h;ô%ËÙõ°ªÀËkÀR…°’w^›Y᫹–{x…ÃÀ÷,D:‰WIb±öž¶:yPT&(>ÇŒøÊX’ž²Wr5è*@2èõÎAbI³à1?ôLÆ|—8\ßÛ‘DD£ä1¾’,d4ÕÍtoÈ¢ÍPð!ÜJXÐÐå{Ð3¡fÔ„§vU¨‹ˆ¸ÐfÂÓ@‘]E9Õâ·¥Ýç§ÊóJBåq+ðW¦âÌÌÑK®P.¿¯ŽOv µê5g”u·KÅÄÓ߃ùÑbÉr¹uäÛ>¢œsPÕ4§Ë‡p—~.é-ÎóÕ÷-¶íãÞ¨S­ˆŒýG +\|"“ °H[ýLn´¨³X)wˆãÍ|‡3Ι½,ÏáÎäM”Ÿ›¿;I¸š®û2ÚÒÎhÒ5¸©ÀLJ [º&Xïæ)9ÌpéèúÆ£ø…ºàj{+êJ LáFÒ‡Q*ÏkŽ–.0I÷tXC¢7üGIbßËJ¶êK°èYÕÔ“Û10Ô}^E \ŠäM ñqªxÍ„š8A'ÀD'žZ'W¬R )Ǩz}bs³:sBŒ›û÷Xª[èòàò$‘…B‚†mBeÉi‰Ô¢€…ä-3•=8o¥I¨ÞìÜYµâJˆšG‘ܯªÏt’61zì·„wß³Î€ËÆREb¨Ò`Á¥§Z$ÌfÏ"e ÙE•ds#ÈE´)ÞLªë©J*õ1b‘ÜíÓ³—'… Ì”½ÌTíR+ÓSJ•b@&Å#Yíç@aÒ#F¢‚QIE°A—1#Kõ[HÈ(ÄÍõkhc( Ù‚G¼˜ˆu4e´Ý‚h6;ßCõlì*û†½ð¥O™—=¨j×öªœUäó**Ynfjº:mYk%“±6Û•U–X$Å h<à°$JÒû—ªÞ×´¢Æ|¾š´Bí¤luP½ªÉÉTÛÖ“ÎæNED¶ˆlð/.&Ä1*êÇRûà“ 5>Ò_Q|”Íð·ãºÆ¥¤•kØŒ´}«¨‚)ÀwµŠy]{ÓH¯X~U½#©©v± `÷<Ï·=•[.V Ü3õB7¹JÞ!+xP‘$A¶«ciBˆÀѹ¾œKJ’éAÝ…z*Q±Ýb5Y×È#¤GS‰)-Ño$ù’ ÷Çߢ“±·›0L %¹å¼a@rï Løü ÝÍk# q­ã˽‘®î')ljí}à“U!ëk¾1~N2üÞd|V)h$‰t]ÇI’-"L»6ÌR6 Û92=!×pv®ä7 \ˆÖf'MìêJùÞ·9éÃõÁÂMOMÈT*“Ƶ|J|º¤7O"ƒ ¿¶‹áHhÊ";bìB»6í½Wµ‘¤AcÈMX¶¢ {iÌžw`‚ìƒN8ï%á,‰¦yû/\VY¡ÉªÔ‘Ø0ÞéõA0ªö“QÇó87Î÷°(SiC»…¯ÄìÄ!6 5HAºMPA ±Óa \ïŽ}K »7ÒW8NÏsZœmW„5–û­@ù«¯VRœ,çié‹»¡fA§P7*RÛrm-s¨!ëÝFl1@ŽÊ"õ‰e£y"Ÿ³ùòxw‰{À@MôzØXË0šRi2Õpnžì"µѽw-°êaìâÍ k½²K‡µ’®rÉ|Ô=Ée±T³¦¿g„8º')îëTv%NlT¦!4kÛ •ÍaÑç-ìmPi,†Z…BÄÐsn‹ekÆ#ï­A•Êù5Œx¶ ²)“„–îþL“K°0¢dèôÏ#ÂÇH&Ô¶§Q=&ÌX¥/¨ÖŠÏ€°¤‡X³ºGS`k,f›y%pâé—÷²‡±šO[½¯ÐB&"uº-¶³*°hôgå-KþÑù$:Å`ß@ %¼åxPN=¢xQñ ÖÅ÷ 'Wʈª›/›×Áʆ¾Ñ5A•Q“•×tà¦)í ›p„ÌYT[28{dñ"‹°Z©=ô×>ª¬%Nn¬s㛵ùãø&º™‡±-І”E™4p›…,U­Y`h¬¯¯‘•¿µø¦1\)ª‡¡@!+XWI?.ÿ1‘šì³&M?F6G¸úzy홑ՎC¯EƒLÌ Ë Ôl;¬²(-A÷ƒ^¤Pz¹ëÜýíp‰XH< ÛUð…_)qd+ô9—Ó>¾ÏãÉ…ÑSDQ=OrììUååÕ*1ÉcdWí˰K ø’ýêòC<œ!Ê6«ºÅÌu&sâuN]I/ 6ŠÂ¡î­›¬ÍD½”eÝ… k­¨‰Ëœ}W3¸uN%y·òGlÑ`Âxf¯²a‹­Ik1š°^oHW|4üIÎÄAíÛ—&!µƒqœêÌÁÌ€¥§Ü=ºã9åü—Eq¶ïcgÛc Iˆµ›žùºp£æ›jç£)9 ÓÁ??u"4_dxªÇQkõ#Ó…D„•Yп †;·jާ‚ëVáÀœ!H†DžßO…€G9¡¤+áxGø9ÜÉïðUÃï”¶+¼´vZ¨ë(í9ýn‡c2˜?oJ,ö‹ÇûŒÝÀÊÐçsè ©ôü™è>Á9=]±C.§îUYI>ÉïWú$¹}¤¢Ôs¦ÔésÔ½ ]Êä—ŠêꋌíEÛŽ\>®Òû …ùæíjÓ:Ü]mi, nÐ:bV<¬ K#Ÿ<pûº–2:ˆY®Ÿ‡Zsî Ær°Ebs£9©ï6é´ª‘‰™`Ü«zM´C¡&h]ÖƒÅ/aÁX1èB¨W%M38,'£‡KÃKX®U£P^yõ÷´yt Õ(4 ¯ñÚA†‹Q-¯TÊu³±Þ)£–€¬ ð¬;™ÈÖ žU‰Aä Ó#B;¨·>ÊL—’ 9"ï(vàÞ9…¶™iý´Ÿ‚Ñ e?*Iã#p±\G6©¤¬•f_„èôÖÔŸ¶×#l§èyù“Ŷš×DE¥H“H±Ày&lÜ_e]~¡§ÕÝ|—Èc…DWb}q·-§k h³‡_woæJì»X ›ÇRP9§"Ýуo}ÍÎÆ­!ᾤQ ÐNÌÒ3÷þHp¦K1‰wØë¤L_ò÷1‡¹!­Ù×íåRÌÅ?é?6«•d—´’mi7ùÍsbFè”5k¿2ØMAê÷sDÔÎPMë5·fþ 5zx–Bsà6¸£c™sÏv)³óèê‘OÀÅŽ£0²$[š«éN¡˜’áeƒåO°^˳”«¿­š}¢²ÑxÎxüÏc>VpV8+(Sy©@pÀŒy¹Ìo(¨ö,mŒ£¨mÀ†„bÓ'$C.^¸bsS¾†Åû—{ÈübY×£B:MΉ¹6À@*é®>Xœ¸—î ’Ô5ÊD«H¿6l{~}phg£à'«ÄÏ¡ ^í¡2Gb•èŸÈÌׯÀ—9ßN®ý¬7–zŸZN‡š¤Ôýºæ\­¨iÉöV*W®\ª}vLc²ò%¤E\’§æ§DšN*mÔ¥n’†¶`)èchª°‘±ºQß"hqÈ™2®¾žf2657BU ´ æ°oiË£~êq½ dåé¹iØÏ«_Ù/¤Î°:UsG“T®ÒG‰´»îfBQ&¢Ô\e—¸¤| Þiý`tÖÛ–¦Ê‡„…¯µ´Lé0Vœ} îJŽÿ)ŸÆ-cƪe É vTÕ¤™%" éðéY›ß„öcb6㘪Xè2ü+Ò“Gj6^­)„i°éæAÂât@O¬Ÿi&ñÔ­¬O †“ØHª¨1:àø<¯Úê<ˆ:xÌ›JÅGË¥84T@,Ûp1ò“q:Î^çv“1 ¬FäRCØ k`é²®‡šÇqûÆÿSлQºZÏ<¦ŸŽŽ^aͶÈÊ‹ÉZ™¼z M2"O¯…]øvgé¶SÎÒ!瘜ÝÄÚ8H'Ý+œHÏ9ŸøAç*s›T»g([P4r¦õ#ñLáGÄPZ«u\Ò¾fÂ믢Ơ Áöý(ýÛ—O3uY #]|k”ËØXó*¬äOHG¨<`^þÖP‹Þž#žmœ²ìö8ÚqTLe>C%OqSgé$Žf:•hö‘ÔÛÍäèÜY+.3á‹Ý†-píØÁÓÍ ëÎÏs”ùLÚpÎÊXzÖ\Ϊq52v±mw¦Xd(,´nÉ[iÇŒít.ká'ŒÁuEÝGB™S1’¨59"0ãâ¸b¥ §KQÛ¡ºèÄT„µ5ÍeÄ#Vjý”M ¿^S  n©hSÁJ1$ÂÄ¡­¹Û„àßÁ)DX¹]ÉÕÙ°RønÍ‰ÔæÝV&zÒ$.µlðø,Š| y*Û4œÙëË[g×w€jÄUIwõd”då†H¹4¥ù©qv ÕáŒ[î«ÐœbP”OAmpøþŠ>‹,"ð ̤ÞüÕ3`Ê9¹v³cDÆ1'¯g"o2v—ÆS‰§C±×ÐîØÁMêëÓo–Þ€*(Ô®%ß±àD7á¢q©JªnØgqò2qâ âÑTÃH‰"ߊ^sp·bš¥Ó>}bŸ75É*y(ª]Ñír”÷“ûâ1¶¢ ú^~ ¼ÍùÙm5vaû'¹CeSº†:ÎEìš­ö*œjÃŒ]«ZÃAnu"ã0iÖQ÷° %vÈ@K>š1Jta_päc0Þ°`íe2 )“Ç cƒ¨J\4óÁLî"ü“k^×—:¡˜y •û`Ó½jÚ ¢šþ whù8)Vð¬Ä6a©pD`V>GŠ‚ 4|ª^àôr…ÖfR/X–QfV}OVz™ÔœHú‡šPp8˜†ŸÎ¯‹\½µåò‰Õíòcqf5ÿ‘Ð’1k`ÌÉ΢-ÜeWn‘œ±ìB Ú“Ÿî6¶d¹sÓÙaqÅMU‘pgUÆ8¤²¦Ÿ¯iY.y­§µ9¨ŠânöÓ³ÔÝ~ýÙ å·¥@~Ò<¦$ '* “žÍŒ‘eôy&6/:·S%¨œÒ§Š’'[æé4™¡ê=“Ì–¶Á¦•zõÖ¦=Ê£¦&TÃí5…A|ÆÎÛq‡?:FªãKË»#VcoEÃW(8Ök”,eÑÊ—ÓÉúxl œä¶ qW§h¿$ެ´O^êJ.ó¥U¯øáO.뉅¤Õ×½ø7JüÂ~Àÿ)-˜;‚ÂfRÐ4eÀÕdˆ²«¹°µdýÕîm WŒð9¤weÒÚr2ddSI›=ê—dçèæˆ¬ˆ¡å,KDþ]ÜM2ðPe<’åiéT/.¬ëhŠˆ ÙÛÐÛÚ ·€ÌÀeèf;C•ÓßîÕÞ4ÇKŠæÿÆc2Š› Sì ÃOY?E¿Gñ…©EJ,lÒ_­Õëeš 2°0n¢3Ÿz`°ë%“°¾„ïÖLž¬’ªñ«ÒB@]…m¬„¡J .iƚ͡I Tãs#TB8¡8jN‘¶½ÔŸX•T‹‘”fë[I¢& s8èÈh­Ý^9I4ÑUËÔÂq­(Ü;¡Fjr÷èyÏf,§U‚F«AÿŸ³„Üd篭…Ë—iÁßñszÓ$eo¦‰†ØçDU°Í ´Ï9üiÐ+XõÈXAŽ7b÷Ó'!Ö„bV­Ú‚Yi@g‹,4¼ö;…ÔÿÂõm£ªN£¢Ò>b Ó«z!=ùF9¡"Ö:…u7“Mä±8ùeW0†sŠEMúR(©`9Äᯯ —‹¬ÂY[mŽ|jõGùë£_y8¥pâÆ[Ïã¼¼ÇïÈÚÕ»]sÖ—>¶mq¹pŠJýe¸µÈ…ôÇÏÛgdªõRÎéx÷Ck"ê¾nÑLhý›p½ñá(ñcy÷ÚÑ•F†ƒêË|W Í‚¨ÝjEž·}šhÈÈ…fp޲OhP$ߢ~~¾ "Çzˆ!ƒAwc&.¤69^gBžŠF›ÎewÂÂÅ´+¯¡XöL¾õÕ\”^Î4­†$²—§§V³8°ôê `Ö¹ ŸL掻_ºÔlVÄÁÈŒz¨Ãi¾nµfûºä$i¾äI0¶‹\aìô™-¼á̘ˆ)o•om‹¢ÆÏ‚’žž’ƒ)ÂÐŽ3±9.ÐçDfß«R’ /×pišköJªËÒ‹oÇ!6²=Û¢L^ Ñ1‡ÓóWMÍß‚ØF@Ã‰Ê àD°›Àµ–€ê«ž (%*Añ7ì¡'pDìÞ”DKÐzpóZÅ@SÍq/jÕa€S=J—#ngN«Á8j¾Áð}Ñ-TBJÄ“©“% hBüÅ7Z0c~ !fŽó1Ú… QŒ‰å2®xü¶Ùgш½›˜/°ßVf3òBŠûôiMßÓVÀ„¢E` Ì,QoÒ"!²Œ]“½[-À-HU‚ç3¾Òr~áj¡omE Å4ÂPF"_´å!¢]Û· ¨öˆ‹ÌчÄ[!>Ý9ÏpƒÀ-ºuð!¥ò ¾é÷‡t†’k䑯äå%.Ý¢6Ðè'æIµ*hÜ ìî<,®`yuE—® +Ã+àõ0Ý”£Ä°òkñ¿•޽Œv¹4ëôœðq`á0âc¥:•E:/'µÊ5yï/`/Áæp”&"£‰œ´}ˆû[QLS†³>ÈH0’³›„â«U%, .yôÆt kFIØÚ0qNr EŠ÷Éñ#^ÉØ§E|††Ò) AŠYÄÅ‘0ŠÈn¼ sÊ)\žON°»?ŠrE@…Jƨƒ‘ïm!Bp=€‹Ï.E72Ôõ:Š4)¦õò·Éèì7ÞmŒ[üKpõ1–Âóªù!VÀ0%Q@7\½gSÈH ZÈ8`ö[â,1 ˆâÐtß5SôoÒ–±p”¥åãÈ[G¸i´ßEó>s—–^ ¼ |&§w«Käèï½ãšÜÏäߎ#™ÐÎ|Åno!ZxJõsÂ:644OXš2’t €çž) B{sW*º Æ7$G’fÙ°oƒ¦X"Ö6s]ßkúU°X /RJ_•qf÷’R˜Þ­ÎÎ30Îò3ù”dR?tì*{o„#[y@Íœž‘´)ã¤Ouvݸ_ZöÉk}é‰ ¶y„–gÚUgêô ƒ_]ÏWÎ~ —'¯¾[ ÿA`¹Ôwó…©œR>zKg,S=LÅß$ý“7¼t(«éòïÚXŽ]‘³IÓ,~ª1(v”ñÔ7¿ö›ÂŠác8ƨÖF\ÁÎÊ©ÓF *<öÂ/)©÷Ë,§¢+MÆÑ¥ ]ÊæFW«½~³>¨ËžöÜum.Ô×l‘÷|Œ¦dXŠÒƒ€ÆÁÏmÅž¼dMNˆ™h&9h¹N{–Ô€æn4£úWìÐUÙå<àÈD΃–Q^]ÛI,©’3éoiV è„g¡gdYY…´E¿«+u¸^\fæá–*3S¼âf¶´S˜þ™ãœìlú)MÑQ—%ØA»ÍŒà…·áDâEæ$oòÝ墳æWU ´ïÏ4’ê–Æ ‡ž®¢®Áh-ÁœNÕÚ™ýþɪBðÖØg:­TŸ·Ê™j=%]vuïø$ÿþëå!: 5þ„ýoJ~ÊbOXYýö€èìâÈÆñ!u”k•ÙGÀ{v¡·EYß8…¡ÀA˜"RN¨ üú~\€ù{HÉP¹€qRÝÌomÜÌU†žÓ>À Í`r4/f*[ áH}ÁàövwƒÜa1YÎ n‘aòoÂ_e)hyZñÛ5ù}XV6îžÜ§¶¼V”<:QM¹{kŠàLŸi7ʽ|èL^óà™wZHçï>SRÂÕ»úꙋf·×ÅçåCaIfÈW̼CÙ;´21îÙ‰ŒLâ”ö&zwçm1ì8„Wƒ F Eô0'¾dl€Zé[týžEýnl™ù SK0 zÅÅŠ’sÏ q_Æ£kãò dl&ñ£2¤ª&{²3÷ø©7(÷5ä¡O¿¾|€¢êðñ:Tä¿g(cGe¬Îµª;Í}!/¹ˆæÆÓ„‰—Üp€Îb ìMb|QOv X°»‚”ÜNÌì¡ÆvyøÌÓè–5¯ıÃì°Ž€ cM¶±èÿ2ŒJ%þ•Ãîž=Úíu¯·5„Èpæùǔ҇P&^$öBó˜Å æßœ«·0Ò)¾“Ë£ 3nOø‰“È’Š× æPm/ý!·ç “CáôBL42|\‹qX¶HcJáLaÎØóˆæ›À5A«z]¡K§Bkú8$ëÌÚÝÑ™¨Hø'0÷ŽCî°¶\é3DyIx£õî»Ó+›ÉšTPH­‚p̘‡¤(û„`<Ü`ý›UÄQîJÍœï=Žl íd½m|Üý L’ªCh¹´˜&ئ2Ú¾`’¼ê\i€&´•6¼-]î!Î6ºL0 C»=~ã¬2F‡Øyy³Fì„w¸Rë~ão•ìV©†/¿†Íúfý9—Åì±Úíu+ç¼dä•þX\B4Ò¬éx_),_­fD_‚7VNq’·˜Š´zýÈh³]s÷MÐÈ®áG36¥«ö¥kìL"HËô·›¶ä\ô¤mîzNëšÝ‚(NâæˆHk­³ THî0+_Qs˜õñS3hîN)Ég çð·7ªÑ Ø…Ÿï)BÑQþ¶ö„”(wþ’³·(2ç{ú›n4ƒ†ãæLgAÔâpð¾œï°Ô³êIS¾Æ©fUúºùŽ×:ڜլfżIX¨žbÂÕÔ rMhüPwí=ýF|â4SºÝµÜ´¶Òubõìøcíi2lº|`yáTÛ&ù¨ õe2—&òÛ} ²|äp3æçP0û!|ç¥Ô…kؽ·c{`‘.3¿&,IÙ:~aêKGn£z0ÆË 2f "ÔCôàEíȱÆ{i·<ÖDƒQrïá/¹/Ä뜊ÙÏè•­KÎg½ÖîŽ;M¥™[ µ3ÚÌéÅA\¯nnùmPÐ xé„¹å —£#a)½¨#{Ÿˆ‹Í­%Ñï(…;ÔÃ<ÕOK¯µ§‹&µÔ_HÛNÔ–âÇá·'é¬õPÕgÍAÌ¡¬%Œ¾‘£‰^¾kÂ@osâß [U½GwÍË­·¡h×Ü è>NS—wßþy¼¨}IËîðwœ!ìg»ù¼œÛž½j+©Œ1ôS×py‡®£ZhÝZ]ðÈbw ¡gÓÙ /Çi\k,D˜<•åÎiuN‡¤e*U—JÓ ¿aÖ¬¬×M1Ú»Á‡/»/¬^qÍqiG±3ÊUSÁ:Šß[ú_µf…åáËÂŽø°á¨ KÆ´Ò·/ªi¯ìv mYnÅXVÍH¥+C”E47L2xýæ:Ùá)æûë\Eg=6®1þ“ù êûD(mú‹¡AJÒÏRnàµ)Úb'!Œ¦ý¿ B7ô]#®ïùî g.£â‹§Lóó‘%W>Í­aÝ•”Ý\•}}Çc²0èO&ª z];÷CnNƒÔPËØPq«í,'¡Stƒ‘‚2{œG¦äé,E;Æ©'+{;-¶ |åÆã½³—“÷~aš¤´ª™Ñfõöëúâ{ôfy®}ymÊ¿i T—©#vê¾—D½öSqéZ&nz+ZxˆS;z1}U︶‘Ítð4×[cA£1¥7mýtRÚ<I.t+Øîn„ì§ä]âóÄ>ç«#—^ô4Í„ü#ù&BßÀ©°ƒ|¯Ü6Õþ÷M˜dÏc ŠŠf#˜Ðu*Ï@x# £;uoc¤ÿu \>X- ®TXéÊ'7}^ñ¶ç'æü•»4Ù­|£gs1ûï¼gîYŒ8¦{’þкžN¨ZΙDÍGMv_² Ã®·¦fžûJ«5ì 5ó94HËüÄ`¦;“Sr˜S¡c~Qº@1±4ù~”÷6_ èF°>s@¯79<Ö|ØÛââUÃø<Ç·N_‚V[”ùãÖ‘úhŽí\ÍÇÓ×ÎXüQ=¡4zÅ»1ìt9‡0¾(vümx/4úEPøÏMZEÞÛ‹-'%,vqÚÝÝRg)ÆþR ïü¸_÷tl¦û ið¥±÷à Æà ã$#k%ò¹f_) 7¬ôL>|Ì&óø_Y·%ÍŒ¥Ákª{ÞâI—hÄDH(ß±ž°Úø©±K‘·Y²—Ÿºï` `ÚØ $¸s*"¢ëj¶f©Ñé‚›¹îS!ßùc”DÔV´“Ác¾WŸ;ã”m)»Ù28'gºû¦zˆÿ%˜% ì„dæm¤ß"5õþ3û0ïJ±k\±_½í&æ}ŽLuøçM/‰“ˆ C § ²Öã$7›`«€ùÉi°(-&IU&˳Nÿ„ò÷ËZ¥zz’“¼6Ù0[ÛÍǨðx2©!ë0 yY„®û x{¦SYД‚‹Š¹6ˆ—ÎË»4m\ìrù‹Í=³Hk½£ÙŸM´Ç ?ÈÍR<È;”ITJ»×»£ß×Þüd{wíÞ §™mØ‹ðé¾y|åsöÚÝÚ–OA-?ëóÖ®ˆÁŠS;äÞ€xêSzýÕ‡9Û¾ .¯FÂ8öO`U]¬P"lÐ|ä8PuÔߕ٪±ïé™0b¼"àß7ËO=q1¼‹å¦·ÊÈwg«wœå=Æí4¦¼Ä{Ÿóºêü[;të.µÜJwAH0·˜S2Jó#©h ÷R"õh0°Yp/ÆúxºÑ?ê’)íUæe£ÝÍš˜IT’Ì>¨>½l0`=no–P9×1)i«‰Êeè­1GrÿªTé ²ºùΠÏÙ|AXØ8¯§ûX-g,¯MXiή§J %RD;—\™ Užæ"¯aS§šîÈT–ýÒþe••‹>Wu%·Îò:)OgPº*ï4—‘M/‚ôãÈ;8J½…$>ñÅ{0YÌENöpXÃsVH¡or3‰ÈüüøšÍšÄ—<œ÷Z žŠë&t»åìøÔÞ:¶“…¦ÌäÙYô¢â³z°Ÿ»×ùš¼ù¼ç:ÛüFÞÈÏŠ(W,°Ý”£4cöêQ»³`D„Î&£¨´¤ž²¿ûß%J:ΗšÊõöŒá,cíÁ“ð@ÕQN {0`|1)öÐS# !Ôøj»ðRÿ~Rg/¼Ë¿ø€þf\5ë¤LCÈë|Ú,IÕÃGhÝMÉÑùuéc ÀsÜíÚR-QÈ~~âV<&ü/¿Oʸ®v6_B|º+Z˜a§âkøú ã›xeH[ZZìÔø7¡é²±fãJÅJ‘øzÞkIš4Sp…Úây++¥Av¤ú[¡ Îv³­-uÕÁBØZn Ùì·–À^˜lW‚0™ÏŸÈ1äq Hh5NGÃÅðžì:ãà«ôîaS£tðwN‘–¼V2‹l§AQínŸuÏ‹:r%2¹ ±Áób~&.>P^¹”e>5^žÖ¥B“œ¯â& ÈšÍæÍ0WœÛ*¬GÖ8Xrì¸ì ‹4!İR…çDF|ÂÌFlmyˆâÉŠœò3 ×só™åw•içí"ãå¯ÑNò]‚šH®Xï7Rgžç€õ>£XgÎblþ%ž;ðx”´;Yz‘š‘s zZ4+ÍVÔóù byämôfxå"-yZ=#Q¼ìóoº"9îÆ@ÌuæïÃØÅ\_,Yµ¶f%ONÉùOÊ u­¯.þúÏU$Jð›;¥Ö̰|xv¨xèo®’úp>õ_Ô—Û­ç=ð¡‹Ô¸ì\æU¬àé"O²qá‡ôØxL'+'è-š;É:Æ.+½ñeùC€›$ýÕ?ÑJÍ€rª;µMßlY«+Ô‰W×¯£³¡ èÿ š/]™ \oc§ ¾ÄÈ× ë‰eñ}Â‘Îø1½On^èφ?$zrÖ{ÿ;nå኱ÔÛu‚äál -J”=éùûj%6 _o½‰øøký³…íó´#{±PüÜ— ÿQ ZÊüÌNŸ÷¡9R=ò±„@”R‡òGjù©2.\7~äæS{'ŒIü ÷ÅØÙ]OT6ºíÓâÝÛçoø€n~^J¨(åP¾¿.÷“Û÷hЈxz›·8{ÚnG¦Õ½‡çÿ–»¤)'ÇÁo®Åˆ–`_[³ÛAËÌÛ ÅCÁIOÅÞUo|b{[Ÿ©‹ÍãʯÃŒbtš$¬\™žÐ™_õÝív±©â&RC’öì(›¬;–” ÈHVü§ƒå?ý»D/|0î-b‰vúÖXñ.%=¦¶öþkÝxV0ø­Õü¼=Ô´iæ` £-@†0×eMŸ~ÎS ôß·–Rï/é-ý‡\çÝú¸gæ×ÔÅ?zÞÓdÀv:×*¬ø'ÊÎ{S¥+GP%”ZóôˆtžJÀÆ´£]'}Å17«ö˜Ì¼µ›”nÞ"ÁÁ²l;¸3ž(û»N[ÄD.‚ªØY')—áæb£ç¸ÒÒ°§¼eé•ït6«°¢Ô€Ôã¼Õ  tîƒâ G ÝW‘ÿŠ6EÕÎ)ž´˜2¯x‚F’R«eœ)‘5)VýÛp„a.$ÿ2SA‡¢ñXà7ú°z›ŠWÒðgyÊE)ÙܡՖã>óh¬MË—õ÷ú63kè®!¡Ì¥W±eùöØ%;Bük/Ð]Tßq§_“Ob›™mJ@‡žµwB«hð~3E;Û=áÃLwëá”›ýÈý+~ʤ êKåêê^Ç%×ðÍýÛØü€?_Ü—º²GÃì'"äám)\Úsvb7rûÝïV_Ç ¦/z»i4×<4ËòKÑgÜ 7€†Û’&x þç`™íº)ÙLxî^ÉŒX³oš÷{ðÝȧUR³à:öÑÁàÊuš3;^‰oÖ›´áåãwUÌ×+§” §ª½—ã³ÿ„©®ÇÕÈ· I¯oêMûœÖ£·1M¥ïPާ2ÏMLÅ??}60÷U²_â5ð×N°Ü3üZ'+çuÞ5»!eà€µ=àúè– »ÍÅÅT/ã o€qÒ|?;zo‰ÏbòÝœq×Å»bŸG\W¤™ÒÄ“ùŸ¤ç7ùzúJGxùeqUÝ`÷V±yÙè?µ çÖf€(f³ ðBùyýÆŠîŸÈg©?“À•—eÞV‚ù)åùZ;â`á¦ýDP¿â–…¾r²H_ƒÏ™¤‚‚WFÂÚ»¶j“2òèšeóðˆæ¾â+­¿oî]8yDöNøIǰ¥› EαΈ6û#Msû+’ÅTwk‰ëóïßgå ë-¡?ÕS1}DϦTÑd¸I¥l/Ÿ«èÎcR»ý[µðuò>Š˜R‘qé£n{Ô¡ YÔ…ÿÃVÉ´¢€dûÁà'­sÿx†krKç—­UdÌ®g´ÍþöwÉhç“ÿï'ìú½U¯Ÿ!?÷3ŽM˜7Màl-v½>(ìø]Ü\ÑdñOØèSç·Á%!æÿ¡ÅÂNxÕ9T>ìm çªF‹î’®`ûÀvëê\(§Lx¸)µ…˺¥Ù[?\r?Ù@—«ýľ÷?¤47Ÿâëú1ö8vµ/:´§Ë™æ’O™êex¬ ~ÉĆp¤O¶ l+ñx¿4^¡;I(pO8–Eëk@_jØ$ ·É3zO{ÓÑ/ƒ¯Ãœ›Üæ+ ÿ³»¥ñ»”“æá¨†œà¶ùô9›2–ù›3œiú§µ™$¦£ä¬Àº¢’ðåÿi%Ÿ¼í(ý€B`éò«Šâ)Äó‡K‘×Ýîýö@T*>žªÕ+ìõŠµÉ g # ˆq;`èÆjàÊVÊ•òSÎ*ž”Õ9M¿ |Ôˆ\^^çOé%ðƒeV¾d n…$7ÉðC¯¢¾±£‡£E•›Y€ÿãÀé|SßÀ·Žþ‚§ìVû³#Sƒ’?Ú’¢´–X£ˆ|Oº³Œ[ÂëçTnÑfßúaòÖ…éÁÉÂ(ãWoºk#@ëí ie?ºN“çh¹/Ö”6ÅbÏÍšãÂÎéõ|wæa'jÈÍÓ¬ ê誨>ÄDv¦óp½¥¢ÊÊ;ŽK¿]]ãçU­œïœ(W÷·Yü&[èr‹´Ø®cvý–†î&Ëâc–·¼oÈÀ0mRšSêë‚úÁÖ¡Qúð·àGØ!ú9$èÞÐ)Ø¢|‘Ü_Ÿÿ—3 %c[XK‰YÔL{7VPæ½ú=˜¿¼•¿<ÿüÔu/#rðêÃø@²q‘ø‡ËgŠëZ»:ºö»î›ýÈ1\È[q§«"¨|râÿŒ¤/ÐÝ ˜Ö Áþ~ì ¿Ÿ¡=vø¦iFÑ–);œçÐ…Ÿ¥g̦³†Ó±ÿ¶8&¾&Ÿ'øýx½Ñ]QØ`ZEáþ—0p}·hïeú(¸z«zŒ¸q7Už|%yòpåÆ>îTÀ|¸ì„ÊÉ´Zƒ*f†¿cÃeÖàpŽaCÀÔË'ôÝk:ÁËçn›÷íLx_hí9²Yœ•Óç»u 1r™ìú±›X"{öÑVðRTäôÈ«„9²ß8è¾c8¦ý[èÓI^ ól»Í›‚ÕŸžÖ Iu÷Aº™8ŒYBàcªsr'2ö^Ñ·†~Úc§‰TŒ¥?jñÏ;†ÂÙà‚8ÿëU#€"Ö‚¨øz½«‡÷SžþŽÇvi¾Hpˆø?Žw—žo¹kQ>D4GÅ‹qhSOˆ^M*>”ª¾œ6Ÿzõän<<ŸÉÕø=$0X*§'ÒêLÐK” ñÌ÷¬+¼æ¥­lÖÂr²  k8ÇÌ|_S‰gª´ác±Šœ7¹9è0û#øxÌé@µº‘2’péÚë“+h‡»Ûú‘SÉ[Ôˆë$’ô·Á1œ–ZŠmãÒüXÅAÆ–1?•Í…ñè^„Þµ6xÅG¯ß€úTìäÄdÜ'?T¾$È_¼Rz[{Ä4<pÊ´õÚ¼º¢ºt5…¢£_¤ÊÂŽ„Š…H²/¹˜vòM¥Ù “ùçå‹§ÌÇHVÄ^°ÙRÞüÐä°hþìU8Ý@¢k`|uêÈ>Û¤±L(/ÉÚ¤üÚʯƒrTýļháð“¿ÍeX &øþÓ>½å&)êÑ£„sôQ¸…§Ù©¡cwIY øø2¯Ÿaíñ¬yêTáw²Ñ SSéûÐÝm.z¿æ©ÿÚÚ8Š̶ÒÉ¿ip˜ñì}ZWÄ“b¾WÉ%„Šš¶/šF1<¾~¤÷ÏV9ŽFpê3EßVqÍâÞ’†æAö„6‰™!zçɯ2õ[Ðu;¼d*Ás{6Y äF—ô @áQ_ YTO‡ÂËßÒ§Ì Úøoˆð*w9‹†hüaìáGÛ°Eæ<@Lü£ˆÕú‹·×ÞÚ›ìåK¦®ßœ1(k@ÞñŸl4ZnóúTPu0 €ÏÒ!‘µH4T¸`¢1Å’A×H ‚øÄ'páM®`X•©¦:¹°?]Ÿá뛦¦<(>åNlýæÉY@Œq¡¢–×ÑEkìŠî´‹0›KEà=À_ Àˆ_ ·äfÞV, ºÇEБù5…9ôùálÞÙNCß–û:úßB¯=ÃMJfð pœÒ&<ÏÆ7Zu¶Kñ¶?Ÿ ¨ˆÇÄåŽ4(Vö^ ¡‚Yeމ½ä´w¤sùc-/(Ö…³{à‘ÿßàÔäGFŸWá¼( ô£|-DqDÔ0²AÓJ’NùkøÛÉ7€´¤CyíCõZó8aNÔd?ž$0^©¬ÐÛÜëLL½ˆÎÔ“’Ç3a"j²ªvä#¥=mB€§k{57ÒG$=þ„, 0Æ & ï/dçô0ûl‚æ!¹ŸFÙ{ˆ1Auý»õ$GÚÌ|f4¦Q(Q‘[ò]9S$¸£çxØ©î ö}è×…D¡<ä²9Ä~ŸŽ µsø$¼¦8¿ :ùt‚á£)F¥|†#¨[ ”Ç÷»ßåå+ÿÕ)‰Ê¤Öô„ËÎ#/Ufa²)G b˜ó·õ)Êc FPy‡Ê"®Eýszc ÆUû]J,ö<*ø î Ýhyß¿òTêØ%á&³¶ö…Á5ÒYöå.b7#…my9/%ûgðÀÙ¹Íöš çûúÿzžI›|ˆ}€×+ζ‚ÍD*‡¤rÙþ.÷a¥¾ïÝ¿kc»ŒˆïXƒ«Mg¸/¥¼`y¢þVØ2ŸkY˜¥O+£Ù‹úbœòô¡ !ux;P .kðt!ä  MÊ.Þþãìéõ+j:gŒ´Z‚p6ââÅP‹I“ÊþR:Ü8—ÌÜx€d"øaœ¸XòNA@ʛ¥o`ˆdíõì=Øzøˆ,~ŽÝ×€“9ò.“SÚU"Íùé\ôh?Ñò›;ÿV}‘&;"J)æp0WÄÞ`wú•Ðì"Ê÷ø:áÁÅÿL͇íBùTS°6ÔQ×ܨÁèá~„»{£·‰¸Á³þ,ûtÓ†ruº‰•^_­Î]4­ªx5DôýF@‘‹6€\Ö‚ !¡PÅkhÊO5~“áÖ˃±>û íÅ $‰ç¹0SŽ¢Ÿ½õg…¼-M¸S1M„˜ BúN¨Ë€uúÿN—bvPƒÀ´3ƒù!•’!açö£ó»+ RSOê©ûÊþ^³ž/ôä·Û(©ŠO_ Þ¸Ù@nÇŸòR|¿¯™û¸?’õªÓSÖ·«éþíд1“×·5_UààqÉ-kž˜†¬«›ðaÌĘ\ç6’%Q-7uÎÝbnG{¾³w‰¬v+¸¤@=$m̯áÄÖçø3ó§hn(e9»ÔuxÒàù'q“ª¸õs³ñVW[_Mó:ý-lσ»)?vîhðvÏÍØYÆî’b-ÈÂ<çÖW€&CÛ1hòºÏœ’¾Ò ø©ûÙLðÅ^úXÃñüœß¨ $–C*;p6f1›™œl¯³>¦GtG½Iº4ƒÂQ0êØ%×èvߺWÊ÷X‹ i³k÷è÷}{ȾI.×öc«n£<Ôãǽ„ñè˜~ç$'RKã¾ÐoJ~ªož¦D}{ †aA‰‘À§îÁª™ÿ¯gKhµäDÐ~…cɤ¿ë‰®>Ó©†Ÿ+FH¨jž}¶þß–÷ÅþÛÛw¥ÿòã Ê€jj€^•må¾²J›½L®ê¡àã¼”„0‡Æ@óã§²uÛíN’Àû2:$TmÅþïó™î¿€‘q•mU‰ü5¥/žN¼å já¥ïúÜ4«´wÐëùÕט´Àk†¥n³€óÓ5AUÄñÌ߯§CÿŸð1¬ž`2p†ÓªLt $X_½“#"i]f}Ÿ—dÔ(Ùjï¼Ñ¦Êõ=çƒ7´õü±sŽî…õçÈ–#R#Ta( ¸/lÉrêC„üÝ}þ{Kö§ÓRê*¥üüÝŸ®2°€°Ðœïa$W~Œ/ôY÷$Cÿ4Ÿöùðëô¿Ýˆ¬Þòú\!c±%k¡¤B¥©hAjæ`öþéCÕ›?þºû¿puæzäLR/ MúÈÿ)¿·/ K«1*FþÉl Ë1˃ ,<\0#w¢Àa ù×Fþ(’ÚJ[sîs:´åäÊ8=Ö•®•wp)×CÝÙB ÷½~ú³6uú¿G§ÿ¯áìAbD±9J“ªÄ£±Mó3 êþ„¢—uòÄT4ŽšHÛ—Ù1c8ÖZº´¨wVLÿbkµÿçä…ºŽ\«qŠödKéÖhÙ6¾2nQ³±w%V1ác¾p†{ýÖpP]Ÿ¡t;†w<ãÈÿYû?[Ú”p‘€ 4/¼ /.sÆ¥eh-/ËñS¯×¿Üü—4©ÀêUÈ]i¼Å‡Þ°ö`¬ƒú0‡âÍÑY&Qî”b‘TႵýÛ”¹ó¥ {‚IA’noŽB¢ÎUãl“ ®ÇÂOêæÅærw”€pñKØ ‡‰€§žš¿«ûå©x>{ýˆ<|"ôõ0Ü]q˜R|›®çŸ%åÑý±zž­`ûƒE WyåÄFÔJ&ZøuÔmøUæE¨ßšjgZ2ôÄ!¬Pë»ï)¯¥I?¡Ñb‰sN²¶¨¹•uÒÕýxzåÌlSîÈi;?g1¹_Ïy7J¤;욪T]?r˜^yÒ´ïßµ>C&Ã2<Üë'“ qÖé°5ùõ:è°¥¨RZï€ËÖŠ£ØØ¥_§•½É]á‹•ô,¨™©up¯0”Ïçîדò~Ûÿwôe#R ¦ÞŽj&MÖ¥´œ=PHŒAº•à¹#’šZò6Ç1?§fÙ?#ΗÐ×<gm¨, [³º^Ö •oWÿú÷þ¿ñUA¾®['À³pp 4¡gfÿýIœ;俀õ§EU!ʱ`lX!)P0ó}ý6ê†Áèã"%áoàù™í(¸ýó¹-A°3ói©ÕplZßsÍ×:k;ÿÀ0TÕ¹º°h•uùqN ÀÄÀOÙñÖ^BоÿˆpßÞú)ÉO§sÈ?œÓîg.ççµ÷¶ j)`àèGFq 9ÙìÖȯòüvª Ï0;œãÒ@U|ºÙ«ÁG`Õ}Š'¿_õž‰Ç1×}FsÐyšní÷ï‚‹¬:ãõb"¹¢nq_ÊóF[`±}{ë7—ÀìL£ž>û¸ôŸ[>ÅŒ¿ƒæÉÅum›·Ð¯•œÉ¸–/} 0ÇR÷ã_- Ù ý£—%Z„¾åûäu;v+kŸK=¸èü+Q¹~‹³ ‘ûþ_×bR@e ¹®qk—âÏМogÓw ‘ë¢ÉJT> Ñ2åtñþ5ýT,#'&Hžtóï)qð#ÖUÿªà¤ÿÑ @|(„`„dmŽó>Vã=4ö®|ôpþúmZÿ×ŕïQü*JB¿åHÅYÈBµ-é˦Q9;=noè“¿j[Ø b¯Íg!/ üŸ6–Iò9{”/fdú(‘j;µîEÏg-ßÚl[k D<ê‡óŒõ£)äï#¦'ô7±•‡÷Á+¢NaÕÒýÉ"É,ºà˜WÖ”0“—ts\re>”(åø I°p.˜\´c¬?T¾KÄU½²µõýºh#c¾N®JÿÇОSnh6K¼ÙXµ¨pmòÅun³†ü±¬»þïËŽ™S•(•R– ³m~ÒG—¢jÑÑ¥E ,×Ý&ƒøwÎô)½ìŽtt¡žåޤHmŽvôÏúã‡ÙßfäÏËð8E[à57Ô-«ÜBJ&¹ëwײ¡òbžõØu3D(:l üó@¶‘å?eY/“öÀùàëÖþìºR=?sS‡ÛQnÈwZ`M=¥ÉgóXÞâyŸEi'úÀµ–>ÁGƒ«ò]XrÔOt“~é8I˜†gY4½{k D°8í¯žˆ‰¨èA5TÐ5`𠀉qvJ Ó…;8íQÎû>âa!0<¹×/…Ó«’ìÜ(² ËÅt!8t£Ä‚ÃJhòÆå]3ðŒ§'Ú(G;(OÑ‘«Ïc Ù»t‚û9Ò#±aj3„ð>ÒŠÈCì ‡A¿®—²Þlcê}Ÿ-g‚³Bã¨9m2J:$_ÌX|÷' h¦vÙÞ:;„-TµÉ Ä#hñ*»Zß÷ôYüþ¢M ,™b…JÕNF™nWA½íöÐhLïñ7öZv;´ž€á²Ò1ïIÙN[T‘tQLQp¤ÛüÖ¹) .(¨ wñØÇôÒè4$]MÝ—ÓÏ®t-9‘û–áXv1ßäÓæ«MUÚ±Ô æ¹)}1I F©4tñ»1€NRLÁqr‰Å´M>œ émz/ÍòòÓ•T;¡,Ð^OÆxQÁScpÄ«Óm\KŠ—[ÞŒP“üÚ¾)ÚDû´—Å6,¦äfS¹º;ëéLáº^aè8•3À)Ó-Q¦ ‡Òz(I]^Îˈ,…¢ÉBõÒ¼LõìoK0S!þžù—…9~¥±Pcª{þ–6Üìÿ‹¿ÍmÓnÑ ˜4¦$ ÛK¶/~®¢¤*ì4²ÇÐÁ“Ø|ãÛ±¤ìB‡9>–g£êÛµÏwÎ6ã…-˜NŠe-OKL7ô ~Óxç[<À38æa‘Á$Œñšbþ´t!‚) Ýy;¢6(BüþžŸÈIÍm1l»+€¶M”¥X)ÿ†ŠŸ²ù9:ÐKœ±£º(`ÃaÌôáFþ/“þ¡» ¦»ãÏGsVnXnµö_5ÌbklIÄC³d-/áîù"¤‚?Ëë õÓJ/Èî4‚ƒ”Øš°Áw[QŽE7m’¯¥¹i½ù΂üÞu6×,”ñqú–¯/,„ «ƒ#?¬U•°ÞuþÜÿS×ÈGÈÄ5]2þt†šÒœ":Ã6!Yèö_ûôû£é?æF­ƒäü”A©_«¸<ãtõúŠQŠ8l޵‹„‘Žý¸¦|>3Râ'<¯áß—¿'3 "äˆ?&D‡4´ÍB…,™#•€Rb3Ìhi§˜:%¬A_óÚ( °úÚ6ßð7yå$›s€ ééFUV ü¤úu£û¯s‹áö¶rÆ×]égØ#GÅãàˆ~-4—B“¡G–G‹â•¢ ¶4d… ñ¬ÅRBh˜®¯‘ŸF6,œbΣwg-𵱕QÏœ¢Ú°4> fS¿‰©^jĨ?¦ÇñÂuå5¼gÁTzݪ@˜iðqì!Ú3µðA ¾R ·”VûŸ£ÄÇë¡"«èïTüxÓw®¿âÌ#£ €~ÜqéˆÐ=mت0ÒtÇ(–uðO™¦zØ‘SàïÐÖ8"·QO©®®6bkA’ur´“*®“²üµGZùåi¥}àS+nöËÚט‚ïÛº3µ6ÆxõãTCƒÈàã Ê=¤Ö ­Õ§iX‹mm¿Ò†WÊ’n‹oç q¬ý(بè²Ê«™ŸÊÀ*ýðMˆ ÇVL)Mߌl­¼ówX±'Ü è`¢S9]¥¢e÷ÿÁÄ\þÉÒ¾ÑÏÏîÅ•—;óóe1P4”Yßù¡‹N6þ&m"G¡Y¸º0d¸sÚCj µˆAnù£EGõ_TD釗X ¡ôŠ1ã>{Œ¯S„Ã?AL" ÎTéÎ$¸Çttƒw®å ] p}C‡áÑ>¶v¹Ó:q>…ÔOÏÚ˜qÍLôIÆìÞ|õX!«º\PO?àÑå˜N%‡C8¬lO!Ó=²ü¿£mæ¸Á G·@JÕˈ9¾}LßùíøèçË“ûÒ×C|:H9ÂäÑ»6¿2‚› x#¢n— YÒK,]{—;«1,ÜpZV``Qƒ¯„u)_=_²%¢8ùùób(Ä¡”œÈ$53øp÷Ðãçs—n†ŸÇ¨gýòUÈ,žHIñÐRD„bsÚ“Uu^`¿¯úM:—Ö©GkŃFæ­§¸4× áˆÈ::?\9¸8¤}wæ‹~HþÛ §’ËcÕ2¢ø>Þ¯õš‘©A~V{ž§+V²ü©¶[Ë~µk hóE§€) š]ý§àéM„ 7¾½4~šRð²_Èß³üPsòÞ[š†/ýO·ÉìYÂ{$ùú¾qúwV0ßSy«¯Õ¹ƒäzQWçMû¦ºAþS+¿A¡¥ÛËü‘Û^~ŸÛÿ§¡9Rˆø.QŒdß'øõiß|RMQ ½÷ÓI?º".šuZhÅ™[‘“ËKž’‹0òk™ß)úÉx.é»ÎÇtù3?/·í¹Ë?Ù«\Æ»Uˆ–Ë¢º)%„~È>Wó9ÈTãBÊ÷µ‹‹½ç]’›«ðÔä÷pš^vSùêçlíõÌÑS‰óO~• ¦ˆ©¾)w;ÎÆ©‘M& ·˜6Rɪ~ÿA7Ìß÷ñ«Ÿåøt…P4wÙLëcû"×35¯jú!¯R‡~3 ÂVÊS•™¥…-ëî…ÿOöó xŸ’HÄËÕn ‡NÁÀSÿ)•uolòíkœ÷ãJcÀê?¬Ð¿-·DóõW1ÜwwÒÂ]÷¹¥~‡Ï‡ù…ÀÞ ü¢j[ç¨U`r ‘¬c«¿ú%ï‘3®!ˆdÃåððzçNì÷âô< Ž@[èÆ‰EBˆAGã”iÄö¬ð®¾iÉ ^ù›B81½„iêº>Eë»Ù¡úimâ¾J„J ›UÝÐ@D[AwxàØm>ÇýlÞ*ÿ÷ð –¯ÑF,±Ê5æáîø¯è›±/Ñá 7!Ü‘~BŠþpVãþ–~»Ðªà/ÁûU5 ÿû¾^©†×;Ñ HWÔNVîƒoK¬X%T‹ï,¯,ãGبÿx2;£ê û_ïäôéˆû÷ÿ¶2û[Ñà‚Åò˜Í¡ÀŸýF8‚w§ý‰Ú7‡R€/‘™uˆ>õÈô0ý”SÒ§=»~âßUOƒ¸{§‡(ÀïÃù7°ªý¨VÛÒ~¯é­«ÍðC CâYà*ùuÚ‡†ãs<;¨"€¾Ù-1uеâ-h=²v±ˆå´žtã­ìTv<ØL<ÝÞ¾obU3«õ0š¬û¾+y{içеKâ{JÏØ‚°2¹/¼µŠôŽ7Ñ_Áÿ“j%øm×óOûñu‡l$郫¯C; °ˬ°ssgÓ™Mü¯%è: HÙׇˆÿñ%÷±ü”Ðùö­>‡¼QNû´½&½½tÖÐöס¹óñê¶¿¦¼#Õ_Œú¾¸:žOHùÀM¢FáÃN%¹·yÔ+ùÒÓ|Ð?7§Sö\¬íö%~ 9—ß6vÌCÄð̨¨º­G¯_M¹X{¥Ô¿[ûÙù`F¹®û9t*{qsXtUáñöà²~hV|ô¿ÃÝ;Õ jÛO Y*Ž8t-+Kã§q­Ë°w´‡¹ o¥Õ—¯~Y9ë A±ú>/UÂÞ_É]ó[PÆm\¼ãq[ÛÎïýóòˆÙNT¡ˆG'ˆ~¡*)®ø*ËoUß¶iGÈ3Âß—âïFt^¨²¯rè­]ä¾ÌåÉš¾¨ f¶î¤ðÝêsˆø]uøb}~åuåM„}÷ü™ˆ}áTbM¹#éêçéoÎåÅ] i‰_™1{íÕz0ſtÞûu;?Т° Ÿ¾êª¡–Õ ƒ$=pµO¿/ꊶÖÒú¤îÍÐÁ}8Žç÷­«Žþ=ý/oçÝ5³û‹Â\)ˆÕ6§È;÷ãßv~.ûÛHR­$oßðý[’—PâĘ‚ÇÄc­[<5ŧbßêgêk~[ G¶:`º ½­çmu¸ðØÙNº@€µîKüïý"AþÙX~·æ„óøõ<ýÎÖ2€ãVØ@.VÖ}zwߟ‡{½CKñð2cÀÖé-U4 Õ Á¨ý¶Y–³×•Ð* A÷xäö>¿ý9ü¼ðL»äfäú9k78˜úPú¾Ï–4?þz? ˆŸSwñ¼ ½‡¹^›†}Û.8/<­¸ô4Ï wcñm~ž¿><ÀŽŸÜ+ÙÞ†ít>'¤ºìÏ¿g Z¯¼9U»ŽßHñÚ;*tÈ“åú¾ûoÖ‡ý8‹ø¸ây‡ÐýB´OwTY!e¹„¯p{¿a.æÎhÞd{ŒùåD¯'0/Oç´äæ§À|Œïû ½ŽKcXÙŸ':y̓?·¥½òÿŸXûß»þù½O«¿óÿ‹™Ö5'ý×ný kr?OËos%Ùúyc-¨TD ÈÅÿy››“b’䟗›ÆP_å“KcÆ3‚Œwór2rÓÊÎß³¬÷#æ¿ïók.à) ÉÎ'#üë ÊßÀPÖí<ÃâÅ?Ü€e50é|Í¿GRÏÅè¢sÎÒîh5Ãö–«-ЃÏçþËŽÿíõYJÌ“ß|·Ó¨ˆKßòK˜–{¥0ϺrÛ•HoæûËƃïx±GýÌL€"¥ðütAsùçÿñ¶üÅœ˜ý}¿ŽÛ¿gUØö†šš}é÷þ”Dµ¦ÿϪ[cKkÇ튀~öú×uóùcÿ /ÆÎ9›Þ`ËO 7Óúy¼¹m&¾(ýMì’h]IÈßÙè& ÿwïÚÍ'_ðI#~ôB¿×ö÷ûì"þ}‡w»ø)®ûv3%éþÞmgª„'ʵ,¾´gµË@/¿öÙ'¹yÍÄâ-qgÁ㯠'üJiÌpD÷W#Å %ù±Âš¸õ<Šëb×i[Ï,’žÇÃ\3÷°&ØÐ«/ß] ÔžÂO¡½ë”­Æu‡{ó¿rân#u뫹 (Okõââ.t òJŠ{¶¶r¿õò3ìâ)NÚà ªÄý΄͠€?ËìÞÞoб ,Ç[C^Ëè!¨÷sè꼿ýSÿ…’®ì›Ñ1Ý'ÎCûC…×Â÷îèÿ¶Ñݦ‡óUu¹Ž`¡¤_ƒÐÊɯíŠü2'}4˜¡Š‰ïëhPp ™íÀNc sbçddí®Ëç¶Sõ åBêú«5`nwøÉçì(­ÊÙM_Ò‡Y¤Wåû¹!>ÏâpS”]¬˜ßfs—ÿ_oOôªÕ¡DùvQÅH?0j­^Y…z<1§éÂÇ熊¡Âôù:Þ_LÀϨâÎüg²*5„(~ûy&aì6®Ç_Câ¿{¹ü¿(öS[}šÌß{á\£ ‡ÎÀ?ñ±GmõbiIul;êÓ~Vvô}Ïy&á~ž‡;B³q{T†Lê–Úÿ¤Voøß.ûžmäúDì}«nEã'³û}¶Ÿ}NŽÏ剤å{¯yd܂ĈëÀ-áÖǵ²é´yõÿ¿{¾Ÿ¾cŸ5ès³ëú§é#%$Ÿ‘ùþ =Øß“¿yæîòÐ÷“žöÜÌ®ùWfhñÎ&²º«Øvbfcбþç¿+6™+±j:/³ŸßéÐ~ËR“ú>Çïà Ö\ì² w×TÉ_ õ#‚\PvhL„Âï·õþ”¿Ò?Vç+¥§Áx®\]σÃ÷äEÌîU·âºMÏnëÖ ôÂËüå¢át¿™“Çh†C‘!ɸâ-£mîÍpÞýŒíýð\ÚZü‹œ~vu Y >y·ÏÀ ªn×£ùÃþ®=ïŠlÇæËÿIê¿æ øãbÿd¦@y2¨ ò¹QÅŽtg{zDî(i+ Ÿš¾àH§\²ÛûÁMó¾[¿ˆWV¢¿ß…ã«ßæa¸FW‹Yø´Ÿ)ö×|–ïÿ6å·¶?¬;wÂÇž(E%.®If92‡ö'Þ(ÊË_l·k?PgJ¿H%펄¶ÐûŠöwÈ›9•®†K%øŒiQ¦ôæk/Öˆ5&Wõ‡ˆvnÿL&S3_¿ÝÿH1¹èø6þ Ì‹Ér 1:Wê±™ýýLI…÷èðÍZpGrÈÄ›…þ‘ßHÿ·F0Sƒf0lŽ’¿ËÖkí¡Ÿç—CòN]ù¢0/¨P¦àÁwúL•òÒ.„—ÑëU¶ïí2i‘É14ƒj“ËþŸùÊ¿ç1Ð5Ö€ø-2—ÞRóÃúùSß:x›k×ßôÒÊü úMǧŒÅæ¡áãîA3oµ=f÷µ ¹>'ŒñæÿÔãè*n nŒSÒ&¿ÛõaöÜu¬~ªœø?Ftþ·3È/×Êòã ¯…{)§&„×òçö-ΟOÐþÛ½Â"–þ®V§Ÿøèw<Ä~à™ŸÖðsm4× }ì?úÛv9}›ãU\=Þ‹ßiimã=/Ózò¸G¥}ß“â²|_;ü•dÌCî<ä`€ DYö©wç,&yÿƒ'5^c¼|¾O_áyêìîcÒpòFRô.võgÁeÞ)ö,9Z-FÌsŽJïÂÚûõx:Þí…c£W/ø%檸¤Œ!·§‡¥sâöti®¾›]šÿšÒ}ߣÁ±såú¾;: I“÷ŸSº-_3‰3½–Ä0¶ Fÿh^9Úéº|âÌUŒ÷ü¾â8œö 3^‚&ÄÕAÒ±ÏMЬo­ßÑ}jý/Í I¤VH6Q¾Ñ˜‘fKÆ« 4]¯\è›(ø†Lu+Ø}Ærw è~ƒŸ_GÒ—a*©²ë²ÅäCÚ}•ÀÉ{ëö4ÄCÅ{Š“q¢/3Mv4Å9úý^{j¯£l5…²h+yòªü$&*ú}~£Ÿ¤7Ö`¾Ý¯3+rþk7êîZz8Éà€þ^44^i›UþL¥áétwÑQÝÆ—þw,êk±†ÃÄXËëCkÚÉÁ›:²ZÜ©œ-”Z5³ÝÒ¥ÿÀ„,07öø²/´=ðÛnÛïáÁq1²¿£û3|l1Ké|œüÛ×?Nޜޯ/RÍ[O7£—M^ùߠЬæz÷&ÃÒ°……;ÖçÔÁrøüÑâgÑ|zœÊù~Û+EöÐPK ŽÃI­;ÂáWîšú‘ù™NÙt˜õ*­ «À*8_;+Çý¿Ó’†ý‡ïרüzýpi¼ñ쇘ç8¬®Œ‹úó‡p/ÿ¯Ž)×ãÅSC¯SìöHë_Íaä[DVý=T•¿„ñüWé} (>ŸéòÇÆ égñã¯)aië÷µªfnjo ³é¯Ô”¿Ï”ûô䞾İæÛû/=éâÿ$÷ֽ邹9¡¯CkÀ ¾ÔÜE»¿³äɧß))+g!-ÜŒîbf‰î/ýŸ87Íü¿§Ù£EùƒJð×¹ºìôe¾i#9pcÐ)›ü>ýþÿS𗤲ìç­¼7 â„ö’”±kë6|6Ç~ÂMË÷W«µäãøi.¼¿âa]öÛV´iøPw4ŽZ‰rÿûìT5^ætF¨‰Ë5û²çLz¶‡D{ÅéôíTo²‡Å±¬ßº1ƒ#G màÁWOwÒ€-K®%ß±§Þ­”ž®òþûbð±¸ËI¥3?Õë—ÜôŒxŠM¡Üwç¹þŸ£ÖÛç„öD{Íô{Ñè[ù|5|èß»_0Uñˆ3úÿ‰gÏÝþªŸÞàÞüAc}Ü‹D)èÝÛ ½øÄ’wÍå/ÜÒú<5+·þ öxs¸º8yAÍæü5‘OóT\}—’:p®ú]&¢·íýÞNd¯7Øùú6öt7·:¿/oÊsï#nÓ½ñ€þ[b¨ÿžínÉQýìo- ],i]©Z”ABxnõ(îi9KÉXü`ºT30ˆ"ÍìúãÒù}¿@Ìj­?˜µF§€æåœ«ÿìú+ðr8j[Ø~¿³«“CÆ+¦¿±pÜ_ëøÎ9”Ûâ_´[ôåþ¯Ç×ïa^š¾v<Ï7…t¼ ”´¶ÜaÒ×w•y»¾…¥-˜» #mGÎgwWËýX‰ZàþysÚ/סW¢'å™þƘ_í9ßœ¤ ,¸_ΔLã*AŠ€îˆoßúå¤_Rtîðµ/±€_ó‰ïõ´!ë€ÿTlÿí4Ogܧ”XÌÄ»„ü°Ëh®qé7"‡¿Þg8˜CùþÚ#ùôí8üÆBþ¾K¾V&]/ÜM°Ü×ÐgJÇQµ5 f?7)ÉÓÿš­û×59!ôlM4Ó˜ùíªæëû3@>¡”µ¿ŠÇHB /ã[ö¤Ã2Fbtdƒ ç©)þ2g¯vðzHâ®­ùã[Æ‚ú’iw½%ØÈÉõ_k¯B½Pà¨{¼ÕÖ8ïÁé¨9þÍZ>·À⻥ø>þÈ60¾Õ¢¨¨ªþZaGí;ªv~¤±ƒ¢ú©w™"©>ù‡éƈú¾‚|Új¼"AÈ"¿4‡?£ -vz¼Ê?3+à°ùtƒÑg9H/öq¿{ou÷’§õ>ƒaâ’èNÞè&,‡ßø=âóÙöèl#.)eìOo›gÓ¬›É'ßðNõLwÿïæêc÷zv³¥ʱ]:ŸålcpÇÑÝÝô§¤ !K{Š’‹wG¦ßïåsç* ÛÞ_Àcè]g~«¿HÙ/nŽS™ã2ös³öÁM~‘7Ðÿ+«aö]@qú«=¹·Ø8ÎŽæÖuYƒ±}Éi«üB=˦Ï^ÃêÚYûª suA×k·è:.ƒÈÅü[`uøÍ­¨áµ_“ŒØr~Ã?Ø?âåÕ£ø·Æý¤¢÷66DX‰­U¨­ѵƒ±­†óÖáÊÎîk›Siµ6Tà¹Ú—Õ?'[Ãm¨±1Z [6-±¿ÛlÛ\Ú!é2&м}›O/žÖ ýB_÷_£?¿²‰ÿÈ…âÕzQÎIåXÖ(¦1R[3/fOéP±^§g¨Êã+Œi8ÛðšŠì^7Újª·¾Ö¾Àh³m ¨W¯»/WÒ vë÷íÑzÆÛmµ´ž§+Œâ!ìïÜK÷¿i!×cfÍ[ùô§åJÞÃbßÑ'w2m¶‹jåkݼ.-jñ'Ò‰ûaÿôz¬Ûøzâáµøßäý¸Ïª¿?´K5ø’¿”Þ>-kUæ{tvEQ%skrÚ66±m5×]¨Œîâîí3CnQÝÕrÕÍʹn›§+F)•ÍtÜäœwWF!„´\Ö¹k»·6Ø£I njæÜâSZ]ÎÕÊè¶§v¹Ëºémr‹.ëtm£œ&À™$”™¹ÌrwuÎ –‹»„È™"Fñ­¼J¿¨~~¦Íú™ü* øˆú zŸzSý_¤\'·ª¼ò«û¡îêsÅ]†­¯«ÖßÒÕ_ßµú‡W.wµq¶×'ìj¸ââËœø²Uæ/%@tæ%|‘‰& &"DÚ0–†·Ÿ±®mÕ×]¹k›d®Üå5ÇuI»®78),î1gL”%6,"MbÛ®:èô‡¤ëOª¾¯íºåA×Útìü2|yé¶;ª”ñÚÙ‰¿þê þàš›[m¶m;Kü ‡õËýzc" UQ­Öþnµ[÷¶¯ÇmøUýRú­jÕ½@“! $mEQA Á¢+F‚’ÄdØš€Š™™…€©‘‹2£QRo™nuéëoÞÛZ½ezÆÚ q6f͵ÿžÞJªG,®%/ý…ù1þm­}ëþMà(v®‰_ÊtS¢r¼]öÜ.A´VÆÅcšw9ˆLGwWHîîV9Q±%¹t„j¹sD%ww,W(Ëšç;•Ër…ʺWAX¸¢±®6űT (µJ1„¢¨Ñ ²ÚkqWCÐû¢ߊüí¶6­µ¶Å»[”“é}µ­_µ®¨ÝÌÿ“Zÿ\¢räû…Oß¹9½¶cZ*¢ˆØ¶Š‹ "J1b)3HÕj*#FÅ&$֌ƴ´kMQ[&JŒ„‰&EѤ!D˜‚LÏéV·ø;U¯ƒbþ [X¸«jã}oÊ€_"SýQ<?ƒOíÑÔ©úêxø¾<>¾Ü¾Ê¯^OJ÷Qò¤ÿe"}ˆ%:O‰ ¿e^4Dê¢ö‡”ÿB6µFÖÛ`õÛl<‹l&ÐÙ©›kߨþ²…xΫغ¶ÞK(­ëªäƒiÝkœn6„mY˜M‘q²ž¬¯eW¬‹ü¨½¢Ÿg³?ú‰NÖ.ÁyzÂ;¬IÜ Üî ww»wîÚæRð#èì6q­­+£_GqÇÆ¤Á<’8žWØm¶ ¶Ã1°f†C>p\ñ¥÷vÖ¾î›kö½—EWŠ“äÔù›LÄßjJ}Ê£i°Û%áî8¯âD•åÃÄRý±_?Ûªm‡ÿÛWìÚm÷Çñ~k[Òê·(¢-\Ûå«»­‚Æd4‰¢Ø±‹;·wGuÆ‘në¬bîë%Ë\¹\щ+rîëp7tmº,nIÜÑËr6Ôn—×3¸îlQ¢ˆÖˆDˆ\¸N]+¦æèÐmÂ@,n²]:z%ëo[v3ÇÕ×¹´º­·mÇƃ5¨ã3g¢¿“*§õIáêᲬ,Û0ðááã.‰^.,‘Ídl63*Ú+e1)™4R* $Q³ -cd¬T”b-KFÅØ]+”lX»»˜Et@9ƈãtÜç+‘:îåͰ4Pjeþ.U#êÔlÆÊóÛW 5áø’‰Ê©Ô¥KÃÑ«ü)EÊ+³“ÉQÙËÍ­‹Í§ƒ*¼-©VMpÛê©á혯p‚{ :3ÎAÑÞ‘Ëy¦Ñ¶6ŠmDRh41µšm¶7”ö¼øö 9SØIz`K¥½‚^Öéìbö*y²uBö"è¥xBð^¶¶ÓÁý’…x‚¯$Qx2xM£e¹­ƒ#E\Zû0Þ/ÎýVµVóöÖö\•¹´Õ̪æÇvÜÚÜjEf"‹nû kWÜjyi= ðûB‡C¿$ŸN£êk-“eõ3Ü”Tu’udêÓš©yÅ}½æ/廸wòïófÚÖ|­¿ã×Èg°ž½l›W6®Nêà±Eºs¹´të¢5# QW0§w6±Q`dª6!‚$ÛŒ]×h¹ݺwudw9»®H”É/RªþÃh_!ßÒ§²ØÙ‘ôöØãŽ þ:ñ×wŠ˜£X¯·À¼û ~ø•ê© ¨ÿ4©ëB¹T|ŸÔP<áUxW„þl¨½o7I8o+ÀnÆ-¹k¨¢Ú …F‹YQ´lŒdŠš_u«íÍm}ÂLÌ\hð—'î$Žj§ÞÑ÷¤ê õhîÈóÒó[qÝËÔwˆŠü^¶‹ÖŠõ²^0]9/zÄzÏXW¬£ÅQëåúÕ¾ÙÞpãqŸ_ö‰ä’¼0^6¯®m8Ûg×ßPJåÅÖÔëiͧ) (ÛfMh E$Ú›lŶÛ6N¶rÒëeÖßZ¥õ¬1mXÑLj-6O™>fgÌñ?V…:yðÝBêÞ§ÅÒ÷÷ŽS–-¶ËÍ¢{4ºSm‘¶ÓØNÚ*9ºJ®SëËðãß¾#ü!Í-ŒÀÚ,V1cb$I¢ˆ¬l$£E²6½mwbL‘A zÚߪ¾±™&‡ÖÙÇ$Žê¤IãíÊíäíÒöôöôs*˜§þD}mõ¸[íÿa è ÓK]-t§žŸxîœÞݪž_VÕZ!š0¶¾9\5&Õ¤Äm²BÝvwuˆéȢݮ–¸\Ö¤åAS»ˆ¦î»-%ŽmËnX£AH%.s›œ®•æ‹nX§;ws¹wN9mÐY(µÑªçLtmrÚÅ@aIi«m‡FtÊû¾¾¬Ù²>ͳ¾Ï'›UGæerGuSº©Ý+‘'t£§ëÄ¿ÿTûlÙߪ£áÔz)©ðÔ|5.‹Ãˆ}qcÎjGiñ9“xþÚ¶Ú½=ÛØ®kÝwd»¤°Vw\Å¢£j™IFÎvÅbÐLˆ¢bárÒQÌV-\Ø«–ŽF‹ì¨wUÔ»®Ir×(¨ØÜܪå]8[ss¥Û®Ë®Î[»Š´b¨0aW5Π-Î+›4jî᢮&Qm2’4HlKœwI¬hAšDÄR4s™Îóö­|-¶µémñ«ZöýBˆrâyõã/?>¬ƒ¢Õxy±©Ã\‹˜V*¼;«ÃÇ|û*ÕŽpODé®*œ!ªñ™ªâØ\8n4\¸è¬V;ªå`X)ÝÄVŠá>_ Õ|?ª¢F§8¥èÕèËŠGÔPú­£iàí°pÛÁ¾…EW*”ì¢xlÿ(¾ àø_š\ØCÇcl¶¬Û6áÑ;ºR#ºº»åÓw6éÎHð>¤¾¦×ƒ¶¢Çض´ÛnEùþÚ(\ºƒð6áSÂÛm—åMìÿ£VÛo?m^…®j§¯ísœ!b‹£Im›hÕÒ\ºƒrÝDnwwwEÌZ5wG7w“»vk§u\ºhÛœ“•Ëwq7´lnWJÆÑ·»¹6åd2åÝÝÓ‹µÁÝvM«e·7 ›ô«±Ìh]ôOZ—BŽõG‹«éRvUu£è‹³•éNæ—ßô•à‡.+k)Ûí8®<ŠTú4v{ é¾€v‰=;ÍR¾ ]‰NpùRöxØ÷Šw?6/{G¯‡½«æ“ðöWåﶓÇHù´{< ðaá:šÕçëUìksk’Aj-±¤µ†4¥Â)–ÑbÛEPQ6Š‘£1TcD–1(Í " „l¯âÖ¾ÛóDVöì´n‹ÁyÊ%9±:ï¡ÞÝön?Ä•¹ò§õi¦Å6–Ö—}­±ÆÛ¿ÖJQ˜¯Gz¼cÐErõ¶RñsŒ6Û[Ep8fë/UÔ:òÿ‹w_·Ì…ßÓ²NùßwßÝ \Ê^MV[+ÆæÜ36=&è”Ë©ÌáG8ÓH¶æÕs’4¸«D Z–Ôã’ò=DîÓ½Õ¯ù‡+VÚ½êkE-I‰Tµ÷©UºCmun~­5ß»{ä…í(ñâæ¡{2è¡ìÔóöªèçUyw«)Ðδ>átÅRïK½Ç{Å»Ýé¡S¶)ڃѨó–Ö'›ÌØÑJF(µF­E¢ŠK4¥†Y-“FÚ,VØ,Bk=¢îíÎV¤È‰ W*FÑÍ›ŒFæ®c6Ë–g7háŠæ¹T¦–ª-Ѝ±£˜s®FÎ1DW5ÀT•Ê.-pÑnnB¢ÅMîˆÞÏV¾ZÖü¾­ùm½¡<‚\ÉFUNòS¼ÍQ®™´û^ׯ—’¶Õ^mm~¤¥¬UwÑw×|ýbD¹¢>z«[Ñ^Åb· UÒ] \ÅÇrí®mÜÚ¸&r‹\Äi.íÊ67Pa,iåRö4òK½&Ë?¯‰y›mÇ‘leDÌâå{÷“»òÖµg5)úÒ'R$ÿö%ýÈ<]ô{ÞréEÛ9¢^÷¶yIKêl_Sm¥_nšJ!c^·o÷ª­[е¯KÕxØ’×-ÊÑbË¢¢æ`«»®ígF¹W5Ý3ºîÝw.¹wNîHŸCµ{½W»µçZÚú ç稞žð?•^¦ËíJ9é)SÁµ…àÅųÁòŠC•)Óܼú³k¤d¶Lšb[3f5lÌÞNÛ<$S©áUákfÙà¿Söâ©sµO ƒÚÉÿ {É_¡$ðCo{G±SÞÑåb}õ>Þ¢6¶Ù”¶xR{âxB÷âëhžêO8°KØ+ÑÏ/¡›I¤SQ„²4¤hØhÕ³i¶µ±³gÚ+íQö¨ûWtöÞ”tSÚ/h=¡Ê‘í¼¹¾E'«"ûʽ•ó¡…µ5mF_«ú`NYðE÷øîf¾ç3ûJ ¹¨2àѶ-%’˜ÔTT‚ÄQ¶Á¨Ããz®m©ÁÆ— ÛS’•Þ _j“îCŽ8¸Ù\cklþ¸ªrÁ²‘+õ$ùí’œà}OFÓM¬ÒSÏ)Ê£õ$ކœÄ:ú•ðr› mm6&É-8¼äóò:óëoWÓÄAdØØÛ ¤Ñ¬(ÅQ¢6JØ,£fÔKQiL¤ˆŠb Uø»÷Þ¬²E‰)F¤’A$’CëÖÖ6¶½º†±«Qªü„~HwâکŲql?'c¼*'äxÄ?QRþe$úù¶6Ûj-·¡ å~MÒ/»›îé¾ï¨I.`G^Jçý¦*ÚÃý,ÑÆÞ4BåܲEˆÕ¸ÜБ¶5kš·-¬VsnEFŠ(É‹»‡9¢1n] rй£Dn–‹•º ×*TmŠ¤Ñ¢wk™42º`èàÇwscmDr[—4t-qÝw9$j0¹«‘]lk…Ó¶®Guˆ5F9º¡E¹äèår8ëŠréÝÖ0®E´lm30h˘0^*µ÷¶·è*½V‰¾Iº?¹‚]ûÑ/Ȥä†Ù6_wxVƒ®¢ #Dñ·ß3•rÅGJ¹t=ô%rÍ»¿äÈç)Ï,M¬q«ŒîÖ¹pbÒZ 5Aw\Ðr¹·wk¹nq;¹wwwEÇ:s»­r4mô¹Ðþ”ü­ZÛg[U~WõIEË’ê‹îRâ+à*éað þ%/~—)CäNâKåP>^ùSøàt´}ÖȾï66Äþ’óIRxº#àCú*‹³uG)'¸Opøª/å%s›[_YûKTm ›F*ÈALm“còÓòïË÷Åã;ŒÆÍ­’²I14˜Â„’r.\Œš Vƈ´±wv** ˜£FæÖ¹Î´r§[\Χs§;Ž/_Dùe[WÒácˆª¤D’PñÕ<ÆmŽˆùОú…sUPžE7”ñMœ8¶pͤFŶ1ZîëF¹±ºj "‘9Ë@‰ÝÍhú¹Íræ$Xs&+š¹\îëré­Ê±ÑHÑU)$ª&‚ˆpéTô0å•^©9µ û”Gß—o²ü¢À+qxT¯wW»×»·»ô¶Èû÷«à„û„¾ãîegÜ?Oü'2Q>,®ö‡AJ‘ô‘ÐQðQ÷?êÔdÖ–ØÕû2ܨ2ÅE ·Ý9wÆÊ‘Î!?:äsÙÇqÇlډݹE¶6Ù6Åa(ۜȜ»&›—hawjëºÜÎîj.]Ýnn[®êã»m¸kshÈ͹]†]ÝAg;-ˆ±¶+»¶‹EÃ&ÅDëEv.îÛ¶Ò\îÜåhµ J6‚2åØHÊ8îœÃ¹×T´w;9×q»®¹›®—]n-»Å]àwj{ax‚ªîÑ‚«å¥ÙS¥¨ðËÃ~ý!r§€ª¯d_Ø¥›Ž7»¯ l“?àûø‰Î¥.Â:U; z z1z¿§H}”W¯ÕíTkdÙ¦F®chs¨ØÂ(¬cméÛj¿´Ûož×¹)èç¹Iֽ̧5zª¯l‡¥ú€]ùßÖïï "uêu·]'Ùª—]\/aD£·ªÂN†ü}¶––Þ¯fãp§Æã.·nGZI.Z…}ñWm^·ÜÎZœ4j0#k6[l×%àäEÚíµ¾‡qÍ¥)ù09¥î øÊ>âŠ#ÑÐ]ýGµOhãg"„r©#«¥’Y:¥u#דéƒéc_Çþ?®uW:!ÔÚã\½eµ²l Q´øîŽíÍ¢« Ö)tÇ-ÙÜmÝÝÝÝ2€Æb“h·w;ŽnvS»§dåwv¹ŠÜØwr]8eΆ#¦´ØÑˆI¾gËZµöÚ­;îþSlØ®6mGÉÍÈ÷ªJ¹R Ì‹™W3s5ÆÜõ(9I#/9¢Tz”&‰ÎrTPLZÁ©ª)ÕÍt«œ;®d£vç ºë£kìu^ÐÚ×»ÙÆácm[µä+­¢mJ®ô^t¾•Þ¿¶R²'WHv”rTŽÐ¯W® ×ñ¼¹Që¥{þÉÀ샔Exâ}ïxSäíSc˜8mnczxªvu]œšž·—±åöÆ6Û…Äh¨ØÖ-륮kr¬Qmd²fiQ-¢’J´VŒ‘cQ‚D]•¹m]5 rç.îŽc¨­ XélÛ33o%;8E>𮺯H®DIWK\³¼ÕlØm m›j-°­ÿ¾Þõ­˜zÌoí*']s…üiÒyÞâ¶1²ãK'{¹8ßúQ+˜Q9¿)¤äÛ`y*5²§´dmlS”Dïdw´Ø~¬wØšwߏХÌíu6£j2;ÝeúyɶãrrryJ€å¨‡ôi+¿«Îº}G¤ã:PyÕo?U[ÐÛ^§’*6ӍЯ.ÜæÚå’#QB((ÅBMŒg9Ç]ÝÜÔ'q¸É8‹ºuÇrw+»ü%#¢GD¯‰ æ.j¤<õ~…ϯAú*é\´Sô½eè/ÔÔQ}¿T#À'„ð´¸Ô¸©¸qªãÂöjDñiSøJ—Hâxp'‡^ñþ ¨œ²T«›ÙªÛCËå6ÚÃjŒDƒRKEA·ý‚]üPú™¥a5àbÙ›n8ú„å\¹Tyô0©ì¥zè»J¯¥_–]æÛ¼Ù¸ãøßç]­©9ÚIÖ%ìdpª§YK©N%RžVqJ®¡tï„…wªæÍ•pÌŽ7{þÊ”\ЯñâNƒ,Óm¶£#`¤ LI!’hˆØÑ¤±±¢6bcLZ‰4ÚA5Š0‰1¶µ–ºY×òЧK`.“—wGëJîó¼s?À _˜$ùÚÃkiO}W8ôP{æÊùˆþd'q±]¥È“çÉðª½JK½ÚNà.Z ò Ü…ï©]¨\ª¢ðÅïä¿ Tðö.T »-H½”ÔUöÅωÍ%mmeõÆ6KjÄàs›“óûhCäR>æe7Š’_r-%\²/¸¸W KÎÇ7¶Ú›:ŒãYœ8®$FÑ·9±E¢±¶‹wRh,’R)BŠ9·CB\®dªäm·(ÕÓUËrÜ­Ë\áÇr1k•Í‹ Ü­s\Û‰q(Ývw\Ø®k‘¢’RZæÓUÎu¹´(—.‘ˆ2*Û•±jçaιr®bÅ“A])#‹›³œÑ¹s;®íÍs¢w6«»q¦m«’B_6>oÍÓcm|ÇÕˆr©Æ•N„%þx¾i/ÈÚ8µ¶mlrclãgéó›”T®ZE¤zz8¡; v‚`v/N°S¦¯@ü.HJñ5Ïj0٨͓eZ60X†6ˆ6³hçEO²f{›¾$W7ŽÒ«Hª­«EfÉ}}ÿg8îíD„ÒE!x¯º/ÑÛVÞvª5 ƒì)ö±}ÑP•rÖÚ×VÕÃÔ[¥bŠÆ ’’`*K1&­ÌÝÝ–çL–PhÖ‹jt&lÙ¶Û1›’¤¯èI¥C£‡®J-¯Éª%«ˆÚöŒH¼_ÂÙR娥Τ“±Ú½OVßÞ¨Naóz•/k9Ä9XeY¯¸"k›tÜÕͱ´mb‹J)Kšî빫swc':d–5wq±\Ü+»´Ün3dãN1¤¸l­¡ÉR>½ÅBÆ·ÅeÝÖãâ—ùõjµù:·«j{ óÁÎ{tôöuåR^^“¨íu5Ê¢;0y—_À+àTç÷t{µ\{‚|ê? دÆXùÜoT«PìâìèçIrEIójß M­øœíÝ^’jZr诳ȶk•ñC™ éxŽ‹FÆÊñz»I2MI¶Ôc¢»‹®èsnîµÊÛ•¹µËW5cQ¶N]qÛv™Œ†nr3ºµËw]\Ñ‹cnîîâÌÓ ¢ÜÛ\£Q¹k\wVé’æ¹uËI³X®¢îê ¨¹©×NÅÅ݉6æîë\¢))†Rçt¢®Qnç\RI¦.ë§qÐêò¶¶µñ>%bÚ66ŠZ‹Öø—ÄmøŸ(¹’qCþ¯±²Ùö"_aSk&Õ±§ØrÈd‰tåbO:Wœ. bÞë^U­½ÍòûâkjóCϯß°RsR•휽CH£éˆw ;-mƒeð6®2áúrË¢'5O —ʶ9¿ü!+̹ÚxÍMQhˆ¼.[òŠëÇ\«ºìäçrë¸:îwt¤§£¶¶µïí¾ÔÖÚM¶Êpð5c“uÅPåÕBüy\]NHW^vÛÀoýª¡|ê§[²y±ìh½RyÚ¯!ò¦ÚN޹(_&WmšC©Ÿ4¯fS«Ÿ6§´¢üm½­¾®×óF£F“Q¾uÙG»“ÒíQÖ¹¥+ËôغVl¥SY5±«Xª4lUˆÄ3å:»®"ÐDÎ둹tÙ1ÐIW\ÖÍX4V7.mË:åÊ#W].)]×UÊäm4»B½–ÉrêŽÖªë‰øá×Ñûyvj%ó¡Û«ÀPx)<&Óbð•Ç%Ôˆ9ÙSºRê‘àÝÅØ‡*‚ŸRAà/¨}Oñ N]"< «fŠm«Cj_6b¯—W6æñ´[šI&ˆÑ%x=ªÇW÷Ú·Ÿk^ª ´Š6îæºÅsT]“EQ`ÌI£b*’dÙdÅF3L¦èjÖÚþ¦¶Û{ê½ô‰ÿô?vP\ÒU]cI:·¹â¤ïe½ý·¾Ö£à jáƒàui^U¢¹R/™ˆ\+Ç}Ÿj­¶8×w sc®Tm1W!q†Ù³dm8ÙÈí¤Ð]šºªŽå/žàÛ†g;Hæ‰;*Ô/]íK‰ ÿ"=Öm›4 ¶¢Ú½î«ßcEªÉo§N7»G0R´#Û28"êÕ}qÍÍ­]÷¯¥G)QWDY·“¾•ÏÁí­¡ÆÛ[¢á·#þ){‰=ÅNmš¥vâp‘ÕƒzúWàQêÑEêä瞨œ„®°4G¯‹ÖÈïäöǹ͘ÿž…Ê.Ê,)â½¾à«äÓjåðÙ±l1FŠÄ—2rºŠÉ[™8îîN뮘+ÝÝØÑ"çs¬tîîë¨îŒ»ÒwAGb ‡)C–-ÝÂ\æ2øëošÖ¼Ûm^çW¹ÚéW¡^váQæYC·¿`b]î+jÈé™®;Þ‘æ¥ÏÈʧ{¢Ô¶6¶›dïÞ[™qäAs°3ð꿘°’±à-ÍuÍrÑ­r‚>’#@åÏ1¥±ã5l›kM5±¢kl¶4¶6‰,Y«Š«Ôò­«üí~M¥™¶E\_*5±[;òãühUáT÷5%Ì!\܉õ©›™·øÂ—(U<ºXUåÓËÓš#íÌm·ÁÚ,±·m«¤É¶9Jx;[î‰.”æÊºYÒÜQ<{–ñÅÆír1®›œ"‚«—6¹m¹¬Y*MË5Lnj¹&£]u¹Ó‚]ÜÅ’ÑÍÎc‰H•Ê.îpÚÊ5Ìsv·9dátŽî®èëˆwN¹8ëœç=×–Ræâ«ßâ‡ÑŠïèñ$ô·Oéï­NiR_¡Aà…àÛ ¥ï³q¶šÙ࿳«—º'ˆÕ²¶m6±kbƲkcY14E±¶0XÙ,˜†6Æ#a±£J£jL¨µ“Lm% Ø)´Je¿Cª¿q Ù*»Ü¶km„Øåª®èOÍJ; \”O­÷O­«m¶mùü1þ¤DìâæR?¢ɱ¶ÙƒÈí¶¶3e±µ%²Ÿ¸ã€Û¿‡ð*/§´s°®ø^M üjÖ Š¶£Öí+œ¤½í-”)~6ÑÌ"O]Wé4*$Ŋ߯îº-E­kö«&ÌÚÚ¶¶­’yàï©râ}E¥¶Äw’{i_fJûJlÛ‡ªþ7)‰ 6±E㻜w-÷cr·Ì‰*뉀õÒõÈX˜‡¦5Uë&õVª>{ >Ò}º•ö¯Þ¢·T£—º~y\c‹jc¨ªV»ºë&¹¶åˆÈC’,¢©­¶fZͶ›fnI_ –¡ðŠÈu!û5O™­²¶©²Kd?ù¯U}j8ÍNMÆ8Ìäã‡Øçè£mUvÑ\H®Ú•”vÉ]±WV¦%ÛIe´2—lL£¶SPí¨ÕÁ-æÇͯ›^¥mªòµkfÚׯk(1 (¦ö½suÚeÝ[¹ÝZäXŒXÅ\´bÑD“ÉI]Š Ø–lؼ~¸ÓŒjqzMÆ½àŠ¹I#é"YIÿ²×ó¡pR2hÎÎÅw\Qj4Tr7à”m’Ûšº]Þäe-Š›_¼ƒÃRúëÃÓÕáø|íJž))ý$ªÊ_íý;6ÍbÛa²GóDþ]ÕñQÙSö­³²“dSm«4Khä$ýPš‰ÿ2®Í(â/ãkckEV5¤“3eš- ÐlXÚ’‚6Ñ¢ $2bB(–þ Jëª~nÍ…ù±±ÆÖrpܟܨœéGTMJê…¢ºªduUj.ªduK$¾ÿQ9`]z_˜+ó'æ~´TrÕ#ᢗÓÕ0Ó}9VÒÛ6¦Óó'·î).R…Ë oµàpbÜÜŠ$åscF±m¹±ºbŹpØÕÀBW*ç6écm±ª+šmÝÃJÅŒZ-`ÄX·5Í™§wMnvåW70L%‹”î;”tÚ-±©.íÇZ Ã;»— 'S»L×8Ýš,îwtÄSDe˜ž5[oÛÕ¿oªø{öç÷(‘Ë¿4/-°Ñ‘÷Î=måÒ‡§.Dq·'–G~\>…š¦ÃÜЧ([Ƈ:m †Ú˜Ôh¨ÄØ($ŠLÍfLÑÉOh©÷‡æÑÜ>VOÃÆßéJW’C£9À½|Nâ—¨©˜¯$¹ì¤è®"öR®›€öDÕ>+©ËjÌÕ.çm¶ÊK¯qU×É’ëÉ”ëÒ²]Ú)劜¬OÌÇVk øá°Ù6›±ÈéfŠœÅûð~lüÜß›ÿµ!yªÛ{{jä«Ï`2w]Y!)¼m­¯ÙëkèÌZ#_ßm¶\mÿ'?(\²TÿÔ—ÝŸtáU”^‘M[S¬–“©Œ§LÉ{­5_/–Þã*ÞŽõŒmFÂ1bŒÉ¶ÆØ©&YQ¢¾[xÚÛﯽZ²A"Ф¥‹1jûÔÆîëmʾù®x¶92Ú×%üDåJô¸÷¿Xmkl@H¦X‹0®­«ù{¬• ¶‹!LÕÛfÆÒÛ3lsÕBåT§ùDȧKJ}º<ãEƲØxmœfç.~T9i_{hgÙr9ìlãq—–׭˹\¹®kˆŽh£šÜ‚“1¹r4&$Ú74“›¦æ´SºãEŠ3r6*#%”IpîÝLîÀ¼¶Õo‹µñKöZ·¤¿!Rœ N´®¶.*ºÀȺ´tTì¢yã”]â>–j¦‹O“¸Ü]½QàºÅ.‰Á:±^mq+«©y º²¯7qX¯vâ§VÐáN°­G°F“žºVÒ3E´fŒÙš"Ť´lj±hÚ(2k¤£cohÚ+A•¢i[sƒbBjãNãe8ÓO`—*-/a+(÷µ;ÙÞìÖ|r¥rêTÊubº„Ôàt]ÞµGÉÖ%ÆÜárˆžvªô>‚.I:ú,£îAƒ»ƒ½ ïc½ü¾Æ¨NeWÈÕ–¯Rª½‰¶òµF˜D1) 2J"û½«Ê­÷v¦Úúý¯©Òj1Uú ·‰|PÁôäd}¢bû0b}šŒO±&°ÁJyMYl6–½ˆ'! æÔŽi]óðöúáU×rí_ÌVÛz¼†UžÍÍÒÜÕÓ›–AWJ€Ð¢#bwvçs®4ë­ÔÃFÑÍŒ]× lØ\k\‰Ñ%ÑJâ.ˆÊuJÔvL«°þEæó¨ú¶³m”Úᾃy`©Í×-W­É^³Ž„>Ïßí(ŽRJoj¶Åµ¨ Ìmˆ‰d3-¶[3cilغê•éŠw w ýŸ7U6¡;e>_6ÿà‚r¨ö´1=¨5OkG´+#Ú*Êöpe{54;jXµ±SÙŸątrÚ«efö”’ç‚jºZ˜:TÁÒÓRéO$qSkkÏmQªˆÅŒÉ{.¸6ç,U£A«œ­ÝÁb Ñh¨¶-Ë&+»±†Š7wD&-‚ŽNº‘ݹTQ®]ÛbA´•\¥Qcwc7º×•«åf­ò­W±ÔWÔÐîúÈKˆª½¯l.öÈÒ^ØVUí‚Ê}òŸŽVî2›3h|üÜfmû¨å¥Mmé»YtVÄi4L“&)QI¢4ZˆÛEh¶5€’¢„"H K‚Û%´j6Љ¢ÔÑ´R- ÚÔQŒ*Ù°mqGÏóë¤ ŽIHþ€ƒâЇ]”òìúGÐTÒ4úœ §8”sxÚÛ5¶ƒ±V)I¢"‹QF±j6fƒbdɨc[E€ÐQ@¥3uª×­Û/S¦Ø9rrEùô'ÉÆÙ ¯TOD9Bù"z½¢ºpä#ò%ÇÓm ŽÂ§T9T;‰;däªóo‘…X¯¾m#­rˆüi=Å'ZäWЩAE.!ü¥ò3kQÖì“"fT~`.Ì­ŠW%+¶KÚÕ\ù¤_¯oB|ZUÙCŠ—÷?û6PùDÛީʃ¸Uê¤à^T“åUøerîȲ§w¶;Î6ãŒÍ¶Ú938=€•rÒ“=›HѱF‹¶‚ÆÖ0VŠur䈢™»º®E£XŹªæØ±¬[W.›A §8ÑÎ ®îµr­Ê¹¹®¹Û•qÝp‚arã— ás[›nlAcÝuƒsW;;Zçur´mŠ!EÝ׺ì1±Uˆîä¹uÈ@s‹¢ërî»)*n6Ë%ý¨ÝüR’Pxú+Ñi¶&Óyüj‚¹bCF£èÊú*îoÝ„ªžžš.ÞklÛØ’bÅ’hÌ„Z(¢¤m›6²áš².µd=ªVQÔ'ed»*Gʉ|µ71µ~¢œ¨úBÕ)ÏPvëÄR*ä’-9YXؼoZŠ‹\®GL,"3 ƶ­~rµmúô¶L5m|«Ž8+Œ¶6Û+_6)\¢@ùH¾UêRŽEI<ʼȸBösÒá ×Òòäâ¨ìÕt„NÌ/0¸ë¨y—µWš8ª9êQä5%l-«ÕŒlL›lÁØÐów)'ÉIä6Ø­œ×ô( ”“ÖÄÅ‚­!ØJú¼U^°YŽEueGN,ªzB°©˜NÛù…C‘&JÔù2_Šš–‹iñQñ_ÃP.Tå©<€ŽGLÖÍ2Àá˜hsº'u¹­Â;r$¢ˆÅ0†æ¹“]5Ë;‘×5ÃW.r«¹\’”WT—+š¸šÅ1¦“×GsŽ@%þ /§}?Ö%NRTWƪøÒ¯Œ–øÜwtTåÍË tSB¼Ñy›U/*°—–²KÝä—¡Êyª©â¹ì¶“cKMˆÛ*mäµflÑ´ä~_ûJ¥Â¨ºB´‡UV%ñ¦Å|¤¨“”•ã{9¶Ój¶lMŒ© *’³lOšþ®Ö¶¯*­ow-YyÞ±Qah òîQÈuw;«¹‘w]U­¶¿SU ||=ª¹%Ts”EΔ«„.懫©Â©ÓÐõdqEw=a8öÑv œI_ §b%O…'­¤â”õªv(q!ðhyjœR|*|ûë•.B]¡]T«‚—³RJ¯zŽ®— «Þì¯vN´Wd.{òv²qAtJxæmcbÏqÝ´Q£guÉE¤‚k‡MÈËE\¹Ý×KaÉT:™4'S&(ëãòªdÛÆÏqÇq²>;¶¢‡2¡Ø­±eWb±ÇT/Y¨½f’.äŸî8R‡B)Š‹º%÷*]É_e7î‚®ZQÍpjØõÛ•ÜÌb®jâë¤ë¶å³»DXîæWuͨ¹¸BLjZÑ£Bcm[6ÛªNl)òE8¢¥éÄ<å±6kcÑ´m¥l~Rʉ]š¥ÐCU: iW•Ë[y¿®=ot"ŠˆnÍ+¹®j6”$ræîèÜ®‰×tsRånºîH±-wv“d¢5ÎFu×"çmvµØK5ƒkÙ[ËVy)äVªz«"{ê)áöÑRä&’™D_i!܃¹ÆÛ6Èí¨#”¨OÂþ|‰rrC Ææ³5•DVÅk–¹®UÊ4TFRCbwnsœÚ‹dÑÖÜ Ær´b(ܺlbÝ;®LÆ®kFƱcbÚ*4•É ®è]-ÝÕÎWM«š¤msWwNêë@fÛ ‹6%Æ[NJ"xâߥi€[_¥Q6·nmÍoãÖª9U)Õ©“DujIåÑ‘y9X/&e/&¿xKÞÊþH*r‚è&)ÐZS `º¢¼‡Ž¶¼ö’¤EŠÓpÖ×±î6ÈÕÙb»h®kº5ÊÛ•wu W QW.Rˆ#fUÇwºmwbî"Üîrîîdcs¨¬‘E†f4DkŪ¾#kk~{mªþqw>C%´Û3[[ «Çˆ®Z*ý°¼²pGàI¥=r«õ¡¥;™Oh{4˜§lS íbb]ºQÚ•À:¥XOþ„£Ø—VªÔ®Ø‰ÒÔàJxàj³m¼æÍj#EhÒÑJÕ,E´PQ(Õ–3M¥pGÃöÅkb{˜”r…'qS¸½%Q©貎‹ ÷YG¨´Oz§½‡¼n8qkbíj5¼µµ¯rµ½/[å®î¹\ÆÓQÍ·6ܹr.X×9¹\Û”l Š¡+œÖJæ•si)Ý] Ñ$Nê-Éݬ\±µ¢E±·9&9®w[pcP9ƒLw]œ78¸Ür(^u-QÔÉ”¼ˆÈ¯<²_¸%^Žÿ2¢¹ÏÌ‹ÏØ!ïž÷h›&ÔÕ´^”AÈQö€Ä¹”KÝf6¦Óil¸Qï¨j§ç#¾ÔØÍ†ÖÔ¦Ê{µ®8'%+¬K)w²y›mƒk…/ƒ&TýˆÓlƒi/…µ\’yšñÜLÑ™6FÆ[[¤Ñe‰†LˆÊ#Em 4j(¦Ñh*165ccFLÙ³e¬ÙðªäC¿|KiØœø%?P~'â)µ`ô½”T¹Š~Ä—©-´Ù±Sá‘rR¾4¡ôé\Hø’b§úõÙ›$øÃ’©O'B/ÆØ–ÆÉ…Jœ´…|u/<²*äU¡2 íhëdáRæy6´*¼Ø¶Œ;£Rܬ7wAY5l¬9¸™ nëÚ:.ss"!Îgn@Ð’O¯Í[oŸÚºªßšÕzYÅIíbôÀ^Ö‡¥RžÕG¦qU=­S{Y¹ÂKΡëœ"{T;.(žÕWÃâ“ñiOÅCñJŸÓŠ«•&…L“ÜP»t´áIŠÂF ü(²P½ ¯ª‹ˆ“›Ù°}ã4œdÌb+#E‹Fñ¶Ú¯¹µcã ñqlÑ~ÅB9Ti$?(TÊ×#òóm¶Íª‡ NŒ | ¯¥`6Zª®_—TdOõ‚WK›lÛ6„Û>L¯íÔ…ÁO¥)b§ux{6ÚCháEz50]U+©F‘÷Ub©zôSГʇqªlãfÍ¥±}¨r¤êL½Òç¹U%«ä&Ûš5Γ»´ sw'9]ΩÝÀsf¬R.fj’l0Û†xÖ«ÎØ<æ*óy XJì¡ü’¡È¥=ûíå=ŽÃeÔ(ªå&¨Ò†¤^/)θŶ¶Ú†î]£¶‹®.íÛrÙ.;©ÝÑLÙ.k§u.çEÍÀwp9ÝÓws®ŒF9qI&™'­«ñêyjùž!ÊX£TSï¨Ø©¨FÖ·Ù.ë•·Z÷U¶Ã”.,/êÐõªxª9 ñ…t#‰_|+.ûåW?\%óBõsç"^ºGṕq'®ë’;"8Ê£Uv$c诡µ›m‹lb‚yžU ªŠcy®+ƒºµrÆa1Rjç.sˆŠ4änmÒͲÑps•E£-QŠ„E¦33km£"ºu2¿­E;:8ÍMGf *u…jͣ涨äËVÊØîÒ’çŸ\¡YTãmqê; L–ÜTYλ¢Å›kkZä¨|u;x­°Ùëi#’íÑÛÔûu\–bž‹*\+ ÚÒØœSç%;y;}¶o–Í«-‡!)Î- ^1^uV.˜4tµ•èV—ŸeÒ4~KÞǽ¨‹ŠÆT|æÅ•>2žˆÞTÖ²Õ|©çV¶Þ½´˜y s—(¹¹Ñ­‹®íûnwqÝÑ\;‘ÝŽ;¹¨ÒåÝ×8sÅ×eÜ:nîçdD«•t®k™’áÝ×]Û¦tîܹtIÄ3º1v.ym¶ý>ÖßÉ«knÖ©§[#G£ =-^ކ®°uj2êÒeæéc§“ãT=ŽÐ¶sJö;m'ö¤K–t‚ÕÒ]XµNŠ†ŽŠtQ—Džc‡–'´ôú­ª#K»\“›¢9sguæ2j¹\Ô`Q$;¸NíÍÙÝI®W6rÆt¶M»»šîîr vçWw5ªåe¯ɶù9Ô“Ä‘9 HiéÛ¤hö8§¼‰ï+mtú\8ãRâÛdçE–$ìAÌ>dŽÇbâ|ŵWÊ‘«Û yʱòbÇïä×¾ýý?,~4¬îälGõ‘¤Mñ"ËâE—漥ʭšËce²øõ¸UjÆÕ¹¹;º"ØØäbæ+pª9µËE»»TT`Ø×69($DWMÌ[sW5wu¶ä,P„DÕsDXÁŒb6æÕr×*éh±¢;‹·Fçw9ܸîîërÁ£eÎnmr®fÛœçLç((ÑÛmºå”Ù#&1ñ¬}rÓºÊÚ¥¶Ú—”HNU'K)áT]œŸ`ç:1gF­Ñ­^)g¹Ó{…î«èê½J»–¹GVº±T¹¹±¢ÕÝÕ¹¨nNqˆœéIœëFÝî/+éU|¦µ· ›²Üþ¸Î5m£š¨—8/sHÓ±xŠ…ÉO½©‡'á¶m ôH¡µå­kyל¶ÜŠ„*6Æ)4i“$D–6ôzâ0F‘¢ê‹`§4VF6;ª®î²KF«š»œ © 1YIš‹ÆÃF+xµì5ù/'¯O ïv“ÛÕÌ4KÊô½L3 cky:î³”Q´–ØÖKlhÐ"a*4kŠÚ6¶*Ʊ¬d*.íÇ’DW*.Qr«±Nëœâbºî˜ Ciwwv.•sI]×g9¦Dnk”X¹¹ntºî®QwK»˜Ùsj›\mœjJp›YœÓÈ#ÍÄöå]”­¬¶4@éiyZ]*9ú»ZO;9×jK¢»YNÕGjj£µ‹šíhv©pèËØÃõé^GàŸƒ©¶Ù~Ú®T¥=œžÎ.räP£ŸÏ{˜!²`7w[b¨µ£QZ4Y‘·9c†IE˜V-s\Ú£»µÒ¢]uÌçC·*é±j‹cræ7s®¹Ø5VÍ­#êÀ¿Ú¯ÛTåÔ¡Ì{ô‡¸UîJmhê)RÚBvHâ'¾÷رQè*¢{ /&mó~–¯]y¹ØÁ;®Žr¹mË’»º®Z¹kšTî6w]®î”Ý‹²é1Îänwk—,œÂÒîmÝܹºîNî9uÑŸ.ž}t‘ÑÝa÷¨÷Ö°ÙOþꃭòRx”ªxæÙHr’™ï…ïÖÃKiM§¿W!=ô—ù†¤½®™m[Èé¥y2{Pé£ÉTóWèÛX±¯²­mo¦kUhØuâó2üTÚ«Í×5E{"y ø$õ‚yÃÌyICžÆæ¸qÆá¶ªÚ…%¢¹*Š µ„†åÉ!Üntrè§\Æ ß0~ûYNÆ=ûâ½lN‘ó½äŸ%×~=MSÍßG¸Ú+¬¤®°ßÌ$ü9;U? ´_0«ßm'j §û‘´UðU'q¢¶6³f¢&©¶¿NÄ¢ÕÁ±kó¡2S£ÜÌŽ6-®+L¨¦;º5ÊäXÑ(±®c‰uÜîÑ8c€I¡›6W› ÚR‹ÉÐñU;À«ü•ï‚ë2¶m¶ØÚ~•Q/LJ«¦§£W¡é^ró_T¤íd¾äövÚçµ.5’(Q¬;»w5ˆ[–æ×H•-;¸è#;Ч.ƒî±XKœºLœÅÍŠÝ%ʹREF¨­›&6ÙÑ}¹Qçe=l64­²¶‡ú“îU¶üÿµ6ØaLJ6gtuÝw2qÜ\¹HµÜí×s»£¸Üî—?Uµ­ú»Yj0³i=¸AÍé1nz–ÆÙµN6Ówô§âËñ[!ø©~èCž«Ú¥ìåy°®€/ê’ΣØI{$]¡Nš'­C± ±õˆ|‡`.†®~ROOSµÕZöŒÔTX}zÜÕ¹¬¬mùÑ ŸCÉl‘¶Ì­¥Õåhê‡UÕQì¼ÃâÈžóF¦fSÄIGø¤—Â)ð’ûM¶«a¼@J¹ïµÔœï%ÍË(­&1¨ˆ&h2L‹\Ô®d×5Í J"×5wuwv@5cA\.vã»Gf0\§]]rwrÁ®;på\®UÔ›œ®îÜÂ(©(?SÄdñ Kñ(ðÄ-¶6ÛM­Âã2œbá_*O)UñÕzž‡˜ÒmE£mIldÁ¦4h±¢±±a ÕSFÆÓjÛm £X§”®äNè©â$“Ÿœýx÷cto)þ¤>øzCFÓíˆ:â~S`x&ò>7‰É­¶‰*壒[šå­FH±BDÐwvˆ®ÑE®gv§ur£F®FçHæäwr %Μæwq*梹S-w]IFÜ"îî2ÝTQ[‰ ææÆâfÍ:å°]9ÜåÐmœY¸î"»š.æWs#ï ø‹eZ‹câCä €ĉñÝIÝIÜÊîTw÷dôõ>=E_ “¸«¯SáÕCàÕz²~,?‰+e³E°ñ.²«¬—Y\êzž§Ìó{<öÙµ\m°Ìjçu£$ÑQE¢¨›ldaJŠˆÚ¾oÁ¤yDt•_L¶'ì)ŸàûböÄöʽO€‹ý÷1*{!^Ê‹ÙBöI]¹¼—nŠQñv‹üòDò<ï &‚Œ[Eb"£JŒdÆÁ´NîH+•Ër¤FÖî-Š&ÊÚ¤csmZL:"Dܨì7 w]¶ºŠ6AmFȳDÃ/BßZ­˜Ö&ÕóK»ú’ƒÚÉsõv¢íb»]ŠÙ}dG:;Í~̧+Åxîiµ¸àã\af£†5Ën™6‘0]ÜÅÍ\¹®ë´]ݹw:‡qÊ„”i5ÝÜÛ²Òîâ]Ù¹¹©\Ü®ÆÜ¨±¬hUç­o ‡Á¢á$]ts£®] '¢l ¬¦ËÝD£àø(Ù3d¯žÛmUâ­$H½-ÇQhØ¢Û•W6-Q¤ÝsËi˜ØÛÕÍ­wurìи»™®;ˆØ£RVæ«›FÙ"¹r×#rÕÖµÍ]uYE’dÛex$®~‡ÁÖSàæÚØÛjtb©~Õ¿ÇœlUÈ“mm[fÍ$ˆÈ¨“kce²ØÖ†±(ôœ»»Œnr¸ F(ã¥Üë®»§*æ)ÎQhAvZL—w$Ë/ N¤¼Œº‘y!ý_§£fl[%Õ•åGSQç‡ot6¶UÝAzRèát—‘¢é'éE^ˆ§–:ÒŸ‚ôuïKþ5‰³i´Ú!´½^†/^NÒèTí*w1^i/á ]=ÂÆC÷*•rlÛZͱ¡b2ù hlkFÒC!k!Mh)h5¯¹ªÕÝDî‹j?‘%/†¨»¬ØÆÉ²d|>6jM±?ü”WPœ½t»{z>rFÑP"Qk U¨¢¢Ñ½w]w|®ß)~/Ûûo­úÕ¨jÒ"Ø×´Ð—‰$ùèú ¡6Èué ŸÀ«÷l$C¢Õï6×¼«{Ëm«ÒÅ{ §°…ë”»’®ç6Émóà“Üm[ëïá*È$ÔklZÔnUÛÑvé{xÊ•:võvñvâô%z¤»¸¼îÒ¹ÍfÃhñ[^U¯‘Ú¶¾0j FLQ´kF5& ˜Ñ¬Z M±£IhÉ¢ÒÚxmFîî:ÜÛ’tís»«•\€!´lP£ID¤´ÚÛa¶ÑtÕÓGLtΙ➃Þ%GÑ %ÝfÚ¶Uù©IçEÜ¥Nçk~–Û[oTjˆÐEFж-Q´lVCG›:àh×5\Ö1k›»µ¹­Es²¤)wt»®‰¹\‰Ý+ºu‹sUËsœÎt•réBç.DphÕÍ;“b£ch¨åË›r#ºë»µËݱTÔ-4j´hŠHhaß{­­­}¥m}¥—ýKüò¨ë…Ý›!Ù¨«ÌÉÐ?\üçÜýϾ?SVÌÙ6’è=OCl4[<þÛVÛCˆ¿Ž ¯µxÉÆ«t‘¥ÛºÕ2´VŠÉ1F¡2¹¹wwQE»™³ÆkÍúï'æ¿•ÞDï ýØIôEôbú9`ÿÁT]&¤œ¼ÚÙ´TXÌŠMŠÉ4‚Éf¢ˆ¤¢*Bb E®îçGWK\¹ÜMQwtÅLW+µÊ76×-ÝÖ'w[råG%¤®AEÜL¹"å· ].ºë—d™g\¸NîrÝ×lX¡w\q®8ÜláÜJOqòs ÄJ‡ÉUøûTmžžU ÐÝ ÐžiϽ¿4ª^“d™£lEEEADZ#HІ*"’Û)È[k[ÛU¿]µ“Iñvد°(üQWI-4§*ë*ô*øÈ{Âéƒñ`öU/‰+µ•Ý%ÛT¿ÇH÷Òq³ðåy ü|5[ÒA]ÔdWÂKÛ áU{y=ò=™9Ø{q|vô¿¢‹á+ï•í¯ÙaW]ÛŠÚilœHSÇÑÑjæsˆNuÊéb5FÚ¢5rµËh§vå;®H Šæá;µÍŠæì·6é\7Mnî¥ÜQ»¹P››skEEF‰,mÎ"Ç76¢–§k\Çrb‚‰! ñV·ØkWØ6`ýò¥<ÄO‰&G“lÙN3~Wm«[òþkWFÅ£FÀ £Q°`‘“EA™mfѱԋ§‡)ðþK-‘ÿ‘(yéu'Rêk©ê}ýW¿µ¶6+ßÅöS¯QëqQ±¶1¬ÔÚ§GÁhãJÙ‰Ú©S”(xÝm×G6έ¹ÍËšë¹rØØ®\’5E«–â‹P1f£Ri3ë-|FÚlØyBúG‘øj¿ï…ýANu\^º¯^¶§>;/.»: çUÏclÚ …y•jãlmmµ™µ¶µëyUEæz!^œ—@ý.é/LÞq6WãŽlÚ9%ÔAÚ½EUr§\•’§›;™^â-³ecjŽå›j^/·Jî›m´ ˜\QSà îýQGÆGÆYªŸ66¯üjÞz-±¶€¶Å¶1R˜Ñ„E% ´lb‹E­ FÄf6ÑU{0±A ´Rr 7ÏÚ+ÅÅ{m«bãqµÄ™mA部U|B$®Ûj‰–ÛZ«Kn ã0x”¨½\\âºú^¥/MŸ‡Ÿ=^x莇ÇÙ´7Ž ãžhM6Mˆ(J2,"6©Qµñ«ºÚZ7wW-EEb•Eak1¶œiÃCy@+í%.I®˜=Ìq)ÛÂöÁzðt²=mSídŸeM-¼ýV«¦«^£Q°eb¬V2£Q¡¢i5½ˆírrà;®S’nW87;§5ÎBDÍ}~Ò¿6 ´¿ˆ›m†Õx‹¿¨|Ej¯ÇQÐNyZé§”þ_Mú1O§¦ªO³Qâ*”ñ­›[EF¬–#2QdÕcXÅm “ ´ŒlhÔY$´i$È4BÜ)Ûmæéyu_õˆÖ2?|*>1EøÃb¿ÙZ[7 ®5ÖÅäê‚ûد‰CâDø`ødóÝÕ­êúzÊéшµÕÊe¹µ€ÜÖ¹ˆHMÑ“»ªçw[nk&Ú*йbè™q:hØÖæºk›–Ü«ˆc»ƒrî»vtã¹ÌkECHc[™.ê.Fçb«ªŠæºI1wwwEú‹VúËkë*»I=å/eˆ*_ ¯‡°Ù>ÃëÉ)ï!ÜTî(ø ò©QãaÝm6ÞEQâªÕz Z¶6É!( ¶-(6¢$Aõ:Ú8Î.8àÚ6gû~%Uø‘9eC³NŽNÍ]"vu:Øìè¼ÕÙ…é{:/GÕJ¯IÕÓ]R—O^ÉGß“«ÒÉ[ZM’Š{t{x½¼žÞ/AIéóJϹ¡]–8ÖÆÜqpˆªæ®WÝ“V:XÆŽÝ„×9;ºNuÝs8vwp¹ êA1¨×wR[[Y¶w0îi;›26^ðI=•ÒGi¥­‹n‡—N„òÓ œäNw1Z•ÏùU}Ƚ›)›Qï‘*ç럼¯ Ýé¶m²®˜"÷T{¡±{æµ±²¿Ð\©I´Í‰â¸²ék»–Ü+iË›\¬S(!€dŒƒ_7jÞ‹h±¨…Š¢ÂÛÛè-¤Ul>Ò ½õ¾ÍKeï¢_å„§.žŽ1NWé ÖÐóUÖÂóg[)æ®´—›¼_š©=-%ÐÞr©÷ž–'ÈoWä[ä;¨w\¹Òe6)5¹EÊæ‚9Ü9EE”¹®m‚¹«mrº"Ki))¬ªÁ´fÆd±­LF9YÝ\¹Ìww\ÑÝÜåÓ"Guіͽ-G¥ý))é’ôÐèC¿Bî;£ÿz¦ÏT]<]:Ÿ½^ø§Û-¤Ø¾Â*®¾—kl‹kE³ë kÓV&¤£#0Ú4 ‚ò-±ŠÆ±¦"Á­‘&©(E@¶mdz©Ü²ÔÚfÂîiÒ)O7z~àmSl̶l?õ¥)ã:1ÈxÍVô"ÇlZuÙ«s2H“»·pã8êJï(/¢ý¹;¦ÛTî±fѱkÊÛV¯ÞkEFdMbª6u²u‰ßRFºÃô…]üÙm)mGwèá©Of1´£Ý×âWÓ-”‹h1Š’fY­¾œÚÊ;ýim+jWâ@|}6l š6VßJ‡È«Zþæ#Z#Q~±”[Sqi†Ï_I.Q‘ÓjÙlÕ åËF»¹™Ãl`ö!ûA.æ/˜E;bv¢òè½]«…Ö¨ëau¨õ4uBê¤ìÅëjø3ÍàÖÀø$óuI=t=r]b^YÊžOq¤Ú¶…µ´³i1"¢¶.kn[ÔV+% ¤ˆ¦œçwÝ7* m ÓÝN§n„.î—w!j-ÔcœˆÀI ÝÊæ«…”ÎëJÐécWwlår«›;³¹ÎLjŠîé×w ›»tÈλœë»uÝÜ]Ý\»Ní®f‹EÒh—ruÛºqv-óV¾j¯™×Ìïu¿%ýo«µ^V“Ým´»=¨¶M'%t÷Eú Ò“ß j¶{ú_ ÛauÒ”÷‘;õ ãl•ñ¤û°ïôÙ3m­©—µO—+êI*ˆ=Õ'wmE²Ù­›T›>^j¯—¨y’³e]¬~ð1šÆÅQoÖêÞÆÖ½«”cÐV-£TËXÔ¤ƒ)$™´cU¢´RE€kÛRI¶Ëm~ÂÜUåéi)x0>`ù’ùJ|­µ©|¤¼J Õ£¨—ËDùxmlÙ›*üúC¤:JºGH¹è•xœ+—Ž1ÛW2Ñ\´5‘ÅnkWqlÛfÍ®­ÕºŽl^®Uæ©´x’ñ„ÿB¬CçÕ|ü›Y¶j9H¶µæV5¶™ £Ö­®Z ›D¢±“esFåË»³®Òîë±MEã6W6zˆŸ=¶Ê¼z¢?\_²ƒß \õO-JþB‡¨$¾â^L¼™å×:òÇ–}Ÿ=²5B‡É×Zµ·ê=M¯A¼+V-hÑÝÙ„D·'u¨ÖM®mËcèë¸Jæ¹ÊÖJ¢æ×+°†F7væ5¹œìG1Ë®uÉÝœ»³¥Òjº×.èۥ˛­;\­w+\ÉZ,1EDh±2T‘˜ŒFÖÍ6^ä<é=ľT•µ%}ú; NÂ'`¥vó5.À.ÂŽÁWßÔóBûú=Èy¹Aøòžcm–ÒÙÜ•C÷ˆy®0ffdÚ˜’ÑQEŪ6ÆJ¢‹&$©I¡µcV&b´”Š#Q­1 i5Vd …H ¤K%?]Ukð›FÑ2Ú–6ÆÁ¡*,[ié~|?¨z›lÕµµ_­¶­°û 슕ñ¡|m6Âÿî­jòØ´M±lF¶#F7£Îç"+#&µÉM¼åO!:të§:K§:Ÿ²’¿£ñö¨ísI±È‘Kك𨿶{U¶Ú¼Õ‰­°øÎÜ\äm]ÌDîæ¹®Sºnî¸cœä»·.‡1v9\ îé¸Erîîwq1çwW]õÖÕõͦmmKz2Rü5_¯­¶e;ÂAÛŠë¶£Ÿ‹ßU=<:øpuÈy‘âR¹’ß*ø…´½nm…ÊJNymJm l£e¯XlJâÚµœ^œ>ñS žé¦ÚC{¢®¦)ÒOÃ` xôv_„NÄ3õj{ÐõÕ]7½GdOÍ÷0í*z í!ïIëé{‰]`½Å:²]©/m¬kÑFÒ4¿jM™šžÌ¢vUðÖll_\cmÊÉSjæSœjŸakm{¬±²V6’Å-O7nœ¸ÕîV·6Ù™÷‚zX¿Ó _ '÷aÜ´kmµj éáÓFž~¯ºº;ÎÝs¢û/ZÆY%£FZ¬J¬ˆÆ±5,˜ŠfZ×î6—r£ÿ@ö|íªLÚµ/>ÓlãI•Ýž Ÿ|¼´ÌÛ(Ñ;mm¶ñ¶½ åUsbºæîèÖåÚŽJ®[Nm»ªŽk¦ré\Šî뻢ÝÚæº rw9Ç:îâ»F6ç îåsq&$ÄÀLR $&ÄQ¢"#$$ƒ,D“ô•Wé˜hmòÁO^¯_Ñ.Â'ˆTòqujþžM–D)ØÉyZ« …SÌ^VG˜ões½y]©SÔ#ž—\\õ.#moŽuÛ»mtˆÔXšÁˆ&ÚŒ)‰ù mè¡ÙÑîÚmÙm­¢ØÚÛ6Ëj/Äü¶®k]ãºë¹Õ‹»µ³mkfÛz‘WGtó Îß·/Twz]¶3 —=J©ö/íŽêlGšÍ´¸Ó6£žA Js5–Ôl6m/†“ÕÂ?í'sRóçd¿ª=- Þ§i˜š.f˜¶ñµVòYë:ì¹¹´mj1V*LDQL›¦ìÜÜÆ¢‹t­;·d—uÁ+g;œÌ®]4×9Îí×*»ɵXE‹ss ³®®nkšs·N"»§)ÝÝÝ"ÉÎî¥%nâ¹¹ œç &ïgZözö{^ίg¯ÓkoÞFÚ6¯éPéïCõÅ;š]Ê®çjlÙ\kZÅö‹ß÷ÇÕÛ66“IlúJ­Uä’ G¬iÝk›nj‹F‹G6ÜÕÁŒÄIrî]L)C»RÖ×wj¢‹qݪ9Ò×7w Hƒ•ÌZ*îÝ¢´;«¦Ñ¤‹$m»¤ê.pÌm XbÔ–ŒF6Ú›ŽdÕr^¯lÒ;5.øGÁÒVÆmCßJïОý't”»QúúÓÎIU{Øse†¬—hO¿¨ïê§rlWi#¸£´¡ô©NçF‹¬S°¥ÖªóÒ;Jž¨]¢^­=Eéç`ìîeÚ‹ÄIá6|sãâÛc+’=Hz™zšõ1êg§æ:&[4bk_9®îÖ¹ËuUË9Êâé×c›œîüuõ-Zßkm|¦¶mCl¯ÄÄJç)'¶^Ø^ÙOl‹ÚÂý2|i?6°>ŽŒØÛ’ˆ{AoÐmµãÓò¹#(ˆÉcň¦€ˆ£b¹Ð(—uÐWwZ5rã®îÕsrws·5¹ÉRw];»˜†ÑXÑT¶‹@˜Æb-.ê.»pæ¸uÎVE_œÚŒÙ ²¾2¨¨ñbì—ö°å¡¨ÕÅ‹ùšÛU½¶«ó›RyÀó”îj£Î¯;?Åýûý´á³MÓewt˜Š1qÜ¡ûNñÅEyŠT½šOŠ—['ØA^jþhÛ{›ö•«}Mæö7È:ç(1lhÆÅFÚ‰1srEQ´[ޏ* \,wv"sqÜÔnw]3ºgwkš…Ë›rÃ\Û»¦Õ%]sspÑdŒ;›\5&ébvÅuÝpè\w]œáÝ8¸§v\ºDm¢Ü5–a¶m±· Š}د’QCÿ<Ûm­šßüe>Ì–SÖ«+¢ßõUko&£†£mE«F0,ÒØ¦b¢Ñ£Z6Ðk(£QHh‰j(›FÆÔ’‹o™s2ÛkÕ§ðjCúèù¸Ûì•ngsQ«£kù}Å‹µø›Q>Þî ¬"zaª}0¥r¾ÎÓ[d¥™F˜¶™ˆ$ÅEkhÛmʤkk–+%`m³Ç²:ùz$uäôEÕ¥Ó®¾“È/J‰÷K§ Î]¸¥ò3mÈÍ-¶µº W~«"¤ Kd¯õÄS©)÷W–%Ñ»~ «®‹®KûÍ¿¦’£bÒDÔRV/’­ý–/caØ¥Ý$?¯«[E¨´e)¤¢Æ¢ÃŠf’2TÒ…‰# LŸ‰k_gjýŽÆ¯UW+•6æÉž-ÅUo²óìV4mF¨ŠjŪ½uµíÜk~°¢¾l‹çfI´ÈöTòÕŸS¤ŽŒ¼\'6Ìl›em6kP±±h”†Å¢À1&b[ÌŒ±‰Cå-ò{¢óoEÔ}ÉΗÐÕP^’~N6›m–ÆÂÚ¯VUá î;¬«6‹ºþÝÅÁÃl4Ù´³6×!Ë@]|/\ŽäŸ‡SÔ«ÆÄò¹ÇpÙ´q›Ž8¨´â¬lÈi#tý5«í*¶¾~ÔÄwtþVãa@Ÿ.GQ Æ“åm±òÒ—•*]’ºD» óã²¥è#²•yó²!è¤/Cv:Sþ1ЧÅÖcm_àßïžn“ŸE8m½ŒÔi6lî¸EqÝuÝÚîîW\è\æ×0Š(çmI« µ¦1´bQ£@F!#®¨œéF¥ké(º®Î.Ì_wÔ)ÎöJvQvQvU;Ò•ñ*]l—Ýq‹Ã×WÕ¯S²Í/•Ú­¯­«e·± ‚jµ¤¶ “b×-“Œ¸·6;®1j#¨­È’Z£\‹+™;»\®nqd’4–ÝÑÛ»¹ÂÜ®] Ýv9Û”¹Îsë—\»”ÝÔ\ºl‚$ƒn¹OKV¿•m]ð;âì¯ß¥ô…ò O‘ÛDÆ¢¿ZU¹&·bßµÇýä’ñÔæ%Ì+Ù¥ßíµ´Ù9‰öÏ‘ŒÅ› §Íàª:ÇVêÞ+ÐxîkÄÚÛ•gsb˜UÈÎÛmd­Ƕ•ñö\km¶Ü¢‡?Þ¥—Pþù±?;koðÒ îµbL­¬m[¾£m}«ÐѪ11£mqõd-BKE«i¹8Ük±é<@ªæˆ¹àâªÎ4ã‡Û3M™·ïþn­Ø!âKµ›ñ»ìæûá»»™£Ÿ~ð׸îî슶ã‹qrm´Ø­ž¸^¹º’õÐP©#Úªö¨yR?ÃUûâ÷ÿ5#c[ ¸Æl[>mÐHWÞ¡ûÚjÀÖÆ6Õžòµï-^kä°dѦˆ1£Xµ%Þóm~lŸ®TyÅ=²½´9Žk-µ™¬È†bš"4D²RÐ4˜Œ!±j [eQEE­‹ñKsW.ŠÑZÑj-wkš˜Îs—*ÜêâtÖå`Úƒ2‚1¸nnlkEË”\êtî.k–-w\‹\Îv4ëÝhI­CE­@˜$P`£fµaµ™´×NNu±9¼Í[mk|ˆ„º³¦ž¦õ'©|Éç£çK€ÛévÖ­z?åÙÝtÝ"¯‹µkø6¯Ø¶?ª®éå¶ÖµçyÜWwwvwn›»³¹uÑÝu¹s®çsº®»vºE#»¹›¹uÔÝÉvNçNë;†î$’]J‡;»®ÎÝÜîSwwn‹rµÊ¹±¶+š¹XN@LX“Esjå͹ª-¢Ú-ÝÕ«–åQ”°.ínÝ\Ó*‹nZtíËQsFeuÄk”UW*h×-ÄìU(ÖKÉU%´RVýÂ'Ñú*h=|8lß7ƒmu4ªœÊ¬Ø]1²uVm¾.gò(‹²'ñ -ëû®î¹JªÆÇ·µ{}oÛUSîO¹>~fM›566ŠÙ*öÚõoY¨&+F"Œd“SI%&Áh% ŠöÕ~ÚÛmí÷Çý6Û÷BÅDSø;r¢æŸññÃil•l·çN5)°é_pS¿‹ÀUml›[m£À8Þš)?9 ëÔÎÁµ†Û(Úuþ¢ áYk\*‹åBðvÛax9¶'>¥Rû —$¶Ù´m[ ­LL¤JJɬÌ` ¯Q·Bm¹Z4¹Šcim6¸ ˆÑEs’Žë«©sº3·i \pàãŽ3aÑÕWõÒð[6ð^îJ®Ê/6/7N‰þb‚²L¦³öXÑhôòÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿë>ûîîà,Æ[h fÖZh­€Ða6  CY† U«$…V˜6-mA³ “L@kJ¦D„$Û$6Ûi­k€-›X¶”FcLÚÙˆZ0I²°ƒc"m}T軈} ˆ„T¥"`D(({Ú¥´ðô*­ç NïJU@_` CM  4@ª• ¥R©UTªª•JU*¥B©T¥)J (UJ¨J•E*”¡JP¥¡JR…T©R”)R”©JJ•IIB”*@ªT’„ª@R©EP¢‚…¢”¢Š PP  @ P¥ •*”ªR” U U)JP¥(’•P¥Š(P%*PiTi (€@A @e@2 h(PD! !@"ª)) ((@€TJP¥@@@D@P€ï}U‚`XÆ­…­Æ"ˆ X"Û ±‰±5­cl¶hŠ -V´¤€Ö…™%¢¦³L ¬ÛF ŒƲUQiR‰i¦¬1¦šÑ³Ñ€¶m°Á –Ã+A› lÔA–Í“,V)™aµ´Í–(‰Pla˜E™²Õ`$ £ ¦"h&ÛZÆÍj°µ±#-Y²lØÂ5’hÅ¥bѦK …LÃ$61c‘!@ V±™kL Q„…ÆÅ¬DÖ6ʉÌ–Ú6lŒÀbƒÀÔ†ÀÀ #+e  h$D5 mfÌa#`m`´Ö&–ZÌ–À †Õ¨ÛCclÐfËm°`X2A&€(dŠ›6ÛUf-‚Ú¥H@%DAUOÿÈÉ€šdɉ€„ÈÈѦ4À&LFŒ@И4hLšC*§þF#M4Ó#M F 2€4È44`¡¦Œš!51¦š4Ó&€“dÒg¢ž§“Ó6©êyATð@hÁ=OQ°Tý ›ôj§éªdÓÓÔG¡='¦¦Ôz†#ÒfˆÓFhÔz€i¦m5z€ ž©R…06‰„hbžB1žšSÓ@'‘’dô›@ž¦†Èôi=#hɦž”òzI1=CÊhÓhõHhCA¦€4Äh@ @2 ©R„„§â&›L†“M¥<˜ü4jx&ž=i´§›BzLbF1 SiOOOU 0ÔzÒc5=)鑦™M=O~„=O!¡é=OP{Tõ¦ÔmCMC0ÓT J”I †€ 4hhÂd LÄF¦ ¦ é6€i3F˜ODѦ‰„S` ÑM蘞¦ž¦LÑ©†FR~£¦“É™¦j3ÐÄÓiCÇê©þÅEPþÍû›#f—ìæœf8ßõüÛæþ—m¸ÜœnmÅð>o''eüÞ^Nƒ¿ã—Òðë¹ÞZt\¼ž—xð¦ïiõ¾/&òO×ø¼÷~Ÿ“¼¾K¼³gØøð{¿]S›Ùû%¢~oÁùùŸ=ŸõÿßpðXPÓŽ^²ªûØnÌäûìo!^rw¡Ëž_šªé=GAûÆuÝ/ìüN‡ŸþW¨êúïOéù®»]våßtIUKúFWûÖUýü§Köàw»kcj¶bµ¨aDChÚÚ,mRXXÖ*Š4hVÄD„6I1)dÑ]¯ÂÖ­}¦­Wúšþû[U¶¼º¾ûîãE¨“Í1FÛðeE¨¡ˆ.îÆ"‹n~Ù‚?wÖÛBµ¿ÃÖÝÎüh!m~‡ö¯ÌÖ¥r?>~ù¦Â䟾yÌ «mVÓi ˆßÈá”?œW¿¥Jó¢àþ;þmH`¶?R®BþT§ýjq/߇ñ4[l´M Ú÷øÛgÃhå…üòæKôå<}_¶üñW<— 6ÙÆq¸ãŽ/ñoéªú6Qý+aÈíª?U\=•  Óm³eô[U;%Êþ”dèŠx£i­ÉúÔ¿§²u°’KüjùùúËkUôê,QPÊÛ¸4„óùׄ\Þ!â\«šs¶Ñ¢"åÑ FË»iã·„F­á¶æ¼7†‚ž»¹xîî䌎Fá²hÕ\.‡†Ç6ð‹v4T»­\«%^&¹£lg‡NêïЕ㷎»Çuâ®mÊÅ®EÝ»Ç\Ö+xU;«ÅãŠçc¼væ¼*é¦*¹ª¹ir9UÈäar¸î·4ã…Û‘ù'IHH®^NîäÞx]wt•Øóª×ì¶¢±ªµâ[Ÿg×txì¶Üoê¹-Û”],/:÷©QÑŠÛl›IÌá›õëö.Ó~ìƒÀÿç «kvØqÇ8³g'&Þt({Wµÿ«ôˆ_ø›æÊ}ªªHéþˆ¶œípÚØÙG‚PQZØÖÞKZÞŠm£54@‰I&úm½&±4[Zâë¥ý0^sú*f‹5m›*ÙSb»Iõ[_ü”/—x3Ùã˜·Ä ä̼µmú;mîêý—š=Í.š:É\ÖÖÛñ™M©¶ËQµFi4[‹ ¥F-ÏKºî» ¤Ú¢Å¬m¢ÚME´Qa,A˜Å 3E¢Ú1ŒDZK›¢D.\¬G8ÉŒ`º»®âŒ!0†ê$Ù¦66Ö§¸ƒÎ.ÑWöÔtÏk'›{AÔÓº—êý tœ ü‡ãüª]ÉzâíéÚϨÕû:«íÛD´[E oÔÒ:éoÃ;»~_m­WºVÕè¤Uh´Ùµ³35å—)ùÓû²|Ù—ì/ækk[¢O–Ÿ¥¨mV³i£4l~.N5f:‚óêóÕâ+Î?BKÜoÆ$ûKZ«ßûû¯QѨÚ7× sUÝÕ“.kn\¹®n ·;Zh+—åÊÁ›,Ñ©.b;¾ ªÞõ­¶4X¶$`ª6ÃZÒ;×(ºêÖûWvþ]VªÿƒjÔñßÓÛ6?î…C¢ËbsÚ6ÖW+šuÛ—.F×t:n+¦ÚP)D‹]w]Èwt3—\d—ï5VßÞß¼ZChþNãm섇›TU§]GðÓ“[oËßR•´.Æ.+±Ù.ê«¥ÝzºÑW¬¥çOßÿA¬Ëlý~73ÛW Ç1ÝtÙ3»\¶ÒÚ·x£Øf'žìÊu;mìŽÊW‡Tîv«àTwEá”îéáÂîGó”~–Õ…µ‡èqÇ—ýÙ¤§w#î¶Ð¤ïv•ÓÑ9í³”Ú_FuÍ·5ήíÕbsV嬛C†aݨ÷»UîSæ©ìSØ×±zãó•>¬úºoáICÐʧWæ°Ø6­üâØÚx¶äéJ+žñ­±µ(!Q£cFÚ]hkÖ¥.rï¿ÜJ8”÷¦úç+¤ :¡#3#;® -ei4 É!µ*ƒ Õ‹ °éÿ¬Ý©Þìw¹³>n~Œ…u]ê§zï~ Q=üžú/}+úˆx´žµO¼'[㪼lÉkfÃmãfÞ9ËRkm5^Ÿ³\JæÜܫ𱱱R77$£r梢ÇvØ­;š‹Q²æ‹•®Êj6(ˆÈdÅs5òmkÿ}ü¶Û_=·ûú¶½mW­DÃäk¿ºýÉó§¯:yÓº_Ós|wFÜSŒ¸ÃŒãAµÍEIµs…Ûcq-ΘWw.îb¹¨ÕnmSº¹lWwiÝ$n»’ÝÕÉ”&JŨÜ×4m£ ®Dj¹X¬'vÕÝÖJå·XÚå®UÒpæ¸æáŒ]ÜA.éÝwn»›®wqé…¶oÒ} º蜕R¹ÕNú&Ì­¶wúÕÆ¸Ó…ÿÜÈÌüºSîdlÊúGÒ7Òÿïʪ.ìGEðåNì'EyoI£wtb±EXŠŠµÊáŠ"\®@Ìî¸r±F·JwT›w;]Ý).vRlk–®hÑS®´îÜܨ·1¹c]%ÝÈuÝËsXÜ®mÎmËQÄÚæänW.îàÅ®Qª7;£EŒM¤2hº ö¶Ö¯Œlͨ·t¥û׬Ќڣ»Eã¥Ou«"øJ_Ü…øW~KÆ)Òý•Aôîe>´GôæÈ»8ðxqÆ6Ün2áÆx;gHýê's¼¡ó ñ‘/½PK¯x?ñR©èº!ÒâØ6¦•¬Ûrln;8:õõ$WÔÓ*h¿’zýÜdsx?skkW×ÛoÊ××ÖžœöÀõ~ÙOX{j½íÛ ¹|E|Hø’ø”ø…ô縫ðH¯Š¾+âÿ’wéßËé(«­é’Ù«g«ãƒq±§'éÅ+ ôÛ ®mÌPSNìw]“ºÜ§v$wn×"Ì2fwpîtÝÌ¿}µþ‹ESüåq.¸ÜFƸ3túDÚÖûú¶úý¾üÏ ÒR+ûeü Üv ûR‡âÑ_*zšOµªÛY«èΠå ~ÚG¦«ÑGŠåò{ŒÖ›6¶3+Œ1ªÆæ×*Æå4&MÝЃ—,j5Ëdªå±rÅ‹×[”Z\»3ºå‹sW6[–ªæ­Ëp­Íh¹WÓŽº·1QwvAiÎʺ싎ÝÜ’å8wNåÒÝlºÓ“Ðy¤_…>Ömúß{DÞüökìµb¢hûnœÜ¡Þ+m­û U¯ØfÕ[/±_clÏîTG0:JٔLjyº¯ÚUNíØtÚS-²mo`Rìó}•GHžÀ^as'Â|¾Gp¥ô;ÅKÏßO'KÜ#¸ÄxžÊž]oIm K$V ˜¢ÌÐ͉5‹Q£AFOU\2ë»\¢®jÝ5F‡w\×-ssa.E±"6Ä,`Ø×-](C¹×\Îï^ªö¶œ»;³NÌ;4ö#ð~±cìi­Ž»ô”u´úàfx¬gê¯È®{0±ÄE¨&M£$”¦"‘ßëkShõ5FØqpÎ3¦ßQ<"Ÿ¾_[gò¢ƒÍ<ϪxTúìkg×pö„«Õ=)žj¨·;ºælU»%‹E;¹MH‚Q‘Š3(FFºîÄrâ5 $”ÈÅAŠ+ò_¯¢·¯µ¤éwù¥PéÒx5ê›E·Õ㌓ini|%Þ8Ϻï‹ÇoïµµkÌÕ2+F½Ní† ­ç8¨­$lš\ÍFO­oŒù%ß©+¯¾i+ä‰_Ÿ6ûÜqÆfã5ÆîÜbª»;;vR쪻ì%ØS°<]ØK­>Nú‡ì÷šÌfÎñѨKj›Kjm†Ò[Q¶4UlcdÀÆ(5hÛE%k,[ŒE¶b/šrç»’w›¥Î‰µÆã8á¬Î4ê ¨/?Ž{5^‘é'³ìûuOZ›7‰—ÆÕÅ¿8R»²_b¡ø"Oûhæm¢~w®ÞUx•öd}€¾ò“ðU>ŠiSë‘õÛWÌmz¨ÊaA‹AFÔFÁlTTP#,dÈ´md­A±´QŠ,,bÓ`Œoœ»p»NÝwtíÑÇnÇ%Ù3u×s¹}^µ¿]µ^´W=aE^¤«£>&Ûm¶³ŒÕÍæª½;Øõ]:éë§ýê<©Nå³¹^áQ.¤è)…} Í¿}ÊRÕí«%DDa°’&D&(-´VÅF1‹Ùw„Üã£vKœ±±\Õʹ«»­¹Rww:QréË£3•Íwu±nk›¥¹RSºNc”a i\æDXØÅcnU»»W+27uÉ$W2eÜèåp,UËh×6î¶å"Ó) ®UsbÜãµ,lJJf$ŠÄdçS®+—\5Ûdؘ¾êµ¾ä£El¢‹îŽ]¸æŠ.{å«ÀÖÙ’_‘Øø_ tÌQŒëkû C2§Çtwbyõ~BýNã[jƒñªGÏ Õ­ŠY¡¾x§›Ù¶6±¤lka1 ‰zÛU~aþUWz´ä&O½èîã÷û®—\®¹uεãÂä^é}½*tÒ_?Œmê–ãÿË[Vòj¬bQ¨³%DÔžŸwqvË›¨o[o ¾63óoÔ¨^±Nío ²ï1ÆÛ†Ö× Þp·ù”‘ÜPzÚ6G”éUóµiKוåç'5ãpÛkeµ3Ff1XHRš1‹&CG¨ÜÒkrí \îv¹F5ÝÚŠ“hÚ1¶wmÊœ®ŽnÝ,qÝpé†åå®dÜܱb±­rÑ—qÒ\äÅ-͹$b‹lræŠç5s\îé]×k‘±c4R2D0NêG]wŽwõ¶½vm¢º™È•ßí‹ZÛ%°Ø£æbÙ,ƒ²SÍ_1KØ Íø—àjj’EªIj÷›}àöÿ¼E¼T<ÞÕO»¥ñNЧRP?Ÿ‚m²²‡‰®.$½Š®²÷©^ÊÞ!…r_¢æÒ~.RÙ…lƒ¼Ö”÷’÷ôž©?‹µ×l|$wÛGç$¾F¯Z_MT}:fÛlÎð×È(Á%à°E9 zD®6Ùôʼճklò¥'˜^ïlÍ® «é$íO¥úáQëOV=Uzƒ­wý ›Ñëe8ÈÙ6ÓbÙÅ»¹E·,[êÔ³wkš¢ÅÜÅ‘~rÛ|•¬M¬1¦ž¸íƒïRù‰<¸_¬};oôT§ì$^µûYOж“[/©¿½¸ãqÇäãô¿¯*jO€/ùÜ¿ù›ZÞŽ­j¶ê“,‘°±$šDλ‰Ž<‘yz%èo@ëýÎ¥›6þ8Î.6m߿Ȫ«é!ÿ0è[Ã’«—KfØTkKÆÆØÑŠ(²4V 5%bÛF¤Ô›i‰±IˆRÄ’‹äÚ׿M5ñvÙÅå¥Ëð øQ/€‡†•áÔz¶ÔwzÄëv0ô›>žª›VÐm£lCV+`|«|ªù^]j§À…éǤ‡}EÛ§‰ë©âú†Ã¸%ÙÅO_>j`}ü^Å~ŽÈy¹çmmk|š·ß~뻽{Çuâï —‰án]ëñÅÆÜÎxU^¢:ÐõB®’è²ã8Êk5-¸ÒcÔ=CÝ÷t/°>–¶Ñ7wÉûÑ"ö”¯hh•íýïƒ+)3fÒÙm»½7 ÞR½Ú(t¬VÖ1 lF‹ ¨±£mm¶²Ë2Ïþ;ÕW{~nÜaDì%z}•ôºiÇãDqyâóÏ=yÛÎßbñ¢/Âú;eóï‚©/Pi⇎͛me¢ÒmФ­ˆ´Q"0“@dÖ5¢£c[ƬQcH›M¨Ø¦¬òvÛsŽ;µÉ¹nmu2E’RÜW) Ì„o&­Wݶ¬51—w¶·m¶Çxë(¥èIO”¿‹¯W[k^F4`’§ŸÔ\¨¨®[;¬a# £ºä—.Ý'.îºQ­sk›»µËFÜ®™™ .ëŒî´k•ŽVå;«›nmÍQ9´\³®kšsk•¹®ÖæwnUΓ \‹Fæ·Im‹dÑ‹¢îèËv‹¸é³véÉÝ×K®q.oº¶Ú¿q[|WÅ«–9tÛ8ÆÖ¹5÷•'ô$ÝGwÝçç—œçy…<ì©âŠîäÍ“†ÖÜkoáv2'xïr_Sy/BÚ­¾%¼ímzµ1±¨Ø­KÄJïç­µóñé¢yëÓAçÏM+¨è—SûÊ:«ÝÃÛЄvz›Z*ö³øU/–IæéõcÒ—¸p¤{uÖÇ?ü—w%;Èõ¸Ë½Í˜¹xî:?åÛjÛÌÆb 2D’e2±‚”¢Š°›I²‹½ò×77MY66¦ˆÑ£—*Š5ëhÔ[«‘h†¢BѪH£cú:ßµR— GŸ}úSll¦Ø»æÇ;r¨•ÕÖsl6¶±¢´X­¨ÔVŠÒ•ÈQ¤( ÄÖ¨µ,lÂ’$¬kHÅ„£ 4$±)¶ÝRs’uçmá”N²zªKÒ¾ŸeÝýw¸lÑÂú°‘÷ÔƈwñÅ¥Tèo¿v‚üj)ñ ù þ*÷úÁuª® ƒmynU\-q¹µ$Æ£D@¡kW6m™³løÁ]ÄNâï|ê^û½¡ôªž¶Óm§ÍmÇïùK¬Sœsµ «œs¶¿j z]l{ª®¶{©](÷TºÊ÷4u·¹“мDSÆæÂÉi‹h¨)­dVÛl÷1è½Í^Ùíâç7Vs¡Cܫܧ¹sä{’÷#Ñ¢þy~Vnûn:¶Û{í[ï/Zh­¢Ñ¤ÐC&¶0fÚ“5aëvmÈ\8c†×w\Å,m™6“ZײQ·,F¸ ¬»´N컜Ôk™Ý:î§Nè5ÝÕÓ;®£Gnë´“Îâ.îîì|MIàãc"oW*»ÜÍ©^ OÏ zLÉ3êÁÎ$vÛIw!zR£À•OÔ_Oo§í%HüõCòD:ôW¬«Õ×hÕÝæmµ¶Ûz]œ"«ª ¬už³Ùó/+¤m¨Í¢¼þ—ÒÎî`FÄåÝ×Mîî¸çn;«åÚ׸׻¯—üJµªüµoOjß’1ªOäuòÔ®ws:º¯—É·—D.d[û‚OI#ø^~c™Dxf•µm›*m Ÿ–ˆú´¾´úÙ™›\lúÛÌÊ#Úííö”º¢½zúwr»¸ëéÏ sçîRGÑŽÌ»3ËÔìó®¾¥y ‘6˜Ž‚œka›3lyÄôcz Jz-6Ëù{6­Ã×P—«¢_UÕù0O%ywÚþå.˜^LŸkãkk8Ö¾3übS›[iXld"& Æ`Ü!—wRr‡u‰.mhª2WNîîXæÛ›]5Ìî×LZé‹‘®îîîî™F.îIccÖç]ÖºZŠ‹»¶¹µËr7J4lL¥‚"‘¨.îœ.ã'qÂ&'ÊÕ·Ê6³äß*_ñm±WGS÷UÛb4ÚM¶Û)¼žY™q®8ã8kúœ8þ¹"éQÒÇKx¾…› lX†,@¡chéWI<·¾GÔ”ú“ú'Œ©âÔ~,SâÃm¶ßþ*§=ÏÓZÍY\áUWœ­´kF 6¢Å‹‚“"­0É’AŸ}QõË _)ðõ ­SGu™³·¾¹=Š)zj½2½2ôטbó$/ysº¢ÿ‘wVÇuæ) Çí“4Ùl›M­£b-‹b(ØÆb(’ƈ¬$D,A¢¤Š'²w8æ rç8niÝ×wkš¹Qºé6"ÜÆå—vÑ[¦9ktÚåF抸I¢Ü s·+¨Ñ.2Ü.j*-;­×v®–6ææ× Ë—4m\Öç.ÝÃb­ÎœRbÜÑW)Ô›sch¢æ¹uŠÜµsÕsIˆ(H’ë®ÝÜî5Üæ¿iV×Ý_h°a›ºÛæÿ³BDCÚ$õéÁWµG¾)×ì/|“ØêÔ½KØÅïBöJ|À½Å±|Èžæ§È¥î—þñ<´§»¯wG!ÜïvÖ~:DxJ^õ;JN¨ŽWÓ”î<œ…^kKm¤Å’¨6¨Ö-dˆ´cj-&±AE%°Ì“mE‘±V16Ô–FÉfúÝbpEÝ.n®Né˜Ëïu­ëV‰¯Yk»»·9†Xá³ÕÑK—ö•\è>?9úˆG+ïÞÔõî¡Tuã§É³my—³6·—:ZÕ{%è´V®QZâ™jå$ˆ¢6°îêîåQÝÝÒ³šŠ»ì]~µGÂ^(Ó_>"w-‹[6]ÓgnöA;eNPp¢9š6fÑm, ™û"»U™ðsoƒûâ'õ¾‹àTîõ¶/ƒ¶Üe‡)T¹ž&‡öé=‚OÕ;Çø"Ú½‡°mñ[[·u]C feEˆIš†’Á´hƒV5«)4š5&Ö‹EFÒkI£A ´ƒQh­Š£V5„ØÐZ 1 Žã©Æ»»œŠ4° ãLçtÝÝ;¥Ös‰ŸœÛo××[_=½å«ÝýnÓÍ<5ìSØ'¯W¯.¯×UÂwi: m³mlwŽmŸÚ%OO^ý<ðó5c¼ª;Í¥y#ØÛxS˜é6ɰBL3%¢ØÄÆPرª* "Ñ©5b¢¶-‚¦†a¦+¤ØBˆ´ZÄV™›”Q«@ÁåîK´\qq¶³3÷~BñIWŒW±êªää¹9”Eúd¿p.Íl¶-¤_¦¤çTŽûKPçöÜŸ”¼‰éþÙ6M†Ùµ²&Ñù «h‚:´êçUy·ç/Cóòlhµ·´r£r¬îîr5Ër²m‘"ù:­·Ê[E¦Õ¯¡›Œþ'Ô Í¤§iä|™/ßøyZQ;úSÀ«¿ÆÌÙµà38Û\ˆ¡åRs ¸ÝàÛh66mµÍŒdV-\9uÓrÜ»»CA®Wc$¢Œ%Ü6ãqq›DWË=fÚß³EïŠ<56flcÀÎ7ÎTU{´/ƒ6­•=t6ô|ŽoÎü¿Ùßgêøå÷ýŸýþ£››rWíý÷CÍÒt’ÃÊý×ëôÿõjŠ@•5¥pŸæßßþ¡þ´cúÚÇý‹Ò^páN‘´€QÍ( þäÀ"à.ÈD29Q‹2üÁh×B”À0 E>Ð^XË—±cVz¬¢‚À៫ÞÛ'38CžQÓ ÈÐô ´ €¸ø.\.~[—Ÿ^—"}‚yƉ¸0 ñõ¿ûü04 !ÑDÕ8*kþ–¥žüá×L1ZÈé¿®e© QÊCi`Š)I^ú“ˆ‘0c¤t„ DˆB rƒ)sκÐT/øÀ¸\ýA.K…)%06g€÷”Tî†i¿»p²5®°ÖJjÉþ)‹¨‘Ì[Ñ fô‡#¶Æ½TJ ‚?`.j 0S44ÔKüûÍ6`‚©ÒƒJ‹êBoõ1ü6¶¦ÿß\²ÕaQlLå¾—ûØÈ¸hƒn,AqÒÚù/þš ƒ²\Œ}B»þŠOü¹JH§…ÿCÒü×í>gñÞ§›è|ñïé(íˆ+1ã¼×¢¦:G6,\Èœ«u|>+h飆GšìC†-Þ¯z›¢¼Qøb²§E&J…Ç*K2 äf”p•¡…¶&úø»Ÿy"·ÒøÒÎ6>í~›²áxXð–ü÷NÃþ.ÁÑKÁìRn—<Ø.Ø ŽšÛ×í™äèá e#. W–¢»¨- Y#¢™O‘è/æ›dª|Ö o²*¥é'=мkO“Géíçÿ ¡¼©.ãÿ‰÷¡Î‹§$×m’ð/&ËRº·a%Ȩ*Óþ‘qb€E³z2wâ€ÅÒ!KÝñFý4t]h¼bqrn‘?¡³gÕïôwçô6¹,(ý»26ï0Ø-½…èì^'îj ¼>2çrÆwJ&”^oü³šiô0]:)—Ñxäñæ¥ÌÈcÙãž ^P‹†ùmB¢ <„(5¬£šAãÕÊ$C„UÀ'ÿ«ŒX„nÏôðQ.–32ªXÝ–hJÀ®©ä¶bsv~ƒšœŒÞƒï‡|Ø ,5ѽCöFØïäÎÏï£`ô“ˆ ¬G™Ïv¼æw\•º!–KNxcBáe<l«†é„n“a³råÀ8z´#^=U·ëò[=ý ‘¢X•QN-À§TÆ 7N›vKŸ++ÝK·ZÂgD”$Iƒö×’Y@ŒÎ¨Æ-ÑË䨫͘Žãäȹ“O‚ƒ©Ê:ß>ÍÛ Û¦O•†^”1Ã%{f£E‘¥ÿ´?î”Y'¶sÕb tE/Ÿ]ŠéJÅ 7ªµ'Ÿ…fZŽÿ,Îqb¶° ߎ݅ˆÓè¶ÎAÓˆÃDÔÃ\x¸5$z«×N:rŒõ>¬8‰ò‰¾Ý¨ËY©ì®€Ou‹¯…éÚ–yè «‰f]ÛöP÷©Y|Y07Ü¡ÝhŒ=D |—¹J¸WKgZog$…+Êh¯ëœvK«™W{Œ5î çËõN&~_z÷ÙŸ;Ž_þªç»¶—Ä+ÖÏr¢4 O^0»^äX¬¿~}ýlÛ;}Ä·Õ¼{2çÙfyêd.À±j׋¨qÍ1¹{ÿhÀáõáCBsGF@Ðf>ã ®þ.]MýûÏ%bæ,ÎÕ”P KƒŒ8d“x@ [S™pú/9>}³Ý^ƒÍì Ä“¼…cdÊ»¸@PsŠÑ]§Û)ýpŠä<ÐRPHaBA›AN€Ò¿¨zX, ™!ç ÎtÄE"ÊA4òÄbBn¨âé Æ!„Á’˜H Ú_(Sx]zêÕóX›ÂG E´¸¢%›fzìÀþiÕ ` ’u–Ù˜C®´Dã_ٌگàÍâRÕA›[mH×VZósÀ“ì3P–c 4á2s¥¼þ„áM£°ï åw°°*ëË?­“‡shöFöPU|nÊ9¨/¦–°QÆØ5(…‡?n*GNÃ7Åsþ¬šhÎ@˜âÑÚ†Òr<[„TX'ÃyP¤Ç¯t YêU¦’õ?ÁV†Ë›-£@ÄD!ÒøÎRVSÂï{"¹£v É<|xºr£'NÿR=ŽžÈM·ÕªÇ@#LÕ\ Œ (‹ƒA2€ | è°‡½¤#«Ç觨|}º.AMc—ÚÔ kA’€S²B:ñta—›ôK”ˆO ËXDâÆ‘pNÛ«¢cPwñ  ñQÐâ£ä¾->oU?¶€áVwø¦gÆOƾAöé!õ¼>¸ÞªÜÀeµó!c,¾H:iXv w nƒV)ʺÀËıY×òP°+ÐêÅ{[÷ÄÐÕ¨ãõ.ÃUíg^ƒ¥IørÇÍ#Ö…}kEãŠÔëáÃQQÑÉ_|ÐHÐ¬à‡²9ñ:pE_90ôÍ$°¼Ž¼N_{JµlÚŸ#ÎuõÚŒòŽÀÎj¦[Ä»à6 àˆ>jO2[…ˆÝ™ð¯À¨¼Qçý‡ŽHÏJäHw†xb ›³íÜu&hTœ÷”4™AËh@e]°}èàeˆ¯lCäÄf@£ ƒPŸ +Y1ŸÍ‡Ð§Kf¡´î5©]f*­'’‡ŽOÒƒø BƒLJà12CܼeÅ/ u*Õ³%“ª2¿&½T§ö'‡9ÑA `òJ}v@ýLŒè¼­#7*îÍ:]µ¬„..ÀQîâ09õ¥T·3 1(Ç EŸR'q „„ÁJN×^Að4õaïQãT®íÅ1´©ÃYhŠvŒ©Q3DxÒ¶Aú\¼êOkA³æÏ@3`¬^ڌ߃p“âêŽ9…. IÈVä±YÚ׬&µqc´1Z*Ó„ ]šÔq„,ßO­Z©/¼"yCY‹,nµÈjÂL*²`< ­5ä’²ÂK_3,g“Ö h%Z*hËkÅ ¬„¿„nETˆF§M|ãõ–ôB ¬Zœ±ŸŒ_ çèò½-o|¢Ù7 é6׉XSÆ3ñHŽ{îÿT+ËÑOÁGºæMt<,7(L‘Qéî5Ç‚”T „\ÞÁBN‘¡ä'·½Z>>÷ïzŸgàÐærûø‹ŸJ—$½vX[3C>š•ÝC`D€Òëר•ƒêÉÁãmPúž*l¨nr«#c¨´WKT[nq÷Òq‘Q}Åé7X©j¼±SÏrÄ´4)"kÛ{:[Út¡ËcN:ð⺬{[BÄiÊB¢3Õ’ «IjvÜraxeÓ,:g\q†bÒ{°ô*öàSÐF#âã‰Ù‹ÝV4ìLŽ­L.Y¾M‚žKÜèªOâ‡àõ&_>†Ãúú¯ r);! SÉ8Fɉíx”ÞÔðž'b«ØÆ@=ˆbC¸˜ZàØ&ÍšôËXú nQ¢âcr $ö7¦Á CꦪPeᵎëíIgH¤¸e^@ìd²\*¡ÔÆ#…I]4ËZÉU½ÖМ`Ác¢³žìZ^nâ»yãæ5fÿ5{µäƒ·È¤YÿzâŒo™\¸éíê‘=„žÒ2•u‡ Ù2Fk÷9¤Ð{BDBŸjnp™ ˈ³fZ§GaZŠ,ãHSЋÄ6é;ÈÆÞ%÷_\[1âÊ J&÷rÝo"Î=+ûUØMرDVø„ð… q».*}†©\ ¶(Xš)vI^ÀÓb½ÉȺ1¯çæèë—¥«ÙâÕ$Lì©J°nt‰»DźÿΓB&S³—/§\Ș÷©„™*ÒСþÊæauý¾‘!EÛ9³˜ð$° 6Ÿù€Ö°ZÕòõ«Å~-"x.òÀ^‰sªÿ“-{Á扡`åѹVV¬€ç¥YÐp™,›vzÑ×èv¬ö{5‘qgmŒ>‡:¶ÊxêöH£QñYé4'fQ›·{Õ\"ÔˆN¯pd,Jéð× «jÚñÝýQEU÷^Mž »Póâ°5¯Ðœg¹êqÂ^C!¢þy[Ñ5°µ‰R×G¬gP6Y†weuÿýï!.rL 5ÂgPc0f¦H×j]·Þ`=N´C(È3±CÇò±7‡eÆàƒ‰Ñà;,@»,8TSÈr‘-–è+Ú ó$² fzaŒù¥`÷A— ¡×€ñ´ttƒ/pPèçÙXÛ6ˆ7Ãc4‚_r¹­§ Ú°óîßÐÀ¹‹óÌZí»8Ãa[V¶hc[—:¾ É ?úþÄó\î>Ò^ݼò_dxï§þXkc•äŸ*ã™hIx­P9ˆµÐ­]ÅyÕ?º8b˜N½¼@ìK‰]ø‰íÀ­²ÑƒšY6túÓRàë_}µ;N9©B™?÷TÚÈú„Rz÷Nïx-iÔ™8ÂA¥èZ{õµâ·w¦™áës/jêš°»Ú°lÛ‘³È]@z\ŽVDGêÈ»h] S)jèùp¢ þÁÌÔOB¥g°n®™¨%aQPãE›ú„M6~Õ‰.iQOUëçŒTùç­{=kÈ]f°ÊÕû¼ÕÐj¦`ำ˽hõ"··µèÀªtÆM‡BŠ2¸xŦ–Mž¹EÔ“ÿÖ°saE¢éE Dê€Âñ*@ˆÀhÍ™LöfCPö òÉÁ» Úûh˜!œ¸|Ï?™÷6¢z‘.iÜ`Ôg²>/BÔjüã$­¯SA«Ôñ]þ~óÝ6íÇ\\G–Ö;ÕmäEb›E ÌšTs²D W¯–€•Á¼™ZòƒyÓÇ£ÝàH×y›ü<ÏÈîÎýsmì¿ ‰îʺBP+±[js–°A|ª²„º­‰Iø~/DU·,_O¡ ÷Å®K}kpƒ€QVôŸGÀ‹D¥·v|ºrë\i½ëÙ?èž¹ð“TùýD—½AÓ[%ÇLà˜ö=¿s^ï.`mMëéá5ÑËþžˆ¢úöŒ¥Áå³æÎ­‚«8ª5¾¤®‘_þS2ÕØï ü`|oñ¿pE‰ÎÚÓÕ‹ÔA[YjÚelšŠ)•ŸîrØQõûñÑŸLmM1L?‡'~Fì=h×ÁFx]¤ÿ)6{Â/á÷5Mt ºÿÊñ˜”h$©ahv%úÎãËM=vA{ÝB±Ñ¾Yx’.ªXs·BqìjZ ƒ—“aäšT† 0ˆ”¾ˆÝí¡t†Ç·B·r7ÉÖ/.¤àfÒ¼=•Ʊ%ÏÎÕ%&¡\»™¡mN´n¾wDâ)ô"t¿}ÜÎMZVàõÍk‘™Âä$ãDbEÛÚçlY¤9Š_,„?·þ»[Ou%ŽœxÖó`ÉÒÑ0Ó?£bÝÒÛ*•Ã|ºï5fèòò¤Oµó£îÓÉÔy’<:`jR´-Ø þ´,™ùÇòY2!üíUÛ³Q-q n¸]ÿ õ6¹:»r¢¬-^y;ßå³–}EÒ™ƒ…†ä˜O§ÜPõ“Ý= å¸+UÇ®ZÀjªn(]Ÿ-î–÷º;k+ÑèÃþI*¤š!uú©–⾠Ħô;^X-|è¿EåSül4ü;U'ªNG{¢¸Ô<ß@N¤ÎÍ¥«cÒ÷ºE˜\ó{Ö”Ùl¡–ÊÞ®þý-’ë«ÐÖþ©¼¤ðWN. ~€b «©Òë0\µ8žD¨úºÜgä/\ÝÙ[ßûÓ;µ]-Ö!Zbß`ª Æ0qŽw¤°!‚X a˜®#V¯›{F¯ üú¼‹Û/¢jó/‚ý#Âó/=¶ü²Úöëעצ¹o*Û•àW6+“KéòèõWy©WOŽmÐç;!±rex¬§.‘ɪê4äÇ3f‡&éç5kžš·¦ª5{6ÛyÞ‡msW±$äÃj¨nyhnt!üù@ú¹ç6^e›#|e?{ßÇWd_ƒ‡.m¸V"^ýMBÔ{CH ƒªÄÕ FÈ…Òt%xd„CÍ!0FÂi9Ap˜/\=_[3¦+;âb Ja (DHðî{ã(1ÚP "4ôˆ£üÒ‘HBóˆï ðoÈR þ©0HøÆV­Ô±~êiÂ܇»:Õ¨µ½-¤N†žÄWÐ!†"?^C#EÛ]ÚÂkÄݳP ÓH„!P„B>øAØ«GÕa€=—k ~Ψe74¼ÒëÍþÀuÇñ;wVÇ®Óò½ö|ykŽ©ŽÅ0„ñvG‡ïô´ñ³Ž÷Íá<¨@óº<ÄužÀÊã@!ûÞbŸÚ9¨W †Õ,GöÅ”bÀ^ÒuIEÖC]"Š3OÎ/“ÞÐIÍO °üæª' ñ©¡2¸Bà¼x÷CÈä’&ØAäè/@À ø¤çØFlÆúùpÖá4`ÔÿQûãÈ-þW ­ï…FC•„ghÜäúz€`òº`õå‰*Õ2L o ÁÅÎÐnoú9f°N½p’æÄ   šÐ0y‚“÷3vEÀ·±I1n»÷;’È¡zéä½çUó•O õ\ù꼑º…a4¼xŽ<œÑe‡Žk'c¬—‹Çãý·¥ôo`ÚåøÊÜѬh¦Û6ªmÛè’Ø6VÔlH^£(ÚKŒ¥l͸×&:ˆK™÷Šç¤'0³B+ŽCO¤b( š‘ÂKÎåïøa?8Ýi>'Åê ¤â½ã@Pü<;eŒaööaä»Ä¿Üoï‰ü ‰RÝñëë.ž ×Ó³Î%ãÁ¹q!¸Бð»ï›Ä‹FG3C¤ÁÕê¹t¼W™àQãõ]vœ¹N¼V#S.L^/N‡\ÝíyœsÌq—ˆÑvšžk\ÝsÛÓg–Ðå×-ˆ¹š+¢ÔUÉ‹ÏjŽ4æat<œ ñxré90¯¡m%Ðj›dsÙÌܘ¹´¹³Ìj.v‡I¥åt¥²OC©å0æiè´W:‡ˆÙ-¥ÆEÍÔžcEÑaÍŠæÅ=—&S Õå°æÔåÊõ8êõ\˜_Iœtœ.«N—ÛUìõ.{OiÞÏç{o3ؼ9·‘W°úïOéü—ž>qóAzŠô^÷ߊ垧 . GåÎáÌ*YàD ‚p=¡(n4? múŽJ ³ƒ¸ZÛã ò<0ÂBðYï֫5\ÌPiÿA´Ý.H«7-Ìåµ;ÿdžN´ÉøâXp1òØñq†'?tDwSÚ‘rpç ¾ ¡¬q×|Q†ÃŠ´8OFƒ£5иÃ?hü\z¾>¥øU0?2‚õz r* ¨Æd¯`‘Óôïvuö”ŠNáqH´\OÝýHh™×Ë›Oà0œN °]Ý'»A8û©ñðX„`N(£Rn=Ë»&Š©·–%{  I<=4ú«Þ‡Ò™œøÎO‘½Œ™õ)›FÜ(ÙŽ¨mŠÁHÔF¯:Ë‚}ÒÖOÄðCæRå—ËJš±f‚÷@ë»Ý@›ŸGYM}K‡úe€·}e¦%« e¯Qe†þ‡úñ·¤+ƒtý,ªë’~ˆK;ÅÒ‚8µUîð"`ö5o”·§¹tÄ‚Œ®ÐB¼p©*œØ¢³ò0 F\-€(L‚r Cb‰ÅäîO ^Y~P”“1U)P !žÖ 8/°+<̃[„Prä #Õ4¯ÿjõÅòtqtCâ\ FÉšŒIÒz^WÓûþ,t¦VùCÑ0=LÐfz²%±Z5Á¿­µ}Ê~â!a{…. ´ {d:µ }œ²' Ú~W¡æÇª“æ#pà¾1[}þ‰¾vûêËx©d=wöܵÖyoX:Óç¼~d‘8»ú÷mf²… ™Ó¢ƒw7”#)MAƒjä.™«;+D Œ‘Nµ°Ù{"¾„Á¸9žgßKp÷<Þ²¥TÆœiðÿÇ ¶„øLÚâ·%ØÑlË“™€5!ùÜ™%¨Œ¤*EÔHôê©QÜÔ ¦TºVa´YwYÚß3‹Œ ©‘–|›Œ|£ù;ºó‹+³å!ûåmOt•ý1ãFœ­\Ü4JrÚòíÄÐYò…šh)$ESºë*M@`6(²ètZ*Ÿb¢¼\6 _©ðþD¼ÑÒœŒŽÔW—j72ü¯„Rvú¥h› /ÇV¤XÝ©’k:}=jñù…&”Vìz† ÉN*¯"oÏËàß!ÿŸ××´áèê[êë0÷m;p˜fTãa‰Ö̆-†ß×}©RÕ£+ .~#bÒ©Á0&B`ÂÞÖ±¦Vò)Q„ŠA.¹asˆÝCzÇEÙ‹ƒw/z|sžÚÏ'‹'2!ÃRUõ¤SÞT8ÇÍ¢šdx™‹{€‹fÚõXy}%Zmƒ'ê肸î¦ï¬G.îèÎ_¼¬/ÀóãâЙ³¢$„æ$%R^ýØ7˜žËD èÊs€m—¬Ir|Ü75ßâÙ”XøR¨8Ìž¥c~¼9ô ¼Ÿ ßZ>.8AI׋›ékA¨úEWC7O¹à”ÆÁ\íÂèÊí  qò^yúóÐg™è.N¼RAÁT§Ø®yô²Ì"n!CÍ]ãÁ(j|6 ¨5eÅ3MZT0w_“Rƒâ8dJn§FÀ[›Ù"ût¾¾óG £ÃµSŒ°ön™† ž™YìúÇÛh9r쇿̠®~H@9€LðYXö¨”Q •ÛI y)(o\†0s×>öˆ)(HKð{‹–™Å¾¥ u|^ðx7¼Q.´Ç^ ny D‰}—Úk» Ù ŒoסL?¼¶……1•˜i—hŠ ~Âú[íBçØÚ§/f—nâ~±û¿‹Ì0j-b·´oµ«ñß?êÐ9P“胸•>ǯ Å|S¤ðn8špå@Ø¢eŠifYÔG4\péú)ˆgDú†ÜþÚ(Xè«£¡©‚89vÔ—{HB8¯àO¬o£'çù¾eÏØ°d_Ï%ɇ«TŸøø’ª43qŒÂA¥ŠR†ªT­òmòW±bâœmíT« S,‘ÆX³Ðl³¿@g¦½ ¸ánÈ4Ò FÀvVJ ùUéË4x;òáÿé/£&‹Œ \Ӵ๎ æiìô&x_„‹k6ïs†B`­¨Œ&1<¼CÐ…ãR¨CŸÆÓ‡L÷Æ$ ¸vûU‚Cú÷<‡î·1ÿGdFEhæ£úkúai)—e]ô±µ}s™È‹%ÚÔÙA„8VÎå¡xÖ>´ú˜iPm™>¬°6Þzô2gvyÔÄ&Þ¢Wv保cF"ç“_xÛ®“êÆ0üð e—ÉÃá DÉ1§4×R6XïòŒ"ŸQ~`èm¾-Že öùý÷­ú›Øš ~ºÇ6‡~€[ª![{ÉÖ”zoV¦‚4ôGÖðø/ÔëÓû¿Ì‰ô¼ˆ]u9`åæX,ÒÇÝ´Í:–¼ÛPÕu®­n>ȹïq÷‘¤®_6Yþ[BŽÔ9”ú‚KZì·Ï,Ø8Ú}.£lúØ'T*Å0+UYJ|^Ul½Ž¤C—´àk3|í¥Ç[XnÁt)¢ oO'ä+¸w\6uešðÆr¤¬€ÑŠ# hËvGai<„ðÏ­ *â]ïe~í(çÀ[ï?ÇÛ?Ö'ÞÆß¶ålÃí^¹tLõ¤ 9§B–:sÁ8RŸ¹j jR‰ÏT~*Ñ +Y" *‡—(gÒ—`Ê͘%Zâ¡pV Û)C;ƒ /kVb,Èa….¿§•÷·7~G›#Š›'€…{Ä´Ì`©Rû¡:«êAB¨Ú`˜q8i~w4±Ç±ñ2rf…M9-‡n°l«Ù¹†D¯y½©œ²½‚keƒÉ&“cRÅ^*²46«ðQp¾ÃÎûg»»Ý¼”˾½Á<ñ( jõwª"ؼ[”¡a-›õê÷øú½Ã%CÝ:Þ½å¿~ž}#dò=×'d‡ sªòUePÃ4f[öæ×Ñ8y"ik¹E¼ÓÃíWuý:âu#¼ºîw‚GëMa8=° -ÜX'ÃöëQ›é5 ZÔ³9sºEÍßé{;Hqêw½0¼c¦«ØFtO§*Æã7f¡Î=¡áÉà h•-ÅÀãj„÷·¤¡¨á€°P@¬)ˆ2 f˜†s!Rx0¨xÜ[8‰ÖŲ¡Í”{wɽ¯í½åÕ¡:¶ððqU³èöñláßñÖHfækÙj!‡l¾ÃœÛOtž¾^“1´{Ãõ%¾ÈàÛªñjêãèKH"wɨ7oÛ|–§ÙèÇêù!Ýzlöw\×|¶§b„ÏHžz–†Ã]'¹åÙ †ùŽòÄÓ¤4yˆÑD15Vßí?€ù?ä«¢üµ8„_·»¯­ÜûTÃIKºu”½„OWÇEäéKn»ªñÑ3mbŒ¹‹úï"¡ 0é!$m‰ÃåÛÀóWl‰ÔŸ¯eðÃ׸£;fVZ€rŒk3ò#…úý¢"˜=ƒO %SŒ_}èWyíÂv–‘ºþ7Ãúîë:Äàù¶@éˆ/rܼ¼wgPXfÚr†Ô‘OqíI€È8 lîRåg\ u©æ2n‡2^Ïà(ú#Tw6íð£É¥›±Ù|O@×Á×Iñ-xÞï§çìà•7ÌfqÚ‹ôìñ8Id”#L íqÆ0!^ôêðÊÇ¢ªPT;N†ÀC* ÿ>ºuðrIõ'{8‰óõeX‚ðò9Þñ¤ŠKPÓ‾œ^Ä,Û  £4! 8B½”#‘¯¯U0í™ò9.mÝ„\¥ü£Û©Ô% àñkè æ`9.ü®òé‚;{, zF|h<ôÐ>¬½!gôoÖÍX©GLͪ%õ_OMK‰Žˆµ´ûÅÌ£{ ½T2D;nξ.î¡ Ó$—а;ý¶2œ½6lR2VÈäp–T ñl¼ TQPŠ+¹€äûŽ|ðÔÚÆ,0´‘ }Q‰¢4æð¬!–‡Þ)¼Ö¶×'’ŸDÐoP¶''h>šý9z^©¨ò}ܱ¡Ý˜KÂè4û3à‰ÖÄ­Sµ³L˜q+ ;Òeuý´qBEêÀ*f‰˜ÞèeÔ|DãÏ×ïØ‚Þ ´°°4J8÷¾›¬ûÇØç”£vŠ…¸Ðµ×t Ñ;£Åt€Ç‡ þt”ÞsÌ„¦Ük ?|ŠRqŪ,sÐQðñbIJ¯^°sˆŸ`ö†3hв˜ËGªl³’Å&M¬3iIx|×Éʰ§týíò#0º[4“~1:#]Nõ»¸ay¢íµ‹[]Ü1Ë˫ƞ¯Foßô~^NèBjŽæŒ×íÉǬ«Æ÷P:Y¸&ÕÑZ5vj@žT÷ó†!ÓªÕv'`“AôÙ⥳L°ìÂió¹ŸÚ¿Ý99zv•é¼W§nxa¡\åØ'Ъ ½˜‡ÈbtÈÐð `ØžÀÑìg§J¬4‚m )ºvL"à?]RâEi ð¥S W¶¾‹XÜ‹ºx¡…[€'7b/iv­Dk˜ˆÿ©±Ñ+¼4—êXKÞŸe¾ôë7§I•Û‘,|7¢êvS¥±Š¨'WúÃK[Q'AdNé¨cf'·çÕÊ)žÉ7:üß6*sý¼ G“Nì¥}§!µ%Á6úñ¡“¡¬{u1ªè ÏóBÍOKP çõßȃ2nΤôšç±žfs ×í÷ ÞòrTãÉ(šðê+‚]W#w½ õ'àäy×Õ2ßPŠÞÚ P"uºäk†(œ(VH-YÏ„µ×HAOkS_˜ÂäÆ%[cWVs"Ë!øÔ¨næ=ÜKd`|®Æ·ƒ[Næ.~®¨›Éa½¶Öqxȯد_ž¦­?—9õ ´çµgM©Ã]«\7¥+„ZBÊ@’5‹½ø]'ãl¸Í[»ÛÆZHfΠ:g¯ÌÞÚ!„_-KD›CŒküÙ|{}çæ·fÞ)"D™ Gwp¤•W:hDKÁM m£ÆQ>‘”ˆtÎY„Éß 5€žúùÅÊ=pûziŠ œ‡‡ª¾ÃàÎÛ•Ý¢Æ[Í誆¶ô®%‹ÿq87!kTÄä½ –|1ºCËÔ2\Ÿ<A8 NRÈ ±N`¢K¢ƒ#ô öûåQzòLKGÊ[å>5>\x©ßA;ýJúØaäy›•³¯Ø•…Ý¡1WÕ=“3€U\|R°}'aKVßXŸ¡à»k÷ç‚(G@ìnÖD{ݦÆ!ê¿é¯÷Taô½+ÄMÇ ÚX5°Þt¸Âýí­ž Åb°ùöo#'uéÔˆ¯!®—­«Ï´¥ÑëØŠä°=»V(éŸUå—ô¯MòÑXKõo¾.Óúd[oLˆóZ±µ""½HdG–Ž[°”Ì}—cõU¯Þè÷Fæn|³syÏÂä}rÍJ]Õž$ÈéB,è§ÚpÌJ&ÍGäÏŽ‘$Ó-WºJ {"õ4ÃÝå>ÂÕ‘†õj¯O›[ѹÅÊ ÿ/QŸpŠÿ wm¹•ñÒ¦ùè£õžå¥¹7@ (ÖbL¹4ô¬ã¹X^’‹ ¨V9øzeÖ #Åëaª»ÆCÕà@RÈo_‰z¡z9™×ð\àz>5+Ç·ó‰pd«>Ó‹ÔØ±a àJÙ€4ø›uƒ ^?Ç7OsÂk5áà¥o‘(§Vi€&(É våSq‚<Á³É‚@2v)M“ ا r{=¨ð­aµ Û”¶OÙNÝ*/qxŒÉ I ¢Å K}@Þu tׯD+(‘꿼A@è@Ìâ‚s¥Ï›>Mk îͶ¬9\Ýbå`ÁÀúæ.·bò)ì¼™eëé<¡ö±ùvµ\´„€“• ÚbonÕØ`ÚH^‹Dœ˜ôì™J®–&@f¹WÏËnð"À†Od€ƒm 0ÌßÁ1ã·~þ‘:ZP éÌ„§êé ¹hó+}‡OËuæ-JAL¤£* š2Á›&˜jkv» ȵºõ9v†® õ3£"ŒÕxKsèXíÁoN ºŸ2€Úm©GAüÇvßÞËi¥fØ×rå(p@±ùµ`Ûšœá*Mîëºi†aýItEÔs†ç€âÀà<‰Å9]þuÇS;%Háô1?!S^”S½zž—3|E>?O½¸ÇÚh\‘Ç« $É‘[•TIé1YuêŸ#@cψg)! 9‡ÉTãC0Z ‡XSžšÚÂC£ñ¬"YÀ ÈûbCä/¸}I*Í|KeÁÞ*ÕÑ€–)¸÷¶{:WwðÛåÅ>Ïšuÿ“5ô7âkÃhFÕyÍÈ¢T°8¸¢ J´ƒz-•Î ¢8,Òĉ!þšœ!‡^oJzè€ñúBŸ±¬–þ_«`>úEíÚ€s®û²¼^|/ÃÎó£ãî'ü7‘<è\ŠD^$Óä-,ƒÏ§ƒÐï°ò!™~áî/ׇ*{¦¬åã™”‰L‚‚˜ø‘a;ÛpTk üøƒ¢R,+l2€–¯£ç^°v«žVÖÑ[¾¨Áõ&Ëë}J¦åaÐá÷ÉŸ®œÿžd†Í'ÕâÂ",!Ä ýbrËbdGÊ0K»tˆÄ•@“§pÄ'3š uF—cÑHº`pùî›RMúä¬ïÎËÉk¢Æ~*鮵W^z¼ËÝù²´Q¨da1G›µ-¼ü5b£s‡ÖI—âXkmePÌæñ€¥.\)ÁìÃKEóô©=ŸpÎ} ×õŸÙRq)ip<ŽÚÎV°Pø^è8:ÅnJ×´…7ÒSŒ:2ÊirâK~ o¸cQ¢Ó¨Q@‚óP0¦è}‰@âu¬OåpºäÃ`ÚgNûÀ.A1  Ò«Ô~öøâ¿©æN<$ÓÙ7q>¾á"îQ¯çi꣼Bµ}æÔzê;ÈsÓ¹chKüÊM=¹qûƒ°:óJ¦\ç œ ʽÖNŽÓÁŸia)Øú(\Wo\ÃMxgÂë ª¬àX|/;s_¾ÙuÞ¿GƒkÝž[ç¿MES+µÕ‹‚´ýÇC¬:‘£ÍšÂšŒ%£¶b‰©1 iý0ºr£Ï14–9 ÓËõð2%?R@ݠ̃ÕöT½>«µËÈ~»ÿ•ÎQÕÍ+kZ}Æ»!NÇßžÏÒ) ÛИù웈Ä|üH䵎Œ1iWÏD©ˆ„1?ggDÚœváçšûV #ÔFâ.à„]yºSWk»›§Ù§J4Kx9È”)F2k‹õ¢01Ë+¾… n„&ù»¬+iâǚƋþ’¡] ÍhT4jZŠž~LÔ"æW "¾(qªËT*4«ƒX±d®ÿ—Á"ŒCI(0hœæ|» Øžà” 9À7PT,£ {+Œø»ýUNÑœ.õøûæé5°†Œh|ÅÀ]¹?|U—Ð5å¡¥óm½êwV:µ’&Ë tŸ?¶NíÎ÷¹{?bÛÿ[G{v±ôÌõÂnáÜ\Dè'H ‰.žƒ$!€ AR©bdEiDÁv€„ˆuÓ–‚±³?ëE¶0C“à :’e „73!|:Y•‘áÆ|™l*i§H&µ¤&;k@‹|ž»ÇA(ÉŒHB¦ÏL°UqN…‚ ¸}~„¸‚ü!˜çRN? ND(ìù»d 6Œ^­Î㮈aÃäKÝš§qñŒ5縰h Öú›‘ãgƒ ðüã~&Nœ±Þ´žŒ¾æegGú‡I¥î .e$¯¾ÛGP´4$·ëWdB8âªh.­)ùWå  LûOµËéLNÏy(Ô5>Qu„½Ã=»aÅiIý8OcÒÉ}“¹$fr¤·ýu¿ 1ØË?à/ˆžÝÏ-;±ðÐëá‚Þ|p'^ñSXÖÉcҜ̞&i2j‹ÔDs9i…Ф €ÐxÈG'í<æž—z[v“¸…ÓG×}ºM y«÷½šÁU{~Ü>ÆÜü ¬]9ƒ•ytßòÞ®p0K ºu—„Œ á!%¯†Ó!0‹ãŒ¯Þ¹c#+ó‘Ñ)tGVëŠ@ôpÕS1ÜßAå¤ýn‡ïÿˆÝTP! C±*ŸÀ£¦ }zt6kÁ„bí›bœð¡:þÍñ¾n4K‡ƒ Ý rÁ¼G¿™ûQèpBüϪ‘P'Eø9ƒBŒ =?zœK~õ‹ÓûÆÏ#cÒLmj±ÝOv#Ä«#|nZwËÏ –o±?aé}ãó|½fuÍŠ&•ÑIº•b¥ MEH%–4×K¸’hpGAAS=m³e·-§£¼PE°¯g^ÔXŠÎIÏw©S'+Ð.ÑßÑPêD•PY£6le•…ÂÂÌþŠ`½î9>=B0 /ð…ß²cBµØ BtQã€pkKõ7ô¸ÎQúá¯ìL5ÿgB=… X ^4N!i1bÿϼdLl×oÆ—¬Ñæ=ª¹s®^ö§]s€ÁN­p¯Î\[Ó&Š‘¨ù5‰U»FáÜY°ºÎ$;‚qý¤'ÝG ·Ÿô¡ãÐM(?\ËÁ+ýr#Ƥ‡LÝçþYý„»°·÷è»™i]ˆR„ƒíõÆôÆ/^´I`¾°[½­”k£3@ RÁ¡RD¤&1Ê0Åu£âã±ùœ‰a úÏ•‚#†Ðëý:™TH":‚¨¤t$t ’l³†)˜FÍ‚K´U„Õ¯æˆ>é‡ÞÉ,Ùo6Êa< mÜ̉p|¹„ ½-æKÀ,ë“3Hs-ÆÞ-³âÊ<´ž¨âkîå fExJp‡¹í?†^ÖD£B±ÉòÀ‚û’DüÓ|?Šš\þ÷9Oðt˜«“2‰!ú!äSÒ&„øšUV-[㸓œüSãH H <ópc—ïˆ_¨šw”¢F1¡bmb´ ­¾²h›jõl\7Ha–Œ2yoAá%8ƒY²p›Üãõ_I­óTÕ¥ñ»Ô[A} Ch&«éí¿ïS†-'ÂîÝÔ1gDDŠg/„¤à¬æÎ1]´%X^{jx„AßžEiê‹ &‘%™Â™ÇzÔÕ@ÛÒ.°ÖÞh"6á½Î9Pô|Ø¿ÀýE¾BÁÐß^éèÞº³bÇ80SpÔÉ8§ÌÂ2\´Eœf9êA Pð{u#+Ö†§3(`¡ûdHßÕe1L H@Š•2 ¼zÂ( Þ©¶L 8ôá†vÑÉê×'Ü)x›-õ¢c’F þÙ——\éιwõjǰ؀,Ôöµéþ½ìß4D‹$†òO9fÏ$oŽ*pù# Ü ÚcP˜GßÇ L[ägý±Ôõ†üÎ_WƒœÎ0LrÀ"¿Ð-Ï9ŸÐÿÔ‚ê³§>,dÿ"ÙoµRá6c‚žÈx¡ð0-u ÞuD…¡ ËJ?¡ u_“F3cûa u“³vÿ‚Qã-ÿ§Œê5oÓûb†Sz4GËHB}ðÔí³CFq’áÉW¾xTRŸ¦»Þ¼è¡¬‚Ú|yg§¼3›{K6¾”Ìó¼Ïî¢Z.a¬ÿpçuñx˜ùázý£Ä”Mp¦,W“ `xE1ô…éúr©G&§çœ,‹fƒ]ˈ+¯bYü}~2Q«O¿ °î ÷6·Ç¹­¸ê‡pÈø‡ª3•à žÄ×F¸5›jm@pb [½çW HB»ýZW¸3W OÎ\J"c~²æ°0Ü‹30÷±V‹e»nË-ñ°;ßxÍ58]ÃÞLN´Ä|糦B•–Ýî³häeÝ$Gî ÷šˆˆW1E¨[› üR~ÅìHg]÷ÀXÒÏB\ÒñFq7¬¬öLqõ¥œ¼/‰2Tf;îÌ•›gÐÃ…Pª]ŸƒñËóÿûGµöa#¥}ø-ÙÚÑ%[7¾Fí`ÇÎÌÐäܶžàÙœ…Q ˆNê¿Æâk0S5OÎßJœöIãš.|éü/õì¡‹ ‘§vn'"Ûaûè…Xä*)ô~“õÑÊû@ÕJ(óÞ*hê„e)\*\âÚ¤Aõ¼«3ÚøÁ‘¤=ׂXÜ$륔bñ®Ck C"1Š!%®ݺPìät‘¸É/èꃪNÑ55ŸôÞW™Î/Ùû»·LÐæ6$ðñ>ÞT$§·`OW'¯šl³ÚlÙ²Ð8ïTªe0-î9£ÜL ñ~œzö.©|G£˜nóÂú?†„YÈÉçšëH矔òÑ5á,àE„Q9°‘' rkÊ+¤Y30'Ï>w"ÕFÛ»gñža8 ©5_g˜ÒÄ“¼; ½$×$ápÍ)ìøpR=‘þԜ™6Åai¯[‡Ôg 0ì2 ©7òN&þýUiác®Î]`yûÓ¸ì²Æ_· ®ìó;Ð@Æ-Û#‘Uƒ §®Ñ˜¿vï«$§}ÂTm§ëÆ~ò¿í ùmˆSÎqA'•Xn²άãŽð¨2#F‹,}À§aA‹oà¨ëq­^)Z]îZ#(êÍFÙØê_aU@ð8©VÜtFæÐŸiOŽ4VDaúëÒç‚™p¬ùÏ!0Oó4A` l\…³5’EØ#÷TÏä-²52|Ф²#¨#ÜoæéDõ6´dÉôz ó†g°ü0L™à‡Cj?~OQj•2 ÜH8 {öoAÛgh³`ůn.@|©f/»SÂØ† Ä-Ú7F}`Á›Nˆe€@BNôW‹ñA‚ÑŸ)ƒ¬ .@È!ýØ8ä?OÛo,ÙhÈ/Ÿ|¿owÆ4ýC&¯*Œa›"D $Q ¹#‡>1Špð^Q&‚ÔHç:LT8i¸:x÷ËÁ „“Ô&Ì (£|¯ÅÝOÕZƒSN"££§ý§ê´ Ä©ÎwMp„ kñ†s1ŠÈgiÈ0‡¬«¢èÍž¥·6MXÏ¥€V5Žþh2ô¿„%‹æ™Ô‘„hÁ’›ò½žì¸ >Ê:ƒ‚:r›ÛXàщ»µÕù>~Üs̃j;;¦è´±ÛL‘\oV³ 3‡F£AofïPpc‹á&ÿ˯2wäÛ¬ž,¯tG²‘´(a`¢Öy4p h  œ%]J 6™Ð;”[Õäž—jèPMˆý?ËOˆ^lp`.ÍÖ\ì³]qÉòôÉ ~Ouó¶,òÁ ìz ƒ6`Êνœ4çÙl–¿¹×¯‰Y¶@ÌChØ¢‚¸¥£XÔ΀˜°z„ÒÂeȃãéÞ†Kò=x¯hĪܢ>Ÿô«E÷¦ êrÊß[ÁVÿíRá/Î>$Ã&Ïÿ¸îÀ™à*Ë©tŠT c&¤˜.A*µ'"xn„QL‡ÍôAÐÈÔAó­éä.ž_… ‘&˜D‚>–ýAWkçð¿| }ˆ]Šv–R7û kžÚg,J~£ÆÍkçG‚§8X=C¦ËRQî˜|‘ÊæeZ%Í/ój ‡Ç¨IÑŒ8ž£z¾¡ck©øçU×P &@õÈä Í>½³©U5bålÙXÓ˜!ðjlzÄ/¶Ñg!¯\óà>ÞîQ[»ìF\ÏO€pÀJê¦Rp‚ˆÅy,\•t"Cøa8‚ødÒ®%¿›HÖ4Â`(À(K®C1Á¨A· [oüè[ÿç¨Ò—”>[0qMWF»åœ GÔÑsâ—wiìûpð‹ÅN? Ô_]ˆÜ-jžZS`(,ñÝãÉ>¸âxÀ=|ÆúÒ÷2[Eê탩Y Ô»:¦‚hßÕÞ±/CÆ@ážíè®UàåàÖeç[þHgf–Š-?H^DZSGàÏcÁ²Á ¡±)¥Ú=p”®bÜŠö¶lØ åyz¶8Öœà:¹Æ9è©÷!¢MFaQx@µÍL}C(ÐA²i#vO¸=%Ýz;ý ¼;ÕÅ‚ÿ°ò9ú?wÍíÚ˜V¹üËɰþ¾ZgNš]öplÍPªÐûåÆ3jŠ.ö½{.žnk+°Ñµö¸I¨W^ò&"\t®å(¼ÇÁäÍ ƒÂ›¾¿•P”;-ÝFàÀâðGxË ¡B§ŠGc¸Óüúþ‰Öp¶½r“–sÅW2Ç¥îðÆH½)VëY"wô+~}ÅšgO Íx#ÚeXþ¼yY^µµ²ÄÈ]1³¾²Ì„Aîµµ»©RQvM˜VÙŠZ'wßS%ábÞ6”A×CNH–&Wæ=†µö~§ &íX¤e‹rÏ¢2C0“jाG/ÌW÷ÝÇ›KŤóoÞý3¾%‰o¼håD ƒE݃Œ¦F0†@ÇêœÎ%Ž©«³n}ËðÖ@å´W"¯_Z£çTF,þÏá‹ÚÚÿÙõd|ž5û>Æ ôÃ'X›û©x;“Ô±‘BÍ$ëÌ£ê>¯TJ8ó‡a‘ šô›[Q’¿ÑF¡„@XÎ8Ôaùߤ‘0íbÚÉÎkþ‚Gk\Qî„J.ºðC&oî÷^4>oltÙ-\Ÿ©ïÏ£æFû:0yúºmøÑ»ÏìKf —´Ýf[érDß6´“hs/v¼[v‡HK=Rɺ.ö<Øš ½A!cÛáÊx§Þ¥+<  œ&,ž$AœTôd¡®"ÉGžÕXº»(q¿é]þ »_g³¼^X¾ˆ µ˜š.\ÎY³|Áç_º}:#BrTàdËjŒa&-ËѧMDÄÚúƒ-{óæ§@øü'G-Ä=¸}±¿kÞ~Ðí׺ö˘–ìí«ãÞ~{è`iüX2|ÛK:ªO8$YpT}‡+™Æ„<á¼#CÅZ‚ù²&=Ðþ4àuÒÄ„€ ‡iIÍÃ!óC½[çà·è"{ÇQO~ÛH”¡þ9N¸¹Ëö˜¬lOîJ6‹ÃÂŒfnâ4æ©»Ù³o]úu– É•8-noï´‡ózßÎDFÜ=M|{û·=-¥å§•Ue Þy2Mƒ I@-šžncƒK&¼Ã鄞/š ï8}±H8 [„ô¸úORëõËÛyïOIËÆ­&6‘".´[óC0ÐuPå5 úñÒ=áo-dtauEåŒH v‘aHe*u†/ /u¯'yÊñn=hÙæd¶M|oöaÃL‚3õ|OLzPÇ ›ñûD?¨_WhA¿õÙ{}¦µž?ÒúHQ6ÄŸF11*8‹³Â‘Eh½‡Ø$ÄjÐ2ïÙu‹ßÒsܒ߃˜x!/„ÝœÄ:áHÆX<þ=̺ZGYÃeÝØUÝÍ=P:Iå,›é¶åܽŸªôVšŸ}¢öNŒ?m–3  ¥xÊzª—@›KÊÂ"6¬œ 6‹ˆ&0Œ¤ÓŠU±Þ‘›êD ËŽôö@ÜÎ#°ÓÊ=JöEt¾—ß„]X+ϱ©/ãg{,·úœOÇàQ<§Óº՞!}ìW}„p¹‡Ð9©a LHÓžÖËÿlv¯v½þš fÝØíÕ&Û憮R‡²‹edJ0nº×X —žÛ}¨§”™ªŒëì‡ jÑM™¶ûµ—º³¦Ú‹-ªRKÀÒ¹&Íü> YüK£f¹þÇFí³!þ8éf”þÒø@.¿WIT4½d@i±‰R9¢5X¬Xdû5GýX…Ï—ŒzÂ;.ÃOÊKi ØiZ¡$÷òAagú[ì@ÉUI?Œ×¢”X~v&ÃNL&01'R¬º:ÓèòÙ™nœˆ3T»‡Š~ç¦ÚYÑN?}^ÄŸéÙ Üàå{¼²ÙÚó ¡ bÀÞ]Kë»oV¢(›Á x5£¡'T$Q×лb{Á_’×Êì|PÍ­ò›ïh)çôLù=|“+«ˆ·W>?Õ··RøæuðáßÔ`ež3,©ËÀ´ž+mxr¨L5ŒaÞêxH“Þ9AoS™’ë×Eµýù:)gæÙ\hlÀÜáu&æ_Nhé[-Ö"á¾kEÄQȧ –/„ù†µ7§þ‚)Îjx?ËÛÌ{ªÈ2œHp}ð«öjdî.5°öë@xšR²='jPZA®7(0*º”Þc†4 pËÃU3ó‹ƒyRwFú¤AÊÛ²-þv®3Ð ®‚ØàhpX†0±fqW„üu™“x¾t<"ÄûúËsä¸dÌÉEÅŠ‘å¥Fm\ãMæÓh=ŠžR¨<óK‡ÚÄã¥6 ÊçF@áƒ` µRyˆ8”ø„)^_ºjHXJ$j?áEk»¨pfZ˜âxùB‹êú½¯ÊשØÔ™:Jªä°AQºo ì79›(yôÜ-r#È@@JO+"å ›_Ñ»é' æ«2+wÃxóã |¢Á¶rÛl‹úN3$?p´AP£¦Âƒ¿HË!2ŽÙSuûør-ØËkH䟃JôÓÆ–ÿÕ6êø3˜åG…ru‰2í‡9ôòjx‰B@•Ó€J†ˆÅÅ/ëÆg;V vÿŠ\×É  ¤>äŸIî¿ÓCÞ¨ù'$÷ÇXµßªº×¬]ôÂ:4Ô¤ó»VÇè—¨—ÉÏeûŸ(ýÐ.c’:JW±ì/–½©ÏÌ›ãÛc›lf'Aj‰÷àó /…{œK„ó,ä?£**1›c/è(8TÌðçIpîÞj\0ÐßK¥A—†5Ôz—•#hÂmE¶X ëƒ=9ƒJ÷"ÚàÚâÜzŇël'ë÷njö‹ŸB8Wç5So‚˜u`©ä|O$Ñáök߃²DŸ¤’ “ßwà©=[ùq^‰åŠùËÆ%Ú‘c_æeC£ ·^ óßœ¾t¿³Kÿu±©~tt¥;“¦_›|1á=j<žÏ“qqLÃÚXL=Ø3 ˨ßQôIÑà_&-½aöœ|Z™×Òç¢C¡#ãÈ jèì-בàffuÂ0)ûÔí9º¿ c <Èó!ÃH¿u@o˜|zÏ"™Þw¯UŸƒ„ßëDL3îŠÍÐK‚ü_–û=q:5.;Ê+-A©zÒ´ê¾ 6 â€Åƒ¨þ^=]B ÆËN ÜqoeVΤÉÕ ¶Á`g¾éJSø8ú¯’ÐÏ "Ÿz»P¨inŒgQm©«ƒ21zmA&††&Íw}N¤õæW]ÛÅhCñqk0,‡©êl¸TZIùqi=JÁ&Ÿ8¸:ìl/ºÕ­ŸQÿ³Ÿçi÷uµzÓœ6E-)ÚÕ_4z1ãéFÉ5(‰/ à)"'NŠ¥Ýñ¨ò©ëÎõ`¯±3Hˆhª€X1™§ ý„^ß¾^ÿKø{þ´uý'ïÆ½4÷žYÜaja£O{!QR½$5ýÙ¾H£uãK‹!¼#…üvÎp³ZºÆpmÑÚf|H/tŸ(XB"æg¶nlé Î<÷è°ôÈóQ‚‹y†¤"ÈäD#FzœÈÝôõÂm¹@tŠF8‚÷:\«â¥µ±þ‹ÃÏ~×ÑÞðÎy¤IÉg‡§_‡¶|ÝT®3ëP ¶ã™E\åö¿æè•.íîuÆÁ9¿ò¯rxßë>åù‘¡¦óNé£]¥«5 >’£ˆúnÄ9Rö¹r1»»c„z?c|ïØa„ÜÂûE÷Rѽ±Aö»ãKn¯4='ke`u:´ÅYS±[o¥‡ØŒ=‡ïÎ ½}Y„âǃbNœ÷´c'Uí$üqá’´i>©ôAB“¸.bͳjZZÝt•ªzeV| C".յʂ•“ª˜óß„ÍJŸ,½BÜTg¯ÔJzlí{ê=tÓƒÄfxcXô÷Ôì@=ÀAùI±à·/ÜÉö±sös¼9 NmŒìCЏPf߃žqC Bˆ@º$¼/Ötù“Ãâòö­pC:hu–E¿½Fèë¼+ý¡`Í|“Õsů™SÁU-àTÏ 9§º§\-rOëÛ_…þ9é':¾Y(Ñû߆ƒÕ5X¾üg—ÜÛTöhÉp’ï-ü=‰}½9êS¸ò-‡PCƒÊùÊü­=½²aï§I©ñ ÂÀ¢d–$rŒ:ëţћ±T˜eÊp×-×ïÉ¡Vˆú8Ÿñö"Æx©ÌÁÜó$0­†¤èÀUI¡¸i¨qZEqÓ>Ñ«0zÓè…Hþ³¥4ã#þl£€Â€i椆îéÏ8ªHÅ ¢k©5ZTf“¿•9àòÜ’Mùùd‹£‹€ôI—í㎠ê’Y}(§­=;·÷‹ò ¦œˆ8| ergv,Wű13ž‘59DçÇ+Cž3Ù¬›ÇóPѺEHwÓÍùèh%Íô°ˆÀr¢Ræ™á¾yBPf¶©ÚínBaü‰3Š7eÇèßE~´Qß TL_«ð»5x(~({x¢(z%uwÁ0±Ië¯Dsx$KWvzö׌X»MÒ=Sá<ï£Ê„ÝQÒHÚÒò-ófù´ãÕ+‚Z.@ß½Š Ð§—Æ&¸vi+9ÇóªÄ —)É›}öÇ“ž'C¾snºöa_Œ –·B`!Ãy¯ˆšB7«C‘F!¦^“­ð<äêZ ÈŽ¨¾Ÿèqç3ÿrÏŽYÙ4ùíù0_s퇻äðÉ:”1`µå&{¯¥;þ{5ýé›S«îcgI$µÈìGÜSPù»¤UÓ2ªP®a©z¶êM“º…íyá¹zÎ ¸Ùd2î n –É%q #xYF•FIÇVì{ÇØÂé[û~´°ù´à;ñ ~:3QBÞ¾\óÅW”9lè;@/q"›9(oÑ(9æ­ï‹Â´þOHC]¶#Ø s¿ áð+$«'µYt]±Peú€Ð|ó^ŇkB>V¸è?a9@<1©Ä\"F}é—SÐâïH†ªõàöpC¼¤ô%ÝÙ¢¤ ³†)W%#–ŒkÉ6šr:¢„ëÆC¸‘óÜ)¾6(cq`¢”MVÃv¤Æ˜©¤´SOaë˜ha¡d—øOÕ§65Ll…¯%í¶i×.Òçè–ÖÊøO—@í7Ìdª BÀ™1è ¡h'¸„k°Ì;q–A$‡j9áÀm˜³6Úìû–Ç¿´ u7EWÝ¿¤;$¢áºnÉ’Ñ™f…ŠV˜°$\¿­W•“‚g¼kt‹wöѾ¡0i±>'ëkè½'™éû:0!°Ÿ¿þÇnI/Ò—µ†w’¢L~#i ð¿à¯§A{ñ,•BÚy'†Cûr& ÈìÖ_Â=’aeWo–3GÖæ|–ž€÷{™9“• 2í#ÞÑÔ€šNÌ}Ùò1½ È1pI8¶R5Zâ”D¶žügÕPnoa¹Ð¾ÙqÐ~݃jnd¥Æ„ÇtÛVë‘(À@)ìB†‘v©g4H Çÿœ¿ˆt"ê—Ž Ov “Qø»PrTf &Üü‹Fs÷²=0Æ™/tzù„öÀDëïdY å×5[Ô¨ŠbÌU„|€g(’8›Ùö”ˆ#b™S˜YC¥šš[`å‡CT+»$ .”Øó½Ø¡¾pˆþÙ{ùóø§NöFá^ îױN ªM2§§%îÎ:ï¢i¼µ1/·žLê½}åH…åyµ½Éß_¬£ë¥ìÒ3Â'…UY¨p2ÀtÙ0%:÷Z‹Wz) lBjÍã~ϱânÎQ·«|N×”ÿ‘L¼‰}±EÓ·W¢n(“ä‡;n_ÕˆL9²4HâLriqã>Ž *ƃ&t»Á 9‚,.3_ºkëÕ§néh¤[ê9ÌPT¢Â«r8¸‡£è”šOªT;LÍ(ÚÚNþ'íh³êôk³OcíoìO*|ÜXÕ²;B ÃN„ê=iX'‘{.“5Ló ïoS›‚`[:%šT RÞÌ‘IŠÀe? Ü£w±I€vúSM¢–·†Æ?c$Ü‹¿tlYŒÚ¦ËÈŸ€.ÿ¼ç_T…õòêîú¢È?}×Ýã£1óÐë-n”‚D ˆ5‚lšóæ>&´·óå© ß±onnžuôotJS9,β‘z ñ¸ÁÄùâ|àpHž¨ä3¥;¯1o±5¡ÈWÆfÈ`‰©C¢xøhs’y™Y 9­U6#o‰j09П&HÅã¿ <Óšœôø[µû~ä? ¸î¹>F¬»‹Ï1”f¸aSgÍç’J˜’t¡ªzG M6žsç‘‘T@·5ø‚ ï¯Ÿ1< Ô“z#»Â–hJ_LtÆ.$PQ Ž+€AÅ1 a¹²¾2r ЃJJX#‹;ÏâSSi]&@ =zȇ`ç¦bIÅÑÁ_HØ¥~bï†`+Â(gdy‡‡,æa$«ý—œ^ C] AÈË÷-þr?éÔgÛÄLŽíÛ‚JÄÝ•ÓÝ÷'ט¼‡…¸ÆÂ_k(Ž5ÅKg㕺Y!6C„p(ª nŸmÒ¹¶)B@…lx6’grG¬eÜEqª(ÎÂÂÈï0‚úèJ¬ë»”ùFNƒE) ŒPàcÏâ¹)v`Ðñ~²4ÍàåBÖû)Á<ÜI³¿ûÜ ì¿>®Åýlº› ë>.HÓ0Ê€—ìOÒw–ÿæCЃ’Â6J/E™u,E0r»/б4U¥„UìèÞ¾F7ö\(y¢ÿ¹×Ö³W§ŸHn)̓uÉZ¾«â<Q]J`…<ÞŽ˜ 0@ü5 ÏIj† ¡1 .µÃ¤vZbEìé¨lH˜M¹âJa8†Å÷W'"÷EÛ–CÀëýéÞ …Þé÷Ó%£ š²Úá÷<ý½Ï]ó‡ 8ØÍEªRûP¦˜ÜYo¦3jkÆqëé¯ÞÒîmE jÇA¬µnM¹®¹JóÔ ÉU^?ÍÀ© 1RXK —¥LLœa é`BzJA¸UŠÀ–’@@ø6˜#©b8/2ú.FjB H¬)€0KRÆ ÈgÈDº7Š6qã …HFªWL“Ðth‰ò!K‰ 0fãdtœ“ V ªRÈ€Œ+ˆå!¯Vñ¦DF.Ǣ߀×1%Ýðüö=D£„RQ“Å60_¼ö%©ÇehN=€ˆHÏ’bGQæ­ÈxøL°E~hJ‘;õ•^I±ážåapýƒÁzù+ª½x Ñ$”q“â1B äÍ<›â“æ(Íkà…dËb&#­$Ä4¡!¬i7„»!À@ÆELhŠ4œƒHaÈá>ðIp³Nû‰wz'è^p(:ßEÓàÍXk™÷;;|'c¯A  €U„d!}ÖuÄ"à:œeÃÁd/  ÌB-ù7£„U\œ+E¾¾›Bö·0þ†ào¹ÖZº‹@óR‡mì‰ìÕw&mÇ ÂÇ8‰µ:@Ç;²›63R­Ï¦Ç¢}®2%)Röó?†º¤ÿÅ+\= òGMÖ ¼,,–„€ìÊ· ji$ŒG‚åHKÛ±€ïѳ« /êÀ/~ƒÂ/>5ËQj/§´bZµˆ&¦nÂ+|ŽÓ°Ô[Çr?ï÷N‡V›³'6ðjB)^µ‹£ž^ãÞÒãÜÆAÀê7»eÉ€öƨÔEêºg±B‡€ì|[MÉKHÇ…AÅ}K •P„8š#ôDÂ?37õÎSÏP& 4”Ýâaá0(¨Lìì1¹+Êù@Åp=M„ƒýyÙvÇóë³Ôß}é]×ßt”mм:æ{ƒÙôB ÐHnb”hÚè3ÀþjëÜVEêÀÞ{pñù6¶{$X6%á>ŠR&:.À™Tëщín"gµX¡¢| MŠš‹_~@pkŽÂÎP†3ޱéÒÞqzÿ|åÁVìh?Ú®šŒŠ!Êÿϳÿää´]ýÁÆ‹¿îɃyÏ` L'#Jˆ¯ù!ÜF€ÂÒáAõ/9@‚ñy>ÈR¥‘q²G(Øû +sŒ£”wAʉØ2§xÀ[9—b­ŠI,œ™ô;? 7 —öžè¢*ŒA‰f*™ùxÌpìF1øõêŸjù^©p! \yhƆ¤‡–ÃòeD&ŸôõÉìË&ˆƒ›ht“·íÖrn w¿ê ‘:kó/‘!9j²0€N ûöÂÞ×€Lû“f±Vâ{wH‹#j½˜¨‹r,FK{0[q±Ìa ‰ŒA&SÚÇS¬­†Á´! ú?ö¸t?LÛÞ»4lÁfÞÍÚ6ÓoÓ«Ó‹ëUm›Ø·ït¯ÅãÐêwS‰Áb¬ìâ<ïdÙÂT7y9ò„‚|†‹’/d«Œ²*‚%}B;ÌG‡*# ¾šb$Á *^–)Áxí0ÒàâS̼zÇS(-~i©pô&ÅÖûEâì °mœt=Àß}:/Ðéq“…5à£ÈaWáÂu`@¼ñØ¢jœhÕ™ƒâ8|w´L,­ëÉ/¢ýÏV…’TÇT:õ)7è®ésK¹&: z ªzgœ­fsÑ`k'kªR`€Jæ$ÁBærñ¥©+‚š2‚L™&”°Kó9„Åò{ms§7Fôšœ¢>Us£[x?þx?xŸ&5ËÁ8sèÒÛ| ààKn›=÷%ìƒ64 f½hrl·èÒlÞ2\hƒ§cØC$J=V$v/ȶ¸FKsƒØ”p±ùÆäSšEœq©‡¹#÷ìˆð×T¿´©dý…†é2sÙ{î–kÕÇê×§÷b6-÷ì³ÛN¤É¿¥î 7°Ìãïýü6¶]x#zóébóg#Ú•)‚ðà>ìÄwQr»“P0º¨¼aƒ@µcAz˜éåM1åŠk@ÇblçQ€-ò’Fa‘þ’8ª¶A¾wG?……‰Úœx¿øO<±›‹´• éÓ èšž¹½¿Ì"7ßæÆoؼ‹|Ý(}-Ã{Ï,|‹5ˆåOý!¨ÉíNÀB³háÇdAãÏT°½Ú‹¼ëc°àz :Ë´IÔŸ¨A|v‘s½d‘Ï¥ ]oõØÒÉÌ]ý7Ü .õí;ÅdňU$ÔÙXà¾EvŠ9"%›&í¤L˜K²ª¾nîëlÁ?«ëþè¼y Ÿ+8*£>Š·(/“/Ç¿ÉW{t,@Üï¬à6v2MBÌÁBïî}1"£èjö†ˆù°!²fl4Îã£v Ÿf³ÄjOx2V œÓÛY$ÑïÐÓ/F§¡‘QÆÀÙ ë eåö›·½§'—N<\ÈõpUÑû=øÿ$ñ½£Â#rA£ÑŠ¿™ï:3]ºÊº})ñ=Êþ×þö·/ÓCÕ¯!%¤ÏÔ]”€v½¼ÎMflï^á›pAÞ$ˆÌÅ꘴dÁ>ÈôåDyÜ‹=#µ£Ü|PåMX‘»ò”ArÞzxÛÔ2©¨-nÛJéH„;aàÍ ·”übc­&¾³Èè[H?Œ•&ê¡EBû –pùœŠ3bÁåÄÚ{Øþ#2õŒO÷ù}Ö‘E˜Ù ‡ùfËcÀ‹*±ç±XJÂK3æ.Öæ D•š°õè¥f¦³Ý…—£ÃH3i†Œ’R /Bã̼6<kN¹ÛEk•ô…ã„ZG Oa¯dÁA•‚‰¯ˆ…Xè.hÙb§‘R„dg¬$ƒSÔU.¬êA.ƒç(8œ³eþ%fÇG_³‚Œ$;ú@ñ¤ s7Ì‘nF¥kE÷õ„´Ø'6êÈϧTz÷æZÁÃÇ¥®=¶²ÈÝ»BÒÁÒ¦²°;@;ÆY/A«‘kbÐs5îÐV±K˃vröô¯/ì¼Ø?…å³TƳѪ÷”Xg¬M%𾦩N}²}7ª“f‡ ” obl> dÕ;!Ód4ݱpLv=1Dh4±&da@_S±j× H4,]Ê5àã“„[ÓkøGé£\‡¶ôîÓ’iVt^³áè0ôQ5k· õ'ÒK_ç :@ÆöʇlÅ•Š$Wóµ¢K‚Ód»)û” &GEì$аÃhÜ‚ýÜM[,S5X+ïX@>q悈šÎEÓ6·•2 ¡\¤/¦ÿ&Xêì«»BK$LÍ"]bŠN#.ë´¼P.Éêºj4a„‚ÕŒw¿þ÷ÿ™€êsÔ[ÛÝw7ÏŠ›¦ž×%§:oÎŒôï»›÷j‹ Š|Ä\™r¹‰uš9²žˆ;Úr>èK,yÎ µÂ© ³¥/’f8_庡¸Øv":Šgu¼³í)‘ýöHŽêœ7›šœ$rD6„7oîðWüïòâþWÛ®Gš¹s·Ø”öHvêhðoºL…Ô!”ú½€êŒí”áP ]€F ÏS¨.´9tVeoÕ¢Mè‰ Ë›v†Y™O-Z·*H“TÙ€XJ*z'´!DŠlr›]‡Þ8¹ô›¨oÖ:ë"B½CÍ:K6¡SÒßD¤|TøZ†U§fT»Â…À»ÎmØjÁ»võãîk×CœzL¶9ô.†æ’‘•Êü•j xµL‰1MV@òe·t0‚í›pë¦ÝQ(‘3_LôIè« #8„Üx°åA´¼uY@‘ù÷ñúxO¯ÞõÊwþ<¨¹¯ét:3K ?zýïâÛUîëº$ï5{ wÄDÑ€éŸÛ&\EÎK‘Ù"kÇŒç"Zuh3 ºüI+ö7Sݬ±Äª~õØW.ØûPònêëK†šSŽTð¦l-:§¯xÈ|bÕ2–uýWæ™–tø¿µ´ýOñÕg§VÞÑžkôº!”N6(¼ˆ·³!ÌT¬®^³t¯p´±­bw»V"2ÁÕÉß: ¸ÔTiøÅ£šñMë†4_²YZÙŽ—_„ˆvÆþXƒ.?¹AÒáñCN-åyk­ÏÑA™¯XeMv£[C$g¼?]ÏJgŸèw¼û‰Çúî"0Íú)64¸T͈ |ñýqíuíð…ç »òLMåHt9D»JMÃ)ËWÄá‘Ììr׎JÌòáœÏ“¢dRìkòÁqÐrÊ5QÆíëéæ›Ø$¢"Dá6âÃG"RN>ÍP+³ú¿,x§ðAÑüónlŠ÷¨½Šrè¦2ݭӯʻ b Ë€Ó§ù½ªA‹}zÌ‘èÞGAGVÍk¶"RÙV¸ö=OçE­û cÅ,WLãl²+ô­x‘ækÔ`øÊ¦›¶ÂeÞÊã+;áù¤Š†^}ïØ;·Ný²'ê_÷(Ðo£F?»¯ø†bS>ÿŽÜÓß*“2tUÛ)úRX_€±Ö*CRPŠêA8ÒÇ,/#Åñ*CC–`ºfhJÔ¨$7Åc˜ƒŽ'U2Ý3Ã2Ü¡/[¦8õ®]{v‚¾DºWexwâÞØedSâ >+¿/ž[ùi~³×ê¨Ü(Pv†ŠP“*ðH*¾Â{û©ò÷’ý¶V$ëž—Qÿˆ~¢öñæÄè¶ Û¸š ³·.à7Hßä¹·.AmS»ÏŽ-IÛƒ ×{Àvq%Ò£8F"óÔ‚%Zë–ê^͵.`i܆© BÄЮU°j„Ä mâ-ÂÃ…L[’:@Jµòl(/Äá¦õÔâ“…’òÝl©w¸>W%0J]Šwb3ÈÊÖ_Ƈ?#Zyÿ´Ýk«§Š;¬\»õ ò3vNç´¤-ïÊx‹èñ”fc¨¯ôŒ”0×L9(âð±íØ G^Åe qmuÅñ‚Ž)Þ7.îV¨8ñ ':ã ÞI#Kn¾GÛ Ò™gõË{|ï¼N!h`cË~1¾H*hA›ÐtˆÆN*Ä¿hCA$8A@@ýXÑ]x•¾‹H}îºñü—e_xý¨—‡ðÁ1iÁ.òkà{ÛQ|eþñ¸ÿ’þ}¹Ô=Ö ffm›rÉùÙ%d<ô#\­yB­ $ì…øg¡ Pìÿ*)äthdXÖmÌ®sì­Fªµà÷4YœP‰(*¥ ”èב’(¬é‹ªÒ%A¸I¿\µªƒ‘'³Z¿9nHèËÞùO=XÆ}¾ËY^E °T†¨ÛdØ‹&5V`üp‡dwÆöè²fÛ*ãÌû´A¹3ÏEÈmï4„ Òmˆ*–N6¤¥”úo’Ë+ªW–èYq‘îÀ¨ã~AÀG\‡åá¦J °U1 A˜X.ƒš³¯Npç@‚YlQ:4Mú<•y˜ÓSþËKnÝ™X~Á>}˜Wž£Y¦÷Ï{D)Ñ…šä¼óÀ2¸îƒvkiܳã…'Û>‹p™äש«‚MÒp¶x¤2ã»eU×zü­œ¸ã°ÂiàÜí¶ó6ÕËÒëœ/׎aFþ|vMœ°c ,«¡ð˜p÷wÓúòdü¿±ÜTa®oï~L™dnöGóëšsädY‘2+N¤ëÑ=äŸKîå&ÃÉ gÇÞcaAçP FsépÔ¬kdé@D›hñ»ÞAƒ½Àâ„–¼\EUZùQ‚¬5ä´€c¼uиÇôbJ~³Ò{>ëó(ø>¢î_;ãÚù®~<«æbœÈg 8 Æt(éº Qš}:tÚ n}Ô5K,â®ôÛ¶^ªÆéVøº{ÕJot<âzÉ–9ðà\2¾~÷â>0¯p‚öÌV¯ÑpÑzRíX„ÎãÊʨñ#EOä6™fGt¸éK9`•I壅ÌtæÍeÕÀÇ1g‹#HqçÂjô;‘‰Ì7£YôCøÜ)¨»Aš×gŸE¯Á& ªUéeuâw¯~ŸÖößÃ7å«YxåT6f½žÒ]$}Õööz>ûç¿+¬R0ÙÚ[Á2ÃØræ¶ÍÇÁÊ¢;—?Ä fO©Pâj±Ž±ªB”8÷<Ç€0ñ— í ¸aŠï³4=Ñ:L˜·µ SÍ¥Aí!TA&™…´ÅsF Çœx ˜oOct¤û˜=]XÏ¿ï•.2óS?NIvã~hßv#ÁÔ¬¹/Š<™ò–~½ú²Å¥ŽKÏ—jàÿ)]oÚ{Fä<:Ÿ}¡û;æËk0.ÄŽšóÅ¡WæÁ ù_• ñÈ?î|­!—"ˆ‘¿•þäØdlu‰ê˜þrÑ“–4Éá…“Ô<÷¢z*u¥ø3ÛãqÿÀF· ù&»(#°ÝÅÀ+J¢àýÙ<ÌlpƒI^ÊÐßa¬¦êä1yÍóÏÔòX㈔~«û^: ý¼Šþj“Õ’ƒï1G_µ#®ò1µkB…}hcuh˜bž¼R  œ eCDîzFLÚäȪ3£€åŽÂü¦gϰ7W|]*ç÷ ¶­ìŠŒ«ãoÄ ÇR^ˆ¯a>ì«¿/9¨Ì5íèh'!¹ Ú°Ú,!]Ó›V”Ž%Øãø…¢WèÔbXD@伃B4`Tx)hV]Xõ8PćfÌ)îÝ~âXD2Ï£ ¸$e¢gi¯äŒe~Qüò¶Q cIhÒŒçîòIáüA¾é“N"·—^s”#hȸ´ÄôÆš\xó$íÛÞ %’^/5ª~a˜T.ô æÕi޳ŸM˜ ÑÉàp$j›¯¼‚E}˜]Rƒnã¸Zl·×wW‹Ñóå¬úƒÅ ìv–€Ù2ù+9!êð\>CQ燱ïã½|GAðãr«¯­Š5D.Êì.Aò>4TêÂ[ù·àô¥–k¿·º^4ºõB&U˜ö5mù±É-¬ŒôË\猻÷ qÃ$&±×p·A’ô]$åŠ ‡\‚ûЮK×âòüoëÉŸå³³…ïè`~§¬l—­ÚWf+Ûo›rÛ¶Ñ].{qéuì|tÖV*î‹8I§ŠZéB5Bñ©@6ÀÓ(ÛlK ,¢³dF F” 2S‰´š’‚$“OÑy„“¿Ð¼ "m}ì³É÷f †àÍ‚Ùãþô‚̆÷ÄÚ»¼‡)6;UNegñ¸×rþÔˆrJ:Š^Ž Qšm‚Ÿr>÷ Ÿöæ¿i·<6Hî­j¢}® _Bä¬Ì¤ãŸ‹ ßÈÈØXÁŽE±Û Y®x޾š koQùç{yG³üYcƒñ•¯{Çøÿ»íúÐxWeýÀ}x¿wš2Y0ýó“Fmû27U φÿ…þ-CRajwkkîiÛ¢ì 7-ó¬“îe`„1ŽU”€Œ° â3¶8‚ö|óô0!vö×ûímQaöý#IWrãû¾ñùŠHðGŽæ¹ÈpŠhæŽÎÄE[YZÑY*Rü–9ulXð³ÊkM÷¼ÈDoüïCÿ­ÏÎ×U4Ô+åÆÇF -1ØîH«"R ËpiÓ”ôy¼…>—ý¼x¸Ý‰ÐDH¨—0iš=«÷ˆäŒ[Àò™ç!?šÿ2f»ï˜rÙ쮆/wÎÊ ¡9Ÿ˜ìJ¢ÝvtÿF{ØPmê?×Ý·òˆ™öO~¤σ V;‚Û^G~µ•‡UÆ‘©:+ÖK¥DÅê‘ßuðß«=ðÀ„úÐÌ råw¤±ÙwŠ"Ïêèn… {EðaºìŠéq|h.Ê»/l_»H!˜/åë͇Îo†cíl»MŸB⓼S Â1H ªÕ±W5ÕÕÙK ¦¿[lÿÜO—RŠüœóäD¥ã¥¹+å!/o’jûËXÈߺ w¶;µ¬|{>Måj}‡ÈOQ0 ñM(:SÔΓ%šHûØ\œ¼¥O.é< Ç5ÿšpà‰ú?óN¯³&YQ±ño©ƒ€˜Ñù#ïæÁÛÉúçòÊ%äÕéäLYçº5°²¥³Tøý"É 4 "§mѺ¾eç±Ø±ËuÀ/BÉ’®3®‰|´ûgjÒÆ*y¥÷÷ov~ÚZŒkȈsq$ƒ1 ‘ayOíªØbÃû‰bÔPÈ~XÓßîX2:^„²Ã‹ry+Øuêk ¬ô]DÃZmt‰¥™œžz àÇ"ª 'PñÆSŽ)Îl9•uÙ³{ñe’ˆ ÷BY”íû¦¹˜9Q­Ý‹6J¥¡ÿMŸÎúYÖੳŸ¸÷e¹0¦¬ÔÄÍ—> 1g¶1kìòjIJsà™B§NÂQÓ¹#í 7ʉ„P ó|nLÂʱ3šº™8âûBm„‘núUÛ3éZ‚®Ë£l ‡w´ïö³0hdOgí3Y”™²ã‚œ#ýØëa¨ØŠL °|Æü kàÂ~;†îHN½3¬» 1‹GF߇Dzî¨ñéÝÑü[ÐaA˜¿eÓÃAÏbEsÄ0 Ø…Òb…´# ƒúËÀÆJCb'A±ÐTwÂQ:‰È".4Àc-YÆ1 ÃIœ«…Ã/ºõ‰È¾Å¢§ÐwyešÚåÙã¯7xáÀ'‚$µ;C$È4/*õúâZ9g³A€®ô… Žt~|¥-3$¼ßk½üô Åñý o­½ßó´ Q¡zl㤥&´ìˆÆg(5H¬4 xA®è÷s;»7ºÿRzœ ßê N3Šô{šõáKE­ì4|Ði±±æÍ˜x/¼°^UÚ÷(ŠÈÉòD@åŽ1ï6…îðpñJ6‚î·1rçš6Þ‚ó¼ûø7Žnß#“òxI‡1i^‚{oºÏÇ7(mªÅ³½!»Ó.ƒÏøS˜Vˆ§½#a¸r Å 6é/‘æXÉ ËÓ›Œ~¼Œêö;Zi ¿½U¿¸Ê—^ò*[yÕÈO%•/°×œ@âô:á¢z;¹Øù+ù€n³‹Ð@—¬!×G‹ Á¶gœ?‹í³Ö…”è8§yljܡRÛ:®T 9V­%]¼wÜ‹r»I¾ð¼  É…ÈDÅi¡éI ¾ŠYžíªÛè‘é0ÒHøUpš°ÛÙµihWY;{séSÉÜøÉ”_é“ VŒJUyθÞÐ ˜b&œlU¨Ò£›'u¸~Á¨St&KtÌ~§8úÒlôÁO“4îL_¼£?)*šF`Ãöa{±ø·¶ÿwÝàŽË¡^‡Ä+÷7b×XÌ7^„ÌÊUÛD¬<˜•Ë”vj^ørJ^V¢Ýùo±¼Tm’y9#3ª{ ØãqtˆÝ'¯HÝÉv½¬´öÛ­”€ýœü¥ ãý+‚ˆïÍBdô‡{¯Ñ ðp½Ôˆ'Œ÷õ~s–ŠÆk1ÛÜSæébðO^Z«Xùƪ_›¸\¨»h;}Áeû¤øøu.ÂM›SÛ¹ñVÅB>‰½£ƒŸ‰N'F²™PªF3_«s?Ûüä‚ÏÞá½íý¯ŠknzߪAòþâ;_ôߢk ­â±¾PºwšSØŠXÔ˯NârAB“³„t–´C€¦Y€Ž2]BáÓ&³S×^IIÛ9âWQ-TöÒ‚Ltе]ÙRòF \Äþ«Ë¿òþ,Ð‚Ž¡õ¦DþJʢ⠇,¤Bƒ~$Ä{‘?FTדKÚ$dz޾óùô¯zv{Ýbm‡Îþø“˜¯v^üÆŸ£É]. †2Äy•ZÅ03õùyÿ“]9ý3Ýì<ê3Ã׫bÆG#mEE«[°Ý‡^_ É1«Ea+Õ 3(Ô¨Uñ |á«9Z»•†¨dˆ†‰pˆ¬SÌð¡¾xñÓ“f‘c±ÏtªYˆœØtDž’;½2 9ÒH[3|ÈuÉ›,´•Üz5Yý—`XX†s3íqóE7gBµ#Ü)Á„Ê€„ºe‚E¤ò©FŠê`û*0ì ÀŽâ0ÑEXfX³ª*ºRÈñùFö}íñÝzbZ¬]‹§äÉgª>½m€&¾e›ñ¦.…H©4¹3ëJ„r&TŠX¨É?Xw²N%‹¯¯§êïÚø¯·oÁóãôàt_÷¾¥¸´™{jË›¯óé(m'Fnߤ ÎÈ:ˆôâT„z€ !Ì(/ áÄbÏiÑ¡)÷FóÆLÁmQ€ÅBX(›ì¦Ö×"wˆ[ƒ :-u⟿âéšs©QL‰Ñ±úäÌ”DzDQ¢Q˜ ¤|z{Böì|ÿ­ ³×O–ôi¯¤z²ñáxÌ|ÓêI$º†)` qHu¸uÊ$‡ÓðO-â½Êpì…åºß.¼&?øì×mþþ‹Î<Þ1£xãkòørBÅ BM—F-Šrá&a§¡Õ슈“³æ›.¢¨Ñ¢®sާ3/ õñ‰Þ×&¬}nÞvý>~Õòj䪴î¥åÍ6_Uª½ ùgúlJÕ£äYKËS] ÒkŒ€|æpJÏݧ™ ¶ÓV²œNuzõÃê«H5VJ†<  ³i÷IøÞ¯±Z1D¤Šš ­õ!ž" *‰bǼ.­ur›Z£_aû³2…`Ì£(A¥ÜÊÏœ$?FÕ³lÅ}±d'=/5åéo=%¿wC ·";ÙÝw p€kt…#¦ Ìèä¥_üÍñ¦Ç¼–ë•~x6Ęz|¤¸72r«\)• ‹ }Aùƒ•C ¯^e}Û~Ü/ 6¾fÜñ8‡ ý³hØŽjz¶Wœ^¾k„Òê‰ðøzÄ ³-uÃèâO²²¹ŒõC’²L ø/çB 7ÑFòu}!÷TŒÑÂÌYÕÍFBšM,Õ H” šŠ?~EÐÈ"IÅ¿“­¾ƒ—†y;%®ü¿WÛã´¦OçØ}"dÊåô¶á[H‹²5¨W€(\ÎËñ,T™•©€Iâ‚0ÁE†Ç!lâ[>Ô7˜W÷º£û½t©^äýªáýù=…ÚîÎó2]Í.nÓE±Þ¥ °Wnm‰ù  Õû¹Ît"éhO-:ï ¸4²Ÿi½80¨ø>ž¬/ Âå|_ʹù}'5.ÆWá×}©àMŒg—¹6vÄ¿$5Êt¨•$ä…`Öž¦‡‰ª­"wö¥þÐSazHkì*Â~,‹Nòýyû,t³äýòovQå ÃC^ë¨å‡-rÜÐÇñšš#Â6h&"I¸ É*6j/ÉAᘬ‰×;ˆ¿B5OŸû´ rC‹ôKöÑÃâûû^8‰¿²`¬ež°Ô>¾×Ì¡ö¿ðv1ÏŸ.MžÉt„)O„O' 5b£¯óª…ÅD^ÿÅìÚ;ä<Ûôÿuú¾gÓCYe_X²äÔ°C  péf>–%ò_|ñöç p²£6]A± L¼¡¤ˆè5‹0®=O‡¥ö{Ü-KϘsŸW;½½õ0½}éÆÕGsöñă5ª'Ür&¿Ÿ ÁòŽ$$)Î5ià‡Ü² ‚˜èÕ'Ü~ê™éèߟIÐ;.jçˆ&¯ÅK^3Þ ¼Ù£+jüŽpUÇ%©RÜ;Ð!›r69L-@‘rØ`ˆ¥Ï3AÇl 6v·SçÀøš@R9&ïðάýTXÀp”>C+÷«nõ»q"‘±=äHvú„ß©ð®Çðè@䈽U×ñï<Ð¥ßæÒÀòtÛPžÐ“¦œ: E)ý`Ä}ßž!åšËÍ®$¤Ç4º„øÑ ýÞßÓ·–GSý? „§YM×Àzœ´e¬èªÖs$‡¢$˜ãjÜÒºd=4ƒD¯él½vÇêþ^÷¢s¿žúo^$}8Ϥ닦QÚ¢YZH!°z|<G‰ˆ 'yPô£4+àÝޜɘ¬„˜u½ŒP÷#XÑ…úµmö`,-i¦ aŽéÅøe_?`Ñ󣇫1Äô/Ëx *0ž‚0gÍ–6BÚ°séâP,/ý>é/qyÍÒÔõ$Dww«x',-_‘y½7'±¢È™4Ž—+ޏ¬ çyŸb’žÊ:=´ÕÀž³Ö±Á ž3b>CæD—&ÉÊa6€˜„81¾zc»b‡ðݯÅnÇÞ…‡\õü*¾‹QÍLú€vÎP£Ú¤dJR¬É.‡:ï¡% >O¿«jÉWœ¡Îûpèsi?Ì1@²ùyžl²tH¦Ë¬s¦æ"5µ^£ÙR Ê:<ž—écϬ^yákVû|élâ›û·Ž ³IšÈ¬G¢ !LW$+ä÷Â(Ò&ªKÎåÊZ´º&ú¾¾%'é'úÿuç½l„P×A‚5Õ{EÒ³é'Pb=ÜG„&B$/ ï$Œ¤RÒ@’öµžßàø;t=›û0l\Gês¾hPee®äKÕ=[¼òå€ô›èù2ŸÂøbÛÑ´l>©JsOûø8@ããÃ~»Hâ.Žà´íì:zï®M«’=µ$¹$È^äëNHâ MÒâþb— ƒØ_ û~ŒŸƒ¿Ù×­œÒ¾ÿ2=¾ÎË5¥{{¤¸þò•uúÀE¡†º`'RØv@•[Ì Êç \8Î⟔|C­)Xh{ÁG? wùs®™ÐÓê ‡@?*4i4-7tm—ˆhÄ d¡6Í1R=Ñ´“÷:DbY­s咽w¸GÁîÂÜ4ŸRÕt 2†À$ÁA¡{&h”&Æ[ä ø¸5/ÅêQ:‰xŸ`iO}p.mPÁဠT}IâÎüÙÝV¯÷}M×iÍ/ßÈ\d"3vô9À>±‡Ý+©\mÌâWÈÐ×°êùÜ.G.ÿmÐzæqûH}Wx>M¯ÈíZ°´;k/ñÚ³§ƒ3€SY)²fMtΉY+üqF2l¶Ëб뙯ü¿6}ßZäiìr#Ì3xxk²e ƒ0ÐÜR˜ŸSd•Á¶pàö¶*¨Á›R´@–Kü€ÍÜã{æïPöÿH˜®Iñ1šT!¦Ãë_ ÎUáªHÆ"IõèBTxÄ/-QCZ yìÔ‘yÏBÊÊ!‹òm0ê€àI‹›.Jq3xò±…Á³/GÁÌ‘5>×èûßìòußø½mZ8û¿V\«¼ç‰ˆßÁ6<^CDžd˜2í•FB[]¼…Aæ¦!d/;hId¯¢šLòèWª)äéE> .?ìDÒs©ÛÍýfS0°·ññ¸9åvïøuüŸ£#Óg_ÎoØ’—ÃñY6›=Nå‘dǘG‹“Åo¥þŸdÈØ¯«ˆNäŠGÏ£ôã0l”»[ö#?Ipsî)Àví’â¼&+ý.0bnŠ §ë;æphÉø;çh‰NsB±¤ºš`DëªÁúGC Q«0Ù?R±S5ˆ Ø„’þu#³%{ÅèÿŒ‹>o[/¦«Yk=ÚÝêåµîèÆr[Å£I2@Cz|ïHy|i¡;O xý¡<›¡Ò–àÕ}·u?u=?I7¨)M»X‚¤!¤É®24Êáh`оí´'í "Ûè]Kwµ½!~k§WËÝßW•뤃¢ ›‚A€!@Ž Šup\ ާv›„ôÊý_9…Fctup·yì]©m]»z€#ÿDÌ⬷…“hÛ;E¹:“pD€¥æZ „$ —ªºD±©Ž_šz³¾Ÿ`ü&³ýTÎü¾Òü;^–„é`ëvCj5Èq›.0àhé ã2d´ÑåÒÖöõÜö$Ê©‹ëҧΰOŒU71/Š MÝÎÛhÔºE#?Kîi“1¥Ü÷’ oå3K{›þÝnôtþmŸÆn•ƒÞòìXiü{æ„-ÆòcF>V°4¶Âš%àŠ1^$w„®p_cž×Ê”ˆra‡Õ09b– æ00%NqfªÚûÎË.ãÏ‹ÁPŸ‘µ=RÛmãj•=¡CM«ó,ƒ(°©Ž9…²ÞÔ#=èç!0èÕêá¯3Ö«^lò?{ Y} ï›Õ²³×JyBó.Œ[o4¯È8 \‰–åEv'´ANÀˆ•Ò Ô9+Ã0oÁäþ Ýè—3Â%=ÅQóOù¼}??rÏ´´pƒ$[”ò¨ÅßôÇÌðV ¥´ßþnoë©é|ç¤jF³Þ¢Öæ3ar4kw+àqÈúYôŽÏ1 øG%߃D€uð’ nÉýHTäîþï߈ò{;Øñ3Æojì6KVÇÒ‹AÔˆtÁLV@:—d|©Q‚“Hü"˜Á@k2…OºÏYšËÏq!|ØN!ãФ$ä-ïÊ?¯í8hI1 žÉ Öm¿—½D¨ðæåwƒýRƒòS»RUS¹£ZmÃÕœÈ6œ;xOÖ«û•·ú<ÇpJ‚äëQ,ŒÉÓ—ÓfÉôõpã˜=`)nÃÚo®á¤"?ÃÎùÔÉ•ià¡´œ4Å$pL‡åWïmtîÖ’?V™¸ìö¾c/}˶ÄV’Ò‚Vr4dBL\0 At •¬±è 90Fë@/Ë.s¢Pì„ümð<+…ÜFfßæð-þÿgè©^¹É,Z¦HF­GnäÁ`×g=Î S1€èš9yùfŠ*#€%ê} ú:[Mâïl~Â@]Oñþ´3ú£¡!lÓD?á¹<ðÄØB!¬–¡£A+yécÚ'¹Y«=z>€Td°Tƒ¶ PËäxúÇæl²/ôQp½â-Ý”Y¾Íúì|,úÞúzbKhä®ÄP›ÍµÈà¼e^RïÃ_À?vÄîžÿçLÞÞÞÏÍ·:Ì>V€r\+ Û ü8œig€ V«HÇ7ŒÆ–ÝWÝyýÿô1Ÿå½º<ØÞMpßË©~éeC‰hja߉\'ÌëäÌåÊ}ì@GåA Û‹ËuΈ ÓýN¥?Ç Ž·Ãm#ºšºãïcé2Ñ<üÎ"¡œ>ÍÑ»}0¼äºßõ!áúVýÿW¶Ýµ±>ä˜,{}lö%Ýww‡A Vi•?DÙp—Þµqœà‘Jö¤¤È†(/âx¤'0Õþg87ñù:6Ûë¿÷© ÂAõt{ˆ>ž[AñýS~| ÞkùÚZº-ÁÀ4²éH-Ž:hü˜«€Kð(ƒéê0}꾜rC̯ì¼î¤á·{pé]áhŒ®zpvœ«y+8î˾sàš@®‰[T³sêè\åø>çà©ýíÏNM~̘“,FX`ž¦ÃV Í©Ôz}{]I£“%·“Ü«ø?2ÌÝþhÑá<¶œqcsÇ`mqìx"² š0RœP*,¹ @Æé›ë9óFæ=01]ñoÿ“Gg›³Ö"u„q£Ý9â¥Q XÚ,‚9« L÷ØhÑb'ÁŽŒ–!á2¸dêŸSYa¼ùÚJÝ‹#âê5e}xO}AqõŠ’“¹geRVÂ&H“=‡œ™C+ÍoýÄÐ#½eZNVô¸Ó4ò# Qey7øH—ÀÂ]7ÔLÖÔtIßO1ÊPõz„hÿ¹²Äd&úðäDÌsN4C9£=%wÑ:šOElá¬|gÞ8k]ùIðÙ"lOònj{ž¬gâ£ùßVŒ6œ Îy‚БàGŠ-¡ÈY¹@›l‘¥0Ù¨FŸ™þOìK7¯”£Þ]74ój¾€µWÀ…MM HÚY¸0]TàUê”F ¨Õ|W†x”•GLV{zž]‚&°ß­„ã U¶PÅiÈû{é»!vbºPB&Ï¢VG¦áêW/SР¿[ô¶½ÙU“£tø±tpˆ )ÔóÝ)¶‰Ø‚I²Ù§;¬í`òÉ-—ÏQ~.XÛ°X{"ƒ"‰>£ÑçMJëE¶–û~¥Õ4ý:àYà|ŸV<0ó0 –æF\žÜÐ"OBàˆ>;‚86øçsÔ€=™‰ …núýO³¾rûÂVçNY3ÿâö•χã%ž••+!³,Lï3Ú5ìØŠqéHž¤‹Ê„ýU Ý#Õ ÎD¦“À¾–¿'±qz¿Ìù:ý–iò9šz^­t34½»Ï¿3üÈØ„áôzúD5H{¨VŒ¦{ÈQf/ƾMXT°Ü(LAg¼(À ¤*ÀS’á‚„æÒhËÅB°T2N7BMsF#`q†µ¸Z#¯Æ~Èå{ˆú¥“÷>›Á®UiÄA®ãÄøbìÍÛ) ÇøÂ ÙûFIº3H5ìéS‰€Lé ÷È£‚ˈ‘ ,™a$ȪòûÑÇ…€=>$ÞE”þÌ ~ qÃ>#Ð+ÊÝ•q‘[ŽQë»`ôáK¥|°+ûy]~§Ú )E+©ñh~—JÝ­Ú5”¬îV€ÏF¥–á ‹vg¡s=“¤ËG=âÆF#q¢´œ}*©dÒÂüì4äf‰õ¿#˜à@@8û¾7ûO냧Û,êADËÕÁŸ: aƒádÉ/sbK¥¯ë}Þ©C|=Má•'kR©]H@ƒEZÉŽ[¡Ú’HÜÍ„‘+ƒ¨ —tÒ‘Ô£J7éŸt[èÕ½(í+g ¤r›ùé’\Å® ?Š0ØÎ"ò®m}O‹w/哺µNFòØKK•­î%"UŸ[ŒPž7Å(4kŽÔƒ¢<šÆ'ú5«G ™ìИ}¥ùçðUÉ ªŒ€Ëá‘Ѱn¡âÈ£[¬sac`DÈ „$‡FØR÷pÌ`:Ÿ_É–þ#]‚*¨ úTÇΟ/mÁcÝqºë1«ðGy"#êÞ=9Ó6“-Øú‡ðùÕÿMZ>~ÖçGÕù=th.úÔ"7~Íè1‚Ê@sG•8RõLéz`WgJMúzüþÝ<Ãÿ¸`\²÷W¬X|Áb Æ–è 66i·¯Œiï Æ:!?Ÿ9mo?´Ÿ»cîïöàý~­ËLР=š÷mç‘kšÈ‚4lNàºðq¶&¥çÎ+ÎçÂ$Ÿ$-û»]¥ÕbSÊsÕæÈvòXK^Õš„¢`\².˜ñeØü|Ó ð}##+«õöÐÄÕ>u…Ý:ü¸WÕË¡g ÏŽ G0LÕ™Y(舣Á™Ýüb=êÐf›âèàk%‡2CD…$¾0ãŠ6(ZÆ fÈ?—âøN%ä‰Ï”FC·³ùThBY¸¨áW|[šãA>& I®÷îKçðÇÏ#ú©¤ÚUv$YW†BÆVôÅ!TŸ3ÊkÚ¢?xäç ¬,Iи½?r”¬hí7GTã„,i—€6’JÒGCþבë{³š…» _ºóWþžÇ)ž!”v+†Ü¨Ò¨õ8ËôFÓ©6°'L¥Â:W¹¹ûŸzõèö¾Û{?…K0ádzjZTåu… øˆ‰u¸@œ”xnüŸøÜx)Ú;dw¥[æ~F´«Å0ºÁÓ+jÈoügñ:2hR]bÌ»Àtm½1N=«/q¿Üå{§¥þaÿ_çÜbôkæµ žë6®c¸Ld&Î¥+_×éŽÕ·µfż ⾨ãn|¿ÌþH»öñÛ®˜¬xÎBÏ {³’»g4á,™·¦Ñ‰ÄÀŸ%Ò… à<ûxƒŠÿõ4$þo豿'Å¢n}Ï8á0 ìóäéÐÌæ+¹Š Ù:ôpC¨–¸ƒ‡šdÙÝ¢œ:q»²– þ?-‡íâ¯kzÑÒ( ¸z@,ìŸ;˜A ‚>úå¥i!F—p]l\ª&†Íü“º8øêì~Ä•éºZ ·¼Ðdí. tqkÒØ6Wv ˜cmÑ VæÂm„ŽÚRóô¸¢;¢WZ«ãû2'²]ñ%<È:7,ôí%Vk:÷l!23¤FH£_ÚB@ðÒCÖ+öû_Õ:«»·ÎÑ<í²Þ¢Ÿ)ÕŸ~U“eͺSl6öÇRH¾FjAˆž¦¬£~ø™væïÑÃ5ñÙ¯øI ]Ù“  k҈؃[`±0KÕ>H§X¤(ø(1lé½ûØòBø_5`=’xå¼F£4 0.ÉlçùÇû"ùÔ×K;”5VÖ 4É„âlŽ.ÿ¶"kÐ>@ÅŸY#”!@Ñè0üd ;ÿ‰¡í„6@Àùµ5T%¸&,ûžQÄâzÿ$¬_´0‡zë"!ˆh5>ÈZ€áh(AH€}tsHüÔÑÑWL±cé¿Þ\9íÂM·Î©ªŸgÕ8)¯ÁUNñ¸ ·rÇ{½ßF'³ixËx;<º Ú|YþÛiGLÙä÷’—ƒÁVYW`xP_êæ6†Ì}t· A‡¢‚Ûà6X»û²Ò‚(A"ýe+µâ{2èµÓñý2®~_\³UwŸ:‡ ÷Ôj]Eȵvyˆp&\`‹ÒÆÇïÝ(ûcyq0u “(ÔÃá©Ä7O÷°œ™ÒñÕŽø¨~³ââã5àIð×=V-WY¯×ä×¾ÎõééhÍÞY䩳Þìѵö˜ÊqhˆI#̱+¨èþºF}OÇöˆ'I—øwuÔó¢eÙ.f.5Œ’ÚÚñ¢ÍÃ_'´Nêh¦ãµp¾½gNd†z7 ýܿ۩+Üé½!¹Hy¢I2,‰9’|Ü[ËêƒkÞµÁö^l{|yö6ÿE.êööv¤!öî˜}'¶i-WkàTbí{NœˆíÆ>$e„zú™ðýXQí+MÊ–zÚÒIÔÁsãA<¯uŸÜ3É¡ZèW™6s*Ž^8P_Þâ6e¨/kèΕPœš·ÔwçÝ£oæ`¯ÈI×rÄsÏVŸÖ¶75tòc„€E¶Æÿ7\†l´öD™ &Ãü7*õ ‹×¯p,P%1EIø¾tú-±NYÉUëºÐÙ±úšY¬=üwà®äå{¸"]Úª=ÙÂ%»á3õÅͳËsÓ÷ÿ/WïRë§s†²TcÈÔÄÓßÜ›v>;rò»7.ëÙPÁz¾ÇÔ¸O¯½ÑÏžLF&›¿ÚÓ׃NÄG Aª°;Y„²ó¬€Z)îlëNì*_êš{ïóȞѡäbz>G¬.I'°àJýø;°{=Zû‡ rá†åoÛ#Ú'S,”¬â@Q †TRIÁK­T Á…¦ :ïµB)ÈÌ?ìî£<ðÚçwµ°qtÂ\ÞÕ‡›RêyæeÅÅö>õb¶ß/òq]æò‹7㟨ùQVDzží!8È_­¸R"“[GH‹ùGѸÓÄz½O><õ#Á6„ÖXxS©- ÎÎOÍER)ìkÝŸž‡ñ”ò×ö6¹gQä…yäÚäÿj4(ð35ŽQO#`›ùDÿ´Ÿñ*ÖI£Hÿ=—¡ª+¶Šñ˜´…j"öüúɵ}‘JE͘ÕxÙ§SªT”wF85áÖÍèÜíÃãˆÚpà 5²Hí”$&âÌÊumËë,×S‘ŸÙ×t—¾bŠÐÖ˜ÕgêPÕöáBfì¢BïÉ^%AŸkUÉ–„ m¹}å¶íµ$—°_V †{´s4mðC”ù?¹Skc« `µyÐÆ' “O=,åºbÍ*`4¬Âk•á·Õ³¾r„‘èÚ"Ä…©ÿŸöî{?ÎîuôðuÓYa>P;Ch†p·ZF¸]¸­”çG IPÞ:¸¤]2óÙ~„=qL÷µRWÍ{|*päP·Œ6ùd7V,# ûÝǼŒ±¡äÏ£’ ‘¸þµè?Ÿ¯ü:ó_1÷”þL.mÓA…§B„!¢ÞP(ä:D!ݺi³ËÒž*+ cê»)ÓNkOdÉ,a,ù4I“É´N¿ü~cÿÙªÊodgnÇÏŽ#¼6´f’PìëÒc™rsØÏeTÄ5§œ»è¥bDÄ£l©õ{iýÏL,ÔÞp¶ÝM¦«J vßLNç½’¥j(Õô$ñcz®^Ô6‚ô…°Ž OìrMÓ–wú'L‰a{h'Z”ãÝ'Žb4ââçžåˆ§v€ýïý¿'ý!9%X¡Í£ ºz”Kޏhv™VÎN±Iì;!²o¶Hz¿oßþÁ)Ÿ3?é{Gê 䯡x{¶B¶¤‚“ƒr ä=™ÙÆ0+D“$ÍC@BÙÄ‘‘L qZ¸Cÿà$àɤTä"æk©±’bÒûXú›4×ê…c‡B@-Ý[¯h½>ÍÈ{QïRpTÐýY¶=Où$Ù©uUª0±q‚û™ÇœúCî|Uª@‰»/è´ÞŽòÑ´¤ØÖ‡Ô¼‹r¸(õF°9~V×âØêG€ÌiC@²d¸ámÇkd˜~<2 ™»P‘&X(WU‚ƒ¯Ûü6´êj€9à_ЛžÜÈtA‚w÷øí¢n5%,x%ép3*Ÿ’‘Lpù3ãù¢º¿u?ws'µVh•ŽªIP\f7ÔpCˡߒ¿f|Ëw©Xx Á#ÄÔÀ‹™•ºZvX)ºæênâ›Sí-{—m5V°Ýaé¾ÅV9­ÄÎ>+tââ*×Kôà^™nE`+e'()R𽉢qÉÜ€îUx&iIDLç:•ƒl´ýy1óvPŠ…2dY¹åÑ5jºq°LÁ¢[è_¸,ï×üÞOüåÖF6”’¢Ã:.Æm3`ôÌ!yÞ©NYÕ§ò!Çáû1ÎéôtÓæê§9ý½Å ]±WØ»Nl%Qä§Æ7wü¿Ý}ì¢Ð?«Õedìêd-£—¤åQÌG4' ÀpÑc<ÝÅßÜV¼©$¾š·2B¹šŒ'öžƒ› ¥lD"°4qŸ¥¸d÷8ŸBz2»SaîaÚ—¤ÂÓH@ ìsÖ!”›ÑŠg.DB;Ö8Ó ‘ ‡ Ù´ÓiµP¤÷Ma÷Îâ)ýT-nì]ç¹vë\‘ì6 zqLeû!ÔÚz"…<z‚,A÷zÈÁ¶zožû¾§ÊþŸhá~ã;êU™ŠD*ãq=Îðv¡×ßð›}6ùAv456ôÿ$ïãËðvó¥;nÜÙã‰|ñy"èƒ-Ðåm·°„‘[óÄÅ.™ç,!ú`Ͷú–ðk|ÎæŽ‡'eˬ“ðÐg —+`D˜õeA±F.þ Ï•E«Ä˜Æ€A!ªê»q¶è©¸Óø1gFë{Å÷þ° ¿¶×Þ¯ðŠhK_›)E•ŠS`0ž#nT²˜ í¤áümöJR 2=Ù‘ð'½‡^DØ’ñ? žÿqý*Ï@|FÕ(f¹¢òJ…ËÐØ™9©º±Ì›6ÓúŸjøóí–ü_ÑSKM>׿Hêßù̪C@Bn#v²d7&@ú‘³½ÈÞ)Ó0è×÷ú<ýª¦åð=bÕ(:p½ŒÑ8Vq …ý‚̓wA½"u-+ÍÑõ"Š‚ðd!/õ¨­+2¨nÿŠ#)ð¼ô$¸I°'ïÞb±€S8"ýÁiÿÛWšõo%ðp¶Ãसú— ® ¬þ™[Vk¼Nˆ„}¨ïFª¯mïz~‡ÁÿÇÃÆò~Š?³ÖÁ“&µƒ5̺=Òäçê\içåÀ<¾zAZo÷8  ŠäX-GyãjU駸óvÔ™%»Ògá§æC×{')GœäסifŸPk³tìçRŠ¥«Ë=ºÒ}ISó8}_Ñ¢/çqцÖÃ1ÓÜíUƒC‡vÅ%¼Õ¦~·—ñÃ*·Vœ5ùX¹Z¥©ops_’Dx’ ‡VHÕ¹ä+NlŽ¥Ž^^Æ@Øx ,&æAݤ­’ ÂLL®Åxbbßñk»@ÍÝ/84ó)µŽvŸ`Êtâ›rvæõñî“1ÄM¬^ŒI÷u|·â‘üTØÁ5!õzSK8yfhnqÛÚZ±;::ôêýÏC¢¯ð~ÒWŠG:Ú´9&êYîäCê¤P Gˆî\_s¤'…„5 ¢:(ZæúžÔ¿ssôzªfåí@„YizVM;€vÎöÄmMŸ%J¹éꈳ=mÒɺIžFð˜¢f)èCE5*vÖ¼,)’‚ŠTxU,6&ÅMãˆùÓôùýFP`Õy‰LR–ëËv{žÊ]I¸DL}-12BŽÑ½2Ñjð»X˜c–ù‚õØê9·™©ÿ‹¹Î‡‡µÁÖïꔓ޶:¼†¦QX‡^a8ä‚sTãi‡Ý õä>¿í>…¹6U¹Þª½ÔGXÎÍOß|q°mtA¡½çœe›CBL˜ÌîП/B!ú~ ˜¼÷Áæo²=02aIëßs+æN´yó]`®Oî«ô•|×›‚´HÕ$¼tâC©ðü¶0‹ÁÖÁ÷×ë· ¡ï6û`?§I,ÑЊ’:fEOJ¼DËe©ã ¡T¥JfA(¥L*`(9¢²à˜<zsÞÚ^ÉG½ÉÈùĦ‹,D#°`ü êNKâ†n;`õ/b}^¶ÃWò|a…*¤¡ëKH¹ øàÑa™S/Æ?!lBFQÅ&{¡ƒ&.¾>BÀ;^A¡òáã:¢WDžŒ…Um v¦-sSh-Ä.•ô¹úµEÔM¬þ^ŠýÄ=©•¶0k=§b-Ûœ±_øŒdàš- 3É R½ÖEÎÆ–U÷?Ñ©+þ¾¶Sæv}£­s×Vt)qâT¡«fà‡ Ó²Ý÷:_:¨~3KèdÎ)ñûø=ß¹¦Xê²™·‹ÎëFŒÔ5ö.[wØd|ƒ h}ž’ š ñB7˜@™ƒ²1è_ ²E Ëq}ì<ô?Ãíù tB«0$ÔJ öµ.]ò@µÆ/B\™QjŒ}BðÏljó¸‹G{Óƒ Èø)-‡Ö½n¬Õãõ‡2_}ǧK”´‘ä¦YO-Éõ<¹#ïãÜgéüâj÷?SzÖm 6y FBgŠZ Yå†Ì ìírëŒÎ$ûÉÈ=¢’´-d6vé9 qt¥8; Æœ8éƒñB\Õ§µþm®¼cH¸¿o?‡ºA’8ª5ƒp¢p ‹‹`´«xÙÁq®_v4÷Ó²gÕ¾´Bø¸FÏðçM²9¡õP G¨öƯgë¹Až:¤cwõµ·Ö¸Ü_®õÝnHŽ1zAÀc½é.ËAs„¯x‚Œ™è¾Ö×k7 ¥°óëMfiO.Ìÿ/ìR‘;¿Y%Ë_É*(¶X.ö¸¿ZTJ «»°J}¥ÄXÿzWïniÞWU$<ir4ð kOíÏ%øÈ'Žu“ÑA²‘f´W½¼õàØY¦4Àð‘Kú³Ø÷áïT,<w#P­ïU~1x‡/4ÓƒÓè­Õdç£9y´6$²Øc<· UïÁdYxž÷ä“ô,¹ø§þ ¿jgË{ÁóÓ'¯A§kرÕœ4̽kÀS˜hYF³PbpÓŽ5Ù˜J ZuˆÀgÀ:(„¸Xê J’,õôüß¹ÐË/8»p@x^›Þåâ§4ÓO ù¾\0uÉØÐÑ!ÞÀoFw†¬^§1ˆê}Õz `Iç¹úÆýšY¸¨þ^¥ÚæüKGk,ø[ÀЇ¡¸"Ó ¼ƒY»A/z©¥'¾è$÷à—|x’ÿ{øö>ÿ.ï׃êƒf&Çê™!YÉ7g{–t F…òx¤°²a½ŠtϨz¦|^n‡gèç;4\ÿ¡Yv7Ù‘æ\È42&¸jDÏc6•t¾€NDW´oðÞÒ“Õ·š®2¼ÁáÂ㵺±ö·¶#õ1Û™²z|]  ¥òo þÏT^O/Ï™ôù§ú-o𹡦!²­¾ Þ8°Fb¦±`i®¸B ò&ÚT¹W^þÏ7›/ÜþÎ|½©ƒ ®L¨öêV}ÜÐ{¦­`ðyeP r=‹eç­(¾°=¨Ÿ·à½£–ƤEZâªMÍ{5+‚y÷‰__?–Äh¸qk¾œBÛþ½ÃÏuÃð)&$Hɧ ?A~`8Ç Ö¸lª'%ü=‚cÓÉá¨çž‡Ž|¡!R¡D^ñ6{äVŽ#4°…TMÚ3Æ ²b KÅ$c¹Õ@†X*:´“ è©5¥Ü¯B$³½ìÜ ”ãTí.½}Œ/^Eˆ¼v%sníúi%ÐnØÀØœUÂ?qmPê± ÐŸß°¶Æö6ïöМçî|¿%ÞïĶéiÁ"­MMr²V®vä~^ÇÛÏÞ˜• Î cS“º§ƒMXV§y÷þÌNî5QÃàÚ~ž»t‰oƒ83Ð.ÂÔü[¿kc½æý*2šÇÜ…Å ãÌœ¨qd¸¡ wqÉdÛé­ÜÙT(¸ü20m}ÿ„öð.¿Ö°»X!èéÅ)ôQRp»P{Òu;¹®©vðƒ5‡vúƒhþÿ–Ïú¶¾ÙÔ7×FK5i‘×ÙOUö!±èBHë|ú»òÛÖ‰,ëïwAúúŽŠ@GK`M³ âí™(e¢÷ ô—LP*±)ï„·$îü—)4·«ÝSŽ‘å` ,ä¦3‡œ]ý=ïr’ Zê!½Y½¸>R¦ 1ÈÙ2SçLhiï.Ž(^÷²µAsÊd÷ É¾:p¯k[§áÓáÜÑZy”Æì{>Ì[S™&qè.àk§Hð«[¥‡J$PÕ©*ÏU ù_#nyú{'˜û|§‘u´„È%M~=ÃÖ‹g¹o .7$ %Üö`ÞËóöÁÛ@€¢kZ¤'#?òèmÆòëõµ?/àâÿG jÚÖ¸¶Ü µ™Rä÷«×ø}ÉÏ­ÐZ…8iJæPõîuœØV •47ñ‘¯xù˜>ü¦jÕÉÊŽŠ=ú­1ð9®¬V§ƒ`tLhŸh@ÎoãˆaôÇwµ5;tµì£ž¡hÄmû‘â-³IZpòÑ$Œž<«MÓú>ô=)­~çÝøRÿǯ‰îf¶- W+Üü!„™•‡R\ârHÐjç¥ /W´Îi%w?ãù’3Y›?y!vꘞ§‘ö€bK]KåsSv>f¥¸ü«M߇w—’HXù ¯S×hÇSšq±²GEû@Ü0©±%Ž2…™˜9bÞôWÕr¨RÁsýö‘'J¯´ôH±øœs«$øtk†²_,TL“Ùr\£ H„zþT¼ë€ÖÛ¹ëNÀ—ÔyA]ÛaEjÍ,콋V=žôýïòÅìØŠ§up5rcU#NƒhlxQ­•—Tƒ¡-uý¯¹îNîTìOîj|3©\kNÝMÑ…ÖdëUÖC³eþ|Ž;ÿ›¢¤ ÎÜ£kÇEKÓ°¥“C©=Kƹ xà°ýR6µÿWNÇÚúáïíþ±W×m ]n¶ÿœÑ°çB¹Íºõ‚íÆHyRþu|Ãe’.ICîQüõŽ`~r­’ TƒcaôìtcB2½UÐC+Dûœþœ¦>±Þ+Áƒ©!ðû:#e¥aÔ+<¤•bó€È¥—%«m†o¾ rS@c¼&úÆu5ûž’¡Ý½+#fí|AÛn¯‡ sþxÿ«×ì ‰Ë°¹L²3áôßꆬ {ƒCtålšL¹í=½„UŸ㲈ÿ¡üèP‘i‚ôGf.Ud©!ùzQÑÐrãvw¢Ýr,í[ÖÖ ]¼×¼¼Ú}—>ƒ_÷¯/ÑõbÁíèøŸö¯†„9-˘!sçõ9<\æD÷Oö´:·þz|Ö¥½á(ØŠ_âs;âÕ²Äùyø4ëÒÙ‰s³¼gú¹?jo´Ù®_:põYìÖÍ:¬[ufC-tÙ,MAôyeCtÿ¹ø~TcÈñú‘yü Ïê³Ì3÷ÜTJ%¡Ý¼CìÄÌPy-ãäɇß»ûå~úξyïfŸÊ»j‚O¢­ K½¿Ø…Õ²Kɹip¤v»]ýãä û9Tc÷žìz>a#õgÀ˜Åv€` ¾ ·µèÖ‰<ñ(ÓyÞz½ðõúZYþ»¿›ÑG}/†„FM"¾ü,G&-¶ËˆHÑÃX¾„I$‡ýƒ‹.óŽÿÁ5q_Ò퉩éD¾»$3¬UlÝM¨ñ2,T bBÇ€W-^ˆxÑ’È(`b›9;oŽ&ÿ ÿ õ>RÝ‘;[Ë ­¾Ì6¿óëD߯ª³RRÖñ´`ÞªÉ8(I :ã’G{jàoå3è¾Ä_ø%PÐÒ­¡à;‹c±Ì´8›HË+Èv cëÈA:öy2ô ¬ý;‡¯Í¥ ßqc™~´XšÕmP *’mkiíþL³ŒÛ 8¾÷¹à­×ö}WúÞö2G޶‡ÙLÞѠȳKbÉ §Á”çhL<¢¸[wjYÆH>›ù¾‡êèïP§–Y6 w¾µ»Ò&!1­F¦+nsÛž¥©@ÔÖ™ áOsð%7Ÿ,zv5½¦Œ6î’c&­Y@t‹±ß ‰šoŒQÛ|¼ý]Û³'·q‰¸_l@­7š¦!Ë&5p \j‘@“ìæóg'²ÚegœWŠëN#ßqïóV·æÂ±#Oß2oó~-_ÓŸå •ƒ¥x<éЬúÄlâ2Mæ4´ ¬`TÆN®xÈü[Û/4_öÓÚ6Û®Å3 ¿9&Zƒ ÷™ PmØj”°eÈ¢'ýD/”ßš´ãýk+¿FmŽm·éç¥kR3ˆ“‡‹øºöµ¿O?wÅ6™TP5üÉ ò½ßÏ$…¨Ò¥JŠB°0ºx0«ö; ²·”K6Ž4eè:jœÜ€&ü0Ÿ6n l{!rɰxSìÕÜÜÀ¡T™Ã—ä¨ÏS^¤àd²ö…j õ_v6Áìè>¶Òq¹v>G¨ªó ÑS”i‰Äú—b6°ëÄÒœ‘ö *j^–DL{eG|ý¸°±þó²˜ùî]"cη†Â0ƒÖy¼/Ïâ -b–À|îîæ/_ðßó9÷ eõt±ÊßR¦£æMÁt¸4Cºë>²`†O&m wqÙÛÙ+Òþ~ º»“~åù-Ÿ[¨£¿ªËaäÑÖ$ñöCÀ\k MŸ«ªd)ÿ›Z?/¢çùöÿ¾Ôµ°lÃËmó^J/í[½–µkà 0x¶ôvîû@·Œ– [ë—¹Ç'·à¬A*4è›Õ q*:&+¶ŠV€ÿ4aâ[½üE„ ¤Ž€Ùtè69'·dßΉÎèß8 Y_sïf£Ôáo³%¸wnP ÌÛ^®²âK˜Åc"O¬@ŸÂI“ӊ¿·7×âÿ?ÕÚVŸW»·ÇW¸zä =Å«6[èFÏúÁõ]²Á=‚cËHò^s°š×Ø7k<¿gÓü€ö=/ÃÕõ‘qqV !¹FLžKWØhÖ k×b9D•;Ù·-ç&¥-PùöèDE…­©œ:p›íBþ=_ú=ÍWp"r35SÞw.vj¶‚èCÃ#…HÂ^6¢xeI#]3 ½›õ[Éeh˜¿cÞó~ÏÅ-%K¶’ò»M@ÿ§Œ'ÚñÛ}³ý¹W—…ôÉÁD ´Z+÷ #// ¥ËždûËÖ¿Œ·©ïÁSÁërS{ÖtÀä™V'Aƒüó¢›-mX) Lçöà;0}¿#ðqNTtÍÉŸé¡þ&“Ÿf îþ:Á>h1çp²É«¸®ÈáSŒdnjq }moV¥U¤eüâ”-õ¸­Vò‚¼³¦m¯1ðÂ"Ž-f\b¡óÁ”3?P^‡ÿa:zOîúo 9ù? SB¦—º4L–odƒˆWW619БȄ¿;Ð=<üÁCä«9j?Ow&W¤Ì\[äâÈÊE†%£¨`Ã’ÞçðÇùÃýÏõ‰tå“ѵHö”’ø×§B¢Ï8¥LQf”…F9õäÇü¾Ïüš’§ŠéʧÝU@<Ÿîݼð‹*TçÇ1Áꘟ^Ð][7 ËÎW‹<_ôìùŸ¸„T­ R³ÖÍ»@X¨[2ÜÑ.«[pÓ¡ ]Ï@f³ ©ôÿ¢wøñ|+•MôèV¹$”?qšQˆÜ4Δ^‘@GèÅÞÿkù¤B†”^ »¬-¦;:çI,R­ê]¥ {iÇ< $åmÝ*݈¾n÷Û¯ òKçÉØÿÈ÷{µ8ðdŠ ÙuÖGpÜy:š$¾Ü܉+Ê`ŸÌÖ§¼Ö„«yæÏŸ Äe2åo»æÅsÂ*;D‚ÑV0Ä2,¸}o×ëÈ‚¡^Šû¯XÀK˜Z‘1K"ü NçÊ—A¡ä›J Ç‘OŸ½0[“­ž1R’›/)ás‰œte‘=:·C*á:µÀ<4ƒÒ&g²ßìüó~„¬7*‚öe,_ˆÁ¢#6µêqW‚L¿yñ³Ñ¨”‚\‡¯¤Íßøed®6Œ™ò9ˆ… ˜WÓ~|KæpPj­°nNÁhPFH%åŸ8Ü1­®ÿª#¬ûËQЈPL-i6sD–„Ù}cí¸ˆ¯[—Ÿ‘ªw±J¯Èªu4éúl£°hµ:;¨wñð“Š!±l># Ê~§îòÞ”óO'÷àgÈ埇^߆A1b5Ô«€ãÀ­·Z󾟰wï~I]¤Ù§É»z~È(œ²¥µ\Uù‘[%|ù\mã¡R"«$ü°ƒ¿ˆàÍR™~áhw>þ¬Ê¸U…Y‰³#Wé8ÏРhqH”†õëý«öv•ÛvÒNBú_3†D^ɸ)M± DÓ{¸ P9äiÓz58{Piô ª9½Ê}Ž8$_ä§eré¸MùtòðŠÿ‘¼l]¼µÐ2¶“7¹Ôˆ'÷Ô%÷ðjä2åN}I µèê^{ZÎU„4TΤñ4e¥s§z±ÿÿ·Oó0wú*~uö?u|5ýðg,¹§Ö"ËgO06á~¥z_ihÿÃdOzßÓêPj¿ë(nænôpšO+ݧ;a‘6â±¹%Î}Ò˜ÿ“AçÑü·xµ_€øwøÎù§é¡éÉ&™O?¹€pN”UƒR3@ªË! ©‰¹CäüëÝ?cë{w´·°CÔÍ#¶Î׈<ͱÜÁ·‘H¤*ý`‘êB2”‘Kw_B¥J´ª>Lê  ¶/Ü’†„úG¢<¯T}œü_É{±™Vô$#Ù¤(еéè0ÁA$‹¬sR •¢©ÍÄ¢O•qßT:Äe›¹®As‹¹Ër`²„èøç>£~Œ0?‡ý·¾£ùý†ãÓ€™ð»ƒÅÃ?9Iše ®Fß œ£Èx\Ððv½©D­èuP?â¢ô=¬ì,ÑTäõÀ¦ ¿ÓäÄébþñï+ìh^²6ºí§Ö‹0îx²pA¨ÿP91_}àEÝ'—69ªz›GôK¬LêWêïWÐÐD û\w?¹7ó¼ß…VÕðun÷0´EïCjEJÜÖLö¯>""…utÕß©è;‹ÕÖÃÐÕÝiêëB·ƒ gŠU¨zî›×½ÄyV~UQDࡱ·½Ììg~(°W§3e¿,ëÔ0J¬VÞi”šÖFªÈ<ì—Ö#èÀ·ÜGsüQ¿xŸJÞp3!ærÔ)âA³)îY Ž?"ÕÚ wÜÛs"ý×ðCœ{xl½3äÀCsAã„ÆÐ&Qc•,„ŒÜ#Ñøfº‹ÛZ‘X”œz˜€u­‚˵4ýI°ñ„§o>ñ]~)Õ“dM=îS»ä*Çëm­Á=ÿÿ”ö‡ÕþŽ^G܈5= mzáÒá1£R¶!‘œÉ@‘ãÊÕ,X™¯î³Iº„€*$Ü$á$Á;¥Ÿ$¾[(}m$< Ôn"¨Ç—ŽE?3±9‹#ÒüY¤¯¹=kMÒ ¯:5ƒª8X g¥׊H®qÒe8¡]¡ß\1ñý¯]ç…3“ÌVZ1:q ŠäÌPz0œ§×Ÿ$/—{ÝÎ$w¿ëýâRÜ{sR{»Z†ë¿WÊýªN«¹&–ìb$ ¡cXùú{GóüŸ7³;Å2éR1µ÷ÂÙǽrîÜŽò~c²Å®£‡Ù¼>¨;õ±ó Ái6óY½(X ó‚éÔ§1:ümMH:¼‚µ‚L°~ØÈàÅè™%õæYÆ™OìõµÓ¨Í÷m«¼£Èq}žòÐ.1{ud¼ïõ#‡ÝØ)|áéííI»>_î@…() ;ÔÏ"(vN IxȺ9d5lܽ›Õ½5!¹òÁ/Glk-¹Hx3E‰Âk$*ØÚ‘VâÅG’\'²Å”fÚ $hÏÊ –ÒaF§Þ_käf‰1"ŒBvµP°Á†¤¸:‹“Œù›îó²W’TRÓÓϼ¬lV(IÎ[(±7‡E”Q6[§VÃÓ ÚÁ,,°•Cέx‚‚0c,54Pp À3NBÍOœ•sq"®K°Rvª ×^ËëçqáâÕ€$ù3RÙrÉêóPn/@P@p$ÑšÇÄ¨ÐØ…­ö¹XcëÙ{^ä,‰YRD “w¢YtÖÒµaABà@ P Ì5·ðz•oÙ;<-]I[ßíúû(~”l·?hP–ŒØYš”¼b6¬ÄsF'Ñï­¡ŠNqÄ#5 Å(¹‰Ôr|Kbb_=᪋º‚“åJ»<^ÜYÐ8? Àµï4MÅ) Ý…–‹ìçû¢KÓØ8sÑúݾ÷£Áüô¡ßüÿÌ_ÒIµ*lã…5²[a¼Â)ÛYÙ Pì :<~»Íçûµ2 –‹Yµ‘ö.æpç)QzꉻRí?¬%ìÕ¨n=Ç”ô„†H`—ºð·wP ŸåM<{¢4PÕr¦”ލ}ÕîÛøýˆÒ´`ã݉7 bŸà1)QßÖ4¦Þ“µô¦gæÂµµW‚Äé¶NO:Jà,#xÎ6?†9ù †Lû«‚Ç7 ¡XŒôcƒ¡Ô8üµ$ø…G'‹´Tx¸J4øžÕˆï¦uì“×Μü žRg{ìë¥×™ôâ:ÅÁlïS=÷O|ã*à¯w¶AÒd8C}(ÖN™Â„—ûËÿOµ<¥4#n=íuW»gúõd'>)•b•,4¨@U2Ô¯(²öðˆÀW±'X,5L4}1•óÌÞ£#Ì©¤{QüÐl£dÏßúeWÂé\ôiøýÚS› ¨¢ƒÕáwí¸dp…Ÿ{ti¹„ÈPE½Æf!x£„+e>v î„gÑÉ.#ù:på!âPÉŸ;Rµù(@9«L=>šFe5š·èʶòÂË×ÏšT£×Ë6(CJjsé6Lùcbl 'èвôÑ(ª ?x]ü*Ô`¸ìd敉ÝÿŸøÇÜW‘”PkA †I„]Et (G/6XüïávtN~¬4´ƒ­ׇŸD»ös63ÁŽ>Ç- JÐæ,¥h¹6k¤$ѼµÊ+{•Òa¶Xеí(B¡:zryÊ•bÊpI¦K ,ᤈdz¢’>ĺL%ÔÊ~8¸µÎNG0D×åÍÆ‹¢% Ëõ†/,«2T UR±:r²ûzk²¤i”Å~¬ÎTÆC‰»•|¨Ñ¢êÁ±–Yš:B#…ޜڹQÉ‚}qtöÊE¥!à‡ìn»ÆÈ î”§{™ÒØÒl€ÎDpz¡Î ‡•Åû‡°y ¤ ÅévT<ˆiõŸÌš(ÀœÐ×Ã`IƒGX>Kž¿Âè³Ü)-Dj£Žz1¬N)8€HxYCÔ³'¸i)°hAÔÅ´ÇÂïcRËj{Øðoª¬uWT&L èÑ¡(X ÖO¤œÃÍÂ0Oát²x˜À éZ4ǾY8*’j¦Lóù¢ 5êk£\c§bãäa˜¸œ—÷uxwáø´-W”ÅÊÁ77’ œÓ-4Õ`_j¦×º{rX¬S H¸¯R5jW×ÃB‘Ž^í<¼¬Q+ +«Ѭå¦F8]ÛNMÀV¤ÆE;aI©Q BQÖ6Q ˆ”nüÂsÀ°î¡›øÐëQtÚH¹>¡Œ^ìéê Ô½¢‡&鎕©·BuêÖ @ s‘ó¨ ØS»?&#;£˹º±FçÄ. ºV< U¦»ÅÜa{EM°(ÞD‹Óêf AR?™áö:O<¸pÎåá'Œº8]OÎjT›Ó…ºTü#e3§"Š:Ø Nàìê1bFˆ06,$ÐeÇ»`öçw`ˉb¶»×œË*ØÙàºÀÍrPVö‚dN¿üÈ)óÏääW] Q0È(“`‹¶–W&p>Qƒ'_¡}*ÆÎB•ðá …a+ º4UÇcZÿ矶<¯4¹’Çø+èµñ|+×Ñd«a@P2LÈ{‰ÛG¿¦-6¥÷örytÈÌ©÷ºïô°!‹WK`eÚâó¥i9¢A ±Å<›+oZ÷§f2GùqÍÞZ-’7–12Èe“Å›K(A…µ: âà8ãük!IÀ ‡†äñ â·šlðòˆ»TÁ[Ç•ª£O%Ú‡)üOò=š`;0Â'jIˆL!Ò$Cѳ¤”ôB«h²V渴ªu¸,„µãrƒ™MÓp(þ0€‘ß|÷YWB)ßGŒÜáOÙ±§ãÑØŠ„šM)'UJAdVºFMìð£¬WO©öX§ìw®“ª‰¡oXšsh¬í$lÂXÀÂòbn{ g)™¼q§ùmÿ8¹l…€¤BŒo+ýÒŸž“±L‚ \çGxœ§T¢p¬\;ðå&B|•ôó+ïN­^<ÃíŬÑyÚ·A3µ)ð Å·¬¬ˆ%ŽÕñ5x¤ôÂ1UŽ"EæÝpuI”§·œüß%Üÿòõߌ§Ø ÎwÅ} t7ENEÛ¾h NeÑ^Aƒub‹R4‹ëŸÂÓ™ô¾¹9Ùx)v#ºuôÂæ É%}¦ ¶íÈT9&GÚÁÌ åRNÞ}ˆU)U6éy3Uk†Ÿcÿ‘FþEÈÃÓ^PäºEO‡µ2¿70fÜÅ}39¹|ŽL5]ª' %Õ(5ž;µ˜ùCß y§Z¢H𨡀>‰l´«'&©žü?æä4€À@è§2 ñþaÈÕÀùêTîðÖ¿Àù_y>7ãóÉr³“wAÜøÀÙˆ6öÔâÓ®… ,)?¶öä—ýÝ?iWõM®C)(ó™×à#LŠÃ1ý¹›Øº<Ù8•(óÏIÒ“¦¤™‹‚_Çü¬/R²írþÛ¾J¶ÍÆ>7‚Q‡và“oYž1òÇm¥DÌs u)` ¯lõë€0ù¿vnO.zZÅä»·>šEӼЃf\<ì3›–L%à‡È*L(Û‡ü•â( Kê¼°&´¿'*)ˆÐr ø ^)•pÄ\tc²61sª Ï¥cbÁçÆ/ŠŽbÆÖ³âÖ°œkpxÊâ µÚ_ëC×hÚaòÕ:”u}Wí¨NöRXD»ý3„Å¥I9¯ÒIB3d«(ç<0Ù²¢ƒ0±9’‚8‘f†jìk.X³7JûkÿOßh…É ÃÞ‚“âAÉà¹Aä‡Õäç´Œí!!&%©>Áî'râ'lUD}õšMìÈÆjŒ¹=â®u6Ò-€1*Œ$óˆ|A~Éôy ¥p¥e/\Âìªùÿ?cF}kî(ˆÛx)SÁ[áEFÊ2"bZSíUoh‘âv¿d.ßõ|¢ôÈö¨ âfÚŒTD[yû)Á§é%0 ‰ Äk•M*ˆ ïlH9;Ù•‹tJq0…Àu¡£zÊuâ–¸Ç"š,ØÕ÷{2ÑGF{3àÙÜqPE€—5v>%Ô»ìòßÜ^²eÒ|ôÜ»Ê I]‰„¸²G#Mq M1<ˆêƒ·d—À¹BOT±xTéHH)´Àíº>¡³°pÏÀ3`âT%)  (‣JZÐO0ô˜æûÂ÷~±IS=«&Þ³f²€¿·_Ñ;‰ówpV‰=¢N†AÏZ^êp Ô­|"^;ƒ•Í•4©yärä"G‡XÕ“ž£JÒÝî¯Rå'u3”]),ÁqÖ á[+t*˜o¿bë,î$’)¯K‹ÊÖҭ–e1䆎C¥ª+FŸÁ/nØLCð„PhÔ¸Ñ%åvË]äÀ³ »Ll¥=]awªØÿòN˜¢Ùz˜CpŹ— RFšé}{‚;¿‹¡€÷‘Ü-=žf[›à«Ã¼Ô¦µJÚáðôó"˺³¯tC•BH&§ÍPä ôšªò:Ï!0ÝNs­TLm¢½éÆ 9i0òìjübåkIê5iÆ.¯üvŒ y’ÀTEÉëI‚ƒ.²8Iz[XÉ•E…ßùöaGϽ€•y/Æíý3fÀ'Hbö‘Vy×WUl <|Öö¤¤½¾„ÅÂäwÍ,vˆ?*¥V"ÆÄ‚ȹî&#ª2w³±¯Ò„1ÁÔäæt„A¸’'x:È E‹jÂèÈ£<žW¨h p•óÓ©‰:?~”$Èc/˜%ÒªŠ½4ãXÈÐÏ©EV|–­¡ŸÁéõ¶3Ž=uxVóu åÓ'‚Ác÷I"j`ß*û3:ùêJÍæÿ*¥Â5*9ö˜¥N¨Ž‘‡Pè )`fö@«eáÄzQZé Ÿ=×µòô‹àq™Ø-w6ÊS9eÕÃôW³BÀ™ô%1¡-|v²p³¤’T ò‚ì…‹”‚ÁYWèÝìûk-øÁ#Dz÷ŒÂ·©ñ—ÉÝp‚r‰Z+ ô"Ãÿ€¤!Î=ºöÏGáN˜®‡`­Ôˆ ÒS­­vJHSêlÍÁ ³{ݾ¬%eÖýÊg¥Qõ%KzÌSaÚw¦Çî‚£¶Š:˜hC˜ÂЪ×¶¿?¸`Üjâ@Ýé\FÏ`RÄËÏÇ3ˆ¦ÙAš!Í]†—™©Ð<§ûËñº#d%c¥O,¬=5Ð#XU±7R¬»’˜ùß]Pø¾÷Ž­T Ja@UY9¥Ï”È/“¯ã›Ì¦½L4RÝÙÙ¹(…î±>F¼ù©Uý‹ÿ3¢ï9¾ÃÓ6 y@l×$ÚŽââÁ¨¦&LKf ÜÛj‹ù+ƒÂçkëÓböõ^H˜j‚TrÐϯ6²nDµ þ©ÑUÓàX<³à†mJ zÌ@ ~šþ<¿²¼ÒvvŠ$E_© ˆ×{é^x/Åaå/y—Æ%¥p¬ú†"À)¤vén¿c+¥®²n6§Ìž;A6ý0uŒ%¤â@ 9a¡? :a§="â3æA<:~•ôKJPÉ™†aVîñcSÀlšò¿㢞ũ‹|}wKfš6‹­ÖN5ñK*viÛáÇËî?$œ±r›õÉþ‚¾d6­:7*ºV}7SàÍû·Šö«–û'åÞ+ÈÀ)P")ƒÓT¡ÀÆ1À§™Vñö:ÝÇÇ(Šÿ]çU ñª ÌpcW¬Þ2%ö¹`HîPÆ'ÇR;8è·Ö§²yÏPƒ­P †I¼2¤[βÁ×A gL£tÖx°Äø!rëe™½FØÌO=8]ÈW ~‘Õâãæ3úW‡kýRÏ&é ȸHœt€q 7®ô¢þõ‰{wP?¬tîxU›"ö¤Uùþ¸ò¸)¡!}dbúŽ ÷* ·LøŸ× “À.è¢oìþ)[··ëcCÔª’òX-½HQ|2±Ú‡ÃÊ@Åú1B{œ_p@&í8Òݽ(2a¼ßú³— ¥•mkÌ1q*Âr»*üÑ1; xàÃýœû¢Ò%¸ÕáBR\B›ì€Ä«óxèÆ:1B嘥0^@ªpvÓh'µø¸¡^0³WÓm²ü¸un³O/ê„y|ñÍŽC¢‘g¶R@ùq‰?&ì…²‰8Ä "c¡Âöª›+qHº„ä’«ÎÀÓÅþ}Çek y T=>Q0"Ÿ<ò{½ôGLÍ¡n|“ ‚BJ’kùÀ”_„ö- liwè?éb»ä"JN¤ÓÈΫڜÂðÔÍß–P—Æ\Ìëoo¥I$f ŽFO*FþóèŠJõ$Îï®±·…ÚïÖZ)9ùpÀiÁ;ÒpÒ.åì9M¶6§Ç]Z´ý^ß—jé×õΣ¢#Ñpú®LdÄëJ¨ å8fHèR9ÞÎ3ðÏüéâUP  ž„¼øJ\˜Â),Ü=ˆ¢Ë격ªwÖzöEž+ÍHÚIJwtÜÿoÅøš÷C™M¸û[?ºx% ‹6œz ¾®Ã±I$lLRÍÄȾ_źÎA[9à2Š|oY¡Ü¯Ï¯¬‡`‹±su–4¤‡àp0„,ÿQUSñ½ûÙƒ‘oÐ ½EÞç^Ô£á¹ko»*ñSO«@2¡sê¼9£†"2KÖùÌãòYªÈ²Gó‹þ¥=ØÒÕ¦ï™_ˆè*.$„‘w°‹‡û+r•MFCÒ|¦÷·qm€¤¥‰{îdºF3u!„ëŸpµb¬qO™´g5^ÚIöpÙ™%RK˜º•†z:µ²4yÎ.DýºóêýÜMö÷‡Á¨4½5< š2…\6¶8ðøýý/Ê=w‹ýѫꔇ5fÖEþ— §=ü,Ó%ïyÞ÷WúQÎðƒ×!¼}¼A´Ã’ lCÈùŠ.ÆÂËŽLáPNùfÚJžûu¾NÃ@Œ/Jš£ÈY¥«¨°– Ê¢CàHÌó,þ=Õ [Ðú…·îBvã©VwÖœ!Ö®Z›Tk (z @–ï¼Ôü–€¹TëtDtHI·Åç^¢sþlè°øHí|ÜÔÐGüÂòbåo³+z‡°^ܵˆbç ûÚQ‰WÉÆ”|æâ1Kîä¨Ì)A Ǭsä° OØ:¡¸‹ýrþœ¥0U*s­D ¯½õ&€Ùh"qª³Ž§:.Q÷¤ßùºxbÅý1Ó'€&ù;ׇœ„(§ŒúUK••4ÍŸß'üðNº º’ýæzˆí)”¨2N_%Zàw,ƒ@ohu‚ꛃòÄ“¨‡Î,”‚®ÌK^*ò“šý: ÿkaüÀ¬Q íŸù)Ý ¨0@—jÀ„¸Oû„rWúžeC£/5^|Õ°…¬x’9Ø1-äÓÛ]|Ä<÷;[í&Gz’ì^ÔÑ Ç¿­…gy®¿ƒ©GÔ_æÔèø Rv££ÏEònë̱üñÜíFÉ9WÍTûÇ€CCõ}?l}šºšŽRûÄFí ÈÅB O;½ý8Ã/$;õ–œ¸ŽäœcT€Ý~ëøçª(•{…”­ž{Eж"Ù€|œ95æâ·’ãº2vžá.5Ì»Ò˰•À3a@!öZUá7RÉ#,ì k(‹ïçdøç£È»Sfh³ÆößÇkˆÌ¿Óèî|ðîå,×|¬¸LžÎ”L}£†px$á–W½×œŠ¯¯6wÒ%'»ØîeI¹¬ý8ñXqôsý&lP;)E®÷°œÇVCönB¿àËÒQlXCÅÀm4žçÃp_ŽE8Ç\;¸“³èaœgÀWï̸¤aŽH™ñÅo7àƒ%˜é;Þa¶ÿãvãHçªy«ÕÉÇ“/cz>ƒ§Ý¼ßïÁ.TÁ1¶mqBìÆ=ÞP¨âÉX t½µŠØ ”+ð÷È9°fcþgpy êyŒm ­‚MƒŠÀ-ÜÛŽrûƒ‹?qó13[Ö!¿‰¶ƒª'ù8Ñ™äZ¸¸N*„8bùÎöemî˺ ³ï-©¡±Žø³|ë&²[™úá"¦˜Ì“9(™©J‚C-SJ:ܼŸ»»þÁŸøÕŽ5Åt=Ì—ø;cã›w¤°4Á‹ ?!qV.¬˜ˆ"ƒ‹gÊ z8g8A.î[Uϲ ¹]ÝÛ¸Ø71¨k\ Ú|rïbc‰äÿº²1™¿,Š?¯ÄñOÈí’‡@WRÔ>í—_©:‰÷±%F*pK¿Œwí¥uÍn`¦A;S3 w‰BÈ')÷¾_çt‰æÈЈ\,R¹ŽëF…;ËùFju ׊òÔÖÉy€lï#!{e!§`Þ57n†ù)ÿ‹I,AÏ;R1xS%“ÓÈ]éûktìvX{Ö\Ëø‘‚H û)—ß08ݨ£žúWoÎó»éá½ZÎÆ‘œ¬X¡šË;|DFø¨“½ÎƒzʾéÚŸ¦¨»@V.67ÄÌypÊTGG»úB«ê˳•Ò€{6›‹VlÔ*®®^´ÜýÿóêßåMr¿ ¥Ö©&áê¦N år ôklÕÿ%œîÙÒè«%bQŸs~[¹ïŽoGœùÈ Ûê±7®¬Ì}4ùäRR&—“çÝA4¾5zésÓšßrq~Æ,uÅwgù³LíåE(º«¶é]­¹ ú> •˜Æûò²}’©uÚsØ/A¯`&Þ ëæ,ˬü:.nŠy5Å\í‡8Cƒ¹W¡×1’#p0Z–&!†‘eθ‘͆çȥΘ4J£Ý.žíû2ÚÏÊ_FüÍí'‹ÌÁëdùsrØ–x‹c`.ªhÒ·7r&³‰×K6ãàœ„iÇHe4Íêh‡±{K°qæøØ·ÚWÓÀ8”þTØüz+9Åp>N6#”uªÞÊ7µt øôë'$ #1«r-Iºq´rÝÖÛlܱ-"Ô%lûÿ>Ÿä]í]ñÛq™‚ºXëiÙ¦ŒA©sÀÛˆ ?–ð¢!ß›•!9È(Åбôéí¨Z!͸4@Z`ØêxcSx·;÷Ù6µÆŸˆúopñ>¯R|ñàX­i<¥ì2¾¸ia®où5¤~ ÄUfI|.ÒåüÇ~÷[ˆ˜ \õz"ó2¼Ðgf­ìL–{Œ€ƒ´þ•î¹pp$´¿¨2yN´õ¼’æa‚K†ÀïÈ3‹Nó‚°~þ­öêÔ/ç·mïúÊ!;ë£ÛsÚaŸÚZîvï'·i1ši¿w•‚©5—I¦|bÁQ9×áµ"qmv:h Gå°]ÿ×ì:J`¦¶± ÞÓ <+ì_b"Êè`~$H‰ë–MFÑ;ë%’ÏÉw+«'G#âÊÀך‚¸òõëÅŠ%ßàpÁfl/ÝÅIÿY7XWZH‘NËÐú_^Ú Ÿ°«ü0ñ`g·„Ä¿äÌâ½Xr¦Þ._š‚5Ë™1¶ÄÅ4™Ý*Àˆn”´Å…w÷Ý{¯ DŒw L~#²Â=ñ*³Y,:9«§ EiiÆŽ÷·ÝZÛH¹¾c¾wñm*˜)Ë–þÖèç,SæêãQ}–ùi°¡öny!LŽáA ùL¹Îë‚ÚºÉßHn±aµûâá ï°k â“óÏ&Z& ÎŒep~QlpÎ}ú°9¶‡N…pTq‡TT›\xnOÎó©ÉFaEœqN\ Ø‹ô{ßèÌhëM&ãû\Ý$-h±ò…z¨#4Êa¯Å9˜%Ëž<8@yóNW¤¯ììßÓþ™ÑóâN\‘ >žöÕ)çøI¢7 Ÿ–vçöK4Œ£? $uàÜÔd¢:yÎÇ—º$WÁÌx4Ó¹à<‹r®5“¾x•¨+ÆÚJZ·:¦›“fÄ…¤¬u ÎdAç{–Ü;¡¼_­^g ÜU„ ³7H[¢2°çI?¦®ýQ÷ÿ±iåQoÐ׺õnO+¥%Iö¢Ä*c¥wYàÁpï!}õlF=Ågâ»<Óãj~;xC9»ñàxÛj/ û­í±c¯¶Å@•G&êÜÀñ€ð`¨ïc„GH©·‘·=7¸s©1Ûú˜Ýñ‹Ô>¼{ÁøÃç¸1ßÀZ}¤(¢/WÝ­a-B „'árx—‹D1ò"¹]ßÀ#ß±WkÒ1`õ~r^#r~ÿóØ8k‡ŸãØ+_!ÅkðEØX2hÒ "?8„j«Z±OÖמùÿ•«2…¼ø.ÒÌoêõýíK6«ÎP¬È¿£´ÕÑ–ÀðØqÚÂÕV—4ætʼ%æDU‡Ú 0Á­€Á´h7ÆJ;´…F¢0:‚š¸ëÁ'ª+Á×´ÑŠ’¡Ùß·›Ž‘Š=+rŽÒ¦’Ý…Ót„‹™þp@„ÄîDŠMhQƒûÝ’¢ˆÝ‡ó6í†IE¢áóß¹ég뽤âñÍÂA"«ˆÀ ùI¸Û2²BÝáêEfÝ÷I…lv%Ô–mal$ ¶ä„á³âaô?÷uÇ›uįަ”ƒãžäg+ÔÝ÷ ––Å]¥…×-SU³.›Ïj±hßs[B×~p;ÎðÌlö»†þóÅ>¾tÖ—àšbp—íƒ=h­þ…2&6xϲm?¦ w'*Bš,˜AÜ™½_²#ÂÉÿH÷>îÆ§”Ý®DB Zd_RèËùüN,Šº¢zƒ/ëy™m½"u@(S™±}ohRt`µ}:ø4SûNôûäØU=èÀæ<Þ“,•æ'};ŠcØU g _×ä¸ ÊñeH¿5¦¶¨yE|;T%hë+Ð:ÑgÍIÃcþjñ툤ªpÎ,›W°ãK_FO™“rS:ú´ha½ÿ]‚¢ËžÐK ðŠrËD†¬_šžÔÀbˆ) Æ€·IVòéBv€GQ}á3˜¼Ö%hlh,SA¤áK¹ÎåX‰UýÌ&–.ämåçµ'ïK§ÊsŠBÌcêr¸”L-…²Y}m>ê:õøÍ&L·Jmnî>™Êð›:Ç­þòüT _òmTˆŽuˆî;$¶÷³þ”åÀ;Ž5È*  X+ùø6Ö£6ÁÊ]ÉvÛë:ß,BÌ0¥¼©ðYmú¢Wo=uPd…«6›&1ÞYKx-AÑÊPßäZÉ@gÉ«Jg¡:'g¥š~ÀÜÅ·3?+yL׉÷G¥öbë2M7¾k`¸«5=WM7‰M‹ó©mæãtÀ¸Àp»i­eEW;LLÉÉéi6}“êuwîëSçI9w@BWáߤSñ9¼‡;"^ï3®#ôÄ+8‹óÐor2éïQª†À>¿|¶Ö’<‰‘€C$ÐáËÿºé¤Øn]çÍ\y©Gk¿V¿‚ õ`î¬F„Â"”$*ª’ÑæE<øUû БtöÞ߯”!Ä Í¥7,º2öÄÛ>AdbÍEÖ€óV«ÜRïbå@\Ã7rÌœ#cµ:÷γó§æ÷é^4ò[JCéºWZ+†Ó'3~Ù§ßYÉ’ã,>ÏÒÇ‹wyÚŸÿÙñp&´Ÿìo´ÁªCÜq¸íº4ã>l”ÄÌ1µáÐä(¦…ãBJïÖØ )… jÆ8Ì¥)jü€0€±på¿äÌáÇ‹?{8¡pr°¼Xw å7€½àËósªN²x`æä÷©T‚%á-a'_l'Aí«õ×äª5ÏÚ!ø¯à®iIÑ9¦®Ä©Eî¾*FBS÷€~i­ò†swÆw8ø5ãu•¢<˜x 8ëHöÚ+þ¢¯.ñ².Ôo&ånÖ/fø5F Rf¢Ð÷—§\ì9Ϊé%ÂW§“̃ØHzßI4“g?„ì„5 ï®a&E樘РÝCõM/Ø\ù‘UX¸OÀ ¾©îöíb¬Ý§‚R”¨zá[#Ã$“…ß7WL Œ¸Å|÷€ùôÌóaîÃ÷’Z§è3ȘãŒJåA/]@(Žœ½ÄضBo‘~;¡”|ƒ­î²£N)>( L “^9!žÁoŽâc€¿ÔŒü?]>L°éb7Q°ÊšÊPì¸gNþİ;‚ðÐL‚*"ýzüš¥Ñüë¸%10ÀÔñ³œiN5msM“T0XÇ$D6_5Öœ¶.5ZÝù^¡ Zò ¢Ç`  "££]¶—qŠ›ÍSùžÝ)ún×Pn •u†¨»ƒMöÉ“9s”da°Ù™3‰}B`VÕÁ|:½ÙßDièqyXà³Äq-Y^9´üTŒŽG>ªÖ‘xœî$µe ÇŒ㎺Ô:Dt‰—œ²%0áZ`Úb=úf7§ØlWvzær* ÃÝ®Ø;²À-¹âS!COEV|Tž¼O©’Õ\Ã,Œáþ;eªϲŠNðÒ`¬Ç4“³}J"*ó8N/5ðíÎ'l¹æ¡¨IâõÔ¼›óIˆF´wˆUÕ‘0·!׫Ÿ‚ÌIã¥,ß6³+3uB5€Aô²›Ÿ†±Ý©‚nH;¸¢osúý’UéÒºÁ?X»¤ÆÆ¬_(¼=Y9çx á_Ð~ž“DCÂ#Ù>€ôöíÏ1°Åû˜ᙜKóüX7SC[Ú‹•‡IkDý¦W¶ ‰hš9IùgWìHqé”Ï"}'ž œ·¡÷DÕ‚ôòUšƒ¾äh¿ˆåƒê0ã°u^á7"ˆ(©nüð"[2ò’ÀEçºâOqx¡­¼¾òõ2Ê¥fl¢“gšPtl“¢‘WäúÌd”%Ì~¥[>åk×{¹©1¢·8opUé(GëϼTf¶æ" }Í3Œ´é\><°ë%«ÓáËÙ¯gòÉŒTɆ×P` ­.#“æ.WðõÖWðÄõ—š¦á ¬qdÜNZ‘i,…]ùYí®3éêõÑ^˜lµv¦7e&ODE´È;ÓÍÆ›ŒO`½u`ÏÞiøÔ²Ú:¼dieá.Ö¡<(YŽŠ¿¥.DÜÅê‰ó]áÎ@O^*“ŽØZ×[ ¶-Ôª–CSLSyªºzú„dgØÕô lŸ ó½F¤B´-ª—Ig0PO¶£â׺ÔUÀx€â‘¬„½´H‹hEÁ8âúèfjjnD?a>êÍpqCÖ·Þq£¶’ýÈ”]¯È‹ E®G?Ksϑ곻ïð0)u]Ÿš­MacQ7iÌ|¼fÖ%R«÷NŽª& IÖ¯(Þî®<ŨaØy?¿G-.¨ˆîŒCÍõœ|Ü µÈæ{β֧7¾wcÚ²”¸;Tu’NÐ„à®…Ç |Y½Ð¡“¾?Ø)Ï=3h÷™_”-Ó‰èßßåTFdD Éµ¹ JŠŸcº¦þÛ:EK© c‘´+µ¢¾Òˆ¾Š»Ð ô­iÿéøQÉ7[ébS˜¤ê94ô-||Š ‘m.œš·®²±ÒH‰-´UÍU{‰=ƒ?i’çw^i5úaWcõC­†-KÆHô±ÚyñOSrœÈx`"b$D5ÞD'¥€¡ßu$çO XÉ<àñ­Ÿ+ÉyÙ´ŒïXôS¡[µQ˜Ù"ÃÍ6(žÞ¢‚%æQ©;Z¿ìI30]„5éxò— 0æÛ=°©c7µ_ëvL=¹×Û9u²4ÑS*¤Q»¼i¦¥2‚ê™~lªN!h&1øÙr꯳²ã”r]ÁÌ[¹ZºÉ^z”GõäˆÛBàh‡xýèL¼'»"Z _.- ¾Œ…‰@/<æ,nbôÓ(·ëšè¨°ut£ i–îNqE}öñûµóYQÔö' qùR²)—Ì´«´†÷p @Äý•K|cƒ"¨m4ÛFlM— |uõž£³Õe¹äVQ —â>È´·„äM E4Ï,¿ÿ[=IÆC[w¬ËPCÆ3›€¬×¤J#¸ºv6­2vw6ˆ‹²‘}ÀMabä –W’ìZ΋í#jD<÷Ä–o‚4I-Þ•]»ØI!÷Ùæõ ÀÓÀrLî=æ!›:kH»„êëyÍúž§7yAû tn©lf¥x"ÓPÆ%›‹¿„/t\žê|ù0Óðºb kk»/vx¯¢•ÍF71—)Y^èíy¹Mœç݆E=úUÚÁN{põ4ó€úp.SÇ)˜Ö$û›j©ƒz5:|ñ]šZÁ\½ªz½šT|›(¥TvFÀßâéùvÉ ƒÇžféG,Ÿçº‰®üã –#].«™¾Ží ÞÝ%Òªvy‡«ßi…þ èS›|cÁìKJ;Ý:MÂg¼çK/ÂýægÃKDõçhmH ¨’$´r¹ 8•oµÎ7¢™,$ÈÌrJ˜¥¾£‰„•VçQW¶ òyHa¥&õ¿„S­+lœ†Ð‹fAÌ$·†Ès‹´“¤-µS%…`xÊyÔÎÁWhvip Ç9¬•šþRýýš–û0**éMÏfŠÛÉŒ²n…ÉÍ,ÍœD”ýž ÷~RxC²Ï€<ñßsÈ`K³S¦?R±€¾B§<ùX¨“ö©$Ìâ5ƺz‰%ƒ¸amݤ¿¹ÿ+ÓוÈçSÅæ»ÒÛþm§5?ÏlsÊšd=ʾã¬2“®wú* .9ŽÑÍé÷n·kŸZ›•n—þÖO½Js(8·ý‚ÑýZÙÐ;¾nÏ"ƒ‰túïQ)›ùĤqWœ!†Æ¡7­¾ïÝû\˜Ê~nÃϰ:ª/×kkÑQ´ÊŽ®Æþ€V‰±ö—ï›! @èÚÙaš~L…&²Ë¿ º©8Góî0˜¨·Ê›Ä)Ú£GˆN>ðãiüt; ò«È뻨¥/Ìî¾Îl’%#!ÞÚ¸èÆä¿{]`?»ê±,ñ?½Ÿ'Wžð.ÆlCž—¥߉i& %ç˜ry wÚ˯É]nÑò–£˦ª®ýëwÞp´®KâI©*þÉ€F²“û/ø¯%(¹n{%¥ï rÎÐ0³¢ž`à«ôEd…µH·‘}ÍCE K-¦²€Z¹úFCmäÚJjáMò­Ý¯¢¸r…´œ ŸÃ}ʼnºñ {Àäñ/?‰¨¾™¦?8–;óSeq4^Å7¤ÎAá0}Úr9#¸˜©}±“’£ÍU)uÅqò‚Æù٫qxìÿuž0/C¯ wòÒŸGÉSÒáÞãÍV/è¿Kã|’u÷ηˆ‘Ö¤!mk³/ÜAêUÜB'ЩˆŠói=ŠØãû3Qü0ѰÐõªœØpî~ƒ£ªæƒ Ÿ†³,ƒjË™žÖÕt3Ãp&Œ˜Æ[»Ÿ§Á3βÕÝÜœ ”›Ó{qô˜F„40'ˆ¡W¶})—È-nV§ƒüêíT³Ž¾½]ŽXÐ|Á1ÜÉ7¾VRÃ}úqê‚>Ÿåˆv%Âæù‹®3ØŸÇ'›>¿2nª"®Å·rÒâ¿.ãš÷ÊŽ®Žæe•hÂj!«iådÉÁN÷ gaZÙÓ’Ûüw,ÛgÊô:0S˜Ð?¸HA|puxV‹ ðã¢&«2£\‚ }V˜fhÖ¡¨Íü¿‡µ(A‡`µ5Ýò׿fê÷.woPzòŨmÙÀÂÅ÷«K’ … Ý¢Ûùg‰½¶ð˜0U”¨ñ¿uax»—\–QW‡xÛPVÕv«xŽÂ´Œ®–~b¸© !k³–ÜY•,>ÒsÚõÍÀÔT0·OÛ?CU¼@Õ¢ÌU· žÆîB YðµF ÏE%Äêöz )zÎDÚ]¦é%4Î@s^’ä›S@m™ÜsÊȾ?XAÜÏr¿^-9 )ºWÈlû£}é ¸êr­õªž®L£¨Q¼úÅ’xÓ/€okö)i:tþáQ648EÕ<¶èÁ~É«2Y5ΤÝe)ª å¨.‹¹ÐÕVX‚}}×39¾‰˜¬Zú»É!ä‚fž(p¾Õ“îT`ãðý¬”¡×ͦÿxÛ•nZЦ”ƒv­ŒΧš·ºÃ™pjVd9µÉÆëÝÁÇÝ×*7¶óÑr›0@· HØ XÜ£ÏBDóã²'xPˇr UÔr˜˜Kæeîê ïúƒìÉuÓ¼8ÿ›v-8éiX'2OÛÔ==.ó[R=J+ ‰~®{WŸ²yÙ¶ámjàl¢ðókñâáÕDL#ãΜÜ<"^ò·àï\cF#ª‘ ºŠ#ƒ÷þPŠZ^wbË=Û3?» 9Ê—'?2&©fž=T$ÃA´/ÜwºUHáî¯r ´ ZãI<,Xî7ýTe§ ›IK™OE—¹™+p àjq—Îô%£y³ü€ÇI ¼Ö”îη$ðù9ÔÿQ—¾å—FÅáçnYK|W•Ã¥pØQJÆqz\²†GÞž͉ækÔry¼hZLX $«z³p–v4{Ò¶úžŸ0@…„¡ÝCmD0mko&ÊÞW#¢òÚœ"®ôh±“ ùÖ|}W¾•Õ#éEÐê)”º}Wÿ$L—O¸ô‹œµ×nPÅ_vl¹PÂ;=›ÑÃ; v^¿V.ãñÂCòžö|ryA˜mC4Öô-Ç&m¤ºt¯]¨ BqK¾>­ÄÓ÷¦°Íú1ß.g Àøñõ EOÆ| D¿.²û¹=* -Sø?7Îû'Óøˆ#^ùRg†É¸ˆ»Ç0íó`PR,äºü¤`@  Ú·zt•‹jŸÕ;ä„Ê»Y6A­[ %+"*y+×Í«i^oTYÞ½^·W;vÃ’âò n"ÝX*Xn¶†²+Á«fñ–í ÞÉÖÞî-$’† N5“ÙõC¨¾ÁôÙÛK”Ûzåó6 3^!™DOZµ{¤<ƒ9v:ü›ý¥Åx‘‹b$Úmat¦‘=sj%¼s*\Ä‹ž¾2°/~*°¹ˆ´¶eŽâçGò1OS i’s*—YÃZ›”—Qq%µÒè4Š•à|uð)Äšª±¦Pˆì.%õ5eJw“ ÄÛ±AȤ÷]2í¦!º~•UµU©»;ê.L\õâ_€ŸU\+µÂYtT¯ª-ÑdKdzÇ]’Î\É–/¦ô=åR²lÍ]NŸÄf ‡©‡ËÐí±—%ÈØ‰« ;-köñÁ® ý¤ÃËÉ«ûcXX6©íöºñÆô¥ü3ØÙ•DÇ'E±w Þ‡k •7šÖ.BÏW’J ³£!ùš0IáöS>j`Ì8•2WãìmxŽü}f]F·‘¿»’»þ®¨ïW%‘w„𳡡Ka6}J:^W +«ÑÓ¼§ÒSΜ]üÊtØnkë8™ÛKúh)µ¯4‘µ; ÉÞgx$Jš—åxßñB娂k¹¾š†?oÎv«KsµEâŠ/¶¦°KÅ!¼×Šlm%îf¶æõWh…™Ðž¢›’8rùiëç¸[ nöèëV¥Eœâ’P›vŽ•S³@né°[F 35$&{KT!L˜ç뾊¬NË ž£ÚÙù‹(Cu³¹Jéá9ô:Ú¹—Ìqçø ¿ëO.*Ýg?™± 9P«ú^‚€zŽ{]¬’AlG‹!GcEQˆzþÊ‚7ß–i.¨L>¥Ã9í×Ê ñÎá9Økó•·×’cP;ùcÊ5Ú¿_…Ü?}#bÆÍãŽ|P¸)ÑävºF©¹²ŽVœ“9§—J¸ ç!ÔέË|‰›èšúÖ'#È&±~.Ï%èþï'bþZo—IÎ;óÍqzVh‰qÞÃeÈ{A]ƒÓÔÚ]É÷¨)3÷MÍ9|^°í.©ç89]¶§©sЩãQÌZØX@™–ލâ»[rÜhЦCs8x-vŸ ñlrúع•žh›xj¸ „nM. âªäê0Ô3£›´‰®-ùJPMå8— 2/(®*'Nw‰µ[!@aÙ¬µk‚/c¿yY¥Ờ2íg,Ž‚*à*±ªjÕä Pø»gY¢>²PÛÞÇ´ŸÄJób®·Lt‘)7®!¬Åò8»{ÝC©Í[us` ÎÇ¡ÕMA¾AŒ»Hr€<ðЙœ[Ï}ÖíýçYÿ‚þ“b^ a~LDÿƒJÎ0@nÜ‘Pòե蒊ÁYB0t¡ —.3¸i9Í ÇÍã·xÖWÏZcNL¥±_{Õ¢ƒ«–$aKR_Ú«É£y©eûl)Z{˜î³z€^ä¦^%q8œi›ÿEGrÚ1´fCÂ[9|aÌyœ×èK÷«h„,©3%I½‚u³”µ/PEû·=4ñ* §'æàÝÆÆaÈÁaßw- ‹Õr”5Mâ|Át}âäQ›’=GÔoœŽ®;NWŽéa'½¸.BÙ6'„ƒ[=L¶9®&É«)Ýà^äàm³šÇÎUÕ±^!öÙÿ ̶iòMA`õre[ ßëÁ§ÏÚP"›Å{ÛoÎÛòê°Ã½‘¤›—Ƙtœ¹Œ¯«-Af½'S³Ág£§]‘MiñÄöM¶è@ÚE›{šû¹/Éå/~WfqHnsÅÒjÚÞ¹úª{YÊÜ¿Ÿ(:a:Þ92~±Ouξ¿ˆQØÿWá‡ùÖŠ¹¾ìO4|Õ(··Ðæå¦¾vPʈî«dG› ‹äün|óÁd&ìì3±õuýî}¬`žÇ®a_,m³±™‰*ì”<«áÓGûmÔLäM!“ÄñÝßDÍJEuí§îÌ:ô\;\—nVÍòžT~:8ºáósŸÀU׳‚G¶nÆIóS³€Ý5…}·{CÖ\"¡×´£ymtå¡ìöœ¬ÝÜ)íÙÕÑ=Òºx|ó"ó9Â¥Ým®Ž¡ ús´¯¶]žK˜øø øëXÅô¶hÆ»&¾Ü@m\´H•q¡)ºŒo—ê(ÖóY™Þ@…Oyý½‹y.jiëà/%øñ¶öD+b,]Øq.«\EŠ7O©­¼„ä°)jÎ^×­]/j'£]@ƒ½ï¢òÓ#”EÄMðQ¾˜©Åêö8„ä´§\kiŸûYIä³þ ¼EÍïà<´Ÿaßâµ+¥ïòpðÞquÍIFõÙ³‚d­7;),n´ú_T LxÜ7þû©þðËíÂ[7Äø<30ö³¶}мù–¡ ÊåX‚’킎z±ÉÐ!¯_ZpÅï“[W/Ç}ÛÉí“®ë ðq{«„™:b»/¦èNâO™"Ü9U Ûü*[ùæ Tbôoo6pÓ=“)ÙÅ!ÈïÁyˆ#3l"mÓ= &2œ•JÊqÅšˆç—ç€è?¯Ð5 UGìKG·C‡=ÁXýf5‡åkùtã†øùX6ºÊU÷VìÈ¢‹z™æ° vdx†¥æ\8Ýà8ÛTtGæû[ÑJÇt7¶ñùÀ"n•Nª+Û®9‰^Ö_”Vs}÷–Y°ÒÓ_™Úíí™±[•Eð€Æ,ö»ƒBùoÁI ÷zýÙÜ«8NZ2Yº§ÞM8kuR¹û@ÝA¥çÜͯÔëæñ· p¯È?Íêõ¤¢¼Ã»ð °zg@¯E¿nAÆ~9£Å' EMµ,ƒ—¼»ùô"¶ý°õ]w¾R¨-Õ›¸²†ÙÕ%NXÖ½Tž ‡«H žÓ­<ÓáàéÜ'Ÿ„ëZÓ@]öJìƒÕó>Iw™p×3Eì BN2ÀÁÌ–äŠØšÇìPsûìxû& ØÜEC$)mÇÖZGBºîy³ƒ36Î)%L(|Ïï홃†³˜®}ײÊÒM‹„DR‰Iýñskx½ ©±ü´©gRÔb*œŒRÎ+[‚'úç¯À÷89¯1“ÔÁ3ûƒ®ëòd ²ãbÞl½‹ˆYüx ä( µ°àøï¨)È¿ƒ›ÞT×q¦ýÊGÊ÷‹hÙ=WƒI±F휓õ2ÒY}±Áœ{W‹—Cs ÊÖ_Äôq‡Š EF©WÍŸÙâãù{xù­åØOÈv¾’„*Óççô¥¬*G)ÒvYV=­}4aD1óŸÚþG˜PÜö Rö®›ã-h¶¦Ãp÷ÉFô?ÄÇí­S :ñÝW÷GÛY”¼w¦×¥qð7½wœ«µþ‰f>Ê\{ã4ÖŽß0*L5ÜIÚÛÙJ)B¢µXõìEÍƧ7œ¾ÂÕÈxÝ®æÇ^yìm±ÁÞp¶[ÁƒŽÍâø´;Ío2(g½Àï Ør~~ÀõåÔš%ÊùF6bó;JüòÎ)4,j§8WIcx]#V`³I ¹aÃÏk©±WŽr¡°e|hõ]Sѵv[Ó§ä[ø:”y|£ ÌÉc%Ú̯Ÿo´NG‚švˆôí–¯:ÕÑ’¹X5,¬ÜÉkx_,kõéÍh…ÁÚÁmŸ$gìχ__¿kr’·²¨;$.|ßkœåX…©¸0ö!ÐQ¢’²ùE Ü­(ï Õ³%žÿ-•K¡A +«}ì´arPDíí[Þ­G$3 )q·¼=Ãkó­ˆiWßÞÍœ¾¿ÖZg ì5Ô”}ÿF¹|þ¶×#ôRG›±IæêF@c…Ö&“™pÑD¬½¯§Y+RÖš:UtçŠòÙ[÷Žô½->^• r¼ÈótVÜVtÓ-Ñ®sÏùhœ`õº®Œ7Øñö"Y^öý<Žë­{{-}þ^G>£¤Eq+ÈììOdìm-ý]î+°¯”¶¬¥³6tèÙf÷+èÎR]Wnê"G E|h‹> ¬ ­Þa½÷ûã7Kg&šø/}Íé±=B»´O·X„;'äò/ZE088 ÍCðª¼õÑÌëQÞVÐûVÍ`_3K΢¸¶’¯GšÝŒÞ¼•">OŠþ]' Óø ;¥*ŒLnÞÇòÀÄ×ÚŽت] 7Ñò¸ƒp£–åô#ƒŒ·͸µy׋gkl¯{´@øOKóuo»}(ës{rJ''2o4x£†¦êvnÜá *9µøníï8¾d7vüO–i–»òi~ã“yùöïÞItþ-ÃÈÆ'Òïsi¼KN·íñ°j¡(‹­±¬Ãƒ#¿?ÛœÈf4zJ£‰&(·O·Š{ýf<“×Õª{K`ž/–ì8YJøi¥Á‰¶msÇ->³h>nëÛ,t+n4éy=N‚¹ø[Gï|Ž^Ÿ —nœ6“Ö#n×ÓÙSÎ[*ë¼J=Yí$ëSÕ3¶úwuKÛœè?Æq¥MŽ2á¯&ž±i¾Ì¡…«[ºØU€RbÕ&§G8[ÓÅ0j1Z½÷–í£õl¾%„kózxs¥ ×høùåoG0.z³2ÇÆ²÷[®þ“ˆ Àö&˜Š ¯ oX®“Å—jÁÁ±!x†0[‹GTdÒÅô|vwüžÁRyq÷nüÆ0”ïɈF² ,åëe¼†ãxþ”^ã (¢³çgìXÂûåWÄïÐâZʺYÉ e~(Âj4vòšrÒaì×Ò^µžûYÝ«‘‹ªJÿQïs¥Â-sÎBz‚7‘ {gYs‘8–Nm}­È¾NKæÎï÷;mänc….K0òd.Þw-И8j$xCÃA¸s)à+Ÿ¬]®3 zÍ ªÝjtz|È~µ—¿Å†·gChñKÎ銗‰jßwCŒ¿l¾ù׺7Îòœ¼N%É'xÐ'd,ˆøÎ†YžÄEb ›inB¬²èÏ¢äi~èúÍÛHV«èg:À;0 +q£;ëÔ  A„Úç¹— .+Wz¤“~ ÌQs}dRWÔÕ7v®]·K²¶Š¹Î`EÌæ›g‹ŠíI¼>]©)M¯G³ys;ÿ„7±E‹ŠÇÍÕŽõ}Pû™ÖؤŸ°)ãs~qù^˜Þ‰7ƒ÷²SêÖㆃˆíö •³š6ÛÞï~ÕoÐ]Ç­áWmZÍ ðN0­7V T¶G›Õ`ãçàËcÑ€÷5àAÓ,ž‘Sî/a&XäÅEÍß„móo»VkÉÖæ‘va?yïV÷ õ:Ý[_a³Þ¿¥Ö¡yñí½kOõÉQãmËö6ôrsrÌHë[ƒÃ߀᱀Öí¾˜Û:Ö?«÷Ru2#{m¼ÐŽÍG ÉuÐ_sãâíGÙÌüйâ_Òè:8’kÇzrѤŽƾO{è èsÈ»éó‡“q±IËäÙ:˜úéǓܛѤ—¢‡+þý}ÞŠòV½~C£6šÆçÁàùØô±«2ãÐÿÆUÀ •ã§Y˜ñâÆ:ñM¤ºó|¯üµT7oI§F•|ì5ñ9&^Ðs¥?˜Oqûcþ|‰èØC;” pI[„­f7üBiºß‡*w*ÐG |;SoX¾k++‡ï?ø¦‘™ƒCÏðúg«`Ã&Ø»c)0U%Îî&¼ÜZ)?¾¡M¥Õ%­¬›²±bàØ A!Û™kãäÇã¿|=dõ¹ÙYö~3‰gÊ~ÎÁc:Ú/xÛ~¼&Ù`?5¾xÞO§éèѰî>WÖ„ ãмã«{`Ô•'ygø—#ç¹3Ãízƒž·…Öä^¨æñ?×áÚEž “—’•/ý¨ÆnKNe-m¥y=5~Ch`N H‹ÿÈyC¯J%ûþØì‚蛿rN?aïãÁûð?8‹É]2Ý8ÍúÜKß¶ZªmgønŽÔ6ªhzÉ,_€I¢U: cLÉä‹ñkrq¯ªq‡Mëš…¢qB¾\cÝ´¢ùÝ5 Ht•٤Õñ›Ü”ýÔpÌ„ä}WßuœËë¢3yl¡®bôãUíý)1¶›‹¤âPÞ@Ìïà3Çpá|’mpJÍ[½·|²ý {¸Eõ ªÎ•ÁÓ½…X†ž³0TèÂ7ïÏ¿ów÷Lði#®XümCUMóô¦.ürß"m7*òŸÏÒ_ìûÌ-|sÌy®Öå,©z‚f&ö§zÎCòŸµnŽá²"®‘УóÎtãº{Ï4[®‡åõjT]?lÎøŠã­D³ÕïÖõ‘»ÿWÊéöÚè[ÙH¢Ö{äÝüÑõ÷‡9‡ ý;©zÝÈ çõS¿Ór‹½‚Ê®’|X™â@nÿЧˆoDN'æT_§ÝÂf§áC^¶±ó¿ú €røOy6ýÑâ¤)>©-ÝOUýí$>w½n÷ç­¢÷d"×Õ äzøXk$›¨WÖ9Ž ø8I/ùÄ·ñaKSèËÛ¢yǶã~´uv‘ì=@ƒîo‡…áÌÚ.ïö°Š”¸uƒßÄ[éÒõ§º`û §ˆóá÷ ûAºc ®ÿ×I|{º¾XX ŠË½rlêŒüIØþjõ”%¥´Íva#%¶í›>fƒU§r D«óɹÕ!SPŸÖÑ}•¾´6z?ÜcBœú§õÔ úë%ég½ìÁ~ßoŽþ`öª1ŠÿI¶]o¶C[ŸX–¬·å±!o1^ ”Þuf#ñ³¾ÀΆüºfT•Ä¡êýd@úr-Ä{y-\”é_›-Ffk¹ÅÿQ°ÿA0¯ù=6î ¥%ùrkbï¾ïV½dóÏÇWž®áÍç~3å#¬2;C©÷þuO¢~Z¯¡?Ëû`’àãüû§ì½ ¿Þ§]xÛ›ŠØ†¾àÛþh/×SÏŸí´ý8ÿ*·øú™wîQþi>þþþ$}â?Gš>Æ[æ…Â÷svЊü×2Ïö+IË·÷å ÊŒ"íµÊÚŽòŸÊ¬ûì7éòþ~‰*›ÞÈ]¥?vBz•Æ=í'MKžgC²ç¡-·jéËB%Ìn=öÔVµ8ÎÚ!‹ý?õFìç΂v¼Irõ°zw2àûDÔäÂ8¸7Û¤©þÜ,ÌÃÞ^ku$lšL¡ãz‹k>µ_úÝÃÀinyãÖMUhˆïZÞ¶Ài4ù‰àqżëªg|ïÒÏŠèeŽæŽ^ÝßÙÐêaHAøGkÿ_õmÿf>ŽßbR4-Jƒµæ·õñiI5MJ¢ý»^ßb>?æÜ&µ7¾þ {´ í-ùÝé}eú ”Ì¿ÁÕ'øæ9}#¾oW‡oàâ¹LŒù«e•ð ëk÷TèeDYðN~D™óíñT»Ac=RÚÑHÙ«ôôál·Š·ÊûÒBeiÔ“É!õ¯·úDg(ö¢w€L½+{—䵪X;o-JZþ™J,zߣŽqŽ.½¤±}„~íüÐÓ=_ãÛà“ª¹™gËtË7ÀA¾·Kr^ž:t¬Z çÈ¡Mû]ÿÀîl¿… :ÏèË>Bðq€_JÞÊ¿éUõÒë}7ü’× ÖɆ»53¾ßöÿ?-OOßÜ6QM"4¾gû’ýH¿qüï6’é­>¤ühTZ^Ÿ×kýp5ð×Ax»p2¨ó1c“å1D7B6 OúÌÅ/EÎ5ß7m“±îœ”®Y‹{êð¢z¿ÏUü?ƒ !Ý7û J¯”íÞ÷·Tà`ü9]ë.æwÆ'GÓû»“©RýDØp@Fï7DÏÞìg¦é§Jð»üÓÆ]×#øÑ*G+˜†> -ˆB»R¹Tï…tkD6”Êý“ùeºŒ#}œv#) wÆÅxÛišgŸ™q–v}„^Ûß³»£¤›âó¹=F³äÉ ;ðÖŸû¯YÄÑ=Öæ>wé•ßnÆy§((ÄåÝÍË!üIù'+üt'p.±epôÃãÉïMÄw¶Þ*Qs½ ©ªdxµ>ðz=§y=ç Ñm9¨?˧ãìçv!Wi@og8ÚÒG¨fÕïËÔ—¤½Žv½û¿ƒÕ¿ Ω»/ê¹oü-ÃúõƽSa)=-“IK[Õ}РèŸûˆ‰š4ë6ôum¾î)‰¦Å |ëTD\ÊÒÌYÅe–qÍï¼ä¦ûô8…¦þhámJªOœ>ªÉƒ«Ïîû¤CòœqÏ5ïâäl­ÎØàéw9¿·kþÌ<ÄFü]– ûä¹´4¯2ƒ UØÿáö{93¯`;tnZ>öîƒa\Å?nŸOÁPÖÝ<Ê|¬ ‘na%ñ)øÏeÎCóœ–Â([†AOYUü¿¡tbY¿Õyõlo(Ô½ïRÛ,ƒËå¬ùÿ{»>0§‚ü¼ð¢²†i^¼@1 *P|!8¿,"9æ8(óÏ–S%@çâþê…ÈFÕÑ>Êãš³è³Vh úRnv‚¼ï¿xÚ†ÝãC›îLù 9,Öã¢ú|«³ýAo°ûÿ©~÷HURÿB ùŸâ~r”韬ˆ úxô9¶Ãúý<í¥h‹Þ¬Ìsºqò”›P”‰|xÏê®§•`œÌÇóéÑIøÎuücˆCÃ8 ùfáÝß#›fÌ,æÉÿ‰Ö©;.—®-KP6›ýî)S‘›Í?çî$ñ~¿šä¦„5ß4°Nǯô2ãûðËdVÒò.¾H«8df'wÆåú:‘± ’Ô óvxC²ÒóŸô•áÏ¡ßü¡v/¯åßvÒK_Òíþùqd~8N×f¹xýº?âäØÎâ‹ó dÞŸÇtÊP–Ô$Ž™ÚßÆÔ¿âñ—ܧÿxLt¹öuF«›s?´ÆRO¡–c°_»âk%êÈÜe§Ü$°£¦‰H¥ÄèàËä„ 9z9¨}/6ï–­§-Ýš~w*r§oúüz§óPÆç2‚àÛ¿ûs‰¥êjPlLâÌÁhP{ø[±toDe~s¾ù¡¸ŒîwKvÿåÙYRÓÿL»–(?ËŒ*?Û¥ýŸç½þ®>÷KWÅÙ]57`ßâÂæAü%Æ9j@çõ¼‡ê}Ûèx„»¤ª Ãç$sVºFj_ÓEXMóÊ}¤Îeíù|¿T¬4*˜ç,½‹¿ÖÄåW„[2ß×åûr¿Ç¾lÖ'ß/Yó|<ºù Û6$IPáÌÓƒÁôÙÛM/ìã˹û¼lÝU=@ña0ïJ°Ú¯_q1®T0³”v~¿ ÛùâþžŠ?çP'Èû ºeÇýépÐoñÔA!•,åÿ¿6§X°’Æu¿ÊôO–Üj(ÓÉ}&zVœ§ßù‹Ü«¢?æžßöä7sìê‘ütÚYUø Oæpû~žl¨oÈ ¾Y6“?´¶ÁR÷º|ZŽ:)¥Ï`êùêzZ/Òyß¶¡¤þ}ÿﲞK߉΃V£é§Ð¬ ÕIÕAã ÓÙš¢ä'ò‘øž?¦7k¥N 'à: û>ç_盀 hÕ!ËþБSù¹ìTwô\6‚syõúÚpý2N\s0‹>OòÒ|‡Éÿ¹>6õÕ[Õ™Ìvõu ))¡ùžÍ×R¿‹ï;¼\T2Hw&U|V¿78JEZáýœo3Þþq¤}Ý[#†LàY6CË]a/§¼ˆªåÓM~¿WBâìkLJþ¾tUypÒþÑåþ¿AGÔл›=õ±¼ðþ2óµÞ¸ß÷7Ý{†¢È±‚½ý¢³è¬¿MæÛö(|•ßùýÿ–ïu’:mo£ì¤5åÎßà›¼çÞ׌å}žªlþ\?xO Eö[¦9 Ù˜ß3‘¹o³#¸œwf¾«_:Z­=}£Bnê']½}¨‘{•éýõ_èí‰ò‘û˹ý®¾ÏOW· }Ä¿ËónzäÐirÊé¨í©Ô¼^Îõ%ï^3ªú΀¯4ˆ½™}^½¥5nvò`Fµs·{)¨§QZ¯Î8NÐ/¾¡óÒ“sŠ]ôÀJÌ\Á}ÉìàÞÈì§Kê"6Ãiûö²öêdÙò ©¼ÜŸ¡öšÓåuÅIÄ%ÙÌZ¨lO‡ø=O[ÙþÞº/Ï[©vaÚ")•]ȹ†h[ÝЮû,—ýµÙÆÏ1õäó-zMi‰qötÔ{ÏY*CZ½ýþ%ž¿nqÇÇø¤§™s÷õ†àÀUéü%p>ð:_,$€obL®¢z¼ Þ2xŒ?U¿bòát£Êw¾ÿ»ò#7þ^]:ÜßÖ‡©ˆ«‘Ôèe¡{Ò¾ýÍáKµ‚5²½ŽuÿòLCøb‹üAò–º¢©OÅÁüå>_àúÿÙV0³µPà®åõïü!uý“OÔDMxWIÿ kêÜŒ,q#•Òмa8™QÖrGào½}á³P¡%G V5Þw¥&÷×®™©Ý–”šôå‡_ø½/N@N†Ýei‹w¢›…S‰Rœ+çö¸wŸê ÑóXüC¼ÀÝ]Ïôpwû ¬rO07†G›¦ð’¹ë^ÖŒ£—….ÙwCèvÔ›U÷ëÝë;&CÐßHΕǮç’%ö®£ðrHî|½ã,‡¯Îi»JC‘7j?§ÅWèûö=?´ž(VyYºmŠâ;l¸ïŸšßµ¯éð®†üO·‘4A¿Ö®^wšû“Ϩ€´ì4}݈­G›{È̯™ù>ˆÎ:X}Zè–øW¥K?Õ×hÇ{Ìÿ?c[ú"ìIÀ.Š®8{±,î7··äÒZ-ÇümQ)9ÏäÉÚö¤þ=Ÿ¹ô9Fÿ.iŒ¸ÓþßïWáÈç1ê¹×þnHÆéœ4Oæ„?Ÿ ]OÊÏ#ڽɣÊáB!mû>qÖ„o·Mžk.“üF8_U‡«úÂû‰~>^Pw»Šišj¹©Ï—™?‡±Þçö¤Üw[IàÜo÷}ÿ¾›]?ìNuú £Ç÷èÝàúÓâË@þ’8ıXÜ6…þèûI9—€-£ï_¢þP¿âKUÎëèçh.ÊÆ›)ä„Di*üŸL?jÝçš æ)@±ÎSÖ†¿þÎamPµÈÌìì†óÿz€æòíiù_Sã :{µ·ŸŽbÿ×S܃5Ö/?!ÛÜ^¤x¿¹9‹Ÿöý{ÁDÚ1ý9âæòBMgp]·wêÞ$ÍÔ†ú9¸Ï=á}U=¨‚ö¿fu»wb/Åæ’îÄ/ËBëf½o6csçî—èÓ[!‚‘6è÷”² „ûzÚ>3–ïÚÉý…D–Ñú9þ?â×áøQZhöß”]¥]âíW„ï<ö¨Ì±ùÄéõ4õèá@ôÉŸªÚèÜ|uD·û­=‰zÛŸN·ƒ.ü‹ÿ²dÆgÁû…—£íÔ»örîëzõ1àøÅ“Þ]ÕNxþbç&Ù  ÎÊλ¹ûß•}ëLë—µ }ÓøÛ^[Ý|ªX\ϸ~]* Ödï\®#þêØ¨š‰N#L~‹ó‹øÜRÏ>3†ÞûrkŸ¼V´y´¹â.ÈSØÓóJ}wšKÅÒs1ŒBš’¬óx5?¯ç-ûí„²ã»Æáþ‘…ý;«‡»&¶¼Ïã§%ÂÛ¬ã‚*ÒߌmEßiœ«OŠÏ^³·%Ç©Å.„…Ú^îëG‚¼èßÑnh5Á²a½z?~=Œ‡Õsiì±fJã¡Îú-9@úo ¼P‡Rÿm«ð|ɤ€´ïÄÈ`­Ž:kÄ!3Ê@¶¥ú_W¢½úϤlïT–ßž ·!òpX#µ58ÃÔð#㤩7újt"ûðXðPÜ(¸Ÿ|gWƒ#›o=ЂÇìeZTΣHS]ÁW¡¬9™Æ8㺖t‘˜© êÕ°5©[_ s“Ž£—oM‹DHãå†vSðD“WB›4LËžŸ7Èó¿0WIÑ(‡±qñ?ÊC ÊÜôÞÇö–çr*D|çäv9ò×ô%ŽãñJÕûöƒXlÕEu—=t[ø•Ýó}K@aúm?Šì8ÜÜo0e¨Â…Ýè}‹'Åλ¸¿îuÔ}Ö[åveŸügjæºw=€-Ï{ÿ¿ü@¸æÚãqǽzäþ/‰‘/îù¨ð®°£ûRm^Ub°‰% 3lJQµµVÑl[æusV¹ÝÜmÍnk–JlZÝ—U²œá_›Gîé4m6&Àš5Š…±ýÏuÜ£ów3»w>ÏæìDúÕéÝQ_¾¢_Æ*ÿs ¢ä¦¶Ûg¾ÀŠš_ùa‹ùùÄáž“r÷R¨~·¸Êµ¶fЭ¢ýâTzŠþ޲~¯´ÚÔ›m6fÍ–Ôîq¶”؆Óðïôþ´+ÜÿIQü{cdSëÔ¯Tþ–Û6LÑ|#fǪ¸Õú!9ùH¿¹•­”ý#ý æBO3IûZ[kiZlÚÛü.8ëuøz¶·Î(¼¼ì•å¹j¹·7+œáDŽ\º[s[˜ŠJ5£r¹&åww§QîwW5Ç.Ú\¸QW6®T‡+š™¹ºîçwJ×+‘.sv6Åw]·Nt°£lãk‹Ž8ÌÜÉ_¼+ñ%Úß&)?¤OÐ'ŸkGû•ó‹ø¥ß'WÁ§¸WF'üòýHWñÝÖÂÛMŸ¡üvÙÉ·ärnCÛDžOáSîÓϹ>æyO×s\lÖ³M¶lI4€,EƒR^rܪèÄd—d’㻊îë›3¹×g.&E_O_O}/÷öÕoÜ×îíz…Q_•Ôõ¡}°sÃý;?KzF ø{mm~-[ö_ÀÆ6*ˆF¶†ËkÊB¿¹Q~Ÿå¶›‘yþ:½ ¸÷‰ÑMµ™mŒÍleŒ É#Ö­1i"Œ”hÑ´ÈÅ2 [c%ˆÕ@£Õï>¶¿WµUèm½šçlqâáUËt±Ò¯ó”ýŠù³g]ó5¶Ú÷Ú÷vöÿ]{ËÒób‚6‰-Ö7ªÛrŠÀç.]¤ÆÆŠå.ës®ërnUÊ79·w[– Í-GvvKœØ,nF®V®[\×,ZåÎ’c•v776Ñ´ŽîÕ×uqÝÈÑ¢5®»µÜé¹ræ’œ×w\ØŠTC"0ÌÎ/ñ·ªŸÀlVͶáÄ9UÆìŒ]Ý®ê_í÷rú­VÖ½ZOù ~{ðö×Å¿n‘\Å_¯AÉ´µ–"ÆÅT•FLb"Œ #cE±mŠÅcš¤Ã"%X¶H4Å…i(+$$¢J&P(d$M€“úËkzú­¿þ*±¦Õpß²‚Ÿg)ù•OÛ õ¡ý_4«õÄèÄù ©û¢½Ø_a¶ÊŸâ}½B¼ÚµoQyðfɱ[•ÊHØÅhÚ(£F5ÝtTîÌŹµÍbÓ»5FÕÉÝsK‘œÝ¦ÈE®l\Ö-mȹ.›r®]œèåguË%Ý\¶;$îäd)ÎÌÁr[6plÛª.¤óÓ§ž£ÔzŽŽ4Cm‡om³gè¿.ý•*'¬E´,Úm[[%´5­€ð7*Qt+imªó#Œ%d¶°S2F€ˆdDl[ElZ61E[I+–½›wh®ºã‚îpë9Ë~-[^Kj·ÊMšÌÚ<Ãä.*^xÓϦþBå#ÔÁãg©ªò£®«Ëý!ߪúQ¾˜úzfÛ]"ˆìóWJiÊx̨ֈ¦¬“F¶ ì"é®Â‚…>ﱎ;Ø×•’ê‡b®–»õÿ³û%ÍE¼xNúS¿ÚØÔƒWhº‹õl__Z­yu­6£Z+E{{¨ÛÖîꢮnE‹¦æ¹c¦¸FHS ‹ìj­ñí­íŒþ’~&ÛJé?RE^(ñôËeãñÅn3•N¬êŽªsUO:¼yão{þ>p•ôNs’ ^ÉéæµÔmKtrÕÊ+r»ºîbÑM\á&ŠE¹³ÝÜîjDÎw.qwnë¹Á¹r½ ÛWñum~–Û.ì ïaµ4Ú¯£ÿ>¹0äÜœ“m›“8Í®w&æ _å¤=„‘ñ(OÙ¤®â2+ÜQ>hKáËâI|Gð”Öóm¶—µ•®j(ÍYÝA""Ö+E“dÆ"Òl¤X‰wvêzõ¯X£_ îàãY™wúÏóÿ\RçÊ»0vju*{>zæõŸB‡v•G³e'eÊ&Qé¥ÙGeNÊ®Ê;"쫚©Ù"ÛkÔbm¨ÙU =öÛ_—@´¾"Inžö¶¶úªuó¯:÷_w]"—aáƒøž#?ò œÅWƤȿ5*𵶪¶7„æ©^/¢\íiš6ç6¶ãÝÀ<š¯ÌúÚÀúÕ™*¾¾ ”èÒ>bWºóê5“ÕWP™"¶Ø­êå£cRwrHvå‘×bˆ*æ®›lj ˆÍ&#!¦E¹ªåQ«— ››`ÝÜ«†W9ÝÔî\¸»³®7;®qÓ±w\ÉÆãŽ8ã6lüÁGÒTéT~UõôeO{Túj/;µ'תö>¼¡äËÉÖx¿óÀ>|©ä‘y6[[m–Ï1ÆßÌ*\ uµu±Í‹•ŒÛ6ˆ„‰ŒhšdH×ä5yh:×Z}@¾¦Ûa5m ¡¶ÖGÚŸkòxãõÒKÕ½_”#Êɶy¤+×'œ¶;Z@æ•>¯ÕÊ­Uï}û~jÛy´R±d­Š"ŦXmŠKbØÆ¶õ)#jƒ{ ­½{Uzì#fÖÚòkOn€Ê]w5w)Ü˹^É\òVPýà™úÕ!÷œ5Ó]1Ò/œý·U¾fl’‹`µ1“Fa Û‚(,³Mz½ºËr¹k•Îb®mQ¢4–Š)u×.¹ÜØ,jK†é­sš»º×$Ä‘²Q›ss»€-£Qlb¹¸U·L—,us»&ÚåD™¬lYÜX&-rÕˈ»»c›dÚ6 êV¯ÛíZõï]Qaªq­ä§2+àªø!ðbäEðiz%_kH¿VòvÍx ;Ô½ wª»Ù¿M­èíµëÛ[o¾ÅPio›ç"á>ÃmV½ ÔkªäçDÆç£b‹\«r‰‘Ä»­ÝÛsUsr®Vå˺çN4ŽíÁ™„Žn›k–æÆÜµtÄI ‹»¶ë¥nm·45¹£W6æÛ•q%D»­®ºI©4E4Er,îŠmÐÒX .r븹\Û¦»¸.ómµ¾M¶ÚóëÙÞûR—,—KПÐy—€¥t…àm¦§ÓÜgñÎsž<]×–Ûko:¶¿û¾Ú·Ìy/JkšÜ£65®`ݱm;¨QËs‘DÐcr'7.êëZÙ™±¶céÏgJN¡sbº…Ô@w…í›èÓ}®’§2RöÔ]êö=î6ú<~A*œØ«£Ñ6e[mˆ­\q.¹É.8ãŽqŽ88çáwJîïZî1·äÛ³T‡2©wŠë Ò?é]î·{x‘s·66”l¶†Úi4W¨å±QlQ«› rÅuÓ¡Aœë¦6-%nTd±W,nE·1E—+³º×-‹¤Ø®î¨±bÅÝÔf+\¦4çguq9ºîÌË»…Ìçr›ŽË§Ä«ê[T´ydú¾è%ÜÉzÕ:SçÉz¢u®âŽÅOP÷Ô]}=UãÎÖm±¶Øðuœ<™%ÜU; 0zKæªv2òå=ê—^«¡÷r]¡tb¿^ð/«lžò+ù1ÛÅ÷…÷Ñ=âtt;u^²ê§yw¹þ²Ö¯5µ¯VÚåb#5ZƳ6Ѳ“™‘©)1j,kb£A±£¨2b ŠÈH¬ÆI&F”H¯üõ|mWæÓ66w­›qÇ âü¯1R'?Cî*Èîw霪Oàü÷ìëh¶Œ¶&L>Çt´ª=:ô«ÒOE^…ÑÔœöjÆÚmž•Ónl#V¹7~>éxìkÃ~„¨¹e:Iêô¶Í–kéi;檪·“V¼¼^‹n[šìîà[nTjH\¶å.ë—.wfÛV[lä…á¡×Uïë¾d”œÆÕ_pÚk$Š-¨!«|5\ÑFZà®HÑÙ>Îñ¾¶¨¹:Z¹Ê;e<á鮨<éÚ‹è=>Úd<ÛÓÄW¿^cŽŒ„ì˲oËUø¿såªù¤Ì-£h’cF¶«j “‚Ðbb6˜Û4EIPjöí±¨5ÝÓdÑ[ræîÜÕ;¶æ&·MA"#hœâ,]ÝrIs%s:îFºíÝË»·:—:ÌI/™‰êÓ±«°}=Uxªç¥?"ýLÀýe«á†îëáøäç]sxO&ÕVòÕoÝPðí(xx—ö¥IÎ%÷d¸ª­çz·cV,íºj1qÝ®¬˜5ÓwÊå®îA\¹ÐQ\îK®®î\í¯%m~kVÛâkZø¡¬-‹{ÞîŒßúçœqÇrqØÁ.rOò¥>©ÂOÞÿö©ôQq@9èÕ'zN÷}¸ÜiÃ5ÏñÿÔ¤9è§EÏòIµFåÝ×)ms[-báZw"¶1Ýp3—óºú{_‘µæÕ/GzÿCÿO{*_ñSœüÞ8¿G™(²"ïômfÝþá®6¸Úô°+•&•o)« mRŠ(A%CìÝsÖÖÛzÊ´-´oZûÚõ·/úˆA¸ÇU1_üÆÀÌÛU[BðóGÀÝÒ7±IÝëñÉ]ËfÂ{I>uj/åÊü6ɱVÊ]ÖÂvŠxȨžá~E%Ýî ÀUõ1ŸS8Ù®Íõ>J;úr)ti]ò}„¿íÏls ö”ö’ÿ‰çUËýW¹É±¬ÆµM©´d_"w±KçìÙ L1 ŒFfˆ–FA9Ë”X¶-Ø¡’ÄQ¬…ÝÕ¢ÆÝ¨Î] 5‹cGróm¶¿Û[[PiBZül½áErÒˆ}ÐK¥Uç7÷bSëÖ­y­U¯a¼Qch#ÓrÅbÉhÛFÁQH‹4›§bÛœh±­ºQES9&UrÖݑ˕Ê:MŠf`1ŠdšßE=æP딾éCºï%±«kî´ÜfÛ“Ž:ˬºË¬¼¤€}Ê+î'ÜŠAËU*6ªˆ“œSœ'"Cè‹È¤íe>ÉOïÒma´ü,Ù§ÚÛf¿ güŸ•_€KÄòml6ö9].î´F -ºZæ,a"¤È®\·+®í±kœ×.nm¹µÉºçw2†m¤¨ª1¹W5r¸b.î·uÑÎ¤Šº[\¤ÄáÊg]1nçWs¸f(Ë»‡N»¦Nt’œ||—%âʾ¬§CBñEÐÜ œô_x‡«©öçÛñsʃê">­/êæš½ÊxY¦ÛÎIW<)ÚTu‹´—[z:^†öäêÝG­£`ÚM­,«æ”»¹b‘nSèÕµõú×Ò{qu—·‡Zöôæ‰z…vké…>™ôøy$ú”ö¡Š{{í ’EëëyÑ+ì‚ÆÊëuœb×fµžŸrzzD¹‚kTàñ8[l×)µÇ.8Ån ¬Ën@øŸ%={èsd•}Õt‹îP÷I>á'"¢úU'9ßá‡~9(+–"ôP½êϤv‚y‹kø’+é/£èª/JçñHé9Ý7ˆ­Ø­¹\²ÆÕ7#h£#n\˜µÍsˆ.Ü8Žë»¢»»u×t»×çM›n6\’.죽6‘Þ¶¦ÔØ#®ºî‘bíú£¿Kmµ«ËªÚßw¡Ý®íÿ²r¥gèpmÆMÇ(°m\:W9uÝÙ,®î¬â+•v D»¹Dîç¹wws§;»Wò*öâi³Óí±±Á³Æk­EW?w€úñèŠK˜+Ó}œ9!;5x™:øuôçý=Iuáׇ^®BOä.÷ZÚïs[8Æsâ+¯N½]}uëÓß’óUÂH²A2Ld¤Qj*§¡Ô˜´ZÆ´mŠ¢J™¤ˆÆ"ĤŒ›%RV6(ÜÂF1JR Ur[;ª#"ÕI1¶ºfmº)S¯ŒåÓÑŠäŠz#™;¶˜F,Z¢Ôe)¢ mlÓ6Øñ—wÞoíÂOFçàß wjîò;Í›l7m³¼ÿ%)9áµyÛjá1­^­Zm]""K‘¼EÞk*þ-Þÿâ 9…)ÞEz0ÌlÛNñ¸q¯m¼nO™B—®žº] Të'­\u±ÕÇK«<“…Sª^ÞãG™ÅqkfÛŒ!sR·©U¯m”3 X´˜Ú-ljŠÉ¨5‹aclj¨Š‹BRmLbh­¤jÆØ¥4“ëU´ÿ_Ѓ»þÛnJI?,‹çl#ßì—6 ¦ª{ø¾bË øY¶+b}òÙsÈ<.Õ['¢¤»Ì˜žß-4Síè¾Á;à—Û•µâ\ÄWÚ¡ñ*÷’'Ú¡µÊP+ÕÂ;üš‹í(û9¶Åµ!eIm{%˵ÌÞO…âLx¿Uª“åEj¥Ð¾ÑLAù*GÛ‰öé9(Þ˜[Q¶­ç÷Ú×+r‹W(útuݹ’¹nr»¸ÜÜ·4V]6ŽtÜîívw-ÊæÑE¨Áµsww75»º]…i(´anhÖ+EG.̬cci ²çj®WwdXªîä4±3ˆ.Îâîêçs—]ÚîÎ;›–µ´äEWÕ‰õOê¿BJsyä ÑÅ<åý*¾³iõ³Wg'&å"s1==pUz{Óœ%^œ÷Ü >ó)UéùÖÔ h­%(ÚU!a4‹Œ’Myֶ߯žÈþ\ûBDè(‡c2QÏJ¹éckø‹ïûœåáâ_cµ­¼ºÚ¥¨b¨¼!<+Ë¢“’(rÔã Á¶¢I&kÐê¹X´i8îš×9W4ÎuW-Îêæ“C‰I¶0hªvHÚÜç"Ð<º<¶–Ö¯U–ÚpÆÙñ8Ü¥s©ÐÖS™ÔÿêU\Éç¸O©Å²¦ÎLŠ*Åê.#aÍÒdµÝÚ¢¬kbÅFŒNêéLîÓ»u™.Z¹¹\²i1¨ª4›njæ×4EEdÇ(JåÊ(¢¹n×6-¹·+›¹Ñ‘,j®CUÂrÒ —…³cÂØq·é*Ѫù㵩ô¡”®Ô¯DìÅôK”W­=U1CÔÒ÷ÁP÷ÃßG>ò<"½Þ†VÕÝ|6ïÿ#ýÔ(æž+6C6­’Ú™­¬ìîr çjµµëZýkm5a¶/#mµgmñ+u`ÊDð…v0y‘û\ªþ“À^gnZTŸ@§®+cÎûJ§¯SÏ] s#Ñ‹ÏÜ‘™Uìhê]Éêß=W²©ÖtG¼§îdµµ[%ܨû¹u¾î'£§5!å6úmhØ1X‰¤™J4&©+FØ£÷ŽšÕÇM®k\%\Ö¹\çNí¶6“LÊÈ’R„q×:çFå_Óíµùí¯.Õkì¶/m.å·/ž+ Žzç…í#Óþl!àSéÛWÓ8Ìå¤j‰ÝPz´úp;º¯tÈ¢ž"úO7þ¥–¨þ•ê4ÖÑFÖ¶&ÂMôJ¹n2G!§¿:¯7¹M­BæÅx¶TÚ78¶µ— 1«–â\D!®”89:îîŽ\.îD ÄÊM³ZÛllÜü*ó”]õÎ|z÷9ÕULÑþ쯆W‘¼ŒÜQŠéÜçäAy-mW—m«oaÐV6ö-«¤P-Ê·Lm×5sWÝÜ50±‹\ç s#îž5j×Õͪ;CÔ¥|#s¹bƒÕÜÑ'aZ*u÷¸Šà‘_à)ó0†ÔÚ³Hب¶¨Šg­V½fÛ52ÛœmǸ’§ý&¥yA'àE}\„?}ìÆj›Ûm ´ZûuÉݧw&¹mû&Þ&µ¶pÚl•lNb®ú“ž!ù”—zyÝŸ‚"úô·ÅáÁÃoæìÜn†ÜpÇ&|ê©t:úd}uõ\íCÞâ8Ò6QìµFЛ*¸Ô\i.5+Œ¥ùØ‚×òxû¿_à~'/å{Î:.O¢üß}þ^‹ØEÔïÿ;ŸÜéjU‡EއJ»?GãåÒeWîáýM'ørz—ŽxÉ9ñÏ‹‰úZ'>š“ŸUŠuJ¼(ÀxC øñª_”å/¿tK–ŠVyl¶IµsSLc0‰´l\»n›†ÝÜÑ«‘´[!ÜÍC&1‘Ý¢c¼[kWØíªÞåZV›fùíÂá­ÆÕì»C˜¥/O!­«_Éÿ²²£oð››øóe!¯¤ø§ÞW*ª;d®Ù.zÅ2‹±£Ì/UN•ÊÚƒìf«FÖ{B ä ±•æø…ØK°áS° ‡—–‘Ø&)êƒRz¤Ô¿'SjÞ¸$hÖ4Z* „‘ˆªM£b¨ŒQ$˜$6ùž»¸ª5a’Ú3Ú·)-×-~Oy-«°V’ì Eõ¢¼zñü'-Rê唺³Juu©#ý¢+ál/exØØÙ«½¹e Ì¢—ž‰Öùj\Šœ,Qùj4Ú.qQÎç}Õ*Žd§–#Qx€^=G.filÛpÚÆ5ù å¤ü™Sã%íòØÛ[ͪÙWÕ‰É%ö!a_ –E÷¢bŸxF ù²4—ÇTÁ}ܬ•]pK¦—CÜ®ZªŽù!ßhb?Õ"¹%#—jåµësdÂwhŽ—NáÁÝÝÇ]Ý87]ËŽ8¼[kßlô2â+а«¯µ']©:Çä(º©cÂ×…·Þé NºÊ>£üìôrмº?§øU@ä6R¡m–µ¯:-¤dd¢L6D4Xß¶¯©ŠÛîu÷UOæÂ'°WÏTÿ9T9vI‰w*w¡w Áw”»‰’vQ¢{ĽˆÉ?œUÙ+Їúž"žcižô…r¤ä«çÙO?Z?©<ùå|ƒ’F¢çõF[bÑŒ¢ŒF,mƒIcbŠ(ÅŠžÞv€äî•Í]ÝtÚç 4sQ¬[\«›\­Îºí\ä Žët›º®j-бQª+»‹»£X…رm͹m¤»mÍvêd¼V3 ÄCÖóR—! ôŠ{ª8¢÷T°/uF¡î‘©>o`©Š2"ýc`oÞ«”þ[j¼µµ¬­^m«¸ÛE™¤#Q hÑUÖ*Œ”ÁE&ŲRlm‹4h£Q¢(‹C2Œmb“6Ñl¦Uh,,]k_µ¯ áoE®Q*çd*üp_ç½öFÛ¸Üciq›cŒpÿ`̤ÄÏË„yú¾æ¡Õ.@®ªÊ^z"»=÷é?®#ªøé_ þ×é+ñB4.žƒ*dKËèÙ\»+råÀW-¢Ž‘·nZ-¹mË#J-qÝÒ›„W]¹Öé;Nº-×]Â]Òîtî¹rîÜj$®åѸw&â×Ù¨_±ÌU|4£D¿I‚·•ªß«DQXеñÍ:ºÕ¼ %Ê*N­–66>P“’P9V¢ª±= Âû¹d½üeýi^ý5æà¯L¸¥V9ýkL[|ØVæfWjß/T>P|l¶Çü°‹•0¥’~*Uª?GãhËdØ©À^~UZ'ä$¾ï*Í qò2O¥ü‰Kd[5m±…_hOÕ)üTF¥w¤Ÿ„Ø ‰Â£ühæp‡[4ZÕ:©¤êV+¨Ôõ𞢫ªÊa³f¶Ø¸ÛfËñj¶ÛÉkz:×J½Ã—¤º îãÇŽ¼#kœ·1Es]ã®]Úäo «ÂTxr×9\äåÝÛ&ÆîÜ4œÜ©&¹$‚RòRŽXECý5KÞ…ýB•rA_‡~ÍÖM±=«hôÕ%yvVÙU²Ú×›ÒêµÜêPr®\×Qb­Žs¹¹«·wwus—w;®åË¡#·fåÎÓ§p§uÒc6éãkWɵ{MY_ïJ\‹I’N›ç"®é›2˜¾ï¹µp…¹5Þ6Ûky+^×Kûª|®rGDVá:ðòÜS¯+ËÜ'Ø…ØEÝœŠìjù<W,=\²þÁS´–¸ŽÒYW­-xèO6[bÚm6m·Ô<ß/›äEYCjÙ^ék–«¨Ö¹ZîÝWwEµÎNTcr·!±I¡0»»[—7"dˆ‹—SE6‰14A¿²¯õªµùš¸W­Œ^¶Z¶µî.îrfmÆ8Ýüå•<:¨šS…k6X&ŠÙéõ1 &£ÝÎrèʃà'´®£ZÖÛ[–õëל{}O5’®3Žê2åÙa4lmÊÚLllníÒË—I»ÐçJйj+A¹p åÑ’S6fÅd«\Û˜Æ56ì\\[­—Û¯ôQú»ZÅÇ0Rí’.ÕGÂLھ꠼%)ïe'zR¾*‹¾C¾ÓlF ]Åj½¥¯OxôѺI5s7]ÜìÎî»»»»«Ü¹Ýhܺ˜Ýw\‹¤ì»Û»çíï÷¾¿¾—èöû%¦ÖÍÿÕ(ñdðèO†§mˆÙm•¶m´vÍ›]>§øTN¥Túá:ºW™_\“«­…Ós}jÇ(;½©:ļÕr{H¯§+ÎW@…ìõª:oÙS³.ŠSÛQÚm«ñà÷5Ù¡îWŒ–§Ž_ÈÆÌ¶œS^—kŒs3»n´6å¹V+%&—]rQ':·CF£•·)Ý¢wì¹Ãºé4.ë\ÑsrÜÖ®E£QT‚îêX5‚² KFÔ.ÚIÁ%þŶ¯‡m·Ãkeð!–Iòö£jm¶<†M´äß—ÕZ×-Š˜’!IlÙ¬Ùuƒ«¼]½Ûí¶ÓÿaIu‡\uÎÞNÝmvìÕ´èQG¨RíðCH´(ÕHÉmï —6åÊäå¾³[[o&ÖÖ5è墺qEÓŽénÜÎv7E–fŽîÂI“_kªËÀVÛ¶¼Ä‚ûÂ¥ÓßÛ6_À•GõB:(y-£±UâÂEu꼕êªy7Åx†Ùg‹ãˆ3ãƒ!fО>ظâÙ³m¬õDù·©/4§§ÏùJø¶ÔôÇ$)uÊõ‘:Qé“îW¤.ù(xñ66Ô6Öaò[mÆã8ÞãÐ÷Å;}›'! çº5€a’†,IdBÁ“Fäns]Ýj’ç.DhÎîØŒÒ13×mÝÚ·7wIhÖ3·n»d1ÝFÕË4TW6Fþ7úU_µð‡KŒUâÖµ½þ½ñy³òd*•¶ÅÿlxrRóÝ9Ó:._®QQµŠ8ÅŠå ¥Îã¶±Èݪ¹¨ØÉÎ’vrUÜÝ]À5×s:îb\ÝÝÜeÝËwÛU¶¾ØÕùÚÛU¿S[|h`5V-li«"ÉF$¯Ê¥n’?›mµ¯"6±¬KbÙ5D5m¾Ò‰›K­Ûj~=ø©ñiáŠ'¼E×cìD¾üõ8.5pÛj_*õ@û‡š›7a†“±¥áî-¶¢ì”㾪®Ì®zplÖ«³êPíiäÀ½Åm/¼ªÙµ¦ÛO} ‹EÙSÌ…{ÕOe±îJwUy!^ê¯Or/amWÑú]‹YF²ƒbÑ1µ›Ô\\Îl•ñAí©ë‹×/]v=¼ŽÞ[64íôͧ¹*/]w^FL»}±¶_Æ(¼ÔQXc`h¢"†™ž—ü²ùzÙ7ËÓ.EP¾LO# –lO“îJ^‚+¦[6»•[ëm«{Š÷y· òѹtú­Â¬V-“]Ý@åt]×LlîºL5\·1®j ª \®sk»®»±sE2WuÉ¢ clXƹsNn5Í×wÛ»µÊæ×D’k»Ž•Ê뜒¹Ð`Òî"tDÛ·:‘¿åò—ŽPy'µùhË„?(¨ü(ù‚ù–Ç—äԯȢ)IÜIÜ'qœq?¾…Nnf­£kk6Ö ÑEX¢Œ%#&Mª65PQ¤±±RI$Ûbµ^×!(’¹ôÚÖ¾Ö¿>lj6± ‚ã8àÜqŵ¶ûâ©Øµ^$GÀÔÛkîv5¢¢Æ†Œl¶º¸ËÃOU.~¾èºêô¥çœN˜óSÌüï¹Ö{-­­½ÿ©¸(KA%ÈZŠÑ©1Š1´›!Æ&6¨Ð^¯]6ܪîåµåÓu¹r4W1´Q5tˆ×ó–ÛеiÙ'ŒÙ™áÒ’S¨'Þº“ÜÕîíÑè•팾s2Ømm¶Ú|æ_ÛV·¦XÆ4i­cjR&ÅDÁhëœuÝÀ»±Ã©—vï¸ÖÕ|0«3/›1±á‘`#çQó¶6Ýõ*fó#Ìú‡ü1ÁÓR®çbîvÛ2©@t‰É±6›[FÑF¶$ÉQ36£lb4bŠÅ¨KI£0Æfb¢´E"B¶CH‹FÙ†XˆXJú {Úû‹ÚTkeÿWKïÈxZÛ ái¢Û65¸Ê2¹n]xµ¬=±/–Uòê®Þ£·¢íát.iâóeÛ³n]×r* ¹[›cœ+—\ä”»·5s+[‘ÙW(¤ˆÆ#$Äh¶(Ú"·-£˜Ç#nPm;£º‚ƱªÅlŒçm¤Û™6!¦Ž-±¶ÍµÇ‚¥xð!wð{¡=ÄOz‘wÆFØî3Ä–¤OjUÒô½ú.þ+܇™^Xðq5¶ö9ÃxµU^…lF©!‚¡‰“Hý%Ô¤/å[jßojû}eÉ =bžp½a<ézÉmë%xêõ‚õ ´§©v‘{®Ö—kOª—fvòïÉxÙZ;2 ÙU{"öEìªú(õz°ùÁì-ª÷M¡‰ÇaJ º"èèë»»®Ýtç;®'9¸î¹‹2/ƒUðdؾ ¹6íj(ì„ùùN)Ó5y•Ò¹Esvi6™µóIyi/¹ÍlùQ ÆQñv›žP¾vÚkiÛlÿ"Då„ÔæäãSf›èÑÕsœ¢š-¹¶4¹c3H™ôZ¯²mŠ´“X٨سt­†›/ÆŠÈí²f͖튧þ”(æI÷ôRyEâzáÅz9^XôbòïG,ôaåïþÚ˜®®§Wyôï½]>zû y~Ç‹cm´M±b™r¹£\¹];®ãºšH“H$2L,Ý\"$ç"\¹;µ·*æ­°Õ´Bб(­“h±ª2Is !ˉºêíw;¤îãwvîW&I½4¿†)éêôêóõ©GÉWÉmš?È„ëUýtW\›®¯þ‹Þ'M–ÚÙm9KÇÔvëa²Åþ²ªè³eDL(-M ò] Qii5ˆ¶‰¢°“L¨‹ 6¢kòv¾ Um¯‚ÔNtÞûm¶½×Úí_SGþ›mm¯#XÕ¤zTl°l¶¸ã65¬Ï@¾¤Sð`Ÿ°ªðtÖÇ‚rÁ/ÆE¶Í­¶ËfÖÛ² ½oB¼*ƒÑ= ü8Ÿ[m¤¯DßZPý__*m[6É ƒÞÈ?7Ùøf³5›6¶«j6‹dÚ[6¸*}‹[jSç‰_=´÷ê¨üæ’w95MÜðàw1Fß_­«o-­¯l¨$kZÖÆÛ6Ópì’ýŠÊ—Ñ »µ;©=]Ô®ê.áWp;Š®ÜvÅÛ‹ÊúåêËŒaŒøÜqN-›‘PoÌÚüÅo¦¯oä°Eh(’à cXØÚ,m*,cô6¹‹\«–,mEQ¤Cs±E!ÝÅuݱ¹·6ÅFÜÜ£cæÁ¹]œ»ºägu×Bº¥`4h¨¶Œ®i.W.\N5s\©DQºw9ÝÝÐt븜éwvœd»»®ÝP_I¯¤¾Ž¾Žõ5½ÖÖßgoÔ5aDPÆñmUyßÛj¯ŸhÊ_)2/ˆ‹âæ6fm­½,¥><«ì(;̶Û6Ì+w‚u}ŒÕ³a-…xÅ[KÆIöÔ6C%t¢½åKÀÈÚd¶ªŒú<2/¢“ìJIÛ¤ÿ„“ìæŸC¤º`ºœ¶FÑklËIdDÑ“i5XÛcI±FËjM‘-lXÛmmªK®ÍGÊû©>G©‹¦}øžª]§FU×—kIØGüò¾ž® ¬uÖÓ§Uëv¨ž¸¾ú£×¾¯_$‡nØØÚ²mRÈÚ®Þm³.;ºyþÆ ð5­“i‰àì[Œ†¸Õ­y%%“&B*±µ¦T¨×•QicQk˜Ì6ÆÑd‹«n®Ÿ9CÑG†¨¯Š—÷c㦶›^uAêרvïIËÑh­#lmšÖÚÌŠ 2Hªýŵ¯´­oùkm¶ómµô:¢©ŒmL½àÆÛ5³ƒ3Àª Gxø»išâ·ŠÛ{ m»ºâéÒ´m%vų®Æ.î‹»t¨Ü×#ssEs˜· Š2ƒs•Ê9.»‘ÎàŽ\îCuÕÜvë“Ùq×4hdÄ£_§û-±[fËåÂWhNÒ—dlŸ:n•é¥ÿµlä¢:õ^d]G]uÓ¥ôåå=`ô´ôµx˜ô‘âGÀûŽ.1\jli ž×«¶ÚëcjI£[EÈëé¶û-¶¯³«Smj f&Kaë8ÑáìÛŒÆþÔ¢<ýìçPº?Eãß.ŸÏî×WlyaC㔟±5ðM¢¿¦@݈Þʵª¼«F-[ ¼[6aêj÷©|š‡<­K½‘.ºsU{³dÛSÉ[\Š/+››W74Q±l[–ŠÕÍg8ˆÄ…c[—L\Å®jܨKF’Œ\«”ÂW.[EEcr¹·*ä&ÍwuÒ¨Aîè@˜íÊî:ë¶îæî]Üéܺç/s½Í½Í½Å{‹à[÷qŸ¤' ~¡ñÉñÌÑñÛ8ÆÞ]ýïÿ·•»b—M–ÆÛMj4V*6ÅEŒYA›ÐtŽîåÝtº[”îØ.–-棕ÉÜÇuºæ‹–"+6,Tld.rˆªwQ»»™¶hÑ`£ŠòêÛ}rÑ£‡/|¥sÑWØí±aIÏ‚»ía$Eòv¿qÔ(£â…õ>ðMñ’zÕ<(Sãí)ëåñ©=x}8‡ÇدxK²—T㵆ʽ|p{4õ’ªQòì'È¥Ù‡†“ìÔÁÜkfláÉQ.ººã®uÏMs:mu»l[9®j5tÈbÚbÝÊ?A{ëm^Ò­·½Ú• Îà»§,Að ø ||½ü_ÆÀ#æm°¶[O¥¶iÉIÒNÕ=o"’J4[F #cLQ 0kšê-r´bA[rŠã—‘llb–$‹\ìçnvÜÐ cŒJF1‰×¸Ó…Úù¸´1óRrÈ"“±¿šÛ3ûOü•PóÚ](éO‘ ÷w×ßóÿÇ÷uÛœãt踧ww!UÒàdÝÝwí5Z¾%m·èïˆÚ2Ùq¬|à‹Ñ~*þŒ¥y~Sk§Ë†£FˆæÜ«snYšwvwt4•Ër¹r5\ÅÒ¹mŒ[›]-ÌX­Ë—0;«¥ÒÌ5Í\±µËnUÅd£XÔSº§qÝÝ®]ݵíÚwm»ºÐ.îŒÍÃiÝÊ!wuÍŒkŽîw7-ÝÛ;rwî.;®é îºéK®ç ¹Ê=þ«oÙíZø–ªüv±öùÿºã÷á'rKÌÕj»=4Üq¯ÚÖò ÛmE¨Ú“Ñb*„Õh¶cE ´X [fŒQªÄJ±µ_¼òFÍêi)Éù©KúÇ;I¶ÚçeÆpÙ·n ­µýï ˆwç±ß¶‰—ïmm¶ò^Ž!)"P†"‹%­¨¶®iq–Ñ™Ž'\«¨t®¢ºÈ:“®‘ë…Õzqv'9AßR»í…­®48Î6lâ>f\›Ž,ÿx‰uáæ«ÞU÷‹}†¾Â¯÷?”¨­‹-ÁjlØÚl³7–—º/p;CÃÕkjõ6¤AE’‰% 4,D)¿›jÞµ«ä2’×èqÉÇ¿.ûO‡­Š¶&Ê´Ö€Ø1/³yW,”:ŠwÕm¦ÞÎòh«§GžqxˆG?¶ÓhØ„Ìj1*"$c(m¹¶Û‹kôAÚ>í¾â6ùÈ «?##jÍi´Ûm”lvrüT¤Û|‘"ù,Åü"ðî ¼ºÖÚ¾«Vv²^K¾G[a]&Úk6¶éµÃ*»4Öåʈ¤º¹²[owJø™¶TËâÛm·äæqÜ·ÝÖÛèÙ´l‹bbøÀLßyl: ׂ®Ú—¢]²ŸDí‘èõž¹WNõÐóÞ‚ŽÅ?LSæÏ›­­µþ­¶ÿlyмš£Çò7›6m¥±¢Ô[-ÝÍ¢Ôj¸¨ÛB&h$¥‹–]Ú;e% nA(ú»_W¶úº½==izÑëKÖ§‚T»‹Þå›m:­«‹ØÈ©^ø‰ý™Þë]UàÔo/ˆ6M2”¶±–’J›ÍÓ£›sk–èÉZÔ£kG;®tÑ[›sœk)]ÑÙw]Ý7.uÐæîèæè1zkÚß/U_/m·’‡‰QäÁáª[3m£ÄÜn-£‹fáÆü¶ÿDñÁx*ž '¼>ÆÚÀbA’´Zzõ­ímñÉñÜ}8 ëÜ|Žäæ:>!ÆVÒmfÔÎVŒ]»nZËjjk|j¯ŒÐlw—˜ ÒÇ©ŸuuÓÿ;šNæ;oðUPíµ™š{’®¸N6Ù©™ÇHµMÝÙã»ò?ÍÕ­·š¶Þƪìm'gpÝ’ç]}<9{8=|ß•¶Ø¹$"ämÍÍ»¸îߊÕxVå¼4t¤ðìr£‘a\›Ú ÚÚHöŠ(R•íiíiä¡þ§;5>&ÚÛN1¶¹Û[Ê)'µ/ÛVÖͦU7¶^ڜΑ²ÛjÍ6g¶Ú¿—)y¨öóÛÎiÍÛkI)&…"iDÕ£"ˆª ŒDLA4‘ŠhØ+ldÃ|ïq‹F·4VÐm&wWM‰wnwS·X,×M£UÝÚÇ(æ1t«š7w hЋ¹­ÌTllnrÅ;»Vì˜2Db!™­¶Ök7 ^=$Oé.—m¿ëîbKÑ]Y×>g‰ñ:¨»öaßmqìd¨þI³¢ãŽ0§áVÖýîùùyumµy|Û¹sŽívî¹»v滎bIÝtšw;»»®î.äÜqÝÆÝºnÛ“°‰q×îÒî‘(f»º¹s9Üç4hª6ÜåcQµÝÙ‰²-±cZæº$WväEŽnš5æ¢Üź\×në”kŠbBnk¥¨Š¨¶1Dsb·2X5ræ3VšŠB‘M’ ¶Í“~þˆúJxìW;¬$Ø®½²3l×ñbUëcôò6–ÍŠFÆ£[õ‹F›¬U[UæcÌÏÎU%'Ì¡ùͦd‡C=I£Zª,c"Œ—Îß·µªúßÞ߉Ä%êŠ(Ü£›¯ßwo Ë\×…Îl)ü ÂOÇö)_f3m¯²z•Pþï*¿©4•÷µSÿlûmœJ‹ìCía†×ÙfßoøTW‡Z¶¼ÖѵRhű¤ØÔXÑKQ‹F‰Œ–1F½5C 4UwuNîê.hÛX¢Z¸RQcºã':g:»”=æÚ/êÇØÖûÚRz¸ó¯:<ëÿùŠ É2šÊ*/d  üçÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ÷vT`m™%ElŠm¤ ¥«bH´Êhb2Y´-…ªÔZª$ÖÔÖÙf†¢R-†#@Í&ÁjÌ Õ–à×Òž²¨{áíò|øù0>š¡ª…TPPPªÐ€T…UU ¡*PP¡JªAURª•*TUU’*Q¢•B”)$$¡*TP¥R…UEU@ U‚”J% J†ˆ€$ *”$UQ$UP”PEH•E”Ñ¡TB@A%$ PÐãáñI¬)›60¤lÑHkfÕ!"–Ú,¶±Q$ª4-!l) M¦A2d‹4Ù¶mŒŒ*lÓaŠ”mµ‰f-µ³h–¤R«FÚÚÉ@fÙ dZ[³,²ªKB±¶’Ë E›e±"%±šÐ“m›lÂMd¡)C$P¦²µX4´Ù(ÉPK*ųh¶’Rˆ*’ ‚ÙÌ’ÈѶÛ6É$- X–VBÄmb*ØÊ´4Ø£*‰ZÛ4i’ZÐAmŠ:©þ0LL“L 14i¡¦†€ †@0`ŒF †&™Lɦ hŒ4OETÿ hd# d4hИ4 “&FM4™4ô4hL©ù2z˜hÔÈdÉè dôÉ£Tý SÍL§µ2š{Jzž§êžÔÔõ§ 4&‰èÐ ‘ Ñ3CQª~5O§á ¥OFzA=MO(ý)§µ ýDõ ÓG¦&A“'ꇨõšyOSFš4Ô ¨ =R©ýSôFÊi?SÈ=Òb‡è“ÓSÊzž(Þ©ú2z2h#*?Pi©êfzA¡ ÐÔhÐÐiê= i h @ÔõM=Aé?TR¥ Õ5=¥=¢i6 ýHm&iä ¤?!CÓM’žI잦ƒHÐmML£i?OÜäõ¹ÆQæµ*”‡ÚDÉùô]Î3[ ›6"‘ki’ؤ–Ñd ÚÚÚÍlÜJò‰=„õ¾ÁËWÞ~ëÄ›N8~"%ü¹tsWKù#fÌ›‰ûé¡ùHjr/äT?øPú”ä?#é´§Úf¨ù9c•é‰ûý«‹ìпuµ/àS‘üAü|-lœ_O§ß”œ ~&Uü‰òEæÏÀIê之Óf~$%ú /¶Òh}ÃÌ?„²âýêºèV¾ßŒONÛg-ë‘ü=Ž>߯Ò-ÊÙÉ/”§ñ.d+ýe_ßþâ­Zú«ÙjLQE®‘Eo'vBox4x4[nEcI‚QÅhÑ/ ¯éVF¼›tj×8uááw„·6äžá”Boä’$Š5ä­?I†üEͺ—õ}á}ÞÛg=Íó)~ð©t¢Èý;ùÎgûQt7ú¸›mŸíã‹rv%'îi>)>¡$ë¾ãäüfÛü=hÇŽÖ¯1#m)@“Ýßä6Ñ ,‰ ÷ÿO¶Õ¿+]/é=B{ÿDG¾æ|Sìqµ§ü»7ò…WwG§îÉï!Ѫé±ÍÙ\3mYÇ:VË…EbÑŒÂF2‹¶1¡\×9Nç‹°ÆÚÙ½Üû ;˜în=í×ÕÏÕ•ùwöÒSÛ•ØÝ}u'Î+ï2¶xüS†×ã8ë“êöÕmó9Š˜Åhýõ r>¨ûÉûþçë§ýw,‡óý3Õ{ø‚UUäÒµê¬îÝݵÊÎt5\‰¦ 1båϽ×è[h“m©l†TZS¾×qvq¸ß쿵ü÷´:=G.ãq¸Î*¸·*Lº5pwq¹Ë»tÎM·mÇùföWØê¹+æ‚OÕUô¾îJ}²:Ê3]-u‘äQÎO"“/“­ØÚ¾£ô¶cú:á¶ãmmöÉv#eíÊvQ³È¥Ù׈—i1^Ùx”;QâHöÏ¥ø{%±–ffoÃü*¨ñévöß}yw7­®Ÿ¢ŽÇã'¶n#Œ6µ²xâûã•î|@»9Ù¿{O·üš”ö³ëá}qzfß3‹n6ôô¥çº-­ªb¶ln8Ññ?nˆy´G½3âç|ªç¥_9ŸøR‹—hµDd¨­¤ŠÄ  Çw]ìmììÿ²¿»gø=.—süuÏ×g<]áø}ý¿Öí«{;ü¶|}¨Ùþgýõ Îá9¸Ø4Üq[Ql幈آM‹j-£b—7§]wrîwaÛ»º¸ââÕn=/jÙ›zÀ¥ÉËôªôÇ1ôƒ®]kÚŸG²í¢'WÕ/VtÞªõ>Ér0è±N;º‰ UÅ5TǶk[Ç}ò’ñÁîNé]Õ_Ð-9Ãݛũãkl6ÓoéÅ[Ð^¯¹¬I›nh×Ê®m×vt‰iFÜéE‰ß.§ô¥FÜ)ä<}›iû5Aæ77ØÔÅBLç\®m\Šˆƒ2QZ1m±;·w9m œÚ®LkGÜåÍÆˆîéwvwz{oä/Üjµ½*«zRZ½>Äîî»·¸¶Öß{ûMk-Ÿ™Q<};ªY½/Gű6ãkv5wvÚ‰×bDj5lwuÕÎtX­Åhɉº\¶vp4Ø~ G„†ðü¯gšàʼÌ+Ø ÀGóçÁÕ›!ì-ª¸Ã¡ÀÀmKž/—üû@ëóí¸7qmq¶Ûœ‘|*x%‘à%ÞÉוîëUïj¶ú3ÚàlVÑðvÔÞ9GµfÛm¼}¸ü*(í(ï½µ]¢;Bí »ÝwuÝÓ»§vu7u~"KüJ‡ØßbõH—›_“m™³§m9Ъ·—U{6ºb®ub'4ïÛÿ–ÏÞõ]ݧ:»¸‚éDÎ.8ãzÎM´›ã¥í¿íRÁ¡ÿd“ûÂ…úô:#ígR«É²Ûwü„_öÚߤ¯£¼/U bÑb´cocÜ„ ®»¶ŽZK1wq´îܶÛKºã‹»n9®ë»®ä™»¯LGØ%'Ó¢¼‰äaÞq±Æq™É):j:xÛ ûI„uª¶ÜT^i÷Ò=Šjë)®«Ðêzëu²u²ö%Ö—Z:ÚìÏ;­Ñìm¶¶´=Slé­wj¹¸"å«•ÚÆîÝ˱ ¬Y?"¯Y¯y·¼«¯]y×ιâ¼jÛÇáà‰=oŒŠþ´þ|)ʶ4Q"MF!¢cÑzž¥iV÷T–Â7wu·¯”xaå}ªQâ&ÍgÙ‰uœ¼U´+qh´mEš!“¢$I6‰ˆ_Oz›lüÚ­okoRÚûÀ­,‚>7%þ•«kÎO'\¨àÚ+WlWnáÆÜo•_Géy›íªg¤µ9럛qÆÜN•ÖK¬²]buŠêŽ©uQÕuQÕQì»ô{æÒ?‘y©R½m‰hÖ-ÑQb¬i‘#ÛF*5í::2wn‰ÝuõŸY^÷k{Êø h¤šÕö’ªêK¨h«Ü£ÜÑæntÍQ¡‚ÛhÓç{gsL»°îëÇ]Ñ9ºs†úÝmòª¯‹©íã°¡óú×—´¶mâq®3þ4+¢â> Iê§Ð§ª•Ù›}‚€èÜÔ¶Öhq¾º‘êD¿æ¤ïöߎÿ{m^6ó¶¹eÝ;W.ksTÛ[qn2®3Œ§u9Ñ}±—|£ø$ë+Õo…«^òÖ ø]\¸uÒtçÎÖ¶öwÓW³Õ|/T"%¼hÍccZ" )”‘m³Ú6 шŠë‹\êÃm­Ç‡ª¨zª¯R;â]þ²ïÜ_.EzÚ=‰w%Ü@»˜îgs]Íw/ÿeµ[ÙG«nJ¹ªå£E$$»»jÑnssM°u]Ý·&6®\éÝ‹UÝÑ#Dd»c“ŽèIá-cm‡êñ8ðNFÍá•ONø]\è*û+¬Íµ¶ÖÙšúÝ÷Jrrt:0ü“ë¿_.‚»áÓ¨ÚTú O=Ñì2Ú7ðý¹_¢¸²ñkqÇÑ¥=Å'Ú¼ÝGšm6ÚßïJ€Ù²hÂlòwvøÚ×Ðß»­¶÷š¯OkÚ%=>q·ôCÁ«²‹Î…%ãU}‹Æ©ð³Æ‚éûù.7޽½¹SÜlÖÏhR]/ëJ‡º«×ËѼÕTô÷Ø33g /Œ—Ùÿ=ë]/æpM'¸Ôh¶—f>>&–Ö³[^ùÛÐ;ûÐCôÿôþSî‹û•_zåGã!9ª]#Çq´XF¹nWs»§vÅÈnIÝÝÛ“]ÜXÁ!òµµ_ôÖÖ¾ÊNåâ;Uzz»$õB9ͪjÙ˜øüq·8¼ý*»*ëÓÒ0u³ÖÇ´x+×{%yÄj›ss[¢£jîê;¡­˜ÙŒ]Û›s®îq³‡\g´žÌö~ ý³úÙ‘l,6“¦)O_¿|l›|Ž,áÈ æj´l[oÄæUêꇋâåVØÛk=¶Ù¿Ô¤zX{¸¿fJè†Ú¹{»QM)‹½g£µ÷Ò½GÿºáTþ"øÒɵ±¶ÖÅlSh“ŠŒÊzZ¯¦†¦×›$»ä»âötwŠwŠ}ÖÇw'e´îʾ_:8-TÛ7Gž‚»ÐüèõîÝf£6W9|I:Ücà¡×OƒJôsžOHzÙ=)ܤ|çÀ’teÒÝ/‹ÈäÝòmµoØ<£UÏ•Üæ1Q®{;ž2ž$ŸþÚ¢wAÝu.ê¯Bÿε-6gEô꣮É-„Û-ÖÛlÞ?ÞªW¢EvoÏe˜Û×pý@z?S÷[ݤ^Å9®—šØ4ÆÛHÖɰֈ<.'gmÃ.뤙xkg}¡µ¶[Ym»çÎ ~r#¸ìè9cnU"ªåUŒKEÖ‹F5uÓXˆÔër®hÛMF®‡N.rí×\»®œ»3¹ø»[~:[à5ñ`‹gŽ9?mQ~þÒ¾þ¤:bçœül­}j9q¤Ù’¸nëœÇþuÇÔªOÒlÍÑÔÆÑµ6\9^˜éã§ýÞ²]ÈîlŸ¢GWVÓÁ•ú½w¨¯q°öçk_çø´—B9Û6xxéâµVô)Ok×Mdµ¨2‹_?\ÛNí× I±¶m› ‹§ÙM¯¨¿´)tG®—†ÕzY,ômk~¼ƒQcQ«%bX’1m£k¢ÆÙ­f:ïO]åÅ/ …¶¾1ìóÊxЧÏI{‰éØìÚ–øŠ¾äö Þ¤óÔ§De¶õ5"Ç7hÁ1ÝÖû«]íUÞÉõP{4Ûšð¢é©tökzô+ÖÓ O [-ÐýqUëˆ}iÜÖ»…w¸.â]ÂyˆólM³a±°Êk;‰Ü´ºCVmšyÜNâ;ƒ¸ÅÜüúðþ)щž^£ÁXÛµz-ÝnŽî¾ºÖÕãÃFÖz¾º,ks*¸9g,NtwMÝÜ;‹®º]øU·ÉÛGÉ«áþÖÕ-OGÒ‰]EWÈ+ÆŠ|€m]:”^BÔv—Ҩ}“DëÒ:ƒ¸Ö³ýÒJ½:t|6 &ÖÚ6¦Æ6ÚÚØÙkiî_sR=™.§M°ÿ/>FáÉÉÉÉnNšErKõéW¯‰ÈGG¶Ú[&Ì,Ócô |e||kmò9RÌ»9vTì•èGd;v%ØÇR¾1Uý¥ìgc;õEØ»Ò;Úô&m#Ì3S±ê]«ã¨>>ÌÕñøë•ÅEñh̳Wÿ¥ç!ño¶­ñxÝ–ÿ:Õ­ãózÕ^»¸ÝÛ¢­x4R.[\å\Ž5j‹¤P8ÆÛf[m«§âTÉ}ü…sªÿý4Qc#UñúîÜç;ùuV¯gyþ[H)3IŠ"û;_Vüʵ9Ôøåñ’x»Lÿ…íÞßkjæ$W[¤Ä½ª=‰JúevùVÕ³VofâÜk‹uê©ÔWQ:ƒ¨ôWOyñÞÁü-žˆ+zµ¢ƒ&«Ïkli) „ˆé9p&¹Ù*665cQPlçi×Kš©Ë»¶Üí«šgvbîè¢.FncºïèþZÓWÀ¿‹¶µ{rv{β|í5­ªøu;GÀ©Ú¶žyéñXö!ê6Wr/R­®ä¯Ò[¾.Üÿ<ô•;„øÅw;W"9ïŸR_¯uv¯žÊ.šoÎi²[cl©Å£mh†ÚTR#Qµš3Ü]vn]Λ»w£ñ5¤Ù6µµ<>måþ̼ŸR óIëIuVÑõšÖÓÒìãfäõÀŽnI§I©Æ\6“4q—3úrïÒOçE'H¨ïõ²3ffÍãÑ'ØÓƒ€¡…üû¯—ý¨§üЧW`Únÿ›ûWJŸýzá%û2IÍß mÅÆcnS5Š6(« ›mƒ#/7usv.¹sœæ¹·†ÛŽ8”^‹±W¤—`=EuÑÖÓfç:ÁÕ×Uwå< ¬ÖÏëIè÷U½,s>«^àh´lÛz2U9k™–e°j6©$Z mh¶Š‘Rh]×7dr뻓›—àߢ¼)áfØö mþHüïí’ll~rèôp-µ6¾º¢» ¾öýÝmïó¯Ÿ Íó^á8M‹…´œq´œÙo9¡K¯'™ŠWßát­­¦ë[mëm⪼Öˆ™š¢éÝ´le¹‹»p7;A®ôhù?|¤swg@[M­VÖ—C¾‚T»eðë³z>N·øÈí»ŸÌååï>ÿ«ÜÎO+£è­ÑxŸ “Þó:>O£ô×ýwz’oÜýŒíGÐ!%}áâwëª7×qÀÈ؃€à½pIþÆ×}z_•\ß?ç<Öòüssv[›šìüÿßÏ•ïÿdQšÕ6ºm¯üï˜ýÏvdÑ|RÏͶ÷µÕñðøé ·œÅÉìq’ù¿úúŽøà® G+%ÖI¨ç¹žî½¶þ±Æf8üP8vÉM`ˆ¶Ë¤ŒKó‹éÿgþ"ñÜqÀqÏ¢àÍ Ø©O7qã»vÆ=Øhf3Ìú|g¾ÍÔò#³ÊN/½ÏüÔrµ_YÇÏÂqÆk~CY¤Æ?,ºU#ÄBÈviÿñøÿh©‰A”Í4àŒê¯ Ù8ÐúD1·©–¯YßR©©Ä(Ðg® ´Ùôldµ´²ðv:—µúŸ®à8àþkŽ8MǪ\¼¯ÑßVéö;$šXí úwa—Öd2COºÆ ’òͺNSst1~å'ô“ïAÇr¶Ì[" ”" -^U ¨ÿs’OßýËxøèØP/uð1óדû9œ¼t…>Oðš£%è”:yEfG÷ý´9ö¿„ ¿Š£8〷>‡w<>ŸËóäï—æB×~—?£ßÛ³ÃÎÍ.Í@W‡¹ŸµuiŒ[¿Üˆªƒø- ´F;¢„xÓò¼UÄ$ï¿—ò(‘œY†nZéH ‡Z$µ§åÑt¤–ô§—=®Úø?¡ýóÞóØ|¿ÒýÛý·Àú¯ó<ï»(Dbˆ£›-›[F ¥±ÚjœÒ¾‡Ëž¥ÓÊäÒøzWW?UͶ/9œÚ¯y«çÿYØõµ]5ǥîÁ°óº^ËEæptÚÍ}:m¾û„èrqW ÈôêúN9z.›’:L?—©æðèµÒg3û>ÿNM9pc'Dç¡ïÉÍbÃ;]1¦Î|1&CSÙ2õ”ˆb.‹‚ù¹O™Œ!ËÌ[ÅØ‰Æ Ä_ûûñÖ‹e:—@Þˆ}ðÝŸ¯øÛj§Tqü¹EÒ8Mñ‹á…C·û8Ä!óy„” Æâ}’¾8&¿)ªãµS4ï'#Ü(½®Ûšè‰¢¹LÝgü‰‘1ŒðrY&OÞùÃeË'•]"Y®Wªç.L¦‹»ÃRjĵüdÚ2ÚõÿY?,e4;Âʺ‚â«I`ˆ h+ À&¹‡]!Ê!ß”Ë üƒø+1ÿSîð~U: #*-ŠÍ,û*7‡¶UfIÔב³¦S)#!ÃÎ3!,õ÷º†\†0âK‹Ñý’¹ÊLqlÚØúú'žÊ¨ äuK7¾á×ÃäéqåþÆhg!ºWP6v.½ÒøQ ͸ÛJî0ÄŒÿz§}m¿“fÖ®íã ç[ÎÃÝè=tG£ê­Â›ù©Ãq48ÀzþÏ£ëÑú ‰ðÌn/oÛÓúgú ÷=RÊø‰(ÏTF´Þðî÷~‚úùß ^’zìàH¶NÆÙ~ïÝ)!ÛšÓm² ~wÈ xH@ âNb j-3‰´¥¬Æ „fS¢NG[Ññ¾4I`¶']IÐðJ:Db(¤ˆ»Mëù-P¼G&0ÈA€ÈŠÓðê‘HCV-hœŒü)Z0¼‹æ}Nï÷ák›uXô‘±/_¹ÛÙÖù–¯ –½gˆé˜% ¢ø;Øzž·áúæ¼þìZç ð[^V¨Û•|–¯”ÃÀNV "`)Ò%dáŒB .\R‘;Œئ„B$‚ÈŽ“€q ¢C0†Ùy„ ¾JèbÓóóÒX° ß°Î€Dú—}¿¹àõÒí|x›äZËÍØü/ŸØ¯æ>F(ECÉÏÿçÕøIÕâè¸  ùnýßzþyÐ|@wcñ½d" !"p}ì`Dp0œAÓ À(>ÏøÿÇÖÜë¢/ hD=BÚxJœEJœ@ï¨ÄãBA”c9Î's¯îÔÁ~Ç῾w $GŽ'7¼#’„ëú[.:]oeö¤DP@a#$^x5ÍÑÓü>ߦƒï¦5P”$Ñ„5ŒSQ~'àtDÞ>á #‹æÄ@t˜™ò  ËAÉ >Ä¿ÊîIcáh„@>LNED$0–[*ï{ôºdß„Žƒž„²ˆ€˜DÀnø˜ý9¶Âp Nrí¨ VCZ7ˆPr5]/¥FÜ_› øèø¿•gÁÃÊùT~M¯…69p¤c‡1µX„ÈF0ØAe|Ýÿc/òà’1pF…Ç‚„wG¦*õí÷Ù¢‹"àŒdr Ûo!½ÿ®ßÅD’r2 #?ˆH¢3–H? §±à×-°„B€"!ßÅfoS_Ÿ("ðsoÛ±ÂFõA B|sŒ›§˜3A¾J˜S-d´‚ˆÇ¼¢*Çjˆ;ã8ˆ€;òã7ZO×éÙ߇ßA_|Dà9´Ž‚ „bÃåøæ¾ñ˜{lá"Ú.yö-î™ä g&x¨Èi¹××Dér úé8 ~—âÿoúT09m ã­ç&„ 3E}ßÌ]Ÿ¬m[Û–ìˆzG@Y΃„‚"«È<üÇ[9¬á‰ï¥G‰ª𿋦#£…úâDtfcÒ!S«¥¬ãË Rb§ÐTrRƒ*’„è2wÂûʾ•–4GP6‹wíøJÃéèëwý¯Ã[§Ú:+4öh¦  ŒàmÈ€!ø1"q\@`<€‚J›Æü fÅ´Ou¤€”utK#ÀJu)ÐX¾ ÇcDÑq\N®±éõ:ßu&.yev˜¼ƒÚhÄ7Ó·5×mÔtJÛŸ–!Âä ˆìs!Onðû©ºý¼P†ïiFà n¡$B523‰Ÿ‰<šBBB•%»EfȪÝUDíFÂÈ<'ó²?·âj›Æ’/R˜{wà3iÈl óàÆ>’G8 Ø?aƒ´AÑË–Oqƒ~¯¶ë¥û¥ù¶E¢¢5¶‡f`ºèšmi]n›ÁÑV¼ì>Fþ?©Pû×NÿØîY\Ò©\ލ½c/Çéj Pìd‹¯ÜW…uó¿é¸ù¨,Û-’© tU`V\ÙÔ9Ñ¿vÜ:¿—â%m*?B‡ïÇop¸Ç“D‚ÔOk„Z„¶WÿíWîÉ0è~}Hç£BÕX…úž¾›Ïí¯ƒßÁiѵtaq〠Q;ûIˆƒ&ˆe^ó Û#6Ô3À×HZe|Yùœñ´”ÓXu€ y\$ sJµ‘éÀÙ–8‹%ïŠÅsY¡{ªÅ‰M”Šdô  óAš·ÄñÎwª„±Ñ!ZÍØxY ­ Vߪ‰†Ó7ÆA­ïg ËM~ÉR ¡:`"FDœ‡…EdXhFD?Sù¼íìãqÐ *ª¦Qí¢£xö›;RµQ|j È ­ØM¯^IÖr0˜N,BQ“°Œÿq¸j.|ð±QrEªž¤ 4œqàÛëï®FJ$fÙ³ùM¡n’Q(*4)ž<@Ééä3”e ¨6rÒ>gëw6³÷¯×Ã{¿£u5*’9¸Ý­Y°Ú¼L&§ïxöV•cÐP´ªH…M šŒµûß?Jѽþ+îVšcFCçŸ?–FÖ3ø½œ×dc’†Þcæ¢ O˜Ä vNcˆ!vHÆ2IÃup\ö¹ˆ Óz»KÝyEþŸù~>{¹»Iˆ+øûÁë¬ ‹<ðB ]á(îá"¼¿2jíåa¶ÀÈ”’õ9Úß]»Ê\BÀ%êÙIYc³±˜ãK˜RÄV„›«sw~O«J.ÙòŠê^R´l2¤ ¬5™mw‘çôw„4uÏ“¸öãD&=„q£!6;MèýZSÛI·ëɳ‡y€äJ踑ë@XžÌ¬y ±e8‚JÕ% d•hÇzTd+fDéïi¶½ué×q±wQzªÉWT:ì×’âYŸfÝšr¼¿¥ù-¸oÒö¸ò# ÙHsA±D®pD–èÖŽ,5Ú_•ðò#„¾„Ñ+MOÄy„ä¶ßh£m=µàÉ–û=‰ßqo4±¶Àª%9^1ÉÙ½$Ðß„.k=uv‡ºpðþ5g'–:ŒeNŠOà ×á‚éµ[nz3ffjÒXä…×ã:ÍÖÓí/’H‹²3ÖÝèéŒ'H-G°xÊêŒ1ëŽø¶”Z‚ûªöLõ/ZXVî´1 Û1iÏÍ Ù-ì>•+]fº%§W$(™Y®p½%”qµV†jyo0­ Lôâ¥åíRȤ#&kn>G‹ª£á ãÌoΧ·Úû<Ü]| wQùX)ˆ-•‘‘¯Yލlêê©VðoÞ¦è'Š´tiPÍ‚ECèL°âq2è,B6à­ÄëµÂÆü†k3~ºÍ›w€º14´º€ÀꈅQl2ÔÃ$“¥ó%û“GÛùÿ£§øžRÔN½¬‚Àã纀¼.ˆ8X;s­(Õ œÎj¯ËGb¯2Eü¾IuÉ\¯ÑU{m».XΔØ"B|… Š;Ñ®ª¬ŠNÏšé¾Qûk«DõŠÊŠ´r0Øq å8vËl±6±š3Ë5Û°Ítè|î˜jL7 Ã篞tqg)æM¢EÁlYZ @âì”Ú¤ ­Íñ’¶K„ú—œöT½x «LââLçA‹(•b!`-»Pë ù”'ÎqÁ ~%¢dK';øô%õ‰— ¦ìS@ZªÑª"*šAÇnU]§Kã£È4sD¤Ü‚¯F:,LmVÄδ\€QiF6£Ø¬[tšNü£[}Äd•ÓÜK]K¹‰¢ÛÐ Ó}ú¬.CÊI“OKÿßÖð{ƒ`¬ÞZýYzæBŠQ¡ᓊÙCË)$¶U0Œ¬Ñ˜yÇôRø}KoÏö!dWUȹ•sZT i—®” £†ü#uÓúâoÒÙ^¢æ‘›mZ¹mÙ>»Wi¬ÉŒ¥ÃG¦™ÎH.\Å`n‰ ­ÀWu¹ÛZcI4M”Ò¦›° ;NÛïU«@›!Žä¬'6@. äâ‚ âqpBþE]ãíóªò­åW‰jòªò'¼'‚¯àrfRäQ8ø€4`;°Ãœ»´˜ú!h¬Èp$:åÁ[}=õ&–ÿe }4Í}t…ê‚X^©„¾ì‰ß‡å}÷Î÷û{¹¤‡6ßI¶jŒ$¡E€è˜¶ìžÄø1Ö,‹|'@&\m0ñçS§8tœ­ê_tú‡¥³éTIæì5Ùþ" Ù¹Ý¯´õX1··È› •5'bÃåNÔ)€b`¼3„‡<-ÄV-; ×ÛšlaÉ_h·~|æƒÇŒŽÊ #0¾›óeê’¨º/–æÍ%‰¢%TR„DK79à8 f`©T Zu‚Îfœ_9qßÞòmj^ÌL j1#ÉD)©˜hÅ›}“Š:$*ù·æw¸{yN[I$#P ¯Y³‰ƒEŒ2•RË3ʯ ñ)˜%€¶Œ5¾xr> ЄÀÅÁ¹1ÂÐÅp…•§N¦Ú lƒO‡Åöw_ø^·žtï·¯Uåß³­Æðòëê!t]chžÔ¡(-:Îä†Án²aM°<ñÔÕrŒoì18ò¦œíh·sí‰ЇŽà4Z!¸Dh"'†^”À—]†€N€‚4…â÷†Râ2ÄÞ"‚F!X€¯lM8®`ŽÛ¬çÚ´7ÚNÃYqý³£OûMV<|ž‡.|„—׬ɚq5ÈV‡mJ*JšqMj;†( ´Ô„ ýF‰÷,581 „ÈXƒI±ë‡©),£3I’£b*‘Üò )1.<‡ÏRà8<4» U{Ðè²z£Õùúö|¿Wòû² %ìÒÍtØ=çðâhè­* •ãÀóÆœYž‚aܸß$ËæÙÁH€ëf 3ÏÖ}g™B7ùÏ¢´ªyùÓºÙëâQk;åäñ?Ÿ“Žè„üyv]¦yüB«ˆkÍœÞê¼æ·Lì9Û ¬@gD¬ <Ù‘‡"]lˆÐkK4$veŽF1g†ùatäQ%¸­ÂOdBÛ¹é{ [íVïàT~O¾)ªj;1ðE;´•0Q£@ÓLE£NIy3ÅyÞ3ÄŽ´“æ%<+͉à¡qµ˜ç)¶Â餉øƒ·OïÕrüz{“ú¼0Ìî=¹gÂŽŒïçcQ ¸å°+*ë.Û)Œºõñ·MlÑ; ¨«ZPrEsÆÒ‡Tª@QTÂÊà÷ÉD-ÆY…ºè1nWºàòk¹_ °=eðõä o³AÎmy˜YRéÃ.™3š40Ù_zôO‹êLØ”'ÖŠä2)#€‘)ô•rVÉ¥ä!4NCJ¢³´Û¦²3ÂØHÉp_HïàÊ$ò‰…9 ;mŽ)O ͨ@…µ9ÌyƒÂš8q«È\'7E"ïœrPΚéæïVçöþ·>Ÿœ&QB­8<Úó•Y9ÀöîéÎe«¬91Öë¦ØN0ävsm=çpéÙ©Q?[¢1,^¤ F­Gà¶X©·T-¡¡åì8r;ˆ•æ9E¥¨6LÁˆˆ‚gŠh]QT«‡æB’µ±ÐϪ(šZVÕ®çScWª&ŸG£i ™gD»kß IÏ™¦isÛ£"ÏB¯.gfUuŽ–ã⊣áß&f9!ÊBRŸTg»œ„Æì‹@P-ÐÛö*4˜v43 0 #Ì,¤…ä*¢œv¹ÉmP7ÛôI+”ê µ{x*Ðw„0¢çȸ|­$2Ò"¹˜ ‘°,é¹F,…ô7î`ù_êò¥-ÅÕÝÁ?6ìéß{ë«RûÕFy%^Üî˜á ’ÐL‹ Ãv×Þ;‹jû>¥Û×j[b­AÆb4I@Ä•I)ðÅ£¹ç鎜ԗAÔZà$+³@\q’âÌCZ3냵ž}I~ ¤ÓLÆÂIʱ Cït¬ä!œ@Øùɱ¿Õ%¢ g€Ïxë±%ÜÆ±äWÐò(Õöεƒ-ótËà³Æ¢(ö]Ú’{ú£»‚BõgDo W››µyéå–ó™GD7¥ØNm$Gí¦ Z BÔ¦çUFoy¥VùÎÝYÒèúÛ·1á:*(ÔBòЬ 0ŽA±¢m„‚Ãva¨Ð†•CQk ç#9 1‚&nh«½ñT!®ŒH †Çzîçl¹)ôÜ_išS„5x½Ž°Ù·ºÍNÙFe’ ,0Úȵ@¡½Œ`ê9p.¿÷QŠªºjáÎ^¾Kƒþ_ %ÜPÉÇj,PP©|ZõhR>•šO  Ti§Lve'Œúó·i1‚æÛgy¨¡§^÷êÔ¾g¥ŒCƨ·kwt|žã’ì{5ñŽ€½Uõ‡1¯¿•m™u—¹‰ŒÊRëPòïÑU•;ð)¨@€¡3}ßd‘(ÌçDüš*ÌŠ©€pl#~’¨]<ý¼Ý©gh'Nñõ"6z‹:ýJòh=ÛËÇmõk‹DY³RÍ›·È–oó `¸ €œ€€„@ Â8ðˆîEâ>¤]æïë÷å«<’M›Ÿ5òû÷}7óc^>tS&JS›(= ªécÛÓÓŸ®ÿ+û¶RAªóžµ µoaëmf:Î[u ÏDdlYµè7yº¢-¦8¤¿ã¸ðãO]ëQ­@ù÷í·õ ŸggÆãïhö÷æÑ™â˜öpR3;†k—‡0@"!ó À€8 €b qÁËÝ$„‚B!Æ5öæ„çÔ®Ä>£¬„ç ‚Íáv"æ®8Š-í?×7­[ž¬q8Yp²3“·ÄÑù̬jcLu9Çnz̸H·¦Ž&%vLpå)`¢O $…Ý>+´ëŠi¸RìšáyvZnösy|Ä÷‘3Ìdwwîë¾7LçÅ]Žúã³°ÍËÒò»vS}Þ•Tî—«±õ ùŽé<4:/Š€`JL“°é‘J8'3 RµvžZyE7ø]àø˜¼ÒÉD$*ñâϰÒÁ, :#ò&ÊhÒ4؇ãåùÖ¿ íS0ÀI¸WàÙáð̽®·´ìZgäŸn"鄸„ïœytW²u‚ÔÔ° €ŒÕó™{T§Ó·ŒRŠ$ÏP%¡ä éŠJVôsž|®]¨¬}ÔB]6ï_Ä47fceï+ý ‡ìŠ<³ư-JưU%__›Á¸D8æ‘opóïæ@M×ãŒ9e¤Ñ½ÌÃq …Jhªt¿[zc†n*&yq#3‹£ÌÃ/;;a|¬«Ï |J¯q)Š?±GRÈö‘Z±éæ—°‘+gÒƒ”ùwíNÔ ›¼‡^K¼NPaü~ƒ´ê|©˜…ö¿À¡ä•qÎ@ÙVÄ;9äËé°•–Vañér«ÎÌRÁ‹®¡NÎþ[5pŽÞhŷߣµïNµ6h€2j[ÝRÙäLû¬o:™õ&Åш>Ôõ>“·Èg ›dðQåàü"Ë”'¯K&£#\¶qLfñ›Þ‹Õ/ÑdDª-ðIâÍn´4¸-ÐÅ©&*¤>µ`¬~ÃÂM©Ï²5aB4Úªƒâ’æH ¢¯ öàÈ#LeyxU~.š°|úuÍQ+Òíá8Ó©9%#çN(†‰îT±hÇQjrÇÆ|åÀ>„+¶Cب3UÁQ:`ß’¶*yì €‰EY‚²²PèhGŸ“Å«DìÝEG½§d‘ßš†®ÅÎÍjDÎ-(9×:7ÍI®U¯î>0)“f `à‘\SD6L È*"‡‰Ô #·n•ƒ°q¶{JÉ!ä ŽO¼ú@A„\dƒSv˰’‰vØKi$2tÑÿ•«¢‚jÎÖ"ºÐ‘ü×.ùw½–|v`w Ñ©GàPÒx„úfNNûÄ0€ÁgoÈPjÆØÍ§;«ŽªzŽ•)•ÌÛ¬¯¾" £K%Õ¢ã†l·ƒšR´Œ@ü¼ 4kŰîˆFî1åG•9m§)Ntl é„]jØ(»Úñ*±¢oÍdBÝ2D°*-Œ–d›é×+TgVŽk,±t§y¯¶›…C¢DçuÈuýs¡PµG´˜Lè÷Ó;ðÀñá3¬9!§qnŒzljIä:‘uCxALìi9äŽ ]Ü~ì©ÝV¦/Žÿˆˆ®/|W‘ì|œYR’¼ï¯Ôµæ00”N¨™œvhJ–…P»(ÔF>VÌÇUÖ•×BgwÛLøC¼a´sàS²÷—/2Ó½|Þq¬¼ ®Ž|e¤ýî1+Öüç^Ô§ã]míl”ÔÄ%yãOÒ_ N÷Hðƒé' < Jž1ˆ £á¨Hã÷¢acY͸éxË#$ë…Ù˜/KFv¤‚.`EžK9×Ì4ú9²h2/µ6yjáÈ ÕÝ0É <[u\‡€(Ð[ùø–I@y4}Çi†r±xe`ÖBH„@íZ A"P‰Ñ¿Óâ†Éo{‡‰øÞâózž«›,y²]ÑÝzue—ƒS£ffžŽN7;j»ý¨¢©Dˆ,½Áòqc ÊÉÚ¡^²eŸzõx,ÚD@†ñ¯! ?" Ûbû®áÝ Çë=@vî•ßÁô´^0¨ßF8±Ÿg@âha ùUò±b±R™”šî@$êgTiHK˜‰Dh@¯Lš¹›ÈÙ]—o´M—ꆢ—å³Q«7ñPÂÙcLt` úíǨC·¢sh×Ùò p¶ ï Ξ":àçÎê=¤òòkY}—Ö}à¢ÕònÌžfz¸’!jn À®B¼Š” vQ’„G«$€qk¤Î;ÙŠðÎí )z:èl]ý‹ìÉ=Åšù_bú¹ášºÿ$Ïdß2Ñv~®hÝ€Q«E©35ܧƒÆR°Fs¬^ÉèF—è4Óè¼×p ä«}þ³èRÒæë1äò£/>­Ý}G£°ê†Ñ¥J‹†LM] ]5\™_x— ²²7r¶­}’ñ¯±ÍØWäÿQ|Nl˜z]ºJ"Ž]YXÔµ)™ 曪íByå@J7êÏ*'¬”$ÎÈSÇ2O4–é ;”Ø<û>â‹EûXkõ[@ãkÜk!õxN âT""8_A\™kXl®¡FyKbš±ö)Ò:¦FÃ>•{ð4}·C_]œ›ÝÊŽï˜Ä²Ïï`É}ó¨[I]\Ÿƒ T¨XÊ"+¹šC™iËK2åƒmÌhmͲLPÕ@ÅÍG™™÷_žE¢¦é·Í„Æòà„óÖî‹Óë¥ûŸÑ‚xúù§äéæŸÌÖ#;,wŽ*²G¯UÝ!èÄÌz(1j&ÛɰæÕ2¡¸MÏÓ>©…—öS5翹¿³å¢øìߛՌ¢•2B}³"è‘‹&JUØ…šÓb³B›lNÞ¶€‡Î?¿ÀšÏ0ÍTàyç¯6ûu"c\óQ3G ¸8 ¤R ¡3õ#áÑ«n¬[µ!e§Q¤8‰¤w+¾|$nüÆ&ÑSÈŠ*‡7E< –x—”<#Êw0X¦ Âa$²P9;²-:5Ÿ$§¼¬µ›9"õ¯ïï蜺ʧ Î1íºýˆ"‘ “ ÑÓq>ë#䂞9ÞlFŽ6dc¸ë$ež"²™§–黉±A\òùFUk3E²VvôÅÅ=yìÚõc 3Rý˜'NŠÑ•fF2[J(†5£(¨¨¤ðé¿áÐöÑPn#—=SЉVV,ظ%aIE\7©ˆ3Ù4"¢X&z¤$²º¶œÁ‰¬Ã¯”ɳŠieý±>$÷ ×d¶””ߦ°tޤà[F'T)âÀ¼YË?aúð$©†  Gù+\as\„¢dæm¶ãg2?bsŽÜI°­1G1盩û¶¢b’8Ï÷öI˜CYÐ4œ+q Ádè˜Æ›2äöLjrÂf¨^âï8šzVŠRÛ“½%{¶íÉyx$½ªnlM…W„:rJy^<ÈÆÇ…‡±$ô÷aÙd‰ò»O•ýºÝnzmÙßbÏ·fœÐÔÈód»´ô 4:¨Û:tÔœû~žî«L5Ìü«Ñ™zq6‰ Ñ;–€;Úî@ç¼¹V„4ÑJJÈk)ã”hž×|¬øôLN”§Ì»’—EiU•˜)Pk#™™¾±Ìþé5Ùµÿ•¯¡°Üdeô]R6¦–aÍ™·d¾¸,ÓtÚW®•¯P–Sš<`xîÇ«;·(4í·~©õ_ÙFKõÓ ‹À“6e%†¨ „ |“‰Ñç{L|®§jm…}I´Ûs/a™æ|na¢cQ>£’±k‡™H{—V‹f4û,}³=G'(µOïÛÉENc©ÞPW?%7ÑÌ©Œ‡ösÓÍ_QÎóïô쵺²îçuPÈÈ,²¬·4Stdö²ý»žäyKÓïuãŽtQ·&]½ÕA]€I„0ßF¤k’ìàyfâPÂô@|2Ñ‘$Wìu®´[PÓ«Ë´ÄÈœõ3…“­™ ~ˆ‚ªTÁ å[°Bs/“:8õ‚ôfeÏÌ®ð½o¯núßïó]8o°®²Ö¿Î³†¶•9‡µASñ©‚VÁÒ•å=²Æ»JMLúyŸòeªÄÔzÃ2= é—­\øSr$Jwy *èÆÈL±…Ñ#Œ÷º“ ÉÛËm:›ª–Õ‹øÇó8É–ä®VÅ$674fã)§ØùkÉ]ù'L;:ÔR£¬+%9“C2°Û@ù–ê¼æ-4©;R«Qõ¬ý\ÁèÑjëèãUø–¤7¡úNþtëuØ´¨S‹s ²^_l›h†4Ó8oÙ¹$ÄØÆ{QM$]ÿ—ó×ü0‰p3v)©üBËBGyvFþÓÒTæ~¤Ø»s¸jÏ™^]Ö;=(M¢¦jýJó'ô[³máIÕQö=|ògĪÈY¹PÖú:4ÍTPbƒâI›‘y¤¬ÓDSÄ-rsFaL¸¨Ê÷Î\"AÐ=ß½PZ4꺊‡Ž´®0–DŽáÖq…Š)ͶªN{Ìî:u^Á’€2.m×þgì|Û!ÜåoÔl9¢ËgK6P¦¼i~ŒÆ²§µß%”EÃTŒäŽ)2Ū ä]=„ïƒæ‘ªfø3iåÉší{5P¬ò±¥\éŠ$åk²ô'è§^ ”æS^ÖvÏœ‡j—®H)CòKý¾µl–WðDTæË¯,ûï£uA½ ƒ*Ç%¶·>edÞóµì¹¥šˆ!‰‘_e‡¶[á9¬¢ª:ª{:‘ ÑäA”!¥EeŽœ¥¯%ÒMƽ–Ü*Èééx¿{ãù90°ø7„sa&['ú_hÏ Üø¥äb”Ömzµç~vÊì©+rêSÞ·ï£û^Ã"ã¹ýÿ‘“,²ùÙ™÷X+Á Þ¼sqܽû&fÈ›âã‘Y&銻ÐtªOæ|j ¾¾žf S XKÏzh|ëp²Ìñ‰Ü„\¬Añp29p¸¡ 9¸Žã¹wÅxÎe·eZ0g·>Ž9 •jÎýqZh#ùRûöº£8{næ½\çâF #"¯¬1/'¤Yƒ­™|i¥Õ—4”1 ýu–ÕQäœüïhùuåè¼¶=&„pr‹1Ò*3‡‰ªýf¥œ˨ t(¸ÏF³”G§xRtj'sÑú îPvÇE‹_Rê£ÍÇJ¥lý ’•8J¨•R£JªUœ——£4ð¢*âÞiwÂj#»÷ÿ×Òš e³’YM›ŠHQÓ6ré^<ÇFR$Óu`‚èXš•¾n¦«GÖvaO¹×îäN…‚Ápjl!H%`8©Z¨4✈¨Ê% –›%áíÄh>d‘A‰i·HJèÉët힌kjšl•%HN»·¢‘Ë–çv‚‚>ÝNºÐ|ƒ?2fµøýÔéJt¿Š¦vy+B³_5°ÓW³,úXm”)‘Kó¯â¾” \†¡9LZ*AO Y'ÁR¸I~;' /¿EFœñ;ËÿÑän}²)rFrh>rI¤¤Ã•Z€2ª×>¡ „ Âj@•3£™Dìa’ø7®ºŒ©Uq¢ZMü!ßzš…óocçÐ4æYµG«wL÷ BG¿2•׬úU#êA×óVǬ±"fùU?BúIÇ€aAà ZÄ:µ=‘×OLõ™û&IáÐÔ&‘ŸÇ¢+3%$å-€~§tCÑ—rBžî΃4Ì­ ß ´¢%Æëúàdq_*ßÏàón¬÷ÉŽ—¬™|È×dáÅá6«!Ÿ?Méç©÷òv5ì_)+$&Él“­ ¤W¡˜2 &çÑBãëü¨Ârè0óbKcr:¦€Üy´Å„±­U•¼h ¦¦¤c{àA§’®jÝÈ}C>Ô;ÔIS éŸ# Ïeô|vÿi²íœr-¹˜ìwt1F¯Qçáò]õØî#pI-a‰º£.ˆÊ ƒå‘0á/ÒÉIJ\‡ØÈÊ€H3 ;l›A­ÑÝrÔùáµrŸ#*0nÊÊP‚M= '²–½M:3ÆÆ’ b”yhRrBºï@¡Çý)ÊñÒ­þ{ß-û­«¤À£õ®‚ºÅjù]Ë„ùu¾¼¢û±äÜ”$—N:Õ»>Èéhbü@Ç”®Q®Q\3³ î«kv€¨h×4)ÚVëHÙs#ÅÛÆ±uÚ ùçìA2$ÏT¯3ÖD Uµˆº®ØÏg3ヌ߄æ4ÉhƃÇpMMꙺœÌ9²£9ß0ËñùO?ðáªÔgþ—ø§škg®3c~ùkt:®l}é3D0(ž0‚Ë䉖ìçá–o4§èˆ%àrR–P»t½‹› a†û д‘÷(þ-«-‡²Êx­ÏÃ&Í]æQÃé©Ú¯]ù®ëh‡çHÚ†\ L¨æòùÒî™9ɺøÍÅæÒA¡éOYÝË-P¯3PEy)|HÞ‹G²­¨M³š7ûïýmD‘[Û[ØÅu£þ]ô•ôÚ?Æ’{¨eï¦:ÖTXB–šM`üCã2ðñ'J»)©:*‡=®ª{›’`ˆ@ZÂ(^` )˜@²#ÔZ.ì£*’oõá„Zª:áJ=;U£[„ÜÙ±cÊór)0»ú¨Ïxk) NQ[PºBÙ‘vk¥9l-L1rDœCt’2‘Š1§¤ñâNܸɣƒ]ܶp“ˆP¦ªÜ’7`ËpÇ0aûÕ?Sh`HÝXÄ f–œAp#74‹¤ÜÌè/µûIüu¿ê”=Ÿ*ki^[µ-…_Vzó®#)qHg¡çQ­hE«ÄÁù?ù¡»0ñet EN”´ízרx3!D‘×(cjÞ ò[÷ §[¡Ž/W5ÜcB‰÷U5,Š+…øÉlÛÆX%ÌÞ”ç)a'(¤¨å2RL­ª†Jߡسf[°¼ºè;Âó¾ëÿ²(Õ…_†æÿ¨äÛs$¯!Äšu'zzCåY ñâ1GG .™žÁ³¾À†‰…p1§¥^KÛéÃÜÿ½šž…t[ÕñÛév´ñÑ5*ɯ:\Y”b]†˜ƒÙ…>BDnƒ*Z6$ú)ÈTç´Š…Ô?d}•WýÉw TÙäHûd¶U¬ E­•@I@¸ûÖ§äÈí 2öÄã•(6\þàŸÌßçmò]öOo&¹0ƒí‘»óq7‚<†Yñ·ÞóG™ý>¦ÐÃKB½ceÓ.^&0eKÞ.~zÑå¶­ †óPóF®–eë* \F¿¬øÓ‘Ü’&½›»O]‘ÍÝõ#öÕþµ¿­.º|ôO5PQá_“»²—°‚«–a‰Äªþë/`n%ólÑ``hþSfP0õJ¥áYª¤*öÆPР¹Ã9ScK'ÉÁ1êw¹d(ôƒÖA»)4ëwŽæ­ôØö âƒP‹_´s1Öf, í »¾%¹n=DÕ*aЦqc-÷xL§zåW“‰à„ìÄp`êèe¬¸ã8æ'äÖtžSm™±äj€Ncµ @«6„Û‚[žöV… Ò¼ÈM‘4c玃·ÉQÁpÉŽç•-~FŽ>/jê—$Óîí¨Ë›¡leÓ°Ô05‚¨8 èAÉ!U±¤Â4\Œ˜ ÓåF9r‚—·òdéïuóEƒw徸üî¯ X þø´("^{é¼ÝÆrÅÆˆ"ƒ>µI'š£îµ§ž -]¦ÛƒÖÑï¼ív'öÉEˆ Ùò½3€«ò#SqÆç²Z¨1{+ d^ØÞmªErѶ¿Ó“voâÿè©^&;ÖµQòÛF¬¼=•2ûòŽL-É®bcȆI&LÓ¬3°]¢¨3þ:k0$ö,#Ì[`£Oßù^§é{ŸÂÿ—çþ ¨E­´äaVÞØ‚gðÃ=±Ä&…Â'JÀÇ„¥ç$ªaÅRÅMª³E5å'UŒ(A×NÐ|š%$yÜÜÅÓ´ÎÞŠ½Érâ¾&‡nMú‚Žv…(($HôOg»ƒL¡ìÕ²‚©$i P¸»zåØ÷Y-Å[ãGh¦Ñ Ñ÷xçØõ;Ù·¡ ÜtDJBÆùäófFWuÒõ{ŸuYó¬àÊýqIßÊæHi±ëe¨‘Œ?ˆç§˜ãn&Cq.ÿHýIMŸ—CAÛµ¹ù¿'f‘ƒ“Z5A‚Ô^òId f¶¶Š0Jd(W4º­š+µ$;ΠûF1aeAæz¿)æ™wÃÖd ÂÌ!n]ýG³&˜LmYœÇ°}¨Ö+ÆP@|¦3ìJ™°D·¡”21€KëÍ$ñŠÏ'‘F/ZCîÊ:¯Á$ 5Ø(¥aâ zñe2 Œ’À™!ÎÂä̘¦°ð MŠãëR˜ûZc©œ,¦õºôÍ’º»ÿŸõûù³™cŠþ`†½em’Ôàÿ†™ªM+>­¾³@ƒ¤ïèišFUèloÐý¨;ü3®$ÃõGe”´F¹7D˨K&¡.ò‰V¥š3±>TèW µ,–8îK¯ÕÛ½0©Ž•oëš§jÌáûÐÑЯ„l¹ÁV4Q]ié b\èG;lÃ2Åõ°jK©#š”a ÏÕý “¸~¸ƒ8ĸã=Ò˜D'*öb$qû"þÙMÍxKk=g‚L …†xxmºQVJz³®‚ˆ \ Rhç+™ÒwžK ì«q’ëºeSÛøÒ¡žyÏ7aד6ZˆC@Ê  YÛä\uß-—½½ý¦ŒÞÔ{®º˜Lq@4”²4ŠûjP&šoï¨öó°ç‹ÖCéŠx¶ßö<ïËÿ6Þ×¥²6Ù¢Î'ɦK4r«%Z ;ZaUO)ÆX Ýr¤üÓ=UTÊ< Ä! à@Fœ‚yHÏ¡(Ÿ´Q(‚!@Dâá ó÷ ÔZD ¡HƒCa¤;À!3…"AÝ4¶>ÿªlîÖ^ÕuœC„¥ÊÒˆšHrÁ…7â 1ã8- ¤6k—ÏyL/(ÓC @åÌÈ ûX4÷ÛLûðP?$µS§ª­ñÿ‘¬’ÚkU@yKð,@U á‚8iÁñžC>lÒF“¢q3Œ€«¤®‘‚fÍm2T7[ãdƒbt®ÏÌÝû‹ÇŠ™¹§`#&\(bBŒr]zïaË)8x@Ö¬·² aDÿ•éò^•ö"üÛ`‰5sBA–9é–°Òúô&³iU°®QdCý?C#¾~·¢sÍÓ¿’YÒ¨ÿ@‘H é„QÕä&4 Á¶æ7äwÃ8ÔþŒñ‚Q‚¼Gk»²í×ù‚OÊÂa€Á‹°5Á­;ö¡'Ð ggÆ£ùþgÁûŸsáa4tÞiŒ Ã6íaXd¦³¯•·ÅЃéì©È‘X•P¸ïè¯"æ—¾J*v†G,z­ýÖâ;è?š×NÓ0óЕ©— Úíï™®§qí>Õ_<Ö^Ëæ†TdD ¯Zú‚‹ ;Ý# 'ÅZÔj?ujá^B9h(‹È0[_¨-0"ªžX…G¬]_‡üÏ­ß¡w¶ gâ|f áZg;f ¤És®d€{¡p䈉0TcòG¦Cö3¦ÌÇdñ:ÝÁ„e€Ð`Fæ^¢H\G³oê¤xç)‘ŠIdnÄêØ¡èÅêV‰ùßck ¥)­›QÉ!¦ñ¬5!dôýŽê>œè•<ÙJƪÛâ¦T °Õ—¡îz±ý‘[\ÎýÔm&“\Pd͆R—M70éÉÀ¥jóV•‰®U/ƒgSèIøïhó³Y£r'Z›°˜%ÅÀ¼xsÎýª‰AÉöÓ‘ñÖ‚Îpœ+SW)ywzºmº@ŽŸ~Ý]6ç1,x­Õ’3#w;Bld_‡ôŸ¥—Ûµ…y³â­’áÈúÍêë¤:U¯™ 4o9æ2Ç„ñnl]Ã_—SEž•ƒff +.q(ø'„ û;²qíH 1¬ 2˜…Y cõºÞÕìYä!á£ÂÎW uBx¦æ×Ž"Nóý®@­ùÈ'~ôzùÕ Àô¾Á'Nø‡ç{±N Q4àïÎ8xh»ÞOþ+“§´@+Û§ÕûajO_wØëxÈiãò@dCTY €¤WŸýÜ1‡Ô‡- c×^°‘Ø® }ÙvEËá µp輺¥þ¹uó0`J'YÔÉkLeÿÁ{<·9Âfô1C\—‹ü«ü.ÍtEöáÓ¤VÖÂ÷SÉìÈRÚ—/œô þ©Ú €2šò¯ÍRa™Dk‚< ƒu¾ñ ¢Rí ÍßÒÒ­tÜðÿÏÿIÃKµv.ð ±Csr¾ü"@dca,^–Œì _`=<>ò­ƒ7ÉC'WoDå B-nn£” ÙÖ@ˆ ðzC3¢ç…fg— Ur~OSÃë» WîÍ@F›äq÷96.´^¶²:Ávp˜7ôN’ÕM׺áÄÇš[3w4RàO4΀Ÿg(`›¦÷Ìð: Jo†‘ÔT3¶›Î?Ž ­eûŸÕø©ü¢>*+ŒÉìè„ÖØ÷ZeV¥ºÇ+â”Øˆ§È?ll“ºûŒÇ *„ íÖ¬turÄ%Dv©%›ô}ÞüžUn@¢b*»aÿóÓôz°N´\¥~tä(ñsk ƒ.‰M¯nJÖMym"¿™!MS 2©ñqúð2®‚–Í›éBNpß×îYÊkœ Lr⎊X^^¬ŸvA;îË.–:JÕÇX‘‚¯«j¢7"ÝÐK±™'ãXR?ÀÙœÈF²-½_XþÚ*çœé òúÜ¿ù›ó~7kt’•Ç„¡cT@1œ` æû¼¾%DZ ç  ¼úÔÊtBÈÆ,³Í"‰×¢±ÛSïrh4zW((ñ$L¤Ã Qæ÷eqt ¤ð =€ˆwŠ9å…áj>Wê Ï™Â÷~¶Sç`…Ÿ¨kÃ?Ý×¶ÿÄùù¾T6Gº\™¯:¹…H ÂrY¼Pø ôü£Óð|ïdÿB(†õ—´k*:‹o@#UKX‡ß¹J"‘ZIŸ#kë`ÖyUÃ;èšÏ==÷)<ï¿¥&úcêÔN¸D¾Ó3‡ ž]žmešh\5Ö«)Ù{ånê’ê4}ßöl€iŽü¡&£ú?ÜûÖw–,°·…Ý­Ñ™)”PD[r:Й 8ðmð}|ßLŽ÷èfý¦Ö–Éá¼ ÏÉÆ|$‘8§Â”——í<ß ÿíªk³ÚET]tÛX/®Óbv,nøö(Ay€ WÛ F(L8mbäµÜð9øÿ7{¸æ“r *Š‚¾0³|ŒŸÚ/?.Ù£èÂ!]†žI…S,áìôúŸÇåû¸y0|)íØiDDMèšZ0YÌyˆÀ ÚÔ¡ pâuO‡ÌüMÐýŸòrCóù³i¢RMuÔFsQK Òßó5²¼æwÇž!ê(……L¾";CèãÃíþ4ØëÝ£Ã]5„hXë#«SY…Ë9Ûçú¿[X¿šÐgà;ÐÉñ³xþ}~.}lráv+Hï¢XÂSGèêÒ¿àô|”zÍIÈ2÷Ì`xBHÉÌÂc”ÖÎ`u„¨š²P€rªŠ¡(HÐ L¥ÐŸÆWÌ~œ…Ö— Dø'<ßÙøRMüî.íQ"¿*r´)C< ³HÑ ¼“þŽo®Í­(]Œ˜F@'+Žm°¡õ´4³“KmA0(¸­YEžànõüø;®ošú‡½£ä”ñèÅY—Û¬-qykBÂ5$xÛQp õ¤ 1ˆ9"£0B qä Ç–tÕí%îåî{2 #¹¦Ðp)Òi™¾Í*™>çÒcE]w|è˜óä÷(½BD,Àx|LJ”A“´Q£ð?6C„ŸtwâÚ/,œ¨@;C(ä–_·´ÿؾSÊÜàì¿JSAL£=m›÷h‹]ßwŠ¡dD,−à’JoH)gô}ãÆ¯Û/Ò³J\èa!Hœ]€ A£8«ÉÆ{#¬\vÅxÀÿ럋Û½eü_/#ÞpÄÏéfÌ(Ê(”L†ðÓ p7ÆiÑØ "ii©+GRů~¿?áGNvÏ„ñJOšI‰dy€Â%—ÓƒûÛ5uÿµûYþÏ·ülØàSE;õ˜â©'‹C¿"íž>¸.¤ƒ¼õ®i jV¹½§ïò/¨¥çT°ˆÏ["ªüu÷|ß“ó&Cp> à„B•¸Î¾Ô¾o_uó½N×òC»ÚŠy 3†”$l$-!¯9Ð £ ’•í¿—éu8ÌwNÂ5«Wj,b ^k%6Èœw cöö{&-OsŸBÅL«Ž9 >ωhÓúk}om›ÓÌ^0†òcû4=×[—®+VíňQ¢ "í"•±ïˆ¿^DP»F ¨\[±g~ÞÏG¼a_W å4Ïßé³±Ç,¯eÃöZÍW™ë!j+Á8×Óû~ÚÅÌA5¶¡ó Û¿ààÔ¸@ó#ѲëöÂmwƒ ×¦)|‹³Ð)zù¹’GUH@§u0êêDÐ5áÌ„(sjí ŰÛxÚ" h™4ëÓ€U飇0"î½·k‡S­µ^ƒJ©i¦w0ø/„Ÿî˜ÒÖ‚.ùt™÷ºÙÙk1˜´yRëkðí»ðœ§ÜÿV¡c5JדfiîðÌõù’d¹lgû4WÍ•…è‚Ä)òÑóv4¶¹Ã”"Š;P‰·‡S¥µ=®(ýVôÇ¥d„*Ë~¼Ë³°†Ý€-RÏEa‘‰¬Ý5Ñ݃$d©XÕÌ„‚0¼“ù&¨léÞ§ý·*Àp“õ —8|j˳„ %2œü§Kh7ðÂå–ŒŠD‰q¡ "=#øa­¹Ço´±@¥idJNŽB˜Û•­2ù;ù¸ÉfKÆ¢ÍXåSvïg6~¯õÚÆù©¡b‰÷7¯·~e/9¼7öûƒùªDiâ°*å<C‘öÿÇýÝ ÿÛ‰‘R³øÙaϲ)ù;M,Ù‹ïÇ“/ðà‘±Ô»lšCÎÀ6­ìçu [FK ;exP€jþS¿¼æ†”m<”âÇvè¤ç}ÿ§‘»&+OÇãœß‹Nƒkˆ(ˆ A¾ªØ¢Ÿ„_ˆ úœAS^O—O;ý<Ýo2§¸’÷#B~¹|þEI,Ò¹…Jj#Ô¹L]|ÓD†`¢í]øp€PÁÊÈòó!YEŸæ9. º˜¡0ïê:§¥B×¾%Ä­g÷J¥Aò2´{2çÌøËnT#ñi{Ã4ŒÞÒÉà ÏRÀûi;ÊŠ¿ïÿ},¹ÈhõuG 9¾€>f¡\ƒÏ«CGœáä0B<3¨ÑÂù@milMÁ—VŠ,Q*ÉÈ~žÆ†¤þµ‘àÚØñpÆÀÌ’¡‚ŒØN• xö¤Ç¤7²Ø+±#äÉ•b†Ù{!-Q2ý%+ïçt“ua`ÌæKêUÆ$‡vá3¿ÑÇ?tª¢Wÿ‘ý9é_Ú³›C~¿=G›Ûz`!Á‘§ .f†÷rPào×~·øO£cÚñ23ìh䱕JSjn{ƒ„2`ß„É$?º‚<îÖö}¥Ñ« ³8ÕÄß¡~Cýü¥Vˆ —h [yîôOD±V½«¾. £»ftLÇwª=œàK²µ|÷b[Œ'ü*ì»aÀP4õžº›R®]Ä3eï*\Ì¥–G:iÔ^@×Ý)¢»‡Øºï¾÷ÿ××Û÷:O%Ò>ˆbÛ•ÞÅ÷²]/”<œ´þÓ¹m¹Äxy ƒ˜­ÿk§ýÞãcN%òŒý˜7.ÂÀ%« ±æù™pÔE$wxGjåA-ß fM‚p:UÏ9{âÄÑ×Y¤ßß­È·‘=ÛU !ÜÚ\ ¾vÖÇ ±w©öÕ«”àÌljxJf™›`ÅÁÊÐæcM~(8ddHö3¨£â{bìõbÒìM{§óó¹œØ)\R•nhÅ ”í‚_ho\?P[6Z«Üh}f¨'Cp];¯3ªfÆý¤¯¢}ŠˆÅ…tg m ´@$™äxLo“1&óŒ¼ p4ƒ^”ª 1ÿ±'Žùû{ 1É€Doji×l¶É| À“aQáfòÿÛOGèi"1”ªRŸ·ÝdQ4ÈßåñøÙ¼™ã‹«¤ÿ!ªøÖ‘˜rˆ?O/$’…aF¸VH ²çšÙ§¥_ÀLEGI(¤1^ÍÜšáFkÜp)v 9¹éz³â¸;œ²uާӕ=Ÿe²Ž fë)諺÷*3‘»±u|þãÃÁòA­§…®t{~ó\<¿ƒ¡†g¯9Ð~¦ãílhÚu4)SÚiBò#ÀùªÓþ:ßEê•O“–› ¶HP (ð)åñC¼œ>àT"+á[»ÔÕ7ðÕÔÁb-Ë‹÷7î»,>+ào)ÓõÀï´÷†Óü›ü‚÷õ>’—u=ÞBGûêñÏ+…‹_B)¤Bˆvä)óIäwfýŸñÌ;ŠZKS>¶Ý¯‹Äés@6õíˆêúO(‘\b:ùÇn GÁã)ÝqJùpÝ6©j‡3þb‘ËÆ¢®·k‚IᛇñôÎoÞ‹øé›6ê“âÉã쌢ðØdMýL‚²JÐö{{¢WE#“Éäyž+òÜíû O¬Ùi ü=±v3Cr¹‚’îð][ÁûÜ ¬}¾¯ûôµ~}ýÅí-þ¼|šXlæ ÞÏv˜H8¶Tøý¥DIœ\ÂáΘ­+«dKPÑ(Û:–2…l•K…YÖ~ßGô(m`+8¯)h^?P¸'[9¼õ.>ƒæ_8€ð´5#'µõ°‡Âúçù7¶²iyN]Ђ®dجù}–#%~â‹E¸ 0qO­z•2äWŸp’©,{¥ÞâRÉÕÅŽ‡O5²|Õã½””©Gw{9pÇÇLACgì]‘#5A¾ŒÙŒ#m6Èž†.Ú·ýQú~Íå)œJµðÙêß6öC]þíYëD–jpB6ºÿSûLíé}÷õç¶rÕaÊ k篎 ½À²B¹£jj#ÕùFïio #tÍL·¤ŠF„Â>©Údy ¿jã"BIå÷¿(±Ú2oÏ¢ ;#­x3¸Ž³Ôö¬‘ª/â…‘% î áý33Šk"^-H‚YCE± ¹ô|*”*•z$êZŒ ”ÈX]b½\^¸áë Å'ÛÓŸ:c™LÇ~ë­A¸VŒº¸7z•5Ò³÷ý\Îó#¥|)î„L‚ ¸t­–«9˜üûJÎPôõ+{º^Ë º\pö21Ì‘aŠ7²¿Œè‡“fÅ8‡ÍDw‰Í¿íÊ{‹Óéà´hV8}Ž•ÈîÉ1Eús•×uzBÉ8ö¶™¡üzÿ;ŠŠmvÄÁªÊ‡ö{§U§$ÐP:dæ`äÖìÁãd·§ÁlÙ³RóõKË­r¼Ä€[ã[¥YéŒæååw:¿ïz¦cTgQíåI@„\ p"ÃÕ+3T©«ÂG9œÚöi׿k1TQzÅ_0Ò(c´zÿËGôúÃŽÚª iÝÇxû6c3šb.p9áv½¯ÌO4K1ý6=òÃð'ÔZ†Å­–em!…û‡š§¥«'ådéÇŠN7SˆCøð²{5á÷9á•—L·8%û’íŒÉºP¨oçU1®@šÎ{ÓÝî2U§ß´LO5©ú".L('Hâ^¦‡ÁýŸ¸Ãk{ çxØ»¾O©¹¦õ£àÖ3©\’‚G¡qA»³{›gwžeí¢üûHf?ÈšÏâ ­g®<©:7núj–“±YHðà Ŭ—Vn>iWü_ðÿ]}ÎzL®#,اåtl·¨KÂ86šb‚*„˜†~ ‘øƒ|}ï‘÷7_WOسï:Öˆ‹ÕÀE§rÕ€8}~'@ˆÈ…J;LSÇíºXÝÛüOÅÒÿÚòŸŸ¡bÉ¥B綈m  †PM¡Ž™ïÒ\aÀ‘ô¨A>~Mo­ÿ|ÿìBÚ^v5yzÝtdÆä— £Ë<3‰Ûgb¼Ž*˜ªhò,Ž=7êïýçý7Br ½=”ÁÝ1r ”@ÛLV.–ÙâC¯f.§ä§‰õ{ÔzÉi–žÄΖb5q“³’˜¸Ëv:nvW•¤W»<,Àï¶á5¦E¿yd0w$/’\ª`ÀBÂzî8Ô—ÖŠH=1dYBø-ψt`+ápU/þðÆÀŸÜ(k.m-,”W•ša9UO}Uimmj'°÷4q¥:èd*–E1«¥Í6·{Ýý[ºû°%²ˆ6-:¹ÂÄá\–a K‡™¢é‘'ÅÖ0Y×DºFÀ‹´øÕùë;ò·+DŽ<žFÙ®`Æuî.Ž€_4!± ¥v¸V]‹Jζ•|«¹;]À¦t#÷ÍŸ`51kwè`‚Ð’BŒ›ç` |!)@ÙgRŒœüt´¢<°à³øLsñ¾ÅOyÁ¿&,ÍÚäsf«RÁD—æ'#WÙŒÃ5LüµQ"ÞrF…ë"%³-ìhH÷Aï¸Ø¿Û"Yú62ea /-Â:<,‚íÃncÕ²_yÂþF;¦hyÉžw‘Š0(ïOeÏœn¬«¼±áÚrçü6,q+»¤BÚ Ê“—E²Àpè5͇ s?M Œ#Ë]‡º:R–ˆøt»m¬ï[AžóèU$*T Ý +øH‡q/8ùó9¼&FHá¥L¸¼È2uNwŸ›Ÿ&€Ê…Ê£^OúßÏ­Ïêì~4tëwik£Y‹î1XU×Á»´ì{Ýç»qŸ_*Þ'nZË‚à£Aš¦êÔ·2¶9Ò½4S¯Òmù>¼Ù® ZjHQР’ `é ãfx&Öx¡"t1÷W5i`h<èb[#eV„!(rÍÓ«âÅq‘‘²!’¿…A(Yk}1ËL‰FŠ‘82JÈ;§|&¡¸æî¨VÿZ»†±@O -‹ 2 l܈\ù$ix³/»2IÅI!l°¸é‚¼9L ª›ù@ €ÐGu¦èi9‚F®žUy 4³,C¾Bƒ–‰wyÈ«‘t°† XÂ[†²ý©LU¥P˜¦FYª–nReZÇ¥¢LnÜQ#ËX£}ÂŒ)èW7:ã"Û+.,ÓA€­›‘b'EÛsfäQ[ Rç¿‹ÆÅóëWù¢Ý”øKE8 _Óx/ ÷¨Î+ó¡":­«Ö,¡rÍŒ'2*Ñ%84ArÓ´f6"î0 gà¢Ü*4àÓ1ëN<”|†X ¹„Öh tê2#!­xôh+“JÏB:åÔ£}¦øž4 õÊ’!ÅÎ¥Zn&)fë¯àöüYw²é& ¸@zã`/PPÊdœ‹°Ðþ¤ƒÆ£–3r•LµQeÕ *VÐäÔ†‡!N¡óžvÞXØ×eËÉ%2u½²¯þ½jw÷.Í£tJ·ß=ÑÔï3þ£žñªÅ,|9Ž^`îö†rŠ[ÙoÙ߆õÄʨKJ™QRëè`R¶dêY%ÃГn6Öйӕü_`d”‡B—¿¶?«Ab®eÞ.<ÌnŸèÕƒ/*çZÄ‹%ÒÁël6¢*ò÷,ŽmëÀ’Êß ¿(*'êÕLVVakÔù5Šê„EX't—‡¾ ÚrBžmÚt…€¨æ†AINøÈ*âíD)㸩‰8Ñú…sàæÌÊ" ;×…K¬R`Ñ-•9³ Ÿ ÅáVB»?4x1B—*è_"MÊõÅ¡Iº@=¤ÒdÝtâž6Z%DÐO ªRÄ”6–­ÑìÊR ‚—>¨ ÎG:À•gˆÓ¹¼–YË  ü*L ‘™‚epp¬ðàÑi/ãQù¼¨Õvþ¹·œ« cùß;Ëý\þ‘'j[ÎàŠ8ã`¿œ(ø; ìß“#C¸ÙFÚ_ oø“ý3ðs0Z3.ÓoïÞîU»ì°˜’ÜóHÍ𠦿 .mÙ9ÄHm“PÉÚJ¹lØf"0@X•Iä¡àçRÕ/'&¹„ï«´ÅݪFy»üèO¶ÏÖ‚é¹#_.waã“Å @`´E@މ!áÎ@* `8§ (ãú‚õ1ØöûÆ…õ!ú/‹¬òõøLÚµÊbasXòË·Ú£dßoãÐõôÙ¼ÎI;¼‰\›‡‚õÑ>Ç Ùx&OáµÓµ×D%|R¨Êšuؤ<‘f¢ÜãDÌm3œ¸8è0’)S'{&ºïvÍþ³÷nγ¸a1a¶Dy»©ÖÕ7ÅŽ‹^óTż>_½lmªÇÊÀ0pyÞy¹7ãâÿÿž»722ÎX òªÒzÉSˆ1ódgb¿‡öOâø¾·ê¶Õ„è‹-ƒ3¯ÂµÅåö-ܯk9EóGÆ¥2xŒæ¹Ï‚ŽÏ³`Jyûܶ¹Ùã»Ã_g? „jg°ôÿ’—éÔ©O³br mf¼Ú/PãcM°ü²Ï­ý³¿—ÔsÖäP>AÚÍË&"g‚¦ uÎîí¦ \ÚY,Bž÷?éÕé}ËTšPYü¡ÒE@¤ÑÑH™õb5UPìCÃQ΂JTôZhqáÔ&•F%hEöœÒ SB^î©$ŽáG®*xtÌ6wék®äÐ#ÕpE âJ…³}w ¼ô¬CÝ«ÓúŸ ±*X6upåqg±¦FJ9Ž_èÄ\˜¿ˆÙhRK)ÈE»-¡¦Î‰ûþu%ù?oÊø…@ROô¹ -RÓi0olsÁY1²¸˜ÊNy2ÏÄÄ~‰0p‚áà‘¥ëŒZŽíÏà£æ3ñ"qô!‚‰®5•ùº'ð&P†äwO¤'Ö%IG³s=·2úW§ê?¼¥›w“Αë·uQVJ(P å¥:5¿gcö¿‹×ò*ðU/]Z™¿Wj­ØË®`‡ýFÆ’òÚ×z­êÔv¿÷î~÷öýœ” Þ„+.‡D;»¤aÃîì'èÐù.kÞK™NØÂ7’6XÀ«DL"¤tªÐèÉwéÄ*2êï vixwBDHÁ{¦j$NFâª÷ñŠX$jÇQwÐ+!A¤Èø‘Âé’^ˆÂ1yµ6¹5ëŸà!  ¹Âiñe™üz^'ÉkGðë47¼¥;Z»\;Ã+5+ØÈëÕO!å«…zª ”$/[«L}ð„ÀHÕ'9šHõ na´f ˜ÔëXu&!ÐõÖknW¥Ëéý慠¥õT¸—tlìªÞ‚èjw% ‚æCLxå¨Å£œQJ—2«S©ÂÍêÇGøN{F.…Ëkî% Å Ï–ÒIE61 ¨O°ó4ÿÇìò½êØþw<_&ËIÚ@‹]·75E~JhóD¥ç}ZF™Âȱž¯K¸âdR$Í–V®iÅdØFŽð\£iô–E7@ê°²6çã’$9’ROÆC4W½·œý¢8¿š•Ñ ”ˆRýšwÓbÄäƒlJÐínª6ܺì1«Íù¿èS‰ÉÄïáåZÝY¸³Ü p8ªí;ñ¹Ÿ›¹à3w“¸ÍÁÌÒkW±Í¦lV½MKNò7í/déÏ¿ŸÀ•Ž"ñFßïŒyhâO‡í2¤ÛáÅÞäîf²ï-˜„­F¼ qtuc·ˆœ¥D°¤¥N ®ÿôF¦ƒ™ åè;6Yc9}ìWð›ü\.UÅAâÝ5Lqèã< xNXÀiúGÑ)ó\\KQÛt{ Õƒ)"€J ^›ÃPîfd* ôýM}º´\Àù£³“„†÷7÷·uZÿ·èÿþÊÚKв‹3X¡yMó% až>´ Q;¼§h×P3Zá¡`e …LH €µÇÙ¾IQ.òUÏüÞW—”÷´í7bÅ8F©Zr¬ƒŸži¶†Õ§™õñÑÈï _“U‹V¸ûÁ¸T¬atf·îÛεºè¨9„„8“s¤¶õ¼-(·3têx_¬Z‰\¨Ç>†·‡ÊÕ ®Î…Žó½KùêU&Ùß"yªÐ¶ç"o—Ï\=ï«Yl‹ã†.¤ZSechióþ×~¶Çùé7Åþ÷·*v´:æF¶~³ýÕjO –¤Õ.!ÆdIJ0œOéÒ­Öÿ›ðtÛÙÓ½—÷ELŒ¼Ì+uaAžO £]ñ àú$ó59­Òâ+¦°Ì7w‹Þ¡ ž¶|#ð8ŽúöþçÊOq8Áìt(³EÚ­°dcÖt`Øz Ò`«kC‡Éêü}]_¿÷8ú<Ì€"AÒY ìb(+ HOìä‚>>ÀÈÏñÊðÛÕÂÑ"ˆq_Ò(ÓÔsãȧ©a'‡<Ί<Œ×5ÿî;MBMœ™ôJÍÇÏ•¢ ¥ò›5)¥¦û<§š¦å~1i&ì XÂ@pýp–ÜÓÚ)2òkŠ’h„0THÓ.KSsÍD’{N=Ë«^ŒùÈ1Ìš‰—|úɃ–4`¤ qãoÿWx€™˜Ä9C" €ial¬¸Áö†‡§]ø–_²lçÖsU›t\¥÷Õ#*´y€ÇµãxSà‚]ß7,oîŸ{ : ´ÃþY•¤xóõÄ.]Éúþmdx¾;[4Zß…üÌw¼ ¬²M½­C{ð ÓË‚‡Lxò¾‚ IZœêá3ØÈ–G‘Õàù¬ž§:M!¥yÕD ôEs}ŒˆM¶t½_úà›Ñ«Œ¢lu3¥œE²Es5½ wYÙîáJO´—À×ÄB;i¿çs(mªö G1vcï1¼v1~SôŸ*¢¼lG\ª›aøCp¬gõ¾Î~Hå›gd:wO3`Q`µ¶¡÷õ_©Íð{]þ¯©êsþ´¿yüU½ Üé°œAVÈŽNx¡ã×ζ¡b0^ø©i¸µI ° :1aáæQŠÕÉ|ƒj|¥<ÀèfÓ”íýy¯‚ÆÞqrÚ|™lòJbjÚr9:¡uƒ¨Õ.F™8OZU ÄLo`ÛHhŠu“kÖJd¹Ã"¦5¼Q€á"º4´×’AˆÂ5®’AGÎe¹ž¨rò¤ù'GÌñÆø ~Û/^³@ޝ´ÉØ •¨lœÖîHEÄäÀ§#GKÿÚãrŽÝ6•Ξª(¦®5AoŒ_pt«f(‹§G‰ü´Ÿ‘qfÐŒ†0æ›» ¯·ÿN Z`*-^P‡ N©EnŸKÓîS¿3Ž »ÆÈÙz©ÛÁ#0P”5‹×êqœéb©¹‘úøìå³qp½Ëî½jìV ™y‡®ûñѽøŒKÑø"êñ§Mg™"a UÞIˆg»0Któ.Ö$0µú§qî¾÷ùq;5:÷ºHl\«ß1’Þ`wÒfV¬0œ}âÅßa˜  ‚ˆ-ëº5E m(@þÙ0ŽŸÛZÙL¬YqŠ·?ÿ+ý*MÍS Š¶UÓDÉ¢ùe÷ª K{ [†×­³[ç÷›Ò0ÅŒú¯‰æ¹_  Éá•Ì?cKŸ†[’Ú3—‡µçãüODšÍKRÇ”Êÿdž ¤Js›ô0Q(P DDßø‰µÅû³5ñ‡©„LBˆcnæuO”ë`ñæ àçíGÕeÏ-\l‹Ù!öEK¬Õ.„õêÔâƒVn“Öaå©“îñ±5öVÁÓÄz¼ Ÿ{a+‡¸(²ëÛw>ÝçÓ3âv%Í©³ø¼ŒxaªV•˜gž€ow#÷º}‹ªvhô×½¹ïÔµAq+(m»ø@Üíý¤u!²×ÌÖ=j¯zk¯üqúŸ›ß›—µ¬©"\ a¥™à(vC,·eàä†K÷‡{Ž´e¡Yä½cýë>“1(º€F׊¢ §ˆrÈA° Ô¾÷ƒñxù>|ãù‹•)M65Œ»ÞÎpr·ô¬TÝŸI&­Ðùð Ú 1RNÍ„NòÌv0ónèb*,³üë¥VõZáHZÁ›(Ç¥'òÚbc¬›d’|ÕO5EbÎ]U{.Q6eæz |<ùP_]€J&£&v)&Vè ™ *A>èf¾C8yñ¤DÑ0ñ=ë‹iÇYu{LR•èÒ;¨øÛÊ•íóöy*º4ìF/Ýayçñýßµ÷ù¥ÇÇ"ï?§WpªñL ï컥„Jzv½__´hŸŽ÷Þ:åºýtmö×D¹0²{ úßòq(±ˆ ˜M7ûÎùvôc@;œŒ="ðÈÓË‘1¢ooŽßT|zìúª[·RA—t"ïôb]´r$¾^D,Åc%Éòþ¦‚›Ç YºŒ×b.6ZfÙ‹wèξöò($wKƒöºê)àìÕÉÜáSí(ÐXâÎHÁ˜<ÀjSîæ@;[ÅÑÕe§½ÐîÇ=H%RÊ¢f"Û<Y×DÀƒh êF.™ª+¢÷•Ï.öó² I” =+Ùipá@ÊR…<ž€™ƒAšÒóE¬B}Î@§Vz‚ã„]áü‘ÿ*Uàoºc¨¾ZÑËG3÷3«`8½NsÎH«Èn€šÿ†}üÒýÌP$Tñû!VpT¯Àå®sÈÇÆüÊÆ—“°`Šß;Íš‹LÆU„74ðžÔÐ#¿|_pÅ+ô›±ý±Âcš­P¦ÜH-o†LSžRA{(’¯dŽƒ²eôóC9iðìk¬w9¡kZÁä;%íÆ#b ÊŽ/Ç*óP»i7×’ò“Á¡oe\, Éèã#È« x{‘ŒG+äÓÎ2n•Ö ÄÄÈs@hIÊ\¤ÓÀeA é~îšÒ-HR.¨]Z ù$0št  ä ^~Ðô°(‰Ö²°²mÑd€/7’ؼ:¡³'¹°¦|¥ç‹»°ù#2oÀtP³X e‰ÀUA… °åä’”ØzÜM ] œõmð“äXš k›8(áÄ"N½ÐÛ£ìšX­Ê¾Ž~‹ß}/iûzÎ{Àª >¦XÏUwÛI¨1Á¦0HJµá¤'>~‹ÞÆLŸO£ãËðûûý¾ŸÍbıXMyˆF3ïàaÁÖ°FÉ?:Ϲ祯¨ éD*£GaÏ€¡8È#™M:ëhô²uà Q2f3І Ö­Cj3^Ü]düc$›…4«Ú¹³,Úï~ï’ó„µ{‰j¨\ÃQyNã™õ:«p6¿ÆÔg«è7éÙÍQ­ Q¨7¤gâÒÞÀ` Ô:ƒŒ9x´.ù§Õõ¼~ÏK‘ò`ÍDµ&N~ S'D:î ¦í'„WiÈòø'KY@N—uIøÄ2/ÌÅäHzyÑ#b…%Hß@”°F(£…Jàn¼zŽj=R ÐqF:ƒT@ÀýÅâèr— Ï|БÕ'$™‘`óÅ,굿 ³ óNR;’·Ý®` ¥¤Ã” H+) …¢é±×ü:ûÔŸ·Æâãf”p°qnÌlè/äΉ¬¨¿ñ%ÀVbtL=&0€¼p/\þ˜É/Žßê¡»þÏÆnºe§ôýy Õc^êu£É>l I0‚Cîk 6öñ·êýDäKhmÉñ$Œ&zÝBV0ŽÐƒ&t:é t§SËqÕç$‰èÏÖN.ÇÑë;hùlöAJÈp±æ›çò¢‚ûŒð€ 4rã¬/¿USoâû¤x+cÄfX+vнœþ(6vŒÀHx0*óµ0„J̪ïë3‹QUnÀŒ_õŽ?d§ú`°û­æ{u[q†Á;Ÿ{z§ ‰ÇúÓ‰6Ÿk(í»šTÒ’BÎ5ëoV–e¶ûd³ RóÎZI>M™[˜‰Qà @¼”sÔ© tx Ú=f„¿¦i5>Xµzä変‚0‚hˆ9$Ÿ—F(³ùa6Ï_Ý8§ü…æ×Ù*Ô ŠŸ©¤YKG¯íÖc(š ðcŠÝw0ÿW%ºQ!wPS5Ù¥ñݼžVÎÌ\[‚»’]7A pCg·yÞæ–ÄÐ0&%@®§Ô\ °‘ ”EßË|ç~ûu§kx‰3J²ó–îüö>êAƒûš;BoàÉãôu NÉaÙFÞ*h,9l9ft– (çÔª·‡k ›¸99W¤åŸx|²@6£‰Ÿùb/W(‚† C¢2W¼ä½×mmÕ©7ÔP·MÜhG>£6göœ“Ô_þN(R¤ã`BHÁ—ÓÞz×Àæ=Cû²]xâHqž—2+ݲâpa}þß¼ðb@¸(ôBœ[à ƒÍLÛû:PÐzÑŽçouÔ´ÓIϾ´ËM:èÆ…,çY#9¸ Û3ó³ I¿ïØ÷oÒ‰<Íu\iÉh†GAÌ0!7{ǃæüå{âËÛ+iFj7£f? !eT.Kˆ«ÙTQÓ\Q6Œ^VbàÅdKλq/=Æ?Æ”&¯ùÙIdžDj)@ó³âáZJ7­•xŒ°p“hw´ã…ȸ%^ëÂK O5¢BÀÊEæ¿X|@¡7ì'¸Q«2ÍXÑrŠ#©Ó_]û©) SùîW+ŸË]N)ƒ kÛBƒO7°Qá1ðÃ|äA$HLņ›‘VÕè[¾Æ<¯Üͽ„‹îñXÖzuU$uG•#‚Ÿ·!푽R]ç+çcÍs—5sÍ÷ ¿ebjýÆë+¿^f%6âb7ÿ&;éhÁ]¦é›Ã%”ƒ£zf5õˆË{A®‹ÜUI@Mj&Ûæ 9ÐU5^ÉäZò­gâÿô¡Áˆ%Ý×½¬Y=tvÀøâ³= ÑYAÐxCJ¾„§*»\Ó¯rð»¥PeU.$gR%1 ‹—PŽÌØøÙðhÔ1Ó/CÛ)];]°µ  5BEĿ㻜6¸âËÛ`Z— 2õ.OúîÄxºÒ5TÙpBJÌ(ü£½°¦[¿küí^Ê©9Ñç jL ÓsÉy©Œëuy&8ZéÙÝ;júº–¯È­?mz=NíUXXæ·v¶Çûµµ·?4™‰)÷¾ÉIÏö÷ÄŒ{Þ߃“uJ]•Ò¸Íìˆc‡×½=Yhtã ¿%Ϩ·c ‘Æ °-;U·’õq/bÆ<Ü‚p†a ùJ„>»Š¦Q[ÊðrIðá Æî·~Ý‘NÒîÇ £âÆ1¥™óÈy{°{ë¸edâh$cÁ(Æ\0¢ÑéÂË×Eã‰k¥`¸õhïZø2C–©¡6ÝìÔ¹GÍ4œELî±M}™Œ‘γiz8uU€1Å»Èðæ ²ü{;Òô³ý7Lå,­.4–æméòÉÖT YÍÖÈÑÌñV³Žî›?J<üF?»Û%J·™Ñxt»Ê‹nÎ5/^jÒ*JÄt‘·ÉVpÑîTX²ƒoOáÁÑ7!©0<º³î«?Ïü‰©¦ž(/¡Í~áŒþݤAY>Äõâ$½VÁªQgý½Éãí^”÷3gíØÍzR'’óDŒÅ0é1Óf™ªRô¿l‰#×®Âði8ñwX›þxfum«gäNÅ,à Á!•·˜(pß<$³Ð£W&·7>šþ¯Ú[¬ò_†ÿó•!…œZÛ¢ª[2| ¿¶ÀŠW(†?û)€OG¦ì !øƒ¼Pý¡ÎÉý뾯÷às$û·ê[¦(]¶#…òáäy´¤º"Ï JÁ•æ¶žàyWNO׬„Û½Rö('ß&þæÐÀ•ÆHaàX¤E2ž#®‡ B€èÝupè¦ÊfÐý~Ågïq âd£Ž3ÏáüW˪¥ºÑÇ» .yX+"“ó=Ô=/³šÌlœüLoÓeÅuŸQÀÇ ‡×Å€¸¦¬ÚÜR9;Q7¨¥ã$ô«¶¼ˆ–Èé°TÚ»,„ü$bûþXk½k[†íµylE°‹êتEÖJ7¶’0|hÄ:Vh­Ϫ[lW=|¸7¤,N Šýc’5¨yçÇ¥ùêå¡y\ä6’¸’2ÉY~S<¹éo7ãŬ¢ù« ãý“Tß·W…±s/kF×Ã!Ævßüc¥\uN|"¾åƒ¸¢LFHîs¢8¶ŠàÏí=[¢}±I¨›ß«7n9÷àôfÐÙSÖïbÆi5fmé¢+Ä’jÇX[Úíõ'¯ü½u-%¨ n•Èršµ8ê?—‰à•iã˜9au¿Ôï?~¬=öP¹vJHˆÛÅAnñ¾«-Ëýš-Îï)ÖÃÕnÃw„wË;â–\‰áiÊñSU»Ä¬+½ºL9Ε}›g¬Æõ𿝯˜Pèxû-¡Zâx¸¯•7Kx-“Âo‘è>}#ZÛm¦¿ïÕ˜X–¼ 8 Än%©¤Áî•pB¤°¦n”Ô„ÉL×»žxÕ£èèöôßÚ¤ä¹Ñ#óÙÃxõ÷ÐGÜó‚ˆL—€÷òÂn¶ÙéáAMEJqi&¼ °´– º kc5¶èÌ[í °—¡¬Â·…&…I‡o êRÉã_OmÍðÌÀÉÉl^?mÇõ«Ä Ê×Ëü8{cïu<¿ûIQ+¸¬ƒÇÈŒŸ»ùðš[bÑ,µoˆf˜ N^×Ƕ‡½I¶ÆÆ Ïõ²d;`’­°¾üÖëº%ÍßÒ̾<^"þ˜Ÿ¿U2,ÎÆ£"V¿$.|“²»™BëHAEâs^§qÊ3a‰`³y¨‰¼v¨¦u¸æ>ÖÝ zôK$ûþÛÈ‹®tAmº¾eÐ×—­Y²tw,wó«öÑx®SüBMœ­ª!yñpðòIV¡Kk v/+æ¿©ÖÙY8’Ë^·üÎ÷¼É»+k˜0ÛG,öezg±3‹xÄ×Jø)øÏM77® ÒÞô_^ÿu7Ônîò)%M·U½0<‡ËH>Ÿø´éI*2ç/ÍlúoG v)li.¥ÓçaÖü#ÉìWFà>ð ’üùú™££Óæ¾Ïј>r§åŠíÍæ'®Šp¦s#«©ôýð6¶*+q‘,hmÂ8 ‰ÈÜè™PXYÞ]ÅY¬1[»Z;(W‹¯h¢€î€å™šÁŸ¿ù«è2¹=_‡¶¥MTÊÆšŽ¼‚îÕÈýVuUÐãaÁ ƨ§Âò"ÏïÍÊ'Ó[œ÷Ù7F®b¾Vdf¦ çOi¶Ðk× „{Ô>ñ³EÂñÒÚð÷Ûh»ÚæÉç­úÓ?û uØ[ºÝÖ¶å÷Ýw›iil Ï P²\Ô˸2âl5áÛ9þýÅÌ_8=~ ŽN*=«TW71]lœN¼'г¨kÌO¸‚ÿ…¿Œ¬¿7w ïæùà·ËDàˆÃÉ—í+ªG…- ¶Í Pì'è{ÁÄÎ>ŸZ1þEªd°òNÜþ±¥üÿG–O‡ÎÖ†žÙ[³³¦ý&à˜L¶%Àn4õ$¾aIÄ;þ&ªéøf™<Ѐ¥Â ØôqŸÀ°]|Zñ‚ªã£<ÍF[Ñ£¼†ítÉ-n©õñ=]Ýù\øoe (y–`Â5šà®¢A;›V³Ü1¿&<Ù`Y^ç\…Oü%˜¤0±踟.3Ÿo›þ|Ø‘ ÁÓ€ÓÖeÒ$º_Èîÿ]þ\|«ÇÑè MÄ~ƒ À¤OD×¢oM>Ÿn¦ŠÁdóD·=á<4êêʪrXã°÷¤¨ÿpÏÄ«>JŸì šKÿ¶—¼ðr6Å×)‹èËê%™%í{ÿB–"æW=ö÷ʛ|QW¬ó7˜P0ö¶Å‘«܉|G+b:“Çs_D7 ÂDàQïéÝë^9jë(Ivê3°‡ Cù ßpOt¸áeµ y]B}·¿•mþ@m3…IÇ¥s´®·ë­Âê)Z„ÝÃ@V{»ðårG]¼}xQß#¼¹Uõ3J‰ë&Wù!Ų è¸ÀåYÍ=²‘qõDÖ¿¸à¨¢å¯Cè)€#:ú›¤Ã‰Ma«›Ø‡ç/v7'†u‹\õ¾Æ#®xñ5/g¬mêW÷ǽ¬yDM{Ï;ë /ñõÕKž¯)Ò¤™—U[s÷ÊOÌ¢«ù?Õé%†uÖZ Üv. Ï]P?<çºÅO‘“ƒ"3ו͂G+Éw¤`ü¯Ö«Ï¿gQßÝá:ð °YòÐíñá<”YÑe½ · ð¸kgùôeOËÝ"‚áÐãO\‚õí +ç4å~y1mt/­+dÿ|Zn„òq…Är-›"úòçð©Æâùúhÿ‚ðí`73}Ú­õ¼-ˆ1×59ꪵò-õèÛ”MkLJ(:vZ”÷HñúE¹âªSWSy+Áv'e›Ôúf†)®H0U>‡S¬îŇÀ•Ͻڡüt‚ÍÍu>77û8ä2„êÍ  aï¼ñÉO–SgÝáÍÌM£kf¯ø'b£å_;3bX”7“^ºÁl§†àbë¾F¿Â;û µ½n2ŠÆr¯öš$BÜK£ªøãätc${Ò,%£0«ò‚Èw„'6Ÿ&€Waùç®^+:ŸëøÜ—­4Q9Ç«YèGCÛ Ž„–³yãRu'%äHPÔöL  Ðàú1»µ{úûc1ŸTDU×?»¢¢jj.òÇÊ£“;ñµR­¿k™âù°w‰þÀë´(úØmƒK;¾âã;’ƒ.ÞpÖÃ=ÔíO*.Ç«¯;ꥊ~•Lr¹Yõå€Y²ôIQYeJn‡ËÝâo~ÒЇÚQã®'»ƒß­ÝJÏ¡KTº~f-ºDòÝÎó¢H‘“ýü†\p1 »~I±Sòˆ²s£o„ã¥=kºî[ŽŸ•ñï7½9íÙZIË·»Ð–[­ :õ¥|.«aäÄR…ÛÃýgøÕâ„\Ãùô=¦çs gͽ§qTÁïä·³c¬W¿d?1n„‹¥›÷h"‘¹”¾rÏ2ò$$%wØNðjPüúé7òŸvCóq}L´éÔ_½Ïõ¼=U¸˜\}œ¼yŽkOÙx°¥æedî5”3>rØÖZ3$㾃ú}X>ù›«#ð|¼ÕBÿõÉÃßeæ0‘Ør¼æ=¬9KÂ…ÕO*áíÚ(ßÅ-YÃ\¶½O~­cw•?yÆ?[ÆÄ4¥¤Ňç»Áß¼LÃwÚ>R$Öì&h·MÛÚ6~$dö“›…qe•ˆuZŠÎn5™î!¢Ä“ðù“ò3ü_â O,¥~uc[ýSÞ õ *-è1Zç½,n-p'»èÖYõ¹“-ß×ÊÌ\pgªµ­ ÌÍ·ÜIœÈ¿¶‚èÇm²oÌîã.ª,»^˜®oZÒðIÌöp0-1ÙÍIÊ`|_­ž„Z¯î\t€,çNÍÔÑÒ‡õÎxyÒ%$òbjw`Ë««u|)[©0³ÉÑ³ÖØ!|jßLÚ^TºFsdp‹Ï_w;ø{1’O¥RˆÞ}6ËW))áøûg8c||ú¯/ô¶ªšõ~Ÿ?üÕÏQ¥áÊêR@âòU:¯ÅyC)]Œæ…Ø<‡8Ì÷t;¾¬}UhÆNjvz=¸˜rûÌž¤Û8ûþ~c(ÎÕý‰‹ô ^{jÑÛíµã÷J)pý¼`¼¼gú˜;¬Óª1ð¿ø¨:Ïχ„årnå;Ïß.úºöEùÚׯ3»#†ã aI.^Ð6pÀ,ÿ*|ÌæûýwarT´H#2l«#GT«#&[ÎýqÖw­åF;ä@·Á!þŒÔÔOö:×>¶7-ˆ{]³‡ž+ñ‘œÀ‰¢ó÷Âï[Ïfß £ûi>H¿{,ÚÌ›1vµü\J”ðÚš²ž`=”ó+‘ñ¬G,Ñ·…Fµ¦%ù‰ªÝ Ï—&Ñ¿‹ä¶}'TÊÂÄwÓ9€”NÞ©ÚQ~«¢ ö ”;p¦\åþÎËUÅ+\®n›E<]ÆïËÕs$Z®¢ü<4YÁÀ±´FDûKpÔøtxmݦYT«ë×ê¾"û-ºáסêÇrŸ Ù\Tù…[×F·2ë;ÒÐBáH¼”@¿5”ßIíñó-ñ¹×MMB™ŒcµTrÜeªPÙN×W¥¹Þ…¼ÃÊŠÛyVåJ|ÛÌòq{}9Á1igy•þö¼Ÿ/èõtd÷ø"ý”Oõ‚М9Q)‘¢)©hl¾ŠMEÚZ˜ö:´LÃDWWÉá>÷žOÏxíº›IÆ(ܘmÃ2â‹p¬ìOÒ£S—54²C/Î;U.uÓ¾ ŒÝsØÒ6’µ¢‘—òÛ)´}kbìÆT³ö“Sg³–ë±ãV}ÝŠ˜úyjݵ¥{ÜÏ‹ä9QÇpª¢¢ûOKøã°ö[xí§à<Ž´ÑÌʵk“|Þ?m·‹éð°8*V[Mï*\ç \ ãïZ,²IÞ TIûàQyÊYéb4ö@A¯ÚðwEÛÏÒ {«\÷D'Í Yë Gßêi‰x¿òÁ@BGþá²+8÷²¶Ÿ‚ßmæÄËÞ3„ig¬ú"y9m½Ô3~?á¸yì‹Xr¿ÒŠÏ î4ÛþÛv.¶D¿>ª$r¼—ó<­íó}õæÿ°‰8ŽèÛ®{’öžï=d¶æ1$œ_›¤P,}'^Ë"'u…;Íìx7‘€YˆÊY<Å.nßÃH†GcÔàüc•›‚Ú—”dÀDjûãageÁ™ºÄ3²Ú®*È@I&¡f8þcaÞ¬Æ)ÊÀ§³ÜC|v[[QÛ€H(Á¯ð´RSõ¥SKâÉajaB}ë±óäã9Q3!±ný¯%Ï។oê5À» Ì‚ ¡›c‹†\1Ýn–®×ÉìÞò‹„éÿkOBqçòâž8fÔ¼ŒáV¡ëkU*Ï‚qv3W·¤U}§ÏÔÿT¼µ®.”¤»&Ø5JÖâ™ÿ%b ³-·ÌCæBñˆþœ&ø¿—UÔž¤–ç½ã𤴹¿ÒKGã}¡i.ûîòߣëè²tüâŒq-íø¸{*EZé¤ cFß¶ëù¥7Ùó"9»t'õÉH_EËï¶ß¥Ë¨`P»šŒbŠ æ²g¼ÁàeçBÇõyÞ0G"_×Á _óÌÑ/—™:£ÒÖOå§Õ·ÏöîÍÕ¾|¯!q¾Öí[·¼žÖ…”s¹‰”\Ÿºó øíª˜"›–ýZî3 *Ê!"$@{…lõ7Kl yŽ”²ÔõÚV¤K©0ñuìvÍÇ ¾ùt2´hÅõëù¾Æ¸‘4¾¹[_¾V&\ …ƒíN2sñÛúz\²Bz–¤ Ö™ûÛ¬a)jEÃH׊Áa–+iÆMeu™„=ï&/e­^Ôƒ}DúðŽÆÏìB®Ãè¹o #ÆóY(ã‹÷_§Ž½ Ü}¿îÙ'&Çr^ªl/@׉è>Õ¬ ÍßQYÞV—î®ÞÛvÞ‹7<œä$íÛœÉ"ûªucLÊn—N†úR•´“¦#d•¿;"ŠëÎSxŸdƒÌÃþÆW z ±œ*#ŒÃxðXTÓËïkŸž%ºúŸ:Pkuxµg‚ú¿ØñâIýxÉŠÇß!Òªa­ ²»7»æIØßÖßûßú\‰ý·t™9Õ³ãÆrìùÖñÝÌÛTß RZˆõ„=¥Ƙ¥`7Œl@Ïýo—F衈¹±Èd^Së¶è8€v6uôæ8¿gÑ_mQYâ¼_ò¾¦GOr“Jö ò±……ÆšrÎô~Z¯üzGw•©Ãͬ Ü>ñ¶ço ðÕkãgªÕj¡ÁïdÝ3¬£ÿM»ÝGï™òÊËFj&÷Qï-|»Íñ }Õ0œV /°ªS±‡#3ÜóE†¶âZŠåmóêIýÔ<ÄþJþçžÅ÷í…¡åÕ¬¥t ·½èBkh.§UéaHàÎ?Ÿhù|fšÊ> “;âò3î×½~v“9½ŽŠw#`!L™ã›~Ä’eé÷ÞHÿë¡n¼æ8]©`ËøjO¡¬y¹gÿÓm†‘ÿÛò?¯UÛõÙÓ‚ªï›´ôÞS=DoÔÑöÖóWõpCÇM#}‡tÛy´„׎³xl¢AÖ^ï¯ÏÁ®;"Gå­q9/¢ K½È¯AéúætŸ³ufút_EWïÂð';èhýâÙÉk•k#Õ‚'^íc[ÐF]×ï)óýBÇ5¨N–Wëðøýjü+ÌXcNä ç|Ë{ùÏ}Ï gý~xè’Ñâ÷ß ÃªÞ/Rv`ž{ÎtöW•å£YÜë¹z}çšg[ÔéCȇ)FÙ¤“ËÏúNØ¡"ƒÁÖ¢ž˜ðæÀöÏ´è^Á#×íµœäuTH›pJÁ½ êÁ¥¥ì¬ˆ³ÙæaWoöýhÙÇü¿3kYùLDk. ¸ËóÎü®ýwz_·}3[7ã³'/öÄxÎqÊl8¿Ó}çsá]&=v€ºl}w{Ú>Ï ÿW£H¯“¸xùGX7Å긴æ­ì»¸ÍV»¬<_e¹Ss’I?¼v¸¹]ï"§ÛEMm¡¡àcÕ‘âü5ëªj)| >ª<~·Áî[GÚÅrQl7ê—µ9 ¾‚3ÞÃ{щØã€íxHS~…Pü0ØáhÀ@ÕÓÓÎÒ)8“9v4Cø?Gu‡J[íu ‹'ž_$Ö»hM¡‡NŒb¯ffM^VúCÕ½ám±ûu-·9ŸC°Ë±«<ÿçÕu%ã­‹þ²ÒûGE€°”Âg¾"î„ÿc‚ÚóÀçøÅ–•¯;y®¦£j2d|òþ@j`€€-ÇöbÚ·û„÷´¥øöæÜn78[UÆjÛjØpVÔq¢æO+ÎJÅbË=?zÛî@»‚¾)GÚHrrɳé>H/xÚÛñ5¿·)üõ?™ÒÓý”Ÿ5õÝÛŽ8¥7úêæú¡oôÊ¿`—êfûRn¸Ù#Èÿ~{Ê­¸&ß%üaGœ´Ú¶f¶ßOlSê›s8£š¹k!¶*ææºl–­¹'].ZZî;ºÝ‡wK“¸wuÎwk÷v«ó?¶Öß½µÁµí­þm?Å;Šð'åSü)îcî7Oä_!ö3À¾6y|qËùúÚßÿog}-¿Øß9½£O'V—#ºç9ÎîÎçözªýÕjñúË}U9¿è¯~øY¶þº¨üÙÖxÞa~ýÏå°o£ýÙ .ÜÒfkRÖc%°ëOk×]nÚÖã¹QxÚC˜zOnþl_ã¿ÓJ;|óXº=I²ÍfÌÄ&+›\×74G5&Bm5£[\Õη"-H¶å ÍÜ蹉ÎY¹Å,WåUû Tü]\Ô, ºnö”‡™?å•ù4'ÜK—’›Ë&ˆ%Q­hC5 ²Ö (I „°“ï û/彿kq{„ ½T¿#¨—˪ÿè¿[R÷¥]yÝ)×¼)>@¾¦½ ?"W<¯ð?w‘m©|çÚT?iO7?|?o¦ê»ÕþÏkUí6ÔU«˜k»­ŠØÛ­WwAh°Ý“e±zMUéÿa~*9´`?)W°>u;üŽðï+¼]çxï'yw%_-òÛmð(³<éçù"š†mϨééoÌéUG6¿Û3m·ÊŸ*iøpWíW4¿iÜlù–·Ç­¶óו±£mbÄFF¸\·0D¡6ÜÖå¶)È“¸®Bn4ƒ¸§wmÜvöûËf×¶ú¾Ý·áV¶ßº¾5ì3JÛ6O!ÉDº:ÉÌb´5[hÕAÈ3Ϻrë—ï6Õâ¶Û|t"Q¯ûu#W+Ó!~ä¡Éu1æÝMç²§Ù} —Ú­¼mäyÇç"ºÅzDñ^s”¶ÈÙmê¹ÕÎ9ÑιÕÎ\çÕ•ë\ç¥xò¿ê"ºÅtP-¤ðõmm³¶½@¶ñÙÅV6¸ÖæÆ[›nW)rLˆhÕkÒµ^¿øšÕ¼êýø'‰^ÙÄ úÓ•xqäÔ.‹˜í²¨ÎÖånìîæÙs¹ÌnwNä4‡ éâÕûÊÕï¶ÕèÕ·¢Ú$V‘‡Ã5Üïàù6¶×ñ¶¶~`G¾ùÑ€.eüX§Ôªyþ5µ[ÄjÃUëÚ»•Ëcr2¶RE|­ê6_·.ŽüûVÞ5ÙK²ĺÈïÇ~*:âëc­ŽµÒŸ[jëg[u·8s‡ENuæ½Û £icm”ÚÙêRötÚÓù 9«âAþ£ô —%y2×àåL_€“-žÂÒÇ…—ü¨—™‹à„ñ¡ãCàRŸ+d:iñè|ÿH ÚÙmFÍÃnVw#;€®“€ºîW\mœq·à éÉ⣽êeU©mÔU{bOÍP^›ÆÕ3m¥yh^Þ¿îU<ê>(¯«†’äÝÇ2™¶ØÌŠEð¼Vøÿ km-HÖüªEÉ:%|š”ºõévë¨Ôø´|P[þºÚÛÄUR¬V¼æÝ×0¾->. Ûq+ìR£Wb;Øö3±;kI»o©(zÕxnM¶ó¹±›U6ioT¢Z,¤´UÄÕÍÊ*(Ëm¶âáÅAKiܬš]¹ws–1!æWãëVøÛÔiŸõšÚ׎¾Ô»ª;ª¹.èz‰yO×ð‘Üzšwc»Nít‡ªûmK3 ¶Y¾ÛŒw UçiO_Ö¸[BÜÛ›\ÅHbÆÖÇ;®Vé#sMb®lîUsn]Y¹‰.tÚͶÎsKxõ©…9/¼¢ôºZ¯Ÿ™Ý%ùµ¶×Ž×“ͼ k© cunm®]ÝÑGvnîc^vÅÙ½c›<¦ž*^.­™›fÓÉIW"v¾µ¢Åmøï­¹ªªçlPË—y±ÛZø~ŽÈ¾Ýü=[g5<2¶üÛó`®[ÌóiÈ­©\kt)wQ«¥ÝÕ¹¥F£Z¥Üìj(£ºíÎÓ§w8ÜîÝèÕ{­kÙ^»Zm¾rûêÛé:ßT;úžÐwÔº©xй[lÛmÿâŽøž‹ohŒ¾ië"ôš´»ˆzZÙÝÅ}2»©z¼V;¨}>˺YW¯S¶Ûͯ…\ñRÿR•oGjl¦ÚͶÕFÛF´C*K@ ³ý—DýÎŽÏ= ëWÌÃüp{IWõJA§ôÛZ«Ý^çô~nªñmæs»´ÆÚ›;àÿ)qÑ®ŸZÍmßo;INUæ8æÙm[1K‰Æ £l¸c3nC¾+ùŠ…Â¡ñ3*Êjø²íœe[m_Wµè†ßUžz~®žÔyÁí³_YQ;×EB½œºšêv¼-ðÅE¶Ö6ÕBX‹ÌÊ@Õëù¬5sk…­ÝËr¡£“« ¹;îuÜ㋇œº™ì«Ø¯º‰æÜÚéÝÃúú•Ÿ6|CŽ>''#rÒ§5ûú ßAü(“–úmo&m¯a×-®´m§u;$×q¥›¥ÎñW̾ßFI›lfÇ>ò*'2þÜsä8Ÿ¡QýÕá!Ä•rO6¨ðkÂÃÂÜn8ÿ m·ŽÞO?ÂÚíF·1 ³¹Ûº÷ocØsOSþ‘#ëÑ 5³{VðʫŤi°"ýω¶³ÃfG†ã¥9·Á£®Ø~ÜÛI´|4nÆŸ§d>Ü›´ãWW¶ÚŸ|ð6K;âq²ØyÕïî5—Ï©^ÏhmúSÃW‡¶Ëx{q«Èxìm¶ìŸ;-¤ø…ï„«Þ>pŽ…GuµÐƒ»žŠ÷¾8Mžžú¹<:Ÿdu"÷1µöG˜vaígÕém­fÓfÖ}·ÅFM¯Šþr¤èÑÎ…ä^ËUmlͶÓmö`9eã¯l¥÷ª“’rðÙM˜"¥§˜®«5ÝÓ7wqmWã’½o~•ígµ[qŸÕ sSχêÞrDýÅðö5ÇÃEÛÝkÄýDØ©ç•máy÷—%±mA‰Ff£ °f*•Æû]û$l ”‘÷]ÒˆØPÉÚ½¦ÕÊÖððíòê×ËY‹3î{]Ýœts¾¾ûo‡©`Ÿ “–½Ø¿}}*¹d‘Ô=æ¶ÚÛÅ@å®cÌòpª5PÕÍ]wD ‹Qж7Isk¸Öµrî1¹Î“×rs³:¹˜»¸uºw]ÜwvÃÁ¯™m¯¸ù©É.â£å#ˆi³aþ]û­ÇX«x·™»È ¤ºn‹rÜ·Ãw9ÙÓw]4\æ;« 79qÉåËœ£ò@9¿êÕÄøjúφ_óü4æ„÷ëíKÁO´—ÙGàÒ™­³[gÛÿv‚t®ò>Í?}•o}sÝwGúAéŽSæÒ_0¶¯¥ÝÒUÓ1¦Ò\kf6Øè­Û¼š¾á_®Ûk~¾1ZÚÝíEr:SÌ~øQú¢O¬æs¹N·6PXæÜÒKmÍb*aÆ»ºØÛc[”뜙Xö§+š¤¾Ä'qµ²|ÍÛlãk£æ„§Ž‡ãT.§²ªñć%.œ^nNò/Ý?±…µ2™±µó3q·8?PHè‘äRó.D¶m4ض^‰µ–×6ÆÆÐ[s\çw`´1]%ÍuÄbÄ[ÃmÇ+ÇSì ѧ€ù'º':Û/è*§(? +ɧsä´Ù¿=Ts%Ü­wîÀíÇ™èóÆ^‹' q8mž`vë·¼í×-;sµŒ øÝ5Rv˶{w·sŽJv­=‡¤ÛÖj¥º;§OÑVÛoר¶n+[Ð1TEÉ´ã®íá«äEsîbÔ—)ïKÁîd÷„åUþJW‹^Û-x»¢å+Ï­<ÿÒü`®I[Ìc‘]Õ\ºŠÄ»»‘DZîäš¹ÉÖuÚ×KŽåÞÐRðááí˜fͶ\[v•\¤x"x/Õä'GÌä›&ÃflÃjè®\®î±ºî’IC®vºeΟoVØ–÷7E­UyhèTz/ñˆ\•z”zö‰È{ItˆêK©œ´êgS:•È^nž] i·‡ì*f¯g=˜ön[ÙkÐìÆé8&µÃmœpŽ5Êšiݵr–ÜÞ~«étÖ¾nóõÅ<T5µ-¶_ïü2S”‹á*W‚ž ÁâÎ?ÝJ9‰x>Gë—.Ý~Í¢ÍÇ ³6\’t9©e?€ýH“”<¬ ¼½¶Õjø€.AW¶¥tç¿ ‰ùk™'Y\–¥Î8Üqà °Š9ÉÝqÏÆ¶¯žûjªòkUýߢ}ü©È“ïâ}ø7Íü*ÅÌŸ|]Å·ýD)æú4NúW OŒ…ëèŽ$–ͪbÚÚ¼æÒrì’ ÂªüíkãkUzjDÛ[<‰ÉQrÐvAØOjëWÿO6Aô&¸¤§_]yÑÒõ³8¨»Õ¸…ädzú+Áð¬ÚÛú´Tåå݆B±kB‰I6( TÍSM©µµ¶p)x~3ûICð çÇvÚŽhž¦Ým»Õï±ø8ã8ÂÛ샎hN}O³Ø·P©ty«Ž8ÉÍêdî)ðJW¼ÏcÅU¶®h^ð\ýŽÚR÷‰r’𢰯LU{Íùн%ŠÞsŽ-*ãKpã8ÍfÛnw¾û‚¼Ä¸¨Ñ_}R>mGÍ“²èÖÃdmµµ¶TjßGÚŠ5¬mh±ª1ÔVæ[[®VæÙÓ•¹®'+ŒZ&(îéÎwn 5ÝÝÕØîxVÕ|»o—_ÔÛmxü[i^tYIþ™|–ÍŸ'lḷ*“˜*m+kf­åM´T’# jËm›^ÔŸU ȹ‚N³(¼y9£gô±ÅÇÉÞñ æ)e-øØ«¨UæÒ޹R¸ÑÎÜd…—*s®jå´ ²SC—X¯ m«÷:UmçûL=Ïw7씜¥6/]ÿ’UÉ)/%Ìâ‹uÚ¼Ïísb¢´T… 4Ní¥±Z‹n–¬q­Ç)QMV¶µºŸ·ˆ_<žnìÒtq.¸:ÕqT¼õ:¸qæ½ à’ê“»§w\’GvÙÀW½÷*™™²¼Ô –Šî®éËÈ‚<§“‹3<­Ã) åU3£Ç¤cŒT.Ýuµ¹®k¦7K˜jØÆ’îMÊW;°]vR„0ðª¶ßø Y« µéÚÚäHOö'é©ñá_#ffX䩵â¶Ö¯lªÖòmy¡ .©’ÿØ‹„ûéSººZÙþˆG(Bðê¾Ýûr•ËG¶Û-…‘ˆ%ãÖ­Wë|B47Ä»Ûk`å‚_ Åûü” ž#ÿj”wÇ´ÕlÃoißö³k£Tw©zůߥ¦ÉÞÜھ$ŽusQvËö7z›Xõô¥Öó~pìKfmÅ«aÇ-¹Îµ®§v¨Ø¤Š'pãŽ8÷hv+™Þ%Ù/‰UÙŸ GGµ]d•Ýi> N”º[;â+¬”»Òâ¼K¾Gps*”ñ ?ÑJ\D^ékZúODFÖ‹#bÞã¹§Pµ«[È=Wb­Ý­s.u].íwW8·whÁy-­kø–ÖûkUýÕ’ˆt™AûÏ;ýçã9'(Kst›N—„j8Í›…®6æÉš9£»eÅá¶µ{åj¿6/ZêÊ.DUê¯ñËmßwú–lfÛz”¥ÌR™VC²S«ô´•É*—¥´.ùç4kVÍØþIAÚiWDC–;8â‘Ù,‘ØW^®´äç'LaÉTuk@öµÔ®þ\å‚ú%¢tï±\%4ì+L›Æ×wN¹v¹Ñι6âÜcqÆqèáÌ’—5ô•õª¹ï¢¤sHKË_1%ß`Òm†×ý¨W-Ro¡þ¿ØÍ˜Þ7 ÆqÌ%<¨œØé­iF¡„7mµ_ý¤µ[\tgKVm¾¼ ÷’W5DuªüD‹‚¢¼4éÊéìÙ5¸âmqÃŒÌââîê', s5µm6Låh£‘Î]0BŒbض¦ËŽ1MµN¸àä@¢UÝÒ®Œ[¢ŽB½àm›gÕÛ+ßìCó¤Úºr]a^ý ¤«ÄG`yT¯+E³fÚ›güσºa+·ýìäí’#ch’öšm¶_AŠZÀNï!´…Øj؃Íå´¨¾gÕE™%èöŶ¡~OÑåD‰×ë¿Å=~Rÿ—ŸÐý>ëþ_ G‰ùü)\}×+ñy8¥_çøöüHö=oO}ý~ÿׇÉOàüGœùËÉÂØyn(˜à®Ã«¾%?ÏåwŸCË÷_YÄùÿeô@|§ÕÉ."ts8‘³ÇœØîç,Ü%Ýo Vß®±¥èË!öñ•þyùoøþØm³‚ãq®?]J¹©|ø|ñÅžZ_>|ñÀ¾|ÅóÆ¯ŸŸ<Òí Ož4}\ÉÎøT­B¸ ù­×âq® u­Ü—v«˜“»w9ÎèæÇ…QðÇÕkRØÚÛi¶fyJ#’µUíõT­·ý™ø»‚ÜÝÕÝÏ«ï>ד———•rbq£‹—çŸaô\gž)Tó?D¨öÏÑÓm(áIú0µE÷oæÏ“µÆ©qŽH>J+ ò‰ô–³¶·²ô*MŠƒhÔ ‹ 6"‹Eµ¿'j·Òk/ûwu·ãP®´Ýi=.D\!Ò¿p¤¹(Ä|]¶£-‹öŽ[ù UâÕUãÜÍXGš¶ç ŒÝ×E ÆÔU¬îÝdØ›»»¥ Ž;’s²»á­µ}½­ú¥!Ä”~ø}8çm½’*å=‚¬¢´_yyztó|©y©åÞ[[fÛ[3lg v5~üµyµrÊ{ZÊ»8ÁÙÌ™j]˜Ò¿Ä¿gï›v¼eÇ(v³JíM'kž“ÏÜTù?+÷{[[VqÇŽ¢r¤C„»u_æpˆä¸¹6²l1È¡}4ê³_´óå(AåÊ-Aõ­)ì²RååFÚ±´­«0Lj·Æý°ZÓh•Io‘;©¿‡jÖñm«Wç_Hˆ(meýëöPÛm±²^Ò‰r*Â2Aéb~5<¦¶m÷Ï?Hs% åXÚÅf7 éb®]Úæ× #1nî8 .î뻺]ÝÝ'qƸÇHüB>‘IÀ¨çUΧ uhÕGTžÌ¸‹îÐýÞm¬ÆÌÙ³´ œ•^ÕY/kMSÚŒ/k5/kOiZN¨ÑuSèzDÖk×µSkŠÂÑÐvW*–©ÙZGª‡q q%ô!}IõwöÆÎý¹) ”ª¿Èz¼ÅøôrPüzYCé‹*ðÂEì’NAy¹Xœî½²ãâ–OˆM'kë–Öß«=t2Ÿ® §ØÑ^J¦•{áh}x­¯MBú9GŸÑØÐr¯‰âmGü%W$µoèlobè¹Ìè躸î8ã’§ªÕQùÄyêøŸm±·›€æ"?/¡P8$YG&F¶2@$H4ßsUîV ¯¶|D“¬ª'£Wx.¬Š¹ô¦SÒÌG[-'ZX]i•ÖÖƒ­09Ó%Îi_É]iÅIÿ;ÿMi¶ÙŸ ¨r¨žŠó® × Ç/q´Øœe\±¹¹&I ¥6å4Ýɹ‰ UÍ®VË®ÎZmk\p¸Í¢âÜnÉ"wp¿æ qUÍjª=u^á8#Ü Aî!î#IÕEðæÛ6ÌÖß6ý¤‹j±Z¶ZZÞV4`dšmÓhÊÔ3(³6Î ø”žqJ\¹$üÐüWw•¶k;·ã ®jRû:—å¸G{sº’\®â’iOäWÙxô”_”‘”襤ÐW#t¼+m¶¶Ü,mÙºQ"©×\îè·7uÒwtÝŽî»»…w;˜ÝÎü¡´^)h_”‘ª„–ˆÈ¢ÃQ^‰NßukkÅ«j¼x"û™RäI9uãRÍŠ&¬“¡7:x[UÿïÝëØ4‹oÇ"r•.zUö±K„)ßÒ9ú ›m³Xô¢$#—šiE´‹ÖFÀ4V„Z*Én­­æÞå­m¶6*ûºOˆc.9*>'²Ðb¼W%D¯g–¶Û9 úŠ;=£„žŒ'}&ÅÜ­œr*øŠ»‘Ä<^¢©8N÷çR6Û nŸXä|Ov8‘óˆû,›0¶÷¦k’W+ºp£î¹åo±œ„çÔžøà_¬|ÕG€¶KØ9IÏ'qÂ^uO;Ž@?W Ö<^8pÆ6ÞVe¥º‚}ÕAâÞ&¬Øý`ªå„?-b‘ôÔWj2Ž]&ØEç#UÊ]¹·J¼+j¾óZ¯Lø½uŠË–çs–컵Zñ[kW©CÚ(pèaè. íÔÅ{d`vRÑvRÉv1ƒ¯M^o+:A³b3´´8ÒãItr¯̲ͧ–T9)׌§[ZNtbuc'¬´ÎÔºbÕó媎U0#ÄðÕjÛ3^&o÷B—(.etÈE·‡*¹»hån[v#Z.îæÁ¤—Gq\“»»ºæ¸\\mqÇ ·ÍÈ”¿Â$_aäètv§Gq·½¹QÊŸ§Ä..³kKT-¢1H ¯<îð¶ßžÉS¿?o_%\‰°•×AwñlÅmþâ•É¢æQ´ÔÚqH}Ò“à¶wù—?Ž6ãmÇ…*åÉ.lmÅ>N¦œ+áIìË„|uUlÙ¸¥êìÕįdC±Å9èôVÇzÏUZ¶8b•\|Nª‡ç£ÑkS„çÔôyµ§ Ï…é.ïÒuµÄ} :ãˆûI]}qGyÂqÖs0Ñž¿q®8Ü9$ìt»SÀÚV¦ÌÞ1ÆÙتŽYTøñéJâΊ°—=>©EÏ^ËŸüÖ­¼{må­¼Ùm°J^LqÐqÝÒ»so µ¯2ÛUáÔ8)=Qé2[´Ö{?¦IËš´}FÉÎí¸¦ÓjÚVÛQ°D‹G5sk˜¨H„‘I±Šª“mÕ\Úêrº‰^N ©Kê…sß·÷….Z«iΨX㛜ŒÅ1]9r$X‰ÎÖÆªŽéaks(¢×.Q:‘ÎUÝÜÝŒ ×…[W÷-UŸk¸ÒÚÃn8qÁÁþð‡-ÖÚ½sIëXO<Ñç¼¾‰ÈêÊø*¹i#’Uz7‡R^»šõr±·cv­Ä»»’ì!¥Ýr;qqwNtfæë¯ Öþ[U~m«ù¶Ïw[»”®e^a¤ý?L'oLžâ­^à4ø'¸W ¶Œ=»Gj´{šv£Štìý°«´Í4û°úûŠG £XæìkhÕ6Ð4U’Æ!I Œ×[ßÚ¯XžÓm «¨ø àèlɸ 9!_¾²á¦âB%\¤¹ºî‘l¹1µUF¹W Pwv¹¹Œ»Ž´Dh„f`,Z `Ôî­wq¶•Å$ðÕ=F^¿%ýÛ*œTŸ KjËÚ‚rQæÓí~LÚMp½ùøUÏêÄä]¢¬u»­ªÚ8®èM~Wi–m!ðÈÚäºcÏcešÙE¶£m Ê^þÕx/…òÐj®ÃRþŠçøœÇüPœÇåŸ0UàHÚr/F§Ûʼ¤Úq<düµz7häTû©ë‰£f‹÷ÅSÅ£÷èâY¶½õW»ÝW“Ä¢6B{-rä†t\®ËÂ÷Ûf×¾¶ÑÜ«ä°îSS¹w+NågsLw5¼4 fÓÃ(~„’§»_NiϬ®{N}jNċЅ8*ט¶†½šI¨ï o«W§é wø´‡.)j}ù2üÇàpzé#!€ª²ùè$®I_ÒTœ> F½ÜW“­C…þ¨5è,ú~Ó©}Å{k@]Û—^U¼¶ó×wr[uŒpÓÐÛ-£’ã“)Âlg&·ENZ$¥Z}­w~L#É‘÷Eî«jõ†úŠÖÚñ¶Û[ÉèvµÀÑn[´NìWG&åÍ®»3‹\mÆãŒfü¸ó±Wý„¯•å6mV¾Ke¸ãŽ-êįCGë‚:HñûìC±®Åv#±¿Z;"쓯—%òõ£j¶jÛÛóÞˆ‡¢Ç&¹6F'&£T—q^ ®<A¹‘Ýq¿mµ½í{Ý{Ýò¶¾X‡±pm¾`—ELlÔÚšÚ›™Ö¡™­ò)y,ÛZ»Šƒä¹«yÀK“ýÒ^åîµ^ë‡ÛqÇp܉O5ì>sÔGü™4Ù¦Ëy'²µZñVÞb­Ë¦ëº®nîw8[\îë»»«ººŽë¤Ýß Z¿Æ­S¨Ž¢EÔ'Q]@ö ì/G¸ñáÛf„ø^ï“rrN,Óô¢§OtçOzié½sM‹ †‰ ¶¾uj,Q.8á6MªØ/\Òª—À£à3=n™Á¸n3_þÐ]7_ªÐùw_¡µ¡ò¥‚¼¢½åO&HSäHøò»Ð|tWÛAöÈxVÝ}|vm£å•v?Vm|žËåð¶”öÆÝh½¶×Ê îö «ÔWv—©ê.óEaêõ_wI{0íîüƒÀFk6صxpápßÍ©[ÉMô tÚåØÕësUË»œlå\www—|ý[ÞÛ[^Æ5óUÍ•jx;3mÚën7,©zâômÕ¶«ÀÏ1WQ«µŠ¢]ÝË›œ‹¦!×[›×nuΓºå~EUóÕï6°ÚÍÖÖß‘ª¿#V«ö•ûï˺¸s%Ý.rîÜaÒw§¶ø­¤FÖcF&ýNµUêÚ¢¯7%·cšÜÕÍÇ ×õˆtÓ§­tõ¶›«!×Ó'm'qÅ¿¢·.Õ=¼»Jõ˱;ë£é̯™«Ð®ÈéA|ÞØ­´mf¼>³ß8z5^zmmïoBûŸ/Æð±6¶Å­[ZÙ·§áBºE¯ë³måmkÕiV¼ŠÔÛæ¹W:u¢íÎîœçnÎ;»®»ˆ|_‹ƒi›¶Ö½:¿VmŸ‘k rçZê)÷zÛWzîò5Š*ÅIPj+E±´XÂZøwÄÖ¡‰ÿØ!ÿâx´Ú}$'ãõrÚË÷ oÅ`¤Í^U[¬FµI—Tm-%­Êìî¶<)tÐBW3Ñ¡â5«6fñvü“°‡Ètª]] <*«Â#ÁÜ)Õ¯³ò'…W[x"ë§€N½ä~^C&¶^\£Ø{Lr=&“6¶‹e8ãclLÂh° Çìö·­M¯¡ZÚñôJí…ÛUvÃÖ†«ï׊Wn¼íçn»yÛ«·8¼<³[kªTs™¶)¶½vµ–6í]Ûë±Øtn\¼ÍµéUF”SÜwwwGí’K¹tNŽºúIá^-³kóª¡Ð«WÃe«á·E\¹ÂŽÿOm¶ÞÝjñ•@6۰2&øuo†ÙeïUhO7wÿ6á¸ÄtÔW…ýEfÍ—AÕ_ä§E¼€}ïï%åZÒ^U%Ü”Sw…s¨v#-†³YfÛcã—­ÌÙôD¼pylÔkf³\~ ƒµŽÆíGéãµNÖ?GOo+ÁÙ¶Ë[[6—\»2öË´¾»_]o]«Éì¹Õs+sP“b±±Wtb¸îâwmÂåÌ:#K±.î‘ÝÝÉ×.¤\è‚ÛŽ7qÙœvkÓœúç³m{Ï,á'€xÛ\*Ãåþó-¯*VÆ×Ž\ýe[ñ?Zµ¨›WŸy§²Vå]×+•£H¬QG]«ƒ•úÝ[ñ?ÊQRmó*ãN Ù±å¢^ô§½ûb2Ÿ©Cãy,}ˆÚ«Ú“çÕv/j¨ÐKë¶ ù›Tã|ú_p§S¦Äš±l6¶³t\N8̸Óá ?#æËæ§Í½ ô{[BÔÝ_©ûäÞU¶Í¹%å•~–%õ3_Ú¶¼[Ìr.ë˜8“¹› —Ì+îeÆ5íA~^4÷EîG¹#ÜǹÃî'Üaø`Pž<ý)½Ùî×»=Õ~š½)îç»÷o|÷Ÿ7çq«†³y¸o.¥>ßÔGŸf–ѱm3m–1 ¤×ƒ®Ví3nÇp¹tåtË» ¼5¶¿±jL¢”߃qüS×Ëæ)_q›&ÖmϨºÖ‹a¼áªÕËkr®î“JÖ5Q­»nX®kšj¶¿SæüÖ¶iÃõê'ùë¾wq£f¤¥=?êdÆÏ™ë0Ú­·Q‡1]Ýpºî—'üÛZÛÏó ¶kFî»®ZîµÎl’Åì-ù6ß„±~ªÿ$)óGÍÖ6|Ûëét¶æn5Ƨ mÍ¨Ú šŒ¶Z*;mÊåq¹nZìMDƒ›–mÆáqÇx@ww“–ã˨®_$V°d‘õZÛÄ"5Œ6J4’Ƭ•b"ѳj‰MWÎk_),¾S¤\k8ý8/¾žæhöêꮗ탶/ žã1l¼U;zx’]Àÿ<î„û xR;‘Þú ³yNtJxj<ôðe{¼ÏG¼ÚwÄîN–/xÚð){ÓÿŒðv'v½ÂÞßæ—Ë]Õ8P=Ë#a¶ÖéõlPSÚÔkNrŰmgÏדâÅñrÍm~ôÕ^œ†Å)+Ù5ÎsµÙ§ê*¬rÆÛjÑ´ÌÛxŠñþÄÊÖñ8cuJWXxŒÚ‘¶“[[AojØp\åüªÛŪÒ'™wUÎê7;‡Gwnérérg.žŽÕt46©³³n˜Tü0<àð¶ãˈŸ­%ÒÃ³ì¡ØÃ°®½tWJÍZ¥ç&uÕΗ¦Oh?"£¡] ¬uZ܉+«Ôr•uN§ÙOF’𧄦[n ›fü$} :åÐŽWL¶eÂËG7A¢ÑF¹ÝbS[eýRèlt7—}dúïÅ膶ȗúÕókm¯+Z•ê–ÆkÝÑ-bæÜ\ä¹;2çgë»»¦¾&ÕWÄl$¢û=kk|-}õ­õ‹WAŠ›;t¹‡Í­mx†¶kb”2E½ÑhÃ{×ô»Qx>[1åÒGYöi¶6>ö.õuÛG{S¯—ÞwÚGcÀfÛ.øŽÈÚ¾îQßæ©²ì£¾’ìãîÝþRн²zR½¶³gϪwålöÓÄx¸™gÚÒ“À¸¯T‘ö“j;uàDî/žðrF•ö=Ëë¡ì am–ÊÛmnÜ®ü½f»[µºS£…¶¶›7JÛqë£më­}=½%ýƶÕâÆLÂHFŒmŸæ/Úx¦k«Š¯QІfm]»$v>À¯TÙ¸RNÝKÐÞaÉly¶-VJbwUwv¹Er!ÜÖ¢Ðm×¹hÇrîÜË»»r‡\îÎîuÒ¸îwséªyÚ“Å út_‹!ûÊ´<}k‰Câ(¾$o=µ^ÖÖom³ü4%å–°E+U6-ckzÓ=Þ¯’m_hÕ²ÑY®\îÌoÅs]tëŠòañö&ÆmG8àãq®6ÙåÐŽº%s—Y{Gª|…ò4Ç™¶Û^lɳºXÅœ®UÉ£nî´kÚä[˜Ywww{ªßQ’¾0óY¼¸¤ô ë¡öEö)ݓޯyÄ{š{_™µñ·×¥4›M’’ª6/_ÜLd¹ggÇÔ¯صšx¶Î¬JúÒm^.úšäKßÕ´^á=ÅÕ¤9—–ÛI´eBbmkchȵ›lSD$‰JŸDùúìm Ø¾mk[äm|“m1¶Iã·m›ŒýÂÞ×'Eã)ã!âÚ·“o9¢‹oZÝÝ2™„E¨Õh©-u¨×ÜÕœæªî¹\ºuéíµéj®Œ/+×G±½­âãkmµ·‹ÇR‰ñó/ <2x5=©Ó‹·uÇW…«kÍÌf4$û®ºawwñöªñ¼@æí ç{Ev‰Úh]¡vŠí´—v]Ú¯§‡šÚÍ• ÝÔî·Ð}(01óm­·’µìÝÝ«¦»w:tç Šî㮋‡tœç¥^®w’Rt5§Urm­‹ ÆÙèHöY—‹%:[Á¶uI_‚7Ásó6ÖÛÅU­…E¢©åÜ­º6ÆÜGÁ÷Óm™^‘¿ sÞ¹òòÕ2Ž¡ÔÃüßc/c/cOc?ãOتLzdê}Ÿóžýáð]ÜçkÊàëmÆÖ@¶B ”¥ÝÔÎWlÍdzüÙÕ.©ûȼ=Ÿç‰{Yü5.®ñºgšþªGŠ<\Ï-û|Õ^6Ë7SÌãÅt Ö,ÔQQ¬DH¨˜È×é½%l6kÒ×}[_¾¨>nÛUyª§‹rÓºk£ðëWìµ[ø[oM/O»ñZ­~I6ª'Ðè*?7÷‘˜ŸxKíR?ÿƶe­¶ýН'i½Ä Ü;˜©äîAò5fÃa¼œm¸kÝ ¹<þ™±›\n6nÙ_Ô‰>Þ…váÛ¬‡l²íSµv±ÚS³.Î÷NÇÁORÚðvÙêh©ÙNËܹ=ÕñÆ#6Ü8£e³…®U“ qn&Ü5I¢MΙhÖØÕ×;»tîVà7s®ã‘É×tîºDïþ®¦SžÍšc’*ü·¬ï±MKwÈïöÖÙ¶mvQG€/&•îó{µ=’…ãñ§«Ç*òUì/ËÉõ~µµj<} Ç“Éïõ Sk¤Ë•~ö¤òCié}›[M«f ¦ÔÙM6 µòÔèåéMy^>F§gR]M­MƸº´OwñæÕyÖ¬BM¼D[]´[šç;¹s\¹\©~¿jý.Õ{þöÁíKýEðv•½íïtÛ”(æÛ+iJÆ!Z*$YyÊîâ¸ÜkæusZm¶<¸ƒô§éójzqÿS´¥ó>u7çhq²ÛŽ3ÆÜgµªo'ßÝÖ±¨ÕEE½S–RîÜÆ¹¬š»«¡‹gumrêØÚír®\‰¢Æ‰¸ÚrÜä¥r㻈ûo±¾Þ¯™«æ>nª»Èï%ÞNòâzÁÞ'x»Ë¼ž‘Þ}õr/”®¦iµÒ©.å¼ÓcMšÖM‰[i2[M±6™o=üUfÑ]Y¯²O+çVÖÖÛ[©Ç òiÄ WË—yh¨ÖÖ¶:LÜn34õ­ø>]|½6³m‡¸ãŽER÷nø_ ½ì’åÄ66Ñæxã6¦×;©9×uÝuÎøÕ[Ô¯©ÛV½=¿ Ûj¯\š¿*悔Éíìõ“ªœ »¼½FÁO{ÜäîëÅZ¶õT-zÃm´Ú]‰:ÕϨë“iÏRëã¿QØGš¤ì3'z.Ä¿I;êž×|§i>ÈÙêâö˽Sµ>"žÞ|J=³oñí¨ÛbØõ öVÚ¯Ózmµ’kaiñzŒÜäs(|šÛ^ÜkÆÅ·vÔŽm£¤n«ƒzyì-@ðªþÞk¡ÐɽjKÚ\ÞUMb†M¶ÆÅbmlÖ›? ðö#üTÐ=xØ[fƳ6]ãq¸ú¥Kª^\g nãnk]t®Usºæ±W8ns›CNîë†Ýww9vâã» c»´ðwÁRK~]¶«Þë{ÝNÊ\èyrçÁìˆGZ½¹Ôó««OiÍ:?ey‹ÏmœáQ¶­•Æœ3+{«ô—Þï‚Ú¦­+¡ÓÜåÖÛË?²„z·Â;è‚ð^Ç6ÍæTWࢿ…z+Bz=7sÐÛU^1‘ôQ>ùx#ó>b+¹¢^…=¢;í£fãj·šñ-¨¢ÅCD“(6wnW3ºŽnn›r¹b†T[[»t·6EÝÛºç#Ø_{n’™[m¿Õ_y±}ã¿™¼¸QϨ¹çñ{—[f5h棵-Qm¢`ÆF* ¯°òZÒÓßí«ðìì;¨¾²IÝÔ¶|ç~¿Ó[[\íKî½êŽùÀ|õW˜­®ËkŽø®Í·Í*ïõ›(ïÇt—·^½wú‘›3TvÛ]üžàì/¹¡Ï£­nù/Òug×é‰ ÐøßCØî[Œ¦Ëm'jq¤Ûe¯U'L'¨Mãf`éxM³`ÚÛc®éÉ;»9Å º¹Ë¤Wtî¿S[ÒRT*ôíWŽÔ<Êìà1þ"CêÏÞ‘ény/ïâÿ' píÃ9Ÿ¶ÕkÁáò+WÛ|… r'—¾˜OÆçœ’tÚGÅ­Ç'w¹ƒPh cVŢ˦Ö[\cb6åÇu.Q¹®ânç;»®w2ë®çeÇŽ7Üo¬üYâ×ÊÿÍ­™þø·¥äí¶ÆY­Ø?¾‘ræÑ´°-&Qlm±mˆÕ#V´–©åtyÕ„r~ø'ÿ:|šÍòm¸º©JíP«egÅ„]^vÓh™¨äÃe46œ8àã7VYzÞž¯©ªúo§·àUò—˹kB5gtî8üšIzCòåë§­Wl´û×þ6ÌÚ·;cÝW¹òÑ5³4m˜Ù­³Ë¼š¼¥îî9 Õ<¥-¶ÔmtÙ· ¢|­mo–fheU·Øyš¼m[ËF¬Í¶lÍ›~ UåÂŽ}&ª~)å<¬Ù3õ~O8fås"'³®¶W{+íe{IsóHÚyæÍÆà†o‡U㸶¥júPŽØàµ›i´ÛfÍ3ÇG¡R»:¥D:ÚºÚç+œœèçGµŸÊ.{ËR…<çšÇ#qǪäí­Îé×;Wܴ䬌¹ÉvnÊé×; Ë»¥&çG:¹ÇPº¾¬êÝ]ÑùRN~{ž-«z¶¿¶Š«ž!ü9í ¯…,r³0óù›LXÅWmÊ×*îç]Ý&åÙeæîC&ë·; ÜuÇ1ì_+4Ÿ(Ÿ$®‚§•QШ¼ªf𸗃q\kñ—`§ŒuQöþå±¶¼¨=ãæ·È!<²Ó¤ÒÚ d…°î»^•oK<[ZÞÓ³—=.÷èNï5Û/dW¶a¶?sq®K6~äJæ$é\d66ÆÕõ×—Œ=w‹¶o£µœg38ãŽÎšveÙ§ñ]¡v‹Î/ðW¼SÃßfãŽ3ѕڿ¹s‚úýõõ|ï‘™"$Â"úýõõýõkì+ì-öË^QC0€,DBBd¦™Š#6Å5{UcFÚ¢!2Q·2jÔ–‹Qm‹£˜Erêa ôäÑw¤®„WCVÛfͺäQõ6åqÝݸ\ü=[_ºÝZ¶¼@nNç]ÝÝÝ.ºHwA¹Îë¡îܹÅ6ÝÝj›–‹sW¢”kQmIÝÒ”1MM‰%LÜ~ o âpãž®’=ŸG&ÌVÕçwíTôO¶½¯Kð øÞ’¶Uæm籩E¨¡$ÍükZßÔ~Ÿe¾¦ãøçÑ¥}Ô&$ÖΦT}G̤ú$žéWúU“åU+‰å…\ÉGI‹ÐÛŽ' pl‚œâ]ÝÚ»¸£7:Ü7¥Q~«gØuG¨ÿþ.äŠp¡!-dÇüfields/data/NorthAmericanRainfall.rda0000644000175100001440000030470112560751565017363 0ustar hornikusers‹œýwX]öŒ6˜³bVÌŠlTElÄDŽ BƒHÎJQ”š›(fÅŒ9a˜³bVÌÒ·Þ»jîëܹßó|þ1gªêÔ9;¬½öÞ§‹]«YòVò<O–׉'ÓíÄü×βÌÈð:óº3ãÀek|ýÝ´<]|W­tô2q\å%rôð`æ`þóbo¯kC£ý›&æß…FûÛbæ_n£ýsÑ?ÿ¸ëûh´¦qÞ_ãhÞ?ÿWðhdß3åÿó¯Ñ¡gÇú+$ë®Ð§‘Gû¯ð똿¡cû&º?‘æ õè¹C]ÇÐÒ±žCø¿÷sèDÏçÒ:?hÞ z¾¤c¾h]Ú‡•ËÕä±?EëD’œu´ßP²ÉÇÊË>·/¦ùñd_Òמìk/¢û4OL÷Ù}Cþš—D÷»v\Û‘\v¬ÿøëÛ‘Ùû_Û“~v×h>»ÉkÇ>'¹¹‘üoGö³#|Ø‘^ÂÏ4ÒzÜÈÊAzqû²ø#¼Ø“=ívÒsv>­Ëdg;²»ùÑŽüoÇÚ‰]wù‹F!+/ÙË–ä’mIn[ƒü%$;ÙuȶM­KólIO!áFHözÐ|Š N +÷ùÛ–üÃÚSÈ^nìØù‡BZÏŽµ+Ù“wç¿ýÆÙ“Å ‹ÒŸõ7«§mzÇhM£ ÙÅšžÛ<Ö„ok²§5ígMv²!}­É.Ö¯ìz6äGkò« ÙÕ†ô³¡ù¶äÚÇ–ô±¡ýlÈN¶„_[Ö¬ýI?â ͷ!ùØ}mÉ®œþdw[ò« égMö¶!¾´&œZS|[Ó|kznEûZÓzV´¾ÉaEëZ‘ž–„+þ_óh]+ŠKšÏ^[‘­h_K’ÓŠðfM£áÄŠö±¦õÿ–ß’ìÂ^[Ñs+ƒ]›“¿,ÈŸ–ìsZß’ü`I~°$½,Éìû´ùÑœpjNö³ ÿ›Óûæ£ÿ}mFv4#;˜Ñ}S‹áό※&¹ÍHNS¹)ÅùׄìmBö3%}LI²7;}Ÿ[‡ðlFzš‘>ÜHzš‘ÝÍBþzŸìeÊêGö1#ÿqú’f„3ò;'éoJë³zÑ{&dG« ­kBúš¾Æ$¯1Ù×ÄïßóŒIc’Ó„ô6&ùMX»²ï^Lh]Öά<¦$)éc,¢‘ügLñ»ŒÖ1¢83¦8_Jû“þFä/#ÒLjìhLþ7&ž2fŸ³ï“žÆ¬žôœÝטø‘µ“É€¿ìHë˜Òþ¦¤¯iÝ¿qÃáŒGqnJûsö`¯Óÿ}mDï‘Øû4ψpgDö3bíBþ1šö×{„_#Â%÷>«7Ù‹»OþYN8\Fxc×YNvâ®Y¿‘½Øq½¿œpbÄÿë>Ùs9ù͈݇ÅÙ͈p´œô]N÷Ù}Ó¸„ì½”Ög¯—=—NÓ¸”ö5$¿-!{’þKÈ.Ki¿Åì:t ½¿ŒôbåXFë-eõ¡82bãÚ›ÆJmÇ’…fVÿ “Íh]3%ºvJ*µo4³WmÔÿ‡oXÞPÔ3OÍæÓz=iÜFóSi^Æ?Ë(4šÅ1O•¾rüÈÞ7üÏ4ƒFó)ÞeÍòæ³:ö7W§ýÓµÉGö5{@ò]¦ýÖѵíWÓ±ž™ÉõöÑîXÏb”ðŸæß;Ö5×aOó%óÍÃ;ö1gå$û™Íe:ô3'œ˜?ëÐÏüEÇ>[;Ö·ØAû=éXßb}Ç~Çèþº&X$Ðû¥ô|%½б¾ű…€æMùG¼°Fó÷´ÙÉB·Cn‹ü=,HN‹K4ô°È¦uVÐýhÚ7‡Ö!\ZíÐ×¢¤c´¤}- ŸVÃ:ìm™Õ1ß’ìnåß!‡ÕÞŽ}¬OVd«XzN¼kUØáG«;ë[‘=¬êé~.ÝwïØÏŠì`UGûõéÐÊðcE~¶J¢ç„«nôÙÉjÉCv±Êì°·ÕËŽûÖ´Ž »¾´c´~Ý!õ‡Ž÷¬ÑH¼a]Cò^í°«;ψFÒÛflÇsŠ›Üýlå;F›¦ùmÕi¤8µé°¿íÁŽulÉî¶´pB‡¶ zØ/ÚžëXW8³C!Å‹âSHxµ£x°ÛÐñÜŽò²­kܱ®o‡<¦O&ô¾)­oJ¸0¥¸2%ù¹|FqfJþ5%^âF–—|ˆW´h´é˜oæÚáO3=â‹Y]%Þ¹Nü°™ž³õáÞŒüeæHëï¢ù'iâ³ÑÄ;,ï©ýÅŸä/3Š?³Ã´ñ7ÇKì~„/SÊ¿f“:ô1½Eë£87$ž$}Y¾1ÿH|D86§¼Âò¥¹­s¤c3â syÚÿ8ñų9ñ‚9íožß!¯éaAvµ ûXŒ§q ñD9]G¯é}Òß½c_‹9´ÎââU ²Ÿ¥"íGñcÙBó(.-)ÏXVvÈk¹x‰å=Ê–Ä–,‘VoˆnP¼ß£k²‡Å‹áÓ*”x‡øÎJ“ø@H|CûZ‘þ–”¬uàí·¬)þl(ެɮÖ)ôœò±-ÙÆîsü@ù؆xOHx’„QïÙR} $~’¼BÂûÜ–ò§-å![²#wBuƒðnKøî…ÄSv„;’ÓŽì*Üß±žpñÇ»Žýì(ÚO£÷Èv”§ì)Ïpõ+Õ£&4Ï”òƒ)å S/ w¦7¦‰_H~Sò—)å ¶¯0ß¡7ŸCÕŽÑ„ô3!>3!<š=Lo&”÷M§&ä_Â… áÏ”ò¬)áΔò«)ÙÅô'ÉÓFücN#Õf„ÃŽ´ÆÄ±ñåE³@â׃Õi³‰×z“½(™Þ¡õˆßLÉædsâ]sª·ÍÉ.æ„Gsâ5ó"âªûÌ)ÿÌÒˆ')O˜nÍþâ)â73ÊofŸè½T—±õ[?R\±uéaÁÊÉÖiÄ/,ßY¿Í)suåg®NÓ¡ùˉ×X¾cõ/#»Í gæ„{sÂ5WO’_Ì Oæ„_® "9(¯YRžµ$~¶¤|Êñ å1Kò³áÇ’â×’ò§åv©Î±$9,OÓº,ϲuñ´5ñˆå«vâ-ŠŽGI+ò¿å +â;K¶êJõ"ñ?[ZÓ{Ö”ç¬ OÖËØý:ðjCñkcC|JûØ]lHª7mˆ÷¸óHzΞ[Z'SGþµ!{ÚŸR]Áñ#Å·-ÕǶÔgp|Iv>m_SÕ…î+tàŽ=çeçÙ~mˆ7l)Þm ¶Ê”ÈþvTǰçõö„K;»=ù]H~:Ó¾ÄvWöÔ?ØÙ“}í)¿ÛS^±7!~#`Ïk8~¤ú•Ùû„'Ê7&dwndï“}MHo“pzä5¡zÔ˜ô3éÔ1Ϙø×˜øÔ˜x¤o‡½L,‰Ç /ÆÄ&,Ï®X¾7¥ø3%ÿ›HÿWLÈß鉑óå•”WH6ï˜\&Ô7›ß™ߘPiBüÄÙ…xÕ„ê.ÿšR?cJñÉž3šRž5Õl>£|Ìå Ò“»žÿï¼bJ~7¥üÂåYâ_S¶þ&?q|ÎÖÙƒéšÍ;TÇš~¡kö9›Ÿ)L©Ÿæî_£|ÍæKê_L©>7¥~Ï”êLS’Ë‚ê0 ª{͉,¨¯3§ø4§|Èò½9­ÃžKpùŒê)sÒÓ<€ò ñ„9›çØúŸxÏŒÖ7;GëRýÄìù{.C~4'?š³ý7ùÁ’î[R~µ þÅb"éËž/°õ{]Sþµˆ¡‘=·`ûþßdª·,ûQ^˜Ey†â“«ó©³dyžú\ ª¯¸sâ=®n'þbå·tëÏŠìaEu ××N¸ß9¨Þ±"ý¬VÍtŸê+ª·¬H?î¼}͋ć쾖ÔO[R]ÆÉE¼jñW@üaE|bExcûk²?w~@ñjÍÎ#{[“l(nlØóâö¾5õÑ6$¯õþŽyÖlaóñ wžAu‰ á”ëˆméFHå~_gïS=dO}ß ö}6O¯Û“í g+ȾöT§ÙØß¤¼Lxµ'|ÚS]Â=§:Ò„ìcL80&»“|FûS<QÝnBx0&ž1aóñ‰ ñ® ÕQ&“þêkÇ&öôœøÅ„øÍ„úxc6ÿR<O#ùØzœâËœìÀÕ·äsŠ_s«¹J‡|flýMõ¥…,GÎüëÁ‰îSãx‹ìiIçB–T·°¼cAö°G¼Nöµ˜A¼Èò9á™åq ª×,©>±t¡köœb7]þØs+šg5å/ »XQ|[Q¿cEõŠ5ÙÓŠê î>ášê«Ä[Ä÷ÜyêZümiJ¼J~·$?Y‘ß­¨¿±*¦sªk­¨~ã~‡'¿²ç•Ö”w­÷RNòp°!ylÈNìïܹ[ÿSßnEq`ÉòÖªGØóGÊ+&©ž¢|ÃêoBx49M×ì¹Å«1ñŠ1ù[HùMHø’ÞBâw._²ùx˜Í·6äö¼ÌšxÏŠä·"ž¶¢õ¬Y¤ûÖäkê;¬ ¯V†Õ9äG®¿bïSÝdEþ¶ 8µ ûdO ê—Ì©^àxžµ+ñ¯ùI©ÿ2§ósâmsâóÐŽ÷¹ówÊ&Ô¿˜¸‘xÝ„x€û>‰ú ®'ùŒ)?šPÞ6&rß3Q\püBva×°'½íÉì9—OÙûÄ‹Ü÷Å$/{.ÈžÚR}mCõœ áû½ù"ÕeÄûÖ„[ª Øï3m(ßqç¹Äk–ÄçlÿmIý#û}!û •;á‚â•;7 óM Ê_––”ŸÙzðk)èÙß¹ïØ:Ÿø„«Êè‚pÀ{›’½;Ò¿ÑäY‡^ÜHyΔên;UâÊO6¤7÷»;ñ»5ÉcCùÊŠÕŸú1îwCÂ‰Õ ª È®ìùåC+ÒŸýnÒJ‡FÊ;ÜwšÔÏY’,Ùó ÊßVäO+ª3¹ß[Ùx#¾0§ºÇœò,ûû‡)õ#¦„3Szû=,ªc;Š#;ò¯ìÆö6´¿5ÉiMñcÓ•ìJyĆò„ Õ¹6dWöœßŠø”=±dϳ(OYìXŸû½ƒæ[Ü"ž¦¼fIu÷Ì,âmªÃ¸ßs@u*ñÛoš“ýÍ©Î1§ºØŒxÆŒxÜŒpeFu—ážý>ÂlBÇsÓËdoZÏŒìÇ‹R½À­Cø`×cGã’Ö8Å“FcZÇ$ØøŸ¦òrç¤tnÀ~7.$}„ì}¯â‹ýý×v#³šñ›F[ZÏŽpmK¸ã¾Caû²Õ4Ÿýîš¾Gcß·¥¸²•ÐH¸ãö£‘ý~›ûn›ò4wMñÌ}þœðÄ®GqÊ~ÎÅ3õ!BªØïù¹ïûI^î»}úŽ‘ûΟ)~¹ïöçý¥/Ý·uëð‡-Å9gVö>Õ-¶´û]:·;Ÿöå¾cg÷%ÜÚ²õÓÄ¿FúÎÑvôÿoû°÷m6„’ƒûžüjãÓ;î{Z‡ý^œëßÙ‘üÄù9÷¯:žÅ‹’ƒ³;ÅkGªCmIî>­gCßGr#‹Â+ûwÜsV^–§6”GlXÜ‘ýÙïûY»XÓúìß?X±¼MërßÕÓ~Ü5áÖŠäf¿§·ï؇GǃÀ ÿ¹¦qÝ_Ôáwܦû=i¾„î‹é>û^‡X$¢çrýgݽ±¨g0H¢õ"麉®?Ó{vÀ"º^Lò,¦} IÃFº¦õ ;púŸy´®!û>;²ë’<‹In$=‘þ†¬<ÿºOz°ëÒº†¤+g·¿GÖN´ïÙ•ÝÏú¯užÿ{dýÃú[µoã¿Gοì}vëV®ÏMíÃÎgý×ø×}V>Ö>¬œ´ß"É¿õãpÂ^³ûáßøâÞcqÀâ֥„Å]s¸‰ü·<Ü}Ö¤?‡+ö>ëÖŽ$§!+«/+÷ß8§uùý?Ø“]ÿ¯û‹X¿þeCZo1ɳ˜Õ‹æÑ÷àXÂ>'}“}X}YüÓwãÿ¹¦yKHžÅü¿ô ÷9»üÍøë>+?kOV^Öü¿x€Õûö_ë±veï³ëý%kV>únþ?þ%û²÷¹yìsÚŸã’k1ÍãxƒägñÂÚÃÉÅÅ«'_lü°vcýùïûëŽ÷¾8¼²ú¿³úp|ÌúƒäeqËÅ#«ë²«ïÚg ‹Ãçÿ~Îò'k?',Þi=.±×ÿ‹çXþbíÁÎcßcy—ž X=IùC@ï È.‚ÛíÏâZòïýÙü©OzÈNúd}ö9Ù»&¹õÉNú´¾>ٛǎ$‡>É­Oú葺$¿é§Ç>§÷õh=Ú—»f÷#;é‘~z$¿Ù“Ÿæ È?VÖŽÿmGVNÖVV_Önìº4ê³þ`ýDzrû±ï±þbí~ûÿÿûlÞäüËâ›Å#‹öšÕ“ŧì5‹+Z—«§Xœ‘ÝìÈæGV6~Y³ëÒûìsk?VoV.ö9»ÿßøgy½ÏîÃò Íãò]³úròòþÒƒäãüJöü¥+'‹Ö?œ¿Ùû,.þŠ'?,þØx¡}¸ëçÿÆ‹_}vëïËá]ŸÇ¿ôÓcqÄâšõ ‹Ö.¬è}G,/ýåv¾€ÅÜ:¤?‡v]’›þþë?ù„ä[Bó³yŒåZOîÏËþ¿A0¯ã¼óGÐHëiÐü…t­9õÿúq ßÿõk€ Vÿ×—.ÌãÖ8`Ý?Ã(¨“<ê–û¨úçøBd·…Êÿ\ú@“ä]¸’¹ô.ÇBÒ ëvüœ.„&é¯ÙñûÐñû5Ðqn l$ù:~_¶ÒØq~ tœ[r£ɳü²ìÂéCëhvœC“ðYÚ¯ãwhu—“6$Wa‡4ÈÎ';ì£q¥Ãn­ò.${.$½þ¹kò÷Bòk/MãŽ÷4·‘Ù‘ÖÅjSiéǤæw²3è8O–‘½:΀xÒs;ù½ã YR<.dq¢Gx`ßï8ÿÂ|òó²Ç?, ¨^5HõŽï•8i>^5j;öcÇ…„[ ’G#˜ôcíC÷5wø$ùE‹ü«Éú³ã;„ÿà˜üÁú_“Å‘}‡¿þé¸Ö$ûkŽëЄcÐ7hl§÷–SÜ\¢±ã\Z];ö×R ÷Y|P¼sñõ ãZ‹â@«´ÃžZ¤·Ö1º¾CÏ?’Ý;~'‚6Ù[»ã{h~´ —ZùdGV^µˆ´ÈnZô>(n´ztØK‹xIk1]ÓúZ)ž;Îû¡EøÕ¢8Ó"^Ðr¤ç„+­pZŸøFë%ÉIúhQÜh>µ“¼·èýZò {_›øU[»Ã^Ú$¯v½7†Þ3 ýX¹?ZQtÍîCvÒ&|k~µÉÚämvŠoÎ/rûh“¾ÚĻڳÉ?¬=ÍIïY¿°v'\jQ|h¡ko¬(¾µ|ÈþÄïZ„3-’óo;½9©‘=’ÝYû°~`ýήÃêÁÊÇÚ1—ô`yâÉÁÊu”æ±x¦8ÒJ&~µÉ>¬µ;~Ÿø/¼k?²qÖ„-âSnÞcºfç±ÏInmÊgÚ¬}(Ž´‰ç´é}–W¸}Xyf¾¬KH_6¾«H?–'Øø#ùX¿$ùX¬ß´Ù‘ì¢Cúr#É«Cv×!¾Ó¡¼¤Còëoê_tˆÇto:¿ŸC‡ì¤SÑ!§űñ©é¥C¼¬C|ªCöÔ!<ëü¦uhÔ¥øaGmZWûíÓ…Fâ[m¡á^›p§M¼£MxÔ!ÞÒ¡|ÁÉOyF‡ì©CøÔ!ãôgõfíFøÒ!¿è˜Ñ}ÊÚ¿:”wt(ÞuÏ:T±ûin´)h³öêCóYù(>8?Žuˆ't)¾u‰ïuÞÿû>‹gíŸôÝ×™ñ×HñÈ„[âCÖîÄ:Ä_ïžµ)ïi·ÿ…#ÊóNX;²ø`ýÍâ‚üËêÁáŠÅáŽão6®ÙûÄCœˆÏ89X¿’üœœìHq¬Ãú•ü£Kü¨MùM›µëz®C<«ÃÊE<¤Mzh³zäþ…C/Ò—ò‹Õ­Úä§ÿÊSó™:ùü§MùG›ôæpFu{Ÿ‹3Ò‡õ‹.å;²3ë7Ö?¾Y|®u(¯°öãìE¼ªCy³?ÙG‡ê,nÖN¬=Ù¸fýÉÚ‰Õƒ+6îÙúÖѦ:ƒ[‡p Íæ'–§Xü°ëRÀá“]—å Š[]’_—äÒ%è’ßt‰—u)è^u‰ÿui=]Ê'ÜóSrét‰7tY°þ"yuëi?òƒ.Å¥îÚŸôÔ%^Уº[òƒn4­GöÔ%ÿè’]u)ïèQ¾Ñ%»ê’õ(nõˆ—ôˆÏôÈîz¬=ˆGu _º”—¸}¨þÐ%|é9þ5’õÿz$‡ùSð¯Gü¤Cu—wH>]6/’ülœëoëRždýÄR\ê‘ÜzÄŸz¬?I.ΟìÈÚ—â_—ò9çoÊ+z§ìµ.å7=ÊWœYû²v¡úXøLp¥GøÑc÷mù+^ÿÎ+Ô—s8fñËú‰ôÕ%ÞâðHý–.Å¿.ñ¾Å».ñ ç_ÖNä7]ÊçÎY¿QÎÚŸÃ/k7Öoĺԯp¸¤çzÄ·ºÄ#º„.~Ù8¢ó .þظ%>áâ‰Õ—äæüÂîOùPêI=²‡[zŸµõ_Ü}v?Ö/Ä»º¬¬Xÿ°8cç³#õº$”G¸÷Øýˆÿ‹gØý)qïOê²ù’µ;ŇϿãƒò"Ç7¬>„sÿ¬½Ùù¬Ÿ(_sÉËÙ6nغŸõñ:‡ßl=ËÖUg:l?ÁÊÇêËîÇڙͯì>,Ñ9›_ô¨®Ðöï|¡G8äFZ_äçô¦¸Ö#¹ôÙ|BrëQ=¯Oñ«O|¬Ÿñ×}êô(õ)ßè³þ&Ñ'œè“ô‰/ô)Nô)è~ô‰_õ Wú$¿>+õÁ\dýJç¬^\#þÕ;ß1Ó—ê9ŽX~'¿éSý¡G|«O<ÂÊÍ­ËÚ‘Í_ä'}ò§?á]ŸâšÓ‹âJŸêuî÷ƒž1éËæ/â =â =âS=‹õÝœei['°qÉÚñ¯8Ч:LŸòŸ>ñ»§ë'´wŸøFŸøKŸüÁáˆôPªO¼¤OüÅ­Gøèÿ¥›·©~dý¥OñË>çäfõ¢øÓ§õ8rþ¡zSŸp¡ÏÖ},ï°ù—Å ›é}=ÒÃë'â1W´Ž>ñº>ùCÀæ3¶.a÷cy˜Å;Ä«œ~TO°zp<Áâžòk/}êçõIN}Ê»¬Þú,¯Ò<¬<,~YOrqC8æø„½f÷%¾åðÂŽdo}Ò—Y܈äGÕœÿ¨>cågq% ž];ðÀ¾/ >þd7Õ™ª„sîwMŠkùY@ç@²3÷]é' xP& ¼È.Ü:„{áÆ€xÓ€ú‹é- 84 {>”· ˆo X¹Xý)N„£ÿÒÖåFê‹X} ¨N4 ;î”ç ¨þ5 \PÜ ¨ѧ:šû]—ÖçpHxÐ:¬Ø8ŒùËî´¯€òž€øÅ€}Nëröf¯ /dÊ3Üïܬü$7«Çßñ"`ýÁÊGqÃÙ™òƒ€ìÆÙò·€üËÙ›µ'+?Ň€ò‚€ò‚å9ÅgÊ ªG8|°úŸD°§ù¯s[²w®M~âúP6¿²ù›­CÙ:€­›ÿ®ÇÙº”íW‰¸õˆ/¸ó!¶ÿ%ÞæÎ×Ùþƒ=¡¸×~OçqÄŸ:Ô?êоܹ!ù•;W§:©îýû\›âJ‡=ߤz„;g$~eãŽ='Ðfã•êmò“6ÅwÎJþà~ {°¿·pçÀ¤w>Où€;×$±¿3èP£CùU‡ú-§ìù$‹kÂ#7Ÿ=%âö!žÓ¡¸e?â~g"žd¿waGÖ¦õµé=-ê›´h>÷;7ÕƒÚ$—6Ícßã~§dŸ“Ÿ¹ó}Öndo-Ò‡ûý’üÌýþGþå~w¥xТ¼§M÷9ý¨dÕ¦|ÀéEøÒ¢¸`Çæ~ç“!S¼³¿ÿƒìºðIÇ÷ZGìï¡Üï©”Ùï ¸ïx(Orß#Ðã¯çÄìw øf¿G⾓¡ï^zw|²ýþ…pªA~ã~%?syŒp°xH“xq!}¢ùÖg¿ßa¿ß`ýB8ç~'{ƒò"»/¨Þd¿Q§zí;Ÿâ”û~†ì°È¨cÿEv÷Ž /wÜ7Ýñ}Œákú®†êÅ…ô›­£Aß“¨³×¤‡á»&þÒ ;p#}¤AùJƒxVƒ¾‹Ó`÷ûk_öûvž:»ÍcåQ'¿róXyiþÕÅÿ^Gýïû$ç|úîjóé{³ìºìþKþÇ:¬¬|ìzäOu²ó|öšOï/ 9°û’]Y=ØçÜ~´{>ɹ€ä\@ë/`÷eÇ„`e€ùÏÿ}]sï³óÙuX}hÿùÍŸGßW²ë¨ý¯‘ôù¯kÒW•öQeŸÓþjdUÒS•îsóÙkzO•ÿ×ÈíGü1ôTcíÀÎûK>î>é«Ö­Ãެ\ìûœœä5’}•ŸÕk»Þ_óÔþ’ƒÕO«cûw\›Ïœÿs^œ•«X†c“ß"Ó'k÷#Ñ/ìÁ·CQô\è#Û; ÇSú][…Ô¢¢†AË}«~jÌ÷Þ¹Ø|rÒ•£C‘jzô]N?E”ðr}pb‰PmN¤U§¿ì+žhªoùƒ.ÝŒJÃ#áõ—Qfç±ú|i)Šo|Þ4?rªF^-ظ´•¿]‡Ÿ31B‰ªÅ¥Ãý)M×Ò:-¥¢ct=§£ªòYÎA ”­=ã^“¶¹ùçF„ ܇‚'ÚÍÇþÌGAÿ®GŸWÄÖ[£Í7ä6aËÌ• ÅSQl׿ÞÛã2ê÷Úzø¶­¸×úÂø5*.ªß¿^ƒ¼ ‘ÆÍG#çÌïUÃV£hø=/-ÃÈV;åñáÃ}dg=t¹º¸ ™Éß§O¾Ò¬íðü†”=¶sG­þIãûüÊÈqü´öå~E<<8uõj¸¶)4‡øSRñâÍõ(>·ia´w(žqt‘¦/ÊúEìõ[†ìαLìƒJ[󪱑q»oýa=°!ãú©¡†aˆ9ÿ½Æ×²/’2/mú"í^¨\ÊÅ È[9tCÑæeHQ(vüØkÖ¸Ãw’iEÊ.Ÿ¯½†üÀÆ>—e†"qÀ“úYiHîn5`O·$™õ_‘¥U†tÇqE£/@¦ÌÍçfvG†ì‹O¦×#³ÅbþÞãd-¼´@Íá Îoݘ¸åòBº:¼µùÃt3wÞÉDÁo× gîå^õª^$k·0%GD73æÖ ¨÷ý„Go!g~ÒÈå²?QS»q°{,*’þœ8ë™q‚ÿäÀ?-È–Ûh—¤›»ö#§…¼_ÍY¼~2È*Ù`ö~cïµ—vO¤\$Xþ 9ÎëUì6 E…˧I^£û!Ó0c‡sq'”Žé¿}n}"Š>ÿع\8 %“yIjQ¼sŽcþ"äÙù_Cú(”ht½©ËCéˆ^96VÓPp[cô§3gPvzËj››»Q’,›£jƒ²˜ãÖGý“!É#ÅJÕËî¬_‰â'þó¦Ö;!ÿÉà”·1GQ:Mo{rJ­#Ç—õ@ñ½Ži ÙÈÿòzÇ£?(~ü>©2b úÇÖP}¼ÎÛPœŒÂó™ç4rQükubŽ»Šo_¿×ýÍ î(0yÒù#JwO ZüC %£ÏÜ—´ ÍûÝ]4 …Ë79뮎CññÃÒ.@¼jšöË£o¯6.)c˜&rš‹];÷QDî°—çmô7!¿ëþÊ7ŽÈíâ)ÝöÙÙg‡ìþ\Ü=½ŒßÌ|…ÜËs?κÑE]ÆóCÇmGþ»WgÆßFÉ¥]AºiºLü¯±4,‘…¸mäÌïr3Q<¶ë`‹·wQü¡d¤xø+äÍÝûÁ@”8ŸÏxòJ»öW¨ ?‰²>·—ºÌÉDÉTqfdàY”ôšÍT:%mÉCTQ\ôK­d(J|<½^Äàmò¥šé(=á_ñ]%9Ö.Ú¹ e&¢¤¬WQ<Á¡hq>ãÏ ‘ík Qžzúüéž(•”lvVhBéFÞð$¾Ÿ¡[¿;(7ù¼Zë·Êêäjeý® t¹yá «\­µù¾îgPqË»àæ¢³(k83÷˧‹(íõÈèܽñàÉ¢ û!Ùg2Ïrq$Í3ŸÜýꉪ rT¦2ù£æmÙÚùcQå$™1` *½ÒŸŽÊ#*äz' Ò 5ÇtÊ T´ØóŒ[‰Šô=׺~I_óêEÕ?™8ü˜Ÿ ŠÒәɌ[Ιxg¡"3ȹf­#ψ%Óž(Or59,þ†ráÓí{^|bì¼¶ë¾ ‡Qq/O úOü«Öl·|—‰ò–éKx¶¾(ÿ8eȤ³} ‘s‹ò¾¢Žò7´_ D•Rß;ÞS§¢è¾ó©ƒR9”·½êf}ã*Tµ&ñ‡£¤ÝM( 3{sÊ1yýFöú݃‘ûż‹~E¨¨ÛQR¯ªŠòŸ’²îa(Ût®Øi¸#J‹|¶,/ƒrû2qz(šß<Î4æÊ¨ìó~t å'5<;mmgøgtÏEzA(Ýfnk›ó¥,)}x e·ó‚û¯jDyý?ùý=Êî÷}iñ eþÂy(™rfùÞ]#P.ëùS&ã<Êub Ò˯¢$EºWr¤©nKù=Pòä•fC8ê|ç­u÷’¶ó+´BœQÑî¥=!B‚ª^åµÇËÿ :8¦vVB¶<ùúòû‚q¨ŽR™t®÷BÔnNúÞª®Šš…]µýB Yn’Q1Y –”gïF­ê0Sâ‡Øràv«å¶[¨Z,LËÀ¶¡Î&‰ºWPSô½ŽW’‡Š?Ýx7#QÓu{— ‹õP]z“ÿ=Þ•—-îÔ‡dp2*õ䎯¨pì<å×ÓQ¨LØ­báý•B‰²±­ *È<ô¾ *T«oŠ7 òÔ¡¥î;‡¢ªïâÑ¢e¨š•ç:z?jg}‰™kv[¦Å{õ¼[ƒêç³F| ÉîEæf‰i(m*^TØúÊûºµ…Û¡ì¸j|ègÃ+7QUa©~oÏuÔm»wþøT­ª˜²ìdª´_¬ûdYŠ’¯J[W¬UEu洛CNÍAegãá+ŽoC¥X¾øL—Ù¨>qVnåšblqO;}W¢Šª,}óý“Pé9mßÖ9‡P½þÍå{£CÒùžNé Ô-ÐzpâìHÒΈ‚¶mCuù©Ð9fSQ36bCÌíy¨õ}ÿpºýuT~05aÆaT«%š]‰²`+OÛg» Y9)zÍ:&¾¾‰ŠÈœ‰Þ‰^½mD¥¦¼‡šçwH–Å›ÇoȤè¡o “ÃDçú™¨N^9õó99H™ì¹e *ì&N=¨<ÓâËÍî0òPèþS½å O?|oAÅû‚÷ƒ™ø®ÖH}˜ÁOYµÓÌ]‡¯¡ÜoÔï^?!ÙzßÓÎÆÕ«÷4ýRß…òù} “o ºÇËå^}W£âYBdèÞ˨¬Èµ3Ž<‰òŒ ÿÅçÿ@²]zñh]$ªÏ¯>±Fh‰í¡M½öš¢2çXI'}&æ÷~Øé^ *ºžw‰Ø?’‚Û½µçy Ü”ÔZ)Ê‚ðgˆsª•w{}»צÆ~<ÕÊð€ŒjpåW”«îÕIÐ{‡òÝ?R—Ý.Eݬç–âŠØ®}}mðªtW<³Ú5> ãs?¯€dþãߌ ywþÝ빬ýô'ÌiêV^è- ËC͉²²Û FÎ§Û Ý¨Üjõû÷ð;Tn^–²Ø5’§—–·6cKeå¡ý£*üR˜Äô1$ÅæÛW,GuaÖ°—= ÷×û#Æ:£4Ô¼`ÝïZTØi žb‚ªxñÈÙѨî•S¡³üj²º• º³ûw ŠwyŒ}»æZöN Æ^³­+Å\±ûÕcQUϋع&ÃiДjl7䜉F‹<6ÇcÇïŸwíŽF> 6ùŠ.»oO½‹í=ë¨òm°cOg•%f­Ø3Sr}¢ª=öê®ßãùpì ©]¬{«»®¾ë¢ùÀ»»‹yMKÖbÇðyÇzªŠ±çÏâ aó;:Ú™L‰˜…cÙm¼µ¨ŸQn”wg)jצ%$n»ŒÚTEÅö®¨3w”Ý~G€ÊMÕ‹Ì¢Pu^3<:l"j3z¬iÿ[ÂŽºø Uã¦çý¼Úõ1ùÊ÷R.£Ú"ôÛ‡F¿øëe¯"ã°ó©^²V½!vëÎýæÙ©U cÿù‡êO×6^ýÚõêÊl6ïEBŸ£·rä°¥iú‡7=s˜u2Ц ½Ž-©UCŒ¡ú³^ñô×ö¨*Ú÷ÙPÿª=Ùò»ÍjÃöDa¯~Úå£+r°çÑ›™ý+³°S:Ú¸1v"vùÖép± ¶Ùd¬–è^ÄöLw…ì•3±Cq÷k9—ÎØ||§çl›öf¯Â÷Ôïýã q?ÔŸOè—>ÑuS´fØ7/@ÝŠF²rlùÕ_º»¶ ’Ï/çÞYv5% ^ýJxŒ:¹ƒc;ëubðzPíyd*îNˆ¸¨*uï=¨Þ@í}óÛ°e¼Ö×ý÷Eð7¿‡˜‰wÚÙ+7¢jÑȩŠ”¯¿¾yjI=$‡níïå‡msSNlð]‚-;jç—·¡´¾Ç¤†¼•(wÚÏïê‰7ÿ÷Àg¶(V[©qó”²ú,LXºÅÉʪk´ú¢`Ù©q§˜þm·á¯‚’Ï(ÙŸcx¤oŠ·Hn®×!GåÖiçNL½øþºrù ”Mpð“Ño”ð=Öܶ‡Â½÷G/°aêåɺ›ßö‰¼U¦}ÃŽ£RI×µ.Ä%%­Ç>AÁ±Û}¬˜¾6üYèÊô9È/˪è¿q J¬7ÜÌöÛÅÔ9ùe_‡¯@Å}Óê1?¼Q¸'yêžÄ`”Ì1+úÁ_ì†g!ÝMº"·¼âüfHo”ïs$o.rwI–Ÿ¢“~'Ç"}óŸÇß!eŒÖùr­sH}uïèÖ®¿ .Œ?™­æ€¢ÇÞ¿ºþ8‰¢ãW”æÊ=E‘\E§b>9PnÍd´N(Küs)kưÕsÃæ¸´ÚíA‘÷Ù«)»GRåQÛ烼ö[õ‚xäßÿñØ$~r¿X£2&©Ñ^u5±±îvZ‹ï6Äòw&i¸aÝ–¯ÛÇBÆá­¼a ±UíuxäBlÒ«£ü¢>nÝ{Âî72ϯQ9‰ÕgOz$ÈÂfðÓ LÂ"ç˜K¸æ¹ÇÞ™–Cûì‹ÇÖG€ãòùÙÏàËØ»Ð=<»Z÷ÖAïÞ jàRžQÉUTæ5¼Ï>å‡2ÛUò—í‹Q¾òäÒe»û£bºÉèkUçP5Ó­héûߨtS;Øh-*Œ &èÞ‚Ê© 6ÎU@ÕxE§c “ß§®•ûaŒŠ¶c’/ô@e[Nÿ¯ß ,â’ÇAžS÷_2gû}”/ˆ‹í‰2ƒNÓåï¢üÊWŸu÷sQ^ÙëÞ™¢r”_8ßõDeTÕÉMBù¥%Œnë2ëOÓ¾Äìcyðj[Þ8”­I Z¯ÍÔÙ­/{„f_eò¸ÊíIºÝQluòs¯Q[PÔ©DûÓX¦/½vöÅÞB”ôß»sA€b׫JníCñÑ” »ï£ø›ßë{Û¢´ý¢Ú“ÍóPîý3"%‡Ò{«;8‚Š>gtÒ“íQ¼·ÿ•S_ÕP:áeÐ¥?$¿¿d›j3ù{}ëõÍûQá+5?uù< Wý¾î¸ …W%3\›Ž£¸{fãäÕî(Ù³rDzÃÝQ2¯§Aåø“Hëßç ÿ×cä8—L¼ÕޤÈÎJê‚Õ(.I[£7ˆá‡®ò>'³aµ Â÷| Ö¨¸ÍÛ#·qƒkCúh BäÍn]gé†õý9º,lDÂã±£&õÁ¦ç7|vÍZӔة=+ ®´óh|w©ZIÞß{#þjt¯ÇÎãÛ×0¤s5ÄÒú‘.‡ú@|÷¬š¡¯Äú—'jÆ#uYåєփH›n*ÿˆ¥=Zwî†å*ƒo¿Xíy‰=ß>‡gU&ß ´i†èaœ/íèÖï0 .Í]í“y“"˜AÉ(ÇÚŸW.¶yªÝãŽ7³Ö2ñà/ (r| ÉùÉÛ6Ÿ]ˆš õŒù*xQTß;$!ÕÓVaêh§µf<‘ʯº—ä& I¨É³­zU¨Þm‘8Á-U·^å*}šÆä'Å­ý‚êQù<êÙ Ã=LèÖ2k#ªc·^ð‘‡Ê´˜W3$1ô3.JÔ€$ê–ëØv¦¾ÖÛ?ëNS_ Õm²é[T{Œ½Ýs+ª2'Ú÷0Eµá|ë¡ïv¡fë´Qª˜¸:Ù­SšÓßXÜNÿy jæhz±ÅÕ‘'.ßý6 •ýš zßdê¶ãâSͦ¡¨‰ù0ÌXg Ê¿­0V9ƒjmQÀŽF¦_PöŸòÕ}NZè.\‰po¦™]wTl»8εKT6ÞXú WjîY/°ùˆ*ûÁq³—¡*¯S—kL|WLÓcð^‡íGǘ¨¿¹ËôS‰+ugä,[$Û½uQ7f;´j¡¶p¾YRŽ/êLD×%ubúηé] ˜¾¡âúæCïPµææ0ɟǨÑÛð]Ä!TñvÇÞ-œ‚ªônͧUg¢²iòÖ_ŠÞLÖÚ#3Ù’·çý. ÐF­†û»ÉÑÆ¨RÏ¿Ó䧆ª®†‚iºŠ¨q¨SʰML_´ïýõǶ\žT°ÿÔmTNË:Žáå–úɃ:Bb<Þª—£OéÔ“LÁ…ÊVÇâ'_Qm´FÓxâH +^~¶ A+ôìÖ3vip6®/»ƒòÇQ>‚š(T,Þ1wØÅí¨¬îqåã¹l† ž„§¤ j³å­ö˜@FÞ=¾>œ€*óÒqû˜¾\bj9+«•Ãz=™ÃôÅçWî$ „äyË#¯ <^­×x¸•z“¢''0rZD¤J/¡zX?›`‰ªR­^O3Ëeì3ôКÃaL_1´Ø¸1Õ¾Áö#™¾Éfö„![Peòþ™l*•OßOQÛÌä#Ÿ¸ÉÁ)LvRíqE*v<0·Ux‡Êí©cnŒiEeýýç$†2|Ò¨¢ï» Õ¼ß9ûŠ˜ºùxiÙbÁ TÐì2þÏyH^/{ñj*Ïó|òžé'·O³ùÂÓBÕþMZ­OF¡¶“dØáãL?bW•{mªj/ó—m<ŠZ­Û-ÖVP»aêîOkÏ æÛ눪%¨¹2@íîô~(}½~¶(È%§ìRÔ6}Fqðñ`hŒGQ’Öýþç{£,æžÁm«lTX×ü2ö$ÝžÝÍ·tGÙÊ5KcQ æ¼5k.(¹Ö 5gNg W vãW„[© 2û…§ÏKeÈ9ž6d ¼kTxf'QÜgœ¾zµ+ŠæTh.Þ3Å&ê= =™zqÂ@÷ß= ‘ÿÓÄÌrídß™s4Ry µú7xÈ¥#ÅŦÇÙ¾Û°iIØß¶éÈõJl§j†Œžï3“ŸE¡Ð´`Bú"ÿJ±Á¹ŸïQøá¨ÉÁ´ýH¿ú~ÔW¤íÉo üžŠ¬ª‚ŠU§›øüeWéµÙ_|AûÀ±cˆëaiÜyÅ l¾û6êÏŸ{ˆ‘½5À°Ö I™=?,z‚õ®CVTl Bâ½ò÷ŽÛÝÿÂAÿ]¡"UtŸ.Ê[Ç—/®Fœ†ÊëKƒÏ øøÑ“k­ˆ%˜qO÷’DsOh·¿Cd‰Cúà¹jˆŒ]lðóÏqDÞŠy,ÊtEâ„Ä3÷•`#·,fÆøùµ¤¼Hôý˜}œ6¶-?P‹å¬õ÷;!J¨þöæÜK2všýswtPg1¿/¼Ýå'NðG@ܺ)^FðT4Yßâÿþ3—*Üü ïm¿cdvúÀâG†µ•K¿DG ür ±Í5y‡ARôIsBÁ'Ôhû8Ùì0ã×ݦA1«Q}æÙá{¦Ÿ]v9CZòŽé„Zßm+~úÓò£¿$vF¥ËOÇ0¸uíþÂk7ªzÛžeú±Þ3ã>ms@U¨¹þ̵ÏÎ}*Qå.xsíýT}ô1Ø6Ì%Å ÓŸ­˜€Š/¶ÏKü ™güvùµ“(»ºîP𮮨ˆœ8ËÔ'¨ÒŸ}密§®ó*»‹Q¥±~íFÓ»¸fÕ¼‰-Ê>Çÿì€äDÈÙ£¶“Q9»ö¸Óù"H ãýÛÜPñÔ(|gÐgTèµ÷>Ѩ‚2 •í%×_¡2ùë—¾ÔPž×ð¤÷…½äo~yb¢"*ö-YëîÂè;xàãù7QÞlh`¤ÌÄ»Åñ'V#¦£ÒeøÎ Çž£:T´è͆U¨®Uü¼¾ÕSo½:航uÞ Bz+2¼ÓZs$M’ÆÇS6†ä¸äj@àTÉ5š ­O ÂÛ#5ôK2ÊÌr¹‹*£Wt[+?e3ÏËüo–æî7Œ^Þ#ï­È·BåâgkËPQfTn4(’Çòu»>£¢½ìæøÇo Ùå<ºw2jžë¶¶KªoîR:,€ä™nà¢æã¨6ËúôI“É—6®—SŒax%á¬ëñ&Tßß9¯Õf8$³üÇ]¿ ƒj™“®›PªûcóÉŠ,”™Žû§DÙ8Å¡ò TKU;À¡%®‰s¦kœDU¯Î nÙ>F¥U¯Ý‡> Ê#6*ü83Ø]sÀÔÍK%ªvæ¿Qu\Wþôªa¨Hœà³{Å3T¦»ì~Ïð©òë¡Ö “™úáO÷yŸjP5ö¦ÒírYTþܳÖ6«;$7øÒ.ãÛQ­ZÞ¶³rŠ|¾êvŠ©'¾òzÌjMDÙ1#¯å“7Br¸½Sêõ-¨hä?Ž?å û¹«­Eùè·vºýÖ¡ì÷ÉÎ^µ1¨Ø=8m_ ÊZίðx‡Š¢N/ž:æ¢4p*“ð{¢úGßÞÂ窨)4}yh¥jSÕgrfì4WÿîŸ>Lÿ0·O“ÇjK&ï½ô?R>UÍ[¿†)òQõ^Nãáí¨:f‹Ö鿍òŸÐ£:|ªÏ>]¸•®œû¸ð4ª5n|—†š¿Ÿ>Ú’‹šsÛ‡Vv†Éê›ÓN¡²Ýk3<_¡v‚ÒH—TgHV&Ïdú‡c=‡ß DMüùIo®Ì@NúÈ7½ Q›?$b¥ª"¶:õúEã2ªûª5U}­D­Û¿…n¨–ÛÚçLÊT'rqVÚ†êFßý‡žíEõñµ_ü/ âá Y¹Íþ¨|’¨ðTÌCŪzcÑ›³˜EŸ¯8ÑeYo¾»´o¢N¬IGź›ûúÜF…ìnû©¥#QñóÂ(¦a€dŒçäFõ”ÏßSîÇ”Õ õTþ†òž.w×g£êˆýªÐ ÌûãöšŒë'Êz¯¾;"âPÓöèƒÏ»¨zá¶*©A‚ŠïCoöÿÆÄ·wÌð˜X&ïÖí»ºç© *FΖWë‹2½¨¥©"”)Ë縃äErÞɾ×Q¤óX]§ 3 xb_Ù‡2Á€Iû1ø½ØÅ}“G¾øÒåJ‹fŸ”€l‹ÊeäÉ~«Ùpm*Rº¨/IK¹ŠÌ&«ƒ^æ —2!lž“׸ɹïƒxÜÉ"muä¼>ùO"GÆö•ïÂF¡TéZ^E·å(<Qi˜ðqkBöK¬Ä¦û:/‰b}ôû£ÙjU&Ô{¨ññü’%yñ6XÿÚÚ=%q&6 v²ïãVÄ9t]¨õt6âF³7Üf_ÝU"ƒxO·‘sCňݳ?bzÀ Ä‹—GØc½a¯-/ç">÷CéÇ­{°^:ãàÒˆ@ľéÛÒ¤¤ .u^aí×—±žf˘Þ^½ÎIK…÷>{܆wÈÄú𓲾×ÝË:‡±Ö¹é…ïpø=‰n—1óGdá¨7fÓŸÁÛO½§ò·RMý0#do3üËû?Œ!àjÒÆ[ÕŸàè½ùð›uaàu—Z‡;pÎþ½YyóN8ëM_õèî:ø­è¼/Lø¾­·î”Ž@xÙ³AŸ×çÂWiWÛÎÖð¾v[wصÓ(ão+Þµ k_ÖEé†W"àõP~²](6ÊÍ[>³ !I+sòÞžñyüù™ÐõPúª8±#VŒë芘îWßTäf`óÏv«?¯AÈÈ)L3ÑÓüí´Ì=Q¦ØödhØT¯í©¹` ï/¾™ŒëRï™=–6A‰$ãñCJO-Ùâã±eçU=£ËQ-Ñÿ8UŸ/Êå}|ÄÄÁŒMeŸ!Ù²ã\9,ÓÛe±b4Ó¿{.ò4PuúÃÔ¾_?2ÏŸ ZXÌÔ²)Z1kQ]ú§×Ôš/þ9È5¿úX¥o¬G…b¶Ì׃t9µü[ÊÔ|š©ç?ºžl¨ @eÁLÞ Å!(oŸÑzP!%¯”døû^þœ½ÇÕÖŽê¢ÞQ÷½u¬Þ^ÔlÚ¦®x‚ÉóYGößÏšAƒ³üv¨î©©U(ìRl]¢õNвQCC¶%Ž‚$)úž[êC”šÈÇÎ\j‰ò9¼Î¡'ŠPúÁ­Õ¿Ý%F9 ñ D¡îH¿aÉßPhÕpD­ê:J&lê²!a6 ßd¤›± 9‘'ü',UBIØ›Àçט¾ÇkÖL§Ê3(|j9o·e#½×xÞÙ…²ˆóŸß¼Ì䟩éÚº©¨üðvÝ½ë ¨šâóÓ¸$¥ÑŸE{åÔPh²Àçj JƒÊ{Û]Añ¡o2Q {¡äÖþ)},CÖî=ü®!oC¨¹(N”O­|€<—uYGnCþþàw¿¼GÞ˜É7KV#'~ ?Ç=ÈÍm±‘-Gc^?wç…Hï·îÂ&A9Ró?Ÿ^?`;¢]—>ãM‰AäJQ?#É lü`ÙÝjÐdèô¤i,2ë“Ô—&µ#ÞjVìbÓäTL}×y ҺɿvÒ_̸¶|Ö:dY¾`<3Ñë²nì=ÜÑC'w)»w±]Ïž3Úy‰“ýÏÖ§ò±!µ¤÷•:-dΗ{¸¸à%b,Ãó”Tƒ`§°÷‚© bÅd-÷™ƒõÂ€ç‚ ;‘ü­MÅ82?­äý„ÔÄç ®mH?úÏw<>ŸuÍ«÷Ú³hÈŒ£ÎœP¿Ã±¿;Ÿ52AÛ•ü^Ns†ŸÒ‹Œ‚«¿k³¦ðˆò}D©û¾=±ø6ÔW®¹»V kŒàéºëž_:dwÍawê+o*+"6|ÃÝã}‘0Í´ºzÔ-D-{ÊÛ9£GßþÖ QI’}zyðÕHŽ_{g(ÂÚ{÷K Œøy%ó·#úî‡k{ ~¸éЃpå¿p¤-9¸Ó{ßw¤Ÿ|^×﬩orÆ;þY‚u¿Ç$¿z™†×';Uû@T§3=‡ˆÍ‘qàóŒ…ÈOË\¶Ðþ«®½ˆÌ?ƒØ„îØ:ñ,6lSyW.÷A‰eäÎBêCËß„g£üÈÑ7aʨˆÙØØµA ¥©¾—^L“¢ÚÎá;,Pé‘óU-Wõ_Ìdê®~ÕêNÏAå‘Ë#·X0uÒÕÛ¿Ÿ]FŧO¹Ïù ôÈî¬j¦¯+›>"NÎÑ*q⾱娺ô¢çø+<¦?žöy¿rOÌÁÁï‡1ñœÈøŸáÅQ½xô²Q¹HéºÉÑ8T-Š9òÏw”M‘?ýr S×~0¯w¿Å(ß}êõÚí1(íg5Šïo„²Ý­é70ñd,¿5Õ²nÔ§»¨T Ëž8’ŸŠrq‰]QÙ+GtäÏQ¦ø½´Þ~ *æ\ðIðÅO—ÏŸ8Ý—=xð€‰ûUýŸlëg‡’ƒ¦“ÒºŠPøâXòÓ{¥(~>m·ì‘[(ÊÉÕ¹z%i‹Þv×E)¯æÈy» Ȩæ;ÄG®õä5ýÃQÜ §¬¼wŠÎ}8¿ÅÖ‘®Ýjz¡0Êm—¹, WYçÝüõ…÷óù‡\«×£0ȹUëÍôÒ#¿™Õ^ÇËÈ’ý§oèÁÔ µ¾ß‹‘µóÒ"ë[Èü<3uB”:²ŸüñÑ”DjÚýsº @Ê+=íág7"Ë)+/GoR{¿¶XÊ¿ ñˆ%w4†•"{œÖ©º/2H÷3¯úh‰ŒõKDg…?è¨×Ó&m.6YØvÙfÛ ±·ææ¦ =V°ÊyìJ¤ôæ™juš‡Üfûåw¯C¶Œ~QÌv>25 ‡gßex ÿ»Ç¿"ãÇ}EL¿šq`¢E„í7djiȬŒL»NZ›‹î"chþ†)ų±yeúñGÓ{"+õ­¢#‘it~ü†7á™÷ñ^Ley›w-x¿ïwÖæÜ{†µáíFv×ÁÅ™‘5Z6ˆõxž]w{4²U°y×€Øl3›Ùcaã’èNMt°©]¡saî1ÄwbÒ‚¹â“ïˆ{Vl„—[ü0‹yþðÌïÊÔß¾HߪÜ~i4¢‹­9‹Ôyߣ®Gúä’KW ¤Ç?~ë‰À¾_4rz!ÒîáåMm“åüãÒ!×V¤= pqʼƒ´±ª³~8ÍEš{ö±NßÖ!uXtÕÓƒ·°>Pö•¸ó~DfAAÉÿ0â wVÏŽê‹hƒ?î]¦~ÅÚw^]V…^GT‘…‡Ùƈî±õäëGwóÛÄEÐ…áÏÈ¡LÃ|båU§¾/BΪ²yB™ Èç·Z¥é6+Ñœª…lƒXgû“&¨X¾ðãÛ W‘3Ì%Ýt™6Ïû|bVÒŠ„µÇW¢|ÊÛ𙚷Pã3ñwÝ2TÝæuïjR§Žúšé³:ÝuiÔ7HF¦ (oAÅ–Cm¿>(Bâ›;Tw­,*~­Úlú,n÷RÏn_Šè?>#OõC‚I•¹ÇYd.|~¦ù 6„ÅšÿYú)ïËŽ-R@ö)±7o÷GúÌGçF}QD~ûÐÁÛM[dx&ªóEl¶3¹y–Ñ'êDØB…7Ⱥ-rù¸XɼæÎ÷M‘Q}@ýóÜ¡?þ`«çòUÞšC—ú2}õÃÅûè2ùÕo÷ðàVT¼?·ÊâSŸeߘ×»ßV=í_¨…ª«;¿y¼_ŠÊ*< ˜:%'–Z[KB¹;¢^êíAͰ¥‘–cMQ^už÷àx6ª¢ÌßÙYŽ uI}ÿmÓQZÙÇœ74é/v3]e+eƒ Ç1}üƒrD5Mé’;`&üû븨WÀßÑu솪Þð ïvxé<Ä/QU,RïŠða Tù B}þ ç mÄÑ£û[ þý¯Í2¶W‘^è¹åÙS”œ_òkjɆזOè³§%Ûvœ}7ñÊv˜×œ¥sM'÷ÿ’‡ÒËNÿWçuü¶òK+o\¬7I E‘±§¾1z¤>=ØìíÄôA;¾SÕA坿çç âæÔ&+³›¨pÉíq}æL”×—Ÿ‘·}‰Ò[-ã óï Ê'úÕ­‡Lÿ™·àÉN¦^<ô1ågË*”‹Ç?~ý©S†wÛ¼õLWTmZ´mŽ *½ ÔvÔ£2:tÔ×oڨɬþðgѦÎÕZ2òa#Ç ËþíL?úÚtͶŒa¨ö1Ÿ·;ç%Óg¯~|xêSHf^ž:`$‰"CÓxfì÷||ΚDTMܰ¬g2Ó¿'ö¶¯»J9—%£®õD…mÒ¦¡³m Ù(j;ü³L#¯mÌ@ex…ÆÙ°TÈûõË]ÃôﺄN€äÃèR'K%¦?ŸêÔ'åc²‚¢$Úd·}åWx¸…ýöìËÉ_èüi€sˆÆPãIuˆp1ýðÓ÷ Lü$§ó;AðýÅÃ+ý`r"nÞËI;`¾6´úÀÑÝX¼cµî”Ûv°Q?uþÉÓ¹Nzø£{7„5$x‹ôÖ©ço7Åú=ãSÊu\/~ê9×ü²oýùnÿj<Š×nrM&™;†ŸÄ–µÈ³¹cùK#yÛo§O‘ÏAÞj£~j#‘%4Y\±e?2„ÿü0ƒr[Ï53Ç}BÅ»U3¾BÒ>JewŒ$è­ü殕fƒýß®é‰êƒ«ÅsWP›;D¶Ê´•kú+fé¯EyÑŸ»^¾Öxíš0¤n&$²†½Jê)ÇÍøªQ¨VÙcw\< Uï?ü2º›ŽÚ™Á{ @ÕãÖ€}šýQ1E ürùm”g¼±ÝöÒ‘ÁÓˆZ%¹)¨œ?]m¶ÕD&ÿîPNÔ¼‡ê.¯>Nö½Šª1òI®ïlQ¡y¯í®"Ó§4™ß·QAUeš£Mö+T}â›lN_‹š®éçœ /£êØ‘{Ovi¡º)Wõî€3¨Û»Ø.äê.˜¬rÞ°¿Y»ÒI¼|bŠ[Я‡ˆW>™Ê?6±SÓ<~¥9ÅÁËF#·4æKmçw(Ñ&÷lK qQMŽáïR³¬Ù)…(ÞÜg}ž¯Êv¦-Ø¥ˆ2×»:JÉ¥(ÿuPýé£mdì_ÝEf2*þôpÜã9õ•)†Á¨Þ2IþìRH*.Î9nÇðÇÕ¶8»2Tˆ†fº0qf}0]¿Ö•ßœ–'‰ŒQ’µôPð-”j/·¹üöÊSºúM ƒdÖçü`ÍT.X1f¼a$ë–ý>܉¿ï™ÃÛê6Ù:¼eâÄÿµÌš‹¶Ø®ìmV¢lúûe+K?ŸF½}êㇰÕÏìnY°v¼ñ ˜zUóÖÇ%u (†å¾¯2BÓ»ˆ÷ëuE/ëÒî4Œ©?‡¼næÙë;BÑ3-ùõ;¬PpJê]é‚ü«js‡~B‘ÉÞ m£rús´lÐdiéôŸ|v&Òçoý:³ä$ò ~íÚ¹`+òÃf4xeÝBÉ—º°^]{¡"ºÀ8ê‚Ówú1Ü?ß§õÞ«š‰Ê[f ¼ÊäáÙkúêßP.Zhº[M,}x¢5ͽ¦š:cëñ)A*uÞ_}üÕ¢.›µ›?¢²o•¥y¤ª 6éÈF¥0jòÓþL}(3·¢Èy3vEŽ9-sÙ;»{ñN=݇ø*oeÖöå—FÈxì˜Ñ½ºçöl·}]¼»7êo¬—&Gmì§ áËߨ’ÓkKTGí ‡)Ë÷ÝÇÎ0÷Ü‘íß±crÄøÊI/Q|Ýsb¯“Ø6ãÚ9{[ì¾þ¦G¥æì0Ï[ª~VŠ÷+H\Š}W†? *ž„=?_¾òšyÏqº¼®Ú'T?è_°û¡ j¶ˆÏL¼×eÚýNœô|ŽŠù£N{¼B†«O‰Œê¸”ù©Þn°‡õA¥³Gr¦Â5vMü—„X‘—Õ¯rŸŒ:ouZ‚¨7›/XÏô·3 o$¡bêø1㚆`BLdðÔä&äæGmžåß9+ìûGm`úF£õ»OØ2zœx³ìÄ3Ô_~iÑó¥9ræŽ?eùNçG_F©£º¿}Øó53P‘½àw¥ÕHlºseue˜b4M§x51ŽÅV” ¢8¿ä­JjÌ‹ŸÛ‰êk¦‡·FUhåq=Õ\T ÐÉqÃðÔ–Û,ç¡ÎàqëEM¨\òºêîC”©úrYã *]GÝ3ÙŒ’_kk†4,Dξ?=…ë£oü“à³o²ýƒ fð8fuaÚÖ›XrúÑÙ-'Òànb8¶Ñp<„-Ëë ‡]n\¯í=ÀÙÏaøùͰ oZ9s-¥Ö«ÈÊ‚ç=ÓÉ[]#éHÝæu¼Q•µtÕ¯õj(uÿÇ~‰Œ+—Ç­÷ÆŽmïÛÇomG͵XG¹.¯±åª‘{ôg OÓ)p’SJSVî­,¹„JEå@ÁÁaز!A}î‘ÞØò0ÿ¹×œ~¨–{3òë75l{Ö¼÷çl;[¢^㨎m'û~^&|¢åûIPóÒìSÅÂËØûæûÂ>1±ãÐÅÞ{Ýd°}׎7fœÇ^÷lÕ¨e©¨{pâ§Ä< {/÷y¬úŒ†è‰K–l†©†iBÙMä¯ 3-5Ü€ÚµÍUbüPUP­šúù$+nø^övÁ–)ÒëC¿ÜGùüO·÷O×CÕ´k~[>nAòô– ¥ŠHúêЩý@(6›N{lÔk¼Òͧé!:Á]t‚;жåäõìᄼúŸöEûf!#zGÂ‡ÇæXï’3l¾úA¤Öõ¨³ý q»£BÔ¥ëX/ð«ì~1 êeÝv/EöŸk!£ŽAn¨kŽÏ¶¤íuÚ³qοO?úu'tÑ22ÂŽ¬†Ñ ªC°wcó˜NBcì9 «V¹~¶nÜÙ}2[=£±óWÓ õQ[™8Õê5|É3TTî Ò^Û†²g3×ÌÚå€êÝ6¤MÖˤ¯~¡²å½Î–‰ÔÚ>›ª4¾ Ë)í [Q|anjf]êößtíÖí-ÊÎY=ajJÜ;µØU ÉËÙš'ŽCqh¢KKç;ØâÖëÌøÇPöÃà†¾Ê}ä•^ HÁ+Ì­ï¤;\ðžû;.×”bÞ£ý¼ÿ—ÿà\&ÇµÌ ¶ Ë¥OUÏp÷-Êx]mÛþç{½#¤÷}ø¯ûA«ªx¼V»ÿ·òpë$œ.ž6Ì]|¼Î“¹å†TÍý¼.³ÖýÏ÷ln÷å ìÓ ÁŸ¾ðÆÇ&#VÏTúµÿ&DšøòºyŠö&Z*]xÉ¥ó¤m3EˆxVÎ3° )mx<¯Ö+$H×AZö#^WHè½Uú§¾ 1¥S¥Ò]\0zþŽ@„ñié§3¡ˆvÛ-m?בÉLÜ:ÌA¤ÿF?y$$ÚJ¥Q²÷ð`üîŠßûRiƒ¢{ ”Jì`úñw<žy⺞ãñ&ïBLÆH©Ô¨ˆáñz/w'¢jý^NEdÌ7©ÔQЍ‡7y¼ñ#­ÈìÿI‘ʧ{ABn4ã‡ÍˆØEúçà{ÄFžâu’Û„T×<žµ Öó³xÜÞ"v­Ofi"6Nï.mïy[ñxé\iJ¥-uˆÜÆìäØí—¤Ò-9ˆia⸳%ÖÉOãÉ4+ 2¥H*í¹QIÓ¥ÒɾS+çÉVVbí“'Ri‘BOå3øzßSëy<‡n•JeVÃ<ÿ_ðPy/•>¾ïï <™¢çX½ÇU*Ýyž{sx²Ÿ½à=`’Tº5þîÞ<^@5|fì•J=ÁoˆOÆKïäë<ÞÐSíÌãY^Bð]^—#BømJ¶ÿ~oG<^|$lýŒx½$Nð'•Ϋ‚çðQÒöÃpÿÂã©l‚»á(F_xø¹š‘+9Û˜Oy9–“ilC@Æg©tÜA…<”¶ÏNE°ŒŽTú¾Ž+ñºtõCÐîqÒ?3Î!¨è¼ôÏ7ø:M’þ˜^f½v¿±ð>rWúsÌ2¼\Ïë<ô/0v{nÙ+¤¿M„oÅgéŸ åÉãEßFXO¶*~oJ¥ƒ|àyS ýuBûVi»aVå1q¬q“¥Ò_Y#àdcÄàò&|#ïñxG¢t\×y¦‚"Fóxu~p]1Iú»÷2Xm•~^’£îG¤ßCdÞ—yžÛDMéþcaÔV$ýå< Ëx¼>GOÀ×”±×Ô xÄ‘þÚ>noÀëí6«¯$K?9*Áçi÷â VOaÖ ¬ƒhæÆ/§àrš‘GëÜ< x¼?Z0]^§¡_ £*•&ÉAtÝRúû׈òñdœfÛ¿@Ú¾ýü$<™'A°jÒ”þŠý¯oÙÒï%§Þc§Tší†•ÊÉÒ¶…Éú³SÚs«–:ðdG4Ãäåré{E è„>”¾Û!€ÞeFîêðËãu³(†kã é·T¬’fKÿ¼¶‡)ãpY¥®0)Í“´w]¥ßBÃÇ8Ys¿4òFÅ%3øí$ý1¹k÷¹ñäªaú]o”AOÍŠ¶}›ˆ5Ý›¥?ÊÏÀiÄCÆ~SPžÀäc ø¶0þž—öF^—?‡±zâ$éËßÁpäï•~ûÁØ1S*ýqF >ES¥?«ÀÅNUúÜöüÿ¬œæ2<÷ãw˜!ý©%Gé·÷*Ü}‡ð¼~¯‡À½æ ¯ïò~ÿµŽÏÝmLœÔ!`ã—m5ðß•þXÞuB^—é:¯ËDOøö“J Ág—+cï.i•þ^0kêJ†BÐS&®o%Ágål/u|‡…óxG'ÀstÇ>~Ó¿óxíðWÇ“mÖcâ÷ƒ'#NŽè¹I<^ñ,8)ñdݯÁòÙLé·€\î¹ÚùHÞ´“u°=}™×ý€ôö;ðÔw]†_—^§Þƒ¡³·Hú噎ËßKÛ¢rïYaðÿëLzöåMÔÀÞë¡ôöëv¬¾Çàë÷ëÿØóZ„ô×Ña0Ïqàñ|ݸû8!}Ÿ.€Õ@otq(L¶ðxSþ`å¹RéºÿËÜû®AL<­ÛúÿµÞéÊ0Ì|Äs¸bñŸyÎË¥¿¿EÀ®½Òwµºÿë:Ù¹Jÿ4—ÿÏç‹ÌH¿Œ€[h²ôg…–ŠäuPúŸóWú1||ýÈß?ÆàÏ1 ÝC¤ÒV-³ÿ'¹¸÷¢_‡òx“¾ÃgÌ^÷ vî>os²PéioîZŽÆ¾•|¾²ýHÍ d\Jÿk½A‰"‘GŸsÜõ°ERé7Ó&îzf³†wžËaîZwEá$¥«˜sÃK!äÞ¨Žçó缺Áf‰Èu¼*t‹$¢•u÷ 6³íXl”´ÎJD÷Â{bpY3“ŸÌ–—ñgå…í@fþ#X¤°­ì–¢lÇ<á«Ôl€éºgÇ6¯º ë·ÅÙÕåXâ}È[’Ù;. •vî@ņ^öXq)TóÍ«Uû¿YæÁÉ×õ¨Xœ¯¹…»vMÝÆ“ø«>©ïgê 'ß…"‘³*\z3uáÏ+pœ:•?Ë3:—êšÎ®WFèX‰Èe~.ÜRï55- ™Ã÷¶£•ó±$¨oÙ¥}íš¿J–?ÎCçS"‘Ó•FMi©´ÝÅ2fÞEv6è¥R¯°ö®/f ˜ß¢o;—“CÙ¨pB~ðz_¹h4,–¬tÚ ½«óÄâ ã`ˆF&fÂ8[F°Åù%ŒÆ55ß] û¡Ÿ’m>}Å‚… æap”-¯n]Šk˜¼8t–™2õùáPÌÚ+‰Ô>AwÂsѪ[—aÿGE°mÑ{8:Ö$ÛF\ƒQ™ºÒ7Ó©ÐY+Tú%: ‡« R©_´••ÚŽÙx—µwA†dõobàF¯µù°v)æñž}‡íçÏ|•IË`qn’¼:_Ó6 ¶|WÄr›8Åí'oBé:cֱРWjKÕgî÷-»™;Æ{Hÿø•Á+û‚âÞ‹¶p;š¥z5«Œo:/ø°Ÿ÷šÎß‚0ë› Æ†Æ°“ÝÚÒu>{H…SäÀ_&Dœóa(æLz.r}fNCÅ9†ÁÙO¤úbü?¼ljÊt…ëViý€îpþj§pÞ£ãE¢yŸ±ê¶Eƒq·n›Ý,•y‡°[*bqÔp8¿n8øÂsὦ+r5ØÜ7§ÁXM‘ÃmŒ[]Æ 35ø5X ›Óžˆ³ºb}YVKZ•E¢™+˜¾q•wÙÂkŸz¦ìfñ¬óº"›´!鞀™×Ž”. Ré ¤†E‰Å¦)HûRÙta…ÒDqnïÄ|äÏò{€Ì¡gãF €ŸëÊú' }z˜prI>2ŸæÉðÍßxŸ?}$œÑ"xÙ!•©âÜYSá'=ôQ¢ Ò§¸Õ÷­zŽ`Õ#|~–ëe›µÉL=>á¾pʘžÐÛ6Ò["aâ®”©‡•w4jù2}Qå]„$m7ß•ÉÞEó”9œf…ÞàÏÝðŸ~uÙVO’J]¥È®ri0vòûLmYp™ƒ¼ZcV!yö{±xþ]l´÷“_àp™ÃG)µivG‘†&Ÿï®‚ìÙ=D.sD(\Ó…'Óÿ Š/<g/‹†K®¦ô‹e,S_¾ŽÚ)Q]ÛŽÍmCši_UõÄÔšš†?„ø“fÙÕgQÂ?!}V…üÀ‰ Ù"÷%/Ù¦Eyñ‡4¼×g"'\_ÃûSRÇj7]Tw¸ðÁ±d÷‡(^mj)?•‡RÛ‰ Al€xé£z…[³P¨7ˆ×iÝ l^¤küÊȇá0þ| °´‰\.#å½½wÙ…aØ`{[œsÄ–s-ëöÍĪ•*âl‘¼3Ê®¨I8¾ˆ #ÞX 磟ùs]²¸ÿÝ8+&ýɼŠþ BŸü çgšòÚúL_ç]¼ÙN[%Û(΀suksׂö¿yˆ[_[iŸ8Ýý t%‘Ý繘8¢©é†Š„í©‚Š±]¡$'¯!ü:j$"C†OìK£ZçqõÆ04žørú·…¶Lê´¶°AŸYǨç¬dË,ì+‰”Ãú”kýPñwLßx,Y4tÚ6XMêÁ­c×"›ì Ž€¿ã>qN¨\$¹É6DËýÐtö›=‚s’ù*¡ËûúŽhõÁåE¸M|Äë”ô¢~â<±?V&æ5÷°Vƒ{T 7Vž¯n·ÆOjƪ9Žâœ‹pï­Ût¡ßrøfïm–›› ?ÝÅYoe˜>e7>½‚[Ïu¢•[‹à6leÜð£Yðû¾É»lî¸ÛȈÅ%†ð[‘¤ôeß0øÌýÕ,¯4~uwB‡‡ÃïÃÅcw8¨42¸ƒ^B¥¶í_˜üÂðÁ(+¬¬›$•»ÇÒ5ÂÉwBádS(¼n¼‹c¯ÀZÝBäbTÑáåõ ÃÒ ôݬj}+Ò™ºcmD†_E+ á¹÷¹Bh†|/2½DÑ%xùMkºÄcôXÑXv³~|ä65Þ¯ÅøüÍ•ðyYÞÔä-‚÷T¹²æî·àÆÔ I9p}T)TjgÞã3ýÎż{Bé«@ÿw¾ÉÂu¥ðÏ<Îç;÷…ï$7ãÖº×ðn™Ü×­¢ýŒ¾æ © méí ï¾ Æß=Ä+ù|+øU—Ékø<‚ïÃIÂÉ]¾Âçœmý€wnð)ÝY¯ bé[Á–ß+à—<1YVàíLŽ„i-‚q ˆ™á]v1qÏåD"G=$é mÑöBÌÒ†¸ÍèÅäÇ©“²îehËÌçÿ ×Ô”Ëä­a.Š{Ÿœ€ÏÂ+Ç’ ªz¹±©ÉÊ>…7[–'¼ú ש© =š»ß!Ù`“PÉÑé'æ‹ÅKš$±*»™YŽfšštV èg›ôçHV:/¹ð[e>Ãf HYÃðÓ>¶Ê”ëÄâuOPzÌàwI "\[Ãþé¼Tº%f#ù³n Gò‘ñ<Þø@¤†÷¹¥ÍA®ˆ©7o[ArÅ9Ù~½rŽ¥Ï~ƒÌ^Zrëþs¶ÈeÃ@ä¾^&Ø¡~¥GøW^j…¸§EƒiÏ3(î£×EÑÉù/¬[ãýž5]ÆçÇ„£ZjÆV†È½1ß»¨19{?–ݪH8mfÓE;]dþz*œÜk:òâÜ“…Ú (½ë­½¹< Þ "ÑÇ:ˆGäó¿æ ³t7Ög! Û啾výˆôyL½pÈÒøÍ4rcapÚR^s­ Ï©4,¹3Êã·•]gì]xÐ6ôå ÞHzÂg7-Fî¦yŒÌôð¦&MYy «ïø0Ò®+‰ÅGê3IÚž5ògùÊ/µa:æ‡xýÓ§˜ Qj;ý£s"¤c~s|6G‹©ÎÄão‹3¯%ÃEéó͗ݞûF¶Ál]6<ÜœCÜ/ææ› o:Ø6Ž×RÅ×¾Á¹—®Òí‡3aw'^䣙Ë¢ç"بT™tÛzå­q“;º¸S]pç¿x]%È‘wÄŒèé-—rÌl*^f e^'7†Ïâ2+¶OÁç'ͼÙÐLk|;»‘jŸ›fšÃUáVÙ©a#àÒ+H¯Úðgc÷{ˆ¬X%¯ù¸¡ ¶{×–ªÃgÝj©Ôý'ÖôO¶~FžlÁÃ2ÅÙ[+à›ìÊŸ¥¿ÁûúHË`êîç Ëçx@øäŒñã‰X}÷M^é¤aþã_ã_ÃcÈ2‘°GN®õÞ²Î>ÏüôÜ`f?O\ctP–k«ls„Õû´ä¥‚mLœï”~’iGd‹$ôáOØ?`òì}x¸ êG4dÂìfxÓ½Ëwà/·7n¤9ÆnMgï߀÷¢o|å¨4„Ý4Rj[qk¢üC$Œ‚wðM‘ëç=ð5œÄW±ÒF`y_%¤¾ŸjëF_B„î妫͹©)ý¹u,ÖXVµ]ªŸ€±CBŸ=> ýÁÍÝçÂÿ}½ÈÙyVÉÙK?µ^¹‘mǪoÃwzù…ÓàÓEP¯Pã@“üYóxL0Tˆ}?i}ƒ “?ÜæÛy×·ûcÝ8 ‘CÅA„¾S2~Ry«â$ &<'DÄÝâu€Õ%³›îµO‡ÿòÎ<^õl8åoH^íw¥²Û—ÖÀg¸j½ÂLÀ¹–éóæ1uã;‘Oéq¸ó˜z·oV^Ô/+…»;ÓwM¾àx‘ËšH¸înó.ÂÇêøóÍrSÁƉ‹Àpx_Ú"9‰5µüÙ¹Æð\¾šÏoQ‚_š—ÈåÃfxŽmY´^[Ä­ñ?»Á+Ö9´¥Ïkˆ¦%5]\¾_6˜x…׆y Qxþfêž…iðˆîÆÄi(V aößê e¿ø³–3<­³Eqïn3È.oî9ç2¼+_6 ±€ïˆiMLïÃ#ýœÆ‘¼ ×è4 ~ª•ü9;!àà+q®…VWM?¶Q(€7œDÎOzÃóÖãWž±JÒ³©Ég!<ÌRÅEãóà^qX´òù1x—çFN„û©ÞÅ{Àýôe^—ég9~ˆ³-Ü™¸mm–;ëoç á„÷²ðþPY?pA|BÔ›Î3u¼—w…âÞað±\ßo[0|i="dÅ)˜Œè¥2q#?ÝAÔ¸•‰ç{!~R’RÛ!b}y¼É×ó¬5öJ!"V–IÛ_Z js?qÎψ]ªØ°ü›>bú¸6w¿°£ë“mNG¿ð€pR÷çðM g­—YNè#‹lîÔk;þúÓB½…(›¾]#!ïÜt!ÝaBŸŒqF`_ոᢞ: +r¹zþEÓx¼rm¤•~:¶9DY;Ï(„Œ]ŽÄì-|•m6Xð]Óù9ݰÞí™âžÎØá.ýNAãQ5."ç~Cè£ÌÙLÙµA#Öâ=àó‡!55’dz¸ŽôïG÷:"½K'ï²Uc½@¬ô%² 9Õ«uÛxH¬ÅÔ;wûá‡prÊ t5ëk„ìYiõ I¦ÈºžÆŸ›!Bæ¡JmF"·$Gçßd«®ãuy³ŵo¥m{."wÈ\qQ÷.ÈÜx•?'YŸÉB©tÇU/õ‰” ƒB•ú¶^HoÕ‹ýf"»³•hµå"Ì/»³¿ ™™¡–¸#óqpý žeÈuiR5vCƯr…P‰/ ,yÚ}„¸k°8×v4²4ë{œ? q'A­ò8Ê«g~F†¨®é‚Í*ÌyKº@Z›rk\¯AÈL“ãóýc˜þifYó¡pf-… ÓyðÜ$ýñ ¦îóÄi‹Ü±lZÀ±ô¹f0}'l:?Ö Nf“Åé¿ó‘ ÷ÕøµÑ ¤¾Ü×vàì}?€@ãûâÚþO°1q‡È1~Ö‰4ù3N}âžgL>Ú,×÷&bœ”Ÿ[ÎôÙÞפ-‘©±?§]€Ê÷”žM¸…"Y Ž'ýàû´»8~ï+dÍ,’Jãràò«@±>UÁ6'B¿Œ‡Þ¢S¢å½…ÿ%ÇŠsŽdøÉ8?´eÉ̳pV~,lM"Ww6~·Ë¥_sÏÂÓ@Fœèæ³ï¹ OÙ´Õ7ØnQBØ a¢ ÇÓ°.dZèãÎ-ˆzf¢ôõØ6,ý¨á2QˆðÙÒ'ÉÇ~Zm°d–èß±2¤R~Ay!tÄbq‘ }9^ÿS×›šZ¿Á{üq¾J¶<®y‰Kúaõñqqz|Õ¶Æý–cúàéŠûuïÀmÖ(yõ²ð,¤–“‘ˈ¦ó¿¾C´q°p’½5|:íÔmRDPV½†wK ‚»çÅ)6T DE³¹§Ãøû3<Ñï<$rL_ò žâDqŽ ³Fsý€{±ðZ·¨5±w4¦û—ÝR„[›Š8Çã1\ç™+îññGÀŽƒe7 ŽÀ»Mçï÷B妓••ýq¸ÁxÍ„èj(6ÄmG åÍd¡s7ø÷Õl–o‡>©­±@HØ‘‹Ÿ>Bµ˜¼`ÇäÑä!JmKL9ëXƒqÝ9ÄNûÝ`œ»‘íçšÎ¾5CÜÁZ±øÂ^Dz”W?Ó ‘o–•]‹ÈõMçU'""âiÙÕÅËuî·BؽµXÛ6 Nq’5‚굎¥Lý(åŠz…Xæ}aŸÑ~«¢E.Ý^aM~ƒ‰™|‹ÂâF.Šà=~Ré—V¿ e·”& ø8Ã#Ú§uO‹Ïß­Œ0ݰ8ŨHQ‘çñä÷#¾²’é+¢RiYvË ôe™ºý!wó•Û ‘zêO¶Ó~dº©7,Ó–C‚KSÛ±îúHùzBœãÔ?×Z†]Gñêµe·úé"ÝiKè£AGv˃?«|Ší³ ÓÍQ*õß9³ÈE®‹\5lÙÓFœ3J%Fª¯ÙWQôd‰Èåå.äžú*r=Qƒl±ªÈkœ Šú…“»5¢°ÀCÃWµù³;â¤Pͺeù¯Þ(ÑK÷.+ü€ÂÆ!­ñÃí!n½­€<óÕ¡¥g;ßYéK”JBL"ÚÇÕbÓš "—{³‘Ñ7U$Ú¨ˆM£­š.•f`óØóÂÉïg!#~x‹Al7¤­4ËÍhBü…Vq®ÆelÈŸ3 ñëE+É"ÖrYÓùWc‘û]è]ºé(6fži0꬀´«Â¶£gÇ#;g·ñÞȔq,åÞ`¤›mNN™ƒ”ÉC[Obƒ»ck¼u6ênh;\vñ}73x„HÃþœ±gàâ7¸~„ñˆn(Öàøa•ú¹–E¹B¬y‘Ö²àø:¤N|ÚW7‰»Æ~zÃàªf„Ò‡S¹ùIzÚ4a^ýC¯uL#/¨úçû˜ð—ÉVrÍÿú0®ç—oßÖt-ÊË<æ‰s$aXö6^$â;òæq##a¼£FÔ‰‡©2‚ê¨|¸<õKl…gs?qÁKuÌÝ®¸WÏa—ø*y}àÏBÃëÉN¬K²Ôo búB´1µ‡{ï»qcOÃÚÕY"×Þ/& wü€Ç®óqJ¯§ ÂÆñXrñ]G?Ðð:y îOËŽVû!¬ðwYóÑJ|Âçc3‰FF˜[Yý€m.‹Oö¾ßÙ½ÄbÉ/„šñù³z‡Â‡§"[ Ÿ ûdÛ‹ºðu2Ôð6:…5Á;Z ¢íÚíg‹ÀUŒð–>Â=·„¶tyŠàCêMÞ!x×Rï²ÛÅðOšŸ,t‚×=¦^{è¿ßãêV1<3ºÃÎaÊ6É6±ç.×·íø›l¬I>"œ<ü½,D"•ãX—çQÖZ!Ähb&çjxGg!îýRAÝ lˆš®¸wWÒ\ûò綤"gÿ yðG(6š×鉲„h¬ùÕˆ¼¬âÜÐÃÈîçÆ“y•„ÜûjMÝ‘£9Cäºi82T›½‹É uu…X¬l ñi¯Sów$)B´ÊîRç<Ùû„Œ1³¤Òè½Hë,çÆnDÊ™>·ÃbWÙÔ¤]ƒôX¹æî±O¦Ãô_J—±þƒ1ÎÛ×HÐXå]¶;I1>RiÅÄíß²h¸&Òx{êÈ9!iÒœciw_#J:_!x—5"ÏøÊ«£°6ã!NÂKľö”~I6ƒ×³3e×3žÂ¿_~[s«6ôý"]í…X—ÅÃ~EˆêóCœ_YDL m¹j…„‡?C[Ö#®Ç³æîW7@¸hDÓ©í|xz§-ï‚$·±¡û_E<_ÐWÞqYS%ëû#¾Ç“Ö€YK-·µ^Ák"y£›šž(#¡vtÛ1Ùňû:3ndi$Ôm;ia‰ —ZÅEjˆ¼½]P>. Q7¿ñçL€M"~ýÈ[û࣢%Ø=¬wÖ ¶2õK´ÚrþÌqHlñ“þÞ­†MSe¼}C2í—ÕbpÉ ‰ ÒçÝ_üÏóQã˜A]/ÓáÏpÞÉÝè¡%>_ïQÒ»£¡÷c¢hZý-U^s?/exLÔͻϩT:p üÚ4ù|£ L¯j;º¦^ÅMMç.?ÆÊ¼ãüÙóUáÔóŠ8'ÓnY[å1ô"l6ä7oÛ¬EåMçûq¿'A7ç¢ÂZ™¹ÿ%/Þä¶ðŸÝä®Sïúµ\uƒÇ©ÞÀ@ôçÓÈí[Mµ#Òíµw±ááÕ¦s«Í°~`²p’Û>¬—¨ž‹˜{»ã·>‡÷®Ë<™Ôø·®NÖ9ß0q^óMøéT55ŸC@ã2 ï|}h«Êk&Â'|WÙíÎÏà> R^sæXˆ :7]8º >5"'¦ÿ|[&¨ž6¢%Ç*æïÀÚô5ÂÉ1»±"éµFˆQO˜Í9–ò"N*Oš3}—‰Šñ£¦U0<´½5|çdFÿÔðö„ô‘©‚­ªH=jÒ—œ‹D£ÓòZ͑׿OæáBä«ix¥M…X¬ Âø»¸M£^ÁøŠ •5/ÌË_E"“X¯P×tÞwfjKv¼…x•B¥¶£²ˆw5Y8q»:¶Ùë"âB6+„®ªC²öE oS$Uúò8iÊ'ù³\ãúÓ­íȱ+?z½íèT+¿é$mwfp¢5»éÂ4EDdëKžˆÈ„ç¾Q ¶h‹ þÑ,¸MÎÙûÏǪkqæ† pÓ¿$T²(€h©«<)®<žlývˆÞ_n;,·«*v6wk-»í“8ÅKávÙÀøM·Z¸X6˜l^Ó·—Ÿž —îÞy¹¥O‹ë$pí%Tjã{ Ôè Ò÷ò³UßÜyºÂÕ 5Öð°z¹QÛÞ sà—z7®×¤mX¹ï ¯ëèÎp³;Õ zì"µû6ûYƒ%².Š5ƒ!œÍ4±C ïœ-¯æ3š< ï$I–é+6¸EI 8pìäÛnÿ…ϸšÙ"·ä7Pq³çîŒH“¯<™©Ÿ‘ÓT#غý,üBÄû'>ÇÊWZýA=ROqWg`¶ÖïKv@§Q_d5Lñ<ÙiϰÄï”ÈÓí2ãz45åöGñÁ£e×V¢`pRƒqL$[ëµ78 ÒlkÙm»YHÚz]äâ³iGD"­h¤®XÕ,?`2&í)»Y¼%¾É]F4)!cÛö¦ }Òý©¶ìæêfÄ4låóÇþFÌ⾉i…çIƒñ'øì‘$ åzÃG¹–ÏWMMMÑEXs¤ŸXÀàáÞ0…ÐëK!w N±`Âz¼ijº>A [ º™Àï‡e½ÂÍïXíqQ!´Æ«š¾1uÛh¸»·ÆEœƒÛ·1bqÍ^¬éº³¹»8 ¢­FÆ­Ó¼àºF¿Áø½DUŒ8VÅpŸØ‰Ï/ƒ[‚½Èé¾\î2y²à*ÜU˜:ßt:Üî”&ÛfVaöÎ>Â9÷@°;’'c<#ÌŒ[£Î=…ò°lyõó¯1‰IûÉÏ÷cÖ|Mé×çk65aôndHL¤í_#käo©´Ÿ%r«ß)}³ÌF^¨«H4% ifÄ)–›"=B_*]é5"Ѩ}ˆ¤ ê•‚4öYk\o?Dtj0n7EÔ’n‚ú Îh2+kîŸ ŸÌMM%ëàœÉg¯-<3[*}©ÿù¿˜ú½Îðx2áÓ5W$Z|+ï_¹| ê?Ó”Ú4îÀùóþd¡Í=ø\[ÉŸÕÒ>Óå”Ú¶5ÀWe‚bƒÑYøæim‡Ù€|þ´!Xy‚é/WxÁgÃîcÉá0ê.–÷X8n¹ÆÀyÃ[ʇ¡»oe³|ŽðÜ]ÃååÌñ.»ÇÿÏ÷>c2•3»cÙÚ7MvºC5`†‚ÛÑBD½H÷.ÙwIŠ ÆÏƒTÒk{é–ƒÚŽy1õ~ÈžÌø]Èì5T$êã†Ñò¦«‘Ëñõ–8×΋á­Qò †#c—´Å@®ñ>Fɶ^pXnTvó{œ¦û‡>z¶ V[™þÒѳ>/Nîù‹Õî´¢Ó³ü9K\175µ5^á ƉDîu1¾·bƒÉÍ(ÿ`p:xÌûNkº¸ï'¬Ê·ü$0:/TúÈàzé1‚ÚÕC°bÛM‘hŸ6ŠL?4ç0Vœl‹©Ã|ý¤¦sÂèšòçˆÎÂHGÎøµä! –¯V66opÇ2iSÓy= Õêšš\ÆòðSLýé ÃñÖbñ¥[pJ8*ÎÙñŒ³ç°/bñÆG‡a´þCÙ×ÕP®bhyš÷|°²HäâîË]Oû!ù'¬‡ÖÍé¯Y?°îåç½®|µÏÏäª%¨ïT¡dž8ýXÙñQüí Ò?íýÕZ&•ª}@Lü)žÌbfò:õœ‚€V©ôÓõ|Äò‘þY3±“ågŸŒø”¡Ò_2W¹uV}jÝxñbGyŠó áoiÆë$÷UW5\:OGðo&Ñ_—/W†%Xo?\úiT ¢J‡ðd:1ëëàÉåA¯ý¯“ÿd,9ØÈãEb¶4’×yÉyjÞæñœw!J}ºôÏ%&Ïy:y—l킈¶3<™gUȯ—þªrFÑ~_©tûQ”öU’J/¹¢Èn½Tzk Ž—þ^Ö…W[~1E¶ÇKÚŠ4½Oî!–ç=âu± Qþ`éÏŠß0­äñz‰Gsúyí!m¿ÇƒÍÏb^ŸÁˆ<žl¿ÞˆˆäuR*Fd¶ÃãNØÀ{+ý=ô¿¿ß[s¸Hú!û1¦>­ÃÃ:·XžÜÓ$lØa-ýñ;6C”y}Þ|‡ŸÆ韲Gào*λÖ6ƒ¼y]laQ(•~kþÃnÒŸGU±þ˜"¯ó•pÚ1š'?ì<|W;ózDÇ#È´Rú{‘BV[J¿þlƒwÓS^·{`¥ZÌëüa,ì<÷ˆìùþ:SÚv}!ÜxódÏƪõï¥íB lR³çõx¦‹è…5¼n9(ëq3’7Í%A5Ò›‘ab"•êÏG¾×GžÌ`gäfÆIÛµN£`Å=iû-g”™jI¥Óã‘›'mÖC`Z©´µ AÃM¥j,°ê ¯û·'p)Âë<ø¦¦Gòú XÈÙÉ¿ïNiÛÃ&„=ýÂú¤Ž»ïhp‹'ë°ñ;¥¿^ĺLÊÁÕÅ×ùía˜Lqàu}6N—úòäk¢UË“{Ò öoÁ“yëÇ Ë<¹K˰X•¡QÅ*,R¼ÆŸ1ÐA£®IÛG½D¸s­ôÛùÎpPäñº½£Ixr1GáXÅëÚt F=.Iÿ8{£°²´ýÒnü\$¯Î€â‹õbšQd˼ ‡¢N:Òö î÷(¯TŒ*É¢PÇ^Úžóñ2*Réð½pýÂä§G¿àPö‰“åðK¾$•nÂAºÇë„°¶Ò?oaéñ‡Ò/YÊ(êóIúç)ÓöæñÖóØ¿ãZ,Ø{fþƒiÐO}q??ƆŽ5 jÿùÿI øy­d-ô”ô§ËèÁiïûE¿¢¬±ÜÈeo|E Ìn­p®ÿy‹éΚSmÃÔ-ÍÎ oÂBÿmŸÄQ`uÎÉòœû«Í)†s\»¾â¬´yz&åœVl´¸Ÿuq,Ô¢² gÂ%ôUÅ…ëà’V¤ÔöMöŽ«|6¶œ…é¯d£¹vSaí(QÛúm4óêœ,O¤ÃúÔpY‡çár³WµÓO˜¬Ü;¹Ù6EoÃW.¼Àðð‡ÝÏB¤9ÏÿÈ”‘ð¸3t¶èÙ#˜«Î]e1È®3Wóxç!«J??|á‘–!ž/‚`$Ü‘ûaä;ÿö9npYêø!HËBî®æ †ã€¬m·«`¬=Òãx¬/Ïíå²ð-–M ¹ µ_ ë ™_omZ“m1[#ß5Â4s󈈓—aúòݦÉI¿`±z³Á÷ã°šørmíá—°ù¡òéö€—°5W1ͬì‚U¯¦i:÷ NvMë–uËoúÃÛ“…å«ÌÜ:AûƒohæÔ­0JïÿR‘iW–W]ã7‹6ìÿcÃ!Ë>÷œ¡†ÅßUµÊ¿ýÄÒ%e½û`‘nôWû0Wj™OT9µiLc·!W åAÍØ­Y0nÞ·šç½f>¢4mŸÏ0zjY"œq† f#m/ÌòŸig só¸ÊÂèr`¿-uú°~÷)ñÜI ˜ž‘Ñzuܦ¯å÷'lÑè„gOù°N,íšû_*Ö½aôÁfLѨ!0©‹(2X±6 ÁÆ}„éž[KR>î‚ñ³Ÿ7ŸÈÃàêÛ>Nç`%úÞ{ª‡ ŒW‰»ÿ ã=nK&ŸžŠÅ™;ûïãz#,“`¥¥?þIÀi,6\óÌúr¬GuÒ­¿ñ–qEfgûÁæFÿ*Ïå`õãÈPƒwÞ0³j¸xÖ˜Ý=²æãX÷Ù_zÉ+–F“[÷^ês½yÝoÆ2uzÉàù*°ê2]CÖжÝ.í­\]ËÜAZ7B»ÀæúcǰåË`¹ëI¨žš+VÞö)³që+TNÀ&þ†AÁç¹°‘g*?á1,Æ>óT°J€]ƒí²k¿Áa™Rñ÷¥°”!óEܶ{·SIy áž·{?…ó>½Øh׃pú0~qÝN0;?´irl†Õ× ‹„°µNÜ´i$Œå /m`Ô(½xÖl*Œû».ÕZ¼® .]ü.‹°Èe›¦‡±×üã þ„å«Ë·Œ‚Zž3G¿ÿcý÷/ÿ¨‡ÍóA=öj̇ÑWsïg/a÷é³Ý§6˜oÚ,øšÅðY°Âé®CþÀdÇͬ–ß[`é0ºêEÐ.Xê®í2ÓÖeý£n –ÂÁ-æLÁÂͰ q8Øã“,O„¾vH¼ËSõF…08Ü›'ÖÜk»ƒ‰·`]<:>ò›>œúÍ[éyîlÒ¥Ÿë¶¿‡múE'›‰»`e»~΋ÌHXõ¿Óÿjž5ìõš,ö.=»íîXM…Ùïd¦À~‰eà[ñ#Xݯœo^3–æµM'ße¯wŸt…åCãIW-kaø!*Ñv“d‹mû\‡åŒ“nA7À$륿 Žá¹_{¶ÇÄüíÞÍ:v°ê×ý¼ß&Y¬¿éá¨m‰° âÕYÿx:  ¨ÞÿûÓÝÝÝ%] {hiéî•.1A@,JQ1s¯ ‚  H* "ˆÒþöóùÿwœÙœ½{ïó¼Ï9¯swQõWä{ý`ÓGDŸ¯ Ôi øá;‹_ ž+lµõg†·¾]ŸþUø¬ºÿ|¹Vˆ`¶9Ãé#ÆðN¢Kû9Eáš|“ÊvÊõY–ždÖk¥äGñU‘ljÿær^û;Ê÷²°ÃO·%M6¶³Aß™Œ2o²rÓ¦n2s¯ldÁW>?Ï_8¾ï%ßÃýﱩ3á9v“£Î™¢ãúŽÁ…}Oà×3û¶ÿî5x|þ­þð6Üodhk7#(eA* ¤ž¡S³+éð»¼RFñ-Ó …É\ð:!ʾW žÚ¬³að°¶×‚§§ûÏ1¸1™ø%€GÊ;‡s¼gà);’ó ò;D§6 ­«X•¯5ÞÞÝUÁuÆîûXS‚çÅ# ¿Qòè›Ëçø|.1Þw!7˜­{ö!p çªA¸4\ÎzÕ¥Í3#8”KÆj¨ߦ,tW(yª¨ûN~ìUìæJ&ð«ýµS8n‡£$;ÆÞÀsk¿xfG|ÙÞþ|C÷û{Z~hxÀíîr“¼Î?xò>^2‘MD N‹_k|ƶ üæ„—ÖÎÕƒJð{=ÁϹÁ×/å}’<ÿ7’«[œìàk6JDQô¢é‘"Å /i/Þå2¸J³çW‚çÍív¾?·žcf43ƒŸãêÄ¿“'àiÓ¡W?%ÿ_MA“(âéŒ$~Àç½È¦‡WKrà|ð—Ð(œª¦p½ÏdZtaG"¼¥ÃjIÅuð.kŽùÆ“Þi˶à¿&t1…âK±‰†¿à“²íôõ &ÊÜ^9ºcüJ˜3LÒs ªª¡v¾è¼(Ÿ¯‡gwÂ/f÷cã×àS>}ëÏRE¯¦n‰ÂÚ‰:¤³Á~ž;%¢÷À—ãJÄJ;|¢ÍÛÕÍ’Eþúãüºl;ŠUþÁ—…öû!¸}«s¾éNáN5¾£ ¾vk:÷ů^ã¯oÚ mx¯#b¿Øn£ð)8|ÿèI‹î¸uñÕ4ü»œyWÃáý÷úWŽ=/"²%5eéBz$ «Iˆ¼t~÷MŠÎõÇRˆN#ø«,5ó×9øn/cî﹟¸ þ«ãð¸ÏJw€!·×ÕužõÀç†òÓ™ExŸäݰb)„Oò›¨]a6ðÒoêÊ|užm?=Ží…×ï^ÎûY”ãï£ZÙ"g oõO÷‡ä0³"lŸÔ~ÑPwíÔk{o‘H¡JêÏðeÆ—¬=<¶Í졆üŒ oŠMPrè7¿vvçs'ú—Yõ بðè„Óoøè7öä…ê!è“‹ú1qœqS}ɈW._ƒ%àwuâå¤;‚hçs!|•/¢ý¬¹wò¼c‚þòè5 |¯à`mû]JN¸þÂá휌 @)"Rö•f6µÀg³SΞc;,µ¼·tl¾«×&$vÀË7ñ/uôøú-ÿÝëMÉ/ÉÀf“V„u ¹’–DäÎÊw‚à~›ÔùCïޱ¨Uñ2Á½{äÁq#J’µHöƒ—.¡Û±ë8üÂ\êSÙ(ç)JK—à>ÐxCï0ʾø‰_%2ÝN!º?³^_!ˆÂ +ui»ø‘PÎs7 !ÇçÖú{)úžÝ|päÞ!xÞÛó «ÿ—7þÃÌðò3mÔB Æ¶§ÎqSø û³Íp<®ÎÔûŸAÈÛæù×{ ‘`ØPýôœvh˜úË(®#Ž•Á»yw'b¬Ý¸®ñ"ºWÛâ£1bÌ,i@Ô›âÞfDOt ɯnFÌ·jûž#Áˆ1¹ßÖ²™;â'uö8ÇNÛ Ç?ó3!ŠJî."”O6™íDìt 5kÍk„Ä’'4éî2’ø,¿ W8ÉÒB¿ëwc=¨§‘ùÅå¢óZ?xÕÜ•’ß1ŽY ÷^™#Tr47úp ëÏtI–ŸBPÀ„3»=‚Óæøž”>D˜YËÃûé”^WüÌÀla595iÝ,Ê¿Ï4{¼‘%¬ÕÏ<ºÖß=XÜd…,“•¿&ûè›x=˜,ÂFÛ TªÐïêÊçq†ÒG6T§S³¶õà2¢²?xGÕ"òø–Ç÷6ë!ZhÍË3^Ñ7+ì¤ÞhÃÏ×½Y1ràÌ6ß%„¸XþT>‚0Çð/®I#är&÷Í“)žêczx4á¯Ú&»["Ìÿìí ƒl„.­­Y¶Rú¾ú ‡ò0„\9÷·¡±[ÊômBˆqa|Ë:B=¦¼ø‹ðD£šG‹*ê'Àš£ƒíÏ®eŽ»³2§üá¥ÂC¯ö#Œ-¯$‰¦ yÒnV iØ~ÚbÇ;&Êë”´h´‚øÈ|Tâ‘»®]Í:[…iÝo9ƒgxó¹ð†çDá,Nù†°/ûw•léBh>Ý&"™ò¾éŠõ‡í"e•0BéÅAt§ž‘AhCâÁYˆv¾Õ⤀pž?¥|v+ðìyò¡¿¯¹ÅžGÀ¹¬¿OÍ ²3+Ga'B›ÙÍéP®÷¶q"g¸”òåuk)þH$\¾žÖó'•Yd(=ÕxØß áÇ̃¤ärp:pUŠ¿ÁÉ®œóÚ»tðÐÆn÷csHÖgQ\„ç9Å]=žYðéÜÕg3W ¿ÎL›j—dx—l7‰úü®…;ÒFÃ=´÷Ú½³êðc-;°ÞT‰È#/ÏÕ"„íÒ\#¥M~¿ë ´n¼kõ|…,¯†Üú÷‹â_naÛ¦Ÿ§M:²ávÑô#A[‚mÒ œ¼po.¢çúPߊ ½#p/xoöàéQ8ëù0YÖŒ­¢§\ñKiphÃÉ8>¤6HߥFáš>a…¦TØ>óÈ27Ķsa%ö´EØöðô)×ÐXõ2ýÒ÷f{ ~ŸjÒiŸ–Ó…yh­óþQ”l€V¢–¨Î¦$(²Éeù5KšZUJZgÊˮޙý n±_P‘ÒƒBD;ÖÉH}âsu&¢æ¸ËMé!bçøŒŽQ/ÂÏlÓ5tý„ïêU›N“àßæ·8¢È€ÐCöñýís¿õV—á2ó\kŠWšò:R÷Ò]„¾‘ex¡£©äzí«ˆì–óëGÈ[Ú¼z®õTgL‚k5*¿ Dœ»­=ár‡Ï—¥"¼2j[aD&bô¾OQ‹oEx™Æ³„Û"”yØà2¯jCðÀ™rù„K¼£j“\…@앱1!Dö?½µøÛwpµáF7>D-T!Ô/rŸfe2¢_èÞð}Ÿ?:¬¿ ¸¦Nèoâwì cTºÒ…˜UsÍ- |8"9<ì¢ßÿUe½”Œàgã4A›©(\ÄQS»‰Ò¿LÅÌãž ø<[ÒM³¿™:”¬ÚŽÀ+´Ä“v*ø˜‹Ž‰îø„ð^þ–ÉŠ\ô8gˆH™ê|’/‚,Yªœ/!¨|çí$Oøg[c«€ý^–eµká²õÓ8 ¿€çM17fþóL¦DÁ_øäÈHã¿y¼_*”sÚÁéËÆ×û¢)ù)sOú&Bxtµ^C`Y—¹hH'|N5„]±¢pgÖ©OKß$tm>:ä ¡ÕvÜ×DM[Y]Òa„;*%í}ü’²Îá©wvè 487þ×¢2‚Ó‡Û”ÚŸöø¶®BM$ N†å ¤~¤ân.åçѯj°"PDþ“çï J{P+­Rø÷àɺ‚7iØ{ûí„[äëžwÞÐŒ{õ‹þÌys¬Eç6ÖeúÏÏ"àÔõ¯/T—è~çb-`¿ƒœ[|ç½##¡¼Ïµ·2Fèé7ËJZ¿õ©ªí-ß?Îq€ÂŸ!4?´ U> äÎæ¤¢Ï$O»Jk"Ô©DâM;"_;ÖS±U"ÌE»M¯°®;Ë‹å"0ïû{Âþ¹Ç‹[rþól*µ+ÂÂMiÔ L7ƒ&µ²Áâ:Éû6à•Ÿjpå5¥§ùˆrŒ#Xi*ロ‚¢?Š+І{]Π\;¿ô[3¶—ÿ§xå(¼×B#˜¹gá¡¢kmi Rèñ?ÏÎ%Áìi qd'¥ïô'öûìS„eí¦›¿´a·ãµê ›"ìN<±œUƒ}~ßê ØÚ7ÙÚÕØÀc’Ç'þ`\ Î;Šï$ÃIÙ»û“#Åw¬EŽ3†ÁkŸNߥ®¸ïicI)„‡Þ‡·ÃpzãûÕ)ÛÄ\4¸ÝwB£h:h×w(ßÛzôzý$äOUf…C@mÈWKvØì&¾®DJ ÇJ­[ ÌùFvø®1Är^Ü^SœƒôÓSÿºwdCú»œ Cè(äªymŽ›æ!*ÀXÑò…ϪÙ9­Ï¸!‚e­\C~¡WuVï¤ðóù¸ Â/êt,¶Úþ¾»f‡Eõ¡±m÷S$6la>îOB˜­ú0Û¢ù?»_*EÄ­fŸvof$«îu{ áƒ+«‰‡+GR›[UĘÍq+)ùrˆhê§âû‡°oî[õ(=°\á]ðÑVÊÜ3¾xž¨Ž°%vÕÕ)„¼<™–„óþ .õAd—íkÿk‹:¸Ým"¡G÷¥µ°µ#ŒŠ*ƒ5ð‚š‹>kÌœDˆ¤žÃ '.„=d¼£VSƒàªØuÓ¼ „<:Qpe—&¼]Œ?žùŸÜ̺òJ}Óz×úÄ~ C-äaø.ômˆ°2 äPã´ù#­Òzq»ÁŸÝóN* $¼Íàv¯ boÓ2rãB0\NGÀ À¹O+vU«+¬-˜DÈ ¿ùœç,—¬ÿr0+¾oô¾Ç|{ ?zƒžU÷¼¡=ýñ®B¾4©L,¾@°±dõ8Óe„†êòbEØ&³Ò@¯yø÷ÈjÌ¿h€¯7{ƒBÃÕ¤]úf°ø,§cÄŠÂ n½&¦é2g.Œ„o4Ý šëïàóäï89x+‚ß_˜û=Ú¿÷ñµ¿Â¤s3<¸s¡ª”ã²(\PrIš¡3f¯©f)zuë7%Ô¶!,•Oè Jß›uí;ÂÙ™·:áßP=çæ7[Ùýçþ š t·!Ÿ·?Â/jw¦ß˜BèˆóÔ'q„TYàÒ§ÌQæÖؘ „…è¿™ûDᆟ§>SøKc1Ä×âKÒGN^DðÇ=çYDšl)–à+Á¿îê ÀøJü‰ã/ĺã¥Á‰h –v"ÌÜÒt%žÒ3Ý´+´RyÜ}Naû"¥¯ßr»˜uü IE§‚î¶S|ÃÎàE—ÅgÏ\VyOBHJ(»Êmg„ü:~F‘â'¸®¾ËïGpäï†ô—dDÔ¹þ]dDäpVpaµ'"Yk-¾G”G;·}³ýV§ ðæ5ªë횈ð{fÝçX‡¨3ëdM¦ D™4ÿò܇•mÞþˆa™|3‡ÈoõF?¨Yûßqþ;ÂbIge¯„!x¿ª‰ ‚ÝY¬–»0ÎïP§DÑÏÝ-ˆ²Ú…HÝ«ìM‡2)}|\pÂöY:;|NFœežÞÙ²ˆT96=¬,îf/ÓCÜ¢cÊÏÎDÒü];~§^ã]FxRæûñÓŽ“wá?Û-Ùõ þöÖîaÎlû1D¯¤Ï›;øGÿî“ÍiÝòp!ÞwM›ß€•ýÕ‡L8šíúéQJ[ ùÁ‹ãð¢í»ÑÉ÷Ά³TÊðI4;a”« ¯–¥÷å áW¨áêJñWç ÛÅ—r°s8ºûôèex2‰c8“Ò÷ ¼¢¾ +þol?èk`¥þ¼¥3!~œmµþ–«°þ>|^åÑؽLIˆ‚]DÅ®˜.J?tú™sz .®¿;… CXTwl“}”ëO¯·’à¨×Ü¥ jE6ucFØÌXÜé½5»'Ô/y†Ãv½ùâq–=p:jù,v§%¬NÖ¿Øü„ŽÔ¿Ÿ GAë¢D„a³Í‹a•5ì¡â;y‰/æŠÜ7>޼‡BäéÕòo°yí&)o Óž¤îÍÛßÁéÏ­µ Ë §–m"?w¦ZNÏ8/MÃhýHyðµ{0SºwÀæ`4pñÆ”ûYhåÿ|tÿbt¬y]*)¹¼Í´®Â~þl‹\ØBäú_H—½C؉N;ú¿/Ü×Y爾Y‡j™P W|ïyLéU•™ ]ùˆK5HY ?@™C]_yJß3¼vYGÛŸÒãIl:.W"t†ÁÔý"kôò’Ȧa|XÌOKÑ_ÕIRöÂM„«žó×ÙDñIž½îb„è)G´/ýDàпˆ·S”óÛ"nö%Ê!jª¼s”~A{º[KLÁžùO¿M")p…\½…Œ„\iþ]*yðžnž!I\E@‚ë.Oqh²˜1ÿ»ÀÜ#ô&tá=Û®?} ^–ùE‘ÁÆð;/óIý1+üí®m[ÞàC˜ïÔûGŽõ~»\þï„><{b_Ño ‚O óìOi _×íx]Oñ/F)¿¢„´›ÿ5-„ð¡0YÞ³{5×Â*f†à1ŸýÏ׿Á‡†÷ô ¥tø×•9¸^5’—ý‡&o3¶îà&Ã#éˆQ¤"¥0´=˜¢¼>K‰µ°ƒ> ßçIf@÷ýà•s“9<²¼;·¨ÖHßaGtjé½p3=øE«s²>FPÐê´Gw.‚ŽW6”Éu"àÓ½‡’{ÅÌ»$Æ|` Ñ'›ôàãA(oÿx59}EØ•¦¯~\½Ë{-ÚA’F‰íãø˜ÖßGµ^ÿâXZ˜(û.qyÕÒ—v%åQ‘í(ÇšM§ÑGP¶©þêŸ D~*®o¾ AÚug8?¡ õËÁòjånŸ‚gÕfã×e|ôýä•«Ýð-8Ò»Kz þvŸV·[ÀûU3K·»¼¶óœu·¼¯]Îó¾BFðˆ¶føÝð~]%M¯Q97ø6½vËÌ ôà²üô§¦à»»r7ï=iÊzNjý_5Mƒ5r|Òï©ÜœÊ€OÉXyж³ðf]ðº-ÌÏþíéï?Ág»nTLg|ã3?¦Z4Ãsèãè·Ñˆ8f½yK´Æ>T7Û âÐé¸Ó1ÝÍ[å±€ žå”ÿk)9ßfb—MÉ·àô,g„&½å[jC„}«ð,µ6B£É¼‡l4ãþNšì3P5°<§ðÇSŽX?D<”ç<%Ö‹ˆ×Þ™Üoüú¶\ð‚ ý,ç·ë!ô•°ªÒq +Ì„¦êº RO2”ÉÛ!’»®ˆe páĹØßƔܩ8Õ)°Èéûí1B5“ï/ èà¥Ì›åðïhü°O¥a%¡{Ø2Q? ]Æ$‹Ð¯T—8–"ÔZY°¶Ý¡'½9í(ùó¾83Œ²?A9Öò/Ç=dLÕÂ5Š ]ÎKKãyÉ“À/…ЇáLuIrAÿ×£º­½ó¥8VtÃnç¿ÌR8át¦ûêc+Ûÿì“3݃ ¦„<…‹ý¹¦vß>»Ð³8ZÙz„†hf]PQAd¯jyR&…;³¹¯_³@HïèfšcÛ~ím-e.Úóã;]†à¾¢¼÷ ¼i–L÷{å"ì‰D–œJ¼^¿ôióL„W»ãïg9†þÔ_Ñôøü%Ô”?Ê6ÂïJ¾<µ…;']Tán…Kj‰F­¼Ë¥¼_-}šÞÏe›8/Œ}u¼Ò[À¥ò´`ÐO>¸ð¸•çàvÆxBõøì”fa“;‚zÏñïzð’ÙÁØðkö®­v÷ØádsøžsNœÏy÷ˆ‡ïõSùb= Ø=ÖOâe‹e/m×%ŽæÏü]›‚ý挤“çâá¡C¬ŒÕ‡sÒ­!ÉÃNp(T ™§~ ëô_ãU)ïïÂÅÿpó že>ûØ©;w±ùƒ.±í´=—#¬ùµÇº§`×óƒX2€ÍQ¾OÖ†Ïa'¹vù—¶œbÒ¬,~’ad×¨óö®°(±ùÛ±*sS»üÊ3¡°—QK¿gÓ{Oކ –Â\äb7kC;,x÷|Ñ´°„©©é×E2 &úÓÕë?B+M>'èe?ôÂoѳÿƒ® Û)iXE,eß+’……\™ÜÀ36Xó†‰ûðw·™›ï…¥Ç‘í;O>5ó¹°#Xö¥ýO¿Â:2çÚÅ$Š/}ò²> ‹¯~/]yï±{gŽSÁœ6i›ƒ„8ÜÓwÛyìßÛÆËz'\<±í™¯±²/¹*.\÷GR¦ÙáäÙÁÒƒÐs;]7~݆‡Z"Û…S‹ðNd3`â‚סÐÈ vµð¡w*ßFÃwþ©ÎJ[ |~˜ÕDóÒÁíGÆ-–*yx¤'–× lû»ºÊ‹£»(ýŸi’X8okö¶(*™‹õíwu€/uÌD—Ï8¼ýßåŠeÁ£C¡qïOZxsß¼ÁbXP©MÁFyÖð|ôê¡Ñ—¯ðÙQ×y÷Ü5øÓFTä7§R|ðÚtE†+‚´Ûr\–Q¸Õ¬´9 ºÆ\‹µûíóÇ]Ë‹â‡ÓÎy?ßÂK±\ùë ¿=ý~u¢5¾4–VƒŒ©pIS'3]1FÐÎOÇý‡¼àeQ*ÝzI 1¯úw#X€zS¿§üÙ©ÖeºúÉJÉ;ëBf¾T¸k_¯CmR IÒÍho¢øýô±ÄtDLó6öP|¶góèåx å¹÷σ§úg ÕØøFn‹òðß?Ëýé¹S¹ð±»ý~8,|J£?Âó½ “¾Ñ]„üä>Qù3"‹³o!LàÄ.‚A§ì->ñÇ a¬í׿¯â‘é™rMø. ’\®C€Ò­`ð"÷ËÍC[ËàWDj?¥Sß¡/„ëZ©ƒn`&B½2ì_!x¼ú2£ Å×>ußžzJñ¯ÝîWFþQrÏñÇrü:Ün3Ã'l¥çò¸!o$f9{§ÁÏôHÐù"—ÿ>wS<¥7A®Ü™ ¸yÕëvú ú3ÅW.Ãm#þkyk/Üÿì׺.!XéÅ*Šî?F)v Â[$÷NJä#ø¼¹âçûì \³=~’f`ÿ=§Rsl;Ì.oÑöø3Kž31‘ŸêáP™fÇ®ÊÇ2 ó²1ÊüV–Ô> ºŽ­™÷º¹šŸÂÓáÊe+ /k)ˆwŸ‚»Ê”U瑸Ì;à×aØì7Q}*W »Ð9_Á2¡yÓvAls"99pÒN—~1ô®OûgøË±U€}Oþ÷Ópœ¼m²[oZ 9yÂÑ™ù=s¡|g—c:îQx'ÅuoÆÃJ¸\ê2ÿms.rbúŒ°:]2<=j ³û÷;ôÇ`æ#\Q÷¾Îê¯ -©£{Òi÷1~k{ÊHá~›W²5E°~Ò «áG†Šë«`}<Í’ú¤lþÑ,°‡…ÂÙy«yfX/]yÞÞ­ŽK ¤=´°ðÿûzsMÌzib‹ò³Uõ;aö0¸9b¾éd,÷ñ;ñM1Àñ×û±EEX{Ó†JRÁö'g!u~,ùÏ”¿<$]¡¹]åpÕÊJ×Ë×…ótE[òaÃÕ¨Pjb ëÀ³Zu¾º°J9zXZ7îÖƒM—žì€ßˆª[3ô‹8ÕX÷ÁzdE«Íæœ6“ ®šrÃx—ퟹ0+¸ˆDç˜*ÁKâzÿ®4]xäØk¿°i„{®g׫w véáGá’·Y¼I:›ú~—é#†H#^ü8.¢ç%;­Úxd~,ùÏ"üV×¾¯W! áiÄÂ#Н3kkô àI‡ð‰ƒ¥pó.¾Æ–t>å?—…µàw÷Cß¾N8OõY¢d.¼™¯sÝà@ªÍ©9°»_”­ï€Ëð¤!F¸uæÞ ‡GóÆ 6[ZÛV{ž×#Jn½N2^ï²û?aÛÎÔ¿»®=ƒKàÅñ+ÁÃp;·íæÝÕ½ðt½’:Üo WÛ WÏüëà.üÅàl}ܦp}tσë®É¤—›yáa¯½¼Èqn®=+Ý ñØðF8hî “Û5¿PCeªÓpØ»Ÿ ßxÒQ|žä}ÙõÀQ= &¤¬ZöÞ=l½5é ÍÛÝ“f7!Lƒ÷a¢ù+ÿà"|Õ¼‹Æ ~ò»«Ú‚áÕpó¦÷ŸMØvÍ¿rïõH˜²ÜÚ3e­‚-•»|ôr@º±ù¸ÖV£· ö*0ÃQhá¯Àú¸9d)O7WÃ%òÞœã6ØÊ¹¾‰l}¼†1ëV*X=ûÚÛÈŸþn ÍôÛ°Ðþ;_ðV]Ì9‘%u°Q“ûÕÝj‹­n–¡œ¾|°Õ}PëÞ/7ê‰Àé©pøÔi*îîÙ&àù2x„ÄùßÙk »˜©çåv¡ðPÏc•Ù+И@òß]»à®eôD?”â£2Û p±Á¥oçöäý^ºÉ›’ƒM‰²-ä]œ³H?PI§}‡ ÝY¿ÖBU5„°{)‘kuf¥»U!¹!OÊéès…áß²+9ÀZÑÆÏ;$Úeà0ÔLÊ$¿…•EmÛÐ?Ê:(½¾Ï¶V[+¿?pÑÀÖbá!ÜÅ?±3VDÃ%€ZyŽE ~Ä;fgëðp>iÚeÜ7š<…yªIÊó2ûf-¸¦Ç¸ ß:·šn†Qàf?h”Ë׃~ZãØ|nœà~µ„€ž_» ÿ"„”‰½=K‡¸_þÖ»)ý­þ’%müEø¼­PµFðl¬'c·‚/—·xÔPúê>¦+[áñ¢ü¥îÕøó>4äv²…l–æ±ÍNðyQk5õH^i!Ä~ÿxñ÷\–R”ƒ§Õã™òöð˜ÎwP¼m ¯#7DGWŠaýlgª@E.p}¾iz´`:[î«{Žòœpöâ›tØn•ù]단:†w `^Æ2[Ìsˆ2»@kß«„‹?Ú á?h”þ¨>òo“Kwu¾ÿ|×™ oÿ@È}ݧt¾Ùë”{ªs+±UúŠ-Öãs7¥ôñ‰—V[žBpü?ó?¹½bÝs þ† ·tƒdÆ¡­þÎó ÚÕ~G¿ö¢„–ÊøÇó:TlAÀ­-‚ß.#(¶ëÕÉ—ð–‰rbò6„F—¾Dà±³ýõÍ@J?=sTžÂKIïµ!܉œÊÑ9oÇ4ÆUÏkðª-mzT_˜Z%^á[‡xŠCé½E7‚›¦ÒÉiAð[we’|ŠÀMíFáMPY+}¿ƒ2¯™ÙÌÍ»â&z´`±{§Ê7ÍÅHË=‡@ŠªÓ#K\‚S#ƒ.Õ‹GÐVÕݺÒÌÎzé Cýñ‹þC§Õ¡¾±}5)àTŒÔŠwÇ~ƒö ‡ 5`Ø÷«+çš0¬+4œ·†ú‡ ™7vØöÙSùk!ðB€á^1\¿ä)â´=/|MÜËî,±º´Á×á£Ö›ÏIÀû MÂÐ%Jþo4&zþ‚;ëPßÅvx~ບg/€Ðw´ŽíCÕ ¾›ø áÔ+×t,•ÊxO®~è!B©†>Ÿ¿…pã{†´–ù5øœ¨ 7"ˆ—4¬w©ö±‰.Gº!oÊŽL#ð’í”Ò„o ØŠY"ò‘H廇¿¥ÍQç cÄ80Ô¥Y}Bä¯TlÛY2ÃtµÁ>™•6o²!¶nÜ3¦†»íŽæ>_á0òáøÖãpÞæ˜ÎúØ n¦“U,?QÝóz·ý¼–lOE8÷$oíæ0„ôõf÷ÚŸDøí?vo‡‹9¹7󞢚¥6ýi>ƒÐ4ÎïÖ}§Qq!c²ßÑ#Võ¹uS«wÚÆH‡P;_æÐâ§ùlk¡r$áÇC÷ožGèíô Íl„ý”ôKï Â_œ•-»Ä…p+½“CÜíØ~1·0s b:B6-p"a^÷‰X,ÂÆ=û>Ð âë€2ýª-¢²]·ÒóßF$G@N×ÒÂÜëª ä­ô¥‘ù)DËU:LÍ ŽŸ]ÕÁç*¢Nì- Ÿ/Ax{f\«6¿äUöAìÇûó'eeÁó7R£%q½¸w˜{!1'7®¨ˆ<&ëª7,Ž3Ïh“r·, ¤“=è)kv¤²ós[F8ç+š›¿¿#›ìÛú5 ûNl¾ð&>6ì;ë÷±öÁJáJˆS¥O¨ì*5ÚÔ‡ŽBga¡–˜bB0_µ`låÕ¤©o˜G†Ú¤êwvhé+gH¿ABÐÏîÕT85;[u$ÝÁ§o6à gÖÍz›P×òÛCê Â"ã~'ÎîGtiÐÞ–iy¤?=²åêˆ ‹í¢”õˆ‹0B°š£BF”&BˆG̯¶—"¡?[œ5Ô ìªÄôŸ*y“M„9e<ÏÄ\2BœAüØ þ/DœZ®ýµÛ?¿±úhéƒÈ[²G¾½pF„Š_„°ÒÓúBBšÖy•Érñ="Î~¨K»Í'KÇ»áÌêÅZ—·žøúÜ}ç)½†!C‹>Ûž¤²,°Þ}…÷=lÂÊ__—…m&í4wùKÙ±()PÙ@kêúJ¤Zìw¼3¸{Û(½ÿ9$3®¾(j B‰–Nè9¥Hÿ`Œäp™Jm󇬱SÝèÁcNjìйÍúæG“ºMìÉŠˆ±;|zßârtàö9ì$>Μºƒä$ù9#ámH*;FÜ‚‚3MnÏݾ›éƒäã¦øàŠaKì¯ $^W{”õÎn©i8…T"óø‡=”ù)rÍœøÊ Ó=ÅÔ9ˆ1¼¹œëŒ”kŽÌ#;|L¼õj×Ò˜Ÿ©X"2Û!ËÇóû'Ü®”ò ɮۺ8°‹ÂIŸ˜Vè"Å8®5wIQÛïo'fö ‹<{Æ~"c˜Øòš8c{‰ªaª¹)þ»©à“{J.)Œ?½öZ#!æ27gz)â–Žº{î â¶Ñ,L@ãdîk±FD¿½G½˜ó‰gÅšæ J%.PVw!Q×NœvêBRºÑ düb»´Iø)BO+m.L‹DdAgÒ»ø)$<ÏÛÜ×ÒM½7h°Û`ØžcÁi‡Üëé‹”L»o·”+‘¢ßµç‹Éw¤4Xìx&ƒÄGÿÍ!Ü#ñ‰wÖ$ZTÐ?>¡…„hÙÙs…sHvþcÐk„´óeÍ9Æ‚ÈXiÚ“Ø€Ø$Þá8 %¼ÑNiÇZ;Aãá`¤‹,qýB]ÜvûØÝ(ã8¢t¬ñCî÷”MU‘Ùšó<Âç©w9Ó¯lz„Í“ï®öAáBíÃ’=ÿï÷¸È+—®Ž½$u>+õbðâ Wqž þ!AP™œœ¾ü|¯Ïýq8½Nê»Xªºõ’Áå×§š}ó y)háå‡Ëv`£Ï.¢!Èk—Gßþ9L…í/—n<•aë»!Úvqmøô òWÕTž²c·Ë¥FÉÒÈ+0†é¼ÍœF#ÁZ¼½ýDU_­ÌR'k,»ü#f˜àÙrÌáÜ»£· S—ëÖÒ_­¹×Ýx^vàY6ùËås-nKa =a¸¨šäFš9}¸ªóu¨ u>D°…^ËäÍ{ ©MZ!5OÌ  Z²<66CšzÂs†§´Ì06!2D^3i¢]sÛ‰—;Uïƒ;øšÈ±m‰:"´¾©²œ´!0ê´l½Š/ô¾^Ø"fæçŸTéŸ@êÞʃºS$ðï+*ϼBp•°m”GOúZF½åõ ^·tÆV‰äŸ×Þ/Ç5Š“^Fn<´î6¦mÕà ñ·Õßí+â~AùÓ×Ù–>!H óïy–UCîE”¾”P?¨¯ó)dû€¶b±Ìò drõÝÑìÙc7ˆ^ïôs–evv/^¹×õñi>ú“øçkM =~êÅPU5¹Gé}ÖÚí¤•ñoÊ×]lÁÛ»’?\èJúÁQ©çÚï=IOûæ"ÒtG‹’å)0Šépn[Ÿ€ðàù.9p&2¤² ‡òo±NÛè0–“šN±æAô~µ|—;øŸµ/ß¶„ÔìÙëvžÉ©—SUø+ 9£ò'!vÓÐé.Ûr’÷#¤òšæåËѯ‡óþBy…óì‰q)H{v1ÍÝÖ"2®—rœ$-)HXZþ…„m×%› Ò"‡® ]F1h©ï\]È-‡”›Õ¤Kd<$ïq5‡ÖƹèÐRr ¤²©ö–Z†€#ðsù;]yõšT»•ëö¼%8bÿtŽ*Ý /Ô¤õN?o'oP½äTW½DðùOM¿“q ˜§¾U4%R9B«TÿÚ yw—±/B墥P ‘ hLо?$¯_¨»WB‘Vº“Óàøæ¾¶9˜4W«zøýôðÑ §‹Ÿ\$螇ΞyIžåfRÝñ€ü7`拾´oYBô ¨¹oVMd¨òaL"-ó{þKv;Ͼ5'ýÕÈ*üÁÙ»k¨‚ª¾Ÿ¤ÄÀyE°Ø¢h‹!tù»mÅø´¾ð\c8CZæï19ü% ìw¾¾}ýº™\óüÀö¾Ò‚ÏÑZØöÛ=BÒ¸(¿Ü€0µ”zO%Jð$—ÿezFî5§-Ýü“ŸŸ<Õ<|"eó}(æTWÖ´Ò¶kà!¶ô{Žž{æèDHùнµ=IUjÒ‘":ÒÔ(†4øR µ þêÀ¿›­}ƒÇ“7Î䛫-6…ª§ôuŠÜpytËJ†<çשûv¢òi¶ßå¡a¬Ö¦IbßÀŽè禒àNtš^¹éIP6*o‹'$n2f2¨Nƒ5 ±˜4î š½±b^TÊÜe˜ƒÜÆwÚÁÀ ~Âp@ÙçAÜõâ¼À&‚¶ô­?ûïYB!ÒîFB©!þÏI![ÇÒZ>S+²ÿ£h9a‰?F…VÅ`®/xrÒ’ºêÝi[Ø ÖÜWÁùc„ìô|D¿˜iâZpÄ©­ÖäÒ¦Ô]UƒÈ7{y£*D  žtíùÉ=äÅâ«"Â~”9ÆËÏ,¿oAªÝÍfŸEäUCâîôTA}Ò—‡wAHúôïÔ‚+vçzþµ·SŸËÕAw³šÈDõÔ3DÑAòåþЬHÅÐÇgªšB»[¾x7ß*yšzûÕ¿ÚÎPèç^]ZJpjo~‘ÓÑ£¥\!öÄ#¤oÍ;…Ž‚!}S_“¬¸œTL†’:· ¾¼­(ä8!÷&-ç¢)¡[ý­¥P‚D(ø1úŸ ¸ þ®R¦ŠÛ%•q¹Aò—º•ŠzMȰŸ3»,*DÚãоîGCñ¹nfµªo„Hæ§Â¸N‚/ óìÝÂ`O° |môŒÛÙÅ7JˆÄ»Y¼ÍÏw{Ž‘å·Ó§|¿@š86¼÷Œh2…$^ÅKβÞìJçxQÎ÷Ì-µ¹ãå#«gHãg’Ï›•Cüê§mkB{ÀS·çÎCBËâ‘äU[zä¥X>õ —EÔY¡E3ø)*2oI£g;ÁvsQÉ òoþ{ô@žê±¬Í<è6<¾ýl7éW⥬iä—Èôˆ¼c­„˜ÝŸ8@õ™uÍêö`hºMO“òWï_•¶Ÿ Xõ&îÙ[ Òd¹¸W²º‰ùm%?ç 3:Ò¯{À"1ºÏ쾿úËq¦B.FõÉÞ/P~Yf¢° F’êC>^Ãü^átŠh ^…Û&éì"ÔCkg·ÐJ“×®ˆ/J4TJU= EÛz±çÚÛ y ÅýׄÀU-í~4ô¸¶÷šÚG|büÑH¥IMÒhÜÕ;ä‘ó£“Ðä’‹Ø“¶ƒ-î±Ñ%t¼mÂ+wÓ‚ë³þð"77´ ^ x0CkØó/à¨}klJÓC°th6i}¨Ô‰Ê‹Ç† ÝV¥€?lPO;¬H3õš|'Ju¿–íaHñ¯X…¿ Ž_Þ{î:„©†ÊÓC@¨ùúºÂ$ôÒ>ÌÍ‘Ø!3k×uï±ô\N•ý^”†–ÁW¿œÀ—УŸ"ÏcóUc!ùö>Híj;v çq+Ýg[ Ù$»}ý(ŒÅò™ü¨ãdáÄž’%Ð-Ì?T%ø‚ÞÈt@“3mUð|'~ž¹p ¤Ü7ß’Îí„¶}š8Ï8 EÚ•“‹öc'Y·}ó€àŠû9á¨|ÐkªëúKpˆìb|%ÖH?ï$¨,‰ËÝo$ÿ•jnÕÐ.‡Î†ŸêAµJ(Ì³ŽŸùáiºåÚ—9ÀÛzõ óä3¨ï ÿÑAþu÷âlqb?i)é²õBØÚ5¯ËÔÖv7Ç–ª¼0–mPWm.2Ì…ÊBݤS*›a¹XòÂÏâ)¾ÎïEzt,’´Ø_*q¼h ¸*"æ¥Xè¶µ¹'pB£pÃeÑÊò¦ç^n"ò¡°6îjk9Dx¬B4ó¿ã‡Ú«à73&¡²y{¹Šõihm1 ª±ý µ:'kòœ/¶4ž“–³;ÿ-Ìš¼QÐt 5e%äB¹÷÷RŒhŸÝôõ¡Ì³ri{[ä-Ó>hý݇&ûvÁôíÙªü—ä¯Yr¹¯‚)ÔKÎðæÒH‚òÆ£‡ÐX½WŸ ‘[áï'ÍûÁ/Wß5ÿ<Ò´¦®´¦žâ‹kxu7 ŒŸg©i¯Bj*B]Ì_r/B¥Ã¨=ÁX)Ÿ MÒãAccp÷Þˆý#ÀÎWwœ]y Ö]L¢÷ŽCN¢Në¸$-‹5[9PA"i´óYöòêÛ›Öå+Ñé«C½»£É‰\‚ÁãOE© 55è³( ¨®ývßf|”`âÞqiÆÏà:Zp1:XŽp^Òn ¬$xb©5+Œ‘æ¾£äw‘`o|WñèˆyÊ-+%ôT8iBž¿ö–´QoGw´ŽÜÝôw>Ææ$i¦ží'§èCÒ×Gúj÷ŸÓ“Æ ¶&öd˜ƒG½¡.{ÓW0ÖØÎ¯˜!Ø7ºB’5 HÝŸjæUß…rå,?I&ò„ "/Ú‘¿D1^a «o ëæ.!BaõÆÞÄŽ]4áÆf-+=í‚©|F÷ÇgG‚Ÿ¢îêð¾ÑÊð#$Ži9<óh%÷žXÙè÷ÙA™sf÷¥v/B±îøú–8BId‹¾Ü³U‚ÚoøÇ­/„H$KaYX!WØ•Ëö'ˆ y(˜UÒpÔ›(Šó7¢.Òži3&ä$MX÷ç‹üjí×Ekhˆš6ŽÄCGhøÕjÝ8.„å9yr±ùwÞÔT‚qÎüyqجŒàú¢|Bù>ó¤Þd~Ò|ø'prÍ>X‹#¯¾ÁÙKñÃõÛjt–÷ ínr¬Šæ.4¤o‡¦Ü€¾ciX2éj‹ì!Ñóï"UÖ[òŒFå±UÕZпàðyö§ŸN#j× Á¿o‹JäõÁæûíËÕ™{¤ åµ8ÇjpM–¥¦…‚o,‰]Œ„Úï˃ÞçÉó7щ4MœY]äürÒûVNµ>EcÒß¹.w‘á6òðsu–ð!G‚KKµDÌ{”àòßÁvÁtÁ«^ß÷Y€øü¿”Pò«÷5–SBHSÇù·ü¾FêÞ9·O©î !Ôx¸Ä \919ÏE)~hè™rê>dõ gFêb)³œ¬½ ±!“_qË$ðõ‡Rv̘о°™™Ö¦‚ÐH&)êÌ¥Lû $Ω’~>¸¡M]ÆB¨XÙûE·Jºúœ”¡[·hîžô'¨¢÷ÍÞ’%Ô«Øý¬h@È^b-==™@9žeÌ!HŽJ¼S˜J Í6’ ê¿3œÅû!tù;·mçKH \z“+HZ\•ÖÖ‚øµ¯¾GÉ%à¼iö÷Oä06åìúR&®@pÝ?§ÃÀÕDû7Ú·²¡ˆö®Ù¶PÝ´ [¡ÀÖ½EæÆWÒ?Fçª[ õUß;t‹±àÕ½Ó´…ü¾ÂJ5¼;—OƧ½Û~ÖÊšê“/ ©æ”8æYpÓÇþýcÈ ^ ¥]Œ$x¦™£ùö»‘ëØï­HAê¬vÏ–R°Ö=”\ö‡Ôæä=âæ >3•;ã­ßHsWìE¶:¦CÀ|ºk¬?‡ •Uýú¨ïùsXØàz0æ9·¼êËžSñzä±™!}c±ÈŒ§'oÄh=`CÈ%þté~óˆü/Û®»‚ŽŽ¼~áTRÝ*Ø4©¥®-Qüôé…oE@M¡pWë)°i?y¸Ù…L~qè…ù+úHÐwN;ís‘‡>÷¢•ÿZ .Šéó2UôšʱoA”WýôãøFÒ8?Ñ·3•—¼œ®=S¯EêWzìz[Ž©mPå»>é{ä¯_i!zЧ5ד— íäcùÛ®ùKüæf² ³±ñÔlÊbgÕ¥Þ^ÿ±}»d¶üÞg:\ø*®S½~G°‰/ÐôÞð&dÓü¬cÿ­Š¶zL•+ŒéñCn‡NBu½Waªd Úó»“.@ý^ÂÉÛ rºõÄßWýйqüµñ?¤…Ï˯8SzõYî¯b?ì ûÔòÅõ­1„“¯öD… !%G^tßDhP?v9§~–PÜÐxÕÿ €`÷à½À}Wšâ/"ùt޳µJÝbq”úÏF3¬ /nó@Œ4ëøöˆŸ Á÷&f(Ú=Z¼_üòÅÁñx'ù²Òk°qgñ›JâÃckk¯ •hEá"B³Xè7áIЋ՟‘Kö€jèáT’§+D¥ì28¬3!îù´á·5”ö±¯­ix€¥æGà ?ÁÅõáqˆÈ(²|©=¼•`<åWÂÃÜÕêíúfR„3õñs" í¦Ó­fgÁ“äs¸0¦ˆÐ aÅ CоuG»x„L„åÝzsBŠØ1xr3¤·ZØgB•Y¾9çßôËÏ8-Fúù?¾Z&÷½¥6*~n^§þdÙÃ䩪õ4iÃK ZŒ« ÿó  ©J‚øÂ±ƒ§[’!Þò={ê} džTj¯$AÚëÊÙG¢V¤?>aO®½{:ÉP½ãàŒÊúÃ&ž ‘ÖÉwg– º¢MåÑëA g‹HmW/$/ú ÞŸbJˆìÓûtà@%ù+çŸïA©õ÷ïg왇ïô w¼…ò®ƒzL$¶:îu rw¢.^Ü¡¨³è3¯À,3JŠ™6 MO«…,ðX4J¦_¼÷@ämC±tü9't˜å?B?ùIà^IsÈí¿M§Â+%G•O¿ªS!Û~Øj7Å$¦‡ûF_cÓêÿF]I“¦­ 玉窗ôÃXˆŒœÊÕÞI %¶]!A6³ó¢üSˆœRÐ;-¹Á-bf „PäÉþ7kF ‘“Ó”Œ‡ªwF—.3dÅy²ªyV ¡㟌ä™ÀUù†êôôN°IêP Ú åÿðšYÚUå'h' ž|*‚Q/ÊMÏ9”ÏË©–Ýå=·¤¬ø{H‡ßq´3‘¾©îŸúžéÙ&Ö¥ŒM`oòZ*]< Á8 >¯íï¡~úµÈÕÇ!ô1íjøå((* p<Ñ€¦Ge¼þ|0i©cßjîæcŽÈ‹û× Íϓ̓ h~¸Éœno‚u …¹z=äøÿɺqAq`qrö.øß q¬p‚HÍ&ú?ôàÚüRó†~€j;'”¶ŽQšo%wF·ëUzA¦.÷c¾S!qÛ*̘~ !cSKQòIÈ*«ÅHëC €Þ—L3‰#¶.- ®dº±ýÃ(hõã.®=^Ʀ’+WëÊü úDš¸’ñâ¿tÿ(Q™B’‡ý´þh*þw_N ªw¨¯i j¦5_laºu‰ôMÈûŒÚê*iîß{]—QyȪ¦o~lÌÙçåGßœƒ.ÏÂYÙEBªE(k¢¥ˆhúoƒô¦êßÊ6 ŸÚÿgÉÌš* }w¹B;2ä®)ßÿÏΓ÷d¹ î™Ë…“ÁzØv¨­g•´v¥5ÿuTôî—ïú‘´¢=4!†ÉTÑm”3YèøÖgBZó¿…›to¡Wñ ›ÿ~ši—„2õ-f‘þPxàyo_â↟N0KBµÝ¬¸!w –ZŒ„BÚ‡ÛYå—@'×—m× YÍ+œÎkÏ!uÀ~w¯ö/Ò»Ìl~îð§ßÊØ~½}äæèõ`®^6Ò[šêÁ—GmH+4̿幒¾Õ½Y}%I¨ê'Gé'§REV`µ„p@céo×`VýT}û0iô ÿúó×1®eµ¥ÝPÒÏê?t*2_EM›…?OÉ3ïÙì¾÷\!.{67YÈzå5iOœo4ÛvF|"Ä}’óx¢‘×§¥o_ÔŒ‡ÈšBO¡Z5ÄSZOßÙ¥O(ýSô¼}ÝS5ûº×sJo¸º¡ÁM¯¢ êÉ3½œN4ÍïQ¶ïGÃnÉAâõwsb¥à=6â“¿ &¯ú\9ÍòS6õWÕä )š‡Ã`úï¶BÀvòß %­ŸŽ2 ‚%}JT¯êzUËÑŸäa9„Ž`Å…¶zZ‚«¡áôõ®_äîñÚ üüHpóÑ7„›“W³=õ¹ÿ‘zzv6ê¤P8øî톂³äm~Å0ÿVÉ Ø´Bú¼|&ZzØ”4Ñ{¸Ò»~l¼*ì´¬Á]¾z§,Á4x'ȽNò,„X%®= ùÁÎBÖ‹Q•9eòÕÉž?XcÒ”IŠ‘™Ô¹Uá5Y̦‹ôQüRÍÍOäõ£_1çJ‚#3딢CA³e£2l’“ ½sTÊs³AÅX²‹)Ùš`eº4ñH™êæy:îOKzÖ²RŹ@þ-C1Å òbxlÁÞÛ[¦Ð]+'®“:%G®ØKꑟþ‡‘ö¤®×Õ[ýÿ’Û·_=æ­u ãÞWDó¦‰<:6Mê.¢›Ø’ݬ ©ýõ‘Ó4É?khTh¹É#"{9^ ?pªxüwå$y¨›–Šei l®¾ù↗IŸß‰¡YºGnîð8Ã:y“ôÝÒ퇩P%ù­¿ëPrù"i¢áàUVNEò aº¦åý¤%{5 6Hú-7Yi9ÛkOÚâªHk¥ ùõÇm¡¬úÆÛ½çøL>¼R(š#O–þøÝ*µ ô¾¬=›ÔÞ¼ê$·lkä‰ÔOßö9l†¼¬b´Ðm¤íäXf„LúûÓŒLÞsW=lmDXV¶þUR€¦°¯ÃêDvdqö‹C¡1áXœ´>iß›z´í¹3c;_A«3Îì¥ó4ŸX5<üÙ®©ÈoïÇw‘?°~“:-HP­`1Ší ¡6ã]âPU»šh¦96½þ玗!Ö±8WWU U3ƒõ ºä5†±ß×é¡~ã}cÙš<£å–´}«;ÁñJ—­ôÝ6H‰ˆð‰c²àÞ A Xp9=¶†ô÷©× ÷m¡_ú.b¯Æ#ð«ì¹ÎFÐEé°9‘ v¾Åƒ¼i 0˜ôqÀÈ>î*·¤ÇIët'k N“gµcm#~Cì¿ÛY×!¬Pi í< õoÁ~íÝæ+GIó'«Lˆ•»¼57"â´/õžÙÆý ìc'l ¹æ¥?G¨²ÝKJ„¬‡Â¦ÁÖwhÉýqfž`¬Wø“ Áäm.ZªÝгˆoš`†À! ‰÷ñ¤Z±[‡¾ß"rÿâÿ•kµê3ˆMÕ¼ÌÏË3 `^† ÏÜQ.Mh×uóE£–ôú1—†ˆâvÒä~º]/*, ù”åŠïB-zÃ[ {zoóz¤ßÊs6Õԃ߅Ýc‡‘+Áo¼"EÍü‹à 0° ¶·…dù­› ´ßÇ»Û`€üq^xŒ¨£çÕæÆ)qðY½S3Iîïÿî/ Ê{Ç^Wæ²´»‹­ì¨Î¹¥½FA,‚û÷Ô–”4DðÞÿ¦¬jîDu~™=ó$·î#/A¤¹ó¬×I‚æó¶¡þ?::•5!Fð‰,_¸:œEÐØ.ð•ÿhw²üJPßÍ8Ñj~™ü—’RëIBO¼TßKéi¿:ƒK:I³Õ¼ÖñÆ”>ò¾ÔŒfÌÅUO”¬[ɃÉ+‡ƒC, {똀ë›(ÒºÕ6êXO òÓ¬š[¿“Gë;®¶è$Âá ½¾%¨$R›ª7뤄Ç]ž}!Í”Øçtsôõ•]”ðINò¤ÿãë©&ü¤¥ëåsDæ-‚ýÍþ´CÑáàå zm´é+é>TLÚÒô‡’¢..ÒŠƒ·IÜ!ò)G+r5éÞõ{aÜ)?I£+ñû^>Ÿ!7¹{?±ï1iø—¨óˆ§Xk~+}[#o¨ÛŠVÇHG:®ð6 $Vþmº‰bèùíäÒ ^2ù[Æ‘+ƒ-äKt!ÿJÈœ«h’e÷“g*¦îå^ž!ÏEØÜ%9³~÷½N³_ë êÿgtdÒ’sý­S椞íç&f;I+ñ'}S ¯qFÒì§Ìÿi®}º¿ÌÁ”üzàWJyÖ™~…{ËqÒäu3å¸AP©{oþ&A0žöØÃN+¶Ÿñk£Aw žU–Û÷¶æ‘>¿ÔmÈjŠ"-åü»U=ÒC^•Ÿ~[MYÞƒU¢ž<ä?ï]¨” úÂý&¿ÚV‚~T®Àíl!fâè[»‰¼"½k¨jr :ôChrìé9ÕÊGªg„òûSŸ^·yŠ8öðNí¶ÄÃB‚ùhÏ–ó»Áïz+¦êbدDš½š‚àÿîËÎ’æ?”ÆÍ]ÜOÐeIèÜ?eBHœãh:qt }xaîñ»äÑáÓ‚ªBàîìÙñ­VüžÊ´‰8zÇÔ¸ÕÜ&v‹zòÄ£¦±^vVù¸°­âØÎ{s–´‘§¸¤ñ×_g^ÿB.gz-©®æ!ø=äçù6pŸœuqŸM‚ÝÂ+9S‚Aè”û®þJÒ·ÿdºÓT‰-b‰-|´h;úä‡:©ï¨l›p¸·N-ä“ÛAÓöRõî\*Áa×]AÛrÜ)šöewÉཱb__ýü›QïDÜeòªÅ£â×Â!Êøië›WtÛÉëMšO%X”1)f¾MUgâ¿ÓwÑ 9ï—l`Ý‘õÖêRyÑjÊ}éé^Òœšé½anòËM*7KÁ·{’ïùƒ[ÝFݺէäõÿù\.!—¼(öB–— =þq?ÏÀòÈ›ãl¤Ò°²æ·±n æ6~<“ Öûi[ÂdÆÈOÊLN>ÑÓ$ÿ¬Ð,µøWIžb.¹-¶ ZŽP'ÞÍû´uÇè1-™]}7ð•4›<{¢Oé¹O˜þ•Yâ>ÒÆÜÿ…êò ñR/ßO—<sÒ¹¨I ‰êxBújmûï ©œ¼’æ÷ì}Ò/Òà®îs =Èmit·¿h„°{žÈïsòš¯^Q‚/yæKÑ>m^ò_‰%ÿK}äní IAgp¿¥ëuÕ¨#¸ãËs†—HMùñï¢N4ìM_ZÙ²2C¡m­›ø5!fv2ò€ =i~Q¶3L›…ÔM„ϰD*¯Þ||qtž<:Ý>ÕEpñ²÷m°™ýßΣáš!éùùôbv"dîô¼úæ g‘“÷ƒªhž°r˃güo ¸é ¿üò*MÒ7%ì.É9þ˜ÓLÜ|#ôÈŸ.¿•“©„TÆ¡n/Oòßú»s{*ÞBh=rJ»Y›´vújNvd1xîŒ7ògkÿ|:Â[¤p޼j_n~¢¯–4§’Ì>öÌ?Å.¤Þt$ .Ú¶ÌþÜLPßoßx¼‚‘×cd ©Wç¡û:«u)mNß¶{Õÿæöº‘ç™")ÍL›{ôß6#äõÔ3!ÚíµP*< e飇}Ù !÷)A{>bÊ2%ÝÕÁíÑ0£‘yrÑiÏÕ\e ·ÃuÙ=ž4?¦äó™i'¨«æ½+¶CuîÞ¦Ä[ Hèäô2ˆ‘Çêo½Q-ØÖÆ25ûuO‚%1!oÞ·`^è×> úšü¯ºÁë‹ÿ ¹õÕ\í}7°^ª»¾ZÍKžæ{#™¸ÎDZ?ú<¥é¤moì›Meí—ºóÙ´/(ú¤ØÔµ›;¾µYÒzô|ÿI!X»µj“é‚V?A\Ψ– :p¿9Lé"Ám¨±íÊSÒû]ç›,&»Ál”78bÃEð«œÿ¦Óx†v–:1Çæ›×v…r†rwDcÆ¢ šû1‰ýLï µçÙ k鲤YyéóÍâ Q¶åãO9_‚·ENjٛ™D8³åï‰ÙApT»ÞÕ? ú{Ö3ò%IcåÅߊÜCD¤|:8Ö2V•[?“‹O,Ûì~ ™+»Œk/^†”Aó~ãÄMÏg÷jm‚çÚóç¼÷ òûfSüO¨ÞÖ¡<!Ï^T¨ö/Ê…Ñ©;BHýe³Îû,hš?ÿ8ÂêHáèß/W¼fÆuî‚åX@%cgh½įÐû>™wÖŸ×;ûš¡r¬“ÝùÐ2dÙš/y³+AÄ“VþN‹6ø­^äÏm†¥UžgÿLž;ãÙ8~[T_ó+/<9 º[)™·o#7*=6¸»Ü—äÞeÒ’_ž¶Y*ùvέûí¨ÈgGüÏíøEzýyéPÞŽ«¤·|Ý×~Ò’¾½$}Ç[òOμ¢ç j‰zò[É¿ ÄÙ,&Z~%ùZOôJBG-W'@OC%z=ƒ ¬›O‡õ‡n†& óy¿|p…ݼ¼ù2„(.˜Æ*EÞwÊ®_8!ÀÃüHR>‚}‘R6ñ`ú—Y±p¬ÃaÛ?ß'¸¥['*tãgÞï·%ý m§8Ü&H÷_V`áØúÆ ¶1;ÁZk,róY„Ê­7«·’ŸÓŽ?pºÃD>òϡ˦LloÿH²<ñ†¿dÿo5‚ûŸ!ûK§Uhœ¸s:ÉB·«~³Jzñº(Â<%µ7‰²tÈ´^»:z"ß8:î>ºž[RrNšâTL †ÏÁE¿FS7z<;{ùÙfys‚}š³µèɹo@™ö툻µÊoÉv„|í™Æ‰ì“„Ì„†ðfð¿Ž=}ö©>é¼ðwÔú'îRä„t`RséÏsš’í7 ~ܼïW‡1˜$_}½«ï |5hí÷„ÌÓÍ”†p´R›}k s‰EÌ•ï¾H{ÐùA’ê÷õçNbÙ~»Sà¹î±^ÑMH/¬H„óì Älv”ÒoýAú“6>”þ€4òeÀ¿¾<}eAÔüÃ{B)'fS[6d‰Ü!¹Ñ¤áÏl»c_ÖÎ o=j1C^úïc9'­iXyBúNèO³ÂÒ !%©Ío@^ºõ\ï߯ˆ ÉT(Ýùúš××ÝË¡.ÂsÔS0œ¼p"oÓÞ:0 ϽLeÿÿ¾—Pqפçy\øüãý zˆÛžf1cà€ª{«RÄ…xò¿ò%?:„Ôÿ¾îð zO ܃]¡qʵü‚®Œ4ÿû^Ç0$ÎtJÙ Ã%Uù³¼Ÿ¡~~"<êA'4ÓûùÉá0ç¦õèSÒƒ!tÑÈo•4^ø`9Ì¡ *úÞ²aSU„„LãœË|:AýÑíù§­Z eq• ¢pÖ¡+»Ô¾½„0›þ#ÏLBUeJi¯J3tØ{Ëщ`óËè´‡¤À«½éXz—¡l?çô•ß„´‚x×M(ZÓîOzÖÅÝ^EåN; Ýçuv—¦9§:"¡õèÒíDÍð¡>5,ÞŠ½%¹†OIË3rÏãæ)þ8ºö¾šÇ–<>ý„F½˜t4.”?ä¯õ[Âý6H£c I¼%ßþpïJõ!0Ûó^¼ñ”Ò¸¯²¦ìËýÉãU9Ìq„Ròå…¿kB¤å#ÖRÏars3ïÍÍì„åóM ®ØödkxÕÖ(BÄàËŽ¨%ðÞåü]›÷–뛺×7½§Ìy «Ê'¤b÷/¸no”Z¡­I8]jôj­í"ðdøNÞ´=¡;Ø;Úlr*yó yóÍŠ—¬¤!à~îÅ1Í«F„ÖD?këC{”†ÿ÷°Ž]ŠÛ¨&8LŸ}›Ò°ùÉkc$­(ºµÞÕ‡SÃG Ó>NÒsíѹón2ªxªÆæCoÆêúÂúЊÇë7QÐó™óC¸,dè/ip…À†)3g&‡ÓÓï[’ÀB’—ãõ i9þ±¡õ© ðšþz[î.Ô¤>ÜaƒWË¥µ;6àI-º& •ùSÉ<"Ÿë Æý3ÆMòÐ$mlR{ùdEÅÜä,BÁ5å·˜sÁU", |–Vîüø1 ’¤pƇ:ݤ™«¯Ë»ŠçMMêï;ö†ƒÊï©‘@2äž¿:b OWW(2?ó&ê>-œ‚¤²ÆêÉućï~5ÆI(‰Mü–©!“‡—Å— ubY§X!¼48¦%ùÎZ^-Ò±°Uþñ}úà ÒF鬾y“5,h%7úÈ+l[뎟%4‰]^»¶`óLó· W‚žöºÞªàEèWYÚ-Ô×úÕNÎal¹O¬{Õg¶’Ê/Hbx²é[Â\Þs…©ÄFu_” ÖQàü¿äϵêý‘ÿÿÿ3Õ:Þ$ÞÎeƒëb`¢‰e>ùD´Ô‚*Ôo@êþÄ,ÿHû]ûùåÏQ°%~Iø-¼¼%ÂolmÒÀfPåiM«6§»¿ ôÀwT4åÖ4;¸:sòÓ¾}‡ôåÃU~z› ÓXò‚3.ÒÄO=ˆ²ƒØ+êJÞ‡À×ÓXíoéÅ´­â.[â¡p¬Cfèx$rºdøj¶‚÷UwŠG¦)„ŽÖ.Öܺ†î_Z”)½ïTFrÏdU>fKÝ­×¢òÝ{“C=ÿÛ#zzìm~|á0„œÓW;ùB5¨]ßÃå¾||*û$„ò¡ØBVLÝ&GÉ×Okm~Ma¨‰Êpi‡ÀùÓšƒUàñÒ^›ôç)‹ßB¯ÁZÁld•¿R´âÍ÷²üÀåŸÖ±çÙwJ®+F’_€}ô&+7JnTœúlÖn¾’_àᲸpɼÁçuZ®gÉ¥hu½ü§è íõ2ˆàZ¡ Š„Íö6íù•vAº-ù.òž  ¶ÎYC­BÊyÜ»x§ÞÔó×H=åËà+açú1M€Sî±~M…!ø«ïÙª(1öˆ´~vÛaÐÛžÚmì .]BBiͼ3œ–íã2àbì-º`ìæqf±ÕŠà·ÑO"Ùƒ/GšmÜAÏDû‚k!(P—”ÐP žÿÔvÅH‚÷¸iÐÆhØ}ókzL#!¸1Ü.Ë: {ºì‘|pÜXš|m¿^Qýè-•Jf‹©æ¼ Þ3ž•Ï0€+tqу`0hqüõ|oaŸæ#µ¡çÀi¡Ç¯’$.ß§ç/ì‹íDÚ!pï§þúåûiÍú¿× æ“b“¼ê RR·ÒðB²¼»ãüF!FëNŽò1€ ³í—R}ðîñ;v"3¼ã_9Uý!xssÈ÷÷Z jÙe§T ^ºƒ˜ìJˆ‹õ|95þ®'¥Š9¿!œ=×!e¢ ž[ß–g~A,©"[$>Bâ7ãJÓÓ!q4ï'˺6xMOéõß[ƒp³ês­(n›£¥×¹Þ¶šÛ·?]‡è»/3£%å¬z5kò2Å7Ëï^vˆãàû\ ðoãg?àªÙË1¾w~n†ŒË¦‰…ç;)º»-žxH<×Ó•ÌÉàšfü¢àZ~ Žï{+Bì¹üÞÖ°ß’dª¹ò¼úWk;†€·Ààç…ìfˆýŒWîJl•Þ'ªSðogë»B¾ìšŠãMMt ¬ÛÕfq9ˆìÚh¥°ÔRüú°9xlGݧ'߃ïÙq‰Féú¸ÛìÚFøBÏ?µ7>u_ð¿ØÞù÷š ÊžIˆ€à•ÌÕ§ê±àg©­Ë0Õ† uù¥‹³fWíâ–Ѐðˆø¡¾TÙêæU*B09ÞÀÿl„„g>щĀ»õÙƒ¾Ÿ?Á÷4ŠSA{7ÌxiòdR ìàsVó*øÌæok^®€cìÕ³ë[]êqüõBÛ¿éísY…”¥ÈÜ«þ ˆ¨¦Z¶RÖ« ÒåÞZ-øûùu‰@`ê¨Ôm-%ð1‹›î~Ù×ÙÙÜdˆÈ]‰`ì„ÐÙ ­/žþƒ€ÞØØ»,D¿•ÍR¥®BúÛ*mþTdÆè[ŽAIb¼eƒ+„¶Ev%½4„à±»Š£!òý‹@û¤Û7ó)= ƒôÏ›Áò¼Ú_S?ø"†7ÏðANö¨ˆÕ€*ÄÂ"TùÛ?AÔŸ¬Mç Þ…¬_zýà’ß%ÞÚ©/Œ9Œ–N/~ºy†Ò'¿”&×jCI.-hº© "aš¬<âû!£V&ôÚí=$¤Ö'ý-!¬Ê¿IA+òa#û"ZÕ!5îV·…µºÞ‚›º >/¾úw­ÊÒ7÷Óg.B‚/ï’¨;'{®ì¦&{ÝãˆJ&d´{®žpi…йÈOÒsú¿M5SÞ ñW6³"Ru<Ô{^ ü{jšV¤!°ƒCŸ÷P9ä->dK½¡\ÿ$[ çYHÈõ÷Qz¦`‡Ô<›ÄsÙ¬ÚB08ÿs‰d#„†d¯ ½Ò‡¸ß™†‹ü±æ=Úw’õ D{…/<Ýɶ…´LíÜvíèÆÍg‹ìŸBlêæmÿ7ˆ«‘ø&ê·CFøx’lk D_š1_“Dð2sú!¤¹FzÈ^†ä[rèuš|H¶”Ž)?£Ì«Îi³»Ï!Öÿ˜M´#—"§þµËCE¾htôþ¿³-ÉÙ’Ÿæi`b¡ŒîÒ–O?4¿Ü¦j ©ëêÍ#{)þVoóV¸ú$ÌDÐûEÉZyããÜàù¸òБ‰’ƒº‚æÏŽŸÌóÓ ’gD[WŠ÷ƒŸ/v¶æsˆ,P‘#î|´o yÍá·Y÷¾˜ßyBeµt‘w ár*2ý‰$Äʬ¦ÍXoA׺Ǣ6hÒVÿÅ‚Ë!`­ëÉIðÍG”š{!þ¢É­ý×yðÇÉK¼ëˆ‚ø©½t!ú6ÃÝÿºâÆù#‘ö!•³¯c““âë×_Ý¡æ>}QÑÌ*sÍ;GNBysáÇfP2öø’ ¥a+íÔ8#(’zòÞ5>€’ç.Qþ-; ¼{Û“:?(å~ÏNV€Z„c„ô¹‹ÐÈ´!ÊßçBÙXÚ#Vù"äÊ»ÎEÞ×…Êsþ«3*ƒõ‰+=TÙ{ÕŽ[ ÷À~xßj(׆2»gPúJ[ð@†ä¤Ã ‹%¶AÙ;#]iCÒ=î'òd¯Bü©Çrîº$ò½¸ï¼W¥äJç[â·4d^ÿÖ°ƒ’ÉòBÆB2d—yµ‹þBâÓ«“o5¡Ö¬Ê/KÙ“ŽÛ–rý¡&ó•ïÖ÷*¨Ì¿?Ò)ü›ô4np=n„tß‘ó7®=€ô _ľ·”þל\û<ÕR]9KÞ ß^&xB±2M|nË4ÐøÕ|«Ãè2$Œ/]QÙß鵦³OóCÚnÚu3”™í~WK°éŒY˨Š?,b‚Jfñà V(|¥¶¤ÿòòfÆæ4X ÈÄÆxäÙo(åßÒ}ã÷Š%O2eo삼âç =—¶@jðMÚÝ㊙}Í”Ÿiõ‡Ç ÿAÊ+®#nû4äbw{H }†¬¦TÐú Èt}ùý}î8¤ÛäšäöQ¸JC«ÛEÖ2,š ¼â U{Sï˜íaȰ6h>¾+9·+ |zÿ f»9çÂgH}OµÍ¾æÉ¯ÔŠ%_ ×Étÿ‚1dÜUWq‡Üܨ²¤ã¨õ?•ÏÖ…tÃú÷ó”yŸ¤I¾r_ 'Jz™~ö@:%·ó^D'Äw²·J¸BîrÔî½O< «•k·ð 2>«èïBú,ûA¯‘jŸ ßu‘?ƒ>6GBzÚ‰Lûý ëÃüöA¶àü¡ƒGþAŒ?v!ÿôqÈìP9 ¯ëé;³O;òïi íZ1¤2±P§ìWøÀÅXÈnòkès¨ƒô±S9¦½:Pû8˱r¬#a:m£Q²ì:“±§¯Ÿ.—FCÊœfàb$?†žK°«‚Lk<§Œ%çé¢&ž3m°øìç+3ë3£Û˜ú!§óTÕŒgÀó©†-àÛåRÌd" דVAþÕÌš|ÅŸËi›Ì/Z@âÍßK-N;!³zPoÛ„#žÍ2‘ÖÁj-=-‘®ÎìàÃÖš-àû±ØbÎn½è§«Qéâ§ } ‘VݯŒM”^h lúuÅÍÝ7ºÏƒ1­ñR Ç.pëu’=“4Á>3ã7h˜>±ÝŸU¦Á,ÞL¸”•PrÇ[»Û=\¶2D<¥*óyÎÔj.Å<ïÃH§XŒDï‘f3{q‘4³ü…}cd™ô=5iHÏ+ôyµKÍâΤ ›KÎq~gH¿¶=«ÿÅA™ÇË/ÙÌoë@¾ª=kï¸+ûœ"âd!7d{麀4äØƒµœæ¹ ½Û=CQ` bô1yÑ<½aΕ’k®ƒLð…ÖùHoÈžÖ-õíõÈ6z´µÍ½€ôð{{ëµPŠút¸}ý¥Ï÷f.CJ§%°Î5 êçÔõ“ l›7nB†”0Igšu7”ÅOôá€Ô6SC×B ¯îžÔ8£L™ß¨è[]gÇ!µÉÞ”v–¢Ùñ_rL 'ÑÓCá a‘^h­CÎg”§êôÈŠSq)€ü6­çÉöÐ<¯º›Û·oäÖ‡Aô>{^Ñì7DÓÄlóÿ©³_WßUC$ñß­½Ù%WjU‘ÑTð£Ï¼ì¯[!~nûÊË‹ b³5¢…dvûû/;W U9=¯LÑukƒÃbûWëZšBšvã¦Óp$,œ-f)úaýË[me™[,¢2w)û×+rüx?d[¯ÞpñZô×·º®Á”ãm¼oѶ‚Œ×Q:•Ò$Šï¦—1@Z‹íù³ÛTžÚç²í&ÄW =†d8Ó9¶N?H1¦™Ý)¥än:ŸÛ ŠÏÕrÝܪ é¿•k·I›w–ð£ä«¬yÍkÔ:¥ïY?P󢬇Îa 6½IHö™ÐÑV¿…j§jðc<.asº ŽgMµIÈ0mž’h‚”üø‰r'7H67+ÉSæ¡ïÝ—£¦ÊÚu{ÓuAÈÐõr ?=E™¿‹{+2V cÒÄæ ey’­`É yˆÍ2†Ü®Ù¯½±éŸ@ZÙl¸1¡²²Öòl¹)øƒ†CR›µS"Ù!ð}~ËCˆ÷öòüYø É”g4å¹Ì(n|uÚª ¼õúa¡/²ÀS–ýú’˜Ó.<[ʃMà/G² ø¶›L\©Ö"mìóä¸fs Ô Éü&…-àóªgå•ómMvÿ±œv07o$l¿ÀæO,yFOÁòC¸ÙïÎO0‹‰ÉåÀÏ_sÆ0ÂÜÜõ¼²!$°ü(¼Ún.ºc£QÖ!Ð_¼3ý%øhÝÍot¾ß·–Æà«%`_®[‰o¿ Έ§_Ù‰¤ŸN¥Ç¹óHüôOmÎ’ÆL4UìÀz¶¢hWæ0 \3æ ‡êèÐÆ8‘~„û•Jý¼G27ׯY&°Å½ ¶&ôw5ß}Hú¶Õ¨|ó1Žä¥¤zuAJÃõÚ…ô`ÈéöÉ•Fáá ¦C;)º©=ŸŸ7 ‰á C1·.Bøe‡XÃ.h:þ¥£¥«‡V­Åeã,Iȼ„€Š’ ”ÞÈ\HL€ÂŸ>>áØ"hŸß7âúaR+ZglR÷Qò’˜ð‰b€ ÍñIÍ¢È/z3/|M‡,ϱ˜X·½•gÜ/œ)I™{Å 7ëuý¤›ÇíK™ë2އ7eAöð‰†IyoÈŸ) ¿™£ë¯#gX!Ã^i7@y~æ¾ç±HH|.ÙÓÆ©;É=–'×!«Ë)j­‘ɪmËO~m‚tõ?Cž”`†^è¨Ð‡Q!éLJ/ã·È ÈîÇgYÛ!b›0¾™Â‰ƒVÜÏ S3shÑ)HyþhÜKÉó_TK,¡fò”öƒ²$/8hê.C,£EPÀœ27è|–7˜ mÛsÈÄ¢²»_çW¾‚ߨ–¼}ˆ”‡‹¸@ñ±TIçM”üœSà ž )MšÈðíǃœæ`“ò Tp~ãýÀßåðrË„D i¾UÎÒ÷&Rtû¥:Ôvº š1Í ûÙ!5ì<÷&›rÞã{ÏòéÈCê±ÛO‰ÄRZ-%(}þƒÅ‚ñß玷 Ÿý=™ø„¨êj{Èåúù}{±2ÖUÝ7_QüoãÎÔÝ»÷ Ön59e™'£Žþš |½-#”›òí’»Ï@2ìRò4õqH…(f—ÇBú׈\UH }+/Z†ØAòßûÝ"0à|Iå\©ß/{žRxõ‹ç,Ó*…‹zû®î€”ÉÎc&‹Í‚˜ OÂ]ˆ'Ô( Ë1BšN·[´ŒÒÅwÕÕ¹¿Ašcé_… ¤ÍN-_ly™ÕK§§Ã!ù+%Û÷ äùT¿´¼O‚wâôÓdÈ·²Zõf,AaÂ)'•Òsd»îP_‘Ø …^¶wó;m(½í›#ç^(,ç$(ϧA¡æ¹êLÞA(Eš—ýø %?í[Ú¿ Àç‹/Û ÿqë–û©”ëox»wGÎ+ʾÙÍ«ØPx†ÙÜÃÿ¹ ÄEòåGþƒ´`ªì¿u)ȽuäÊõzJ¾ž’à}²Oï;ûv„AÅ)9õ7÷NÈwY…dÊPµm¼Õ·çkf-AîÆê-–ÁIqø¯ÏEAäfïÐ Ä"*£èCô°vs¹*Ä—, R!  ™×´¤>¿ ¼ÂŸ;Á-',ØÐ;¦RUr[Ý·õ”0í¼8Z^öBYº´756wñ%MwÿU»w‹Ÿ|¹ ‚òv]î”uy*½2p8Ü'ŽHt$€9fÅF°øø²Øšœ#ýc»ö¡!óèžÛ¨¬Ùõƒ®â›Ðo.ˆº¬§æX‡€Á(Ô/ñëXÕ‚¯’UãÀ²myñƒ,ð·2x^,7ùÑw†B.Ðrô›&,n€á@PÜøV°Ùß[3Í>ùÕÖ­ñ`tÈæ.˜: æ½&oRÀ|°ÄÕ0М~Úßê AorÂq^ðØY‡Y/ê’fýy§E²oš/Ð}5ç%i€álè˜ïSP?žì(—$u”uÝ!xÀ(5px3m ià®ywœ–o¯äMþ%ÍŸ½"ß7UAZ}ññ^ i9lÀP•ÙTÅwŸånWUÌfªsÓa¤YÎ:)̤±GOYËë!ùÔ!êGe2¤Ç3?îØ©Æâ¿óF!ËñQÍÄù&ä•ÓóÙc?BîߣÏS’›!Ùü#;§9ÒrËœs/OB¥QÞæg+¤ã¶,]¢ðMlkþb¤úE.g=уÔý¦7báPÜVÊÌ{R*ÚŸfi!¥6ú£±{$—ÕÉG©?çõ–ø@Šœ´‘gýÌŸéž°*ArüpJÞ®ëHl›ÛGÉuý¤acJžÇh+ùîKVýç ‹Ý·¡©<ý´” !+Ù×ß{_@ìòÌ#ºO‹&ñ‹@|ÿg›Ž‹œ²Qc=6xä'+ 2*}éÜÏqˆÈmS:£ ™¾rö¦"‘&]_„AÀ1ÆL;eŸÏZþ¥ô©Ä÷‡ø }äEºE…CTõØtR|Œæñ(ó' בÖóÓãä(×í»ûF§:„¼¨Æ´6{@lëònö‡G Æ&‰—' 1¥Vcdžö>5ª!äWÖÁèCéQâmGWE~C˜ZBEçÈD¿æïµ:"CéAõã™%PÌ×{·€ÒÓYâl/våAäêMª[/ŽAâÄùü¦ñ|ˆ·Ñ5Ë¿ßqžÐNïr´ÿ»Lw/bÇfÏf¡±®¸Ñ¾äµÀ‘eJNÔ8™·¥B(iPo«ÍHx¿ûp¸✆ê1!{ 8zÄo©K’Õ­4ûÆ ò$sAjþåøìÌÏ!1Ñ¢þD®ŠgS"cŽ·Bb‡—RÀêIHHËk²Ä‡äÎcKÏ* @{`ùƒC¤D+™EJB |iJâáç0ˆD—¥˜÷Ax¿Uñã@F´`n(‚Lw5ÂfÀ×Û+ârâ&Ä ç ZÏôC:Ô„¤uî"%§CÆÿû÷̳÷ºÆBÊCxKÚª?¤3ÌÛtô£!£ÔÜh› ɶtͧ ´8Š â7¥®.È@"ôfÏuCfˆl‰}xL° ÒŒ7Ô Nð”\ö³§ôëÛrº´!¢ks/‡Ò«%5•…=ŸB¸e‡³vÄ$Ä‚öß¿BeGé 6'šÞú6ð‹Ašò>– dÃÖ‚Á[ï.&œÏÉ<ýydйì€ó ±—’í'£­0 »‡Üÿ0¡èÃÎÃí˘ˆ¨£’b9&"ýƒÎË…y¡aQã}ÛUåD‚×O•D¦?Lˆ·µùɃó˜HÈI‘Äó8?pŒxGòÐ÷g³òW¼«ý 6Mqçñ;{Ï0 Uù»ÈP÷õ<ù¯×ä1‘¿$¸p>±9$ñR9ÝŸ¬Â§… :œ:ßP×ÿJcÕO˜@ópøcŒ¯Náë¿ ˜À6ç#gåvì˜ðÂ¥ol_0¡"¢ï¹˜ ·º“&?-&Ȩ—- 8ÿñiþa!&(?£6€×‘î7<1îEWæ¿wñü4²ø\ç;ÆÛýúªZ-ÆucñÛ‡’øf×cnrvv“-ǘ˜S•Dl0ú'׎ÙãúöH÷)~c,•u´¦rÕgåÉá&õÄÜ@L° F»c1¬(k„‘f=5’äÃ(Õ—!£oÊx¬ìe‡Ñ„1å»»’b”£+ײn˜b,ÏJã±Ó{mþäÛ0­PŒêz·âåè@Œdð@õt©Æí¸Ñz £Ö9ùóËoŒ"üpw"`ôŽnr÷Ò0Ò;D;ŵ*ÅļŽèËŒtîÐWÓSEÅñ¡ŠÅV\Þ›‹]ÄÐÖ—w ¢ц ªŠË-Œøå¿£³Ÿ~a‡KlÍÊâ1ÊâŸCÖMОѵ[A¾ºØáÐú°%¿_Qïï`)ÏÓhÏö,KùœÚ|`óf1ä"ì§7[GëòZ×§îE¡Õ]º·•naGÚt›¶0¢sf4 }Oñ:Kžô”ývèEºæÛÁ‹q×ÕÓ¤Éó¡¼Èôkqóòö[RŒTÜL„÷Ÿ3ÆbgE?’—‰áèeÊÂHó| s8æ±Ã¿¬ú‡ 1æÞ¡Õ„Œü€ “˜„Ñ»7„Áˆ•Ú(äu¤Öz6Œmæ±AÀ–'ޯ쥙åíaÌÁçÄ=0¶ÚŽßt71ÖU§`¨¸Œ±ß©û©ÆqôjÞQWÃ8øò>_ lǘŒ¯ O«ËÓ‘û-V3Ï-Ò‰gDï×d·hŒí}ú¾yË"ÆFÍoàm‹±÷~N ØlÅØd7|˜ÎÆXωô4'cl–T†‚.xžL9ç}û¤ƪöqsðtÆÙbûÌÇ1îï=ƒ’ªò7é+nò ZŒ¯Ù°ùyG&ÙwÇÚ£ ã9û¨)êߌWð^ÝÏ«‚G}gÛÖÃ,|ÿ{Qõ˦Àì˜Ä Æ‘»“ÕRI…Ñ·ªµnna¼‚oNöƸž”u¯Åxl"®/a|×Õ¼…0.&FŸcxßNO17o¬Ž ´Ún›³žÀ8¢tUÖú¶1^#š*Y¼ïøSgÅ!É‚ ×WŒ2¶ËaìQnÊÊÇ606Eõ|©£<ËÕ·+ƒ†ÍEáò›—ÁÛÉ/&»}á‰EƧFÝÝ#c‚±žÚßrêÅüwb¥4<1Ѫ•õÉL0_áì@­Æç¼™ZI·ˆ º¿ÿ·)öãüÛË·ÂÞŠgrýQƘŽÛ%ÚÂæã‘:µ¿Q¨ŒqºHøoLå`ܕݨ­Âc8œ­Ðôcl½Ò6oÿc4Jœ0õǘ¿¦](?m‰1Ÿñ`Xjlǘ»£*RßÚaŒI«TÁFÛeŽK‡¥H0ŽkòÇ l0Ff?Ϲ'0*ó‡¶÷§±ÃÜ\mbq>løÌG9c£êÍÞ1«|ˆQßÜql¹E‚±JR²†ÂȹHÛŠþëÏcÆóžÜ»ú£²ˆ5ºì1…o YµŒáØYþÍ3LÙRçZÉËKѳSmÐ%ƒg>§£ÀèÍMÜwø‡Ñr$ySbŒVïmøÙY1² /=çÆy´°wÂî@8FN®,ô– FM/vL,Ôã"þv~âÆ" )Ñ™„10æÌ¼y„1X…ºþqŠÆH|¦§ `‡±Wß™^ùc‡÷âE|š0Z½wÄtÐ`;iÜïV´e²­ÿûTFîaoœu†#b¦={9 £nq9âq¬#¸‘Ç`#»;ðŒ~Ž #"ä çýOƒ‰cÄùÉO†&…Qχ¨ÉÈØá¯R‡H ÷±Ãï$òÙÝ>£-Ú‚¶›¥êñÊßï$gC0šCï~nÀFâ±ÎèÇ«Q0ñJ¾‚{ž²8m¿†Ñ¦¾J[#ƾê¹e•`Œ]Ê¥úW†1Ò^[ÍHŒäßiÖg­aؑç/Ø1¦Úûýƒð|4ÆúîÓøë­3AÀº+Tc–MÎphzÁMÃxˆ¿™œ?óì³wßòã<óDíZr Æò>žÚˆã¥9FĽŽq*š^¶Š6ÀXF,oìÔvc,.Ô–w.a¼gÃi|¶ì1žJŸà™0Œkh—.30ãâú¢Å,_‹ñ&4ïÆùØpŧ~ LÐd©®O+ ã¶AeŒ{9óÐ`EÆ/,\ITŽÇå€U‹G—hŠã¡{µx=ÿv~‹ãš×NÂxï€c:Ì|ü cØìŸ¤SæÀ˜Uëxk[0&ÁO³T„1ú8]«ãqú•Ï^»Ï>Æ©ç½ñXÿ/ÆÄ/‘¼J{€6Šêd£Y±CŒÿS2A[ÿ²´=HVÐ~ξû^>ìP÷ù ^^u‘õå{ŒÉr…°¤õ;âݹ¼¿QŽt1)¸Ja”ÂêÚ_ ¬1"å˜Wd#Å…ŽÝ´¹`´vìEÞ°ýO´)mNÔÌ'‡Ñ»Ü¿¥¸&ƒu6rš¸cl„Y³Ç1\½RwKñð=´§$#lF‹þõÆ„¤ÿŠö¿~4ÿ\S„‘HÊùŠ·‡cÔZ3ÿ²ö1&?¹'¶R2ýè”ùó_1òW·z&0ÊBK;¥ãŸOJû3òÆðëÏEÃûÒÑD$¯¡#q ¥§¨ÆÈèY§ˆžÇÈ<¨ºžÜÓÄÈ¿¾æñìÔÇÇxÎ;Œ±o% ˆõc,úg Ǧ0ææc:gKø1ЬsϾ?•˜Åù›áýӪƞT•ÆT·{«\ÁcôØÛ6Ú—Áî™Ò™?gÆíz`J:þRáëIfŒçŒ^yà»LŒß½ã¾J &š¦n-µ– _ZoånÂøä?eô5¸b*'ßLy~Åã×5afÿ1&–Ð~¶š7£ñ¼Ûº²/‰ñ} nçâ‡1>cTY3aÃŽ”Ï|·)ÜÂÈbÂÞ¹$¦aÌd¦ƒ´0†§ªdf]Ñßm»6ŒÙ÷¹œ¸™>ÆäLqNï5ÆäÊa9nðchM`Ѭ¼Œ1ñ=vqjêÄ1Ô¹ì…1’¤^ùÃñKJÞ‹ öÁx¤C(^Å]Çøßf*žöÃø×J´}ïcÜ´UÔ"kôû®“Å»8ŒÿÞ»¾^œÇ˧…þœÆX"O}Ù–ÿ‰±H¥^½ù#ãRœëUc Ÿ.Rä>·Æû9f“OÞú¥kçÈðGŽ]Œõë ;)Œ%ÉôS#Ærçµ ^Ö'Œµ¤Ë·&#UÏ{÷L„ ;$oO}¡Vœì3U8íuݬüŽ‘KoöQaD%ÎçNPcDl‹‹g1ú—Ž"3ìÈrô¯¸iVŒª"¹ˆ´ñ'ÎWKÈ271þoÆC^ r/—ì7ºûAØ1Kw£ËIxŸû% s¤ãEÃC’·Œ0ÚMGkÇ‹çcMIÞ÷)séH¦AãyLèò[¦ˆcYßÒ¥Fõ¢O˜ è$èPbüí®ÙY® Óõ9SŒ3¨àBPæŒ#x_(è†&€6™Hxñ¼\«”?Ý"†ñŒŸ­TŒÂø<Ÿ<î׿ˆ \ùO#ЀñpÉ»xbü§&>‘Ï`\´‹Š˜`®)«ïÇŒ'Ó­ôåÇBŒ›QòGœlÆö,í¬1î)¶A†›©¯ï”4OÐKŒMzzŒá.Æþ½‘î}Ê&Æ–’§[@›ƒ ¼‘‰â}ôãN—g*riÆ„Ý^ï;Íìaì¸gÏ’~ÆØHʯËxûcÇP‡¼0§ &=ÊÐ.Ô†ñ_ò=ðƸ¤)Ç?¸ñ˜¨'_îÜÄV(r·>`ü”µŽ™æØ1^¦åa)èàÐ9nÚ«Šˆtq±bóvˆÌ›<™£Ý 5ᕪEó JJ”3ÌhØv¿a×öšOZY4¤“G 2H´‘Š͈9¸µ0^A+dGrLŸ¢-âJ͆ Œdæœ_K5Æ]Ï&Jr¸£¿!ó{’q£zòÑ5c4zpõ3#Æûî÷RÉáŒI§œùVT!ÆÖï¤x·©cc;¾#»ç_ŽÄGýÏ1æó†ƒŠõæ«bï›{_Å0Áë³è¢1¡_?ÉþÖúc îd嘀§±ùWGLà…q¨) &Èa”…‰š¶Å‡«©`"âYÖd˜Ðí—Ã4÷0íNìA·'ÆÓ—.–î‚ ³:(ÿÎÅDÝäƒË<¯c¢yLNQL˜˜Š—Eå?LÔPe—s›p8´˜£Šñµ_¢Ò½ŒË2”:¡¡… >Ôb7Ãø)*\1Ÿ˜åH¿ûyŒ/?l"àL &«3výå,&`,-©£2ˆ5å%ªò.Á* YJ1AʹgqüÖ+ý1ËÄŽïé3¿9œÒ¿TM¿&:âá€1 p¼Á†×1¬ûkÒMŒª'Û«0?#ïŸgð: Æ8Ÿ;}=Ù×ß«Bߥ5q<ýÔè,Áø¾×«ô_VÁ˜n×>üx€óðªÙ÷mr˜ Çeeù‡˜@¯êÇ/ìé˜@ÔëÔDCLº&‘Q&ÎQ4)}ý r ýÍó`šaä¯ZRÅ„ÉRƒÜ"Ü0Á‹×öo/ãqf4/ ˜à÷TJG˜…Vå¥ß§0Á÷Ì̉ù¿,‹Ïã†MLè :þÉJ §ú,ª»„ñžcHkPÆíJcÛ)"Šñ“&ÒÄx–lÞMÉOaT‘#ïâ 0aûŠç†Ô0!ÑÁ³‰¿H0‘tN¨Ð4Ä„FŒ‰.)a¢ÕŽtêÚ!¨çåàŵ7—пïÿõœ5ÅhUÔÞNE2c {ïf#ë0&ºgUÓË/§[\V)Æ‘õ²óz¦)ƾš~øAu-Ƭýï¾5)Î÷%2•O2`´oص~ó®bŒœív˜@'Ó/iöCÏ—äsݲ˜P©õ»ðƒULà^Õ/ÏK0aQ©r'LôZ…~&ºQvîð¾ &°Yu½Ù»¡îÜ/ºŠ‰)0´¯H`‚ϨŒÄú¬0Ƴ/ŸZb<¦?Gc‡+¬b/`‚ìWH—x¢0ר¹¼§0áSî-<ý¸ÜMïÀ¬ó˜x+vðûG&×<îă˜ô›<Ñþ€L¨éëã³ë<˜ˆðK·üLt+ê !LÄÞá±Ç&lrá|\Án]Û©Ô­ÃDN…lP+YcÇc7?\­ìÄŽ~Õ%½‡ Ë6°þšÖÇ„·¼O96¥aÇ’.ü9ªRŒ h¢ ÆÄé“•¶O¼Æ¤‡-¼³Ï˜b"+C_©Ø1-*™l½“V8ÂóáŠ.v7÷ÄŠÓg±«²÷WÓÒ]12µðÇ 71ÁÒ¬¤KØÑÇSúT1y&Æ3º©Øñ—–{J3žØÑ÷™žWi¸1¡)…@ö£ ˜PÍãµÒ`LFÍÅäé8vâ—üÎò ØKVîX#–.LøHFÀX®&v\óNwb3 &Òأ嬎I~å¹Ò7w-¨#“Å„Y–^9l•a —&iÉàýï5}AbåLäœo£¶þ4Æp9B[ÓT £éU秬›ÃXJOºÆ^¾ŒQä ÉÖyÚcÌWJøvÕa”6?d¥1*‡Ì7ÑöÉx~dëe‰v+ž×ب µ+~îƒ/ƒÒÏoµ”Ø1’kŸ_ˆ„c2¾ü¢íŒG0Õ=¹Kª¼uØÉDé|M_;ìô饦/s°w¯´®-ÝÀ$õû÷äèþaØÊÑ6W©³˜ØOŠ"7À¤/_ɼhy;1Ér±9;™QQÃ&˜‚Ãü¾»8&·úNFY$“¶Œ–¼€É]=nÜÒIŽ—ß$zI†IW-܃ÉÏR~`íÀd÷/’ÊF¼Æ®;t_(oÀÄÚyž¤ôF`òÞz|óÆIí &2­­éð“»°Ý¡ùË “™92téüŒïÉ §DçL6WmIíÌ"&ZÅ}Dw;Kı¡t ¥-ålÃæG6Z5ý1!¹÷Y £ í¹1ÛŠ’1Œ>£C•Ý“ÆÔt©ºcâŸG¾Ê7ˆb'<¾ŒªR`¢Y=ßoºX`bŠ©ÊÊn0™w§À†'&ö°ýìªñ*vTSñß;§LöwmÌz¿,¦ðup訸:&øXÝp;¾!Õ8óËS «’WHÚԹϿ\$»HáJá´ÁN9ùîTa'¢Ÿ×б`r’ËWÇ í°“óo ÃN›®¹ï©?Ãø|ÇIÌ¥Â1¹ÎÉÊØ%!LŠúPWÔ&+ Ðz|;)M:—3ˆÉÑË7bÇÜ#:K 0Y’ÓU3íxÃX\þˆ>Ó ;E²÷õβ2&3û©’Â.»Qͱ}Ÿý&¥ÐØ<Ô)ÿùloÆ…Ôô7²yv“ôm-³L-G“ÙÞrª>d‡Óü׿ã:tèÐáÿŒÿŒÿŒÿŒÿŒÿŒÿŒÿŒÿŒÿŒÿŒÿŒÿŒÿŒÿŒÿŒÿŒÿŒÿŒÿŒÿŒÿŒÿŒÿŒÿDÿÿÿ6Žý/ß9D_IŸšÙ™=}ÿDÿ¿Þþ÷Sr“_¾°5{ð?÷ÄÏMìÿŸ…$÷Ÿš¼øßëþÏnMîÛZ?ÇÚÇ7cú¯•ÿÏ |×çfÖæÏMlYÜÿï‰ÿõ("Ætßú¿•Ü>÷¿¾Ðýÿʵ2±4ûßr‰ÿç!¥ÍsëÇf÷m-¬­þÏ“çøD\Ø‹ÿyBeýÜÂÌÊÖäMúoq¹46ÐÏ:GÖz>’>ýrpzjÝ7÷ çù+ùç,LÐûS«_Ã- zê¯ÜRñž¾’nŸwmÐóãXøÃrèé6T±Ãæ çë§!³3èí+¬ˆÄ÷Y¨£Ô.òƒ>ëg·Ç' ï\0O¶®ô&x7ÓFAçã2ŽêÐ'³áêë ½ã$ó£ÍEÐ 9ë˦ÐõdQœ×Ka¦™Oz Óîm¾è~%BFÆV-ôùnÞ×~v ú.ìkn{C_Dñåeèsû]fä ="ÊYSmsÐ{f— œ‘=£·‡Þþº=\åQ[ÐëFþ›]Oo_ÉD7Ý1³=Ùw {ĬÃíht žn™y•ÝÁB\DÓ ÐÕ'¼U~ƒ ºt”‡³u¾AW+µXRà t-údúñ&tËn5Nj@Ç£º¶ïžeЩÅKœ£ éã%Uw+¡“ïÒͳõ/¡SÈW4  kú±ÞOZèÎH÷NúÄ]å§_s¶ÖCwVMšÌ eè6ÿþÈ#ä-tÿ¹õæetñ})¨±®£¥Æ¦úüÐu‹N­Fï.tÆ“±i3CÇïaŽ˜ýÐI|!ßJ:3ßð&|T€Žõª P&è¼K‘¡S‰ëuèžñÜ tJª%Øÿ(‚ÎnmŠøg? ãƒÏ9‘ñ#ÐÑ\›Ä20ŠïGÞz÷é;hg¤TË0gƒ>ó“_F ½ÏzF†§Ú6B¢ÒDv¡ýv‘íÙ%Sh¿l659u:h§ý¤(¡íJš¢Ãihmìk=­û3ƒ¤ä·¡bü9™ËèÐq¤>AûûÊܹÂ;Ð!ý¾²‘Ü:üÆ«½2žC'ƒ_È÷’bè`«æ(ƒŽS«&c÷Ô C`à-ÛÐ$t”¦ûòJãzÐGYMV@[’àŽ«ßihÓ á`"ž€vf†á™ŸéÐ~«¡;n–ÚȲKÚô ëƒÆ/Ñ èÈXãË9M§»UÓåÿ@#ËÀQ³¤‡PßzËj´w—G]Ú'  vwt…eˆêO f¾U‚–+eÉÉòÐÄ1ujª' Ý~ˆ~ !ƒ¦wÿ„h¦ !\Mö,å*4-’lg¾+€æ]YöÕ’CÐ@ßï±á -ç®g¡–\7÷M¹hñ\+ëh€æÉŸ…¯‚æßo÷‡Cƒù¶×4¡Z:Yo5ˆÆBËC„Ü'ZhòîyÕã• 5ÓGM®ð@«~χÍ_ÍЪaiiHn-M×Ĩæ¡Mª@u°JtlD<²F ©@ž[“° - Ó“Wþšƒ4ó_HAõvÇ©sQÐX¡=ÍL³-4ãtN{¡Ðú#\ㄈ ´ÎõË–v=ªthýêJ¿ß-ìÑZ"‰ä#Øë+A¯éïeCô¼Y‘îÊVdô ­°¡_|6ö^*>·B_Î2ÝNCqmš}׌ ä¿Vwí·ž  x@—µ?2BÞn¶{b?¯Š&þÞGùûÆGéÂüQñ‘YÚ¨`xä\QY×ñÇÜð•xQùºm¢Êgl÷ôúo£*7Ú°bÝ(Tñ8FÃ>Ï•ž lðOù…Ê™¤žs–S Ò[Ü´!«6¨ÜP›9ăÕÉ5™óEÕ{Öl5â‡PY]ÐÝš:Ô\úö0™y6jq¡±eŽ.DM"JÙzº²¨Éóê¯`²^Ô"ÏO캚š?ÙI|ËC55O=o[ Z¶C?ß#T¥”ÆñxªYSŽ:Õ€*}®YÄžE+Š2ﶦQù‹wYùTaì73På-ÙF†T»æ}!r^Uø^‰øâ—‹ê.—i¯m òò‘›/ÆPUüʵtJTmtéá?5Ô°g(]Oj*T­rôp=›Ê%-Pm´øÝqT÷²Ï:€øª?^­«r1µ=–p¶B­šrñW_ ÖCCÙ)së¨õâó’³1Ôúå@Õ•œ µé•ÛÖYEm<çßX:8¢¶Ï}¶DÔFØ56ÿ‹Ï;3½O¦ˆZÇ»¿­“¡ö·Mr)^¨ý£¸bMKjõ²^Fíä|â†ã\¨EmÍê4÷UÔ4zä׃¬Ÿ¨ÉäüÚ²Àj6m#œæóC-g¥Ž·/L¢–º'ÚK¨~²F=uG5NM¾6Œ:ŠÚZ¹ÊG»î vÑ›4_ТöŽš’èM Ô½9¹ÿ6QuÔ¼WÑŠÚÕMÅM4£^‡7韣ö»¦v󒨓/ûbT/êšóv¨ù‚ºŽóÙªôÿBí^Ô\+ËC¨»žÜfu0>ÿ%¼Š:•zϵ¶]@íme7°Ôñêá·V¨ãrdr²o7êm û,ŽÚ)þ:ˆ£–fí&f RÔÊ)üNÁ>µJo,Þ±LCÍG~ÐJ“*¢ê?ßâ.:;¡©7:?xPÍwïþúʨúÙ?ùÞ6Ô(Yøëò:ªú{(¿øçª»¦¿ûJÕ¼mr£}Œß_îoáEµÉÉé]g²P.OÁé+~¨bŠ>Ñô.jQýòù&ê •×0§·G]±µ™d5õ¨‹bQßø­9ê>Ïñ%™å5êÚ•º^籋ºÙJ.¦uW¢Nk—켉 Ôó8èÒæ ÔUÙ±Ÿ/+ºÇ S:êu/ŽÚ.¨G ž#«–½}¨‹¬=¶Ñsu¬¼J~Ëiz¼Rw]wëPO ùäñ7Ô·hC|¼ô8ê/§œÎø´‡z¿ÿuZ¹‚úš,6šÕQ¯C}QE(êKºcÉzæ>Ýcù+ˆzŇFU{Ð`X¡¹M"Ô»ôáaá6ê•]ÒPFý»éL ×Pï–^Me¡.êÓ­MPý€z¸¦¯5Ü\E½ºý}š¼¨ÿ¡ç‚U2þ<.ùöÇËè÷Ë #Ù%Ô;¢r%l>õÈY[LÿŠê7hs‡M©PƒÆu·òŸù¨îÅ…‡Uªó[9¼"€*‡ÿØ‹e  ŠÍ‰é+ù|¨Üóù¹‡OQÑw¯è“èÚ&]ËÞTU‚îÑœÌ@Õ V¯DEPõùÃßç̸Pµ±˜þJm4ªûR8ü=ç5ªob_—¼YŽj~ÕVi^Gu £Éÿ¬PeÜã›1,ÊnÔUlVíCy5á/™ÏýDÖI–_¬PY«Ÿã_JTj¨£¸'ø•<üvýóš)*­¹Èg‚ŠŽ?]˜÷ E£ÁQÚ!C¨Äò\–NVÊç§Þ½w¾ å¥ÕŸ]}€bv·C1¦Ý ¯ï£_ûO˜K¢$²¬1ØÔGQIWø[eQä«w-¯‰YPúù/g³î¨¡Ä¿^Eâù*îCvßæJ;ó©9"ôJQñsD½d(]ûŒ’o: Ê`¦}õ« eݫـP”×r'Þßìʹ­èÒ‰9”^ â÷z Åíq­{up D¢¾d´‚Â×üÐÃ{š(JçSE˜n úóè…F4#J#þ—ØKÞmüTXBq#ªšG÷QꙫyW9P¤O¶j,aÅÞaù&É~ Ù“È8P¼0†(Æ{}.}Vý<öE·[æ0?qϪ<’ä\vÈɯvn¼%FG²G!×…)•Êý¢ð‘_} àçG‰'os U8Þc‚ ""›Pª•;Yû¾ò«ÆÌG ¨+6Yc@ yb¾hzA®õÉ®©Óõ0èãp(âõ^]Q²…´«ŽQbÁ ³[ëK–Û"¤EªI˜9@¾e†Y·ÊqÈ&—röw®‚äß¡ûŸ”_@F›K`W¤êl=•¨ƒb–4¶ÚÖ#xƒ §ûJâ^•2VCùÔðâ¹(;¨÷Öúq²Jdm/î„Cý•L™õ×P/ræï¸9Ô]wtH؇jî¦D÷gP”äŸÜŃº;O¨ äáÕŠä"*(¯»áíØú*ÂòÄ×Í_@}É-F³ÛôÐÒÖ˜Ã{­ ZüÕ«\¿û@Ûu¹[WŸà|Ÿb”%Që'´5g(oR,Bǧ_ÍêîÔб×÷U’Ë :[ůÿyïŸ2¹–ÎÜ…®{ÊŸïÕ0A·¸½Fát*¾Ùêö‡®‹ÇïOv·Bçã@B@¡tSŸÐS…Þ™‡¯wÒ@ïõwµ¯ôÍ¡/†çÞ©NèŸIO®†qQ¢'6þ0/›ãNV ý3%¦ OÂÀ’ôä°ž À•Hr—·¨IcÉw¢öælšU#JÔ–yÙMúl;jùu¡[¦¾ µìêå9êàüÁˆóD ÙÔ¬vÉÿ¬ë ÔbMɹ­¼‹×ñ—ö_d×Q›e’©&ñj‹0W‘}ZÃN娡:³F™*ÛlÔ \£.[ŠêY¯ÏE³4áù„;çՋ慨tŽcD5Z²æ‹j¬ÒkžœE•¬¥Åž{¢*GÒC¾†PMÿl‘öÂT«ñ 4=ã%ªuø~?w@ÕaâÝBu¿2—ÙÿAÕ?éÝõYQÕÒšËf'Î+ÜãëI®£øsëÒËÔ(W׿oêõײ>Úr¡ÚÞÛã±z$¨ê»‚ž#í4ªáŽÛÁye_wôüù£¨fù1vîž5ª :é’Ñ„ç¯a™„6ÔpsâÑš8Ô}î5lCõ]…˦¨Iæ¯.ù´ª÷µ—ã;ˆÊî\ÿçŽJÅ~|9y åŽ†Û ÞB9Ó;–' ïQyÇP“ó =ÆÙâfTÅ.YÎáˈJsâ?HHÑá¼òzù4y<ª2×¼p‰•̉ÿ @UtWIÿE…ªêwgùQÑ SüLÿ3”w®oz¥nµ³*)¡ˆyjÆO—Q´ºWÅH;йù'êä ”év˜®e†]>b2Ô‹b>DĨmPá|ÓöÎ!”jb˜våJøô社<J¸@Ûzð¥÷ö ÖСp²ÀÙ|²è{@î§ã$«(Ü‚ŒX›£½ïà•þ¥¤‡BßÖîÌõRCÜ£„EŽÖ0øcÑâ²é?kVœ¯ÿÝ„0ŠGÜBÓ!ðãø…‹Fô ˜öו c(ðÅ~<°Zµ 3+ð>2q™´±r†ó¸‰œnTE+_ࣀ¢ù;÷#ø# øŒÛûSKÇ¡P‹RësE@tlq KäÕäÁ=JÈ‹ã¤+2TZ¢ÇÒ?´!Ý—ÈÂB‡2]Ô¥/33C^Iù‚YI&ä“äLÅÞ†ØÁŽ/ª¿Ù ÙùV$hæwNÄþƒªqãÙ—¥¡Ž+@*=pª0ƒGæPyeÇK©—J½µÎ¬2·CÛ=1¥Ç~/¡i«.íúeEh^θüæéÔ¯z ]¡w„fÁ Áôyèñ•˧†ž¼œ]ƒ¯†ÐÝKÛs˜:ìïu/‘„N£ªñB¢Zè,ÿqSò-7t ªvé•Aý¸~þÁ%hß#n{ð]Úi®22A{ù—Lí*tf³Hu‰'@—µÓÔGù×ÐÙ¹ˆZ߀NÝÆ3*ÇîA×÷ò¢ŠúgÐižÊ&?}÷´ÃŽ'ÂÀvë·Ûe<êYa=IEÂkÐs³¾:iÃÀð}®HoU°ÙçûzK†:#–Ž-ÀÐ]™ëÞ7©a°ïnæ QªÿËdyçÅúÄòBPs`„òÐÔf5S`DAŽš­\–WyQSÀhœO…jÞ³«²qyšÏJ¹ E­á[|'²­Q뤢¿Ö8žGr ˆÝ…P‹wµQB.jé¤a¨ûñµQ 9i åÊúã'9ªCúP-©vØÄª— :ª*°†ªƒÞ ±”ÜF5Êã £šébÙ+*§Põ1Ž w³JPãÜçGÙþ’¨^Nàw+ªMÓ=ÿŽÿ)ª›ÉÐü½|ÕïÔÝßsâF :gªåñüwØõEöcÔøIìØòB*mWNªOB%)ûÄ œ¨l]Îù •Ú½­/»ŠJÊî¤W_B .k|¿”r]zaú =9óQO•ØFDÖq "Åý‡š.Z¨úÒaÖg9T¡›¼u U{Z\»‚÷áUz 9Q¨’žTÊ¡p•gô_a(vCÓi– »¨l-ky†ãª¸Cvã¢*9îø:ï*—{ Pçˆò´yÊc˜Q6•éq.=”q“ŠîÕg”®(ªÏŒr„¥y ··Pnê>§„Ók”¯oªÎ%~ eÎPQW—G97#ÆFdPv2ÿMdŽO¢ý ´'PèΗ%§B(í‡ò»09v”zçLúý—S(ãáí‹Î£(U—døxÛ'Tp•¦ÈcÆ œîw/¿ŒÀ¦¸°÷Òu”ç'{ÿ"M:Êž¿¤÷3ÕrÇ£<âî¨ÀZyáæ!T´Õѽ걂’ŒhRUdQ<ãgõ½”ªÞ­EìðM«ú^ߊ"ŸÒIê ‡ï È Ô.|ŠÄë¼ÏL}¾ýëÈã¨xº¦Õ%ôýOð­GsŒèý™I»´Ôày³Œõñ‚2„qôDÅmC@é 5ò•rï*jÌü‘þý¥ã®€h‡Á¹¤1øÕnçl¤ÊiDuÃjä¡d¾M&ü«KTKdŠ XÙðCÅo(åtfw;q .^¯#¹‹ԧÄ~CvÝÙ¶šÓλÐè>gJÉëfMð›»öCT#ÄÏ›x.CTÍê“CjÇ S Î3oC…—ð(7X=y”*U•~n:ÓC™…ªûÏ(Mú©[®qêz8†Kž‚úì¨óÛ6Ÿ It¾»?-‚|Æ™ Q¤õK€Õh°¦1å4±‚Z›©;¨¾T½í=^¤ŒWÛŸA™v}HW Ê•^Ë[ðü„º›É¿¾*Ì@ýE®÷“úžPk/Ð^JôÚ&JÔi>ëAêïã¨'ÐþâìÁ›–}hËÏZjƒö/¼7BsžCÇÌ×übáÐyãWÖíè˜Õ¦¦ö€öžSrÂħ ƒÁßv`:.ÙIÚÚñAûÌy'…ç–Ða;—hq|𻵢¨c¡qLñò%®th 2püûH ZÃ#{ }Š ÅË8üG>ïe~ç]‚ôßö‰¦¾k¡J|g‚`ðN¼ËÙx–û‘3ヅwv×ß<…®·[võ.ÐõøÍÝŒ°ûÐe³'£3 ýkf@k8ô×}í¸è¨}º”|’öR0@ùXî{„ô[’U)€ü%®RxJçƒß¾™–ý×ï›ÈŸ89°‡ÚÛÎjþ“ÚCmÀúþSÅÔ–s¬Lt(µýÓ§ÿÍ…ÚÞ½&]1¼‡Ú¸Ç²ÿž,Aíôvý¿„Q»ÐÐÙ²ÝxÔ~DRœ»ê2jkäýwÿëQÔæázê¹=1j¿!ÝÍ‚ó¤¶Êᇤʨ­HýÍ)@m¶¿bN¿@ÇrXž½k@‘› IÍÞ¨“æ;§ûczÔIJÕô**u^6½jë…÷ÁJ'Ž<“Cí<5©ˆä9jÛ¼‚¡Ž]K™¥¨•õÆ®6j!šŠ>så1j9¯aM<šœ°Îƒ 5ÔLœü-Áϵ¸WѤ)?@-š7^?¸¡‚Z£Ò™$Qs˜€9ýïÛ¨•ä ×Ïyœçˆo’ãõeÓÐéV4j‘Îxôµ¦]· Â낺ZÌÃä-Ô¦ü‹ugxµÚ¶óÄŒl£ÖµA£ònM¼žPžqút€Ú r/ólÉ¢6» ^Y…¼ÞTÞðÂBQkkeBQjuO1±xZlÎ$]BÍï³ßÛþ€šÅì5˜ZP½aNs*y>ªñn·O@µÚe³l6.¨!çæ„ØbT5/rJ£†U5ý÷ U}Ínܽ‹óT'C3Ç#Œ¨ÊrÖêýÖCÔ(ö‹è$¿jz`YaõÑ5zD¿ä{p5½*î?‡}íïg˜“¡ª 7~;?ØBu×&œP¥ÿXÇN1ª5Û ¦uLF5fæ?×xLPu¢T]ç½³¨NÙ‚µ*ÜÕ›£µtAµ¼[ñ¹§êPÃí§©[&“¨þÂîyùø&Teläµ9ª;­l®þÕû¿n9¥ˆê'êÊ3ãõëNÙ–±ÄaÔôóÐÇ»ÊPýß{=‚¨ñ\èËG:#¨!…·|nn¥›ú²ü SE™üO/‹DÙt3dg5QÆ7ÇJ=”µÌÖaœH‰² µUI¿8¢”&Kz‚Ò/T4ðGü‡õTb`ä’}á *¾ËÛ8åðAgcE§ *Ðh=hšüŒ ßI³f ¢Ü=›óT(_ŠT8té ª¸öõg3óT#õ©„q •Õ%s Šw¡òòSÚ$op>Ÿtè×* Qücs¼•æµ-¾:|•83¾g8ÊŽžÛR¿§ƒàÛð“D’ÊEIÓ–¹ÁÝ…ÖXöC \5bu;Õ?DüOÿ(@ &"¤ú(Mê†Û“‹²(ab©¼±à= WmÛÞñNG‘=üÊrBèG;©ƒVâcëbš<Ÿ)"&tÄßð… øùÇ)•RÈ[•™r4¤ù™V½vf¹¦ê™X°›¢­Â/›ß¿…&7M’"ÖQì[ó¬sj’(FDÿsÂO?d7Oš=Þvžjœh+ZFß}«›ÍÑ3Óñ;Íì‚è£gõŒ°$i,6 =ߨ[¤O=ÁoyØsÿ«¸j„²¸%RB|BÙJSÞGH "ñøvØRŸX¥4\ЂxßHM¶üH+îbÓ‚Ôçë&ỽp5ñëCÈáù¶_ëŒ÷ýÕQ¢œûçœ"ÝÆ d«¿"ój‡ômJ¿òÃt­IŸ>¡*¹šÞqôcÒµó¢®bªô*~$B¼ÈGµR§+À»ªYT|tï/=š…ø“™íµ/‹ ìÉVÜ>2%]RÉØG mµ¯$`z ’·žÑß¼)‡j¯,êLÁAïðߨ á÷$Ã9ÒoPîm»âk;•>,L“ªãP<~oŒ5+ŠîE Óˆ‚ÞOÌÆ“E×bÙ|ÏËCõ´O’uT˜u¹{­C­{êærÓk¨öýÍsô T(Mçfñÿ„ª3¦~ÙBùŸŒÓ§d: ò2iŸX1Þ_˜ÝúSªp g翎·þ„Â~¾ _¡žYÙªÓˆj­vfû¡Zsl•¡ýL}¬´ÃshKM1ÞN¢„v·d¦+´†ÐV¢‚š™C[Zõñ‹ï m‹EãÔNhö÷?·ª­3ÝÖ‹Œ”ÐvÈ þŸ€¶™§Þ¥'} Íå⯟þ× â ³RÊ9hk¸Ú2{:°4£u½hãTu¶Ó„¶Õ}—ҙЮp)ÿ{Ÿ´ž\'±8<ç'‡®¼ÅÉGdœÐÙüà®âð;èñN˜¾]2 =ɳÉagBoac凗æð°†´/¸yúùÅ´†¢ß¸6{\‡A_›äâï?aH×^I{µÿ…œ·³Ÿ3¸^^ƒÁ[WþFÀYWùµ—ÿ`ȘËE®û; jæÖ¹™`ðMAÂÃ?0`Q p6{•!_£®Â ŸêßÝ?²Ð7ÁÇ>SDm©×™ñ}=œü´•ª¡/xIEdµ ú#;Éט¹ _®„Ôg”¤[-?µÝ‡>Ž£*Ÿ¶Q»&9[g;j÷&ÍäE‰:*9zS~Cì)"Ô%oP7büÍ7y€ºyÓe7ÍPWEÙÇ.»“¨í²±Ðë‡,¨ýSØoò¨o¨ü²ó=rÀû)µ‰ZÔ&•$µX‹÷O‚­ºt_Q[»Û±c]*¨U”þ¿QتÿštWlȃ{¾{§ÀÓ¸¦³ÅóIwSpøÍQÈîQËnPy ™VŒŽ®qÖ«ø÷Ridýòöú 9pQîûQ€þëÏùëÿ@E—Ñ®P”>ÿW( ¡ ¥>¾o¨÷ ‚[vçÔ©!¨¼Î>s6† J>…œK< åϽµ¯,7Bí7}6ÚYhqÕøûEnDšºŠV¡R·cØÔšˆVSO€–‚¡xEh‰õã+‹.€F’Hž¼òFh©®uѦ‚‰­IeCwh ;ÿ©æS4g-˜­ÿ-“»ÁÚš—ò'%fÚ uœ^dü`Z¼uýáôZ[ÍßG[в¶-î ¢…””ÙˆÐäЮͨpšˆÎ°ŸÁb Ù­È„Ó˜êD“&?ÇgC“A$§Èá›P¯·â¦umÓ]ÎÍÐ}„*–ܶ:Í",?|„.jO›Ý0 hßÖw=ôî8tÝ;ýÒž§º([~…w?‡ö·ãuÓg ÓÇøïÔä1è$1?ǸË}\MKÖ;¾Ð»öÉ"Î&zUGln¸A—iSrÇYzè:w®ÓY&zøÚ24 Ûõ_²¥‰!tõÕ_³: Ýäþ¶ƒ0@n"~•IÂz‡ï Bê¯ü£ jÐoþð¾M=ô‚ë)‰¦‹Ðg <¾¿Ç}®žRFÜ¢ÐqÑ’û¯&ôbï7ž;0Bߊ»Á;ÎPèópSøV½y?v¾ º@¯_²büçWÐS.´¹÷ÜúTÝ_÷†AoÇ/sµÐ¿Ð3_œ¹ÝÝ ½ù{–jѨ³ãÝ”«‡ ê´=ë©CšƒòšüQû> ©ú2|ží)Š’ˆ'~þý*úVRO¥ï^ˆbÏ2³ÛGQ)½ZW,6Ñ/I¾ÉsPŠì[ò4Êúâ³Fd'‡²ïÞ\äAi1óæ-€^™Þ~D~ù«c^Šæ¹àý+Ì_L6l——m=ç@È̃Uúýð~r/éÊ…xˆç·ü`ÀÑ¿Ó*sm!nþ«çR¨=$F%´íÚô@ò­d ÑAH|JWô¨ÿ#PýÛ¡¢l‡0§§äƒLð½lÚ/×¾…_ˆ7;³ Qw¸cå¿RÁ·*?sïAüP³íi×{™é®x½‚ÿøÅÊ{ @æ™;wó[£!OíDÛzîoHÖ設ñ´€ÜÂê£AbFÎ^2‘§Øyl5ÏO‡‚’ög#>¶P’Ujnºï ¹˜ä-¹××=þçàú3(dte )ÿ¥Ñލ4 Ä®¹Š8Jzÿ çy Byz]Bë(¿ývRq' JÏ•l²dƒj¶3"³œÁPÃ߯á|l*²D¯O)BM«Y–ÑoN¨øã7ü¬Z˜޾ÏÖÊ—Cã¥Ð*xŽÈ5kZ¦‹}–šéˆú;®Ð"wÆ9ÓÜïS®:ƒægN d®8?ø {I«Ú~8J .Bk×î'+ÐFÅ/±¬ í$‚öœ ñ91‡Ëœ$´p¦Ý–…f{b,æ''´,>ˆëX„aÉhÁÎN8ÏC—ö½¬ê¨ænp ƒÖ¼7»Mó7 -ñÔåèZhaj*öz†óˆ±ãG-; Ç<¨µ>3z.Ê¿ ¼ÝÆqA•æ³ÐýíÖYlÍ º-HúÜÖ¡c´ÊRŽ|Ú[“å’ÞÝ‚Nõr.ò·ªÐqN<7ÐÕ:þðì_%†Ž6¿¾aŠ“Ð1gëq™êtÅ{±‰S@÷MþÀá·ÐîØøª#:¢LXÉ‚ ãPÀöÁÉ—ÐîžµÏS²¾¿kÚŠ 3¯á ùeèäÑ0uƒNÛÙAMÊ*hÏViÊag‚Ž›ŽßP@‡HÈ¢µ7´ó”ú’I~„Î’L_ö8èR¦º9E]Œž§K=Í¡3×3|°ù*týú~¿Nº’"Út±Bשù”Êèì(¹utúÞ>Ó Î‚¾%5³l¡oÐ÷òPé»Aè;²/wú#ô>àõ¦´›‚Þ±IëúõÐCªxÙ3zH —Øá¼K}—Rø, ô®m8Vš½¿YO^ ¹‰ 7Ÿ7’¡ž·/ìX £T_"ÔÚ––÷#ï-j lŽ=W„Zäíf¹ÂPK2¸Éäï¢fo>ì²-#jy%ôêÿ´¿O‰^u…žÛÁbç¯Bw.%ë˜ØôÐÅx- BwýaâûÃzÐýþ´ùÙ½*è®&÷IH®ƒ'kë³ç¡ÇønçBÃqèùe=í³=k]²œ×¡Â1mÙ{ìT -•½TV„J¾:ªëq!Pñ‘ùË·àGÀùù&% ù£u,C8~—s\|øb¨uKÇ AŒŠöci4DÛè&z¹¢ðžWîý_˜PpµßðÃèf~µ<ˆJ[®G-4k…ü!Ó¨¥°ù¢C—>ê èì(£Î ×5®fúá8#曉ȆMÖ»Ú|Ðñã•K?tžºu*ïq3OýÔVªÝÐz!qÃ6ÄZzhß÷ˆ‚®¶žk¨OðºvYžª#ì¢÷$"ìZŒ: È)þ·ù¥(ìø£%ÁÓ ùÑÆ×[›S¾ ‡XýŽ…BÏš¦9=(mû£V„YBÉŠRXí¿9(gT¯ÏÐk‚´÷r™oJÂvå›7 Åò`X«­ 2xYœV´ ƒÜpñrb$dÌR;W¸„Aê qýç ý˜°Éàø Å6j7pMР4?×§\Îá<Á'eçšÅÎVßCyà~îËÊñ1é»KAƒò:- %?£œ¤Ýuç¨8wrм`ÇYÑéIé ¨¤#£ÿ®s6*"°¼ÕÔSBEðÆÿÛ“VÔjüóæíÿP«Þ»‹ {¨ågmá¸j½àùªP̵ž75;>‚Z èF¡öðº÷)qÛ¨]"ÿµõM.œÿ9Íó/uØ+}í•:ê‰UBðëY?Lkµ§]\gµªG,ô߇•SQ§¿³ërƒê"ù’·t Þu-qÃàñz¹ÛÇÒa í¨dbY5 ÏKg¡¸“ qº‘DÅ]C¥ þøÀÑN,›c2 î”pã„¡?“y®•W`(ÛY4z… Úx&¼k>ÐCËUÅ h—²%º Må^;d¬ÐÂê¾%(£eÔ· T9Œ¡Jq™œâÙ8T,š×‡½/J.‹c/¼ñþoóuÌ£/¨ÒåÄ‹ ¦"¨Ñüh!ž¿6ÿêŽäG-ŠòØÏB„Žâuý×ç!±ÂLñóîSÔ#™~qúb3.Yx-ç« È4¢Vº«ëÙq}®ÜÕ@n¢SúgÒ­áö¾*òûñçH¥¿8ò&ë¤XÆÂ; «¬†Ôàu:.â~®/<Ü$ôÏ÷D!%Å{®¹'Qt`~ž§‰ŠüLØOôF±T!Ä?ÔÝÑ÷¤vZsE þò­%+y~»#ŽÒo‹ÍŸ½Á‚RŸªëÛ¯{¡Ö³¼ýšïPËþÍb¶¿!¨íõ/ƒ?rƒx¿¤(ËÍG‹ÚŒ%•M„o¡Ö¢j#Ÿçw¡ï¿±^ûYh!Œ»/š -÷ ös ™ í[ì;–Šh‰`Òj^ÕdJ=BNýP÷È“’Ïò=wñ×û EŠ¡¥Úû{gŸ«1‚B^k¯ÜîPTzÄï0³#dKYܲív‡ôŽ/Û‹þáñg¤A…D²ÅW·®kž¬rZŽ;l®D™ü°’ûã§H¥µàwVžÀÙfH”8ö£ñ•-DÆ+{ÈÇRT§´û!c"ÞcŽk2/3<¬¦Q€4»Ð)ïÉN””©¾bŒâ /%§ï—¢˜s^ì;¼Pöа"¹äC”G¿ÁÖ6õåÞ|s5FÁÏ˨?©B-RÁqÙ%è•CµšoRµiÓK¿í@­Ÿ§óˆ[`o7œÓÆúY÷c£â¡{ÏÆø<ß ¨=¼¤½–èõBïüŠ †ê­½¿‡yP“w,/`:j_{ú*H~…fÚoDm&8O¢~ÀMÙzÓª³JÐ’nú“å”›~ 9ª›iœ‡­–„à÷áîwæ÷»zÿøûZôóV®Á‰>ϬޑW1@~*f¡õ[|èã•8ÞQ{&#”±D¢‚|~ W{"/¿k[ÜDhô>ãXÊØ£PûŒ²* >I¤^FYèaNj JOåäx³ƒRt(´¾¨D©t6bN¢"]r¹TË·¨¨`žxk•>“|J­ê%› ÿLI š£Á>+óJ¨:fnTúë}ÔX@-çãö5´Ô>>Fš¼¿UÚ9È ††šë]ýƒ¨E÷äeÚ­—¨Å<äsj¨žø¾C„× akåÕ÷ó¨yÁ†:{Òµ¬‰_’ñEM&\q5™¨‰î¯d½jLäËÈžG­ö´µù‘>¨•Üi¤HøjbåmcBU¼ß·Ÿ ô¡Êf—åו¨â¨A‡®î7è¿{žÙ'âôÿ{_þ)oëþd[wQ@¿çÈP/Gô›¤*=a€îÞ¼à²KºÐEüqütšªävÃ0ùN‰ñOè¾úÇ;í+t oŸ}]ã;§e®Ag¸vÆvB-t=ö”lò¦ƒnéÌFÃ×aЙŸ=·ê•]g 07C׋\µð;8¸sæ/)ôHí¥d.ž[bt%éЮÝg!Þy:…ö ó¸ä “MëjÙÑP褵¹0~J:r´þ­”=…¶²ÍC>w¡ý³Ž³Ê5fhgeËI¹í±[c5¡]eÖ#N÷ ´^½^/áé-ÑúZ!©t-ÆÏ„>½û Æpw¸ŒÀhô³[úv0–T:²pÇF½¿÷ûÊcYìºé`üIûÿŒ⺗Qˆ`täÚg½0Ní¬¨*ãâo¤Âøm­ÑÃ’.06z”Z¼ê,Œº+ùº–FÌ9 GÏü…¿ï­;æwa˜_wlÝw†ÝÎÐù›6ðE E}>Œ îŒ4KÃÈl€‹}R$ ÿ±SïŒé†tõ‘û7j)ðjk)Çׄ8 œ{oúÒ/mŽÂptê7³û 0ü&Mñ˜[( +œ 9£ Ã5T˜—c Uº3Iv0âQdHãtRM×”nÀèz’˜º=Œ–ÚÈ_Ò~#N#Ÿã†ÏÀ(—¹þ¡4 'ôi“¿„1!Ê‹-oÎÃx]œƒ5KŒ7~ä%ãO‡6ü`܉ÈÔ(‰Æó:ØäÁ¸×ÛÆ±0v þ /8 ÆUý EXaŒ ’m%é|×|ö„ ’}ø’_Ì1šs…q¤ØÛ ãýŒ:ª?aB¥Ëø¦ÉI˜xú>B·à2Lp*»8;àó÷lÂa<ó”¶‹LȤ•dk,ÃÄ”¹›M&†Œ¾>Ÿ… +†{-¼0!{ùðW˜Ð‹ïÚ„‰WgÔ¾|† y—ãQs0[q€÷LKfeý01t턎eLrz1[þ肉ÿœ·Œ·Ÿ¨ýc©»*“e=0~õ[íßÁDûÇ~ZÕYÆÕO1Äñ`EƒÆß©í ßž‚ñyU¶êëÁ0þÌåðÔ€$Œ:ñÞ1.Æ?åìœ qg÷ýk7ßÀÈ»'k'aä¤N„_™ ³?uPŽ‚±.GÝZ>EVw£áQ‚ñÒ7Sñõ'»ßÎý…±ÖÈ߯iòaœrÑjŠ ÇéI¬è‘Œ½ˆ,[ZÅýçíäsD·+‘Ü]Ë<~îù­ëÙ‰0~í —DŒ'h|ºGäÙ¾zli4b¯ÞÁ䓸9Ë·¸ßºÃ}ˆþÀÄ­ÞZ-˜ÙŽçP3…I) Ñ„%G˜¼9Û¹¡ð&)ެiFQÀäa Ĺ:“¥ ¬éº0Þç“GX€‰ÉRk¥í0qŸäÚN ŒÙVºóÄÂ[òú'Œ]hWç<ö Æ® 7†`01AÓ$¯ SÖø©T®À¤ïéišm˜d¬ÿù-w¦Uùþ L~‘’ððó‡ÉõÑiÑ‚&˜ˆ,¹eç“^‡¶šê`rË!)Qî:LžO ñø“%ºæÜ×&µ†«œXRp9N"¬Ä0ég÷þåyo˜¼Ý½C[A5Ëõ¾¹Âä¨Ü—NÎÓ0¥’SW0ø&l·Ær—`¼R€Ôú1Œ¯°ªÑ…ñ7F¦ga‚ý\ÚØí˜HXª/u…‰«>-&Ó0^Þmr}½&.yÚ{ÃèÎÙ±¬Kça,¸ZêâÏ0šeOcÛæ”ššM0~ýJÖCq4 u( „ñΠæ“/ aB‚Wá(ÇEæ¿wG?JÁd3Ùc¢k)0%©:þ[s¦^ðV%„)Oo‹tCW˜’¹îøBëL ŒÔ2½ûS™ßŠ„nÂÔ‡‚ÏøuJbÿDRL}+´‘ªî‚)uÊõïGðø‹Ï=÷d÷C½—ÖßLFɾ.¨€ÉþÄûÏbõô”ßv`r…oP×úL}vŒJÔ¡€)¶¢c§q¿6’ß?· “s£*2ùaŠ˜Ø9^ÁD3 u,9ŒÓ’-Š™âqäŸ{$C_ÆŒfì’Õa´ýKú{É ñï§iƒñܧF›‡âa|ìó ËÌ0L´ç.öì>†Iíõ¢( _˜ ;B1;ÓÔ4æm0ÍûZúß q˜¦Ulâo†©'‰”Âõ10eQÙ^LSg8 ¥¦h,¤ä[a*Ã6b.¦®j˜È)IÁÔâ¥~š˜Ã0mÆ©2ÑS^!ÙûoŸÃÌ…ŸÏ~¬{ôVÖ—*Ê0ý½{þ“û(Lë™E÷_‡é‰¥mÞ%g˜æ¾¬>wf·/Ÿr {&L]æØúÆ€ÇóFtDçü L¶8»sÃTZDç­c˜Qß]Òc ‚éÑ‚ Ÿj9`æ"·‘ïE˜ù~MMÜÎIH]²÷Ó½•›'yazrÿ×į—0-.X¡HSÓó·½saºàcÙ=6˜¾²Mb÷d¦\†eÞGIÂô›ÅçqÏXñ÷kF?¦:ašïüèϘjž¹"3ÕÓ¬JÎ!_ÛaZ[ùZÀÔ¶ Ã·Ã›0í±ÙQ[š3G:ÛzuÁôõ[›f?q=’VJ§b`º4äŸà~øIõPxX×ëØ+ )¶ÎìëxÈ8Ua~0Ùi°ÒD0ƒ‰,Á©õk¯î“§Ãó}fw÷K˜´5؉6yc$ó²ëË8þ”=Ù%ð<“ø=3€ ÑP¦I²x˜ ¿7ò¦(jŠ ’ãø¸¾R¸d†ç·”g·&ðzùìâ϶'<®ÅÒVpœ‡„•ÔåÚÀ¤¦FFþO˜¸ÛAz× Çà<«Ý]˜ôP\õ4m€ÉT·±Ð[0õtäDk2n7“C‹³¬oaZ¢ÁÐîLÇëµ\¼ÓRš¦¹/Èq;1¾ÆÎÚÁä#Ýxã&˜º×·Wz¦OT¥k­âû_ï:·ÁS¯ò îR³ÂTv´VûS˜RåW¤ãÂù–Fgªj×U¼Ù#ÐëŽÇ;{À“Ö˜d͹ øK&֙þH>‡I#…C¶\0Ùx˜÷Õ½ ˜:é©!|çáÁà0b\ÿ\ûumñ)˜”':¦ñå^ï\ÕôŸâç·6CÛyß`Š7$û¼ W_tM@(>ŸºœøuLý>Æù6r¦ª_–]l½Û߉kM Ï_V–â·Wðø3ÓJw^ÃëˆðQÁÉ>05Û$ž‘ª…Ë÷nH=“M×ujªâ`мßÒ«Ó&ûX„ÊâóôR½n?cÆó({uyH+ÎoFkd¿…àù¶@{Ý÷Cÿ)YÙÈ)Ž?"aêÊùÃ…Ú”0ñeÉçk¿LßÝ4Ö‘Âýs‘?ÚdG&‰v´FœqyúÇ1\„1¿¿Û;Ó8¯Aêæfº³x=ÜTTŠ–‚щ—·¼’ñû{ÏP˜ Χ .³—ÃhQJJrŒøI>}Çc¯‰ù¯œÂù¢JgWÍ7Ý~jðâ&ŒŽ—¥K=o±ý Ž›D0¶[è.½Æ#K*oµaø!õ/~?^¤›|Ô FÄd—À°}ÀYÂ8 çKÙšiÕÀ˜ºiÿ‚³ŒÚ»9-ËÊÀšøFˆ”…!¬&©r{¼q†ÕßEœSÔ›°jG½,$·«Wo=Ð{ +rßï|wy ËCÍÎ4oÀrrÿfñðX¾±¢Ýéh Ër|†o”dE2£„•U‘L) XâL$ ·ÜÛþü°vE•ú))¬ØÓ|åb‡Ή¯órÒ°œÉÝl:Q +üŒv—¯ÁòSv\°,S†¯¾×€å>R‰&"\þa_Þ’mXN›,-5s‡eó=‰ã¨–’…zóŠÀ2;»í%QXæ¼²ç„16nƒã˸>'²ý¢ƒ€ÐNGJ™Ó ‚×SÛpX1;ûäoæXQ1»uá!~^"7WqXÖ>%¢JËÊlÏ^1âr¿JN^xËQ¥-9ça9@é¼î¹ë°ìøz­”Ô !—>tüe¶:ßó­¸^'iž LÁò©ï2l‡Ó`%ä’ÿX¢¬x*v±j©ÁŠû£¢övXyë¿u(ä>n’áΰ¢¼ë—¡=+7É>+¯íÀ òÞó'+®å‰"9;XáëÍo¥ †å]Û/Ô3ayU+hÍ@–›³ä&¨a¹Qü¥~‚nŸ6GoËÀ²áÝïR:X¾\ÍæÚ!Ë£)¼äŸ:ayÄ8¼ìq.,ƒgh¶ Àrã÷wm°\ÀÁ®ÏÝË?ZožÂ×;©qå=‚åûÕ©?éXaY'Ñ$ðß-XVÔ7ù÷ ƒe™g=»!ö°òð«Ã% /Ï-)Vj/Êñ_z±mXvW Q[ÄíÑOW±“ËfŒºÄJC°Z$Z²Pd«Ã.аÁª ‘9Ã…XEÝITe`e¯EN&ŠV¼ìYæwqœ²‘gÞ,ÅýäÌÍÒVl“04l+wRŽ·(4ãöd‘t¶ÄíûÍ©8ï%¬p1]£´ÇõhH/t V‚•ð?¥ÉE°Ü*S^e+DÅÚÏ3°rä/ Mh,_½î›5Í‹ãØñ¤þŠvXr£Sp»Ä_˜¸ð –CRÂ`es©Á+4ß÷±ãg¦|X>bÁŒ`9½ù5ã& ¾Ÿëj¼ ,×þ~ÉÑËѾ†ôë͸Ü©xý[V ã–?Ì ËQ¡vGp»KïÍîb¦@X§4[\¦ *¾5Â,E4ÐøÂ2ŸÇó)ï"XÖ6Ô”HPBçf©öâW ÔŒôÝ~}w¸q»*ÝW!weÚ" µzÖ?!ÃP ½5Oí\©"€pVz~ˆi÷/¹Ê¸A#,h·vªæƒý•å@ 6šHHØ‚Šà‰1ÑxXøVþ¸4eú|š°xÀÙæywSPÆ)ŸXÚ<É©‹ãf©kÛIBð,q‹ÚmÂõäÃ.¬ :#­Z‰¦°<_ï9–?Ÿÿq:ÀÒè-½Å«G`)ŸúHJ&,}¤¹xs#–rônyKÂÒ›sÙëb°t#^¹å[ ,†xÓšÆ&ÁQYòà";.·;#1à:ÒMèãûÆøy¬eáö$}Ûø ~]‰jåÃ@ph{¿Ç„îÖ†'{@ÈŒºØîm„´–Œôu\¿ïÒŸ"˜3`¶>:Wׄ¸#y ëøüÏŠÔ¥uÖ@øª#Á¢[Òã¯þâëÞW)dç‚ó¡æ‘Ú hÙôb2Çí7˜|?ñ x­Mîªápe™e©ˆ‚ÆÎ±þ –*Ôu< ˜`){½?‘•KF¡‰ïàz¿t}ŒçsÅôKUg) Ï÷þºë,åY¨GUéANEMÀ ß/!¹Å% ¬2›Ì«¼@ÈÛZü†Ÿ#r?Æ­÷Ï|ÍX׸7F]žì5!µ­îèn¿4ƒ]•øzËQ•K¸ý͜ۊñü¬ô5ð–(É49 ðùöË·ØÎ!ü˜ù±‡@°~.®¢Œçó}{k±Ž< L¸ž¯ „&Ç3¸\ÁK:”ö@P–f>ëÇxë´' øK‰rùXàIPɲVÃíä«–úc¯ºsZDøzbnÏxc-­X¢µ æÝ¸‹g`äøtñ G˜ÏºËÀ óá§Ñêq˜wðè̯…ù+.Þ390oÞ+ÿ>õÌ‹¤r…ö¶Á<ÍÇ{B~wa1¶ì‹¶Ê ,:Ñ;öm†Eyº…—i°(#÷CæõwXb6Òáèç…E3bÙ×´Ö°$3Q~òïUX"]Ë”½½ý”¼„E•†ìM?üžÂ;7Ùq H Ø;`ᣂoN€,,ìØ¿=ô Iç‡ûqûŒþЗßÃq`º+,T QħŸMvÁ‚yi'~îç ïâv7÷Oü‹ÖÏ3ƒSÙ`aULª}ÇïQ§âúg¸žE wôÞŽÂb­â;ո반ͪ,Jq£*ãN©¹ÃâwaJ¡UXzÙɘV8K·¿¬öÁâ¤ÿ±·÷~âó+ÚkñóyònøfÁâiA.-<þv/8ÿÊÄõûGýS ‚…h1“sÜ?÷ÿ¼¯YØ„…“‡Ý&…ªa!ÎV¨0tÇ™‚¨s–6,ªyÄx.–xçÉ Æa‰Êõ_ü>,Ž]¼‹ù_+ònÀb qüб,,úÚš»°áõæÔÃä<|ž÷¬°š ,Þ?³ôö-ž©…Öc95`1ÒÞÓ¸g|&]•õ°äÂò£øÆoXºÆp7!M·Gü8EY!,Z\¼J(Àý¡°³£ã­â,£±,Ìñÿ&_3ƒ…ÞU Bò,”PäœÕ«Çñ)UX-£ŒÛ?,fâÙXpÃÜîèÀ¢Á‡ž[Šë°x9Ç~ñX ,J÷Çø!ÂÑ®ÏE•`iÏþrF',E’4K¾+…¥/UT’Çð<@oÝÅ2ô›Žš½ÒÄãÍ<áu++,žçŒ%é‡Å…²Hyh<Ä‘c,T8=Å«‡$|Øa‘Ç*õdv Ž£rrêÈXˆUYðÀëëÒ¥G}þ›8K^7S…%÷JG×`±ÑÙ}Íý4Ÿ²¿þ ‹O§NL7ÚÀÒ‚%ÀI|^ÂÛ…b –¾–ý=9–‹Ú˜ßü0Ž›²}Ù1‰.Üþïÿ}HÕ†E×°÷ßÄpœéØ~~–%K+Ç4Žàü Å@Y%]–¢ý³E°_ï784 KßIˆO·öÃ’ïQBŸ*,ÝÝ^;|˜?ÿÅÃɸ·{øfâçÔ§ŠX„Å›iÓW’ aIdNÅõŽÏÖ+o¯àÏ•H‚Ü>ü„…ßaÛ³›pü—Ƶ$âþ3¾Ø¬ š?†ýð<)ªÇnö^Þ:z$®áq%ZoF= óààöAé%ÌgÉ®Ä?Æã]øý´ÌsXørbÖ¶Úl·Ÿ–f Xž}rÏO\SW3`~—pôãÌ·S“ÿöæ.®G‡ÅÁüWZS¶\nç%î¿w`aþÅ¿¨ÄQXø$<[®‰ã½hØÌ€…‹m§Õ `áz)Ù«<>|¿À ¹=xÞ!f$2x3ó\7—ŸÞ‚yêLúAì0G’2ú)æ™e»¼Å’a¡Ö\ãl;T;j¿ãücvAF¶ô\+ÌQ§Üý¨´ sÒ£üžÆ50k¨…%×FÁìÉ«ÎnÇ»anB5>[<æúŒ[ô‚9-Ã'vÛí0÷bÀ™Rt æ´[<µÃÜÝs7ÌeõõþrûsÍâ¯Î-ÂÜóêÍ«•/`.{ÿú!ºf˜ób˜Xw‚9“gpð®æn±åXÿ}sÊîwÓÂÜ“‰“é•Çÿë÷­®™«ÁÜq½æ1q˜ã“SJ¨Ñƒ9Ú'Žê¯ð}H ¸î7ÃlOñèë?a6‘>ê¶Ý3˜u~«ÎPüf«ëJ/¿†Ù¿—š¯Þ΃ق!ƒ;̢Ǣ5’Ò0÷×]êÛ Ì Ê0¼È­„y‰ÔPiÞç0u°½·_Mò¢ ÌñÜ}'© s¯KI¾ÉÃÜm^ø°sÆ®å~†Ù½¤‘VÝÓ0GÚD6¼ßë£/˜)ûfÇ Vk5`ž<Û/¶î"Ì+oSå•™Âüaû Yg˜ÛŠçò心Ëç:¦m$s•‚ïÏOÝYÅJõ0û¤ñÌF{,Ì^²Ÿúš ³·[Â_—ÀÌØSòYEü|^7Ì-Da¶¸µEàà2ÌÞ4”s¯_UäK°pÄ!êTû,Ìo¼«ºúé/Ìçv]$lÀÂCùvÖî°À#¿÷0ê$Ì/° U­ðÀ|VMKäC˜¯¸naO" sºsËÊaîTÀÍy\?þÇ !.0»z]Äû*Ìn­dò1GÀüÏì‘ÍøºÕ'ú×z`þÍõTmj˜qÀ¶˜Ÿ óÆN´—¼ÃüÝçQ3 §ðzHH²ÕÃë§t&µÇÈU˜+xVÁðÄæ]ëŽ%‚¹ò„ù%˜#ù©®\s_ßdætÀÜ‘µ1A˜ã¬Š½q·³òq"õl˜í¤¿±Þ$³³ŸÑq³Âl©d¼Z» n—gÕ)"çaÞû(ù¹ Xd¥§]”†…í)/šœ?$p©)RÀB˜ÌíÃN&¸].2¹³-‚XW]?§åV>ༀÓ6õ‹,ûØ šiÂüË6%¸?çÄoIøwÁ¼Wé@º³Ìÿ`0lQ˜'+®y¹Ò ó=—ú–‚ÀüÀ!ûzI˜/1Ž Ù¦€ù?éc¸p>ä;<(û2·—‘Äë0/WBÏÕ_óçN‘‘;?‚¹…÷óžD‡ai†/Ø ÂÜeéá^ó6œ±ö Q¼~èÏ-؇C~•§kó0ïIPþÝÃóJçÕF*qýHë>´;â8°$Kûeòdõ ÞyÉÁ‚”zõ„ôüÌU±›¾l s‘òºGèßÂBœ4žOoµµÇùڮʥ—¯aávŒÊu<ÙËÒÃãtÚü½Z‡,µ6kSñÃBøÀüÙ³8O0àÈÏi/„…›×^-­áuXù£ª¨^‡Å,9·ð8èzj ŒëÙœMó– æ3¨( ñ|~×R‹ù+ÌñõT;ùÀ·ˆ¾}¾2XÐö>Ir ç:CožoKOüÄç5/ª<ÏÃqÿ¶æË×ÈŽôiÃG˜›û5{+Ïoó<Þµ¿€æö.0ÿ{øxåØÎÏ784Êàv~!Ò¹\ óÛéÇö5q¼¤ðË ãõA+.,[¯3քׯ¾°Á¼óýåÆp\l9)LõÃ<åÜ#·sÕ0Iª@†sæF{ÊG¸ÂܾàC6ù—Ö`v'Žo?kf7JìcB_¬ëCÕÈ.˜sïµx¸‰áç¨×kÁóí-»E7˜ýfû87ç<Ì„²ÿùfU­"ûfI`Vãõ71Ìjæu䔞†YÉÛwµia&›û9[ùW˜±èÛx~fÎôR{ì}ƒÚÑÝÏ03Ãz™>Þ¦×f¤?qÂôljoÙÏ0rÀ6Ó:œ^?š¦»LÛ¨½¸a:øìʦ0­Ý,´yĦ­¥ÈØ|`ú®o®Âa|ž^dÃI²0Mjj’_:ÓWx~$úÃL TXÛ>=ÌÓzàzd’h)IMÂŒÚÙ§„íJ˜½ªÑAö¦_É>癃©öcIþ•²0Mx7ð z¦ýÕ® Þ›€™¥Y>¬Y0ÃvŸZ÷0̨$9>™Ÿ‰'$n§ÁŒùv[l§'Ìü²ÿ»á3ŸÛ?†èÁŒ\¹ð á&ÌÈ‹”ëeìÃÌ)í YÜ2g×k¾Àtø+}ñ:˜VXjyŸ SÕ¬y|º[0U€{kð:ÇðŠ™´ÇýH²à 7œO|bÇqÇÍ”: ¯óo„w×N5Á‡c¤€'Ž[±§+Ëça6øàEFþÌM“ŽÇø9Â\Ò–Z«Î¿ª2xàuÕÊÝT‰Ç%%31í¡mü¾ªR* f‡ÍÔšÞÁlÆ¥p%æû°püX€9}˸í¿0»¹òIç§Ú5ÅÖ¦aŽÎ0!]›ÇSçC7Ys˜í}Mÿà̺Î쮩‚YûD{/y+˜™cO Ëɀffb¼žl,yï¨Ãl”¯Îט§*?÷ñ‘0̹uå^g=ÀëÒšrÂÌÌ]ï3_)Ây‘ïn …aÌùðên‹'Àœ“˜üãˆ70§NÁUÏs\rš™uxýßÑ‘pÖ!Ãù6 ÑÒ2Î#^½mLñÃynp™'®ß¦Â¸—7#̦ZÝø¾³‘E=[ Z0´.‘ s ¼<waŽœoéûZÌ: «ëpáçst#v4œ‡™…bsëXœ‡øuJØ„UÃl^Ù¡-E˜e­´s»ˆÇßMäI³—#WJ†™Ö“\}‰J0EûõŽý ÌR,I½Œ5„Ù‡–2sq\=üD×w_fœŒBÌŒüa†7^§çŒõ³Òáb8¿JȤmÃíÔïàÛ‘n ³ÑEÝE8›é¢³¼å3;Ü’|³ 0«Xˆ8Îáëÿ‘N¼-Áã®,B](å.Ì|o ½…ãýá~œžª)®Ç2×È•_0sÎGèxÙ Ì\’}pÈîÌèˆÓ—vÃôú/0"›%(ƒóÅpÎh'%œ—Èî%×|€Ù¹Rv›¬»0›YtBu– fÖ<ÈYöÚa¶¢hÑœNfE÷çÂlè-É;Ÿ)aVý̸n<ÞÖ¾½„éö𿕤`˜Þ«ý«:Ç©ÙõDM’0câ ÈûfPW‘ÎE˜až/Y†™·ÃtñϾÂtùN(qžÊ7¬ˆOÁôÁòóÄÁU˜þ„}ò':€iý’_µë^0s,9fGÐ ¦;ƒ ž¨EÂô@Y‘¾^ÄviT¾¦¦ݵna˜²âÓ”»þ ¦š’ŸÂ”w¬í¥9L]>aðËö!Lý%·-¡–‡)ÓîåAG`*ÜØKl¦Bϱ ö'ÁÔP|õ¡C®0õ+tîUÊ'˜zøæà™šLN®Ÿšì©Ús‰WWÂ`Šó[o¼r4LÖ¾¼%ˆËgão+äcƒÉáÛʼì0Å‘Ö  “¡WÏuöÀdäé—ìrLŽöýÆÌ—`òºy¿ð.L]5‘ I\†)Ú4o£aæIráÐ Ž³Úö·6œaöcwMºÌl™"ËÿÂÑØ‹Ó6Ü®ݰf˜yMGŸ}`3%&ßÎðÜÃñV™Ò S3VÖI™§UŒL8Ít¯æÿ„éÙè-ý˜ž–Úªx„Ë£È+„]hb,;3˜Ê]Í|å§7ÊBQxžeùsAæ5îç­/«40½9¥ýLíL÷:Në‹ñÀt³b úë*˜öˆœûäT3G#ò¦YpRûŸµÙŠ;™i[Û0=Ïv“a}¦[n6b…iö*‚H¢LQ¦» S{ÊnKs905bóâ¶Ý|Ÿ¯¿Ÿˆáu@àƒ¡Ú¦ß«íúã~ÜݺÇ SÛ¿DÒfòð¼.¥ÃÕŽ`&শœ'Ì\Ü ¢WŒ‡½Ø¿gÆí`Fá7Ù˜5ž¯ÙMù.ÄÏ6q­¦—cž{ãõ%´ËÜäL?=Šáx¨¸é­~ —óÓáèä.L’ÓÑx>…i农x˜šwݽ8ð¦œgÞÅ–Á”º¢iø¡ ˜fйeۣÇ9Lù:L¨XFðÂô°[Üfåa˜nÚeÿ°J Ó5gY¤.Àô)‡>é[0­@}õ.¦£rŒæôÉ`jeÔJðŸ5LSWY?{ ¦´ú8Á ¦˜î¿]ÂëÓâûku 0¹¥¾€äŽ[—ÚSÚ¸žŠò‡c¦^gãeЦ4}o¸ áïåTW?4à¸>MÊGs¹&³Hì¥û`Ò&U’!õ3L6žY’Çq«Eñ`·Æ¦$ôžn†Ÿ‚É ¤|¬^ &õ4ZÜ¿À¤h&ý¥§W`R¤÷šÉÃ}˜2îr¾b`SM†Ä5|0ujø¨ø;˜²NsðÊ€)É“†í9]0ÅçÀð÷Óf/[Îl˜b‘|»À“=œ« "x|ô[ ½¿~&=C¢]”`2°åOhÔY˜Ô­“ŽzÛ“ÜÁlúÙ0éú0Ù ·ß¤åŸÃDf0©.êk“˜Ý¶HœL¬*Ÿ¿–ì e“õGÙ`b‘œÛÑ÷§~žÀ½u˜2<íî™~·‹Ëå(˜:Wf<°R“t/ì íoÄ[bk[ Lø^uw}c!WÑï&y˜dí(óúL:Z¶“ Âå¡X Lô†L†Z€‰½KEO?äÁDl]wóYj˜è7LgV\Üø-»0nvè—8LÒO1uùÌ/¹„XÚãýŸÂš5Þï[×ڃū¤qõ!ß`¡mW²JM :»ƒïRÃB©›­j#,¸E„»2“á}Ö>­Ì}Kýz4`´?_ñÂýû1µ˜i"^•GžÂû#_ó77‰>ëõ•c°pCöÈæf-ÌëflÍ”Ãüa‚CF„.Ìÿœ,;÷_¾~¯ê’ð~ìE¡M>Ž‹ÁÄBxÿ;k•úÉ Þ”ÆÁm—4Õ;/Ûg;wWa¾k7fÝA ¨ÂR½.À¢Í[ïÕÑLX|XØH_‹×¢\0X<úêî‹mq˜­lk$+ÁùP4ãâ"ßm˜«{%*¦³–% Òx6ûhÊôíKi˜}~雳±Ì2|à `c…™Þ ïî’ëÁ¬ÎÛ /œ¯ht”ÿæÃ÷;‘bõœï7H.²ß»sïcŽò%­Âì ¿ 7<8Nh§»¢ñyçs»${÷avtoýÅý˜¦[‰¥:ÀÜÓ Aö*œgtñØßêŽÁùà“5r¶|˜ó|=ÆŸÿ fWÙ5CVpžËlvñ*ÌÑQ)¿"Àl»Ò%#í?0›"öv[MK×éYÁbd‚~2Ö‹‹\Б䰸8­â´øqX”~~<.‰Ú¬µb•a1¾>?Rf³ªdbe“añ©äÏÛxŸè6;Aë Ç:2bÍüa¾fóêKSXút'ÁKÏÌÞ(ôPÀÒ93M‡X"ïH÷`Q‡Å/•Ì%ç`јPz|/•DÚ…†Å‹ª4«¿aQf#€âK:,Ó=üœpvm>3:òÁBÿ¤ðW …Omþ,NÁBRx‚à]Ü.Bf×NWc°0ÒÉ»¼ ï³_‡þÁñ|ÛrÊÿ8 ,xoôÁq­òA‹ë ,HlÆ'Õþ€Ek†oÛøü~ޱ[º°,hÎR~So_Ÿ\Ðä…%áõ·Z?ŽÁâ¼ø>ÝÃb $'¼»æ×£/ä^ˆáÿîÖ@ÐuøÑ.œ éõ¿Í@à;h ‰m‡¥Æ—~2ë@ßNí³1Âi-’WÝ@;Ôø!×” !)°´gròžg,M½?0SÂë{³äâã@xÕ4·lËŽçÓK+'³ÎÁˆ'Áà ¾Ï®U‡ê@oÛ D!£û6|¬BºÝ©S¸¼[×lö`)î#¥;,ÝÔ!ª-> †X"¶W@ `îþ¶œ KÃW"“Þàûi°—d”÷APNÁî],­~6¾ðŽ –.Æœ¿eDëNÙ—¥Ã0¿Ì`EôÛ–ždÙ=Êæ‚gùÄÓ ËÁQÀÅÚÓM¡@¸Ýý¾×CVÐÑðŽn.v¾Âêùk‡Ã-p½Éš¯è!ËØ™W[–O®Œ‡e͈ô‘ô^XNX¦×öëƒeu^ò{°Ì²7øŒ¥–ÓüZò ð«§x¼œ.3,?yB—® Ë»Îú‚ý°<¡·2U#+×Om(Š€>Žœïl<°Bk¬8²ÌËb#¦Ç¯Qã~fôÕ&‚e’ûùoü¿a¶Î0°íæW4_»û¡çqpW;1¬œ¼Ï™I ËÿR 5'`…¡}jæ#,[¹ºu^T€RRoãÆ£°¼TüªÈcág»UÕ€à–èߎûí•.»¼=,㥻ơ”t î=|ì&ûG’€Ð|Çæã>3R¯Y;ê߃•ïÞI%¡°²!a\âsVȳѱ݇գ$ƒVËù°2•ëŽÒ‡‰ãVR­8aBÊýɶ±L”wN4ãuñ²ËÕ€‡ç`Bº!:9l¿ÿþJøÚUX6·õÔê Ë÷Ä^ávðLžKã†eeOÎ_ŸÁrÐíÚ¼ß^öÎÍ` ÁíZ¼Èéd— ËåØþW;V l_·nÔ±ƒåÉ»_-)9ay/ý§[3,´–[.žŽûËsá' -Úaåô•×®?‹aE`!5=? Vî~Ô)Û+t6–¹aâ°¢ÔnÞÈ +·ü2>ÂJCT’t¬< Í‰ûj +ª^,Ê¡—aåó˜œ×5Xy÷~î„ü¬¤Åg¯«ÃJA…¶v³!¬èðW\œö…•¨cõßÓùa™ðu§ì?¬¡ð»Î˽Q”“—‚a9åMŸòIX.usŽñ €âÞgTç{`9ñ¹©ñ8Ž‹Í×.k•»°¢Íx_ÐÉ—/uM¿¶”ÄÎÀŠÅÀ”ì9wX‘IJ¤‰†•’ÿʼZX‰8hžL†•Lª*ù 8X±§“xHÌ„ëW˜%Áù Väy埒ü†•ZÉ^U8ÊY¦K[fa•äu÷sæ-Xék¤~ÏxVš}¦Ü`%û‚´Ÿ(¬r®™Þé†UZŸµ^WiX!93VÂ*nÒ¿|UXÕ[%¼gÅp|E,7JÂJñ;)sX58Z_b” +43>· `eÞ¿kZ'V »>›-‚UF“ëìRó°Z|çÑäã°êb±ž8ÿ ÖÄ_˜/“ÃÚ•Ògïyò`õQ}B+¬>¿ElNÍ «÷©+ÙŸ`ÕxëØ…'m°ZÆ®åä< kG§sÛ´x`uÔ3Vê¬ÖZÞKŸº«ßW #û‰`uŸî`îͬõÒ;ãk|±½l¯aí¼J¹ã‚Õ¿“oæh`¶oDž… ÖØÈ²…ÜaB'RAªÜ ë«ÍZëÙRаêóPó#5?¬‘³>Ò¤z«ï›cÎI†Ãjµë§w¸ž=TÝ­ª°êÈý\ÌeXÓ{¥“Ÿçkº4R1¯R`Mx»ZýÔX;-8sc Öäü„Nþ„5×7-­WaMóÛçǰf§Å7Y»kU©7Å‹^ÂZØ™Õ#£¼°¦–¡1Àà kn¤Ù7³úߟ=#û_7ÿçÝÛ×6fÿ_¿8FüJòÅÿ|Ïlÿÿw2‘Ïfields/data/datalist0000644000175100001440000000045412560751565014216 0ustar hornikusersCO2: CO2 CO2.true COmonthlyMet: CO.elev CO.id CO.loc CO.names CO.ppt CO.ppt.MAM CO.ppt.MAM.climate CO.tmax CO.tmax.MAM CO.tmax.MAM.climate CO.tmean.MAM.climate CO.tmin CO.tmin.MAM CO.tmin.MAM.climate CO.years PRISMelevation RCMexample RMelevation US.dat WorldBankCO2 lennon ozone2 rat.diet world.dat fields/data/US.dat.rda0000644000175100001440000012767412560751565014272 0ustar hornikusersý7zXZi"Þ6!ÏXÌâÛ¯~])TW"änRÊŸãX\°ÆqÅjnçj-&銻”P³ÃÔïCµ^q½bJ0¦°J8Ðé[—Ü„òÜ›¸@=8],{Ø×S› %Q8•û›hêÒ€,:æëEÕ7:>g­èâ¹¼l O[­K»òêH‘×Ç­k2å¹Ä“ãN [¨Z~ñHØ»¡Kí°)¿—÷˦–v“K†><$…šÞß?×l“ä~$ƒrm\ŽY@×þ@ÿ€_(gœ×W«èHŽ;µ¯s‘«cÊh^hhR÷,†ì“öxÛÙ ¿9}ûΤñŸ6ú|8ÒP¤†á…N4¦²§îˆ ïѤ+zyЙ¯ãë#b¢QS›(¼/YùŠœȥ)ç`œ¤Özàc2Nª”éÄÅh)Í”dàý(Áª,åæk“5G\ŽXå§lÿ[×iÆÙÔ¸æL?6[jy>6S ÈØˆx;7¶±èU ‹­ÑclüKVhM¤W¤çÝ!ã1—•nW¸±æ¾½¢®F O'ŠRGs\³úË3»\ºrfºØ&oÆUЀ{AkWÂ;>ù?€­ˆ[ê ßñ2/t¬Õ[³7QÙ¤¼³>A†zàŸ ÚÜüd¦ÎÎãÖŸÅY8ÑhµzØÑ´ÆìBk^›…õèþýcÝ¿À¡®}þüŸ1,s"M’ÂR¤£]n§•L¼Jí¿Z‡ì€|Ú*ÈuœÜ2–¦;䌭€BÑ)ÿ›¥ÛnxqIÄÏ>‘` )%Gõ+ ÊJO‰ÐòÌPÉ,©Æà¡¤¥öŠ\\E¨tp¦Á-”HÎÆ«B­Cò€7¡êLX¡7éÂ~LátÊ"¥v³Ô¹ëÆ1‰å…Y€ù“î'ç6G‹7º¼î´?ˆ¨ìШʳXNt mPE÷BÎã7gä{°µÂJ2½xÑéü5z›- _†»0qøOOÀ‰ñNüjÒ:e¯VQñ0Éb0ØoAmÇW÷{U»lbé5nMãùúÞœéóÆîÉ0‘w°ìŸLU&ê7¤“öÅ—±n†S©c00øÛ7UùMÌåÑÄA)#þN°èª€Ç}‰ìó/ÙΟwñNTëœc:Š•\ûöT¼mšD¦[‚Õ¯Ýñdw§2 ¾à}¿p{¾’Üð£–fà_›˜T%KË£ªD¤²0ø@ê¡ÎªM3îiÇE kë£ñ@H£ÒÉnÖ„zz5ï^†o£IåZ¢ðZŸª¯Rè”óJrjqí¶¢‚° ‘­AÎ:ÓY£òf¦O•ÈN%7=•€8RIÿrþ†aF^om»-Ll™NÞÿ†ë£ÜÀrœVÕeÏ/Ô6åŽ/xu…4Px]zNL-°ô*§Š·Œcéûý?ýL5v¤T£µ±g œ1×Ü*¼¢;ö[ñé’’Éïù¾qÚ·{ðÆwÖÅó ‰27 Øl¡³Ú(z¸ýÜnb@6ãî[6Xøu¾§iw˜f®’Óðʸï8q7´Z0Ÿ>½ÿü¿käŒ_>]ÿ}Žj¹–Ïñ'ÐüõÆž<æ&^ïÀ) ËÊÇ6½GÎ_U„ÆÊ®ãÖÂâfÚCc®Œ’"nD§z;0?sÍ®DG‡‚ÁòþT0’pëƒR™Þ´Z¾CÆüÑÔ¨Êʶä9/Êuùí£Ê½·lëÇAÇcM°;øOqdž,ŒïõîËøhvî@#ÖÊ'…–@ýåÇÒvwx èÙ(ž^"–‘MJ ÕÍðï(Ù-¶]ƒ P ÕàÜoˆvÃ^Y—¤Le8š‡ˆ,°ÁŠ(‘òš7¶É–f‚‹ä„{výýci÷„™@q‰7€òZ:ù‰FßÃ@;Í hÑö£ž5R†tôRd=4ÙªãuyI·ü½Ìi@¢Ê‹Äßòac4§)%Yv¾~ò–}ëå‘Z[Tfàº"äôY’ß³ä×L御Åa| b>…b–g6ñþïëþµLºJ¬÷-Ï@@‰ƒ ‘&CkZÔŒºªÅˆÏ-løŠlUö.¦~š]š"pÂ\Tq1¦‡êµÔlYkîø¤3ö$Ýöfg¨$ ·‡@jEdp{:Åú£6>:Ú€ zL.™:>ÁŽ^œƒ7—®ÕÂ[Š'z E´f=@—÷;ò0Á^ÿÀ;ßÀ¥tLyl©}¦ž¨rÇ/Ò ¶×Š×b¯çÕÄŠ9Uš6“Bä¬K|îtèÎLLK9tŒð*_M8¹[®Õ»·ô³ªwÖ anùàKXFnÆ×®l?Ç¥‚sOÊþqÃæ³ eUƒÅÀp¡¬4Ã'‚'J‘Vhq‰<жj½=­i}È󘯲ì£×É繚×4ÙC4„ë™çYaÌ»…Ü$»s´ktf¦l®ã’+7qÓø¬Ò'ñY,=Áê,ÚIŒ/èW_Ñ}¥jIÄþñ›Wx1%HÙ­>¬T©³N>Æ r*¼‹ÆÿÕ·'k>3ÂózÑVzdÞ¥¯ÜÆÀüìöûEP0PÝŒTÉtM3J?hm{_6·6DôCf­jœ¶Œ,"îÄm²÷1yÓÕ-:üí®0);M®mM-èÇÓ.)ÙYk•(ð©Ú4xo1 Új—Þ•¡Èå0^kTœh~F½£ ¶Œª­ âª_Ê9؈ÛàÍ G»º÷â½P "OøœjO9va]|ph.¿7rJÌœ³$á´` ¼ZM•ù‚ ²%átô³G¿öÅÛäCùu¤æ³qÌbøY¥³¿ ï-Ef/yU(¸‘ ƒçíÝ ‚‘‰ã %O?äÈ%/ÉN±vŸ€þ®yý–œ$–)–…$½“8ÆæqÄN8!ÏËõ;£³Ô+¡Ò—pg1ì;rûðYNdæ‘ «.ÞI¹f±&^yÞÃèÿÚÊ2][ØDÖöüÆKòížé/€€®ƒ¿'1¤XPT÷?‰v.Ÿº+)(b?¹Ä__á7ò—j+°€õ+¾Ã;ú@뺎’ Ï.ô’´Ôk!“ ²×án³r&ÓoŸÐUŽ~Ó8 nÎF¾òà†µ…äãúJ ßP4n©"XeþOÜ#þH+Ax{Ûîhm,Ê"1;;uÙl¯çýP5a&Æ›´tÇtbX£vIdØÅð虨5–òz7G§Üãm€”Kt¿û8½¯ƒ(å¤B ᯋ¥sãË{Øh}ðÜnï1)‚ñWm¨ðîÌ÷ØûÕo¯×CÝæ‹g4jÙ*7tòéb¾ Íh@šeº®Òûée[õlc_¸FU­²¿…šä}*<SæsSÐrSø÷7«)R|v`ÈO–åvô³­¹1¯´É’’ç_¨3È–ºwß&U¾§ö}90©Þ]űâ}‘6YsÒ åîëè#ió“ÿÜØ.%›ƒÁ*hÚ 6[TyëÅh¼´É‰28ö>ÜjôãRUþ(î:²8tI“hydý§¶’¤yHiü½Ôü¾p—![šiÔe˜¤¯™Ïž¼HA‚ÓZŠÕ¦ByéØk$-Y~TJÓWû¤†EÜßVƒÃ[Õ<ƒ••¿f@GÿóøxÜü>…‘’§N_qt%Åÿré’Pœ«}ä‰^CúøÐD¬Y:¨Ç’¼^FRž¢lß Ç*þ½É„Ѹq“maÀ+Jô Ò CPòY™§ˆ¯¯ y¦@oDñ¦VEE¿Æñ陵=¨:Pަ’‚,b&n³’0>bý¢è% éÈüËÀ[M‡ zS‚Y,ê1‹H†¯îŽš0i±%•F­?ó8LBNË/çÉ>ö «tOixüSÕ+§ËA(Àj¥`p¡zo-JS”,M¥cB<û÷édlÏ4²]¦d‘¦´³?åOºë'qç5Õø5p¥mÒNhhõiôcº¡Ï­H ÆÍ™4̈×ËùWOTh© 0†¤v0U}ŒÚIÄÉvuäIó®ÜùÚĸÌË‚©ç(š·¥<ޡЍ“›‡miÙ¸PÒð!M hU I—+9·²3 ÆUL,ån¦í¬XÒS{`r]Ô¿(û'o±ÅÓô*æØÚèí¦êM’Ý®ÇÂÛkª¥øk‘(‹ãÈ»œ¾.;͟覮qJƪsæL–ö5…k›Šm…%Û®…`–A.w¬ã`Úûð,C4ëö5g•Äæ9×oµ5ÓÈR‘ʶåQH‚õäL[ÓxÞèƒ8Ð6¿j´NXÞ8MOÀ·¢9%ºî´-ËUaI:  äs Ëæî`ÿ¹WÈ©¦•F‹‰Å }aë‡ewã¥Uƒ£†G,ÆsõÒÚ5M·é!¡¨'y¯/²·¥ÜÇ€¹†Ì¡&­íO¢·„€Ḛ̀o7+ˆÊTo©k»?Ví À„­'h…r]¸ÐÖ¤ðLl‚Ø/FøÙÅhÊïÓkw33g‹©Ànõ¤GØ0ÎÏÇk êÛCºSÒ ÷§g`º=Ýw“‘Ama”@܆pg`ÒÑn.8Û@¯‡¶ô!’zˆaô!1}“D²õYB×¹÷ž@Gt ·Û·¬Ò\Ñ—³oÔ¢šÞž%wÃ2éî „¤ê‚£$t¥P ‰ÊDxä¸A¸úHáOánZ¢ò£ìH†àh ¸ãñ9Y̾չ/gWL?¡"1åø7ퟃ͖¼D.¹q6Åoè %èï¨Å\ê|žñç–ÚÎñÎ@^I†/z‡Ž±ú0SañØm úƒUf•œâa7;$j4ï^Œ(±È¬­†*éf5øW.ÍžÝpUÂz¨trr’’cשß$¢Uƒ¨^Fe3•r«òõ£6Êi&«/ýWcÉf¾Tøö¤,¤VfÂù–«‹„m*ãâOP9e‡0tÎQÕ¬•º–Súò2þ¶ý—¦™Ù¡¯ Œ¶Ay/Íå™@†êÚã­jìßMæäyF ò%ÿFòo«®eNØ2.‹ÓÆàu§0 Ô /%Ö\í­„ÃÞ5ÇÚ‰Ï 2 Mèö†Nu”c¯Àñi¯ˆû Ï[w¹t˜êé|Ï:0Þ\(ïAbÆ—±‚T:HpíÄ8jJ@hÏáÏ¥¼®ó¡š zÔ³k«ã†ÍK-aCVÕ“o¬+ßZãÕ¼ •‘—vQاqÚQÓ^êè·ÔvÚȽ¨‰U³q!; åƒ#iAL Ì3`ìïézÔQÉhR`&yB$‚@ÏÚx$áµlõ^ìh† []r”òUëŸV}âUƒSeÄÃ(wT¯ßb``¥Pù&“ô€¾ãѯH([ ̵llo»fÇϬ#fä #_Žàóý·mƒiÞe÷ùzÄ·wxµ\Böþý¨ÿlÖNM̤ äœ[ئäR[˜ù`ö.º¢òê¤à‚kY_ÍhÁ²ÄÒXC_¤[ÝŠ+Q„Ï1ë«re­¨74°Û-;õó ¶}sVgB’` þnRŽÖBzšÁÏ-‡|¢E›Ð5÷LáÊ'{OžÙêD΀-S0c4qüH¡NÙwѺ9• \¯<==/Pî“×IW£KØþk"µAåäŠÙäû5™kn(µŒË¡ ÍA#$CH¤§ƒÇ,S§ÔøZˆŠ(¹°} È‹²tÁêÀž²yŒ£%dK×Xõ­7}§èÿæ&koGK)ÜC½9/-l‚'‰ú|á =¼µ¡XU)žO<øÁöâ[ ?¦8a¹PBI%ª­òü8ÊR’ÂÜqb®ÜáÑÿàì¤CæÃ¼Rä-!ðšÆjú¹£ý-ÈeBàz3p@ŸÞxÁ(»\¨{XÐ¥·@TûÚvíBOgÎ#?=¬;oY_=uà¼èð.-;VΛâÚúO„Äv:+±h žt»Ìàçkúë%~9æ#ûFÌÄ7™0PµH¦‡LüÖ#á«å¾‰ ž1Fº÷öyœn$yOŸìž8>Äj F©uµ ÞaGÐvQëÃÎÔÅ>þši :wÉ3"_ŠmQrqKik4~œö(®|GåÛÿ¯óñ› df´ù?U!"¬j­qþEl><É ¼î<ñù ùŽ@²HQãLíðð˜ú¬\]^¥µsª¡Ïãä ëÉR±j¢üŽ^j -ÙÄUнuûÄ: ÃG¬ž&„ Þ™!AŽâ,’¥˜ðYNÆØÔè<>Düîðj³žHüÉXçLi2B¢lQŠU­;)Ù!)pô¯å}ÊUxñn´§/*Cã™<»ÌhÒá——‹MþO™jhV'Có*¡ê•\7ÛzÙ3>l¥õCfÅb¬ñ{§®4¯Ú\_±¥¤˜ç&pk¦¯Öý7í¡S‚ (öu&©†àçŽ]É€©|-Öy¶ 7bŒìâ°úhé³bÛÖFj q¾Â¬X„HÒ¶ØÁOËPT@l†ž(£HÈObã¶*H¾¸¶‡«&†–)—–³ˆþoÏð‡"ÏmÔÏròÝ C}š ¥àŸ"2÷øûBÔ^ a’X¥‚‰‚7‡‡ŒO{…÷‡»ŒCGxR„_¯!Å{æ&Êüˆ›J”:ÔÁI6]Ý…%3‰Ô-Ì$¸C tôÓ,‰¡º…¹ ¤²wËx×S­³-¿h ÷ØTE‡Á¡vof,‹²Á¯9臅°ô±køÙy/ñª ^¥BѨ"‚sMhA†×Wž/Àö¼]ìd«Çê8žšPh¯•º¹–±=’2U“áóW.P’5 ±1[Â÷as Ç‹H¬ ™ I-S@—ÊÑ¢^š‘S&7mèç„Éôµ$f¬ÓKìAZúTÇl <ý)Bõ~°ìŒœÆYä_AÉ—¹7¶WóȦ÷ˆþ ¬†&ÜbLë®°2Ô›RUzz:kEöîÀÄéÛ_qN%‹‡Œ{"¾å/x¦ 4ÎÚ ¯æ‘:4¶“f^Ü©Qg¶Ýs(ÿ×õ†šUŒ¤¤4*;rÔAvª73è—ÍTñ*&Ò¢skâqãÇØÚD%6@nÃ8ý BPHòÖM£%ÒÐ;½‹t™ 1²“,½Yä¯qW4Ì2 ¡?Êû£“´ ›îA•ÎÁ@aå¬?±_¤ÍÞ#ÕG…ûŒ"ˆð@–>œ‚´ßÞòLI…c —Wä¶Š¯ DÙ@(ú²Ù‘ó”mØ–ûCØcxzÝ †xñŒiÑÄ%¢G0÷ ëÐ P  Pꬶ5|·Ü`ÚV-?¦Mäpø¶¬QÃZjˆÍ÷HÄ/kýM_à*¹vÍ>þâ›%·¾= ñ°!.gÒýŠTŒÎ Ä®/ýhK …ÏÞ%P†¨ümÊLƒ„k5 ='L9Â÷I¯íštñ·g §[Vû1ôŠ4¿õ÷x õí‰îéµá~¹ÎMY7ô2îÙÆfÕÅômãÅä“‹™ÆS•. T)‹ìá³CŒë¸pÄf>=Æu„Ric8§ôô[á£+™:ëJjõÝãÒ" O®…XŠ‚Är !BNŠÿQ@,$Ú+ƈuSY·7æ}xœP‘ó/ -ùuœõPb)hŸ³ªÂü(ån!ÝWòÄqœ†oL1DĶ̜*µ,ýßø]‡¢—ÉY#jf¦á"ö…JÎϦ—ùº‡ÓhO!fb-=Jëó\U€[7¢lLlÜ*™S0€¦f ÔkŸí\Ç ©°[oãÔ™‚ ?,Ò¶æûò-SÀAǧøQ|šË¼û~nQ¤Œ’çÅEƒ[ÔøÅ:§·Œ èy SAbkŽ ô'$‹¹k¢ìL±/¨ò\4Ü]çMr|¾³Wsêýàs¢¶Ö<<[>y±ñ <$Éÿ»V \ÉÊ#ƳÖâ?V·äfY ÷ à×ÚUxÀ©ÅW#†¸çMãñžó‰,RĸçÜ”%=Y/EɈµ!¦>ì¥uz©œ[ÅÈJ`–›šÓÆÓê½[9fë,ã…ÇÎxš)À²Ü…yŒ£–ON‰™DåUd7ò3´\$XŠâ…{ªäç˜ó“«@¦_Ämr¨7x ¹r~z‘Ò^´2ÆAS›fúö|G³.Q–ª»¿cMzªt°!ÒÑÿN`Œ—[á…ÞZPw·#BW²¤%/4õߘû+BŠ>PŸâ$É¥Lâ—im½f7rÿ¦¾hÀ”ÑïJ}£øpTàL&|Š«ºP}áÍ+)ÚÅŒ€°î˜¿KFŒ@ÓíП^ugíÛ¢ü` +k0_7c¿PuëÖ[óÆ„|ÿw’»`V2}Öý¶¹hjˆ[YÂM5ç%óS¦¯î™k‰õÇÉè¿j±qÎ>ï>ë%„Fyú3E—~°z盜­ŽOlw3©mí ŽÆir¤:´†CÓü†Íô@µþW—˜J‰áyz];öÇ<¶æÚ½ñPœ4œQDÏõ€„šÛ/'äˆ9*£h2GìùD?ùÁŸ7­éH_œüo6l M„@b‘ \kñ%Ñ0»`“¾=¶ž òÿ~^ÈsU4형añ OrÒ”ÏVG mLæ:-h6¿·&GW¬Üó`(‹ªƒP~"'ˆÌ,:ØÛi‚ï+ÂÜ¡g0ü»äÄR5tåÂkÑ 1}ãï Ò1^@é¯7„·i;Lb[¹•÷¥þs×<ɘŒ¬>DˆÝ »×V6òPV5èî)Z§Î Ï i\¼¥à˜!Ûi"-“£+¬£VîúИà¸9f³z.Ñó<“rR‹_§ôLB£|=ÐÒéåexwaœp4cVQ¿„ç—ÛëÿÙÔ–«Å}hu\ýã×·Š|ŽÓó›d0yŸ$P…îŽÿ/ÕØ¬¡æåì"¬zõÆo²3#ì,šÍ–à-ßɄؕäD¡öó4Ó•ý¿'3R+úop˜:ÉDX¥Úâütõ3BNÆ’—Ž\§¹Ü=HB½ *˜:üûÏí?äîá@ŠŸNš¶älk}Ïø,®m¼±‚ÑòMJEi•PL÷B˜”mð±Â‰¥Öùøøq´%[Zö²Gëþ&¦Y]Þ40WgÒÙÇxBˆÄü†J9TP!a<QEg„N"?ìÙ½r¡ÀN³%2W2¢ú–xÂÏihµ¸&î!£lÌû‰¹÷Çv³\ÓKgÊï¸ânCqfϧj2”û„—3$ PøB%l]fš± SÇÛ4R9HÀ€®PH ©+J‰ê˜ÔtF ÛnýÒºxS/ìÈ +CÉÎ<êÍÏòGp—køm‡ÃÛ‡os nY ݧú¾ÆV±Ãä;x¢îûÜÊw=c3YPÌôLó T‰ŽB·s•ÚfЦ"¿KªuHÍþÖdATmö°å=¡»¥ u~I-É+ÿ1B«1TZ%kïâéš+z^Ã’ôÀyÂA0G 5€¢ÙuàÂCÐ"†t™FåpBàÛ¤"/}G6£€ŽqmCz;_ˆ9óŠÜP™Í—¢=ÚÕ½ág{ù±ÿŒŸÎ[zêûÕo½}ÂsŽh‚ËJ“ÅŸMkç¡mŒÊ–“…óüè†Ûâù¿ !ª¥æ|”ê€Ö7*t{\D1Ä6Ò©rªöD°L~ãÞ]½k ™H®Îª )Slé1Ž•0XŽ|Ø÷~ý4ãüSäÊ AqµU‡¤îØ0\Öå}®²ñƵ!‘†½aqÕ“&ÄèŠfÉ8)“æÀQãô3§ÆxH1ÀÕ¢K6Ýõ:¼mnÝ™¬ A˜IP%Â3ü´ʪlap¬œ‰Y@¡‰õâ2dÓpæ·ÉÉ]ö§fš8:‚™aê¿-ˆp²ºG²GÇØÀ8-haßZÀÄap>OÓø†m5„k1©ÏÞ}«=VÏÁ~Ä7*£…L!‹ˆÏ[Öù ¤Dy¬‡hö ;ϫƓ?ß­I'㨾 ÷ปœª!ŸKüý¡°ê*ïµ(ßâûÐtf#ú>šyë)³¢^H/”Ô;wøltß pH~¼¨[=Í*6]tzéèÙ¯=0àNÏÝvµÐ 1i\Dz_’è÷;•bfUMÞ®Û¶i’ü]¸Öµ«yòÍðŽºÿ/Ç 'ºí:7ÍÃ#'6±s¢'/‰w=t~lÚxi//l3dŽõñÝCÝBö!ÑŠÞ³Ô0ka×_L¤µ i¨5.M³0+ôS¥SÖŒ8b6Ïÿ…icB#IUx\‰,}Êc¡Ñë Ùd—ÜËgèèHÌË2ðg¢„ì öqÜïŠõp©B˜`’ëÌÚ°h2æX%â?XŸi}À¼ÙON†9f'£C‡´N¿xU‘*Ä#ÝŸ_CØE€V—c„nÞ§W¤*ïæ¼Ôw‹>Çó`þãGtª ¸N:‹Fÿo)î´ŠJ.¸ùˆîü ;8ëÔšÞ µ¹µ‘tJ¶>o"Ÿ…UCüºÖ¼–Éâ9³ö¡8j\’Z¡©ÏÞžŽpˆ¶âc»NæBª†,‘r…sëb~³<øI¥—וìÒ•?Aâ«Æ+ò®²âõG|>ò°ú6У3}ËsÄQä¦e:œ½*"b/E²eä’l¡ßïaƒ•‚Åœ ¶»ðœy`/ú`'m†ðfÖ…c´æ›69\á¨}r ú?H[€pZLrµr¡v)?®d„Œ_ßýÃŽ­ÖŠÝœ™¬¢2åW£šddŒÛxÿ@°¬Ÿ*jsÖ+®JQ×ÎFˆ6ŒÜ2/®ÓGš½6²åhß½%B'ìU%« ¸F1Ú wL‡³¿»¯ Y£Ö>!îqÊ@­³>ÅG¼“!(ÝAŒQÞ³Lý*òußs€qY2tt‘TŶZs8ßµŽWÈï8ÉÂNAÒlûõ ØâÎÔW%þjDÝd3ë~ ÌŸvÅqzi¢T¤)òÜ8¤Òù²0ô)géN…[ÜÌO/QÇ4GÆ„½âžcØ“ ¾ìÔ£,¶\3@b¿¶¶|†Àš~Àí”ÛÁøÓÕõt`c±´ªÒ²1õÍj¥‚*„ì>”a”.ã*à×™lè·O«•l_#úÓº¢X˜+ƒî9 øY.%’µ…pÂqtÊ5G·é QfGºÐ ‹{OÿðÊ÷,jA†¿–Éøã‰½Óm«pCÚ·ÑÝQÖªzÅæ+u–}³Ðt]ºò¤ëªXR¿„‰]Z“Ÿ+ùŸ0K‘>ÖÀè›§ ÏÚÜ,9 aˆR%ª#swŸ]òGÓX}Ž’®{%˜ÜȘjý‚)ÕÊÆâWÚaßø”\½ÊŠNÖ„x>Î…8`þ–¤Š ©:Ù÷J Íí@ ,Zq6X¥bÚ${:"%âXÙ-ÿö;Š‚†œ*÷{u­?y‡rÊSÍYÔéwi29õc­y×ʲ~úúæf±ö9 ¿Öß¶:öø>9I‘kHÈqÛïlŠŒº+ÏÛ¥ ›ðoY-Œ7(Û g¾Ü”æüÒìЪNÊk ’}ç¨Í\´ÙÔ©Ãp_Ž\¡JV¶+û#\­¦X´e½î%åU yúýG~î»|»4P«¼žØ_Éè[‚¼îñ‡³¤ëóð7Ç®¼‚ó„I¤Î©Óy㿼»1Og™SNŸªÇùž7 ¤Cw/bö¤@’øP´É¢³—ÕHn:ÙΦ“<—›ãI¿_ÃëëžÙÃAn+ßÿbóæíx »í†'ü×Ò[ ¬—hÜbsDAkdå×SÐw.Gñd!=DcÌ“7 v%õI‰{ŽLÍÜH6kÀB˜àˆÀtçKaAó’Vˆ ñóhYŸ¸ ½•&µ¾iæpÒ#/Ÿ‡EMF.r9ׯÓžÁÈ.ŠH_Ípÿįàÿ“C¯A˘þL™Z)^¯s±xð?.®ýG’¤(ÀÞøÔ’ wÀIêÌ„ ;™i{´ñèv\A_xµW”ð¬U¨+³…—XÿÕøaHÉ)Jïoï)Z¯÷/K¾u›hÂM¼â{JícvGÙ‚1d_sBMFä°ë½T"zž\_s¬[¼ºíîÑOšÚtò™NÓr·šå”QÅt´ÿFk´”›Ó¦¯ùWPW²(×Iìó‡ØÏv=LSX m®0¼µ÷Òp\öµ~ý¦;M#tÅ9Í9iÒ­“ì)²`B“2º„í¼UñÐ,Ml¡28°o^\XUýW|½q€¯Ô ê­½¬lD`®Ÿ5Òæî’je÷³Àh›½¾p N bR­ÃŸ)ÀI3ÒdÖp>jâ!Ø’X+›°f¸Ø.û’=ÇCa]ÈjœÑ\LßÖ”kÛ¹ŒÈ•ŒòÀ¬›q7aôù}GBÚAÑú·ƒPlÅš:-r”¢ü.zä ,7Àþåì„XÖ¿ãb.|î÷nÖÊ•ñ=p®ž[¡æè@ÕÍÚ"¾-¼ÊWó7 êv#`Ëú!SŸWÑ£çÜ@W|Ô×bѲSÓ<ËjT<© ÉÆÈÄñÂ/ÙÖÿ’uíN@£~f9Ðï…xM–”¾1§ggÀ3Uþöžt5;å{•Áî>ºÑD%€0ZûŽ"‰Ë#Eè Í4³ËT²–×;mÌVlTØÀËhcº¯À¾^2dYz°;û‚.ñ„ËA32o×ê;ËÇãÀZðF±ëŒjÚ¨©9Øc‹—ÒdOßgzͼì+¤Ñƒä zZ½Ù¾1R§'1î_õý9¥Ï«‘_N¥QžÏÍ Wxí¿¸GüƒèÕAzÊ?¯L€p‘¥ýºWlÞí’,ÔJâÚnNÅ®‰\ž„”Ó²5dÃ<ªÂg§-Æl Ô4*Èiì+в63eC,™˜@þ¼Wˬް‰ˆ éÒɂ¶óð@qÑß "ƒªQlÞ“nGšãEw£‚8œžÐ ®xÒ‘®Ôø·ÕØiÚE‡²Coñm6R’Mtòõ7Ö ·v½/MÈ’@Ò‹%ÿxõó@‚Ɖf~Gûœ‘ðЉ$RÈFl˜ÖV2·*ÏÅΤÊ68xÜÖÒ€ËÛüK„7‚³Ý…˜»eÉþð¶Ø÷éÒð×¹ÂúˆP8ájyù¸Xc„3d~ë ¶L8¶°ØA‰s YBV­ªùhõ¯‹EJ'ÙîI]€øâ†Be¦× U%Ò%§›íü‚¨±.=vnFÐzTtXSïš'á¶U\¢g«RbÊŸäTzÍ‘g‹Xz]glaà[%*’44:O ª»œâ{üLtº$÷°]@±š%¬˜z@ÝC¬bÕ¸"¡\;Þà[”°¦ %Ž:Š.Át¶‰À«U¹DnU:À.šÖϵˆ2˜êÞ3•ñ~îƒÅ tñG’Ï$çÈÓT$L¬»ø^Šùɦ-­<@û–rr2sJüè¾|zM\[:/òTê,â"¥œÒüoñÚ“EôX¶²hIL¦{wQãYõ÷) Ûq‰Q·,”ÖNÍ/tC1¸´DsiªºQk¶ÉŸ¡ö1ç£õÄ9¼'8˯ ´'J$ÕZÔߢ÷‚«ÅpÌd½€©º.±éñÉæÝÓiGñø¨%šÆã° Éd *iÉ^Ž;<»žçéô<È4*ÄKEâ®á-w ½'‘ 6æsï\ÒXï×Ü+ðœÆü"ql]˜Ò„{!Ä_j™Uˆ¶T\\(žòæG …+J’¾çl!cY¬÷„ej:4b4"GwX¹¶¤êP¥‡ªhm¸#X„ºQr‘WÁ£3ØXÅÄ+C÷ùhfá17¿6¬>³âuÔî³ ¸îßÓ§¨S¿.¾º|¶·z§$àa~à=<§YI[À‚Y ý;{®|ãÓÛqc~ß´kÆ¡ù³4냀W˜ªˆHWÞ#Û1ç_6$8—:¶`û-Št­1â&"ù¦íêöúàZ5ÓXŠL¡à˜J(G Bû0È‘WÍW Ÿjsø¬êº3ðJC"iÒš–·Fí„ÕJÒ]ͧMÀi&xÙã# HÃójMúÞ3M}ŸUŸ·dñ¿ÂBÍÃn8ä¥EÓ•¹õÎ8Ž{ÿ6Yá`Ô›«9Jz¢×ÜmÈ1ù‡ŠX!yW*îxn\ãr ÁCÀ¡ ß]>eZ7ØOu[M@úç¡áG7ñéb¸5 HY(qmÓö ³ð7ÿ[¼\ˆÕ©åæn˜b·)XTëËÕµr!Èg™×“Hgá7Æ8ùKZwF•¿ü-°úµ”‰ ’z“wHY|è .8ü¦Ó÷®xT_¦ˆ=z\> i[A…©°†Œÿ…g¦c“óâeuÊváÞØ*Tˆ7Gr^È~pÉoú.@d®§t°¶f‘¸ÊLª¼å~yÔ¡-&h×3ï,¸W–Ï ߺ¯½ f¶á -ŠÀ±[cë1þ –‹‚æpÅÝ-ô‚RB§J³ÀV0hF—6ì.«G«žÔG{vcSQÚ“~çÇí €ŠèNÆ bHRÏ Ž»÷ÕLŸòízèkÔê… ÍP¿ÀÇæNÙì«¿LÚþÞ\Ò.(#‘s—`$@_|GyX¿Ê7è%OAq­Ü¢±ó ðV÷ÎÉOæÑX°,óÕù»)' "‡j¨!tB¡#mJ`ík‡­|3Œ—y(¯pœîÇ÷ãl2Øåzá¼ ÌtY»ÓÛ¤þÜ?¤¤ˆ” +¼B;Êà’ì^o*jÂÀ[‹™»Ð,7éM„[U³úµ©þÄ›ÿ·oóhŽ[œÉslÞšV• *­õðUîLlÑ6ä#ÀAl†,‘mìµwn™%z•:Ü9¤išÖµ¶Ííø]ÞÆ\ð)ø<™á'¡à y°\ÖÎÛ¯!#eÅ%Æ4d ±¸;DïE€ÈN}9 3)Ÿæ «©ÖP˜vMüÈ0šëG8£^/]믠‰ñvnyr»ß\F½I«Z{}÷‰‘P|Òk`Rô›Þï-ö4x¼»Tâ-ê–U®s¢T Ž1‡×³Ý„oùEêÀê9V%D}õWüòÝžšÎà˜B$f¸ºXž==ècVÅe—ÉŒì GÖܦTj»å\"¿ƒ(/NüÉió«ä%~N“OXT.õ0;Ñée˜–4—~xD ¥é´¸ú’Õ„R!_—²$J©4^Ç7[íŸ4œ¯ÕhÚÖ[nÅýžx:1~i’'?µ³™Ûd ÉÉ9¯HÁ„ú ×@ŵÄ!QÏdK¦à »Z´™º¼¸Ç.$ªí\/ûàIšä°(áùʲàÔiY RǘF4JÞ(5î–;Û‡s­E0…MÎ1¢›™ðì@¥ZN4†Õv’µx b=jÕ~K ki(x :ÔkÓqšá"ÝþôÙjm€MÇÓ÷B¡jfP%n @[ºÒÑïõÕfJήv‘ßÂú3<­_Ãú& Þñ™;’W7§kã"-J”GÔ&×:_8×V³Œfö¯ziͤ'*”ÑìAè ñÊ(gÚeKcÇKFâ-*0çn˜G;ê c'jËE„ ¡¶¼ï&¾»Í6¥Mýb­¢ÓÜ…+*9vÖ‚°n¡»¶»+¯öHIwÎúÓ<Kiî1*2ÿï'¿>£íÒÐ}Bë?~PÙ®×<•h}WWÊ}Ë€‘&ÓË'1…¦‹³f#³÷lU Ña"ì‚Ù‹.z#•´YÐáD¯ið²ˆ#­îܹÐU? ŸÔbì ý©i£µëQÜðèU¤€Ù/}Å4sçÓíè×6Œr;D¼´~è‡È¦¹î€ á#Õ÷Æ÷\ö<ÑwŸZs€-œ0Ö3¾è+€Í*qS¾Œqyw•äƒkÔ¬÷J¦ñÐaƒ“ÄqÏäÃwͤ—«‚øÖq#?´¬›»±d »­Þ#äÚœñ9:ºEú8ShÔI[¡´nH2Ðëg«Uf}m¯¨DÒ%æ¿´9*ˆ 7äquÃ1ï#C‘§Ykaf••bDÆ/Jv\IúâÈdcÕ3_ÍNÈìôŸ’ÄtòßT_!þkZ_XS*Îd0©‚w*ñÝc;ïÏX_̰úÔß§YháSñ›­qžo¡E}}4ãM[7•È<üQ‰ê(^©ÂèDk§l¶g³BÕ ^¤`2ºóÞ\ ™NÏwX'z’“åV<áã°h! ô÷øžèéç¦+Ÿ·2]tŠe¥8ñ? ˆÁÊÔï¿$”»«Ù–cÑ ð¿Y [)á`ÿö·dˆš1}¥– \jªÖä |U:n"oû€ðá@ ˜ö€¸iY™ˆý´?Õ®ûåäÅýêyik8€K;\ÓLÿAIÓ`¥ƒn9>'à7 Æö*ÀHäŽ_0g©kÑN»þ)©¿ §Ô9†´nÍxæØõzöâdóh1~“äéòä27ð‡±5o{¨v¢oL ¥ZI.úÇd„7™`õxžÏ×é è{”å¤ ‰ ØÙêù׺ÀŒ8×u¯ÐyDíŶW¡•uÁ¨SÃÅðPö‡ÉêFÇKY¥ÒˆDÛ纄‚6×ä©–”…}¼Üv»%÷ ¼ÉkÞH[6Jèþz†X¬uÒü?©ñ‰GNh‰ù‡JˆG§DçøB‰/'Aí‘M˜à#LÔ¸I¼•xPB†¾ ³¤‡’…™¤{Þ7ŠÁ¹ÒÌaÍqED|L{lR_Êð›um(ãlvm>j¤¸ò‚7PÎ{1»Ú¢;žý%Æ«©p÷À«C•PZÐÿ®‹HgãÔ&1íµÌ±îná¶T¨KUÉyÚló|½Z9¤”L·ÿAÄŠl¾}8篯N©ÇÙRŠÒÓoMé&Z6`ÞU•hÆ$…ˆBî©§âE!‰Ûì{üË¿„L ºa šü, F•¨— þ¢#±ïu¿ `;zVm™(Žæu¥ó{o¡Ú„RtóïàáÁ›æ:Eú¸É,ro§ö_KCNX @8˜.0˜nÝ)n{W³¤aiíº[pô`AkµóÄ~ì¾ Ûet–r¦Ä’ba'Æ2f×ͼq<åЙ2¥´]ð—™Aú𥕵ëé ÙÞ¹¬é÷WýΖHñ*®ù˜Õ šlÆS9ܦVóPÑ›ó2‹÷2Âãòj€~!òЭ:^þïí•?&ðÜÿªA¸Nß^• þ×ßXqA2âé2‰äŸ¡ñ-´û;"Œ‘u‘ï8+@»‘eAËT¢0T#¼±Ê/Ò¬b¡â47RúéäKÔÐ&䉚i+dæ×Z`Ñäî5èFÀÑpˆòÜT—€;qUrfå7®ÅÂÛŸ *Xõ#óÑJÓ—Ó™¿oƒm?Q¶ü½âª_t›àÇór?VÓ‚k+¤ f”ÔU6ßìutHÀMëZBêe6ÛñKÛ›©5E?õõ36&2Žï;,ìH iV¶—ßøá?˜ÕØÁñä>6¼ñ^J PÇ%1)AEmƒˆŠÜâ„O‡óžTæÑ8&Â`$u×Ð^®ºlD»ã>ƒ MøÎáã Û‰9VæCJ i”¹m¶H …gÂ2÷Hñm§®9-S¯k;)ªÊ<]ŸúYh5I`‚Ø‘Úq€ÛþÁDRé¾x¯í °÷hÌ¥ªç63ëÅ$ÊÈxW ™¢p}jmåâ]bù³íÚõ]/–v”Uyå-Ž¢ü7Ð1^ë‹™Õ¼Ýcû*~ÉчÎ3±Œ¯®^±vgå¹¢¶ ­LH$ð5i“#Ü.Äšmœj ¸˜‰Ÿeðš<Îù‹?Yõinˆ5Ôªoc|QN²} e}‡CÅl½-<÷“OËú–ËzÇ(õÊ{ú浤4a§RçàRÑ)_ýÙÔû¿qàLÅ<œ–—Xi„ÍÜ®¦ãRj¦¶˜?n2›Á‚ÒY‰³üJ5ðŠû //YP ò†‘ƒ°¾l`Þk_e÷ÙQ$‘tßvW§¹Qý L†Ù ~“ @N¼±Âì©ùcù²díX¡·ÏïÁfÔÎÓÓ ;è¹EÖ­© ËÜe:«R¼Zß&«õ,]{(·™n¹B5¨ü«ŽÐüíÔØŸ Põl¹T‡çìGV‡,♬CÛUŽII¤Be:)2b4(ýâõBÆJóì/’ à¤n¥AúàH?„- úëX­µ…žOó/-´„_WY{²›Ö£Exóø)?¨8À†Í ábr½£òh¬e˜L»hç'ï'#î׈Žìü¹žç'Lœ÷&‡¶šñŠ–Zéަ劉Ÿ ƒãï™ï¥UC©€áôߣ(»ªšëhô‰”ážîÊë3,ƒFíÉ~ÔŒ&ú;îKJ‹¸ë‡é¢›ÝtLºqŸ˜n~Ï¿ÿ W:âëÏ"=¥åÕÁÇA_‰q||=5w÷ ;=Fζ¢jùh`„È`IÙîŒ7ãÂHë,%"Ƭ%¹Uo1ЉÒÒ Õ[Ô@Þ¬. MiÊKØ0n#ău„õNP߇¤¸«Êx ºÔ±" O£mw”®þ˜SºX °H¾ÞÚ“÷ôÏP¢õ›J˜»“i?®M lHÃâÑ2ô |Z(Ì[Ú( ëë&íAê¥EZ)[·+_JOŠPSÓ_]Ú÷;"+_Ÿ½Ò°8Ònî3ɿߞ£Vk¾J‚ÉÏ$;®HðD%o^­¿¸ˆclæ‘¯Š ™üFá-¯·àå>¦¶E÷\SQžõäéþLØrSDÇIz$7’Òåye€ˆˆX V÷ºŒÒÏòqp7^AÀ¸G®Uü„ðלNSÄ)ºf÷È»ihPß„?¬y9èEf™´'ÄçUç(=ä?ÞûùËQãà/% 5Ýɤ<´4)oç_#Ê3d”½Ï÷ž2úZQÙp³€3r??[‚ëQßPÍU>o>‹ý!©'-퀙¼Õ+-M¾+Ñr™xêÄ‹*o‰Ñq£«JØ…!ÅStž7Ì;{20ß4r' AKš°ø6˜e6s=°ºÛ[²Å—‚¡Jê-³}@Û¬¼³†²ºü³`ÚÆü¦óÜoµ±ùu1²HKÿéDÎ!ˆ¦Î‡é€Ô1ÛˆAå|cöjß’BN Gæ¥H‡äÚò)Ô ¯ìÀŒ%•çYÍ…j$éƒRSáà ¾‰hH·qò<¢ùÐ¥ØL–JÉ*D¸ƒT±tûˬ9õÒêb xâÖNèÓ· ø«ì?KÆ– b­š\o©yŒ×ªÄ}"=˜0÷…qf.QüJÈ :ÂöCdEðOpåhFâ¬;¦À€d5äŒî¢ K…pgt4¸½O‚šš¼‰Íå æ|sDv®KVIj‚ÈÌ…i¹ôu£]vÂxB;s¶£™P¶åíÚ4ín <³#fóåñ ÎŽüRUS!‰²rO«LtÑñèˆ3-)ñ œóCu uÃ'"¨B5rY­"²Í5 áä >®åv_Z<~‘$ Ù³ØJÛ‹õ/gá©­Uì Ø2â«ÿ %(™†cå‹?¹ÈqÛ†°7»”ô4eÜþ8%’Ò R¹aîBêX 31Ù{ -óa+_u·Vë[OΖtù4j$t¶fç%œÊ“âÁ=æ±€Lxi\/ƒ>-äòýìÍ”Ööú±nÏ ãtØÓæ\ùàŸ—^æjw'þƒEçX#3[­`‚(l;áý+˜?s^ ÓÀuMdÓ:ÙYþ“êžj 6²`˜xžä¨´òs©Q¸0Ï.}l`;:LH1‰É.‰GF‚rR÷‚žŽ¥WU8ûA¼X‡9c7«Ùo;ÚB³ž€§Ãf¢À#òÓѦ ”zë(†„«¥uÎ Æ=ÒûäeKø8ࣀWü¸´ïW<Ÿ_öòRÜF˜a«2y¡Ã6§Þ=N~ÈzZ£KpTê]‚xA@½»¸;гjŠóRÌ3Xc•&ÚEP"Aö­t/núŒõ.¿¹2TþÓ%3cä iç]f÷ýÍÍ Z ,±èøÒšÈ$ÒI"-™:${pÞáâW ku¿€ù×=í;[ÝHµ:‰égÖ'¶_;)O•Òl¹±WUWõbíém¥¶#|þ¢îYð™U餻?d–µ+î€íç«(K¦ªÂG<>½Ñø£fê!%:¦)WžàÝ”CÀ7Ã.f™DÅ[R³/EaË*ÃØyqŒ:®Ïu.NÊ%BBNTd×°m;—ÜP Ïs:sÛNàì;Íoa³$*5öbÙŠ5¥Ú3¬óÔ2•xÊjÁ¤ýD©I'S\ì¨Ö«‚$]±ŸPØ¿6­«!JBßMp&NIãÎUãu5íiU(t÷»“L[¦Å\Vâ¢w=+i{©F¼n„€Ít‹]4*É4ü69àM¦ýÉ!Û~ äð³rú—B\ý£—óÀ†ÿvýÑÔ@»‰Šô?ì™Í8qb½•£óŒ³ë­Œ¢ß+=·¶SÂËO£Xt¦*¥ü…>áØœE‰ º)…Ál«‚Co³Ô õ®^š|¼$¬e؈ÆLÞÇ,¤ÉAh!÷–Vè´„!3“t%tHv5-˜:¼C6âôfœ2xLý°¶™õ }Z\J{n;ffþþVšy%¡6`\ºñî-:û7ÃL]E{Ù(s#cCë˜E³¨ƒC‡¯ÉX<€·NBë ÇD›P4K§íÆd.|ŒBÖZ€üe|âa¼A®ÿAëÅ{QÜJ9’åpX¯ï¾·å¸tßýÁ€4¸jóMêÝ=÷祔ׄ@¼.ɦ¿™ï#ÿwåv© 1õŸJFùŽût`}ÛívˆNF°kOWÊ¿%ýňh|ç˜áÊéÈpû0†I·ó.yNRƒÈl÷¶ùÇR•#iéqÕÆWýÄíÀš®œr{´ØiÓMjœ ѶîRC6«#²ÿöÖ{6P¿’}Ñ7À°Ç}«üå*“¨(k¶À»šÈÈ19øØ˜.¿µ »ã›…Fº‰Ó1WP|aëžU˜ã>Ù>dµBªÎ÷¾Ž38‹¡ßù•<àêCÉÜýí»ÚýWc®š¶ÚHà«ÉtzŽƒÎSÈ都ßGóB!äœöÆëù}$_̰mƒ’juÁŠök¤Ô´Þ]7Èœ“ý/ŽçkAO a÷¿ÇÍí--5O‚±…‚ zꮨåh¶)p–êµ²|p['Ïô^¡Ò}ôqs>ä0W]|–tλ:Ø-»kÈ3œB7®ÖLÎ$ñy™6õÄ¥äùïpéCÿvæ%Ý?·¾2wc›Ø¯ÞÁÃ5“‚ÚÁ^9̃Em¿êmoáîdŠ­o¥yò4ºôü×y‘ˆÉ}xSX/'–‘Ÿ)¼=ÌmÜÍ—d3.¦|‡Iw79Yf{RwrHœL4Ä/q=³O¡õ–`Dr)ɸHËÌ{üsSe\"h—0ô_¤,Uá5úsµ›c%ªÓ ë T“IA#9þ7Y뇂'>|†þ”×½°ìã–ƒGŸ Cúz"/ô¨}-‚ÂÍHQdŸ¥Õé÷§e>‹õ³J{ûG®49<¶,ñI@.ÚÜ6eCöV}OåF–ì×w\3¤´x'¥5{ö g´ %÷–_Ãæ^ç¨W šÖsiÀªê©3Srµ{3;Ž«]Ûhò&åJñ¢˜01ÆAÖAi¥Vó’ãM;\UŸ@w±xÒé›qô«gŸ¨s¥tXø>®*«7öò.JcLÔe9€ @1éÃv¨ˆ»bvVïyæìõv¨^º¿iÓé[éR&ñ‹×º”óö W¾rçÃy#ÿ|Ét÷l:²˜×ki^Øýc6F¦¢¦’l4 ¯ tKF÷H(ÍÄuKÏ¡t£:(¡h‹/ŒºÁGC?`Ç!¡DÄüåÌÚCÝž6rIÄzéh?ëÁÛ£°Ê„/ü{?ߎTÀ–ðåeFŸ&ë0Ä…”š&›ˆ°õAÏ0A‰›±VWêŸâbKŽíõ«Ë­%ÓõਜœÓŠb UtC`x½{ë§}s´~eÜ[À—aZ±b»YD)Vƒ5Jï>Bæ³ßÓÌ£*A†X>ÊÇ’âKÛÕ/MË[ ¾Ûë=hMÈõs ÍEý`Øï»Øb €26ç³ù]þŒòKŸ qó0 WÛñè%ÞiËŒÓÿaÇf~âºã¹ìøæ?hYÙDW/Bd…·Å%C$©.øÚ{]œqŒML§òî«r F+ô‚ƒ¿“ÅÍp.•M|­£õ—IZ_¡—ë It½“²æÚ™aÙ®2Ú1Ò÷%Pà%׸=KúPå$©›‚ˆfµ™( jòì#€ÁÒÝïeo/à öx/{T 2‡ƒÃìP] wéF¨>ë¹Þ®E·XK¨ÕrM l8{ûöÅÁ»k:´ÀEÃÄûD¥¢ä¾átoi™À¸w̲“¤ø¦éP /ƬOìPE:m&Ý›fÏŠᆠûSV¦ã353×ùü¯²ªM5JØcйApŸ ò4!ëì_œ?=þ²L?^ØÔP9žøJ&4~‚áÃÕÀP²l%f—áU˜Áq3d@žó*„¢:æüˆ.¼7Àõ¹Íú+æ®p5QNv½¨k`éͺΠB•¹ ]‚•Š­­Kg+jÏ»ºÈ†„8úO®(ËvõˆÊýAÎØ9ÍŽö ìÈÚ!1c«#é¤s+àc"|QöÌzã2œ²î)¥ýë±×Á¨¥ËwÈðjˆ€àeÓIœW¢ 4I´%™JñÖ^¶G”úÞ³  ?e ¾ÏQXÔ<ç°ö¢ë4i¤‹®ÕB§/±‹ ¿ 9FšBE»ìV ¨€8ߨ¤¥ILÂw/'a/lS4ƒ¤@¸[ê¸3Y~Hû¼">¨s Ä»’w®*GÏhpiÁx¬±‰°…W[ká’;ŒN6 4I¾þÖ":ƒñ™ÝrÚ¡‚¦œqM Í««èïŸP€×âåºC›Fá‹´‰§'*ÿaËþÛ²±Ÿˆ3♢ 5ÚN¸;[¬ô/~ýìåsÂ2Õ,ªßOýùå•5ŒÓœ AWø­gnškHÛ·vÂiŸòYž??–.–X¸Mvå¦5}Ç”St–wp¯™Ÿ¾O¦©ÇÙYÞû@6bÇBíðŠêŠ&‰PdÈm4³ E6ULÙfÅ]BM—¼J]…N;Xç¾ñ ëè-0‘ŽE\\˜bšt?a «¹=O®³v>?#ñºþŸ+\‰Xá‘öõ¤„ž0”žù±›B”gèV”•œ¢ÒSË:N\GŒ[1NWX=Ø·™¯aâêåwu£qö$MMV&ÿ›(ú„óZoäü¤[¢Ò?«x¨6Û}9Q½èEëÇ ˆwñá±²w¸Ì¸½;ß½½ò¯¥Š6±sXhñ?ŒÆ½—‘Óhä Èd¤þE¶¶.?Nië?2™LžIûbׄçÅy,»†Ÿó¾x3t%f¿Ñz^é 1Ê^±ù’Öa>ÎÚ”`÷½¸Y± j5Ä[6À˜qÏìÖ÷®¾½›Õ0ºÆ‰;¦£ºˆ‰ÄÎ\à.”ªÆÅõ}S˜ÄR·T¾èo >v·ss¡úy¨ýo>ô_ºµªå{ŽònÉïÙ1{š>˜övÞO†}.Mlη Ö†D2™Ò +Až“bìä^$bãV?¾WǺ/W.xñkb7Ó¢{1i†ˆ6”‡ÿ Z¢>þµH6ug¨û× ùîW8ñ¼.ïS—(my.ïöÜ 6#ÇÕ¤³û $•4l¼î¯ë6jGñUØÕ,s–6%ÿ9èeÎJ.þq$2¿ÞÒ"µMUaÍ uKcúÆËx^Ëßt¼/òDEç™§;ª&G6Á‡P¯|_НD 9ìZˆ8’Kàx¶)Î["e«$PÚM,Ù!Ò}¶ú ÑàÇ3=™cõ‰jýjÀwôA>ÓT[Mà¬åP¹ÝÆ*N¸yåµWÇãß{‚ô_à_—ÐP.¸=½ë «)¾¨ o²öµÛ† sTIN{×#ó¬Ûú‹–j*£}ˆŒÀµ,¡AÔ׬þ‡Âäô•›KÍAÞñŸš>øîîòIÖZJ=’³“ÝlÒõ+,þo69#'+·êÒ!(BÒàCu‡Ìx€Äè…Çûê½’ƒ3äA5\Fʉ‰’’VÐËR„Ž%ðÔ ¤³éì´‘Ÿò0ÂÜo2ÛÂXzR³ÖUC]$JÛYŠmà­©Û¢uÖLMoÞÍ•ô Ü#êΊ­†°Ìãx{]Õy<ž[¸PÔ”( Å…“ÃrÚÓâÚ¿œ0Gj1 [R%¨ÙÜ` 똱^uôyŸŠõ…%Ê£EôïŠÈ5WýÍó2‹û͈RÕùá"xYºàþ~°¾xQ< ¹l;…ôm$5C…ÏéŽdκMhï \;…¼Ö-ÀÒˆ«6qÁAV‰©;z²_˜Ü*ã €ÒV0ý8áy›¾3˜i£¨Ø.Ò9±ˆ¦ûvGì¥=ä‚óÏ6䕦_@ˆb:Ò«BÝ çã¥íÀž’ˆ[tïF™’ló;HŠãš!×±¨!ñ€ójµ{P²ÇÓ >LV²z¿–”˜UÙLJnüOWþò§æÔbËZSg†žÉ¸¾ tÈB¼©Š¤w2?Yß$„Ÿ³ÖX濪Gxß2P&俨ãŒMu†)Ó{ÙúµKb¾Ý!uËdºõ´ þ/®,÷ïM‚†@_\ðGRñÌD. µôBQZLo3–Ø7ôþRûÇNA¾ðI—‚É$˜Ë‚zÚ‚·CËãì2$»ãÌÂMýdÃ…·zJ›4ËêD†é¶´’®1ˆÊæ¶‚Þ^ K{‰É2K´|gH”Êëý¡÷L>cºA“‰)ÎE’Gáúq¶Z¦Ç.Œ˜£‹¦Az.ÝïÓ5­j‰8¼Iºµ4Š­Á¡6˜ž•÷éAQèj`ŸSg’•ÌÀÏôqÁêˆÁw?ÈVyö[VrQ[^…ýqì&û×gÔ*KGÝñ¬j0±˜×Tå¸þÎB‹o»M¼¡±ãvkܰ(‰ÔŸ±ðvˆÀzýAO­)\Ÿ€Î+® ZÅk‹0ü»©TÃKñ˜j>¬¢òÕ+tŠW›ˆÞÐÿÜ1¹{Û*œ› \ÅU(]ôÁ)1(]~¿…0ÕÀ…ă Å¢ûŒÐãöññÓ@O®øLþK¬`íDõö›¼‘–ï]Le‡ýµÿÅ)ç™ ¾Kæl/Qö! Ö3`¸yÜw — T™"IHD€æÁcÔùß’‹¾åd¼&E-z}®”ø ¥—Q’LF‡âC˜nû;8,ªô æÉ<’sÙv͵w(¥Ž/ÌöíÉÓ]˜Ó¹[gä§.#‡E­o0çál³Hi# êSÔ—Y*“&Þœb 4µX;:ÓF¥Å fñøQ+¬C-šA'ø÷6¡¶~{Oetõ+Åý”ÕÍy&6¹M׳½ÛùI‡£‘ŒHf.1js®ØÎÿ9ó’ù5ˆýìŒkŒ›ßæš§#µë!Èuõl¸ ”ýçÒ ‘!>— Nµ›VÒî@À„¬¬wƒ}-u¢É;GÅ‚¶!)¡^á7–Õ˵|G>@»¨×%ÙøOe@ÅË Å͇®€)·g²~jž®6õY<^õ‘©YÃVo èTm£ÄP´!FD/!Q˜lcfû–oÀÖVòõá%0k™Â9«ä'ŠSH馃Ô,µ ¡1+ÔÉÙ»Ž;æÎÑ“ÉLÈcð Y Õ¥¨×²…SZJ¤ ýùÌ€¾»”äÊΗBìÓ¤Èé÷0½Nl¶§!·è5óGêß•“A˜ˆ„ý’F–FpO Œ}󿶨(’Û/‹"BSÎOéI0­/_t:I«~ùZŒ—XÝ¡$O¼ëfɨ\²Îü#)œ‹ Эý&,2}ªî³ÎÓ£Á×5srŠ*îs¡wšÇ\cÏe’ûvot¾gã/ŽËÇ«:/jϹ_+]]šÍð­¾ú§uå!gQøWtvyâ]VZ¥EŠ6Ö=_lÛŽ*ÕÞtËÀg(Å>9ã?_4}ëA¸Õüy¶>y!úÐ+ŸcÆ­¬“•3ï—‚„ (þpîëÓÎ|}Ha@3ó7ï[ò!½á© Ä`9CøåüX•‰ÝÏ„ÀõZ‘8\¡÷ùÕe˜”ã’¯ð,5ÞxóÞû€*ît¿ú‘ª#°×ã9ußF¶ª›«…rçNðþì\l ¦Isß» ßûƒk1ì>ãÁ’¢!ƒåÉ_>¯‹­J<‚H%v†žcUä%>)–.e„ø°î¿ÙêATÏQgëâ‰sÌÚqúz²0ü'¶8”í~ãÍÎË6X8Á-" þw˜G ‘§­H]t4Vq³oÁ=ç ú ûǪÖÕã¢c&“¹578Nzû„ •à!†:wâ¢ãv9ÙnéÕmºþCGž‰¹å3VþAêPkSy_ô¶ÞÏØh4h0rñ¸{'›õ@‡‰™àf\zbšÝb•Éu)ñºõè ®<yWüM*Ç„0’#b¥¯5³£Ê.â§On@7!/r…»ÅNµ~Ëî¾È"~mÙEH½¥Ê·»¬Ó·,þ‹0ß“ìÙ²[Ö…-+z&]–+lBN[C(•ZG.¥ÝlFa °ÿàURƒ ΘšÚ$)/>7\Ä^xEmf®Á&R†°Óizèz²Š¸¶1€‹0ö»r<¤‹ \¼¿Ë#¤eu¨+L8—ÍK¯XõÔŠøvSöi/ðM¬ƒz6OÍWL¶ÍÓ ÁpF*À¶¬R{‘œÒnë)B…•*bR6)}ò €1(ÅÐú¬˜Ü©~;Vް"‡Œ7hõß+X6Ø·©ÞÝwÆÜ@%Ýì’&½HrÍõA|ûÆB/Hé,@ø Ö„, ³=&ϲ¯ÌÝÇ=×9Ù§•ö˜1ÓÑñ·?,‡÷Ó?îuéêdÿöéŒÅ2ß-UY*<Æ@¸ö|ëúÒ§"´¾Ò¨Ñ,|^ï=ˆ3y+ÑçÞ©]`jT°»rå»ýóR«EóqZNþïÐæÄQÅõd{Ä cilQ[€¬2¯!ø³ÏD‡:ª˜Ñpï11ñÌzeZ™í¼Ý”›!Y©K †ü÷àín‚Óï?&ܧ€:‹ÐbLéØÍÁâÃæÒwLOrÐ¥"®«¿K39ªKSbPz˜þ |Gm®Fã`3ß\ŠÝdÄZƒ5ý:šoaÑ}íÒ”…òžlä™.å}z"e;¥éBe1Ä⎗†o¶ÝÆoò¾h;í/5x—À ž1$Óí“—2RÍËÍX² ŽŽü¯–ÿdˆ¢ÉE›Pv3³%-91E—7!;Gô_: °¦²8ÄG}sdfÚ‰<û€ê'ÂÉì,´Œ.þêâÒÓŽ· “)«zÃQ±â8²ë»˜˜†X×ÎùEÀüo—›i¹Ð{rêwÝXÆlzðX)£Ìk/¸ó]¸T”£´êñ´Úg€×ºÀ„bå ¡âJÃ3"¹4Ð=øKV)p¸S .PkÒþ̳þt`ldX@UÆ’ìqu À`·„ݱ4†’9¾Lõx[:E¬äû¦”f©†iîµ’÷e nsÊÃÉÕ»u±—ÓôDÛ¦×öÕÀZÝl·õ UŒÌ ¬~$Í»‡ÀÏš]ƒ3bj¿Ú¦†i,íqƒÇV„ƒÁñäËÀ‹öÑy´YÝÓjl wê¿ÊšR~þg¬6`;ÓµMˆ¼ü!ûÆ Öeoˤ<4RKP,à§r] ÿË[ëˆÑKñD] íéæv~3¸ûi’î',êÛÿ€ðï„_.dÒáÒ–NxŸÔwI¼U‘Ý3»²#WK{¿W‡O_XÞn©û0SŒßA¯zSC ëïá9ì[r.¬ÛØò©d*Ô-׸àÍûÓdÐioÛñlux˜„+ÈsÕHªr>¹ïtv7š£â©Q4õ‰({“ma蟩Z ²Uá¦-y÷iúâ&ž—àÔÍ0m¶Q«ì%.ÑH„k-‘$mŽðñøë˜âHãùÁÓ§q «½JëýÍɯ5#Õ·+ÈK¶´)ÖÒ0¢¯<ÔÁq)Çê¨-fyÉynúü@ Å¥„ÞâÇOZg…bÇß看ŸS›(ɳB¡&ÃÃ)vE:0T—†»öåÑŽ•+õ.ìµÝ©ôÔ´Ñè#òµÂ¢ÆW¾¡_Ôœ‘º '2!ĽR„y0ú¼æ¸ž@:EÒÔÛŒáîÿV»²çlI#ؽêvvì? ¼{b+%Wn2ÿ"—EÈq( îïU¼²IX3ŽSY½£l¶1'Ì™£{Êþp‰ÿH?'Bÿ@Aeሼd Ôçrãq•ts%pX¹`ÎУßBÝzãaŸÔGŸÜÏ\RL´}_Õ«½‘䶃ZË,7Óè\ݧéù°¿ÒÄ)-´ŠÊÃlµó¨¨‚·ñø 2/îmÕ³´"•wCUÖcpϰÕ-@–òOsÚ4ÌaØI<¾½7<µùŒ g~ªbŸBFw¤Ùå+9œ×Ú™ê«Õ# À+hdæÅ Ú¬ä+üÃoÙß®þe`ˆn[¥Öب«ºìÓ|¡óÒž¼î€‡bU¸$]ÎXüpö¢½ïŸ¯Ô#v˜ÈH&¹þÕŃÁ·-În$Æ­aL¬p·12‚Ä;‰]ª¢7Bã" qs7.ÎÝ™ö×áÀ°V~êå^QÌyùVâ幎~æÚjì£G÷ûº·–_ëP"ŽK¡ôkøç”~[Ø1Ü·2 yÒ{kó´Ò‹øaØ æý¼/%¾6ÏæÎì^”v1_ÿ¢1ÁeÊ#Æ·±—#BÆ,ðë#-Ýâ îÚfëÅc8ÙÜüÕЄ†A+S„ãà;eû®lð%SÂåÝ‹#ŠÛj©Æ~³$\²­Z\%äÜyåSš:ïÚî†"nضP£ Xß<Ö õ`µ~2A˯RuÖ".Éæ•Š-šbçó¥Ýã¿Umqs´…½¦(›Òá×ñªÌÄ9Ž[;P=ZÜ'x¦çD¯SÜÆwZ#N…—ÉÓ²CKÍ4™_œºR| ýS µ+ƒ¬S¦’Æ ™R¢&Uì@˜«I|ü›qù ñó=Òš\Ôë_V-8è†2ÜÑzTûñ½' è™a½›Àô½”õ%ØAï=®ã;#º¿ª×¥&ÕDÞ¥’ V8]#A,p'¹=;}×uvfQŒÊ P¡Jß®é6¬YÕäƒþו¼ c‘БޥÕHÒB2'LÔòu©}k‰—ð-–3m­èï3ŠZ—žš?瀊!<.—¯VŸƒSxs3þ°–Tÿß´û—QÚÙ^ÏÞ] îJâµkËvé";élQÌ /“ícðª)°•äÈYQ,Í÷2錅é Ðm.•â¹û}‘'c»Qņ„b(s½ª:•™9cú¨-âü¢öÖë‘XÓ*»ì¾Ø­?ÍØeÆO’‚ù¤Ò„Ÿœuˆ{Í£-+/¡ÐûHõUÉÇJž¯ïNõ¶ãY<˾ÙRÎCÔã*®Ï`ï v÷െ­ØTò¬—»¼2Š4aÂ]Åu€ƒÅ’žÝÔ1™’™á O$§âWÓÊ¿ZáF²ö3š”]Û'†\-ŸçTÞ=r× m<˜Á `Ñ|U ~”‰DPqBZÆÿ©7¼¿ê~øú\ë˜uzO¢ñÉ\ðc"žP>?ãOûºCF@%gª_Ë©")‹u·LèþYÈÞÐ%XŽW.´â´ì]Ööšº›á¸<@Ž×0ÛrmQÝ8‰Uzøw›àd¹µäR$0D¼ûïÊ™O~‰Årv~gî w[Ñ)ݺmÒÎÂluÝϽT¥ǰeG׊M ìÛ6_÷ÓBh©^F…Tr]o¥ /Àލ…„ä?.I6aJéØ|s\Nêíq€<ÂíÉHùW º4]X§Ï§Ñî¦p.Ùú0qkˆ>*-Ø“å(ªC8·Ò-—ÕÐôíÁ“ðD7 ݵÚG¢-àÁ‡‰/⎂9¾O–ÅÁ°Î©?úÂÑâ^qEíP›­D:ÌÃñ§/.§ª ‰Ÿ˜¿sJ0XM†TIhãð±U3‰‰àÂïsYKœäÛÊ! š›…JÃIa³:X†°×}ñ°ÚÛK¤/•9ÐCÅÐË‹ÙýÜÞâѤU&ý{âߺðó†¹:èøYƒ ‘©sßW²Ç,¤óMIYÞØ\Éó|òR i†1Äk.!2¡þ%{}Ÿ"î?Ó,ÎÌbûb§ãL?¶ˆ®:*}z@²OîéÈ ƒŽ;Ö£È5•ì \aõb‹ËÓçR…õ ä e(öö}‹Fæöh:4ÔRÅAéÔ5@h´ ìOðSŽÂ6FþKiçо"$Æ­-õzÆ[m åfËõk MìqGŒN0LìñôŒŒô¶ÿ€ÑIä-×îÙ¿:)ù›«³(øm×4"ïº4îó1xÞ/^;ÙÏt7(ÔV¸)2ªÖÅæÃÈ1Y)åKmȆ89íâE)uuS2ŒU¼çË£{È»fg$<QQ8ûcíÉU9º9œ ò›¬8c)"öµ™øMT–*6Ú£åN hÚc­_ºÉý©~›a„vì‘|5¿„פ ¯z.£í[Õd—a8eùz<=ÚÇRj Bu}ÚÍo^ÆñzµÆÅ"Þ‡™Ðøût½¬PH]"¢£QÏø þna “Å5ÿ+ÙÍ Ñ@üü¯=Eø&z•¬ziþ7Z#¼rCGþ‰ù%TÕ±©‹¾š¿#Ð`îOyÕŠ&ƒè¸FÐ-ÚØr˜1ÚŽS`ŠòGу„.bþ©@/Äðþ0ÀEïÞÐêˆQƒ75³¨a¿´Ø€¹RlÈ!=&âžUÞâÏÀàV%àÛ­^ê®°ÎBy:‰nöá¿ñ‹ øÒ…ªÙAE±Ißéžz˜ÃÄai‡¯.õomRN7´kDrõþñ`{mNgZ‚s”Q‹‹6#? ¨]cOTÇ$+î\Ï” ‡lÞ8Zºþ±;¾†ˆêëU–ù˞ʸâžÝƒ)ÍWâ Ô?ŧ!'e2éC07X‘vˆ>ëc@“Äz^c ‚µ\Ti‰“WGÙ[(¾m¯D`PkÇbwmO1%ˆØZñfpoa C0‡¾#‚i‰£š9ÿ¨6–©&Qd’~þqp¢f²5L5ä©ðrv’1üßg _¼„büø61y‰èS»Y÷+Oq.«V óö*hâÞ¡ùÑʵü‹.NÓ × D¢-áñ¯<"xK¡âr¦?¤3†Öà‚¼É.n59²„Ñx}½ÊYCÄ*SïïÀG½á%ãXhN·Ø’C[î˜èVú/¸6ù…k_>ÅlÇmMÜh¤ ±6á^‚~Æ1Õ¦'' Ëë»@y'GK‘Z‹ZC–l‹=¨)ÔqY•b‹ØžÄRGÿ5du®i`"ž¡xËþD¥c“ÿÁÀ¾6q¥Ò…§–––ù?Ì,˜nSª¥`éÌÜÙw0a>R+9hL&SiKr/>–:o/ìû’RòÕš©QG©ÿuçdÌRãÀMGËd•m,¥c‚ÿ½+Ck*9=Ý*þh ‘7„lóFlü˜ƒ”8Ÿ:üå_4Ï}àÐÙ> ­+\´öž~%xDútZ¬»}A˜7ÃJc;B‹™îü ©ô“ù…Ã\KѨiÉ$K´U%/(Ý4‹´&Å;ƒg*!åÕRq!Ô eáÙkÚþ¢J’«§õgöìyÀ+,·’íççÞ]õÓaÏ`úî?•'ð7ѱæ míb:Ƨ2Ûl¥º}¡Øal‘fÈ"×ùfv­¯±ç3gL¾N׺EãK5GVÕõ¼ˆÇîifø­ =ä@'¨€‘ݦï“5i<`t•‰Öª#(å‹'ËVå©W…`°†LИ›N5N–*dL,ÊG×Èb©Yò¯yÇn¬Íd’[pxBo;§céQ2ãt£‰éÒ"Ë<®Iy2¨?§‡™:hbPlÚÿ)ƒVâŒÈL7Mäµ— Ó~.ó¨Â¨šÉÍEÕ3ï>§ŸóTàW1}S’¾_Þ4f¿ O‹aÉå\) „ðyƒÁŸÍ¯5(Ss :›Mµwøðx®Ç‡Ð0Iê»Èj®leˆ DdÛ¨™¬ÝÝÙue¥ÍŸQCŽ ûa³Þ8b»7Gk‘QD·´ ¸Ò?†Ï±þzÆ?ÅÐßµð"'ÚôŠw”’·[3äuØ] ïz/2OØ–¸WÚ¢ñ7 ë_ÿT”Ê`—÷Jëd“•UG O˜“ñWö(%²Æôè¯×9•¦ÍÏÌëZ|•r|¢æ}jU¼±¶ÿ#\vŠ«¶7 ?Þ%:£´mA:RLÎÛW›V,?Âø7k… °£½tñç~š£2U' KEè°¾wÊ÷`âÿìROÜ>{°Ð4n¢÷µJhPʪc—!}}šëh§èoõÔ•PÖ¼#ÞÒ˜‘~Y±K¶Tá¶!œ2‰á}mÌçÔ¥` Y2Ø'ñÐJv§®hŽ¥Ž[•Ð Šݾ­;mB¾8W¯ÌÞ´¢1*àÐ…•;7â•Ý–žØÈRŸ]}pÓ p¥þÑF ѤüY0e´ë§.tÔ)ï¾Ø ´ël2¦­`iW”T|/Ü!“éÁSj8߃¨+¯-%þ*´,Ü!Ñ'<Ú”Tùˆ}<ø²±¤ÓÈB¾%ݘ¼ƒŒÒgÖk²ßoE–Š’š“Ó•õù&d ;51}<@Œ,mW.="~eCưHUÁæ4Àù"›¹ayñ_ÿh¤¢M´¿+õÅ-šM÷›Uw>s;†•© vô,În‰w¸6‰øç>ËYB³È‡>D¿yßP^Ë„fMÆpáÌ¢žŸ;ø=иþ«m ïô6}4Ž$&¬À- i¯‰Z}Z<#[„Sp¡$Þ¦S[€p”½†\àS\@«. ½Å­obX~bxe#FÞŽ,ÃÙP샊妼ÃX‡d3p^S×?èy0)Á>fý@u©À›«"œH}Fl>$šf 'f|Ù£f…|`˜1ˆ¾nV?^3"¯Ž¸Sk=°N©vy0ºwäF¸ýp ¦u¤ñÊf:X‹SZ.Іþ\+L™dy#"+9çœÅ´ñÍQôÍ›¼Ÿaã¬^\æë5ö4"¹Cä€}—Cñ(Æyõ…û}' G¬c"ê¶(` S%gÎ+ÇÆéà%p0ÀÊgøQId°ÞU=_ÂQè¶ÎϱJ ½cÞw­! “>wîæ÷g$°IÖ¸Ã~è(»e7v³'ÃõVŽD)s‚h¡7Ó0“㟳UàÿÃíÿå.õ æ¾öJ˜.æ;YD&Y˜ÆÓ¤2ñ¿—аhÑ1Ê+”1HÁû,´?Ã&‹Ïϯ¯Î;Ê:ü „x‰f€“5[?B3t¤%TÀ,G¸Qß1Æ…Ö\ŒáËÿ:njLA"¶}˜ys£á½K3@ CÔøýÓ?è™NOƒÜD”H¼€ED€:ÿCm.k!½†&7Ä*à“ž{¶FC×71â¨|®+æ´qèMOK~ßy{Kú3*ÀÂÀÄĨkiÆ%1¨0m„ zëÙkÎ<_Ó8ãÁÜ}ŽÄö¿F½Ä´by`Jò/Ýœš½û]Xft¢2SŸéðÖ½¹h8ÛÃöe¸ð,R•Ó6Cµ•LJ6Â|õhE!Ë多ë½/«iþF†Ü€ªáÏf?¥[Ùa/ÉQý§ÅËY7˜óI¾×7ØŽâp¬Ã['<ê˃5Xð^+6ö-½Ö c7^ö%~圲%6»ÓƒÁ¬œu$±¯&I›Ä Ÿo3ö„›Sªs+)ù„S EQ3 ÿwÄò‚-]"`]4X#ØjÔÿ\¹y™"‘LzÔŠ–A!+ùÓáéÒ+]{G€ÎT¢?T:µC^lGäÃrË#Hi„ïn<ä¨[èŠ:~qÐ(Ø‹Ÿdp9"TMÄïS ;–ò1¨exdŸ™ªMcâ„ ó¡UÎñbl& úoþ®Õ¥Ñà"òâ6-ÜrøD?E M$w6†¥Í´»<íÏb4-”¢¶Ž ƒË€ÆCÔ?ñÂÌp 8^}óÕ 'ø‹.]Ý}—¥­™"Ô±Ÿ@',fÙ—)å°w6BX&R™ç¯Û”*ú³µqÓ'P×Ó¤—©MÑ•kÃâ€ÆñèØƒG^ŒØ3xE« ö?B*õ²Z¯uh½¸rfZ“ÅíKÕæç‘‹³Úó}uG…&±È,ðׯ†óà”ÙRqç¦H…!›øX¡½|çAH²Äò ¡V>Yö™_‚Ö¸LCyÆ À(}< Ö¼/K’•nøºCTå¤M'/_¡CQµ=ã…“¨²#îIj÷K¥õ ’·ý¿/<Ʀø+¥Œ£õ²èZ×q¥l]âPÔªÒ€ðefúŸgvRAÈWö •S‹­Hj–×øuÿhÒÆãÙõV_ß¶Èì',ºVe`+e ™ÁoU¨Ý¾¥AÀµ>ªvàØløé|J®æ^êÓÞ²H5«@ºQ'jGOjàê&g¥# vï$UÛ„kB’¹ôÆâßÁOúiÑ-È|\MfÍ©yß]ybêñ«¹ëe}1f‡™¨Y¿8LžºáœÞAai^²½®r“Íx ø¦†QGŒp7·¥3Ò蟌´F­Ÿú Æväè0²è…ÙÔ—ù-žÝ~;«y¿½ÙL¬“Ô,Ùàß4ñž¡£J%ɬ~^“yÔTWFˆª0Q~‰ïlá ’$S*['†c‘ä¥NòM88ù$¨š„e‡+ÃȧÔM×í†ÝDa¸â)ïSo©«åºvrð òº¸^P0UتýWÆê›] ±ýð;céDœzÑr(|Nv‘è>ñeËÙÚÙø˜ª4ÇYÅB íŸÄûQ¹¥ÓßÀØÑš·ÿ@ Ì&`cŒD,!ãp#T=*Ç@æS‡¹ºc7‘» ‰“Ìs¾ «ñ>ñ'¥áOŠ´Ì…é%‚ŠõÏøTT':XBÁ{wïFéÆin‡âËFnu?h| b±À¬<­î]€Æ)±«hñ%Èøl&®G.Ïb Gͯ§„ú³lL%”oaëaz%×ìÎPaÄ—ôWmbÞ‹euÓ›üø<WCÜ&·©§Šœ¢ßY”ª 6ÉFVQø¬Ý Rïž@6¹­SyïØjrï,›Áéù`Wá¦ðÎÙzçŽßÃ^³þnNÇ‘¾Ãì¹í¦éL[ÝöÛ{n7Ü)@›ç¾„ ð&Ü9ï¡2J¹{œÉS\@E©Ölyž´é3Ú]¬qd_õ¸R‰ã5wCðÏ\€}Uøÿ$”lÃZÊЫƇJ¸ÌòLLçô" šg³“E'°“­®«@Td^G|µÂ~ËPvË´ÿ@3·JÙ.ƒ:Û´ò0"Îß ,O—HÆpRuÛXí…Ь ’òËÐ_+'4:Eã–øP“HG#ópYòÊj‡üzåó^£-ý`˜Ÿž>ŸÌ_‡e¨ó‰‰†¤õ.œx÷55í8Iˆz`Ä÷VÎ)õ‘[é`Å>_FÍTîÔðF3o‡‚×pâE§ÐóœÖ†½~Lvt:e—aœc"ªæC¡Ÿïu}>;×0éÛÙ8‚V˜Ú`$°Yw"VTýKçcDþ ð q©Yô“bâŒøO¨Â"ÜpÿÐ25¥¢¥K’.I‹&ÂÞ·M »¯æC¬FéN¢Ø>q¿¿¦9râ"¤×/¢™Ë¢Ñ  }‰ôƦÑ2]ú¶wÍ>þ¶õ»hÕѾgýuß(c¨Ž _«)í.ƒ}žãn3*P„šC>ø|·ˆ[ñÈ­5ìLÛsœX¬¹/6•Þ¸ÍÆ3ÊÀíÌî¬u²Y`¨Sá{æ z¿@¯³G‘bPЬ›#ì†÷B²óJ³øû¡Ÿ…rÐ JÝïÁê´|p‹•«]àK£‰AOlvye°Lý}±K”+2û—e€-nëÆÀÏú‹'?Ý=Hñøèyø¼#—q•ypÇS˜{K3/S™:oçRƒæß£\•u‹l  XìXSNZuzuEE& Nž­báØ¼ZòöÛš‘,¬@.ÀfvVµ‰£páHL‡Å/ß] Ìëtš‚dð}Vo"$‘C•’§®åé´÷\Þ r!f”æ-ÏIÁKâ[¤å"FDño=þÜZ꟟j‰/C±Ò >k€—;§ä,z—¹h€ä_Ðë¡[ÂgÙßsT – ²0Цt½ªƒ`…Œ'< Xä&{ë\©?:aCMiFw#ј,È’¨Ú“(RáT†Qš°)—P;¦ŽÄF‚v™‚0´ù|ž…½îŽ‚Øòô“+,חЊD䫆y´îaÍÀ¾×Í‹›Ñ>¾+ö Å`y\ ÝMˆ¥JDGFý?e{ìcñU6¬M,†íôbNßo:ì–„–´à¦$ïfÐ4…faÉäCV#Õ¿_@_#[ÉRÏvvÔ)9“A›èò7 U¥ò÷䈖'N¥\»äÈF¶Ü±:ÓÍgð/q’¾“)-?@‘ÃFËfVØaœ‰‹¦•;~$ÃÒš“ôÏô‚ &ÓgŸÙ]ȵ8¬„ù©6\N€brF‹*?Šû{?%;Ƭa¯Ö2(ãü¬7¡ö¯CÀSXLÝûôÛ§àóÅV ¬IUc8L²òiN³¼¢çÄèÛ%!HÅ_ ú0 g[-‚@Éz½”‰ºªA´±´{:§Ÿ¢q~Ú·øÝ@snúr#s5 /‡ŽzôÊLCþ$r¹]ªEêüíu£eà‡žîU²Âø ò0ÆY™rEnš[Øø7¨•D÷L:†¤îæ”ÒîyµæÝ£¸œþèÏÒ·Þo YB¾ÞÐÜɦEóêCø=¹}L$I3‰Ö"yW } ¥¨ß%ööú,pitLiNÄÊ 0|F“­Ö8J!ÞPQ·©.!"_»DÉs5rNÍV÷þudDWvÎDEùYfâ@u¯Iýñsž°óWqHö›™6I¾ßéåx™–bÛ(ÍGÑGÈOt>÷äÖLÿá·©ƒÜ´ÝíxƃË/·Âæ¦ÂÚ gñsd©ád¨ûüE¦' Éœ¼²ý&K™ðAë[ …ÅÝHùÍ< äúÆÞüZ1I³ƒ*Þ">´QY¦P3êʽjA¿÷I{HÁ'÷É·g8¯íU\TÐaF×­# ÑéÜÁ÷âe”Û%L¦'ͦ)/§A•·"ú>³ÖÙ†YÅ îOÚvW-ÇŠÇésÔÕëJœäjuq«®ø‰ì‘»´´%Éÿš©:¢â,6½Úbô‰t";€õfÙ‘VO‰l`ƒ;åבÆ6)3ííÛJ~;éÄ~£gg­.xŒ³â”’uùšÅý±'Eª/"×Rôú@ Ñ€“ÿ·ë´Ù+mÊÁ©†v¯o4Æ\ö!šQE[xX^ŒóðúO²º!cÔ9§‡†܈c›å«0ï×`ÕØñdƒšÄ~x Œ“QÖ‚ûïËo¤¡”ê xH߃fè,Õ­ÓET5ÍŽ M/ÿ@­ÃY`Q<)…½ßØ‘7:u„û³ÂG$ã}þ–îµ<ëTG#âQ5íL‹aîqú [Å™ira"ÛM¹y2œwõËyŠNlÕL£RlØ!ŒöK0õ¹äÏ6m^g‘ÿxpï}ê¸ `â Û»"ü;¯—#ˆž”ß8ÍæáÝô²Øzs8›Y¢"-1»„î*ÉTsÙÅ­P®6£ñ(Špi@ ÷|R¢G¢˜ÅE£¸5ËFÕ¥; vÇ7#±DÅ·™ïf޲Œ:Ö„4¸û°µ%¡¢–¤Eëg•a&%ÄJÑ‚ÅÙ1JL•MNTLq­Æþ4•fNEaµJÙüµ YëY>óõc¦#›œûdÔÕï§JëMF±î›2‹”ÒO*s7*^@»¾Ws|ê–_º|«,0ÅnÂ?@ú†ºhU®M÷®ÜŠÉ95@1 ºDî8M7­ÓnÏ,™äˆuár…õ&>Ÿ#ŽRBº}×6dÓî—aU ¡Ëó¤udz/½$u°ÛÔe6£«z{eSºÇ*ýýÄ¢YˆˆŸÏ7رÊð7Ú˜H\,Ø™`°æ*dæ7Hh7ÐúW¼ç¯ „ìªÕ×R¢è>ƒ‰¤G/t÷›Ñ–S¹ÿùp íÐN`gÓ€ôZÚšXÂMLJÉQ"YNάª:Bˆ¡­°ßÄÎ1uÑÖÊH ­r«¿É!l¤ µÄö?êIt/D`ì?/iÍæó-A¿0ÇÛ•p¹NÜîg›ýUjÖ¬ÿ ‹–Ç!U¹¦JÖÓ– ÎJC¥j*tQ ÞþFÃÿO•êEµ• í“ç”ÇÜoÁÏl2‘ Pb“\ƒ÷d¨vôš­.]½§þŠÊv /@nZý^ân$4ɬhMœ-YŽ:9@*Ç®AÇé!£Šè¥eÑjægÀ5@E¡—˜P-*¼”‰P|º™ ¢Zîja?YN[ˆo+•ˆ$“hGu€×!ý±hY¶v\›Ò”ôу!Ç’>kG ">­ÊÍz7í§ˆ;ÝRSH€_Ò߈ ±†ÅÊÕ$#g$ZâûÕÀ¼—ѱ¹Ü¶zq¥ŸáØi–Òvæa½úÊ_=aC6* e%ƒ%Jd‹ý¸úl ²fFŒÀê©ÌÖ)8Rªt¥ÉÌï1–·„?­+éÚƒž6Õk©) ??—!*¯;U^õžˆCÚ2Ì;ç¦8W›aÈ4ï‡ñº·'©‰É`ìõ[=uŸÍ“<“€žâôPÏ Ó%·%‚\Li;Zo·¤”¡`H4#.iÏþBxÕз¯ä@ø·:Þ 1./¡§—®X!ý¨‚àh°áÓêg,d‚¨Ø¤þ¨2 Aºeþ!+j1œÀæ¤vòÔú…¼+¶¼8Hî©R'ö-è5'7a†_D‚ßP¨WÎÙ¹5ðܬªH®V—}+o|¾õb]®®®¦Òœ¯Ó½' C¹n‰ÏгyKÇYâ ZkáªÊE~fh°CV³mÑS–Š(Ƕݘ³µ ×ü‰ÓÉä~4EÍÂqÞDÒÊã:gÂ}eþR¦ýÆþ9ÄZ¹]<È“xœ“FQ%…(['YIÜÀ§æ{žæ˜¬[.°?Rv“£ûŽÏ€àƒa Áˆ¸´FnUéX*Ƀï9ʺ(ë’LžŠsôCp*w:šøö ¸Kµ•*D~ááw°Ìt¾+¼‚{ΔZDH{Ã{ ïà´R”ØVÄ”+ãX[a¼>†êkjqÀ  ~ïÏgVrB̲Ítª>!¹O=.ÜGlÚ†m·­XH2ÖÊÊS[*ÃqŸ®Z)Ý“ÈH3ÕGƒèÁ¶ÇÄhÜÚË58S‘œ§èC˜ö‡#‰dBŸª…ÌäÝ"*!ˆß¨û'3·°nÓ”ÎæX4~–ó+zFzƒ.1@)î1!YäHþ„E£g .×܆ŸÑKÜh‘æªF?óÀ´øZmz¬üÕß‚ÞÀ,ÑË߯â`À¨}Ïjg]‘XôjüÑ 6ìÇ8Èæ³žÿ ƶ÷_g8—°Î¤¯rƒÕsœ{Å·^f@ZC¡¨SéUË ”8‰¿0ö)”É@Ò‹Zøµú&¶€c íüîf,q°TÃùá—yϡȣ6é§eêâÚšDs7»èÝ, SÚŽ)|бâaë®ôo&uŠ8ú#+OkýÒå§³µ—ú ÙÜ…Œ9Ð(ME)UdG:ŸŽÝï»RJßNä$ÈÚ8 ËÝU/­ë¼dAêeçÓ£îŒY}8 “£æƒXÕåè+ÿfºÑãwþú\kâÞÕJ8² LQ ê²þ½ñ.O¨H@Š4k<É£6Ä^Õ"/œ±>€Ó¬OÜÊ&üŒyMøUSAü‚™?T¦´e—d4©øéß-)GÁï$³nX„ võpÕʣs¥9Џ•nàDF³<ÑÉ.³Š*G Ð¥ŽÔ2“ÃÀ\­@÷&h$“­í®ÚÃýAäöŠ1«,ñ#WXßz€JÆ{£aŽ[×ÃÈxr"m¦]òÝ!pKôÖC¸Qm P€4%¬Ç¡öR&š¡ÂC+ɰú'`E¶5˜kŸ—x Ux¦‡ÁéÓt¡'š >MS´èõ‚H9Ý‘°¼.L^ ´1ÿém7ýx¡rNOòW=[¿¹J:c„anÇuÅ;##lfr»ˆ¢BzÖU“¯!JŽúÒªšjšDì/éÆÂ>óF ÍÏI ~{ijU›ÿh% —W@g8é k¶Ž )ÒBž›ªÄ(ôî÷€­9ûlbíiÆí”5å ¨ )Iö01n.òz<`.#ôÜë\çSýà:ŽK&vã*Rî~F/%ïýqB7‹‰ªä+ô¿Àù°öú\‡êcþ’ñ6TŽa‹=r&‡éçG¢^É$„¡§©•{[Õ9`’Y ÂR->Íûk ‹q$áî„RŸ‚)3ä£êµÉýí;NNvôem”Ý ‚j›‘òÐ!©žÐÆ¿Žh«•ÛSM¬ÿºeèùË–AÛ¯†Ó«G+ žˆM|UæÜ{. ýÂÜ4Æûqú€©œ Ó¯Ô×ÔA©YÞ Ðìß¾¤ÎéÚ$q+Uˆæ ßµ—çÌ)¼a5±•íÚ8¦‹€ã cé µe AÀó°ïš¶d3¼®·Ýmº&.L²C¢nEº9âU½ûå;½š­ÕSe[~cÚ / õvõ‘ü-›áC˜ÔOvOYE)é°î]ô*7õ“¥2¤P`õô‹Qˆ¿šÊ ™ÏP#“RŒ7¸ÑR`¸×c |ЬbEx|œDÀemæ-píÆ ¨ƒµI—¯M$Óõ´áë_"ýF @ýýuN¶£0*Ïu…€Ð&Ò~ÔâH­È x?+€[ý„œO‘C¬¢åšÌŒ]‚dl$\ ülÖaª09Z‰[{n c†é/çŸIGB¤hµN…Ï]•-ó™£Â2¾¢µÌîC?­ŒrÂè`—jÌ'„z„9=ˆíIÖ¦²E&óÇööv1y(àD*ŽSÉBò³u,N¼j¾áÅ×Ò+MÅÓl»€ÅýHñó–ÈJª”vŸ·–—„€Ž¸°²ÃGNµëñ‚½¹XŒv %Ì‘+±¹TGÚus¹ °Œ‘ NhÒzÉû'Ú$f€Ìæåª—¾Hæ–äü~À)[æ{ä¾RFŠ—³*Ø3a[-š&$ ? •pLSj/’ÔåÖÞ®à:"LÍUʬ^ÕCf@ã 3©QlEp*ZÍÍ"Aö}ÓÉ·-õ÷GŸÄ^G döç°Sèù'¹v}dåX/vã¹¹®À¯{üò¤mÇKÈ=~;þ’–× rêø”~…NYp‰Ü 5N>Ðiü“8 í…EþÚÎQ³9:öÕqP»Îº.f”†8Pˆv2Í `)ô1QË¡åDoýŸQZ!é½Òö{Rï¨%<«°*ê¥lˆJÄ$%IåÆùXs¶ äÝŸ»3q 5dWz Ìê wÔ´¿ 9×îZh¡øÅ¨Ks½kœ«aF®ãq/l?ª$ЉCBÖþ x5ÛJX[ã¢Õ!®jùºb„Ö¼çJ»þºÂ•TgòôÒšÕ‰‹{4HG nƒs´”{ºiIJzG³ô P«äúI&Á±7F g’Z ¥´ˆ ?u$Þµ"W±.‰Ô—áÜžÖ¥^Fֲμå EütRèèDôŸ ²p ò"þà7X©_…2Àó},Ãh䕇åx#‰ä¤Â:&[*Tï×ûþ_«h£ˆó‡ç‚–£HÅ^‹!¡Ð[Ú32\MþʉˆŽžÚùWä$‡ŸPD4¯½ ÷Ät‚^ÔéqiïÀá=Öo÷Õ™dÿM1`ðŸXGÉÓGçY¶Ak½«Behæùlà+óopä;}QÆøGd¼ ÿ[¢]—9ÄÒIæ—kS´ëüü©}ßÛª¾öÍu)I0šÊÒjÚmaÁ¨6ÊÚSnõвo¥Á&‡´æ‘ÁrBÃ`S]/(ÉWͺà\‹F½É„4 Z?As•Aë„3/ƤæK›À¹+õ?Í0L¡Wœ›ñŒ¸­ÅÊ~¨ë;Ûƒ"é¾°üL|Ä8W®èdcæeÆŒ“¯¶ÈúR0i¯J„ã¶_gåÌ%ÉbÏÝ0ѯVmp:årš¯ûH}žcƒK—wy³ S=Y‹Ú3â°ÙIiPQ ŸéÝl›Ÿ1Fe-«9û[”žQ‘ŸvF–àøžX¡\i8¶Á6i{èŒD,uÖZg:z«³™„ž=w §¹”E5øV)<ãáßÐ:™E#ìtp·Nî²×\sQÝi{½¯3<ÓWqå{¸”èU9ûIM¢a¥ã 8Ò¥v¢Q>•ÿñ`‡j® À…å–;tn\Ÿª:B¬8Z(ÎÊžYÍ)+ˆ zÐÀ—ñ{òŽ8i•Ùº`m›¦f½†"9"-´}“*cÂá..à±C–OT‘`cü2MÆG/ø‘¿ÿnmdxîbÖ®.OçùØ̳#ñ8ÒÃ+†”Ìm€çùÍ‹I0}¡jM (çqT¤áNjí±¨_à-iü#bÛä¿ÐkI âï7tËùJ8 lYFì²íεîO×íE£ Ÿ|­ËŽJ1õ<Ëð¼Có£¹1uÎ*é0Ó'×î6Ÿ3죨5þ_ ˜ó×P•û$·û¯+[ðWþƒ±I_a oµó5𧦉ws‡TWe•ÖsÉ=¶©—¤†J^c®Í£ŠƒŒÀ+ÞÍñJ ÓŠ¡õTŸJ6˜ñ< ô\×AØ-º¼’ù´„Ò–[]+¤©£þvbý¦#_° !ÈIc›€-ÕPÝJ+v¥*«³ñ^PÚL$˜xmÁ y¹Z¸2z–&äSÖÖ5‰ Ÿ²r‹£FÃʾ}á¡MUp½nhˆ÷†ù‡ºU=4N‡Zþ–¯`W¼3ã# ql.AsÙ [þÑ54(ú6¥9 –r#îü‰™uÌZ¨â¡ùÓ_oD7äuwÔŒÛS°Ð3AD¯‚xŸw>Ö]0€€UBB‹QµùxÎ7Cm¥öË„4 Úc«; )aEÄÙd‰eó¨ù”5«ÃNú/c>W•þ´Ç·Õ¤ðPú½~…H-;bJyL|Ü,÷ÚqRœÄ`º‡‚² ’¤ß”ᆺQ(”«ÿ¥¨,]7ª;#ïnüßU}žËžÙÀÚ<õ¹$Ü{>à}.ñt‰ÍHf¥\òòùÁ›œ+#MZ CTˆ…‰†]]gÅÜ'kÝ+.¯«!©þø(?躳Êv¨X螌kŸÑåd×SŽ2îŒá…‡ËÌd R¿ÞFRýŒòE×t{ÙÄT¦ <ÅtìŽWÖ§ÎÊ÷T]ì£{Zhðë¤Âš1`N ÓýÐó¸Á†f3%ufqs:T8dQè`¡¸E/B{Çp)w×ÌV’Ú§ŽE÷áKS ·}g&Ò=Wó^±Ürˆ™›8«]éœô”#_ægб…ä?ô@¢¥«z±¹–DwHæÏVi¦`omsáÑn1?"’§ªŒvè bµ<ÏþŠQmðŒX¬Öò¸Ž!¦ $:½[+ù›èÞ¶jP•SßóC£ãõk#Òl7¼Û^õ]Sšÿáù-:µÄ!Ö.«ÌÊ’uÝßGä¡©2rN¦+d…&Ýyýñ êL¹*·àíƒq÷G Ä(THfŸ‡(–1‹OtÅ`틨¸HgIÓ"º– -»sŽS V’•ú{ä†ñå﨑®êFV4ÓÎ%÷,>´0ÈÞéžõÈòÓ½&$k÷“Ê ?rIµ1HT¸=N^ÜL»Ð‹Azò–JëÞÀ}°¹§/ƒñ3ÅÐØ"ð¥?Wg Sš¾VÖ7åªÊB>ᑃdùv9· ©þÊÀ3Hð‰ÎQÂ&ì[«ñd¤C‚-™<¦O÷ÈuIØßV„âX²Þ¿ˆ.«ÃPÄÛißIª–ƒ7µUhYú¯Yzª¼™^òî÷÷´$p!¯ ½C†¦*Ì’®+UÂa¤ ×1)QÂqÌpÕË!W!×5PÅ­Êù˜–`ö3 Éè;÷o)/í¦÷+þ‚õ‰£úlŸuh?öAÇpxCc®—rÈ4Íðæ×3­}¹M¼Ws~ëš'Ao97i›¹çA %¯wöbÏ-J<õÿENƒ‚"B@á m:Ð_+°'Ì×WÈÆ—'oçûÓº†„‡›Ö¾6…µÄ> Â`®ŸûL½ý0–Ü”\ªmo¾I+1œ„í(æÆ˜d÷§¥®ÄN ª¿£ˆ~Wª¶¸ñ`JêCáWï9öÓ·ª’E6ní•ñz´ÁB¥qrÅÔ[Tæ âuXJv„l=ía ›6ÜõûÔ†‹Ò­¢½–EË£L$öÌÏO×KØ/OÉ—]ˆÈõ†,<1o!7” Î’ÓÊEªBP¾ŽÞêrmÊË«î¬ÒZYƒŽb ï۾ȭüiÅDœx:É~!ÛrAATêJtÔëýõ^ó‘ëÜ$âx_Ô.·—ZÍô@ù£²s|Ö©YPH›³È†Žæž/¶ƒ\öj‡q`Œ–Ü^¬ àÊì¨ÔŸ~Ì¿ ¾ú¯À`œtAÑN‡” ÇU©ºù 0/A ÔøÃ;r“:pá'¬€ßéæ‘æ3â°3Ó¾©bÕT îŠg«5Yôpö=8Ôß‘"V;``Ü4Ü?F¦K¯øcË4jôÝN´ëeBŸçÅlâõ_~'<È"v0÷nµÀˆ…?úù´Þ½nìÜxS†uþœÞž6Ѓû‡‹>#Yšb7ŽO—é–TdÓž7÷w¶£®µÅ?”§xÓ7†[ÊÇ <~r(׿䨫#5X3ÛELÐwcê>–wcõ¬qó«ê5´gÝw~ã›9Í9‚Hø Boaõ~ì˜üpúwdQbÛýòçÆ‘4Tl€cv\f²@6ÜÚd¥f½RJø0gÀæÁ1dª)ÛŠž€·À+¦ò ýƒã®àÿg:è[Ì‹@‹µÁ¹ˆ„ц_qNiŠG~ðô:Tä,™u¿ï„ÿ-Ÿl9F¤b2Ÿâ >¶Èõ£k)|¸ãâ Ý´ŽWx\ îýmâÿ\¬ é¬•¨Fé;>ÝLnØÌž»aß×÷ [宆cÓLMÙløÑÊ`çO7幈×¹'üí¯šÌU¬kË ùŒÐFŸµõ¾³ÄÖ‰«³Jj÷ù­sV^ØdWa|Ì/;³ï´©²~Kõ.²iWø6,ó#û6 º.´Æ6Eæk[F,üÀl˜¼Ä­Âóg¢É”K‹…nŠ Û²‹PÏñWíÑup_‚Lšª¥÷Ônjq“JûÆ@±c9Àd~S¨šçúÎÐe‰M“ h°ÜLÔd 5*tÙ=»²jJŸ3ûZ3ó˜–Éø6°+Ò_ Ï9𡮦nÕd­ÛZô8)C Ú¾<Ä ¡ÂŽÃåfRTäÒMWÙ¿¾ohj-©ÐîB}« g"j§T©„ÒR/U¢»BC ÏD”·Ô²‡’ŸÊôÆÛ€‡÷ŸsÒûU'Ü"É$Í-©EÙ?qæýEûñ7ųž4MãÚÉkšÏçŒ q1ð\¹s 6=Ða[¢€‡È׳*d7ëÆÔâÔ$i"ñ‘j'“‡×PèÆ@tU’%¿‹…'Å[„[íu2!<ÃA›T<6k²çOdŽ:ómÞFÍ25êätàÄݪْÂuž•+Ô7ÍÑ#pY§«G¥KO™]p—É6'˜šcúÓ/‡ßZ#nLµ¬BÁÝ hߎby"p[Ñ/×X,œõÎrÝ‘”ªÒm…ÄqhÏ+@É¢ý= Õê¹cF»|–|'%uQ óÇÍÁKª¹–fb–'Ç´9Úª<ý(§…f†&„}S)í,Y[Ä6HE–¥~c­>rbóÎâf0K4 U1ç̵.]S]>gœ7ìÍ/~Mƒ¨ü'¢Ê",ðÝyž2w“”FÙ_Þ“I‘ÄdXÓPÄÌlž³ ŽŸ Ñ}4ÞÁ€PáøGu>šL½Ýs"^h°«;·,­©Aò—Ž)%俣a½ªÇ—ëdìŠ_ÂÑkϬØ16‹ÑÅ´VpzωN»=Ç0þv°…øîuŸGé 6Õº8 ¯ÏÍï º†›yð›‚ÀêŠø\*Ö‰Q8í¼ú¹óŒå ¹TH·R ²u£oÁö›·Èô¡ó¸Mè[¦¹”­"\­~6ž7ëЩ#ôÏJòÈò°¿=ÙÎ qXAÍÇĺ|wfQŒhÉ»®E¤*±¦^œš€æ*aŸÍ\ƒÇÂg>ñ¦âf9†·™ZÁìzj”šbcúœ’‚¤,†>ʽžùÃÜ2wZøŠÅ–ß¶ •ú@y>0 ‹YZfields/data/WorldBankCO2.rda0000644000175100001440000000621612560751565015347 0ustar hornikusers‹]W X×eqÃ}K«²TQТU¡ž„H òÐ:IÆd$™ CQqA¥.­Š—ZŸR´´µÖŠX—"b«µuq­µÕºàòîÜI}ó}É™sï9ÿùÏrï—$FNç1ÝÃÁÁ¡‹C—nè»+zuꂾÑÇ}¼¦±œ^N2é ã7Úʆͷ$uÝr¡` 9çëcoàðΙ•‘+ŽCËä†G'ªÀÜ>ùTÀî!PzxÇé~Xç•“† ®ƒÝ±«)8†1²€˜3;ÀxcÙ£úŒKPPÿÎw÷|-pþÿìÑkò¡fÞÖ òR`ÕÇ?Hv„Byí®—f5´-'û¯ð €‚íidë_8ðÓ¦ï"[½`íËQG*˜ Ø Ÿ¡uÜð+ÌÜáv'ƒq„ó‘ƒ"âjà|[èБO¹À®^t~ÔïËÓlti„M»û§—É úÑAï?˜¿'èë]óRaÅHÇu+çˆà“7Þ‰}²VBIÒúÍõS—¹Ñ7*B¥p}®sD—Ý¡„==O}øXd]q…ú£›Vi_†t÷u-ÛA=ÜÙoPã!ØÓüÃúºU@?ø¤.Q µÝ½#»/„Ò<ý/ΙsQþ³ Û!½wñ‹Ë;{ÀŸÛÁòK·@㺮¸J–ÙßWì~y²¶‰…—Üaëž™eõ¡èa¸õû zËŒXî28ÖÔ§º°Â6Nýº¹Äk4lœÐ  M…ºÙÙ¥Çweֻˎ¾Xá#|Ùê ;?Ðmi*hð8rÛÍ5 cªWk?‚¬å§T›¼ dÀ%vjâ+`¿]t{ëﻡ¼ÏÂ;®ßÕÂö«•ÏÖ‰€áXZrå`1ä—†¢²†À…îÙû&û4Á5˲²ÊU¿@ÞK¶[K˯P³àguvùÈ.Ô¥8æ yØ|cî1à*Gµ/îó! ûjmµ´â§¿8ô`HÞŸ8¨o0Ä?¯ö=säŸmvx§[_¥,}'tÍnŸÈuJ¬ð9æ1-êȇû¾—U9b" ºMY@:¿¹éŸ¸[ž1â·”] p¥-ßv¹ÿá’Ù“ý@Ñ5@&-І„¾'¶MÛoÉa5'‡Aì^¨) ÊÅÌÚ„žµž? ì Q÷dk®«ƒ›‹@Rgñ}ÞÓr¢ µ±ê[„ûcö¯鼆ž"õP8 ]?Ç»AÞ¼6é(zŽ/_PÐ⓵³ŸZòÏ£Ù÷RA–ÎÕ5? ÒÁOÖÞö¥@þǘ {¿.ÅЙž´ÏQCîã~3nA쬒[cz©@qÿ?¯Ž …Øîå§f$œɧ¢º&WˆÿëhЫçÞCû53¾U¿þØ¥j!ÄŸªØs%òÄ*Æ Ò/Rw$… ù[OîO¯O!fy¸.5Í’†§[i­ ¤a„äzƒ â'ÜTYžè@W3∲îM}•þe ¿¿¨¦æÏ@P8~±èÚÊ?A1yõŽÕQ±wxôç£ÒÚAr7©vMEÈ¿ª>ý¥Ä‚^í ŠQë¿|ø"ä{_®¨} }é•?ãú¶·P57bÉÕ›dƒÂëó6Mó:HxátÁ§I Ñ¥›,Iû~Cu™uïq;’¡uí7J@žëž¾â.ÑçúN< ñ{òînMO‡ø÷ç–Š{æCÌ‚âÇ#ÄN ‰k:úÕ_ ö|ôßWWÈ–ýFq)Ĥó/ ø’óËÃ`ÂïþO§b~`zxqšÿÓzHz'z¯å:}€Ì†~Ai‚]Ìr~9”õ<ÂŒUlõ#Ìh×ÿP4q¬qÅÓÙ¶ hõ“ÝìÅÑ‚hõOlôÄ­~å?™ŽQ36¢gÈÇ ³è½0…ÿö™‘V^ ûÇó(„üä'?¹XÀ‹,Ø/Æ lÁ0ÉÊ'Њoå5ÅZ¯Ä2ÁO:YØ;Í?`•Jk¼ ¡_q¾P?°ú+. õ‹³ÚÇ[ãÆ^ì¥I‚žhÍOÙ*ð´Ö]rBà"ÔWé-ä?v¯ ‰Þ,$΂_ÈŸÛPc2àC«”{ <üq<@n­oŠ5®rŸPð£ï”-¼YL¼.ôRwaŸ¨t¨Æ¸„“Gø·`?ø¶–æïWÂ1n€èÓßqµäà,¸˜|±u6Qò_…ãàE®[ wŠÑk~~èX¬y[uyìÀ È›5¯åõßµ°ËÏ1øÆ Ìë‚Mêà=„8ÇÑ…ïÏýe5xŽ*Wþ²|T/øîìÕ)šÔ!ð²dq/æ“"8ß?p±ËˆËð†vÆs¹ÿÔÃs?Eô9©íÚ‹ù”ð÷»·{á‹ßàÛq«ºxI“óp¾uéûq úgç£-5DÐ…~P^„wT&Oô¨ßt÷{ ·F\;ˆpâJoÓ¡¹D𑻎<Ïöçæ>,ú‹ëÍ]ø’èI:ØòzûMå³&(¼r`Òô*x9Mäì{òš«EÇ6ï úÝnÞòú \s}„ù”Ê…~}îW„y;FKt\5”ŽOqê¿Ö ­s1Îó{«ùúýö±s *(2.—‹uƒOò’óÚÌŸ3¢üÝ/ïðR=¼ ëêÅïaY¥?XËKÍ=‡ ^jÏtñ2½î-ÆYз?¶3¸ÝÃûçö–oàå’Ãw?ååòéz‡jpËÞb©}7˜¿1‰bKé7¼,zô3Æ[õ¤çZÔ0bmi0æË­ØŽí5uÏÙƒ×Õ˰ã7G¢bW$½Í3Qtï}l—=%ö,ÆÁq~ãb{}Žx ºÏˆÜ­ÎX_6¹KÃÛ ,)Õ|ìoÎØ×ëV^ãå'®^8?ˇwÏ¢‰"ŒµXÏ:®[ÃKf¤ûQµ:Ìo³Êw/+zfaÿy©¼^R»d:/ó™78_µö¸oîŒWi|‹ãfFø õš*ÃvšèV¬dï½ÅŸç%îMr\Ÿ€Qxá×—pž,Qt„—yS\.âº:ybÜâ2Î/+» ÷e_ÕXtO«çõã磺ò¬P7±–YGÛ0néüᘿq}%æ¯q¤¶ag¾¡ÿõÛ¾«†æÛŒ~÷;ðËRôqþ?7dÂ*½÷¶Úõ°Úòû®„^Kq4iU]FËêmš;Ái)ÆD3 æLGêíöè…VOj¨L 0œÒ“œ9³“ª¥Í~8GZh½Uó 7sé]Ef²6¤AÅjìxâX–±!D ©±í:Gèh=ÕIa:üX=kPÙqzD°(µÑ¢HÊ0F”HÇX×»E°&J¤ñ“d±4gCòްPjofVéiµ-±ÚLjXΆ(ÖæM£EGª:#º‰M:š5vÔ4Š#µ Ú5šâ $“cã­#íœ]¢9в[ºG›Ie ííp13Z’³»J˜Ž2¹#…e¨LûB/ Š:Z$ÉÔ“ZÝ™ŸÚɰc˜H½0–4’¶:{HI ™®Ë4ÙWœ¥“cƒ÷”²EŽîŒë!C}Ñ’™jÒV!"ŸMÛêÂk9 NÛ-©y´Ú6®2–cÕvÕCÆZÐPÐf{§ã)#i›"Ïxʤ£8=Éh2íû4šjV:JN¦ÓÒr’SœÙ%GãD4CÙ \ä,lwf9“YkíšÈ¢fv=Ñœ‰dDQ”†âHm[/%iÖÐxVìÖ®JŠ¡:°ú()mŠP4‘ŒeLü&ÇÚýY³I'"æp´Ú>üJ#IÛ¸+9Z‡þæwìš5ö$}”9ÏË6«ÇÚ-‰d,’pKÒ‘t§œ]’Ð)¥lCâ’¬E[ö’Ó9ÄÁ~n’ÚDiDRšÑjXÛ¡ïf]UšÐ<Ûêê‘lQQÿjD·”±ÅŒ®4Vá¶)4eB˜­A3(Åükì\RÉNÇÜ-•6¨HU6ψ¿çœíÇ.R>FMmªœ5Ž1КΪ™SÙÔˆ„qŒ»¢]$ÞðŸÿïWqfields/data/world.dat.rda0000644000175100001440000003562612560751565015065 0ustar hornikusersBZh91AY&SY‡É| ÿÿÿÿÿÿÿÿÿÿÿÿÿÿ'ÝäÉ$I4Y$I$É&I$I$mm`mü%Ô `À¾Ûo²ûÁßrR€)@¨‚’QE%AÐ ©*JªBŠEJ‚oŠ´´Ù –¦²ÚÐ/®ñƒ #_}ÏVù…IH 4 ô™Bf@F²(y7,ëF¹4 P'„xíÁД0€=÷_'9}ƒ¥àa9È„]ïxÇH ÷À°w/¤}Á¡u•·d"¥EI46i„%?óÒ¦˜ˆÒ)êõ)ÿª£ô§ú˜¨$ÐP €§¤5Q3TÐ i €Ð@Ó@õ††ÔôA)ä¥Q%i§¨z56ýU¡ Ÿ©T¤¨šCA ÐM&B£÷½UPÿUé47µS~ª4ýDMÓ €©ª¥'”)Ø÷¯•òIôØÅô[ϼ¾†ÖU{?/“?lØÚØÛ7“Éòsë¼e´y‹^›µ˜í1Ño%¥yƒ½Õ5ê-6kµ·¹š„cx•««uw,ИÛFå±7.Á8Õ–‹—MYwQÝîbmv6˜šn-m ´)M¹neZh ÓL *e‰=Û±¶ ,y6Úpc»C-‹ÓÔfÚz÷,’Ç„´F›ÔMn¡VG˜·Codw±¡Ú“c2ïY7]Ù“dX+[6MW„Íf=[†¶”„ÛËÖûÎÞøî¡×ù\xΟ |Ýúuž—ß;÷ëÇ>|oŸcÏ=üß’ôôô^9ëÍÛìx}'ß>ZéâóÈÖ3›ó€¼ç,Ã¥×8ú¾»'1uzùS¿¦^s.Ȫڠ|^¾¾Þš(> q/×ÇÓ¢¤ú4~.èóWîoÔ{ìSñ¬]ˆN¾[t±^ Ø{àìI£ôº´ {ce›Ä[ØÂg§ŽÍEF*e­TØŽ^C>‰~—æ'<Ÿ%ŸÎ~hMZéÕß›UzÒ¿¡¨ Ù øôU”#nìMfÝ`•ýpxcî`Ÿb* é Ë÷3ÙñŸå¡Œa^û$½~Èù]ÖïÓšï¤ò/`ýA©v¼žG_™·™ÞfïG—Ñc‹C £ìv¡ö†„öÄù²B!uÍAîc¢J“ç'» Œ'ŽZx’GíöbL´Ãà7ß7¯½‡³/ƒMøø;ðŸ‡ø™ø»q¾?øïÈË>oÙðÓ_Ãð{ýù±ìäç¹ógôò{=ŸjÅ(¢ˆ ^ì.:Nøá–%yêø7=|su#0ñô$'êÓãïÞ¹Eî—¾û®øDÐÅ]÷_Œ‰q/Ò‰ëáØ}k|<¹aøŸœ¹ØøúÙ¯‹·}›¬ûëË|´+¾/FñŒùû?WÅòÆø"ë¾ÀyUúï„–/‹®øÕüIõœ‹×5?iêâøìÝõ‰­x1Žö-ìÖ#[Œ`­bë´¨ð#Ê-dø“Zë iâÖ”F¹‡X>È:Ðöö@Ö:Ç[ó5ë gÞºéu†³^½n½zôBŸ½´/î±´D|y³9@G瀀{Ÿ‘ô3*ˆ§Å!½[é|ó>søw¿_7“ÿ°ˆ¢'å~ÆDSÊ€=¤6ÌÏ:ØØoám˜oEèŸßºº»¯uß»§åÝbÄLfmŒÛRÌO(-"LÒÐLKJQSC70¼Ä\ð¯5(›fkfNÖmhÑ;sc-¹ÍglÜcJfË$¦ZV¦Xaz(b乑V3[[vf´gfÚÈmÙ¸v±˜‘gm†ëK·niŠjf"AHh’ˆz,…¦Ã`Ì[Nm3L‹²:Ã%«kNI$e…hÛ6nÙ”`ËfÎE¶Ü@ÛkÍ‘f6ÖY±­±ŒI­‡,Z-ÙÁjuœZi¶¶»$ì7-´i3µ2Äån6h¸uœ­‚fI»k¤cn-9š·i6¦ÍFÍ¡F"³TQ<ôB©35ȧdqÑLÚYÖ¤ÖÛ7h´mÄÔ’ÜÖU&um—§’¹V»•V"¨(ªi¶ÌâØ±i¹Ûh6ÌÙ‰µ1¶Ûl’àÖ™k ‚mÚØ™kf¶ì›¥mÐÊÌŽmØ&±m­É™cfm›Y›-´taœN8ÖÜsXÛkZÈ“¡©ˆn'‘¤b¨™Z$Íëv¶Ý¶ÍšÝÄ„ D„Ê’RÝÔŠÍÄ3‚PÔ¬J"Ô\”ÔR¥\ Œ3TÉ' w,,2ÑIf6¬í3´ÜÌá–Œ›m£i¸$ݶœÎ±­¬Å¹i¶è@‚iµ·8VÇ5b0b ;i²q–³6ŒZef†(¥y QzZHŠ‚í ³µ»XvÛZÙÇÚp–ji¤e»,IÊNKD*Åut×H/2Ñ ÔsI<Ê)5UuAÔCÍÕÑm[;·ÖÙ¢íÅ6‰;Y­¶aÇ'5²ˆ$”‰a*j+‹š¥*ä¢!ÒvÚÖRu¥¶„–ÆÛ†ì,´‰0Œl¶ÎlV9mek,ÛqˆC¤®e†'ªh„ˆYeî‰i˜¦g‘Bk¡ !”–– yT‘*n¤+™ž…º¦§3³«mnÍ ¦æ6`KFäl’Zv–kgd[ôœÍ\ܽ"ÕÍt¯,õSÂðUË$ÝMR"ÍC 'E5¡67khcB2Ûkai¶[¶m$Ô …jGY‹;'mnvæÒ‰O*ÜI,]CLÕÌ1,Û 4Íl†ifØÛ°±Û8Ek-i´€í±–™µrËÄ$ ÅM4P²¬ (´B$Â5%3ÍsºAe¹·fÌ,ÛšQ-˜Ð—QPQ" É= ’"É'vع%6²Rnwi£kˆ!¹¸µGYvÛ³›eœs‘¥ÙÄu%¶âN0´ÛViÅ6:ì,²%ˆÆÇ6Z×|_'OXUϜމŒÀÅKcF § ›tu­°ã8ÎȦÑXwdgagÆœÖ&jÀ²ÛV–ÛœšÜÛN¶‘µ²Ì9“j&µ"t–íº;[vfE–’lÝbbZ\dY¸qÛ3kL¬,˲‚ÎYb88í[X‘Ú–YÙ9å’fZvvešZ jé©”¢Rêi™!fé©‘Jî’¢U–‚Ùš¶´ZÖ,²,ÌEsQL3Ê·QÏ»é¸î÷\WùR9³V¡uíÀQ Q¦4P®ØX¡VuT•޵,·]´Õ¨ëJ&Bm¶˜°EKE*AFÆ‚”­A à`訰¤ ›©Z”l)4 ¦ÔÛ•"Ò÷.–¨”” (DµG*dvK XK¸)U@ÕŠÔÂh·bÃn5”EA"¥ &ÞÚL¶¬)R Y©hšök?“]—§ôzàkÒ×÷ZóþÁAÂ÷Xºè|ôt„W]QÁÒk¢€\³®©œ¡YÃ\…b¾°eu×K®¨kª¾zë®â§ Ïžýy}Õ÷ãÓ€8ªI@4!7HiÑN…¶»lFÖÉÌ,‘kNoÇÚ#ÚÜvšLèˆíBBˆ*2'ØÕˆR¢ SYJŠb­8­ l¡Æ Sƒ–Ts…–® ‚ha/T´Á°r´ES5 ãVÁ=ˆÑ§¹¹‚†¬§hDYvHóoXíì­Ùyjóç»ÎÙϧe;ø® …æ/t—–Ÿkïgßo¾þÕô¯vÛi¶?¶’_ܥȿ»$þÔ_ÛÄÍ}¾)íµ‘å;íOÀ’}«Ÿ´MêÔïŸr-»_>]󸟭/|ø*—µäÄö­=«vò·l,v‡nßj`PìˆlˆM€u ÒõRAÕ'0›Øs±]ƒ° ‚l ‰° €(t¡Ò§J—ŒxÑñƒì'<}?‚tûÏ¿ï{á³cô}ÔþOò¿·õù<䥿›Ì×§¥ër<ÍKÏ60.ó#νkÎüs½Ï)z­/¼Ûm¼p­¯¬ÒTPóôóÏØý޵K ñRÝPÈM(v|œ«8¯K'Veg–%ÖØìâÆÙÙQ'9 àŠâ@JRBB†™$£Uã¾aÏ™™™bž••SI ÓÕ3#D¨‰2гjm¥egGVíÎt·O4t©]J$•Mò¬Êð§)ÓÔDòµÈôT›Y“£A±ØvZDQ`¦¨é±YÉ3r\Ö;"íË„Ÿ'_'{½ÜÝ%{³VYÙ¶$µ¦³q&ÇFÔj!„*n$BK’Eæi1‡M¹Ýš‹¢D]tÊÍ=T² ÔSÓ -*ôLIC+Dñ=3ÔÇH[–ÚÎ’ÍŽÜZQÉCv¶4DäÖ¢‰µ„ïäÆ2òä²1­£9ËÙž’ºQe¹Å[X¹avÍl×&ÓX²ÛŒåEé¨RF5N>{×£ÌÃM窜C¹Î=XðÝQ’š3‹ÏE‰TÑjr9ú,½ï(FÅ ôWɹ|3«åQíã.”^3v&6·hK-­|ôLù½ó§I.QÔÐ×E&,Ô³&ÉFÛ‘t¢[Pæ»"› “)˜lO.vì=¤‘ÊæÀî²m\î**UŠ˜VØRÎ•ÅØ(¶5³¹.Ù±¬öp.Ø:Œç\ºÐ²arl8Æ–3FÂWCȃˆvT¶æØì"⧬“ä½=çc9ÉEÌùÞó‘ŒåÜh7Q9)Œ›µÆ×t;;dl©±Ëœ˜Å+º…ËÆq±¶jcjunDVæXØÎ®ØÚ׳lŹØqaJ"‚ÐcknC ¬­·2æFˆ‹p£bcš2at)]œ¹Ñ‰m²7œyTìK¹Ïg)ž6Q–æéa3:Ê3dƒaÆ mÌIT§)¬šù‡ÑÛß/“H‘g;[FIÝl²ëœÂkÂuYtžPºvÊS³²(g{NØ”œ?7/½n&ä!!:.´Íг,ªk*½B\ËFسb»²î™SšëµÒÅ)YÉ3݇³ØeÐãnܸ…$ŽÛ8Ô"tÉ…ys´67e)%`XØÕW;³Íä—Ë/wŒ·,jx_£¢òE؛çèôP(¤J0ªï[Ü‚+;6Œ8bE3 !P£uI//.AEžh“lå¡y4ÅÅ:wR'°™)£fÙ*5pí‰3‘vuµ‘Àó·îSÏl—.³1£gaUAW‰¢gUFÊöÒª(Xa½{Õé¶maV¥M4.L8xrÙ÷®Õí²E®^ä®}Oj}s¡E.ÓŽÍ¢w*®ˆM.yy(&×ZÔš !^Û•¯¶VĪ›Q5F­¢EæMÎÎDÆÁ“³µÎn^UÃáØÝ’xŸ7«×q4ÊCÇI ð¨Ñ r¼§m(¦B ÈNcvW–PU͇‰VRéìÉL „…r8³Äç…ÔNMÙÛ»WYbó{×Îv¹Ó #£]q&{3[Z΂…!ž§XwA–Ê©*gLXiÖÙì‹«¤Tzq¢­¤{,WNQIge‘X6ÖÛkˆ[OvôÓ¶ÔgNw4Ò3;çÐAÒp÷<µ´šL¡,Y Yki2mhYdkBÖ&ZmhÒÙ [h±hÒÍk52L“+2&+4JÙFPK2¶$ÙVÚ,ÒŦ£I‘56š5<ÃÌ|ϪÞy”†–!"VHYlÔÚ&Å –("l­ŠÛVX|]ȶÑahk&V5šXšilVÉcEµ2„[h¶¦"¬±[k[kXV4Ö$ÚŒ´e­Y–…lA‚À€Ì™€º™C&L†Ì®TÈdr$¬¡’]ž>IA‘3’¹Âi¦ÎJã8à)‚€,HÄ2±*J´$B3 ¥$ÃJÉ4¬ÀmY[%‰eÔÚÓHÔËTd³+%±,Ñ`µ’Ë[-lDjËissέϟ‰çyØyËl­µ´jÛ-m!dÅmBF¶¶–Ú,P¬,›-2Ë6šdXS$ŒÊË,HRŒ$JÐPµ„&–Éa-‘fšÛVkBÓhš¶Q’2&‘­šBÓP––ÑØ;$ìÊσV£³+zÍ[³¶ª<#xQð¯Êú^`<"uÓœNpNq9Ð9לyèuç^uçõÐõÇ×\ðá;±ìMÛ½>‘ì;Ò¡ÛÛ»°ìÉ·xï„æøo‹y7÷»àAß¿níÛÛ¶í0›zγ¬6 €l ‰°ñg½<5òþ‰ô)•„±dµ‰4™-µ–¶H¦,D±[¶VkX¦S-2 ¶š[kF‰–š["É5bÙ-B!ZÓ$k",[Z&ZÙ¤ÚÈÒbÖEš-,‰i•²ÚËB,„1ò!ãë>‘½Ÿ9ÏÖGÊY „˜ ,É–Ö„Ök-4hÖY2­­’bÚÙk5µ„&Ö˜˜5š¶MlB!m25‹L›,±&± ¦™bEµ‰“M BÚÚÚÖ¢mk5£-–kd&™E²È,,Ö[Ëe³LF²ÛM´h¶A2M4l‘¦Bk&‰”,L…± +¦‹e¬V[A2d,DhL²ÙcárÎYe–K-¡„˜ Y%¥ee–a-d,´¶²„Kh„E$-bX‹HšÄÒÚkDDËMdÝówÿŒ0oÞû§böïjâ &$IJ,!  ô{¾÷/CÐöÜó›RÚÍhˆBi¡–Y%™’H ˆ&e‚e”™¥– ’Y%‰‚Y•ŠÖ‹4‹M6¶ÓY4M Yi­¥¢dZË,šDÖMd"5´ËF…ˆ† d’)˜–™’e ˆµ¦‹[BDZ¶(Õ•²¶+6¥”©jeS¶ZÙE£QX¡#¿÷¥éw¼=Y×Êie56¢Šªå*"§ NŽ”©Á9'Nä¹Ëˆœ¯ÙëQ~ÃZ•©ZÉ¢–HÉ54²,ÊÍZ¶“S+R¥•±Ä/ïñqÄ)ÄÒœ¡¥] éƒ÷Tè¡J”©J’ *:5ÔX×f”ÒÑZÒti4Ïœ¨*j*.µUTÔÔTTß JR•¤}â ûTÓ¿Ú;{ Å$B”¥SJi+-fZm&IYY"´BŠ(ÒÙ­mi’¡Tœätä‘ÊqÈr"YM,¦ZÊKEª­ ž‰èösçŠjŠ©$ˆ)¤£%•²µbZ°²Æ¬ÚÍ«b¶ZÖ¶VHÉ bŒ‹mX­­je5–*98äàîRIÈŠHµZ­¥Š(S+2BЄH 2 ƒ‚ÈHHÈX6‰8%0L–68Ã4ñx°® "a)Ìa NÙçsz‡77=ÌçÏÝïvµ Ô ¬Ñ6­«i2’ʬ´’VÑIÇœ”—ÄPVSV)JÍ[˜ZÌI¿~n©»Ñ¥™¥[d›VÚ‚±L¡MY©•[QY&¬S%Š«4Z²µ5­%i-S+¯?yûÏuyýn½iRˆ)8•$ˆ¡ÎœäåG:¹~wÄç8¥~ãVrIÎ\è))$¹H'9ÒG]Wà­'8î[++P¦«Û1›NQL’Zººî«ð«»¯`÷V˜ì;·YIË@uºÈlÄì¸'Xˆä«9Ù¤Î7Gr&³ŠÝˆÛ;;fÝc´æã¦Ôé»#pÙÚ°—GX»Kµ»N›·.Ú³‰–nìî)aÒlÝ .Vw‰¶¯ÒûºïªÑüšÔ-ÜbJ Ó•KUA P D뺨 ¤Âµ· %fmjV+Ô–‚PJIʉEwwºf&­Z«ON%6E¤ŠâŠfåÖ‘îêeI‚ÚÅup04DP  ) jØÞ¨ŠØáí¢öYm/„íÿ?<û·'ç†ù«åÓ\Ýr—,ähtÏøÉÏ^{½†ô£žÝú¼ç™à\ñ:õv龫ž¸y“ÎW§pzjªZ ºl@†6 hãfrIšXk m9Úa4„ÛCbg›-JbÝì ¶ÁD:ÑË1EdÆ ¥5DÝD:ŽìwJ‚mEÞ M¦k[`+RA­W¬ÐÃY©êbŽ(‘«ij½išjͽOr²Öf͵0›6¯mD׃µ–6Òí]´Óµ6ÅImÃ;f6ØÀ»vÒm*¾¨6ÄŸó¦Ðv¢mj»@äGjmªPÚ´ªmO€z”êG©¥ê€÷Ïêê¤êío´ûOãýû_É}Ÿ•âóx|›ÌzÛÄÏ+È Ç3¼½„ïuìy/'›¡yÞÞxñ//o=zÞ½:^]íÞÏm=‹Øù}Ÿ(øW«í‡€pxpx‡‡½ Áà¼ç‡Û¿<û7ÇÁ›ä„ C€p>ð8ž-Ë„_×:3¨Né8üdÏ€N“Î1$±¬jF„kc\d„ñཋú~•Âãæ$æâ=…ÓéqfÕ-Pµ[P-ÒѵKa-Ð- Bѵ4 i@Ò.—H5ÕWBt@”5µ…Y9/hЃBhsçÏŸ;æÏŸ8g8gIμá 9Ú ³è€h¹¥Š¯ßü"afe˜˜I¦š`¨&ÔaB×#ßÅ+*Ku%e%<žOŠåÄò—.{?ÅEď޳Fpdæ„F’ª ƒ£"÷¯^»Ó4gE¶}¾ƒŸAâ®zç±b"ÏŒsâZ_¶Jœç™÷ìÓŠ§×¨Æ×¢½ñù%>úbpòÆ Â(rÁ-F%0òÆ!À4'€ d¡y•æ™9•æ¡| AÌ´'1KÍ)Ü@î(÷î'pç#ÉÌœ r(ò‡(Pò½©Ü½Ç¤ô§¾{þ|”scÍÍæÉ'“ÅôÞ„; BäînŠÈŃlŒc+N¦²ÅŠÔØ1dFXÍ+,F ,Y¬ŒØãÌjÈ™3&A’êÉ,§´5FNF{I‡)ైʤʟEBº 2Q.FY99w,œŒŽç¸;Žî4ã8Û¸Ä%ÄâByÙç'œg$‘0_À8!À`9|³yÈ—"‡”±,VÀ Ð&„4!¡Ñ Ðš@C¡ì#ØW°ö°:«+j4%M @TTÒ•j¥¤)¦ši¦šh(h4Ð:Ðè £Í›˜Êå\­ÃMÛ‘7Ð/€_o·Ð¼^¥5%U2PÈ“-Ûò2,pdYÂRXã<—‰µDF.7?pTWæL0%Ç~dví#«VuškP"äíÖ“”ÎrsÛY¡G;«QZV°–Õ—nN·9,Ýi,猳¬‘ÑE[9ÊhÛtt[­9ŽX¹$rÚKZÓ¢mÌî$%ÛˆºÇg:±Zí$vŽæ;-­-6Ĭvr;'-k…ßVõÝ“×_‚¡qÿg!-Z'GºV;»(4XªÀª41"iH¨ ´.ª6ÓÄš •RlÑ6Í!LÉ(¢¥µmvïqf%¹µ)•™K!ŽB·sV‰êZïmî貲昭VV¥ F“¥Q2‚ (¡D×úUìûÑñL~Ÿê—·¯ú8\[ÿÖ.W¡[}5Óèlåô¬k¤ÑÀºNÝr—Uк}$úL:ë‘64üóBçšËä|r¹OŽzç¡sÏE×KQÏ>;ÉÛÄårílï­9מîý>@ÌG診U"¡eN¤—¹”6ÐÀ`& "Źi0Ü£áÇ/]b… CPDØTQ€]Ú(¤#MDäH@´h´Ln€(¢d·µˆ{»°«O,ºXÌF¸£fÒvÖåîݽÃwuÌä~/8éuwÀEãÉ×/•é׎…âמý·@Á>B߬Ӱ²•ûŃúj•OÕ'Ýêÿ:meûe¶E{í‘>Û¾ùË×ÒqBònŒÏØÍ6äÁ¸1‹YðÓ1nO™§nmZù¬‰>h_6¹;4|Ûø˜Æ&"Ý%A¹šÜá݈œ~sšµ«níÝe»«;¥Û;›ºÚ}íÝ#•gÏÕŽíÜwmÜîÎÝ»qÛ¶ímÚ»nÐðûÈøP:P6)°v!ÒJt)ÐG@t'G¸lØ;çluv@øÓcÒlù]ŸKåëùºã¼Ðf>9ø«ëVw)ñËð‰H“ +ßr&~4óÁ WÂDóß(#ï·Òç{öë^ö¶žþIï´O{§–r÷ñï{÷¿ßéYïÍ^ü“½äŸÁáïzgã|F~âøø~€_û~Žø>>>·}cÖúýaè}o¯Àð|À<À<<ð‘øßQê~´êê¿ÎîHà¥8çŽG") 9Ó£¤9Žr"î'!8\§'P‰wDœ‡\EèrJWATÁ,R‰LÒÒJ„S']ÈãÎE\T\áÜwqI wEÜ’*¢ŠhRŠf*˜¥iUe­jIf¬¢-Š¥«HjZ*ÖÚš¶­&ĉ"•Y)M¶Ê ©bÖ¬­¤+mªJÅl ´­±BUR5T›*”´f’B¶V­µSŽî’à¥uÝÄ\$’‘ÅÀ„âよâåèNââ9# Ž.ˆã¸’®*™X¬­ŠUbŠª´¶©iE6Î6Ÿ-õ ê_Kã|½xö÷/µ=¯´•”=¡‘=¡í ‡ÀL0›„ääÄÄÁ4Ä„’à}1ó÷ƒ{?Ÿœ´€t¡] hBû¡î®4‰¤HT4ºN8àNàßßSN—I¤lhkë¬Ðhž,•••—C¨¤¡9 (hBùCCCAaG›6c0f Ö\‹ÍŒdq‘ÇP` šªš¦rvVtš£’e˜fY–e˜˜™—Æõþ¯Ï¼Ñó_œó··³™ÞDÊjJC y r¹"ÉFRUO"òÉÉ3ÉøÞQ;Èw¨ò:”;è÷Ð;èêN05 ªHJju)¨ BwDî€wSº½Þ¨;§wV¤ôo ïnɺÜmÝÛ¸†ÓkÖlØB6lv †Í†Ç«im¡m ÚhZÛçê-¶×Ÿœ;b…ä/)zñy¼rìòì]ŽËÍôØyÎR622àF‘¾€š÷)/¡ÿ§†ªÎyÞuðŸNÝù×›1UD_‡a‚Mìcˆ:zÜ\]m»J6Ùšm1öô¬Fì›=7ÕêñßWƒêð}^˜Þm½0õMâÛz¡ã7¼u³Ç[xÉ`–`-AÔë6È@6Hìu–­-´6üÙ|^iŠÊëj+ƒ[>&³ÉZÖ7’¸A­®E¬R±+ Òt+bõºµu@ÔêMN¨ ôÏ®>˜}?¦}?Æ}O©ÏÔŠ•yÆÆ‰ˆ¶Ã‰R­Ik"œœŠCÓ#Ìòð‘CÄñ=Ëýºl¬L:ÛIGGckK³,㣩Èr“QQ³72,"]ÖEâyAçezD®žêi6ë½Yºä¶b°»mdM´ì½+;×:Dˆek³¹­ÙÆõk¢)Ñ):õ³bÓ™n+;:ÌìÊœ2ÎíšËŠmÛh‚ëfÌë3mØ"Tql–Ûm›td¡H "hž^3Ý3 ÉCÇY·í»Ò nj;)–äKÌÅMY­L+ÒY"(%"b%ç"[mZ« ¹+cd\îÅç½½ž>Q°yÙœ­ë<öÛ¼(™ù8ÔŸ&kn€Ë¬ò†Øt›XXM¥ÒJ+˜aɰè•AL’Z3Mž+sm«&ÆLÛi¦å¶ JjËgmY] ­\–ÛPk5¶K4DŠ'.W•-ÏY:äT3ÓÙºpé%¬—;FE±en¬£’ÎŒd4ÃgTeÄF'i\ëd+¹²¢"!i›:`]AšØÚÏ"èÝ5/dÔ,›mt𦛼÷½yä]¼¸“ÂIä‘IìŠêÐZ$hÏu4m—¦Õ]…¬ò%®tdP‡•3±=;Dk·+Ê­U“<Ó]- £ˆ  h6ŒõckZKc5É¡C (d¶1ÛO96}¥|÷ŠèQg©E¦¬«¢u²Š§NyRi2.{$kUÄc[Ô‹¶´d4-žS ì©­»;AƒÏgD‹R©”]©åáxµ“ •¨G—=<­O Õ ,ê2wÃÛÔó˜ §/OHIÂÏ"(½VØÛYåPŸ{nPSÀ³*¯KIJ\HYÍ©žžÙ»0ñ7iX’®âÄm 'VÛQmœ<Ö5ÁòXÈ¥SÒs]=2è‘E^U¸žÚJ ”Lò8Artˆêág§;BNvˆœ“76šU©Ds¨t3K£Fp¢€¨™‡$ðˆâ{zî\ušd\éÓ„Ì'^B››nɆ]m·/E²öfíðêFn$ÆØPͧ=O)6‚ÐLç³9Ït‹ÞI<ïtûÖå÷° =èö‘åãÏ´¤ùÚí •—<ÒõÚ¥|5:†K¡Wd¶³mQwS°ÑˬL/Ï2 Ý*tó¶ÍHÉ5á·¶x’“`„ÔaÂy÷½Žõí×¶éÙ“a·#Õ„Ý­m‰W™†ºUBzJ"{—•ä^hPQÛ‡±©• Až¦¤Xw'Bd‘ÅÄ^÷z&é–T‘Ñ …{ž<>ûÓóßx¿'•kµö3ËIRô]Á&PŒٱ¥¤Ù#e¶,&·Éøª|H£ïTë¾{mØO¥/Î H‰òt"±ÁUÆî¬¶Å-¹nf&Âå ¸®éº¡D–„HŠÜ¼°»"E<–XÀÒÚÙxí`ÄFHâ¹…Å.­Ý„¥˜hŶömã5âjt¶ISÏŽW§ž+Çë´Ú=Ú}‹oèÝîÍ/'½Äy#cÈMCõ+4|IMðÝðb´‘ð‘+àGÁ&VøO™—ÂÎNCáØçÂzZ¾J7ú¬|X¨ø¢kⱄwŠO„høCáCẶõÏfG°ÞƯgR½–£ÞžÒ›‚ƒÀä7 ¸wnÈnMɹ7)¸MËòCrÉÐt!Ð@ttl=çq÷›†îߺ÷]:7.[•:9+tS•Ƴ¦å§DºYtJéÉ:inMÒº:'G+y<ž^{\\r¸ò¯'çöpòñq8äã”áÇ òï/“Éœá;~ï;ûÞ÷¼{Ðï¼;Þó¼ù>ƒì~O°û³ùUWwí”B\ E â".’téȤ@pJ…r 8Š$‡8ártIÜ¡ÁD$çN.tNœœ¨q¶$µ¥J­±R–Ú È’”“ºâ;¸¤œ“‹¤8.äHºî)N¸P‘+¸ŽSŽèˆ‹¤îîI ªAŠTU«P+-3ZaS% Ä©2„JÒ”U Õ1CÍ[jÈ–UˆÂã”ç(pÇIĉIÔç9,ÒÊËYZ©…+TŠt“œÕ qÇuÇr*j‚•)(¤iJi+5eio1õ۹׺÷vêuuun§W‡ðž¥}AóŸŠCâ Sâ$$/|/…öøã xÈñàùÆ„¢ˆ<ÓÍóOŽæ¬h@"S@:4 âĆ•Óº@sP2I¾»àoŽúèwï §y4.„ly¬Ma¬¨J¨*Fªu”‡g9YÎ:ZÊÃ9æófr™L¦W+”ÊC ä#È–^nlt¡H0 î:Mqj8“ˆ $ŒcHÈÂöºB’™$¥ yɦy™ $ A‰ff$Áw°Ž–®yÞ†7±¼òœ¦ÿ‹¹"œ(HÃä€fields/data/RMelevation.rda0000644000175100001440000027037212560751565015413 0ustar hornikusersBZh91AY&SY»fÚš¥ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿár?|õó´– Mc2"±ª›6Úa´lµi‰­5›R"Ñ-Í‹mSZ¬m[f­ˆ‘¶!²S#c"ÌLµ›JÛ©¢l£eŠÙ™™Kkb¤P›VMZÑ Ëm„ð-¼ú H€P $)B’ª) ”T ( @%AIU ª ˆ‰Š”E@"”%)T¢Š*!UB•&Á„‰UB‚ª•(%U"€ •((PP•ª{쥬 ¶†lÌÕ%ªÑ˜[Yi¥Ú$l`–Ù¦6¶wǼô% ‘d6ÛjdÃTa!#²iA RÒ²¥±„)¦´±Š²«kl‰­ËE‚Û@ÚU´ ¨MZÕƒU¦bÍjÛV`Ðd Vƒ6(F6dh#em¨i–ÍXMfÅU–¬Í M›D›ac iU6ˆ¬Ú‰&ÔØ 41¥£LØÅ$L¶÷Ž==kE0µLXɱmbÕdÄV-M‘´†l† àGW1R²)¨Y­–ZØÃa“m°É±V,É3m‹«YcbÌX†ÅZÖfF[D6!hÓ 6­²E­3c‰l˜MidÛƒTÖ™xuOÑ“2 h4 4 €hÐd 4CL&&†€!2&ŪŸþ#@M4Á#CM£ £CA0ÄÀ¡F„?J~£Dh1FˆUTÿÄÐ@ ÄÔÀ#$Í2Q£"zi¦“Òy2e?S& ƒMSÔñMª~¦£ÔÙM4{Jby'©êliªf™0L§ä›F£'©ž©RŠ y4h¤ôÑ•=3TÍ= <4ÓC*z›Ò6¤òy$Ú™êšm¨FG¤4 1yLÊyMê䙨Éê §ê=üši$õ!ú“Òdòú£FbƒÒML@òž ÐÓ š¥) ôƒI§£&FF#h5=#' a4 †Lˆôe6#ž††“e3“#"'¦“i¦¨ý c)éL‡ §è“cA54a@¤©I51Œ!†ƒ#Lšdh&2išÐÈhOAˆÆ€&ŒC&I²` h2MÙ“S1É馆¦™4ô˜5OÒŸŠŸ¾•þ„µ+÷Çùt›VrfÚrî`Ièž“[é÷ÝW¡Ìí»FÕ~'û5Ÿì=Osÿ?ðôK«Ñô¿áøÚÁ»isy9ÎwMÆsØ^ƒ*“Ðâ¼Ìý×õŸT_ËÿMããö»®«àw›Öõ½oIÖYb””¥)JR”¥)JR”¥)JqJR”¥)å)JR”¥Öë}·[­Ö굺Ýn·[­ÖîÖ·ó£Oò>¼¿>ûCEú ›ÊÌ–Ql­-‹X©2Ø£ÚL,þ'ñoÚŠ¿»CêÇ+m¾(þ®ØNõS?9NÍ_:8XúòòêÂËèQõª—”“çÔ·X‡Ð¡×èƒõ?Óóý*#´¥þd'(˜§ékÄ8¶¶ÿm!ÊýzWè•ö*¯³ðÿ-¥Gsöaé¨×_£Võ´O´/Ó£VyYr¿‚ù3$úµ¦N¿[93…ò)QÒöîÜõ¶©áj9½ªÛµSVçu[• TV“ bÓ&¯jy9×;Òî®wv#7'gww;rîêòx'‰Ïêt» wr¿íî*ße­›k÷«ŸWÖŽZìfŠK%aí4Ÿê?Ñ–Ù–ffWÞË= *ô}_}߃﵆öUƒ56ŒmV‹6Ó £HÞd§pU•wí¨áµµtvÏÂIWîv_èPó7jãM¯ÜâÍÿ"©ÿÇŠèy«É!÷{%8Ù³éêk[c“L´*zÀxR=a^‡«ªðÅvþÓ—3›M¶fknT6««F˜ª ŠI¢£Æ¢ÅP`YŒÅ–,É`®©SŠ+¨)êGPºz¦¸º`â•À£\ºPÙ=uUë´ŠúTtW˜ƒœSdáýÀr›©=¿Köö²>ëµøÈ>¬ë–ÕÆL6¶Gàëf'%âÛ<ü)|n‹ªîü©;…Ffm€1$d4šBL(h€’šüŸnÚ‰°ôVÛY¸áÆß_$<Ÿ“ò~ÛÛt>Ûí>Ÿ5Ñûh?Œ­ÅRðbœãm›ób«ï¿§¥Iã…ãQÙ”û>ˆ|”¹ÂØÚ¼[m¯#­±±ø‚§GG^2>*N×°vmbš.†¶±¡±´FæØÑQ…W9Á E™—nº/tîô*÷>FC%ûÊ8Ú¸ÒÛïèÙ–×'¹Ú÷…AÝÿŸ¬þ?ÛÚkSêãŽ8Û'8Ùÿ¤Rzò~$ŽÌ“¹Ô⣊ØUŠEW&71´c 2b®nê¸Y€1 ŠhÁ”Ó7;®ì»¾oü Õ×ÔúU8µ‡iÙ·­’Ž`û¯Øãü„urpš¿ªÙ…ënÞZªßÕúí·²Ú¥zMè]1YáORÏ•UtÁf³éø‰]D–{HñÔÃ_M¦ÓyìU^ÙUí«¶ñupäeòR¹ðä-ç—•u’lgɇJW'ZÏ“­'{¯ŒYÖ͉· –η0ÔÌfrð“媹šZ|±v(ÚêJ×QÏÕ´1ZN1Wcµ|:^ÂO; Õ[š7%[˜µ9è´Ó²‹òrËÐäãmn/®¾|„æ=–¾V^!_\OÌ“Œ˜]³n5rlÝÜ3¾ª‡.óÞS²¤ìûIsUÑ bÛ›‚òüWºÚÛ÷¶¯+\½A«ý¾«k©}_{§ŸOÅEØcÓ4-2ÌÍJýéW~æ{½z«È'ãqÅ/!³o‡U+ì;z]•+%–ÔXÞ. ®•]jMÍr´Ì³af)Ãyá¡ÃJïu7t¶å¶W'‚—’#9`yñrذñ¿'K+KïÐ7múôòþ7ÕÖÞÃ*¥W¦U j6æ´Ú®BŠ+saw\‹»tj)ÝÝbÅBH£b6˜l5¡0Ò&F“1 פ½ÊúÛU{5W{N3e¶myäÌû¸QjïvU,–¨ŸÓÒÕZ®”:B·*jrN¿(ÚÖù8iÆÏ·‰^.Ó#µvN‘'Ïã¡‹t"èb蓲'7+¸)²³6ص²Ýè+ød~l_„›Tç6&YÝÏô¼j/oµjõ ÖÞß[ý{U±¯ZºËS’òözŸ•gÐÝá~`å±™ÓéV>å–w¶¥nýµ«ÛSðÄë¾'j©¿~_}&¶¿ÔÛKlÞÜŽ]݉ùäæ<œD彿÷;XåiŠÛ%Ìm#+u[Õ·)"W5W-¹ßrüçœóœòÕzŠlŸ!¶ÇÈq¸oþøüê˸žNÿôô¶õõuÑ_™¦Φ¦V¦Zš‘ó¬cpã²£¨ƒTüöÄâ—ªê3·'²ÙÔ;5 r{9ê›ÌùØÍ4Ó,vx´GŒò=’?÷ý X»>Û·f)mÇ8ÑlpK@&$É‚ŒjO¸ÖÞ—ãÁöŠ>8^þ—ÇSº©Þ¾: ñPß«©¤Ié¢qòQɦÛj'ÃÖͰå[l|®VzÈQú7åƒ|b¿Kµ£åÍ%qéâfUäÿÚ¹ÞwÖp½÷]ß|o;ý•l«“äþ_î>N¶ù µ_!rÔTQ°¦fH3vèŽÝÝÝ9.ç;œ7ðøÙ^z‡É‘ò¤j_õÝUq›[&DEmÛvo'nw/é_èíPìè×Ñs)uò®.¾UЗ]&æ[[“á©tU|4»²wu]ض„þ~Ïû~Þ£«£À6Ú·ã]£oþ”‡¹‰îRüÏÛù-­î¶«êkWb·Ó¢2Þ»3O:r¿Æ>Óù»2®ü—+6VÅŽ´Ë–å¹nnÑ\ÔhårX·+\µrZõŸÀÛOE[°ÌëtÛm>&͹—ÖÔ‡ó‡ß|ö?§ýÓ°©uâÞKŒãM–f·aÆNOzþdî]}WjîxºZ\n:Mš(¨ÚåŽEÌ œ¹IXhÚLjîéŠ62`4@¤}Õúï&\¢ú㾸®Åc™±»n6»¦šY™þ_zª.l¹ºæëßówvÎ÷uºÝ}~8>¢;¤q›j|ÎLÚãŽæ8%áØÑØ‹v5;c±³±Üfpôò©Ì¥w0iç%Hïþÿêÿ·ÿB.ïWŸ ì a5ymm­/pªM÷tÈ㠽ȸԻªð0f,³'¼~­÷ÄWL+{¥t¸â¹ú«ÓS¦©âËÔ*è§Þz˜º1ÙáÜ›FÔw¦Òݶ»T­´Ìª5»»¹®\®)´ØÖÍf¶‡t+Å¥WAêhïSÐ ¡^¦§‹2¿Pëäóˆóši\lÙ·^ÍzþVÛÇ(¯&/¯õ=²¤ÿâ‡[¦W[±™³­o\õß}ô?×ó9‚;MVÍTÛZkDKÙŒZ“ Ti2 31,;Z¿I¶¥¶ó­ÛUç•x~Ÿ¢®wç{žçzîzo1+íÃÍ>–žn˜ó~ÄUF4êjuEeé ¸ÄvÄ»åWŽÆ6lÚ2Å0Ÿ/[y•æ(Ý×1æg™Ï¾­m;?[ÿžÊò«™êeëÈÔs”œIÆVkóNk0Åã%zIyâÕUív«Ž&ÁM…-]8¨â¥÷8³‹8»{½ ,‹ÿV×V®ÛP6-¤k¤¹v¹¬I1XÙ°nQ‰0̓~~µú&S7é[w\0꺧dE]¼Ð tQø2wõ_ƒEúýµ~þÖ¼¥µæ!¶àÆó&ñÞÖ¶Òó„zÚ•üÞÌNû³‹Ù‹ÙƒÙ‹ÙÊïTHº›åjéÚÝl„þOüy.E;u.ôGâÍɶUãk¦´ZPZ5˜Ö¹·Eµw£õ^Oªþ7×Ú¯7mJ·¿/ù–îº#`ŠŠ’—‰ÝE¾"r›muŽL픢ÿ¿‹ëëPëzÝg[¸Ûl8t2¢ñ¾,ï ļBñ‹xŸê6—lÚÚµ¨’BŒhÃcM2Pbhšý>¾%­õ{V÷úۛù¿€ÖÂJÜï&ßÀo+º÷`VÌ7éOOUïv•[BÚHòɬ‡=lž-­ÆyÅJõ?wýŸâõqTŽîÜvÅeG¿ÁcÇ{þ_½ª­}ϧûU«^MXØš6ÙoZÖº,I­tîÚänL2AwvPÍ'UG@uY6£WÀÑž÷Ž' —ÞýHïïSIú(œk:ž86×'u<3<\„ò£Èvogìü¯³ý_RŽý#xB™ñâzš N1;³¹l'k­‘²ÖÑeE6ŹËsºã»(¹Tîçs®F†îêw"‘02…w›k~«mgÍÛ?2T†îò~eP,ñ1ÕGæ©<,žÓ6ÜgTfØçvv§ûÕ ÁPõˆ¸ùv^Õ+§Íªº±ròüO–mU¸==móæÃ®ª¹ûô¯.ÂÊìÕ\Ì››ò>+òažø=ÆÒ7ʯ«öOšð‰Èùi_S%ù0ã«mÆq¹7ãBOÅùÞþN¤?)Pû©zÎ;9öV­ïKóÚ­¼[Ôàô½NýSem“Á÷*l®í8k3,ÊÈSø½/Ú÷žJ«¬N32Ìy7}ÁIÎÑÍ µSg+Ó«ÞrjØÕ»Éédß³ ÅIƳeƦÍme㢿ÁâÎ…ÏA(Z« Ñn8l3ô3q«åQëÊ ]¥ÓtÝ7#÷¼þ:•ûáyY•_E©}jf›5¾_ô(Žóï¿:Ê©òÉÆlkåÚäá³æ¢Çç9©]ȧ*§ 8ÍCJ&©®–L%2‘¢Ò,ÝŸØ}¿µ^ÿ÷‘TšQ¼ÃßËfÖýÉ$èþõk÷ªÄø½‚^*]¢‡Š/Ôõ„wyy0õ)1ÂÅVÛÜqÄ2äkz-»úBõqÚ¯®­OC\·(£f-èŽïu®MÞÂ^SùüÔ¯úu`êªuRuR½Q]@½Z[ìÕw2·îOÈKÊŽ4>j¾nϺÜf›m:IÀòRºx…]„<˜v(òj®È;d^öN°œENù.ÉOŠª÷¨é7Þ“¨•ìh}Ìô"ùß4[ì±¶Óiµ„fF-oOªøryfF¼žÎ’žf££™J¬ƒ²Â¸Í˜4Û«n6êÙÕÊ-›g]Ezä}BYyÑv™ŒÂ¼ï;<íMGÙ‚¾÷ñ ¶ßÏ¿w•.òKìêß[ÿímyõª*ø=¶Ä6á¹uÈì=ºüZˆúCç}Ÿ*S·AˆÚXY$dÆŒHf4E¤&"YÒÅ^ÆSæR|Éó4Ö[[³¦â”×Я>TúŠ¢¯§fµáátj{~¡äòoßÖ´µÕWüœ­Mu5Ë\kªúb¿–UØml|lÌì71³°qž%"¹÷rí…f«Å[­WP«bpڹͱk2ÄX,I4i† &J #M\úçßGðÜë¶ö®´]p1uM®×»ÒÙ™ŽKk³xô¡ýí*òÞ[Ëz?ïýÿe꺾ñæàù:ÝŽQÖíftÊCÿ…Ä;fÊzøÚ®µ®ÕŒ—FµÓwq1¨£Wwk\Eckœ×*W6æàÁdѹ®Z¢D|gÒ&ªû:­ç+Zÿ%·(¢¼KÎ9ä¿­jÕwçmn»ó°Ú†ÙuÙ›6ë³®E9¾zŸ\;—„]µÎ'Ò9Ç\Sîʹ[lG~ÿ‰°XQo šˆ]Ø•zLyŽÕ¶Þªµ~T±ª»ˆ²bd‘#;ËݱDmgGRØÑnErJ[š«“‹rUí"å ìåø"xõ{8¾ò«ÔÕ{ {6¶f{^ºUæñʪ¸Hsa¿vÞþ/'f§gKÅÒú?™×MKÞÉÆd{®7¶¹3u¼q¸qÊãzT‡õ\]¹°x8q…µ‚ƨÚJIF·m®X/ªú¯ªü¶§<‡˜C­ÓVëxÖëwŒzý¿á >_€Êºº˜ž`œlë4ãqÃŽ6[‘â¢Ðè(9’œ•1°³1l³6†ØÅM±If,ŒHšK"@ÊO¢ÖÞþŽ=O/,§•ŸFyvAÈJãÇòñåéÓgO(<šwqägª|/+å_ÜêÁòêžÛil]^˜rMŸð*_Þÿ«ïê>Y]®îXfÙ˜ÂØæfY—2ÌÏÛT—„—Ì%ú—ŠÕ/Ùî=®Ö—Ö%›HÐ\m¶Ó[ffÌÍ—ßOÌ£{Y?j_Wø¾MK¬ Ö%ï—µ™©Æë8öŠ¢í~óå 좛ê-yˆdùœCÌwâmµ·Ôù~§öžïêcûO‹ÊR\µ °Z§`K‡Þìjl©v1[$ìQr”ß ¿•ŒÅ™1Œc%HJ)•0`Llg: _t#_©öåt éõJ:˜¾[i8¾^f×&Ï–à…{¼Êö5^j{<ÝäJñ¯a#Î==RòƒkÍÅÍGÝÆó`û/Wj«}ë¿Âûy†V•”ùHp®56ÄÝOXäÌês£‘O»¹ÿIOCþKBi&”i“"6¹¨åÕ¹[»¬ÆÚ)¶ºb"mD¤” ŒÍ^ÙO˜/ŸÔ‹æÔó°|Ø:z_®²_#¬¶óÚ›mžÙûú*¡ïÓþÛÜœÄ9r¹Jt8´´Ì²é´­53Q¦¦šVõ*«˜Ußìßdz—-.T¶G#r.CÐøª[T«M´BÚü…~fi‚Jð€‘stÈk1®¶«±±šî}ØÒùRv)ØÛ;pã±þˆ…öQ ÓúOÛ?Ûú_2/³Uó~žÍ´³-¢#»v6ˆñÈ·÷0ÉλáïΪ“æ¿zIÿ|’yÊ;ç2ùåÕëm«hÓãwîlÍš¨Áx˜Wš‰Øn8ˆ¶øUág|/â9wÃy<ºµ§cTìIØÒ» Wµ‡`¥×Ê¿C°^§Qö¤|Ú¾Sk|Þ3|×êx¸ö!xÅשìºôuõ8÷^Ž+«*Þaê²³*Š¢ˆFÆÛr¢F¿¡ímmî©0§˜'Ðæ)>„¸ËjÎÙ³NN3Ó ^“î9(ócÍ×›7}×:]—õ=·Ñ¥ôJÜå´®ŸiÚ²íYÇ1ÆzW~ýU]¿è-_Áµ¯Ó-® o׆ðbþÛmçéQëz.ËW7˜[&6™7‘s™%MÍ\)wrc—75È3cÈÛfyÿ?çú~Ÿ§éüÿÀùÔ»ÁÄ<¾µl¹>ió­óŸù•'øÿyº #çªÜMôxW8eÇ r3lú+•þ¤IÜþŸ>SŸ©â[^¦µåÕ›j05F¦±bÍ¥´¶6¥ËÛk¾©Î—ðsÑÏG<9ê>¾úZ6ÛGÒ¶}-¶ÞJP}ëþ^{²÷j/¡#ø¢ÍMl>‹è…ôª³˜R.áþ¼øŸ¥ÌHí4š“66lD ¢ °ÂÆB"” 7Þꯌ­ì$µú%Òc4ÏR]ïÚâÒ¾10<ÆbZ< Ó Æ¶ÕɶÍs•÷ —7Gñ}­W¤ªôŠ®$¦Ëe²âèôåq%oòóaûH·l³éåY›ÐæÍ×ÜqÇ„D\òsÊç§Öw³½ –¶ü¸U][vÚº¶£*wbØF¨¥Í¹\ÒÅ®F¶sÓž¼-ôî¥|¹O—êɶ¶¯Îr>T•~œW³nê~ [àEéâßž§áÐÞ;z–ÏÎÿ‹áIuPö´{µ.]+æÄö¤}jOj—SKðQì9Juʾôë¶ÖÚofãzÀGêø•^ÈOÑ+äÕ}wnȧƒ%`a¶a±¶¥´ð»uÜáwn£D.mÍHW-0a‰1H$šîéÇc¥¥;8ÓAÆ·c¥µ­¹6ÜqÌr8¸ßgJ§EÒ¡N¾—Â'^Ýw ¦Ý~ãŽ8q¿÷ª£és´òäN–t±â ÍJ¾‚¶öFÚâµ~iä]o^·7ytçæ9ø…é<…ö>û•UvÉ;¨.8áŽ5ld © ¤Ø!W¨Ûk݃ÍæƒÍ+å ¬®¯SŽ8µÖ3Ž8¸ã†yó­D·=ç»îû®+»ò·þÊG–ŒØ 3f9zÖÜ›Ž9}±}ñÿ›ÎûŽ`íÕZªcoa1&KõvÛú{m¼Ò0kÍmlêÙÖ?±*<çõz*ë'­[´Ùð÷*qÊy¤ûž²OPušlmSml:½fÛ?ª@í73+ŽfÃenSk\¦©- »¶,ràŠáguÝÝ]ÕÜê1ÝÖ‘6nmÊHfîíFèm™³×Èñõòx’»¥G‰SíÔçåìJ½¤{ÁsuA³:’­¢º‘mWÀ£k6i[UîQ³<ˆ«z¥} ic33,Í^-1¦c5/˜P»ts=²\Ïîöò®4§ÉûÏ«òÃñú¢¾ñMß“î56i÷Ùµfê·tR>OGø]ÉC”VÖÍ´®t­6VÖÍ˜ÚØ§¡ô>‡ðÒuDuRÊ£Šw ŽM³gUÇêЫ¦ê¥}…h·V^sgUÇÀ¤_³NNŒ]2Ÿ‰Î+“¢¿§ÚÞ¯m•¨ÍDi)) ™B;¶ì‘°Fd$2÷ðŸ]ƒßi³F× Ž¯Ž8n®K²Q+’-Œ¹·Úëý­qçîy¿ØîaôèeX¼Æ}Ó—_÷mkkÌüoêvÛ}ÖÚóm¹#Í\㓎8eJ|ÏÎþnA9­j§tÖÙGqª‘XË¢ŒÍËŠ Ñ°ŠÆîîî뫜¹wwM&I“D¦cÄØÛÍl)Ü͇|Ûg˜oAœn8ýIDæ½?RUû›TÚÞfƯ»^UÌdo›ŸGˆE9t÷q\]aq\¸{ºœh¼¶êg§UËòü¿uÝr}×sÐÔê…½ZblwêPfúYgåÉï›%t} +ƒFÆWåÒº°äçƒS¬Já§ÍS¬V½ÍùdëEr÷§©®­¦ÚÃmjFɱ²Ö Ò˜¦C(@?  Òk.oØØå3óþe.˜/¹öìðë~ÑïÍ)v™7Ý߳ˊ¶¶7sücšx¾ß¹õÖ>â9û¨8Ï´QnÿöÌqÓðMuŸÎ…ŒVOõþÙ¿Ýó#ùÿ~oëM¶èÇèèŒ {Y?µí%\_K“ùíÓDÑù<=¿ãÁS¹…ÿï&ž‹þoÿnÿ‡çßÿ¾ÞÝg›üÿÏßÿnÑà#F4}¤hÑ£F4hÑ£F>Ê4~ÄhÑ£FÜ4hÑú‘£F4hÑ£F4hÿ¢4x(Ñ£FõF4hÑ£F$H‘"ÿ¨‘uÑ"EîD‹$H‘"ì"D‰$H‘K£úH?D€)@ú¨ý³b¨jÿ1‡}·G†¹7øÖÖ«ðê¯ó#ð«„K‡×Sõ‰û}g§ûßùþnÏþ½®×©õß«üüŸ)Ðÿ'E–’¨â%R=ˆÐ$‘rà”“~k®ü‰DÿZ´·€÷@’Õ߯š\PÉJ!ÿ„w•D@,/眿ë\FO›ú4L¢?E“~O”ømÃû_®~7”äÛ‚«²«ÿÏòkþ`¿×ôÏÇÄçÝ.×·Õþi¿¸‡õ/É‚ÔT+]lSžÌ\›ÿäædË]®¶˜ÂÏG7×p€ŸÃ•ˆHš•*‘ú/ÌÿÁº¯œ¾¥sZ[ü‰MWE* CÀ êåªJò¼‡_i#'é,–žœ·ŒöKãÓþþä@UŒf³vrsž0©kÞÇ4~¯ÐæìkÜ>´ûÿŽé™ÏáøU¹ª©b\_£*96¸ƒ$›¼¯ò¬ßZóLþYù¥\\^HgÄSQñ%²¢¾Ov<p•sLràþ·‡!»_Tr·ý75õÏ7‘ƒ^_Ô®a½!ÿÇË‹¸žçgû›[Yà4X?øBâÞí°úòKrûÒüµA>mžÆçuw¢¿‚‚yÑ‘I9yœ)ø?î†Ïc\ægj/!ÂËïüØÙ®±sRÌOñú]ÛúÔøÄÇ:qçÖtnP8Mºsù¿;äÀ®\ù¸·ø¸ô<6“:]®6ým)^ ÿ¹·'úˆàÔZÚô›æéTÊÿbûÈUÁ·E\ùZoˆ‘˜’ð¾2šn®õ8²ýÔ|•þ¿ír®{ÈK‡Øª yõ¹t¸çtž¨Úw‡¯¯–wöæQ®4þv€7²ØßŠ„p¤„£QÜܰü UDôœ»Ê€–¢a¹©¨ÜçŸÎaæÈ|Òií„ÏÊêsDJöÌÓ›£ˆa—GÄö³õ£o„¥Ê«]†ðÀ[¬ž†´øŒ®[¶d–H1©C_êYGªÃ“/î žäË>\Ø ´ŸhÓk-Á’­ß%K-}|ʸ™Ãõoÿ‡î?»ñYÛb¼f'CéŸvÛ§í'š«ÑköcÇcM¤‰6Ǿ¬¾ µváà0 ó‰uÞFÃ_Ûîo{Y7>)̬b‹Œ÷¯öo™k~T¹÷œ›íð#•Iº¿úfàÚÐúÑÇûÝ|S•„/Cr1bœÅ ìwõ\Uñã‹ "ÉÂQëÉ<³Ÿc€Ä¹^ªó—@âfI¹R<ÜÊt±µÎ{ ‚==³d€¹þ’ƒg‚†î`÷[ÿÙ9‡8<ƒ?>¹6jS‡ÓÕuŒÊâ©ÆXf}œä³‡ÃÁôÑè ocþö_»€Ïð¼>ÙÎ «¹ -½¿Û¡?À5Û<ž¬ìT×ùµñ±ŸÂçÚn7ð¹uVèoÎ}¤Í?ZŽ=Û¦¬´ßØ»Ý)rÌÝf¢ea"|-nŸ8¥_7†ö“£HŽÇ%Öi£]!s*¼ß™õV8&£Ù¿$EòHÛNPä!*t8ÌÁfcOFxQŠ›(­ öÅ€(t«\ämRXjÆä §\Ê•:÷fMÄÒY3L\=í2sqH²ÎŽS73Fƒ¨dØR<ù"Q®3¡?ô|Lø§nÏs4Ô6¿õUv6r³]ãºs +¶«àÖ‹ÄÃO>×ÔëS–õeô¥ÈŽ£2dŠ‘xØí›”¯$tóœæ#ZËs"Fóî åZÝP)麕~CymP)ŸÜµ¹™¿ÍW±ÙœìÕbò.Hȧ ÓÆl%•:&bêR=m‹µT!èî»’´|µøýF²Sn;Oa¸v/Ÿ-ëùUçiñ:÷.ãÙ5PÒ¾ Êÿ'åqz…Ø.«P1çÜvR‘Þ8ߌ•‹¯… tÕúÕð¾³kñb»:‰¯!ž|韂L‰É·cRv(êÿ=ù §[ßÓïé’ –xZcGÃCÁÕŸ0 “w¿ ùOOCgñ±o§nnÅuÚ»›EµGüž›Ã–ø=–b*«Vrts60CìDíÇõ›æOTü @†&`ÁÖ½GgŽÜ¼s<+È|P'b ³Ãè«}×y=uMàƒ×ÔNYåé^ª3MÎ6Ï»¶A+éXº8,µŸ¶aîcwÄO{ŽY£š½yõaÛ“×ãÌŒ‡“žÝëû8¼íDÖõö2ev3·iPÀ£§dôohƶqYäð$¸´åÌ} Fée¿=½"»“ήE2¤/³”Aæ”…mÚ³usp+Ô—53/FŽèø„©+ãK¢¨øó£@šzž=ôn[”/®%r»î=#§€arTê#š‰Ë~áæ8Þ•™yéàçF©7´_áϧ‹L–t§°^-·0ØçÀ°5J)pñ%.¦êT§;¼qoñ2Óao–¦›¥åoô0Ú÷x»eI^Ðoš–q;=;–b>èw”%Ø|ªãì‘-¾ð¢×+[ùóãW§t–ÕcèQ!¶Ùðž>LúxÙ™ghº3ã[ši7anè°»<^<3_@ç#šÅ!gR(Ûhz32Ñ2%¯ß1øN8ÄïG<⾞Ôõ\ÜY¼ ¥Ä,lÏéƒf«8‰™ÈÚ‹7k orC®Ü 㤿NÔ5ç{¡þåÜ"u1IÉ2¹ ”×Ç O X7=‰ùÈ›<ˆ@ïsM#×`btø]y¾ß=â:k£ODö¡6ªu‚2 Ã…´X6³K[Y²FÏIåËítàŒ³Y´ðdg]“"Àð¯ÙÚîXÃÔ¨¢Õ8ñÚ•˜bÚl¹;ÑVQ+t I÷§‚2¤n¾ñN­ý9™~»³ß¹bj9îì6¥}eЬÎÀD"ʹæß ,Iƒ™S½ÍÀW³‡.½8Wââ€ÏRÖa¶Ù˜oëÃtÀ“nɶög´6¶m‚+:W„<ü/¢†Q0ÿµ|ÛÖ¢†AÞ<Þ|ƒÞPî‚EÜuˆ4*ŸaQuă#@8¡qèóM&Ÿ™µWZÒb{z8U›Ù¨ÎúdæÕƒ‚]Ü=|ä²lmÞyêuöuq§/wz=èq1MAÍ|Ökg^“tíÓy7Ì2áú8'Cš5´S(›Õ­oUÌíÿ?)ö,ÀŸîÁü5Ó͵ÎÜ#œdvs;’Ž˜õL¨û8^®¤rÑßb²Nà3šŽ·«aÊîÃ|ζÜüÕù°šI%2É÷óÇj£§×¼ªªkê×óò¯–~Nju0v)ø4"TP bÏF3ÓTñ‘NMöw_3j#­½;wPçC*Ä`â0úf~Èp¿Ë»ÈÆš³@ß—vVµaðdÖ¹_ÔփΖÕ.¿ [{à5 Š„ó>íu¯²ûùù0 ’ÎûnGžúÜÁÜÇ#§›¡Î<‹»˜ý,—:qfÈJÜÅ‘ø•7pp«`ãY•Ü.»×ã^ .bŒÝk.‚ŽDÜ1äÑ„ÄÔeîĤrtæíQÙw9Â2‰åq²¤ÜÁÇJç™…^ fá—h†«®Ÿ–mº§i‡‹¯2Ò;ÀH)ˆW¯3:ëÁZiùJsÇŽX ¡-\åÁ†Dv'l'ô4KJM3½J–qx÷Àz@ ;¨’Ÿý]d¡A›Æ"¡øûLÄ~ÒªA%”˜FñÔqp+"¹*”ÛŠ<§pä%°³ã›ŸË$<°«Ö¼ÛÐ çaq¶x¡ßÓU&ƒr)h¼{@’«íÆp³Q¸*À]‹¼†$1ÒœÞMŒ_Žg³? ¼k@ÚÆã`RÎÍíf²k¼…ÑsÛ7-àÖÉ”åžxï³Ï’8G•¤¢¢êN£+ˆ â×UŠT'!wG³ìĵ«$(áž”ç± íH+žxTª“F ·†õ‹/PüꑵñMÈ"xZE…â…TŒ^iÞ8—Ï5·tÐiÙL0®Ã èz”LÓv@4BÕmϼ‹©E a“…6 ¯DÅü!Áͯ.f pü.ò¸î=  °¶}IvüÝÓ4µ{;VÍŸ}¯WŽYÇnZ27-¡ä¦Zžg«XÞâxL?€Â­¦´Æ¼«x‡ÂHÚw— ²TŽá­“d‹ƒuÈ:h,+Û”×nŸG7nþýf¾ØTÞ9KX1ñ—Â=9EÍ$“‹H×O{‚MÜ8Ýá—¬1„ yYs¥Ô;!Í‘ã/àfÌoòo]MYTocòœW»#æû4òÁ2ÝÙVÄHõÙ¥s¬%CŸCiâ7‘În>kÝ*rš·ðT S«½·­³VTXŒ«Òö¤rçqI'‡;ýS@)4bæoe0WF Õ…vD Ýã ½ý2+×îo´ÛëLFéZŒÛQÜ彌Qˆ¢èx³/Ž}ÇßëìOÁàaȘG†\œ#A°V£²Üuoa^DQýÅÙÞZ»O¡ŒIžïu%UÙñäÈdž`7‘uuLþe呚îE5™b¾Äù%…uu!àÃŽ2ÓRir<±Bd8`®Ud[“Ç;=©,L[J[ Ø™g÷Zù`À#ysœmgŠY‚Ṵ̀0#S!¹¾.¨äi:åäŸ eº Š¿xÂÒd#]hV@ëo’[!òMKH¤÷*[çºÕ²µ¤7ÄCmZ)×´× à ¨¤›}3Õe9(3IZV(xóèÖÖÈâhSXűE‚ÚænºfN­Iô™ý®·¨œñq2+qÜûÎÊX6•4sôr¯¡~ëØsë)xìÔïo„þ §{}¼Š1‹LÈcã×E׌Ü+g»Sjï1YSOœºiHžÿ6÷2qÔʲ‰ÃTAG— †´ÇèípøÛfú2fLÌÑØÚãí¡\ª×Ÿ)ϸ”aå×ø¹F¸xÏ{rºLYbw(u™V†3£‹AÐÕ ?F or!'øIq$»·Nß ·½:…ÞmõÃ|DÌbõ‡Àä¾ïnÒÖš #µI™ˆ ßS¹Óã½U{^VRº^¯Å^'úR­±.ËÙ¿LS½ K&"ZzƒU÷ñp¢¿6 ýXÓa\zĬۋy£æqêºz¡å3\=dC.8œn•ã@(¾T^ÜÚ:§vzoç›WEn߀"ÖëW†ÎcK (³ô˜6ÿÉ{oy…ö\hx‘Ñ€CuÛÌëâº1žwbC“›¸lkªq“xc¯[ÂÅEc.`â”üû¡¨7¯º‚sù/åÿE>]•í¾E±?˜«ÉÊ™8r¥K!ó…Bg‘åw_Ïå9æ)ež0xBÝ‹€ˆÞkñ0q›J©ûø¯ðJú‹²¯LýNýú¶¨r, Ž"ÿ§E9Nád(§²¼½¦YŠ1cvð’ ÛMŸEùZŠ…òóêÌܰ W5*±®Œnoß‹‡chæ*ŽssÈ«ˆÂBt?Ú¸¾f?Cm¦íÉ£.OŽmBñcî9œˆU¸ÃÓpºÜÍãO?­ó˜ð3#M(C-B×÷˜?ìFº¹ó)‡Dçÿük‡ÍØåܺRV§“&¸m²K²¢¸V™¤ bC›0çöN7;z-#z ã: è&…­ñOŒ´º†0=1±Gk‹OÞ<žŒf%Û·ŽŠÎ`Ǽݓï9Ý *<31²Ù"¿|›…ÍLãÑŸyò+HÔ2ùH¨‰¡w6†¤^Íì³z?“}” Ñt·D¼Yð@ÛgŽSF¤ ¼ã¾‰”gÊËúþ>ÿ¤‘ ëµu „òµft¸Ü¡DÏQü§™!¡Fe=Hª–~L¿7~LWï^™mà`møðÿÀùýçÈìÈ@ý@ë¡ô{ßãïyg±d³É»;Þ6F‹˜'ƆK!Öo–æO*ñù놷-ÛIÄQ?ÖQ]KËw˧–SÊé1cªgº-KÊ©²žÙ³£N¯ûʃ>ž£g?jw£ò2»~W§®L ?v’Æ`#æ®—ñKÓëö} 37;ïX¥5HkM^œeä°3:ÿåÞ…¾ s¦›k¼«YªBðL%“¡RÌCŒ½ætåÜ&ü(7•¿Læ,¢&x⥌LÜyJ`q¦äXøÃÌ”|ï™ÛE…€QÚ¶$—d0<\>: Ιķ–#k9Ò÷r&í¡ƒdñFÙÈ6D?8µ<¤ðD-zÄMxìÄìÚ¢Ãt"ÆÚh5xÛÒÏù{œ½Ÿõ‹ 8€ç÷ȇ:†œÛH7ŠäÐÇ7º‰%ÁhÙVÇ™0å7j=}UX} ±Ü6øbΟ"¨iWa®Í¬X’ Ž §\ÛÞƒõXp²ž+ì¶ò¸|†4j'šJ¶}·U”ýšIHoË–÷þX²3<ÌìŠ+˽MénÁ²HÓÛ„ þÌG]W˜àus^Ýxèh‹ð£/ ’tkŽÉõÎgë]æßÑ‘øò7âög\2êÄ\'Æý}k¼ pâ­“3_{j—¢ ­ ù:7>a§¦^5^ÒÑ·”Ñ¢ì’ÎCðÖ³/Ð1NÀ>³¸d/Zy‹ý͈o—º-X˳<’TŸþ&à>cþ³¼ÒÁ•£«¸,$S Z¥2Gœ^ެ0J}K{MvH v_Ë)ç–LzOGë¨þ¡Îvóo­gy|ö ØÏ±²Ø'Å›K¸Bý—óbaþÿïwµchM;9ËöâÞ4ä›ÑZm믺›8‚ËW[õ†¾\ÍË!‡§o^9B@âàýéŒßÅúÉ_¯ è_îòu^pþùbwņ`~+Xt§¢ú¸½·Ö=:¿ Xús´ä¤lïy³ó2 ™}‚#8ùäQ·×áe­ù,€¯†ë*?¬ÖÛéï2üÍV]â]‡aÞCoŲQÐâÕ`ÒÀ¨®€sgA7ÀŽ:#àXù?ÛÒ–.D8ƒï^Û‡–<…?‹Qaâ¦ï6"aA*Q$E!ÍwS‰²æsqÝ?¶\m6?{# &9Ö¾-W'EÙÒ% gþ¿³)ˆ;6¼42Dûß9»É’þ/Ù×âm™súùHÉä ÔsÖq#7áG-G O!ʙد«:áô$[ÕÏ!96t|o*IÑøŠ-‘K}yòãÅ̤Q©×xn:ªtÒÙÓè5•w†€¸&j­%6LnU–G´|¸ýwºm½¾Ò¿ËÓ­9*k[p^ 2‰Yr·¼$Lçœru¿Q2áå™è.U?.¸(\rNÞwð„½ãqñ`{N1¾šñ'¾Æ¼çŠÃ L÷ßTÕ)Ÿ;J½¤dAec3Aù‡à¯÷>R˜ØÑé2|Í´ /ØzT­•3¥…¥'1¨~Ó)1û-äˆÖ0>xsBò‘UõïØTcX5ê9Ü«Sÿ{Ú4 ³>œT(¡ãÆýzÂÙîƒôŨjÅþ½Gòê{õs,Ïàß]™«ÿô«Y‘ x·át)«¯”íÜÙ_æËÁ1û¿cV ‡_†o75«“fS˜!§ßa)/7zÔ6Òöp6”óãWK¦(Ñþ²-BÎOÜ?ƒÏ¼_ëáL¶Š“˜Z-'kjí1 { F!ñHò2‚¦Ô¼™†+eU¡“#d½²i^rOÏ{ÂV㓱òçáŸõ«Qú D¢Øñ`ŸöX’>>ޮʸ¢-< §| ªðny1d)èãVµëljf¡§(‘‹ƒËJøXÄ;¬X¢‘×%èöâ~UxÃÆêî}ÉHª‚EÇ¥aüKü78€ É û1ï$ÊÇx˜i•>ôL'áî~šs ëÇ!¼Ü°P8Ã1Œ®ß°Æ…­DcÖáë5U,¦+¬9í=Ã,¨÷oøw&áÒ.Êm8yÆ>) íkzðß%Y)Ù­©ùùþ>ƒZj´¿uwóË©§uBÜGžô÷_΂Å9—ZEÄ®lFD›p¡QÆ·ï)´+=l«ûæè¬Ky¯ÜĉÝõ»¤‘t‡¢¿ý?Úö‘Ó;\`ÜÒGwênZ[P¦NÂ?õ<Ñ·“¾Íéê¥a ¡.’ÁéTn>‰‹¿y`ÊÃöeõSQ7Ðögp#Ex<§5!ät{sÍC*ïnRîÙ¨»×ܧ÷Þ¿}­šèãj„_Óªâ8ìrFCná‘$.Š>hÿ•XY}ôÊ_ÊøêJ»Úw¡Í¹nŒŸã$˜v-ƒ 1„ˆ´°CãÕum’6$_n ª‡½K´ãi¨.§“ƒˆ¯–ÇñR0÷LF ÈOB#ý½ZŒ3å¡þÊ-®~Êû1Ž9-B]Cjfˆ)*Ö8P-æÞ55M½Ç Fß-II„ÃcHØâàºÙñr[)’Ly@' YyÎíНwjL#æXj=3/)ÐöyA9Î¥‚åÀã€GQAG:}ˆŒOF®BsÚp§={e^þ®ò˜/Ôo¬Š¨2ÚÈšLí' ±âµÿcûªg£ˆ?ù™¹ÕUG€ÇН"øá~?Ùħ¡“1¤¡'³PäŠÍšÍ'R‹C¬'ö­ÇMY:þƒœ½±Áü7‘†9¨—F Pê¢]Æhe£¡G£]¯š–Åaf­3g4¸g "$¢5ÒÔµ#²\§äX\ü\+Ôžq±}šmòGmw`?x<ñëľY·q¤O`¿CºOm{­£U¹³Tî;8ˆ×|Í·h›>„465¶áDïˆM¬Ö”J¹[Õœ¾¼Ö…âèdìX‹5ð&‹Ù;}”qLr/Ί÷ª]Ç7ðào%Ü¡°la ñ 1¹;˜ º3’= æu”ßYéa}Sl‘¸¨ás§æÏºt:vœŽpæf‰Í‰ýâyà hîë°åP;«lKšIk°ì0^A/NÊëzÿ;AT˼€ Ñȹ)Z@´N¸HÖøî– ­Õeô^&ñŒŸpüXhß2=°øq ¥UŽÇÎMÃ!Œ0AcڃɡÇÈõ(ˆ{ÉNVº9N.fÀ’°,3h©i|¯M«OV=ì 71C„˹°Ê·j÷lY:SAz{o(Kz”Vsa—¬~Ñ î ´¤šÊ~qˆå©Âk S*H“SwèɼDüÔ̬AØ¿nj—îÁîáà혩éìt7•Ó³¼ŠŠ¢¢[M·¼|Åâ¨âGæmtÏœ0$”›îå<Æ2Ëyv±åG±¤:îÜã7@0w™ ºÉ#˜gnóu“@¦¤œ¦`šó;< !wvžÄã€kÓá`ÜšY´LpO {ã”ìfÆ3-8yJa)¥>$båBàå·„†p 4ê¼'jRãZ¢ƒ{ˆ Ķ6ɼÍXv|K,²†³^hån4¡c4Q¨‰Uάgš‘Éš†‡kÓ[†Ü*ó­Èá¬?ãfl†í`3£ºþHH"§œ»Z‘Æ#BóYJÌœ\ »^”ü¿ÔA¢mÆ«³ƒúñ•duÅvœVr4Ψ…¦QDâ‘Y¡ðÆÚ©ß4ÖSÃä‘Άä¯0ð_¶—o3ËlZlÚzžc5DwQÔ·ü-\,›3‹×¸XɃ3´-‰ü/p"8ŸÖØ}¿3¬¯éø/œiÕC €×𖧸oÏÙ«uÁø µ¨M_f7Œ½ZûÓx¢µ‰›{ ÔΡ¼ÐÃךN—•eïêv¾:hqÚ}©bßÔ~ÑJsç¸ ©mʦçÓ3[ú{{²9£¯Ÿ$ Z­ yà¾l¬ÃV3“¬‹Äz1öâAx÷<+³Ê5Ým±›Q:8ÛÙ‹ƒÁ´÷œÉv«ÆMN5ñK,]j„qŸ©àÿ^+LîfûŽÛéZ±›Kº8„$›‡äŒ•‘­ó.k,ŽP‚8îL*Ü â ì5ÜâQa«>ýù,YGi©ÌnŸB䊪q6u”œbÂõ÷Ø,Ž_…¾Îm5GGrð¥¦^¡=cï&9{³äœž“a«k²F9õC6ÔvòØ6'…„VnÚ(Þ:£<¸D© ”+޼FÌuØÝj…¸MŽ4”„çRš¬í0œâ]@&Ägg¸JìôB© µKGвk”,RT,á=—ù×,\&o®’ô˜ Oi»Å´x¨áJ¨@Í¥Žýù¯3Ÿ4(rq±•’ÌÕ&bÁR·RÁ©s?âsÊh‘È;×ۣ͒q¶yTCB/˜¡zÊŸT%–Zc=tò楫!rpb͉æu”Q°Ó±JÑÀŸNÙªazSËöH¸› Ä&•ß2µY ²oô8øu´®nú‹f‡c“±pû{HÍ;[¸³£Nz3˜£Š±Fìx—{‰Æ‡*gÆa³ˆ‹lWÏ zÈèe·Ô]”ij@¢˜T'/© 7ÐU0̓ +YQÏ· o¡RÀä.,žÍ’&¸1Ñàšz³‰£Í,xku} Xr=„¿Š€qjIP+Ö”Ô¡_•UK,|9bEyê¦aì‚-ó0$ûÝ‹¡p5륧ïô´Áç9\Åm a¿¬5WI kß%[æ:~ £ £ý|×Ì“‡ÁŽøç3m½—ot‡ØÎe®VH`GTˆgPÚ‘=40ðý~å¬eÖÈ#;»ï9~ˆáÓQeÞì1-‹ðåXI…Q[µZ 6™áÈSŸP;46cÐpâC”Œx|G¥=ŸæÖ6×òÆŒø“8A"M¥Ä ¦ÛŽœ*XÀôÒÚ93å¾¹Ëc9—xÙiVù²,÷'iÛð´(%Í(TT¸a⇹ÙZ™ùc5ª52nõVR})€/Š–éyç@&0t3eÑqÞ™l>Hrö`¶E[UÞ”[¹GU ¢¤ˆÒØÛP1ÒÂ1D»ò9äA¹ô¤yæ´§FãwQ3Q¥èuÞ§¾7Þbõ·ÃžRñ"c.¶‹NÜ{Fµ0ï(‡3×§Q;ÏÕKŠÒq¥¸”©C¡Ñ«»hÍh$6ÅÒökžRÜÚS1‹ýö¤_=ùC†Þ:4—'!Éä#y’\Ï'D0]Kn“=}”ZaÚ=îvpŸâ”ç–ŠЀlÞ…ÇdW>fà¢"E¾ã˜–÷Wpë ‚a-übE0Ô@p‘œb— L†3÷×lf§Óìëé:Š4çæÔ~UÔ§D­9ÐÄ_¿ FISé7SþH 5ÇÊÝ3À;žEýíÈ GŽ,¡‰dyJ×+e«Zm©­löð¦ä±$trS‰xµ!Žç8Næ‰ ÚgÕUy¸°"˜Ì㙎ñ˜dN3ç¬M779ý\½}³³"z"0),ÄgªÄw“|ñƒ©¬ðxHÂ'®¡æhìíH¸dšÓT"ýéwÍ}ëÂjŠÕ~Še–tm&aÎÅB¡8İ8‹‘& ±ç \ì‡/I¥Ñš âzBqD4J·MHÊ@“ €ÖáuO»lL N+g.õšÏ>Óçİ;fƒ9VPÝØìG;¶ê7SPÚ& Ìç0Á× ÌeˆãѤL6ÙGR¢;XQ— À¨¡1|8@}{QòBë°wÎq^;£ÈûŒb†CÖ’¥=(¨¡ëÕàdÎE­´ö Æ“‰éY’R¼> 9KáÍ£&¸)˜Çóè^ÃT‰D¤‚} Ô\Þç9{ØX!ä/Šÿà¡Êeç[‹Of¾Fƒ&bʯX•nÏIæR‚ϧ-ˆþë¤õìyŸ“Dêé$¬)ñËø°0nƒ#§cT¥z6=+<²äG$¨í‰8AåѼġñ„t:] fY~×b!›¶ÈÃ0.ü2?‚Hì„Ãd¶Å±tUà}mó-Q|4§‘§¯¸DE pæ;7*‚¶ÿ+2á»[g&ÆH"‰Ûm‚U—ågzÞkžáGqVS$\Yï?p§l;ðŸA©œ˜†µW²s•.vØÛMŽ'[#ôcÌ¢`>òedã”MÓXø´5åxù¡ãFE-}`µâ [Á€Ì»‰L‰“õ-Þ‚˜·%›‡l¦dkŸÿk,5`xŽê¼rûAx6â6¾ŽVg©®).…ñq¥…Ä·ì¾b{“¶ÝÝ%ë‡ÏÒÄ |¯À ·.C;xnç(|¤²r1àèh¸\WsfIO\J—ÆçnŸãEçÁeÎÝ7Y®£3è>,Åj[ÚÜ:Þ—Æ”Mª,+kc™‰¾ª9šP mE¥Šo+1¡{qûu¡ÓgWr¸òZf9ò³9Z'†IG·Í¡¥~ÛØŸ=DРÊ!ø!ƒF·Î§,!sUù|µy,b‚G6KL˜ŒQóIWïZÔÀ¼çfÝ…÷µ&F“½Á·+­¬ç˜˜pƒ”A™¿ýüº BÊF:%xw4ÀyÈŒäÄá&ç~ü=ÉòHúð9VrNcî´qõ7Û;Ôs¶÷_V£)W~GÀo¥*ÉíMË3N£›‚ªâß Kù¹«sËO-ÀVE{B™Âs;î·Ç‡P&niOáÊ·*ºÏE†f|ýªx—ÆÝϧ¾bë—®.išá^2sY6?<Úq2>týÜÐK¤H] €ƒ ¼êyN2-TÉ—¡vhßmˆ‘"­©A0߬H³ºzÃoŸƒ“^ÍënþßÓwXi•j–" àñþèŒó¹£¿±‚eñ‡‚L Vó±0š\wœLž“µ# ª)Û‰#<Â;„éÀ@ßÓXÂߤé<‰ÚVqº?^LÇRmÈ&9ÙLSQ-îuß7ƒ©Ve<ýù—)ò|»Ó%;Î…#s XøH>ë* ]Íà´n,'U{O ðí& Ÿ‹Æþw<2uã< £úîŠI¾e衃Ü;ZnM †@dyHSq&4HrIy_¢R÷ØìßÃu—r†Cƒ”ƒxåïò· ¡Òf“M”Ô®¦Šp¿ãa¶h¾’*‚›¬=1vÂá­™wÑŒ ¤Ä„HCYa>9ï.z C½q/Ù첨/Tö2š“ÉËÒT̪“t×?ž–Öê l·ãç±)oå]]&ÖÎàJtµ,JÀéS±¤QÍd1­lº'N%„(oê4ò}a¶ƒã@[ЫæÙÈŒ¸Æš€ž #3µŒ û2!‡+*t`Y 1Yù•íezpöx½XWLëAs2¨$D(@ bÞ¾ê–FŠ&J3†c¿j#=j¸Ü+騩}^ÁØ5£{ÎãyÍ6èQfÍB¥ž"=5É‹é >ÓÎÏéhà.x âÄ£)Ãã ‚r>°^Ëöüº® 6¿|yù©¯š(’8ùm“¸ü+c[¿ôÜó¹iUŽÓÎß7ò×¼ò歷Q&醸û!ºÃÆà ѱº ZH’A™ÇŒqH°õp-¯›ó®ûž[þœvŠšãŒ…É•ßÀvŽ\Ç`ÅÍ'b:˜åÛeþÌIеËÚô|'žãö´±é¨èФ²Su)¯VìÚû¯Å‹Ì-7µÀÇsWf×h†ßmC7êLTü]hU“ñ´çä¯Ù†]y‘¿Û!bö°Æ°ã³ç¥Ÿ*ÌH@Éù—³=Ã¥ÜyGÚ©ªè^âþwPÉpXÐd[à9 §qSé©Ô4Ë耛y~ÝVTëËpžmˆµú|£5YÇë§g‡³Hu²®¡c¨ýýôó8/‹ÕÎÕ|ĬcùýiÚlÌÊ@ÉÒ¼®åx%ž·ý+C²nRö5ÛC~9´T ¯ÀK>_Ï2# 5åùÔÒõîG?ø™0™…¬§ª‹”¥bþƒ–I1+ÜZ|jgÛ‹5e¬Ó>Ñi_ˆÐÒd*Då#— ¾×”|~ó’ cÙ õñä…¶’Š•Æ´Þq ¥ÔUL)ùãôo‡Îóåø(/4†°¤A³Ñς鯋©þE¾bÍ(—Â}ff˜Îz§<‡z µƒ!X_YßAÎj…4÷{s~f5Ò„‘™ÄË}-µŠM'šŠûÏ—†î^Æìr§›HÄ„Fa¦_`#þuW¥ý)Ñœþf7çÌ=Ƹaè¾Õ[~"›yÕ”*:0œh/™¢“‚Ÿ¥E¬>iÂN< ¦Ô&rizK“O2Z¡Ë ·r*YÒâAl;ér*•zŸ€‘3:%ðªÅ:˜M5¦XpÌð¢¼PQ$0 L†À¦• ”WêYLØ¿â†Ð‡d½yºþø¼_’—åVõøO 7ÂÝ÷t8 £P;·ŒÍFR¸Í ú._”¹*°æ!3×5Ü=üšÞ´R³|ý„eÖwtþxw’­R~)5‚? ²ëc.ë,§\¨Ù×_óÄ¿áG…=•UYê¨éØÕ=9ñ©ŽV=PŸœ>%Àz*؜ʀ/h¬Œã8oŒÅPüµ²3¬Ö?Qf)<7¦!‹47ìœ]ÎíŸï[Ã;j÷Î"“’S6)¬ïÏÏ—1Å23®›Ç9'%ïÇGÊЮÎ#ò2Éo2ŽþDƒhá5Íqüž7pøÁi\Tê™.ø5h$æô×a°‡Z1àSéSp›yÖÆ×ÎÆÜŠEÌ[7(èMç=V¶–jgêŠÂ){‘}f¢W±ß=¶ÕB$…`ª‡‘ÎìMçdKQ/fMu„wúVsà…N…ZÏRqQ@¢Jn䔎p¬ÿæýo¯¬íÁi~,oºÖ˜ 2ŽÀßSiÊtã–u¹e jh„*‡È4^Ewª!ÖâËcîEdÜ?Þ²áX¸þz¨ôcqŒYd=öE æØ`i¨zQäBCÚúïå þ R‰QfÂÑ”ˆXüW\L/¯®&s…8*lOs!Ñ6OmBdö„DBGõ1@ßðfôõ½NúG„Ç€ˆL~)²›ÍÞD{EøˆcúÒŸ–µ»QŒs†„€ ÎaÈ'¾¤šaþß»Æ^5Õ¾´u¨Ê¸ÒgˆÏZG»N3äýÌ^þµ³B=˜Žàg)È·©Ì® %>¥˜Óâ!2åkíP}¹Ôú¡ç–ð–“œÎ.frÀ“}>©„]F¿–6’Ñ6HuhDk ñÄa’=ô"5z`CäêTÃÂX`³þL?Ó¡À¤ »Ã릮æ8¼›X†îù4àwÙi”^ÂQ»íp¢§þjce£Wt@ŒÅ/¿hŒ *´@ÑÂ-ÓgÔ˜÷ŸîoÎg |¡„õõšzÑA f âÚ™YuBgO^á§?w,Í{#¨}Æp‘_µc¦7¥o§ “¡ÿ6âv“ñfŸ&?ìNlÕž—¯ä"]ŸÈî]Ó©Z hi¦}ÍDH8Ì0C Éa¥Gƒ3Ì›²ç•À6TÅSF~l?¤‹ô¶ƒ^sôG¨x›æÕ ùygŸÊ÷WîBÚÏfè^¿Ë¦½ I!IŒ‚¶ü£˜›q={Ñ#Ã/Á“„?êâšqÿ… 9:žï ZÐ‹Ç z¯9,hâ¯úTþÿœ± ‹³zèæÞA·ð"h&Ü]'oOŪ~‡ij0ºÖ5v·wbÞõlˆA›ÙÓꃃ Õ$uXfó{÷³㓹UŒ˜¨â]ŒÈö¶Ýf^‰ƒ`A¼bÌ=IÐ{zÙiOýÐù.•ÿ–¢0a‰Õhó¹(­´rDIù™áÒ"îgJ%MC4ž1âZ¾vÿí­“QE„yp¼þMžŒ8ƒ<)‚v©ëyÝHg¯b+¯Ò2oŒ>œiòåë–_ët»þôí/KàÑ÷šrX¾1.¸ÍÞš›ëc§©7Ã@s¯÷B%ÓtüíÞžº›Â×=¦F23Üý!Ãy›éôú_ ïYGU0kÞÕˆJQÂ¥cnl[«â¿ñâoý­J¹…2!–Ý$š«xïYE1V—'Æ£,È¡*½‚]ˆ8¥ÍðwïÔDº—“Ì÷m7ïˆçaÑ ï`Ž|Ü',Ëcmê-y(Þ´x§íA6çùŽ@Ñ»c ë;-†ã“ˆ”6$8o kN)É‹Çþ¼HeFðÄpÜÌ‚I¬…Æß¾Æ òçIdo†·6ï,ƒ)D2ò6‰eßMlÃHÀâhβ,–¦^èN†¾U+¹ÔQcïq‘K9ƒþ+ge„zÏc‰VÕ¾k;ha¥Õ~6ÌyfOÆ©‹G†Iú<Žr™I< ×åhÔ@!Œå4¥•³ÓR×â\,"¬2pñœK_ ,ž´L:Úgœ~""f Q,d«å»„N´ ×ç(Rk M6V”Iñ0–òÐg Ìy'ß÷úLÒHGb½κâdÔT ž£M@Õ™(âñgßã´öPBöWE-¢¤¶ð[„êî{{ÒÄMȸÂcÀÔ$;µæE4ÿ32©0BUko=hÒ#†nsÈ⮑¸XÕ HÜVÊŸ7C…L‡pxMW„%A JíàC–„ ûZÆé§¨?«u´ ò"úˆGQ°ÿ™ÿ–ˆœŠ ’ÉJ@!ƒ/ ô` Ë”|/ÑŽk‡7ÆþEúr"‚ÌTóÒcüQ„¤m˜ãk“ÏqOÓâLMc~À»™+4;šm5IÄ/+÷g š˜Ò`Ö=|4ŸbÈÈ PÉ0 ¿™ªóO“ ;Ш—â_þ¬h-äCÛþbjÓÕAáˆ,s™š”þ ‡a">D À%]Eæ å=™P T{óù}É9y³X˜Wk (Í56ýe„‰Rê"sI(»¡ÿQZ[ʶ>²lbUö– Mªb2fÓ”çºs¿RÑ(ÁýE(ØP, Fïw'òÿ[Õ >ºsHãyða­ *@™xoq¯› óºq@c¦®C@'Ìä°£˜¹¶rxR¸VZ9þ´!M™YDDÞbÓé«ý\pœJà]VJ²÷0™©Çe„p/}—Â(Ùâ;!h0”Dö;¿ÙІöñð¾ôŠé3-.»ûÁÏÕƒ$+&„‰,‰ÏŠ“¨4CØ)BhSæ¿¢Îö(HÐËí*„rÎ@ˆ ‡™ ¡#Øtñ›Ý³ŒÞð¹Úíשª§æ$SJü†5ꋘ©=ÿ)ÍÉ"gÓ"|Ÿc³ÜÇ ¸™²'àˆ6µ–:·’wွçðCk-7ÉTévÁ¥p[ø!I¥Oþ â« §t‘8/´!TØ*ªC HNlÇ0ûhçÍ]*éÇûøeVŽ[Ø¡úžCÏô(5(AËr<æð,ý ;J"–ã&TdèQ 5‚²Kmƒ@“­cVõB«éxŽAyNøŽÇfÕÉ­7P~·ûé"â䑘aI†|Ü¡£Çv!?˜i'v¯™Å˜¯©UIèÏ Mº.€ˆ&Ьc\&‘çjþ¥ZÑÁ2Ì(ø `VÃJäIþw²âÜzw‹esªX @›@ ï R7 þÓ&Ù{6¢äER…¸Í‰`a¬ª×ú5¡Ëò]A6ø[Ö@D¼^ê¾Íצ£(ÿ»‡?5æЧ®ÅÿßáÎqžq˜?ïÈ¥(ª{ï¤aðjoæQ‡ºeœ‰€ 0#9TŸb\,r ºÄ ¦—†§à†“úCÊcòbcGTQÒ <‚]u™#|L;dR˜wÌžuÝuÏÚ]S›g‰Õ0ÜB¼å\ ä($²“ H,àAXMkì&IŠéUÿÓêfÙØmΑ¸Ó>ÃF„Ç+‰²‹Ž™uœ$Àº!4Ôa謈Š—ƒ¼*8±ËœÂ¬¤ƒSù˜9­>¶_øb7ÙslD§Cœê a/¸ÃFJ':É•+ Q,¤ûcù‚Ô@®É×2Ü u{?yûbúÞüoa»bθ`ìä`KV€?wÙfÍ=Eƒ¾LÙ Ñf/òía=c^6m<º´ÜÎJ2í,ƒÛLá´Ö%ÕÎnA5’azþåî_ÛpÕ1ÓŒ¹ÿô¡ ÉRïj,óèÓþ]‹À•¸<’2p[÷JeõFßø<=€·£„¦I$8ÄB» ¿ªò€ô*à~€~ªë€iß…ƒ3»¨Á0¯‘þHøþgó:©•`«)AÝ Òd^ »ÕgÕþƒqÅ‹   C´ÌÇû¼†j[Û¾^ó«EéöÊ€A a429§ÆáöÓÖ™uåaë;J^Å3ý®Ukß&2œ÷ãÁõþ™‰º 0¼n±)‚sá·yüå á–´4?4Ø}W(^ÍÑc±Žoƒöü×ß|9am¥³`ñç:ëÔ"ì]ZùƒßX9ëi%˜¦@hôa 7Î8ëh;›í”À5>ë߆vLyô¬c œ‹  ϵÍ0¥\ÓHËhªÛ)!¡$µ‘ï“D=qüD [JNESfoºÞ¿¡@6dj•¡SæÆ¤ÙðÕAž²X0~é‡ù_Ü2#Udoß²`" uÔìmO¨¦wPB¯#`K Ñ¢œ¢ù×{€3N¸Ï¼ñ¾%Õ¿Ž\é§À4;ä}hBoÂÄÈ¡“µÆ¼•30ç@³Ì#ÖE7¢Äè®)Ã"D†2÷}tmª·”Nª&€jï¹i›¯ jŸ¤¤<Ê||_€—ÆTOUkª/ î¬w‘K,3D˜>¤€¹63 E‘–¤MCqì µÌZjé±Üg!ô½¸¯­*Ëžê:Ó •žþÿxÕ3ÊÓà?.nÃrŸÐñ)j\´l¸¹­¡¿#f4B2;üüwª+þ6æÔZœ÷`ýîQÃy4„RàƒïÖ;öù’øpjöGž —plNñ·´ÿ±´_ßàüIÑ5—åâm¹Nüé´uc7f°×a1­Å»ïÎlzPMkZe÷`Öhj÷¼´ðšS~ºF|ä°ÌÉ¡öþÇ¥œéA£ÓðòšhgËòí‚@ ÞRêëÄ­õ×?øÕýCå>ò€1çØU¼éºL«—Aˆv=Ç79NFÖhA¿émíŽ}š¿µêʧ?O›ðq´vä¡ýôcÊj»ç¦.­F›&LÒÀ‡ÕÍñOe»Ú£#14ä¯Qÿúoy|œ.×Z¿û©Ùæ°r‡Òݾ³Á©qŸÂ.sõ~÷¹ý¯£ü&ñ3`É,GufÌÿTf£ 6ý·Š2Jº# k0päc>_£ô?Nmß‚³ B¸~K uïÆïÀvÄ{þE RÁA@ sìNìXü.Ɖâ‹.h¸=tVð°îdÏk{ÿ•Þe½xERŸÅJ¶$Ú¼¶ÕXTMß„®ß§L 3¶¢ °DjÞo''³¥T?çëI:Áè®V‹ ïz«¾f¼þ„›qPˆ3äÙ6òäôØk®ú>i2¯ìx<ÿ2ÔS Zµ¯§· ®@$öâö6| |IºƒiàerkÑí/V?÷QøGC1é²9X\Æ£íE@Iû¼jÌ•/:xj°îàŽÙÙ-ìh¾o K¾VÃ3;ñd‘î£qñ¦³@zêù­õ#]Úñ²Ü Fƒî2ÙÂX¥™3O0åÀ‡®‘ï VÓµ7cV¹!Ñ‹D^µ)qC6¦ÐŠY{ö°b<ÎÄ¢óÒ#ˆ1³©O¤ETcÁê…8;‚Y¶ª±³±÷/Zö|_±ÿÅ$$òs •ë‚IY ï®Z¿‘ðó>œÒøÁ¶– ‹vMßè}ðÔÜÿnž½ý^QA³où]…-Uæ^ 'çƒ8ÂPaïŸ÷Ü»µ'r*äRkr VC#ÈXظ~J$^¯ß¥€ä>ìøöÑügØÏ5™ò.< î.Û/?› ,›ï~ò`¤¶ÝÇþæ¿Z/B4`õü±£ÛÈÅ\Lj۹ÑWm­ùÎ!ÈM݆ 4`,Ê® m£‡`qz? Ÿü½žM¿òDk»–7âÿ„ã͌ݤ9´Y<ñZ Ë÷í÷\’Ø~o¸Ež©[cWpÿ÷¯±ò¼/z›)3HJ¨Ð ¤ÃÜ¥«Ûó=ﺿLn^]ÉÙf‡åëýT6t½Ÿ¤µ¸r¯“ñ=rõìo&ÅTÖ¡6ò_w[10ùyس™L=z8q×WþÞSÙqÔ×H®¤qÞéóÞ”T11^KÈîþÿ9HmS ›õɇ\“ר±D3=Z¥ 5GP0]VxâÝí^iaep`Ϻe¤žTÍši]1ŽõÀ¨‹•ñ£øuÚè´z˳Óq”2kŸóz³ëôÃ?FÅ ?…MPœ s›­o2ŠhV Ôøïùß¿ÌÃv|ƒQ¢{«±ýgøÍ  ÷°Ù÷ŸÁÓóÔ–MòæF8È[ÂFé¾õíø*1b `¥ôâÄ·ßÍö©zöÊ/âMš§L¿ã]µfßûÊØþJY+ŠÑ¢-Øëͪ‰Ç¼o®š=ÁÌôžBôºéÒa çUµoyáM{ôãtÅ“ÇêŠÎ¹×Óó¹wÐ5_Œ\Öy¾ºŽ7½&’-bû,øÿ¬/ÄöûÕÚæzI¤Â/¨ì8ì¦pû×ûÍüf÷oËuz [ç‰%ϳ^Ó1 ÿ Ô¥ûŸ?à½5ˆ£‡Äã3ýÅu8‘ì m¼_ÍÌ𽛕ÇçV‘¸Iÿ´¡’G’P„äŠT?¤¾ÓÞ¹ÍÒwÕÌÜ;@ló‡ŒHËöpÂKq½¬Çië¯oá¾cŠŠÁ½èz¢ðàœMöjtwmíVtàÒ g—Ü1$,„|† *<po+pƒ©«þÎÜ:¡Jc øVú‰½ÜÏ£R¨J>n'™awîz"dý_cÉ®OeWuè£Üþ‘¥æŒ÷s”3ïÚÂa"®ã${ñü”&ßPkªG¾®ÏMó~R´LÚÔl£”N‰zo ·™¿ÑóoÝÒÒÓ+u|¿XGÍÞG¸<†¨û@ð•ù“ø§{¦#Óú/ýØ=Ô½p üÕààffxȸ”íÔ‹ü@ÿ©Šr~ã¶§ô¼ìü—hNƒ^Œå x=£ÄFê5CŽHõX^ÑpÔi2E‰,Ó ’qV5³:U£¶å* ²‘÷R¯â—ïþÿ£|ž¯‡×uŸ‡Möâzõ¶qDD? ×RW€5ÇRGÜ‚¼íyYaãF-åˆxŸ'³å<Èn]4Xo´Drfþ ¼p &÷Ô4 -"h…A®Ù4Rë•U INþ4ÛTf^j¬‚Qìoz:þe_‘Ýý_ÏûW™ð9z˜a†i`æ$®…ãÇQˆoGb„âØQ‚Ö+ÜΚÌkè÷ý½í)ãG3NUôVÊÌžæVƒN¥g£R gLÖSÞö4Ï÷–íï[ÿÞDÖCðÜ0è„ØÌ/G~k  EF©‰ßžêÅù2ZGÚ°ÉÉYsj$Z¬Mµ‘Øy¤Ë¦Ø§›Ô8Õª.%1Õ·#¶^K!Ý¡ÐÃlàLغ?áÿ5ÜšüÔgÌ^¹‘X_´à{„>yé?EP™…_l‹/Ä_Šòä÷z}§{UûïypŬrµ™ a«3ø–Ôq~«lÈÕ‘ºæãbÄ‘CGÁÚ,¡EÅè¦jÄë7—îŠpHÙc¥.¦–Ahm±!#%ÀKà@3FM²»Éò>YÜÏÿ²WD»ÓzlÒójÍ®9²§¼Î4û‡²}Èy~À˱€—·©müèejà4£ÎQ¶µ$É“¬r~6SûáNóEà]­¤¡c¯Üyyf½ø2ú„ÈìùZ¡œí¶puLJ»oÅ æù{¿#æ{DÕÆ7sKüaò}ÎaÓ ?¼HæÉ£s͆N®4h­O‡Ã<‰) ÑF‚Êl¥)Ü:xn°¸d ¦O~0ÜŽÞÂm%b€¾Fw¸øOiÈ‹S+E÷ølÞ prû¯…ÆgyHz÷¯HŸ 9Ýêܪ>.S:cù¿yðmЙ ÿ|ªçƒ<;ËzxRö`$Ôñ‘&S_+üÁÿ¾Ú«ކIPƒ¡;^n`B…€®HxµŸ½Ü$>¹Õg‰·ìÖšL³o!ùH>ØZ;år*Î8ÑhI v “B‡Áz=Ò²?Ü¿"Y©ù¦|DWNô/ü•¾ÜÍ»ó|\™èÞ‡y éþAÄäZ¦ÿØëÙòþæ?a©ñçôý¨ºw }Të÷I€äÀ$ô‘*§ƒçþûƒ…¥»úÜìçŽ6ù½«Û>´|ÅÉñUï?‹àzs„àʯQë´‡ 7ô¿¤~â[?G·üï/Ùuf“Ž |,6Œ2Iø9pa!À6í攚Ðs%UÁª*¯„Pm8Â<Ó¦êYèOMÛNà펬£‰ú'£WsÕäè7{lÕ¯˜r_ðK¾p¿¯5þX A`×Ç_V›½ÖaD´ŸÅ€Ý~ÞºÆf1?< ·ÁAµµ]á³=×íKðÃä½äýödï_¹Ï—ãx²e <Îh‚‰˜SNö1æOX¼:«EеÉP+^˜úgÒòÚζL9‘·7ðÉ›ýK}.Å)µ®·úïûŸ½®}c¡Í}¨6ÇÀz‹`Ú÷Åã’ub¼j†7;1´„hÕ»S8NbZöCZ½×¥î?Ä*”FÈÃ$Fö_¿u>în›Þ ›ú;&y®oKQVÇØ7~브”•ju3æKSøàÅÅ›ï}¡Õ1 ÊžŠ5’…ø(õ¤ûg^5-VêkäoväÃ"–ÏmÑìà El¿¬ç ~â±½#&3M²îr!IwúsO•*‘¦_N´¤a)þ»…‹»AÂ/Ÿ‘º¿'Ñ$Kí‹Å’0t8ž$9ºvE¥:@¬wF¯£¿Ú@ÿæ§þ ä¶ÙÖYFÄKQ£²çŒã™OEêy9TùåIÚ÷üt»Qùd? -æû-F^%H50$²ˆÁ½jd5X&ŒÉ4Ôéꡤ…_EßWS(ªÕw€  °yFÁÖ-þÌiV©¾ixÔ" ¢d¹#¤ _-BŠ'ü~>î?I¦s6ˆ†ù¼04žte !ÑÉõAd?ïù>WÖÑo&ÿW͂ł1ó™ÚK®7=8÷”öEDW4^Qµ;÷„èi¶ÃA@"9Õã 8Àé^/’@Á @ˆL±44ïev¿æ„Ió ~ ðA¡I «N3‚ãkH† FÆZ{òOÉûKðƒíf‹š‚S®”àð¯Oƒ„A"Ò4Ú·S#þp“Bxé¡2ï¼ï ƒ7+ 1c‘ZÔ(–þyu‘ƒ$ípz1|)}~*rûvçѾ›RÁ$ü¤»ß“.hêEÄßöž2:Iß»Cª¸K÷ξƒd–ÊÊÄf¡î_ʯqÞòV“°EZ§Âo¸÷HùÛpürÆqœžãN÷ö½é°ojÕ՛ɵðªHÌÑ5'Ç4C¡G²úXF¯çÕNäÙ½6¾nwa&Üéi³^Œ«ò¸"Œ,cTPv Y»>0z™j›Üǰéy·»ÁáBäÓ—áEú¹?J5?Ü;ÛÍ»ofdY´Ôü½¾û†¸ÏFó¼ Ô4cWÝW³µJï'yLcpÄ|¬º÷ð3õÙ³|ô ¨Ò~‡*Í ðj¿€á§¡¡¤¾öQm'?ÏÊ—þŒ ^}àóF¨ÂL,E©ˆdã‚ N½ ²Œ¡MRáFÃ(õøBŧ/ÄSõ±Ñ# àóØg0Û ã²EÐÈÎ](4I(¸Á)`Lþ…Ôã[àëÌÓ«Vå(˜§ÆuX5ô‡|´ÅsùùÞÉæÙ)‹s‚ìñ @r‘øý½y§&¦"—"°"«±Øš/ÛqßC7œaðhCƒÙƒ†hG-½‹áªËʨ„×ýMÅóÔ‚É‹»¶| ý‹b4`¥EÏrÇŽÒ8ÂÆÐ‰n/ñì(%:ÈKV®mTÅF†Ž·ÀÃ/wün¡0úOhØEĵI‡&­ÿŸõQ?mqß0]­E¯RÖ!„×ÃRslïåÃâøX#áýöºÓioC1@¯ŸaøÒÕœÈ>nC“K´ñsðõÖ|ÑSâþÇËÏ GÆÄÄÖâ ì<Æ”:úð-M'h·›Õ=B¡ „ø:·Œ¯ý?ß„¬òéñóÿ®"ƒ7ðnè݃-ÑQý|PÂD¿­Å,`C´æ¶øÎËÕ” ¯hþzÞ|[Áçµ®åw¦¥ûgìüO/¾ÃT[D÷HDNz¬ê]@ŸUý …$¡¼&_èÉ// ¨|ø…µî³Æl}ç2 ¥Áª&&2±µõ”—oG=±À1Ó¦äNdˆÙw F’µZšŠxô•1:é)ÃÅoYý}š§N Š(NŸÅõJèÀ×b¹µu…zñ“s\eÀøÏr}Á7\g¿‡²*qï €‡`+9ÒtéŽäÿ¬|è}í•nÞ%åë6/Áûï#$Ê.ÞAɃ‚Œ<÷4Ë–†Ó)ÇFÿÈâ0uÝHÁR6ä¸:;kø>9z:ûsz9Î^>Cˆþ£…kåmŸ·e0âUü+<–ËÍð“ÖÒ:ÿs!àãíÉzoÀš)ÛK>±Éb¾s«i<Üýé ð¤%XûæÔxèʲH ùÒF¢‘¼X‰>:¨ jö(ef§ð›t±*úJŽ>z9oV’&YZÒŽ¯i¥óhë£ìækÉ$¨õìwc‹¶õ57 È^{zSc†™àþMX)¶ùŽzQGýµ,×6ó¦5óþúvH“ž#œŒ‚paióE°lÉ(÷X™Ið}aUîC°Mù#š‰²»Ö¤H‡ØPñJ–Iá§žWÿw‹|fOê+ì<ÉÁN5‰-€ÌâW•kâB×WQËBëÅM*Àéú²¨Ÿn¨’¹¿“c‚ù68ÿ¿ëõVjQ¬Xˆä¨ÈÁyDØ\‹Ó:ˆ×z€FíÌ$.W×(A_8*„e‚”TJü«AE’;„2w±gš[·r&y™—êöÅÀ¬´c40ÈÎ9÷Y¦~SòÎLÓ„™XÕLÀ‚kDf¤ÚaqÐÀãWØæ@\\ކÝÊXìc+” EHðB´=ȕ؞èKYªr1Á…Ûˆn<ø‡A&ë+–Òª¿#–Dûwõdh sgEDf‘^®K,  nÂÒöwJª·'A»ô·îÙ®q¼[é$ØHªê°G4@ø\³ ‰T‰½i; ½zåNa°BkÕ¥ÐBÞéÍÚñ@Ÿ>$Ù$³XthŒ);J#·NL,(ˆ15Ñnj-Là“_tdÇóArºã®šÉgã²K,~ÀU3“zãʤÆdTsë~ýÄ~°8 –<ƒ×áeR¹r*Úˆ”3Ã’„”(¬h!H÷c1ÎçâHqeˆÉ\³)êØH>¦ql‰iAÔè¥èké±:_8ªyÜ÷7} Áb‘»Å&„®Tˆ¬}y%êõî+­ &7ô^L0D 8èû˜ƒøn©.«„P«ÈZ&2ŒX…!¡‚!V.hJP&Ôs¥7 …—ªŠ•ž¼¢õ“êÍùzK¶ô(Ö°MÇdk$/”5á8`ˆª@I?Úšj½hÂbMoo šÝKò:›@6xø§vQ ZðI¾€,R…Y ÛóqÒé¸7Zíi¤Æ»îØtˆ6•˜:G§\Û|£™ë‚L²?‘½þ€µn”¸]’Ñú¶Uq…7²`B„í*c½Z²©ˆÏ#]s3É4øHŒË†¬ËÖ®fœ<5/‚Ù¸EäBØ Æ?ryCµ‘},Œ U!ãûB8Cá^ñž?‹ç¾çbhÿNo7Öçz8è>¦cĤŒ¥9w#è-r¸‰G-ïMxB vŒzNôþ}èÎ~n=ç>DtâuÀ*r€¼M%G œBòÄa*ƨwn+¤K¥//dÂ:UÈB㬙˜ï…æI0ØHA"Œ:ížÂ¸ewù`Ò‰Løƒ-MÀì=þ“Ú:ûˆÄðÒkL”­H³‚‡›Rœiã÷mW1 9˜ØU‘b4–™/ nõ¾)zæ'U ô™ZÜ;¸S ÎФõHyl‡]¢Ž½xÒã£äKÐG»øe 4inËTŽN ̸H!lÚhÈ] ¶õL|ÚeÃ@³èr\›füH°4’¯ Ã#y.­®í9¹@œªÓ« Žìúý*ȵãEFžD¶ž›%ó¬sð8€ö}c„±ãY` "äGÄÜ×U°XZ_ÔL‹Ù:% š SE°É‡©s§SFîç›àä}3"ÌiþÐËÃ/ @í¬½ôbš÷:ÊÉtÌ yïW“•RAÒBP+N¡ANµqôzªÖ)×èÔ¨Z¡{€G“m2ø€½€°ØSyÀ€¸6ÈßK•QùÔmôþd«á2VÞ]“pµÁƒÚÅT1`÷莈 ¤i”§Ù«|“µ²`ó}źéú´ÌœTzPBQ¯Ô~š¸V“(†FPA÷5Õ¹ð6rØÐîKÔç¤ K½ÛFU.U¹k«ϧ\ 9_ãeqùJe² Yn‡zûuS)U’õOåmÐìç'”Í*Þ7Lºî¶,°r¶éŽÞãS4®Þ×òkc4®<¥(‹œˆpåÝQi¡ˆœé4&ú€(Ç¿°:Å쿪DÁºá‰ê“W\g˜Š¿”‘Fnåß¡ºJó±Œp+™*Ö«:‰ÁtñY%͘HÂJ¦ˆ»ž¡|ÖÚ%ºˆWs¸v¢f!'°^[>¦›É- ­QU¹ŽÎ‘Ù¼¤JÜýÖ½–fñ¯vSE±Q¹2æÀV|‚ûÔ³³{Ñ_6HfV’RžeÕÝ´—‡Ž¥[^s*~³©6Gn…B©±ÎÆ­Q:ŒÑŠ뼂(ª9S”\‘1®Ÿ6pfnž°á' ;|q’îá"ìßrÑÂD2p ®5q]N¹ªÆ'!AÕ# ¨úæÜQ~W~˜Yý‹Šœu I!tÿUóà%!Ù °Oî¬AºÔÂLC¨ßœ?«<…uõbûÇŽ´-‘îŒg*U  b&> Ro϶6N€-E÷ª¾w+z¦ UY‡ ÌÓBy–û+¼xS–Y »‡›X]B(¬BÒ–`APóÌYj>éÌ¥tþÚA¥)KTñ£ W[œ*J:xi7“ùš¾€fœ!$lèÙó¿!ÇfúÞ 3Z#!‹ÁÎY€î…û{Jf‡%èXDvŒäм@Xn´qM¹­À$OÊbX“ÉraD‹tCW*E6‡XœlX²G”&2É‚eSI†ýÆúŒ'»æôhXàDP@Ó¦V5·J¡Ó1‹„hñT£|Ä©ú«½{ž5Á`=Ã+lÄ4—²ÑxÏ)´Ò8Œù†8Ai)ËêO0OÚõÜalBÁ P8zÌÊö }sc÷¸_Y Šï1›õj},# oMsÖëˆ,ŠÚàæYt¸DvIB¡šdû¶•2[ÍÊ}St9+¢ßƒõº›È@•#ó`"b²j´„g†t¼$¡¥ ?ƒ)ßcøqï„(ÊÝ»¨Ä´Ñ­=~4Ó>¤÷+ºn«ë Ó²êê`ìá>ºr pÓy_~ô¯;'D ‘.f9ÛI$A`µ±î \ÒmáÑb]k‰U…Ü…Œ_û»Œ[~ºë«üæq¤TzÁZ‘UU8¬"¢ ÈYvÖîùq¡" 1"VrE‚9ƒÇæé’í ¼sâ­‰(b"ÃNI¨,rðl«=m—ÌHdÃCf¦BdV^È¢ €V2F@îOaâø¿¾<凩é·Ñ†”¹Â} |d˜xÆÀaªŒgüãWÆ[¶(Z–‰'(H&:LôÅç4ç{(`šœ^ô¿uéƒSD àh@P€Ã>4õræ¡f,@è•FtZÞÓ6íèäÁø•Ÿ|‡ ™ð°Ç]P, „¤S:t$J Çá‰k[M<ÔÎ×u2°“5f ƹß%8Ôø””öÀnZXuÌÊcl]Ò›&¨œ YƒÇ³rË?Óþ »,p5¹‹¬s‡?xZŒ‡‘YÓ(b `(ÜÍ>ˆBWñýg=êü½‘¾ƒïrะzûUÇ <¤éþ58"ÆK}æŒ2v˜â+CÒ6¤W’@&’é·ÎÙ ˜ƒœˆ¿Mž›×ž/ö[îy/æåœÛ¾¢á$àOÔ|¼”/üY7 \\Æ2üÃ8ÕŒÁÇÆ^Y}Št†uf=T¶BVA ŸÂæ*_`fÿtŠ(bE:aHÈň-R°ZµÎòB{Œ¶Äþ«+mÆ]CƒÆ¥]ÝO ¹%g‹jésQ&£qØn´ù{â&ÙÚîG²ÝÇ“[åf\>M[G7’bw7•©.œ«IzY δ.2÷ê'V|)Ì¥”†@è¦Ñî?KÙ½"ŒËJöî–¸R``)řʬJ-6èKäþ¨¤vQoL,Üê šyÜÇjþ°À`zfùÇ ^wAãñIO ¾Jà˜Œ,(7UïD'rÌÑñ 6΄eêœJðEQ´ñ Ü%i¦M±ñ/ì¯Z„)È"x #2P˜…ç8AØÖåØŸ²-§º ®ÏX'y›Í'ÍCx›‘à‚‡ ›¿ïÔÕ¿_¹z™däì'Io(jN∩¯\Š ÔT׆áøGm¼f޾v¼¯´HöÑ3« žeY\>”PZ !h5L±ŸŠ•únV¿(ì³§Š Dñj¹½ ãÖ˜Þ¨J%ùÅcŒ´á@Ò ³@ø|%Þ PÈ£Ðë$XoóªÅ®`ÂY¯E-̪]ÍëapCkMn[ü(sîÆGÈšoV ¬Ýhr¾¦)RÐ8ðü×ë­=WcBúµ8Œ¬ø-°«…s~Çifí™ÑIÊž- ãº0§$¤Ú‡íc…Üc½‚9¢þJæb4-Z„hBA7i xæŠ@Ý„Á @ˆâ.Ðê±~×í’9m\[±íâàd€zÞÒ;)æÇÓ¿«¸»ý\Š1~•ÄL »°d“yÕŸPì2² ÅJNª‹¯)GŽnµúÚ¢ù¢hT¿]-’/·ë›ƒÞB1§ ¶q|{´åÎܦ”Êëa+“ñBÑæ¿ZµÕfŸ¼høÜ"«¨2‚ƒLö¬ýyËrÕÆóg‰ö ¾^±u˜3Ámë?„Uõ„!\`L¤ynf‘™ù¤o¼öéuÐz–Lgœ\ÍÇ\G)óU&YŒêø‰‘ž) C§ ƒ‰ʹB­XA– þ©¶Khœ—Ì,ë1¼"Å · åìÖ=% y1Ñ›5¹ žw4ßIÓ\šé4Ï\$–æxb××#–µ~Ε1ûgGÜ7 :Å,y2nÌ+ìÁ ³ñá,ÌÍ»[&‰7šb1¤ ÐX€tšLhÅ© [¨§‘ØHj|ÈʾñC?m¬ÛuÎ\:«µ³³œËuóÝngËØ~²VdRš5wóG¤H¾= dZ1µñäðAG®d~ø”èJ+:™e^è‚ ó{7ñ) ¿ƒ%•޲¿jäî†CAÓ%Y¼ÙV‹a v ú–JïÏò®ìܪ€€!tÆéjãšV&HÄËk€ /’ê~®¨õþõârÀF+¬u¢Û…zèŠزoá€Æ›7ëüʼnÇtb·‰â{±Æ%?‘† vZºßÓ²µËhÊö_¢Ã_wt”‡n˜:§<ŒzàŠéiÚCÓ ¤`9§ªMYà°qRE¢Á~h؆óÍ’®èò·Dd4?¸<ȉn€˜ÀDîÊïhµÛD•ÂèÒ_Ü  t°DX³~‰Ù…ò4LªÒÆ$R ±xÁ— ÆóðRå­”B‘ôæ‹‚žò b éÜ ˜·”A£ÃȧÏçk¾=zï ÿ7 ¦Q(Ôé‚ÝšÔBMÃC@]²Õàé@„ŽÊ]©àr%ɬ‰}þ\yK„·˜ô­˜G˜¤F<æ4(bºº 52¥,Òdü_§†kòÞ{}ìrµ¯Žƒù¢ãšƒÓfS»òV„ у ½ïòäàä¢›ÒÆ¶ÌœÐ.Σ©u'†ywà€¯·çOÅ8øD»>bè”ÿÎrúëö®‹gCóXJ1vÌ d°{„Ë¿cõۧɇÐÉóÊÂgbI Q©ñ‹›iá~QõÓ˜1®.õÃ{×í/ ÃÝ`¿Q‹ö|ñlÜÜöÔ¯s¦+oñëû¯Sw”~c„ÖÒÞF'¯ ¢.ˆÒKhÚjGM^~Î  úRQ/¥žäÕÌ;À Beo“e¡ù5»î<[3ûý¸¢ØÃy×eaù›í1q;^ì^ç0Rû Õ€ßEH®ÑY»Ò𪅭AƒˆL,øÇ…¹éÆç` {´g£Gçëâ-·Ùïs.Ðùs°åUA—|¤½=5z ÇŒ·«zI츙¸í±Eò-Z ¸ý ¬hžVëE¾†ª|u¢ó;Ëî÷FâJfQa T iDeÜÑŒçäÖÃmú×Å`Æ#çÈ< ÇEÂðÞØ76³ÏÂ<@ þ#¤áª:=õ6xW†ÆÓØ‹ŽPù;ñ>1)¡°¥®PEékâå­4]¶†€ôŒ–Ÿ¾‘К£ ˆä·å;!ußWÔ»÷yÞ®×ÐÓ3Únؼd.ì!ÓpÇ(!K@*õ³‰ù¢U-6€I]Kï«;ÅøeðvlK(Z¸†ð!ºWοz¶ö¢ç—¾Ü]þÄ>¯¿ÆØåzÇ#…£L"³Ú¯W‚zò®Ê¾y‡Ôf_I¨>ëï²U`äáKè9Âz-^Åì¯Ís)ƒïX‹Åؽ¨qB‰ªs æ‰q×9c¬ÑÛdûLèôþ =å²Ô©Î%¢á<‡©¤^7à°ô~óH£pšŽ³R€Æ Ù½3ž59uïjÓ2†Êâ9Þ‰!c‚žðhzmÒÑrP¡¥ Ø%¼Í¯JS·‰2HÖy¼G‰Øo‘@€Öü̪¬Oæíd|=—ŸR,¹&ô­xÐ7¿•—6æYÓ.ÔVRÙQßf#±ËJ‘úÍFÑŸ˜¨œ©˜¨nÏLTuüsÿÚÈÞAnÐÒïv Ÿòjæl­ݽUo4z”<Íb@ ÙÌ¢óºƒÉ¹2g…ˆçUS9’³) ´éªn÷VóÊSåö¸Hç–¡¹š¦g¿Ý¿y> éE.ˆú*¶nÖœ›Í¨€ÇE#HÏ3~^#ù®ål«VÒkâú9R£ù„kœJë»q?—£ûÓN©ˆlE¼Š*³×Eš =¡˜ì'FFcôÝœº,#q¥¡F7çÑ6­ž­Ên4’¯”ÇÐ’lû]Ͷ¹fª[ïTÂÇëûb|Ä# ò”»õ÷4¨]Žf旆¿(nî4Q;0²Ò΋T ß麌т®W+@êfbÃüu‡}Å#m2Hw¸†ŸìçhP|€5ï]vnv4ý‹>t<(½Í¯jxÇ“ìS12“ƒM nyñ jJÈí½¼êÞ-䇴E™."ídâ®AäŸÌÒ7‘Äý-|·SÞ¦ìáM Šö‚‹:¾Õ´7ÿ‡Z²D]scØì—^‹Ky »ôµ}ê­I`G7•Õ™2“CÈì¡´à+Ã>ÛõÛ”·³óK4’I\e3¾ œäÌgn„“ȼ–}‘(?ŸA.p6å¬Do œ“¤™Å ÍSîÄÄ6¾}¹óV²Ô¾àj³(Êɰ¶< Ž‚n†(7̆Á Áw£rä2ܸÕês¯_Fš«$R×Zä¥sé³ìd*H uh+`y@_„âîo<}¬éOuÌÉ ‘j¥†:ýÙÐótlýkqé¹ú[Á„À ½ó¹ŽÐZUâ}çk¬ƒü¹e6xþ|¥L¶Â}¨þ&:$²:óÇ|ï÷À1ºv ,r7"—ó{5Ã@QA'0«†ÂÐ_$ðCSÅq• üÐ ¤ÖiÕ;àÌ _€ÏÀ-W»¥‡„øì«'ÇZdß\þ'ßÇCÜTYÇQVÓøÌ³:iôŠBÝÊi´R‚wÇv‰.â}šÀùÎÍ’ˆ‚-ÓHé9Ÿ™£.öžOSèW\çkø½õá|.ëëé=fé Põl1rýcìTN<› ü×4 óÈæup¥ì÷‹ÏAw²t“7£àd=½ÓžqÓ? éZ¼(óÝq_›ÒpÓ˜<ÆÐ,®5)5 r´•qËëD±¯I “*© ”™Ì®TDz„y%Ô¹ð¶">à\Ó8V PÂ`©±?‰·Mc¸:g ×šŸeþöËž‡/iºkª; !P¾båÍ—¢·I€çÎ5§µR¶ð,|mc|Ÿ\=‹Y9d'âîâPy‰¬5cNÈ!ch9G¹5?SPî•=@*½Þ? ß”ò¯Ê=œ’þ‚i3ŸöìP¨Söj8Æ/»…iµÓYLÉÛxÿèê&k>àûÊ­ ˆš°™Ê! @ñ·qGW£M:þÞ‚úÎÑbÔQ¹=~ƒO²OxQQáF¹[^¿ƒ¯]±½}N‘ÊέbÅëÄÝ©óhÁê<„+¢/B· ïPS|ØÑ¾„Œx.ÖIqp†‰=qñÂm1vO@蔲[…~ÚÍm™ýyý(ŸÚ¨¢Ö ^Jâö¡Z^äwÎϨ?Òzò¥îbe{ð·ëÌÕÛ¬Û¼Ì'gcb4Ç’.ÁÌöª|h›~(éåãô+è«KL®%äêi¸¢Ï ëå&u£"^èÞn‰É€éi€ÔW|^ ’.7™†_nÜ-d7Ã7¤hùÞ¿wЫÈÇŸ•IÍç[›ƒoëÑ8% º Î*°ˆµöT#ÊQ–9½ŽC  ìÈmì>ÍYBdŠWl¨r‰Â¯÷",ZþLY¥Ÿæ]–ã†â‡™™¤>4^:(weJî(iè(sÚÞÇ_ `¯tû¢}—¦Ä*+-¾vÓ?i“ Ή߭ÛÉ¢™¿Úš”ÜɬO?ó7fká>L.ž9ÕwÞEÇwKõPìmü°É–ÐÂЄÝ}µž+$Tt©X¸6ôÖ„X š v—6W6ÁnÎ3<žJÕ“ü’Äê­Í lwÔ+v=Ý(ªWu GÏ£>þ'TæÊÛ‡9‘EÏœá¿tñùª¾27‹çiòÍ÷©õý¬’~ó‚ðËâ¨i”MzÿB²w|-Æ8K€Çl}ˆæn°â|1 ÜøIÅ9ã;Õ5sÀ¢?4 ±×Õ§®p¯² Zî|õ>O¸Y±}?î¶Ÿâô‹. £Í®Þ}}Ñó)pŽœŽûõ‰œX\I£K\èü|æRklF{1ߊS±ïYÉ4·ÁÍ’|Iõ냆¿Y~ç¨EËoۥ͕ÂË%”þïÄ[ÂiPòdo¢ fõ@ê¾VüPίæá¼÷ ™ë&êæò°ÙÕ v²rº‹éŒp*… •€šMÏ(kywŒÊЮ\‘ ¹†b¹oÙšë>Ò]äĉ4UoYà„Ÿ‡Žíò@sÇù¤~cHïÁ¾)õ–º¤íД‘Y¤”2ÀÍ%{jÈóåáq{oÇïuSYã9Ò „TTyÖÄ5Tµ‡[«ºM¸¡ë‚#˜N'·‘”“ÅÑÑÀ§q§y«ÓáC~m"hv6z5º&'è+š^…w£û×íØÈß÷%ÑRl$Ë,¢ü© û÷\ Æ ¶ru°¹qÐÆe…# ŸH8]–éúS$îšPe>7; “!A¹Jêvîá~5¾Ó!b,²n­6Œ®¥‘&b¶çh­<z"Žh`êµ§õ;-ŠL4 òTÈÙ6ÌÅ, 9z¸ðÉ-bZƒâI~å¡nçÓ-æ[µw•”57êFóŒW7§úÉ®øý§‚Éø#%ÚÞ{h¥ˆ®Y,_Z9‰YRŒs´›˜nñò¸©•YC¥¢M:Õ6]ÈùÎռѶ{r $¤ãƘàɯζÁ\ßmQž.,_Äy›cœ»f%ïîf}|xÖÿ:·Á˜vNƯ†¡W{´ÃWÃ…:OW šB†aK†6ÅijZeõ¡@Ê …nÀ½/¼¥DÖ%‡'H‡´Ã(1î(XAÉ£ÚÒ5a“¥‡!I[œYm-Jm¡ò˜³ðQµõj‰àí$p›©Z8kŸ,1y&w´ÆívBåçB¹}DÔ¤e Iy·?’&žO~M_rúª‹¼KÑ>à†Âœ§ØÌ<3³KeŸ“7ýd¡êgn ÀÞÆÀèÏÂ6_ú Íž©µÔ/;@£è™›ìùs`5ƒxNºÓ¡¡¿q§¾<^Ll„õÏ)k,§Ë»œ Èŧ‘aDfñj¤ߊ嗼OYãa’!¯æÒIaPº=½:½ýøVRAë›^¡#¼ßw3Ìâ±ÝÒó·’É(#¡æªr±7›/:\Áv«®ÎfdÒ iyÁæÓÖÓ>ó&X4$´íÔ!Šrü×D¬Áò7Z>ùBI!Á’½é4¶9±t ïÈC4ì³;ýÇOÞ¬Ž§.æÞn,ñc:[|˜˜uý埑¸JELrZæ¨-Å+óËÿ᱇”H’óF-I¼¦ë”ì“]í(—QQOᘣ AL—‹4Ä l¡†G“)§ø¿]ª¬-¸Â¸ó¨;Õ?¬¥Õ£·Ž@¶DK˹Œ«#L¾ÀáÉLùËBetôäNÿ¦Æ>ª¿ƒ6›!̨ZÉ÷³ 6ž,¶À­´!GŒ¥¥ ½ê&ìv+¯cÎ pV¾_Ç©r_;ô){*£W dxàndñ¸“­—ØÞ‚¸ðFÑv ç¾ìß  4…T;áUÌ{ÊTF Æü:>ÂFF± ñ€Òd ˜“á>8ž| ©ƒKˆd¹­ î1’u4NöûH3¡’7PuåQ pRÓVÆvazÛ¸wN~ƒ%)#£ÃÕØ EäL<ûåãC陚¤u2‰Ä4 .ؽg(ÈÅ_ÜqÛcZ3¥Åî¶éæ^ïå-9¥éaÍ[¢ÐçðÈìÈà /*M@¯À…Ãäc8Ó¹—_V0âsWØŠ>©1â •|åÆéd¨_¹$gìj•»¼<ÛÿŠU0@*ObÁ¼’yŽo¥¦Ú[È»QÖ¹%õ§ÃÁR·{0ðWdé£NöíñÄ¼É æçtÏ\¼P X:`,¸QÈŸkqï 'ÙÂ[•œS=2}ŒM_Øù»Pôò¡põ’‚ÒÉÞ M|f\êÄ{ëZ’å*UÉæs„ŸèºOòÞ“¸ÁXÅpsÐG_Jéeó±ô¯QDö ì¯níVªêW1í©’BeYî§q¯¹íØÙú£‘ðŽ=ŠqUÿ8¿Fôõ?L¢†ûTŒa`0^ºë;[ˆlÇªí æ¹^ƒËé·oÍ¥‹Õ À•WRî׸6dÝþˆë­¡«Ùà E¥¡¦qÁŽê¹Çyk2.’¼£‡¯.`qT?L¡Ôør¿þ]·¶Ì/g‘1Âw9érìÜ¢é2Q~/äx¤G⯠*lÌlö ‘Yì²áà¤#ábk[}ŽÎuÆw¸ ßQNØÀ¥gõ¸÷w9»ËÝRY}xGݰPvO@zÐ$0aÅêx4pÄØh’…Eg2µiÐuÌÌʆü‡_Wóf@ûZG0ºÂó£TSÌZe~YîíùžŸÿZZí”Ðuó>ê©LYRw[ˆµ[=Ku€eWâ·:;+ã3V,†µÎ¶P¶@P…šêvØ®¿¾;s…9zãÊu‰çª[›‡oÌuZXq–dM ç{¯_gã|jšÚ ^ÏHxèÁùÝHͯð®'ôzƒ8«s^ß:s‘yˆ ©'¦ZŽCð°~¿n lIcS)cž759˜=l¶šÎy,\âµ§+Á!üµ2 }Š”ô¡7¹8éV8u•;Ëþ =Ð+g|_'è_ÏëÿöKnu¿}ñ[è_WF¾f_SCLžgpýLVì „æÝ/´ÿã]?'Žõ˜ë2ááÖu„Á!ŠNŠ«õý™ð¯m‹ð‘òÉË©¡dU–a˜“™¾­ÓÒpd‹ñR‚Ë­ØLZÉÁa¡Ê0«¢­bž1,Ãi-a#ïj|\ôc Ò„Gº¬u›d¹PkÅŠŒ=R§¨ Ö¾>ƒ)fyp¸ò²/xSÛ…&R¥¨ÖÛ<â\Ö6Z¢>~MaøBƱµ¨éAÞ"UŠ`(\@ø;öОdSÿ4~ÑÒÓþÓ&&™é@9÷>;ÜEiP†µ¯š»Æb[­õj„½æz ”gÐ4,=sl ƒÝéröpéüP3àdéÞâJ×÷Ú¿f@é—ô¤È&{mUéŠSÉ ]/1ô‡Ç7¼އ¾á,ZZY0¹„BÜ–ÿÀ~†Ja!åÝÇ9Ylóxš÷aks …¹(9Ú%ýÒ"‚@t ;åǾÝ]ÍÔ^I «Õ&tל¸|­ˆ)þÀ`“÷݈z½¥+Ñœ³lÜ£'ŠÂ„öZ ¸’•Ø'”PQDêvÖëQÎd\x€’t] ùü¸Ö«Xé6¯µø@Rª°Óšø:I‹ Ã_Šnu)Š*{˜Ȭ/Ù.ÓþÓ2.~ë¾µy>—wˆA×ÂÀm¡!:Oªo‰Uqˆ°lhW»ÍùÌÓüfa˜Í]G¿f»—’ÛmüÏöî̬=·Å¤ˆ̼wVÒs;rÝÐØû¦ QrK™)Q\Œ´©>ì#fj=/õJ“‰ÛЫ`¶õ[¶Ä\w {û¤‡ °Ð+x îVœžoÒ‘ÔÝ,A›þZ´ Š´ÍÌeÛ $›Gtâ0²Ôê´b…c·Ì¾nsA‚nؽO£•—õÈ”¥¿U?>/ÄR=Ž×䤫”Ѽxþ‹f ;GÞdi¥Æ2Hž¼EjgL¯Õãðv^ü¿]õáõáÉìA0}Š»g÷‚s†”‹¯W×/u=×éò™+OHÝÀ9/ î–úœ» €B‘ëT²„©à¶fVÁ»+—­}ÏK&¿†¶®ž%ëëj/îeú~ýøvG”úÛeÉÌäu¦»{.uYkY !vR\; m9—uçêQ"±V'Œ>_…Q†î\ÂÄEk雽GA#C„ f¶$n4AÚgóøµÕ²ø®³ãEWc*ïÓÖLì·åÔ½§¾¤Å¹s½ZÞ~6ت­ÒÉþ/±‡ÀeÀ_¨÷ÝR¬ÛdN;§&u¸I¸tŸéše>šŸ?TtýD|úš™:¥:nˆžhVGþ¤ž†I9ôd\‹¼—wùØívýxˆt±ô×À¤óÔ0çÀçD´õ¨lûš@@õvçuw{Y½ÐëoŸø)ÆË̆}Db Lod$ÞùÜݰºwç8®ÝŒ$gʦftmR™?Šø=&©ÞÑ=çöPæÑõøÙ'ç Dm‚ÛÖr¡óIÞË²Žø7#*¤MةՕJ̧ÉÔ/@%eÛÒ˜¤¶0<ujl¦œ•HÈ´Ñ&f_O)E‚e¨9­º|ÑV/<ÑFÏ Ãp̶ß“°˜Ÿì8]kêT˜TI1=É“KCŽaN•ªŠQ®™¿X…xü ÉB‰öc¥iq˘Ñ&&p´m@tË ¹ÌQô~É~ó4ËîÄt+»òKÏ^PëjéjRÅ 9 ·ê8_Cs¾¬¬8D:ér<7¯€% ´§RK½P£`f²]ÙêȧULæp÷~9ø‰ͭ䦇ìýÛ¼ÓßWÀo?G·¦ÉÜ.s¤Œs|§K´?¶†Á¬m~è48ŽäÅÞ<8¦wñ¸gI𬯕V»j\kˆe¦± ÌvJŠÛa‚Ï-¬È'·­Ì»k4‡ Õ?ã ññs9×/±+K›pSƒu’Å-¦,ÓºµØ.¥D±gØ'—C½‡4 úÉT}R•©„´{ZêIBÔ2vvåxI]ð-ë`é±§µ\ä¯}U컡êÉ1înáxòîÆx~Ʊ‚Ù‹»;¸ûæMßt=¿Pì7ôûºÖô¦£“ápzî¥÷_^.¤^nü6V©<=¯Ý¬@ϲ਋ÜUU‘j†skV†.¿Ðï·ã;­P)Û]ÞóALëk¦;àøÔ:Yttðõ2ßäyN ý¾Wh¿ßoõCiøµàöã8h.ïúác%™n¾`2Ì$竦›v@­©§G=íT¼¹L ·òw¼ÌÍnû~TY0¬McÌïhÂWÕnzñu¯„××Å5?XÚ¸;ž ejó6˜]™Øjt±ÍÏXù‹o¡(ʨeö‹çPit4âêÈê`"VÝ\„EtɆ%Öе;­rJÆãªª5«CÏꑉW¶4Ã¥¡ýò³jvšµbU_ªË»C°.¸ ?K#q»?±ôV¡4"=L‚Ê©I;(óÆgÁ=¸×K·â®ÎÄÙi*Å]ÇNLÏñOáÐn7J‘Ê:RÛ \põ_ÉvÆÅ?‡¿‡ˆPáÞQ«5”‚¯ÁŽKM" +Ç;Š;gl1ž >®MT2Þ÷®é³›¿¬ð§¿D¤ÜìjÐd¯§Ò9œ(–¶uS˜¨}Y%¯[¸g 7Ã9_€‡oš‰¨£ËHÊðîéq>_§¿à±™oèO&€<@¨–Yp€ñ!öý;9õ;§eíaWctü㓪 sƒê·_FäøF0ÐBëλÇ3ÏüÞÿU¾ÕøLù¢õB+xï'^Þäóü/È}pwx>ˆ^öîƒöîÎñ'Šˆ>?sógUHØ.QU3ÊO“®ÿæm7Ÿ½§£êa•¸`ÿ†§†G“†³j6nì»ÅÇ„’Ø®šUÄ& ÖžK…Dáb}+úÈ‹·ÆÊ LBø>.Fl­—«®möQÞ'ý ‘ Pª×Ï»Üø¶*™ÛaHxCc%§žZæé¾¾W|¦ê”ñ²ºÇ^Ðé˜ògY3Í‚$€Dnúþ)?OÛç­9¼c»&ûkù¶8‰ÂÆí2æ°ØésØSvÚ¶£¤_ÄÔp!軑ß|³Û%Î*Å“9ÉÓÈîÆ»ë—÷ž›ªôNòKÐØ]r™ßqS-¬˜æ ¾H *‡ ó©ÃJÃÊ'ÃÕZ‹óÒ}Dµ•YÉj[¬'žd)—ØL–Ê„%I¶[w¾¬j&Q’òœL„ÛkÐaX‰ûi/û^ΖúÙ$J«•@×U.Á6æ£Ø>’^‘É_*VA%DE9ø\s™ÒÅ‚¨b¶þÊÌÇ™›µN›h£ŽxÞ,‚1öqºyë!’fßQÍ7;¿b'Qš)ˆƒIâÔ¤ez¢þn.ŒèûzД+®„é+Mw}HnÆc¾º‘‡*˜¿k_Ò£g¢€¸ÊdüÐ òÊô‘Á¯Ú'¯T…b\¢¶{á)xõIz“ À*ã î¥ÅËË­iž«áW»’­‚Q·E’“:m’LèC‘PЛÏÏ‹WÓÏ $ä+—®^#ÀQT° å´zôâ£%öu¸h'WŠˆÀ%5ö2—¾Ð)¢rF| Wm)Ò‘ ÏU~Òmû'1ˆ¼SžåË<²ÓRÄBÖ‰TíTá?Ì àK¤TrBGÔ¡»'»Mb×# ›¥› ‹¾Ïç-ÑMÁLe·°tr­OöãþxöÒÐí* —Mµ3.k‚Š•jZŸ;2„¼IzÅf<æ9Ç £Á¶ wÇ®˜H–’DBjtŒÙ_XEŽòÕr$ ¯ŽÁ›,TQ‡F¥ØË™Úh ƒmÍ“4îÒ¼"«1Á$Å^0’}²-éWPrS½ÇWšÄ丆RTÁ¼º^·»´UwŸ P);Ê#:;ëUú¸•µa˜'c¼ùTDÈ-¬Õà29 °àÿ,Ï(3~Q¥Ò½‡HQòøq”U-¶vò›jï*oœšCµç$Ïõ\ñ.&HÁg0ǯg‰AX¿bË´åy7d¸5!²ÿ§Ø^-Õã!LG­=4Ç4ÂÚ×Z %[ÜÉã$N«+Z¿é×Ȇ’í‘Èòß(Ï0Ü*„cú¡58f=´íÚ£CÁ¿ësÒà•\ïþ\ú9×à’Car%¤…Ô,Ć*ÄÉ\l[ëý¾E6Æì½®6œ] ìº°ï.ÒoÍIØÊw‹ß£‹Óøq«íÖ®WP“×à) àÙ¨í¦ÙàšŽu¸Ò=k{ —³^‡hÛ(KA#鹤h QY¡F’¶<4ºÑ¥ž)!7ª•î Š¦‘¸ŠS®î%œùšëÙX íÀZïx8ç±fmÂ÷ñ !c(“œÞîMK´»€ê%í]¹—7pé}^òý| ¬{ìì³ä˜œŠ‰bËB¦Å‚·º°¥AZ—rÓ#WŽm>Rùz¶ßãíQ/,•±ºGµÀü½¡ÜïfYt/1m™³%N”1q»Å€TMa2ßed›h‰Jm2þâ®9>;;D$`øzUAûv³°‚Š;[Äš³lñåÄÚþ\ý4C¥‰Ø÷ÉÍ”#Žîsk¯šyÇŸº&êØñ²[Q ¼”.^FŠŒÛ];;ª¿”¿Ý‡s/Pÿ~©R û׺ÁKGT•³6ÒHë6<ž0"!Âïý슠ÁE0¨B‘RááÉUE6xþ·„ûõ•¢e1çô,$Ç´ÏñÙlKÒDx 4›>O)͹>Ö„ÃË“ÎDq·[óÙïÖW.+èYI8Jû^È@ `E9`?½ +$ÜÅ)QÚ}ö9uA?gEùºÑVWÝ“kŽÞÒjÌ f°Êku ©„”è騠ínð•R˜99Fé4ß2±8¶.]õÇ$ªšªìå”aÇÞä×ÅcËèÞÆÀ.äX)óEuW;;“B6}\Ä—Àɘ)7kç’„§ö·‚¾Mrs‚= ”°‡ü•5yʇ#Uçë.­ŸÔkóWÛ®èf5¸Kôõžˆi¡šfwÒIs~•ý…vë’êèü/ ‡—\ÒâîÍ)ÈÁ22Òšh¦˜”[pWûQ]MÖ{ÉQˈMŸÓí$‰6¤5KÊžZª`û[¤³%OÏ"”>±ìêôòû8©5-×8î1FP‹êÀ¼ñ÷š“ôG;#ße¢b§~ž­ã–l¢”­;õŽö{nt½DÕ¡IZòyC3ë¿Tÿ’?dï^ÿîиÐm…qˆ ƒz4¡b„bû¯ûxF ™GµäjEïfÂó-*ŒµÏ ÁÜS¾ç}4›‘–6 Ì·¥ÔÈðÇl"‰Cêô½ˆÑõ²º"¿ICBÔbª"ÕÓ1ŸqKN×â, *w¤A9 ÛªØTs[½I¹G;c°¬#~-ÌN÷ån¼ söcrW. f]¸½ 8õä,£]p[Ö®{Î.qü£(™bšp²š“9É 7Áx£%Ä5Ð¥·ÀQÖÖÊo4ŽŸ—l5–8¬Ž“ÑÏK´À]¨ -ïÒ ×Z u›_]“4¬µT¤OÀi¯ ïÕY—¸—ÀÂ$«LfžiNÒ4]ówÑ,FqËV#s3‚“ÍÚÜüU8–c®íîÅ©C^)©t\³Ù¶Ñð.±m¬Ñ žœ®~qñM`JØŸÈ dÙŒ-P¼S«·ƒF{jÕa2`,©rb/$ð¾Kâ£r7ëõ¤¨)‹×¯]Åq[Û×3V-ÝÝŠo^‹›¦;Aì!w¥#׆ØnV›hˆ^òò` ,öêÄé5{HÅÿO´îFÖ.™–µO“±žÏ]«ÓyÙA£Ææ÷yLa•…㥎|\ô¥V EÁS1.¶×ü«\›=Q?CDæž×*ƮͤlâFDûjã€*!ËH À³ŸGUF—;cR±<€$ý8(\|ÍîIZ8hu•†uº‚ÓÕ’&êü>¿žƒµŽö[yÐ ÖK½§´Ž-ŸbÕu5*p­e©_úu{G‡Û/ÚXyúÝ É¨Eó˜Õ¯…º5¶èm18«á¥:ÎBz/ŒÔ•Æ‚~È"I¨¸A'¬q~_€È¹ ZÁáÆiGû›0®Ö¼‚Œm|ä#ÊNf) ×׎öÓôýa¨fÙT_’þðæjYÉgrÄG•SÂÿÔÈ‹ÖBR;GÝWK£9fôɲ_gæíÃB¸Âé:{00±Þw !úûþŠ·Ýžª÷Miù<},†]’jÄŠúc&¤§sî¬giú{ÉE›É_±TðF×/ˆRÓlŠa–1V§FqCU$Þ·Ú£þÌE®ŠÈ´¤fuW`³X6¨tÄxÉœ‰ZØç©Ë¥–©‚“Àe^ůK§" ò½¢R›àå_ž°´væ^WfŠ}PÝH( (]õUâû¡JÃ`)‰ôÙ$S@±ï¹âÁí¹§é+|{-r¸õœ0pq3µÎOÑš‹Ä@~מäÁ,oÛä+]íz‰è‹¹ý0oÑ[{‡Åhy¾»?íh°áJUUFÊG\UQš e5g¦øÇ_%G³&Õ‰4A ¾˜'~ùpqø£^ÓuGB.°;@]×+iÕ™Í>V¢þÜfì²µjJáùʪ¸ZÖ¬‹ÿÌdå/z<Ÿá×ù²U±øÒñËdÓÈ{7™›¤±Úr9l®{f1n÷4‹ÁçLš,µ/‹ôl¨¦, z}V°ëc2–ëáQI9 ÐRæf‘‹+>þÛr‡É¡x­UK=«Ó= ‘§Q‰(RÆ?•f]Ôzg»Ÿîue½­¸|Û²óùg X½M ³ëP±þ¥è\j·,&'[jSˆ°ñÝ.öœÔ4—‚l©Ò»¡Xºâ{` ±z/qAz09q§ÑÅ9pü`Œ òVp~FU®p¼rh­¤aKeÎÜ•´˜w¦·°Wõȧ Ù5›4Û$ •ñå‰=Dþã3ÖÓ Rüœk°çšï r»‚Cù èKh{ÍÊ ç±ú¶‹ÃGÞ=žsÞ©,8î{¼xmc9ÆDPMÞÿrÓé.Õâ˵ï{â§¡WñWÄþøÒÈöáÊüYæ=qo´°âF`ªS Z@.jXjÒï\$ä]†Ly\p‰ÐŸÞûÃÃåmoôÿÀnñn‚hêðtƒÌ —Âø†ÅÍ|sèy4·ÀoêP¶!Øl Ï®ˆOýû£0É{·X»`- ÷Jæ,-»óáîâì”%„¨z¤Y•}­·§XÚ¾Ñx^ÿÖ»!A0`ûMËUÏmŽØ¶1¶Öùú¬§˜!®I S?Æé#ÞÆ‘S(¿Œj…qÏUKݺ›^ óÃ`RλJ·*õñQÙ0Clj OηúÖ¢„…–oÙ‡^u‚ÿË,Ö=iÉ\ û¿œK©¸Oý­y25´Êh&žƒšƒ¼xÅ×Fø×sØe6»8iJ4„ŒA(TÁ¯'\g·3@z$±apò²Ø„‹}m»SÜ@|©dƒ—ÂÖ)ª5ñn¬(b5¼Ö¦$™LgjÍŠ©T‹<ŽgºþF·° V]Çe:M¢„Ü@'ë #gsÝÉú a`aNQvÃÇB¨Ä—Ø ]Šÿt\¦á,ŒôFWdúØXh[Ï1§~12ƒ]Ö‚¸zú BR‹¼1”€)íÊi[vWKze×\Xf)s)$ÒÔxh³×a£”C¤Cª=.½Iè8p$íÖ!ò·€mR+ÈM%Cœ{:%@Q‹(R®\ÐÓ gF[NvŒ]V%u•ÿJaLj²´4×<Ü€e1µpAO) ÝÙHAu׆Á)s,‘¾PJtUðD磱93ÖÓÚ§Ñ?îÉŸ³I3»¢9ºÁé®v½Tyâ®’@G%›§PŒ…Ic_ýr¸ØQ;q©h¢æqýAÁäP“KqÎÏwʘkþh´ÊËÔÇán¸ºp˜*¨·j3|ίÜ> 1-OþšQ‚jkñ €–©G¡YÅCÕ9†O“B!\JZÛ®•æPcÚ¢|Ïê°f#ÓT¿úÃçʼnų„A:ŸT œDkŒ÷NãS™Q§Eih’V\üÖ¸8G¥n Sîþú·Ë¢kaáø;j'èd=ï&‘³ÚøËRqàA¤I˜a•aëDÀ§š&p՚Ư4fð¼³Ð÷n+\—!afÅÆÿÊÄÚ{úù–Ö«W0‰L:/uÉ0Š/ùR 'd¦¾Ü8ûðŠ(ðUÞ93m…µio_éádU…©qÄy¨¢¸Ûno¤½­‡2··„­q[}ݦúŸÝ7*<˜o3ì³íUÊ+ݳÃ.àR¡}Yÿ'¾ÉGM,NT7:u‰’™ûO+S;ðñè†ÍRѵóü>˜n<®¤Ð)V óàÛSÌä©ÔqÆ¿ªÓMùtÃw>Ï7pí‚´f˜¹ÅmsvŸ‰§·S˸µ~L¿¼éLß«ºvIýéÐ5_FE°LÏË9Zo)Æ_z`?‡×62óÉò¾”G›ÅX9+ ˜]•ëEH–‰r9 )BÈï+<Ë{ F¾ã*R¾ Mr=íݵóëZ²±ž³²d”Ýk|c°&XŽX×eòÝq‘»@ÓYYáûŽq­/V)Sô­îÄ S÷иë)ູ7´*|Œ44¿J¤ëµKÿw {·Ýí:éé`öÍ2A©BZä²p´³CTʼ®–BܤCòìR¬Tò·qX:¶©Q‡à5Z(ʰ;ËÛƒ‹€„7„­­¼ñpˆ{YÅÉWµa[2ý=üñ:õdtÑóôòH¿÷Š“.ÌI­—2‚1†©6®Gó{„Õbºwg·Lñ¶ÖÒ:„f€£w˜‡äFv·Lv‡Ív’o]@·ŒÃ±ìWv ­ÒE"þ!³èN8Q^MÃAõò°\dA7t±‘é éãe¥qiš%5áÍÊIê\5 ‘¸“øõÖÊõÒxgX}y´23ٯϗñnì NxÓéW©“3X‰Â•fUÛ–ÃhbeªZ¥GîÚ ›wÜ’IšÔØ!ØÕÖ!FqÞ ÆëÙØ©i–ëKd/i;§¼541Åÿí<Ø©*9Fê ˆ†£¬ŠBí&A…o›ÒÂfÒà+&â<֬證bGùÄó8gÝN­ž»¹S Ä,‘?kÀ«vŒò9µÔÖa1?É6ï¤Ålœä\û´„4x|?¤Ê yɳŽÈ;x&S˜Õ ¬ÐµÁø’[Ѝ>X¤%ï¹´OÇw¿Òq À@Ñë¤é=TЛµOL«a ›4¢®×˜MxË|\k||¦6ªß(?ë ½'pu®…™VVtKzZª§4Ï¬ŠÆÏ=#§Qí(wºa¹qv™ÚÈùJ$8Jë^íù…ñËëÿwÊÌÙ‡™þÿ Ò}ôZ½ó'—ôPmrߔοÀpy³Ò—\êbì“:Ǧ¢HZ[| e8·9<°OÌr!ëJéO\¨Ã&EœbsPŽvÇ5ß°(2WGðÁÁ:U$MEä]É%ŒB1‰UTözYÈIè{-Þ›áqx\WFúÆá“z8OÐí­€Éþ'vpØFÇôÐÍÚZ­zK­šÀñÝÂY¢Üð(öáGcžUÀoÜöæ–ò àÎÉÌ_ድV£í|Q ­¿´„ŠW ýBîóÊ*–W•%±'þÓlK1®+–ЦÛMñÖ»S™ [“U`}òÌÎ*Ø\¸óíçäëÃRaÕrÑ;ù‘*óQo{?DO{ÜŒ¡Ù Äæ?ܼ]oÃÏùZWn’>5Ï»E(sõ1ÀARþ´N}˜þ ÜDDo'^FW&fdüý¯wc±|Èþ¥\_¶ª(VPjœÍjÈ»µu’Y]Ö¸¡»ÎÕ=Ì÷ƒèCeL^µÄàN”ÀJ(§+וAëJrb]Ýw˜‹Š´ë>c3ú¿h"¹Eº&¿¡•A‡7TÏíUЭÀ…èØ5™çË÷f€Hç í›CaG«¥ÈÄð+¯áˆÍ+«,w^jEãÅ® ãàY(u*=EÒJ®ð±æúÓn¸ÌûIÇ+êžä_QÓc¿>—TXµµ¯ÿ훵k=ÖY!"f({¬•‘²¨bJؕˋK³CäaÓh—m²V³8D϶% öL5|kvJKÀ”X‹ŽkÂ+zRsµK?4×´Wö/ɪ︎^ÜjÁÑ©`›ëêéãô¤ɨØ]y…ëY3 }gîÆ$ú~”¿.}® :ÿÖ{!%·¥Í„4Niƒ§:·C>o“¼‹‹r_=ç±o="ë–ÇVç<„CHyÚNµ¶0…|ÃúmðTuê·.”Ó/¼/±9ŽFº¢·ÅDÙ« &®'?ÏïÉ·¶£ñkP.%:%îýÕIý Ç ÝKª¤¢ÎŠ‘õ½5 hÓ0TëOðbûùêá5#ÎÞæó8,΃Àm œŠ–(^Ó{DkðÀŸ¯\¹[®„‡½­Qw¡Õ´x<]>Þ„î÷I(í-Ôþ_Ûr£©­v:|àu°ô#¹£s¹ý%£y ýèíÉë⛓¿mi»€ÉçwGêw/”Õ*>=mF…´ìÝEÊŸµíž:†^½X\Ãk3ä$›h¨·Öà¬%Ö­`´ý¡öGØËsbÒ¶]¥+žÎ‡¹ÛqÈ5l®}N媞¬Í ×õ鯙Ÿ ˬÌý×O×wö©†8_êà‹<Î’±3$%} Ì]eЫ†Ðˆ¾“ÁOŸÄÌK—†™RÑÝrê© µ¿p{|´ʆ½#Îb4#{›‹FÉÔ™ä[ðñêkô%N“ýnÍ\c1”É$·Ùƒy—pÅó±ð±½¢òZî28· è<êò>ðœªqÛv>U¹®ËÞìN—\¹IÀ#Ú¥ÓuÖ§åƒWeB-&§ÖÆ:»€Õ+ŒkŸûxª•±E]`•ôp’æt—¯ÊÄOAœ¼O§}MÜ@{Þëkæêôq²p¶«‘ÆþO¿"8Ko,1éêô¶"¥„žð™B;' PUÄvØœrG¢«mwZÞI‘΂»qs“ñ¿ý]9>^ËM÷¯ªåÉÈzM¿ë™µœÌ¾n!ƒ0¾T¿ñ„ìËEŠ÷æ;ƒÇÍ-™.Ñn§põm ÀJ°2ä*ÎÈ¥Çá%Ôk„ª-Ó ’sñFxÐágÇÂ&|^¯¡šà”"ÉB i€HŸ3(„ÞóÍh=Rä\9ñð#³Æì˜>EîéϽo æ&È3U…ñ”ÏûüÕ 3o ÌÙßZ<²;;TSgœ*V#€CPè.ÚèÑWüG.´@#¸!öˆbwc*‡”H¦ ÚçPuñÏK%¸ סj7æ1¶àÈ.œqI*é´Øùõ ‹ù¡!OÝÓoÿ,2ò+Ç÷B¬ÔÞÖ+]K8Æúû^ëäó½N—pê^qÿQœ’g™¡è‰{Ì 0vq:—9Ž4ʱy¹R^¹Ûmq0æŸî‡žšR(ç`•Ïû)9‹ÐH~Æœâ£÷Hã•ºK­/ ¿0¼VU¾>$Ýqc‘ÄŸ D\åR.(Ë>G_Cã@ø­´­écËcå_±#ÿÊÀ9%Òås‹–0g Ÿ§¡+UoÚ;µðiݨ ɳF²ÇPK©›OûaIAµ gÊrQ^ ôœÌjõv’Çd h &˜Æ$f!dûó<“1’|êºC¥\3Bî¼8û¯Sáÿƒccq°€'UZ—¦ÀÆø£„›Côj8€QháãÃå&:Œº«j¡†o¯£å™¨.DýÀìeŒ1a@ª7B™°*é4¼"oÙÐZ}—¤>Ély¨»5Hi¨À(’]5!xÏýoçšøòììLhw‘¸=EŽ,ç0s $˜7\×Ôê=Ûvä A…@´ùxbf;ksÆQs¦¶Î.n”F…Í~`êâ§ý ,lkV/´ûõS±xUëGA¤EspŸõËËð$/·÷@õ;X<Ÿ3ÙÕgdÝÉa„‹H×·ÑÀõúê/"£<ÿÔ„À¯.xm&aFUñ8Ó–”f$Ò&>ðK 3z}%¡€—Õ¤<Æ6's/üš)Vä%lïâØ@ó"ÒÖóÔzUI\x å>‚ÞAiVƒŠÓ¾¢öÞew@òrÅñgÍéû´û%kQð!5cw¦C¦Bxà ŰƒOuˆ²ÎÓ4'XgÈyÂKX¹oòàøX|#lWvà*çô=0Ž5=ÌQ¿t$W;û]*-ÜNwäOWüÖ•«k¢7oß§¿¤&)p‹ËÐz2-=æ=òB ­cünoõN9ÆåæÈnÀL¥¹Ë¤ ¤A:7)ÚÉ|&~õ^  I‹ðQo%#T6dn]PÇ#%ÕáwD°yÁË!Ž.Kµ@ïÖ édÞ¡Í…w$¯\J „ A\½Uö~é9æŠ/JF+k¬$v B:L0¤+jÖ0Â.P­h'$€ -ühà=SU„S—±J^IO¼ ©œ–ÍÖw»¸oó®+3 vçy¨G‚=¹™e¹;…!TÛºJGwô€Z~Çú ­]_í¶¶†•ʼnh#žmvrúWaÂQÚžýª29Þ¾o(}­¬ˆ>¹º½ž«„ª™»ð-Ñçÿ¶ã¨Îç+c„‡šh«ÛæÌì$®ó°1ù ‹îüvIìÅÎL†9ßÓ÷út¶cî,Žw¦àJÞYÿ^JvB2êÆT¡A÷dñUW*f<Þ3¼AÓ=ƒñašWL½Q™‡6¸) _R¤LÛŠOt±"2ãp >³ —;.“]1ò£k¤ÓäH‘©±F BA1×E’ ¤»©|8(špYt ïCØhI:r˨àLkÿ–A–=Ñ}ö“8gº!—^⥲cÉi.ºÞy•vÔðÐG/vAé IJëàïKå¥èF6ŸÖNç_É÷ñL6½»‡Mã„”ôXži^>‚Ô0ŒÕ‘% ðîBÏ)Ü÷q?¯Ê€gØÈš~à÷²s…¢'¥‹º)@© ¿åëi†ª•VĬfWú…Jp¶¦Y,ÅDI%NÇÉÚ°¡XÛ†%ÈMH\ ©~œIFJÐd•#e‚¾)RJ?aô`'…øØho§w ƒ=2°D±+*ÿ´b¤JôQ[n$=š­“`…ûÒ L´¼Ywo_<–¥0õ"ý2§ ^"™õ¡®¶¥ƒ©¿ûÂà ¾ÑÑžéÊã6šF?® yëSËPÍx3êÆðL9¥Þ¨"ÕEDæ£å:cllÏPSˆ-J¬Q½@¦1b*) *h‚À-&E=RáÍÓÑÉO§ƒÏN?ÖðZå.øÖ¢Ÿ[NÀ“º¢BéÄ·F¶;Ër³JvødXÖ«°øÜð±Âpn$51„â@ú9v‹]b£;mKŸx4_û±‘Õøò[ì§ò’õȸ0ÒÊù½¤îç…² õñrb¾ü¨úißS.KKHçl¶KþïŸèEœÀ‹2ÇÐ"OÄ‹lðsƒhR¤ v¡y¹¦M@¸ C‰øô¯‡_‡ÃƒZô½\jGDcÇa­¢ ñËû±«û)ÇwÁþ ¥;f„9æ¼gÐg~ ˜¸_{ÑÁÝÛÉ«™h„sŠgïE gHè[ŽðãÆÇ8AÐÌ¡b!wbZÌD}ºÊQg"R«O”þÇ}ˆ‡‡¥‰ˆ³Rá9ÂÞ¼)”Ÿfï˜=]žo½õ1Ðℼ|*LŸõ *aí´Ô㌰ÏÇql§}Óiq)C1ß6­~¦™±,¨HäSÜQ4¦RÉnOÓÒH÷Ü!åTÒ*nûûÒËE °ÀZÉŒ,±ßb‡Ãé¯$Ë–Uœbª¼~™È•ðg¼­WÕÍþY¥1u1ü…1nܺØ`ÍĬ(×:Zg&‚ɸ5Þ+h,}Õ©®›TE^|°IÐ5vìéÖužÓ4ˆp/j«—ýö¨a²Òf@gÓñ_M?ÝO™© ”ž]†að ËâÂ{‡õÊuåçÑ‹û¶t3צt_´x»qŽ?ÛlCñpñÞ"qWõýþ@ß{†Ñ»¤/F·kÔ.8Ë~ÂS*ÁšßŽ[ØÃ²q3ýY?J`ÊŠ]•¥÷D:Ç Á›N°TùXtÆð“î'nÊ÷.Yõõ=NfµW‚% ÚLšüûD½{Þxº@–5º&ÛÝî•¡HȆ ‰ÕeÉBvëÒu^apw«JKÎa,±ð¾Gñžiœžmâ~a<,\˜ÒN`2ºˆ&‘™Ü-¥pz"„x$Ó2ß"ü´-ÀÅÇÑ•”ȳ6¡0Ú…¥-]À\RÙ€&ÿš[t rMqk­¥K4‰tk]6q4&êšþôÔ̬Ä]™´G´XL•JVW"¼O=êõU¢@¶>9«Ìë;e|Fàtoqô<¾„E??ò+©ûßiÚ¦)W„}öÅsbî¶_¨Ö®|ÖÁ#B+ iDª³#8ðT‘ …úG¯Ÿw#€æstGIjmm¿Êg´E'ÒXf6ì¬X*U‰+ù‰õ!סŒÐ£› •ç®ì] Ùê%aïcŽÿzkÌ?JØûn«tæµAD0jk©5®Žg•€Ð5úZÒ™Eó^æŸ| w´_f7yJàrx©æKY˜)Á S¶‰Ñ†¨ßåüû‰Bü0@n™ìâ4—ÚãB°`ïªò"ªZ‡ ®r‘³=ì¢rÖOû0W¯fÑ1#;OÍn©ù ¡x,£¼/í«B NVV$0¢ÖйÍeMûén&Óu‰¶0þ ÖD}¡']Þ¼Z¤®8B»~*Ÿ’¡2B^†Ó"Hù/!®Üºih®Jb±¤ä01íäÃÈÈçÖg-Þñ½[Çhbî9DßüèM¹’–””õ¨ªP·>•aE´myÅ¥'dø6=DAI¸%Y¹&éà‰Çl^×Z(j¥ÏI@»º€ÅY™Œ7hHžY.Q@·ÉÑ. ë ÁS1©™ž,–6à±.µ0¶ÎiŸËsP›Û².¡gHã!i™šG Âü|÷ñ;Ù6Ââ*ZYêÔò¦*r¤ñà…úðóäë]É;ìÆ>¾£5…„ˆC%Y7ÒòDC2I‚XÀ×94j$q7V1®ÕõjØq6ÆYÊ4N^HÈQ}ˆúæcEŽXë‘?K›± ³½/aw«‰ƒ“Äq hî÷#÷\'œy°¡Eø*ÜÁmñkÙ\¾þÅñ³-êXž‹öËìšÞg«þ‡Õ2§ –ÅîöýÝY8z3rÚ™§ó+¶à5ÜÌú{£Ë.5IIÛï% +'o¦àL:àµÉB „s{>·6å%¡½‘¶€W£¯;&£9váSQòØ4ÉeºN‡þI+GY^/>¥¸ƒuŸjû Ñ­5ÞÚW¸gt—mpèBI:©áþ×?uwé2+­Š(èOÒ“*¨zR ÃÚá^—f­@¼5fóºbÅ?BÂ7“=VN§7RÂ!«šƒq;@Ißôu0Ú›…¦^uÌAQ¹ÚUƒ:¹´K`5þVbt r¦˜‚¿{øa¼΃Ý`y&ôèÒ³¸lû2µ?^LLRiT¸‚!V¡—Ýä¨6"¿Ó§ßþOÁl™Æ(ør"•~¡l|·x`Dn¡Z¿àSº–ý´µ "\ffUÍ@ŒgÓý™!;ºÓÊ&LKî]AU_=ÒÜ¿õÎö8×Q˜$QÒj¤)í÷‘’SÛûó.}ÅO§¹#Mso§MŽ+ÆÛ` ¼½€$”jíLΕÊL†À‚nOZ=‚ÈÒY•Ť(ÆË,KêhFX(aجÒ_žG¿ª@£È¾È™åþ˜yf}QqqkÖe–ÀV>¦æ º²|Žmj¦$ú}‚x»³NÉp +éšòŒÉ­a×¹]ÙÜÁ_¹1~Ì3w#¡¶Ë1'°Ì5ú¬‚QZ,ú÷ò=žô¼?í2où¨"ߘðÅ¿H{]§Fm ¿È3s0šòÈZãýEÿ¦ öùÛ[ö]„–ËqÓ#­h¢@ä§S=ÇênHZÁ(Ù*ØE&Ñ>œ¸§™Fú(Pf*UWËß@míŒÄbN(8s)@¦î}áKÔYP\P“5OÙM€Y‡Ÿrã*r‹Ðñþu7–©gXšÔåP.+"\º(¿ÂT„æ/`BúsÕ«Ý›|Ü…¡:6àKs;14ºri´ï4{ßïj~ Ö9æOzZMΆÞrFAÏø’ŸÁSÆ‚V{:!îÆv¶ û?Ÿz*úªU:Ó–ïo|xÁäá“d`. –À2Ð×8,HGWp„l'FŠ÷[ÐÂ9V¶ Z˜TìÝx*" ŒóÔ5ëQ¥‹>°?z.Ô8ñ ¹foP9Æéâ^»L-15+ 2Ôz«€ŠÓn`÷;¾ˆ°ïg“-LX÷FNjډfè¥$JÕ6^÷ìù|äJŠ“p}:R‡)ÚŽ>¥U#+õ¢[ -Ê`çØ:N ß³BKÉ+†84 Ž1“L N}Zç4Y)òQÚØaX—)%JŽšbË·…:RÞ½ƒuaí&Ã˾ÓMe] < @xùÓÝ@‹R‰¥…ņO¹«5 Å …æÙ‚ªdŒÔü¶Zà9w«ØdYVöOÕgw Ýk ª_hC:VÑý@†]¡„™ê$F×Û2ÐC2m ^w nòŒ¥½ÓZðç²$½µ˜vèn »t‡ƒL°Ó?Ì\¿U£ªGùPæùz1Ø\]#&Ķ˜[ÑFʸÞûU&´ý=î8÷ö¹‹ö–Õ b 'áWzÙqU¿}L«~Bø” Ýרøèü¼œbjT„ö޶þ #Ua×å²nΡH‹œ¤S'ÈöV°Æ}0ŒüšÊ¤PLE˜À¿ôOƒÎ-7¯à ”ó5 Tü|ÛP…Õx \.$R='ÆtÒ‹%À€é,,¦¦Â žžú*0‘’†J³MâÚxµŒ †Üƒ7ùz‰Lv¼oêŽítqxSW˜ KÐç-ðZJDeȾNéûëºþl‹»ìDªN2ΫDlYJ=+Uä#‡ÄCYñ5¿jÙ—OßÜ’ù¸F󥿜ŠPr“c†+Ÿh½~È´º}Ï0“àz²¬Úï#ô™¤ñdöbÓhnn£ÃÝB1nòã43t·]ã”äÙcÝPßž•m™Ö+2?¿_ëM<¶„?ÍàÇÕ'°~ñvžÐT~Ìu¿*:î&·…ÉKû&{öê ð Ä¿ÛDº®…†^g(48IñSQ>P1-ËL¨•`û Ã'û½Î²ks¨SŸáêxð¿*ÎmKºRòJ¹êujµ<ý&êôAÉâ¶;$!Ì{£'Q–ÕF& ÷U9!`§ÎÿU)dBÖ‰GÌ™T&/Ìë S¹a‚J‡.qä4Ãq²kpOâ/ùÒSª*¥,lÏ—þÝqþ85`+!Â@¶y2ÈXÁâSe'!ã òE¡¤ìuUW¯ÞP§¯ ÚÕ{††Í(Çë¨â´1%ÒÉ`Ê\bv¥”YþœåVÝT¬*b^ªÒLqÕXúÔxõV •Y AâÂá¯Lµ÷ðrå+˜Lš}àærDQŽ0Ìk]5f`y´ƒæX ŽýG}®öîŸEJË–¸ I%2³ûçäZ²}*ÍS =ý±gxqðP±NJ˜Sp9Zº›î•uØ_m'i›(Gå'ÓN¤èÈ·”z¨©ñáÞ<ÝãïXé¨?^+ mM½Ó\Þr·EÅñ^ljA¦f Chg•ÃgôÕ×þ™iíÃþà þ¢hÿ3ãç9Sǯ¨1×P;BOb‚ƒ¤œ¨øÜbÉÚK‰>ù97«‰‹š±Êm~°LjIJùëò ï©6>òkKsüŽÂ"@ÐV’ïâ%Cøþü..³¥—–‡ÍDÃQU“DgF­úr• ¨0JÅe$ÊëÕ”‘]ݬ € ºHäfÜx¢¬]ƒ¨õîÆÂK›SvCå: Ög ªqBæçW Ö?ênª­`^õ£+ÚÕBº$,I‰G>D\'ƒöÓ3î´í^öS‰7£k:T(¬´ýàï/éŘÞU ËÎ\q[?E|ÊÜÃ|q¢~E6~˜ô+ë¼L\>ƒðÒÖ¹ÀÓ5ýš¥?©§,=ò—瓙܈ë©SÌ ‹ŠòØ @›Ê`D!ΟN°Z‹SM§… ÷wžþ×^ˆ¡ÉW­Ãá”ÌÒ8öR´ ÝÃOD~)ÏÈsñ£_áÐÆmmç›[ =X‡ç'¸&rŠ*ã­)¢üa>æõý:¾p+-H.!#£gA1'>t¨ìƒ¤uf/¢M~ÂæžuÃ[UÅ»P‘—Ž_°°)Ú˜p™ªr2ÿ!!@ CF©¨V–’Qui«€ÚåˆNª œJò¬Ÿu|Us44ý ½ÝrDý7RøßÆSè›%X¸Ä1zt²Ôáö®WN© „·,'9²³§iôo­éÔ‹ë?Ãß×±qêœ{Ø-fâ#pܪR¢Ù$ñ¦0ë]ÙäÖžÍ]_W”B£c?7߯ñü´†´lu_–51ÄêA’ˆÈz˜ sn/0Æä<%[b¦Zç=܃KÍи“i)ÓJÊêŽðîe=xBŠQgô$©æ‡«b`ÃÛ{ˆs¸€yKZЧ$d~tb°^>²ÿê{~Ù.m¢ƒþ VZe´Ä©QJM&ÀJZ[Æ«¬· 7^ʘ†?kð_þ\}‡wi·rl¾¹§Ÿ 7~ÄpÖæ]ŸÊF½¡—ç©\²oÇd`£q¤Á¸vÏ™®*?¥b豧 ô;-I†ŽV¯ÚåÉÎâ™ ý8TÓHWºè Lª0uyM@ð(¯Ö˜3ÆË¢^›Ç±$D²Ó»Íàè#_¿gì›ÇÝX_^í? ôfÔ¢µfê§FL›Ô #Ùªû Ïâ8¹3/šÑÌ$(˜“áW]9ÁÅ–qþõlMf²ÊÑÐp@á=ûƒ€V³ŽÂɲeºo±ÀÈOm$ËòJSõŸg<ªûdß”sû–^ _OÛ9Jž±–:–ûg¨éÚå먮bM^_¹I´=c ³ý¬ij—o(Ô+ð¹áŽÉ=2 1éÀ–î ˆdjòûöß§'Ǫ:ݘ0´ˆ5×.¸=Ž¡t ó¿E›†$І•+C•ÈRÅä„w†Ç¼ŠÔ¢Û¥Ãß|XóûXÕíµg¤}}8Þm÷E£š,ÜmUì«n)j—ðp_χ{Ê”W6kT4 ŸKGëPibØéðcÒ¯”àäתÔÅÛ-e‚%îîÞÇË[ᕎ§“sN¡¼0BÍC°ò2ò4Ó¾ø0óeTþ }ÉV÷gߟfÞáòD•ï½ÿ*_ÈÃéj0Lzü'Ua;XŠ–Ðéí±ÜœK^ÄܾQôbÚR7w±©àëÔ uåXï»ÌökâÒÿ-;ËëD®XäŒñÑ}Ò÷Écü¼fo¸ji (Y©ÎôÔÌð‘³Õ¥K½tÎ3Òy†îg•‹‰½+5-‚0ÓÐ+5ò´Ú¬pìzéôá⌤­Ã’¸”ŠÔp°’Æ’–¬‰ˆÔ©œ©Û£Y³>¢Æ^ŸauÕÖj*ÛÐæ`-÷OAíFO*¤¢f΂«ü¾¹•;ò +À¤€¾íy'ô䄘í{ȃÚÔØš [E×3ÜD€[‘à@¡¦Ø÷Vê`pðt=¿QÕ„qJV5e jÐ0MGþ>ù4«8’+ÌK¡WH%3v抃¤2 3@€¦KÝt“= õœóág Ìf ¸²âÓ1! ßÐEGêØY'®^r®^Ú°ŽV²V‰ áj‘§™œ AoFdªtñ-Q®é¤* ·ò×i4þãH=t’d´b î æv7VU[h¡äÃn50nq*æ‡ôVŸY;á¿N^`ÞØpf w§µÔWp²´ç'¼SÔ;Óhõ@pLåú¼‡÷õâë-}Váe$${Z§ã†c«‘0»¸/!…¥¦WžÃ¸¸o¯Ž`Êh^Ú)´ÃÁTC¯;Êí>Ÿ€€žŽ¥H÷nÈé¸U>îqºÙ9nwåë¨é_î°…äsf|`V|•]p= žFÅ¡ß \E󇧤-RWJÆ‚rò&oßÀé HmýÜ—( F §Õn¥vâ0‹?±ÎèÜÇ#]ñ£_.Géü’¤·bËÆz(p ‡•]ÀJŠd›²õ3Ãw½6¾gtñìðÇã­KA#T,Xt chŸ¬7\Û—k‰­¾®xô“­®¦_…@i|1èÅÉçÎg;NÙe9%⨻[ÎÎÔÐ,†Ô©Å~ÑËçp Žg¶šWÏ¿%O†J;7à®ä´@„˼Û~“+Ž6ƒ3‚ÁÄž¹î›É/fûiÈ!ð½–N8ÙXÕÅ.~ÐÆ!´(ç¼Kn>C*¡ wåÔÁ ’Nêç£êŽ2åm<ß>f1¸ÛÝÙŸòÏ6ÍVÌîû1ÖëÉEŽ¿Ó‡y¥å’ŸoeQPÜrú¬—ª·$ݰ¿bÖGÜõÅ%Ê„¤èyÚ&-¯HÞØi€þƒ‘°Ÿ&›eô‰&¯sÒsiÅ"X½ºÕ…Û­ü“7ª»×ê›>›)|¶lK9Ká\;¶2Ú±&šb’°Áâ§{IÍë¹ ʼnÜX‹Um»)@‘Ïyc%âºÛêìßÊL 5)hõ¹=Ia5]O,õªk#7EÝn‹C~¹! 3"^}|û£\—®­cA!bct ªÓ¶ uf/‚Ôst94‹LHÅϯfõ†éÍH¢˜‚”¤"î2l\\ꥠK&ˆY¼Rœï%¥äö@/ë+E;j´L¯$DFÕP?Â_’d¦ÐSëáÔ3ýû–Õ¿“yÆhݽï ØPLÂ):kIs8„°O¦oдí´íÛi'®Â'—‰~Š…¢.yP{☂0)Œ8  ÔÖ'%•Çg?¡Ý’íjü {ÆûS ²‘›OlÝ\u$#¤öÁŒ<’‹€r, vg|K@0-ÙHå‚k`N+V­ƒT–@U*gkA:NvÖ1`˘ôÎOs鄪°‚ÇœY®ósz¤åpeJ>ì_M/켯܄G=RSuÿ×ãQÈdÏßÏlöW–jQ6€jæ÷ ¶©©Ó'ùÝzþ>ÖÞ!ú0ÎKà[óyÄ[9+YPaÖ'Æ r[Žòas‡‚`n\kÊØBc.¡ì]&6iK´ÂýÊök^‹‹“5ØÜóH¦íÅX|~<ÃÛ/M2J¸ÚkÑø €^eYÏcë—×_ÛùRƒ€RºîŒó: á2×7I¥$J!ÑnPSÏ¥³ï×û daP,wpž†žÇ L„v~fvm<-§Ë*L¼ûÎ×´¶V“$Êíi³ ªì)ð!ø!$£ÖL݆C²Šæ[!’­ã¼¢²Õõ\ƒ‹ÇšIuN\gn©âšÙ²Vã¬)4½@ЇÃ÷h ]Mg=µ˜DããÇ‚[6Ÿ6 R„È(ø´]:âp¿gÇÆÅÙJr½$YÅñ”Èš:µ´¥oZPÎ4å¬m˱ Q4­¼™¯U¸­Ñu8KÂìzÑá–­¸†a§ñv×éu2%uvi»óJ¬Ç>Ïûñ|2Ö² èkJ‹Ù¿j4a]­c«ûÁÃă¹¢ï+b[m†ðò«ÍLA(äi ÏLضb’hóS*%T+ì¢iû”Öù‚P„¹ÐpE:ðõ¹p³õ¡åávxv¢}ß>²öâm]†£SÆ &‡’ÔÍï®DZÜš<缾Xu¥÷ðROéÕ\² Q§©L[½ÐÐ_¯sLÃ:¼¹&;¹†ñ™ÙŒY{ÐqÝz{Ï<òÀ¦Ößû®&½×ïöÞþ‡|/É+¿TÏ—8¯"*nÖ.Ndã”»U]ší·´ý ¹Tè1þï¼øïe±C+S²˜B|W»ŽÃÖâéðüèkX]|ú–ÿÔ–@xh,± Zø}˜Ÿy­™Næ1…¹Òäg*Û'v§a?s*—ĹUbê0`ÚUå9bç GàN;°<ºSËþ}Iýþ”§å“Më£íÙ2–fÝÑ)¢¸/%´ön#:§W¯Wò°»PÜÁéWW'ÍÓz·¢º§ð­òA[tEzÓâÁE¦EÂa©žv/Êci-¼Ðï‹eaŠã’L¾²ïp^Ûž' a$•ç"Ät\&ó–0ùçn­æµÝ™}ˆìÿ Þu|ËP¦¤Xñ(L'*µ|mð™vU]…Ù!—}g«Œ€AöÖ~»HÊÿ;Ø&ê¶]|ì%AF‡eõ÷VZÜd¶ð×{v¹%âm^Ö‚ôþþJ|²–ކË♥û‰«{æyWì‡ M_®éè;Áßxî.Å|ð™bû<’¾¡BŸzäYa,gdŸïóJÞ'ø¶x5—芢È~ó{"­Ž&y̵‡Ó\Ö¥ï*%®}zëÕßRÇÃ÷yêEïJ9+‹QÖáý„ƒVmH<¥$ߨ+eŒg+/nôFW·Åå.¿ÎÎ1ÖYè«c¾x¬tûUóÛÈAö¢î)„Êåï¸Ì ü¯L¬7:ç42×ÑÕQ¼õ"Ç¥çùS;EâÃÞ(§}ØáÏqw.êïâ׵ä“ëiÓŒÐ*!.oŠ ‹O¿šIAK*¡ixË­ÿζKZ‚弯îR}–%jã ÒÓ¼•àÄóŒšÌ‡®ÍÁr…§ûN‘§…Ò²ºfc²“*£Í“ÖáDLKÞWûÍ·Sm<ÍÅ=I“5±‡JÄŸ\k@}æ,ïŠ-T•”Ý [®Ì¸à´=o (i ZKÆù:òËìðø6`ˆ|Ž®ìµók8`ôÝ¥¦×åq³ úá•c]×öy¦%ù{Ë?´ ÊîÝGÖÅ…ŠÔbõe<Øä¨Wo|¼¥ÏÅOë ÓUìP= Íö}q1PNUÃ>ª4¦è‚úû¼&}–,âä¸gsÞ0ÃÝ,œã5ÂéÀÓùRtr‡vî(q9óã‘PìA*Á’s…S3—_ǧšŽYͶMñ_øÊùÊùÂùáïmÎFïÇ„ ±iÜ_¥¶hžw\ó7ÃMG²¯= Î>±Ë·øúÞßÈ>¯¦~8žêëÎd×&:ZÓÙƒrìz+«ìúìïV¯H ÛùnÏâû`M(•Ûßœ,Ù{=¯†*„Ìon£4+ÓíktÝ_KLC`”rÐä‡Ô:m»‹ýeJ05¾+kòçHC´©6gzÿW‹¼’oÎݯØÏbv©´ì¦{¨g_$;óvG…Ò¯ÄÍã­K&úO(¹áÜ=ÝaQžÒ"y’ó 0X:4—TˆÜ{Ư {¿ÍAªÝšú½ðöû6ÿΆMÉ6(nŒæñZWoŒ¦öüŸ·Ÿ&ÒÄÈMÃäîyC¯ˆ}B ýÍ'>Þ†çz”'®›³~lAƒý8³¾m²JvPßœÝ䊆E§¼äšô«Ý¿˜Ç$¿2lÓg ßwñ3Xƒï+‘¾«%Af•aô’׉K<ý›|`ÜES=æó½´oiš€ïê±gÍãP§rØ÷ÿU~Š2oWüýêÏrV¹ß£•"xžO‚#–+®|/ÏS¤¦ùÙ±¸›l¡S«ý½Ê– ÔS:WÜýÍ@¶VÏêk zÓ<ÍM»úü $¯xý”ù´VÙÛŠPóæ¸Lû}„ãÓrV)©21*@¼TÈ…¹PiqõÙU5 -[p ·11¨°ü½ËÉŽl,$°L̾ú˜ÔÓÊ9³gŠ—†çL^!³#¢Üjye.G»¿ðè’p!ÉÛië_Ô¿Õ%äðÆ&°ƒ“Ïq÷ÿÓ*ßœÅUê"—Ÿy™Åׯòå>ÕQÀ¾-ŖŽ×Õ² 8D´  ‘šd"c?ý{ÒƒÞ}z}óà¤8+‹möäçü-r4NäŠ$ö§JÚ7vãÔêq@7„BÇ9Û'Zõƒ0}â÷+æm R[/&—èÔöÛ‘Ôì¦?rg‰Q=Ö6q?'»U/wøZdåj°Â’òë¾Jä4`W\aºÊ\×1h|dˆâ¼®ÆÉÊr jîTÉø R•t"QÇ|ªÔñ«1<‹Y/!J@£ù¤8[;Û>oQ†éÙôQ(›}P‘2uÊ­[åãWA¥¨Â<§øÓkåAz“$v^ß‘ ëõ{ÊfÓHÞÓýz©ÙÜ¿‚j¸c>†c“ab}6>\r*²íœ³îG&~¾wµÂ6Ø „Ëü; ZŒªõ&Ù+ìÔ)îZ a(Eý°Â}L2Ò&ý!y¼0µÿFžÈ?E ¿‚7¾Þ”°Æ‘ ª«ºdØÿŽnf"æÿ©ö€×ïô¬ßeÐóQÜ«x3&DÙ¥UØÉ[ó”Ò"ñÏèÔr‚Ôm¾öSDãi šb¢ŒÝðj÷ˆ„´ÇzÅÊô‚X;IБü1aú:«4#ºˆlc+¾éœÓ=;üâ°Üõ<+¬ÅÉ×—#iˆ·G šã5>÷Á6å µð+ S/õI°Ð¼ ©é¾0ÓéJ¤x’pßÔÎóü»¬ŽA‘dÖo¸Bëë¶šÁñþ"^!äìØYs]â{ ƒA&Ш¤îžØ* \Uj'j´IÙéÛªÑgn§:äáŒÂ7ÿTCKûÆÊ*éÞ;oÄZUWŠÐF’m/·}—î‘öËÊÔîe?ÙÉõoVÜ?¡¿?‰AÖÞ@ì…÷ÙúTÓáVKRÚ=\òçOè °oøe•ïкmkrr}üÿ›ˆ/i%ßÕCsáiÒš‘«Óü'öU§cìgkPã2dj ^:2W¦Èš¥òܧ„w‹ËܳÁèÅ)µa“ùÆËÛØûŽÚ蟄*‰•‰kK²WW° DCµÿ~Ü+޼˜a}Ð*•Hýy-Wþ@[¢û,Ñ~¾ú è4CS2gêWñÁ„è’×{HútÈuX:½ÍåËêH€±- =ÏJ`±¿ùRqb’âægÒÚ¦ëœt6º¨0ÏĤ’…ˆ¦Á ë–!Ñ•l ë’6y1RæÁ—šS5¢ó}÷P²tüÝ +—F\ý;7gr~4þ ;¾CÆ;XúÞËà÷xž+,M«Pj‹Ñ“ÄÝ™ŽÐúɽh*½k+ù$õ$/ßx*%ýkÞ|+û1ù0ôí>U(Fq_2¿§gJøý…ÊE± ž ª B[‰WI­”Ò‹3F9aÓèŸJšM+ûô6ESQ\xü“P0Ìþ5¿(y—kiE•5'NÛü–§¤s»òg2À®éE*/Ç¢ëŸÑ÷szðþÈ!>žû6ù.….õ"z[Ë«ßz?†FÞU¢1Ñ|ä 笃 „%i™ŠæúîC©{?SsȤ3ŠºO;ã¿lµˆ,Kr°„Ü4=| M/ÄÛm”¯±)a°Èé§t,ýŒrNw~ovzG.Qט÷¾«qôù‡Yc¼“àj»2c#ÇBü®39„ß‘$%EíáJ +éê)ýë=Lø~òm1ZIJ®Ù’-[±Ç~“3=é”COLW6J—©ôãë§v#©\Õ%1·Ýk½žUݹj'|GgKQ>2S/ßN”]—]™^Wc´O³ôhaó¨´ßÀ &ã€6X©F;x­õ’û’’ËŠU˜ÿ3~ Oõ§þþ {¿Ë,Ö²èæ=œu È·“-l–p%Ünˆ\’=Bto¹As3…HÚ§„«e{;knuGÒ:ß9Î7«Š’‹ÍŽcZú~Á[N)ÔdTéÒ˜…cp¿¦±¸ñ5rxµ‘QS˱lióë-#¨ÕT¤Ž7w¸= äY¦ÞfÒ˜‡p´=…N·Ça™éø¶ýN¦#¹%è&aMªWÅSU¨Xß©­ÍËVrjœâ²t’î5Gþfí#»»ZgW0“Ç:F¦} þMÝZcÈ[g·„芈ü×ç‰9î£ÿ““ovýÔWä ú´LÞ×ï´íõ9ÝT^CïWW)—OÆí.]uÒø1wÓ­ˆeQÜxµØZLw=E¿§g7èé`èi·ÅrõUH©n›…ÏæÏɼq^P½ÞןRù¡¢xr± µ1pËÕ àåAˆõƒŠÇ£ÒOC±ÂùùÿÈíš/Ùc5Øy?á’,ŒD)8g—m왓Ϯ8ŠÕ=oI}mëé]d)ØPÛƒ9ž²'”oG¹ßˆôGøO]0³÷MÒZÅ*13#ˆqa¨Íô²ôh¼a@õuÆ£P!]b>4ÄÆ #ÎT–¢oÎU}Þÿ‰¶MÌr¾­7ªs®»Š!a¼ØÜHŠ„ì6”4Yé=‚ù8­«þž(ç›|¬˜Ÿ 䆠'FÛÚíÅ-Ü®óÿ5´Kk¶9: )Äùü1»_~³½ö†TOîR„ÞÖsJÃÆîªDWs4v2{PšVc¬”Ž"z½ˆÞ9,憟¦@ýBüMøž˜²O)w¦ùuÈyª£U“¢l"æ:6U³éïGñ2VÁ‚v>ÄxtßaU¬½ZjýR‘XÒÿ]8†C_s¨±­†j¤ë»D‡Ø+äoê6Çâ×'œ¥4تbõÝykAè !mg S¤±­üþdWíI}9ù±óuÜ=ëÇž¶¶ÿ'°Ò ߟ”@;J®àðc*k{}z™0íS“ ô²¹yehüEÔÄu`Û+,Ñ¥X®ºÑ‹Næîš´½,e®ûsÉâ& _?ÁgwÅ2EÖUldðî“=¢®&[Í)†øS0QóÝNKVÛ¿0È>ýùÛºYN­âÿ‹A×S8<´B캦û ¾öÖ/^½¿_ø¸wÒ†yÝR¶Äñ¯ ÷xèKq?7· ]§}âiC_÷1V€Çö>¹{ îK=¿7³›>Ô-i[4D‡Z0Éúçl8@¶Nª•]]ìÇ–è¥ÿ$îí²˜ŠÉ¾Î‰‘0§ÆflÔØR*Î#pÖw5ãÏÊG‹¦–Ž ûäFÄ˼ ÷Ö±µÅúÕ‚Ë“q†çþƒèRC*”u„küij.yë}SN” ²r´½ŽÎÉ/e%mú'´H¢é€_÷i šIS‰xÎÑ©–ï™ö§Ÿ(ÒÏ!îDjôN‚›2eƒ Þéêµøú5²:«Pb®”ž—î»ô^¬n$âǤ|³.'J€Å¨¯ÙáTä¹ÁpV»Bê„4ìs¿¢C1ì )"%}¶-/”ï€õc… µdÿͽI¡ã­-x6 ÉåoQÄ»t-kìcSë¦ÞÅ®ë#Α¿€·ÖêV{$íóùOè¥tÚ´¾Ô&Ö’Ûϰ×Ö\1Â6>F;×Ú[Õéy8Þ¥ìl[_³øÖ-†¨‰°*Kúrz©ŠÎ²Õì$Ë6>`Gv¡‹—®v&^&Rš…Ѻ\m dÓ#@h·‹ËêXPžiÚX¯¨ý{Q¯kCs$™ˆñ#ÜSyJv‡”ò¨ØÆånû¾OÍëÌí+;ÅÀ®SU£/²ƒ©G£_¤5 YýíÜìÞ[³.õŽ²Î¶éb‡¡tv3óÜaòï5¨šqá° KSæ2i³g¬Ÿ ˜nd(=ÊoeOÅäø‰Ò!É^àß–ÒîÊÆÂpìí¬åÈ^[*ù-’ª„< ½TFÒt¿¥u?‹®\UóÖ~¬äy¿ÛZ0ÛÉÕÏO´Õ6µçæ3¤¨oÌx’¿‰GÉ›ßË9?[Z›T¦g'ϯ1ÄÇRðáZÖÆ̤ÃÙj½Ü=ÿ˜I'S=~Ý›ñD÷‹›JÑ9;¦ûF·žõTEâ× ¤ˆ÷W_GÞ[®ÀcÅ}’ä‡ùqpÉÆºn©¬¼ëñý½¹(mPÄåã—ÅÕð¶µµb[PeÑcw;y«,ßTˆÞ}›ÌÞH6öÇáË)uÓü_ˆXUVÇ/v{ìtàxä-Wï9é¬)žúÞL, @s²†Å¯©NÞǻ鷄U·3ÏúŒ8}vÐ_«Ô]ìÄ]´95oë}”™cQÖOÃ&-¤»\癆 *ìßÇsj‡Óûrd¼hö¼ÁÐ{gØ ×M .¹yÙ¹¹™«ØxاÑ3øk—‚$¥|®Ü…³lÕ‡lþõ³]´L÷à×f©Ó‘)Dz çÑ´Å>T+ñ+9òÝþ_hÃ%<è!èµ¶Èa³áß¹p¿ Ù© §´¿Ïf–å”×¶µ#&²o hÚµŠ_¬9œ•™e1p·¿â÷ œA¦{ûÏ ÀíÝÃcvìB0Ï{_ãµaùLr±ã­Þ6šÇ”THF‰l|m©.ÄFE¼ÎRV»ûܳúÔ*¥Gv_I×é¥kf@?Ô¸ Ú˜ƒ‡¢þ· a,9²¹znvMm0lÿ²­nBPOŠNGÈÉ­ÛPaèãed_-)·'sÒnlÌéMul( ô©Q‚3r?íÙ땟kØo¯ýE‹÷$·ôký£¿ò”Ò䫉+±ó!hÓËx‹„ôUÀøCÂöåõøw/lv&Œ(ÞxX7M›ýi½óŸü™Í4H»ËÐ!Ð÷œsú®ÞÖMr¶¾Aœ×i¾æg;¡æoatM18žüY€²!ggÇó'„·2e¢‹-áóË&/Ê&U¶%¾gš§×A9 “øú(ÿ?Pæ/?MI¿JÓl¶Ïº‰@üIJ?&sìüX6#ì̱­Ó;q<]á逈—L­ `'Aõå»ðMƒééŒ@¿û5úª†>¼Ê/{(‚þõÅ3$u{Ï7«ýÞ¡y–‹:‡Skc…nÙ€2×­6ƒƒÝg‘üÆïî|”W#êìŸ÷§õ ©öw=h:{T——.’}I6w\NäþÓò¬PÊCÒ'€‰¨cÂpeüÀiÍE¦XýWÕ?}ÕIIŠ<:TFïxÔ.=ß(ˆ' ÎðPsk‘CùÁ´sïû+Ûýí# ó—Oâ=-LV²{¯Y@ö@±^­+Wâ«MKÑNEÉz³ 8±pWßL xNâûä<’»%t¢Í˪ouS2ý{B–‡îÊÑ 7ÿ¶éóX½OÊ´ÞŠ(«±ã[AC3ö÷Ääâñ¼b÷ ö{¢ÉJ<Òê²êº8¿ì ªÒá|¸O/N«Æ¶È­‘ÙáCa´ª¾§ãåUJÌö²£ßÙ†eÏ÷bÔªËÔ'[BëdíN•ØàúGb0á?£/7ÄŸ¶¼§ù…Ö’}£¥DÌi=©ßKdËàY­·´J&ñ;›Åó(Ô²-'ÌÐãÑ¿iƒ-^ÛpÛú¼1½0ÐQÝ\p¬þŸÍ¹ ü)×^žgjqÿÔf§býÁý?J;’žEOÙÆ…î"Ù9UHÆŽ®ú±_ó¥L”£þV±òà'duzÛWnT¯Òô·ô‚8 áRØ,pV_fÛ*íP¥`;ƒ¬ ïÏ\qfÖ/CÃò­óéÑÉÄctÎü ¯oŠ€Ìi*‡á5œÝsXÀ·±YíÏuÓh+öï@/4Ñ»y°ìÜ¡¡!ºk°ÀOÖ{ÞËÐÙgö]Tu¥±bns;7èÜ]qf˜?ÎÝÇkÓGªÖò·ˆ?/ªj=kB}}íÌ?~ý¨ZÍ£F±¬¥ƒzB7äýÓ‹çÄ/p—'ÔîÅ÷ì݃B­,tø ž¸– ¼=_F !'ÊÊ-¹9`v«2cõ뜄ùû=×@mY¡<ŒØqî?½v…ªJÐ9œ LƒEä7k2Vª=&!ÚxLgÛØ…¯Å‘ Èç©(;Õa7ÞáPBEs¨ 'fŠþêæÇ´¬Ïî–A¾Ç5¹ñÅ÷ÄæMb†ãgÂ!‰ßݱÒ·ã½™hÓ¡d¢Å¨G6‡Î°ÜIÿ[ueìýÛ©wé ò.¡ˆ|ü\þ·-…pœ‡ÅÆ$ͨóN˜VF¤¬Kg‹§WAÃùÏu»³¬¦†`< tVÈÒœBO0êB¹ïÈG«ªP†ži÷©ã»Vgä6/Œ7ëz(›¯gcûÊÅÓ×»;ùdi}dÕàhïÞÚWšá;-ì²ûozÛ˼æg?›]]Æb’?ö…çëÌ-$ÊœëÑÃã7MSÈUzÍH[×làô‘ß°¼œ½÷1´;[tÈÊ}tv—)àT! Æ ùg2IÂ0×Ú+Ë4-8þØW^Ðÿ=ÁæùfI?Õa>—-:.=é-€ºÖ£(‘ÍÝ· È®û„_T4) kû ÎCá°"û*@¶æ7,UòÍýŠ \œ®_‰O<ÊëSŽE÷ϧæ]I÷KÈòöÇiÚón½V¬Û2•bÛï{7yÙ)l˜Ãà"ˇ÷ÌK»[ìÇŒãR¶Ï üìƒj©D)u}μBåÆÖL] Þ¨ê .Õë™––µ <*œßO¥ÓBC—('ÌË‘¯Eׯ€?ɳÆw@ëÿL®¬õÇlL7“BéÈÚ¡í¬ÚT³÷̼°-E#…%~ý=‡y@šöÛ¹ÿn¶‚Ô„hþöMy¨‰¼í –Ò¨½6Οö<ÕZèoóÍŸWQ#6mu*ëLpËÌ„Ä1™ŽýÌNÚDÏVžCu°¢Öôn*w/'ƒ›ÀÔ•'l,šˆ~ȤT11Z3)íg´¡“‡y׋̃ÛnEÊÆ_ùŸKÐý‰`“êÁ‹Ûè~¢ú^¾ûI§û.ƒ=>On|ŽÎPhë(àG²‹ŠåjWÿ¥»Ñ1˜¤¿›„uâk8›/œ´ÿmÜ03t7™ Aï?‰wO.ì>Ÿš*?ÏºÆ·ÝÆå‹TýKx#[–7µ€×Çôb®W‘…}ž3{3üÙh€„™5”:z„­ÚñÄäšÉòÃÐUäIì¥n‹‰º0ŸÁå×(ž×ÔÏĽû»;À÷úF9ñx|*™ýyë—ù×€ó%Ðõ]ù¥~0îœúÆ-B¼äúk×o† w´Ûû×i««åÝ™ç¡ü?uúßJ¼]÷²MôòHµÖ ÏÊû¾}9o4¬CF³¬ã›!+±DS¹öfPº|™—5ïÅ/ÐæïåHMÁY€ùf|ùô8|Ò…ño’äfÜ‹^õªVüùÊí.P…Ï?ÑÏ·z)_hz+N:UW”ë“MËÖ!ÜU¶³²®þ±y;_Ð'§5ÅëÙ÷6Gš¦üÿ8Ù.RlK « m¯|¬— »Y>טaí½k°Šeµ·çYÓø š—ÄÈ;×\µÉ묱ÛÞÌyÖÖꟓ=”å? ± V¸=ô|ÊmÒzŒÇüŽm â)z“”¼ÍÆüßwd+t&]»êì(6yÿ¿û‹¯À£4N·{¦“„úr+ƒñüCí¥A¿ìØèi[GF7*5m¦»’NÒÜVñ½^¯++aÁ/þbpkCà“7“±²¶c¯ö*(lå[n`œ /£•»¿ß¥TJ#Q#©š©qè¬nwÇ–qå~oôúJ>ÚÚà«}êÍo L?Ž’†ò_¤Ô¥ÐsÜ×ìu…~Ðw“únC3áGãÿùU¤—¡ËUqPqFÎ33cí_µ½B~YRÛ5o_­ËE¦ßá¨á\ÍEn½ŠÞ¤y+ÜÚ¶¯I¯Émÿàwq~žÔø_¹¸gͧž‹¦9kßSðWâSóëÿV½Ujôµ²dZLQRZ$³+,T–ÎârT­óøœªýµkm6®S&«TÓ®¥k8ØŸÖV\\fýLÕgVYýjΨg‚YÐùýÉ=×¾ùcÊÒýø·º¥ðs ¿žyÝãÅr‡Ž}O7°µm½Fþ£Zß¡Ûf­ñ-IxŠârë¯ÐíZÊþë}6µzýµåE¤U¹©µÍPØÛ]Ý5¨IED˜‰wu¸BdË ")!š»Ëýòm¾ùoº¶žò—ímmü–fÛ›âþÅü’ ²?dùÏS}0gã)ŸÛññ"g`†ðÈˤvñeýÕ>I÷>'rLv™–3+Œb*/œ«›(3•ÌÊŠ9žÐ,î²·]¯ÐÎLñ’oäö×§Þ¹·+B®n[;¥&¹Z 3 ZÅs+\RhÔhÊJÑñíµ=¶Úþ__1WÍw¶Ù{kyv×ÞþBÛ "¿§ïz-BnÞÞe¶fÙ–Û ¥þM;èeÚBè0ÄÌûÑV÷S-àÓ3ôj‡ÙOw>Öᎋ/î+˜UâŠök÷ Û=2RrÝëø;<å4ÓMZ5¨Æ #% Ó~]:P˺êC4I*LÕºƒ ÔýâÿׇÍjæ«#?}ÔŸ­&•˜»ÆV5/V(µgüsãd¸Øg¼WÉ ê³ŒhäþŽ1Õtô¡ÌêQ»\›ÅC>¸·yŒçã9õ»gz¹¥Q´8ƒˆ¸ª†ÔY£\ÛƒƬfÙ†k‰Æ¼G´Súrm¶lÿŽ´þ ú߸¿çïTün•WeÙ (Í•m¬[ƤX¨Í-FhÄbŠ!&JI&LÍšÆfk»ƒCùhþy8Ómv­FR¨¼}Ád_Ul©_æRúØ?"O£Ú‰åQ·¹ƒè)ý¸:¸¸œÂì/k‹¼_ü‡¶Om³šæ¹ä%úwT5.Þô£kb[Óiµ´*#QoâÎñÛxòw[®zÝVÚõqû=tuÑîûô¹˜Á+mª­#@ãUfÃj?áç=D3M+ÍþÚ«áKº6ÌÚ¿¿=ŽÛ7íÕ#¦‡|‹ºUsqÇC¸î…Ý î¨Ô'u۬껩Wt.&.é.â/)/¢BV™¦VŒÉ^kŽæ¹æ§sžNéuûmmUþUjõ—áø·­ªŠ(ØÉb2a&Š"",D@ed·ç+WàU_^Ð+y¥¼ß7ÒZß¡ òEÅô2Ó4Ì5‘¼Jþßû|WÜÝg°Sª“÷…ÖbÍÉÀë6^ëo…Ýßµ[_‘ò>§m/ ·-¹666«¶·5 ŠÑ†FF£bÝQ·+º®’(lÖÍ´Íx°t)w±sµyÒó£Í¯7-³wI°SuRÐk«54¬²ÜÝpJÛÕ·mö÷?Êóýÿ{ÝwýþûúÞ¯y£ŸN‚UžTžVV/—¾^ÖÍÃŒrÔKûþþçr¥Ê+6ªïÛŽ­ÍÒDW7uÝÕËW+»£wr*¢$kh²Iñ›j¿gZ¾,—ç¶Ù²í‡'ûä']ûÿGÉùInгe”ó/£gêÀ®¢.EN1N˜!N¶‹Þ)µ›W¤Öl=êt¦ºçAJT®~WEOçæ Û-´É$0Y1‰´Y†[fÚlÝÛŠÌpàõu]zº\¢õdxÓÕƒÇNËêäéíôµy7á«çé÷ŽK¹¾óð¶Õ·ñ)®€6¥­{ ÔÝ"“¢L„¨#dD޵½ª×îâ®Í2Òë³»Cû”+ô¸­òU×£™'_UÓÝ#îjN²ÍÃæñÆ—s¶6ù¼oè<îÞáô‘±+‘ª×ËØ«þZô߯Y衦ab‹kŠÛ­µs VÒ¸¼Hñ7ˆ¨|õ^‹dŸB®3y ÎN3¾ÄBñ]:¯Ö÷B÷I{ª¯[Ót2¾lÖœ^i·ÎÕú'½CŸ½TéàéÔ«¯¤ìHÀú与ÛVÛër·Û)%Ùèî Õ\U–«¶ÔÕX¢¨ËœÛ”mÔm‚˜Qˆ-˹À˜™F‚áÓœ;r71#ñÿ#ð¿Ÿôÿý~ãû-ÝŽnçÏáÿ×Ûw<ßÇßü¢­¦WyobàÿÂ¥J•*T©R¥J•*T©R¥Jã–,X±bŦši¦ši¦ši¦ši¦ši¦ši¦–Ye–Ye–Ye—äüŸ“ùu~[~éUQ;+ªš'šU#Š”¥)JR”¥)JR”¥)JR”¥)JR”¥)JR”¥)JR”¥)JR”¥)J_jÿÌ[Ö4úÞ·¬0úÁõ€ýØs_33<^ŽToצûx}¸¯·¦Õ×lá94ÆÜn7ß_¦J¾Êž†z Ð0ósÙ{¾eÖ.*8“Œ3cF´Û% £Ur1”³c=¯Õ'³[mãb}QϪš«ÓQé©~Ïò¶ú”¯ØGÇÜq33O¨r1Çglÿø ¿¾~b³SLÏÍ6~Ïöë~óÈ€¾ÏÞöj®ç#cr¸¸ã‡ãq™¢†É;¸º×,$“ºíu»»—0I$0×ñõo‰¶·ÄÒâý“Y³?eñ/AÓyÏ9Ù½—ì êU{k|EXŒ_@%^¹®}—]Üþ…«[|ýóŸ–õ;Õí^[mš·.Vîä¦åEb'wW tÝ2æÐbLˆ‹îWHEY„ä•ÚE—² ÉõÅÚC‰©õã—v’}*^ÎO±'ÎQìâoj‡ÚÐòÑõsmŠü ãYõw&5õy;½UW8+µ µ—ã%mÏËJè ·z¾¬]µUΛÑ<1n›Eò%síÑW—¾¾•|éWÉ£õ¸žÓ}Òüå=ÁVŽÓƒöûm—G¦Í?ckmüêK—¢ÓñÛñ¾Wm¼•©­†1¤ØÂHѱ0“c@¦ š–f³m›g#þ¹øe~Êž¬¯¨.#êÍœ›6¼*râþÞ>·'~‘ó úšÖ×Üm¬Ùõ=¤å-ª¿Yÿ´²©6N-›±Kê6þ¢åùH5Ë©ŽTelª±ü›%[°½›áb²·62… ˽eøm©¾–Íwµ®‚׊»7‰5çlýy<èØý}>ïƒõ¸_kL÷è+vù8¿+«.“Šèõ=ŸÉ÷ÉÕÕúƒE\?Im_)mË#%}Px9ùç©Õ*å¹z_ OÊ‘ÛÕ°ŽûmG\µVÆ5«™øZ¿µ¯{QúÊíYc98Ÿ¬ýoÿRGdÊQôÏÖV“Pý`g lÒï,Î8qÉ—ÍM&¥ê3,ïj’ëªoÄë¯'Öëe[ ]dœpßÒãªêÉl ßu*^µ]ªýTº×êãn8âý]ÁÆýSÒJ'ÛÒñÇ®)Ò§®”ñçzì”w†Õ;æj.¢æ»‹hÔ‘4mh´W"–®ÆÔa¶æÄšÅ’Q´FI`†2$2’68s¾Ÿç­o§¾»iÊ{Ê:¨º¢o´¹b©Á¦˜~–˜ŽÕáÓFãð¦y¹ª¶ß¯ý÷ó¿eþÿü¯ý“ôTû5/²~Ž1™^PSv}]!è³!òšÕÖÛ¶Ñc-nk‹rPZ1FˆQ[-ä÷~ïÝøûKZþÕ+WÏkòZJÉH@ÚM®Hä×ÂÙÁ¶Ýï¦E‘ÿ=äóþU¸.r[ÚæãÅêN`©>_dÿ×sÞN9Óü½ªäç+íMÖ½ºå†dqf›K°Í®9\ŒäãŽ8Üo¨)sY*û¼]±Né´lªm¦"‹ss•ÓMÍÎçs²î¸gtî‡nÎ×t®î¸FƳmfͶržj«Ì£Ì£“ÌUõ¡Ç–§•NÁ‡c³ÕhÛm»6þ.8Ü?åEÓ¶ÿ-žT‡aµO˜Wf­¾c“iö1}^lNDm †ÛlÖµM%ªz܉JCÉügÖÿ#àÖÞŽµ=kÑ¢×¢dÇ¢G¢;£áëZ9¾Ÿyš½`7Rž¶«}Ü]ލ_nFrú•=|ªî(xè>â«—ò õ´»]'Þì—ìs.LÛ±ÜoíT©òépJ[ωGËÆ—Ýyi^ô[·:+Þ¥{Ÿsî~Èwý¿ÖúE_/Eà*»Dqª÷‚³´ WÌóaiÞó׊àe2Å…fBjÂÑQ´š 0h` Å1ð¶×ø»k÷–·Â¶þÚõ7Ã~²Dâ—³£ì¡öRäû!ê•ÌN¥u‡S¨®¢Ó•’â2¦fYŒÄóÅr!”bó³3/¥@¸ÛÞþ ?£/ãÏ>+ÏKÏË v6Ç6ÿÒ rßÝôœŽU´Û3[M¢jæ•ÆkmUÆæs߸ëèuÕ^%µÊLóÛ›†^/´¿è¶­¯I_1ó¾àó*ì6G`ÏIÆÙì¹ÙHæž"FâO W'fkÂW'„O)üݯ›¥”jl2Qb ƒ0‘ÍšÚÚÚÚNçá—†:òVð)n]ŽnN8Ž-»è‡hçïáx©õœýÌ~ƒÅ=·'ˆô÷˜ðžc±X£±]ŽØæÙØybƒêv^ÇŽ5^‡®ƒ¿“Œ×¤Ù˜åw™Rrÿ/q›+¼ ’Óki²m `-E»m][uµÍ„Í͹D&·*j*4åb¢ÉŽkEØf ŒÌF4„Æ–HLÖmZÇ'ãÈîžÀ6Zºuù®? •:Ï ÷|ñzº‡]K®‹Iídáåµ66"±¢¼A«Íî·¼†+õ‘*´}k0âÛ7äî8mþ%!ùò’>½ ì®Ð/˜“ùDÒ>efÚùÚ£Ž.L3cçfÜ™žC;AJ|e] ÇK•[Š¢3rèlÂEÍÍÝt™AÎî1f)EÊ䮑° nK¹ÙÁ»º.çrr ÷;jùýjýö§áHøJ_û~%/š¥Ží|Ü|Ëæí­üd“¼ø³Ïùß;çzúõ#]†®8¸ËgàÊv;l&»ߪ‹Ù%ÒHöAãdòäx轑0»Gú¹´]Å~SqÃ3hEI ¤±%FšllÙµ¾•ÒKìUxÒ}ò>øO<íN–¾êOžï°ªì ‹Í¶fk1–¦[ëÔÔ|N€÷É]¾Ks^úMÔ¯»ª~§rïÈìHÂóÙÄãU©°éW$ø½,ð]·…´Ϋ8m¦Ôk‘ÆÊLFÆ1&¬Ù…ZW¤ÒÖÇ´ÖÌx–Û²$/Øßþº}q~·ˆ/wùé~GÔ̪»Z¼ìŽM­œ6Û“; Š§GFWsS¢G¤TìU:í™—cœqÆÇcv9Ÿ‡$º5p§èrÇÍzèy}Þ/M˜.&Ê©qh¤Œ,m .]h·*ÆÕÛ•®mË"¢b0ÆB¯¥ßE·´úÃóõ·Á«2Ž\j°øØÎLÓÛTžç<÷~÷>cÜûŸ3Ù{§|ëÈëÕ×µ×åÁÆ´Ùuο  œÇøø£·AÞÉqim-µ(!hÚ廯1ºn[ƒ6lÙ³‡ÚSºTsŠ»NjU^¨Ø¼F¿@ZÕõ{jú-·žÍq_NÿBâm¨åÔö5Wº£[Un¡nª[Ñn…k­Ô\Qn¡Ä·¸®&ðüØWÒÌUç£wm&b<ókÄùŸymV½îµ{KÝIÀÞéOÒ ÖVð=,–HË+LÒj%¦HD´Oõ;U¿›ÂÉs59š8Ôý.`·gœ0™ýô^}–58áó2ÍX|Ï_šþRšœ×çõýþħaKò¢5«ˆô5s¯ »®ž„oümHì;µ%;>Ûca¢Ù+9ç<ç)» μO?³+ÎÌ»¼Ì¾ø©åÿgïñ>rÕî«Smôuͽsqîs§Žp¾ZJžŸ°SÃÞ;)µ¶yMñ78ãÁT£üþ'ñ|NË#·N^VÔÚÙ«bqm-Ëœm`–¢c£w:â.[$Îîgv¸Ìw]s9\à]Ý$ƒÝÙ×t»Ž'ÆlÛ5áéxŽa_¯ÊOåG”PòkÉŸñïØUøïg'_'aKƒjqºÓFf«M1e¦Ÿ‹ ¿Ï[7UÜ÷[¯ìú…>§Š2ì=Œc÷[tôõÿÃĪVÄúÍ-´M´aLÕ\)H›f?ÏùʺÐv¦QØm˜ãm¶¶v ëÅÌQ!ÎÐõ€ûY_KÔÒîÐx‘uzÖêøäÓ6ÇWkv]ôjÈ%ÕCbG»q¸Ü|?‡Á|>»¶åé[%]Ï)K×'(¯]eWÈ‹ÞlÚq”Ùc¬7'~¨š¿‰äùO]«DÛb±´`„c LI2=η¹ÛÜëÜÞäûyû×꪿7~«†³«äää¹69·rþB*_y\µ,û=õ-ÈuÏ¥Þ†yrºy_¦‡º¡úu^íGé‘ï ý:]@½3°¡ú$w~U¨ ®4ÜjLN9V×NÅõ”Cá^¾ ú49Qú(²ëÉk#Öc3$×”­*cLkQ(Û–‘&ÅŒh5Õ»»\rÆ9uÝÑs¸ŠÑ«6ØøUWµ|$ÂøQ Q~{}ÿ÷­m^ûö¾?#öúÕðöÛÑÕ¹*¿@¶çx@¾yÖÛa~®Ì«Š“˜Ás üÞ¯n\u^ßÛÞߺñuª]ÍV TÑfÆÔÍ«fÈH$b™"D‘cjûÊ® OÍ«¯²Ë2¿7äÊ'kr¾ÿž†ëÝ}1¾ ¶š«Ðøn^ÞM$ŒEFÜ Asȼ]¯Àý¶ÚýŸïýo£«_Þ‹ ^‰Ë…èûKU«Ö~R·[Cku¶hÆÐÖŠÖêædÜÛ”Q‰‰ Œƒ"?™ú£Õ^³Z½ÙmÍiªüÓs8ŽG«RO™Í‘å•zÁä—_óMž¸Bã}™ê-mþ?ýµ¸–îU˜–Ì•~j‡ÏkÛŒ¬Úùû6lrmùtCΪî?µêEÒ ÓÒíµ:O'KîJž™Se/t+žå+”;´¹ZîÉÝ¢îŠè¿ÊGáQcæ©Îa¶›³Œù¹™¾J'ÚõýÜ«»%û€ìÙm>´«ëîô¬i,QcC&+Ä®d6ýG‰É©Æk5r¶ùûÞ*'jUàÎ24bƹµwkÑ•£CE‹H˜P–äë¡F×.î$¹ÝÝ‘…Îæ¹15Ý×;9Ó¹.ÝÜã5îýß»ýG¾÷ÞûÚü-> 0³æE·ÌÍ>fcÚgýéQÏ|Où„ù‰±Ø‰ó%0´zæiÙ¡]Ž#êq'ISö}oh•Þ4[cj¶Í¥°Ûf£fÆÎgZݦ®º5õ:4ùÊsä:5³ÛOx„½?Jt³Ï¯by¿@ôÛÿiéû·êv·ZºXô;•áâ8JzªÛmN½Ó§™ÈÓ4» ›\õØ_낾IT¶±nnœ®b£;±ÝÝw;¤ìwnàŒ—s‘"åq‘"ˆ½‡ÅþÇm¼ê©m¾¬V¸Ö󆉷…/:\»ôuZ¾‡Cõÿ¯S<«Èy!þ¾ºS¯ƒÛdõcmºý½”ˆ~}º-Ñì/½‰©ºI>ŸQpœŠ~R«¯©g­–Y|ñ]€gªÌWQÝUVz%Yò|ò]"/oIý©˜ÍuœqÁ­Öf½ÿw!= ¹·èùðãÏü?Oßý?ÿŸYÑ{íîù»µgsªëE5/…Gͳ­á³nMŽ·ØÈŽXÊ»†Ëj.ïQþAu­›nlÃïúÖãÕŠ—4xœ~º»ÇÁÇÝTð„xzä8›GA¶ÍŽGÚ糉Wb+¯JöûÎð¥×ŠÒÚ•e·'¼£§¥É_³¡êRä½@5éätž.¹WÛ¯c†lë´ÝiÝÑSštÄ|N/öÜß!Ýj;åªôØÚ*ƒgVÉjëF t¥¹k˜Ó®Ñ(‹»¶w\ÙÝÒawGwb±±R(Â&,…uÑ~r°Õ×$VÆ--=•ZW­œå¥·Ÿ¦Uå”>\Ÿ8ÆÛu|nMΊ¯:¹›ÎžwŽpÃ÷tîÅÖ¤êÉÖaÕÜYuŸÞEP¹“Öáññøùr—k6¥¨mU]íÈ?'ð8zAè>\NÕ]Z\m¶ÛN­µ·&º»œ#{ —7?OJðÕÕµ¶ÙúlÛgøTƒ®æÏbxz¬¼:ž—Y¯ªÂë!´8Ú®4m2<}¬jff¥j»åC`›Á°M…:oª­óv&øýµÖÚ"LîuÅwr¹I³•ÉË©®î®ÜNéØ\»¹\áÎÝwF“èõy-ôuôw³¯½Ÿ³¸¸Û)} V¶¥²¦Ï1sy‹[ü‚+þ[¸îº¯×òÈ«êøaÖÖ6¡Ç¶W$u›9[è.ÈKÙÒÔ™­Ke²E¢Z‹z¤ŒC~zœ¨üÒ<Ü®­TëQÒm.¶m÷¹™Ÿ÷¡Nt7j¯ Uó‘|å5ó(èÈâ¯Åßð]ÉåàøÉ9Ú»'Æ•lµIò)ÀÈÏ™*èQyty…YGk>û& Öð­sQUÒîØºí±­®VlÝsñÒ.Ê$«¾p^H^ÊW=ÏsÝî˽õÝï{è"æa\z`æ%‘yi<ˆÒ¼ŽS«S¬‹¬§Ë>Gìúä mXTÝãlÈáµ›ü«_¬*Ò+HµHª,Ú’#UBR 4i–ÍäyuO5‹·i_ׂý/l.텃˃#ý2ººWËãRÑë2ÚØÍ™¶9367WÆÌÙàÁ¹{„=½.%=ºn£ð=º}šX=½-/o'·SÛ¡©{xš/JSÊ£Ê.‘]G oT¥k%'òàiGn•ßâ— pÚÙW[&’rQ]ÝUçíî466jòùœœcÙ\Â#þZTäè}_ §Ë‹ªC÷¸Åu{Sßì¾\ñ÷ûPW2Šÿ&ªîÄšWIÏœHú/báÕp/e’é%­¯û>ÓÖíWÆÂˆŠŒÂ23"h% FßI‡]S®£ƒËí¶ÆÜ–mº×çªmŸ#Eç”Õ<õ,4]Á4¯0X¯12bjGÛ(ëg[¡m1Öã­á¸ãޝ~½T=}ô|ÝGG”¿GU/ÎÔ«ýWë“­©×ÄœobZdÔ™ŸOøŠMd£îbšÔoèÕ,Æb×k[˜›š5¢ËºéNìÓ»•ŠäLš§:ËŽºs°íØåÚ%;·IALbII¦Zס­z¯¶Î¿nÅÇ=ð¥rÔW«ÅÃJïzRé);úOCšW|8Øó¾lIå{ ¡ö59€q¥¥àª¸+çúd9Èrmo¯øû[ÔkR™mÒcXhm!ȧÚ!áKâTrèéëñ3wþ8lÚ~*[Ú8Ê·šU¸JߪÐ[€ßéPçç zX<­pG¥‹ËWw”<´ú\„sÀòÝ?"]5S¿\ ¦I¤w•Á© ë©;²ëõV—6ÛUv+‘ê÷âw©DåÒ{Ÿ_ĉs”zuù·_¸ÜpÛŽ¿“g&~ø)ËZ´ÚÞŸZˆ“Y4ƒJ%—±œuuË›¹:Yf}}TªÙìö}Nãá|/…»É]®!^d›¥<Ò¸Û®×q5Èë·gD¾Ë%;%IùøÔÕE÷ ÿ ºõuù¶luû~Ör¢‡1Pò¤h?¯ÊÒáG“‹(òPÉ.N09%„üþIZCc2•Û{ÏD¦÷´ÐØ3hÙnÿãk–GIj]ª:êìRÒ³j[°ã!Æ2œ['c£ZÕɱÉ÷Ÿã”®”ìxÚЩö:'ú>fmS!›¥ã.Vm¾¢9Š„üìDû ⋱¨ìdñ´ã±âãfÎ.L×…¢ŽY_ïÒŽ!spÚ½YZºÚírÖ®THÑ`²Z6ëmÑ©2¹¶¹·KE¥`P]È“‡nçrîîç\éÑ»nîäî¸Í¶× «þ9Døú‘×£ÌÙfkc°‹°ºw¯ŠŽÈŠuÙQ}°>ÚWשIÅ#Ô!áQéDðÔGè#É•eU…òtÓ4<š÷ô‰µ×mwyWN•ÇMºz\rÐ9W«-"½…+^h:=¢´*éɰÐWM2iÓ)ìú­ùo–ùYm-S[oÍÈh.\íMÓhã#ÔR{®]GˆIêhh¯tWÜÓåfÆÖÛiÔo•µÿekÛUYJÚŒ¥¿lV„We€F"~·Îë ùõO""h³,Õii©¨‘9awìè°¯$Ÿ}ñY+çÕi?8”¾VÛf¾Vã\6oõò –“¾)¢î•‰7im­¶±–ÖØÌ™L‚‚lÍm·ÏªåIãÈÕ?VSáÈÊu$wnÖªa|ú–ÏEóÔi9-òÕßU¶®k3öµAÊR=ßópPþþ ºØºè7±nÛkm:ÝžSû™SÅ2CõòÖõ߃ñÖÛÒë^½]XµÖá®îЀÛÁn§uaQU»ºãÆ«²ˆI$òê®.•û\b5(ñ÷ò´'åàt²ýji|¸>ò.¯[d8OolÛ4äÛmº½·|]‘'ž§UÄ~ÄxY…s¶Qs˜Usv n}fçÕk{ÞŸ½ÝÒ?k%'<—V½½·xv×ýd“—*®ï”ɵòZÔYµšÔ£ÅLŸEBU—Ó+'”G•^Í s$£ÝèKÀêOSQúsë¨|ǹü –ì•Õ†8+c¢.­L%Õ¥¨zÔ<õ´5/[«KÕƒ êÈüÞ*§J‡F ¶Ò|Sä¶ßæQÇ'- s¤óûRj)Ú¾bWù»Y-)]ª«ã¥y¯%N+¢Ìy/AråKî±íPdVËcµo•ñµ^eªó5æ*EæŸ?¤—m¬ Æãq¨çâ•tÙQã«ÀKÈ•i‹• >E¦_ÍQöÝ”-}F¾W‰G^ °>µ«Ã§‡áZ>R¼œò3K/újÕZö%¯˜ó¬òußÉÙ%;h8©qS€q™ÆM¥¶±’bÆŠæ»;«]µ#Ní®j«›XÆÒ,†«œèI»»ÜîíÉwss‡&] »¹9‰ûÏkåÕ^Öm·Ðï¡®°õúí×áp¨záÀ. _h–ç¢àN¢ã,n£†Ït¥NZÅO‚,ª¶œæ3,|ðäÿÆ"k7Â\а5KºälÓjÙn#Ž@žì_&‡Qš.í8Õ¾N¶gl‘W.£½å.»I'åü>Aã[/×A5j¿§ pyc[Ç©ä9×µí{^×y],kŒ•ÙÙSœýNž.¢£mK'Q¬ÌšgÏÒÓ-62…«Þ?SðÞ¡,3!°™#1,DAÉJ ɶÚß-¶þâµéyUxRü´} ³ÇÑÈ•éAàh›ÈËPO⌹a¨£¯“ÜÒ¹„Ôò*®ÌVr ¨Ë%ïI¶jGJùÿ?1ãç!UUjáã ÛI¤«“Uh”÷H~®>(?´£ˆ_­ñötµ?ò‘]±-JOµ;Š—p•©EàHót8©w)~h½¬œhnH¯ñb—ÕÄ-ÄžLW’§ÀË*ÑããLÒΔ!ËT?âíšTè\ª[2ÙµG³’6åh0–¹tØÝÛ–ìslXÒ-µÞ6­·™½FÚÏäPœ‘~Ö%§PŸ7B¾QvX¼b‡;Tß[›‹ýaC˜ .Ó‹ªË&÷×ËÌzVÍìIK—Qãªh¿©íÈvlËeÚ£l¶±#&‹‰2h5HÊ$ˆÛÉUg[4]$4WGM!ÑMAÐË˽Á’7A¶˜Es¸Ròò¾ÂGR«åHûE³à¥>Û˜¤zOéù ;ì…û8T\E+É%äæzUEj¦Õ²µzµzý[rÒ mÊ0 ±Ð ÄDŠUñ2¡òJê*jŸ% ÃamÃeòyº…sù˜‡û°ªý?Ak›…Qª¨tzi4%{²pÂÒ£¦ÐeO°£‚¯MÀ'%UéHð0àG¥‚(zI^ ÑÕÚÉÜeh–ŵ[lÔmMª}¥W„\²ž «·æM³gÚÕ/‚9…[¥8¦€èäõÕ¤UÑÅv¤N‰UŠêñäq*ô${—ž††!è`©ê®ŸmºÿÄJåUƒÕ·Š•/yŠù u `u 7Q±´ÇQìÉK–…;ª¸#²¤âãUvébÆS5ÍÉ.T:ÜÚ.P5Nî‹guÝÚŰ*!’Ì‚“rãDewurnÜ×5­^ãÜ{°ú°ûÄædåÂ Ž¢ê>NæUTæ%è±KÐb©Ðâªüå_ O‘Ú¾F×؉¸[bKv•ŠŸéÊ–Æ5£¦!âSHx©¢¹é•íi/dŽÔ®¥tÝë´‹¸MÕ ‡Öj¶&Ç0U~kämü ŽDªxÈ4G“‹TK¼êš#ã(×NÛŒó*åøú¯a|z¬Ur“šÏ×!Z´OéÁMÜZÜÅV<‹;©8n¨ŠâîíºŽÛ«‡:\dQÔÎîDƒnJ~ö@ïZ£òï~Ì'ÇÚW'f MR¡­È«W+w†_[n;÷‘‹µ”Ü‘/ƒ+ÑUpŠöBôe8ðAöŠqAðPôqPôt=®ø]Ú—~d?3Ø­™ÿŠQª‡È•{ª4“iÄí5vô] hMáÊ®”6 J§Çªtµ/kjðôò=?$€“ÔAćÀCÔÁÅúžSœ¥ÜÒÀÛIÏn6Ž3g5¹’j5G9¹(¶Š·—RòðŽEU‰W"L Ú•¼GŠªÀøÑp—Æ3zŠ¢râ$íiOW<0¯5Z•Íù£‰Wš™+ÍVÍM(¿E]¿áƒ×?/[í¿°ÌRUÎ&TŽ»%~Tˆø’|ÌÁi”Ìhüô)«ª­ï(o[ö·‘m‹¢ØÜm«±¢cbÑ›d¨ØÉ#Z6بڊ d)¶fµ™³9%+Õ`K²“óO¿¾.r‰.g$^+ .«Dó,—ؤè;r˜ÀÅ'Ø(Ñ_aK*¾Á,ƒ¿Cy޳´ôç6‹‰”f „Y6"W4IfYŽ5oÒÈ\-1Gd.Ê/®z’?&ø{âÌ(Å0/ª«ÄEê¶[.ϳ÷Ÿg»Õ+ÈÄ>VB¬ÊFì²Ì]rªTÿFU¿Ñ”Qî_ ›æÂœ‘dì›·íU¤0«L“2a˜¥¨í²‰;ÝWä*ÕOÈSp8ÄÆý”“ó1CØd9Ä`sHÄVÜ™J®p%Î%©\¸´§9Oœä"øWfÛø-9F…ÎEÎVEÎ Î0\áý«\ÔŽl®ë¶h®ÚÝm®ÛnDÑÂ\±Ë„ªîísÎîàN퓺åÍÍp.qF¬Q&“˜LŠˆÃ¡BŒÂO×ÔìÚ×ÍÍ­î[ç2ª^>ëE©*ÞRÖæøTjäŽëÛ ‚`–Eìd¯¹+*óø_sS"v¬E¬æºõV¥']JÄ7jVŠ6ÄÊåA:ºV¤Žª•¶ÈÈœTF®•½æQ‘L –6 ¦£hœJ{ú_&Kà}ð • ä¼—’äT{ ©G¡Cùj?º/19Š+ûøBﱊÿV¥á«5ÆB·ºÂ<"¯ / /’@åÃ?7€ðì¡|¿õ𫹕ÚèlÔ§¦ÍŽî…Î"NéÎærçu:î]œqÜë»q:r?“äµ­þƒXqB±'&Œ’¸ ¬BäÓi|Ò¨®E90µ)=P9œ*ð¼4sÉQ©$½*bªéTb9Z•ÓÐÑ^ªF¥{h5UÓÐÕVUsDíZÀÍ›+i™­›M–—N£’¸•dW‡„uÅW†—‡G"½j•Z²®•߃BWŸQà4¿)‰"^êN)ÎЇuCà%ðmŠ|êÅú~ZN·H¾Ž+ÁêR}\)Êò¼¯gï{>ÏÙnéI|”þ⯕Á‚µULHÄQÒ*¸å- ¯ÜþöN -Û#j;j¹˜±«4h¬ˆ©C;»ìºEE&×[¸çwn¹"I ‘1I7–¶ý5ZúX¸¨=<—Š ¯N££G1^08T:jq@ôÀóq‘é”yºpPðàóg=1O98 ½ÕUÍ-øÒ>@gÈu««)5`КÝ’õ%;´à¡Õý´ž·JüTd”üRwÚT–¼«9ˆND«ùÂ- щ Ò•­m~f­Ò¨MaB#KUr ?Ó{ü$üu/ƒKøŠ—$Q„¯Kª ýÍQÓ#õô£¡@I8‘}î¥Wª¦‰>³l¨lƒŸ+ ÆçUhN0xrj‹½ÕÉxZ2N^a ¥ÌJ±æ×v—w“(´{ÙJµBÛÛ .—¥éy ˉ¡ò°O ©á‘ªu¾-(âc'Þîwþb©é!æëâé•8ºeXÚ#á^=(ÕU€dšù‘ÿl¯4^!”él]+JéYPÿç©öÑ{Uh¼…W §;eBrÍIwôzˆš•^,:x¬ÑO—PLÒ/|Ü•ÚʲWŒL— 1,“”ŠÁñ!`íİtä²/È•w©9*=Òª\•’YñPÁá1{²1>%sw$w݈Âà–Ç– ƒ Êa4±"…‚€¼VÛ_Ç—_{´¯w¹IG(\ö Ûê^ÛJ½Ö¢èüGÛ‰¿aDr“¶©¥Í‹«CµÓ+ÄSÄMv´®)dÜo4^›èhT³L-1LÂÕÂî2RH]ÜŒ‘“Mƒ`㜣\í¨çl\î"UËшöüERjН•ˆü®ÛÕû=ÿç”.°ÚÁ]~u/xèœsŸ]>ßj’ìíè ªM{ ,X±bÅ‹,T©R¥J•–Ye˜ši¦ši¦ši¦ši¦ši¦ši¦ši¦ši¦–Ye–Ye–Y½`ÛWÛû–u}ÏÜŸë ¬QúÊ©]TÑ<ÒÉ#q,²Å)JR­ë,²Ë,²Ë,²Ë,²Ë¥)JR”¥)VË,²Ë,²Ë,²Ë,±JR”«nÕÚ»Wjæ#èÿ»Š¾0ŸýûH·(¸Þ4_šWæ©þ)¨­G0âÍ­[šÚ«Âì£HáSl©Ål­1ŠŠÂ`˜,V566µ±°ÚG%ªsU:$>­RœQ:EaÒY|zÇ–Ã|w(­VDÝë¤òs”Y/nÃ×0| tº_ÃþŽ;{›•ÚæÁÆÑSŒ+f&34£HÁ $oÕî5ZÈ‹ó Ê>Ê)=Df¦¬ãé\zZN£¹Fÿ‰ÜʹÊi;ÁíÇq¡«Ú!žOi+^.&¿?ÄûBr}WáÔãÅÅñÈúÄ;±\„‡)ø‘cñ£û™;v•ýÍ\«¼Bãø”ý¯øÊKR®k“æµs…ä)~QWÍQ³Ö¥QÕéÒhø{ºëôS|…WÄ‘áPNG²ÓNï)Þû·h£¸\ÎK5Ù­ŽÆæ®›ŒÙ`7$ËtJwN®kréÝÎjæçs» '6»»’I»s·W'të®r8ìWKŽ;s¤îpÖÜqÆg ¸·…„ŽóW7ÒŽ–8Ø› Wͪà”ŠÖlk®Óõ1è3§þ?£©z¯V/ö©K‘ø= %ÉùŠ_M ãÒQO+ø?$§†¡Zív»­ëzÞ·­ð¤æƒˆ´Ê—„œÕ«”‡æRö5Pö!çHÜá=ùO: _…u†O—ïÐôxGæö–ׯJÛÓëSkNë»®»» çfc.íÝÌ›•˲.pWNî ²YÝÜÜ05öºÕï5WÑ_kZz* |OF‡ì¾ OFGŒ¯böe^’ªä®}+™Ýy•áÒ¶µ7Wðraî¡Óþ9ò—KSÍñi_‚DºN¦¥è¾ÿØëO, *ñ´È³ 4“‡UKó4BOœP­ºªè¶•°Ö6¹bæêä¹Ô•Î cB.©Ò¢ßÃÿê‘~^4.•Y‚úEU~o™ÌQrâÙG É—$^§"\tØMO!ϼÁO"//Áø«ž`YG$R¹9î{žÔüλÔwá߆JºhTÔeòªôÕ­ÂmW"£I <—ißñ%ZŸ éôû¹ã禓¶ÓŒÓÝ*pAê)«èÑÏ“¡F§<•í(¹ÕV§®×ÖÝU©[pÛ¸%WßÔÕó¹PïàïDh=Þe^ºI9~ ð{܎䕵‰rºB–£“¡N†8è# .õ\ž*{q}ýVQôDW)Þ{ǰä¼ÕíKµ¶Øšª\®ƒ}~äœÞÀîJã#llVÛ¶¢®RÛ»¹Fh¢Üs²îêuÖIÑÎ\Ú6å·kvî܈„¢LfIMfÙ³:_Æî^/Åúÿ_㽯ìîùøÑsÉ?©E9Sñª»±e/‡E¥Zd}Pj® ïiêBÏ^—‡ôxžÍ4V͵IËæªöq^Ýñ \4¸j­g«\2Ó†<_`j5ü-ýÚ—ÄŠøŠ~iPù? ˜ø\pú»ÍTMçTŸ­¸NÍ­ò1«6®‡EÉܧK§]'GS®Î;œî3vrîNt³Ž78ÜmGâ‡ÙOJW‰¢óÊ2§¹£§H\¿­¤üT=©žÕj©íÔîuáÎC×ýý_q*Ü%Û©Ï·'>Ï‚+ ª»Øª©ˆþÚI«Úm6œ‰V«‘'#¦öÒµZUÇKN8ãŽÿáz4¯Z+‡•Á\6A›66VEâã™èoÔWw¥àÔs`äÛýr-Ñ7E÷n>Ó=eOGë$zÂ9^²‡n¨þ²¾º)=jÏë‘mŠºÂ®šUÖ*u‰_»¥_ ?Ø¡]™´Û ¥ª»¨âŒ.Û•±¢†¤Ø×Ur×4íq)3P[QZ 0b‘3!b$ ~ÇØúŠžÔ²®ƒeû(çðøª~*zì¥æ‰7š½‘ìŽp׬¯•þî[¾f^€š†ÕN3lÚ-©°žÓô—¯þú¨¼^8«ŽN8¸âãøþ?²ì½eÙ;ò>U¶•`»DEÙ|Î+Xä, ¤‘¿*³j½.Úè°l•¤ÌÙ›ÜU{…^â‡C*—Îéÿi/QýTIýï[ÿ·õsR¹lm­Úw q±·6.î™ QÝn\‚¢æé¨#X“®è¶è×Nî›4“$Ìc1™[ÝN4½q6t¯^8‚®_èòpt2÷ üR°=í^~Š^XŽŠ^‘\™W©¦ÔW"¶²›p±[w'<ùÌžî•Ò•ÒÖó|øžþUŸÍJ‡£‰ò„§uC•#k!¶SfͳhÚØ/ãü†{”OsK÷*”çùï¥Ò§CU{¨œ6KþŠTñ9è¹ÑxxxRú²IÚ6ªÈm¨ÛY¬ToXë4@tÝÎçWv—sw\íÍÜîéó•¾oWÍmû¯š×²¯ÍüϾÛ<¬‡ %W­¼?ôü/ùte^ <m!u=ç»õ'R»O³ƒöùš¬”ÖÖÒØl°ÛjeúG¾ÎžOIà•`x$ÿ|‘sjpÅ\ÝNŽnªôõ[ÞÃa°ê:Ž£¨ê9õV½^/?°+2œÂWÄ& ÑÄ-ÁOh[‚­‚ÜU6â©Ç[{W™ð½ 8+2K…’ÈÌÚ1,•­u[¶·(\´j4WuŠæ“.¶åpÑT4V$ÆcG9s¤å]Â"&çhKœÜ‹†ÊåÚë·MÜî9¦mc6lÙ­=2óèñž~—fþïIÌ{ÏŒç“ÒÞ艾ç÷½–0èC*Oûy¶b/,Ã¥·‰ÝÎîÕŽêòÀÉOC•—9éç¢â°„ˆ€‰ŒìøßÝ΢ø÷ûn.ù´´WT“›ï×¶ÚÕQR¸8’½¿oÞŠï³ì?üÄjyOØÌÿœ›GÿÁô3»wùÏÿîWø›?ë?]«oô?X~ç¹ûkñŸGÁÜ×?æ?þ>gôÏô[_ן½?éÜÕÌ?ˆ~Êדì~Èý–Žu‘û#öX\VGìúÿÖGìô¸>¶Gìúý[–GìäwOØŸ±ê{¾§ìÙj÷ºGìÙ|üýƒöGì´|GìÙx¾6GìÙmõ¬Ùõxö¬ÙÖÖÖ²?d[Xý‰ûúÚÇìOØŸÕ°?`~ÃRúôý~‰?@  OÓôúzÈ9ùm'„¥/¯ß ðÿ©Oòüq?ÙÍ¹Ôø¥z9\ÅW7†Rúm‘¶E”ã6Ô_8žúG£Hõx´®–¡9e/*S¶‘®)ó¥]b‹Ô¥ïúzü´·ÚCåK¤ÅóâÉX§3q…¦Nå ½G¤¯ò¼GèÝ×6Uº•qÔõUüßÎÿ'è=MZòÖ¯UuBcAŒØÐ)2b™(Q†ÀK-m~y­ô(ðjô õKƧø’ý¥?÷£õEìÏIè¿oÞ~·ý}7ÿ}¼GæÊ=3hž‰U/óáÚ¢Ú´ÕÆã-«…ÍÉk›–Æîç]‘®\ÉrçE£wucrëtÛˆ£)$üïó5WÞÛi[{‹R\ÏR+ìBë~RWC)õ’»ÕWžÊ‚”9ñ]h=•§ÈUÜé~’nhß÷=ÄþØ{ VóFgøÊ¥ªSö¿ÏÝݵ IÌf6Ž2¶qÁ6­Ù[LÙš•\í\èsüñv‰Ï/DžÀä®Jä­l«Ë& ùbøSceñýü½Gðƪüm›*¿kUm†Ö[9lËf¶oØÚ6•´Ûq›n¯±ìxÇÿ¥ùMÅ8°õB«øð“Áî7 |³)a5GDG=M*¹Ž]ò«Ú¶-Å­Ê0*Ñ K3h¶4´m‘S#D›&˼÷øÄ{p´ž"þϰCÜTýÅ"ñ¥K•ÖÉÃÅn¢ÖÓ¢ª¸i[’;\½¿¢ªç’í»‰ZÚfÙ³d†Md’ %¾ÛÞZ¯ÖæUÅxœZ稸Ø ¹ÕMUUÍåeˆ¥¸ ^üýÁ6±-…{9Ú9>pœà®3_ç}¿cJ—€•Æ ’| /—¹ÜÒèNÿð:.dŽëµb.\e¶¶-†jCÈy9ù…tô<Ò®ðBñH|.~¯s¢ªú ÿÕR:îáã¹øhðcÂ^ ó\Ô»X;®²N*\UºµÈM±UÈFéi¢«š˜”ÂÑsI¹uÕÓ‚±„Mƒa†„2nâíÍÒs±4táœ3ÀŸÝԽؾÊ*=¿‚õ#ÛÅ¡è‚Ú¸Üp—½]ó·ýß%'5¶jM)›@Ïn“ÛƒÈl'Ô{Y…™/ê ~>¢_{WœFùŸ‚= í)[…/¶'>UÛ çå]².t«¶”Ü ü/mí»iñÈêú¿oÕí¸*§CÆ/‚•Ðѯ®è—v+xENÞ+¢*öŽ÷Å]œwL•ºUxÓ¸G¹'sÜ“Ý%z_«}Õ+Qêî±uÝË—dn¹Üî뻋§ws»¥ÑȲHfdÆf]Dº˜g%FvüìW8.Gœ¦ÞÔ;ºVQÝæ#Þçjðys¯7ˆß$¶T»¦É_™B>¦•L£dÂÚ$Õ$‘¤´bšÛ÷ßέwÁoªrê*»oäÿ‡x¥À¦%wŠuj•æþHCÂ!çd'|‘ßõݦ¹¥ckÊ‹`·[sC¥cHdTF-vµÌ!§7,U$#%E"d”A„‰&J$ù}­òõ¯ëªõ…ë)ÉOm.:~î½óë¾C¾•i@öá®Ê¶›M¦ýÇÿ:—}f#¯’?û?ôՉÀY1´&‚*6ˆ-|ƒ"XÆþ§­­{Ýi©v™Pãû¨'˜+ÊÁìªéÁŠ»ú–h¦?Qs0ë}›dmb·µ.w\MuOdžÊŸ×ìÓÀª¼½1krЗ1K}%¢ªÓ3$ÌG ¶TðÉÜÏ àÿíÚ{ì®×Ù ît¾Qû²•ÆÅäõq]QWÌÿy%Õ å:”œKÓÒx鿣Üðq«eÃ1_ºïŸîv­ùVÄ*6²Õ…ljDZÃØqÜÛk¸Nä‚®guÉ„J‰FÓMmšÓm¦ÖÝ'IÒzß²èû_­ö{¨²þ`âU/ÈïáßâȾ,”o¼,®0q‡.(½ŠâN‰œ×+ÀÉd­Ê¨¸Ëä7ÇVÀ¨ÚÊÚÔ¶Ãmxš“ ‘ž«í~óé-8ÙWz•w°ûª•kâwñ]ù1KÀª´DPuéÞá÷²w„ï!ïûÅ/MU|n¶õš²ÛuŠÅFF2lÄÍs²wwn»»ÃŽÎé·Ž8ÛŽ7{Š«Üíj>ÕG·¡öÀ÷‚÷‘{Ä¿Á)+ðÈéÐéà÷$åöz«À*ë$õ2¡Óñ{-–ˈã¼_K%¼32È­‘U iˆÅú娧5Æ-¶¸§Ó£Ó’Ûß åP¯GGMu:(rC¢*àéІö|}U²›’9BÜÕ9Unb¹jºé9w?'1î¥]ýUàC›•K­ª½ï]UõýÞʼn·íüTRýE+ÍùžÓUöV†6mQmÁUº+¨H„Qúwin[L”F¦´…CC`Ë6ot‡ºƒÝJþÅ ý?­ó¾&/x‘àѤ*ºn*¦¹«ÙªÕÄôÊ-¶ç ²‡€Rò”<ä‚ðiàÇ‚½ç‚}^Ðò|Ÿ'Öõ½o[ÖúÔ®þ¦á*¯øÝá7yWy*ö€§äzïÚä4.ëK‚®5&Íš!(‘Ri*`$fm/½ï^V]ج/²Zãû²’úõçä»Õ3.öGö¢-Ú. ®rOdŽqKÙÓœJâG9G¥—ªæÑkœÝīáá7¹×m‡sѢЛd1Uò­\]ÝQZær˜“&9ŒÉ†D$‰(“È)¥}^ªùêú½—æénk€'¯ï¡wÉ}5ç(ÛÃn‡ëþW•÷T»‘/À|?¡ôýÐ=µS)û5PïÉö|Õ.Ù›`5 Ù «JÊÚ66ÛJy?'äüù=È4O3K‰"{¼•zµ7T•o’Þ«×Wà­f°¯OZü­¢ÖêÜ£cAdʉ$#•ĹÔÁ×qG9ùÿù÷1{a5 º:¿K¡‚9Þ}9žoþ=—غ“ÝHzŠ_tùDûj]5F¡ÓÐà>©]ßü]’‡qÉb¦¨ÖX4o!Ë©Í[¾GÜíW×Ôû²…´FÒ•Õð"¶µVÕKjÕUµ%³¦Í.7ãz^—£éz]º6¥\Çjެ:JmÒÛÑàií ¾7pe/KhÖÝ«\ë¶H×2#wu£n5WEiÍÝ×5È6+—v®3wqtr]×uÜíÝ™ºF$Ì…Ë©EE°ï¥ÏËŸ§•çã¥^:¼_~À ŽÜŠ6Fʸ­•²éŸÌ×ûê]¢.ÕK$åj¥ðIáEá…Jõ>Sïþ9ÀWã’üuW‘ØÅv„ò>?ŸëúX¯VI™d+â©ÜAÍÀ]L¾|yŸ¼òä{”žçi/û•KÄÖì¿?þÿ&I´‰6úÀñCŸNÞ§1³ªq³†ÍE€0I2%m›mmi¹ùÏÇ=\õÏ9Þw³PóTö/ó„z-¶ÛÒW¡ûžwúJ}"¼%O 1-5Sû¾#¸r#´ÊÊ[5FÖ–ÊØÅ±¾5ÍpÙ.îˆÓ»ŒE]ܺFÖ6‚ÂOÎÚ¯íkoUxŸ‰øJ­u+?™*\8^ª7·¿JÒ\Òü8ˆeK¿“DiÉW¢4©Ý×}¼Íò„íDã2ˆ¸Ö)©afÛVɶ¥ßºÞ<<¯KéuEwÊ®ú/ÜJN²N±+¬‰ÖHë×Cú½Ï[*ëU]l«­©ë¢êƒ¦!wÈà¡Ý¤«©Rðz†©Mö̳“fŒ™’$d›HÓ2d&J0ÍÏ{ùgíý¿ë[¯ì;òðÕfV#0ŸÓQ/‹í¢ï(Â{…²ºõAÒþO‰x—O ăä*'d ­˜µ½Kch¦aŠ·-`ÛY¬Ú¶ÎxYJ§KO:ñÑß®ŽöêL-ŸûRS¥z.géy_Ôû‰q¬UÜ~ÿmäžM#mM§rÇq»º“¦+HLA'wk¹ØÂ't•;¹f±®nœé+‘ˆ®]9¹,š1'vîrWuÓ¥ÝÜns®ÝÝswßý¦­_i©Î |®ò¼ÆeKrqœg×Òç*nùC}ú¯8§~8ÐÛo¿‹ÍÊ}q?»sIî){…[r;T;r‹ˆl8NŒz-à•ìÊyô7yÞòT^€ªÆ¹_S •pêô´]—¾ 9økçÁ‚UÆÎsà‡BNMuµVæ.,[šWj.ŠŽÒÓÃíCÜU;¸»¸¾,S¦E/±Ön~6Ñ2+»UhÌ-22ØÚW½‚¼WõqC›Ú«žÚ£Š­Ì¶åa iWÛ{{UýÕ«÷½º¯û‹ÜIî3 ÏA«ä¨yxø¼e^-_“ÐÔèøñ³¶JdF’ј[diµl†Èfç}Ì«ðANžé—7Íó}—eÙv]—(U¾ª²ÇÉ”¿¬´üŽO‡×Ñ{Š¿/FÆÚl¦à¡WÝ÷rÍѵ\ã2\¸ákv£w Ú‹¢5J ¤”,“R"2cÁ¨´Iƒi„Ƙ½çÜÿ{­¾?m[U©ê{G§'§C¨ôäzU_¾§}¥æ ÿ¦m¨Ôt’ž¾ MÒ— ¯Yº$z Ü‹‡º  +ÙÞ¯gÏRðïL—ª³¦Ú6Ù1"dØÍ›c33LóåyÄžb^èF¶×ê«Fý׎r(ÒD°c6mŸøt•]!^ËÆ—~G.ÏÿY^âïâ¶ÈÓH@á?£Žâÿî§N•ÁÍ0™šÞAt:G4¥ÛÂòCÈw^Ýî"çµè’¾<•?Oø|âžæ«§£ó›AÈE~Ols)rJm­‰°ã\n£…“;§u¹ÒäŠç"éˆåÛQˆ¹®Ñ¹»¹Î›%¹ÝÛ’ L$ÊH¹NwfÝò—õ÷Ðïß!ÚËÝHæàíÑUtþ®9oïi¯®7Š×_Ûÿ¯Sx!àæIàÒ´¬Ê_¯_gzð ûÞ X–aЫ²ì7y7Ù,ƒ6ÊÚ¯]ë){t¾á/Å‹À~)è'ºUþw’CÛ”öâ{z¯:‡aî!Ïxªçèú{*èRëj­ÊžÑÞ“s¦IÍw°è‘ÛùIßEm¤ï÷s<Ï Ùö}ggÙøBð‹2Ÿ³­´6±mcj«jž-9tžRâ ÖkqóqÁÛ»\avë³§]Ç¨î‘ØãŽ1œpãÉÖMäד¼"®qô–›U˜¾-OÄUHêñE´ñ=é^ö.Öôàý?bG°•€¯}UåþØrD®šGÞ"õ=£ÐxŽ_dÓmX]·5&+†V–Ûµk—VÆ’–„wk»»[ MX&M±«|öÚÞë Á…ªUSËíy û8±˜ÆTå³4áÂm‚Ax1x:¯YÎKœ.pz”žë §»Ûi^*$xUákÂÞx¿ ìýÅ̃¶6Cƒe\EÁlq¥™Æº¤×-.I¶å¸\ÌÈÀ–!të’î¸+kœÕ¹€ 2I)¢¶³36ð•Îzwáôãî‹õ9úWÿäºÍmfc0ûʉ»ï[-—S¬ÿo›Ð¤õ•L'6-©ÿj$ïœ×þœ‰vŒÔ1FÕm´Ù¶Þú]·m¤ó5"ýº(¼æ4Ž3+úµ3jþ)(þ]õ_™ßÎÿõGתôHÿ€Tà.gÖu&®•èôÒšY–c0fM,¬ÌTäɯ•s!¿‹kRØ&ÒSë!åE:òaxºûú,“ߨíkìb²5äîí£ü|¤¶Å\‰ì¥\^ð[ýuUWP—Päzao½5Ló£Â••Ru?ùÒzeR¶š-±1bØÙ’±¶Š&L$ÂFC"e ²Íšñ¾7¢ò~¯Ÿõ~¯§º)ÝâÚf«6Û3b©ó>‡ÿßÖùú÷û©;Å£lÛcax ´¸ìUû?Oƒ)ƒjø)}zTçéxš;äœÊ]°ŒÅ³mW”ƒ0Ô$„R#}¯ŸÛçöùÊzƒˆ[+Y²ö/oñj¯ï™‡Ü‘.WãýÏ'Ç©³üeE%šÒ“h Ç+Œ¿¥I?£Ñ‰íh~_#Ì)ûßôæj;Qo•ÕºæÚŒ,£#fQ2îè'.ËŽwùß_m—òŸoVû}VæÐÉè³'§\^kN»|^AMQ‡ÀË2a™>9>ÈŠÕ®_—å÷R®1½Ôœlšnƒ_ª—³«UºT×Õ§"©í›=Væ'@=ñ^ûdñ6Ócg~ŠW/¾ªñs’]Ï2®ô†UÁ2§5lœjís•È×1´çRfѵXº2qû·F.Aéõ:2\‹NY/Gtelu]z%¥#Øq{ÚHC Ù.—©(¹W…Ç’×OõÕ´¿µ¶ÆÑÇn8xUæ9ƒÚE¹<–C›­”ï ¤q·3k•c¹Ó´[•ηÔh»»Ô™Ý¹ÉŠå\ØDcZpÎ81šÓâ•Ì|Z­ñ`ø…8÷r7ÜTtêtðh½Òœ8ã‰8ÆÛi~¢mÿ˜C—©.âGå*ç¹_•Q¾*š«y-Ü}þ ¥­‹ßèÛUðÀ\«¡§SÇE qÏÆç¦ço qáLú$ìªî˜VašcL L/ /®4Ûm˜r‰YßÞE-ä(Ýtšv™mv»_ïýþÏßÿjŸ¥È«âàÉwqUz+ûÿ÷Óý9y¤;qX®õz¹[f¶Ûm%ɳÉñÄãZØúS—„›ÿû½y¥ÌU[´@1d%bÁ$k36˘yÏÏüwÕŶÌÚû(–‚zUWºu åtºJ§#Ré ê$ðÅò*»ä¸Çqš/….ë)]0»r0º`tÄïzd=0;‡xŽl­lXª052H¬‘dZ4ÍFHÔÑIE÷ÞÏj½§Œ¤ÿ*§Ùc['ùµ“ÛÉNá© ¾ÁHyþï’§9äŽÎvÉäŸôøT¯Éª'l›<ü%~oø{£É®†O‹†ÖþÌqgÌ×ù•Jï¼Ø;¤­›h¶¶°Ø3am¡yo-å¾ >,ó¹ÉÈm^ûŽ8Ö¶¾‚Hü/ô}fKòjl—†Ûc¡ÈͶ‹µ¿r•;FC˜s|ä\Ò_¹àaàJöZ½6­éU”j ‚𠔥 I¦`b&„¿/×=•·Æ~okÔþ[|Í_ˆ¡ìª> šGÄWÕÒP.sœžŸ¯½§{õ í}ÏÖ{Dø™[i³coI?‹òø{*øj¿ÁÈã,ß2uE¦úœÔä¶lhm_"–³mº¬Ú®rܱ±PÑ.V8×6åwuqÜdã¶fÌ•&‰EEøÝÿñäÞ£¦›[7lãm³cÒ ï÷;Ÿ›÷èôýä-±Íþ€~“Ÿ¹ŽÓå³ê·`êÌA_›¨é1˼5Hiÿ»…‹-,²Ë,²Ë,²Ë,²Ë,²Ë,²Ë,²Ë,²Ë,²Ë,²Ë,²Ë,²Ë,²Ë,²Ë,²Ë-àzÞ·›Íæÿþ.äŠp¡!!vÍ´fields/data/lennon.rda0000644000175100001440000011217412560751565014452 0ustar hornikusersBZh91AY&SYOö_Éi<UýsUUÿÿÿÿÿÿçÀ@@@@a Ÿy/kJ E€PUw)@:hÐA@T) *JU*ŠU@P H$¤ ŠÓ@@)"Š‚ $RU*©%  U€P@ Pª)"ŠB”*ª@$ ¦åyópC{Šª!B€ô’”¢Š  4›ÇßQª€ Wwx>€H*%I"% HT©)D¤*T©GÇÂwuE€I@U  ¬uB<5OÄ‚!ÐDFSÑ ™z 5?B$HH„j'ꆞ£ ÓM4ÐÐ 2’RISÒ1= ši§ ÈdІŒ ˆ =R•#Hô ˜0‘0HIêbÐõÐz€Ô ÔJ•A ™€È4 Œš3PôµR\±6ÚDÐé›(\B¥GIJ©¤)Q¤t j”AûBº)â] )¤BSTº¥F(U4м°¦‘^!P(4 ¤ M †hC@"Ri*)@¥ ”ÒŠE)J&‘R•|E8€hB‰4©H A i i¡GBhiq(R4PP) )K¡CJ&„DÛlºCJÐ4ˆºE4&Òè’€¥¥1Pi @iB"4:ÒP:…Ð&¨t£µ…K Ó¬I¥ Mµl©ˆ†€t€i£Û4KHe\ÕÎZ5cj®Dî4\³»*‰ÝbåpÚ'v¬j” %"èiЩA£F‚ˆˆkJéh6Â:4!k`²\ìåvwv]:@"i4™q3*BdjÀ ª¥ ¥¥WÚζi¶ÄQf*,‹8; ):l\¶,nI±mE¤¤.H ¸«I;#б¡Ðå$Ó¤s BU¥… ØQ¥»ºÅ¢ŒZ.VäY6µÐ±"$Óe&ˆiaӔ˪\i•Õi0°¢d@Ùfpºq—ÌÑ4Mk+S É(æu-¬¢Ñ …'ZQ‘TÌÆPšZW9]òixˆ¹En[–®ZæØ¨Û"Í4ɳf¥¢Èe5•PbµL¤S”I9L.$Fv„ÒH)…œf ¨6W% Ãé†Q†Y”pÕEªÒXfI‰Ë‘*¬„í2(» N];LA-Uе,åZ+B.™SK¢šqHÈPŽk5 RXR˜¦PQfu¨åÓ(ävYP©t”°¹E2‘S5 »4 i‘ršdYÙWH ˆv P¥ …•Ef*†’ ­ŠS0äPWS™––f´ÑY(±UM)IQ.™#‘]%’RªÒ dM§º™–™®[„h„sZ]FA(°¤Š£ ŽJ–,µ©ÊBŠÚd¡–J ©Ó#-M$e§uèæØˆŠÑ]p¹’j…V¥IÊÐ)+‘–(du%h†uK ”¢•"ª,0ÖjR[Ni©Ä.’ÒZTT”BF©§ R :Zœ.’ºAeΑ­’Y!IÉJJCg³6•†uM-%™†V&š†"¢e$R# !*²e]CiSTVFrR„‹ibAA¦,‹ ¡Î³™bUaH"Z¤œ‘)K eÔºLÑ4éhHs4Îq%*êf¢"Ò°’:WJÔDXRŠ´ ŠŽUª•™‰•uäX˜aÊD2X–F‰™%©XH…›#8´¢¤NhI$¨Rb¡ÒDB®i¢pÌÈ°ŠŒÒƒ¢²Ó’ͪRœ¨‚¥Na™¥J"Vˆ%(¢%fY–šÍJéQBÌÍRÊ“3”Y&%”b"¡š§P‘-(0Ê UV´V gJ£ 40¸i¢¤&¦ÙaZI¢B˜ªŠE¤E¡JI!šÍ.ª‘ftU©%I"U¤IQX¡j *!jUE¥†ª)bYDŒÂÑDÂÃ$9ÌZF™„›Hµ¥(i„§%#š˜J-I*¢ÕH­ 4RÄ,ÐTRÐÔ2Ëg8™ÐËR£SšÊ14£XbŠ¡D*™ª‘‚ÓQTæ"X†’',2ªí,2YÌÒ1+¤¥¨—S RÍQ(䢪\©4V‰Rn‰„v.2îáqÝ39ˆrP‹fbQ£-†™$ˆ«&d•s¡š%X… G"­K "‹CTêÕYH‘¡H¦Vibr.†išÔ«hµQZ\(’µh¤Â¸a‰,¥H„Ŧ‰‰$«P°«KD¢ÓVm刉ÊÎAbI"IÙgV‚²ˆ‘iJ‘rÕЪ΅¡ÒE"Ë*3Q*),¶a˜`§4”Ρ‘šŠZÄΑ h$š)•œê*‘(iÔ3*ªÂб”\J³!+2 +ªZȱS#ÓETæZ¤¦‘ Z´‹…Šh‹%K"ÕUt‰HÑ+¦!&ef‚P\ƒPJYDuš’…d©`eB…š’ †H¡ªa&Ѝ† „jQiT Y’†R(R¦B²¹ª"‰ÔIRŒ1¨¤fÎQ˜t-M1‘ ¦™´Q)2°K"DŒˆÐÒÂ…9e…fœ–¤µL¤JI"Qh%̉4Ô°ÒPÛ"NÈBΨr± :‡ ‘*¶QDRl°ÖHfª™©(…f$DÌ$-$(²„E&J*%h ‰Èä§K¨Õ*TI©+(ÂJTéT)R…kD£¨b)¨[1†4޵3"ÊŠ̭SXD©e)E†™l(ÃCS)Sa h]*,E•(S•¢Quª¥…VªÐ© 2Š"‹ -®‚'“L¢(䙡X]J Q P£K¥›%¢aÉj†˜©¨ÅE•JgV.ªA˜RHt«D³N,Úi–bË$£5EDÎHŠWX©…– X$³4Œ3Ö¦4ÓfÔJ°³QDˆºÕ#¥¤s™ªÐ¬(É µNjÔ´ÁW! U—)Í(ΡZr’ÂÔ"ʨ³„†) 5R´M%6J‰U™J†…P§M2TT(R««IhJ!X¦fY ¤jTšb!sE¬¶Xe™¢‰ÒQHÎtË©ÔRNVR¨-dF[U2"ŠêµCQS¡Ò¤¤À‹P£LÌ2.‰eŒ¬£)'Ôñ:%\ˆJˆÂ«¶˜GQ(¸ªDsDˆêu  .Z!©Ì¢Ð¤‘"Á2Ú*YJ¥*h›IU¦H¢¤V$¦SMa"ÒRÒÉ0¹iÉS ÖR–hY„AÊLÂQQ¥šB™™˜tP­HŠ©Z%°ŒÚf,„BJLN’’ \¢I (”R iER¥Ö¢f”H†¢DšX™ªX±i!),2UI5H“”f%¥UÅL*-0¤£%$%$ÚJ’-¢’ª*f‰…†"¨ªH²µ Éi%Q¥$ùÓÔâ&•H¥©Éf‚$G8Pb$­BÓRÅ 25 ,¢4A èVV,ÒŒ±NQAIq £,”‰e‰Šn»™RÊÆ[D´ØIt-‰Y™rJ¥ ¥d´(´+Qd„ŠDˆZl³P´´’)ZJ¦ˆ«UhIhbdU'ZT¥Ê)YTjit‚“2“D¶¢k>a^…+¥‡H¢¹©FP•­E¢²B8ë¨;ÑÜÂ’ShEGFHd%"–&\ÈÊÂ$µ,3 P¥1J,¹GPæi…#9E„RÎiFa˜$‡"ÎVÖs’ ij”©¶…¢˜u*Ë9¥U-Jé„’¨¢̲٦–¥$…Þ»'1Ú% j$E¢ER¥uO×nTYIbj¤© ZVi¤µLç!(舒ŠÉ ¶h‰¥˜JTUQ¯wq-¦ Je’ÖZq2³ PZT—DR,5eVZ«S#N‰&ŠiÊÍD"èqU¦šÐ¥œŠU¢+PÁH¤Ã•ËQóþ÷½jš’’˜™rµ NV¤¦( ˆ…:)i!F!+V¥…RW:Ó ’‘¦- -is•‘²µ22.ªÔ% 4LV¡VJ„daÕDÒ42ĸ¢ ©¤XU‘,¤REYfrL³ "QPœÜȰ­E$1Ò#K,Ó2¥S(C S‘œ¬TÔŠPÚŠ†ZræbrÌ”ÌHÄâJÉH“šb¢I™Z—fQªTJ"¨È¨XšfP¨˜„RD¢¦‘*‘H\‹ª$£2£# )KJD“F¥!Q-QfE´Á :©ŠE*©­L’*„™UApÂÄÉ5Jîî9hR¨RÑ)M6R†(˜–I-,ÉM1RÓ¨AM $±¨Ã§M%L 4²+gEU«H‹¨lË9¡r”X¥(´4³P¤"©3 C8jT¦Ð.‘g2 ’rÄ´*Ö%*¦•…H¥¤¨Š†­E’0‹Zi¦&–•¬µS-˜IXª"_ž]Ê«¥¦›-Èå‰RDj¦hj„UeFª*%*ŒB̉ 4¥9REdb™e"‡ZÖ?µ¢™Qš#)‰IˆbQÔ¬—tý|õ1S¤*¢äj¤*Ó9¤¥`™&ªX!‚[SjI)©"RD¨EÊŠC©Q†ZH]$(¶¤Ñ9EZˆ(’VXikfª¤¤…j/ÇŽŠvŽ¢¡R‡JŽZb&b¬¢4³šÔ#-0ÒR–e›Y.NSš¥×`îã€;œ\9ˆK)ŽR™j†È”@ËW×s~!Áîáfò‘³<Ù÷†½è÷»·ÎçÙ ©=Ì@ÄÆ“U•Ì¢©í€F æ Ѿ:µÜ„ B“Xæ1m³%®DÖ6Ó“‚©¦*Ý£!"mŠc›»›!&ÖFö»®Dó•äy¢‚rëbˆG¦[SͪÖk Í»•9[ÄÝܪá‚Öâdr4ÀÜÅ¥nåÇ“ ˶Dá”™lB5eNmæR¡¸&cI¾ª;^Q5±º®æ]k$U¦®>EÓSaŠk)ƒvé¨Åpª×dåä¹y‹&2µyrjÃ#z+«s$жr,ÑXÄÌÞMÌ•¢\˜®ËkÛ-2ÌY™±8kìÛ7[›ec²U‹f™ª lË›h5ŽÜ&ëÚòeÔnMLZ¤[·9’**Z\á™›ƒpXà–Z÷1S qÖÁ±°5†×]…æ¦#2‘›@Rмå•ë2scy±Jó™Œhz¶å¦Äǘ®lB%Äñ宺ó+˜*Ö0NV†¦¨µ½–[-™*É1Ùm¹¥µ¹É2kumRÃCTK37rR=2¦œX¤91c¢£b³ѶôY˶¶æk,Ý287²¹MÇvÎ |ªÕv¼›¦ÖYjÌ,ŠêÌ5LÔ`÷3$a¹q]'5ÝŽ"¼¼Èl¯Z—fÚŠÈö늼#×fåÈÕ’L•îÆä32lÂ,¬m˜¦½™š,¬6Ô76î2`]‹cƒÇ^(¤^å”3,ªîlh™!RuL6á0LÍÊ:±ãÙT‡‰³›»F¶ÔYªWšÆæíÍÊ;,Õ´W4‹k¤ÕUݤ™nn(ö5Æ­y¶½Õ’îM•CpÜk5LÙÉ®³ ÛZ™¦]šËtnQ¹»œ¸íey9¶jj‘fíW–ædZÌÃc9-1ª=›3ní#Å„XöƳ^é‹T|rFn¨äc7jÝÞM0ÀXÌsJÝ̹‰™6E…ÙS†V#r5®2Ò¶®“w[Yr¼£´‘6šŒ²*Ì{.GŽfr;rë5ñÅ»håi+¯VòÜÖɉÕfi»É›µñÄŠñÝ×CZk9ZÁ`óY28Ú¥™9 d¼kJ©ŽµkbÈó™y‘) Þ=ǹ͛Ê÷q·«S™uæp37Žׂw%nÍÖ.Ûª†êÕ‰·µÌ[L|‘ÈÓ$‘Î\Cšónµp˜³6áucËDö\„’R2™t™V3%)¦&XÝÓb»¯e†îÌqcy»qèÖ·nÊ›dÍrÅBãÕ*•T1¼iͳdä²Èµ9Y»6+ 3¦`¶*ée*ÇšœËXö¥u§»vLy±n2âwjjr¹U™x™vj×’ÜM]yµlZÜàÞ¢®’¡V¢ÖÉirƒ0ˆèI-JÔC;(.Q¨r¨¢éÄ-î&”òvxWJ„Ê¡‘D¨QÈ¡BM *«C¦tŠ2z¸™ë¸š~ã„GŸqeEæZq J"‘õÛ™)äê9É>"˜‘\È£„†œÐÑ<Ȫ'UN…q.w@Â'^yGBD/w;ˆÈïèßqã•4U¤ •4²¥MÏ ¯S2³H´ïžÏVñëÞf‡Mé|z|Õ¤h”b¼ð.{“Š#ˆ*•è¡ÀQƒAÆË™ ljØ:‘ÁC›¿Wº_btˆîC¸‘&wÉÏ’W¼Jr^Žp§5o=ʯtn^'tsŽE!MÌï'¸UçwïzôL¢O3•8t½Ïruny9#­3É5’ý\ù_0r°Zerå^y]êÊ]iä„äã¦iÊup$÷AóÏ½× (§&•”®´ä#žHA»¤s—*ó $Š#„¥*Â*Å$„¥g ÕÈæ1‡8¹Š¼Wg‹†f»Oå¹äò±úü¾ô:Õ}{Åæ÷p £5‘­î."õ<2•¢éîãs‹ˆ;»’‹¹íÎ #"‡Dr I€CSJ ‡Måî†;îåÝ(-â§“ñ#É{»ŠeW®MÈÑwO2'!çº&dë¹”Ž"_Êäš½)úë ˜—?‰÷[×qÉM/w(I!ÀäQ ŽŠIèº%’îã3:Êsr”=Ïñožxó¥tŠGÖ!Qæ•êåe’¤‘ATÏ¢Nˆˆë#P-^·=ÔáG"åfQVIï\‚.áÉ@ù‰á9Eæê©U’bd|—Vdy8ê·"èæâVªLòrtýÖè{Ýǘ.„îÍÃÓº/t§½k#±¡Q4€¦GÌ`ëãŒ#‰9Ð'S„š¢ßJwUhsõÃÍ÷$ù’ÁÙ8Ôi´øÄ ‡„ÊœD’P… ‚‘0Å.bupÌóÉ×ÖïŸvuø—ͽ‹}JÉ çIõ#ôŒ­Ȩ¯ÝÉÉL¾n¥ª|wœ÷“$è¹zžîòwª„˜ V“Œ¶) 9kåÉJª‚ß½è·%Þ½èr,„œØ^Çvê”J×Bò9çeï5xÅik•*›Q‰Š pRqƒ¶Ù$Î+S¢Ëe#M¤Ä/­Ï‘ôna #†4<¼ÜIQ7rõ”[ß—/‘¯]õåï\œõÜ"UGŽh\¾MÃï07]žKÎÒ¨Gt=nu—£ž=ã…\)äh\)áó´®k»sÎFá.Uy»Þ^‘­óñQW•å\½G›pwÏ¹É ?}ϋܫG&[RýÝÿ5ît’¡áá~îK·(œCã@4!0ÃbWR9]¬@©Fpä •Ì¯  ¤”=ßG¹u–d'PÂãë‘~|¼ªPêÍ ÷(©Òr ŽUF*èR÷ë»åï‹òÓåIDû0ÊÓlzq„h0Y+A,…*B#jh†Ð•MHý“©¢½w]äÃc­ê‘6œ bØcjY"eqarñÆÛápCÇ2³ ñÝßt¸w›Ã ÂGDrB¿:ñKÝO·†s¢F[Í:B딯1*Œ8 Ãèå0Ò­0"#fmòýG¸¯¯º9äñÌ®x©R‡ÜY¦¹ç‹»¯zóè…V4ßÖ „–©ØLB·mUÊíIÇwr7©8·0ô³^HåPB!!Õ Ò*6Û‘Em2¤d§º:”…ïD‡#¤{·qï®ßX“î.çäxºnä´ûЈðwÂA©P€N2AIc\±‚•¡TšNáŽíä÷Y|øu×x|‡9TÆËTŒà…–)P«R,Ç5î¨>¥9òrTݳ]ØêsÙÞ§Åyàó{˜sÔ$ŠKD*ú<÷–ZK=Lj|û7ŽÈ5©Dpq¸a@ êƒw9ë•ÇU]ÓŽ9cŽ×8^NæÏ{ÑÞ–†¼Ý3RÇ›pQWÆ«M0®dŠ+’YelmØãÞ×}ßwºä^ šhâŽÉ”'£#hò§¶ .=ÞÞT,l›ã«<ùiË7QH¡îÝ]ÊÏ*U»ºL¼¶ªráÉîÞ{Õ¼¶¼ÁÔU½ãÏ»§ÊÙ_$wžWÏ;…fGyîQdF¢Šp°õÇàDEÈÚcºÊ®:¡–dF–”TÌ©>½Ûº¸‹+Ç{¼wŽOY‰Ã7£¸·f\µS¢záå†Ea‰ˆH÷\Š­N‹ÝÝ7»³øû;¯qÜwp+6ädµ©‰yÒî¡bDæ ·}ïsSnîrst´]]îÇC–<¥U—R¹ÑÇ\Ï"Õè„èæÜóº¬www*” å\ˆÓM5'uÌzÏsÖDy$£8ø&VGËM’TÙkmñø×_·—Y¿.ò<ÏœøOT]u¹žá²^½Þó(>tt\¯»Êâ¯z×ÕÕÂļ=ÌUi-ÏQ|QÉ:µB¾â¹W ܼw <òG’ª5ª½oqC5 zã”|ÜÃí^ç¼r÷Gͺ–t§ÉÌŸ¯Ãï‡Îú¦TŠ<½¥Ï‰÷ÙUeò¨ ^Ç8Á;$MZ¨ï®wgÌ{ÝŸ5o¥£‰îÈr¹S*,ÇmäRµ +rÀddi5 p%Årª¨è£M‹– 2Ù™#_Ýl†Æø¡Øú œg(Eœ’6ƒ¦5ŠÎDËI¬8Ôr"8ù,#¸yt2 SÈŒ‘DÆŸ÷qÔjÇ9']ÜÊ£œˆc~‹£çÞñC{–SqÈõ É2²8Ú&ÆÓæe ó‚Bts×V~ûܨ=là-$,O ðâ± CoL¡û+‚@Öïɫˮ^&êUËZµ°R,840.êJ—6¢^¦nIrhäiÁm|¦8,b´Únîbnd¶µa"µ¤ÈpµR£”|“,ºIÉ»™@V}Äù÷¹Uê—yÅÒ-g\븮ҖKRGÉÂ/—ï—îú›}÷wr ŽÈ, ž0ÉT<’Qdc'r®ÆŠ±FpÈ‘ Ç9Â(ÅDR4)$a¾ ‘¾D줽ù&q\‰ÇíN‰¤>Hš€ô‰Eؘ±æHV…·¢˜Û€:³%>:(W-ÃI(sÖèáRdTg{Þ9_2H’w¨:Ï‘^;OXC‰ËV6¢¤æH€{pB 4!®¹iš5R8IÙiˆt»-X¢úŸD*• Tzzå’níùÖ°ä 4ÅqÁÒ¡KD@‚)–VP¥Uˆ1W ÐG%Û»¯®ÌÊuH{®(_wz½s»¬Š]æÄ\’–Æy)܇e5¨;ph¸ë¤uÄó¬Ó™óÆñf[+‚&w3ãÞŒèwÎÞ¤ÅïÞÞjoÇ®QyQy–Õ#G 2*D b¯|õzãÜ2>ãÞ§À1ÓZêŒÖñô™×”o®•¾¬Ø¬Å‚‘´QbctrG d±T>7ÆC˜íOÃŒyÇŒ®U¦_"‡kÃŽ° hjHÚ!MÖ›kðSZÜ`«i{8ž¸§Ø×«°›µ‘1‹ ‘Jçß®h–»_!I'e•Wι,i„Ò ù‹m÷9Ð 5Žýnfv[¸™Gà 0¶ž½ŒÒ,²IÏ{˜bgÆ¥ëQ ¸ž åXÁiÊ,m+Æ Šh¡áÈŠù"OÂ(–{³¬Ù£BÐvröa=|kÔ`§h´×ƃE³ÏÃ9¬m7M`4Õ8™-*•€…µŽ,•8ð…m×’C2R¦DfL§u«­µ‰ZÙµÚª[+¨W²MwýÏ×q"dé×R€Ý€„ŽK$im8²XªŠ’Ù8(ÜñÔ›t3"@«UV@ ª·“‡+ÃV¦,Mš**rocÐÚþì™8ºÇÀÓÄ}Ͻw?ßò^ž,¸'Õ2ëÝrFµekD3:­ŽåìI#®Ÿ ¦¤T­ÕÂA8­êšÎù0"*“á—ð¾{˜xCx/"TЫÙÈ ­¨,E :ÓÜpdGôä’áæ«ZIÓeBM µŽQ!|ŠF&q¯CF¤kG[oÙo#HiÈÄòZ0Ü[¦ÈïÌxÇ÷¶¡Ö›‚ð¡:ð²<¯tÈ1 >Úú€yöã:D×® Ýw€³²^–>ó{9ºl$‹ÒW·ÛÊsgdî6)rç¯D"ë Ñ?‘«VEìäËÉêpy¬_wkZNÉôrDëm}o׋¡i΃jíÌ e5¬X*5ŠjÅ1B÷m5|ìYŒÈF1ô®rO•à¥É(˜â°DÖªðW +ø<ìÑPé‘¶ùHÓ]’•Z ¬N0P ½ig7ûûw³|ª^›‚2câmSÆÅnuò¬:I$†n0'M´®„ú’(œ™$u¸1+dª'Á¸GÉÙk«-'(ç#¹˜«„ Ãë2á¼×Ë$­BFÓˆMC€¢a"ÂÆ¾³—rÍ…F5ä¹»w-6 J¢yóW«®0"âÿÙéhDù¨Ã°C§µÆF4ªdÍAXu<¹rŽFM©§b{^…^L'1HwêÃÎùÓÊßT9Á‘„KpàI‹ä£0„YJn;¾Š’óèús¼¶©æ76æ¸J`‚®be Fþ_^Évèä8$0Äê^”Tw#×NR¬‰ÈÓä®´í©µi9c(­$eÍ•TÍŠ-–µÆ‚Ë\†û™ï’ÁÅëOH3´[lA´Ì–Þ½­I 5ߎ«l^ãÄ3"Èñ}n,EÑjËú»¥Ý‰¬ï¯Q›¶ Š_É…jüÝ÷«NË“cY•5G›"—#,ʳãÙÃGã”Øe &Ná?©pI‹Iú“|<6U]”ÔHrŠ3-RÌÅ™r*ªi0Û6fšælÈòw+ªlS›¼4Ò¸E×p奓nVcÌfUJî0d§ck2Ë*q\Ȩ˜¬âÁÒ[$­©ß«w ƒª;y@’¡Ø™ò4T¬àuü;–yÑ×N ¢)ïC@Àœ‰œDÂUJ`Vº}dÌV´µÓW¥sYìÑ€–’ãN‡Y†åÊFþŒn–‘>߆Ýåq¯™¶Û³zêoŒV¢¨r{ì˼;]ç±Å‹Çɾ¸ Þ—7t,g^Hª·Æ²M¹SȆ<6'q¨š„Ò &ª™Å§:;µg?{ÏŸ¦tjrÆ”ñ·D¾N¶QP|„e÷.a2[™XÚÞÈ‚ãÄïü0·›f×Tù¼xžë>ä*°!Ý+5ðæhêåΰÅÄê¶kÚpšë¾e]óçÇ`5mV/§q¬Bøü­XvÙÚ„9rœnñæ~Ù~ñt£ÒDž>Ö½Û}3óÆ<Ô4è(øm—1¹Q ¤+ƒ³¦<Ì3Œ ñ_1M)œ5D蜛s"‘µÆ9+w1 Eìï㿘üßùÁeÏlõçµO$êoåœòq꜕MQåÈæk‡:Ó¸ uÕ:@rfq7Ñ¡³cˆîtÌx²ZÕð¾Y†Éó£“ÂCMô¼™22;¶yŸ=ªxk;^Êì‹Ç ([ÉæÛC2u^ö†¶«ØäµÈÍ«'ÉÓf:ä9,pã£Ù#¨¢M´Ë—1dü_y¼uôuýf4ÏK˜Ùu®~ùm"ÆÉ*©¡¡² í°b±¬wäŠò·Ø÷r@¬cY-ëÎNèÈ,¸@Ú¸Qg®‡‡7,Öµï~Œ×á[Þ•opd‰êÝ E5¨^>Äœ½+:ó™.J«Ž`4*€Š·3º§»ßs“ÆÖÆg‹$xÞ:ìY0ëP1É˵9#wÅñ +# Lfôõ1£uµ§hßp$ƒJí(Þ¡‰÷+u«Y'ís<ñ|´¦Co‹Á(Þ5ߎGã4›Ø®ã!¹=!ãÃ*²`Áð¡šæYNYKR&b•å9׬Z ã~àg¶üû~žäÂôïzâÆ A’tØ©\Ç2K"&È|ÒÁ ùצE‘úôÇîÚRpBðܽ"~6bÏFQµ•Ê÷Ë’:?>ck§^í­‹½²DÇnÞa²j͘'¹½Î-.I®#®sÀl²f)…­Â¶b1ýâ‚DM¼r&ñ£Qä[»°XÍ3‘Ã’Œätáœ\À÷¯H÷ñé|Ò'WëÙP Ïù¡hèŒøy¯JOɧu©Ÿ‰¼q|YGrõ-É6eª7Iºék Ê[Ö–Œ-«'“ÛÒŠn (f¥Ï1 6‡&„ “ztEjÂî/n y ÌÖE'[ýfùA6Ó¢™ISŒœ¾« Ð,ÈO$ÝDI(Ê, F–ýo¾jòöËÞc/Šs–é„:(iš2ÚpÃøCT’•\$yõ}Fo¸´3›*ª»ñà©qÓ2nÌ;lY¼˜„½åÏ/š\ ¹6¨T¥hÄPùš\ÌºÆ ÝåÌ8‡å¾“.^¬Ø§»ï†o'7Þöø8º8åP胮ÛÎÍ[ëY­øÎ¾ØZ«³˜-º­g<ïgë0y'[ÕkŠ…-|^›¢ãˆ)•ÞÄÔ©Œ.ê4æã›ÞP˜¨S%e©×“‘˜aìCy—L™fGsŠóêWfæ>òU1 Ã-Q-&FM­XPV§ÿ;Šc{{¶¤Zz‘ (*6¨÷Dïp_“ÙèüsC”Ro·w?[瓠ɶÌïã6ê>–Ó¨0Š@Ÿ¢­s®yÎ ÞW º ÉÏ­î—7W΂úÒçž{‚:´©§ï³è]ñƽkøåy`yl­©aLh÷Q%力§ .jjHF[4ë&® ’£51bXtí2DÍýj#¹dAJ¢g·\M< £§Ó°œÛ©å@Êv©$ «s 4(Ä+SbÍ↠¥g)OuÕÔgÜt"ê>̇u:[înš4þîûG<×3eß––>:WœÖã°ù±µÉԵƋp*§ÜÌÈ1T‘3ÁÆæju9i'I“;œ#Ù³q|–`t¨£â¼—-L±)>u”Éêg$:¥ôn¹ëZÜKÕÎ_@ØfDMÏ’à¡.(“ Ãp‚•Ü_‰ÐÇz-ð-Ig¸X4]rFámo$޵#f‰®ÐŠaîVÎñfÙ9æÅ FåÄ¡YV|»LihZnNð…Ãfœ‡õÏ|éÏ1±ÞáóF™æ‘‹ÔÄP±­ ÖòóPÄ÷ùÔÅòoªåÙ|nÄŽL|µbõ™qµÝ\¨a’øÌõIªiÜhÔ"XîP½â1œÀòg{š–á Ó×ÄsÝUÑt»!»¶éL"ÎíÉDÔðh\|åÕRwo¸}­c»Æ©ó[ŽyO/U>eTPs©‰˜Ü(ÆêhEááîá‚)Ïýwg ËÌØˆ‘=x¯ $ÿî[ mÕiÔ4«ÕÖ ãº\XÅ&xËŵÊC#HÕ™R& ˜ÂÈŒP[¸–õæUhåÅŠÊÚ\QŠå´užÿ ™O¿vÓ¹#QÿØ/¼­ä>òÅh±LÀZî„ ëÇfrži¬P•\}UW~°\iýÕ_·h¨µj¥3Iª6MûUj¡`x'ê e•q›¤f4¼ŸÏÅj÷‘ î_'Æ‹:é܉(œ%|õ!¤¢QpÔ5quùA8Cyî”Q©ñ{ê~µì!²6Ý}Lÿå»Ì¨ú}R”ËÇ×Vs¨Ídoo‡Ñ»_cÛææô/‹rh:m÷¢N^ƒ¾«® 4tô CÞ®I¢áÝÕiÑÉÆuñQR¸qÞCõclÉIY=áqñQʉK{—¬†²¬)³ç×·ºÅïTžypäVK¼ƒªUkȹeAy=PkN»®\nÃcSkw2 Á䚸XìbȗƪƒÕ±U«¡ ÜÇV¨Z!_kè9š?S¾y<íúÚ ‰¡ ‡Ã°ê<“§<ÃóK½-h9ᎹÛZ<ÙÕc¦Fý¨íY|ÐLu.7!k}MuR«s©}ªÝáŒBpÖîŒU¸m[·Ýf¦j_' úíc]·{ 驹ˆRa\É,“º9rg«JPÍÍBÖïs+..eÞ,c+•‘ÖÝØ-nR¿«àòÎïã‡ÓÈ6æÃÝ1÷÷$¯Ç®oµÏ£úñG1\ùDÝXÈê–„„1¸¤cg[‡4*$*‚jŠ‹MR”˜¡q#ïQ*–âæä¡’ôdE*]>k$*JáO§¹ãÁEŠ5EˆªlãsÜÁr²$mg[©ÕÜBŒê†ë[Œ6CdÉ—?Šãa«¨¹7‘ŽkH(È5®~ÞoñÕD~k‘É™£ñŸˆø¡øÍ! ÖZŠßç9~P̶œë7µ£‚Æ!X\Ácºs)g¥J u´9 2µ¸bUƒ5Ž®Ýt!Š“ Fìozª(Þ\E6õ0®¤Q˜Q±͘øL=«1cf©ïWÇ5'|¶`‰ÙZsª;¹!ù ê´²òè%(‰ƒ½ÀÊ?M}Û½À2<=ꯚìèS4æivÑq8©Ívª-Á™‹tÆ@iQÓd£)wwg­(×]i}ß}÷XÊÃØ-®Èç¿és•vx±Bø#×6ù"5×*F’Væ';¹ÅcŸ¼„ýè¶ÑYp#§Í •ÆáÙZ˜s]]Ro+§¼«ÇVíêªIJBÒ©:§Úñ£qxÇ“!ŸpZïµÒ»Ù2U'2_ÕÝÃF§’îêâkšˆ³êò®mÚy¬ŠÞé¥â›zõ5S%“œÞ£V¹X.ÝÜñ•…à°¼9Š«·Ì»WZó ýwY•‘¹æ9vö^cTºï[³QÖê¹ýG,DãžR™oò¬÷RªwÕÛ¨Ù‘‡ÄêG'>÷¾º?¯­ÎÏIz½?>W3ÆSB=c'·EÄñ:¨÷Llûcls¾^Æàl¨#% ™Ü. s³¼Œ©¶0–†K º³jD¸¼Îª§MåK“Y,æ=5mÄÆÚU\0íøä@XÍ.N‰æXÔ[E„þõoYÓuQ‰ˆâ†ÔMO똌:(ªÓTÁÓßA%£ÈÓP4&{t,ÉÑÝCÒ\Wjlöæ’)Ç æ’Ùvsæ¹ôÔé½òó¢ÊÌÉ™Ÿžs91®·Oa?ã”–æ©Lá^ïp*xÔ>-‰QÅhP¡xPDrPÉÞ½%ºýñ ÌóéóJé³|÷¥W]b3ˆçß~ÝwpÙߤ~æ'aD¹;éGð²¡5öcìcèÉ|­ý@Ô}j›=wäHŠ®jçE‚{ºcj½ó9<•Ëþª_K!C¿‡ŸWÁk¤ªæå>¤W<ØŽ¦æ§—¼[YQ1&z‰ˆEfò`-,Í8¥­°ýr>õsáÞ¤éÌ.àèÄ!V¶µZ’u ®âÇÆEOœcR%)0:‹ß“þ;X=w©ÙæœO3=”køþ¾>Ã÷óïñ¯»âÏEWÆþ#6s†Tiiú?Vi"½±p°1:Q1·ÅÆZ#æéçp#YÅäWýÝkˆÕläjdÍ©|¤DE:r~aJ_²((x×$jgõ4ÖŽ'"M à˜F,ŒML>zõ7oNºïûjE{ó”AÙî»ÃÄTœŠ8°þåJçöÉ×Éœ9Pž&jÝìîTÅS±(F˜ÔDšˆÝµ£!]‘Ä/dG­Û4]TE”W½Þìe5ªGÑë2Å×:Â&¢6Ùc½DsS›‰@‹]r¹óOuÜq©Þ?©£Ñ¼Î5L=kˆyn¤ð§¦9ßï#Íã\r^ ×Xg¨‡'I@ȯæS÷A‚bä-ºƒ…5?×´<×^ƒ­ÐËþËèÙ$D¯qŒz3÷ø`|m½°ºÙñÆÌn•[箵±Ó¼`-hÝŠêåÌ.e‚¿þ÷Ó¹ÒKy·å?:š‹YÞ"厾±Tõ½`R%¥¬úb5}2Šªn‘o3ȑپ#´ž¯E^jºæRÛäFõþ—mUp:„ëÒWQþu‘6yëoK#1FÔÜÁP;¤^Ð>Ï¿fXÿE¦•`*R˜åsä{ûiŠž$®P_¼"*øô§žïxggKБMÈûùŠuÍêxÑɆ˜ùÇòt”»¶å.Ìi‘v”åÑPßí,Á •lIê³rÞ9#&0Uêb…J3øå;ëëïÿ ¾ùcß~¥G0š¸“z±^Kæu²ƒ¢’µË•··R"¿»@ÀÕŽcEÍ7rãõÉæDÔdÒCqA˜uË÷®÷SΌϕÑÜsÞôwþvÎq@ŒZ–cöë$œË$?ïÛÙ\úZþÚˆçã;Ë íO—½\ÐF%ùz1#›Éãu˜$ò*œ5ÇÏ3¬šë–w»é­7K—Ï&Ñ?Põ¼ÓHGsX §e_i’—·DÊ×lµÞG>þßa]ês”Ý ZøÑ‰…«)¾5î4L+2\¦ËUäÝ=CüÓô4ÏWÔ)£t¾›`žJePé³öÕ>Uû=~¢æõ¸ß—ÉUŽ'^G϶uèxµÙðïë.ª]ýû~Rýï:s]I#Q†ŠŽ$‰Ò›jEWÄ\χVWV‰÷·Î®ã4ûßí?ägU¢ÛÏ)Oï=ätÍú¬ÜÚ á¦9Õ\9ÿÁ+äåÍÄUºåíŠàÊK~dnôÕýþµëñ± ì$ÔÐdIiSCî\šª7$9·zCö4,ƒ‚^˜ZýMY ¹9p²€Öd>fŠºa—óÛ³’T#ç§©[<`é T+²¤C§±¥õͽÝr5Æ­b[ÔëÞ“°]7† ýor…¡u,UýËôÞ0ûç\ÿÆdÒÙΠ';*r&ºûgZýPaínã}¼^˜þЯöÞ»øuÜœ…ÛàXcÞ…eþÑùú$ûùpÄGüI“èþo›þ#ÕQ%œÿl¯òÉýÆõ@‰þQ<ð8çÿÓ2u?À`þt%ݘü‘äÄêÿO9Ʊ@P™ü6#kèØû HwÀ"só¿ö˜¯6¡ ßiÉŸê|NçýœW‘0¦RT@Ù4«z‹'樒‰ôr}ùb›-#üÊ¡CNQÚãÃ3®Ûq×Ûåâw©­jÛê5J_Ä^[ɪÜYô¹ò˜Ž\Œ‡7õ´«ù†*W؈P“I÷Ïïý_¯³‘ôÓ„Áìÿ,#%—ðîXx¸EnÂ=ÍHß§DJAb×y½~®Î«Û®û¯·­†O÷¿oØ=$ù]ö©ü7;ø?$(»Ìðéé#fxgq÷z˜uçæ² Ù,d.(£™q*T ©ºUò_€®+pVÜD­FØÆªRïâÄŽI i–>'·¯-ÿo ÿ¼Xü1[LTýMW?ã–âšõâýöf¼šVº®§ˆg¶,RÔosç&öê+dTëñ?ß¼3ÔñÖ¹öpçw¯µu~ºñ_öµK°©×F9ñcÈ_¯ÎðŠj#%\øâ¼¹•=F®õYK ¿jÿSûÖ|@äŸ|…J‹žÛ™mÌw̾!ƒ%Oµî~ë_ºßœ®?n¾$C15æf¼˜íýýý ZüÈP¸S>æM Ÿ e®häá‹Éœ—Äd@+õ©?…ëQDwµØè.ÍlÿI‹Dªá oÌ?ƒ¥Œýæ™´ÂQ héÖ}¥YãÕrü× yÝO"\ â f%MŸ§Ó LV¾Þ_„}íð®"yίžO¹ú~ló³æàw×ñ®¹üT'ÏÕ7öût¾ö¯ûâµÍó5ŽßªÏÛªŠßóXD¾Hz¨vkƒÏöž^ìª`§Ï¨‘ÑŸ¸f¢:±W©Ñ2¾=dþuÍòYçч=»î{‘™Dsæ¯bCÓZûžïó‘5†'¯ËÏÎG3äF«ŠVy3ƒ™‚Ö®¬TM‡ë"o]M»]^¯ŸÛ—Ya± w×Lr#A2¯¾uBH‚'­ó{ö§ÏÛëçå}~ÔÞWí½^µ†0½Ÿ¨¯PiZÊ–Ñ­%¡7]C™ÊÌðsÅg;züP*$-Û‰Êû5 íŠÏàÖcþ¹;¶÷œÄÕ7 LwVÆ_:×¼ªS¾P™Ðý°CüÔwñ¡®ÇßøÿTýþ¾ÛõøƒK¯rûL?ÛôŸ­~îâFP+ŠpÈg—š¡Œ!îëç\éëCZOÊËŽ$¢mË1ùÆšûkQ:­`U.©-D8ßãóùœÖÿmN«hþÓÝGmÂ&ÿ·ïÔyüý|³øúw^/~äy }LO>çŸUF¯Ö¬Á8ëÎ{­ƒÉ\¤k¶Ü­V¾«ª`¡ž¯ÏÇÉ™?rÿV¾Ò‰ÊkÕièÔeIƒu ¯øMÈÝï]$*<æÞ¸J3ó‘)RDOösóóÕOCõc¸Ÿ4£J_qa>þ×6zî¾ñÏÍý÷×V0ºz…ë³3ÎòüXbëz‚–÷¥sz´Çõë¹Òe$JˆñWÁŠûçð}hylˆÖ¿±ÌÍ8ž9ý§R â¹X$G[“Ÿ{Š’H(Õîb5Õx½OÇ:¾þº±¾gìn߯<>·iõ˜æ¨ïë>5–ˆSp‰º_¾tÌÄ+Â&õwÖjÞ÷1«täg“ÔõÕänxæÃó“&oµ/·Û·ÌqöõrWÎÇ:Ž.vßÒÁg\Ùë­Ž¦¿ãýN|O@ó{s[¡îþ+çóÕ^léb}CFà'éKΜùYlï¡Z‹•vƒ3Ý'žiß?zÏÌös:ïn¾Õ༓Îëùçß¿M)gÜ(´¯e 2dîôÕýìMÆîè8e­KÃôgZ«‘ZesL™ƒfcã%‘FG¡íD«z™y[yò£¥’¹~µÓµë¯+·ÏiQQ_Ó|OAÒõpy1ÅøÇ_oÛ?í|Üž|ß½ÔWšU µœÂ.¼|zòWÚó>¦9˜¿¶ 7Ó!e¤xÒB éÐÔdWOU…TŽ RÚ-aýŸ¸å”Îf ú‹‚GH*å3þÄÝí{:ËÈt¸Œûœ£6E“(9Q$LÎR¸pf,ý±Ÿ•P&ÏŸ7óùô¹ûIÛ°«F5ã=ï7ª&¬äÇ74CzÐö×;qw®º™WÖ}ßáÍ-õK®Xò~/C)KøÅX2¸š çÏ?~s»èþ=ýˆçßóŸB>~ÎøûÔ~æƺ=@ßãý3Ž«Y^)=–º 30T’W¹ø½îÅî6cVòÑÉŽ,Õ«6 €…§mW?”:ÅÖÿ»ó¾­µ<{íôd>c:¡T²þòù»ôÇáj¶F>Ê&ñy;îø³ßëæA=öBï¨Ú"=>ag9:ËĸG˜S§ÖyÅF&ìjâ`g—ªÕX‹˜¿Í¨úÉyÖ—'ß{J¾VµëéÄCÇÄT|жÍãžk.¥.ìTEšÈ<þ³©G‹­eW£I«ñcò gÉÍ­5ßssÌŸh"oæýÒêþhóår…ÕiÕb|ÄLþ~=bW›¾þóèüaÛyÔê×þ鋬y^ô{õ(Ÿ‹íG×5Teü¯# `¤Gãq* j÷)ŠÒë9‘snV‘ÿ…uþ:ï&Ïã}g‹Ò×ÅG9•îFILHê:­(‰ø½W4¶¥(™Û[ï˜Þ§WCE5ƒö 狟äýÏÒûÛøúúíŽûÝrn U8•ÍA'*貸š×©z™¥¯f†¶]ÖúÝsWŠ«.Ï8Ðבìºõ¸—Ou¦(¯[?¶¦Ç}˜Ú9fÞ÷Ïïª7»×JýÈ“¹“æH—9_5žNâ£ìú¯ÕnI]4Ÿ†s¤‚uí½jƒÏ.Ï4w¢àЉ8bt˜ÜÐ`ï=~¢cÏ=³÷h a{^þó59_ç1P¥×ÈRåŠ&—ɱï½Céëe¥¶³EïÖNë–‚×*®~(sðs9˜Ü±ñ¤UL…m&~|î¥Ð×ïӞʟÙoï®{óŸ»úúŠ'ñ3=±ñqj (þÒ(ÝW¼m÷®$ßakw¾ üLMÂËHiÉLßh<Íïï1µï5RO5©Jv}!ÍÆŸ{Öl*ÓÀbm•ÕÍk{Éú9‚ýÔuËÿÞgÃþ¯|# KõÒƒóŸQ$ Gç^YYÖeÕâb×Íu9ŸÄsÏ7Š_+ßÓ½©=öàD]wõk$*Þ\®]D=òìbëWYb¾§t²xðˆ3ü4Ò)_n#GnÓ©q£×@÷?ÿ\¢jæ#ޤ=ÿ™ˆ‰"#eBþíy¬´xÏ<éê*îZöÈ<}Mí?–í3;?²­F£ï ?âu{_Ö\×:”#hÈe˜A|þ<ê§·6åÕcö’¬·ºüf«Oûnw i.¹¨Íü8ÑãÙƒgßWV?¥B<¡c :Š2ó#2­Àª”æhDT;©¸þÜ÷#F9N§âg¦µ&H3ÍkŠ(Ó“Yh‡mŧŠð3Õ­d‹1-Ü ­Dܸ˜X—¸€ö­æ¤Ÿ×#Ñÿ½x^³Ü²ûë!ÎZ“þ=×é{ßKŸôÞ¸‰é(„i¿ÃŒ®¯U>b7™ïì* 亂¥t 1õ9XFåÐB~ÈU`8 oï™W æ¦y¤Cé*Yzo¯Ï¿ÉëY_xðý«êî—óê?Ξ×4Cd{v°Õ"©%µr©ÖD«/Êò<3¿•Ìo.yCìþÐJ-êãLwݱ8— T5g Ì)läÄ[´é’Ÿ»?hyûåzE¯Ì%ÇÊ]¤ŒCùýY—”:ü.c€RCëÕwdßÁ`|϶4àš*© TîHøX®çùçßìŸ×ž¦Ôû r*!Çlš+¿¥7x"y¨¹Ëû5„(½û7þ®ùúçÔ Gjw]\ þ1~Ћ±¯ Λc½Ó‚H<~úp`¯Põ3Ì#¯Jòþ&Ã2z¼•?Æ”û¬ñ)ÛÔC¤I%fí£"6«mˆ„n¢á›ú?ûér?Ÿ]#£^*tj(ÃûÌ™B_J#u^Jd:‘á¯mbHÍYùŽôH5ÐPØ`Ÿ¥Nªœ–­¢¢™Ê!ðqqÆx¤“šW ™…G $“=ï4gþB-úaùË‘‰Ê› $4ã¸FÉ€¬«FzÜq][Ù]éO½éÖ–ƒmIÐM(’ƒ^g«§ß=õ›¤µÕëyÖ™zaé˜Øó¶ò~£f Ƥl½žÚ¦‰Êa/c—>+‘&'}ÍÙ(:¨™lJuQh`SßS˜°UΠ0N¢"ç„B*eWÜÔÖ¬zévëÑÓ :ýùgÙ¶¡@¸ƒ H¿.åZ˜ÉõÊ¡ÊÍ=@Ò c¸W~ªKâ›~ždf,#»Ç Zã§µþR¦² î'®¶ÙþG¸ŒHü›¨»—¤‰0.p8Å47¹øòt²"Ôt„"õâ!$Ì;ŠÈã þ1Ò>ƒ\kúÇ>¿åè{õçûÌõ1„£²Â”Ùeˆ@—ªz¨÷nÙDsí|k|æÄJé…À2VÑ(fÈ ÄUί;ò6Ê3É_Äv!w?>¸‹7b+Éÿ’"ÊB©˜±¹~znŽqVÄ‘')8nÿ:šªb‡öN¾µõfhDNEԢ舟ÕeÕZ×ê*·¿Æ 5÷¨è‘ñ¤Qøùmdùf $ߢ…IšyçÛšÁQo}o#\»Õ7ù°Ø<É|ÛŠ?IÔ«õe•ÿLŒk4ìÆN¹x[óã¼£Cy cf ˜Ç]¿,™„>a¹Ë,úkàñÑL’â`8®'÷vrôîóÞMýu®“ââ à†JVsÖè† rFw7Vbk§g!Ó h“êPXEÒdÇíš ž* ~”euM΢i1+ƒÃ‘ð˜ ýUåF!ìo¥_'¦P(m¦Q °ÑC6„p[3ý÷SϬàVü{›Y2ãÕGõ[ûë¿_üKxî[D”X—ʲ<¼ÇOó-ûºnëÿ¿í¨LN §Ò¥¶¤?Ô ßçrN†OÙèÿ¼èIü›‚Fñ|¿Ëæè. 3ÖÇâd–C>B&×è ×Ù6cñ¸˜s†¡Ì¸&ÍÌ¢‡7~Œ”¬Ô.Ô?Q9(°U‰¬ðϹý¯oÝ}zó¾),å"8p<ü©T£Cçn»+5æB ëOßWþÅÿgçˆmðM5‹¶‘˜†šD£â 5PÿËï–`‚€å6ƒCd.Tn)x+hpÏcÕ15ôø OO?1SœÁ“‹#uƒ9Øéö.žuôð鱚ÛÉ_{óèœßìmh–ÁHtÛxHcüá2…³fu͈mèŽéq3øç‘Ééßpߦ9áR@•!$éuÓšfŒ3æÖÉÿrç ’f50§…‘¨µ-ÄþÕ¿ÙÝ|œr5äaxÊ)Á×õF³ø¸-¾˜þÞcÑëm®>p!Ø¢Ø ¢¹?NéA@èñ>ÔøJzúØÜíÉîa¢1lÍLÃ)QôX¦Û¤xÂ/NEVïöëô_Û>~m#œˆd×9ãMy§ Š5ÚQñÜ9÷;âómqÖ8Ü=ÒJº–SBDÁJd¢ìGƒS=!¸Æ„iéÜâ›gLUOz÷{n¡{\ïW‡º0A‰‡j¾çbÑáµ½ÎE† JSཚøÿ½óÀ@´çñk9éNþJfID) ð²ÏÇûÿMïé÷ÐS×81œ@Ž?¶™Ìª"g=r°ÂôÑ<‚„ýkL¦4Â-”‚á!V"7*`†Ì±‹Ó1/<$V¦¾.Ùa’· {¯^b«ÖÓ0ÇÇñÉ‹Àž§È©ÆI&‹½ºŠm¢á†Bs6þ÷ƒäáäF…í`£ÍV”mäCš›Qò?åjÆÔçØ’ûƹˆF7$ž·šóV(! ‘‚Þ¿EM“P›bÞÏr©S[Õ‚ž8¥†Ø ÐsKí‚_£rýßkÈҫ„jÅÌæÑ$Š üµ—H ÀÔ.qbk¦_ƒ®GcM”‰¼ãÈñ´Ê$ð’>Џ(ÓaÖÕcût+Nì­Q ݾxTìMÙÊrÜš$ !­7gòÎî6Å1Ýc֛̉Âý퉫°ˆý¢_…ˆó¿¸FÑÈ7<~e7Kƒì+ FP€G‰A°u¬RBdØ!•î¢Ô×¥ÂlÒà6[`ŽºW΂t LþýºßëY8õ|ž¡Q†¸…6¬G%oùbßs¢xø˜´ù£f¼!Í…w¸Y’À D„‘Bå0Ìj¥¸-)±4`Âx-Æs¨m®‹«ü¬Ã€‡ñk¯{‰©›æ+Õœq´nÖV?…Òê@3ç‹ËæE´êe–D\˜Ú̱7˜­ÀPþ3LCÀšXoþV1bú×Ó€¨*^‹9žäøÓ/±åäÅi󥇂IÑA„=. ‚E¸KpÇÃüä@£ÇþÍHõòob‡>›(þI4O‡~e­ÑrCȘ ¼'äç¦,íC§î99&ê¹çVAçn^žë&W“z1Žîäë¼ÈÌ4ÆyÛ„Ïï:èÖvc‡"æ»=XÂ5ÀÚôzݵ¯±¯èÅÔÁID´´Ü_¿Äw[v»_Á@@““"Š*¡Éܼ#„å¿û™"€€]8ª*¡©òˆì•EP X×3Ovõ¯Eñ~**-½¦éˆø‹Ç¼Oæ;œ.s“ÖñÁÏ=h•bî×Sˆp¡$ÜÝFEæTEîãøoxîî碻¥EV´Nï'er'©Ôs¹O»¹PWîòx<*4¿1Òz'äÎäÐãÎRÛ›‡­çW„Æ’#JPb2æé+Öî‘TTV5\ÛÇ5çn·-ÀÑDÍ™@#[ÚUÊ-nJwm¹µA.PPE×”AMc•ÒÏmsl¹Ëþ¶?ðï÷wsÇýÿ=ÿOÕ›á"o‹~óÏã ýìçZ¼5Ú?2( $@É›Ï]ÐŽ ' (§ç˜÷GsÐÇ#\W»¸Sçe…ê;¶ü{£Ýùz;Þì§wT%"3…Hnɳ!¯nÎ BÇJÆÁ7#@¢H„D;à,q4 ‚™bomJÉa$×7ÌnÁ°iµ€Ú‰ pá' ‡ÊõiÓ¤^äwî›äN‰wGÜ_¨)jÖWç‡ßœ»½êØ„Ä %$¢“’ Æ€ ’@vÚÁW8ý ÝëM`ú‚„vÈ<,ªz9cgGxÐÄ4q¶;#i¨'9ïy± Z$uÊè€bë<^]Þ…ôÝÒ­â:¹îm=ss( ÓQ¨‚Rå$ÔÔ»1 É|»hüFµáÑB¥$BB8Ôë` ¦è)´ ìŽl±*5@Ò!8,{0O7“˜¬y*„"ŽÂp$hX·7xtOºú1¢¨5«-*Î8'Žò>*•ÜÞØÜí´ø×±'Ìl^¸—k-`“9Úâm5à°à¢k#S;×hôé‚9Z†e”}Æ(&Ür ›-{Šá«[ÎŽ{ä ÙßÓ¸ÎgC_=0ÂkÕ3*h‘ äÎ…qF½v'‡bλŒäÃ&IDpà›x-Rç\™j±:Û‘3’ &™ùtÝ…¸°ïË#ßJ(-ãjpÉEÈ*+o•gžååBÚH„ tÊèŒM& ݰ o“Åçú¿oÍù z…ô‹¾b‡¡Œm<`ŸÓQ—èLÅŸQ?9Ró„Ãè%'È™Ñ^ë|øì±Ãd%ø™´ò×Ag† yÔ4àºTUŽÅdGuÚ4ÎæËÄÖù‰ Ö·¨ÕãóäÊÑ‚ÄcMˆeÁASBÖrZT:ØzŒä}m9<±}4yË@d‹~{Ìï%›ÜXT`NÓÍ¡wªÌ™‹è{^“¹Œà¶l^+­Ì¥" \¹ˆe%¶Ë ™Ÿ[õ‚¶»!7ãÆþþžbj ˆbƒfú÷²qì|‚0bPð逽f§Ê.ï·óÎ÷_$m» †Ø!‚Aï±­HE@Fã?sBŠºbä1pH¨˜a„B¦Áp¹œ4½ ô ”¼„ßÓÇO[NUó¢°PµŠ‚mßϹLÊâ¡Á¶½Î„|÷÷0jîYqÔr¦Ú!ÜàO2ØbøO¢z®5ç'É9íˆ(ðm†öÙ,Q@‰®6`G9ÜPpÊçzl{@D`lW<ÕŠ8äá=®$sw„ŸŽÄÄ;Á¾¸,@Hdž;O©M„ª!F˜ß¸¦PPŠO¢äÆVAŒ¼2CÅ#“ 2I¡’A­×Æ[< ÇŸWŒÚ²µP¤|œmˆ÷Såyfü©à×¢$Q€²ÛA FtW-·xûúœê£¦€ëª/*š†æ" k‡²ŒÂõã¼…x'Äø¾¾³”YÆš‰äž¼CÅ#,D¾{—;Õ÷YÅàÑ‘´ €{6³É'¤‹Q£{j£Eo×ËWe¿~ÞüÚ`á[Ú‚’¢¶D°AdžâõA°yl¨o6ÛÆÅ[ôpÚOŒ=ù÷žg‹ßÞÓ¹ …G–Ÿ1¼ƒE‡#–èÐd¢\„—1«lÏ¡|ëO±‡69£äcIßg-­'˜†™$±_ø5 ë7èïšzv?–_™tíÍsåUt× <åé8XƒF}Ó3îÓ­fŒçÎÏ—ÛWjðó䵯¦Yc”|ìÈ4Ö¹äsÈE<à‡+YÈ Ç™›]©¬"t´A[*ÙÆ“cb­Lp9HòùœÅnoÙÚqIŽ5H£Ö2¦«Qzògl‡d扣‘uå¢qFýnsLê& =Êêáè­–4ZEYã{‘ .|î÷lëa³÷=¾x¼·¤(Š@@”æÕ×ýîNáÉÁaƒ@#Ëà‰Ÿ7»£M†ÕHþŸÉ|權09_e–ÎCÊòäð¿Ñß±_ÇìžñLþÑ9Pi;«@Ä×ë,TR*ÄÀì.^·”‘Á4WÐ)CŸBµ¯àý–~þòø˜ (}Li?_Ä*Ž7g[ã×K#‘¨ûôò=Úµ$¬,Š ùü{€`“<òˆo§سñ<ûy§Ïƒv §ý6qn=o\2³cUÕY}j Ö/ÜK±i¼ëïÍK@Öq‹$áe”!­Osá¢ñéy1ìš„én« .`“ê·*4+sÄ€ÄY'T³ŸÐŸ×òu Ú`sÄ„ÐY—Ù …˜ª-=idÏÂw«UIÖý?!èˆOñÿ_»íïÁ´íD4H‹ŸOn¼oqçÜäQÊö›ÆÁx¬g.±˜!X2Š-·‹W77+¯iÕEâÜAªV6Û+ Ð@}†Ç7(‚)µˆˆòe PCˆPh@¤DiB…AJ’”(E¦iDhQ …U ¡P¡B•¥@¥(U•¬V­E­lQ±£ZŠØ)A QB’€R€¥M´m¶ÅTËQmª*V€F•(R”¤ ˆ±Ú`ÕЍÛZ+j‹|†¹b6Ñj¢­£Z"ÑkQklm¢¨ÕªA1h¢ÔZ+&¶ƒmQFÅcXÚ¢¶ÉF4m´Z£Z±Q£UÅ£cZµd£hØŒhŠ(¶1²Z `¢Ö6,X¢Ñh؈Ûb"±h¶£m’™±i(µ±±TV¢5šEhhQ( U¡D)h@¢Ì‹Á¢¢¬Z6Ñ£mŠ£h£Q¨’"ƒb,lU" £[¢£h£Tm [b±kB! ÅŒ`"ØÓ1 ‹¤Ñ²i6ÅAQd"Å1¬m,TlF"Ñ!­F,Eb4Q¨ÖÆ´m¢Ñ±¢65Ec¢ÚŠÆÖ1V6Ú1±bØÕD˜ h²‘A†ÑD“$²IPRb4h©62TFˆŒ2,TZ)4i ‘ld’Ù*5" "Ô–˜dÑŠ4›j4k¢«*ŨÕc@2H¢I –#& ‰56˜AJ  Æ+$E‹&1F”Ñ¢1EÈ‹¬&ƲVÛXÆÁ#&JdS&F m"iÙP†le&h6H)(щ4Di*£EŒ$`EA#’`ÄÀ€Ó$Âo5“2Á,Ìj1¢‰1XØHÒHD$A&D4˜Öˆ´‘Ê€ÚMc2¢f„!šŠKEAª©šÄX5ƒX¶ÑˆÕ0ÌA¨2Qa„š‘ÉR†(™š"ÂL"JHi1AbLFÒ”"’eѨÄ!$È$„£FØŒ”ÔX±£$‰`5¦ ™S$¤¢ˆ¨ĆĤXªE£XÈÀA ™"4Ù%,𠂉¦I©ŒEƒ" fhdi†I(‰062f Q£lA’ˆÁŠQ‘FJe¢fÆÉŠ1¬a 1•ÐjB#ˆ¢1„ÂS ˆ¢0D6(1šÈË(bŒ’5™31“$ ¥)Œ‚0še˜S(20" hˆ! ’ f)‘(CB Š’ Š1ƒ2Æ dR‘ `‚(ÅE¢dd3FF ‚F‘„J4Z&#%I „’FBI1”Ô$E!$ˆfbÀI†e(hQ J"š1†H0RXQQ%‹EA3%2@˜¡ƒ4£"DÚ! Á DÍ!$Ã20`,²L4¤fd•Q)ƒ $M‹$°aƒI4…A!"Èe J4HEˆ„ÆÉcF6“L14 ÐIFÉ`”!˜Ù™„É”ŠF`“f`F) Y"IM’C"P’‚JI¦iK™0Í””’f  …$³Ñ "„L”¢JQ€¡ EÈFŒ˜‰“C¢’$†d@´dÐ¥‘²”CI„0„°±’Å!’¤,”ÄÁ£FL‹4I‘”Š%ÈŒf#LÌÒS†d%"3)$A&Æ€0FJ4„X ÂL’¤±%3$ÀÉ”£d¡)",Æ!ˆl‹  6Y›A(À–%€ŒÐ FhÉ™1 ¢a(Ò¢DÈ2AI˜4#41L2 “1²IH˜“,‰˜2„‘&)š„I%É#0"bLš0ŠDXlLÈÐ$B& •&"22Q„i(LÀ@Äf’$˜… 2Ä&JLd›€„Åa“1Q64ÌɆP(ÀP`˜bÁ#JHH3"’0ŒÆÓ (É”¥(aA$€"c3 1,„!dbÆ‚’‘A2(H`… DRR’Pbe1,€£ŠI fP$fDÉ ’hš%&L ÊA,c$È“2PJI)$fL"6 Í $Ie ˜ÌhM)%˜dHŠQ)6hŠA,I˜HÈI0Ȱ 4˜#1,‰1’ÄšRP$i$) ¤ilÌÅ , @  0i¨ PÀfab@†3 C£ JTda1,$hÆBQ2"`aƒL¦HŒÍ1$È™4Ä2"4Ò’‰”ÔÀ,ÐÁ„ $d€  ™4“ ’LÊXÂIF2‚A€$S0Ù Pf™„Äb €C@fR0J4¦dÄÊPŒ†dRP1!„¡$¦BS`Dd&‰HÈšb“HT$™Œ)–LH¢H0Êd‹"ÈLÄ$Œ•1˜‚AB2! 2“ 1D ¦¢LšBLQŠ"Ñš‚X Ó6S™ lJdȱ²&‘¦B$&d(‰²BD‘²PÓ! !B Ð$c Bdf1&M 2’(bJb,”ˆ’1‘ ‚C¦I“PÉ bL Š$ÒK$B ÄÃ#2“ILˆaE‚AIš1‰ˆ”’F¨Œ£„P† Á…&S& L"‘„B› ¤0d‰I$‘‰‰† ¡b‘“S1HH2fQ1 T d"I“¢ƒJ%&Šh¤*"I†IL HM“E0¤ÌQ¤AJȤÆÃf™6SJ,D‚†’4˜ˆÔɱ‚š) )CE& ŒP„¦’Il b1PŒˆ&%I#hÄ™D”0ÆJLX¢H`È–I FPÊ!†MlÂJ2h)’Ì&a†„³Î¸cF0“"! ¢É ŠRI!% $  ‚@#FÊ(ŒÛPBe(1‘$¢"#2Q`dÉ!$Ù#`De4¢hÉI$ HJB£šQ„)""je `°ŒH3`Ñb###JQ‚)a¢Œ HɉŒ¦›L¦˜RZ "˜1¤,&ÈŒÌR4Š5, ‚Æ3@dÐ011(› Æd%$fD”FȲ‚IJ ¦HR˜ ÌÒHŒÁa (iI‰£2Y"¤Ä„…E …"Œ#P“&2Éši2h±™Iƒ‰LL˜ÐÁ,ÑB b ÄÌ€HÑ„*6 3$ÀÓ ##1‰"Ici1B” “H) ˜ ),*2Ò%Q¢˜̆Œ%(f# ™"‹ ¡BHÑ’“)¢$‘… I› ˜I2˜L%ÁˆƒŒ ”$2c6(BšJ52(¢“E‚$eAbÌ¢ÆÌ€Ñ¢0cI†˜Å’d‚–"F& 0†A¤¤C$‚fAD %`ˆŠI&ˆ„Ò4ÈdÄÊùÝɓȤFÈRj"Fde™C M&D‘¤™Œ”šÌŒÂ2 ŠS$™ÐQI) ‰ˆRM4¤B™™šˆ‰1‚6 TÊa’H‰„¥Ý¢3aŠdLRÈCØÅ¦4‹40Àši1†c”˜X1PI)@™ ÒIŒIŠKLL£Jb’€"B%FX,²I¥,("Á&K%4¦š,ÌÆDÊ&H€2ÑB&i0a¥11 !¢Da$$ci)61EL4¥,&ˆ˜”R A€fÆ‹R’dÆ,hˆfŠK¥AE&˜`°Ê0RHldŒ!I&0dd0(É ÁH#d¶d…$ÌŒˆ¤PÉJ1™dC ”c&K4Æ´ ÊI4F‰‘ÐÌ£ ,³I¤E“)d6 &iFhD,T1™‹QQ¤(©›j6 H Ù(¥2Œfa,l¤ÂІ±4Á2’`‰‰IfBEb‚e %$ ÑbÊh¤‰‰“X”˜DZ‚¢DÑc0ÀÁ ‘¤ˆ!Jˆ $‘¢J‘$‹!ˆ!D„%S©6#ÅDhHÀd‹F4LÁ°DÍF’Œ53Ia#&)”!R!¨ÁƒBdÄD›RSJŠ) hÁba È c! I "ÅÆ(£3D &LAŒ†‰&*"`Ò È`£d2’ &RCF"),HÓ6 b²l›( ´I¥56dF4†2X+HL$I¨S*3 $ja³6J’#3@f @`„‰¡€Æ@#A‚ÅM1Æ¢É`±DAŒl”i4¢f!(R(š*H4Yš”)#IŒÌŠP!Dl&$Q Äi"ŒT›& FÔ˜ ›&1¢1E%±JE²i( VI $"-(‰M1™IŒE&(Ô‘ELÃ51h´†²’JhRŒÈ¢ÑA ¬b*- I˜ÒU!„$ÅM0±±$@A)‘L IDV‰$ÆÅQ±¬m"TšI*bh4k&‘*ŠÆÁ±b-$‰QŒ&ŒAiA‹IV*4P–J@ш¢2k -Ìš1ˆÓ6*# Ù4D„‘h¡&Q¡ E€E ŒQŒDh*-$kb¡‘00h‹FˆŠJK2 K`¤¢MF30¤EI„`d±Ñ@Š)˜$ÐdÔ(–0›IlPE¢€4IF4i ²h¨„ $B’ÃFd‹&È‘EdÒbf‰6M‹DTR IAPPh±¨Ú+!™" "d¢ A&ˆŠ‚™F"̱c"É fTlI!¢± ¨¢(É¢‘ (Ðbdk1EE Ø¢f ±3Fˆ¬‹!` %Ô&ˆÀ›@I¤ÆÉ’ˆ,2¤É ”Á °‘fhKI¡"Å!ŒcM(¨‚¢”&ÅA°“$4R$šˆ1b’LA2Œ¥JLj#!Là Æ4cDE¥ BR‹ ¨ B4FŒ`D‹A%ER ÄTL± Æ ( ¢PA’‚‚ !bÆHQEˆ2EdÆÄh+&PmFƒIÙ„[%HˆeDZ0…E!’HŠ‚CQ&(’S¨£fj2‘HØÃ2E¤¤$°Ù1‘2c0±!³,‰$i),ÍY4ʉ2h4Q2„ÔLÆ¢ÑdÆ‹F$ÄXÉ&ÂEFL†,ˆhMH¤$Am±¶(¤Æ„H65ŒÊ)š0`±¶-)Ù¢"¨Ä’lÒɢР!l›h ’‹HbˆH 4„€,h±F l ˆ  6D¢Ñ¨%’£XÖŠ- ˜ÑdIØ4š)6ÅcE*+˜‘¡d’ÉY £ ffˆ&Š$•K`("ÈS´˜ÔQcdÂÄX¨ÒU 6ÅŒFÁEQ´š4 Ø¢6Œi,1l!fQb¢“‚ÔXfÉb#PDX(,X„¡šebŒ•£É¢”“£&$ÆØÑ% ÑŒY Å‹L “I’6* ¦Y(¤ÔS1jK!*6ŠA³S1ŒL‰,X ÔhÑ¢¢Š1 ÄXÔLшڑ6,„Œ5ˆÈ$hŒF4PV (ÑŠ„¤" ‚JL‘¬ËIQEƒ°h,h´dÆ5ˆ‚Å£RE‰#cF¤ 6!”c`6)4ck0ÕŠJ2Id¢¤É£ŒCDhÚˆ$È”HF65fh‚£i‘$LÆ‚ `ÑA“,FQL ¨É‚ˆ¤¨±Œ` Öج[4¤Å‰ƒ"1¤´%Ai() I°HȆi,›ˆ³¢&hÄk ¨Ñhˆ) ‹ ¥4 ˆ±’Ñ"Ú FIÔ”Y(°hÑhÄF€Œe5h±¥+&*2hÔA!F“h"ÑQ“A`˜š™™1‰’ÐR•E(Ôi4%¢Œb(¨Â£"53I24FÅ¢ÐP›Q¨µ ÚQ "Á¤‰5AQ¨¢J £d,Q¶L˜±¢†S-c`Œ` ¤1hŒ‘Fˆ)6,E& D›d£bi£T%±Z6 F¶&Z,dÅ™ˆÒlS XÅŒ˜ ¢LEŒ%‹CbÅl”LŠ‹E,M’SDEa4jŒÃ#Y†‚Æ-ƒbÔE 4X$’¢(°!’#EƒTZ)edBŠ2X±E±&¢£!$Ê6‹%‹&±¢ˆÅ¬b†“h¨ I V ”0°[´–Bˆ1A±F0‚c%DH h¦4¡$iIQ“¢aŒd5&%E2hÑFŠ  ¦ZBaZÙš#1‹ "6Aflld²EŒ‘F*dE’ű&¢$flPiY4cŒh6‚€±Y%Ú1„ªL…À˜Ù‘lcE‘1`ŒM ¢¦„Ú†cQ$Äš‰( ‰BPh«™¢! Šˆ±Œ›j ’H¬F#FÒÌTE°m`ѲH‰j"ÉX£I&#`™±EHbbc1Q€€´E ™F¢É (¢5‹ ŒÈ‚4†°mIEŒa˜Æ… Æ-‰›4ÑQEÌfIDÍ&ÆÒV F¡#C,Q-AI£F‚±$”V Œ±’щ¢cd£D’V2i6ÅŠÅE‹ 1£)¢Òmˆ ±´IEL"Ñblh£m"Z#3QÌb MA„ª ¢£Fb¨’H¬…1RÑŠ‹ˆŠ6‹E¢0mM‚€Œlˆ -h°D[M£D‘$V £l4)1ŠÆ$ÑmªMFÆÉÆÉF±£FÄ1¨Ú*Áj0VMIj!,j(Æ¢fhAµbÒXÔ˜¶ ’5I¨¶4F˜Qli*Š(ÕX (ÅQ£%µF«!Tmm‹hŠ4V*ƱlX5FÔm‹EF6ˆ#F(±cE£“-ƒP‘QƒFÁkh¢´±FÅØÆÑµTmˆ ±Q3j*5PEh *Ťª1XŠ&Ñj ŠKhÑh« `´j-b´š„Ö¢6#E£I±h)-E­ lb’-¢¨Ú6‹AŠ4P˜É¨¨fƒQš-cFMAŠbÆÚ6ÉTlQ©*5(КÅY,XJ¢ ‹6QI[AQ£-¨£Z 5mEIFÙ(‹c m&1hhØ­ŠÄE™Xصˆ±Tm¨Ú4X±ª6+ѱ´hÔV‹ŠÐTh´j*ÐZŒh¶‹FÐUIÖ5ѵI£¨Ö5bÅ5 XÚ5%M [M‘(¶6ƒJTZMŠ1ˆÑ‹h¨E¢) ˆÖ(Û$D™Álj-£b¨Ñ"±°Tb"0mE²DV6ME‚ÑQ!j,1b’Œi–‹E´QcQ¬F“I­1mbÄj’"ˆÑ´FÕÁ±c õí«Vƒ4€ªˆô!QÖÞ ‚œâBbV(ÛÕ.j"鱫³.U«.ZÃT¡‹.oßè®EÊ~ÿ¸ãÏ<ä±÷hQw­z<@Ôï~ý¼‡¨]2­.9ÇrïP"Š0ÍF’Z\*9y;­ÐD#…Ê݉ûÖ1ÈÖ'I–Ad+¢¤Âgw Úõ.Væ­Ë–±Z êZìÛ™FˆÕÅ) )M±X˜¤y€ "saUWL(šŸÝ?íßLÜÙÑ¢ñkdòfÅŠægѳèÉ«bÜ0 ©¦*Š ýµõS×­© "4wû™wþžwuüßncKþYþ(°<ýŸx¥Ðr•1œg \9FÎÏòG¹ÈOù[޹BAv¶„«lúe2Gï€ÿ6`?'s'Ñù—Ü2kMíšTA`D&š?ŽÎPºTL” dž/µm kŠL?n |Ç7Þº¨¾9>Ž™4aÆÙÇ+•F¬eÑ:FÈÅñùl_ÀSÍj,òOH„pßk7Ÿãžw k[>=ýååÔ a±5? ÃŒíjµ¿™>Îv!¼iýEx:gñÇqbrª×¶˜V©™÷&úFì4øK’?¼d¢M ,·á ðq¿^õª7ܺ·ÊxðƒB¿ma«` þEõiÖ^4#×!ç’˜ùV0å9è™ÈfŸWV¦ ²úO0r0Z5¼òÊË#ƒÊãm‹E¹I›xš6ò2ã-H>źà–ç»5â’Nœ±²Ÿ;»¹èˆ¢íˆÿ!@PM¶ÚZq¯’0½“öÆóûQHø¬i(Úà"=ü32{«ýŸŸ;âèÑ£d£÷ñÎÖ/ ÈȤ`ƒ?öËFT$mÄL§{»›µÊ C“T97%6ݦbœÊ9Õ‰ãwÖ¢9ðïõöfìˆá£BÁ·`#Á›ÁE}s•­qƒ¨ƒµ )OfeJAÄ]yI¨*‰%:ùOJÌë–‰ÞŠªRàó(¤ˆ8UbLš.ßQþü£G¹_R}×^ýoÊ—€ò¹˜b”Eâ~K4è··ó^š³…6‡ì,¹’R3Æ›ƒÈTä*ñìÍãVh³Ëʳ5¨©cn¶V 0g ^÷ë¿YL¿šú~Wö.›ÑiÛ§wœÆ‰¾ÛæþÕ„wrS3"¯’›çS0&”SLuµÚ76 ”’m âp· {’UO«á¥<‹@PrIJª†›!‚a Þ¼]ê;ææ£¨p³™ÞµÇÇ®«žrÄs²ŒSÉÚµ]ô(WˆsçŽwÕ#˜S«,Qæf¹•˜»¹Æº(Õ1Q„Cp‹³Ô­[ŠKNã˜LLÒŽ]ÆÝ½;0œN‹r70×ãVÔo¯¿NÐùäÜáö«¾º_æ>½ÎàÅwyíê5ˆÆ|…rb-ö9ÍÈê7|‹î*3'"ùjE? u« 㸾‡ïbõŒ.±.}çYwgŸS¨š%èõŽîˆÆ*Sß¼ÍW¹{Š2ºæž)Ùs<Ç€…¹^ ˆ‰¿eÇ¿ªãêþŽv$n9ÖüØê!øA¨Cºæ¹‘®®}äFÞ÷Ë;³¨07“?5ñz¸gDÅåyßniuÜïae •‘sç®·‚ÏEŸKÕxû®=3¡ä5œÄOzcÍ4.*`Ý78©:¸¸PžjD¡c&ct6!Ó{·9wTÜ™jâ¥OÁJ!rTÁ¸¦Ç1{ g<ÇN$þ#­ûh ½dµDûÉ×0CšÝÁ=:½ÕR[òêcUÎ!ªªÚyÙÆáò !°š›6âIñ©²æ¸¸QÊÈ‹l#ŠéĪrÂ&§–™¼xEÈß=}J×5ÍOìhçÇ¿'SYÍJ[§îu9:ÅVw>D±‰{ù˜ÔîãmL‘Õ@ºÞrÕŠX5iõïn)¹‡«j¾5µáîíºÇ—2·œçׯ0o+ä§®¤|J¨KÖ½ê9QžÎrGsïÎß’Ü_”i?5çNù®#p'M Ãײ»ÑÑôa"§Ü i+B…MQ‚Ѥ!|õ2fT:ˆ@óÏÁˆ;Zõ4…ƒEhs\Ù«@]Lvw¨!¢WÖ·Ýk>+Ï|ð‡J5ïêŽ[õë¡Gâ+©Gif7îŹò@•ó'™¿j'Éìát Pغxâ”s§N÷&AƒÞºJΞfɵæÔbcß(”A;`·A b.kwvO×hXЬ¹s„UÑ©ÓÈ鈨ÙÖV°øù¾ó ™2Ëdò¨RPM0”G¢ÕÖ½êMÌ·®4ðv®4æ7Ìa‘ô>*-HS=¯¤.`ónÏIMLGW[S©SzZ°Œ…-êËo!Æ/"´gþ{Üb÷‘0£o žU ™ë4ã¼é¤„•%ït2«˜ .vr2aVkÙ§¶ºÊœ¨fÙƒ_$\lVdåÌ—­[З‘ó•_Fø¥=zõñÔ‰KÓãP‚Iª‚CyŽOÁ½Ëò+É=·Z4]íˆ+Ú\¿r”¼1¿ª˜5Qú]i8YUMEáXt,Í]Mêåâˆçø©ÒQW¿©úíY½v:íôÂ5¥‡õbÜTA—f|¿Çßå0Ï™vÓÂëU_¹‘îiæ‹f!P0rå În ýiÁŸ"§nady!¹ªž¦þõ0·ˆµ ¤à춨‚ªbi*iQù7=B¯TÆ Ê¡ª:9„¨úwCÕß¡ìû1Ùù_.:PÏßçq’(A[”]¥áZåoQŸ16÷ìØ³6/åüj%°ÜRCæ‘rþn÷÷õæ§[5s<¨i£Á1Ü£kâPŠg²‡8?";bˆ¢<:Û¯oS¥qá¸OÞ÷O„øË½º,3ñô[àõ1²Ï,¡TáY)S¬æ«v-à9J¹ªõ\- ¨2Ë%LC¾h9߸àÄ4Ý…ZêƒÃ²ã¯Ž«<r~)l„Z’йî“SñŠ¢Yùòj©.TäV\‡ËòýyîùZ»žŒ'Ý¥1ÄßEµ¯Zëõ6³.>~ö#,ü E™×´ÔužW¼†wïç¦Ôºæâ!G¯–ìÐy÷‹?TÅÒ™¡öV\Kߢœ&':Qï­OßM1[2ÒÑS¾\ucªL½/ÁŽ’Ëc&ÑY7ÌÜŒñÆSM3m,˜á¶Ìû}sN+>O·RwQ=¥˦M¹î> ÍÆ¡i‰¦á,Cæ.“Ì]…©f¼ÏŸ¶ïhy¡gˆZì}ò#´ìF9s(Z 3ñ.åØÛÅÕ~>ÿSWØtæL©;ŽØì‚¼øÔ Txû®yñ­ÓàëU.íªBÑ&Üê=¡ù¼ºïœ ’ëÚÏf+2T„m S3Q­Hæ©5ŠOÉÀø[‘øÕ¿{zó (! CFw ÷LóUŒšÈ–…Õ¶s‘ë]ð~¾WÌ µÙGâ:ŽÔHˆ(£ÓãX½öjŽúåÇxß¹¹Ôˆ¬TMÕFb/]÷gÈÌÈ)(õ xe¤RT“Ût…Bï˜J£¥–ª2WGN)ߪ`ýuñ:ó‘Èö½™K…ÀMpéAÑHäÀ¿Oxäâ¢;é >Êň_¥'×Ãç´E%sð ù•±¨ø&#†iq²DHlãlzŸEËRDíÖwî5¡¦,¤’%÷ ãa¹æ%ï¡Qc1ÊM¡’=Ü$®·æÉò½~ÑBÉE z€‡‰AÃÚPxí„:RŸ«ä³Q¾b¥SîœY]{ý =÷}f£ñëæ¢vÖ Êa=Ú—Â<“Óö†ª˜˜\{2Í{3#ôLú«ÌðÆÅGý98½ng×›«vF‚gZ QQ?Zû$v_*ñúO›ïÅ[)¤W%BøTN¹)Z»Š7r<•!‘‰z˜ƒÔ¯;3øSíTö}ôëÏÜÜûm‰†JEiÀõê.&óê½ú?®ƒù\oi HËûÀƒ’ŠN×Â@G'£"g»–SãA/˜‹ù”âçžæÌ?M:ðã:&ƒíæ¼/Ö¨h6±ð”UjYi×5×=Xók¶„6„^Ñ·åNÔïmëg"Ý_Êaùrî5VëQûض¶5⯗qzfŸË¼¶™ù//“*ÔI÷Û; ”uöó`ízBü.8ü:…|•GpË$ke@@;ü?N‚ȇ]Påùó -|l‚Å+&(ð¾ÃíÔEì(Ž /S¡ý«—Ût ÂHäQqâfçý¤h×{ ÷±…thw3çVü>€¾<¯c䉇™N×c¹}ájœ7½¹{×Þ$§1TÁzó*ª—©Îv™«„J †Ì̾žÝ"GræaáMw8TÛcñeX›Cݯ–̸}͘±µö$ödÄ\Ç7uÉ?Ó*4—– B*Óž"Åssí´qÈ”~¾aN±>“®÷Ó“™—ö>Mùú_è_§õAtPMhcg/–ü@n´zÙI%ÎÿpS„ /Ï(ÎuW¿Ô¸ Ú-C¨gs0J1ëÑŸÇyÆÊ Ã`h´ )‰…õl­ÃÔâ¶ÇidW<Å—‰·2™TU«•5Ñà˜~uûF¿;ñ®Q A „Q,. Ô&¡ðÚ<ò*\uc 8ߣÆ!ᜌf®ãäßq2ÈÔÖ’ÂsÜRVš46Q©ß:¡Ý8àâܰIý·ø×*Á‹‹¿“jN´÷׳ÃÈBû»Þ$hƒ¢Ý}ë{/œ!DÁ õȘݟqò×#ZÙ\0å!Ä|†T9‘—2 \(Á89ý§Dyçb鉴‰ùî=Ñ.uú¶•äPP\R¼9Tݼ• b¾ˆ'(‚l®^¹Ìer2pm£@„ 9ÌÎÝÛ4‘uºYÁ6Áœjåaù´î.”ãCëäm§:ù[Z`ª8Î g BŽ0âøóÜîõAl¥Ž 7 WË‚R™iCuò¨¯»ãŸ®êê8¾â޹óã¬CTK#åQñ©£"hLy .•59z胓qУeäpc@¡$ä|`0HqÔ2qvº,9Jq@Ñl¶©ºù½`9ÜÑ9Ò€“ \PTbÝÃ5ŽÀleŠãæ v¾Ö$Á·ÜÉy¢Š!­Õ쪯'¿ÒìñYËV,¥±z*Fù“2ò,-­×J Á‰ÖÆÕ\<û•ù0ñ<뼨Ǹs0¼ò§à,j&!O3½/¢V¾ Ï-m‰A5å†DÑlpmÂ÷3DÍ©¦ÇMºn2Y“ê/mÆÑÁ»È#d9’ñãìÚc‘ǘ€ÖtS¯­>Fž8Fä"µ­O™8Ø5Mxˆ/7À ^xF nGËÞÚZo—(ª2 ºEîHÆôž5H<Ë)åxóÇx¦â„lTäÖ‹e,åŠä'¿Ÿ{¥Å4h¥BëcMùhÅ­æÕò÷/"®ö©- ŒÒÇîµÑÇØª0nfv èƒ#Y½-‘¡±FàK\æ™;°ˆYË­§+Š6Æ„‚঴ƒÌ2âXÓ¹o†A¯Hj£ã1Âcã!2J¦ÉÍYÜøñJsTi±>ÈF&Ž6,’·p´©ïluã]ë¾ÞUbD;ì÷3JÛC÷:·Ý@χ¢CÇ¥¾G™(ˆ6Ó3×w:£B`š^G×äm®ÇÛ^y‘׳bûÎùï4sfYj pLBŽ!Î=ô“mp¥4<”¢`wõß`4+ì/oöŠŒ1©‰§ðj‹ëoÍX§Ãx6™}sž»8 r?¡€€RÈFžFÚÏ…ùxÑ;Ðùõ3’5,Þ{œqòùpj|îoQ‰Ò8ûÊÔL ÜÏ,#lõ°"8$ñ¿ÙÄPc­‚^ Å—*ëOEõS•†lõð|Œj6â}êÏ$s8F‰ùïÚ;Þà˜„Þ«MµöeçH ½O[BÄ4ÔEÉücâ¹>w»Ž!ªýDœ.g¸[˜pEÙµóR¨˜„ò4áå”Ì5 lnProfileLike.max) { lnProfileLike.max <- obj$lnProfileLike.FULL cov.args.MLE <- cov.args.temp lambda.best <- exp(llambda.opt) } # save results of the kth covariance model evaluation summary[k, 1:8] <- c(obj$eff.df, obj$lnProfileLike.FULL, obj$GCV, obj$sigma.MLE.FULL, obj$rho.MLE.FULL, llambda.opt, optim.counts) if (verbose) { cat("Summary: ", k, summary[k, 1:8], fill = TRUE) } } return(list(summary = summary, par.grid = par.grid, cov.args.MLE = cov.args.MLE, mKrig.args = list(...), lambda.best = lambda.best, lambda.MLE = lambda.best, call = match.call(), lnLike.eval = lnLike.eval)) } fields/R/double.exp.R0000644000175100001440000000220613114123116014120 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 double.exp <- function(x) { # double exponential weight function 0.5 * exp(-abs(x)) } fields/R/plot.sreg.R0000644000175100001440000000506113114123117013773 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "plot.sreg" <- function(x, digits = 4, which = 1:4, ...) { out <- x if (any(which == 1)) { plot(out$x, out$y, ylab = "predicted", xlab = " X", bty = "n", ...) matlines(out$predicted$x, out$predicted$y, lty = 1) } if (any(which == 2) & length(out$lambda) == 1) { plot(out$fitted.values, out$residuals, ylab = "residuals", xlab = " predicted values", bty = "n", ...) yline(0) } if (any(which == 3)) { if (nrow(out$gcv.grid) > 1) { # trim off + infinity due to pole in the denominator of GCV function #with cost ind <- out$gcv.grid[, 3] < 1e+19 out$gcv.grid <- out$gcv.grid[ind, ] yr <- range(unlist(out$gcv.grid[, 3:5]), na.rm = TRUE) plot(out$gcv.grid[, 2], out$gcv.grid[, 3], xlab = "Eff. parameters", ylab = " GCV function", bty = "n", ylim = yr, log = "y", ...) lines(out$gcv.grid[, 2], out$gcv.grid[, 4], lty = 2) lines(out$gcv.grid[, 2], out$gcv.grid[, 5], lty = 1) xline(out$eff.df) title("GCV-points , solid- GCV model,\ndashed- GCV one", cex = 0.6) } } if (any(which == 4)) { if (length(out$lambda) == 1) { hist(out$residuals, xlab = "Residuals", main = "") } else { bplot(out$residuals, names = format(round(out$trace, 1)), xlab = "eff df") title("Residuals") } } } fields/R/quilt.plot.R0000644000175100001440000000446713114123117014202 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "quilt.plot" <- function(x, y, z, nx = 64, ny = 64, grid = NULL, add.legend = TRUE, add = FALSE, nlevel=64, col = tim.colors(nlevel), nrow = NULL, ncol = NULL, FUN=NULL, plot=TRUE, na.rm=FALSE, ...) { # # note that nrow and ncol refer to the resulting 'image format' for plotting. # here the x values are the rows and the y values are the columns # FUN = NULL means the weighted means are found for each grid cell if( !is.null(nrow)|!is.null(nrow)){ nx<- nrow ny<- ncol } x <- as.matrix(x) if (ncol(x) == 2) { z <- y } if (ncol(x) == 1) { x <- cbind(x, y) } if (ncol(x) == 3) { z <- x[, 3] x <- x[, 1:2] } # at this point x should be a 2 column matrix of x-y locations # z is a vector or one column matrix of the z values. #discretize data out.p <- as.image(z, x = x, nx = nx, ny = ny, grid = grid, FUN=FUN, na.rm=na.rm) # besides the image information this list has the indices that # map each z value to a grid box # # plot it if( plot){ if (add.legend) { image.plot(out.p, nlevel = nlevel, col = col, add = add, ...) } else { image(out.p, col = col, add = add, ...) } } invisible(out.p) } fields/R/rdist.vec.R0000644000175100001440000000240513114123117013756 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 rdist.vec = function(x1, x2) { #make sure inputs are matrices if (!is.matrix(x1)) { x1 <- as.matrix(x1) } if(!is.matrix(x2)) { x2 <- as.matrix(x2) } #return distances sqrt(rowSums((x1 - x2)^2)) } fields/R/plot.spatialDesign.R0000644000175100001440000000215613114603257015634 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "plot.spatialDesign" <- function(x, ...) { pairs(x$design, ...) } fields/R/find.upcross.R0000644000175100001440000000346313114123117014477 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "find.upcross" <- function(fun, fun.info, upcross.level = 0, guess = 1, tol = 1e-05) { l1 <- guess tr <- 0 for (k in 1:50) { tr <- fun(l1, fun.info) - upcross.level if (tr >= 0) break else { guess <- l1 } l1 <- l1 * 2 } if (tr < 0) { warning("Failed to find the upcrossing") return(NA) } tr <- 0 l2 <- guess for (k in 1:50) { tr <- fun(l2, fun.info) - upcross.level if (tr <= 0) break l2 <- l2/2 } if (tr > 0) { warning("Failed to find the upcrossing") return(NA) } out <- bisection.search(l2, l1, fun, tol = tol, f.extra = fun.info, upcross.level = upcross.level)$x (out) } fields/R/flame.R0000644000175100001440000000507213114123117013144 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "flame" <- structure(list(x = structure(c(3, 5, 7, 9, 11, 4, 6, 8, 10, 12, 4, 6, 8, 10, 12, 14, 5, 7, 9, 11, 13, 15, 5, 7, 9, 11, 13, 15, 17, 7, 9, 11, 13, 15, 17, 19, 8, 10, 12, 14, 16, 18, 20, 8, 10, 12, 14, 16, 18, 20, 22, 10, 12, 14, 16, 18, 20, 22, 24, 12, 14, 16, 18, 20, 24, 12, 14, 16, 18, 20, 22, 24, 26, 12, 14, 16, 18, 20, 22, 24, 26, 14, 16, 18, 20, 22, 24, 26, 28, 15, 15, 15, 15, 15, 17, 17, 17, 17, 17, 19, 19, 19, 19, 19, 19, 21, 21, 21, 21, 21, 21, 23, 23, 23, 23, 23, 23, 23, 25, 25, 25, 25, 25, 25, 25, 27, 27, 27, 27, 27, 27, 27, 29, 29, 29, 29, 29, 29, 29, 29, 31, 31, 31, 31, 31, 31, 31, 31, 33, 33, 33, 33, 33, 33, 35, 35, 35, 35, 35, 35, 35, 35, 37, 37, 37, 37, 37, 37, 37, 37, 39, 39, 39, 39, 39, 39, 39, 39), .Dim = c(89, 2), .Dimnames = list(NULL, c("Fuel", "O2"))), y = c(0.005, 0.017, 0.031, 0.041, 0.04, 0.008, 0.021, 0.037, 0.042, 0.039, 0.007, 0.017, 0.032, 0.04, 0.041, 0.035, 0.008, 0.018, 0.033, 0.041, 0.039, 0.034, 0.009, 0.018, 0.029, 0.039, 0.041, 0.037, 0.033, 0.012, 0.023, 0.035, 0.04, 0.04, 0.033, 0.033, 0.015, 0.025, 0.035, 0.041, 0.039, 0.033, 0.03, 0.015, 0.022, 0.033, 0.039, 0.04, 0.035, 0.03, 0.029, 0.019, 0.03, 0.037, 0.041, 0.038, 0.034, 0.029, 0.029, 0.027, 0.034, 0.041, 0.039, 0.028, 0.026, 0.024, 0.032, 0.038, 0.039, 0.035, 0.031, 0.027, 0.025, 0.023, 0.029, 0.037, 0.039, 0.038, 0.033, 0.028, 0.024, 0.029, 0.036, 0.038, 0.039, 0.034, 0.029, 0.025, 0.023)), .Names = c("x", "y")) fields/R/cover.design.R0000644000175100001440000001553113114604077014460 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "cover.design" <- function(R, nd, nruns = 1, nn = TRUE, num.nn = 100, fixed = NULL, scale.type = "unscaled", R.center, R.scale, P = -20, Q = 20, start = NULL, DIST = NULL, return.grid = TRUE, return.transform = TRUE, max.loop = 20, verbose = FALSE) { if (!is.null(start) && is.matrix(start)) { if (any(duplicated(start))) stop("Error: start must not have duplicate rows") test <- duplicated(start, R) if (sum(test) < nrow(start)) stop("Error: Starting design must be a subset of R") } R.orig <- R R <- as.matrix(R) # some checks on inputs if (nd >= nrow(R)) { stop(" number of design points >= the number of candidates") } if (any(duplicated.array(R))) stop("Error: R must not have duplicate rows") if (num.nn >= (nrow(R) - nd)) { nn <- FALSE warning("Number of nearst neighbors (nn) reduced to the actual number of candidates") } if (is.null(DIST)) DIST <- function(x, y) { rdist(x, y) } id <- 1:nrow(R) if (!is.null(start)) nd <- length(start) if (is.null(fixed)) n <- nd else { n <- nd + length(fixed) } R <- transformx(R, scale.type, R.center, R.scale) transform <- attributes(R) saved.crit <- rep(NA, nruns) saved.designs <- matrix(NA, nrow = nruns, ncol = n) saved.hist <- list(1:nruns) if (verbose) { cat(dim(R), fill = TRUE) } # # do nruns with initial desing drawn at random # # in this code Dset are the indices of the design # Cset are the complement set of indices indicating the candidate points # no used in the design # for (RUNS in 1:nruns) { if (is.null(start)) { if (!is.null(fixed)) { Dset <- sample((1:nrow(R))[-fixed], nd) Dset <- c(Dset, fixed) } else Dset <- sample(1:nrow(R), nd) } else { if (length(start) > nd) stop("Error: the start matrix must have nd rows") Dset <- start if (!is.null(fixed)) Dset <- c(Dset, fixed) } design.original <- R.orig[Dset, ] Dset.orginal <- Dset Cset <- id[-Dset] dist.mat <- DIST(R[Cset, ], R[Dset, ]) rs <- dist.mat^P %*% rep(1, n) crit.i <- crit.original <- sum(rs^(Q/P))^(1/Q) CRIT <- rep(NA, length(Cset)) CRIT.temp <- rep(NA, length(Cset)) hist <- matrix(c(0, 0, crit.i), ncol = 3, nrow = 1) loop.counter <- 1 repeat { for (i in 1:nd) { # loop over current design points looking for a productive swap Dset.i <- matrix(R[Dset[i], ], nrow = 1) if (verbose) { cat("design point", i, Dset.i, fill = TRUE) } partial.newrow <- sum(DIST(Dset.i, R[Dset[-i], ])^P) rs.without.i <- rs - c(DIST(Dset.i, R[-Dset, ])^P) if (nn) vec <- (1:length(Cset))[order(dist.mat[, i])[1:num.nn]] else vec <- 1:length(Cset) for (j in vec) { # loop over possible candidates to swap with design point Cset.j <- matrix(R[Cset[j], ], nrow = 1) newcol <- c(DIST(Cset.j, R[c(-Dset, -Cset[j]), ])^P) CRIT[j] <- (sum((rs.without.i[-j] + newcol)^(Q/P)) + (DIST(Cset.j, Dset.i)^P + partial.newrow)^(Q/P))^(1/Q) if (verbose) { cat(j, " ") } } best <- min(CRIT[!is.na(CRIT)]) best.spot <- Cset[CRIT == best][!is.na(Cset[CRIT == best])][1] if (verbose) { cat(i, "best found ", best, " at", best.spot, fill = TRUE) } crit.old <- crit.i # check if the best swap is really better thatn what you already have. if (best < crit.i) { if (verbose) { cat(i, "best swapped ", fill = TRUE) } crit.i <- best hist <- rbind(hist, c(Dset[i], best.spot, crit.i)) Dset[i] <- best.spot Cset <- id[-Dset] dist.mat <- DIST(R[Cset, ], R[Dset, ]) rs <- (dist.mat^P) %*% rep(1, n) } } if ((crit.i == crit.old) | (loop.counter >= max.loop)) break loop.counter <- loop.counter + 1 } saved.crit[RUNS] <- crit.i saved.designs[RUNS, ] <- Dset saved.hist[[RUNS]] <- hist } ret <- (1:nruns)[saved.crit == min(saved.crit)] if (length(ret) > 1) { print("Greater than 1 optimal design; keeping first one......") ret <- ret[1] } crit.i <- saved.crit[ret] hist <- saved.hist[[ret]] nhist <- nrow(hist) nloop <- nruns hist <- cbind(c(0:(nrow(hist) - 1)), hist) dimnames(hist) <- list(NULL, c("step", "swap.out", "swap.in", "new.crit")) out.des <- R[saved.designs[ret, ], ] out.des <- unscale(out.des, transform$x.center, transform$x.scale) out <- list(design = out.des, call = match.call(), best.id = c(saved.designs[ret, ]), fixed = fixed, opt.crit = crit.i, start.design = design.original, start.crit = crit.original, history = hist, other.designs = saved.designs, other.crit = saved.crit, DIST = DIST, nn = nn, num.nn = num.nn, P = P, Q = Q, nhist = nhist - 1, nloop = (nloop - 1)/n) if (return.grid) out$grid <- R.orig if (return.transform) out$transform <- transform class(out) <- "spatialDesign" out } fields/R/colorbar.plot.R0000644000175100001440000000577113114123116014645 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "colorbar.plot" <- function(x, y, strip, strip.width = 0.1, strip.length = 4 * strip.width, zrange = NULL, adj.x = 0.5, adj.y = 0.5, col = tim.colors(256), horizontal = TRUE, ...) { # coerce to be one column matrix if it is a vector if (!is.matrix(strip)) { strip <- matrix(c(strip), ncol = 1) } m <- nrow(strip) n <- ncol(strip) # find common range across strips if not specified if (is.null(zrange)) { zrange <- matrix(range(c(strip), na.rm = TRUE), nrow = n, ncol = 2, byrow = TRUE) } # see help( par) for background on graphical settings ucord <- par()$usr pin <- par()$pin if (horizontal) { dy <- strip.width * (ucord[4] - ucord[3]) dx <- strip.length * pin[2] * (ucord[2] - ucord[1])/(pin[1]) } else { dx <- strip.width * (ucord[2] - ucord[1]) dy <- strip.length * pin[1] * (ucord[4] - ucord[3])/(pin[2]) } # # dx and dy should have the correct ratio given different different scales # and also different aspects to the plot window # n <- ncol(strip) m <- nrow(strip) # create grids in x and y for strip(s) based on the users # coordinates of the plot and th positioning argument (adj) if (horizontal) { xs <- seq(0, dx, , m + 1) + x - adj.x * dx ys <- seq(0, dy, , n + 1) + y - adj.y * dy } else { xs <- seq(0, dx, , n + 1) + x - adj.x * dx ys <- seq(0, dy, , m + 1) + y - adj.y * dy } # # plot image row by row to allow for different zlim's # see image.add for a fields function that just plots the whole image at # once. for (k in 1:n) { if (horizontal) { image(xs, c(ys[k], ys[k + 1]), cbind(strip[, k]), zlim = zrange[k, ], add = TRUE, col = col, ...) } else { image(c(xs[k], xs[k + 1]), ys, rbind(strip[, k]), zlim = zrange[k, ], add = TRUE, col = col, ...) } } } fields/R/predictSurface.family.R0000644000175100001440000000652513114123117016307 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "predict.surface" <- function(object, ...) { UseMethod("predict.surface") } predict.surface.default<- function(object,...){ cat("predict.surface is now the function predictSurface") } "predictSurface"<- function( object,...){ UseMethod("predictSurface") } "predictSurface.default" <- function(object, grid.list = NULL, extrap = FALSE, chull.mask = NA, nx = 80, ny = 80, xy = c(1,2), verbose = FALSE, ...) { # NOTE: # without grid.list # default is 80X80 grid on first two variables # rest are set to median value of x. if (is.null(grid.list)) { grid.list <- fields.x.to.grid(object$x, nx = nx, ny = ny, xy = xy) } # here is the heavy lifting xg <- make.surface.grid(grid.list) # NOTE: the specific predict function called will need to do the checks # whether the evaluation of a large number of grid points makes sense. out <- as.surface( xg, predict(object, xg,...) ) # # if extrapolate is FALSE set all values outside convex hull to NA if (!extrap) { if( is.null( object$x)){ stop("need and x matrix in object") } if (is.na(chull.mask)) { chull.mask <- unique.matrix(object$x[, xy]) } out$z[!in.poly(xg[, xy], xp = chull.mask, convex.hull = TRUE)] <- NA } # return(out) } "predictSurface.mKrig" <- function( object, ...){ NextMethod("predictSurface.Krig") } "predictSurface.fastTps" <- function(object, grid.list = NULL, extrap = FALSE, chull.mask = NA, nx = 80, ny = 80, xy = c(1,2), verbose = FALSE, ...) { # NOTE: See predictSurface.default for comments if (is.null(grid.list)) { grid.list <- fields.x.to.grid(object$x, nx = nx, ny = ny, xy = xy) } # in the case of fastTps pass the grid list instead of the locations of grid points # (see xg in predictSurface.default) out <- predict(object, grid.list=grid.list, xy=xy, ...) out <- as.surface(grid.list, out ) # # if extrapolate is FALSE set all values outside convex hull to NA if (!extrap) { if (is.na(chull.mask)) { chull.mask <- unique.matrix(object$x[, xy]) } xg<- make.surface.grid( grid.list) out$z[!in.poly(xg[, xy], xp = chull.mask, convex.hull = TRUE)] <- NA } # return(out) } fields/R/poly.image.R0000644000175100001440000000756513114123117014135 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 poly.image.regrid <- function(x) { ################################## temp.addcol <- function(X) { N <- ncol(X) # add extra columns to X, on either side cbind(X[, 1] - (X[, 2] - X[, 1]), X, (X[, N] - X[, (N - 1)]) + X[, N]) } ############################### # find approximate grid with z values at centers M <- nrow(x) N <- ncol(x) # new x matrix that is the midpoints of original grid points. x <- (x[, 1:(N - 1)] + x[, 2:N])/2 x <- (x[1:(M - 1), ] + x[2:M, ])/2 # now add extra rows and columns on all sides x <- t(temp.addcol(x)) t(temp.addcol(x)) } poly.image <- function(x, y, z, col = tim.colors(64), breaks, transparent.color = "white", midpoint = FALSE, zlim = range(z, na.rm = TRUE), xlim = range(x), ylim = range(y), add = FALSE, border = NA, lwd.poly = 1, ...) { # check dimensions Dx <- dim(x) Dy <- dim(y) if (any((Dx - Dy) != 0)) { stop(" x and y matrices should have same dimensions") } # check whether grid and z values coincide. Dz <- dim(z) if (all((Dx - Dz) == 0) & !midpoint) { # expand grid in a linear way so that the z are not # grid box centers x <- poly.image.regrid(x) y <- poly.image.regrid(y) } # figure out the breaks make sure that missing breaks are passed as NA. if (missing(breaks)) { breaks <- NA } # code values in z based on range to colors. # if midpoint is true z values will be averaged first zcol <- drape.color(z, col = col, midpoint = midpoint, zlim = zlim, transparent.color = transparent.color, breaks = breaks)$color.index # blank if not adding to an exising plot if (!add) { plot(xlim, ylim, type = "n", ...) } N <- ncol(x) Nm1 <- N - 1 M <- nrow(x) Mm1 <- M - 1 for (i in (1:Mm1)) { # draw polygons one row at a time # uses feature of polygon to draw multiple regions with NAs # marking start and end. xp <- cbind(x[i, 1:Nm1], x[i + 1, 1:Nm1], x[i + 1, 2:N], x[i, 2:N], rep(NA, Nm1)) yp <- cbind(y[i, 1:Nm1], y[i + 1, 1:Nm1], y[i + 1, 2:N], y[i, 2:N], rep(NA, Nm1)) xp <- c(t(xp)) yp <- c(t(yp)) pcol <- c(zcol[i, 1:Nm1]) # draw each poly with different color including the border # if the border color has not been specified. # this will avoid missing some space on some output devices. # one can also crank down width of border lines to avoid rounded corners polygon(xp, yp, border = pcol, col = pcol, lwd = lwd.poly) # fill in border with different color if it is not an NA. if (!is.na(border)) { polygon(xp, yp, border = border, col = NA, lwd = lwd.poly) } } } fields/R/sim.mKrig.approx.R0000644000175100001440000001354713114123117015236 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "sim.mKrig.approx" <- function(mKrigObject, predictionPoints = NULL, predictionPointsList = NULL, simulationGridList = NULL, gridRefinement = 5, gridExpansion = 1 + 1e-07, M = 1, nx = 40, ny = 40, nxSimulation = NULL, nySimulation = NULL, delta = NULL, verbose = FALSE,...) { if (ncol(mKrigObject$x) != 2) { stop("conditional simulation only implemented for 2 dimensions") } # create prediction set of points based on what is passed if (is.null(predictionPoints)) { predictionPoints <- makePredictionPoints(mKrigObject, nx, ny, predictionPointsList) } if (is.null(simulationGridList)) { simulationGridList <- makeSimulationGrid(mKrigObject, predictionPoints, nx, ny, nxSimulation, nySimulation, gridRefinement, gridExpansion) } nxSimulation <- length(simulationGridList$x) nySimulation <- length(simulationGridList$y) sigma <- mKrigObject$sigma.MLE rho <- mKrigObject$rho.MLE # # set up various sizes of arrays nObs <- nrow(mKrigObject$x) if (verbose) { cat("nObs, sigma, rho", nObs, sigma, rho, fill = TRUE) cat("simulationGridList)", fill=TRUE) print( t( stats( simulationGridList))) } # set up object for simulating on a grid using circulant embedding covarianceObject <- stationary.image.cov(setup = TRUE, grid = simulationGridList, cov.function = mKrigObject$cov.function, cov.args = mKrigObject$args, delta = delta) if (verbose) { cat("dim of full circulant matrix ", dim(covarianceObject$wght), fill = TRUE) } # # find conditional mean field from initial fit hHat <- predict(mKrigObject, xnew = predictionPoints, grid.list = predictionPointsList, ...) # setup output array to hold ensemble out <- matrix(NA, length(hHat), M) # empty image object to hold simulated fields hTrue <- c(simulationGridList, list(z = matrix(NA, nxSimulation, nySimulation))) ########################################################################################## ### begin the big loop ########################################################################################## xData <- mKrigObject$x weightsError <- mKrigObject$weights for (k in 1:M) { # simulate full field if (verbose) { cat(k, " ") } hTrue$z <- sqrt(rho) * sim.rf(covarianceObject) # # NOTE: fixed part of model (null space) need not be simulated # because the estimator is unbiased for this part. # the variability is still captured because the fixed part # is still estimated as part of the predict step below # # bilinear interpolation to approximate values at data locations # hData <- interp.surface(hTrue, xData) hPredictionGrid <- interp.surface(hTrue, predictionPoints) ySynthetic <- hData + sigma * 1/sqrt(weightsError) * rnorm(nObs) if (verbose) { cat("stats for synthetic values", fill = TRUE) print(t(stats(ySynthetic))) } # predict at grid using these data # and subtract from synthetic 'true' value spatialError <- predict(mKrigObject, xnew = predictionPoints, grid.list = predictionPointsList, ynew = ySynthetic, ...) - hPredictionGrid # add the error to the actual estimate (conditional mean) out[, k] <- hHat + spatialError } return(list(predictionPoints = predictionPoints, Ensemble = out, call = match.call())) } makeSimulationGrid <- function(mKrigObject, predictionPoints, nx, ny, nxSimulation, nySimulation, gridRefinement, gridExpansion) { # if prediction grid is passed use these to deterimine the simulation grid. # if (is.null(nxSimulation) | is.null(nySimulation)) { nxSimulation <- nx * gridRefinement * gridExpansion nySimulation <- ny * gridRefinement * gridExpansion } # Note NULL values are transparent ther because of 'c' operator. xRange <- range(c(mKrigObject$x[, 1], predictionPoints[, 1])) yRange <- range(c(mKrigObject$x[, 2], predictionPoints[, 2])) midpointX <- (xRange[2] + xRange[1])/2 midpointY <- (yRange[2] + yRange[1])/2 deltaX <- gridExpansion * (xRange[2] - xRange[1])/2 deltaY <- gridExpansion * (yRange[2] - yRange[1])/2 return(list(x = seq(midpointX - deltaX, midpointX + deltaX, , nxSimulation), y = seq(midpointY - deltaY, midpointY + deltaY, , nySimulation))) } makePredictionPoints <- function(mKrigObject, nx, ny, predictionPointsList) { if (is.null(predictionPointsList)) { predictionPointsList <- fields.x.to.grid(mKrigObject$x, nx = nx, ny = ny) } return(make.surface.grid(predictionPointsList)) } fields/R/parse.grid.list.R0000644000175100001440000000402113114123117015061 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "parse.grid.list" <- function(grid.list, order.variables = "xy") { # # utility to find the x and y sequences in grid.list # this is used in predictSurface and as.surface # M <- length(grid.list) gcounts <- unlist(lapply(grid.list, FUN = length)) xy <- (1:M)[gcounts > 1] if (length(xy) > 2) { stop("only two components of the grid list\ncan have more than one element") } # # swap the roles of x and y if (order.variables == "yx") { xy <- xy[2:1] } # # # here is the good stuff # nx <- gcounts[xy[1]] ny <- gcounts[xy[2]] x <- grid.list[[xy[1]]] y <- grid.list[[xy[2]]] # # extract the names of the x and y components of the # list # xlab <- names(grid.list)[xy[1]] ylab <- names(grid.list)[xy[2]] xlab <- ifelse(is.null(xlab), "X", xlab) ylab <- ifelse(is.null(ylab), "Y", ylab) list(x = x, y = y, nx = nx, ny = ny, xlab = xlab, ylab = ylab, xy = xy) } fields/R/fields.diagonalize.R0000644000175100001440000000337513114123116015616 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "fields.diagonalize" <- function(A, B) { hold <- eigen(A, symmetric = TRUE) # square root of A hold2 <- (t(hold$vectors) * sqrt(1/hold$values)) # # A.inv.sqrt = hold2 # A.inv = hold%*% t(hold2) # # eigen decomp of A.inv.sqrt B t( A.inv.sqrt) # hold <- eigen((hold2) %*% B %*% t(hold2), symmetric = TRUE) # the magic G matrix used throughout fields. G <- t(hold2) %*% hold$vectors # # Note: # G simultaneously diagonalizes two matrices: # # G^T A G= I # G^T B G= D # # and in terms of application we also have the useful # diagonalization # # (A +lambda B)^{-1} = G( I + lambda D)^{-1} G^T list(G = G, D = hold$values) } fields/R/RMprecip.R0000644000175100001440000010242513114123116013600 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "RMprecip" <- structure(list(x = structure(list(lon = c(-110.53, -109.53, -109.55, -109.23, -110.1, -109.77, -109.4, -109.1, -109.05, -110.73, -104.65, -103.15, -105.85, -108.53, -105.88, -105.48, -105.52, -107.17, -102.18, -105.27, -102.45, -104.33, -104.83, -106.13, -102.27, -104.22, -105.7, -102.68, -105.23, -104.87, -106.12, -105.28, -104.85, -102.35, -107.52, -106.2, -106.77, -107.97, -108.73, -104.7, -108.57, -107.6, -106.97, -105.68, -106.35, -108.07, -104.88, -106.03, -108.97, -108.5, -107.88, -102.78, -104.57, -105.32, -103.07, -102.83, -105.08, -108.05, -103.8, -104.7, -104.03, -108.75, -108.93, -103.5, -105.7, -107.32, -108.53, -108.58, -105.83, -105.85, -105.68, -105.53, -104.7, -106.33, -105.35, -105.38, -106.97, -107.62, -103.15, -107.25, -107.13, -106, -102.12, -102.3, -102.28, -105.22, -102.68, -102.93, -102.25, -103.52, -105.1, -102.78, -106.4, -103.48, -107.32, -105.48, -105.13, -102.62, -103.22, -106.32, -103.02, -105.07, -105.95, -108.28, -107.47, -108.08, -107.9, -106.75, -108.5, -106.15, -105.6, -103.83, -109.03, -105.02, -108.28, -103.75, -103.7, -107.68, -107.02, -108.35, -107.58, -104.65, -108.07, -104.5, -104.72, -107.1, -108.8, -108.03, -107.75, -107.27, -103.7, -104.08, -104.98, -106.13, -106.02, -106.43, -104.97, -102.52, -102.52, -107.23, -107.67, -106.42, -102.7, -106.83, -103.2, -102.07, -102.58, -105.12, -106.37, -104.12, -106.62, -107.87, -104.48, -104.33, -106.32, -108.73, -107.58, -106.27, -104.8, -102.28, -105.2, -105.48, -105.77, -106.78, -104.48, -102.23, -106.9, -108.73, -102.73, -99.55, -99.77, -101.05, -100.95, -99.65, -101.53, -99.2, -101.38, -99.63, -99.52, -99.73, -100.35, -101.07, -99.33, -100.12, -99.58, -99.73, -100.42, -101.9, -99.57, -100.82, -101.7, -100.48, -99.3, -99.33, -100.62, -100.45, -101.35, -100.48, -99.97, -100.28, -99.4, -99.12, -101.25, -99.1, -100, -101.37, -100.92, -99.57, -99.53, -99.18, -99.57, -101.38, -100.33, -100.87, -100.07, -99.03, -99.9, -100.18, -99.93, -99.83, -100.85, -100.52, -99.57, -99.57, -99.32, -99.3, -100.23, -99.92, -101.77, -101.95, -101.18, -101.8, -101.92, -100.08, -100.9, -101.75, -99.27, -100.18, -100.83, -101.77, -101.77, -99.07, -101.35, -100.17, -99.88, -99.83, -99.42, -101.25, -103.78, -99.87, -102.9, -99.87, -99.13, -100.18, -99.47, -99.83, -101.53, -99.63, -102.08, -99.87, -103.1, -99.68, -99.15, -100.17, -99.7, -103.08, -99.25, -103.42, -102.43, -100.83, -100.5, -102.97, -102.28, -102.2, -99.92, -101.52, -100.08, -102.17, -100.17, -101.93, -100.32, -99.22, -103.88, -103.88, -100.97, -102.68, -102.7, -103.08, -99.37, -101.63, -99.08, -103.67, -101.67, -101.98, -102.63, -102.63, -104.03, -101.55, -99.32, -100.6, -100.68, -100.22, -101.68, -99.4, -103.68, -100.4, -101.33, -99.13, -99.33, -100.7, -100.75, -99.83, -101.72, -99.5, -102.33, -102.43, -101.12, -101.35, -103.32, -100.25, -99.3, -100.65, -102.47, -103.6, -102.98, -99.73, -100.38, -101.23, -99.38, -101.02, -100.97, -100.68, -100.55, -101.17, -101.38, -100.73, -100.12, -104.33, -106.43, -106.62, -106.07, -103.17, -108, -104.1, -105.25, -107.97, -106.45, -105.6, -107.97, -105.38, -106.58, -104.95, -106.32, -104.18, -106.63, -106.97, -107.52, -105.05, -107, -105.27, -108.35, -106.18, -106.73, -106.08, -108.4, -108.78, -105.43, -106.38, -105.77, -107.9, -103.62, -106.68, -107.4, -104.37, -105.15, -105.2, -107.02, -106.3, -107.57, -104.58, -103.37, -108.45, -103.92, -107.62, -104.27, -105.05, -107.87, -103.73, -105.68, -104.43, -104.45, -105.4, -104.2, -103.33, -106.37, -105.97, -108.73, -104.58, -105.97, -107.47, -105.57, -106.58, -107.18, -105.97, -103.68, -104.93, -105.37, -106.77, -108.78, -99.77, -100.53, -102.48, -99.62, -99.38, -99.8, -99.62, -99.12, -100.05, -101.62, -99.4, -99.05, -101.22, -102.97, -99.9, -99.35, -99.5, -99.17, -102.73, -99.63, -100.87, -99.28, -99.38, -99.07, -103.65, -103.82, -103.92, -99.98, -103.32, -103.82, -101.02, -99.32, -101.87, -103.6, -103.72, -103.78, -101.52, -101.23, -103.82, -102.53, -103.47, -100.67, -99.07, -99.43, -101.27, -103.18, -99.47, -99.45, -101.87, -103.58, -103.47, -101.95, -99.87, -101.33, -102.17, -103.77, -101.5, -102.47, -101.68, -102.72, -101.15, -101.65, -100.67, -100.6, -103.45, -100.7, -103.45, -100.42, -103.23, -100.07, -103.27, -99.08, -103.5, -101.6, -100.28, -102.13, -102.45, -100.17, -103.1, -103.28, -102.55, -103.78, -99.45, -102.43, -99.87, -100.48, -101.7, -100.5, -101.45, -102.25, -103, -100.37, -101.37, -102.25, -102.55, -100.32, -101.97, -100.13, -101.4, -102.4, -100.02, -100.28, -100.6, -100.63, -101.47, -100.6, -101.38, -100.8, -100.82, -100.97, -100.25, -101.2, -102.08, -109.07, -110.27, -109.62, -109.48, -109.55, -110.73, -109.83, -109.75, -109.4, -109.08, -109.3, -110.4, -109.42, -109.87, -110.17, -110.17, -110.72, -110.87, -109.07, -109.37, -109.22, -109.67, -109.87, -109.55, -109.33, -110.07, -109.98, -110.05, -109.68, -110.8, -109.98, -109.52, -110.68, -110.92, -104.1, -104.65, -107.65, -108.05, -106.38, -110.93, -110.12, -106.73, -108.52, -107.73, -110.43, -108.2, -106.68, -109.18, -107.53, -109.28, -104.32, -106.33, -106.13, -104.82, -104.82, -110.03, -109.08, -106.38, -109.07, -108.93, -104.2, -110.17, -107.27, -108.6, -104.7, -105.12, -108.93, -105.4, -105.38, -109.63, -104.98, -105.87, -106.42, -108.37, -106.62, -110.95, -109.42, -107.48, -105.47, -105.88, -108.05, -108.95, -105.17, -104.6, -110.77, -107.83, -106.63, -110.53, -110.2, -104.17, -110.4, -108.73, -105.68, -105.62, -106.28, -106.83, -108.38, -104.48, -106.2, -104.93, -110.72, -110.58, -110.35, -107.47, -104.22, -110.83, -108.68, -104.48, -104.15, -109.87, -107, -108.75, -107.92, -107.2, -104.28, -108.38, -104.93, -109.07, -110.97, -106.82, -106.97, -106.83, -108.12, -110.67, -108.8, -104.35, -108.98, -105.38, -107.42, -107.32, -108.2, -104.22, -110.42, -104.62, -104.77, -107.98, -105.33, -104.95, -107.97, -107.97, -110.7, -104.3, -104.77, -107.65, -106.22, -99.97, -99.85, -100.73, -108.25, -99.37, -99.5, -100.98, -109.37, -110.07, -106.17, -100.28, -107.8, -99.92, -104.433, -105.867, -105.583, -105.82, -105.569, -105.887, -105.645, -105.544, -105.761, -105.2, -105.067, -105.25, -105.664, -106.983, -106.317, -106.083, -106.933, -106.233, -106.5, -106.367, -106.9, -106.283, -106.781, -106.094, -106.67, -106.046, -106.969, -106.677, -106.612, -106.608, -106.615, -106.542, -106.59, -106.953, -106.548, -106.657, -106.321, -106.263, -106.392, -107.133, -107.583, -107.85, -107.433, -107.533, -107.3, -107.067, -107.067, -107.183, -107.267, -107.167, -107.267, -107.167, -107.058, -107.357, -107.805, -107.689, -107.675, -107.507, -107.512, -109.017, -108.833, -108.9, -108.917, -108.058, -108.382, -108.195, -109.917, -109.65, -109.233, -109.567, -109.783, -109.8, -109.667, -109.75, -109.817, -109.95, -109.75, -109.317, -109.45, -109.167, -109.1, -109.267, -109.55, -109.883, -109.967, -109.667, -109.517, -109.267, -109.483, -110, -110.533, -110.15, -110.667, -110.833, -110.217, -110.433, -110.05, -110.017, -110.133, -110.2, -110.133, -110.917, -110.6, -110.917, -110.8, -110.533, -110.583, -110.667, -110.683, -110.817, -110.683, -110.817, -110.2, -110.483, -110.433, -110.683, -110.5, -110.617, -110.467, -110.583, -110.8, -110, -110.883, -110.95, -110.75, -110.983), lat = c(36.68, 36.15, 35.72, 36.42, 36.98, 35.07, 35.2, 36.9, 35.68, 35.02, 37.38, 40.15, 37.43, 39.58, 39, 39.4, 37.43, 38.47, 39.62, 40, 38.45, 40.65, 39.98, 38.83, 39.3, 39.7, 39.65, 37.08, 38.42, 39.37, 37.75, 39.22, 39.65, 38.82, 38.4, 39.38, 38.43, 39.25, 39.1, 38.82, 37.35, 40.45, 38.87, 37.98, 37.67, 38.75, 39.77, 39.63, 40.23, 37.47, 37.28, 38.48, 39.08, 39.63, 39.28, 40.67, 40.58, 37.23, 40.22, 38.68, 38.13, 39.17, 38.7, 39.28, 39.7, 39.52, 39.12, 39.07, 40.27, 40.25, 39.47, 37.72, 40.42, 39.88, 39.95, 38.68, 38.53, 40.37, 38.45, 40.48, 37.77, 40.97, 38.05, 40.58, 39.7, 39.57, 39.65, 38.07, 41, 38.8, 39.5, 38.77, 40.07, 37.72, 38.05, 38.92, 39.75, 38.08, 38.07, 39.23, 40.48, 40.17, 37.17, 37.35, 40.03, 40.52, 40.03, 39.37, 37.2, 37.57, 39.65, 40.58, 37.82, 39.9, 38.13, 38.22, 38.52, 38.02, 37.27, 39.1, 38.87, 39.52, 38.03, 38.28, 38.27, 40.23, 40.08, 37.68, 38.15, 37.72, 38.03, 38.87, 38.85, 38.08, 38.53, 38.4, 39.38, 40.93, 40.85, 39.57, 37.8, 40.48, 37.38, 40.5, 40.62, 37.3, 39.3, 39.43, 39.25, 38.42, 38.82, 37.95, 37.17, 37.25, 39.08, 38.37, 37.37, 40.73, 37.62, 37.38, 40.42, 38.13, 39.9, 37.48, 37, 40.07, 40.15, 37.55, 40.12, 38.47, 37.2, 39.8, 39.63, 37.87, 39.62, 38.52, 39.35, 37.55, 38.12, 38.8, 37.8, 39.38, 37.27, 38.9, 39.32, 39.63, 39.62, 37, 38.93, 37.98, 39.37, 38.97, 37.6, 38.87, 38.6, 39.35, 37.18, 38.72, 38.25, 38.07, 37.93, 39.67, 37.93, 38.18, 39.62, 38.48, 37.05, 39.67, 39.95, 38.67, 38.58, 39.78, 37.28, 39.27, 39.35, 39.18, 38.45, 39.83, 39.82, 39.7, 39.13, 39.83, 37.82, 39.23, 39.73, 39.23, 39.07, 38.63, 37.33, 37.23, 38.9, 39.77, 39.85, 39.18, 38.48, 38.9, 39.43, 39.47, 37.48, 37.98, 38.47, 37.82, 37.58, 38.65, 39.02, 39.17, 39.42, 39.07, 42.42, 42.55, 42.1, 41.62, 41.42, 41.42, 40.37, 40.13, 40.05, 40.52, 41.07, 41.95, 41.67, 41.42, 41.78, 40.27, 40.7, 42.83, 41.55, 42.7, 41.75, 40.22, 40.67, 41.42, 42.05, 42.27, 40.48, 40.42, 40.68, 42.8, 40.93, 40.02, 41.9, 40.08, 41.65, 42.68, 40.52, 42.68, 42.5, 42.35, 40.43, 40.52, 40.7, 41.25, 41.22, 40.57, 41.5, 41.15, 41.92, 40.85, 41.23, 40.2, 40.42, 40.38, 42.92, 40.93, 41.95, 40.68, 42.27, 40.07, 42.6, 41.13, 41.07, 41.08, 41.13, 40.13, 41.4, 41.3, 40.35, 41.13, 41.22, 42.07, 40.32, 40.35, 42.72, 41.87, 41.13, 42.82, 40.53, 40.13, 41.77, 40.18, 41.55, 42.58, 42.88, 40.83, 40.42, 40.75, 40.12, 36.18, 36.23, 35.05, 36.1, 35.9, 36.83, 35.53, 36.3, 36.67, 36.73, 36.73, 36.07, 36.13, 36.92, 36.47, 35.63, 35.4, 35.23, 36.02, 35.1, 35.18, 36.93, 36.57, 35.05, 36.33, 36.6, 35.98, 36.73, 35.52, 35.9, 36.33, 35.58, 35.17, 36.6, 35.77, 35.03, 36.98, 35.65, 35.53, 36.33, 35.88, 36.23, 36.55, 35.6, 35.33, 35.82, 36.82, 35.07, 36.18, 36.32, 36.3, 35.58, 36.92, 36.88, 36.7, 35.95, 35.12, 35.17, 35.65, 36.77, 36.37, 35.17, 35.93, 36.42, 36.72, 35.8, 36.65, 35.2, 35.82, 35.27, 35.97, 35.1, 36.13, 36.82, 36.73, 36.83, 35.42, 35.2, 36.38, 36.77, 36.85, 36.6, 35.6, 35, 36.87, 36.9, 36.72, 35.87, 35.13, 36.23, 36.93, 35.27, 36.82, 36.17, 36.45, 43.5, 43.07, 44.7, 45, 44.52, 43.48, 44.22, 43.58, 43.73, 43.97, 43.77, 44.38, 44, 44.83, 45, 43.3, 44.3, 44.4, 44.25, 44.07, 43.23, 43.17, 43.83, 44.52, 44.87, 44.33, 43.93, 43.43, 43.75, 43.92, 44.62, 43.43, 44.35, 43.47, 43.23, 43.23, 44.9, 44.07, 44.45, 43.3, 43.12, 43.88, 43.88, 44.73, 44.45, 43.18, 44.7, 43.4, 44.88, 44.07, 44.05, 44.38, 44.62, 43.45, 43.97, 44.15, 44.12, 44.7, 44.48, 44.25, 44.07, 43.38, 43.5, 35.23, 36.47, 35.65, 35.53, 35.65, 35.92, 35.12, 36.23, 36.02, 36.43, 35.85, 36.43, 36.25, 35.88, 36.12, 36.23, 35.23, 35.7, 36.05, 36.1, 35.33, 36.4, 36.1, 36.45, 35.23, 36.2, 36.35, 40.85, 40.32, 38.62, 37.62, 37.28, 37.52, 38.45, 38.15, 38.65, 37.72, 38.8, 40.17, 40.93, 40.28, 39, 38.25, 38.37, 39.73, 37.38, 40.37, 38.3, 40.55, 37.15, 38.58, 37.87, 40.2, 37.62, 40.42, 40.08, 39.62, 40.3, 40.45, 39.55, 42.75, 41.42, 41.15, 41.03, 44.38, 42.63, 42.88, 42.53, 44.13, 41.58, 43.65, 43.23, 43.42, 44.35, 44.5, 44.77, 43.37, 41.05, 42.92, 41.3, 41.15, 41.75, 41.43, 44.98, 44.62, 44.53, 44.38, 44.93, 43.42, 44.87, 44.88, 44.58, 44.12, 43.23, 42.18, 42.77, 43.57, 43.42, 44.47, 41.7, 44.52, 41.18, 41.27, 42.12, 42.83, 44.28, 42.87, 44.5, 44.7, 41.15, 44.68, 43.47, 42.5, 43.73, 41.8, 42.27, 41.63, 44.55, 42.82, 41.32, 41.35, 44.85, 42.18, 44.85, 42.75, 41.9, 44.27, 43.67, 43.85, 41.27, 42.35, 43.85, 44.47, 43.25, 41.63, 41.17, 42.87, 43.02, 44.78, 44.2, 41.8, 43.25, 43.02, 43.6, 41.6, 41.82, 41.45, 44.77, 44.83, 43.23, 44.13, 42.47, 44.4, 44.05, 41.77, 44.07, 43.77, 43.65, 42.08, 44.92, 44.1, 43.93, 41.68, 44.63, 42.12, 44.02, 43.97, 44.97, 41.93, 38.68, 37.38, 40.03, 37.77, 39.35, 39.47, 36.7, 35.17, 35.05, 35.57, 44.33, 41.98, 42.37, 35.43, 44.55, 35.42, 44.475, 42.433, 42.283, 40.414, 40.207, 40.532, 40.311, 40.035, 39.916, 37.209, 37.331, 37, 35.829, 44.25, 42.733, 42.567, 41.167, 41.367, 41.333, 41.333, 41, 41.467, 40.534, 40.347, 40.08, 40.875, 40.848, 40.537, 39.075, 39.298, 39.317, 39.088, 38.82, 38.894, 37.379, 36.956, 36.512, 36.716, 35.922, 44.167, 44.683, 44.8, 44.5, 44.783, 44.567, 44.4, 43.883, 43.633, 43.517, 41.117, 41.05, 41.3, 40.167, 39.765, 37.651, 37.749, 37.934, 37.485, 37.714, 43.667, 42.567, 42.7, 42.583, 39.058, 38.418, 37.892, 44.733, 44.8, 44.3, 44.783, 44.65, 44.383, 43.7, 43.5, 43.933, 43.117, 43, 43.867, 43.267, 43.033, 42.867, 42.65, 40.717, 40.617, 40.9, 40.733, 39.317, 38.483, 37.8, 45, 44.717, 44.483, 44.2, 44.133, 44.15, 43.933, 43.75, 43.25, 43.167, 43.133, 43.383, 43.517, 42.95, 42.517, 42.25, 42.467, 42.767, 42.533, 42.3, 42.817, 42.15, 42.517, 40.917, 40.95, 40.6, 40.55, 40.917, 40.75, 40.717, 40.583, 40.867, 40.767, 40.8, 40.683, 39.9, 39.967)), .Names = c("lon", "lat"), row.names = c("020750", "021248", "023303", "025129", "025665", "026190", "027488", "028468", "029410", "029439", "050102", "050109", "050130", "050214", "050263", "050454", "050776", "050797", "050834", "050848", "050895", "050945", "050950", "051071", "051121", "051179", "051186", "051268", "051294", "051401", "051458", "051528", "051547", "051564", "051609", "051660", "051713", "051741", "051772", "051778", "051886", "051932", "051959", "051964", "052184", "052192", "052220", "052281", "052286", "052326", "052432", "052446", "052494", "052790", "052932", "052944", "053005", "053016", "053038", "053063", "053079", "053146", "053246", "053258", "053261", "053359", "053488", "053489", "053496", "053500", "053530", "053541", "053553", "053592", "053629", "053656", "053662", "053738", "053828", "053867", "053951", "054054", "054076", "054082", "054242", "054293", "054380", "054388", "054413", "054444", "054452", "054603", "054664", "054726", "054734", "054742", "054762", "054770", "054834", "054885", "054945", "055116", "055322", "055327", "055414", "055446", "055484", "055507", "055531", "055706", "055797", "055922", "055970", "055984", "056012", "056131", "056136", "056203", "056258", "056266", "056306", "056326", "056524", "056740", "056765", "056797", "056832", "057017", "057020", "057050", "057167", "057287", "057309", "057337", "057370", "057460", "057510", "057513", "057515", "057618", "057656", "057848", "057866", "057936", "057950", "057992", "058008", "058022", "058064", "058157", "058184", "058204", "058429", "058434", "058501", "058560", "058582", "058756", "058781", "058793", "058839", "058931", "059175", "059181", "059216", "059243", "059265", "059275", "059295", "140135", "140365", "140439", "140441", "140676", "140836", "140865", "141029", "141104", "141141", "141383", "141522", "141699", "141704", "141730", "141999", "142086", "142213", "142432", "142452", "142980", "143153", "143175", "143239", "143527", "143554", "143837", "143855", "144073", "144087", "144161", "144333", "144357", "144464", "144530", "144642", "144665", "144695", "144775", "144807", "144821", "145115", "145127", "145171", "145355", "145483", "145628", "145692", "145787", "145852", "145856", "145888", "145906", "145920", "146192", "146374", "146435", "146637", "146685", "146808", "146813", "147049", "147093", "147095", "147140", "147271", "147397", "147832", "147904", "147922", "148038", "148235", "148245", "148287", "148323", "148495", "148498", "148648", "148988", "250030", "250050", "250130", "250245", "250320", "250355", "250427", "250640", "250760", "250810", "250865", "251130", "251145", "251200", "251345", "251415", "251450", "251575", "251835", "251973", "252000", "252065", "252100", "252145", "252645", "252647", "252690", "252741", "252790", "253355", "253365", "253515", "253540", "253595", "253605", "253615", "253690", "253710", "253715", "253755", "253910", "254110", "254335", "254440", "254455", "254604", "254865", "254900", "255020", "255090", "255250", "255310", "255311", "255388", "255470", "255525", "255590", "255655", "255702", "255780", "255925", "256065", "256075", "256167", "256200", "256365", "256385", "256390", "256480", "256585", "256880", "256970", "257002", "257110", "257415", "257665", "257830", "258090", "258215", "258255", "258455", "258628", "258650", "258755", "258760", "258920", "259020", "259115", "259325", "290022", "290041", "290234", "290245", "290377", "290692", "290858", "291000", "291063", "291180", "291630", "291647", "291656", "291664", "291813", "291982", "292030", "292100", "292241", "292250", "292510", "292608", "292700", "292785", "292820", "292837", "293031", "293340", "293422", "293488", "293511", "293586", "293682", "293706", "294369", "294719", "294742", "294856", "294862", "294960", "295084", "295290", "295490", "295516", "295560", "295937", "296061", "296115", "296275", "296465", "296619", "296676", "297279", "297280", "297323", "297638", "297867", "298015", "298085", "298284", "298501", "298518", "298524", "298668", "298845", "299031", "299085", "299156", "299330", "299496", "299820", "299897", "340332", "340593", "340908", "341243", "342849", "342944", "343070", "343358", "343489", "343628", "343871", "344204", "344298", "344766", "345045", "345090", "346035", "346139", "347534", "347952", "349017", "349172", "349760", "390043", "390236", "390559", "390565", "390760", "391124", "391246", "391539", "391621", "391972", "392087", "392207", "392231", "392446", "392468", "392557", "392647", "393069", "393076", "393217", "393452", "393574", "393775", "393832", "393838", "393857", "393868", "394007", "394184", "394516", "394596", "394630", "394834", "394983", "395154", "395285", "395325", "395506", "395544", "395620", "395638", "395870", "395891", "396054", "396170", "396212", "396292", "396304", "396335", "396427", "396552", "396597", "396636", "396736", "396790", "396937", "396947", "397073", "397882", "397992", "398911", "399367", "399442", "410211", "410944", "410958", "411000", "411033", "411412", "411778", "411946", "412240", "412282", "412617", "413225", "413787", "413981", "414140", "415247", "415770", "415875", "416070", "416477", "416785", "416950", "416952", "416953", "418236", "418523", "418692", "420050", "420074", "420336", "420738", "420788", "421020", "421163", "421168", "421241", "421308", "422150", "422253", "422864", "422996", "423418", "423600", "423611", "423836", "424100", "424342", "424947", "425268", "425582", "425733", "425805", "425969", "426053", "426123", "426568", "427026", "427395", "429111", "429368", "480027", "480080", "480270", "480484", "480540", "480552", "480603", "480695", "480740", "480761", "480778", "480865", "481000", "481165", "481175", "481220", "481284", "481547", "481570", "481610", "481675", "481730", "481736", "481775", "481816", "481840", "481850", "481905", "482375", "482399", "482415", "482466", "482580", "482595", "482680", "482685", "482715", "482725", "482881", "482995", "483031", "483045", "483100", "483170", "483801", "483855", "483950", "484080", "484411", "484442", "484760", "484910", "484925", "485055", "485105", "485252", "485260", "485345", "485390", "485415", "485435", "485506", "485525", "485770", "485830", "486120", "486395", "486428", "486440", "486555", "486595", "486660", "486845", "487115", "487200", "487240", "487260", "487376", "487388", "487473", "487533", "487555", "487760", "487810", "487845", "487955", "487990", "488155", "488160", "488209", "488315", "488385", "488705", "488758", "488808", "488852", "488858", "488875", "488995", "489025", "489205", "489207", "489459", "489580", "489615", "489770", "489785", "489905", "489925", "053002", "054934", "059096", "142164", "143665", "146787", "293142", "347565", "349668", "416776", "481855", "483396", "488192", "419662", "488124", "348652", "04E01S", "05G04S", "05G05S", "05J10S", "05J18S", "05J37S", "05J39S", "05J42S", "05K06S", "05M03S", "05M07S", "05N16S", "05P02S", "06E03S", "06G01S", "06G02S", "06H09S", "06H13S", "06H19S", "06H20S", "06H22S", "06H23S", "06J01S", "06J05S", "06J06S", "06J12S", "06J15S", "06J29S", "06K04S", "06K06S", "06K30S", "06K40S", "06L02S", "06L11S", "06M23S", "06N03S", "06N04S", "06N14S", "06P01S", "07E06S", "07E18S", "07E21S", "07E23S", "07E33S", "07E34S", "07E36S", "07F01S", "07F02S", "07F03S", "07H03S", "07H04S", "07H05S", "07J04S", "07K12S", "07M05S", "07M12S", "07M27S", "07M31S", "07M32S", "08F01S", "08G03S", "08G07S", "08G09S", "08K04S", "08L02S", "08M07S", "09E07S", "09E08S", "09E09S", "09E10S", "09E11S", "09E13S", "09F04S", "09F08S", "09F18S", "09F21S", "09F23S", "09F24S", "09F25S", "09F27S", "09G03S", "09G09S", "09J01S", "09J05S", "09J08S", "09J16S", "09K01S", "09L03S", "09M02S", "10D07S", "10E03S", "10E06S", "10E09S", "10E15S", "10E17S", "10F02S", "10F09S", "10F15S", "10F16S", "10F17S", "10F19S", "10F23S", "10G02S", "10G08S", "10G12S", "10G13S", "10G15S", "10G20S", "10G22S", "10G23S", "10G24S", "10G25S", "10J01S", "10J04S", "10J10S", "10J18S", "10J20S", "10J25S", "10J26S", "10J30S", "10J35S", "10J43S", "10J44S", "10J52S", "10K01S", "10K02S"), class = "data.frame"), elev = c(2196, 1710, 1937, 1976, 1696, 1756, 1806, 1580, 2059, 1489, 1938, 1385, 2298, 2074, 2724, 2358, 2361, 2324, 1113, 1672, 1199, 1488, 1519, 2434, 1272, 1586, 3056, 1312, 1625, 1906, 2339, 2097, 1721, 1295, 2208, 3514, 2438, 1823, 1763, 1888, 1885, 1963, 2705, 2474, 2402, 1562, 1615, 2763, 1805, 2120, 2012, 1284, 2208, 2135, 1525, 1295, 1525, 2321, 1320, 1693, 1324, 1366, 1495, 1708, 2614, 1800, 1479, 1409, 2556, 2556, 2650, 2475, 1418, 2367, 2425, 2499, 2329, 1903, 1382, 1943, 2743, 2365, 1033, 1137, 1208, 2146, 1281, 1162, 1058, 1559, 1677, 1305, 2233, 1292, 2711, 2593, 1718, 1106, 1186, 3032, 1339, 1510, 2344, 2147, 2377, 1806, 1903, 2379, 2123, 2339, 3240, 1510, 1976, 1635, 2139, 1312, 1453, 2355, 2169, 1440, 1733, 1922, 2220, 1415, 1480, 2464, 1610, 2690, 2133, 2898, 1271, 1833, 2758, 2345, 2182, 2583, 1861, 1092, 1216, 1806, 2873, 2532, 1396, 2085, 1202, 1128, 1342, 1780, 3049, 1525, 2809, 2643, 1838, 1753, 2837, 1531, 2332, 2471, 1897, 1312, 1586, 2396, 2761, 3243, 2312, 1077, 2405, 2092, 1260, 634, 600, 881, 888, 717, 1052, 613, 1043, 726, 659, 656, 802, 967, 635, 756, 644, 631, 833, 1104, 647, 866, 1115, 805, 683, 613, 869, 824, 946, 775, 692, 814, 656, 519, 914, 608, 708, 1007, 864, 595, 631, 613, 653, 1028, 763, 921, 705, 558, 689, 799, 713, 719, 927, 774, 686, 695, 581, 656, 812, 766, 1034, 1077, 903, 1025, 1098, 759, 905, 1049, 546, 763, 888, 994, 1101, 625, 930, 796, 747, 714, 567, 1013, 1357, 769, 1217, 793, 668, 823, 714, 658, 903, 769, 1025, 763, 1117, 762, 664, 689, 720, 1007, 689, 1119, 1165, 790, 829, 1302, 1196, 1214, 763, 939, 811, 1083, 788, 991, 824, 610, 1360, 1478, 924, 1180, 1160, 1302, 707, 999, 656, 1451, 1007, 1083, 1061, 1168, 1235, 976, 688, 771, 836, 729, 991, 705, 1244, 860, 1052, 573, 680, 850, 924, 814, 982, 601, 1034, 1168, 842, 933, 1337, 820, 709, 781, 1138, 1209, 1247, 744, 756, 854, 686, 811, 997, 894, 787, 952, 897, 857, 702, 1842, 1952, 1619, 1731, 1373, 1720, 1372, 2547, 1766, 2432, 2336, 1870, 2455, 2393, 1993, 1695, 1293, 1557, 2105, 1879, 1568, 2065, 2516, 2202, 2095, 2074, 1705, 1577, 1973, 2516, 2105, 2288, 1989, 1827, 1909, 1781, 2257, 2092, 1935, 2214, 2233, 2196, 1845, 1344, 2438, 1693, 1760, 1394, 2339, 2098, 1723, 2105, 2114, 2025, 2644, 1793, 1289, 2138, 2207, 1510, 1805, 1945, 2025, 2129, 2278, 2043, 2464, 1245, 1922, 1769, 2486, 1965, 750, 751, 1263, 547, 598, 605, 671, 470, 677, 1009, 555, 473, 913, 1326, 644, 622, 531, 568, 1305, 549, 825, 692, 580, 512, 1083, 918, 976, 491, 994, 1864, 698, 506, 736, 1623, 1388, 1847, 637, 735, 1049, 811, 1007, 484, 524, 658, 909, 1007, 576, 570, 808, 1522, 1085, 744, 518, 659, 869, 1601, 753, 991, 920, 827, 573, 714, 790, 854, 1571, 707, 878, 506, 1019, 567, 903, 488, 1382, 673, 526, 741, 851, 552, 981, 1052, 844, 1192, 558, 708, 601, 664, 1100, 869, 958, 973, 1266, 714, 1037, 1165, 1218, 775, 1114, 854, 967, 1196, 784, 741, 778, 840, 976, 885, 1052, 897, 912, 915, 717, 946, 1126, 1659, 1955, 1259, 1841, 1315, 1165, 1800, 1537, 1432, 2068, 1257, 1682, 1911, 1539, 1241, 2012, 1313, 1860, 1647, 1446, 2048, 1945, 1296, 1232, 2156, 1549, 1983, 1830, 1418, 1731, 1557, 1603, 1646, 1867, 1629, 1833, 1903, 1170, 1832, 1897, 2080, 1510, 2050, 1720, 1983, 1467, 1430, 1572, 2501, 1873, 1644, 1618, 2461, 1868, 1617, 2150, 1229, 1196, 1528, 1623, 1088, 2489, 1199, 1251, 1177, 1312, 1699, 1891, 1470, 2121, 1327, 1244, 2169, 1354, 2254, 2080, 2010, 1973, 1391, 1528, 1156, 1460, 2040, 1147, 1904, 1928, 1421, 2120, 2013, 1400, 2368, 1698, 2215, 2175, 1281, 1830, 1168, 1551, 2001, 1287, 1973, 2072, 2074, 1925, 1315, 2248, 1658, 1495, 1579, 2187, 1818, 1332, 1199, 2067, 1186, 1509, 1369, 2055, 1931, 2070, 1203, 1143, 1470, 2098, 2400, 1449, 1964, 1861, 1464, 1476, 1326, 1249, 1912, 1290, 1458, 2080, 1101, 1414, 1237, 1273, 1899, 1290, 1789, 2464, 2332, 791, 653, 894, 1717, 541, 528, 985, 1793, 1976, 2185, 763, 1305, 662, 1988, 2553, 2409, 3262, 2622, 3085, 2896, 3021, 2951, 3201, 3049, 3232, 2561, 2549, 2393, 2591, 2820, 3116, 2573, 3088, 2729, 3064, 2561, 2909, 2707, 2957, 2652, 3201, 3232, 2652, 2927, 3232, 2927, 3098, 3354, 2561, 2835, 3049, 2896, 2890, 2851, 2860, 2921, 2402, 2707, 3006, 2500, 2366, 2463, 2485, 2268, 2701, 2774, 3317, 2707, 3201, 2988, 3317, 3537, 2736, 2756, 2652, 3043, 3049, 2866, 2927, 2866, 2332, 2671, 2828, 2805, 2982, 2668, 2857, 2546, 2543, 2866, 2912, 2936, 2628, 3079, 2768, 2662, 2896, 2774, 2866, 2515, 3003, 2622, 2241, 2466, 2567, 2393, 2215, 2817, 2143, 2921, 2360, 2512, 2418, 2668, 2500, 2713, 2317, 2494, 2457, 2591, 2744, 2873, 2576, 2390, 2317, 2790, 2896, 3079, 2409, 3079, 3323, 3329, 3232, 2759, 3140, 2774, 3037, 2774, 2607), y = c(81, 63, 36, 46, 33, 40, 97, 99, 58, 32, 78, 88, 23, 61, 84, 179, 45, 41, 77, 134, 139, 110, 61, 43, 106, 122, 106, 109, 113, 139, 45, 151, 90, 109, 58, 89, 49, 58, 45, 119, 45, 39, 64, 61, 82, 49, 105, 51, 76, 62, 101, 193, 172, 78, 74, 57, 130, 44, 46, 114, 127, 34, 66, 79, 101, 42, 68, 46, 97, 70, 99, 73, 76, 72, 116, 73, 48, 44, 180, 78, 69, 70, 225, 34, 125, 195, 91, 144, 57, 85, 85, 129, 84, 104, 71, 47, 100, 191, 59, 57, 57, 74, 37, 81, 102, 69, 84, 67, 48, 59, 114, 95, 82, 81, 83, 89, 154, 65, 73, 44, 34, 124, 15, 105, 159, 86, 55, 54, 80, 48, 131, 77, 136, 37, 68, 43, 136, 49, 40, 48, 87, 63, 122, 88, 62, 155, 108, 148, 74, 101, 66, 94, 35, 126, 38, 28, 102, 32, 108, 162, 95, 56, 103, 149, 74, 95, 97, 59, 111, 170, 160, 99, 93, 145, 116, 129, 112, 116, 139, 139, 139, 109, 143, 108, 70, 59, 122, 72, 130, 176, 134, 102, 178, 161, 218, 111, 88, 168, 146, 216, 202, 72, 258, 135, 104, 203, 106, 46, 68, 119, 157, 121, 79, 109, 122, 126, 151, 92, 80, 71, 118, 124, 144, 112, 109, 142, 95, 128, 136, 112, 83, 89, 70, 94, 163, 65, 89, 132, 154, 145, 112, 151, 161, 104, 131, 135, 69, 120, 59, 74, 35, 34, 65, 98, 96, 47, 77, 90, 34, 66, 49, 60, 89, 38, 100, 33, 70, 34, 31, 55, 90, 71, 49, 65, 58, 117, 86, 46, 126, 60, 53, 81, 87, 51, 133, 42, 49, 66, 116, 71, 141, 62, 47, 40, 61, 55, 29, 120, 134, 84, 59, 36, 49, 132, 18, 113, 130, 96, 41, 86, 117, 89, 59, 59, 80, 106, 63, 54, 60, 53, 111, 73, 40, 37, 35, 46, 60, 94, 120, 74, 52, 103, 43, 157, 92, 93, 57, 131, 35, 50, 55, 155, 62, 78, 107, 48, 151, 54, 61, 156, 96, 72, 73, 24, 51, 79, 44, 63, 63, 46, 76, 37, 47, 83, 28, 74, 72, 66, 80, 48, 93, 83, 40, 80, 69, 70, 38, 164, 55, 66, 74, 113, 57, 34, 91, 117, 74, 94, 113, 123, 134, 73, 68, 78, 42, 38, 29, 67, 138, 19, 41, 100, 50, 69, 115, 84, 67, 169, 93, 64, 103, 234, 122, 219, 146, 67, 175, 140, 84, 190, 146, 107, 119, 91, 144, 174, 122, 108, 94, 126, 138, 105, 49, 40, 18, 27, 42, 39, 164, 54, 66, 51, 104, 86, 61, 79, 84, 27, 35, 13, 57, 104, 33, 45, 45, 38, 38, 39, 61, 32, 75, 34, 77, 51, 51, 33, 115, 63, 33, 29, 53, 37, 15, 51, 71, 8, 94, 46, 65, 22, 14, 82, 43, 85, 52, 52, 34, 100, 92, 35, 43, 71, 28, 57, 69, 36, 71, 129, 195, 112, 75, 87, 154, 83, 81, 83, 89, 82, 57, 62, 93, 66, 52, 106, 81, 130, 91, 102, 76, 90, 96, 81, 43, 57, 31, 74, 31, 26, 24, 28, 46, 71, 38, 106, 92, 45, 28, 44, 32, 104, 14, 50, 37, 104, 30, 48, 72, 38, 32, 68, 38, 107, 43, 61, 43, 52, 78, 148, 61, 13, 45, 49, 97, 13, 103, 49, 55, 25, 21, 24, 53, 39, 88, 19, 69, 72, 62, 35, 39, 10, 33, 26, 23, 89, 110, 12, 32, 6, 43, 89, 44, 43, 39, 6, 89, 9, 61, 63, 31, 36, 9, 53, 12, 28, 120, 18, 37, 41, 22, 41, 62, 140, 60, 21, 50, 64, 37, 32, 6, 17, 52, 0, 63, 70, 49, 32, 23, 47, 34, 76, 62, 49, 0, 23, 13, 41, 20, 22, 20, 42, 72, 54, 42, 13, 53, 80, 34, 39, 41, 69, 42, 21, 25, 47, 57, 16, 6, 36, 6, 61, 11, 13, 52, 33, 114, 109, 67, 138, 95, 97, 28, 102, 159, 73, 27, 52, 74, 48, 19, 85, 30, 79, 64, 91, 53, 91, 102, 61, 64, 58, 114, 89, 94, 30, 43, 33, 66, 58, 64, 74, 58, 56, 81, 86, 86, 84, 71, 58, 56, 56, 46, 64, 76, 48, 94, 102, 97, 76, 140, 23, 38, 30, 30, 56, 53, 84, 36, 51, 36, 76, 46, 48, 97, 79, 165, 91, 89, 94, 91, 43, 48, 61, 61, 56, 66, 79, 48, 51, 86, 48, 64, 99, 69, 53, 102, 64, 86, 58, 61, 71, 58, 41, 117, 160, 46, 127, 147, 122, 94, 48, 53, 38, 56, 64, 58, 56, 94, 41, 81, 71, 58, 43, 64, 41, 38, 48, 61, 46, 43, 66, 46, 38, 69, 86, 107, 89, 64, 157, 124, 124, 43, 107, 61, 69, 124, 94)), .Names = c("x", "elev", "y")) fields/R/MLESpatialProcess.fast.R0000644000175100001440000000335613114123116016310 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 MLESpatialProcess.fast = function(x, y, lambda.start=.5, theta.start = NULL, cov.function = "stationary.cov", cov.args = list(Covariance = "Matern", smoothness = 1), Distance = "rdist", verbose=FALSE, optim.args=NULL, ...) { warning("MLESpatialProcess.fast is deprecated. Use MLESpatialProcess instead.") do.call("MLESpatialProcess", list(x=x,y=y, lambda.start=lambda.start, theta.start=theta.start, cov.function=cov.function, cov.args=cov.args, Distance=Distance, verbose=verbose, optim.args=optim.args, list(...))) } fields/R/smooth.2d.R0000644000175100001440000000560413114123117013676 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "smooth.2d" <- function(Y, ind = NULL, weight.obj = NULL, setup = FALSE, grid = NULL, x = NULL, nrow = 64, ncol = 64, surface = TRUE, cov.function = gauss.cov, Mwidth = NULL, Nwidth = NULL, ...) { temp <- as.image(Y, ind, grid = grid, nx = nrow, ny = ncol, x = x) Y <- temp$z NN <- temp$weights grid <- list(x = temp$x, y = temp$y) if (is.null(weight.obj)) { dx <- grid$x[2] - grid$x[1] dy <- grid$y[2] - grid$y[1] m <- length(grid$x) n <- length(grid$y) if (is.null(Mwidth)) M <- 2 * m else { M <- m + Mwidth } if (is.null(Nwidth)) N <- 2 * n else { N <- n + Nwidth } xg <- make.surface.grid(list((1:M) * dx, (1:N) * dy)) center <- matrix(c((dx * M)/2, (dy * N)/2), nrow = 1, ncol = 2) out <- cov.function(xg, center, ...) out <- as.surface(xg, c(out))$z temp <- matrix(0, nrow = M, ncol = N) temp[M/2, N/2] <- 1 wght <- fft(out)/(fft(temp) * M * N) weight.obj <- list(m = m, n = n, grid = grid, N = N, M = M, wght = wght, call = match.call()) if (setup) { return(weight.obj) } } temp <- matrix(0, nrow = weight.obj$M, ncol = weight.obj$N) temp[1:m, 1:n] <- Y temp[is.na(temp)] <- 0 temp2 <- Re(fft(fft(temp) * weight.obj$wght, inverse = TRUE))[1:weight.obj$m, 1:weight.obj$n] temp <- matrix(0, nrow = weight.obj$M, ncol = weight.obj$N) temp[1:m, 1:n] <- NN temp[is.na(temp)] <- 0 temp3 <- Re(fft(fft(temp) * weight.obj$wght, inverse = TRUE))[1:weight.obj$m, 1:weight.obj$n] if (!surface) (temp2/temp3) else { list(x = weight.obj$grid$x, y = weight.obj$grid$y, z = temp2/temp3, index = ind) } } fields/R/set.panel.R0000644000175100001440000000257313114123117013754 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "set.panel" <- function(m = 1, n = 1, relax = FALSE) { temp <- par() single.plot <- (temp$mfg[3] == 1 & temp$mfg[4] == 1) if (!relax | single.plot | ((m == 1) & (n == 1))) { par(mfrow = c(m, n)) cat("plot window will lay out plots in a", m, "by", n, "matrix ", fill = TRUE) } invisible() } fields/R/stats.bin.R0000644000175100001440000000314313114123117013762 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "stats.bin" <- function(x, y, N = 10, breaks = NULL) { out <- list() if (is.null(breaks)) { breaks <- pretty(x, N) } NBIN <- length(breaks) - 1 centers <- (breaks[1:NBIN] + breaks[2:(NBIN + 1)])/2 test <- describe() obj <- matrix(NA, ncol = NBIN, nrow = length(test)) dimnames(obj) <- list(test, format(1:NBIN)) obj[, 1] <- describe(y[x <= breaks[2] & x >= breaks[1]]) for (k in 2:NBIN) { obj[, k] <- describe(y[x <= breaks[k + 1] & x > breaks[k]]) } list(centers = centers, breaks = breaks, stats = obj) } fields/R/US.R0000644000175100001440000000215013114123116012400 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "US" <- function(...) { map("state", ...) invisible() } fields/R/summary.spatialDesign.R0000644000175100001440000000225513114603536016353 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "summary.spatialDesign" <- function(object, digits = 4, ...) { x <- object class(x) <- ("summarySpatialDesign") x } fields/R/MLESpatialProcess.R0000644000175100001440000001263713114123116015356 0ustar hornikusers # fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 MLESpatialProcess <- function(x, y, weights = rep(1, nrow(x)), Z = NULL, mKrig.args = NULL, cov.function = "stationary.cov", cov.args = list(Covariance = "Matern", smoothness = 1), lambda.start = .5, theta.start = NULL, theta.range = NULL, gridN = 20, optim.args = NULL, na.rm = TRUE, verbose = FALSE, abstol = 1e-4, REML = FALSE, ...) { if( verbose){ cat(" MLESpatialProcess extra arguments:" , full=TRUE) print( names( list(...))) } # combine list(...) with cov.args and omit duplicates but favoring the ... value ind<- match( names( cov.args), names(list(...) ) ) cov.args = c(cov.args[is.na(ind)], list(...)) ######################################################################## # evaluate likelihood for a grid of theta on log scale # maximizing over lambda. # # if range or starting value for range is missing use quantiles of pairwise # distances among data. if( is.null( theta.range) ){ if( is.null( cov.args$Distance)){ pairwiseD<- dist(x) } else{ pairwiseD<- do.call(cov.args$Distance, list(x)) pairwiseD<- pairwiseD[col(pairwiseD) > row( pairwiseD) ] } theta.range<- quantile( pairwiseD, c(.02,.97)) } thetaGrid<- seq( theta.range[1], theta.range[2], length.out=gridN ) # par.grid<- list( theta= thetaGrid) MLEGrid<- mKrigMLEGrid(x, y, weights = weights, Z= Z, mKrig.args = mKrig.args, cov.fun = cov.function, cov.args = cov.args, par.grid = par.grid, lambda = lambda.start, lambda.profile = TRUE, na.rm = na.rm, verbose = verbose, REML = REML) ################################################################################## #refine MLE for lambda and theta use the best value of theta from grid search if # starting value not passed. if ( is.null(theta.start) ) { ind<- which.max( MLEGrid$summary[,2] ) theta.start <- par.grid$theta[ind] lambda.start<- MLEGrid$lambda.best } MLEJoint <- mKrigMLEJoint(x, y, weights = weights, Z = Z, mKrig.args = mKrig.args, cov.fun = cov.function, cov.args = cov.args, lambda.start = lambda.start, cov.params.start = list(theta=theta.start), optim.args = optim.args, abstol = abstol, na.rm = na.rm, verbose = verbose, REML = REML) ##################################################################################### # evaluate likelihood on grid of log lambda with MLE for theta #NOTE lambda.profile = FALSE makes this work. lambdaGrid<- (10^(seq( -4,4,,gridN) ))*MLEJoint$pars.MLE[1] par.grid<- list( theta= rep(MLEJoint$pars.MLE[2], gridN) ) if( verbose){ print( par.grid)} MLEProfileLambda <- mKrigMLEGrid(x, y, weights = weights, Z= Z, cov.fun = cov.function, cov.args = cov.args, mKrig.args = mKrig.args, par.grid = par.grid, lambda = lambdaGrid, lambda.profile = FALSE, na.rm = na.rm, verbose = verbose, REML = REML) return( list( summary= MLEJoint$summary, MLEGrid= MLEGrid, MLEJoint=MLEJoint, MLEProfileLambda=MLEProfileLambda, call=match.call() ) ) } fields/R/fields.color.picker.R0000644000175100001440000000416313114123116015716 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 fields.color.picker <- function() { c(mar = c(0, 0, 3, 0)) # names of colors in default graphics options. clab <- colors() n <- length(clab) N <- ceiling(sqrt(n)) M <- N temp <- rep(NA, M * N) temp[1:n] <- 1:n z <- matrix(temp, M, N) # matrix of all colors image(seq(0.5, M + 0.5, , M + 1), seq(0.5, N + 0.5, , N + 1), z, col = clab, axes = FALSE, xlab = "", ylab = "") cat("Use mouse to identify color", fill = TRUE) loc <- locator(1) i <- round(loc$x) j <- round(loc$y) ind <- z[i, j] points(i, j, col = clab[ind], cex = 4, pch = "O") points(i, j, pch = "+", col = "black", cex = 1) mtext(side = 3, text = clab[ind], col = clab[ind], line = 1, cex = 2) # write out RGB values to console cat("ID ", ind, " name ", clab[ind], fill = TRUE) cat("RGB", col2rgb(clab[ind])/256, fill = TRUE) temp <- signif(col2rgb(clab[ind])/256, 3) # This line is marginally in LaTeX format to define color cat(clab[ind], " {rgb}{", temp[1], ",", temp[2], ",", temp[3], "}", fill = TRUE) } fields/R/dyadic.2check.R0000644000175100001440000000276713114123116014462 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 dyadic.2check <- function(m, n, cut.p = 2) { # checks that n is of the form # n=p*2^m where p <= cut.p m2 <- as.integer(m) n2 <- as.integer(n) while ((n2 > cut.p) & (m2 > cut.p)) { if ((m2%%2 != 0) | (n2%%2 != 0)) { cat(n, "and", m, "must equal p*2^L where p is less than or equal to ", cut.p, fill = TRUE) return(FALSE) } m2 <- m2/2 n2 <- n2/2 } return(TRUE) } fields/R/gcv.sreg.R0000644000175100001440000001750413114123117013601 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 gcv.sreg<- function(out, lambda.grid = NA, cost = 1, nstep.cv = 80, rmse = NA, offset = 0, trmin = NA, trmax = NA, verbose = FALSE, tol = 1e-05, give.warnings=TRUE) { shat.pure.error <- out$shat.pure.error pure.ss <- out$pure.ss nt <- 2 np <- out$np N <- out$N out$cost <- cost out$offset <- offset # find good end points for lambda coarse grid. if (is.na(trmin)) trmin <- 2.05 if (is.na(trmax)) trmax <- out$np * 0.95 if (is.na(lambda.grid[1])) { l2 <- sreg.df.to.lambda(trmax, out$xM, out$weightsM) l1 <- sreg.df.to.lambda(trmin, out$xM, out$weightsM) lambda.grid <- exp(seq(log(l2), log(l1), , nstep.cv)) } if (verbose) { cat("endpoints of coarse lamdba grid", fill = TRUE) cat(l1, l2, fill = TRUE) } # build up table of coarse grid serach results for lambda # in the matrix gcv.grid nl <- length(lambda.grid) V <- V.model <- V.one <- trA <- MSE <- RSS.model <- rep(NA, nl) # loop through lambda's and compute various quantities related to # lambda and the fitted spline. for (k in 1:nl) { temp <- sreg.fit(lambda.grid[k], out, verbose = verbose) RSS.model[k] <- temp$rss trA[k] <- temp$trace V[k] <- temp$gcv V.one[k] <- temp$gcv.one V.model[k] <- temp$gcv.model } # adjustments to columns of gcv.grid RSS <- RSS.model + pure.ss shat <- sqrt(RSS/(N - trA)) gcv.grid <- cbind(lambda.grid, trA, V, V.one, V.model, shat) dimnames(gcv.grid) <- list(NULL, c("lambda", "trA", "GCV", "GCV.one", "GCV.model", "shat")) gcv.grid<- as.data.frame( gcv.grid) if (verbose) { cat("Results of coarse grid search", fill = TRUE) print(gcv.grid) } lambda.est <- matrix(NA, ncol = 5, nrow = 5, dimnames = list( c("GCV","GCV.model", "GCV.one", "RMSE", "pure error"), c("lambda","trA", "GCV", "shat", "converge"))) # now do various refinements for different flavors of finding # a good value for lambda the smoothing parameter ##### traditional leave-one-out IMIN<- rep( NA, 5) IMIN[1]<- which.min( gcv.grid$GCV ) IMIN[2]<- ifelse( is.na(shat.pure.error), NA, which.min(gcv.grid$GCV.model) ) IMIN[3]<- which.min( gcv.grid$GCV.one) if( is.na( rmse)){ IMIN[4] <- NA } else{ rangeShat<- range( gcv.grid$shat) IUpcross<- max( (1:nl)[gcv.grid$shat< rmse] ) IMIN[4]<- ifelse( (rangeShat[1]<= rmse)&(rangeShat[2] >=rmse), IUpcross, NA) } IMIN[5]<- ifelse( is.na(shat.pure.error), NA, which.min(abs(gcv.grid$shat-shat.pure.error)) ) # NOTE IMIN indexes from smallest lambda to largest lambda in grid. warningTable<- data.frame( IMIN, IMIN == nl, IMIN==1, gcv.grid$lambda[IMIN], gcv.grid$trA[IMIN], row.names = c("GCV","GCV.model", "GCV.one", "RMSE", "pure error") ) warning<- (warningTable[,2]|warningTable[,3])& (!is.na(warningTable[,1])) indRefine<- (!warningTable[,2]) & (!warningTable[,3]) & (!is.na(warningTable[,1])) warningTable<- cbind( warning, indRefine, warningTable ) names( warningTable)<- c("Warning","Refine","indexMIN", "leftEndpoint", "rightEndpoint", "lambda","effdf") if( verbose){ print(warningTable) } # fill in grid search estimates for( k in 1:5){ if( !is.na(IMIN[k])){ lambda.est[k,1]<- gcv.grid$lambda[IMIN[k]] } } # now optimze the search producing refined optima # # now step through the many different ways to find lambda # This is the key to these choices: # 1- the usual GCV proposed by Craven/Wahba # 2- GCV where data fitting is collapsed to the mean for # each location and each location is omitted # 3- True leave-one-out even with replicated observations # 4- Match estimate of sigma to external value supplied (RMSE) # 5- Match estimate of sigma from the estimate based the # pure error sum of squares obtained by the observations # replicated at the same locations #test<- sreg.fit(.1, out) #print( test) if(indRefine[1]){ starts <- lambda.grid[IMIN[1] + c(-1,0,1)] outGs <- golden.section.search(ax=starts[1],bx=starts[2],cx=starts[3], f=sreg.fgcv, f.extra = out, tol = tol) lambda.est[1,1]<- outGs$x lambda.est[1,5]<- outGs$iter } if( indRefine[2]) { starts <- lambda.grid[IMIN[2] + c(-1,0,1)] outGs <- golden.section.search(ax=starts[1],bx=starts[2],cx=starts[3], f=sreg.fgcv.model, f.extra = out, tol = tol) lambda.est[2,1]<- outGs$x lambda.est[2,5]<- outGs$iter } if( indRefine[3]) { starts <- lambda.grid[IMIN[3] + c(-1,0,1)] outGs <- golden.section.search(ax=starts[1],bx=starts[2],cx=starts[3], f=sreg.fgcv.one, f.extra = out, tol = tol) lambda.est[3, 1] <-outGs$x lambda.est[3,5]<- outGs$iter } if ( indRefine[4] ) { guess<- gcv.grid$lambda[IMIN[4]] lambda.rmse <- find.upcross(sreg.fs2hat, out, upcross.level = rmse^2, guess = guess, tol = tol * rmse^2) lambda.est[4, 1] <- lambda.rmse } if ( indRefine[5] ) { guess <- gcv.grid$lambda[IMIN[5]] lambda.pure.error <- find.upcross(sreg.fs2hat, out, upcross.level = shat.pure.error^2, guess = guess, tol = tol * shat.pure.error^2) lambda.est[5, 1] <- lambda.pure.error } if (verbose) { cat("All forms of estimated lambdas so far", fill = TRUE) print(lambda.est) } for (k in 1:5) { lam <- lambda.est[k, 1] if (!is.na(lam)) { temp <- sreg.fit(lam, out) lambda.est[k, 2] <- temp$trace if ((k == 1) | (k > 3)) { lambda.est[k, 3] <- temp$gcv } if (k == 2) { lambda.est[k, 3] <- temp$gcv.model } if (k == 3) { lambda.est[k, 3] <- temp$gcv.one } lambda.est[k, 4] <- temp$shat } } if( give.warnings & any(warningTable$Warning)){ cat("Methods at endpoints of grid search:", fill=TRUE) print(warningTable[warningTable$Warning,]) } list(gcv.grid = gcv.grid, lambda.est = lambda.est, warningTable=warningTable) } fields/R/mKrig.R0000644000175100001440000002402413114123117013127 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 mKrig <- function(x, y, weights=rep(1, nrow(x)), Z = NULL, cov.function="stationary.cov", cov.args = NULL, lambda = 0, m = 2, chol.args = NULL, find.trA = TRUE, NtrA = 20, iseed = 123, llambda = NULL, na.rm=FALSE, collapseFixedEffect = TRUE, ...) { # pull extra covariance arguments from ... and overwrite # any arguments already named in cov.args ind<- match( names( cov.args), names(list(...) ) ) cov.args = c(cov.args[is.na(ind)], list(...)) # #If cov.args$find.trA is true, set onlyUpper to FALSE (onlyUpper doesn't #play nice with predict.mKrig, called by mKrig.trace) # if(find.trA == TRUE && supportsArg(cov.function, "onlyUpper")) cov.args$onlyUpper= FALSE if(find.trA == TRUE && supportsArg(cov.function, "distMat")) cov.args$distMat= NA if (!is.null(llambda)) { lambda <- exp(llambda) } # see comments in Krig.engine.fixed for algorithmic commentary # # check for duplicate x's. # stop if there are any if (any(duplicated(cat.matrix(x)))) { stop("locations are not unique see help(mKrig) ") } # next function also omits NAs from x,y,weights, and Z if na.rm=TRUE. object<- mKrigCheckXY( x, y, weights, Z, na.rm = na.rm) # create fixed part of model as m-1 order polynomial # NOTE: if m==0 then fields.mkpoly returns a NULL to # indicate no polynomial part. Tmatrix <- cbind(fields.mkpoly(object$x, m), object$Z) # set some dimensions np <- nrow(object$x) if( is.null(Tmatrix) ){ nt<- 0 } else{ nt<- ncol(Tmatrix) } if( is.null(object$Z)){ nZ<- 0 } else{ nZ<- ncol(object$Z) } ind.drift <- c(rep(TRUE, (nt - nZ)), rep(FALSE, nZ)) # as a place holder for reduced rank Kriging, distinguish between # observations locations and the locations to evaluate covariance. # (this is will also allow predict.mKrig to handle a Krig object) object$knots <- object$x # covariance matrix at observation locations # NOTE: if cov.function is a sparse constuct then Mc will be sparse. # see e.g. wendland.cov Mc <- do.call(cov.function, c(cov.args, list(x1 = object$knots, x2 = object$knots))) # # decide how to handle the pivoting. # one wants to do pivoting if the matrix is sparse. # if Mc is not a matrix assume that it is in sparse format. # sparse.flag <- !is.matrix(Mc) # # set arguments that are passed to cholesky # if (is.null(chol.args)) { chol.args <- list(pivot = sparse.flag) } else { chol.args <- chol.args } # quantify sparsity of Mc for the mKrig object nzero <- ifelse(sparse.flag, length(Mc@entries), np^2) # add diagonal matrix that is the observation error Variance # NOTE: diag must be a overloaded function to handle sparse format. if (lambda != 0) { if(! sparse.flag) invisible(.Call("addToDiagC", Mc, as.double(lambda/object$weights), nrow(Mc), PACKAGE="fields") ) else diag(Mc) = diag(Mc) + lambda/object$weights } # MARK LINE Mc # At this point Mc is proportional to the covariance matrix of the # observation vector, y. # # cholesky decoposition of Mc # do.call used to supply other arguments to the function # especially for sparse applications. # If chol.args is NULL then this is the same as # Mc<-chol(Mc), chol.args)) Mc <- do.call("chol", c(list(x = Mc), chol.args)) lnDetCov <- 2 * sum(log(diag(Mc))) # # start linear algebra to find estimates and likelihood # Note that all these expressions make sense if y is a matrix # of several data sets and one is solving for the coefficients # of all of these at once. In this case d.coef and c.coef are matrices # if( !is.null(Tmatrix)){ # Efficent way to multply inverse of Mc times the Tmatrix VT <- forwardsolve(Mc, x = Tmatrix, k=ncol(Mc), transpose = TRUE, upper.tri = TRUE) qr.VT <- qr(VT) # now do generalized least squares for d d.coef <- as.matrix(qr.coef(qr.VT, forwardsolve(Mc, transpose = TRUE, object$y, upper.tri = TRUE))) if (collapseFixedEffect) { # use a common estimate of fixed effects across all replicates d.coefMeans <- rowMeans(d.coef) d.coef <- matrix(d.coefMeans, ncol = ncol(d.coef), nrow = nrow(d.coef)) } resid<- object$y - Tmatrix %*% d.coef # GLS covariance matrix for fixed part. Rinv <- solve(qr.R(qr.VT)) Omega <- Rinv %*% t(Rinv) # # Omega is solve(t(Tmatrix)%*%solve( Sigma)%*%Tmatrix) # proportional to fixed effects covariance matrix. # Sigma = cov.function( x,x) + lambda/object$weights # this is proportional to the covariance matrix for the GLS estimates of # the fixed linear part of the model. # R2diag<- diag( qr.R(qr.VT) )^2 lnDetOmega<- -1* sum( log(R2diag) ) } else{ # much is set to NULL because no fixed part of model nt<- 0 resid<- object$y Rinv<- NULL Omega<- NULL qr.VT<- NULL d.coef<- NULL lnDetOmega <- 0 } # and now find c. # the coefficents for the spatial part. # if linear fixed part included resid as the residuals from the # GLS regression. c.coef <- as.matrix(forwardsolve(Mc, transpose = TRUE, resid, upper.tri = TRUE)) # save intermediate result this is t(y- T d.coef)( M^{-1}) ( y- T d.coef) quad.form <- c(colSums(as.matrix(c.coef^2))) # find c coefficients c.coef <- as.matrix(backsolve(Mc, c.coef)) # MLE estimate of rho and sigma # rhohat <- c(colSums(as.matrix(c.coef * y)))/(np - nt) # NOTE if y is a matrix then each of these are vectors of parameters. rho.MLE <- quad.form/np rhohat <- c(colSums(as.matrix(c.coef * object$y)))/np shat.MLE <- sigma.MLE <- sqrt(lambda * rho.MLE) # the log profile likehood with rhohat and dhat substituted # leaving a profile for just lambda. # NOTE if y is a matrix then this is a vector of log profile # likelihood values. lnProfileLike <- (-np/2 - log(2 * pi) * (np/2) - (np/2) * log(rho.MLE) - (1/2) * lnDetCov) # see section 4.2 handbook of spatial statistics (Zimmermanchapter) lnProfileREML <- lnProfileLike + (1/2) * lnDetOmega rho.MLE.FULL <- mean(rho.MLE) sigma.MLE.FULL <- sqrt(lambda * rho.MLE.FULL) # if y is a matrix then compute the combined likelihood # under the assumption that the columns of y are replicated # fields lnProfileLike.FULL <- sum((-np/2 - log(2 * pi) * (np/2) - (np/2) * log(rho.MLE.FULL) - (1/2) * lnDetCov) ) lnProfileREML.FULL <- sum((-np/2 - log(2 * pi) * (np/2) - (np/2) * log(rho.MLE.FULL) - (1/2) * lnDetCov + (1/2) * lnDetOmega ) ) # # return coefficients and include lambda as a check because # results are meaningless for other values of lambda # returned list is an 'object' of class mKrig (micro Krig) # also save the matrix decompositions so coefficients can be # recalculated for new y values. Make sure onlyUpper and # distMat are unset for compatibility with mKrig S3 functions if(!is.null(cov.args$onlyUpper)) cov.args$onlyUpper = FALSE if(!is.null(cov.args$distMat)) cov.args$distMat = NA object <- c( object, list( d = d.coef, c = c.coef, nt = nt, np = np, lambda.fixed = lambda, cov.function.name = cov.function, args = cov.args, m = m, chol.args = chol.args, call = match.call(), nonzero.entries = nzero, shat.MLE = sigma.MLE, sigma.MLE = sigma.MLE, rho.MLE = rho.MLE, rhohat = rho.MLE, lnProfileLike = lnProfileLike, rho.MLE.FULL = rho.MLE.FULL, sigma.MLE.FULL = sigma.MLE.FULL, lnProfileLike.FULL = lnProfileLike.FULL, lnProfileREML.FULL = lnProfileREML.FULL, lnProfileREML = lnProfileREML, lnDetCov = lnDetCov, lnDetOmega = lnDetOmega, quad.form = quad.form, Omega = Omega,lnDetOmega=lnDetOmega, qr.VT = qr.VT, Mc = Mc, Tmatrix = Tmatrix, ind.drift = ind.drift, nZ = nZ, collapseFixedEffect= collapseFixedEffect) ) # # find the residuals directly from solution # to avoid a call to predict object$residuals <- lambda * c.coef/object$weights object$fitted.values <- object$y - object$residuals # estimate effective degrees of freedom using Monte Carlo trace method. if (find.trA) { object2 <- mKrig.trace(object, iseed, NtrA) object$eff.df <- object2$eff.df object$trA.info <- object2$trA.info object$GCV <- (sum(object$residuals^2)/np)/(1 - object2$eff.df/np)^2 if (NtrA < np) { object$GCV.info <- (sum(object$residuals^2)/np)/(1 - object2$trA.info/np)^2 } else { object$GCV.info <- NA } } else { object$eff.df <- NA object$trA.info <- NA object$GCV <- NA } class(object) <- "mKrig" return(object) } fields/R/rad.cov.R0000644000175100001440000000771513114123117013422 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "Rad.cov" <- function(x1, x2=NULL, p = 1, m = NA, with.log = TRUE, with.constant = TRUE, C = NA, marginal = FALSE, derivative = 0) { # # mth order thin plate spline radial basis functions # in d dimensions # usually called with p = 2m-d # Because this is # a generalized covariance the marginal variance is not really # defined. # Thus, marginal is a dummy argument to be consistent with # other covariance functions # marginal = TRUE this should only be called within predictSE.Krig # and provides the correct calculation. # if (marginal) { return(rep(0, nrow(x1))) } # # coerce locations to matrices, if x2 is missing use x1 if (!is.matrix(x1)) x1 <- as.matrix(x1) if( is.null( x2)){ x2<- x1 } if (!is.matrix(x2)) x2 <- as.matrix(x2) d <- ncol(x1) n1 <- nrow(x1) n2 <- nrow(x2) if (is.na(m)) { m <- (d + p)/2 } else { p <- 2 * m - d } if (p < 0) { stop(" p is negative (m possibly too small)") } # parameter list to send to the FORTRAN par <- c(p/2, ifelse((d%%2 == 0) & (with.log), 1, 0)) # # multiply by constant if requested rbf.constant <- ifelse(with.constant, radbas.constant(m, d), 1) # compute matrix in FORTRAN if (is.na(C[1])) { temp <- .Fortran("radbas", PACKAGE="fields", nd = as.integer(d), x1 = as.double(x1), n1 = as.integer(n1), x2 = as.double(x2), n2 = as.integer(n2), par = as.double(par), k = as.double(rep(0, n1 * n2))) return(rbf.constant * matrix(temp$k, ncol = n2, nrow = n1)) } else { # do cross covariance matrix multiplication in FORTRAN if (derivative == 0) { # evaluate function not partial derivatives. C <- as.matrix(C) n3 <- ncol(C) temp <- .Fortran("multrb",PACKAGE="fields", nd = as.integer(d), x1 = as.double(x1), n1 = as.integer(n1), x2 = as.double(x2), n2 = as.integer(n2), par = as.double(par), c = as.double(C), n3 = as.integer(n3), h = as.double(rep(0, n1 * n3)), work = as.double(rep(0, n2)))$h return(rbf.constant * matrix(temp, nrow = n1, ncol = n3)) } else { if (ncol(C) > 1) { stop("Can only evaluate derivatives on one spline fit") } temp <- .Fortran("mltdrb", PACKAGE="fields", nd = as.integer(d), x1 = as.double(x1), n1 = as.integer(n1), x2 = as.double(x2), n2 = as.integer(n2), par = as.double(par), c = as.double(C), h = as.double(rep(0, n1 * d)), work = as.double(rep(0, n2)))$h return(rbf.constant * matrix(temp, nrow = n1, ncol = d)) } } stop("should not get here!") } fields/R/tim.colors.R0000644000175100001440000000475013114123117014153 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "tim.colors" <- function(n = 64, alpha = 1) { # tims original 64 color definition definition: orig <- c("#00008F", "#00009F", "#0000AF", "#0000BF", "#0000CF", "#0000DF", "#0000EF", "#0000FF", "#0010FF", "#0020FF", "#0030FF", "#0040FF", "#0050FF", "#0060FF", "#0070FF", "#0080FF", "#008FFF", "#009FFF", "#00AFFF", "#00BFFF", "#00CFFF", "#00DFFF", "#00EFFF", "#00FFFF", "#10FFEF", "#20FFDF", "#30FFCF", "#40FFBF", "#50FFAF", "#60FF9F", "#70FF8F", "#80FF80", "#8FFF70", "#9FFF60", "#AFFF50", "#BFFF40", "#CFFF30", "#DFFF20", "#EFFF10", "#FFFF00", "#FFEF00", "#FFDF00", "#FFCF00", "#FFBF00", "#FFAF00", "#FF9F00", "#FF8F00", "#FF8000", "#FF7000", "#FF6000", "#FF5000", "#FF4000", "#FF3000", "#FF2000", "#FF1000", "#FF0000", "#EF0000", "#DF0000", "#CF0000", "#BF0000", "#AF0000", "#9F0000", "#8F0000", "#800000") if (n == 64 & alpha == 1) return(orig) rgb.tim <- t(col2rgb(orig)) temp <- matrix(NA, ncol = 3, nrow = n) x <- seq(0, 1, , 64) xg <- seq(0, 1, , n) for (k in 1:3) { hold <- splint(x, rgb.tim[, k], xg) hold[hold < 0] <- 0 hold[hold > 255] <- 255 temp[, k] <- round(hold) } if (alpha == 1) { rgb(temp[, 1], temp[, 2], temp[, 3], maxColorValue = 255) } else { rgb(temp[, 1], temp[, 2], temp[, 3], maxColorValue = 255, alpha = alpha) } } fields/R/arrow.plot.R0000644000175100001440000000360113114123116014162 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "arrow.plot" <- function(a1, a2, u = NA, v = NA, arrow.ex = 0.05, xpd = TRUE, true.angle = FALSE, arrowfun = arrows, ...) { if (is.matrix(a1)) { x <- a1[, 1] y <- a1[, 2] } else { x <- a1 y <- a2 } if (is.matrix(a2)) { u <- a2[, 1] v <- a2[, 2] } ucord <- par()$usr arrow.ex <- arrow.ex * min(ucord[2] - ucord[1], ucord[4] - ucord[3]) if (true.angle) { pin <- par()$pin r1 <- (ucord[2] - ucord[1])/(pin[1]) r2 <- (ucord[4] - ucord[3])/(pin[2]) } else { r1 <- r2 <- 1 } u <- u * r1 v <- v * r2 maxr <- max(sqrt(u^2 + v^2)) u <- (arrow.ex * u)/maxr v <- (arrow.ex * v)/maxr invisible() old.xpd <- par()$xpd par(xpd = xpd) arrowfun(x, y, x + u, y + v, ...) par(xpd = old.xpd) } fields/R/fields.x.to.grid.R0000644000175100001440000000325713114123117015144 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "fields.x.to.grid" <- function(x, nx = 80, ny = 80, xy = c(1, 2)) { if (is.null(x)) { stop("Need a an x matrix to determine ranges for grid") } M <- ncol(x) grid.list <- as.list(1:M) # add columns names names(grid.list) <- dimnames(x)[[2]] # cruise through x dimensions and find medians. for (k in 1:M) { grid.list[[k]] <- median(x[, k]) } # # # overwrite with sequences for the two variables of surface xr <- range(x[, xy[1]]) yr <- range(x[, xy[2]]) grid.list[[xy[1]]] <- seq(xr[1], xr[2], , nx) grid.list[[xy[2]]] <- seq(yr[1], yr[2], , ny) grid.list } fields/R/predictSE.R0000644000175100001440000000214413114123117013737 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "predictSE" <- function(object, ...) UseMethod("predictSE") fields/R/REMLtest.R0000644000175100001440000001551213114123116013516 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 MaternGLS.test <- function(x, y, smoothness = 1.5, init = log(c(1, 0.2, 0.1))) { # some simulations within fields to # study the variability in estimates of the covariance parameters. N <- length(y) Tmatrix <- fields.mkpoly(x, 2) qr.T <- qr(Tmatrix) Q2 <- qr.yq2(qr.T, diag(1, N)) nu <- smoothness loglmvn <- function(pars, nu, y, x, d) { lrho = pars[1] ltheta = pars[2] lsig2 = pars[3] # print( pars) N <- length(y) M <- (exp(lrho) * Matern(d, range = exp(ltheta), smoothness = nu) + exp(lsig2) * diag(N)) X <- fields.mkpoly(x, 2) Mi <- solve(M) betahat <- solve(t(X) %*% Mi %*% X) %*% t(X) %*% Mi %*% y res <- y - X %*% betahat cM <- chol(M) lLike <- (N/2) * log(2 * pi) - (1/2) * (2 * sum(log(diag(cM)))) - (1/2) * t(res) %*% Mi %*% res ycept <- -lLike if ((abs(lrho) > 20) | (abs(ltheta) > 10) | (abs(lsig2) > 40)) { return(ycept + 1000 * sum(abs(abs(pars) - 100))) } else { return(ycept) } } d <- rdist(x, x) temp <- optim(init, loglmvn, method = "L-BFGS-B", nu = nu, y = y, x = x, d = d) out <- exp(temp$par) return(list(smoothness = smoothness, pars = out, optim = temp)) } MaternGLSProfile.test <- function(x, y, smoothness = 1.5, init = log(c(0.05, 1))) { # some simulations within fields to # study the variability in estimates of the covariance parameters. N <- length(y) nu <- smoothness loglmvn <- function(pars, nu, y, x, d) { llam = pars[1] ltheta = pars[2] # print( pars) N <- length(y) theta <- exp(ltheta) lambda <- exp(llam) lLike <- mKrig(x, y, theta = theta, Covariance = "Matern", smoothness = nu, lambda = lambda)$lnProfileLike ycept <- -lLike if ((abs(llam) > 20) | (abs(ltheta) > 10)) { return(ycept + 1000 * sum(abs(abs(pars) - 100))) } else { return(ycept) } } d <- rdist(x, x) temp <- optim(init, loglmvn, method = "L-BFGS-B", nu = nu, y = y, x = x, d = d) out <- exp(temp$par) rho.MLE <- mKrig(x, y, theta = out[2], Covariance = "Matern", smoothness = nu, lambda = out[1])$rho.MLE sigma2.MLE <- out[1] * rho.MLE return(list(smoothness = smoothness, pars = c(rho.MLE, out[2], sigma2.MLE), optim = temp)) } MaternQR.test <- function(x, y, smoothness = 1.5, init = log(c(1, 0.2, 0.1))) { # some simulations within fields to # study the variability in estimates of the covariance parameters. nu <- smoothness loglmvn <- function(pars, nu, x, y) { N <- length(y) Tmatrix <- fields.mkpoly(x, 2) qr.T <- qr(Tmatrix) Q2 <- qr.yq2(qr.T, diag(1, N)) ys <- t(Q2) %*% y N2 <- length(ys) lrho = pars[1] ltheta = pars[2] lsig2 = pars[3] d <- rdist(x, x) A <- (exp(lrho)*Matern(d, range = exp(ltheta), smoothness = nu) + exp(lsig2) * diag(N)) A <- t(Q2) %*% A %*% Q2 A <- chol(A) w = backsolve(A, ys, transpose = TRUE) ycept <- (N2/2) * log(2 * pi) + sum(log(diag(A))) + (1/2) * t(w) %*% w if ((abs(lrho) > 100) | (abs(ltheta) > 100) | (abs(ltheta) > 100)) { return(ycept + 1000 * sum(abs(abs(pars) - 100))) } else { return(ycept) } } temp <- optim(init, loglmvn, method = "L-BFGS-B", nu = nu, x = x, y = y) out <- exp(temp$par) llike <- loglmvn(temp$par, nu, x, y) return(list(smoothness = smoothness, pars = out, llike = llike, optim = temp)) } MaternQRProfile.test <- function(x, y, smoothness = 1.5, init = log(c(1))) { # some simulations within fields to # study the variability in estimates of the covariance parameters. nu <- smoothness loglmvn <- function(pars, nu, x, y) { ltheta = pars[1] # print( exp(ltheta)) ycept <- Krig(x, y, Covariance = "Matern", theta = exp(ltheta), smoothness = nu, method = "REML")$lambda.est[6, 5] # print( c(exp(ltheta),ycept)) if ((abs(ltheta) > 100)) { return(ycept + 1000 * sum(abs(abs(pars) - 100))) } else { return(ycept) } } temp <- optim(init, loglmvn, method = "L-BFGS-B", nu = nu, x = x, y = y) theta.est <- exp(temp$par[1]) out2 <- Krig(x, y, Covariance = "Matern", theta = theta.est, smoothness = nu, method = "REML") # MLE based on reduced degrees of freedom: offset <- (out2$N/(out2$N - 3)) out3 <- c(out2$rho.MLE * offset, theta.est, out2$shat.MLE^2 * offset) return(list(obj = out2, smoothness = smoothness, pars = out3, trA = out2$eff.df, optim = temp)) } # this function has correct formula for REML likelihood REML.test <- function(x, y, rho, sigma2, theta, nu = 1.5) { Tmatrix <- fields.mkpoly(x, 2) qr.T <- qr(Tmatrix) N <- length(y) Q2 <- qr.yq2(qr.T, diag(1, N)) ys <- t(Q2) %*% y N2 <- length(ys) A <- (rho * Matern(rdist(x, x), range = theta, smoothness = nu) + sigma2 * diag(1, N)) A <- t(Q2) %*% A %*% Q2 Ac <- chol(A) w <- backsolve(Ac, ys, transpose = TRUE) REML.like <- (N2/2) * log(2 * pi) + (1/2) * 2 * sum(log(diag(Ac))) + (1/2) * t(w) %*% w REML.like <- -1 * REML.like ccoef <- rho * Q2 %*% solve(A) %*% ys return(list(REML.like = REML.like, A = A, ccoef = ccoef, quad.form = t(w) %*% w, rhohat = (t(w) %*% w/N2) * rho, det = 2 * sum(log(diag(Ac))), N2 = N2)) } fields/R/fields.convert.grid.R0000644000175100001440000000273413114123116015732 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "fields.convert.grid" <- function(midpoint.grid) { # converts from midpoints of a grid to boundaries # x are midpoints of grid # this will handle unequally spaced points x <- sort(midpoint.grid) n <- length(x) # interior boundaries xi <- (x[2:n] + x[1:(n - 1)])/2 # first and last. x1 <- x[1] - (x[2] - x[1])/2 xnp1 <- x[n] + (x[n] - x[(n - 1)])/2 #here you have it ... c(x1, xi, xnp1) } fields/R/surface.family.R0000644000175100001440000000731513114123117014772 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "surface.Krig" <- function(object, grid.list = NULL, extrap = FALSE, graphics.reset = NULL, xlab = NULL, ylab = NULL, main = NULL, zlab = NULL, zlim = NULL, levels = NULL, type = "C", nx = 80, ny = 80, ...) { ## modified so that you can give main, and ylab as arguments ## in ... and have them passed correctly out.p <- predictSurface(object, grid.list = grid.list, extrap = extrap, nx = nx, ny = ny, drop.Z = TRUE) if (!is.null(ylab)) out.p$ylab <- ylab if (!is.null(xlab)) out.p$xlab <- xlab if (!is.null(zlab)) out.p$zlab <- zlab if (!is.null(main)) out.p$main <- main ## else ## out.p$main <- NULL plot.surface(out.p, type = type, graphics.reset = graphics.reset, levels = levels, zlim = zlim, ...) invisible() } # fields, Tools for spatial data # Copyright 2015, Institute for Mathematics Applied Geosciences # University Corporation for Atmospheric Research # Licensed under the GPL -- www.gpl.org/licenses/gpl.html "surface" <- function(object, ...) { UseMethod("surface") } # fields, Tools for spatial data # Copyright 2015, Institute for Mathematics Applied Geosciences # University Corporation for Atmospheric Research # Licensed under the GPL -- www.gpl.org/licenses/gpl.html "surface.default" <- function(object, ...) { plot.surface(object, ...) } # fields, Tools for spatial data # Copyright 2015, Institute for Mathematics Applied Geosciences # University Corporation for Atmospheric Research # Licensed under the GPL -- www.gpl.org/licenses/gpl.html "surface.mKrig" <- function(object, grid.list = NULL, extrap = FALSE, graphics.reset = NULL, xlab = NULL, ylab = NULL, main = NULL, zlab = NULL, zlim = NULL, levels = NULL, type = "C", nx = 80, ny = 80, ...) { ## modified so that you can give main, and ylab as arguments ## in ... and have them passed correctly out.p <- predictSurface(object, grid.list = grid.list, extrap = extrap, nx = nx, ny = ny, drop.Z = TRUE) if (!is.null(ylab)) out.p$ylab <- ylab if (!is.null(xlab)) out.p$xlab <- xlab if (!is.null(zlab)) out.p$zlab <- zlab if (!is.null(main)) out.p$main <- main ## else ## out.p$main <- NULL plot.surface(out.p, type = type, graphics.reset = graphics.reset, levels = levels, zlim = zlim, ...) invisible() } # fields, Tools for spatial data # Copyright 2015, Institute for Mathematics Applied Geosciences # University Corporation for Atmospheric Research # Licensed under the GPL -- www.gpl.org/licenses/gpl.html #"surface.surface" <- function(object, ...) { # # # plot.surface(object, ...) #} fields/R/wendland.family.R0000644000175100001440000003071613114123117015137 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 Wendland2.2 <- function(d, theta = 1) { # Cari's test function with explicit form for d=2 k=2 # taper range is 1.0 d <- d/theta if (any(d < 0)) stop("d must be nonnegative") return(((1 - d)^6 * (35 * d^2 + 18 * d + 3))/3 * (d < 1)) } # # the monster # "wendland.cov" <- function(x1, x2=NULL, theta = 1, V = NULL, k = 2, C = NA, marginal = FALSE, Dist.args = list(method = "euclidean"), spam.format = TRUE, derivative = 0, verbose = FALSE) { # # if marginal variance is needed # this is a quick return if (marginal) { return(rep(1, nrow(x1))) } # the rest of the possiblities require some computing # setup the two matrices of locations # if (!is.matrix(x1)) { x1 <- as.matrix(x1) } if( is.null( x2) ) { x2<- x1} if (!is.matrix(x2) ) { x2 <- as.matrix(x2) } d <- ncol(x1) n1 <- nrow(x1) n2 <- nrow(x2) # logical to figure out if this is great circle distance or not # great circle needs to handled specially due to how things are scaled. great.circle <- Dist.args$method == "greatcircle" # derivatives are tricky for great circle and other distances and have not been implemented ... if (Dist.args$method != "euclidean" & derivative > 0) { stop("derivatives not supported for this distance metric") } # catch bad theta format if (length(theta) > 1) { stop("theta as a matrix or vector has been depreciated") } # catch using V with great circle if (!is.null(V) & great.circle) { stop("V is not implemented with great circle distance") } if (!is.null(V)) { if (theta != 1) { stop("can't specify both theta and V!") } x1 <- x1 %*% t(solve(V)) x2 <- x2 %*% t(solve(V)) } # if great circle distance set the delta cutoff to be in scale of angular latitude. # also figure out if scale is in miles or kilometers if (great.circle) { miles <- ifelse(is.null(Dist.args$miles), TRUE, Dist.args$miles) delta <- (180/pi) * theta/ifelse(miles, 3963.34, 6378.388) } else { delta <- theta } if (verbose) { print(delta) } # once scaling is done taper is applied with default range of 1.0 # find polynomial coeffients that define # wendland on [0,1] # d dimension and k is the order # first find sparse matrix of Euclidean distances # ||x1-x2||**2 (or any other distance that may be specified by # the method component in Dist.args # any distance beyond delta is set to zero -- anticipating the # tapering to zero by the Wendland. # sM <- do.call("nearest.dist", c(list(x1, x2, delta = delta, upper = NULL), Dist.args)) # scale distances by theta # note: if V is passed then theta==1 and all the scaling should be done with the V matrix. # there are two possible actions listed below: # find Wendland cross covariance matrix # return either in sparse or matrix format if (is.na(C[1])) { sM@entries <- Wendland(sM@entries/theta, k = k, dimension = d) if (!spam.format) { return(as.matrix(sM)) } else { return(sM) } } else { # # multiply cross covariance matrix by the matrix C where # columns are usually the 'c' coefficients # note multiply happens in spam format # if (derivative == 0) { sM@entries <- Wendland(sM@entries/theta, k = k, dimension = d) return(sM %*% C) } else { # otherwise evaluate partial derivatives with respect to x1 # big mess of code and an explicit for loop! # this only is for euclidean distance if (is.matrix(C)) { if (ncol(C) > 1) { stop("C should be a vector") } } L <- length(coef) # loop over dimensions and accumulate partial derivative matrix. tempD <- sM@entries tempW <- Wendland(tempD/theta, k = k, dimension = d, derivative = derivative) # loop over dimensions and knock out each partial accumulate these in # in temp temp <- matrix(NA, ncol = d, nrow = n1) # Create rowindices vector sMrowindices <- rep(1:n1, diff(sM@rowpointers)) for (kd in 1:d) { # # Be careful if the distance (tempD) is close to zero. # Note that the x1 and x2 are in transformed ( V inverse) scale # # sM@entries <- ifelse(tempD == 0, 0, (tempW * (x1[sMrowindices, kd] - x2[sM@colindices, kd])/(theta * tempD))) # # accumlate the new partial temp[, kd] <- sM %*% C } # transform back to original coordinates. if (!is.null(V)) { temp <- temp %*% t(solve(V)) } return(temp) } } # should not get here! } # # # Wendland2.2 <- function(d, theta = 1) { # Cari Kaufman's test case with explicit form for d=2 k=2 # taper range is 1.0 d <- d/theta if (any(d < 0)) stop("d must be nonnegative") return(((1 - d)^6 * (35 * d^2 + 18 * d + 3))/3 * (d < 1)) } ############## basic evaluation of Wendland and its derivatives. ########################### # n: Wendland interpolation matrix is positive definite on R^n, i.e. n is # the dimension of the locations. # k: Wendland function is 2k times continuously # differentiable. # The proofs can be found in the work of Wendland(1995). # H. Wendland. Piecewise polynomial , positive definite and compactly supported radial # functions of minimal degree. AICM 4(1995), pp 389-396. ######################################### ## top level function: Wendland = function(d, theta = 1, dimension, k, derivative = 0, phi = NA) { if (!is.na(phi)) { stop("phi argument has been depreciated") } if (any(d < 0)) { stop("d must be nonnegative") } # find scaling so that function at zero is 1. scale.constant <- wendland.eval(0, n = dimension, k, derivative = 0) # adjust by theta if (derivative > 0) { scale.constant <- scale.constant * (theta^(derivative)) } # scale distances by theta. if( theta!=1){ d <- d/theta} # at this point d the distances shouls be scaled so that # covariance is zero beyond 1 if( (k==2)& (dimension==2) & (derivative==0)){ ((1 - d)^6 * (35 * d^2 + 18 * d + 3))/3 * (d < 1)} else{ ifelse(d < 1, wendland.eval(d, n = dimension, k, derivative)/scale.constant, 0) } } #################### # [M] = wm(n, k) # Compute the matrix coeficient in Wendland(1995) # Input: #\tn: Wendland interpolation matrix is positive definite on R^n # \tk: Wendland function is 2k times continuously differentiable #################### Wendland.beta = function(n, k) { l = floor(n/2) + k + 1 M = matrix(0, nrow = k + 1, ncol = k + 1) # # top corner is 1 # M[1, 1] = 1 # # Compute across the columns and down the rows, filling out upper triangle of M (including diagonal). The indexing is done from 0, thus we have to adjust by +1 when accessing our matrix element. # if (k == 0) { stop } else { for (col in 0:(k - 1)) { # # Filling out the col+1 column # # As a special case, we need a different formula for the top row # row = 0 beta = 0 for (m in 0:col) { beta = beta + M[m + 1, col + 1] * fields.pochdown(m + 1, m - row + 1)/fields.pochup(l + 2 * col - m + 1, m - row + 2) } M[row + 1, col + 2] = beta # # Now do the rest of rows # for (row in 1:(col + 1)) { beta = 0 for (m in (row - 1):col) { beta = beta + M[m + 1, col + 1] * fields.pochdown(m + 1, m - row + 1)/fields.pochup(l + 2 * col - m + 1, m - row + 2) } M[row + 1, col + 2] = beta } } } M } ######################################## # [phi] = wendland.eval(r, n, k, derivative). # Compute the compacted support basis function in Wendland(1995). # Input: #\tr: a scalar representing the distance between locations. r should be scaled into [0,1] beforehand. # \tn: Wendland interpolation matrix is positive definite on R^n. Or, we could say n is the dimension of the locations. # \tk: Wendland function is 2k times continuously differentiable. #\tderivative: the derivative of wendland function. # Output: #\tphi: a scalar evaluated by the Wendland function at distance r. # example: #\tr = 0.5 #\tphi = wendland.eval(r, 2, 1,derivative = 1 ) # The proofs can be found in the work of Wendland(1995). # H. Wendlamd. Piecewise polynomial , positive definite and compactly supported radial functions of minimal degree. AICM 4(1995), pp 389-396. ######################################### wendland.eval = function(r, n, k, derivative = 0) { # # check if the distances are between [0,1] # beta = Wendland.beta(n, k) l = floor(n/2) + k + 1 if (derivative == 0) { # # first evaluate outside for loop with m =0 phi = beta[1, k + 1] * (1 - r)^(l + 2 * k) # now accumulate terms for other m values up to k for (m in 1:k) { phi = phi + beta[m + 1, k + 1] * r^m * (1 - r)^(l + 2 * k - m) } } else { # evaluate derivative note use of symbolic differtiation. f.my = expression((1 - r)^(l + 2 * k)) f.deriv = fields.D(f.my, "r", order = derivative) f.eval = eval(f.deriv) phi = beta[1, k + 1] * f.eval for (m in 1:k) { f.my = expression(r^m * (1 - r)^(l + 2 * k - m)) f.deriv = fields.D(f.my, "r", order = derivative) f.eval = eval(f.deriv) phi = phi + beta[m + 1, k + 1] * f.eval } } phi } ####################### # [n] = fields.pochup(q, k) # Calculate the Pochhammer symbol for rising factorial q(q+1)(q+2)...(q+k-1) ####################### fields.pochup = function(q, k) { n = q if (k == 0) { n = 1 } else { for (j in 1:(k - 1)) { if ((k - 1) < 1) { stop } else { n = n * (q + j) } } } n } ######################### # [n] = fields.pochdown(q, k) # Calculate the Pochhammer symbol for falling factorial q(q-1)(q-2)...(q-k+1) ######################### fields.pochdown = function(q, k) { n = q if (k == 0) { n = 1 } else { for (j in 1:(k - 1)) { if ((k - 1) < 1) { stop } else { n = n * (q - j) } } } n } ############################# # fields.D(f,name = x,order = n) forms the n-th derivative of function f with respect to the variable x ################################ fields.D = function(f, name, order = 1) { if (order < 1) { stop("'order' must be >= 1") } if (order == 1) { d = D(f, name) } else { fields.D(D(f, name), name, order - 1) } } fields/R/sreg.family.R0000644000175100001440000002615613114123117014306 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "sreg" <- function(x, y, lambda = NA, df = NA, offset = 0, weights = rep(1, length(x)), cost = 1, nstep.cv = 80, tol = 1e-05, find.diagA = TRUE, trmin = 2.01, trmax = NA, lammin = NA, lammax = NA, verbose = FALSE, do.cv = TRUE, method = "GCV", rmse = NA, na.rm = TRUE) { call <- match.call() out <- list() out$call <- match.call() class(out) <- c("sreg") out$cost <- cost out$offset <- offset out$method <- method # # some obscure components so that some of the Krig functions # work without size of 'null space' out$nt <- 2 out$knots <- NULL # # various checks on x and y including looking for NAs. out2 <- Krig.check.xY(x, y, NULL, weights, na.rm, verbose = verbose) out <- c(out, out2) # find duplicate rows of the x vector # unique x values are now in out$xM and the means of # y are in out$yM. out <- Krig.replicates(out, verbose = verbose) out <- c(out, out2) # number of unique locations out$np <- length(out$yM) # now set maximum of trace for upper bound of GCV grid search if (is.na(trmax)) { trmax <- out$np * 0.99 } if (verbose) { print(out) } # # sorted unique values for prediction to make line plotting quick xgrid <- sort(out$xM) out$trace <- NA # # figure out if the GCV function should be minimized # and which value of lambda should be used for the estimate # old code used lam as argument, copy it over from lambda lam <- lambda if (is.na(lam[1]) & is.na(df[1])) { do.cv <- TRUE } else { do.cv <- FALSE } # # find lambda's if df's are given if (!is.na(df[1])) { lam <- rep(0, length(df)) for (k in 1:length(df)) { lam[k] <- sreg.df.to.lambda(df[k], out$xM, out$weightsM) } } # if (verbose) { cat("lambda grid", fill = TRUE) print(lam) } if (do.cv) { a <- gcv.sreg(out, lambda.grid = lam, cost = cost, offset = offset, nstep.cv = nstep.cv, verbose = verbose, trmin = trmin, trmax = trmax, rmse = rmse) # if the spline is evaluated at the GCV solution # wipe out lam grid # and just use GCV lambda. out$gcv.grid <- a$gcv.grid out$lambda.est <- a$lambda.est # # save GCV estimate if that is what is needed lam <- a$lambda.est[method, "lambda"] out$shat.GCV <- a$lambda.est[method, "shat"] } # # now evaluate spline at lambda either from specified grid or GCV value. b <- list() # lam can either be a grid or just the GCV value NL <- length(lam) NG <- length(xgrid) h <- log(lam) fitted.values<- residuals <- matrix(NA, ncol = NL, nrow = length(out$y)) predicted <- matrix(NA, ncol = NL, nrow = NG) trace <- rep(NA, NL) job <- as.integer(c(0, 3, 0)) if (find.diagA) { diagA <- matrix(NA, ncol = NL, nrow = out$np) # add switch to find diag of A. job <- as.integer(c(3, 3, 0)) } for (k in 1:NL) { # # call cubic spline FORTRAN, this is nasty looking but fast. # note lambda is passed in log scale. # what the routine does is controlled by array job # spline solution evaluated at xgrid # b <- .Fortran("css", PACKAGE="fields", h = as.double(h[k]), npoint = as.integer(out$np), x = as.double(out$xM), y = as.double(out$yM), wt = as.double(1/sqrt(out$weightsM)), sy = as.double(rep(0, out$np)), trace = as.double(0), diag = as.double(c(cost, offset, rep(0, (out$np - 2)))), cv = as.double(0), ngrid = as.integer(NG), xg = as.double(xgrid), yg = as.double(rep(0, NG)), job = as.integer(job), ideriv = as.integer(0), ierr = as.integer(0) ) if (find.diagA) { diagA[, k] <- b$diag } # note distinction between yM and y, xM and x # these are residuals at all data point locations not just the # unique set. trace[k] <- b$trace fitted.values[ , k] <- splint(out$xM, b$sy, out$x) residuals[ , k] <- out$y - fitted.values[,k] predicted[ , k] <- b$yg } out$call <- call out$lambda <- lam out$do.cv <- do.cv out$residuals <- residuals out$trace <- trace out$fitted.values <- fitted.values out$predicted <- list(x = xgrid, y = predicted) if (length(lambda[1]) == 1) { out$eff.df <- out$trace[1] } if (find.diagA) { out$diagA <- diagA } class(out) <- "sreg" return(out) } # fields, Tools for spatial data # Copyright 2015, Institute for Mathematics Applied Geosciences # University Corporation for Atmospheric Research # Licensed under the GPL -- www.gpl.org/licenses/gpl.html "sreg.df.to.lambda" <- function(df, x, wt, guess = 1, tol = 1e-05) { if (is.na(df)) return(NA) n <- length(unique(x)) info <- list(x = x, wt = wt, df = df) if (df > n) { warning(" df too large to match a lambda value") return(NA) } h1 <- log(guess) ########## find upper lambda for (k in 1:25) { tr <- sreg.trace(h1, info) if (tr <= df) break h1 <- h1 + 1.5 } ########## find lower lambda h2 <- log(guess) for (k in 1:25) { tr <- sreg.trace(h2, info) if (tr >= df) break h2 <- h2 - 1.5 } out <- bisection.search(h1, h2, sreg.fdf, tol = tol, f.extra = info)$x exp(out) } # fields, Tools for spatial data # Copyright 2015, Institute for Mathematics Applied Geosciences # University Corporation for Atmospheric Research # Licensed under the GPL -- www.gpl.org/licenses/gpl.html "sreg.fdf" <- function(h, info) { sreg.trace(h, info) - info$df } # fields, Tools for spatial data # Copyright 2015, Institute for Mathematics Applied Geosciences # University Corporation for Atmospheric Research # Licensed under the GPL -- www.gpl.org/licenses/gpl.html "sreg.fgcv" <- function(lam, obj) { sreg.fit(lam, obj)$gcv } # fields, Tools for spatial data # Copyright 2015, Institute for Mathematics Applied Geosciences # University Corporation for Atmospheric Research # Licensed under the GPL -- www.gpl.org/licenses/gpl.html "sreg.fgcv.model" <- function(lam, obj) { sreg.fit(lam, obj)$gcv.model } # fields, Tools for spatial data # Copyright 2015, Institute for Mathematics Applied Geosciences # University Corporation for Atmospheric Research # Licensed under the GPL -- www.gpl.org/licenses/gpl.html "sreg.fgcv.one" <- function(lam, obj) { sreg.fit(lam, obj)$gcv.one } # fields, Tools for spatial data # Copyright 2015, Institute for Mathematics Applied Geosciences # University Corporation for Atmospheric Research # Licensed under the GPL -- www.gpl.org/licenses/gpl.html "sreg.fit" <- function(lam, obj, verbose = FALSE) { np <- obj$np N <- obj$N nt <- 2 if (is.null(obj$cost)) { cost <- 1 } else { cost <- obj$cost } if (is.null(obj$offset)) { offset <- 0 } else { offset <- obj$offset } if (is.null(obj$shat.pure.error)) { shat.pure.error <- 0 } else { shat.pure.error <- obj$shat.pure.error } if (is.null(obj$pure.ss)) { pure.ss <- 0 } else { pure.ss <- obj$pure.ss } #print(np) #\tNOTE h <- log(lam) temp <- .Fortran("css", PACKAGE="fields", h = as.double(log(lam)), npoint = as.integer(np), x = as.double(obj$xM), y = as.double(obj$yM), wt = as.double(sqrt(1/obj$weightsM)), sy = as.double(rep(0, np)), trace = as.double(0), diag = as.double(rep(0, np)), cv = as.double(0), ngrid = as.integer(0), xg = as.double(0), yg = as.double(0), job = as.integer(c(3, 0, 0)), ideriv = as.integer(0), ierr = as.integer(0)) rss <- sum((temp$sy - obj$yM)^2 * obj$weightsM) MSE <- rss/np if ((N - np) > 0) { MSE <- MSE + pure.ss/(N - np) } trA <- temp$trace den <- (1 - (cost * (trA - nt - offset) + nt)/np) den1 <- (1 - (cost * (trA - nt - offset) + nt)/N) # If the denominator is negative then flag this as a bogus case # by making the GCV function 'infinity' # shat <- sqrt((rss + pure.ss)/(N - trA)) GCV <- ifelse(den > 0, MSE/den^2, NA) gcv.model <- ifelse((den > 0) & ((N - np) > 0), pure.ss/(N - np) + (rss/np)/(den^2), NA) gcv.one <- ifelse(den > 0, ((pure.ss + rss)/N)/(den1^2), NA) list(trace = trA, gcv = GCV, rss = rss, shat = shat, gcv.model = gcv.model, gcv.one = gcv.one) } # fields, Tools for spatial data # Copyright 2015, Institute for Mathematics Applied Geosciences # University Corporation for Atmospheric Research # Licensed under the GPL -- www.gpl.org/licenses/gpl.html "sreg.fs2hat" <- function(lam, obj) { sreg.fit(lam, obj)$shat^2 } # fields, Tools for spatial data # Copyright 2015, Institute for Mathematics Applied Geosciences # University Corporation for Atmospheric Research # Licensed under the GPL -- www.gpl.org/licenses/gpl.html "sreg.trace" <- function(h, info) { N <- length(info$x) #\th <- log(lam) temp <- .Fortran("css", PACKAGE="fields", h = as.double(h), npoint = as.integer(N), x = as.double(info$x), y = as.double(rep(0, N)), wt = as.double(1/sqrt(info$wt)), sy = as.double(rep(0, N)), trace = as.double(0), diag = as.double(rep(0, N)), cv = as.double(0), ngrid = as.integer(0), xg = as.double(0), yg = as.double(0), job = as.integer(c(3, 0, 0)), ideriv = as.integer(0), ierr = as.integer(0) )$trace return(temp) } fields/R/image.plot.R0000644000175100001440000001577613114123117014133 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "image.plot" <- function(..., add = FALSE, breaks= NULL, nlevel = 64, col = NULL, horizontal = FALSE, legend.shrink = 0.9, legend.width = 1.2, legend.mar = ifelse(horizontal, 3.1, 5.1), legend.lab = NULL, legend.line= 2, graphics.reset = FALSE, bigplot = NULL, smallplot = NULL, legend.only = FALSE, lab.breaks = NULL, axis.args = NULL, legend.args = NULL, legend.cex=1.0, midpoint = FALSE, border = NA, lwd = 1, verbose=FALSE) { # Thanks to S. Koehler and S. Woodhead # for comments on making this a better function # # save current graphics settings old.par <- par(no.readonly = TRUE) # set defaults for color scale # note this works differently than the image function. if( is.null(col)) { col<- tim.colors(nlevel)} else{ nlevel<- length( col) } # figure out zlim from passed arguments # also set the breaks for colors if they have not been passed, info <- imagePlotInfo(..., breaks=breaks, nlevel=nlevel) # breaks have been computed if not passed in the call breaks<- info$breaks if( verbose){ print(info) } if (add) { big.plot <- old.par$plt } if (legend.only) { graphics.reset <- TRUE } if (is.null(legend.mar)) { legend.mar <- ifelse(horizontal, 3.1, 5.1) } # figure out how to divide up the plotting real estate temp <- imageplot.setup(add = add, legend.shrink = legend.shrink, legend.width = legend.width, legend.mar = legend.mar, horizontal = horizontal, bigplot = bigplot, smallplot = smallplot) # bigplot has plotting region coordinates for image # smallplot has plotting coordinates for legend strip smallplot <- temp$smallplot bigplot <- temp$bigplot # draw the image in bigplot, just call the R base function # or poly.image for polygonal cells # note the logical switch # for poly.grid is parsed out of call from image.plot.info if (!legend.only) { if (!add) { par(plt = bigplot) } if (!info$poly.grid) { image(..., breaks=breaks, add = add, col = col) } else { poly.image(..., add = add, col = col, midpoint = midpoint, border = border, lwd.poly = lwd) } big.par <- par(no.readonly = TRUE) } ## ## check dimensions of smallplot if ((smallplot[2] < smallplot[1]) | (smallplot[4] < smallplot[3])) { par(old.par) stop("plot region too small to add legend\n") } # Following code draws the legend using the image function # and a one column image. # What might be confusing is the values of the "image" are the same # as the locations on the legend axis. # Moreover the image values are in the middle of each breakpoint category # thanks to Tobias Nanu Frechen and Matthew Flickinger # for sorting out some problems with the breaks position in the legend. ix <- 1:2 iy<- breaks nBreaks<- length( breaks) midpoints<- (breaks[1:(nBreaks-1)] + breaks[2:nBreaks] )/2 iz <- matrix(midpoints, nrow = 1, ncol = length(midpoints)) if( verbose){print(breaks) print( midpoints) print( ix) print( iy) print( iz) print( col)} # # next par call sets up a new plotting region just for the legend strip # at the smallplot coordinates par(new = TRUE, pty = "m", plt = smallplot, err = -1) # draw color scales the two cases are horizontal/vertical # add a label if this is passed. if (!horizontal) { image(ix, iy, iz, xaxt = "n", yaxt = "n", xlab = "", ylab = "", col = col, breaks=breaks) } else { image(iy, ix, t(iz), xaxt = "n", yaxt = "n", xlab = "", ylab = "", col = col, breaks=breaks) } # create the argument list to draw the axis # this avoids 4 separate calls to axis and allows passing extra # arguments. if (!is.null(lab.breaks)) { # axis with labels at break points axis.args <- c(list(side = ifelse(horizontal, 1, 4), mgp = c(3, 1, 0), las = ifelse(horizontal, 0, 2), at = breaks, labels = lab.breaks), axis.args) } else { # If lab.breaks is not specified ( with or without breaks), pretty # tick mark locations and labels are computed internally, # or as specified in axis.args at the function call axis.args <- c(list(side = ifelse(horizontal, 1, 4), mgp = c(3, 1, 0), las = ifelse(horizontal, 0, 2)), axis.args) } # # now add the axis to the legend strip. # notice how all the information is in the list axis.args do.call("axis", axis.args) # add a box around legend strip box() # # add a label to the axis if information has been supplied # using the mtext function. The arguments to mtext are # passed as a list like the drill for axis (see above) # if (!is.null(legend.lab)) { legend.args <- list(text = legend.lab, side = ifelse(horizontal, 1, 4), line = legend.line, cex=legend.cex) # just guessing at a good default for line argument! } # add the label using mtext function if (!is.null(legend.args)) { do.call(mtext, legend.args) } # # clean up graphics device settings # reset to larger plot region with right user coordinates. mfg.save <- par()$mfg if (graphics.reset | add) { par(old.par) par(mfg = mfg.save, new = FALSE) invisible() } else { par(big.par) par(plt = big.par$plt, xpd = FALSE) par(mfg = mfg.save, new = FALSE) # Suggestion from Karline Soetaert # this is to reset margins to be based on the mar arguments # par(mar = par("mar")) or # par(mar = big.par$mar) # unfortunately this causes problems by allowing plotting outside of the # original plot region. invisible() } } fields/R/predictSE.family.R0000644000175100001440000001740213114123117015222 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "predictSurfaceSE"<- function( object,...){ UseMethod("predictSurfaceSE") } "predictSurfaceSE.default" <- function(object, grid.list = NULL, extrap = FALSE, chull.mask = NA, nx = 80, ny = 80, xy = c(1,2), verbose = FALSE, ...) { # NOTE: # without grid.list # default is 80X80 grid on first two variables # rest are set to median value of x. if (is.null(grid.list)) { grid.list <- fields.x.to.grid(object$x, nx = nx, ny = ny, xy = xy) } # here is the heavy lifting xg <- make.surface.grid(grid.list) # NOTE: the specific predict function called will need to do the checks # whether the evaluation of a large number of grid points makes sense. out <- as.surface( xg, predictSE(object, xg,...) ) # # if extrapolate is FALSE set all values outside convex hull to NA if (!extrap) { if( is.null( object$x)){ stop("need and x matrix in object") } if (is.na(chull.mask)) { chull.mask <- unique.matrix(object$x[, xy]) } out$z[!in.poly(xg[, xy], xp = chull.mask, convex.hull = TRUE)] <- NA } # return(out) } # fields, Tools for spatial data # Copyright 2015, Institute for Mathematics Applied Geosciences # University Corporation for Atmospheric Research # Licensed under the GPL -- www.gpl.org/licenses/gpl.html "predictSE.Krig" <- function(object, x = NULL, cov = FALSE, verbose = FALSE, ...) { # # name of covariance function call.name <- object$cov.function.name # # default is to predict at data x's if (is.null(x)) { x <- object$x } x <- as.matrix(x) if (verbose) { print(x) } xraw <- x # transformations of x values used in Krig # NOTE knots are already scaled in Krig object xc <- object$transform$x.center xs <- object$transform$x.scale x <- scale(x, xc, xs) # # scaled unique observation locations. xM <- object$xM # find marginal variance before transforming x. if (!is.na(object$sd.obj[1])) { temp.sd <- c(predict(object$sd.obj, xraw)) } else { temp.sd <- 1 } if (verbose) { print(temp.sd) } # Default is to use parameters in best.model lambda <- object$best.model[1] rho <- object$best.model[3] sigma2 <- object$best.model[2] nx <- nrow(xM) wght.vec <- t(Krig.Amatrix(object, xraw, lambda, eval.correlation.model = FALSE, ...)) if (verbose) { cat("wght.vector", fill = TRUE) print(wght.vec) } #var( f0 - yhat)= var( f0) - cov( f0,yhat) - cov( yhat, f0) + cov( yhat) # = temp0 - temp1 - t( temp1) + temp2 # # if off diagonal weight matrix is passed then # find inverse covariance matrix # otherwise just create this quickly from diagonal weights # Wi <- Krig.make.Wi(object)$Wi # find covariance of data if (object$nondiag.W) { Cov.y <- rho * do.call(call.name, c(object$args, list(x1 = xM, x2 = xM))) + sigma2 * Wi } else { # this is one case where keeping diagonal # matrix as a vector will not work. Cov.y <- rho * do.call(call.name, c(object$args, list(x1 = xM, x2 = xM))) + sigma2 * diag(Wi) } if (!cov) { # find diagonal elements of covariance matrix # now find the three terms. # note the use of an element by element multiply to only get the # diagonal elements of the full # prediction covariance matrix. # temp1 <- rho * colSums(wght.vec * do.call(call.name, c(object$args, list(x1 = xM, x2 = x)))) temp2 <- colSums(wght.vec * (Cov.y %*% wght.vec)) # # find marginal variances -- trival in the stationary case! # Note that for the case of the general covariances # as radial basis functions (RBFs) temp0 should be zero. # Positivity results from the generalized divided difference # properties of RBFs. temp0 <- rho * do.call(call.name, c(object$args, list(x1 = x, marginal = TRUE))) # temp <- temp0 - 2 * temp1 + temp2 # return(sqrt(temp * temp.sd^2)) } else { # # find full covariance matrix # temp1 <- rho * t(wght.vec) %*% do.call(call.name, c(object$args, list(x1 = xM, x2 = x))) # temp2 <- t(wght.vec) %*% Cov.y %*% wght.vec # temp0 <- rho * do.call(call.name, c(object$args, list(x1 = x, x2 = x))) # temp <- temp0 - t(temp1) - temp1 + temp2 temp <- t(t(temp) * temp.sd) * temp.sd # return(temp) } } # fields, Tools for spatial data # Copyright 2004-2009, Institute for Mathematics Applied to Geosciences # University Corporation for Atmospheric Research # Licensed under the GPL -- www.gpl.org/licenses/gpl.html "predictSE.mKrig" <- function(object, xnew = NULL, Z = NULL, verbose = FALSE, drop.Z = FALSE, ...) { # # name of covariance function call.name <- object$cov.function.name # # default is to predict at data x's if (is.null(xnew)) { xnew <- object$x } if ((!drop.Z) & !is.null(object$Z)) { Z <- object$Z } xnew <- as.matrix(xnew) if (!is.null(Z)) { Z <- as.matrix(Z) } if (verbose) { print(xnew) print(Z) } lambda <- object$lambda rho <- object$rhohat sigma2 <- lambda * rho if (verbose) { print(c(lambda, rho, sigma2)) } k0 <- do.call(call.name, c(object$args, list(x1 = object$x, x2 = xnew))) # fixed effects matrox includes both spatial drift and covariates. if (!drop.Z) { t0 <- t(cbind(fields.mkpoly(xnew, m = object$m), Z)) } else { stop(" drop.Z not supported") } # # old form based on the predict function # temp1 <- rho*(t0%*% object$Omega %*%t(t0)) - # rho*predict( object, y= k0, x=x) - # rho*predict( object, y= k0, x=x, just.fixed=TRUE) # alternative formula using the d and c coefficients directly. # collapseFixedEffect=FALSE because # we want the "fixed effect" computation # to be done separately for each column of k0 hold <- mKrig.coef(object, y = k0, collapseFixedEffect=FALSE) temp1 <- rho * (colSums(t0 * (object$Omega %*% t0)) - colSums((k0) * hold$c) - 2 * colSums(t0 * hold$d)) # find marginal variances -- trival in the stationary case! temp0 <- rho * do.call(call.name, c(object$args, list(x1 = xnew, marginal = TRUE))) # Add marginal variance to part from estimate temp <- temp0 + temp1 # return square root as the standard error in units of observations. return(sqrt(temp)) } fields/R/fitted.Krig.R0000644000175100001440000000215313114123117014227 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 fitted.Krig <- function(object, ...) { object$fitted.values } fields/R/fastTps.MLE.R0000644000175100001440000000322413114123116014114 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 fastTps.MLE <- function(x, y, weights = rep(1, nrow(x)), Z = NULL, ..., par.grid=NULL, theta, lambda = NULL, lambda.profile = TRUE, verbose = FALSE, relative.tolerance = 1e-04) { warning("fastTps.MLE is deprecated and might be removed in a future release. Use fastTpsMLE instead.") do.call("fastTpsMLE", c(list(x, y, weights, Z), list(...), list(par.grid, theta, lambda, lambda.profile, verbose, relative.tolerance))) } fields/R/summary.spatialProcess.R0000644000175100001440000000223713114123117016550 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "summary.spatialProcess" <- function(object, digits = 4, ...) { print.spatialProcess( object, digits=digits, ...) } fields/R/larry.colors.R0000644000175100001440000000264513114123117014514 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 larry.colors<- function(){ ctemp<- matrix( c( 182, 106, 40, 205, 133, 63, 225, 165, 100, 245, 205, 132, 245, 224, 158, 255, 245, 186, 255, 255, 255, 205, 255, 205, 153, 240, 178, 83, 189, 159, 110, 170, 200, 5, 112, 176, 2, 56, 88 ), ncol=3, byrow=TRUE) ctemp<- ctemp/255 rgb(ctemp[,1], ctemp[,2], ctemp[,3]) } fields/R/rdist.earth.R0000644000175100001440000000373513114123117014313 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "rdist.earth" <- function(x1, x2=NULL, miles = TRUE, R = NULL) { if (is.null(R)) { if (miles) R <- 3963.34 else R <- 6378.388 } coslat1 <- cos((x1[, 2] * pi)/180) sinlat1 <- sin((x1[, 2] * pi)/180) coslon1 <- cos((x1[, 1] * pi)/180) sinlon1 <- sin((x1[, 1] * pi)/180) if (is.null(x2)) { pp <- cbind(coslat1 * coslon1, coslat1 * sinlon1, sinlat1) %*% t(cbind(coslat1 * coslon1, coslat1 * sinlon1, sinlat1)) return(R * acos(ifelse(abs(pp) > 1, 1 * sign(pp), pp))) } else { coslat2 <- cos((x2[, 2] * pi)/180) sinlat2 <- sin((x2[, 2] * pi)/180) coslon2 <- cos((x2[, 1] * pi)/180) sinlon2 <- sin((x2[, 1] * pi)/180) pp <- cbind(coslat1 * coslon1, coslat1 * sinlon1, sinlat1) %*% t(cbind(coslat2 * coslon2, coslat2 * sinlon2, sinlat2)) return(R * acos(ifelse(abs(pp) > 1, 1 * sign(pp), pp))) } } fields/R/stationary.image.cov.R0000644000175100001440000000721113114123117016121 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 stationary.image.cov <- function(ind1, ind2, Y, cov.obj = NULL, setup = FALSE, grid, M = NULL, N = NULL, cov.function="stationary.cov",delta=NULL, cov.args=NULL, ...) { # # if cov object is missing then create # basically need to enlarge domain and find the FFT of the # covariance # cov.args<-c( cov.args, list(...)) if (is.null(cov.obj)) { dx <- grid$x[2] - grid$x[1] dy <- grid$y[2] - grid$y[1] m <- length(grid$x) n <- length(grid$y) # # determine size of padding # default is twice domain and will then yeild exact results # delta indicates that covariance is zero beyond a distance delta # so using a smaller grid than twice domain will stil give exact results. if(!is.null(delta)){ M<- ceiling(m + 2*delta/dx) N<- ceiling(n + 2*delta/dy) } if (is.null(M)) M <- (2 * m) if (is.null(N)) N <- (2 * n) xg <- make.surface.grid(list((1:M) * dx, (1:N) * dy)) center <- matrix(c((dx * M)/2, (dy * N)/2), nrow = 1, ncol = 2) # # here is where the actual covariance form is used # note passed arguments from call for parameters etc. # out<- do.call(cov.function, c(cov.args, list(x1 = xg, x2 = center))) # check if this is a sparse result and if so expand to full size if( class( out)=="spam"){ out <- spam2full(out) } # coerce to a matrix (image) out<- matrix( c(out), nrow = M, ncol = N) temp <- matrix(0, nrow = M, ncol = N) # # a simple way to normalize. This could be avoided by # translating image from the center ... # temp[M/2, N/2] <- 1 wght <- fft(out)/(fft(temp) * M * N) # # wght is the discrete FFT for the covariance suitable for fast # multiplication by convolution. # cov.obj <- list(m = m, n = n, grid = grid, N = N, M = M, wght = wght, call = match.call()) if (setup) { return(cov.obj) } } temp <- matrix(0, nrow = cov.obj$M, ncol = cov.obj$N) if (missing(ind1)) { temp[1:cov.obj$m, 1:cov.obj$n] <- Y Re(fft(fft(temp) * cov.obj$wght, inverse = TRUE)[1:cov.obj$m, 1:cov.obj$n]) } else { if (missing(ind2)) { temp[ind1] <- Y } else { temp[ind2] <- Y } # # as promised this is a single clean step # Re(fft(fft(temp) * cov.obj$wght, inverse = TRUE)[ind1]) } } fields/R/ribbon.plot.R0000644000175100001440000000330613114123117014306 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ribbon.plot <- function(x, y, z, zlim = NULL, col = tim.colors(256), transparent.color = "white", ...) { N <- length(x) x1 <- (x[1:(N - 1)] + x[2:(N)])/2 y1 <- (y[1:(N - 1)] + y[2:(N)])/2 x1 <- c(x[1] - (x[2] - x[1])/2, x1, x[N] + (x[N] - x[N - 1])/2) y1 <- c(y[1] - (y[2] - y[1])/2, y1, y[N] + (y[N] - y[N - 1])/2) eps <- 1e-07 if (is.null(zlim)) { zlim <- range(c(z), na.rm = TRUE) } # convert z values to a color scale. colz <- color.scale(z, col = col, transparent.color = transparent.color) segments(x1[1:(N)], y1[1:(N)], x1[2:(N + 1)], y1[2:(N + 1)], col = colz, ...) } fields/R/minimax.crit.R0000644000175100001440000000250713114123117014462 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "minimax.crit" <- function(obj, des = TRUE, R) { R <- as.matrix(R) id <- 1:nrow(R) if (des) Dset <- attr(obj, "best.id") else Dset <- obj Cset <- id[-Dset] dist.mat <- rdist(R[Cset, ], R[Dset, ]) mM.crit <- max(apply(dist.mat, 1, min)) mM.crit } fields/R/fields.style.R0000644000175100001440000000236713114123117014471 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "fields.style" <- function() { par(cex.axis = 1.2, cex.lab = 1.2, cex = 1.2, cex.sub = 1.2, cex.main = 1.2, lwd = 1.5, bg = "transparent") palette(c("orange1", "green2", "blue2", "red1")) } fields/R/fast.1way.R0000644000175100001440000000351413114123116013673 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "fast.1way" <- function(lev, y, w = rep(1, length(y))) { # w are proportional to reciprocal variance. if (!is.matrix(y)) { y <- as.matrix(y) } N <- nrow(y) NC <- ncol(y) # ordered unique values of lev tags <- lev[!duplicated(lev)] NR <- length(tags) # lev are now integer tags lev <- match(lev, tags) # means <- matrix(NA, nrow = NR, ncol = NC) # add together weights with same lev w.means <- c(tapply(w, lev, sum)) for (k in 1:NC) { # find weighted means for each lev means[, k] <- (tapply(y[, k] * w, lev, sum)/w.means) } # find SS SSE <- colSums((w * (y - means[lev, ])^2)) MSE <- SSE/(N - NR) list(n = N, means = means, SSE = SSE, w.means = w.means, MSE = MSE, lev = lev, tags = tags) } fields/R/plot.Krig.R0000644000175100001440000000621713114123117013733 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "plot.Krig" <- function(x, digits = 4, which = 1:4, ...) { out <- x # # don't do plots 2:4 if a fixed lambda # if (x$fixed.model) { which <- 1 } fitted.values <- predict(out) std.residuals <- (out$residuals * sqrt(out$weights))/out$shat.GCV if (any(which == 1)) { temp <- summary(out) plot(fitted.values, out$y, ylab = "Y", xlab = " predicted values", bty = "n", ...) abline(0, 1) # hold <- par("usr") # text(hold[1], hold[4], paste(" R**2 = ", format(round(100 * # temp$covariance, 2)), "%", sep = ""), cex = 0.8, # adj = 0) } if (any(which == 2)) { plot(fitted.values, std.residuals, ylab = "(STD) residuals", xlab = " predicted values", bty = "n", ...) yline(0) hold <- par("usr") # text(hold[1], hold[4], paste(" RMSE =", format(signif(sqrt(sum(out$residuals^2)/(temp$num.observation - # temp$enp)), digits))), cex = 0.8, adj = 0) } if (any(which == 3)) { if (nrow(out$gcv.grid) > 1) { ind <- out$gcv.grid[, 3] < 1e+19 out$gcv.grid <- out$gcv.grid[ind, ] yr <- range(unlist(out$gcv.grid[, 3:5]), na.rm = TRUE) plot(out$gcv.grid[, 2], out$gcv.grid[, 3], xlab = "Eff. number of parameters", ylab = " GCV function", bty = "n", ylim = yr, ...) lines(out$gcv.grid[, 2], out$gcv.grid[, 4], lty = 3) lines(out$gcv.grid[, 2], out$gcv.grid[, 5], lty = 1) xline(out$eff.df, lwd=2, col="grey") usr.save<- par()$usr usr.save[3:4]<- range( -out$gcv.grid[,7] ) par( usr= usr.save, ylog=FALSE) lines( out$gcv.grid[, 2], -out$gcv.grid[,7] , lty=2, lwd=2, col="blue") axis( side=4) mtext( side=4, line=2, "log profile likelihood ") title("GCV-points, solid-model, dots- single \n REML dashed", cex = 0.5) box() } } if (any(which == 4)) { hist(std.residuals, ylab="") } } fields/R/sim.Krig.R0000644000175100001440000001152613114123117013544 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "sim.Krig" <- function(object, xp, M = 1, verbose = FALSE, ...) { sigma2 <- object$best.model[2] rho <- object$best.model[3] # # check for unique rows of xp if (any(duplicated(xp))) { stop(" predictions locations should be unique") } # # set up various sizes of arrays m <- nrow(xp) n <- nrow(object$xM) N <- length(object$y) if (verbose) { cat(" m,n,N", m, n, N, fill = TRUE) } #transform the new points xc <- object$transform$x.center xs <- object$transform$x.scale xpM <- scale(xp, xc, xs) # complete set of points for prediction. # check for replicates and adjust x <- rbind(object$xM, xpM) if (verbose) { cat("full x ", fill = TRUE) print(x) } # # find indices of all rows of xp that correspond to rows of # xM and then collapse x to unique rows. rep.x.info <- fields.duplicated.matrix(x) x <- as.matrix(x[!duplicated(rep.x.info), ]) if (verbose) { cat("full x without duplicates ", fill = TRUE) print(x) } N.full <- nrow(x) if (verbose) { cat("N.full", N.full, fill = TRUE) } # these give locations in x matrix to reconstruct xp matrix xp.ind <- rep.x.info[(1:m) + n] if (verbose) { print(N.full) print(x) } if (verbose) { cat("reconstruction of xp from collapsed locations", fill = TRUE) print(x[xp.ind, ]) } # # Sigma is full covariance at the data locations and at prediction points. # Sigma <- rho * do.call(object$cov.function.name, c(object$args, list(x1 = x, x2 = x))) # # square root of Sigma for simulating field # Cholesky is fast but not very stable. # # the following code line is similar to chol(Sigma)-> Scol # but adds possible additional arguments controlling the Cholesky # from the Krig object. # Schol <- do.call("chol", c(list(x = Sigma), object$chol.args)) # # output matrix to hold results N.full <- nrow(x) out <- matrix(NA, ncol = m, nrow = M) # # find conditional mean field from initial fit # don't multiply by sd or add mean if this is # a correlation model fit. # (these are added at the predict step). h.hat <- predict(object, xp, ...) # marginal standard deviation of field. temp.sd <- 1 # # # this is not 1 if Krig object is a corelation model. if (object$correlation.model) { if (!is.na(object$sd.obj[1])) { temp.sd <- predict(object$sd.obj, x) } } # # Define W2i for simulating errors. # W2i <- Krig.make.Wi(object)$W2i for (k in 1:M) { # simulate full field h <- t(Schol) %*% rnorm(N.full) # value of simulated field at observations # # NOTE: fixed part of model (null space) need not be simulated # because the estimator is unbiased for this part. # the variability is still captured because the fixed part # is still estimated as part of the predict step below h.data <- h[1:n] # expand the values according to the replicate pattern h.data <- h.data[object$rep.info] # create synthetic data y.synthetic <- h.data + sqrt(sigma2) * W2i %d*% rnorm(N) # predict at xp using these data # and subtract from 'true' value # note that true values of field have to be expanded in the # case of common locations between xM and xp. h.true <- (h[xp.ind]) temp.error <- predict(object, xp, y = y.synthetic, eval.correlation.model = FALSE, ...) - h.true # add the error to the actual estimate (conditional mean) # and adjust by marginal standard deviation out[k, ] <- h.hat + temp.error * temp.sd } out } fields/R/which.max.matrix.R0000644000175100001440000000274113114123117015251 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 which.max.matrix <- function(z) { if (!is.matrix(z)) { stop("Not a matrix") } m <- nrow(z) n <- ncol(z) # take care of NAs ind <- which.max(z) iy <- trunc((ind - 1)/m) + 1 ix <- ind - (iy - 1) * m return(cbind(ix, iy)) } which.max.image <- function(obj) { ind.z <- which.max.matrix(obj$z) return(list(x = obj$x[ind.z[, 1]], y = obj$y[ind.z[, 2]], z = obj$z[ind.z], ind = ind.z)) } fields/R/summary.Krig.R0000644000175100001440000000456213114123117014453 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "summary.Krig" <- function(object, digits = 4, ...) { x <- object # lambda est may not be available if lambda has been supplied by user. if (!is.na(x$lambda.est[1])) { l.est <- x$lambda.est } else { l.est <- NA } summary <- list(call = x$call, num.observation = length(x$residuals), enp = x$eff.df, nt = x$nt, df.drift = sum(x$ind.drift), res.quantile = quantile(x$residuals, seq(0, 1, 0.25)), shat.MLE = x$shat.MLE, shat.GCV = x$shat.GCV, rhohat = x$rhohat, m = x$m, lambda = x$lambda, cost = x$cost, rho = x$rho, sigma2 = x$sigma2, num.uniq = length(x$yM), knot.model = x$knot.model, np = x$np, method = x$method, lambda.est = l.est, shat.pure.error = x$shat.pure.error, args = x$args) class(summary) <- "summary.Krig" summary$covariance <- cor(x$fitted.values * sqrt(x$weights), (x$y) * sqrt(x$weights))^2 hold <- (sum((x$y - mean(x$y))^2) - sum(x$residuals^2))/(sum((x$y - mean(x$y))^2)) summary$adjr2 <- 1 - ((length(x$residuals) - 1)/(length(x$residuals) - x$eff.df)) * (1 - hold) summary$digits <- digits summary$cov.function <- as.character(x$cov.function.name) summary$correlation.model <- x$correlation.model summary$sum.gcv.lambda <- summaryGCV.Krig(x, x$lambda) summary } fields/R/RadialBasis.R0000644000175100001440000000411113114123116014226 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 RadialBasis <- function(d, M, dimension, derivative = 0) { # compute the exponent for a thin-plate spline # based on smoothness and dimension p <- 2 * M - dimension if (p <= 0) { stop("M too small for thin plates spline, need: 2m-d >0") } if ((p - 1 < 0) & (derivative > 0)) { stop("M is too small for derivatives, need: 2m-d < 1") } if (derivative == 0) { if (dimension%%2 == 0) { # factor of 2 from the log term ifelse(d > 1e-14, radbas.constant(M, dimension) * (d^p) * log(d), 0) } else { radbas.constant(M, dimension) * (d^p) } } else { ## find derivative if (dimension%%2 == 0) { # factor of 2 from the log term ifelse(d > 1e-14, radbas.constant(M, dimension) * (d^(p - 1)) * (p * log(d) + 1), 0) } else { con <- radbas.constant(M, dimension) * p con * (d^(p - 1)) } } ##### should not get here! } fields/R/gauss.cov.R0000644000175100001440000000214113114123117013762 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "gauss.cov" <- function(...) { Exp.cov(..., p = 2) } fields/R/gcv.Krig.R0000644000175100001440000002267213114123117013537 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "gcv.Krig" <- function(out, lambda.grid = NA, cost = 1, nstep.cv = 200, rmse = NA, verbose = FALSE, tol = 1e-05, offset = 0, y = NULL, give.warnings = TRUE) { nt <- out$nt np <- out$np N <- out$N D <- out$matrices$D # Yet another monster function called by Krig # but there just many simple steps ... # # if a y data vector is not supplied then # use the one in the Krig object if (is.null(y)) { u <- out$matrices$u shat.pure.error <- out$shat.pure.error pure.ss <- out$pure.ss } else { #with new data need to update some statistics. out2 <- Krig.make.u(out, y = y) u <- out2$u shat.pure.error <- out2$shat.pure.error pure.ss <- out2$pure.ss } if (verbose) { cat("u used:", fill = TRUE) print(u) } # # generate a reasonable grid of lambda based on equally spaced # effective degrees of freedom if (is.na(lambda.grid[1])) { temp.df <- seq(nt, (np - offset) * 0.95, , nstep.cv) temp.df[1] <- temp.df[1] + 0.001 for (k in 1:nstep.cv) { lambda.grid[k] <- Krig.df.to.lambda(temp.df[k], D) } } # make sure that the grid is in sorted order lambda.grid <- sort(lambda.grid) nl <- length(lambda.grid) nd <- length(D) V <- V.model <- V.one <- lplike <- trA <- shat <- rep(NA, nl) Dl <- rep(NA, nd) # # this is small little list used to pass information to the # objective functions info <- list(matrices = list(D = D, u = u), N = N, nt = nt, cost = cost, pure.ss = pure.ss, shat.pure.error = shat.pure.error, offset = offset) # # loop over lambda values for the grid search for (k in 1:nl) { # # all the wonderful things calculated for each lambda # note the use of the info list. V[k] <- Krig.fgcv(lambda.grid[k], info) V.one[k] <- Krig.fgcv.one(lambda.grid[k], info) V.model[k] <- Krig.fgcv.model(lambda.grid[k], info) lplike[k] <- Krig.flplike(lambda.grid[k], info) shat[k] <- sqrt(Krig.fs2hat(lambda.grid[k], info)) trA[k] <- Krig.ftrace(lambda.grid[k], D) } # # reformat as a matrix with all these values. gcv.grid <- cbind(lambda.grid, trA, V, V.one, V.model, shat, lplike) gcv.grid <- as.data.frame(gcv.grid) names(gcv.grid) <- c("lambda", "trA", "GCV", "GCV.one", "GCV.model", "shat", "-lnLike Prof") # find minima over grid ifelse used to avoid 0 length vector from which.min IMIN<- rep( NA, 6) IMIN[1]<- which.min( gcv.grid$GCV ) IMIN[2]<- ifelse( is.na(shat.pure.error), NA, which.min(gcv.grid$GCV.model) ) IMIN[3]<- which.min( gcv.grid$GCV.one) if( is.na( rmse)){ IMIN[4] <- NA } else{ rangeShat<- range( gcv.grid$shat) IUpcross<- max( (1:nl)[gcv.grid$shat< rmse] ) IMIN[4]<- ifelse( (rangeShat[1]<= rmse)&(rangeShat[2] >=rmse), IUpcross, NA) } IMIN[5]<- ifelse( is.na(shat.pure.error), NA, which.min(abs(gcv.grid$shat-shat.pure.error)) ) IMIN[6]<- which.min( gcv.grid[["-lnLike Prof"]]) # NOTE IMIN indexes from smallest lambda to largest lambda in grid. warningTable<- data.frame( IMIN, IMIN == nl, IMIN==1, gcv.grid$lambda[IMIN], gcv.grid$trA[IMIN], row.names = c("GCV","GCV.model", "GCV.one", "RMSE", "pure error", "REML") ) warning<- (warningTable[,2]|warningTable[,3])& (!is.na(warningTable[,1])) indRefine<- (!warningTable[,2]) & (!warningTable[,3]) & (!is.na(warningTable[,1])) warningTable<- cbind( warning, indRefine, warningTable ) names( warningTable)<- c("Warning","Refine","indexMIN", "leftEndpoint", "rightEndpoint", "lambda","effdf") # now optimze the search producing refined optima if (verbose) print(gcv.grid) # setup output matrix for refined values lambda.est <- matrix(NA, ncol = 6, nrow = 6, dimnames = list( c("GCV", "GCV.model", "GCV.one", "RMSE", "pure error", "REML"), c("lambda", "trA", "GCV", "shat","-lnLike Prof" , "converge"))) # fill in grid search estimates for( k in 1:6){ if( !is.na(IMIN[k])){ lambda.est[k,1]<- gcv.grid$lambda[IMIN[k]] } } # # now step through the many different ways to find lambda # This is the key to these choices: # 1- the usual GCV proposed by Craven/Wahba # 2- GCV where data fitting is collapsed to the mean for # each location and each location is omitted # 3- True leave-one-out even with replicated observations # 4- Match estimate of sigma to external value supplied (RMSE) # 5- Match estimate of sigma from the estimate based the # pure error sum of squares obtained by the observations # replicated at the same locations # 6- Maxmize the restricted maxmimum likelihood (REML) # standard GCV w/o replicates if( verbose){ print( warningTable) } if(indRefine[1]){ starts <- lambda.grid[IMIN[1] + c(-1,0,1)] out <- golden.section.search(ax=starts[1],bx=starts[2],cx=starts[3], f=Krig.fgcv, f.extra = info, tol = tol) lambda.est[1,1]<- out$x lambda.est[1,6]<- out$iter } if( indRefine[2]) { starts <- lambda.grid[IMIN[2] + c(-1,0,1)] out <- golden.section.search(ax=starts[1],bx=starts[2],cx=starts[3], f=Krig.fgcv.model, f.extra = info, tol = tol) lambda.est[2,1]<- out$x lambda.est[2,6]<- out$iter } if( indRefine[3]) { starts <- lambda.grid[IMIN[3] + c(-1,0,1)] out <- golden.section.search(ax=starts[1],bx=starts[2],cx=starts[3], f=Krig.fgcv.one, f.extra = info, tol = tol) lambda.est[3, 1] <-out$x lambda.est[3,6]<- out$iter } if ( indRefine[6] ){ starts <- lambda.grid[IMIN[6] + c(-1,0,1)] out <- golden.section.search(ax=starts[1],bx=starts[2],cx=starts[3], f=Krig.flplike, f.extra = info, tol = tol) lambda.est[6,1]<- out$x lambda.est[6,6]<- out$iter } if ( indRefine[4] ) { guess<- gcv.grid$lambda[IMIN[4]] lambda.rmse <- find.upcross(Krig.fs2hat, info, upcross.level = rmse^2, guess = guess, tol = tol * rmse^2) lambda.est[4, 1] <- lambda.rmse } # # matching estimate of sigma from reps. if ( indRefine[5] ) { guess <- gcv.grid$lambda[IMIN[5]] lambda.pure.error <- find.upcross(Krig.fs2hat, info, upcross.level = shat.pure.error^2, guess = guess, tol = tol * shat.pure.error^2) lambda.est[5, 1] <- lambda.pure.error } # # OK done with all six methods # NOTE that not all may # fill in return matrix with all the right stuff # fill in REML results lam.ml <- lambda.est[6, 1] lambda.est[6, 2] <- Krig.ftrace(lam.ml, D) lambda.est[6, 3] <- Krig.fgcv(lam.ml, info) lambda.est[6, 4] <- sqrt(Krig.fs2hat(lam.ml, info)) lambda.est[6, 5] <- Krig.flplike(lam.ml, info) # fill in GCV results for (k in 1:5) { lam <- lambda.est[k, 1] if (!is.na(lam)) { lambda.est[k, 2] <- Krig.ftrace(lam, D) if (k == 1 | k > 3) { lambda.est[k, 3] <- Krig.fgcv(lam, info) lambda.est[k, 5] <- Krig.flplike(lam, info) } if (k == 2) { lambda.est[k, 3] <- Krig.fgcv.model(lam, info) } if (k == 3) { lambda.est[k, 3] <- Krig.fgcv.one(lam, info) } lambda.est[k, 4] <- sqrt(Krig.fs2hat(lam, info)) } } # Note that the estimate by default is # REML == restricted maximum likelihood. if( give.warnings & any(warningTable$Warning)){ cat("Methods at endpoints of grid search:", fill=TRUE) print(warningTable[warningTable$Warning,]) } list(gcv.grid = gcv.grid, lambda.est = lambda.est, warningTable=warningTable) } fields/R/fields.derivative.poly.R0000644000175100001440000000327313114123116016451 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 fields.derivative.poly <- function(x, m, dcoef) { # dimension of x locations # goal is find partial derivative matrix d <- ncol(x) out <- fields.mkpoly(rbind(x[1, ]), m) ptab <- attr(out, "ptab") if (nrow(ptab) != length(dcoef)) { stop(" rows of ptab not equal to length of dcoef") } hold <- matrix(NA, ncol = d, nrow = nrow(x)) for (k in 1:d) { nonzero <- ptab[, k] != 0 ptemp <- matrix(ptab[nonzero, ], ncol = d) dtemp <- dcoef[nonzero] dtemp <- dtemp * ptemp[, k] ptemp[, k] <- ptemp[, k] - 1 hold[, k] <- fields.evlpoly2(x, dtemp, ptemp) } return(hold) } fields/R/plot.spatialProcess.R0000644000175100001440000000620313114123117016026 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "plot.spatialProcess" <- function(x, digits = 4, which = 1:4, ...) { out <- x # # don't do plots 2:4 if a fixed lambda # fitted.values <- predict(out) std.residuals <- (out$residuals * sqrt(out$weights))/out$sigma.MLE if (any(which == 1)) { #temp <- summary(out) plot(fitted.values, out$y, ylab = "Y", xlab = " predicted values", bty = "n", ...) abline(0, 1) hold <- par("usr") title("Observations by predicted values") } if (any(which == 2)) { plot(fitted.values, std.residuals, ylab = "(STD) residuals", xlab = " predicted values", bty = "n", ...) yline(0) } if (any(which == 3)) { mar.old<- par()$mar summary<- out$MLEInfo$MLEProfileLambda$summary # referring to summary[,2] is fragile -- can be either full or REML par( mar= mar.old + c(0,0,0,2) ) plot(summary[,"EffDf" ], summary[,"GCV" ], xlab = "Eff. number of parameters", ylab = "GCV function", type="l", ...) xline( summary[which.min(summary[,"GCV" ] ),"EffDf"]) usr.save <- par()$usr usr.save[3:4]<- range( summary[,2 ] ) par( usr= usr.save, ylog=FALSE) lines(summary[,"EffDf" ], summary[,2 ], lty=2, lwd=2, col="blue") xline( summary[which.max(summary[,2 ] ),"EffDf"], col="blue") axis( side=4) mtext( side=4, line=2, "log Profile Likelihood(lamdba)",cex=.75, col="blue") title("Profile over lambda", cex = 0.6) box() par( mar=mar.old) } if (any(which == 4)) { summary<- out$MLEInfo$MLEGrid$summary thetaGrid<- (out$MLEInfo$MLEGrid$par.grid)$theta plot(thetaGrid,summary[,2], pch=16, xlab="theta (range parameter)", ylab="log Profile Likelihood (theta)") title("Profile likelihood for theta \n (range parameter)") xline( out$theta.MLE, lwd=2, col="grey") lines( splint(thetaGrid,summary[,2], nx=200), lwd=2, col="red") } } fields/R/predict.interp.surface.R0000644000175100001440000000221313114123117016433 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "predict.interp.surface" <- function(object, loc, ...) { interp.surface( object, loc,...) } fields/R/yline.R0000644000175100001440000000213713114123117013177 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "yline" <- function(y, ...) { abline(h = y, ...) } fields/R/plot.vgram.matrix.R0000644000175100001440000000307513114123117015455 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "plot.vgram.matrix" <- function(x, ...) { ind <- x$ind ir <- range(ind[, 1]) jr <- range(ind[, 2]) # x and y grid values temp.list <- list(x = (ir[1]:ir[2]) * x$dx, y = (jr[1]:jr[2]) * x$dy) # fill in a matrix with variogram values ind2 <- cbind(ind[, 1] - min(ind[, 1]) + 1, ind[, 2] - min(ind[, 2]) + 1) temp <- matrix(NA, nrow = max(ind2[, 1]), ncol = max(ind2[, 2])) temp[ind2] <- x$vgram.full temp.list$z <- temp # plot it! image.plot(temp.list, ...) } fields/R/sim.rf.R0000644000175100001440000000254613114123117013261 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "sim.rf" <- function(obj) { n <- obj$n m <- obj$m M <- obj$M N <- obj$N if (any(Re(obj$wght) < 0)) { stop("FFT of covariance has negative\nvalues") } z <- fft(matrix(rnorm(N * M), ncol = N, nrow = M)) Re(fft(sqrt(obj$wght) * z, inverse = TRUE))[1:m, 1:n]/sqrt(M * N) } fields/R/color.scale.R0000644000175100001440000000333113114123116014257 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 color.scale <- function(z, col = tim.colors(256), zlim = NULL, transparent.color = "white", eps = 1e-08) { # # converts real values to a color scale of NC values. # role of eps is to prevent values exactly at the end of the range from being # missed if (is.null(zlim)) { zlim <- range(z, na.rm = TRUE) } z[(z < zlim[1]) | (z > zlim[2])] <- NA NC <- length(col) breaks <- seq(zlim[1] * (1 - eps), zlim[2] * (1 + eps), , NC + 1) # the magic of R ... icolor <- cut(c(z), breaks)@.Data # returned values is a vector of character hex strings encoding the colors. ifelse(is.na(icolor), transparent.color, col[icolor]) } fields/R/ChicagoO3.R0000644000175100001440000000674213114123116013623 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "ChicagoO3" <- structure(list(x = structure(c(10.2420950223404, 3.80376523711237, 9.10894898014071, 9.62401536295848, -2.42853799498812, -12.626852374789, -0.419779101996896, -7.88824165286121, 3.54623204570348, -16.9019033521803, -27.2032310085453, -6.18852258956094, -5.26140310048807, -12.2147992685346, -25.5550185835271, -15.6657440334172, 21.109995699806, 12.9204402129956, 33.8836419936979, 28.1148985061338, -8.81404505952784, 6.475624941694, -12.2040623901154, -18.5689928883614, 6.8907291046231, -14.9714234763093, -2.03401039835273, 10.6958505981398, 12.287083222701, -4.939739538856, 11.4568748968428, 20.2432463455088, 35.0486281566463, 28.0610414140067, 23.2873435403219, -20.2294095400778, -19.6759373228389, -16.9777602637997, -17.5312324810386, -18.4998088612067), .Dim = as.integer(c(20, 2)), .Dimnames = list(c("170310032", "170310037", "170310050", "170311002", "170311003", "170311601", "170314002", "170314003", "170317002", "170436001", "170890005", "170970001", "170971002", "170973001", "171110001", "171971008", "180891016", "180892008", "181270020", "181270024"), c("East.West", "North.South"))), y = c(36.4902936963152, 34.6396930821552, 31.6444005657229, 34.4646956838262, 37.7204739668803, 40.1342965426748, 37.0181086910068, 38.4001686365134, 44.0485589002946, 38.4870329290307, 42.2402282830657, 40.0049235817847, 42.1090485712195, 39.6319596353327, 42.8054712629932, 44.1097465187358, 35.1186331327201, 46.898470931915, 42.9564231070325, 46.6868555984414), lon.lat = structure(c(-87.546, -87.671, -87.568, -87.558, -87.792, -87.99, -87.753, -87.898, -87.676, -88.073, -88.273, -87.865, -87.847, -87.982, -88.241, -88.049, -87.335, -87.494, -87.087, -87.199, 41.757, 41.978, 41.708, 41.616, 41.984, 41.668, 41.855, 42.039, 42.062, 41.813, 42.05, 42.177, 42.391, 42.29, 42.221, 41.592, 41.6, 41.639, 41.631, 41.617), .Dim = as.integer(c(20, 2)), .Dimnames = list(c("170310032", "170310037", "170310050", "170311002", "170311003", "170311601", "170314002", "170314003", "170317002", "170436001", "170890005", "170970001", "170971002", "170973001", "171110001", "171971008", "180891016", "180892008", "181270020", "181270024"), c("lon", "lat")))), .Names = c("x", "y", "lon.lat")) fields/R/MLEfast.R0000644000175100001440000001123113114123116013344 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 MLE.objective.fn <- function(ltheta, info, value = TRUE) { # marginal process covariance matrix y <- as.matrix(info$y) x <- info$x smoothness <- info$smoothness ngrid <- info$ngrid # number of reps M <- ncol(y) Tmatrix <- fields.mkpoly(x, 2) qr.T <- qr(Tmatrix) N <- nrow(y) Q2 <- qr.yq2(qr.T, diag(1, N)) ys <- t(Q2) %*% y N2 <- length(ys) theta <- exp(ltheta) K <- Matern(rdist(x, x)/theta, smoothness = smoothness) Ke <- eigen(t(Q2) %*% K %*% Q2, symmetric = TRUE) u2 <- t(Ke$vectors) %*% ys # mean over replicates -- mean square for coefficients for # a particular eigenfunction. u2.MS <- c(rowMeans(u2^2)) D2 <- Ke$values N2 <- length(D2) # grid of lambda based on spacing of eigenvalues ngrid <- min(ngrid, N2) lambda.grid <- exp(seq(log(D2[1]), log(D2[N2]), , ngrid)) trA <- minus.pflike <- rep(NA, ngrid) #grid search followed by golden section # -log likelihood temp.fn <- function(llam, info) { lam.temp <- exp(llam) u2 <- info$u2.MS D2 <- info$D2 N2 <- length(u2.MS) # MLE of rho rho.MLE <- (sum((u2.MS)/(lam.temp + D2)))/N2 # ln determinant lnDetCov <- sum(log(lam.temp + D2)) -1 * M * (-N2/2 - log(2 * pi) * (N2/2) - (N2/2) * log(rho.MLE) - (1/2) * lnDetCov) } # information list for calling golden section search. info <- list(D2 = D2, u2 = u2.MS, M = M) out <- golden.section.search(f = temp.fn, f.extra = info, gridx = log(lambda.grid), tol = 1e-07) minus.LogProfileLike <- out$fmin lambda.MLE <- exp(out$x) rho.MLE <- (sum((u2.MS)/(lambda.MLE + D2)))/N2 sigma.MLE <- sqrt(lambda.MLE * rho.MLE) trA <- sum(D2/(lambda.MLE + D2)) pars <- c(rho.MLE, theta, sigma.MLE, trA) names(pars) <- c("rho", "theta", "sigma", "trA") if (value) { return(minus.LogProfileLike) } else { return(list(minus.lPlike = minus.LogProfileLike, lambda.MLE = lambda.MLE, pars = pars, mle.grid = out$coarse.search)) } } MLE.Matern.fast <- function(x, y, smoothness, theta.grid = NULL, ngrid = 20, verbose = FALSE, m = 2, ...) { # remove missing values and print out a warning bad <- is.na(y) if (sum(bad) > 0) { cat("removed ", sum(bad), " NAs", fill = TRUE) x <- x[!bad, ] y <- y[!bad] } # list to pass to the objective function # NOTE: large ngrid here is very cheap after the eigen decomposition # has been done. info <- list(x = x, y = y, smoothness = smoothness, ngrid = 80) # if grid for ranges is missing use some quantiles of # pairwise distances among data. if (is.null(theta.grid)) { theta.range <- quantile(rdist(x, x), c(0.03, 0.97)) theta.grid <- seq(theta.range[1], theta.range[2], , ngrid) } if (length(theta.grid) == 2) { theta.grid <- seq(theta.grid[1], theta.grid[2], , ngrid) } else { ngrid <- length(theta.grid) } # grid search/golden section search # note that search is in log scale. out <- golden.section.search(f = MLE.objective.fn, f.extra = info, gridx = log(theta.grid)) theta.MLE <- exp(out$x) REML <- -out$fmin # one final call with the theta.MLE value to recover MLEs for rho and sigma out2 <- MLE.objective.fn(log(theta.MLE), info, value = FALSE) return(list(smoothness = smoothness, pars = out2$pars[1:3], REML = REML, trA = out2$pars[4], REML.grid = cbind(theta.grid, -1 * out$coarse.search[, 2]))) } fields/R/cubic.cov.R0000644000175100001440000000356713114123116013741 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 cubic.cov <- function(x1, x2=NULL, theta = 1, C = NA, marginal = FALSE) { # comments in Exp.simple.cov for more details about the # required parts of this covariance if (is.matrix(x1)) { if (ncol(x1) != 1) { stop(" x is a matrix this is a 1-d covariance") } } if( is.null( x2) ){ x2<- x1 } # local function fun.temp <- function(u, v) { 1 + ifelse(u < v, v * (u^2)/2 - (u^3)/6, u * (v^2)/2 - (v^3)/6) } if (is.na(C[1]) & !marginal) { # cross covariance matrix return(outer(c(x1), c(x2), FUN = fun.temp)) } if (!is.na(C[1])) { # product of cross covariance with a vector return(outer(c(x1), c(x2), FUN = fun.temp) %*% C) } if (marginal) { # marginal variance return((x1^3)/3) } } fields/R/Matern.R0000644000175100001440000000360013114123116013300 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "Matern" <- function(d, range = 1, alpha = 1/range, smoothness = 0.5, nu = smoothness, phi = 1.0) { # # Matern covariance function transcribed from Stein's book page 31 # nu==smoothness, alpha == 1/range # # GeoR parameters map to kappa==smoothness and phi == range # check for negative distances # phi is accepted as the marginal variance of the process (see below) # within fields, however, this parameter is "rho" and we recommend # not using phi. if (any(d < 0)) stop("distance argument must be nonnegative") d <- d * alpha # avoid sending exact zeroes to besselK d[d == 0] <- 1e-10 # # the hairy constant ... con <- (2^(nu - 1)) * gamma(nu) con <- 1/con # # call to Bessel function from R base package # return(phi * con * (d^nu) * besselK(d, nu)) } fields/R/radbas.constant.R0000644000175100001440000000325413114123117015144 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "radbas.constant" <- function(m, d) { # local gamma function to avoid imprecision warnings for negative arguments. gamma.local <- function(x) { if (x < 0) { temp <- 1 while (x < 0) { temp <- temp * x x <- x + 1 } return(gamma(x)/temp) } else { gamma(x) } } if (d%%2 == 0) { Amd <- (((-1)^(1 + m + d/2)) * (2^(1 - 2 * m)) * (pi^(-d/2)))/(gamma(m) * gamma.local(m - d/2 + 1)) } else { Amd <- (gamma.local(d/2 - m) * (2^(-2 * m)) * (pi^(-d/2)))/gamma(m) } Amd } fields/R/Tps.R0000644000175100001440000000452213114123116012624 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "Tps" <- function(x, Y, m = NULL, p = NULL, scale.type = "range", lon.lat = FALSE, miles = TRUE, method="GCV", GCV=TRUE, ...) { x <- as.matrix(x) d <- ncol(x) if (is.null(p)) { if (is.null(m)) { m <- max(c(2, ceiling(d/2 + 0.1))) } p <- (2 * m - d) if (p <= 0) { stop(" m is too small you must have 2*m - dimension >0") } } # Tpscall <- match.call() if (!lon.lat) { # Tpscall$cov.function <- "Thin plate spline radial basis functions (Rad.cov) " obj<- Krig(x, Y, cov.function = Rad.cov, m = m, scale.type = scale.type, p = p, method=method, GCV = GCV, ...) } else { # a different coding of the radial basis functions to use great circle distance. # Tpscall$cov.function <- "Thin plate spline radial basis functions (RadialBasis.cov) using great circle distance " obj<- Krig(x, Y, cov.function = stationary.cov, m = m, scale.type = scale.type, method=method, GCV = GCV, cov.args = list(Covariance = "RadialBasis", M = m, dimension = 2, Distance = "rdist.earth", Dist.args = list(miles = miles)), ...) } obj$call<- match.call() class( obj) <- c("Krig", "Tps") return(obj) } fields/R/spam_2lz.R0000644000175100001440000000563713114123117013616 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 spind2full <- function(obj) { # create empty matrix and stuff at non zero locations temp <- matrix(0, obj$da[1], obj$da[2]) temp[obj$ind] <- obj$ra return(temp) } spind2spam <- function(obj, add.zero.rows = TRUE) { # Check if there is one or more missing rows. If so either stop or fill in these rows # with a zero value rows.present <- unique(obj$ind[, 1]) if (length(rows.present) < obj$da[1]) { # The missing row indices ind.missing <- (1:obj$da[1])[-rows.present] N.missing <- length(ind.missing) if (!add.zero.rows) { cat(N.missing, " missing row(s)", fill = TRUE) stop("Can not coerce to spam format with add.zero.rows==FALSE") } else { # put a hard zero in the first column of each missing row obj$ind <- rbind(obj$ind, cbind(ind.missing, rep(1, N.missing))) obj$ra <- c(obj$ra, rep(0, N.missing)) } } # sort on rows and then columns to make sure they are in order ii <- order(obj$ind[, 1], obj$ind[, 2]) # shuffle indices and entries so they are in row order obj$ind <- obj$ind[ii, ] obj$ra <- obj$ra[ii] ia <- obj$ind[, 1] # define total number of nonzero elements M <- length(ia) # find places where rows change hold <- diff(c(0, ia, M + 1)) # Note: 1:M is the cumsum for elements. ia <- (1:(M + 1))[hold != 0] return(new("spam", entries = as.numeric(obj$ra), colindices = as.integer(obj$ind[, 2]), rowpointers = as.integer(ia), dimension = as.integer(obj$da))) } spam2spind <- function(obj) { # diff gives the number of nonzero elements in each row I <- rep((1:obj@dimension[1]), diff(obj@rowpointers)) list(ind = cbind(I, obj@colindices), da = obj@dimension, ra = obj@entries) } spam2full <- function(obj) { spind2full(spam2spind(obj)) } fields/R/bplot.family.R0000644000175100001440000000376113114123116014462 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "bplot.xy" <- function(x, y, N = 10, breaks = pretty(x, N, eps.correct = 1), plot = TRUE, ...) { NBIN <- length(breaks) - 1 centers <- (breaks[1:NBIN] + breaks[2:(NBIN + 1)])/2 obj <- split(y, cut(x, breaks)) if (length(obj) == 0) { stop("No points within breaks") } if (plot) { bplot(obj, at = centers, show.names = FALSE, axes = TRUE, ...) axis(1) } else { return(list(centers = centers, breaks = breaks, boxplot.obj = boxplot(obj, plot = FALSE))) } } bplot <- function(x, by, pos = NULL, at = pos, add = FALSE, boxwex = 0.8, xlim = NULL, ...) { if (!missing(by)) { x <- split(c(x), as.factor(by)) } if (!add & !is.null(at) & is.null(xlim)) { xlim <- range(at) } if (!is.null(at)) { boxwex <- boxwex * min(diff(sort(at))) } boxplot(x, at = at, xlim = xlim, add = add, boxwex = boxwex, ...) } fields/R/mKrigMLEJoint.R0000644000175100001440000001763213114123117014500 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 mKrigMLEJoint <- function(x, y, weights = rep(1, nrow(x)), Z = NULL, mKrig.args = NULL, na.rm = TRUE, cov.fun = "stationary.cov", cov.args=NULL, lambda.start = .5, cov.params.start = NULL, optim.args = NULL, abstol = 1e-4, parTransform = NULL, REML = FALSE, verbose = FALSE) { # overwrite basic data to remove NAs this has be done in case distance # matrices are precomputed (see below) if( na.rm){ obj<- mKrigCheckXY(x, y, weights, Z, na.rm) x<- obj$x y<- obj$y weights<- obj$weights Z<- obj$Z } #set default optim.args if necessary # abstol is anticipating this is a likelihood so differencs of 1e-4 are not appreciable # if(is.null(optim.args)){ optim.args = list(method = "BFGS", control=list(fnscale = -1, ndeps = rep(log(1.1),length(cov.params.start)+1), abstol = abstol, maxit = 20) ) } # main way to keep track of parameters to optimize -- lambda always included parNames<- c( "lambda", names(cov.params.start)) if( is.null(parTransform)){ # parTransform: log/exp parTransform<- function( ptemp, inv=FALSE){ if( !inv){ log( ptemp)} else{ exp(ptemp) } } } ########bug if(verbose){ cat("parameters to optimze: ", parNames, fill=TRUE) } #check which optimization options the covariance function supports supportsDistMat = supportsArg(cov.fun, "distMat") #precompute distance matrix if possible so it only needs to be computed once if(supportsDistMat & is.null( cov.args$distMat)) { #Get distance function and arguments if available # Dist.fun= c(cov.args)$Distance Dist.args=c(cov.args)$Dist.args #If user left all distance settings NULL, use rdist with compact option. #Use rdist function by default in general. # if(is.null(Dist.fun)) { Dist.fun = "rdist" if(is.null(Dist.args)) Dist.args = list(compact=TRUE) } distMat = do.call(Dist.fun, c(list(x), Dist.args)) #set cov.args for optimal performance cov.args = c(cov.args, list(distMat=distMat, onlyUpper=TRUE)) } # these are all the arguments needed to call mKrig except lambda and cov.args mKrig.args <- c(list(x = x, y = y, weights = weights, Z = Z), mKrig.args, list(cov.fun=cov.fun) ) # reset switch so trace is not found for each evaluation of the likelihood. mKrig.args$find.trA = FALSE # output matrix to summarize results ncolSummary = 7 + length(parNames) summary <- matrix(NA, nrow = 1, ncol = ncolSummary) dimnames(summary) <- list(NULL, c("EffDf", "lnProfLike", "GCV", "sigma.MLE", "rho.MLE", parNames, "counts eval","counts grad")) lnProfileLike.max <- -Inf # # optimize over (some) covariance parameters and lambda capture.evaluations <- matrix(NA, ncol = length(parNames) + 4 , nrow = 1, dimnames = list(NULL, c( parNames, "rho.MLE", "sigma.MLE", "lnProfileLike.FULL", "lnProfileREML.FULL") ) ) capture.env <- environment() # call to optim with initial start (default is log scaling ) init.start <- parTransform( unlist(c(lambda.start, cov.params.start)), inv=FALSE) # cat("init.start", init.start, fill=TRUE) optimResults <- do.call(optim, c( list(par=init.start), list(mKrigJointTemp.fn), optim.args, list( parNames = parNames, parTransform = parTransform, mKrig.args = mKrig.args, cov.args = cov.args, capture.env = capture.env, REML = REML) ) ) #get optim results optim.counts <- optimResults$counts parOptimum<- parTransform(optimResults$par, inv=TRUE) # first row is just NAs lnLike.eval <- capture.evaluations[-1,] nameCriterion<- ifelse( !REML, "lnProfileLike.FULL", "lnProfileREML.FULL" ) ind<- which( lnLike.eval[ , nameCriterion] == optimResults$value ) ind<- max( ind) # below is an aspect from optim I dont understand and thought to flag #if( length(ind)!=1 ){ # cat( "Weirdness in optimization. See lnLike.eval rows: ", ind, # fill=TRUE ) # ind<- max( ind) #} # save results of the best covariance model evaluation in a neat table summary <- c( optimResults$value, parOptimum, lnLike.eval[ind,"sigma.MLE"], lnLike.eval[ind,"rho.MLE"], optim.counts) names(summary) <- c(nameCriterion, parNames, "sigmaMLE", "rhoMLE", "funEval", "gradEval") out = c( list(summary=summary, lnLike.eval = lnLike.eval, optimResults=optimResults, pars.MLE=parOptimum, parTransform = parTransform)) return(out) } # Define the objective function as a tricksy call to mKrig # if y is a matrix of replicated data sets use the log likelihood for the complete data sets mKrigJointTemp.fn <- function(parameters, mKrig.args, cov.args, parTransform, parNames, REML=FALSE, capture.env) { # optimization is over a transformed scale ( so need to back transform for mKrig) tPars<- parTransform( parameters, inv=TRUE) names( tPars)<- parNames #get all this eval's covariance arguments using the input parameters cov.args.temp = c(cov.args, tPars) # NOTE: FULL refers to estimates collapsed across the replicates if Y is a matrix # assign to hold the last mKrig object hold <- do.call("mKrig", c(mKrig.args, cov.args.temp)) hold = hold[c("rho.MLE.FULL", "sigma.MLE.FULL", "lnProfileLike.FULL", "lnProfileREML.FULL" )] # add this evalution to an object (i.e. here a matrix) in the calling frame temp.eval <- get("capture.evaluations", envir=capture.env) assign("capture.evaluations", rbind(temp.eval, c(parTransform(parameters, inv=TRUE), unlist(hold))), envir = capture.env) if( !REML){ return(hold$lnProfileLike.FULL) } else{ return(hold$lnProfileREML.FULL) } } fields/R/summaryGCV.sreg.R0000644000175100001440000000341413114123117015052 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "summaryGCV.sreg" <- function(object, lambda, cost = 1, nstep.cv = 20, offset = 0, verbose = TRUE, ...) { out <- object shat.pure.error <- out$shat.pure.error pure.ss <- out$pure.ss nt <- 2 np <- out$np N <- out$N out$cost <- cost out$offset <- offset lambda.est <- rep(NA, 6) names(lambda.est) <- c("lambda", "trA", "GCV", "GCV.one", "GCV.model", "shat") # # fill in stuff for this lambda lambda.est[1] <- lambda temp <- sreg.fit(lambda, out) lambda.est[2] <- temp$trace lambda.est[3] <- temp$gcv lambda.est[4] <- temp$gcv.one if (!is.na(shat.pure.error)) { lambda.est[5] <- temp$gcv.model } lambda.est[6] <- temp$shat lambda.est } fields/R/interp.surface.R0000644000175100001440000000434213114123117015007 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "interp.surface" <- function(obj, loc) { # obj is a surface or image object like the list for contour, persp or image. # loc a matrix of 2 d locations -- new points to evaluate the surface. x <- obj$x y <- obj$y z <- obj$z nx <- length(x) ny <- length(y) # this clever idea for finding the intermediate coordinates at the new points # is from J-O Irisson lx <- approx(x, 1:nx, loc[, 1])$y ly <- approx(y, 1:ny, loc[, 2])$y lx1 <- floor(lx) ly1 <- floor(ly) # x and y distances between each new point and the closest grid point in the lower left hand corner. ex <- lx - lx1 ey <- ly - ly1 # fix up weights to handle the case when loc are equal to # last grid point. These have been set to NA above. ex[lx1 == nx] <- 1 ey[ly1 == ny] <- 1 lx1[lx1 == nx] <- nx - 1 ly1[ly1 == ny] <- ny - 1 # bilinear interpolation finds simple weights based on the # the four corners of the grid box containing the new # points. return(z[cbind(lx1, ly1)] * (1 - ex) * (1 - ey) + z[cbind(lx1 + 1, ly1)] * ex * (1 - ey) + z[cbind(lx1, ly1 + 1)] * (1 - ex) * ey + z[cbind(lx1 + 1, ly1 + 1)] * ex * ey) } fields/R/evlpoly.R0000644000175100001440000000301213114123116013541 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 fields.evlpoly <- function(x, coef) { # evaluates polynomial at x values with coefficients coef[i] and powers i-1 # n <- length(x) J <- length(coef) results <- rep(0, n) temp <- .Fortran("evlpoly",PACKAGE="fields", x = as.double(x), n = as.integer(n), coef = as.double(coef), j = as.integer(J), results = as.double(results))$results return(temp) } fields/R/matern.image.cov.R0000644000175100001440000000570113114123117015214 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 matern.image.cov <- function(ind1, ind2, Y, cov.obj = NULL, setup = FALSE, grid, M = NULL, N = NULL,theta=1, smoothness=.5 ) { if (is.null(cov.obj)) { dx <- grid$x[2] - grid$x[1] dy <- grid$y[2] - grid$y[1] m <- length(grid$x) n <- length(grid$y) if (is.null(M)) M <- ceiling2(2 * m) if (is.null(N)) N <- ceiling2(2 * n) # make sure M and N are even. # (not sure what it means if this is not the case!) if( M%%2 !=0) { M<- M+1} if( N%%2 !=0) { N<- N+1} # need to evaluate the covariance between the center of the grid and # every grid point do this using several simple steps for efficiency. xGrid<- (1:M) * dx - (dx * M)/2 yGrid<- (1:N) * dy - (dy * N)/2 # a matrix the same size as the grid that has the distance between every # grid point and the center point. bigDistance<- sqrt( matrix( xGrid^2, M,N, byrow=FALSE) + matrix( yGrid^2, M,N, byrow=TRUE) ) # this should make for a nice image plot of the covariance w/r to the center point # out<- Matern( bigDistance /theta, smoothness=smoothness) temp <- matrix(0, nrow = M, ncol = N) temp[M/2, N/2] <- 1 wght <- fft(out)/(fft(temp) * M * N) cov.obj <- list(m = m, n = n, grid = grid, N = N, M = M, wght = wght, call = match.call()) if (setup) { return(cov.obj) } } temp <- matrix(0, nrow = cov.obj$M, ncol = cov.obj$N) if (missing(ind1)) { temp[1:cov.obj$m, 1:cov.obj$n] <- Y Re(fft(fft(temp) * cov.obj$wght, inverse = TRUE)[1:cov.obj$m, 1:cov.obj$n]) } else { if (missing(ind2)) { temp[ind1] <- Y } else { temp[ind2] <- Y } Re(fft(fft(temp) * cov.obj$wght, inverse = TRUE)[ind1]) } } fields/R/image.smooth.R0000644000175100001440000000720113114123117014446 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "image.smooth" <- function(x, wght = NULL, dx = 1, dy = 1, kernel.function = double.exp, theta = 1, grid = NULL, tol = 1e-08, xwidth = NULL, ywidth = NULL, weights = NULL, ...) { # first part of this function is figuring what has been passed and # what to do if (is.list(x)) { # assume that an image list format has been passed as x Y <- x$z grid <- list(x = x$x, y = x$y) } else { Y <- x } if (!is.matrix(Y)) { stop("Requires a matrix") } m <- nrow(Y) n <- ncol(Y) # use information in previous setup kernel function from a # a call to setup.image.smooth and in the process override any # passed arguments if (!is.null(wght)) { dx <- wght$dx dy <- wght$dy xwidth <- wght$xwidth ywidth <- wght$ywidth } # set up grid if it is missing if (is.null(grid)) { grid <- list(x = (1:m) * dx, y = (1:n) * dy) } else { dx <- grid$x[2] - grid$x[1] dy <- grid$y[2] - grid$y[1] } # padding of zeroes around actual image # if less than m and n there may be spurious effects due to # the periodicity from the fft. # make sure that the span of the kernel is less than xwidth and ywidth. # there will be substantial speedup if the kernel has a small support, # Y is big (e.g. 512X512) and Mwidth and N widht are adjusted to suit. if (is.null(xwidth)) { xwidth <- dx * m } if (is.null(ywidth)) { ywidth <- dy * n } # kernel wght function as fft # reusing this saves an fft for each image smooth. if (is.null(wght)) { wght <- setup.image.smooth(nrow = m, ncol = n, xwidth = xwidth, ywidth = ywidth, dx = dx, dy = dy, kernel.function = kernel.function, theta = theta) } M <- nrow(wght$W) N <- ncol(wght$W) temp <- matrix(0, nrow = M, ncol = N) temp2 <- matrix(0, nrow = M, ncol = N) # pad with zeroes if (!is.null(weights)) { temp[1:m, 1:n] <- Y * weights temp[is.na(temp)] <- 0 temp2[1:m, 1:n] <- ifelse(!is.na(Y), weights, 0) } else { temp[1:m, 1:n] <- Y temp[is.na(temp)] <- 0 temp2[1:m, 1:n] <- ifelse(!is.na(Y), 1, 0) } # temp and temp2 are numerator and denominator of Nadarya-Watson estimator. temp <- Re(fft(fft(temp) * wght$W, inverse = TRUE))[1:m, 1:n] temp2 <- Re(fft(fft(temp2) * wght$W, inverse = TRUE))[1:m, 1:n] # try not to divide by zero! temp <- ifelse((temp2 > tol), (temp/temp2), NA) list(x = grid$x, y = grid$y, z = temp) } fields/R/rad.image.cov.R0000644000175100001440000000442613114123117014477 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "Rad.image.cov" <- function(ind1, ind2, Y, cov.obj = NULL, setup = FALSE, grid, ...) { if (is.null(cov.obj)) { dx <- grid$x[2] - grid$x[1] dy <- grid$y[2] - grid$y[1] m <- length(grid$x) n <- length(grid$y) M <- ceiling2(2 * m) N <- ceiling2(2 * n) xg <- make.surface.grid(list((1:M) * dx, (1:N) * dy)) center <- matrix(c((dx * M)/2, (dy * N)/2), nrow = 1, ncol = 2) out <- Rad.cov(xg, center, ...) out <- as.surface(xg, c(out))$z temp <- matrix(0, nrow = M, ncol = N) temp[M/2, N/2] <- 1 wght <- fft(out)/(fft(temp) * M * N) cov.obj <- list(m = m, n = n, grid = grid, N = N, M = M, wght = wght, call = match.call()) if (setup) { return(cov.obj) } } temp <- matrix(0, nrow = cov.obj$M, ncol = cov.obj$N) if (missing(ind1)) { temp[1:cov.obj$m, 1:cov.obj$n] <- Y Re(fft(fft(temp) * cov.obj$wght, inverse = TRUE)[1:cov.obj$m, 1:cov.obj$n]) } else { if (missing(ind2)) { temp[ind1] <- Y } else { temp[ind2] <- Y } Re(fft(fft(temp) * cov.obj$wght, inverse = TRUE)[ind1]) } } fields/R/print.summary.spatialProcess.R0000644000175100001440000000760513114123117017707 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "print.summary.spatialProcess" <- function(x, ...) { digits <- x$digits c1 <- "Number of Observations:" c2 <- x$num.observation c1 <- c(c1, "Number of unique points (locations):") c2 <- c(c2, x$num.uniq) # # print out null space poly info only if 'm' is used if (!is.null(x$args.null$m)) { c1 <- c(c1, "Degree of polynomial in fixed part ( base model):") c2 <- c(c2, x$m - 1) } c1 <- c(c1, "Number of parameters in the fixed part of model") c2 <- c(c2, x$nt) c1 <- c(c1, "Parameters for fixed spatial drift") c2 <- c(c2, x$df.drift) c1 <- c(c1, "Effective degrees of freedom:") c2 <- c(c2, format(round(x$enp, 1))) c1 <- c(c1, "Residual degrees of freedom:") c2 <- c(c2, format(round(x$num.observation - x$enp, 1))) c1 <- c(c1, "MLE for sigma (nugget variance)") c2 <- c(c2, format(signif(x$sigma.MLE, digits))) c1 <- c(c1, "GCV estimate for sigma ") c2 <- c(c2, format(signif(x$shat.GCV, digits))) if (!is.na(x$shat.pure.error)) { c1 <- c(c1, "Estimate of sigma from replicates ") c2 <- c(c2, format(signif(x$shat.pure.error, digits))) } c1 <- c(c1, "MLE for rho (process variance)") c2 <- c(c2, format(signif(x$rho.MLE, digits))) c1 <- c(c1, "MLE for rho + sigma^2 (the variogram sill)") c2 <- c(c2, format(signif(x$rho.MLE + x$sigma.MLE^2 , digits))) c1 <- c(c1, "MLE for theta (range parameter)") c2 <- c(c2, signif(x$theta.MLE, digits)) c1 <- c(c1, "MLE for lambda (sigma^2/rho)") c2 <- c(c2, signif(x$lambda, digits)) sum <- cbind(c1, c2) dimnames(sum) <- list(rep("", dim(sum)[1]), rep("", dim(sum)[2])) res.quantile <- x$res.quantile names(res.quantile) <- c("min", "1st Q", "median", "3rd Q", "max") cat("CALL:\n") dput(x$call) print(sum, quote = FALSE) cat("\n") cat("R function used for the covariance model:", x$cov.function, fill = TRUE) cat( "\n") if (!is.null(x$args)) { cat(" Covariance arguments that are different from their defaults: ", fill = TRUE) changedArgs<- names(x$args) for( argName in changedArgs){ #cat(" ", as.character(argName),":" , fill=TRUE ) quickPrint( x$args[argName]) } } if ((x$correlation.model)) { cat(" A correlation model was fit:\nY is standardized before spatial estimate is found", fill = TRUE) } if (x$knot.model) { cat(" Knot model: ", x$np - x$nt, " knots supplied to define basis\nfunctions", fill = TRUE) } cat("\n") cat("RESIDUAL SUMMARY:", fill = TRUE) print(signif(res.quantile, digits)) cat("\n") cat("DETAILS ON SMOOTHING PARAMETER ESTIMATE:", fill = TRUE) cat(" Method used: ", x$method, fill = TRUE) print(x$sum.gcv.lambda, digits = digits) cat("\n") invisible(x) } fields/R/compactToMat.R0000644000175100001440000000400413114123116014444 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 compactToMat = function(compactMat, diagVal=0, lower.tri=FALSE, upper.tri=TRUE) { #compactMat: a symmetric matrix stored as a vector containing elements for the upper triangle #portion of the true matrix #diagVal: a number to put in the diagonal entries of the output matrix #lower.tri: if TRUE, fills in lower tringular portion of the matrix #upper.tri: if TRUE, fills in upper tringular portion of the matrix if(class(compactMat) == 'dist') { n <- attr(compactMat, "Size") } else { # (n^2 - n)/2 = length(compactMat) stop("input matrix is not compact or is not of class \"dist\"") #or if class is not dist but input matrix is still compact, use: #n = (1 + sqrt(1 + 8*length(compactMat)))/2 } return(.Call("compactToMatC", as.double(compactMat), as.integer(length(compactMat)), as.integer(n), as.double(diagVal), as.integer(lower.tri), as.integer(upper.tri), PACKAGE="fields")) } fields/R/transformx.R0000644000175100001440000000407413114123117014264 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "transformx" <- function(x, scale.type = "unit.sd", x.center, x.scale) { if (scale.type == "unscaled") { x.center <- rep(0, ncol(x)) x.scale <- rep(1, ncol(x)) } else if (scale.type == "unit.sd") { x.center <- apply(x, 2, mean) x.scale <- sqrt(apply(x, 2, var)) x <- scale(x) } else if (scale.type == "range") { x.center <- apply(x, 2, min) x.scale <- apply(x, 2, max) - apply(x, 2, min) x <- scale(x, center = x.center, scale = x.scale) } else if (scale.type == "user") { if (missing(x.center)) x.center <- apply(x, 2, mean) if (missing(x.scale) || length(x.scale) != ncol(x)) stop("Error: x.scale must be a vector of length d") x <- scale(x, center = x.center, scale = x.scale) } else stop(paste("Error: scale.type must be one of", "unit.sd, range, user, unscaled")) attr(x, "x.center") <- x.center attr(x, "x.scale") <- x.scale attr(x, "x.scale.type") <- scale.type x } fields/R/print.Krig.R0000644000175100001440000000475313114123117014114 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "print.Krig" <- function(x, digits = 4, ...) { c1 <- "Number of Observations:" c2 <- length(x$residuals) # # print out null space poly info only if 'm' is used if (!is.null(x$args.null$m)) { c1 <- c(c1, "Degree of polynomial null space ( base model):") c2 <- c(c2, x$m - 1) } c1 <- c(c1, "Number of parameters in the null space") c2 <- c(c2, x$nt) c1 <- c(c1, "Parameters for fixed spatial drift") c2 <- c(c2, sum(x$ind.drift)) c1 <- c(c1, "Model degrees of freedom:") c2 <- c(c2, format(round(x$eff.df, 1))) c1 <- c(c1, "Residual degrees of freedom:") c2 <- c(c2, format(round(length(x$residuals) - x$eff.df, 1))) c1 <- c(c1, "GCV estimate for sigma:") c2 <- c(c2, format(signif(x$shat.GCV, digits))) c1 <- c(c1, "MLE for sigma:") c2 <- c(c2, format(signif(x$shat.MLE, digits))) c1 <- c(c1, "MLE for rho:") c2 <- c(c2, format(signif(x$rho.MLE, digits))) c1 <- c(c1, "lambda") c2 <- c(c2, format(signif(x$lambda, 2))) c1 <- c(c1, "User supplied rho") c2 <- c(c2, format(signif(x$rho, digits))) c1 <- c(c1, "User supplied sigma^2") c2 <- c(c2, format(signif(x$sigma2, digits))) sum <- cbind(c1, c2) dimnames(sum) <- list(rep("", dim(sum)[1]), rep("", dim(sum)[2])) cat("Call:\n") dput(x$call) print(sum, quote = FALSE) cat("Summary of estimates: \n") print( x$lambda.est) # print( x$warningTable) invisible(x) } fields/R/dyadic.check.R0000644000175100001440000000263413114123116014371 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 dyadic.check <- function(n, cut.p = 2) { # checks that n is of the form # n=p*2^m where p <= cut.p n2 <- as.integer(n) while (n2 > cut.p) { if (n2%%2 != 0) { cat(n, "must equal p*2^m where p is less than or equal to ", cut.p, fill = TRUE) return(FALSE) } n2 <- n2/2 } return(TRUE) } fields/R/cat.to.list.R0000644000175100001440000000251313114123116014216 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "cat.to.list" <- function(x, a) { a <- as.character(a) label <- unique(a) out <- as.list(1:length(label)) names(out) <- label for (k in 1:length(label)) { out[[k]] <- x[label[k] == a] if (length(out[[k]]) == 0) out[[k]] <- NA } out } fields/R/stationary.cov.R0000644000175100001440000001265413114123117015047 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "stationary.cov" <- function(x1, x2=NULL, Covariance = "Exponential", Distance = "rdist", Dist.args = NULL, theta = 1, V = NULL, C = NA, marginal = FALSE, derivative = 0, distMat = NA, onlyUpper = FALSE, ...) { # get covariance function arguments from call cov.args <- list(...) # coerce x1 and x2 to matrices if (is.data.frame(x1)) x1 <- as.matrix(x1) if (!is.matrix(x1)) x1 <- matrix(c(x1), ncol = 1) if(is.null(x2)) x2 = x1 if (is.data.frame(x2)) x2 <- as.matrix(x2) if (!is.matrix(x2)& !is.null(x2)) x2 <- matrix(c(x2), ncol = 1) d <- ncol(x1) n1 <- nrow(x1) n2 <- nrow(x2) # # separate out a single scalar transformation and a # more complicated scaling and rotation. # this is done partly to have the use of great circle distance make sense # by applying the scaling _after_ finding the distance. # if (length(theta) > 1) { stop("theta as a vector matrix has been depreciated use the V argument") } # # following now treats V as a full matrix for scaling and rotation. # # try to catch incorrect conbination of great circle distance and V if (Distance == "rdist.earth" & !is.null(V)) { stop("V not supported with great circle distance") } if (!is.null(V)) { if (theta != 1) { stop("can't specify both theta and V!") } x1 <- x1 %*% t(solve(V)) x2 <- x2 %*% t(solve(V)) } # # locations are now scaled and rotated correctly # now apply covariance function to pairwise distance matrix, or multiply # by C vector or just find marginal variance # this if block finds the cross covariance matrix if (is.na(C[1]) && !marginal) { # # if distMat is supplied, evaluate covariance for upper triangular part only # if(is.na(distMat[1])) { # distMat not supplied so must compute it along with covariance matrix # note overall scalling by theta (which is just theta under isotropic case) if(is.null(x2)) distMat <- do.call(Distance, c(list(x1), Dist.args)) else distMat <- do.call(Distance, c(list(x1=x1, x2=x2), Dist.args)) } # # now convert distance matrix to covariance matrix # if(inherits(distMat, "dist")) { # # distMat is in compact form, so evaluate covariance over all distMat and convert to matrix form diagVal = do.call(Covariance, c(list(d=0), cov.args)) if(onlyUpper) return(compactToMat(do.call(Covariance, c(list(d=distMat*(1/theta)), cov.args)), diagVal)) else # if onlyUpper==FALSE, also set lower triangle of covariance matrix return(compactToMat(do.call(Covariance, c(list(d=distMat*(1/theta)), cov.args)), diagVal, lower.tri=TRUE)) } else { # distMat is a full matrix return(do.call(Covariance, c(list(d = distMat/theta), cov.args))) } } # or multiply cross covariance by C # as coded below this is not particularly efficient of memory else if(!is.na(C[1])) { if(onlyUpper) { #the onlyUpper option is not compatible with the C option onlyUpper = FALSE } if(is.null(x2)) bigD <- do.call(Distance, c(list(x1, x1), Dist.args)) else bigD <- do.call(Distance, c(list(x1=x1, x2=x2), Dist.args)) if (derivative == 0) { return(do.call(Covariance, c(list(d = bigD*(1/theta)), cov.args)) %*% C) } else { # find partial derivatives tempW <- do.call(Covariance, c(list(d = bigD*(1/theta)), cov.args, derivative = derivative)) # loop over dimensions and knock out each partial accumulate these in # in temp temp <- matrix(NA, ncol = d, nrow = n1) for (kd in 1:d) { # Be careful if the distance (tempD) is close to zero. # Note that the x1 and x2 are in transformed ( V inverse) scale sM <- ifelse(bigD == 0, 0, tempW * outer(x1[, kd], x2[, kd], "-")/(theta * bigD)) # accumlate the new partial temp[, kd] <- sM %*% C } # transform back to original coordinates. if (!is.null(V)) { temp <- temp %*% t(solve(V)) } return(temp) } } # or find marginal variance and return a vector. else if (marginal) { sigma2 <- do.call(Covariance, c(list(d = 0), cov.args)) return(rep(sigma2, nrow(x1))) } # should not get here based on sequence of conditional if statements above. } fields/R/rat.diet.R0000644000175100001440000000423713114123117013574 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "rat.diet" <- structure(list(t = c(0, 1, 3, 7, 8, 10, 14, 15, 17, 21, 22, 24, 28, 29, 31, 35, 36, 38, 42, 43, 45, 49, 50, 52, 56, 57, 59, 63, 64, 70, 73, 77, 80, 84, 87, 91, 94, 98, 105), con = c(20.5, 19.399, 22.25, 17.949, 19.899, 21.449, 16.899, 21.5, 22.8, 24.699, 26.2, 28.5, 24.35, 24.399, 26.6, 26.2, 26.649, 29.25, 27.55, 29.6, 24.899, 27.6, 28.1, 27.85, 26.899, 27.8, 30.25, 27.6, 27.449, 27.199, 27.8, 28.199, 28, 27.3, 27.899, 28.699, 27.6, 28.6, 27.5), trt = c(21.3, 16.35, 19.25, 16.6, 14.75, 18.149, 14.649, 16.7, 15.05, 15.5, 13.949, 16.949, 15.6, 14.699, 14.15, 14.899, 12.449, 14.85, 16.75, 14.3, 16, 16.85, 15.65, 17.149, 18.05, 15.699, 18.25, 18.149, 16.149, 16.899, 18.95, 22, 23.6, 23.75, 27.149, 28.449, 25.85, 29.7, 29.449)), .Names = c("t", "con", "trt"), class = "data.frame", row.names = c("1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "30", "31", "32", "33", "34", "35", "36", "37", "38", "39")) fields/R/as.image.R0000644000175100001440000000673013114123116013545 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "as.image" <- function(Z, ind = NULL, grid = NULL, x = NULL, weights = rep(1, length(Z)), na.rm = FALSE, nx = 64, ny = 64, boundary.grid = FALSE, nrow = NULL, ncol = NULL, FUN=NULL) { # NOTE that throughout ind is a two column integer matrix of # discretized locations in the image matrix. # Thanks to J. Rougier for fixing bugs in this function. # # coerce Z to a vector Z <- c(Z) if( !is.null(ind)){ x<- ind } # set nx and ny if nrow ncol are passed if( !is.null(nrow)&!is.null(ncol)){ nx<- nrow ny<- ncol } # # check for x or weights having missing values # we do not like these ... if (any(is.na(weights)) | any(is.na(c(x)))) { stop("missing values in weights or x") } # discretize locations to grid boxes # this function will also create a default grid based on range of # locations if grid is NULL # temp <- discretize.image(x, m = nx, n = ny, grid = grid, boundary.grid = boundary.grid) grid <- temp$grid # index is a two component list that indexes the x and y grid points. # points outside of grid are assigned as NA # # empty image matrices to hold weights and weighted means w<- z <- matrix( NA, nrow=temp$m, ncol=temp$n) # find stats tempw<- tapply( weights, temp$index, sum, na.rm=na.rm) if( is.null(FUN)){ # usual weighted means case: tempz<- tapply( Z*weights, temp$index,sum, na.rm=na.rm ) tempz<- tempz/ tempw } else{ # just apply FUN to values in the grid box -- no weighting! tempz<- tapply( Z, temp$index, FUN ) } # these are the indices that are represented by the locations # they may not include the entire set ( 1:nx and 1:ny) # so define what they do have. # insert the tabled values into the right rows and columns. # ix and iy are just the range of indexes for the grid, e.g. ix= 1:20 and iy= 1:30 for a # 20X30 grid. z[ temp$ix, temp$iy] <- tempz w[ temp$ix, temp$iy] <- tempw # save call # xd created because it is a pain to do otherwise and handy to have # these are the discretize locations with actual values call <- match.call() list(x = grid$x, y = grid$y, z = z, call = call, ind = cbind(temp$index[[1]], temp$index[[2]]) , weights = w, xd = cbind(grid$x[temp$index[[1]]], grid$y[temp$index[[2]]] ), call = match.call(), FUN = FUN ) } fields/R/print.summary.sreg.R0000644000175100001440000000523113114123117015644 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "print.summary.sreg" <- function(x, ...) { digits <- x$digits c1 <- "Number of Observations:" c2 <- x$num.observation c1 <- c(c1, "Number of unique points:") c2 <- c(c2, x$num.uniq) c1 <- c(c1, "Eff. degrees of freedom for spline:") c2 <- c(c2, format(round(x$enp, 1))) c1 <- c(c1, "Residual degrees of freedom:") c2 <- c(c2, format(round(x$num.observation - x$enp, 1))) c1 <- c(c1, "GCV est. sigma ") c2 <- c(c2, format(signif(x$shat.GCV, digits))) if (!is.na(x$shat.pure.error)) { c1 <- c(c1, "Pure error sigma") c2 <- c(c2, format(signif(x$shat.pure.error, digits))) } c1 <- c(c1, "lambda ") c2 <- c(c2, signif(x$lambda, digits)) #\tc1 <- c(c1, 'Cost in GCV') #\tc2 <- c(c2, format(round(x$cost, 2))) #\tc1 <- c(c1, 'GCV Minimum') #\tc2 <- c(c2, format(signif(x$gcvmin, digits))) sum <- cbind(c1, c2) dimnames(sum) <- list(rep("", dim(sum)[1]), rep("", dim(sum)[2])) res.quantile <- x$res.quantile names(res.quantile) <- c("min", "1st Q", "median", "3rd Q", "max") ### ### ### cat("CALL:\n") dput(x$call) print(sum, quote = FALSE) cat("\n") cat("RESIDUAL SUMMARY:", fill = TRUE) print(signif(res.quantile, digits)) cat("\n") cat("DETAILS ON SMOOTHING PARAMETER:", fill = TRUE) cat(" Method used: ", x$method, " Cost: ", x$cost, fill = TRUE) #\tcat(' Stats on this choice of lambda', fill = TRUE) print(x$sum.gcv.lambda, digits = digits) cat("\n") cat(" Summary of estimates for lambda", fill = TRUE) print(x$lambda.est, digits = x$digits) invisible(x) } fields/R/Matern.parameters.R0000644000175100001440000000346313114123116015451 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 Matern.cor.to.range <- function(d, nu, cor.target = 0.5, guess = NULL, ...) { # define local function for root finding # ftemp <- function(theta, f.extra) { Matern(f.extra$d/theta, nu = f.extra$nu) - f.extra$cor.target } # inital guess is exponential if (is.null(guess)) { guess[1] <- guess[2] <- -d/log(cor.target) } # extra info for function f.extra = list(d = d, nu = nu, cor.target = cor.target) # find guesses that are above and below while (ftemp(guess[2], f.extra) < 0) { guess[2] <- guess[2] * 2 } while (ftemp(guess[1], f.extra) > 0) { guess[1] <- guess[1]/2 } temp <- bisection.search(guess[1], guess[2], f = ftemp, f.extra = f.extra, ...) return(temp$x) } fields/R/sim.Krig.approx.R0000644000175100001440000001144513114123117015054 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "sim.Krig.approx" <- function(object, grid.list = NULL, M = 1, nx = 40, ny = 40, verbose = FALSE, extrap = FALSE,...) { # check that this is a stationary covariance if (object$cov.function.name != "stationary.cov") { stop("covariance function is not stationary.cov") } # create grid if not passed if ( is.null(grid.list) ) { grid.list <- fields.x.to.grid(object$x, nx = nx, ny = ny) } # # extract what are the x and y and their lengths # temp <- parse.grid.list(grid.list) nx <- temp$nx ny <- temp$ny # # coerce grid list to have x and y components # glist <- list(x = temp$x, y = temp$y) # figure out what sigma and rho should be sigma2 <- object$best.model[2] rho <- object$best.model[3] # # set up various sizes of arrays m <- nx * ny n <- nrow(object$xM) N <- n if (verbose) { cat(" m,n,N ", m, n, N, fill = TRUE) } #transform the new points xc <- object$transform$x.center xs <- object$transform$x.scale # xpM <- scale(xp, xc, xs) if (verbose) { cat("center and scale", fill = TRUE) print(xc) print(xs) } # # set up for simulating on a grid # cov.obj <- do.call("stationary.image.cov", c(object$args, list(setup = TRUE, grid = glist))) out <- array(NA, c(nx, ny, M)) # # find conditional mean field from initial fit # don't multiply by sd or add mean if this is # a correlation model fit. # (these are added at the predict step). # from now on all predicted values are on the grid # represented by a matrix h.hat <- predictSurface(object, grid.list = grid.list, extrap = extrap,...)$z if (verbose) { cat("mean predicted field", fill = TRUE) image.plot(h.hat) } # empty surface object to hold ('truth') simulated fields h.true <- list(x = glist$x, y = glist$y, z = matrix(NA, nx, ny)) # covariance matrix for observations W2i <- Krig.make.Wi(object, verbose = verbose)$W2i if (verbose) { cat("dim of W2i", dim(W2i), fill = TRUE) } #### ### begin the big loop ### for (k in 1:M) { # simulate full field h.true$z <- sqrt(object$rhohat) * sim.rf(cov.obj) if (verbose) { cat("mean predicted field", fill = TRUE) image.plot(h.true) } # value of simulated field at observations # # NOTE: fixed part of model (null space) need not be simulated # because the estimator is unbiased for this part. # the variability is still captured because the fixed part # is still estimated as part of the predict step below # # bilinear interpolation to approximate values at data locations # h.data <- interp.surface(h.true, object$xM) if (verbose) { cat("synthetic true values", h.data, fill = TRUE) } # create synthetic data # NOTE:these are actually the 'yM's the y's # having been collapsed to replicate means. y.synthetic <- h.data + sqrt(sigma2) * W2i %d*% rnorm(N) if (verbose) { cat("synthetic data", y.synthetic, fill = TRUE) } # predict at grid using these data # and subtract from 'true' value temp.error <- predictSurface(object, grid.list = grid.list, yM = y.synthetic, eval.correlation.model = FALSE, extrap = TRUE,...)$z - h.true$z if (verbose) { cat("mean predicted field", fill = TRUE) image.plot(temp.error) } # add the error to the actual estimate (conditional mean) out[, , k] <- h.hat + temp.error } return(list(x = glist$x, y = glist$y, z = out)) } fields/R/cat.matrix.R0000644000175100001440000000260313114123116014126 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "cat.matrix" <- function(mat, digits = 8) { nc <- ncol(mat) temp <- matrix(match(c(signif(mat, digits)), unique(c(signif(mat, digits)))), ncol = nc) temp2 <- format(temp[, 1]) if (nc > 1) { for (k in 2:nc) { temp2 <- paste(temp2, temp[, k], sep = "X") } } match(temp2, unique(temp2)) } fields/R/predict.Krig.R0000644000175100001440000001175113114123117014406 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 # wrapper for Tps object "predict.Tps"<- function(object, ...){ UseMethod("Krig") } "predict.Krig" <- function(object, x = NULL, Z = NULL, drop.Z = FALSE, just.fixed = FALSE, lambda = NA, df = NA, model = NA, eval.correlation.model = TRUE, y = NULL, yM = NULL, verbose = FALSE, ...) { #NOTE: most of this function is figuring out what to do! # # check that derivative is not called if (!is.null(list(...)$derivative)) { stop("For derivatives use predictDerivative") } # y is full data yM are the data collapsed to replicate means # if new data is not passed then copy from the object if (is.null(y) & is.null(yM)) { temp.c <- object$c temp.d <- object$d } # check for passed x but no Z -- this is an error # if there are Z covariates in the model and drop.Z is FALSE ZinModel<- !is.null(object$Z) newX<- !is.null(x) missingZ<- is.null(Z) if( ZinModel&newX){ if( missingZ & !drop.Z) { stop("Need to specify drop.Z as TRUE or pass Z values") } } # default is to predict at data x's if (is.null(x)) { x <- object$x } else { x <- as.matrix(x) } # default is to predict at data Z's if (is.null(Z)) { Z <- object$Z } else { Z <- as.matrix(Z) } if (verbose) { print(x) print(Z) } # transformations of x values used in Krig xc <- object$transform$x.center xs <- object$transform$x.scale x <- scale(x, xc, xs) # NOTE knots are already scaled in Krig object and are used # in transformed scale. # i.e. knots <- scale( object$knots, xc, xs) # # figure out if the coefficients for the surface needto be recomputed. find.coef <- (!is.null(y) | !is.null(yM) | !is.na(lambda) | !is.na(df) | !is.na(model[1])) if (verbose) { cat("find.coef", find.coef, fill = TRUE) } # convert effective degrees of freedom to equivalent lambda if (!is.na(df)) { lambda <- Krig.df.to.lambda(df, object$matrices$D) } if (!is.na(model)) { lambda <- model[1] } if (is.na(lambda)) lambda <- object$lambda # # if the coefficients need to be recomputed do it. if (find.coef) { if (verbose) { cat("new coefs found", fill = TRUE) } object3 <- Krig.coef(object, lambda = lambda, y = y, yM = yM) temp.d <- object3$d temp.c <- object3$c } if (verbose) { cat(" d coefs", fill = TRUE) print(temp.d) cat("c coefs", fill = TRUE) print(temp.c) } # this is the fixed part of predictor # Tmatrix <- do.call(object$null.function.name, c(object$null.args, list(x = x, Z = Z, drop.Z = drop.Z))) if (drop.Z) { temp <- Tmatrix %*% temp.d[object$ind.drift] } else { temp <- Tmatrix %*% temp.d } # add in spatial piece if (!just.fixed) { # # Now find sum of covariance functions times coefficients # Note that the multiplication of the cross covariance matrix # by the coefficients is done implicitly in the covariance function # # The covariance function is # evaluated by using its name, the do.call function, and any # additional arguments. # temp <- temp + do.call(object$cov.function.name, c(object$args, list(x1 = x, x2 = object$knots, C = temp.c))) } # # transform back into raw scale if this is a correlation model. # if y's are in the scale of correlations # if so scale by sd and add back in mean correlation.model <- (object$correlation.model & eval.correlation.model) if (correlation.model) { if (!is.na(object$sd.obj[1])) { temp <- temp * predict(object$sd.obj, x) } if (!is.na(object$mean.obj[1])) { temp <- temp + predict(object$mean.obj, x) } } return(temp) } fields/R/evlpoly2.R0000644000175100001440000000332613114123116013633 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 fields.evlpoly2 <- function(x, coef, ptab) { # evaluates polynomial at x values with coefficients coef[i] and powers i-1 # n <- nrow(x) nd <- ncol(x) J <- nrow(ptab) if (length(coef) != J) { stop("coefficients not same length as ptab rows") } results <- rep(0, n) temp <- .Fortran("evlpoly2",PACKAGE="fields", x = as.double(x), n = as.integer(n), nd = as.integer(nd), ptab = as.integer(ptab), j = as.integer(J), coef = as.double(coef), results = as.double(results))$results return(temp) } fields/R/supportsArg.R0000644000175100001440000000243313114123117014407 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 supportsArg = function(fun=stationary.cov, arg) { if(is.null(fun)) { #set fun to the default covariance function if not specified fun = stationary.cov } argNames = names(as.list(args(fun))) return(any(argNames == arg)) } fields/R/rdist.R0000644000175100001440000000273513114123117013210 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "rdist" <- function(x1, x2 = NULL, compact = FALSE) { if (!is.matrix(x1)) { x1 <- as.matrix(x1) } if (is.null(x2)) { storage.mode(x1) <- "double" if (compact) return(dist(x1)) else return(.Call("RdistC", x1, x1, PACKAGE = "fields")) } else { if (!is.matrix(x2)) { x2 <- as.matrix(x2) } storage.mode(x1) <- "double" storage.mode(x2) <- "double" return(.Call("RdistC", x1, x2, PACKAGE = "fields")) } } fields/R/minitri.R0000644000175100001440000001063113114123117013530 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "minitri" <- structure(list(swim = c(13.77, 14.25, 12.4, 13.6, 11.23, 14.6, 15.63, 13.62, 17.03, 13.1, 16.5, 15.57, 14.28, 16.13, 14.98, 15.65, 14.55, 13.73, 14.67, 14.63, 12.53, 16.52, 14.45, 17.23, 15.77, 13.53, 17.38, 16.58, 16.97, 12.9, 15.48, 15.6, 16.43, 17.37, 15.65, 20.17, 16.57, 15.75, 18.32, 16.15, 18.77, 19.55, 17.05, 15.75, 17.47, 22.18, 12.78, 19.05, 17, 18.65, 18.38, 18.03, 18.08, 18.22, 21.3, 17.82, 16, 15.3, 19.8, 16.33, 14.9, 18.08, 17, 24.77, 17.03, 21.72, 14.77, 17.28, 19.88, 19.75, 18.17, 20.67, 17.6, 18.07, 20.53, 16.78, 18.42, 21.43, 25.35, 16.37, 18.88, 20.3, 21.93, 20, 19.42, 16.97, 15.25, 22.52, 16.8, 17.58, 20.45, 21.78, 17.92, 24.83, 20.38, 20.37, 28.35, 23.95, 25.15, 18.57, 19.95, 26.22, 22.08, 25.77, 23.7, 26.15, 18.05, 30.7, 29.88, 30.77), bike = c(39.72, 39, 42.2, 39.95, 41.72, 42.25, 43.77, 42.17, 40.63, 44.68, 43.63, 42.78, 41.7, 45.57, 42.83, 44.52, 43.9, 45.73, 43.05, 44.9, 48.07, 44.93, 47.87, 45.55, 46.1, 44.6, 45.72, 44.73, 46.85, 49.4, 47.43, 44.52, 43.67, 47.7, 48.57, 45.78, 47.35, 45.63, 46.47, 47.12, 49.62, 48.5, 54.4, 49.4, 48.77, 46.97, 49.92, 48.98, 50.57, 49.52, 52.58, 47.62, 50.05, 51.75, 50.68, 52.28, 48.57, 50.38, 46.2, 49.93, 47.7, 52.68, 50.28, 46.12, 53.17, 51.63, 58.42, 55.3, 50.68, 51.82, 51.93, 48.82, 51.87, 55.4, 55.17, 53.82, 50.23, 47.92, 50.98, 51.95, 53.47, 52.5, 53.98, 47.05, 58.92, 52.67, 52.1, 49.72, 61.33, 58.73, 58, 56.23, 58.95, 55.48, 61.03, 57.37, 54.68, 57.62, 58.52, 56.7, 63.82, 59.07, 66.03, 60.83, 62.37, 66.87, 75, 65.38, 68.25, 67.35), run = c(25.02, 25.68, 24.95, 27.65, 29.25, 26.83, 24.8, 28.73, 29, 28.1, 25.85, 29.4, 31.33, 26.2, 30.45, 29.32, 31.13, 30.48, 32.32, 30.62, 29.92, 30.12, 29.7, 29.25, 30.28, 34.07, 31.55, 33.5, 31.03, 32.72, 32.28, 35.1, 35.13, 30.48, 31.5, 30.37, 32.82, 35.8, 32.82, 34.67, 30.33, 30.95, 27.57, 34.08, 33.13, 30.57, 37.43, 32.12, 32.93, 32.4, 29.63, 35.08, 32.65, 30.98, 30.22, 32.12, 38.08, 37.23, 36.95, 36.72, 40.7, 32.87, 36.53, 33.72, 34.45, 31.47, 31.7, 33.03, 35.68, 34.88, 36.57, 37.27, 37.87, 34.32, 32.1, 37.33, 39.73, 39.07, 32.12, 40.52, 36.77, 36.57, 33.55, 42.55, 31.48, 40.8, 43.45, 39.03, 34.12, 37.12, 35.03, 36.45, 38.48, 36.25, 36.57, 40.9, 37.98, 37.98, 37.45, 45.9, 44.18, 45.02, 42.37, 45.38, 51.8, 45.88, 48.18, 51.8, 57.23, 57.35)), .Names = c("swim", "bike", "run"), row.names = c(" 1", " 2", " 3", " 4", " 5", " 6", " 7", " 8", " 9", " 10", " 11", " 12", " 13", " 14", " 15", " 16", " 17", " 18", " 19", " 20", " 21", " 22", " 23", " 24", " 25", " 26", " 27", " 28", " 29", " 30", " 31", " 32", " 33", " 34", " 35", " 36", " 37", " 38", " 39", " 40", " 41", " 42", " 43", " 44", " 45", " 46", " 47", " 48", " 49", " 50", " 51", " 52", " 53", " 54", " 55", " 56", " 59", " 60", " 61", " 62", " 64", " 65", " 66", " 68", " 69", " 70", " 71", " 72", " 73", " 74", " 75", " 76", " 77", " 78", " 79", " 80", " 81", " 82", " 83", " 84", " 85", " 86", " 87", " 88", " 89", " 90", " 91", " 92", " 93", " 96", " 97", " 98", "100", "102", "103", "104", "105", "106", "107", "108", "109", "110", "111", "112", "113", "114", "116", "117", "118", "119"), class = "data.frame") fields/R/setup.image.smooth.R0000644000175100001440000000372613114123117015615 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "setup.image.smooth" <- function(nrow = 64, ncol = 64, dx = 1, dy = 1, kernel.function = double.exp, theta = 1, xwidth = nrow * dx, ywidth = ncol * dx, lambda = NULL, ...) { M2 <- round((nrow + xwidth/dx)/2) N2 <- round((ncol + ywidth/dy)/2) M <- 2 * M2 N <- 2 * N2 xi <- seq(-(M2 - 1), M2, 1) * dx xi <- xi/theta yi <- seq(-(N2 - 1), (N2), 1) * dy yi <- yi/theta dd <- sqrt((matrix(xi, M, N)^2 + matrix(yi, M, N, byrow = TRUE)^2)) out <- matrix(kernel.function(dd, ...), nrow = M, ncol = N) out2 <- matrix(0, M, N) out2[M2, N2] <- 1 W = fft(out)/fft(out2) if (!is.null(lambda)) { # want fft(out) / ( fft(out2)*lambda + fft(out)) W = W/(lambda/fft(out2) + W) } list(W = W/(M * N), dx = dx, dy = dy, xwidth = xwidth, ywidth = ywidth, M = M, N = N, m = nrow, n = ncol, lambda = lambda, grid = list(x = xi, y = yi)) } fields/R/mKrigCheckXY.R0000644000175100001440000000330513114123117014345 0ustar hornikusersmKrigCheckXY <- function(x, y, weights, Z, na.rm) { # # check for missing values in y or X. # # save logical indicating where there are NA's # and check for NA's # ind <- is.na(y) if (any(ind) & !na.rm) { stop("Need to remove missing values or use: na.rm=TRUE in the call") } # # coerce x to be a matrix x <- as.matrix(x) # # coerce y to be a vector # y <- as.matrix(y) # #default weights ( reciprocal variance of errors). # if (is.null(weights)) weights <- rep(1, nrow(y)) # # check that dimensions agree # if (nrow(y) != nrow(x)) { stop(" length of y and number of rows of x differ") } if (nrow(y) != length(weights)) { stop(" length of y and weights differ") } # if Z is not NULL coerce to be a matrix # and check # of rows if (!is.null(Z)) { if (!is.matrix(Z)) { Z <- as.matrix(Z) } if (length(y) != nrow(Z)) { stop(" length of y and number of rows of Z differ") } } # if NAs can be removed then remove them and warn the user if (na.rm) { ind <- is.na(y) if(all(ind)){ stop("Oops! All y values are missing!") } if (any(ind)) { y <- y[!ind] x <- as.matrix(x[!ind, ]) if (!is.null(Z)) { Z <- as.matrix(Z[!ind, ]) } weights <- weights[!ind] } } # # check for NA's in x matrix -- there should not be any ! if (any(c(is.na(x)))) { stop(" NA's in x matrix") } # # check for NA's in Z matrix if (!is.null(Z)) { if (any(c(is.na(Z)))) { stop(" NA's in Z matrix") } } # save x, weights and y w/o NAs N <- length(y) return(list(N = N, y = y, x = x, weights = weights, Z = Z, NA.ind = ind) ) } fields/R/image.family.R0000644000175100001440000003273613114123117014431 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "imagePlotInfo" <- function(..., breaks = NULL, nlevel) { #NOTE: # image.plot.info # has been renamed as imagePlotInfo to avoid confusion with # an S3 method temp <- list(...) # xlim <- NA ylim <- NA zlim <- NA poly.grid <- FALSE # # go through various cases of what these can be # ##### x,y,z list is first argument if (is.list(temp[[1]])) { xlim <- range(temp[[1]]$x, na.rm = TRUE) ylim <- range(temp[[1]]$y, na.rm = TRUE) zlim <- range(temp[[1]]$z, na.rm = TRUE) if (is.matrix(temp[[1]]$x) & is.matrix(temp[[1]]$y) & is.matrix(temp[[1]]$z)) { poly.grid <- TRUE } } ##### check for polygrid first three arguments should be matrices ##### if (length(temp) >= 3) { if (is.matrix(temp[[1]]) & is.matrix(temp[[2]]) & is.matrix(temp[[3]])) { poly.grid <- TRUE } } ##### z is passed without an x and y (and not a poly.grid!) ##### if (is.matrix(temp[[1]]) & !poly.grid) { xlim <- c(0, 1) ylim <- c(0, 1) zlim <- range(temp[[1]], na.rm = TRUE) } ##### if x,y,z have all been passed find their ranges. ##### holds if poly.grid or not ##### if (length(temp) >= 3) { if (is.matrix(temp[[3]])) { xlim <- range(temp[[1]], na.rm = TRUE) ylim <- range(temp[[2]], na.rm = TRUE) zlim <- range(temp[[3]], na.rm = TRUE) } } # if constant z values perturb the range (1e-8) by epsilon to # avoid other problems in drawing legend later on if( !is.na( zlim[1] ) ){ if( zlim[1] == zlim[2]){ if( zlim[1]==0){ zlim[1]<- -1e-8 zlim[2]<- 1e-8} else{ delta<- .01*abs(zlim[1]) zlim[1]<- zlim[1] - delta zlim[2]<- zlim[2] + delta } } } #### parse x,y,z if they are named arguments # determine if this is polygon grid (x and y are matrices) if (is.matrix(temp$x) & is.matrix(temp$y) & is.matrix(temp$z)) { poly.grid <- TRUE } # set limits from the usual $x $y $z format of image object xthere <- match("x", names(temp)) ythere <- match("y", names(temp)) zthere <- match("z", names(temp)) if (!is.na(zthere)) zlim <- range(temp$z, na.rm = TRUE) if (!is.na(xthere)) xlim <- range(temp$x, na.rm = TRUE) if (!is.na(ythere)) ylim <- range(temp$y, na.rm = TRUE) # overwrite limits with passed values if (!is.null(temp$zlim)) zlim <- temp$zlim if (!is.null(temp$xlim)) xlim <- temp$xlim if (!is.null(temp$ylim)) ylim <- temp$ylim # At this point xlim, ylim and zlim should be correct # using all the different possibilities and defaults for these values # # Now set up the breaks if( is.null(breaks)){ midpoints<- seq( zlim[1], zlim[2],,nlevel) delta<- (midpoints[2]- midpoints[1])/2 # nlevel +1 breaks with the min and max as midpoints # of the first and last bins. breaks <- c( midpoints[1]- delta, midpoints + delta) } list(xlim = xlim, ylim = ylim, zlim = zlim, poly.grid = poly.grid, breaks=breaks) } # fields, Tools for spatial data # Copyright 2015, Institute for Mathematics Applied Geosciences # University Corporation for Atmospheric Research # Licensed under the GPL -- www.gpl.org/licenses/gpl.html # NOTE: # image.plot.plt<- function(...){ # this function has been renamed as imageplot.setup to avoid confusion with # an S3 method # imageplot.setup(...)} "imageplot.setup" <- function(x, add = FALSE, legend.shrink = 0.9, legend.width = 1, horizontal = FALSE, legend.mar = NULL, bigplot = NULL, smallplot = NULL, ...) { old.par <- par(no.readonly = TRUE) if (is.null(smallplot)) stick <- TRUE else stick <- FALSE if (is.null(legend.mar)) { legend.mar <- ifelse(horizontal, 3.1, 5.1) } # compute how big a text character is char.size <- ifelse(horizontal, par()$cin[2]/par()$din[2], par()$cin[1]/par()$din[1]) # This is how much space to work with based on setting the margins in the # high level par command to leave between strip and big plot offset <- char.size * ifelse(horizontal, par()$mar[1], par()$mar[4]) # this is the width of the legned strip itself. legend.width <- char.size * legend.width # this is room for legend axis labels legend.mar <- legend.mar * char.size # smallplot is the plotting region for the legend. if (is.null(smallplot)) { smallplot <- old.par$plt if (horizontal) { smallplot[3] <- legend.mar smallplot[4] <- legend.width + smallplot[3] pr <- (smallplot[2] - smallplot[1]) * ((1 - legend.shrink)/2) smallplot[1] <- smallplot[1] + pr smallplot[2] <- smallplot[2] - pr } else { smallplot[2] <- 1 - legend.mar smallplot[1] <- smallplot[2] - legend.width pr <- (smallplot[4] - smallplot[3]) * ((1 - legend.shrink)/2) smallplot[4] <- smallplot[4] - pr smallplot[3] <- smallplot[3] + pr } } if (is.null(bigplot)) { bigplot <- old.par$plt if (!horizontal) { bigplot[2] <- min(bigplot[2], smallplot[1] - offset) } else { bottom.space <- old.par$mar[1] * char.size bigplot[3] <- smallplot[4] + offset } } if (stick & (!horizontal)) { dp <- smallplot[2] - smallplot[1] smallplot[1] <- min(bigplot[2] + offset, smallplot[1]) smallplot[2] <- smallplot[1] + dp } return(list(smallplot = smallplot, bigplot = bigplot)) } # fields, Tools for spatial data # Copyright 2015, Institute for Mathematics Applied Geosciences # University Corporation for Atmospheric Research # Licensed under the GPL -- www.gpl.org/licenses/gpl.html "crop.image" <- function(obj, loc = NULL, ...) { if (is.null(loc)) { image.plot(obj, ...) loc <- get.rectangle() } # coerce to midpoints m <- nrow(obj$z) n <- ncol(obj$z) nx <- length(obj$x) ny <- length(obj$y) if (nx != m) { obj$x <- (obj$x[1:m] + obj$x[2:(m + 1)])/2 } if (ny != n) { obj$y <- (obj$y[1:n] + obj$x[2:(n + 1)])/2 } # coerce loc to x,y list format if matrix or data frame if (is.matrix(loc) | is.data.frame(loc)) { if (ncol(loc) != 2) { stop("loc must have two columns\n(for x and y coordinates )") } loc <- list(x = loc[, 1], y = loc[, 2]) } x <- obj$x y <- obj$y N <- length(x) xr <- range(loc$x) xtest <- range(x) if (xr[1] < xtest[1] | xr[2] > xtest[2]) { stop("cropping outside ranges of x values") } x1 <- max((1:N)[xr[1] >= x]) x2 <- min((1:N)[xr[2] <= x]) N <- length(y) yr <- range(loc$y) ytest <- range(y) if (yr[1] < ytest[1] | yr[2] > ytest[2]) { stop("cropping outside ranges of y values") } y1 <- max((1:N)[yr[1] >= y]) y2 <- min((1:N)[yr[2] <= y]) list(x = obj$x[x1:x2], y = obj$y[y1:y2], z = obj$z[x1:x2, y1:y2]) } average.image <- function(obj, Q = 2) { # fast method to sum over a QXQ block in image. # Q is the number of elements to average over in each dimension # e.g. Q=5 -- blocks of 25 values are averaged to one grid cell. if (is.matrix(obj)) { obj <- list(x = 1:nrow(obj), y = 1:ncol(obj), z = obj) } M <- length(obj$x) N <- length(obj$y) Mi <- trunc(M/Q) Ni <- trunc(N/Q) # space to hold results z <- matrix(NA, nrow = Mi, ncol = N) x2 <- rep(NA, Mi) y2 <- rep(NA, Ni) indQ <- 1:Q # sum over block of rows and handle x grid values for (j in 1:Mi) { x2[j] <- mean(obj$x[indQ + (j - 1) * Q]) z[j, ] <- colMeans(obj$z[indQ + (j - 1) * Q, ], na.rm = TRUE) } # sum over blocks of columns and average y grid values for (k in 1:Ni) { y2[k] <- mean(obj$y[indQ + (k - 1) * Q]) z[, k] <- rowMeans(z[, indQ + (k - 1) * Q], na.rm = TRUE) } return(list(x = x2, y = y2, z = z[1:Mi, 1:Ni], Q = Q)) } "get.rectangle" <- function() { temp <- locator(2, type = "p", pch = "+") rect(temp$x[1], temp$y[1], temp$x[2], temp$y[2]) temp } "half.image" <- function(obj) { # coerce to list if a matrix if (is.matrix(obj)) { obj <- list(x = 1:nrow(obj), y = 1:ncol(obj), z = obj) } M <- length(obj$x) N <- length(obj$y) M2 <- trunc(M/2) N2 <- trunc(N/2) z <- matrix(NA, nrow = M2, ncol = N2) ix <- (1:M2) * 2 iy <- (1:N2) * 2 x2 <- (obj$x[ix - 1] + obj$x[ix])/2 y2 <- (obj$y[iy - 1] + obj$y[iy])/2 return(list(x = x2, y = y2, z = (obj$z[ix - 1, iy] + obj$z[ix - 1, iy - 1] + obj$z[ix, iy - 1] + obj$z[ix, iy])/4)) } pushpin <- function(x, y, z, p.out, height = 0.05, col = "black", text = NULL, adj = -0.1, cex = 1, ...) { # project your x,y,z on to the uv plane of the plot Sxy1 <- trans3d(x, y, z, p.out) Sxy2 <- Sxy1 hold <- par()$usr Sxy2$y <- (hold[4] - hold[3]) * height + Sxy2$y # draw the pin segments(Sxy1$x, Sxy1$y, Sxy2$x, Sxy2$y, col = "black") points(Sxy2, col = col, pch = 19, cex = cex) # add a label if (!is.null(text)) { text(Sxy2$x, Sxy2$y, label = text, adj = adj, cex = cex, ...) } } designer.colors <- function(n = 256, col = c("darkgreen", "white", "darkred"), x = seq(0, 1,, length(col) ), alpha = 1) { # generate colors at equal spacings but interpolate to colors at x xRange<- range(x) xg <- seq(xRange[1], xRange[2],, n) # convert colors from names e.g. "magenta" to rgb in [0.1] y.rgb <- t(col2rgb(col))/255 # matrix to hold RGB color values temp <- matrix(NA, ncol = 3, nrow = n) nColors<- length( col) if( nColors != length( x)){ stop("number of colors needs to be the same as length of x")} # linear or spline interpolation of RGB color values at x onto xg for (k in 1:3) { if( nColors > 2){ hold <- splint(x, y.rgb[, k], xg)} else{ a<-(xRange[2]-xg)/(xRange[2] - xRange[1]) hold<- a*y.rgb[1, k] + (1-a)*y.rgb[2, k] } # fix up to be in [0,1] hold[hold < 0] <- 0 hold[hold > 1] <- 1 temp[, k] <- hold } # convert back to hex if(alpha==1){ return( rgb(temp[, 1], temp[, 2], temp[, 3])) } else{ return( rgb(temp[, 1], temp[, 2], temp[, 3], alpha = alpha)) } } #boulder.colors<- c('darkred', 'darkorange', # 'white', 'darkgreen', 'darkblue') "two.colors" <- function(n = 256, start = "darkgreen", end = "red", middle = "white", alpha = 1) { designer.colors(n, c(start, middle, end), alpha = alpha) } fieldsPlotColors<- function( col, ...){ N<- length(col) image.plot( 1:N, 1, matrix(1:N,N,1), col=col,axes=FALSE, xlab='', ylab='',...)} imageplot.info<- function (...) { temp <- list(...) xlim <- NA ylim <- NA zlim <- NA poly.grid <- FALSE if (is.list(temp[[1]])) { xlim <- range(temp[[1]]$x, na.rm = TRUE) ylim <- range(temp[[1]]$y, na.rm = TRUE) zlim <- range(temp[[1]]$z, na.rm = TRUE) if (is.matrix(temp[[1]]$x) & is.matrix(temp[[1]]$y) & is.matrix(temp[[1]]$z)) { poly.grid <- TRUE } } if (length(temp) >= 3) { if (is.matrix(temp[[1]]) & is.matrix(temp[[2]]) & is.matrix(temp[[3]])) { poly.grid <- TRUE } } if (is.matrix(temp[[1]]) & !poly.grid) { xlim <- c(0, 1) ylim <- c(0, 1) zlim <- range(temp[[1]], na.rm = TRUE) } if (length(temp) >= 3) { if (is.matrix(temp[[3]])) { xlim <- range(temp[[1]], na.rm = TRUE) ylim <- range(temp[[2]], na.rm = TRUE) zlim <- range(temp[[3]], na.rm = TRUE) } } if (is.matrix(temp$x) & is.matrix(temp$y) & is.matrix(temp$z)) { poly.grid <- TRUE } xthere <- match("x", names(temp)) ythere <- match("y", names(temp)) zthere <- match("z", names(temp)) if (!is.na(zthere)) zlim <- range(temp$z, na.rm = TRUE) if (!is.na(xthere)) xlim <- range(temp$x, na.rm = TRUE) if (!is.na(ythere)) ylim <- range(temp$y, na.rm = TRUE) if (!is.null(temp$zlim)) zlim <- temp$zlim if (!is.null(temp$xlim)) xlim <- temp$xlim if (!is.null(temp$ylim)) ylim <- temp$ylim list(xlim = xlim, ylim = ylim, zlim = zlim, poly.grid = poly.grid) } fields/R/predictSEUsingKrigA.R0000644000175100001440000001043013114123117015660 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "predictSEUsingKrigA" <- function(object, x = NULL, cov = FALSE, verbose = FALSE, ...) { # # name of covariance function call.name <- object$cov.function.name # # default is to predict at data x's if (is.null(x)) { x <- object$x } x <- as.matrix(x) if (verbose) { print(x) } xraw <- x # transformations of x values used in Krig # NOTE knots are already scaled in Krig object xc <- object$transform$x.center xs <- object$transform$x.scale x <- scale(x, xc, xs) # # scaled unique observation locations. xM <- object$xM # find marginal variance before transforming x. if (!is.na(object$sd.obj[1])) { temp.sd <- c(predict(object$sd.obj, xraw)) } else { temp.sd <- 1 } # Default is to use parameters in best.model lambda <- object$best.model[1] rho <- object$best.model[3] sigma2 <- object$best.model[2] nx <- nrow(xM) wght.vec <- t(Krig.Amatrix(object, xraw, lambda, ...)) if (verbose) { cat("wght.vector", fill = TRUE) print(wght.vec) } #var( f0 - yhat)= var( f0) - cov( f0,yhat) - cov( yhat, f0) + cov( yhat) # = temp0 - temp1 - t( temp1) + temp2 # # if off diagonal weight matrix is passed then # find inverse covariance matrix # otherwise just create this quickly from diagonal weights # Wi <- Krig.make.Wi(object)$Wi # find covariance of data if (object$nondiag.W) { Cov.y <- rho * do.call(call.name, c(object$args, list(x1 = xM, x2 = xM))) + sigma2 * Wi } else { # this is one case where keeping diagonal # matrix as a vector will not work. Cov.y <- rho * do.call(call.name, c(object$args, list(x1 = xM, x2 = xM))) + sigma2 * diag(Wi) } if (!cov) { # find diagonal elements of covariance matrix # now find the three terms. # note the use of an element by element multiply to only get the # diagonal elements of the full # prediction covariance matrix. # temp1 <- rho * colSums(wght.vec * do.call(call.name, c(object$args, list(x1 = xM, x2 = x)))) temp2 <- colSums(wght.vec * (Cov.y %*% wght.vec)) # # find marginal variances -- trival in the stationary case! # Note that for the case of the general covariances # as radial basis functions (RBFs) temp0 should be zero. # Positivity results from the generalized divided difference # properties of RBFs. temp0 <- rho * do.call(call.name, c(object$args, list(x1 = x, marginal = TRUE))) # temp <- temp0 - 2 * temp1 + temp2 # return(sqrt(temp * temp.sd^2)) } else { # # find full covariance matrix # temp1 <- rho * t(wght.vec) %*% do.call(call.name, c(object$args, list(x1 = xM, x2 = x))) # temp2 <- t(wght.vec) %*% Cov.y %*% wght.vec # temp0 <- rho * do.call(call.name, c(object$args, list(x1 = x, x2 = x))) # temp <- temp0 - t(temp1) - temp1 + temp2 temp <- t(t(temp) * temp.sd) * temp.sd # return(temp) } } fields/R/world.R0000644000175100001440000000310013114123117013175 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "world" <- function(...) { map("world", ...) invisible() } world.color <- function(...) { cat("world.color has been depreciated. Please use fill options in\nthe world/map function.", fill = TRUE) } world.land <- function(...) { cat("world.land has been depreciated. Please use fill options in\nthe world/map function.", fill = TRUE) } in.land.grid <- function(...) { cat("world.land has been depreciated. Please refer to fields 6.7.1 or earlier to acces this function.", fill = TRUE) } fields/R/printGCVWarnings.R0000644000175100001440000000430313114123117015261 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 printGCVWarnings<- function( Table, method="all"){ ind<- Table$Warning if( method == "all"){ kIndex<- 1:6 } else{ kIndex<- match( method,c("GCV", "GCV.model", "GCV.one", "RMSE", "pure error", "REML") ) } methodList<- c( "(GCV) Generalized Cross-Validation ", "(GCV.model) Generalized Cross-Validation on replicate means ", "(GCV.one) Generalized Cross-Validation on individual observations ", "(RMSE) Matching estimate of sigma to supplied rmse ", "Matching estimate of sigma to that from replicated observations", "(REML) Restricted maximum likelihood " ) if( any( ind[kIndex])){ cat("Warning: ", fill=TRUE) cat("Grid searches over lambda (nugget and sill variances) with minima at the endpoints: ", fill=TRUE) } for( k in kIndex){ if( ind[k]){ whichEnd<- ifelse(Table[k,2],"left","right") cat( " ", methodList[k], fill =TRUE) cat( " minimum at ", whichEnd, "endpoint", " lambda = ", Table[k,6] , "(eff. df=", Table[k,7] , ")", fill = TRUE ) } } } fields/R/fastTps.family.R0000644000175100001440000002352213114123116014763 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "fastTps" <- function(x, Y, m = NULL, p = NULL, theta, lon.lat = FALSE, find.trA=TRUE,lambda=0, ...) { x <- as.matrix(x) d <- ncol(x) if (is.null(p)) { if (is.null(m)) { m <- max(c(2, ceiling(d/2 + 0.1))) } p <- (2 * m - d) if (p <= 0) { stop(" m is too small you must have 2*m -d >0") } } # special arguments to send to the wendland covariance/taper function. # see nearest.dist for some explanation of 'method' cov.args <- list(k = p, Dist.args = list(method = ifelse(!lon.lat, "euclidean", "greatcircle"))) if( lambda==0){ warning("fastTps will interpolate observations")} object<-mKrig(x, Y, cov.function = "wendland.cov", m = m, cov.args = cov.args, theta = theta, find.trA = find.trA,lambda=lambda, ...) object$call<- match.call() class(object) <- c( "fastTps", "mKrig") return( object) } predict.fastTps <- function(object, xnew = NULL, grid.list=NULL, ynew = NULL, derivative = 0, Z = NULL, drop.Z = FALSE, just.fixed = FALSE, xy=c(1,2), ...) { # the main reason to pass new args to the covariance is to increase # the temp space size for sparse multiplications # other optional arguments from mKrig are passed along in the # list object$args cov.args <- list(...) # predict using grid.list or as default observation locations if( !is.null(grid.list)){ xnew<- make.surface.grid( grid.list) } if( is.null(xnew) ) { xnew <- object$x } if (!is.null(ynew)) { coef.hold <- mKrig.coef(object, ynew) c.coef <- coef.hold$c d.coef <- coef.hold$d } else { c.coef <- object$c d.coef <- object$d } # fixed part of the model this a polynomial of degree m-1 # Tmatrix <- fields.mkpoly(xnew, m=object$m) # if (derivative == 0){ if (drop.Z | object$nZ == 0) { # just evaluate polynomial and not the Z covariate temp1 <- fields.mkpoly(xnew, m = object$m) %*% d.coef[object$ind.drift, ] } else{ if( is.null(Z)) { Z <- object$Tmatrix[, !object$ind.drift] } temp1 <- cbind(fields.mkpoly(xnew, m = object$m), Z) %*% d.coef } } else{ if (!drop.Z & object$nZ > 0) { stop("derivative not supported with Z covariate included") } temp1 <- fields.derivative.poly(xnew, m = object$m, d.coef[object$ind.drift, ]) } if (just.fixed) { return(temp1) } useFORTRAN<- (ncol(object$x)==2) & (object$args$k == 2) & (derivative==0) & (!is.null(grid.list)) # add nonparametric part. # call FORTRAN under a specific case if( useFORTRAN){ temp2<- multWendlandGrid(grid.list, object$knots, delta=object$args$theta, c.coef, xy=xy) } else{ temp2 <- do.call(object$cov.function.name, c(object$args, list(x1 = xnew, x2 = object$knots, C = c.coef, derivative = derivative), cov.args)) } # add two parts together return((temp1 + temp2)) } multWendlandGrid <- function( grid.list,center, delta, coef, xy= c(1,2) ){ xGrid<- grid.list[[xy[1]]] yGrid<- grid.list[[xy[2]]] mx<- length( xGrid) my<- length( yGrid) # transform centers to correspond to integer spacing of grid: # i.e. 1:nx and 1:ny dx<- (xGrid[mx] - xGrid[1]) / (mx-1) dy<- (yGrid[my] - yGrid[1]) / (my-1) centerScaled<- cbind( ((center[,1] - xGrid[1]) / dx) + 1, ((center[,2] - yGrid[1]) / dy) + 1 ) deltaX<- delta/dx deltaY<- delta/dy nc<- nrow( center) out<-.Fortran( "multWendlandG", PACKAGE="fields", mx=as.integer(mx), my=as.integer(my), deltaX= as.double( deltaX), deltaY= as.double( deltaY), nc= as.integer(nc), center=as.double(centerScaled), coef=as.double(coef), h= as.double(matrix(0,mx,my)), flag=as.integer(1) ) if( out$flag!= 0){ stop("error in multWendlandG FORTRAN")} return( out$h) } # #"sim.fastTps.approx"<- function(fastTpsObject,...){ # sim.mKrig.approx( fastTpsObject,...)} # "sim.fastTps.approx" <- function(fastTpsObject, predictionPointsList, simulationGridList=NULL, gridRefinement=5, gridExpansion=1 + 1e-07, M = 1, delta=NULL, verbose = FALSE, ... ) { # create grid if not passed if( ncol( fastTpsObject$x) != 2){ stop("Only implemented for 2 dimensions") } # coerce names of grid to be x and y names(predictionPointsList) <- c( "x", "y") nx<- length((predictionPointsList$x)) ny<- length((predictionPointsList$y)) simulationGridList<- makeSimulationGrid2( fastTpsObject, predictionPointsList , gridRefinement, gridExpansion) nxSimulation<- length(simulationGridList$x) nySimulation<- length(simulationGridList$y) sigma <- fastTpsObject$sigma.MLE rho <- fastTpsObject$rho.MLE # # set up various sizes of arrays nObs <- nrow(fastTpsObject$x) if (verbose) { cat("nObs, sigma, rho", nObs, sigma, rho, fill = TRUE) } # # set up object for simulating on a grid # # print( system.time( covarianceObject <- wendland.image.cov( setup = TRUE, grid =simulationGridList, cov.args=fastTpsObject$args ) # )) if (verbose) { cat( "dim of full circulant matrix ", dim(covarianceObject$wght), fill = TRUE) } # output array out <- matrix(NA, nx*ny, M ) # # find conditional mean field from initial fit # don't multiply by sd or add mean if this is # a correlation model fit. # (these are added at the predict step). # from now on all predicted values are on the grid # represented by a matrix hHat<- predict.fastTps(fastTpsObject, grid.list=predictionPointsList,...) # empty image object to hold simulated fields hTrue<- c( simulationGridList, list( z= matrix(NA, nxSimulation,nySimulation))) ########################################################################################## ### begin the big loop ########################################################################################## xData<- fastTpsObject$x weightsError<- fastTpsObject$weights for (k in 1:M) { # simulate full field if( verbose){ cat( k, " ")} hTrue$z <- sqrt(rho) * sim.rf(covarianceObject) # # NOTE: fixed part of model (null space) need not be simulated # because the estimator is unbiased for this part. # the variability is still captured because the fixed part # is still estimated as part of the predict step below # # bilinear interpolation to approximate values at data locations # hData <- interp.surface(hTrue,xData) hPredictionGrid<- c(interp.surface.grid(hTrue, predictionPointsList)$z) ySynthetic <- hData + sigma * 1/sqrt(weightsError)* rnorm(nObs) # predict at grid using these data # and subtract from synthetic 'true' value spatialError <- c( predictSurface.fastTps(fastTpsObject, grid.list = predictionPointsList, ynew = ySynthetic, ... )$z ) - hPredictionGrid # add the error to the actual estimate (conditional mean) out[ , k] <- hHat + spatialError } return( list( predictionPointsList=predictionPointsList, Ensemble=out, call=match.call()) ) } makeSimulationGrid2<-function( fastTpsObject, predictionPointsList, gridRefinement, gridExpansion){ nx<- length((predictionPointsList$x)) ny<- length((predictionPointsList$y)) nxSimulation<- nx*gridRefinement*gridExpansion nySimulation<- ny*gridRefinement*gridExpansion # range should include prediction grid and the data locations xRange<- range(c(fastTpsObject$x[,1], predictionPointsList$x) ) yRange<- range(c(fastTpsObject$x[,2], predictionPointsList$y) ) midpointX<- (xRange[2] + xRange[1])/2 midpointY<- (yRange[2] + yRange[1])/2 deltaX<- gridExpansion*(xRange[2] - xRange[1])/2 deltaY<- gridExpansion*(yRange[2] - yRange[1])/2 return( list( x= seq( midpointX - deltaX, midpointX + deltaX,, nxSimulation), y= seq( midpointY - deltaY, midpointY + deltaY,, nySimulation) ) ) } fields/R/drape.color.R0000644000175100001440000000555613114123116014276 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "drape.color" <- function(z, col = tim.colors(64), zlim = NULL, breaks, transparent.color = "white", midpoint = TRUE, eps = 1e-08) { # range if zlim not supplied if (is.null(zlim)) { zlim <- range(c(z), na.rm = TRUE) } # set any values outside of range to NA ( i.e. the transparent.color) z[(z < zlim[1]) | (z > zlim[2])] <- NA NC <- length(col) M <- nrow(z) N <- ncol(z) # if midpoint is TRUE find average z value for a facet and # overwrite z with matrix where row and column are one less # (reflecting that these are box centers not corners) if (midpoint) { z <- (z[1:(M - 1), 1:(N - 1)] + z[2:M, 1:(N - 1)] + z[1:(M - 1), 2:N] + z[2:M, 2:N])/4 M <- M - 1 N <- N - 1 } if (missing(breaks)) { breaks <- NA } if (is.na(breaks[1])) { # spacing for grid to assign colors # +-eps included so that if z== zlim[1 or 2] it gets a color # if statement is for when the limit is exactly zero # thanks to Rosa Trancoso for finding this bug zrange <- zlim[2] - zlim[1] lower <- ifelse(abs(zlim[1]) != 0, (zlim[1] - abs(zlim[1]) * eps), -eps * zrange) upper <- ifelse(abs(zlim[2]) != 0, (zlim[2] + abs(zlim[1]) * eps), eps * zrange) breaks <- seq(lower, upper, , NC + 1) } if (length(breaks) != NC + 1) { stop("must have one more break than colour") } # the magic of R ... icolor <- cut(c(z), breaks)@.Data # returned values is a vector of character hex strings encoding the colors. hold <- ifelse(is.na(icolor), transparent.color, col[icolor]) # points not assigned a bin from breaks get an NA # NA are converted to transparent color list(color.index = matrix(hold, nrow = M, ncol = N), breaks = breaks) } fields/R/exp.earth.cov.R0000644000175100001440000000217713114123116014546 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "Exp.earth.cov" <- function(x1, x2, theta = 1) { exp(-rdist.earth(x1, x2)/theta) } fields/R/make.surface.grid.R0000644000175100001440000000322413114123117015345 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "make.surface.grid" <- function(grid.list) { # # the old fields version of make.surface.grid was complicated # and we believe rarely used. # this current function # is essentially a single line replacement # # but adds an attribute for the grid matrix to carry # and carries along the names of the grid.list variables. # along the information as to how it was created. # see as.surface temp <- as.matrix(expand.grid(grid.list)) # wipe out row names dimnames(temp) <- list(NULL, names(grid.list)) # set attribute attr(temp, "grid.list") <- grid.list temp } fields/R/print.spatial.design.R0000644000175100001440000000215213114604154016121 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "print.spatialDesign" <- function(x, ...) { print(x$design) } fields/R/MLE.Matern.R0000644000175100001440000001062213114123116013716 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 MLE.Matern <- function(x, y, smoothness, theta.grid = NULL, ngrid = 20, verbose = FALSE, niter = 25, tol = 1e-05, Distance = "rdist", m = 2, Dmax = NULL, ...) { # remove missing values and print out a warning bad <- is.na(y) if (sum(bad) > 0) { cat("removed ", sum(bad), " NAs", fill = TRUE) x <- x[!bad, ] y <- y[!bad] } # local function to find distance between locations local.distance.function <- get(Distance) # objective.fn <- function(ltheta, info) { minus.lPLike <- Krig(info$x, info$y, Covariance = "Matern", smoothness = info$smoothness, theta = exp(ltheta), method = "REML", nstep.cv = 80, give.warnings = FALSE, Distance = Distance, m = m, ...)$lambda.est[6, 5] return(minus.lPLike) } # list to pass to the objective function info <- list(x = x, y = y, smoothness = smoothness) # # if grid for ranges is missing use some quantiles of pairwise distances among data. # this will only work if the likelihood at endpoints is smaller than middle. # (i.e. convex) if (is.null(theta.grid)) { theta.range <- quantile(local.distance.function(x, x), c(0.03, 0.97)) theta.grid <- seq(theta.range[1], theta.range[2], , ngrid) } if (length(theta.grid) == 2) { theta.grid <- seq(theta.grid[1], theta.grid[2], , ngrid) } ngrid <- length(theta.grid) sighat <- rhohat <- trA <- theta <- rep(NA, ngrid) minus.REML <- rep(NA, ngrid) # grid search for (j in 1:ngrid) { minus.REML[j] <- objective.fn(log(theta.grid[j]), info) } temp <- cbind(theta.grid, -minus.REML) dimnames(temp) <- list(NULL, c("theta", "logProfileLike")) # best point for theta from grid search IMIN <- (1:ngrid)[min(minus.REML) == minus.REML] if (IMIN == 1 | IMIN == ngrid) { cat("REML at end of search interval:", fill = TRUE) return(list(smoothness = smoothness, pars = rep(NA, 3), REML = NA, trA = NA, REML.grid = temp)) } # starting triple for golden section search lstart <- log(theta.grid)[IMIN + c(-1, 0, 1)] # golden section search -- this assumes convex minus log likelihood # note that search is in log scale. out <- golden.section.search(lstart[1], lstart[2], lstart[3], f = objective.fn, f.extra = info, niter = niter, tol = tol)$x theta.MLE <- exp(out) # one final call to Krig with the theta.MLE value to recover MLEs for rho and sigma hold <- Krig(x, y, Covariance = "Matern", smoothness = smoothness, theta = theta.MLE, method = "REML", m = m, Distance = Distance, ...) sigma.MLE <- hold$shat.MLE rho.MLE <- hold$rhohat trA <- hold$lambda.est[6, 2] REML <- hold$lambda.est[6, 5] out <- c(rho.MLE, theta.MLE, sigma.MLE) names(out) <- c("rho", "theta", "sigma") # evaluate variogram if (is.null(Dmax)) { Dmax <- (local.distance.function(cbind(range(x[, 1]), range(x[, 2]))))[2, 1] } vg <- list() vg$x <- seq(0, Dmax, , 200) vg$y <- sigma.MLE^2 + rho.MLE * (1 - Matern(vg$x/theta.MLE, smoothness = smoothness)) return(list(smoothness = smoothness, theta.MLE = out[2], rho.MLE = out[1], sigma.MLE = out[3], pars = out, REML = -REML, trA = trA, REML.grid = temp, vgram = vg)) } fields/R/exp.cov.R0000644000175100001440000000664413114123116013447 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "Exp.cov" <- function(x1, x2=NULL, theta = 1, p=1, distMat = NA, C = NA, marginal = FALSE, onlyUpper=FALSE) { if (!is.matrix(x1)) x1 <- as.matrix(x1) if (is.null(x2)) x2 <- x1 if (!is.matrix(x2)) x2 <- as.matrix(x2) if (length(theta) > 1) stop("Non-scalar theta as input to Exp.cov is depracated. Use the V argument in stationary.cov or scale the input locations beforehand.") d <- ncol(x1) n1 <- nrow(x1) n2 <- nrow(x2) # scale the coordinates by theta if distance matrix isn't precomputed # a more general scaling by a matrix is done in stationary.cov if(is.na(distMat[1]) || !is.na(C[1])) { x1 <- x1*(1/theta) x2 <- x2*(1/theta) } # # there are three main possible actions listed below: # # if no cross covariance matrix and marginal variance not desired if (is.na(C[1]) && !marginal) { #compute distance matrix if necessary if(is.na(distMat[1])) distMat = rdist(x1, x2, compact=TRUE) else distMat = distMat*(1/theta) #only exponentiate by p if p != 1 if(p != 1) distMat = distMat^p if(inherits(distMat, "dist")) { #distMat is in compact form, so evaluate over all distMat and convert to matrix form if(onlyUpper) return(compactToMat(exp(-distMat), diagVal=1)) else #if onlyUpper==FALSE, fill in lower triangle of covariance matrix as well return(compactToMat(exp(-distMat), diagVal=1, lower.tri=TRUE)) } else { #distMat is an actual matrix #only evaluate upper triangle of covariance matrix if possible if(onlyUpper && nrow(distMat) == ncol(distMat)) return(ExponentialUpper(distMat)) else return(exp(-distMat)) } } # # multiply cross covariance matrix by C # in this case implemented in C # else if (!is.na(C[1])) { return(.Call("multebC", nd = as.integer(d), x1 = as.double(x1), n1 = as.integer(n1), x2 = as.double(x2), n2 = as.integer(n2), par = as.double(p), c = as.double(C), work = as.double(rep(0, n2)) , PACKAGE="fields") ) } # # return marginal variance ( 1.0 in this case) else if (marginal) { return(rep(1, nrow(x1))) } #not possible to reach this point } fields/R/summary.sreg.R0000644000175100001440000000411213114123117014506 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "summary.sreg" <- function(object, digits = 4, ...) { x <- object if (length(x$lambda) > 1) { stop("Can't do a summary on an object with a grid of smoothing\nparameters") } summary <- list(call = x$call, num.observation = length(x$residuals), enp = x$trace, nt = x$nt, res.quantile = quantile(x$residuals, seq(0, 1, 0.25)), shat.GCV = x$shat.GCV, m = x$m, lambda = x$lambda, cost = x$cost, num.uniq = length(x$y), np = x$np, method = x$method, lambda.est = x$lambda.est[!is.na(x$lambda.est[, 1]), ], shat.pure.error = x$shat.pure.error) class(summary) <- "summary.sreg" summary$covariance <- cor(x$fitted.values * sqrt(x$weights), (x$y) * sqrt(x$weights))^2 hold <- (sum((x$y - mean(x$y))^2) - sum(x$residuals^2))/(sum((x$y - mean(x$y))^2)) summary$adjr2 <- 1 - ((length(x$residuals) - 1)/(length(x$residuals) - x$eff.df)) * (1 - hold) summary$digits <- digits summary$sum.gcv.lambda <- summaryGCV.sreg(x, x$lambda) summary } fields/R/coef.Krig.R0000644000175100001440000000215413114123116013664 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 coef.Krig <- function(object, ...) { Krig.coef(object, ...)$d } fields/R/fields.rdist.near.R0000644000175100001440000000403513114123117015374 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 fields.rdist.near <- function(x1, x2, delta, max.points = NULL, mean.neighbor = 50) { if (!is.matrix(x1)) x1 <- as.matrix(x1) if (missing(x2)) x2 <- x1 if (!is.matrix(x2)) x2 <- as.matrix(x2) d <- ncol(x1) n1 <- nrow(x1) n2 <- nrow(x2) if (is.null(max.points)) { Nmax <- n1 * mean.neighbor } else { Nmax <- max.points } out <- .Fortran("ddfind",PACKAGE="fields", nd = as.integer(d), x1 = as.double(x1), n1 = as.integer(n1), x2 = as.double(x2), n2 = as.integer(n2), D0 = as.double(delta), ind = as.integer(rep(0, Nmax * 2)), rd = as.double(rep(-1, Nmax)), Nmax = as.integer(Nmax), iflag = as.integer(1)) N <- out$Nmax if (out$iflag == -1) { cat("temp space set at", Nmax, fill = TRUE) stop("Ran out of space, increase max.points") } return(list(ind = matrix(out$ind, Nmax, 2)[1:N, ], ra = out$rd[1:N], da = c(n1, n2))) } fields/R/ExponentialUpper.R0000644000175100001440000000305613114123116015361 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 ExponentialUpper = function(distMat, range = 1, alpha = 1/range) { # Evaluates the exponential covariance function over the upper triangle of the distance matrix if(nrow(distMat) != ncol(distMat)) stop('distance matrix is non-symmetric. Should not be calling ExponentialUpper.') return(.Call("ExponentialUpperC", as.double(distMat), as.integer(nrow(distMat)), as.double(alpha), PACKAGE = "fields")) #convert ans to standard matrix #ans = ans[[1]] #dim(ans) = dim(distMat) #return(ans) } fields/R/stats.R0000644000175100001440000000345313114123117013217 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "stats" <- function(x, by) { if (!missing(by)) { x <- cat.to.list(c(x), by) } if (!is.list(x) & !is.matrix(x)) x <- matrix(x, ncol = 1) if (is.list(x)) { ncol <- length(x) out <- matrix(NA, ncol = ncol, nrow = length(describe())) dimnames(out) <- list(describe(), names(x)) for (j in (1:ncol)) { if (is.numeric(x[[j]])) { out[, j] <- describe(x[[j]]) } } return(out) } if (is.matrix(x)) { nc <- ncol(x) out <- matrix(NA, ncol = nc, nrow = length(describe())) dimnames(out) <- list(describe(), dimnames(x)[[2]]) for (j in (1:nc)) { out[, j] <- describe(x[, j]) } return(out) } } fields/R/print.spatialProcess.R0000644000175100001440000000457013114123117016211 0ustar hornikusersprint.spatialProcess <- function(x, digits = 4, ...) { if (is.matrix(x$residuals)) { n <- nrow(x$residuals) NData <- ncol(x$residuals) } else { n <- length(x$residuals) NData <- 1 } c1 <- "Number of Observations:" c2 <- n if (NData > 1) { c1 <- c(c1, "Number of data sets fit:") c2 <- c(c2, NData) } c1 <- c(c1, "Degree of polynomial null space ( base model):") if(x$m !=0 ){ c2 <- c(c2, x$m - 1) } else{ c2 <- c(c2, NA) } c1 <- c(c1, "Total number of parameters in base model") c2 <- c(c2, x$nt) if (x$nZ > 0) { c1 <- c(c1, "Number of additional covariates (Z)") c2 <- c(c2, x$nZ) } if (!is.na(x$eff.df)) { c1 <- c(c1, " Eff. degrees of freedom") c2 <- c(c2, signif(x$eff.df, digits)) if (length(x$trA.info) < x$np) { c1 <- c(c1, " Standard Error of estimate: ") c2 <- c(c2, signif(sd(x$trA.info)/sqrt(length(x$trA.info)), digits)) } } c1 <- c(c1, "Smoothing parameter") c2 <- c(c2, signif(x$lambda.fixed, digits)) c1 <- c(c1, "MLE sigma") c2 <- c(c2, signif(x$sigma.MLE.FULL, digits)) c1 <- c(c1, "MLE rho") c2 <- c(c2, signif(x$rho.MLE.FULL, digits)) c1 <- c(c1, "MLE lambda = MLE sigma^2 / MLE rho") c2 <- c(c2, signif(x$lambda.MLE, digits)) c1 <- c(c1, "MLE theta") c2 <- c(c2, signif(x$theta.MLE, digits)) c1 <- c(c1, "Nonzero entries in covariance") c2 <- c(c2, x$nonzero.entries) sum <- cbind(c1, c2) dimnames(sum) <- list(rep("", dim(sum)[1]), rep("", dim(sum)[2])) cat("Call:\n") dput(x$call) print(sum, quote = FALSE) cat(" ", fill = TRUE) cat(" Covariance Model:", x$cov.function, fill = TRUE) if (x$cov.function == "stationary.cov") { cat(" Covariance function: ", ifelse(is.null(x$args$Covariance), "Exponential", x$args$Covariance), fill = TRUE) } if (!is.null(x$args)) { cat(" Non-default covariance arguments and their values ", fill = TRUE) nlist <- as.character(names(x$args)) NL <- length(nlist) for (k in 1:NL) { cat(" Argument:", nlist[k], " ") if (object.size(x$args[[k]]) <= 1024) { cat("has the value(s): ", fill = TRUE) print(x$args[[k]]) } else { cat("too large to print value, size > 1K ...", fill = TRUE) } } } invisible(x) } fields/R/spatialProcess.R0000644000175100001440000001076613114123117015062 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 spatialProcess <- function(x, y, weights = rep(1, nrow(x)), Z = NULL, mKrig.args = list( m=2), cov.function = "stationary.cov", cov.args = list(Covariance = "Matern", smoothness = 1), theta = NULL, theta.start = NULL, lambda.start = .5, theta.range = NULL, abstol = 1e-4, na.rm = TRUE, verbose = FALSE, REML = FALSE, ...) { # NOTE all ... information is assumed to be for the cov.args list # overwrite the default choices (some R arcania!) ind<- match( names( cov.args), names(list(...) ) ) cov.args <- c(cov.args[is.na(ind)], list(...)) if( verbose){ cat("extra arguments from ... " , names( list(...)) , fill=TRUE) cat(" full list from cov.args: ", names(cov.args) ) } # NOTE: switch to find theta MLE is.null( theta) if( !is.null(theta)){ par.grid<- list( theta = theta) MLEInfo <-mKrigMLEGrid(x, y, weights = weights, Z= Z, mKrig.args = mKrig.args, cov.fun = cov.function, cov.args = cov.args, par.grid = par.grid, lambda = lambda.start, lambda.profile = TRUE, na.rm = na.rm, verbose = FALSE, REML = REML) lambda.MLE <- MLEInfo$lambda.MLE theta.MLE <- NA thetaModel <- theta if( verbose){ print( MLEInfo$summary) } } else{ # # NOTE MLEspatialProcess omits NAs MLEInfo <- MLESpatialProcess(x, y, weights = weights, Z=Z, mKrig.args = mKrig.args, cov.function = cov.function, cov.args = cov.args, theta.start = theta.start, theta.range = theta.range, gridN = 20, lambda.start = lambda.start, abstol = abstol, verbose = FALSE, REML = REML ) lambda.MLE <- MLEInfo$MLEJoint$pars.MLE[1] theta.MLE<- MLEInfo$MLEJoint$pars.MLE[2] thetaModel<- theta.MLE } # if( verbose){ cat("Summary from joint optimization", fill=TRUE) print( MLEInfo$MLEJoint$summary ) print( MLEInfo$MLEJoint$pars.MLE) } # now fit spatial model with MLE for theta (range parameter) # or the value supplied in the call # reestimate the other parameters for simplicity to get the complete mKrig object obj <- do.call( "mKrig", c( list(x=x, y=y, weights=weights, Z=Z), mKrig.args, list( na.rm=na.rm), list( cov.function = cov.function, cov.args = cov.args, lambda = lambda.MLE, theta = thetaModel ) ) ) obj <- c(obj, list( MLEInfo = MLEInfo, thetaModel= thetaModel, theta.MLE = theta.MLE, lambda.MLE = lambda.MLE, summary=MLEInfo$summary) ) # replace call to mKrig with this top level one obj$call<- match.call() class(obj) <- c( "spatialProcess","mKrig") return(obj) } fields/R/residuals.Krig.R0000644000175100001440000000214513114123117014744 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 resid.Krig <- function(object, ...) { object$residuals } fields/R/exp.image.cov.R0000644000175100001440000000442613114123116014524 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "Exp.image.cov" <- function(ind1, ind2, Y, cov.obj = NULL, setup = FALSE, grid, ...) { if (is.null(cov.obj)) { dx <- grid$x[2] - grid$x[1] dy <- grid$y[2] - grid$y[1] m <- length(grid$x) n <- length(grid$y) M <- ceiling2(2 * m) N <- ceiling2(2 * n) xg <- make.surface.grid(list((1:M) * dx, (1:N) * dy)) center <- matrix(c((dx * M)/2, (dy * N)/2), nrow = 1, ncol = 2) out <- Exp.cov(xg, center, ...) out <- as.surface(xg, c(out))$z temp <- matrix(0, nrow = M, ncol = N) temp[M/2, N/2] <- 1 wght <- fft(out)/(fft(temp) * M * N) cov.obj <- list(m = m, n = n, grid = grid, N = N, M = M, wght = wght, call = match.call()) if (setup) { return(cov.obj) } } temp <- matrix(0, nrow = cov.obj$M, ncol = cov.obj$N) if (missing(ind1)) { temp[1:cov.obj$m, 1:cov.obj$n] <- Y Re(fft(fft(temp) * cov.obj$wght, inverse = TRUE)[1:cov.obj$m, 1:cov.obj$n]) } else { if (missing(ind2)) { temp[ind1] <- Y } else { temp[ind2] <- Y } Re(fft(fft(temp) * cov.obj$wght, inverse = TRUE)[ind1]) } } fields/R/qsreg.family.R0000644000175100001440000003035613114123117014464 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "qsreg" <- function(x, y, lam = NA, maxit = 50, maxit.cv = 10, tol = 1e-07, offset = 0, sc = sqrt(var(y)) * 1e-05, alpha = 0.5, wt = rep(1, length(x)), cost = 1, nstep.cv = 80, hmin = NA, hmax = NA, trmin = 2 * 1.05, trmax = 0.95 * length(unique(x))) { # see the function QTps for a different computational implementation # and a code that works for more than 1-d. out <- list() class(out) <- c("qsreg") N <- length(y) out$N <- N xgrid <- sort(unique(x)) if (length(x) != length(y)) stop(" X and Y do not match") if (!is.na(lam[1])) hgrid <- log(lam) else { # find lambda grid if (is.na(hmin)) { hmin <- 0 for (k in 1:25) { b <- qsreg.trace(lam = as.double(exp(hmin)), x = x, y = y, wt = wt, cost = cost, maxit = maxit, tol = tol, sc = sc, alpha = alpha) if (b > trmax) { break } hmin <- hmin - 1 } } if (is.na(hmax)) { hmax <- 0 for (k in 1:25) { b <- qsreg.trace(lam = as.double(exp(hmax)), x = x, y = y, wt = wt, cost = cost, maxit = maxit, tol = tol, sc = sc, alpha = alpha) if (b < trmin) { break } hmax <- hmax + 1 } } h <- seq(hmin, hmax, , nstep.cv) lam <- exp(h) } # now loop through values for lam ( really log lam) b <- list() NL <- length(lam) NG <- length(xgrid) h <- log(lam) residuals <- matrix(NA, ncol = NL, nrow = N) diagA <- residuals cv.ps <- rep(0, NL) trace.ps <- rep(0, NL) cv <- rep(0, NL) predicted <- matrix(NA, ncol = NL, nrow = NG) trace <- rep(0, NL) converge <- rep(0, NL) wt.old <- wt for (k in 1:NL) { b <- .Fortran("rcss", PACKAGE="fields", h = as.double(h[k]), npoint = as.integer(N), x = as.double(x), y = as.double(y), wt = as.double(wt.old), sy = as.double(rep(0, N)), trace = as.double(0), diag = as.double(rep(0, N)), cv = as.double(0), ngrid = as.integer(NG), xg = as.double(xgrid), yg = as.double(rep(0, NG)), job = as.integer(c(3, 3, 0)), ideriv = as.integer(0), din = as.double(c(cost, offset, maxit, tol, sc, alpha)), dout = as.double(rep(0, 4)), ierr = as.integer(0)) residuals[, k] <- y - b$sy diagA[, k] <- b$diag cv[k] <- b$dout[4] trace[k] <- b$trace predicted[, k] <- b$yg converge[k] <- b$dout[1] wt.old <- b$wt } # second loop to find approx CV residuals based on pseudo values y.pseudo <- rep(NA, N) residuals.cv <- matrix(NA, ncol = NL, nrow = length(x)) for (k in 1:NL) { y.pseudo <- (sc) * qsreg.psi(residuals[, k], alpha = alpha, C = sc) + y - residuals[, k] # # call the robust spline but set the cutoff for the huber weight so big # it is essentially a LS spline this helps to match the lambda for robust spline # with a lambda for the LS one. # b <- .Fortran("rcss", PACKAGE="fields", h = as.double(h[k]), npoint = as.integer(N), x = as.double(x), y = as.double(y.pseudo), wt = as.double(wt), sy = as.double(rep(0, N)), trace = as.double(0), diag = as.double(rep(0, N)), cv = as.double(0), ngrid = as.integer(NG), xg = as.double(xgrid), yg = as.double(rep(0, NG)), job = as.integer(c(3, 3, 0)), ideriv = as.integer(0), din = as.double(c(cost, offset, maxit, tol, sqrt(var(y)) * 10, alpha)), dout = as.double(rep(0, 4)), ierr = as.integer(0)) # # CV residuals based on pseudo-data) # Use the linear approximation Y_k - f.cv_k = (Y_k- f_k)/( 1- A_kk) # f.cv_k = f_k/( 1- A_kk) - ( A_kk)Y_k/( 1- A_kk) # # Note: we find f.cv based on pseudo data but then consider its deviation # from the actual data # f.cv <- (b$sy/(1 - b$diag)) - b$diag * y.pseudo/(1 - b$diag) trace.ps[k] <- b$trace residuals.cv[, k] <- (y - f.cv) cv.ps[k] <- mean(qsreg.rho(y - f.cv, alpha = alpha, C = sc)) } # # # cv.grid <- cbind(lam, trace, cv, converge, trace.ps, cv.ps) dimnames(cv.grid) <- list(NULL, c("lambda", "trace", "CV", "iterations", "trace.PS", "CV.PS")) # ind.cv <- (1:NL)[cv == min(cv)] ind.cv.ps <- (1:NL)[cv.ps == min(cv.ps)] out$call <- match.call() out$x <- x out$y <- y out$predicted <- list(x = xgrid, y = predicted) out$trace <- trace out$residuals.cv <- residuals.cv out$residuals <- residuals out$fitted.values <- y - residuals out$cv.grid <- cv.grid out$diagA <- diagA out$sc <- sc out$alpha <- alpha out$ind.cv <- ind.cv out$ind.cv.ps <- ind.cv.ps out } "qsreg.fit" <- function(x, y, lam, maxit = 50, maxit.cv = 10, tol = 1e-04, offset = 0, sc = sqrt(var(y)) * 1e-07, alpha = 0.5, wt = rep(1, length(x)), cost = 1) { N <- length(y) if (length(x) != length(y)) stop(" X and Y do not match") h <- log(lam) temp <- .Fortran("rcss", PACKAGE="fields", h = as.double(log(lam)), npoint = as.integer(N), x = as.double(x), y = as.double(y), wt = as.double(wt), sy = as.double(rep(0, N)), trace = as.double(0), diag = as.double(rep(0, N)), cv = as.double(0), ngrid = as.integer(0), xg = as.double(0), yg = as.double(0), job = as.integer(c(3, 0, 0)), ideriv = as.integer(0), din = as.double(c(cost, offset, maxit, tol, sc, alpha)), dout = as.double(rep(0, 4)), ierr = as.integer(0))$dout return(temp) } qsreg.psi <- function(r, alpha = 0.5, C = 1) { temp <- ifelse(r < 0, 2 * (1 - alpha) * r/C, 2 * alpha * r/C) temp <- ifelse(temp > 2 * alpha, 2 * alpha, temp) temp <- ifelse(temp < -2 * (1 - alpha), -2 * (1 - alpha), temp) temp } qsreg.rho <- function(r, alpha = 0.5, C = 1) { temp <- ifelse(r < 0, ((1 - alpha) * r^2)/C, (alpha * r^2)/C) temp <- ifelse(r > C, 2 * alpha * r - alpha * C, temp) temp <- ifelse(r < -C, -2 * (1 - alpha) * r - (1 - alpha) * C, temp) temp } # next two functions included for just checking with new versions "qsreg.psi.OLD" <- function(r, alpha = 0.5, C = 1) { temp <- rep(NA, length(r)) r <- r/C temp <- r ind <- r > 1 temp[ind] <- 2 * alpha ind <- r < 1 & r > 0 temp[ind] <- (2 * alpha * r[ind]) ind <- r < -1 temp[ind] <- -2 * (1 - alpha) ind <- r > -1 & r < 0 temp[ind] <- 2 * (1 - alpha) * r[ind] temp } "qsreg.rho.OLD" <- function(r, alpha = 0.5, C = 1) { temp <- rep(NA, length(r)) ind <- r > C temp[ind] <- 2 * alpha * r[ind] - alpha * C ind <- r < C & r > 0 temp[ind] <- (alpha * r[ind]^2)/C ind <- r < -C temp[ind] <- -2 * (1 - alpha) * r[ind] - (1 - alpha) * C ind <- r > -C & r < 0 temp[ind] <- ((1 - alpha) * r[ind]^2)/C temp } # fields, Tools for spatial data # Copyright 2015, Institute for Mathematics Applied Geosciences # University Corporation for Atmospheric Research # Licensed under the GPL -- www.gpl.org/licenses/gpl.html "qsreg.trace" <- function(x, y, lam, maxit = 50, maxit.cv = 10, tol = 1e-04, offset = 0, sc = sqrt(var(y)) * 1e-07, alpha = 0.5, wt = rep(1, length(x)), cost = 1) { N <- length(y) if (length(x) != length(y)) stop(" X and Y do not match") h <- log(lam) temp <- .Fortran("rcss", PACKAGE="fields", h = as.double(log(lam)), npoint = as.integer(N), x = as.double(x), y = as.double(y), wt = as.double(wt), sy = as.double(rep(0, N)), trace = as.double(0), diag = as.double(rep(0, N)), cv = as.double(0), ngrid = as.integer(0), xg = as.double(0), yg = as.double(0), job = as.integer(c(3, 0, 0)), ideriv = as.integer(0), din = as.double(c(cost, offset, maxit, tol, sc, alpha)), dout = as.double(rep(0, 4)), ierr = as.integer(0))$dout return(temp[3]) } # fields, Tools for spatial data # Copyright 2015, Institute for Mathematics Applied Geosciences # University Corporation for Atmospheric Research # Licensed under the GPL -- www.gpl.org/licenses/gpl.html "summary.qsreg" <- function(object, ...) { x <- object digits <- 4 c1 <- "Number of Observations:" c2 <- (x$N) c1 <- c(c1, "Effective degrees of freedom:") c2 <- c(c2, format(round(x$trace[x$ind.cv.ps], 1))) c1 <- c(c1, "Residual degrees of freedom:") c2 <- c(c2, format(round(x$N - x$trace[x$ind.cv.ps], 1))) c1 <- c(c1, "Log10(lambda)") c2 <- c(c2, format(round(log10(x$cv.grid[x$ind.cv.ps, 1]), 2))) sum <- cbind(c1, c2) dimnames(sum) <- list(rep("", dim(sum)[1]), rep("", dim(sum)[2])) cat("Call:\n") dput(x$call) print(sum, quote = FALSE) invisible(x) } "plot.qsreg" <- function(x, pch = "*", main = NA, ...) { out <- x old.par <- par("mfrow", "oma") on.exit(par(old.par)) set.panel(2, 2, relax = TRUE) plot(out$x, out$y, xlab = "X", ylab = "y", pch = pch) orderx <- order(out$x) temp <- out$fitted.values[, c(out$ind.cv, out$ind.cv.ps)] matlines(out$x[orderx], temp[orderx, ], lty = 1, col = c(1, 2)) ## # residual plot # matplot(out$x, qsreg.psi(out$residuals[, c(out$ind.cv, out$ind.cv.ps)], out$alpha, out$sc), col = c(1, 2), pch = "o", ylab = "Pseudo residuals", xlab = "X") yline(0) if (nrow(out$cv.grid) > 1) { ind <- out$cv.grid[, 3] < 1e+19 out$cv.grid <- out$cv.grid[ind, ] matplot(out$cv.grid[, 2], cbind(out$cv.grid[, 3], out$cv.grid[, 6]), xlab = "Effective number of parameters", ylab = "Log CV Rho function ", log = "y", type = "l", col = c(1, 2)) xline(out$cv.grid[out$ind.cv, 2], col = 1) xline(out$cv.grid[out$ind.cv.ps, 2], col = 2) title(" CV curves", cex = 0.5) } bplot(qsreg.psi(out$residuals[, c(out$ind.cv, out$ind.cv.ps)], out$alpha, out$sc), names = c("CV", "CV pseudo")) yline(0, col = 2) if (is.na(main)) mtext(deparse(out$call), cex = 1.3, outer = TRUE, line = -2) else mtext(main, cex = 1.3, outer = TRUE, line = -2) } "predict.qsreg" <- function(object, x, derivative = 0, model = object$ind.cv.ps, ...) { if (missing(x)) x <- object$x c(splint(object$predicted$x, object$predicted$y[, model], x, derivative = derivative)) } "print.qsreg" <- function(x, ...) { digits <- 4 c1 <- "Number of Observations:" c2 <- (x$N) c1 <- c(c1, "Effective degrees of freedom:") c2 <- c(c2, format(round(x$trace[x$ind.cv.ps], 1))) c1 <- c(c1, "Residual degrees of freedom:") c2 <- c(c2, format(round(x$N - x$trace[x$ind.cv.ps], 1))) c1 <- c(c1, "Log10(lambda) ") lambda <- x$cv.grid[, 1] c2 <- c(c2, format(round(log10(lambda[x$ind.cv.ps]), 2))) sum <- cbind(c1, c2) dimnames(sum) <- list(rep("", dim(sum)[1]), rep("", dim(sum)[2])) cat("Call:\n") dput(x$call) print(sum, quote = FALSE) invisible(x) } fields/R/predict.sreg.R0000644000175100001440000000242213114123117014445 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "predict.sreg" <- function(object, x, derivative = 0, model = 1, ...) { if (missing(x)) { x <- object$x } c(splint(object$predicted$x, object$predicted$y[, model], x, derivative = derivative, ...)) } fields/R/print.sreg.R0000644000175100001440000000413213114123117014147 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "print.sreg" <- function(x, ...) { if (length(x$lambda) > 1) { c1 <- "Number of Observations:" c2 <- (x$N) c1 <- c(c1, "Number of values of lambda in grid:") c2 <- c(c2, length(x$lambda)) sum <- cbind(c1, c2) } else { digits <- 4 N <- x$N c1 <- "Number of Observations:" c2 <- (x$N) c1 <- c(c1, "Unique Observations:") c2 <- c(c2, length(x$xM)) c1 <- c(c1, "Effective degrees of freedom:") c2 <- c(c2, format(round(x$trace, 1))) c1 <- c(c1, "Residual degrees of freedom:") c2 <- c(c2, format(round(x$N - x$trace, 1))) c1 <- c(c1, "Residual root mean square:") c2 <- c(c2, format(signif(sqrt(sum(x$residuals^2)/N), 4))) c1 <- c(c1, "Lambda ( smoothing parameter)") c2 <- c(c2, format(signif((x$lambda), 4))) sum <- cbind(c1, c2) } dimnames(sum) <- list(rep("", dim(sum)[1]), rep("", dim(sum)[2])) cat("Call:\n") dput(x$call) print(sum, quote = FALSE) invisible(x) } fields/R/vgram.matrix.R0000644000175100001440000000666413114123117014507 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 vgram.matrix <- function(dat, R = 5, dx = 1, dy = 1) { # a useful function for matching shifted indices # (the kind of internal function Dorit does not like!) SI <- function(ntemp, delta) { n1 <- 1:ntemp n2 <- n1 + delta good <- (n2 >= 1) & (n2 <= ntemp) return(cbind(n1[good], n2[good])) } # M<- nrow(dat) N<- ncol( dat) # create all possible separations for a grid up to a distance R m <- min( c(round(R/dx),M) ) n <- min( c(round(R/dy),N) ) # # all relavent combinations: note that negative increments are # needed as well as positive ones ind <- rbind(as.matrix(expand.grid(0, 1:n)), as.matrix(expand.grid(1:m, 0)), as.matrix(expand.grid(c(-(m:1), 1:m), 1:n))) # distances - only take those within a distance R. # and trim everything to this bound d <- sqrt((dx * ind[, 1])^2 + (dy * ind[, 2])^2) good <- (d > 0) & (d <= R) ind <- ind[good, ] d <- d[good] ind <- ind[order(d), ] d <- sort(d) # # arrays to hold statistics nbin <- nrow(ind) holdVG <- rep(NA, nbin) holdRVG <- rep(NA, nbin) holdN <- rep(0, nbin) # loop over each separation for (k in 1:nbin) { # indices for original and shifted image that are within array bounds MM <- SI(M, ind[k, 1]) NN <- SI(N, ind[k, 2]) if( length(MM)>0 & length(NN)>0){ # find differences BigDiff <- (dat[MM[, 1], NN[, 1] ] - dat[MM[, 2], NN[,2] ] ) # standard and the Cressie robust version. # modified to handle NAs holdVG[k] <- mean(0.5 * (BigDiff)^2, na.rm = TRUE) holdRVG[k] <- mean(abs(BigDiff)^0.5, na.rm = TRUE) holdN[k] <- sum( !is.na(BigDiff) ) } } # finish robust estimate Cressie (1993) formula 2.4.12 holdRVG <- 0.5 * (holdRVG^4)/(0.457 + 0.494 * holdN) # collapsed variogram to common distances this what one would look # at under the stationary case. top <- tapply(holdVG * holdN, d, FUN = "sum") bottom <- tapply(holdN, d, FUN = "sum") dcollapsed <- as.numeric(names(bottom)) vgram <- top/bottom # wipe out pesky row names dimnames(vgram) <- NULL out <- list(vgram = vgram, d = dcollapsed, ind = ind, d.full = d, vgram.full = holdVG, robust.vgram = holdRVG, N = holdN, dx = dx, dy = dy) class(out) <- "vgram.matrix" return(out) } fields/R/predictSurface.Krig.R0000644000175100001440000000540013114123117015711 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "predictSurface.Krig" <- function(object, grid.list = NULL, extrap = FALSE, chull.mask = NA, nx = 80, ny = 80, xy = c(1,2), verbose = FALSE, ZGrid=NULL, drop.Z= FALSE, just.fixed=FALSE, ...) { if( is.null(ZGrid) & !drop.Z & (!is.null(object$Z)) ) { stop("Need to specify covariate (Z) values or set drop.Z==TRUE") } # create a default grid if it is not passed if (is.null(grid.list)) { # NOTE: # without grid.list # default is 80X80 grid on first two variables # rest are set to median value of the x's grid.list <- fields.x.to.grid(object$x, nx = nx, ny = ny, xy = xy) } # do some checks on Zgrid and also reshape as a matrix # rows index grid locations and columns are the covariates # (as Z in predict). # if ZGrid is NULL just returns that back Z<- unrollZGrid( grid.list, ZGrid) # here is the heavy lifting xg <- make.surface.grid(grid.list) # NOTE: the predict function called will need to do some internal the checks # whether the evaluation of a large number of grid points (xg) makes sense. if( verbose){ print( dim( xg)) print( drop.Z) print( dim( Z)) } out<- predict(object, x=xg, Z=Z, drop.Z= drop.Z, just.fixed=just.fixed, ...) # reshape as list with x, y and z components out <- as.surface( xg, out ) # # if extrapolate is FALSE set all values outside convex hull to NA if (!extrap) { if( is.null( object$x)){ stop("need and x matrix in object") } if (is.na(chull.mask)) { chull.mask <- unique.matrix(object$x[, xy]) } out$z[!in.poly(xg[, xy], xp = chull.mask, convex.hull = TRUE)] <- NA } # return(out) } fields/R/SUBSCRIPTINGSpatialDesign.R0000644000175100001440000000214413114603767016457 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "[.spatialDesign" <- function(x, ...) { x$design[...] } fields/R/print.summary.Krig.R0000644000175100001440000000770513114123117015610 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "print.summary.Krig" <- function(x, ...) { digits <- x$digits c1 <- "Number of Observations:" c2 <- x$num.observation c1 <- c(c1, "Number of unique points:") c2 <- c(c2, x$num.uniq) # # print out null space poly info only if 'm' is used if (!is.null(x$args.null$m)) { c1 <- c(c1, "Degree of polynomial null space ( base model):") c2 <- c(c2, x$m - 1) } c1 <- c(c1, "Number of parameters in the null space") c2 <- c(c2, x$nt) c1 <- c(c1, "Parameters for fixed spatial drift") c2 <- c(c2, x$df.drift) c1 <- c(c1, "Effective degrees of freedom:") c2 <- c(c2, format(round(x$enp, 1))) c1 <- c(c1, "Residual degrees of freedom:") c2 <- c(c2, format(round(x$num.observation - x$enp, 1))) c1 <- c(c1, "MLE sigma ") c2 <- c(c2, format(signif(x$shat.MLE, digits))) c1 <- c(c1, "GCV sigma ") c2 <- c(c2, format(signif(x$shat.GCV, digits))) if (!is.na(x$shat.pure.error)) { c1 <- c(c1, "Pure error sigma") c2 <- c(c2, format(signif(x$shat.pure.error, digits))) } c1 <- c(c1, "MLE rho ") c2 <- c(c2, format(signif(x$rhohat, digits))) c1 <- c(c1, "Scale passed for covariance (rho)") c2 <- c(c2, signif(x$rho, digits)) c1 <- c(c1, "Scale passed for nugget (sigma^2)") c2 <- c(c2, signif(x$sigma2, digits)) c1 <- c(c1, "Smoothing parameter lambda") c2 <- c(c2, signif(x$lambda, digits)) sum <- cbind(c1, c2) dimnames(sum) <- list(rep("", dim(sum)[1]), rep("", dim(sum)[2])) res.quantile <- x$res.quantile names(res.quantile) <- c("min", "1st Q", "median", "3rd Q", "max") cat("CALL:\n") dput(x$call) print(sum, quote = FALSE) cat("\n") cat("Residual Summary:", fill = TRUE) print(signif(res.quantile, digits)) cat("\n") cat("Covariance Model:", x$cov.function, fill = TRUE) if (x$cov.function == "stationary.cov") { cat(" Covariance function is ", x$args$Covariance, fill = TRUE) } if (!is.null(x$args)) { cat(" Names of non-default covariance arguments: ", fill = TRUE) cat(" ", paste(as.character(names(x$args)), collapse = ", "), fill = TRUE) } if ((x$correlation.model)) { cat(" A correlation model was fit:\nY is standardized before spatial estimate is found", fill = TRUE) } if (x$knot.model) { cat(" Knot model: ", x$np - x$nt, " knots supplied to define basis\nfunctions", fill = TRUE) } cat("\n") cat("DETAILS ON SMOOTHING PARAMETER:", fill = TRUE) cat(" Method used: ", x$method, " Cost: ", x$cost, fill = TRUE) print(x$sum.gcv.lambda, digits = digits) cat("\n") cat(" Summary of all estimates found for lambda", fill = TRUE) if (!is.na(x$lambda.est[1])) { print(x$lambda.est, digits = x$digits) } else { cat(x$lambda, " supplied by user", fill = TRUE) } invisible(x) } fields/R/in.poly.R0000644000175100001440000000577313114123117013460 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "in.poly" <- function(xd, xp, convex.hull = FALSE, inflation = 1e-07) { if (convex.hull) { xp <- xp[chull(xp), ] } nd <- as.integer(nrow(xd)) np <- as.integer(nrow(xp)) # # inflate convex hull slightly to include any points actually on the hull # if (convex.hull) { xm <- matrix(c(mean(xp[, 1]), mean(xp[, 2])), nrow = np, ncol = 2, byrow = TRUE) xp <- (xp - xm) * (1 + inflation) + xm } # Note: inpoly FORTRAN has built in quick reject check to be inside # the bounding rectangle of the polygon. ind <- .Fortran("inpoly",PACKAGE="fields", nd = as.integer(nd), as.single(xd[, 1]), as.single(xd[, 2]), np = np, as.single(xp[, 1]), as.single(xp[, 2]), ind = as.integer(rep(-1, nd)))$ind as.logical(ind) } in.poly.grid <- function(grid.list, xp, convex.hull = FALSE, inflation = 1e-07) { # loop through rows of grid to fill out a logical matrix of # being in (TRUE) or out (FALSE) # # this is to avoid the full target polygon if the convex hull is # what is needed. if (convex.hull) { xp <- xp[chull(xp), ] } nx <- length(grid.list$x) ny <- length(grid.list$y) np <- as.integer(nrow(xp)) # # inflate convex hull slightly to include any points actually on the hull # if (convex.hull) { xm <- matrix(c(mean(xp[, 1]), mean(xp[, 2])), nrow = np, ncol = 2, byrow = TRUE) xp <- (xp - xm) * (1 + inflation) + xm } # Note: inpoly FORTRAN has built in quick reject check to be inside # the bounding rectangle of the polygon. ind <- .Fortran("igpoly",PACKAGE="fields", nx = as.integer(nx), xg = as.single(grid.list$x), ny = as.integer(ny), yg = as.single(grid.list$y), np = np, as.single(xp[, 1]), as.single(xp[, 2]), ind = as.integer(rep(-1, nx * ny)))$ind return(matrix(as.logical(ind), nrow = nx, ncol = ny)) } fields/R/fields.diagonalize2.R0000644000175100001440000000411713114123117015674 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "fields.diagonalize2" <- function(A, B, verbose = FALSE) { M <- nrow(A) hold.AB <- eigen(A + B, symmetric = TRUE) if (verbose) { cat("log 10 condition number of A +B in fields.diagonlize2", fill = TRUE) print(log10(max(hold.AB$values)/min(hold.AB$values))) } # inverse square root of A+B hold.AB <- (t(hold.AB$vectors) * (1/sqrt(hold.AB$values))) hold.B <- eigen(hold.AB %*% A %*% t(hold.AB), symmetric = TRUE) G <- t(hold.B$vectors) %*% hold.AB D.A <- hold.B$values # remove some large temporary matrices. remove(hold.AB) remove(hold.B) # crank on finding G and D. G <- (1/sqrt(D.A)) * G D <- colSums(t(G) * (B) %*% t(G)) # sort from largest to smallest and take transpose --- # this will now matches old version in fields.diagonalize D <- D[M:1] G <- t(G[M:1, ]) # to test: # test.for.zero( t(G) %*% (A) %*% (G), diag(1,M), tag='A test' ) # test.for.zero( t(G) %*% (B) %*% (G), diag(D,M), tag='B test' ) list(G = G, D = D) } fields/R/BD.R0000644000175100001440000001052713114123116012345 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "BD" <- structure(list(KCl = c(30, 30, 20, 50, 25, 10, 40, 15, 50, 10, 20, 45, 50, 35, 40, 35, 30, 15, 40, 30, 10, 50, 20, 10, 25, 45, 30, 25, 45, 10, 45, 10, 30, 30, 20, 50, 10, 40, 15, 20, 45, 50, 35, 35, 30, 15, 30, 10, 50, 20, 25, 45, 30, 25, 45, 10, 45, 10, 30, 30, 25, 50, 10, 40, 40, 15, 35, 15, 10, 40, 10, 25, 35, 35, 30, 25, 45, 50, 40, 20, 50, 30, 15, 10, 50, 15, 25, 45, 40), MgCl2 = c(5, 5, 4, 7, 7, 4, 4, 6, 6, 7, 4, 7, 5, 6, 5, 7, 7, 6, 3, 4, 4, 4, 3, 3, 3, 4, 6, 3, 6, 5, 3, 6, 5, 5, 4, 7, 4, 4, 6, 4, 7, 5, 6, 7, 7, 6, 4, 4, 4, 3, 3, 4, 6, 3, 6, 5, 3, 6, 5, 5, 7, 6, 7, 5, 3, 6, 3, 5, 6, 6, 7, 7, 7, 5, 4, 6, 5, 6, 3, 7, 7, 4, 3, 4, 3, 3, 4, 4, 7), KPO4 = c(25, 25, 20, 20, 30, 25, 20, 45, 35, 25, 40, 30, 45, 20, 40, 45, 40, 25, 35, 45, 30, 40, 30, 20, 45, 30, 30, 35, 20, 40, 40, 35, 25, 25, 20, 20, 25, 20, 45, 40, 30, 45, 20, 45, 40, 25, 45, 30, 40, 30, 45, 30, 30, 35, 20, 40, 40, 35, 25, 25, 30, 35, 25, 40, 35, 40, 25, 20, 45, 25, 20, 35, 40, 30, 35, 40, 35, 30, 45, 40, 25, 20, 30, 45, 40, 30, 25, 25, 25), dNTP = c(625, 625, 1500, 250, 1500, 1250, 1250, 1250, 1500, 1250, 250, 1250, 1000, 1000, 1500, 750, 1000, 250, 250, 1500, 1000, 750, 750, 500, 500, 500, 250, 1000, 500, 500, 1250, 750, 625, 625, 1500, 250, 1250, 1250, 1250, 250, 1250, 1000, 1000, 750, 1000, 250, 1500, 1000, 750, 750, 500, 500, 250, 1000, 500, 500, 1250, 750, 625, 625, 1500, 1500, 1250, 1500, 250, 1500, 1500, 750, 250, 1500, 750, 1250, 500, 1250, 1250, 1000, 250, 500, 1000, 750, 1000, 250, 500, 1250, 750, 1000, 500, 750, 500), lnya = c(12.904207, 12.672946, 9.172639, 9.86786, 9.87817, 6.423247, 6.131226, 6.011267, 8.44247, 12.072541, 11.252859, 9.088173, 10.089967, 13.946539, 8.985946, 9.197255, 9.786954, 6.398595, 8.051978, 4.969813, 5.609472, 4.94876, 5.874931, 6.50279, 6.811244, 9.69892, 10.348173, 8.101678, 11.703546, 13.745088, 8.830543, 11.643954, 13.034624, 12.479909, 8.166216, 9.711116, 8.665613, 7.659171, 7.992945, 11.140411, 9.588777, 8.074026, 13.478638, 10.410305, 10.817776, 7.575585, 7.021084, 7.912057, 6.44254, 6.042633, 7.130899, 9.680344, 8.318742, 7.654443, 9.595603, 12.456831, 8.064636, 11.060369, 12.128111, 13.191889, 9.268609, 8.273847, 12.441145, 8.958025, 8.538955, 7.886081, 8.422883, 8.565983, 11.342137, 8.457443, 8.38936, 10.606585, 11.3679, 8.665613, 8.773385, 9.384294, 9.78132, 12.25009, 9.510445, 13.311329, 11.14331, 9.441452, 9.056023, 8.846497, 8.76873, 9.130214, 12.657148, 9.239899, 10.210972)), .Names = c("KCl", "MgCl2", "KPO4", "dNTP", "lnya"), class = "data.frame", row.names = c("1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "30", "31", "32", "33", "34", "35", "36", "38", "39", "40", "43", "44", "45", "46", "48", "49", "50", "52", "53", "54", "55", "57", "58", "59", "60", "61", "62", "63", "64", "65", "66", "67", "68", "69", "70", "71", "72", "73", "75", "76", "77", "78", "79", "80", "81", "82", "83", "84", "85", "86", "87", "88", "89", "90", "91", "92", "93", "94", "95", "96")) fields/R/test.for.zero.R0000644000175100001440000000316313114123117014601 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 test.for.zero <- function(xtest, xtrue, tol = 1e-08, relative = TRUE, tag = NULL) { denom <- ifelse(relative, mean(abs(c(xtrue))), 1) test.value <- sum(abs(c(xtest) - c(xtrue)))/denom if (!is.null(tag)) { cat("Testing: ", tag, fill = TRUE) } if (test.value < tol) { cat("PASSED test at tolerance ", tol, fill = TRUE) } else { cat("FAILED test value = ", test.value, " at tolerance ", tol) # generate an "error" to signal failed test if (exists("test.for.zero.flag")) { stop() } } } fields/R/qr.yq2.R0000644000175100001440000000214113114123117013206 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "qr.yq2" <- function(qr, y) { t(qr.q2ty(qr, t(y))) } fields/R/mKrigMLEGrid.R0000644000175100001440000001432513114123117014276 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 mKrigMLEGrid <- function(x, y, weights = rep(1, nrow(x)), Z = NULL, mKrig.args = NULL, cov.fun = "stationary.cov", cov.args = NULL, na.rm = TRUE, par.grid = NULL, lambda = NULL, lambda.profile = TRUE, relative.tolerance = 1e-04, REML = FALSE, verbose = FALSE) { if( na.rm){ obj<- mKrigCheckXY(x, y, weights, Z, na.rm) x<- obj$x y<- obj$y weights<- obj$weights Z<- obj$Z } #check which optimization options the covariance function supports #precompute distance matrix if possible so it only needs to be computed once supportsDistMat = supportsArg(cov.fun, "distMat") #precompute distance matrix if possible so it only needs to be computed once if(supportsDistMat) { #Get distance function and arguments if available #If user left all distance settings NULL, use rdist with compact option. #Use rdist function by default in general. # if(is.null(cov.args$Distance)) { cov.args$Distance <- "rdist" cov.args$Dist.args <- list(compact=TRUE) } cov.args$distMat<-do.call(cov.args$Distance, c( list(x), cov.args$Dist.args) ) cov.args$onlyUpper<- TRUE } lnProfileLike.max <- -1e+20 # find NG -- number of parameters to try par.grid <- data.frame(par.grid) if (nrow(par.grid) == 0) { NG<- ifelse(is.null(lambda), 1, length( lambda)) } else { NG <- nrow(par.grid) } lambda.best <- NA # default for lambda is 1.0 for first value and exp(llambda.opt) for subsequent ones # this is controlled by NAs for lambda starting values. if (is.null(lambda)) { lambda <- rep(NA, NG) } # output matrix to summarize results summary <- matrix(NA, nrow = NG, ncol = 8) # default starting value for lambda is .5 or log lambda is 0 lambda.opt <- .5 optim.counts <- c(NA, NA) lnLike.eval <- list() # Define the objective function as a tricksy call to mKrig # if Y is a matrix of replicated data sets use the log likelihood for the complete data sets # # begin loop over covariance arguments lnLike.eval<- list() for (k in 1:NG) { lambda.start <- ifelse(is.na(lambda[k]), lambda.opt, (lambda[k])) # list of covariance arguments from par.grid with right names (some R arcania!) # note that this only works because 1) temp.fn will search in this frame for this object # par.grid has been coerced to a data frame so one has a concept of a row subscript. cov.args.temp <- as.list(par.grid[k, ]) names(cov.args.temp) <- names(par.grid) currentCov.args<- c(cov.args.temp, cov.args) # optimize over lambda if lambda.profile is TRUE optim.args = list(method = "BFGS", control = list(fnscale = -1, parscale = c(0.5), ndeps = c(0.05))) if (lambda.profile) { # set up matrix to store evaluations from within optim MLEfit0 <- mKrigMLEJoint(x, y, weights=weights, Z=Z, lambda.start = lambda.start, cov.params.start = NULL, cov.fun = cov.fun, optim.args = optim.args, cov.args = currentCov.args, na.rm = na.rm, mKrig.args = mKrig.args, REML = REML, verbose = verbose) lnLike.eval<- c( lnLike.eval, list(MLEfit0$lnLike.eval)) lambda.opt<- MLEfit0$pars.MLE[1] } else { # no refinement for lambda so just save the the 'start' value as final one. lambda.opt <- lambda.start } # final fit at optimal value # (or starting value if not refinement/maximization for lambda) obj <- do.call("mKrig", c( list(x = x, y = y, weights = weights, Z = Z, na.rm = na.rm), mKrig.args, list(lambda=lambda.opt), list( cov.fun= cov.fun, cov.args = currentCov.args) ) ) nameCriterion<- ifelse( !REML, "lnProfileLike.FULL", "lnProfileREML.FULL" ) if (obj[[nameCriterion]] > lnProfileLike.max) { lnProfileLike.max <- obj$lnProfileLike.FULL cov.args.MLE <- cov.args.temp lambda.best <- lambda.opt } # save results of the kth covariance model evaluation summary[k, 1:8] <- c(obj$eff.df, obj[[nameCriterion]], obj$GCV, obj$sigma.MLE.FULL, obj$rho.MLE.FULL, lambda.opt, optim.counts) dimnames(summary) <- list(NULL, c("EffDf",nameCriterion , "GCV", "sigma.MLE", "rho.MLE", "lambda.MLE", "counts eval", "counts grad")) if (verbose) { cat("Summary: ", k, summary[k, 1:8], fill = TRUE) } } return(list(summary = summary, par.grid = par.grid, cov.args.MLE = cov.args.MLE, lambda.best = lambda.best, lambda.MLE = lambda.best, call = match.call(), lnLike.eval = lnLike.eval) ) } fields/R/discretize.image.R0000644000175100001440000000516013114123116015303 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "discretize.image" <- function(x, m = 64, n = 64, grid = NULL, expand = c(1, 1), boundary.grid = FALSE, na.rm=TRUE) { # # set up discretized grid based on x # out <- list() if (length(expand) == 1) expand <- rep(expand, 2) if (is.null(grid)) { grid <- list() xr <- range(x[, 1], na.rm = na.rm) deltemp <- (xr[2] - xr[1]) * (expand[1] - 1) * 0.5 grid$x <- seq(xr[1] - deltemp, xr[2] + deltemp, , m) yr <- range(x[, 2], na.rm = na.rm) deltemp <- (yr[2] - yr[1]) * (expand[2] - 1) * 0.5 grid$y <- seq(yr[1] - deltemp, yr[2] + deltemp, , n) } # find cut points for boundaries assuming midpoints if (!boundary.grid) { xcut <- fields.convert.grid(grid$x) ycut <- fields.convert.grid(grid$y) } else { # cut points given boundaries xcut <- grid$x ycut <- grid$y } # locate bin ids for each location index <- list( as.numeric(cut(x[, 1], xcut)), as.numeric(cut(x[, 2], ycut))) m <- length(xcut) - 1 n <- length(ycut) - 1 grid <- grid tempHist<- table( index[[1]], index[[2]]) ix<- as.numeric(dimnames( tempHist)[[1]]) iy<- as.numeric(dimnames( tempHist)[[2]]) # 2 d histogram of locations hist<- matrix( 0, m,n) hist[ix,iy] <- tempHist # if (!boundary.grid) { # compute discretized locations loc <- cbind( grid$x[ index[[1]] ], grid$y[ index[[2]] ] ) } else { out$loc <- NA } return( list( m=m,n=n, grid=grid, index=index, ix= ix, iy=iy, hist=hist, loc=loc) ) } fields/R/rdist.earth.vec.R0000644000175100001440000000305113114123117015056 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 rdist.earth.vec = function(x1, x2, miles=TRUE, R=NULL) { #set default radius if(is.null(R)) { if(miles) R = 3963.34 else R = 6378.388 } #convert lon/lat to radians x1 = x1 * (pi/180) x2 = x2 * (pi/180) #calculate distances using Haversine method lonDist2 = (x2[,1] - x1[,1]) * (1/2) latDist2 = (x2[,2] - x1[,2]) * (1/2) a = sin(latDist2) * sin(latDist2) + cos(x1[, 2]) * cos(x2[, 2]) * sin(lonDist2) * sin(lonDist2) return(2 * atan2(sqrt(a), sqrt(1 - a)) * R) } fields/R/qr.q2ty.R0000644000175100001440000000246713114123117013405 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "qr.q2ty" <- function(qr, y) { if (!is.matrix(y)) { y <- as.matrix(y) } dy <- dim(y) dq <- dim(qr$qr) rank <- qr$rank if (dy[1] != dq[1]) stop("y and qr$qr should have same number of rows") qr.qty(qr, y)[(rank + 1):dy[1], ] } fields/R/splint.R0000644000175100001440000000616313114123117013373 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "splint" <- function(x, y, xgrid, wt = NULL, derivative = 0, lam = 0, df = NA, lambda = NULL, nx=NULL) { # # reform calling args if passed as a matrix or list if (is.matrix(x)) { if (ncol(x) > 1) { xgrid <- y y <- x[, 2] x <- x[, 1] } } if (is.list(x)) { xgrid <- y y <- x$y x <- x$x } if (any(duplicated(x))) { stop("duplicated x values, use sreg") } if ((derivative > 2) | (derivative < 0)) stop("derivative must be 0,1,2") if (length(x) != length(y)) stop("Lengths of x and y must match") n <- length(x) #default values for weights # NOTE: weights do not matter when interpolating (lam==0) if (is.null(wt)) { wt <- rep(1, n) } # find lambda from eff degrees of freedom if it is passed if (!is.na(df)) { if ((df < 2) | (df > n)) { stop("df out of range") } lam <- sreg.df.to.lambda(df, x, wt) } # use lambda is it is passed if (!is.null(lambda)) { lam <- lambda } igcv <- ifelse(lam == 0, 2, 0) # call to FORTRAN -- only return the evaluated poiints (ygrid). if( !is.null(nx)){ xgrid<- seq( min( x), max(x),,nx) } ygrid<- .Fortran("css",PACKAGE="fields", h = as.double(ifelse(igcv == 2, 1, log(lam))), as.integer(n), as.double(x), as.double(y), wt = as.double(1/sqrt(wt)), sy = as.double(rep(0, n)), as.double(1), as.double(1), as.double(1), as.integer(length(xgrid)), as.double(xgrid), ygrid = as.double(rep(0, length(xgrid))), job = as.integer(c(igcv, 3, 0)), as.integer(derivative), as.integer(0) )$ygrid if(!is.null(nx) ){ return(list( x=xgrid, y=ygrid)) } else{ return( ygrid) } } fields/R/wendland.image.cov.R0000644000175100001440000000721513114123117015524 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 wendland.image.cov <- function(ind1, ind2, Y, cov.obj = NULL, setup = FALSE, grid, M = NULL, N = NULL, cov.args=NULL, ...) { # # if cov object is missing then create # basically need to enlarge domain and find the FFT of the # covariance # cov.args<-c( cov.args, list(...)) delta<- cov.args$theta if (is.null(cov.obj)) { dx <- grid$x[2] - grid$x[1] dy <- grid$y[2] - grid$y[1] m <- length(grid$x) n <- length(grid$y) # # determine size of padding # default is twice domain and will then yeild exact results # delta indicates that covariance is zero beyond a distance delta # so using a smaller grid than twice domain will still give exact results. if(!is.null(delta)){ M<- ceiling(m + 2*delta/dx) N<- ceiling(n + 2*delta/dy) } if (is.null(M)) M <- (2 * m) if (is.null(N)) N <- (2 * n) # make sure M and N are even. # (not sure what it means if this is not the case!) if( M%%2 !=0) { M<- M+1} if( N%%2 !=0) { N<- N+1} # # print( c(m,n, M,N)) xGrid<- (1:M) * dx - (dx * M)/2 yGrid<- (1:N) * dy - (dy * N)/2 bigDistance<- sqrt( matrix( xGrid^2, M,N, byrow=FALSE) + matrix( yGrid^2, M,N, byrow=TRUE)) # cat("Wendland", fill=TRUE) out<- Wendland( bigDistance / cov.args$theta, dimension=2, k=cov.args$k ) temp <- matrix(0, nrow = M, ncol = N) # # a simple way to normalize. This could be avoided by # translating image from the center ... # temp[M/2, N/2] <- 1 wght <- fft(out)/(fft(temp) * M * N) # # wght is the discrete FFT for the covariance suitable for fast # multiplication by convolution. # cov.obj <- list(m = m, n = n, grid = grid, N = N, M = M, wght = wght, call = match.call()) if (setup) { return(cov.obj) } } temp <- matrix(0, nrow = cov.obj$M, ncol = cov.obj$N) if (missing(ind1)) { temp[1:cov.obj$m, 1:cov.obj$n] <- Y Re(fft(fft(temp) * cov.obj$wght, inverse = TRUE)[1:cov.obj$m, 1:cov.obj$n]) } else { if (missing(ind2)) { temp[ind1] <- Y } else { temp[ind2] <- Y } # # as promised this is a single clean step # Re(fft(fft(temp) * cov.obj$wght, inverse = TRUE)[ind1]) } } fields/R/rad.simple.cov.R0000644000175100001440000000343013114123117014700 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "Rad.simple.cov" <- function(x1, x2, p = 1, with.log = TRUE, with.constant = TRUE, C = NA, marginal = FALSE) { if (marginal) { return(rep(1, nrow(x1))) } if (!is.matrix(x1)) x1 <- as.matrix(x1) if (!is.matrix(x2)) x2 <- as.matrix(x2) d <- ncol(x1) n1 <- nrow(x1) n2 <- nrow(x2) m <- (d + p)/2 temp <- rdist(x1, x2) if (with.constant) { Amd <- radbas.constant(m, d) } else { Amd <- 1 } if ((d%%2 == 0) & (with.log)) { temp <- Amd * ifelse(temp < 1e-10, 0, temp^(p/2) * log(temp)) } else { temp <- Amd * temp^(p) } # # if (is.na(C[1])) { return(temp) } else { return(temp %*% C) } } fields/R/Krig.family.R0000644000175100001440000014704713114123116014244 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "Krig" <- function(x, Y, cov.function = "stationary.cov", lambda = NA, df = NA, GCV = FALSE, Z = NULL, cost = 1, knots = NA, weights = NULL, m = 2, nstep.cv = 200, scale.type = "user", x.center = rep(0, ncol(x)), x.scale = rep(1, ncol(x)), rho = NA, sigma2 = NA, method = "REML", verbose = FALSE, mean.obj = NA, sd.obj = NA, null.function = "Krig.null.function", wght.function = NULL, offset = 0, na.rm = TRUE, cov.args = NULL, chol.args = NULL, null.args = NULL, wght.args = NULL, W = NULL, give.warnings = TRUE, ...) # the verbose switch prints many intermediate steps as an aid in debugging. # { # # create output list out <- list() ########################################################### # First series of steps simply store pieces of the passed # information to the output list (i.e. the Krig object) ########################################################## out$call <- match.call() # turn off warning based on options if( options()$warn < 0 ){ give.warnings<- FALSE } # # save covariance function as its name # if( !is.character( cov.function)){ out$cov.function.name <- as.character(substitute(cov.function)) } else{ out$cov.function.name<-cov.function } # # save null space function as its name # out$null.function.name <- as.character(substitute(null.function)) # # save weight function as its name if it is not a NULL # if (is.null(wght.function)) { out$wght.function.name <- NULL } else { out$wght.function.name <- as.character(substitute(wght.function)) } out$W <- W if (verbose) { print(out$cov.function.name) print(out$null.function.name) print(out$wght.function.name) } # # logical to indicate if the 'C' argument is present in cov.function # -- a bit of esoteric R code! C.arg.missing <- all(names(formals(get(out$cov.function.name))) != "C") if (C.arg.missing) stop("Need to have C argument in covariance function\nsee Exp.cov.simple as an example") # # save parameters values possibly passed to the covariance function # also those added to call are assumed to be covariance arguments. if (!is.null(cov.args)) out$args <- c(cov.args, list(...)) else out$args <- list(...) # # default values for null space function out$null.args <- null.args # # set degree of polynomial null space if this is default # mkpoly is used so often is it helpful to include m argument # by default in Krig call. if (out$null.function.name == "Krig.null.function") { out$null.args <- list(m = m) out$m <- m } # # default values for Cholesky decomposition, these are important # for sparse matrix decompositions used in Krig.engine.fixed. if (is.null(chol.args)) { out$chol.args <- list(pivot = FALSE) } else { out$chol.args <- chol.args } # additional arguments for weight matrix. out$wght.args <- wght.args # # the offset is the effective number of parameters used in the GCV # calculations -- unless this is part of an additive model this # is likely zero out$offset <- offset # # the cost is the multiplier applied to the GCV eff.df # # lambda and df are two ways of parameterizing the smoothness # and are related by a monotonic function that unfortunately # depends on the locations of the data. # lambda can be used directly in the linear algebra, df # must be transformed to lambda numerically using the monotonic trransformation # sigma2 is the error variance and rho the multiplier for the covariance # method is how to determine lambda # the GCV logical forces the code to do the more elaborate decompositions # that faclitate estimating lambda -- even if a specific lambda value is # given. out$cost <- cost out$lambda <- lambda out$eff.df <- df out$sigma2 <- sigma2 out$rho <- rho out$method <- method out$GCV <- GCV # # correlation model information # out$mean.obj <- mean.obj out$sd.obj <- sd.obj out$correlation.model <- !(is.na(mean.obj[1]) & is.na(sd.obj[1])) # # transformation info out$scale.type <- scale.type out$x.center <- x.center out$x.scale <- x.scale # # verbose block if (verbose) { cat(" Cov function arguments in call ", fill = TRUE) print(out$args) cat(" covariance function used is : ", fill = TRUE) print(out$cov.function.name) } ############################################################### # Begin modifications and transformations of input information # note that many of these manipulations follow a strategy # of passing the Krig object (out) to a function and # then appending the information from this function to # the Krig object (usually also called "out"). #In this way the Krig object is built up # in steps and the process is easier to follow. ############################################################### # various checks on x and Y including removal of NAs in Y # Here is an instance of adding to the Krig object # in this case also some onerous bookkeeping making sure arguments are consistent out2 <- Krig.check.xY(x, Y, Z, weights, na.rm, verbose = verbose) out <- c(out, out2) # transform to correlation model (if appropriate) # find replicates and collapse to means and pool variances. # Transform unique x locations and knots. if (out$correlation.model) { out$y <- Krig.cor.Y(out, verbose = verbose) } out2 <- Krig.transform.xY(out, knots, verbose = verbose) out <- c(out, out2) # NOTE: knots have been transformed after this step ############################################################# # Figure out what to do ############################################################# # # this functions works through the logic of # what has been supplied for lambda out2 <- Krig.which.lambda(out) out[names(out2)] <- out2 # Make weight matrix for observations # ( this is proportional to the inverse square root of obs covariance) # if a weight function or W has not been passed then this is # diag( out$weightsM) for W # The checks represent a limitation of this model to # the WBW type decoposition and no replicate observations. out$nondiag.W <- (!is.null(wght.function)) | (!is.null(W)) # Do not continue if there there is a nondiagonal weight matrix # and replicate observations. if (out$nondiag.W) { if (out$knot.model | out$fixed.model) { stop("Non diagonal weight matrix for observations not supported\nwith knots or fixed lambda.") } if (!is.na(out$shat.pure.error)) { stop("Non diagonal weight matrix not implemented with replicate locations") } } # make weight matrix and its square root having passed checks out <- c(out, Krig.make.W(out, verbose = verbose)) ######################################################## # You have reached the Engines where the actual computing happens! ######################################################## # Do the intensive linear algebra to find the solutions # this is where all the heavy lifting happens. # # Note that all the information is passed as a list # including arguments to the cholesky decomposition # used within Krig.engine.fixed # # The results are saved in the component matrices # # if method=='user' then just evaluate at single lambda # fixed here means a fixed lambda # # For fixed lambda the decompositions with and without knots # are surprisingly similar and so are in one engine. ########################################################### if (out$fixed.model) { out$matrices <- Krig.engine.fixed(out, verbose = verbose) # The trace of A matrix in fixed lambda case is not easily computed # so set this to NA. out$eff.df <- NA } # # alternative are # matrix decompositions suitable for # evaluation at many lambdas to facilitate GCV/REML estimates etc. # if (!out$fixed.model) { if (out$knot.model) { # the knot model engine out$matrices <- Krig.engine.knots(out, verbose = verbose) out$pure.ss <- out$matrices$pure.ss } else { # standard engine following the basic computations for thin plate splines out$matrices <- Krig.engine.default(out, verbose = verbose) } } # # store basic information about decompositions out$nt <- out$matrices$nt out$np <- out$matrices$np out$decomp <- out$matrices$decomp # # Now determine a logical vector to indicate coefficients tied to the # the 'spatial drift' i.e. the fixed part of the model # that is not due to the Z covariates. # NOTE that the spatial drift coefficients must be the first columns of the # M matrix if (is.null(out$Z)) { out$ind.drift <- rep(TRUE, out$nt) } else { mZ <- ncol(out$ZM) out$ind.drift <- c(rep(TRUE, out$nt - mZ), rep(FALSE, mZ)) } if (verbose) { cat("null df: ", out$nt, "drift df: ", sum(out$ind.drift), fill = TRUE) } ######################### # End of engine block ######################### ################################################# # Do GCV and REML search over lambda if not fixed or if GCV variable is TRUE # gcv.Krig, not named well, also does a search over likelihood for lambda. ################################################# if (!out$fixed.model | out$GCV) { if (verbose) { cat("call to gcv.Krig", fill = TRUE) } gcv.out <- gcv.Krig(out, nstep.cv = nstep.cv, verbose = verbose, cost = out$cost, offset = out$offset, give.warnings=FALSE) out$gcv.grid <- gcv.out$gcv.grid # save a handy summary table of the search results out$lambda.est <- gcv.out$lambda.est out$warningTable<- gcv.out$warningTable if( verbose){ cat("summaries from grid search/optimization", fill=TRUE) print(out$lambda.est) print(out$warningTable) } if( give.warnings){ #NOTE: only print out grid search warning forthe method of interest. printGCVWarnings( gcv.out$warningTable, method=method) } # assign the preferred lambda either from GCV/REML/MSE or the user value # NOTE: gcv/reml can be done but the estimate is # still evaluted at the passed user values of lambda (or df) # If df is passed need to calculate the implied lambda value if (out$method != "user") { out$lambda <- gcv.out$lambda.est[out$method, 1] out$eff.df <- out$lambda.est[out$method, 2] } else { if (!is.na(out$eff.df)) { out$lambda <- Krig.df.to.lambda(out$eff.df, out$matrices$D) } else { out$eff.df <- Krig.ftrace(out$lambda, out$matrices$D) } } } ########################## # end GCV/REML block ########################## # # Now we clean up what has happened and stuff # information into output object. # ########################################## # find coefficients at prefered lambda # and evaluate the solution at observations ########################################## # pass replicate group means -- no need to recalculate these. out2 <- Krig.coef(out, yM = out$yM, verbose = verbose) out <- c(out, out2) ####################################################################### # fitted values and residuals and predicted values for full model and # also on the null space (fixed # effects). But be sure to do this at the nonmissing x's. ################################################################## out$fitted.values <- predict.Krig(out, x = out$x, Z = out$Z, eval.correlation.model = FALSE) out$residuals <- out$y - out$fitted.values # # this is just M%*%d note use of do.call using function name Tmatrix <- do.call(out$null.function.name, c(out$null.args, list(x = out$x, Z = out$Z))) out$fitted.values.null <- as.matrix(Tmatrix) %*% out$d # # verbose block if (verbose) { cat("residuals", out$residuals, fill = TRUE) } # # find various estimates of sigma and rho out2 <- Krig.parameters(out) out <- c(out, out2) ################################################ # assign the 'best' model as a default choice # either use the user supplied values or the results from # optimization ################################################ passed.sigma2 <- (!is.na(out$sigma2)) if (out$method == "user" & passed.sigma2) { out$best.model <- c(out$lambda, out$sigma2, out$rho) } else { # in this case lambda is from opt. or supplied by user out$best.model <- c(out$lambda, out$shat.MLE^2, out$rhohat) } # Note: values in best.model are used in subsquent functions as the choice # for these parameters! # set class class(out) <- c("Krig") return(out) } # fields, Tools for spatial data # Copyright 2015, Institute for Mathematics Applied Geosciences # University Corporation for Atmospheric Research # Licensed under the GPL -- www.gpl.org/licenses/gpl.html Krig.check.xY <- function(x, Y, Z, weights, na.rm, verbose = FALSE) { # # check for missing values in Y or X. # # save logical indicating where there are NA's # and check for NA's # ind <- is.na(Y) if (any(ind) & !na.rm) { stop("Need to remove missing values or use: na.rm=TRUE in the call") } # # coerce x to be a matrix x <- as.matrix(x) # # coerce Y to be a vector # Y <- as.matrix(Y) if (ncol(Y) != 1) { stop("Krig can not handle matrix Y data. See mKrig.") } # #default weights ( reciprocal variance of errors). # if (is.null(weights)) weights <- rep(1, length(Y)) # # check that dimensions agree # if (length(Y) != nrow(x)) { stop(" length of y and number of rows of x differ") } if (length(Y) != length(weights)) { stop(" length of y and weights differ") } # if Z is not NULL coerce to be a matrix # and check # of rows if (verbose) { print(Z) } if (!is.null(Z)) { if (!is.matrix(Z)) { Z <- matrix(c(Z), ncol = 1) } if (length(Y) != nrow(Z)) { stop(" length of y and number of rows of Z differ") } } # if NAs can be removed then remove them and warn the user if (na.rm) { ind <- is.na(Y) if(all(ind)){ stop("Oops! All Y values are missing!") } if (any(ind)) { Y <- Y[!ind] x <- as.matrix(x[!ind, ]) if (!is.null(Z)) { Z <- Z[!ind, ] } weights <- weights[!ind] } } # # check for NA's in x matrix -- there should not be any ! if (any(c(is.na(x)))) { stop(" NA's in x matrix") } # # check for NA's in Z matrix if (!is.null(Z)) { if (any(c(is.na(Z)))) { stop(" NA's in Z matrix") } } # # verbose block if (verbose) { cat("Y:", fill = TRUE) print(Y) cat("x:", fill = TRUE) print(x) cat("weights:", fill = TRUE) cat(weights, fill = TRUE) } # # save x, weights and Y w/o NAs N <- length(Y) return(list(N = N, y = Y, x = x, weights = weights, Z = Z, NA.ind = ind)) } "Krig.coef" <- function(out, lambda = out$lambda, y = NULL, yM = NULL, verbose = FALSE) { # # NOTE default value of lambda used from Krig object. # # Determine whether to collapse onto means of replicates ( using y) # if the data has been passed use as the replicate means (yM) use that. # If both y and YM are null then just use out$yM # For readability of this function, all this tortured logic happens in # Krig.ynew. # out2 <- Krig.ynew(out, y, yM) temp.yM <- out2$yM nt <- out$nt np <- out$np ndata <- ncol(temp.yM) u <- NA call.name <- out$cov.function.name if (verbose) { cat("dimension of yM in Krig.coef", fill = TRUE) print(dim(temp.yM)) } # # case when knots= unqiue x's # any lambda # if (out$decomp == "WBW") { # pad u with zeroes that corresond to null space basis functions # this makes it compatible with the DR decomposition. u <- rbind(matrix(0, nrow = out$nt, ncol = ndata), t(out$matrices$V) %*% qr.q2ty(out$matrices$qr.T, out$W2 %d*% temp.yM)) # #old code beta <- out$matrices$G %*% ((1/(1 + lambda * out$matrices$D))%d*%u) # ind <- (nt + 1):np D2 <- out$matrices$D[ind] # # note use of efficient diagonal multiply in next line temp2 <- (D2/(1 + lambda * D2)) %d*% u[ind, ] beta2 <- out$matrices$V %*% temp2 temp.c <- rbind(matrix(0, nrow = nt, ncol = ndata), beta2) temp.c <- qr.qy(out$matrices$qr.T, temp.c) temp.c <- out$W2 %d*% temp.c temp <- temp.yM - do.call(call.name, c(out$args, list(x1 = out$knots, x2 = out$knots, C = temp.c))) temp <- out$W2 %d*% temp temp.d <- qr.coef(out$matrices$qr.T, temp) } # # case with knots # any lambda # if (out$decomp == "DR") { # X is the monster matrix ... X = [ M | K] X <- cbind(do.call(out$null.function.name, c(out$null.args, list(x = out$xM, Z = out$ZM))), do.call(call.name, c(out$args, list(x1 = out$xM, x2 = out$knots)))) u <- t(out$matrices$G) %*% t(X) %*% (out$weightsM %d*% temp.yM) beta <- out$matrices$G %*% ((1/(1 + lambda * out$matrices$D)) %d*% u) temp.d <- beta[1:nt, ] temp.c <- beta[(nt + 1):np, ] temp <- X %*% out$matrices$G %*% u temp <- sum(out$weightsM * (temp.yM - temp)^2) #### ???? out2$pure.ss <- temp + out2$pure.ss } # # fixed lambda knots == unique x's # if (out$decomp == "cholesky") { if (lambda != out$matrices$lambda) { stop("New lambda can not be used with cholesky decomposition") } Tmatrix <- do.call(out$null.function.name, c(out$null.args, list(x = out$knots, Z = out$ZM))) temp.d <- qr.coef(out$matrices$qr.VT, forwardsolve(out$matrices$Mc, transpose = TRUE, temp.yM, upper.tri = TRUE)) temp.c <- forwardsolve(out$matrices$Mc, transpose = TRUE, temp.yM - Tmatrix %*% temp.d, upper.tri = TRUE) temp.c <- backsolve(out$matrices$Mc, temp.c) } # # fixed lambda with knots # if (out$decomp == "cholesky.knots") { if (lambda != out$matrices$lambda) { stop("New lambda can not be used with cholesky decomposition") } # form K matrix K <- do.call(call.name, c(out$args, list(x1 = out$xM, x2 = out$knots))) Tmatrix <- do.call(out$null.function.name, c(out$null.args, list(x = out$xM, Z = out$ZM))) wY <- out$weightsM * temp.yM temp0 <- t(K) %*% (out$weightsM * Tmatrix) temp1 <- forwardsolve(out$matrices$Mc, temp0, transpose = TRUE, upper.tri = TRUE) qr.Treg <- qr(t(Tmatrix) %*% (out$weightsM * Tmatrix) - t(temp1) %*% temp1) temp0 <- t(K) %*% wY temp3 <- t(Tmatrix) %*% wY - t(temp1) %*% forwardsolve(out$matrices$Mc, temp0, transpose = TRUE, upper.tri = TRUE) temp.d <- qr.coef(qr.Treg, temp3) temp1 <- t(K) %*% (wY - out$weightsM * (Tmatrix) %*% temp.d) temp.c <- forwardsolve(out$matrices$Mc, transpose = TRUE, temp1, upper.tri = TRUE) temp.c <- backsolve(out$matrices$Mc, temp.c) } return(list(c = temp.c, d = temp.d, shat.rep = out2$shat.rep, shat.pure.error = out2$shat.pure.error, pure.ss = out2$pure.ss)) } Krig.cor.Y <- function(obj, verbose = FALSE) { # subtract mean if (!is.na(obj$mean.obj[1])) { Y <- obj$y - predict(obj$mean.obj, obj$x) } # divide by sd if (!is.na(obj$sd.obj[1])) { Y <- Y/predict(obj$sd.obj, obj$x) } Y } Krig.Amatrix <- function(object, x0 = object$x, lambda = NULL, eval.correlation.model = FALSE, ...) { if (is.null(lambda)) { lambda <- object$lambda } M <- nrow(object$xM) N <- nrow(x0) # create output matrix out <- matrix(NA, N, M) # # loop through unique data locations predicting response # using unit vector # NOTE that the y vector has already been collapsed onto means. # for (k in 1:M) { ytemp <- rep(0, M) ytemp[k] <- 1 out[, k] <- predict(object, x = x0, yM = ytemp, lambda = lambda, eval.correlation.model = eval.correlation.model, ...) } return(out) } "Krig.df.to.lambda" <- function(df, D, guess = 1, tol = 1e-05) { if (is.list(D)) { D <- D$matrices$D } if (is.na(df)) return(NA) if (df < sum(D == 0)) { warning("df too small to match with a lambda value") return(NA) } if (df > length(D)) { warning(" df too large to match a lambda value") return(NA) } l1 <- guess for (k in 1:25) { tr <- sum(1/(1 + l1 * D)) if (tr <= df) break l1 <- l1 * 4 } l2 <- guess for (k in 1:25) { tr <- sum(1/(1 + l2 * D)) if (tr >= df) break l2 <- l2/4 } info <- list(D = D, df = df, N = length(D)) out <- bisection.search(log(l1), log(l2), Krig.fdf, tol = tol, f.extra = info)$x +exp(out) } "Krig.engine.default" <- function(out, verbose = FALSE) { # # matrix decompositions for computing estimate # # Computational outline:( '.' is used for subscript) # # The form of the estimate is # fhat(x) = sum phi.j(x) d.j + sum psi.k(x) c.k # # the {phi.j} are the fixed part of the model usually low order polynomials # and is also referred to as spatial drift. # # the {psi.k} are the covariance functions evaluated at the unique observation # locations or 'knots'. If xM.k is the kth unique location psi.k(x)= k(x, xM.k) # xM is also out$knots in the code below. # # the goal is find decompositions that facilitate rapid solution for # the vectors d and c. The eigen approach below was identified by # Wahba, Bates Wendelberger and is stable even for near colinear covariance # matrices. # This function does the main computations leading to the matrix decompositions. # With these decompositions the coefficients of the solution are found in # Krig.coef and the GCV and REML functions in Krig.gcv. # # First is an outline calculations with equal weights # T the fixed effects regression matrix T.ij = phi.j(xM.i) # K the covariance matrix for the unique locations # From the spline literature the solution solves the well known system # of two eqautions: # -K( yM - Td - Kc) + lambda *Kc = 0 # -T^t ( yM-Td -Kc) = 0 # # Mulitple through by K inverse and substitute, these are equivalent to # # -1- -( yM- Td - Kc) + lambda c = 0 # -2- T^t c = 0 # # # A QR decomposition is done for T= (Q.1,Q.2)R # by definition Q.2^T T =0 # # equation -2- can be thought of as a constraint # with c= Q.2 beta2 # substitute in -1- and multiply through by Q.2^T # # -Q.2^T yM + Q.2^T K Q.2 beta2 + lambda beta2 = 0 # # Solving # beta2 = {Q.2^T K Q.2 + lambda I )^ {-1} Q.2^T yM # # and so one sloves this linear system for beta2 and then uses # c= Q.2 beta2 # to determine c. # # eigenvalues and eigenvectors are found for M= Q.2^T K Q.2 # M = V diag(eta) V^T # and these facilitate solving this system efficiently for # many different values of lambda. # create eigenvectors, D = (0, 1/eta) # and G= ( 0,0) %*% diag(D) # ( 0,V) # so that # # beta2 = G%*% ( 1/( 1+ lambda D)) %*% u # with # # u = (0, V Q.2^T W2 yM) # # Throughout keep in mind that M has smaller dimension than G due to # handling the null space. # # Now solve for d. # # From -1- Td = yM - Kc - lambda c # (Q.1^T) Td = (Q.1^T) ( yM- Kc) # # ( lambda c is zero by -2-) # # so Rd = (Q.1^T) ( yM- Kc) # use qr functions to solve triangular system in R to find d. # #---------------------------------------------------------------------- # What about errors with a general precision matrix, W? # # This is an important case because with replicated observations the # problem will simplify into a smoothing problem with the replicate group # means and unequal measurement error variances. # # the equations to solve are # -KW( yM - Td - Kc) + lambda *Kc = 0 # -T^t W( yM-Td -Kc) =0 # # Multiple through by K inverse and substitute, these are equivalent to # # -1b- -W( yM- Td - Kc) + lambda c = 0 # -2b- (WT)^t c = 0 # # Let W2 be the symmetric square root of W, W= W2%*% W2 # and W2.i be the inverse of W2. # # -1c- -( W2 yM - W2 T d - (W2 K W2) W2.ic) + lambda W2.i c = 0 # -2c- (W2T)^t W2c = 0 Tmatrix <- do.call(out$null.function.name, c(out$null.args, list(x = out$xM, Z = out$ZM))) if (verbose) { cat(" Model Matrix: spatial drift and Z", fill = TRUE) print(Tmatrix) } # Tmatrix premultiplied by sqrt of wieghts Tmatrix <- out$W2 %d*% Tmatrix qr.T <- qr(Tmatrix) if( qr.T$rank < ncol( Tmatrix)){ stop("Regression matrix for fixed part of model is colinear")} # #verbose block if (verbose) { cat("first 5 rows of qr.T$qr", fill = TRUE) print(qr.T$qr[1:5, ]) } # # find Q_2 K Q_2^T where K is the covariance matrix at the knot points # tempM <- t(out$W2 %d*% do.call(out$cov.function.name, c(out$args, list(x1 = out$knots, x2 = out$knots)))) tempM <- out$W2 %d*% tempM tempM <- qr.yq2(qr.T, tempM) tempM <- qr.q2ty(qr.T, tempM) np <- nrow(out$knots) nt <- (qr.T$rank) if (verbose) { cat("np, nt", np, nt, fill = TRUE) } # # Full set of decompositions for # estimator for nonzero lambda tempM <- eigen(tempM, symmetric = TRUE) D <- c(rep(0, nt), 1/tempM$values) # # verbose block if (verbose) { cat("eigen values:", fill = TRUE) print(D) } # # Find the transformed data vector used to # evaluate the solution, GCV, REML at different lambdas # u <- c(rep(0, nt), t(tempM$vectors) %*% qr.q2ty(qr.T, c(out$W2 %d*% out$yM))) if (verbose) { cat("u vector:", fill = TRUE) print(u) } # # return(list(D = D, qr.T = qr.T, decomp = "WBW", V = tempM$vectors, u = u, nt = nt, np = np)) } "Krig.engine.fixed" <- function(out, verbose = FALSE, lambda = NA) { # # Model: # Y_k= f_k + e_k # var( e_k) = sigma^2/W_k # # f= Td + h # T is often a low order polynomial # E(h)=0 cov( h)= rho *K # # let M = (lambda W^{-1} + K) # the surface estimate depends on coefficient vectors d and c # The implementation in Krig/fields is that K are the # cross covariances among the observation locations and the knot locations # H is the covariance among the knot locations. # Thus if knot locs == obs locs we have the obvious collapse to # the simpler form for M above. # # With M in hand ... # # set # d = [(T)^t M^{-1} (T)]^{-1} (T)^t M^{-1} Y # this is just the generalized LS estimate for d # # lambda= sigma**2/rho # the estimate for c is # c= M^{-1}(y - Td) # # This particular numerical strategy takes advantage of # fast Cholesky factorizations for positive definite matrices # and also provides a seamless framework for sparse matrix implementations # if (is.na(lambda)) lambda <- out$lambda call.name <- out$cov.function.name if (!out$knot.model) { #################################################### # case of knot locs == obs locs out$knots == out$xM #################################################### # create T matrix Tmatrix <- do.call(out$null.function.name, c(out$null.args, list(x = out$knots, Z = out$ZM))) if (verbose) { cat("Tmatrix:", fill = TRUE) print(Tmatrix) } np <- nrow(out$knots) nt <- ncol(Tmatrix) # form K tempM <- do.call(call.name, c(out$args, list(x1 = out$knots, x2 = out$knots))) # form M diag(tempM) <- (lambda/out$weightsM) + diag(tempM) # # find cholesky factor # tempM = t(Mc)%*% Mc # V= Mc^{-T} # call cholesky but also add in the args supplied in Krig object. Mc <- do.call("chol", c(list(x = tempM), out$chol.args)) VT <- forwardsolve(Mc, x = Tmatrix, transpose = TRUE, upper.tri = TRUE) qr.VT <- qr(VT) # find GLS covariance matrix of null space parameters. Rinv <- solve(qr.R(qr.VT)) Omega <- Rinv %*% t(Rinv) # # now do generalized least squares for d # and then find c. d.coef <- qr.coef(qr.VT, forwardsolve(Mc, transpose = TRUE, out$yM, upper.tri = TRUE)) if (verbose) { print(d.coef) } c.coef <- forwardsolve(Mc, transpose = TRUE, out$yM - Tmatrix %*% d.coef, upper.tri = TRUE) c.coef <- backsolve(Mc, c.coef) # return all the goodies, include lambda as a check because # results are meaningless for other values of lambda return(list(qr.VT = qr.VT, d = c(d.coef), c = c(c.coef), Mc = Mc, decomp = "cholesky", nt = nt, np = np, lambda.fixed = lambda, Omega = Omega)) } else { #################################################### # case of knot locs != obs locs #################################################### # create weighted T matrix Tmatrix <- do.call(out$null.function.name, c(out$null.args, list(x = out$xM, Z = out$ZM))) nt <- ncol(Tmatrix) np <- nrow(out$knots) + nt # form H H <- do.call(call.name, c(out$args, list(x1 = out$knots, x2 = out$knots))) # form K matrix K <- do.call(call.name, c(out$args, list(x1 = out$xM, x2 = out$knots))) # Mc <- do.call("chol", c(list(x = t(K) %*% (out$weightsM * K) + lambda * H), out$chol.args)) # weighted Y wY <- out$weightsM * out$yM temp0 <- t(K) %*% (out$weightsM * Tmatrix) temp1 <- forwardsolve(Mc, temp0, transpose = TRUE, upper.tri = TRUE) qr.Treg <- qr(t(Tmatrix) %*% (out$weightsM * Tmatrix) - t(temp1) %*% temp1) temp0 <- t(K) %*% wY temp3 <- t(Tmatrix) %*% wY - t(temp1) %*% forwardsolve(Mc, temp0, transpose = TRUE, upper.tri = TRUE) d.coef <- qr.coef(qr.Treg, temp3) temp1 <- t(K) %*% (wY - out$weightsM * (Tmatrix) %*% d.coef) c.coef <- forwardsolve(Mc, transpose = TRUE, temp1, upper.tri = TRUE) c.coef <- backsolve(Mc, c.coef) list(qr.Treg = qr.Treg, d = c(d.coef), c = c(c.coef), Mc = Mc, decomp = "cholesky.knots", nt = nt, np = np, lambda.fixed = lambda, Omega = NA) } # # should not get here. # } "Krig.engine.knots" <- function(out, verbose = FALSE) { # # matrix decompostions for computing estimate when # knots are present # QR decomposition of null space regression matrix Tmatrix <- do.call(out$null.function.name, c(out$null.args, list(x = out$xM, Z = out$ZM))) qr.T <- qr(c(sqrt(out$weightsM)) * Tmatrix) nt <- ncol(Tmatrix) np <- nrow(out$knots) + nt if (verbose) { cat(nt, np, fill = TRUE) } # H is the penalty matrix in the ridge regression format # first part is zero because no penalty on part of estimator # spanned by T matrix H <- matrix(0, ncol = np, nrow = np) H[(nt + 1):np, (nt + 1):np] <- do.call(out$cov.function.name, c(out$args, list(x1 = out$knots, x2 = out$knots))) # X is the monster ... X <- cbind(do.call(out$null.function.name, c(out$null.args, list(x = out$xM, Z = out$ZM))), do.call(out$cov.function.name, c(out$args, list(x1 = out$xM, x2 = out$knots)))) if (verbose) { cat("first lines of X", fill = TRUE) print(X[1:5, ]) } # sqrt(weightsM) * X XTwX <- t(X * out$weightsM) %*% X # # then B= G(I-D)G^T # New version of diagonalize may be more stable out2 <- fields.diagonalize2((XTwX), H) D <- out2$D if (verbose) { cat("D;", fill = TRUE) cat(out2$D, fill = TRUE) } # # G should satisfy: # t(G) %*% XTwX %*%G = I and t(G)%*%H%*%G = D # # and # solve( XtwX + lambda H) = G%*%diag( 1/(1+ lambda*D))%*%t(G) # # save XG to avoid an extra multiplication. XG <- X %*% out2$G u <- t(XG) %*% (out$weightsM * out$yM) # # adjust pure sum of squares to be that due to replicates # plus that due to fitting all the basis functions without # any smoothing. This will be the part of the RSS that does not # change as lambda is varied ( see e.g. gcv.Krig) # pure.ss <- sum(out$weightsM * (out$yM - XG %*% u)^2) + out$pure.ss if (verbose) { cat("total pure.ss from reps, reps + knots ", fill = TRUE) print(out$pure.ss) print(pure.ss) } # # in this form the solution is (d,c)= G( I + lambda D)^-1 u # fitted.values = X ( d,c) # # output list # last D eigenvalues are zero due to null space of penalty # OLD code: D[(np - nt + 1):np] <- 0 # this should be enforced to machine precision from diagonalization. list(u = u, D = D, G = out2$G, qr.T = qr.T, decomp = "DR", nt = nt, np = np, pure.ss = pure.ss) } "Krig.fdf" <- function(llam, info) { sum(1/(1 + exp(llam) * info$D)) - info$df } "Krig.fgcv" <- function(lam, obj) { # # GCV that is leave-one-group out # lD <- obj$matrices$D * lam RSS <- sum(((obj$matrices$u * lD)/(1 + lD))^2) MSE <- RSS/length(lD) if ((obj$N - length(lD)) > 0) { MSE <- MSE + obj$pure.ss/(obj$N - length(lD)) } trA <- sum(1/(1 + lD)) den <- (1 - (obj$cost * (trA - obj$nt - obj$offset) + obj$nt)/length(lD)) # If the denominator is negative then flag this as a bogus case # by making the GCV function 'infinity' # ifelse(den > 0, MSE/den^2, 1e20) } "Krig.fgcv.model" <- function(lam, obj) { lD <- obj$matrices$D * lam MSE <- sum(((obj$matrices$u * lD)/(1 + lD))^2)/length(lD) trA <- sum(1/(1 + lD)) den <- (1 - (obj$cost * (trA - obj$nt - obj$offset) + obj$nt)/length(lD)) ifelse(den > 0, obj$shat.pure.error^2 + MSE/den^2, 1e20) } "Krig.fgcv.one" <- function(lam, obj) { lD <- obj$matrices$D * lam RSS <- obj$pure.ss + sum(((obj$matrices$u * lD)/(1 + lD))^2) trA <- sum(1/(1 + lD)) den <- 1 - (obj$cost * (trA - obj$nt - obj$offset) + obj$nt)/obj$N # If the denominator is negative then flag this as a bogus case # by making the GCV function 'infinity' # ifelse(den > 0, (RSS/obj$N)/den^2, 1e+20) } "Krig.flplike" <- function(lambda, obj) { # - log profile likelihood for lambda # See section 3.4 from Nychka Spatial Processes as Smoothers paper. # for equation and derivation D2 <- obj$matrices$D[obj$matrices$D > 0] u2 <- obj$matrices$u[obj$matrices$D > 0] lD <- D2 * lambda N2 <- length(D2) # MLE estimate of rho for fixed lambda rho.MLE <- (sum((D2 * (u2)^2)/(1 + lD)))/N2 # # ln determinant of K + lambda*WI lnDetCov <- -sum(log(D2/(1 + lD))) -1 * (-N2/2 - log(2 * pi) * (N2/2) - (N2/2) * log(rho.MLE) - (1/2) * lnDetCov) } "Krig.fs2hat" <- function(lam, obj) { lD <- obj$matrices$D * lam RSS <- obj$pure.ss + sum(((obj$matrices$u * lD)/(1 + lD))^2) den <- obj$N - (sum(1/(1 + lD)) + obj$offset) if (den < 0) { return(NA) } else { RSS/(den) } } "Krig.ftrace" <- function(lam, D) { sum(1/(1 + lam * D)) } "Krig.make.W" <- function(out, verbose = FALSE) { if (verbose) { cat("W", fill = TRUE) print(out$W) } if (out$nondiag.W) { # # create W from scratch or grab it from passed object if (is.null(out$W)) { if (verbose) { print(out$wght.function.name) } W <- do.call(out$wght.function.name, c(list(x = out$xM), out$wght.args)) # adjust W based on diagonal weight terms # W <- sqrt(out$weightsM) * t(sqrt(out$weightsM) * W) } else { W <- out$W } # # symmetric square root temp <- eigen(W, symmetric = TRUE) W2 <- temp$vectors %*% diag(sqrt(temp$values)) %*% t(temp$vectors) return(list(W = W, W2 = W2)) } else { # # These are created only for use with default method to stay # consistent with nondiagonal elements. if (out$fixed.model) { return(list(W = NULL, W2 = NULL)) } else { return(list(W = out$weightsM, W2 = sqrt(out$weightsM))) } } } "Krig.make.Wi" <- function(out, verbose = FALSE) { # # If a weight matrix has been passed use it. # # Note that in either case the weight matrix assumes that # replicate observations have been collapses to the means. # if (out$nondiag.W) { temp <- eigen(out$W, symmetric = TRUE) Wi <- temp$vectors %*% diag(1/(temp$values)) %*% t(temp$vectors) W2i <- temp$vectors %*% diag(1/sqrt(temp$values)) %*% t(temp$vectors) return(list(Wi = Wi, W2i = W2i)) } else { # # These are created only for use with default method to stay # consistent with nondiagonal elements. return(list(Wi = 1/out$weightsM, W2i = 1/sqrt(out$weightsM))) } } "Krig.make.u" <- function(out, y = NULL, yM = NULL, verbose = FALSE) { # # Determine whether to collapse onto means of replicates ( using y) # if the data has been passed use as the replicate means (yM) use that. # If both y and YM are null then just use out$yM # For readability of this function, all this tortured logic happens in # Krig.ynew. # out2 <- Krig.ynew(out, y, yM) temp.yM <- out2$yM nt <- out$nt np <- out$np ndata <- ncol(temp.yM) u <- NA call.name <- out$cov.function.name if (verbose) { cat("dimension of yM in Krig.coef", fill = TRUE) print(dim(temp.yM)) } # # case when knots= unqiue x's # any lambda # if (out$decomp == "WBW") { # pad u with zeroes that corresond to null space basis functions # this makes it compatible with the DR decomposition. u <- rbind(matrix(0, nrow = out$nt, ncol = ndata), t(out$matrices$V) %*% qr.q2ty(out$matrices$qr.T, out$W2 %d*% temp.yM)) } # # case with knots # any lambda # if (out$decomp == "DR") { # X is the monster matrix ... X = [ M | K] X <- cbind(do.call(out$null.function.name, c(out$null.args, list(x = out$xM, Z = out$ZM))), do.call(call.name, c(out$args, list(x1 = out$xM, x2 = out$knots)))) u <- t(out$matrices$G) %*% t(X) %*% (out$weightsM %d*% temp.yM) } return(list(u = u, shat.rep = out2$shat.rep, shat.pure.error = out2$shat.pure.error, pure.ss = out2$pure.ss)) } Krig.null.function <- function(x, Z = NULL, drop.Z = FALSE, m) { # default function to create matrix for fixed part of model # x, Z, and drop.Z are required # Note that the degree of the polynomial is by convention (m-1) # returned matrix must have the columns from Z last! # if (is.null(Z) | drop.Z) { return(fields.mkpoly(x, m = m)) } else { return(cbind(fields.mkpoly(x, m = m), Z)) } } "Krig.parameters" <- function(obj, mle.calc = obj$mle.calc) { # if nondiag W is supplied then use it. # otherwise assume a diagonal set of weights. # # NOTE: calculation of shat involves full set of obs # not those colllapsed to the mean. if (obj$nondiag.W) { shat.GCV <- sqrt(sum((obj$W2 %d*% obj$residuals)^2)/(length(obj$y) - obj$eff.df)) } else { shat.GCV <- sqrt(sum((obj$weights * obj$residuals^2)/(length(obj$y) - obj$eff.df))) } if (mle.calc) { rho.MLE <- sum(c(obj$c) * c(obj$yM))/obj$N # set rho estimate to zero if negtive. Typically this # is an issue of machine precision and very small negative value. rho.MLE <- ifelse(rho.MLE < 0, 0, rho.MLE) # commented out code for debugging ... # if( rho.MLE< 0) { # stop('problems computing rho.MLE')} # commented out is the REML estimate -- lose null space df because of # the restiction to orthogonal subspace of T. # rhohat<- rho.MLE <- sum(obj$c * obj$yM)/(obj$N - obj$nt) # . rhohat <- rho.MLE shat.MLE <- sqrt(rho.MLE * obj$lambda) } else { rhohat <- rho.MLE <- shat.MLE <- NA } list(shat.GCV = shat.GCV, rho.MLE = rho.MLE, shat.MLE = shat.MLE, rhohat = rhohat) } "Krig.replicates" <- function(out=NULL, x,y, Z=NULL, weights=rep( 1, length(y)), verbose = FALSE) { if( is.null(out)){ out<- list( x=x, y=y, N= length(y), Z=Z, weights=weights) } rep.info <- cat.matrix(out$x) if (verbose) { cat("replication info", fill = TRUE) print(rep.info) } # If no replicates are found then reset output list to reflect this condition uniquerows <- !duplicated(rep.info) if (sum(uniquerows) == out$N) { shat.rep <- NA shat.pure.error <- NA pure.ss <- 0 # coerce 'y' data vector as a single column matrix yM <- as.matrix(out$y) weightsM <- out$weights xM <- as.matrix(out$x[uniquerows, ]) # coerce ZM to matrix if (!is.null(out$Z)) { ZM <- as.matrix(out$Z) } else { ZM <- NULL } } # collapse over spatial replicates else { rep.info.aov <- fast.1way(rep.info, out$y, out$weights) shat.pure.error <- sqrt(rep.info.aov$MSE) shat.rep <- shat.pure.error # copy replicate means as a single column matrix yM <- as.matrix(rep.info.aov$means) weightsM <- rep.info.aov$w.means xM <- as.matrix(out$x[uniquerows, ]) # choose some Z's for replicate group means if (!is.null(out$Z)) { ZM <- as.matrix(out$Z[uniquerows, ]) } else { ZM <- NULL } pure.ss <- rep.info.aov$SSE if (verbose) print(rep.info.aov) } return(list(yM = yM, xM = xM, ZM = ZM, weightsM = weightsM, uniquerows = uniquerows, shat.rep = shat.rep, shat.pure.error = shat.pure.error, pure.ss = pure.ss, rep.info = rep.info)) } Krig.transform.xY <- function(obj, knots, verbose = FALSE) { # find all replcates and collapse to unique locations and mean response # and pooled variances and weights. out <- Krig.replicates(obj, verbose = verbose) if (verbose) { cat("yM from Krig.transform.xY", fill = TRUE) print(out$yM) } # # save information about knots. if (is.na(knots[1])) { out$knots <- out$xM out$mle.calc <- TRUE out$knot.model <- FALSE } else { out$mle.calc <- FALSE out$knot.model <- TRUE out$knots <- knots } # # scale x, knot locations and save transformation info # out$xM <- transformx(out$xM, obj$scale.type, obj$x.center, obj$x.scale) out$transform <- attributes(out$xM) out$knots <- scale(out$knots, center = out$transform$x.center, scale = out$transform$x.scale) # # #verbose block # if (verbose) { cat("transform", fill = TRUE) print(out$transform) } if (verbose) { cat("knots in transformed scale", fill = TRUE) print(knots) } return(out) } "Krig.updateY" <- function(out, Y, verbose = FALSE, yM = NA) { #given new Y values but keeping everything else the same finds the #new u vector and pure error SS associated with the Kriging estimate # the steps are # 1) standardize if neccesary # 2) find means, in the case of replicates # 3) based on the decomposition, multiply a weighted version of yM # with a large matrix extracted from teh Krig object out. # # The out object may be large. This function is written so that out is # #not changed with the hope that it is not copied locally in this #function . # All of the output is accumulated in the list out2 #STEP 1 # # transform Y by mean and sd if needed # if (out$correlation.model) { Y <- (Y - predict(out$mean.obj, out$x))/predict(out$sd.obj, out$x) if (verbose) print(Y) } # #STEP 2 if (is.na(yM[1])) { out2 <- Krig.ynew(out, Y) } else { out2 <- list(yM = yM, shat.rep = NA, shat.pure.error = NA, pure.ss = NA) } if (verbose) { print(out2) } # #STEP3 # # Note how matrices are grabbed from the Krig object # if (verbose) cat("Type of decomposition", out$decomp, fill = TRUE) if (out$decomp == "DR") { # # u <- t(out$matrices$G) %*% t(out$matrices$X) %*% (out$weightsM * out2$yM) # # find the pure error sums of sqaures. # temp <- out$matrices$X %*% out$matrices$G %*% u temp <- sum((out$W2 %d*% (out2$yM - temp))^2) out2$pure.ss <- temp + out2$pure.ss if (verbose) { cat("pure.ss", fill = TRUE) print(temp) print(out2$pure.ss) } } ##### ##### end DR decomposition block ##### #### #### begin WBW decomposition block #### if (out$decomp == "WBW") { #### decomposition of Q2TKQ2 u <- c(rep(0, out$nt), t(out$matrices$V) %*% qr.q2ty(out$matrices$qr.T, out$W2 %d*% out2$yM)) if (verbose) cat("u", u, fill = TRUE) # # pure error in this case from 1way ANOVA # if (verbose) { cat("pure.ss", fill = TRUE) print(out2$pure.ss) } } ##### ##### end WBW block ##### out2$u <- u out2 } Krig.which.lambda <- function(out) { # # determine the method for finding lambda # Note order # default is to do 'gcv/REML' out2 <- list() # copy all all parameters to out2 just to make this # easier to read. out2$method <- out$method out2$lambda.est <- NA out2$lambda <- out$lambda out2$eff.df <- out$eff.df out2$rho <- out$rho out2$sigma2 <- out$sigma2 if (!is.na(out2$lambda) | !is.na(out2$eff.df)) { # # this indicates lambda has been supplied and leads to # the cholesky type computational approaches # -- but only if GCV is FALSE # out2$method <- "user" } out2$GCV <- out$GCV if (!is.na(out2$eff.df)) { # # this indicates df has been supplied and needs # GCV to be true to compute the lambda # that matches the df # out2$GCV <- TRUE } if (!is.na(out2$rho) & !is.na(out2$sigma2)) { out2$method <- "user" out2$lambda <- out2$sigma2/out2$rho } # # NOTE: method='user' means that a value of lambda has been supplied # and so GCV etc to determine lambda is not needed. # gcv TRUE means that the decompositions will be done to # evaluate the estimate at arbitrary lambda (and also be # able to compute the effective degrees of freedom). # # The fixed lambda calculations are very efficient but # do not make it feasible for GCV/REML or effective degrees of # freedom calculations. # out2$fixed.model <- (out2$method == "user") & (!out2$GCV) # return(out2) } "Krig.ynew" <- function(out, y = NULL, yM = NULL) { # # calculates the collapsed y (weighted) mean vector based on the # X matrix and weights from the out object. # or just passes through the collapsed mean data if passed. # # # If there are no replicated obs. then return the full vector # pure error ss is zero # shat.rep <- NA shat.pure.error <- NA pure.ss <- 0 # if no y's are given then it is assumed that one should use the # yM from the original data used to create the Krig object if (is.null(yM) & is.null(y)) { yM <- out$yM } # # case when yM is passed no calculations are needed # if (!is.null(yM)) { return(list(yM = as.matrix(yM), shat.rep = NA, shat.pure.error = NA, pure.ss = 0)) } # # no reps case # if (length(unique(out$rep.info)) == out$N) { return(list(yM = as.matrix(y), shat.rep = NA, shat.pure.error = NA, pure.ss = 0)) } # # check that y is the right length # if (length(y) != out$N) { stop(" the new y vector is the wrong length!") } # # case when full y data is passed and replicate means need to be found # if (length(unique(out$rep.info)) < out$N) { # # calculate means by pooling Replicated obseravations but use the # the right weighting. # rep.info.aov <- fast.1way(out$rep.info, y, out$weights)[c("means", "MSE", "SSE")] shat.pure.error <- sqrt(rep.info.aov$MSE) shat.rep <- shat.pure.error return(list(yM = rep.info.aov$means, shat.rep = shat.rep, shat.pure.error = shat.pure.error, pure.ss = rep.info.aov$SSE)) } } fields/R/mKrig.family.R0000644000175100001440000002322413114551064014416 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 mKrig.trace <- function(object, iseed, NtrA) { set.seed(iseed) # if more MonteCarlo samples > number of data points just # find A exactly using np calls to predict. np<- object$np if (NtrA >= object$np) { Ey <- diag(1, np) NtrA <- np hold <- diag(predict.mKrig(object, ynew = Ey, collapseFixedEffect=FALSE)) trA.info<- NA trA.est <- sum(hold) } else { # if fewer tests then use random trace method # find fitted.values for iid N(0,1) 'data' to calculate the # the Monte Carlo estimate of tr A(lambda) # basically repeat the steps above but take some # short cuts because we only need fitted.values # create random normal 'data' Ey <- matrix(rnorm(np * NtrA), nrow = np, ncol = NtrA) trA.info <- colSums(Ey * (predict.mKrig(object, ynew = Ey, collapseFixedEffect=FALSE))) trA.est <- mean(trA.info) } if (NtrA < np) { MSE<-(sum(object$residuals^2)/np) GCV <- MSE/(1 - trA.est /np)^2 GCV.info <- MSE/( 1 - trA.info/np)^2 } else{ GCV<- NA GCV.info <- NA } return( list(trA.info = trA.info, eff.df = trA.est, GCV= GCV, GCV.info=GCV.info) ) } mKrig.coef <- function(object, y, collapseFixedEffect=TRUE) { # given new data y and the matrix decompositions in the # mKrig object find coefficients d and c. # d are the coefficients for the fixed part # in this case hard coded for a low order polynomial # c are coefficients for the basis functions derived from the # covariance function. # # see mKrig itself for more comments on the linear algebra # # Note that all these expressions make sense if y is a matrix # of several data sets and one is solving for the coefficients # of all of these at once. In this case d.coef and c.coef are matrices # # generalized least squares for d if( any(is.na(y))){ stop("mKrig can not omit missing values in observation vecotor") } if( object$nt>0){ d.coef <- as.matrix(qr.coef(object$qr.VT, forwardsolve(object$Mc, transpose = TRUE, y, upper.tri = TRUE))) d.coefMeans<- rowMeans( d.coef) if( collapseFixedEffect){ d.coef<- matrix( d.coefMeans, ncol=ncol(d.coef), nrow= nrow( d.coef)) } # residuals from subtracting off fixed part # of model as m-1 order polynomial resid <- y - object$Tmatrix %*% d.coef } else{ d.coef<- NULL resid <- y } # and now find c. c.coef <- forwardsolve(object$Mc, transpose = TRUE, resid, upper.tri = TRUE) c.coef <- as.matrix(backsolve(object$Mc, c.coef)) out <- list(d = (d.coef), c = (c.coef)) return(out) } print.mKrig <- function(x, digits = 4, ...) { if (is.matrix(x$residuals)) { n <- nrow(x$residuals) NData <- ncol(x$residuals) } else { n <- length(x$residuals) NData <- 1 } c1 <- "Number of Observations:" c2 <- n if (NData > 1) { c1 <- c(c1, "Number of data sets fit:") c2 <- c(c2, NData) } c1 <- c(c1, "Degree of polynomial null space ( base model):") if(x$m !=0 ){ c2 <- c(c2, x$m - 1) } else{ c2 <- c(c2, NA) } c1 <- c(c1, "Total number of parameters in base model") c2 <- c(c2, x$nt) if (x$nZ > 0) { c1 <- c(c1, "Number of additional covariates (Z)") c2 <- c(c2, x$nZ) } if (!is.na(x$eff.df)) { c1 <- c(c1, " Eff. degrees of freedom") c2 <- c(c2, signif(x$eff.df, digits)) if (length(x$trA.info) < x$np) { c1 <- c(c1, " Standard Error of estimate: ") c2 <- c(c2, signif(sd(x$trA.info)/sqrt(length(x$trA.info)), digits)) } } c1 <- c(c1, "Smoothing parameter") c2 <- c(c2, signif(x$lambda.fixed, digits)) if (NData == 1) { c1 <- c(c1, "MLE sigma ") c2 <- c(c2, signif(x$shat.MLE, digits)) c1 <- c(c1, "MLE rho") c2 <- c(c2, signif(x$rho.MLE, digits)) } c1 <- c(c1, "Nonzero entries in covariance") c2 <- c(c2, x$nonzero.entries) sum <- cbind(c1, c2) dimnames(sum) <- list(rep("", dim(sum)[1]), rep("", dim(sum)[2])) ########### print out call and table of information cat("Call:\n") dput(x$call) print(sum, quote = FALSE) ########### assorted remarks if (NData > 1) { cat(" ", fill = TRUE) if( x$collapseFixedEffect){ cat("Estimated fixed effects pooled across replicates", fill=TRUE) } else{ cat("Estimated fixed effects found separately for each replicate", fill=TRUE) } cat("collapseFixedEffect :", x$collapseFixedEffect, fill=TRUE) } cat(" ", fill = TRUE) cat("Covariance Model:", x$cov.function, fill = TRUE) if (x$cov.function == "stationary.cov") { cat(" Covariance function: ", ifelse(is.null(x$args$Covariance), "Exponential", x$args$Covariance), fill = TRUE) } if (!is.null(x$args)) { cat(" Non-default covariance arguments and their values ", fill = TRUE) nlist <- as.character(names(x$args)) NL <- length(nlist) for (k in 1:NL) { cat(" Argument:", nlist[k], " ") if (object.size(x$args[[k]]) <= 1024) { cat("has the value(s): ", fill = TRUE) print(x$args[[k]]) } else { cat("too large to print value, size > 1K ...", fill = TRUE) } } } invisible(x) } summary.mKrig <- function(object, ...) { print.mKrig(object, ...) } predict.mKrig <- function(object, xnew = NULL, ynew = NULL, grid.list=NULL, derivative = 0, Z = NULL, drop.Z = FALSE, just.fixed = FALSE, collapseFixedEffect = object$collapseFixedEffect, ...) { # the main reason to pass new args to the covariance is to increase # the temp space size for sparse multiplications # other optional arguments that typically describe the covariance function # from mKrig are passed along in the list object$args cov.args <- list(...) # predict at observation locations by default if( !is.null(grid.list)){ xnew<- make.surface.grid(grid.list) } if (is.null(xnew)) { xnew <- object$x } if (is.null(Z) & (length(object$ind.drift) >0 )) { Z <- object$Tmatrix[, !object$ind.drift] } if (!is.null(ynew)) { coef.hold <- mKrig.coef(object, ynew, collapseFixedEffect=collapseFixedEffect) c.coef <- coef.hold$c d.coef <- coef.hold$d } else { c.coef <- object$c d.coef <- object$d } # fixed part of the model this a polynomial of degree m-1 # Tmatrix <- fields.mkpoly(xnew, m=object$m) # only do this if nt>0, i.e. there is a fixed part. # if( object$nt>0){ if (derivative == 0) { if (drop.Z | object$nZ == 0) { # just evaluate polynomial and not the Z covariate temp1 <- fields.mkpoly(xnew, m = object$m) %*% d.coef[object$ind.drift, ] } else { if( nrow( xnew) != nrow(as.matrix(Z)) ){ stop("number of rows of covariate Z is not the same as the number of locations") } temp0 <- cbind(fields.mkpoly(xnew, m = object$m),as.matrix(Z)) temp1 <- temp0 %*% d.coef } } else { if (!drop.Z & object$nZ > 0) { stop("derivative not supported with Z covariate included") } temp1 <- fields.derivative.poly(xnew, m = object$m, d.coef[object$ind.drift, ]) } if (just.fixed) { return(temp1) } } # add nonparametric part. Covariance basis functions # times coefficients. # syntax is the name of the function and then a list with # all the arguments. This allows for different covariance functions # that have been passed as their name. if (derivative == 0) { # argument list are the parameters and other options from mKrig # locations and coefficients, temp2 <- do.call(object$cov.function.name, c(object$args, list(x1 = xnew, x2 = object$knots, C = c.coef), cov.args)) } else { temp2 <- do.call(object$cov.function.name, c(object$args, list(x1 = xnew, x2 = object$knots, C = c.coef, derivative = derivative), cov.args)) } # add two parts together and coerce to vector if( object$nt>0){ return((temp1 + temp2)) } else{ return( temp2) } } fields/R/ceiling2.R0000644000175100001440000000224713114123116013554 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "ceiling2" <- function(m) { if (m < 1) return(NA) M <- 1 while (M < m) { M <- M * 2 } M } fields/R/mKrig.MLE.R0000644000175100001440000001523113114123117013543 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 mKrig.MLE <- function(x, y, weights = rep(1, nrow(x)), cov.fun="stationary.cov", cov.args = NULL, Z = NULL, par.grid = NULL, lambda = NULL, lambda.profile = TRUE, verbose = FALSE, relative.tolerance = 1e-04, ...) { #check which optimization options the covariance function supports supportsDistMat = supportsArg(cov.fun, "distMat") #precompute distance matrix if possible so it only needs to be computed once if(supportsDistMat) { #Get distance function and arguments if available. Otherwise use 'dist' function #to compute upper triangle of distance matrix # Dist.fun= c(cov.args, list(...))$Distance Dist.args=c(cov.args, list(...))$Dist.args if(is.null(Dist.fun)) Dist.fun = "dist" distMat = do.call(Dist.fun, c(list(x), Dist.args)) } # mKrig.args has all the arguments needed to call mKrig except lambda and cov.args if(supportsDistMat) cov.args = c(cov.args, list(distMat=distMat, onlyUpper=TRUE)) mKrig.args <- c(list(x = x, y = y, weights = weights, Z = Z, cov.fun=cov.fun), list(...)) lnProfileLike.max <- -1e+20 # find NG -- number of parameters to try par.grid <- data.frame(par.grid) if (nrow(par.grid) == 0) { if (is.null(lambda)) { NG <- 1 } else { NG <- length(lambda) } } else { NG <- nrow(par.grid) } # output matrix to summarize results summary <- matrix(NA, nrow = NG, ncol = 8) dimnames(summary) <- list(NULL, c("EffDf", "lnProfLike", "GCV", "sigma.MLE", "rho.MLE", "llambda.MLE", "counts eval", "counts grad")) lambda.best <- NA # default for lambda is 1.0 for first value and exp(llambda.opt) for subsequent ones # this is controlled by NAs for lambda starting values. if (is.null(lambda)) { lambda <- rep(NA, NG) } # default starting value for lambda is 1 or log lambda is 0 llambda.opt <- 0 optim.counts <- c(NA, NA) lnLike.eval <- list() # Define the objective function as a tricksy call to mKrig # if Y is a matrix of replicated data sets use the log likelihood for the complete data sets temp.fn <- function(x) { # NOTE: FULL refers to estimates collapsed across the replicates if Y is a matrix # assign to hold only a few components returned by mKrig hold <- do.call("mKrig", c(mKrig.args, list(find.trA = FALSE, lambda = exp(x), cov.args=c(cov.args.temp, cov.args))) )[c("lambda.fixed", "rho.MLE.FULL", "sigma.MLE.FULL", "lnProfileLike.FULL")] # add this evalution to an object (i.e. here a matrix) in the calling frame temp.eval <- get("capture.evaluations") assign("capture.evaluations", rbind(temp.eval, unlist(hold)), envir = capture.env) return(hold$lnProfileLike.FULL) } # # begin loop over covariance arguments for (k in 1:NG) { llambda.start <- ifelse(is.na(lambda[k]), llambda.opt, log(lambda[k])) # list of covariance arguments from par.grid with right names (some R arcania!) # note that this only works because 1) temp.fn will search in this frame for this object # par.grid has been coerced to a data frame so one has a concept of a row subscript. cov.args.temp <- as.list(par.grid[k, ]) names(cov.args.temp) <- names(par.grid) #optimize over lambda if lambda.profile is TRUE if (lambda.profile) { # set up matrix to store evaluations from within optim capture.evaluations <- matrix(NA, ncol = 4, nrow = 1, dimnames = list(NULL, c("lambda", "rho.MLE", "sigma.MLE", "lnProfileLike.FULL"))) capture.env <- environment() # call to optim look <- optim(llambda.start, temp.fn, method = "BFGS", control = list(fnscale = -1, parscale = 0.1, ndeps = 0.05, reltol = relative.tolerance)) llambda.opt <- look$par optim.counts <- look$counts # call to 1-d search # opt.summary <- optimize(temp.fn, interval= llambda.start + c(-8,8), maximum=TRUE) # llambda.opt <- opt.summary$maximum # optim.counts<- c(nrow(capture.evaluations)-1, NA) # accumulate the new matrix of lnlambda and ln likelihoods (omitting first row of NAs) lnLike.eval <- c(lnLike.eval, list(capture.evaluations[-1, ])) } else { # no refinement for lambda so just save the the 'start' value as final one. llambda.opt <- llambda.start } # final fit at optimal value (or starting value if not refinement/maximization for lambda) obj <- do.call("mKrig", c(mKrig.args, list(lambda = exp(llambda.opt), cov.args=c(cov.args.temp, cov.args)))) if (obj$lnProfileLike.FULL > lnProfileLike.max) { lnProfileLike.max <- obj$lnProfileLike.FULL cov.args.MLE <- cov.args.temp lambda.best <- exp(llambda.opt) } # save results of the kth covariance model evaluation summary[k, 1:8] <- c(obj$eff.df, obj$lnProfileLike.FULL, obj$GCV, obj$sigma.MLE.FULL, obj$rho.MLE.FULL, llambda.opt, optim.counts) if (verbose) { cat("Summary: ", k, summary[k, 1:8], fill = TRUE) } } return(list(summary = summary, par.grid = par.grid, cov.args.MLE = cov.args.MLE, mKrig.args = list(...), lambda.best = lambda.best, lambda.MLE = lambda.best, call = match.call(), lnLike.eval = lnLike.eval)) } fields/R/add.image.R0000644000175100001440000000364013114123116013667 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "add.image" <- function(xpos, ypos, z, adj.x = 0.5, adj.y = 0.5, image.width = 0.15, image.height = NULL, col = tim.colors(256), ...) { m <- nrow(z) n <- ncol(z) ucord <- par()$usr pin <- par()$pin # if height is missing scale according to width assuming pixels are # square. if (is.null(image.height)) { image.height <- (n/m) * image.width } # find grid spacing in user coordinates. dy <- image.width * (ucord[4] - ucord[3]) dx <- image.height * pin[2] * (ucord[2] - ucord[1])/(pin[1]) # # dx and dy should have the correct ratio given different different scales # and also different aspects to the plot window # # find grid to put image in right place. xs <- seq(0, dx, , m + 1) + xpos - adj.x * dx ys <- seq(0, dy, , n + 1) + ypos - adj.y * dy image(xs, ys, z, add = TRUE, col = col, ...) } fields/R/print.summarySpatialDesign.R0000644000175100001440000000357513114603575017401 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "print.summarySpatialDesign" <- function(x, digits = 4, ...) { cat("Call:\n") dput(x$call) c1 <- "Number of design points:" c2 <- length(x$best.id) c1 <- c(c1, "Number of fixed points:") if (is.null(x$fixed)) c2 <- c(c2, 0) else c2 <- c(c2, length(x$fixed)) c1 <- c(c1, "Optimality Criterion:") c2 <- c(c2, round(x$opt.crit, digits)) sum <- cbind(c1, c2) dimnames(sum) <- list(rep("", dim(sum)[1]), rep("", dim(sum)[2])) print(sum, quote = FALSE, digits = digits) other.crit <- x$other.crit if (length(other.crit) > 1) { cat("\nOptimality criteria for other designs:\n\t") cat(round(other.crit, digits), "\n") } cat("\nHistory:\n") dimnames(x$history)[[1]] <- rep("", nrow(x$history)) print(round(x$history, digits), quote = FALSE) invisible(x) } fields/R/summaryGCV.Krig.R0000644000175100001440000000424313114123117015007 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "summaryGCV.Krig" <- function(object, lambda, cost = 1, verbose = FALSE, offset = 0, y = NULL, ...) { out <- object nt <- out$nt np <- out$np N <- out$N D <- out$matrices$D if (is.null(y)) { u <- out$matrices$u shat.pure.error <- out$shat.pure.error pure.ss <- out$pure.ss } else { out2 <- Krig.coef(out, y) u <- out2$u shat.pure.error <- out2$shat.pure.error pure.ss <- out2$pure.ss } info <- list(matrices = list(D = D, u = u), N = N, nt = nt, cost = cost, pure.ss = pure.ss, shat.pure.error = shat.pure.error, offset = offset) if (verbose) { print(info) } lambda.est <- rep(NA, 6) names(lambda.est) <- c("lambda", "trA", "GCV", "GCV.one", "GCV.model", "shat") lambda.est[1] <- lambda lambda.est[2] <- Krig.ftrace(lambda, D) lambda.est[3] <- Krig.fgcv(lambda, info) lambda.est[4] <- Krig.fgcv.one(lambda, info) if (!is.na(shat.pure.error)) { lambda.est[5] <- Krig.fgcv.model(lambda, info) } lambda.est[6] <- sqrt(Krig.fs2hat(lambda, info)) lambda.est } fields/R/summary.ncdf.R0000644000175100001440000000373513114123117014472 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "summary.ncdf" <- function (object, ...) { tempList<- NULL varNames<- NULL # cat("DIMENSIONS", fill=TRUE) for (i in names(object$dim) ) { vname = i ndims = length(object$dim[[i]]$vals) cat(vname, " has size", ndims, fill=TRUE) } cat(fill=TRUE) cat("VARIABLES", fill=TRUE) for (i in 1:object$nvars) { vname = object$var[[i]]$name ndims = object$var[[i]]$ndims dimstring = paste(vname, "( variable ",i , ") has shape") dimTemp<- NULL for (j in 1:ndims) { dimTemp<- c( dimTemp, object$var[[i]]$dim[[j]]$len) } temp<- ( dimTemp) varNames<- c(varNames, vname) tempList<- c( tempList, list(dimTemp)) if( is.null(dimTemp) ){ dimTemp<- NA} cat( i,":", vname, "has size ", dimTemp, sep=" ", fill = TRUE) } names(tempList) <- varNames invisible( tempList) } fields/R/stationary.taper.cov.R0000644000175100001440000001310713114123117016153 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "stationary.taper.cov" <- function(x1, x2=NULL, Covariance = "Exponential", Taper = "Wendland", Dist.args = NULL, Taper.args = NULL, theta = 1, V = NULL, C = NA, marginal = FALSE, spam.format = TRUE, verbose = FALSE, ...) { # get covariance function arguments from call Cov.args <- list(...) # coerce x1 and x2 to matrices if (is.data.frame(x1)) x1 <- as.matrix(x1) if (!is.matrix(x1)) x1 <- matrix(c(x1), ncol = 1) if (is.null(x2)) x2 <- x1 if (is.data.frame(x2)) x2 <- as.matrix(x1) if (!is.matrix(x2)) x2 <- matrix(c(x2), ncol = 1) d <- ncol(x1) n1 <- nrow(x1) n2 <- nrow(x2) # Default taper arguments that are particular to the Wendland. # Make sure dimension argument is added. if (Taper == "Wendland") { if (is.null(Taper.args)) { Taper.args <- list(theta = 1, k = 2, dimension = ncol(x1)) } if (is.null(Taper.args$dimension)) { Taper.args$dimension <- ncol(x1) } } # # Add in general defaults for taper arguments if not Wendland # theta = 1.0 is the default range for the taper. if (is.null(Taper.args)) { Taper.args <- list(theta = 1) } # # separate out a single scalar transformation and a # more complicated scaling and rotation. # this is done partly to have the use of great circle distance make sense # by applying the scaling _after_ finding the distance. # # flag for great circle distance great.circle <- ifelse(is.null(Dist.args$method), FALSE, Dist.args$method == "greatcircle") # check form of theta if (length(theta) > 1) { stop("theta as a matrix has been depreciated, use the V argument") } # # following now treats V as a full matrix for scaling and rotation. # if (!is.null(V)) { # try to catch error of mixing great circle distance with a # linear scaling of coordinates. if (theta != 1) { stop("can't specify both theta and V!") } if (great.circle) { stop("Can not mix great circle distance\nwith general scaling (V argument or vecotr of theta's)") } x1 <- x1 %*% t(solve(V)) x2 <- x2 %*% t(solve(V)) } # # locations are now scaled and rotated correctly # copy taper range if (great.circle) { # set the delta cutoff to be in scale of angular latitude. # figure out if scale is in miles or kilometers miles <- ifelse(is.null(Dist.args$miles), TRUE, Dist.args$miles) delta <- (180/pi) * Taper.args$theta/ifelse(miles, 3963.34, 6378.388) } else { delta <- Taper.args$theta } if (length(delta) > 1) { stop("taper range must be a scalar") } #NOTE tapering is applied to the _scaled_ locations. # now apply covariance function to pairwise distance matrix, or multiply # by C vector or just find marginal variance if (!marginal) { # find nearest neighbor distances based on taper threshhold. # This is hardwired to 'nearest.dist' function from spam. # note that delta is taken from the taper range not theta or V sM <- do.call("nearest.dist", c(list(x1, x2, delta = delta, upper = NULL), Dist.args)) # sM@entries are the pairwise distances up to distance taper.range. # apply covariance and taper to these. # note rescaling by theta and taper ranges. sM@entries <- do.call(Covariance, c(list(d = sM@entries/theta), Cov.args)) * do.call(Taper, c(list(d = sM@entries), Taper.args)) # if verbose print out each component separately if (verbose) { print(sM@entries/theta) print(do.call(Covariance, c(list(d = sM@entries/theta), Cov.args))) print(do.call(Taper, c(list(d = sM@entries), Taper.args))) } if (is.na(C[1])) { # decide whether to return sM in spam sparse form or as a full matrix if (spam.format) { return(sM) } else { return(as.matrix(sM)) } } else { # other option is to sparse multiply cross covariance by C return(sM %*% C) } } else { # find marginal variance and return a vector. sigma2 <- do.call(Covariance, c(list(d = 0), Cov.args)) * do.call(Taper, c(list(d = 0), Taper.args)) return(rep(sigma2, nrow(x1))) } # should not get here! } fields/R/exp.simple.cov.R0000644000175100001440000000462313114123116014732 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 Exp.simple.cov <- function(x1, x2=NULL, theta = 1, C = NA, marginal = FALSE) { # this is a simple exponential covariance function # with the calling format and behaviour used in fields. # # different locations are the different rows of x1 and x2. # this function can return three different results # depending on the values of C and marginal. # The three cases: # 1) cross covaraince matrix # 2) cross covariance matrix times a vector (C) # 3) the diagonal elements of covariance matrix at locations x1. if( !is.null(x2)){ x2<- x1 } # CASE 1: if (is.na(C[1]) & !marginal) { # rdist finds the cross distance matrix between the # locations at x1, x2. # return(exp(-rdist(x1, x2)/theta)) } # CASE 2: # or return multiplication of cov( x2,x1) with vector C if (!is.na(C[1])) { return(exp(-rdist(x1, x2)/theta) %*% C) # # if the rows of X1 are large # this line could be replaced by a call to C or FORTRAN # to make the multiply use less memory. # # there are also other algorithms for fast multiplies when # X2 is on a grid. # } # CASE 3 # return marginal variance (in this case it is trivial a constant vector # with 1.0) if (marginal) { return(rep(1, nrow(x1))) } } fields/R/predictDerivative.Krig.R0000644000175100001440000000574113114123117016433 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "predictDerivative.Krig" <- function(object, x = NULL, verbose = FALSE, ...) { # this is a lean evaluation of the derivatives of the # random component of the model. # several checks to make sure this being applied to # simple Krig models where it makes sense if (object$correlation.model) { stop("Can not handle correlation model with derivative evaluation") } if (object$null.function.name != "Krig.null.function") { stop("null space may not be a low order polynomial") } # default is to predict at data x's if (is.null(x)) { x <- object$x } else { x <- as.matrix(x) } # transformations of x values used in Krig xc <- object$transform$x.center xs <- object$transform$x.scale x <- scale(x, xc, xs) # NOTE knots are already scaled in Krig object and are used # in transformed scale. # i.e. knots <- scale( object$knots, xc, xs) temp.d <- object$d temp.c <- object$c if (verbose) { cat(" d coefs", fill = TRUE) print(temp.d) cat("c coefs", fill = TRUE) print(temp.c) } # # this is the polynomial fixed part of predictor # temp1 <- fields.derivative.poly(x, m = object$m, object$d) # add in spatial piece # The covariance function is # evaluated by using it name, do.call function and any # additional arguments. Note use of derivative and 'C' arguments # to do multiplication of partials of covariance times the C # vector. If C is a matrix of coefficients a error is produced. temp2 <- do.call(object$cov.function.name, c(object$args, list(x1 = x, x2 = object$knots, derivative = 1, C = temp.c))) # returned value is the matrix of partials of polynomial plus partials of spatial # part aso add in chain rule scale factor because # functional form for the surface uses the coordinates xscaled = (x- xc)/xs return(t(t(temp1 + temp2)/xs)) } fields/R/sim.spatialProcess.R0000644000175100001440000001132713114123117015643 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 sim.spatialProcess<- function(object, xp, M = 1, verbose = FALSE, ...) { sigma2 <- (object$sigma.MLE.FULL)^2 rho <- object$rho.MLE.FULL xp<- as.matrix( xp) # # check for unique rows of data locations if( any(duplicated(object$x)) ){ stop("data locations should be unique") } # # set up various sizes of arrays m <- nrow(xp) n<- nrow( object$x) N <- length(object$y) if (verbose) { cat("m,n,N", m,n, N, fill = TRUE) } # # find indices of all rows of xp that correspond to rows of # xM and then collapse x to unique rows. if( any( duplicated(object$x)) ){ stop('Can not handle replicated locations')} if( any( duplicated(xp)) ){ stop('Can not handle repeated prediction locations')} # x<- as.matrix(rbind( object$x, xp)) rep.x.info <- fields.duplicated.matrix(x) # find uniuqe locations. ind<- !duplicated(rep.x.info) xUnique <- as.matrix(x[ind, ]) if (verbose) { cat('full x and predicted locations without duplicates ', fill = TRUE) print(xUnique) } N.full <- nrow(xUnique) if (verbose) { cat("N.full", N.full, fill = TRUE) } if( N.full > 5000){ cat("WARNING: Number of locations for conditional simulation is large ( >5000) this may take some time to compute or exhaust the memory.", fill=FALSE) } # these give locations in x matrix to reconstruct xp matrix xp.ind <- rep.x.info[(1:m) + n] if (verbose) { print(N.full) print(xUnique) } if (verbose) { cat("reconstruction of xp from collapsed locations", fill = TRUE) print(xUnique[xp.ind, ]) } # # Sigma is full covariance at the data locations and at prediction points. # Sigma <- rho * do.call(object$cov.function.name, c(object$args, list(x1 = xUnique, x2 = xUnique))) # # square root of Sigma for simulating field # Cholesky is fast but not very stable. # # the following code line is similar to chol(Sigma)-> Scol # but adds possible additional arguments controlling the Cholesky # from the mKrig object. # x has has been winnowed down to unique rows so that # Sigma has full rank. # Schol <- do.call("chol", c(list(x = Sigma), object$chol.args)) # # output matrix to hold results out <- matrix(NA, ncol = m, nrow = M) # # find conditional mean field from initial fit # (these are added at the predict step). # h.hat <- predict(object, xnew=xp, ...) # # NOTE: fixed part of model (null space) need not be simulated # because the estimator is unbiased for this part. # the variability is still captured because the fixed part # is still estimated as part of the predict step below # create synthetic data for (k in 1:M) { # simulate full field h <- t(Schol) %*% rnorm(N.full) # value of simulated field at observations h.data <- h[1:n] # y.synthetic <- h.data + sqrt(sigma2/object$weights)*rnorm(n) # predict at xp using these data # and subtract from 'true' value, # note that true values of field have to be expanded in the # case of common locations between object$x and xp. h.true <- (h[xp.ind]) # temp.error <- predict(object, xnew=xp, ynew = y.synthetic, # Z=Zp, ...) - h.true temp.error <- predict(object, xnew=xp, ynew = y.synthetic, ...) - h.true # add the error to the actual estimate (conditional mean) out[k, ] <- h.hat + temp.error } out } fields/R/drape.plot.R0000644000175100001440000000537113114123116014131 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "drape.plot" <- function(x, y, z, z2 = NULL, col = tim.colors(64), zlim = range(z, na.rm = TRUE), zlim2 = NULL, add.legend = TRUE, horizontal = TRUE, theta = 30, phi = 20, breaks = NA, ...) { # # Thanks to JiHO for making corrections and useful extensions to this function # # if x is a list, discard y and z and extract them from x if (is.list(x)) { z <- x$z y <- x$y x <- x$x } NC <- length(col) M <- nrow(z) N <- ncol(z) # if z2 is passed ( values for coloring facets ) use it # if not use the z matrix that is also used to draw the # perspective plot. if (!is.null(z2)) { M2 <- nrow(z2) N2 <- ncol(z2) if ((M != M2) | (N != N2)) { stop("draping matrix dimensions must match z") } } else { z2 <- z } # if zlim2 has not been passed, set reasonable limits. # if z2 is passed, set it to the range of z2 # if z2 is not passed, z2=z so we set it to the range of z (equal to zlim) if (is.null(zlim2)) { zlim2 <- range(c(z2), na.rm = TRUE) } # determine the colors for facets based on z2, the color scale and # the zlim2 z limits drape.info <- drape.color(z2, col = col, zlim = zlim2, breaks = breaks) # draw filled wireframe and save perspective information pm <- persp(x, y, z, theta = theta, phi = phi, col = drape.info$color.index, zlim = zlim, ...) # Note that zlim2 defines limits of color scale if (add.legend) { image.plot(zlim = zlim2, legend.only = TRUE, col = col, horizontal = horizontal, breaks = drape.info$breaks) } # return pm if an assignment is made (see help file) invisible(pm) } fields/R/vgram.family.R0000644000175100001440000002410413114123117014451 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "vgram" <- function(loc, y, id = NULL, d = NULL, lon.lat = FALSE, dmax = NULL, N = NULL, breaks = NULL, type=c("variogram", "covariogram", "correlogram")) { type=match.arg(type) # coerce to matrix y <- cbind(y) # if nearest neighbor indices are missing create all possible pairs. if (is.null(id)) { n <- nrow(loc) is = rep(1:n, n) js = rep(1:n, rep(n, n)) ind <- is > js id <- cbind(is, js)[ind, ] } # if distances are missing calculate these if (is.null(d)) { loc <- as.matrix(loc) if (lon.lat) { d <- rdist.earth.vec(loc[id[,1],], loc[id[,2],]) #we want result in miles, not meters } else { d <- rdist.vec(loc[id[,1],], loc[id[,2],]) } } # normalize columns to create correlogram, if necessary # if(type == "correlogram") { sigma = apply(y, 2, sd, na.rm=TRUE) y = sweep(y, 2, (1/sigma), FUN="*") } # center the columns by their mean and get row means if y is a matrix # colMeans <- apply(y, 2, mean, na.rm=TRUE) yCntr = sweep(y, 2, colMeans) y1Cntr = yCntr[id[,1],] y2Cntr = yCntr[id[,2],] if(type == "variogram") { vg <- 0.5 * rowMeans(cbind((y1Cntr - y2Cntr)^2), na.rm = TRUE) } else { vg <- rowMeans(cbind(y1Cntr * y2Cntr), na.rm = TRUE) } # #information for returned object # call <- match.call() if (is.null(dmax)) { dmax <- max(d) } od <- order(d) d <- d[od] vg <- vg[od] ind <- d <= dmax & !is.na(vg) ## add a binned variogram if breaks are supplied out <- list(d = d[ind], vgram = vg[ind], call = call, type=type) if (!is.null(breaks) | !is.null(N)) { out <- c(out, stats.bin(d[ind], vg[ind], N = N, breaks = breaks)) } class(out) = c("vgram", class(out)) out } #calculating cross-covariogram and cross-correlogram (cross-covariance and #cross-correlation) crossCoVGram = function(loc1, loc2, y1, y2, id = NULL, d = NULL, lon.lat = FALSE, dmax = NULL, N = NULL, breaks = NULL, type=c("cross-covariogram", "cross-correlogram")) { type=match.arg(type) # coerce to matrix y1 <- cbind(y1) y2 <- cbind(y2) # if nearest neighbor indices are missing create all possible pairs. if (is.null(id)) { n1 <- nrow(loc1) n2 <- nrow(loc2) id <- cbind(rep(1:n1, n2), rep(1:n2, rep(n1, n2))) } # if distances are missing calculate these if (is.null(d)) { loc1 <- as.matrix(loc1) loc2 <- as.matrix(loc2) if (lon.lat) { d <- rdist.earth.vec(loc1[id[,1],], loc2[id[,2],]) #we want result in miles, not meters } else { d <- rdist.vec(loc1[id[,1],], loc2[id[,2],]) } } # # calculating covariogram will center the columns by their mean and get row means if y is a matrix # colMeans1 <- apply(y1, 2, mean, na.rm=TRUE) colMeans2 <- apply(y2, 2, mean, na.rm=TRUE) y1Cntr = sweep(data.matrix(y1), 2, colMeans1) # subtract the column means y2Cntr = sweep(data.matrix(y2), 2, colMeans2) # subtract the column means # # normalize to create cross-correlogram, if necessary # if(type == "cross-correlogram") { sigma1 = apply(y1Cntr, 2, sd, na.rm=TRUE) sigma2 = apply(y2Cntr, 2, sd, na.rm=TRUE) y1Cntr = sweep(y1Cntr, 2, 1/sigma1, FUN="*") y2Cntr = sweep(y2Cntr, 2, 1/sigma2, FUN="*") } # # calculate covariance for the given points # y1Cntr = y1Cntr[id[,1],] y2Cntr = y2Cntr[id[,2],] vg <- rowMeans(cbind(y1Cntr*y2Cntr), na.rm = TRUE) # #information for returned object # call <- match.call() if (is.null(dmax)) { dmax <- max(d) } od <- order(d) d <- d[od] vg <- vg[od] ind <- d <= dmax & !is.na(vg) ## add a binned variogram if breaks are supplied out <- list(d = d[ind], vgram = vg[ind], call = call, type=type) if (!is.null(breaks) | !is.null(N)) { out <- c(out, stats.bin(d[ind], vg[ind], N = N, breaks = breaks)) } class(out) = c("vgram", class(out)) out } #plot only the line of the empirical variogram, where the y coordinates of the line are #at the means of the bins plot.vgram = function(x, N=10, breaks = pretty(x$d, N, eps.correct = 1), add=FALSE, ...) { otherArgs = list(...) type=x$type #set y axis label if not set by user if(is.null(otherArgs$ylab)) { if(type=="variogram") otherArgs$ylab = "sqrt(Variance)" else if(type == "covariogram" || type=="cross-covariogram") otherArgs$ylab = "Covariance" else if(type == "correlogram" || type=="cross-correlogram") otherArgs$ylab = "Correlation" else stop("vgram 'type' argument must be either 'variogram', 'covariogram', 'correlogram', 'cross-covariogram', or 'cross-correlogram'") } #set x axis label if not set by user if(is.null(otherArgs$xlab)) otherArgs$xlab = "Distance" #set plot title if not set by user if(is.null(otherArgs$main)) { if(type=="variogram") otherArgs$main = "Empirical Variogram" else if(type=="covariogram") otherArgs$main = "Empirical Covariogram" else if(type=="correlogram") otherArgs$main = "Empirical Correlogram" else if(type=="cross-covariogram") otherArgs$main = "Empirical Cross-Covariogram" else if(type=="cross-correlogram") otherArgs$main = "Empirical Cross-Correlogram" else stop("vgram 'type' argument must be either 'variogram', 'covariogram', 'correlogram', 'cross-covariogram', or 'cross-correlogram'") } #set ylim for correlogram if not set by user if(is.null(otherArgs$ylim)) { if(type == "correlogram" || type=="cross-correlogram") otherArgs$ylim = c(-1, 1) } #set line type if not set by user if(is.null(otherArgs$type)) otherArgs$type = "o" #get bin data dat = getVGMean(x, breaks=breaks) #get bin centers versus bin means centers = dat$centers ys = dat$ys #remove NAs notNas = !is.na(ys) centers = centers[notNas] ys = ys[notNas] #plot if(!add) do.call("plot", c(list(centers, ys), otherArgs)) else do.call("lines", c(list(centers, ys), otherArgs)) } "boxplotVGram" = function(x, N=10, breaks = pretty(x$d, N, eps.correct = 1), plot=TRUE, plot.args=NULL, ...) { dists = x$d type=x$type if(type == "variogram") y = sqrt(x$vgram) else y = x$vgram otherArgs = list(...) #set y axis label if not set by user if(is.null(otherArgs$ylab)) { if(type=="variogram") otherArgs$ylab = "sqrt(Variance)" else if(type == "covariogram" || type=="cross-covariogram") otherArgs$ylab = "Covariance" else if(type == "correlogram" || type=="cross-correlogram") otherArgs$ylab = "Correlation" else stop("vgram 'type' argument must be either 'variogram', 'covariogram', 'correlogram', 'cross-covariogram', or 'cross-correlogram'") } #set x axis label if not set by user if(is.null(otherArgs$xlab)) otherArgs$xlab = "Distance" #set plot title if not set by user if(is.null(otherArgs$main)) { if(type=="variogram") otherArgs$main = "Empirical Variogram" else if(type=="covariogram") otherArgs$main = "Empirical Covariogram" else if(type=="correlogram") otherArgs$main = "Empirical Correlogram" else if(type=="cross-covariogram") otherArgs$main = "Empirical Cross-Covariogram" else if(type=="cross-correlogram") otherArgs$main = "Empirical Cross-Correlogram" else stop("vgram 'type' argument must be either 'variogram', 'covariogram', 'correlogram', 'cross-covariogram', or 'cross-correlogram'") } #set ylim for correlogram if not set by user if(is.null(otherArgs$ylim)) { if(type == "correlogram" || type=="cross-correlogram") otherArgs$ylim = c(-1, 1) } #make boxplot bplot = do.call("bplot.xy", c(list(x=dists, y=y, N=N, breaks=breaks, plot=plot), otherArgs)) #return bplot.xy statistics if plot==FALSE if(!plot) return(bplot) #plot bin means with plot parameters given in plot.args (with defaults to look pretty) plot.args$x=x plot.args$add=TRUE plot.args$breaks=breaks if(is.null(plot.args$col)) plot.args$col = "red" if(is.null(plot.args$type)) plot.args$type = "p" do.call("plot.vgram", plot.args) } # Returns the variogram bin centers and means getVGMean = function(x, N = 10, breaks = pretty(x$d, N, eps.correct = 1)) { # Can calculate mean or other statistical functions of the values in the bins VGstat = function(VG, minD=-Inf, maxD=Inf, statFun="mean", ...) { ind = (VG$d > minD) & (VG$d < maxD) do.call(statFun, c(list(VG$vgram[ind]), list(...))) } #helper function to get mean from any single bin meansFromBreak = function(breakBounds = c(-Inf, Inf)) { VGstat(x, minD=breakBounds[1], maxD=breakBounds[2], na.rm=TRUE) } #apply helper function to all bins lowBreaks = breaks highBreaks = c(breaks[2:length(breaks)], Inf) breakBounds = cbind(lowBreaks, highBreaks) centers = apply(breakBounds, 1, mean, na.rm=TRUE) ys = apply(breakBounds, 1, meansFromBreak) #take square root if variogram if(x$type == "variogram") ys=sqrt(ys) return(list(centers=centers, ys=ys, type=x$type)) } fields/R/golden.section.search.R0000644000175100001440000000741513114123117016242 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 golden.section.search <- function(ax, bx, cx, f, niter = 25, f.extra = NA, tol = 1e-05, gridx = NA) { # check if an initial grid has been passed if so then do a # search for the minimum on this grid first. gridx <- sort(gridx) NG <- length(gridx) fgrid <- rep(NA, NG) if (!is.na(gridx[1])) { gridx <- sort(gridx) NG <- length(gridx) fgrid <- rep(NA, NG) for (k in 1:NG) { fgrid[k] <- f(gridx[k], f.extra) } # bail on search if objective function is an NA if (any(is.na(fgrid))) { warning("grid search has found some missing values in objective function") return(list(x = NA, fmin = NA, iter = 0, tol = tol, coarse.search = cbind(gridx, fgrid, deparse.level = 1))) } ind.bx <- which.min(fgrid) # if minimum is at grid boundary print warning and return if ((ind.bx == 1) | ind.bx == NG) { warning("grid search gives minimun at boundary") return(list(x = gridx[ind.bx], fmin = fgrid[ind.bx], iter = 0, tol = tol, coarse.search = cbind(gridx, fgrid, deparse.level = 1))) } # use grid results for initial values of golden section search ax <- gridx[ind.bx - 1] bx <- gridx[ind.bx] cx <- gridx[ind.bx + 1] } else { # if no grid search, sanity check on starting points f1 <- f(ax, f.extra) f2 <- f(bx, f.extra) f3 <- f(cx, f.extra) if ((f2 > f1) | (f2 > f3)) stop("starting values not convex") } r <- 0.61803399 con <- 1 - r x0 <- ax x3 <- cx if (abs(cx - bx) > abs(bx - ax)) { x1 <- bx x2 <- bx + con * (bx - ax) } else { x2 <- bx x1 <- bx - con * (bx - ax) } f1 <- f(x1, f.extra) f2 <- f(x2, f.extra) iter <- niter for (k in 1:niter) { #cat( x1,f1, x2,f2, fill=TRUE) if (f2 < f1) { x0 <- x1 x1 <- x2 x2 <- r * x1 + con * x3 f0 <- f1 f1 <- f2 f2 <- f(x2, f.extra) } else { x3 <- x2 x2 <- x1 x1 <- r * x2 + con * x0 f3 <- f2 f2 <- f1 f1 <- f(x1, f.extra) } if (abs(f2 - f1) < tol) { iter <- k break } } if (f1 < f2) { golden <- f1 xmin <- x1 } else { golden <- f2 xmin <- x2 } if (iter == niter) { warning("Maximum iterations reached") } list(x = xmin, fmin = golden, iter = iter, tol = tol, coarse.search = cbind(gridx, fgrid, deparse.level = 1)) } fields/R/QTps.R0000644000175100001440000000732513114123116012751 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 QTps <- function(x, Y, ..., f.start = NULL, psi.scale = NULL, C = 1, alpha = 0.5, Niterations = 100, tolerance = 0.001, verbose = FALSE) { # # good <- !is.na(Y) x <- as.matrix(x) x <- x[good, ] Y <- Y[good] if (any(!good)) { warning(paste(sum(!good), "missing value(s) removed from data")) } if (is.null(f.start)) { f.start <- rep(median(Y), length(Y)) } scale.Y <- mad(Y - f.start, na.rm = TRUE) # if (is.null(psi.scale)) { psi.scale = scale.Y * 0.05 } # f.hat <- f.start # create Tps object to reuse for iterative fitting Tps.obj <- Tps(x, Y, ...) lambda.method <- Tps.obj$method conv.flag <- FALSE conv.info <- rep(NA, Niterations) for (k in 1:Niterations) { Y.psuedo <- f.hat + C * psi.scale * qsreg.psi((Y - f.hat)/psi.scale, C = C, alpha = alpha) # find predicted for a fixed lambda or estimate a new value f.hat.new <- predict(Tps.obj, y = Y.psuedo) # convergence test test.rmse <- mean(abs(f.hat.new - f.hat))/mean(abs(f.hat)) conv.info[k] <- test.rmse if (verbose) { cat(k, test.rmse, fill = TRUE) } if (test.rmse <= tolerance) { conv.flag <- TRUE Number.iterations <- k break } f.hat <- f.hat.new } # One final complete fit at convergence. if (verbose) { if (conv.flag) { cat("Converged at tolerance", tolerance, "in", Number.iterations, "iterations", fill = TRUE) } else { cat("Exceeded maximum number of iterations", Niterations, fill = TRUE) } } # One final complete fit at convergence. f.hat <- f.hat.new Y.psuedo <- f.hat + C * psi.scale * qsreg.psi((Y - f.hat)/psi.scale, C = C, alpha = alpha) obj <- Tps(x, Y.psuedo, ...) # CV residuals based on psuedo-data) # Use the linear approximation Y_k - f.cv_k = (Y_k- f_k)/( 1- A_kk) # f.cv_k = f_k/( 1- A_kk) - ( A_kk)Y_k/( 1- A_kk) # # Note: we find f.cv based on psuedo data but then consider its deviation # from the actual data # diag.A <- diag(Krig.Amatrix(obj)) f.cv <- obj$fitted.values/(1 - diag.A) - diag.A * Y.psuedo/(1 - diag.A) # leave-one-out estimate of f.hat CV.psuedo <- mean(qsreg.rho(Y - f.cv, alpha = alpha, C = psi.scale)) # add extra stuff to the Krig object. Qinfo <- list(yraw = Y, conv.info = conv.info, conv.flag = conv.flag, CV.psuedo = CV.psuedo, psi.scale = psi.scale, alpha = alpha) obj <- c(obj, list(Qinfo = Qinfo)) class(obj) <- "Krig" return(obj) } fields/R/fields.duplicated.matrix.R0000644000175100001440000000262113114123117016743 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "fields.duplicated.matrix" <- function(mat, digits = 8) { nc <- ncol(mat) temp <- matrix(match(c(signif(mat, digits)), unique(c(signif(mat, digits)))), ncol = nc) temp2 <- format(temp[, 1]) if (nc > 1) { for (k in 2:nc) { temp2 <- paste(temp2, temp[, k], sep = "X") } } match(temp2, unique(temp2)) } fields/R/plot.surface.R0000644000175100001440000000674113114123117014471 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "plot.surface" <- function(x, main = NULL, type = "C", zlab = NULL, xlab = NULL, ylab = NULL, levels = NULL, zlim = NULL, graphics.reset = NULL, labcex = 0.6, add.legend = TRUE, ...) { obj <- x old.par <- par(no.readonly = TRUE) if (is.na(match(type, c("b", "c", "C", "I", "p")))) { stop("plot type does not match b, C, I, or p.") } if (is.null(zlim)) { zlim = range(obj$z, na.rm = TRUE) } if (is.null(graphics.reset) & (type == "b")) { graphics.reset <- TRUE } else { graphics.reset <- FALSE } if (graphics.reset) { on.exit(par(old.par)) } if (is.null(xlab)) { if (is.null(obj$xlab)) xlab <- "X" else xlab <- obj$xlab } if (is.null(ylab)) { if (is.null(obj$ylab)) ylab <- "Y" else ylab <- obj$ylab } if (is.null(zlab)) { if (is.null(obj$zlab)) zlab <- "Z" else zlab <- obj$zlab } if (is.null(main)) if (!is.null(obj$main)) main <- obj$main if (type == "b") set.panel(1, 2, TRUE) if (type == "p" | type == "b") { if (type == "b") { add.legend <- FALSE old.mar <- par()$mar par(mar = c(0, 5, 0, 0)) } drape.plot(obj, xlab = xlab, ylab = ylab, zlab = zlab, zlim = zlim, add.legend = add.legend, ...) if (!is.null(main)) title(main) } if (type == "I") { image.plot(obj$x, obj$y, obj$z, xlab = xlab, ylab = ylab, zlim = zlim, ...) if ((!is.null(main)) & type != "b") title(main) } if (type == "c") { if (is.null(levels)) levels <- pretty(obj$z[!is.na(obj$z)], 5) contour(obj$x, obj$y, obj$z, levels = levels, labcex = labcex, lwd = 2, ...) if ((!is.null(main)) & type != "b") title(main) } if (type == "b" | type == "C") { if (type == "b") { par(mar = old.mar) } image.plot(obj$x, obj$y, obj$z, xlab = xlab, ylab = ylab, graphics.reset = graphics.reset, zlim = zlim, ...) if (is.null(levels)) levels <- pretty(obj$z[!is.na(obj$z)], 5) contour(obj$x, obj$y, obj$z, add = TRUE, levels = levels, labcex = labcex, col = "black", lwd = 2) if ((!is.null(main)) & type != "b") title(main) } invisible() } fields/R/mKrig.MLE.joint.R0000644000175100001440000001677213114123117014700 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 mKrig.MLE.joint <- function(x, y, weights = rep(1, nrow(x)), lambda.guess = 1, cov.params.guess=NULL, cov.fun="stationary.cov", cov.args=NULL, Z = NULL, optim.args=NULL, find.trA.MLE = FALSE, ..., verbose = FALSE) { #set default optim.args if necessary if(is.null(optim.args)) optim.args = list(method = "BFGS", control=list(fnscale = -1, ndeps = rep(log(1.1), length(cov.params.guess)+1), reltol=1e-04, maxit=10)) #check which optimization options the covariance function supports supportsDistMat = supportsArg(cov.fun, "distMat") #precompute distance matrix if possible so it only needs to be computed once if(supportsDistMat) { #Get distance function and arguments if available # Dist.fun= c(cov.args, list(...))$Distance Dist.args=c(cov.args, list(...))$Dist.args #If user left all distance settings NULL, use rdist with compact option. #Use rdist function by default in general. # if(is.null(Dist.fun)) { Dist.fun = "rdist" if(is.null(Dist.args)) Dist.args = list(compact=TRUE) } distMat = do.call(Dist.fun, c(list(x), Dist.args)) } #set cov.args for optimal performance if possible if(supportsDistMat) cov.args = c(cov.args, list(distMat=distMat, onlyUpper=TRUE)) # these are all the arguments needed to call mKrig except lambda and cov.args mKrig.args <- c(list(x = x, y = y, weights = weights, Z = Z, cov.fun=cov.fun), list(...)) mKrig.args$find.trA = find.trA.MLE # output matrix to summarize results ncolSummary = 8 + length(cov.params.guess) summary <- matrix(NA, nrow = 1, ncol = ncolSummary) dimnames(summary) <- list(NULL, c("EffDf", "lnProfLike", "GCV", "sigma.MLE", "rho.MLE", "llambda.MLE", names(cov.params.guess), "counts eval","counts grad")) # Define the objective function as a tricksy call to mKrig # if Y is a matrix of replicated data sets use the log likelihood for the complete data sets lnProfileLike.max <- -Inf temp.fn <- function(parameters) { # Separate lambda from covariance parameters. # Optimization is over log-scale so exponentiate log-parameters. lambda = exp(parameters[1]) if(length(parameters) > 1) { otherParams = as.list(exp(parameters[2:length(parameters)])) names(otherParams) = names(cov.params.guess) } else otherParams = NULL #get all this eval's covariance arguments using the input parameters cov.args.temp = c(cov.args, otherParams) # NOTE: FULL refers to estimates collapsed across the replicates if Y is a matrix # assign to hold the last mKrig object hold <- do.call("mKrig", c(mKrig.args, list(lambda = lambda), cov.args.temp)) #save best mKrig object to global environment if(hold$lnProfileLike.FULL > lnProfileLike.max) { out <<- hold lnProfileLike.max = hold$lnProfileLike.FULL } hold = hold[c("rho.MLE.FULL", "sigma.MLE.FULL", "lnProfileLike.FULL")] # add this evalution to an object (i.e. here a matrix) in the calling frame temp.eval <- get("capture.evaluations") assign("capture.evaluations", rbind(temp.eval, c(parameters, unlist(hold))), envir = capture.env) return(hold$lnProfileLike.FULL) } # # optimize over covariance parameters and lambda # list of covariance arguments from par.grid with right names (some R arcania!) # note that this only works because 1) temp.fn will search in this frame for this object # par.grid has been coerced to a data frame so one has a concept of a row subscript. # set up matrix to store evaluations from within optim capture.evaluations <- matrix(NA, ncol = 4+length(cov.params.guess), nrow = 1, dimnames = list(NULL, c("lambda", names(cov.params.guess), "rho.MLE", "sigma.MLE", "lnProfileLike.FULL"))) capture.env <- environment() # call to optim with initial guess (on log-scale) init.guess = log(unlist(c(lambda.guess, cov.params.guess))) look <- do.call(optim, c(list(par=init.guess), list(temp.fn), optim.args)) #get optim results optim.counts <- look$counts llambda.opt <- look$par[1] lambda.opt <- exp(llambda.opt) if(length(look$par) > 1) { params.opt <- exp(look$par[2:length(look$par)]) params.opt <- as.list(params.opt) names(params.opt) <- names(cov.params.guess) } else params.opt=NULL # call to 1-d search # opt.summary <- optimize(temp.fn, interval= llambda.start + c(-8,8), maximum=TRUE) # llambda.opt <- opt.summary$maximum # optim.counts<- c(nrow(capture.evaluations)-1, NA) # accumulate the new matrix of lnlambda and ln likelihoods (omitting first row of NAs) lnLik.eval <- capture.evaluations[-1,] #exponentiate lambda and covariance parameters in lnLik.eval lnLik.eval[, 1:length(look$par)] = exp(lnLik.eval[, 1:length(look$par)]) # calculate trace of best mKrig object if necessary # find.trA = list(...)$find.trA if(is.null(find.trA) || find.trA) { #get arguments for mKrig.trace iseed = list(...)$iseed NtrA = list(...)$NtrA #set iseed and NtrA to default values of mKrig if NULL if(is.null(iseed)) iseed = 123 if(is.null(NtrA)) NtrA = 20 #update best mKrig object with trace results out2 <- mKrig.trace(out, iseed, NtrA) out$eff.df <- out2$eff.df out$trA.info <- out2$trA.info np <- nrow(x) out$GCV <- (sum(out$residuals^2)/np)/(1 - out2$eff.df/np)^2 if (NtrA < np) out$GCV.info <- (sum(out$residuals^2)/np)/(1 - out2$trA.info/np)^2 else out$GCV.info <- NA } # save results of the best covariance model evaluation in a neat table summary[1, 1:ncolSummary] <- unlist(c(out$eff.df, out$lnProfileLike.FULL, out$GCV, out$sigma.MLE.FULL, out$rho.MLE.FULL, llambda.opt, params.opt, optim.counts)) if (verbose) { cat("Summary: ", 1, summary[1, 1:ncolSummary], fill = TRUE) } #add summary table to output mKrig object and ensure it is still #of class mKrig out = c(out, list(summary=summary, lnLik.eval=lnLik.eval)) class(out) = "mKrig" return(out) } fields/R/unrollZGrid.R0000644000175100001440000000346613114123117014340 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 unrollZGrid<- function( grid.list, ZGrid){ if( is.null(ZGrid)){ return(ZGrid) } if( is.list( ZGrid) ){ if( any(grid.list[[1]] != ZGrid[[1]]) |any(grid.list[[2]] != ZGrid[[2]]) ){ stop("grid list does not match grid for covariates") } # wipe out the x and y components of ZGrid because grid.list will be used ZGrid<- ZGrid$z } # check dimensions Zdim<- dim( ZGrid) nx<- length( grid.list[[1]]) ny<- length( grid.list[[2]]) if( (Zdim[1] != nx) | (Zdim[2] != ny) ){ stop( "Dimension of ZGrid does not match dimensions of location grid list.") } # reshape as a matrix where rows index locations. # Note that this works whether Zdim[3] exists or not! return( matrix( c(ZGrid), nrow= Zdim[1]*Zdim[2] )) } fields/R/unscale.R0000644000175100001440000000231013114123117013502 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "unscale" <- function(x, x.center, x.scale) { x <- scale(x, center = FALSE, scale = 1/x.scale) x <- scale(x, center = -x.center, scale = FALSE) x } fields/R/describe.R0000644000175100001440000000325213114123116013635 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "describe" <- function(x) { lab <- c("N", "mean", "Std.Dev.", "min", "Q1", "median", "Q3", "max", "missing values") if (missing(x)) { return(lab) } temp <- rep(0, length(lab)) xt <- x[!is.na(x)] ix <- order(xt) n <- length(xt) if (!is.numeric(xt) || all(is.na(x))) { return(c(n, rep(NA, length(lab) - 2), length(x) - length(xt))) } if (n == 1) { return(c(n, xt[1], NA, rep(xt[1], 5), length(x) - length(xt))) } else { return(c(n, mean(xt), sqrt(var(xt)), min(xt), quantile(xt, c(0.25, 0.5, 0.75)), max(xt), length(x) - length(xt))) } } fields/R/interp.surface.grid.R0000644000175100001440000000252313114123117015732 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "interp.surface.grid" <- function(obj, grid.list) { x <- grid.list$x y <- grid.list$y M <- length(x) N <- length(y) out <- matrix(NA, nrow = M, ncol = N) for (i in 1:M) { out[i, ] <- interp.surface(obj, cbind(rep(x[i], N), y)) } list(x = x, y = y, z = out) } fields/R/Exponential.R0000644000175100001440000000324713114123116014347 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "Exponential" <- function(d, range = 1, alpha = 1/range, phi = 1.0) { # # Matern covariance function transcribed from Stein's book page 31 # nu==smoothness==.5, alpha == 1/range # # GeoR parameters map to kappa==smoothness and phi == range # to make old code from Fuentes and also the package SEHmodel # phi is accepted as the marginal variance of the process (see below) # within fields this parameter is "rho" # # check for negative distances if (any(d < 0)) stop("distance argument must be nonnegative") # return(phi*exp(-d * alpha)) } fields/R/bisection.search.R0000644000175100001440000000332513114123116015301 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "bisection.search" <- function(x1, x2, f, tol = 1e-07, niter = 25, f.extra = NA, upcross.level = 0) { f1 <- f(x1, f.extra) - upcross.level f2 <- f(x2, f.extra) - upcross.level if (f1 > f2) stop(" f1 must be < f2 ") iter <- niter for (k in 1:niter) { xm <- (x1 + x2)/2 fm <- f(xm, f.extra) - upcross.level if (fm < 0) { x1 <- xm f1 <- fm } else { x2 <- xm f2 <- fm } if (abs(fm) < tol) { iter <- k break } } xm <- (x1 + x2)/2 fm <- f(xm, f.extra) - upcross.level list(x = xm, fm = fm, iter = iter) } fields/R/xline.R0000644000175100001440000000213713114123117013176 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "xline" <- function(x, ...) { abline(v = x, ...) } fields/R/as.surface.R0000644000175100001440000000321013114123116014101 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "as.surface" <- function(obj, z, order.variables = "xy") { # if (is.list(obj)) { grid.list <- obj } if (is.matrix(obj)) { grid.list <- attr(obj, "grid.list") } # # OK now have a grid, parse this to figure # nx and ny the x and y sequences and extract names # hold <- parse.grid.list(grid.list, order.variables = "xy") # # note that coercing z to a matrix is just reformatting # using the standard ordering. # # output list is all the grid stuff and the matrix z. c(hold, list(z = matrix(z, ncol = hold$ny, nrow = hold$nx))) } fields/R/fields.mkpoly.R0000644000175100001440000000361613114123117014642 0ustar hornikusers# fields is a package for analysis of spatial data written for # the R software environment . # Copyright (C) 2017 # University Corporation for Atmospheric Research (UCAR) # Contact: Douglas Nychka, nychka@ucar.edu, # National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the R software environment if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA # or see http://www.r-project.org/Licenses/GPL-2 "fields.mkpoly" <- function(x, m = 2) { if (m < 0) stop("'m' has to be zero or larger.") if( m==0){ # warning("There is no polynomial fixed component") return( NULL) } if (!is.matrix(x)) x <- as.matrix(x) d <- ncol(x) n <- nrow(x) nterms <- choose((m + d - 1), d) temp <- .Fortran("dmaket",PACKAGE="fields", m = as.integer(m), n = as.integer(n), dim = as.integer(d), des = as.double(x), lddes = as.integer(n), npoly = as.integer(nterms), tmatrix = as.double(rep(0, n * (nterms))), ldt = as.integer(n), wptr = as.integer(rep(0, d * m)), info = as.integer(0), ptab = as.integer(rep(0, nterms * d)), ldptab = as.integer(nterms)) temp2 <- matrix(temp$tmatrix, nrow = n) attr(temp2, "ptab") <- matrix(temp$ptab, nrow = nterms, ncol = d) temp2 } fields/MD50000644000175100001440000004521513115560421012053 0ustar hornikuserseca2b30211ac2797c5274344c1e2e599 *DESCRIPTION 3b1b7ce654d028cbe16127df91148c8b *LICENSE.note 6e10c98a165ae9ba3892fb7105fc17c2 *NAMESPACE 5137cbc65a5fd88d9e33692c6b82a2d3 *R/BD.R c0bae8fcb42622c73f8bb3ca5d2859a8 *R/ChicagoO3.R b3e7e7a608eb5488fa476ed480eb0162 *R/Exponential.R 0b1b2c4f46e5269fa42b42cb84396049 *R/ExponentialUpper.R 32a37a3a51ec58a2a19495d735ac4b5f *R/Krig.family.R 96be4e6fbd4421db717567ab24511e97 *R/MLE.Matern.R 1a7bf058d8e07a9a730d45a6bd467ffb *R/MLESpatialProcess.R 0603d90f368134b62ec57cf5c763399a *R/MLESpatialProcess.fast.R b2a133b97e874d8aa3b8bafc50c2606d *R/MLEfast.R 981f7574f4580a3c01dbd8d8cd19cd3c *R/Matern.R 490351f1b1ca6c2f24757f8a846bcab0 *R/Matern.parameters.R 4de07e5827043ee5514869a8c4a43455 *R/QTps.R 6ad9d9d1b2499004e70555d4b2bd0f1f *R/REMLtest.R aec49bfc420e3ded630f1042f78db1e4 *R/RMprecip.R f3fd67532284ed9a07927710ee5061a2 *R/RadialBasis.R c6e957b7be01012215059bbe39a914a3 *R/SUBSCRIPTINGSpatialDesign.R f346b0a400c20f6556e16d69e7af182c *R/Tps.R 5d4d1ae775bcc8334414a8352716ca55 *R/US.R bf1ce44a134e66439980775dc6c1ec6a *R/add.image.R cda99fd7376de145aa8cc30237989b92 *R/arrow.plot.R 53ad5c155ad6169651450b7be118874d *R/as.image.R 5ef72c6fad313cf8a8f7cb7fc3ac0a48 *R/as.surface.R ab2e562b917774234e8659c3dab06c6a *R/bisection.search.R 4328ace7074bc985c5617191b6ec733f *R/bplot.family.R 607becd497ad5e366d166e63e2b2d087 *R/cat.matrix.R ad602f452deb2c0cb8786203972907c3 *R/cat.to.list.R 2210e2c6472bec2914e7a216d2507fe2 *R/ceiling2.R 5151e2f5046316c2952d55f298b0cc4a *R/coef.Krig.R 5389bda1e267e0e58729be7f6b90c6bc *R/color.scale.R 9a2c6da1d915174308324d5e6d4fd208 *R/colorbar.plot.R 487f04cab7f68b1fd949f2916772bef4 *R/compactToMat.R 8ee4c92809b12df27adaa5f01810a528 *R/cover.design.R 0b20086e5d8876a206077cf187c2a782 *R/cubic.cov.R fcb5476f729738804569c7d9ad1ba5da *R/describe.R 94603119d8fd07269b176dd2a74298dc *R/discretize.image.R 16632a5c694c2cf21e4eebf9fca499ee *R/double.exp.R 4a14ea9c10a50f618e424c7543f35241 *R/drape.color.R 17ceab42d4ad1dd7b79f588dd94025ab *R/drape.plot.R 05817c5ab6604dee1984e3618dfe4cae *R/dyadic.2check.R fbd72fa15a4d7a6eca0fa69feb87dd2c *R/dyadic.check.R 5de45cbdc5ac367dc54322b9f5eacda0 *R/evlpoly.R 1bf9342aaf140ed582ffd2f8c85e1b4a *R/evlpoly2.R 191a5655ba44461526672e375f6be8ab *R/exp.cov.R 4c32e70b6c3e03e8d54954eebcda1d4e *R/exp.earth.cov.R 9df442f9ba15b9c81169124b37f53673 *R/exp.image.cov.R daa6f5cbde40fd9edcef71e49156f0a8 *R/exp.simple.cov.R 2047cac1b25a60cdee47f0cf88ac89be *R/fast.1way.R 8d5c4e5b6876d7d21a8051bdc96e38c9 *R/fastTps.MLE.R c1705b82ccb3f3a4efe2a85654e0ce90 *R/fastTps.family.R be1caf59c4f536257ba1d51556d3c4f4 *R/fastTpsMLE.R b759be2a5f49a3a0d357fe7588322440 *R/fields.color.picker.R 2cb185ca3471e1d2461ad1e2ad175e53 *R/fields.convert.grid.R 197b3d9f42b9a7afec007cfe4315ae49 *R/fields.derivative.poly.R 6e74ef3e0a48a970ed43965955ade1a1 *R/fields.diagonalize.R 2a597d72f19f6bb43974bb2ff7718d79 *R/fields.diagonalize2.R a7639c2165022b68f05092cf7600aa68 *R/fields.duplicated.matrix.R 436f973f2cb27923036524ca373ef19f *R/fields.mkpoly.R c3b2b783555be55be6c436a0f6642896 *R/fields.rdist.near.R cd1eeb10e0fa27449da65ef2b395be90 *R/fields.style.R 2a8e5d6ed14bb99b7a3139258b154340 *R/fields.x.to.grid.R 05a9ce5bd585e7fd6e5b522183a1c305 *R/find.upcross.R a695f54ccf9070467cdced681ce38f17 *R/fitted.Krig.R 32c973e0ee59595c853428b72ebfba0d *R/flame.R 6fa398c50e0d9258409d7d692e8c1420 *R/gauss.cov.R f1d864d45131c33e82ca83e01e5920a6 *R/gcv.Krig.R 7de46064534f74630dc6ca74f96d617a *R/gcv.sreg.R 103f5c40893df8e8de66b9823223e688 *R/golden.section.search.R 577137879383e107adc33ef100f187fa *R/image.family.R fe85ac067d5716fb8b447df8d5e3062d *R/image.plot.R b3c7049da6f6e68d48ddf7b7be19cb8a *R/image.smooth.R 15887f49f76fed749d76b4493d1cc4c1 *R/in.poly.R c31da4d8c2d3ddc46f4182729cf5812a *R/interp.surface.R 37312363cfff6f40bf19e35e85a342a9 *R/interp.surface.grid.R 33a83a351f0321b8d2c4e4fdc5920d50 *R/larry.colors.R d436aca78973083c501c0e830bf10348 *R/mKrig.MLE.R afa4d5c2f24a7f6f9a23531c1c4dcf95 *R/mKrig.MLE.joint.R 1f81f9e9c9d67f34b8d3a569f6a5db7b *R/mKrig.R 0a2981c0ebe2760857970e8396b6be6a *R/mKrig.family.R 83e05a3216861f810135a6740a4a5924 *R/mKrigCheckXY.R 73490ac7d494eb514a680d61da9e67f5 *R/mKrigMLEGrid.R bc799e91eceeef3312d18585638358d8 *R/mKrigMLEJoint.R 736826635d7ea8514708235c41292889 *R/make.surface.grid.R 0e3e26d88ed98c2ece937d8926fc81a1 *R/matern.image.cov.R b61ee10908747de4c01852eaace3c4e3 *R/minimax.crit.R 52e1cb5a744e06824013affd4f08750d *R/minitri.R b5642bd99f6d155b01ac863181756c25 *R/parse.grid.list.R d5a43bc619c14fdfc907fece953d8ca1 *R/plot.Krig.R efe84a1cc3a9e4f71b4d23afdf1d4266 *R/plot.spatialDesign.R c478b8ba185f92fcd52469dd95e9977b *R/plot.spatialProcess.R 27a5ca4cd998998ca592a43e0608461c *R/plot.sreg.R 73cd0bdec5a60ac43c7699eeb1705641 *R/plot.surface.R bb392d49bd9c7c32a4187a3d60339ef3 *R/plot.vgram.matrix.R 01bb69c92527f09e69eac37e4f0c8a3e *R/poly.image.R 5dc2402fb41ac91cd928358cabcf1711 *R/predict.Krig.R e921730dc09383253673c6642b6fe2c2 *R/predict.interp.surface.R 1f65025d17cd091e6c26a384edd869dc *R/predict.sreg.R 38dbf75448865a3fa32b324ba2e11b57 *R/predictDerivative.Krig.R 2b36a91e12de277d3d5a95e6ab573b45 *R/predictSE.R 23dd4426b858588797c18d06be63c7a8 *R/predictSE.family.R c707e01468e49498d6b899cab144a44e *R/predictSEUsingKrigA.R d9016e89357c91b1d63f173f13b7360e *R/predictSurface.Krig.R 88d6df00536cffcb0c73f15e34a4e4a7 *R/predictSurface.family.R 1ecbd19e1b7f4ab7ee8404e798127cdf *R/print.Krig.R bd284079ee5f4c0e017d680c636ddb0f *R/print.spatial.design.R 9bd855e8c8f1da729abe984df153082b *R/print.spatialProcess.R bdae2913a994b4208ad6c0a978520bc9 *R/print.sreg.R 0c52b6bc1fecf2aa50e8749daa84e73a *R/print.summary.Krig.R 2ae18ab991af4fddd6e1b11b26d71555 *R/print.summary.spatialProcess.R 8bb7d9ee9b1e3dffcce12e3f6935034c *R/print.summary.sreg.R 872a9eeeb87835b580562a327cdae954 *R/print.summarySpatialDesign.R d0824cfeddfa85773f2a515adb5a280e *R/printGCVWarnings.R 2de3e239a47b159f28885c3ebd12d4b4 *R/qr.q2ty.R 4e8ac99cfae635738f448e519c9e71d1 *R/qr.yq2.R 2e5d1fda4fbe31407871a079de6493aa *R/qsreg.family.R 2d0984e2974517d7bdd0eae8256d0486 *R/quickPrint.R 37f6f6dd0f20000e68b5c159a7a13ca2 *R/quilt.plot.R 79b5e7ac8fac2b8e346fce0c75d9cbd1 *R/rad.cov.R 2b2462456027d0b93f607dd2c5b9aeb2 *R/rad.image.cov.R 57d959d63e7902e061970c01411acb3d *R/rad.simple.cov.R e3d41067d3d788ed0691edf3a34b8b42 *R/radbas.constant.R 381a73652cd30f71ded047996d4276fc *R/rat.diet.R 05838449c6431eb588318e1edeaee590 *R/rdist.R 4b818c2aaae835dfc3192119737b0e31 *R/rdist.earth.R d5b1cfa87817311875e60ebbe5dd84aa *R/rdist.earth.vec.R 3018a0985e02e923a86579fc64e1f45f *R/rdist.vec.R 2862a2ae91fba738017566a27642c908 *R/residuals.Krig.R e0881cae66b40ecb1ed0078113eb37db *R/ribbon.plot.R 9ae15ed80eb12b39a73713b9f3cbd2f1 *R/set.panel.R f3b0c6c92c0791a5f1e6a0c772cdd998 *R/setup.image.smooth.R b0217896eccdc94ae13f07fb939f623f *R/sim.Krig.R 2b4852a9195006af2e63fb26b589bcff *R/sim.Krig.approx.R cc67f146eb97fb0b00012aecabf0638f *R/sim.mKrig.approx.R f22556326ed6eab778350e3c5b4f7fc3 *R/sim.rf.R 6c46e9d66951ffda984b801d74956f43 *R/sim.spatialProcess.R 31e954a30cfc8afed72560bf831f473c *R/smooth.2d.R aa2cf4d8ee2c23354608878e6077c326 *R/spam_2lz.R 0a8d61af328c74cd384a5630adc0833b *R/spatialProcess.R 1d0bb0688eb5066c8f1940ab77452b23 *R/splint.R c26ce8ac716a061a5bfac2b0f141cf51 *R/sreg.family.R c515646bcb3e9926e313e96db7e2071f *R/stationary.cov.R f19375bcc3296878a2be42ef7e72b391 *R/stationary.image.cov.R e210b7f99253ea9b060f3f241bcef6d5 *R/stationary.taper.cov.R 63ce8c1593f701a74751d50a9e9cb444 *R/stats.R 249e784b92bb3e5ca0dbfc797d2c6395 *R/stats.bin.R a8f7f73e31dcab71fc1c213289cf9b06 *R/summary.Krig.R 3522a4f37e5de6971312e1483e2a8dea *R/summary.ncdf.R ba9fc0592a6d2186fe60249539e5abf9 *R/summary.spatialDesign.R 9ee9c3b292f754c33022815c3f3d3bc4 *R/summary.spatialProcess.R 5704f74f617e723643005399b4e75740 *R/summary.sreg.R 640ab925d80b6e19776ae96606ca20f9 *R/summaryGCV.Krig.R 55c4150b595a62b5c8ee96f5875e91ab *R/summaryGCV.sreg.R 75ad1473ff8c4c777bf3c34ea5a1593b *R/supportsArg.R 235a33f6889ff931cabb5dee3ba0349c *R/surface.family.R cdabb8e64742b7652489b97b651d2c02 *R/test.for.zero.R 5a0055352043860ca1b66c3b470f4e96 *R/tim.colors.R 0c68d725f55be46aed348ad6374d3b45 *R/transformx.R f99bbcbe693ec35942a127de28810238 *R/unrollZGrid.R 94835525bc6026e7fe678d3d4490bbbd *R/unscale.R 31f944110c365cc1cce2d78cc99af1f6 *R/vgram.family.R 61132570bf5e3f4b2606eb3b36f2af94 *R/vgram.matrix.R dcebc91fd6d6db3098aa0732f2508a46 *R/wendland.family.R 32edd6f10a604cb18e39fa518853d4b6 *R/wendland.image.cov.R 3b63ce0b34ab3635d012ca8165f14328 *R/which.max.matrix.R fdc9d7fe11f771602f07f1234955696a *R/world.R 4f1b3fb9078e2db51686962b7fbafefa *R/xline.R 8702a3c6e7e27d364fea0d7bca0afb8c *R/yline.R def2e3c5b2487cf369719ecedc0ec009 *data/CO2.rda 5d5cc9f8d3c5b782b5d87844727694f4 *data/COmonthlyMet.rda 510e588dbd657d31f456f0a1a4f45adc *data/NorthAmericanRainfall.rda 0c0be8a07fa347d68fc36fc6a117c759 *data/PRISMelevation.rda e98af9c5d6b770b5f04819fba9aa72af *data/RCMexample.rda ec8555f8006ae1cbdf3937be5609b37e *data/RMelevation.rda 5f0f32a5ee0dbc877a28c20bdeb6f64d *data/US.dat.rda 5baf657b81b2ee2809dc96ecde12794d *data/WorldBankCO2.rda 66b8754c3221f29585a9b52f84a34e9f *data/datalist f560c509a3416dcb22274af12ebf5d07 *data/lennon.rda c909744661a3fbd93bbc36773d7183d3 *data/ozone2.rda 43a5afaacf0deb2f95d4288968aa7168 *data/rat.diet.rda cafddcfafb1344f9158d8607867d0575 *data/world.dat.rda ce4feec1dfb98c62c42b48c88d99abb6 *inst/CITATION 4f38f7f2844d2a2f44b7f70d73bd7522 *man/BD.Rd af4f6aec96e3f05f34f49e01198e3d01 *man/CO.Rd b152caacdf8bfca6dfcc391f77a31a69 *man/CO2.Rd 455f35fc0a2c48f15aee935213b79807 *man/CovarianceUpper.Rd b382f5873679354d36799a57e86d54dd *man/Exponential.Rd 627c4258981c3b597d63b845204fd447 *man/FORTRAN.internal.Rd 706afb4b4649bdfa3f898ccd48e80bdd *man/Krig.Amatrix.Rd d679bd41f61c4fb7679b675810dce40e *man/Krig.Rd ad63b0555ae880488d60d7ded0d44421 *man/Krig.engine.default.Rd b474b79c643b9a18bfa08b215e5bf0e1 *man/Krig.null.function.Rd 137afa39d95eb043d52bc891ca3bbcae *man/Krig.replicates.Rd fc9bba671cfc127934d8d112a1b73b42 *man/MLESpatialProcess.Rd 8e7ef5967035b933d4b90a0cfb885926 *man/NorthAmericanRainfall.Rd 570611860686cf659bdc2af31486075b *man/QTps.Rd feb1f1777c8eece8a1f5855c86fa43bb *man/RCMexample.Rd 31dc908213d0dcccdfb156b1d228a91c *man/REML.test.Rd a2c757200f8244b8537d8889d94b4efc *man/RMprecip.Rd cf50d258fe84e188dcbea4234892304c *man/Tps.Rd 295b07b27c6ef3fcb06313050a8b8771 *man/US.Rd f49333a2c7644453257ed81b9586ed88 *man/US.dat.Rd 67f403c6f0bc9fe180fb8dfcab228adf *man/Wendland.Rd 589e8360339f1d709d4839ba0ff309f4 *man/WorldBank.Rd c48f84135edbeebd66d4a28770e9bf88 *man/add.image.Rd 3db903c522ded03dceb814d75a8a6b5c *man/arrow.plot.Rd 70e9739a5885ab9aa3cf99da377caf09 *man/as.image.Rd 814cdadda2f50fe00c280d15937d6a9a *man/as.surface.Rd 10d5a7fa13bab78dc0eed37ac2188849 *man/bplot.Rd 19e405a7e6265a181a25deecb7ae38e6 *man/bplot.xy.Rd 8342236651b2bf2ffd6cd2f900a34450 *man/colorbar.plot.Rd b34472336cf1b0a8e0111b4ae6b70090 *man/compactToMat.Rd ae18f416e93a9cf271aac88a326d1682 *man/cover.design.Rd ca8f5ef6a334960c5e58d90650232202 *man/drape.plot.Rd c3aee807e048046fe9f4df24e536b620 *man/exp.cov.Rd 8eabcd2497f28ea710ea1870348ea798 *man/fields-internal.Rd 81631a672d7e9ed6124b9d6d9cf807ba *man/fields-stuff.Rd 872f421784fbdbcc1dbc746aa889092c *man/fields.Rd ea7a0be950809040f44199f2275008bf *man/fields.grid.Rd 41e485b9ddf070c647324f1fb5946da1 *man/fields.hints.Rd 4043c27a97ec82f7d7f7edfef998114c *man/fields.tests.Rd 5175729cc6d9bced31a36b6ee9a95ade *man/flame.Rd 76f0cbd8ac817ef5d23bcd0a00b3769e *man/gcv.Krig.Rd cb1e0fc343221bb100a76a14ebc27cd4 *man/grid.list.Rd ce2a30f801375fb9f6dfb633f3393d5d *man/image.cov.Rd 569f775ed37b2de7b12b2d5d34d73862 *man/image.plot.Rd d8ad3c7f16e9ba425a6d1648eb5ceccc *man/image.smooth.Rd 8e158daeaccae26ebce01460978cb759 *man/image2lz.Rd 5a25029d08f6e51540ed8074ddca98e6 *man/interp.surface.Rd d79f272cc8fa6772511ee05a637f85eb *man/lennon.Rd 5274dd7f54fca85755d8ada04afe3951 *man/mKrig.MLE.Rd 0255328c97243934c2abbc989dd99aea *man/mKrig.Rd 3c920ff6444b4599b353d360a528c032 *man/mKrigMLE.Rd 59eb40475e19369dd784b751bb48568f *man/minitri.Rd 2e3bdb59c44d062b918a4a103e3847fa *man/ozone.Rd 16ad5e76018a6bd874e6bfcc8c9b53fa *man/ozone2.Rd 99a29507f61f478c69c2fe4576f9eff9 *man/plot.Krig.Rd 10b139ab6a7f4052fbcfd5608b8a5e34 *man/plot.surface.Rd ac6e06d5698f882e31056b0e984e78ae *man/poly.image.Rd 6fa7e35bd353cca518a1fc89ccd89365 *man/predict.Krig.Rd 2f62f0f067b7dd647f3e4f3a3b266e7a *man/predictSE.Krig.Rd af541195e392ccd1819c70c080b25d88 *man/predictSurface.Rd 9a2932c0ed0d6d004ce324a216d8460d *man/print.Krig.Rd 8a457076584973c5d9d8df10cc8c5c30 *man/pushpin.Rd 3b745821cb849d53dfc43546005dcc14 *man/qsreg.Rd cd1fe98845991fcb3736c18c5f0d521c *man/quilt.plot.Rd 7fbe5f072c1837e5cc1d203cff9d47f0 *man/rat.diet.Rd 819ec2802c38ef5935c678859369cdfd *man/rdist.Rd 1c199d25d26b5eb5a81bab3a86bc55ef *man/rdist.earth.Rd b39ae03fdb7b078fe00fad625d7bd7f2 *man/registeredC.Rd 90b12449210fddbacb901b5f2e129bae *man/ribbon.plot.Rd 2a2f8f1706c12606af60173dd227a52a *man/set.panel.Rd a7c1a81242e5a2f058397b56937b996f *man/sim.Krig.Rd acd58d0906d31a04e803f3c0ff7629da *man/sim.rf.Rd 35038d539ae38f8113dd38cd00489ecf *man/smooth.2d.Rd 32e8bea9db72ddcbe3410d820f5f6699 *man/spam2lz.Rd 9c1ac584934977ae798836f0eebfe3b8 *man/spatialProcess.Rd 69a06dba4b74b0cf6aca40d3e53986e9 *man/splint.Rd 3c441c799329e764e49e62d2e75e561b *man/sreg.Rd 2a80efec23dce56460167ba107480bfe *man/stats.Rd eff6eca96d31a592ca8d68e05dfaa686 *man/stats.bin.Rd de7606e79a914fa4ebe27be712bd2991 *man/summary.Krig.Rd 35f254abd7834beccf841e25fbc4c5d8 *man/summary.ncdf.Rd 0f7201cd5e37bb172b4fc797b0be6db3 *man/supportsArg.Rd f77becc7374469605ac92283b1b0095e *man/surface.Krig.Rd a6268151da6ca6acd2c4fb7705bb567d *man/tim.colors.Rd 3167cc67ceb348cee0616c0428d37fd5 *man/transformx.Rd 3d68e74ec9b163c7471ce405e184bb2f *man/vgram.Rd 434f5bcd372d81004d63e86926b80f03 *man/vgram.matrix.Rd 465683316aed6356ff441192f37fb63b *man/world.Rd 4a0fe540401e6a22a3cd5b4dd2ea0ffb *man/xline.Rd 29d20a93573793f6f87a91e880fb1d43 *man/yline.Rd 4de2918ac493cda891a8585879bf2bf2 *src/ExponentialUpperC.c 2e78a94defa5e08ef9a665771e91244b *src/addToDiagC.c ca7ce08599c43df98991056e5555f849 *src/compactToMatC.c 90869a1ce4e86c5bc10e0cd6de44e9e4 *src/compactToMatCOLD.c f7e1e30e1ee729451ded71d4138d3af5 *src/css.f 692ddb7d68e584682ccecb648b470b52 *src/csstr.f c0e0c3df48bc22db87ac07de3cfb2c86 *src/cvrf.f c2deef707b8c650bcce46365befb0dd0 *src/dchold.f 4b9deae4895c3f56338488d9e94183f9 *src/ddfind.f 7e9c5235540b76b10eb690e0b34dfc58 *src/dlv.f 41eb7d2d62a8b2e6d6e1309ad66dcce1 *src/dmaket.f 69018ab167c8899a5f2da639a4d611b4 *src/drdfun.f 8011dc17b0cb03d11a3d67ce217a8d87 *src/dsetup.f 9ba3f9047570f84ed5b1aeeb167a3a60 *src/evlpoly.f c8580f65bc5d9325fb0090d840873b61 *src/evlpoly2.f a5568eed2020760526944464d9927166 *src/expfn.f 46b4ea9c5fb75897f6e7a902389203ed *src/expfnC.c da45db84991588d6da31bd8d9689b8a2 *src/ifind.f 75aa9985f55e951f2ddb3e10ecf53a40 *src/igpoly.f 3e831eac556ec355f58f65bf37c969f3 *src/init.c 303e24564ee4ff97c8a17506f8a09df2 *src/inpoly.f 09a48ba957f68258d4320475da0ebb25 *src/mltdrb.f 568de6e0ef023f7c628b3c50d8120226 *src/mltdtd.f e21562dc1c29f83270bd5dbf3279c054 *src/multW.f 74cc95c857cc9f35f9ce410816c4fb73 *src/multebC.c fbdceb31b477258590baf52992be74d2 *src/multrb.f 80473498345e4e2f33e04473d7f108a0 *src/radbas.f 396e38a316a0072d6ebb9cadd9b1bd16 *src/radfun.f 0a962a9537ebbacec71a563a99a269c6 *src/rcss.f 1b75a7515957b02f4f1278a4144597d0 *src/rcssr.f b3128c10beb9c896803cc4b32446c006 *src/rcsswt.f de1284c3065c8932aa5bfae2c1121ec3 *src/rdist.f 3b81ea311da648d0e94f957f0eb22357 *src/rdistC.c 7015fcbce5d53b8d954d8aa95d383cbd *src/sortm.f 48278542cc173835bf74e3769757a7b8 *tests/Krig.Z.test.R a8367476bbda02b30f84fefd0d854326 *tests/Krig.Z.test.Rout.save 40bfd397c34e0e7f394f5c792312d6ab *tests/Krig.se.W.R a62bfb36cd9c8da13ab12b57d415f5ee *tests/Krig.se.W.Rout.save 4a5404ec50c0aa1bb18e534bdfebe22f *tests/Krig.se.grid.test.R 52c175565062135da81bfc98484ae13d *tests/Krig.se.grid.test.Rout.save d6ce9b47e1f116fe2bcfae6e7457d5a1 *tests/Krig.se.test.R 69390b90c39506af38f728444b329e0d *tests/Krig.se.test.Rout.save c492d0b3ab30eb8fb9c7910a9b902e4d *tests/Krig.test.R a525568ad9ba78edf113c29306b1609c *tests/Krig.test.Rout.save 103e3e38b493b875797faac55500b95d *tests/Krig.test.W.R eaa94551778c03b8df3757d6d3df1649 *tests/Krig.test.W.Rout.save 31f626f25a4d67925f078616862249ca *tests/KrigGCVREML.test.R 9f51befc16b605ffe663716f678e5868 *tests/KrigGCVREML.test.Rout.save 2d4736d9c2c74fcc0123d302430cd316 *tests/Likelihood.test.R 989e8c55cdd712f7062ea6a27e5bc5c6 *tests/Likelihood.test.Rout.save 3a6cd052ae5010c908b34e170fe6c1c8 *tests/REMLest.test.R d6b6f78664b0e1b7689532058640027a *tests/REMLest.test.Rout.save 57680c401eb274cc459abdaf0d86495f *tests/Tps.test.R 1e56cef9894a2bc49cb7c4b9c450846b *tests/Tps.test.Rout.save 430d09632d2239dd5f1be4865c9f2907 *tests/Wend.test.R 1a16544cb6251e07b58907b6370ab725 *tests/Wend.test.Rout.save 92e515349ad198c63fa0ac2d7286f729 *tests/cov.test.R 212f1ba4eb4e72e53f909373ddee99c3 *tests/cov.test.Rout.save d74ff67efbef848212c1dbdfaeca0146 *tests/cov.test2.R 7b355890d73fe5b050d7e1d7b544c482 *tests/cov.test2.Rout.save 66b69576294c9e91b6b2c383d9a5c95c *tests/derivative.test.R adf18f5de2b0dd7bdd8f6fe098c53587 *tests/derivative.test.Rout.save 2e8c28817705ef907235def38fade15e *tests/diag.multiply.test.R 2596bf2ba2cdce2650a0351bee598d51 *tests/diag.multiply.test.Rout.save 5a4f08f2e9491d0fafb872de9308277c *tests/diagonal2.test.R 563b222985b45db1b7edc3ad0e22cdbd *tests/diagonal2.test.Rout.save 7646bf9eeb7772f35d81bb7a37a562cc *tests/evlpoly.test.R 82868887687f9d9dd206a750a5a1cd43 *tests/evlpoly.test.Rout.save ade82dbec2ec8fbb5a703f5b42118c2f *tests/fastTpsPredict.test.R 369ba4d820200dd079e52ffa5faca4f8 *tests/fastTpsPredict.test.Rout.save 7a4bd01772c880b9e7d77ad2b8e14721 *tests/mKrig.MLE.test.R a4a30da5d86894db685714335d94f2ef *tests/mKrig.MLE.test.Rout.save cd1f7b105144f3af952e7b45164c1c30 *tests/mKrig.Z.R 3dd5f670ee85882ebcd4ec2ef93b587f *tests/mKrig.Z.Rout.save befeacddd2cad565532d00a423d5537d *tests/mKrig.parameters.test.R 76d33d66fb42a0aa2d1d85a5e87ad8d6 *tests/mKrig.parameters.test.Rout.save e0f8768a800922994f1b37d184b6a799 *tests/mKrig.se.test.R ceb8f0d9070ad9260651922a258ebaaf *tests/mKrig.se.test.Rout.save 464665f4df851b5ae130ad247aa6fcd7 *tests/mKrig.test.R 25d0898ce84a71c08767ea496b54bff4 *tests/mKrig.test.Rout.save 225e2eae7ae3e331e0daff95c117d9e4 *tests/mKrigMLETest.R 142078b04f54211e8667f100c3b053c9 *tests/mKrigMLETest.Rout.save acd8e18c32642e1872ea0963fd46d948 *tests/mKrigREMLTest.R a562dfe0e25cb37fd7f3f8811f4e30f1 *tests/mKrigREMLTest.Rout.save 2f9e672a944be1108247f4edfb003a39 *tests/misc.test.R c60c88266e33453d9ae44842f4cc114c *tests/misc.test.Rout.save 72646975b924f4f778709f50dd2f159a *tests/spam.test.R 9eb00c7eab6d09e346959b186e5e8afa *tests/spam.test.Rout.save 736316db4d5d57d935926205263e7ab8 *tests/sreg.test.R 29fca5174aa443d121c61394b2843c37 *tests/sreg.test.Rout.save 36b818f1d1adcae9379e449d8880b16c *tests/vgram.test.R 8bbdb5af67bdf36d6e6ae8abfd1d622c *tests/vgram.test.Rout.save fields/DESCRIPTION0000644000175100001440000000431313115560421013243 0ustar hornikusersPackage: fields Version: 9.0 Date: 2017-06-03 Title: Tools for Spatial Data Authors@R: c( person("Douglas", "Nychka", role = c("aut", "cre"), email = "nychka@ucar.edu"), person("Reinhard", "Furrer", role = c("aut"), email = "reinhard.furrer@math.uzh.ch"), person("John", "Paige", role = c("aut"), email = "paigejo@uw.edu"), person("Stephan", "Sain", role = "aut", email = "sainsr2@gmail.com")) Author: Douglas Nychka [aut, cre], Reinhard Furrer [aut], John Paige [aut], Stephan Sain [aut] Maintainer: Douglas Nychka Description: For curve, surface and function fitting with an emphasis on splines, spatial data and spatial statistics. The major methods include cubic, and thin plate splines, Kriging, and compactly supported covariance functions for large data sets. The splines and Kriging methods are supported by functions that can determine the smoothing parameter (nugget and sill variance) and other covariance function parameters by cross validation and also by restricted maximum likelihood. For Kriging there is an easy to use function that also estimates the correlation scale (range parameter). A major feature is that any covariance function implemented in R and following a simple format can be used for spatial prediction. There are also many useful functions for plotting and working with spatial data as images. This package also contains an implementation of sparse matrix methods for large spatial data sets and currently requires the sparse matrix (spam) package. Use help(fields) to get started and for an overview. The fields source code is deliberately commented and provides useful explanations of numerical details as a companion to the manual pages. The commented source code can be viewed by expanding source code version and looking in the R subdirectory. The reference for fields can be generated by the citation function in R and has DOI . License: GPL (>= 2) URL: http://www.image.ucar.edu/fields Depends: R (>= 3.0), methods, spam, maps NeedsCompilation: yes Packaged: 2017-06-04 22:20:38 UTC; nychka Repository: CRAN Date/Publication: 2017-06-06 17:06:25 UTC fields/LICENSE.note0000644000175100001440000000100312560751565013515 0ustar hornikusersAll R code and documentation in this package (fields) is licensed under the terms of the GPL license. NOTE: The sparse matrix methods used in fields are supported by the package spam. The spam package contains some FORTRAN routines where some licensing issues are unclear. Please refer to the spam license information for details. Note that many functions in fields e.g. Tps, Krig, all the graphical functions, function indepedently of the spam package so much of fields will be functional under a GPL license. fields/man/0000755000175100001440000000000013115103625012306 5ustar hornikusersfields/man/Krig.null.function.Rd0000644000175100001440000000413313114135521016266 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{Krig.null.function} \alias{Krig.null.function} \title{Default function to create fixed matrix part of spatial process model.} \description{ Constructs a matrix of terms representing a low order polynomial and binds additional columns due to covariates ( the Z matrix) } \usage{ Krig.null.function(x, Z = NULL, drop.Z = FALSE, m) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{x}{Spatial locations } \item{Z}{ Other covariates to be associated with each location.} \item{drop.Z}{If TRUE only the low order polynomial part is created. } \item{m}{ The polynomial order is (m-1). } } \value{ A matrix where the first columns are the polynomial terms and the following columns are from Z. } \details{ This function can be modified to produce a different fixed part of the spatial model. The arguments x, Z and drop.Z are required but other arguments can be passed as part of a list in null.args in the call to Krig. } \author{Doug Nychka } \seealso{Krig} \keyword{ spatial}% at least one, from doc/KEYWORDS fields/man/colorbar.plot.Rd0000644000175100001440000001226513114135522015363 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{colorbar.plot} \alias{colorbar.plot} %- Also NEED an '\alias' for EACH other topic documented here. \title{ Adds color scale strips to an existing plot.} \description{ Adds one or more color scales in a horizontal orientation, vertical orientation to an existing plot. } \usage{ colorbar.plot(x, y, strip, strip.width = 0.1, strip.length = 4 * strip.width, zrange = NULL, adj.x = 0.5, adj.y = 0.5, col = tim.colors(256), horizontal = TRUE, ...) } \arguments{ \item{x}{x position of strip in user coordinates } \item{y}{y position of strip in user coordinates} \item{strip}{ Either a vector or matrix giving the values of the color strip(s). If a matrix then strips are assumed to be the columns. } \item{strip.width}{ Width of strip as a fraction of the plotting region. } \item{strip.length}{ Length of strip as a function of the plotting region. Default is a pleasing 8 times width. } \item{zrange}{If a vector these are the common limits used for assigning the color scale. Default is to use the range of values in strip. If a two column matrix, rows are used as the limits for each strip.} \item{adj.x}{ Location of strip relative to x coordinate. Most common values are .5 (centered), 0 (right end at x) and 1 (left end of at x). These are the same conventions that are used for \code{adj} in positioning text.} \item{adj.y}{Location of strip relative to y coordinate. Same rules as \code{adj.x} } \item{col}{ Color table used for strip. Default is our favorite tim.colors being a scale from a dark blue to dark red.} \item{horizontal}{ If TRUE draws strips horizontally. If FALSE strips are drawn vertically } \item{\dots}{ optional graphical arguments that are passed to the \code{image} function. } } \details{ This function draws the strips as a sequence of image plots added to the existing plot. The main work is in creating a grid ( x,y) for the image that makes sense when superimposed on the plot. Note that although the columns of strip are considered as separate strips these can be oriented either horizontally or vertically based on the value of \code{horizontal}. The rows of zrange are essentially the \code{zlim} argument passed to the \code{image} function when each strip is drawn. Don't forget to use \code{locator} to interactively determine positions. \code{text} can be used to label points neatly in conjunction with setting adj.x and adj.y. Although this function is inefficient for placing images at arbitrary locations on a plot the code can be easily adapted to do this. This function was created to depict univariate posterior distribution on a map. The values are quantiles of the distribution and the strips when added under a common color scale give an overall impression of location and scale for several distributions. } \author{Doug Nychka} \seealso{ image.plot, arrow.plot, add.image} \examples{ # set up a plot but don't plot points and no "box" plot( 1:10, (1:10)*10, type="n", bty="n") # of course this could be anything y<- cbind( 1:15, (1:15)+25) colorbar.plot( 2.5, 30, y) points( 2.5,30, pch="+", cex=2, adj=.5) # note that strip is still in 1:8 aspect even though plot has very # different ranges for x and y. # adding legend using image.plot zr<- range( c( y)) image.plot( legend.only=TRUE, zlim= zr) # see help(image.plot) to create more room in margin etc. zr<- rbind( c(1,20), c(1,100)) # separate ranges for columns of y. colorbar.plot( 5, 70, y, adj.x=0, zrange= zr) # some reference lines to show placement xline( 5, lty=2) # strip starts at x=5 yline(70, lty=2) # strip is centered around y=7 (because adj.y=.5 by default) # many strips on common scale. y<- matrix( 1:200, ncol=10) colorbar.plot( 2, 75, y, horizontal=FALSE, col=rainbow(256)) # Xmas strip y<- cbind( rep( c(1,2),10)) y[15] <- NA # NA's should work colorbar.plot( 6, 45, y, adj.y=1,col=c("red", "green")) text(6,48,"Christmas strip", cex=2) # lennon thumbnail # there are better ways to this ... see add.image for example. data( lennon) colorbar.plot( 7.5,22, lennon, strip.width=.25, strip.length=.25, col=grey(seq( 0,1,,256))) } \keyword{ hplot }% at least one, from doc/KEYWORDS fields/man/WorldBank.Rd0000644000175100001440000001023413114135522014460 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{WorldBankCO2} \alias{WorldBankCO2} \docType{data} \title{Carbon emissions and demographic covariables by country for 1999.} \description{ These data are a small subset of the demographic data compiled by the World Bank. The data has been restricted to 1999 and to countries with a population larger than 1 million. Also, only countries reporting all the covariables are included. } \usage{ data(WorldBankCO2)} \format{ This a 75X5 matrix with the row names identifying countries and columns the covariables: \code{ "GDP.cap" "Pop.mid" "Pop.urb" "CO2.cap" "Pop"} \itemize{ \item GDP.cap: Gross domestic product (in US dollars) per capita. \item Pop.mid: percentage of the population within the ages of 15 through 65. \item Pop.urb: Precentage of the population living in an urban environment \item CO2.cap: Equivalent CO2 emmissions per capita \item Pop: Population } } \section{Reference}{ Romero-Lankao, P., J. L. Tribbia and D. Nychka (2008) Development and greenhouse gas emissions deviate from the modernization theory and convergence hypothesis. Cli- mate Research 38, 17-29. } \examples{ data(WorldBankCO2) plot( WorldBankCO2[,"GDP.cap"], WorldBankCO2[,"CO2.cap"], log="xy") } \section{Creating dataset}{ Listed below are scripts to create this data set from spread sheet on the World Bank CDs: \preformatted{ ## read in comma delimited spread sheet read.csv("climatedemo.csv", stringsAsFactors=FALSE)->hold ## convert numbers to matrix of data Ddata<- as.matrix( hold[,5:51] ) Ddata[Ddata==".."] <- NA ## still in character form parse as numeric Ddata<- matrix( as.numeric( Ddata), nrow=1248, ncol=ncol( Ddata), dimnames=list( NULL, format( 1960:2006) )) ## these are the factors indicating the different variables ### unique( Fac) gives the names of factors Fac<- as.character( hold[,1]) years<- 1960:2006 # create separate tables of data for each factor temp<- unique( Fac) ## also subset Country id and name Country.id<- as.character( hold[Fac== temp[1],3]) Country<- as.character( hold[Fac== temp[1],4]) Pop<- Ddata[ Fac== temp[2],] CO2<- Ddata[ Fac== temp[1],] Pop.mid<- Ddata[ Fac== temp[3],] GDP.cap<- Ddata[ Fac== temp[4],] Pop.urb<- Ddata[ Fac== temp[5],] CO2.cap<- CO2/Pop dimnames( Pop)<- list( Country.id,format(years)) dimnames( CO2)<- list( Country.id,format(years)) dimnames( Pop.mid)<- list( Country.id,format(years)) dimnames( Pop.urb)<- list( Country.id,format(years)) dimnames( CO2.cap)<- list( Country.id,format(years)) # delete temp data sets rm( temp) rm( hold) rm( Fac) # define year to do clustering. yr<- "1999" # variables for clustering combined as columns in a matrix temp<-cbind( GDP.cap[,yr], Pop.mid[,yr], Pop.urb[,yr],CO2[,yr],Pop[,yr]) # add column names and figure how many good data rows there are. dimnames( temp)<-list( Country, c("GDP.cap","Pop.mid","Pop.urb", "CO2.cap", "Pop")) good<-complete.cases(temp) good<- good & Pop[,yr] > 10e6 # subset with only the complete data rows WorldBankCO2<- temp[good,] save(WorldBankCO2, file="WorldBankCO2.rda") } } \keyword{datasets} fields/man/supportsArg.Rd0000644000175100001440000000573113114135522015134 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{supportsArg} \alias{supportsArg} %- Also NEED an '\alias' for EACH other topic documented here. \title{ Tests if function supports a given argument } \description{ %% ~~ A concise (1-5 lines) description of what the function does. ~~ Tests if the given function supports the given argument. Commonly used in fields code for determining if a covariance function supports precomputation of the distance matrix and evaluation of the covariance matrix over only the upper triangle. } \usage{ supportsArg(fun=stationary.cov, arg) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{fun}{ The function tested for support for whether it supports the argument \code{arg} as input } \item{arg}{ The argument to check if \code{fun} supports using as input } } \details{ Currently only \code{stationary.cov} and \code{Exp.cov} support evaluation of the covariance matrix over the upper triangle (and diagonal) only via the onlyUpper argument and distance matrix precomputation via the distMat argument. } \value{ A logical indicating whether the given function supports use of the given argument } \author{ %% ~~who you are~~ John Paige } %% ~Make other sections like Warning with \section{Warning }{....} ~ \seealso{ %% ~~objects to See Also as \code{\link{help}}, ~~~ \code{\link{stationary.cov}}, \code{\link{Exp.cov}} These covariance functions have the \code{onlyUpper} option allowing the user to evaluate the covariance matrix over the upper triangle and diagonal only and to pass a precomputed distance matrix } \examples{ ################ #Test covariance function to see if it supports evaluation of #covariance matrix over upper triangle only ################ supportsArg(Rad.cov, "distMat") supportsArg(Rad.cov, "onlyUpper") supportsArg(stationary.cov, "distMat") supportsArg(stationary.cov, "onlyUpper") supportsArg(Exp.cov, "distMat") supportsArg(Exp.cov, "onlyUpper") } fields/man/minitri.Rd0000644000175100001440000000325013114135522014250 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{minitri} \alias{minitri} \title{ Mini triathlon results } \description{ Results from a mini triathlon sponsored by Bud Lite, held in Cary, NC, June 1990. Times are in minutes for the male 30-34 group. Man was it hot and humid! (DN) The events in order were swim: (1/2 mile) bike: (15 miles) run: (4 miles) This is a dataframe. Row names are the place within this age group based on total time. } \arguments{ \item{swim}{ swim times } \item{bike}{ bike times } \item{run}{ run times } } \keyword{datasets} % docclass is data % Converted by Sd2Rd version 1.21. fields/man/fields.hints.Rd0000644000175100001440000001121313114135522015165 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{fields.hints} \alias{fields.hints} \alias{fields.style} \alias{fields.color.picker} \title{ fields - graphics hints } \description{ Here are some technical hints for assembling multiple plots with common legends or axes and setting the graphics parameters to make more readable figures. Also we an index to the defaultcolors in R graphics and setting their definitions in LaTeX. All these hints use the standard graphics environment. } \usage{ fields.style() fields.color.picker() } \details{ \code{fields.style} is a simple function to enlarge the characters in a plot and set the colors. List this out to modify the choices. \preformatted{ ##Two examples of concentrating a panel of plots together ## to conserve the white space. ## see also the example in image.plot using split.screen. ## The basic trick is to use the oma option to reserve some space around the ## plots. Then unset the outer margins to use that room. library( fields) # some hokey image data x<- 1:20 y<- 1:15 z<- outer( x,y,"+") zr<- range( c(z)) # add common legend to 3X2 panel par( oma=c(4,0,0,0)) set.panel( 3,2) par( mar=c(1,1,0,0)) # squish plots together with just 1 space between for ( k in 1:6){ image( x,y,z, axes=FALSE, xlab="", ylab="", zlim=zr) } par( oma=c(0,0,0,0)) image.plot( zlim=zr, legend.only=TRUE, horizontal=TRUE, legend.mar=5) # you may have to play around with legend.mar and the oma settings to # get enough space. ## ### also add some axes on the sides. in a lattice style ## note oma adds some more room at bottom. par( oma=c(8,6,1,1)) set.panel( 3,2) par( mar=c(1,1,0,0)) ## for ( k in 1:6){ image( x,y,z, axes=FALSE, xlab="", ylab="", zlim=zr) box() # box around figure # maybe draw an x axis if( k \%in\% c(5,6) ){ axis( 1, cex.axis=1.5) mtext( line=4, side=1, "Xstuff")} # maybe draw a y axis if( k \%in\% c(1,3,5) ){ axis( 2, cex.axis=1.5) mtext( line=4, side=2, "Ystuff")} } # same trick of adding a legend strip. par( oma=c(0,0,0,0)) image.plot( zlim=zr, legend.only=TRUE, horizontal=TRUE, legend.mar=5) # reset panel set.panel() #### # show colors ## the factory colors: clab<- colors() n<- length( clab) N<- ceiling( sqrt(n) ) M<- N temp<- rep( NA,M*N) temp[1:n] <- 1:n z<- matrix(temp, M,N) image(seq(.5,M+.5,,M+1), seq(.5,N+.5,,N+1) , z, col=clab, axes=FALSE, xlab="", ylab="") # see the function fields.color.picker() to locate colors # dumping out colors by name for a latex document # this creates text strings that are the LaTeX color definitions # using the definecolor function. # grab all of the R default colors clab<- colors() for( nn in clab){ temp<- signif(col2rgb(nn)/256, 3) cat( "\\definecolor{", nn, "}", "{rgb}{", temp[1], ",", temp[2], ",", temp[3], "}", fill=TRUE , sep="") } # this loop prints out definitions such as # \definecolor{yellowgreen}{rgb}{0.602,0.801,0.195} # having loaded the color package in LaTeX # defining this color # use the construction {\color{yellowgreen} THIS IS A COLOR} # to use this color in a talk or document. # this loop prints out all the colors in LaTeX language # as their names and can be converted to a pdf for handy reference. sink( "showcolors.tex") clab<- colors() for( nn in clab){ temp<- signif(col2rgb(nn)/256, 3) cat( "\\definecolor{", nn, "}", "{rgb}{", temp[1], ",", temp[2], ",", temp[3], "}", fill=TRUE , sep="") cat( paste("{ \\color{",nn,"} ", nn," $\\bullet$ \\\\ }", sep=""), fill=TRUE) } sink() } %end preformatted } \keyword{hplot} fields/man/Krig.Rd0000644000175100001440000005566513114135521013511 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{Krig} \alias{Krig} \alias{resid.Krig} \alias{fitted.Krig} \alias{coef.Krig} \title{ Kriging surface estimate } \description{ Fits a surface to irregularly spaced data. The Kriging model assumes that the unknown function is a realization of a Gaussian random spatial processes. The assumed model is additive Y = P(x) + Z(X) + e, where P is a low order polynomial and Z is a mean zero, Gaussian stochastic process with a covariance that is unknown up to a scale constant. The main advantages of this function are the flexibility in specifying the covariance as an R language function and also the supporting functions plot, predict, predictSE, surface for subsequent analysis. Krig also supports a correlation model where the mean and marginal variances are supplied. } \usage{ Krig(x, Y, cov.function = "stationary.cov", lambda = NA, df = NA, GCV = FALSE, Z = NULL, cost = 1, knots = NA, weights = NULL, m = 2, nstep.cv = 200, scale.type = "user", x.center = rep(0, ncol(x)), x.scale = rep(1, ncol(x)), rho = NA, sigma2 = NA, method = "REML", verbose = FALSE, mean.obj = NA, sd.obj = NA, null.function = "Krig.null.function", wght.function = NULL, offset = 0, na.rm = TRUE, cov.args = NULL, chol.args = NULL, null.args = NULL, wght.args = NULL, W = NULL, give.warnings = TRUE, ...) \method{fitted}{Krig}(object,...) \method{coef}{Krig}(object,...) resid.Krig(object,...) } \arguments{ \item{chol.args}{ Arguments to be passed to the cholesky decomposition in Krig.engine.fixed. The default if NULL, assigned at the top level of this function, is list( pivot=FALSE). This argument is useful when working with the sparse matrix package. } \item{cov.args}{ A list with the arguments to call the covariance function. (in addition to the locations) } \item{cov.function}{ Covariance function for data in the form of an R function (see Exp.simple.cov as an example). Default assumes that correlation is an exponential function of distance. See also \code{stationary.cov} for more general choice of covariance shapes. \code{exponential.cov} will be faster if only the exponential covariance form is needed. } \item{cost}{ Cost value used in GCV criterion. Corresponds to a penalty for increased number of parameters. The default is 1.0 and corresponds to the usual GCV function. } \item{df}{ The effective number of parameters for the fitted surface. Conversely, N- df, where N is the total number of observations is the degrees of freedom associated with the residuals. This is an alternative to specifying lambda and much more interpretable. NOTE: GCV argument defaults to TRUE if this argument is used. } \item{GCV}{ If TRUE matrix decompositions are done to allow estimating lambda by GCV or REML and specifying smoothness by the effective degrees of freedom. So the GCV switch does more than just supply a GCV estimate. Also if lambda or df are passed the estimate will be evaluated at those values, not at the GCV/REML estimates of lambda. If FALSE Kriging estimate is found under a fixed lambda model. } \item{give.warnings}{ If TRUE warnings are given in gcv grid search limits. If FALSE warnings are not given. Best to leave this TRUE! This argument is set ot FALSE if warn is less than zero in the top level, R options function. See options()$warn} \item{knots}{ A matrix of locations similar to x. These can define an alternative set of basis functions for representing the estimate. One choice may be a space-filling subset of the original x locations, thinning out the design where locations cluster. The default is to put a "knot" at all unique locations. (See details.) } \item{lambda}{ Smoothing parameter that is the ratio of the error variance (sigma**2) to the scale parameter of the covariance function (rho). If omitted this is estimated by GCV ( see method below). } \item{method}{ Determines what "smoothing" parameter should be used. The default is to estimate standard GCV Other choices are: GCV.model, GCV.one, RMSE, pure error and REML. The differences are explained below. } \item{mean.obj}{ Object to predict the mean of the spatial process. This used in when fitting a correlation model with varying spatial means and varying marginal variances. (See details.) } \item{m}{ A polynomial function of degree (m-1) will be included in the model as the drift (or spatial trend) component. The "m" notation is from thin-plate splines where m is the derivative in the penalty function. With m=2 as the default a linear model in the locations will be fit a fixed part of the model. } \item{na.rm}{If TRUE NAs will be removed from the \code{y} vector and the corresponding rows of \code{x} -- with a warning. If FALSE Krig will just stop with a message. Once NAs are removed all subsequent analysis in fields does not use those data. } \item{nstep.cv}{ Number of grid points for the coarse grid search to minimize the GCV RMLE and other related criteria for finding lambda, the smoothing parameter. Default is 200, fairly large to avoid some cases of closely spaced local minima. Evaluations of the GCV and related objective functions are cheap given the matrix decompositions described below. } \item{null.args}{ Extra arguments for the null space function \code{null.function}. If \code{fields.mkpoly} is passed as \code{null.function} then this is set to a list with the value of \code{m}. So the default is use a polynomial of degree m-1 for the null space (fixed part) of the model. } \item{null.function}{ An R function that creates the matrices for the null space model. The default is fields.mkpoly, an R function that creates a polynomial regression matrix with all terms up to degree m-1. (See Details) } \item{offset}{ The offset to be used in the GCV criterion. Default is 0. This would be used when Krig is part of a backfitting algorithm and the offset is other model degrees of freedom from other regression components. } \item{rho}{ Scale factor for covariance. } \item{scale.type}{ This is a character string among: "range", "unit.sd", "user", "unscaled". The independent variables and knots are scaled to the specified scale.type. By default no scaling is done. This usuall makes sense for spatial locations. Scale type of "range" scales the data to the interval (0,1) by forming (x-min(x))/range(x) for each x. Scale type of "unit.sd" Scale type of "user" allows specification of an x.center and x.scale by the user. The default for "user" is mean 0 and standard deviation 1. Scale type of "unscaled" does not scale the data. } \item{sd.obj}{ Object to predict the marginal standard deviation of the spatial process. } \item{sigma2}{ Variance of the errors, often called the nugget variance. If weights are specified then the error variance is sigma2 divided by weights. Note that lambda is defined as the ratio sigma2/rho. } \item{verbose}{ If true will print out all kinds of intermediate stuff. Default is false, of course as this is used mainly for debugging. } \item{weights}{ Weights are proportional to the reciprocal variance of the measurement error. The default is equal weighting i.e. vector of unit weights. } \item{wght.function}{ An R function that creates a weights matrix to the observations. This is only needed if the weight matirx has off diagonal elements. The default is NULL indicating that the weight matrix is a diagonal, based on the weights argument. (See details) } \item{W}{The observation weight matrix.} \item{wght.args}{ Optional arguments to be passed to the weight function (wght.function) used to create the observation weight matrix.} \item{x}{ Matrix of independent variables. These could the locations for spatial data or the indepedent variables in a regression. } \item{x.center}{ Centering values to be subtracted from each column of the x matrix. } \item{x.scale}{ Scale values that are divided into each column after centering. } \item{Y}{ Vector of dependent variables. These are the values of the surface (perhaps with measurement error) at the locations or the dependent response in a regression. } \item{Z}{ A vector of matrix of covariates to be include in the fixed part of the model. If NULL (default) no addtional covariates are included.} \item{\dots}{ Optional arguments that appear are assumed to be additional arguments to the covariance function. Or are included in methods functions (resid, fitted, coef) as a required argument.} \item{object}{ A Krig object} } \value{ A object of class Krig. This includes the predicted values in fitted.values and the residuals in residuals. The results of the grid search to minimize the generalized cross validation function are returned in gcv.grid. The coef.Krig function only returns the coefficients, "d", associated with the fixed part of the model (also known as the null space or spatial drift). \item{call}{ Call to the function } \item{y}{ Vector of dependent variables. } \item{x}{ Matrix of independent variables. } \item{weights}{ Vector of weights. } \item{knots}{ Locations used to define the basis functions. } \item{transform}{ List of components used in centering and scaling data. } \item{np}{ Total number of parameters in the model. } \item{nt}{ Number of parameters in the null space. } \item{matrices}{ List of matrices from the decompositions (D, G, u, X, qr.T). } \item{gcv.grid}{ Matrix of values from the GCV grid search. The first column is the grid of lambda values used in the search, the second column is the trace of the A matrix, the third column is the GCV values and the fourth column is the estimated value of sigma conditional on the vlaue of lambda. } \item{lambda.est}{ A table of estimated smoothing parameters with corresponding degrees of freedom and estimates of sigma found by different methods. } \item{cost}{ Cost value used in GCV criterion. } \item{m}{ Order of the polynomial space: highest degree polynomial is (m-1). This is a fixed part of the surface often referred to as the drift or spatial trend. } \item{eff.df}{ Effective degrees of freedom of the model. } \item{fitted.values}{ Predicted values from the fit. } \item{residuals}{ Residuals from the fit. } \item{lambda}{ Value of the smoothing parameter used in the fit. Lambda is defined as sigma**2/rho. See discussion in details. } \item{yname}{ Name of the response. } \item{cov.function}{ Covariance function of the model. } \item{beta}{ Estimated coefficients in the ridge regression format } \item{d}{ Estimated coefficients for the polynomial basis functions that span the null space } \item{fitted.values.null}{ Fitted values for just the polynomial part of the estimate } \item{trace}{ Effective number of parameters in model. } \item{c}{ Estimated coefficients for the basis functions derived from the covariance. } \item{coefficients}{ Same as the beta vector. } \item{just.solve}{ Logical describing if the data has been interpolated using the basis functions. } \item{shat}{ Estimated standard deviation of the measurement error (nugget effect). } \item{sigma2}{ Estimated variance of the measurement error (shat**2). } \item{rho}{ Scale factor for covariance. COV(h(x),h(x\code{)) = rho*cov.function(x,x}) If the covariance is actually a correlation function then rho is also the "sill". } \item{mean.var}{ Normalization of the covariance function used to find rho. } \item{best.model}{ Vector containing the value of lambda, the estimated variance of the measurement error and the scale factor for covariance used in the fit. } } \details{ This function produces a object of class Krig. With this object it is easy to subsequently predict with this fitted surface, find standard errors, alter the y data ( but not x), etc. The Kriging model is: Y.k= f(x.k) = P(x.k) + Z(x.k) + e.k where ".k" means subscripted by k, Y is the dependent variable observed at location x.k, P is a low order polynomial, Z is a mean zero, Gaussian field with covariance function K and e is assumed to be independent normal errors. The estimated surface is the best linear unbiased estimate (BLUE) of f(x)= P(x) + Z(x) given the observed data. For this estimate K, is taken to be rho*cov.function and the errors have variance sigma**2. In more conventional geostatistical terms rho is the "sill" if the covariance function is actually a correlation function and sigma**2 is the nugget variance or measure error variance (the two are confounded in this model.) If the weights are given then the variance of e.k is sigma**2/ weights.k . In the case that the weights are specified as a matrix, W, using the wght.function option then the assumed covariance matrix for the errors is sigma**2 Wi, where Wi is the inverse of W. It is straightforward to show that the estimate of f only depends on sigma and rho through the ratio lambda = sigma**2/ rho. This parameter, termed the smoothing parameter plays a central role in the statistical computations within \code{Krig}. See also the help for thin plate splines, (\code{Tps}) to get another perspective on the smoothing parameter. This function also supports a modest extension of the Generalized Kriging model to include other covariates as fixed regression type components. In matrix form Y = Zb + F + E where Z is a matrix of covariates and b a fixed parameter vector, F the vector of function values at the observations and E a vector of errors. The The \code{Z} argument in the function is the way to specify this additional component. If the parameters rho and sigma2 are omitted in the call, then they are estimated in the following way. If lambda is given, then sigma2 is estimated from the residual sum of squares divided by the degrees of freedom associated with the residuals. Rho is found as the difference between the sums of squares of the predicted values having subtracted off the polynomial part and sigma2. These estimates are the MLE's under Gaussian assumptions on the process and errors. If lambda is also omitted is it estimated from the data using a variety of approaches and then the values for sigma and rho are found in the same way from the estimated lambda. A useful extension of a stationary correlation to a nonstationary covariance is what we term a correlation model. If mean and marginal standard deviation objects are included in the call. Then the observed data is standardized based on these functions. The spatial process is then estimated with respect to the standardized scale. However for predictions and standard errors the mean and standard deviation surfaces are used to produce results in the original scale of the observations. The GCV function has several alternative definitions when replicate observations are present or if one uses a reduced set knots. Here are the choices based on the method argument: GCV: leave-one-out GCV. But if there are replicates it is leave one group out. (Wendy and Doug prefer this one.) GCV.one: Really leave-one-out GCV even if there are replicate points. This what the old tps function used in FUNFITS. rmse: Match the estimate of sigma**2 to a external value ( called rmse) pure error: Match the estimate of sigma**2 to the estimate based on replicated data (pure error estimate in ANOVA language). GCV.model: Only considers the residual sums of squares explained by the basis functions. REML: The process and errors are assumed to the Gaussian and the likelihood is concentrated (or profiled) with respect to lambda. The MLE of lambda is found from this criterion. Restricted means that the likelihood is formed from a linear transformation of the observations that is orthogonal to the column space of P(x). WARNING: The covariance functions often have a nonlinear parameter(s) that often control the strength of the correlations as a function of separation, usually referred to as the range parameter. This parameter must be specified in the call to Krig and will not be estimated. } \section{References}{ See "Additive Models" by Hastie and Tibshirani, "Spatial Statistics" by Cressie and the FIELDS manual. } \seealso{ summary.Krig, predict.Krig, predictSE.Krig, predictSurfaceSE, predictSurface, plot.Krig, surface.Krig } \examples{ # a 2-d example # fitting a surface to ozone # measurements. Exponential covariance, range parameter is 20 (in miles) fit <- Krig(ChicagoO3$x, ChicagoO3$y, theta=20) summary( fit) # summary of fit set.panel( 2,2) plot(fit) # four diagnostic plots of fit set.panel() surface( fit, type="C") # look at the surface # predict at data predict( fit) # predict using 7.5 effective degrees of freedom: predict( fit, df=7.5) # predict on a grid ( grid chosen here by defaults) out<- predictSurface( fit) surface( out, type="C") # option "C" our favorite # predict at arbitrary points (10,-10) and (20, 15) xnew<- rbind( c( 10, -10), c( 20, 15)) predict( fit, xnew) # standard errors of prediction based on covariance model. predictSE( fit, xnew) # surface of standard errors on a default grid predictSurfaceSE( fit)-> out.p # this takes some time! surface( out.p, type="C") points( fit$x) \dontrun{ # Using another stationary covariance. # smoothness is the shape parameter for the Matern. fit <- Krig(ChicagoO3$x, ChicagoO3$y, Covariance="Matern", theta=10, smoothness=1.0) summary( fit) # # Roll your own: creating very simple user defined Gaussian covariance # test.cov <- function(x1,x2,theta,marginal=FALSE,C=NA){ # return marginal variance if( marginal) { return(rep( 1, nrow( x1)))} # find cross covariance matrix temp<- exp(-(rdist(x1,x2)/theta)**2) if( is.na(C[1])){ return( temp)} else{ return( temp\%*\%C)} } # # use this and put in quadratic polynomial fixed function fit.flame<- Krig(flame$x, flame$y, cov.function="test.cov", m=3, theta=.5) # # note how range parameter is passed to Krig. # BTW: GCV indicates an interpolating model (nugget variance is zero) # This is the content of the warning message. # take a look ... surface(fit.flame, type="I") } # # Thin plate spline fit to ozone data using the radial # basis function as a generalized covariance function # # p=2 is the power in the radial basis function (with a log term added for # even dimensions) # If m is the degree of derivative in penalty then p=2m-d # where d is the dimension of x. p must be greater than 0. # In the example below p = 2*2 - 2 = 2 # out<- Krig( ChicagoO3$x, ChicagoO3$y,cov.function="Rad.cov", m=2,p=2,scale.type="range") # See also the Fields function Tps # out should be identical to Tps( ChicagoO3$x, ChicagoO3$y) # # A Knot example data(ozone2) y16<- ozone2$y[16,] # there are some missing values -- remove them good<- !is.na( y16) y<- y16[good] x<- ozone2$lon.lat[ good,] # # the knots can be arbitrary but just for fun find them with a space # filling design. Here we select 50 from the full set of 147 points # xknots<- cover.design( x, 50, num.nn= 75)$design # select 50 knot points out<- Krig( x, y, knots=xknots, cov.function="Exp.cov", theta=300) summary( out) # note that that trA found by GCV is around 17 so 50>17 knots may be a # reasonable approximation to the full estimator. # \dontrun{ # the plot surface( out, type="C") US( add=TRUE) points( x, col=2) points( xknots, cex=2, pch="O") } \dontrun{ ## A quick way to deal with too much data if you intend to smooth it anyway ## Discretize the locations to a grid, then apply Krig ## to the discretized locations: ## RM.approx<- as.image(RMprecip$y, x=RMprecip$x, nx=20, ny=20) # take a look: image.plot( RM.approx) # discretized data (observations averaged if in the same grid box) # 336 locations -- down form the full 806 # convert the image format to locations, obs and weight vectors yd<- RM.approx$z[RM.approx$ind] weights<- RM.approx$weights[RM.approx$ind] # takes into account averaging xd<- RM.approx$xd obj<- Krig( xd, yd, weights=weights, theta=4) # compare to the full fit: # Krig( RMprecip$x, RMprecip$y, theta=4) } \dontrun{ # A correlation model example # fit krig surface using a mean and sd function to standardize # first get stats from 1987 summer Midwest O3 data set data(ozone2) stats.o3<- stats( ozone2$y) mean.o3<- Tps( ozone2$lon.lat, c( stats.o3[2,])) sd.o3<- Tps( ozone2$lon.lat, c( stats.o3[3,])) # # Now use these to fit particular day ( day 16) # and use great circle distance fit<- Krig( ozone2$lon.lat, ozone2$y[16,], theta=350, mean.obj=mean.o3, sd.obj=sd.o3, Covariance="Matern", Distance="rdist.earth", smoothness=1.0, na.rm=TRUE) # # the finale surface( fit, type="I") US( add=TRUE) points( fit$x) title("Estimated ozone surface") } \dontrun{ # # # explore some different values for the range and lambda using REML theta <- seq( 100,500,,40) PLL<- matrix( NA, 40,80) # the loop for( k in 1:40){ # call to Krig with different ranges # also turn off warnings for GCV search # to avoid lots of messages. (not recommended in general!) PLL[k,]<- Krig( ozone2$lon.lat,ozone2$y[16,], cov.function="stationary.cov", theta=theta[k], mean.obj=mean.o3, sd.obj=sd.o3, Covariance="Matern",smoothness=.5, Distance="rdist.earth", nstep.cv=80, give.warnings=FALSE, na.rm=TRUE)$gcv.grid[,7] # # gcv.grid is the grid search output from # the optimization for estimating different estimates for lambda including # REML # default grid is equally spaced in eff.df scale ( and should the same across theta) # here } # get lambda grid from looping k<- 1 lam<- Krig( ozone2$lon.lat,ozone2$y[16,], cov.function="stationary.cov", theta=theta[k], mean.obj=mean.o3, sd.obj=sd.o3, Covariance="Matern",smoothness=.5, Distance="rdist.earth", nstep.cv=80, give.warnings=FALSE, na.rm=TRUE)$gcv.grid[,1] # see the 2 column of $gcv.grid to get the effective degress of freedom. contour( theta,log(lam) , PLL) } } \keyword{spatial} % docclass is function fields/man/Krig.engine.default.Rd0000644000175100001440000002442613114135521016367 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{The Engines:} \alias{Krig.engine.default} \alias{Krig.engine.knots} \alias{Krig.engine.fixed} \alias{Krig.coef} \alias{Krig.check.xY} \alias{Krig.cor.Y} \alias{Krig.transform.xY} \alias{Krig.make.u} \alias{Krig.make.W} \alias{Krig.make.Wi} \alias{\%d*\%} \title{ Basic linear algebra utilities and other computations supporting the Krig function. } \description{ These are internal functions to Krig that compute the basic matrix decompositions or solve the linear systems needed to evaluate the Krig/Tps estimate. Others listed below do some simple housekeeping and formatting. Typically they are called from within Krig but can also be used directly if passed a Krig object list. } \usage{ Krig.engine.default(out, verbose = FALSE) Krig.engine.knots(out, verbose = FALSE) Krig.engine.fixed( out, verbose=FALSE, lambda=NA) Krig.coef(out, lambda = out$lambda, y = NULL, yM = NULL, verbose = FALSE) Krig.make.u(out, y = NULL, yM = NULL, verbose = FALSE) Krig.check.xY(x, Y,Z, weights, na.rm, verbose = FALSE) Krig.cor.Y(obj, verbose = FALSE) Krig.transform.xY(obj, knots, verbose = FALSE) Krig.make.W( out, verbose=FALSE) Krig.make.Wi ( out, verbose=FALSE) } \arguments{ \item{out}{ A complete or partial Krig object. If partial it must have all the information accumulated to this calling point within the Krig function. } \item{obj}{Same as \code{out}. } \item{verbose}{If TRUE prints out intermediate results for debugging.} \item{lambda}{Value of smoothing parameter "hard wired" into decompositions. Default is NA, i.e. use the value in \code{out\$lambda}. } \item{y}{New y vector for recomputing coefficients. OR for \%d*\% a vector or matrix. } \item{yM}{New y vector for recomputing coefficients but the values have already been collapsed into replicate group means.} \item{Y}{raw data Y vector} \item{x}{raw x matrix of spatial locations OR In the case of \%d*\%, y is either a matrix or a vector. As a vector, y, is interpreted to be the elements of a digaonal matrix. } \item{weights}{ Raw \code{weights} vector passed to Krig} \item{Z}{ Raw vector or matrix of additional covariates.} \item{na.rm}{ NA action logical values passed to Krig} \item{knots}{Raw \code{knots} matrix passed to Krig} } \details{ ENGINES: The engines are the code modules that handle the basic linear algebra needed to computed the estimated curve or surface coefficients. All the engine work on the data that has been reduced to unique locations and possibly replicate group means with the weights adjusted accordingly. All information needed for the decomposition are components in the Krig object passed to these functions. \code{Krig.engine.default} finds the decompositions for a Universal Kriging estimator. by simultaneously diagonalizing the linear system system for the coefficients of the estimator. The main advantage of this form is that it is fairly stable numerically, even with ill-conditioned covariance matrices with lambda > 0. (i.e. provided there is a "nugget" or measure measurement error. Also the eigendecomposition allows for rapid evaluation of the likelihood, GCV and coefficients for new data vectors under different values of the smoothing parameter, lambda. \code{Krig.engine.knots} finds the decompositions in the case that the covariance is evaluated at arbitrary locations possibly different than the data locations (called knots). The intent of these decompositions is to facilitate the evaluation at different values for lambda. There will be computational savings when the number of knots is less than the number of unique locations. (But the knots are as densely distributed as the structure in the underlying spatial process.) This function call fields.diagonalize, a function that computes the matrix and eigenvalues that simultaneous diagonalize a nonnegative definite and a positive definite matrix. These decompositions also facilitate multiple evaluations of the likelihood and GCV functions in estimating a smoothing parameter and also multiple solutions for different y vectors. \code{Krig.engine.fixed} are specific decomposition based on the Cholesky factorization assuming that the smoothing parameter is fixed. This is the only case that works in the sparse matrix. Both knots and the full set of locations can be handled by this case. The difference between the "knots" engine above is that only a single value of lambda is considered in the fixed engine. OTHER FUNCTIONS: \code{Krig.coef} Computes the "c" and "d" coefficients to represent the estimated curve. These coefficients are used by the predict functions for evaluations. Krig.coef can be used outside of the call to Krig to recompute the fit with different Y values and possibly with different lambda values. If new y values are not passed to this function then the yM vector in the Krig object is used. The internal function \code{Krig.ynew} sorts out the logic of what to do and use based on the passed arguments. \code{Krig.make.u} Computes the "u" vector, a transformation of the collapsed observations that allows for rapid evaluation of the GCV function and prediction. This only makes sense when the decomposition is WBW or DR, i.e. an eigen decomposition. If the decompostion is the Cholesky based then this function returns NA for the u component in the list. \code{Krig.check.xY} Checks for removes missing values (NAs). \code{Krig.cor.Y} Standardizes the data vector Y based on a correlation model. \code{Krig.transform.xY} Finds all replicates and collapse to unique locations and mean response and pooled variances and weights. These are the xM, yM and weightsM used in the engines. Also scales the x locations and the knots according to the transformation. \code{Krig.make.W} and \code{Krig.make.Wi} These functions create an off-diagonal weight matrix and its symmetric square root or the inverse of the weight matrix based on the information passed to Krig. If \code{out$nondiag} is TRUE W is constructed based on a call to the passed function wght.function along with additional arguments. If this flag is FALSE then W is just \code{diag(out$weightsM)} and the square root and inverse are computed directly. \code{\%d*\%} Is a simple way to implement efficient diagonal multiplications. x\%d*\%y is interpreted to mean diag(x)\%*\% y if x is a vector. If x is a matrix then this becomes the same as the usual matrix multiplication. } \section{Returned Values}{ ENGINES: The returned value is a list with the matrix decompositions and other information. These are incorporated into the complete Krig object. Common to all engines: \describe{ \item{decomp}{Type of decomposition} \item{nt}{dimension of T matrix} \item{np}{number of knots} } \code{Krig.engine.default}: \describe{ \item{u}{Transformed data using eigenvectors.} \item{D}{Eigenvalues} \item{G}{Reduced and weighted matrix of the eigenvectors} \item{qr.T}{QR decomposition of fixed regression matrix} \item{V}{The eigenvectors} } \code{Krig.engine.knots}: \describe{ \item{u}{A transformed vector that is based on the data vector.} \item{D}{Eigenvalues of decomposition} \item{G}{Matrix from diagonalization} \item{qr.T}{QR decomposition of the matrix for the fixed component. i.e. sqrt( Wm)\%*\%T} \item{pure.ss}{pure error sums of squares including both the variance from replicates and also the sums of squared residuals from fitting the full knot model with lambda=0 to the replicate means. } } \code{Krig.engine.fixed}: \describe{ \item{d}{estimated coefficients for the fixed part of model} \item{c}{estimated coefficients for the basis functions derived from the covariance function.} } Using all data locations \describe{ \item{qr.VT}{QR decomposition of the inverse Cholesky factor times the T matrix. } \item{MC}{Cholesky factor} } Using knot locations \describe{ \item{qr.Treg}{QR decomposition of regression matrix modified by the estimate of the nonparametric ( or spatial) component.} \item{lambda.fixed}{Value of lambda used in the decompositions} } OTHER FUNCTIONS: \code{Krig.coef} \describe{ \item{yM}{Y values as replicate group means} \item{shat.rep}{Sample standard deviation of replicates} \item{shat.pure.error}{Same as shat.rep} \item{pure.ss}{Pure error sums of squares based on replicates} \item{c}{The "c" basis coefficients associated with the covariance or radial basis functions.} \item{d}{The "d" regression type coefficients that are from the fixed part of the model or the linear null space.} \item{u}{When the default decomposition is used the data vector transformed by the orthogonal matrices. This facilitates evaluating the GCV function at different values of the smoothing parameter.} } \code{Krig.make.W} \describe{ \item{W}{The weight matrix} \item{W2}{ Symmetric square root of weight matrix} } \code{Krig.make.Wi} \describe{ \item{ Wi}{The inverse weight matrix} \item{W2i}{ Symmetric square root of inverse weight matrix} } } \author{Doug Nychka } \seealso{ \code{\link{Krig}}, \code{\link{Tps}} } \examples{ Krig( ChicagoO3$x, ChicagoO3$y, theta=100)-> out Krig.engine.default( out)-> stuff # compare "stuff" to components in out$matrices look1<- Krig.coef( out) look1$c # compare to out$c look2<- Krig.coef( out, yM = ChicagoO3$y) look2$c # better be the same even though we pass as new data! } \keyword{ spatial } fields/man/as.image.Rd0000644000175100001440000001025713114135522014266 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{as.image} \alias{as.image} \title{ Creates image from irregular x,y,z } \description{ Discretizes a set of 2-d locations to a grid and produces a image object with the z values in the right cells. For cells with more than one Z value the average is used. } \usage{ as.image(Z, ind=NULL, grid=NULL, x=NULL,weights=rep(1, length(Z)), na.rm=FALSE, nx=64, ny=64, boundary.grid=FALSE, nrow=NULL, ncol=NULL, FUN = NULL) } \arguments{ \item{Z}{ Values of image. } \item{ind}{ A matrix giving the row and column subscripts for each image value in Z. (Not needed if x is specified.) } \item{grid}{ A list with components x and y of equally spaced values describing the centers of the grid points. The default is to use nrow and ncol and the ranges of the data locations (x) to construct a grid. } \item{x}{ Locations of image values. Not needed if ind is specified. } \item{nrow}{ Same as nx this is depreciated. } \item{ncol}{ Same as ny this is depreciated. } \item{weights}{ If two or more values fall into the same pixel a weighted average is used to represent the pixel value. Default is equal weights. } \item{na.rm}{ If true NA's are removed from the Z vector.} \item{nx}{Number of grid point in X coordinate.} \item{ny}{Number of grid points in Y coordinate.} \item{boundary.grid}{If FALSE grid points are assumed to be the grid midpoints. If TRUE they are the grid box boundaries.} \item{FUN}{The function to apply to common values in a grid box. The default is a mean (or weighted mean). If FUN is specified the weights are not used. } } \value{ An list in image format with a few more components. Components x and y are the grid values , z is a nrow X ncol matrix with the Z values. NA's are placed at cell locations where Z data has not been supplied. Component ind is a 2 column matrix with subscripts for the locations of the values in the image matrix. Component weights is an image matrix with the sum of the individual weights for each cell. If no weights are specified the default for each observation is one and so the weights will be the number of observations in each bin. } \details{ The discretization is straightforward once the grid is determined. If two or more Z values have locations in the same cell the weighted average value is taken as the value. The weights component that is returned can be used to account for means that have different numbers (or precisions) of observations contributing to the grid point averages. The default weights are taken to be one for each observation. See the source code to modify this to get more information about coincident locations. (See the call to fast.1way) } \seealso{ image.smooth, image.plot, Krig.discretize, Krig.replicates } \examples{ # convert precip data to 50X50 image look<- as.image( RMprecip$y, x= RMprecip$x, nx=50, ny=50) image.plot( look) # number of obs in each cell -- in this case equal to the # aggregated weights because each obs had equal wieght in the call image.plot( look$x ,look$y, look$weights, col=terrain.colors(50)) # hot spot is around Denver } \keyword{manip} % docclass is function % Converted by Sd2Rd version 1.21. fields/man/CO2.Rd0000644000175100001440000000712213114135521013161 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{CO2} \alias{CO2} \alias{CO2.true} \docType{data} \title{Simulated global CO2 observations} \description{ This is an example of moderately large spatial data set and consists of simulated CO2 concentrations that are irregularly sampled from a lon/lat grid. Also included is the complete CO2 field (CO2.true) used to generate the synthetic observations.} \usage{data(CO2) } \format{ The format of \code{CO2} is a list with two components: \itemize{ \item lon.lat: 26633x2 matrix of the longitude/latitude locations. These are a subset of a larger lon/lat grid (see example below). \item y: 26633 CO2 concentrations in parts per million. } The format of \code{CO2.true} is a list in "image" format with components: \itemize{ \item x longitude grid values. \item y latitude grid values. \item z an image matrix with CO2 concentration in parts per million \item mask a logical image that indicates with grid locations were selected for the synthetic data set \code{CO2}. } } \details{ This data was generously provided by Dorit Hammerling and Randy Kawa as a test example for the spatial analysis of remotely sensed (i.e. satellite) and irregular observations. The synthetic data is based on a true CO2 field simulated from a geophysical, numerical model. } \examples{ \dontrun{ data(CO2) # # A quick look at the observations with world map quilt.plot( CO2$lon.lat, CO2$y) world( add=TRUE) # Note high concentrations in Borneo (biomass burning), Amazonia and # ... Michigan (???). # spatial smoothing using the wendland compactly supported covariance # see help( fastTps) for details # First smooth using locations and Euclidean distances # note taper is in units of degrees out<-fastTps( CO2$lon.lat, CO2$y, theta=4, lambda=2.0) #summary of fit note about 7300 degrees of freedom # associated with fitted surface print( out) # image plot on a grid (this takes a while) surface( out, type="I", nx=300, ny=150) # smooth with respect to great circle distance out2<-fastTps( CO2$lon.lat, CO2$y, lon.lat=TRUE,lambda=1.5, theta=4*68) print(out2) #surface( out2, type="I", nx=300, ny=150) # these data are actually subsampled from a grid. # create the image object that holds the data # temp<- matrix( NA, ncol=ncol(CO2.true$z), nrow=nrow(CO2.true$z)) temp[ CO2.true$mask] <- CO2$y # look at gridded object. image.plot(CO2.true$x,CO2.true$y, temp) # to predict _exactly_ on this grid for the second fit; # (this take a while) look<- predictSurface( out2, grid.list=list( x=CO2.true$x, y=CO2.true$y)) image.plot(look) } } \keyword{datasets} fields/man/REML.test.Rd0000644000175100001440000002127013114135521014313 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{REML.test} \Rdversion{1.1} \alias{REML.test} \alias{MLE.Matern} \alias{MLE.Matern.fast} \alias{MLE.objective.fn} \alias{MaternGLS.test} \alias{MaternGLSProfile.test} \alias{MaternQR.test} \alias{MaternQRProfile.test} \title{ Maximum Likelihood estimates for some Matern covariance parameters. } \description{ For a fixed smoothness (shape) parameter these functions provide different ways of estimating and testing restricted and profile likehiloods for the Martern covariance parameters. \code{MLE.Matern} is a simple function that finds the restricted maximum likelihood (REML) estimates of the sill, nugget and range parameters (\code{rho, sigma2 and theta}) of the Matern covariance functions. The remaining functions are primarily for testing. } \usage{ MLE.Matern(x, y, smoothness, theta.grid = NULL, ngrid = 20, verbose = FALSE, niter = 25, tol = 1e-05, Distance = "rdist", m = 2, Dmax = NULL, ...) MLE.Matern.fast(x, y, smoothness, theta.grid = NULL, ngrid=20, verbose=FALSE, m=2, ...) MLE.objective.fn( ltheta,info, value=TRUE) MaternGLSProfile.test(x, y, smoothness = 1.5, init = log(c(0.05,1))) MaternGLS.test(x, y, smoothness = 1.5, init = log(c(1, 0.2, 0.1))) MaternQR.test (x, y, smoothness = 1.5, init = log(c(1, 0.2, 0.1))) MaternQRProfile.test (x, y, smoothness = 1.5, init = log(c(1))) REML.test(x, y, rho, sigma2, theta, nu = 1.5) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{Dmax}{ Maximum distance for grid used to evaluate the fitted covariance function.} \item{Distance}{Distance function used in finding covariance.} \item{x}{ A matrix of spatial locations with rows indexing location and columns the dimension (e.g. longitude/latitude)} \item{y}{ Spatial observations} \item{smoothness}{Value of the Matern shape parameter.} \item{theta.grid}{ Grid of theta parameter values to use for grid search in maximizing the Likelilood. The defualt is do an initial grid search on ngrid points with the range at the 3 an d 97 quantiles of the pairwise distances.If only two points are passed then this is used as the range for a sequence of ngrid points.} \item{ngrid}{Number of points in grid search.} \item{init}{Initial values of the parameters for optimization. For the first three functions these are in the order rho, theta sigma2 and in a log scale. For MaternQRProfile.test initial value is just log(theta). } \item{verbose}{If TRUE prints more information.} \item{rho}{ Marginal variance of Matern process (the "sill") } \item{sigma2}{Variance of measurement error (the "nugget")} \item{theta}{Scale parameter (the "range")} \item{nu}{Smoothness parameter} \item{ltheta}{ log of range parameter} \item{info}{A list with components \code{x,y, smoothness, ngrid} that pass the information to the optimizer. See details below.} \item{value}{If TRUE only reports minus log Profile likelihood with profile on the range parameter. If FALSE returns a list of information.} \item{m}{Polynomial of degree (m-1) will be included in model as a fixed part.} \item{niter}{Maximum number of interations in golden section search.} \item{tol}{Tolerance for convergence in golden section search.} \item{\dots}{Additional arguments that are passed to the Krig function in evaluating the profile likelihood.} } \details{ \code{MLE.Matern} is a simple function to find the maximum likelihood estimates of using the restricted and profiled likeilihood that is intrinsic to the ccomputations in \code{Krig}. The idea is that the likelihood is concentrated to the parameters lambda and theta. (where lambda = sigma2/rho). For fixed theta then this is maximized over lambda using \code{Krig} and thus concetrates the likelihood on theta. The final maximization over theta is implemented as a golden section search and assumes a convex function. All that is needed is for three theta grid points where the middle point has a larger likelihood than the endpoints. In practice the theta grid defualts to a 20 points equally spaced between the .03 and .97 quantiles of the distribution of the pairwise distances. The likelihood is evaluated at these points and a possible triple is identified. If no exists from the grid search the function returns with NAs for the parameter estimates. Note that due to the setup of the golden section search the computation actually minimizes minus the log likelihood. \code{MLE.Matern.fast} is a similar function but replaces the optimaiztion step computed by Krig to a tighter set of code in the function \code{MLE.objective.fn}. See also \code{mKrigMLEGrid} for an alternative and streamlined function using \code{mKrig} rather than \code{Krig}. } \value{ For MLE.Matern (and MLE.Matern.fast) \item{smoothness}{Value of the smoothness function} \item{pars}{MLE for rho, theta and sigma} \item{REML}{Value of minus the log restricted Profile likelihood at the maxmimum} \item{trA}{Effective degrees of freedom in the predicted surface based on the MLE parameters.} \item{REML.grid}{Matrix with values of theta and the log likelihood from the initial grid search.} } \author{ Doug Nychka } \note{ See the script REMLest.test.R and Likelihood.test.R in the tests directory to see how these functions are used to check the likelihood expressions. } \examples{ # Just look at one day from the ozone2 data(ozone2) out<- MLE.Matern( ozone2$lon.lat,ozone2$y[16,],1.5, ngrid=8) plot( out$REML.grid) points( out$pars[2], out$REML, cex=2) xline( out$pars[2], col="blue", lwd=2) \dontrun{ # to get a finer grid on initial search: out<- MLE.Matern( ozone2$lon.lat,ozone2$y[16,],1.5, theta.grid=c(.3,2), ngrid=40) # simulated data 200 points uniformly distributed set.seed( 123) x<- matrix( runif( 2*200), ncol=2) n<- nrow(x) rho= 2.0 sigma= .05 theta=.5 Cov.mat<- rho* Matern( rdist(x,x), smoothness=1.0, range=theta) A<- chol( Cov.mat) gtrue<- t(A) \%*\% rnorm(n) gtrue<- c( gtrue) err<- rnorm(n)*sigma y<- gtrue + err out0<- MLE.Matern( x,y,smoothness=1.0) # the bullet proof version # the MLEs and -log likelihood at maximum print( out0$pars) print( out0$REML) out<- MLE.Matern.fast( x,y, smoothness=1.0) # for the impatient # the MLEs: print( out$pars) print( out$REML) # MLE for fixed theta (actually the MLE from out0) # that uses MLE.objective.fn directly info<- list( x=x,y=y,smoothness=1.0, ngrid=80) # the MLEs: out2<- MLE.objective.fn(log(out0$pars[2]), info, value=FALSE) print( out2$pars) } \dontrun{ # Now back to Midwest ozone pollution ... # Find the MLEs for ozone data and evaluate the Kriging surface. data(ozone2) out<- MLE.Matern.fast( ozone2$lon.lat,ozone2$y[16,],1.5) #use these parameters to fit surface .... lambda.MLE<- out$pars[3]/out$pars[1] out2<- Krig( ozone2$lon.lat,ozone2$y[16,] , Covariance="Matern", theta=out$pars[2], smoothness=1.5, lambda= lambda.MLE) surface( out2) # uses default lambda -- which is the right one. # here is another way to do this where the new lambda is given in # the predict step out2<- Krig( ozone2$lon.lat,ozone2$y[16,] , Covariance="Matern", theta=out$pars[2], smoothness=1.5) # The default lambda is that found by GCV # predict on a grid but use the MLE value for lambda: out.p<- predictSurface(out2, lambda= lambda.MLE) surface(out.p) # same surface! } # One could also use mKrig with a fixed lambda to compute the surface. \dontrun{ # looping through all the days of the ozone data set. data( ozone2) x<- ozone2$lon.lat y<- ozone2$y out.pars<- matrix( NA, ncol=3, nrow=89) for ( k in 1:89){ hold<- MLE.Matern.fast( x,c(y[k,]), 1.5)$pars cat( "day", k," :", hold, fill=TRUE) out.pars[k,]<- hold } } } \keyword{spatial} fields/man/RCMexample.Rd0000644000175100001440000000667713114135521014611 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{RCMexample} \alias{RCMexample} \docType{data} \title{3-hour precipitation fields from a regional climate model} \description{ These are few model output fields from the North American Regional Climate Change and Assessment Program (NARCCAP). The imagea are transformed surface precipitation fields simulated by the WRFP regional climate model (RCM) over North Amreica forced by observation data. The fields are 3 hour precipitation for 8 time periods in January 1, 1979. The grid is unequally spaced in longitude and latitude appropriate projection centered on the model domain.The grid points are nearly equally spaced in great circle distance due to this projection. Precipitation is in a log 10 scale where values smaller than 4.39e-5 ( the .87 quantile) have been been set to this value. Longitudes have been shifted from the original coordinates (0-360) to the range (-180-180) that is assumed by the R \code{map} function. } \usage{data(RCMexample)} \format{ The format is a list of three arrays: \itemize{ \item x: 123X101 matrix of the longitude locations \item y: 123X101 matrix of the latitude locations \item z: 123X101X8 transformed matrix of precipitation } Spatial units are degrees with longitude being -180,180 with the prime meridian at 0. Precipitation is log 10 of cm / 3 hour period. } \details{ This is primarily an example of a regular grid that is not equally spaced and is due to transforming an equally spaced grid from one map projection into longitude latitude coordinates. This model is one small part of an extension series of numerical experiments the North American Regional Climate Change and Assessment Program (NARCCAP). NARCCAP has used 4 global climate models and observational data to supply the atmospheric boundery conditions for 6 different regional climate models. In the current data the forcing is the observations derived from the NCEP reanalysis data and is for Janurary 1, 1979. The full simulation runs for 20 years from this starting date. See \url{www.image.ucar.edu/Data} for more information about these data. To facilatate an animation of these fields the raw precipitation values have been transformed to the log scale with all values below 4.39E-5 cm/3 hours set to this lower bound. } \examples{ data(RCMexample) # second time period image.plot( RCMexample$x, RCMexample$y, RCMexample$z[,,2]) world( add=TRUE, lwd=2, col="grey") } \keyword{datasets} fields/man/compactToMat.Rd0000644000175100001440000001021513114135522015167 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{compactToMat} \alias{compactToMat} %- Also NEED an '\alias' for EACH other topic documented here. \title{ %% ~~function to do ... ~~ Convert Matrix from Compact Vector to Standard Form } \description{ %% ~~ A concise (1-5 lines) description of what the function does. ~~ \code{compactToMat} transforms a matrix from compact, vector form to a standard matrix. Only symmetric matrices can be stored in this form, since a compact matrix is stored as a vector with elements representing the upper triangle of the matrix. This function assumes the vector does not contain diagonal elements of the matrix. An example of a matrix stored in compact form is any matrix generated from the \code{rdist} function with \code{compact=TRUE}. } \usage{ compactToMat(compactMat, diagVal=0, lower.tri=FALSE, upper.tri=TRUE) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{compactMat}{ %% ~~Describe \code{compactMat} here~~ A symmetric matrix stored as a vector containing elements for the lower-triangular portion of the true matrix (and none of the diagonal elements), as returned by \code{rdist} with \code{compact=TRUE}. } \item{diagVal}{ %% ~~Describe \code{diagVal} here~~ A number to put in the diagonal entries of the output matrix. } \item{lower.tri}{ %% ~~Describe \code{diagVal} here~~ Whether or not to fill in the upper triangle of the output matrix } \item{upper.tri}{ %% ~~Describe \code{diagVal} here~~ Whether or not to fill in the lower triangle of the output matrix } } \value{ %% ~Describe the value returned %% If it is a LIST, use %% \item{comp1 }{Description of 'comp1'} %% \item{comp2 }{Description of 'comp2'} %% ... The standard form matrix represented by the input compact matrix } \author{ %% ~~who you are~~ John Paige } %% ~Make other sections like Warning with \section{Warning }{....} ~ \seealso{ %% ~~objects to See Also as \code{\link{help}}, ~~~ \code{\link{rdist}}, \code{link{dist}} } \examples{ ################ #Calculate distance matrix from compact form: ################ #make a distance matrix distOut = rdist(1:5, compact=TRUE) print(distOut) #note that distOut is in compact form: print(c(distOut)) #convert to standard matrix form: distMat = compactToMat(distOut) ################ #fast computation of covariance matrix: ################ #generate 5 random points on [0,1]x[0,1] square x = matrix(runif(10), nrow=5) #get compact distance matrix distOut = rdist(x, compact=TRUE) #evaluate Exponential covariance with range=1. Note that #Covariance function is only evaluated over upper triangle #so time is saved. diagVal = Exponential(0, range=1) compactCovMat = Exponential(distOut, range=1) upperCovMat = compactToMat(compactCovMat, diagVal) lowerCovMat = compactToMat(compactCovMat, diagVal, lower.tri=TRUE, upper.tri=FALSE) fullCovMat = compactToMat(compactCovMat, diagVal, lower.tri=TRUE, upper.tri=TRUE) compactCovMat lowerCovMat upperCovMat fullCovMat } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{ compact } \keyword{ matrix }% __ONLY ONE__ keyword per line fields/man/transformx.Rd0000644000175100001440000000474413114135522015011 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{transformx} \alias{transformx} \title{ Linear transformation } \description{ Linear transformation of each column of a matrix. There are several choices of the type of centering and scaling. } \usage{ transformx (x, scale.type = "unit.sd", x.center, x.scale) } \arguments{ \item{x}{ Matrix with columns to be transformed. } \item{scale.type}{ Type of transformation the default is "unit.sd": subtract the mean and divide by the standard deviation. Other choices are "unscaled" (do nothing), "range" (transform to [0,1]),"user" (subtract a supplied location and divide by a scale). } \item{x.center}{ A vector of centering values to subtract from each column. } \item{x.scale}{ A vector of scaling values to subtract from each column. } } \value{ A matrix whose columns have between transformed. This matrix also has the attributes: scale.type, x.center and y.center with the transformation information. } \details{ After deciding what the centering and scaling values should be for each column of x, this function just calls the standard utility scale. This function was created partly to attach the transformation information as attributes to the transformed matrix. It is used in Krig, cover.design, krig.image etc. to transform the independent variables. } \seealso{ scale } \examples{ # newx<-transformx( ChicagoO3$x, scale.type="range") } \keyword{manip} % docclass is function % Converted by Sd2Rd version 1.21. fields/man/quilt.plot.Rd0000644000175100001440000001161013114135522014707 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{quilt.plot} \alias{quilt.plot} %- Also NEED an '\alias' for EACH other topic documented here. \title{Image plot for irregular spatial data. } \description{ Given a vector of z values associated with 2-d locations this function produces an image-like plot where the locations are discretized to a grid and the z values are coded as a color level from a color scale. } \usage{ quilt.plot(x, y, z, nx = 64, ny = 64, grid = NULL, add.legend=TRUE,add=FALSE, nlevel=64, col = tim.colors(nlevel), nrow=NULL, ncol=NULL,FUN = NULL, plot=TRUE, na.rm=FALSE, ...) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{x}{A vector of the x coordinates of the locations -or- a a 2 column matrix of the x-y coordinates. } \item{y}{A vector of the y coordinates -or- if the locations are passed in x the z vector } \item{z}{Values of the variable to be plotted.} \item{nlevel}{Number of color levels.} \item{nx}{Number of grid boxes in x if a grid is not specified.} \item{ny}{Number of grid boxes in y. } \item{nrow}{Depreciated, same as nx.} \item{ncol}{Depreciated same as ny. } \item{grid}{A grid in the form of a \code{grid list}. } \item{add.legend}{If TRUE a legend color strip is added} \item{add}{If FALSE add to existing plot.} \item{col}{Color scale for the image, the default is tim.colors -- a pleasing spectrum.} \item{plot}{If FALSE just returns the image object instead of plotting it.} \item{FUN}{The function to apply to values that are common to a grid box. The default is to find the mean. (see \code{as.image}).} \item{na.rm}{If FALSE NAs are not removed from zand so a grid box even one of these values may be an NA. (See details below.)} \item{\dots}{ arguments to be passed to the image.plot function } } \details{ This function combines the discretization to an image by the function \code{as.image} and is then graphed by \code{image.plot}. By default, locations that fall into the same grid box will have their z values averaged. This also means that observations that are NA will result in the grid box average also being NA and can produce unexpected results because the NA patterns can dominate the figure. If you are unsure of the effect try \code{na.rm = TRUE} for a comparison. A similar function exists in the lattice package and produces good looking plots. The advantage of this fields version is that it uses the standard R graphics functions and is written in R code. Also, the aggregation to average values for z values in the same grid box allows for different choices of grids. If two locations are very close, separating them could result in very small boxes. As always, legend placement is never completely automatic. Place the legend independently for more control, perhaps using \code{image.plot} in tandem with \code{split.screen} or enlarging the plot margin See \code{help(image.plot)} for examples of this function and these strategies. } \author{D.Nychka} \seealso{ as.image, image.plot, lattice, persp, drape.plot } \examples{ data( ozone2) # plot 16 day of ozone data set quilt.plot( ozone2$lon.lat, ozone2$y[16,]) US( add=TRUE, col="grey", lwd=2) # # and ... if you are fussy # do it again # quilt.plot( ozone2$lon.lat, ozone2$y[16,],add=TRUE) # to draw over the state boundaries. # ### adding a common legend strip "by hand" ## and a custom color table coltab<- two.colors( 256, middle="grey50" ) par( oma=c( 0,0,0,5)) # save some room for the legend set.panel(2,2) zr<- range( ozone2$y, na.rm=TRUE) for( k in 1:4){ quilt.plot( ozone2$lon.lat, ozone2$y[15+k,], add.legend=FALSE, zlim=zr, col=coltab, nx=40, ny=40) US( add=TRUE) } par( oma=c(0,0,0,1)) image.plot(zlim=zr,legend.only=TRUE, col=coltab) # may have to adjust number of spaces in oma to make this work. } \keyword{hplot}% at least one, from doc/KEYWORDS fields/man/drape.plot.Rd0000644000175100001440000001611113114135522014645 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{drape.plot} \alias{drape.color} \alias{drape.plot} %- Also NEED an '\alias' for EACH other topic documented here. \title{Perspective plot draped with colors in the facets.} \description{ Function to produce the usual wireframe perspective plot with the facets being filled with different colors. By default the colors are assigned from a color bar based on the z values. \code{drape.color} can be used to create a color matrix different from the z matrix used for the wireframe.} \usage{ drape.plot(x, y, z, z2=NULL, col = tim.colors(64), zlim = range(z, na.rm=TRUE), zlim2 = NULL, add.legend = TRUE, horizontal = TRUE, theta = 30, phi = 20, breaks=NA, ...) drape.color(z, col = tim.colors(64), zlim = NULL,breaks, transparent.color = "white", midpoint=TRUE, eps=1e-8) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{x}{ grid values for x coordinate (or if x is a list the components x y and z are used.)} \item{y}{grid values for y coordinate} \item{z}{A matrix of z heights } \item{z2}{ A matrix of z values to use for coloring facets. If NULL then z is used for this purpose} \item{col}{ A color table for the z values that will be used for draping} \item{zlim}{the z limits for \code{z} these are used to set up the scale of the persp plot. This defaults to range(z, na.rm=TRUE) as in persp} \item{zlim2}{the z limits for \code{z2} these are used to set up the color scale. This defaults to } \item{add.legend}{ If true a color strip is added as a legend.} \item{horizontal}{ If true color strip is put at bottom of the plot, if FALSE it is placed vertically on the right side. } \item{theta}{ x-y rotation angle for perspective. } \item{phi}{ z-angle for perspective. } \item{transparent.color}{ Color to use when given an NA in z} \item{midpoint}{ If TRUE color scale is formed for midpoints of z obtained by averaging 4 corners.} \item{breaks}{Numerical divisions for the color scale. If the default (NA) is N+1 equally spaced points in the range \code{zlim} where N is the number of colors in \code{col}. This is the argument has the same effect as used in the \code{image} and \code{image.plot} functions.} \item{eps}{Amount to inflate the range (1+/- eps) to inlude points on break endpoints.} \item{\dots}{ Other arguments that will be passed to the persp function. The most common is zlim the z limits for the 3-d plot and also the limits to set up the color scale. The default for zlim is the range of z.} } \value{ \code{drape.plot} If an assignment is made the projection matrix from persp is returned. This information can be used to add additional 3-d features to the plot. See the \code{persp} help file for an example how to add additional points and lines using the \code{trans3d} function and also the example below. \code{drape.color} If dim( z) = M,N this function returns a list with components: \item{color.index}{An (M-1)X(N-1) matrix (midpoint= TRUE) or MXN matrx (midpoint=FALSE) where each element is a text string specifying the color. } \item{breaks}{The breaks used to assign the numerical values in z to color categories.} } \details{ The legend strip may obscure part of the plot. If so, add this as another step using image.plot. When using \code{drape.color} just drop the results into the \code{col} argument of \code{persp}. Given this function there are no surprises how the higher level \code{drape.plot} works: it calls \code{drape.color} followed by \code{persp} and finally the legend strip is added with \code{image.plot}. The color scales essentially default to the ranges of the z values. However, by specifying zlim and/or zlim2 one has more control of how the perspective plot is scaled and the limits of the color scale used to fill the facets. The color assignments are done by dividing up the zlim2 interval into equally spaced bins and adding a very small inflation to these limits. The mean z2 values, comprising an (M-1)X(N-1) matrix, for each facet are discretized to the bins. The bin numbers then become the indices used for the color scale. If zlim2 is not specified it is the range of the z2 matrix is used to generate the ranges of the color bar. Note that this may be different than the range of the mean facets. If z2 is not passed then z is used in its place and in this case the zlim2 or zlim argument can used to define the color scale. This kind of plot is also supported through the wireframe function in the \code{lattice} package. The advantage of the fields version is that it uses the standard R graphics functions -- and is written in R code. The drape plot is also drawn by the fields \code{surface} function with \code{type="P"}. } \author{D. Nychka } \seealso{ image.plot, quilt.plot, persp, plot.surface, surface, lattice, trans3d} \examples{ # an obvious choice: # Dr. R's favorite New Zealand Volcano! data( volcano) M<- nrow( volcano) N<- ncol( volcano) x<- seq( 0,1,,M) y<- seq( 0,1,,N) drape.plot( x,y,volcano, col=terrain.colors(128))-> pm # use different range for color scale and persp plot # setting of border omits the mesh lines drape.plot( x,y,volcano, col=terrain.colors(128),zlim=c(0,300), zlim2=c( 120,165), border=NA) # note tranparent color for facets outside the zlim2 range #The projection has been saved in pm # add a point marking the summit max( volcano)-> zsummit ix<- row( volcano)[volcano==zsummit] iy<- col( volcano)[volcano==zsummit] trans3d( x[ix], y[iy],zsummit,pm)-> uv points( uv, col="magenta", pch="+", cex=2) # overlay volcano wireframe with gradient in x direction. dz<- ( volcano[1:(M-1), 1:(N-1)] - volcano[2:(M), 1:(N-1)] + volcano[1:(M-1), 2:(N)] - volcano[2:(M), 2:(N)] )/2 # convert dz to a color scale: zlim<- range( c( dz), na.rm=TRUE) zcol<-drape.color( dz, zlim =zlim)$color.index # wireframe with these colors persp( volcano, col=zcol, theta=30, phi=20) # add legend using image.plot function image.plot( zlim=zlim, legend.only =TRUE, horizontal =TRUE, col=zcol) } \keyword{hplot}% at least one, from doc/KEYWORDS fields/man/add.image.Rd0000644000175100001440000000550113114135522014407 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{add.image} \alias{add.image} %- Also NEED an '\alias' for EACH other topic documented here. \title{ Adds an image to an existing plot.} \description{ Adds an image to an existing plot. Simple arguments control the location and size. } \usage{ add.image(xpos, ypos, z, adj.x = 0.5, adj.y = 0.5, image.width = 0.15, image.height = NULL, col = tim.colors(256), ...) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{xpos}{X position of image in user coordinates } \item{ypos}{ Y position of image in user coordinates } \item{z}{ Matrix of intensities comprising the image. } \item{adj.x}{ Location of image relative to x coordinate. Most common values are .5 (centered), 0 (right side of image at x) and 1 (left side of image at x). These are the same conventions that are used for \code{adj} in positioning text.} \item{adj.y}{Location of image relative to y coordinate. Same rules as \code{adj.x} } \item{image.width}{ Width of image as a fraction of the plotting region in horizontal direction. } \item{image.height}{ Height of image as a fraction of the plotting region in horizontal direction. If NULL height is scaled to make image pixels square.} \item{col}{ Color table for image. Default is tim.colors.} \item{\dots}{Any other plotting arguments that are passed to the image function } } \seealso{ image.plot, colorbar.plot, image, tim.colors } \examples{ plot( 1:10, 1:10, type="n") data( lennon) add.image( 5,4,lennon, col=grey( (0:256)/256)) # reference lines xline( 5, col=2) yline( 4,col=2) # # add lennon right in the corner beyond the plotting region # par(new=TRUE, plt=c(0,1,0,1), mar=c(0,0,0,0), usr=c(0,1,0,1)) add.image( 0,0, lennon, adj.x=0, adj.y=0) } \keyword{ hplot }% at least one, from doc/KEYWORDS fields/man/vgram.Rd0000644000175100001440000001470013114135522013713 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{vgram} \alias{vgram} \alias{crossCoVGram} \alias{plot.vgram} \alias{boxplotVGram} \alias{getVGMean} \title{ Traditional or robust variogram methods for spatial data } \description{ \code{vgram} computes pairwise squared differences as a function of distance. Returns an S3 object of class "vgram" with either raw values or statistics from binning. \code{crossCoVGram} is the same as \code{vgram} but differences are taken across different variables rather than the same variable. \code{plot.vgram} and \code{boxplotVGram} create lineplots and boxplots of vgram objects output by the \code{vgram} function. \code{boxplotVGram} plots the base R boxplot function, and plots estimates of the mean over the boxplot. The \code{getVGMean} function returns the bin centers and means of the \code{vgram} object based on the bin breaks provided by the user. } \usage{ vgram(loc, y, id = NULL, d = NULL, lon.lat = FALSE, dmax = NULL, N = NULL, breaks = NULL, type=c("variogram", "covariogram", "correlogram")) crossCoVGram(loc1, loc2, y1, y2, id = NULL, d = NULL, lon.lat = FALSE, dmax = NULL, N = NULL, breaks = NULL, type=c("cross-covariogram", "cross-correlogram")) boxplotVGram(x, N=10, breaks = pretty(x$d, N, eps.correct = 1), plot=TRUE, plot.args, ...) \method{plot}{vgram}(x, N=10, breaks = pretty(x$d, N, eps.correct = 1), add=FALSE, ...) getVGMean(x, N = 10, breaks = pretty(x$d, N, eps.correct = 1)) } \arguments{ \item{loc}{ Matrix where each row is the coordinates of an observed point of the field } \item{y}{ Value of the field at locations } \item{loc1}{ Matrix where each row is the coordinates of an observed point of field 1 } \item{loc2}{ Matrix where each row is the coordinates of an observed point of field 2 } \item{y1}{ Value of field 1 at locations } \item{y2}{ Value of field 2 at locations } \item{id}{ A 2 column matrix that specifies which variogram differnces to find. If omitted all possible pairing are found. This can used if the data has an additional covariate that determines proximity, for example a time window. } \item{d}{ Distances among pairs indexed by id. If not included distances from from directly from loc. } \item{lon.lat }{ If true, locations are assumed to be longitudes and latitudes and distances found are great circle distances (in miles see \link{rdist.earth}). Default is FALSE. } \item{dmax}{ Maximum distance to compute variogram. } \item{N}{ Number of bins to use. The break points are found by the \code{pretty} function and so ther may not be exactly N bins. Specify the breaks explicity if you want excalty N bins. } \item{breaks}{ Bin boundaries for binning variogram values. Need not be equally spaced but must be ordered. } \item{x}{ An object of class "vgram" (an object returned by \code{vgram}) } \item{add}{ If \code{TRUE}, adds empirical variogram lineplot to current plot. Otherwise creates new plot with empirical variogram lineplot. } \item{plot}{ If \code{TRUE}, creates a plot, otherwise returns variogram statistics output by \code{bplot.xy}. } \item{plot.args}{ Additional arguments to be passed to \code{plot.vgram}. } \item{type}{ One of "variogram", "covariogram", "correlogram", "cross-covariogram", and "cross-correlogram". \code{vgram} supports the first three of these and \code{crossCoVGram} supports the last two. } \item{...}{ Additional argument passed to \code{plot} for \code{plot.vgram} or to \code{bplot.xy} for \code{boxplotVGram}. } } \value{ \code{vgram} and \code{crossCoVGram} return a "vgram" object containing the following values: \item{vgram}{Variogram or covariogram values} \item{d}{Pairwise distances} \item{call}{Calling string} \item{stats}{Matrix of statistics for values in each bin. Rows are the summaries returned by the stats function or describe. If not either breaks or N arguments are not supplied then this component is not computed.} \item{centers}{Bin centers.} If \code{boxplotVGram} is called with \code{plot=FALSE}, it returns a list with the same components as returned by \code{bplot.xy} } \section{References}{ See any standard reference on spatial statistics. For example Cressie, Spatial Statistics } \author{John Paige, Doug Nychka} \seealso{ \link{vgram.matrix}, \link{bplot.xy}, \link{bplot} } \examples{ # # compute variogram for the midwest ozone field day 16 # (BTW this looks a bit strange!) # data( ozone2) good<- !is.na(ozone2$y[16,]) x<- ozone2$lon.lat[good,] y<- ozone2$y[16,good] look<-vgram( x,y, N=15, lon.lat=TRUE) # locations are in lon/lat so use right #distance # take a look: plot(look, pch=19) #lines(look$centers, look$stats["mean",], col=4) brk<- seq( 0, 250,, (25 + 1) ) # will give 25 bins. ## or some boxplot bin summaries boxplotVGram(look, breaks=brk, plot.args=list(type="o")) plot(look, add=TRUE, breaks=brk, col=4) # # compute equivalent covariogram, but leave out the boxplots # look<-vgram( x,y, N=15, lon.lat=TRUE, type="covariogram") plot(look, breaks=brk, col=4) # # compute equivalent cross-covariogram of the data with itself #(it should look almost exactly the same as the covariogram of #the original data, except with a few more points in the #smallest distance boxplot and points are double counted) # look = crossCoVGram(x, x, y, y, N=15, lon.lat=TRUE, type="cross-covariogram") plot(look, breaks=brk, col=4) } \keyword{spatial} % docclass is function % Converted by Sd2Rd version 1.21. fields/man/arrow.plot.Rd0000644000175100001440000001011013114135522014675 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{arrow.plot} \alias{arrow.plot} \title{ Adds arrows to a plot } \description{ Adds arrows at specified points where the arrow lengths are scaled to fit on the plot in a reasonable manner. A classic use of this function is to depict a vector field. At each point (x,y) we have a vector with components (u,v). Like the arrows function this adds arrows to an existing plot. } \usage{ arrow.plot(a1, a2, u = NA, v = NA, arrow.ex = 0.05, xpd = TRUE, true.angle = FALSE, arrowfun=arrows,...) } \arguments{ \item{a1}{ The x locations of the tails of the arrows or a 2 column matrix giving the x and y coordinates of the arrow tails. } \item{a2}{ The y locations of the tails of the arrows or a 2 column matrix giving the u and v coordinates of the arrows. } \item{u}{ The u components of the direction vectors if they are not specified in the a1 argument } \item{v}{ The v components of the direction vectors if they are not specified in the a2 argument } \item{arrow.ex}{ Controls the length of the arrows. The length is in terms of the fraction of the shorter axis in the plot. So with a default of .05 20 arrows of maximum length can line up end to end along the shorter axis. } \item{xpd}{ If true does not clip arrows to fit inside the plot region, default is not to clip. } \item{true.angle}{ If true preserves the true angle of the (u,v) pair on the plot. E.g. if (u,v)=(1,1) then the arrow will be drawn at 45 degrees. } \item{arrowfun}{ The actual arrow function to use. The default is standard R \code{arrows}. However, Tamas K Papp suggests \code{p.arrows} from sfsmisc which makes prettier arrows. } \item{\dots}{ Graphics arguments passed to the arrows function that can can change the color or arrow sizes. See help on this for details. } } \details{ This function is useful because (u,v) may be in very different scales from the locations (x,y). So some careful scaling is needed to plot the arrows. The only tricky thing about this function is whether you want the true angles on the plot. For overlaying a vector field on top of contours that are the streamlines true.angle should be false. In this case you want u and v to be scaled in the same way as the x and y variables. If the scaling is not the same then the arrows will not look like tangent vectors to the streamlines. An application where the absolute angles are meaningful might be the hands of a clock showing different times zones on a world map. Here true.angle=T is appropriate, the clock hands should preserve the right angles. } \seealso{arrows} \examples{ # # 20 random directions at 20 random points x<- runif( 20) y<- runif( 20) u<- rnorm( 20) v<- rnorm( 20) plot( x,y) arrow.plot( x,y,u,v) # a default that is unattractive plot( x,y, type="n") arrow.plot( x,y,u,v, arrow.ex=.2, length=.1, col='green', lwd=2) # thicker lines in green, smaller heads and longer tails. Note length, col and lwd are # options that the arrows function itself knows about. } \keyword{aplot} % docclass is function % Converted by Sd2Rd version 1.21. fields/man/mKrig.MLE.Rd0000644000175100001440000002477413114135522014300 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{mKrig.MLE} \alias{mKrig.MLE} \alias{mKrig.MLE.joint} \alias{fastTps.MLE} %- Also NEED an '\alias' for EACH other topic documented here. \title{ Maximizes likelihood for the process marginal variance (rho) and nugget standard deviation (sigma) parameters (e.g. lambda) over a many covariance models or covariance parameter values. } \description{ These functions are designed to explore the likelihood surface for different covariance parameters with the option of maximizing over sigma and rho. They are depreciated and my be omitted in later versions of fields with their roles being replaced by other functions. See details below. } \usage{ mKrig.MLE(x, y, weights = rep(1, nrow(x)), cov.fun="stationary.cov", cov.args = NULL, Z = NULL, par.grid = NULL, lambda = NULL, lambda.profile = TRUE, verbose = FALSE, relative.tolerance = 1e-04, ...) mKrig.MLE.joint(x, y, weights = rep(1, nrow(x)), lambda.guess = 1, cov.params.guess=NULL, cov.fun="stationary.cov", cov.args=NULL, Z = NULL, optim.args=NULL, find.trA.MLE = FALSE, ..., verbose = FALSE) fastTps.MLE(x, y, weights = rep(1, nrow(x)), Z = NULL, ..., par.grid=NULL, theta, lambda = NULL, lambda.profile = TRUE, verbose = FALSE, relative.tolerance = 1e-04) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{cov.args}{ Additional arguments that would also be included in calls to the covariance function to specify the fixed part of the covariance model.} \item{cov.fun}{The name, a text string, of the covariance function.} \item{cov.params.guess}{A list of initial guesses for covariance parameters over which the user wishes to perform likelihood maximization. The list contains the names of the parameters as well as the values.} \item{find.trA.MLE}{If TRUE will estimate the effective degrees of freedom using a simple Monte Carlo method throughout joint likelihood maximization. Either way, the trace of the mKrig object with the best log-likelihood is calculated depending on \code{find.trA}. Computing the trace will add to the computational burden by approximately NtrA solutions of the linear system but the cholesky decomposition is reused.} \item{lambda}{If \code{lambda.profile=FALSE} the values of lambda to evaluate the likelihood if "TRUE" the starting values for the optimization. If lambda is NA then the optimum value from previous search is used as the starting value. If lambda is NA and it is the first value the starting value defaults to 1.0.} \item{lambda.guess}{The initial guess for lambda in the joint log-likelihood maximization process.} \item{lambda.profile}{ If \code{TRUE} maximize likelihood over lambda.} \item{optim.args}{Additional arguments that would also be included in calls to the optim function in joint likelihood maximization. If \code{NULL}, this will be set to use the "BFGS-" optimization method. See \code{\link{optim}} for more details. The default value is: \code{optim.args = list(method = "BFGS", control=list(fnscale = -1, ndeps = rep(log(1.1), length(cov.params.guess)+1), reltol=1e-04, maxit=10))} Note that the first parameter is lambda and the others are the covariance parameters in the order they are given in \code{cov.params.guess}. Also note that the optimization is performed on a log-scale, and this should be taken into consideration when passing arguments to \code{optim}.} \item{par.grid}{A list or data frame with components being parameters for different covariance models. A typical component is "theta" comprising a vector of scale parameters to try. If par.grid is "NULL" then the covariance model is fixed at values that are given in \dots.} \item{relative.tolerance}{Relative tolerance used to declare convergence when maximizing likelihood over lambda.} \item{theta}{Range parameter for compact Wendland covariance. (seefastTps)} \item{verbose}{If \code{TRUE} print out interesting intermediate results.} \item{weights}{Precision ( 1/variance) of each observation} \item{x}{ Matrix of unique spatial locations (or in print or surface the returned mKrig object.)} \item{y}{ Vector or matrix of observations at spatial locations, missing values are not allowed! Or in mKrig.coef a new vector of observations. If y is a matrix the columns are assumed to be independent observations vectors generated from the same covariance and measurment error model. } \item{Z}{Linear covariates to be included in fixed part of the model that are distinct from the default low order polynomial in \code{x}} \item{\dots}{Additional arguments that would also be included in a call to \code{mKrig} to specify the covariance model and fixed model covariables.} } \details{ The "mKrig" prefixed functions are depreciated and are replaced in functionality by \code{\link{mKrigMLEJoint}} and \code{\link{mKrigMLEGrid}}. The observational model follows the same as that described in the \code{Krig} function and thus the two primary covariance parameters for a stationary model are the nugget standard deviation (sigma) and the marginal variance of the process (rho). It is useful to reparametrize as rho and\ lambda= sigma^2/rho. The likelihood can be maximized analytically over rho and the parameters in the fixed part of the model the estimate of rho can be substituted back into the likelihood to give a expression that is just a function of lambda and the remaining covariance parameters. It is this expression that is then maximized numerically over lambda when \code{ lambda.profile = TRUE}. Note that \code{fastTps.MLE} is a convenient variant of this more general version to use directly with fastTps, and \code{mKrig.MLE.joint} is similar to \code{mKrig.MLE}, except it uses the \code{optim} function to optimize over the specified covariance parameters and lambda jointly rather than optimizing on a grid. Unlike \code{mKrig.MLE}, it returns an mKrig object. } \value{ \code{mKrig.MLE} returns a list with the components: \item{summary}{A matrix giving the results for evaluating the likelihood for each covariance model.} \item{par.grid}{The par.grid argument used.} \item{cov.args.MLE}{The list of covariance arguments (except for lambda) that have the largest likelihood over the list covariance models. To fit the surface at the largest likelihood among those tried \code{ do.call( "mKrig", c(obj$mKrig.args, obj$cov.args.MLE,list(lambda=obj$lambda.opt)) )} where \code{obj} is the list returned by this function.} \item{call}{The calling arguments to this function.} \code{mKrig.MLE.joint} returns an mKrig object with the best computed log-likelihood computed in the maximization process with the addition of the summary table for the mKrig object log-likelihood and: \item{lnLike.eval}{ A table containing information on all likelihood evaluations performed in the maximization process. } } \references{ %% ~put references to the literature/web site here ~ http://cran.r-project.org/web/packages/fields/fields.pdf http://www.image.ucar.edu/~nychka/Fields/ } \author{ %% ~~who you are~~ Douglas W. Nychka, John Paige } %% ~Make other sections like Warning with \section{Warning }{....} ~ \seealso{ %% ~~objects to See Also as \code{\link{help}}, ~~~ \code{\link{mKrig}} \code{\link{Krig}} \code{\link{stationary.cov}} \code{\link{optim}} } \examples{ # some synthetic data N<- 100 set.seed(123) x<- matrix(runif(2*N), N,2) theta<- .2 Sigma<- Matern( rdist(x,x)/theta , smoothness=1.0) Sigma.5<- chol( Sigma) sigma<- .1 M<-5 # Five (5) independent spatial data sets F.true<- t( Sigma.5)\%*\% matrix( rnorm(N*M), N,M) Y<- F.true + sigma* matrix( rnorm(N*M), N,M) # find MLE for lambda with range and smoothness fixed in Matern for first # data set obj<- mKrig.MLE( x,Y[,1], Covariance="Matern", theta=.2, smoothness=1.0) obj$summary # take a look fit<- mKrig( x,Y[,1], Covariance="Matern", theta=.2, smoothness=1.0, lambda= obj$lambda.best) # # search over the range parameter and use all 5 replications for combined # likelihood \dontrun{ par.grid<- list( theta= seq(.1,.25,,6)) # default starting value for lambda is .02 subsequent ones use previous optimum. obj<- mKrig.MLE( x,Y, Covariance="Matern",lambda=c(.02,rep(NA,4)), smoothness=1.0, par.grid=par.grid) } #perform joint likelihood maximization over lambda and theta. #optim can get a bad answer with poor initial guesses. set.seed(123) obj<- mKrig.MLE.joint(x,Y[,1], cov.args=list(Covariance="Matern", smoothness=1.0), cov.params.guess=list(theta=.2), lambda.guess=.1) #look at lnLik evaluations obj$lnLik.eval \dontrun{ #perform joint likelihood maximization over lambda, theta, and smoothness. #optim can get a bad answer with poor initial guesses. set.seed(123) obj<- mKrig.MLE.joint(x,Y[,1], cov.args=list(Covariance="Matern"), cov.params.guess=list(theta=.2, smoothness=1), lambda.guess=.1) #look at lnLik evaluations obj$lnLik.eval #generate surface plot of results of joint likelihood maximization #NOTE: mKrig.MLE.joint returns mKrig object while mKrig.MLE doesn't, #so this won't work for mKrig.MLE. surface(obj) } } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{ Kriging } \keyword{ MLE } \keyword{ spatial } fields/man/image2lz.Rd0000644000175100001440000001474513114135522014322 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{image2lz} \alias{image2lz} \alias{crop.image} \alias{in.poly} \alias{in.poly.grid} \alias{half.image} \alias{get.rectangle} \alias{average.image} \alias{which.max.matrix} \alias{which.max.image} \title{Some simple functions for subsetting images} \description{These function help in subsetting images or reducing its size by averaging adjecent cells.} \usage{ crop.image(obj, loc=NULL,...) which.max.matrix(z) which.max.image(obj) get.rectangle() average.image(obj, Q=2) half.image(obj) in.poly( xd, xp, convex.hull=FALSE, inflation=1e-07) in.poly.grid( grid.list,xp, convex.hull=FALSE, inflation=1e-07) } \arguments{ \item{obj}{A list in image format with the usual x,y defining the grid and z a matrix of image values.} \item{loc}{A 2 column matrix of locations within the image region that define the subset. If not specified then the image is plotted and the rectangle can be specified interactively.} \item{Q}{Number of pixels to average.} \item{xd}{ A 2 column matrix of locations that are the points to check for being inside a polygon.} \item{xp}{ A 2 column matrix of locations that are vertices of a polygon. The last point is assumed to be connected to the first.} \item{convex.hull}{If TRUE then the convex hull of \code{xp} is used instead of the polygon.} \item{grid.list}{A list with components x and y specifing the 2-d grid values. (See help( grid.list) for more details.)} \item{inflation}{A small expansion factor to insure that points precisely on the boundaries and vertices of the convex hull are included as members.} \item{z}{ A matrix of numerical values} \item{\dots}{ Graphics arguments passed to image.plot. This is only relevant when loc is NULL and the locator function is called via \code{get.rectangle}. } } \details{ If \code{loc} has more than 2 rows then the largest rectangle containing the locations is used. \describe{ \item{crop.image}{Creates a subset of the image \code{obj} by taking using the largest rectangle in the locations \code{loc}. This is useful if one needs to extract a image that is no bigger in extant than som edata location. If locations are omitted the parent image is plotted and the locations from two mouse clicks on the image. Returned value is an image with appropriate \code{x,y} and \code{z} components.} \item{get.rectangle}{Given an image plots and waits for two mouse clicks that are returned.} \item{which.max.image}{Returns a list with components \code{x, y, z} , and \code{ind} giving the location of the maximun and value of the maximum in the image based on the grid values and also on the indicies of the image matrix.} \item{average.image, half.image}{Takes passed image and averages the pixel values and adjusts the grid to create an image that has a smaller number of elements. If \code{Q=2} in \code{average.image} it has the same effect as \code{half.image} but might be slower -- if the original image is mXn then half image will be an image (m/2)X(n/2). This begs the question what happens when m or n is odd or when (m/Q) or (n/Q) are not integers. In either case the largest rows or columns are dropped. (For large \code{Q} the function might be modified to drop about half the pixels at both edges.) } \item{in.poly, in.poly.grid}{Determines whether the points xd,yd are inside a polygon or outside. Return value is a logical vector with TRUE being inside or on boundary of polygon. The test expands the polygon slightly in size (on the order of single precision zero) to include points that are at the vertices. \code{in.poly} does not really depend on an image format however the grid version \code{in.poly.grid} is more efficient for considering the locations on a regular grid See also \code{in.land.grid} that is hard coded to work with the fields world map.} } } \author{Doug Nychka} \seealso{ drape.plot, image.plot, interp.surface, interp.surface.grid, in.land.grid} \examples{ data(RMelevation) # region defining Colorado Front Range loc<- rbind( c(-106.5, 40.8), c(-103.9, 37.5)) # extract elevations for just CO frontrange. FR<- crop.image(RMelevation, loc) image.plot( FR, col=terrain.colors(256)) which.max.image( FR) # average cells 4 to 1 by doing this twice! temp<- half.image( RMelevation) temp<- half.image( temp) # or in one step temp<- average.image( RMelevation, Q=4)-> temp image.plot( temp, col=terrain.colors(256)) # a polygon (no special meaning entered with just locator) x1p<- c( -106.2017, -104.2418, -102.9182, -102.8163, -102.8927, -103.3254, -104.7763, -106.5581, -108.2889, -109.1035, -109.3325, -108.7980) x2p<- c( 43.02978, 42.80732, 41.89727, 40.84566, 39.81427, 38.17618, 36.53810, 36.29542, 36.90211, 38.29752, 39.45025, 41.02767) xp<- cbind( x1p,x2p) image.plot( temp) polygon( xp[,1], xp[,2], lwd=2) # find all grid points inside poly fullset<- make.surface.grid( list( x= temp$x, y= temp$y)) ind<- in.poly( fullset,xp) # take a look plot( fullset, pch=".") polygon( xp[,1], xp[,2], lwd=2) points( fullset[ind,], pch="o", col="red", cex=.5) # masking out the image NA == white in the image plot temp$z[!ind] <- NA image.plot( temp) polygon( xp[,1], xp[,2], lwd=2) # This is more efficient for large grids: # because the large number of grid location ( xg above) is # never explicitly created. ind<- in.poly.grid( list( x= temp$x, y= temp$y), xp) # now use ind in the same way as above to mask points outside of polygon } \keyword{ hplot }% at least one, from doc/KEYWORDS fields/man/fields.grid.Rd0000644000175100001440000000544013114135522014772 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{fields.grid} \alias{mKrig.grid} \title{ Using MKrig for predicting on a grid. } \description{ This is an extended example for using the sparse/fast interpolation methods in mKrig to evaluate a Kriging estimate on a large grid. } \details{ \code{mKrig} is a flexible function for surface fitting using a spatial process model. It can also exploit sparse matrix methods forlarge data sets by using a compactly supported covariance. The example below shows how ot evaluate a solution on a big grid. (Thanks to Jan Klennin for this example.) } \examples{ x<- RMprecip$x y<- RMprecip$y Tps( x,y)-> obj # make up an 80X80 grid that has ranges of observations # use same coordinate names as the x matrix glist<- fields.x.to.grid(x, nx=80, ny=80) # this is a cute way to get a default grid that covers x # convert grid list to actual x and y values ( try plot( Bigx, pch=".")) make.surface.grid(glist)-> Bigx # include actual x locations along with grid. Bigx<- rbind( x, Bigx) # evaluate the surface on this set of points (exactly) predict(obj, x= Bigx)-> Bigy # set the range for the compact covariance function # this will involve less than 20 nearest neighbors that have # nonzero covariance # V<- diag(c( 2.5*(glist$lon[2]-glist$lon[1]), 2.5*(glist$lat[2]-glist$lat[1]))) \dontrun{ # this is an interplotation of the values using a compact # but thin plate spline like covariance. mKrig( Bigx,Bigy, cov.function="wendland.cov",k=4, V=V, lambda=0)->out2 # the big evaluation this takes about 45 seconds on a Mac G4 latop predictSurface( out2, nx=400, ny=400)-> look } # the nice surface \dontrun{ surface( look) US( add=TRUE, col="white") } } \keyword{hplot} fields/man/Krig.replicates.Rd0000644000175100001440000000645613114135521015635 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{Krig.replicates} \alias{Krig.replicates} %- Also NEED an '\alias' for EACH other topic documented here. \title{ Collapse repeated spatial locations into unique locations } \description{ In case that several observations are available for a single spatial location find the group means and replicate variability } \usage{ Krig.replicates(out, x, y, Z, weights=rep( 1, length(y)), verbose = FALSE) } \arguments{ \item{out}{ A list with components \code{x}, \code{y}, \code{weights}, and possibily \code{Z}.} \item{x}{Spatial locations.} \item{y}{Spatial observations} \item{Z}{Spatial covariates.} \item{weights}{Weights proportional to reciprocal varainces of observations.} \item{verbose}{ If TRUE print out details for debugging. } } \details{ This function figures out which locations are the same and within the function fast.1way use \code{tapply} to find replicate group means and standard deviations. NOTE: it is assumed the Z covariates are unique at the locations. Currently these functions can not handle a model with common spatial locations but different values for the Z covariates. } \value{ A list with components: \item{yM }{Data at unique locations and where more than one observation is available this is the mean of the replicates.} \item{xM }{Unique spatial locations.} \item{weightsM}{Weights matching the unique lcoations proportional to reciprocal variances This is found as a combination of the original weights at each location.} \item{ZM}{Values of the covariates at the unique lcoations.} \item{uniquerows}{Index for unique rows of \code{x}.} \item{shat.rep, shat.pure.error}{Standard deviation of pure error estimate based on replicate groups (and adjusting for possibly different weights.)} \item{rep.info}{Integer tags indicating replicate groups.} } \author{ Douglas Nychka } \examples{ #create some spatial replicates set.seed( 123) x0<- matrix( runif(10*2), 10,2) x<- x0[ c(rep(1,3), 2:8, rep( 9,5),10) , ] y<- rnorm( 16) out<- Krig.replicates( x=x, y=y) # compare # out$yM[1] ; mean( y[1:3]) # out$yM[9] ; mean( y[11:15]) # mean( y[ out$rep.info==9]) } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{ ~kwd1 } \keyword{ ~kwd2 }% __ONLY ONE__ keyword per line fields/man/Tps.Rd0000644000175100001440000004422513114135521013351 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{Tps} \alias{Tps} \alias{fastTps} \title{ Thin plate spline regression } \description{ Fits a thin plate spline surface to irregularly spaced data. The smoothing parameter is chosen by generalized cross-validation. The assumed model is additive Y = f(X) +e where f(X) is a d dimensional surface. This function also works for just a single dimension and is a special case of a spatial process estimate (Kriging). A "fast" version of this function uses a compactly supported Wendland covariance and computes the estimate for a fixed smoothing parameter. } \usage{ Tps(x, Y, m = NULL, p = NULL, scale.type = "range", lon.lat = FALSE, miles = TRUE, method = "GCV", GCV = TRUE, ...) fastTps(x, Y, m = NULL, p = NULL, theta, lon.lat=FALSE, find.trA = TRUE, lambda=0, ...) } \arguments{ %To be helpful, a more complete list of arguments are described that are the %same as those for the Krig function. \item{x}{ Matrix of independent variables. Each row is a location or a set of independent covariates. } \item{Y}{ Vector of dependent variables. } \item{m}{ A polynomial function of degree (m-1) will be included in the model as the drift (or spatial trend) component. Default is the value such that 2m-d is greater than zero where d is the dimension of x. } \item{p}{ Polynomial power for Wendland radial basis functions. Default is 2m-d where d is the dimension of x. } \item{scale.type}{ The independent variables and knots are scaled to the specified scale.type. By default the scale type is "range", whereby the locations are transformed to the interval (0,1) by forming (x-min(x))/range(x) for each x. Scale type of "user" allows specification of an x.center and x.scale by the user. The default for "user" is mean 0 and standard deviation 1. Scale type of "unscaled" does not scale the data. } \item{theta}{The tapering range that is passed to the Wendland compactly supported covariance. The covariance (i.e. the radial basis function) is zero beyond range theta. The larger theta the closer this model will approximate the standard thin plate spline.} \item{lon.lat}{If TRUE locations are interpreted as lognitude and latitude and great circle distance is used to find distances among locations. The theta scale parameter for \code{fast.Tps} (setting the compact support of the Wendland function) in this case is in units of miles (see example and caution below). } \item{method}{ Determines what "smoothing" parameter should be used. The default is to estimate standard GCV Other choices are: GCV.model, GCV.one, RMSE, pure error and REML. The differences are explained in the Krig help file.} \item{GCV}{If TRUE the decompositions are done to efficiently evaluate the estimate, GCV function and likelihood at multiple values of lambda. } \item{miles}{If TRUE great circle distances are in miles if FALSE distances are in kilometers} \item{lambda}{Smoothing parameter the ratio of error variance to process variance, default is zero which corresponds to interpolation. See fastTpsMLE to estimate this paramter from the data.} \item{find.trA}{If TRUE will estimate the effective degrees of freedom using a simple Monte Carlo method. This will add to the computational burden by approximately \code{NtrA} solutions of the linear system but the cholesky decomposition is reused.} \item{\dots}{For \code{Tps} any argument that is valid for the \code{Krig} function. Some of the main ones are listed below. For \code{fastTps} any argument that is suitable for the \code{mKrig} function see help on mKrig for these choices. Arguments for Tps: \describe{ \item{lambda}{ Smoothing parameter that is the ratio of the error variance (sigma**2) to the scale parameter of the covariance function. If omitted this is estimated by GCV. } \item{Z}{Linear covariates to be included in fixed part of the model that are distinct from the default low order polynomial in \code{x}} \item{df}{ The effective number of parameters for the fitted surface. Conversely, N- df, where N is the total number of observations is the degrees of freedom associated with the residuals. This is an alternative to specifying lambda and much more interpretable.} \item{cost}{ Cost value used in GCV criterion. Corresponds to a penalty for increased number of parameters. The default is 1.0 and corresponds to the usual GCV.} \item{weights}{ Weights are proportional to the reciprocal variance of the measurement error. The default is no weighting i.e. vector of unit weights. } \item{nstep.cv}{ Number of grid points for minimum GCV search. } \item{x.center}{ Centering values are subtracted from each column of the x matrix. Must have scale.type="user".} \item{x.scale}{ Scale values that divided into each column after centering. Must have scale.type="user".} \item{rho}{Scale factor for covariance. } \item{sigma2}{ Variance of errors or if weights are not equal to 1 the variance is sigma**2/weight.} \item{verbose}{ If true will print out all kinds of intermediate stuff. } \item{mean.obj}{ Object to predict the mean of the spatial process. } \item{sd.obj}{ Object to predict the marginal standard deviation of the spatial process. } \item{null.function}{An R function that creates the matrices for the null space model. The default is fields.mkpoly, an R function that creates a polynomial regression matrix with all terms up to degree m-1. (See Details) } \item{offset}{ The offset to be used in the GCV criterion. Default is 0. This would be used when Krig/Tps is part of a backfitting algorithm and the offset has to be included to reflect other model degrees of freedom. } } } } \value{ A list of class Krig. This includes the fitted values, the predicted surface evaluated at the observation locations, and the residuals. The results of the grid search minimizing the generalized cross validation function are returned in gcv.grid. Note that the GCV/REML optimization is done even if lambda or df is given. Please see the documentation on Krig for details of the returned arguments. } \details{ Both of these functions are special cases of using the \code{Krig} and \code{mKrig} functions. See the help on each of these for more information on the calling arguments and what is returned. A thin plate spline is result of minimizing the residual sum of squares subject to a constraint that the function have a certain level of smoothness (or roughness penalty). Roughness is quantified by the integral of squared m-th order derivatives. For one dimension and m=2 the roughness penalty is the integrated square of the second derivative of the function. For two dimensions the roughness penalty is the integral of (Dxx(f))**22 + 2(Dxy(f))**2 + (Dyy(f))**22 (where Duv denotes the second partial derivative with respect to u and v.) Besides controlling the order of the derivatives, the value of m also determines the base polynomial that is fit to the data. The degree of this polynomial is (m-1). The smoothing parameter controls the amount that the data is smoothed. In the usual form this is denoted by lambda, the Lagrange multiplier of the minimization problem. Although this is an awkward scale, lambda =0 corresponds to no smoothness constraints and the data is interpolated. lambda=infinity corresponds to just fitting the polynomial base model by ordinary least squares. This estimator is implemented by passing the right generalized covariance function based on radial basis functions to the more general function Krig. One advantage of this implementation is that once a Tps/Krig object is created the estimator can be found rapidly for other data and smoothing parameters provided the locations remain unchanged. This makes simulation within R efficient (see example below). Tps does not currently support the knots argument where one can use a reduced set of basis functions. This is mainly to simplify the code and a good alternative using knots would be to use a valid covariance from the Matern family and a large range parameter. CAUTION about \code{lon.lat=TRUE}: The option to use great circle distance to define the radial basis functions (\code{lon.lat=TRUE}) is very useful for small geographic domains where the spherical geometry is well approximated by a plane. However, for large domains the spherical distortion be large enough that the basis function no longer define a positive definite system and Tps will report a numerical error. An alternative is to switch to a three dimensional thin plate spline the locations being the direction cosines. This will give approximate great circle distances for locations that are close and also the numerical methods will always have a positive definite matrices. Here is an example using this idea for \code{RMprecip} and also some examples of building grids and evaluating the Tps results on them: \preformatted{ # a useful function: dircos<- function(x1){ coslat1 <- cos((x1[, 2] * pi)/180) sinlat1 <- sin((x1[, 2] * pi)/180) coslon1 <- cos((x1[, 1] * pi)/180) sinlon1 <- sin((x1[, 1] * pi)/180) cbind(coslon1*coslat1, sinlon1*coslat1, sinlat1)} # fit in 3-d to direction cosines out<- Tps(dircos(RMprecip$x),RMprecip$y) xg<-make.surface.grid(fields.x.to.grid(RMprecip$x)) fhat<- predict( out, dircos(xg)) # coerce to image format from prediction vector and grid points. out.p<- as.surface( xg, fhat) surface( out.p) # compare to the automatic out0<- Tps(RMprecip$x,RMprecip$y, lon.lat=TRUE) surface(out0) } The function \code{fastTps} is really a convenient wrapper function that calls \code{mKrig} with the Wendland covariance function. This is experimental and some care needs to exercised in specifying the taper range and power ( \code{p}) which describes the polynomial behavior of the Wendland at the origin. Note that unlike Tps the locations are not scaled to unit range and this can cause havoc in smoothing problems with variables in very different units. So rescaling the locations \code{ x<- scale(x)} is a good idea for putting the variables on a common scale for smoothing. This function does have the potential to approximate estimates of Tps for very large spatial data sets. See \code{wendland.cov} and help on the SPAM package for more background. Also, the function \code{predictSurface.fastTps} has been made more efficient for the case of k=2 and m=2. See also the mKrig function for handling larger data sets and also for an example of combining Tps and mKrig for evaluation on a huge grid. } \section{References}{ See "Nonparametric Regression and Generalized Linear Models" by Green and Silverman. See "Additive Models" by Hastie and Tibshirani. } \seealso{ Krig, summary.Krig, predict.Krig, predictSE.Krig, predictSurface, predictSurface.fastTps, plot.Krig, mKrig \code{\link{surface.Krig}}, \code{\link{sreg}} } \examples{ #2-d example fit<- Tps(ChicagoO3$x, ChicagoO3$y) # fits a surface to ozone measurements. set.panel(2,2) plot(fit) # four diagnostic plots of fit and residuals. set.panel() # summary of fit and estiamtes of lambda the smoothing parameter summary(fit) surface( fit) # Quick image/contour plot of GCV surface. # NOTE: the predict function is quite flexible: look<- predict( fit, lambda=2.0) # evaluates the estimate at lambda =2.0 _not_ the GCV estimate # it does so very efficiently from the Krig fit object. look<- predict( fit, df=7.5) # evaluates the estimate at the lambda values such that # the effective degrees of freedom is 7.5 # compare this to fitting a thin plate spline with # lambda chosen so that there are 7.5 effective # degrees of freedom in estimate # Note that the GCV function is still computed and minimized # but the lambda values used correpsonds to 7.5 df. fit1<- Tps(ChicagoO3$x, ChicagoO3$y,df=7.5) set.panel(2,2) plot(fit1) # four diagnostic plots of fit and residuals. # GCV function (lower left) has vertical line at 7.5 df. set.panel() # The basic matrix decompositions are the same for # both fit and fit1 objects. # predict( fit1) is the same as predict( fit, df=7.5) # predict( fit1, lambda= fit$lambda) is the same as predict(fit) # predict onto a grid that matches the ranges of the data. out.p<-predictSurface( fit) image( out.p) # the surface function (e.g. surface( fit)) essentially combines # the two steps above # predict at different effective # number of parameters out.p<-predictSurface( fit,df=10) \dontrun{ # predicting on a grid along with a covariate data( COmonthlyMet) # predicting average daily minimum temps for spring in Colorado # NOTE to create an 4km elevation grid: # data(PRISMelevation); CO.elev1 <- crop.image(PRISMelevation, CO.loc ) # then use same grid for the predictions: CO.Grid1<- CO.elev1[c("x","y")] obj<- Tps( CO.loc, CO.tmin.MAM.climate, Z= CO.elev) out.p<-predictSurface( obj, grid.list=CO.Grid, ZGrid= CO.elevGrid) image.plot( out.p) US(add=TRUE, col="grey") contour( CO.elevGrid, add=TRUE, levels=c(2000), col="black") } \dontrun{ #A 1-d example with confidence intervals out<-Tps( rat.diet$t, rat.diet$trt) # lambda found by GCV out plot( out$x, out$y) xgrid<- seq( min( out$x), max( out$x),,100) fhat<- predict( out,xgrid) lines( xgrid, fhat,) SE<- predictSE( out, xgrid) lines( xgrid,fhat + 1.96* SE, col="red", lty=2) lines(xgrid, fhat - 1.96*SE, col="red", lty=2) # # compare to the ( much faster) B spline algorithm # sreg(rat.diet$t, rat.diet$trt) # Here is a 1-d example with 95 percent CIs where sreg would not # work: # sreg would give the right estimate here but not the right CI's x<- seq( 0,1,,8) y<- sin(3*x) out<-Tps( x, y) # lambda found by GCV plot( out$x, out$y) xgrid<- seq( min( out$x), max( out$x),,100) fhat<- predict( out,xgrid) lines( xgrid, fhat, lwd=2) SE<- predictSE( out, xgrid) lines( xgrid,fhat + 1.96* SE, col="red", lty=2) lines(xgrid, fhat - 1.96*SE, col="red", lty=2) } # More involved example adding a covariate to the fixed part of model \dontrun{ set.panel( 1,3) # without elevation covariate out0<-Tps( RMprecip$x,RMprecip$y) surface( out0) US( add=TRUE, col="grey") # with elevation covariate out<- Tps( RMprecip$x,RMprecip$y, Z=RMprecip$elev) # NOTE: out$d[4] is the estimated elevation coefficient # it is easy to get the smooth surface separate from the elevation. out.p<-predictSurface( out, drop.Z=TRUE) surface( out.p) US( add=TRUE, col="grey") # and if the estimate is of high resolution and you get by with # a simple discretizing -- does not work in this case! quilt.plot( out$x, out$fitted.values) # # the exact way to do this is evaluate the estimate # on a grid where you also have elevations # An elevation DEM from the PRISM climate data product (4km resolution) data(RMelevation) grid.list<- list( x=RMelevation$x, y= RMelevation$y) fit.full<- predictSurface( out, grid.list, ZGrid= RMelevation) # this is the linear fixed part of the second spatial model: # lon,lat and elevation fit.fixed<- predictSurface( out, grid.list, just.fixed=TRUE, ZGrid= RMelevation) # This is the smooth part but also with the linear lon lat terms. fit.smooth<-predictSurface( out, grid.list, drop.Z=TRUE) # set.panel( 3,1) fit0<- predictSurface( out0, grid.list) image.plot( fit0) title(" first spatial model (w/o elevation)") image.plot( fit.fixed) title(" fixed part of second model (lon,lat,elev linear model)") US( add=TRUE) image.plot( fit.full) title("full prediction second model") set.panel() } ### ### fast Tps # m=2 p= 2m-d= 2 # # Note: theta =3 degrees is a very generous taper range. # Use some trial theta value with rdist.nearest to determine a # a useful taper. Some empirical studies suggest that in the # interpolation case in 2 d the taper should be large enough to # about 20 non zero nearest neighbors for every location. fastTps( RMprecip$x,RMprecip$y,m=2,lambda= 1e-2, theta=3.0) -> out2 # note that fastTps produces an mKrig object so one can use all the # the overloaded functions that are defined for the mKrig class. # summary of what happened note estimate of effective degrees of # freedom print( out2) \dontrun{ set.panel( 1,2) surface( out2) # # now use great circle distance for this smooth # note the different "theta" for the taper support ( there are # about 70 miles in one degree of latitude). # fastTps( RMprecip$x,RMprecip$y,m=2,lambda= 1e-2,lon.lat=TRUE, theta=210) -> out3 print( out3) # note the effective degrees of freedom is different. surface(out3) set.panel() } \dontrun{ # # simulation reusing Tps/Krig object # fit<- Tps( rat.diet$t, rat.diet$trt) true<- fit$fitted.values N<- length( fit$y) temp<- matrix( NA, ncol=50, nrow=N) sigma<- fit$shat.GCV for ( k in 1:50){ ysim<- true + sigma* rnorm(N) temp[,k]<- predict(fit, y= ysim) } matplot( fit$x, temp, type="l") } # #4-d example fit<- Tps(BD[,1:4],BD$lnya,scale.type="range") # plots fitted surface and contours # default is to hold 3rd and 4th fixed at median values surface(fit) } \keyword{smooth} % docclass is function % Converted by Sd2Rd version 1.21. fields/man/world.Rd0000644000175100001440000000377113114135522013734 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{world} \alias{world} \alias{world.color} \alias{in.land.grid} \alias{world.land} \title{Plot of the world} \description{ Plots quickly, medium resolution outlines of large land masses. This is a simple wrapper for the map function from the maps package. } \usage{ world(...) world.land( ...) world.color( ... ) in.land.grid(...) } \arguments{ \item{\dots}{Same arguments used by the \code{map} function from the maps package.} } \details{ See the longstanding \code{maps} package for documentation on this function. The functions world.land, world.color and in.land.grid have been depreciated but can be recovered from versions of fields 6.7.1 or older. } \seealso{US, in.poly, in.poly.grid} \examples{ \dontrun{ world() # add the US US( add=TRUE,col="blue") world( fill=TRUE) # land filled in black ## Western Europe world( xlim=c(-10,18),ylim=c(36,60),fill=TRUE, col="darkgreen", border="green1") } } \keyword{hplot} % docclass is function fields/man/vgram.matrix.Rd0000644000175100001440000000773213114135522015225 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{vgram.matrix} \alias{vgram.matrix} \alias{plot.vgram.matrix} \title{ Computes a variogram from an image } \description{ Computes a variogram for an image taking into account different directions and returning summary information about the differences in each of these directions. } \usage{ vgram.matrix(dat, R=5, dx = 1,dy = 1 ) \method{plot}{vgram.matrix}(x,...) } \arguments{ \item{dat}{ A matrix spacing of rows and columns are assumed to have the same distance. } \item{R}{ Maximum radius for finding variogram differences assuming that the grid points are spaced one unit a part. Default is go out to a radius of 5. } \item{dx}{ The spacing of grid points on the X axis. This is used to calculate the correct distance between grid points. If dx is not equal to dy then the collapse argument must be FALSE. } \item{dy}{ The spacing of grid points on the Y axis. See additional notes for dx.} \item{x}{ Returned list from vgram.matrix} \item{\dots}{ Arguments for image.plot} } \value{ An object of class vgram.matrix with the following components: d, a vector of distances for the differences, and vgram, the variogram values. This is the traditional variogram ignoring direction. d.full, a vector of distances for all possible shifts up distance R, ind, a two column matrix giving the x and y increment used to compute the shifts, and vgram.full, the variogram at each of these separations. Also computed is vgram.robust, Cressie's version of a robust variogram statistic. Also returned is the component N the number of differences found for each separation csae. } \details{ For the "full" case the statistics can summarize departures from isotropy by separating the variogram differences according to orientation. For small R this runs efficiently because the differences are found by sub-setting the image matrix. For example, suppose that a row of the ind matrix is (2,3). The variogram value associated with this row is the mean of the differences (1/2)*(X(i,j)- X( i+2,j+3))**2 for all i and j. (Here X(.,.) are the values for the spatial field.) In this example d= sqrt(13) and there will be another entry with the same distance but corresponding to the direction (3,2). plot.vgram.matrix attempts to organize all the different directions into a coherent image plot. } \seealso{ \code{\link{vgram}} } \examples{ # variogram for Lennon image. data(lennon) out<-vgram.matrix( lennon) plot( out$d, out$vgram, xlab="separation distance", ylab="variogram") # image plot of vgram values by direction. # look at different directions out<-vgram.matrix( lennon, R=8) plot( out$d, out$vgram) # add in different orientations points( out$d.full, out$vgram.full, col="red") #image plot of variogram values for different directions. set.panel(1,1) plot.vgram.matrix( out) # John Lennon appears remarkably isotropic! } \keyword{spatial} % docclass is function % Converted by Sd2Rd version 1.21. fields/man/image.plot.Rd0000644000175100001440000005045113114135522014641 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{image.plot} \alias{image.plot} \title{ Draws image plot with a legend strip for the color scale based on either a regular grid or a grid of quadrilaterals. } \description{ This function combines the R image function with some automatic placement of a legend. This is done by automatically splitting the plotting region into two parts. Putting the image in one and the legend in the other. After the legend is added the plot region is reset to the image plot. This function also allows for plotting quadrilateral cells in the image format that often arise from regular grids transformed with a map projection. } \usage{ \method{image}{plot}(..., add = FALSE, breaks= NULL, nlevel = 64, col = NULL, horizontal = FALSE, legend.shrink = 0.9, legend.width = 1.2, legend.mar = ifelse(horizontal, 3.1, 5.1), legend.lab = NULL, legend.line= 2, graphics.reset = FALSE, bigplot = NULL, smallplot = NULL, legend.only = FALSE, lab.breaks = NULL, axis.args = NULL, legend.args = NULL, legend.cex=1.0, midpoint = FALSE, border = NA, lwd = 1,verbose = FALSE ) } \arguments{ \item{\dots}{ The usual arguments to the \code{image} function as x,y,or z or as a list with x,y,z as components. One can also include a \code{breaks} an argument for an unequal spaced color scale with color scale boundaries at the breaks (see example below). If a "quadrilateral grid", arguments must be explicitly x,y and z with x, and y being matrices of dimensions equal to, or one more than, z giving the grid locations. The basic concept is that the coordinates of x and y still define a grid but the image cells are quadrilaterals rather than being restricted to rectangles. See details below as to how one handles whether the quads are specified by their vertices or by their midpoints. NOTE graphical argruments passed here will only have impact on the image plot. To change the graphical defaults for the legend use the \code{par} function beforehand e.g. par( lab.cex=2.0) to increase colorbar labels. } \item{add}{ If true add image and a legend strip to the existing plot. } \item{bigplot}{ Plot coordinates for image plot. If not passed these will be determined within the function. } \item{border}{This only works if x and y are matrices -- if NA the quadralaterals will have a border color that is the same as the interior color. Otherwise this specifies the color to use.} \item{breaks}{Break points in sorted order to indicate the intervals for assigning the colors. Note that if there are nlevel colors there should be (nlevel+1) breakpoints. If \code{breaks} is not specified (nlevel+1) equally spaced breaks are created where the first and last bin have their midpoints at the minimum and maximum values in \code{z} or at \code{zlim}. } \item{col}{ Color table to use for image (See help file on image for details.). Default is a pleasing range of 64 divisions suggested by Tim Hoar and is similar to the MATLAB (TM) jet color scheme. Note that if \code{breaks} is specified there must be one less colors specified than the number of breaks. } \item{graphics.reset}{ If FALSE (default) the plotting region ( plt in par) will not be reset and one can add more information onto the image plot. (e.g. using functions such as points or lines.) If TRUE will reset plot parameters to the values before entering the function. } \item{horizontal}{ If false (default) legend will be a vertical strip on the right side. If true the legend strip will be along the bottom. } \item{lab.breaks}{ If breaks are supplied these are text string labels to put at each break value. This is intended to label axis on a transformed scale such as logs.} \item{axis.args}{Additional arguments for the axis function used to create the legend axis. (See example below adding a log scaling.)} \item{legend.only}{ If TRUE just add the legend to a the plot in the plot region defined by the coordinates in smallplot. In the absence of other information the range for the legend is determined from the \code{zlim} argument. } \item{legend.args}{Arguments for a complete specification of the legend label. This is in the form of list and is just passed to the mtext function. Usually this will not be needed. (See example below.)} \item{legend.cex}{Character expansion to change size of the legend label.} \item{legend.line}{Distance in units of character height (as in \code{mtext}) of the legend label from the color bar. Make this larger if the label collides with the color axis labels.} \item{legend.mar}{ Width in characters of legend margin that has the axis. Default is 5.1 for a vertical legend and 3.1 for a horizontal legend.} \item{legend.lab}{ Label for the axis of the color legend. Default is no label as this is usual evident from the plot title.} \item{legend.shrink}{ Amount to shrink the size of legend relative to the full height or width of the plot. } \item{legend.width}{ Width in characters of the legend strip. Default is 1.2, a little bigger that the width of a character. } \item{lwd}{Line width of bordering lines around pixels. This might need to be set less than 1.0 to avoid visible rounding of the pixel corners.} \item{midpoint}{ This option for the case of unequally spaced grids with x and y being matrices of grid point locations. If FALSE (default) the quadralaterals will be extended to surround the z locations as midpoints. If TRUE z values will be averaged to yield a midpoint value and the original grid points be used to define the quadralaterals. (See help on poly.image for details). In most cases midpoint should be FALSE to preserve exact values for z and let the grid polygons be modified.} \item{nlevel}{ Number of color levels used in legend strip } \item{smallplot}{ Plot coordinates for legend strip. If not passed these will be determined within the function. Be sure to leave room for the axis labels. For example, if the legend is on the right side \code{smallplot= c(.85,.9,0,1) } will leave (.1 in plot coordinates) for the axis labels to the right of the color strip. This argument is useful for drawing a plot with the legend that is the same size as the plots without legends. } \item{verbose}{If TRUE prints intermediate information about setting up plots (for debugging). } } \section{Side Effects}{ After exiting, the plotting region may be changed to make it possible to add more features to the plot. To be explicit, \code{par()\$plt} may be changed to reflect a smaller plotting region that has accommodated room for the legend subplot. If \code{xlim} and \code{ylim} are specified the pixels may overplot the axis lines. Just use the \code{box} function to redraw them. } \details{ \strong{How this function works:} The strategy for \code{image.plot} is simple, divide the plotting region into two smaller regions \code{bigplot} and \code{smallplot}. The image goes in one and the legend in the other. This way there is always room for the legend. Some adjustments are made to this rule by not shrinking the \code{bigplot} if there is already room for the legend strip and also sticking the legend strip close to the image plot. One can specify the plot regions explicitly by \code{bigplot} and \code{smallplot} if the default choices do not work. There may be problems with small plotting regions in fitting both of these elements in the plot region and one may have to change the default character sizes or margins to make things fit. Sometimes this function will not reset the type of margins correctly and the "null" call \code{par(mar = par("mar"))} may help to fix this issue. \strong{Why image.plot and not image?} The R Base function \code{image} is very useful but it is awkward to place a legend quickly. However, that said if you are drawing several image plots and want ao common legend use the \code{image} function and just just use \code{image.plot} to add the legend. See the example in the help file. \strong{Almost cloropleths too:} It should be noted that this image function is slightly different than a cloropleth map because the legend is assuming that a continous scale has been discretized into a series of colors. To make image.plot function as a cloropleth graphic one would of course use the \code{breaks} option and for clarity perhaps code the different regions as different integer values. In addition, for publication quality one would want to use the \code{legend.args} to add more descriptive labels at the midpoints in the color strip. \strong{Relationship of x, y and z:} If the z component is a matrix then the user should be aware that this function locates the matrix element z[i,j] at the grid locations (x[i], y[j]) this is very different than simply listing out the matrix in the usual row column tabular form. See the example below for details on the difference in formatting. What does one do if you do not really have the "z" values on a regular grid? See the functions \code{quilt.plot.Rd} and \code{as.image} to discretise irregular observations to a grid. If the values makes sense as points on a smooth surface see \code{Tps} and \code{fastTps} for surface interpolation. \strong{Grids with unequally spacing:} If x and y are matrices that are a smooth transformation of a regular grid then z[i,j] is rendered at a quadrilateral that is centered at x[i,j] and y[i,j] (\code{midpoint} TRUE). The details of how this cell is found are buried in \code{poly.image} but it it essentially found using midpoints between the centers.If \code{midpoint} is FALSE then x and y are interpreted as the corners of the quadrilateral cells. But what about z? The four values of z are now averaged to represent a value at the midpoint of the cell and this is what is used for plotting. Quadrilateral grids were added to help with plotting the gridded output of geophysical models where the regular grid is defined according to one map projection but the image plotting is required in another projection. Typically the regular grid becomes distorted in a smooth way when this happens. See the regional climate example for a illustration of this application. One can add border colors in this case easily because these choices are jsut passed onto the polygon function. Adding the pixel grid for rectangular images: For adding the grid of pixel borders to a rectangular image try this example after calling \code{image.plot} %\preformatted{ \code{ dx<- x[2] - x[1]} \cr \code{ dy <- y[2]-y[1]} \cr \code{ xtemp<- seq( min( x)- dx/2, max(x)+ dx/2,, length(x) +1) } \cr \code{ ytemp<- seq( min( y)- dy/2, max(y)+ dy/2,, length(y) +1)} \cr \code{ xline( xtemp, col="grey50", lwd=2); yline( ytemp, col="grey50", lwd=2)} %} Here \code{x} and \code{y} here are the x and y grid values from the image list. \strong{Fine tuning color scales:} This function gives some flexibility in tuning the color scale to fit the rendering of z values. This can either be specially designed color scale with specific colors ( see help on \code{designer.colors}), positioning the colors at specific points on the [0,1] scale, or mapping distinct colors to intervals of z. The examples below show how to do each of these. In addition, by supplying \code{lab.break} strings or axis parameters one can annotate the legend axis in an informative matter. \strong{The details of placing the legend and dividing up the plotting real estate:} It is surprising how hard it is to automatically add the legend! All "plotting coordinates" mentioned here are in device coordinates. The plot region is assumed to be [0,1]X[0,1] and plotting regions are defined as rectangles within this square. We found these easier to work with than user coordinates. \code{legend.width} and \code{legend.mar} are in units of character spaces. These units are helpful in thinking about axis labels that will be put into these areas. To add more or less space between the legend and the image plot alter the mar parameters. The default mar settings (5.1,5.1,5.1,2.1) leaves 2.1 spaces for vertical legends and 5.1 spaces for horizontal legends. There are always problems with default solutions to placing information on graphs but the choices made here may be useful for most cases. The most annoying thing is that after using plot.image and adding information the next plot that is made may have the slightly smaller plotting region set by the image plotting. The user should set \code{reset.graphics=TRUE} to avoid the plotting size from changing. The disadvantage, however, of resetting the graphics is that one can no longer add additional graphics elements to the image plot. Note that filled.contour always resets the graphics but provides another mechanism to pass through plotting commands. Apparently \code{filled.contour}, while very pretty, does not work for multiple plots. \code{levelplot} that is part of the lattice package has a very similar function to image.plot and a formula syntax in the call. By keeping the \code{zlim} argument the same across images one can generate the same color scale. (See the \code{image} help file.) One useful technique for a panel of images is to just draw the images with \code{image} and then use image.plot to add a legend to the last plot. (See example below for messing with the outer margins to make this work.) Usually a square plot (\code{pty="s"}) done in a rectangular plot region will have room for the legend stuck to the right side without any other adjustments. See the examples below for more complicated arrangements of multiple image plots and a summary legends. \strong{Adding just the legend strip:} Note that to add just the legend strip all the numerical information one needs is the \code{zlim} argument and the color table! \strong{About color tables:} We like \code{tim.colors} as a default color scale and so if this what you use this can be omitted. The topographic color scale (\code{topo.colors}) is also a close second showing our geophysical bias. Users may find \code{larry.colors} useful for coding distinct regions in the style of a cloropleith map. See also \code{terrain.colors} for a subset of the topo ones and \code{designer.colors} to "roll your own" color table. One nice option in this last function is to fix color transitions at particular quantiles of the data rather than at equally spaced intervals. For color choices see how the \code{nlevels} argument figures into the legend and main plot number of colors. Also see the \code{colors} function for a listing of all the colors that come with the R base environment. } \seealso{ image, poly.image, filled.contour, quilt.plot, plot.surface, add.image, colorbar.plot, tim.colors, designer.colors } \examples{ x<- 1:10 y<- 1:15 z<- outer( x,y,"+") image.plot(x,y,z) # or obj<- list( x=x,y=y,z=z) image.plot(obj, legend.lab="Sverdrups") # add some points on diagonal using standard plot function #(with some clipping beyond 10 anticipated) points( 5:12, 5:12, pch="X", cex=3) # adding breaks and distinct colors for intervals of z # with and without lab.breaks brk<- quantile( c(z)) image.plot(x,y,z, breaks=brk, col=rainbow(4)) # annotate legend strip at break values and add a label image.plot(x,y,z, breaks=brk, col=rainbow(4), lab.breaks=names(brk)) # # compare to zp <-quantile(c(z), c( .05, .1,.5, .9,.95)) image.plot(x,y,z, axis.args=list( at=zp, labels=names(zp) ) ) # a log scaling for the colors ticks<- c( 1, 2,4,8,16,32) image.plot(x,y,log(z), axis.args=list( at=log(ticks), labels=ticks)) # see help file for designer.colors to generate a color scale that adapts to # quantiles of z. # Two add some color scales together here is an example of 5 blues to white to 5 reds # with white being a specific size. colorTable<- designer.colors(11, c( "blue","white", "red") ) # breaks with a gap of 10 to 17 assigned the white color brks<- c(seq( 1, 10,,6), seq( 17, 25,,6)) image.plot( x,y,z,breaks=brks, col=colorTable) # #fat (5 characters wide) and short (50\% of figure) color bar on the bottom image.plot( x,y,z,legend.width=5, legend.shrink=.5, horizontal=TRUE) # adding a label with all kinds of additional arguments. # use side=4 for vertical legend and side= 1 for horizontal legend # to be parallel to axes. See help(mtext). image.plot(x,y,z, legend.args=list( text="unknown units", col="magenta", cex=1.5, side=4, line=2)) #### example using a irregular quadrilateral grid data( RCMexample) image.plot( RCMexample$x, RCMexample$y, RCMexample$z[,,1]) ind<- 50:75 # make a smaller image to show bordering lines image.plot( RCMexample$x[ind,ind], RCMexample$y[ind,ind], RCMexample$z[ind,ind,1], border="grey50", lwd=2) #### multiple images with a common legend set.panel() # Here is quick but quirky way to add a common legend to several plots. # The idea is leave some room in the margin and then over plot in this margin par(oma=c( 0,0,0,4)) # margin of 4 spaces width at right hand side set.panel( 2,2) # 2X2 matrix of plots # now draw all your plots using usual image command for ( k in 1:4){ data<- matrix( rnorm(150), 10,15) image( data, zlim=c(-4,4), col=tim.colors()) # and just for fun add a contour plot contour( data, add=TRUE) } par(oma=c( 0,0,0,1))# reset margin to be much smaller. image.plot( legend.only=TRUE, zlim=c(-4,4)) # image.plot tricked into plotting in margin of old setting set.panel() # reset plotting device # # Here is a more learned strategy to add a common legend to a panel of # plots consult the split.screen help file for more explanations. # For this example we draw two # images top and bottom and add a single legend color bar on the right side # first divide screen into the figure region (left) and legend region (right) split.screen( rbind(c(0, .8,0,1), c(.8,1,0,1))) # now subdivide up the figure region into two parts split.screen(c(2,1), screen=1)-> ind zr<- range( 2,35) # first image screen( ind[1]) image( x,y,z, col=tim.colors(), zlim=zr) # second image screen( ind[2]) image( x,y,z+10, col=tim.colors(), zlim =zr) # move to skinny region on right and draw the legend strip screen( 2) image.plot( zlim=zr,legend.only=TRUE, smallplot=c(.1,.2, .3,.7), col=tim.colors()) close.screen( all=TRUE) # you can always add a legend arbitrarily to any plot; # note that here the plot is too big for the vertical strip but the # horizontal fits nicely. plot( 1:10, 1:10) image.plot( zlim=c(0,25), legend.only=TRUE) image.plot( zlim=c(0,25), legend.only=TRUE, horizontal =TRUE) # combining the usual image function and adding a legend # first change margin for some more room \dontrun{ par( mar=c(10,5,5,5)) image( x,y,z, col=topo.colors(64)) image.plot( zlim=c(0,25), nlevel=64,legend.only=TRUE, horizontal=TRUE, col=topo.colors(64)) } # # # sorting out the difference in formatting between matrix storage # and the image plot depiction # this really has not much to do with image.plot but I hope it is useful A<- matrix( 1:48, ncol=6, nrow=8) # first column of A will be 1:8 # ... second is 9:16 image.plot(1:8, 1:6, A) # add labels to each box text( c( row(A)), c( col(A)), A) # and the indices ... text( c( row(A)), c( col(A))-.25, paste( "(", c(row(A)), ",",c(col(A)),")", sep=""), col="grey") # "columns" of A are horizontal and rows are ordered from bottom to top! # # matrix in its usual tabular form where the rows are y and columns are x image.plot( t( A[8:1,]), axes=FALSE) } \keyword{hplot} % docclass is function fields/man/QTps.Rd0000644000175100001440000002451713114135521013474 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{QTps} \alias{QTps} %- Also NEED an '\alias' for EACH other topic documented here. \title{ %% ~~function to do ... ~~ Robust and Quantile smoothing using a thin-plate spline } \description{ %% ~~ A concise (1-5 lines) description of what the function does. ~~ This function uses the standard thin plate spline function \code{Tps} and a algorithm based on psuedo data to compute robust smoothers based on the Huber weight function. By modifying the symmetry of the Huber function and changing the scale one can also approximate a quantile smoother. This function is experimental in that is not clear how efficient the psuedo-data algorithm is acheiving convergence to a solution. } \usage{ QTps(x, Y, ..., f.start = NULL, psi.scale = NULL, C = 1, alpha = 0.5, Niterations = 100, tolerance = 0.001, verbose = FALSE) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{x}{ Locations of observations. } \item{Y}{ Observations } \item{\dots}{ Any other arguments to pass to the Tps function. } \item{C}{Scaling for huber robust weighting function. (See below.) Usually it is better to leave this at 1 and just modify the scale \code{psi.scale} according to the size of the residuals. } \item{f.start}{ The initial value for the estimated function. If NULL then the constant function at the median of \code{Y} will be used. NOTE: This may not be a very good starting vector and a more robust method would be to use a local robust smoother. } \item{psi.scale}{ The scale value for the Huber function. When C=1, this is the point where the Huber weight function will change from quadratic to linear. Default is to use the scale \code{.05*mad(Y)} and \code{C=1} . Very small scales relative to the size of the residuals will cause the estimate to approximate a quantile spline. Very large scales will yield the ordinary least squares spline. } \item{alpha}{ The quantile that is estimated by the spline. Default is .5 giving a median. Equivalently this parameter controls the slope of the linear wings in the Huber function \code{2*alpha} for the positive wing and \code{2*(1-alpha)} for the negative wing. } \item{Niterations}{ Maximum number of interations of the psuedo data algorithm } \item{tolerance}{ Convergence criterion based on the relative change in the predicted values of the function estimate. Specifically if the criterion \code{mean(abs(f.hat.new - f.hat))/mean(abs(f.hat))} is less than \code{tolerance} the iterations re stopped. } \item{verbose}{ If TRUE intermediate results are printed out. } } \details{ This is an experimentla function that uses the psuedo-value algorithm to compute a class of robust and quantile problems. The Thin Plate Spline/ Kriging model through fields is: Y.k= f(x.k) = P(x.k) + Z(x.k) + e.k with the goal of estimating the smooth function: f(x)= P(x) + Z(x) The extension in this function is that e.k can be heavy tailed or have outliers and one would still like a robust estimate of f(x). In the quantile approximation (very small scale parameter) f(x) is an estimate of the alpha quantile of the conditional distribution of Y given x. The algorithm is iterative and involves at each step tapering the residuals in a nonlinear way. Let psi.wght be this tapering function then given an initial estimate of f, f.hat the new data for smoothing is \code{ Y.psuedo<- f.hat + psi.scale* psi.wght( Y - f.hat, psi.scale=psi.scale, alpha=alpha)} A thin plate spline is now estimated for these data and a new prediction for f is found. This new vector is used to define new psuedo values. Convergence is achieved when the the subsequent estimates of f.hat do not change between interations. The advantage of this algorithm is at every step a standard "least squares" thin plate spline is fit to the psuedo data. Because only the observation vector is changing at each iteration Some matrix decompositions need only be found once and the computations at each subsequent iteration are efficient. At convergence there is some asymptotic theory to suggest that the psuedo data can be fit using the least squares spline and the standard smoothing techinques are valid. For example one can consider looking at the cross-validation function for the psuedo-data as a robust version to select a smoothing parameter. This approach is different from the weighted least squared algorithm used in the \code{qsreg} function. Also \code{qsreg} is only designed to work with 1-d cubic smoothing splines. The "rho" function indicating the departure from a pure quadratic loss function has the definition \preformatted{ qsreg.rho<-function(r, alpha = 0.5, C = 1) temp<- ifelse( r< 0, ((1 - alpha) * r^2)/C , (alpha * r^2)/C) temp<- ifelse( r >C, 2 * alpha * r - alpha * C, temp) temp<- ifelse( r < -C, -2 * (1 - alpha) * r - (1 - alpha) * C, temp) temp } The derivative of this function "psi" is \preformatted{ qsreg.psi<- function(r, alpha = 0.5, C = 1) temp <- ifelse( r < 0, 2*(1-alpha)* r/C, 2*alpha * r/C ) temp <- ifelse( temp > 2*alpha, 2*alpha, temp) temp <- ifelse( temp < -2*(1-alpha), -2*(1-alpha), temp) temp } Note that if C is very small and if alpha = .5 then psi will essentially be 1 for r > 0 and -1 for r < 0. The key feature here is that outside a ceratin range the residual is truncated to a constant value. This is similar to the Windsorizing operation in classical robust statistics. Another advantage of the psuedo data algotrithm is that at convergence one can just apply all the usual generic functions from Tps to the psuedo data fit. For example, predict, surface, print, etc. Some additional components are added to the Krig/Tps object, however, for information about the iterations and original data. Note that currently these are not reported in the summaries and printing of the output object. } \value{ A \code{Krig} object with additional components: \item{yraw}{ Original Y values} \item{conv.info}{A vector giving the convergence criterion at each iteration.} \item{conv.flag}{If TRUE then convergence criterion was less than the tolerance value.} \item{psi.scale}{Scaling factor used for the psi.wght function.} \item{value}{Value of alpha.} } \references{ Oh, Hee-Seok, Thomas CM Lee, and Douglas W. Nychka. "Fast nonparametric quantile regression with arbitrary smoothing methods." Journal of Computational and Graphical Statistics 20.2 (2011): 510-526. } \author{ Doug Nychka } \seealso{ qsreg } \examples{ data(ozone2) x<- ozone2$lon.lat y<- ozone2$y[16,] # Smoothing fixed at 50 df look1<- QTps( x,y, psi.scale= 15, df= 50) \dontrun{ # Least squares spline (because scale is so large) look2<- QTps( x,y, psi.scale= 100, df= 50) # y.outlier<- y # add in a huge outlier. y.outlier[58]<- 1e5 look.outlier1<- QTps( x,y.outlier, psi.scale= 15, df= 50) # least squares spline. look.outlier2<- QTps( x,y.outlier, psi.scale=100 , df= 50) # set.panel(2,2) surface( look1) title("robust spline") surface( look2) title("least squares spline") surface( look.outlier1, zlim=c(0,250)) title("robust spline w/outlier") points( rbind(x[58,]), pch="+") surface( look.outlier2, zlim=c(0,250)) title("least squares spline w/outlier") points( rbind(x[58,]), pch="+") set.panel() } # some quantiles look50 <- QTps( x,y, psi.scale=.5) look75 <- QTps( x,y,f.start= look50$fitted.values, alpha=.75) # a simulated example that finds some different quantiles. \dontrun{ set.seed(123) N<- 400 x<- matrix(runif( N), ncol=1) true.g<- x *(1-x)*2 true.g<- true.g/ mean( abs( true.g)) y<- true.g + .2*rnorm( N ) look0 <- QTps( x,y, psi.scale=10, df= 15) look50 <- QTps( x,y, df=15) look75 <- QTps( x,y,f.start= look50$fitted.values, df=15, alpha=.75) } \dontrun{ # this example tests the quantile estimate by Monte Carlo # by creating many replicate point to increase the sample size. # Replicate points are used because the computations for the # spline are dominated by the number of unique locations not the # total number of points. set.seed(123) N<- 80 M<- 200 x<- matrix( sort(runif( N)), ncol=1) x<- matrix( rep( x[,1],M), ncol=1) true.g<- x *(1-x)*2 true.g<- true.g/ mean( abs( true.g)) errors<- .2*(rexp( N*M) -1) y<- c(matrix(true.g, ncol=M, nrow=N) + .2 * matrix( errors, ncol=M, nrow=N)) look0 <- QTps( x,y, psi.scale=10, df= 15) look50 <- QTps( x,y, df=15) look75 <- QTps( x,y, df=15, alpha=.75) bplot.xy(x,y, N=25) xg<- seq(0,1,,200) lines( xg, predict( look0, x=xg), col="red") lines( xg, predict( look50, x=xg), col="blue") lines( xg, predict( look75, x=xg), col="green") } \dontrun{ # A comparison with qsreg qsreg.fit50<- qsreg(rat.diet$t,rat.diet$con, sc=.5) lam<- qsreg.fit50$cv.grid[,1] df<- qsreg.fit50$cv.grid[,2] M<- length(lam) CV<-rep( NA, M) M<- length( df) fhat.old<- NULL for ( k in M:1){ temp.obj<- QTps(rat.diet$t,rat.diet$con, f.start=fhat.old, psi.scale=.5, tolerance=1e-6, verbose=FALSE, df= df[k]) cat(k, " ") CV[k] <- temp.obj$Qinfo$CV.psuedo fhat.old<- temp.obj$fitted.values } plot( df, CV, type="l", lwd=2) # psuedo data estimate points( qsreg.fit50$cv.grid[,c(5,6)], col="blue") # alternative CV estimate via reweighted LS points( qsreg.fit50$cv.grid[,c(2,3)], col="red") } } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{spatial} fields/man/CO.Rd0000644000175100001440000002122713114135521013101 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{Colorado Monthly Meteorological Data} \alias{COmonthlyMet} \alias{CO.elev} \alias{CO.id} \alias{CO.loc} \alias{CO.names} \alias{CO.ppt} \alias{CO.ppt.MAM} \alias{CO.tmax} \alias{CO.tmax.MAM} \alias{CO.tmin} \alias{CO.tmin.MAM} \alias{CO.years} \alias{CO.ppt.MAM.climate} \alias{CO.tmax.MAM.climate} \alias{CO.tmean.MAM.climate} \alias{CO.tmin.MAM.climate} \alias{CO.elevGrid} \alias{CO.Grid} \title{Monthly surface meterology for Colorado 1895-1997} \description{ Source: These is a group of R data sets for monthly min/max temperatures and precipitation over the period 1895-1997. It is a subset extracted from the more extensive US data record described in at \url{http://www.image.ucar.edu/Data/US.monthly.met}. Observed monthly precipitation, min and max temperatures for the conterminous US 1895-1997. See also \url{http://www.image.ucar.edu/Data/US.monthly.met/CO.shtml} for an on line document of this Colorado subset. Temperature is in degrees C and precipitation is total monthly accumulation in millimeters. Note that minimum (maximum) monthly tempertuare is the mean of the daily minimum (maximum) temperatures. Data domain: A rectagular lon/lat region [-109.5,-101]x [36.5,41.5] larger than the boundary of Colorado comprises approximately 400 stations. Although there are additional stations reported in this domain, stations that only report preicipitation or only report temperatures have been excluded. In addition stations that have mismatches between locations and elevations from the two meta data files have also been excluded. The net result is 367 stations that have colocated temperatures and precipitation. } \format{ This group of data sets is organized with the following objects: \describe{ \item{CO.info}{A data frame with columns: station id, elev, lon, lat, station name} \item{CO.elev}{elevation in meters} \item{CO.elevGrid}{An image object being elevation in meters on a 4 km grid covering Colorado. } \item{CO.id}{ alphanumeric station id codes} \item{CO.loc}{locations in lon/lat} \item{CO.Grid}{Just the grid.list used in the CO.elevGrid.} \item{CO.ppt CO.tmax CO.tmin}{Monthly means as three dimensional arrays ( Year, Month, Station). Temperature is in degrees C and precipitation in total monthly accumulation in millimeters.} \item{CO.ppt.MAM CO.tmax.MAM CO.tmin.MAM}{Spring seasonal means (March, April,May) as two dimensional arrays (Year, Station).} \item{CO.MAM.ppt.climate CO.MAM.tmax.climate CO.MAM.tmin.climate}{Spring seasonal means (March, April,May) means by station for the period 1960-1990. If less than 15 years are present over this period an NA is recorded. No detreding or other adjustments have been made for these mean estimates. } } } \examples{ data(COmonthlyMet) #Spatial plot of 1997 Spring average daily maximum temps quilt.plot( CO.loc,CO.tmax.MAM[103,] ) US( add=TRUE) title( "Recorded MAM max temperatures (1997)") # min and max temperatures against elevation matplot( CO.elev, cbind( CO.tmax.MAM[103,], CO.tmin.MAM[103,]), pch="o", type="p", col=c("red", "blue"), xlab="Elevation (m)", ylab="Temperature (C)") title("Recorded MAM max (red) and min (blue) temperatures 1997") #Fitting a spatial model: obj<- Tps(CO.loc,CO.tmax.MAM.climate, Z= CO.elev ) good<- !is.na(CO.tmax.MAM.climate ) out<- MLE.Matern(CO.loc[good,],CO.tmax.MAM.climate[good], smoothness=1.0, Z= CO.elev[good] ) #MLE search on range suggests Tps model } \section{Creation of data subset}{ Here is the precise R script used to create this data subset from the larger US monthly data set. This parent data set is available from \url{http://www.image.ucar.edu/public/Data} with a general description at \url{http://www.image.ucar.edu/Data/US.monthly.met}. These technical details are not needed for casual use of the data -- skip down to examples for some R code that summarizes these data. \preformatted{ attach("RData.USmonthlyMet.bin") #To find a subset that covers Colorado (with a bit extra): indt<- UStinfo$lon< -101 & UStinfo$lon > -109.5 indt<- indt & UStinfo$lat<41.5 & UStinfo$lat>36.5 # check US(); points( UStinfo[indt,3:4]) #find common names restricting choices to the temperature names tn<- match( UStinfo$station.id, USpinfo$station.id) indt<- !is.na(tn) & indt # compare metadata locations and elevations. # initial matches to precip stations CO.id<- UStinfo[indt,1] CO.names<- as.character(UStinfo[indt,5]) pn<- match( CO.id, USpinfo$station.id) loc1<- cbind( UStinfo$lon[indt], UStinfo$lat[indt], UStinfo$elev[indt]) loc2<- cbind( USpinfo$lon[pn], USpinfo$lat[pn], USpinfo$elev[pn]) abs(loc1- loc2) -> temp indbad<- temp[,1] > .02 | temp[,2]> .02 | temp[,3] > 100 # tolerance at 100 meters set mainly to include the CLIMAX station # a high altitude station. data.frame(CO.names[ indbad], loc1[indbad,], loc2[indbad,], temp[indbad,] ) # CO.names.indbad. X1 X2 X3 X1.1 X2.1 X3.1 X1.2 X2.2 X3.2 #1 ALTENBERN -108.38 39.50 1734 -108.53 39.58 2074 0.15 0.08 340 #2 CAMPO 7 S -102.57 37.02 1311 -102.68 37.08 1312 0.11 0.06 1 #3 FLAGLER 2 NW -103.08 39.32 1519 -103.07 39.28 1525 0.01 0.04 6 #4 GATEWAY 1 SE -108.98 38.68 1391 -108.93 38.70 1495 0.05 0.02 104 #5 IDALIA -102.27 39.77 1211 -102.28 39.70 1208 0.01 0.07 3 #6 KARVAL -103.53 38.73 1549 -103.52 38.80 1559 0.01 0.07 10 #7 NEW RAYMER -103.85 40.60 1458 -103.83 40.58 1510 0.02 0.02 52 # modify the indt list to exclude these mismatches (there are 7 here) badones<- match( CO.id[indbad], UStinfo$station.id) indt[ badones] <- FALSE ###### now have working set of CO stations have both temp and precip ##### and are reasonably close to each other. N<- sum( indt) # put data in time series order instead of table of year by month. CO.tmax<- UStmax[,,indt] CO.tmin<- UStmin[,,indt] CO.id<- as.character(UStinfo[indt,1]) CO.elev<- UStinfo[indt,2] CO.loc <- UStinfo[indt,3:4] CO.names<- as.character(UStinfo[indt,5]) CO.years<- 1895:1997 # now find precip stations that match temp stations pn<- match( CO.id, USpinfo$station.id) # number of orphans sum( is.na( pn)) pn<- pn[ !is.na( pn)] CO.ppt<- USppt[,,pn] # checks --- all should zero ind<- match( CO.id[45], USpinfo$station.id) mean( abs( c(USppt[,,ind]) - c(CO.ppt[,,45]) ) , na.rm=TRUE) ind<- match( CO.id[45], UStinfo$station.id) mean( abs(c((UStmax[,,ind])) - c(CO.tmax[,,45])), na.rm=TRUE) mean( abs(c((UStmin[,,ind])) - c(CO.tmin[,,45])), na.rm=TRUE) # check order ind<- match( CO.id, USpinfo$station.id) sum( CO.id != USpinfo$station.id[ind]) ind<- match( CO.id, UStinfo$station.id) sum( CO.id != UStinfo$station.id[ind]) # (3 4 5) (6 7 8) (9 10 11) (12 1 2) N<- ncol( CO.tmax) CO.tmax.MAM<- apply( CO.tmax[,3:5,],c(1,3), "mean") CO.tmin.MAM<- apply( CO.tmin[,3:5,],c(1,3), "mean") CO.ppt.MAM<- apply( CO.ppt[,3:5,],c(1,3), "sum") # Now average over 1961-1990 ind<- CO.years>=1960 & CO.years < 1990 temp<- stats( CO.tmax.MAM[ind,]) CO.tmax.MAM.climate<- ifelse( temp[1,] >= 15, temp[2,], NA) temp<- stats( CO.tmin.MAM[ind,]) CO.tmin.MAM.climate<- ifelse( temp[1,] >= 15, temp[2,], NA) CO.tmean.MAM.climate<- (CO.tmin.MAM.climate + CO.tmin.MAM.climate)/2 temp<- stats( CO.ppt.MAM[ind,]) CO.ppt.MAM.climate<- ifelse( temp[1,] >= 15, temp[2,], NA) save( list=c( "CO.tmax", "CO.tmin", "CO.ppt", "CO.id", "CO.loc","CO.years", "CO.names","CO.elev", "CO.tmin.MAM", "CO.tmax.MAM", "CO.ppt.MAM", "CO.tmin.MAM.climate", "CO.tmax.MAM.climate", "CO.ppt.MAM.climate", "CO.tmean.MAM.climate"), file="COmonthlyMet.rda") } } \keyword{datasets} % docclass is data % Converted by Sd2Rd version 1.21. fields/man/plot.Krig.Rd0000644000175100001440000000734313114135522014455 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{plot.Krig} \alias{plot.Krig} \alias{plot.sreg} \title{ Diagnostic and summary plots of a Kriging, spatialProcess or spline object. } \description{ Plots a series of four diagnostic plots that summarize the fit. } \usage{ \method{plot}{Krig}(x, digits=4, which= 1:4,...) \method{plot}{sreg}(x, digits = 4, which = 1:4, ...) } \arguments{ \item{x}{ A Krig or an sreg object} \item{digits}{ Number of significant digits for the RMSE label. } \item{which}{ A vector specifying by number which of the four plots to draw. 1:4 plots all four. } \item{\dots}{ Optional graphics arguments to pass to each plot. } } \details{ This function creates four summary plots of the Krig or sreg object. The default is to put these on separate pages. However if the screen is already divided in some other fashion the plots will just be added according to that scheme. This option is useful to compare to compare several different model fits. The first is a scatterplot of predicted value against observed. The second plot is "standardized" residuals against predicted value. Here we mean that the residuals are divided by the GCV estimate for sigma and multiplied by the square root of any weights that have been specified. In the case of a "correlation model" the residuals are also divided by the marginal standard deviation from this model. The third plot are the values of the GCV function against the effective degrees of freedom. When there are replicate points several versions of the GCV function may be plotted. GCV function is with respect to the standardized data if a correlation model is specified. A vertical line indicates the minimium found. For \code{Krig} and \code{sreg} objects the fourth plot is a histogram of the standardized residuals. For sreg if multiple lambdas are given plotted are boxplots of the residuals for each fit. For \code{spatialProcess} object the fourth plot is the profile likelihood for the theta parameter. Points are the actual evaluated log likelihoods and the dashed line is just a spline interpolation to help with visualization. } \seealso{ Krig, spatialProcess, summary.Krig, Tps, set.panel } \examples{ data( ozone2) x<- ozone2$lon.lat y<- ozone2$y[16,] fit1<-Krig(x,y, theta=200) # fitting a surface to ozone # measurements set.panel( 2,2) plot(fit1) fit2<-spatialProcess(x,y) # fitting a spatial process model to ozone # measurements # Although an example does not make too much sense for only 20 observations! set.panel( 2,2) plot(fit2) # fit rat data fit3<-sreg(rat.diet$t,rat.diet$con) set.panel(2,2) plot(fit3) set.panel(1,1) # reset graphics window. } \keyword{spatial} % docclass is function % Converted by Sd2Rd version 1.21. fields/man/US.Rd0000644000175100001440000000337013114135521013126 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{US} \alias{US} \title{ Plot of the US with state boundaries } \description{ Plots quickly, medium resolution outlines of the US with the states and bodies of water. A simple wrapper for the map function from the maps package. } \usage{ US( ...) } \arguments{ \item{\dots}{ These are the arguments that are passed to the map function from the maps package. } } \details{ The older version of this function (fields < 6.7.2) used the FIELDS dataset US.dat for the coordinates. Currenty this has been switched to use the maps package. } \seealso{ world } \examples{ # Draw map in device color # 3 US( col=3) } \keyword{hplot} % docclass is function % Converted by Sd2Rd version 1.21. fields/man/set.panel.Rd0000644000175100001440000000524413114135522014473 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{set.panel} \alias{set.panel} \title{ Specify a panel of plots } \description{ Divides up the graphics window into a matrix of plots. } \usage{ set.panel(m=1, n=1, relax=FALSE) } \arguments{ \item{m}{ Number of rows in the panel of plots } \item{n}{ Number of columns in the panel. } \item{relax}{ If true and the par command is already set for multiple plots, then the set.panel command is ignored. The default is relax set to false. } } \details{ After set.panel is called, the graphics screen is reset to put plots according to a m x n table. Plotting starts in the upper left hand corner and proceeds row by row. After m x n plots have been drawn, the next plot will erase the window and start in the 1,1 position again. This function is just a repackaging for specifying the mfrow argument to par. Setting up a panel of plots is a quick way to change the aspect ratio of the graph (ratio of height to width) or the size. For example, plotting 2 plots to a page produces a useful size graph for including in a report. You can print out the graphs at any stage without having to fill up the entire window with plots. This function, except for the "relax" option is equivalent to the S sequence: par( mfrow=c(m,n)). } \section{Side Effects}{ The function will echo your choice of m and n to the terminal. } \seealso{ \code{par} } \examples{ set.panel(5,2) #divide screen to hold 10 plots where there are 5 rows #and 2 columns plot( 1:10) plot( 2:8) set.panel() #reset screen to one plot per screen } \keyword{hplot} % docclass is function % Converted by Sd2Rd version 1.21. fields/man/tim.colors.Rd0000644000175100001440000001450013114135522014666 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{tim.colors} \alias{tim.colors} \alias{larry.colors} \alias{two.colors} \alias{designer.colors} \alias{color.scale} \alias{fieldsPlotColors} \title{ Some useful color tables for images and tools to handle them. } \description{ Several color scales useful for image plots: a pleasing rainbow style color table patterned after that used in Matlab by Tim Hoar and also some simple color interpolation schemes between two or more colors. There is also a function that converts between colors and a real valued vector. } \usage{ tim.colors(n = 64, alpha=1.0) larry.colors() two.colors(n=256, start="darkgreen", end="red", middle="white", alpha=1.0) designer.colors( n=256, col= c("darkgreen", "white", "darkred"), x= seq(0,1,, length(col)) ,alpha=1.0) color.scale( z, col=tim.colors(256), zlim =NULL, transparent.color="white", eps= 1e-8) fieldsPlotColors( col,...) } \arguments{ \item{alpha}{The transparency of the color -- 1.0 is opaque and 0 is transparent. This is useful for overlays of color and still being able to view the graphics that is covered. } \item{n}{ Number of color levels. The setting \code{n}=64 is the orignal definition.} \item{start}{Starting color for lowest values in color scale} \item{end}{ Ending color.} \item{middle}{Color scale passes through this color at halfway} \item{col}{A list of colors (names or hex values) to interpolate} \item{x}{Positions of colors on a [0,1] scale. Default is to assume that the x values are equally spacesd from 0 to 1.} \item{z}{Real vector to encode in a color table.} \item{zlim}{Range to use for color scale. Default is the \code{range(z)} inflated by 1- eps and 1+eps.} \item{transparent.color}{Color value to use for NA's or values outside \code{zlim}} \item{eps}{A small inflation of the range to avoid boundary values of \code{z} being coded as NAs} \item{\dots}{Additional plotting arguments to code{image.plot}} } \details{ The color in R can be represented as three vectors in RGB coordinates and these coordinates are interpolated separately using a cubic spline to give color values that intermediate to the specified colors. Ask Tim Hoar about \code{tim.colors}! He is a matlab black belt and this is his favorite scale in that system. \code{two.colors} is really about three different colors. For other colors try \code{fields.color.picker} to view possible choices. \code{start="darkgreen", end="azure4"} are the options used to get a nice color scale for rendering aerial photos of ski trails. (See \url{http://www.image.ucar.edu/Data/MJProject}.) \code{larry.colors} is a 13 color palette used by Larry McDaniel and is particularly useful for visualizing fields of climate variables. \code{designer.color} is the master function for two.colors and tim.colors. It can be useful if one wants to customize the color table to match quantiles of a distribution. e.g. if the median of the data is at .3 with respect to the range then set \code{x} equal to c(0,.3,1) and specify three colors to provide a transtion that matches the median value. In fields language this function interpolates between a set of colors at locations x. While you can be creative about these colors just using another color scale as the basis is easy. For example \code{designer.color( 256, rainbow(4), x= c( 0,.2,.8,1.0))} leaves the choice of the colors to Dr. R after a thunderstorm. \code{color.scale} assigns colors to a numerical vector in the same way as the \code{image} function. This is useful to kept the assigment of colors consistent across several vectors by specifiying a common \code{zlim} range. \code{plotColorScale} A simple function to plot a vector of colors to examinet their values. } \value{ A vector giving the colors in a hexadecimal format, two extra hex digits are added for the alpha channel. } \seealso{ topo.colors, terrain.colors, image.plot, quilt.plot, grey.scale, fields.color.picker } \examples{ tim.colors(10) # returns an array of 10 character strings encoding colors in hex format # e.g. (red, green, blue) values of (16,255, 239) # translates to "#10FFEF" # rgb( 16/255, 255/255, 239/255, alpha=.5) # gives "#10FFEF80" note extra "alpha channel" # veiw some color table choices set.panel( 2,3) z<- outer( 1:20,1:20, "+") obj<- list( x=1:20,y=1:20,z=z ) image( obj, col=tim.colors( 200)) # 200 levels image( obj, col=two.colors() ) # using tranparency without alpha the image plot would cover points plot( 1:20,1:20) image(obj, col=two.colors(alpha=.5), add=TRUE) coltab<- designer.colors(col=c("blue", "grey", "green"), x= c( 0,.3,1) ) image( obj, col= coltab ) # peg colors at some desired quantiles of data. # NOTE need 0 and 1 for the color scale to make sense x<- quantile( c(z), c(0,.25,.5,.75,1.0) ) # scale these to [0,1] zr<- range( c(z)) x<- (x-zr[1])/ (zr[2] - zr[1]) coltab<- designer.colors(256,rainbow(5), x) image( z, col= coltab ) # see image.plot for adding all kinds of legends # some random color values set.seed(123) z<- rnorm(100) hex.codes<- color.scale(z, col=two.colors()) N<-length( hex.codes) # take a look at the coded values # or equivalently create some Xmas wrapping paper! image( 1:N, N, matrix(1:N, N,1) , col=hex.codes, axes=FALSE, xlab="", ylab="") set.panel() } \keyword{ aplot} fields/man/as.surface.Rd0000644000175100001440000000736213114135522014637 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{as.surface} \alias{as.surface} \title{ Creates an "surface" object from grid values. } \description{ Reformats the vector from evaluating a function on a grid of points into a list for use with surface plotting function. The list has the usual components x,y and z and is suitable for use with persp, contour, image and image.plot. } \usage{ as.surface(obj, z, order.variables="xy") } \arguments{ \item{obj}{ A description of the grid used to evaluate the function. This can either be in the form of a grid.list ( see help file for grid.list) or the matrix of grid of points produced by make.surface.grid. In the later case obj is a matrix with the grid.list as an attribute. } \item{z}{ The value of the function evaluated at the gridded points. } \item{order.variables}{ Either "xy" or "yx" specifies how the x and y variables used to evaluate the function are matched with the x and y grids in the surface object. } } \value{ A list of class surface. This object is a modest generalization of the list input format (x,y,z,) for the S functions contour, image or persp. \item{x}{ The grid values in the X-axis } \item{y}{ The grid values in the Y-axis } \item{z}{ A matrix of dimensions nrow= length of x and ncol= length of y with entries being the grid point value reformatted from z. } } \details{ This function was written to simply to go back and forth between a matrix of gridded values and the stacked vector obtained by stacking columns. The main application is evaluating a function at each grid point and then reforming the results for plotting. (See example below.) If zimage is matrix of values then the input vector is c( zimage). To go from the stacked vector to the matrix one needs the the nrow ncol and explains why grid information must also be specified. Note that the z input argument must be in the order values in order of stacking columns of the image. This is also the order of the grid points generated by make.surface.grid. To convert irregular 2-d data to a surface object where there are missing cells see the function as.image. } \seealso{ grid.list, make.surface.grid, surface, contour, image.plot, as.image } \examples{ # Make a perspective of the surface Z= X**2 -Y**2 # Do this by evaluating quadratic function on a 25 X 25 grid grid.l<-list( abcissa= seq( -2,2,,15), ordinate= seq( -2,2,,20)) xg<-make.surface.grid( grid.l) # xg is a 300X2 matrix that has all pairs of X and Y grid values z<- xg[,1]**2 - xg[,2]**2 # now fold z in the matrix format needed for persp out.p<-as.surface( xg, z) persp( out.p) # also try plot( out.p) to see the default plot for a surface object } \keyword{manip} % docclass is function % Converted by Sd2Rd version 1.21. fields/man/registeredC.Rd0000644000175100001440000000503313114135522015036 0ustar hornikusers\name{registeringCode} \alias{addToDiagC} \alias{ExponentialUpperC} \alias{compactToMatC} \alias{multebC} \alias{multwendlandg} \alias{mltdrb} \alias{RdistC} % \docType{data} \title{Information objects that register C and FORTRAN functions. } \description{ These are objects of class \code{CallRoutine} or \code{FortranRoutine} and also \code{\link{NativeSymbolInfo}} They provide information for compiledfunctions called with \code{.Call}, or \code{.Fortran}. Ordinarily one would not need to consult these and they are used to make the search among dynamically loaded libraries ( in particular the fields library) have less ambiguity and also be faster. These are created when the package/library is loaded are have their definitions from the compliation of \code{init.c} in the package source (src) directory. } %ExponentialUpperC.Rd compactToMatC.Rd multebC.Rd %RdistC.Rd mltdrb.Rd multwendlandg.Rd %%\usage{ %data(addToDiagC) %data(ExponentialUpperC) %data(compactToMatC) %data(multebC) %data(multwendlandg) %data(mltdrb) %data(RdistC) %} \format{ The format is a list with components: \describe{ \item{name}{The (registration ?) name of the C function.} \item{address}{See \link{NativeSymbolInfo}. } \item{dll}{Dynamically linked library information.} \item{numParameters}{Number of calling arguments in function.} } } \details{ \describe{ \item{addToDiagC}{ adds diagonal elements to a matrix. See code{mKrig}.} \item{ExponentialUpperC}{Fills in upper triangle of a matrix with the exponential covariance function. See \code{ExponentialUpper}} \item{compactToMatC}{ Converts compact format to full matrix format. See \code{compactToMat}.} \item{multebC}{Mulitplies a vector/matrix with an exponential covariance function. See \code{exp.cov}} \item{multwendlandg}{This has been mysteriously included but it is not a function! } \item{mltdrb}{Evaluates the derivatives of thin plate sline radial basis functions. See \code{rad.cov}. } \item{RdistC}{ Euclidean distance function between sets of coordinates. See \code{rdist}.} } See \code{package_native_routine_registration_skeleton} for the utility used to create these data objects. It is not clear why these routines have been flagged as needing documentation while other routines have not. } \references{ For background on registering C, C++ and Fortran functions see 5.4 of Writing R Extensions. See \url{http://r.789695.n4.nabble.com/Registration-of-native-routines-td4728874.html} for additional dicsussion of code registration. } \examples{ print(addToDiagC) } \keyword{datasets} fields/man/fields.tests.Rd0000644000175100001440000001120213114135522015200 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{fields testing scripts} \alias{fields.tests} \alias{test.for.zero} \title{ Testing fields functions } \description{ Some of the basic methods in fields can be tested by directly implementing the linear algebra using matrix expressions and other functions can be cross checked within fields. These comparisons are done in the the R source code test files in the tests subdirectory of fields. The function \code{test.for.zero} is useful for comparing the tests in a meaninful and documented way. } \usage{ test.for.zero( xtest, xtrue, tol= 1.0e-8, relative=TRUE, tag=NULL) } \arguments{ \item{xtest}{Vector of target values} \item{xtrue}{Vector of reference values} \item{tol}{Tolerance to judge whether the test passes.} \item{relative}{If true a relative error comparison is used. (See details below.)} \item{tag}{ A text string to be printed out with the test results as a reference} } \details{ IMPORTANT: If the R object \code{test.for.zero.flag} exists with any value ( e.g. \code{test.for.zero.flag <- 1} ) then when the test fails this function will also generate an error in addition to printing a message. This option is added to insure that any test scripts will generate an error when any individual test fails. An example: \preformatted{ > test.for.zero( 1:10, 1:10 + 1e-10, tag="First test") Testing: First test PASSED test at tolerance 1e-08 } \preformatted{ > test.for.zero( 1:10, 1:10 + 1e-10, tag="First test", tol=1e-12) Testing: First test FAILED test value = 1.818182e-10 at tolerance 1e-12 } \preformatted{ > test.for.zero.flag <- 1 Testing: First test FAILED test value = 1.818182e-10 at tolerance 1e-12 Error in test.for.zero(1:10, 1:10 + 1e-10, tag = "First test", tol = 1e-12) : } The scripts in the \code{tests} subdirectory are \describe{ \item{Krig.test.R:}{Tests basic parts of the Krig and Tps functions including replicated and weighted observations. } \item{Krig.se.test.R:}{Tests computations of standard errors for the Kriging estimate.} \item{Krig.se.grid.test.R}{Tests approximate standard errors for the Krig function found by Monte Carlo conditional simulation.} \item{Krig.test.W.R}{Tests predictions and A matrix when an off diagonal observation weight matrix is used.} \item{Krig.se.W.R}{Tests standard errors when an off diagonal observation weight matrix is used.} \item{spam.test.R}{Tests sparse matrix formats and linear algebra.} \item{Wend.test.R}{Tests form for Wendland covariance family and its use of sparse matrix formats.} \item{diag.multiply.test.R}{Tests special (efficient) version of matrix multiply for diagonal matrices.} \item{ evlpoly.test.R}{Tests evaluation of univariate and multivariate polynomial evaluation.} \item{mKrig.test.R}{Tests the micro Krig function with and without sparse matrix methods. } } To run the tests just attach the fields library and source the testing file. In the fields source code these are in a subdirectory "tests". Compare the output to the "XXX.Rout.save" text file. \code{test.for.zero} is used to print out the result for each individual comparison. Failed tests are potentially bad and are reported with a string beginning "FAILED test value = ... " If the object test.for.zero.flag exists then an error is also generated when the test fails. FORM OF COMPARISON: The actual test done is the sum of absolute differnces: test value = \code{ sum( abs(c(xtest) - c( xtrue) ) ) /denom} Where \code{denom} is either \code{ mean( abs(c(xtrue)))} for relative error or 1.0 otherwise. Note the use of "c" here to stack any structure in xtest and xtrue into a vector. } \keyword{misc} fields/man/mKrigMLE.Rd0000644000175100001440000003125713114135522014214 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{mKrigMLE} \alias{mKrigMLEJoint} \alias{mKrigMLEGrid} \alias{fastTpsMLE} \alias{mKrigJointTemp.fn} %- Also NEED an '\alias' for EACH other topic documented here. \title{ Maximizes likelihood for the process marginal variance (rho) and nugget standard deviation (sigma) parameters (e.g. lambda) over a many covariance models or covariance parameter values. } \description{ These function are designed to explore the likelihood surface for different covariance parameters with the option of maximizing over sigma and rho. They used the \code{mKrig} base are designed for computational efficiency. } \usage{ mKrigMLEGrid(x, y, weights = rep(1, nrow(x)), Z = NULL, mKrig.args = NULL, cov.fun = "stationary.cov", cov.args = NULL, na.rm = TRUE, par.grid = NULL, lambda = NULL, lambda.profile = TRUE, relative.tolerance = 1e-04, REML = FALSE, verbose = FALSE) mKrigMLEJoint(x, y, weights = rep(1, nrow(x)), Z = NULL, mKrig.args = NULL, na.rm = TRUE, cov.fun = "stationary.cov", cov.args = NULL, lambda.start = 0.5, cov.params.start = NULL, optim.args = NULL, abstol = 1e-04, parTransform = NULL, REML = FALSE, verbose = FALSE) fastTpsMLE(x, y, weights = rep(1, nrow(x)), Z = NULL, ..., par.grid=NULL, theta, lambda = NULL, lambda.profile = TRUE, verbose = FALSE, relative.tolerance = 1e-04) mKrigJointTemp.fn(parameters, mKrig.args, cov.args, parTransform, parNames, REML = FALSE, capture.env) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{abstol}{Absolute convergence tolerance used in optim.} \item{capture.env}{For the ML obective function the frame to save the results of the evaluation. This should be the environment of the function calling optim.} \item{cov.fun}{ The name, a text string, of the covariance function. } \item{cov.args}{ Additional arguments that would also be included in calls to the covariance function to specify the fixed part of the covariance model. } \item{cov.params.start}{ A list of initial starts for covariance parameters over which the user wishes to perform likelihood maximization. The list contains the names of the parameters as well as the values. } \item{lambda}{ If \code{lambda.profile=FALSE} the values of lambda to evaluate the likelihood if "TRUE" the starting values for the optimization. If lambda is NA then the optimum value from previous search is used as the starting value. If lambda is NA and it is the first value the starting value defaults to 1.0. } \item{lambda.start}{ The initial guess for lambda in the joint log-likelihood maximization process } \item{lambda.profile}{ If \code{TRUE} maximize likelihood over lambda. } \item{mKrig.args}{A list of additional parameters to supply to the base \code{mKrig} function that are distinct from the covariance model. For example \code{mKrig.args= list( m=1 )} will set the polynomial to be just a constant term (degree = m -1 = 0). } \item{na.rm}{Remove NAs from data.} \item{optim.args}{ Additional arguments that would also be included in calls to the optim function in joint likelihood maximization. If \code{NULL}, this will be set to use the "BFGS-" optimization method. See \code{\link{optim}} for more details. The default value is: \code{optim.args = list(method = "BFGS", control=list(fnscale = -1, ndeps = rep(log(1.1), length(cov.params.start)+1), abstol=1e-04, maxit=20))} Note that the first parameter is lambda and the others are the covariance parameters in the order they are given in \code{cov.params.start}. Also note that the optimization is performed on a transformed scale (based on the function \code{parTransform} ), and this should be taken into consideration when passing arguments to \code{optim}. } \item{parameters}{The parameter values for evaluate the likelihood.} \item{par.grid}{ A list or data frame with components being parameters for different covariance models. A typical component is "theta" comprising a vector of scale parameters to try. If par.grid is "NULL" then the covariance model is fixed at values that are given in \dots. } \item{parNames}{Names of the parameters to optimize over.} \item{parTransform}{A function that maps the parameters to a scale for optimization or effects the inverse map from the transformed scale into the original values. See below for more details. } \item{relative.tolerance}{ Tolerance used to declare convergence when maximizing likelihood over lambda. } \item{REML}{Currently using REML is not implemented.} \item{theta}{Range parameter for compact Wendland covariance. (see fastTps)} \item{verbose}{ If \code{TRUE} print out interesting intermediate results. } \item{weights}{ Precision ( 1/variance) of each observation } \item{x}{ Matrix of unique spatial locations (or in print or surface the returned mKrig object.) } \item{y}{ Vector or matrix of observations at spatial locations, missing values are not allowed! Or in mKrig.coef a new vector of observations. If y is a matrix the columns are assumed to be independent observations vectors generated from the same covariance and measurment error model. } \item{Z}{ Linear covariates to be included in fixed part of the model that are distinct from the default low order polynomial in \code{x} } \item{\dots}{Other arguments to pass to the mKrig function. } } \details{ The observational model follows the same as that described in the \code{Krig} function and thus the two primary covariance parameters for a stationary model are the nugget standard deviation (sigma) and the marginal variance of the process (rho). It is useful to reparametrize as rho and\ lambda= sigma^2/rho. The likelihood can be maximized analytically over rho and the parameters in the fixed part of the model the estimate of rho can be substituted back into the likelihood to give a expression that is just a function of lambda and the remaining covariance parameters. It is this expression that is then maximized numerically over lambda when \code{ lambda.profile = TRUE}. Note that \code{fastTpsMLE} is a convenient variant of this more general version to use directly with fastTps, and \code{mKrigMLEJoint} is similar to \code{mKrigMLEGrid}, except it uses the \code{optim} function to optimize over the specified covariance parameters and lambda jointly rather than optimizing on a grid. Unlike \code{mKrigMLEJoint}, it returns an mKrig object. For \code{mKrigMLEJoint} the default transformation of the parameters is set up for a log/exp transformation: \preformatted{ parTransform <- function(ptemp, inv = FALSE) { if (!inv) { log(ptemp) } else { exp(ptemp) } } } } \value{ \strong{\code{mKrigMLEGrid}} returns a list with the components: \item{summary}{A matrix giving the results for evaluating the likelihood for each covariance model.} \item{par.grid}{The par.grid argument used.} \item{cov.args.MLE}{The list of covariance arguments (except for lambda) that have the largest likelihood over the list covariance models. NOTE: To fit the surface at the largest likelihood among those tried \code{ do.call( "mKrig", c(obj$mKrig.args, obj$cov.args.MLE,list(lambda=obj$lambda.opt)) )} where \code{obj} is the list returned by this function.} \item{call}{The calling arguments to this function.} \strong{\code{mKrigMLEJoint}} returns a list with components: \item{summary}{A vector giving the MLEs and the log likelihood at the maximum} \item{lnLike.eval}{ A table containing information on all likelihood evaluations performed in the maximization process. } \item{optimResults}{The list returned from the optim function.} \item{par.MLE}{The maximum likelihood estimates.} \item{parTransform}{The transformation of the parameters used in the optimziation.} } \references{ %% ~put references to the literature/web site here ~ http://cran.r-project.org/web/packages/fields/fields.pdf http://www.image.ucar.edu/~nychka/Fields/ } \author{ %% ~~who you are~~ Douglas W. Nychka, John Paige } \seealso{ %% ~~objects to See Also as \code{\link{help}}, ~~~ \code{\link{mKrig}} \code{\link{Krig}} \code{\link{stationary.cov}} \code{\link{optim}} } \examples{ #perform joint likelihood maximization over lambda and theta. #optim can get a bad answer with poor initial starts. data(ozone2) x<- ozone2$lon.lat y<- ozone2$y[16,] obj<- mKrigMLEJoint(x,y, cov.args=list(Covariance="Matern", smoothness=1.0), cov.params.start=list(theta=.2), lambda.start=.1) # # check lnLikeihood evaluations that were culled from optim # these are in obj$lnLike.eval # funny ranges are set to avoid very low likelihood values quilt.plot( log10(cbind(obj$lnLike.eval[,1:2])), obj$lnLike.eval[,5], xlim=c(-1.2,-.40), ylim=c( -1,1), zlim=c( -625, -610)) points( log10(obj$pars.MLE[1]), log10(obj$pars.MLE[2]), pch=16, col="grey" ) # some synthetic data with replicates N<- 50 set.seed(123) x<- matrix(runif(2*N), N,2) theta<- .2 Sigma<- Matern( rdist(x,x)/theta , smoothness=1.0) Sigma.5<- chol( Sigma) sigma<- .1 # 250 independent spatial data sets but a common covariance function # -- there is little overhead in # MLE across independent realizations and a good test of code validity. M<-250 #F.true<- t( Sigma.5)%*% matrix( rnorm(N*M), N,M) F.true<- t( Sigma.5)\%*\% matrix( rnorm(N*M), N,M) Y<- F.true + sigma* matrix( rnorm(N*M), N,M) # find MLE for lambda with grid of ranges # and smoothness fixed in Matern par.grid<- list( theta= seq( .1,.35,,8)) obj1b<- mKrigMLEGrid( x,Y, cov.args = list(Covariance="Matern", smoothness=1.0), par.grid = par.grid ) obj$summary # take a look # profile over theta plot( par.grid$theta, obj1b$summary[,"lnProfileLike.FULL"], type="b", log="x") \dontrun{ # m=0 is a simple switch to indicate _no_ fixed spatial drift # (the default and highly recommended is linear drift, m=2). # this results in MLEs that are less biased -- in fact it nails it ! obj1a<- mKrigMLEJoint(x,Y, cov.args=list(Covariance="Matern", smoothness=1.0), cov.params.start=list(theta=.5), lambda.start=.5, mKrig.args= list( m=0)) test.for.zero( obj1a$summary["sigmaMLE"], sigma, tol=.0075) test.for.zero( obj1a$summary["theta"], theta, tol=.05) } \dontrun{ #perform joint likelihood maximization over lambda, theta, and smoothness. #optim can get a bad answer with poor initial guesses. obj2<- mKrigMLEJoint(x,Y, cov.args=list(Covariance="Matern", smoothness=1), cov.params.start=list(theta=.2), lambda.start=.1) #look at lnLikelihood evaluations obj2$summary #compare to REML obj3<- mKrigMLEJoint(x,Y, cov.args=list(Covariance="Matern", smoothness=1), cov.params.start=list(theta=.2), lambda.start=.1, REML=TRUE) } \dontrun{ #look at lnLikelihood evaluations obj3$summary # check convergence of MLE to true fit with no fixed part # obj4<- mKrigMLEJoint(x,Y, mKrig.args= list( m=0), cov.args=list(Covariance="Matern", smoothness=1), cov.params.start=list(theta=.2), lambda.start=.1, REML=TRUE) #look at lnLikelihood evaluations obj4$summary # nails it! } } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{spatial} fields/man/predictSurface.Rd0000644000175100001440000001751713114135522015553 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{predictSurface} \alias{predictSurface} \alias{predictSurface.default} \alias{predictSurface.mKrig} \alias{predictSurface.Krig} \alias{predictSurface.fastTps} \alias{predictSurfaceSE} \alias{predictSurfaceSE.default} \alias{predict.surface} \title{ Evaluates a fitted function or the prediction error as a surface that is suitable for plotting with the image, persp, or contour functions. } \description{ Evaluates a a fitted model or the prediction error on a 2-D grid keeping any other variables constant. The resulting object is suitable for use with functions for viewing 3-d surfaces. } \usage{ \method{predictSurface}{default}(object, grid.list = NULL, extrap = FALSE, chull.mask = NA, nx = 80, ny = 80, xy = c(1,2), verbose = FALSE, ...) \method{predictSurface}{fastTps}(object, grid.list = NULL, extrap = FALSE, chull.mask = NA, nx = 80, ny = 80, xy = c(1,2), verbose = FALSE, ...) \method{predictSurface}{Krig}(object, grid.list = NULL, extrap = FALSE, chull.mask = NA, nx = 80, ny = 80, xy = c(1, 2), verbose = FALSE, ZGrid = NULL, drop.Z = FALSE, just.fixed=FALSE, ...) \method{predictSurface}{mKrig}(object, ...) \method{predictSurfaceSE}{default}( object, grid.list = NULL, extrap = FALSE, chull.mask = NA, nx = 80, ny = 80, xy = c(1,2), verbose = FALSE, ...) \method{predict}{surface}(object,...) } \arguments{ \item{object}{ An object from fitting a function to data. In fields this is usually a Krig, mKrig, or fastTps object. } \item{grid.list}{ A list with as many components as variables describing the surface. All components should have a single value except the two that give the grid points for evaluation. If the matrix or data frame has column names, these must appear in the grid list. See the grid.list help file for more details. If this is omitted and the fit just depends on two variables the grid will be made from the ranges of the observed variables. (See the function \code{fields.x.to.grid}.) } \item{extrap}{ Extrapolation beyond the range of the data. If \code{FALSE} (the default) the predictions will be restricted to the convex hull of the observed data or the convex hull defined from the points from the argument chull.mask. This function may be slightly faster if this logical is set to \code{TRUE} to avoid checking the grid points for membership in the convex hull. For more complicated masking a low level creation of a bounding polygon and testing for membership with \code{in.poly} may be useful. } \item{chull.mask}{ Whether to restrict the fitted surface to be on a convex hull, NA's are assigned to values outside the convex hull. chull.mask should be a sequence of points defining a convex hull. Default is to form the convex hull from the observations if this argument is missing (and extrap is false). } \item{nx}{ Number of grid points in X axis. } \item{ny}{ Number of grid points in Y axis. } \item{xy}{ A two element vector giving the positions for the "X" and "Y" variables for the surface. The positions refer to the columns of the x matrix used to define the multidimensional surface. This argument is provided in lieu of generating the grid list. If a 4 dimensional surface is fit to data then \code{ xy= c(2,4)} will evaluate a surface using the second and fourth variables with variables 1 and 3 fixed at their median values. NOTE: this argument is ignored if a grid.list argument is passed. } \item{drop.Z}{If TRUE the fixed part of model depending on covariates is omitted.} \item{just.fixed}{If TRUE the nonparametric surface is omitted.} \item{\dots}{ Any other arguments to pass to the predict function associated with the fit object. Some of the usual arguments for several of the fields fitted objects include: \describe{ \item{ynew}{ New values of y used to reestimate the surface.} \item{Z}{A matrix of covariates for the fixed part of model.} } } \item{ZGrid}{An array or list form of covariates to use for prediction. This must match the \code{grid.list} argument. e.g. ZGrid and grid.list describe the same grid. If ZGrid is an array then the first two indices are the x and y locations in the grid. The third index, if present, indexes the covariates. e.g. For evaluation on a 10X15 grid and with 2 covariates. \code{ dim( ZGrid) == c(10,15, 2)}. If ZGrid is a list then the components x and y shold match those of grid.list and the z component follows the shape described above for the no list case. } \item{verbose}{If TRUE prints out some imtermediate results for debugging.} } \value{ The usual list components for making contour and perspective plots (x,y,z) along with labels for the x and y variables. For \code{predictSurface.derivative} the component \code{z} is a three dimensional array with \code{nx}, \code{ny}, 2. } \details{ This function creates the right grid using the grid.list information or the attribute in xg, calls the predict function for the object with these points and also adding any extra arguments passed in the ... section, and then reforms the results as a surface object (as.surface). To determine the what parts of the prediction grid are in the convex hull of the data the function \code{in.poly} is used. The argument inflation in this function is used to include a small margin around the outside of the polygon so that point on convex hull are included. This potentially confusing modification is to prevent excluding grid points that fall exactly on the ranges of the data. Also note that as written there is no computational savings for evaluting only the convex subset compared to the full grid. \code{predictSurface.fastTps} is a specific version ( m=2, and k=2) that can be much more efficient because it takes advantage of a low level FORTRAN call to evaluate the Wendland covariance function. Use \code{predictSurface} or \code{predict} for other choices of m and k. \code{predictSurface.Krig} is designed to also include covariates for the fixed in terms of grids. Due to similarity in output and the model. \code{predictSurface.mKrig} just uses the Krig method. NOTE: \code{predict.surface} has been depreciated and just prints out a warning when called. } \seealso{ Tps, Krig, predict, grid.list, make.surface.grid, as.surface, surface, in.poly } \examples{ fit<- Tps( BD[,1:4], BD$lnya) # fit surface to data # evaluate fitted surface for first two # variables holding other two fixed at median values out.p<- predictSurface(fit) surface(out.p, type="C") # # plot surface for second and fourth variables # on specific grid. glist<- list( KCL=29.77, MgCl2= seq(3,7,,25), KPO4=32.13, dNTP=seq( 250,1500,,25)) out.p<- predictSurface(fit, glist) surface(out.p, type="C") out.p<- predictSurfaceSE(fit, glist) surface(out.p, type="C") } \keyword{spatial} % docclass is function % Converted by Sd2Rd version 1.21. fields/man/poly.image.Rd0000644000175100001440000001276613114135522014655 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{poly.image} \alias{poly.image} \alias{poly.image.regrid} \title{Image plot for cells that are irregular quadrilaterals.} \description{ Creates an image using polygon filling based on a grid of irregular quadrilaterals. This function is useful for a regular grid that has been transformed to another nonlinear or rotated coordinate system. This situation comes up in lon-lat grids created under different map projections. Unlike the usual image format this function requires the grid to be specified as two matrices x and y that given the grid x and y coordinates explicitly for every grid point. } \usage{ poly.image(x, y, z, col = tim.colors(64), breaks, transparent.color = "white", midpoint = FALSE, zlim = range(z, na.rm = TRUE), xlim = range(x), ylim = range(y), add = FALSE, border=NA,lwd.poly=1,...) poly.image.regrid(x) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{x}{A matrix of the x locations of the grid. } \item{y}{A matrix of the y locations of the grid. } \item{z}{Values for each grid cell. Can either be the value at the grid points or interpreted as the midpoint of the grid cell. } \item{col}{ Color scale for plotting. } \item{breaks}{Numerical breaks to match to the colors. If missing breaks are equally spaced on the range \code{zlim}.} \item{transparent.color}{ Color to plot cells that are outside the range specified in the function call. } \item{midpoint}{ Only relevant if the dimensions of x,y, and z are the same. If TRUE the z values will be averaged and then used as the cell midpoints. If FALSE the x/y grid will be expanded and shifted to represent grid cells corners. (See poly.image.regrid.) } \item{zlim}{ Plotting limits for z. } \item{xlim}{Plotting limits for x. } \item{ylim}{Plotting limits for y.} \item{add}{ If TRUE will add image onto current plot. } \item{border}{Color of the edges of the quadrilaterals, the default is no color.} \item{lwd.poly}{Line width for the mesh surface. i.e. the outlines of the quadrilateral facets. This might have to be set smaller than one if rounded corners on the facets are visible. } \item{\dots}{ If add is FALSE, additional graphical arguments that will be supplied to the plot function. } } \details{ This function is straightforward except in the case when the dimensions of x,y, and z are equal. In this case the relationship of the values to the grid cells is ambigious and the switch midpoint gives two possible solutions. The z values at 4 neighboring grid cells can be averaged to estimate a new value interpreted to be at the center of the grid. This is done when midpoint is TRUE. Alternatively the full set of z values can be retained by redefining the grid. This is accomplisehd by finding the midpoints of x and y grid points and adding two outside rows and cols to complete the grid. The new result is a new grid that is is (M+1)X (N+1) if z is MXN. These new grid points define cells that contain each of the original grid points as their midpoints. Of course the advantage of this alternative is that the values of z are preserved in the image plot; a feature that may be important for some uses. The function image.plot uses this function internally when image information is passed in this format and can add a legend. In most cases just use image.plot. The function \code{poly.image.regrid} does a simple averaging and extrapolation of the grid locations to shift from midpoints to corners. In the interior grid corners are found by the average of the 4 closest midpoints. For the edges the corners are just extrapolated based on the separation of nieghboring grid cells. } \author{Doug Nychka } \seealso{image.plot} \examples{ data(RCMexample) set.panel( 1,2) par(pty="s") # plot with grid modified poly.image( RCMexample$x, RCMexample$y, RCMexample$z[,,1]) # use midpoints of z poly.image( RCMexample$x, RCMexample$y, RCMexample$z[,,1],midpoint=TRUE) set.panel() # an example with quantile breaks brk<- quantile( RCMexample$z[,,1], c( 0, .9,.95,.99,1.0) ) poly.image( RCMexample$x, RCMexample$y, RCMexample$z[,,1], breaks=brk, col= rainbow(4)) # images are very similar. set.panel() # Regridding of x and y l1<- poly.image.regrid( RCMexample$x) l2<- poly.image.regrid( RCMexample$y) # test that this works i<- 1:10 plot( l1[i,i], l2[i,i]) points( RCMexample$x[i,i], RCMexample$y[i,i],col="red") } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{spatial} fields/man/image.smooth.Rd0000644000175100001440000001447213114135522015177 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{image.smooth} \alias{image.smooth} \alias{setup.image.smooth} \title{ Kernel smoother for irregular 2-d data } \description{ Takes an image matrix and applies a kernel smoother to it. Missing values are handled using the Nadaraya/Watson normalization of the kernel. } \usage{ \method{image}{smooth}(x, wght = NULL, dx = 1, dy = 1, kernel.function = double.exp, theta = 1, grid = NULL, tol = 1e-08, xwidth = NULL, ywidth = NULL, weights = NULL,...) setup.image.smooth(nrow = 64, ncol = 64, dx = 1, dy = 1, kernel.function = double.exp, theta = 1, xwidth = nrow * dx, ywidth = ncol * dx, lambda=NULL, ...)} \arguments{ \item{x}{ A matrix image. Missing values can be indicated by NAs. } \item{wght}{ FFT of smoothing kernel. If this is NULL the default is to compute this object. } \item{grid}{ A list with x and y components. Each are equally spaced and define the rectangular. ( see grid.list)} \item{dx}{ Grid spacing in x direction } \item{dy}{ Grid spacing in x direction } \item{kernel.function}{ An R function that takes as its argument the \emph{squared} distance between two points divided by the bandwidth. The default is exp( -abs(x)) yielding a normal kernel} \item{theta}{the bandwidth or scale parameter.} \item{xwidth}{ Amount of zero padding in horizontal dimension in units of the grid spacing. If NULL the default value is equal to the width of the image the most conservative value but possibly inefficient for computation. Set this equal to zero to get periodic wrapping of the smoother. This is useful to smooth a Mercator map projection. } \item{ywidth}{ Same as xwidth but for the vertical dimension. } \item{weights}{ Weights to apply when smoothing.} \item{tol}{ Tolerance for the weights of the N-W kernel. This avoids kernel estimates that are "far" away from data. Grid points with weights less than tol are set to NA.} \item{nrow}{X dimension of image in setting up smoother weights} \item{ncol}{Y dimension of image} \item{lambda}{Smoothing parameter if smoother is interpreted in a spline-like way.} \item{\dots}{ Other arguments to be passed to the kernel function} } \value{ The smoothed image in R image format. ( A list with components x, y and z.) \code{setup.image.smooth} returns a list with components W a matrix being the FFT of the kernel, dx, dy, xwidth and ywidth.} \details{ The function works by taking convolutions using an FFT. The missing pixels are taken into account and the kernel smoothing is correctly normalized for the edge effects following the classical Nadaraya-Watson estimator. For this reason the kernel doe snot have to be a desity as it is automatically normalized when the kernel weight function is found for the data. If the kernel has limited support then the width arguments can be set to reduce the amount of computation. (See example below.) For multiple smoothing compute the fft of the kernel just once using \code{setup.image.smooth} and pass this as the wght argument to image.smooth. this will save an FFT in computations. } \seealso{ as.image, sim.rf, image.plot} \examples{ # first convert precip data to the 128X128 discretized image format ( with # missing values to indicate where data is not observed) # out<- as.image( RMprecip$y, x= RMprecip$x, nx=128, ny=128) # out$z is the image matrix dx<- out$x[2]- out$x[1] dy<- out$y[2] - out$y[1] # # grid scale in degrees and choose kernel bandwidth to be .25 degrees. look<- image.smooth( out, theta= .25) image.plot(look) points( RMprecip$x) US( add=TRUE, col="grey", lwd=2) # to save on computation, decrease the padding with zeroes # only pad 32 grid points around the margins ofthe image. look<- image.smooth(out$z, dx=dx, dy=dy, theta= .25, xwidth=32*dx,ywidth=32*dy) # the range of these data is ~ 10 degrees and so # with a padding of 32 grid points 32*( 10/128) = 2.5 # about 10 standard deviations of the normal kernel so there is still # lots of room for padding # a minimal choice might be xwidth = 4*(.25)= 1 4 SD for the normal kernel # creating weighting object outside the call # this is useful when one wants to smooth different data sets but on the # same grid with the same kernel function # # # random fields from smoothing white noise with this filter. # set.seed(123) test.image<- matrix( rnorm(128**2),128,128) dx<- .1 dy<- .8 wght<- setup.image.smooth( nrow=128, ncol=128, dx=dx, dy=dy, theta=.25, xwidth=2.5, ywidth=2.5) # look<- image.smooth( test.image, dx=dx, dy=dy, wght) # NOTE: this is the same as using # # image.smooth( test.image , 128,128), xwidth=2.5, # ywidth=2.5, dx=dx,dy=dy, theta=.25) # # but the call to image.smooth is faster because fft of kernel # has been precomputed. # periodic smoothing in the horizontal dimension look<- image.smooth( test.image , xwidth=1.5, ywidth=2.5, dx=dx,dy=dy, theta=1.5) look2<- image.smooth( test.image , xwidth=0, ywidth=2.5, dx=dx,dy=dy, theta=1.5) # compare these two set.panel( 1,2) image.plot( look, legend.mar=7.1) title("free boundaries") image.plot( look2, legend.mar=7.1) # look for periodic continuity at edges! title("periodic boundary in horizontal") set.panel(1,1) } \keyword{smooth} % docclass is function % Converted by Sd2Rd version 1.21. fields/man/splint.Rd0000644000175100001440000000676113114135522014120 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{splint} \alias{splint} \title{ Cubic spline interpolation } \description{ A fast, FORTRAN based function for cubic spline interpolation. } \usage{ splint(x, y, xgrid, wt=NULL, derivative=0,lam=0, df=NA, lambda=NULL, nx=NULL) } \arguments{ \item{x}{ The x values that define the curve or a two column matrix of x and y values. } \item{y}{ The y values that are paired with the x's. } \item{xgrid}{ The grid to evaluate the fitted cubic interpolating curve. } \item{derivative}{ Indicates whether the function or a a first or second derivative should be evaluated. } \item{wt}{Weights for different obsrevations in the scale of reciprocal variance.} \item{lam}{ Value for smoothing parameter. Default value is zero giving interpolation.} \item{lambda}{Same as \code{lam} just to make this easier to remember.} \item{df}{ Effective degrees of freedom. Default is to use lambda =0 or a df equal to the number of observations.} \item{nx}{If not NULL this should be the number of points to evaluate on an equally spaced grid in the range of \code{x}} } \value{ A vector consisting of the spline evaluated at the grid values in \code{xgrid}. } \details{ Fits a piecewise interpolating or smoothing cubic polynomial to the x and y values. This code is designed to be fast but does not many options in \code{sreg} or other more statistical implementations. To make the solution well posed the the second and third derivatives are set to zero at the limits of the x values. Extrapolation outside the range of the x values will be a linear function. It is assumed that there are no repeated x values; use sreg followed by predict if you do have replicated data. } \section{References}{ See Additive Models by Hastie and Tibshriani. } \seealso{ sreg, Tps } \examples{ x<- seq( 0, 120,,200) # an interpolation splint(rat.diet$t, rat.diet$trt,x )-> y plot( rat.diet$t, rat.diet$trt) lines( x,y) #( this is weird and not appropriate!) # the following two smooths should be the same splint( rat.diet$t, rat.diet$con,x, df= 7)-> y1 # sreg function has more flexibility than splint but will # be slower for larger data sets. sreg( rat.diet$t, rat.diet$con, df= 7)-> obj predict(obj, x)-> y2 # in fact predict.sreg interpolates the predicted values using splint! # the two predicted lines (should) coincide lines( x,y1, col="red",lwd=2) lines(x,y2, col="blue", lty=2,lwd=2) } \keyword{smooth} % docclass is function % Converted by Sd2Rd version 1.21. fields/man/xline.Rd0000644000175100001440000000312713114135522013717 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{xline} \alias{xline} \title{ Draw a vertical line } \description{ Adds vertical lines in the plot region. } \usage{ xline(x, ...) } \arguments{ \item{x}{ Values on x axis specifying location of vertical lines. } \item{\dots}{ Any ploting options for abline. } } \seealso{ yline, abline } \examples{ plot( 1:10) xline( 6.5, col=2) world( col=3) yline( seq( -80,80,10),col=4, lty=2) xline( seq( -180,180,10),col=4,lty=2) yline( 0, lwd=2, col=4) } \keyword{aplot} % docclass is function % Converted by Sd2Rd version 1.21. fields/man/RMprecip.Rd0000644000175100001440000001246313114135521014323 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{RMprecip} \alias{RMprecip} \alias{RMelevation} \alias{PRISMelevation} \title{ Monthly total precipitation (mm) for August 1997 in the Rocky Mountain Region and some gridded 4km elevation data sets (m). } \description{ \code{RMprecip} is a useful spatial data set of moderate size consisting of 806 locations. See www.image.ucar.edu/Data for the source of these data. \code{PRISMelevation} and \code{RMelevation} are gridded elevations for the continental US and Rocky Mountain region at 4km resolution. Note that the gridded elevations from the PRISM data product are different than the exact station elevations. (See example below.) } \format{ The data set \code{RMprecip} is a list containing the following components: \describe{ \item{x}{ Longitude-latitude position of monitoring stations. Rows names are station id codes consistent with the US Cooperative observer network. The ranges for these coordinates are [-111, -99] for longitude and [35,45] for latitude. } \item{elev}{ Station elevation in meters. } \item{y}{ Monthly total precipitation in millimeters. for August, 1997 } } The data sets \code{PRISMelevation} and \code{RMelevation} are lists in the usual R grid format for images and contouring They have the following components: \describe{ \item{x}{ Longitude grid at approximately 4km resolution} \item{y}{ Latitude grid at approximately 4km resolution} \item{z}{ Average elevation for grid cell in meters } } These elevations and the companion grid formed the basis for the 103-Year High-Resolution Precipitation Climate Data Set for the Conterminous United States \url{ftp://ftp.ncdc.noaa.gov/pub/data/prism100} archived at the National Climate Data Center. This work was primarily authored by Chris Daly \url{www.prism.oregonstate.edu} and his PRISM group but had some contribution from the Geophysical Statistics Project at NCAR. and is an interpolation of the observational data to a 4km grid that takes into account topography such as elevation and aspect. } \details{ The binary file \code{RData.USmonthlyMet.bin} can be downwloaded from \url{http://www.image.ucar.edu/Data/US.monthly.met} and also includes information on its source. \preformatted{ # explicit source code to create the RMprecip data dir <- "" # include path to data file load(paste(dir, "RData.USmonthlyMet.bin", sep="/") #year.id<- 1963- 1895 year.id<- 103 #pptAUG63<- USppt[ year.id,8,] loc<- cbind(USpinfo$lon, USpinfo$lat) xr<- c(-111, -99) yr<- c( 35, 45) station.subset<- (loc[,1]>= xr[1]) & (loc[,1] <= xr[2]) & (loc[,2]>= yr[1]) & (loc[,2]<= yr[2]) ydata<- USppt[ year.id,8,station.subset] ydata <- ydata*10 # cm -> mm conversion xdata<- loc[station.subset,] dimnames(xdata)<- list( USpinfo$station.id[station.subset], c( "lon", "lat")) xdata<- data.frame( xdata) good<- !is.na(ydata) ydata<- ydata[good] xdata<- xdata[good,] test.for.zero.flag<- 1 test.for.zero( unlist(RMprecip$x), unlist(xdata), tag="locations") test.for.zero( ydata, RMprecip$y, "values") } } \examples{ # this data set was created the # historical data taken from # Observed monthly precipitation, min and max temperatures for the coterminous US # 1895-1997 # NCAR_pinfill # see the Geophysical Statistics Project datasets page for the supporting functions # and details. # plot quilt.plot(RMprecip$x, RMprecip$y) US( add=TRUE, col=2, lty=2) # comparison of station elevations with PRISM gridded values data(RMelevation) interp.surface( RMelevation, RMprecip$x)-> test.elev plot( RMprecip$elev, test.elev, xlab="Station elevation", ylab="Interpolation from PRISM grid") abline( 0,1,col="blue") # some differences with high elevations probably due to complex # topography! # # view of Rockies looking from theSoutheast save.par<- par(no.readonly=TRUE) par( mar=c(0,0,0,0)) # fancy use of persp with shading and lighting. persp( RMelevation, theta=75, phi= 15, box=FALSE, axes=FALSE, xlab="", ylab="", border=NA, shade=.95, lphi= 10, ltheta=80, col= "wheat4", scale=FALSE, expand=.00025) # reset graphics parameters and a more conventional image plot. par( save.par) image.plot(RMelevation, col=topo.colors(256)) US( add=TRUE, col="grey", lwd=2) title("PRISM elevations (m)") } \keyword{datasets} % docclass is data % Converted by Sd2Rd version 1.21. fields/man/qsreg.Rd0000644000175100001440000001471613114135522013727 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{qsreg} \alias{qsreg} \title{ Quantile or Robust spline regression } \description{ Uses a penalized likelihood approach to estimate the conditional quantile function for regression data. This method is only implemented for univariate data. For the pairs (X,Y) the conditional quantile, f(x), is P( Y=6]) fit50.subjective<-qsreg(rat.diet$t,rat.diet$con, lam= lambda.good) fit10<-qsreg(rat.diet$t,rat.diet$con, alpha=.1, nstep.cv=200) fit90<-qsreg(rat.diet$t,rat.diet$con, alpha=.9, nstep.cv=200) # spline fits at 50 equally spaced points sm<- cbind( predict( fit10, xg), predict( fit50.subjective, xg),predict( fit50, xg), predict( fit90, xg)) # and now zee data ... plot( fit50$x, fit50$y) # and now zee quantile splines at 10% 50% and 90%. # matlines( xg, sm, col=c( 3,3,2,3), lty=1) # the spline } \keyword{smooth} % docclass is function % Converted by Sd2Rd version 1.21. fields/man/stats.Rd0000644000175100001440000000513313114135522013735 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{stats} \alias{stats} \title{ Calculate summary statistics } \description{ Various summary statistics are calculated for different types of data. } \usage{ stats(x, by) } \arguments{ \item{x}{ The data structure to compute the statistics. This can either be a vector, matrix (data sets are the columns), or a list (data sets are the components). } \item{by}{ If x is a vector, an optional vector (either character or numerical) specifying the categories to divide x into separate data sets. } } \value{ A matrix where rows index the summary statistics and the columns index the separate data sets. } \details{ Stats breaks x up into separate data sets and then calls describe to calculate the statistics. Statistics are found by columns for matrices, by components for a list and by the relevent groups when a numeric vector and a by vector are given. The default set of statistics are the number of (nonmissing) observations, mean, standard deviation, minimum, lower quartile, median, upper quartile, maximum, and number of missing observations. If any data set is nonnumeric, missing values are returned for the statistics. The by argument is a useful way to calculate statistics on parts of a data set according to different cases. } \seealso{ stats.bin, stats.bplot, describe } \examples{ #Statistics for 8 normal random samples: zork<- matrix( rnorm(200), ncol=8) stats(zork) zork<- rnorm( 200) id<- sample( 1:8, 200, replace=TRUE) stats( zork, by=id) } \keyword{univar} % docclass is function % Converted by Sd2Rd version 1.21. fields/man/ribbon.plot.Rd0000644000175100001440000000574413114135522015037 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{ribbon.plot} \alias{ribbon.plot} %- Also NEED an '\alias' for EACH other topic documented here. \title{ Adds to an existing plot, a ribbon of color, based on values from a color scale, along a sequence of line segments.} \description{ Given a series of 2-d points and values at these segments, the function colors the segments according to a color scale and the segment values. This is essentially an image plot restricted to line segments. } \usage{ ribbon.plot(x,y,z,zlim=NULL, col=tim.colors(256), transparent.color="white",...) } \arguments{ \item{x}{x locations of line segments} \item{y}{y locations of line segments} \item{z}{ Values associated with each segment.} \item{zlim}{Range for z values to determine color scale. } \item{col}{Color table used for strip. Default is our favorite tim.colors being a scale from a dark blue to dark red.} \item{transparent.color}{Color used for missing values. Default is that missing values make the ribbon transparent.} \item{\dots}{Optional graphical arguments that are passed to the \code{segment} plotting function. A favorite is lwd to make a broad ribbon. } } \details{ Besides possible 2-d applications, this function is useful to annotate a curve on a surface using colors. The values mapped to acolor scheme could indicate a feature other than the height of the surface. For example, this function could indicate the slope of the surface. } \author{Doug Nychka} \seealso{ image.plot, arrow.plot, add.image, colorbar.plot} \examples{ plot( c(-1.5,1.5),c(-1.5,1.5), type="n") temp<- list( x= seq( -1,1,,40), y= seq( -1,1,,40)) temp$z <- outer( temp$x, temp$y, "+") contour( temp, add=TRUE) t<- seq( 0,.5,,50) y<- sin( 2*pi*t) x<- cos( pi*t) z<- x + y ribbon.plot( x,y,z, lwd=10) persp( temp, phi=15, shade=.8, col="grey")-> pm trans3d( x,y,z,pm)-> uv ribbon.plot( uv$x, uv$y, z**2,lwd=5) } \keyword{ hplot }% at least one, from doc/KEYWORDS fields/man/Exponential.Rd0000644000175100001440000001320413114135521015062 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{Exponential, Matern, Radial Basis} \alias{Exponential} \alias{Matern} \alias{Matern.cor.to.range} \alias{RadialBasis} \title{Covariance functions} \description{ Functional form of covariance function assuming the argument is a distance between locations. As they are defined here, they are in fact correlation functions. To set the marginal variance (sill) parameter, use the \code{rho} argument in \code{mKrig} or \code{Krig}. To set the nugget variance, use te \code{sigma2} argument in \code{mKrig} or \code{Krig}. } \usage{ Exponential(d, range = 1, alpha = 1/range, phi=1.0) Matern(d , range = 1,alpha=1/range, smoothness = 0.5, nu= smoothness, phi=1.0) Matern.cor.to.range(d, nu, cor.target=.5, guess=NULL,...) RadialBasis(d,M,dimension, derivative = 0) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{d}{ Vector of distances or for \code{Matern.cor.to.range} just a single distance. } \item{range}{ Range parameter default is one. Note that the scale can also be specified through the "theta" scaling argument used in fields covariance functions) } \item{alpha}{1/range } \item{phi}{This parameter option is added to be compatible with older versions of fields and refers to the marginal variance of the process. e.g. \code{phi* exp( -d/theta)} is the exponential covariance for points separated by distance and range theta. Throughout fields this parameter is equivalent to rho and it recommended that rho be used. If one is simulating random fields. See the help on \code{\link{sim.rf}} for more details. } \item{smoothness}{ Smoothness parameter in Matern. Controls the number of derivatives in the process. Default is 1/2 corresponding to an exponential covariance.} \item{nu}{ Same as smoothness} \item{M}{Interpreted as a spline M is the order of the derivatives in the penalty.} \item{dimension}{Dimension of function} \item{cor.target}{Correlation used to match the range parameter. Default is .5.} \item{guess}{An optional starting guess for solution. This should not be needed.} \item{derivative}{If greater than zero finds the first derivative of this function.} \item{\dots}{Additional arguments to pass to the bisection search function.} } \details{ Exponential: exp( -d/range) Matern: con*(d\^nu) * besselK(d , nu ) Matern covariance function transcribed from Stein's book page 31 nu==smoothness, alpha == 1/range GeoR parameters map to kappa==smoothness and phi == range check for negative distances \code{con} is a constant that normalizes the expression to be 1.0 when d=0. Matern.cor.to.range: This function is useful to find Matern covariance parameters that are comparable for different smoothness parameters. Given a distance \code{d}, smoothness \code{nu}, target correlation \code{cor.target} and range \code{theta}, this function determines numerically the value of theta so that \code{Matern( d, range=theta, nu=nu) == cor.target} See the example for how this might be used. Radial basis functions: \preformatted{ C.m,d r**(2m-d) d- odd C.m,d r**(2m-d)ln(r) d-even } where C.m.d is a constant based on spline theory and r is the radial distance between points. See \code{radbas.constant} for the computation of the constant. NOTE: Earlier versions of fields used ln(r^2) instead of ln(r) and so differ by a factor of 2. } \value{ For the covariance functions: a vector of covariances. For Matern.cor.to.range: the value of the range parameter. } \references{ Stein, M.L. (1999) Statistical Interpolation of Spatial Data: Some Theory for Kriging. Springer, New York.} \author{Doug Nychka} \seealso{stationary.cov, stationary.image.cov, Wendland,stationary.taper.cov rad.cov} \examples{ # a Matern correlation function d<- seq( 0,10,,200) y<- Matern( d, range=1.5, smoothness=1.0) plot( d,y, type="l") # Several Materns of different smoothness with a similar correlation # range # find ranges for nu = .5, 1.0 and 2.0 # where the correlation drops to .1 at a distance of 10 units. r1<- Matern.cor.to.range( 10, nu=.5, cor.target=.1) r2<- Matern.cor.to.range( 10, nu=1.0, cor.target=.1) r3<- Matern.cor.to.range( 10, nu=2.0, cor.target=.1) # note that these equivalent ranges # with respect to this correlation length are quite different # due the different smoothness parameters. d<- seq( 0, 15,,200) y<- cbind( Matern( d, range=r1, nu=.5), Matern( d, range=r2, nu=1.0), Matern( d, range=r3, nu=2.0)) matplot( d, y, type="l", lty=1, lwd=2) xline( 10) yline( .1) } \keyword{spatial}% at least one, from doc/KEYWORDS fields/man/fields.Rd0000644000175100001440000001636713114135522014060 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{fields} \alias{fields-package} \alias{fields} \title{ fields - tools for spatial data } \description{ Fields is a collection of programs for curve and function fitting with an emphasis on spatial data and spatial statistics. The major methods implemented include cubic and thin plate splines, universal Kriging and Kriging for large data sets. One main feature is any covariance function implemented in R code can be used for spatial prediction. Another important feature is that fields will take advantage of compactly supported covariance functions in a seamless way through the spam package. See \code{library( help=fields)} for a listing of all the fields contents. fields stives to have readable and tutorial code. Take a look at the source code for \code{Krig} and \code{mKrig} to see how things work "under the hood". To load fields with the comments retained in the source use \code{ keep.source = TRUE} in the \code{library} command. We also keep the source on-line: browse the directory \url{http://www.image.ucar.edu/~nychka/Fields/Source} for commented source. \url{http://www.image.ucar.edu/~nychka/Fields/Help/00Index.html} is a page for html formatted help files. (If you obtain the source version of the package (file ends in .gz) the commented source code is the R subdirectory.) \strong{Major methods} \itemize{ \item \code{\link{Tps}} Thin Plate spline regression including GCV and REML estimates for the smoothing parameter. \item \code{\link{spatialProcess}} An easy to use method that fits a spatial process model ( e.g. Kriging) but also estimates the key spatial parameters: nugget variance, sill variance and range by maximum likelihood. Default covariance model is a Matern covariance function. \item \code{\link{Krig}} Spatial process estimation that is the core function of fields. The Krig function allows you to supply a covariance function that is written in native R code. See (\code{\link{stationary.cov}}) that includes several families of covariances and distance metrics including the Matern and great circle distance. \item \code{\link{mKrig}} (micro Krig) are \code{\link{fastTps}} fast efficient Universal Kriging and spline-like functions, that can take advantage of sparse covariance functions and thus handle very large numbers of spatial locations. \code{\link{QTps}} A easy to use extension of thin plate splines for quantile and robust surface fitting. \item \code{\link{mKrigMLEGrid}} for maximum likelihood estimates of covariance parameters. This function also handles replicate fields assumed to be independent realizations at the same locations. } \strong{Other noteworthy functions} \itemize{ \item \code{\link{vgram}} and \code{\link{vgram.matrix}} find variograms for spatial data (and with temporal replications. \item \code{\link{cover.design}} Generates space-filling designs where the distance function is expresed in R code. \item \code{as.image}, \code{image.plot}, \code{drape.plot}, \code{quilt.plot} \code{add.image}, \code{crop.image}, \code{half.image}, \code{average.image}, \code{\link{designer.colors}}, \code{\link{color.scale}}, \code{\link{in.poly}} Many convenient functions for working with image data and rationally (well, maybe reasonably) creating and placing a color scale on an image plot. See also \code{\link{grid.list}} for how fields works with grids and \code{\link{US}} and \code{\link{world}} for adding a map quickly. \item \code{\link{sreg}} \code{\link{splint}} Fast 1-D smoothing splines and interpolating cubic splines. } \strong{ Generic functions that support the methods} \code{plot} - diagnostic plots of fit \cr \code{summary}- statistical summary of fit \cr \code{print}- shorter version of summary \cr \code{\link{surface}}- graphical display of fitted surface \cr \code{predict}- evaluation fit at arbitrary points \cr \code{\link{predictSE}}- prediction standard errors at arbitrary points. \cr \code{\link{sim.rf}}- Simulate a random fields on a 2-d grid. \strong{Getting Started} Try some of the examples from help files for \code{Tps} or \code{spatialProcess}. \strong{Graphics tips} \code{help( fields.hints)} gives some R code tricks for setting up common legends and axes. And has little to do with this package! \strong{Testing} See \code{help(fields.tests)} for testing fields. \strong{Some fields datasets} \itemize{ \item \code{\link{CO2}} Global satelite CO2 concentrations (simulated field) \item \code{\link{RCMexample}} Regional climate model output \item \code{\link{lennon}} Image of John Lennon \item \code{\link{COmonthlyMet}} Monthly mean temperatures and precip for Colorado \item \code{\link{RMelevation}} Digital elevations for the Rocky Mountain Empire \item \code{\link{ozone2}} Daily max 8 hour ozone concentrations for the US midwest for summer 1987. \item \code{\link{PRISMelevation}} Digital elevations for the continental US at approximately 4km resolution \item \code{\link{NorthAmericanRainfall}} 50+ year average and trend for summer rainfall at 1700+ stations. \item \code{\link{rat.diet}} Small paired study on rat food intake over time. \item \code{\link{WorldBankCO2}} Demographic and carbon emission data for 75 countries and for 1999. } \strong{DISCLAIMER:} The authors can not guarantee the correctness of any function or program in this package. } \examples{ # some air quality data, daily surface ozone measurements for the Midwest: data(ozone2) x<-ozone2$lon.lat y<- ozone2$y[16,] # June 18, 1987 # pixel plot of spatial data quilt.plot( x,y) US( add=TRUE) # add US map fit<- Tps(x,y) # fits a GCV thin plate smoothing spline surface to ozone measurements. # Hey, it does not get any easier than this! summary(fit) #diagnostic summary of the fit set.panel(2,2) plot(fit) # four diagnostic plots of fit and residuals. # quick plot of predicted surface set.panel() surface(fit) # contour/image plot of the fitted surface US( add=TRUE, col="magenta", lwd=2) # US map overlaid title("Daily max 8 hour ozone in PPB, June 18th, 1987") fit2<- spatialProcess( x,y) # a "Kriging" model. The covariance defaults to a Matern with smoothness 1.0. # the nugget, sill and range parameters are found by maximum likelihood # summary, plot, and surface also work for fit2 ! } \keyword{datasets} fields/man/rdist.earth.Rd0000644000175100001440000000600513114135522015025 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{rdist.earth} \alias{rdist.earth} \alias{rdist.earth.vec} \title{ Great circle distance matrix or vector } \description{ Given two sets of longitude/latitude locations, \code{rdist.earth} computes the Great circle (geographic) distance matrix among all pairings and \code{rdist.earth.vec} computes a vector of pairwise great circle distances between corresponding elements of the input locations using the Haversine method and is used in empirical variogram calculations. } \usage{ rdist.earth(x1, x2, miles = TRUE, R = NULL) rdist.earth.vec(x1, x2, miles = TRUE, R = NULL) } \arguments{ \item{x1}{ Matrix of first set of lon/lat coordinates first column is the longitudes and second is the latitudes. } \item{x2}{ Matrix of second set of lon/lat coordinates first column is the longitudes and second is the latitudes. If missing x1 is used. } \item{miles}{ If true distances are in statute miles if false distances in kilometers. } \item{R}{ Radius to use for sphere to find spherical distances. If NULL the radius is either in miles or kilometers depending on the values of the miles argument. If R=1 then distances are of course in radians. } } \value{ The great circle distance matrix if nrow(x1)=m and nrow( x2)=n then the returned matrix will be mXn. } \details{ Surprisingly the distance matrix is computed efficiently in R by dot products of the direction cosines. Thanks to Qing Yang for pointing this out a long time ago. } \author{Doug Nychka, John Paige} \seealso{ \link{rdist}, \link{stationary.cov}, \link{fields.rdist.near} } \examples{ data(ozone2) out<- rdist.earth ( ozone2$lon.lat) #out is a 153X153 distance matrix upper<- col(out)> row( out) # histogram of all pairwise distances. hist( out[upper]) #get pairwise distances between first 10 and second 10 lon/lat points x1 = ozone2$lon.lat[1:10,] x2 = ozone2$lon.lat[11:20,] dists = rdist.earth.vec(x1, x2) print(dists) } \keyword{spatial} % docclass is function % Converted by Sd2Rd version 1.21. fields/man/Krig.Amatrix.Rd0000644000175100001440000001072413114135521015100 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{Krig.Amatrix} \alias{Krig.Amatrix} \title{ Smoother (or "hat") matrix relating predicted values to the dependent (Y) values. } \description{ For a fixed value of the smoothing parameter or the covariance function some nonparametric curve estimates are linear functions of the observed data. This is a intermediate level function that computes the linear weights to be applied to the observations to estimate the curve at a particular point. For example the predicted values can be represented as Ay where A is an N X N matrix of coefficients and Y is the vector of observed dependent variables. For linear smoothers the matrix A may depend on the smoothing parameter ( or covariance function and the independent variables (X) but NOT on Y. } \usage{ Krig.Amatrix(object, x0 = object$x, lambda=NULL, eval.correlation.model = FALSE,...) } \arguments{ Output object from fitting a data set using a FIELD regression method. Currently this is supported only for Krig ( and Tps) functions. \item{object}{ A Krig object produced by the Krig ( or Tps) function. } \item{x0}{ Locations for prediction default is the observation locations. } \item{lambda}{ Value of the smoothing parameter. } \item{eval.correlation.model}{This applies to a correlation model where the observations have been standardized -- e.g. y standardized = (yraw - mean) / (standard deviation). If TRUE the prediction in the correlation scale is transformed by the standard deviation and mean to give a prediction in the raw scale. If FALSE predictions are left in the correlation scale.} \item{\dots}{ Other arguments that can used by predict.Krig.} } \value{ A matrix where the number of rows is equal to the number of predicted points and the number of columns is equal to the length of the Y vector. } \details{ The main use of this function is in finding prediction standard errors. For the Krig ( and Tps) functions the A matrix is constructed based on the representation of the estimate as a generalized ridge regression. The matrix expressions are explained in the references from the FIELDS manual. For linear regression the matrix that gives predicted values is often referred to as the "hat" matrix and is useful for regression diagnostics. For smoothing problems the effective number of parameters in the fit is usually taken to be the trace of the A matrix. Note that while the A matrix is usually constructed to predict the estimated curve at the data points Amatrix.Krig does not have such restrictions. This is possible because any value of the estimated curve will be a linear function of Y. The actual calculation in this function is simple. It invovles loop through the unit vectors at each observation and computation of the prediction for each of these delta functions. This approach makes it easy to handle different options such as including covariates. } \section{References}{ Nychka (2000) "Spatial process estimates as smoothers." } \seealso{ Krig, Tps, predict.Krig } \examples{ # Compute the A matrix or "hat" matrix for a thin plate spline # check that this gives the same predicted values tps.out<-Tps( ChicagoO3$x, ChicagoO3$y) A<-Krig.Amatrix( tps.out, ChicagoO3$x) test<- A\%*\%ChicagoO3$y # now compare this to predict( tps.out) or tps.out$fitted.values # they should be the same stats( test- tps.out$fitted.values) } \keyword{spatial} % docclass is function % Converted by Sd2Rd version 1.21. fields/man/fields-internal.Rd0000644000175100001440000001562613115103625015667 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{fields internal } \alias{[.spatialDesign} \alias{COR} \alias{D4transform.image} \alias{Krig.df.to.lambda} \alias{Krig.fdf} \alias{Krig.fgcv} \alias{Krig.fgcv.model} \alias{Krig.fgcv.one} \alias{Krig.flplike} \alias{Krig.fs2hat} \alias{Krig.ftrace} \alias{Krig.parameters} \alias{Krig.updateY} \alias{Krig.which.lambda} \alias{Krig.ynew} \alias{bisection.search} \alias{cat.matrix} \alias{cat.to.list} \alias{ceiling2} \alias{describe} \alias{dyadic.2check} \alias{dyadic.check} \alias{double.exp} \alias{Exp.earth.cov} \alias{fast.1way} \alias{find.upcross} \alias{gauss.cov} \alias{golden.section.search} \alias{imageplot.info} \alias{imagePlotInfo} \alias{imageplot.setup} \alias{krig.image.parameters} \alias{makeSimulationGrid} \alias{makeSimulationGrid2} \alias{makePredictionPoints} \alias{multWendlandGrid} \alias{minimax.crit} \alias{plot.krig.image} \alias{plot.sim.krig.image} \alias{plot.spatialDesign} \alias{predict.interp.surface} \alias{predict.krig.image} \alias{predict.surface.default} \alias{print.krig.image} \alias{print.spatialDesign} \alias{print.sreg} \alias{print.summary.Krig} \alias{print.summary.spatialProcess} \alias{print.summary.krig.image} \alias{print.summarySpatialDesign} \alias{print.summary.sreg} \alias{printGCVWarnings} \alias{qr.q2ty} \alias{qr.yq2} \alias{plot.qsreg} \alias{predict.qsreg} \alias{print.qsreg} \alias{qsreg.fit} \alias{qsreg.psi} \alias{qsreg.rho} \alias{qsreg.psi.OLD} \alias{qsreg.rho.OLD} \alias{qsreg.trace} \alias{quickPrint} \alias{summary.qsreg} \alias{radbas.constant} \alias{sim.krig.image} \alias{sreg.df.to.lambda} \alias{sreg.fdf} \alias{sreg.fgcv} \alias{sreg.fgcv.model} \alias{sreg.fgcv.one} \alias{sreg.fit} \alias{sreg.fs2hat} \alias{sreg.trace} \alias{stats.sim.krig.image} \alias{summaryGCV.Krig} \alias{summaryGCV.sreg} \alias{summary.krig.image} \alias{summary.spatialDesign} \alias{summary.sreg} \alias{surface} \alias{surface.default} \alias{surface.krig.image} \alias{unscale} \alias{world.dat} \alias{compactTOMatOLD} \alias{MLESpatialProcess.fast} \title{ Fields internal and secondary functions } \description{ Listed below are supporting functions for the major methods in fields. } \usage{ \method{[}{spatialDesign}(x, ...) Krig.df.to.lambda(df, D, guess = 1, tol = 1e-05) Krig.fdf (llam, info) Krig.fgcv (lam, obj) Krig.fgcv.model (lam, obj) Krig.fgcv.one (lam, obj) Krig.flplike (lambda, obj) Krig.fs2hat (lam, obj) Krig.ftrace (lam, D) Krig.parameters (obj, mle.calc=obj$mle.calc) Krig.updateY (out, Y, verbose = FALSE, yM=NA) Krig.which.lambda(out) Krig.ynew (out, y=NULL, yM=NULL ) bisection.search (x1, x2, f, tol = 1e-07, niter = 25, f.extra = NA, upcross.level = 0) cat.matrix (mat, digits = 8) cat.to.list (x, a) ceiling2 (m) describe (x) double.exp(x) dyadic.2check( m,n,cut.p=2) dyadic.check( n,cut.p=2) Exp.earth.cov (x1, x2, theta = 1) fast.1way (lev, y, w = rep(1, length(y))) find.upcross (fun, fun.info, upcross.level = 0, guess = 1, tol = 1e-05) gauss.cov (...) golden.section.search (ax, bx, cx, f, niter = 25, f.extra = NA, tol = 1e-05, gridx=NA) imagePlotInfo (...,breaks, nlevel) imageplot.info(...) imageplot.setup(x, add=FALSE, legend.shrink = 0.9, legend.width = 1, horizontal = FALSE, legend.mar=NULL, bigplot = NULL, smallplot = NULL,...) makeSimulationGrid(mKrigObject, predictionPoints, nx, ny, nxSimulation, nySimulation, gridRefinement, gridExpansion) makeSimulationGrid2 (fastTpsObject, predictionPointsList, gridRefinement, gridExpansion) minimax.crit (obj, des = TRUE, R) \method{plot}{spatialDesign}(x,...) \method{predict}{interp.surface}(object, loc,...) \method{predict}{surface}(object, ...) \method{predict}{surface.default}(object, ...) \method{print}{spatialDesign} (x,...) \method{print}{sreg}(x, ...) \method{print}{summary.Krig} (x, ...) \method{print}{summary.spatialProcess} (x, ...) \method{print}{summarySpatialDesign} (x, digits = 4,...) \method{print}{summary.sreg} (x, ...) printGCVWarnings( Table, method = "all") makePredictionPoints(mKrigObject, nx, ny, predictionPointsList) multWendlandGrid( grid.list,center, delta, coef, xy = c(1, 2)) qr.q2ty (qr, y) qr.yq2 (qr, y) \method{plot}{qsreg}(x, pch = "*", main = NA,...) \method{predict}{qsreg}(object, x, derivative = 0, model = object$ind.cv.ps,...) \method{print}{qsreg} (x, ...) qsreg.fit (x, y, lam, maxit = 50, maxit.cv = 10, tol = 1e-04, offset = 0, sc = sqrt(var(y)) * 1e-07, alpha = 0.5, wt = rep(1, length(x)), cost = 1) qsreg.psi( r,alpha=.5,C=1) qsreg.rho( r,alpha=.5,C=1) qsreg.trace(x, y, lam, maxit = 50, maxit.cv = 10, tol = 1e-04, offset = 0, sc = sqrt(var(y)) * 1e-07, alpha = 0.5, wt = rep(1, length(x)), cost = 1) qsreg.rho.OLD(r, alpha = 0.5, C = 1) qsreg.psi.OLD(r, alpha = 0.5, C = 1) quickPrint(obj, max.values = 10) radbas.constant (m, d) sreg.df.to.lambda (df, x, wt, guess = 1, tol = 1e-05) sreg.fdf (h, info) sreg.fgcv (lam, obj) sreg.fgcv.model (lam, obj) sreg.fgcv.one (lam, obj) sreg.fit (lam, obj, verbose=FALSE) sreg.fs2hat (lam, obj) sreg.trace (h, info) summaryGCV.Krig(object, lambda, cost = 1, verbose = FALSE, offset = 0, y = NULL, ...) summaryGCV.sreg (object, lambda, cost = 1, nstep.cv = 20, offset = 0, verbose = TRUE,...) \method{summary}{qsreg} (object, ...) \method{summary}{spatialDesign} (object, digits = 4, ...) \method{summary}{sreg} (object, digits = 4, ...) surface(object , ...) \method{surface}{default} (object, ...) unscale (x, x.center, x.scale) MLESpatialProcess.fast(x, y, lambda.start=.5, theta.start = NULL, cov.function = "stationary.cov", cov.args = list(Covariance = "Matern", smoothness = 1), Distance = "rdist", verbose=FALSE, optim.args=NULL, ...) } \keyword{internal} % docclass is function % Converted by Sd2Rd version 1.21. fields/man/BD.Rd0000644000175100001440000000442513114135521013066 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{BD} \alias{BD} \title{ Data frame of the effect of buffer compositions on DNA strand displacement amplification. A 4-d regression data set with with replication. This is a useful test data set for exercising function fitting methods. } \description{ The \code{BD} data frame has 89 rows and 5 columns. There are 89 runs with four buffer components (KCL, MgCl2, KP04, dnTP) systematically varied in a space-filliing design. The response is the DNA amplification rate. } \format{ This data frame contains the following columns: \describe{ \item{KCl}{ Buffer component. } \item{MgCl2}{ Buffer component. } \item{KPO4}{ Buffer component. } \item{dNTP}{ Buffer component, deoxyribonucleotides. } \item{lnya}{ Exponential amplification rate on a log scale, i.e. the actual amplification rate. } } } \source{ Thanks to Perry Haaland and Michael OConnell. Becton Dickinson Research Center Research Triangle Park, NC } \seealso{ Tps } \examples{ # fitting a DNA strand # displacement amplification surface to various buffer compositions fit<- Tps(BD[,1:4],BD$lnya,scale.type="range") surface(fit) # plots fitted surface and contours } \keyword{datasets} % docclass is function % Converted by Sd2Rd version 1.21. fields/man/exp.cov.Rd0000644000175100001440000003626413114135522014172 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{Covariance functions} \alias{Exp.cov} \alias{Exp.simple.cov} \alias{Rad.cov} \alias{Rad.simple.cov} \alias{stationary.cov} \alias{stationary.taper.cov} \alias{wendland.cov} \alias{cubic.cov} \title{ Exponential family, radial basis functions,cubic spline, compactly supported Wendland family and stationary covariances. } \description{ Given two sets of locations these functions compute the cross covariance matrix for some covariance families. In addition these functions can take advantage of spareness, implement more efficient multiplcation of the cross covariance by a vector or matrix and also return a marginal variance to be consistent with calls by the Krig function. \code{stationary.cov} and \code{Exp.cov} have additional arguments for precomputed distance matrices and for calculating only the upper triangle and diagonal of the output covariance matrix to save time. Also, they support using the \code{rdist} function with \code{compact=TRUE} or input distance matrices in compact form, where only the upper triangle of the distance matrix is used to save time. Note: These functions have been been renamed from the previous fields functions using 'Exp' in place of 'exp' to avoid conflict with the generic exponential function (\code{exp(...)})in R. } \usage{ Exp.cov(x1, x2=NULL, theta = 1, p=1, distMat = NA, C = NA, marginal = FALSE, onlyUpper=FALSE) Exp.simple.cov(x1, x2, theta =1, C=NA,marginal=FALSE) Rad.cov(x1, x2, p = 1, m=NA, with.log = TRUE, with.constant = TRUE, C=NA,marginal=FALSE, derivative=0) cubic.cov(x1, x2, theta = 1, C=NA, marginal=FALSE) Rad.simple.cov(x1, x2, p=1, with.log = TRUE, with.constant = TRUE, C = NA, marginal=FALSE) stationary.cov(x1, x2=NULL, Covariance = "Exponential", Distance = "rdist", Dist.args = NULL, theta = 1, V = NULL, C = NA, marginal = FALSE, derivative = 0, distMat = NA, onlyUpper = FALSE, ...) stationary.taper.cov(x1, x2, Covariance="Exponential", Taper="Wendland", Dist.args=NULL, Taper.args=NULL, theta=1.0,V=NULL, C=NA, marginal=FALSE, spam.format=TRUE,verbose=FALSE,...) wendland.cov(x1, x2, theta = 1, V=NULL, k = 2, C = NA, marginal =FALSE,Dist.args = list(method = "euclidean"), spam.format = TRUE, derivative = 0, verbose=FALSE) } \arguments{ \item{x1}{ Matrix of first set of locations where each row gives the coordinates of a particular point.} \item{x2}{ Matrix of second set of locations where each row gives the coordinatesof a particular point. If this is missing x1 is used. } \item{theta}{ Range (or scale) parameter. This should be a scalar (use the V argument for other scaling options). Any distance calculated for a covariance function is divided by theta before the covariance function is evaluated.} \item{V}{ A matrix that describes the inverse linear transformation of the coordinates before distances are found. In R code this transformation is: \code{x1 \%*\% t(solve(V))} Default is NULL, that is the transformation is just dividing distance by the scalar value \code{theta}. See Details below. If one has a vector of "theta's" that are the scaling for each coordinate then just express this as \code{V = diag(theta)} in the call to this function.} \item{C}{ A vector with the same length as the number of rows of x2. If specified the covariance matrix will be multiplied by this vector.} \item{marginal}{If TRUE returns just the diagonal elements of the covariance matrix using the \code{x1} locations. In this case this is just 1.0. The marginal argument will trivial for this function is a required argument and capability for all covariance functions used with Krig.} \item{p}{ Exponent in the exponential covariance family. p=1 gives an exponential and p=2 gives a Gaussian. Default is the exponential form. For the radial basis function this is the exponent applied to the distance between locations.} \item{m}{For the radial basis function p = 2m-d, with d being the dimension of the locations, is the exponent applied to the distance between locations. (m is a common way of parametrizing this exponent.)} \item{with.constant}{ If TRUE includes complicated constant for radial basis functions. See the function \code{radbad.constant} for more details. The default is TRUE, include the constant. Without the usual constant the lambda used here will differ by a constant from spline estimators ( e.g. cubic smoothing splines) that use the constant. Also a negative value for the constant may be necessary to make the radial basis positive definite as opposed to negative definite. } \item{with.log}{If TRUE include a log term for even dimensions. This is needed to be a thin plate spline of integer order. } \item{Covariance}{Character string that is the name of the covariance shape function for the distance between locations. Choices in fields are \code{Exponential}, \code{Matern}} \item{Distance}{Character string that is the name of the distance function to use. Choices in fields are \code{rdist}, \code{rdist.earth}} \item{Taper}{Character string that is the name of the taper function to use. Choices in fields are listed in help(taper).} \item{Dist.args}{ A list of optional arguments to pass to the Distance function.} \item{Taper.args}{ A list of optional arguments to pass to the Taper function. \code{theta} should always be the name for the range (or scale) paremeter.} \item{spam.format}{If TRUE returns matrix in sparse matrix format implemented in the spam package. If FALSE just returns a full matrix. } \item{k}{The order of the Wendland covariance function. See help on Wendland.} \item{derivative}{ If nonzero evaluates the partials of the covariance function at locations x1. This must be used with the "C" option and is mainly called from within a predict function. The partial derivative is taken with respect to \code{x1}. } \item{verbose}{If TRUE prints out some useful information for debugging.} \item{distMat}{ If the distance matrix between \code{x1} and \code{x2} has already been computed, it can be passed via this argument so it won't need to be recomputed. } \item{onlyUpper}{ For internal use only, not meant to be set by the user. Automatically set to \code{TRUE} by \code{mKrigMLEJoint} or \code{mKrigMLEGrid} if \code{lambda.profile} is set to \code{TRUE}, but set to \code{FALSE} for the final parameter fit so output is compatible with rest of \code{fields}. If \code{TRUE}, only the upper triangle and diagonal of the covariance matrix is computed to save time (although if a non-compact distance matrix is used, the onlyUpper argument is set to FALSE). If \code{FALSE}, the entire covariance matrix is computed. In general, it should only be set to \code{TRUE} for \code{mKrigMLEJoint} and \code{mKrigMLEGrid}, and the default is set to \code{FALSE} so it is compatible with all of \code{fields}. } \item{\dots}{ Any other arguments that will be passed to the covariance function. e.g. \code{smoothness} for the Matern.} } \value{ If the argument C is NULL the cross covariance matrix is returned. In general if nrow(x1)=m and nrow(x2)=n then the returned matrix will be mXn. Moreover, if x1 is equal to x2 then this is the covariance matrix for this set of locations. If C is a vector of length n, then returned value is the multiplication of the cross covariance matrix with this vector. } \details{ For purposes of illustration, the function \code{Exp.cov.simple} is provided in fields as a simple example and implements the R code discussed below. List this function out as a way to see the standard set of arguments that fields uses to define a covariance function. It can also serve as a template for creating new covariance functions for the \code{Krig} and \code{mKrig} functions. Also see the higher level function \code{stationary.cov} to mix and match different covariance shapes and distance functions. A common scaling for stationary covariances: If \code{x1} and \code{x2} are matrices where \code{nrow(x1)=m} and \code{nrow(x2)=n} then this function will return a mXn matrix where the (i,j) element is the covariance between the locations \code{x1[i,]} and \code{x2[j,]}. The exponential covariance function is computed as exp( -(D.ij)) where D.ij is a distance between \code{x1[i,]} and \code{x2[j,]} but having first been scaled by theta. Specifically if \code{theta} is a matrix to represent a linear transformation of the coordinates, then let \code{u= x1\%*\% t(solve( theta))} and \code{v= x2\%*\% t(solve(theta))}. Form the mXn distance matrix with elements: \code{D[i,j] = sqrt( sum( ( u[i,] - v[j,])**2 ) )}. and the cross covariance matrix is found by \code{exp(-D)}. The tapered form (ignoring scaling parameters) is a matrix with i,j entry \code{exp(-D[i,j])*T(D[i,j])}. With T being a positive definite tapering function that is also assumed to be zero beyond 1. Note that if theta is a scalar then this defines an isotropic covariance function and the functional form is essentially \code{exp(-D/theta)}. Implementation: The function \code{r.dist} is a useful FIELDS function that finds the cross Euclidean distance matrix (D defined above) for two sets of locations. Thus in compact R code we have exp(-rdist(u, v)) Note that this function must also support two other kinds of calls: If marginal is TRUE then just the diagonal elements are returned (in R code \code{diag( exp(-rdist(u,u)) )}). If C is passed then the returned value is \code{ exp(-rdist(u, v)) \%*\% C}. Some details on particular covariance functions: \describe{ \item{Radial basis functions (\code{Rad.cov}:}{The functional form is Constant* rdist(u, v)**p for odd dimensions and Constant* rdist(u,v)**p * log( rdist(u,v) ) For an m th order thin plate spline in d dimensions p= 2*m-d and must be positive. The constant, depending on m and d, is coded in the fields function \code{radbas.constant}. This form is only a generalized covariance function -- it is only positive definite when restricted to linear subspace. See \code{Rad.simple.cov} for a coding of the radial basis functions in R code.} \item{Stationary covariance \code{stationary.cov}:}{Here the computation is to apply the function Covariance to the distances found by the Distance function. For example \code{Exp.cov(x1,x2, theta=MyTheta)} and \code{stationary.cov( x1,x2, theta=MyTheta, Distance= "rdist", Covariance="Exponential")} are the same. This also the same as \code{stationary.cov( x1,x2, theta=MyTheta, Distance= "rdist", Covariance="Matern",smoothness=.5)}. } \item{Stationary tapered covariance \code{stationary.taper.cov}:}{The resulting cross covariance is the direct or Shure product of the tapering function and the covariance. In R code given location matrices, \code{x1} and \code{x2} and using Euclidean distance. \code{Covariance(rdist( x1, x2)/theta)*Taper( rdist( x1, x2)/Taper.args$theta)} By convention, the \code{Taper} function is assumed to be identically zero outside the interval [0,1]. Some efficiency is introduced within the function to search for pairs of locations that are nonzero with respect to the Taper. This is done by the SPAM function \code{nearest.dist}. This search may find more nonzero pairs than dimensioned internally and SPAM will try to increase the space. One can also reset the SPAM options to avoid these warnings. For spam.format TRUE the multiplication with the \code{C} argument is done with the spam sparse multiplication routines through the "overloading" of the \code{\%*\%} operator. } } About the FORTRAN: The actual function \code{Exp.cov} and \code{Rad.cov} call FORTRAN to make the evaluation more efficient this is especially important when the C argument is supplied. So unfortunately the actual production code in Exp.cov is not as crisp as the R code sketched above. See \code{Rad.simple.cov} for a R coding of the radial basis functions. } \seealso{ Krig, rdist, rdist.earth, gauss.cov, Exp.image.cov, Exponential, Matern, Wendland.cov, mKrig} \examples{ # exponential covariance matrix ( marginal variance =1) for the ozone #locations out<- Exp.cov( ChicagoO3$x, theta=100) # out is a 20X20 matrix out2<- Exp.cov( ChicagoO3$x[6:20,],ChicagoO3$x[1:2,], theta=100) # out2 is 15X2 matrix # Kriging fit where the nugget variance is found by GCV # Matern covariance shape with range of 100. # fit<- Krig( ChicagoO3$x, ChicagoO3$y, Covariance="Matern", theta=100,smoothness=2) data( ozone2) x<- ozone2$lon.lat y<- ozone2$y[16,] # Omit the NAs good<- !is.na( y) x<- x[good,] y<- y[good] # example of calling the taper version directly # Note that default covariance is exponential and default taper is # Wendland (k=2). stationary.taper.cov( x[1:3,],x[1:10,] , theta=1.5, Taper.args= list(k=2,theta=2.0, dimension=2) )-> temp # temp is now a tapered 3X10 cross covariance matrix in sparse format. is.spam( temp) # evaluates to TRUE # should be identical to # the direct matrix product temp2<- Exp.cov( x[1:3,],x[1:10,], theta=1.5) * Wendland(rdist(x[1:3,],x[1:10,]), theta= 2.0, k=2, dimension=2) test.for.zero( as.matrix(temp), temp2) # Testing that the "V" option works as advertized ... x1<- x[1:20,] x2<- x[1:10,] V<- matrix( c(2,1,0,4), 2,2) Vi<- solve( V) u1<- t(Vi\%*\% t(x1)) u2<- t(Vi\%*\% t(x2)) look<- exp(-1*rdist(u1,u2)) look2<- stationary.cov( x1,x2, V= V) test.for.zero( look, look2) # Here is an example of how the cross covariance multiply works # and lots of options on the arguments Ctest<- rnorm(10) temp<- stationary.cov( x,x[1:10,], C= Ctest, Covariance= "Wendland", k=2, dimension=2, theta=1.5 ) # do multiply explicitly temp2<- stationary.cov( x,x[1:10,], Covariance= "Wendland", k=2, dimension=2, theta=1.5 )\%*\% Ctest test.for.zero( temp, temp2) # use the tapered stationary version # cov.args is part of the argument list passed to stationary.taper.cov # within Krig. # This example needs the spam package. # \dontrun{ Krig(x,y, cov.function = "stationary.taper.cov", theta=1.5, cov.args= list(Taper.args= list(k=2, dimension=2,theta=2.0) ) ) -> out2 # NOTE: Wendland is the default taper here. } # BTW this is very similar to \dontrun{ Krig(x,y, theta= 1.5)-> out } } \keyword{spatial} % docclass is function fields/man/lennon.Rd0000644000175100001440000000246013114135522014070 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{lennon} \alias{lennon} \title{ Gray image of John Lennon. } \description{ A 256X256 image of John Lennon. Try: \code{image(lennon, col=grey(seq(0,1,,256)) )} } \keyword{datasets} % docclass is data % Converted by Sd2Rd version 1.21. fields/man/image.cov.Rd0000644000175100001440000002161313114135522014450 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{image.cov} \alias{stationary.image.cov} \alias{Exp.image.cov} \alias{Rad.image.cov} \alias{wendland.image.cov} \alias{matern.image.cov} \title{ Exponential, Matern and general covariance functions for 2-d gridded locations. } \description{ Given two sets of locations defined on a 2-d grid efficiently multiplies a cross covariance with a vector. The intermediate compuations (the setup) can also be used for fast simulation of the processes on a grid using the circulant embedding technique. } \usage{ stationary.image.cov(ind1, ind2, Y, cov.obj = NULL, setup = FALSE, grid, M=NULL,N=NULL,cov.function="stationary.cov", delta = NULL, cov.args = NULL, ...) Exp.image.cov(ind1, ind2, Y, cov.obj = NULL, setup = FALSE, grid, ...) Rad.image.cov(ind1, ind2, Y, cov.obj = NULL, setup = FALSE, grid, ...) matern.image.cov(ind1, ind2, Y, cov.obj = NULL, setup = FALSE, grid, M=NULL,N=NULL,theta= 1.0, smoothness=.5) wendland.image.cov(ind1, ind2, Y, cov.obj = NULL, setup = FALSE, grid, M = NULL, N = NULL, cov.args=NULL, ...) } \arguments{ \item{ind1}{ Matrix of indices for first set of locations this is a two column matrix where each row is the row/column index of the image element. If missing the default is to use all grid locations. } \item{ind2}{ Matrix of indices for second set of locations. If missing this is taken to be ind2. If ind1 is missing ind2 is coerced to be all grid locations. } \item{Y}{ Vector to multiply by the cross covariance matrix. Y must be the same locations as those referred to by ind2. } \item{cov.args}{Any additional arguments or parameters to the covariance function.} \item{cov.obj}{ A list with the information needed to do the multiplication by convolutions. This is usually found by using the returned list when setup=T. } \item{cov.function}{Name of the (stationary) covariance function.} \item{setup}{ If true do not do the multiplication but just return the covariance object required by this function. } \item{delta}{A distance that indicates the range of the covariance when it has compact support. For example this is the theta parameter in the Wendland covariance.} \item{grid}{ A grid list giving the X and Y grids for the image. (See example below.) This is only required if setup is true. } \item{M}{ Size of x-grid used to compute multiplication (see notes on image.smooth for details) by the FFT. If NULL, the default for M is the largest power of 2 greater than or equal to 2*m where m= length( grid\$x). This will give an exact result but smaller values of M will yield an approximate, faster result. } \item{N}{Size of y-grid used to compute multiplication by the FFT.} \item{theta}{Scale parameter for Matern.} \item{smoothness}{Smoothness parameter for Matern (.5=Exponential)} \item{\dots}{ Any arguments to pass to the covariance function in setting up the covariance object. This is only required if setup is TRUE. For \code{stationary.image.cov} one can include \code{V} a matrix reflecting a rotation and scaling of coordinates. See stationary.cov for details. } } \value{ A vector that is the multiplication of the cross covariance matrix with the vector Y. } \details{ This function was provided to do fast computations for large numbers of spatial locations and supports the conjugate gradient solution in krig.image. In doing so the observations can be irregular spaced but their coordinates must be 2-dimensional and be restricted to grid points. (The function as.image will take irregular, continuous coordinates and overlay a grid on them.) Returned value: If ind1 and ind2 are matrices where nrow(ind1)=m and nrow(ind2)=n then the cross covariance matrix, Sigma is an mXn matrix (i,j) element is the covariance between the grid locations indexed at ind1[i,] and ind2[j,]. The returned result is Sigma\%*\%Y. Note that one can always recover the coordinates themselves by evaluating the grid list at the indices. e.g. cbind( grid\$x[ ind1[,1]], grid\$y[ind1[,2])) will give the coordinates associated with ind1. Clearly it is better just to work with ind1! Functional Form: Following the same form as Exp.cov stationary.cov for irregular locations, the covariance is defined as phi( D.ij) where D.ij is the Euclidean distance between x1[i,] and x2[j,] but having first been scaled by theta. Specifically, D.ij = sqrt( sum.k (( x1[i,k] - x2[j,k]) /theta[k])**2 ). See \code{Matern} for the version of phi for the Matern family. Note that if theta is a scalar then this defines an isotropic covariance function. Implementation: This function does the multiplication on the full grid efficiently by a 2-d FFT. The irregular pattern in Y is handled by padding with zeroes and once that multiplication is done only the appropriate subset is returned. As an example assume that the grid is 100X100 let big.Sigma denote the big covariance matrix among all grid points ( If the parent grid is 100x100 then big.Sigma is 10K by 10K !) Here are the computing steps: temp<- matrix( 0, 100,100) temp[ ind2] <- Y temp2<- big.Sigma\%*\% temp temp2[ind1] Notice how much we pad with zeroes or at the end throw away! Here the matrix multiplication is effected through convolution/FFT tricks to avoid creating and multiplying big.Sigma explicitly. It is often faster to multiply the regular grid and throw away the parts we do not need then to deal directly with the irregular set of locations. Note: In this entire discussion Y is treated as vector. However if one has complete data then Y can also be interpreted as a image matrix conformed to correspond to spatial locations. See the last example for this distinction. } \seealso{ smooth.2d, as.image, krig.image, stationary.cov } \examples{ # multiply 2-d isotropic exponential with theta=4 by a random vector junk<- matrix(rnorm(100*100), 100,100) cov.obj<- stationary.image.cov( setup=TRUE, grid=list(x=1:100,y=1:100),theta=8) result<- stationary.image.cov(Y=junk,cov.obj=cov.obj) image( matrix( result, 100,100)) # NOTE that is also a smoother! # to do it again, no setup is needed # e.g. # junk2<- matrix(rnorm(100**2, 100,100)) # result2<- stationary.image.cov(Y=junk2, cov.obj=cov.obj) # generate a grid and set of indices based on discretizing the locations # in the precip dataset out<-as.image( RMprecip$y, x= RMprecip$x) ind1<- out$ind grid<- list( x= out$x, y=out$y) # # discretized x locations to use for comparison xd<- cbind( out$x[ out$ind[,1]], out$y[ out$ind[,2]] ) # setup to create cov.obj for exponential covariance with range= 1.25 cov.obj<- stationary.image.cov( setup=TRUE, grid=grid, theta=1.25) # multiply covariance matrix by an arbitrary vector junk<- rnorm(nrow( ind1)) result<- stationary.image.cov( ind1, ind1, Y= junk,cov.obj=cov.obj) # The brute force way would be # result<- stationary.cov( xd, xd, theta=1.25, C=junk) # or # result<- stationary.cov( xd, xd, theta=1.25) %*% junk # both of these take much longer # evaluate the covariance between all grid points and the center grid point Y<- matrix(0,cov.obj$m, cov.obj$n) Y[32,32]<- 1 result<- stationary.image.cov( Y= Y,cov.obj=cov.obj) # covariance surface with respect to the grid point at (32,32) # # reshape "vector" as an image temp<- matrix( result, cov.obj$m,cov.obj$n) image.plot(cov.obj$grid$x,cov.obj$grid$y, temp) # or persp( cov.obj$grid$x,cov.obj$grid$y, temp) # check out the Matern grid<- list( x= seq(-105,-99,,64), y= seq( 40,45,,64)) cov.obj<- matern.image.cov( setup=TRUE, grid=grid, theta=.55, smoothness=1.0) Y<- matrix(0,64,64) Y[16,16]<- 1 result<- matern.image.cov( Y= Y,cov.obj=cov.obj) temp<- matrix( result, cov.obj$m,cov.obj$n) image.plot( cov.obj$grid$x,cov.obj$grid$y, temp) # Note we have centered at the location (grid$x[16],grid$y[16]) for this case # using sim.rf to simulate an Matern field look<- sim.rf( cov.obj) image.plot( grid$x, grid$y, look) } \keyword{spatial} % docclass is function % Converted by Sd2Rd version 1.21. fields/man/sim.rf.Rd0000644000175100001440000001105113114135522013771 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{sim.rf} \alias{sim.rf} \title{ Simulates a Stationary Gaussian random field } \description{ Simulates a stationary Gaussian random field on a regular grid with unit marginal variance. } \usage{ sim.rf(obj) } \arguments{ \item{obj}{ A covariance object that includes information about the covariance function and the grid for evaluation. Usually this is created by a setup call to Exp.image.cov, stationary.image.cov, matern.image.cov or other related covariance functions. (See details below.) } \item{\dots}{ Additional arguments passed to a particular method.} } \value{ A matrix with the random field values } \details{ The simulated field has the marginal variance that is determined by the covariance function for zero distance. Within fields the exponential and matern set this equal to one ( e.g. Matern(0) ==1) so that one simulates a random field with a marginal variance of one. For stationary.cov the marginal variance is \code{cov.function(0)} and we recommend that alternative covariance functions also be normalized so that this is one. Of course if one requires a Gaussian field with different marginal variance one can simply scale the result of this function. See the third example below. This function takes an object that includes some preliminary calculations and so is more efficient for simulating more than one field from the same covariance. However, the algorithm using a 2-d FFT (known as circulant embedding) may not always work if the correlation range is large. The simple fix is to increase the size of the domain so that the correlation scale becomes smaller relative to the extent of the domain. Increasing the size can be computationally expensive however and so this method has some limitations. But when it works it is and exact simulation of the random field. For a stationary model the covariance object should have the components: names( obj) "m" "n" "grid" "N" "M" "wght", where m and n are the number of grid points in x and y, grid is a list with components x and y giving the grid points in each coordinate. N and M is the size of the larger grid that is used for simulation. Usually M = 2*m and N =2*n and results in an exact simulation of the stationary Gaussian field. wght is a matrix from the FFT of the covariance function. The easiest way to create this object is to use for example Exp.image.cov with setup=T ( see below). The classic reference for this algorithm is Wood, A.T.A. and Chan, G. (1994). Simulation of Stationary Gaussian Processes in [0,1]^d . Journal of Computational and Graphical Statistics, 3, 409-432. Micheal Stein and Tilman Gneiting have also made some additional contributions to the algortihms and theory. } \seealso{ Exp.image.cov, matern.image.cov, stationary.image.cov } \examples{ #Simulate a Gaussian random field with an exponential covariance function, #range parameter = 2.0 and the domain is [0,5]X [0,5] evaluating the #field at a 100X100 grid. grid<- list( x= seq( 0,5,,100), y= seq(0,5,,100)) obj<-Exp.image.cov( grid=grid, theta=.5, setup=TRUE) look<- sim.rf( obj) # Now simulate another ... look2<- sim.rf( obj) # Suppose one requires an exponential, range = 2 # but marginal variance = 10 ( rho in fields notation) look3<- sqrt( 10)* sim.rf( obj) # take a look at first two set.panel(2,1) image.plot( grid$x, grid$y, look) title("simulated gaussian fields") image.plot( grid$x, grid$y, look2) title("another realization ...") } \keyword{spatial} % docclass is function % Converted by Sd2Rd version 1.21. fields/man/predict.Krig.Rd0000644000175100001440000001547713114135522015140 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{predict.Krig} \alias{predict.Krig} \alias{predict.Tps} \alias{predictDerivative.Krig} \alias{predict.fastTps} \title{ Evaluation of Krig spatial process estimate. } \description{ Provides predictions from the Krig spatial process estimate at arbitrary points, new data (Y) or other values of the smoothing parameter (lambda) including a GCV estimate. } \usage{ \method{predict}{Krig}( object, x = NULL, Z = NULL, drop.Z = FALSE, just.fixed = FALSE, lambda = NA, df = NA, model = NA, eval.correlation.model = TRUE, y = NULL, yM = NULL, verbose = FALSE, ...) predictDerivative.Krig(object, x = NULL, verbose = FALSE,...) \method{predict}{Tps}(object, ... ) \method{predict}{fastTps}(object, xnew = NULL, grid.list = NULL, ynew = NULL, derivative = 0, Z = NULL, drop.Z = FALSE, just.fixed = FALSE, xy = c(1, 2), ...) } \arguments{ \item{derivative}{The degree of the derivative to be evauated. Default is 0 (evaluate the function itself), 1 is supported by some covariance functions, Higher derivatives are not supported in this version and for mKrig.} \item{df}{ Effective degrees of freedom for the predicted surface. This can be used in place of lambda ( see the function Krig.df.to.lambda) } \item{eval.correlation.model}{ If true ( the default) will multiply the predicted function by marginal sd's and add the mean function. This usually what one wants. If false will return predicted surface in the standardized scale. The main use of this option is a call from Krig to find MLE's of rho and sigma2 } \item{grid.list}{A \code{grid.list} specfiying a grid of locations to evaluate the fitted surface.} \item{just.fixed}{ Only fixed part of model is evaluated} \item{lambda}{ Smoothing parameter. If omitted, out\$lambda will be used. (See also df and gcv arguments) } \item{model}{ Generic argument that may be used to pass a different lambda. } \item{object}{ Fit object from the Krig, Tps, mKrig, or fastTps functions. } \item{verbose}{ Print out all kinds of intermediate stuff for debugging } \item{xy}{The column positions that locate the x and y variables for evaluating on a grid. This is mainly useful if the surface has more than 2 dimensions.} \item{y}{ Evaluate the estimate using the new data vector y (in the same order as the old data). This is equivalent to recomputing the Krig object with this new data but is more efficient because many pieces can be reused. Note that the x values are assumed to be the same. } \item{x}{ Matrix of x values on which to evaluate the kriging surface. If omitted, the data x values, i.e. out\$x will be used. } \item{xnew}{Same as x above.} \item{ynew}{Same as y above.} \item{yM}{ If not NULL evaluate the estimate using this vector as the replicate mean data. That is, assume the full data has been collapsed into replicate means in the same order as xM. The replicate weights are assumed to be the same as the original data. (weightsM) } \item{Z}{ Vector/Matrix of additional covariates to be included in fixed part of spatial model} \item{drop.Z}{ If TRUE only spatial fixed part of model is evaluated. i.e. Z covariates are not used. } \item{\dots}{Other arguments passed to covariance function. In the case of \code{fastTps} these are the same arguments as \code{predict.mKrig}. This argument is usually not needed. } } \value{ Vector of predicted responses or a matrix of the partial derivatives. } \details{ The main goal in this function is to reuse the Krig object to rapidly evaluate different estimates. Thus there is flexibility in changing the value of lambda and also the independent data without having to recompute the matrices associated with the Krig object. The reason this is possible is that most on the calculations depend on the observed locations not on lambda or the observed data. Note the version for evaluating partial derivatives does not provide the same flexibility as \code{predict.Krig} and makes some assumptions about the null model (as a low order polynomial) and can not handle the correlation model form. } \seealso{ Krig, predictSurface gcv.Krig } \examples{ Krig(ChicagoO3$x,ChicagoO3$y, theta=50) ->fit predict( fit) # gives predicted values at data points should agree with fitted.values # in fit object # predict at the coordinate (-5,10) x0<- cbind( -5,10) # has to be a 1X2 matrix predict( fit,x= x0) # redoing predictions at data locations: predict( fit, x=ChicagoO3$x) # only the fixed part of the model predict( fit, just.fixed=TRUE) # evaluating estimate at a grid of points grid<- make.surface.grid( list( seq( -40,40,,15), seq( -40,40,,15))) look<- predict(fit,grid) # evaluate on a grid of points # some useful graphing functions for these gridded predicted values out.p<- as.surface( grid, look) # reformat into $x $y $z image-type object contour( out.p) # see also the functions predictSurface and surface # for functions that combine these steps # refit with 10 degrees of freedom in surface look<- predict(fit,grid, df=15) # refit with random data look<- predict( fit, grid, y= rnorm( 20)) # finding partial derivatives of the estimate # # find the partial derivatives at observation locations # returned object is a two column matrix. # this does not make sense for the exponential covariance # but can illustrate this with a thin plate spline with # a high enough order ( i.e. need m=3 or greater) # data(ozone2) # the 16th day of this ozone spatial dataset fit0<- Tps( ozone2$lon.lat, ozone2$y[16,], m=3) look1<- predictDerivative.Krig( fit0) # for extra credit compare this to look2<- predictDerivative.Krig( fit0, x=ozone2$lon.lat) # (why are there more values in look2) } \keyword{spatial} % docclass is function % Converted by Sd2Rd version 1.21. fields/man/interp.surface.Rd0000644000175100001440000000756613114135522015543 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{interp.surface} \alias{interp.surface} \alias{interp.surface.grid} \title{ Fast bilinear interpolator from a grid. } \description{ Uses bilinear weights to interpolate values on a rectangular grid to arbitrary locations or to another grid. } \usage{ interp.surface(obj, loc) interp.surface.grid(obj, grid.list) } \arguments{ \item{obj}{ A list with components x,y, and z in the same style as used by contour, persp, image etc. x and y are the X and Y grid values and z is a matrix with the corresponding values of the surface } \item{loc}{ A matrix of (irregular) locations to interpolate. First column of loc isthe X coordinates and second is the Y's. } \item{grid.list}{ A list with components x and y describing the grid to interpolate. The grids do not need to be equally spaced.} } \value{ An vector of interpolated values. NA are returned for regions of the obj\$z that are NA and also for locations outside of the range of the parent grid. } \details{ Here is a brief explanation of the interpolation: Suppose that the location, (locx, locy) lies in between the first two grid points in both x an y. That is locx is between x1 and x2 and locy is between y1 and y2. Let ex= (l1-x1)/(x2-x1) ey= (l2-y1)/(y2-y1). The interpolant is ( 1-ex)(1-ey)*z11 + (1- ex)(ey)*z12 + ( ex)(1-ey)*z21 + ( ex)(ey)*z22 Where the z's are the corresponding elements of the Z matrix. Note that bilinear interpolation can produce some artifacts related to the grid and not reproduce higher behavior in the surface. For, example the extrema of the interpolated surface will always be at the parent grid locations. There is nothing special about about interpolating to another grid, this function just includes a \code{for} loop over one dimension and a call to the function for irregular locations. It was included in fields for convenience. since the grid format is so common. See also the akima package for fast interpolation from irrgeular locations. Many thanks to Jean-Olivier Irisson for making this code more efficient and concise. } \seealso{ image.smooth, as.surface, as.image, image.plot, krig.image,Tps } \examples{ # # evaluate an image at a finer grid # data( lennon) # create an example in the right list format like image or contour obj<- list( x= 1:20, y=1:20, z= lennon[ 201:220, 201:220]) set.seed( 123) # lots of random points N<- 500 loc<- cbind( runif(N)*20, runif(N)*20) z.new<- interp.surface( obj, loc) # compare the image with bilinear interpolation at scattered points set.panel(2,2) image.plot( obj) quilt.plot( loc, z.new) # sample at 100X100 equally spaced points on a grid grid.list<- list( x= seq( 1,20,,100), y= seq( 1,20,,100)) interp.surface.grid( obj, grid.list)-> look # take a look set.panel(2,2) image.plot( obj) image.plot( look) } \keyword{spatial} % docclass is function % Converted by Sd2Rd version 1.21. fields/man/spam2lz.Rd0000644000175100001440000000616513114135522014175 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{spam2lz} \alias{spind2spam} \alias{spam2spind} \alias{spind2full} \alias{spam2full} \title{Conversion of formats for sparse matrices} \description{ Some supporting functions that are internal to fields top level methods. These are used to convert between the efficient but opaque format used by spam and more easily checked format based directly on the row and column indices of non zero elements. } \usage{ spind2full(obj) spam2full(obj) spind2spam(obj, add.zero.rows=TRUE) spam2spind(obj) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{obj}{ Either a list with the sparse index components (spind) or an obj of class spam.} \item{add.zero.rows}{If TRUE an entire row is zero add a hard zero value to the element in the first column for each zero row. The spam format requires at least one element in each row to have an explicit value. It is OK if this value is zero but one must be specified. } } \details{ The differencee in formats is best illustarted by an example: A 4X5 sparse matrix: \preformatted{ [,1] [,2] [,3] [,4] [,5] [1,] 1 9 0 0 33 [2,] 0 0 0 26 34 [3,] 3 11 0 27 35 [4,] 0 12 20 0 36 } spind format is a list with components "ind", "ra" and "da" here is how the matrix above would be encoded: \preformatted{ ind I [1,] 1 1 [2,] 1 2 [3,] 1 5 [4,] 2 4 [5,] 2 5 [6,] 3 1 [7,] 3 2 [8,] 3 4 [9,] 3 5 [10,] 4 2 [11,] 4 3 [12,] 4 5 da [1] 4 5 ra [1] 1 9 33 26 34 3 11 27 35 12 20 36 } spam format is an S4 class with slot names "entries", "colindices", "rowpointers" and "dimension". entries [1] 1 9 33 26 34 3 11 27 35 12 20 36 colindices [1] 1 2 5 4 5 1 2 4 5 2 3 5 rowpointers [1] 1 4 6 10 13 dimension [1] 4 5 The row pointers are the position in the array of entries where the next row starts. NOTE: It is possible for the spind format to have a missing row of all zeroes but this not allowed in spam format and produces an error message. } \author{Doug Nychka} \seealso{as.spam} \keyword{spatial} % at least one, from doc/KEYWORDS fields/man/predictSE.Krig.Rd0000644000175100001440000001266713114135522015366 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{predictSE} \alias{predictSE} \alias{predictSE.Krig} \alias{predictSE.mKrig} \alias{predictSEUsingKrigA} \title{ Standard errors of predictions for Krig spatial process estimate } \description{ Finds the standard error ( or covariance) of prediction based on a linear combination of the observed data. The linear combination is usually the "Best Linear Unbiased Estimate" (BLUE) found from the Kriging equations. This statistical computation is done under the assumption that the covariance function is known. } \usage{ predictSE(object, ...) \method{predictSE}{Krig}(object, x = NULL, cov = FALSE, verbose = FALSE,...) \method{predictSE}{mKrig}(object, xnew = NULL, Z = NULL, verbose = FALSE, drop.Z = FALSE, ...) } \arguments{ \item{drop.Z}{If FALSE find standard error without including the additional spatial covariates described by \code{Z}. If TRUE find full standard error with spatial covariates if they are part of the model.} \item{object}{ A fitted object that can be used to find prediction standard errors. This is usually from fitting a spatial model to data. e.g. a Krig or mKrig object. } \item{xnew}{ Points to compute the predict standard error or the prediction cross covariance matrix. } \item{x}{ Same as \code{xnew} -- points to compute the predict standard error or the prediction cross covariance matrix. } \item{cov}{ If TRUE the full covariance matrix for the predicted values is returned. Make sure this will not be big if this option is used. ( e.g. 50X50 grid will return a matrix that is 2500X2500!) If FALSE just the marginal standard deviations of the predicted values are returned. Default is FALSE -- of course. } \item{verbose}{If TRUE will print out various information for debugging.} \item{\dots}{ These additional arguments passed to the predictSE function. } \item{Z}{Additional matrix of spatial covariates used for prediction. These are used to determine the additional covariance contributed in teh fixed part of the model.} } \value{ A vector of standard errors for the predicted values of the Kriging fit. } \details{ The predictions are represented as a linear combination of the dependent variable, Y. Call this LY. Based on this representation the conditional variance is the same as the expected value of (P(x) + Z(X) - LY)**2. where P(x)+Z(x) is the value of the surface at x and LY is the linear combination that estimates this point. Finding this expected value is straight forward given the unbiasedness of LY for P(x) and the covariance for Z and Y. In these calculations it is assumed that the covariance parameters are fixed. This is an approximation since in most cases they have been estimated from the data. It should also be noted that if one assumes a Gaussian field and known parameters in the covariance, the usual Kriging estimate is the conditional mean of the field given the data. This function finds the conditional standard deviations (or full covariance matrix) of the fields given the data. There are two useful extensions supported by this function. Adding the variance to the estimate of the spatial mean if this is a correlation model. (See help file for Krig) and calculating the variances under covariance misspecification. The function \code{predictSE.KrigA} uses the smoother matrix ( A(lambda) ) to find the standard errors or covariances directly from the linear combination of the spatial predictor. Currently this is also the calculation in \code{predictSE.Krig} although a shortcut is used \code{predictSE.mKrig} for mKrig objects. } \seealso{ Krig, predict.Krig, predictSurfaceSE } \examples{ # # Note: in these examples predictSE will default to predictSE.Krig using # a Krig object fit<- Krig(ChicagoO3$x,ChicagoO3$y,cov.function="Exp.cov", theta=10) # Krig fit predictSE.Krig(fit) # std errors of predictions at obs. # make a grid of X's xg<-make.surface.grid( list(East.West=seq(-27,34,,20),North.South=seq(-20,35,,20))) out<- predictSE(fit,xg) # std errors of predictions #at the grid points out is a vector of length 400 #reshape the grid points into a 20X20 matrix etc. out.p<-as.surface( xg, out) surface( out.p, type="C") # this is equivalent to the single step function # (but default is not to extrapolation beyond data # out<- predictSurfaceSE( fit) # image.plot( out) } \keyword{spatial} % docclass is function % Converted by Sd2Rd version 1.21. fields/man/summary.Krig.Rd0000644000175100001440000000457013114135522015173 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{summary.Krig} \alias{summary.Krig} \alias{summary.spatialProcess} \title{ Summary for Krig or spatialProcess estimated models. } \description{ Creates a list of summary results including estimates for the nugget variance (sigma) and the smoothing parameter (lambda). This list is usually printed using a "print.summary" function for nice formatting. } \usage{ \method{summary}{Krig}(object, digits=4,...) \method{summary}{spatialProcess}(object, digits=4,...) } \arguments{ \item{object}{ A Krig or spatialProcess object. } \item{digits}{ Number of significant digits in summary. } \item{\dots}{Other arguments to summary} } \value{ Gives a summary of the Krig object. The components include the function call, number of observations, effective degrees of freedom, residual degrees of freedom, root mean squared error, R-squared and adjusted R-squared, log10(lambda), cost, GCV minimum and a summary of the residuals. } \details{ This function is a method for the generic function summary for class Krig. The results are formatted and printed using print.summary.Krig. } \seealso{ Krig, summary, print.summary.Krig } \examples{ fit<- Krig(ChicagoO3$x, ChicagoO3$y, theta=100) summary(fit) # summary of fit } \keyword{spatial} % docclass is function % Converted by Sd2Rd version 1.21. fields/man/mKrig.Rd0000644000175100001440000004765413114551360013670 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{mKrig} \alias{mKrig} \alias{predict.mKrig} \alias{mKrig.coef} \alias{mKrig.trace} \alias{print.mKrig} \alias{summary.mKrig} \alias{mKrigCheckXY} \title{"micro Krig" Spatial process estimate of a curve or surface, "kriging" with a known covariance function. } \description{ This is a simple version of the Krig function that is optimized for large data sets, sparse linear algebra, and a clear exposition of the computations. Lambda, the smoothing parameter must be fixed. This function is called higher level functions for maximum likelihood estimates of covariance paramters. } \usage{ mKrig(x, y, weights = rep(1, nrow(x)), Z = NULL, cov.function = "stationary.cov", cov.args = NULL, lambda = 0, m = 2, chol.args = NULL, find.trA = TRUE, NtrA = 20, iseed = 123, llambda = NULL, na.rm = FALSE, collapseFixedEffect = TRUE, ...) \method{predict}{mKrig}( object, xnew=NULL,ynew=NULL, grid.list = NULL, derivative=0, Z=NULL,drop.Z=FALSE,just.fixed=FALSE, collapseFixedEffect = object$collapseFixedEffect, ...) \method{summary}{mKrig}(object, ...) \method{print}{mKrig}( x, digits=4,... ) mKrig.coef(object, y, collapseFixedEffect=TRUE) mKrig.trace( object, iseed, NtrA) mKrigCheckXY(x, y, weights, Z, na.rm) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{collapseFixedEffect}{ If replicated fields are given to mKrig (i.e. \code{y} has more than one column) there is the choice of estimating the fixed effect coefficients (\code{d} in the returned object) separately for each replicate or pooling across replicates and deriving a single estimate. If \code{collapseFixedEffect} is TRUE (default) the estimates are pooled. } \item{chol.args}{A list of optional arguments (pivot, nnzR) that will be used with the call to the cholesky decomposition. Pivoting is done by default to make use of sparse matrices when they are generated. This argument is useful in some cases for sparse covariance functions to reset the memory parameter nnzR. (See example below.)} \item{cov.args}{A list of optional arguments that will be used in calls to the covariance function.} \item{cov.function}{The name, a text string of the covariance function.} \item{derivative}{If zero the surface will be evaluated. If not zero the matrix of partial derivatives will be computed.} \item{digits}{Number of significant digits used in printed output.} \item{drop.Z}{If true the fixed part will only be evaluated at the polynomial part of the fixed model. The contribution from the other covariates will be omitted.} \item{find.trA}{ If TRUE will estimate the effective degrees of freedom using a simple Monte Carlo method. This will add to the computational burden by approximately NtrA solutions of the linear system but the cholesky decomposition is reused.} \item{grid.list}{A grid.list to evaluate the surface in place of specifying arbitrary locations.} \item{iseed}{Random seed ( using \code{set.seed(iseed)}) used to generate iid normals for Monte Carlo estimate of the trace.} \item{just.fixed}{If TRUE only the predictions for the fixed part of the model will be evaluted.} \item{lambda}{ Smoothing parameter or equivalently the ratio between the nugget and process varainces.} \item{llambda}{If not \code{NULL} then \code{lambda = exp( llambda)}} \item{m}{ The degree of the polynomial used in teh fixed part is (m-1)} \item{na.rm}{If TRUE NAs in y are omitted along with corresonding rows of x.} \item{NtrA}{Number of Monte Carlo samples for the trace. But if NtrA is greater than or equal to the number of observations the trace is computed exactly.} \item{object}{Object returned by mKrig. (Same as "x" in the print function.)} \item{weights}{Precision ( 1/variance) of each observation} \item{x}{Matrix of unique spatial locations (or in print or surface the returned mKrig object.)} \item{xnew}{Locations for predictions.} \item{y}{ Vector or matrix of observations at spatial locations, missing values are not allowed! Or in mKrig.coef a new vector of observations. If y is a matrix the columns are assumed to be independent replicates of the spatial field. I.e. observation vectors generated from the same covariance and measurment error model but independent from each other. } \item{ynew}{New observation vector. \code{mKrig} will reuse matrix decompositions and find the new fit to these data.} \item{Z}{ Linear covariates to be included in fixed part of the model that are distinct from the default low order polynomial in \code{x}. (NOTE the order of the polynomial determined by \code{m})} \item{\dots}{ In \code{mKrig} and \code{predict} additional arguments that will be passed to the covariance function.} } \details{ This function is an abridged version of Krig. The m stand for micro and this function focuses on the computations in Krig.engine.fixed done for a fixed lambda parameter, for unique spatial locations and for data without missing values. These restrictions simplify the code for reading. Note that also little checking is done and the spatial locations are not transformed before the estimation. Because most of the operations are linear algebra this code has been written to handle multiple data sets. Specifically if the spatial model is the same except for different observed values (the y's), one can pass \code{y} as a matrix and the computations are done efficiently for each set. Note that this is not a multivariate spatial model just an efficient computation over several data vectors without explicit looping.A big difference in the computations is that an exact expression for thetrace of the smoothing matrix is (trace A(lambda)) is computationally expensive and a Monte Carlo approximation is supplied instead. See \code{predictSE.mKrig} for prediction standard errors and \code{sim.mKrig.approx} to quantify the uncertainty in the estimated function using conditional simulation. \code{predict.mKrig} will evaluate the derivatives of the estimated function if derivatives are supported in the covariance function. For example the wendland.cov function supports derivatives. \code{print.mKrig} is a simple summary function for the object. \code{mKrig.coef} finds the "d" and "c" coefficients represent the solution using the previous cholesky decomposition for a new data vector. This is used in computing the prediction standard error in predictSE.mKrig and can also be used to evalute the estimate efficiently at new vectors of observations provided the locations and covariance remain fixed. Sparse matrix methods are handled through overloading the usual linear algebra functions with sparse versions. But to take advantage of some additional options in the sparse methods the list argument chol.args is a device for changing some default values. The most important of these is \code{nnzR}, the number of nonzero elements anticipated in the Cholesky factorization of the postive definite linear system used to solve for the basis coefficients. The sparse of this system is essentially the same as the covariance matrix evalauted at the observed locations. As an example of resetting \code{nzR} to 450000 one would use the following argument for chol.args in mKrig: \code{ chol.args=list(pivot=TRUE,memory=list(nnzR= 450000))} \code{mKrig.trace} This is an internal function called by \code{mKrig} to estimate the effective degrees of freedom. The Kriging surface estimate at the data locations is a linear function of the data and can be represented as A(lambda)y. The trace of A is one useful measure of the effective degrees of freedom used in the surface representation. In particular this figures into the GCV estimate of the smoothing parameter. It is computationally intensive to find the trace explicitly but there is a simple Monte Carlo estimate that is often very useful. If E is a vector of iid N(0,1) random variables then the trace of A is the expected value of t(E)AE. Note that AE is simply predicting a surface at the data location using the synthetic observation vector E. This is done for \code{NtrA} independent N(0,1) vectors and the mean and standard deviation are reported in the \code{mKrig} summary. Typically as the number of observations is increased this estimate becomse more accurate. If NtrA is as large as the number of observations (\code{np}) then the algorithm switches to finding the trace exactly based on applying A to \code{np} unit vectors. } \value{ \item{d}{Coefficients of the polynomial fixed part and if present the covariates (Z).To determine which is which the logical vector ind.drift also part of this object is TRUE for the polynomial part. } \item{c}{ Coefficients of the nonparametric part.} \item{nt}{ Dimension of fixed part.} \item{np}{ Dimension of c.} \item{nZ}{Number of columns of Z covariate matrix (can be zero).} \item{ind.drift}{Logical vector that indicates polynomial coefficients in the \code{d} coefficients vector. This is helpful to distguish between polynomial part and the extra covariates coefficients associated with Z. } \item{lambda.fixed}{The fixed lambda value} \item{x}{Spatial locations used for fitting.} \item{knots}{The same as x} \item{cov.function.name}{Name of covariance function used.} \item{args}{ A list with all the covariance arguments that were specified in the call.} \item{m}{Order of fixed part polynomial.} \item{chol.args}{ A list with all the cholesky arguments that were specified in the call.} \item{call}{ A copy of the call to mKrig.} \item{non.zero.entries}{ Number of nonzero entries in the covariance matrix for the process at the observation locations.} \item{shat.MLE}{MLE of sigma.} \item{rho.MLE}{MLE or rho.} \item{rhohat}{Estimate for rho adjusted for fixed model degrees of freedom (ala REML).} \item{lnProfileLike}{log Profile likelihood for lambda} \item{lnDetCov}{Log determinant of the covariance matrix for the observations having factored out rho.} \item{Omega}{GLS covariance for the estimated parameters in the fixed part of the model (d coefficients0.} \item{qr.VT, Mc}{QR and cholesky matrix decompositions needed to recompute the estimate for new observation vectors.} \item{fitted.values, residuals}{Usual predictions from fit.} \item{eff.df}{Estimate of effective degrees of freedom. Either the mean of the Monte Carlo sample or the exact value. } \item{trA.info}{If NtrA ids less than \code{np} then the individual members of the Monte Carlo sample and \code{sd(trA.info)/ sqrt(NtrA)} is an estimate of the standard error. If NtrA is greater than or equal to \code{np} then these are the diagonal elements of A(lamdba).} \item{GCV}{Estimated value of the GCV function.} \item{GCV.info}{Monte Carlo sample of GCV functions} } \author{Doug Nychka, Reinhard Furrer, John Paige} \seealso{ Krig, surface.mKrig, Tps, fastTps, predictSurface, predictSE.mKrig, sim.mKrig.approx, \code{ \link{mKrig.grid}}} \examples{ # # Midwest ozone data 'day 16' stripped of missings data( ozone2) y<- ozone2$y[16,] good<- !is.na( y) y<-y[good] x<- ozone2$lon.lat[good,] # nearly interpolate using defaults (Exponential covariance range = 2.0) # see also mKrigMLEGrid to choose lambda by maxmimum likelihood out<- mKrig( x,y, theta = 2.0, lambda=.01) out.p<- predictSurface( out) surface( out.p) # # NOTE this should be identical to # Krig( x,y, theta=2.0, lambda=.01) ############################################################################## # an example using a "Z" covariate and the Matern family # again see mKrigMLEGrid to choose parameters by MLE. data(COmonthlyMet) yCO<- CO.tmin.MAM.climate good<- !is.na( yCO) yCO<-yCO[good] xCO<- CO.loc[good,] Z<- CO.elev[good] out<- mKrig( xCO,yCO, Z=Z, cov.function="stationary.cov", Covariance="Matern", theta=4.0, smoothness=1.0, lambda=.1) set.panel(2,1) # quilt.plot with elevations quilt.plot( xCO, predict(out)) # Smooth surface without elevation linear term included surface( out) set.panel() ######################################################################### # Interpolate using tapered version of the exponential, # the taper scale is set to 1.5 default taper covariance is the Wendland. # Tapering will done at a scale of 1.5 relative to the scaling # done through the theta passed to the covariance function. data( ozone2) y<- ozone2$y[16,] good<- !is.na( y) y<-y[good] x<- ozone2$lon.lat[good,] mKrig( x,y,cov.function="stationary.taper.cov", theta = 2.0, lambda=.01, Taper="Wendland", Taper.args=list(theta = 1.5, k=2, dimension=2) ) -> out2 # Try out GCV on a grid of lambda's. # For this small data set # one should really just use Krig or Tps but this is an example of # approximate GCV that will work for much larger data sets using sparse # covariances and the Monte Carlo trace estimate # # a grid of lambdas: lgrid<- 10**seq(-1,1,,15) GCV<- matrix( NA, 15,20) trA<- matrix( NA, 15,20) GCV.est<- rep( NA, 15) eff.df<- rep( NA, 15) logPL<- rep( NA, 15) # loop over lambda's for( k in 1:15){ out<- mKrig( x,y,cov.function="stationary.taper.cov", theta = 2.0, lambda=lgrid[k], Taper="Wendland", Taper.args=list(theta = 1.5, k=2, dimension=2) ) GCV[k,]<- out$GCV.info trA[k,]<- out$trA.info eff.df[k]<- out$eff.df GCV.est[k]<- out$GCV logPL[k]<- out$lnProfileLike } # # plot the results different curves are for individual estimates # the two lines are whether one averages first the traces or the GCV criterion. # par( mar=c(5,4,4,6)) matplot( trA, GCV, type="l", col=1, lty=2, xlab="effective degrees of freedom", ylab="GCV") lines( eff.df, GCV.est, lwd=2, col=2) lines( eff.df, rowMeans(GCV), lwd=2) # add exact GCV computed by Krig out0<- Krig( x,y,cov.function="stationary.taper.cov", theta = 2.0, Taper="Wendland", Taper.args=list(theta = 1.5, k=2, dimension=2), spam.format=FALSE) lines( out0$gcv.grid[,2:3], lwd=4, col="darkgreen") # add profile likelihood utemp<- par()$usr utemp[3:4] <- range( -logPL) par( usr=utemp) lines( eff.df, -logPL, lwd=2, col="blue", lty=2) axis( 4) mtext( side=4,line=3, "-ln profile likelihood", col="blue") title( "GCV ( green = exact) and -ln profile likelihood", cex=2) ######################################################################### # here is a series of examples with bigger datasets # using a compactly supported covariance directly set.seed( 334) N<- 1000 x<- matrix( 2*(runif(2*N)-.5),ncol=2) y<- sin( 1.8*pi*x[,1])*sin( 2.5*pi*x[,2]) + rnorm( 1000)*.1 look2<-mKrig( x,y, cov.function="wendland.cov",k=2, theta=.2, lambda=.1) # take a look at fitted surface predictSurface(look2)-> out.p surface( out.p) # this works because the number of nonzero elements within distance theta # are less than the default maximum allocated size of the # sparse covariance matrix. # see spam.options() for the default values # The following will give a warning for theta=.9 because # allocation for the covariance matirx storage is too small. # Here theta controls the support of the covariance and so # indirectly the number of nonzero elements in the sparse matrix \dontrun{ look2<- mKrig( x,y, cov.function="wendland.cov",k=2, theta=.9, lambda=.1) } # The warning resets the memory allocation for the covariance matrix # according the to values 'spam.options(nearestdistnnz=c(416052,400))' # this is inefficient becuase the preliminary pass failed. # the following call completes the computation in "one pass" # without a warning and without having to reallocate more memory. spam.options(nearestdistnnz=c(416052,400)) look2<- mKrig( x,y, cov.function="wendland.cov",k=2, theta=.9, lambda=1e-2) # as a check notice that # print( look2) # reports the number of nonzero elements consistent with the specifc allocation # increase in spam.options # new data set of 1500 locations set.seed( 234) N<- 1500 x<- matrix( 2*(runif(2*N)-.5),ncol=2) y<- sin( 1.8*pi*x[,1])*sin( 2.5*pi*x[,2]) + rnorm( N)*.01 \dontrun{ # the following is an example of where the allocation (for nnzR) # for the cholesky factor is too small. A warning is issued and # the allocation is increased by 25% in this example # look2<- mKrig( x,y, cov.function="wendland.cov",k=2, theta=.1, lambda=1e2 ) } # to avoid the warning look2<-mKrig( x,y, cov.function="wendland.cov", k=2, theta=.1, lambda=1e2, chol.args=list(pivot=TRUE, memory=list(nnzR= 450000))) ############################################################################### # fiting multiple data sets # #\dontrun{ y1<- sin( 1.8*pi*x[,1])*sin( 2.5*pi*x[,2]) + rnorm( N)*.01 y2<- sin( 1.8*pi*x[,1])*sin( 2.5*pi*x[,2]) + rnorm( N)*.01 Y<- cbind(y1,y2) look3<- mKrig( x,Y,cov.function="wendland.cov",k=2, theta=.1, lambda=1e2 ) # note slight difference in summary because two data sets have been fit. print( look3) #} ################################################################## # finding a good choice for theta as a taper # Suppose the target is a spatial prediction using roughly 50 nearest neighbors # (tapering covariances is effective for roughly 20 or more in the situation of # interpolation) see Furrer, Genton and Nychka (2006). # take a look at a random set of 100 points to get idea of scale set.seed(223) ind<- sample( 1:N,100) hold<- rdist( x[ind,], x) dd<- (apply( hold, 1, sort))[65,] dguess<- max(dd) # dguess is now a reasonable guess at finding cutoff distance for # 50 or so neighbors # full distance matrix excluding distances greater than dguess # but omit the diagonal elements -- we know these are zero! hold<- nearest.dist( x, delta= dguess,upper=TRUE) # exploit spam format to get quick of number of nonzero elements in each row hold2<- diff( hold@rowpointers) # min( hold2) = 55 which we declare close enough # now the following will use no less than 55 nearest neighbors # due to the tapering. \dontrun{ mKrig( x,y, cov.function="wendland.cov",k=2, theta=dguess, lambda=1e2) -> look2 } ############################################################################### # use precomputed distance matrix # \dontrun{ y1<- sin( 1.8*pi*x[,1])*sin( 2.5*pi*x[,2]) + rnorm( N)*.01 y2<- sin( 1.8*pi*x[,1])*sin( 2.5*pi*x[,2]) + rnorm( N)*.01 Y<- cbind(y1,y2) #precompute distance matrix in compact form distMat = rdist(x, compact=TRUE) look3<- mKrig( x,Y,cov.function="stationary.cov", theta=.1, lambda=1e2, distMat=distMat ) #precompute distance matrix in standard form distMat = rdist(x) look3<- mKrig( x,Y,cov.function="stationary.cov", theta=.1, lambda=1e2, distMat=distMat ) } } \references{ %% ~put references to the literature/web site here ~ http://cran.r-project.org/web/packages/fields/fields.pdf http://www.image.ucar.edu/~nychka/Fields/ } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{spatial } fields/man/US.dat.Rd0000644000175100001440000000260013114135521013670 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{US.dat} \alias{US.dat} \title{ Outline of coterminous US and states. } \description{ This data set is used by the fields function US to draw a map. It is the medium resolution outline that is produced by drawing the US from the maps package. } \keyword{datasets} % docclass is data % Converted by Sd2Rd version 1.21. fields/man/ozone.Rd0000644000175100001440000000444513114135522013736 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{Chicago ozone test data} \alias{ChicagoO3} \alias{ozone} \title{ Data set of ozone measurements at 20 Chicago monitoring stations. } \description{ This data set used be named \code{ozone} but was changed to avoid conflict with other packages. The \code{ChicagoO3} data is a list of components, x and y. x component is longitude and latitude position of each of the 20 Chicago monitoring stations, y is the average daily ozone values over the time period 6/3/87-8/30/87. These data are used extensively for the test scripts and simple examples. The lasting scientific value is probably minimal. } \format{ This data set is a list containing the following components: \describe{ \item{lon.lat}{ Longitude-latitude positions of monitoring stations. } \item{x}{An approximate Cartesian set of coordinates for the locations where the units are in miles. The origin is in the center of the locations. } \item{y}{ Average daily ozone values over 1987 summer. } } } \source{ AIRS, the EPA air quality data base. } \seealso{ Tps, Krig } \examples{ fit<- Tps(ChicagoO3$x, ChicagoO3$y) # fitting a surface to ozone measurements. surface( fit, type="I") } \keyword{datasets} % docclass is function % Converted by Sd2Rd version 1.21. fields/man/spatialProcess.Rd0000644000175100001440000003555413114135522015605 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{spatialProcess} \alias{spatialProcess} \alias{plot.spatialProcess} \alias{print.spatialProcess} %- Also NEED an '\alias' for EACH other topic documented here. \title{ Estimates a spatial process model. %% ~~function to do ... ~~ } \description{ For a given covariance function estimates the nugget (sigma^2) and process variance (rho) and the range parameter (theta) by restricted maximum likelihood and then computes the spatial model with these estimated parameters. Other parameters of the covariance are kept fixed and need to be specified. %% ~~ A concise (1-5 lines) description of what the function does. ~~ } \usage{ spatialProcess(x, y, weights = rep(1, nrow(x)), Z = NULL, mKrig.args = list(m = 2), cov.function = "stationary.cov", cov.args = list(Covariance = "Matern", smoothness = 1), theta = NULL, theta.start = NULL, lambda.start = 0.5, theta.range = NULL, abstol = 1e-04, na.rm = TRUE, verbose = FALSE, REML = FALSE, ...) \method{print}{spatialProcess}(x, digits = 4, ...) \method{plot}{spatialProcess}(x, digits = 4, which = 1:4, ...) } \arguments{ \item{x}{Observation locations} \item{y}{Observation values} \item{weights}{Weights for the error term (nugget) in units of reciprocal variance.} \item{Z}{A matrix of extra covariates for the fixed part of spatial model. E.g. elevation for fitting climate data over space. } \item{mKrig.args}{Arguments passed to the mKrig function.} \item{cov.function}{A character string giving the name of the covariance function for the spatial component.} \item{cov.args}{ A list specifying parameters and other components of the covariance function.} \item{theta}{If not NULL the range parameter for the covariance is fixed at this value. } \item{theta.start}{Starting value for MLE fitting of the scale (aka range) parameter. If omitted the starting value is taken from a grid search ove theta.} \item{lambda.start}{Starting value for MLE fitting of the lambda parameter. Note lambda is the ratio of the nugget variance to the process variance. In code variables this is \code{sigma^2} divided by \code{rho}. } \item{ theta.range }{A range for the ML search to estimate theta. Default is based on quantiles of the location pairwise distances.} \item{na.rm}{If TRUE NAs are removed from the data. } % \item{gridN}{Number of grid points for evaluating profile likelihood over % theta and % also over lambda (using MLE for theta).} %\item{optim.args}{Arguements to be used in optim for finding joint %MLEs for theta %and lambda. } \item{REML}{ If TRUE the parameters are found by restricted maximum likelihood.} \item{verbose}{If TRUE print out intermediate information for debugging.} \item{\dots}{ Any other arguments that will be passed to the \code{mKrig} function and interpreted as additional arguments to the covariance function. E.g. \code{smoothness} for the Matern covariance. } \item{abstol}{The absolute tolerance bound used to judge convergence. This is applied to the difference in log likelihood values. } \item{digits}{Number of significant digits in printed summary} \item{which}{The vector 1:4 or any subset of 1:4, giving the plots to draw. See the description ofthese plots below.} } \details{ This function makes many choices for the user in terms of defaults and it is important to be aware of these. The spatial model is Y.k= P(x.k) + Z(x.k)\%*\%d2 + g(x.k) + e.k where ".k" means subscripted by k, Y.k is the dependent variable observed at location x.k. P is a low degree polynomial (default is a linear function in the spatial coordinates) and Z is a matrix of covariates (optional) that enter as a linear model the fixed part. g is a mean zero, Gaussian stochastic process with a marginal variance of rho and a scale (or range) parameter, theta. The measurement errors, e.k, are assumed to be uncorrelated, normally distributed with mean zero and standard deviation sigma. If weights are supplied then the variance of e is assumed to be \code{sigma^2/ weights}. Perhaps the most important aspect of this function is that the range (theta), nugget (sigma**2) and process variance (rho) parameters for the covariance are estimated by restricted maximum likelihood and this is the model that is then used for spatial prediction. Geostatistics usaually refers to sigma**2 + rho as the "sill" and often these parameters are estimated by variogram fitting rather than maximum likelihood. To be consistent with spline models and to focus on the key part of model we reparametrize as lambda= sigma**2/ rho and rho. Thinking about h as the spatial signal and e as the noise lambda can be interpreted as the noise to signal variance ratio in this spatial context.(See the comparision with fitting the geoR model in the examples section.) The likelihood and the cross valdiation function can be concentrated to only depend on lambda and theta and so in reported the optimiztation of these two criterion we focus on this form of the parameters. Once lambda and theta are found, the MLE for rho has a closed form and of course then sigma is then determined from lambda and rho. Often the lambda parameter is difficult to interpret when covariates and a linear function of the coordinates is included and also when the range becomes large relative to the size of the spatial domain. For this reason it is convenient to report the effective degrees of freedom (also referred to trA in R code and the output summaries) associated with the predicted surface or curve. This measure has a one to one relationship with lamdba and is easier to interpret. For example an eff degrees of freedom that is very small suggests that the surface is rwell represented by a low ordoer polynomial. Degrees of freedom close to the number of locations indicates a surface that is close to interpolating the observations and suggests a small or zero value for the nugget variance. The default covariance model is assumed to follow a Matern with smoothness set to 1.0. This is implementd using the \code{stationary.cov} covariance that can take a argument for the form of the covariance, a sill and range parameters and possibily additional parameter might comtrol the shape. See the example below how to switch to another model. (Note that the exponential is also part of the Matern family with smoothness set to .5. ) The parameter estimation is done by \code{MLESpatialProcess} and the returned list from this function is added to the Krig output object that is returned by this function. The estimate is a version of maximum likelihood where the observations are transfromed to remove the fixed linear part of the model. If the user just wants to fix the range parameter theta then \code{Krig} can be used. NOTE: The defaults for the \code{optim} function used in MLESpatialProcess are: \preformatted{ list(method = "BFGS", control=list(fnscale = -1, ndeps = rep(log(1.1),length(cov.params.start)+1), abstol = abstol, maxit = 20)) } There is always a hazard in providing a simple to use method that makes many default choices for the spatial model. As in any analysis be aware of these choices and try alternative models and parameter values to assess the robustness of your conclusions. Also examine the residuals to check the adequacy of the fit. See the examples below for some help in how to do this easily in fields. Also see quilt.plot to get an quick plot to discern spatial paterns. \strong{plot} method provides a panel of 4 diagnositic plots of the fit. Use \code{set.panel(2,2)} to see all 4 at once. The third plot gives the likelihood and GCV functions as a function of lambda evaluated at the global MLE for theta. This is based on the gird evaluations in the component MLEInfo$MLEProfileLambda. The fourth plot is a profile likelihood trace for theta having maximized over lambda and is based on the component MLEInfo$MLEGrid. \strong{print} method gives a summary of the fit. %% ~~ If necessary, more details than the description above ~~ } \value{ An object of classes \code{mKrig} and \code{SpatialProcess}. The main difference from mKrig is an extra component, \code{MLEInfo} that has the results of the grid evaluation over theta (maximizing lamdba), joint maximization over theta and lambda, and a grid evaluation over lambda with theta fixed at its MLE. } \author{ Doug Nychka%% ~~who you are~~ } \seealso{ Tps, MLESpatialProcess, mKrigMLEGrid, mKrigMLEJoint, plot.Krig, predict.mKrig, predictSE.mKrig } \examples{ data( ozone2) # x is a two column matrix where each row is a location in lon/lat # coordinates x<- ozone2$lon.lat # y is a vector of ozone measurements at day 16 a the locations. y<- ozone2$y[16,] obj<- spatialProcess( x, y) # summary of model summary( obj) # diagnostic plots set.panel(2,2) plot(obj) # plot 1 data vs. predicted values # plot 2 residuals vs. predicted # plot 3 criteria to select the smoothing # parameter lambda = sigma^2 / rho # the x axis has transformed lambda # in terms of effective degrees of freedom # to make it easier to interpret # Note that here the GCV function is minimized # while the REML is maximzed. # plot 4 the log profile likelihood used to # determine theta. # # predictions on a grid surface( obj) #(see also predictSurface for more control on evaluation grid # and plotting) # \dontrun{ # working with covariates and filling in missing station data # using an ensemble method # see the example under help(sim.spatialProcess) to see how to # handle a conditional simulation on a grid of predictions with # covariates. data(COmonthlyMet) fit1E<- spatialProcess(CO.loc,CO.tmin.MAM.climate, Z=CO.elev, theta.range= c(.25, 2.0) ) set.panel( 2,2) plot( fit1E) # conditional simulation at missing data notThere<- is.na(CO.tmin.MAM.climate ) xp <- CO.loc[notThere,] Zp <- CO.elev[notThere] infill<- sim.spatialProcess( fit1E, xp=xp, Z= Zp, M= 10) # # interpretation is that these infilled values are all equally plausible # given the observations and also given the estimated covariance model # # for extra credit one could now standardized the infilled values to have # conditional mean and variance from the exact computations # e.g. predict( fit1E, xp=CO.loc[!good,], Z= CO.elev[!good]) # and predictSE(fit1E, xp=CO.loc[!good,], Z= CO.elev[!good]) # with these standardization one would still preserve the correlations # among the infilled values that is also important for considering them as a # multivariate prediction. # conditional simulation on a grid but not using the covariate of elevation fit2<- spatialProcess(CO.loc,CO.tmin.MAM.climate, theta.range= c(.25, 2.0) ) # note larger range parameter # create 2500 grids using handy function gridList <- fields.x.to.grid( fit2$x, nx=50,ny=50) xGrid<- make.surface.grid( gridList) ensemble<- sim.spatialProcess( fit2, xp=xGrid, M= 5) # this is an "n^3" computation so increasing the grid size # can slow things down for computation image.plot( as.surface( xGrid, ensemble[1,])) set.panel() } \dontrun{ data( ozone2) # x is a two column matrix where each row is a location in lon/lat # coordinates x<- ozone2$lon.lat # y is a vector of ozone measurements at day 16 a the locations. y<- ozone2$y[16,] # a comparison to using an exponential and Wendland covariance function # and great circle distance -- just to make range easier to interpret. obj <- spatialProcess( x, y, Distance = "rdist.earth") obj2<- spatialProcess( x, y, cov.args = list(Covariance = "Exponential"), Distance = "rdist.earth" ) obj3<- spatialProcess( x, y, cov.args = list(Covariance = "Wendland", dimension = 2, k = 2), Distance = "rdist.earth") # obj2 could be also be fit using the argument: # cov.args = list(Covariance = "Matern", smoothness=.5) # # Note very different range parameters - BTW these are in miles # but similar nugget variances. obj$pars obj2$pars obj3$pars # since the exponential is Matern with smoothness == .5 the first two # fits can be compared in terms of their likelihoods # the REML value is slightly higher for obj verses obj2 (598.4 > 596.7) # these are the _negative_ log likelihoods so suggests a preference for the # exponential model # # does it really matter in terms of spatial prediction? set.panel( 3,1) surface( obj) US( add=TRUE) title("Matern sm= 1.0") surface( obj2) US( add=TRUE) title("Matern sm= .5") surface( obj3) US( add=TRUE) title("Wendland k =2") # prediction standard errors # these take a while because prediction errors are based # directly on the Kriging weight matrix # see mKrig for an alternative. set.panel( 2,1) out.p<- predictSurfaceSE( obj, nx=40,ny=40) surface( out.p) US( add=TRUE) title("Matern sm= 1.0") points( x, col="magenta") # out.p<- predictSurfaceSE( obj, nx=40,ny=40) surface( out.p) US( add=TRUE) points( x, col="magenta") title("Matern sm= .5") } set.panel(1,1) \dontrun{ ### comparison with GeoR data(ozone2) x<- ozone2$lon.lat y<- ozone2$y[16,] good<-!is.na(y) x1<- x[good,] y1<- y[good] obj<- spatialProcess( x, y, mKrig.args= list(m=1), smoothness = .5 ) library( geoR) ml.n <- likfit(coords= x1, data=y1, ini = c(570, 3), nug = 50) # compare to stuffFields<- obj$MLEInfo$MLEJoint$summary[c(1,3,4,5)] stuffGeoR<- c( ml.n$loglik, ml.n$phi, sqrt(ml.n$nugget),ml.n$sigmasq) test.for.zero( stuffFields, stuffGeoR, tol=.005) } } \keyword{ spatial}% __ONLY ONE__ keyword per line fields/man/print.Krig.Rd0000644000175100001440000000332513114135522014627 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{print.Krig} \alias{print.Krig} \title{ Print kriging fit results. } \description{ Prints the results from a fitting a spatial process estimate (Krig) } \usage{ \method{print}{Krig}(x,digits=4,...) } \arguments{ \item{x}{ Object from Krig function. } \item{digits}{ Number of significant digits in printed output. Default is 4. } \item{\dots}{ Other arguments to print.} } \value{ Selected summary results from Krig. } \seealso{ print, summary.Krig, Krig } \examples{ fit<- Krig(ChicagoO3$x,ChicagoO3$y, theta=100) print(fit) # print the summary fit # this will work too } \keyword{spatial} % docclass is function % Converted by Sd2Rd version 1.21. fields/man/stats.bin.Rd0000644000175100001440000000516113114135522014505 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{stats.bin} \alias{stats.bin} \title{ Bins data and finds some summary statistics. } \description{ Cuts up a numeric vector based on binning by a covariate and applies the fields stats function to each group } \usage{ stats.bin(x, y, N = 10, breaks = NULL) } \arguments{ \item{x}{ Values to use to decide bin membership } \item{y}{ A vector of data } \item{N}{ Number of bins. If the breaks is missing there are N bins equally spaced on the range of x. } \item{breaks}{ The bin boundaries. If there are N+1 of these there will be N bins. The bin widths can be unequal. } } \value{ A list with several components. stats is a matrix with columns indexing the bins and rows being summary statistics found by the stats function. These are: number of obs, mean, sd, min, quartiles, max and number of NA's. (If there is no data for a given bin, NA's are filled in. ) breaks are the breaks passed to the function and centers are the bin centers. } \seealso{ bplot, stats } \examples{ u<- rnorm( 2000) v<- rnorm( 2000) x<- u y<- .7*u + sqrt(1-.7**2)*v look<- stats.bin( x,y) look$stats["Std.Dev.",] data( ozone2) # make up a variogram day 16 of Midwest daily ozone ... look<- vgram( ozone2$lon.lat, c(ozone2$y[16,]), lon.lat=TRUE) # break points brk<- seq( 0, 250,,40) out<-stats.bin( look$d, look$vgram, breaks=brk) # plot bin means, and some quantiles Q1, median, Q3 matplot( out$centers, t(out$stats[ c("mean", "median","Q1", "Q3"),]), type="l",lty=c(1,2,2,2), col=c(3,4,3,4), ylab="ozone PPB") } \keyword{univar} % docclass is function % Converted by Sd2Rd version 1.21. fields/man/fields-stuff.Rd0000644000175100001440000001217413114135522015175 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{fields-stuff} \alias{fields.diagonalize2} \alias{fields.diagonalize} \alias{fields.duplicated.matrix} \alias{fields.mkpoly} \alias{fields.derivative.poly} \alias{fields.evlpoly} \alias{fields.evlpoly2} \title{Fields supporting functions} \description{ Some supporting functions that are internal to fields top level methods. Variants of these might be found in the R base but these have been written for cleaner code or efficiency. } \usage{ fields.diagonalize2(A,B, verbose=FALSE) fields.diagonalize(A,B) fields.duplicated.matrix(mat, digits = 8) fields.mkpoly(x, m = 2) fields.derivative.poly(x, m,dcoef) fields.evlpoly( x, coef) fields.evlpoly2( x, coef, ptab) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{A}{ A positive definite matrix} \item{B}{ A positive definite matrix} \item{mat}{ Arbitrary matrix for examining rows} \item{digits}{Number of significant digits to use for comparing elements to determine duplciate values. } \item{x}{ Arbitrary matrix where rows are components of a multidimensional vector} \item{m}{ The null space degree -- results in a polynomial of degree (m-1) } \item{dcoef}{ Coefficients of a multidimensional polynomial} \item{coef}{Polynomial coefficients.} \item{ptab}{Table of powers of different polnomial terms.} \item{verbose}{If TRUE prints condition number of A+B} } \details{ Given two matrices A (positive definite) and B (nonnegative definite) \code{fields.diagonalize} and \code{fields.diagonalize2} finds the matrix transformation G that will convert A to a identity matrix and B to a diagonal matrix: G\^T A G= I G\^T B G= D. \code{fields.diagonalize2} is not as easy to follow as \code{fields.diagonalize} but may be more stable and is the version used in the Krig engine. \code{fields.duplicated} finds duplicate rows in a matrix. The digits arguments is the number of digits that are considered in the comparison. The returned value is an array of integers from 1:M where M is the number of unique rows and duplicate rows are referenced in the same order that they appear as the rows of \code{mat}. \code{fields.mkpoly} computes the complete matrix of all monomial terms up to degree (m-1). Each row of \code{x} is are the componets of a vector. (The fields function mkpoly returns the number of these terms.) In 2 dimensions with m=3 there 6 polynomial terms up to quadratic ( 3-1 =2) order and will be returned as the matrix: cbind( 1 , x[,1], x[,2], x[,1]**2, x[,1]*x[,2], x[,2]**2 ) This function is used for the fixed effects polynomial or spatial drift used in spatial estimating functions Krig, Tps and mKrig. The matrix ptab is a table of the powers in each term for each variable and is included as an attribute to the matrix returned by this function. See the \code{attr} function for extracting an attribute from an object. \code{ptab} for the example above is \preformatted{ [,1] [,2] [1,] 0 0 [2,] 1 0 [3,] 0 1 [4,] 2 0 [5,] 1 1 [6,] 0 2 } This information is used in finding derivatives of the polynomial. \code{fields.deriviative.poly} finds the partial derivative matrix of a multidimensional polynomial of degree (m-1) at different vector values and with coefficients \code{dcoef}. This function has been orgainzed to be a clean utility for the predicting the derivative of the estimated function from Krig or mKrig. Within the fields context the polynomial itself would be evaluated as fields.mkpoly( x,m)\%*\%dcoef. If x has d columns ( also the dimension of the polynomial) and n rows the partial derivatives of this polynomial at the locations x can be organized in a nXd matrix. This is the object returned by ths function. \code{evlpoly} and \code{evlpoly2} are FORTRAN based functions for evaluating univariate polynomials and multivariate polynomials. The table of powers (ptab) needed for evlpoly2 is the same format as that returned my the fields.mkpoly function. } \author{Doug Nychka} \seealso{Krig, Tps, as.image, predict.Krig, predict.mKrig, Krig.engine.default, Wendland} \keyword{spatial} % at least one, from doc/KEYWORDS fields/man/summary.ncdf.Rd0000644000175100001440000000407513114135522015211 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{summary.ncdf} \alias{summary.ncdf} %- Also NEED an '\alias' for EACH other topic documented here. \title{Summarizes a netCDF file handle} \description{ Provides a summary of the variable names and sizes from the handle returned from netCDF file. } \usage{ \method{summary}{ncdf}(object,...) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{object}{ The "handle" returned by the \code{read.ncdf} function from the ncdf package. } \item{\dots}{ Other arguments to pass to this function. Currently, no other arguments are used. } } \details{ This function is out of place in fields but was included because often large geophysical data sets are in netCDF format and the ncdf R package is also needed. To date the summary capability in the ncdf package is limited and this function is used to supplement it use. The function is also a a useful device to see how the ncdf object is structured. } \author{ D. Nychka } \seealso{ ncdf} \keyword{ IO }% at least one, from doc/KEYWORDS fields/man/FORTRAN.internal.Rd0000644000175100001440000000520213114135521015521 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{fields exported FORTRAN} \alias{css} \alias{ddfind} \alias{dmaket} \alias{evlpoly} \alias{evlpoly2} \alias{igpoly} \alias{inpoly} \alias{multeb} \alias{multrb} \alias{radbas} \alias{rcss} \title{ FORTRAN subroutines used in fields functions } \description{ These functions implement cubic smoothing splines and also provide some basic computations for radial basis functions. All are called using the \code{.FORTRAN} interface. } \details{ For these low level FORTRAN subroutines refer to the R functions for the calling sequence and to the src subdirectory of the fields pacakage for the source code. \describe{ \item{css}{Cubic smoothing spline see \code{sreg} and \code{splint}} \item{ddfind}{Finds nearest neighbor points within a fixed distance. See \code{fields.rdist.near}} \item{dmaket}{Creates matrix of all polynomial terms up to fixed order. See \code{fields.mkpoly}} \item{evlpoly}{evaluates a univariate polynomial. See code{fields.evlpoly}} \item{evlpoly2}{ evaluates a multivariate polynomial. See code{fields.evlpoly2}} \item{inpoly}{Determine which 2-d locations are within a polynomial. see \code{in.poly}} \item{igpoly}{Determine which 2-d grid points locations are within a polynomial. see \code{in.poly.grid}} \item{multeb}{Multiply an exponential cross covariance matrix by another matrix. See \code{exp.cov}} \item{multrb}{Multiply an radial basis function matrix by another matrix. See \code{rad.cov}} \item{radbas}{Evaluates radial basis functions. See \code{rdist.R}} \item{rcss}{Robust cubic smoothing spline. See \code{qsreg}} } } \keyword{internal} fields/man/flame.Rd0000644000175100001440000000362313114135522013665 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{flame} \alias{flame} \title{ Response surface experiment ionizing a reagent } \description{ The characteristics of an ionizing flame are varied with the intent of maximizing the intensity of emitted light for lithuim in solution. Areas outside of the measurements are where the mixture may explode! Note that the optimum is close to the boundary. Source of data is from a master's level lab experiment in analytical chemistry from Chuck Boss's course at NCSU. This is list with the following components } \arguments{ \item{x}{ x is a 2 column matrix with the different Fuel and oxygen flow rates for the burner. } \item{y}{ y is the response. The intensity of light at a particular wavelength indicative of Lithium ions. } } \keyword{datasets} % docclass is data % Converted by Sd2Rd version 1.21. fields/man/bplot.xy.Rd0000644000175100001440000000454313114135522014362 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{bplot.xy} \alias{bplot.xy} \title{ Boxplots for conditional distribution } \description{ Draws boxplots for y by binning on x. This gives a coarse, but quick, representation of the conditional distrubtion of [Y|X] in terms of boxplots. } \usage{ bplot.xy(x, y, N = 10, breaks = pretty(x, N, eps.correct = 1), plot=TRUE, ...) } \arguments{ \item{x}{ Vector to use for bin membership } \item{y}{ Vector to use for constructing boxplot statistics. } \item{N}{ Number of bins on x. Default is 10. } \item{breaks}{ Break points defining bin boundaries. These can be unequally spaced. } \item{plot}{ If FALSE just returns a list with the statistics used for plotting the box plots, bin centers, etc. -- More stuff than you can imagine! } \item{\dots }{ Any other optional arguments passed to the standard \code{boxplot} function. } } \seealso{ bplot, draw.bplot } \examples{ # condition on swim times to see how run times vary bplot.xy( minitri$swim, minitri$run, N=5) # bivariate normal corr= .8 set.seed( 123) x<-rnorm( 2000) y<- .8*x + sqrt( 1- .8**2)*rnorm( 200) # bplot.xy(x,y) # bplot.xy( x,y, breaks=seq( -3, 3,,25) , xlim =c(-4,4), ylim =c(-4,4), col="grey80", lwd=2) points( x,y,col=3, cex=.5) } \keyword{hplot} % docclass is function % Converted by Sd2Rd version 1.21. fields/man/grid.list.Rd0000644000175100001440000002105713114135522014501 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{grid list} \alias{grid list} \alias{grid.list} \alias{fields.x.to.grid} \alias{parse.grid.list} \alias{fields.convert.grid} \alias{discretize.image} \alias{make.surface.grid} \alias{unrollZGrid} \title{ Some simple functions for working with gridded data and the grid format (grid.list) used in fields. } \description{ The object grid.list refers to a list that contains information for evaluating a function on a 2-dimensional grid of points. If a function has more than two independent variables then one also needs to specify the constant levels for the variables that are not being varied. This format is used in several places in fields for functions that evaluate function estimates and plot surfaces. These functions provide some default conversions among information and the gird.list. The function \code{discretize.image} is a useful tool for "registering" irregular 2-d points to a grid. } \usage{ parse.grid.list( grid.list, order.variables="xy") fields.x.to.grid(x,nx=80, ny=80, xy=c(1,2)) fields.convert.grid( midpoint.grid ) discretize.image(x, m = 64, n = 64, grid = NULL, expand = c(1, 1), boundary.grid = FALSE, na.rm = TRUE) make.surface.grid( grid.list) unrollZGrid( grid.list, ZGrid) } \arguments{ \item{grid.list}{ No surprises here -- a grid list! These can be unequally spaced.} \item{order.variables}{ If "xy" the x variable will be subsequently plotted as the horizontal variable. If "yx" the x variable will be on the vertical axis.} \item{x}{ A matrix of independent variables such as the locations of observations given to Krig.} \item{nx}{Number of grid points for x variable.} \item{ny}{Number of grid points for y variable.} \item{m}{Number of grid points for x variable.} \item{n}{Number of grid points for y variable.} \item{na.rm}{Remove missing values if TRUE} \item{xy}{The column positions that locate the x and y variables for the grid.} \item{grid}{ A grid list!} \item{expand}{ A scalar or two column vector that will expand the grid beyond the range of the observations.} \item{midpoint.grid}{ Grid midpoints to convert to grid boundaries.} \item{boundary.grid}{ If TRUE interpret grid points as boundaries of grid boxes. If FALSE interpret as the midpoints of the boxes. } \item{ZGrid}{An array or list form of covariates to use for prediction. This must match the \code{grid.list} argument. e.g. ZGrid and grid.list describe the same grid. If ZGrid is an array then the first two indices are the x and y locations in the grid. The third index, if present, indexes the covariates. e.g. For evaluation on a 10X15 grid and with 2 covariates. \code{ dim( ZGrid) == c(10,15, 2)}. If ZGrid is a list then the components x and y shold match those of grid.list and the z component follows the shape described above for the no list case. } } \details{The form of a grid.list is \code{list( var.name1= what1 , var.name2=what2 , ... var.nameN=what3)} Here var.names are the names of the independent variables. The what options describe what should be done with this variable when generating the grid. These should either an increasing sequence of points or a single vaules. Obviously there should be only be two variables with sequences to define a grid for a surface. Most of time the gridding sequences are equally spaced and are easily generated using the \code{seq} function. Also throughout fields the grid points are typically the midpoints of the grid rather the grid box boundaries. However, these functions can handle unequally spaced grids and the logical boundary.grid can indicate a grid being the box boundaries. The variables in the list components are assumed to be in the same order as they appear in the data matrix. A useful function that expands the grid from the grid.list description into a full set of locations is \code{make.surface.grid} and is just a wrapper around the R base function \code{expand.grid}. A typical operation is to go from a grid.list to the set of grid locations. Evaluate a fucntion at these lcoations and then reformat this as an image for plotting. Here is how to do this cleanly: \preformatted{ grid.list<- list( x= 1:10, y=1:15) xg<- make.surface.grid(grid.list) # look at a surface dependin on xg locations z<- xg[,1] + 2*xg[,2] out<- list( x=grid.list$x, y= grid.list$y, z=matrix( z, nrow=10, ncol=15)) # now for example image.plot( out) } The key here is that \code{xg} and \code{matrix} both organize the grid in the same order. Some fields internal functions that support interpreting grid list format are: \code{fields.x.to.grid}: Takes an "x" matrix of locations or independent variables and creates a reasonable grid list. This is used to evaluate predicted surfaces when a grid list is not explicited given to predictSurface. The variables (i.e. columns of x) that are not part of the grid are set to the median values. The x grid values are \code{nx} equally spaced points in the range \code{x[, xy[1]]}. The y grid values are \code{ny} equally spaced points in the range \code{x[, xy[2]]}. \code{parse.grid.list}: Takes a grid list and returns the information in a more expanded list form that is easy to use. This is used, for example, by predictSurface to figure out what to do! \code{fields.convert.grid}: Takes a vector of n values assumed to be midpoints of a grid and returns the n+1 boundaries. See how this is used in discretize.image with the cut function. This function will handle unequally spaced grid values. \code{discretize.image}: Takes a vector of locations and a 2-d grid and figures out to which boxes they belong. The output matrix ind has the grid locations. If boundary.grid is FALSE then the grid list (grid) is assumed to be grid midpoints. The grid boundaries are taken to be the point half way between these midpoints. The first and last boundaries points are determined by extrapolating so that the first and last box has the midpoint in its center. (See the code in fields.convert.grid for details.) If grid is NULL then midpoints are found from m and n and the range of the x matrix. \code{unrollZGrid} Checks that the ZGrid object is compatible with th e grid.list and concatenates the grid arrays into vectors. This version of the covariates are used the usual predict function. } \seealso{ as.surface, predictSurface, plot.surface, surface, expand.grid, as.image } \examples{ #Given below are some examples of grid.list objects and the results #when they are used with make.surface.grid. Note that #make.surface.grid returns a matrix that retains the grid.list #information as an attribute. grid.l<- list( 1:3, 2:5) make.surface.grid(grid.l) grid.l <- list( 1:3, 10, 1:3) make.surface.grid(grid.l) #The next example shows how the grid.list can be used to #control surface plotting and evaluation of an estimated function. # first create a test function set.seed( 124) X<- 2*cbind( runif(30), runif(30), runif(30)) -1 dimnames( X)<- list(NULL, c("X1","X2","X3")) y<- X[,1]**2 + X[,2]**2 + exp(X[,3]) # fit an interpolating thin plate spline out<- Tps( X,y) grid.l<- list( X1= seq( 0,1,,20), X2=.5, X3=seq(0,1,,25)) surface( out, grid.list=grid.l) # surface plot based on a 20X25 grid in X1 an X3 # over the square [0,2] and [0,2] # holding X2 equal to 1.0. # # indicator image of discretized locations look<- discretize.image( RMprecip$x, m=15, n=15) image.plot( look$grid$x, look$grid$y,look$hist ) # actual locations points( RMprecip$x,col="magenta", pch=".") } \keyword{misc} % docclass is function % Converted by Sd2Rd version 1.21. fields/man/rdist.Rd0000644000175100001440000001220013114135522013715 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{rdist} \alias{rdist} \alias{fields.rdist.near} \alias{rdist.vec} \title{ Euclidean distance matrix or vector } \description{ Given two sets of locations \code{rdist} and \code{fields.rdist.near} computes the full Euclidean distance matrix among all pairings or a sparse version for points within a fixed threshhold distance. \code{rdist.vec} computes a vector of pairwise distances between corresponding elements of the input locations and is used in empirical variogram calculations. } \usage{ rdist(x1, x2 = NULL, compact = FALSE) fields.rdist.near(x1,x2, delta, max.points= NULL, mean.neighbor = 50) rdist.vec(x1, x2) } \arguments{ \item{x1}{ Matrix of first set of locations where each row gives the coordinates of a particular point. } \item{x2}{ Matrix of second set of locations where each row gives the coordinates of a particular point. If this is not passed or given as NULL x1 is used. } \item{compact}{ Whether or not to return a distance matrix in compact form inheriting class ``dist'' (as returned by the \code{dist} function in base R). Only values for one triangle of the symmetric distance matrix are returned. This saves time evaluating the returned matrix and the covariance. Note that this option is ignored when \code{x2} is not NULL. } \item{delta}{ Threshhold distance. All pairs of points that separated by more than delta in distance are ignored. } \item{max.points}{Size of the expected number of pairs less than or equal to delta. The default is set to the nrow(x1)*mean.neighbor. } \item{mean.neighbor}{ Sets the temp space for max.points} } \section{Returned values}{ Let D be the mXn distance matrix, with m= nrow(x1) and n=nrow( x2). The elements are the Euclidean distances between the all locations x1[i,] and x2[j,]. That is, D.ij = sqrt( sum.k (( x1[i,k] - x2[j,k]) **2 ). \code{rdist} The distance matrix D is returned. \code{fields.rdist.near} The elements of D that are less than or equal to delta are returned in the form of a list. List components: \describe{ \item{ind}{ Row and column indices of elements } \item{ra}{ (Distances ( D.ij)} \item{da}{ Dimensions of full distance matrix. } } This is a simple sparse format that can be manipulated by several fields functions. E.g. ind2spam will convert this list to the format used by the spam sparse matrix package. ind2full will convert this to an ordinary matrix with zeroes. } \details{ More about fields.rdist.near: The sparse version is designed to work with the sparse covariance functions in fields and anticipates that the full matrix, D is too large to store. The argument max.points is set as a default to nrow( x1)*100 and allocates the space to hold the sparse elements. In case that there are more points that are within delta the function stops with an error but lists the offending rows. Just rerun the function with a larger choice for max.points It possible that for certain x1 points there are no x2 points within a distance delta. This situation will cause an error if the list is converted to spam format. } \author{Doug Nychka, John Paige} \seealso{ \link{stationary.cov}, \link{Exp.cov}, \link{rdist.earth}, \link{dist}, ind2spam, ind2full } \examples{ out<- rdist( ChicagoO3$x) # out is a 20X20 matrix. out2<- rdist( ChicagoO3$x[1:5,], ChicagoO3$x[11:20,]) #out2 is a 5X10 matrix set.seed(123) x1<- matrix( runif( 20*2), 20,2) x2<- matrix( runif( 15*2), 15,2) out3<- fields.rdist.near( x1,x2, delta=.5) # out3 is a sparse structure in list format # or to "save" work space decrease size of temp array out3<- fields.rdist.near( x1,x2, delta=.5,max.points=20*15) # explicitly reforming as a full matrix temp<- matrix( NA, nrow=out3$da[1], ncol= out3$da[2]) temp[ out3$ind] <- out3$ra # or justuse temp<- spind2full( out3) image( temp) # this is identical to temp2<- rdist( x1,x2) temp2[ temp2<= .5] <- NA #compute pairwise distance vector x1 = 1:10 x2 = seq(from=10, to=1) rdist.vec(x1, x2) #calculate output matrix in compact form: distOut = rdist(1:10, compact=TRUE) distOut as.vector(distOut) } \keyword{spatial} % docclass is function % Converted by Sd2Rd version 1.21. fields/man/MLESpatialProcess.Rd0000644000175100001440000002033113114135521016065 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{MLESpatialProcess} \alias{MLESpatialProcess} %- Also NEED an '\alias' for EACH other topic documented here. \title{ Estimates key covariance parameters for a spatial process. %% ~~function to do ... ~~ } \description{ Maximizes the likelihood to determine the nugget variance (sigma^2), the sill ( rho) and the range (theta) for a spatial process. %% ~~ A concise (1-5 lines) description of what the function does. ~~ } \usage{ MLESpatialProcess(x, y, weights = rep(1, nrow(x)), Z = NULL, mKrig.args = NULL, cov.function = "stationary.cov", cov.args = list(Covariance = "Matern", smoothness = 1), lambda.start = 0.5, theta.start = NULL, theta.range = NULL, gridN = 20, optim.args = NULL, na.rm = TRUE, verbose = FALSE, abstol = 1e-04, REML = FALSE, ...) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{x}{ A matrix of spatial locations with rows indexing location and columns the dimension (e.g. longitude/latitude) } \item{y}{ Spatial observations } \item{weights}{ %% ~~Describe \code{weights} here~~ Precision ( 1/variance) of each observation } \item{Z}{ %% ~~Describe \code{Z} here~~ Linear covariates to be included in fixed part of the model that are distinct from the default low order polynomial in \code{x} } \item{mKrig.args}{A list containing other objects to pass to mKrig.} \item{lambda.start}{ The initial guess for lambda, the nugget to sill ratio. } \item{theta.start}{ The initial guess for theta, the correlation range parameter. } \item{theta.range}{Range of range parameters (aka theta) to search over. Default is the range from the 2 and 97 percent quantiles of the pairwise distances among locations.} \item{gridN}{Number of points to use in grid search over theta.} \item{cov.function}{ The name of the covariance function (See help on Krig for details. ) } \item{cov.args}{ A list with arguments for the covariance functions. These are usually parameters and other options such as the type of distance function. } \item{optim.args}{ Additional arguments passed to the optim function for likelihood maximization. The default value is: \code{optim.args = list(method = "BFGS", control = list(fnscale = -1, parscale = c(0.5, 0.5), ndeps = c(0.05,0.05)))} } \item{na.rm}{If TRUE remove missing values in y and corresponding locations in x.} \item{verbose}{ If TRUE print out intermediate information for debugging. } \item{abstol}{Absolute tolerance used to judeg convergence in optim.} \item{REML}{If TRUE use maximize the restricted Likelihood instead of the concentrated likelihood.(Preliminary experience suggests this does not make much difference.) } \item{\dots}{ Additional arguments to pass to the mKrig function. } } \details{ MLESpatialProcess is designed to be a simple and easy to use function for maximizing the likelihood for a Gaussian spatial process. For other fixed, covariance parameters, the likelihood is maximized over the nugget and sill parameters using the \code{mKrig} function. \code{lambda} and \code{theta} are optimized using the \code{mKrigMLEJoint} function on a log scale. MLESpatialProcess.fast is an older fields function also using the \code{optim} function to maximize the likelihood computed from the \code{mKrig} function. It will eventually be removed from later versions of fields but is still useful as a cross check on newer functions Note the likelihood can be maximized analytically over the parameters of the fixed part of the spatial model and with the nugget (sigma) and sill (rho) reduced to the single parameter lambda= sigma^2/rho. The likelihood is maximized numerically over lambda and theta if there are additional covariance parameters ( such as smoothness for the Matern) these need to be fixed and so the MLE is found for the covariance conditional on these additional parameter values. From a practical point of view it is often difficult to estimate just these three from a moderate spatial data set and the user is encourage to try different combinations of fixing covariance parameters with ML for the remaining ones. } \value{ \code{MLESpatialProcess}: A list that includes components: \code{theta.MLE, rho.MLE, sigma.MLE, lambda.MLE} being the maximum likelihood estimates of these parameters. The component \code{REML.grid} is a two column matrix with the first column being the theta grid and the second column being the profiled and restricted likelihood for that value of theta. Here profile means that the likelihood has already been evaluated at the maximum over sigma and rho for this value of theta. \code{eval.grid} is a more complete "capture" of the evaluations being a 6 column matrix with the parameters theta, lambda, sigma, rho, profile likelihood and the effective degrees of freedom. \code{MLESpatialProcess.fast} has been depreciated and is included for backward compatibility. } \author{ Doug Nychka, John Paige } \seealso{ \code{\link{Krig}}, \code{\link{mKrigMLEGrid}}, \code{\link{mKrigMLEJoint}}, \code{\link{optim}}, \code{\link{fastTps.MLE}}, \code{\link{spatialProcess}} } \examples{ # # #generate observation locations (100 is small just to make this run quickly) n=100 set.seed(124) x = matrix(runif(2*n), nrow=n) #generate observations at the locations trueTheta = .1 trueSigma = .01 Sigma = exp( -rdist(x,x) /trueTheta ) # y = t(chol(Sigma))%*% (rnorm(n)) + trueSigma * rnorm( n) y = t(chol(Sigma))\%*\% (rnorm(n)) + trueSigma * rnorm( n) # Use exponential covariance estimate constant function for mean out = MLESpatialProcess(x, y, smoothness=.5, mKrig.args = list( m = 1) ) # Use exponential covariance, use a range to determine MLE of range parameter \dontrun{ #Use Matern covariance, compute joint MLE of range, smoothness, and lambda. #This may take a few seconds testSmoothness = c(.5, 1, 2) for( nu in testSmoothness){ out = MLESpatialProcess(x, y, cov.args=list(Covariance="Matern"), smoothness=nu) print( out$MLEJoint$summary) } } # example with a covariate \dontrun{ data(COmonthlyMet) ind<- !is.na( CO.tmean.MAM.climate) x<- CO.loc[ind,] y<- CO.tmean.MAM.climate[ind] elev<- CO.elev[ind] obj2<- MLESpatialProcess( x,y) obj3<- MLESpatialProcess( x,y, Z=elev) # elevation makes a difference obj2$MLEJoint$summary obj3$MLEJoint$summary } \dontrun{ # fits for first 10 days from ozone data data( ozone2) NDays<- 10 O3MLE<- matrix( NA, nrow= NDays, ncol=7) for( day in 1: NDays){ cat( day, " ") ind<- !is.na(ozone2$y[day,] ) x<- ozone2$lon.lat[ind,] y<- ozone2$y[day,ind] print( length( y)) O3MLE[day,]<- MLESpatialProcess( x,y, Distance="rdist.earth")$MLEJoint$summary } # NOTE: names of summary: #[1] "lnProfileLike.FULL" "lambda" #[3] "theta" "sigmaMLE" #[5] "rhoMLE" "funEval" #[7] "gradEval" plot( log(O3MLE[,2]), log(O3MLE[,3])) } } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{spatial} fields/man/sim.Krig.Rd0000644000175100001440000003366413114135522014274 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{sim.spatialProcess} \alias{sim.Krig} \alias{sim.spatialProcess} \alias{sim.Krig.approx} \alias{sim.mKrig.approx} \alias{sim.fastTps.approx} \title{Conditional simulation of a spatial process} \description{ Generates exact (or approximate) random draws from the conditional distribution of a spatial process given specific observations. This is a useful way to characterize the uncertainty in the predicted process from data. This is known as conditional simulation in geostatistics or generating an ensemble prediction in the geosciences. sim.Krig.grid can generate a conditional sample for a large regular grid but is restricted to stationary correlation functions. } \usage{ sim.spatialProcess(object, xp, M = 1, verbose = FALSE, ...) sim.Krig(object, xp, M = 1, verbose = FALSE, ...) sim.Krig.approx(object, grid.list = NULL, M = 1, nx = 40, ny = 40, verbose = FALSE, extrap = FALSE,...) sim.mKrig.approx(mKrigObject, predictionPoints = NULL, predictionPointsList = NULL, simulationGridList = NULL, gridRefinement = 5, gridExpansion = 1 + 1e-07, M = 1, nx = 40, ny = 40, nxSimulation = NULL, nySimulation = NULL, delta = NULL, verbose = FALSE,...) sim.fastTps.approx(fastTpsObject, predictionPointsList, simulationGridList = NULL, gridRefinement = 5, gridExpansion = 1 + 1e-07, M = 1, delta = NULL, verbose=FALSE,...) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{delta}{If the covariance has compact support the simulation method can take advantage of this. This is the amount of buffer added for the simulation domain in the circulant embedding method. A minimum size would be \code{theta} for the Wendland but a multiple of this maybe needed to obtain a positive definite circulant covariance function. } \item{extrap}{ If FALSE conditional process is not evaluated outside the convex hull of observations. } \item{fastTpsObject}{The output object returned by fastTps} \item{grid.list}{Grid information for evaluating the conditional surface as a grid.list.} \item{gridRefinement}{Amount to increase the number of grid points for the simulation grid.} \item{gridExpansion}{Amount to increase the size of teh simulation grid. This is used to increase the simulation domain so that the circulant embedding algorithm works.} \item{mKrigObject}{An mKrig Object} \item{M}{Number of draws from conditional distribution.} \item{nx}{ Number of grid points in prediction locations for x coordinate.} \item{ny}{ Number of grid points in prediction locations for x coordinate.} \item{nxSimulation}{ Number of grid points in the circulant embedding simulation x coordinate.} \item{nySimulation}{ Number of grid points in the circulant embedding simulation x coordinate.} \item{object}{A Krig object.} \item{predictionPoints}{A matrix of locations defining the points for evaluating the predictions.} \item{predictionPointsList}{ A \code{grid.list} defining the rectangular grid for evaluating the predictions.} \item{simulationGridList}{ A \code{gridlist} describing grid for simulation. If missing this is created from the range of the locations, \code{nx}, \code{ny}, \code{gridRefinement}, and \code{gridExpansion} or from the range and and \code{nxSimulation}, \code{nySimulation}.} \item{xp}{Same as predictionPoints above.} % \item{Zp}{The covariate vector or matrix for predicting at the locations xp} \item{\dots}{Any other arguments to be passed to the predict function. Usually this is the \code{Z} or \code{drop.Z} argument when there are additional covariates in the fixed part of the model. (See example below.) } \item{verbose}{If true prints out intermediate information. } } \details{ These functions generate samples from a conditional multivariate distribution, or an approximate one, that describes the uncertainty in the estimated spatial process under Gaussian assumptions. An important assumption throughout these functions is that all covariance parameters are fixed at their estimated or prescribed values from the passed object. Given a spatial process h(x)= P(x) + g(x) observed at Y.k = Z(x.k)d + P(x.k) + g(x.k) + e.k where P(x) is a low order, fixed polynomial and g(x) a Gaussian spatial process and Z(x.k) is a vector of covariates that are also indexed by space (such as elevation). Z(x.k)d is a linear combination of the the covariates with the parameter vector d being a component of the fixed part of the model and estimated in the usual way by generalized least squares. With Y= Y.1, ..., Y.N, the goal is to sample the conditional distribution of the process. [h(x) | Y ] or the full prediction Z(x)d + h(x) For fixed a covariance this is just a multivariate normal sampling problem. \code{sim.Krig.standard} samples this conditional process at the points \code{xp} and is exact for fixed covariance parameters. \code{sim.Krig.grid} also assumes fixed covariance parameters and does approximate sampling on a grid. The outline of the algorithm is 0) Find the spatial prediction at the unobserved locations based on the actual data. Call this h.hat(x) and this is the conditional mean. 1) Generate an unconditional spatial process and from this process simluate synthetic observations. At this point the approximation is introduced where the field at the observation locations is approximated using interpolation from the nearest grid points. 2) Use the spatial prediction model ( using the true covariance) to estimate the spatial process at unobserved locations. 3) Find the difference between the simulated process and its prediction based on synthetic observations. Call this e(x). 4) h.hat(x) + e(x) is a draw from [h(x) | Y ]. \code{sim.spatialProcess} Follows this algorithm exactly. For the case of an addtional covariate this of course needs to be included. For a model with covariates use \code{drop.Z=TRUE} for the function to ignore prediction using the covariate and generate conditional samples for just the spatial process and any low order polynomial. Finally, it should be noted that this function will also work with an \code{mKrig} object because the essential prediction information in the mKrig and spatialProcess objects are the same. The naming is through convenience. \code{sim.Krig} Also follows this algorithm exactly but for the older \code{Krig} object. Note the inclusion of drop.Z=TRUE or FALSE will determine whether the conditional simulation includes the covariates Z or not. (See example below.) \code{sim.Krig.approx} and \code{sim.mKrig.approx} evaluate the conditional surface on grid and simulates the values of h(x) off the grid using bilinear interpolation of the four nearest grid points. Because of this approximation it is important to choose the grid to be fine relative to the spacing of the observations. The advantage of this approximation is that one can consider conditional simulation for large grids -- beyond the size possible with exact methods. Here the method for simulation is circulant embedding and so is restricted to stationary fields. The circulant embedding method is known to fail if the domain is small relative to the correlation range. The argument \code{gridExpansion} can be used to increase the size of the domain to make the algorithm work. \code{sim.fastTps.approx} Is optimized for the approximate thin plate spline estimator in two dimensions and \code{k=2}. For efficiency the ensemble prediction locations must be on a grid. } \value{ \code{sim.Krig and sim.spatialProcess} a matrix with rows indexed by the locations in \code{xp} and columns being the \code{M} independent draws. \code{sim.Krig.approx} a list with components \code{x}, \code{y} and \code{z}. x and y define the grid for the simulated field and z is a three dimensional array with dimensions \code{c(nx, ny, M)} where the first two dimensions index the field and the last dimension indexes the draws. \code{sim.mKrig.approx} a list with \code{predictionPoints} being the locations where the field has been simulated.If these have been created from a grid list that information is stored in the \code{attributes} of \code{predictionPoints}. \code{Ensemble} is a matrix where rows index the simulated values of the field and columns are the different draws, \code{call} is the calling sequence. Not that if \code{predictionPoints} has been omitted in the call or is created beforehand using \code{make.surface.grid} it is easy to reformat the results into an image format for ploting using \code{as.surface}. e.g. if \code{simOut} is the output object then to plot the 3rd draw: \preformatted{ imageObject<- as.surface(simOut$PredictionGrid, simOut$Ensemble[,3] ) image.plot( imageObject) } \code{sim.fastTps.approx} is a wrapper function that calls \code{sim.mKrig.approx}. } \author{Doug Nychka} \seealso{ sim.rf, Krig, spatialProcess} \examples{ \dontrun{ # conditional simulation with covariates # colorado climate example data(COmonthlyMet) fit1E<- spatialProcess(CO.loc,CO.tmin.MAM.climate, Z=CO.elev ) # conditional simulation at missing data good<- !is.na(CO.tmin.MAM.climate ) infill<- sim.spatialProcess( fit1E, xp=CO.loc[!good,], Z= CO.elev[!good], M= 10) # get an elevation grid ... NGRID<- 50 gives a nicer image but takes longer NGRID <- 25 # get elevations on a grid COGrid<- list( x=seq( -109.5, -101, ,NGRID), y= seq(39, 41.5,,NGRID) ) COGridPoints<- make.surface.grid( COGrid) # elevations are a bilinear interpolation from the 4km # Rocky Mountain elevation fields data set. data( RMelevation) COElevGrid<- interp.surface( RMelevation, COGridPoints ) # NOTE call to sim.Krig treats the grid points as just a matrix # of locations the plot has to "reshape" these into a grid # to use with image.plot SEout<- sim.spatialProcess( fit1E, xp=COGridPoints, Z= COElevGrid, M= 30) # for just the smooth surface in lon/lat # SEout<- sim.spatialProcess( fit1E, xp=COGridPoints, drop.Z=TRUE, M= 30) # in practice M should be larger to reduce Monte Carlo error. surSE<- apply( SEout, 2, sd ) image.plot( as.surface( COGridPoints, surSE)) points( fit1E$x, col="magenta", pch=16) } data( ozone2) set.seed( 399) # fit to day 16 from Midwest ozone data set. out<- Krig( ozone2$lon.lat, ozone2$y[16,], Covariance="Matern", theta=1.0,smoothness=1.0, na.rm=TRUE) # NOTE theta =1.0 is not the best choice but # allows the sim.rf circulant embedding algorithm to # work without increasing the domain. #six missing data locations xp<- ozone2$lon.lat[ is.na(ozone2$y[16,]),] # 5 draws from process at xp given the data # this is an exact calculation sim.Krig( out,xp, M=5)-> sim.out # Compare: stats(sim.out)[3,] to Exact: predictSE( out, xp) # simulations on a grid # NOTE this is approximate due to the bilinear interpolation # for simulating the unconditional random field. # also more grids points ( nx and ny) should be used sim.Krig.approx(out,M=5, nx=20,ny=20)-> sim.out # take a look at the ensemble members. predictSurface( out, grid= list( x=sim.out$x, y=sim.out$y))-> look zr<- c( 40, 200) set.panel( 3,2) image.plot( look, zlim=zr) title("mean surface") for ( k in 1:5){ image( sim.out$x, sim.out$y, sim.out$z[,,k], col=tim.colors(), zlim =zr) } \dontrun{ data( ozone2) y<- ozone2$y[16,] good<- !is.na( y) y<-y[good] x<- ozone2$lon.lat[good,] O3.fit<- mKrig( x,y, Covariance="Matern", theta=.5,smoothness=1.0, lambda= .01 ) set.seed(122) O3.sim<- sim.mKrig.approx( O3.fit, nx=100, ny=100, gridRefinement=3, M=5 ) set.panel(3,2) surface( O3.fit) for ( k in 1:5){ image.plot( as.surface( O3.sim$predictionPoints, O3.sim$Ensemble[,k]) ) } # conditional simulation at missing data xMissing<- ozone2$lon.lat[!good,] O3.sim2<- sim.mKrig.approx( O3.fit, xMissing, nx=80, ny=80, gridRefinement=3, M=4 ) } \dontrun{ #An example for fastTps: data(ozone2) y<- ozone2$y[16,] good<- !is.na( y) y<-y[good] x<- ozone2$lon.lat[good,] O3FitMLE<- fastTpsMLE( x,y, theta=1.5 ) O3Obj<- fastTps( x,y, theta=1.5, lambda=O3FitMLE$lambda.MLE) # creating a quick grid list based on ranges of locations grid.list<- fields.x.to.grid( O3Obj$x, nx=100, ny=100) O3Sim<- sim.fastTps.approx( O3Obj,predictionPointsList=grid.list,M=5) # controlling the grids xR<- range( x[,1], na.rm=TRUE) yR<- range( x[,2], na.rm=TRUE) simulationGridList<- list( x= seq(xR[1],xR[2],,400), y= seq( yR[1],yR[2], ,400)) # very fine localized prediction grid O3GridList<- list( x= seq( -90.5,-88.5,,200), y= seq( 38,40,,200)) O3Sim<- sim.fastTps.approx( O3Obj, M=5, predictionPointsList=O3GridList, simulationGridList = simulationGridList) # check plot( O3Obj$x) US( add=TRUE) image.plot( as.surface( O3GridList,O3Sim$Ensemble[,1] ), add=TRUE) points( O3Obj$x, pch=16, col="magenta") } } \keyword{spatial} % at least one, from doc/KEYWORDS fields/man/sreg.Rd0000644000175100001440000002574213114135522013547 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{sreg} \alias{sreg} \alias{predict.sreg} \title{ Cubic smoothing spline regression } \description{ Fits a cubic smoothing spline to univariate data. The amount of smoothness can be specified or estimated from the data by GCV. } \usage{ sreg(x, y, lambda = NA, df = NA, offset = 0, weights = rep(1, length(x)), cost = 1, nstep.cv = 80, tol=1e-5,find.diagA = TRUE, trmin = 2.01, trmax = NA, lammin = NA, lammax = NA, verbose = FALSE, do.cv = TRUE, method = "GCV", rmse = NA, na.rm = TRUE) \method{predict}{sreg}(object, x, derivative = 0, model = 1,...) } \arguments{ \item{x}{ Vector of x value} \item{y}{ Vector of y values} \item{lambda}{ Single smoothing parameter or a vector of values . If omitted smoothing parameter estimated by GCV. NOTE: lam here is equivalent to the value lambda*N in Tps/Krig where N is the number of unique observations. See example below.} \item{object}{An sreg object.} \item{derivative}{Order of deriviatve to evaluate. Must be 0,1, or 2.} \item{df}{ Amount of smoothing in term of effective degrees of freedom for the spline} \item{offset}{ an offset added to the term cost*degrees of freedom in the denominator of the GCV function. (This would be used for adjusting the df from fitting other models such as in back-fitting additive models.)} \item{model}{Specifies which model parameters to use.} \item{weights}{ A vector that is proportional to the reciprocal variances of the errors.} \item{cost}{ Cost value to be used in the GCV criterion.} \item{nstep.cv }{ Number of grid points of smoothing parameter for GCV grid search.} \item{tol}{Tolerance for convergence in minimizing the GCV or other criteria to estimate the smoothing parameter.} \item{find.diagA}{ If TRUE calculates the diagonal elements of the smoothing matrix. The effective number of degrees of freedom is the sum of these diagonal elements. Default is true. This requires more stores if a grid of smoothing parameters is passed. ( See returned values below.)} \item{trmin}{ Sets the minimum of the smoothing parameter range for the GCV grid search in terms of effective degrees of freedom.} \item{trmax}{ Sets the maximum of the smoothing parameter range for the GCV grid search in terms of effective degrees of freedom. If NA the range is set to .99 of number of unique locations.} \item{lammin}{ Same function as trmin but in the lambda scale.} \item{lammax}{ Same function as trmax but in the lambda scale.} \item{verbose}{ Print out all sorts of debugging info. Default is falseof course!} \item{do.cv}{ Evaluate the spline at the GCV minimum. Default is true.} \item{method}{ A character string giving the method for determining the smoothing parameter. Choices are "GCV", "GCV.one", "GCV.model", "pure error", "RMSE". Default is "GCV". } \item{rmse}{ Value of the root mean square error to match by varying lambda.} \item{na.rm}{If TRUE NA's are removed from y before analysis.} \item{\dots}{Other optional arguments to pass to the predict function.} } \value{ Returns a list of class sreg. Some of the returned components are \item{call}{ Call to the function } \item{yM}{ Vector of dependent variables. If replicated data is given these are the replicate group means. } \item{xM}{ Unique x values matching the y's. } \item{weights}{ Proportional to reciprocal variance of each data point. } \item{weightsM}{ Proportional to reciprocal pooled variance of each replicated mean data value (xM).} \item{x}{ Original x data. } \item{y}{ Original y data. } \item{method}{ Method used to find the smoothing parameter.} \item{pure.ss}{ Pure error sum of squares from replicate groups. } \item{shat.pure.error}{ Estimate of sigma from replicate groups.} \item{shat.GCV}{ Estimate of sigma using estimated lambda from GCV minimization } \item{trace}{ Effective degrees of freedom for the spline estimate(s)} \item{gcv.grid}{ Values of trace, GCV, shat. etc. for a grid of smoothing parameters. If lambda ( or df) is specified those values are used. } \item{lambda.est}{ Summary of various estimates of the smoothing parameter} \item{lambda}{ If lambda is specified the passed vector, if missing the estimated value.} \item{residuals}{ Residuals from spline(s). If lambda or df is specified the residuals from these values. If lambda and df are omitted then the spline having estimated lambda. This will be a matrix with as many columns as the values of lambda. } \item{fitted.values}{ Matrix of fitted values. See notes on residuals. } \item{predicted}{ A list with components x and y. x is the unique values of xraw in sorted order. y is a matrix of the spline estimates at these values. } \item{eff.df}{ Same as trace.} \item{diagA}{ Matrix containing diagonal elements of the smoothing matrix. Number of columns is the number of lambda values. WARNING: If there is replicated data the diagonal elements are those for the smoothing the group means at the unique x locations. } } \details{ MODEL: The assumed model is Y.k=f(x.k) +e.k where e.k should be approximately normal and independent errors with variances sigma**2/w.k ESTIMATE: A smoothing spline is a locally weighted average of the y's based on the relative locations of the x values. Formally the estimate is the curve that minimizes the criterion: (1/n) sum(k=1,n) w.k( Y.k - f( X.k))**2 + lambda R(f) where R(f) is the integral of the squared second derivative of f over the range of the X values. Because of the inclusion of the (1/n) in the sum of squares the lambda parameter in sreg corresponds to the a value of lambda*n in the Tps function and in the Krig function. The solution to this minimization is a piecewise cubic polynomial with the join points at the unique set of X values. The polynomial segments are constructed so that the entire curve has continuous first and second derivatives and the second and third derivatives are zero at the boundaries. The smoothing has the range [0,infinity]. Lambda equal to zero gives a cubic spline interpolation of the data. As lambda diverges to infinity ( e.g lambda =1e20) the estimate will converge to the straight line estimated by least squares. The values of the estimated function at the data points can be expressed in the matrix form: predicted values= A(lambda)Y where A is an nXn symmetric matrix that does NOT depend on Y. The diagonal elements are the leverage values for the estimate and the sum of these (trace(A(lambda)) can be interpreted as the effective number of parameters that are used to define the spline function. IF there are replicate points the A matrix is the result of finding group averages and applying a weighted spline to the means. The A matrix is also used to find "Bayesian" confidence intervals for the estimate, see the example below. CROSS-VALIDATION:The GCV criterion with no replicate points for a fixed value of lambda is (1/n)(Residual sum of squares)/((1-(tr(A)-offset)*cost + offset)/n)**2, Usually offset =0 and cost =1. Variations on GCV with replicate points are described in the documentation help file for Krig. With an appropriate choice for the smoothing parameter, the estimate of sigma**2 is found by (Residual sum of squares)/tr(A). COMPUTATIONS: The computations for 1-d splines exploit the banded structure of the matrices needed to solve for the spline coefficients. Banded structure also makes it possible to get the diagonal elements of A quickly. This approach is different from the algorithms in Tps and tremendously more efficient for larger numbers of unique x values ( say > 200). The advantage of Tps is getting "Bayesian" standard errors at predictions different from the observed x values. This function is similar to the S-Plus smooth.spline. The main advantages are more information and control over the choice of lambda and also the FORTRAN source code is available (css.f). See also the function \code{splint} which is designed to be a bare bones but fast smoothing spline. } \seealso{ Krig, Tps, splint } \examples{ # fit a GCV spline to # control group of rats. fit<- sreg(rat.diet$t,rat.diet$con) summary( fit) set.panel(2,2) plot(fit) # four diagnostic plots of fit set.panel() predict( fit) # predicted values at data points xg<- seq(0,110,,50) sm<-predict( fit, xg) # spline fit at 50 equally spaced points der.sm<- predict( fit, xg, deriv=1) # derivative of spline fit set.panel( 2,1) plot( fit$x, fit$y) # the data lines( xg, sm) # the spline plot( xg,der.sm, type="l") # plot of estimated derivative set.panel() # reset panel to 1 plot # the same fit using the thin plate spline numerical algorithms # sreg does not scale the obs so instruct Tps not to sacel either # this will make lambda comparable within factor of n. fit.tps<-Tps( rat.diet$t,rat.diet$con, scale="unscaled") summary( fit.tps) # compare sreg and Tps results to show the adjustment to lambda. predict( fit)-> look predict( fit.tps, lambda=fit$lambda*fit$N)-> look2 test.for.zero( look, look2) # silence means it checks to 1e-8 # finding approximate standard errors at observations SE<- fit$shat.GCV*sqrt(fit$diagA) # compare to predictSE( fit.tps) differences are due to # slightly different lambda values and using shat.MLE instad of shat.GCV # # 95% pointwise prediction intervals Zvalue<- qnorm(.0975) upper<- fit$fitted.values + Zvalue* SE lower<- fit$fitted.values - Zvalue* SE # # conservative, simultaneous Bonferroni bounds # ZBvalue<- qnorm(1- .025/fit$N) upperB<- fit$fitted.values + ZBvalue* SE lowerB<- fit$fitted.values - ZBvalue* SE # # take a look plot( fit$x, fit$y) lines( fit$predicted, lwd=2) matlines( fit$x, cbind( lower, upper, lowerB, upperB), type="l", col=c( 2,2,4,4), lty=1) title( "95 pct pointwise and simultaneous intervals") # or try the more visually honest: plot( fit$x, fit$y) lines( fit$predicted, lwd=2) segments( fit$x, lowerB, fit$x, upperB, col=4) segments( fit$x, lower, fit$x, upper, col=2, lwd=2) title( "95 pct pointwise and simultaneous intervals") set.panel( 1,1) } \keyword{smooth} fields/man/surface.Krig.Rd0000644000175100001440000000772713114135522015135 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{surface.Krig} \alias{surface.Krig} \alias{surface.mKrig} \title{ Plots a surface and contours } \description{ Creates different plots of the fitted surface of a Krig object. This is a quick way to look at the fitted function over reasonable default ranges. } \usage{ \method{surface}{Krig}( object, grid.list = NULL, extrap = FALSE, graphics.reset = NULL, xlab = NULL, ylab = NULL, main = NULL, zlab = NULL, zlim = NULL, levels = NULL, type = "C", nx = 80, ny = 80, ...) \method{surface}{mKrig}( object, grid.list = NULL, extrap = FALSE, graphics.reset = NULL, xlab = NULL, ylab = NULL, main = NULL, zlab = NULL, zlim = NULL, levels = NULL, type = "C", nx = 80, ny = 80, ...) } \arguments{ \item{object}{ A Krig object or an mKrig object. } \item{grid.list}{ A list with as many components as variables describing the surface. All components should have a single value except the two that give the grid points for evaluation. If the matrix or data frame has column names, these must appear in the grid list. If grid.list is missing an the surface has just two dimensions the grid is based on the ranges of the observed data. } \item{extrap}{ Extrapolation beyond the range of the data. If false only the convex hull of the observations is plotted. Default is false. } \item{graphics.reset}{ Reset to original graphics parameters after function plotting. } \item{type}{ Type of plot as a character. "p" perspective plot (persp). "c" contour plot (contour). "b" a two panel figure with perspective and contour plots. "I" image plot with legend strip (image.plot). "C" image plot with contours overlaid. Image with contour is the default. } \item{main}{ Title of plot} \item{xlab}{ x axis label} \item{ylab}{ y axis label} \item{zlab}{ z axis label if "p" or "b" type is used.} \item{zlim}{ Z limits passed to persp} \item{levels}{ Contour levels passed to contour. } \item{nx}{ Number of grid points to evaluate surface on the horizontal axis (the x-axis). } \item{ny}{ Number of grid points to evaluate surface on the vertical axis (the y-axis). } \item{\dots}{ Any other plotting options. } } \details{ This function is essentially a combination of predictSurface and plot.surface. It may not always give a great rendition but is easy to use for checking the fitted surface. The default of extrap=F is designed to discourage looking at the estimated surface outside the range of the observations. NOTE: that any Z covariates will b edropped and only the spatial part of the model will be evaluated. } \seealso{ \code{\link{Krig}} predictSurface, plot.surface, image.plot } \examples{ fit<- Krig(ChicagoO3$x,ChicagoO3$y, theta=30) # krig fit #Image plot of surface with nice, smooth contours and shading surface(fit, type="C", nx=128, ny=128) } \keyword{spatial} % docclass is function % Converted by Sd2Rd version 1.21. fields/man/plot.surface.Rd0000644000175100001440000000643113114135522015206 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{plot.surface} \alias{plot.surface} \title{ Plots a surface } \description{ Plots a surface object in several different ways to give 3-d information e.g. a contour plots, perspective plots. } \usage{ \method{plot}{surface}(x, main = NULL, type = "C", zlab = NULL, xlab = NULL, ylab = NULL, levels = NULL, zlim = NULL, graphics.reset = NULL, labcex = 0.6, add.legend=TRUE, ...) } \arguments{ \item{x}{ A surface object. At the minimum a list with components x,y and z in the same form as the input list for the standard contour, persp or image functions. This can also be an object from predictSurface. } \item{main}{ Title for plot. } \item{type}{ type="p" for a perspective/drape plot (see drape.plot), type="I" for an image plot with a legend strip (see image.plot), type="c" draws a contour plot, type="C" is the "I" option but with contours lines added. type="b" gives both "p" and "C" as a 2X1 panel } \item{zlab}{ z-axes label } \item{xlab}{ x-axes label } \item{ylab}{ y-axes labels } \item{levels}{ Vector of levels to be passed to contour function. } \item{graphics.reset}{ Reset to original graphics parameters after function plotting. Default is to reset if type ="b" but not for the single plot options. } \item{zlim}{ Sets z limits on perspective plot. } \item{labcex}{ Label sizes for axis labeling etc. } \item{add.legend}{ If TRUE adds a legend to the draped perspective plot} \item{\dots}{ Other graphical parameters that are passed along to either drape.persp or image.plot } } \seealso{ surface, predictSurface, as.surface, drape.plot, image.plot } \examples{ x<- seq( -2,2,,80) y<- seq( -2,2,,80) # a lazy way to create some test image z<- outer( x,y, "+") # create basic image/surface object obj<- list(x=x, y=y,z=z) # basic contour plot # note how graphical parameters appropriate to contour are passed plot.surface( obj, type="c", col="red") # using a fields function to fit a surface and evaluate as surface object. fit<- Tps( BD[,1:4], BD$lnya) # fit surface to data # surface of variables 2 and 3 holding 1 and 4 fixed at their median levels out.p<-predictSurface(fit, xy=c(2,3)) plot.surface(out.p) # surface plot } \keyword{hplot} % docclass is function % Converted by Sd2Rd version 1.21. fields/man/bplot.Rd0000644000175100001440000001120413114135522013713 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{bplot} \alias{bplot} \title{ boxplot } \description{ Plots boxplots of several groups of data and allows for placement at different horizontal or vertical positions or colors. It is also flexible in the input object, accepting either a list or matrix. } \usage{ bplot(x, by, pos=NULL, at = pos, add = FALSE, boxwex = 0.8,xlim=NULL, ...) } \arguments{ \item{x}{ Vector, matrix, list or data frame. A vector may be divided according to the by argument. Matrices and data frames are separated by columns and lists by components. } \item{by}{ If x is a vector, an optional vector (either character or numerical) specifying the categories to divide x into separate data sets. Boxplots are then made for each group. } \item{pos}{ The boxplots will be plotted vertically (horizontally) and pos gives the x (y) locations for their centers. If omitted the boxes are equally spaced at integer values. This is the same as \code{at} in the \code{boxplot} function } \item{at}{Same as \code{pos} this is the name for this argument in the standard \code{boxplot} function.} \item{add}{ If true, do not create a new plots just add the boxplots to a current plot. Note that the pos argument may be useful in this case and should be in the user coordinates of the parent plot.} \item{boxwex}{A boxplot argument to control the width of the boxplot. It behaves a little different than as an argumetn passed directly to \code{boxplot}. To make this a general function it is useful to scale this according to size of positions. Within bplot this happens as \code{boxwex<- boxwex* min(diff( sort( at)))}. and then the scaled version of \code{boxwex} is now passed to \code{boxplot}.} \item{xlim}{ Same as the usual argument used in plotting. The plotting limits for the x axis. } \item{\dots}{ Other arguments to be passed to the boxplot function some handy favorites are: \code{names} Labels for each boxplot. \code{horizontal}If TRUE draw boxplots horizontally the default is false, produce vertical box plots. \code{lwd}Width(s) of lines in box plots. \code{col}Color(s) of bplots. See \code{colors()} for some choices.} } \details{ This function was created as a complement to the usual S/R function for boxplots. The current function makes it possible to put the boxplots at unequal x or y positions in a rational way using the \code{at} or \code{pos} arguments. This is useful for visually grouping a large set of boxplots into several groups. Also placement of the boxplots with respect to the axis can add information to the plot. Another aspect is the emphasis on data structures for groups of data. One useful feature is the by option to break up the x vector into distinct groups. Use \code{axis(3)} (\code{axis(4)}) to add an axis along the top (right side) or omit the category names and draw on the bottom \code{axis(1)} (left side \code{axis(2)}). The older \code{bplot} function drew the boxplots from scratch and if one needs to do this refer to the old functions: \code{ describe.bplot, draw.bplot.obj, bplot.xy, bplot.obj} Finally to bin data into groups based on a continuous variable and to make bplots of each group see \code{bplot.xy}. } \seealso{ bplot.xy } \examples{ # set.seed(123) temp<- matrix( rnorm(12*8), ncol=12) pos<- c(1:6,9, 12:16)*100 bplot(temp) # par(las=2) bplot( temp, pos=pos, names=paste( "Data",1:12, sep="")) # add an axis along top for reference axis(3) # # Xmas boxplots in pleasing red and green bplot( temp, pos=pos, col=c("red4", "green4")) # add an axis on top axis( 3) } \keyword{hplot} % docclass is function % Converted by Sd2Rd version 1.21. fields/man/cover.design.Rd0000644000175100001440000003337213114610421015167 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{cover.design} \alias{cover.design} \title{ Computes Space-Filling "Coverage" designs using Swapping Algorithm } \description{ Finds the set of points on a discrete grid (Candidate Set) which minimize a geometric space-filling criterion. The strength of this method is that the candidate set can satisfy whatever constraints are important for the problem. } \usage{ cover.design(R, nd, nruns = 1, nn = TRUE, num.nn = 100, fixed = NULL, scale.type = "unscaled", R.center, R.scale, P = -20, Q = 20, start = NULL, DIST = NULL, return.grid = TRUE, return.transform = TRUE, max.loop=20, verbose=FALSE) } \arguments{ \item{R}{ A matrix of candidate points to be considered in the design. Each row is a separate point. } \item{nd}{ Number of points to add to the design. If points exist and are to remain in the design (see "fixed" option), nd is the number of points to add. If no points are fixed, nd is the design size. } \item{nruns}{ The number of random starts to be optimized. Uses random starts unless "start" is specified. If nruns is great than 1, the final results are the minimum. } \item{nn}{ Logical value specifying whether or not to consider only nearest neighbors in the swapping algorithm. When nn=FALSE, then the swapping algorithm will consider all points in the candidate space. When nn=TRUE, then the swapping algorithm will consider only the num.nn closest points for possible swapping. The default is to use nearest neighbors only (nn=TRUE). } \item{num.nn}{ Number of nearest-neighbors to search over. The default number is 100. If nn=F then this argument will be ignore. } \item{fixed}{ A matrix or vector specifying points to be forced into the experimental design. If fixed is a matrix, it gives coordinates of the fixed points in the design. In this case fixed must be a subset of R. If fixed is a vector, then fixed gives the row numbers from the candidate matrix R that identify the fixed points. The number of points to be generated, nd, is in addition to the number of points specified by fixed. } \item{scale.type}{ A character string that tells how to scale the candidate matrix, R, before calculating distances. The default is "unscaled", no transformation is done. Another option is "range" in which case variables are scaled to a [0,1] range before applying any distance functions. Use "unscaled" when all of the columns of R are commensurate; for example, when R gives x and y in spatial coordinates. When the columns of R are not in the same units, then it is generally thought that an appropriate choice of scaling will provide a better design. This would be the case, for example, for a typical process optimization. Other choices for scale.type are "unit.sd", which scales all columns of R to have 0 mean and unit standard deviation, and "user", which allows a user specified scaling (see R.center and R.scale arguments). } \item{R.center}{ A vector giving the centering values if scale.type=\code{user}. } \item{R.scale}{ A vector giving the scale values if scale.type=\code{user}. } \item{P}{ The "p" exponent of the coverage criterion (see below). It affects how the distance from a point x to a set of design points D is calculated. P=1 gives average distance. P=-1 gives harmonic mean distance. P=-Inf would give minimum distance (not available as a value). As P gets large and negative, points will tend to be more spread out. } \item{Q}{ The "q" exponent of the coverage criterion (see below).It affects how distances from all points not in the design to points in the design are averaged. When Q=1, simple averaging of the distances is employed. Q=Inf (not available as a value) in combination with P=-Inf would give a classical minimax design. } \item{start}{ A matrix or vector giving the initial design from which to start optimization. If start is a matrix, it gives the coordinates of the design points. In this case start must be a subset of the candidate set , R matrix. If start is a vector, then start gives the row numbers of the initial design based on the rows of the candidate matrix rows. The default is to use a random starting design. } \item{DIST}{ This argument is only for cover.design.S. A distance metric in the form of an S function. Default is Euclidean distance (FIELDS rdist function) See details and example below for the correct form. } \item{return.grid}{ Logical value that tells whether or not to return the candidate matrix as an attribute of the computed design. The default is return.grid=T. If false this just reduces the returned object size. The candidate matrix is used by plot.spatial.design if it is available. } \item{return.transform}{ Logical value that tells whether or not to return the transformation attributes of candidate set. The default is return.transform=T. } \item{max.loop}{ Maximum number of outer loops in algorithm. This is the maximum number of passes through the design testing for swaps. } \item{verbose}{ If TRUE prints out debugging information. } } \value{ Returns a design object of class \code{spatialDesign}. Subscripting this object has the same effect as subscripting the first component (the design). The returned list has the following components: \item{design}{ The best design in the form of a matrix. } \item{best.id}{ Row numbers of the final design from the original candidate matrix, R. } \item{fixed}{ Row numbers of the fixed points from the original candidate matrix, R. } \item{opt.crit}{ Value of the optimality criterion for the final design. } \item{start.design}{ Row numbers of the starting design from the original candidate matrix, R. } \item{start.crit}{ Value of the optimality criterion for the starting design. } \item{history}{ The swapping history and corresponding values of the optimality criterion for the best design. } \item{other.designs}{ The designs other than the best design generated when nruns is greater than 1. } \item{other.crit}{ The optimality criteria for the other designs when nrun is greate than 1. } \item{DIST}{ The distance function used in calculating the design criterion. } \item{nn}{ Logical value for nearest-neighbor search or not. } \item{num.nn}{ The number of nearest neighbor set. } \item{grid}{ The matrix R is returned if the argument return.grid=T. } \item{transform}{ The type of transformation used in scaling the data and the values of the centering and scaling constants if the argument return.transform=T. } \item{call}{ The calling sequence. } \item{P}{ The parameter value for calculating criterion. } \item{Q}{ The parameter value for calculating criterion. } \item{nhist}{ The number of swaps performed. } \item{nloop}{ The number of outer loops required to reach convergence if nloop is less the max.loop. } \item{minimax.crit}{ The minimax design criterion using DIST. } \item{max.loop}{ The maximum number of outer loops. } } \details{ OTHER DISTANCE FUNCTIONS: You can supply an R/S-function to be used as the distance metric. The expected calling sequence for this distance function is function( X1,X2)\{....\} where X1 and X2 are matrices with coordinates as the rows. The returned value of this function should be the pairwise distance matrix. If nrow( X1)=m and nrow( X2)=n then the function should return an m by n matrix of all distances between these two sets of points. See the example for Manhattan distance below. The candidate set and DIST function can be flexible and the last example below using sample correlation matrices is an example. COVERAGE CRITERION: For nd design points in the set D and nc candidate points ci in the set C, the coverage criteria is defined as: M(D,C) = [sum(ci in C) [sum(di in D) (dist(di,ci)**P]**(Q/P)]**(1/Q) Where P, less than 0, and Q, greater than 0, are parameters. The algorithm used in "cover.design" to find the set of nd points in C that minimize this criterion is an iterative swapping algorithm which will be described briefly. The resulting design is referred to as a "coverage design" from among the class of space-filling designs. If fixed points are specified they are simply fixed in the design set and are not allowed to be swapped out. ALGORITHM: An initial set of nd points is chosen randomly if no starting configuration is provided. The nc x nd distance matrix between the points in C and the points in D is computed, and raised to the power P. The "row sums" of this matrix are computed. Denote these as rs.i and the vector of row sums as rs. Using rs, M(D,C) is computed as: [sum i (rs.i)**(Q/P)]**(1/Q) Note that if point d.i is "swapped" for point c.j, one must only recompute 1 column of the original distance matrix, and 1 row. The row elements not in the ith column will be the same for all j and so only need computing when the first swapping occurs for each d.i . Denote the sum of these off-i elements as "newrow(i)". The index is i here since this is the same for all rows (j=1,...nc). Thus, for each swap, the row sums vector is updated as rs(new) = rs(old) - column(i,old) + column(i,new) And the jth element of rs(new) is replaced by: rs(new)[j] = column(i,new)[k] + newrow(i) Finally, M(D,C) is computed for this swap of the ith design point for the jth candidate point using [2]. The point in C that when swapped produces the minimum value of M(D,C) replaces d.i. This is done for all nd points in the design, and is iterated until M(D,C) does not change. When the nearest neighbor option is selected, then the points considered for swapping are limited to the num.nn nearest neighbors of the current design point. STABILITY The algorithm described above is guaranteed to converge. However, upon convergence, the solution is sensitive to the initial configuration of points. Thus, it is recommended that multiple optimizations be done (i.e. set nruns greater than 1 ). Also, the quality of the solution depends on the density of the points on the region. At the same time, for large regions , optimization can be computationally prohibitive unless the nearest neighbor option is employed. } \section{References}{ Johnson, M.E., Moore, L.M., and Ylvisaker, D. (1990). Minimax and maximin distance designs. Journal of Statistical Planning and Inference 26, 131-148. SAS/QC Software. Volume 2: Usage and Reference. Version 6. First Edition (1995). "Proc Optex". SAS Institute Inc. SAS Campus Drive, } \seealso{ rdist, rdist.earth } \examples{ ## ## # first generate candidate set set.seed(123) # setting seed so that you get the same thing I do! test.df <- matrix( runif( 600), ncol=3) test1.des<-cover.design(R=test.df,nd=10) summary( test1.des) plot( test1.des) # candidates<- make.surface.grid( list( seq( 0,5,,20), seq(0,5,,20))) out<- cover.design( candidates, 15) # find 10 more points keeping this original design fixed out3<-cover.design( candidates, 10,fixed=out$best.id) # see what happened plot( candidates[,1:2], pch=".") points( out$design, pch="x") points( out3$design, pch="o") # here is a strange graph illustrating the swapping history for the # the first design. Arrows show the swap done # at each pass through the design. h<- out$history cd<- candidates plot( cd[,1:2], pch=".") points( out$design, pch="O", col=2) points( out$start.design, pch="x", col=5) arrows( cd[h[,2],1], cd[h[,2],2], cd[h[,3],1], cd[h[,3],2],length=.1) text( cd[h[,2],1], cd[h[,2],2], h[,1], cex=1.0 ) # # try this out using "Manhattan distance" # ( distance following a grid of city streets) dist.man<- function(x1,x2) { d<- ncol( x1) temp<- abs(outer( x1[,1], x2[,1],'-')) for ( k in 2:d){ temp<- temp+abs(outer( x1[,k], x2[,k],'-')) } temp } # use the design from the Euclidean distance as the starting #configuration. cover.design( candidates, 15, DIST=dist.man, start= out3$best.id)-> out2 # this takes a while ... plot( out2$design) points( out3$design, col=2) # find a design on the sphere # candidates<- make.surface.grid( list( x=seq( -180,180,,20), y= seq( -85, 85,,20))) out4<-cover.design( candidates, 15, DIST=rdist.earth) # this takes a while plot( candidates, pch="+", cex=2) points(out4$design, pch="o", cex=2, col="blue") # covering based on correlation for 153 ozone stations # data( ozone2) cor.mat<-cor( ozone2$y, use="pairwise") cor.dist<- function( x1,x2) {matrix( 1-cor.mat[ x1,x2], ncol=length(x2))} # # find 25 points out of the 153 # here the "locations" are just the index but the distance is # determined by the correlation function. # out5<-cover.design(cbind(1:153),25, DIST= cor.dist, scale.type="unscaled") plot( ozone2$lon.lat, pch=".") points( ozone2$lon.lat[out5$best.id,],pch="O", col=4) # # this seems a bit strange probably due some funny correlation values # # reset panel set.panel(1,1) } \keyword{spatial} % docclass is function % Converted by Sd2Rd version 1.21. fields/man/rat.diet.Rd0000644000175100001440000000340013114135522014304 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{rat.diet} \alias{rat.diet} \title{ Experiment studying an appetite supressant in rats. } \description{ The `rat.diet' data frame has 39 rows and 3 columns. These are data from a study of an appetite supressant given to young rats. The suppressant was removed from the treatment group at around 60 days. The responses are the median food intake and each group had approximately 10 animals. } \usage{ data(rat.diet) } \format{ This data frame contains the following columns: \describe{ \item{t}{ Time in days} \item{con}{ Median food intake of the control group } \item{trt}{ Median food intake of the treatment group} } } \keyword{datasets} % docclass is data % Converted by Sd2Rd version 1.21. fields/man/smooth.2d.Rd0000644000175100001440000001345213114135522014417 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{smooth.2d} \alias{smooth.2d} \title{ Kernel smoother for irregular 2-d data } \description{ An approximate Nadaraya Watson kernel smoother is obtained by first discretizing the locations to a grid and then using convolutions to find and to apply the kernel weights. The main advantage of this function is a smoother that avoids explicit looping. } \usage{ smooth.2d(Y, ind = NULL, weight.obj = NULL, setup = FALSE, grid = NULL, x = NULL, nrow = 64, ncol = 64, surface = TRUE, cov.function = gauss.cov, Mwidth = NULL, Nwidth = NULL, ...) } \arguments{ \item{Y}{ A vector of data to be smoothed } \item{ind}{ Row and column indices that correspond to the locations of the data on regular grid. This is most useful when smoothing the same locations many times. (See also the x argument.) } \item{weight.obj }{ An object that has the FFT of the convolution kernel and other information ( i.e. the result from calling this with setup=TRUE). } \item{setup}{ If true creates a list that includes the FFT of the convolution kernel. In this case the function will return this list. Default is false. } \item{grid}{ A list with components x and y being equally spaced values that define the grid. Default are integers 1:nrow, 1:ncol. If x is given the ranges will be used to define the grid. } \item{x}{ Actual locations of the Y values. Not needed if ind is specified. } \item{nrow}{ Number of points in the horizontal (x) axis of the grid. Not needed if grid is specified the default is 64 } \item{ncol}{ Number of points in the vertical (y) axis of the grid. Not needed if grid list is specified the default is 64 } \item{surface}{ If true (the default) a surface object is returned suitable for use by image, persp or contour functions. If false then just the nrowXncol matrix of smoothed values is returned. } \item{cov.function}{ S function describing the kernel function. To be consistent with the other spatial function this is in the form of a covariance function. The only assumption is that this be stationary. Default is the (isotropic) Gaussian. } \item{Nwidth}{ The size of the padding regions of zeroes when computing the (exact) convolution of the kernel with the data. The most conservative values are 2*nrow and 2*ncol, the default. If the kernel has support of say 2L+1 grid points then the padding region need only be of size L+1. } \item{Mwidth}{ See Nwidth. } \item{\dots}{ Parameters that are passed to the smoothing kernel. ( e.g. the scale parameter theta for the exponential or gaussian) } } \value{ Either a matrix of smoothed values or a surface object. The surface object also has a component 'ind' that gives the subscripts of the image matrix where the data is present. } \details{ The irregular locations are first discretized to a regular grid ( using as.image) then a 2d- FFT is used to compute a Nadaraya-Watson type kernel estimator. Here we take advantage of two features. The kernel estimator is a convolution and by padding the regular by zeroes where data is not obsevred one can sum the kernel over irregular sets of locations. A second convolutions to find the normalization of the kernel weights. The kernel function is specified by an function that should evaluate with the kernel for two matrices of locations. Assume that the kernel has the form: K( u-v) for two locations u and v. The function given as the argument to cov.function should have the call myfun( x1,x2) where x1 and x2 are matrices of 2-d locations if nrow(x1)=m and nrow( x2)=n then this function should return a mXn matrix where the (i,j) element is K( x1[i,]- x2[j,]). Optional arguments that are included in the ... arguments are passed to this function when it is used. The default kernel is the Gaussian and the argument theta is the bandwidth. It is easy to write other other kernels, just use Exp.cov.simple as a template. } \examples{ # Normal kernel smooth of the precip data with bandwidth of .5 ( degree) # look<- smooth.2d( RMprecip$y, x=RMprecip$x, theta=.25) # finer resolution used in computing the smooth look3<-smooth.2d( RMprecip$y, x=RMprecip$x, theta=.25, nrow=256, ncol=256,Nwidth=32, Mwidth=32) # if the width arguments were omitted the padding would create a # 512X 512 matrix with the data filled in the upper 256X256 part. # with a bandwidth of .25 degrees the normal kernel is essentially zero # beyond 32 grid points from its center ( about 6 standard deviations) # # take a look: #set.panel(2,1) #image( look3, zlim=c(-8,12)) #points( RMprecip$x, pch=".") #image( look, zlim =c(-8,12)) #points( RMprecip$x, pch=".") # bandwidth changed to .25, exponential kernel look2<- smooth.2d( RMprecip$y, x=RMprecip$x, cov.function=Exp.cov,theta=.25) # } \keyword{smooth} % docclass is function % Converted by Sd2Rd version 1.21. fields/man/ozone2.Rd0000644000175100001440000000464213114135522014017 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{ozone2} \alias{ozone2} \title{ Daily 8-hour ozone averages for sites in the Midwest } \description{ The response is 8-hour average (surface) ozone ( from 9AM-4PM) measured in parts per billion (PPB) for 153 sites in the midwestern US over the period June 3,1987 through August 31, 1987, 89 days. This season of high ozone corresponds with a large modeling experiment using the EPA Regional Oxidant Model. } \usage{ data(ozone2) } \format{ The data list has components: a 89X153 matrix of ozone values. Rows are days and columns are the sites. Site locations in longitude and latitude as a 153X2 table Logical vector indicating stations that form teh smaller Chicagoland subset. (see FIELDS ozone data set) Nychka, D., Cox, L., Piegorsch, W. (1998) Case Studies in Environmental Statistics Lecture Notes in Statistics, Springer Verlag, New York } \examples{ data( ozone2) # pairwise correlation among all stations # ( See cover.design to continue this example) cor.mat<- cor( ozone2$y, use="pairwise") #raw data image for day number 16 good<- !is.na( ozone2$y[16,]) out<- as.image( ozone2$y[16,good], x=ozone2$lon.lat[good,]) image.plot( out) } \keyword{datasets} % docclass is data % Converted by Sd2Rd version 1.21. fields/man/yline.Rd0000644000175100001440000000306713114135522013723 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{yline} \alias{yline} \title{ Draw horizontal lines } \description{ Adds horizontal lines in the plot region. } \usage{ yline(y, ...) } \arguments{ \item{y}{ Values on y axis specifying location of vertical lines. } \item{\dots}{ Any ploting options for abline. } } \seealso{ xline, abline } \examples{ world( col=3) yline( seq( -80,80,10),col=4, lty=2) xline( seq( -180,180,10),col=4,lty=2) yline( 0, lwd=2, col=4) } \keyword{aplot} % docclass is function % Converted by Sd2Rd version 1.21. fields/man/NorthAmericanRainfall.Rd0000644000175100001440000000737613114135521017014 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{NorthAmericanRainfall} \alias{NorthAmericanRainfall} \docType{data} \title{ Observed North American summer precipitation from the historical climate network. } \description{ Average rainfall in tenths of millimeters for the months of June, July and August for the period 1950-2010. Data is based on 1720 stations located in North America. } %\usage{data(NorthAmericanRainfall)} \format{ The format is a list with components: "longitude" "latitude" "precip" "elevation" "precipSE" "trend" "trendSE" "type" "x.s" "sProjection" with elevation in meters, longitude as (-180,180), latitude as (-90, 90) and precipitaion in 1/10 mm ( precip/254 converts to inches of rainfall) \code{precip} is the intercept for 1980.5 when a straight line least squares regression is fit to each station's record. SE is the companion standard error from the least squares fit. If the station is complete, then \code{precip} and \code{precipSE} will just be the mean and standard deviation adjusted for a linear trend. The estimated trend \code{trend} and and its standard error \code{trendSE} are also included. Also due to the centering, for complete data the intercept and trend estimate will be uncorrelated. The component \code{type} indicates whether the station has been "adjusted" (see below) or is still in "unadjusted" form. \code{x.s} is a useful transformation of locations into stereographic coordinates that reduces the inflation of North Canada due to the usual lon/lat coordinates. Specifically it is found by: \preformatted{ library(mapproj) xStereo<- mapproject( NorthAmericanRainfall$lon,NorthAmericanRainfall$lat, projection="stereographic") NorthAmericanRainfall$x.s<- cbind( xStereo$x, xStereo$y) NorthAmericanRainfall$projection<- .Last.projection } Use \code{NorthAmericanRainfall$orientation} to access the stereographic projection orientation. } \source{ The monthly data used to construct this summary was generously provided by Xuebin Zhang, however, the orignal source is freely available as the Global Historical Climate Network Version 2 Precipitation quality controlled, curated and served by the US National Climatic Data Center (NCDC). The adjusted data from this archive has been modified from its raw form to make the record more homogenous. Heterogenities can come from a variety of sources such as a moving the station a short distance or changes in instruments. See \url{http://www.ncdc.noaa.gov/ghcnm} } \examples{ data(NorthAmericanRainfall) x<- cbind(NorthAmericanRainfall$longitude, NorthAmericanRainfall$latitude) y<- NorthAmericanRainfall$precip quilt.plot( x,y) world( add=TRUE) Zstat<- NorthAmericanRainfall$trend / NorthAmericanRainfall$trendSE quilt.plot( x, Zstat) } \keyword{datasets} fields/man/gcv.Krig.Rd0000644000175100001440000001324613114135522014255 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{gcv.Krig} \alias{gcv.Krig} \alias{gcv.sreg} \title{Finds profile likelihood and GCV estimates of smoothing parameters for splines and Kriging.} \description{ This is a secondary function that will use the computed Krig object and find various estimates of the smoothing parameter lambda. These are several different flavors of cross-validation, a moment matching strategy and the profile likelihood. This function can also be used independently with different data sets (the y's) if the covariates ( the x's) are the same and thus reduce the computation. } \usage{ gcv.Krig( out, lambda.grid = NA, cost = 1, nstep.cv = 200, rmse = NA, verbose = FALSE, tol = 1e-05, offset = 0, y = NULL, give.warnings = TRUE) gcv.sreg ( out, lambda.grid = NA, cost = 1, nstep.cv = 80, rmse = NA, offset = 0, trmin = NA, trmax = NA, verbose = FALSE, tol = 1e-05, give.warnings = TRUE) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{out}{ A Krig or sreg object.} \item{lambda.grid}{ Grid of lambdas for coarse search. The default is equally spaced on effective degree of freedom scale. } \item{cost}{ Cost used in GCV denominator } \item{nstep.cv}{ Number of grid points in coarse search. } \item{rmse}{ Target root mean squared error to match with the estimate of sigma**2 } \item{verbose}{ If true prints intermediate results. } \item{tol}{ Tolerance in delcaring convergence of golden section search or bisection search. } \item{offset}{ Additional degrees of freedom to be added into the GCV denominator. } \item{y}{A new data vector to be used in place of the one associated with the Krig object (obj) } \item{give.warnings}{ If FALSE will suppress warnings about grid search being out of range for various estimates based on GCV and REML.} \item{trmin}{Minimum value of lambda for grid search specified in terms of effective degrees of freedom.} \item{trmax}{Maximum value for grid search.} } \details{ This function finds several estimates of the smoothing parameter using first a coarse grid search followed by a refinement using a minimization ( in the case of GCV or maximum likelihood) or bisection in the case of mathcing the rmse. Details of the estimators can be found in the help file for the Krig function. The Krig object passed to this function has some matrix decompostions that facilitate rapid computation of the GCV and ML functions and do not depend on the independent variable. This makes it possible to compute the Krig object once and to reuse the decompostions for multiple data sets. (But keep in mind if the x values change then the object must be recalculated.) The example below show show this can be used for a simulation study on the variability for estimating the smoothing parameter. } \value{A list giving a summary of estimates and diagonostic details with the following components: \item{gcv.grid }{ A matrix describing results of the coarse search rows are values of lambda and the columns are lambda= value of smoothing parameter, trA=effective degrees of freedom, GCV=Usual GCV criterion, GCV.one=GCV criterion leave-one-out, GCV.model= GCV based on average response in the case of replicates, shat= Implied estimate of sigma , -Log Profile= negative log of profiel likelihood for the lambda. } \item{lambda.est}{Summary table of all estimates Rows index different types of estimates: GCV, GCV.model, GCV.one, RMSE, pure error, -Log Profile and the columns are the estimated values for lambda, trA, GCV, shat. } } \author{Doug Nychka} \seealso{ \code{\link{Krig}}, \code{\link{Tps}}, \code{\link{predict.Krig}} } \examples{ # Tps( ChicagoO3$x, ChicagoO3$y)-> obj # default is to find lambda by GCV summary( obj) gcv.Krig( obj)-> out print( out$lambda.est) # results agree with Tps summary sreg( rat.diet$t, rat.diet$trt)-> out gcv.sreg( out, tol=1e-10) # higher tolerance search for minimum \dontrun{ # a simulation example x<- seq( 0,1,,150) f<- x**2*( 1-x) f<- f/sqrt( var( f)) set.seed(123) # let's all use the same seed sigma<- .1 y<- f + rnorm( 150)*sigma Tps( x,y)-> obj # create Krig object hold<- hold2<- matrix( NA, ncol=6, nrow=200) for( k in 1:200){ # look at GCV estimates of lambda # new data simulated y<- f + rnorm(150)*sigma # save GCV estimates lambdaTable<- gcv.Krig(obj, y=y, give.warnings=FALSE)$lambda.est hold[k,]<- lambdaTable[1,] hold2[k,]<- lambdaTable[6,] } matplot( cbind(hold[,2], hold2[,2]),cbind( hold[,4],hold2[,4]), xlab="estimated eff. df", ylab="sigma hat", pch=16, col=c("orange3", "green2"), type="p") yline( sigma, col="grey", lwd=2) } } \keyword{spatial} fields/man/pushpin.Rd0000644000175100001440000000470413114135522014270 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{pushpin} \alias{pushpin} \title{ Adds a "push pin" to an existing 3-d plot} \description{Adds to an existing 3-d perspective plot a push pin to locate a specific point.} \usage{ pushpin( x,y,z,p.out, height=.05,col="black",text=NULL,adj=-.1,cex=1.0,...) } \arguments{ \item{x}{x location} \item{y}{y location} \item{z}{z location} \item{p.out}{Projection information returned by persp} \item{height}{Height of pin in device coordinates (default is about 5\% of the vertical distance ). } \item{col}{Color of pin head.} \item{text}{Optional text to go next to pin head.} \item{adj}{Position of text relative to pin head.} \item{cex}{Character size for pin head and/or text} \item{\dots}{Additional graphics arguments that are passed to the text function.} } \details{ See the help(text) for the conventions on the \code{adj} argument and other options for placing text. } \author{Doug Nychka} \seealso{drape.plot,persp} \examples{ # Dr. R's favorite New Zealand Volcano! data( volcano) M<- nrow( volcano) N<- ncol( volcano) x<- seq( 0,1,,M) y<- seq( 0,1,,N) drape.plot( x,y,volcano, col=terrain.colors(128))-> pm max( volcano)-> zsummit xsummit<- x[ row( volcano)[volcano==zsummit]] ysummit<- y[ col( volcano)[volcano==zsummit]] pushpin( xsummit,ysummit,zsummit,pm, text="Summit") } \keyword{hplot} fields/man/Wendland.Rd0000644000175100001440000001441613114135521014336 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{Wendland} \alias{Wendland} \alias{Wendland.beta} \alias{Wendland2.2} \alias{fields.D} \alias{fields.pochdown} \alias{fields.pochup} \alias{wendland.eval} %\alias{Wendland.father} %\alias{Wendland.mother} %\alias{wendland.basis} \title{Wendland family of covariance functions and supporting numerical functions} \description{ Computes the compactly supported, stationatry Wendland covariance function as a function ofdistance. This family is useful for creating sparse covariance matrices. } \usage{ Wendland(d, theta = 1, dimension, k,derivative=0, phi=NA) Wendland2.2(d, theta=1) Wendland.beta(n,k) wendland.eval(r, n, k, derivative = 0) fields.pochup(q, k) fields.pochdown(q, k) fields.D(f,name,order = 1) %Wendland.father(x, theta = 1, dimension = 1, k=3) %Wendland.mother(x, theta = 1, dimension = 1, k=3) %wendland.basis(x1, x2, theta = 1, V=NULL, % k = 3, C = NA, Dist.args = list(method = "euclidean"), % spam.format = TRUE, verbose = FALSE, flavor=0) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{d}{Distances between locations. Or for wendland.coef the dimension of the locations.} \item{theta}{Scale for distances. This is the same as the range parameter.} \item{dimension}{Dimension of the locations} \item{n}{Dimension for computing Wendland polynomial coefficients} \item{k}{Order of covariance function.} \item{derivative}{Indicates derivative of covariance function} \item{phi}{Depreciated argument will give stop if not an NA. (Formerly the scale factor to multiply the function. Equivalent to the marginal variance or sill if viewed as a covariance function.) } \item{r}{ Real value in [0,1] to evaluate Wendland function.} \item{q}{Order of Pochhammer symbol} \item{f}{Numerical expression to differentiate.} \item{name}{Variable with which to take derivative.} \item{order}{Order of derivative.} %\item{x}{Argument for one dimensional basis function} %\item{x1}{Two dimensional locations to evaluate the basis functions} %\item{x2}{Two dimensional centers that define the basis} %\item{C}{Vector or matrix of coefficients to multiply with basis functions} %\item{Dist.args}{Arguments to distance function} %\item{V}{See explantion in help for \code{Exp.cov}} %\item{spam.format}{If TRUE return result in sparse format} %\item{verbose}{If TRUE prints out intermediate steps for debugging.} %\item{flavor}{Takes values 0:3. Controls type of tensor product: %father*father=0, father*mother =1, mother*father = 2, mother*mother =3 } } \details{ This is the basic function applied to distances and called by the \code{wendland.cov} function. It can also be used as the Covariance or Taper specifications in the more general stationary.cov and station.taper.cov functions. The proofs and construction of the Wendland family of positive definite functions can be found in the work of Wendland(1995). ( H. Wendland. Piecewise polynomial , positive definite and compactly supported radial functions of minimal degree. AICM 4(1995), pp 389-396.) The Wendland covariance function is a positive polynomial on [0,theta] and zero beyond theta. It is further normalized in these fields functions to be 1 at 0. The parameter \code{k} detemines the smoothness of the covariance at zero. The additional parameter \code{n} or \code{dimension} is needed because the property of positive definitness for radial functions depends on the dimension being considered. The polynomial terms of the Wenland function. are computed recursively based on the values of \code{k} and \code{dimension} in the function \code{wendland.eval}. The matrix of coefficients found by \code{Wendland.beta} is used to weight each polynomial term and follows Wendland's original construction of these functions. The recursive definition of the Wendland coefficients depends on Pochhammer symbols akin to binomial coefficients: \code{fields.pochup(q, k)} calculates the Pochhammer symbol for rising factorial q(q+1)(q+2)...(q+k-1) and \code{fields.pochdown(q, k)} calculates the Pochhammer symbol for falling factorial q(q-1)(q-2)...(q-k+1). Derivatives are found symbolically using a recursive modification of the base function \code{D} (\code{fields.D}) and then evaluated numerically based on the polynomial form. A specific example of the Wendland family is \code{Wendland2.2} (k=2, dimension=2). This is included mainly for testing but the explicit formula may also be enlightening. } \value{ A vector of the covariances or its derivative. } \author{Doug Nychka, Ling Shen} \seealso{ wendland.cov, stationary.taper.cov} \examples{ dt<- seq( 0,1.5,, 200) y<- Wendland( dt, k=2, dimension=2) plot( dt, y, type="l") # should agree with y.test<- Wendland2.2( dt) points( dt, y.test) # second derivative plot( dt, Wendland( dt, k=4, dimension=2, derivative=2), type="l") # a radial basis function using the Wendland the "knot" is at (.25,.25) gl<- list( x= seq( -1,1,,60), y = seq( -1,1,,60) ) bigD<- rdist( make.surface.grid( gl), matrix( c(.25,.25), nrow=1)) RBF<- matrix(Wendland( bigD, k=2, dimension=2), 60,60) # perspective with some useful settings for shading. persp( gl$x, gl$y, RBF, theta=30, phi=20, shade=.3, border=NA, col="grey90") } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{spatial} fields/man/CovarianceUpper.Rd0000644000175100001440000000435513114135521015671 0ustar hornikusers%# fields is a package for analysis of spatial data written for %# the R software environment . %# Copyright (C) 2017 %# University Corporation for Atmospheric Research (UCAR) %# Contact: Douglas Nychka, nychka@ucar.edu, %# National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000 %# %# This program is free software; you can redistribute it and/or modify %# it under the terms of the GNU General Public License as published by %# the Free Software Foundation; either version 2 of the License, or %# (at your option) any later version. %# This program is distributed in the hope that it will be useful, %# but WITHOUT ANY WARRANTY; without even the implied warranty of %# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %# GNU General Public License for more details. %# %# You should have received a copy of the GNU General Public License %# along with the R software environment if not, write to the Free Software %# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA %# or see http://www.r-project.org/Licenses/GPL-2 \name{CovarianceUpper} \alias{ExponentialUpper} \title{ Evaluate covariance over upper triangle of distance matrix } \description{ Evaluates the covariance over the upper triangle of a distance matrix rather than over the entire matrix to reduce computation time. Note that the \code{chol} function only requires the upper triangle of the covariance matrix to perform the Cholesky decomposition. } \usage{ ExponentialUpper(distMat, range = 1, alpha = 1/range) } \arguments{ \item{distMat}{ The distance matrix to evaluate the covariance over. } \item{range}{ Range parameter default is one. Note that the scale can also be specified through the "theta" scaling argument used in fields covariance functions) } \item{alpha}{ 1/range } } \value{ The covariance matrix, where only the upper triangle is calculated. } \author{ John Paige } \seealso{ \code{\link[fields]{Exponential}} } \examples{ set.seed(123) #make distance matrix using the random locations coords = matrix(runif(10), ncol=2) distMat = rdist(coords) #compute covariance matrix, but only over the upper triangle upperCov = ExponentialUpper(distMat, range=.1) print(distMat) print(upperCov) } \keyword{ covariance }

}é_e \|J¯ûÞP)©íñ¿ïÙiÈ}M]y%’xy1.€ƒœ;wCÄ—33|²c!ôx¹PׄÊ+ñN‡(Í‚“ó&¥…—i`᛽ÈÜÙ’“˜¬ò³ZüPiž@ÆKw3)•nB¸²¯ÿðèJOÜ a}ÔWKfóÅ;hß²»Áýø"F(;7Ûƒ;ä€Gì ­6º$óÈ.>OÄý£dàS:¼¿Ôl1÷þ.ó¥¦K³ÍO)^ʆi¼Ó®°4Hâª~ß(vRt‹ZúæHÉÞ•ü5Q£!tdeä0êR˜–½!"–²›odˆOÞVGaÒ§Sg}CÔF˜©/•¥@Báî8*­´øpÊ™…û Ó¬¼o÷²ÿhÚ¡,k!ŸÞ…Iûõëå$ÁÞrÜ`Ú­Ñ+^¡§b]˜5×Ó¦ìûZÎî×ô­­-c§hÅ­x`”xëÊZî̈®4fêý+Püô´zOV _‚ÓÜÿ¢N`ˆ1Xdáàäç5Í‹ÙÅ9`_(®C”¡.:0_€Þø”pm¦•7òÇ*B Γ/¸±p¤ÖE™Nè×sí‹)/Çû›NìºL*ž]ñ$},ãIç…TõMáï…mH^© ¼‹3W‡µ‹6ôOÛ½ J˜™û uÏ­(c.Dg2»åˆW®f‹EN_:Pæ5±zoBF¶ )\±çãÈŠ]©rC…SP|b¦W¤–¿’bd¾žÔO·¼#2Ѧ8k׳L© ¥›™Ï{µÓœ¹¬\@“U¯œ@‰þ ü(4岊“9=ržÏ9ý¡"dEÅ$œ)¡|Y’„:›ÞÅឈÄkͬa„'à üú¨‚üD¸ ¾~¬©âƒb¶^ûd6”Ðù¾”e aaVo¶2OaøâluyœÿiEÒOÁåøtøe¼ørÒí|PèëS1@õDV£ñ3JNº]Þòyès‚!§»I€Ò&›^ä«ÓãÛKH蜵ž•ì^Ê¢«Ës^†rÉÔÄTœÂÊ7"·Q±V cö3ÕæÞ'Âûè—bÑe[ÁšáÞíløèÞþ¸š\‰¦F»ug2²ë«y„÷ƒ8Ù¬¨½,ÒA„aL½¾ØNE;bñÅ!ȱb“I7Ý׿c—Åo+Ðô)ÁÉ·Ö|ü¸÷Î>ª÷­ohz…µ EîéI·ø *ÃÓ˵mì¦C•“±o£ÆÚ<®LÐ#¸5{#7\J³å·/-°Z2Ýnekð8?ÔÞåhP¬þTÉ$‰™ËŽ”Àú{ûñt½UÖ6h Wþ e/”½³‰þ´—=) ãF#€¦n¶&‘±Â^ ÅÕã²í#ËgÇ.íOº^ÝÈʘ럂CW˜¢ºëÖpg„òYŽÄ[øàÊ'õ¾žVO>ž•jXZ†¦36#ˆHªjD @jçÅ0rÚw,øa&ÚˆVÅ5Ô.‰ûj^nk®ÖK3 ûÇ\õlš‡!ìÜ·S5êIú†ȵ«*˜Y¯8R_Ý:"‹ŒY‹ÓX³Éü g§ÉD¯ßñWóÎÒ¿n¡õT×iÒšœþçÀŒWru9ƒÉ¾ç‰ëÉß‚­¯¾'NöâGÀø‡ špH×dË’p§¶E.M­ühà¢ú¿õfLØbÔTÞmÂÒÈ®B¯„ˆG;”Ì’¶Úy=|qö»ºðe~Ü*†3Ì=v¬Í3;ãàXyGN¦­¦…“kÏÐ 3ÒKÛÉØH÷·;ÂÃôÈÐ(Ê\~·Æÿq ‰ÛÿN5m€¸n÷q•š•µÍxØFÔS5£'+r ly3ŠXî\T˜I áaæÏr O&]Ï´Ä-”~à”ý>Yï|- §Ùƒé›/HpìG¨Ë¤Sarv+i-û„\ØVÆ ±yŒ$$/Ó<ûF¸®;~”kú8\?xœ.Yô‹È˜G.½4÷4ÐÁ°õ6ů[HÁ ó²çt‡„/D¦F‚çnhÓ…ßò*¯UáGõGÆzäëùf’¶EqíGûc<ÝÏPê€ dJÕ‘F °e«O²\íß™…¡N¸ûîxœQ»'jšü§³Ôƒ»ê"Éa•ÍÀЇë߃Z¡~à ÙoXj9Èö»ÁûtÐ%À+g°'¬ÚXŒ¿ÿÄõÛ°„¦¤=ézÀÁ½éâÀj\ß ÐèøÓ «Â*”Ìà'½€vnÒ“r,”>¸rÕùòĘ4^1õ¡ezZmÒÚ»“MÅ’ÈW¥MÝ.r&Í­ÓZRל}C|Áâ0[Z/£‰õÒ’âi.^m«69Ø_ÁUôfvÌÍö8»„Ô noKKè4=}ŒCã[¡›ÄC´íѪbÍ?pØElttr_ЪWÕ*n·ÌZZ“WÙ¼˜×9X^&¾`Üÿ²íÏÜ€à¤VEó÷ ub­±åXDd†º2Ë_wÙ¢´•«õë'¯€"$þŠX3Øa‹cR)-N éº`y;áʼÍT\Tî>ðM?„ÛWk[b¤ÛLa/²>E˜¬ðóëùwß¶Óó€vf„}°whþ«nóáz†=ÒãØHU-§ Q½|Kdr%&WBé5Ìhë!z.lmg*“ æ _EÞ½‘„nyÌZOé(Oe©ÕQÜi«+’õ×!¢ç‰†ù[5­ð9– 3–l¬ôé”â§Dð§«õ¡7! %\t”X«l=@6ó²“ïí9/«·å­Ž‡n5+g‡}qÿEdºJfheM§[™[_RAáñÊwþ@Šø" ÏÎ{OYMN…×aò<…~úòÃò觪%סj¾läÏ_`¹ ³ºøÙÉA Ïâ—‹6ÙC¦Œ)ö«ˆL“÷¦wó-S =b èˆ]–Ffm)ÑÐÕeWžP¶‡eäôöL ç|9âÖK:_Ï™ÞUaàwoð.]3âò"±•…­¤Ðr½4Ÿ¯³Ÿ$’‘HlH½”]ïÝË2˨Ç[ AÅj4$dNæVÅr%}#ýpøIF±ÌÅÿ>/×U–+÷QÎ{ m©ë{a]ñ±æë:À¸þnÂÖå;çnj¤ïåöK!ZŒ+Š6·÷†¸î>$²]û"»‰`¼6>\ÙN‘ªŸxLí­ÕOSÉz«!ÆJ¼0Zœ½äWp «—ÛÝh.¡±M •8küB,üt¤…‚'6*X8ýPt@ yÿ‹ò\pt M^}ÔÆÏ„^"|ÈË«éò–дòvoÃåCq °lª£O…ÂÏÃfÍ9Ï ©¾¶h%¹~2bó㻟GšÄ1úþ¾sÀïM–Е=Ñï§ÅÃF¤¨7$ø'Ñ¡n T#E­GÈk‹ÈTë~‰¢¥¸ ow³Iw°„fÌAûËÃÈÏX{5Šxð×ÊYRÄoæ\î5l` ”-7b5`ÌNz>—Ú¨hü‹Ùhg&B÷qô5æž;οNfïïêdﮕßüºâ̺ô1Ês$íËög›´ÐµÍ|£Ç¤…Ô“xÝß’"‘/ž¸K‡ý«Ÿ×lŠJvZöªòÜ0c±L¨331äÚ£DÏ线›¡EôÇuXt3òË”¯æ­A3^dC%]ã¯È6‹¤>&cÀh©ARÅÓc|•ñezÉ0ä6üÓð“&ŽEÙu³ˆ-‰«/iôAA¹d>yðSyH.•ý£° ¢­OœÜ hÕÎndÜêZØD¸‡fw þª=¡J¹®ïª+<1AS‚ù¡ê|Yvä‚’/].ônúS»R Âç·ÓOža¸jÜ­{QÀÌœ ˜d–™Ð¢[18øé€»AÙ.=RÞÒ@óõ76Úøueÿ¹ªM b·_iŸ¥™•âõXµ£‚ûàÁ\Ë¥ó¡~FÌ>®_Æ•Îïé:caÃò–XÜ…¨´ï 8k5Ûß¹¿l‘ó@ žÔª°áÐB——6¸vRØ,Oñê%«ª0–_6ÃŒÒá¤ýWS›ý×RkäSx°©G(Ô|ëPx¾>w`¶ÕœÏ¿"óÜê‹»É3.í¨ÓóqÛƒÊúW˜;5a0½J3õI‘v2ITqlŸs¢‰J“€ôÇ £àPËé3e}:É~ÌÛ§žlÙýþ ¡nsÙ&=€ñÛámòhYzzŒ†_Ìxï†Ò‘8ÑMS®r_È%ñú×åãúE< …‹Ðý“x°æŠ@Ç-ò•ôÙpÀh"° ‘Vós‰¿Q:]°Éðr½ùŽÙF·Bv_SdÍ¿Y#Ït»Ñ.þ€7ê§Œy£x͹òg®0¼V'osC †ÍvÓæõœR¥Óƒ`kyŽv·Ð'Î?À™«X¡GôNòÏ ‹ûâB Fhõ…Å©©WÌåäú;7B ægÁuMX¶®?<¤Ër×Å4ŒÇÐ#bþƒñµ;‘zU#1õ¼Ãƒ[‚AíŸZós 6ÙEöÏ›8yž7Ùg1S5¾Jy‹ãÞn‡«`›yýJwuEÛîÓØJ3L$ûý˜Kº)o@À+àÞ.¸½¯M·w®Ó®mÐñþõüÊ`bAÌ¡$ø‘éÆ\ÝÒv$59³ÈÌî-‹ÑN©z§}« ¨ð ñ‡Ôқˊ–8…-–¡K Ps£Ð4ØKQ;¼a¿¿ÕJ‡r@c´ê+ }Œ_A< ÷uÓf:r#TœéÞdÀ TÁfµg/U}ÖÂ`(sè¹ý›"ý¡@™ø)ý„ ╨Á‘ -§ðŠÝ8Õ›“ͦ¦«Î+½ØóêfP3ß5DwfWD"ÖÄ%n²Ð¨J ¦–{|ÛEƒ=ò`7V4qT«3ÏR\Íœ/еÍÔÀþLÄxOø|­§9¨ãÔÊ }s6hí^°º.îWúlt‘]æ$ÆÏ©¸b \ñPë Á¸œÉýÞ.eA2ÚBîh­ ä†ýÞÂó4…fm‹»çwI}ÃrX¡…ÿããÅó#†”£šý쌌1`:؊Ķýúp¿È9÷”¤~tÌ5gí2È„Z9}£ó$8 |B#Ê5] T> áÊ ‘ÿ¥Ô&í£~FîÞu[§x¿`H ø:BQi#t­ÎàµÝG£ §C4;AAcù:`¨q¾‡D ’=3DÂo3ë~m–|HÅ|IMm"cGþ‹É]*+Ä\¶ßÙ.œØƒêðáÃ[†I#Éx椊ƒ„ÓtE°íºÑíã.4²ÃogözþI/þµwÂë¸w?v1ø¥_בÿíAEþ¨±%ý§qrº^"¬Öåd%g·qf«@î{n]4=„›×Žè0écòQ¯êúTh}tÈTCë)`“Ãl»n«BO·ƒ¯Ÿ"_î4ÚŸ)ëKšçb²”™U°?„ˆq8Ã`ß Éþ¥.lä~BéLù’~žp^¬·±ÆØ†#‡¡ÃÃ¥ˆã^z¿ðrn˜]ˆO5QI¾ïÝ}Ì ·mzWUŒä>Ô‚¾‡Cf·ÁYͧÉ{-GK7k?QB2«´Ç¬cÖæ7ïzÔxßµ`z”¹•Á4–p‹ÂSžñ1ë?øÃÂ7òâëLíÅÙgbe§ñF§ÎM¨8†ªÂP?jÓEKÕÞ“Ìí Áútˆü˜T…Á½UÑÉo~C0 t§Ã™‘" ÂŒz@€ÛÙ<¨ ºeYŠÈ^?7éšÆñeåÐÊ`:çéG8•îÓLˆlŽOXÌ 6[lì‚]¾“pîR `Ñã ƒý«ŠåÐDÑ à]7ªêBñõ?r?»0Kùˆ Ùò•Ö-:ÿ]6¬tä42¾Ç´ç½Fü¦ãßp?8gáMÝ ëš‰‰¥jŲg §àŒ‰½J:¸EOQW_º1%õ˜ÌÁµú“Ï„4€¼ÿAaIrÒÁ±¯oö¿Õip%eeZW¢ÃºÇ±.Ó×Óú©9m¦VßMCñ ÖEÿ¸ 4Ë$¬™H{ùùK’:”Žˆ -y«˜·—Ï¿™Ñ²Fk‹ëg#â|3Ì…cI²,q°÷ȶfæŠõX2aCÖïIvä[ "Ûb#O9ß(áú¦ç7°È¨¯(G\Ô•£‰´$¹:þªº¢2k ³¨‰ÚÿÊî¶QðdµŸ’Îtï*:†Kòù&jLU¶1âååòï¼|R´dKƆ…ªÜ£k™ªàpÛ“êÔÇÝBá߯Ž-TÅzްðO,úy¤yo°½Êa³D`1‹Tv+°¬<^ž;³Û-,hfbÀ1ÝkõÔ b„¿a[¤¦Ô ¬£æå Á¦³ ›×CˆrZú‹ºœGc†·ÂåÅ÷­6­ÛJ«@ ù‚Œ`ï)wÿ×{404mie2nm'Ôùó[œ²ο‘ÖÐJ†~6d(ÀÄÅ«R‘-Ð$ŠzD¥çfŠ€]› lR ‚ÉôMc÷EKHÈXR¾T$̲_kê¡èާzWyZÖy•ÍG{¸ptį8nõf­•¾¹½PÄ«Âiv’ïeRÃ+2éñCFÇ{âBÅ*éÈ s ÿU›„Ê´¥±èý?={9ó+âߘtZ¡¦‰¥‹u ƒr&¹€ÄYÀaJ§ý¿T„—t2GÀÈ*$³‰cɧŒÉ)­*Ñ!uzRš©9P4 »`˜ØÃäÍ‚,ãù±à¥µ’@2¬­OK16-¼ ¸¤x#>^ž©ý0=Á˜´×—qfÐJt„Á’ÉûçÁ>} ¹Ò9;¡AE/¾¿¥¢×ÑП•;tËSYPi‚7Ýø§åÓ]nD¶mƒB´\zmA) º)%¦„Ò¦¢/ ªå­Eóx‚ºþ,®hï&²ÛRé\~ŸºÙè7¶ËäàCƒÕ]c¿¡äÞã\: ¦.h¯I^¦9§ÓOzK½ÿ‹‚nLG½ä‘üø26*ÆùÕÞõtõ—Üàù ÆÍ´šyܸ¯ÞI‚CÙ½€N ©Qb´ ƒ“´.úkÉéÍêd·5îöÃ/Ÿ}ò”¡eýzfµƒÝ÷Á;ˆœ¶[e/¹+ÄåiÒPçÖU½z²ÂCý‹èüQÈ”£QK¤…qBÕZÍ'eSí:Î3ÅSzí^1ôà{1E‡K†}G£*xÕ2‰Ã FÚe¼©-1 Øƒ¹ÙªOÝÿ˜ShÁ¸O+{jë¸%E½{$4gØqʹ3vI?5vJá¬>¨ZÕ½l*=~W'êYúÀ¦‹™V ]å±áôy3;Tî|qÂ¥·bE•Ìôe)&ŸÔ:M_Tfÿ˜Žž˜6̾zyÜQ:®YœšgUÄxä`<óBÜKÛcºÀÉ͉oO‚±Ò`3WªZš"[<³‡"bgd€ù\óçp ¼.g¡/ºulƜڦRRÖýï`€ND§Ïa` Ž‰Ë¾Ï‘‡ ˆÀëõfNLÄÛ®•ñGçâÜfy®<½¦[õ_ê @¬µ$´Î÷~ÿ¦¦rl"¶‚Ç·dÓRT²"¢fõ8™B—z>|bˆºAÉ4 ?¤îõ6¡"Ðæ»tkÒPo{­¢:.×0oÒ§ ÿ ³Ìð$+ &‡X]%7ß2­[Šf®áž1!BJl„òN]“¤m õ¤JÊï hƒ;•,^$^\4u]#tG%EñtÔ¾Ç×tÅ«UµIv쯬¤Ò¡Yܲ† p}¯Ä¢/Ï*«o±ÿ9¤·Ù:¨â ºK蹞®û˜QfEÞ”ø#ê¯,±¿÷ºÄ˸?¿ŽÞÙ­½ÇÆðh]ïØô¼Œf{CÑ štMg¯fªY YÑ.ä(WlM¾Õ#.¨ëo}Ǫì´ïk5¾~ñœÕàoôâxûÿÙ1Z]ðý“£= aîï¨òdØüȇݜVÄSðìðÇÍ¡]ìÍ„×08´OLéÓA*Ó W izÎz4ØL- ÁâÇ!ÿ“ƒèØB¯ R¹çø <Ž»Ø=µ rp<ÅÖuCëÉ ¢ŒlCüâÏÓ)÷LTzm©5õú¿=HšôëµµªÛ›äÈÛ ©¾Ñ»T ¹3¥žã^` ‰½xêaIÐÈOò+b +fÉwK€Üs*=KV¤ïÿ‹ÒeÏh)‰9}hn{2ãn¼r²?WWáE µtyDJ÷ùyT}ù"Ä í3¦ŽìÃIÜ"‡„ÕÉ™WUÈ©ù5/'XÓŠ^@¾iÌ òTêóGßfHá<Œû]ìSzØ(ZíO ïS ”Lç¨U8‹–ìû–È:âô±­¿¡/騠Ñy¦¹Á…œ NäÖDÌÈS[5†½G˜v¨ Æ|&² «ÒîõÀÝzãŸ1ì„’0ÉMÓ¨ ÑôÖ, @©ß€A‚ÂïÓ¬'(b‚õÛàl‰Ç³]`RÉ»q–·ÒÍ­­@HÎ}ÙÁ}c•b ªã ¡ó{ÆJy"éh}}E ¥Ì¾ÎYNÚÃg‘ØßÈŽPT6ç£ú%ˆ•ÑúD½à·¤gB˜|÷bU#è0Úfæë…㣌ҞÀ&k?¾øÁVÆ.‡Õ@°ÌlT.!š>‡ÀÕîàóL=<{œfã -É­°½›ñn„•à&|/û<Ávrì*4 eÚ²ªqpÅö¿®ñöœ>@¬=í­5Žcd&]ö£oKD½L6¼úæÝ6ÌëúÊXýÉ¿q*li·²½Tº#}¿¬¨Žƒ\û2öGŒõžÎ!lhlÔñð7¢óàŒ*éçî-Ü|KDOÁBv–È yž©Ã âÕóÎ^ÜUÈÆ‰ Ïò˜ {D“ls=—.“ ˆ†ðqÿÄLž·'•,Œ@@Al–¼€C»iŽ\8~gX-ÇxQ¿4ÎþÕ¦è¤?’!SkPšÚ䀔ôˆõÇ£è~¿•Ú$••ʆîºÇý©¿?Õ]ŠtôܬüËU2ž!§QD@®¿óüÀßoDNàA ¦wVìï«EÅ€Ö.u,Û ÕQ+ÌWºŠúqËjZö!õ”7”Q^¯½JY½Š_2gd»6HýœA<‰G­¼Þò¦¹5ƒl]ÄÎè°ÒÏlô0mŸßž„Ðö¡Þ0¹úöV> Ð*§›½(ž&Y»ðYÜ!ËhvQÄh©³pÚaMd8¹£Œú#æ«6ëØ®’­^®§‰Z’‰Û¼*ËBuº/Zá…&µ`l- Ü ¼D»Énß®!Vº:œ{¤8U£X+vÃK—÷ŸQÞ~dzÿ%>6Š=¾h!VshŠ×û{‡[çJq{  Äèæá]c PNö ;¶™C;#¹+™²}Sº[Ç¿( ÒS _*ôts…Û_‚SÎÀª4f†• À˜ÔRû mnff´+¯lñ•9,×–×­«xòhm}¢&c«æhëùr:Cé{Ês4 }ûI¶¼)ÁtÌ›.A;¨5ßòˆß“¯,Dš<–7±N–Uˆœoz&cDïý;ßž^[ˆbñèF1Ôæ·È‹ñu®%BÝÈÖZg‰œF럄¢D ]qýã9Ïc¥2Jû(ÇjS•uǬX"A¼‰Ñ%,FQ™ˆ‡J<=í{ßP¼óžƒõK#ÿÏàM‚Ôò}O/ƒG°KpØ5ÛeNœ^9 ÝNí#°Jmÿ>DJìe×Á õð–nì[“½†VÖµe|G‰LæòQ@]šâjÍLÜÛȭͼÍꂟŤra€ÖõlÔïâ6UÁ>±.kئ¤Z€…s(ÿ$áFÔ…¼—.d¨£°ò¤•ÁÆJÝó4‘†îT%Bà/ú¥(Ì›¡ >çs’†AâoF²×¿MÕàõÛ.NÛ±>á€k-y9l“·ô°¢!´-1–;éJˆOçÏJÙz,ãxôMêÐヹžœÑ±˜Kê {P·Ü;ïß•O­-›(ø?èc]&¨2Ò‰8ìZ’2}pq’ÍÎÓ™—šs\À3œKî‹Á–(˜Zºá[±„:’·?3`EC!×'yÃ>c‰ úYhòáKmõo 4O¦ù»Fâ{a0|dªaôèTäè±´Wà '¬'])Š ÀØÏ•r]ƒEøy´‘¤MƒéçjÜ `ží07^Søì WÍÉ¿d“eÕ@#nÄÀ žyC–½ýǘB¾|ɫà E ^‡,b51Qù V”héiÂpú¦Ï*"…ãDÖ=÷Ð\¾f#³×¡B¶$ÍH%H‡ù¥fóyâO0Q× “Ž±Ô³úü_`#k?¤d’Òå( ¨yimÄJnÖχO4ßu®”g" àFÖp¦ÒÏNêwP žìí¦L(çXÞÇ ä4b†Fõá–HV[«¬t}¯¸Ù–„šÛ}G¤ƒaæ"Šö;»Ö0 ‹YZfields/data/COmonthlyMet.rda0000644000175100001440000474067612560751565015565 0ustar hornikusers‹”ý{˜Õu½þOf•ÌÔŒÌÌ”ŒÌ”ŒÌì)1&ƒÛÈLMÑÈLMÙn3å8 sžYçÓ dŠJn·­ÔŒm¦n%e›)™™)¹IMžµ~÷ýzÏÕâéz®Ç?ZÍ™5k}¿Ÿ÷á>9éìãGœ=¢©©i·¦wîVûßwÖþïîµÿÓôŽ¦Ý›ö®=î9qڱ߼蛗×þï~µÏ^‘tÞÜTÿ/Y•óã&=¦_õã6=æNÖc~²»:õ˜yÒé±²Õ_¦Ç¼bž»×cßv=v$~¼Ë?w¡³»ëqåf=vnÐcÑìåï÷Ïíóóé[àߪSçú÷nÑc»ÿŽ´oåEÿ¾‘zì½Z=Küóô£Ofã?ÿžþ!¿.GøçÌÐc¡âçíß“¹ÏŸïçíçÑ5Öÿ~µÿ8ÿ}óý|Gù÷øõêòcêXÿÜ+üñZ=®ð÷wúõ\í×¥Çïc‡ŸÆÏ·ãÿž”sþ;Wíý¾öîïíŸë÷'»ýŸù{sëüù³üýcþù1sŸ·ÿÞN?fŽ÷ßëç•¿ØŸ¿R­Gúïôë™ñóÉøùôûïm÷óoóï+ùó­7ê±Û¿¯Ëÿ®ÝwÚ×íÊ·üùãü<üzç&øçùuïöý²Â÷E›~é=oöëà×¥ý%ÿ^__]­þ9¾îú¸.¦ÿóóëðóÏûùeüõô™þ¸M½ãýsüþ÷Oò£ÿžŒ¯³”¹OÒ~?Êþ¹Ù”ÿÝæ~¾9®¿ÛõÈùÑöûž9ÏßçsdõBþAÿ>¿?=Ü_óý{ü~uûëý¾Ïó/øçøýî8Üçÿó¿ËúõÍžäß÷ˆÿ½_Ç”ïË®DŸ{+ŸÒc¯?Îûï‰û̯sÚçDÚ÷Qá=rß­lòëâs¡à÷+ëók•ŸÏ*Ÿ~ŸRSôØæïk÷ëÜãï/>êý÷qçýúæ þ¼ïzÿ¼~ž+ýºvøçd|½p]g§ê±Ï¯C÷µŸWÆ?·¿éŸÿ}Ú×QÙ÷{Á÷G+çÍþ;ýûWÞìçÿÝÕÿüX<Ôûé±2ß>¯Kþ9ÅËýïÿÞ½þùë9ÿœÒáþ}~‹[ýõÝüy¿¾…;ýñQþºÿÞ²¿opÌ?ÿ>¾Îç óþùû Oû÷ߨð<ýùrÊ_÷Ïϳè¯WÆýóó,øyq=d/ÐcÚÏ#ï¿7ÏõççSôßUðï+¿øÏ'Ï·èÏW|Ÿý:–N÷ß™üó¿Ìøû—ýóóâ÷òwò>åüþ.öëÑꟷÔçè2_O+üù®?K[õ¸Ü¯ó>æ:åG¾îŸÓêû¾ÕÏg¹¿o…_×¥þxyëÿ÷GYêÇe¾–ûû–§ÇÕCÿü|Úüü—-ôãÍÿüüVúuXé÷í¦†ßÓ½Y=>÷Ó³õ˜ñÏÍÜ¢Ç~ÿüÎ+ú’?æúñ9Öí~£Ëu¡Û÷ç€Ï£Nß÷ôm½þ¹i¿Ï½þþ~¯?N]ïýïû}¾ôû|ÎùùPÇÒ¾¾¨‹™Q~=|.÷õ±´ªÇ%þ¸Ý¯W·ûÎÑ^÷Ý~ߨƒ«çúùùuo÷Ï_éçÙçs¿«¡_JùïM5ùÑ×g¿Oßz³ÿ×¾ãüès³ºÿî^=ÒïõùuJûýIûy¦}§ÞÖc§_êJJïcC{¿ÛûÓ.ûvízßí=µOÕG€úú›ê¬9;wúÇgWgµTòO¾¨:ëk;wT÷¾¦:«¹yú»XQuf%ÿŹê¬i;wÜvúíÕYg4Oßsߪ³¦Tòg?ôTuÖi;wT–o­Îúbó´·¾²[uÖ„J~êï­ÎúüΩÎú\ó´¿µŸTuR%?±yjuÖ§wîXuÐÜê¬O5O{þ‰ÕYÇWòã;o¨ÎúÄ΋fvUg}¼yÚS‡UgSÉüwwWg½sǵ½Vg}¤yÚÿ|}KuÖ•ü‡{½:ëƒ;w,Ø<¢:ëÍÓîO :ëÐJþs«Î:xçŽ ><¡:ë½ÍÓþsËYÕYTòûæÏ¯ÎÚçŽ9ç]Uµo󴟽¬:kD%¿Û éê¬=wî˜Q^Wõ®æi… î¯ÎÚ­’Ûþ±'«-;wîøÒK/U[þÑ<­gÍÎjËŽJPmy}çŽÏ÷‘jËß›§µþm|µåÕJî¹[¦T[^Ù¹cÜwgW[þÚ<í†qó«-/VrOüý?ª-ڹ㣷¯®¶ü±yÚUß/U[ž«ä~3þ®jË3;wöÆCÕ–ß7O›çsÕ–'+¹{®ÚVmybçŽ?·gµå·ÍÓ¾ùö¡Õ–G+¹;~>¶ÚòðÎ{/Lª-¿iž6ë gV[¨äÖìv^µåW;ßxûÞ+ª-¿lž6ýúÅÕ–{*¹Ìû«-?ßùƶ=n®¶üWó´/þê¾jË•\ÇW[îØùÆŸ¿ôbµå¶æiŸñVµå–JnɃûW[~²ó§—QmYÓ<í¸©ãª-•Jîºý'W[Š;ßxì‘–jK¾yÚGV\\mÉTrß?saµe`çÿýž•Õ–¾æi‡n,T[º+¹‹V­¯¶tì|ã¶¬jž6êà§«-m•Ü¿mzµÚ²|ç·vï^mYÚ<í]³®¶,ªä¾6ú˜jËw¾QúýÉÕ–5OÝÑ?½Úr]%wúœs«-×î|£ÿðïU[~Ø<õ•go¬¶\YÉ}!ÓSmùþÎ7V~cmµå{ÍSÿxdµÚrY%wâ7V[.ÙùÆ…ç«-ßižúä·Þ¨¶\PÉýèÈjË·v¾ñÃ?XmùfóÔ‡¯¶œ[É}è¢IÕ–9;ßøîÇÏ®¶|½yê}/_Pmi©äúÉ«-_ÛùÆùó[«-ÍÍSïüd¶Úrf%·Ï«·W[¦í|ãë·n¨¶œÑ<õ' žª¶L©äÞñ©—«-§í|ãÌ×ßQmùbóÔÜú«-*Ù×~pTµåó;ߘ|ÒIÕ–Ï5OízóôjËI•ì_îš[mùôÎ7>÷Ã˪-Ÿjžºü”U[ޝd7ï쬶|bçÇW+Õ–7O½þßï®¶SÉ>>á‘jËÑ;ßóÎ-Õ–4OýÁ}¯U[ލd}ÃÞÕ–î|ã§®¶| yê%{[m9´’­þ÷„jËÁ;ß8`ÑŒjË{›§ÎûòùÕ–*ÙÛG^YmÙç{þfiµeßæ©3—¥ª-#*ÙÁi·T[öܹý£î¯¶¼«yêÔÿÙTmÙ­’Mµ½T¹sçöW¿úvuæ?š§Nzﻫ3wT²«?²:óõÛÿÔqbuæß›§~æì)Õ™¯V²‹ßwNuæ+;·?õäüêÌ¿6O=¶çºêÌ+م笪ÎüÓÎí~ TùÇæ©~úÎêÌç*Ùï ±sû]¹÷Ugþ¶yê~ß[ùh%;÷¨Sª3Þ¹ý§:³:ó7ÍSßYšWù@%ÛüíïWgþjçöâ1‹ª3Ù|Æö¿ôUgÞSÉNº¹:óç;·÷~çžêÌÿj>ãåc¯Î¼³’ýü+/TgÞ±sûŠ›ß¬Î¼­ùŒ?\¶_uæ-•ì§NøPuæOvn¿aÛ¸êÌ5ÍglºíÔêÌJ%{Ìå-Õ™ÅÛ¯þôEÕ™ùæ3~³ýÚêÌL%ûÁŸµUgìÜ~镹ê̾æ3îýìúêÌîJöÀ·¨ÎìØ¹ý¼ÿzº:sUóë¯ÙZÙVÉŽHÞY¹|çösÞqPuæÒæ3ÖÜ3¦:sQ%³ó?N®ÎüñÎí_™4µ:óGÍgdßunuæu•̶ûTg^»sû©?þquæ›ÏèœÜ]ye%óâÞCÕ™ßß¹ý³T«3¿×|ÆÒÅVg^VÉãÜÎuÕ™gV2ëfn¨Îœ¶sû‡>YyFó_ûÝËÕ™S*™r_Suæi;_sö{ª3¿Ø|Æ<ª:sB%Ó¿y|uæçw¾¾5}ºëÍ÷“ _lþúm'ÿ!™0¥rë»ï¼;™0½i¯‹Çw&š›¿þÀí—%Z*·=îôdÂܦ½þã–£“ ßlþúæãÞ‘L¸ rëÉk~—L˜ß´W×ÇnO&|¯ùë/·&®¬ÜzæÑ$6íµ6ÿÅdšgïóá&UnýVêdBkÓ^÷öX2aUóìÃ{×&º+·þðГ ©¦½þ·óÜdB¾yö‰}.™P©ÜÚÖ~p2áæ¦½^y÷ß’ ·5Ïþòò“ wVn-í[H&T›öÞ}ñÂdÂ/›gÿÛÞ-É„*·þ×?•Lx¤iïCßµ2á·Í³/¿îÏÉ„'+·>Öt_2asÓÞŸ¸¦?™ðÇæÙ‹ßº"™ðbåÖ®<3™°µiïIÛ?žLø{óìôå{&vTnýÇÿ=›LljÚ»åÒ»’‰ïjž}û+«“‰#*ëÞóùÉÄQM{_ò—/'ßÛ<ûÁo$™xheݘçw&oÚûGóþ7™ø‘æÙÏ>·.™xLeÝ)s—%kÚ»ûé󓉟jžýú9“‰'UÖ}õÉ$“¦½oþÚëÉÄ/6ÏùÛG“‰S*ë¾ýÕ¡dâô¦½ù?7$››ç1mn2±¥²îšß|6™8·iïß}ù½ÉÄo6Ïùô†W’‰TÖµŸú@2q~ÓÞ[ïË%¿×<çŒ ×$¯¬¬+WÏN&.l±Ç)'$Ô<çÜ»öM&.ª¬ûùgþ”Llmñþ;îI&®jžsŧz“‰Ý•uo½<™˜jñÉONO&æ›ç,ýÉÇ’‰•ʺ?þ®dâÍM#N­<“L¼­yNvÌÉÄ;+ëvÚ“‰Õ¦çyq2ñ—ÍsÖg¾”L| rÛ{ÿp2ñ‘¦—öý#™øÛæ9½ÿ‰dâ“•ÛŽéº%™¸¹iÄ^’Lücóœ?¬:/™øbå¶ä=_H&nmÑ»âýÉÄ¿7Ïyc¿¿'wTnk^òHRë|GÜ2¢’LzWóÜýn¼>™4¢rÛ…{ÌN&jñ«ë?“LzoóÜ#w{O2éÐÊm ¯ýk2éð¦OýãWɤ4ÏýÌU™dÒ1•ÛV½qu2鸦¯~ÿkɤO5Ïú÷O&“NªÜ6øÝ}’IIÓ>{nýc2é‹Ísç]\M&M©ÜV}©;™4½iŸ\° ™ÔÜ<÷/LK&µTn{ü¼&“æ6ísü–w&“¾Ù™tAå¶¿<³>™4¿iŸÉ_oK&}¯ynîw%“®¬ÜþŽ™§%“6íóõ'>”LúQóÜ;g¼™LZT¹ý G›LjmÚç»ÓoN&­jžûðC‹’IÝ•ÛÇž>/™”jÚçÆ>ŸLÊ7Ïýãä÷%“*•Û¿ðËÿK&ÝÜ´OÿÄß$“nkž»ã¥dÒ•Û¿öùÚ<¾[íþóå¤ë¢ƒ¶î±ôgI÷Wïz¬åG7&Ýç_¾aÝgÎNzÆð®»Þ‘«µ¶›¿÷Ú?ŽHÒ/|ò¨?_ñÛ$Ýö¹=7|yv’:ãåo|pÑÞIfÄŒ¹•y÷&×þ÷Ë¿~ó ¤ÿÓþ­üæ I_çûŸüÊûJú6ýìï3oýŸ¤÷þ÷ïÕýΤwÞÓÞøÐ¥µ‘gŸ+Þyêï“îÔ’÷žÞ9'éno©ÿÀ¤{ÞCóOzóÚ¤kË_+Þpo­åþú7nü檤ëœÏÍÏ>±OÒ5ªpú'þãêxÞ]ëŸÿäöÔŠ¤û¸»ºö“îǪùëŽIIϦòÊ}6?“ôv¾§|Ìqg%}Ÿ~ ú\’ô;âü½7®NúFýjÔ¯?:'éM¾üõ¿ñjÒóØàÀ?üW|ßÿÊ–¬}þø¤oóˆÚ/¾>é»âüß-º4éä3g:wjÒ?ôtÓÿÜqHÒ¿íÁÚ¿Iú¿øÿΩþž¿ñ·/|(韻ßÝÏä’¤/•+ýbÆÉÀgþ×É' ´Ö̾ÉÀE“kȲd`®þžÝõ÷õßñĈÏÍÏÅ뚺ü˜ãš?7I=rîíkøµ$}ÐϺhÛ“ô\ܱtú®×þßTûz÷GõƒÂmIæ˜=ç\òèáIf}íϞݟ¤÷¨½_ÿM’zð°i—Ïùß$uãwkO<¤Ž¼òŠ‹Ž8¿6 Õ>½im’zôÄçþ2zâðÏ=÷À+Ÿ=mm’ÎêïÌŒÞmä—îœdþ°më¦I$¹ó.ýÞ²u$…c/Zya’yûcüé·ßJ2ì}áÏ–\“døBý&é{êÿl¿$ýÜ!+Üua¼>©Sß‘½øØ[’TîšÖIÒ“¯Ü¿uõ]IfòuÉ ?•äG:p÷åÿ”¼ó'wüyT2xr÷Ʊ'$Cmµ'°<©Üóždj®œŽøì¼–ÑCIn”^ïìÍcOî©ÿ>7ãèÿüÄK_Kr#Ç¿2îñLmÔÕïÍ´|⥳~ûÈðó›õæŸ.Z<)Xüæ{oûî_’Ô”SkÔqIÿSj7@WÒdínÙsîð}ãë´÷æúíWE[ïÙþéuÙ¤÷ŠÚívÏIïÄÿ»ý‹é_'½w?ð|÷o“¾±ÿsÇÁgÿ!é«Ön›{ŽNú¯ÏœÐ»ßÏ“ž«9¦;I]Y{û¦=“¤^ó÷{–Ÿ“¤OžüBñJÒ›ôýék—׿]=ü}»}í”Á¯¬ ßÿV“Ô‰cŽÜçŠÝ‡¯ÛCôqÿ%/œ2¡å•¤?©½'Ö~ÿ–ÚÕ2¶ô]ôéuµgô¾P¿ ö~œ~äï?qh*é¹þ¦ÔÑg6'=~Ý{ûŸ©Ÿý͉ñq÷¸½kOücI׺Ú1”½$éZ¬û {º®¿®³kV×'“ŽíŸýͧJ3“ŽógêóW¿œtœð·ú…‘¬~øõ‡þ÷ '«®ÿÊ_~ôÁdõ9ú½«¶>Y;Ö%«nÝòú7ÿ±8Y5ÿñô¿mÙž¬:ðã›÷}ÿeIûƒŸ?°vò%íKjÿúc»%íçè÷µ]{™Žú÷då›÷þÛ{’iÉÊMçן`²²õŸûßk¿‘¬œ§ç³rüͯ^uËÎd¥¯Û¶¡«nyû—'móïÞ÷¯c–&mÿWþݽÏ?î©óe…W+†¾ûïOüîïÉŠמΥ—'+>¯¿gÅîµ·óîÍIë†Úõð¡IëqµËù?»†?ñÝãvÿKÒzUá¶}ö“´îùXí‰~!Y~…žß2ŸW˾U;>øÉR_gË>³ÏþGÿçqññ’oMÛ÷ú3vK–]ÿ½¿H–¼ò»m?~ëÎdÉëcóW^ñdÉ@ývØ;Y\®—wmL=«siÑ õ—é½ÉMOÔ^ž©ùdѵ©7ö¾ðÎø|œÏŧÂIÏqß^3áÞ’ÞsÎÚý•ß‹ó5u­®ŸÔ¾µÛçáÁ¸z×éœêÛ«v¹½T+ %©Íõ?ë]IjvíÛ?g¸Ü\¯ŸÍIê7µËúíû“Ôí:ÿR®]…Ç~)êHz‚Þ_êB:S¿}öMÒSj·õ§ÊIæÀz™ß3ÉÜ¥¿#Uö9ÈÏwI½vlí`:,IvÁA‡Mû~’¾æƒúø÷OÒw×>Ùšd~ûJß-ß?É]¬û½ð{=ò!µrÿôcIñA½Ž… t]æ:/>ö§÷d¹jʇ?ó‹ásû¢E{ïöô;’ì¹:²oé¾Èެ]ýh’¹æè3gÌL2{ìÿÆe§}1Iß÷™Zcñf’¾RýQúýoÔ^Øçãùó÷g®«—§1I~Ý¿ïQûÉIñq]ù·j?þÕ?&å«k_=rd2xów~ùøø'åµ7}úË÷—’Âä=^k?uA’›Z»?ñ×$¿»úªòKµ¶i·Ë“â‰úùÙQßûÈ©#ŠIöQ½ßÙ³õ~ñz§Ö~þê¿®øv’¾¼ö2¿ÿwïsf¿ÚÖ>\oÜõ-¬µkúNÒwrí´ßE\½›~zßñœýçsßùËÏó÷{“¾jÖ×&ý­µ¶ñÇíIê/}åºòÊ$u÷!oMŸ|p’¾ëŒwœÔ–MÒ[kåiãØ$³¬Ö&<3IŸyқ׬hŠë!uqýþ‘¤Æ}µv`œ¤|žq]øüûÜû¾ù±IÿcÏÞ|SjLÒuíÃÇîKúîúIýÀîç®®½­MÆýØs‘ÞÇî7k·y¦/é9D}PwUç|÷‘ª{] ußtuŸt]»¬œ—t´vïV{Å“Žùª7 IÇhýžÕ/Õ?½Ïp¹Q¿wõ¼5ƒͽɪgÔO®ºêáÊoú¯OV£û~ÕѵŸ²ÿŽdÕÈÚe7ðó¤ý/¯ÖnÄ÷%ííêÓÚgÜ[/tI»û•[êçÔ_“•·ÖëxW²raíòÝp[²ršîë•®—ƒO$mÑëÒv…úͶ“ÕO´ML×Ù÷$mÇ}ðÕ-Ë'mcþ«lJV<\ÚKV,©µ¹w&+Ü´¾Y©pñ+ªc‹¯8»v!,Lu¾óÔ§¾>/¹éÙÚm?ùÏÉMº¾ozá²›¿¯7ÞÇ®gþ\{AÒIï^ª‹=ç_S»aÿ'é½·þ~ݘôïS{•ß{{20¤ù¡R­ -ø¯áþÄõ£çj]·=‹ëÇî^IϽ:zæ©oè~p~ý‚Žë¨ûœ/Ö_ðá:sr­ýýv­_ÙKý@×q3§lÛú¿I×éºo{öy|ü 3¿œtÞ¬s±kœúÇ®^õYÌE=Go® NÇ\Ös‰®«^¿^ܧÌ1Ý®»½Gÿ¹v€M¾/¨®[Ñ_Žýïm½ä‚˜o&¿ôóŸÎ:{ø¾ŸþñÚò¾¤Ïïcßqê§ûÇS»@÷Kú¿úûŽ×>vaÜŸ—l½äÛ“Î>q`^­ÝZô»áû}kím{q]’>¶Öîñ‘è9÷SÏϨ=¡ùIú¤Ú1sÍŽ$}ÅK×ßù«$ÝóZã›® ÓÏ«]ÐïIR/¡vþ*Éô£ÚÖ™¤^;ùaÌMéSÕO¦OQß’[{zߟ¤ûUÒ÷ï[/¨I¦»v9´›dǪà<.lPŸTºï»õ.)íÖù«ç®ûBR˜[ÿ1‡%ùµ»õCÇ&ù:øÿ•OògªÎTë¦?ûÍ$·¥Ö=|O’;­vÌ÷º${˜æ¬ÌíµrúóÚ¼0¥~»(É,8¯ö_mÎûýî §ÿ4Io®ýø\“¤?©þ!æ®ç¿¯'¿%)£ë®Òªó¿|~½ßœ º¿.?Zk¾òIéÔ‰µîIáŠOüÇUSŽLrËj·Å‹_NŠ“õ÷U–èuÈoל•»B¯/õ%3²öê¼óæá×]í²ûôéÃïË!õãd’:Is_Ì7Mõqã£IÿÍ7Ô.ü¿%}E½/}ç¨~÷íS/ŸKzÔó¤¯é›¨ë!æŸ÷ÌÙ›´HÝ ù-³¯Î÷Ì!µõ’ôQµã§òÐð|Ëuwõ„Úû`’:¯6†^uk’útíÝV}/sM{“þþ•žoWΩoû'+®µ)7´$+›zòøêö¤mã Ç}çþá¹fI½zwÒv~ííük[Òv‚êæŠ­z½V¬×ÞcÅUkkmz¸Îlk©Ĥu}oíBÿJÒ:KólëÈÚõdù+µ±ãgG&Ëß§ë¬utý2{÷®uæ õq˾òsv =™,}D{ª¥×êõ[zZîóüï$Kž¨U×}F%KÜÇür³æóÅãÕß.þŠÎEOè¾^äùaÑÑ›jë¬ä¦oÕÚ¤ÖŽèÿ£¿¯ê}è?¹~{Žˆ}Oß¶Úmú‡ÉÀÉÿY;0þcxŸäë‰9 {»ú½îõÚ«õ,¬ß^•ô4©O`~êªwG×ú–ܸZù™¤ëÁúú¾¤k†ÎëÎM­;;Žü^ÒÙ®>»öÑûû³ƒÕ7Äþ¬icíÆ>5én½eÕŸŸýépÝñó`oG½¡u/ԜܽN×Wwïîz¬å†¤ûFõ3ìùØÇÅßå:Ú÷Ô¹g<ú·JÔ©ž Ô Ù'“¾¤vùžqa2Фó¦ÿ¢úÛøÞdàHÕÏ·j/ã'߈ýõ%æúò%ê#Ò7ÔÆƒGoŠzAÿžö|óËEÚ_¥ºµv°ýgÔ“Ì'·ÕÄ$=»vjïýÛ$ÓzéÈ[V½˜dFéÜOý\çVj‡úôˆÓëm’§¾&½¾ÖÆï¨$³H}LöêY_;eðÓIþíãòg©ÿ`_VzJózá¡gz¿ß“¦|ÿ“Ëù®¤ðø¨Ú öjR(Õ¾|ÆcI~z½Ÿz-É¥ô~å?SW>“äFk_—£ýUvB­ Y31Él®µÝ{¼ždVýuÅù—ÝœdÚ­¾ÀL2;k—É‚Iúõëèkñºe²µ¶qÑeIþdÍëÅ+´×)¼U{[ŸšTè­5œù¤4¿VÞ~qwR¸KýDaÒìú€‘äÇÕÆ‘ó¿›g$Ss¥{’boír¾ûûI~‚öpÙfÝ÷ÙÃk_þEs’¹ôµZz<Éê·Á;“Lo}Œzÿðü5j^톻-ö|êkÇ“ÔEº_™CFÕÆÛ·¾’ô=xãCóOz+öQ}sU¯úšêÿO“þêœÚJRj^¸¾Rûã‡ç™cõú¥&}¼þ Ï«¿SߟÒ>3å>9µHûÜØcÌ»úúÛžºx®ö–úö{_ø³¥Ã{´Ókåõ'ë‡÷Ì»×nÛ%½‡¨ïץ'Qï^\'·,Þ›Sg6Ôß¾Ï']ÓµWí|å??ñÒY'×ëzííõÁ.i?P÷ëÊ º¾cžéÕë½Ò{à]æ™[5µ¥tžµÍÓës̆kê/àðãBͧ+æÕ_öÏ'+FëuŒyæÂúßñƒ¤ÕïKë‡k·Å„û’å—ª¿¡ž,ÿDml¬|3Yæ}IÌ1>¿—Þ¡ùiiY×ÅÒ³ë¿îÀdéþµc낃“%wÜ_|¥ïÖd‰ñ„Åž'¢öÝ»_—,úV}½:jx޹cíW>;9¹é ]?7}E}_÷¦Ú˜ñúyIïùµSvä”èÏ{¬·#’ÞOkë»^sjô7g×ïß’Ç4q~20pÝpîwyžŠyå*õñì[;ßÔ\sr¯æÿÎõµñÉIçUÚw&š :·O¬Ý&]íÂ=ºŽ~¤öÂÿ~ÏñßÛ=Q×IôIþ$õyÕ­xݽÿH]#<'ÎΉ¿ÕßT’>²vºìólà3àéz_¢n<­ù2êÓéu\`U’>¼¾ýF’>»^'/HÒ“ê—õ)IúzsàrÙ=©¿IþPõ—Åeú}Å‹µÇ*Vµ_,&ú¹Ån'…Õ:§òWh’ßöµ‚²,É?_»,®}0ÉÝ­ó8ûR­ ýö“ìÅ:'r{ªoc>É|XóvæíߢÞxýï8ie’~Iý\æÄÚ8<åïIþoÖ›¤Z¤?ä/Ö\”¿Zûµâ9šG‹÷ÕÆ•óI këíý)IéEOþìï-Iáíûr/Ö÷OO²¯úÔ׿qS’=V{¦Ìßjmð9mQ2ôþf.®µ#å·’ôõ=XíRõ—}*xRê%õ›©§…n÷~õ¿}>ú.ÑŸ:4PU¿Ö…ÎãqÚ;Çþëq=ïÔ:Õwöe©ÕÚƒ¥Î­Ÿ“ŸJRÝõ9âä˜bÎ=ïìçÞ÷ͱI¶Ý_7^ПÒ>›}rßW[o„’^ŸSÌÿ= tž³Ÿï¾·V&®Žû.îOïË;× ÿììPŸÐ9YýoÇÍÚÿuܨ9³cFíå¿ñ¼á9fk}ÝûñáÇ›'Õ¿N³úHÕ½˜oh³Ê}HûÖZ;:ÿ³Ã8 uæàúÞðÑdåÖú|xO²ò^«Ó°7£þ`åHÍ“+w×9Õæë íªÚ˜÷Ü¡1Ï´y_¹âMÍg+:4_¬ðÞbÅÁ·}÷Å[ÏOZ¯µú~o=_OÌ5žg–]*<4ðæ÷½K©ÿœ¯'K¼Ÿ ü…Ï3ϯYܪ¹ye±ûsð™Å{ ßZô õ‘ÔŸE‰®¯žtÇÞÔû.êBà4Þÿ¤Þ¥~1»Jó}æZXùt’¡×±ï%árôó=»«î:P}{®¨çëþîšS+SnI:/Ò“ë)ú–4/tlÒýuæ`/ÓÕGwÞ¨}ýO×%µcë×+“®íõ¾üËÁ+èÞ]{Væ¨î»V×µ?DŸÅþ8Ï®½ }xxî÷¾¹¼‰½û¾Çþ÷ÚsoÿIð)ØkPwÀ»b_æ9†=Zêxí£ÒO~ì±{ÿíÀ$}±êvê>õ©-º¯bOäïË5g×ÚOKÒצ‘Ÿ”dWÈx~gO–kŽÃœ“i«ÝvãžÆC<ïľ§]÷uú7;jËç“Ì|õ1Ùî“j¦˜¬¯Áˆs™¹¡ä>´4W×/sDþí% §hoÄ9Ïž*û²ö¹Ëôû³3>XoÔ’LEó%çwþ¢¶Ú¸2æðøô#ª™—T¿2hW¼[}Ï·¸@ýcéN½¿åÃt•ÞÖù_©=WáyÕ=æµÜý:W³é~ÎŽ?°6ÏJ²©zßóî$ÛRk›þ¥$s¿~nf¯…õ>IïyÁï'¸Yzmí²ºò¹ØW¦Œó¦«µ3ß|;ð—þQê‡cï`<”z~Ï$ê óŒñ¼¨oÌSÔöesõw€Ó°WئýAà‹{é:ƒøÌ‘µ±oÜÅÃûuïQØ#t±Ç§õy{ñ#ut¶ŠßçÂúß>\ùÍ@Ò1Gu­c/ÕïÕ·j.oÄgVÒ>iu“ÎåUúkƒï9É*÷;«ÆÖºÇ}Gã3Ì3sÄ“jO´OŽ½ÙƒÂ/WºîîÂ0n×¶]¸kÛ½ùZÁz8ik×9µËþì/:/V¤êmÞáÉ óWVŒ¼ë‚Z%LZ· ŸkõÞ¡uÎçÀižÕ<¾üçê¿–Ñë·Ì}lÔ_'Ì-K?S߬O–<[«Þïš‘,¹¶6Nž24Œ×ܤý<û³Å¿¨=͵×~³ø´ú:bl²Ø{«ØŸÍW½ ïjÕÜû,Î݆ýOzL­]ÿÒ&ÙW5ŸæÏ«Ÿû<üƒz}‰q>îØ¨ó·sŽðŠŽ§´/äºéÜ]û¾Þy…榮ñºº&ª`~é|Iï'OìÃà0À«»Qøxd÷dá}=£n_ûó¾øLàÿ7êýœÓ½i{3ïûƒ'ß üßû…8/žª_FNú7ÝS;¸jóÐKªÛð~ÒÔÛ·=†ñp“3„_~r³ø™c¿\k$û“Ì“ãê Dà'™Ÿÿ£Ö¿–d|sfw¯*ó‚ö]àœ‹ðº2×j Ÿ/Ü)^Pil­œüù¹¤t±úÃâ#âÑ·ª/*5i®/¼&|?æ…¶oÖžØIþ2õðÎrÞSd7kœ=UóÏŸù ó¨úÒ̸úzh¯˜_ØòºÁ·+¬×¹>4R¸Ï ç÷Ê^ú}eã„¥ô¾NÒýÊó-M®¥>*{KÓù¿[¼&É®S}Í>§¾3ë>7³vZ}@MÒ%íÛ‚¿ñvOð½xL¯þ÷KšÎ*xj©ç´_d®ITsõÀƒâË $Úcõ­=cÿäZÛé3Ãs=­;¶v@ýz÷ó>‚¾ýYúê)Û¶núbðJƒ—v¨^—Ô ”ô¾ƒÁsƒÐw`ýºüLÒ»ðÏWlüǶa¼ÜŸý€÷ìÁ{õ!ögMúùÑŸŽ¯Of%¾¾:NÖy¼ºªûmõDía¢¾ì®~!öc‰pÛUjóLS­«9êÅáú²@çDûõuXjÏázÃ\ïŒ:s¾Î¡¨3{ªlóÞ¶ífí/Ú~¬½LÛ õÓmãkÇÃß0ŒÓW\q¾æêàyßÚj­µwENZç×ÿΞ¤õ„;jÐw‡ë÷ñË÷RŸ¿lñ)—Þ¬ýÜÒ'j·õ¶“¥Ïj_²t@xáÒ÷Õ¯×YÉã!ñèùf‰qüÅh¯ ðš7Ä«YTVßÕ¹E×!ç3ço·ñžÿœ¾Óµ'·Ì\¯ó>÷¤ï_æš‚ú8ú–®7u=v.®µïîK:ÞÔ^°sžö„)_Ì5gë÷tlÑë ¿¤óVÁ0?€ë´ë±Z›2êÁá¹›¹Å×mÌíæ)toÑ\ÜóŒö»à”ð.]ozGÕŽ¿Ï?Ÿôµëù²Çï3žÖ›Ó|Þ7Ys|Ô'ã¸à·ìû,ÕdŸ ¿ÚÀÕÂASÕ‡° ^€ñÛôuµ?·ýæ$s¥î—À¡ÁÁ—Ôçâ‹’ì!ê‡ágΨéç¼™d§.eN×¼È\”sBý¿a^ñó߬NI~ž>.V„³•ŸÖó*yÏY|«Þ¿?‘Ý?7êzÉoÖ¿/¢s>¿Hó?/ÿ¤ð—|»úæ®ØCïÈœ£963½v<ÿnIìÏÒ¯  ^1uÆó¸Jy¼æ¨Ê2õàüïùÙ«ïÒ}Y^]û36¾TÎÔuÊ|¯þ+û€p—ìµ¶b'ƒ§ï  y™S>RBÃæ7Ä£ûx ðcÿ Ïxðfø÷©3µ‡JŸ¥>4e\9êšçdê`züîµ/|;I½¥}`j/õ!ôIûÜñ8½žëÒ‡yÒÛ®=O܇Ügôyæ»vï£ó»+õµƒâOÃøLUu2ê çÄ(á«§éº`?¶ê/º¯ã‘z2¾vœÿèoIûôí[´ï^eaÌ1®++ÿ¢=ôÊt®€Ï´ï.Ür¥çÖ•Wh^\y²Î¥•Çé}Yéþ.öfêïˆyæBõÏÔ™à9ßÛwK­Â$+¼GXá}ö ÷“­ÏÔŽ§ÿ6Ì ¸¾þt>|³åOh¾_¾­ú|n¯à™ÅÇÌ7§ Õn¼Õɲ÷iuÆsEà4ìÓŒã/ùÊ9;†þ÷ÏÃü3ó4K×ËâÃ5²Wë|¤V¾ÿüƒ¤û@WÝæ t¿R{y>º!éiŽÉž¨¡pgúúx•½7jÂùÞé~°cƒ®»Ž±uXcßa¾ûÁÚ3uì£ýcG‡î;ê<æNãÉèc?¯¿¤ ìûߨ—Öçô¨ó²çHíç{¾úËÚôލ£Q®VÇßÑûUá†ðåÀŸb>ñýFáß÷O×<Ü·]ç÷_ÿ9ª§±W0žý§ï×ãTOwá ¿²×÷üH_Ê9š6Ÿy'曓„gà ¦¿Ïft~ÂËœ%\ž¹%Ó)½ Ù;Íûm×ëT:V?·t·úâŽúÏ?5)ys‹çˆâ\ëlÆýè°õ_y)ÉÿL}DþíCÀi ñ³S1—Á;cž1_4sØeõÁ&ö…Ì_¼üݹ÷ê:.zÏ_¡9.Ÿ©ýYÅ­Ia³ð‘Šy+ÿ»n–†ôº÷n&w¨ð,êKnŒx15ÖkæE¿þ™sů͸ß=ߌƒë€Hè~Ò—Šÿøœ÷ôÁ_âë‡:ï<3wrýæéí&>lælñýÀéà¿¥¼ÿÿg¯ËõJýê›'~1×;}fÌ3ÌûôsðO™gÌß ÝûŠâ³ÑwŽÖž~µÃõµ¯ÃÕ£Õ®š¬ysÕx¢èe¨+»äÄÇmŸ¬çÑ~•Αö“õ:¬|¦Þ¿þ:Yé>,xej¯×öL­ ýդͺ€Àý·ªo{Sûû]>/`¡ú±6÷uÏô :ãýYÔt4Ùº~dáðþl|­={mÕ0ÿ̼À˜kNÓóßeÆ<ÿŒy§‘@½a¯ö á¨1×\[_Çž,6þ€~†}(¸\ßáõ:°_è_¢Ïw¿Ñ}ºøJÔ%ðûè?\‚â½iG“öŒC:§©?‡«_c?x~ƒ~†y…}XÏ鮨½ÖÁ÷ Ì!ÚÃ÷®÷!xcÆ£¢~0¯ŒUßÄǽ§×y¿ «ïHí¿7ž‚.“}Xà²Þ_€yÈüfpSx}ô¡è8©ç©ëÄïJý´vl?Áûü¸ßÍÏéA{êÕ§‹µjŽúÇU£µ‡hSýrûzéëÚï }^ß—¾r]%i?AçWà-èb؇-©×Õ›’•£ÅÃhÛ¦¾9ð|ö_®ÛmÞó´ÍÑœs x?|3êºóÎÚFK?ºMpšù:ïc®f|6ê û3ëgZÍ/ ¼æìúq¾G²Üsè²›´až‰ºíËë/h²Ôýpð6lª5æ•aÚ³ºn÷gà5è!CÉu`=n|Þz\êHWQ:ãÀYÌcz±ô®«·Õǰ=¢®À{¼…GÿœÀ‰¼— >±õ+Q÷Œ³p>ÇžÀ8dðúÑY».Ëa~‰>Ëu¤¯G×uÿ[âÃÅÞÙ:ºÐÃßäûà†Þß÷aêýÒÛ¡«Ž=9:$tžÌ5žgR' 7ºa\,tˆðS©3ž[RKtN†.Ïu%õÀ”¦úÒðÏóÞ&[Ò¼zþõí¹7Ô‡¾_8qn³æeô”ùùuÜð«——Òž¨Ô­9¸t”æçâ„+äßÖþ ¿‡öz¹¹â/åæéÍîÐõ’½[õ1{‘öÇè 3O GÉÜP—óí6ƒî4{’æ¥àAð}ÌeYõYðØò3t?–7k¶æ>ñ+#…ƒ–®ÔïoÊ߮ߓ;JûŒì‹Úæ¼—a?—;_{)x ðÁc>{J{…Ì7Äo޹ƒ¿“9Ô|iøṯìç²¼»wó÷^æÙY¿š¹G{ öbð!2 _eŽé/j®ïO§þ þáÀ}º~Â÷Ã}|—Þ§êßñÃxŒyHìϹC¿à=¸+{ x=«í±zxœæk°YµI×Ãêãt¿t,”¾‘=ɪ”®ÃU'ˆx¿çö‹7ü1ôþÛ…—ÅÞŒ¹^™q˜À÷Í› |¤úÆØƒ=(ÞHÛ4½~è5Wl×Þ|…ýB¯Y^óÍýÝ+Æk/úÍu_ˆIkkÝ/b{Òjü­uŒæ»åè\_> ëˆz³ìYõ-QoØ£y^9Þ€çà;ßTßl®7OhO|ó§‚ì÷=áaQg˜SгܥzÎ<ÄuÁ|²ú)á ¡Ë5¿°c¢ü\:®3æxc§k~ïºW¼^xÑì·ú Oc^€×‰Žš¯‡‹ñ/x=)õUÔБ½$_‡¨>ÿÃgÃu^ 8çÀ–ú^©s˜_Œ?Œyd±ßpâ>È©ÿ ]{lë½áý€Ç ø:é?Puü5æüh¬ÿ¡ofOž Î’½R÷/óAœ»Å[Ë­O2ßyùœMk†’âñKrOiUô~¼x§tGÅçþM))®­3ÿwGRpù.ñÌÊ× ßýÏ2íóJÇ’¬µ÷™qÁÛέÓëÁß{3þžâ}‚Ë ¿e¯•~T:yt•ìј{¢nUÕwÀÌ¢ŸÃ^Ýрϙ؃û ½‹}bð¹ o㺠ß%ë·cÆzñà±Âg>]ï:ð¨/>O:ª_ä\â¼võbíkàˆý‰ûY¾/êÊbísVÝ«}^Ôãýÿ³7ïÇàlío¢î4â2æ7Æ^Œ}óõýe«ô#¡—qß{2æ— ÕG¯˜!_êË ×ÿ]ê ¼€Z«÷!Ë­›À?`ù᪓Ë~Qk÷/x!ô›Ë×<ë]váESgNS?¶Äû¢ÀmÌK ÝÓXýÜàSGŒÇun®µód]ßϨAÓ1O¯K̳ð>¨/ãëçùs¡× ^Ù6×'¨~ÂKFÉüþ5Æ‹â~0Žú{÷UèÖ¿Åu>uŠøQ¯à}ÁC6/ýºêT¾î ¾2p—æ.t¡Ë·üÐÐgósyÄoÄÏýAð‰NO’}IøÖ<¥ßþUÞ“„>“óÕ<Î3ö-ìË҈ߛ9SûÔìèõÅHì§ c´_©˜^Ø(œÂ‰ª»ï×K뵟ÁÏ¥lÿ†Òº®ÚÝÁ#.&šÜ*½ŽYï'²wéüÊÞ y,kÜ4pô¤ÞCÁÏ^x:wö€ðåìÏ:û ä–h˜?Mõ‰}]Þ~$ÅÛÅ#üÿv ƒg©_­ª9¦äû"ÿšøyó™²ã„«~Þ’÷…ú‡.\ ~>CëÅgK﫹 x æAçÎÕõO} ÿ›µªƒ©³¤k Á¿¯w²tŒáá=4?Ü2ü1|3óÓ[—È+üh&koÛzpíåÿïW’å¯K¯û3ðó—•¥coó û3æ™OÔïóÉ’r½:c˜0^:‡ð§aæ~#üÀQЩøüÇÿ:ðuê|1æ“Õ“ëÇÎ!Ãø _÷¼õ½%ú«uÎÂ{æú ½=úgãìàŽÜôSìÏØ_S¦ŽÒ\C?~Ÿ8t+>·ÁÝã·¾€ïc¿†~.æóÁQÀWúïÓ^}fà´ð÷6Öá«#’÷kOnÏ£_ ŸHëjR—©ßý{zx«æ Á[NoÓû‹^±Üñ% Ö±qîæÒï¯Ø/¨2E}OÑ{òŠqºAûû”ѹTn’þ¦ø¨þ]þ~í ™‹Ø+޲_ñÎåÐaºžÀ— ^‚ý2Þ—N¯l¼øÕ¿ã#j?)øi๗õºPðÇDÏYÌ©>ß\ã~¤Ò+Kñ\ÍAðãB÷OÝ:%ü~à/›×‘îlîùÜžÿ¤í›Èþ3øÈ)çð:á;³‡Dšr?Ë^7|”¶«Oé±î.x>ðbìΟÇgÖ¼KôȽju…ï==>!èÆ¢¾áÏäû(|wWß(ó=áùtåÄ{Aϰ‹?€ñœÕÏèç¯ÞXÇÊÉê7ë¸íφý¨7­â•®êN¼g|hà¡m”/Nû]z¿¢Þ€ë¸O ý ü2|gÀeÀûÙY÷ ,ü2ÿ¢ç¿ ÎßQŸÓ“Öv½ŸÁ3›Óûÿ€žVïÛñØÅ—ƾQgçškÅ f¶ôuáKoÒ^!ê ~hÌ3Ô™ý…¿ÆH‡uÚœûÌ¡ì7yÁñ:›4ÿuí®}9{Ò˜_˜k·ëõ‚Ø9QûHxð¡×纱Ÿýø}þIøo ž¾ýmCïè=rÌ3ø2ÁûÇçÅ8Iøû⯎Íþ‘1—à{é}AÿáíìçbÏFÂùñUbßå¹$³îüÚ`òË$;IüödèRÓµ¿I»ÿÉÜ]o+öŽ~½vè÷Ý/l\€èç}åîQ^ÚO{ôò±æí§þ0¿eßëÏxÇg“Aï-‡|® š¿7èýkežú—‚ûÈüéö³ß1úùª?ùç´wɽ =[ö)½_Ù÷ ÏŠ9þ2u…¹Å8lønÏÁo&þNê {&øÚìÛÌëBš›¤ù xcèƒFwºFÏcè9Í“k.ﱸ®ß(xs蘣Îÿ|ýå]õc°Ö/L¨÷Á›Â_#ø"öU…8¤?Ž~Â~s©ƒ|Ÿ öœ|âÑâà_~¡{›úvtÕ1W€×ÃÓ„?ƒo!>†ìÃÜ¿öŸ/UêPÕ¹àCûþħ‰~ß‘ø9î[ð£¯íÜ&ß°Ðáy}2¾šæ­ÆÇ×kï:N|œëì¢Û¼Q{äU‡ë:øÐÔ™ñò1Xù°öü+Í·~3:MïIÛÖk¿<û=µyÏ8{µIÚÅ^ Ÿû„Ä^Œº‚O3¼fæ—N³øÒD]ÁWs@|ûÀg¼ß‰9æ+Ò!,µÏQð<‡¾œŸMóco…Ÿƒq4xè÷ ‚ç}Ã*û…„uñýð”G ?¯Žßè·‰E×6õ ìwãü¶¿ç6zF怘W˜gÜDß®™=~øÇã·ïýgf«|Ñðsá-Çþ _Aë]ÀS·j¤üY·ñŽs\_æ°Iª»øÏ„?–q`t5™ó„wÐ/§î”^cü/CÿÒ€ÇÀ.ÔнúüŒ‡f ¶Ž'|]À/È+`f¿™à ûuÁ7'»UýõÝeÎý+þkÅcu?–_~±fŠæ|ü¨§Ù'µ_Ìο$|>÷â/—ž¯×ÿæØ‹¡Ï7$ü‘í#þ‚àŒøÏà»éó Ç÷9¼þ¨/ö _(t|¾ ~äw<¥¾ §(žpÏXéQ¨Cákhü…~Þþá?½ÎÇðÁÃü¨9ñØñû=>¸{tðžÙÏxÏOMÌ7øœ¬=Ó*ûSÄœƒ¯&uMpôšëë}øóŸís¼fó½ü&ù$± ½¦ù®Ë¼¿_æ\‡Ðqþ ÍÐoRgð­ç NƒŽÓ<.æêýê ª›«ìC»ºCüæÕ×+÷‚='~§ðÕc?†>×ïoøÊ€·8€}pø¥{/ÿ_føcäbàWû#üð½?_|ï=ñÅHWÄ“OÏ/tj»I—óßg|[ì9ìc<àþ̘ØgáßÁ~ÝûÒð+ó¾>;wœ|„ÑY¢ÃfþŠ9˾…øÌÄy ü_gÏAÔ'|eB7sž<¥ÂnòACWÂþkÐzºAïCÐaVŽ/ à>£¸D{Ÿâ|áIÅ„C¦jo”ßSûyúüà³]ª~(pæêÊçµom¬á{6E¾¢¡‚ ß¾?¹Èû ðñì‰êo™oГâ+]:K¸Må\½®kšÄ»(_¬=RiŒêon¾æ»¬qbü=©óé·unžfþjø&W _nï͘B‡@žû'ÌùõÂ~‘bÜ­û éc?Ž­q”ø~ôkÇñú3ã>í~IOÔ'ôwÌ'ô“øÎe^täsœ#=õ+ꢟwø7ãv¯x91ßà[…ÿÔqzÿÃÍ8ñê-âÛ¬¾Jy!«V½ ÜçFžôù¤^Ã<³QóVøœ™GsÌÃzžmÚKÅ<ƒ&{4òà/X{¥]üfñò|N„nÆxrøi¾ y0ðçÑìÂ3ÿG·Io†ÿu†y†½zšKuŸ3‡tœ.¿DüM?C÷t½î{tO±c_–S݈ùÕsuò‘×ÅשàÄì[à+±¯AWÏyíó›9&üC\7Ð_xtü®o)ã|¿Ûç’:A=ÎÞ#]ó¸KäÌ,Õu¹,ÖóE½±_&üVô#ø‹g‹WÌù¯jè,í7wÓë4Ø/aåNñÂG¿³~ùóPÑûÔâ©Ö¥v¹Þt¡‘cö–ðó¨æÛÎÂ\ÒøˆN6^/æ¢MÂýÇÁ œþ³ŸGÔ-çµåÍ‹ç¯\¦y³r”pè!ãå!á(ŧgðÒ²Úx÷°oŽçµà/_-_ðÉ1Ÿ,|MíÓ›.ho¼ÏÁè'™_zÇi ³sž}˜qŽ]òß~êøkÀ?Åoöñ~£þPìS?½÷]‡Ì'Á  žPÐQ[o~ÎϨß÷6t8äâÃK>¾Î—ȧ2æãkä uì.<2Î1|jØŸ‘ƒæýï*÷Gí·ªŽ¶ÏW#úÎà°7›X»ü.Z9áÿ ^3þ™ðÎà—¡û§iäÜZ§~b¸Þ˜¿¹3ÔïÍ"ç MæûHÄ#ø õ?gögºMrÐà ÛŸñ<zY|˜Sð5õÞ„º¼døøÚÁk6¯ øŠö]Foߤ÷ú:ÿî¡ðåd“2¾…N4rpu”Æïñ Ÿ{ŸÏè#Ñ·gÕõ¸²ý¾²…ÃfŸÖ¹™ý•ê羆ü{xfácl_ãÐW7àáµQ9éë·ó¡Ã9.öYÌ9W)xTÖiç æWÁ#B?9]û¿Ð]¸n…Ú"õ©ø|¡G!×%ÿªöÿ¥ÇÏÒ®¾ºäþ`pƒ|h*Þã>³Z¼¯âkú{+§hž(Ó~¹èýDñó¹ðÁ#·Ì}~øuÞ©ü1üŒÂ‡™9ŸéuŽÇyü|]ÏóBè0C×hŸÏôNáç‘Æ~‘:CÝÝOûÙ¬yC¹f퇋gêº*å\_Í7+ïÐýºæLéý*Æ3J·ëçÕ~"¿^x|0æÇÈ Ï’÷Éó6>Ûìqçß8NÔûχ_x xŒq–À]˜k˜gàw¹>°ßîܨýJç3Ò³ãÿ:7ó»»¾Öm¸ðt½Š½xóC¨?ìãâyw†ïõü3ê¾Ì7䉸ÎÍ{þð!!­¨óþRÔ™õµvsǚࣵGŒ½óÌáš?cžçÌ<ÃÞŒy¿™Ug˜gÈ`žiä/—êçzfxž¯¿lœ<Í]øeäÐÀ/Ÿ¡Î¸…/@¯9ê û3êLã<ã~!öeΊý¥ñ\x1·8·ÿ‡F_ö¥ä©_ÿdü-ñéG¿Å^—ïÖÇ9†/”q÷ìíÂsÉmD7O½ÀG9ôtæe+âàïUžüÛç8ù*Ôü/ËÎWºÜù’‹ÔG N­ë?<åÒµ«fä­IÉçN¹[z:öIäš…Ÿ™ëdä–'Ï:§#ö~ÔæÖÆ:ƒ þÕö)…'õ~ÞVÝÈ]§9Eèë8­7É9ß<]?90¡§·~"r¸œ“œµŸ9û¡ÒjáóàØƒ/j5ø¨Î“¨®/eû”n~QzHsy•ç€äs:çrªoLJ9|Œ_Ö9{Jæ ï˘GxßýÊ¢ÎØÿŸ¼ƒÈG — Jøø¹á+æ:ß þ:¹­òå,ìО²´Á|ïùÚË–HïY0 |kÈs{ùDõìáqÇþ÷vÿáÛ_ßóòɇ¢¾„n…œØÑš[£?óïgO¹•æsvy?Š/?{.öRøîáûÞiÌ;öã%G*öXÖ·„ß?s:ðyÚ?Å…?.~šäJ1¹®o ûê ºoû’tܪë"æû)F/0.ºNêÌš»Ú7iŽŽ:c\5æêLCþLÛÝGüæà™ÿãÏܨ§ažaoÖ8ÏÀgfžÿ‡€&óŠý±ÂgƼݨ/èfà™QWØ“Q_.•aÌ3Öé.2>Çþ,ðö—~âú²Orè*ÑÉ ¿4? ?f®‹îëÕïãÿ¹É®wøé…ï—s"ý½û·FJtðpà•¡‡½|^æ ó@r·Û?ñõU•±òI¨lÑy¾)¯Z¯Ø­¿«8AûXð |û3—Ë¥ð¨êúx²äÒ“7IÂGà¢ß|E纻Ü~ê¿ÂïË<)öz¹‹]Æ×^Žsïˆ\û¢÷ÐÅõïeThr>™÷Yœ{ÔÕÒ™Úëz¾¯1ÿ§zùëèðÁg˜8×½ï Ÿóuâ݇ހý¹ƒÆ©ÈëèpŽº…ÐY[÷@ÿ¼0òA¼‡ }Ã<ùÄÏñœ‚?{ü{ž‡uxÔæ¬è“á%áC¯~%ó•¯s ~ø8÷!ðrðE÷¾ÙõÚo†?þ™ä6ãgæþb?3r4©38 <ô3äœÁofžw¿Œ=øŒye1Ïà×l<&ê‰û™à3£Ïd?F >Í ~ÍÌ7ñ>1³sŸO,|ÈÐÙ´JÇÒá}>u¨Ë:ðî‹ä#}–ýpð±èõ^y%r,Ì»ÿÙÉÂ!ñ½€~’Æá÷&|ؼ×ìñjÑßáÓU˜'ž{p‡A¿NåܧºÏÏß`}û¡äZUOÑAàY:QçeácÒíTn>†ïJìË<áÇH^}éPᢅ!ñ hÿ¸ò|ñ‹#WË~ô%ãd•ëtÞÁG.¿*=S®SüfþîòkÎ-ž¤ë¥<[Ÿ¯Œî\>Dúý¡c5׃{nQ^Þàᓼ^ƒ³µo,WÄ‹þ™ÿî‚ïoü^¨ÿÁ7ײN>xÆaþåÞì_ÔrÅ—CGC~‚ó,ðß ?ç)e{å?š› ¾¡àý1þfø€æúuß…ß':óã˜;cÿJt€üžƒŸˆ¯õ[ôQýÞkD½!¯ÒïGè#ÝÞn|3|ÎÙ›¹Œ½|1ðvó‡Ão |†=úHx]öWG7Çü¾cÆsñ»Œ9_vê„}ŠbßN]ò^%ðïab>yIýDœKÖͰï…þjïWÕ9¸j‹øo¡Óœ¡¶à™Ák¦Þ,ÞÔþaùö­´þke‡ö„ðÂÝ u>3õ…¼öfÔç®¶nŽ9ø˜¡Ït^èfÀcÈ9ƒÀ<Ùu%êŒçš¥>§£ÞÀ[¦ÎXŸ‰õ:xÎÁß­9/òŒ7É÷¤Ëçy.ø±÷¤oéîÔþ:ðEòkðSvÝ }£ýÃúïÒž5òËñ‡Ï‹Þ¾pI<%îCðõð¹÷¾#>µ¹ãÅÏÊV®/çÉóvù~½œ‹ó)ñ¯ÊmÓ\}î1ÚÃçïîË9V0ÿ»ì=Dq³úðAë«+æã c¬xÿdáb½ÞƒÎç({OP0.>—Æ9r÷‰¯X:IxFé½ÿƒ#ýx˜®çȉôûUyÕzvûÆ”×j}b*ö(/ÑyuÄõ§<_õ¾¼Mû¤¡1Òy’VX¤s2÷€öZÙ?h® ~û,ø<Ú?&ø Ì1ðþU}¿Ž:ÃïOÿãrù¢W%/:WïƒýdîfÏè5Ùâs;GóHðá'Ã/„oß©ùü±ßÅß{²ð%§ŒœJ|+ÑË0ßÀc¾K:CtüÝöqüføÇܧðÒ¬Ãï¾Qu0öWøÂfÅÞ ½¤ñ]öOø€¬:ºvêï¿#Î÷ÈŸ"'\Þ}Hø‡°¯c.L½w±|Ì)ä5Ã'C—Ѫ=bøsºŸ\??ïðŸ¹÷ö/¦øEÒn<òhŸY¨÷-üð;£ÎÀkž¯¿?üh<·‡_¦uÏàCƒÏ û2t›ð̨3ÆeB‡i_ÆÐË|Bsyø1Ã'C7s©öñˆnÆ{²FfÔŸFž³™;ºG­­O’nç9à ^¡u•¿‘ãë5òŽ}2¯àÓ¿×À(Õ³Ðá§Ø^ÿõ‡ûQÎW_¾Næu²_>±u¡ÿF/oœÜ5÷œ^¿¼óÀ™OØ—í[À>\»d?‹|‹üs #¿T_ÌÅŠs4;T÷{>pïòéþ/—oîà‰ê£· ÿgOž\q?Y¹@¼ßÊaªc•§­G÷üAÃ'¥2[:?ò]Øoá‡2èë R±ærñ†¦”ÎþÁçžLÊwK‡T¸ÜõÂzÃðÅô¾¡4Uü¯ÊV]¿%û©R‹ëu>³o+v«OÆÿãìùD¾$9_Æ'¢^€Ë0ÇPg^Ö*êÏÿ¯zßÌyèsðÉ,;¸ü¸|ñûäõÀw&w¥Î=|Ë"ŸíDáã¡“9B}Lðá»3‡ãO÷’píuÂßîÐ9….+|*ñ‡uNEäàY'ܶΫ¾‹ÔGž>3Ó5?Å}}¶øqÓx¾AyNø¸3ßWKÞ˜÷[áÃÎ#«Âs¼æ!õýákf¿çÕûÈï+òÏØ—=,xÌ3ÎCÛ%ÿ¬±Î Ÿ¹·v»=;9YiÝóÊ‹wñ@§‰~Æ{—Ïè~ fëçÂÇ ž™ó†Z¬×1æ™ÑòÑ _fðpòfÀùñɇ)«¿ ÜŸgt2Î5‹ñÁO“Ïóñ€tdÔ¥ð²ÏCð×­ÏÇ¢û`͇àúÌÝäõnQÿÐ7Qûÿ¾ÑÂÈ« /2rTì§yãä*Q_ÜçQWBHÇ\õõé…Ãqîà³Î¹ùöóŽ<àÙºNçÝ¢>¹0B×Ei†øUÁ—ÚPÝïH ¾ná¹Ç-­˜ß |üàíz_‡JšÖœ¬ûjèÍüüÁWuîUž×ëSö^¼d.î¦þ x–®OøËá#g=SÊúmr/ñ‹ž ùíÚ߇+õc¡t@ñyügÞ¯s=tšÞKƒûã;†^2î_ëØ¢äëð?ñëÇÇ¼ÆøIøO±gg¾€`\—ù"tösoGóZÙ§­>Rç¼°ð{w} ÝÅ^ÂqWm”94±ÿâ÷Y>3½Â«ïG‡Ù \u•ðäð×$Ç^³õáëÌþlƒx+¯o/øÍà4ùfðÎÈѼU¼¨ðmfoþaûÁ0¾uÿ2ððæðöfè1á/›WuÃû±à›™Ï{Õç®yü€QoúŽÓÞ’ûÞÞ:ÿóŠa]±¯ßð•ð9¾'‹w.‰_dôeÖŸ†_‹õ?øOFŽ×:S3„_§ÖÙg–ýzLðsüâñ1/=uLþ3ú½ø­K-y.'wŸúB‹öcè‹è\Å÷1òïÏßßâXïçìßÅ~‰ólíyÂá·­9^<¡Šö’¡OY/Ü lþÎ`kvC24Y<¤¡“¤̨>”ï³o½ýÉ*7hÿ7è÷ ²Á£Äã"²bÞaåJÕßâËú_xsèdŠ·ÔÆßO¶óÊœ»ž;S¯gø·8¿#òV¦ê} ŸbðôúàiÆÿÿ˜¹¦±ÎPGë _Ç¡Îøç£;*¶(÷fÍzÏÝ:çÙÿ ä|6ëgŠç G-] ¾¾o…)â7æ.Ó¹ÀcÔûÿ„¿©y#ö—Â//rŽÍW?ߟÁ³ÄGÖ}[ìÍà•½ þ<ò*ÙÁ/÷Go ¿ ½#¸?û*óÅ"_ |Ý|ü]àqáC…ÎÞó8G䯷ìëßê µoYUÕ¾wÕVíßCçÇÜaÿ±¨Ì!äΘ7†o&~'Á/³N&ê:™ÆÉáÄGý ¼€‰uør÷á|4çmî’ÛŒ¯&yhö¹grÍæè\½:Mxfä™pG­à|wØ× ¿LøfðÐÇàûC1{2ç”P'à›¯šýw©?ìÙÌ#ˆŠC´Š9"t+þ~ö¼}®øŠ÷mß?p}ç¼ ,Ö‰fÿcªëôoï!>ù-䨳ïÆÇ]CøÀKŘÜ| ÍÊ/й–ïwݰþ½´HûØò"ݧ%óðóž§Ë­ÂË£…Q8ÇK“T? ³UèûÙ—Á¯,è\_óœÎñ¡‚ôãCOë\:EçÕÐhÕÁ¡Õö{ n“262¨¼^{Uô“Cã5¡×§tJ]vwDè6Šë>¼¡î6!(tþìËà‹±/3î‚þ%ü»©/¾ð#ëÝVŸžJzï­÷ñ7†ÎÝrßéêŸúŒßöm’/Vï]õóó·Ã>à1èVÜ¢Ëìò¾0r,É1„7ܨ;iÈëèÕ~'üáy¡¿Ã/_dê„ëüà]æó»¨C«–¯ ¸|øö{^æÜ¹Ãõ üþÁó=¯ ÿ¯AEð›ÑiÂ7coÖPgB¯‰NÓú¶6ïûÉ?[áÜ:øfÁg¾OzÜÐÿÃ33þ<3ô™ð™©3 9fáüAï[ìͨöeŽºAÁïŒïÿ–ú&øhñ} sQjŒpMðÆè·¼/î7ŽDÎ7~ÉÜ‘7鼤ðßgïL^yƒ_kÌ1ƯÂÇÒ<¾ð…ÁwŠ:óøÞ¡‹|Hû,æòžÀéÃÑy󹓴ç*x_ O¹ô¢øS±šbþ•ñŒèûÍã¾t¹øRàíä• ®•ž±¼›ÎYp–5» 7\;RýÆÐ-ªkÎNVÙ órð<õ“ƒ÷Y¹Q¯C©Eú’Šu×è'+Þ³—FjÈ_§:Ç\Å¿ƒŸPÎ8ŸË¸gÌmÆyr¿’î1ŸQ}`x„}p²‹Ä{AÿšmѼ…þ'ôþÿªÎ¸®„¿$ü2ü¿þNÓ€÷™¯{ßuß3|9íßCNüÀüV]üý±÷óþ}on½æ:ô )ë肹—ög‘ÛM…ÿ2ü1ð|rî\/"'œ<üÀÌã‰<òâíözOõfH}zcÞKðÇà‹Y‡Â\¯‡¼1pþ˜SÀ;àk½ y5üÂð§äѾ"1àã‚ÎÞºGö\œßÁ/¶ÿKì©s¡Î­Ø—5òÌÈÉ|]û•Àýá3£ÿgž!/3|e|=‚ÓÄÞŒïÇAWƒ/|ðóÒëuÄÏ—9‚Ü x^ø‘1ÇG½ð}„_1¹Ä©öQÆÇßbṳ̂®Öß—zK|ëÐÙ¡ßÆÄçú÷œ÷£Ù„LJÿŠõ‡ðŒóMŸ"rµôyÏÙ…>õì¿È‰Ç/tÞƒÖÀ»²>ÿâ¡óÔ?®ß¯9´h¾÷Ðñe×8¿`Íñ«­×® ~ƒü–ÊYÒk¯¾K.r)‘¾+øÂ'ÊŠ½øtøð{ÿ/êJäbÂkØOýléT×QÏk䘕|>¾e~~99çî>îüƒ¨3øHS_ÜÇ¥ïTîdÌ1ÔxfÔ!ð™Æ:C¾8çŒðCpîfö5]w¡;²ï¹è2#ŸçÂá[—Ú,_æÈQåúvøà/äV²¯&‡ÒzêÐÃXÿ~Ū¿'w,êÎ%ƒÃ€” •Ÿ„^?r íËÒéë+æ|¦Ì Žúâ¹€9%ö_ø¸°7‡×e~fø s®[¿S¨Kàñ|ç}¢}`»ïûð!¯÷õؾ^úðöë…Ã…?™ó4ãûýõÈovýh-ž¿ü?ô3à1§kŸ¼fòœç ¿Šú‚NýŒõÅ¡›iR~yø37îËÐÿ£Ëô\°ü´úq±øfÆ£?¿K¼ðæöcðÐø<{5¾Ž®Æû®ÀeÐmºÎà·”+ˆ/É} aæ|òÁ"¯˜yÄ8g<ú~‹ï;Rç_øð“?é\Îöaàø‘ßA>‰÷4ÔG|½r‹T_ócÔ·â™?Só)¼düKW«ß‡wŒWáyå“k_zZý+üªÒ£ºß‡æÖ iÿ—¬™!¾2xÉà):Ÿ‹/ê¼ZsÎáÁ»Ë,TÚ¢ónpB]?r^²öùÄ Þ#½ùà!ÙZðËx,ÙÿºtÞ§âç\‚;])ß~øIÑüБšg—¿GxxKðžíÛ[¹ºvÛïû£¤ì½>x78VþûØT„ÇåÛäçŸsß~lèJ½7}$>fìµ¼' ~p£¯u†}zLxÌÔëh#ßÒ>¹§•›¾¨pªÎ rÃðû Ÿº!Ý'á‹ú;áÔ¡ƒñ\Ãóà:Æoüü%ôüä{™ÏNŽKÔ³ëçKoð:C÷Ï¿§N-¬=Ýlγ¯2þN±ÃgÒ¹éÌ+ÁÿbNa~±ßQàïÔ xÀøñy>7¾õÉø}»ï˘À;¨ä½à÷Â9oÜœ±ÈW§7^BˆŸ»§^‡•Ûtþ¬´/FÔ+û‡¯|¦îËöëa=ŒùzÌ3ÖMGiÌ9CÿÓ¤ùpÅ_”S°b‹®¿Àÿá™1ÇÀc&³ófÈ€× €Íø>p›/‘GO Áß,æùÍä›5>â??ͺüAè_Ù;¥3ÚDžº{ïÙ¢ž k7æÇÈ33ð}rŸ’¹Xû˜Àa¬ßCǘu^Pä¦ï%]!~2Ák6nŒbÆz(ö7ø±”F ß­¬Vî {yx­•Ëåû¾líeεrme†ðc~¸ÆšÃêçô‡u2üüzà¡Ã„wƾl͵²³áôd­ñ±¡ªÎç¡«óµ†úòð})?­¿·Ò¤s-ôèæ_ŽÑuT/~AÁçEþxáÿøò¼7G—Sö>¥²Ÿxûð®†|”÷S?s±S¸Méù:ïÄàAÃËcßüë£OÃÇÔºÅðaÿgoßì_Õð~ê úHøÔ1û4³ç‡©«=*>Ë…c½Ÿu~Lø{âàŸþð±½?Ã/‡üçâI:¿À…ÐÇüÿØóJøãÏýÙKê[ñ)‹¼eÏ?‘i]fä$Û—_˜Àïá!ã/‰þ~1Ì!àêóÄ' ¾2¸»ûŽÀS<¯Ä~ŠÜ°ùâ'Ä^Ì:åØSÍïš\—¨öw‰¹b¤ò>‚Ol¿dêEÔ óQ¢¾€Ÿ‰O ?§Ñ?†<æ„c®?_û©˜_¦ X9^üŽ6ûDµ-Ñþ‘ýXè3ÝWGžº™1ªóûÃc¾ª~ùÎcž!þUÔëÄÃ'€¹‡ïC_ÃÜCN@ƒ~³Q§¹K¼2t›ö7ŠÍ[ò-é˜ÑiÒNÒ9¾öNu‹œ§~9ê‹õ”áÃDþŠsêc~9E¼ÐT›p§ÈyáqÞKÖïWàÆÆÉ˜[È»°?\ø˜9†¼Ûð©;uª|žæ©Ò\álä)3g >þϸLénñר»•;5'W×Þ«r¦ö`C{èýžÂåÆ úœ«ªýZÙþUå6ájà:Q×n—ž/÷¼ÎcæÍÌ“â/Ä<3¥Þ~h˜×̾ ¿ödÿªÎ4è8#WŸÇãë«x™êzÑúñŠõcàVù§åC•cßòhÜG?Ûû·ÈK³Ÿi~®_oóÖËËÌ“°¯6zÿ>㯡w—lü%t–ÖUõØoLøcágl}¹ê¡;§û†œ¯à‡×=#9SÔpyø¿àåäŸ =Ä.¼,óÛC7ÿ ø˜£o?!pvã~ã7Ì++=ƹoØõ#>Oî õÅ~+o­ûÄw ÿ;üú©ÆC_ÉïkÄYÐYÚ¯6rÌJâw·Ù/æt2çK‡Ðæë1öcèdð3#׌:CÞ |f|4­×\1Z¸âŠ=…ƒíRgÜïGþõ€ÆüL뀃ßÜÈ;{½Þ~gx/ÆÜÂ#óLþ ¿³ðuÂ/¿¥)ꇙ?"¯Ë¹õ‘sì|ûÐ3“a}Q侌ùØn#¿ôŸá‹9 >gÈHujžéOé}Å_£ßxÖÀéšKñKdÞ€^;WQ=ÆG$¿D¯wø™ßhÿÇ&ádàðz ç‰÷‡¿çHa›ö§à5•Ñ:—†î^…Ï úÌ5ë>\s¬öµkNÕ^`­ÿNpxÎ¥^áæ…×´?ÜC}þ`Eç7sSùázÔ»ðYfïæó©RîA~Êàùq­y@óÀPJº¶ÁãõúàP¡ëyèE?ëp­;/§ê÷åŸO‡÷¾fÖ=æÆéºÆÇ%êŒóW"¼†9Å|Ïÿ_óLøA§‰?óíê—ñ‹)Ÿ¥ët̓ÚWT_ˆÜOx‰ä|³Ë/Ó¾}û¶üAõýÜœ˜‡È;«cžãBé…éÛÚõzÁë}Pó!zæÞâá~0è,­§†‡Ìç»^Ÿ-ülퟌž:ü ÁóÁYÐ5‚§€Û[§y_Ìð²ÐËã/I]a1.ß>MüƒÈŸ$ï˜]—¨[«FJ¿×n…¨ä ïc_¼.Ÿû±¿bÞ ^˜¼/ëôÃWÙŸÇ÷2~^c¹JûÆ6çÅ>Ìyeñh?º˜¶ƒåŸsË Õ:úpÿ¨3ö‘hÝ |:üsõ4#•k°ü+êï"׬Uõ0rgðË´þ?ê |Ÿ·Ô]êsŒ÷¹‘£ÉÇ~\친œÆð¹_"EäSz?þÎ#O™çºó"ï¼P_§¼{Xoi|7ò›œCƾzà@O±w6þÙû’öæäÔF®ÌåÂ_‚ÿêy4׿¹?)ïiÂßìdáæàùýôï9 öo…÷Š_:ÄÜ#ÖÑ€{øð$˜Jýª“øÇh^‹ü´×4Gƒ¯Å> ý sn£ß {ªÆGìÉÀýíûœý­ðøuknѾ€y­´Äx’ûqrØr§(W~bìß¶Ÿ€ñ0|èÂGÎyø dþ&ÝHêeçx{ÇŸÎo|&rÃŒw¬tŽÄJë®wñy¡^P?¨'Þ{….~ô“½Ú'no^ðñ½ô\Òæü¼È/ó×#G†y¥Ñïß9U¡‹aA÷ßè+Ãþ‹¼Lô2ö•X^V_¹Ìöÿyÿê:MêŽs5Ái"Ÿ¾€¿œ&xe®+‘gö„ö<|>›þü€ýÖà/GþކΌüaðt/ÎC€“ö<ˆn|1ÑDN†u„ì™ñ\™ÇÅŸ ý›ñWæ,úàÜ\á'ìááÓ’W‰ß$~”á«IN/ºnç1ÒÏ–f×}ä¯MÊö-,éœDG¾ÆuÍ1õ:vføÆY7 ¯yº^—¨G>÷Ë£ô:²Ÿ*¯þ\>BçúŠõÁc6 ¼~pžö§eû6 mî¯5Ð? _€ŸLq?¹¾¿r¢xDøT³OÃ' ßižz#êJy²öj쇂/a^xRÁþŠð£³)õ!‘@3:ê óL#¯™Gü¸Ñßà÷ü[éH˜ñçg_9xuïæï½öväðäŽÕç#Oa½ê¾eÁw°~½XÒý\>Eõ¤â¹¢t¬p&桘ËÕûÝ_Ï5xÈä`‚§Ã‚/ :˱â7u~¦¾0¿ÚÀó­gé/šÈ)f?æù;p}ÁçÉ÷2^û,t‘ðÍ×Oiô• Þ–ç•àûVë¾ãsÄ¢DÝ`oÅ÷£KaOÅaü#ü]¨3ø"SOx'WŒÞ1sŠûÕÆ\åÈ#3¯1ô/ÞÓÆ¼‚/æ ùDnº~æŸ_»Øo>xdžKBŽ>™÷`ñˆ>“üü4ñhä¡‘Kÿãûñ­±ž8ð÷û±Gc¾÷7Orññ<û<~ƒ_Rø^Zw™zN× ø~ÿ$ÕïÈùcŽiѹ9Mæ“ ¸N†_ý›óþÈgbÐç¾?öeÖ…Ç~éðÂç—œDt5Î'G2ô7öŠz„¯îKÂo²çê<^ôãÚË–_<ÐEâciøB»ÎÝÂz[ƒÆy©Á‡v?;t¥æ­ÊCêãÃÿÒ¼8|Ž7 w¯¬×uR¾Fók±WçZq¤r¨¥”0ô€Þ¿5‡ª¿´¿Cù\]ßå)òÓCGO.­ŸÇg¦x¨ë°ývà#”&h¯‡N´ðˆô¦ø„‘—“yMz•ð·¤N¸o _püÍØ—1Ï:œ2ôCÑlÓ¾yèÕ_øì¹yš·²³…·gOÕ¹/ÿOtFàsèeË>ï#Ïá>û?[·Ê\?`Ÿ)ödä+GÞñ9Â!Éÿ ÿZü^È)& }öbø›/û1t,ë}hyØç‹Iþn±ƒŸŒ/¼1æøbÔëûãßóÇ‚0^<ø9üû>Zà3äk:Ï9üÐð«ÆÞ žóyÎè0ÁýÁcði&¿Ùõ†zÞ«ß{»¾œú!tÈø—õnV=ÿrë_à)Ã/ë§}JøÙ/¿ròšz¶«‡WÓ£® ê >5áè¼fx;èJÁuÒ§×õ)«‚×J¾bfºxÆ‘kBþ¢Ï­ð0xö'ä*æo‘®¾4¹—¡ µOþ\‘‹l¿döhkÎÕù»Æ¯Ëš×”K°¦Iu¼_Ïü)šÁ¢>Ù ²‡þú~t3èj¨Gøt–í[…n¤´G§õþÈÓÄ'º´M÷mq¹÷ˆÎ!'ï¨BFuƒz—T{…ü<剡«ÏYŸy¦«êüû›‡ó-É O?xÊð–á•ï˜_À>sè(ñOàO k¿Oûꛚ½T¯Sf§xøáïm}ùvà;äÁ1߯þ\äùÀOC7ÖïýCä_¢¿ôœ‰¾¥óMíÈûŠý>úîðëØ"?€ë¬B/y£ðÎÕîwÈ' ^2ó zyò¼x·gnAß »¼þ8<ºöbð½ø:õ…Gêçܘ_È£$÷Üßcêóû-׋Àáý|b|+7Š×¾ü<â/NO¾åd ðwÉU†'†®¥£ÎÇ®3|Üžyßô˜ðÍø~r4ù9ü{|˜ð×lÜ»ÁwöcÌIÖ9Æ„ÞÓ{µÐÙà󌾓üæ…× ƒŸs>Þç÷ο±ÏºœÔ·Å ŽD.™ç¹þªÎ—×Ixaàžøž±À ¾4õ½Nø .ÐÜ|7ïëú7èþƒ€›ç|8øÔÞ_àŸ;ã}kn„|aCïs´Èsö|üiÏIé»ÅCc.Ê›¯“ëS:\çæà í‹ÀÕ׎Yõï{ùt2ô¤þŸ/_`ßzë˜;ØÏ í¦zP9D¼hxÚøR½7§Õ9<:æ!tŸž‹È…„Ÿn”<„ü$ñ8Ð+®1U9÷¹ÝÄCG Ÿ0rsг˜·Ê¿#&òiÈAgƒÿ¦÷èä·Q7׌¯xÍ6ãKæaå§×y}¯…/NÆýqä¹Î€÷çí¯¾Ôžß¨+á³yªîxôékë2؆_,ø¯ë~µÝÖ]u;ŸÿÊØ‡¿'7™<ôŽõµ§ñ›ÈYÙ%ÒxþêyºïW¯—oIøÃ7FÿŒúÒèãu…xy¡kAŸ2YÏ›üâàÀCÏ‚_‹?:HöcðÆÎQ?û0øÂìÙÎÖü~.ìÅÀU˜_˜{ñöeÌ5îcÂÇ’9…¹˜Ò¬0¾õÿþ‘â…Ãÿ õ‡yÆÿ£Ç$¿ ^™ùfñsGé\ ¾ÙîÚC7þþø=õŽúÄEþ&8Oc¯Áï™zC†Ný?û³ñ:??«s^ ¹øiÂ×üKë–c®ð<5p½ò˜Cïì&ðpûž+Ä/ê¶ }\ø©yŽ ^4úPç À«Æ|‡ùª/%&ê¾9ÁÇF·íy3ý¨ø–áÇe=ývî Õ»üTõ×… ´ç*œ"_iôäÏïäBßHOÒûÂ>.7Òz—C¬û×0þ â<t,ðàÀ§K×I‡€~´âœªÒ šÙÁ+ßóyK‡h ß½¾Ôøšåí{ßœ¦¸I<+p|iÈm! ô±èlÍÌÔÜüaó¶ÂÙùÇ䢧Ì<§úóûPó$É«¤.Ò¹¿_ ò™C7êù =iðF¬ ? ç,†ß„s¹ÉN¿ßþKýâpý†NƸ>{2ücNqN]øî“sküÈëÂWŸÜ.öbžc™_bß/™½¸KcñÇ1¿Ø,ô”èðá/S‡à•™g³ Ï þ<2xÉà7Ì1źù¾a^2û4¾ÎÜÓè‹Ü«s(xÊþ¾à¥Y×sø=õ >™qô-¡«waþqžbè_˜à“Q§ÀýÁk¼o ¾î|æø<{8ô›ÞËŸ4uùŠœçF¿ææölžbŸ¯€:C>ð í|gæïÏàÄÿˆîãÐ#›gÛûT}mp|Òo~¾eèg¨7ø4æñ ©O±¶Ÿ_ø5“›é9‡\ük{7©®woSŸÏÏü>îÝ®zÏÜ3°Iy ä³xrèÍ{g’õþ8øEÞ—…¢÷`¹Su½ÄÞe™Îÿà+8ç ¾[î0×ïCÀŸÑµ”›þy~)]¦ó¬ì|9ò?Ñ£€×€P8¿ s•ψn(æïïŠØ/ýÖZçL.y ìßúu¾„ýòÞ¿Ä~‰0×grrà’JÎ3Ïƒß †Nà'Æ]"çÙu<¹¡ÃtÎ U½,­“Ï9Ýè«2Åû=û;ã{Y÷Õ1ŸÙŸ_³ÂVõè=3G©o"W ¿²óÏ#WÌsK—yiÞK/Ìuÿ±ÐQÚϼr"Ãø^é,VŸ­ýóê‰Ú“„%¸ þ÷ìÇðuñ×Ég ~ä¶ ›ï§Þ/‰sÌ?Ì=è.uÇúü¨?ðÐå›û8~~–䙼7ë;c~jœ‹˜ÀmØÃ‘ ÞO½%ç?su_ÁÀŸLê<4¾>_þìóÚ¼wŸó¦ü²Wl¸sæ0r ]—Š×‰W>eÖå„~ƒôLùå+óÛdù7DÂãæQÃG3™ü5tï䔬Äïý yr¥sÕ'ð÷ÅÜ´N>yó—²Ï9çÙ|ÖÌ#òíA‡S—KäKÅ:lð¹á9‡z„oû7æxgžw¢Î°Ÿc®‚Ýè#Ž„þ]ÎÚ;‡®>Z£>†¼|Ê8ÿ©ÔêŒëxPøPÇØßÙ)êˆ}hà¯E_‡7Ý¡9bÅ…:OW'|8ê û3æ™”pºàKã0©~}{˜gàù&öhæ©…/' Ã7@ïO½¡Î°_óÇm#õþyˆúµE×kðÀ“à/0/ñïñ ×™z_žü6û?üióžykÔæšÆ\NpçØD'ùÏÆñÇƼ³.ç7†.Ìþ}}Ö‚ëÃ[F‡¼-ë:Ó‡7>€çê¾·j>€ß u‚y‡ýBÏEêØg"Oí|½ßä©§“¥ÛTw³îS&/Ó>3è ð÷Ê÷ŠG„? û3x¶q¿GŠwïñé¥/Æ/ ÞWv£rÙ£Á_£~€O€áC¯6ögæKå®þFí¾9ÉŸ&^0uüúø9çJ·€ß%>1ÅùÂ}"ïÞ:‘âtùØD¾&y_öu.$œ½t£æ”ÒfÍwäí”ìŒÞ†:…ÏymÔ§ÁcŃÀÿ¶ì5ÂÍÁyxƒéïÄg¾ûÊ´qÚôúwñ¾án?r¾Ãï™|pô;¿éµš¹?zœKuÞñcu^ÕƒáûÒi¾wìÅæÈ··ó@#Ì5¡Á/\ƹ|‘‹Lžq£ yÅÎG¾sÐÍòåì[oÿ÷öÏ$'ÙóaÇ õ>®štøý¦þ€ü1ô›øà»ßÀ‹ÆŸ&pï[cþÁG™úÂüÞ.ÄüÓÈOò|zãNá׌nԾ᫠Ÿ ‘׿ú:Oê üæã…áÃlÜ–y)öt臘£}àÉñÈÏ÷Þ.|k˜gÀ…Àà¿QgàÀ3hä­1×4ð¦ƒÝèSÃC®{3rØŸ‘ëlŸ³ð×óžþx>z~öEø±d7ë¼Æ0|CÐÕù~Ä7¶ëáuðþc_fÿröe|_Zòšð„o ¿ Õ*ý þÒénÍéà0à¹à€3Ûç1çy:r7§Íg¤~DN(¼òݼ'Lï«> ãë6w®ú‚ûLr×Â÷×9¡àèûòW‹g…_yè}ÈËNÑ3w|Mr¯Ú÷šùÆ~–à"ä«Dn—ëOîí›ðõÏ Žá ÏŒ¹)òiüs'_¤û¬0U|r~Ê“´Ç,¯þ~<†àøïɯ _P|wÀнDn%üB÷mᇇžËüÑð…vNAètاÐ\9®ö㤯@ï…¯X×>ò'éô|Õ¹A}qçéšw:Ç*o½K<úþ‹¹‡æ“ÅçÇ#ð}çDá;€ß3û£ÌO­çpßÉ|ï*?_~Šèþ#÷ÙzNúYÎ+úâàO[×ÓWT?9×~~}o©àûFý|Oï÷Ù¿…nÇÏ#|³8¿í:uëÓÙ÷D.5ùbÞïE½ôï ¾°ï³àÑ¡2 ?¸Ü{Å—ÊÏÖ:t­ü~çGf—‰?:Væ-prû›Îd¶ÁçÅ£ /4ðÞ/ãÔðÞÈãÁ熹9'ü»w”d> }‡Âwܾ®ýÎIO]£~–\üøyødôí®=>þݽ¸ë±–’.ûnâ#¾b“…[†Æ~£à2]ò †Ð5¤}t÷%êÇñ“é|D|ÿNÏ‹‘7æ9†üKò•ç›È½dþ1o­óéH:gl©½ Ï$£Ä÷ Mû‹2wE^&|„yz æ˜FÿôŸàAä8óïÐ{2×4Î'Ì5öãŒï³OPðãØãÁw`o~Ä¿ÃïÜ^@£O:ÑÆ<üÑð à¿ïÝÂßê |8ô¤ðÞØÏ‘OCaæ}\è~Ö‹_u}Ïç5‡Æ\Óè“Æþ _4òÒ˜gœ+~ÎÔëG¯†|Nç¦E.gã\C1¯Ü£kú5î+p–üýz=*ÉBþá²9ûe;…Ÿãû‘Z-ý)ú}|:ìËÒõ æòþzÚµçí?Ps)þð„³§˜w{±æÔØw=®ŸºóÅrž·#gؼU|¨ñsO¯µ_Mßæ¼_}¹ìøêF.ˆç0ò?àÇ¥npñ\¾k>¿™W¨Cð´b>1ÿ%òµ¬/ _zôŒä)Xþ^o[¯ŸØ÷ üp‹¨gÎK`^<ê‰ýññGÈš/š{©n,zw’ï¶ÏŒqýÈçôùWjU«Ü£½àà2}?þlÁ{3ŸúRº@}<¹¬y®<âk”ÚùJm`=7øƒÁ;·jörñ÷‚Gàz‚¾‹z2pœúÕÔ¾ª½‰¯Ãû:0JóFìÇŠu¹;|-Ãæ8õáÝg«/_åƒUÿ{öRÿ€^9x”Î#Ã#|˘Šê“á;wi߂Φó]1ÿðˆþÆ_¼Lç“Çüä|¿¨?þþÀ‹\bž÷‡ÆÞŒúaþôjëfcgýhø¸þÄ~‹¹ƒù¿|Ÿ™Àƒð_ÃGšzƒžÔ~íÁKàct@ÌM|xÔÌ!®Áƒ¦.0‡àOàºõ Ýz >ö<³rO]o ñóØÃÁ;À—œ†ý¼jæó΢¾à» =(üæåëL>M#ߌúÂþ _NrÒê ¼ô’Gëùumw^ŒuŒø)ç®q®ã=êÿƒ¯ä~ß0tsð¯ÈYêÏi® Žtûœ×ÆýFN:x>ç)û­Â|ìÈ=ŒóÓ:KôýÙ3Åã†@½ |Ç{KxÐ}Þ7†>Ç|<|ÚÑ…:VëPñ³Nß'ü‹=Yv7é!á7åï¶/ôãâo2nc=F¡E?'ˆücЃFݼA¸XÌö9ÉdTw#·òLç á³cß6ömàXY÷uÁïö|þÆ[ñÃ,”Ì¿rÞLèi¼Ÿ,¤Ëª i¾)ûºªØ¯>t>Þ»e ªãÁã³xÌäy_iž—ýð7C§Yðù‡ßiàX®‹<t9Ùó4g“ËÚ¿xA\ø1 Œ}®vl Þ>xßÉÚ‹÷:/(ôf…»G.¦¯ó^ë£ÑAã?þÌö¡>u¬úuÆóa|L]`/G}àc×ûΪο.óðÂ׿Hõ×Qwøùä:{ï:ûr‡Ïó Ò¹ÁŸŽGãžäØÄ¿ÃW ^‚ëLø8¿&tà:ÎyŽ}û:òÔ¨3ækÇü¾Í}UðÀƒàÀ·¦Þà›C½aÏÅüÁ\O _5ömäÀËf®Y ×=|Ý<ß„ï<·ÆùÆsMÔææô3ã…»…®Þ{3ödègýlìsÓè?³Üþ,»Ì5¹Ô™›´?Xbý?~yÌÉì›É¡E'딎®|˜žWy¤öAàÇìkÀÛzÔïq߯ÙVíW»›äWû1×MrróÆé“ÙçD~³ß¯ðećÄ<¢Èet}ÏÁÿ¹‹ö{}sµ·îý´x屿ãù¢p} ~Þ½õ}ÕÁËK{?šu„OúÀ¨ îw¢®ì¯.åù6ã ç¤ñ–‚y¦ùÄëÂß…üdöZø©_—úƒ¿({&û(“³’{TýpîxÍyÔ“Ò~êÇKÞ¿Ù/ìIñð?&Ï¥bÿ.üvàI£×$o›×ƒ÷/Ý"]Lê%ñZ˜Kbj=(¾ ¥³t¾DN¨óòÏ›Ÿp¢ö ‘Çü–ê":Oög¡ ~¿ê1þчø:é³jä}’§éy>äÀ9:WðéC¯Öw½xÌðý¹žº‡Ã}Ñež:Î.û£Æ^-¥ó-æê„ù6Q_¼Ÿ×é¶Q×zé}ØÃQ×bßçiìÓŒ÷ļ‚_'¾7­ò/ >Á3šƒ·`½OÔ ê |´ÉÒn¬êxèN©7Ô+ðêøÌvñ:ßa¿>4þ9äd¢ÿdÆc£îÆ~"ñuòÔÐó  ‚O ÀsvðÛ˜—ütvñÉAÊ<ƒÞ}BGƒ :xgÌ5ø«á>ƒ¯æg´Xö¬xCÁo6ï,x u†üø‘\Ÿ=ãôþ l¯¯½Aú áÀìÅÉa!'1û¼~_œ_Ö°—B¯^3ô9CòÏWüÞ>†±cfÝUî(]·ôÝœŸ©·ÅwD'‘'|#æ–¯jK¿Úkÿ·žmÒÁ|ênû#Ç^Ä{ôž{µŸk| î“o&y#Ë8§4³Wy8^{AøÃøÒ‡žŸrvè< ïüªpxÇŸàòÌ_è_ w d¾-÷ oܤý×`“êÈÐÙÚÿ­9Hù<åëüsý<á 0wFnÄ¥ÚË3¢Ç,¸.¬ŽF¿oiù(CÁsÿ„¯(¿/w„ö¿á£ŠO4yð ï‘ÿ ×1syÿxʱÏ{Z}cða¬ûÆ)|ÎÌÃÄ·>LÌ3îcbžaþÀGÓ{î˜GŽÖ~·k¬ðjð¡¨|‰=µýÔ"Ïæ^‡Ô¡À&Ê÷%æøÙÔã5WI§ùÖ“ÂËž~9~¤ÞÄ}Ø^êÏê…:ƒí>+tCÔ)xÕÓ´G‰z߀ù†=úžÆýõþsc~¦sib?†ß§ó8ác‡¿?<ˆ9Ç?/øÎðÎòlB?ó°ê{ðð%€6­v*pÉp½±?MäÀ Î Ÿiô…†ÏìÇà33Çà§I]×ÜÀo&ç™~ü$¼–^ç¡áß‚ž Ÿ•F&ø¡æƒ’§Ù½@záÞs¼Ÿø´öÌýoio“ZßT+ÌkÂÇ…=NøgÑ_?§}3y!ÜßÁ óõe“öÖõ-–O^ä¢wðþœ~1îOîgó¿™ÃúF‹wÀ<:õ{ÄÇÊ\©ù ½>öèlÀØG~/|¿ü‘ñ=)='ý]äÞ­ŸS>Uç3<â‚uìѳg7~ƒ.ç7>¥Šö9åÚƒ€ÃÇÜr¼t¿‘{íç]9KW£ÿûýd?õMƒæk1wD^8|côþæ2¯ŸÓû{7üq¨?ÖAá¯S«y Ý-þËä=DŽù¨±Ot+óy™áç}7¸_ø´èyeÐûD½L= úŒlÿdí½zžÑßù˜‡‹Ûå×ÇÀ{Œgvmй|jòÎøw¯èœ‹ºr¯|•#wÀ}U䥡+u=ŠyǸm×(íÂwÍyÁ;ðž ž~ŸÁ¿3;曣µÇ!Ï3|ÚìÛ>|ž\ió8C— >ƒßõ~5û8ög~èsðûdž§Á‡©žW"gŽòvñ+À7”ï>=r à­¡ÓiÈK‹¼gæp|ð¡w¿™:Ã\ƒO'ùhø‘“†3ó ¹6Ì1ðœÉ³¡îà¯é¼š¥_Ñ>,æ×ÞçŽ šcðOê?Ds3>€à¤Á'v. úø£ð;᫤ޥ=y6‘ãìºÌþ ^Qàø'ƒo£Û±_Uzköº|ðžþ“Åß›yµ6÷Ík‡qVöÑè´ÙK°¯ ¿ó}üoï?"Ÿú:—©¥ÚÇFn‚ëûÄô|å7‚kEžÉCÂÝKõ1ø ¤àû+_Ñû‹2¹i‘«éúˆs¡Os{îéš²3Ä/Æï1¹ô•¼ÞøØÀ[Æ¿¹r¹æ²¡QªKäPº¡^T¬wš§ë¬2J:”¡“ÅÏ'`í=õº²4òFÁÿ³ªˆ½žsAÀYÈ» ]ý ò%á8Ìy‘çih^7roð©CoI=È!]ð»o–õ9üÄC5wâ»O¼ð´ÀÛð• îûýÈœ«ó/u¨ú+ü̧ñ>¡{Žæ¹Ø/_¥û«û1“ݛԗ‡çB飞ÀGðçCçl|4ü4.?+|=ù=Ô³}¤Œy¼èíy‚¿†Èüµ˜o<·t^!ÞKçBÍsÁ+°ž‡úNõé`ñ¦B/j=jð ̧Žù„}> ð ÀÿÁcౡólðºC] Žà3`Ýè.¾¡èEá]ão@Ù¤>(|Ù๱?s.tðà ßÄo ÿt›øLÃ?c®A· €½>ÎðΘkðŸaoÆ\ƒŽ†œ|ÎØ›.<0øÎðœ¯_Nû…¿× uðµÎ{Å Mç]ö…Ë…NÆóyÿKªÏäËé²ß|äÚX7—›RoƒÞ“äOV?›®y)|GÜw’ÏÎ^ŸûßBònÈû þy<Ü·]çh?÷GÃþßõØwû|ïš®ó‹œæ½ût¾Àû¾…Úó÷_¤û _úöÈÅq_“߬ú_öýŒ3¹/‘_fŸû¡õ}åW5ãw–ÛXÿ1&Ù—Å;¡ïÇ×-çûÿ1t«øà@ýô~§Ò+}TåLõOøðG¾ÍuÖoÚﳸ^u…|ã¡Ƨ|ÿã'OSð'ò}¨»…ýtŸÂ< |tÈ5ÿ7ë {èçNÖŸžð‡k®?9&üj®ñÞ >ęΟñœW‡2ãµî÷ý ^ ó6ü´ÈÄçÏu@wUçlü;äÔºî7î‹ã÷¾)}lävRïv×¾š¹&ô?|8דû50·Dÿv•p‡ð;@¿ãïºøMQ¾)áG°I8_à1ð˜ÁuÐñà; €½8 <ô›ö÷ŒºÀþŒPç"F]!ošßãýJüÔøÓä©‘opóf‚­ã€ ‡÷füfxìÏÈ£™«ç¸ ùä>Ã+#÷Œ<rhœ« /…þ^$¸X÷^z£Ÿ2^Á|N_8 ó`»ÊÇ>{ixDð൥ÏÕû½Oûð}xµø†±¿Ç¿<ýJøO{¯…ïfø~¼ =GÌmì¹Þ™ó牿GýaŸ>ÜÏðÐüùçšõ8ç<Šœkü}sƃ/õ–ðÁÁÂÆ>cƒóëÿü£I)£~¾Wa†tŠèaÈ-ôym5t4ì‘È( ~õ<¦¼Vç$¼1rÌÈù*?ªëyÍHñÏT¦. -’.tí-ö ½Xs{ððñ9Žvø¸_)t ¯ˆ9Áü2ð©ø;ÏÔySÜ]ü’àÇMO-÷¢tžäúìÃ’?W×1üFxÜ‘fÞ>@áÏã~¥tªø}Å»„甽*™Ï•! ~äZ Cþ‰ýéã˜Cz¨íÍiÀ'Šë $×{ït½>½wÕûÙßû‚>)æû²¡Žyнxüë„Bï ïÚ|èÎ…Ÿm±úààÉùu#4t¦äKã«?ÚýAðÙàUãCM(<t£#5¯oš¹ÞY£ß4:©/Îs‹}?ܧ!O4t¦Ô-ü¨á9›zMølìϨ7ðÎÐm²7kÌË1.:Mç „~_ü5©7ð©7Ì5ÏjïAŽgøœ1Ï€ÿ›³ä&á ‹í£¼øšàÁ‡×õa¡ë5¿cµs7Beºdúüðaq^3º9ô”¡3ù¤r5ÉË/ë1ñ©ÊÜ(°ô©šëñé_¬úÑœp t Ì-»ì¯¯’^”º÷‰çúظΠ×^Žï3pRòvá…óO9<8ö8EóEÃmT}3')M®ûœ|_ú}xVä uÉ~Íä(þ^Ú"ŸLr௑‹6xHýúÿeR|^Ÿ'o†œµ¢uâ¡‹!ŸÀ~)å6»C-šÏïÒ^ch¼ð|ÔÐÿà }ïß4o¡k}T¯ê õ3ê°ëFäÂ(zÏ[\(Þ7u‡z“o®0Û~¦îÉ'Ȥ×\ˆç¯&ò5½ï,îPN@ÅûªÁªòÈG-º¯ÉÚ‡8õQíIàŸÁs$ï/ê€unì«û>­}}¹Pø¢3¯P·Ø; ‹=ö¡OcN3¯¦Ç÷?ý`Ÿ_¿Þmu^ÌSüxŸæù°·¦ßë]X;þþ±mxæœè/Ñ yÿ¿_jòp¢Ž^n¾—}`Ê å—?ý+þ/¥WU·JCz]ÊKôõ’y®èTÊ-ΰo3ýtñûáØç­œÑ¹]£¼"xo•’öl•©Â·#‡ç=¿âݪ¥—u=ï9ä×wÐs{4ò<áÉg[T?2[Uè s4êÂ彘 ÓíÏé¾6êsó²á¥áëVvßQz[ýqqŒx áóFÎûáȽ·ÙCy@ùqÚ£±,Ïãïfnçp¥û*û‡ CîMéÜGÄw<ò}}1‡àÛþ¾~Áy¸¾bî±oü—¾‹Ä;aŸ¿Ç¾»Ô_·äFuûºŠù¾}\¯úÞxô¼u†½šïÏŽ=¯Ž‰ªŸá“ƒ¿'þl<úý ßüÖ\÷ƒoÆ> Ÿá=£ÓaÆž Ÿ9„ío9Öü>ütð÷qŠ:c>Nø €ÿã›Fáþ¹lø€ÏwÃþ _MxføË€Ï°GkÜŸ™|3òΜó{3ðöfðÍÈ;»TýÖbëÙYï=x„®ÿQ÷áM˜—Áë|Eïð[f®`Ÿ•½_×yܯø Ð/úüÌÞ­s!üOœÏ˜ÝZ‡‰ÆùÍ3Åî¯ÎD8wg»æÍàk/LJ,å9>689þ$½Þ/²¯îoø~Wøëàë†Ï¹Ò‘ç:9>ƃCço½ <4|·¢v)lßy¥nÕµòãzÊî#óÏi®¤~vØrªê~e«}ü·êy–K:—#‡í½/1LÑ\x[õ¾ø€púòIÚ+áQ9IóûûóÊ ñçJ˜ǃÏ48»õ yïÑ /WÂGføËä3‡>Æ>jøxâ'‡)úòb #´¯À.obrx‚oŽ^Ë~:øÍ჎©t±ðA÷qøåð}ôIøÑ’çÔg¼´o›ÎÈ‘µÏRä4Ùg ÿ¾ŽÞ¸o³þŽÀ¬ÏŸ‰y‡zB} ~µ?¦þô>¨s(æ"p ë­c¾Á'Ç]oê| ^´} #¿­U÷]ÜŸø à£æ=#ù Á/ÿGŸCÂhùqÅþ } |gòwà£á÷ÙXwà4Î#à,ðè³}.âkõ¥qoÆ<ãz¹l u^„oþ3à2è=©3ìÍÈŸ†ç >¯Ì¼ÚÖû´Ÿ§¾ÄÞ ¿}þÉeŽùþ8?óŒùdácÖªýføÊgö-áì‹ÏV_ô„οEîObþsÿ| xåð4xÝák˜oËõ³÷%ÕQ|'ÓžëbϵN{†Ìõº÷Å$íü†ŒýH#ÏÐ~]™·tþen'ê‹ç9x4ás{«x~øÜ²×/Âo>ò$í /•}¾¼á_möÀ[«&×ùÊg'é‘êsÙoQ_Ùóᓺ[ç\߸ú9¼:xp©'…c§­»JÿT¸mð 7:ï÷™+Õü Ï«`>({¤BFú–¨ø'//{n#ÇeðÍ5•ÍޣͨããŸúÄ>ªò”ökÆjn]3EøÚÚ‘â¯=TóïÚ#ÔÿW¦ˆ/óªñÕ|A÷y2‘ßé}þ§Ô•à‘Á7ÃÚkºnÂ7Í8Lþ0=¯à1Ú/ üJíó‹õGèmàOä×ü8ymÌSž·è£"/Ú|é”uqè7á9s¤ý‘Èá8J¼ öÐä^ûÔ‰ðuúŸ>÷™ý_ÕÞ¥öþ>_¸nÑõ½¤û}û:øÖ‘û4]û힣uÎ’[E¸.:…ÍÂUðƒnyPÎÄO}¾1½Þ+ÂÇF«p™®ƒàKûýE‡“>R8wæTÕåðóµ?søC».˜g‘-éœ|_û“¦o7ÿˆœ{Ÿ»™´wÁ—þwæQÍC0>š:äKuTÒ¿P÷+8(×3|°ðM2?%ò4¼÷%€y$mœŒ¼1t}¡?ôžœ¢`¼‘ïǧ>òáïѼ_p?óƒy1äCFN¤ù_øk’G\0¿‚ó0rRìõм°’ùo•ÌïZ"høTVœÓlþéÐéï×xÿ¿öáþCS¥ûº\>Ì3eëSá-¯ÙC¿M‹ú !ë¤Ö,Ó¼KžLåQëï_“.]eÉ<ñÂ8õó¼NƒžGùyC#tñïx]¾ù‹ô<Ã_Æ91'á{g~Q¼_žÏóK¤ÓÁ§3÷¤ðzòŠ"×Ìù6QÇÌ{ÎÿºgŸéÜ•ž‹ý>æßÒë7ŽÀ¼œZ¢÷ÿòÔ±Ÿ­_pÃ9OçiÏHÞþçø†â7Í}2ð’x'á?`?6ê 9¸ôyøbôoÒœ{4ïÝ#7Ê¹í½Æy£ÞÀOc®Y§×9r©­<| Öýx :5ó:†t~’O:ã‰áGÝȇfB·3Y¾s»ð×È»Æ_€œkxlèE=§ÆÔ˜·ÎÄüÃÜùINŽu7ø„Ïøá« ï ÜÆ<ð¸ªÖŽnO'+Öy‡Ï <€ÀaðÏD§‰¿™}™Ã¯¬Ñ'“9Ç<²ÐcâŸiŸæ]tšöó üÆøaø|ƒÓ·_ù|:BؚÈõ>¾8§û¥ÈOcOp¼ôuÜ/}=šÑ‘Åõây8øo\'ô5\‡æGu%ÎýôÞ\¹x»êeñNÝ¥Sê°ÇÁób>(ï§:À9‰þ=rœ‡I_<,ëË£Ä×-:Ç#”öṋœ{f|‚œúôÚ‹¥¯îï›üKôöàþÅ{4oVì\~[8Øàš†:UÿÖì§ùöbCók—é·Òá[7´LsÏЙ:¯˜Gà±#™º0ôªÞ·¡“ôzzO[9Wç8 åùÂõ½ÿ'‡³4·¾î•íç]8OïCÌ>¯#—¹Â|äÈ¿!÷Í>¤ðÈÐgEàrÕð=͹ÿÌ^§×'ユ¹ ž‹Àñµ#/:æ0û¹á ‹Ž9e_öôn𗂝ï½räã³aÞ*>J©+ëýÀ3IjŠ|êÐÇ~Íu‡z2`=ÄÀõÒ¹¨û~h¿Ïȵ½DçvðâÜ :xÐöýˆ=¼Löhö`¾‰zãù&r ðí„f¾^à;èñðŸ¾YüEöq‘“€9:ðЃҧ2á3àz<ƒF¿x¸Ô_?»øM/Ôëü5öh[ºê‡a¿pòÏðÕD?ãýYðËð5»^׊ë} &9ÎøiZÿº˜²æ÷ðe~BçZàýøcþB{t4ËO“ßtè6©Sà9¾4®3]ˆgÙå¼\ö¢Á÷ 'œy¿TæL×¥U¾ïÀÕÂ÷ÿ™ÚÛxS:t^\ŸôKÑo·"_ þ1}Fô~ žccž9õÎ{~ú¥T§|º²ÇXwaývf¾r~ñÝ/Ì5?ëP]ÅíÚ[£/D/Xº\9dä?ß>J^ûŸÒaÒ …Žƒþ|Ý¿×B‡ý÷ç{?ö¸puæü#‹žñïg/„ß ¸?zšÊnõ=âòdÈýhÅsfyŒø`¥û„O—'Ï _>Øy ë©Àñ׫ù¾r¥ÎסMò¡œ,¾õà)Ò§þî\¼‚qÚ⋚3ðû,˜/·¹>Ö1tÿðØ;ÂëÊ¿ HþEñÓbOfœ>¹:1oXÿJ(~4ð«Ã?Ô¾yðUðɆ§{7r~¼ ñ~ú;Ùg’Û”9Cõ/UÖ¾ 0ݯ=eú5½>à˜éÍš³âë×)w?‰´÷ó‘n¨‹t¾ƒËÀSÃ?ßB>OFðì E® ¸kðØÐ•:‡7øøMÃGc®iôeÃoÍs~œ¡§AïiÞ@×xÍiÁ3À—€=¾6ø€×â÷‰ ¼5æpÎx¾Ž#÷þùè?ñçlȇnßSûñ•æ³ÇÞ ŸÍÆ||Óà¡Á€ÀþŒÜhãÛ+è<=:t3øe’Ÿ‰n“Üfû5Ç\cü&ü›©KðØ·5æÑ §7`þ þ1ðíÙŸî‚¿1gr®›ïƒ_Àêõâ90ORè#ð¯À#td[´oEgÂ>,ð9æ(÷貸>B_éy»{|í6ïÃúQïz>[; ®JR³ÅÛá<'oߘðS|Dó ¸~ä)Ã/òÜSòõû¬ÛíÛâóüÀ±Ñ 9g“1ü”¯Ù.][ø:ãëf }ÿàÓ:o+ö©ZcÞ¸ ¹bðxÞ•Éö¥4ÿ,ü—ÍÛÂO­Ò$âʉڷ ù¼ºF¸ÅÚñª+k¼²/Dñ7¡‹¿SçLÙóeÌ?ñÛ"gâ-å¯Q Ë„wÃwˆüéç3þ|2û{’ï¬8^¸SùÍeÅ:¿©OðÉðÀŸ:³›øÌ)ÁS!×Û¾v|œ.ð¡Ëœç`¿¤ô£Â¥ð·‹úq±æÕ¨#=ÊcGþ¢îSÁ÷ðÁ Gƒ½<ÆÀmÌ7€×Ή®&æxÐûhŸ¹·ökÂW*ögøå§ƒ?|´F_h|8ð“ÆwƒÜjû¥íò1~Ôð }o<çÄӘÿ'u†s­Q§¯>çý4ûøèBÝgï’׆9ðΘcØ—¡×dŽF®3<|œñÀ¿¼ý uÍHáVáo†¯™ç^üÌ"'À¹šQg˜{Í+‰9ˆ¹Æ×yá[lÞ?~Êá+aýxìCÍãŠzcŸšŽë5Çu$šë#ŸÏ³—‹ùØ<ÆÐ}ROà!xßÏ'~à«ß¬ãø? ¿4ætkøºÃ?&¯\*ò@ú½gDo~ÿæ/Óç¥éÜ̇Ã7žmÞ×!óN±Iü³ÈËñþ6ôìÆ…²Å3£Æ?,êTѯ#ç<9ÎMüi†Æÿ({Nœ*žø?Ï/ü¾¬[¢~U|.TžÓžbðpíÉÖ\¬ù?öpçéûל¤¾my´åÕÒUÛt~2oEv>ÀàQò]Y{²êÞàI:'*cì{`WñÍ…Í⟣C ßLæ¦Ò#5öìÇÐÑÀ¿.Z˜· ¥4Búˆ¨#æ;—$¿™>!s­øøÈà_?;òŽ’¾H>8¿±/›!\(}ˆ^'ø&é÷ Ÿ$\(æ¡xô>ßóþ»ä+ˆÎÞ3ø zö¡¯1§ç-]=7«oêéÕÜ…®†|xú‘Ÿ?§ýÃ7¿êyèÌ' ½§užñu|;™Wìó¾Ôæ!økœCà4Ì3ä°gOây&öfž£cŸC O¾ø?~Ì5øLcŽ'¹Ñuý&¼æf›yº»øjRgšäÏs þÔøiøžQà©‘Æ<Ãþ ^ôþõñm¯a>4su6ìÍú·«ŽÂ‡ þ¼ýØ»òþwl_²Ã{ ÀÛÐóv(O~õ©s²ø»äßuœ y?Þ/ð4ð ïåbŽ5ÈuÊó ~&>ÊöÙÁ‡#rv½Œ=2¾1è/Ù?o¿„=5{öoé%ÚE>|XãÆ¹ ´×ÈO?¾ŒÑ_ãà}N®[xü\t‘yó]ðÅâ|£áë5øý&i¾`Æ9ŒN$ò<¯ƒwã#€Þ¾t™p|š·©_¯¬Ÿaо:kÖkî|Mû±’ux¡cñ}ž³|¥ðoüÒÖ¼,=sY¹¢~‡ß_ì×}‹O{¯Â=z^ägR7Â'€œ¸{Ä¿Bo~—~^¥õòGï-êÚ5Î:O¾?àïà#™ºnRO»_ ŸÛû‘œõåä¥Úuž¥æ  \†Üiû8§Öj—*©^£CÞ¥®Àã415W< æšþyz¾ýï—ßoÔt5ÖuöUu.G>5¾4Ì/Wëy‡~Ó99Áo¶¿ú´î!éboö”údpÒðA§!ïÚy7]ã´_ß üÓÍ+ Þ@c^µÏ•Ð圮þžýLà1ø €P_Àe˜_à•уϟ~Y£>Ó8 ~›áËÉ\CÁOó/»èi˜cÀiœGøgR_à™y/ÿ/ë 9jø0×4êjÐm:')rÐëþÍä:óØ¨¿iäEã¯i€åÖ Ã ¼†½™÷EK½/ã¼Bwž:Q÷-ûÚð÷þ&Îé˜g™s™gŸÃ?‹|"ü#<§„ ~"} ümzžà~\ç©‚ö%íýß„c?®Û˜ÇàC›gľ Þ3úü”cOnÞ¹6i÷ûAOŸ11í|U|²Gé:&ŽœÆÀ•­,ž"Ÿ„Òö¡qynYë¼Òž‹ñ.&ÝJð¦á¯=§¿/r­÷Äç¥àûŒ9¢|¹øUèùÃ7…¼Oï¿*“ä 0hÿÆr§òÁË/ëº)µØÿÓïcð¤wˆ·_€\xÓøðûË[UŸKóÄ×(NÖ~)|›Éu3£0Zu;ü¼Gƒ¿V™/ü_xß•¹Â=ƒ×OºN÷­è¦&é|'ÉÞà÷ Ô}š“àåãúKx–ßV¾MèZè÷¼·þ˜ëÚÀ6ùÚ¦Æèï ½&ºaßäM‡ïþ6ôSæs†.¼…ùÄþtø@³OîÙGººÐg²˜.}nìɨÆÿ»G?SoH†siy¤>‘C@Ž(¾äÞXOþéø1­y-ögàµè5Œ‡þ†ºâ½Käs¢d_Ïžfãüb?ÍØá·ÉžÌ<‘˜cþRçC¥†ëËÏè4wÙ›ÁkfžY"Þyð¼/‹½Ùí™c®AÏ Í|‘¨3äl¢»Á´ûÖñz}b®±Ÿfø ®ùt—œM|íGÎzÉó…»ôÓ¾~dä2Ù§ÿaøó9HôÁ‡?_çbøHØW‹}xþGø‘Ǽ±@uyÀxUà÷gIÇ7`_žàw’ŸûUå.¡Ó„gõË}üiæ—ŒuRÔü±êÿÉ9AŸOÿwø°ë­2î;Ðs¦žó^żføX¡ Áßm¡|hðëÇ/þÑ€û ò†ã|; ~99<ðbÉñÌ=¤:¾`ø=o¾—÷ØìåàïV«¯/^&\fð2½_•·õþÅ\r¦æ®˜c’žž¯W®ž·Æ:ôµËÔÏ ªýÉ`¯ô_kÞ^R¹Zç~Éx/¾dø–?€}¼AóËî¯Ëæ1V2ö¿t]G_‰þ&ëÜöÌ9ÂóÃÇÕ}EúíïØ¤ïלÄ5}”æÌȉðßú}ã(ÌÇ7 ·£~Á?Æß{àÁ:öåÐÛ WgOþ4þwqŸ2§ØO“}rŸýC‚Gæ:g«$—†=YÌ1‡ˆG[:óìC¿ Úùêû£¾Àƒ†/àüÈÆ¿†œjã4±ÇwßÈÞ#pÎô1ðfÉ{¦¾ ‡1/>ô0ðÉìo¼e|7ç ‡ ßrȦ¾0Ï¿‹}™óŸƒ_ÆÓ!?äðÓD¯éë/ðær5áà{v¡Î¿cÔ_Dž3s ¼4êË4Íèk¨/Á`žùŠxûð›£ÞPg¬¯až Ó¹Ré1:8§¼—Ã9ætø,w ×Bgxˆû™È¥¿CÿKŸû|¢Ááîi¿xbø³pn_ÇþqðÐ+ÇžØûàðWƯټê¸ yŠø—›tßGî¥õè%À;ÒãÅ›M½¦½YÊyuáCà¾(wøD¹¹Úã„ß½}!щà—Ͼÿ]w©Vå§+Â1ì~5æ+EΧû#ö{9óúáUç§Öqùo×Oçµ”Üàï ¿ù|¿fêNÔ™ctÞùœ'}1üpš¡ãÕ' ^£=èÐÝOá‹cÿ ð-üià¥Q7ÐG•ŽÎOÜ઻𸙇bi¼>ò*xÝמ.‘žŸ÷ý ókÌÁÆóckžVøŠï#>Ià£7ªè+ ÇǧŸ8N{Ê“å'ÏŸ´ð¯1ÜrøÇú¾Ý?8¦}#φ¼YxcÌž_¢þŒR¿9ððô1à0ìÇÌ7 þ>Ì-è`ŽTý |Ù¹®„Ϧç˜ÐÃàûÏÇÎõŽºBþ3<3óIÛÌ/ üà—×ß9g¾Þ‚׌ž†üfãˆðœCÏiÞYððCû±xZÁ£z¼Ü:úÀý™c¼7C_zMt7ûk¿±ôuñDCH^®}ƒñýkÌ{I;ç€û,rÆìg¸¡õ2½ãÄó‰9ÝýRÌÛîk¸ocµÑ¼_|&ƒ‘gH.gü~ç«ÁÓAÿßý’Îõî‹Ô§®U!~`žòXè—ð§eA››§<êðѲÏbæRñäRokNÆï Î×|@™søýøÍ‡Ï½ñî¬ùöéÄ/&×4Î)ïEÑ륧èœE¯:|xÕöud?¸‹ûËÊ“ª—åVÍ/äD{…¿ ÞP×¹N=&:òi Ϊ/q©_u²˜Ñ~œ¶8÷÷Óü°Ö~)C³U*w‹g€~”~.> ø[ãC~gø¼’Óê¼¹´õoø q¤ž×ë}ÃyâÄ>+'={ÜÐÓ®ýCäÀ4ð#ѳÏÊ>!t–Þ{ã:~_ìÁݧã“kuƺižWø˜y/¸‹qMú²È£anY¬>?øÌìÓ|¿ÅœCnšóác~Á癜ûÔìâOÙõ…’à—±owßþ4äuÂ'O¶^{Ap˜Ø‹‘“i?apü]æü˨3ä1/Ðý{2çf‚ÇÄžŒüðpÿÆ:ƒ_3¹3Ôr›ÙQOæ˜Ø›=,®˜c®NÚ:K<Âðo†oÀýMð–ÁûÑÑ|B|–ÐÏØ·&}˜öâéßÈ?7tbÔëµOH×áìtí«8Ñ?2á»~Éž <?ÉïûúŽT¿~^Î&÷˜½SúrùÂMµ©^‚«’[‰ï2ózo»ó¼·Îœ©ûü„û9øuîŸèÇÀK©áëṓç|ûÏQWá÷°GG7‘yÈ: ïÙÈÕBÈ>“>½ö@ÎõÕùéNï×Èóý? ½(û«Ò•ªÛäÝ„²yÅÑú>öMøÉ„_À©êgð3ºE×>8仩®”ŒÛ¾(žðÐíæ±§¿‡9ßµâ«:§*-â™ š_;¸@Ï›.U°ßù­á#nŸ:xy™ßŠwD?‘±Hf®|hà £G‹>Ëþ,äÉô©þ"ê‹ý˜‚obÜÞý€÷øŒ‡?&>ËoI¯×w²xŸ»äј¼}ï¡¥¾àÓÇÉü‚;¾2ü¼ðiF‡ÉÞËõ#êý$õžƒä Æž ^9ƒæƒ[õŸgë-BgŽî3ødÔô—øjšùhÌ1ø£·¤ž,©?çð}敉åÚ ¿$ætþQgÀû©+<6ê2É—!w†½Y#Ïìñ‚OF¼ægjcêŒΣaoæ½HìÍÀc¨3<Â+ƒÇL}1¹øÓ˜oFÿË^ }1{©Ø³0GxßN)h¯}ºñ pîôAâ 0ÇêG|Îá{rsž²@‡Ž1}²ë’ë z4øÿäEÑßeÆ(ÿ=íן=þbèð³E¿Ð{½®ÓžÝ…ÿ2öÙæçDÿh={ˆÈ«1O!u’tùäÀcGÁç—½Ï+õSÕ=pðþŒ÷·œ‹¹ó̆¿vžøü[tõì›ÐÅ£7%§r°¢û`ȾŠè1™ƒÀëCÿh]-yáÃfü?|f¬Ïª\ç\JóÕÉßçÅ”ïײæé…ÈÙôûS>Hø8ùnðÖ¸Þ—ZÍ?{¤vu¼uØ?†< ö˜ÎÓ„ož}@õ7û’p¬Ì‹Ê£Æ†:û¡gÔ§…Ù8HÔrÊàá;G™ú~ø>—|Þxeß:íMØ[ÓÏ?ßz—î»Ä§‹¼Wö[à,àñ•+‰ž:xa®ìB'à|rÝÑÝÏÂ/ãç5æðvµJ¯ï9pt™ä¨Ã/"·}Œqø­‘_ÓSyM:?CC}±~:p~|þÑÀÀëã·Lî²ëJÔ÷ßm[5w2·ÄžÌ8Eàü~ÍÔ—ÉÂÙÚ×|ºÌF\†¹<†¼ûåEùõ1Ç€ÿ3Ïàày}ùÏ¥‹½<3óšƒÇÌ|þŒyæ3õ>oý°ŸÏ¯È¹Ä×Ây*énù\¥O_|åô âI¥Õ} );EúÁ¬u®àóá®`]<™Àóíç ¾ûŒÀéÁ½ýsRžûÐiÃóDŸ€Ž.w€ë—y`ý“Å×ÎÎÕ$øÀìUÓ9™º¸~}ˆ½7ç ÷yjññéòk%'-pWëb™¯À™ú7«ÿÏÿ4êø#Ú{ÁÈ¿¬ë7üMÜ—Ã#äœÌ™‡û9çT¢‡$×+;Õû@çE”Œ£•Þ_¡ü@}}46)ï-_êREu|iª®Oô)Ô t*û“Tæi¬ôo±¿OáXÕaüzJÏ×Ƕ£N¡ŸmÐ85yÒðÕ*o)¯mÈúÜÁQò{7*/_Yø ø{RCGë=sgÌ™ÆÝÉk ÜÛç5{#æ†Þ¦z<>öȽ»«¯&_Ü>êõÈó>¼ðžÈ'󚟹1W ˆsž=<1ppææ û¼ÄâýV§}»£¾˜÷ÔçÎD=!‡“ßo} úÍFƼð×DG1V|ÝÀaxd_F!—†œgtýèÂËì’CC™¬9.æp}ç/žÂ£õÔá‹YRÝŒÿ‚·L¾{³YêËWØ/"pt2䑟 o¹Á >ƇÆ8|ø€Óx.Xæ=wìÍÀÿ™oðŸ±ï 8?øç]ì£Ð‹‘_i>%ú4|`ÓÆ›Ø+ÄyŽŽãÍ+èêáëd÷ÒùEÈ\)½FÆsdv‡öý±·óÏM{I½¡ÞeÇé| =µ÷oÙ‹¥C`Ÿ¾uùÂ|¾ôáãè!8§Ùg1wwüoß×=÷jÏBIî ¼"tI¡ócø¿[˜õœÞ)üÝ ¾4Ù…êȃC×8ƒý#·Òóç(õ+r€È7ÀoØýîrñ‹ÞW²/±}lsÎ-*+܇ó<øÉΩܯû¥2B7õ ½KèýÇHGBîtøIŸ×}áô›ÿ/ººv;n¾<:E{Ü¡íöµÞcíCuþ×¹ÉÚc„ƒUF;ÇÚûÂüÍ%…Ná*‘ãÓx]Ö)o!x(¾¯©= ¤³¿ _Çw%öGÆýðA"? Ÿ}ê{Þ˜OÐKòyêŠùÊ¡sÌÏ5/™ú~côAÔt-è)™ÛáÛ§0|—ñó<º ^âþ}6>á× ?Õu&òâá“Á[f_¯ >¾$Ì/è%Àûíss x <³FŸ2óˢΠ»Ÿ1_9æð}p—F¿eã ±ïbN«¿'êK£ ó ó {1>æ¿LïuÁ_†}8?~fä€û»ž¾ïýXèe˜gušøœ•…ÃF®óMÂ+Èw&<>üŒvÖuVþ¸£s”Â?ÉøGjµùµgê}@’)ž~a™Sä§Ïž'»Yx*9諳×è|Gš­¨ãÇB]É«ó';IsRæNùRÂS ~ÑŸçöó¾ŒüNü¨üïbÿ~µ|Ž#OÆÏ'ô•‹ÇÜþ:ð”î[ò?ð1„oÚ÷ î;trìÁ²»é'3óSíQ ¿/ ÎЉœ¥z‹¯¼ÛûÜœ;òÿÄ̹êïñýäñ$˜[Con\,øÏ—ùu¼Z¾ÊÔcô;ÙOª/ao>Ö§¡o‰|ë|˜Ê·«üøÇ1Oá7ä¿¡mò÷YsŸòmÈYC9ô¢êyÒÌ7ÅóÄ+Ï­’>*þï3÷ëy¤ç ïÉlÔë¼K÷[Áÿ…WžNáþ=ô#àèàåû,Ï5áûâ~]Kï9ê—ð#Œ<2ê–ñþ˜Sø}æ¿ÄóBGI}ñ§Ø{MV¿~Ò¹]×Oà(æ™Dþ2:mt“ðI½÷ ?3p|ÎØ—¡ar.|£/pòžÑÇàþÎ_²†úxÌ3ʵŠ\Gô1äbÂ_Ƨ ž2{4öbà-ä•ÍP½ºÂ\ž Ý>ü0|c˜WÀ]à•¡‹!ïl†ð¹]ð™Æ|fëVBiÝpëÁšó‚¿ìzÂ>Œº²ü}âÝÄü‚.“Hàó¡“´RÔ#øÈü;ó»[…N…|e_O1¯ÀëÇwŒy‚ýŸgÅžl´úñÐ'/ ÿAü^¨;èèȉa>ñÇäœE}ácòùþ\&æödÔüÍ»Œ=þVð˜ë sLC} ~þd÷®­54“‡ý—‡ü2r2á“Ý*^Qø•yÎ }%sŠû˜ÀëÙw§˜ÿÈ^ <ÙŠ=õú¾O}ažÁ× ×üË¢Þ4èÿÙ1·Dþ Ÿ79òÑž¾¾¼¨ðC²8ü—À±7ÔõN•àËÀ£Yïá7ƒ?Àó ž²ý‰áñˆ^=\º]{©ì‰Â¥è«Ñ›?•9ˆ=‡q6òÄÀ™ð[ >ÃKâñf:•Køº}c2ÆßØGee]žç¦\ÿ ÷µ°?Éœ.~if¶r2¯É§Œ¹-{ªöÃèÄÉÅb>)™ÇYîWýç\.´ç(¹ß ?cç«‘sú›x–èøðã€×=ºüØØs†Ÿ°ýr«¿*o%g =QøVÚÏ’œžAçý•Ä{ºAçyÙ¾½àõyçI?28Á9@'Zocž2ùƒ-ö«¯ñÇQ·ŽÒy^Þ¢¾<*rhöО ŸrKñ ȶé1®ï9˜sÁ'Cïbœ>üŠ÷Ÿ0ð tËàèD¶ißøÝqªÛ› 3'ßÝŠç§ž9ÚS‡<Ÿ}úzês¼at)ì·ØƒñyøÄÎE'÷%üö™/ÐáÃ÷ò¹¹cä”Q'È•áëà/Ì?®/áÇË>޹©±Î€Ëà· ¿ ÜŸ:cùUkSÿç8쳌¦ùËáo™ºÂ#<3êóÌxÕíx„W¶Qz¨ÀÿÑ]âC~üdòcÐU2—Ø/p}ð{êÔ%©W|ýÂúëôƒa<ƾ‘³ùºú¯È›Á/Óûš¥ê[ÉwŽ:c>äÒ³Õ_,Gt½A|G÷‡ø÷ÏÁWæ×L¯p!æñÈå¶O3øeè.£À[FGÿ—IöBáéú¾_è]B_ïËù?1ÿxÿEN:þê¡«?Rçc×&͵ƒ°[¯þ/æöXà÷ ´Gï4ŽÆùbö7Äß#ürí/ºü>¼ÏЍ”TßÖ¼>fèT©3H§^DýÏZÿŸ¢ù(÷´ê$ü2^Oð·>ÏUà ‘ÈÜß—½zû¸†O1û+ò¿à›·<`æ×üc^wiÈÁˆ½ü0öRàëäW2GP_˜WÈß Îà“ì½y.“pîã÷‚Ÿu‡ÁS˜Gø9ìÛxd~a^²õ*öeä” ƒþ_ü˨3ø–mÕ<Ø>¤ºsM£OúëÜVz¯<ücð#Ç L÷{Á€_Ö˜[Fñ-ôûø*3ÇPìü1ó’óѿŒ:„s yÏj~G/Ó¨Ï\ê}u†ÇůËçv‰ëÅ’oÕ÷ö» ó)ÑûCÖ{‰žzü[Ø„Þ \Òz‘Þª®§Ð5“ƒñU]ŸÔ“Ô©ö'³zyæ x\ÁS°4¼cö]ééòN­¯‹×$©êœE—Òo~7>ñ|üqøîΑ¶Ï6|®àm•tÎÆÞÎçnäÀ;Ï*rëïö~Ì8cþíïŠ'jž*š7Cþ3¾ŽÅqÎûòÞ'x]>àq±Ÿ*^)ž]¹Wþfèñá÷Á¿H½ |ð1òfÀu²›ìo®æùÚ1~íƒ1Çà‘;Mõ¿ô(ä‹1O_]¸\<‚ÜâË….eŒöeè*ÁsÂÔó?oÈüßò=Ý-˜²ÏëAûª”^¯bÍñÒ ç€MÞ>uù‚ê"þu¡ŸyËùfÎ/%d䡃'G¿aæ?¿˜xÿvn>+]3êsôÙÃ8 <`xÁìãàù~EGu‹œÊ ºÞoñ,ôŽø‚ácKŽ{.ï«à“…?²ëPÔô*øVÂÿ¢®Àƒÿ…Ž’ïg"Ý%Ï‹y§qŽá÷²';Xý|Ô—•·ì=íªƒµŒ<Ì%õñi·¤ýlõ]íΙ üŸ½ø?yË'ˇªíÍÿ¬ Üó–OМ¾–àúä-[oû3öfÔt1W­­5éá=ó sõ Ë›ÄkÁï’ºúKð|ÿ™cx4><3ê y2wh¾dNYzšxK¼÷Z\–Þn±çüÅà…ì‡}Ÿ0¿O—ûÉú®íÊAìÙ®çø¥ýeà à¿ùKø¯˜o„`ÿéê;C?o>>4ø³„.ÔøAêIõ½Ô!êüª¯ª¿$ß)uˆó¦À¬KEo|ië¼3S_”¾RsûºÜ}â=0·d6KÏ‘1î.ÿ ×+_,òMàA½? ¸XÑÜ^:Óx…ëNà5“Äß%_9|!_Sei³ê>3¹×ÔOD^ðeÂçàÇ1ïÁ÷ Þ4¹^Sê·Ù‡"2ß«}]äºXOÏ9M^'{ÁlA÷:¥Ü|éeÊóÄ 3ô?ÎÉç\¾F|*roJ§Š'^…YqGýý;5òå*ûé~¬´êu/í§=<>8¥“5¦èõ¤OÀ—:÷+ùc0/¦?ªúoÿüÀݹ?zu“;¹®¯èü „| |Î]ÀOסŽWL=ܤ=5<1楨/‹åǾ‚Î ëxFzŒ¨+œëœçø„±§"—¼„úÄ|A>%8<¼b|+É #¤‘wLÞ>Êøú{NŠçÉïsþCü;pxføû3¿€Çà[]&uÌD×{“p´Àû™cÈ[foÏŒ:ßìBõ×»ä-›ÿ8xÉè_à-SgÌ_nÝ¢úÚúf¥^ ‡ý–ñ‰1ž_rø^š§õÌñ{B/ãÍÐËàÏ >c^ÙÒ_Èpé\]Ág6^{´÷ ùý•ϳð±cë>&¾ßoï›áUâsÆ€õ£èáÑ=‡𼨷”gOnYßÐo®üf ˜¬þžXf™údð—Øy~¡. TõüðÂ^õ)ðëL#Ï ¿ƒÛÕÁ‡cîa?>ÿðíðWlBîíÝògÚWÁzrt…øæãÿU~U¸Ky†æ·²÷%%ó?+Æ+Ût¾V®T¿]søT³'$o'ü®~2yçx„ß‹y„ùÇu^Âo(úüÿŸü˜|EsYø,{ß…¯AyHûÏxÝàÃQý<ÙßåvÓß~š>Ox}ÀÿáÍ„ž¿û¯_˜<¯F?•…Ú§Û´ ß×<î¨7Ö›„Ÿ¤ñûÀ[uÔð|×Óø}Ì#/h¯uÄçwøé?#ÿœÀQ8çѯ€Ÿðý챜ï{+9÷Í[¿ןÈcgîqŽ:ÌÈ¡çajä1ó{ÀaðÉ„Ç ÏìpíÃÛTÿËQ\‚×Ì\„^†Ÿû„ôñóÑcZ÷õ…ÇkëÏwh8/È¡¯"Wž;û]ïóÙãÒ1…/­ùøh·‡þ9òúÐE{oþ,îñÉEgB®óý88szêy¡ÌM[êçGçp¾!9ðçÌo§¥ü>§GXw _Ú~6©¥KO„ûǼ„O‚s}3É%¢úõâsÒÏRÝ$'ÿêIùjá?ññBñÿðÞ,r£½wË?ªó)wƒêPî~õ¡àC±×2þy5Ö‹åÖ ÷Èý̼ ö–ö)Å_’ù†¼r à³Åóp½åG•;_xvÌIøßìÜò rkÅãg>ÊÝ">u}NÔßõµòö×7‡ùÌ£ö…÷ÍÑç€Þ×8,üåÐ]Âfî°®¼%æ ðwçôÁÛ œž0óu=‰ó2¢~0¯4øE¾u^0x:û2|ŽÁó9¿É5f/åzy¶ä³çr!û±˜[x¼WºŸ˜+Ðß³ÇÂÿÅõ'üÇØ·¿¡Îìâ‹É¾ ?8Œù6Ô•ö7µ÷&ðÌŠuãs»æÇ ûg?C.™}ËÂgœŸúB½€ŽÆøLð™Í‹ ¾±õ «xïßǃ=?s‰ueK¬s‹ù—},9Ëø¢ú¾ /#/¯û1ñÍÃÇ•ûÜëÈÂ7Ü>µ¡W¾B×8:µ^?/ê}5~kñè=¹løÕ0?…O¡y à2ðµùùøœ¯ëˆý¾8äxÀÛÂ7w`“xEä‰ lÖž$ê‘yZ™ ”ƒ‰þ1ÎoúgãŽ9óösSãeÞ y™ð‰ñ»,-Ôœ€/?~.ƒkÿ_ÙCçgqº|»Ñ¹ºåG€²¸‡| ÙëÅyë<È|·ê¹.ùí³kÕÇàÃÛ"¿˜ìzóÓ½g ~‚u7à[¡×µN…ú…eþU]w…CÕG1F}1~Ÿó~#ïœø åºð—®< '{·¼yHü{|z¢o0O„÷Ÿ»ÀEà‹·£g¾ÀŸËøKäb4èCgÿàëôqèâ™K¼O„_u}ŠuXãó1>-ì¡À=¬o‰úr¯||§'‡}/Íó1G{Ë÷3O ³gŽoçÜgo5Y}gäUR—<0QßVwŒ½Z#UyQÏu˜O©ŠúÒ+kèdÀcu1Ì-ÔæêIcÎ%uŸò–ƒoÙ.s º™ªŸàñì³ð Üû-û®²ç ßKŸ[Ôƒ%ÏŠO³Ì¼,xÉøüãó2ð™N]O±/Û¿·<Ì;óœuÆ~àÁ÷0?$ægô¶ô=Þç«ûŒœ0ôdÎ £¾®é}Pð2­3À£Ç:‹ž—4·±ÿþ´ïwxÏÁ2Ž€ž'êÌXñýÁ{úí'ŠOgäº~ã³?Юs$òmÏ×ë€/[è‚ÈÁ¿ÙóåÀK¯Â'ÎüìÈÃdŸd'³HõŸ“Ài®]EÎ'þ©ðÄÍ«Èç ýÎÓÊÿ`šÙé|7×±BFósX¶[¸2¾7ðÅÉg O¡4W¼Jü3+Giï24Y<½ò Î×4ß^6¾Dì;ÉUÅŸŸ|ðø˜'˜/ЙP'¼ŸŠy„¯£Ÿg¾`ÿäûŒù$ææpﻂ÷ <¥_AŸÂÞËsK䪓sŒþ„s|®‡˜à‹]¥¾pÕ›:ï¢>P/¨#Ôò(ò\Ø[Eý1n¿Úóhð”ñ[öï9ç|½_Qßì{9e3ä‹ÀïÞ2:Lòḋ‰ùÅ<˜•½zŸWúº^é>$ô—[´¿ 3úË+´· Æ9Êm{ŠÜfÿŽøúSâùîþÒ¸Írç:ï ÿJüÅ<¯ìâc‰N’zq©üO–~¢Žk.>{-ð•eG«²o[âs8xÊðÌð•A'ãï[lßÖÅ7)`ñ^ÂEW÷êëÁ+„Ïîë¿‘O®Hÿzgó:É™ˆ=çôÚç7ðRêÏ>µË㆖áºeÜ'ü›ŒÛàs O7xTä¯;?&t¦øÚ:œ4øØì×ÙóñsÙ§¡ ŠÜCïå8‚/gJä)‚£»¾à£’óÞ7÷¤ýŒ½7CÏÞŸ0òÎòƒÂ±Šc•÷:wãÙåct_’ÿUÙ þydøÓ€ËÏÌzÓì‹ï½í»/® ýJn¼ø"y߯ùQÞóÍÕßUx[{Cês¾‘ íý`æ ÌÁG?ãZ¹‘ž§<Çáÿƒ/<äìèu 0ôK¹Õ§ðú¼¿‰š´Ÿ+oozh¬ø×ð‹ÖæŸÖy¯K¯öré;µ/ÄW ^ð•©ìÁ¼ ž0ºBüRØGã£Â¼A]°>$ð“Æ\æê?|…yœ„ûùhùD=1Ÿ‹½Xä1?p~ƒ“à?É9ás=ôœëàÖ“¯ËuYà0ö¥ÚÅÆy1+Ì ˜ñê{‚7F~2¸ ¼°ÆGöaøóƒë󈿥ùµ±ÿ2{/êõK¬¿_l_‰%ûëZr©pßà)EyŽ‹½§Šï»I¸ç’ñâÍ,9M{ƒ%ŸÐžšy&xéÞ—ÑgÅÜbŸ£À!Û„|ýéaðÛÃ?ýÈÁ°î ¼}@÷6õ9èC»çɇ;æ#| ìg ßKüÂà„þÔõ‰º|6×á¨Cèz¼/Á?€œhòÜÓ-µãð¥¯%éµ'‚ï‹®„ó‰¾_FÎKðkü$ñ[Aן8xUð£Î²®Ó87:úvô)Áoö~ þuöã\ž[ðQ(ì§ú ¯­àû8÷¶ÎGt,Á·Æ÷ßyPáËc¿ŸÈ5@×C®„sqÀûÙ³¡ŠÜjóàÃc`~AÖÝkï\aªt¦ø”6¨ÎâwV2ÎÁ÷Á_&¿Ž=^ø ™ßÓ3Ox¾1ÁKfÿe¿úð“ä~ÿ@H}až9A|Gê :•Ø#LÌ%ëÅ“‰Œ‹¬sY|šô‹Ï®¯ñ?œ,¶?ÅbÏÿ‹ìü–Fþ¤ydè‹#‚9½~oê|à~„W†ÿü²žqê_Â?ø {-æ‹àñÀ»FïÌÞí^åÝEýq®cøs8W#r¦Œ±K­ÕyœzÙuä-½žáЦ> rìcñõç*|kó—3/©Nÿ™~Z~‰ì…ÀcòÎ ?”‘õãæýþaààègìç8Î9â À3FRçà]ß и+~èýa®hÌ©§®4ò¥ø±sÂŒùü„yÞ—õ#±CO.Ïž‰½õƒºÃþ‰Ï›w8:ó|°íÚcǹO`Žq_@þdÌ'®#q¾»¾à³ø óuÇ?\Kpýà£QoN–®0ž'<xeøÉðûñ÷gOÞÞ¿Ñ_Þ2u™ƒµ þ2~2àýÔð™Fžõ_ÿùzßwñ™ÁŸ ]%õÿðøfìטw\_ÂÿÒ}xðÅŒG~Ï~­aÏÆ|²Ø}úâ'„ß2×,~ŸÎÑE®‹Î–ÂMwèu¼é õ¡1Ïã[GNÑcµvfÔƒÃu†Ü&r¿­«!G<üd—F.yƒÏløuXŸ<ü[k¿ö×Ç ûmð{ñ=J÷AäýïØgp`”ø>Ì)½ÞC†ßºyn»Ø§Ÿ|t™©Gäk‚$x6¾eø§EþŽ÷°ð¢ñHµ¨o†·À¹?*gÜ1c1ø›TŸòýuœí ÈÃGšsœ?_9Ÿ›½Áyø[·Þ“ÿŒÞw|™óÞ_ +)ÎVŸOîXá Õæ³ðÛž_+O“ÿ<ìËíz†î¿›È¯ô~œýUñ:ûØW4ߤ¹=ïþ™ý]îísÑyæ¼W/«÷©|”æôÁÙz>ä–Œo¦‹_ü™}ÎøÒ{…ÇÑoƒÑÿ˜ôüà‡‘ÏŜΜ¾÷û/pxSÌ~Œ9…9ˆ¹‡úÂ^ ÜùĸJøŠ±ßWa>9A}ðê‰ÚÃDòçÃÿ‹ýðÁ؃¹Ž„î\¿öR|úâyïýõüÄÿ.öjà,ìÇœKºœF3s <3ÏY‘‹I1ÿcåÖzßpÏp&¹Ëú˜|æ_îÏð€îO3ó ºæò•ñõ§Î ÇD×ï½}ÔæêÍͺ>Ãç^2sÍñ#ÓøNøš9_2t˜Æmb?f_t1ìË—aŽñ¼Cýß㺟#tdÎ) Þ¾³ö[ÂYôÑÔ…¾yâ¹°—"'3|òñµq½ ý›yÐø°çŠ't¤ø š¿†î¦wñ:#§ÐøPìÉð' ÿØõ rZ¨+Ö[·d2š‚ÿkÜ;rcN‘ >›©qò%_6r ìCŸ½\}xø8Ï,ÎSïƒÐQæ =Ga„} ¼ßÂO<;wê^¶_>dàFá»l^þ¡ð½ð[ÆO¦p¿x7ä0篫='­Œz9-ÖÏFž·sâ§ÒyÐÌqøv²W <Êõ¤ð–~~Ì9ök„õÔu†zùfæãO³Æï{åU½^èAC÷o]茼ç##ò„Œv/”n<|eÐÅp߀ç3Ÿ´ çùcHþ!Q7¨7à£à1ð©KðÀ˜Kð«tnê.~/èãÙO¡WiÌ•„'NÂÜB}¯å¦¨'ðµÀÕ/Ô¹Ýóvð¸Ð=Z¯ºöXà6ðÐø½ìŘŸ˜sÈÁäï‚ÏÌœdþa{U×AÍ~ø¦q®…?¿ytè>y¾™kOƒN?3R}Häçªþ0x]Ì_‡Õû‘WB7'ßïóÜ"r œÛœß¬ºË¾Ž\µ¬ïC|ŽÃÏåvÕg|Ï Çè}…ŸÍ\T˜$ЂÏEøÆ…+õóËct=—ŽÒ~8ê ºüŠæcáÛYiÑu_ºO~tä:S×Ç:J÷AîQë¦_¾{äÁ0¿»o Þ²ýŒc<…ϯû9=7Œ°×¯¥qnáûࣧ§ž4ø¾ìa]qNƒ_4ì·ÀSÂ…óœ¯7ò¶˜_ØKqž/”ßtûxá®äO⫃¿sîóïýóÀñW9×5ösþýñ÷ôjÿs ϻѓçI½™! üþÉ-£¾Àcæ½ s ¾˜Ôü2Ù›QgØ›5æcâcF½±/}ø™Ùç½fä–±7Ã߬až %ºMæû.³7‹úC3¾™ðؘwxÄ7Ó~šK^×^³¨/Æ)ݤ}ùMÆíC§É}BN}’ù,ÿ›s„órÉïcoO‹<èðß÷<|ÖC´É< ¾—œ/pöO§«ŸŽ<[ÏI}ö9`N=ئë'ô1Þ_’ ¾¹,øëé=Pj“êZä‹ú}ìÏéí¯ê|C¯Óo~a¿ùœSáêz >DŽBàEøâ"‡'ê yÖõÃCˆ|ëZÓ3„oÓ•ÎH“éÖ}úSçP— —iÎ&׆ÜäàÍ=¯÷1r¡Ï¿¡xt“¥´'.{þŧlŸ‰b§ø*¥'U¿*ÞëÌ#*ŒÔë@ýAoYºÀ|ãÐÔ|Ö*cU±Ö9Ððöï±^({‘øŸðÛb¶ŸêJj©ö')ßÏðHzœso2t-<²?×’½{3æ™Å╆Ÿ=|*tîèDØsÁ3>Á\xý?ç3ó øEã\OÌs$zÆ]t'Ô¾ÎÏi˜{ÀivÑ×Û/bå3õ}ü¯‡õ)ö×çë1ïxoõ¡áçÂc‹çÉžç þO® 9ÌìͦÉ»Ý9ËPg&–kÆ’aóvís¢® Ç$¹‘׌^†œ3|gð1[/½Sø™‘[Æ\Cî2{4ŸC1×°7çù_äÆ?ÀùdÁØ (>5Ë?¡þ3øÖÑÄ|c¾sèoÌXâ}Ñâk5Oà+Âgg=€÷ËOÒoá?áý2|föbäjFÿü¶ÎáôkÊGÉ´é¼IÿM{Ò´sãÒ×ÉO—<˜ðß7G×hý}êjÍmð¾Âÿ\ç€„Ž’ùÂþ ©Œøªy ¡‹ñ¾2øÌUÆÍúýzã/ÐgÝõ‹ïÇo|êȳœ¤s1½oMÿC_/8}î‹ôIz¿ñYcÿ…N%•Ó|š:Óùsä)\£º‘òο_jû‘¯ž^0ž\4.@XÎûõ¼õè[˜+ðñ,>ª÷±t¢öðå æ­1ß {1o®p‹žOá@õe µ)g¬2Fåxó¼*ù<Ì´ï^øÁ9g!?OzÙÜfñ3ÙóáÇyK¼rA³wÊÇ“: ßsx)äK²oÆ÷8xè[|?³„Ͻy±÷BI}qÞp<_‰yž~‘èáƒóÃæûø÷|Lþ~,>§ãüfŸe>:—UÞƒFýA'C}c®§±rð»ÐÛßZ×»v%+_Øn>LÌ;ìßø þÊüåFžÛ|ñWƒÏŒ^|†çn†<æ1Â{w™cÐgvHç¸ ~ÿÌ1Þ?´Ö…õdQgÈÇÄ'“y†\Læû„?õ…y†=™sv™W¼WiÔyF¾ŒÏ'tž‘_fÞ.:øÌà0ìÇýBûòÅϪÏäü~räÚÁ«´Nyß ï=ðÿƒ÷•šâüdçx»Û+|ëíz=Ÿ«ô‘Á/ÝHêXáÃý=â[ŸíjÍEìÑú^Òù8 õ]¥÷p1wøëøK÷¥ôþSú¯WŸB¾[ßW•³Ú缓ȵ>D<\æ˜øý‰úpåàE¯SAŽ[ðœì M\Ìa=Ò§î“N%ê~9ÌGG‰?Ÿ?Bû)æBò>Óo o ?3×9ø½…óTþ?ì½ œÝgUÿÛ4i’¦0$mš´i;Ý÷’}A¥w–´I›ÌÄ$C™‰´pCEÔŠ?¡+m¶¶*Ú‚„â $nA0F£¦„¤Íÿ;ó|ÞçÞçóÍ¥….Ó”ï¼^7O¾Û³ží9ç<ç½WþÎm¿#5Å%#?Yä ›—òtoýâÜ$qˆ3½­7éýÈŸÉyÉ8§)ºz°UiÞ"~èߤ8c÷:íï> 8☙γ ¿"ÁùvÙ5Âo[ç}¶½<Ùiñ&nuœÒ|Ü{G’Þÿˉþà·H¼Yü5ÃC¾.ìøøq^¿2Îg"Ïç½þ`â»qžÿ*‹ç_Ч¿Eq%‚¯ˆ/Ä~Hñ'CÿôŠäŸþËœŸä}í«Â/ }ý`?F¿©O~e¥øûäCÆ>òÃIßöwí{8ßòîK ®pñ/ŸˆøýèÛ°ÏàgÀ¾G×a"¿Œóüˆ@œö5Øý?ŸäÙw)¾RÄý'® v·ÿsþÿOîx3?³âdÆ>þB¼Lôfœ³!Žÿ¥IŽˆ} ç9±ÿÇ™84ìOÈ+ãçû9×ÿ@Ê#Ź™·)%ñ™ßú¡ä—ü„zÞöÇ)ŸÇ[ߟü=#¾öLÅiÄŸ&ò¾ÏYçÐñ' »7ùŒÏOt†¸^Èñá'öwI_yÑ¥oãü=ú¶;ÿ{ì¼ÙÇâ<ÌÝÒÞ%¿»»—%y!ü¤¯Ã¿-òOsžFq"_è?~ ðøqdà3|çH:ÿqkzÓ9 üèWÔ+~ƾ‡<Œ¡ß#~€üÛÞÿ©äŸÅýˆs@\7øä)U>è{ÿ"­÷=‚Ãà7ð§¥¼2›‡“5â‰Jo|ß¼¤ ?0é¶¿"ÙÏà'ħáÍÖéI¿¶õiŸºu8}qa¶]—âFs.rëýÉoþÄ~ê> Ù~òó'Üð-I¿ñ¤G–âïHûÖá%y÷ƒòÿ~}òxà¯Rím;’}qkw’#¿ªâÒmþÜX\À?¨ß+ù2ö½ÊËybâœECœôy´Ÿßá×L~♡7ãœ&|†ýŒö1‘gfFŠ~Íìg>üÎ,/säÏ$Î&üeFšçЃïRöⓏMø y—‰cÆyân@tŒóþ¥|fŠŸü…óøŸ‰ݾ¼Ø>œ¾¶yF~ÂèoÿlÒ°o¸½‘üDà7Ä Î2öê÷Ÿ•ìf—æ“<Ãy–÷Iç¹ßÿPÒßG>.Î_ަsêØ/îròŸß𲿨ß+?À°Ë¿2ùI‘àÎ&½vÜ;w¥ýØ—$øÇÏ™ü6Ðÿ»–¥¸OWZùÚÈgE^ÐØ¡·ÃN#ùànù ¾ÿ)û¯È{ ¼¥w½5ÁYðÍ[“0ü~„}éŽ÷hï’\ú1ò$à?'=.üÿˆ{¦¦¸¤á_G>iò|Ê^Mœì%‘oG|ƒ<Ï‘ŸZöÔȧ}PyÍŸŽüÐK“ü¿!õ}oIþÛä³Þ~EòËÛþÑÄ'‰«ùÀâ$¿-éÕîÿ`ò? _ÀðŒ´þá߬|ÑÃIIÞâDÞÍÅ)ŽÂÖ9éûȧ ?Ó;>›öq~Kq’ð‡‰x7'y…ó2q¾½€üƒ~ão†ÿ2v}âí׸FÏÿ€ïèyœë$Ž>ñóÙoàß ?ƒÏG€øS:¿í›~#¾ƒr~Òãiâ†_q°Ó£×Ò~%ôhŠÿç$åo~ìKäzDìSø7ã'‡3íáßL~Îi¢?Ã^þFçg⼦ëÏ8§©8íQâo&=wœ×$Þ öö3Îgˆ«Iœfø ç4‰ãÝŸs4è͈wFfì5Ä?ÃÞ¯øÍYô2âÌh?óöHzfâѰ߉¸fð#ôN:çˆ^ˆsŽÄ¿OûçížâHÄy‚?Oñ³9IÜè$þ^ä¿Å¿+ìØÊ«vôK:wrïK’žûÌ]‡’=}AðâAÃOð3C/¶.É ‘÷sY·;ïIvÙЋ}gÂSòTÃBÏF|NìÿïHrMä±Ö>äùpNûùÛ‚_ÈÎA~ÿJÎw(®Þ=)ž¥ì‡›å¯¿ùÍÉÿøž·$90ìAèѯ¿µ-ëÓ9kò°Ü¯xC÷Ï +¹8ÎWƾåòÄç·^ŸòÌaÏÀÏyË›Rüjâ¸lùrÒ mù¯DO·ê|ÜÖkÓ¾$ônÊCÃùòèlcªïç¥ù¼8éå¸%é÷îý˜ùåÒÈÛó¿IxóùÅßi‚ûû7ŸúîûRÒ `Úú–$_âçÌþ¾=í.éðçŸòˆ†Þ »?q+á;Øeð;£$þ ñ¤ŸŽ<,œ!ï1ü ?gø%çjToð9â˜ÉŸ-ø íÓúíÏá;øÃ_€xÍØ…°'iÿz?Î{â÷†Ý»‹üÔ‚î'Ùü‰ƒß ?㜨übß„¾Œs4øàÀ9MÙ…Â?áƒcq÷6Û×9€’_3ç3á3Ä/Ã.£|šïTü÷w*Žnø—ýp‚‹ÈËŒžŒxšÄeÆÏŒ<˜Š³öüÌ8¯ ßá¼&vìýœÓÄ_¹M´ˆ«‰?3ï‘oFqÔð?‹üšÒ3½My4îülÂè3þšwž’ü±‰¯öøí)C胠ÒûÉöåeAŸD|ü-¯L~ Ä?åù  ò7qeËÉ—Æ~~yȹíkî^•Î7Àîj¤õ¿ëÍÉïƒçq Ý×þ+òI÷&y;ôZÙ'È£~nò³Ã¿€¸šä{!^ËÊgO^iì)ð…ˆ#|'g”?šèNðO'úFpmÒwÞ¯¼-Û¿”öQ÷½>éëB¯öšä¿N<…í:'Fží8¿#}ç>7¿:ñ9üóðGgŸzKÙK9OF<ÿðà¼%~ÄsRÜæˆ‡‰=”¸™ø· ¾Ÿ¢^‹qðgC_Æþ »õÒ/øqÔð"~;çx¼]ø‹òÄľˆ8˜â3aGb_ƒ~Ä!{0å¿;É{“¾=γ°¯a!½ûŽð—&ž ~ äe†ÏpÞ‡|™:GÃ÷Gÿ3ø í{Ù¡ßõk‰N†ŸÙ¥ÉO(ö1ŸOëyð3#ù͈À>æó‰ŸÇ¹Mø öó{ v}ù›¯9ü–‰ À¹MéÇ"/³ô<§“¸ÎÚ?à×eˆ8›ð#ì=Ú!ÝÕùIätΉP|Ñð—=1í³ÈGy¾ˆs)¾ùuîhóÒ$B/‘c„žJû,ìï_œô¶ïu’ÓÃ"»Î]ïNv×;¿}ñ°ËG€¸ÿwmMûYü£þÝ×yÛÐC©÷œ¥óä:ÿþqÄÝÔ¹Êèÿ?'¿åðƒÆÞ?#É1oÚ/‡¶üÉwÃ>søø¹…Mþv›%oáMüÎíóÒ¹èùÊ›úÀÇ ñɈû²å3É®þÁ×§ó0[6&½ÝÉ…Ä[Ž}䯭ÏKz¢­/Nð¼UñA">Îá ÿrÒ§Åyí[ˆ[°]úžûìâÂ/ǹ›>—øáöƒ Nñ[ nÐÖZÒÇFnéó6KSñâ¼ öÎÍüsZ§°Ó ?#ž³Ûeà7Jùc?ƒ½ææ;Ç\ðö5îÇL>fò6ÈÀ¾Fòîo(¿J)&vâ@[^͈ÓI>4ø öÛŸOö¼-çè<Œè~I[f&;0לc$räõúØ/Ž92ÇyÂ{îNöWâ¶°ÁO'âiJ~Çò¤§¸óá±óIÿд{(ÏXèïäGöuã'Q²?’ßù5Épך¤'¸[~ñÞ²”‡óžøÕE™’þ eúƒ?ñã<¨â­"Ç>H|òžý)nLœ£á<+ç2_Ÿü””‘Ÿ…8ú';UØMtNŸsI÷Þìæè-‘ç·OIúNâŒqÎ廕?¹–àý|€øf@úëЧ)nÚÙQ‰o|Gû0ò ‡‡üc÷wŒù{ß\ত»ÿÉîD<›û>‘ô²÷]ª8ÐìO”ß`ëû4^ü–‰ó&9мÚ÷Jqï‚´O¹çÝIßG>pòÝñ•¤nˆÃG\€’ÿ¦óùÏ/-òÔgƒøœäÉ$¯ó/':FþÚR\(òÛx\ìDðâàg Ÿb?ƒŸœâü„¾Ž}‘øwÄÁ!Ÿ&yÏðg†¯'; ù°“°ï`_ÃùNÎÙàFœ~ìóòC ½Õ'Qèýo*ŸþbáMüÍгq^Sü©äo&>SŠŸéqà3œÏ$.ûšÑd× ¿fç3ò7‹ó2äsþT’ÃNCÞMןá@Îo²ÏA¯fñhÂï ~"»zÄ«‘]'ì;äPþ³Ð£ÿù$wmÛ'’Nè-t.‚tøUËŽy2±HNˆø8ØG8g?œÎÝóIÅMS¿ïùr’óÙÿ¼ÿ³IýŒÎo}Q:çq¾^œøq3ÃoXöxøÈ–—'¿£m_Jr?ñb¶^—ü-b¿A\}ÅáœSä±T>3âÎ<ðP:JÞãm²ãƾã‘t.3ôeÝ î·|_ʧ½eiÒ÷m™‘øñ×ÂO@ô#öEâ3œß$>æý« qî+ëÛo”ç>Å™¼o8ù­Üÿâ10<¿~ÿMcç2!Îíl›“àÿƒÈë)úûr/Š-ñÎo»9É×·ýDÒóGÜóÿNvîÈãô‰ß!¿øËm§%þçBá_W&;QøU“GMçá‚_°ášýz8ík‚¯Ï@ùŸÃ>£ýQœ'ÅÏZçÂO»?þeij!î€Îé—ìôÄUæ<%vøŒÎéG\~Îés>ú®|•Aÿuî%ü“±»àÇ ?cÿDƒ_3ç3ñ7;9ù{¿Áþ‚3ûÊÞ1óª¿cy²„ß3z4Îÿ׌¼ÌÒ“…_ü…x4ž×FûŸ·ÿy’gÈÿìù8ç¹í Å¿3 ùRü;â½#Ÿ’ãåëÕ¾góM nî}[’§ã܆Η£GC†säÕ¼/ÙýÂÿV~Sè'ð×E¯]¾§{,ßÐßÕßt,oÄ®¦Þ ýÓ…)QăÑüÅûŠp×?ÿG!Po¿8wùФçÂÿ!ütüžu‰žÆ¹{òœ¡gÑ9–{^’ì·¾Ã÷œ;zMÂ'ò¬Ü7#å[¾ÿm)¾eä PÜfô[‘÷R|}AÄ»>o‘ž9öÒ7o•\Çù÷­Šk¸íUiŸº}}zïþW¦óż² ;:Pßvm’Ïb¬}ÍåÚÒ«óºè焗ij#^Mä-#Ÿ³ö=äɼ_òù}W§þ…<ŸÕ~í¾[æœäçŸá|çö‡’ÜÖ×$;~èûðC}b?Žœ€]Œ8á_òPòKÀ?1òÒ 7}g’ÉpÛÃIŽŽóò‡&Ímÿ–Ú ¿Máyÿàί"Þ üEyub_C¾åÁ ÿòvмo^²WW*ô~ìLjkHüiôhœÏ!nçD9ïÃùOΕ²¯!þ2%yb8·]†8ýOxû è>ñ-‰Óÿ©¿Aïñ/V|ÂwÕÒ:¢¿ŠxÊ’‹±»„†úñC ?€Çðø™ðì4ÄkÆ€sšø`§ÁïìšdW{§äóà7ŸMzˈ«‰Ý¾Ÿ!®3þÏ÷Œ¼4äyÆ¿™|Ïìsx8Îò;‹ý öø‹øIø=ïYzæí¿“ô<[¦'yd«â qÞ!ôçÿ“ô…œïÇ>€¾ˆsÄO|1§¤Œ}~Æ÷+.8ùoÈ ùg°ãìÿõBÀýDýþÞ‚=üýÛê÷¿(Å…¼ÿ-Êkð«Éï%âY·ìʤ7œ3’ÜýÞzò“Š¸ÒØq<z4üËäç4±Ë«üMÉ]¡Ç"N %ûâ°ÏÀ^‚¿1ñ`°“°¯ÀNBšäœˆ€qÏÈÉ>¸4ä À€¸ÄAÓó°ç°ïáܧ윳 ?4üåoæù£‰7F¾¯{OMt ÿNìÙøgqÞ…sø·!Å»ºýÝI¸šè±uñý«’üuï#é<\ÈÙèMÎOt‘|bè­Ü.ö%^2y©ˆ#IœÎÁ×ë^­q ЯÝùÖä?þÌÊÿÌyKγà€ÿ1ôˆ~Üó iŸÿ<ÐØýå¯ÿؽ&»ÙæK“/ñœ¡‡÷Mû´Í¿òàùÎÐsJ?yÒˆCüž´Ï%~>þø÷n—ßëöO$½ê×'ùäþÇ_}àmɾvßLñ1Ñmä‘-ÛuÎQçiз²ž›?äÿà3ø-Ü”ð ýÜý“ÿ²â–¡ïÚú_i_öéãØÏÐïûzµ¿Ñ~p»Î§o¿8ÍcìÃîOçèÇæ×¤ó`Ì3ûjìgÀûÚ8‡+y½ë:'pǪ$§ß¡ü‚œ¯¹ã­cÜÚÌw¡¼éCç£oW<ÑÏ”ÿ‰}ÑmoMp{ÛÖ¤?¾mU²S„><Òø³‘wÿJùW‡GúºÛ§&?âܦ¼ QŸòS‡=Iywc¿„^ó5Ä ¾'ñ6ñ7ãœæÛÒ~0üňg†ß1ü}v{ÎSbOaÿa~ÐÁÈ«ÌþÂϵoŒ¸0Ü×ûqNFyC‚ÏÀ×°áßL<ÎÓÐ.|gÚ#>~hø;O“} ñΈÀ¹ôfⱟAoÆ~Fçmxö÷À;þÌâ#Áw°ÓP*%qô‰ÇvsÅSá\#z¥»äùÌ”/Î¥C×#ÏŠò àÏŠ;öEØ1ð#Ó~#ø‹øÍ=¯Núü»ÂÿL|º}ïÔ”¿$ìõØá‰£©úÃ@ùîÜŸèdäË‘þ.â>s.zßA/ÇyâpŠÏÜýÙt^<ìÿä–ß ü`ËÔ_åžÇ”7rqò—¿vó#Iï½ùÔ'úMüÒmÝI/͹˜°›ÈþŽßÀÖ?KzNâÉ ÿ“Ïìå‰OÞÿ¹ÅcWß¾4éÅðÀïŒó4ÄC ?„Iïöüþ=Åy Nz­í›ýߦsÜ[g&~±å÷‹íÊ[;øÖéQ¶Ýšøqø'ÈoŽñoûõäŸH³°'§àEéÜ?ñ’ðÇóI—%9'üÿð+×¾”usÀ«’Ö§%;~õä=ŠsÎìûÉG®¼Iw\™â°ÜqZŠcI~¿Èç'¿nöG±¯A¿ÏüU‚ÏàìoI~ºmMÚw²/Âïíö“Ò>:ø ö¦W'¼¾Mñ¶o«%|Œv÷=üÞð—æ¼©âÜD¾2¯É~†óýò#L|‡Ý罉oGž5ìúèßäOñÊðCÃ/™¼dðôkø…a?ᜠyb–§øaG‘œŸB?÷Nå=|§òM±o‰ý~Îì«'¾äç¬öâü&þðö3øŸ±ñ¸Ä?Sœ€ÈS3/›Œø›œóÔ>'üÊà/Òó„ל¿¡Ô9Pö5±_àÜÆì¤ïàÜùæŸOq‚È“rÏ¥ ßÃ^Aþ.Îó‹n•/üWÑ‹KÞÝú™÷ƒóÿìcîyùŒñÁGd÷;vtìóØ;ÐcÉ>öz'âósnEt?â“)žvøNðYÎÿMq9ß/ÿ¿ˆ/Ãù~âPz\3íîíMþÄSŽóýäëÁ¯Or~å›ï.Èåo0â&'‡8)œ‡<Í/Oã Ä޳ýEÉ¿_Î3Æþ‚ü3¢ÿ€}v¢ë“þjËM)þÉ–)IoɾŒ|š¡¿S<ªm¯Nð½mzÂï€ò€âïø©´o!ß4þÛ|Ç9ž­ç$9ÿeømÄU“Ÿ~ ›uî¼>øÅ¾˜|Þä¯EòPØOqnXç¢9¿ú6øyýî;ÇôÓ‘¿/ò¿jqûÈ7Û‘òÀDžÛZò‡¼íC‰ÿÞöæ´ÿ¾€]GñrÃŽý~rò‡»ýŒ´ï ûz;ík"¨âè†=ˆ}’ΫFüwù±E^âI@qT#γøOø¯׆¼Òî'mù bŸD¼Løû"åa‹s2ÄM“ý?µˆ“‰]¾@œeâĠת%˜ØoüyÊóö{í;x/âÿcŸÏ°ŸAo&x ?gâi’Ç™} yÏØÏÀgЛ±?Á€sœœ§Ï 'ƒ¿pN“¼5øÉ®Sâ?”ð» ÿ*å;&þdÄwý¿w]ÒK]GW|òÞ£çœy?šâP^³Ÿq?aâÜs.ûú#:·ˆÜ‰¿±ö'áŠþŠs¨Ò;⟊Þ,JüÐ|0éîúTÒ°Ïß•s=äùŒ8œ÷|u’"çÈ•‡æýs”ÏüÄÃÄ®%¾yP°ïà7!ìT÷ÎIû€{oJòá鳉¶í“IŽ£ÜúcIÞÚªøOÁoÐGÉNû$ôoÒ[{ y¥ÃN#¿²­ýtAÿ ò l=ˆ}û9üÙ·)ž%ír¾’óX›{“€¼ Ø±…¥âP\^ìg›'廎|vòBn"yNÑÏÞûâÄ㜘Î#×'시?^”0ø|‰¸wºÏ¾¾ñ-^ä¾°ÿ(¯`ìC°ïÀwØô$?ýÒ~„ýŽö%á@ùî¤ ÿ9}ûò¢ŸÃ_MçSCŸF¼ùIG|4âT“‡øðârÂgàSįqì>äë$çf,ŸfèéÈw&}>~ØýÃÏ€ó˜¯Kxz0ì-è׈¿ŒŸ2ü|˜ä_æ\ Ï•×,òj²!ßü‹ý çiœÏÀ_ðof?ƒ¾LvÿЧY´à/ø™‘/€ó2Î_ØÇàç¬ó4ØmÈÃt»¶Æûç<q/ï]œÎ-ÜûºÇ#ôeÒlžü8?ιPí[Což ¼…ï°OѾø˜Ag¡¿¼Ç>†ï)åï…?Qȧâ“äc#o ãƒÿF¾iôŒÄ}&nó§’þ7òÕ(ŽÀ]òû‹¼Ú?ÞýwIŽ ;û4ö‰œË伋ôiáG®ûØ6¿>Å-Þü¦ç‹ü [•?«ˆ¯üéëÞðŸøbä »ï·Ò~á>ÅÕÂ!ü¶È-¿ÒÈ?¤xœq>G~Õ‘M~Û6§ó£Ä• >¦~Åy-ùĵòŽÇíÞO¥}Õ½_ÐþXzü+È›q /øÛ¢sw‘Ÿ‚<ªŠ;¾ùåIîŽyV¾¹{%‡G÷ì+°åêÕM9‡¸vìŸÙ×J{×?$»SÄqÅŸýârÎ+òy~0ÅéçœÙí»’pøȾsÛWüÆ~~áçCá3ò£Ž÷?˜ô¾Á_äw|?4Îõ`ï!Žçwˆ;àqmˆCüjâƒâ¯æy¥É§F¼âÿ“§<ÍØoÈËF|fâfr^†ü6øMãßL¼üÜðoÓ¾<ìÿÄ3#ß çcЯawAïæç0á/ø‹y^LJο`o!O3z2ø ü‹ûðüšm¿‚½%®ñ î&ûâÀWا`_!.@äy&߀ò;ãÇ‹?üt富ܷMy^9GçÝñïÕþù/ôòœÿ&ÿºìf›OKþ.q[çoâŠò ŸÝ•pÈíì³Àoúƒ_±ò–‘3öiØí᳜á{ÅŽ¼jÈ¥#Éîîý‰>Ýý=é\Öݲw…Rq3‰s†ÿBè%iý?íá/‡>Róy–u~“ü¤÷~:Ù%8Ï´åsiŸºýÄÄ—¶ßšôO÷é|Þ}¿_H ÞQ¿oHt_ñ§8Éõ¶7&~µíþ$ïoû'íS$ïEþÓ·¤}Òæ ñ¡/ ?ñ¥às²ßlÛšôaø×ÿÃ?Lq¦â¼§ü‰âœ ü–¼Ûø%KžDÏyHåqà#äEs±ìsħðÏà{òøŸs¶!÷Ⱦñø”G/ìðÎÏOöó8×EüAì ²ûàW}ÇÍ ÃíÒ~ôvåCý×}IιÐà3ËSü‰Ø—`·AïÆûâ3q®Gq©Ã?ôeÄ1`Cœ⫵ã3·†¼ÄI#¯ú1ò/£ãü'ñÿ9Ê{ðö1œÿÇš¸fžï »NÚ†}GñÌ"3üDþdá_Æy™÷&?ßг¹‡ý ûѳ8ß~ ÿ0ηŸû>ñ3=Ιå× û ûìø×%ðÈÓLœMés"Î&ñËðgæš÷ˆï¬÷{ôI‘/KvÑЇ˜öè7ÿd_ 9ï£cjš‹C®¼Wö±/å—±ùÄÄGƒ^(Ÿû øGœK!dw’Cß#¯ñŒß”Îa„=G~ÅØŸ"o ú2­_œÃ‘_q`BÿNœâ1“'Fú‘ð?£^µs÷¡ÄWˆëž ÿYöeÁw•o?í{?’ä2ž#‡³ˆ¸•’¿ðãÚ~~ò‹¸z:GCÜ2âîoÓù¸-ÎoVþ ìfÛ^’ìVÈÀAè³ ×ÒW…¿‚Σlù³$o_AO§xjÛ”ï}[ߨùËï9&üÖägñØtîŽ<Ö¡×"ù"^âŸÅ¹.Îù+.fìCD6ë¼~Øq¾t(ñûð³PüëÍÓ“Üð ü¡¿Å¾ˆ¾VúXô°ä˼WŽÅ]ÞÓŒ‡¤<a¯Qþõ;îKr}ÄÍÀ¯Sþl¡G{GŠyû•)žJØóÑ£É_ Î…rþ>³8Éea×á}Ùobƒ]; |…xÄ][“ìäÁ_È“@žå‡|èɈ+ñx5èÃÈÃLâ•I_Ü6ž þÐ’c‚Ÿà§&ÄØ¿Ç ÿhüÇ8ÿ3çÿ=^3|½ù<ï çf¤wy‡ôG¡'cÿÃyLí{‚ßGÆÏë“Ocâ]þw²?Å>Dþ\q.þñü±e<£þ¶?ó#|0ÎùGIònÎMútòj†}[zÎÏ,èç7îÞÛ“¼tOzÎk†œ©ü‘—ý7qº¤‹¦¸Œ|•[>™ä¦-oKð†;çt6_}CPwG¼mÎݲþÄk‰ø8êç7ã¼ç«Ò9ÿÈ“vKÒKm{S¢Ûä™ÁNyg¤¯ ºÎþ¾BpéÃÉ¿zQÞ3½î½'½Õfù»nÙ›ð‘ùd¾ùhÚφÿ³ä¦Ðój=#¾ªâOÄw½ûÕ‰Ÿ…½xìgØÇà@‰?€ü×îPþ¨ðWƒÏp¾€ó:ðü¡u&ìùò7à Îy׆ø Ä¿á¹ü˜ÃϹ'Ùw#ÞñŸû~ǾEqNK~&‡“¼9Ê¿ç:ÉWƒ¾Œ8ÏØýÉ“fz²ÈûL\3òËü󨹠ÿlòøym8Ÿéçý‰+ƒ}†ó2œÏ!¿™Ç™Á} ~ÌðJö9ø—Ágð N|HçÃîÃùÍÿHñãœ&çi°Yì4‘W“}‹ìÍ‘WFçúßöcrýÆúÛ”’|™o¯é˯œsjâäu&_Wœ'„.«ÿ÷~,ÙoCŽ=Fz®Ðéþ²ËÇ*ò¯a¯×¹—à_Š7D|LäëØ7é\(z3Îßܳ1ÅUÿØßJûXì ä­>+8$Þñ(ÃÿJùb¶Ê¾¹½–ö§ä‹¹ï•Éžwß?%}Êvå¹ ÿ^ä⥒ˆùVÜÍ Óâûáÿ&9"ÎÅÈþ†ß4ñ¶ÿWÂûíÿ“äËíŠÃÈ9Ìm•ü¦ã|ŒônœïÙö3éÜнò½Wò_ìc„ø…_;%üF~}1åÇþ~¢Sá¿Â¾Jü>ô•œVÜÜ_8gßùž÷3ò×a§¹2Å! ÿøÎ¼¤'¿3%^SØg”¿#ø vÎáˆÏDÜøŒö5¡s;‹âÖÀ?Jö|âÔpMôÛ_›èkÄ嘟Æ}›âÕ½ïÑï%3éÍÂcq=ß«s´±oÁþBÞNì-ä…Æ?™|ÑÊûÅw~üßóÑÄG㼌ÎɄݟ’ó7Øc(±Ó`ÿG¯Æ¹OüËà3Äÿ'Î ö~Îw²oá¼à%Jâªq>“|ÍðJÎÕp~Ò›òՅ݆ûø3ãOÆ9ò3c¯'^ å¥iý"> þc²ÛG>M¾ç&çfп7@õ•ìÿø— Ž#oóŒmkOŒ}ö™»Ž$½?ç,9q„Ùï z½×ùþØèœMä?‘ÿr'ñ›#/ ûøß‹î†^>†žýEÉ~ûñ÷ðO ¿ò`ç'ŽLØkˆ›†ìh±ÿ¿PŸî‡üªu 9–} |†’v°ók>ÿAv˜È¯ŸIñî9Ïɾ'ö3Ãižð'ßúå$/qN’ó2Øé±KÀ/ž}†³¿a½ÑïuË®£<™q~æêd»ïs)OQä©$ß@_‚çÈ;ö…±p/WÖ·mOz¥°Ã+zÄØ?HߺùÌtÞ"äôfðÅ[Žþû>‡q¿wÿçˆg ùÝü‰1²0-ò%_&7ry!(åÞŽÏÞ±‘qÓâ| ùÆ;Òy»;þ9å« ;Íâd׊¸ŠþgÄ[óx6øÉ âØ Gƒÿ|!Éó÷Œs2Ä;#§ò¸•ì2ŠKñá?ø1ï?fÏF¾ÎËÀg°ÓX|€ˆÃÉ>†’ü™Äe&~ ñˈ«IœMâu²Áß!¾ üÇù ú3Ù1ßù•¼¾ëKe}Ù¢Ç'üĤߊ} q-9·B¼òÉpžŸ¸Íæ¯qdäwvüÖxŸü5ø½ßÿò`ÿ!þ qgäð¶¿›îŽf¾Mù¡ÝÝ‘â"°?(ôOÄu^q~0ôàØU´/Ä>r?ôüã%ñÀîHrcøŸ™ä ôn·>#½ZèKˆãî|{ y¾ä÷qÇГ‰¯„ùÊð?³¼Ç¡q>ÂþˆóþØÏŒ$¿Ú{¥w ¾©óÂ1²‹ ‡ {Í»7“ø”øcqÎøa:ï¾y]:?yïÞ1ºÿoM¾ýe‘ ˆ÷ ÿÓ¹‘ÍSÆò(¯ ÿàkÊCɹûû”×ñ¾ÿIûÝ~+ñé.Nö…û˜¼dœïܶ4ÅÚ:/õƒ8Ò¡Åž/îȃ„žkòÇÀgØÃgd·Ç/ ?´°Ëˆ¿„$ñü—ù&ä/âK?¸Â¿DòqŒÂN£|‚¡7#ÎþÌØgð ˜—à>üà3Ä·Áïì³i¿|Æí5ÄPЈ3ÝFç9#çcØ×àWvIŠCL¼´÷îOòK)5q7Ñ—‘ç“8hø3¿.ùoÿVŠÛûòpÂoÈ—†>} ü†<3ð—[S9ÿûâ2Ãoˆ_C|fÅ3‹¸ÌW&ø ýü…Rú³8×)~q—ÙŸào,8ñóùû çþñx[Š[ç5yNÞžïŒvñÆŸMrxÄá$žüŽsðö7ä¡a£¼*oÿÿ\ãÇr¼øqÅâܙΠ’ï)ò;Ê>t‘s бÿJvà7¢ßÈ“¡7ÂoYqV8½vóÆäþ:?zzé÷â'ç€à_䃽‰s7œ7ÅÿYy•C>EÂ<ˆ?…~Œ|ÍÒ³Å>ˆz5Þ÷ÿ]:WñÖdÿ¢?›çåW¹©¾ùâ¤÷ج¸{aïW<†ð{ÂïVqf"¾¼§ÊGNœûÒ|qNIñ~B>g~Èï̹έ`’ž½Ùö‡Ó9çû%ïÞÿWÊKöút‹<Ê ¥y½ï3ißJ¾eü©#޲üˆ#oz3øûø|’|?:ÏïéyøÈNÈ9ÐÈ¿$»Lø5ã×øOIïp„½ ¿tà 9†¸«ä]Užïð ?8çz‰³w(­CØgnNþ·æãIÏtÇ‹^Ÿ1ØÔ›¹ÿfåǹ½žìâa·Áï» ù ð7SÞîПaÇyk²G¿!ßyÔ°ÛàÇ ¿‘üQâ+øšûõäoG¾à3Ä}Ö9š8ÿŸ!Ÿ öôf²ÏDø y4ñ`_£ý ~a—!>qdà7Ú¿pÎ?â)³O`?Áy?£¸˜a÷'^þÏØÿå‡þhœã$^ç9‰³I<žÓ/øü þCÞNòu“üèáäÿÜ.nfèÕˆGI¾zûÀ¯?ÎÈŽúfÎ…ˆ~£w@‚~ù7Îï³OPœ1ìÌa_(dø5‹Î¹þýÍWÄkÁ~$9 è=û2Þ? ~¸>á_øð>~Ä#@Nž#þ~:Ÿö åIÆNyÐä¯þÞŠþàÒ qÎ2æSyÂŽ¡óøñÅ9øç‡”`ðuÎ¥b×B>gˆž”zt. =ÒÖ‹“œºMzôm“ô+Û%§Þ·*Íï}ÿžÎ™ƒ_ú3òsp“’s6Ä à| q å÷ü¾›S<°ð¸2Ù—ßûpÒÄ~†ühòxïòd‡~‚3|û ñ±Ûàg†½ÿÅ­‰óÿäGƒ¿à@Ü3÷/ñÎÍàÀ~½z2ùWF<ü¿8w ¿@aŸ 8ËñÝÛÒº¯,âØp¾“8ÎÄó$îñœÉ s7á§Æ5qpˆ3€?yÓ<ñ8ñ›f±¯áüûòf’¿}yô^øO©>âCÞ}a’S¿ÃJñ"Àó œk98FŽ;šñúñÃ"î þÀœŸ†®á ?¶°‡@÷ñ'#ß[\Í8/G|*è=|9]ú¿è'z<ìFø©q¾»z6εb÷Å }v!âEC5®{¿˜âbD>lå»&ž ~NÈ÷Aw9§„^HrväÛæ<»öEÁ§áÏèï4ø2|•y`=dg|Dò{ŽxÈ_’ó+“_ôö9I/q9_¤¼˜¯Irèý×'Hâ¦qntÛ%ùgËæ¤gÃï#öËÄ{áÜ öAôìgȳ̾Æù zYöËÄ ΫòâWy ~ñ›°7þjʇ?ñôÈÄùÿ;ÿ.É›±_ycÒ_„¿òûÒ~ñöýINxÎèÃàŠkvû%éÜaäM#.ylÞ›äˆ8×¾ û çjêIOï‹ßDÞÎeÂgNKzù÷>šäûà3žÇ“s3òG ?Î͸?3çÿ;“¼D\Í÷¬IþuaŸÁ¯ÙâhrŽ?âÈX¾çð/ÃùædïøMÅy}×Ãi¼Äó¸c²ÝF/}ýÆÆ4ÞðW&Nüƒ8izï]:~Ðð³“ý+ì9Ä÷d¿‚ïÀ‡ð+€¯±Ob_Bïöù_;ö7øC£oÿ ¿âÔàÏÆyO•g ÑýZí¤‹mî µ“jÓŠrÒ+~èGŠâÔâ7vû/ŠßO¿ÇìµÉ¯ùÞùþ/þÓ1önžðÓüçgøÏŽñíÉ=ýW_÷c?ôŠ¢…YjæycM56Ý|ô‘Ï|úÚÆ¦— ¬›÷k/mlÞöšU¯nlºñè#i?ߨ40°îŸygcÓúámß÷Ö­MýGùðš46­Xwò©Ÿilº~xÛK?÷M×}dø7F›Vôù‡·õÍ<½±éš£¼×¥Mß5ÐÿÕw¿¨±éEÃÛzú›–}ä=³oilZ2п÷o¢±iáð¶åïûÕÆ¦}ä-ƒ·56]5Ðÿg~°±éòámWýý'›.9úÈ/ÜùÅÆ¦‹úÿòeÿÜØtþð¶ ÎùzcÓ¹Gù‰‘éMgôúÞ³›ÎÞ6çåó›Î8úÈ«.ènl:} ÿÿþóK›fo;uÛ66=ÿè#7¿òg›Nèÿ½K~½±iúð¶ÿíÞÆ¦“>²ñ‡›&ôoÕ§›NÞzèŠ/5†Ž}dõþý¡ÿè¿ã·6†ÞúŸ¯ÙúúÑG®™QcèkýïøêòÆÐÿ oý§ß¿¾1ôßGYüã75†þs ÿW¿®1ôïÃ[ÿök¿Ôú×£\ö‘ßj ýË@ÿÏþÔý¡ÞúË?ÞúÊÑGÎ9ü¹ÆÐÿèÝÇþ©1ô¥á­ŸüÙ‡C{ô‘Ó¾ëäÆÐ_ôÿcg6†¾8¼õþèÊÆÐç>2íÖzcè/ú7u­o }fxëoŸøÊÆÐŸ=üØŸütcèOú×ýò[CŸÞºyåÝ¡?:zøá)j ýá@ÿÊ?ûTcècÃ[ßûæ¿i ýÁÑÃûVÿ{cèÃýß1ýHcè÷‡·¾í³Ïo ýîÑÃ_~ûù¡ßèŸß·¸14<¼õMÏ_Õºïèá]_j mè¿è¯i mÞúSëom ½ÿèá³~³1t×@ÿ™µ½1tûðÖW¿ç£¡÷=ü‰—|¶1ôžþŽ3¾Üz×ðÖïý»ÿi ýÆÑÃÞ~Rcèíý“7ÑzËðÖç]Þúµ£‡ïÿßÙú•¾Gî^×zÓðÖ57¿¼1ô GßÝù“¡Ÿèûï|scè Ã[»6ßÑú©£‡óû~§1ô“}ÿra£1ôcÃ[—þË_5†^{ôð›·ïm ýÈ@ß—~àpcèUÃ[¯¼lFcèŽþ¹?·1ôý}ŸÿÀÂÆÐˇ·ž÷êÞÆÐÍGÿøU/m ½l ïSÿõªÆÐÐðÖÙ¿ûs¡þÁ×½£140Ð÷±[C뇷žò?i õ=ü²ÿ¼1´v ïwâC×o=aÉ5†®;zxý×Oh ­èÛúÑÓCÝÃ[þÌÅ¡kŽ^õ¢5†¾k ï¶G×4†^4¼å?>~KchÙÑÃßõs?ÖZ2Ð÷/þ•ÆÐÂá-#Gß×záÑà á«ú~ù?Ѻ|xËßt¡1tÉÑ×NúçÆÐE}?󩃡ó‡·ü¿:­1tîÑÃg_7¯1tö@ßk§^Ý:sxKcgwc茣‡g¾eccèô¾WÜðƒ¡™Ã[>2ã ¡ç=|ò_¼½1tê@ßà¯ßÓš>¼åý¿ß:ùè¡ÿíøtchò@_ß_þ]cèÄá-÷¼kcðèÑCÿ³á±Æàÿôõžþ‚Æà#Ã[Þó76¿~ôп¾wicðk}+^z}cð†·¼uî÷4ÿûè¡øÒëƒÿ9Ðwõoj þûð–[¿ç=Á=zè‹gßßü—¾ ¾ü±Æà? oùÉ÷®1ø•£‡þì–‘Æàÿè›{ÞÆà—†·¼jÏ”Æàß=ôñ­sƒ=Ð÷¼ï¿²1øÅá-·\üâÆàçú½]ßü‹¾I÷¿¢1ø™á-?ôSÁ?;zè¾ËßÒüÓµ‡þã®Æà'‡·\ÿÁ5ÿèè¡;ä“Á?Xû_WÿMcðcÃ[®ùïk þÁÑCïüУÁ¬ÝócÏk þþð–%‹Îk þîÑC¿úðâÆào¬ý»_ÛÞrù뇃÷=ôÆe¯n nXû‡~¡1¸yx˹;ÞÕ|ÿÑC?ú†­Á»ÖþÉw|´1xûð–ÓŽ|¦1øÞ£‡^ù‡_n ¾g`íG~´1ø®á-Ó듃¿qôÐ÷œ0»1øöµ¿ýÉKƒoÞ|ô—¾³1økG}wo_cðWÖn™üòÆà›†7?üéŸh þÂÑC×þÚ¯5n`íûVÝÞ|ÃðæŸöÁÆàO=ôŸi4r`íÛßúÅÆà oþÊš½Á×=´àÔCÁXû¦ÏŸÒ|Õðæ¿zÇ9Á8zèâïžßüþµ?=³·1øòáÍ;w½¤1xóÑCg½ûUÁ— ¬ý‘76‡†7ÿÑìßh ÞxôPÇßnn  ¬}ùûj ®ÞüÐàŸ7ûšræ—ƒkÖÞø÷ÿÕ¼~xówÕƒ×ýú£7Íj ®X»öÜ‹ƒÝÛïYÞ¼æè×Gï]#~óSõî•/ûðwî©w_?üà >ö‰z÷ºÚÔ×,_½{`àeŸùÈÕ»‡†¼dñšz÷-µ©¿ôû—Ô»¿àe#óO¨w¿jøÁïüí¿¯w¿®6õ¶+>RïþÉ—}íwÔ»ß0üàúK^Uï¾µ6õw¶­¬wÿÊÀM§\pn½û-ÃãªÝï¨MýÔ9»êÝ︩óÎß©wß>üàÏùæz÷=µ©»ß÷òz÷¶›–Îþ®z÷ððƒïz÷õîÕ¦þ÷ ¾ZïþðÀM7üÆgëÝ~ðþS·×»µi'½õÖz÷ŸÜô½Ó†êÝŸ~ðmI½û µigN~~½û¯nzý›öÕ»¿4üà®Ú§êÝ#µi/üù»ëÝÿ2pÓ[üt½û߇ü·7¬¯wÖ¦õºªÞýµ›î}ýÉõîG†üßÿXï©Õ¦ ýèÇë=“núÈÿV½gúðC³~äuõžŽÚ´×þÇ õžÓnúì]Tï9sø¡K÷­÷tÖ¦ýÊ+v×{.¸éÿé¡zÏåýø–_¯÷̯M»ýË?XïY2pÓ׿§§Þó¢á‡6|éìzO½6íC7~½Þ³ràæýÅzÏõÃýІÖ{ÖÕ¦ýé_þj½g`àæóûo©÷ ?ôóñõž[jÓþþ†Óë=ß?pó²?ÿïzÏ«†z÷µŸ©÷¼®6môS[ë=?9póÚ÷¼aø¡/­÷ÜZ›>åÅ‹ê=¿2póË?~j½ç-ÃýÑŠ­÷¼£6ý¬?ød½ç=7ÿô’;ë=·?ôW¾¾ÞsOmú‚ëê=Ûn~ûï^Qï~è߯š\ïùPmúµÃ_©÷|xàæ-—~¬Þó±á‡Žnw½§Q›þ=¾¦Þó§7tóêzÏg†?|zçõž/Ô¦ÿè]ÿ[ïùë›?wÖßÖ{¾4üáËoûýzÏHmú¯ñ¶zÏ¿ ܼç=¯¬÷üûð‡ë³ºê=£µéw¾ó¬zÏ×n>ü¼¯Õ{þðÀÛ¾Pï­Õ¦ÿþôázïä[ž÷æ_®÷NþðO¹©ÞÛQ›þg¿¼¢Þ{úÀ-ž8«Þ{æð‡oý…ÿ¬÷vÖ¦ÿÃÿþY½÷¢[VüìæzïåÃ~Ïá7Ö{çצÿÏOÝXï]2pKß×Ô{_4üáüø)õÞz픓Gÿ¥Þ»rà–W¼¦Qï½~øÃý·×{×ÕN9ûU?Qï¸ågþ­¿Þ;4üá¿yåeõÞ[j§,üçIõÞï¸å7¾÷ÿÕ{_5üáÿøÊG뽯«²êeïª÷þäÀ-[ÿþÕõÞ7 ä„Áëê½·ÖNyÙßžWïý•[>¶ñÑzï[†?2û‹]ï}Gí”_÷¡zï{nùüçÞRï½}ø#W®yE½÷žÚ)oþÌ5õÞm·ü˪¹õÞáátýézï‡j§ÜÝóõÞÜòÈß_ïýØðGn¼æMIœ<騤Ï!}C`-„Î1‘sì“xsÊü…Ë/]WKæ/˜¿¢õjÁâÖ«…KZ¯Ío½Z¾¨åjáÒÖ«E‹[[X´¬õ»ÅKZ[Xº¬õjÙ²¥-WË´~·|Që›Ë³–¯h½Z±¸µ×+–´Ô²`þ‚e­WË´\-X˜]-[Ñzµ¼¥g .l­sኖž-X<¿µ–Å‹[ß\¼¤¥Ÿ –,Ì®·ölÉÒÖ:—¶®Ñ‚¥K[ë\¶`QëÕâÖÖ—-[˜]-Í®Z[_¾ õÙòl´+µÖ²bIk_Vdý\±¬¥/ ´¶°pÁòÅ­W+Zê\˜Ígqµ¤õjù‚쪥g ·öláâÅÙ³V8[¸dɲ֫­ý\Ö:¢…ËV´öeùüÖ7W,iíÙŠ-u.š?avµ¤õªuvÍ_˜}·¨e–-h]ÍE ZG´háÒ–™X´¨µ×Â-Ï®²g+ZkY2~vÕúÝ’EÙ³VX*®²Z–´ösIëj.Ê uÑÒÅ­o.]Úúæò¥­3±bIK{‹ç·®ßâù­°»xþò–ZØrµ°•N,^ØŠý‹-ϯ–·^µ®æâÅ­ë°xñ’Öö·â_qÑúæÒV|X¼¬®‹«Ö1,Ëú¹lqk ˲^/[š=k¥¦‹3ªXA~Õƒ‹Wdof4² æùÕ²ìjyëÕâìjIˈ rÚúlÁ‚ìY+, Ü2¢±ål½jå@K2œ.†”=[¾,»j‚¢k­Ï Lj¹Z6¿µÎe­0¿dY+,YÞJÁ–¬hù%+²¾¬h¥K ÆÙzµ°B–.híKqÕÒ—¥ [aiéÂVn±táÒìÍVεta+\/]Ô:¾âjYëUëJW­-,j…Ï¥KZ1 `Ó­-,[º$»jmay+M^º¢•–/Íf°¸jùnYuËæ·bβù­s¶l~+v,[ÐÚú²…­0Q,íŠÖ«Ö±/[´({³µgÅUk{‹[¡|Y6/ÅUk—)&©õ»LbY¶|iö,ÊV¹`ÙŠVY–I3Ëç·bÎòù­Xµ|~+%*D©Öï´ösyÆ™—/œŸ]µÂõòÅ­”vùâVв|I«Ü³|I«ì¶|ÉÒ쪕z/Ï(ßòe­sV _kËZ¹öòå‹Zû²¢B q°¥–ó[ùߊ­8¶bAk +2™vÅÂÅÙU+̯(„†Ö«-W×Ï_¼¡åjÁüÖ«ÅùÕ‚–«æ/Í®V´^-h­smvÕ·`AvÕRËÒU­µ,]µ`Qv•=[8?»Z˜]µ~wýüÙUþlIvÕÚ—ëd϶¶~CVç ­3¸4›—âjyëÕ‚ìÍ…ÙÕ¢ùÙUÖ^ë:,]3avÕ:¢5­³»tmölm6Kk³Yꛟ_µö¬¯µ×ËVµ¾Y\åÏZælYYËnhíõ²l––eг솭o®Íê\›?Ëz¶vá‚ìjYvÕÚÂÚÖ¹.®²ïe-,jíòl¥—gë°|íü–öVd«²bm˛Ŏkq“‚Æü…­WK›Ø?~Õò¬uÿ°`qÁµ\-oÊúÅ.®e—\\-nÒÖâjéÒ–7‹íà²æÕÒåM ½`ñ²ù‹W´^­hioY‹ü¹`ñò–]AqµpÑ’Ö«å­o®hJ±…°»¬Ii‹«åÍž-,ö\‹[¯ZvŠ ~A˳ŠÌÏ®ZÞ\ܲ£»ZÒúÝŠù-ÏŠ­wËU!Û´^-ZÞòÝ²å‹ægW-Ï–/]Ø2¾å+šrAÁš–6÷ ÂÞÔAW-û¿âjiK ÅÕÒ–g -o½Z¼¤¥–…K›ëW\-kCÁ¥›ÄØUËÌܨ¥×ÅբŭW‹[z½havµhqk-Kš2mqÕ"·.\Ѻc(ØÏâ–¹^±t~s§¸pŲ…Ë–eW+Z¯–ÏÏ®²ï–·ÌIJE [® lQ±íh®X! /o½ZÜ”{ŠÁ­˜ßrµ¨em‹«–u_´¸5Zž{ ûâ’šRPqÕ"ÍWËš˜S\-oîÊ/\°pÑüÖ«&W‹æ·|ת·Y¼pá‚ÖöŠ•^ܼZÜ"Y”Å-í»¬¥ÙUK? -F»xL›ßrµpYëUË®gñòV=QqµtÁüÖ«eKZ¯Zë\˜½¹hþâ–7µ`GÑX ”/^^ ~µ »ZÒzµ¨åjÙÂüªe> A®€Ö\Y9¥§ÿêW¿öûjµI-ò~º±éÚ±£¨¯l î¼­ø»½1ø™¼îwNûÙÆÐOaúhcèõéùÐ÷އ¢hÞÿî±£åÿØúðx¨ÃÆÐMã.¡Õ{ß«ç?Ò×|k*ùnðê9]ß/I妩ý7§çƒïT=Ï9Õzõ¸Któ»>µ»lìµU¡GÕίéú»ÕŸ¥çoi<ÿ¨zߦú~O×¥v6]­zÕ¯¡+õÞ/¦ú6]8öÚi¡½ªïêß«ýTž zÕôÝr¿^ûkÖûbÕ£ùü=õŸy^©ò‚1×ÝEÍyÞ˜êüeÕ¿Jßÿ‡ú±@ïéûM“ôýÕ©½ÁºþI=Ÿ¯~1ß•êÝtžúy‘ú¡÷“¨—yn®Ð5óøµs¹ÖûL•ÌãÔþŸkžnM׃Z×ÁßT;‚“˜‡Ó¸»ÿ«vÕ¿Áw¨^àþ°àžy¾MׂÁ/ 4þ€ó«džïS¿>§þÓ¿wë»}ª÷Uï¥ïYŸÁýi^6ÍÐütYû½ªç*ߨ÷ö¨/ n'k=4®¡GÒ¼nªiÜJå¦N]ÿ½Þ½Rð|‹ÞëÒ¼¨?C=©½M/Ðý©ÕúhCÀÆ»i¶êýÿtŸöþEýU¹é;5Ìïeêß½j~ ny¾i‘æþïÒµðbÓ ú^ýúª®ÿRóL¿™?Úÿõ8ûEÍÃ/åó>x¯ê¡üõãß5ÎÛS9øÁÔðBûà÷àgõ|›úqÞ{o*7½@ûÔóuÁŸÖ{èõ:)8|_GÐ7æú½Õ|¾Só´FóüC‡~]ëÀ8À£?P~]ïïÐ:©ÝÁßÑýׇzj ý„àú5û~ú¯þ÷áÆÐ÷él ½nìhÐËC?¥qþ踋]1/ã.s¡1øm ­ÓºþßñuE¿TÏ=ºÿÞñÐÿÑ¡w»®ýw­k m?rÛúÕ±îo Ctýñ£kźõ*æ}ÌÅöcÅwjçmãGCoQ½ow-Þ;Rø!ÍûÐæñЭ¡mß{T~|ñ«Á_Q{âGƒâ/ƒ?«zPíý€Úž¾Jåýzþ}jÿ5ªç=Ô+<øcµ½¿Þèµä‘A•Aß Ð߯麡ïÏÀ3ÉA›ž—®á3›:4nøÄ\á‡øÎà¿ ïÎP ßçþY‚Êy¢ðsèõ`ŽÿÑÿŸ×¸D÷ïV»Ì«èÍ`ŸæAë±Ip²Ië¼IïÅ5tŸv‘{¸¿A|lHã¦>ÁÓ&ÁÃ&µ»Ið74Eó__:Mô >±Øä¼]„^Ãw‘_áë߯vŸ4CÈÓôÝCã×ÈñõîçõÞY*Ÿ?NwêÝO.ØÝ\Ý{ÓúŽ9´ŒýÕ{'¥£«=ïMÏ{Lß÷$¹6¾ëMG!z>ŸêíMðYï~S:ºÜ»Aßýï8ýª÷&8­÷¼*)éÙ®ëÝj—ÞÿUÝ_’Žð÷ünª¿GãéIíôÜ™Æßý`:RœÈFqý!õo™ú{¾Kò}½çÕ*õ]÷;Òû݉×{W¨_¯Õ¼i=·hœ_Ðû­~ê~Ï?¥ñ÷ÐO½×{vú¾{‹æ÷»TßÛ¸zç«ÿ´óKúŽû×jžnÔ:^Ÿæµû.Í÷ôtÝ;OótXãyÚcÞ?©þþ†æùÍi>zÏ×:vª_;ô>ð#Wþ^­%pÑÛ/¸Ðüõô¤þ÷jÜÝš§Þ7ª b½ºf^XŸXï©Zoêüö4ǬïËõœ÷U/ýçºç'Õàˆõн'ªßÂÇÞn»¦ìмOºÕ~÷Ÿ«¿oQÿwåøØýoz~@x>©¾ÞAøQû=êW7ã>uÀëÎ:¼P×À/p·FÏ5þÁ]ÏšàúÁø´~Ý+ü£ÞX_è™õ§ûkZoÖWðåw ¾Y'ÆñiÁèaÀ³àüf>{ë‚GáCн?Èéï݃. o¡3ÀG7p¨õíV¿˜çnà~¾Lýüu‹®ÞGÀ#ðu±Æû‡ú^%ø¡}øLï¢t$«wq =Ù»,…RíIrg½çkcGò~°ÞóÅ”º gï¸Xï¾#…úë uÿ‘1G×4?ïI¡ñzg,Tý¿Ô{‡ÇŽX=Ô,yïÿ¦£,½½ézïBáÍ•éhOÀÓ«Ó˜ÞÞʹçwÆBÞ¼³ÞóÇÛÓÀà#ŸRõ|bL\þŽzÏýéÈSÏçRzÞšBHýx±Þû±t¤®û©þî7éúCcGˆß^ï~C Û=ÑèÓ÷×»7¥Ðo½¿®qŠö nzOOóÐ3ªõÿ•z®ç©¾ž$WÔ»w¥ÐÝ_I¡yº÷§ñÇú}¬{¯(à#…Öí~,µ×ä©z÷ßkþ'…Béùµt¼gÉ/ŽÅ’jÞÿ®ñýVÀrBøhÈàtøžE¯º¿.¼€žî> O%ŸE.€? o»?£÷ágð®?œó­ ·ÝV‚Ÿàóo oDzÅ—zÁ'®)¡c’{º)4îïÓøÀOñ¡x.þÕ-:Ô½Jó$ºÙ-ºÒ\ò=¿èw7ò õsŸïN÷%OtCw˜Wúó:­ßk­=꣟´/ù/¾£}Ú•Üõýx>¯ÐOà•õ ~AýÐyäñ èvðgøÏ¥ÂOèÚ«~àõ•¼UÂ?žÃ×ykÑã^ñÃøî~Á%r&ßÁ÷Ówm'½úµ¯‰ÿ~ïO˜NÚ½ö§®æÔÜ©ãNȵŠã¤Åïáâ÷µâw°ø}½ø.~¿G‹ß‘â÷¿Åï±âW4yRñùI'¿Iů¸8irñ›Rü¦¿¢¡“¦¿SŠßŒâWl7Nz~ñ+ºyÒ ŠßÌâ7«ø[‘“N/~³‹ßÅoNñ›[üÎ,~g¿yÅïìâwNñ;·øræIç¿ó‹ßÅïÂâwQñ»¸ø]Rü.-~—¿Ë‹ßÅïÊâwUñ»ºø½°øÍ/~ ‹ß¢â·¸ø-)~K‹ß²â·¼ø­(~/*~ßUü^\ü®)~Ï=©«øu¿žâWi'­,~׿ëŠßªâ·ºø]_ün(~kŠßÚâ×Wüú‹_±'<黋߆â7Pün,~/-~ƒÅo¨ø}Oñ{Yñ+på¤ï-~//~ßWü^Qü¾¿ø½²øý@ñûÁâ÷CÅoì¤ä¿W¿)~¯)~¯-~¯+~?Zü~¬øk{ÒØÂÿdñ{}ñû©âW¬óIo(~?[üÞXü~®øý|ñû…âWÐÛ“ÆüÙ¹øýJñ{sñû?Åï-Åï­ÅïmÅïíÅï׋ßo¿w¿w¿w¿ß,~ï.~ï)~¿UüÞ[üÞWüÆÀóÎâwWñ»»ø4ò¤{‹ßæâ·¥øm-~ÛŠßöâw_ñ»¿ø=Pü†‹ßŠß‹ßo¿ß)~¿_ü,~¿¿?(~-~;ŠßÇŠßÿ-~/~Xü>Qüþ¨ø2þI\ü>Yüþ¤ø}ªøýiñûtñû³â÷çÅogñûLñûlñû‹â÷¹â÷ùâ÷…â÷—Åï‹ÅoWñûëâ÷7Åïo‹ßß¿ÝÅïKÅïï‹ß?¿/¿¯¿,~ÿTüö¿.~ÿRüö¿-~ÿV«M.ðmr“ <˜\àÁä&x0¹ÀƒÉL.ð`r“ ˜\àÀä&80¹ÀÉL.p`r“ ˜\àÀä&80¹ÀÉL.p`rÿ“ øŸ\Àÿäþ'ð?¹€áÉ Oî;€Pü Ø\Àîäv'p;¹€ÙɼN.àur¯“ x¼¾ø0;ycñ+àvòKŠ_A&*~M˜RÀÆ”6¦ë4­XŸiÅœO+æ|Z1—ÓŠù˜öŸÅ¯ Ó Z1½ Ó :0½è×ô¢?Ó \œ^àßô禸6½èßôw: ¸ï(ྣ€ËŽ_*~luðÒQÀKG'œtðÐQ´×Q¬WG±FE[ÅÜwóÛñ_µÚÌ‚æÌ,ærf1g3‹9šYÌÏÌï(~>Ï,Ú™YÌÁÌbü3 œYŒuf1Ö™ÅXgã›YàâÌßf¸5ó‹_ÑþÌngð6³€·™¼Í,àmfo3 x›YÀÂÌb­gë;³µN/`óôÿWü 8}ñ+èéYÅœžUÌßYÅØÎ*ê>«Àɳ œ<«ÀÁ³ Ü;«À­³Š6Î*ê?«¨÷¬NÏ*àô¬b\çs}NAo‹e¯[Àɹ|œ[Àǹ<·XÛs ºunA£Î-ÖîÜ‚vœ[ÐŽs‹vÎ-æðÜÏýÕâwGÍN |ß«¿÷Ç92ÍÍé¯øÞŸøÞ«_ùc_¨•­Lí鿺å uœ[™±qåʞξþ ëúñü™ÑuÃúþ¾ÎÅ+;;;ó{7vmXµº/î­éZÛ¿¡«³³õ=Ýë^¹þºæ½5+û6¬ëZCç¸׷qåúþÎõ+7¬\÷Ö¯_ݪkÖ·aÝʾÎü^w×ê5+íÞÊõWõôv®ëŠqt¯éêë±úºûûz;½¾þ¾¾ÁÎÞ®µÙ½5½+×çï­ïêÛÐßg÷V_w݆ޮ5+ó{«6/.èìkÞ뿱¯˜å±Iˆ{+ûº:_²zÃÆ®–{ë׬î»nìëæ½Á•ë7t.é\Ù·2îõtu¯îëìY¿rå -÷Ö¬êêËÇÖÓÕWTÕ³zã`ë½ ‹þ®ïïiùveo×ú•½×µ®yÏʱE*aÆãÞª•+7¬M­´Ü[¿~0u¦åÞàʾ¢Ã7®\÷V¯-–¸?ÿvMqó¥Öçþâëý뺊*›÷Ö¬›ÿü½5ýë»zûyoúõßø^ßÊë °_ÔÙ××¼·~ãÊ!ëËú®Õ×MÁ­÷Vnظ²·³{`ãÆì^Qg±æš÷V¯[WLôØÄp¯wåšU« þŠ{ mç÷6v•Þë{I±¸¬[c÷nÜÐßÙ÷V¯Y3}Y}« $ïXŸÕ7PLèuýY+»z7t.Ü`÷®Eÿ@߯Á¸W€Ê]Ç1$î­üÏc3%°oÞ+z|]1'}ù½ Åw]â޵Ų­ìëYÙZßµýëÇÐry熖{;{ºÖaf÷@Ë{ÅÝ¢ÂÕ}²{kVÞ¸zCV_qo`ÝÂe÷Öö¯¿®«åÞú® "-÷V‹´àÆ–{×­,¾+€÷Æü-f¯ïÆþþÞVø»®goçõ}=W?þ½5]7uŒ{Kó{/#µƒ­÷6 óÞµ±sÃØË½-÷VBPý^Ñ™ì^_çÚc¤²åÞ`üÖoûÇ`rÁüΛ÷úúV-Ñ¢&-YÕ5Ø»ÒèUAJÖ®ÞØ¹¬à Í{ý«úVõ¯j…âzÍ ­¸7ØÃJ»WŒv`ͺUèsouoתqbPÚ¸w]_WÏêþ1’ï]ß_€îÂÎ ­c»¾èKgAÆ6®n}¯oÆ7lhò·ëÖ¬ÜPóëZ¾½¡xcñ”º®½vŒž.nÒV@7ß[¿ríÚ1ÎÐòíš®1`) pq“ÏĽ…ó[Þ+&%±€ü^Öü^÷]«ûV¶Þ‡ÝìÛblî×tmèìê+hy n­)ˆÉK ZÔ:Í{kºš÷ÖCÍùo1OýƒÏ»qC† V1FÖæ·ò£tÏúrÌ{ÇxÞª¢é ù½qVÛ|¯¿˜â1FÓ³*»WÔ¸±€…•­÷Š5_ÙÕB׊e,V8—‡Š™zÉ꾕Ǽ7ÖJóÞ`÷Ê‚üeïü´—E7–îõõ±{ÅÄôÝØ¼WpóÕWåõ+0³·EV×J“AŠ{kWŽ·YßÆÎ•/)ÄŸÖúúV¤xÍ)iöeŒ­JâP~oŒöÙ½DÃZïjÍ{},eÜ+XÀ]ƒc«Ñ„SîµâoÁßœF¬ëºnL<Gþæ½5«7tõ®ÌßÓ½¢‹-÷ŠiMnÞëï[Ý5Æõo|œ{cÈK­/éÞ‚Îì½±µ\ÚÙ2/ëVo¼aµÑÉu+»×ôw®-Pg½ÝËdjÝ[ÚŠ3c\eA=t6ÇQ@Kçµk(èoë½DÚ7á`ì½ÇÈЂ–{«{ú}Ö¯î½îÆ®A»wíš•¥÷ú;ÇyWq¯L;Ç8}“ž®ذªÔÆÀKÇ7“©×ÒBó½ ]× t"e~oMÁü½ñ{¾mèZW j±SYÑï†Bø¹qu!<·~˽%M:¾aU×cPš½·zM9ÍÙ°nuˉ;]»zåšÞo|oc!„un( f°yoe×Úîþ1>¿®åÞz±–o×wmܘË㎂"¬îj•U6 \×µ~M×µh5ïõu­t.ëlÂÕÆ®Bª'Ð+›÷ )._£¡(¤•Fl\½¶`  µÖW ·XŒ÷Ľ5Í}ÞÆ DZ²…÷l¼±\>o½Wƒ—øþh\b*xcÁ¸wcA#нn±ÓYÓÙ¼·¦$«÷6¬ìKL¾õÞªqŒn½WL¾ÑÄ Á¸Øû\{íÊÖ{ l^9&r4ï ku×Ú cèÐz¯ÿÆ|¿ucÿškµ\÷ ï5Ib´1ØU̽ß[9ÞÆõ]=7ÄZ¬íòo×;ÎýkÇ%ÏLŽX½~l»Úi}Îà`ü½˜ ‰#îmo´6®[¿zh¨ WcÜ–{±ßß0²è«Vo(Р³§…'Ñ«õ«ÇÄÑu±¾‰÷ôôoظzMsî»»ÇöV­|¡Ø³÷ß°f°¯•lè(¾í'Gy}׎íUVy_Æܤ%ˆí-{°bã¬[­{صݫ3™úXk^tí¥Iìl݃ݠñ¶àBÿ+]^[Õß¿aõø¬l%ÇÚøW¿¢Ý™‚w]_3ªç†Çmûõ°¾WYïPû†×½.Uùì.C­ÿ<ŸÃQÐo{Ÿ¿¨¸”¼ï Žy?Þƒ€|g÷áGõç ξbõZ¿œßÁ7‘ãÎå·‰^—ª|v—5ý…œƒœÝ>‘wÄâ;Á_Àçh-û‹ýÎ4}/¼ƒß€'GŒì3xßFó~×yN¿…Oð!øT}jº_Ÿ”óMŸ‡‰^—ª|v–'ÐwàYpò?p üAï÷¾ØÏÔçïñøP\ªt|Ý“÷;ø| üµv‘çØÏ8«ð¦*¿ÞWåt½>»6þò?ú.è³íGJõ‚gì‹fèZx}gßí³Ÿ™cíÎÍùûê –ë3bÉå1îžÔy>ªvÕïЫïð—‘¼Ÿ1¾çQŸð >¾ÁOUÿD¯OU>;Ëú,ÁIGŽ÷ð•9œ×ÏËáÏë >ÖF¿ëvÊàO‡t=-çѯéð%Õ#< »’ê~b7µûÔ3#ÇÛú¥9^OôúTå³³¬Ÿfûç3à åˆî£O}úNÌá<|bÿ ¼ÏS}ìçwäßE;ngþáø%9öþ%ðqÐ?Úõû#y¿«²*[Kà°¦¿SØ7Lµ}7rú*í£oà/è¥öæxE;±ï8]í¹ŸpÌ{3Ô?ãCŽGÀ}´sXø~<ù_àÍþcË‹½>UùÍ•á/|ì;>Ö±¤ß±qèºôÝþœù{5ý…¼¼ïÊá>ê£ãSîÇû%ôÜ¸Ò ¥ÛàݯÇ+kú üQÿÚ~þ€#ö=r›®CopjNWJò—Ë™†Ÿ¡÷ÛUáÍñ\Öçh=çë>Ñýz\|G†^™ý÷Tçà±ñ¦>3ß§„þ™}ìIaoÎ…‡àOôcDïc'¿ðs¯àCøïœœßŸèù¬Êo®ôý0ë=ÑýzÜ~³_ïLý ½¶ð¼(á ø‚ý¦#½üVt;iý ½?SïÈë-é LßVŸ¥zÀïÙÂGÕs¼ð÷ªÌËú%Z×3µÎmì$϶2øÂùþ£~µàXã)}wžÆ‹žàb½±îŸ ¾¨±²~¾ÖONë>Ñý{ÜþŸ)¾"=Fì/¦¦þc)}‡<€^œ¯ïà»Èo¼ò˜JéÕàÏõ‹M.»Àôè¥ÙGž£vÎ;>èTU¦2ô¢‡ N^p|¬cÀŸøGè£Ñ‹u¤qñ~M±Ÿ–ëÁ‹’ŸèH]ß^ž”—¥s#|§û´‹žypòñ1ßU™Ê€/ÉïŸâÙ^–Îû¨î÷äã)·Dî:Éêa‚>í„ü½Òùµçºõœúê糟ɟ7õw©_=ŸUùÄJ÷“?^ü¢ÿø»6x¡û»óñ”ž›Ÿtð/ôÍ<ßöê¹Kð¸7!¿q ^‚w‡T?ó¾·Â›ã© ¹BðÕî<å³µ ~!2?ÏYŠ{£÷ñw«é/à¹mD÷÷œs}8Ÿ¯xßäÄèüÍαFû•ÚÓ ';M‡Þ þÃ_QërµÇ£~!_ì³u윿Ÿï-ù…¹_ýμ=à.àæ°µ§zâ9÷ïþþ¢?¼7jý¡¯xÞ&žG´»/ßñ/®_E¿59‘~Øy׉†«çzéþÁçµî±?QÉû_Íßs¼8aß:5]‡¿ ðN{§z}B^o)Þý¡À%ðäý¡žÝVã÷¶Áž{=<ÎéòØóòúX×›”üÜ(÷Þì²ëÞ<­ø_˜”ãG]pv;øëþü|ýÂEߏCö †OØ'Â?~¦ÑKð‰}ûgõ'ú-{P´kqùJþÌN  ~Þ†û³s{ ç¢}Î) NÃÞɾ£Sí0oÔgû &Þü3¿:×óŒšðªÆøVû™go€ÎÁsî¾€^³SðÀùàõ¬žB~ƒÞSg'ÌÕóƯôç‘#^-ô×÷Ѷzõ~àÝ ƒÛ#6^ü0éï\õ—qCWð'À¯<9ÕÆkþ—õ u¿CåìÎ#ž‡è˜Ÿë ¾Çü€§¢O¬×DÃÕs½ 8¸Ló<Ÿjp¦õu?3‡û€¯ (uÿ}ýúl»ôSõ]dø{¹ÞÇ]ÂýV.W9Ùú}…ðþ·`nÞ_ì”´Çx°×Ë^p:ÿÖt޽ÞÇ/8¦_«„ÞœžÏC¬ÇÂS¿ªÓô~5øÏ€ç¬ー›goä÷ô»>ë¿ÉyÆOFôÿA¾»ÔàçJà„zE/Gõ~Ö¡kü»Nµ8Ïfy½ïà5ð‡½þr]cg|Ô÷ð%îƒðcüÁë>ãÆÏlžÑú‹¾Í|Î4¼Á¯™óó/B˜'ä[ø’æ¢áê¹^ÆúâGÝEž¿Ppºu þ®0þ³@×Èm¼]åšýòÓEz; r™âÕ¬IåeéûèôœöàsòÓ »+x~^¨ëN]ã'Üãÿÿào6äµmüø¥]¬÷ÀCÅ!?˜‹ oΰy —Ùw¼'ÿ¶x%:2Ñðõ\-Ãd tNó>+­CÈÛ‚›Ø·ïÉùGé|òØåZ×ÙöœõÞ‘¯€ü9çž nc_þÔÔòp½<_sˆþˆŽÌëyîlk}"ý ^ðyò]Çy™ôxA/Ö÷ô›yž‡>„y¸0ïGý=§}âRæíUåÓS†^Kt<ð9 ú"O€à%ôªÈ=èµv nÁOö]³óï#ŽLðCƒýrñÉ\o~Àð»;øƒš÷º¢û5Æs8—ãJx·C÷GÕø1t‹º2‰ïóq…~~’õKó1Ñpõ\/>)±ŸŒh]C.Ééz)þ«à8 9 û$ðÓ¡ï÷äðp¼÷ä×O§åøP²9þwX¿Xÿ ®~…÷%»=íj%=ü"ôú6_sÕ¾úóDÿvåe)~õ³.¦×Ÿh¸z®—aßüQ¾[X7îs~Uðô×ôÈîŸø…?ñžày½Œ÷èõª¥ø¼òðÎû‡l|ìïŒÎ^x¿—øD´Ã{ª?öñàq¨àÌßÁWǰYÜÐÇ›AU>=eÀ‹Ñù¸†~ïÌ×Åã|—ðƒïý¾åi ÿOà„úŽ|?lðh|%à¿]=ô8ç=êßi×ð÷SÐwµšá%ý­e÷ólœÐ+·Wá÷I?Ô.ëU¯ÙsJêÑ8&®Ž÷Òã€ÇzîÌï½s¿3ÁA‰~ƒû .yxµu¯Êª<ʶþS»­ŒÞ–äîÞñ׎®Oôw{‹ôI=UY•ßÞÏ“ÿ²7‡žý ïKN }¯öí5ýòþ¨îƒgøM³_’?äDÏGUVå)ÃŽ‡¾þIÏú-àý x…žÀå/Û÷Ôô×ä;¹Þk¢ç£*«ò á üÿþ°GÔÆÿJùðÀ3ì*ðË~–ò« yL|)ü¹oq«²*ŸÍeØ×-JÀ³üi¯9”îÇ{ØÑ‘ßøNeØËð <Õ{ð)Ëk^•Uùl.C΂o8|ãï…½™óàöiø|g¤6þWòób_¾íÌ÷G=UY•OoFkãž;øvIsÆþfDï£gCÿŒ9ïpŽa_Çnº»’Óªòø)kú » p/9-žï4}ÀŽ\ÿVÊkø÷á;Ô÷X®‡›èù¨Êª|"eè‰-~PM%?€Ý†?Èa£z>3Íðp‡•mðj¢ç£*«òx(K~¢Ž_rÿñzZøõ€×\ï´Òã±yÉ{ôc·}ïôƒkäÚQõkGþ^ŒÛô 5ý•ü©×õúmü™/_]©´·ïØïWå³³t»k ^àsºÏ_ Žž©ï`›ýØ ³3awBoA;®×n¿\þt¼Ý›ã‰û#ûù¸’ÿ¥½WšOæons|Ûâ°¹ŸúDÃCU>±2ÖÍñýq y^Ÿ‡gÄ-C¨û‡œ+/(÷Xýà ß;>̯kµ¼R¾fôõ5£ÿ¿Q|ÅÝù„cÃyØ“Omêç×*}æñU6Ï çt/ôuئj½k*±ÿŒèàâäJç×Àøx"xõúß„ýWxq væøD]nò<´¡¯?hzú‘ü{?W]ÂÚ³ýOØã°GÃߘï*ûqU†=¸ÞYOàÛÏ?·“§¼„ž‚”¶x:’ó‡À òªéý’^âˆÕkú ð>è…Þ«é/ôùâ·óùqþýdÚÉi<ç»i*-îðDÃCU>±2àú BWá3øÏßÀψžÏÉá6öÐï ?§ä÷#.`Mõ‘ß–¸Ä/Äxi¼O}ôùl†ÊÙ¶ŸQ¿£3 ¯=qGÀ#è~ƒøÂ÷4ÑÞ>ãã“òú˜‡‰†‡ª|b%ë[ò'%Në{Øä6àDxåqb_Ä5qÛÁÓ™—È1À9ñyïÑJðþø¨µçñ1çô?Îh¼ø¿2&ú¹À¸½‘ý³ýOĤßÔϸ+¼9®ÊRÜ0£§ÀA­–ÓÛKù ~î…žë{“kþ:ô=tÜôað%ðÖöëßÄMÎ-_³çs |™·øytŸïñD^´ý[Ðð~cù ªòÙ]²ž%ûà%ðÇ÷é;ìý½F‘³ ÞÝžRÓ_À½à¸'mŽÞ›’Ã%ñ ƒßÁ¿T¯ç7ó¸s¥ø;#µì/âyǼñù¢~ú5ÉðTïCw¢~ËÓ0ÑðP•O¬tRþœž–à¼Ùixþð×à§ÕS§=êÛ•÷§do¤^ôäðIžïΟ—â!o©´ý@ެY½Mxá~„%ùð@þžÇ»÷xˆ UùÄʶ~Ÿ£ºGíùŽü»øøw|Aþ£>ø|Èâ…]µ’úÁ àrDÏ©Çðº¤ÿ:˜ó»vöšè?üˆñ·³Ó¶ÑS—ðÞéÃHþ~U>;ÊϵN¥ýÿ4ÁçxvæðÆ÷Í} ò’JßGï ÷ôÃãG“ÿ€zÙŸÀWüý·¼Àyè Àð”ñ’@ùbžì\R ÿÁGðHrY‰¡§¯çíTåñQ—3sø zŽ<2#—3‚/@·ÑÍÒsöÃèsöñà“ö'ñäf~·|ýÛcxïù¡÷ÑÝÞØûs|x¨¼gßB^-âA´±W–ðµãØïUå³»„”ò(eôù<ò _ ãܧŒüzNÞì-sózšù? ¿ˆ_^’Ÿ€z#ož{<âñ’lj¼ àédûn¦}Ï|€ä¡›­ï©¾ Ÿm—!Ú¿DõœSáÍñXÖÏ7z |}×}ò™ŸÄÑç<©è~Ðò},®u|A®â>þ ‘_Dß“¯©ÃJ‹/ý¼J߃/ää½Kõúoòÿÿ–¯-æ‰q{¾+Ú9WÏ_pl|)á rá™Þe䋾.Ö5ëêyʸ&?Ô\•èeÉ'ß¹ø߬>òDa·€ïAÏá/Ð}{¿¾ôÁ„¯£º_SIÿÉó†\¿°óæ‘÷ì¼6|â*=Çašá+óBþÁŽï¢Ï×ö8xV•ÏÎ2òÒB±_wèz‰JèqÈoF7‘S€#äžÓ¬~áYì+à'èØ—ƒ‡W«=ä)ÇÓ+Už'~·KõâOzHõ‘G‘ü¡ô7ôú/ù¬í|ñt=|z2)¯'ì4äóÏfWüæx,C~Žú~¹jZ!Ÿ ¯t çäÛE¯Å¾\ùFC?G¾YðŠþrž®Á“y¶ŽÁ;×× ×äð¾·VüèñìŒ!g]dx_dO39<¥çØýÉ¿9ËÈk‹Ü>¨uc?Ô5r=py’õþ€Ü†~ ¼dß_X!ø¶øŠ§à%q¯øþÃWàSà!ûäÓóL^;û‰ÁqÐøõCWÌ'øôœÔ¯¸?µâ7ÇcøÀþb·Ö÷$ƒ'ôDØ1°‹°7ùÇí"a÷Ãþ¡|ÌÍ|gªýø×¡}ü÷á7Ô?U÷ÁöUà7p/ù©Ý¹¶¶óæü…þ¾øû¥ûçUxs<–±?ß '3{IìGD/ÃÎ _Š<˜z¾?¯'øKä¹>‰_4÷õz_ß—öûz¯Ú%ï/v™ƒ97ãÏë9üi–ñ9‹Ún¾bÚOƒ—'Âî5š×ß›h8¨Ê'Vº¿~‰®ÃΘ<âûýÈÃÎþÂä(üGóëàkàOð;½wbŽ_n7u?ýÀoö!ì+à—œ—¡è%¦¨œõ8ûòÁït:óãÒwmÎ<^{Uùì*ƒþ‰~ÖôzíÇ^‘Cηý þÊfÿÆQ]‹ïÐNØg&üóÜõ^ÜÇϹ>âçÉÀoò6HÞôøp±?CÿÐN~oðYëßó-¹ßªó¯‰†‡ª<>KÏïVŠ×¶#‡¯šþÚùE–üøGu½ÇžSÿˆ=µúéïyI=žÛÛå½Çn7Æeã­Êª<&ÞŒÔÆÿÚÅ#+ÅÛ×þx—Á)ïóœ÷¹ïð¼Ûêm÷ÜóIŸhý÷~z9ªú©¾T»©Ê'‚7Ž'Àä¡’|ãò–ÇÉÿŽäpèçZ~=®|àϱûX~ˆ¿b; ŸÀ¯šÞ÷8PmôUY•ÇÄôgÆÆß+Ç ø÷kàøžš¾/ÅŸ9’ïOB¯ ÿ‚÷w¼sž‡zÀSÓÏÇ8¦©Ï§ð,ôšvŽ{¢×¥*ŸÝe)>ôá~ì1ª=!ú€Çòïê5{Ïý¦ÿÞ„ž~b‡¥Ô÷½.Uùì.C/5;ׄ> ¸;5ç¡÷žâðœÓûvçE#Žæ!]ƒOð«ðÇÓó°«þ]Æ/À›sÀCµG¿°‡ÅùjÕþÐNûiUVå8¾`Waßç6Ub7ÂObü·ÏÉñ)ðùˆçngêÐõ…¶O‚ÌR‰~z®žãσÿþÙ³ o#žžÏáÚöMÈû O½vU~{—؃‚Þ^ kðbžîã—â|ãÇÍ{À-òþ:5•ØEñ+ƒîcÇ  Õ‡}ôbð)—ÿ<¾`ô;-øÎ}üèð«Å?¨ÃÆ+ÿ‰^§ª|v•A§÷¼×ò²yžY×þþ¬œxüöS··ðûxü¶ÏÎ÷O!7"GÒŽð(Ƈÿ~ 8øúê¥ý6ñ¦«òÛ»lÆ0ùeg.·„Ãòf„ß‹Þóüô͸ º<þiú¸ýyûú‘ZöxqÙô뻹FŸàúõÃ9~¸öñÎUå·gYŠO¾ÓàhwG¥üÚmð p~>Ÿ» ¾këOÔkyOKy‰…§%øøC{ô“ïxŸR÷'zªòÙU–ìÐûÑÚø_)ß“åY*Å=ä{ðd·Ýw¸Q;‡Tz\Âvy÷äp]ÊÞñ·K¹Óžï°vVxóDÊšþJñï4ŸqÍ|ïÌ×9ô±È'žWx ;œÖ—~„Üíy•€ àÊáú¹ÇàCïMôüVås³ty6ìàðï|ºú¨ÁkÈ=Ïþ=ïÕÒ_Iž ÞQ=?`íPB_wæxXáMU>­x3ËàÓä†R>0ôCÓ÷“søýëH^_ØÿL~¾æ¾ÃÏ_ûi‡ÿØ#·³O±ýJè‰*y£*ŸÆ2ìu³…瞆<†Þ¾~`'À.‚»ð´t^yëH.§Eœ§°S˜< ?”\éç"'z~«ò¹YF|ìÒv.½~…àû9vº¹ú;ñ ;kã/×Bïñ=vÆ¥ö¼C_|‰J÷ã¢?ø—ÌPÿ/Ôó3*¼©Ê§o8/O¼ìÈcØŸñƒ"_Ù»Ö>†¸·kj*£ÞY†—ÄSþ±xžpö7ÈiØë,ž^ØõÜ:^NôüVås³ ?Îïc§.±‹‡ˆî+žK¼Ü^ k·_ßׯÿê/Ô}ìãºO¼³ rüŠ}þ âwø•!š¼Y•UùT–—å°ÉKo<=/ÅYÅÿ½ÏÏ4>àq,¯69y ¹,âµäü¦~‘îãçåûú1G÷«¸”Uù4–~¾=ü<¸†?°b?±Þc?ξ…8ŠÓìzéÀ©©žÐ7Œ¤ëÀô–7ÀõÞa/BN4ÿ™‰žßª|n–5ý¹?”ß{ vHéáÂ.ƒ¼D$âР¯›•ï[JçÄFS;Þ¯Ð× ?¯9¤û'Ú}ðÿp¥¨Ê§¿nkú+ùGØ}÷7Ù­kJðŠïsò×ì±}‹øM]íÇ}ácø›Ÿ¢÷×ý–'z^«ò¹]^Œ¦ú^Ó_Û<¯è·öæðxãïé{ê¥}—íÒõS¯ðÐí6Qî®øÍ3 ?fo{ºË8…¼OÜSäí{':>OìÿÙÇGüñ\¯vôn~þ áeœóå~‡Jÿ=û+¾'þàá\Œ|:mâî;¿ =»ömñžÇt{ãœfû>ì`è-˜ôøì×Ð/vNìú>iøx†÷‘1S5¿ÄQEn9;>aóRSÿ>˜úÃ9Bà¸^T¢^°÷ˆN>r®Þóà/Cφ¿ÿ>]£ÿFop¼=ö¼á׌Ãýô³q€ßÌúò0ÆéyÑ‚o‘÷*o÷x+Ÿéýd)1úUòGŸ3&VŸpÝ^,ÏWÀ|þàùÓ€#ðþ‚Ý{ôÝó>£·¯Øÿ·èÏÛÅM¶øÈÍüŸùýò9H“ønŽú>Ð>ü’|‹Äó|ÒwU<Œo'ì~žOÕâ>LX?eÇÿ3ú-|*åAÇ~ùvør ðþwè¯?¾;Ãè¹å}ø…\Ù&¾D ? ßâ=Ö8?Ïähüè§Ö)ø&üüf~¸¦ŸU>šo‘ØOèþ&S Çiž'¬Ÿ²¿¼ÿÚw„\?âü;ø„m·íC  ú®7Éøô¼€®p=ÍàYq%Úí ¡û7øK˜œü<¥œ‘×ëÆûNg:4_Ø™'tåü‰]ßã­tù½¦¿ØçÚ¹÷gº~n=úëqÇx¼ð<`srøós7õ søG>÷à+‡s¾xÉ<„Ψ½vz›ÏŸÌ¿Àó¦Å~ê‚ïc~è?õuh|ÈàúóuÁ±ùbU» ÿª8Ÿb||‚ùwô'â©ì´þ²ÎÄ'=þCì‹æò}ºûä·³s8 ¾Ëþÿù÷¥8FÀùî6üFõŵÅÙ,á“åŠvØ×àûÔ9êßÓoîÛüM4<~Ótu‚âↂÍü"Lp¼Þ€'à€}ùì|½ïg9_Ry™Æ?@Ï@Iö&…ÜE»ì³#nógü~<ýW÷¡›œz:}G<@øé\Ã;T¢+¡Ÿ·ñÎ:>ùÍDé3® _Ðsö™çO,j«ʚʈ«Ÿ€¾ªœ—ã}Ä]A.Áô1Ãèð…>Žù8ÑêQ{%¿†úÞò÷>_eü†u0¹®¹ŸËå¾à‹àQØ›r¼/Å z¡ïˆw«~O4|ÓðqQ>ÏX»Àð5×à猉Áç€à“u~à7·Ž}:zàùúçd¨OïY¼»¦Ü“ž×ôûðÓrx¾|{ÜLð=˜é“Á·Xäð–þ_¢úЇ}1þB{²ûx|²ó¦O ü=iø˜ {|ø]õŸèý òý4ÁUصþÈYûÁ+ÁÇ!=Glúª€§9z/ò3küÈ}aF2úOéç@ÍŽû,ð9Îü¦É‡¥ÅK¾r’õÇìEÑ®…_%þ…œqúÄÊß2|L|–è£à(æw‚éPI‡oN·#¾}Nw›ûƒkÛÿ.á—ŠÿÓr~xêz<•‡à𦴯â¼ãDÏ?±ó®Ñû#ô”ÐCøáˆêAÏ¢s¶«*¿=Êð·´óÕ¡ŸÞ«kKyÐø üçÜÇïsG¥¼œ´3ªçôËãîT½øëðþˆ}·ÏêõöTOì¯xßÏIP2.í ÿñ£ùõñÒ½çùqJëBÉwÔG{mò¼M4\=×Ë|O¢ç±N¬3ïµË—|í1¸ ½_zîþ×zîú—ÀWƒ«àœ3â½}6>ƒß¯y¾ÃøÌáüý€WÆC©÷~ ïÖòyˆ}&ý™jýw¼ßoÏ™?êkc÷ªÊ§¦ôý|óœµæy xdüôhÍ<19 ¹ y8ñxçÀ|¯Cýp¿eäNöUîG:%§ßÿ·_ÁâœÁ/'åãŒù =‰ÍûDð}&r+x=ªëðÃÖwÜÇ/ˆu‰zÔŽËæ¯=Ñðõ\-ÃKpz$ù÷Ö¯Nµ^øm?‡}1ps†­#~ÔÀûuâÝ@'/Ú!n”ë\/vAz¯¦?è|ÐàqƱñ>ðüfàï<•è+_Œ×èíqndD%x=á;ôŒ |‡.p}Zþ^à=ÏÙgq.‚ú¤ßŸhøz®–±_öó2Àp~…Ÿ3tU%ûçYZWâÒO´3G%úaìEá'£ç—é;ð ÿ}è,ù9GŸô<òdæü‹þÿ[°7‡WJð=Æ.Ã×ÛÓüd/ÏU×àåˆÚq|F1ÇæÍü›xªûsóþÆ|V~¦OkúUäfä•çåëv ÷›aßýs<‹çæô¹gTðó˜}_Ó}༠¼2¸‡ŸïÄå…߀ŸÔ/ø ü‚oz¼9è‚ú|‚öÅ‚îƒÿnŸ_€oú ?‚ÞÐŽêíÔ|ì…~‡o"¿¢e>„‡ _ÏÕ2äà”ó¬|:>Š’øšÈOZ÷Xoøðž!ïç³í9v&Ú‡Ž_lò£Ûaˆ+r±Jøò'ø "çwô“þÓ/ñ æ/ðq#Wá7ñ´tÿ"7ûæ?ÎÕÒÿ6ýc4¢kðÇäʉ†¯çjr…ùó‡œ| Ž‚Þ¿ÐàïJ££§[}Àw?•ú•À=øe׫Яgòy:Áà<'~/í“Ôáüš=1¸Þì2>~ŸV?üméÜŒo5û«vÎ×uØ•Á'ž«=ðšç1¯*%‡N4|=WË8ïYÓºÌC.\LëàþW!§`·D¯¦÷BdçaC ü³îSôÞNú£ûÁ žÏÊÛ~ƒ·È=ð+ÎÁü»ðÇÍû]Ò—8¿Ñ8Kçšà œ¿Þ›ÏCÈ­èEöAwÔøëÜ|¾OÁ7?ÏŸÞN4|=WË’ýõGnŸ­uÝsl¾p;[px]Åÿ1ðBíê¹ç ®ÝÿxS}%{¤¾ 8ŽÁ£ùsszáy¤yŸý¼êwÿà‡—ÎÏ“ðò,í‘×ø%zåçbŸ‘¯ñ;¯˜¯JŸö´–ß#ZOìú‚·x¯vìuù¾"ø 89!‡ëºî‡=ÂòÂ6íEz|¿€°Ãè>|ñˆ®ÁîƒG£ªw/ð®ëÀWûŽvÐó=í0oS­¿À¿ú‹ó?„>6¾Íwð;ŸøÃõ~àO›üËñ<˜”ãw3¾®êOè/x§vcþÜi‡á¿ÇõeœÌã‚~ÉñÂóЕúãyJ™O£{Uy|•싟±öÐ{¡‡‚>c {©ÊK…WìDZƒ §¢_äÜ~£È{èÇ.ÓûÄÙBq¹êEzæÿª²*38>ý™…Ð×èÕÐ^®ûàú.üгoáûy*ãZϱ› ÿ½@õ ‡?Š3zÂjÿQ•ߎŸá8/Ág\¯þ=*ƒ/é|¹T×è¥Ð·£Ï» §ÄàSðŸKUòÝ‚¹©^ìXtβ*:üŒµüsž~¼óü<ãCä¿"éU‚÷ùkr9øp\ƒwà ù²ËÀ¯…ªw껨’ÓªòÙS†~~¿/×/¬ÿ5ýô|–¾'ïÏ!½Ç÷st~ëJ]_þè½ùðÊ[Ó{çUòYU>ûÊð³Ä/eNŽ¡ï¾\ðìyµ_»;üh®¾±§ w>ž¿ð3Í|¢ç©*«2Ã䣫m_~=à…®ñ‡Á?û|‰<ì‹æðJðƒïÑ\¬û¡Ðõ3,·VeU>!¼¾;s>PÊÛËþ¼éÐ}ôdqÎG÷#ƒ¾“[øxü<¿¸@×WrZU>{ÊÐçøgÎÑ5þúá©ûø½ï|‡<†œÞD<úô]øŒªöKøe"ßNô|UeUŽã þ2ø DœP•à rÓîóòœJä/à>âÁë9|¹<ñsð?¾³x‰UY•Š7Ðsà>¼¿ÜÇ/ýrûü,?pè Лáoz‰¾Ÿþè{ú³èÖt­ö'z¾ª²*Çñ?ÎágÏý‹ žñ³ÁÎÁ—У_‹8ð«Ó}ÅÍü™ª÷°q^|É­éþ™ÕþæÛ¡¬é/Î}àŸ‰ŸâN]ïVùU{¾C×{t½WrßíS©ýuìðWä»]¹þ–ëèŸç×å;û¾Öæ¯TßY|¥Rý4/“t­ñD=¼?jõz}ŸJñÖ(™7?OÁü¬äÁ‰(KñôXà„ø^; Ž >jö×ö¼ ðÀµà8ú!8)õRý‹v€7ïß¾¼þÒûÔ·ËúÇ5tzè·õ#èLÍðÿð±Ûi— úÏû\]ŠqÐÏ o&¤ŒQO8G.d|a_âœÁcùsç» Gßne)Ÿ¹Ö7ô·ž?`šÁð ž<œÃMàp9\x©ï3¼/w·¡·~ßã…:/¸ïr‘úíqc^À3¯ºc| ö_Äj‡7/°zGl<è '[{Gª}Ô„àïôøœÀcœçÄO…ó¾Ð¿ùzÆ9dÏã<'Ç¿ˆ»œšÓÏ?@Þ!.Á vŠúå|ê€=¼Ã/jöçÙÀì›–· Î/Óè ×ð ÎÑYþ“ â‡a_bßaw".ˆÅ h8úv+ƒ_wi<hÀòöAà²Ñ}}çŠwäp׾ؗãM‰žƒVè¡;jÙxðL=jÇób•â¹›~$®wä÷£?ÄEð¸ÀìGS{¥uÐ÷A‡(éõÄâªM4}»”aÇ›«uñø`”Øß)_ÃMÈYâ qúŒ_ ç½À#àÀâ-»ÜQ¯YýôËò¾‡“ûØû¹ïùצÛ}‹·þœÐyä-úüN³÷§0~øJµëúÂ8н•ñà§pØð†y´x: Oßne3¨ÖCç±b~úFî²üº¥|7ø¯`_¾ ûž7Çâ*‡|$?±¨øc¿…¼þ1ÎCƒ7ô¹Jô<ðžþÖt ^ៀœGÜøþ ççÏKù"Ÿ]ÎOKñÚÁ³ˆÿ¦úO³}–ѧ‰†£o—2ü‰±v>FT"7ì289Õîóþ¨JäáOMg_)íƒàüH.眿þgñv‚Ž{ÃS¬^ÞG?Á}áW”ŒoRþ~àû-ö)š×ˆS§q±Mz/æÁò-—øbu^á-ƒ^/x0_ètutÐàbDë ~Q>šÃ‡Ç'/éàC“¬á]È÷¶ªé/Úcß´ûØõ¾EiÝýV¢Ûß¿l>Bo_f<’·\o|ü„.ÑŸµìÏó‘L4<}»•nO ¹fRÎJùÉö´áàûà8oØ{£ú~§á¥î\ƒ‚›hׯÁ÷¥þ6øõö¨gþ^IÈsú½ÏøõÁ7à?Їóþ~Ïæ§û³ãTù&¦ŒõÑú׵ޥ<Æ'Jr×à—¿Ëðp·ÁùN«:kvøxø‡î»]”ò«Ö| ¼ñ8líÆ»7—KúAæþÆw#6>ÇWêÓx‚?[\Â(>ì¯ð¦*[ðØð,ài4]7ã ê86¹)ò‚GçÏ=vUVåñX–ü ï¡·ã>|zBÞ±ýJ”Gò÷'z¼UY•O ÞŒÖÆÿJz-öMÓ /ô¼¦?Ï×ò"z#c¿v¤’wªòø-çØ?ã—`qjJø”>«¹¾¼™'DÏ©ßô†ØM&züUY•ßJy,ÝÎOÜrä-ôSØg)¼Ñùœð?¹Üö)n/??ç#¥<îìû#~§ðLrZµ¯©ÊçBY:ƒÞÌôgn?÷ó¢±/BÏ þødyo+•ª<žËÀ ühП!§ÕÒ_è¥ë’Ÿ˜Þ ÿôÐò3(«ôUy–%¿QÓ7~hÿ^:/Ã91×#À§Ð·¡—ó¸ †GUY•ÏÜÛ>¡mü%JðAv•à3àÅ$û~oÎ'âþÓÝWJùf=î|zè¥úãñh¹Þ}ìvàƒÑ_ô{¯9SýóAs=<ôÃçy¢×¿*¿µÒå‡VÓŸÃWÜ>‘ÇΩe×Àåˆ}7jïÛ>ˆûð£è'õQ?ßÑOðüp¼â{µß<ÿmüÓãD™üY*ÑsØ9(ê‰þUåñ]–âgÆoBOŒý: ß1¿z3õosx ¹Œs1GrüŽ<'Û÷‚ë8ï¬~‡çü/Îñ¹yî<ǯzMíœax+ºñ ð“À¼Ñ÷Sr~©j+¼9NKð$àÑã†A—íœ@äå>-NXĹ||¢G?ˆ05Ý?š];¼£o#Î:yÒ<çú¡Â×È_pfÞ¿ˆ?M¾ÏIª‡þÂGtn;®é7þDà›ŸÃ>/•1ϵüº*¯ûc\Ÿ?âG¨<Çà„xåWë8$îyˆ‹îy£9·œÁ?ˆŸy£tÍwäž›ãs}~ÎgêW¨$¯q2?ÈS@¾ÃÙª'âºë=ñ§ú•º¾Ý¿$ßEÿñO½Àú5/Ÿ÷ª<>JòȆ\¾Ý‡o~N‰;s®è9rÜUºOœ$ðrñ­é9pªøO5ý¿¹ ßD¾hð|»$—#Ÿ~ øõàǾ*¿nÄUä;ÆùzU‡ÀSü·¡¼`|ä[`>ů'ªò›+c_‚¿¥äˆ’¼”.›røBþ¥¸6:M~ üjˆûžWxUÄ­ÁŸyï\öêöЋ ¿áGÀ)ü |#.yqÈÿξ|'¾yá‘ÿÀ{ø ø‰\ !| ~K~æçÜ\>®Ê㣌ü0ä]òxÈA#‚ä6ày |éHï…t˜ý†øLØ3//Ø~} òV§êU?æÎy¿7äÇÈ'J©çøŸ¢7>¤kôf\sŽˆñÃGè'óy®T·βïÁïs*~s<–ß5­³ÅyÕíšÇýˆûðàxEŽÝ¹ú‹<×™ÃøPŠ#CÿàÐwí[º8%‡«€7JÆÍ¼'ìG˜Ö•u„Ð?3¢÷ùŽkæÁ楔?8ñ¸ºÌ‡í?ܬôÝcy;žß0ä­Ãªß΃{ÜÁ€ÞŸ­÷OÈÛ+ÅŸ†>0N­gÐ!Ö9ºU³yþë†ïÁŸúœ0&·_ÑOƉþÈòÔÅ|qîWã»ã¿©7ð8׺GøS1Ÿûóu ü¿|¿A=Ô{ÀúÏú³ë‡^–|1Ü÷x¸Ì;x Ó®ÉCÍýîŸ úaqÑKünÄèõÓOàßð0ð”syó÷¢¾Ý<7¤f>«üûˆK}®áo›ýVÐ=ô{Øð:+ǯh÷bogŽÏ!w²ŽØŸ©ošÝç=äcÁU3n½Þ›üçëúHôCØA:U²®ž'¼ƒ~©]àûó=Ž÷Ñ£÷¤ÿ‹øøN±{Ð_ÿ zÁºÍ¶õÿÖ+Çó˜Öíy{Œ›þã¯ýð¸OÀó<·ñ ‡ð¼?Sí{ŸÑ)ôÁ±ÞèÓe× :Èú³NО»èrõøbé÷Á+äæ?ÎUäô¢þ"•ØX—3­…z~µžc‡ÕüÅ5ëÀ÷sÕx‰=»úóó€SæUÏ/S}èÿÑë·ÐÖûv¸Yê/ëÄ|¹Ý=?ýÀ=Ç^Hÿ;Æ…{þ­é9ô`¾¾x3zA½¬zÙ°s°¾Ì·Æ ßaè9vK·‡@/Áèxü2?ðià9 ü¼Z%ó#ºv§yÌ3ý‚>ÞB¿?úó‹õþUF_€àüL«—zðçƒN¬ïeº¼^eõ|'¿ˆÀOž3ð:ž\~©Žê¹ÀÖ‰~âWÁü^ªï±·-Z“¾ŽK|Áà ¼ÀÎÍ{êz¼`n*ù»þPÈ——ü/ežm~ou ]^`õÿ±OÃÿðN±óãGE}øƒÐoúË<GËnÍÖ7úE¿©8†n².3ô¼¦û´ËsÍGÈíÔCÿ/Me-¾WÉ:L²õG.„®Â—'ß×´çxÎ<¿à9ô˜õà>ó·\ïÐ%àˆyƒN²_𼉼<@oÎ1>ˆüÎ÷ûnËàÒó½Æ~Á÷êg)¯c‡Ásà›Ú¯°u:#W¯Œƒw‡øo@¯#_ôÇà‹¸ÃN0EßAÁÚ¿ ŸŸàçNG©Ÿù@˜e%p ýb=éã‡Êï1úüÁ? Çôï ]“o~T÷…·A×Ãÿ9¯¿)Ïñœþ>€ßÀ½ç)DNØ[ÞûÈÛÆ¼œg×ÈGÈ×´K½àíAÇ‘oÎKCtùá¯î't¦•ÐgÖaž®‘'<ßõ.ÿ‰ý—ÞŽÁgÖ+üKxÎøiŸy0¼ž•ã[)8ójv¸¦-§1ÀiÄ}QÉüºŠkÇCðˆysº ½¿Ã/Ï/ê~øÀ÷å†çnÇg˜_øÕì|<1~ß'_ªþÐo›÷À#îÓ¿ùý(™7ß÷á‡y¾CÑÇæøU¿ï¹F> ||ìÉûðK¦Ø{Úw¼"' 3ÏàëÄü ?@ÏÈá°tŽ¢S%ûqèÆýeýœn†‰Ú•‰ëï"Ÿð¦DßCŸ¬Òò]¦]ü¿èßù6nôQâ×n'©/b\Fïèrã¦ÿòy þ|šÕϼï³ùç}â«g|žýÕ.sæ±Çti†õ7øŒJÞ~€;ð—ùÎÊ×Ëó,–Îýœk%ô>uXõ]®qí£~Õ7IßÁ7wë9róyµÞžðÓƒnB¯ôï2àèØðñ¼éWðEݧ?ÈÕ~¾Pýã/ðzK|ü w†‚?Ïsë|5-Ÿ—À ä¶K ïÐ×°N¢35ûkê{Þi]<§ÛµcÜîg³Cý ½3x‘·ý¦ñ“€óy*þY<©/¡ëÑž¾ƒ^³~è_µ¾~Îßó!¸ÿj¼ü™?wÀ7úSî3ÏÌt–úâüšž#GG~iƒcÖ>°Ûú ¾_`ó¼§€§«®Çáó¡Ry¥á!t>ä-è–ÁÍü½ù|^eýe]„/×ÀŸÙ7ÎƒŽºñ°¾ÞYäñ+óõ }(ýý‰®§äøâòaà9íûuØOõ=ô:ÎxÀµçùnÜÞt‡ñ]¡’ûÀË4ƒÎ5Ø¡|¸¨Ù<¶y <Èç/úÏ<3ð‡I¶ÞÀ£ùW¿ÛÕ{Z%:î~A;UR?öFÑÁà·¦/¸=9§—¥ø\ð›]6^ø©ÓÑμýà“Sm}xŸzÎÈÛ‹ùcÇxNÊçßíóA7˜×#9œ8|„üüAß g'Ùü»>9ÄãÌ€ê=ðáˆÍƒå“ 9‹÷€Sð‡ñÂ_øÞý‹OìãÔÛ—ðÑý3©ø„Ž@7 ÔðfpØî\ëïzæ—y„ϳÿÖ/ÜÁíxMícÿ܇~Çêe]˜_É3!Ø<û~²içâ}µ{$ÿ.æÉùüG/7÷!~ŽÁcä·ŸŸîϾ¶rWÿ¿¢”7¸Y/à™õ€¾äãð¸gî'ódñÖJù£igOÞÿXðú€k_>î€Càžúèð þð>ôu¾þ±~æ'ëǺПÖ.üÅò´Wå3S‚ßáÏœD\?­ÏˆàüyÌàk_ž?9ä‹9<>P?ðdt9Úã;ßïÑî¼Þšý¹_PŒû`~]•Uù ý˜Cèô^ðïŸ<ç}ðx„O"§±/öäeM%ÿ€ðŸR{;ÿ¢‡3¿ßRœAáí8]Ÿèù¯Êã³ ¹x®ñ#9 ÿñë;ìÔZöW§´<¡—9Æä~öMìSÿ%?çoÎwàs^ÿ »¯~NôüWåñU†~lžÊ¥·Ž=hî±÷±?Ñ!ÏaOMᅠπˆ…½Bø@¨’ž·¦vÁÓr¹«yþ1ï_ØëÂÞ­ò”¼ô¸—Ô;ÑëR•Ïî2ìWÚ~tªJùI”¾+é{¯noÿ+½7Gå‚5éyØÓÕìPèïÁ+öY÷…2쎪z±×a£ØfVû™ªüðÆâòc+Ù+üœûeKþ¹æ®Ñ±’|zsö)Èk”' ½+xWSiyoÃ_÷U_Ó?üÍùôa¢×¡*¯2äýÚþÛò*…>}rvàš83Ø-;tŸø•øÂOð»vûwøÓ^®'ðxÓõËô=rr'ñÍð‡‡/áyv.§UeU>!¼ÁÅy Î1q^x¾ñk8Ïö†/Wé}üVð¯®ñ÷ØáÜǹ5á zÎ[`ﻂvTÒϹì§t͹8«¢×¡*¯2àˆýÿ"]#gíÎṦ?áök?wvÚì÷õ÷©OzÚ ~G½£ºÞ”üZð9’ËkÁW‘/§éýó*¼©Êo¾ 8fÿNáÀ¾ü™™×Så_¯Êo¦Œs7÷ÈC'äò?çJï„ÿÉãÚ8ÿ*ùœšÃ¹û%xœÀw÷¯ª]ôàý9)ÇŸ*?aU~3e)O9ðîq!w¼š?g)þ|Áâù—ò‹ÿ*éÁÐãªáw)/áA{~Ÿ«YyŸçSÓý‰^ªüö*ƒ?P~õ™¡ß5ý9¿ˆû;Œ?Â…×!ÿE~Íô]ÛqŠ?–îƒÏ;Œo3Æ'y?¾µ÷¨ûЛýFÇx>úû]•ÏÎ2à>ð áëjúsÿêxŸþí96?^~Y÷׋û&¯–è‰Ë±ìçœoîÊåÎÏWóçàO<¯äÌã² ¿•­ããÀßS†7–o ¦¿èǨJÁ§ÇA(ÅAœõ8xÓf\á·­vKñMÁKãéq±8·£÷ß ¹ÓðÛÏKL4Tå7W–öI3Ž-Ï<åí²ÿ?1ÇŸÐä2ú…úwö_sUžùûíqЛxcðŒßúHË3Zʯ€>äž[þ“°k”§]¼éª<>ʈ+fqúžöv#¯_®'/Å­>ËànN*ý¼vMQ¿ù¯¿¥~/±Sõã¿€ØâùÖ¯V‰ý&  þx<ç°G[<Ô‰†ƒªüæÊð˜¦u=噡q>¼%î~=’»Âçƒcü† çgåýŽãº#¿®éÏå¤hÇ㣀纆/‘'þ‰Ÿ¥ÇáÅ‚ø0yûUy|”!¯›üó´á‹åŠ|ºÀôþ~8ß™ª’8#§æý{°ê/GÂoˆ¸™ŠÇÔŒ³§zÃÏO%ó4G×ÄEì´ûÄ»:¤kü2:t ¿©òIWeÄ‘Üߌ¿Öõik—ø§ì§=?(þ StMÁâ3>mxÃyüÒ<.ûà yÍòh²8J¥qîÉ÷éq¿žµ?[í2/àé´¼lÆ-£†Ç¥óy©Œñ¿…sDÏ\\•OMëo~Ow»q¾sDåaÁ£ûÅÁÿˆ+ >ñþ¡¼OBYÓŸÇí(Ù5M/æþÖ±¿÷z²}ž«§[oY•UùDʧà'”ûÐîüÎüôâÜç6ÿÒšþJþnôïž?Cü½*«ò•žG¡ÿƒýþ:Ø#;j㱿?/ÿ.à=…OŠû—çøCÞ„ø;û²Çñ߮ʪ|Fð&òcÖÆÿÂ/&òÒÚsòLÊå²ÐoG•øÌñåšCzîyï /Jö¨6zóª¬Êg²Œósä/Å?:O^7ü °Gâ׃¿ùa"ÿ¹ðk†ž·ÿ€È¯ó߿ľ‡<^²ßLô¼Uå·wy•,µç-ˆ¸9ÐøñI‘ÓàOðžãgƒ]»ëN=¿ÚäW¬_RéÓªrñ†¸‡À9û›KsþáñJ~cÄ9ÄC>ZÙ‰KþàñJ/Îñ‘þyˆðO­øNUN`ûqß—Ç >@Ü\üŠØ§{þnö!èÛ¨þrHõSoä/Ôý ßÀÿJùYó÷ª²*ŸÉ²tþüW’Ÿjú >Áûèߦ ,¯Hì_ô}ð¡À¯<®OàµøU3¯ê¯ÎßTå”aGÄ/=rúö+ĵ><[~-ü4ÏøŽzwžù¹OÕxM|ŸÃùû¿©Ê‰(ƒoÿSk㱟8`zfâhK¿û•Ñô]ä³Ò÷±Q½áŸ¹Çêå½È§Þ~Ò.| ù°–¿W•UùŒà ñqGjãaǸ¯°ÂoØ·¼ ¿öüŸ!ÿ?µü~).ß±?Úgí‚oz¢ç±*ï¹§¦¿8çüÁ'¸ÞmðhùFJyuûŸ‘ÔNÉTpýâ=ð|¤ôïáWÓÔ®ñ?Ïc7Ñó^•ÇwYÓ_)Ï·ãÅî¿â;ÁoÄ^Gô:?³ þÙûô«tnHû›ÐcKN‹~^Õ¹Ï>ˆ}Î3¯®*ŸÛeðàkG_%ÿÑÚø_óü˜Ù[€oìŒø¥Õrù*üÖ¸/ü ¼á<4ç7GRû+öùèÕÀûI&ïÑ/®wVxS•O¾¬×Òçÿ›qþt¼àÜ1pÊþßò„_g‡Þƒ€‡‚_×cû¹â Ôèø@?NÈËÀ#Π¿¦Ýô«Ò§Uå·^>’Ã}MÍy¼)ÿbŸÑ}ö-î?9UÏoÙûc¿ïçüwƒ?ðâÕ 0<ˆ}•Ÿ÷?ŒoFü-êÑx&zþ«òø,Ž÷åðüÃà,øÈ£9_hæuSq¯Ówn,é“MΪé/äÁ#9ßñüq<¤ß\ïÊߟèy¯Êã» <±ü‰±ñ«§¦ïN6| SÛ—ZáMU>ù²´?9K%ð¿ñéùûq®åDÃ;ð>4×öíçåú…ðï¦åû®kúó8Q/×øIë\Ç›èy¯Êã»,ÅÿCOµ7ç/&ìñ£éÚóéÄ~~v Ç7÷v}u)Nrãþœ\sHß¡7ŸbrúrêÙ_éѪòÉ—AŸó•» ÿé/ž·àû"½¯×k¥¼»íúÑh'ð~Å~jÄž»ý·õ‡RòaôGx6Ñó~¼”±ž¶¾qßã½îÉ冒ýÜõO&—@ÿxpçHì¾Þ ¿àùúSOÀy‡ÞÛ›·ãq™ƒŒc·É=Àã8hõÚù˜R¾Mõ#®€wæ™vèŸá óáý‹ú”âÂ)wæã›hx<^ÊØWœa.çÕüs­uòøÝ±¬%ðµ#_ï8§ø<ƒ3ÇÃÆ/ÏÏûápYŠïJÿLJóñ×iÇâœûx£? þl\NÇKùã´Á«¯]|PÏ£ãù KúéSí{ä7óƒ˜h¸|¶—.û_Ð%ÁYÄÉG¯cï¹^&Þà üÍ×ÇóbÄý}çëìrø/8ù‰þ5¯¿”'“~NÒs£ó®'?LêÑxàwÑ8’÷+ø#z¶S¬‡kôpôïHŽ7G½dµy ?Õ6ô¬*]úºü×a¶Ñ{àcRNס«ÿ!ä§99\¹ƒï¨/à€ö°Cø>:Š^‹xHè»Ð×ò¾í£KýG_6)‡£¸/¹ösÎ_³ù˜dõC°ãÀOŒ¾D»3rúPÊÏÆ|Ÿft<ÿ‰ønqî:_Ëg{YŠÝ#¾|‚uƒŽÉáÎý¥\nˆëÈ‹™ÃSÔcöv?ßՌ×ãGÐã‹LžŽRŽÖ²??Gã§Ÿø‡A·çªÞÝy»ñÜò–ðHí—Îc¢Wö¸6ÄO£Ÿî·æüìH¾>AWÈSÍø ÐÍÇ‘ ožÞ@/«Ã9\|!ç GØþ>ô4F_Kr„ÖŸï|?Sêðïx€|Q?ö žÚíOè'ð„œ¢ï¯’þM²þ‚·'Û}³“4é†Ú‡Ñìðöz~rª~aç "ÿöLÆžÖßœþ×£*5_Ì?qn ëøŸ“ov—A}=,orìÿñÿÕzµÅ‹v;è4×ÄWê4ü>§ªŸÀöÄÈ»¬çøO±ö.QI< àðTkçÜ6ãå;Þhþšßçü¡™o<Ïùzð9ú?‡qè=ô&mât¸ÿÚã­GUj]£Y9¼¸½Œ|èÍ÷s~ú*­KÐ9ÛçÇ÷a¿ÖûÄõóYçë9ò‘Ç¿8—×Üß1öSÀåe6®·¦÷ óòï"®RÄÉ4<>)Ç‹’xOݩ֮ª>Ú…~‘_ýrÁýˆîƒ_³m½œÿXÏæþG÷ý\‘åå©Êc—î×þUÈ À ð8Ê:h÷åt*äŽýy½M¹%ݯÙ_»|E!o¨~Þ:ºK%r×à y”é'øñ/rzú*æcšÞGN?϶÷÷%{ óH?#U´sJ^_ȃ‡ þçygæý¿}›ñïüÆôºäwévYèÀÞþKvZø9ýBnà=ð;Ó¡¼Ý˜ê¡ÓëTå±Ë€sðaO|qx9œÓá’¿½Á_ÀžSoà…ëŸ þÜþèybJ~4ܧ?£ùýà7àÇÅ€NϰûÔ¿Ó®Íþåv•‡Åˆr$¯·­‡q?ÔwÐÚ§Ö vYÿ¹ö~î¶Òá_ãõá½y}´ïÎéLØ{þ<|ìû —Ïö2æ×Ö#î³ÞÀ‡áOì[~^8¼@Ý/ºÎ~¾Âs§Ç£jw7ºFOæü©Äχ¾«Ù_i?49¯„×»ò2Þûª½7jß3—¯Œ>Eÿ]ñ8øA?Jð`vꪪkì™j¯dŸ|~á¿E?¨ßó¥ÍÉç)ì“Ì+ö¾Gï½ÏÚCïŒ]™ñ±.ó¬fgqÿ¾/ñ± [ÇÞÿWùØŸXölÖ{;v0ìúØÙ€/ì ¬3öÎ ƒwsóu ;6y,•¬~!ת‡þ̶<>ɧ¿™ŸGýbè´ñ¡KÚÀ þ ¨Ä?kü¹.Ðx:ôü"ðYí¾Cß?Χ]ÃwÁú}1õ¾2o~~à¼cÃ{è é|¨?Û©«² Þ@¯Ï=Ñ:‚WiÞáÐmàᣟé;ðõ†Îc¯î”,ðPøzÔµì¯t8oèx0#¯=<ðd1ã?6½hêwõ|»ø߃í3¾ÛI?õžòãÆ8äüÌò}¸ß2ô©ÉTïEª¿‹éù|—æáœc߯J›'äÖ}¶J‹3xÅ~…<Èø`?à3Ð׫Uüë<•‘ŸU%rë ݵø°±/Û«çäm†?,œ›ú ßt|:-§·æçÖÄo]Ã_á»Á§©W×ÌŸó]êg<_´O»ðË1M*=¡û“ÒÞê?xx‰®5¿%x8óØ÷«ÒæIp~ê—k¾Á§¿õ¿)ät༃®#—qnôQ«øC®'OxÞ˜ÿZø#Àß<Ž8üîläÃZöôúÛóôVàþs¾êžáSȧÐðÇóòü~€:Éê=Ï®§¨?¾?‹|ƒÖ?æzr ïé9ödÎ\”ãcU»ôsŽ—‡5ø5vhþC³³œ¯4ýÙmÝñKñshÀ?ô˜ï8´CßíÖsôâ;Ñoð¿Eðù^üÍéuýâÏfô<öO#j_ã) ¢¿’jú‹ù;;Ÿ¯R¼;çk×øUN/¢ÿîwŽœfv† ðu΂צ_¨Ê6x—ÏKU»,ù§8>øsàbŸát‘ï¾jð†¼~œc|Ââ^”ìnOÚaïÍP}ô8v¼n—²­ø¾Ñ¿#9ÜÅyào²õkwÞnÉ^Fÿ<>:v¯‘6ýi“·ªéŸ®÷ÁC_7î³N•Ýó •¥øZ¶Á#àzȺ?Àµûù²Îmð³ÎµÅ­‰÷öåíûùÀϽ¿?ïOð!äBð‰qŒ´iqï´ú >ãùᯃ¿Z=ާ÷™?çÏ%zÀzPš?fÔÃzÐJ‡¢áòÙ^:)Í£ÍsÉï ø³|Aç€_;oVòwã9ô<ñþ´;=ªÒð¢Ïã$Ä}ð‘q=jýÕ¸cþìœy|þî²ïýÚý<ŽÅ¸}¾©g¿õ½ÿIùw®ß{<ÿÓªüÆeÀt>€½ÀåÖ›÷$_—âNz¾à‚ï=®ÿþœß”âÀ²zÁgσAý¼èØpßÑoðÖùõ1#y}.Fÿé7ã‡oì²kÕ×ÖÿSÏ]/÷OÊñÆùoô‡ùòu9`tÀ®«òØeÈåÀthN<¿w3~ä{é­Jñï÷#ÿ?ߨˆ•â¬ÑzäAàá ÁöúׯŸÄÏÍP_èe¹ö}¿ñ'—z_øíˆõÓà6ü°§÷…_¡Ÿd¾¨Gëâü4ú1ËÖ‰óvà%¥Ñ•*/î+CGÿÏ~¸R\¥·5Ïa‡á;Î=â/ÂsäüJ° "Îú¡°oêûþž®·6>íÿmÎ/Fûè¹ý8pŒ½ÞìQzaì[ŒÇí›3TóˆxÖèãÇž5#ïWÉ?Õò–ò‡`—‚ÎͱñTñlžPüÊÙ9]¬_ÝÓ5ëÖip†Ý3ÖWå¶þø§o—Qx¥ûWG÷#¢ÚÝ {#|ëjðGý¾èØpPŠóöM݇n_©~ÌÒõUgÐ…yjÿ*ÍŸä¬ð“ÀOþvÕ˸±ƒâÿ€ŸOó¬zÀ·ËRýÁÞÌûî/=Þ]fãÑw —Ïö2æQëôy ì"*‘+XÑÍ€3ì%øß@·¡ïسÁS®yüÿÏ5y8€#îÒ÷žÉäÿh÷JÚÍùY}ñš¾°ë×Ï2ú}¯á_ïz®yjæ¿ÍéGÌ|VrUÌùAÇ{&‡–üÙùº útæÂ|<îT•Ç.Kvô©Z/öâ÷øéÆûø Ïá§þŽz/òèü¹XïY\˜€wøxG ]F~‡ÞCÏ©ï2}ïq¨À{;×pþB×/^ÀÇ NO´qM¶þÓOÚÅßÙâ!D{øó°ðiø7~fæGÚ„{ûîj£O⋞ÿ0¾¿0}?Ñpùl/îc4ÏqÎF÷+®‘á;ÀëÎ5ðTÓwì?à_g-üÞö#w龟ÛÞÙï2ìà;uíûüf ïøcßÏÏÛ ü µ®šçÔ½¢7_µïÅo^¹ÿt ~2[íIO€ü|„ù³xO® :†ß ô‹sp¿úÒŠßðGÎÈ;¨ï‘ϘðØýoün´+e¼;Òµºß´¯àÆû³òñÆz ¿1?~žn’Ñ=ô×; k6ø q5 —ÏöÒí+þûfÏ¡uð¸ìÁ¯.Ìá&Jà5â\j]ÁÁíÇyck§”Êótg§çpîöY?ÿû“ßã9sNíDûžþÑ{nÓý€_àÚòoÕ7ó/8|g= '6_¥|'zõ˜<ú7èæÜ|¾ªòØeéÜüÎ|ÝÎðˆ]¸9¨÷$‡”òa¢_Õ{Èó¿ûsø‰÷"›ž{^2‹£Y²7g»í¹ÇÅØg|€÷-®X3n”ÞÞæåã ü™‘Ïô©yÞ@÷-NZS ~÷à™ÆQZ¾÷ø ®oŸèã¨ÎI?¡²Ä/&éÚùÄa£cw|ïðÝ.NëløÕÖfw¾ž¥¼i¬¿á·Ãa[<â¾ q»ßOÉÏÇçþ¹»Í{Üϱü!ç„ï<þC)óØf½JøVùuVåSI_FjãmãÅÁgçD_Ky"Í_0äÃyz¾¯â7UùÔ•¥ø ÈaSkãîïz³€SÞƒ¯˜©Ë‘?ž}ŠëÙÍnÛôP95ïOIWŇ®Ê§o<^;çY± £WÆÎ2óØpyÍ!=§¾Yú>âÐ ?Øß…Ÿ„®ÑÂׄ'_—°cçQ¼›¨Çótèº:ïY•O%Þhïq£Ã‹\†ÿÁœÚø_I¿ø5U%zjôð“Nû¸?;‡÷è§®C€Ýý%úNì;Äc/®ð¦*ŸB¼¾å‡SÊãݾÐö À£¿øW|Έ÷¼tJø„ÛkÀS÷_ÀŽ„\þ€§WJ×ø‚—“r¹¯*«òÉ”±žÑƒøÉ Ç·À+zaør~è³N68ÆŸzà3”3rþP²c‡ÆïÈãÝxÜ›³+¼©Ê§® ú _Aþq?Uâ-á'‡¿ò›âÆ…Þ`Žê=_ßQ/þ;à qvα÷:Ó÷ÑOW5ý‘Ú¡^öWÈkvŽj¢ç»*Ÿeœ€wðáb•Suÿ$öAì+ü¼ q=Áêg_s‰Ê+Ä—áo_3Ú#nðy9¾Æ¾‰vyþXÅO«Ê§oÀðy |0¹+àÓÏK¤jJñqâ½µcù›ç÷tŸs„n¿9ÍðBrcèÙ8§qªáyø³Wü¦*ŸB¼~ñ÷¬¥?·‡”òrmpðŠ¾€ý“ŸË£ôpàç¬|¿ý ¿$Õs$ï_Èqô‡~›ŸõDÏwU>7Êð­ÿ5ÏG WS9Åà}ª}gvN÷·vøNàú1ðGøG?›ñ¸l_ƒƒváoôyÍô UY•O¦ ¸·¼è¥s6³s¼ñ8gÁg„_¥|Õ–W¨„W’·ÜŸ öS´{Hå.½O;ǧğTüæ Áƒæu­1ïÒ¯ÆõÎ|¾=oqðûƒV Þ&zœUY•O)Þ@—OÀÉ ¥xƒz?¾ßmßÎéaUVås©,÷ô<¯ð™ƒ¹\Ñ”ëÓ{¡ŸÁ¿ªÂ›ª|—q®>ò’¥²”ÿùœý#q',®YèIϯääª|î–¥|•Ä-Þ<ÿÁ„اٯz>0üv9_oñª²*ŸKeøCa¿ã<ÿøó}+~ñØØÿ ×¬éýÓòï&z|UY•OGzTâ-X“Jð ùm®Þ#Î#y˜À›½‡Õœt=Ñã«Êª|:ʯðYXÿ >ƒ¿G§î‡<&¼ñs[à×)Õþ¦*Ÿ»eؽˆ×‡¿ ø ç?ØÿÈß$ÎYçmòTeU>JÿU³¿R^/ôѲãÄ{ø?±O:£ÒCWås· }3vì™»­Ü•ó—kÆ¿oñÿàûÝß[ñ›ª|î–—¨”ÿ{´6þñÄN0ü¯ð#Ð}þ&z|Uù­•%¿*·C/yεŗJy.vÜà7gy^ƒ^Sïn«×䟶ùÿöäûíøþ@·áw«ë9¤û6?QŸóêÙkó¦v#¾,ïÖw”ôýÐIy}äÿ(ù÷l#?z=Î!r£Ç/‡~ùxý=žSîËá%ι¨_1ÿíøñ¨µ¿/O ~Ûô×Ï×Y>ïÒúk]¢àAeÄ·b},¯VŒßã§2~ì¬ã![¿¶~¬—®C_«v¾¨Ïó7³·8öÔçyæO|?š_¼ì7¸²ïcÜ;ìþH^–âÚ©=÷³/åýÚ÷;ÖÉñn•6ÏßçKxŸqîÈÛ‰õ€Ÿò>ó@}ô—ñÊ?"Úa>vÚ8¯˜OÏw \û8è·î<<Ýõø¾Ì#xt$§ÛÑãÞixÃxgZý¬Ëþ|<ÏnØý´y{y§Íð1<‹8ÝŽÄQEŸ \²žàm>ö•iª‡ûá/¦vô<ê§_à‡Ó'›÷ˆÑ&ŸM3Ÿü$Ÿ_æ5ꎠ3³Sëƒ_0O£ùì àçÍ¡cŒxßaý}A^_¬ƒÖ)쓼E~[Ãà’y`œÐ Öë"kgR>_ñç߉—縠/*§X}äõî/TýÌt’yöü¹äÃd=®²u-OLà ëOÜ?áaÌ/ya 7à•É1žï)æÓòG{z/ÎcâH}ÐË›y…×1ïÌ«ó |ß ÎÞgäï?ØÃ¼þ`eÄcÔ{çç÷ƒ¾ÃDZÔxM \[ÜÖ‡ï¾È„Å:*£óÕ’^ƒy"oŠï£vçrþüEã,ÉÿÔ‹Ü4¢ûÐàºeòŒç(Å#~ üô`>?Ñ?êa^ ³òù-å¥zƒ?¨DŽ;Ýæwv-ûkÆ­Õ{WÀÏ…†\?ÕúsI>ÿ1>àþ‹¿ßÔü½ 'çs/ÉñÐk‹Gxy¼õ|8 þ ûÐ;ÆéqØ<£ó èøíûð`.ýÒ÷Ä ‚Þ#÷B§g°#Òî\ëÿ<ÓKÕ/ìöÐ{ðƒ¸ÊÏWÊ3ĺœé¹­_Ižb\¢£w|ð¢ÒãKð|R~]’3BÞ~òy Ÿç!8/ìKm¿øp‘Þ#Ï'~ÈÏÌëãù3à'â“éÚüÅcO?γùžaõZÏR^àù8èÈ᳄7Œ§“ùP;Ä7dþ‡ÊàÃô8¸B×Ä£~é7tûB[_¯ ;Ìú«>ò/{|­izs.ð)ÞGÎc ßà=ô9|_‰Ç Þ 7äá¤>®-nð%à<€Ž{ÞCð|ªåó|)ät›Öü_¸ù65^öi¬ù”£¿†?Ðæ—z\ÞD¾bŸœkÝ\OðI˜È»­ï;mþÈL~σù¸®\¿ßéR•o o€oÁGÌ—å7.ç•ÓúGÐæ¹a‡ž‹/ú¾ út€ùŸjý¢Ýy¿‚¾ÍËë‹qBWÈ[¦u ù‰q7vó©ûçæý«AG:l]çˆómjw§žCרÿäcëñô¯¥<|†—ñ]èÓ{qŸvƒ'z}ûGÚõø1¬t:È:Á' 'W9à…ýßþcãMS.Ò:wäýi—o3ð—÷Ù¿Ç–!ž·mò Ý/°O¡S®>ltBãu{^|F>%{ë¾Eã 9ŽzùŽýë7Eõ²NOà)õ€§nu»Â^û¸1=YÀó\ËÇ]ү꽘è?ïïÊÇYÎc©÷øþļÌÈñÅíqÑ>ï»I> èºÃíq¢7S­ðÝÓòïKq–€+Û‡émb ž_¬ô`нÇ÷ÀOäÃV;¬ƒÅ) ¼Q}®(ÙŸvçðTÊ/ <©?qŸïÜ~Сù=|N×âûQ['Õz®'åô¬4Nè›çÍ£Ì'ëèxçññöäøSÊw·ÇæÇó]²Žô8Ó¸jöW¿Hõ¶þž‡|À8N°ñy^€3ì9xåõ2zîøY²÷NÍ×;èŽÖ³Ô?èô›w๠¹ z`ð]Ê_ ³ü¿%º„|3ÓæçDëxƺзçiœAXÆïñŒèá•ÿÝ1ÿ­’ÿ…λ?NÉÎ?Íðé —ñ¸}€ùïø^í—ü7(™ø¥Óa[ÏRNfO(Á1óÁú96¿ó¼a>_®7.õ—8§>úÍý=ö>òÒ´Žb|¦qz¾Úvü†ï£ßŒ øž€oË/\’Ó˜Oê/0Þ=y|ýýyUeàŸéŸ®ö.¡—”Â/ϯìþá.7Ÿ0ÿ…xÎ÷NŽŸÞÞ—øÖ)y{!çØ8⻽FiŸyßûôÎwU>=e)¯ûÓŒ7%=4|ÞòHûû—ß:à×Þ/Á)òœÙÉ¡5ý¹}¿iïP}|·?Ç;¾:árý€ÿWù=Ë2ä"öMÓŸ^¼ »z$ׇ»Ùüþ\Oø;ˆÊ9j¾!;{ÓïM匼¥<%{ƒJìè³O²ñ¨ÞðIåDÃAU~seÓIpÔ‘¯óS]–ü¦çæt·”_¦Í~3ö+ð-àÕã› ':tßêývÓÓ O°#À'¦äõ†œ ]<µñàÄ÷çVû›ã± û<ðõ4·ºŸ®¸Ÿáÿþ¸¹L×øe‰îÇwøçÎVÉþàyvz_®åö ¯\ƒ—øù\š×ý€Í4¼?Oß_büÿôÈwȇ–Ïj¢á *ŸXòòý­ãyO“œ†Ü‚Ÿ)ûà;òA›œ†Ÿ òûyüÕ€Cð‘ûÓTï¼\ßzˆG ÎiçôšôE÷ñ_<Óúé|R~ñ~ަyîJϯxz÷“UùÔ–aw¼æPZÇvþ»Oº½ý‚ôPàçOÎáÊûòügjêoøcc?á}ó7+Å£p»Ñ{Ïønó\³Jð=‚ëûvÏ<Îêy{U|âã«,ÙÇw=½rvø/ÀßW%}²éÁëçòLø¡7F^C_Àþ?ůæ×!7í¢ÞœOÅ}‹ãû&öUj'èÁäœO7ÏKëù´|žã;áÏDÃCU>A8>$8<Ê۳̗æÝã_½ýˆk;_äq·ü~) ß‡ßC/9—ü0^àÀÖ·—…u;5ŸïÐÛÐrÇ,«:gt×ýY£ü€ÝOúŽ]]òŒ#à8¦ÿîéç~_amâä…|gú`¯/öýÀ3ú=Óè'çÇü¼>ófçÂÝŸ:ð„oQOpÀ|B﨟þ˜œøÍ–q>¾ |ì?Ûø½F=qn(¿ãÙ—#ä ôTàÑ« SGrx »³ç½÷¸LÀ½ë™fçõ–üÁoð¿á±Çðxw1/ÐÛ‡­÷©tÞ‰x2Gòþ”æg·µÇ󪧖ÿ•Öþp¾Švðka~çê;àüb¾€OÇðx”þ«^?7;U%öÒ6qžÝˆõRýî7þ­ò› :§ZŠS¸ÇèxãíNÊá£ÔzƒÏÒ¹fÖ¸e~é‡Ö+úÇ{̇Jü`Ìÿ6ÆëvkìæWUŠKgñŠßgäï•ø­ÁKàýF_Ìy#ú Ý¢ý)z¾;§ Ñžæ/öê_Èu|ü@ïÝ’8ðJÆÏyì9À=稡¿ðKðÆâ_…¾;ªõç›Æ›)Ö^»¸9¶¿ú¦ùÚþœÞ–üõïÍs½FßàЗ™ÇîOàí¯zjrI3“Á9pdÏ=žºŸãjžÿ×sè t·S÷©:]­ÿª—ybüo%ÆÍzÎûý´zƒžp®1ðL߃Ÿàá¾|=Üo8äk£ÎKò¯ÅÙôø§%zžã‡àq5O±ùöx ”÷ç›ÆÎA/è×4õ<Öº~«xScÜNoÿl•ÏŒïšqbòëvt èÉù!gE\ ­'|n_¾ŽÿvÞÞãîy^vîGÿϲz¡›à+ø³+ÇÛÒ¹ZðkšÑè'ô¾Só üñ=íÏGì>ãevJþ~I¾§=§6~ÖºoqÜO±ÿC×"šÁGÄO‚®åøàq¢ŸÈgæ¯öMóƉžynsžú[æ7¾>̧Ñ÷šýµÓ/¸¿Eà£Z'?/YÒçbÆ8™·9ºÞѦÿ”ÿ=èýdÞ°¯"?ì²zÔÏhxãù|Þžì¹´Xǃ9}þþîxrxÓŒ •Ó×Ч1®Ãù|9}£mõ%¹D¥Çßb¿tçºF_YÜìo€7ÖKý/éõ¢_ª'ò»Y?=¾"í¨~?×ÞÔ ¨]‹¯V‚Ÿy¿œ®{œˆÀßO™]ßÏqz|`Æ×6~¼û)›ý$ÖÏõ‹“ŽMÿÂ:ÕÖ ú(¼û–ùëìñ`oÖé)›Ç}o–æá áß-ƒçŒ§ÓÖz5Åæ—xO×>úáûfðõr|Á¾;ßÖ7à[ïù~ú!¾x?ÈLÃú~ÎÉûr)ý×<4õ@zñõŒ^оÅ=øEÿ^ žÀßLoâ|0Ö½$rò"ò²à±W:dzР;WíÉÁ³Ÿ'-ÉáÌÏ7©?+áõÂÇ¡«´qðs9¡´o™bø´+§_ñ>ò+ëŽzJ£È ãkìïOÉËÀKà>âüižðg?;ßåì’üeqbÝîSòß2:æq›ßŸç¹À_¸Cý¿Xo_/ß?±?#.5x‡>‚ñ"_æïr™ÆSò_ÙýM3î©êg´>FÄ%õ¼$Ž/Œ;¾c½¡‹ÐWáCðâ2¯Ì#û µcÕ×Jü8óü#´O>wàù¸µ¸uáïkñ¹c|Ö¯R¾Æ\oýb>#:òzKûxÆ}Ð8êŸ_¦ïŒ–âé2àû«qþÌÏi’·ý|¹¼†ÿX^ Ïò-ãÛK,Þ™ÇüVå³Ò>ºÄ<žló»ç‰«GjW^ëónzÊæ¹ûÞ÷«;ó~µ‹/ðæú§Ä|s­ùþäûuè¯ù…žZ»n.åËŠ¼ñ†êOÈmà¡äßþ™|æv÷·)ÙÜÎÏø°SX~„8Ÿ^ /î°ûà×ì¼ooX¿É9Ý÷¸^OZ¦úšy:è¿®‘#4ߥøV†w%¹žueŸ¦÷Kq ÷©Ô¼Æ8/€ô8@>™›ÏOàMGާ%¹ÞóYçÀr™ëÌãaÜæoáöuŸßhÏâœ!Ÿ‚?ÐiË3×<¿™÷Óã$–æ}O^IF?#O’Ú¡ß6Ïîó]œ¡Røéù¦ªòÙU–üÓ-ŽeIï ½ös&à·å±(å#NÃ}9œ–âòÝ=‡¾í²ëVê»èߎü»¨ÿqèUIŸ¼×ú7’ÊÒ|Rzÿ™J}_Ê[J{6.ß¿L4ü|»–¥uÕ:r-x 8Ùopoxåðßq8Ù“¿Wʳéø»~™û^¯ÃÙNëðI¹×êqüཻÞmí*wðy†Ž8Þ[ûüE;‡òëª|fËRü•çü×µ~®)ÅëóýœÃpOéþüÀ“í'=ïuþŒX¿öçrN¼G?€kúÉ5ãà=ƒãvq•c>ÕÏR\\ËWUÊçM»‡ÛÔëþ‚Fªò™-=.Šç3 ùlZ÷%úÊ>½XìÇÒ_ÔgñÕÛÅin/¾D§Á;àkçºVwÚç‡w~F»;òñx=ÞN)1xþQßiùµçÏŽz}ÞwTx3‘e¬?ô:êyêÍ.\ÊOÄzÇ9ÕÇþ¼àz®®ÍŸÝå¥èxâü¡Ý¾Ì÷_ο[r=Qà÷!ÍC›ó:ßî¿ëq¬K~§~jšÕëã9˜_Wå3[†>ú} ‹v-ìDð£—À•ÿ•èî¨î;ÞêyÔØexI=&·yܘÒ~ßýÍ߬™De‡Þc>¦è½ßÔý˜dò¥û¹i¼aï±¼ì1ßwú[<_P•O®¬×vn7ྠºü¼ž¨g”kÕÃ9#ôà¢×Áð_®àW´kç\ÜÎýAýÜO) znÁoé<"|…çø]3žw º¡ñ;_ˆþŸ•ËyÁwð³ÇžŒ>=»ÕëöœJO=1e)ž×àþW§æpü—òàåÙ‰ýѨާ^ü€æ¤ûQ?rÿ×ðE•v~"ìmØo°óÓoÏïþ€\«?Ìð ¡¾Órøu¹ÎýÌKó vâü[Äÿ´þϰvä§0ÑpôíV†ÞŒõu}Ÿ_Á® _à}ßšñ+ò}NI^‚ÿÌÈå´àn…OxþUÚ蓮œãçÆyïoÏÆ¯þ”ò⩽ðôóGØYá·ÈÈo´‡=”úè§ù]–ÎãUå3S†?îˆà¸„~ã' œœ_SŸ¿Òò7÷ų¸ Ç»’_=p4ÛÞ·||¥xŒCýAþ‰~zü‹yû¥8=”Œƒç{òïK~oüñ{-okì/©_xÊ÷1žÑüº*Ÿ™²dd÷<ø}û.¾®Œ—ì;ÀübTï/¯×{òû%ý4ý5ûbŒ¾fçµ<OɯÉýí»¶öP+ä9‹çó†œ ]¢^ø3ø³Ëž«þ‰†£o·²‡ÊÏÁž„œrHßœ×_ß}9¼”âôÇíŽßþw~9?0¼Šúü½yéþqñïÇøÕ>r+óH}žoÕñžy8hëÀ{>oêÏ“†›çXGŸ÷Ýyã>ýç¹ç;g~G ÞÜ?¸ò¼°6Ï¥üµ¾¾ÔÇ÷ÀßH-û+og›v,þR)Åë÷=²Ç±tÓÖoê ïÀ=óêq0YGö=à!ëÃ|ÐOîð9bã1?Ö¨gŸ}oðý¥^Úåý=VÒîá|^bxÎ|¹ýR?œ^Ú§^à <œ¥õñ¼fš‡Ð3#oÑ.òýÛ™/ÞW¿X‡èíø¼ì·ye~ÀÖçHNJç[;¬ŸÌõ0ÿ̇Ÿ¿¢>àWß?i~Ã:ÓOæŸøY¬çnë7ß±n&φÞ½ðƒþûqÄÅ×}ô"à#ãfÃî ÷稴¸š¥s"´?-ïgÀÁd{oŠñ ô<øáãWÏz?/?èÀ¡¼¾Òyê£Æ_³ç̧ë}9Çbùé_Ã.¸ ¯‚ø9@ï§÷—ub|Ø—°GÎÎ×!ÎCäé@?nô$ê·xŸõ‹r<ŒóuÌóeñ$Ÿª|C1ßqžPóA> »GÌ× 8‚ïÌã{ƒù¾É‹E>Ú%/qœnÕøÅyùzù9ÖÀG;O\¿‚úôõ2>Ö÷‚œ¼Ìиæ¾s>™õÃnÁ¹Fì G úiùÑã‹8µì¯·—’óaŒ‹ñ€ÀÿTÝ'ÿ,ãdÑç1.ð¸íT? Ã¬ã®fæõ5óJE¿Úà7ô8fž4ÿOo˜§Yj;zA¿Ï…Í´ñ軀W𠸧}îÃ×X/ðŒñðSî·ãëÏxÀOÿ€÷‹Á£¬/|ùLëñ94ß'÷R}?ƒy‚ª´¼;Oob¿¡~¹\=6þ__¤þÎ×wÐ)øô]Cˆ· ý…^‚y!Ž×Ì ôýæÓæ þv•Þ#^õ›WÚNÁúmç÷ƒN ‡´+ú~SŒ“ù<ßÞ‡P_È;¬³¾'.~;ίÝÆéýæ>xÌ<Я U‘öà‹Wé}è=xÑií†\Dû¶ÞÐøÏ¹6Oä½¾dヂÿÌßùÐ#ÑÏ‹œØº=i¼a~,OkàMÀ3ôXï[ìÒ¾zDÞÅKm]‘Cë ü\¤RñcBÎíT}¼G\#×wó¤÷Cîµqçá·Aû\ƒŸ*‘Ÿ˜èrYàt]ójþ5͸GV2Ÿðaè@ð-Ý÷xpût­y‹}÷ü59|wX ý‚.‚¯çÛú¯b_Âú"§1¯Èë_Íûõƒ¯]¸ÔúÁ|øþüÇþúþzÏzïW§÷¾e|!îÌAè­Úa=ˆ3böˆè¿Å¹+å»g~‘gLpjrq)¯Ñ r¼(å ½/齂o¨>èò(pæz9èô‹z‰'~û9õ·”?DózÓ]ªÇô~®÷oÎ[-û+íÓ/q¢ŸÇцn1ÎIôGóÂ{Œ“ya=ŽÈþœ”â|º^˜u;;ïgÐE‹—ò(í#Bç÷¨^ 7ÌôÒòK|Ëúç=à§úgùrb=Üo|o˜oàKpÜä¯zßâgºž¸„‡¬+|8±ø‘áwÅúû9,Ó³~1ÆÍ>iD%ë¢ë臯û)ðTü¹d?ÜMûéyôkÔÚßÓ•RMè5vðs>ÿnguaÞÁ“ÚºwÌkÄm³÷ÀÆØ|6õê¶XýÐ óCmúê{—Ë ßà7óÜžóäð&ÖWý‰uc~á3»Ô/è™Å1-­û>«~Çûr¼*å1€ßa—.5¿¥s¸àkÄ V{’‡Jv9àÏûgóëù–Jü0àO×yvRç¥ø4àµÛÅËÛs}ɾyAT/õÇùjóÒϰ7ª^ƉÞv#Ÿ–®y; ë þ˜ŸYÌr,ëïù ¦Ø¼üè{öQôŸþùy:Ësú-óèøAý» NyNÀoϧ§çõK N=ÿx½ ºÈºçý ¾eñ½JþLôÛà»~°®ä£ŒÓ¾/­3ëÅ}àn4¯¿äeøZš_ŸÊ¸ÚùPÇõŸ”÷³­¿ýöuм†ÿýc܂߈OK=6?ͼ¡àk-û‹væêýÃÖïÏndžNÑÞ.k¿]~èE›¼dUy|–—šûg”ü)¡CíüÓ<¯ôišîWà©ãxs8/›r¸õ—ïGtT¥Ãó<'¥8NÖæ%ä$‹Ã÷].cÜ{¾ÛuUßeÉþ Ág,þz)/r­û¡‚GÈÙ'[;ð/çsÆ7ܯÌãä–öe\û9ÚQ=÷–/®]õšÚÿÞTñžSe Îà7¶O)åÇ5ù>ôªÏá>ö-´òÞ‡ž‡^ï©¡žjõº¿”×Ae§êó¸ÆÔwäËQ1.Õß_®zEgBžóx6£ùwUy|—_ÈQÈaÐsðå"Áv øöbðÇö)AÏM?öཥÅLjò|»ïvYËŸvðÍô(1~ün¨oN-û ¸,¯'îè{ìhÌÏyù÷Ø_&z½«ò©)ﬣZwàúýB•óõ?•ðûBŽJÏ›vl½Oþ àŸãmèÁ³¥ùþ#¾§¼~_©z°C^j×z¿¦ŸOº.Í“Ùmoà‡ª‡~˜ÓóÆTåñ]†ÖòÄ~ù}9v|ì×F‡Ã^ \ƒ_Kt×óláï€=åP~]Ê[K?àsfÿFÏ\Ó_øàÿr™®áoÈ|Zçî¿÷éû¯ÎŸkï}c9°*¯2ô¼óLî~€Oì~Žc†ÞÇ.êyÞ°‹]ž¿WŸkª~~Í´vÍ/2àyìJÝÇÿcTב×IרÙà¯ëy§ž_j|Ìò„¿Ã\Ãú1ÍÚ·xÄŽGUy|—a‡ö¸Hø'¸_çóAÿeöÉú‚qíùPá;ø‹±/BŽÃ¹ ùúð‹ªkìû#º¾Êð†vñëÄOAþ ¡×Þ¯qP˃sr¾xß±<•ñžê™èõ®Ê§¦,Å3:’Ã)¡ˆsqúNðV¿XpöûÑô=ü¬”'“úÍ/ä8ä3“ë¿ÍŸ´tŽ[õ7óA©=õ+êéÔõˆÞGþߨ·X|Dæ'ÎYÒ®óÛUåñ]–â$?£ Ân‰_ xÜ‚Ÿä!½ÿ/iÿð‰¼Ä~ xäÜòÎ^Á!ü'ÎO_„_ _B®Ã®4¢zÙw ŸØühãDNµ¼½îóÇxá7èß5M¼É¯«òø,Cßì~Ãiyk¥xž÷Ôý°w‚?Àµè¶Ç«ò8»~¾!üx8WSËá9ö3ÈWGLNŒ<9? 8öóž§ÚóY9ßjæ¯Sɹ•Ùù÷Åçq¢×½*Ÿ\YŠ+Èþ|BÞáÚènÀµä˜’ŸêWí}àv ¿JqbÀ/øz6Ç_Gè÷è—ø©ç•-åþÕôøãñvç﵋7æqì<îmi=öäüÜãŠF{êo\3î‘Ú1ÿJù»-¯x¬ƒ¾/ÑIøø òþÄøX·V?6޶yÉöZ¿|ü}JëOïY߇ðú­“ Žô]Ü÷¸VÀ«÷ƒqq \p8£~_úkëÏ÷µ™¿ŒÓûçý„Ù¼”âA1/ŸæOVê'ßÓ.óF¿m¼%ÿWú£÷ÛáM´K=ÿ:âóÉûzÞn}ƒØ>-ðü˜jõ³_³xJîOÛv~™7æ‹ùa\<çûÃöõÚ5õq½«M»ôÇûK}|·Û¾óxŒ¼O=6ßñžÃµáKs?_—êqüÜeë»#7÷ã}džo{Úô›káA)> ó|‰|Ç÷ôßãNB¯áGôËó>êy[~C=Ì/ó¦ï‰ñçv^¸4³ô¾ÍSœ_óøtÌ‹æ£Î}ñïðKÚ—¿w-Ÿ·Øo /ïÑ׌}óεÏ9üt¿æ8§Ûü]¢õÞ›ÏCì°KFÃ/üÏÀSêgÄ"þýá~ÄóÑ}?‡Îºá¿I¼!—ñ1Ôú¬Ë˜?[èæ%úþ"ƒÏˆ·“Ãwøýœfýa~CËÿõ-€®åý.á ý÷xu¬øÃxñ£Å¿¸Ó¹¾v¶%{3zëÂ|‰àÔÎû2ÄŸ™]¶ù¼ØÖÇóÅ ÿaÞ ‡Ø¿èšvð·DNà}à‹q^`ëOÜ0æO~.M½•ú3bðJ¿?â71_Ðyâ9ÉÏ tnG~&qíþmÄã´øp!§8ýñ8 Ðuà?MÅu ¾M;Ì£åãjú}ê9ã¾R×ô8é/ð…¿p¡q”ð†v CÐàäÌîâ;ð8‡°.Äqº”ubõë|R%q±Ðc>è9q~7üþ }nÍÍûuµÞ‹õÑ}üq=ž ýv»ü>Â÷B®Ô÷À ã¹<¯'Ö¼bÞƒ_èÚò™5óªßàÏ<½ßʲ…z~­õoŒ‡õ¹ÌÆœà7CüRøô}±Çé<}|¾}Ç8Yoô¬+ëÇ8¦ÛûâÓqÍø‘ÇÈ#Àø ¿c½¨—ïàwgNß3ÏLÏÙw°Ü¿Ôú\3.Æ­yhÊF Ù'€/Ô÷‹ ŽøùyÃýWXoè»åIŽþ1~ákÓ_Lï1ö[ðøwÄçT{ð‡™yr4ñº¹fþŸ‘€/# \¯'Z¿Î°uôs È•œ£à=ÖŸyÅßAóø ¼J.-á x=ëØóçö1þšqx nõ]¼gûûf<"=‡NîÐ}æ'ôJzºeûîRÞpú>Ëñ’õ ®7óó÷ôƒu†^Rÿaõy‰~ ĉó<€ôgf>ßφ–÷OïÇ|[ž•'ýî™ßLÈ;Ð'Þgý S+èŠïk¹ÖsϳöÐÝVòto’ê±ón‡ ?5æËã£s=#ïOÉŽkúÊvq9"~å|>Jq“,ÿKÉÏÕôº1ÏægëêqÑÎÉß+åsEžå}ôû çÚý6öéR|*ä.ÞgüÔ3¢~Qòü]ïÈß/åiÙmýÏf´i×íAžÇLï³Ï,­øÇ¼…ÞAן¦dŸÕ>Ëã®Çz²/ô<î·Ãz±Ny55÷ëŽûà?óG¿f«^èØ,ƒ_Æ¡ùu9*èáÙy}1Ïûs¸(Ùm¨7üþ¬ý¶N»òçOÍü2šQ[Ï]ùwQ?ïy\#Æ!ú\‚SæÅá x^™w··@_XïÖþÞ6õS¯=/å…æ=Æmùôb_Æ}ŸƒŸà«æÇ뜈úTëƒÖß}6Næx<`ãÚküÁíÐ[£¡7p;õÙ¹³RÞ5{?J›?ÆY’'‘CÐçP/¥à¡„7À;óp0o×év|·7§ ü•ðÑÞ } tç,›Ú7xÿwÞc½è玼Ÿ¥Ã§'©~öm†õš¾CæÜòòœðÂã¬y¨èðmxëùc¢ÿ'å÷KûPöyžw¤ŠÇñœ,ƒOÿ<ÏÚÉ9œ”òs Ïá:!ל>jðþÃàû~Þ'Ú1~rûŒ3Û´ƒøüüýà#ìï _y?úÕ&?‚ûµ{ž‡ÿÒ¾ >_QÿÃß’ýÖÌ ožKeÈéž—w·Á×é†mbð\Útê>p5xÒýðwÉë¯ÓxÂþÃóÕ Ÿ°|ê!7ágéùk¦™èy¿=/þ|wFŽŸüÅ>M|©Š«þÜ*ë‹n_ç’?!ðaùöBŽâ\ ûŸYzñm oðÿ¯Àüžhwžî϶}:xâçöÐcÙ9ñàgð7ö-èïãø¾¦RãˆñÏÑ};ß×Ü·ärZ´«qòWíož[eøûÇór9‹¿Ò9QøÂaƒ‹íœmßcWÙ‘ó·ð;¼Ì†Ór¾t±]&Ÿê=ðŸüSàv$ö)äßktƒöæåøVŠ×èþÿè+«øiω²Ocð‘ãMÐUü,à/ðÓÛ†ëˆñ›iVíE>U•ð…8§¤úÙçOÑ}êÁ¯ ;-ü>СrJ>î¨Ïã;??Ÿf~Õ‹ÿWص 5>è‰å-Ÿèu¯Ê'Wú¹ÕÀ‡ŽŽb?,>QŠ?2š×ú­»¼±¿1:^ò_;ì;ƒk}Þô ³ü¯Q¿ð8Úáò!øƒß‡êeŸ²S÷#_‡Íò›íÏÜ_o¢×½*Ÿ\YÊ£ìvDäöÝ–¯ºÝþÜóö–üÛÑ3>k‚7䱓­’#Kçü‘óh×ã¾X¾„xon.|Ã×À[ôánÇQ÷껇óþ~3NÍßD¯{U~‹øÂùÞËr¹úë=Kë͹9ÎËuèš÷§å|'ν!ß#ÿ¨žæ>Ýøçæ(-B3>‰ê#Þxç¨ÁO½wyŽ1^ó³¾Á~Çâh”ôîodxòáå¾<Ê€'‡‰ûÀËä à[ï#ÏÇ9R½Çy@äì-¼çz¹ÀµJôÀ%rÙ™ÖîI×àõ™Öí²‘=·$§×ðSßgYÞô ô“öBÏmóÉù»_•Çgñ=Jy‘oèe±o€Gœ«÷¸Ižãyyý_œKó¸*àÓ‰öxÁ÷’«Â¾F<]Gü/ðʾþÐ|JßÑ¯Ó oÀwüÂùžý|’~@?àËmâ@UåñQÆzÏ7¸`§jÝ'ܸ^3ðŠxJÐaäBw|Kמ:èç:}¸O?"^”ž_ˉUy|•¯§›üŽ\ñu ¼oððø„ž{¼FðÇãì "'áO|Hïƒ_À¹òµE½Ô7×¾À3øKäï4þǸ±ÛPåùôø Áœ ¹ÜÞ¯ôÐÇuûw?_bqyÝûÿG nÿöþfǪ+kÛ·›'v†Á&`lüïtf>õ~U_UÉ¡¯S<Žï8žszZqѦ½B¢)Jd•^â¾îóš±mì4lÀkw†ÖÚsÍßñ7Çs ìlŠS>Éü`œ{Þ‡Kþ(ngë‘ÿdÛ¥ŸÐyð™_¿»ú‘ÐSíÞyÿú(oê/ÃøêggŸ{­ôäø¶×¿ ®ãÛŠnÇ{副 Þ4Ž)òHò„ï[èy— 9gä߃wØé°ïA—ôCùGËΤqFßW?ˆŠ~‰^yQóƒ|DŽׯñµo¥=Çå9;Òá_,8+¢‡×o+x@\»úiVI=à%r‚ýq^ñmÞ[ôè ÏÁÓÒ×UÑíDîU5n|ÊcwCVÔx‰÷ö¹ôJùtÞ/tW{HøÉ=µcŠŒsÛë¿ÀŸ×~(YWðýÈð!üúNÞïç} ¼ýPøù™ô%èÒñ…Ãw'ÿbÞC/Èô!úI?ªïꜴãa]¾£ÿ‘WÐ7ç¦ß ¦ü%~³Ïa?ýi߸m#^~BŸ´ƒ¾Ö¸Rù½ïП /ó=üy? >>zòi•ï°[P?ñпÞò¸|Dr²÷Ÿ9¯E~Ã/°{bÉ‹ûBÁïo ü†óûSÊ5~ÌmÉ…+)—÷Óýä[àið½-û–ã»àgû!?´öC÷·+OÏl}Ï9Pù|¦¼×ûéÇä$íÞϸ•ç£íѾ_åÆ ýHßÝ6>,ðÉ`éüáü¾ ßñÓyÚÁ‹Þ{ÏúÿÇòÎSé8²S\ZðÙq€é'räá+ô&:­õ^¾¿?ö:—AžÙÚ÷Ç™'øKämûḈ¡»mãß :o…ã_›.Ê—ñ_¿ß€O:]ò+]ö¾:âùÁK§ÆGå›Xçá–CÏòþ¤r ÿÓô¬z&úb_ˆþv>ÿ#gˆ#"9¾m|Xà“Á®'ô¢üqÅCÊf¡ðý‘õþàå*ÐyL¨½FçúåÛÊ'B}¥èùˆ¼Y©}ú©|óS>ÑÆL½œ—Ê®\º¥?Œ_qj¦<-ì—ðz4öÛø°À'ƒÕ§v²þǬ7øÁþVçõÅÓœW/qþ%ð úà;Çô=6å_óûÔw4ʹï)ÇþƒúÏBש?ã®!ø[yƒ¼@><éyS¾˜öë‘.:ׯùpüÒ>ß°øÁùÍñˆÅWð%úN÷ÿèàxzëþø0Ï{)ϾÝù¢±«‘‰ò7Æ~¥™î—ÚúÿOÕO¿Çÿ[ôÉxTú¥ò­U>2ÞÛzLýùŸç@ø‘ühø|Ãê ðeø(úçßøÉ(¿bù8çèàÅ…Óñ¦ûgÚáü¿2çÙÆoìJžéz#ølÿhì|È‘÷ÇþVŽ"8oá;êK;½?—ó£ÖcýëR¾g_¤{²•ƒŠå{p |¾á”Ÿã8ë¸Ìú¿ :Ã?Ùùáùî]ÕÇùß_^q~ÿå|z8ÇùXòÄô¶Ê÷½¿“r=Êsý+¡ã<ÿyü®ãð9+~yŒû’êçÞt…žíyó"ÁêQèeèçèÝÙ¬Vãúú|Ãù’Ê_£·Ï€œÊ^]»×Nžùÿ‚ö#ìS6ù½¤_õ÷93ê}S><äñ‘cŒ›s^ä(õ0^úÇù)t<¶8û+äÙâŸöBÁÒËqðx¸~S|òÛ#>:ÞMíq÷Ù‡§ž³#ð›â"!ÿh'ò¥ò¤ñ–ò=týD*}ÐOìzÈ=ÇÛQÞÊú-g^*wéïë¿—÷ÌkíŽÈíÌ ü º[îI¿°x†=ë0ë^‡:_”ílŽo<åk¿ŽxT¼y^¥>ÞË~;åÿÓ¹{Ç}°Ÿ¿5òûßLñšK/²·ûÞOÛ§ôIßë£}æUt ým/øã°|Xqg×þùYOð½…òŽ7È3øšÎÿ5âÙÚž(½k:7Á~Ô9£ówÿC{ÐaúS"Ê4Öã|‡íï=¿äg¿wœxò‡4ΣÚa~ݯãqvWšOž¥'×ÎS¿í´ ÿAN²Oì}+Éÿ’³ð‘îÓ¾ÏõÈ÷þùnÛçœ#ëc;)¿éÜ~LyûKâÿØ|E?ýoáwÜ_d/~NÜÓGÏ/åûÜ÷šÊÿZçé^5v¶àWבòŒ“ñ@G¾}%å_ÿ·ßd÷+á-r$õMçOÐ7ëD¼Ïg|æG½o ½æ{ûk#߈ mÊ{Íü¾­~a×`|ð‡<—™?ÛU±×Ð/ø’ý3ÞÒ)å ð¾Ã¼R?ósAåà;¬ÇÃ|wi|ßq*“ùðúþHú_é'óe½Ÿ÷ÐýÜ߄β.¥k ì«k»lêçðéÂ8¾ê9–[¬+ó¥ü4®w’‹ôóÖ×ùÁ“#½·|¡Ö邯µ3¶ë|‰µ³ÁXOìl¾¯Cÿù~g¬§|-|¿ü~ ^ ¿qè=ôÖ¸þmï†ø¶â®û5ö£í:þ<÷(v}Æy–r©9¿düÔ¾ýmÁ֑ﯦ^æ§÷ç¡;µïûõàIÇ“÷¢_ÇÏ÷}Î)¯yùcú¿?ò…Úuá·èM´Žõ‡_2¯ÔOž^úƒ\%ž|‹ybÿ=qo~„Ø÷À±Ÿq=ƒõe¾é_ãtòÞ3nô/ðûÓÌ7t e^OËþ?àü¾çEÐsêùXõ4/Pʵx Ÿ¼ ÿ­/ëžUëg~:^è-ÏY‡iƒŸèµ·„çá+Œ¯ýeÀK¢7§³.'äˆðaŠ£y©|¿¡~:.îθ¾“¿XÏS~õÆ«/£¯<Ôÿô'íMùB~§ö‡*ý¥Ÿè7ÌÏAú]ß˯ãZ§œÏ…¾Ê<@÷È#èf/ßÁîjÞïä;ûÑÒ/æù–ÖùkûÅþ8žéÜ:;·~“¿zúm»¤ãù´=úƒüh¤ÿêÏ¢Úãýý |EûšîËŽF:îwô—që|¢óƒH»¶t~ïŽÏÅÒ½úC­'AŸÌ‡ím”ÃÎþHÏëzñõÐÿ#•c|ŒÃ÷y6ñ1éá“?¸ßvÿ#?¹ò súü³tœ÷]׳#~ØÞ¸Žÿ>®cå%òÿ:í»×üzɳóÕ!/|úçX_¿ƒ„.jŸƒ'2taù=ÅyïD¿Å¿ë¢×üï<Æö‡™ò:ëþ–íÎåÛàxŒ~âó ù¿LvžàIùªã{8^gïƒòžycýàÏ9}ϼpžc:+¤\÷'|ÿŽþUßÓï‹zŠè´ýô9,ú&ú3ôP»Sú"ðcâ½ãDv¬'ß«}ðíÒÈoª‡C'ÜóV¾…Î#íÞ dŸý:N¾ïáÚ¿ÄyS•ïbŠCD?˜ÿ#­Sñc\‡)N9õ³®Wò ØßžvÙo±}8®Kùë5=ƒ§Ì»â'•^éøáqQ< œñ~Á¼!çœ÷>Ò~e|g´NÐëŸÆz¦ý³ç‰}-°z3xŸ÷¯óðÞÌ{ò0‹Þ³S^:ì0íÿ8ŽÖ~×8àmæ~ žÐoæ ȸ ³Æke]Ò_èùqYÏðaâ%S?öúÞ!z)ê~Oø">Ñqß+|…yæ·É/d½¯Öº¢æ;êo´Þ½Ô=oÚ§–_ç}ó0Ã/S_ðyº¯Ö}¿è‰qðìÈSÄÿè¿ð Ö“qMö‹üÞŸS?Ã?æ{ šúß#ΫâIú>Xéƒõf<ØóCðÝÎSõJñkúC\¥GãüOñõÀ ô+Úc ¾Þùꔇ³ù­4ôs%ü¿¼ß¥>Ÿ“!/”‡À~Ôå÷”/}»þ¼×yv÷7ð=Úƒî/þ$?·Êÿ}á7|—zÁ£ÀÚ‡S/óòšÖ›ïìGt:ýYÏ¿àƒ´ãóyôŸ‹é¯ÏaÂ:ïC–÷„7ÌSúßþ2)W~z¬yaœ7I~.¾9ñ Ñû_ò½ý äãxÓ¾¯|ZãEïéëhù ?b~áð¹WÇþ®óÚB—j‡qÃW‘èýàUã¿AwyÏ8íW¤<Ûõ€?÷Ç÷å³>— ]MñRVZ?Žõ—îX·â±ðI~)ÅÃ7Æujûì_€¬ƒÎ¯ÖñÓ»šWÆA=Ì¿ürû¾û¥@Æw4ösc<ðÆûCÅ1ó}þÊ#öѦ#¾—>¯øÂ>ÃôÏ|ƒ§WS/üœøÓØûhþSùžþAöÍøËב[é§í ­º¡ßæ:·±?–ïµµÔã¼n¶—/ðÙÀÉ,ëS½þ8ë|µ]i:7±¾Cù‡¢¯|çû”)Gû+ê‚GŽwAý”;LýWÔŸàéd÷Öù꿚þBïðïÌOõуý®§}Ô™‘NÊ/¨×~Wôÿ3®mãÑo z?jy=ù)gýloœä>øþ½Î£<Èÿ•‹Ú§·Á ŸG–OC7¾ÿB;Á¯ê'+ý¼/ªÞÊx­ÏYÞÚþ&:)½à@½Ê‹Sze>¥‡nòÛ6ýV`׃ýwðÌñЬ?ü¾ùlGþ7Ý[Ѿ¨v4èFv²I?2žÕþ˜ïÎßí®Òèçõ3õ¬(÷p”GÕÙ×B'èçét >‡žÖòWýpžñ­ÉŠí¼R©‡qlŸ~+°ëÞ{òáŸá_ÕŸå4í3ÁßÇêû|Ç{äõrÎ]œÝ€?޽¿;â]ég'íB?ôï0ï)‡¼» ú…ïßAOKûÈ%äÛ‘Úu¿"—+O¨ùäzÉø{Ω<;•ï´wy”Ï |ºp>£÷°~¾Ï‹|aßúpÄ«þôà£î%–?CöËü~Ô;Úáçt¿‚~bÿO{“}} ýQ|{}>:ÎÏúü=°ñyÒ¾âRMþvÐ…÷Ð!ã¢_äùx¤Ïé¾Ö’ßó™BÛ ‹7Ž›]jÝÏbçÚ¾ÂóÏCJG’öc¡_S¾¥‡£|Zóß”OÊ÷¯q*mÛ¡ÿðÃýï‘—ÐUΉìÇí{ÝwQ?ïU?㹚uC^â@=SX½yƒ¿Iᱞu¯Ùùûºþýÿä¹zò¹„?Àã×=Ñ1tÃùÕù±_S>]ÎÏ"ª/R¯Ï“éºf>àÿÈêï¬Ò¯ÐñÚ%å÷Æñ­ý­2ŒãÖHïÓ9‹üøtá:_äézHõ0üDäX}ˆõG¿ð}öÁ7ÓÉî·wÆòÈè½þ0ß+>Yå tÈþ‚|¼ÞDZ_§=Å*4?nkw›zПWúQ|§œéþÔúü~ìÏ”GÞþ™ÊºÀ§ {þÍý~ø¥ã%Ã÷óŒ\8ñjÓ>w­/©èí0ߣwŸ+'ˆxqì_ñ¨û£Q¿›î™8NŒãbÀÇ¡ÉËé\ú¡ßº—iyj–]æú@ÿ…N³Ðõ8~ÚµEÞ?Ò‰ý[Þòƒç´þ·¼î©­ýñ»Eî â÷Ýv8ÿ¿ózìøòžý¾óç¸ÿµÒ!òú£|ó¢÷"OF>2ÝëZâu>S8ÅB® Għ§sˆUðá0ÐñÈå/V<À ¾Ú¾߯ŸÔ¨ÇT²ÿ òÙ:OGýaýl;¾…\ØéÂþÚÓùíE½‡®Z~äòPqˆ*ŸàiwÛøô[]‡ãàt³)¾ŸýÏåÒõ¼šïî/ŽTî®ðWñ{Îi:Yå{é9ëûy£üª½ÜõØ_”~Bg'¿Ê­Ëiº<мPþÒ¨ßUÎZ~·çüç-÷:‡ùÛøô¼CÖyÝgä>xKúó }hݦ{Â|¬ïî/úô_øÞ=Ê‘ÒÑÑžºw|­OS÷9G$ÎvÅ Úö<,p?öü¼oü”àý…N.IÎ\[=þuÿ›ûÉÞ‡÷ÞíÎIùÚ»°«&ݶça üYtßçœ;&ú˜ãdpŸöühÿéyñJ>D~E^Mt•8‹Ûž‡.ðgÑ òæSìøÁç×F}lŠ÷±³zü«žÇw±'ô|½Œ8)_§rç/ Ý,ðŃõ+¯‘œ« _ЫGa,WÿüÕ‰óB\”úÿ£…^øâÂïûßâ|˜à½ó|<Ú™KWÎ/„ŽóìÝw—}Í_\hÝ•~µ«9îqèÀåGÔù@Žó?zÜùEÞ,ðÅ…“ÿÊáêñÏñ*&¿xÊ)NšóØ:þTÏ;w?¾¸p•_Ïýñ;¿%ˆ¾eºñ{ü$oxæüçìB7 \à¯+÷€ß¯åÔ*?Óé¿i¤ÓMô‹¼l½üœç#}¿aŸæü-}¦ü‘ÞÓÿŽûɉù>ôiǘêÝ?]žôñ¹mãÁœð<Ø$ÿÐ3ƒÝŸ<;߆õGÚA?廃 ýàý&¼§^Ó ï÷4ê7šžBGSþÅûä7ÍóÍÛÝ‘løó óÎö|Tñ¸+‡ÀüJ9Or·3#^Õnñ0ßs^¹þ¯vóÞy¨¦xV¦'ÚA>§žËô÷ÌHçsüRÑ ÿ+oƒãnMó r¾­{IÛÆƒþ<èxhÎãÖóÖ‡ú?ø¾ûMÊaW'Þ8t¾Pÿžôìè+}]èžXý,šG"<;Žë­|­<ó·D7Îs³!O}õÕÆeOù ñ¦<[ÇiçÚB7/"\ç=Ê:rÎz)ëÌ9øGÜsî~•çÏR>~aù5|˜üx7ƒ7ç²®ðÅkyƈ85!,7òÜü&’_ȹÏó?þF_¤^ |üFÊ_Í3ü;zNýøð·xKý¤Ð!xO~< òêcú—gâ  6.ýM¹?m èÿAò_~ºÐÍ‹w? À‡¹Çð‰ðý¾ì|ì“¡3ðv•çàUåÇáÿòÿ áúx~9刧F9î9ûŒoò >_É÷ÀŒŸþì~™òø_Çn'ß“z#+w/|èÓ t“ü~/ôÙO—ýÍ‹§|\ñ—WùÕ¾D<ðþ|Þ÷¾œþg¿žö¦¼Éðkâ³9Ž(ôp6ïiç“@åÉ-}~¢÷{yÌùáØ¯£Ÿ"7‰/šñ8ÏCýÖ)—ÿ'¹ŽÞÇøÂŽ°Àç:žÿfoÄcçq<åÒIíjzÖ½mç)¾b÷Å^_×ÿÕqC•o¯õ¦ýßxÝqäûé\7vƒÒUäkíƒûé?啯¯tƒ<ü`œ×¾_îß¾PpòLç à ÏGZ÷Kúzàùû±|ñùÞét8ÑÅqþ~Nq—üé9}z¡¿ðȵÉÏᡞý=ó‚ÝñB6Ìwú½m|Xà“ÁçãÁŸÉ¿ô0ë½?âɇŠgèMzRñOtU<ú—Ú5¾AÎ×cŸ[c¿«÷)ÿ‚óí:/qÇÁ|=ݧ_wÆñZ®OñÕE¯ÛƇßD¯é:à±ô•É ¾Éÿð]ò ƒ‡ÔË3x ^ñ=pᣠ|Ž!øÜçMrà@|û‘èeït¾>ù¯ÁWùz]m{^¸ÀƒìWK7à¹ãï³o¹µߥ7LrÆt‡¾Ä~@ú̶çe üQºÙY=þÕ?¥ûãQŸïù ûíÔ}9φóNöiÇ+?¿È›¾8p•ßtO½êøäÿ)ÏçàÒæ8ìÐù¦°ÏrŽýøî(ÿ¸Àç vÿ¾!›õ±U~ÎÿZùóh”#“úžìAÇc9çÛöü,p§ÒMð¹çŽÐÃÕÑ^ºÎÓ,:;>=¯çœrå÷ø5^é¬þÈ:çØöü,p§AÇìù"tt¸zü«Ÿ>z×ÕÈ…ã<÷¾IÊáŒ_Yô·ú©‘íA¾ÃO=îýÅ.°Àçvß<ÔtO“}ËíÊ€þú[凜òÏç™ìŸ¶=? \àisõ>o‘¯éy'{À¹Qîøh•ß— :©Ý.åÎ~°ÐÍŸ_Ø{õŸ×?ž§sË{Âû#Ù—yÿ€ã´í©tz±ζçg |h?~“Àéqûãÿõß‚ž ·ÃÓëk½ü¿œ{¾T°ö¢··{¾0ù/þ }ù¡Øsÿ<ûï”c_Ã~»v¯ ’Èè€} ÷7•¶q$ð_Dþàç{)|¶ø °"®~“÷ÆñÖ.Áx‘ìÏØ/á_ ½ˆÎØ1îý˜ð€ù¹6îó¬ß:ž\×ïŸj燱¿öí½ŒÔÓûH?<ßü¥÷ð{ç¾û¹q>žz?X_î+ïŠïà)ýåžùºùŸzøŸu`…õß¿¥õÛ9ÅOô¾|_ºæùï‚<Óß #”n©ŸûZÐùÁˆ?”ËðVë~æäŸËù¼ º~oÜÿu°û%¿Víùô_ñ¦üxÁ›ö[ù![|»¢qmÿ~6?×½ówíôy}jý0>2á‹àí½½ÇN\Î)Yå#¨}ºqœX÷´Ï:sß<Ð~¦ü—zÏŽýì}è{øË=üD×ô›q^å_ïÃé^&úB÷W”sðôöºáþõ;#4ÁÕQiüæÃq嘇q¾+¯g´ÃýôÐÿ¶écd·Ýâqõ¬ÌŸâZNy¢÷ágY'ø7ëDüô{ÂWÊŸé´xF½¬3|ž{óĹ­þ§ÜuÉ1è‘}Ò}áQÚ¯_xüêXïä¯Mý´:›âê¾å´”g—×ò²çYWÆïààëÁÏñ{Ë¿8ÿʼl/7ÑKÇÅ}Û‹§ó¡§N7ð)ä4ów>d¾7Àðµ® ë÷–Ö}r$ü¹rã]õãMáxN»ø!P/ôxc”#ÅêO7šz/ü·ôÁ>C÷Ѫ_B÷>g ܸ•3’Ìã€oýs,WúÔ¸ÌÕs6ú¼ò¦zÊ–ä#ý¨|©|ç»åÀ/èá숕+Y‡¾·\¡Ö‘ýû£ÔW=½ üW\ÖöŸóÛâãwÔ_úqklgŠ p4–ëü¯†_åó«â')·Q_>T=²Ë´^í ­o÷¾5óu yK;Ž_Ý}|óî¨nMúx¤‹Îÿg#>=ó~Åo¬|{xŸeÿÉ>%r²û"ø!ëËù&zzOð z!r|GQ|ˆ)ÞàGÔþAŸÐ3ö@ÆùÇÏ'ºaþèÏù_:ïºGÛxT¿ó{UŸÃîóîÈÏ:oÌ#ðÜóA7Ó ïáSàõ•|Î|¯íê×g`ã;‰ÏÀwˆ·†ž øý8þmÓÉ4OF½â™ËöáOÛxÜ™WäLý+óþ?ß®åûÏB'–Wà“ñ:âܾ‰Þ®ýËŠïB/ÏKgºãe?žAØ Á³ñ»Ö«yªœu<7äÕOÄ[n½à1|Ÿ~`Ÿ`ÞþœrŒyÌ}£ò›¼ÛãM=ð7 ñŸÓÅ> å§8M²'TŽ3>çy™âÓð]Þw?B½ðÙ3ùŽõÖûuÞÐôÿŒêC.PϹ±Ÿ•³È ø|ô¹â¯ÎìP¼•ÂF|vþ§Ú÷à èøÇû-­c󌨽§žrè»—Æñl›N¦yBßÙp~üÔéÆúÌë㺔æÿêíèýè=Š«Ñu„¯!_´Ïéÿà›óÜé´qjizÑ9ê×/ãlûò/)DÏ¡>ð‡|øG0Oì³À?ö9Ü׆_@gÚßT/ýpü¿ýá;æãƒqþœÈqwYWû!õ;:íé9pÛt²ÀžÊ?}. ÝÁ/ìG†œÃ^Ìwè£Ð£âq:¾Oí¥Ð¿Î{·=/ \àÒ úâ…QÞA'•'çòüHrŽ}Õ…QŽT>²ïå—Óz GòêÕø<Ážó\Ô>Åq°'£?BgØ9 ¿Æ‹‡¾òü–è»|è³÷#žw¿þ¶añxgõø·Îûsò«=òO’#ì»ÞéÅñÕk7k}yŽ·ûLì‹=ZèfÏ/ì~„sÛ+y&ŸÓYö#yF¿òù>vwìÍÏ›ýt½Qn¤ÒÍŸºYàókoÇŽu_ø^c×üP= yqnõø·¾—sò\:_RíjØì/ðêói‡^àoV_b?Î9ÙÃ<ƒïœkâW„\iþô@åå™ÎQÏúÞÏÑ~…?áO·Àn…n´/)à'p˜÷à;å/뼫þA£œê>:äü{çT¡Cç÷YèfÏ#,Þgÿ2ݧfŸþ¡ðýÊH•œÓì¬ÿJ7Ôg¿Êu„}"Ï_œÀmÏÓøï°ü¼ÆþŒÜùtõøWÿŒæ³Ä†Ÿ‚ï3üSt¦øtõ µ?r+v»mÏÓ8ÐÍêäW¼w~Aô«K¡÷…÷ÜCG>Èÿ¿úß뢯szÏùòèê(ß¶=O \à@7œSæüfºoæûةѿò~Ê㽬xÎÿÈèÓ÷ Œåj÷ïÿýøÿ>_éªtIzüÏ?ËóÏ´kwß GæùFàÿí~»¿sRŽsdµW9½¸ç`èÁ·F¾SÿŠøÖΩûü-?c=Ù'sì´‹]ˆþô¾¿Êý%ÿs½½ï°—&Òî_óþ«”ûRë…^S?þ|ÿÿ‘}ˆýç%ر>÷ ÝÓ>øö‘Æõ×”ÃošóÅ÷´^Ÿ0îq_Ñÿ?÷ß»»2~Ct…Ê8J7Œ?qiŠOé#øW»5ç:_çù«—7”ï3óš{¶Ý/}üãû¤Ý¯Nÿ¹7ùa?ÄÏ•sá¢óëšWèú£~â·ÜÍ<ß‚ÞÀ—Ë7ø²_T\—ÝÿúŸ‘Ž 3ûÓzº»^¦½äÝØ½É<€¿yfžÞݰ^àçGy¾½³žy†_1/ıâ>ýQ´ÜżG_bþY×ì#ø~Í7)xMónüûRß÷~vÚc^á_CÏŒKø¥{-÷í?†þì~ø9ë=öë'åóõ¥ð÷ï?.g6ù%”?À¯þë#~²ŸcxyïîךGÖ>^q¾Ìiï ‡yÅ> ÿ…>®§?|¹\ú2=CèðÚ¡2/Ì/x'ÿ—öù„Ž_^}ìgñîo_U;ð•3ÈÝ74.èúÓ¼ç^.t_ø\ô'Ÿæÿÿ3|=~öáéü~÷ÿüïagºÙð<ÿóˆO Ÿ€oŠ3Öúþ’q‡°ƒ¨ßSðý¼ú±Ÿgǹ8¿t|Aô½¬[Ècí¯Ëz /î¥<ë…ç´Ã<<…0ßóQ¹ ¾€?ðæ3r¢ö_Ź(pŸþ‚žó;õ“gì`;ð—Êߘ3ú_ñéGŸù=~ÂoB§“ýšï æ“yB^ÒÆUÿ´À¯Rú€ßüÌcðëVžÃÇŠoŸã™èãæÈgúþ¬ú›çòqø)òþtsÄßÖǸ¼¯@>Ðâ/Þ ¼Í83.ö…•ß'üï½òÕÔÓøb)»Ný ï¨]è²çlùžõmƒÔs˜gðþÀ¤?Lñ˜èfº—™÷ðî¡Ptêyÿˆ3z]ÏkžïëUù ý˜n.‹n.{½Óû _;¯>×d|ò«)½Ðæ#ø½¶‹çÿ¯ŒW?Ïôã“q}§j#Ý(ŽAûyFtÌúB/ÈËü¿Òo²k°á\ù_ã8Š÷ð×àïî_3ïŒô±Ž;âAá]ÑtÝ}ß(+W&ð¯'é½åûÂcæ:"n ë£óõÎsð¤ë~ïx4ø±„>¦8„ÈUÅã(~E>–Ü€Î2È=áÁÚ¿?ÿëÞ'xÂ3ó¼^ïô#|­òšqYŽ8Î(ü€}1üCñ+Ï€ÐÝQ¾¯˜ìK‡™‡¼÷ý¯[åáŽøôÊü³ïºšñÖn“vÁ_ôúßý÷þ«~yð;LJÿÐç²îåèï_Ê^Ðõè¹AÞø1ëøô°¶H®°ÞŒÛñˆÊ_òýgý¬¿€ô} xYøl»í¡ÿƒ—œ‹À×àïàz ôÔýhÚ»¯~2ìUò_qœ²I¿@ÞÑOö³¬gô¬už„´Ãÿìÿ°Ï2ßÐ|ƒÿ›×;å>0þüx­Œôë¸uÈ©i^n ¿éë^>?dÒí²Æþµ^Å'i¿CoÓ~”ý7í0ä?ø ¼¢ž”ó}ŒØgíàÓÎHoåc¼½•ÿ¡OcçC~AWÕÓ…'ôOöòÝÄw¡#ð®ñõ =¡ÏÃà–gúûž âõtز¯R\²ÉNÀ:0.ø(þðcøô}0~ä |’ù¤œâx”€¯Ì÷„ï±ï”ÞèqfX÷ŸˆCÛ}ìûâÝÇeüØCÁgöǺ¦=ôŽ›šWôÕ½Ðõ~ê•_ÄzøýÏÉxÑ¿ÿQ\Úâöxì)¾ÇŽÜoÑóµ¢Þö »t>V.äÙqÜÐOÃO°·ôœ}ÖmÑv2ö_äýÙ¼·=$çzí/òrÈ9ìÛµS 7|÷’þG<ÈÿµÛxS|€¯rî”ùwïÊIä#x‡Þ]À¯àÌr÷’ðÿê‡Q>…½bÃ}ëÊÏwT?øW{ŽÆÅw±“Vn`wãû÷´.Ä…½=âyçÝù…€¬?|…zøîc;Îã4åO¡ÿçÆz×y,òžràã|"—{®ˆ]û‰ã©5/H ý¯8Ï_ѧ'ü[þ(S¼'ʼn.ý‚·ðÅ],\çÍq¿J'ðmø(õÓ¼ §‘âÃŽ¯^¼aþ©<ã{æ:½ØO ~WÅ #ð]úÑz^N¾ÿ){Aëa~°Ë/«Og«±^ΣÖúú8Ÿ•?Á³ÊKäüùqþÕôX:^–ŸƒOÌûYá[Ê9î]é ½=Èr÷bà+ê?ò|xc¬Þwä;ëIò[œîM^ÉÿÈYøçªüc<¬û"ž¡Óà!ëã}ví•,çò=ç_àÏŽ³Êþ§y 9‚NÐ3XÇwÔží|:_Ÿë§ýÎGž¿çw¦¿ õ}™þàÿ¾è¯«]ôÇYd=Ñç>ËóßR¿âàWÿ´Uö^~S^µ¼'¾ÙmèyÔŠЙó*!^W?í1/à?ò ¾¶݃Wèçïª=ä‰Ï_Á›Ðgù3|è¯ÿsR9’sçÚÏÀ ðý„ýç\œ1nëÁ¬süÖö@ð9ÿCÏœÃÇ úd~i'ürŠÃ[{HÊ¡}9®ß“ú ,pÏ#¬¾|¸züó½ÝUÞ#_Ðîå;ôÅ)ô9Æ:Î Üö¸¸Àÿˆn°w@ǫǿ)¯ïáÉ{çC˜âÛ¾´7–[èf/¬Ÿ‘òGNñ8¡öÁì·œOåøvI¾ÃïG:Úö¸¸À_×¹xξŽ<"쟕çó®ÚÐëlÄþó¯Q_Ûöø¸À_wW'¿ž+Ÿ<÷¾öì}ÐÕ™àÏ Rí‰õÏÝìçÿ%Ô_`¸Î{·zü«uxò<Å{Æo+ÿ[«|²áöÉÔûê¶Ç¿ÀþØó«ú3tT»=ôÃyç2Ø¥9gâÞ/zökàÅÀ«‹¼Yà‹ {ÄytÖûÑãþ~§9ÃùgÞs ½p.ÈyßåEÞ,ðÅ…•ø±±oǯ ;Úö7è[øÅ¬N~õ:'h¿©EÞ,ð†“ß“è¨þ'¯ã§5Ÿ°þÇ.‡Âqo´ ¯¶=þ.ðÑÍñêñ¯þœûCº`ÿóÉOÍñ$ðg…neÛã_à \ëS«Ç¿žç€÷Ðç3wF½í»'ÿOyr.Ú{º‡©yu|ò¼íñ¿ìpw•õ¢³>¬Ÿî3ÕO„ó8ç·eýï|qÛãÝ\ò ½\:Ùô¾ç‡ÇðGßkXåÿ[#ÿãûm÷™ÓËýžõ2ÂuüÁÕã_ßk_ ,½„.jWåžt†’ž±íñ>óùÕ}å¾°÷gέÿúþ³“çžp~—ûNÝßî¤ò†ý«üGö·=¯ |9 ï;òþ»'ëÝ{hÜ/ã\ŽsÇÑàÞç׊Ǵíñ>óù½²È›—ÖoÊq³‚ç{ý¬vÓ£‘Ö÷6Wõ«º8~¿íñ.p¿¬–xÇ»Ÿâ×Áy@è¸ÍÄÇá¾ð·yÏýqî§ÿ‚ó‡ßÿ6ù®ãN/ðå€Õ¯ð/ä~<ñj¾É3þî_‡ˆ/á¸|ÇýwÅÍÞöxŸùüþõÊorÜ/;\ÓKðøÄ™æ<óî+þSûš“ÏVß=È÷γüõÿXÎm^NX{1ç5øé‡sΜkûœ¦q"ŽtÎÉ~H÷·=Þg6¯Øºy)¡åAå ÿèbo´Ô¯ ö…U~=ï„.c÷©:þ~[ãþ­Àžc>ñ¿~4¼¿•gð!ôS? t¶'ºËwÛï3›Wô[åýYàüÚ}g¢·ê…ŠZùw[ôù×û-ºŸÜö¨¾Ÿ^ÚÿïžÎ?¶= ümÁâû üqLGõ»Ï3v èA÷Rúÿè…úWùu½Þ÷{ýî–àñÉ÷϶çu/7¬=|¼ñÏOÞï®/Š>#òÿ+ãÿÝ‹Nz‹ýøÀgò?í:Þ,õS/ôµ7ê_ôgÛóºÀ—VŸÂ},÷ò'ûyFx¯¸ÍµoœÓ>íøäÿu¾œ”£Ý?ˆn^¿¯ñ¼ôÃeß²Àg×稡 ç“âõRøüñêñ¯~¨ä¿à=~΋©|.ÄWw>ŸÆ)ƒŽˆ“qYvuäÖå”ÿh±—-ðÙÁU~õsS~Çòýðõú“’·ï÷ñoÿ8yFž‘×:Á!úYßc‡¿Ÿú‘3¯tSúSÀ.ðY@â}÷øùç_ >rîúé%å +çAì¤r©qeGûCýéÈsˆœ#.3÷‰ÞR?“o-t³À-Ð þ¢èWø³E/sÞØê]ÜïaÿÁ>ßù¨¿È{ä òc•ï±ÓŒ}Ñ¿DoË$=Mç¸Ô³íy]àË »¿]¬òóyaõ§'ÿ×n|˜gðùpAòè_çòÝŽèêZÞœ~BGعo©¯Žå·=¯ |¹aé»îáêñ¯þmÁÏâyü¬{I¹É®ú*]ò ž#ç.œ^OåÚ#=#×ÚνEO[ೇåÛÈ—àaózbG¾+û€Ïk „ׇÔ}|/z¢]îO ¿^égòK¸=Ú¶=Ÿ ümÀÚ‹¡Ÿ[’Fº¨}ò‡)gÅþÕûwGùÒvnÿW{ ÿ÷S/íCÇ;ã>g¿.ì:1ßÊ×kŽé=ú p_ûð†õ¦\ðoj?|²üûøäì®-O}ðiú¼\ç]I9Ù…§øj{ª<¤ýsj—rÇq{ŸQ¿ècOó#|ŸüÖŽ¤—±_b~Üo ã} vî Ò.ÿïëÐ~ã—€|¤´¬gó›—,nÐwìžèƒù¹;Ž»ëÂ|k}­Ÿô=ë ¼h?€ÆKž½o0ÏØ¯ÜUï®|¿¤—MtAÿÁù—Zó ¼+>rG|BôU¹È÷Ê8ù™îë™ú´îõopž\ž¡C×ó`ì÷ä7÷’å“vü=ÓG÷©º¯Ñ{aòcì<?„Ågùoua¹q>p5þÚú¿i?þ`ü®ý¤}öß{¢ð©yÍÅïoxEÿ¦sJÝ“+~bWÃ>}Œé±ã¤Ð ã]TncÇN¹ö“ÿëç“zÔåÇÝH_Ì#ïc/~½d÷:ÞÃqÝ7•›ô4­kéê¬ø¥èªõ ¿»tcºº!9pGx„á<–öË÷µ÷êÿÒ/óÂùäyá øýPrçpñ§6î—,n«?+ñüøþþø}ËÅÞf}ªô =á§Šœ”žÜyxwÇä?Ž|eþXñãv\ÌϾ0­/ôÿÅ/ËøŽ¼øÝØÎîuéðgåóîùú›¢CúžÞñ§vbøéá+|•ýù_8‚ŒxP{íZNOè3ÌôÊyªòNñD©çx5ü:¯ÐüçRúǹéãÜ@7·…ßàá5ïêåÙª¤ü+õ›$¾ûhô ðçUAðœò€ù?ùô*÷$7ª']5ýå{ÆÇ3~•´?`~ðƒ1]?ü¿‰—HQæ¹xNã—ŸhûËü³‰\¨|€<žŸC—)‡*tOÿÀ úÇ|q¯®qˆ™ÿ@èœóÚæ¥~¹è¦|bÿdÜ¥§àõdg½3òeïCÖþQâ×Ì?ûé4ÿð=ä|:A¯ðùxË~þŠžÿWàxG¿ÎkÑŸœ§ß[ÿg>àÌÛqžé÷ŽÚuÁÓ‹#¾•ïSßYÍõ²O¥|êmýôÿÒKgWU?zrù<ô—rð tÍ< ohWq¾_TXüþÈWkºõ ëÑÓ9Îkzn&ýªÿû\…õå;êϸ×uG|•ýè«c?»^¯®†ŸÏ%ûžñ«<ô Ÿ`Þ>J¯"ÿeÿè<ÉÏlʳ ¿F΂×Rò¾Áüi —»ª‡~QîŽæzaÝ÷T?óíý¨æ³ëBOÕyú‹ ËÏÀÃŒsÓ¾§üûHüù~ÂûwD'ðá{#vÿÍü¨~äþðœïT~“¢ÿïôÚññ¿ñ:dœÐ¹ÚŸîûÃÀïãŒÇýAdü·Çyn»üëµøŒžg; zÝæ?åçäÎ|\ùŒóSû\cÓþùEƒ•ãºõÿ[šÖ ¼º=â¿S^TðßxNûÔ{¨÷ö£AB>€Ç{ªGýt;Õ+iz%&û2ó¾Â_í?ú,]Êþ×{ÒôßçÆÌÿ…q>ÀÃÉ?'ý­Ýƒñ0*o»ŒÇ¿æ'êå?>çQ{·Û#~-ðt8ã„ÏUÿfþ™ožá×ðUø(ë~R?úë#¾Z> ßÿ—ÖŸþïÚÿ<¯óÅnÀoèÈt=h¼û§·çs+Ÿ_¶Ü™Óñ¯ýØ4Ÿ¢ç‰O2o|§ù£ý™ÎÙ oú}J.n/Ÿw8?|nò r¾¿ËÿÕ¿ÁKÇñdÝøž} øbü: Ìÿí?ýàð ºRîHõ ïû=õíÙÀçQí×Þø]ßÓ>r€}ýDßmoÿôþLíäû~‡>¯|¬–[‹¼y2Øuޓ܆_gýª7ƒçÆr“ýÆùn¡ ø¥äPù#ýÙSù´g¾êýÁ´§ßºïÙþCß–KÂÿé^‚ðó§ä 妸kçÒ®ä;öâê“ø“QNòa·*õñÜó.­—î{ <Ì'òàûß&ûÎJïÁËÔS¼e}Þ¿«]¾«øKö;µßeñDú`ñìÖ8û£ØžÔq>Ìsðm¢›ÃŒ/óf»[ËÝõ&ówÏkõ¤AÉgûïNíB_¬|*ýî|CWô#ã]òð>Üä¯2íøŸùÅß ¼ãýNÊ<çûuþAÑ'r|Þ·òËs?z>/ùãøÏ“¿û«Æßå“ù9?ë–+Ó|Óô&§xW~"y¸›úí3ùot^R¹Ó¸<©z{ýtz_ Ö¼b¾Ç«á7á!zBÖw²£íøP>‰üá}è§~R:§šâ˜‹nŠOÐx%=eÒûx¦ÿ‡|7Ög}«çžîgÚ5ߟæ[ñn»¤_ÂwÓãtêðôv'Õƒ±|ùƒã[i¼ <N÷IÀ{Ÿÿqî>²>–ÐUð¨ûÎð±âÉ£±^ÛÍZî8õè^Mû¯<õ+0›/XAoÁ›ö[qÎÚz©î÷˜ž=ßðýIÞ1_ÐÍѸ.íWæi÷¤ø$ÏÊŸä÷×ú³nù|m¿Ø6^>ïp}šy~}Ä'ÖgyÔ_ʧ^×¹ëF¼æCêË{üZê_•ïl­™ð4ý›öÑJŸ ÙO¡û&ÆCžEûÕ\=ºyÞ®÷ÕÁ7ü%ÏøT;Ðïõÿå|~¯²nðwɧòχ’WðÓsùþ0õú>Ø…ñÿÉîªýJ÷[ø7b—²üˆ?véNû›â]üu6ÊÁã“ï'>å¼X@äã缕ua܉ßø»¢Ïõ¹@¾g~™ÿiýð+EÿÚ6^>ï°üXþLÅ?ðýGç“¿dük»>ðoÖSç£õÏþ¶}ûÓ½¥þÜžÇ/±t€_—ã †ïO÷]×ájø­ï›IN½;òûÎkôÙtƒ>Æü§ð¿(~æ{gØ uÞ9Ý生ï™t^k?]N.Pë _‡ï±žôü<ù÷ä_p[ò%ÿOq˜Ìwiï@õé×Ñ?úÜi<·?Í‘Úa_e}ïr€ï¨ç8x¦x ×3#=ŸÅkúO?h‡þHžòÈIo-Ýh}Ïh¢_ø™â.l/Ÿw8Ý{ÙñÂç8å׎wa|»7â¥÷K“>~Xz£} ø8~ßþÓÎáø.þ>ùÐïò•vè'ãá>˜èÆç7+Æ™qTOµÓájøm´g ?~Š>uÎ;Ñ ãföG:\àó §óìÊém¬³åïF|Ÿü¨ƒõ®½9 Þiÿ?ÅBN°O@¾Ò¿ÃÔË÷’/–oÅoó‹iÜÐyÆïx:ëy쉮=Îmãß Nò.x²»ñÅ~‰ó w€Çì¨çµ±âÏùÔ'»bñPþ(mWz¡ï“MqîŒõMqy‘»ûªùÉ8Îþ~’ßÔ£}¬õŽ—åþÍoÚ.ÝuD‘×~Š<ò½ð³Ü¾:¼Ž#y_®¼9ùÙÎ^y…Rõ=j?§ø{~Wǘï>ëq¾ûÉnþögÉÝëšÝÃ)?ZäÍ {ÿ:á>=çÙÜ~]ë~oÔWv?I¹·„WÜöýÿÈ­öÃù v.çóļ$çR¶×CÿäÝ Ý¶Š[Õx´ÿ¾ åu.];‡óSßÅ@â6À‡wdÛø°À'ƒ½w|-ðjðþMüâ£=ÈûæÑÌóß‚—ÄŸ!Ïx ]­F|[÷#ôÞ~&ºüËÉ÷µë!wÀ»ÏG=«ã õw‡¸RÜ¿¾‘zúú]H¾ì~šrŸð½ä-÷Ââ¼æ‰öÿ´ 6nëý ·ÜÊzsÁú…ü…g`ŠÅyÉG¢è 9ð©ô0ä`ð³vAâCæ{ää»j9p.åÈ›»¯r:ß,ž#›1ÿCGØ÷èÇ%ÉmâØè|©çÝWFù»ÀçnðeôtÅ·¨^äøHŸˆƒOòòý…É®ôí?‚WÈ?é{èWà_ðï)列…¼áùñÝuüªüÏþˆ¾‰~÷QÊsÏšýË%õ‹x$ç:t¾ìÒ1òtä# |¾aí¨Šß¿{3ë ÿ?/}½|æ<|އ?yžâ¡¿Ýñ¼ç–à+ø ½÷ξÿ"'uŠSо‡œ9’~ë<ÖñKÊÀkæƒúÙ¯1núÃ|W:%®ÏŸ˜Ç q>ø|Â).|=Ìzƒ'“¿<ÏàÛ›ªŸïì§%š)oÖ‘Ú¹üC_º:âù”gpOrAqj'ô~äÞøéZ~=SÃÌÛD—?1ŽmãÃ!‡«¬ûžÖ<<Ð{ðÄþ›Îós6xE¹ã“ï|ß³òÁù<÷Çï¦{Ú¡‡mÏã[°üTqÙ'¿+ž}oÕÐyú 'êµ_›â±—~(Ü€ÎÐïÇ'å·= ümAÇsÞÐI³žÎwØ¢ïÔï„ýÃÙÑ~6Å]sþEÊ)G÷IF:Ýö<.ð·{Þá{ޝŽx<ݯþHøËyvbäϹ“úÖûÔŸ÷Ýws^Ù{£c?êW†ý÷ê²?XàéæRèÿìÈÎ_>c'ú&ßá/sCtçüSœ[rns~Ô »ÏGÞ|«ý;v`èö‹“ú·= ümÂæMîT»í(g¦ü¡Øˆ[€÷ Ïë|ji‡sÃäÁ®ê-ýü±¿?ú`èmÛó·Àß&¬ýUq:ëv1øì|{Ù§7NÙÙi¯ÉÆ>zûLrH~o•;ذï²_zc±£-p‹tƒž„?ã»#>W/zGt|Bήÿzÿñc¾Ë~>ßç½ã2>ÈûúEž<—Nï.û›nî®N~Ýÿ+~R÷÷Ùÿ¬(ݺ²q¡ËÞÎÿЧÏñ‘÷DÏï›~ºYàö`Ï'/é\»ïžìÅècö Ã>zÝ”/:cÄ9 t‡üypRžûA•g´«øÿÛž¿þ6áîêäç¸ÅOûqɯrò'A¾lÚ—¸^í{Zý.ý©?Ϋã÷Ûž¿þ6áïÊ9Â#ž8OríFØsË/ó?x Ÿeÿû1x”gÎK|¥ïÙ·§ÚÅÿÿÜèOÓ9ó¦ýFç‰ñ0^ιoÖû’£\™âÀÈß³ý8çymWмn »žŸ2_È9êåüggìwé<ç´›âÂ9Oï”·HÿŸósñ=qå·L÷õÓf¾¡—W5àþÐñ[x¾0~×|Lá»­—}.çÐkóо¨:ƒŽ¯e~©ÿ¯ÿsRîÝqýÚíö¾X¾ó8}ny90ã[ßÃÏ{èê¼ô!è‹~s^OûÜÇâž1v7÷þZxÚùq|öÕØß)>¼õ:èŒ~—®‰G ¾C?Æñö=tÞSçYÐÕí‘otÜ=ï×aÛöÀއùIÜ’)ë?…?½;®OËqï<…ž¸§«8óÅ{â\øÞ1í~&|k\‰ÔÇ}uÆs=ÏÈÚåÜõá‘óÂè$þ@;à?ÿ;.Ó›š¯Ük[ß/Éû‹ã<Ô¿¯iÞð_»+>þPßAO’óëûÛô‹òÐÿ9ýo¾UûÜÈï*/t_ÎúEçùˆßô R>ÖMùŸµ~¾»JÿYGø>øÆúƒOàó†>q3ßÝ?3~Çýg½¿É|pN_=N½¯hýÞÖwàgècíoœïéÿ;zÎyHÛ_>¢>á=÷ªì=Éÿ¥~2FÑz¾2ÎgõióË·Çyêþ ~ ßw¾“W5ÏðIÎßÑ«dG*¤ÿE_àQé!å¯0)Ç{Ö }Öþœð¾‡®Ñ3èWòF­ý–óü=+´õÿâ—ò[t¿ žv]Cçë{vÎ/} ¿;âÛ°~ô_÷*ºžÊÛá}Uç úÜ'zË3§›û¢oð’õ‚=çcÊ«äý[è±ï÷á¿ùÿºH}ÌËÅqÞ‚^ëóñ¬ß´Ïb‘õo}ÐtÂ8d·Xï÷óýã#ô™òÐ?ñYµožú›ù˜ö·¯ó7åis<5ðœñƒ§â¿Ý§ÂOì·`?Î[áwÚç¬éf\—]Ö‡þ0_æ_̯ã\á'¾ Ÿ9ÎÍ9ý¿3~ÿÌíðuö»Ù_ï~•÷ìCv´Þðoü™··5/—Tý¤ú9üùóú=ß±Ÿ â*Á²|Ðñ‘ ègà+ô=Q>Šýq§ìkWoè_žá³—FÞ@à+ý?™çKãx»Ž¼oÜ@#pºïÌ8®Áoò=óJ<'Ö ýöíÏË×h—ñ1~ÅQè~|ÛRÞ¨‰ÿ³>Žûݼéïã:Oö*ÆM<ð;ûýu>Êü]< üë¡OÅçŸî•€ÄCŸÐ;jÏ ¤]úK<ú÷'»ûÞ|Aü„ù‚ß8^çÇùŸ~Ó_ð;߯íyùŸñº/Á?ÊaW¿f²yêø5ž· ¢Këk¡›ê#ÐùÅq^Öóžú”Ç­íÂÐßègÖã™Ó üíMõó ­t>ØnÍþug_õ&øóÖûYÁ+ë-Ø'¡Ç¯ñƒ¼£ù“¼˜èØñù±wk¿:å½à\Âqj-_á7ÎçV<ÈsßÓ_ꃮÀküdП”w¹å|Î~WÞh~™7è”ñ!Ù7B7™ïòWä;øÁôÙõfÞ%|ÿ~m'ßœ/9ƒÜb^ «û|ŸvöʇÚïÓŽî9·´^Þ?ºÅüŽõNñAϨŸ<Ãl¿ö¾•÷¶£8Îôϼ*–ísmŸþLç±¢7ÚW^g.oà'Ìópwä Ý×£§7/˜ð@y~'<ßÇ»>oÏ÷œ÷@/бõì°à tg}:t^Íóÿ§çõ ~:Þkõö šÏâåÕ‘LëØ8|úŸ{*àíÃQ.ŸÂ'zÌö*èâµ/*,·àçÐÏý‘ŽªßR^yn¦{Ì#ëÝè¼ÙçöÕ³2ߎcÕï™—«#}NvèºûAãK½S^Ä´Ûu¿˜r™ÿgM7 |9à”w÷t¹zü+ç9ü±øì<ŸÐr[yªÿžÔ7/!ÿÿ´zj¿¿ýÜaíãðó“jÖö¸sãóø‹èæÖˆ¯Åç½Qœü¬Á×{£Ü›òÊŸÔW9v$ºp¾N퓦<ìGzXçñ–|¢}ÓÝ’§pÿ Ý ??¯Ïií?å8ïÅKôIìöoôµöcÊÿÊŸX}“}ìÃQŽ8éD¾Ð;ñS‚M7û#.p?‹n$/6ú© ý~äß“ÿæÙ±\툊;]¹sx[ÿå<³oÔ~°ý¶Ö9Ñ;í÷¼w¤›mß,ð倵CõÑ \å÷݃X|>< ½PÎ~ѶgNùu/!§ò]ü*JGÐ/ý»$yƒžDoÃß?IìWFù²ÄGXà/¢ð¼Âþ{iýл+ø@ò›ò ðœýR÷3·F:¬½]ça“žÅw:_ö~­ô{AòfɵÀ_B7¾Ç£¸†¥è|d£|¼õgB‹¾6ïŸÀÝUž±Óô*äýÈ9]ûo¿ÞÔg½®túƒäÕýEO[à/ ùÿˆWþß^å7å ǺþáöãfB9û÷dB{Ó}7CWîüa¤£éÞ’óJ¸ÐÍÝ ÿûü½Æç.½¿Ä¾$å¥u_~ÿ0î—Ö笩)žkHùËi:E>êþæ.õ+BéÎþÔ×Çç.ðI`Ï%±Ýõ›ú¯â§Ì=¹ìÏ«_É¿ºrd•gèy]±‚í‡e?è £ªüb_Ôû¦©ûû¸ðûko{øbÁú!‹^ªÿ8Άß?kÿ:;ÊûõÖ. ¿Ò ÷ê¯7âõ—þÞW¿þ0¶[zNÿ'tÛë°À öœ~n?ãÀàiÿ‡Þ £È—úƒítæ¸Û>ú1÷8‰KÃüÒ_ꇞ˜7ÖGyÊ‹gÌ3tÇþ–þÀG¡ø7ü„û¤Ì/ëWºÎóÛêý=¯õÇ¿ûx\9º9émžÿ_ÇÃÊ{êãž3ü„8\ÔÃý2üä¡Ïc?¦ûéö_`^ì×Ã<‹.×~÷™/ÚûPõËOÜvíòÆÞ|‘véÿyð/õ<ÊÿÄ=ú<íg¾¦¸ÜÄùã;è„yqÜêã¹÷¦EÄSŠÞ]¼b}2^ú“y.÷ÿŒÓ¯/ó¿ã ?Zü€ÞÁã7õ|º÷´žÌo㪟ÄY¾1ÿàß§yv\ä“âzLñtyï¸ÄIàžLèÝ÷$ÛNãòäý¦8JŽ?ÿöÇvj_Î|¶ÿô~ÅúqÞ÷f௺oÙõz]§¼ï_]Õ¼_Z ¿æõ/ÞÕzÕ^—ñÐö¬Ãô÷oŒt5ÅtÜCß‹;Ÿÿ«¤_ò“0¯ãÉ¥^øÅÁØïö«óϼå=üïjþxmìÏ4.ÇO2¿•Çß—.¯÷¬Ç¬×aÊí^иº_áÔ ~²þàëŽ=•õeßæïÁoÆ~Žõw^toxÊ[E{àãÍ;.rã‹ú^ü»Ô—i‡ó»ê©_~À­—øpÐü„ûÕyßþÑ.zÉCÓÊy?ïÎ3ö´š7öéW™GÍ?ü;ƒã*"ï˜Wâ2Ð#óÀ¼Ñ>x ~™ÿÁkÊ}‘÷Œ«v¼<±aþÐkXGÙ*3ïáäM/é¯Ï¹¯ºþBßaÇ€^°BG¬7üü ÖMxÉz÷X§Æ'ƒNó?z4óìøYŽÏüXë>—zÓâßNyø"ø…ŸzvúóqþǞĸXðþcõ‡ï‚דÞ¼^ç­ÏŠîkïÈÿÍ9¶ÛzØìãXdž>Wš7Ƈ~èû…ÎÓý²þÿõß'ó}È<‹ÿÁ WÆÇ¸™÷Êoè„þ廜Sí~(¿ÁÒµãAÑnùøH?6ý´Ÿeç|t¼ñ®+ô^3ÎÆKOýÔ‹üüTëf?è :¸¦ùÆ.~ú×Ň<7ƒø û8èò<|-ßÃOà3éOËÃç'Ð3ü‘~C7Äc2Õƒe_금—x zL9Ûákð¯mOÖ¾£ç<Ôßoáûì¡æ“þ$®fÇÓó¥¬xv¤ùbÞû?z/÷²>à#xÃ8îŒ|™}nùlÖ þ „ßÑ>ónza^Ïê=øŠ™v? „®ÑC?Ç×ztžW#O°ßÿ¿Çyg]˜OÛ'Ù×›ÿ6¾çX¾xɸYÿËÂcí»ûž<0× ÞÀó,½ºò%z„×{ºÇQz¾ÁÇÈcƒü*>kÞá³Ø¹ÀÇMãÖýÙžSf]*ïîä9tXþ ždÖÏ:¾Æ‡Íû=Ñ;üz†oÚO’ýÏðô$Çã”_Ì´o½š÷²g9~hçµü-ýv>•ô¯ó˸?V}Ðã…Þ¡ÇfGüñ‹j§r.ßÃGÀ«ë?øêø½ô¹Šþsfl¯t…ý{o¬§üÄùV˜Æ£<ÄS|dú)™Žû üP|)zWç>ŠÞˆ^ò¾Ç^zKí /±ÃA>/÷9”óž!ϯ:Dob¾è'úà¥|gÿCöcð'ø†ü|.^{,óÃ<+bùøùYÚgŸ‡?;ÿ xðžúQ¹"¾p Þçøv@ðÄy€8‡×Þr‡fýB×S~aþ¬Þé<ÞŽ_žžM}ìÇ©ö&ÖAt½‘_BOLûŠ#ê¸]·ÌûS—3>7®¿ó«õ»˜ùº~º¼è¹ïñ8/¶·¢‡¯åZþ^ûœ¼û^Ö ý\~QÝ/ Ÿà›Ð~à í`ßÄ®¾°_@/ ½NyZÏŽriÊ?_Íþéò£ç.Ðóï3ðXã›ü˜Ùß1>Ç£†ŽÁÃàÛŸ°ç]ô?åœoä“Q>­åMÚÇîØ<¡#~0Žâ 㔯ÝùòØN×Iq ŸÝ€wøYÕŸFãp¾†Çÿ[_ã£ÿ÷ý{¢—Ïó¾y Çõéºû?ãwßþ÷IyÛµ³oï3ûSö¿ðÓö'ãÇŽyCxŒ=€ókÛ­8oÂ^‚ý‡ï±ŸT.ôcÿÀâåMÑ1çêœSbÀn‡ˆó6øÎg©·ý†ïä½ópÚÞã<:7òÿ§y>/ü¹¦uçþô…ýGñšhgý]êÕ½‚Ê5èÿë¼Çïÿì3¢›Æ§KXæ[=G×N—7建ç]ütüüÁŸâiÞgzŽÎ<ê\¦çKðûžC—È£¼‡:þ#ø„¼©HÊ5eÊq^Ï9zÅ·ÿä¹åœõõžÏœeüióÆys\—Ú¹x&ßÑú =Â?àƒŽý«½ü$?gú[;þGwòÿ‘èáªê¥_Á÷µÞ3Žo¯Tãv^6ìÝØ÷>ë}jt>÷ü<ÐøÉóÇú^>®_ªïáKŸ©^ìÍð;øø]Ü~B”·rAþ"¾'QyÝÔÿ º „¿2O>©üÍÿÈ¡ðƒÒÉ^þï9Yæ |‡Â¯¾Îÿ´ƒ|âüû4të|ôœÓÁ7€Œºaþ©¹2>Úç|éùt›ú¸§1ߟxã¸Ô囌¹Ãx/þ‰?Ú[φnÊ/fœðëá#+ý6Ùüý®ó¶ûmÚsþHð…s›ž»¦ð…} xžuì>T÷€»ŽÎçÆº!—ŠGàOÞ£uä||G¿Áˆzë›òàåÎØßÊå±c>y®þʹñýJ¹q]wÿ–÷Ê£1É“ô‚QÞtÞì‡ ?òþIñtÊïœþšøè_àš'î‘:–_ï¯R>÷õŸ:ÝÜ>mÈc]ùšu5]ØnκNûåû-¿bàûœ[GOw¾úÙ¨rΓÛûþyvž'Úe?°³~ë¸)yÎx‹gØ À_ø;tó»qÞ/¶ï_sGÙ³:nèÔ÷Rþ•ú»¯J¿ñ»?ÎÛdge}ßûóÔé¼ùfäS¹àCçMý³e¢;ÎÁ­¿q/]÷¬|/¥óˆ|Ôý–霒uœò‡§^ß+©Ý'vçoðKt=ºO<åÕe_¥ûVÓyOýfá)ww¤3ÿª¯²ï¡>ð¿ð¹ÿ„ïØ¿¾Ä¼2/:?«ÝRyb›w |“ýÅë8Å…N½¶+ù>û·§N7Ðý±.·iZãÝ“Üyðß™Ÿ\>ÂÏàS¼§ßßoX7Êîi~‘g¬‹äGë?| ;5ã>:½SÜ‘·ÆöZü†/ðÞó çÎßïŸÞÿÉï|F¿ÅåXýGÎä½ïÑ÷H{´s<ΛóƒÒïI@n±Ao;3ÒMëe}¿ñï©ÑÍÞ8›üg:ž‹§ÿïóHëokü×ÿš·I4¨¾§ÿâÇÆ“Ö{˜ÿ-²ž¶ËYžµþmx/:œìgNÿnÓÏy'˜}è;åà”ƒ®4Ž)¾ÿïFüŸæQø9å7>Vÿý~Rý§ëôpÄ7ú3áoæawõdí,ðéBç.?…¿>d½ØŸÿ.J>(ŽEñ£~–)'}¦|v¡¿ z­ùÑçy‡üqžéž{§¼ý Øï þ4Žw•_ùý = ô~¤ùƒî¡gèŽqc§8x6re¿ /»ÿ}¼€j×;×ÿ‹/àqê·ßQ÷ÿΧI»÷…§yn?¤ÏuByèƒï";>þg<ôï õã@χùžy3Ýó~Góˆ<É÷µßËÏfÏ't>–Ê ÎÂ_WÏùõŒÇS^õð×é>ö@ô"ø4x=Î÷;KWÁ»>›^€ÇiOçL•;Œ§tœÿGÀñŸTÞyì§ùe>ƒ¿çcÉsó|ÃòSÖsšúYd‘/:÷è}EðM~]•;Š—2ù1b‡Fï³]ƒúÓÞïrmºazÝQýà5z“Çqo|?Ý3Åvñó ãЮý!³žáóß=ÈúƒOŠóßràeãÃó=ôã|˜o _ KäzŒå†èÝþÈS<ò‡‚Ôë<:Àãôó\Û¿^éÄñ*;Ìô›ú§8AÈsä­èlÏtÜ‘)ž™ýõt¾¶Ÿ¥ø?>^*~íÀºÿé}¶ã•^Á³|¿Ê¯~€çÕOþï_û?åPžïCªÖ3ïª=æí5}_»½æ‰ñ¥_ÛÆ“Žuò‚;>’ãÍ_«W9N-çûÈæó÷ ›îÅÕüËïÓ~þŸâCOÚLq —™{Î'ˆ~Hÿ.ï§8Ô‡?ú"tx…~ä» Òó².ÛÆž×ñ²n¶Ó^~5žÖɯú8ò?SöàaäÐtŸ?riÊ›æ¸þøÑÁÏÁ/Ãô™zÏõÔŽÇóCµc:;L9è›ÿü‚ù!îÕqÞ£o¹¿²W”¾2¯ÀmãÇO‡+Ö)tÓgÇ{±Ýëü¨9.Mõèãvð‡ýFõ˜Ô¯û’»ŸŠ¿ƒÇÐõµ“~X_+½§ŸŠ 9å‚~Uû·ó<ãí½núÝ:¸$:V¾´ê‡Ð-òù߃^àσSó¿müXàéÐöÜ)®||päÕ5}'9T:r¼Œ{c=“ÿ-¼¦~ðŽ{Î[ƒü@> Oí­ø8S¾tðŸ~¤\õ+ž/¦^ÆuW°|(ßAwðè5ë°m¼xY í¨S<# x'¾ZØx­ð_ünÚ¯4^ù¨ÇLñm‚וKwF¼.ž GÐû‘·F¹´íù_à‹ »ÿ^üÖy9Nž{.Ý<¾¿.z8ÐûñÞòá¼÷¹É$¯~P=Èè¾|AåGó8æ{ä“üʸÀŸE7«“_éç\žÁgô‹‹#Ýô¼2ú@ÿgßý ñ"èØyØÇrnɾè¼Ú‡ncô—~P;5zÑäY¾ß[ô–þt~á·•¸ë|QÁ3ð¿âôÜ2Ï܇L~…ÚU›ç5ÿ+þ˜ãA4N‡órq®qV“žÿý„Ž”gs9/_àD7ćÚõ¤Æ§H\˜)ïÑgùûæNž9§Dî_ƒý-~*œ_·+tÑö{™rô‡{ØÍ[’gâ }›òä!ÅÕ¼‡~Nþ^èf¿Ö.ä{îÈŇh¼Œ ûíÊöºŸé¼Î=$¾ñø”wâ»)‡¿zÞNÞGO«]6õvß…€} :#N˜ó:Îÿ[Ïs¾Î?ª]ìÃì[Øg½£ö§æ‘l{ÞøbÃuÙ“ßt®þ¡ï°?¸ºaŸ]Ët‡œ¡^ð÷ÂØÞ¿9Ⱦ†}ѹ“ïÚžó}¢wú>dú¹)¾Ãøsà/ þþ ÏìKˆ‰}—¼…Ø£ÑÏàÿ¯tµÊÏ~˜ö h?BS¹ƒ´§ü Ô?å/§ßèuŠG¿ÀþXù¡x_ü*®ßóÞqð Ÿr‡_åõ_é¥û%èƒøÈüýl?tyWôfÿë+£þ¸)oÐø³èæÌ¨ÇLù:t·ç&ðñ=ÙwÙŸóýý‘Î&ÿ™yÿÃ(7*——ž}XÊÙÿªzâ#Ñîl{ÞøbÃú¯ /¸™gÇͬŸÔ¢èÊñdä0Åã½ãŒÞñÜy–Jßßýký÷ÇzocÛó¾À¾ÈpŠÓ=òl¾]¢G®ò½âËlºGÖúÒnåçâß¿À:.uå)òëÖh'qœÏÞcp^FΙ››â¬ÉޱíùXàŸú~öêøä}ñ»Æù|çs(îÉ]õÙuÞíÛrÿ{ƶçc |èûd½ïŒ=ó£wG¹Pz»œïð¿»¡÷”ç|)öÃõ¹í²ßZà‹{ÏáŽðZ÷ª›g :ùJåðƒÀßõ3‘‡ë0õ §ð»ûj¡›¾8°þEà;þwûïÿ]`mÿòñãú^~ŽoÈ9Ô£Ñî]½ ?¥»úÿO Ý,ðÅÍ7Š_þ§’§óz þ¦×VS^PçÑÄŸð+ùŸû´ÿñbXà‹«_‘ÿ?‡Ë«Ç¿ž£BWìßO›ò—$·Ø÷;O)ñjø>õm{>¸À'¢ö/ÄSâÜ…{Aìßñ#Ê9jé úá>ù;ãwÎ;‚]Áù56åµ\àŸG¸»:ùÕÞ<®Ÿóbä´r »þÜãÆNÍ= ìçRσXº}u±?/ðÅ=ߌLûÎûÄx¡ ô6íG¦8m÷Ô¯½q¼S¾6Ï+ã|{üªïh„¬ÛĘ÷½ PrtÛø÷¢ÂÝÌï'£s®ÈybÀ÷|?Ý›Á¯Zù–z¾¿åžÛë£=¶ø^‡žû¿õ)úsFx~ROó´t_zÉsï‹‚‡Ðáƒ'?oÊQ¿éÜôKåŒïø³mØ5üÝ‘¾W¬3ö>Í÷t3ût¾‰×„ŸtÕøyVÞÕ~w)øÃûÆí׳ýßÀ“×Fº)Þ;¿tè£÷í {äÜNÊÇȧÀî[à¿ï!9Fû­ýïu~‘¿Ê‡ëün»×SÎyƒïŸŽ÷Õ/™oøy«•×{Ûø÷¢Ââ;øÍyCð«þYœosþ€œàœã<ëøe`ýORç~Ô=×tÁÿàÎ9&{.ôü©è~ðPåxž]È{èMqü';ϧü9ÍË[cùžçP¯òGÕNœ_(_Håæ½q>&ýøÎ‹‹Ýü…nþ#º¹"=ùãMÉÎ7ð¯"^!ë >‡ÄÒ9_é‡óø³#ÿì9âµ”“°+s ¾/=¬t êýƒ¼ç¼´÷oR?óÓ>tsžþ@O#ÿ˜è†ï¾ÈwèèK\’_Nñ8Á#ð ¾]…_ Wpä¿S¾'ð&þŒ¥GÑÍz_œïyáË×éoêo<é<;/"í³/û:å"ª*¯fë§^ðy]xß‚¼ù:ÏÜï¡?ÐÙ™q¼å[ÜëA_û×Ë‹Æí"þ镱ü’7ê×ÞgOÀ+ð½c•uüô–¯³P^ú—TI9èl5Ö»ÎW™ç¬síºÐ_äMíh{©»ø>ÓïÄko=ð Æû¶Æ‰õPzôƒ|E~)®[ë¡¿wFºj?àWÌÏû¢/ÙMœ·ªã•~è¸È÷mãÝ‹Y·ÒOðoÅz;ÎæNʳÎ'½Ü\ ¿)ÿzñ ‘OðýÛ#ýMñÒèïaê߇.Çÿ‹GœŸ‚¯Î‡–qOç$ôŸñýYôyœñ°¯àúó½kè|gàý½g\ì/‘Ká.W:t>SæÿÂ"o~UºŸX_æ|?7°ø†\o3¬øÃ÷ßOà÷ηC»È)ÙƒÛç«Ç~ö¼„~3.Ç:½PŽùx¤vyo|­™çôÏyk_«r†ù„ŽÓNõܽïÑ»ŽÇúúL½‹é¯ W¬ôÃüƒ/·F|«=–¼8‡)>ŽõLzxp4âWõ¾¬¾b|¦Ÿâ§ÅÇÕø+òõ ¾¢ÿÁ;úo¼çºc¾Ž4?ÃØŸá繯r¬‡øDé$ýè³óþ¦¾®ï­±ßÛÆ»¾˜pwuò›è¹…^†ÞdzEÎòÝ¿F¼ì¾Íy÷D©¯òú‘þXú0¿ùè=úv^ì´Ûñ§¾êß‹½m?++çÙ¯<.ÿorù"¹A¹Ê;ìö›‘OýúÀó{§ãyé]z]õÔÕ_èUùäKw¥Ÿ“çm¯ÏŸOXûv0Î5ÏK>@_µ`Ï€øÊï“ú±³ù|–s[ùTn}=êU¥kúæRðŸ~|2ÊÁÚa|^ ÄŽqfÑãø#tò:_ò8.ð4ºI<Áõýá5øuQrÇ÷õ8¿ºž†£ßÕŽ}^ôÁ9ÿqÚÁïöðWÅo 9Ƚ‚|‡\ ¿Täô‚ÿú"útªsgè~Ûë´Àç Nüž}óPK¿b_€œyEß¿üÿîˆßS>Ôècµ ßÛqÞlŸ§”îJ.¦½ö ú ]¬òkÿx†~®ÏÛ^§>_p:¼'<ÏφÛo2ñ¢»O©Ò{ç“G/:N9Ý[ÇwÏÿ±7ôœ2ûŽî³¸ï§¸R“ÝÌy±Ø?‚ï®,zÚgX»x?3îwŠïÈ—Ú‡}ÿÈòˆòä1E®(N@ý‹¢ïÿROä€ã{®ã¥¤œ“ÞÛ©?;vé ¢7Ë-ù]/pÿ–¿îxâ}‰éaòÿB>9//ûüJÑË,KÊãíüSíwäQÛÏ8z~óšÚ¥ü¾èÃÔsk”wŽ3²ÀíÂúƒžÓz¡'=ñwÂ÷á߃¿àò‚úÀ/ðio|ïŸãn{ÞøÛ†S~hëøy…ŽútuoÄgï«':¢rCúÑ*¿)ÿfèþ»íy[àoV@OǾÊ~àòêñ¯~†ÐÓ*ï§{fÊ¿^¿î/sNƒ>…~tqünEý÷GûÓ¶çm¿m¸û·Õã_ñö|ð8v(~¥3Çý✞ýç/WFùS¿ö%Ôó»‘N§û×–c·F¹·Àn…n¾Z=þí~,:àÞ§òÃÖžõ¹äSïÿê¼Ññ(8GŸâoRºÄ_Œ8Íß/û›nvŸñ‘ìNø…à—B<—ËyŽîd¿j|%ð=ß]Í3ç㜟C¯ø}ýý¿Oêç<»ýºzº}b |–p÷Û†¿ûÍêñ¯ò|¿ãOܸ›ÐϹ@èŒ}þaÞãv†ïó½ ?Ê}½7Ï”c¤ø  \àVè†}Í7èEÈ›Õã_ï±àOXÎ%_¶çæÈ Îé}ÎÇ~&õwÿƒ¿ËaÞc§Coƒ~Þ\ìi Ü\å×ýúy ÀgüPîrzzv0ÚáêoöÚ[ú¬–öIÍcº»¹ìo¸=XzQþ§Þ·Zç)¶›þê‡xa5üj7;'zD~)ïHÏmöG{4öÇÃXà·A7–د¾{\îßâöÝñyÊË–ýË*¿)ç9´÷p´/÷>§Î?i¥ß¶ço¿MX½‹¸›œ[BgÇóPö«ü¦óÿ㼇^W§þììx¤“ÿ«mÏߟohþËo“? ßÁ§[|ÿ'â6ŽŒâÏn{^¸Àƒ«üj×epkäÿŽÛ€ÔçãÔsÿçÙ£&äÛ‹xÏ?œâŒ®ÿ&½æÑH7ó žÿyûêu¾Ïñ|Ûó²Àþ(Ýàï•sòÞQ>ãóîêäçü¶»ÿÇéYSÜ¿3ã>hÛó²Àþ(Ýd_â¼\=ŸäÜã¬è†¸Í¶zü{Ò{ƒ=Ÿ'> ù¤”·p |žà”:àÞûñêño“Ÿc÷CÎÓ¡<é†óH⪿ìÂ"oøüÂu¾ûÕã|¿ò|~oÝp®BœØË#ýü$Ý¿è5É«·ºYàó /"ûšúásï‹ü’7õÍ¥|G¥Ÿ ï7 3å›Ùöü,p§â-÷-³ï9äáêñ¯ô°!¿Ã:ßeÊûyrb²ß-öç¾°ú‘üWø9¸¿§\÷IäÒÆö%_°Go{^¸ÀÅ[öóœóêÜfƒÞä| ?W¿šòn{^¸Àƒ«üz^ù£ün6Òüj~îýâÒÍñjøm{^¸À'ÂßàÿjïåB?¿tßÞsMèíð¤þïí:^Mû‘r½€ÎþX¾ö¾s)üä÷ö¨ŸN~¤Ô³§ç[ÇÞý¸Ý~Ûë½À_®ô«ž¦õwÞãŸMŸàÕáéíL~=Æ×ý‘¾'ú£û-ìÜënÑ/MÆzÛå÷ôÞíºß·Nß7n{½øëÀ 6ágànÞÿÒvjàù| î·õã;ò‚rÄ¿QÞ÷Þ@}U~DÍÙ÷ßkÜ’¯õ?EBgœ÷rŽuNz.ý~0ÎÛ“ž/ðù„OÁý{ìÃðÍì?xø óu—.­ñnðư÷q.¼œø:ßßÌwà/qý%G¦ûoÇè{wÆö;ôz#>9å?Òí–/¼óóì |¾átŒgüÓW |ùÙt³sò]ñˆ86ä;—ÿ¹w†ŸhóS¦÷¬s¾Ô} þmäçÃÏš¸k´Ï¹.ñ;Vc»=¦ýÆÍÿÈ迊Rìé­_ynøbÃâÑÎɺoÀ_ð9ñÆ~q;—G9Uºï>¾_KÐ×?à»é×Y¾W¿Ákð>ùÖJGç4ÞO%ïˆKðÑtŒ|áž÷Ãñý4þK£¼!þζ׿ àx}¦÷òÑG²øÙíP/ô‚\€n/¤}üÖ.§_ÎWœ8/ü½”žG¼(ò.ú;R}çÿoäôFÜ5çãÄ¿ˆ¸ooŸ®í~õËôÛ>Ÿ°ø e_ÐüÈÁ»køe|²ù[Éc|SúrÃüzŸéx\á;Æó¡ö¡Ãê›Ä!„îðÇ&ŸY÷Ió?þ§çóÞñA¦ñ'ßsŸ?YèèE†«üº_Pþ î{îÿgûÚî³±GE?òyIå÷zØßJyô6ìèmØ èÿþ¸©ý›óZ¾c ¿7G9[ýrÐÕÎøýÆ{§¿_à‹ 7{öÿã“ç_ç¥ö8éy¥ö¯‰î¼§?»@—ƒŽØ×c÷Z‰~(kl×yC|¿µúñ@£Nv¸ÒçérÄóºÀú¼ÆëËó/ÍCV¾Ž<ážÏþˆ÷ngÊŸvo¬§y=‰úL}œïŒå=þéœH»ÐSäM¿ÛpÿÈóºÀ–_+ßdÿ¿=âÏÏ®_øKýö£Yé7á+ôÄ3õê{ÓaýWMo‘'ýî@ÿßû=•G~A”?çÉãÚöz/p/#œâ¡<ér•ò•gïŸxÿSÏöÜöø¸ÀŸ+?•ÿt•Ÿåï÷Qú!ßõÿý‘®*¿¥n{¸ÀŸE7ǫǿÒÅÁ7´¯ú‰óïGŸdºuûÇë[àŸGh}©ç±:Gê~ |ÊþÍw­_òˆó¯îoß[èf/¬ÿç¼W‚×Ùß4Þ\ÎÓê—„_ÄÎhÿö³ýqwÿþ?'õ]L½?óžûø<ÀúGÿž«£¯~xñ_ï9­ü­¡»úÊn°{-r ºütñ_Xà‹›çJ~è» ]|ù€œYåô¸”_×'ÿ£k–Gù.–‡%Nê_DXºø,øŽŸQè¨~>ßþãäüHñ'Kûüc? ü“ìo‡«Ç?üÀñÜö<,p?‹n°8¯cóoâ§ôàöû·dgÆ/‚óYüœt/µúáû Ý,ðŃ=Gá¼óxõøGþúuÜ¡<Û®†}ú‚ìÐ û˜t.ôýøý¶ça ü9p•_éG~}ÅïGò‡;ßôƒ?·èaºZâ>.ð„ß=†ÿæßxžsÉžó§üô½äOÿ‡þnIÞ®†_ÛNU/ôL9þ§_”]NõÃT®ãR/ÏÒ_í¯ßvI;|OOÂq‹úžòŽÛ²?Žwz¿§~3ŸégõqÖq¤Ž·ÑùâþØ«š' åéý¿¥yx$ȺÝ;}¾ªç°þ¬ ÏÔÿ@ó°é9ëã{S<¶=}—~5>‰ò4NëÏ3ãcžMgª¿þäÆCðÏy»ÿ(ü¹?®Cï žõÉÆ=QÞîI¾Ýå¥ýºßâ^xŸ~£‡¶ÿôäý}ûáøWù¾øÉºd¦8Ì/tÊýõKÂ;ìwœ·^Ìzò>Hy깬ùd×ÅÀ#âÁŽý§¾Ò‘ãŒïˆŠÏÖÞÿöˆÇÓýbü›èx“õ(ßx ÿÇçÎKï9Žx_¾ ~ñÿä ëȺ)ß”é¬÷¨_€öDÓ¸±G]^0ŽÆµù`ç¼æùý/¦qõü>õ<ÔúQžø<—Æq¯9×Ä/ù€¿+ç9•ï_å9x³{3ýtH}àøqã78¾Cðe÷ÿLù4?à óúí•“ï°›súøƒæ:ä{êßâFêq\IîÍóþœS]e¾…Ðyl8W=ö~=xÃ<Ð>ñ2.¤ô‡û÷¬ï•<_Ðí±^©‡xfàÇ_ïdÝ4¿oõWø >Ç:å™y͹dùPøÚ*¿ÝOé/óÈùÿçàcÊ‘çôóüo5èAq²:ŸŒ|Ë8§¸uàýßÕ.~Ð|ú)]æýJí@—ÆïJGÈ5æya©÷í±¾ÊMáQõ£=äNžÁû/Y7ø.xÍ>ñ¶ø^}=ð¦Ö¼Í:5_öº{yÏ:ÞR??xûû±|û—çý€²¸ë~¤ýï5ù¾å¯iœìwè—⣯õÕ¿“ïŽÆvêoò®Æozƒ_o ü„¿zCÿ +ä ôMý‰ÛÖgÆÁ<ƒ?Ÿãèûôãò:1P½<_IýôÇÑ~sŽp¬~2ïÐta¾ý¬øÆzpîÀüÊéxsŽ/W9ÉüL÷Ò>ý¿7ÒMñ,øÙñ0¢ÛŽŸýËNú½­gËaúÃzçûŽ÷Oãºt/¦}Ÿÿ0®Ûϵî¶ãÁ'ïŽýñ9¿âÉ…q}mÇî:0ÿ‘÷•[Ðý?Þë+=JyöeÐtÈ<ð¼€ï¾2~_y¿—ýÊ?µ)OúÓù@è yP;NúÞzûï#ŸOƒ×ðCË]Ê_QÿÁ?Å!˜ÎoX§´¿¶Œr ë'|/¿’œ/~0o”£¾Cáta{3û ÊÝÿŸüø¿|'ÿ§¿Å÷s㸋Oo¨úåýtjþÉ|B§à!ód=ÁÏûZ—=r¬ç‘ú h8ùGð½ì¬Oø»çñ¸¬§ÿ§¿Á›¶o{ïN¯m_Ë8}Æ|jž{®E}ÌxŒ~@;ȑڷ5è¾!{AñIqÛ_Ïx€¿÷„¿Úwoôça|Ƶ?ùwÄþ»æ¿Â_Ö¾q<âké‚rŒ ùÃ<)ÅDŒ_x~®ô+=[ß½=Žs×ß ‚¿ûãø'}ˆÿÏlXGæWþ”ƒ_ô»ûêï¡Þó¬xn›òXmʳX;(ߣ·ŒõTa>©üdÝçüȘï¶sw\÷Žÿ{õÛÏ{ãx¶í§÷¼ÃÎt·#:Wë„^Í3å¡Câ<³ozCë&ÿ3ìÝï£_qÎ ßï|nøužÅ7oé3|ªzt=’ïÿ5ö»÷Çà[Vïr@ç­Î×þboþ6ýè<JÞ[òVù@Ú_¾Gþ|9òãê‹´—| ÛÆËçö\;ûö—@ð™s‰7µ¾Ø±ØÇñžõ†Îàß’Ÿµ›ðt#;®ýe»¯O}v0Å=ZÛÉDèeÊU½àèC÷Rtʾû‚ÆÅ>¾pYí#'àCÐq/¤õ¼ÑþÈmÎ?Ô¸¯«~ì·7Èæÿ’êA?ÁO ÿmãåóËwzn¤yåñÀ癕_à!önÇÙCŽD^õ;Ó”® ö•ÎspvǦ¾Ô.ϱïNú8ëÞØî >²ß`_ >~–ïÙÇ#—h§zSê‡.Ñ£>Q»Ø+Ðwð§@¯¹.>Íÿص¬OÕN8ê5•Ó_ÐϱÝÊmß+ŠŸèúü^õþItƒÿAæ±ùæáK¾oߢæ:ñü*ŽÔO‡åã¬øü¦×#óÊ:âÏÏ=üظׇ=yÀ}3ðºÔ½ÍòköUȳôo•üÛûŸþoú/ÀŸ‹jòÈû¥¦þÚñ·a|ÐÕy‹gøÿïÇyi½¾§‡|bžzß&ådì8ÿç¬Sž9ÿB¾b~UíįsÛxù¼ÃÊõÌŸýÃà[ø£Ö0ó^œÍzþUßUŸá9ÿÃß¹O÷¾ð=<ü_å—üÚ>øroìzKÞWލôÛ= ;î'‚ÿœ_þ™ŸúGÞçý¾ô#äô>‡ouÿOyä¢ý¾ñßëýٔ˺Ô^ØûÄù}{/ï¹'›yÜ6^>ïû–ÅÖ þ“yœâ´Ü ^°^ò·¿uí®·²Þð{ê§¼øgŸÁ3ŸçAçôƒ}šìÆÎWÛ} ò ¾ËþsÖü?#¾Þ{gð‰´ù7å—?™gèÿ¬¾3=^Õ{îyq~óŽÖ‘ýé ­SïWf|÷xÎwß¶ñòy‡ÕoÑwÁ'ð¼e ‡#_®žmýš}Ï샬Ù¼Aßgí_"~~Z|GßCÏYi|´Ó}q¾»™gä"rü†_å§ã|õ»}õóÚˆßsè‹ù͸î@ÿ|hû7|}™{[ðÛ#X‡EÞ<džíŸÝ÷á“þ:Dzðëý¾{0âué@÷ ©gê§â¶ÙX9agßËÛsò£F®"ooç™ÿ7ijiýÔ{kÏ_lXþŽütï²ôr4âÁD?è#ðYð,ü×ñ‹Ï‡§ã[ŸïŒôd?ô‰nàËŠ[Äû–£®˜~y¿³Êo7Ð~Þ¦ß%ÿß˧ûpG#>¯–/Š+7Ýß”?qéMøÔrø1øW½ÈqMåÐòì?®Œr„óªÚ=äg:Ýcc^îé;ûußÇÙ~èžÈ¶×{¿ì¾âLÖ]÷¶K_àU÷éÁŸóÞÏÖï6øKü$ì¸|×ø…Úg¼'üãÿWE7û§ãcÏK‡`ŠÛ }Àýbô‡‘.J‡ö›¼4Ê3æeÛë¼À_Ö® Þû¼ž8 à?tö‰ð»/öQðŒû7õC~–ú°+aýÛïÚOÎè¯ì~Syâ]N;øEoîÜÉûž'aWÇÎĹë§ê7ûsè ¿èÐ!v®ö㣑ÿ,ðå€Ó¹¿ãׂœÛ¡‹Mþ à)v+ê/;tJ<5åÛ[å7Å8/<Õ9iå’í‚oq3œãF>õ\#tÖñ'ÿæÚn—öìGú`Ç_X|F^¬„ÿè7à«ïñFÏ©}ù­ñ»ÒáÙ@ßc¹"¼Ï3õ·Ÿ·R¯âÎÙ¾r‚sZú^ÆÿÈ›½ñÿÆ! ¾Wo= ,ýåÿWGú¥ÞŽgÉ—ùRÂâ1zþè/Á÷)žxx'ïÐSò}ôÇõ¨?~ʼ)ßWù=øI¿w¼q1RϦüítz¤ñ ÏÎ@¯£ë> z&Þ”óœG>m{øëÂòãà‹ýL*.O¾ÿf#ÿãU~ëø½ìïOÞoì×ñÉÿÕÓ.õ•n®é=°qVó=tp-ýŽƒ|Çx9O…žø9|™ö%gÙ¯©ßÛ^çþº°÷:¬Nýõyo:AŽ:>YãÔž|·íu^௠§8ˆ›äÎñ ì~aCž²)<¼+9C»öw^¤ïß¡ËÔO}í¯ï s¾ÉwÔÇóm=CЙùåéoäSíxªÛëü³ñ‚}iðaº—ʼŒó2á óu¬÷?Q¼l¹Ôgÿâ)Ÿ%xôθoh=ÔO»wO/çò}Þÿ‰q¸?ðÙ3i¼b_tFý¯^Ûsü¶BèCë6É óÇ<ðžõ} ñÈß¡ãå;èÂrËól:tûž¿ÛúŸyã™ïµS~VÏÿß×<Š®'¦cͯãË«_íã ½cáãÔzÞŒOôï`„Ž?[<º¬ù¥?´›~;nÚl̇)?²‰o0Ç5õ8žW¯3øA}|Ï|ø{ô1ñû) ߛўô¹i£ušâÝÞ³NÆ ãwÞ·z¦þ}½×÷Ó:ý yV½ÆÇå7:?ªó…Mþ®³.Š#ïõ_çŸI»ø“»ß=ñ{îíÑoè†öEÏSþØü?ÅïfÜÎk{¤v ¯W{r‚ùb>÷b¨O|µ÷‡‘Gì_ÂÖylÔ_ÆùPëê{>úßñÐÖy­F:œ øÇº©ßëL?zžK|rúÏw´üë¸ñ¿ÃþǼq.¦û®ý[/åÞ9û¬+§øÖd¯×}Yß»ë<ÿ¿þq9/v\ÉÆÝéÇþ|öß«ý–rÜÓ%Ÿ÷À#ð½öÚ@æúçž2|€ùP\é®ó÷ó˜þ4þVÊsyñ|4þÌÈÖy>õ?þj“~SNùNJ§g4_¬ãÅŒ?뼋ZÆ©û=Î/R¼yUãqÔú;RŽqúü˜uc™·Æ±Í{ü4z¯Iõ7?gÊ¡A—wô|€N¹×£ú¦8ä—rœÝÛŸò;Ÿ*vyî5E¿êüáW¢¼]Åoîy³®½Gžòœà¦ý÷ì’gð²ñ'ÆvÊÏYOá_ûÑ81jï/Ðó™gÎ-¼þÌç¥@âG4^íižÉkÖ¼?Ì õä;è›q§…qÞñ¡þh“çéïkïyñ‡oÁ7ú•u¿‡wWÏþ`þ4_2^ð+íO‡ó\üýÀ_èømêcœ¬~|¾ŸÆ3óu…öÔàÙÔMõíç¹üMô^;O;óL9ðžq2ŸÐÝ õƒv¸'IýÐáyÖ;ãÃ/ ?_µ»–g¢Còº’/)ü´|µ|\ïÎ+rºc݉³q”÷¾gì|ؽWœgÆÑ82#¾¬óÿ¤¿{ù€»âð'ð“xËá£k?д „>¡çëšoÓ+ëÔágà5ãQ¾ÅÖ‹0ëþnºñ=hæ±ó™ràô}VýcMyèJ'ä¥t¼¦WÕðùÌy ôõ¥èÖyfáyîw•㩹 ÞÂÁ ɧžÿP?kÏ/ò[q¦xvΠ;ð6ÏgÀð08UÎȼП•Ú;£~+Ïjןòð-ðúb ãàçàaó)3>ñuðºcý•¯üø¡øàj\ÏŽ¾†žßÛöÙg…'>§g¿xlŸù/?"~Rò÷=x®øÐS^@Çs¯7^N¾ó9çá¸~¥CöÏà ëË<…ÞRnüÎø4ïÎÛ=•nò9w]ã}¬g?0õ"wºëíu¯Ðƒ)üé>œ÷o«ÿ¬#øÀ¾òhä'?â´û¾â£±>ûŸtÜø¯Üɳó˜C¯ÎÿŒþÂó¥qœÓ¹:ô|-ãÓyÕýüVÊŸÌÓE=CÇè–öXÇ«)/=—v×ñgèGæ—ýë÷š_åWt>²u?RëÈ|gåÓàÿûc{­ßüUñÍ}ÎP¼e¼à÷§éOðaG4ý˼Ú^íx •çŒGø>屆B¯ŽóØñʯªtþø<‹ñ:¯÷ˆVëùt\ Æ}_:ÅGÆùHã·=¥ñE¨oäKݧÐæüÒ¹J÷'¬ãyÍ+ë‚þ_†Þ¡›Û#=®Ô~çŸõf^²®/tÿiêŸÁwèù@ï?ΩßÌ xÈ<ЮèÅ÷¾¿­ãuþÅÔ_»«ÏëB·µoù<õ=óŸÿ§ü9#¿žìÈà!óv0Öë{«Ž“²ÎuÒßžÂ×ð÷91ãJûSþν±>/n¹ûã:9~ýTßñÞéæ< ßÆú:¿ÊÓÐ÷+ͧÎO§xwFúŸÎ¡EO¦Ç¾§ßôâ¼fЭÆg>UþòÎç´>ÿIùï7ôûPðXÏûZßµãósæ: ýMñÌ÷UÏ‘èGýõ:ö=z&ó }P¿ù“øÅÄ? ³[c=“_‡Ös:_3ß:û³Ò¯ÿ3O‡zïõ¿¢ùk”ƒïÑoæGý˜âÄP?õ/¦~;~óírÐ׉yº#ü`è§ã6QßžÞ ß-'½šù`]íqWÏ|G¿øŸú½Ž·ÕþÚeÞ¨W~%Æ>Óþ?Ÿ–Sþ´é<–þ?Ô<2{c»ð›ÉŸw_ý;Ë-ðt¸Ö÷2¿ð3ÓõUÉUìØ)¦¼ï΃‡>WûÇë*_»wʽ­þ5Ÿ@Þ_ ä|¦çÅ)'¿‰Úq¼ÿ¿2ò‡êC|‡¾ëó â„¢§^õ ¾\°öž#úœä¯ÁåË1>Oqd´?í¹ z{ðÕñÚvW;'p:ÿ¾7âgé ÇѺvò¼íu]àÓ…kÿ®àx—ŸTåÀ•üï}:ôr˜gè¤q›Øgç™ýú~”Ð[íÉ)G=¼ü®þîè‰ìç¡oül“_«ýæ D.Žãj‘Ÿå+c=Û^×>]hÿ¯õ>"x!»ÓÚN–ïàÃàÏ›ãû9î ò ßqCûðÿ³èA©çvÊÝÊÿøo¥_Ô¿“z‘o_íìþý¿Ož‘SŽ'ZÿÒ@ŸÓô~ ô:Ê'Ç£_àË m—*¾ŒzÚ7¹¹1å™Öyaé¢÷äF<]ß« Ýå»úKí©Ý³jùb;wó£®ò¿ì“ߨâ:UÎq =Q÷zŸw/'œâ¶I.kFQþ—5^ŽûcÇ“Yïïó|˜öi¹‡üA^ 73õ0èúQÏuÞÙ|=s>Ð÷ù®ñ§S¯ýeö½® |º°úŒ÷3Ðˑ޳8;êwk?îà?|Üù¥^é£ïÙ§Óðÿ Ñï#ÑýfßsÛôënÊŸ~#¯¨Ÿž÷ç™û…ÍG L=ÎO?Ÿm¯ë¶¡ãåt]ñc}(¾‹\wœð‹u÷½8ÎQÀ—ð×U~Ó½÷3c(_7>:þD÷Ǫ×÷ÏØ×ÜÑ8Œ“ý rãÎ(&?l`è²zYÏ7G½lНuwì¯órLq nó9ù›Vþ¤<ï7r»ÿÓŸ½ñû)OUðÇ÷ü}?¾ó&ûÿépGùŠã²ðžg⨿²ŸüÇü˜óãæ™ç«ûÚ xQ}…ùÿu¿bòOf½Ð ¨‡yŸ|_?–“ïKèWwÇyšöáÇ¥·òƒÔý°ßð{è|y ÿÁ·ýQTN·Çù›üØ}O~â<îòןð¼¤}Ú¥ÈIúÁüˆoÑ?èÖq™Ï• ýáûÔ®ô+£zÝuŸ¥íì6ï#ïÇyøéæüHϽ·Æ=ݳã3®{ç<ÆŽÓ~lÊCJ¹æï¢ÝÌ#ߟû[oï§ýå¡è!ãp¼ã_ß›Ž6ÜD.õ™óõ¯ý_ñ|¥0¯î×j¯ïG·ÞcAÊ=R}oŒó±öûç‹~—_¿ÀMøsw\¯Iî(>jùó¢ñù~û”gèFñ\½¯úÅtÃ:0ð þæ8ÈgôôqÇé’~\~~Íq/ŒxÁwÅS ãBŒßÿ ¼É:LqÍÞÖ÷Ô+>^µxãõ¾5Ž£ý_)çs"ÆÇºÐï yÞ¦¸àýB½¯Èº:NCùtÌ|¡¿¥?•ÈÇG€ˆ®í1ØÙÁäò†ñ€—Š¿RþþŠÏu<ùþ?¶Cƒ>7Ö=-ëYS|9ÇñCe~°Ÿ‚_ÖËÁ—G<é>«õäÿ#áëþ©}âf±nÒ ¦üÑá_Å3ðº†þi—uB/e_¥8LÓ½xÆ—y©ÝñídžX§OF<œÎsmW#þ"ú·ì”ÝW^ñ°ëc;9óŠ„>Þ|Ÿu¢~å31šâ‚oÖÏÅ_ÊÏ«õfÿcyÃ:§—Fè8ÿS|BÝÇ(Aì»Á ì!¾Ÿ¼‚¿¥ÝâíÛ¿ÊƹNáßœG°>ð%è‚gøzé3剛‡ÿ}ì€>—á·1/~çïŒýëúB/Á×oû^ÇK<[ô,ç]à |{4λý¡§ýÖÆþ:¾ÓCÍõ÷¾è(WºÞò¯µÜ°^6ùÚžI»ì¿ö?–7Œ>>°Ø%nh~¡ö}ðÍ=æeÄ'îöþÁ+#ýüÑ‚‡|×ú}Ÿ»ç/ùŸýMíºûðÕöðùxl¯ýfñw°_ø¿þ׆yHý¾?±ŽO¬rŒ·÷\OÞÿb9ó‡q½:¯²¯Myõ~7Χí„Ó¾&x1Ùu7ú+ëκôþ‡è|áœô_ªçHý´œ>/¼n¨ÿþØÿ)þ“ícð•ÖïzïødÔ+>ÕñX¯¡æþr$Èû»#¾O©O~S^vÓã=á9ëÂ8‚'ës·/ÚžâIMqy_t1ù%Ð_æåÎÈ÷ŠïgÇyûO÷5]Å ³Ü-ìd¼ŠŸ\~½éÜšyO}îã8¾—gÞz^¢ø,S>sóWGö{Ë/ú>8~%øŸù2Þ¶|Ç©ò™‡æÕ¢> øL½Á“É/ÅùÈîê;æ‹öéç•è‹|Gý¾_m¹y{œÿâãg?ùýØÎ{æ¡øÈwÐ øàs ýqÝ&¾“^g:ÿµýÕølád7yF^ØÀøÞC'ìï¼…ü×þ[Ó3ßÝ~ꜬåCgÛšßêÜÿ{}Ï_,8Ùg‘óÎß+W‰NàÓçóõ.ðšzìkçRtTú»'¹r[ý?óëK¶Æ—¸¯]àÕíög¿ÒºžG?Y=þõùÞ?Èÿÿ:cÿÎwo‰.äÿÕ}3tú;É“G#^Mù-èçÎ/¡x„è»[§›³¯üøbÁæób]Ñ#.ç=û1ð›{äK…^ê/“çâoè§û›”ãœa'íœéÆz ùkÁÞæ¸oØ]ßÑ÷oŒtôÌæ—s4ò“]`þyó"ÞsÞÒü‹yn¼ŽÀ‹Á×O¥w@?ùýwNêNñ¡§~ýõ£¼A/<Îwœ_±ïj¾¯Ó÷7دŸùü2Nò·*Ï޶׿t]ƒoÊ·ä8¸Ó}@›”¢¿Qå‘/”#N¢è¦ö½ëÚïðþÒØ¯)>û c½¿–åÏžßÆß ¬¿òví ü™ë¨øI凸-¡ç\…ž‚Ÿ;ˆ~ý”^(O½ÒǨçÛ r­ý¹4ö§ï'ùˆÿ}”Îã×÷pž­Üq\zŸkoø„ë¸Á¾»Ž[†|@/Ã_¼±üŸxmµ$/qÏ5nŠï?Q|·÷F.ê=úÍä·zü³ß ò­ß£O†O<3>…^k¿‡yó"ÁéÞ%úŽÏÝÑ×쇹?Ú×J_×N¾[ç!N=޲J¹³ã÷ųæ£Ý€µ¤^ÇáQ¾ÙŽûÎH×ÏŒnv4þGúÙ6>,ðÉàúWö-Á'ÓEå†òc–¿s¾¤}‡îg•_àvê³ý½æã‘¦ûé”SBûmu¯ï™Ñãó*_ý¶ñaOíïXþÍz¢9^PäCÏ+³O/=¤Þžƒ‚çÊÃYzSœ”öÏqTx†Î6Ä-éóݱßö ÆŽýÌè98剶ýXฎòŸëº’Ç)üxºÿ©ølS9ì]Á‡)®“â¥Ù tCyõ9ŸOé9I½Ü€®~¥û.?›O)ÎNý>ÿµþ¼hð»'ëܼ4Ü3å=ûŸ£œ åܯ÷o8'a?|9ßáŸÞâ|ØÃ^õ•Ú‰¿I}¾wÅsóÓŒòÇ÷Ö÷ƒóýÅ”[åÙyqg­vÚKœhû£¶ÿÊ7:í«°ï½¯yáþ!ýv^èÎû0Ñ!ãÚg¥òæfê¿ñlõÅ®ó†eÁ{ÝÿlÜLâ‰SþªÖû?Ðô_'nFã4Žøïýqé‚}Iè¹tí|RgÓNö·¥;è¼$/‚ãÀ 'S?tE½ÈŇê×üûä×þ#7iŸz?Ë—~Ø7=’ü žW¾q.¬óÖ§|ñp¬·÷ §±rýxìÿO‡åÛÄE€ÐåØw°ÎÈèºé~œõ‡nF|mýàçθî]oî­¾>âï-”Î8g„ÏÖß ï¨go¤3ÇÙ(Âÿ¡›s#ÞMr­ùLòÜ<ˆy_96Î[ëƒÞ™Où“YÏšòö"ÇŽÓòG÷ ¶—Ï;¬å|…àѵüo¾zi\·Ý›£üé>ý;'üŸzÁ'Å_nÿ —æ¡Uù3¢Sîï›×¼T»Ð!|#ü|ŠGZ·|°½‚y”¿¦ãåí~ùüŒœ›î©)Ÿ5úðF½ì¬æýp?í²Ò+ÖùKÆïx:ô}§êÐñBÐ×àÿWR.ø°¾W•úЇ>>¡pÎqVxªóÏ)O”ãå¡ß§Üµô—gäAéhÔÛœ?aº¹ñÉvçÉ.uQx ]þáôrÝrO:¡?Ÿ¤öŸ?áW`=«ãƒŸ‘Ÿ”þ-º¿<~¿À óì{ƒG|ªŠ÷ìSâ§U;Ì÷zf]ð3©^‘ú +übÊ÷µîÊËá8ÙŽç\¿ô©Ë£2Å¡='8Ù‰óŒ<ø<å'ü†ñ}¨ö‘GÌ/ô«ü õ½ ö´_±<ñ½7Ÿ«2¿ŽãÒñGî:nî¶ñòy‡åƒ×„'è'w•õþ4ë ¼*¿‚Ÿg¢v ždý‡¾ïü!ì+”×­~bÕÓGü›âŽÜQ½ÍÏ)}Ôñ2ëO–öÀoäâuá¹ã!±¿Rž‚êIÜ—¯{ÿ>ï½ß„À7ò]ÛWζË<5Dê{{ü~§ÃÚØ7\Ëü!Ø7³¿@_pþtëÿ¬ûMÑ ô ¿¥œó4N¥èþ±Þè!¥ï“ÿK×Ú¿Oö1êoÁŸÆ”| ìõÈ;èGvá)>%ßYï…n¡ÞÓ¾ò¤8Ÿ z󴾎‡JýÈqï[Ÿ±é‹ É‹4ùQ‚7èYàÙ™<£`§ºÂ³ð^÷NàÛSœhè ú•ýÚþ0Õ‡¢—´þÛúžønÐ×i§xÉÿ)¯øÒ>Ç,ý`§~ÝG(ÝPóE'ä ýÎ8:ï7GyVùÀ=òUÐïÐã´¾¾/Ù¾‰ýå“Q^.pÝ@'œ÷…ï”_ŸïÂ÷«w€w”ÊÏÅïœW;vcä |Zqu»ÞÀsã÷“_|åß ?ÑK7t‰Üïiçã|Ïþ~ñQÊÓï×Ç~LyŽSýÂ^¹êÛêç'´—þ`Gx[í"_±sW¿=yîºÃÓçq <Nüõd}Ѓà[Œï‹WüÏ:[ï¶Íÿÿß;’õ†µ¿2ÿç»È±ê[Ž÷ªüf“=,õÐÎ*¿Myƒ{â¸Ï¶*ÞÓ”/}Ë÷tl­¤?à=úçYŽÛE}Þÿ±¾Ð+|H÷‹x:\Ÿ£e=Ðï3xUù€~£‡¿z:œòQïk#U~ÁÿðÿP|¾õ½æQŸ›ôyÅ¥5Ý”O#wÁKð6ôÓ~ÑO í…ïxWþr0òsäTå"ýÇþ?A/CÏ“=¼ýPüÚÚ÷§ü\»nÈý+ãx o¦ü.ÎëÂû#øÁØþäÇ${甿~ª¼S>sž÷TïaÞg~¦¸G÷ÆöOÁqU¦¼z÷Çù¦ðíÎëC}Ð åé'ó—ö§8hZ×Ò•ëc\Îi:ïå2¾õ1¾WU¿âõMþ-ò3s<ÄÒ ëçüžwGú­Ÿ(ýý^óÅ÷~¾5®Ç”/›yq|AåWr|É'å·ÝPŸïy ¯i—y×ÿ¦·ê¹§ãmMqêÇÌ3øÏ{ÆËºíçy“ü¡è@þ°Ó¾ÂyühüÞqg§¸åйý–™—q^§üÔ¼Nóÿp|.??Î×tÿ ü©ç¸ÊP;.ýØû=¯6ƒuz8Âö‡ññýñ)_"øÄ¸äo=Ñ+íð¿ò—<1ݰž¬Ÿâi;ßÛd§d>¯æ³ø{9õZ.PîшOm½óº£ù^ø:Ù+E¥#ð<¡ýuüõÃq~¦8vô“ú}BûRçƒ.¤ŸS|iÉûã¼Lx¬|5¾o9ñwöO¼gŒýj½÷7@ãóÁ¼êÊÓáxج3ûì –’³Î#Üz”wÇúÉÚÿ_ë,=aã½oðŽy`=•tâá/S<·3ÂÇ öìIÞ¤¾öSq´×q 4¯œ Ú~jý~ļe~×òkäå‡|Ç<¯Fú™òFûÞUæcÓ}FûÇLù:ÞÛízô:å¥Až±Nη"ûvÇaz¼7ÎÓ´ô¸î€©>u<>[¢ßS~ðNçη༬_ÿ—…å÷Ú;å•Gk’ßioò‹3^€?‡©Wqû;ˆü~RÞXÞú| º`]÷Tžy`}¡ ʃ×ð­ŸóavFzžôÝý±›¾ë|™Rú¶<ÙW;ò§ŸòæÐžÆÁså¦ó£3/ŒËyéß±ý‰Þë¡üޏ<ã¢ÈžÁü†Ð—ÀÖÙú£ù’ÖËóå¼)ký5ý8V9ƨù`¾ŽNoßùb:ùî'å í1¿Ìxæ<¤´?ó|9/’ò'•_{~ñ£åỬ«å>ø?ªÿðˆ¯å§ø;ó?|s¶75ß̇âÄnš‡)oÛ¾ÆG¿ïŽtìxÏíëŽã™ì+¬íj]÷wÊÛëüñηNû¢7ó]ÛÕK΋æ~h~z.ž!¿À¯75/àêë8L·Ìûjüþ'åÍå±ÝúÏSt©ûIë<ƒ:¿ê¼2~èú6üCóŒßãT>îÎÛGÝOJ~] ”Þç¸ÙŽë²Iߨ> óÇi™ü$á>wo|È<ŸO;èWÌ/ë¡û’½—ü@ã`â§½Žß9ÒWýà‚ï=§Îóœ^P{½·œrÐ5ëA·ŒËv×ϼ÷åkùüñ¹ß›Îïk=.è óñ„ñ:m¿âg¿ïÉ>Eû¶³ØOO÷+oi—ù~$/œ_wÚ/?ìïJÜoÖGþˆõ3¯y¥gø~ðàŸÔ¿£‘¿•ïÁ7ðÁsøëuÑÇùÀæML½ÌËÅqÞ8žè~óú8Nçóê<]¿+½\˺°ž…ŸŒŸù…>Y韓[ð°÷Ô…}=VÁóçá¼æEòl²Ÿà7Dÿ˜/úñHýz zd¬ó”qWÎï¤<|9w8ÒÑ”vS¼6ì\òó.½à燅ó^QßúësïghÿgÆ*]@à}è|¥ßú¢u·žÒy{uì×OÒÍÂðÃ|yf§üò#ýOç'àƒ÷ÿÎs|³¼éx•Wlº¿Äzpަ{`“ž„¼p~Nä”ü º?Q}•[¬»ù‘ñŸù¦<ëžBðûêŸèeògòt4ÒÏw‘~òÌøžŒn¸ÀßçNqkáwÈÉUރ߇ðÏ £ü˜ò*‚ïá;“ýçPõºà¿ø’ãu÷«tL}ŒïÜB7 üùp­‡®†ßt´yÞ‚Ÿ{ù?p}nwò«ý9V¾Ÿzð?Á>þ åù^ú1r|'þüTgÄõ¬ëO{Ç'pÛë°ÀçnŒo¶³züãy•_ñ:º/ß÷¾Fö±Ò©ü^í'>ù£"ÇœýÐ÷«¿î-pÿ§ûDÈøúêäW;9û û§Áÿ¡‡÷Fz+)®ÇtŽÁ¹ ~ÅØ}ÞÈ^7'B×èƒÐ ñ‘O)·¾¯6Òç¶×gÏ'´?Éd‡B~¬Æ_ñû#x žcÏo}ïŒò{ãwÔ?Å9ÀDöÑï¤<íððpÇ´?b¼¶K(>÷8Ð òeuò«¾ßF~Dϲ\)ž¡gAرÑ{&?%Ñ ôä{C¡‹É_ŠóöcÑ»&¿êçYþ‚´_:„îß]äÍ„n'ÄW°ßIè¥ø‰~#»Øîêä7Ý˵ýlo¬o’C:o¶Ÿãt>Í{ì Ð7z%|zÐ×8G¥Ø*ßF9¼Àþ;¬]Y|¾qaÑw|Ýñk|ßœòGÂדj×çÈü¿¯òì{ˆ¿úXÛûÆ}Èäçxœò‘‡õǦÿ¦7ß7¼¾È›n†>—\åW¹óHø<`ï¼·ÄÇ­þ—úÁgêAÏ¡»è[“_+tGœA⦿ÓþHþSü*ÅUu¼äݶ×gÏ7ì¾æÌˆïàÙä׃~?_¥x©<ñ“¿¶ýL諾Ð]éù‡^‰=ü§½s#ýTŽ0.üÀä§å{ˆ?7>Ç›pòãrþÄsÂëãÀ{ìGÆr“:Xå7åÃ¥]ë…ì—|àÁØßéþ#r,tíû“_ö9¸íuù­ÀÆÙ‡ëþ„ãE•ßëžÄº¾¼Çޤ¼1åÇ;Á[â£_õ£ž“Ÿñs¯4ÿ;.òãR¾C¯£|Þ7¯v/©~ûÝ*þÅîg#^7¿tÂwœçHÏì½µ7Õ_öC’ƒå <“gçúد>]¸Ž5®oñýy'x°—ÿ{Ÿd\¯ÒEóàf}½§ÞËYwö@Î=ˆw‰ÞÏ=ÅåïxÀâ 8®,r&ã)ŸpþOðS÷ÝØ§´=â%ÂÿS.ß—~à3ßHŸƒ>—ãI±>7ò}ãBâï#þ±À§ §x"ë$¿ü~'¿©ÒÍ#ñSè‚ó|ž±«" úÁ÷ĺ0Ò_éæ½±_Îãø¬í·óÓì¨ߟ)ÝŽãòtЯ›È Ưr¯¨?¼'ÿêÅôïMõz.?K?ï/tóLé†u!þù¥Àgðø}áËÛ#ž¬ñ(õ)ô”Ïý0õ7¯†ñYôGœ~èNyÛ>zÏN òö{ð¼'î<åxn\ú‘žÛžó"‚Ïô—ïh‡q®Ô?çA¬¾È<ÂÇÈ#Y»àÈ?øtaõî[Áë;ðqáëŠ^ 8âkzÊÿà/x>‚gæ¿ÄaßÉw•OäyqÜtËAôªÆéKýÄAî g²»‘ñ¦^êyï”qÝH¹+йäü@ñ:_ðö[ÐóÍ=YúÿYêG>~4®ÃŸ.\Ç7ÈzïïŽt\ç õºÖ×øÝçä»ßx±Î‡™gö—)ß<9F;?ÎýÔóm |ânêÏ¢/BïÄCñ}ßü?Å =ž§ž/u.³Î•~(žMÇß|÷ªç#õÿÍqø”é>Þ(N›ùꄟöëg}Ù·¢ï?)ôQþËÿÉß´»ñ´r½<œWÉû5ËìÐáNÚ½Iÿá èG—Ç ¼†žÙ·àÇ̸ÈËE¿+—4ÕçFù4å±RÞ0èlÛøô[]GìN¬ûŬ×#ôém›ö7«àx‡\ø8-ßÃß±GS¯íÖÄÅâ9öß©_ðé´ ^2^èzä\~>‰ž–ýPÿ‡žÑ#©—q£wþ%ß!S¾y%Ÿ=/ЇíhèmÒ¿ Ýl…n¼ØeoxÔïл‘Sð=Û?]ùàœo£úËÇ*ÿmðï¡äc勾‡>·¯ãµöG¹Õ¼pîB¿Ø× —³Ÿæ{èíü(¯×qnÆùÙ8ž7Ô¿åüæÙÐ ~ƒÒcÎe½Wù>™çòEÎ÷”7ªúøèŠz§+/‚÷ݰŽ8oßæîX~Ê»]Ïw?Î8š—4¹ë¼§z‘ãßCWݯ©^ô·Ëè¿¥<öããüï<ªÐ•óûý¸°Ðͳ€Sà“é_ŸûƒŸwÇõ˜üÁœÿ˜}÷çYOø?xìü²=oMyð¾.»Såíeß3Ùqé—ÏI_ë+þuú<Îø¡‡«Ø±ìÿPïÍ<¿&:D¾#ŸìŸñÆØ~é˜uê|]ϼ„Þ·W üe°ú¹í\–cŽH|ç•ÂqüåÝ:^cžS÷ˆ¡³w7àŸócËNg?è)0çX‡©Ïù{EÿÎk1Ňu|Gèz.ŸË{Æ•ùÛöú/ð—AÇÙ¯œr^\ða礜ã³8äûÒ¯Æù° Ü ¼=¶ÓgèîRÊÑÎj¬wºOJ9öe¾¯&;à¶×¿ Ï"O,o¦üd÷ô>#>¬¼jµ+C7ó?ò©ô“z‘SÊ«j{†ãƒNù쇆½/õ­òûîAúC{ôëNž•/§tàŸ$½rÛø°À'ƒýêu·ö¯Éúƒà ö¢G¢s)}Zyp&¿}éI¥;äTィø·`æÿÞ ~¯~òýå”ï=š@üœçÑöÃÚá±Ú^ò@ýÓùÕ¶ñaOÑ+,WªÇà߈žƒŸØQ/Œzzñýÿiè…z}¯‹gèÀ÷[ä—?å ½'>N¹àsåx¼B¿BûPã@ŽÄ^Ðñ:þ-úõÓ?úc{:ó=sÛø°À'ƒ]?ôÖu<;Üßð?t?EÏóý®/SÞûŸkž¾:¯t@yìzég÷Gàù{#Þ:Ýdçƒîé÷;c;µ†þø®ó)»rëåžúcÏmGþ°m|Xà“ÁîS9¿»uÎþ#賚ò>È{ðsGÏðcåQÜ¥¾ãÀÃÀ½qDý¥+î³ÚŸÆû(è;Wêo¹Ðùt^d?ø‰ý(ÚgUŽ¡Ofœ¥“+¢#åa_üÓ^,8åµF¿¨ý(ø•ý€í\=9*øP¾Îâ)÷œß[ùi¦øQÇyÿæXÏ÷ÿ©þRãâ‚÷•»Ú_a¯ï{.›÷FXº@3o²W8ú¶ñaO›¿ü@oà¯ýä_ñrò_ÆO;ò¥út¾ƒGïŽtæý|ñ= ¼¤=ÛÍÀ_ärÎy“Ñÿ¯–3×RòqOþçgG9Úqe^E—“Ýz޼m|Xà‹ »/à<º¹1òmô­U~µ\é«ô _`äûØÇ'å·=þ.ðÑMøyåö­ðõæ8ÐþK~aës üšçîg>épÛã_àÝ¿§<9{’‡«á×ýúîýw_Ây#ölÎ¥–øÌ |ádP\ ßÇl9Þw}oÆþqØ¢çm{ü \àÏ=G¿º¼züÛ=ݧäq5ÅÁ~{5üÖçúª;ï9ßý`‘7 |ñà”çöÝqÿÒxL;'p}Þ“÷ïßw¿ƒûÚƒ|/:Üöø¸À_D7ø½­•ßyºosxR®ú—ïÇpÎã¼7Ú7-ûš¾Èpï‘7œÓ¿1ÒEõ¯?l/ÐÉaêsjè‡}ÑB7 |!~žS~5ìÇ7CGõÇÌóÎêñowÈùèñø¼öÉÿسOÊm{ü \à/µs=¼ç^öì̉oX:áœçÁÉóÚß ÏûÒçʾÀpŠïqò¸öS<÷úÍà‡†Þ¥89•+õ#J;òÝöø¸À_D7§¶züs>§ú¯±ÏaßÃ}±Õ7ùYû^?~dÛÿøs`÷/Ê‹P¿ünØ÷>.ÿoù§u¿§ï©ç0å‘Oèo#ý´}ʇ¾Úßßúa¿‹}»ßm¿5ž³.~> üYtƒ}KúRñ ¸?â}ý÷ù<Çž†ý|(ºáz¢ð<·ý;ý™â @Gß«^ÇwK;S\Gå9]à :¾Zß+Tñ•} zÛ*ïÙï(OñÖñÒ.H>Ù×|£½¢ýžXzà~(~ oãë÷Ê—µì³øs`÷ýÅÙïøžOðÝq6§¼ÀޝÆ9Žâ*’_ÀùZí;ÿ³ãÙGþ8¿©ïïÔèã‘nØwm{=øbÀâåYá÷ç°|¶zü«]Ìñš’߬ö3ìÏøßDoj¼?ç»ONê­|IÜçݲ¾Ö87Øù°ÓÑ_äô}á÷©ä«âÕ-p?‹ßÄ·Áï’¼à;qúÀÇUÊq_ôAžÏÑŸà󖉓Á¯ø|q”ëü%)‡Ük¼š”çÞlöaÍÃ{‰ñå{è(r«tsm‘7 |rX>ýYðy@ÞRònì¤\ïÏä=r‡¼hÐò€<ÑWÇýRõ,Ú'Ïzû’ȳ”§_ý>ðZêù$ÿ+o[íÇ)ç|ßo,û›þ ºa_Òx5«Ç¿âaã4C”ÏÿÖwðwøzólKïC W®ŠŽèã,°ïúŒryœã^tCž6âϽ1ö«ópc‘7 ütÃþ½ûá§ã¿|$<<·züÛ]:®;ûö)Nþw¼êiè}·Ót†<:#|§ßØ GüîæYö‚ÉýÖ"oøÓ°ç(Ùô™{˜±ô™<»Š¿4åñ ¦ã˜A|çÿÙ§„.|Z¹wYý£ÿê÷_ÔçœÎ7´ÀžJ7ìŸ99ùv÷ØqF|[çãÍ÷÷‚ïÇ'ßOq¹ŸƒÝ[ç)ý>û@ýÞ~=Ðë*]£r*{ûîIñµŸò -p§Ò x8Þ üþí³»J9äˆó¯Aè[Ôë8µ·ô?zzÖ=•Gï:3êq“‡Ly‘WÔ›ÿ·½. üÏ`ù?øº—õV(¿@Ïå—ÓzÙîJõò?åƒÏÕƒöF¸â{Êå½ï}ö;ðyBœ›;'ým}j?ý*]RŸäƒóÍOïÓŸêÔ+?„m¯ûÿ38áëž÷Oǯâ'xa¾ÍÿwÄoÑǨ¼çÿ}Ñ ôëþÑ ôLûwÆú*¨‡ö¿×õÝé¦~;·E7´û0õ1NÚƒŽ—ýÍK‹¿Á³òqðu_xj=k•÷”ÿçˆoÎ?[ÿ0Ë5¾ Þµý£õ‚‡´/ýªôõHý}wÄëæS¿7ö³rX÷«Ë'²/*=a÷c_¤ø;•×Gc} |1a÷·ØMWYçÃ@ðÓù?Ø/Ÿñ³øü]QŸóT§þê3ÈÚ…[¡3Úm½Ðøêü©¿ñÜ¡Wö«±_SüÏãÈ|Ñ®ótvE{Ø ˆŸØü!£üZà‹ ‹/¯ ÿð3Áë\ÞßïüfÐÍð“}¸â‘¯óQ¥¾K¢ê;Î3zrzr~œW4žËêGƳ¦Ÿ”ãü?wDô#ã/ÿ‘_OÛ#t¼äÅ}) õ¥Ê=ÁÐÁdW‚¢ï 7 +ÙÉJ‡ò+þßÔûÃ<Ÿþ­F|÷½¸Òý¤~öaÔ‹å'ô&¿˜).•·ÚøLÏmÓ¯w=íe€k»WÖç9g?ð©öÍc8òý)o:ü¿3üÓˆÛüy ñÕ8×Çï :£^ô ü›‘ÁÓêyÐYãKrn Ÿø§ú‡^ç¤~;øOã7G½_¨ÿÐóø§‘øbÁê[àSøÿ*¿ê9‡{ãÿõw_óüÆ¿{ú*?ò}zþ^xvaìÏ.íç9ùEK'øìýjÿ »ð…þ½@¿gNÇïÊ=ä úÝ}ÉYô²×4/׺y‘¡ó­òóùÄ´¿á|ôzR¾“&ôÒ}´¿ßéªzú^㣧_Úÿ«öÅgë{ƃ]~!‘´‡½ãPã­½mþ}ìR¾gœŒoÉïùBÃU~µ{GàAði:·Q>ŒÚµ€Ô¾îødÿ€öÃþ@Úá<:BwÈMö=ûïý8ÚÐ/Å'(Ÿùaä/Ó½häwÚ«¦_ÈK§ë |1àdßoàË~>L9ð•çðÿþ™@·þø²ñýêì(?Ч›ú½iò¯¡åyïqŽå{ÎD?y^é<¾¿äζ×ÿy‡]¯½qûþ§øî]¯óø\ûªýY§Û£~°ëv ôïHϦð‚þüÄwÆÇãÕð[ÎÏx,>Gž¯òó~rÂ?ÓÍ]ÑɹÔãò<æèâ8Ï{*ïö犯>Ϥ~åÙlý´Ë{žÝ?ÑÓ¶×iϬÅz4x~=.ÿoqöùîï9·ÿÐcvNþ÷=”ÝUž÷(åÀ[Ç•ý½ðú¦¿È¯×Ô.züûÒÓ2.çC_èe?J7ð{ô,ü8¢/×ï£~!)wq”Õ³’{fïÛsÎÎ9Â*ÏÚ¯Ï;Rî<øŸ÷;Âûý@ìTœßÐÏžoJ2núyflwÛë³ÀçÚ_£q&8·û:xHüèãj ïásHù›Â{Î8Ïä<žý+þSœ×'_é0÷ô+ߨ—v?Ïÿ×óý{jŸxÐ}è§þœ/~¿ÐÍ„nV'¿é\±ø–gøwè¥ûÇÁã¼äïUîŠäô‡œ#Þt›ö»Áý ¿›ž›¼)ù±ö÷ÍwøàÏÆ/tÉO»Àƒ='¸¾zü[dzí_»«üÏùû ø5úþÃø·Dì¹r}ìlÚÉþ£íå=~0ÕÙ?=¡íq¥·y†ñ'£þèc=÷#ÞæþB7 Ü ¿¾û ì·F<žÎ)Þ½µáêGøO9ö+{-?ÒYí º§O\¾Òræp¬¿ô»“ï‰Ël—ðm¯ÏŸOX>{”åïà9çxõËŸF¯S<}~“?íðþÖˆ¿m/õÓ¿ÖG»ô}å#ò-ýG&_Çû¾Ã®ðÑB7 Ü }od:ç?S®ï£ßUÉN\|L}ÅSô@âQÆÐý rˆçü}ïÿÓúÕ{¿|Ïýî±8އã çûû Ý,p3ôùúJ¿âøzœ÷ÿÜ€ÇÆ¿C•ßõ¯îSò}Û½=Ê™)ofã¥ü}'zšüSÜ¿C;tºíõYàó '”Žr…_Ï uß·xÊÿ¯J.Q¯Êõê~Ùß@_”Óû)®Ó½‘î‘mº¢?·ùBú»íõYà_d¸)~Úîêä7ÝCCÜu_ ÷"'Û.ߣ/Ÿ‘ÜD_ö¾ŽrÔ]‡òðÆ¥ó„mÏ÷_8Å/߰ǃüÜ Ç§x†Ð™ßCŸ¾ÄþsúG,שçìX®öê½·ÈÙþ ô²ÁŽPƒ{ÒSÏ?±ï+~¦÷‹õ«à<ûòåêêñ¯öôÝüçÜJùÉßÖ~}<ÒÅt>€|Zèf¿¬}ŸÛâÿ³:ù5nç¿ÐöÃKرŽô2ųÉ=kÇãhÎŽtÙóÜÐAé ;æE•»*;Ë›‹q¿Ý\ž^^=þ­ýâòŒŸqf¢oí~H^'ðþ‹À›yEå‘CŸö˜õyoþoþª@ä]ã½….Ø¿Ð>çämþª…nø+Ð ù2³è9*þŸƒ‡JïÁo %ûÕ×øÑ:¿r¬ù©R®r*ü^“¼â;ä çºÐßÇ’{Ê[¸Àþ"ºï¡ô)ö/µOW|ÐÆ{+ÿ?Ý¿çùAþg?CÜ7èÄy e7«?zýË7$ûžòƒ÷Sî½e³À_nÀKÎ[k¯=ùŸ«Ÿa†ÞÀkοؿßÐþ‚ú~§rø f3ÝW:—gèŒ{!ÐþÔGž«ÛyOû.zÚÿsXû×ì^ø“¢í"'Àûã<_ëYåW;rü%>aäXõ.ð9ç¸pôùöêjøÕo }‘{ì—–ó›þtsOr€{xçò¬ø ŽËÜsô"äôÝðÿÕK}Ø ^}8T¾Ÿì燩—v/¤=äô÷-ðW Îõ¥Ÿß‚¯µp©<<=W”PÏx/:kjÚÁ~ÇþÅù(çøºÈGë{Òû–{® üUè=)x¼ÊÏþÙŽßI¹ÚÉ"gì÷=Ýkÿ)§¸Z½§q¤v-·îl¨÷¶è%ÿw\G Ýû4êßå‹:ç.]íd]Ù¯bg?Ž|°öSôôúqOô@;à©èÜq¥KßÊ7Ðÿç¹”ŸáëÆ÷Ó}lç†^‘à9rúhïòø}éñ½q¾ª¤ø*ÿG×q‰ýLá:¿KÖû zƒ7=§æ»”#ôµ3®gÏýð#.Á+äçìÔ‹Ÿxý ׈¯~ŸñlŠÕsü¼OùÞ—Ã/>Â<1|ÿúX¾ökü|¨'ûzÇGu>ÆòÇ÷b¾2¯›øß¶ñé·»on¾%áçyÄWãœ}ÌöÓ‹#ÞBmý:|Ÿý/õƒgÔK=ègì§Fýgw•öu®ÙïkÏJ9è®|üÌÿàkóª<ûôi¼ÐaÛƒþG:šÎ‡´ßé÷î÷†ø Øí¶O¿X~ Àçð¿R~•ÚŸÀÏ»ð属Ö/½»ëOyè y‡å%žÓÎGЫŽó=øŽœã|ÍsûÛüP)÷Þ8Ÿ'VO„žÂ_*wˆ‡Ý™óè-ôðÝGýUùuž¸À0å[GþoŸ~+°xú¶ð<úAëzfÄêÆ{¾¿3òÇî{ØçÞJ}Ð ú ù’eçmûéaŠ·Æþœï> ÄyW9z;´Ã¾ë‘è)þ-ü¦óèêõ;riÊ#b;í|ŸñNt³:ýý]8åSÒzÁ§ýú“ò5'õ°/Ðy\÷Ê“4Åyb Ýò?õ7¯æ:‡Ž¬ÁϽ¸–z‰Cªüºíô@ÞÐož©§qG=ªóÇ: ç1NôRÚo¾ÞÓå ãÛ6^½ì°úLñWøˆ>žBè7økA7؇ÀSä×UÉôð£÷·Ô~÷3yÏ>ˆþàÏ_–ßfõäHÛÉûÆoé©zõ ñcc¼ðò³)ŸN¿'bøPùrúSëÉõ‡q<Óz^]ô´gJ7ð3öÛ·³N·ó<é/„g¬·í·:o(þ)®ÎdWc¿ßÿ&ý9Îó+úîJ t Ý7?`¾ƒ¡küƨ9Ô<µÐwþ_©ßo«wÔ¿·$o£ßM÷£íßÀú ‡ÞÛïx¸·ìož ,küå¬ú |Õç7Ê/ÛýtrgÔ[ðÙ$çÚß×ßj¤ øuñ+úÍ= <§ÿÄkü[Ÿï¦ÞÔ¿Žûž÷ȃð Ïó:L~×Ü›®áS¶«`ÁÞ¦<@Ö»Šk·m¼zÙá”/¼AŽ ²ïo>tð~}0Ê‹®¯ô ÛÀ¯Ò/ü^x\½&ýª>>sO|¦à#|úâØÏÊÇ·4çÆv}>ÚóTèùXå¯jÄI…Î2îΟéïXÿS/òggãÞ6^½ì°øçüNðSç«DGo£|ìZk¼Oùð÷®ðÄq[JGàû$Ÿß£¢'gÖÇ.¦œÏ_°§³Ïaßýì¤òPu_ç<é?¨Ì ú˜åä‘äïjüßù»ìW0É3ùm¯^V8Å„ó>ò§x ? žXï§¼^΃þo{øÛ‚>çþîñû‹ST}+üï*·7Ò×&©_nàëÐkøø¶çq¿ X9‚=‹gô ô3è=ˆýúºýd^{ºü¿ú‘îAn{>øÛ€Ý££O_ }p™ýAé?ö õãbŸð”éf9Ï[à6é¾ýî¸O¨\ÙY=þ힀užuþEúÛùqßþÔúÝíÂb/Zೇkÿõ“_íì·±;åÿæn|®È¡;)ÇyÛSÒÓjûýÓÝ?-p?ЇʾŠýÌ~“œ£±ß±àÎxÞð´ìß=†ó¹éø,¡Ï;ê'\ }`·ÂyÄyûœ§¬7õ{^¶½~ Ülüäx¼/þXßâ|Çß¼Ô½ÃÖ ¤^µ»¢ü¡ íœ[ ?ÇAë÷Œë8Ïô:Ø”7û–è”òôSÿo{ý¸ØýÆêäg>»ò{ô1ÅÝk=<ƒ·õOAì“(÷öˆß´ßû#ЫâNN÷¹‰=­y9E¿ÈÁŽ{_ån-v…þ›ýƒ@ôŸàgã°(¯xïE¯ù¾öiâ¥A/ø}~$/2î”'¾ y5á|OÚȽm¯ß·‹¿×Vå»èC½¿+} ?›îKòìx·ÐÍÇÖŸÆýLýÐËÈsÌ=~äÙGÖ›R¼&>èyßøЧè•ûýÜφ®zŽ›rŸI~}¸èk¿e¸»:ùU‚ü‡‘ª¿ ·±ÏÿKièËtã}rì09ÏÜã¡¿ÐÍYÑ3û1è}KÏòÝ”Çnpn¤§Ò1qžò½Ô¾°ò}zσ§üÊ÷¿ ~߯ƒ_ñ»C¿½ðÜ}zì ¥çÆéL=ù¿ßA¿ÙŸµ~ ò"zXíwÒ3òÈq7 ëWÆv—< |ŒŸF¼óo:w9Öû[ÁÃü¯…«¾Ûèc#žÚÎMùÒÍ­ßÛÞ•¿ yu5ýÙß·?È¥ô«|@ùœ×yOÞo{ݸ]èóuÿÆù[ùQ_¿{(>½ëé9Ïíoû}ê/Þ> þó?òð5ÕÇwÿR}´ó½Æ±úø'»ø÷c¹m¯Û· '²<û·Îû—gð ¹s4Ê¥~gzžNçùwG=hòO°÷÷F:a?Óv(·/ù&yÕ÷”cœ·Æú¶½nOvÿÈþ~tGr˜yeYgø ò;ëQ=þá¸n='s>aÊ¡Ç\Jûéö¤Ö³£u<~¥¿»+õ—þ3žðåâ½ò_Lûè%é_öÝ­ï¾æƒ<ÐíÉVú¼«qD^4në=Íqp6ÅÛÄžÁ¹ ãÊ|TïÊwݧ1.æ‹ú™GÖŸ} qF™æMóîûÙÅ;þo¾¹@Ç‹>£õ_™ÚuÜlí¿º¾©§þÂïîo/Œëâ{R“Ÿ.øK;è½¢'Ç1µ^P{è™q\Å#êgüÔ‹×q/WãºÙ¿|—ù¥ßà[ÖÏzûÄ™GÓ;ôÁ¹ßŽþgÜÌ7ø¤|,ŽÏY} ºsžåk=ŒüW~Î5_H½œ“r¾Ëø±·COô›ua>À›•ƽ?ò¥Î£âN;ZñŸùQ^]Ç î¸º~دúCñ yGG>Wzedßn9ÙÏ;è>ëÉz[þ•ÿ²Þ¦7æ>Ê:=éÆ|ºï÷UŽõD?Ò9ÃäŸÞZþ_ÇÍùõ)žKéŽñSÿ¦8–·Æößšõ?ÖüÑü“ù¾7ÎK¿ÏàÿäSÇÉ<ˆÎ'}‘~—|¯q¯óDÿW·“òзèÁ|~ŠÎzÜ×ÏóßóTðy¤è ùÂ8¡æÅüÕô 2Ï–·àγºôþÅøèøôPÿ§žÒóªüÓ¾‘þç8CÌóÛcÿÊÿ~§~ƒ§›÷à½ð¥çoÆ÷Ìs׃ùÔÿÍ;§|c?ch}9ó[>ê8÷ðwž™èUvÖÎý§Ü¥OKWU¹qNã¤ç)T£îS +æ˜ù›äþ™‘·ýHó@=´”.Fº™üV/x}WÿCçÖ;X¿7Çv«'½6¶_9é}xÝé¢ôp8ΓõŒ>ÃGœçšù¢=ú”<`Þ;ŒïÒHgÓ½­Æu×Áû¸êïF¾C»ÅÛƒq¾Ë¯*µ.¬ß…¾§ýÞJôa>A¹+ê¿Êu¾¬Ï0_Ê`;Aåth}÷C•gž§ù.ôÁük>ÀMólÇãþ¥{v¥ î'¼:¾7ÞØ¯¼ý¾«öNûŽÎ7tļ<åGé†vÁCÝç+ÝÀo”O²zýeñÛ#·;Ÿäjë;ŸçÔÇùó3~üÁOåÏ*Ÿo¡Sö­«wÆ~â¿[~Eûø c¯Á.†ŒóE`bœõγó‹3áOSütèúeÆz½w:–/0/ô‡üêöˆ_Â?ÿ<âWù'ýpœð‡Ž¿ûã€/ŠSÚüL¡ƒÎ?y_²ðñÉõz¦óuAó¤|§¥›æË2þtæ¼ó“.øÌ¼Ò_ô_Æ}˜~Ñ?üäá£ø½ƒ'ÔË<à÷x1ïÁó³‚|W9 v§üD)Ï:5Ÿ]ÊÅÎ5²Nô |‡žhÿÌ8Wè‰u‚ÞèŸòÂNùYWü ûOüžÁ{ôLð¨q§S/ë½2Nêçæ«y1G¼ð¹Uý4™/óAÖ÷‚Æ >~”ö©Où£¦y‡¿k½¦ü7èñ¥Ï‘ÎÐ &;ç¬ï†¸Ûõ£p>ÅÌ_ù ãEÏÜ×g’³¬3óßêzBÿi÷(ýÅŽ ^v]™Ù5'»É•‘ßMyõ˜?öôÛ÷ÈÀgú‡r?ïƒæk»únǙMùÆ7·Ñ“¡‡û¢#Öãx'tç}Ñ:Až÷R¯÷ñ•ë#ýOvHçes^[ðœ~Áÿ4íÏãøŠÔ«û§ûã8‹GÌã^Ï‹ð=åÐ3‚¿“ÿŸæ¥Ïð¬#xÑþß_”Þäûä–Sës—/½ï¶¿põè |ß gêÿýØžíÅk=‰y œìPùž~ìkÞÎtÃ|u?B»Õ_þïþDôÍg|Üo¿÷¯5ÿš¿µœù\ûsvwñú…?>ù€ý'~º¯ñkV>Y;Eêa~à#Ì/õ²nŒqe>‹GGãüôý± |õÑØoûmÔ>µŸ'»ºüµ¦óƼ*ržç;ã<™UNÐ_ð zÐþ`’+‡úžùàÿ|ßùŸ.>‚GÐëËÿŽ+hùq~œ7ËõéÜÇ|Ðöð˜zÀæ…ñ1Ž §ã ýŸ¾c¾2•cüÏ<ˆÏÙÏÈë8Ù^S?}ßÃ~­ÌÇ‘èüµ¼¸=ŽgŠCQý:ïmG¢^úM¿ÀŸ{òÞçE¥ƒqÞi·óu¤z4ôùšøWàÆóNþ×þ¤øNýЕýÊà:«¾ð'­ûääYÑ‘ýgt.?ùãA_¶Ód~§?í¾|Æþe»ë´Ÿ3õxߤ}­íê]ïÆùD÷§è»‡y¿3ÒUõFå!­Ý‚yÀN†|c^(¿Jý×SŽï¡cø«âíP~ò7{mÃøÑ£˜ïËãûõþ6ïéÿ%Ïý]èåÑ xÄ|¾ªùžþ­vcéOgGX¼dÝðÃ;N½àòAÛ©ý¹¯ï{¯;ïïÂcì²à;ñV#]µ}èüÄfûx‡B^1^Ûå•Ýñz|ßÏöŒÎ'÷½Ñw¨?<è¿þƒ©Où°[ßgäÁÆ¡àÒûÖ<ÂþÒüiyï|è~æ~%ß½>â}í°èG·Sžö Kò‹>Þ€‡„ß;ißt+ûQËÉ~5éùÐãâ\˜z‘Kö‹€a§d¼Ðÿ•´ûÎØ¯®ÓÛúÎ~š@äç5ÿ芷äqüe°ü¾ÍúsnuFóŸu©Âzv2øéƒûòWZŸ'ÑŸ@çVŸ¼ßN9èRç¨Ó¹2åÐo€çÆú‹‡W7ôÏçnÐ5ûf·_oõ•®©|ÆÕuÂþ>‹^öHúýX©<ãf>8G¦?×F:]àé°ûGÂ3ð¿—ã<ÃÇ û0âAß_õ|ïgÖ÷4àóyï#œSS?üú¹!ýÄz|Ú÷qÀ{ŸW^õÐÚ»ŽF~Ýyˆœ«]üt½ØwЫ8þ8åÐ'ßå@õÖÒUžñcà=óÌ:²ß¢÷òLœ¡”[ìO×~$'ó¸Êo:·è9YþWœ¾ëzƒ/èá¼ç¾Àü<Gmº/Â>áþØníŠà)q7¤·;ψãûÖ¯‚úŽóž8„ðâæ~Üt®}C'çÇ÷µ/¦þÚk÷ô=ýº8òÿŽKç*öƒ®|†žÐ·‘GÐSèÈûÈmãåó+Ø7Wïž…¾D|@û³NÚ/øþléîŸZ/óÏê9©:„/SüO‰ÇÝëœß÷4+ºŸÉ÷Œ‹ñÖÏiÔ‡—~ò :7¶?ÝÏ3D¾AÇâÿ¥Cè>=À€¬ q¬è7ò’q³ét?'ÿ7øÐ™Qo˜î«½>âgíD•Yß@ôëàMëEG^_èzŸðãB>è^³ÏÝ9ê~ º¿/§â'“½¤ö‡´g;ýtÿØoÐôÞ¯Fþßù£|õÀ‘ÿUþ —Â|oqÀ_þ¼ÐÍÑ ço¬cã—6~´Ö¿ü.ÿS>å¦ûÆ>w‡ïÝõ¯ê)ðíã”; ï°ü‰ùeþ^ž OÀù³Þå·ðYË%ôë%ÜKóº’߀÷Õ7ò¾þ.ùŸú}Ïúküã»ðú>T;üO?˜ø8öâ•"ÏŽÁÓ@íCºWD?ćGïr<î·Çõšîù`¿x þÀ‡Ø—…”¾oŸÞþ÷âOÐ | ë>É™q~à3S9ú ~‰þÍ&>~/ã9+>É|]ã9ßÑxl{y< ÝÒn¾ßp?¦x}Uß§|Ϻg#uKt fÝÀS¾S|Æ?ÝsÜÛi‰Ò­èÊú¡çI÷Ñ:¿ŽK¤x¡üü–ÑçÃŽ3]ºªßë(:núG¹ ñ®×x;ö§tI}ŽS]‰7ê_ºG=ý„žqn5üZNñz½O.Ÿ¸‘ñ£çX¯¼5ÎWו{éÇ8Ÿ¥Ë#=í~6ÒñDgÇùs<çmžÎ_دÑ/ôUÆÏú_¡7ÖzÔnÄüáïö[OµOpü„É~"ºœöioбŸ€˜GN÷ ǺãH¿ÛÇ1¤ËMqNñàÛ¯ŒÏæóC/yžn¤âo° °ž}Æî§¼¨ëóið7ícG圊ýù%‘ß_²Â_ü}Áœ”Àw{_)ÿ?g^°[}žþÙ¯œxoÐ%óŠ<Ø ¤^ß¿Äö.‰ï¡§y? ýœGŽŒ|ªí‘WšüµìGà“ô¼h|”<ÓöÇèeׄßüϺ/*q¥zîI}ð_øzq<¼Ÿaž  ú‹Ý¹ñªóL?©—8o÷áwéï ÚÄî¿¢ŸÍ«šzÁïF:ÛD›ìÅÇOT¯ònõÞ+ëªü©Å;ʱ.¬“×áÑå°_C/_æÿÆ K9Å)ä~Ù}vÊU¯°=¼¢þkÂÖ§ç…#žT/¥ÿàùeÕK;öS*ÞÊ:»è}ÿá7Ð í!ßÁGʱà'÷„XèéšÖ£÷åæ!óùStC{³ >Ÿú9¯ýd¤Çu¾{ñOÛÙX‡U þS¬#óh?(Î/îŽt¾{3xV¿”@ðë¿þû¤ð9Ÿ ýµÿøuȱüˆu·|‡^À'ä†ò8/Cû™þ9ºíÿ+æÍvÝÃÕð[ç«<«þöÞŠæMþ+Sþðü Ÿó½Š–‡ŸÉ.0å;¸¯öÐ ˜Gú„oض|—û»îßtœú×­ô'=k¢ üøŽ7Р㿬õ‡ÿe<-~ÿ(ŸÈ³ì>åGÍsæ³øúÖøìóª)î´ã!¡çç>T鹂·2NÊÙŽ@»_Œí?ÿvåä½üú‹—ðË3äÖëc?&½;û¥ƒÔ~"OÀ#øDñ¾6òŸÖϹ&ø,üî÷à3üôó”ùœÄöàuÜ”gýŸösÅêý,íÇÂ7НéŸ÷§Î×÷]œ^*' 3Ù#ìOÐú?Ûéyôôžæïšw“9î÷úüùÕÚ¾™ï™7ŸÓiÝë_|+ÏÐ×uÍŸãg2¾»§÷Óyjx˜÷οÉú‚w²O9¯át¾â{=²Ö>ËÿŽ{|^ÏðwôÅežÎ5÷à3øÎy¸ð©çnŒûbþÿTãçÇÿ;?âe÷…ÿçgÂÓK©Gq'?™{éwϧŸŒnl‡óÿ¯ûc¹òè¡ñÇ3º·Ôrð=ð†}éKç‡ëøaÈç;ÛéüXmøÙ¿S~¼öçæ#°úõÈÿ¬åßûñšz¯äÙx¡øiöoh9ùkù¼¥ô‰þy-ùùU íŸwœÿµî›òé®ãRç{ç‡b3®u\…q~§óø"øùªÚ» ¾gøÁáÉÿÛö›\àŸœî-a‡¶¿ŽîÕM÷&ø¹yáÉäÍø"ÂêÐ ò‰}Ð’#è ¾ï¼–ž¿íñ-pONqU±K¢¿bí}ÑÐIã@ß·ú)Î.ðE†µãi´¾ß—ÿ³_í> } ».ö'ŧÛöø¸À§B7Ø-Þ’Þð}ú_y¯ï¦8vømd]»nŠÇ±/ïgâ£Ì¯ŸYç<×Ï<²ß¹üÅûþhœÿMxày4^Lñ¬X÷ýoçxœÏÝMí+ÎýDÁyî§{úÖÙóD:Ÿ¬Û%á×Ýñû¾ÿ×8ÿm<¢ãü §¶æUq$ŠWЙââ”߈Nº>òãõý{Ç%«Æt¯ûõÃf‚S¼áÑFº1‹Ló^SÿÑéíÖ_úÁßë7ž¨¾¾O¿Šw̃é…~òþ‘ê¿§qÓOÅ»ë÷ôSq!;ÿÎÿü˜âWA¯‡jÏór öõÜs$üænåœ×¢ýb}$Çt¢ká3ß90ï+w|—ü&ô9m¼±_û#Nùž½þðoîÉ*n@×[øìø õö×Gú[çN½ð_ÖYë¸Îoï™峟ø4ër¤ùq?²þåk´ßuÇÛûqà½ç…ýv­Ëcùuüfɵý?Úè<õýîëPþ{n5ü¦¼ÄçÆqOÿס-§x7»_¦>î¯ù~‰ïÝ ˜ïÌ[ãrïŸ{8+µ§û²Å/î%ÿ~„ݲÜn\£ÓõŸ¶~²Î¬ëUü~?;îÛr.ðUàOø??ÀGêUÞŒÊkÆ~ ¸ S^6åÑÜ$ϦxA)ßóæýí±?åÔ[»ß§~úM½Ü#U^Ûuž…Œ£ynG9¿¾—žï±€ŸÌý&®ÄÅüÏü]`3O¼§¾O¯ä{üG™÷«xì|å¥CÍ7q÷‡u¼˜{¼缊Ÿä¸m¥Û+ZWÎ}¹‡}˜r«¦<ü­ù_Fºrü¶Òý@Ö+y5‰»Püc¿ç}#݇yÆwŸžz÷§ãç^4ô 2>ð†õgýþ*:É£øÖ§q½ó?x#ýhÝüÿMžWãÊç™yÔ9ñøŸæ'ðWð|&. ípü"óxüÏ÷Ä'PÜüö:‚~ ·³yÿígüÌO¾'ž†ï‰Ã'”·µñãÄM.•/»úƒîs6~x}3ÿC'Ç©Ÿub½iw'õ?L?#W¸·[|oÿu—9Ïà~µÐç×|§ò—N§›ÖóÿÈw´ŸÈo½e¼•[Ì;øÖ¸y~Gý?¨ßquéôÿ_¬SꯣuE?a¾ Ÿ™øÎ×)ÿ¿þ{\/çct~ñc¾kzü;.ëÀ¾$t8åçQ\£)ßLú5áñáûwR㨼Í3ã6^€×ØD“Þsn\ßây—é7ü‰xnØ o©MñµÃ'úŒ?üöÌ8o^×>7~6ô<Î[íSйâõù¼°¿ÿ2ß+í:¾`Êïÿ;n^íŸí/ç|$þô–Ö…ý q ѧœ}OÏίp)ÏÄS¾vê×–q9>ÖþØOûñØ>Y¼ïÃw¦üØ=…¿WUNqÿ7žo oØ—ÈŽ=ŽdŸÃwèЕêÏÚŽòñÙžÝz±ó}#|û ÿtŸK´÷ÅÇÀÖÇóÁ<¢O¢Ãÿ±…/tŸž ‚×Ì#xñ¶Æ8.õe­/ôE½:×ïøîˆŽh'ñÀÖz­¾ïh|ŽÏ±“váïà}`ã A¯Æ‹ã|-Ï^¯ãq?ú ϶o;o–íh¿W;ô[|g«½ ókzVžñiÝ#gÆym½¬ÿá8Ω¿ŽÏ†ÜU~*ßCÇ'ºç7÷¾5Ö?õ[yû?ýD~ÀçŽõý¾úŸy˜Îóo1îÌ“è¸xh|Pþ¢òeÑÏuÞé/åŽxßõŽü^Û‡Òþ#ñ?ñ…ö›vÁKæþ£|+—G>z¡(G¿iÿ@óÎúäÛ½&¿œýÓé¦óñêØ~Ç÷ðÇÛí{ú©õâÐøëîx©;Oó•h}ž0ŸÝ4¿êoù$ý¿™¾§_ð/óÇ#ÍÇ¿Tÿ­Óáô=å™wÞošÿÒEÊßëí¼Žp:çD®°^зð¶ó õžü Â×·í‡÷¢ÀM~B“?ÊѸîÅGàñ¸¾ÔSþ$¾6á-ëI{zß~±ÞðÝcõ7ß9Îl¿¿î{ë9´O{üÏ{Úe’דßå‘×i:çÝù\Ý~I=ŸAÿÁÿ†yxUôÄz0Ïï¶ññy‡ÕÏï²|p_ëÇ<ßùäì?˜uã{ø°ñx[|œïä/8•£>ø=|x½à—Ñ|)yv^2üE87¥½/ó?þ|Íã#ú!ÿç>œ»òÌÒüÒè½:¾ÝÁò?rùôù¨_n/ŸwX<Æï=}WùØœOqºï~]üý¼lÑ@ø.û$ø.ïÙ­òŒÞeè}¬y›òÿá«ü¼»o‡Î¡WçÇe¾—rõ³ÿÙÚŸ=õ@ÇðÚC/Cï<¸á¬xÏ|a—¸ qÁ·ðÿVžžú%.tóDpº÷¼“ye>áßÍÓH¹ýÿ÷­?øU½>Xÿû‘.ºÏ…ŸG¿èþþVÞ÷\u¤Ÿî‘_ðcð¯y ÇöÛ¿ÊÔÃ.ù©¾ÐôüŸÎEà+éÇdÏO½ëü`úŸyéxòþ>ë‘ÿߦvÌc­+ÿÃÙ÷Ü^èæ‰è|_ÝgäHø½œÕz¿#~ˆ][÷Š{ŸŒ÷Áç<ƒÿø“ˆ>Ï ß¨7||Ï19aü<3âKåö¶ûêOî'¬ý"óÌ>›sæ ú Ý=õOùþ|µýzoÄçÊŸüïu«|uuï³ÐhGv‡n è!óÝù‡O:.ôtKë%üµ¼™Î!¡øßD^)~Ù:ÿLð3õýä¸ö~¿À§H7ðOë7ȽƓˆ\|cä§öØ]å{ä*òúbߥÿ§ï‘é_¿{4îû¸ÀmÀÚÛVÂ_äÇyÑ ûß/Cß?'ú²*½«ß¡‡¢E/ª½{`O—#Ð{Ÿ/ŒÏ \à¯ í¿Žg|åܹҸ{'ßY뾆} ôò í8>ôya¬Ï~aµ×oÐÓÿã>Sº¹/¼FÞüIü9â¸üWÇïºOÂnžzK'ÔzX­(žÈyÐÑösÅXÎøLé¼<·zü[Ÿ åùp)ôu˜÷ãˆ|â|{8tC¼ä~oÐû˜ô£òæÑ“îuÖo{Û÷‹üYà¯'9‚ŸÊÎêñ¯ö4{®ãö¾-z‚NðóÑ=ÑÚ£}N ÝÞ‡^R»tC¿¯öŒEO[à3¡öœ{Ÿñ²rF÷gW­ô€_ zûä’üxœ?ÖzšãU/ô9}è»öŠ…~øáú¾èhÿåWü…~ð£dÿìjʳ®y•ïñ3FŽà¿½½·Á®pœït¯ÅyBǶçw/'¬Xü¦sƼ?<õ¿y¤rŠ“k…Ê+ŸqïÈú ÷KÊ~G?¡w¾;û¹íy]àË ­ûè¹qFûè y€\º«ïµß¯_Ü…±|ílÔÓ<\ù:Á~4êaÎo´À>úŒïì×WylŠ×·ÎK#¹‚v.ß!?´éþæ±ÝÞCSœÙMãÉg/½Ü™âãŽëÖ÷𳣑ïØ?ßñ®¾{H=àɦø¼ü0þÏzL~’÷ô?ßí©ÿ”Ò®û¯uŸòÛ1žàyŸO`ýQ—uŠkD»Œ—÷ÔkÿGô3çYÖ¹ÉäçL;·Uîx5üj‡~íôyX`æ-óÚyóºšNœ/ºYW¾_¤wOq’©ßßS¯ãŽÁwÆúk_ >ôäªê£ãë=ýÏ÷¿SÁkÊSó£øaíå‚Çàåw(ºñ½Ï¶_ôEÿÐËt¦åà'ôGùgï¶ñôyƒ½ßzEx ßAþ~œÏIïµõ/6Ý÷êºÊ_°ô?åþv ôñèSžå!™â® ûý«r~Qz`_ùªò}éEnÿ0ÏØ}_ùÿ³÷o»uÉÚ6Z6e™tËö°hÓ”-ÛÔ^ò®mwÏù}k æôEõ=Í#^yij @@Ã`ƒ a¢±þŸã}Þ1ãMKVKÜdª*++7±ËÈȈǤ—çuÜçõªúWsÞ˜þ1žÌKÄÇôxÒOèPò“ñ]4ž^4è¸ Äeaßùfð9ðeUïÁ3ö‘oÏy?¨~Þ³æxȽwÞ—à÷«>’qöŒ×/óÎ17y•È·þóî?ñl8O^>â‹ÑOÚÏ8 1>j·Ï#s>‘~ü÷Ðöä[ü/Êñß5•wþ‚è—÷3õþË:~‹ÆÏ‹ g„yÀÞOÞ*øêw*~™N>«xàø%ŸT<²<‚ïFÞë\4ø±^ˆCñQ¼'> ø ^ãGÂyôçµ~ë3cõcCñ€o¿ÂyUU/ñÕ>®ã3ËKª~¢gÞ üò:p<¥i{,Ÿ™‘ž3^гöE]ß/UÏhüÕžLŸs¿h|½(°É{²W¡õø¤óê9ü*ÎI¹þ}ðRóÈü8/¤æ‡ï7B̼nÄIEŸ>s¿;õ¡Œ â7‰ŸJÔgü‚Ÿä¹ß!Úÿ8èàgÝ3žÄ§@¿…?Dž[ÿw)î#–ù|yaÞ6â}ðûáÀ—h—öW3Nâñõ¢@ë/à'xL\.øÛ#øªæ—|šÄû‘>d=Ÿùz÷ø_9^#t¨{ô7Ö3w‰ÃžŸª>êÅ~Š\©^祫zõ,öÇ‘o_~A‡Ðûºê¥ÿÏâ9íøVõ}6ùmÑ_¿z¥Ÿð'èþõMŒ'ry%î`È7Ëç±\Qy`èuj^ÀèƒyEŸ€ÿÃߘÆ•{æËùZUžõ:ëxð)ãôQž<äÈ%Ö]ÄÉ#¿\ò[ëƒU¾Ø?Xq27:óƒOK•ïû?ô#ýO è›ýwäYäQ4`Ü2¿ä½xNý7á?Óï­=ˆù!.å‘“Œ÷g1oô+ò6ÎøjåN¡ù«äGã ?Ëü¦Ë¼¯ãí¼­§ÁqÈ#ê}ÖýØy¾Œ÷ÿÈöá±!íîézœø„ñíAôÃø]¿kâK¿ºÏüŒî?ë:Õo{â6|]ÿ¡Þ-=‡Ž_EOÔzôÏøÁ§˜/úñ¡2¾y‡ -¿½ŽÐøfÞðßcþàæÛQŽ÷¹îàùJâsý¯åz÷QàÕœsõÇfH<\®åì¿2Q¹Ìó ~IŽ4yS#Ï®íùGµ}®oõÆÿżï“ñtà_±.jö‘ÔßÝêÿðž£onþ”¼9¨r¾ñcÊxVàç¼{æ7ã®$žÂo³<õìVüó>í_Y·ð=x´x3/cà'Wîÿ5ùMy>QyòYÄþ‹ë[Õ÷È3ø |%ö™6‡øÿ=©ýryÏ>ÛiÌ ß%_‹¸½‹ÆÇËçÆÛË|yûïfçuÏ<U|ð>CY^œ%•G Ï>Ëïõ~¤ïÁ_Õ×äã“ö5öîoÄø}ÐõæyåŒK _ }ð©äWÄ>¨õº¬²Ÿ‡ßzúwÚëžT¾áþ3ð!èW|'ý5üzõ@pUº½—í:;ùó·ÔéæµÊ›Xg[¿AïÚ z‚¯g|hè ÿµç1oÌ3ô_žšßƒïìsâC^Dêß¼O«û”—CÔÏ÷È#äå'¿,W‡ƒßðŸæüiöú< (zH>àñÅ>~ì¶·Ò^üWuŸqáw—Î?ä»ô&¯Û™æ|/%Ÿ2Nø9€WèøYè?¦7æ_ßµçœU/þj´Cõ5qpß«xe}1ñþFýOs$ãd|]üàÿÈ)ô.èüÿ¬ö>áö!ïv¢?ÎGÌøWþãöÌ9»h¼»ìÐöãˆG™ç³šuÀ­x^†ÿ*xHjÕg¼ÐìcB¾¥ŸZê'igäà=ÿ¹ß?¶œá?·+½[-G¨ÿèsÏzm?ø å€ôã8úýã•Vz¶b>‘s]Þ¼8óÿÞŽ*7ñÂð‡Ë<|àUæA‚6ç5¿Ì§ôëeèqîÆyÊ7¸W=Ð=ùÙÀ»ô'Eî ðóÈþÀÿ±Ò~ø€êw}ÈgÊ¥¿ôFü´qýoï-óÆßŒñ ¿<ϧèÞûÉ©WªÝ‹Æ»Ë›xIà×ràô‚½èF”ÇO,ýA7¦ïS·÷šgÖ!ð{èŽuMÆaŽó13º†þY—#?Àûƒ ?ú7D;É—™úTÚñïã|P®Ëé/|!óŸå: ÿ8ÞkÝ8Ë=½7½|ÿEþ3Ÿu9óZå ~ö¿U¼2^à ¿_Ù/ÁnôIàxÜÃ/²ñ'/Á÷ýÊom]X_‘þ1€wÐWžÿ±Ð>ð9çÕ]/òîIí÷,N‡žûœ«ê%¯¨êiΕs~9ˆŸ#õ#·àcy.hYÏéþ»Ì§èhÑøvU ñÞûš¿±žG\ñY|eáó¾ËÂϳœãÇèÞùkUÐë5k†·´¹Äÿññ·†þéèÅõçú¼ö9Wµ_ãa»óÏSŸÇ¾CªÇô…}1ý~± Lôøöj¯#õºb¼àWÈmƳçQ{­?1.¯g"OŒ÷À§Ý:¿¦«=•ÀÇ‘¾;ÐwGè1ñ½·*ót„ÝÂxa9Tëoâ?!¿³ð÷ô·Í<Û7k}Í:»Å¡ ýK9‰œEžÀ—"î›õ9¾§Ðzqì‡q™_áoÿüüõP‡¯óÜtãGÆ|eÞ¥£˜Ïð+™Ð=r…÷̯åOðÉêßÌìe!÷XWƒßáOfü‰8 MZìÂè™ìCj;gv†;ÈKøÆIm7øìvB7ïÔr–óÕî”ÇÐýœó?üÇ톬Nÿ·h|ëðÍ@ËäÙáõšïÜ[n»ÒKã_@~/ë½å¹þÿާå=þ9Øä®×<ª»/Ô«X÷yÜBoö8î„üŽ}ÛÌÜó"\N˜ù®ÿÃN7—¯Vzðóíª6q—8ñ<ô½ˆ¯È÷‹‡_ zÝôåõâ/ÒK½N‹õJãÏŽ]Ýùƒ§—×e¬¯îÖõRÆìðrA¯‡7®×úæEòÆû³7‘8HÄ1®ñ]ØI¿GïŸ2ÎÀëŧ® t&ìlë׋ÿ!'æ¾øùñùA¼Îý±»$ˆŸqáîu{õe„¶«ù¼{½æ‘}¥ò•ÔÓ°÷C7ø'ýUôñ‹ çK9'Å~ñï]/>uÙagÿ˜àÑUƒ©5ïÙo‹ø¨3¿XAô\öÑðŒ} ¯#‰ÿwÿzéÅ—Ú^Š=ÿDùc-º}om&Ü_û%¤Ÿ÷²`Äݱ=;Zî¯ÂŸðü×õâS—ÌÄ—Zt»Þvÿ_„·¶‡-ç^¦Ö7áwØÄ!Íü2£ë5î—jZ‡Ì{¶èv½-˜þ8séFëyëe#›ä5ß{½ãs¦ºÇ®q‰3~֢ǣ׃ðYM¯ÏY/º]ooìüñú¢‰[)þÒøl… åY×Örþ¿èhÑãq]až‹7ÿÃo*ç™ùO¿¼ç»ñP.Ë)Êðeíç¹<ø“õlÏñ_ÙªÐås]¶íPýM|œ|þÚ®?ú›q$›q§\ú³Ó.Æ™vDžÍEãÍu‡>wÀ|WàxÍ}ÆÛÝüxÍ£zz|Ê5ð‡ò»\nN»G+éé –oâ›Òï¤3îü<ƒ%}{Üõ<óÙn¶ã”tt½äüEƒ ýwå“^·fžEÊ=|ž9/Âó*‡_M'àt‘õ«øzö]¾?¨ï›ïTŽóÊy¾¡i§úe;öaø?ýÀÏŒñ úlÆv…>Fÿi7|JåObë|zìðí@Ÿá<ÖCÍÿJÅ?Ÿû™–BîhÞ3fWšr‹Œ'ñlSîl &Þ4q•F*O{Ò^ü¼9Ï ]q.ZøL\„Œcãó=¬ï9§òÄí y–ý²¾ŒýùNŒó­n‡^¨¼ð+|*ü†¿ÝÕü§!ùj +­Kš¼Î{Vù¨ýH¨ûá·hü¾Ó{Õ't³¿‚ñÿ/¿œWj—\î/ç2É þfž>ÎqsÞ“ü^Ä÷ˆ¼W ¿ÂÎüuý¿÷{°§‘_‹síêgÏï»X¸ù¬Îožnô4âVd×G±AIy”q©±?dbÓ©ðÿzèü™î'zÏ>bÄÉtœ´k¦_èjCíë9íü¾–kô³ob|"¿Ö¼¼Uæ'øñOs>sÁŸ¦÷8ô8 …ö¿]Ö<—3 ø ÁÏñ‹‡_ª>óMÕ7ó+ˆÿ‘ïúã\Ï÷*?¾?ñƒ„/K¯´1rÿ.ò´ž¾[¯R=øÝ!ÿàÄCøw½·>ÇÿRݯú¤éfP¹_DèË´>âóׂÄ3yŸO‡ozÈKö8ð{ã…æ‘ýë¸g~3ß<ôã|ÂUÎØß >ºUë÷º<âX¯ˆWÝ¢7ŽÔ~ ã£AúŽÿA/Пã3é{Þº'î |GÏgñ¢ôüîyó@üâ â?y»߇øPð-}·ù}×ÓB7OªÜhì¶™ÿFøqpÇl=l(Wc¿æ;âÔP?øŽŠð7ãvdÞµ]¨ÑýíYÑO¾“\sлÚiûíH½2ãå«È¥OæÈÎ×à-ºà{ó•âô·çõ]œÅ'«xm=~¬÷ä!ý­â‘íeÐSƃïâßH¹Ä/Ê­W<²=ù²ÿÿ´âSúCZÿBÏbÝq"8QÿÔ>ÚmúÚŠr‘wÊë6äü€õ˜óMßû;êe|ÙW ÿ¯»–jûL¿w;Ý,6ûw[WzÏù¨ÜOl¾‹<¹ÏÐì#]P/t>A_“€[A§ñ<ý,'¨/â¥Ûþ½xJ¹Ì‡5ÊÕìûX«tí÷Йã OŸ{=q´ò»yû©¾Y˜ñmo‚Ï'þ„žåçQŽ«Éxåïãy³¹{þ½ñŠöfùñùÿÉ<>†Ù/žïU<Îúзš}[ÚC=t7ÚûÍÂv}ÞóJuøG0ãœÛ¶&¶<œ]䟳\ù:èÉy‚‘Ssò;wØáU€yŽÅûéì³³^ñ¹ݦå9W”yêú~g‡WÎò$Êe¢{èDû™ö‡³¥ÊaÆ~ÀúhÔ÷m:¼ºÐöÉËÎñ`FûºÒ…×=Ðß²`§›k]sý·B¯Á¯÷è9‡zŽŸáAø rÎÿfüôý¾ðRûíÏÈõòÚ•Ïǵ?ö3[™–ËþB'~N»OÃO“ÿÑnü&ßs3êoü´õ<çÁã8'έõHýŸöú=í>Ѹ…߸ãáì²[¿wÿ÷;ý¿ÿE_aÜ¡ða¿âqã·½0¯Ì ç®øþ4þþE=ž¿Àóõå¡\>Wçt¼¯ =f<›qÅ·#Ϋ¸=¼ß‹vžÄ¸0N§1~û•>Ûy¨ÿiÞ¿ãö¼Ò—Û}ÒÆ›ç¿Õv6ß÷¸ê/wàçI’Ÿ2ÿà þ¬ ÀkÎ g9ÙsMw*ý9¾ëÖï”ç?o-Ú7‹W£öÜ­òÐþÏàQžO«ý§ñ|9')?h·ón‡<‡½®™Îß?ÿ}sþg·â}Ê3ûÑt}ù>©ßç9‹EãåE‡>É|¯k\ŧÀoã=ó#ëðy#ênÖ€zû†Í¹fö3Nñ 7ö#¡üúñOÆ>F¼Ù¿Œ÷УÚkÿ꟣>ÎçßÓ=øÉó! xü âëŒA‡ÏœwØà¿úOäw²-9b=-ä¤û£ñöúþퟂ¿¾W »qhˆßr+ÊåzšsÉÄuïáwÄ5#O%ñÒÀGâk€?k> :…Î)Ï>˺‡NÀ7þ§ü™Žòu•£›O…ð‡§zNÿ`<ô¿‡ÑoøÌåÙ?}z>?÷¾êwÏ|Ç>üºþåSø|Hÿ'ÚÏ‚Ð%qA ú$TgóRÐ|†ýoæ‡xt#AÊ‘w{ÓÃàƒì :’îá·œFý¬y¿Ï{•'Îß_ƒ^ è¿dâ¯e#Úþ ~W9°ù£¾ƒNŸé=üBþj†Èè}“ÿk\,×?¨rbóqÈ“°Ëù<\Øïüþ¡¾¸³8;‚‡¿œ/O\ÿ³.o^ŠnˆÞ¢¡§eœËUèGåÁKâ¼@WøƒWĹAB€¯oðü zó9•C> Wï®Êýô?Sýd?ðèû”ÇO€x€Ä£ßðqäìHå »”<§ßðÔè7âú½ã2Oñ=ãþs|q=7¿Ó÷·*Ý5úà5Ë ùÊzÚQðküPX¯‡…ñ‡ŽKƒžƒ—Ì#Ïùùò-ø§çÐ ü¼„¾ øécAžó_ãmÀèKå–ôß]áUÄY·Ã~ÝwÎÃíÆ¯€vÒø òù‹Š·¦{øÑÝx/ýy5“ð9µË|@õa¡rü~•g®ïY•Ÿ‹ÆË‹3®‰çûÌËþ‹ÿe|³F?ÙÖ¼#¿Ð#X/ÀGá·Ð%ó}§Ò©×½Âð…öÛ®Å>%q?‘OÄŸÚҽ귽 ºy ïˆ²ãD;ÑKi¯Ö;¶ka÷€þâœítûª<ñó‰êÃùÌøaÿ§|Æ«>=Ÿ.ˆß}Ýò©¾2Ýh>çy—ËEüósø)|Žûw+ÍòHêùï1ÿ¹?'¹c¼ÿ8èø ÚÃÿ ï•+”ÇžqØ—Cte;4üAôn9 _aý‚½ŠïwëÿOãëÍJ7Mžhä`ÈÛɃžÍŸ˜ä.óq£þßíp÷*×:<æ>˜ç:É|gÀ˜/ðº`?•úÄÏ=¯ÄÕ„^"N_CŸ¬Ðûv_Ñ«  áÓÜ8kÀñpî•y§š}a¾§?«º?ŠqÎýäf¨/ä|ÈíšBOŒċéà£èGè{)׸—z<Çš“À žáóà5|—ùO‚ÏfyæÇï©7ð+÷Œ7àu>ƒ»Ÿ»µþŒ·ëÿ÷È7¾ß‰q‰û&ãó*gr¿²içNÅë&pæ‹S»|ãëç´'ìÏI7Ìã¢ñò¢CÏËaðû± x<‰çèMØ»È# <È8«~]iIÿåýZè‘'Êí:¬ø˜øàvžÖÿš.Eo¦oô¤Sè„÷ü—ç¡ßZ/Ì<´ þ°[ë·\FNmÅÿǵÝM¾¥ðsÛÔ¸Ùƒr1^9ò°Ã ÿþ¤Î“í³Œ'x—ó=|\ç/ã—g„ÜEþܨÿ¨'ý±¡Þ3nÈ“;jò?YäËWQÞq¬Bþ ÷®uºy)yÃ:#×¹^‡O¢·ózAŽ ßkfx¤÷¹¿Î|GÈ/ðÌ¥KðyÞ£7A_ÕvÏô”Z_“Çýá¼Ï}] ë É“Æo ø ùUÿçõ=ãÇ8Q/òúXþ¼[çÃzôÀ81_G•ÍòÑÕö///:4þzÜtâŸ>þ%ioòú%òøÍü™Uz þWÌ#óŠüXï¡ð=~šx}LêgùrU9€>м£ýÿÖvø8_cûòév}ïÿÕðZøj¹„_7tð´¶»‘¯Ðí¦è?¶Ñ~æ~t¯ÓÍKéië=œgïà·Ò2_šé ¾Þa·¶ÐT{´ø]îW4ïõÜv^ð}FꇮÐg8¿þ¶Ê!·‡þrž"ó܈q¢Ÿ1¬§à;à1ú“ÆÏvbè½—v!Wøü9ãfügÐ_)Çø o퇫{ÖWw§Ï—z¾Å‡¸Ì×Á'ø÷nà)xÇúýQà ô_‡RþÉ|ƒð÷íZÎû‡‡AkUnyŒ\JÿôPè>Œ>É: =í§NŸ³_Å÷•GÎ"Y×tO;¡{Ö_Œgä÷¸ý¨~åySìæ”ƒÐ{Ù§‚þoì/¡§ÒNÙÅ—š_ïW|Ë<¯™WÏûðæ<²ž¥ù˜G=\ç|â²^äxª?ôúÌÇœ~–æ·ê‡ùrúÒ~öÑÑ?WÑT<–~jùq ›sÊ´‡uò >ÀûàÐ3töqËú‰=ï ÿOj{ Å—¦ß¯÷7áëù|€þ°þ*~7~oðùƒ¨ç'Q?~Š¢³Œ÷d94©Ï-·àûA/¿Çÿà·*>»üVýÇ…õý»ÑÖo”¯—k}Æß÷ê½ÇO|`¶.™3îúï Ëò…z"·éúýN7o„ÎwðzJ?²¤»Àg—ƒ>Æš_ÖEÐÏ8ÊCwÔ7'®šËë ¾Ã×õ—‡þvêûƯZÿ·ÞÇý;Ñ®ä ´;ð7Ï[0ÞnWàwúvx±¡ù|â-÷Û•O·¯÷+žú9ø¶[ëßê•øïuíäÿ㨗{è€çjëŸCgsÏSð|ÿKzÞ{è(ê›wYê~ÑxÑáCóSÖ7¥—`¿b}1ÖüBW¹ÿ ]T<¹tRñ×ÿ >îõëóÏj9ôP׋|AO; ºò?Kjë3êg…Üܭ߳ޡ~ëeŒ#r‘ò±Žw»4>‹Æ‡_zÝûYŃ&>q.°Ù^#|ÃÞÞ@Âã}Ø—¼Þ`}²¬ú½?NûTëô)ôœ±¾ƒ^©:â¹â¿ø>ýQ‰+ëŽô÷v?îªÏÕ~¯¿kè¿øA±†eN\š/&´]†8H¬‡?ˆ{öÝ/¬ÙW|¨{üñûø"ðedßú¡ü¼°w=Ö½óÖ>Ð{ö+ðÇÌ|”ó¹aðT÷ð Ú_òp<-gþ‚_ÒèDõã?aO <ôÁ>²íxu<¾´0ü\zŒñ|Íx„ðU¾Çþ þpŸñpØG_Ò?Ûþ ‚ìCBè?àyúCæþ&ôL»¾Ó½ýtOž‚5=gû9íDŸï¡Söç‘ØãÇVUþr¯Ë›ËóœJ³?ˆÿ rzùÛT±òüƒ¯OÀ;=g_âë ­÷@ŸÎ—®zØ—À¿<†nð§Á?oü^ŽõÜò. ÏÁ{ÇÝÑwŽ«ÈøL¡ë…nGºw;ƒ _ðÇ@N£ÿ>U?zþÝK½®OSßG!뉉æs5y~ zd=}z‰ý›õ|ˆÿÇø[³^?R}´[ß{ýð}mgÆ2ݧßÊXÏ‘#ŠÏ”ñ6‡Ú_·Ÿþ¢¿¡çÒOúþÑ™ŸaÑøÐáôÙ_õ¸Ï o„¯B›^Ÿ>œûô{A'ø—¾r¥íÚì÷§¿gÆÞ­êùáôÞÿ³ÿ3ýÖsî¥çeþïïÖö6öŠÝÐÛ¤7ñIENjƋÿnjžû0ô¤{ËÖ™—‰ùGŠz7j¯âq“gN{‡ƒïÑð'ÛR=“Ú~Óþ.Ð)þ[àÿšÚ7Ö÷ÐÇa­?ý€†¸Ò?Èòù’ñæÄM]4^tøÇÐó žŸ¯á¯¨É{^Nôýþùò©¡Û“à¿ÐE죸=Ð ø}p§â{þ¿Ùïç^¦¯Œ[³õRúmýÿð_è4ùNüÑxÑáÃ&fú h>Ÿ[Ï«~žxÐÄ3K¹>‚WY.õ©ôûÙöÒ.ñï&ž ÷Ïã¿»ñœzèwÈ—Ìçq\Òwÿ®táö§¿-ÿ¥½ÁW:¼œ°‰“™0âF5øÏ¾èP/ãÉN”Oü> ¼ž¨ô}øÌû›~?'_aSŽzTÎø®z=>Ûq?Žïi?|`^žOÆy§ÒMÆ[õóݸçûƒ*ÏÒ¯iÑøt]`ÆÏlü3̯ðÅëå¤(g¸ü{?ø2x7®ßyÝ’yyS®ÑΔsäå&ï·£|âoÜ]>êmÆ? Ú'=3ëi¾Kz…>éðÖ—‹Æ§ë3Sã÷q¦MW?OvÚ¤´7þÊ• ?üæÜò»ñßð»oô¬±êe½¾¬{ü‚’_°¯ûnÅ¿äã®ÿDí¢Þ5Õwz¾¼ñx¿ôŸÉ)—GÞptg|ʼc=GŽ@ìƒò_ñOããDx"È•öàŒÿÙÄaZªýÅÃÔ}à}žkῦ÷/ª^húÞ›/aŸOºA¥|Ù¯ôÛĸSå×¼|¾èýtå…òü³ݰÿÁ¾ú]}G¼4ò?Ç÷ì«‚7‰çÜãO†¿ rÌy{õžxOì?Ò~âkÐ~ò5úœeà1ßá'á|ƒµ>ü<^«j/ß=öqÞ¿‰´ï‡Úíø*ž÷ÔÇÿÿv§öc©¶³Ã7L7Èèƒ<™ðiüS ƒÐËL7ä]ÂN ¸„Íþß úoῲ®û5äî#~ß™ï?Õ=ÿ§ñK_¤‡˜.âܳýmðWÙP}à1rå^ð_üÕð+°µž“ßì[=ç<íä¼r>ñ gqCô|‡ÿ;n·žãÇýr(èÿíÈ/…ÿ‚ï=‚ð訟Ox«Ðú“ñOóçãwüy~g>jñQŸKÐ9…&n ñظßP9ñûÔC¼>9U{þöªßÑÎô““œó:ÿ´<ÏqM›q‹sæ?Œr‰x·ðÌKÍ8=ªÿÙü9øú ê›ù_«ÞžOú­@ããôôªŸ CÅoïßl /$/2¢Ï×€'à‘è¡ÙÿàüÇ_ ù³¢z#Ÿò,ÿz"zŒðÿSÕo¾ŸñÑ+j‡ÆÅv†;=.ÈKä r*ãAeŸˆãl=Ô~Õ*wú¡øÿ÷øˆþ{þ›·ÓniýÈ‹kNô-òZ@/š¯_㻡Þû?ÂÃ&ÏrÆqrUOœ—6 ¿GE{hí¹[åñ™uCú·Ñ¾ã¡\îGú5DyÓÕZÐ×zè}Ðév•Sæ3Ð/|âvíWæ^4^]u87ÿñvà£ô~Ïß—u>½¯ÞŒUOƧƟk·Î·ñã4ðzøÏ‘žGœ·¹~;QŽz¶ªüš1ã lª^_¶›~mÍiÏqý>¡ËAo™WÊ~Ñ^èfèòæ­Ð x¸Wñ‹yò|…~Ðäÿ ÓY¹ÿïÈ‹Í>Ož×¦àwÄñHýÊûª;©ßé?Ku|2«ŠµòºÀn?Q}â?éÇãïB_îðb@ï‡kþlOËõ üÞ~^o˜n2ÿuÚó؇Ç>&üu;áëÏïß,ŸvÐ ßñ?ü–B?ÃæãíÙ¹‘û¾i÷ë?·cýr°Ã‹íLjÞñ̽ß0ѼrNäö›OÇÃEŸ^n^‹ð0ݤ\¡?7k¿Àÿ—þ¡—áŸü¢É‡H}´Oí2þ‹>ìgyØðçˆóØügÑxÒa…i_²}6ýU2oÚî›Õüü¼BXo„n8_ßÿ¤Ò{“g!â¸ù¿[Ao´ãn®;TOÒçÁ‹å"úä*z þã~¨þ¾¾¹ˆpsÐü8ßqðÌûtÒ/ôÙ· x=C·Ðù½GïAÞŸm[íF^ÝšBÚŸñi3W®§šñÓzßíùèñ¼É§½ã .Õþ,O:Œy4Èð&â!5yÌÄçßÝ„ý,ý«›üÍðý¥ÚŒÿá÷ð…\ÇaŸ“^—ûZ.§öp®ïEv¯{lV úËxô|N 3.ñí³Ðû…o>7­ïÞ=£Gñ_É û]f>AÖ/¢gðÑtC?ù9~“óâaÙž ó~M¾Ÿ—Ô[›ø(A§Þ_‚n·ß¬>Üá­ÿ°n„±?âuó?Q¹qÅŸ&Ÿ®ÊyòN­×òLø8ïPú C½oâ&ò}¶o»þ¿‰ ½d¹¤»ðkmÆu/ÊÖñÈx§I·‹Æ‹ÿ6ñ0™Oð~;îÁCî“RøFyðù!¹ÐÄM<Ú¯z£ëåjÚE»vSï^ü/éoëßÓþ9r!׉~~È8Äö»à2AëEØE±/ÍïX½»kæ9çý òÐ!õ¨œ¿)õ Ô= Â?º‰Ÿ¦ø®—ÿDü¸f_—ó׬CÔnŸweÿò¸¶«¡¾CÎæz ûvËØoîðbCÏûƒæûf]?˜Fz½)ø¶Ïk?ßx­õï<'*ϼ?Éýôò8ñ<â^Í“ÖË7ì~ûü_ûùgn.4ÝWÅy6ƒNˆc¸¤÷ÙÏx*(zs âX@gà=ÿÁÞfÿ~/=Æç¢Ù7\ :ú&Ú ÈKä»t9¾ÌD÷È迳8ìx›ü7äõ8èùˆ_Ú—ëóÌ3gû㜼¸Ž`~ ï¿ ý}ÎÏί§Ã‹ ͯÃê¼ÍŸ¾ìh¾Åí?2輆mEÏ3nàÐÙ§ÄoSñ­'!'WMß!ß2_#ë è ?çGÑ?òrCGqnÀë2è”8?sü\­·~«v3žø÷ º’Ü^4>tørÐ|Ôñ«^a½i%Ö Ä‡3øý‰¾Ãn%9å<™Ûª‡8oÈ#éa›StšíŽÀ?=ëýIï›8´½èúŸ¾§ýï×ÿ7tÀÿÑ.ñû\7B—Ðãq«;¼ØPÓ9³¯îV}ÌúøýEÅw—]¹>öAÀ·ˆúë±ÊAG7êw¦áwÆ54ÝDÞ…žùk›soœOïºA¾BÏ×ÿYÎÃgÂ/¡Ã‹ ½^‡^¶+~™„'¾ÞûûÄCÖMà#tCž[þ7V}Üo…Ü; (ú6ßï&ª‡rqÞŽv›nƒî;8ýÙ­Ïí ]pþ‡ú¶¢üH키Ÿ]ÄsX4>tørpó‘æ‘y? úàùdzo½ƒu?x‚¼¢~ɹß>&¾Jîx¿p+è–÷ã¸?©tn¾®v4yo£þŒë”ñ>üÿl?ôyï·jý›úÞvGÖS™gR徘׈WÉ•þ2Ư£ÀÃä·ÀJ‡M¾Ìäûð÷ÌÇÆ}àwÓNðþ]$Rž÷§µÿM;ROäýv”c<€ŒS¾ßŠï;ÝtxacÇÞ0Î.—C=X/<¨t‘~m^ß©¾Ϧëm[Î.Ë‘ñôÞô€ÓsŸÓØ©ty ½0ìvx¡íØéâ<€ñÿ ¶çÐ2Nºíá×-âe/ºßvøÑ yCœ‡ ÚÃ\nUx"=-ò"¸Üô³YÞEü  ³[n:¼üÐû¾ØŸ gW7š|v‘¯{‚Ëa—ÜP¹Ÿ±ÓGù;¼ŒÐ~;¬ßµþÈûkŸgôNç­×¸k¿Õöñ8w7ï¼Ô¢ñvÑÐq¢ÑëÁðÿ¤êæCÉŸÀð}…}! øyX¿oòÔ@Ï¢¯&?!ô³Sùµû“ù×B.˜®Áë×{Ãaå Þ¯Q»t³ôį5ý^áº@ãÏÝ:4ÏY5ëÍÃ^ÌKÆçDÎÀÿ#þz®ùÎþÈ‹í*Gæå[lìµC|Áõ/GÿøNü ÉóþAŧ_cŽêøúœ‚åÐ’7ëêüz†_FÞàͯUŽ8[w‰gÄx͉ësÕ¡å7û öѸ ¯±Aܦg‚Â3ëADoâkæ_©'¥¼‚Ÿ¡_¯…ÜX‹÷bþCnø;üÉbýd¹‚QÚÓ·Î;õc#éÝú~G=QúZc¿Âú‹|ׯ z]óY_Ë!ôô2èŸy?×Eãí¢¡ù÷RsÄ»1>AWÏCž£0ðkø9xùQÔ½!rß¼#Žu®ã…´3ézñw´ïF<_­ÿÏýÓ‘è,ó—˜ï°”ö(ð”~2~êó×>Ïœó–œõº”vÁWèû cÁƒóÇ÷ºBã1ó(ü5ž!×á£+UÏjâXâå>'ô©÷þë&ü¶ö*þXN<¯å\ç’Çu^CõeþÅfß5öGÑ_3/¢õCøÁHåvƒ>(O9Æùµãzæk“7ÐIäQåÇV;è‹ùAoèû7S¼b~YÇ"§Ñk¡‰îOc¾?¼€#'دÿ÷Ba½r»â¡õ¡“˜Ïçñÿ[‚÷k{h/—å û¡ô º‚Ïê;ç9_ ?vj¿2îSæ‡kâ¨íÖï|¾'øE‡—fž¦×wrЕþbÞG•~˜ñøæÆ7Ü­ø–þoMý|§û̳ÛÄ;ãûñùímòìò_ÚÁEg¦»“úÜßG¿;¼°ñ¾¼¶úÁðw2­¿É;©ÿK_”W;sÿÎýÉïòžï%Ç2®§åIÆ\Žv&6q;c|çùtx±aÆ£üõ¸Îë\¿êkòSó¼L>ܬ¯£Öïèƒ'U4ùpÑoÅú ûë™È§€:ó1¸[”ÓÐgÕ^·ç`ÝE¿;¼Ðö©+þ½¶ú#OÕ +ùzæ…iòõ‚×Â[ã1y™Cµ>ëeÐë¯*½šoè¶xWÛôù›xïj·íx¡/.:üsÐviÖÙ£×;Ö›&ÃÙåõqæYZžÂ¤ì{ÆÏ[?9„\AÏ ýÎvuö-©: Oû›x¦ŽÏ¯ÇzŽý‰ñ„_ ØGFžáŸô¯º^êðr@ç‹Âûšý m®y ñ[ˆ<ž¦/òþÝ©ô—örÓv3ôOè;þ¿Wüµß@ä¯Þô?äô†]?¶øþ¦Þ‹4yr±#Þîts¡÷óÉ÷üûëÕ·É»Óâž?TÜ1ãÕäIýÞye>Œò÷ø.ô&üÌ Û÷k]?û·øS8~Z•k™ï×t'?½Í'•?4ç­éȹEãA‡/‰Ïä«ÅO þ8šÞ¿¶ÿ(ï¸õ|ö‹ðÓ"Þø‰_üŸýü:Ùgâ\ú[úù„ÿˆñ}Œÿ@'È=èî—c䙇~ WüfØÿ}¦rìë"ŸØ¢?ð.o.ÌóWÞß{Íò&â:ÏòܧèvvnTïAèÚçÐôœuGÆ;#~3|ÝñËÔÉÓçú´žÆ?aôÁm=§=ÞW½Çª‡r´Ÿu|ŠuÎr§›Ëí¾§óùÚèeZÝq šýõI…ÿ2ëšðÇlÖ/ñÜûñZ'å:'ãNøù모9Êm×zs}?«?è•öˆ?Aw‹Æ‡_6ù÷^sœ×þ’ÆCÉA—í^ùíƒÞôÞû0Ûõ¹×ÂÿæÜrœ›È|žö;ƒ~¬¿Ýë´ßü»CäÙnøÅ^m×¢ñ¡Ã—ƒÍy€í×L7Ǫw,¨õ!Ï“bÓre+ðzàýiÔ Š\º‚ÞÔÎÍ¡ÂÆÏ,ä³íÜ“(|Èÿ§ý[ñü5ûU…Æ“_DÞïÄüª¼õtdzÐó!ðFx™çˆ3ŽŠ×¿¤ñó/¸~ÌâxÞa·ÿ γõýŠ_Z¿g—ñð^Å«ÍAÏC?nâ+AèÏyn ßôÿx¦[èj)è&ýZLñ_Ê}õG¥EÏC‡— Îâò g—íICÅ_ã5r…ýŽˆëe;'ç!ÙWà>÷­±çäù>ÉÛiiÿÁnô^¥S·oMåW‘‹úû‡ØæÄ³è°Ã?¤ö‰±oþü)±ï;~Ãpvy_ úaßᱞÿÿô=ûÿ¥÷ô½ã˜¨õ‚ç¿â;==4qY8ÿ_ªz¨7é ÿÈN7¾Ý€çø•<Î.ã3tÄ>|›ýsøÿc•WþIׇ_ ûçì/BOÿçŸÓû»ºg¿¿-è—ýIÚAûþ¯¾gß𻺮mâFkÿÑtw£¯o:|ºyx ^‚‡„}gè&ãI*Ž‘é ã–âïÁ~à‚èUÐ-ú#ë÷mô8½¿倊»åþA/7©?ôËõi=‹ž‡/œù¯àëðó§¬O†³Ëzq_öÛúCý çßSNß}«rÈ­§*ÿË?§Ï¡'è=ïo’ƒüÿ¾žÿ} Ý?è¾ð ß}Ùí®¾Ý÷üÆŸ¹^ô³ž³Ž!ž"üÜø­úˆòvÕ÷ƒÊÿ¢÷?†áëÀëÇúz!þëžbÝõ8ô4ò‘£—ÑOô¿¿ýóì»EÏC‡— ZÿGŸÂŸñøxI\”¿Jžû,ìX’OÞo›èûA0ã¬òÜq+ô=ú\Ä9qœݧ™û‡ÿ%ýÄo½í~· tø t“xº+ü”)÷£gq„…¯»ÏÄŸ}¨úž«Ü±þ“y+°k¨~üÁö ßÚ.ï7Mô<öé‘Cîô}bEõtûs‡ÿ ݈ï6þŒáßœ¯©<øšyÅÆª‡ýOÑEú7û;öAE¯¾G¿"ž:÷‘‡Æë|ü.E§y®ßõœv;Z‡¯3…ã*‚oàû¡ðs)ðü>©òh—Båö«¾5ð\õfü%ÓÝ;ñèïC<ç?´“ïˆg&º{Ýçá:ìð:Aû¿¡'¦_þI•“M4ôPüy°‡g~øÌVÔ—þÙÔ?Ê•çgÒï”þ˜_ ¿ÒþˆÓãçð«ž/³Ã?C7¬£ÒÿçÝJO³ðßö ðºˆ¸ÐÆWèHxŸò¼9¯€üÄŽú0tâþPÞSÏ Ëý@î†~¼èùèðr@ûãD¾É<_füó›*ötø>å©w2…›ƒ ÿEN±Ï„=ƒü"Ø13?nÄA7ÝoTºô¾~F#Ú¡çËÓûEÏG‡—º2?¨õ.ìòœ×„_ƒŸÄËÀχ}_ì†øµBŸø·Žô½n<½·^†tÃþ0q þ ßþ¡êsìe¾ÀÍoõ¿úû=ñnðÛ@NP?ûlŸÖïM7ìã‚_ t—qAhÇ5Í÷×á«Aãëx _&ÿüú®Þ¯OŸo‚7_‡ ˆÜPyìæ’O^g!÷â½ý˜7Ôƒ_ûÇò7r}Ð t¿Ï#ÿ Ç.w:|1lÎ}òäÞgž'èjÐ}æýt¾ÑÐëðS=ž~gûx ~ãøUü?üsoz¢¬·ðK¢ŸÄñ!ïgħ^ô¼tx1áL?Î.¯ãOлô;ëw­×Ó_ÁúQäO´?ß{A/èkœcŠ86Öß '­Gš¸ø ¡×i½ãvY_Ó{¾C>!'YŸÉÏcÑóÓáÅ„¦ù¥ÚÎź}Y÷KU®˜®ˆó‡læådÏ~=I¾4ù®¡7Ú¡õ–åòf¤v}@ߨÔ~þ£æÏÎq@׬ψñ¦;ì°Ð ø þ‡³kGdz™£gݯ|ÛÏ3Ÿú§AàëNàùÊœÿâû‚]åøº&?"ûÏk;3¢Ûµ:…‹žŸ/&ܦWç :šLß»\Æmb]>b/@>½_ñÐû˜|þôŸØß±Zy~…Ÿ*~á‡AWËz½=,ó€°ÿôïú|ÑóÓáÅ„M|ËÉpvýz,¸Í:Gx_Î8dû•ŽWä$äõ#çB¿²ßLäIp{øOÆ"NCꓪoà>ó{Žk?]?üÿ†ÿ‚õÉÐÿÜ?êÙŠÿóœrŒíØ«÷þŽñšD¹ý Ú _¢~äèJmë§ÿ”ç»sÊG¿2ßùÜúáÏèâko å4ͺšþæ7ý—™ïÀ· 9@}Á?ù¯ûËüÿó‹ü˜³ÙŒ íÉöíDÿ~‹÷ü'Îgxܘ?üu ³w£~ðúŸnÔvgþy|"óÇe{=~/—úÀ‹OkyûÅ8æzkçHý¸z+ã¶ó?‰¼\M¼Æ£x?§]_TÒ+íaž½?>žƒ'´ÿý¨ú¦|ò ówßoGùݸOþ@{¨'èugv?¢ü¿£žã9ý>”ýtyêÝöÒþ¤ûÃx¯ÿ7ñ8)·ŠqáùíÀs罎y þÕÐÛI·ü º5>ÞØ^¸ªÿñÿõïÃ?ð¾Ìü«^ë§»µóKÎqѾ ·ÌGáz9Wæs•»}ŒÇ’þ_ƒƵ½¶ï ?3¯Øe¨‡~2üOóa>Â>ÈMÕ+ØŒ|™ýnð|d¨ºß“QþFŒÛrðI¾§ßì0ž;µ¿›OêŒgÿ™qXdÝqÍw±û©=3| ¾Ê¸0ïÌÇIÌóñçÜï½ú~–_.ðšø^ì+±~ú°þÏçÙ±Û}ï‡ú½ùFî³ïK<‰5øÅïÍ ½ÏÙ¹ =gÞá/ðÃ8gÞäípEÕqMïà[ðË÷KÏÄ_໿ÄxÕzìgÀ8¯ë9û¾ÄOÁøN{ïÔÏ<ØO0òhoþ_=¬v'žC¿O–ý5úMûÙ7O7êøÚƒ¸ø]±ŸÌü3Ÿà%|áqÌçc½‡n‰—Ým«ãùËÿLË#Ÿì¥v|Rÿg=—þ2®Ð%óò@ßáÏÂþþ)ðqÞߨõ˜¯ý¬ö¥ýŠö÷÷ükü<ô/ã“àKÈ Óówúë>øÂgQ|úÿïñ{šOUÿç¿ðe⼩ÖSÀÆ‹v@'?¿F¾€'ä‹fœGøÿa<üÕìÏ£û8ßæùÁÎL|õ×õÃÿÀ+ø+tá¸CzÞÓÑŸå‡âØ™^þþÍ+x¨ÿ0?Æ=øÊ<ŒÔþ‡ÐÞC×ÕsÚCyä~èà;øÁ|“Ÿ9=dœJæ¼]އ©÷Üéÿÿ½_ÿ þ ,W äCÆÏ`~'Ñ/¯÷Ô¾‡1þà óq¢Ý/ðý†ïõ?ôª=ÝÇÿ¿D½ÈôDÿGå‹ÈKö TŽñ!žUÆÅ¦ßèëð%ô°{Ñoè“q¢ŸŒ×Ý÷âùý¥>ü7‘oÐ-ôŒã°žÀ‡áÈ¿QýŸ×ûĵ >çq#Î0ôŒ|…®WæÉñ…ô¿›ºO>J?3_ÑüG<°ý¾í¡Òfç£Tžy‚¯ð|`qãÿ â§ùóIÿàƒÐ|çÓZOž[q\Úa?+øïëŒïÈMñ'׋^€¾ÎxÄzšzÜ/Þ£ ÿœz˸»)¥÷¦ÝÏvèyDž€§£à[¯Äëyè‚8ŽI/ðaú÷“Úù­ê‘Gt¨ç;«pf/¼í°ÿi­ñæ;÷:ŸáóøS0/â3šq¿=”ËëñS¯÷áW§Iôíugî{‰ÿ¥ÓzôÏsøý‚>ìÿ§ò¢—™Sõ{ýþªœæ1÷l‡¾Ïö·õ=øþ0zîyÙ«üÂãñ7<ÏŒ#v„ÈãÑìó‡¾îú8ï…|o‚ÿ’«¶'€¿øeò:eö ï±¾£½ðUæ:÷z]íc}úk«Ž¿×ç´ù$.˸âõ…ÐËÒ®n{BÄm0¥íAýÞó¿åû•ÿ¢ÒOîk4óù]?yjÔÿ&žCœ[ô8}[ñ¹Éwû Æwj?\žyI;ÂaÌó~‹þžúùïÍàcŒ_Æoãûw£¾‘þw;ú5©õ™®oG» OðÙö…—1ÔãyÕñÌxZîßóŠ·î/ò!í]Ô¤?´û°Þû;ôŒ­Šηø@9æs½þ?ÛŸó`ºÿ‹´[7íç>ìŸù?ßǹ֦|è{³ù‰róU`ÖCÿð¿“—ƒÀúÇ<0ß9é¿ò]´s}0Îè]¹OK9äÂIôºŠq0]ÐÏçu²]Í~*ÿ§]ÉgÁÃUõŸúk¹&Ö¿ÎÇ߃·Ðí­óÛÍüX¾ Á—W¢^ú>SoøXž3¾Iç“øÿ1¯ü‡zßIÅôcßoÔúÓOÃå°Û¤¿ˆêkÚ¹¤çà%v½ààqÐ[òÕÆo‰ñê8YSû3_3í6žòÿ­óǯigÀæ{Qp»B˱½¨—y ?¹_zx¿øãf>ËüÌ£Cæ-ô¨ÆŸ”ö¥}<θ;9ÁÏÜð—ÿæ|òÿ‹}ÁO†¸šqc~vêøÍû®Ç­ø~§¶3ËÍó#kð&ð#Ë7߃×Ñ¿f\¶ƒ¾Óÿ:`\Û¬3àW‡µ}^_Eü²Mþ>Œu?LügœÃï¡ñ/¡?1>öû¤}Ô7g-߯ñÿœÏqüŸþðŸð§rý!‡šxTÌsè]éOÒøYíÅ·ë¸ù?” :iÎáíÔúX_¹Ô“ýcõz½¸í§·¢žË‘ïôWe'1?Û÷jÿ;ý?ñÌúôŸÆ^Á÷é7 ¤øþò¿è/÷{ñ¸ÿã9ã¬ùö¾ÂPÇ?ùéfóýðsøMŽÓn@úËüо¼Wý¶ÇFþR×£z½?À8¨|ïv2/u·¶‹ÿù}Ê-Ú›zˆô:ëCA§ÇjˆËß|w#æ‹qæÿQ~v>Cße}Ð!úÁJí¯Û±õîÆ¸ˆÞÌŸøoæu¦ô/ÖùðÆm%æ™öQ?óÊ:+ã´ƒô—ñÉõMàYãvJãã’îÍçê¼@7 ^!7mˆÿƒÇìïðžöç¸Óž˜/Óxçý|LüfþÒ_Ùvd݇ÿšý´ÀKæ |§ßá‡ì}jìùŒCŽ3û¼ì?²Þÿ°³aG Ûcžª<ö'ì{™ï˜x+wjÿò<»ñ|;ªôíÿÓ¾´o±ýþý<ç£Òƒé~~Sð~ôû^mo'3ùKÒý†€¯|Ç 2¯ö«Q}Бúåù>ä¹6ã9ü"ãgÄy„™†Þƒ—<R/óÌþýb¼ñë²½;úÁøçºì¤Î—ûI=ì°ß_ð~•î×k{½Ÿ£ùñþ ûBOk¿æ‡y¯Ù/·UÍÿ‘¾güiçF´ŸÿáçwøÁáƒÐÅFàýTžzÁ[èŠùdžØÇ„ÿƒwéÇðóÿLßcW=XÎ"/b|ÓžŸþ³Þï¹|‚ú2ïÒ<>“yÊáïÈü8Þ øEüñeÜOüü<ÅÏÒ¾ >6õ°?#`èß¹¯üÀü˜ñ§xĹ}Ú Ÿx0”«±×‹žfq&*¿ôú¼oFúzÑ–žü7üdÍ™_ç7ÕøÑÏ›úúóÇ<³?Þ0žŒãS}ߟ5?–‹ð?øüÖqu?I‡§ðAûéüfà[Œ‡úgñ½óªN=§س>«ãj:ƒøs@¿ŒÛ½ú½ÇÃþªçPß'>ÛOõ¥?óë7ç1dþÿšx¨÷ì÷3ïðêe}¾ÐübGü½ˆÇ‰<Œ¼ÕÍù~æ—ñÖüZΘÞ*Ÿöwøa„¾Ó¿ƒöáò0ø&õÁg?äÚ3Ñ-ó Â÷‘§¼_Žþ~Qé{æg¤ïà#ÖÇô{û ê_“ zÇ¿”ù ?@ÓEî_I¿H»ìLÔ{ôhÖkµÞY\¤hï¤Òqã/ïÑ?Ó¬O™oûÿ©Þ¿D{™ð|ŸEÿáK_E{§\ã²WÛezOnÖy6ßN¿ðú`¾9´tN{ÀÆÅòVíaœ™ïðóÍsd¦ô„ЧŒÐ¾tGåÀ+ü5í…þáëŸÔvÁ)ßìß¡?0~蕱ϕq¬g~;ðÕË8ÄùBûý1Œ_Øã\>ÏIÑ~þž_â=÷±N7ßC.¯ÕñÊsˆ¹_èuö1ÑYs^žç;ݯU=ß×ÿ׆ryîPå¶è¿þKÿæá!ífÝ©zM7áOãq/¤^å<ðužš|ZãŠ_¦§¥ÀÇ<7q',¿ÁëŒW³^ûÕœ¿f~i¬ÇrüšóœÇó~†M\þÇÿ¡gä t̺öà|>ð¢xy'÷|þ,ãUü4žóÿ9çnóšácÌÃníëEÿ„ÔñÊxÍ>jÚwOÏçgæAwž/ð yr·ò«fý«vX¯Èø(Ìúø»õ>÷Ñ~˜ç¯‡yþªÁW¿l„>ã:Ož/ð!ò[5~gØSê¼äÕøs^æ÷–ÆËü6ãÍåùïØgt½1M¼‘ègÄ“sÀÇý ìd>«çy®œÿìŸ?~îø~‚ïôc+úsXñÁ~¦;õ¹ÿþ¤=3Öñþ_Ä¿1?ä¿”s{õþ·¨g+Ú|Üþ¡Ÿ§üƒÎþýT<÷¾Uâ_îç"/b_&åº×Oi÷ežŽ*¶tóœøN'õyã/µWûãçé‡7©ï῾g˜þF1^¹¿’täÿ1þQßóàÛ‰»qOýÉß©—úk{ÓÑòEãÚÄ¥ˆqM¿¡Æf¿Ö¿I9Æ…ùÞ«ýlÆó½ú¼á´ÿ(îƒ4xÁÿéwÊË9ãžñüžñ…Ž˜—9øÒø‘ã>ž7íŽñ‚ßî¢ÃÔÃ;ÏVýÊv2ôÕUÁ4¿gý-øvÆe`Ÿ„}Wð ûÎ-AìÄ®oZ¾Ù_ÿß«|yæ_ë ì6¶SªžÛÑÞŒ»%zq½YŸÚÙ¬Û §ôÇËó¶+ú_Ä%øÓóÒåÍ…†¦ƒuÍ3ø=ÒýÝà¿È“O/áëÔÃ>ø޳ߘò Ö¡–Cìã w„—#v™<·ÏsÇ-¤¿ê—Ï]½@ô7åfÄyJÿ5ïϽóŠt3tº¹ÈÐ|1÷›Ásö+R> WxN=}-ãôPúýŠToÆñ>° ÏY ?ð'z^å…ë¿QÛ=³{ªž<·Ý ‚ðê÷{ÝGÜêûÓóòþ«}×áÛöcÔ</Á«máòã®`øAXÏIû'ñËvT_æc¹[ÿÇ>xæEjìZÀô{˼eȃ•«¿ªÏôëxÓ7ß«ý_ú ú7öÕóu¹q¡ù¾â•Ùïîoÿœ>ÇO˜x•ÿ}Gz•ðý ¿$ô ðùÁ:€8sÏ ü]W9ô$ÇS9_ÏjÖ'òžåyÐólÿ³ß‰ÞCÇÐ öüZÐ/ÙOž ݰ¯N?ërã*BÇ›#Î)øÅºªg7ÄݳßQÈøÿcɉcðIïç5ø=ß-«|æG?‘+_G;"O`“ÿ!üüí/÷I´g=þÏX7A_¬Ë‹Žc§÷¢ë?=/=_à…†éŸe»r9Â:â÷À7ô’ˆ+Öä5^5Û·VyöK ð—zŽ*]5ñÇú~·êÞ‰ÿ!°‹ùœS蟼‡~¡gÇ[„äy;ôÇw;þ_E8;_¡y¸³øm“µÀ¯ç_¬·¡§@WàŸíºÏý öwÆzçá­—åºýÉ5ûͲO¹¤{è’ïÃo®‰/Â=zz,z$0òeæ9é—žµgÑxÑá æéFà‹ðnæÿ®÷àCøÏ[ÿ‡?Aî'z}‘rFë Ó+r º¾]Ëï9'‘çåÃ?!㛾 ‡<—;Rß<;íïLôýî§ß½ô|¼¢ÝºÃ· ›8÷àIäËiÎç9Æ”KynúÿòÍAåñýÎÎAG{2¾vú+°¾¡>éo³øAgÐ9þ9Ðé»Ò›íƒð´£Cw¡g¾4ÝôuM‡¶|êàåÉ «ùŽõ›øTsîä´ê…M¼¦\ÿE~KÛM?ètÛáѬ·L/Øß™—o×ç³%Ï2þS“6èusúxvn ?½½¾¾êðâÁ\¿¼È/ ñÇoœuvFôFì#è×|‡ùi¼gÆùøñ´ü¢Ç©Ã ¼ê~Î0½¼Þ {‡íæ¬×2Ÿ2ò'÷—ì_(úüªÛ%:¼xðUù¹í aïnò½ çE\tÛýc_¹ÛÁ;¼ˆÐëèàò§‰Ÿ‚~…Ý/Î5ñ±#â'}3òVyÿ·ÛÁ;¼@Ðû[‘‡ò…ßE>ÀYü=Õ—ñ*¿Ž÷ìC)é*ã ßìö´/´ŸEäg{áwŽ (¼GÞàqí?½8îi]Y¿æXß­½=wØá[¡ömÃn<·¶ôEÛáôχ¿€ž;ìð­Ò ë‡Ï_Î^Õä šLa·<Ï祟^ä ÷ù½Ìïþ{¥»EW‡žÑäÍæã?gçåœí¯g÷ÿ+¾Úó'èq™ïk¬ï°GK®e¼´ô«]ôxuØá­—±îG®ì†ý ÈúGz—íwÈŸ¿†}s‰ì{þØåM‡—úœ6ôƒ=›|RO‡³ËtA\þŒ‡‡}í¯”Ó{Û³õü«.o:¼üÐy€$gœïyB^¯ÈÇíx œËE®8Ï¢Ê}§û8/¸è~wØá«@Ÿ3çÜ,úû6œÿvüá=úÛÃXϲžÑwä‡äœÒ)ôØõ´/?´ ûv4ÎÇ×?Îç࿞³¾!ŸÚjègäÁÄnÑÏÍux‰a“g ú`½Â:žuÏýj'³üXž~gÿšÈû5/Ë¢ûßa‡¯ç—óÛÄ¡s^YÝ;.ýpv™¾ˆëE\«ïE7™'ÈþoºØé¦ÃË 7Î.ÛÇî×ý™ÍG‚Oô^™~œŸäÝSŽsÐ?‡ý9ód?êë›//ÄßÒøL¼Pò©<Ñ}Ú¥ÑÛȧý]Øßî`7zÁ.÷S§›//´¿2þÎßg—ãs#WÖõœ}âõfÞè{œâÍüTϧn:¼¼Ðñ¯Ø_áœÍ_Eßgq„/{‚×9ØßbÝàÏfºéë›//´<Á~üË?§{šãrë½öq]m<{ÝãWyTFº×óE÷ÿ¢CÆyn~aÉqû ëý>|P|‹}ºê¼ÚpYßáK=ãúœv5q¾(Ÿy=xŸÏiŸñDåvj{ é'þõ‘ï·—=}ç'ý\ßÒÏÝï×úÝ?Ú·ÿåûÕ~x¼è‡êq<(äOæY¦‡ú.Ú¿h¼¼è0Ï7Ï9?ËsƼÈydÞÑ—Woˆ Ýü-èæ0ðàfÐ#ÿy?æçìªûCÒþŒSÁ{Ú§rÃýÞ‰ç¿×{?ÿƒ>üþ·¸O:ãû?úw³êSMþë¤oúy#Æñ§üó¾¾y)ºY­tâqü}¶÷³Ç9*ɯGñÌ8ËÒ'¼ï†~ž°Zé&ýá-×ÐÇ9/œƒ®ðf??aö)ðÛZ‰ïß«÷Ž“x{@¿ëºÛþ-_Öú2®¯ù‹ð´ÉKÝ™þOù]Ÿq5äì_b\ð§¡ž±Ú¡~fžúEãåE‡ÆCì6uü¼î$^xL)ô2ü:(Ϻ:ÚÐ=ùvXç‚ÿ‡u¾ŒOèçY?ô˜tM^ú]ˆN,_ƒËkºÈ8îæz¿!Ÿ(xJÿ–T?|âýZÞãN?›¸3‚ôŸýøÍãJ7¦GêÅqñGŒ[ËÙ£*Ç:<bÏ·>ľx}0oøµã‡žùb #â®È¿Ðöö!øž}7á¥ÛÅsµó^ÆüäÙ„ÿ«rø->c}­vÁÏ¿×{ÖÏÐ7û#ÐÇ3úýîY¿c§B®žð='tv/î±O;C~/žýÿoBÞüô€\ef º«òeóçÔ~vÿ´—£øàšä‰øÍæ}/úþ€øy@?ðWø3óýTó‡óÉ~ÛçwOª^mú{(<ÜÏUþ%ìƒC?Ÿ¾Ðnð|¡Ô=|¯{üµob>~Wï[÷øÃd¾CûõÇsøãȸH¾x cô5ôª{QzúEòå_µ¾ÍŸ÷§ï‰gK=ßé=tü´ÖÛáùÐ|ù—^âõþ®æý~ž8N„Þ÷àßð9ð9€>_\«|ÎøôYÔÞ#?°§Rü»+úÓ2탮…—ÖçWIg´ýù‡÷8þ·tÂ~ þÇ{ºoñ«ž¿ƒ¾£ŸàwÄ)p{ÏŸþ9½gü,·¨'øã÷Ëô»EãåE‡^|ㇿ,x]G™o“çèW™ ȹ«wëü#¯= zÐ/ò/ÖÏ–“ä¯O±{ÐnüKÀú?A^`_€î·÷¿=guRÇËõÒþÇj·ÏÛ ×TxκÿPå>ºaÇ÷Ðãû¬Ößäã†ôó7/G7ØQ¶*>x<¿ŠyGï¹]Çß|?)ðu;ægCózvïˆõýh—ê˸.¶CU?xÍ:<•\³Ýƒ8eôŸvÁßEïi7€Ÿ ºÿª–ûõXϱ«©Ÿ*>¤ýÜíú úu¤ñYCþŸa^С³´:¿—Ú ?†ONÿ·h¼¼è0ç7/ëiàçn¥3Û×Ò?J~ÞÊýô8è >*ybüáy½¼x¿Žüˆæ·£èOÖ^}VÿÓì#_±¿ÕÐ1üBÿkÆ5ò˜o@/;ñ_øýŠv»Þ§YÜÁXï<®í÷¼D~žχ–×»ƒO5ùº¶ë|y‘Ì£ù¸î™øœð,÷<ŸÞGBo;ÿ?¬×Ýnð=ÛÍó ã9ÿ?ˆz€´~N;È·M}”? ¹«ïÿÔsPës=Ð|=“ï%w†¸<.‘ßÑûV§u<ø®Çx9hû ã þkü›¼Í‘w9õß3OàqÒïÁŸá#xq¿Ô—ñ^3ŸRèƒ ~Ó^ÊqŸò2ùãćh×Aå/¦‹“JÏC\I—^Å~æ­nüÄ·Ü~}çÿóž~©‹ÆË‹=Ÿ1¿yÏÇº×øZ¯?oVhzBOˆçÖOBï²ë¥¬þý>ªýO0ËˠǯôºýÙm­??Ä ¾áO¡³ÏÿHt‹sQìçC‡Ø±Çé?ÆsìßÀ‘Ú!9àuÀXõ?ŠúoT:ô¾ŠÊs5ú?ôù4¬oö|~×Únœy†ØÏû¶Ò‰é†}Ö3öÓ{é_³}Iì?*Ïþûóøg}xÏ>Ž÷ õÏë»AÏ9ßÈ~æŠßöZ‹õû𨠛Ÿ¢=OõüË.o®3´?$çUr?üOÙ‰ý¯³ñ³Š}~ãgÈ û…á÷óDï¥÷ º¼ß÷¸¾w~±ô{»UÛm=¹w/ú÷8è’zGUÿëðzAÓ z>ü}m<œ]Æó¡â·÷ãñ+–~f¿{Ÿ‡ä?? "?Àwû7ê>éˆ}qÖWÔOdâ)«=ØÜ_è…x0áÇb:Až‡ ÿ4öEÃÿ²ÃëM“á첟SÊä|ü±ß¤žáÛâï^G=AOR}ëw.ý W}/ z\×sü³%ç /÷WúÙ,þ«äëάE;‘Sëu<=.æú8÷5íŸÆ_Pøo}?~Ö7âÏ®}¨þ&>v+ÑíÃ@톾ýüÒ wìÐ3ýYa½¤þ²ï ½}PéÃã"ùE=.ÎüU¦x3Äe<ߟ î ÇÓrÖsî°N¨ëë<¿n€e½=Pÿ·ÿîŽþÇwïÆsê=þ#/GªGíÊ|c;ü99Ñsõ×òç½n¸Î0ý“¸ì'ôÑœG§ÜA”[¯û°¾Gjü^Rž°ŸÏ{äÏn-g{FÆ—Ù‰ö[^¨]ôwýߊ~Å÷ŒÃ¢ç¯ÃÅ@ãUäSmüß©øb< g—Ëe|ðx/êRî žÏƒÔsr"é{'ô·ÕxO}Q®ñËK¿4è|»Ë›çùá4ù\Á÷Ýx>Ïïr2œ]Íú¹ÅûñøïJ'^÷¼ËH7ã¡\ú_l«âuêW›ÔòÂt‡\¤~þO½|·Õé¦Ã‹½ÞÀƺ¼F!Wžž;¯K•[>“q×x¿\ß7çe —É´œÛ%ùµèqëðzCã#ô^ãïƒ}y%ä ú–èËç1¡‡•‡N+5ö8ì¹̾֠vt{Z‡6~kЋìÁ¶'¯©þb”¿‰?f=÷>¿ê[«v:ïŸf|Ü¿ýÏR?ç¿¿èúY‡‹‡›„Чæ}È/Cž@O7ƒ>ì7 {ö7ãü‚ý‚îÔzL?Ä]d¿“ýÝÌï¬ï=n^ohy°1œ]öÓ‘¿§÷;3ΔãèBwú~} -78_`•ƒð§ã¼~>œ£xªç×ÿ-zÜ:¼ÞÐtþnâŸö Þ;NX]ÿ[ÞŒtžÔ«úÐÿþ®çøcã?ç8¤È3ýŸ¸˜÷º¼épñ0ãÎø|€äEGb2œ]Þ—‘ý«9‡Šþ†^'¹f»Ã]É3äÒJµË5ù=°¯t»@‡‹‡öy§Ò‡ÏÛ@/¬{8û+¶ggœ8ÇÚìÏYÇà÷0Öúƒ.o:\<ÌxH¹_¿Éó‰àNÅÓ[îë@Ô'9aùA}ùÿíØÉ'µ]‹·¯7œë¿ ÷úŒõ×;QÿdZ¯ïçÐaÓÞ“N7.€^"õ¼¸m·Ôô@\ªSöy«\²ý›ýÚéã!噟Oô~~øSd\:èôxú~ÑãØáõ‚g1ãí¸ûM·Îן|^;×iÐñ±Øú0õ´j±?Ò­úÜå—õߺ}£ÃÐ û§ÈÅYÈýËüãØW%þÎ}ŸÏ½'žÃ»AaÏÛ|¤rÐ qðÇ_œz¨÷A§›@7ì§âçƒ\‰øjMžçGÏì·O«‰¬÷™·º£Ü»µŽk}GžÃ;|«tƒ?y²ŸUüu9üè”_Úû·øËá¿CžÖ'ËÓòö'z,x'膸¦Ž§ïðOÂÏnÐóXïtØáÛ„ö«Ãn˜^¬GŒ×øŸù¤|Ù¦ÊAøÓAwäë=¹GA§ÐÙ*O>]ò|öuM‡ „Ö£V+>ÛÎ&{²ãkcÿe_;ùõÜñQô½íÔ¿Wõ¬ô"^Užï¶ŸD|ßa‡oþzÿ—)ö0öÇz/yà8|§÷\ÿÇç8‡d{™ÊO¡CÑ¥ýëøèÇç5ôý¢Ç¯Ãë 3¿µñw2œ]Éß? è‰ï(§÷Äõ͸Œ^÷ÇNòmÐeûqG±¯±ÇGèp‘t“øžt°]ñ™+ó«û9rá Çc½Ï<=È5þK½Ag–cèk;n.3´d}}Sx^`"^FæÂþÄù‚ƒÊ‡›üèUc•?Ô=qmøŽ{½w\ðö±?B{hçõC´Ÿ~繅ȧâÿ#_¨/ä†Û#ºèù­®&œÅo¾€×“é}s>¾ºWñØñ4Ä—g'âvxå›óéÆzÌIÅO·zâ» ›Æ¿ úJzä;Ú+=ª¡Sü3iã…þ¥}Mó!Û¯ëx-zž;|½Ðxs;`äy6}`%OçdZ>ý]Ï»¿l·J>ÿwÜh•£þ ÛÍAõ…|³œé½ï‘/ì’oˆõ:vhäÖ(ÞPý4Ý,Çý']Þ\Eèü™'wì?'Ðç6CnÀw#~»ïÕÏ÷£é½×ÉÂ3ç»v£=øÃ¬A‡µ¼ÿqtfô#=×y’ö8äÊjÐÓWµéÏ3ÛGªã±èyîðõBëO’;öcD_B€wð_ð<È-è,Ö5ޝqÓLÈ)û£T~}ZþìBG”“¾iúù4úGù;zO>,öC¡«‡Œ?º>½·üFÿƒ»žv%¡õô0é#ƒ®&^-úôÀz<©Üòbzo»Ôa…æËŽ“£ïǺ—ÜóÿÈ·K\6þ‹ÜùKÅoÓ#ë—ý€ª×í½YéÓùºð—AŸ¤>ãµÉ¸výì*ÃÙúVø žØD/øqyý¼U½¤ÉÓvÏõù6ë ” Ii·“^5û¾Ò¹õM솢ã&ÿ0åÑ÷§·Ã~€üzXÛãñü¬ÒòuÑóÜáëŽ ž…ÀøˆÞBÄôw\”«åì·½àßO{¡÷A婚‰žCïè{è‰È;êA4}é;üx{È7ò¢~Z颡£¯ë}‡—fžÌYZá‰øæÀû­zo<þ qyÝßrã[äˆð÷DtvDù*§|ÍíS}Ž_­ç©?AÿÈ-èÀçÔ/ø|{Àƒ*Wsåu\ècüÇ÷C—7W Úožüà öeðIqš¹;|9$?b¯CàëJ­¿Ùwa¿}úîXo w¸g?Hôçï>®Ï½¯2V}#Aä'þÿèØÐÏ WøKæËVÿ=¿¾Øìo`?ÛüW<‡>À/ôìq_°±@oì£:>LèCªßzÖo•ž¼…ž7ȃúë+ñ=ûIaÿr}è}È-è‡ÿÞ¬tÓãº]mh~ ~`/›‚':¯büƒŸs€¾åÒ~È›CýŸé&ãY°I9~ß|¶MÈEÑû•ë úq3è=‘vK~¦½­Égÿ¯®ŸuxuaÆÃÉø×\ö?Ê<Ãð‘­óõ3¿Ý¥ŸÄ¢ûßa‡¯D7“áì2^Ëþ–y-g°c ŸâœMS¿èiêÝï;üO íÜè{ØÃ'ÃÙå¼=ìK¡ò=wNÞDë…kØ%¦ß-ºßvøÑ vrâ2½òd¤çä·º£çëµüæô¶¡öwlŸüì|úê°ÃËÙ§uþ·Ì÷ö ì²د€ýà9û›¶sD^¹E÷»Ã_‰^".Ú ë×ã)´GÑíÔ^^˜þª¶{^õ.ljB^|]ïm‡;=ßîì¸Qì÷ý/1´ßùñ›ÀÏ@ñ¢íWñ(öO±ï0ã†ü±Ü¹Ñ÷u:¼¼°ñ‹¸Y÷Uìw€]ÿÖ7ØÐß–‡³Ët‚Ÿèªä ~ýüg‡—ÚÏ?‰Ýð7À?Tû/›OTn2…ö'ÂO"ö=]çèÆú®Ÿ+èðCû±âçɾŒì϶ß©û–¶[#O°3‡_ý×°#Ĺ¡E÷¿Ã_Îò¼åjòaO¦Ï3ίÇ*¿õiПÖAÔKùž—ðõ@ë^gÞÏÍO‹HúQbßÁïJóíý9Ît¿Ã/1Ì8M>WÖ¥Û•ìwûü|þf_èí ê\‹î‡¾Ýä¹—\_•.2~ží¡ËÃÙez‘üÊ|“ƒ.Ö³‹î‡¾ ´“õæg!oªò¹¯ÁŒ·D=kyûƒh‹ï¢ûßa‡¯Ïú!_ë’G•®LÄMÁ®C¾¯/£þUÄ›½à¯¸èþwØá+Ñ çî9×\aýÎ>œöåfñÿ‰Ÿq,ì§Hý؉Øÿž¾îtÓ᥄Ž3Ë~r…s…¬{ŽØ¯ž–·ßqUñS$^q%ØG¸¯zvÑ纞Öáå…Ž‹Ì:y€|A!O|Ž~8»L/ÄO&þþñëÓç¶#<ªõ,ºÿvøJtÃz¹°QåLã]ܯveûàgø¾Ã®†Ü:¬÷‹î‡¾ tež;?×¾ég¬çÒã²¼ÏlT»³÷E¥§uö/3L?Æ/€}àAÐÏA”ç9û¡‚Žg¤÷ÐÕ¢ûßa‡¯]ÆóßƒŽ  äz÷è_“¨‡ýQü ¶ª<[t¿;ìðµÐÍXpgŽü‰÷¦Éô¹ý N‚¾CÐ뛽Zíü—ýÔÐMÇ@êS;rýÔØÕ~ë´‹~eÜÛ£jt»ó}ÄÃu=)§ùŽö°Ž$žÿÙŽ~óŸã˜Ý3Ÿ_õq|O{2ßû_jÿ—Ú=ã±²ï‚Nâ ã¾]9Þ×^À(¿ ^ü6_&C¹À3ß'ÞfþdìÐuÒøKû¡û¤ÿÌS Þ†ÿq#‡©'Çi^¹½¨'éîy¥‹Ì§æñP?‡¸<>ªßó»]ùÀ¢ñò¢CãkÈ/óÞˆÙþ†Ÿ3qÀÀgæ—òËz^ g /á•ã%ƒ7Â'Ÿ¯¿©v„^i|ÁÞÍþëÍh·ò©5yCéí¡ßÐYÄõ>øÎùôÔÈÓ çj;í¿Aûž¨ûfà9ç?ã<ùÖFm‡ãÀ‘·7Ÿ“ë~ê/}ÄqŽ5îÌã¯ãküɇÞ1¯ä##Ž~Ÿ<_ý0Ÿä¥€î>¨óØä«¯ŸW{žÛ÷TíÉzŸÃhúg? ü"Ïõèÿn×ã Ó§zþ•àšž¯ê^~Lî/þ|ŸFÿv¢õãßt¿öËóÉx@Ç´Hþ÷uÐõ½*¿:œC7Ð x³Qùéæ÷àð‹¸]_Åwwƒ˜ßzþaÜ㯖ù ˜ÇÏcžùŸÎ/Z.‚çàõÏÿœ¶ó[Ýã×@\˜'úñ/÷¡/þ[å¯÷yÁÛ'¢?ðù<{¨÷Û࡞ó=ôÿ³îñÿ#.§ódéý3õ9ÏñÃõùiè‚y»¥û8ç¶ùsÈ£9ñ¤: ºa>ñ·a¾¹‡3ßœ/³|Ðò€'Ð|~þ×àóÏ¢þoüçHx9ÑÐ'ÁcätAyè<‚n‰ógz:üVïi¿è¼Àcò&0~_Eÿ¿LóÿÈó­ cÉeË'øü…zîTù`¾2¦]ü7øí†^™ß‡n^ZoI=Œólàü=âx(—ýs4ŸÖë3ßô ¿OóQôþû¼¶Ëz˺ÊoŒú‰F}Õv§|°>=î©~ðŸò÷ª^çúù/v°“J§~Ÿýó®ÿ,ýÅ}î"é9òy>¡Ûˆïáy¡¿Á•¿SÛ¿h¼¼è°Ñ3Àá‘ñw/ž³N†Þ3â÷sçý ½<¢ìnæóÔ˹ÿ£7Ä?ë¿I?ÈÁ´£pNi)Ç3¾‹ó³y^ÐóÉx¬ê=zïÓZÞü)æ»É¢ñò¢CÏóVOë5ø73Îàÿ¿¬Sˆk$ü¯\?üžú‚ß›_.ÕväymÓÉrýéþ­<¦ƒïm/ ^Ρ§"o‘»È!}Ïù"ÖÕè§ËÑŽ{C¹;%rÌõˆOTØäÇÒø™nз¬Æø¬Õï-×XWõøj/g|Vó)üö83àxßxÈúúA•é—f}änÐOæQ#ï:t5V9êåÿàsÐ#q,Ï<¾õªß®_0õªÍ§1^à5ôµÏÿô>í¢¯3"o¢¿§<ü†q2¾WzuûS^coæ¿£:¯Ìó,äô¿‹ÆË‹ÿàáNàQ̃ñ$÷ñyŸùÀÀkè‚ùÃnuRñÕõÑ®IçO½ýÐwM¾ÛÔ3ßßÑî“À{ÚEyäTàãì»hüzÀ.–ûeô{=èí“ø|‚zŸ×öÍò–ßà>Çå´ÓÍKÑ ó ¾À÷¶‚.Æš'ô¸çu>Îäßàûi¼O¹!Ëü§ì¿…¼äž}žô‹ÂíËÈ›åiùEG‡¾Ý@ì7`§ŒóW›÷õy‚œ¹Y÷¼ïÇú†õÓ­¾~éðê@ïwK2Þc÷' þôŸ]°îa¤üF–;ìï½`}Óa‡— ÚŽÌùèÁùއ³+óPÚ/Ø~azÿ þ4ìÓô}¯ôþ veìbØ—óü~+ò¯·^÷hzoùÃ÷ƒÊmwºéðêÀôwŸ—ÇÆþ¾“és¯{ð9VyùQn>Ö¾)ûÒsâ¥a—Xô8tØáŸ¢Öÿû¢ ü=N‚.&*·Wýìÿþ‰öÛœ~ÖíÏ^)8è² ç< #ü—ðŸ‰óSöÇáû8Ÿÿ"?ÁïöbBæÕ÷“)žüÇõ‚O¡×ä}^øÏùžzð|^×Ñ.‡ØV…~¯ïæÝ7íÐzÃp/ú±ÿÇw'µÝöƯzâûãé÷¿Æþ›+ñúËûßÌg•çè¿M`Œ[òÏoŒ¿Ç~’óòÚã‘íGyÖ‡ùŸ,Ç÷Œ¿þßÄéTo3Ñþ&>ëA…¯·ã¿¿Žvð|/Æ!ûE¿?àVý¾™·ôï?Œvm×÷wÞg;rž–+þ¹_YžöÎÁ¯çÅOËvmÇÿÆQ.Ç=¾Ìå¯ÔXëmÚ}í¢~ž3ÿ´#å8ß]›/%Ýó=÷àÉQÈÿgÿ?ñíøò™7¤˜NøoœKt{‡IŒßNà}ÐÏÁÞ ¾µã©yõzCõ4q˜¿œ§“ú]#ÇÀƒü.äŠÛ=ªÿmè‚ù¡=à}Œg3ßóè÷Œý™ÄùOœz¡þºßóè)éšÿ¡×q<Ïþ8¾CÐÉ Þ'Ý»ÝôSí³ßnâÃ<|T{_;ÝðÿˆÇêuò²þOûžG{Åì¯ç}=¾”§~æ÷š/û#3àá8þ¿xI9¾Û©ãØð¹½9í„·§ÅíC_CnU¾–ç×üüðüölòðcEÿfÜÙÐ{^´îjäýæŒ'ãÍwüøÞq8¯ž‡^ØŒwœ?s=Ðóa­Çö0á¥ã7lÔ~Ù‡ï…7>o3ªúÛ¥ùkâļ¤~ÁsûiS_œoò$f\Êä#úÿ¼yõ9=ð>·¤zè?|M|”ymúÏ|è;Ç=€Ï°ï̼CüŸvóýMµ‡qa^™ÎÏÑŸ8渷j;›øÄ[çÓ«Bÿ'(ÇkÎ9.ûé'Þ«ž@?Üü„ï*>ϳX/Ný‹çŒßDýJ=Ìã‘qœ2NyöWx—ëqðÂåÆª?ðcž}ÃúÀ^ųüOÎël¿Vó´TÛK|¦_Ûqô—zî,ïiŒãË8 ñ?ú3Ì)§yjÖ´‡y¡èõý¸'?òkÎSä~31_>r¯öËûÞ‡×xAçàtÞóüfà%ryÿIù¢çÐè‡æ«9qÍ7Áð—y_#^rÚ,oÕ¾ÔÓ|ò9ù:^öO€)þnî+ž?ÉÍf^‰óG|¶uAû¿ªþIŒóïÑüóh/㨸¡sãØ¤O¼._"Ïëk£›UÆIÿ'*ã³r>½xœ¾®ãÇù¯™?² ã£ê?à7ûøŠsb<¢¿Ì+üÓûþúïQà9t‚ß&óMðo%þ+tļÛntûVž7æ!ýÌá‹þ¯ž¯ƒz¿Œÿ†Ÿ¹ù·úeþȹBünñ„þ˜èˆölU¾øÚí‘_ÅôÁ)·Uùžé_øyÌ,¯Ççðwø)ôþ ?¬ç'v§Ò­¿80çÄ|zbÞàw”/"onÚÍsÿÀý ¼ß|/<ÀCÆy»>çrÿ(ñ 2ƒÿ“ñýbýoúŸ¥¼É|öŒ?|„q‰xWM܆µxOý—Ýó=Ò½gý%<3?t<Ï ?üvW^/½x|ÃÏÄt®ÿY¾~^Çm¶žÞn×û´cZ?иø;ðü =à'ô²]ÛÕäYÊüJAç~v æ/éyÌyE?ÿ¶†?Íéo³žàðyø-x¾ßT»é¿Úݬoh/üŠ~#·‘+wýb¨õ7y|w`ÚϘGèýýýV”Û«õøÿðíÝÀKƒÇ5í/ˆñÊò&Æ3ãny|vê¼£ùžï³ÏùÏqŒ{à·ñ(ÆÉãdÞ³Ó9ô óÿy|úúKmö¿±×RÿÞùßå÷3|¬òÛåÆê'üü Æ…qRÿ²½ž×ä3Àƒ€à!ü"ÚÕì{Ò_ð}rý¥ÜAå+žGÆAxŸñP\.ãWƒ/ÐÅRWßRíæ×y]vfß|?8¿?Mœ/Û<°f¾øOàÇ[ýoæ=ñl«>w=±_6Ä5×oä´âEÆcÏÿ»>¾‹vÌìϵ=M¾½yõæ|Ð?Ú{P¿3ݤ½šöÑïqü‡öĸ™^æµ/ì–~~ß#ËûwÉOá3a1=ð]à‡¿×x½n9Óᛳ¼šoâ|ÏÉ{°ÏÙ?f=¾Œ¦øÐØ"Nr³þ/g¼å Aì Ÿw<ëptƒÞ=À/¡§Ñpv¥œ·h½Òó_ao\d}ò­êô¤9öì;|+tCò£…?q½ï´¡ûÈÃÜäýã7öu}½Ý®åhíòؠ׉îceÑã×áõ„Þ·‹ø¡¦ø?q wLðŽÊÛ®rØ­w©¾[UÿjÚþ+Þÿ€ÎøŸôÄE_‡×º¼>ÉõNä“Þ¤|äsBŸÊý›™ý6Öïû¡Ÿ‘¿™òÐqÈÛÓ?­rªÃß&´ËW¡w¿ìãe¾ÀôÏàûñpv9_ÈñôÞúôô—º®'îˆÿϽ앎?‚]¡ÇïïpôÂ~DêA¬ÇñS ëúpv5çÐ×°{a¿†^ÂŽÀ5ËÛÆ}¬co^7U{@ú×uØá[¡Öùöƒ¬øîøíÏôž8Uaײ<]ÍÎ7 bŸÃΆ|»W¿³{õOõÕj•[‹Ç¯4ÿ†¾ÆŽ\×)yÐf_;4ø#ûA¿üó¬œõ»UAè ¹¦úšó<Ð-ë­nOëptƒ] ûû0ãáìbÝ?è²ßøŒÞåÙ7eýƒ‡9ý>Žõžø¤#ÝC'äe&Nö×]Oëpôóe•+æï}Œ†³«É3Ý`OÓúÞy;ï Q?v9ÖSƒ¾ƒNùß²žw;Z‡‚ÿö/&žîcá÷翱Ïo½Œï2o¢ýn‚n 7òDã?=>¬õÙŽ0gß§Ã;|ú g—íðƒ‰îC.n~'º†nyÿL0â {ëV¥_Ç`Ÿ¿kÖ‰ö?’^J{¿ÛÓ;\ ݰž g—á² ú'ë¤g‚ŠSo»¢÷]UÞ礡;ä§ž³NÜÐ=òº[ÍïBïվԢǯÃë ½>?¿¼ÅžÝ¹C öU×ɉê}î±ëU92‹ÿ¢ïëý=õ;‰êAï}à;|+tÃ:ëðUöi'ºßµdÿÖOÈ ÖuØÓÙB ‚ÿ¬÷¨‡øÐö~Ö´Ãô>-·èqìðzAÇEŸ³ß3Î.ó}ô1âÙP}Ð+ö·AÏñçF±Ë~Ô7Òïõ½ö«=ž^è¸fȉy~¡Þ>oÇzˆ÷È“Aï¡Ï‡úî$ìϬØçÁOuò zÅnÀý/]Oëð-ÒÍáñÙýÐÄå5]OzÒ{ÓÝìfÂsì¶Gë:’gWèý‹u ò ?ˆÏã¹ÎõýÏß*ÝÀ×Ó¿Mö4ëIèSœŸÀ?”õôÆy‡Ìw~¦#ÁA77êÿM—Ðaä§p¼òÛ]Þtøéy`iÉ⤕ûñ[xý}¬7½ÿåÕný³àº ðÚ~3œãF~ 7$‡L?×»ôÊþhß÷ìðÿ>ð\ø¶Uùl“·€¸ËU_1žEï¿UÏoü1ß¶ýŠó®’sû=€øœúŸývFµ?M^º=ôÆü¿ûwwø¿ñsEø¡}ï×GÞÇ-à>ó,eóO½î|ž^.h}uúÁú™ g—ù/yõ<ñ/×¶Ó©¼×ù/àÛ¹®ŸK7‡š¸#igvüQôµ°[Øß&òÈXÎROÐ]‡× ÐÓÀsáÅ,§ðŠu4ö¥•Xßh}áú¨zCÎ`?OïçÒÃJկ斋sž¦wè‚}R­W¿MÖ7Ð7ýF®¢çA_sôů´lc8»¼Oƒ#z öè†ýþÈ36Û¯>:·ž³^A¼œþæÒ?zzaØ ò{Ë ßCW“i¿L'+U~v¿Îë í¯… x’ú<|ø â»÷wx} _m‡[ÄŸ¦³ˆc8—¾>­åì·Éþ¥äÅ k¦oªü²Úç|ºG>¦t·§]kèu7t {‘×7è'èAø;‚ÿØ ÀÏ£ª§ÙÞð¼¾G.Ì¥εßýcþn?ÐÓ èNr¤Ù—Éü ”ÃNŽ=.ânÍËOßáõ€¹o“ù¹-oDGÞOqü=×¾é ú£>Û·ôÝ öm\žýüà©íÔü÷XÿÅý z¾ö‚ß*hä+ò‰}Üž_a!0÷ fúÿtÞ¼^ªók}Âç«>2³ïßdƒ}˜óÈà'ߣßU<ÿBßßæ”ûìrã•å ôÂøK>-º}ןGšìSá÷1³“ªvìAðIâ7#'~ > ]òöað vÞ çémC_¡ôzº«r§,O.:ôø0È+øÎ ôÆßм0Ž ¡{ðš¸GÐMÊäÊû!Ö£ü7U.8O4z=x€¼ yÄwn'|8é(ý¿b}³èñþÓó³®~gÞáˆë±èv^7h½‰uôÁ9,âH°®X«ú¹í@œóÅÏd¢÷©‡AQÞü”}CäëØŸtܾ•ºîpý¬ã?­íXôxÿéù!¾ãE\¶UÝ?¸œýºìÐvÖìo³î^­óbûÕd:ŸÖÇÀ[ð¿Kì¿èQœ—_Ò¼ã_L;‘Ýûè{ÈÎÛÇ¡3èi¬v\N¾l>„Ýí{Áeõ»Ÿ÷\̼ ×8®7óQùµí>wT¼]pÍÖ­Ò“ Gž³³£ïã܉å tt¬ÿƒ7éÓ“ÄEG>>BžNË/z¼ÿôüÄ9Ûc_iÑí¼n°ñÿ`_ ;û‰¬#NôÜy2†³ËïðwWÓßA|ž‡¿ ò&ô»™ýUõPîNÔ‡ž‡ÜDo»dù×éWã'\ ýxÑí½nÐü|WÜVókìZ™Wÿ+Ê¡w9î‘æ™ù :4}Þ‹zˆ_þnü9s¿ÒUcG‡þù/ë§KfðúŽ~¿WÇÍr|£ëi ™áÛ ËëéM¶KqŸëô†‘¾ßÖ¼4݉¾ü9‚Þ… zâèózŽÉrIõ 7±¤½û’Ñ p–‡@ýB޲Nü~ú|Ñí¼nÐëô¬õ)ôz½€|' ¿æWë.ã;üŸuÎ-ÝcÇë9ü5Î×ÌöÙõÿ‰þ ]¢—ùŸÎ[.zœ_y~àŒãFœ¨/úúf!ü üÇO9‚g7Ö/y±¬ç+Áÿùî½Jg–‘ŸÚtöÍAßñä~gØÛÐ÷ŸÑãü§éù›yLé7rùf§›·:/¬°×€ÿïV|ôzý4膸`Ý3ŸwUŽõõ!w¼n„ÂOÕ‡~þ«½nÿAŸ»£öFþ‹<_pY`£j\<ÞØ%Oûú¦Ã·€øI6þŸ'ÕNa¹ùQÐí­Êo¨ßö/¾[ή<_“í²œ}¯þÑãÕa‡gø‰¿öްO˜ž° ÷-…<\‹òÈkä„ô[ïKa—|ÿ|z`]gyò?í;|«tóïÀÏeAô½ðçžA/ ýuà±êYa=¨÷é'þÁùëÓ'ño?îò¦Ã‹›¼g@ìV±Û¬ë2ÞádúÜú^úwšýØ9ñ f~xúîñu:ìðmBÛ¹¡—åáìrjð»öèû/ôŹSð~{žžCÇ*¿>…M»µùÖó¨ux ×íØ©â²í¾¬ûYŸ`'×zfÐe? è¹B>ö›OÏëºÅõ³.êñÐ:¼€Ðñ Ø·"úاÉk;™ÂÍAõ 뙪¼±Ü`?vNü ÛÙ±ã¯uºéðâAû% wá·z˜ô¤røWë½ =z!gœ7=Ήkè}Û#Ö7Óÿ,zœ:ì°à)|=ì^¦ìZ¹ïç" )/ÔÙ¹‰csò¥›þ ÇKêßÐáÕ„Ö—Xp¾õGœïiòåH¿³={ôc= g—õ;ìiœ«ûô|ýË矑W/È«Óa‡o•n°#/Uyb?€ãé{ËÖA¹Ãz9ƒ½;ôHõ¨>ûͱ+ÏòCU;ޢǫÃÏð3óé a?f=yir_Æç®‘?ØÝ(':É<¡÷=Û•ô³èñºjÐúó²æã¤îÏ™?‚øceÞ ôû÷ âL9ü’ñÇ ?ÍyíÌ|z‹·¯7Ìs¦‡ÛUßhì¡é‡ ŸÍøO¬Oƒ/º¼®¾ùÇöRë/=NQ‡6øg2œ]Ö7ûŽs&:`_y¤]{*çÚ,ŸôŸÏÏ—#M¾9ùü:ìð­Ò zÕ†ðø“ª§ÍÎõ ²޼+ö›âܘì>¦¿;Q»vŸåé}Ó>É9ïçu=­Ã ›skUŸòyûñpv™ž¾©ò¥É»\¿·<ã<;ç#&~T^'£ßÝ®õ-zÜ:¼ÞÐò€õ¾ü¢|¾Ÿý†ÃÀãÌc±]ý?¼_|ñy\ý:AÿB~=˜ÂA—õ?öẞÖáâ¡Ï•³ßyñ 䯳jGpù´+,Ç{ä™è(÷É3®wãw>Øówx õ4Î7¡ŸE¼#Óë—5É É%ã?z›óé g—íÐÜM=ÕÞmù5Žrw«bÑãÖáõ†Îïý¼â}³Ïý=Ñã¥ß ª÷Xùr\ŸÛï*ö‘ÐÛêÙêôÒáÅ—rÐÕÄaB/IGÄzZåQæÓ´Üz ïîKΰ>âœ0t¬xè´kÑãÕa‡gtúe˜^^G,U;Wîçø¼üXÏs=ƒý ?©OƒÞ8ßøI]¯ä¾¦÷[÷»= Ã‹=ƒÿëqÊn¤]{5tÆ÷Ä’ÝËõ³NZÖ=ô3šÞÏ¥käX“ßa‡6ñl—Ηƒ^ÇEBËUøÈºž#w±ó‡ý„üs>:žBÿ{æ ú"¿5òÚ~Ÿð«ÏÖ“‘ßèÁÔ‹ÿÆ òÂwØa¡›ˆï™qúì¿<ÑûÓJ7ÞÆŽý8ß)xŠ]PïïZßïVû¿ýkñs¶ÿ ¾Ë¸½ÐôC{õþŽÊ£o“Ok£¶ÑóÑá倯ÃÃÙÕðkðVx=óãž–÷ù4ä z+xÊ=ôdºÑ÷¬÷x?Ò=ö{ä`Ä´ü9 =zB®Ù°Ê?û? êwãÑ២è@øç½Lg÷³}^óíôSÅŸ¾ÿï -§œ^÷Èôª+}5ùND™ÛûÙ™Ï'ãÙßõý±ÿ Ý€?sòÞšgžkô0Ö;øYì ß­ÿ‰ ðwCõ°NzÌÿõ¿ØÆ_ð4èbÐwà?r‹vcïA¾pžúA¥¿~>´Ã?E7èAÈðçñ:š¼=ËÃÙÕÄ“B‡È•cAü+¨/ó™Aòç#œß#oœ®ê_³üvªº€Ž óˆƒÛýÍ;üSt?‡§¼ÉõÈR½÷ºçnà#vtô"ÎO€¿ïœ“Ñþ±ø“#¾ :ä<v<ÇýÐ÷ÄÛëº\Q=']Þtø'è<Ç.òªmÞ×sèe-ðr¤÷¬“Ø>Ösç_”¾ñ }}‹ü£œ¯`úŠÿú¼z•sî—ãÛÄzBôÇn‡îðeèey8»fù‡r¹\œ›s¾^Ö)_Çú_ôb|\õù³$§LG#ýç«Êÿý\~I~Ÿß­DyÎçò¾@¿3.Ľiý‹ž—/6ô9"ðü êW.¾sþ:€Ž¤ßÙ`ÿ½¨÷VðûÌS^s~…¼â>×Oc=G¢E¾ÛÅ#/½ÿ;êtÓáKÐÍ0½lozTíK.~bG^Öw)?7à#ûù?šu;ë ­Oš}ü ‡àýÍhÿ¡^ô¸°:^;ßeønèð% ñ{c8»¬÷p<ößÍ÷‘'äá` ¯½³zÎ_4qÙñçÏB¾ÏòTÅz(ézœÔïÜïˆ?”ù ®*ô~çXöê¸ÛÿCz´ùûŒ+øßÒwžÇm}§õ²õlôðì+•G¯g=yÂrŸÎí{Tù¥û ~Æ>àÌÏKÏ¿×sø8ÿ‰¼í)lÏÂN5O¾<¨ò‚ýÉA—íXì‹°_Šž†þõLrÏ¢ãvÓ;t3ªxîu?ía¾‘W߯|s~ ú{x=ô4óµÌŒ¼¤ñȸªà r}˜ñ…Yÿ>†ntÏùö¥ÙŸ»útæKõÄì*ÞÞ|€¾„/ÞOç¼hÊïÛ‡\XB>è?¬?’ÿ/~±RÇÓ|Eû)Ð÷ûákjüÀ¬'Ñúû@ã’í`’ç+¯aúß§Æž‡ÿú“zï÷#ž×ú®t| è?ÝÌßuKãżƒ7¢·ô›ÿÀïg׿UùŸ¦ˆë¸”G§<ñÒà{Ì«æ þÊú"Ö»î/tˆy)<´^\`|À_ô*ø;ú?ûˆðä­Úåïo>#W‘×Ðçg¡kø ç+è/ë(ü*Gèþƒÿ@Ä˼ˆ Ý@'_Á'bÞéÇÁˆË²hü~ct“ö{Æ›qûEóļ¢ï¢·0~|ŸöôôÞ=á xšþ¹´‡¸ü?Êû‰¹ñ[m§ýX‚¿²ÿ h=åãZÞûùy.:=ÿÒ~ö‘‹7ã?ïÕþX.°ž¿1}£÷€Ÿ‘¯=ýàÌwøï~Ô3 >‚¾x\ŸÔ#ùñÜ=ÿÄáBþó\ücÑøýæäæsàõ ø¢qßÁÏÅm/…ß‚àúÓí:?®]÷AG9_Æ ô†m݃ðmäE¬Ã­ÏÃÿi7ý[ÿ“7f2”Ëq¯ÁGú ^ÑoäNú“…¼pÿVësö¿Ð ÷ÈÃ;*¿VùˆÇ‹õÖ‡µ~ÏÿŠÞ߬ãäÿr>v>eþõç%­óxÝòµ{¼à«;•o¿·êø›nœÆ;ðkRçÝïí¯8?‡ž¡ïñP.ã1tÀ: ø¨åЮÚÿÔ÷™÷Ìõf§¨g»ŽËLÿQ}ïÕr–£'ñ<âÉ»j—ÇŸsç<×ødyß#÷—ê|Ú´óIè?ôŸô¿LúŒq¿êÐ| ½>†¼@Àö½GåÑŸðŠñ´è¡Ê£wÀ§ÑŸo›8žüy…œž¤½Õýé=ö;ìÈñ]ÛAÀ«IÅ¿Ì'ëÿQÿZŒï‘×?òAðr¬ûˆŸh» ãƒ^÷{m·¿§Þµ:NÍ~v°[U>xžîê=ëÁO‚>‘ÏØíX^³}O¯39÷¾².€¾Õø€à+þOð)ð9ðLøa{uŒ»í¦*ÏY7Äü{^Ôy3^o‡^"~ëz¡oôþ‹Ýy?Šø²×íà)ùͰkÅ9iëSw£^ìîøñ<…O¨Ïóßg^Oæƒu¢÷W4þÌý}rºÃŽ˜yÝá7öÇ‹ñ\­õ]Uh|e¼ ªÿØ-o°»9ŸÊ;޳îWt/¾ï¸ëwÐö;ðÿ‰ ërŸ‡þ ¯e^8§’ùõÀ¿~Þ­xú=ôŽž%ýÃøë=ßg<€ñô½õŸ}\£ùÊ;1/ÐvŠç^gÑ.èf5ú‡½•ùD¾ÊÞ¸h¼~S°ñËß¾¨ý6^`ïD¯€ÿ‚ϬOÐsyßÅo‘rà{ž“úQ÷è'ŽÿÞªó¾b¯Ž8n|ï{ìØïÆsðK~‰3{4ñ x{(z«×AÈäÉCêGÿÒ y ûq®cfçTz0|FãÒŒ?ýæ;¯COc|¡ƒÜ?ƒ?JŽºßŒ[ì£^58Ë›¡ùšh~ИçˆWÖØ³¤'{ü|NCåD/@ðèÃ÷•Ê×-ê¼ù{èy^©>Ógœ«oâ°žŠzg瑃¾ã|šÇ úf\S>žF;2_VäƒóøPéÛ|.âÍ[`<­ßÆ|²¾dßEtk~ºí=ø¿–·wú…ÞqÅóz¿ÄçÕoø û%+Љæm7ð}-Æ þ–ö–O£<û<æSÿRÎvèWy¿þ´âŸéõ í‚·ØYwA‡[ú=…óba‡5>¡ï2Žø…±OŠ}ü†Ÿ‡¼lì!Œ;tÜe]„½ùÂx±ž’\°ÿÜ¡¾cž(ôé~2¹¿Ç8ÓŸOjûßצ»í®Ï«þb½ø<ðKóØðÏw*½»¾­:ÿ–»ü—ÿœTz2äýVðmáyÚ© y¾{~=i·Ëÿ5ãw\ŸÛn<Ê•íÈxŒ™/—ïüžqý5vlÉýEãÓuÆðMxëö„Ì«õ¯ýÀƒñP®¹xþâÀ„MûÀ{öS+¾¯önýN“¾v£þqmo3~Ùïݨ‡q¤À¤·ä;ùþ·hçNí÷uÛ÷\½Ôy°~Ç~µæÝûÌ7øÄ{è&ç¼ ü†Š‡M>‘ˆkér¬WN‚Ï6õiÏŒßð‹ÃÚÞ”;9޹?3‹k¯ï"q¶/ådò³¶Þi;3[Ö×á›I3»µžÃ‡}nKx½€àYÒðÙë‰AßOôüÓÄgþš*}îÔrž5GÎù=ô—r`¯ÊÍF}z¿SíNúd]ÖÈ…q­×öÆ+ådÐe7½þv+ÞÿèðÍÀÆN+ÈÕèCðmž;n«¾ÿà|º1¿ ¿O×Ë:ÿøÀã¹ðªißnÔ7Ö{ü hô3‰÷ºGÎ qYí^«éïœq ¹wRéÇßEýЫﱄÿ©ßw=í­@ã“ðÏúò‡û±ð¾¼Á^‡'×¹àõvÅ“æ9ø ~þVë7ÿ¦ü¤–³\Ëøcà=ýÞžë}Æá îù÷)ôž«áGØñ~úk;üã£ñN»rïBÞ¤ÞÖá›é‡úV³oþÖÓ(ç¦,GøŽ}‰*~[¾|xþÄy.×]Á÷o©ö9°ã²Ošù²ì×¥zÙ`ß%ã Ü <>ªíõsÚ?Q½+•n½?ºS¿ó¾fôÓïá ¿Õr]Þ¼]hºAÿ^ ºá¼ x;!óšûrË1à çÐÆºÏx}úoæw·?òMøg~޾2è»AÂÏôg°ÞøIÅ?ëy¼§}wUïÍ*O›|Ðç×µ>cœëÍñjê¼õ>‡Ž] è8÷Q;|3ÐûŒÇKóšqüÓnk|ÛÎ×+,Àwð_rbˆ«Ù·~Yî“Þ-v*~Yᯔùäø/ÿãžýÜ8§çþý«>oòtÄù(ïãg°SåR3?9žÔ%ùT¬³:|3ÐúòXxÂþýV«^¿‡ »ã¨7ã°‚o€çúÎëþ3‰çÈIä ò<÷aøŽÿœdœhï{•ßx¼ƒ®;|3qÏó…íÂÍ<ÂçÍǧøãzÀCäÕ¨<¿¸Ÿ¨øyTÛázù.è'ëÛ¤=[õ{¯ÃæÉÓç•_€×îß$îá™'䤎í±ÿâï1>a4ÿ8®ãßá› Ÿü-ðð¨âÍWó}à­õ3ž‡ý+ëkêÝ}¹ïfñž*;/õ '‚>šçI‡Aoså)åø?òy ~ë}C´3äysîs·Ò™ÿPÛ×áùÐúGúÄ=øO|^$÷/'úüó–é?m½=ì9Í>eî%>£'Ý|9 |į|ìyÆ:üÐþòÁŸ½˜‚¡ñ/És¶y>úÙ«td½…rÂç´šnø?€¤è0ù)ò{ñݰ‡ý^Û›v§;üCºÁŒÝzA?B/Çþþ:ÿÊû<˜î±“Mt]5óÆF^XèØíóy½§ü²î©ÇñwÔNêãüø-}Gõ½õ³ÈwÓa‡H7«Â·Œ;áó¹’à;û#쀿Øe9'ýƒðÔñ UînÅSŸ‚î¯SÏïèz¤½´:†®Árp]ß¡Or>HõÚνÔé¦Ã?A7ƒ³Î/ÿkªÈø-û„÷BO‚^¾ŽçÄðù}ÕO}Ï‚N8g†Á_*ž7ùÊ8·Ì¹,Λ¡—ÿÀû‰U/³½n½¯o:üt£õ¹ãa§< ¾~'àšäÐDåY§|ô’ñdÙÿà¹ãòê9ñ69ÇÈþë.è#âŸ~ü[Öõ~-ô´ûñØóWtøgè†õ ñ¶_3ôâEÞXë?Äú)ðöËøþ³€Ä/¥<ˆúiÏÓç͹xô?â‚_ ztÞ?=g?~±^íxvø‡tc¼>=§àõ䑞gþnäq¨2¯9zÕ/ÿ3­ç'=G>A_G:EèuÐñÁXoAÈÕŸu?RýÏ:½tø t“xØþf±AÏúVëƒçzÞãWÅ~áx8»¼ ý@Ò³ò‰í]¹º¥ï£Ý³8µÓïl' Þÿeýe;š¾ßïë›ÿݰ.ˆóVÞ·–>ô뱞³ŽŽø®ÞÏ!>¡ÖáÞ¿a}‚|>Ò¶§vÑï§Bw#ýOõÍÚ£òøO²oƒŠq‹ž‡/lâî‡?ož°¯ý·Š¿¶€çèSØœ‡­Ò ôé{ä õñŸŒóÌO+4þjqN+óø-z:¼\0ã5™_Ÿ½ÿ_|}<½Ïøé—8÷ýDõA;U/K«AWîÿ{?‰ú¶ƒžè‡¾·~ö^­Çüà´ÓM‡^UØœ#~rûçÍà/ðAÖuqþÎÿ™ëzk‡WÚÎÏþÔwÂò‚åygÎAYPyì<Ž¿ß}Zï;ìð2ÃÍÿï)Ýü üÇ߉xëì熟÷ dÿlò‰ª—<vx™áæßö‹ýqó¿ÿùÿ¾œwúy6½÷wìÿâ_±!=ýtöÓb¯é°ÃË íÏú{¿ðžý)ô¶X¯<Ý8¾ýpvþWµ‹dþÝ;¼ÌÐþ£á첟vÖ?wª}ßú˜ý)yþuÒÙ´ÞE÷·Ã_ ÝÈ/oó¯Âwô/Ç«býòyE<ìq.¿Öíò^¸ù_ÃÙ5óÔ½Ï]èþžèøTïýà75‡ÎÝß;|-tCÜÐ'!/œUs€èuÄËÖ>´é 9•ö´w°Ã+7þŸ)žãW‹=šsøEÜ],gWߺZ‹ï8gÞé¦Ã+}¾ý ûçÆ9×Ĺ%çUyÎÝ«ò§‰½îv×Ó:¼ü°ÉK ¾/ Ï¡ ö3…ÿ™¯gsZÍ,ϱãeÕú{<¬ß´ |›ó@§¿Mþ¬öÃ?±±žïë;ÊãߪÿÙ/?Õãéw‹;|è¸q“áìÊü2æï‡ºü"é¿ÝœËˆxÓ™ÈñïžwýªÃËgq§—óz°Îæ|çï$‡¼Bœ¾_­òÃû4·B~ñ}mÔõ«/Ü|"<Æn…ÿ‹ã´×ÂìXèuØÃtN6ó:~OÄ_p¾W|‘EG‡þlò’BO…ÿÛÕïÅø|ÂYå7ë=û“ìÓÈ?Æq¶Fú{2û—÷:Ýtxñ¡ãÇeœìåáìò>äjÈ öK؇Y :sܬ°ߌýìÉý¼L‡—nÞÎ.ž!.(ñ‘ègÄÓ‘ ÉÛˆ=ººÿÙнãOï=vøRtÃzÿ|ü‹Ùy?è"ÎYšn8þ ñá6Tõ¸j‡ó~ÎÝnGëðò@Çgܽ ý,ògb/°ýyOßGÜË+ü4‰+€žv·Úãz\‘/ÌýÇÜo÷ú'âOy†uä–ãÀEÞvÇÓBžAGÄuìtÓá%‚OÔëxô7ð›¼n¿U<Ÿåç}e^èQû7¦ý×ù$§=vø2°É£‰\‘¾fyP¿š÷+} ºü»5ô):²_‘Þ÷< ‹™ÿ-ñ=üªØwOçÇ~š¯™ý“yýoòJ£¯°¿·T¡ýQž?Åß—} ú˱ð&ôŸC‰¼nîGèCŽ·xåÝg¼PÇ)åývÅ{¯Sð7Ó¾‹ýÌÀwö}b¿2óAnª^ýB^-Å÷ôç0¾gþÈ/ý¼Ê«ž÷ÏAû€âŽÃ|‚½S㌞MÜÌ£ZÞ=|¾QŸÌ'üºŠ<žÆôðj'ð¾~Zé×ñ÷ 7ú‡_x½]ù‡ãŽnÕÿ:t/vŽã}’ßú‡nð¿Q{<à5û3ŸÖvÎÎyê^õ§Ü5=À×Þ«ãczú¼¶kÑøxY ñ}Œñ6>‡|}ÃxнˆýnÎç¢<Ðwȃ‘êƒ.˜GðšzGµ¼éáyÕÓüý½¹âzYÓ~ø¶ø>û•éÿßÈIÆ <äÈ‘›¯üWã—ü*ñžÿXîy<*Ýdþ'~g¹¸]Ç-ýI{“?¯>È<Ÿ~1o7+¾y>À/èo/ð5üê_äû€Nñæ~¥òÍ<¯bºáùc•C¯ º4Œ<ì^¿°î@_BŸ™T<6~"·jyÞû»‘àRðƒŒ¯û2¦Oú—ÿ= þA; 7õ×û©Èkêù:ÊÝìôóG0óƘo¢¿ï=ÿðSÖÍ”ƒÞÀðzŠs…Ægønä™2žî^ƒçÈ;ͳû£ÿy=ÎÿùNýuÆÁ·Ð½¾Ð{ô=î]zÞh(í{/ºp?ã=|&üi<Ž[ñ=íd|ƒy<é/v þwPëë°BçSÒxYÏïÀôpû)†Â×'ªGól}:µß‰Þƒ‡Ð—Û%|e=]ínåîO¬w›<>úí}úÞü;!û‘¬#2"ýoOøÚôÓìç(^YÒ©ûñy¥wÛm÷û‚wk»ý=t°Rùñ¸fr_ïùî£.oþnÂîl~Ïsñ½Y¼­_ô,ìfU|1ÿÇþ† í YÿŽc^ñs„8øfº¯°§ï’_øß[χNi?û/ÒÌ7bÝc= þ_€¿£W1>ô—úá3Ð!íCŸÂÎoÿ·úùÈÏMǬ_4³ýÕƒž}ãqr; ºÁ~E<-ä qëC.o?®xäøªÏÍŸU>íu[u>“n=àô+üäo/{U¿1¿E@Ä}¡àå×+ž[_BŸO±£…]ÎôÃx»½Èêc\oä|AòùÞðè/å>ï©ßþØUÞ.?/*ô<¬i<á{@ð=r¬à×Èâ =ƒ_ à¿Ìò }ýƒ8xÒ;ŒO7§ÿõ=~ù©ß`gºWûa¾‹^]°þOz”|mòðÒOäÝHå9wù÷G¡OºþÔó9ò8ömœ 9T{M7ö7 ÕÏø ~tûPPó°hü¼¨ÐóôeŒú û;Âä¹è¥ÑïÑóXÿ€oªWú†ÿƒ|A_8¨ôeù¾òzÓÍ à7þ\úÞë-øDäö{ø<ô.ùc9™zøˆ^{ÿ‰<Õî7rýAå#¹_iý–sôOüËü äÿ1_C^ÑNæKãçþߪý[4~^Tèy„ïþ¥ÒÇ ?4ž#=_÷mø¹ÊAwÈô ð`9êÞ7ØO÷‘ ÂïCµOÏÓžíõúÈV­×ô)ìŒ'ù~Õ/ËÃÌÌ÷Ðoœ‹3Äüy|»¼éðêÁ´#ÃçšrÐÁoAg|7™~g}ù|PåW‡^èõ¥÷Åê:Ïå~«z1—é)ìéÏ´è~vØák¥äúÞòpv%ýpÕëâ°M‹ëŸí.o:¼zÐûY·Ï§—ÓúÅöät†]a]ßC?÷ûú¦Ã«gû§ÃÙ5‹s#ˆ|Cï±;ÛT÷+*÷­ì|³ÛÓ:¼zÐöâÑpvm>Òzû"û¯c½¿黌«ûuè{±ŸÜa‡WZ. 7ò<-÷ØÑ9ÏÁ¾vþ=Ñû9ØÓ¿ê뛯ô¾~4ì_£‡±ïœþ=Ä­Îx8Øç(¿Ñ×7^˜ëzËσs<²§ ºüýDðXÏùn©ÓM‡Wâÿ‡\ðóð3jòî`o†îð»‰óжW˯`Ñýí°Ã×]^Ç`W‹óDöÇ ;~5Çz¾¬òì²zÚí^˜qp2Nèæ0½ÒOÍrHþ3öÓÑþ¦ßï/Ï:œ3OûON4ÞŒ#ïoÔ÷¶[² ý¸ÙÏŽ¸ªÉK=ˆs§èÄ|ƒàÓHõrn;‘ø³Û=Ôö›ßŠÏZa✵¿Ç{ ÿe½Îþ#ã“ÿ³ßfß7¹LÐûc¯7ñ“*~ØŽx†}ÇÏoÕï3Ÿ^ž÷òyFèõXÿEïø$ž;>¦êŸÃßÊöÚð»÷ÿ¹ÿ$ÚçöžÏÏ}þ¯vš®÷j}yÞßãȺbè|þ2Aï‡q*ÎS5ù¼97ÆyCð¼{ûrÔËyö³·ËvÕg¹g9¨÷ÐEÚW}ž†ïUþëhrqTÛc:ç{ð|ß%}=Ö÷þ+Hœhäù87ÄøÒè^ý_4>tørÐçn±cß½9ÏÑ:>šÊóxò@ð»ªO;ïñàÿ÷ùÎe6çbÀ?ô(ø>ô†ÜãüåcAâ#"?>¯øŸñ›¼¯È¹3äñªÌ'7jÏDÿCnJ.z¿Äú¨ÊKþ¸þ{]Þ\&hy㸺‡r¾j]x°÷Î÷*H>1ô=èŒx×âàªï·o‡¼x¢ç?ÁÏõžz°·‡ƒz°?í=¡wAÐkœÓ·Ðó8mý?IòB±žߟ¨üQŒS¶:U;òÞ|êN¥ãEãC‡/ÁóÉä³Èô)ä þOðyâFÈÏÐñnˆƒ!~j=é;Ý#ï ›GÓ÷¦käôõL÷œgF¯ÜÐýÑ~âq/äA´ ú¦žXÇéùwzκyöX÷èŸƸ0ô9†|!o'úp?ש õ(ðdMó ÿ~ª{ð~Ž^ÆyÇAgÔK^¾c}ü3ø'ÞŠ>,VU|DOâÿèo¬×Ô=ô^³þúNõ#gy¿t•ùÐGîE{ î#¯“ûþ˺ }Mô»h|èðå`—= ùsWóŠüpü4}÷qàzøt]²¾?Öw'Ìû#¼×:}Еñ×­GqnqB?Ôþý|FÄþE¡Ïˆîv@ǬwàËQ/z)çË8ç‚Þ§þÙÒãd^*˜y1?@ô'ì_¬‡#. ×سÀ¯#ôÝJÐU¬Oš|2§ÑžyùÿŽTÿ(þx&û4M&èz' ëäÆÑŸ;õ{Ûëk£èôv¹EãC‡/Íç3¾äHø²Uù·÷ïYßÇsßþ/|ȯŸÐ§>¨t3ËS¢ñÁp‚œQ»ˆƒ¶ýFoK»$öˆ,:|9˜öÙÌÓ¡éŸíÃS¿›½ú½éŽúÐ…w¦Ï±ð¾›qñ©7öY2Ηé¸]ËÍü õ?AÛàۑÞ#ÏÐ[ïF{"T“O½Lõ5yáà´‡þîvº¹ŒÐø‹]v¢y ý |ówö¨øg| ÿÓ_äOöz½*ó–sžDòÍþ‰È;ïÛêúG~˜®"¿ˆã)ÓNþƒ|¹í`\Oô;üÃùÑÏô» û¬ÈEè*ãÜ£7Žs>†˜¿Ô;ÑOyq û9‚?­Ÿ§¿ëÎ ®T¾h}>äJÊ+ÏßQ­×x‚ß÷ÕòMœtô!è<¦<íÿ oäíM¼Œ¸º™¿'ó;[Ž@Ÿ@¾#'|ƒvF\ÑFþ‡ŸFót ùæùˆüÁ\–ïÌ/ü,ôNê_4>^h=;ãm£?¡gÝþ†@n°/ò´â¿ýF‘ŽcTë5~²^تôl~|Ôò:A.€_·!<Ê|èô{úx%¼³ÜÁïæ_õ½ÿ}Š5ö øTæfœ‘Kj¯íîëQ.üA­O2~¬ÿ°ËÀ'(w_íß­ücÑøxY ã|c'ˆó¶Ö—–ê¸6ôõmå·æ»ØŸì§£z߉ÿ¦}:Ïÿ~XñÍxq*Œ‡7¢ý!_fñûTn¤ÿ‡|ðùèƒòÌÛiýŒû̯}»þ§ñç~|èý!Ñ›Ú×̇öšüÌSäDZœû´Òa‡ ›<´Ì/ûÞè ¡W€wÌWîOp¿_åƒ×1ÉÿÐßiOæ™Í<1èAÐÉýÐ?öæÐÿ¾'ŸY·÷j‡íЗøuæž¿Q¿Žê½é <^Ÿõÿãÿ£ø^xïù`Ü3þì_Q߆ÚE%Ï—Î;oîù‡ï/×yâý,ûP®Ù¹6•ƒÏoW}ÇóùÕ¼¿3¾ñQ¥Çæ:v6v‚¤SË[•£èGзèÇrç± ü"òÌô²:^î'ò¹u·¶×ûWq>ÓýBþA?ô“~ļXo¾Ù鿥è<`ÿ=ækUý¾¯ë¸Îâ¬è;•2/žõìÈÛ>Û·¬xk9û˜ÿ¨¾Ó¾«ÿ‡^z¦éã~Ðíõÿ>gÁúÂûIÂGðp$hùÿ_×{êGŸô÷úîA´÷~-o¿ Çá¬tc¹òUŒË]µ~2Žz˜9qÚ;¬p¶ž¯˜ü§ð׺_õ4¯[ÀkÊ šüK¨ÿPö'™gð{üv=ðûw*þzÞÁsè=í»øóÓoòŒ¡'ÝD?_¡+Þ£¿‘Ç|Î~°åü)òäÌÎ#è=x ý|UÇËúáI}ïù ΠäœÛÍxàë&×·Qëëð|hý@ý¾£qP<ÂŒ«kûû/qþÉq!"ítÐÕ÷”ïts™¡ýxO+¾,º]oÚÆþÔWq]s˜^¶O;‘žCÐïÙwE^a7}r½øÓU…i?ËsrWš.€¹ ý<ªvFï7åy ÇCEϛ֗þ@ÞúìzŒóUƒysoy ݾ7Î/´¾ðþ0øþÞ?…ND^¿ Wï@ãˆÞ—þ«á´èqèðñg¬yÃE·ë÷;ÎØßIãa½5üLoï]Œ4Ž™g ÿôCÖEú.Îñvx9`ú€/‹n×[ë?ø=°3™Žƒýe$wÒÏÀöiч÷iDo–_kuãòÏ«¿G‡—².týz<…‹n×[ë¿ð×ýŸL!v/.ÇOÀG÷Þï‚~rÿz[ªt’qµ=þ9^d¼±ëÝáoîû6þ0c•xYÞõîÍ©w»–[ô8\èqÝ©ü./ûwŒkù<'ÐÄI½þÈ<ï‹Æy5óá(çyŸÔv4yÍ—Ñxñýnô/ñu+ðPåÜ΃¨7ñ”z·â~Rëa=ïÿPßýVÛÓÈ-Êѯì÷IW|·w=ùÖŸ…ÞgŽñ6~3þŒ;ó¦û<ÇÁ<¤ýÇßOêÏï܎Ê÷þnN?<¾¼óžm§Ï׈G”ñ:šødïÇH¼Ñ™õ˜Œ3…ÿ&qqŸ¹ò?‘Åv ÿº'^…ÏÿªðYþ~Z\–“éÂ8Яˆ£ÜÄ«¥üÍèæ—þ4è†q$ϪæÁòú?¨ß¹W>B>=ÚÉ~ñMÐæÐc‡A7Ìø¡yžå›Ñü~øy—œ'ô™ÞgܲÈúW“O¸Rõ™Í!ÞëÞëäzHÄus¾Á¯£]èAä[Äßy8Ãǧ÷ÆWô0üô#¾™åõA7‚þn©yµáËU¾½(þ¹û¿çÝʯ¬—á€|ëñ^ z¾áïÈÆ•ñ„ŽFõÞü}Âz¸î3¿¡ñ²ÒŸãže\/ô&è :¶üÓ{è»zYØm½^vœ˜àãÊ7jyë|hªŸ8f'•/7q ’_Ðüœ#ßšë!î–ä‹å2ã±Çøþ1~»ò½•|ªÐÓ ü‹çn^ŠnÒ ==}{üOô4‹+-<ÐgЧƚ—Aßé÷¹^_6ýÞ¬øäïDWÜÏòàÒþ%µ3â;ù%÷™÷3ó…:~G´7ü's¿ÉyQtïq9ªrcF*¯qówлèiî¼2ê·ëåžqE ^³s‚¯¬§1óÚÌ<´M9ÖéŠ[fûø·ù8t ù›÷_ðÕ÷ÐiÄo1~Fþã9q;é¯Úïv!âœK“·¾}«¶ÏõѾ¥:>–ÏŒÇóºîò|П±Êo×öÏË×îñùíür¹_Ì{Çÿöϯ¿Ã ÓnéqÜ­óëç”×|{ìèýAÌÐ[3ßàS@ËCÍ·ÿ þó?ð:ôÌ&¿aÆeŸÔ~ q5~ Ô{ZëÁŽæú¡ÛÈËØìûŸD¿·+ÿÊýÙyþþÙnë«‚+1¡¿º}‚‹ÆË‹=?ÈñÓÉD÷§ðëq¼g=Â>õ@O;•/'Þ_©—{èo7ÊïT¼Ï}uÇ÷Ü>K¿’.¸ü1 Ù‰÷ç-ùõ2ÞËsøÒA-g¸}>Ý4~G“èwÒãœûërn£Ã«sÿ¤Ñsõ>÷õÍŸ ›ßÉýUøPÒóNÕ:ìð2ÀÔ—æú¡ÝX#çNCŽEy?Ïÿ…}¦Ã/´}<œ]¶·³ï?™>Ïõ»å‡íZE~9—Gÿ<­ï{üÁ/#Ìs ³¸4Z±Ÿ“ùT°§O†³ks †¤—Ç>¿¡rØ¥?ézZ‡—zß”ýÊÑpvež”7ÞŸ¥<þºoÎù îI>±¿ÔÏtx‰`æA·?kÈ‘ÙþlÈüˆçA=7U~#è ú$?ÐR•g‹;|h¿´ª—yßfc8»W-â6y¨¾ÕwOEéÏ3ªtiÿìÇn:¼<Ðv€Ì#Œ]{×!Aà?ç¸'¯nø9®gøeoþØíi^hkÖ1œKey2}ïszám¿QìgœŸˆ|9¦Sô8üwðOïþÐ^"8èÊý~û¬U9”ç뚸)¢¯<¯”t–ûžœË]ôxtØáËÀyûšÍ¹gäÏAÐEžk?žBû©ÅyÓ¦<ÿyÁ¹ž;¼HpÐe™öcs;èæ0ä”èÏt2ÊÕøóQÿ^· \$Øä—Ýó×ãé¼ÙDÞ‰Ìë>R¹Ûuž½n&ȆÊq€ó%ø7¢×gÜ~Îib—rþÛºŸ>Û‡W;Žô_ö'±û²OɹƒÈgæ÷œ“å¼ÒQôg¥®g|®í4Ú·Zûåÿp~ÐþѪýé>ÿ¡ól‹Æ—5žßÊMàå>ù¸ößÀ/è€ý<Îßgzb=¼®çΟ­çW¼"¾ôÏ~ |¼g}ÏùèO+>6qš8W ý‘/€¸ jgÒ7q‚nDÿøæëf¿f#Æ‘~ßí뛋}®Ÿye_¾¿Qñ¤ùž81’Þ§sþsÁ;A?Ü:¯#ÄQ`ýqÕŒ¯à9r ºì@½Èâ©ÑOâ¡ñÝHýÝW9ÇÍ º¥<ôÿ¿-ì1.zÿE‡ïzÞô^þRþ}â|8ôÓÝ´œñ zpfÕÃáËÈ•ûèƒz~Ÿç¡÷ Ç!¿h7í¤>î?z‰ê¸Ó‚Ï*ý{}†^È÷Ø oú™ëGþ{?è‘ÿ݉úÂî×ábáæ ùb+}ÊñXÁ3æ]üÛßc[…oªü±Ðó‰ }Š/Û¼¿)ˆ?#ôHü§u=_Y±ŽP\OÛ°g!õþ£Ê¿-ø?ëèPzßæ·èo•˜>h7z+zë@çÖ{èâ^Ðá×ÑÞ/ê¸w¸èxOè'¬;ïy:OÖ»À§°ëØßq~ú×®àXx‚<_ Ç{±žp¾fÁ*ñJgx¥rƒŽ©¹³t>ÿv{nÖþXî@7U_Ú3žVùçu r;ôI?à3Œü z3?ëòæ"À&^'zúÖ7¿k~Ñï÷ôzÙ¾ ·Üªë%ã|8ÿ‡üa½€C¼NäQú9:ΠêýQ÷Ð qk‰óqÿKäôw'ê÷ð‘gà}Èeþ3Ä{ú‰| ºe >ƹƒ{U>v¸ º ÿ\ã#úÎ ü`=xgüS9ô‹ÄgÞ?ªõ¹þ•g]“qþ‘C<'ï tÉ:<¾xˆÇú)äÇ=ýêÓ¨?â×[ŽÀ 3ÎáPèØòºd<ࣨ—uá ö:|»Ðx 3.?øê|†¬[uÞã7ñóÏýžúcßÜòu5ïч¾žƒ_ËÑ~ð–v>¨å›¼Ð-z&v6Úñw`¿ã?Ͻ,ùÉí¤Ÿ”[Òø¤ŸAß÷|«ÐóǾrƒ}jÏ‹ðEï½>™hþدÁìYðû+_´Ÿ×ߪ^dþK=™'„ø·Ð~bÜG>þ“qmí‡b7XÓwà¯ã¨Þït¯s™îy…Õ·\ï­·Â7òü'íÀ/}ìqÐqÚ¾­ã×á›…æcÌ/|™y—Þ_õ¼£—`¯µŸšÊáç2Ñ=òäyÐú{æA ;µ×Ñà˧õ?Ö—"ž³ù3t6Öû“zoÿã½Ðß°ëm‡\€®Ý çQßóÐsÑÃ#·b<"ßb®{ü¯ö‡]‡oz]ý@ãFŸ¶˜ðõ ø…½=,óu:>:ü:èþö+ã3ßCŸè…Ðú\ÆSBÿ;­zûúM\Ùõ¨y;¨¿ûõ{ï_Þ{êNm—×ûÔüV?ý=ë#ÖOÈïÈ7µùDïé÷V•[¾ˆü0~?мb_B_ƒï‚¿œ3A_;<gûð‚ØŽbþ½ÿøƒß=ò„8çqžÁúywYwìÔ÷îïÇñü=-ä-ú«×%zçÿ™?ùÉ{øöIü‰¢=î·ø—Ïñ rÜÒ(ò¿uøf õäýªæg¬ù$¯úÕnèÛØoÞìΡ÷ÏŸ_ë_aGMüÍüìÆ+Ú³RéÚø #'¡'•7ÝßÞôÿ5ÕC½ðûQD»×æôº‡® sÑOæ1²Þ̾®Æ#ùç±çz+Ðô¿&_$rFûéM~ÀKð gñǼ?9W¿[õ û¡EÜ<˵“Ú.ÓËDíoÐ÷hxµ FÞrëMØE¶+Ýû¿È=ânL†rY.0®ð#èúd¼y?Šÿf[ÑKžçlülBnuøf ççPãŽ<`’v´÷0¿ðEèDô1ó/L¾‰<øá|yãúÑ¥—ÌòŽñµËû¨Ð5ë äî¡—‘¾ƒ¿ƒ‡<‡ÿËNm:> :a½³õ}ÿ¥]Ð÷†Ê§_ýŠüÙ¾§ê¸vøfàìü®`žÛý2ðç®Þ?ÐóÇ•¯›ÃÇñÆŽÍúö›à›ØåÒ^„8D;ÁKè4Ï©ðü,iﺾ£|úó€÷ÈÏÕxOþEË/ðšþRÞãÿ†=<¿£çüÿSè†u•Ï%èþ»Ÿo¡ÇZ~ÑxuÕ¡íEàö4ì¸ö÷Õ=ò&÷ë“ïå~„ð@ÕÌÖ7†r5ñŽißB~€ggœöÚ~¼¢ßó=|A÷öƒ@ >Á=ë¾1ÿ„?pî†ýVììo¡=!'ñg î­ú_O¬¯(¿h¼ºêp¶^Ö¼üx:Ò¼Á÷¹ŸÁÛ°ƒÙ®+94èÊ}s?ÇN—û‡Äy…®9¯>™ç_"ÿ¯õ¨c½G€çìÇj¿Õå°'Æzlvž!Êg\„”ãU9ì ‚韄þ _€#ž4ÐýþêüyèðÍ@Ûs9w¼'8˜_á‰äÁìe<ϸ0éoã}ÿÀ›½ CüiÀû\'ç9gèú¦]à#|<ÏFZë™ÈUö£ðøg½ÏüíKô¹ò ½Žó~пþ?0.«È:Næ'ìÃ…¾8ªå:|3Ðö!ôkŸCÓ<€—àx~ØŸ¦Î¿õΡP;,|ú~”'Ï3tÞå¹±Üßä\2ñ/Ї֢]>WÞ§òZ‡[¾ÕÎŒwæuô}RéÎëÎˈžM÷!·¼´¥òؘX·Ø˜~—EãÕEƒ¶1_ÌçŽÆý>ð)Î g¼#ãQÄw¹]Á±æ˜õÑ.ðf)þ{p·Öo{úÏoñ_á/W§Oýñ8ñ|¿>÷¹èvd¹ÈŸy¶7Õ×ÇÿÑGÓß܃ÀODæAžwµ×üƒù<¬ôÕ¡ðñÖÂnçö³_â^ô >,O/lÆ}µÎ“é<ý<è<\ªÏgqÉÑ?ÀOôì‘ ÿc¾W+úù?ä?ç©—5vè=ö_]ýI?j¾Ûö@ïÇÑžôSÀNÀ83~´ƒv?öQŸèÖøÏúl-¾9Ÿò¶éõíÿ­û/*u¨qsüó~ŽkÅGÛƒÀ—‰ðþ¹[ù-ø–÷Ö×ÁoäÁ$ðzÛ |ã¿Ä‚ŸS~¬÷àåGÔ~E»›ü—àû'ÑÎÐë¬'EþòÙ{µ'ó¡9žœ ã6뿪×v‡¡öËö<ì/ÈÿýÚ¿f~ñ‹Ï©¿Û¡Ï…Ÿ¾žA'ð=ðŸñN}çïåùCø6|>ôÊù{êvjùìGúUf~f·w"xXñÍãrÆíá¼ÃrŒWè7n×A­ÇúßÄxá§I|î/äòšyb|ЃCN»]ÏcG*ÏwGu:œÂY|~ÁÍ|ûô|úÈ8æÿÓ€)OÀ[͇×%”çyÆd?H÷þ.έY¯L}EíoÖkAGàUƒ÷Ñþßá~Nþåæ<v’ Sò'èÁã½y4Ìé?tz¥ûãa½½Sϧ zŽ\÷ù`Í㉞½Wç©á›G1î±NòùHä„çK}üÇÙ׉ø2æ§ßònÅÛyÞûµ=â¨â±×ëàeìsΕëÛµ½¯ ;óæ‡ÿÄþWÊ·\/ÚîÁ8V~à~À_à_ÌOä íPã–翌q½u>žf¾.ã3ûë蜧‚¯ƒ?[?Ðtè|zÝžÌÑgØ<¨Ï=ÿôófà?ûˆ¬;àç±>1~ƒW»ÑÖ‘sÆ?Ôž±`Æ«¦½Œ‹úáïñc| ìÄ¡ž¨üJåc®?÷_©}#ãÝïtóGòÆx»Rljñæ²}=½þ߯¼®}¬{ø:øÞ©^ãݧu^›}oýöد%ôÀŒcÙØ¨ßx[ëÍúó|ä,ž¿ ý] ºAÎ…*÷›ñÀ>€]c¤~ˆ_Øo û÷a•^‡fœëÌSÀzºfþgx § 6ûé§uÞ?ð9æ{RÇy©ò–S7ëû<7Üè-Ô“ÿa}Œ^¾[ËÙüÜÿÒøíËõý¤ÿÀÓú]çÉr¹Ê)˾Gï…þ3~óÈx†y^4ô¸Œ{ÚÄ' ½Øüâ¤Ë›så úÓóÊo“_f¾$ó·O(üOÁwñAÿ7×׿Å÷I©ÿoüv¨wï|hü¦ˆvR.âÇzüÂÏüeœýüVÐUŒ»éûýgœò< ýÙ­ív»oæ-ùÏÇ.$>ðl_Bó…ž@.Ý£‡¤½ÇzïÁÅæ#ÆCü*WÕ~äËãà÷ð[áŸÏ¿ýüª'jƒýWTî¦î¡—“ºÎhè†}ʼnêËs=‘צËÍG}þWóŽÞµ.Ⱦ:út$93ÃiùE÷k.Ÿ`?.ãÁb§£ÉOîĺå^ÐUúÁÅþbÚ¹Üè 9ý©Þ‹¾^¼®0Ï¿øÜ¢ó¡ê½æÏxÆúýæ¿ï\Šùõ¾ñÿ±ƒ¡gaWÊs['1NŽ›>½¼ÎAné¹í-ìcÄz%ã@ýzLyô´‹½^¼nÐü’uÉk¾ÙGÿ1äŠãü¿dMŠ9þ ‹†MÜòÃü¨{ÖÄØÎ.Ç{¡ŸÐÇÏ!o×Èâ.|èó ôAâz°¾üAttÖáb¡õsç© ½ý¿tO^KÍ£ý?ˆûƒßËã‹­‡oþôOµ·ÚL?ª?ϱdž'º_T|ë±ÄÅïEvï¦]ì«“ƒõ¢óò^ìq½n0ã(8^öÏ´3}§ùßÈ›BüºÿÏÅ”3î/ñôǸÊÛÙùßÐGµ®ñ95=t9 ãiýy]×SÙòŠïirï’è¿×ÎôyÑúq#±ëéýݘïoõý|}Z~ÑýšO7j/xŒ?ïñ´Ýع]öËŸ˜‹T=ß«ìÄ¥ÎˆÛÆþØJ¥GσÆ×õSó±ÖåÍE‚¶sŠ6™ò5ë1Ðzwä“hΣ_ð8Ù¶Oe^ Ö÷óüO«>g>BÜVìpø‘œ¨þj}¦Oè7éi¿>÷»úBÁa`‘š7öa7Üt„¿Ö1¶›¢O<¸àtóYÐù'¯ßVüöºÄy¨T|ÆŸ¹y–2®ÇúòŠuOè½’/ö;êtÓa‡ M§¢ß&î-zAƽ@¿Æ/úÓJÏͨWòpž_å¼ï;ìð"Áôïoüª‘{?Öë!ìéèá·ãò™¿”uôŠþʹ›ƒóëé°Ã‹Ï»Â[öMÙÿÁ^—þ9·cÞþ˘}ªGÕ2+':ý¦ÓM‡Îòa_¡—¥#ò÷ñw?èùa÷Žr }W×OM|ÚéçÞÇZôøtØá¹t#{š÷ѰsÿU¿ìQÈ›ÿ®òb–îüõÉÌo]ÿûvŽ>Çzêó‹mçéðzÃ<×ßäÒ¾r“÷oYï±gb•Óå ;Îùd\’Œ—‚¿BØ!:ìð"Aû[ã·ôDtö±ôï´ÿû¸á§àrÖÿTŽï°Ç}tG}?LË-z|:ì°Ò‹öwް— ¢·¡O៓t“v8üCÃ~`ù…/çOŸ g—ý~ yv³Ë›/œÅË>ß = {ç? 9òW}¿T÷G‘¦Ù™}óÚ£i½®oUÿô¿õN7^<øëü_ñÏG!787磌çœÕ:Þö±yù¯‰×3V½7êÿ]¶·M¦÷‹§;,t³[ývLGؽð$~ÁDï9où±#oŠÿƒ}Œõþt<T/ç'œï¶Ë›/lâõWÇyk¦Ï›øÿÈÎÍIËxmƒ®Y>ýOv¹&ïþ:únÑãÓáÕ†>OíóJÃÙå÷Ø™9}TåC據ù»è}ÆCç?Ðû>¬D_ö;X×}øµ6q ¡Ë‰ÊSåC¾É÷]ß©th}1â/zþ:\ 48?aÅŸ³Ž¸¶æ÷±Nñù5žoWÿ›&_ õ ú¹"yÖØDg¦¯!Ú‘õáŽ\ƒ®ÓߛÁÕÚ~ÓSì3ux½ ù9xy'Öà™øºíVœ«O¿oâß‚k•Ìÿ9¯€ÜQ½ß×û5¶Ï©Ø»‘اYWá/ŠÝoˆÿ³®ºð üz,ˆõüž×Îν gW³_/ÿHÓUÄ=ô¾?ü8ây?2óCìã`_¢Ï­EýÄÕQ=þ퀡#âƒÿÈMäã§µ¾Ì£c;!r/òz,zþ:\ Ì<Òàé&ò\[ï¯C?Èô1ðzû$žß¯zœãõ܈úøúúSâ1~ ïÞ³~ÂOº<ˆuã°N}*O»ä×m:íyq¯%lòT <¯ø`=Ìy3ô]ä¡süÖ3øE“/w;è&ô Ìù  ÏAWÆs³œý@ÿ™%íÞ?b½u¢vòzŠõ\· \Oh9ßÝ |a¼Rù²ñ'õ1äÐZ¬÷‘ œÓf½„Aäg7^bdž^‰Chc{ß(ð{Yõ“ozLzB^r] :ý:nC”[ôCØÅtNÔúãjÐ5rù‹^¸ë$ì!Ø)îNï=¾]ˆühòVBè#à¡ðmÐåçØ¶àÿz¿!ˆ] 9•çtÀÏÜ‚~+à7ç"ž\æ³2žc`EýÈKÊaÏé¿_=¡:~X—7×ZïÂ. Ÿ…[ÎÞ«øíÿ¬KÀ{ìÎèIÈþ~"X磇±N z5þ#×ÁŒ‹íüëú?tŽ^ݘ^TOä˲½­Ç͹–ps˜^†7?ÁWÖí•#þ6øFþäß±®@N°Ä~ëõcÕ/ýP͙٠tn”rMÞ莸q.;×5sãí ©þŒ_àqâÿsÎsÿÇó½bwGþÓÏØ…ŽÝúÿ¸ò#Ççäžzè§ê÷8ã·yk3ï©ñƒzÐcƒÙ~£ÿ0ϖÏýe¼WSå×*žzü2Ž&ú…õmð¶â±¿gOï£èûïüBBë±¶; Ï3Þì¨>7¾1¿ð?ðKøiü–â>ýh¥‡¸=ðW ñ÷YwÂ'ùßiÇéªòÂvòz@o´çNÒ•Êï‘ èÙÈyÖ±Ïgü¤<øüeÐí¿¬Œ£ìÿÑnË+ÕC»WªÞaº¡}ÈÕ畾º_âÅ„›ƒæ•sáÈ û§ ÿàË*}ë{úòŠxv¹îtœ;•ÏÐÙOCî|QñÈr ºéyêÿÅ{ì5¡Ç5þö­ãàñ#®5ã—z–Ï)ëùÝø^ôhþ¿Bo›߯ÃÅB¯ ÈÛ~¦ýEø•ùŒ-_Àâߣ×H> ºLOÈ ás_|­òaç½äžýCµOí±=ò£(Ÿù1ù/ò¹„|M¿üõÐÓWØ]YGoÍùßI¥˫ܷ{^ÿÓáÅ‚ÆæúÞ¥ÇætúgöôÖEÒSôz†¿*ççðuö£U¿ùînåÓÆ[è’õønà;üZxï÷¿ýJ^ú~y(—í¬ÈUìŸU¼oì䕃oÀ¶j9¯q0]ÑÿÃZ®Ã‹­ÿq®(é§ÑÐK°Ňæ\:üÙçñ„/ðýˆ»b{ä t«÷È¥ôã€o‹~=Êåv!÷âÿî/ý¯¡¿CäÐô»´+xœèŸþk~¿X©ãÙäËYêts‘aãoÁ|Â7YoŒêü[瞸qþ¼iüùû ÔÇ9AÚŹ&Ú·íý Óôù~mGó|ây]?5ùm¡ãjßXõÑ úšÆËôFùˆï׬·¯*¿hüèð|h¾úùöíÀÃܧ]©üÙ|ö㨻/ø‡\Áÿ#ðfsPyÖ-à1û@à9vtèeM÷ÔÇþIòwäÂ;õ¹íÐ+߇ýXÍ›í3"h¿ÏÉ ¢ï…\¡ï'¡§mOïžS2ß'NóÊüC_ØœÚR=ì ƒ?ø{¬ë#é9^ o­…|ÁŠö²Î{óL~©^чº1ÌâNRê¥Ð'r;YäG´þ0Òå§8Ë;(:g\DŸ´ÇëŸÐ/jžù5ÿè+ðáíг‘+¬# äó>Ösè |Þ×=ßGxˆz‘?'è×c•C@kA/èc÷«eþ.zóú{?¾#® ÏÑßXçÝäybìàý‡õ¿–»ïG=ð ÖÔ{4-¿hüèð|èu®÷Å…™?]üß~0à xŸñ Sû°ÒC¾Þ=œr—ØtÛ¯@õS_ø 7vläèµ^g@—’“Æ÷8e½‘qÄ_ý¹Ä~/òí4ô7Æ)òÅtØáe„3»AÕOáÍ9Ì=øBÅÿ™_¾‡n(ßao½§ü³\EN⯴ƒ¾På¾ÿ7™~g¿%ôDÕÇ…>a~¡çÞ'èúd‡/C?»UN@?ƒ®Æ?SÏóû&î2xŽ}`2ýÎz+ò½{ õÝ®íñz =QrÛòýýœ~‰>ÝŸImúñu»_‡H/“áìJ=Õö/ø9t€|8­üxÐe| =™÷3¿ •GÌõ'þjŸí“Ð/õ!Ç*÷N¥çûý¸™_påüú=?^l˜ç2.’Ï ƒnfv–J–èaÈ‘ôB_„nrŸšúB.µq΃‘yz fò†r'•=/^LØà÷à/ëþazÍÎÝ„_xžçv,?X!ÏžŸÿÿôËËøÎM|@èj)äížôÜí×}žCê°Ãséf+ð=½ œ]ç8óý™þ8Ïä}!Ö×Â믃>}NI÷œóÃÎÆÿ“rª‡u”÷¥Tz€>¥wqÞÝë+ì“iyÛ«ÿÝåM‡/†éÏܬÿÏÊ C—–õH¬£ý½è³¨o+ìZá§gyÝäy ö_ÉŸŽü{·¶?ãzæ¹Yúåÿ!¯ä÷»èyéðbÃÍaz5y&Ò.–qþ´¾ø^ôç{üG±Ï±Ž@';šô¾Y¾ŒÐo årœÿÓÚŽ™?Ÿê…®hÿêמ£Ã?‚sÏߌêóÍaz5ç–ò<ø™çªºÁç¨brTõ5Ó-ôÊ:‡õ ô†¼¡=‘÷Ùò„v"Øï ¿ÃEÏO‡6ñ‘ÀÛÄ3ÑíWØ·°¬ÔõxãOú{ȧÕúÜßa'ÛSûX·àGG<•Õú?·;Ïá…¿^³ï»ÝívøŸBÛ3"Þ÷¡ÂÞhz…oŒuŸù3^^Þ?¾Óãfux‰à,¨`ä÷4°ÄúÐqrõ~¤÷‘ÏÓõðçXØÇåÿït9Øáå>gxGøLÛÃÿÔëª<ô<ôVä õ,O¿³]ýTñ™=vøRtÃùZð}©Úl?!^öè?ð}ìi/Î.Ëì"Ø5â<ð¢Ç£Ã_Šn°×a×ÞÎ.ï ¡Wa'™è=ô@WØ wªýÃÿSÞÑÜ—Åî¾èñè°Ã—¶·±.Ùªzš×%èYØ ¤_ÙN7V=Ç‚ã€üz†<[ôxtØáKÑ víÿ¿+¹àø@zŽüñ¾¯ÊáW÷q”wþQ=çÜô)ý°ïÇvx™à,ŸE]·;þþuì+éü7—ý¯?ÈþBÿ}ŽõñúeøõxZߢǣÃ_Šn„¯æÿû!ˆ ýD¼ú͇zqñgþ³ºÇ.0™þosÄù":ìð"ÃÌŸësHOuÿa•–CèqÄÂ-ûÁæ çìÏ —¨zYéëš/´|@_ý˜Ž°K¯ê=þƒÊÝŠ}ÎûI?(g{ê=T9ö–úº¦ÃË¿_U|ϸô^×D>¿ÌûczÝq5ñ%EG–oétóÍcè׾߮üËvMì˜Ò£mJûЉê¡\ì'¤}´9¯ÔºÖíà»Ý°ßîÆÿrÿ\øÚÔ#{oÆUs}àiä5ÉqhÆ:؉ÿæøÑµ/íÈþŽò´Wóãïbœ_›úÃnízsž·ºþöRtsó²Íz´î37xµSçÉóÇsèf¿~ïÿ~7y—ùn÷´g»âeÆhò™¼xF½[ñ¼T»ÜÊïU:˜'´¡?`öã·ú¿†þéüˆvF¼ùf<£Ùß'?Øító2Ðü˜ó%‘§#ãL/Y·f¾Ý(—çÇR_±Þº–sàï©÷_/LÏÏã¿è)œ“s|x•üu¿ù>éz̸7™ïÍv,ÆüθUo˜sáüç¾ÚG<äýØïzzXËmÞÓÅ'3NŠçSã¹h¼¼èÐó†>ý€yÐóUk滤÷<Ç~sG÷ßê»Oêüû¿™/{Mÿ°Çâ÷KüMüºN+~?îVúp}Ëq3ä›ê3~C¯|7Ä.•qFôÞý£Ý±Ÿ’q fÏCõ=õg<³éð8Úù™fq„Wê­r°Ç«z98Ëç©ñtž7ÿ3Aò&™8-ØgØÇ&>3x¿_˜/ö!¾×{ïwë9xÉsè*òÞx}M;~ÐýSá#瘱¿FžóuÞ#×xιkäÕºçÿÚ_ÉuΠËq=OTŸðxó™Úù@pCåŸ>V9ÙÝ<ž_Äø<…ß B§Œ#ÿƒž€ßèù÷Ì|©ö£Ãó¡õòýf\JøáºÞ3?è©§7 Í+§ï¸GNqÎúå%í¹ÿ]<OÐûÐÓà·ðmät„|àל‹ÙÑwð ô ðùAåÓ¶Ó%AÆ)òCàµÏê;æa5Æ yŽZöÓñ3Û¯=Ÿ*Ïóû]Þ¼”¼a¾ðsbŸ ¼CÿBoƒÿƒ¯à/t—ù?/#øÞÓ˜WÎcm¨>ðû+ÿù(¾c?<[_Vü2^#¯àǬOD^o §Rß3=w\5½Ï¼«kA7Èׇz=‚ÿ>w¦çðå´=á•þêà|UõYï^ø/|üa]Œ^Ã:Šõø˜~Ž´ü€®%'¼^àü$òé[Õúy™qÔáëæ×Aß™oãÃÑ^ÑOsn}¹Í8DÿàŒ|ÿ6ñ«EãåE‡æOïÔñå2_„À_æ]ødºÁ~@þRæýPóŠ~^Þ­ÿËvؽìG½Â³&¿íŽuÏýêiúùŽgò¯â§¿;¨ø–vÝÌûcy ½lE?Àc¾'_ôƒ^v+ækÂÿjL_‘ÿ±±¯G\ûχÍþ"tŸ?Á[æ}g»â‹íÃû•?û=x]ñÿ”'àóùÍÌÏcÞ›}ó¡¶Óý: ~ùræí§6òï×¢¡‡e7ã)çbèŸèÇvñxxKÿÛ ~#ycý5â,6yèèo?óR0ýT2~JêOG¼ñ€¿?ùžùÙŠú·k;r]Òœs¤Ô3 úàÿÔ¾¦œ‚n÷+>7åhG¼O­×ÑŽíŠÏ\¦‹yùçØ§âÿü—vò¿õ;—ÛªÿMºêþ5ÿœåƒÖ|"¿á{ο«÷Ëgá¡í+š¯}‡qü­ÇÀ?Šz¸g?u8öì´—ÿ`?z,ü }Ët6ÑsòÅóøøªúO9Úúæ^ÈäâÇõ¹íz²$·„s6büø.ð=Ïm.®+ô<ƒ/èì{ˆ/9|ڥ᛬À׈áÿ°ß^ê¿Mþì»+µ^ã+þ!ËüOíø êa½År]?Šú ŸÈoo=:d]˜q.¿Ùö”9ù°<~ØŸùÿRð«¥àgO+vøvaƒiÇ_Ç*‡œÀ^,:3ž4ùèu‡ŒïçÄ{ð(ý°³æþøžñÓ-7?éÏ]}¿KêAÐæaÃŽÝbviAµÛãŽþ}°ß‰?ÌWµì[-o®;L¿Fû8ߌðúÏâ/ ÿã{ð^üÓzón}+ð}zŸÁK¾ç¿݇?¤ë…N°·Þb­÷)i÷@}j?ïùyãñ©ü¥9wy»~oºAŽj=bý>Ä:Žù5>‹Æ›ë?»Á'±ócO…^ÀãÌÏ^¼ÚW=à û@é·I^)ê¿rn¢òƒ`Ê›lûJa7ó:Hx×ìÌ[g¡ÏA7|ÿ[ŒrN彞‡oÄ9þ™_(|Dýƒ¯ˆ®;}´Ñøs]aæ?·^Þîx_µ}çyQù²÷ï-'t¾°?ø\åÓß—ÿ‚—”Câý$úA9ÑÉÌ ÒƒñºÎ}˜ÇAŸ;èAWÈ#Ö?¿UýÊö„Ì:Ô~ZÎ ×B>-®+´_åHó…^ƒ¾Ç?÷Nè=ðÍœgôzä|ºÃ?2ã Eþã ûòä\×=ztõhŽÍiýd‡ü´Ý‹vëþ‰îïÆ8Ø_H퉸wø ~ªÐÙ#ÆCïYáoóM§—‹-'ÀCæËø¦çò÷³\ø(æ—{èÁö€J?Æ[ôü»àïÂWëAøÍ£—¡'‚§÷‚àû¶ŸÖ­ÿÁ Wøzô‚Ÿvcè<÷yš ìÐ}öþ“ô‹_8tL?ÆÓz7׿ùʙߒæ;íHšÇš÷w_Éó„~õ¯:ßÍþ önð|GÞ G„_ßź¨ÉÞã—@ýà;øyŸÿHöÛ‘§Üo:Hiê‡>ðãÇîç“ÍŸ°¯Ag™·Cí\4Þ\whü”ÜiÎÕc×àóèÛÐzü¼Í8`Ë‚àò‹ÿeÜWÑ%íI»WžÃ±]a¬û•X7°‡Þõ×)”»Q¡ÿƒü.¨Oxn¿Æs?Úoû`ÈAûcëù¤Ö×éåbÁÌß•ëû&~LîëìWyÔä/^äÿ»/ø«ÿ™£¿ÀïOSåxŒý}ã;åÙÚóeÐôè}JAä2ï‘#â;î/ë—íÊGÌO"^“ùíÓùëÓç‹Æ›ë=o¬S°#O4ßcÍ_ä•0¿|^åÐ,®¾ß ºá9t…K½ üå¼Nø"·¼N˜C7¹Ÿ ¤?è]ü'í Ðã§1ðô0ùûx|#߀õ¯‡Ág4Þ>gμ|ã¢v/o:¼œ°ñÓLéíÊÏ­o ›85<ç{žSÿΜï3Žå&юݨ{É÷‹÷ôOïÓÏ;ã×5ñrè÷vå[þøÛ0Dý»ç—ïðjÀô nü¦Ÿ¡á˼øn¿©ÁcÑÍ0Äÿ(—t’ï¢]Y˜ô¼ß©œý×'Sh»ÿi]§zÜrœ²Ÿ±ÏÔáÕ‚ÍyÊ!ð)öñÍÑ —*{¿4ó8 ¿6§è6óÃÄßæ¨ò{û+G¼Î&ÚDõ'=™u¥èÙë<ô`èú¨¶×ý¡ÿ±^bܼ.£ïÄ÷ûµ|‡W þz<Å;¯°ó= |‘3ÛðéÊ]ëuè…}“ô‹sÉö§Þƒ—@ìÐõåùXè-üƒl·Ïs{ГÆÅví!ì¬ÙG½í×>Ú¢ç·Ã7mG`}Íúÿ;áû¨Ÿþ!WÀ·‰ðkµÊ?_Ñw£JýÝ~±Èé÷¹¿d¼N´5µ+Î[¸œÚmûÿ˸w¼'žàiÐMÆb?7öé=¿¾h> —<É<–CØÓwÓ+Ï Û?}yƒüø$¾‡Oc¿›La¹‡C~(õÎØOM»ƒ÷Ÿ3îè\Í3}šn° B¯‘Ç0Ïvxµ ñyÀ¾xÀzþM¼(é%>÷/<ž €>Tž}ÎÇ•nfösÕçüëð¹ñoš}œÜGÏñçÁ.Ÿç óÜq†ïV:°ú3ý"7§×¢ç·Ã7™ßÍB¯Ç?Èy1«ÝÊ÷èuÐxŠŸ+ü7÷FªŸýXûÁé9ç&ì¯åîë=t…îòæ*Ãfþ ð&øð&ÏÁϱîÁÿÔŸÐcÀkøÿ¿æÈ‡ ÿ :Ùªõ%]Í•C¹Ÿù?M/銜ƒ¯„]ÙÿÙ yCyõcÑóÛa‡gtžòº‡“® 7½:ôA~þoÐã¿#z_ôxuØáÝ€ŸÐü}Žœ3$½Ôr_åŽBo¤> ÏSßÕw‹¯;<£›“  ñwÇ{GocŸSô‘yK¼^:©r!ý¯3ïú¯ÇÓ÷=; v†ýN7^h?ìbØÉµ~!ÏA#—XÇ@W«•®Òÿ{sZ½÷Z? Ý;>Šžó]kØá‚ö'`¿ÈñH„ïÏÙ_½òû›äH“ç ¹ÄÏ!òpÛ‡|“OTß½.o:¼x°ÙÏ <·¼€.ˆÓ€&òEòÇ~@wÀû*_LgÄÆ=Íq€DG÷wÑãÕáõ†W×þ,à+òf˜^¬gü½óÏ ÿñŸ!>=ôÞg^Ñüÿòô?™Çgóoÿ(ë¨E[‡×Ú? ÿÌ8äxgå‡Y~gö+ñW•ߨ,ߪêû*è?9èmC÷øÝ!ÏÖô=ë+üôþZé¶ÃíGqq3~°é= ¿åýX×ãOýMt?"WâüÀ0D9 t|·ëi.æþä Ë~GS<åyãŸÝ!W°¯‰ÎæåUkâ)Hy%{š¿CoS»=n^oèuÿx8»2ˆíÿ{çÓGƃòþÌn|ö:Î7 8g·ô$;ù¢Ç­Ãë ›ýðŸu>ø«çÖ۸ϼÈ!ÑE¾w}Èyqª Kþ3Öw‚‹·¯lâ­%^¦Í¨ï¯txu`s~½ ¿Ì¤›åáìbŸ~Ðeú#žtsÚõ³¯4¾ã÷Œ~†¿Ì {ò.²C¼ö[F*7Šz¾îr¦Ã«s?ÑþÎwb“yÖG»¡·=ŽDgßõuM‡W:Ž.~”+!G°§)Þ ÷m¶+½4ùæ—U~yÕõ´¯4þc‹<ƒ.äLÞg~\ïëOt¿SérÑýí°Ã×B7ø™qþ<œ]¿Oaã÷‚MÚ™‚~&‚Øöûú¦Ã«›¸}_T¹Óħaæ ÂA—ã$]uºéðÏàeÆß#žÅ;Uoñº{Uåð_OŸ7ü|Ü ;0q]&õ»F®ð|<”Ëç'±—­Ôÿ6ý;Q=øP/Ïw+ôwÐí¢Ý¬“þúÞ~¤q>8£œ;è~vèÌGÀùš[!—ƒn"ï¡é9C>…/«žf=ú@.C?¿Ïiñ ØWå<ÛHð/çÓi‡— zÞ‘ðÇ߃n&š÷õ)Ìs^ƯÌ댜@ÿ'N†èÍ~d#ÕËw¬+"ï'|}Ðeùq³êOîr‰ýŸUµcE÷äMOësÑ»B>YOKý:Ëü#ßè9òë“Ú¾/'4>²î¿—*Ý ºà—Üç>Hó<âü;_èvÅŸôó'ß õHìÈ£ƒxþaýëÏ·ô^òÂýG?Myó~ð ø z)vÖy{)‡]@ã‘ò°ÃËÍŸÁç¥àóÓižñ_ô¦ØolâýëÞïÇSèø¯Ä¿¼õC^‡èû½JM>[ɡ•Àûç„|àÜMЇ¿#®zæAmôgú¡ã±å÷+_Zôüwøj°Ñg_¢òÇÿ6ª^ãòÐzt½€?zŽ>èúÙWQ½M~ÖÐ7tú{ÅoäŽû =¡'¡O~Pÿïòüÿ¸öosÐ=ý ÿÐñ²î§‘ê¡¿”_«ãÚáå‚›C¿ôG!îR_7>*߬ñŽõ |~­ââ«åÿ¹øÎùMéAÍþÓaÔ‹¾”í&κô8¯ßWUžüÑÛ•îò¼éUt“åoû']Þ\f˜ë€A×&0Ö¯ö~¯Ò—å xýQÅ·Ìc»íHߣg±¾¿àóÒ»™õ9rFøžùÞÝnäv9ç‘®zšíjŸ¾ýe?ˆò™¿—xž·b=t:ëë›Ë ›õ3ó ߆¯ß•~ÓøPýù‚¼H{x¾]éÊûÀÓº~òþáAýŽv3Ï&íšÔöÚž€Üâ~@³±ÿoy“ûœðɱžoírCðÉyZX—ˆžrŸÜv£Ìë—øô¼â¹×=·Ÿó|sЧÛ>kÑÄß<¬t3ËS£vd{ÃOÁòf©ÖïñnçÐùDåÒˆqØ©år_¶Ã· áã¦ø2ü•y‡ß ïü=ögñI®FTBo?‘áfü«ý*Ï~¢ñýüójÙ.çGƒC^æ8z<Ï=¾»]n\FHþߣŸÌ›ïÐû“Ÿ[Ÿ`åyÅG¯“n^§¯Yÿ÷Á{AÓGðíFìÝÝÔsøÆ~½w;Â!óäº}!73ï†÷Oßùã~wx1!rÂ÷èY û{ÀÏßÐú;úv1ìJèoØÃ~¯øîÿÎñïòûÄ»•ÚÛ©D–kä'ƒÎN«ÜœùèyóïJwþ/å‘[ô?øOã·òÒtþ¨Ößá倛ÿGóŽ~þÓ?Ïæû±õÅñ澿¿Ã{áù’Øo_©‡ý{QOäajÚy+ì7$.“ül‡‚N×v9YØ×ìÿ…ßLÈ[ç³A>MTþë(ö¼¹tÓÏU_Jh;í#Ícî£Ü¾)/Ló=ñ)ȳßFÞ —¡—@gO‚¾ùc}¥‘OÚ÷³|¡ÐÑCä‡þó>òcl> ß*÷QmŸÿ»ŸP9ůÉ86–wØ©¿ˆ÷Œû¨ÓÍe„öç÷ºXxD|ŠÉÎÅçc•Gïa}Á¾=|uYõçäÅdŸãö äMœÛ‡Ží/ùL÷kÐE•“– œØÕ{ä“üö½:=¿=^Ï0^äg#ßàJíï¬u}^ çº”p¶ѯ ?ØßcCÞ?äò‡8eè;ü÷ëãÌ÷âz¤Ù_x4-g;rìz}ò¨êQö#£ÿ?žßoû~ºƒ~WUûMüŸûÏóRCÛ[OCî€?/ðƒÚ„'àçí ðç[½‡?ÃßçþGz—ïÙgG"ß&ÿKÿKøò…ýDúÍ>#òbã|:¶œx„ž¥ú  Ñßlß²Ò‹åí]?»Œpæç%üѺuÐ5‹ÿ*<˜s.}+ýüèMàé¶ÊW¬>Ÿƒ§qÞËÏ‘ðoö3'úü–>êý&øzÛv•»y¾ÛÿÅ.ˆþI^uô>èŠóÝŒËa¬·Ö:Ý\FhùðWáøv<}n¿­¬?l'û´â[î[Ì=Oò‚sòÃígþ"ÀKè…}Ñsæ#°b_ùsRÿçò·‚&ªÏþ•Ž›öîÖïþ9èýŽƒÀáû kó;áúÕgÿ¬ÿ‘_؃YXŸÒ=tÿ}Áº¦ñKQûÒÿÆx;š¶Ûõ§¿>íaýÅ8@ŸÐ}ÐsîSfOëgÈÙ÷ëÿ-×ÔŽžírÂ&ï$r<=å¹)ÇI¿ ŸÏC®€O7UßÑùÿyÑ9ùôsnâTľ¢ù?åèt„ü9­t‘ypS¾e|û§Ñ®Œ«C{èçò´]™jÑxÐa‡oz}ô½èFtá÷Ãô2‰xM¶_`GŒ¼!¦Oñç§êôÕá%†¶~+¼G_C?Eõù3è¬ê¶ƒSOì{z}ôLpŽ]¯Ã/´ýŽýMìß g—óG=à¹è†u”ì Þ/Z×wÐ çྎr/ðÛë°Ã‹ -?Xï§=š}Oðžý$göú » öpö“xŽŸþ€ŸwºéðòÂÍÂkÎ)ËÙr¿Qè ÿVùcÛh4ýÎönìýK‚¬ønNœœ;¼ }kÐe»ØaàûӰǯH~¬Åwìû². ¿iÛ!§ß-ºÿvøJts³òËäç6†³Ë~«ëºÇOœzð/º/y=4ýnÑýî°ÃÿˆnÈìkøÕ ¯Ý“—SíÌö{ž0Çï¨Ã/ôþæÙýÿÊ7ýWÑþ=øü¢çÿŸº~á\PÐ…åòlµÓM‡—Z¾°ÿù·L!ô£ó¡>Gð ;´žGQw?îGº¿Û÷;;¼ü°9ÏŠÿv¯ôüÿÏÞ¿ìÖudk›ð´iÓ¤SΤ%›&mÙ¦Îg[’íÌÜ{W}â÷Õßø¾ººÿ|ÿud‹—@ zl±G@j,C†@"…DÕæzŸwåxƒKGË‹KŠÙ˜sÆŒ‡qŠ#Æ`Ÿæö4Ýó~²èmkÃñåï8¿ýu·£u8ÿ°9‡|`=ýN½ÇæP÷ØÛtÞÎëÑíkÐUsÓá;í?:ޝ&?{Æë”ýÚ÷òŸµŸõž¾ß¿Ÿuÿ:ìðÐÍÃ*GòÜ÷còžýOèFtb¿jîw»üéð탶/³N‘ýìÁñûË_í¸§UﳿŽãQ…{½ÓM‡oôzÅùªêúÇòƒóB’Oø³A_–Gìû°oôY××:|{ ã€à'ƒ¿YÄEð¾ çæ¤Çù<ôÂ9ü°oK.ͺ¿vø»Ð û™>w=_>ïJ|,ûè}®Æ'þkSây̺¿vø»ÐMÆWdý‚~µ2†uýšx¿7«·ººÃ·6y©Øïg?óPï±OË^Ƶ $Îô™*¿2é¬ûÛa‡¿ Ý`#õh8¾lƒnbÔñÚ"/®ß§ÿÁö³éÆþoäyN^”×…ŽSrI;;çWÿ>vtpž“{‚Ä%Öy=Û±×§?Ø%z-ûÂð!â¾2Μ”½ÅñëÎV8èòx½åVãýô‡Êÿ%öë&ycÙ—¸÷ñ{ÆoMÏñçý¬öËÿ#À½ºÎuMìSø9²îæ?Ñï—ØßXíøžþÅúxfœÏ$ïMúa2.×]ñk2érܳ޿¬ÿwc±öÏãq³®g¼.мö~ÞÝV¹çÄs|mº4>ι¢wûx~ä9 ô[Î1ç|¿ÁëÏÐôI=Ä :ÿÃþùþïôçšÊqN—øŽ£¢ï‰—.¾è}ꃮÎÄx࿈žòäÿª|ú»ªýí9ïH½à%ûîà5õhœ&qâ+~Nâÿ«ü‡x4´/LJþlè_U|õ~þg1žðA溼Æx©>âz@çê‡ë¿ÿsŸ°'4x ߸ûs·7F7ðOòLÀYÏ…<Í~nÞOëžq'ñ¶xIõÈŽb;>ãOÿᇌx”öæŽú—‚N#î}³ÎÒs˱7,oì§­ÿ6y(œ,úÞu ñs^"•߬߿Ÿì+«>øÈ“˜w³ÊAOޤ÷ÎÃYÛ5ÁãZ¿ÿÿmð?èQøg|‡NX·D<·û/1nÐyi(G{o„¼oðã͸9ß@Œ/ôõ§€ªÏûä¹E—~j½ ¹ÀgÆ%üì߮2oAÇŒ¿ãÜÄøî×~dœè†¿ ¯†¡¶ÃxÌ|1¾o8Ÿ›ùxAÏA> q™ß1Œ#øÿÞ–ê×xnVþìú­§éúµ}–KôK|ÝöQèdCÏÁ+ÿOó¸§÷´yEÏca¤ûë½íEO«ÈýoÓMBú‰¼\¬tšúaú;/ãþ=æy²&½Æ'í~¾-9îþb`^~úÇø»ÇñýBOÏW9ÓäBÎÀçß´= þv?Æ%×1Ìcē߼©ñ Þv¯ …¿¦'ðïºî¡SäömÁúÏ”uƒÿC{¨—ùÊ<Êûz½?Ï~ò_ø9ëèý¾}%ûø¥óŦïø?ü>ùþ Ýãׂ|`Xo\ˆÿÑ.ä|€x´ô]öƒïÏló=§üMêÕó›ô3èÿ;ý—u zB¬÷†!þ‡}ý0óRe|œ+õûßnÀ øì“ŠïæSðyæ½ ;ÊjŒc®¯ïF¿YGPyþ0Nà ø }‚ÿ|÷½ v4ð‰rððz^Öw¬cã9í îø~ g­ê{Æi­ÎŸõ¤ï¢¿|G?‘ è£ô;ðÌüæ"ÏU/v9ìà/ý†Žÿÿß >=çÿk•ß{Ëó·Ì‹K¹;ª9ͼ1ÿ!Oèïµõº ókÃ/øÏŽOàyû&èû’èÞëJäëô\è„ø&ÐòŠ}øÿµÀË¿küù|‰ù…>™Gø8óCûÀ;ð‡ö°ŽÆÊ|ƒïÈø ú'ôPŽqoyz k\·Ç⦅—r ùH}Ø×áΛ©÷<ÿswëiØ=ÀgËi}‡ÞÝ0ÈÆYíküc'ü™™ä|áî/uþ‘‹Èì—*ž§ÝÌú-z}Ê—UÕ+ú{ÓçªGØ á‡â·™¿®ÙoôúUß!¿À«\0~à1üzEßagÅîâý¿è×à‰×ëz o2Žêˆnh?üÚyfáÛðû¨W|Âû½ú¿Ç%òœ›O¢‡A÷ à9t ݨ\äÁpýÈѱõ=Æû;õÀßdïõ<³.P½®úb#¿©ñ&õxô5ä¡éZ÷qÇü-â~ÒÏ_§ä÷¶e\Þ¼1^ÀW°é9ç À‹Ìþ‚Çà;ㄎÖcÜ#N½é%èÔü”çðúÁz>½²Ž¥>Þƒ‡´¹½Œ}|ð-Ï™ ïø|É}ätãþW¼iüïi/ò½Mãæy£Ý^§©>ä5òj9Ú‰]ù¦_èkaŸòüBÐ=õrþ ŸÌ8¸çÙ¯ŠuTc'‚Ná·çkù7}žÚzfØ1wèO´“ñM»ñ¹ú½í€ì‹À¯)ß±œÿTžýö‘þ³ G;àS¶«1Ž‚Øéø~5Ú ^ÐOèýI|Þr} :@¿«ûô¡}zþqý¿ù»÷ ã{Ƽ!Nãxï—ñsÖg´‹ïè'zÛõOúù~¡ä†èÁô¹õ£!·á3à |†üÝõÝ:x†¾r-ä†íúý[Ž/ÛUž¼Y=¬ÃÿPº 0¯{ÐKsÝÂ: 9‚^ÊùOö‹Gãï¼® ürÕß:ìpaãÏŒ½†x¿…¼aÝÊú’õ©ÖMÿîñ½ëcôç.w:œ˜çb¼/ž‡=nâ×(¹Â:»ö¢µáøÚ¼ò§çËípŽ¡÷ׄß~>ß;nÀ^}oýmüx"_¸GO;T=Ðr§çcëpŽ¡ñùJ¬o°_³´vü¤±§#Ÿ8_‡`o|ïïØ'û¤ÓM‡ó ½ŸçelGÃßVôàï"î³íì;á·°î9ÔûZ_‡Î´Ç~øh=âxÐ[¢ù9XCA?ØËªýÚ~?áŸ3ëþwØá+ÑMžÓÄ>æsÈ£áø²ŸÑrø-h?ÓrŠïð¿c_{ôtyÓá\BìÇÜOι Ïñ{Ç€óÐþt!_ÂO÷Á¡Êñ||Ûé¦Ã¹„Ö«X¯ !7ð·•ÝÙþÈü€Øç87öÓåÝßæE Ç5í•ð!ÎõÂÇЫÙÈsŸ¼ëQüþÕùç? Þௌÿ&xrûiOÂ?öa}^©{Æüú56y1rÿž¸—Ú§7~â' ¾ÿ/ìËŸÌoµßöÃeü‡ðO³ß{È)ŸÇßÓ{üówéWøtølèñDïe˜oøô y4¾@_‘ŸÕïñ—J~Ý<©z¼Û%º3 þ˜xëûÈÛççËÕËqbÝÝ쿃¯Ø¯õÚa>°U÷ïÿ*o¾ÁxÓΈgcùA½âgö`~ë÷æS+z¿r‡yâ<ÍbÀ8wÚ᳡ç_|Üx ÿÔxgœUŸ+@ßÖßby$:|žSþXßïÑ?áÂcóƒ!ð;åýé}ÆF¾`O>÷ØžV¹6MþOâMë=çž"žß¬ñq^ ùîV¿´gr™˜'¾gþ#Žóç1oŸoÚ9)óϧ鯕ñWÎWø:ü]ðܸ¼Ç'úc¾ÿA¥¯ÇŸÔr/ú‹¼…®.†>FøõóüigÓÑ~ô=#Öu>Nâ¸ÆøÃ3> vÿƒ:ÞÖ?ÐÏ|ÐwÌx¶\ù{ÃçWå óšvOø墿¾t\Ú ¯ƒ<ŸÐ þOø ÏM_ðiô£Sžoè >*¹âÿÆ÷Æ¿Ýࣺϸ7“<*º§àóBÅkç’÷4Ðþ\ê/ë@ë­Èè—öÀxO¿Uºu¾Õçñv<•‡>° ú?ýå|ôx¤{äò™N7¯%wêü 9þÈ#â> üË8£Ë•LÐcÆÍ ¾m<]ÊeüDŸÆsÅç3>eœ©ëÿ¼þÚªå<.ÞßÕÿñS^Ñ=ôƒæH÷ðuúý,TzʸçŽï…žå¸X‚ñêÛvò?µˆ çþç>iØY:<nš×اó:dOï…~Žœ`¾ +¾GÞðyD9á…õ'ÚÁÿÐ#ŽïÑ“"¦×gjÌÏ£^êÓ'ù3‚nhø Ÿ8[Çcb}IÿåšØô_Æ~Rïׂ®ðïD <ûªÐgêÝð«ÅàûQÿ½¹Ã =®_yXç?õñfý“ôyÀ7à!zv€£ZŸó›¡¯¡Ï@—àqì—4|ºÞÑ“FŸÜOÖߨoÁoÊ3çô~U߇½ÃýÜŠ~)ž\c[Žq%®dÆ[ã½å’êÙQ9Ö=¿] z|2ŽZø/tØái‚æÿèµò[Nÿà  záÞzú×jÈË‘ÞS^þ4ÖKá#ðŸn_ëðCË¡Ñp|YßD>äþkès–[ת^ÜÐÍÞ¸~×Ãùé%ý7â–öxžfh{y 2oež[Ã?œó4™ÿ8òæù;ÎI¯¨öäúñ£ºnœõøtØá‰tƒü`‚áp ?oüù°¯¬©¼íUñ]³/ís ‚™ç}©þ·ÃOô:û°ãÉŸÌ÷m§ƒN »ô;}Zõ4×_(rŽóÐò¦Û:<ÅÐþÂûAWæÝ1þ“Otš¿+v…Q|Ç:ˆõt–yº8Ÿp¶~ßa‡§ Z_Ÿ=‰ü;çBÞߎü>ëÕ®l:8¯ï¯ ²¾‰øÞWvœi•×¾ñ¬Ç§ÃO‚Ö—ðSr^Aáoæá$Ÿ(úUê_ÄéÀ^†üØP½‚mÐ{ò7½vØái€MÞ'ì`«ðýáør\&üÔ‘wÙzðO#¯òæ+ÑGúÓ°¾âÜv¹ˆÚa‡§z}èÒp|Y_BƒNxþã×¾Çùµ‰;@Øð•¿Î kó6v¶N7ž>h½Šü¦†Ü€Žð_]ýòT¢WQ޼»ª—÷䡯vuPÔ‹¼ëvO!´ß%þ™èmøñ†ãËçÏV*½Øú€¾ ºÁO;ìfö‡Ã/»ö‚C½çùÁ”öI¾q¹Þ½áÄË~=«œówjwóÝní—ŸïD=”ÿ±?¯ÊÙ?o+êÙ­ír³þ­)Ï¢¾¬ŸÿÇ÷Þ7ðxj>Fuü½OÍy£ÚÞŒ«âÿJ¿p²ŸŒ»¾óûŒW–ýùj΃RßÃÚïfb^ý}Œ{¾·ívýüoêÛ®ý³ß>ýgÞÅxÒ^æ…û8—ÓÄàžñ¤~¾O|åýA´“}ø&íÚ‹öd½IO1N.¿ýìÿ7ãÂ8>¹Ü“èx”t”qFèoâ+ßý+Ú³ð0ÆŸv2N” ÿôI|ÉZžvx½øîqŒó§Ù>—{ý=¨íp{–¢þ¤sÚ÷Q¥ ûÅûœIðσ—lOúíþ[ÎD\BÛÓú??×|Ø?ßyê|˜vîÇçF‡ÝèÇ‘ê§ÿq^´Á3øõ$ýÑÆqAí^:ƒþ±+3Þ|ñB›øXŒüCí²}íl­§ir\íw;ÑãÀ‹ˆûe|Ïø¸)éë1èó¾þ³¦öЮ'ulßÃþ€ŸÂn´ƒs퇵¿ÖW±‹p~}4âúØÏ; ã›ç_8?€Gü?Ï!ƒWôEÿ‡/0ïÔǘŸ<÷Å|@Wo×ñ¡]ÖïÕÞÆ„ù=[ÿ“ñ>=>×Tn¹Î³ó&ÑõßxL?ÁÆm¯¾÷úYß{?<͸L§Ôëüœ—¯‚~á›ßè?̛ƷÉoËüó_æ•þQŽq:£úÏÝ3ÎzžçÜlçÏ™oÆárüº˜wüTÁ'ø"ö Æ-ó-²?uMp¨ýšäÍVyι?…?ë?ß¼ÊÿuþÜí¨ÿíAï•ïÛ_ê› ÿµhý¹¬ï3þûÝÐ=ñ7Ï×ñóyÊ€ñ¾¤zá£Wôý$ÞXÄñ0ÞpNü0]Öq4dü±så¹Jä€ðÕõ¬D}.¯ç´q¿ò¸ƒØ9Ÿ–q°ËAÏ+3Dÿé§ùCÅ_Ïï(ž_R;Ñ[#N‰õAÍ›ý}ð_;C»ïÁÿ*=6qV 7æ~}Cõ~|;#ô À_Ïþÿ¦=ð—¯ø`÷#Èz‡÷ð{ä|5óW0îüz…Ï1ojç@yôâ“0O̻𠉳ëšËã÷®w)þƒ¼‡N6j}ž/Æÿ(Æï“è/øÇ| ç‚Ð;~èEàÃ]½GOˆøHž—\ÏñüeƒyJ«&ßEÅ{ëaî‡Þoè{øLò»Œqa\þcû‡êu¾'Ý«?yN9ó8Y?ä¿æÇÂoðá\´;ì5“xlúnÏo>AoC”£ÝÛ•Ÿ'øíÅþ£öºÜ§õÞò>õ`úû4ð<Î_xˆüߎÿE<ôÆÎÄw[j?øç•<îŸÕz=9ŸèwúÞô_$Í~´ç‘Æ{Í›õÆ+úïuŸÊMò†Ÿ{<èv-è•ú°×YÐóÄÙc¬çêøT¿ñžõá^í¿íô{zÖÃþæùѼy^ùÿgÑêa]%}¾±Ç2Ïpâ—óÿ‚O¡wé{ì̋ۡöÆþŽùš×Ùºûtï•çÌø~©~ß:ó«zŽ‚n8wþbÏ¡>è½Üv“À߇•Oxœù>âÖeœe—“m{ãÅxÓNôaè–rü¼Ë8ÕŒ#vÚñ¨Ê¡IÜ(•_­ó—vü¤GëéÇü—r‰?a·ô<1þÐÁ¨öÏý`ýqý ùb~O¨¼ ýiZÜ+ÿù¼Öã÷{Qn­¶;çükž3ŽðµÈ‡çü=üŸþ‚w;osßÈÏÁ¯ÈóåùY‰öê½ù™ù•úÍüÔv4ûòÌ+ô˜qÈà_”c©'Ï}\ŒòùÝ6íŽqŸ)—øu®Þ7ûzÌxN¹à[Í|ƒ7üþ>ž >xãÎ÷´›ÿQ÷9ÑÇQ¼ßªßå:Õzâ=§©?ûG}ÐøG·ƒÚ.ÿ/øzƒÇ¹ùEÔ0¿kÆ{4œxh/||;ÚûpÊóýJÿ Þçþì^ü÷Q}ïñe]Ï/}ŸùÄÝð‡ï²_IÏÙŸœ‡ÄßÝèÇNü‡ûÜÇI>ºýŠ}ýfžWÆ)Ç›þå¾,ãžý¿EÿèGèQSý¬T¾Çx1˜ëŠœß©ó¾ }Ä<÷ƒN<Ï܃¿Ì/xÈsð©—ÿ f»¨gÖx8o°™/ͧåyâmÊäwÔ3Ò÷É÷c>#ß_ã?¶õlM©/é{ô»øñÿdwþýðw+ÞNgꃓ.RŽåÿs<ô}“W‘ö†¯i|sÖx8o0õ«fy_˜Wñëô›²½#èÌzgòAð^ôÓØÑÓ¯,õÆÜÏ‹øÉ¢ñsL?¾­hǨö3íÏçôËd\°‹=öñ;ãük¥·Ìsåÿ1ž”ä}îCÌç 6þØ þYŸOò—i±wFþï¯Ü¨xk;柢žÈCàv}õ²Â>x †¾®Bà+Ïß«øÇÕÄ}ÍvÒáaòû#¯ºýfèûjØûöÔñô{°]’ö-TºµÝ'ãÎ?­ú¤çïbý¾Ÿ[{1h;-óŠÝ‚yûi} ×4_’žoæ?;á­÷ÛØ×=ø–ñ‘í/ò û>ïá¿àû Ë*ÿà-}Ùo ý#Ï›órOÞøùsòÉú?ØIÈÓÁ>9ç1ÙÿÇ?¿…=gœÙ¯„¯Ý z ð—Uh¿öo$==›t¨qb>Ò»ú yC®€çÒÒÞ^Müùt¯òÞÀŸÄÓ±ø¥äQÚé&ù‘UúÀï ö? cè0òß8 |9éó%ñÝsôï·>ÒwηíxýH>ÅþÇåøwÑOøüŒÿ2î+ÝC¿³ÆËÓMàóZÅsÓãÍü·Vboë}äoâµàÏC=È üçà¿![ì'ü9þÏ®‹Dýè‘Ô_F¾âÿ>ãÇx]Ïñë¡]çŸgödüîþ2†é¿=A÷à?ôB{ §ð/šüOÿ¹Iùè7ÿ‹üYþ~£Þw8e^? ü%½ï ßO>"G€øŸ2öoBŸÖwøÿƒ—øAƒÏÐxsG|aþÑsˆ—$ÿpã¥ø­×ÂÓÓÝ G¾÷9Aø òÇþpUÏiõàøŽ{äüŠÿÑüº.ÇøŸäÿ7‚n4/¹kxè÷|#ô´ožÝŸǰñ ã¼Kœ°ß²ôæq’Rå#œ_ç»&•à Ëóç|¡¢cáAÚáL¡µ/ä×Ä[õ _¤ççþ~Æ)·\N¼_™J7Œã¡öÓ_§ÊMΗëw9èœþú|yà=ò÷bŒ÷rGõ3¾W-ã²wx2ô¼ìTümöÿ4ŸMÜáãäü3|Mï…ßÔÛœ÷Œ8Ù.ôB· |übé·ÖÄß_oútÛÐõVíÿ$>¹èjÿÙzMžjüã">tîWY® OŠOy>žÞÓîÕÿNƿʿ†Î×ê¬è=åÿL¯Ðåaüw/¾ŸrξÙ©üQ¥£©~­Ô>rOý‘ß©ß'ñÆëaôë Æ7ö•šøMÈטç]¹6¥Ý=Á‹A³çAã|¶Ùï˜ÿ|žxJ}À)t–Wã§t“õmO¹ÏxHÑÞÏÿ(ŸòAå¦ÒÍÖ”úÁë3Qt–ýL `´«‘“ð¯©íÝ}öûß-˜qršóìàÛhü¾9G€þ¾BWàkÈÃ&¯ôQà;ÿEÌóˆè™ÔO½?­ñsÏøtñ½×yq>>ýf=_žh{ø þD~?ÛÙ—ÆÐvxìêÂw—qdD¶O®¨¾c]–ñ¶ø>üË6•]úÜí¿XËM‹ûØœ÷¡=Ôv=­Ã§ÓCµ+˜^€œDÏϳ¯Â÷—t¿¨ï°ï® füª3üWð£À{¾'አö5}¾ý ôwZ­tg{6íÃÎɹNöŸˆû²ZÛ7ëùêðtÀIü©áø²ß–èÃïÙ·¿|EŽx¿E}|öEØ¿]„>؇ßÙ¿ºZõ¥&!vþŒ§‡]yIú¤]ÐEøÁmÞTùït½oîwyÓá„nØ¿å|/zrg=ðÇÿ"ç_ÄC¡þÿ1~N¼:úý#WÉxGïÃ?ºÃwnãËñ½á·œ“ø^÷èGà9ëgüênê=ôàüezt×íÐÿæþÃßgإퟠq^ni8¾¼?  ¯›|=à;û–|Ç{ݧ­ã ˆ®ÌVo9èÿ#O‘?ÐoäÉxj³ž·g 3.¿ñåPÏ…·º·¿ÉžÞ# Õ3 µ¼åvçŒ›Š¾µôùü½zȼ©Wò]æ¿ã»;éw“ñ¤:<]ÐøyÉ2/M“?t·âs¿¼]ŒzÙA^ º?Sù³åÏHïÿTñÉþ4»Qn¨å'qácý‘r‡ïˆgq\}¾ZtÆø¥ŸçzüþÓŽÿo#lò.‰.Œ'ÒS&yg„싇|Hÿ—ô÷òz†}rΩåy.öi6T/û«z®ÿ º, sø6ý¢ýÐßa­·ñå½óªœ¼ÎÈ<3Íû󕎇YÏ{‡¯›¼à5rúŸ¢‡¬èý§õ;—ÃN}9îß¡Gé¹ã1é;ö7ˆO²ô‡ßôÅþ)ÿåü8yÎX_Ðîó¡g¥º>rJyË<~¸߈K•ç ;œOèý5ÇUÞ,OÎWüµLùBOéŸÉþÉzÎ:#ã`rù=û!·&h}oz=3óNÂ2OòºDn!ÿ>BòcÃ^Ö¼×S>ÍzÞ;|=è}jðÐûç¡/!ð/!ž ù(±ÿï!—î­ ¯Æøãxc‡ºWÞ¦<çóö™;4ûŸü?÷5Ùÿ€.Ðרç‹J7Þÿßüá—1dˆ}ЋU^øÿOƒv,Çzhо×á|AçÓÄ.L\ô¦Û‚ŽŸ$½doŒMÞ(ðõøë¼GÂ'ôAü)Y¿ã¯ôœyÍlP{¡Cïûd§%•GŽì«~ô±Åzo}“çÈ9ë™!Ç’ž(¯ÿûùúÉr«Ãù‚Æ[ü]¤¿[_A9Ÿz—žsŽ|ø9úúœðÅòcCÏoë?Ò›<œèyð}Úso¿ðù&ž™ã8«~ö;i/~nð‰¯jûM7Ðñýõ*7.D}øa¢§¢_æúæJ¥£çÚÿõ Áû[ÕÏÌO¨>pWßß÷Çzà×!oîvºy`c'Oÿdýaû¯ž«\æ7å»&/$ôt¶âŸ×)>ïrƒ}øÏ+ß6=Ó.Ö_È‹´ gS{GúºÐúÃûúÐ/ü{Èg¡‡y½Gÿã=r*â¹=/¾[‡§6üWxe<Š|÷“se⻬ô|±âµßƒ÷È+ôâ­;‚¾ƒ.ôß´sÁDZà—Iåôÿù›Mä…ß?oòêROæ{¤òú9ý;ˆçŒG>grœ¸Ÿæ7¸_Û?UþÐð6ó’?®t5}<ô_á{ï{êe^wbÜöj¹fÜö¢^æ}çG‚‡'Ï“ç=ôi¥«Ì3˜vx?§¿è—¿Ö~5ùºùôÛó‚>P?4yS£½.—xÎxDž8ó á½ÿ¿ü”ï÷jýö_âêWžÈ~&ŸjâÒÒn¿ñ;è(ý6üÈ8‘1M¼èÝ(øéñ‰ùlâ~ñŸGµÝM>Òà_ žAw£½Œ+íŽó+Í5ý9¬ýjÞž6|•vþódzMºM¾c¹B=75ðÛëÆÏ''óóF¿<'MÞÌë|ºüï `ø]Y>lŘoÆOåÜ·1¾¼‰ÿ¬ùL}§Á—ľ‡-èyö+Úáqˆï§Wiòij¾Š<š9¾nóÓ.ø:ÿŸhWع2e¯o·NÆßÇø8n[Òiâõ¨ÂM=oþýµþË:u$öÑ¥¨_tëõ,r+çKý·}&â-ºx|ããg¼M9tN¿SÞ5y(yòxÚÿŒGšÛ‹Wê¼ù¿yž‘u|*å=xó°>·Ÿuâï¨öcZœÛ?šygžUеùWÊÌçp-~-Ä÷´KõØ®õ§zï÷ò£7?¡>ÞOˇ+üÛdÜèÑÈÙÌw@5É=ä¦èØç|^­Îkæ­nä óÝÑNþ ߉spSí ÌÇz§Æ|ñªtãq”Ñãüe¾Úþâÿª>ö‡ÙÇŽyô¸~Qé­Í¬z^ÐßµYg‚—Ìÿ“:ÞÓò¸?y®}·ÒÅä|àOœçÄkÕ{ìeïÕzÍW8·¹ãÿ€Ÿâ‘§ÝþJ¹§•Ÿ7|wMÿƒ¨]ÆçQŒoèóM‰ýžýåܧ;¯ç™·nJ>¼Í›müà?¶—ê9vQätû'Æ7æùLþ‹Þ>c_…¿F¾Ù†/,Öùö~>çd¾®ÿ›Œ7t òŽ+Sùò„ïªç6/ù~u¼‡¯®Ööûüót¨ÞEøóíBÏ¡Cæ þþ _)ã@|ÄÏë{ë71Þ÷3ôWå˜?Æ)äää„ ûUÄ1‰óL¦ó‹SþŸ~Œõ÷à+øOð>ó;;…?Ü׫nM×ÓVÔoÖU¬‡ð·‡p¾„÷зý†EŒãLÿrÿ-Ó¡ž3¿k¯<¯à-~•yžú¿$|o9ÿ¾v{FzÏüÒðoUí#Nå £3'ÿÇãœúóË÷Œwð ×GœMÆ ¾þfüOätœ5¿FNàß'c“ñ(¦ù%!ýøK“÷~æ|©~ÿ¤Öçvo«ü£Š7Íþ~ä#vûѳ)ø8þÿPïÁ—د1_ÛÊ5‘'úNxk>‹ŸÍ}üêaoãÁùúÞó ]ÐŽ…Àkú·ÖzsßÂÿ¥¾íhïA½Ï~LÝ/AŸ»È´z7óQÎò>öᲿ¿˜o·+ãA¨]¹îmêÛš2ñ<é"÷; x^E}i×›&?:_\þQÅ ·ãi¥Ÿ†.©o«¶wr>.ø:O{;x=m_Tÿoì9Ìúrø¸zr9ìŸé“ñ \íÕöLõÈýâàKig0~.ë?ùøgú£D\—Ïï*ž5rä·àóô7çZ™/ä!ãx2-“ý%E;F1^YoÚ¹¨?ñ4Ÿ£éïÀe¾ÁwÈYú¯ñ2ž©Ý¶Co®/í!àaŽ÷t£ûQÌOðMžÓ^þ·ÿËyÙ:y¼¦ý'ýΦڗb_¾ÁÛÝ)ýý¬Ž‹ûO{§ì zþ¢þŒÓÓä‡Üªt’ôJ½/ºî™:{É×4¬Æ?ìô9~–G‰WÔ‡Ý ½MóÚøÕoŽàfþ'êoü¶À“œç)x>íþuÇý¥ç)Û—øùq³ÝÓìã.÷ºñ¼G=Í|°ïÇ|â?èïÕzl—"n<ëÑê¼qŸtŸ~à  ùÿªóà~삵ŸŸícüÀÇô·ÿ‘_Œõ=Žqø,ރߔcÞƒ.½~ þÞøWÄ÷”ã¡ç5ë1ê|œݘ¯Ä~xÃçæxFùçíŸ7þ~´c!ø‘ðv’7Uð‹Úþ&n¼ÆÕv¸ÐRït»V>Ésž¼ŽZ¬üæ•çã úÃ=ãÀ8ƒ_¬³éí%þ™×#j'ûï” MüÀQŒßQÄ÷{•ž^š^àÛì“ø\¾žG¾rþkü ù`û®â™~Ϋ¿œŽøÈ–Ãà?ýçìó=ÿ2ø_lèžýïs>AoÌ3ü1ã~²Žçÿï\Oþat_‚î·ƒï2Ÿè!çÆ“ý8ôøùsüO?Ö%È•´P?t@ûȃóîyŸ–5|ûžÿçßÓ8ý3êuœO•[ùZP¹Kjÿ}¿þßë|èe¿–Ësl¹ï¾jê͘ž–ýžä|zÜ–á'ëAM…ÇÏî—÷ÀëÔ4ï“<¤u¼Œ×È­ƒÊŸÜ?ø7ôE¾«³µßyÙÿwTŸ§¼~íy€ïÂ7#à7ô´¨{ä÷û1ŽØ)·¤{g#‘kØsñI»ã¼]ùÿŸr„ñ¿3ßÓŽhOøsx<‚¯üáô’ëGÖa}Iãm~ŽÞÊxñ^xe?ÙçÄe·?†ô­Æ>ï¬æùòXÿZ/8§úÐK6ô=~ø¯¬#·tyþs|¦ø³¾´Üç|-ü þí¸0j~"ðuæƒñ‡-ÖñÈxöK¿-Ç«­ýä—aï›TºF.M[_NâU=hÂGB?[¨í_6q6ø^üÉtOÜ[øÐåZŽùpýú_æ‡ò¼ëûçÙky£vÀ·>«íhò1:¾Ïy½#ÇïÌÉú¿ñú ºñø õÊóó^/FGŸ[€¯¦ÿHþ'ã¸h~Ì¿™ïð­Ãß>_Ý<Üޝ?áS¼Ïûí?VžuØáJ7+?tåy´iñ÷\>ãâtºéð-†ƒ®ŒûÞÄÅx\éŠ —\Gͺ_vø&a/ùÃ=ôÄ~ö‡'açY©òfÖýê°Ã7J7¢“&.*ëìÆØ›*=å~Ç4?çÙ);ìpžà4»ªíGÂö=ûeƺ¦ëi¾Ð~sÃøÚÜ=°Ïþrì7ŽÆ÷?úêøûY÷«Ãß(ÝàïqØ·µŸùp|5ùÞÂϥ˛ßèý×Ñp|5ù °«áw>Ô«ÙoúûîgwØái„ÖÈ uŒõ1ìj·d’çz|å9–Y÷«Ãß$´=à¨îg6q› Ÿ‡¡—a?é¾ÛÍ:|‹á «ÉÇ],NñóCq¾!ãôívºù=áÄ£yá|ýAíSû’ø˜ÏÁa÷äüq32nçoÄ/'ñøõÿAǹÒým•#ýZ×Ó;œ=Ì<œ˸ºÖ·Y‡^lð:ä óˆrN‚|"ÄAù¢Ò‡é‡vê~ÖãÖá» }ÞŠ¸à)xKžÇM„¾.‚ßaßAnqîŸs­ø‡¬¨öSâÉßÐwÚo˜œÓ¼Ò÷!:œ=ܼ9_“|4ÐIÝwv¼ ä zÚ'!§ÐûxŸqñ§"ÔŠÊs~=ôsËä×¥®§u8{èsÅè[ZwšÀ[ðüŽ7¡rìoŸ†ó“ÈènµÊ“IÞAAâ°ŽÒwœe}4%ÿj‡þÐë÷óÂ˽áøjòŠ.\~m\Ž}íAWæmhâRc_ÝÁn ï°i}äú +â pôù{ŸWí°Ã“ ×ÈÇkÒý‡Ÿ-O"Ž‘õ.ž;Þ› ó‡½Nö·Ì÷îïyþ—¨—ï#Nâ‹æóí°Ã×¢ðu=ëoâʲ=:cý³t±¦r¬‹Vt>ˆþ·ëêY ú!Î5ôŠ_ümµùwMå¦äùí°Ãß•nˆÿ"½i_8¾¼Þoáû¢3¯7®Ä:‰¼|ì÷`gf}»ôˆ\:>¼ô´Ì:èý”¼ŽvøFè&â½{ý€ý ¹r&äë|ô²ˆ'o;åˆwÏ:}z#¸ã+A·—ÑËô<ó7Ï(ÿE‡ï&´~äxºÂGäço¹_Ž/ëYèsc½Ã:þ0Þ³Þ‰øuÖïÈg3Ò=ôĹÑÍÄ>0¾Ÿõ8vønAëMØ—¯a^ÞޝÉþLµoÙ> /°þWyÊQúÿÝP9ÁÞ€žØé¤Ã·ºž›×r·®“|Þ7ó2qn ¸Så[Æ;¢öþ­ÒwžciòD?Ž÷{jÇ~·×uøæ`æçt5ñ5EGM~ÕÄïýjGhòynŸ¼¾iò¦îU˜y?\î_µ~?ÿòjuØáIÐyžÀûŒS „Æ·ƒõ;ï÷èjüor½³u2>{µí࿙ߑ<™Ou›ôÉYo‡o'lòâý˜ý~ìx¢/üD]|^Ž/ömûÄ{Z“×ý©Ïk»6¯ªŽ«¯÷ìCQ?ÔᛃÍ9„+a×¾­÷äcGùé‡ {ö„«*Çw¶;œ¼î°û.ö@ÝC·7$WØßÅ.~]åi×÷ún¥¯o^ ž“§°C“ìÙö³^ÞÝÄ~ǹ›*G¾.èËçs•Ìò‚} ËïÝÊ_CïS¹;úŽý+òâ¿ÊùòrÎa½Ïÿ+áÃÕÎo^hœÎ] _E>Uëqá'm9ź<¦Ü%Ý߇U>âR6þw!W'ú_æíö9Ó ‚×ÇÏg=¾ó§å[ë0Ɖõ¶òŸ;_æÊxüš<Þøï`Wf}3¨ÎÃñø¦ÿŒ¿ß‹÷ÈéuÌO“¯úÔ½ÿ·õìEyö?º~öZ|ôi]wvøn´_ ºL× !7*_hüá~ :†î)÷ϸgý—ú*ò™ÿUºoâ|ŽTîqmOƒ÷ªÇë>ú¹õ¢çîÖzzÜÃñ`o8¾ý.ñ‡õYÈÇA—é%žÛ.žòy ý¤?¬ë½´É—³¢ra‡™F7nô‰ÝžsSOj{üýo]Þtøÿʛϫ8‰Ï ¸P×cæ÷)Gx.|ö÷Ä+¿ñ£`?ëOµþÍo«¼òyYâÙá_!ûû¹MÞƒÃ1lèæIý¯÷‡±sfÜ•'Õ^ßׇãðcrN5ìÃøb_¨‰‡µ"ˆz Î"þܯ ±W$ÞÞPùe䈞³Ïu^íà{þ?„ã°NÑÓ ä+rEôïÿpþã|¥Ö“³ž·g 7¯ _~øå¿ ›—uÃ…º~°?¶ô7Ç{Ô~Õæ_׋Üð>íªÞkß×û_÷U$ü€ˆg·!]}G½*':´=‘}«)qé|nï®V¹b¿ûV½Œs÷³ž·g oà%~uw„W‹º‡îÇ—ýè~ Çóï_ÄoCÐ~Bª¹…žèÅöG¾Ã5ý(h'q¡Ç/O^‡l^Uýè…Uÿßh¯ ç?®Œßç÷³ž·g ÍWÑÓ7¯À#âl]ø~4_†ªÞ5 ñ¼FNðºz„^UñÏt¸Të÷¾t¶Rë·_9xOÜ;ä\ÄU`½ä~£?Šžº&¯(t ÑøÐÿYÏ_‡³žs¨ûíŠwÆgðm¡®S¼¾ÏD^Çð=ôÿæý““åíkÐ íä=rg¤û8Ïnº¡^ÚqPñ?óñšþ¡ïä+Ⳟ¿_ ?»ßÇx‡}á¨âùðœ 9–t“þ£³îg‡¯Ù§Èø›³n׬¡óÞ!wV~âøà£ñxY†ý-ýܺÍ|Ô/=OŽÆ8ZÞŽ/Þº¬ß†Ÿ*ï]ûž‘—uÖýìðÕ ~Þ_ïû×ÇÐvó)ç˜íGùU>íÕöÃþQã|ýäz;œˆßG÷gqY‡ýtVë~¥ím·b_+A7Úgò¹‡ÿi®¡ý§.vý¬Œ ç}n` º¹¥çøÓàÄýµÐcßgóF—ëóY·Ú¿ÇŸf<>¬ï‘7׃+*‡?+ñ$¯q ÿ:ŸšGèu,z<ûì‡c<˜uûf ½«}˜f½‚¿6þ1nyzÐeÿ›°3t8prþòä}½wz}Ï~%~ o+ýì~È·Óåúu³ößßÓ/ò Á—±§1O1î¿;ÝüÇ/ãöÏ<â<,ót[Ïïý\éâi•¯Î£Nû‘'ðÑÌÃ×c<|>^zp\ }Güì•>7¯ö1žä{§<òŽ|N9þ´|¹H»T~EÐrHõr>Ÿ}îÈÃÁ¹-Û§9Ç ]ÔßÁ/è?ã}òÜç¦kòÜŠñ–ó6üŸõq?  æ~ÑNúûM©øÆ¼9]à x1í(ãq¶ù9zÃtÿ ¾ í"ÞûŒó¹ñ{ï¸ýGð¼™j¿ËÁogÈ'ðþËx^Ó÷ŒÏÇ'ðê'å‘È—Å:®þåÑÓœ‡-øÂe=_ê9ýæ{ëm\Žøéà+z%ýÿ,¾ÃŸ„þ ïC®¤ß—ùtƒ\âÜ ó!þìs;ȧŒ¯?=SÛçvÇ>dK7u\ÝNæ/âLÕÓßð˜ø5=»¯M7:Oj>­q3½0àÛžæ{¼Ñ÷Ǽk\}¾ïÓÚëYÌüº0ßVýð!ôIðü…ïÒ^äãøEÔþµžºQ?‚/Ó?¾§àõŠž ¿2¾·ÛE¿éõÐÈOèrà |ŒöC”Ë|¼A}o½ z¢êïÀxðíÏõ íŽuYƒo©L™ÿiqå'r0ø¢òKš¿½a¯óh÷‡µ½¦#ø ëƒKúŽõø*ãlza½¿]ñÏqRù?ú4óx+äÀ:oèÝžWðd=ä$íÙ{ðCö¯«˜‡Ôÿ‘ÃÈÅGúŽzø/ú¨õš ›´€ÿ¬8·•ûŽÛRé§Éƒ•ñeÀsÎõ3äû]ñÈuÝ0FþË|L¥âUe~-è.äîd]XË[ƒN‹kõþÍÉÆ‹ùW?°ÀÉwÌ:¾Ï=ý"Þrˆú¯_¹ T9ÖUΫçw*?4=\×{ôKÖ+Ð3z…ã·ªþ¶è韞±¾Ï<…ç¢ôu|åÓ¸ÿ6øëÖy¬—wøÊ• ›õ¨?ù4ôŠœfàÏàëFâb¯ažrœ=žzNÂרI×v7øv¹Ž‹ó°2^ާõ3Ä%} þ0o‚ȳož-÷^›nÀ+æ{˵èÏ=GŸ'þ"øt&æz7á+ß×þmÞ|?þo».|\ï™wðú“:ŸÆ#ã· öôj¯ÓsJÿïþ<~¾ý^U»Kà_ÚÓàà=ü‘ö 7î½1/Œ7þ¿Ôs…ñQ=—¢=Œã^…žTŽù» úÀKä0|ñJÈÆù9ú‘ç5×aœ»€®âœÛã8£ð3•§ŸagctÃxÁO¼nº^ÛÞƒgè%Ë‚n¿`®/*^5ñëÁæ÷¯úŽúe§4ÞJþ˜±nÃ~ñÈm'€ná·õý-ð_õ§=—õ¸ím!¯À£¯*ÿE®Ø. ×ï©A7È ú]0nÐ)ã]‡ùƒúžù½¿_ù!ã<^Q¹³1±ŸqܧÅ/³æ÷ªïžêO{Q®÷‘‡à ýi7ó}½Ê«ßn‡ — ÓÏàC´_~Ý^Ïüðñ=öðÎzgůo ?Ë7èHï‘CèEè<ç;Æ ;ùnÐ3rˆqOý}æ'•‡Ž3>8ø þ^Ò{øxLûTÏ`¼?D;º÷>IÅË ^è{ôfø—äë§žEƒ÷7ø^þbWý^óByøë©§Èùh_òýµúÞå®G9¾c¼Ð/ /øÏbœ$=~ðÛçØ'^›nV5®Oà3j_ìw/%ð ö“½^ƒn,¿Ô?â=¤<ÿ£ŒÛ óôÀ8^Žz¬3£]á`¿ðl¤òÂÛÛÐ/Ð_°'ƒgjípŒ×jmÿÄÞZéØv±:ï ]1ôúDþ„ÛŸöü´o#טWχêÑüÒÞfýö ¿‡.Õû™\Õ=|•x½ü‡ù‡Îh'ó¾õÒï3oXÞx_Kíй¯ÿß•Àµh?zê…àŸÖb¾Ð·áûð½[šð;ÖÛÆá¥åí€.™Gâ£"ÿÎ×qÍý{ðÆúö›Ç•.üc}ÅxF|æI|pý/ëËñ\‰q`|ø_øWX ÷!‘§¬c˜Gèˆq`½Ý1Žà)ü~ùfDg7­ýž¼Øà›ð+þ#:0‡ß8N›ÚAûÑŸÏÅ:oŠnÞ80o¦¯ð 4ýÃïÑÓ΄|I¿[ñƒ†ÿxßTóÍ<£×¢Çþ‘åÙHåCÏ›w-ãÉZ_ÎÀóýÀ{Ƈö|ý‡?Q¿ó ¨Æ™qE>Òoö¹öÔäÔAŒ?þ›+_ò{è)ãúRoÆë„^Ù—ÿš5^žvhù†¾“çÆ7ðÑÅŠ–Ë•ßMôùÊ׺N¡·eô4ÝÃ_¡ð;ýëœPxñt Ýðôø,øƒÿÈ9úq£-¿ŽâûiúÆÍås¼Wz |3_øåp¯Gµ^Ëwè>ôr¾Ÿ5^žvèù„¯Ùû5ÆYóh=@xïuû„È%çQš‚Çðõsu^y’úWþŸ~Ϲoú ]ñßô#€D;"/n“·ú?Ñ3i|€ÿ1ŽK‘_±êñÒxL;/ãÿg|iè'úÓÐýÎÉü­ÃÀ£?Þ­¿Ço~O÷¹Oã¼JÈy½_ªþÓüü üs}«@Í¿ø8WÚ©l_:7E¾Ÿ¹N_ÑoÐcЧX/.W|óúzø<Þ/}±;ï×vø±Ÿìög<Žˆ¿àþ@×ð;æ3å4ëXï“tºy!ºa|¹¿‚žµó|ù_1ÿO‚×N–7™Üëë?×ÿ[߇OÆyzãv¥)ë¯'À[äWâôÀóå 'ú—çŽÐŸKر·AWôk5ʱûǺ×ÿVzoæ>?ÄþD¿ùžçÐsø÷u8…nÒol«ÊkÇO>¨xå÷#?üœr^ë>÷3°ÛÃ_µ>tÙ~úâÄ.®vDžs¾·þb{†êe?}¹Þ»?üŸÿao[‰v§Î(ˆ¼ù¨Žgú™¥}ÓãþÉÍþñêÉòg’'*ø|ƒÿã~S³ÆËÓ3Žñæ±ðüÇ/Š}{ø.xói|·x!¹dûôÆó5áÿAÅûæœ+üùLðkÞ‹nÁ;÷ù _‡¾ÁÓ#Æ¡¶Ãüa¤òìTÇÇïáߨ§óì§žh»šÞ3~éo—t™~ïëjßÓ^âzDܧ ¬|hÖxyÚ¡çUãf~üôÁ¡ægµÎ»ù"ãιè ?˜íÐ?À#äõC¿ÐNø£ó»Öÿä:ßýÌýtôAöß"®®×}ðõð{7~Ó?ÆMòÅôžyÎà?èwÐóBüoÐû… äFø™nóô‹úÏCå‘׌×Ó^ŒnàC[1Ÿà!r_ãÚìË2Sü¤3N„×àûØw¡CÙ¦åAòyŠŒSA;÷CÞ€GWõŸýÀ/ôÎÁ—YÇ™O«Þ¯EŽUyj;Uì y<±W> = º]¦¿šíޱ¾ÌóA“u_Ð/ë/Ëqä›ÞO9gÝa…žïŒ'ô0äñìÐgÒß×çVBþg¾bʉ/£×Øz8” ¼âÞóûÆ?øÿVÅ7ÓøþŠd5ë—ª×ß±¾_‰ú sðq!ècOíǾ _È7ü,7ê8X΀çð§‘êAÌßgcßÍó~@ž ?à-ãüæ9óœñ5?à+t~ÄÍÑëà׬+öôäxÃÿ)Ï~Sİ~¸ò†~>©rÀõ‚og¢_é§÷>ŒêA®¤Þy ó|­Ûƒ> :~GÈ ì(ð°›™N ‡•:Ÿ¿ ç—çžßî… ñ<òÙ›ŸŽá×Gu>üœyô0Å>“rÌñ´rðRωž®r@èÐpüÜtöeóêÅ¿.õª›ƒ¾ç> =ĺÏqá2.ÁšêAÎ!Oô|‡§òÜŸÌ}âiþ þ~;žÓ~üö+¿éðÝ€Æ ðú„^x|ÕÏ%OÒ_bÐ…þçû=AýÏò/èÁ0ÿ#|7ÜŽúiåŸþóåk!‡Ýψc˜ñ2[‡ïÌ8ý[zР+ýRš<ÑÔ·[!ßÃ߇¸¦æ™ïEÏÆÿ=Ýóè=å䯵ö‹â{ÁÌ§Íø4ñ,øùñ:|7 Ï°¾Z®xèuzÌãŠßéÿe¼Vy¯Ø¿UùÉ9uá9ëŽAõïð{á³íêè…/=ã…MèIð‹èǞʅߺÇGz¬í—ôy¶[é¬ÃwÚ®º$|`¾<®ø”~ý¦áåÄh\Ÿãެè>ö3φ×oœ#»¡ûô“%Îr9™ñì “XÏx}ÂsÖ[á‡ãv±Ïšvöžwí„ÆkÎac×]NüÐsðšx%ØÀ/öy§#äϺ û™üWtkù‡ŸqJ ÎÓ〿÷yuïø:Ußܼ»®ÿÒ>•Ç^~áŽA}ÄKú¦ê‘³žÇÿX89Ÿ)<Å®'yc{øñ6ú¹¬Óm烯#_GؽDwÖ¯ÀüóœXÄhÎÉçy¨Ïj9ÓíFÎê|èį¶Êï×9®·¾ãy÷‡~'¡ù,rÇþϺ'ÇF]oØîM¼'â`°B¼%êãüÄUAöS.Õõƒýò+r.ã _Ó}ú)CŸç›zôžr·UîR]¯4~‡ø… /ßpœÛO'´^_ÎçÈ„×ûÁ§_CßC/G<]—ó:„ó™ƒ}Eô2èÌç7TÏQ”}˜É¹@½Çþ€¿r ½’òÓç¡ÿ.hzTùë]O{—à Ëv^ìKÐGÄÉ0=LÎõè=v,Þïë·~E|)è y#ye;4tÄ>=ízú›èÏòàœÊQOú1ÛΦ{âﲎ"®ßW!oª>èqبý™õ|vøÇ@û[ç·tÞ†aÝþhâòÄåÚ‰÷ÔüA/’\ñú$â1 C}ÞìëH.zŸû0õß«AÏ:äïèOì׿¾§õÅðã󞓇§Ã· zðýÀÉãýÊoÒvÐÕìw"_ö+—w¦‘¾ßAÿÑw*LLÛ¹Ù¢?ÁrÇñ}BnmÕþä9ø‡úì&îô¼ßåÍ»ç@ð,ÎG?€ACñœû½¡\ =ä¹¼gÙ>ã}È ûÅÑá»Û-ºw¿RîŒTžïx~PÿŸýëþÐóÍCÏJ?ÆÌ›ÛÜÁ‹ðÓtYé{žÏz:ìðe`ÆÉt™_ÿzÅ^¼¾Þè;ðeø7ßÃoE·³‡;|)ºqÿºÉ8ؾ‡N„ïÞ‡¼úRäIòzf!èg§ë'Îlè9 ù“~#¶ ãL9öï°›= zÜû'}ÜáüBÛYµ/oûÒëc:H?È%AåeôúŸ}AòBF>‹‡ºÏ¼›w:ýt8ÐyÓ¿%òžäynß…\Z¿oòXŸ ˈ;;ëqè°Ã—¢ðÿ-â3}XéÄyåwìýõŒ#v[0â§Ûïy]õDž“YC‡¾Ý÷ú¼ òÀq‡ãËú×JÝ×¶¿eæý¸û•ÄgÛîr¦Ãù‡M<€sa7û-ô5ìËgâùH0Îå{݃ÜA>‰ŽfÝÿ;|%º>°§±Ïôb¿‘ObŸ‡ò±ÿãó`øCGü*äάûßa‡¯íwü°âsîÛ ]ß1çŸÿYéÈû¡‘o“kÖýï°ÃWƒ®ÆŸ’û=½?Ü9™.ÿ4üÆðßÙ>¹ÞY÷¿ÃŸí7¾†ãËþ÷œKæüÖÚø½Ï?sn,âóú<̽jð:(òûÌz:ìð¥èÿ_Éï;²?I< ö[Æ'çÑFºGŽdXç£ÕsöS©÷½N7Îôyú³UîØþ¼tù¦±ƒ­…õ r(Î øÜðÚÎz:ìð¥è=+ã4ã'³ŒÝ yRý_œ„ý˜Ìœyÿð ®ú£ºïÓa‡ó3®1qÓ½O©sñ¶Ÿe¾gŸ{fß?èHç|›|pøGKþÌz:ìð¥èfo8¾òü¤×õÒÃßûqæëÜp}#ÁŒ>èù¡`§›çz½Â:e!äô#»›ã_`' Þq‹ð¿Y¼­ú ìi=oe‡s ÷ÿgù9 þ1Â{âæ9^-v7î‰/˜ùd÷Eõu;Z‡óYÏû¹ãü†Ãñe¨¸_MÞ#ïû«\Æ `¿4â„wûs‡ómç¿1Îì ÇW“c¥Ú›?|¨—í ¼ÇžpMïW»­ÃùƒÎß²¼¨väA—åö³Eô³Ðç(G2ä’ö‡l߯Oía·t8ÐëìÈiWŽü¶C?_Ç0ýeï?é{úÞ“ºÔásæ+ücíבñ>±_²¯0èýJÌçnñ߀oRžx*؃Xkþ¬O›õëÖ·ªçFÌ?íUžòYß²NFÿgŸ]ý°J~\Þo$ž0ýÉýúkz¿^ñÕùVXß»ØÅß¹g|°“9lôóŸ'Aèvã×v“~ë;â¬k\3þøDêyæçeþøßÅX§¡2¾ÄÉD?äÜ*ýâýeAÚK^ÆéBŒz'y£vô}äk·ý9M^]ö9ïÊwÌçoÔ~ÿd±ûÍøgàOh~øÞ€ïÌÏ9Ýo€G¼ç^ßÓ~ð<…nÒ_‹|ÐíQà… ãf|‰zÁKÖø¹˜nê¼€Göƒ¹)H<{ð„þ®Ç8®e{ð#xæ«I:_«ß™R¯òr8’ó< ^Œö]‹yä¿àxá8êÑêÁo(ýÈ·>Q~_aœ¾‰~Ã_WèílÐ;û]Œó½e¾¶‹Ñ_ð–|Wü<Ôžïâ?Â'Ó/øÇ<ò_çÅR½ðYæ•ÿ‹~í/¾nDÐSà ¹Žˆ÷Ì;úü¾]R¿ñZï™?ÎçC'Ð5ñì‘W‹QóM;gð<±œc|À+è“qzIyE=ÿÀGæ¼ßúޥ܀/B¿àæí¯ñG ¼™äà þy)¾ÿ4Ú >Aä€î¹Çn’ï‘ÛIÈÉŒCž0È5ðŠ£ÀKð?&æ ~¥èvÒßµÀè=ŽòÌ·ù»ÞS¿ó”P^ï/Çø3?ð{üRøîó)ãÞ@¯<§àý†+½?8Ï|ß1?W¢ÿWc^¯µh_Ò¯åPŒó¸ý _ðøøL¿¸7QyðŠv ÏeÞ'ÚÁxù£~è(ñ¼³œ­xçuô@+æ¼Rð3Ñ¿³Ñú ž_Œvs¿ªïé'ãa¹Ýj|ÀwÆ~Ÿyƒà‡àÁ÷´ŸqÐ}äYiâǯè?ðOø#zˆò/fÞcëmðkÚq.¾gÜ.ë=úr„{æ“v‡àEè?nøÍ¼€WÐ7ôd~Ðã™ë©âãÛÁø¼€_ƒO+1?ÌßMÝ/¨<íeœàÛÂÇ%äÐ?z |¿¹QàKêcðüâ [ä ôý3>ÌÏwÿðóßxÏ=|šy„¡§Kñ=|èvðwä²÷•õÆ}QxÜäÉB.}ãÁ8ƒ/_D;ñ£b|¡¿ä«ÌGÆuÝU¹¡^¦?â³°.a¿ãrJ÷ª‡ÿ~]Ëù{ÆCãØÐë49õQ|ǸDž¯œß(øÉ…xO^Ú‡‰'ðgÇcÞëžòðGµ¼×Áð ú ½ÓnònÐø5x†¾“ùsú¡rÐgØý(7ñŸÓÿv¢?G1¬S™ÅZ¿å”ׂĹÊ|lô?í“çjÿŒÿØÿƒþnö;úýÁWnÔø¿)ϼ‚oŒü>Mù´ãŸYÂÏÀsž#ç©9ÉybÆ™qeüXGÁ'ÀÇ¿ÄN ~gžæþø€ßgz].¨y·¾~ƒ·æŒcmŸÇþÈø¤žrz@?Ÿ3awþÛ˜_ó}ÏwŒóyðCÿåÿg¢=ðk‡ÇÁú)ã§çÒG=þûšÓA ø|&ƾA?ÑXß3¾Øèwžãå~%úa½·¶×ñYÁô5ðóƒxŸzÉùúùón< :³~ þë=ôÈ|ü©¶cb¯«ýòøø|™žƒð©ÝhãÅú"ò¸?ð úM{Á ž£.G{Ð_3/'zTÚY_E{ýߨoÐ󔿇1´‹þÒÞÌw½>>"7ÀŸÔ‹—£Üý‰ùô>€`äÙržyøÝÚ^uw˜äm :±](úƒ~šù~“œ úÊqƒ¾¿Îÿÿjü€ÿ¤ýüI{-|» ü’súa÷ð8¯Å¼ 7ào Á>~•™ó¡æ1ÏÁ §¡¥_³ð³9½­z"´ù>|üf½þU÷Œÿåžu!ü…y|/ž3ßï ò§[d¾mOVöã9ã^x%¸žTúô8Òèïi7ø_ŸY×Þý¥àõ¤þ /Úéuqí·ù 穇ïßiþø>ûŽÌƒôp×—1¹ýQ~)Æa#ÆÁöo½O>¿Ï¿ ~Âø|ÿMûGŒ›ù™hxi?2øOÌ·ì æ_å2žC§™o“ï¡/ìË´'í·Ë•¿ú»¯£½Ì'tÿϱîY¤|ã x@ÀøæuAèþëhø€öï_„n˜?ø(rŽùÿ&Æ: às¬Çv£þs¦Öc|UºiÎ/®Æ<å> ç|wc<˜—à[§\oS½˜ù/˜Ûëtç”Ój½‚ñ`âu¼ž£<Ôóeøô©qá;ð< ýÐ!úÑÑ.ô™¢ßàöYø-óϺb)îißbíŸùyÍ¡[æÃv}ŸëMø9û±ogºa>íß*Ý3ŽèËì·Ñ~ú _E?€½ô¥ñò:<í¸Ø…¡äø#=ç\-÷‡‰¾«ÿàçÄsõËzxße¾hOîÛ2_|þ²¿r]ßW=è+ô‹çÌÓ:–ßÖ¯*z¼ÁêÁgìËç£Æ;ÕƒžÆÿààûÔŸû‰¯7_°ß¼“_nä8é=ú*ô†~þ>ì+x‰rà ýƒÎ™¯«¢éK³ö;íPÃ:4ùj>¶4_#=ßÜ®rÃçšUõcÊ!·È«™õïNyνø\“Ÿ÷ÜoÕÿú_šzÄýœzöÕ^Êe½”Ëqážrzn¾xi½ƒ÷Q¿ËE{iß?©õz½¯~¸~Æë×Ú~—×8Ï/O;ôºMãn=;ØAàKâó™ø_àýÃÀíú~Ðe¼†}ÊåøÿNàÒ'ßçR~g ýêÞÿ“nù?õl×ï¾E?ï½Z.¿Ïø‰çÚíàÿª×zTÌ_¶«ÃgÃÆ_…urÿL•#“ýÍ7÷èÒÿŒGè¹äÏÐs¯¿>ŒrI¯Ì;ï‡hÏNà-ú7ëšê{Û¡„/IwÐxÔðyð;ìJôÀ}G¹÷jû=þç4þèÃè’.§}Œ?â÷Kq¯uÏ䀾? >Á¸E<íYãåi‡žOëõGì‚aǃo³~°¾~´¬oX¯°~eöQógøâ¢Ê§?ú·u~›¸ë±¯aìÛγ¡{ìV”[€oÁG΋H.ÚŸ;ïWUßu½¿©{øýJíŸñì–Êqî€u;vÖÿËz?tsw}üÜ爿ùÞ~˪¹•ñJ)¯÷®çvÈ-æ•}qô‡ð ±}yŠóEž 'ü_xùPã)æþËþ3xiÿ)ð^ãÏü¯ ‚ħNnEùÛÐå5ïÓü« /ì­Ð½ý,Á;½GÎa ¿§ éùc0·Œò4ùrù†œ¾tÃxðìê7Uôp¶ÒãîzVT?ô ]пŸ¢¿Ì~öØm¯Ööux2œœ«Ð8Ãȯ´[ù¨ñ½üe˜×ôÿÀ.œ~†Þ¯ÖsáYî{Û^‘þ/¬“ ìãäÿä?´‹óœ?®zŸÐ… ý<ý¿:Nÿ®Çðè¾³‘òFÏe—ö9Qø ôoz×ýbÔã}Rêѽýð2ŽªÇ|p½Òc‡'Cãéz×&o ó›~¬÷Ÿè9óǾëR¾c?|FÏf¿} <ÓOŸvǹŸçÏl“>i½Eû-¦Ë1ýºÐyGÿKÏÙw¾¢z5n^g1Nì^nÞV}ÌëMü>«ß§]ÆóÈx¢ßáðYŒë8úËÿx/¹3k¼<íÐúü|¥â™ùWÊÖç”C_áòº=ýc}DùÆ8üíÓÞçÿ Ñ£"~»×í[_l@ïÃ^¡v»^è>°ZûÿípÐCÄ ±=+óÂ1žð öÁÒ/LóáyL?¾¿éæÜzi¬ƒf—§ÚŽ%üâò¾åR½÷{ì0¶wj~Ðï%Á§¡[ð½Nxe»ÞãúÜü3ów WB<Ç®vð´ŸçÈ7Ö¦ìèÛµ]ôÏãÆxÁ· ã¸w»ðÏzÿ ~ãþQãOûà 赑÷½wÖxyÚ¡éf·òaóuÍwóüIàÁQðñ…J‡Í¹ƒ•:ŸSý(>ñ~ýï&úhïNýã—@¹Àg—‡n  è“þC·à)ëè‰ïÿUÛc<¦=Ô¿§ç”Ï#¿¢é>y~=.áÿk=ŽúÔþ¤¾Ÿ5^žvèy›6Ï̯ðØþ‰|B?ïžn}ð¼Iü_ŸÄ¼'ÓŽÝZÞÿ¡]Â?ïß$½>©ílÎyÑNè:ž7û¾A—¦·‘îS®å©Gp“zŒ/ß·£_üo¯Þ'½äó_ 6r&Æ?ý ¬ç3Ð[è妇À#ãÿ¸gÞ>C·ª~îuÐbàoø‰ù9ýƒÎø_лË?ŒvñýnýÞíni·þÓŒûî”çA  ð$é÷G!_Å|¢Ïé;.G}O¦oìô#Ë~黯Oíçÿ^o]¹Ýÿþ¹©v7ã>íù˜ôóÌþç:Ôt³PÛɾÁ¬ñnÞ¡ù¸æÑò{vÖ›²oy½ ¿'næ·‰“çR²}= z£þŒšvrÖá‹'ã«ùô žAçü/üÍ’8>5ã¶_åšÛÃ8üådþ> µ}üxòw)¿&çÔ¿§Uû\-ô8…þ:|9ØÄ×J;¯ñÿüFØ—¼ûñ}žïÄN °ÎxBì'^ þÈ÷ȹˆÓ0ñóÔ÷ÇÀýd¿ |FŽÕ{ÛuÑGϫݔc_{ûûA7ø•Šþ±ƒûýç'ç÷>ï<îÏóèmª^Í~v5ñÆiÖx7ïÐ㊟øl¿€ÀëU=ÏxĜſú¹!/Çÿt¿¢÷éçð½ÞÛ?NÿÃ?”/+~˜Þr?˜Ècm;:þ=Ž{(ºÜÓsÎßùœ2üE÷—ªÜ˜Ä8Wqê9ûÿàô£<¿DAñgÛ ðÁLôäõ“Îa6öþ'9ëaÔ tl?2èj\Ÿû+½~ó§_Æív>Ñúk{.ñ‰âü¸ßÃoÖ©}¿/Bî9NàÉòÆrmƒqŽï7‚n¨ÿŸïÖóëzÿûêdzíðÅ`¿yAãʼƒÌø?³ãœêþ‡º.pÜaÇa窿eüEh~aÒ³&çjô^ñµÀ‡I<ÆÐ³ÎU|³~†Þé8'º¿·.y‚\ªtîýPÇÃañ›c_žvÝ©ôaýNr§™ø‚ãc©}™_ùù«Þ#ßhç…7Ήÿm½ŒK‡/I7à§ýñ£!nü6ãÅï?èîþÏãy‚^Àçð?³ÿÿÐß ³ˆÖÄsͼÆ³Š¯^¿]Õwçã¿´ïïúžóGØ Äl÷¯±7"'Î7ÜyA|üFã{¿giýŸ²ÞÙ¼¡rør?-ú4q®ÔötørÐxq~'ñØ…7ûÌ‹æ}?ã‡ú>ç{ÛÕ#¼µü ž?úaÆÚ©te½ ûžã$«ü¯ñü³ ¾§ü½ôa•éWãñ‚NÕ¯sÀÓôwøs´ƒv†½ ¡Ç•ùø<èoÚþðHãA»›šŸ‡ãç³Æ¿y…Þ¯@:ªòÅó ñ·½˜u¼ôóñOë¼e\Uãö.ÕoNèsQõWæÃnÐYÏG~•ô_ôÿT¿ûù¤âŸõNäVøƒ›þ…M¼…ǵŸ ÝðõLñ³L»>|Äï‘CØä zÜ ÿm#oj{:|IºaþF1ÿì£óú‚ ¿'ë|™¯“=ð#ý&ñi«^Ñø=žÓólå ëkûÝßGUžq¹ŸÐüƒ~¨œýóù¯¾³?)ß«_gÇøÎV:ð{ô>ú³0¥œã‹Æ8"Ó?¾4¥¾_ f/ôýGøïQÅÏÆO+ù°ðÀïùÿn­Çó~c£Šon/ëïi~è]Éøÿ¨¶¿ñe|Àãåzß”§?ð“ÀÓôcðóøÎý§}‚”ç)¿»$íd|gvø»ò3øAœ´þ·4_¶C„¼6½Â wö­wºéðíƒM>ÏÈKj9‚¼ß 9Ž…õÛQ•C™?´ÃߨäOð9qуíâ*‡=»7û`kºw^HÕ³4~>ë~vØáïJ7ç…çĈ8Ã;»Þ#ŸkyÛÛÉ¿ý]ïò¦Ã·z ¿»ßm_†>ØG%î;ò †»?Ÿ“Çòèd»D‡Î3´?†ã @’3ı[Ô{ü„ðç@Î8ïbè{WûþM‡oô:$Ïq~F^.ü±ñK‚~°³Ñÿ¦øëtØá<Ãæœúp]ïñë‘ü˜œ‡¨ûžM>×;]OëðíƒÎ{Æ~ñ£Ð»œ²Ò‰ýˆ¦å#ßÔsüâ:ìp¡ýûøâ€ÿ8~ ±Oãs¸Kãzl‡CÏ»Ô÷=;|û ÷]>©ò£‰ßι@ÎaøK¥£&±ÖG³îg‡þ0ó Úÿ{Ù°úûÙ?5è;üÝðÓYéö´y‚Ö»9—ÆyÿÌëŽñHåXßrìºø«óè;ü¸ØO'oÈÙÐSØÇx¢úÖ*Nm?~ýûÕ>ì÷² »^ç“®ëŒôƒnüS—kûúÒ÷>Á÷/—Coƒ/œ\_‡§úœzƒÏËi^9oÃ=ûÎç ã‡÷Ó±ÇB‡è7¬ŸñÿÇo‹õíº‚Ÿ?‡nþTñ»‰—“ù«3^#ûþø9çy ðßtyò:Äçôâ<_7ñäœwäëp>àä|™ðûëWè¥Î«÷Ã9ßË:ù‹€kªz#>ùÓZïd]¼Š<‚SÛÏ9¼È/ï÷œ{FÞ°þø4þ?€¾ÐÙŸO¦ÿgi\nr¾]ßEœ6ÿ{õ™N7ó'ø£y^_M½Ä|YüØrÁqŸ„7Ðãô¤ÿœS½è+È+Î{-Wz|nû‘'è]j¿ßC@Ú3è;Úƒ‰þß ~èíL­ßÿ¡ÝÐ úiÄõ5Ÿ€ŸL‰Øáé„ ^×|‚WøQ!WÐsÞ«÷“øÂ“_£ž1Mø0zßA¯àkàùsûøÚèiôó¡Úþ£?"÷Xç³nÿ?Žv?ž"oø.ó“„<±xuäñ¬ñ¢ÃgCïsƒßŠ»¢iœØWwô»ëð½c)ð`±Ò…× ÛúùÀ>ú'Qß”¸™M?>ˆÿ…€ßèØUá“+ãrM~á•é‚x³à%tÝA¯ÐäÄ$Âøû©íÿ‘[ì›< 9€\DÏ©ýÈÕAíd?é/Ñ>¯ŸB²¾KùL=¬×R.!9ÿq·g>6ñý…ŽW&¼À«°'MÍÿXå Cè> >²^¥àyq*ŒÏKñßX‡{½v²Æ~ÌoAÈCè{±ÊåŒ7dº¢ÞÌ‹ðIü7ìܳƋŸ ½Þ‡o"OXg@¬ÛmGÓ<¯ roú©ü6ãz_‘ÿ¡—ñ¿Aõ=gl¾Í¾å?ÉWü¢þk¿Œÿè“à3ýã?à»Û«÷Ü#ÿ(ÜANAwÔü¦Çå˜8ÑÏ*õ9ª›šOðm%ð ùã<‚؃w¢çºX‡Øÿ¼Ò{Ç-6ÿè;àé vìéù×µ^뙎o«òŒ þ@ü=Oò1ãÚN}ú`ä!lìvŠ»Þó{¾Ìx–M\:æõaŒûVãó$}'ó.QÏ@yô‘m•Ósë+O;ÿëðôÁ&ÿ#ôðÏÊ̇ákâ÷M<®Ý¤§ªÇgœoÓSÒ)íØïúv‡§>8†ÿ¦Wºô1ÒsÁÆî½“ï¡É ¯‹ñÎxÐ)ÏöTÞÏzœ:ì°ÐM®W—†ãË~·¡·7ö&ôäÈ;ésˆ{ºg¿`‰ûJg^dz¾g=ûávx ×™ÐqÑ¥7Ù¿ù\‚NÞ9•ëMÙÉ&þ‰¢§'A§’3¦¯¿Tù3ëqê°Ã‡^g ?¦éMØgÀoöFúz™–oee\Îû3èØ°£e‰î/Õá)„^¿ ¯aŸå9úñ·ÈË:~·Ò“éêý'Øëu¿]éÇt7è=v„Ñø~ÖãÔa‡ÿ­±ß!:°œ? ëi†Ü@/“_•휳ÂΜûؼÇn¼£«]Þtxú óž 7~ |‡ïC¬?°°_¹ö³Ã¡\¹ßÖä{B®A¬o¶»] ÃÓsfÐe9‚_ò磀øù²îÇ{vgè)Ï®ÿgzY«ôšyŸ;ìð4@ë_èEÐÑh8¾šüx‡ãçö‡DNä¹0ô¹÷+´¼a¿t¿BÚ•ôÕa‡§ z½Îz~_¦è yþ‹~¼ùµÖ“ùms³É+»ëœ_»~Öa‡oœþ¡[Ù¯MŸè‡G'¿âr}£ñ=å³\#÷jyó£lOÞã7}’÷Z×¹~êû5ÞßK?§¦zÃ~èå|÷¨ÛaÞ%èùGï k¼KúÄÏ| |w;34õª½®yB?·k=îÞ“'§‰K?á3èǪwÖóÙám‡¸XíàöÇýds¨WƒÇº7þó=ûË*'=Ðþu+ªgáäòö§~ÒÇ×…®k{&q¡ÂÎrPë1¤ÿÆHõaeüŸ¢kö·g=Ÿþ1ÐçÅ8祸­ŽÏ9Òsüê°›¯soËU>¸^Îgâ¿ýa/á{ÎÅ×ðqèë íÒwŠ÷6ɯQÛm?sŸo@>‘ŸsÔŸWh¹ýRù ÙÃ>:%h‡o74^äyjðÿZ嫸q9¯ŸÏ1#Oô> }A’ÆÓÃZÞzûZ’GÄk²>(˜y9SŸòùfê!^íç¡¿á'ˆŸ:t}]ÕxÐßÏæ‚Ö?Ö„ð}ŸÖ=üžxdè)¬'®À[òižÓ{äÓJåÓ“<´!¿ 7Ç™â}•_›ƒÊ‰Ž‘¦¿ËÈÝ“÷æ¨Ê ã?ñÒ¡sêE/GýÄ]û°ÓÍ»­÷;™ðá|]¯#^Ø$>¿ž³Ÿ$yâõSÄß°þ÷^Å—8ëÖÇ kèqE÷ÈéO¦âÐNäâ—ñô/úGœBòG}+ˆÜ…þ]®ëiït¥_µ×#è7ðÙ=½/îáË’¶¿¡g¡AŸÈ9âmð]ÆM /§ÖMÖÇ +Ös8÷£›s+j?rÚÁ8ÑŸ¥è·ÞÏz>;|³PÓ<‰[ƒÝ)â@5z?úðÔõL±ŸMοª^ÖKñ]œÇÈ8 ¾ ¯§ísú\’Ê{¿íß;¹=æ +•þÝ>ôÔž§ð€^OÃOÁãíÀ'Ê=ªö¨iûŸy™Žø>î‘;.~}îé9x:Šr¼‡~¶êw®:£ýÔ“ô£çŽ‹Èó£)õB¯Ý¿é€I7‰¾ ‚÷|_ßšÁ³(ïzÁsäÉžžëÞå¶N®ùèr|Ÿç-¢^ÃÇшwb=ôaü'Ç‹öi|f=¯ïÜÔÎó±ÎW>6ëA‘Ùõ³/ò—xŸqL´®7`\Øw‚~kÄ_H{yî¿X>í©ÞXïyÞl«íéð^WD\4Û‰ðó<ð{ì²è¬Oà›¹î_ü9£zرȋ±Põxç+™ÃÿÛÏi?ô£o§±_}4ñlùϪî©:æü^æaÃ^qlßÖø4vìjÚ|êL—73¡ö˜ÏKš§¯ê|Á﵊7ÆçÉ…Oƒ/Љð?ò€4ø}±þ(Þ¯©öEFµ^ãñ{ÑŽ%•C®8ÏŽÊó>åtK9ï?©Þózžñ•¨±rÏøÁ6¢=êgÆA5ÿ?˜5½k0ó²Lì4šWð |ø4îÁ3ö“~„?éŸi~½ôx6þë|P¡ý)ð+ã'D·3â¤{sˆçÐ?ý@naû-ÆöP|‡öÆxñÝù)íàÿçƒnà7ÒKgGïô¾Ãó$¼[>ïÔOÓùZ¼×÷Ì›Çù|}Þá=ŸèEì»G>Óx¿×~½í¢Oâ{äŒø´ù-øÍºj§ÒSc‡Þ þü~àeæÙ ¾‹‚ŸÔzy‚~>‡ŸgæßtY¾}PÇÅøÍ÷Ëõ{ûÒÆåœîwžëž·åÚîYãÑ»¿è]k•^¼Îaž%/¼NÆÏ|Hÿyôÿ •C.ÀGYÿxv-ãwò}üp2ÿG¾E»¼^J?PÊAø—}PÛm|æ=xŒŸÐç•~X·øþÿQù\O^¨ãœq·3îìñè]ƒÖ—Ìü=$üò÷…ùÛþø=ø«rÐ!yÁ³ôûÅ>{€ü‹õ‚òfÚ. ]º>Ý#g?3Ïò þþ4è‰úO?¬üsÐe½.ã·Çú=í`nr} úܪøîzöÔnð»ºóªë~Må¤ÿXžÄ~½í Œø ÞÇþ‹!tÞRûoúaã|‘ÛïsžU®X>EþÜß,´=&ýéÁGæ;ù6x~ø˜yËù>ò¬ç:Úûùà'xyÙ'ö‰Êǽ¿ç2‰aœ—´~†½{OåÒ^ðI½7þÓ?ü- +è‡uãÍx¥¾Ç9 ¾_Ž÷K1>AO¾YØì¿­ïÀïsêyú©|óŽÞƒ^ÿŸ¢¿û9z"xˆ¾˜üÿ º¿¨{èò† ö ç™ zç½í!z>%>‡õ§ Cú­Å=û–Œ|qFŽ?hâßA÷#ý—ñ¡þóŠçÖLçŒëêÉôg¾„=Çö¾S?áð³ ‚·OX?Cÿß«ßë8y\ÒnÄ8ê¼5~œ_W¿ü>Ä:|?§ñÔyxÛ8¿ÈºüŠà畯{Vb†¸gÜ9×å8¹ŒkÅ ¡íôÒœ†¯gÞdèÎíyáÓø¹}ªÿHÐþ?ÈAÆÿ1¿È ü^6щ?À~ý€ïè½ó×~z^S®ƒ7Ô‡]3âæ¿4ݨ]Ï-G;˜Wè:J»¡÷cÕ^Öwð§ÕWêe]Êóôãc|>Œqçð­J';6ÿ¾  Î#îè9ç×öÇsïǽÿ™yç9ã,Õvdœ&·|†îŸƒ~ë^ëã±ó:·Ò÷Ì3x¿eÚ5êwÎ߈þDÿhoÚßÏÇÿÂïb¢Vú!®‡ëÉy£>ÆGr5õTÇùxÅý›ôÝüiÿDúÛüNíI{dîl¨Ü ÝÃτǖ“à5z@žogž™?Å;òýUÝCg赬á“Ìóý€—âC–7ð£s·‚П3d}-þ¿®çÌ?ý„ŸàG_äÿÁM?g¢^æåÏÑ.âP€G<'® ãî'_†Ž™ö1Àëï?Ñ+À3îÁ·°ûLìCÂcø#ýfœ.éþ«è'ýÿÒߌþ£GÓ.Æ;ú/ï™'Æ™{ÆÙq:/"þ’å|‹v!gã‰wèØÐ¯FýÈaðý=•ù½ðŠtÃ<ˆN›÷9¿ð+äµå£úüÇž? ¼¸ó ^‚ðÖIÐò‚8$ë1Ôbß¾q&û ÿÿJ—_ÕqèÅš§½ ò±íë{øeðï _Ð{ø?~1ü‡çÐ1ø—rÍñ%ÔNè•ñàÿáß9Ñob“.bá~¯×ñqñí´S5tã87*g½<Ôì§zV“ÿ¨]g<ºB¿T>ýPÿ¯H7úã2õ=øÏÿ5i¿aÜúyeÕ½I|¸\ŸG|+ÛIÎ åjü@° ÁÏ4Ÿ¶3¿š<ë´g«ò+ëñ—ôý¶ÚžjÿÆí_–ê÷¦«óAð‡åÚOËöÅŸÖv›®h§êoò_ÓOê‹ó3?øãÆx£wžz¯ÈtŠ\£ð…ÀoŸóæÔ žÃŽ‚~RÏŽy5DÄx:~N¯—¦øá”üx¦ÛÑÔ~ø;xýáçñ=ëé‚·ƒŸ¢ÿ#‡Y×Þªxߨ6b5Ö—üîoªÞЧ̇¡sÚ…\§<ýB/C®‚w÷Èø_DN¢G¡'Ø/Fß3ŸüÏö;•¿xE}WÔä¾ÇE0ü)-/à»Ø½yNé/ò þ ~ÜŽqa=%êI:ÞŽ=}™çô~Ç<£¿¡ÿ ‘¿>¬÷ßé;ú‰œDo€žÑ“Þh?ty+þƒ?#|{üåþ/cH<2âˆA§’«–ƒÌ'z.ò‡ö÷ ½9H{yÏ<'ð ìÓß3ïjÏ5AǤ]ª? èþʼ2~W?Ó®#~øÒûÞ»ªÊ9kãòt¤v!§Àð–¸Yà ösÉKïˆ_OâÛé?‹º÷¹$•ÛÒw‘Åxþ‹N-—Ñ¿ù|.×»ËÌC´7í´ |Cå¾xèI¯ÇÔoø}j«ÒOÆÑ÷{ð |…¯³^Èx³à-øvúIÜ=O¿—µ¸Ï}@ø>ãñ3ÜOä,ñ9Ágæ :•þâï?Q퀿­E;,gi7ô)|ýÅõ4ýwédº1~¢§F|ÑI<7AÚ;ø QçNöõžyËóZöëx Ì vEôuÆ:ZÏè½é‹ÚßIÜ$SØu¼¾†~ào’Ç“üܵÿ“8zžv8è-üûLè‘7uÿ¹ÞÕñnü2’ ¿¿âyOÆmê{Æ-ÛEÿVŸ¡—',טð.÷%cŸ­YG€—cœW¡ÏÊÜAøWs>¾ z3Šÿ˸ÓNðÝzŠÊ¯Öï’^mo|¨çà_æÇŸGÍ/ЃçôÿOó»³µ]iœ›Ëõ¶÷ãr9Á8Ùþ¥zôŸÉøB‚ÈÇ÷£WkýöÞÓýÙøžrüýàLýþeãÙ˜o!O¥¿6å~‹öäþúpž«°_» ÏE©<ö&ðžûô—`Ççñ¿ úû$æ)óÒj|›xÜ–cÂè›õèr'Ïþžøo3^ðåÔ¿ìÃ<Öþx} Bï>¿ü÷£h뜈ßáqâùy•cýÄ:ãb´‹ÿ¬wÐwOá?àzú2|&õsþw¾Qåùý8U_ÆI>üµ‰/ªç³öwì°ÃgòëôwÙªtæç{ch~ªû¦>äôbÐ#üdÿdyÐa‡ó›}4ä;úr9„ð°Êuׇ…n~­ô‡\šu¿;ìðu í5¶gŠ.ÐGñ] óO7õM['Qıé°Ãy„–ø_°ÞAî°žy§Ðõ>ä˜êÏø¡³îw‡¾lüH±;FœÉ9mÝ?>ÿ퀖õÒQ•g³îw‡¾½`W[ÐzºXޝI\ÓÐϦèiVyd»_ämœuÿ;ìð•èæ¶è‚}Ÿg]@/{Ãñ59—UícY¯éŠuSœ›u¿;ìðµèfe8¾ì7À~þ2ì3I³ôõÅÉrcr~Pÿ ü ÿÒ×7Î/´û®ØYhßvЕzÝ4}«‰o…àp\ϬûÝa‡¯E7È‘Oƒ>Ÿ!ó æz:ãû&Nþ}]ÓáüCÛ™ñoÙ z‘=Úrˆûˆ+mòŒ7…_þXŸõõM‡ó˜­/KÃñ•ñM?èwØãð7ÀߌçÛªwo\þwk¿ö‡]>q8”Ë|}ñq¥oÚëz÷j?›8ƪ?óB¦?„Û“yRwª|Ÿð/}ù+\Žñ=¨ò½™¿ì?rŸöàÿç2¿ñ$ÿwôÿqí|óeùµñBú‰Ç<ÿ3Îmx¼)ϸpñ¦š|л™ð¼e<ÔoÏÏnE}Ð ó›ñ°Ç'ì/»XÛåþÿíG¿{Á}Q—Ï8Øw¸É?O;¡ï˜wë¡Î?'ü„Ÿ³Ç“yŽóŽMÉsëûõÞygÀsðäiÕ ˜_ÿŸñXE/ˆù¦>ÇóV¿V‡ry|À7æ+Æ×ý=órûq¦ú5Šÿç~ëeðh»ŽGúQ7x ~&}‚à{Ôk¼Ù®ý5Þ2ž¼úkÎýñ\íñù=}gõ¥(¿ã’í^0^gòå&ßtÂü®Ö~xžÔ.Ï+í™/êa?8â&9GÜSŸwƒNÕÏOë8qÙnÉþYž?áyæÇd¼™wðDýñü1ß§IþÝsþLãâ÷Žß r´ãó›//ôžÔö9þLêýð³˜7ã×QàïÿUûåsŠÌõr¾‚òÈiè~ç8š•:~xÃ9»XŸX_‰<¦ÉךóVœƒ /x~Ž*OƒÆ³ˆÓjú‹x,ŽÏù‘b_©9–ù#9¯rSõ:. ô¡ç— W݇⋨7â•ØŽï|/©Ç¬¨óy¡=Ì3çp-oôÿ¹¯ù{¬ï9GƒÜ8}/ïÎóy«7j¿§œ_Y¨å=ÿ÷sˆvâFû¡èLôeeè™v9Ž€Ú?Jÿ™ýø^ÿG^oÇÿ¡è:ó$‚¿IçÈðn)þç8Ž*ÿ~”ÿÉ»íøBàƒî#/]ú—¹]œ?V\‘Ô{›¸`™¿ <„V<ž:þŒ#ã«ñ°ü%> ø žF|÷†™'Æ¿ÆçýÓsôÈ[Øäåâ|!ø*¹•öƒI|}Ïÿ˜_èÐyìbò‹~܈çœcg<˜Ë•£4ù‹Ø¿ üp9ä#|8ýT¬GŸO×ÓTOä×H…&¾øÿó|> y°õ`ßf|rÜÀ£ —ŒÛœç;§~/Õ÷Í|ÑϤ_ú“ú ï­ýhøôËÃ&÷AÓÞÈ|¿´ž¶Ué¯Ù¯‡¯ƒ‡‰/@Æ%ÛñCÍgø/øÂ¼e~Ѭ÷aŒtÈsð$õDʃÐmÆad¾Ägž'3Ÿj÷‹ÎC‡/'þ¹ÏŒÌ |~9ðìqå7ÖÛTÏÀü3¯Û1¿ÜoÅsþ N‰+ÜÈ#Ê«ë »ñ#@ äó“xÎ=ßÃgŽt~hçÃÚîMÆEímü"’Ï2.IOª\q;÷Ÿ-o:|EzOc|g‰Ç‰çÌÏQÅÆOn$Ý¥œÏÁðÿ?müohg¬Û2±ù<ð Ößè!À_£[Q¬Szüœ¦/èñùgýÎúDzÊS~0Ôÿz^·kûfgoÌýÐfŸ6ò¿ZïÅ?S¶|9÷±ÍçÁð˜veC𼂧ÞD½‰ÏÐëû‹©üt©þcgb}“þ⩞©ò¢Ùþ{|hã82{µ]{عà[|¯ñ˜5ž½mÐøÈ>óÆ~ëÖ»Uxß{Tì×X¿ˆ¸+^ï³Þƒ~Lº¿ÙŸZPyðšûOíÇn»¤ûôocöemŸë¥ý™×v-×zšöå/C®`÷f?‘õnø«{ÿºÍoõœrðý»?Ÿ;d´ {ûžð+Ïã_¼ò+âÞ›þÏÀô<ýÛÁǰ+yŸ‘ýkü6Øß±Ÿšê%¢ÚŸþC.¿ú ¾oò`Ÿã;Õ‡ÿaì ÍÏÞ6è}ÑÌ·3è9û˜è ȋ̗©ç®º )þqnÁrg'øvú‡AÇ´³É«rÐÉHÏïž ¿Œ·çc}<9[Ç¡ÉGŠž´(H^ üÉv£ø•Ù_`<ÉsŒ_r}‹vÁ§ ³Èƒj¿ú+ºž5ž½mp’<ä øj>2?yœ+ß<Ÿì7Àç¡;û— rŸ˜ïñoȼIÎ3õ#/8ßÿßñßõkø¾_ûßì'#Ÿà ´7ü‰7ïZ~©‘/Í|‚vÿø§ñŸo¢=¬¿Û|ÿ’ç :|1h=>‡Ÿ¸ä‹ñ<"î1üžõGäOè}A'ø8Ÿ˜žÛÿ§âwžÇ0¿¹`üÙˆöáÏ…¿2ç,‡ô¾Ï:ýtOt>³.z/Ƈq$O(ëCü”ç–qÔÝNA¾§>/ zÛœ7Àÿ‰þ §ðÏ»ÑåÍ¡›ð·¼_ÁçÀgÉ›f?%ü96Õù›ó`Ògl'Ëý[ÑMÚ‘'çºôÝaü¿©Œ=ù×úÞx·úr–úÏ¬Þ›Ï WƒÔÇ9 ­¨ßçjÿ]Ï!éq.ÙþÈQüc‘k=îÆ ðk§Ò…å†ü·›óÉ‘g‚zs_yÎüžMœý×ï…¯¿ÒùúÞë…ÑP.Ë-É'¯ÓÒï{òþ®zò¼¥ãnW:4ÿaÇÿWô/ô+üu§ð‰f–zŸ¨|Æ5D^­óÒáï=îà'úOœwnæ‘ùÕûôWÏýÄɾ¢êµ]J÷{õÿ“sŽzô“qKš8º¨?ùÏùúCþF>³ôSÈ8M~(Æu¤ÿ 'YG†?†é&ò¾¦ÆÄ?Mp¡Ê}Ó“óIvyóFè<ÝÓ¼=¬øÕäÅeÞÞ‹ïCD=à1çà x =nG½àã‡QºZ 9¹x÷Ö‘s‹!ÿŽj;»Ú(ú—reÚ~èPÿçÿ0þÖ?õÝ(þß ßÏóË‹qž5žuøjpâ~lÕyµ¼[EÏ~¨\ÃÇ¡×݃_Û3‘ý+ù>üêšx€[ñºHÿò½ñû†_½ù9ýzÏ“Ñ^øÂ^ýÎzäáÉÿïp>`‡ ¼sUÞGŸ÷ê¼[NŒŸ÷H0ø}×/Î# |~¤ÿ?Á×Í÷Á_ð–çÐÇöÉüÁ|yú[ýC7ŒŸÞ7që°÷a‡éòf®a÷l¡â—é&ÏÓ€'ÈáKC/”ƒ>ÍwM_Ð/v9èJ°9OçÓ¿±ï…_ǃõRúÅD[Û3íܸíé× ý±_Ÿ¡?Ñô½? }¯Ÿ¿™k˜çBñûÍrÄ=ñ}Äa›ì¿„þµUñfSøq»÷=0Ïô~+yhUÏáï`üEÞÄþ–ý\þ=!ÇÖCž`7¡ÞñgÿvN]õÄ:kÖóßá«Á&>Á·'ëÝÄÍñ}Æé£ÁdŽÝh4~nüKz°© ú ûõà/úÏO×ûñžC_¬_ðû‹<œŽ‹´§ö_í/ñ]效óðƒs‚øÛJÎv=m>¡ýb‚ÿMÓò<þ +éhâ'zúÉAÅûŒÛÄ©ù&è‚zö«œ´¼ã¿Ï€v4q£>äþ¬Â{Ë3Úþ£—¡î‡<¥a—îzÚ|BÛ›À—ð£jèfOåŸVühâsc¯Î¸ž±o²©ÿ4þȇ/â{ákÆ›ÉøŠÖ Ïó\¦ÿyxìï¦êÍþ?õgœ¤\'æ9þ{xò8wxº¡ñKø’ö­¦|æE‹óM~$Þï©þ]ðQ÷¼?ªzQÚ2ÎÖ4ûsÚѦú™åto;ßg\2ꢴ+ãg"·(ÿ4ÚÕåÍ\ÂŒûÂ9âiv²Œû•qÔ\~þ ¿¼¾†ï£žŠñ½.õIà£Ú®æ¼ÂN¥·Fþ…}¡¡SøŠÚÝØ×÷â>é9оãÖáÉùlüéÁGæ'ð`bÇÕ=|ìÊžÿ•ñ}CÔ—öeæ|P{Ü>Þ#G„×_x!½Åß?Ž{¾£^õ‡÷Ï¥÷J×¾ÝÐümo8¾L«zþ0ð>_æ¼?ô%ý¦‰3 ¢_Ç>cs®@ÿñ÷£¡\¿"÷à=út}‡ÿNî—xöêÿ^”ÿÌz>;üc`ÆI·¼Ï¡› ‹E•_ªrÁöÎOBGÄ`ßï=ÇŽuSßq>%ãòmÝðìVȵ'çÐ`Æšø•¨|æ ˆ¸×ƒ®´ÓÍzž:<]0óq4ù§Ásô6ì3ëzïü7º¿Z×AÞ_»#¼G/#Nñ¿´¯èv úþGìAºg9wUÏϨñ*Ø_áÜ>û+Ð=quØG¿\Ûk¹tñdºé~Ãï6ô~Ø÷Ãñõàp ­ß@OŽÇ¢÷ì‹ä>5q”î®—õƒëýöd}f’Nõ‘ß;ólaˆu™åôûàì¯ÿ€ø…è—ÐÝÿü¹ê“¢ËYÏS‡§ NÍ¿“ùWÐ×ÐËÀOá›í¹ägÂŽL|!â??S|ßtC$äß¡7BßøçiÐ=ùz¡è¹„£âRY!ŸØWŒ¸{=¾K‡'Aû-âçA¾×•áøÊó]Gf’Ç(äògš_ÙjÕœ÷º¸„¥z‰/e½òzŸyîñÇú$¾Ë}úú‡8š_Üî;üoØì¿Å~¹õâ×>­|º‰×ëäu¶éÃyÂTOÄ£´<ã"§]{¤çÄzþ¨¶«ÉÏýD|>ÛXý¥ÓM‡Ï ð ¹²]飉WÄóŒkÆ:š|¾ÊSŸyr¬†¼É¸b ›ÿü9þ/zkâ‚­å›ü»µþŒ#ú<Îz;üc¡×àüy÷d—­zÿçDŸœ¼~ó¹jììÐ-vµÏþC¬3^ÁBÐ=ë;ËÏ ÛÝzßa‡Çx‰ýùÓŠg~¿6_æóÈ›ÌS¶P×oMÜ)ŸË}ÕÿYÞíëóÿÓO#ã›ÿtù¼M¿´+Ö£Þ·þ ûßõ´O ›Äû½ñ½ßG~Nçy:£ûÐÓr_Éô€ÝáPÏ¡ÃÌW“ñ7XŒôösµ³9ç}¶¶/íñ–oçYßÄzçÓøÏ‹Ûá pЕqùŒ7ÐSÈómäÆQ¥—FŽ€¿#½Gb]ÄúCtÅÿÝ.ðùù<Ônÿ'ãºs=r«þ?óæùÿG]Oë°…¿0×7øz}Î:a]å#>Ÿéa?øøråóöëQÞÃ<¿àÿ#VÆåì7‡ü$îUn¿- ö;äôý„=¹8ëyêðtAŸ»¾7~r+Ãñ•q¦m¿…ÞĽÝÓwßÓtyhÓÛÿ‡N|Îõ{ü?üô §³A§ÈÖGä¯>_0Ý-öõM‡'Ð þgðßýÀ[Ñ× èSèMØ»ÀkÖíKÃñe<ü-ð;ݧÎÿgýÅyXäÝ çø«^}¢ƾ“é{ý9ë~l¨þk•tØá1^ž <ÌøåÐëÖ9”ÇÿyCþéïÆïmGÃŽL=¬k2¯@楻$¼&(ÿÁ>œáQè_¦üÃñ·…Ž8_þ°¶#vÖO¢›÷ïsÿä‹À¿ˆ+y@6‡ñåçÄ=ö·XŸ|tD¹C}Ïy@ìØÈ è‰ÿVû£æ ßÓë±#êÑýúªþë;üoØäØŸá<œÖï¶Û Ÿ›¸àwúìEù­jðz)ãh‚ï¬K"Þuæ…¶r+øõ9ôAΉþPõ{û¡Iÿ2€ïÔÒ:¼òÿ8Ç}]í¥^ðu»®û}Oý0¾¢é\,çÓ‰£àqøFðƒ #öû÷ô9ÁºLínæzî„üüRßvòwóŸY·ãµûÞÉÒëTôðaCóGÞ Î%Àç3¾ëH割ø>ñßõJ§¶C9>B¬3ξ³.¯Óq×£?*çõ9ç°ï¿G®±žâ¼_îg¢7.©]Ëúžz/ÝG!ò™xrˆþ^ŒvÞÐsÚ¡ï,ïè§èÄó@ýèmðäbø Ì|[è>å¦õ¨UÍöTøçt½|Qñ`bïÒ=v£Ï(O}Þßž!wXÀw±gq.üQ´k!ø¿àdÝžë=òý ~€œs>½Ïxà7v4έ_­r¥‰3}µê+ÖïgßÒ^ýç½úÿYãÍKã™øšÐbþõM迪´ =9€ß‘ÌøC>OôŸ ßàCæaV»Rß²½¹žCïáé}Ì'z½¿ÈÇ5•OáÈÖUëÈÍXÏ ÷"Ï[Ú•ÝŸô{Ã~n»Yí¯åUÄó™èýµ·äÜºç ¼c}"ýÊëkôýàë¶“rLøÓÄçoU/÷‘7·ñï:ÒýžÚ £á_@;‰«ƒù¡ž£÷á?@ý»µþô‹Î󪙇tŸGý¢Iײ»¸žÀŸ&ršòÈ»só-oàG³nÏk÷z8Œ}’FŠ}}ÇõDï¿ü{×wÂKê[^x½_åOcbÝŸô ½\Q¹õ¸w6µ—õ òv\RýØŸõú¾Ò¾ª·[o 9<;G=ãçþîæøý„ÎõòØý¬ßÍ œvži^¡õû ð·â÷æà}•Ö³Âf¼aœÀ[øî ݃‡‚NÓò覞߆ ‚‡×Ñ o^ŽÿÇ~:ŸºîSc}®ø¿Ö·°?¯{ÑŸÇ“q!Þ(üèÞυΰø;ì·Õ.ô6Û#ЛëwóÓþ8ëö¼v ƒÍ=Áëþ*gáÓæÇ¹®`]£÷MÜìÐÿÃ~Ë:yþ©ÞÆŸs:/Õ^ô%ú…¼„þ ÷Ûq¿TÛM|FËEè|†±û£ÚNó¥~޼Çn‡“ÿÏi\_㜟2ßÛo±“b–½8ñ8Ïi ºð;ô> t}ÈOÌø>GÜtìÄàãJÔq&ù±¨'ú^õà—q»‘cwÇ„–y'ô¨öØÿL÷WéŸî±Ï!÷ÐS¡Cð9}e^mø1t{>ørsNýÓ¼üx>å¥ûÁ>z?ùdé|û“ðÖö3ð‰õ|{ñÀ÷!—Ø/‘œkìÍËúº^õüB´÷H÷y¹B½èW+‚Î+4¾ŸØ×ôü.íR}¬ãÀoät_¸Ëÿà;ÐËP.Ëìê´“~£¯>>û>óé÷¬ÛñÚò½‡ùf¿=Ìö'AÖ¥á/²yÿ—1„Ÿ².@Ÿÿ.V~n»4tD½ðcÉ#ïg°Îþ^ðžê¿t„Ù/¿ð÷·¨W0ýB/D½wUOòèí̽Œú¯ uyŸÄŸj»g?ï´½½„ý–ðË·]–{øžøas.“8;•.?ËÕ›ç3¾´Ú—ùÚš¸†ÔŽüŸÊ[¾nw|ëðÕ¡ùé0¾ÀgóIžC/à5çH×çMüꑾÏ=‚ïºÏ|^ǰOòpJ=ñ_èLýkòÃuºéð5`ÆÓ›ä›ªr'ãée¼ö”+öŸo)¿tºbPyð?ÏEŽôz‚®ãÿ‘ÔõÄùæÌßa‡/E7+Ãñå|…à3ztÀ::ƒ‚ï›X«š8e¢C× }Äù–ô'kòÉA7‡µœýX‡Ð÷~¥Ÿ;|8ÁßÀûeá'ø] Ï%]× ~ÞÄú{ÔÊp|Ù?Ìùo£þ<_¿_ñ=×-M\Ëiy¨·ªœõøw8ŸÐxGÜaìÐÍHÏ#Ÿ”íbÜg|Kô8äTž×Ï8äÀCÕ÷aÅ{íhå±/Å~“×EØ ?Ê5ëñïp>¡åø±ñOç£,/ØGÀÿ,ò±{_9!ýÍû#Þ×W9â.Q?ûžèGU.¸}Åÿ×ôûrÆ!Ãÿ€óòO™õ¸w8ßp’ç³®C¼¿‚ÿØ×Çìß@'¬Gœ7P}zðž}ç=ÄOŒ}ÉËu½bÿ±<÷ÂþNî§àïÀ~+tä}Îñw³ÿçZŽ?åqåçi_óþ9~-àuœwv¹ã;Ö1ÓòAQ_Æß_ÑsçÑÕÿðCÇïy„žÆz þÀ>þgn:| ºÆ—ý¨ÐÓÀ3øt柎8FÞo :¨?öyüÜñ3õ½¿4è„sŽØµ³ž³b}…]ÿnìvo‰ÿm‡³^¯? {û5ðýݪoÙž•ò‚ï}Îs|YŽqŸö®°wg<ä‡úŽ÷ÈÑSîç ùŸÝ çÕ²ÃÓM/ÂËÍ1hò–MÛÏôú&óœÏ"ékOå§åïä?´+ΉåyËIüÑë›oê}žÛœwÿÛg½/ó¸ÒƒïÁÏíxÎþ ø ßÇ~yŸÁ÷‘àž ë¾[ü†~’nã¿®¹¢öZŽzHå×ÿ6ôþAÔ·_é«Ù—Z­ãärðä\ò‡ƒ(¿_Û‘ûÇŸýÀŽç:ü}a“×¾2à;t‘ëÊ¥?KÒ!øò*óÅ7þ££hÚg¿€ý€Ñ®Œ×Ö¬w"¿Áóä¡Ç/èisPùÔiOÐúYS¯Ï%¬è=ãþÌã†Ý^ã>küz[¡í¸èYïÇü3ïÒ“xÞø™e|×÷÷ô]èI?Œž›Þ2~lÒxø¨âµßKkö_iWÊUžÃÐó–«Üòø1¡Ÿú;Þ3ÎÏz2®Q¯ÆÅvùô_E.ÒN7o”n˜GÖýi?c~ÁCôðDøžv^¯˜wüÂB/I>Üø—íé?à;|:~ëÿSﯿg¿7‰çœÏDN…Áã¡ÿü?ûS޳^ÛßäKã;ô2èúÈ}q¹–Ÿ×skó3Fã?É<°¯ƒý¾Ê9aä ßQ~ ~¬žRä?s¾hêãÿ”ÇÞžŽE–› Â3è:ȼ6)oá¢óI¾¦ › }Gûð_ñ9[ÿ›ùà3¯­ÛE»ñ þFÆ‘ãùRmϬñëm…æ¿{1ÿŒ?ó‹žÀ|⿞²ƒÜŠü˜ÞÏÿ"¯†ñ¹Ãúù¶õßÔK?ö£½´o]tFýø#@|Gû2/ íûgÕ&r5Ú‡ßòx=èùÁ8=ŒzÕžÌ×1Ù—V{¨Ÿñ‡þ+}wøûÂFÿá|2ëLÉÿ&ÿ·ãÝU=&ýôÓ®æx+øí@”çýŠæ?ø§åñ Ei‡È¸yÞ!ûÙ|Ïþ.~á—r!Ï“ZÏ…®‰W²¦zðσNÏÞÓOü/Zÿ®hï ï‚ÏÍ¿ÞVh?ø¾ðÀô²xˆ^àóð*¯ykìºè%à͊ʃÇÔƒŸúˆåx¤r×ÿzÀþÌoú¾ÑáãÐ9ï#®§ùûB¡ÿ˜/@ß™oŠ÷ô yó4Úƒ<ƒþr½ö¤–kâOGÓ_àÍBûq1þè7™ocOóšûެGàÏV|lâ À'G*Þ¨~.ómð¾­÷ÎSþ/T¹a:ä{Öà|þƒ(Gý‹•îi¯Çþ¥}0Ï!­D¡øEŽôÁ'>ˆög{‘_Ø ÏpÖøõ¶Â<‡–x“û#}ùqÅ¿<3-~ZòEðŸ÷®õÂ{µ\ÚÁšó8ü7óÌ:Oˆî‘·»¬?‚o€×™/:öCs×t ]/Öç¶ ïÂ?v£Ð;ãÊx3/uoùƒ^9†³Æ¯·Z~ ÐÀCèê ôð ùå2Qûi·‹¼°MÜ™ SÓåGõÿM¿~ üÌvð=rŽó§ÛM7CÅã©û¿Èä.ý%^V£ç©ú§ù°Ü§>É¡6¢Úû³þ¾°Ù?O^rp;ùcÈ#äTä…mðù‡ÎàÿC´oO÷Ô¾Š>»øxg7þOûÃ~žýN~ãuãAyÞ#¯–ë8eÜ*·;÷yj¿=Œõñ?õ7ÛÛá«ÁñO¶NƇFÊ÷è=É÷ნ =Ëø^Åÿ't"<€ŽÔî }Ñ.è9öï3î­ñz†^ wèèŸÑïíðy­úýßÌšç™èò'ýûht’õh<¼ ½²ÃWƒ ½pÿ¤Ž¯ó΢O,ŸEïI~ ~þ©â¥åôÁ|ƒçðyö?À¯­ZÞôñÎó{ÇM=†õ8ö2èïCN"¦øQæþHú_ú¿Øý CöAùzXär?óÿi¯á‡ñŸ•ñý¬ñnÞa“ÿÎ~iU¶]Œ|/¢#¿gý)¼÷¾ƒø­íͬrýß> §ú¿/«<ìðå éäbÈð}|„ߢ¯=Ö{óá Ì7xʾÄ%}óý†ÊŸÿ}Ï5ï·À“Jw–àužýëkªúË|¹GüÃë¤<ßð4Æ“sÛä[ ÎüçRÕ·&vpð^ðë7=?üãF퇿wœõñý¬ño^aêÅžçп]2á ëé%iå;ó=ô ö§Åñú¿ûÂwøýùÀçˆ#`=Šö|ZËYïY=Úþ‰?OüÀâ?|/¾b:bœÐSñ ú5´?¦Êê^û“¾GŽPnGÿ§_×yp;¡WäͧUþwørÐøÿ¤Êmëà“ðÖz ü{å¡ øùÂÈA=”#ò >‚¿È)á­!v…‘îŸ]ÿ§ž„ßѾÐ_îýcü~9𾡳:>Æö+/êù7÷È ú%¹ÐØi¿ôFÏE7–WÈåó1Œ'z$ù¸Dg³Æ¿y…–ëg+Ý/Y?#¼|“ø2ð7ž#WàóÐðÀõ—ÐÇBü‡xlàúx‘çÂÈoþlD»Î~‹x<ämûmÚ}.IïWë½.â?Œr—8qyNi£êyÖ[Ú ß¡_ÄI„.ø¿â¹¾ µü¬ño^aã×Ý'üͽ>_ úÂ_YøÅåý¾áÛCA•ó¾»ôòŒ;@=™‡ÀÏ©çaà/ëÿè— üÀyGôüL|—ú%ãásÈ*‡=€üìâ'ãÁÙO€~PÏB´y²NíB͸ÂqþÓv‰ˆÓ5kü›Wè}FæyÞ°Ž…¯™¸‰~‰–W;uêy¤ò±h¼x¯Ökº¿$ˆž€¯S?ûíà5å¡ìè=¢ƒFÎAŸÈM䮯«ÙŸ„äymøëøÏê86ù·ô]žós=qîÏãý]êòæµè|f^ÀWžG ãÑnàÞgë;)o(ß…Ÿ3¯—Ðôá| ª9þ¤Mœ7Ú3ÔkbwþòÝ?£]«Ô_¿sþ¸££±?ÜøùPìþôã¼ ú/û²ô'õ5Ö9Øõ?ŽöÂÏ®Û5kü›Wh<†#×ó¼0Ï—CøÀ¼0¯Á÷,_>¨øÛÄ?“<ÉsÂSýJƒŸ[ÎeÜágß:ægkù&ÞôK=ßÔzÓž¨ßOüß'ñ{õ<ìÈÖï’_@?ègè}üº6¨>øàn´ÿ“.o:üýà  ºô=x·§û§»M—’~y-72þÏ~¥?ÿ[å?¦·øù×(¾‡tºéð÷ƒ©ºÐ¯¸O¿¤Æº9—wý{úžrzßøïQ.é1þ‡½‘v™n–†rå÷¬{f=Þ¾ÐzçÀë=AÉŸƒ »GC‚ÆçŒÀzˆuþNzÞ¬7¡GÑ]Æçò°gþt×ã§½U0ãÀ̬¬ã°S-Æzao8¾6Ç`b_¨íÏóo~~Mß«|Ò©×÷Ÿ]°nÞnzQ}' úÆn͹Ð}ê7ëñîðõ û…3oGàïÄ.¨çø­æùêÏjû7¯ ÿïÝ`çb¿Ä*ÿÄ_û!þ7ußà†ž/…¼¹ª÷ô‡ýX•ÏøˆÎ'Äßdæí`ˆ}v­Ÿ½o#¿¡ = ‚ÇìKaOVþFÛ©ùú¹Œ|S½#AÖ;×±»q>çä î/}âÿÉ~Öåø¾ÇU+`®gF7ðóóÂ7Ö1à7û*wõ} :¿³^AÏ£žªx¿®7lo–?çæ }ÝRïºî‘k‘GÑû´7Uþ;Áï±kŸ½¸Ã׃§%~¤Ïqãßus8¾¼Þ`¹d¿|Aøûڸ܃C•Ol½·|¾Æ>.瀠/ΫAœc€^χžÆ¹‹ûã÷¥n¨üÝN7otÍŒ^Ø?}(¼BÿÊ|Øàÿ%á-zœÚïu ô€],öo-W$¯,·  ô)ÞãŠ?(çÚ°Ï¥ß`Ä´€saÿë°ÃWÞÙ†>t?AÆ« ÇrhÐÕÄã9Ôó̇¨çöÿþÀºù†}yD;w*¦=Òú"þ†´[ßãÿ4ëqïp¾á´À¯‘ ø¯m‡¼Iü„Àcþ“ô}e6Ê?‰öP/úzÏG*wíPÿúyσïíª˜/2ß7M|#æç_uÞýeñdþ:9£çÌ{ÆSãÿÑ.ôúCû3ÿ!rüþW´GõdþÍÜß÷8= >N¿ù¶7øùd?Uÿqõü!çÆÿósþó(úq?:Iù‰üêñÓ^6~ƒÐæÅô€Æã:O—|ßUõÞ5~ÔCÔ>n'úºŸ·ê|®$ü›s‘粉#ú¸¶+ó-rÞf¼å”'nø›t“r*û¹0è:ãfž‚¼¿›<Ï®r³ÆËÓóœ ãÖœ[YV9äBœœÄïï ‹àwðOìQÔC¼™ƒŠoþŸÖ͹ø=ò$ây¿ð⸞_¡êƒþ×Lßaß%>üæimýÓhWÐñ–qe½ŸqÙ¯Éc?½¤ò׉ óPö  ='nÿÁÞþŽ¦Ëƒàû¬ƒÙWáÜφà'ôÇè/õe<€ÌsW¿Îé×»pħñø;ŽÞC·»Aÿ¢ÄåÈxr΃Rù€Û‡ýœýÖuÕöóž/F7k? 瀙÷#ï’ýšxŽ}<À_äö¸œù'xĈ¦ùC.Mâ±@oàqüú¯¾×÷w*Ÿµ]‰}èf¤÷ô7ãˆ@‡œ—Ôþå$Ž”ê[Q9õÇx¿fâñ¿ŒŸßÑý]Ýco†]v®æ8=“Gñºî¯@·1nÈù¿ýcüžr‡Yãåi‡7kÐe½yf>ÁŸ “I|1ôèL÷Ìô‚_ øv?ø>r?däz!爑ç [Ýóð¿aðOx9Ñ'õ=xˆ¿ 퇞ÑÓè÷‚ƽ¼¦½gj;­§nèùž¾sÞhÆ)äù¥iò;òº±Ÿ9‘3ª87Ôw£Ë›–ïðíÈSl=üpüÍ7ÏÁCæÃçýy/</ćó\²ç;óÂß3î1ò‡ûÈÏk|ïÁ3ɯÌkáx¡ôùÁúˆvñŸŒq•c|oÿÁWV¢ýß«\ÊoøAä+H{˜ù|„õ%ãùLOº¼y!y竚|Ïè¹Î ?Œ×Ð |VxÓÄ•_°[e>Œ‘æñî¾ðK÷™÷:…~ü÷IÈÑïD>é9vúÁÐ_¾®ãà}DƉ¸$àeæ„°Îá½äYãÿ©ö{]†\÷¼h¼ø®É7¯çëð ÕËó j/㌼_™5^žvhûÖ–Æÿ«eÝg¼{ðí?…—à ëÏû¸ÜWò»&óˆ~ÂwÂ{ÛÉ#oà$/‡¾/ñs„ÿ_ >-¼šÈ]äŠê_Õ.ëWÈð¼8èþ/v¼½:ývèœLæáq»"^–Ç¿Oäºä¥ÿÇûˆŸm½òë.o^HÞD>±¼&ó¢{á·í>o™/ù×7y]Ð;àoçã?g‚/ ºÆ½>ø"ð;ë~ú…\CÎA·{Ñž”CØ‘—‘¯Éãà|óª/Î!§ÞjúÊý Vb×4ƒ¯boå?ìC¤? r<çûsЧ¾¿ÙW¿n‡|Èóø´} } ¹¦öYÎÀœÇ&ä¨úvv÷Ÿv¡Çîé;Ú‡ßÏZü×ç¡õõ±ÿ‚Ÿö|\éÄtg>7ÍóD©üÓú¼ÃgCëß ŸvàïoüЙ‡Ýo1zþM”ƒ_£d>2ê—~ãrȃ=Aä‚õ7ñõƒhïJü_õû<éžuýxŠÜ¨í6}}]éÁzôøHÏ3 tù$þ‡wÔczû"úÇ8±®„þBNLÎQU>âñ[ùÄ<ˆÏÌçšïO y#¿rÇ£dÿ;Zä13ÿ„Ñ/–‘S1ïðSð†õû•‘Ðí@¾‰NÜÞ8çcy…÷EÔËwø7ÞŸãè—)ñS…Îû3Tz5DÿdÜÀ[è–}üÌÏÁ8¬«ŸŒó‚¿"øãÏãò''í“s!UnuøºÁß<ÿ‰‹z_àuø¼Êƒ/èQè<çôÁû—ã+õ‡ÜÇ6ߥž<§žÇºˆ¸I–7ô'×?ü2†wô=ã~ñòaC÷ðä ?ÚEûãœÞ檟xkŒ#z×cÝ‹n|!ÏIQ?t}~¤z#nM®›fó­WpÞùÀüÝ„§ßt¿#ØN@é'yÎ9ÏM6qЧЗГ¤å¹jCòæ"?€èMGµ>Ö3iïkò ·|^Ä8Àƒ¹¹4å;òì‡<^©ív=ü{ýH»ã”¸îé7>k|œh:Ð<4û5ÐÅPçÙëð=º‰<ž_Íúݧÿ ï¹òœK—‚ù§~ò½¯ †ß˜éQõÀ/Üì¾>g-øemåô•çIÁWèz‰¼6éß9YWE»Õ¿iy«&zlôOüúôüǺrÖø8/ÐvÔˆs1-¾Qç¼ ÇzNºÀ®Îsû]¨ž…èüƒý¥Ïã{ô0ìëGµ^·×ùôÚÃx¦_ôÝ×7/G7áGßøï²>^§½ËþŒ’yNÅxzô~ ÿü9†¾tøAûxžyÚ¡“Àkëg™—“zC_ô¹äeðI|&ÕËw‹U?jâô`wT½´»‰ÿ9-®óãáöñ½úc9ü#óÙg¾œv®½ñOÜ<Ò<[¿ïÁgÇÁÑ÷{‚àü~ǟ:<}pZÞÆ?mo8¾šõp®“¬‰>쟠rÈ1è‹}Æ\ϳús×_:<}½¥yÎ>陪[ïÂN!ý²ñg€^ø{z>z$û.ßTùfûBóÒá)„Óâ«z_;öÕã÷ÿæ@^¿Ÿþ1†È òûAgØ=¾ˆuå/«<þà+z¿vrû:ìp¦t3%ŽŠ÷“2îÚ9Ý+ÿ‘÷—îÿòßö7`}ãsÙ±^®ÀùÖÑöër¦ÃÓ Y§7t³Rídy~º‰îxkÿ|ß(vâA±Îa_fEp½ÓM‡§N;×Þø/"wr¿.ô5ä ë"⦱»!ÈúGrÈù:ñ×S¹YO‡žYw4Ï'mi\Îv2ô0Ç•:н÷ink}4ÒwÄGƒ9ýÈ¿nÖãÓa‡'Áô—òóÑp|5ç”Ù‡Ôzßû‰ì¢wáGé8éuÐúôh?ïºï8ëñé°Ã—øÓºLÚõùÈíØ‡Á¹q5èm¨ôãzØ×é=_‡sÓÏ£‰‹‹]»öeè„|ЕÊ=8®o2Îlo úyXékÖãÒa‡Ï¤ü¥ÐÇÀô®•áø²én•?ƒ®&ßárµ·¥?te9=~Ý×7v8o0ý漞ƒ¯ð>ãƒnW~ÒÄ3Œ8öüþ2ë~wØáëÀŒ‹êsƒä¹ÙŒ†ãË~êÈÑ Ÿkø­Ò‘étÊ>Z‡Îlìì¬ËFzŽßç°{¬èùbìE¾µü_ÝáÛ½¯KÜ üèxžñ{Ñ×ð‡Í8!"â×pþ{Öýî°Ã×¢âŒ, Ç×äÜ„ž‡¿x“ï‹ïÖC¿Û¼<~îÿEÞÞ;œ'89ï/ú ŽûS‘·(ópd\l—#žúÜj¬oÂNÐa‡óíïM««’Êçuñ®Yçã_´¦÷ªëÛ׫Þð#BͺÿvøJtƒ¿)ë™u­cX¿ý ùB\ÎGA?ÄG ?Ù&®ô—]Þt8¿ÐëìeÄæ\ñ~‹r¬÷¡+î߯t8ÑÓôãŠvºép~áæ0¾ ‰'Äù†/‚~Øß‘üIûõ$_xÝ·±}!âXϺÿvø*ÐxNœ4äŠâkçþŸ½m!è)óØGþŸ¾Ó὿!èýkýoºÖ÷wU}àz·×¼Ëpó®äÆŸ*>lþ]÷WC>ÜÖó[¢ôWäçü¡³»a_D?•|±¿ÿ»¥çäµúNðm×ïv#W~T}×ôügÿ¦ï®é=ù~2NÔ]ÑéÿÐ8àÏŽ¼£_ÿó—1TÈ~þæÝ†›7„GıÀþ‘z òÿ»[zŽþÅ{ü]ŸðúôSí’öGºÿý&èçFÝ·²>ÿG~\ }QûÏ–ÈCî¿ÇΩv¬D{øeüzüšþËÏzþ:œ 4ž€Ÿø¥/MòµÇ—é <Jòy0¾ÃO¿ ݺ&ùÞ*}X.Üÿ¹èEn/t‹}¹¹¦zÑ#É3ç<òè¡ß)Nšé}lµË~RÊÛ8ëùëp6ðÁ1œœ#šœ‹?w|¾‚~ÀSø´ô!Ë™ï3O¨÷ƒ‡Zõ»}üo­®'¸tÙ^!ùáxÐëªþ'û€ãß²þYïÄî }bWèy:þý\Ñp|YŽÀÖË—ôüz¬ï¯ ÿ¯èÞy¨ªžåõ ëùk¬›ô]ì+[¾]9$»ƒí Ø!Xç\üNÿa]¡¢Ÿ²®º«ïC÷Ô˹Å[~ÞeèuÄýª—ÙÞʾ“Î ÙnÝнì›?jv0ìVëA'à!úÖF•+¶#_¡ûãòØÇø¯ô8ÛÐ×°Ó}§z ã ÖEü¯ˆ¾TÏM}ܹSÛÙá»mgÿ°›!/°'aº®ûŸ„_ö?õÀm½ÿßTü»ë äø} —Àžð¹¦;ègj‡äÀæèþGAì¬ï¡ìßó½ > zDž"×îýr\ï¬ç¯ÃÙ@ã9ø>Á¿±Ioty½Ž‡>üm½òñŸtÿ¿þÏ*nÖz¼žACü!ìSû¨ŸõÈ=ä™Ú¡ýIÛð?ç;ìÎØ«ÑGÙÿÕ¾¬ó c·—üšõüu8h}m8¾¼ß‰=tYÏÁ“ÿÿQþ³ù¿ý2ÆöíÑÛoÖïÜô*ìGØárˆ}NìløðëèûõôsÞ¾ÝüMøü_¡wüUôþ€]‰ý ÙiìGè}BÝÿøºî‘ ðGô“½gñ£¾»Zù¶ýî¾³~f¿ý ù€>wq|ï}ÞãïÆúé|çϾÝüOáûÝ ¿üëNÉ¿ ¯ÿúË6ÿK;/ûÛÿ)È~š òåïºGoÿAëÖÃÑÙu÷üoSå¯ê9t‚ܺ]í^ÿ¬èÿØþKß-tyÓá ÐÍ”¸M–+ðÿ¿ ¯°çþ(|þŠ%û!‚Ø‹í]¨>ö1¼ÿRõ(·½ž}ô@ÖûØo×Ur(÷I9ï }aÝ ïÖû:ºÃ× 'ð}c8¾Ÿõ7ü›ýè"ýò%¼îÅŽ‹ ë`äÐ%AÎk³^ÁO†zÏ©t"üw>Ù8àÿA'ø»- åêþ)¾ÝÀ¿Ñc†ñåuµÖìcØ}>äzÚâø~ ìÄÑy$¼§áóƒm½?Ôw‘ßÒqCD/¶Oí©Íúûò}ŒýsêQ{Mì«çþ!ò¬ÛÓ:|]L9?ký…uû†ÈüCÀ³‹¬ÓYßÿ\×)è[‰õ vä5ÕC\wöeAìÚР롾Sý‹!µzp¨règwu½€òüWô7ëùéðtBøó>Œ—õ>ë•ñw¦üVX§°~ç½×ïÿW¡SäŒãOQîýªÏqÙ^Fý´?” ÝÓNêÃÏ:§½è¡È³ûÿèr¦ÃçÓÍ÷'ïSYÜ^‚B¿Bo³¾Êá¾~\éfÐåïˆs8Òsüñ+FÄO{rjCðl®£Xoï½®á=òñB×Ï:|º¹8…n°;]€¯Kßáyêeø{±/y[øïüƬ#*_oÖ؉9ÏÝ"_´ž·¾†^E½øÙc—@Ã.!釺GΠ^¯tÝa‡'ÒÍžÌ_­ÇÜýe YÏ ?°€—ì?"‡àÿà¿èÈëúÿÏÿyâzÂë{Î `ÇŸIåðWdýŹôĽÿÑçˆ>ˆ> Wúµ¦ò—Næ#o tž\É[Ûë±W Jßta_$¥Ÿo©üÕ³£zÛµ>ÿúFQÏÁ6|\å|O½O+¦}œ×õ"‡ÛÃÿ£Ÿ¿E9úÃ=ù9ùî Æï êç{õÓö,É÷§ÉóíbœÔoÏÃ( íßÊúêºÊïù§ù9ýÊvpOû3vŽßÑ>Ú >ª_ÎO ^%ž"£½ôSßÛÿèãZO£~í¦]šoÓ íÏölǼbïÇ?ƒóáŒõ0®9.‡ÑÚ)þçq>ó߆Þ*÷|ÇÑúý(ð‡öÐ>¾£}´ úßÁþÇxñ>æ+Ç=é¡ÁúsPÇßíç9òl¹öÇxÃxª¿~N=À_ã=íL:Š~»|Ž?x#üâ2]ÔúýüaþŸb^“ߘ>>«ýoƺ@/”;ˆÿ—é'ôz6ÚødùÏ~XŒ¯õ€sÜŸˆàïØ§x¯Žû49™ñú=oàõ󿼦t“óH9äHæå¦ÿM<Ïñc¼ùOÒéQí7ëÇ»ø ú{t2Þúž~%~ÁÿЧd'·ÿqáÕNÛɆ/úC¿Gõ¹íÔлðdo[ïYïÁgVk½Æìù·â=çG—5~1ÿ ÞðüþX÷Á3¯7r)èÚÿ%Þ‚óêÕùôþ€Ö}™Þz:ç±ñ{J<#¾ ãÆ~t#zcŸ®‘3Ì÷õ½í»éŸ²Qé©ÁÇï+ÿœØ•tÏüã³VÇ×ñƒXW¬^Šïœ¸¡÷ì'âóCÜVæ›v€ÿÌ_Ä…MýÏxÆ~+õ2¿Ì~ ÐEâsðãã)üµ?÷—•?{•¸QŽwÃøÂ?g¾;¯÷Šñ`üØ/&~ë¸s1nØCøžvû\µ¾c?Šÿ Ÿ-h7åY§¦&þeqì¢ØoÀ;Úïóâúãëûuþ¯ïUPñˆMœóX º‡Ð1ö&ì§´ȸa'¢]Ø“oè»û÷¬ïÙ÷ ÷þ|ªò7σèyb÷ H=ÎS­û;µÝ擎㼨Ü]æ—qÒûô¥ý‹zÏø ~]»:íá;ÎabçXÑ{ôË;µ^ó;ìrŒ v ÞÿÄ8‚ל3£½Ž¯#ˆ?ö}Ú5Dÿi~ØK˜çeQ=ȉo?àóðCÆ9AœèåËxOû8§ ¾àïäx×ú_ЗéãÓʧüœþáÌ8$¿`œá¯Ì|Œq§ÎS3þÎúÚÆUï}ξòKý…n2/P|ÕüœùEþ1?ð¹ˆ÷g¾IÿÅ?Ì×á+ðuð >…üâã–çá8ǹIóË€Ž/xNè>Ï'æ~Â8‡‡üÞuï¸ÓúÏ71Òo<^Ä¿£¯À—à÷×úYßœÓ=úçHÁ Æ™sŽ·x¡wôÉ#Ý߉yrœÒq9Ó‡ãäßû9ãÎ~íÍsˆà{¶“}Gê¯Ágèi|ïõRêÃgâ?à1ý/ïO¢ÿÈ_è‘÷ÈOð<Õ<˜ÎøóÑð¹Šþ“x>ݱþ½ªzàè;ŒS¶Ÿ~Ó.ÎQð]Äÿk∂ώ?­ñN}=P?í`àËgvpÿ±«îŒ¡ß3è…¶§¿GßbžÐ{»ÈÛ=û~måH¬[m×U»œ×ô‘ú˸i|\ô›vÙGŒ[å7Æoðf±ò©Æþ/|6^£Çœ«óãq¤__×öò>íßÆï¦½•îqnÄÏá{¹/Ä:>Ž]¾t>Æ…ö€_Ûµ~ãxI¿öê8Oâ韌‡Ý:ïn'ô¸Sÿë÷^_ŵñ’ùÝ®íó80ÎÙÏÝÚîÜG4Ÿ¤çô_Ñ­ëáûÝú¿W; ž›^‡5ýÌÏ“Á_Ž¢ŸiO]©tàöìE»Ó€ç´‡úß«ÿkü #Æ ½nAåÇ<Ñ/ôè|Þ«íµý:ïhGò‡ß?ÿø.ý0€j¯ùòz…îs_‚Œ/úü>E»ÿY¿·<¤ýŒ¯øºå+ãǸó_èf;úÍ8Ò߃§ä7ð‹Ü—NºÚŸRî¨þßý¦?á/ø¼|ä>¯òŒWÌkî¯Lõ³á;ð”ö"g?Žùaܸ§ßŒ3xÂ<×ü<_˜gÆ'åõó_úûs;/ÿcß‹y`~²?¡»½üïG¾;:™?¤þèï÷§•oq5縟 óÆo)õxÆqúõÙÿ…>gí÷®ÂÜÿnyìèé¬gYo¢Ÿ ïB÷Ðmä“÷:úà‡àåEç^ß,Wº4^B+zNý¬ï‡Ú.×Ë: } >H»XW`WÞzö·ø?tøÝØø?ãÇ:%ìM–kÒg7ï:/^¸1è~A÷ UnÙžÇ:†ux‚ž’ç¥×ôùˆ\A!?(¿2.Ÿ~M¶ûB_È“‘ÊCÐã^ô‡uy®_‘ŸÈ™ÝøþOÏ't¡úÿüGÿoâ¸óÿñ÷³Æ›wB/\ÞûJ•¯ï°¯ÀG±Û¯à¹éHõ9?€î‘[CÐSÚ;Gº‡®RïEÏûÿÈŸŒ§³ôF?Àoøíù ÚûAýOú§MìîúÎö_Ƴþ/çis¨ã=küyWaÚI_”ÎÌÙÅnô¤âwc_GïJúc¹Á¾~lÖ¹¬×Ø?K;<ò6ä˜ûñ<~”£]ŸEûÂ>éïØï‚ÞÃŽÛá 3/ßsËçþt|²Ñ?–„OÖ7„¿Eyø?øtO}+õ½éý=nzSyèVßÛ®žþ‚ü‡vaþºâm³oM°£îËMø”꡽–{ðŸ:nþYú}öåô„__~ay>cÏÝ <†obWc=ú¿÷³bvb×U}éßžâ÷]ˆO΃G½Ð7ëoûÓÒ~ä…꥞دËý…I¼ÄIÁW,‡U¯å/åâ¼—é*Öq³ÆŸŸ ½Ïɾz>~'à9øƒ ëèc#ê69orø^¡ß@—øÿ%Úãv„¼Èó=ø'{QåøÉÌ¿Kyöl¿Ä_ÿ#â"Ào £ŒOçóbê÷£*O¼Ï ýÖåÍ<ÀÿF«šOø-ë–Ø7Ÿäƒ }½ý</áÇΗ+ˆÞ·Xñ©¡+žƒßÐ%ôŒ¾·¢ÿà¿Éº‰õ»×3ÑÿOÒül7äÿôCåi?ãÌsÛÇß›ô<ìs=ßà+ó.<²‹}ŒèE÷ñÜt‡] á5=çÜåô_× ¡ÇA·D½È!ðÖy¨t†~ˆÞƾŒø»í”óùOݪ/ã¼sîãýTÐíªüÈôö^OÓ=þ oy¼‘Ó _6î«×3é·¿f½±¥{ô*ðbIøƒž!<Ÿøß~ß#ÀÛ]ÝC?‹Ïà#ë è ¹!ú´¾žB?¶S¨=´Ÿï‘ëUØ+ô?ô3ì`+µæèÔÝóÿAyúê¬ñè]ƒÌÓ —G!¾Änðmæ{1ð4×ðaðõx çû*}$ž6r€ö=Uý|‡žcº×E¿éä]Ä‹³ü¡½Œ r…ï9ŸöGëqÈ%ô±å¨ï³Únë­ØûŸvy3º>½pyæ?uðƒy¿x~ƒ·>¯Zù¥÷çÑÛS¯š‚¿›ƒÞ£/¦ß:|=üùüß<Ïœ~îèyÒÿUèŒv±¾‡>¡¯ƒà±ÏÙØC[ÆãöYãQ‡§nãËxKž‘žgh­ë3胜[ÿöyø>úvÅE´ý›rØÝÕëÈçQ:¡=è¹{º×y<×çøN‚=N|‡/B7¹~BŽiý1èryÎ-mŸL7Y'ÁÏñƒç?Þ„­éyÄËÎuŸõTúá‡çõnè{øCøG#—g=/žnhý =çL•MÜTÖ1ku0¡áï®î9oŠÝoýSõ ×eÜôœïÐ÷ð¯ÐÿòœŽûÅþèÚz륪‡rÍz^:<ÝÐü;ã¯/Vüsyá}|EOBÎĹaË!Ç;_yn–«9ϼZÛiýKë¾ózzR9·8 ¬¿X/év_€nX'ï÷$ìIƒ.ûõXÞˆ>¸§û5‹Öô=ÿÃq)šs©¬—h¯ã}Ýø¼¼ q¶WDå‡ÐsÏ×á³è>Œü`ݾ <‚/Ýd¼ÏA—õ½Õ¡\>ïÊã}ƃÕ÷›@äø]!â>»ÞÃø½sO÷â¶«Å>ê¬ç§ÃÓ 3>}ÆïÙÆWÚ—,?àÛ¬¿±ûJ³ÿNÄ'òú_xm§í:Ðþݪüg?”zÐ?C³~êz‘[n:|Ýì Ç—óçàÃ:}Yxµ1.çïFúŽýÅ12ÞcW8ºbòe]O4q<ÀcüS¿¾Ê7ëskºçù’ þ3èÐ/qý+º__tºép:ô¹È<ö§Œoï}žË÷Èð6÷GYG8ŽðP.ûMó=ñ¦ØEt|iÕ—ú%÷È7èe%ú{Nåx}vyÓá‹ÐMæS"¾gäƒòw«ÂgÇõ^*¾í䜎êÁކü >ßä pü¿ñ5‰£ŠWõ.è£ñOŸ“úw^åÄÜoâÚé¦ÃgÐMúƒÇðé8×`¹âxƒÂÛˆ_:‰##ºcݳüÒ÷Øñû†Þxï¸éúþ‰Êã_`Xõ5.ûÕp¾›}§ÈsßœKíûž>‹n–C:xH>‚<'ñÜ&qÓ…ßZçd|´ÌËçxÖKú»x¼¢çÏ?ó!Nâ åšøYë:éÿƒ}ûI³žŸÓ›¼•ÜÅ'­o€*ïu¯æÃ|1âP2™§±‰ùÉš};î£à‘ßóß8<-îê0ÔzÜÞÜߤÝÈŒ‡üðôCp}ŒËVýÞízãå2Ï]Ú­ÓÏùÖÔÿœ8˜ŽaÆÃkâ3O{‚‰Ç™|Åߘr‰ç”ÄG=<áŸC½¼ÿñ°âAsEò¤É;H; ÷ˆoI}Æ7¾Þº|àñ4èv3Ûµ~¾ïÔqÈsH ?ȸ½|ÿëz|Xÿ“õvx2lâu¡oÃÿ3.%öŸKÔwÀOž?Çob~X_A§ú~­ÖÃüz¿‘ú ËƒJO͹۹ć?òì[DPë1ª¿áç+uܸž;ÞøSÒnÖU˺'ÏíÓ{ÆUÏ¿¹ÈïÚœ[‹uKŽkŽ÷¬ñò´ÃMÆoUãGüø<ëWðVóe»LÄësòò`"þ,ùf’_‚)_ÀsìÃäÉ€ŸF|¯ëuÞÙëyŸw 9Êú†}µÃôùã}ïõ½ê{\ñrêx+¿YÆM÷~Kú8_“î‰çt¾êŸÝ|"ä¾Ë3Nä§[Tÿk¹§Ì#|ÿ©uáÑŠÆ“ü$,h<ÏÅü9¯³Ê£§ÿ_Ä=yï.†^çü–‚7 #•ƒNгȫ¶§{ì¿‹Ðð<@’Çú%>v£Tÿgøîw‚Äs¯W¿°³¡·^zݬ¨^ÇT; §ŒKHŋЧÞ3Ž™þÇ~(ü…øž×‚n¶Ôæ ¾øí‹ÉÍwNòõiüÀGø²ã-é¹ãÉV|šìg£¿é=xEÞBü§îÿ2Æäzà Ýsþ|弈õ1AçÕ{èà;µëiàûíÐOðg¾øž~Ÿ8OðÆ…ñzž¼­Õq³ü"Æ<çè¡Ð)ôûú>Wðy#øÊÇy!Ë#øUÄs›5^žvج~øy<~È!ðyâóñš§È_h¾ÅzýÉçY¯@¯ðaô´‹õ;ÛÀ¯ÕÀ?ð=…ö ¯Fõ½é :Îxjìwð_ô(`®'¾©xÙÐäÈäÜ›ê_úÃû)yLro}™òèwÈ)òÒsÎA|îÁ¡žÃ?®vyóBt³/<Ú…ß ¿ÀøþUtÝm'ø.üPùÕÓÞ~`Á¯mEnAäsŸìs¦½!ó32~SòØXÓþÈçíý¡´s2>ð©3ϦÿÇÐøÞni\·+ždž4ãûkà+ëè|„?3_ÈâWPü¢ñ‰ kð ?è>èÙò¼þ<úùk2Nºíºà›¾Û¼!˜ñqõÝÔqVûš|’‡1~ð=ç²<:ò‚þ3oŒÓB´>…¼F>'=v8e>G¿¤ž‹2¹éçAgOê|f^NŸwgþÃ+÷C-/ÀsÞï€ñ<΃Y.%Ýä¾:ÿ§Ÿ‘ŸÖíÍ<ÄÒ·¦ŽónÔK}GzÎøE9î“Þè÷BæÃzï•>3Πëß­óÌjÀ¤‹”#ì×rn”çÈ+ï'tºépþa“‡ ô6ðþr¬÷8ô3èÌ~Bª‡ò×:Ýt8ÿÐr}‹}bäÏÒp|FÜuÓtƒœAaÇÞSù{¿ÃY÷»Ã_‹n2_~¬_xžùàþtÅ>ªózˆ~òÜç—]Þt8ÿÐòºÀïý úAÿÊu?z^ú‹ËŸÏöü§ÕN7ë~wØákÑMäݱÿªì_Æwž³¿”qR?û6÷KÃñ5ë~wØákÑðxóJè]©¯¡o!?F*7Bw|>‡œb=¤zfÝï;|8è²øsÕŸšónè_A?Sã³±Þ¹\ßϺßvø:Ðvfð=Ö릧ۡ‡A?ßV{™õ5ìqØÝ¨g½ûÓt8ÿðÁ1ü·s·Ø‘¿rzÁn}®¯o:<ýÐû-ÐAÆßù®â»¿[ÕsÖýÔƒ¼Aþ ŸTÞöºa|ÙÞ@}‘_®ÃO34Ý€çŽÊº%ô«ð+0=@oy.z¥–·=?ÖU»¼ép~ åø‹:@äùœô€®ò<(ôÝŒï¨{ô×Ý ÃÓ 3¿ÙdFøŒ<àùÀoäÏZÐr ºBnQÏõÐçgýN‡s½_“û“ÐÇý°#sŸû•ä_Èu ñmù:á?Žkÿwûs‡sçÈù¹XOû)ÎÏ g ã«9×–yGâ¼€ÿ‡žF}·»¼ép~¡éçî/ÿý`’ç)í^a'³ßÏÓ€rÐcø©ÍºßvøZtƒ\p^øXç@8ié'ô$îÚÕª·ÍºßvøZtøìüVÈ è"ÏßàÏI¹Û±°²^×åM‡ó›sh‰ÿ¬g¤ÇY.9¡èÃö7ä~<Ãø;èë^÷Gëpþ¡ý6±`?C_ÃŽ†ùjÈô3Ö/߆¼‚.±Wÿ}ü|Öýî°Ã×¢›<ïÌ~æ…CÎ\Š{ü†ñe:ú¦–·ÿZ_ßtø@ëWÐë‘<§É:ÿë°pÌ}TçuS½=>G‡s ‡†ýOô©¯ÿ3žíÇAÈ)êÉó¢|÷Eý~Öýï°ÃW¢èÁùÔCßb¿r#ô7èý úƒÞxNý<‡Žú¹èçZÏ‚^V+^;~v³\çz}aGHºÂ®çy:ìpawƒõÍýáøšìçèþ*t çØÕ2çw¦ø§ÍºßvøZtƒ<ˆý”ÍŸ~®û/¢ç &^ïÓúYœÃ™u¿;ìð•è…}íר>Ìú%í_à}úeÑ÷Ò_'Ï­­×õϬǡÃ_Šnò|æÒp|5çÑrr5¾ƒXׄyb_S=ØÕ.öý›ç6ñgгðkf}Âsò f¼AÖû«ñôÅ9œ‹¡ÏõsÑÎ!´aý@O¿Ùå9~šßTü÷ºßëÝCOÄ-ÄŽðÓz·t8wÐ~ÌÈ ü‰ˆý9óI]ŒïROÀíëxþö×N7Îdý2èjò;eœ'î3^ÔŸ+|°~‘¿Ãö†nîp¡ã7A™‡} ûØÅx, Ç—!û§ÈAÏ3¯á§}}ÓáüAË‹Ïí—)úкäÁñwÿ–Oú‘ýÌtج{Æ0óáö<…Î#|°7_ÖÏ‚ŒçÎëxÏwØÓn½ô–ßKï›õ8tØá‹@Óø=Œ/¯_ Ö!7+ž{½/=Ëzõ%ÝyŸT°Ÿèpáæ0¾¼“ç°wq®zAÿb½O¹ÌßéýÑ `_×t8‡Ðë’³¡G] :¸t] aæ9û§èaƒê…¾Oú߬ǡÃ_‰~؇Ä? ½ŠýË¥áøjε!Ÿ 'èzL¹ÅóUÝó;z`wÛá@Óò"ý/±KYñÚúå3Î tƒ½ õ6ç;<_ÿ?ëqé°ÃgÒ ò&ó¡‰Ãɺ&ìΦ7 tuUÐùÜ 7AêÃî ìëžçzŸ&óÞ€Çø¥A?Ð~šÈèŽú.„¾‡\ËxžÐÿÓf=.vøLºA gáÏz‚¾Ðßa_¶¼‚n.†~6¨Þ»‚«UÍz\:ìð™t#üt™¸GNHd9ïÛDžO?G>eœÅÐïdgxp8.7ëqé°ÃgÒÖï¾Ï<¶¿3üÒÖc}’ë ävüÓ8g aÇßvºéðTÃô³Ý:nð/ß‘ç‰ï±S³þ¡ž!ÞëþÁHÏ×»t‡§âŸfºÉ8ƒî3_GœpþõC•ÿ2¾§^Ö1yžçR}>ëqé°Ã“ ÷û‘KÃñez‘že9p9ÖýèsÐËžÊe\£þðp9­sf=.vøLºaý‘ç/ƒnloæýåŠç“óa/³~¦çÈ™Üg<í³—;|&Ýd¾här|ç¼4ôþ/é9çkBn4q<ùŽrÈ9ô¹kn:œ_èóÍq~Ùt•ò$÷9“~/|¿å»?Z‡o´œø2èü‡.~ÇÓhΉBé× ¼;_®_çfÝï;|-ºNXßßý¹îï`÷‚ŽX!?ðÛ¼ªçÎï)ˆßNÐå¬ûÝa‡¯E7Ø8¯þb“8걎ɸiøç@/¬§ðG»Pÿ3ë~wØákÑ ò?iäþk_Äúf5Ö-Çz9å¡Ï«<ë°Ãy„?ë’ÔßòÃgÖãÐa‡/ñ?{^¼L¯g®ÝDüZ׃œùsÐIÚ¥7:Ýt8?Ðþ4È<÷Œ^~c‡æ9ëîÓ? òÙø>ö‡f=vøRtƒ>Åú%ãÓ qÝtò]•^Ïðœ{èí¾ìq¬›øîb—3Îôþ úrÂû+zþ·ý1ÌuÊÒPËù<[ÐÇÇñöIßïò¦Ã·nã«ñ_F˸Ír =ï¨;zÛÅîŸÖáüÃ&>-£·A'ØÐ×R¯£ö€³uýÓìû¬ÕïfÝÿ;|%ºa¿&ãØ^ˆu ëè„ò¢'ËŸoÓ=ë%ÖC±>šuÿ;ìð•èæÛŠÿÍó„¿Æç¤ÑóV+åsïçôx6Î14>/ Ç—Ÿc7?2O”×ý™?'åû;Ô‡žv©ëiÎ/t5ëøÏƒDW^×ä½è…}Ÿ‡z¯õÍ´8m³î‡¾ ôþ&rz`Ÿ¹r±–kô/äÈù¸ç}äñèç¥;œgØÄݼZ×-›·†ãËt‚} ˆ>† ú»t…ßhÄ»uÿ;ìð•èfi8¾|<9ˆýNè94þl"—X×Äþi£ŸQßzoØa‡ó¿à»î¿Ÿä½µý+ì¯Ðô‚ÒsÓtÓã v8ǰÉ÷ …}Øt•ç9ù^~öFþdüuà×]Ît8¿Ðû+Àãç“|œ¦›•CÈ Ö1Ð]æÎ¼ìãbô5ëþwØáë@Û÷†ãËôúòÂôƒ¿'å±»¡Çýz\Ö›ñt»¿Z‡sM7£áø2~£W¥Ýù‚N¬[\žõëìu_Oñ÷ìq£;œ#ØäSƒÿ/˜þ5Oúú¸ÒEsþ†zãܨåØh8¾f=vøRtû“x´zO¹iö5äQœS³þ‡<ºªïØ·»ßM‡s3nºŸcËø6±iüq ƒ ï:ÿ{¬«úùéçºr}ÑÄ`]C¼ Ö'™¿c1ÊSÏâzC¯ëë›çÚ/“uÇz•?¾^¬ökÛ™¡›ëó}Ä4]v{Z‡sm?þn8¾6¯Ç:…xè]èuÐxŸy£ø¥ýõe>© }}Óáü@ïÏÀÿãܧåÊ·uŸßþ3”‡n"Ÿ§¿GOãØç »s]Þtxú¡ñ;ó;}ø}'ð[ôeûôrhi\Ÿ÷…ÂÚt×ýÕ:œ#èu9û÷È Ö;™=uŽÏ hÿ:bózÔç¼¢'ës³;|!ºÁÿ¾ŸtÝDüÓ ò'Ï?G>µ†Î–†ãËtúE—7¾=pÐey³tÄú„¸ëÐùÖ°+ ’¯ólØïþº?†Š»>ë~wØáë@Û»2?û Ï‘ØË°Ã] û4ôs‹õÒp|Mò²Ÿlwè°Ãy„›7‡ãË÷·BΰnÑ9jËÖ5ص¡äþ;ØÈûÑóátøÀô{±_ym'àýgAW—BîO yD~\žßîöçZŸBOÿóÜ ~fìÓ°J=Œó;zþ?TÿF­wÖýî°Ã×¢›Œã´4_¦ â¢A/ì÷äy6ÊãWŸMžUý³îw‡¾ݤÿ3çFÃñ帇º‡Î ôµˆÕÄ]£Þ½q=³îw‡¾ÝdœÛ¥€ÚŸ±¼Aþ@GØßØ÷#nNÆcŸu¿;ìðµè†}ìËÐî}n†uÏbÈä tF}ÐòˆïÃ~×a‡ó½‰Ý {~Ìì× 7XçãþÐþ5öÆ×åL‡óý‡Ÿ+½ü­ÚϼÃ> t€½{ôrûû¤º×þϬûÝa‡¯E7Èå‘ösô4ìfÒ«¼Ocùöhò„²^J¹µ¹y\ϬûÝa‡¿ ý OðÿÇ^†™sÐö1üÐÏX¿PþZ¼—_û ³îw‡¾Ý _>º¸+¼?òù±t’ù(ŸrjµÓM‡ó7Z¯ò|‡?÷ùï—cÝ‚]¤ÿé¦ÒϬûÝa‡¯E7¬÷ñGß ügý¤ÿæÅ  ô9ìt÷~×s£Ê±Y÷»Ã_‹nîÇ×Ôüœ¬[ ôºo§ÈöoÐïþwAì=On‡olòx:.tÐïs_“óÖËt?¨<ûD|×ã§uø@Ë ÎÕ`ÀNp5è½-å ôÃ>)þiøUSî›N7Î?Ì|œøsæyûyrXïMgøß ª'ó…ö8¾Ðþg߯ºåË“é¥É‹;èý’ ú÷)o6º] Ãù…ÞϹ¸š¬G÷oñш<Á¿€ó7¬¸ïr¦Ã·6ûøÐ‹ünšõëœ ±n¹ô‚¼Âž€ý¹ûuvø@Ëöm.Wú°þÆ> öh¾ƒž?ì—bFÃ.÷·N7¾=ÐqÁóÌ+]`/c‚_Mêw”K;5ðJ_ßt8ÿ0ãLâ¡ ï—ô:Bc߇ïÑÛ6B£^äPß¿éð-€^°nÉüçã=òèZ¼‡¾2îzÞÚíÎ?ôþ q¡Ö;‹!W¸G?Ëü†wUOÒþŸ=/A‡o´lZuŸïÃ6~ZÈ©Ì+ý7ù[c7¸Ú×7Î?´<8u>vÖ)i'`Ý‚üÎb4óè̺ßvøZtƒ\À®], Ç—ó?íéþÏSè9£ïìgÀþ衞 κßvø»Ð òd̼†<‡žÒþ=-E=@ä˜Î!̺ßvøZtúf#ô-ío:ßTæÅM5ävécÞ'å}Äqï°Ãy‚֫зœG-ž ß­§E>ÜÆÎ–ñ:X?õü¾Ðx#è†s™ynüçžòì¢ÏeÞCìÓŸw9ÓáüCŸ{f߆}ÉôÎ|È‘Ì3Àú%ýC]?ëpŽ¡åÈÝáø"´ßr»ò½ŸËº¾‰ÃÁþ qn®ÄsÊ)Oè¬Ç¡ÃŸI'W…¯œȸ¬c Ö'ĵA®à?@\5ö9‘[Ð?„ »Z‡sïø¹ OàÿÄ“sÈ è设'ß ôƒŸgæóä?ü÷V­oÖãÒa‡Ï¤ä ëèãrègßÇ—åÅ=•ÃîœçkÐÇœ_Z÷?è?–~jȑոG/C>EüŽYK‡žH/ȃ¤í;6û*èg¹ï’ù¦¡αê9t„}ÀöoÁ£Ã9€¶?_ ºa“ô„½í¯U.4ù=/…üNœ7ìrÔÛý:;œcès˲{ù¹Ï9‹®Æ¯ç±Á~vWÏ‘Gè_Üó=tõøi¾CÐzÛý_þûÁdÆù¤u¿òQâ’ç§.w:|û¡×ùÐþ9Èô2ürÐË®}…½aÖýê°Ã7J7Èèå{èg8¾,O ÞcOÀß;A·Cwø@Ÿ»ÁN€= y‚ÿ û¤?èÞþi¢+ëm]Oëðí‡>‡†Ü‰üO¶_C'«zÏ>ÑÈ}¯Û£;| ûžöoã'ö5üØ¿Ñ:Æñ ;ü V»]­Ã·²NtYÎ`?s<É•³?›öêû;ÝtøöCûË׿©ä‰`G â§oz¹¾Ÿu¿:ìðMBëgø¢oMóëäœôôuèsýüM‡o1Ìü6Ö»ÀÞãËvçÌ[ù fݯ;|£tƒýŒuËýáøÊýKÇï Žû¡øsÞÿeü¼ÛÑ:|àæ0¾ì7e|(Ë•CŸû:ìÓ²GϺ_vø»ÐGÚ“3'vä;Ãñåûÿ‡½w[®êH¾~§[-Ü´[FX Û8Ûâä>ühñí;?Ç~?À÷ûö øŠGàš+Ý)‚E(‚ uÐAˆh¢cÿ[küÆrÒrn<µD®›\sΚ5ë£2+++ = ùNÈõPô4ö/‡c×»hÑ_„p‚Úg¡-Ç<åFà&Ï#/ÆžG<ƒ±ë]´è/ ñm6„âÎ0¯a?ñœÀÃõ ì¿Á¯óËÐÓÐóÖkžStþ©ùLðsç‡&º8ž¹¯\€“{¢ŽÃ6Lò![éiEO5_£ŸÁÿ+#ìeö§‘þżç«È‡÷ÿëÇI:˧ÒÓŠÎ?5ŸÇyœÖ×àÿ\ßÄ>Àü9„ÿOÙÙì_PñÓŠžj¼ÀïìH?MÖ=‡ÃŸÓaOGœƒ{ tØ]/nŠÎ?5ß§?YœËn,(=ø¦¼bùÅy¡c×»hÑ_BW“ùJ¬Ã8~úÚ¬s§Ï„¼t9>× 7Eç—f<(_³¯៶?þºøÒ.6D™7a/¸Töç¢óO½Žyç{­¯ˆß±#ã_ÿÛÿLé°Ü¼°Nóe¼'ûÁØõ.Zôá¹Âù'íÁî㟉\Â~À¾µEÞt>OZr뻥Ÿ[j<‡&Ïë`}s9ô6â@å¹Èæ?¬Ó0¯ñ¹žº/ÿ„±Û¡hÑס]ÜgüfÀrä^\ûœ(Qðƒ>†ÿ~mÌx„:½èÒ­{’3^çü@‘3èYà‚ù zã´‡ÿgžoî>-{ZÑù£¶ƒe\Zæ9ècÌWпRN!o˜÷?àžÒ¥v‡:ß³èÒ­{«-nr_û À‡ãÔ†Ÿ vgìÈ!ô=Þÿ“¨ç;Ãáoìv(Zôµp¿Çú½åë™ŵâlØÏ,Ï‹"?ìÓØX=ÓÊ«±Û¡hÑ× òb9äÆâpø³ü€ßWÃ.½ çäÃ{Â~lŽƒCþÄ·y¿pStþ¨ù~F® WƒÜo3è~œ÷i?p˜zrjŸ|ËžVtþ¨q¡ù†ùžy óäNÊ—”ṠÎÎøNÚ!MÑù£Ý¾NÖ-}®g¬Ë'Ž÷ N.~Òïy…]Av·±ë_´èkáE8ñ¼ÜÜg½r8ümý‘ýg¬Û(ÏÁòˆøOØ™/·8ñ:QÙŸ‹Î!}pHÿ‡ÿ²;áoÖ#ÿãǬˠŸ/äþÍè_ègŠôÌ›nÿpøÞØíP´èëP¯£`׺Ûò»Óù|ÛXç¿«÷|NµîãGÀýŒsSr¦èS¯Û#O°3ç9íȉûZeý9“ë›éGƒ¿zÛ•²_êùúþÐßnXÿ_èoŽo+|osÑÛˆ£ÆógE‹Î5.…^µ¸!ŽÍõÀGìèÒ#¿°€Ó:ϳèSÏW3èQØÉX_AÿÂ.û WDñwÆnÁó¨ok~St~é _çŸöqÈ¡qþMRã#pUñÒŠžj{1x°þv±Zþ÷¾i­û úgØ >ËÚ§VtŽéÖ0ù™Ÿ“ân.¶|?ÄÏïáw~kƮǮÑ¢o„æ+¬Câç¼3þì'ñ4­o-NÒ9}ÄO{p ûÄ)Ü×uíï,:‡Ôüü`}}Í~2±îÏ9Ò{-®¼O:ç7è}ŸWü¢óK­?!oð+7w~øgÂÁqXï$þ¸Â_Ü¡×Í:ß³â¥cj¹<øóýÌé쟦ôÃägü°ž)?³._Þ—J?+:¿Ôv.ô0äŽô¶A¿-èâ„b?ó|¹ƒ=NélÇ^ ÜðÇ)h×OÇn—¢E7ð9üÍ|{ØÙàoÖý‰Åü…çÌ“V"pb¿ÐÀÓJ›nìv)Zôgq“ç °Ÿ௙ñ4ο3oÉ87W"¿Œÿ¹×—¼)zü©q3L~ݺ&|¿r‚ûégƒ¼_]œAQìÈ-ðZçj>F^0¿¿ò¹nàóô[Co'àýgÂ^@ÂOZ<ŽÝ.E‹þ,n$/ýÌ÷ÿÅךÏ;NÇ¢Ò‡ðS³ÞK³ôÁ/Û÷Æn—¢E7 ?ó3|Ž ¾>ò;8ÉõRò‘<²ßC.Auìv)Zôgqóa˯æ_ô)æ'º~eÖßoÄó´GŸ ¹…Ý­ÖC‹ÎµÞõQð3ò¾^ŠçâïA?ó=é3^'éxœ+ðTû¦‹cÚùó§ßsœßéõÊŒËÝ,å éÁ ù~Ö·\ž¸.Zô8Ró9üÌõRð7q5 _Ç{ÜÏõì䃎÷bß ó§±Û¥hÑŸÅÍÕV?{pxÿ'óðnàæûÌ‹ðYçè]ƒòåyì/pyJ?+:ÇÔûb6ÄßÌSRƒÿÁzäífàæ5ùU\¨¢sLó<›îøyúzYÚ±¹Ís@â¼]ð6v;-úZ¸É¸3ø |óô0Ÿ‹«û釯~‚L>Ó_Tx»Š}-Ü gàsŸ >Z;ôƒ¥_ þOî“øÉsAõ|ìv(Zôµpƒ íιn™ò"÷!,Åó<×ýî«x~¹ô´¢óG/€õд3#ò\σö¾¯‘;éÀû胃ò©ùMÑ9¤y.mÆqîÎ'DoÃÞ–qÙ#=¸ô³=-ö‰ŽÝE‹þ"܈­·¡O-·ë˜”þ7èuÈ›<:Ï÷,ÿ´¢sHs¼7àw(òfÐsðÎr“tGw!ò«ó ŠÎ5>Ы’¿Ñ×l/ÐuÆá7‰#ä v‚´+œ/¼?jÜ g1þg|€oâ:ã ¤?ûÔ˜Ç`w³ßZûÞØíP´èëPËüÖÄGû¤ÅƒýhÀCžÏ>2^'ó¢ŒñÚŠ=ÎÔçp²ÏŸù÷sýy’qÏ8 ý 9òÄùú¼6]sNâ·:v»-ú³¸aóFàƒùGÚ‰Ñ߈[‹\?öÏG_†Þ‡ßúz^ëQt¨×ëágptk8ü9~ÚFâû—ÆøKùÞÀÑJPåïõ ‹…›¢ÇŸúY.d¼ öÀ×±¿Ìr€Cp’q׸͸ž_nŠ_:è×éa¬_bËýyîšøßzþšyÞ‚<ÃÎðEà¦â@j½j­•+Óóku!î|ßú€ìÕà ìc^¸¯s;8aìv)ZôçèÖ½Õf™å ë)Ì_8ï–õäòû28Ës¨õ~ú‡‚/äìßc·KÑ¢¯…£ÿëÿLø~ÿnwÂßyn4çã°¾CüÎïôÞÀþ8àéžäÕÝÿ“¾ó‰n•Ü):?Ô|¿!¾GŸBOúõÿµéKßFzö|éîèù¦®ÁS­{#j=ŒsÔÿ$!O¤×YŽ|#Š<ÂÏànÐïôçOýYןGþ÷WÿαۣhÑWÂÍŸÅ¿àç–è_~œèW”Å~ƒÿÐsæûÈìàäO!Çþ(Šú‹ô·M½/œÝE‹¾nÿ!|0OAΤŸçù°—aŸþ4(öìfèuØ«ÿ{z\Ù£‹ÎôëέEž Ÿƒð À¾æõš8¯Ãé‘Kä ¾À¡Þ»=Š}j<äþLæ!ølðËÜ]œhòQþ¶_ o>¿`r]q‹ÎíüaXÏa'ÏY_ûƒî§¿tú¿C½o?Ï¿µx»=Š}%ܤß?väaò›ÆU¹“ûлRÏó97Kæ;ì­ùMÑcL=þÃïâ绢ÌCns-¾f~Oz䯾ÒûüiÑ¥·ŸÎ“tà»[á¥èQÛ›áoäÈæÿL0]ÏÇà™ð9ë5àèϲW³þÃý¿ G”žç›ÂË “ë;ågSt~¨õ'ì[ÃáÏë™ÿûY»¾])Ÿ°c3Ÿá=üsÀ ïmí–­èÜRÏÏ™—Äùgž·`WÆ>À<…ùv]O²ºó •ߨõ.Zô—PÛð›ÁߨÙuŸy òƒy>vð’ïaðùkew.:ÿÔvä óìkíRÐôÿ¼ïeܵÂMÑ@­GÁ×ÌOØ?ƒ {zZƱ½éε8q:Ù Æ®wÑ¢¿7Èüð¯És8Ð5vÖ˜¿,nÈ{ϽüÑŠÎ/µ\ NûÏ`Ÿÿhû7#wÐǰ€“Eåƒ~òlìú-ú&tÐÏzZÆ!ÜhñäuÉÇÅ7Ìkrÿ ó ’3EOíâÂÿWØÛÐÃÐÓÐëÀr ðv±½»ÞE‹þjyÁ¼q8üWgÈ£Üçv狾†žþ;E‹Î35£—1Ž|=Cï2¾ò¼œçyØ.ǹo×Ê èüQãc)ø<×3ñ@ïøÓ`_c~Ã5øX ù†[x»Š}-ÜÀÇÌkˆ×„ óä ~hgc=ÞçšýÈ¥<_t¥pStþ¨ùÙç†\Èýœ¹>šñرG£·±„禮w­pStþ¨ùý |€#øÿãп> ü@ñcCŸû(žß ‚µšß?j{×ûÁçèa‹zßÃïàIï?8ˆtàŠ÷Ñ•˜éþØíP´èká†}4y~ úÏ‘Èps9žƒC®…Ç[;éê|Ï¢sHm†ÏÁ qkþÖ^wþÍgOÈ­O#_îg¾e(:‡Ôzç?ÃÏèkØ™5ypøÞOÖu°_GC§K¿›•ö{àkìv(Zô•ð‚¾„?g|Ûµ7Èaò3ï;nيεž{ýE÷Y¯aýe½Õ«rýÅ8á|6æ=àéJÜ/ÜCj½ >_½ò½ ¿³ðÓ4ð@-‡?ã’kðu³ô³¢'ŸšïYŸÿ? Ü!ÇÑ´  ‚×õÂOÑ“K»øÏ'=ã°£ Qä~Ì{„DZëW´è[Á zö®/.ò6ô8p^Âß`ìú-úVpƒœùhe݇y¸ú4ž_=ïbá¦èÉ¥Ö»ò¼)ô2®Inòœù‹:ŽAUôSÛr~3¹=ºïkžc_àªö=ÁÔóür°‹#ìÖ3ΰZÆm/ÿ´¢'˜Ú \àc9²8þŒ‡ ‘žtÌkÐïV 7EO.íânÂ÷à%÷ @‘7CÎT<µ¢'˜vçF·ÿOðƒ¼‡œGqþÁØõ+Zô­à¿2É“‡÷ÿ‡ÿ±7ƒæù_†ÿfÆéø¸½?výŠ}+¸Á®Œ?v€ã;¸BîÄüß鯖_gÑù¥¿æâpøó|$ãÂ÷ì/È8ѵùtqØ/”~Vtþ©å|žþšà榞t4:{Ú‡ñz[ů)z¨ý_.µ|ÝűeþÂ>iðÂû¬ï°?¿4⠒ߥš×jù>˜×£‡á§ ^?àÈ~gºæ=Ÿ­ôЊk[ôPïãìï ?gÛÁ¸Á>î¸Fþ$ξc×»hÑ_„äÍ0ùyþ‚|à~Îû?iñd\1ï!_ü”Ï™’7EçŸ:NíÇ!G üfÒÿ9âÒt~j—ðò _jùÿ£§1OÙœØçBØÑb=Óz÷ÁÝJá¦èüR¯C.µ|ìó;ó|OÎ[NçÇ<†÷ÀÕ¹ö;užtÑy¦æç•àkäEÚÅ.DºŒ[“úù^lß»ÞE‹þj?ðÃú ë”ynž›†Ýà\PüÙÀ]í‡.z‚¨õ(ìÎÌCî ‡?ó;篃3æ-àÌw°»åü†÷yïrá¦èüSˉ<_=Ï)`4ýk˜ß|xa]èJØ6 7EçŸNÏë®·8±= ýÀóŸùáØXßD ç¯|ƮѢo„æ5àc˜ürZ·&â§uû¢cät£è ¢æÁÁäÚóšÏB®þƒH—û¥s?5rGx»ÞE‹¾^Ч á÷ïùMžÛ‘ñãœhÏgÀOÄ‹»ÞE‹þ[pƒ`ÞŸñ2>ï±ß;ÏÑû¸G¥Ÿ=´;gò'íÏœ3µ£ëZÇ):‡´ó /èeÌG´Þi~Ço Ïõ ä öµÏŸe‡.:ÇtÐ/ýÇxn?çE¥[kíÝ~Ò¥ÿr'×G—KÞj~G.äz óäxÁ.€}l!ð“ë9ä—þ; %gŠÎ5ÿ^iù¸‹ç„}ÍñÂ/šû×"ùo0Š};ŸÕ¾›¢óG™ß[N`ßúj8üYNÜÿ~òüÓÀÕ tØ—Ñ»b]Ôù#ÏÐKÞ=Atk˜ü¼®É¼%ϽÍù®Ë,Ä5¸¼ϱSã·s¥ðTtþh7¿Ïy }-ã bŸ'Pðƒ>þ°×­·ùŒÝE‹¾n.·|»u=ìÆà?ìÌ['ŽŸë=\ƒ›àMþÖöË);[Ñ9¤yÞf'?2ntÆž!Ïes¥ózjÌ›òü©¢Eçæxßé[à}-åGâi˜ürŸõÀ}æI?jìv(Zôµp~6Æ ë1{1¿9ÛâyÑùCÒâãÁž '©ÏÝE‹¾^‚¹oýŠyLøK;®íŽÞGn ‰÷‘C ‘{ZÙ¡‹Îyn'|ýkƹkö i¯/ØçGunaÑ9¤[Cû›®K†?'vcìÉØÑX‡AޠDZO:ÏÇÉø«eG+:Ôó‹Í&ýŠëµÀEâ#ã©Ï² äþäOŵ):GÔ¸€2ïP¼ŒWƒÿñ#À_&íl̇ÈgCô‹öùØíP´èká9òuàá\ð¹ÏÁQzâC] ʾ„åÐÃÐ×n‡?_ߪyMÑù£öÀ9Cœ³»’ÄóÜÔsô3æ-áÏìëÛ?´tóûÖí«ÂMÑù£ÆüÏ|ƒu›ÍáðG¼&ëi¹Ÿ Š_3vÞ'·#ŸŠUt©õ3øú›ä{p~¹O-ç5i?ã9zû î}_ö€¢sGY—ñ5vµAÔögá¹²|ôú ~ô~ž+»šý .”žVtþè Ÿq.tß|Ï|…u—´³-ê9ò¼­„]áL¬“nŠÎ!Mÿã.þLìã´œXšƒ…/àySî×™$«ùMѹ¢ƒ~Æ óŽ ¡Où¼á(ãf A‘Sà|~Zò¦èüЇô'~˜ð5~h¬K2ŸÇß= =¸µä‡Þ¾?¬ÛÔ~è¢sH=ÿ`]&ãÛb'¾;þl—þ:p~˜ÿp=ô7ã~Ø#Šj>O¼Ümçë[þ±•Cà ÿ5ìløÓ¯û4óÞ ê±Û¡hÑõ|&ã ºŸçâfœŽEÝó×»óqs¨Ïe+9Ttþ¨ýÊBC¾Àïë3îg\Á"ó›nŸ¨p6v;-úZ¸ac?ÍÐà ØÒÎ|6ðƒÿ[úw.Eþ<×ý±Û¡hÑ× rbE= <}r‚ùË™#à%ϗƇ¼ºé®nŠÎ5?3ïH»tî3u‚ÐÓ|;ø—Øë¸_v¶¢sHÓÀòy“~5Ì_ÀÕB1oÊsAÁÏß/yStþ¨çç¬ÿ£]‰kæ;Ãäg9´ø'¬Û]œ(¾§üÆn‡¢E_ 7à>÷¹Oaf/œ9®Zð¿)úÛJ<—œ2Ž*>GÑ9¢Ö« y~ú‡-NºsÙ‘7?-ç9)‡ÐÏ +¥§ÚÅÀïŒõʵàûÏ[=­;÷|à÷òÜðVñÔ‹Î!}pHbׂ¿7B.`o_ÈìËÈ™O"=vfòÍxåçYt©õ3Å0ŽnÍлöõ|%ž#gˆ }Ïz[ø ŒÝE‹¾ 5Ÿ#?Þœ€ä zó8W Ã™pe\ò>~¦—Jî?Úw;Ë>ŸŸçàçL;ß1NØWàs u½Þ¦»Š}-Ü0ÿ€Ÿó\OìÒÅý \e|6äQœ»;v;-úZ¸Iy‚¼YÅÀügQé <ÿ"ð ½Ìq w”>ìÕ<»Š}-Ü|ÔŽ÷ÖÃ4Ÿ7¿#'Àë2{ <á߯{ÈðEº/JÞ?ŠžÆõƒCz„¦¨Ÿç~èó3ô3ô@ð–~må7PtŽhG »|çáÚžÌú ëÿÈ“ÏbD>i—›¼>^ŠÎ#íüÀ vbð²¸XTúŒåótEó\CðçIÝE‹¾õ|DñÏ,?n?¡ŸŸ£w%ÀvµCþΙ 7 7Eç‡nÝ.ˆ+Ã|»óaºŸÈä ¸An|¡‡eœväóšó¥Ÿ?êùÌ•ÿ‘Ø›¹›áÿ ˆÇžë7à…s ¹®sq‹Î!µ? ¸a>‚ßçL;®ú ÿ´´§q¾ô×Ãä}Î e¾t¡}>v;-úZ¸AŸ7 º^ÝÅ~†Ÿ&öµó!O|5~¡×!·4ŸÁ¯sìv(Zôµp¿ç¹¸¬ÓÀßÈî#WÒ/€yò9t-òAûf8üÝE‹¾n$_ýlÆç;yÞ‚ÜÀOæ@ï+¿Îm©Í×Ï%ׯn‡¢E_‡Ú/ ¾G~ 7Gà'öu_Øå“qoÀS~¯â Cj;ópÐßdW{ðX×’]Ü€}åóiä“úù Gc·CÑ¢¯CäÉr;ÏÇÓébþßù×ë9È­¤Ìo–ký¦èüPÛÁ ö£àsìÈäGƧw¹Ž“v„:o­èÒ\§4>‡ÃŸùü«x®'«íü~kÐûèi¬ãpþic·CÑ¢¯…æíyî r\ýqµõ`žÏsär Ü¡‡‘oâr¡pSôäQÖõ=¯ß?оv-æ9·cPúë¡¿!¿îü0y~³ðTt~©ù?×9ÑÇ6‡Ã_·?šˆ7àüîè=ü 8Ÿ}£ýÎØõ/Zôpƒ¾†_çZðyØÝrqBzô;(ï#§Ð‡Ãߨõ/ZôpУÀ óz®Ï„|Éó ¹ŽÐëHÇ9TÈ­K%oŠÎ/Íx–#èi±Ï¹‹Ã±÷ó}ÙðO³ûÓšß_j>fþ/~÷}ä rIôÁÁ$}ÆaçþÖ çm¾ÎGx»þE‹¾ íìÓÌSbŸ¦qôq«gÙž€^G)ÉŸ|…“<§jìú-úF¸A|ÑÒ‡ÏßöRÈ¥Yç²îÃÈg¡ÅKùÝgмôó|$Ε¶¼aþ¿¨ôØÇÒo4ã¨#Ðû*>tÑ9¤ÓôªèçaOÎù øÂ>ž˜¿¤_Nàiìú-úF¸YŽ3€|ι…Ø¡—â:ιõz&8Âî|9äTÅç(:ÇÔñ7У¾“Úzðÿ0ùÙ¾œqžÓ¿Ü |ñ~í—.:‡tëÿŸ ?3¿=þºsÓ7b^s3Òß‹uÑxÿ¿b}Tï]ÿ¢Eß7ßíNø½ ?äøá\Á¿(×øüùGùÏ(=úû þ[Ï¿Ó}Å=»þE‹¾^þïg>FºóÃ? æÿ?KO#NÔÖÖä9x’~åy?ö¶{zþ_zN¾Ìk°3lMð:v;-úZ¸ÿÿòckÿb]»1ö»º¾/ê8ÒßX‡¹-Š>¶8þ¼ÊûWÊŽVtþèÖ­áðçuIô)ô2ø;öç´‹1Ÿ!¾4ò‰yMîG· 7EçÚïì±p!;—ÏUÃîõ•®Ï¸Æï†|ÂoÀrˆûà°äMÑ9¤>oc8üy¾²(ʼ;4zqŸ‘3y>û—aˆ¸O¯cìv(Zôµpƒa>Ï>Læ=<'x@ÛÔóŒwK:òe¾ó'ÖƒZûÀØíP´èëÐ.Þ&zóÇ¥Ñ}ât@¥ÃŽÀ< üå<»Ã·z¯ô´¢sD- ¬ÃÜû¾ïƒìÑ›¤kýŒ?ô¼Kñ>r‡}Ñ·JÎ?ºu=J| Žàï’  |ýoá ÿèÝïÛyÿ·Ø­ÁaÈ™û«åVtîèÖÿú?Ò£ÄßèQð5ëýÿ)úߺóÒé5Ï÷‘[ÈÖA×ÊŽVôäQó=r"ÏÃE.!WXùy¥÷}®Ž®±³!ç°CUúZÑù§^¯á|ÂâI]ÿ¢Eß7öËÅ.€ŒõJäñÄ÷Þ‡€^†œÈ)ò¿^r¦èüÓ.nͽ Ìoðï7ì/к¿ý;¹çûá·6v½‹ýE¸A¿b]ùóð¹®±xÞÓÊãæn«‡mÝÆeégEO}pHÿ‡¿7ÅÿÌ[˜ß,ê9ó!ô6ôºôgØÙ´OÔöjÇ'hý¥Çn‡¢E_‡vñ++üÍÀ øÊý6à|ÐÛÐóbݹ5v;-úZ¸a^Ïùµáï¿õGñ;8¾똖#ر XGÅïú³Ö>7v;-úZ¸Á~†_ôµÀ óŸÍKœëŸñ×? ?Òƒ·”WåwSt©÷Û°.‰-σ‚Ïã¼ã¹‚ÞÇ~pÃ|HßqÜ)Ý»Š}-܃~Ɖæ'^§Y7ºÆoæÁž/ÎÈ7Îu>nŠÎõºËJÈæ3ÈìÖ ºÆ¯;4ûkÂ?gÐ/ÏÁõ¼ªünŠÎµ\ÀŒ?8ÁN†}ÌçB‰ßYïy?ž_‰çw‡W#}øÇ-zœ©å8¹8€bS<µ‡ïÿD_˸ÌsrŸ¸ÁO¹¶V¸):?´‹g˼ù ûÀÓFÌKÀÝ¢Ò›Ü_€\S>ž/]+¼?êñ;ñŸ‰ Å|æOÂÁÕH¯x¸ë£ÌgŸÍxº^¸):´[Än¼9þ§ùÃ<çr;2nX¿Á® NXEž}ØÞ»Š}-Üh]ßzøIÿ²3¡_!§°‡!xo5ô4äò{󪊧VtލåÁâpø³>Èæ/±-qf9“ç¢ÿ!ÇV 7Eç‡Z/û"ø9’úò?š}¥wÈ‘´#|ïcoÐýA¿±Û£hÑW üüa;Þ›¿‘È âBƒÉ‹A?äQç?@úÄãRû±Û£hÑW ë+±^ïùË çáW“çÚ¯“ôèwØÕ°C£Ÿ)¿·\~6Eç‡úù<ν˜§0¯'w0ù\áï‰Ü!_¾÷~àTùÝE‹¾ 5ÿ3¿Çžöaàƒ}5«\¡ñ~ø?úm‰Ún>x­ô´¢óCmÏ‚áŸC Šž…¿š×}”žuô2ìi¬“7šý WC»R¸):?Ôü¹Ãüd˜ü,o„#ï›Éø1±¼Zˆï`o€F¼Ð¢E#Ý&¿·CøX¾F^Ä>ÎA?Ïk6Bžà†*ý¬èQÏ?Пø0à'årgGÏÁ—åSàd)äYÉ›¢sHñô} »ó“¥ÀÉ0ùå~3§_¹újä‡Üaý³ü¢‹Îõ¾Íaò3ƒäDîKƒï‘[ð?zøAOCoË8Ô̯*.GÑ9¢æwö­ øû4ñ›°—¥¿48Áï“÷9ï“||^®(¸š¼^ëžE炦=Ø÷‘Èp…]€çiW[oqàûiw~‹¢q^îÀó²#êq¾G.äzÏѯ ¡¯Ù¾>XŸAÿC_S¼µé¾ž²ÚÉ—‚ÏY¯?‹J—qžÐï à¹ÎÈ?íhuAÑ9¤[ÙðïR«/uç²Þ‰\Ânp5ää÷ðþfÈ)üy?÷Ê?­èüЭÛí~ßg¾\ìÿ$Îø¸-ù”ûÒðÛùnurŸïe¼©ÏÊ.Pt~¨ù—ù?çr'¼Üùar RÿBΰOúžpô ø‘ÜáùýØ_:ù\ù§ š~š¾.°;ãÿÌþì ¬ƒâ‡†Ò|gÐÏßáyžr©æ9Eç‡z?Öás¯ß|Üâ+÷±9]ž¯‹ý}¹$ýlЯâÜ':è—öäºÏüùÂ: ¸ÉómÚyþžø×8_ÞgýH×c·GÑ¢¯BÍ﹟ ° _öÂÎŒ<ÁþŒ€ð`ܰΓri’¬pSt.¨ñý+ýŸ/¶xqzô¯ït?÷åžùûJ±0oâºÎÅ-:GôÁ!ýÉúý¢(ñ3˜·`GÃyq6®Ã?üíÍü(çI5¿):ÔüŽþ…œaüG¬Ëx}SrBé‡OÚûÖÓ|Nr*ì_ÖºMÑù¡¶kåþhÖWX¿A_ã} ½Lëþž'á—ÎÀ!×ø ,*}Å….:GÔ~4¹nÃ:ÍŸµ¾ÏzhÚ¡/‡üYÐýÛ?ü3£iü›ÍÃË¡Ûw¦ÅߨíQ´è[ÅøY 9’ñž‘G¤GN!çðÿ$¾¡üÔÆ®_Ñ¢o7·à'ãt2¯Á¿ù„žx^v¢'˜Z/þnÀ ó™+!_°;xž ½mìú-úVp³v4ÉÏ_rŸZž‹“ç\mq4výŠ}+¸A? ;v·>³x‘Üyp˜ÏÿÌgþ´;I÷iá¦èɧ¬oâwÆoæy ‹¢_Æ}p‡.Îû,Zô$Ñ2n@Æ[G¿ÃŽö~¤+ÿ´¢'˜2Ÿ·?4ûÑÀë™øÛÌÂv7ž—ß@ÑH·†ÉÏz—æ%Þ€És>ÀviìÑŸµöê±ëW´è[ÁÍæÿü3të1ø0ïÉ}Ø£±›åþÏÏËϦèÉ¥ÞŸ6L~¶Áÿë_¬×€·Oƒ~SúYÑ“O‡8oÀzšô·ôµ¿(r‰kÇY/ü=¹Ôóø;~šÈæÿÌcVƒòrè\á¦èÉ¥ÖÏг°›¥†'_†üÁ¿m©ðRôäSŸóZüo»ZÚ;œŽŸ­öá=ù´[÷̸ƒè_̃6Z¹âuÐû±o§Ö=‹ž`j¿˜Ñ<_*æ/>/ÿψcèëÒ׊ž`j¹!ÿL~ÖÇÞoŸÛ.°8¹N¹dü‰Ž]¿¢Eß n„ïàzgB—!hØ©ý>ÏÏ–¼)zr)ë.Æ ó“E]CWB4ï GåoSô$Ò.®-ñŸ±£åy_sn°?ãÇv¹ðRôäRÇÝ@ßÂ&ý2~!þ7àܰºöy=ÁÔûœ_†¼'ÐŒ«ŽüA/pSçâc:Ÿ¸`þŸÿ ܤ¿'ó›¯â=âr?­æ7Eç'‰ (zçØ‚#Þ—BŸC¬ƒf|jùçŒÝE‹¾nøgšsp9‡€ù ûj®Ä}æÿÄä:÷I§èjùÙ?š|k¹€.Ø¿v¦Å×ýÁÇFèuœ‹?ÏÑó®•žVtþèÖÝáð×á&üÐ:=îZøÙ¤¿3òˆø‚“Ï [‘ÜAέnŠÎõüúIkç²~¥yëžü¼Ê|y´¨û¼—çìê}ìmc·CÑ¢¯CÒŸÌ÷?lùØúUøtvið@>áíõSÙŸ}îçþäùØíP´èkáf8üYœi©ù}yJË÷–+ƒhúÕä9»ø’~¹ÖqŠÎ5_ 乸7uŸç¬s"_¸îð“f}'÷O“n½æ7Eç‡ZÿºóÃ?oLÏc·?Y»®ï}Ð韖çQcOð:gà{A­wCêñ>íÇw†ÃŸ×-¹Žó¼®³÷ɼy='ðTv´¢sH­7qŽ8¹ËºJËçßûçù·3äþØ—‘_š¿X?§w¿/Ü}g¨ù\e\[äÉâpø3ŽxŽÜÚœà†yÓØõ*Zô­âùÝ€uNìй>Jܵô›ÆoMø»^E‹¾UÜàWÆ<&ý ñÿ´?@¬ë Ï!wtìz-úVqƒÜ@®°î MËìßÞnnŠž|šç®uç߀Ò¥ßÍס¯])Ü=ù4ýlìŸöQà(ã ,ˆÊÀþ Ϧè;@=?AÞ¤_ò†¸¸‡ïýÎö'´;_z¡pSôäSó=~k‹ÃáÏzYƵÅ'â«7ë…›¢'ŸvqÔÁr'üB£Aé°«a»Q¸)zr©ídÒ«‹õp‡NßQô ž§¬µó~Ï[Øgƒ¼I;5zë:5¯)z¨ãp0oA¾àG³r…ó ÀKÄìÎaG?“ÿèØõ-Zôß‚æ!ìI?3öÑ _ðŸÞü`¾ù­µzÝØõ-Zôß‚üþoÿðÏÓøiðýF\_ 9k×"8¬ýEOò¿øüÛáðgý Šþ•çE#_ˆ‹†žw[×íõØõ-ZôµðñÕÑóqûÜ9Â|%Îß°ž6L~Ýz祘ï,èù_j~SôäÐŒÓDüAÇ­Ésn„û©æó?µ<¿{ÃjÍoŠžj¾F® ?˜Ÿ gð“κxPq~Ÿö3(»@Ñ9¤³Îoîü™…Ÿ‡Ï ý-ý‘/䃜Yˆ|+>gÑ9¦àÁ¸‘|ô3ŸÇºŒå ëÿà$ýÑô¾q÷e«Ž]ÿ¢E_…ú™¯¯µã¾ã©3a_&û5¯ÎÀ¸èiƒÖ97Eç¦?XžKëóŸ°7#gî­¶ë3¬_boÎ85ÆYØÝ*nMÑ9¤)_ºçø3ßÿ~ÂïÄÄ>v9p¾†ßò Ü}ÜÞ»Š}#üpþÓŸßþ¾õo†¢g1ïÇ_€8ÈŸ«pÆy7gzìv(ZôµpƒÿÌŸvÛù ûiða¾‚šøNøsb·¾~6È-Þû£ô¼»JWç«Cê8êPìÿùãŠ?k¿˜Mðþ2>OM÷GäÑ0É?÷T|Û¢sH§ûÉÄïð5óô5æ7èuø« ¢à‡uäù±~Êùĵ½Zò¦èüÒ­ÛÃáÏ|þ™«1ßç>qر7zA×ÌcÐÛ°#,*Ýwe(:¿Ô~/O½ëFÌ{´Ó×Â׃~Ÿ€äŽŸ×¾µ¢sL;ûûc˜×#g˜ÿ³ë5Ž‹Æsð'½Ïç (]œZ´è<Ðô›ïüRËÿžå¹à„üÐïÀó¨ØO=v;-ú:tÐÏñjtý]èkà»ÀÆsìÊÇvÉîÜuðt½äMÑù¡Ý~öuþewr™uNük®N¤¿Ù¿}9´ñÿ´ùAo^ŠÎµ™}ièYø üEë7÷ÃŽö¿¾o×CY÷Ä? ¼€+üÛHÇúéf­Û?j¿3ô&ô*ìÊø™ÝS:ÒƒŸÅáðçuè Šó'pŠü ?Ò¢Eç™:N úØùvÞn|¡ça7¸xK¿hæGÈ¥X×»ÞE‹þ"Ü àûK!гXÇÌsnYÅ~Ýû6~i±Ÿgìz-ú‹pÃ<ù_×߀'á!ý¥Á~øI#gXGÅ.­бë]´è/ ë*èQá?fûþŸèuà†kæ7èiÜG‘Ï•’7EçŸZ/ó|¤XÿBÞœôøßÈ.mû48ãýô¶ÂMÑù§Ø‘ÍïÀüžñjd¿ô{p0¡N¯yŽïóþZù Ú'ð~࿵ -l—Æ>€½¿€ÈÏþk%oŠÎ/5¿ÃçàÁû†ÃŸý¦WÃÀüEó}Çû_¹_÷—E‹Îíö˰<0ïÁ¾ömÊ =s=ŸA/7\/—žVt~©ýÓØ NÀÓ7ÃáÏé®´|OüZû;çú¸âý/JÎêy ò&Ö#­ÇÝùáŸ7¯Ï°Nz5ÞwØÝXÿ‰xkc×»hÑ_„æ±.ãçøg¢w}¸@¾ ×}úØZàìbÉ›¢ïƈß~¸^𳾿ÚÚ𫾯ëïv OEO,Ýúnµµ‹!‡ˆï~°?sÍ< ÿè¸ÿqÙ Šž\Ús{9æ9ÌÿÙ‡çOYjq8üÕy8EO2õ<{Bî[süÁáðçy û¬™/¿ÝçïNî]¿¢Eß n2ë2ø9¯„}uÞc¾C|]ô9͓Ʈ_Ñ¢o7Ä%À>meÞþž¾FN±Ï yTó›¢'˜z¾ß/‡?óœëiyƒÚÒ³ ÎÎÔºNÑ“K­gô¬¼Þ†½}ØábßAžgU´èI¢Ø‘Ÿ»rÜ o¸®Gìkc>¤|Ç®_Ñ¢ÿV¼ß {™øÝòÂþÏao¾ôjà¥Î%(z‚éÖÿú?­_'v4âl0ïÁ? ;ó†(¸a݆ùÞ»~E‹¾ܰž‰}lS|0oa¿óüp°£+ÖAÿXóš¢óC‰'C\Aë[øùœÝgßéÈÖs˜Çdü;ú¸[‹÷7K_+zü©õ*ô,æïÈ<‡y|!N'¸ÈxŸ ºÆ?Zq8ì/€üb=tµäNÑãO ?ä ÷‰Û‰ùÎ÷-®à{ÖA#Ž­ý7I‡»5ßA.­Ô<§èñ§>Å|ý 9\‚29×âÅû¦yž#=r)ýsêüµ¢s@=þƒô¥\wÉup†Üàüöáðçûàåjà¼r>qâõLøþbÜÇ/÷„?ò±Üù°•C¦Ø>yqÜ‹=Žœøšy~ž‹¶r¿ô9(veìÌøÈn†\yp ï`WC):4Ï×ôz·¿F0ïÏø6à-âÖxž”ñq/G:íÏ»]Šý9úàþ$þ¸ažƒA/c?ó­ÐÛ/¤wøã¤¿'ëAØßðø¦äMÑãK(zöhø_zœí_à ùÃùž;ÃáÏüŸþšPô>ÉÛ—`ìv)ZôgqÃüþÎuMü¾ ~—?ÌÔ¿ù¤ù˾ÞCž w|¾´î“/rèFÉ™¢ÇŸú|hpƒ¿ìÅwt}[¿€Üÿ¼zÛåÀ!øÁnöI<¿Tþ5EßêyÍzà-Ï5gÌÐ÷° à·Sv¢ïµ>†ž‡:õ?p‚þGœüx$¯Ò¾W´èI¤]üÚ•Vïòùž¹_»4úùD|Ý¢EO"ÍýÎö/éŸCzÖW±ßÅ9Õc׫hÑ·Š›ôO7q¿ÛŸöì‡ùMׯ®WÑ¢o7áï ÿ{]f¡µ³ù¼\ùÅÙo;÷G%oŠž|Úù§±î‰»ó¥ðë7̇À_ù§}è'Ò¿Î~XïÄ.€ÿviüÐï.—žVôäRŸg(=Ìúóæû¹‡ôÌw¾ZqÕ‹ž`j= »ò0ùÙþ ^?)wô<÷‡Ž]¯¢Eß*nXïŒsý~¼þ‡bþSqkŠž :=ßSt!ð‚½yg8üÙ¿€ù ë™\'.7õÜç{~ŠÎ?5#˜×£Ï!ð¸zÜæpø³|ŽŸ†î×þ΢'€ú|AÅÍôü„u™?ÿØêe¤g}”y qØï+ž.ï3¿aþ#{ÃØõ.Zôá&ýÿ­¡gi]ôÎÿ|a—]x±]€tØÏ> Ü€Ëòë,z¨õ§ -<ÿ'éלó~ìlgãšõOû@Ñù§Þ—¶3þÌßÄã<Ðý\Ÿ‘±ß÷y_v6Û|Ž[á¦èüS¯Ï,.X¯a=ûöìÍØ ð_süÚðóÄ^ðaéiEçŸZ/[¼à‡F<Ûýáð×íÇIðÂ|çOÊÇñ9&ùŒ]ï¢Eß/Ÿ¶¸Øº5þÌÿÌK¶¶&÷±‡1ŸÁß,ö‰Zîdœâ®Wõ¢sLm7»/¹Àº úç®ás/äJÆIóùº±¾ƒ|ºUx):ÿÔ|^î ?ø=/Š>ÿ3ÏAÓ¼ÈöÎïD®|8º]ö€¢óO;y‘çr~·ÚÊŸaò³ü¸óp•ñ°¬”¼)zr¨Ï `ž¦• ÆÁâpø³ÿ ÷…‡î|jÒ§ß(rhSÏ+Þ@Ñ9¤ÖÓ —7çcž’ç ` øÁî€}uPÒ}Þ~wìv(Zôµpƒ] hÙÕºçàÅþТŸÆóo#¿µÀv†Ï[;ÄØíP´èkáù€½;[žo˼ç“ÐÇXÏÜÅÞ–ë¢àåjàîZá¦èüQËüóœuÖm˜—¤n˜üº}kç“ü„?Ûä7v;-úZ¸‘¼0³þ~$gìoûÙ|¡žûZùú=ì áï6v;-úZ¸aßç †œÀ/:åMîH<\hq•çéúý’7E爹nc¿åVÌçÑëâ=Ÿ % ÞrŸïÅùE‹gj¾…~ÞÚƒÍßœßÁ¼äðùÿÈ‹œ·`WK}Îþ6A?kõÁ±Û£hÑW òf£•+~^°c'Cþ€7ð‚üÉøž¡·m “þÒc·CÑ¢¯…Ö-áóÀ z×åVÞÂÕƒÃôÿƒìÕÄH¹’~kñ½¢Eçz~Î<$ýkàwäÅ ôq^ç3È—ˆ—ÖÅ ßZ·):Çtk˜ü¼nÿ/µx²] »zÛŠÒe<)ÖCå?ðà@×—Ê~VtþiwÞ3rdq8ü¬÷_n×iºó×ÒN@Ü(ô³òG+z¨åLžë‰Ÿxa]'ϸÐâiºÿS×È%p©xPc×»hÑ_„›ñùûGÏ7Œö«å|ùÂ>ëA4Ï#¨s<Šž j½l†þd»z׬ýPäþ›È-Þ} E‹Î#Eßòþ5æ+—bC<5⥱¾¹7ÁÛƒƒI>–3?Íï­Öü¦èüSŸ§†>Åú r…köä¾NÖm?~_¸›å²§_j?gô§o‡ÃŸÏYûº•Ö×6‚¢ŸeÖ=7Z¼T¨¢óL­O±Þ‚çâpøc=Óéñ@oK»¸IÖqHÿEá¦èüRÛ…Sn aÆŽŒžvñèyŽñ‡üJ{ÚùÒÏŠÎ?íü`2Îò³¯WyŽzöêŒ{µäLÑù§Ö¯XŸÄÏŒsŸ®µóëg !ŸåÃû¬ë\ˆëKÞ=94÷/?8¼?ÅíÈ;ºŸû>™ïãÇÆûC›ñó¦¢Eç‘Ú®¶üÍ<¹b{šÒ“ü€æ=ØáÐÓS%wŠžj<|ÿšVNxý?ÏÁ‰óÔGCe:æ9Ø£±_#H®¾,9Stþ©ñ£—]|°Îɾ€OÛôž·ä¾´Ëm”ý¹èüSãæ³Ø¯É>¶8ïÉö6ìÒàbPzü ¸þ¸Åtìz-: ÞлÀò {zòjs8üuçR!Ÿn_x*zâ©÷å€Íáðçyÿ¢®Ñçîê¼à‡Cz͓ƮWÑ¢o7Ìw†ÉÏóŸ*¼\iõ¼ŒŸfû\íÿ,úPÛטáOp[ó˜áðçyxAN¡Ïaÿþ¼ìlEO>õ|&q“ûG7„ î‡=Ú~8%oоÔvçµ/¬ç O'×t?üò¼·±ëU´èÛ¤Ö¯˜×0Ï'þòFóÛ¯ÁÕ„LñTûqоÔñ¢î ‡?¯Û§;óô5®/Þ*îmÑw€>8¤ÿƒ—ô£Ö¹ƒÞ¿†zQ×Ì‹Gøå(ÎáØõ*ZômPŸcÃz'뚟Å|AI=`Gù”ßMÑw€Ú/ÚóšÉµíiì×AËxÓèqqÛØõ*Zô­â~ÿ´ÅÏ1@oÃÞLœiÖ{ çÚë±ëU´è¿KÁßÄQC®ד}Wãšy ?Qô8äÖMÝ¿Uø):ÿÔþ/žŸ„ óö|#Ê{‹zŽ|¹+Æþü É;x‹óx‹Gj»ë—_¼`¤ã=ãDù¡×!ϰ3Ôþé¢'€Z~ 't&ü¿ÖÊ•‡ïÿEÁûÕÀIúç\(yStþ©ù¾ÆOsS÷ñOKûzóÙ¥ýìÿŒ'xºVëŸEçŸz=æjèWؘÿc@1Ï'݆žßS9¦tàîrÙÓŠÎ?µ˜yÊŸdc¿óÙàÒqŽ.óšE¥gûxú¨M?v½‹}#¼ ˜ÏÜý¾å󴇡g1ïÏøØ Ð÷´~ãõSáqìz-ú‹ps»gØóÏ’7øÍÜX‡t9…ܹ¸¹÷}«ÇmNÞ»ÞE‹þ"Ü|ÚêK[÷ƒÏ±‡ÙO3pÃúNžGÍuÆ–ßÁØõ.Zôð²|Ž~µ" n˜× wÐÛ°+ƒ‹ô`_ë?òK»ÞE‹þ"Ü€ æ÷èa±Óö3üÓÀøa½'Ï+Àž€ç•V®-:ÔúÕmüË$°CÃ÷\ÛMø@Ž€Ÿ{á—³¸’?ÎØõ.Zôáý ¿ÿqµ°)<Äù¹Žoƒß3ø`}ÿ¶Û?Lò½Vò¦èüSó5zþœèmÈ™/CŸÃÞ†=z9ô4æAè{¬Ê¾=v½‹ýE¸á|ÛÃëŸìçÔºŒýcà{ìj‹êsI—çß º­ý6EOíâ¤c'Îøçø×|r…8y.!û¨÷‡ÃŸqu¾pStþ©÷0ÿǾÆú%û¦I‡] ÷E3¯ÁΆ=€õPp¶^~œEçŸz]æfËßžï³þrG¥üÉùÏâpø³ÿóõV]ï¢Eß/7ý {ö/®‘ØÝòéô‡ÎóÙ /EOíömêÜ3¯ã€üʈK~ðOcv¸;zÿgâCÕºMÑ@­O1¯a^òߺfßLÚÑð')_¸ÆO:ünÆ®wÑ¢£à-ímÈ-îc_c^ƒ}\^û›Ãáoìz-úVqƒœaßvlð³v‚;ô6ìrunTÑw€Ú®ŒÀqž†ÃŸýqîü0¹N»ö9ÖyJ+úÐé>Oá`q8üÙOg#är¹„_¸û¦pSôäSï#@_[e>ã¸J‡OWïa§W vƒ±Û£hÑWÂMÆÛdÝr˜üì€í«ÐÓÒ ÞC ‘žùPâérÙŠÎõ<ÿVËßÖ§Ø_†üˆõ–ŒíõpÃ<†kéwÆã½’3EçZÞÀ÷¬ß³þÂüƒó°Kƒ]{¾Ï¼ˆ¸jöã~87Šïn”œ):Ôóæû¬óãw‰óÒ¯µï7È%ì¤C-G>ÂÝØíP´è/Âv1pÿç¹ë̃ò|OÞû,prÿû6_âÛ0_ºYø):¿Ôö-ìÒ—GŸ´rÂûÑrù¾ÐÏ6bÞƒ¿›ò»þE‹¾n˜Çp.;ç æù‚Pæ-¬~8!žøC^qNîz{ìú-ú&Ôë0Ø‘;ØÛðÓôüEó›}¥Cî°.t&äv‡€Ý€kÖuêÜ›¢ïµ]¹s%ô7pnÐ×8ÇÓó¥Ðï×ü¦èÉ¥Æ òƒuœŒnXß¼§ùþÕyÎtù§=Átzî­ô3ìeéÍþ›ÍáðçspHaAv·ýIº±ëW´è[Á ö0¨äÆ _g/‹uNÏŸ„?Ï‹.Ö<§èÉ¥žÏ§_ZRô7ìÚš×XÞ\ <-—žVôäÒ‡´çäs‘ÄMÛWzÞÓµý "NÁØõ+ZômÐ.þMèkÝzͧ­~,·ÖÛ÷Æ®_Ñ¢o7¬Û`OËx5Øð@ŸËuPì È­ŠUôSïãd³v2äNăösìÕŸ°Î]+z©åK¬ó?8|~DüÚõÀôZøÔ9EO0%> ã ²>ƒLvÏÖGèo¬ÿ¼ßâjìú-úVpö1ë[ì§7_>ðÅ¿&÷_RúÙëÐA¿O&íækÉïEwtÿi+ßüUýÆ{/ãù®ú ?Ä"ÒÿÑ}•Ç”ï>jùãÁ߃ê{Ö?”ßÖÊÐüÈ×ß{Ø–gV{ùûÛ¢Ïõ=µÓåõã(Ÿžo âÛߪ<à"Ó!~{4o-ª}¨×Çmû¹ýO«=εú]Öol¾<î”~ƒÿi·­SÁ¯ê?ó×v¬iÛÏãVŒÛ–ð×9h+OÌÿà.×åà‹ó¢yî±üs=Ž#ÏV•ïÒŒò ·[Ÿª\—”ߊ¾ÿñ½?^ϯï ?/o¶åÿÊñ¢m¿| ´_Æãë+_(_ìÄ|ç²(íµØ~Ǹ‡j7÷Ïí«kÆIpò;õ“Þç76_wj;äYñÏEµ?òãjwäþ¾Ú¹¶•W¶ß\‹qó;QΛØt ž˜¿¢_å¹ãȃà'ÞûLéÀ ã,xßÈCpý¥òÝþùñÖí!þÚÚÔõB|ÿbà|‚k½ïïKØO9ÏãÄŸlåh\£‡zü®íÇù(ú»Ü8kë56_wjþ¤Ý.éšñyCýÉøÍ<”xxðó’Ò!ΨßȾb½íšÒq}]×ì‹÷ù­z¾&Š\º߇ÂÇ_èûÈGÞ¿­t7yO÷yŸqãÉäºk¯+í8½u™òé{«-î¶nèùr|÷’ÊîÁùUÿ»»ê¥÷úJË×[·ôÞ5åGyîé}ö½Ùn¦qCrrëå??/o‹ªÝÙ·>áÿóùÀ¸û¾_€gôÆ{Þ‡_Ç¡ë!OÐ×n#'àÿÀùÕàð±®çŒš¯OÏÔµô4Ëá‹Á·Ôë[¥§~èMà„öŠÛÑéWc|£ýg.è>òŒög?õWz¸/z45¿`Çú=B}k9¢vfÜ¥_៛§ôȃ˜'{~ñ ¹¦÷‘;Œ³¼Ï÷W¥§Oí®ûoMòõ¼ |2Ÿ ê n5_0^ÐóÀ…æ)–”­è¾øÒé2~ÓRŒ;ÈIÆ/äÔòÑrÀãå•Ñx!ß{«ú5úDÈ7äoù ¼µÝ’öC_CÁôË J¿"oàæ›Ì÷”n[ùЯŒÇð?ë/ØGŸ+¿Í'÷õ}~:ÿ•¼¿lßB>2î.ˆ‚ÇSz>owÅ_Ø×Wò\?ìU²x~¯yŸùšïÐ~Ø ªœ[ycûóüÝö»n˜·€WìcàMõö8Eù‘»à ¿ÐOþNÑh÷\¿y¬vŸçz'ü„}Æ|ü×¶ßÌ'È#ì¶ä£ù»q‹Üx¯ÕKÀ³û›ü/÷•œ±žß|®ôâsãwI×¼¯úXN-ÏÈ{üJ¼?ž/¶|Gû¸þ|ù.ù–íî}˜\=¡Ý¸þè/Ú1õ;ÚÍþœí8æú_*yóJ¸ù<ø_ýg¾`]ñáÑÔïý­å¯¿øÜQ?b¯FH^u~ æGñãû£¿–kÏÚñÖùÀ§•ü¾×^»~÷s}Æ|‰ÿζßwû~ÑŽÆãÁ?¢ÈGõA.“®ë?éËŒ[Ôw:~©ý¸ö}Ë3ÚíÅÑø,ÚRóù¾Ú¹Îø•|¹Û>·ßŒÚy”ã­¿ß$“ŽŸù=ÆGøý>7NUøÜáwÎÉÿa;>'YŽEzÓh·ï£_ÐG÷¢ý¯Æ8ý¸ÅãT_Ðû;¢ûm~Öƒi/Ú]ý<äûÏÆgÑ·KÍoÉïÈÆoø„þWðx ¼¹ŸGúýÈ>A^ý¾å_—7åïý­å³!~\ 9Ò |£#W¿%ËùÊíÿðçë™òØÏi¿í¶EÚù¥%ßA_Ãÿ'ù¾0ÿñÆkÉÏ×ñwØ ~Ÿ¤?ùù;Ôëi‹3ìp³øu‹÷·õ÷üŠvx~4ÞÞ7–«”ÿ§Óm;f;Ô9ãдÏy½=œ~M¿1ñ‘ñŸíè>ú:ö¢°/Ø•VE±c·èkækìIÌÛŸ‡òÎßEΑ~_å¼ÜŽ×¾¿Üò%?¯ë¬ÿ{Æy·ïr›Ÿ×‘ÁÓ“ÀÍ“v<›Þ5jÿ«ë¢ØwŸñ ý{_éYÏÀÞôAäÃ|Vã¨ç-êoû£,é\²^r&ô“6ÿöCSþ‹AÁ1ëýïµßuþ/t»5|‹ý‘ú-·|üÆí¿Ø~ÇvÁGQ/ü›°"JÞüªÔ|ŠŸ”ùAýsA×øý:N«øÐç‡ëšuIù‹Mí¦zκ:þ¨¬7±n/;ÔÔXtS÷Y¯—Þb9Ö)÷•OúÅQüðK`ýô‹ÀEú}Þä{ºÆOCíóÆí¿v÷›º&¾-ëÔ”ÿί”Žsfìï)úv¨çßø½#o×X¿Æ_Xã«Ï«`]þô>þ]ð!r9ÞVàCÆYô?凟|úzÿ /6w'éX„ÏÑû(?øç<âŠßËwß7öë§Ž‡®rýBJ—}Ôçö“ïh\ð|ôŒ ìýäߣ/}Å~cÜÇßy_0î¢/mNž[oð>åƒ_/òc]ùÅ:Ä{ÁŒë÷EñOE®°þoÿâ(þ(·á#½¿Þõ÷‘Ð*'ã»ü)­¯¡ç!©÷/œßXîQü6ñë¼+üp½üƒóK…›_7ðüñí­?ƒ‹~]ý*ø¹^´½cQôÓÀzÓSÝÿ²-—ç[ÉÐo *ù‘ë·ö³á}äòÂûL•÷ñcwøaGÓw¬b`>wCå¤÷™wióâG{½¹¼W¹™.·ø°¿†ÚÑz#¸>Û>›ŸÞjþgüb~O¿eÜömÆúb篰£|yN~Ø¿÷úÞ’Òóä éwCo ?"—;×Ùá3ô!æE+Gó¥ñåô³ü—ûJ둯ÜþŒO|»úßÚúXOÅþñ4Úÿ‹7û~Ñ7£9Žå:§ãÆlßâ“ݺ&ü„>D:ñ‰Óñ}äÎÁÐüŒ£…6ןÄw©¼©|æOæ¹®Äø‘¸9d¿ÕçÛ?ÊïyÔ’¾Ë8ÁóôOÛiÛyl~zW¨õ*øò¥øâE«wuþZÜÞŽÇ–7ð)øC/9àôŒ»Ü2ã=ø„tÚñÚ¸§^”+ñßë÷ÚïñK6äÏ߸ýE=hŒíÓ•ëEáæU¨Û-ù6ÇýQøŒkøP|f}%å úwÄSáýNnå÷²<äË5ßÛŸ\Ý®EO6µÞ¿¢G-‡¿N_ÙÑ}øö½¸EÞ€«þÇÉç^o<ßM9îOCnÝ®EO6õ~ÉýáðgäþKð´¤t¬'bÿÔzºç+ð=r|’ë…ï·|î|ø>zvÝÛïxÞÀwêü–¢¿nX§`l%䄯{Ûc• ~°aÇÅÏcE×›zŸ8e’7]|æ³§”žïžoñfœœkq4v{}7¨×ϱòßÊ]ãW‹?þ3˺f/÷½ã?°ïÙÊÇ¥`Ýî†Ò]Ä>$Š_vfáxìö,únPóõ•˜ßD<.Û]Áúëä º†ïñÛÀÿ ÿAÖÛñkŒ}óöÇÁ¾{»µø{àÿ€?´r«hÑ·Šü.ñwD’”v÷ÄyüCÐÿÖãÐßî¬N(ëÙÈ‹÷RÞ(ž—¸yÈÇ[{Aúï-úVqÃüf%ÞüÉsð’þVèm’#ö·e^ƒ÷™÷°¾Ü¸¡kâPÝÐ}ô;ôFô;Öã±Ô¾‘¢¿"µ= »qœ'`¾ý8Ðû‰{žCŸ´ã‹å5ó¾È‡qkh~Ô×ãåû{Œ7éo~ÏyåØý_ôͨåÊî›Í[,7÷'ü€½Â|µ£kQûE|ÀA?óoÄ)4¿‚#hê›qmœð<âxNõd¥{¡ûà9Ú¥‹ß¨zg\4ÇÙR:¿O»Ôü¼ ¾tÍy¶à¿"ÆöaߢœÈòA®/ŽÀ¹¤”$ðŸñOÁ…Ö™·þ¸;¹ö¹¸zîø[…›y¦ß—&|ó긠—1þ£×çy±Äuažú›õô&ø¿òÅ_î™îÇyô¶Ûá·Š}‚ü8Gÿ?âºå¹qÄßÏäCœð¬vëâøþå‡I9Éý‘óƒ¯næ™z¾|öõú‘}sž ¯OÅ|‚ù8 Î.|„ý)÷½®Ÿ“¯æ^ÏÝÓóKíü¡³KKY¿Šs×lOÇN yˆú„ÿ­qÜÚU:ðnÜèþ‡¯'ß‹/ú¦ëÿðMÇOsÎ-ü‹¼Áÿ'ÏEƒ™Ÿ3Þ/´ùšïó¼üU/û á—Š|c„Ýœ2/ß’Oäßû&¹çòHîßÛñÄø•ž9vÿ}3ú¦ëÖÖ?Nµã¹õ¤87$ÏåôKÿžÎOHׯÁežûóIËÿ—Êë­ÈGìy¼çéZî=Ÿ-Þ(¿õ7Æp Þñ3§žOÚv»ÿ‹¾}Syc>Pÿ{¾^‡w[þ6¯Õüû~›~Ð/ýÅ=ÞƒGpû°ÍÏr…|ß#‡HO¹¨òíiàŠôJçü_Fy§ÚïRþ±ûÿóýB»Qÿ½¨/éhÇè_§ÛiûÃý´0#=ýþ%~ï´ú¾ÉóÜѰ ÿ¶í¯.¾ßo‚XÛŽú&¿ÃGèóðK^?l¿ÛÕ7ø?û£KŸþ¥g‡þ œJçþÝo¿“|ìr“ïó¶ŸfñçK”Ëò©í×N.¿áxuÜ(ú§Û9{&ÆÅçÑ>ø¨¶èçà¿ôgžÎ?ÆIžçÚÏyÞjŽãäÿaà6æÁ¾Ïws¼Íq~߉ôÈ ô•ˆ+ëqÿ£¶ýfù“výq¦m§Nß‹ýCPç÷ðèëé¾Á7ÆÅŒõ?öÍ}J¾®ÐÓfÔ{Þ(ë®§ä÷× /ĉ鿕¤×øãñFýçûÄQ‹ñüùûá÷o|§9ßÍq>†/|žÚÐü:=Æ9Ï®ë+1¾ÐÄ!!ÞUŒ#³üÝسÒMüæó0°g=rï·ùæyQ¶3ÏdYù±ÎŠüýü==_1Ú‘ñ‰òh8iþi^ßÂÏ ¿¥³Á§sœRzÖßX_ùãõ¾‹mû2nóK¹áu6ô/ðG?ßÞmËßÇ™H·tô¸Ø_«¸:Î;*ããôÁÜnðSÄy·S>³øÒýÁ~qÊM»_zÐÎ7Uùm:¿ŒKBÿA±ãáÀõ¿ðÛcý(íæühƵV®Í+µ?"ëcyІêËø‡üᜠÉß­oÕn¬Ç±nqéíg®qÈüq9¾Ë¸ ~nƒ—&åxÚöïÖíï'׫ÊÿDâÕø¼O•ûyÛ^ÇÃoü±þâó=•ÿºòC®P?ìÏ´ ã þ™œsõìh¾´ß ¸½¢ï7îLÔ›õHžkœq~÷GÄÏâ|+úëb;>þ+¿Ïùoà…8^±¾êþxÍõ²ãF­O0î0Ž‚ÎïfŽ~„/Ñ'ûð7ú ý ÿmÄ÷ÈÜJǺ5åH¿|üL7Ò›ºutÊE=¹æù]³n¾3¹Îód¬Ò>ð å„h/üIð/¡Ðñ¿¹Ôò·û%ö¯ØïyIåc¼€Ï)úRÎSÖÚïLÇ+åËù½Œ ÈÛËÿ7Æ ¸Žþã>û-ð'øüèñb^¨û(Æ1Æuär›ç׃Ÿÿ¬÷ñÏâ¼Mæ?è¹âëŒWî~ZŠþ£°!ç®Å8Œ\OÔ‹õ;Æoä(rñx }èèÿàõz”|€CÊŸç¢Ï‚òÏqÞ¥ËË8ô­ÒAásÚß~™ºóù­oÚñ=Ïɶ~…?ãÞ­ö½”–ÃÈSüÃ=Žè9r9zä¼Q×y ~}pŽDÑ›Àr—yä•ȇyãû óüMø‹ï‚§öçèÿޏ¦?×DÁáu]órÔマƒ#Ê ÁàŠú‹Ï]Næëعhøœò€Ç;ö‡¼íxWïQø¹}5äMøOûú~?b‚^êkÎad~ÝŒ›_Åw87÷âœëièMŒØÏàoÉý­;ß7í»uGý‰¾€v6æñ´úØ)p£ç±ÿÑó ]s®÷žÞ§¿W%Oýl7cœVÿXߟÈ-ó=ü>Ò÷Л¶[œÛ>HþÈmêk9£|_ª\”ŸyQœbÿNðŒœ\ÖwÂÿzºTÏ×BÞ¨} þÕn~=Rüo> ^ð•Àz+qêÓÎþ´­§çƒÃœã0~ÇþVó#ãíü¬ågóz-|swuBcŸŸí’ðiă0žNëþÃvü¶¿/ñrU^Û™žÑßʇýóÂAîgF¾º¾àŽù‚¾ïöbÞ®˜7ÁÏ:{áùO×ûåa\g¾Nãµ´×¥|q:ækݼRåy¿äŸ´÷ç¾Ö.îãÕ…£ó›êqœz? ¼Àÿ‹mûå9yÆ rfI”uÒñ=øu§íG÷ëvà\ /4Žeúî\XôûQÅwàWúùz&ò']â\1À7ÈmÆðµÔ¦sþ´Ï?Úçn/py¹ÇÃÀrÂýÌ÷‘ JÏø‚”ï"g8çtÆyœÆWâz_ù…?›ÇÛ'mùæZPûwçÂðí _Ç8ݵãÑísçC?E›ágøM|dœP._Ö§öÚrt8Üù>åP½Ò§KŸxc<™%GGÈÊwÕ^3ùöD®îg‰”þQÛ)Ï]î÷Ûvíο›Áßy.ªó‰s¥sŸƒ¿sf¾õ´wš/áWø‹ûðxÞ™¤3¿ƒkp‘óþÅ£ñ™~w¹ÞéïRò§7Êü¸Ý–3ÏíηS½íÁ{Ô?ôfÊ;Õ땜¿lõ‰Ôcºö§=¶~^ôxÒôïµÌ£à?p%¾MyéqÐ}Æ]ä"ù$àËô¯[¾çg"ò!}ìs˸~¹À¸â}p„>>#n¶ËÉýíøþãÀMØW²žé¿PôxÓiügñ| ~³]oQ{ã¤øÎviôzp…ž’þ6ØÐ?Ÿ?=›QŽ÷ã=ñëtþ®ïJÞY¾¾‰#àõºŸ®öÌk.ç~äçFX.EïÄÝ ßØüPôÕhç?åõÖOæŸG¤kõ´\ÿ·ž–v@ñŸØd*7fÏà»3óxæçȇe¥cœ"7XŸÂ^¶ úáÁþì´—ã¯óA[ãøéGç{«õ¿]³âuÎõº>ëtàÇñ3tŸ}Ï«zÿ‚³oôþd½7Ïycß1÷á[â<~ìÃg…|¾iùÑxÀÿ9‰?ùà¯Éºñ½‰ ðyÔß똔³Å÷Öu=Gn±¾|¥Ååaœëèv_.=mžèÖí'üpSý‡„Î7´<‰õ,¯/2Þ³Þ~ÃæKÖ±îê:ö9;þT¬ËûþŠ®‰ãwAïƒÖ—ˆ#u³gxý„õFâö ·võüOzßñoUOÍ÷;ÿäà=Qƃˆàñ$Ïñ¿”±ù¡è«QëcqÞºÇ׈«Ôí«€àgüÈSÈ%ö# /Àz ü_#'.êúB|rã×®m‡G^ê>¸¡œŒóøã¡oág<Ýÿ³Æñ¹Ûÿ2äþUk­cëž¾›zÚ¦ä\Ü/z¼©ù‹þ¾|£×0¿~®çÌHÿŠq\â~Ö³˜'!×âœ7ÇUú{à#Öqm·@â†|Ào ?œAé˜!XwAÞ„?Œå!øf¸ó ?‚w=·ß´¾³Í·èñ¦]lP¿â‡¹'úPýÌsÎxئ3¿¥ß*úï_>Ÿy¦yBq{óð¯„ʳ£|Ðß°c§ÓóåuŸò£—Åù‘–‡çÌú#8ˆø:ªîë­¶o e˜/šûê;ÿ€¸0ÿ!w†à?ËÝŸg€ï³ûRžÛx%pc?²Àý©È?㢯a߉údzô¶”gÊ?qa{\î'•œt»ðí'½vl~(új4ãˆtqôöÕßÄ#{¤çZ>Ì8Hü¬§-Ä8¾Û¾çô|_ùd¼óü¿¤tȵ°;§_Xžb=1ÒçzqëQé7j=¿Ÿˆ+—öx·û‹gE7×jG×èGÈäü’xã9rbhóéÎå=á¡{?qIz•ÏüÈú ßyõ¢œä~ÓüŒC¾Çø‘q¶ž¥ÜÈ©ÅÉ{´³Ë‘ùDýÇæ‡ãNÝŽm¿¥_Ë÷·ýl>qºÐ“H§ñÍþ3ûʺ׎séoÏ÷üy“8íü3ðIàÔõ†ÿ‚ï»}|w¯ý~ŽµÝæ×ù[ÎjßÀs¶G~×ûÝ(ò8=ºÜ³ò-ÚRóãížñ^à7ø}áyÛ¯¶cá+O•oîkïâŠ%_>ŒrQNøœy.úûŽÿågéÇçÈ[®Dœ*äLò×]<µ‡Œ'Ë¿Gºgà?ô«˜Gu¸Q~–ËÔSíÃøåïÐnQï±ùr^¨õpÁøt:øŒñýý“¶?s_P΃ý~ž÷q^2>_ç/¿[ø…urÖg(Ïó}yÄvð‘äLò¹qƒ â'ñÜå]jë˸Ñ鬯²^›çyÄþöŒC:S Ã”õ_Ëùð#çý±ùq^h®»çÏíKûãEÿ²¾âu‰/[ß´ãú–òå:û«‹Ÿ¶×9þnŸ1Þj\öxŠÜþólã€tÔ»ô²¾‹}î…Ò?mËçùë›_«|kʇrÒÄŸR~÷.í\³ÎÛ°=óLÀiއ¬“†\*{Ú«QoôŸÖÝïœÛE<ÖÇñÿÐ|Åñ\d§uÿÀÄOƒÿX?Ç_ë|+_º¸– -ŸØëþê„"ï6”/~¬ëƒ_Ö=%í iýÞú~q™õY­×'dŠ{åÏ~pä.~œóÉz/8»üM½Ÿ­OmÝV{à‡€Ýœq&âÃÙOnµí¯±ùò¸SÏ×å—èùò„ç‹ÁÇ7Ú~°ÜáÜLø`9ò¡ÿñƒAïù¦Å ëxÆúrã¥øõ Ÿûªûy.!ã=qÃàËÏã}ùÃ9^qûÐït­ýçˆ?öU”Ÿr7óqKwˆ8 à4ýr¸¦hÇ{í÷ü]âÒhœqÜß àX×ÈQîã'$ÿ…±ùò¸Së'Èð¸ŒýGíËzuîÓGίë}üUð‹g¼ÆïŒy |͸ _Þù¡Á©õU¥Ïó?Üo*r 9Iùì· .ôbäþÓ>O3Æ Þû$pC9áø˜ò"7"n™ýw"~½q‹¿è¥v\ñwé7Î]!ð¨÷¯G=ÁW‹ûJÔ~*à9>…ÏчÅÇžï8nŒ®é7ø}‡xLð'~Èß*þg-_LÏSý"ò9¥÷‘áÇiÜ¡§à#¿×}’ùÙ]å§÷oë=•Ïù\‹òÿ»ãœ4ÛG–‘CÂËŽÞßÖ5òˆqmÛOÈñßô]ä+8R?Ûž‚>q‹Mm¯=š_ç»Ì_Ûv¶œ¡ÿ™ÏàOI¿3nÂÏ·lñë i—öü?ãÐh\w¹5ð÷¸¾Ïx^Á;õ„ÏÀö}¥Ã‡ôèw+›¥hŸŒ»;ÌhwÎK®z‚gì_…^‰'ˆõþ=•Ÿ~ç¬ÑÞŠ×Wþ¯GóÜXú3©ÇóÓÿo3^yžl¿wå“뎤»­|÷[jÿÊ[ܘ¯Â¾Ì}Ïs5n;=ö]Æ_Ó?ØvËo]Ü-ð ý,çéÝy$q^¨ñD¼a]§ßó¸´;`×§ý·Û|­WG|:Û±ó¼CÚg½ô´WÂKwN²ú™ö<ü Ÿ=¾ºúýÇxçÂZO÷9æ­þ’çk¤Éé‚¿=ž¢'íµåŸ®7µ?äCÜžÆ#ä>…¿Ùw¶ÞÊ›™çï2Q?(ã>~à }€ö¤_ð¥½ó|OïgR}‘’cݸ3#ŽGÑ£iž[ÖçG{¢‰O»sî°/€ôǃÕûOCùMÛ_‰÷+ß;ãêöÿ¾¥Œßð)õˆxQ®'üJzø8ã§ý­Mçö{<£{ñýÝç;Ô = >Ïv ýÑù“ý°¨vCOˆstóÜ(p66_wJ{gÜÏ.îý|šçÅvñýà'ìŧÚû¦y.‚¾c|?R:(åã<ê~Æméö À¿»!çfÜŸõËzÌ:ç¶kWÚg_״ÞE'Ísïrݽ¹†Ñ;?¹Þmù§‹ët:ƹZÜtr1qö°}?ã“uþ W<ßG¾PÎLUýømµ—Câ%ãƒÎ|oF¼Ú¢Ç“ÚþuFzZìÇíæ+Þ÷¡÷~ßòé–øÀûF©çwY×xÈÆMè-³ü“½3ßkj§Ö{Oc¾4#_ãûã¶žNÇxÃ|‚q'ðëöϬ焤èñ¦^÷ÀŸ&ä |ayÆ~¯ëaÿÄ;Í}½—ç_®´rÉëáà‘y¾ìÅ–gâ?Ö7§~1úþb¤øŽý]¼[ÒE¼çŒ+Õíc²Ó~×맜ϒ~°W 7óD=.Ãßø—1eüjËGŽÃÅz8~È7bžçŸù>~ZðÑ-åûEØMY'EN0>³n¸ÅŽ÷ˆçŽœd9Åaiò^w>éšò;ø#®FžCìó3uŸ8TØß|¾ùLîÍE_úqÞq·.͹SðëôK¢Ž_©kü×[½ÆëŽßãíz«—ÙàÊÐüœ>ηœb\g]“q|¥Mò;þ©Ä´YÿäôÙÀò†úÆùQ–³Ä[c}øeáfžhÆŸ°ÜAÉs¥gó\0äÓ½ï'ù ¿‰qµÍÏ~…ȥ뢛?L¨üZ,ðßÎóç°ãíè}üÝðO8å¾ß±Þß"üĈg–ñ§ ’ÆÏ’Ú)ã _÷Úq£èñ¦öÛÄG×Z~ðøˆ?'úÆ[Ï—á/øn=NùÂoèsŒóy6~†èoè[øqÂÏøïb';˜¤ó|hIï}åÔwTÝ©ŸÏß ½Ëû%tŸ4ßG¾"?hŸôaÞGœ¨Ý(gœ_XôxÓÎ_‰þDïŸò<üCX?ƒÿ8WSãì ŸíM>'@ã쾞?™¼Oz˹]GÿÒŸÁþÀèKȵO¢ÞG©ïäþKöƒ¾Ð5¸gœÇÌÀ‰üz:» ë¿´‡ÊUçÌ'µ~ÿïµüÖ‰ÞçÚ®úyà‡û¹ùz"÷ñ ?¾c~ ¼ä¾¡é¾•Ÿùòigh~ÖÿЖ3ýº¼ÏÓqrtþgÈç¿/q Ü.KÞÌuÃqî`Æð:„ú¹;Oãsç_~eÞ7 ?¥|zÔ¾?“c¼öü!ÏÅtýtÿ`h~È·!~ݺ*”ñ;ܧ-ü=É£.ÛAä¯ñil~(új´ëçä7ž?UÿCÁý?ìˆâç¥ôÖË^„þ‚>&½&õ~ݹh|çq‹§Ïòdhž¯ù,êK¹f|Ïéi§¸îÊE~¤8„cóƒùBíÁu¶kwŸúD{ñ˸\Ý9«´wúÿÍà ßüH~A­D¹œ_Üïü>ô¼óÎó/á+ʳ×ò›Ó ´£õœí(÷ßÑ{»í¼ÂøŠúxý3Û-ãæEù,÷±k‡§QoîïÝžùówyòü+Ü(½í—ÈëG3ÊI{Í8´ó«æ9åI9ütÿ*ÚÝýºØÖÃø´·Êƒý¦«òOžË ¿`—\lù"Ï›ëò§þ±ÂåÛ ½?ÆóÎÏ™rÄ9íž?ïë»Ü_nùßå"íó^¼ÿ¼íß.^ïå¾ÖÓ¿ýy›n¦øŽk·OÄaîÚ{'hÆ3 þs¾ˆtÁ׳ø%ù°ÓcÏ¿P¿Ü÷‘qêè¿ÓG÷›q³ù&=lq“ã“ï“Þëâ2?æ»È‡ì¿3ðú´Ÿ3ŽÄ¸—xëôê<_ûL¼Ïz#ö²h?Ï›?nósý‚Ï=Úþô|Ûý,Ê9ô/å¥üì»Ö|Åó„ÓÁŒ‹àöŒqÃõYÅ. ?¨ß\žgÁ÷ðQð¹ëÁúQØüœ}¥F{Òîðgì²}›s ”Þvzî?iëŸû_»8ð¬ç2._›|Ô>ÖchÇ8wm–ÿœ÷µcgç;·tñk]³_–qžþ{>ÈõŠÚé”Þ#û±b/…ÓŒ4Ïiÿ4×I<äë¡g™ožF»b—Oàþ'^öÞͶœ¶[Ò~Çý!éHÏ5ñk´>”ã¿ý7à{ø€ø·åò¸É8O»â7¿!ýÆ8‡…Ö§ü¾¿æ<Æé)?z7å½®û¬Ûá_Ä:רŸ|Žž¾›þùÂÏ4Þ_×ý”[ßc= þ§]éwøü¶òw¼²h/¾÷5ü§üéÇOÛrr>æÔ±GÍÇEáGÖ3‰¿ÆwÅÿŽA?sîŒÏÕ¸`üà÷B½èwð¯s=þ°þH<ÊI9ð_ ]‡8×-í唋u¡ˆsà~ÀoHýçq|3ø‚s@o‘žzˆ²î _ã×À¸˜çíüB|êC~ôùÒžà y7cß㤯yOø2ŽÁ-8GÔŸueø8ãåyÂqŽ]Æ£ð:×àŠrâÄ><ãIòÏíˆ,õæûøÙÑþwu}/ð'¿¼ÔϺx©W‡DÑ?W§h'É%óÙívœ2_ãI;dœbúþ®}Ï~øŽ{8áý˜v¢žôãÈZ¼¿å]VyiÿðŸ4ÎùñöTŸ©Eé(8„ïð3xýëx“üÝ?à œPôÊ‹~H»Ò/öû§]‘s¢èû±oÀå¡oÿØö |Ï5þ4¬Ë2¯yD½tŸùõÂ_o;pªx‡–ÏÈ'øÿÒ5Õù±ãò…þb<ÿ–íxêy¿å¦èÅ?wÑ[àürÑûÁ;|ãø´õ¾=ÞzзzN¿ƒ_ì”ãL;ù;´r¹ÿ0?c>K}à?½ïq~ÌŸàƒ'úå{®|‰+½¨÷oà ÆSø™~¼¸ï+mù¼?;å_È9ÒQüA©¸§=‘KçÚrNõ"Ñ›ÑÞœƒ^~­.úËR\ÃçðÙ3ÑŒëèù-rLù_SpŒ>>À“ã݉þ9ä üJûh¼žöO‹§n}cUßËs‹cÇ,ûºås®+D:Æ;¾ß ç‘Ëûºf<ä=øô|[N÷;x>sÝÍx†ïh_Æ%ÆoÆ ú= ¾Á>ªq¦›÷ûyÐ8_ÒóHøvÝQ94.¹Ÿà#ê!\XN¦Þi>R¹—<ç{Œ_ì'@Π‡/)ýºÚ1ù‡zœoŸwqBï2¿æ>¦gôãŸòOØ35vö@ôôvô£G“ëNÞ¬´åñsåëüÓ¯/Î+ɸt³Ör=Ñ÷Ã>ØG>á³°_™oègÖaÂÞm9*œx"%ù2¾ çþß_³ÆæS½Çuì'ª'zn·®Œ}˜ïÇúfÊSŸç‹m¾¶WØŸ³å£î}âÂ×´å?P—3û%ý÷h_(ßËø„Œð×¾òCO°]ZùR¾§Ñ»àZ×ô#ãà)åÿ$Ês¡•7Cü\žsGóµqåA.u8Fîâ«öëÖCŸ·íéï=Š~„cý¦{/˃CÚƒqvþR¾Q>ëûÑîþõØo¿Ÿö”<-ù;Àtý ¾?Äz®Su~lôKŽ;Ñ>ûíóŽÏ£üÖ'âÚrùËír>ÆQävlø,Çø*ו¿ùžï©_œý»õ™xAß¡>´›òI›Yñº¸B¤§ß“è‡ìǽh§\Æ>ý´•_¹^íy:|Jû¦ÿÎóùŸ–8êü„hÚ7ËE~ê_· ú˜êÝù%#ïN·üïöˆõ¶aÆozŽ˜®£ÿê½Y~c]»n·å_§Ïë§m;&ŸÌ,×¾(úXŒ§°[ÿ¿:çK»è~ÆY0Þ¨'|E OcûÇwê~ŠóYÓŸ9ý&ÜÞ´?úêbŒ£Œ›ŒS9Îþ5hÄñËx‡.üJy^ÄxÇø‰~•þ0¤~íü®Àí8íüä ð¯pë|iG=·}ÖxO>à{VycÞÑùg0ÿeܯ´ßn›~l¾<îÔãÏ‹¶ÿ­/ÀŸƒ/Ñã˜/Ä8—ñš:?ã§ñ^â†þ†?÷‚_wÚûO³³³t9Îæ9ˆé? Bÿóxí“åìÆ©ñ­¹v9hGp%vxä>í–~@ª·ã“œ?Î8Ç­hKsžc„Ÿ²Û5ì¶_dܦ°§¹Õ¿¶ë0Ï÷úXÈú;í[ðÿN˶“°~½HãCÚ<>Ä8›ûv¦òTïÇzë4îµÊ!}'ã(vùa'];š_m¿ü²ÅUî;Èø‰^—¦Þø°ïŽñb¥m'ò›/;žg¡ö;×âÄüð›èoñeî[±{-ø¸ÿäÿe¿õ<Ÿñ<1¿&?ìßaÏø Óýú¢¬Ó oâÞNÓ<Ë|ÿaÏe<`]z!ä-íŸ.é{ØM/èšöÀnöa[Þ®|^òB× -ÎìßÃ8ÞÀ/íÃz뺣~t9ŠF¿äùžØ;±Ãà/²ùý¤½}>ÏÕ¼·xó9žâã}¥ÃoasuBÁïFËÇ[›ºûëtœnõ Ëø"÷5ÃÈ7Ö»nÇø½õã;öó ¾ú.ë'à¹t­åO¯ïr®íç5Yޝè9ëq—Úú8=xÆ/sCYß#?οã»7tÍxw¶?ŠÎÀ ëï÷ÕÎð'ü‘çA®E€+øÿQÖÏáãA×èMëÈ ]£Gà/…Ýüžøä‰ð¨qÑv`ä ã龫tŒ£œ·ß Ç}ÑÖÇí.ðYÒõ™àwŸã<ëœØÛ)/~øy ÷ª§ý¢ôø°¾Îx”çÖ#©ýÇxÆ9qôþžô'r,ÎÙ)z4ž+£öc¼”þ>ÀïPÒ3¿ ;ÚÔ?Mé87})¬»Á?ØÙà;ô»ÿøAý)þGo[m¿çûèA˺þn·•?à3÷k\hùÌíÂy—¬Ç3~ƒ¾‡ÓÕö;yŽ•ëN‘GÈ×3-¿÷ôÞ¢¼±>iy±J»·ùNýOõݯDÁ9þ 7¯„ôgúÿ?ô pÂøÉ:õ Ý_=^ã¨åzVîÏ`¼#N-û H¯ýy¾¥×+ð õŸvz¸A? {šïÓàþGÿdóJä'yey޾ˆüxÿvûýA¿.nUœéòÒžÈ}úrâ¿÷iô2ÚWé7rl¾<î4׃ÍÌc¬Çˆ2n‹Ÿ¦û«ô?”çíxé|ÑkÐ×âœË\'·ßT®“ —à‡ú´Åƒåà…àSÆ_ä#¸€ß™Æè7ðéíwÙ”ö9ŸÛø÷ ªoÚÇÀ}wÞ·ëò&ÏC•<Ë8m¶oпÈÃh‡±ùò¸ÓY~`ÿÙŒóTý\ïyCÏ`œÏó*µ?§ã‹¥(ÒÛn n—†æg{ÃrËÖû”¾‹Ÿ¡|-¯¶õíìÌ£="NŠ×OrþþлôþB‹{óý'Q.ì Œ7‹‘?øS;tñ9b_¨íè¢\Ú_16_wjû2íߪýóüŽ.~ þÎuvpñ¥òÜç.^ÃNûýé>q•tPø~\ŒüxŽ¿núåå:$|(¾Í8sÆv¬àsž›¯©ü ß>i©Ó3ŽDœ'›GQ~ä;óæ]à÷yÛŽWrl¾<î4ýÐfžƒ›ç‚3ÆË}¥W¿xôyö"ðÂz’øÀë—ðübÿºù|3þvkü%Wø^à8×ɰ³§}? ÞcŠ8"+3pƒ=‡ò:nNÌ_ø.þ ”Iíñ²•CEO&µÿëøÑaGZ€#ŸC¨ûŸ8ŸttÊ×qÖtŸy |½Ü ?6u >6ôÇ¿e}÷?Uþ͉à°å¼|4_ãäuÕÛ?Lò»®|Áòò—‰óéʯó Æq4ñ€?>'Q×w~œ\ÛïNÿ:ü€ðçüðsð¤ødŽÀ<ÿ-â"á?|‚Ï#¾¥q…>…ùâOÜK¼·ˆïàÇ·xúZé"®¦ýhÐïø~ú7ÜÕx¼ÿÄçú ô´w溎ÇÝ ¢Ì‡‡œ@þ 'ÁoìÀoÿTô0äËZð#¸àù¥'å¼åEÞgä zã{Qžðg2nr_~jÜ¿§ûàˆùÏñ{¿Þâ±èɤÞW.°cˆO߯‰3¼¯kä|~3Æmüʰ#?R~žïëû/™WLô¡A?ÏÓWGÒÛò¼^û ,ë~øïMïO~nôCì$ÏôºÞ ý ýu%ðµXòæ$Sï»ÉsyO·÷3~vw®Ðþ„Œ‡ôK!_Æ}öÃ|ÔâÆë,¤ÃG¾øË€üšñ/×}ëø«¾à»ñðëìÎ;ÊxuƒÞGž³Œ¿/y4vÿ};´ó‰ó€¼J:ø1âçù¿Ý¹;³(ã6rê‚®Oé;Ìk¾ |óÖo_Úzx¿*ßuþc¬ÓÚÿólä·¨çø%"‡Ô>yaÑ“E;ÿR®wÄ2õ[Nð•x/¹Oþ¤çúQ‹[ëiŒßQ®òCÐï±ßÅCä¹Á÷rßÂi]o·ßÉ_žCoœn§_)õçyøwú=Ê Ÿ†Õg˜ûB®P>¿ç¬/àé }¯Tϱùò¸SËqú…qŒýÉÑéo’qeÍ/ôøÛm¿ãù;×9ßxùÀŸ³âšQ~ð†½ = ÿ®ÜW¤ü»óÝ÷Zþ™?­;—2åKâMå¶õzïQ.æKy¾FÎÓhÚ3숾¿ÔŽnŽÙ¹ÖÇf\ßà~‰û]|(ñCžû‘ç3{å½ð?éÎ9¦yÞnàÇë!œŸÞ…ÜAï?Êz?mqe~ —‡ú1ÞpžúQêwÛm¹=>‘œObûCÆ¿§¾Ø;ž¶í’ñU,×°§<=ZËz=šÚ?é³ÏRÎÀèÛØÿϱÓàOÂúÝiõëîà‚ñ”~„ÿÿ°åcÇ·ðézà†u~•Ëüò^äç²nQ϶¾n'üïácÖ%‘Ôç”ÚÉû~ôñ®.¶ß±ý€u—|»[ú÷¨¼Óu§VïÅ^íþ´>ØŽ+?̸_ôhêùâŠø>ð£ãw´rÅë‡7cüE_º¡kpäxð(çXÑÏ×ÕÏÈ1p ÿâW…}–uKü#/ˆOÿÞÖ'ãØŸLùÛþæõv}Gùuñåøîùàküdð3ÿ溞o(_ûéýåøî·|Wéh×5ÝN|þàŽçÔ×빓÷›ˆ÷Qôhêùlž?òhwÆëjoâ)ÆAü‘7œãŽðá/ø‘uyøhµ•'J>‡ù<8½Çz çåÂø¿8®™(|θÞ'wVć¿ÏxÁ¹v‹¢ø‘]hçm¶à¿Cá´‹w…>©ûÖç8ïŠvæ»÷‘ÿ´#8jåˆÇ¿‹q?Ö…ŠM“¹¶^ü0ô æè>WωG Ÿ!4¾ºàWü)ÏE?³n/~ðø/yÈ>—ÊŸq½ñkpùã÷‰Ÿ3ü‰ÿ õÒûݼ}sMé2þóø¹ÉøûÐø¾ë<À¹x1ÊM<*Ú?ã{Rÿß´åvû;þbôË™ÂÍ«Pû%¡É×v²Œßû¹ýŒâðe6ðNV‘Oú.ã;÷ñÏ¥ßÁ~”KÁŸð7~\ðçɵËéç-_OÇq¥C±/ç¯QôEü ÷©§ÏkR¾Èe­û[/&#~jÔ »É>í¦÷ÀQîûá;Wø½}v4n:}UzÚ+éi/4®¢—i|w{fKøEüm»—ýZÔOȃGJÇsô;á)Ï4Ÿ`ØnÇý!~àÎ×èMaw¶~–ûÁŸO©Ë!r}žqÆçžÆõå¶Ü.rd½•/Y/ãÃëûjä碦‘Þó|”øoO[Ü»ßw'éܯè™w èÑ´‹7ó¢åÓ.~·ãâ¶ý=Ý×+þ`?°äR®ë乯¾ÿ»H7´?Ë3ì²OZþ¦ßžùúÚB‹³ü™ßö‚3ŸŠûyžH·ó4Úkü¶å1^ÿèØehÿÅ£ËßÙå•÷Ýñ¾¿qª‹M=žï¨â”Ü7Û+êuˆýèô‘S-Žºsséß'Á‡q_ú?wçˆ2ße=—qa»}îñ^ï§c–¿ó @#n9ñ5IßâGyò<]Ú•çàï+ÊûQ[¯\Ï5î°Äz'ã˜Óƒÿí_E¦Ý9]gb\Ü™ÐN>I.¥ÿqêUÝú]œçéþzؾŸ|’|Ôáfgh~©uñ^yý‹yTœ¿ÜÅQ|¸¢\÷i‡Çmýüõ¥ÝöÚô^_ ¼æùÔÓùf>Øw^´xèüèÉû±ù²è›ÑYç÷š?vDÑßwOûzŽþ¶ã8Šq7¿k¾ƒO“ÿãû[ÜþMœz¾ŒÞ4cþÇó•Vžø|•ÓøýM|gQϹÎýiÌçfœ«–qv‹Îõúæõз2ÒgÁ¯øÓäy›kâ'¯÷ë}øÿöGƒCÎ%ÃoŒråyÂëíûækâÏ0î£küLj‹ƒ¹ƒ_qáø~Œ'‘žsâ6uͺvlï¦|“ûÆÍ‹ÒÓæ™n ê_ýq¿¢÷ŸÀ—¿¾ŽsbìgƒèuÝ¿ ãׯú-þ”Ä!ƒïV…/ÊçX;ÕF«Ï§ÑŸD…cãõ[QΙŸ[~·‰u0ÇR~à‚ñƒsJ‘O”óB+_8uìþ/úfÔq¾bÝÁrþ]€_Äø÷? à¿ÆùqÈ)Îg>ÐýŒkÉ|šõGÆ{äzÛ=G>8î­ÒxÂÏ€x€äþ‡üXÒ}p€ÜA/$þ(~Ó–»zOøö¸À~†5=_oq’þÑEçƒ:.,ãé ¿*óv0ø<1ߎ¸é~Žß|Ê8Œ¿ óìØà} >^ =0æ?¹Ör ¹È¸o}Nõ‰ó²-ŸÀ%õAÏC/t×Zïù_P¹ðGå{ƒîkBú_dÜéî<7ðÅw؇Æ}ò‹8‰Æ#þÊ×û7h/(zí“ñ S¸™GÚŃ ûŽÇyüȵüg»3ü‡^†_ ö`ñ[Æ}²½à”òÇà”ùÏákòÅ>&¾ôK»už+ÒÙ—%¯ü>~ÓÈKÉ‹!~é`9ÄúªqÕ¦wû.MîÍE_Î:§Òóoö߃ø>νìâl(½ÏÍe½æiË[OGðz~âð'8ÞhÇyósÄ Íx"~Ÿü¨'å =ÀïÎÐüÒOÂözÚû4x%ß²CÏ%íâß„>cýd_üÁó‡AÁü?8DÞ̇àŠïPžŒ‡ßñ=ò{Òæëôä³3¹ö|&ÊŸû<½Þó$ʵõŽrZÎe9^¶õðý‘p“ãQžsÝÅ‘¤þ´û¬þ!=ëu9.oÇuô[ÇW™~'Ú/ó§ÜOÛ~ÈñoVüÛQáGò{íðrF½³Ôïïñ}Êr¼9_ž¿ˆz’墳úô¤Co ¼çyóÖ OE;fÜCêý¢Íßåe< ?ÐŒŸäŸå¡ýéžç›ã4ÆuSú>‹sf;ÿ²ý(?é“ßßqnfçgMû|åÍ81´“¿CþO[¾5Òf”›zQ>äå¡þÛrOõ­À§ø$ýÿ»}Üd\ÜYøüµq“~ønß,/ü™þ¶´_èë¾OpMûVzƵ[ÆSêäýŸ§ÞŽyñ ;ëø¿0þB÷)GË'ÞLÜÖ Wƒïh×#_ÊE¿ÇyÎÞWûmlW8éBÎ$Îiøô!lÏx™ôþ>à;ôjËï¶œnËc?$æ{”›÷–UnÒÓ?ûÉ—úžú—û¿nhççÑK*_Ä£ó|õ­<…u®±‹’íɾ¨½ÀAò+ýç«w_Fû’Ÿôo—Ï~c-.½~ýŠú‚«kzŽ]˜þüm|/õ Ç1Òs⌓»Tâþ/؃‘qî8ë’Ó¸¼â§¿·×®í±J»ëyøONýÜTúãeÈìË—ã»”~ª|?ãÕ±ŽºÐ~‡þá×}~g\?üZ¸q‹Œ»H¹™¯‹¯[~p;Ð.´;ù²N½”sI§qɸ€¿ˆ;”qïGE×àã†è—Q޵ö;þ>|Þ¡¤[Sý6¸Vzü)×’Òñýó‘¿ýµt ~Y?d½ý˜äÇzÿ§ÑnŒC+j·]cw¦ÝˆÿG9(ëØÉ^ ?ôz åÁ?ÜÙ?Mר3ÞÙåxÿ ÎI„/ˆ;w)øN~ /忽u«Åϯ†—·í_ËoÆ ðD¿—„vcœ{ýÄzõ'mþŽÿøþQ>§tÍú7q•XφŸ}.¦Ê»­ëðDz~B9¿áø‚~Àï„ñ×ã£Ò3.²ÎH»q žµÎûŽóüŒi¼$}¹7ˆ‚{ðu3êƒ ëêè[´7ùÚ/[鹯Ÿ<‚â×<‰òÓøqÊ¿ÁãÜW¢WÀ~ÊŸñ—q‰¸û*ïuQä í~.êM¿¨¿5Ü€ü×Å÷æ7üjioâîŸíq<Áwìa\F¿CŽÐ¤§?_ŒSèO´é×[~HûÓ3>§zç¥(ïi}—üí§EÿÇûòcq»åù™KÊ?ìÑæ/ä ¸…¯àS¾s-pG»§<Ào Jy,D¹ø`¼£©?zú†ã%ŠïC¿ô5ýN¿ÂGZ÷·vC÷9/}ÆU=gÞCûº?¢ŸÄgÁË™à'ú!ÏóFoôù\è?!gÐë‘‹÷~˜|÷eð/ãù2n3~ôzüñÉg¯­_g7 üñß]åùÅv|q{Ó~ø5"÷à»í¶\Ó¸Mzÿ|~ ÷vàOÚ_×Èáí?ó7ý°½¾‡9¾ÏõÓÔCV"÷‘Kä‹Þ{>Œ÷(/ãŽü\íõ:ó•Ç7ÚI”ýºôó`ÇùŠvø™«}Ô]ÓvDî2þ—þ¤?àë~÷ƒÿ;~c|‚/Ò/òÒï/"Êáû{ñ½ˆ#‘þPyî¥õ)õ{·ü ÜÇsøY|œü—þioÍuÛ俙벌gjGÏÿNµ|`»ù~”ü†ÿ„ñÍ5ë+Ô‡÷(÷‹èÚ»'xýk{ßøÎr©~u=-ø<ýî?5â饇óó¼WÒÃO±®åvŽñÔï§myÝ<ßnËÕÉ1øŒñ ¾LþÍq‘ö ý!ŸÏŽzÓ|ÿùÑéŒê•q=(¸ËvØŽz' GÿjŸô«Q·×þŒ†äùŽ(|÷(úŸñ{Æù±ž||šãÂÓàÛèw—‡tw,ð•ë€~]Ï-®? ‰][ï˜wö£Ü³Æžï·ù§™Çká3õ _àÔ~[­þçöŠñpl¾<î4ý fž?Iÿ'诔/ŒÛ9¾óÒÁ¿!÷:{Ïy/ÇíÄmê?©/Qê»ßQ¾‚ÇTΆ\„ïÍÇŒ´åÝšŸýf(GŒG[¤Ës?Úï¥^g= ÷ `o×/ÚñˆrÍ—ÇÚþþ9±øÀö Û½õ>v8ø|ö_Œ‡Ìs•ÞóôÍ#Óù‚òM9£òN㿨œð•pÜùÏ„+ãIçþ›ôç žnOÖX¿ÊóXg¿™¿cWºÑâÍí{iÆ÷ηí:Ҩpf{(óHõkÚ±‡¡Í¿èÑÔ틽™~Ø?Ñ¿é÷¶ýDÿ\Tà†=ýkÑ‹­>ÖÍ[±÷|êsrÔÏ—£\¬£ò~ Äu_d\jë5ä~wÎ?íèŸÆø>–â{ð-öbî“ÏJÔ××à†z…žF;bçfœò9UCó³]ˆüX_Œxucóåq§ÖÓà‹\¯gÝ|]üC?}üÅúë§ÑOé€=œó™ðwÁOMçVÙ^N¾ø¡±n›çGÙorŠõâÚÜP¾àñÝg}~†¿ð»A®Âÿqž°×§‘7ø mêúö÷j?•›ö üÄxï‚Ò1?d½=ÁñÖô~m¬O POüVE)ë¿ê·±ùò¸SKô#ý~“Æëæö·Q~Äc=”ôéÿÊ:/øùîû¦ÿì¯Hzø?–K­~±µùƒø†ñth¯ñû¤¾è×â>ø¼õ#¾ßÿmðkâu[ärgMéÁÍ'×Ö7i?üì³ô~‹ø.‰Òþø!‡\±nÃx‚?xRûÍ—Çzýýÿ%ä9ö\ô1ôíëÑàgC”ñÌç¡7´ú†ù€ç¬×#Ö"]úÉå9æ·ôœ8–ÌwζùY/]W>×Å·è‹Äý§øi‚‡óQ?â´1_ÚÑ÷K”uæWkí}ËoüüèŸÓ!wÑÁ5r8úƒ~âkü|Ó™ñðZ+?‹Ms½}ë¾®‰^èú5ã-ᇠŽèwüDoç™wà/F¿‚øÿôú™ñ<ú|iQÎ?|8Oûï¶î£ÿù|yå븺z>^„>Îð3âyžÛŽ^Æ{èeØ"ΕÇ5ðs-ò_Žò[ž‡üÁOí”Þ§ÞŒ[Â÷Ø|yÜig‡aÿö~pŸ=kñ2í7Ýgž™q$àƒˆSÞ­Ó’þ©Ò〽ëaÈCøL¸ô8°ÔRÿŒ¨øf]Ô磋b÷_µía} Ü*®Ÿía´ û`T¿A?Û‘?ŒŒ´ósúCßYlÛÑvú+ÎèÖ¡Gh§õ–ÆæËãN»}Á´kú×Ð?ÈôÏÙQûû<õ6Û¡÷•Nãlw;³ÒÙ. ߢ—á×ß³Ü_À8Ëz+ßËód࣋køNÔûÄ÷©Gì÷EñëücßlgOçü[Ê…vâ;ø:é,~v»§?†ô¸ô‹3þUÿnü|ÒÞ/:£?°3§]iµm?ó ãXŽƒàkVܼYçMÃW3ü:ý®®·#_¾GzQëEûºþbœíüÑI7K^2nðÝí(÷w]œ=á´Ç‹ÒGg?O»øø$är3ÏoöÎ8öE¦¶ß _1¾Çxm>Œxˆ¶CǾË˸Öóî¼¥ÅÀò|¿lû¹ó¿ qÃ=¯ÀGùò<Ï´ó„ÎNqºyë9ŒÿÌ?àÓÌOøÄž×õvèç z<Ÿä{JåÁëXéçDûRï±ùò¸S·«ýRÔ®ÈäËŽ¨úßíÿ$ú Öãà ÖýÉ?çÍâÛnŸ/åÃ.¦~µœÈ}ŸØ“3žü…\C£^àüëV”ƒuGÖw~Óò[·/Níèqu1ÚMåÀ®Ðõöî3pE¹~ßK{?õB¯£Ÿ–õíù‡£¿S4Úý¢ø×ñrÄG´?ñˆ7µÛöót=Oý¡ø(NnXÇd¼g\Æ?€üòܱ{¼'º$Š|¼üp“r(qGƒ|¹„Ü#ýb”þb¼f|¡|^× yíuZÊMùnò锼0^,Í7ÏnMùòÝŒ‡Äº0r†u"â ¬ý¢-õ8ÿ—'ãÎKøCí ߇^åq ~e½ œAá;pÁø\€ŸÀѽÝF>pn«õ úŸùã(åÆoKãèÔo~e¼`Ý>ºûÃä9å&nïËÍ8ÄÀqj”/üÎx‚~G;Ÿ‰õÇ Žvã¼NµÇÌñ÷? Š+ç8R_ÖwY¢ÝÖŽ–{E£½/JýÈþ—§í¸3]GQ:/k=>ò¹˜ê7ÆCúý;,û ð?ÿðïÄ þÇoqIß%p·¢t_+ë°Œ³à…õKð•ñDñÛ/ø‡:>_àÿ7â·?W~è›ÈÆê£ï[¾á§øMÖ‹å·Óõýq.¾‹ž¬v²ß)åÀOö¾UzÚká†ñyÎ84¹ìÏqF¿‰¸áæ7üȬlj/ç*ðÄ{àñp-pàx¥ü…INà Ƀé:¼®wôþ(o¯õ\þ^SÝgåÚ¸Ó}Úù›íÃþ!áºë¿ˆãög< ´+¸Ôsuó`9ûuÛïE¦¹ÒíE¯xðeƇpú°ÏØ.îàë]ºO9¼ïJßI»×c=ÿCô?xb€ïàë!ø¼¢¿¡QÊ¿¯çëÁ|wAù±_(Ο˜ž ªûÔƒöSþNûÐëéwiƒ÷Ï¢]c_´íëŒwÈÙU}çÅÏëƒEÕîÈgmÿuû±Ož~~Ïó{½ïü‚/4þ¥]Ëøä~|Çú"ö1øOå´Ý|ƒ‹Å¶œÝ9eÔó–¾û¸Åãô| ¥Ï8nÁÿŒ ~?ÏAþ‹v¤òœä…êAÿù½½h¾ño¼þ¬vÌóê°{ŒÍ—óB»s5ßÒïFüÔ­—Å{\x/ú‡ýòÈ¡üý~X)_Ì7O°ó Ì'¨OÈ3¿ÿå9Kàˆù¸äIw®"þ2|?âãvñNh?pœãË u¿´ùPîi|B]Ëc;|ú冿ùØüxÜiÆßè΃î¨}÷[þð¾øûàˆô<ãpœCãûÉ¿ðÝBË·3ã“A³Ü;CóëühGˇ®üð;¸Šs»ò—~;/ò>òYåØâ}êAy^ÿ?mqa}Béº8Šù]cóåq§nïhßOþK¡o(½×?ž´é¦çoè=ú~†O¹ðuôoüx/ü»ó¥ãÜ:ß§ÜÏÚòÏúyü¡|¼ÿ(pO¹)ò<ãy«}/rk±Mïçཚöþm[¯'1Îý-òÙ>úûE¦é—ÕÅw‰û]\Ì8ÿ¬ó[ƒ^F~ÏÚþKÿ¸9΃ß'3hèUßMÊ)¾Ã÷÷‡æ7+î`âfˆ_ê«ÜÏýÔÝùo§'æ•î?p@¹•ö—œ¢7*}§§—Ú+Q¯ƒÐ®‰#øþóùEJÿQ;ŽuñéwìÑâ/ÏOYá:ýýù®úßü“ûìTÞé¾`=ý¤;'ôe[?Ú_Æœ7“ïG“™þ<ðé'A‰³Oyœ+üîó@ÉŸ~D¾#§ò@åï|Â_hl¾<îÔíý×ÍöE}niȃ̇øQàêÏ•^ò¦;OqIßñ9JwAï3¾ÂwàTüäõIâÀ=oó¡œiwËxƒ^·u`Û¡cW7N€ÿ<¯—õ¥ŒóCœØÿéuü{ÞoùÝãJô‡íï§BÎù¼‘À=ùœ©ùÍ+ÉìªðvdüAˆ«I<8—Æëåà%Ï[Ò¸ïøIèóØU‰—ƺËÕv¾c?®øþÓµÏ µ_©Êƒß |ú ~'¬ß,Î5·_vøˆGâvDnžmóñº.õ&îq –£}ˆc¾¨ü¾ÞòµÏÇò¹­´;õõ9sz®þu>¬w/µ÷‹Mmßý¯v<³œ_ }¿ Ÿ/;igÛñ×ø¼‰÷áoøÅq^ÕŸ›“Ïøü‹pôXåK¿KÖõŸ‘s>ÏþÔóÊßò¿å%|Íûw~˜Pp¾5N˜ïâœ<×ʇ`ÜÐøn¿ä~G÷¾Ÿ<_jÛÙßÅ_{3þfø•³Ž{C÷o¤ß9ôÛKm½ŠM;¿{ÆWæ9ŒûØEáÆ7ô,ð‡3ýýV÷áûWŠâO¿ w¹Îb|ú‡úÛå½ÿÃä>|òq[ç”'ãRü}ðç!.ár«§Mãªعø.ó üÏÄc³ò\õ‚Üjå¿Kùˆ‹¾‘[äOœ•|U.üp%ÇæËãN=ŸG¯øºå/“ðÆ‘¡_ïŠÂ§ôþ8ÑŸÔoð+ëùÈô2ô £Êýƒþ^@îˆ/À5r/Öã=gœfø><ßÅ?ÿ®8?ÖõŠsòL‘gè½è‡Ž÷©vEn3{¤ûÔ+Î_ìΓŽqÏûØW@\Tê͸Éx·1yl¾<î´‹§Åü•q9åþâ§ŒKa½.÷9úÜ@¥e<Ï+ŸÑŸ¶øK?¿‡O=N)ÿ]¥÷ù׺Î8hè=àr2~pÎlø »þ7Ûö°Þõeۮϳ¶þž§)ýd–àwê«ò0€£!Úm7ä7íá8ÖmÿŽÍ—ÇÎZ߆_| ß°¾~ô;|x5î‡=ËöÚˆG`¿’°÷òÏ$¯2Žçõä‡^Ä}øV|èò#Ù°¯ûä.ï)Ï‘.êëü…óô@ït:ñ¹ãá’¼.µíà÷ŸwÚ~3®éŸÏÚüݾWJÞ¼nþýû¢åC·Œó£à'Þß‹÷ç‘kWã½üù²^ƒ¼ú¨å?ÓÅúé^›Þë±Ï[}lV=‹Îè/äËnðYì¿1ŸÿÚoe7p_Æøê÷Òï&ú3ýÄRÿéÎÅÎû\ë½\ßíäSžÓœãóöѸéÎÛ >ÍóªgÊûÔ—‘Û´'å Ütþª*wž?ìôiÏàû®gÑ£©ÇsøæYðÍþÐü:ÿgÇ#e¾ûA+ï»8Èú®÷¡1ß>8 û@Æ+t:ðÇþèØßœþbžd>;Q_pó¤å·wFéè_üuìצû¬þiuò^¬³Û?íB+oº¸iøIpÎë&ûzÎøñ2q–Èw!ðÅ:ê¥ÀçÁ±îK\(äíKû³NŠ|?éX—ÅŸár”Ëqb\ Yš´hK­·Ü…Ÿu͹að 낎?£tÜg]š8DôçÐæßWø…!—ð#Õûz}ê þXç‡2në™àoE”sý8ωqÿÎ÷m½ðƒ¼|Oþ>‡m†^„Zœ£åsxÙ€¼ÛÑ÷ÈõRÚþçœEìùè{÷T½ôüàHûã‡cRÝ¿X¸y%Üúë÷à Ήæ[ü¬9¿ö«–¯ÌÄ}ÜêæKÎãKÁ¬¯3SOüw˜gØ<ä~-È#⑆ßÚƒ•+ìó®ožKƒ|!n*úþà{ù WÖK7%‡Y/eý—üÑãìg£tå/ðJÔ~/;ê7Îõ¾ÔöOw^ŸøÐú4qü_áOø >#Î éXŸÃÏsƒçºfÝÎþŠºf]»Á¾ÊnÀÃfð'ëðÒC;¿ä¤Ïso¿çvËø¶·[¼LÛWå¾åôz"ã ㌞§]Òý>†C÷—q =Žù¢âõxÿí‹-¼Í—Ǻ½#Þ¿õiä ã/óóuñŸÆCÆSç+<åyLλrBò$ãzùšò= üæy€éW†œ‡±¾ïkä'z™Óß“Ÿñp®-ç¬8—.ץǾ/¼¦=Ïó;ìæ”ŸrÞ"¥Ãï•x¨Èühâ¼IÛOÃ^b×°ƒ=šÚž?§jg÷¯×ßÚñmˆtèûΟùHž»É>ƒxÿ”úûm|Çúù™øþŽžÇº…ýª™ç°_GüÚ­ó°ÿ^ׯ=x'î›ä€ËÉ8±×Ö×å{Öâtz®Zû¢Ž3ãcø½%¾ÆæËãN;?ÊäKÆ#ä’øÁ||”òÉò~Hùq*ÆIèÃV¿0ßçùf‘Îéáǽ(?ï%.yŽÜø{<_¦þå÷fœ‡6³\|Ÿv{Ø~Çr{íÄû»-nœ?õÍóZ¹ŸzB´wž_Xôס]<ׇí8Ÿq;»øg\ÓŸq¯û|æ9±ÜÖò[êw†æ×åû(Ê›×”\/´ãEú{uñ;b_F×~”'ü¼]^}?׃³_h‡®ŸTÿÄïØ|ô®Qó£ô ‹yŽ9>bü…_^ÿ„|1Íø³Ì"^TîÏìâ(¾QÎø®ª1õ‹`ý1Rº±ùè]¡Óó“įûðòþPÿ`&ÞšÏ÷Pzúÿj\óâ1åùnŽã¢|á“s1þ·cEÏY·…ßÅ?öŸóùTJÇz!r¿ìÅàá›–·n(ÝuÊ©ò“ï7zžç#’?ëÆàúzà’uë+1Q~ü¬±«ßõúM[Þ¢o—øS2žÁç>LjñNý„Öuõ«üÔ<ÿ‡®wô½fÐ5þUàÿ¶ŒOv&ø(×ïáßÛº¿ÖòßTÿS:äùó=ÇÁÑý8¿,ã/tçŸR/Ö…Ï·ß±~EœêŽˆKóÛÐo…|£§è+my‹¾]êqŸ8bè+‚O|Þ§Òã—yQý_~ø[ þÀoÌç1+=qÉòœês-?tç\¢­©œœÏƒþ‚_þüøoãÏz3äRœ‹æï"ŸïñoèeÌkð#;­üiGÞ¿³:¹ÎOéþùCøå|·+ùªkÚðå.úvè4~lèéèÏÈ;?Nô¸¥_¢ÿ”žx·Û÷§ø€oÅבOæñÆ\ÞäÑä¹çáø7â ^ÐÿàOÞGî€ãˆÃ÷¦ôyîzGi¡•7ƒ~^GN \,*ò |1ßFßBžŽòðe]ÿ¶-'qûºýÉè]áOg;ô¾®w•ãÆ…ŒÇãóH/<ù{yM;òÚK}O×cóÓ»BÓÄûvÔßW…ù¯åö¡X±Ý ¼,)=ûËöZ¾³½ñ9~@æGø6ÎíöË€ äå~Ó¯¯ÿÚ|_”kºŸar ¿[m¾_Ûç®ãúr {ãóh¯ÚGð«ÒŒÕ­Ï…ŒíNá¿93.øš?÷sÝ“ç)¿Àë¦Ï[¹•qv2®ï´^úvÄ~7¹®eyò×¶œÖÓHG}GàsƧð¯6N3Þ*ã€ÞÏx*yÞרüô®Póeì¿ìÖýáGøùyôŸî›Á|ñ=»xM"ývÈ…½xž8Z¾ïâ;eœÒ¨·Çyá„öqúàÛɶåGÏ2ÞhGð»Ó~§“7ä®vò—ë´E¦ÿªÝ»ÑOÚþÏu³nßÇŠÒÁWðOŒÏžŸÀÿ¤Û ¾àûðÓþÑåÍ8Ñ®/õH9“õzÜòQÆEËxŠ]+Ò=‹|ô}ë{‹ú¾Æ§S¿ä>©¬G®s&µ]“ï…$ë76_wêqôYËÖ«Ÿá øŠëíàž§ÿ1ü”rôð1×ÏÚûéW`¾!]ઋãr.ø{7ÊCùBßä;‰GîçþƒÎ_ò ýö;=7âìx_î“l—ö»3q£qÃr,pìtQߢ3Úý™þGè×ô rÂëïê·3¡¯ÓÿðËŽÒ±_ 9@<Šˆ—ìýšû-?äºeç¯ü´}îó>Vã;ØÑXAÏ?ÊYñ’;}1Ïße_¸×à{6ú¬Êg?‚õ6_§?Û¶‹åè•÷_èWi÷›å7]òæÕ¨ã°^A‹oºøAðÇïÛ÷<`ÝRv\çÿ­ú{½•WŸaøÕÛÿ$ãï=kq¿›Oôžõ›ˆ£ÑÅO¤\È‹8·Æß5¾DuŽq¹"нŒqƒ+pÃú%ãφÞc>Ϻ ~ày?øWàíT´íM;̰›å9ïEgà|ØQ”~½ÿý¤_8oˆ~&þë‘ÄûÐ<ïÒ~ž¼¿èúV‹“©¿UàÂñYôðÛ´?4z½ýÈÇEYW…O‰Ã÷ˆt“kçKœ3üŠ(G¶üÝú÷ñ]ü àcüm6wôóÑÞkñÚÑí¦kê‰?Â{q}º•£®_´cÑ£©ùJíœú´ý:è5]ƒ3â;±N‚¿~/Èü_?Dჯ[¾u<Æó'íøiÄ9Q~Î:|žÃK9ñO±BŒëÑùzüƒOü?iøÿ¹SQü§GÏÁÉ åGûӎȾÏ9«ö[9KùîíN(ùÏ’77Ûq¢èÑÔúò—m¿[1¿FßZºFïpã4úÐÕ”7*òŠ| >å[RzüÌÖÛz:_äù¤?48‰õV|‡vŒ3ÈÊ«ñÅ8`œBîã÷Ã|“ráWJ,ÎÙ%N*ç-^ñh†*ÚÒn?Ø„>†~¡ö´þ_xßI¼_0y¬ûé§Éw}¹îƒcü$¥¹Üòë±>!p¿ çž—±îßàç_Â÷±ÏÆùR^}o¢üÄ3Dg–{ä«çÈ(÷±Ç?þAÞx=S÷¹¾é ÄsßçÚüSNÍ—Ç2¯vÿ3µ¿™Ú9û)ö[Nõ8Æ]ñëã–Zž 'O•O?T~ˆ”Ïryˆn/äã/冱oèšø¢<Ç®ås¶[>ÊuÛ˜¿}5¡”·‹Ë‹ü|¨ö£àû™òÁ>óD÷iôÍðK²ÜDO¤|¬ãîë>Ïéߥ¶]Éwl¾<î4׸ï~?s=ë¼—Œcþ|ÞŽçÆçª?Óϰ;Ïm;pŸ=Ò÷_´ÏÍ'ð5þX”—ïŠOý=ðvªåW?Ç~\]Rzá‹vyòˆu{pvq§sú¶|–àûb‹‡Îß=áTŒw”÷\´ õ.ÇæËãNgž§çõÿÀÉv+Ÿ|?®‘3ºïs._Wã9ó¨ð3˜žc¥tœ› ŸÐßô?ø”<éø‰ïÐ;à#ÊC:øš|Àò8ð¾Èÿ>Ý÷ú.óÎéaœg>/9åõeÖeâü)û×!×À=ïã v=ìÌ¿øõJ9n·KÞüª¸ñy®ê'ÖÿYç>ö]Ö­Ù玜r¼ýÀ ~ _¶üãusÇÎþ·Ø—â\OÏ“e?7®á?ä〨×1YOdÜco§\ŽO"šë^‹m;—ÂÍÖWàžòª|3üÄÝ®7Û¡sµýÝ&tl~zW¨ù’õóKÖí¿Cÿ«_±/°~²ýªø4Ng>T>¬k°¾·¤ï°ÎJ¼(ñ¢à¿¥ÃO¹ŸãÏÂz»ómñìû¬ƒÝÖwàwΩÁ?\Ð.øë\nÛg:.Á÷¢ß´òÁÏéµë#œwç¹ó½:ÇãW¥ÖOà/âKrE÷‰wÁøÊú=ç—±.ø"ú9D¼©\¿#pJ\#ph\ë½Û?j¼Ö5åENr¾ïÍøÞz¤‡Á/ú!~•¬»°N¹¤ôKwü[:¿mŠ¥‹}Ùò‹tÄ©ùšq‹q©}Ïï_?ú~Ñ·Cí×õeð|ò(ó äÆ)ð¥÷Ñ_n¯¶¸±ŸoàŽôÁŠãöà@éà£1ÎÃð;~sø_æyó–ºF¬Gýø®ôEû-€{pÄûYüÎX—¢½ÏuþE|ÿ&ôQû 2~Ÿ´qt~Eß.µ>?³îŽœðùÔê?æÍ>'/Òi¾á~å>þ_œʺzøÃÏ„ùqcž_³Og7ä’æç¶£ÃWäóDù"ßøã¸ ÜÖWuMýÁ‹ýÈõÖóóègù¿ O¶÷aïB^1O ~%?×ã½ø>òb!¾ìäDÄ íð¹ß y?gÌ“ô¾Ÿ“OøÝØNï9n)åˆs}†øe\ÐîÜàXo.z4u{ÂO´ãÓà“½ ´3ëkðßþÑù¥>þfÓsÀÛñ¯‹C–qÿßGä‡]"ÆeëqðõDž¥A¶ õÜoËa¹ç¼ŽÆ‹n¼yy´üÍ~ó¸B9E=è¯<çÊ{{íõØ|yÜ©ÇGøþyýt~*yÞ48b\T?w~ÅŒ“ûCóëp‡+üÓ2Ž%÷»¸® ÁG¼çÍæy¹Ý9˜;m9;ý“ñûÀnä+\{ÞÎ'!‡r?YçN¾CôƒÚÕóGðK©~nÏý6ߢGS·#ýEŸø øo±íøËë§c¼C‡ïÑ7~×òaÚ“»ù ùR.æïÃnÿõ•–O:»1ë*y~àoÚúuç@›Uðº»Êëý¨<_mÇõŒ“a=Œv½Úæç~Kÿ=pÈ{Øã3þGžßÁ¸I;ª?ÆæËãN§qeÔ¾ëí8äsº8—•ù%û ¹fýŽu½ËÁÆø/í¹ðá{qÞ¿¨òÁDY§a„óŒ÷À+òçÄá»^×sÙ§»ó1YÁŽN;²¾¿¬|À‡Ï×ÿJÏ: þsÏãyœç„ݸÓÂÉzà©v|ðø…Ÿýò²ÅcÑ£©íYØoXW†‰ÆøE{/©Ñwv”ÞW:â)Ñ_¬OnÀgºþCðq-†È‡t¼Ç9b¬»ÜŠrpî~‘߈W¯? WÈ/Ö£ðC`a]Q~nÞG^ÎFyxŸqåÛø.íKýiŸëÔ/pr!®9 |Ï„}Ý´ãÔñnZ͗ǺY·ãšuùuQä Ïo¹fÝ,ü·àÖï“Nýɹ¬Œ÷Š'c=±%]Ãw”‹8~¿þ <ŸÒr‰|‘‹ðïwJG5øœ0žð]ä 놴#ë¹|w%êÍ{”Óqágê©ôwñ~à†ï ʇràÇêø„úþ àýv­ýNѸYŠþcœ<¥~Ky¿üÆø¿¨÷Ð?ÏàSü=Õ¯ÖÓ wù®òcÃ÷Á%ë¦Ï”þ†žË?8ãvq˜.¶|mý½qSpJ{1,é9ø¤ÜÔƒúùy½+8‡ÏÁËæí÷ÔÎî·˜ßØîð<êAùðãÆO¹Æsp]~6¯†â~¡Ç›ŠŸÔ®éOŒ>,¾4®·ïù}ãG×̧éç|Å'È;ÆEëùJñÙ}ßùžgÅ#îöëd<ÂGm=­-¶øJ?«±û»è¿‡æ9ëÃÐòEw.5|‰>D¼jøGï3¾Ÿ ùö8pŸ´÷Óo¬;?žrÜ'nvqÖ}HÇ:'~ºÆÎÁ{þ˜¿³Þòò=ør\ÁW¶ïáWÞ/ÄwYC{Þ–£è|Sûäº$þÈ—MQìɼw]÷ÙŸ_Lú;¬M¨ù=ü‰ˆâ¸úñâX‡…Y/…_YÇÔúð4®è$½ë{Gù±F¾_D:â]Q®U]ó]Ö¡ˆC'ýÑë¿›«’Ó…›“DýÌèŒÛ÷Ôÿ¬¿wç^*=|r‡ùxðýWJwQ÷–tùr5ò#Îþ±ø·]Gc¼yf?ê#øá ÇQŸˆ›a¿VûÅ)ò\â/Å?õËÈïF;Ï*:ßÔþ7¬“dü Ÿ)¾ø£øùβž#àsär ÿ6ü¹ðÃC~áw†žƒÓ}üͰ¤_%r?8ìOð±ô™\Gïö‘òPóÛ«°_½lçݹ®ÜÏ‹Œú’_úE£1^`?d¼À^ƺþ¸e]&ãUEœ™éþKÝ—*Ÿýsø.öh¾ƒ¾:+¾VžcñA/µ¸™®snNµwñgöb¼|vô8rª‹«#ü úuqÓH§ûƯù_Ïc½ÓzÖv”‡ç—3õ;Ë껯kô¶ ºV;P~ï÷‰8 ö8hËA{óþØý^ô—Ñ.Ô¾ú;pãçÿ³‹§ó4øæaûžõ)î?mÇëÎotà€t”Kéùå¹SäïçÊ7ãyLçSmþ]4µåuž‡ªïw~¹[üýyêvÓxÛoÇ5ü«þq¿äþøõY;~£gw¸ˆss;9C9’R^Þgœçþv[ŽôOËï»Òt'Ò^fÉEóq¶åC^„^·E9x|ÀÒ¹¼ÛQåŸþBžç¨^È5¿·tÿ=šºŸSÿÆnô¤m÷÷_Dÿò~ÎkwÛþö÷w”ßNÜÿk[ç÷2Æç—-^¸ßícø¤Å‡ßç9×ÏZÜuåq?óË8¸ŽhwžC4ŽØŽð2ä øøýѸéÎ[e–}OZùRþœ¯GgÅÕÎsÔÓ/Ìë{ì×\U:øþS>ÌG;>Dä>`øŠñrIùÀŸ1_O¹âõæCè9y~à™vïòÏñœúg=àcìØÌkž¶¸ö|„q?ìМ¶Ï}åG9Éïe{?q==gTù`ˆñÄ|õ)úóÔöYÚû z}œCÙ›ÂsúgM4ã¯|­þ¼÷/´üêrÁçâ³<_Ìr‚ñSã³÷9ǹ6æSì`9ÿY?zÏsɼtª¯­§â7Š?ã¼ý‚ô<ã#2'÷•ëšõT•ÇïGÜNÛñ“À/9e»yúÃŹìEžºé?ÖÅ[ߪ½ñ+9Û¶¯ûÇöN¥û(ø>x?úkMéoÅø·ﯴ|2(Šß™ÖA€u>ø?1ü ?ŒûðröZàãÎêäþoã>~´õÇOŒõI—SßÏõ$ÒãÿÉ:ï²ÒáA{|å ½ðK ¾õa|Ø‹öþ~^ 7öÿhõó%ëЬƒçy’ègèáKÑÓŒsÊgIù°~çˆOÇ?¥#žå‚_7y¥ïŹ³Ö¿ˆÿÄzèmÝ—µèm='îÎåàË5Ý_û¤¬¿ƒ¾“ò“ñ\SŽë|_”xˆÏÀò)Æ1pB:ü(ß_‹~DV|W¢ödü»ãmœ–v±ÎOL3ë÷ÌîÄ{ÄÓ‹ø­~~)øyåýñÂ9åd=È~`æwv'Ü£gáW¼©zÄ9ç]¼eÚq…¸ ¬ï€ÇQ:ÇQ \˯ÔzeÆçÆ?\]:º?ܾòÓœúg·øô{øŸÆ¸Xôhêv¦ÿð¯‡/ðkd¼Ìs6õóËàŸ mû+YîÄË£õú·+§íâ'¾»¦ü2~sÚyá;ô=æ ð?ñ,ñ_ÎøåìÿÉõM켕¿êkœ?z"óðƒÜDßc@îÚ?5ôÀ<§@r0ϰ¿ªô¿zþ$Æ—è·¢GÓ<'…ö³½àã Ì‹™?Ö5ý _~Ó¶¿Ø¨Ÿ¿ÆxîçðÇ×­~b¾DÿËuF(üç%Úß~RüdãyϹö½¬‡ß§œð7~m*'éß°÷[^JÞäyk¹Nk=õýà3ßW»û:÷Ý'nâ\Y¸1^‘O±4×¢ëѽ£Ë·Åuž;¸34¿Yqä¼ÎŸ~Òo¬¿\{õb=…ò1_D,F=sßZÄg£ü–³àyŸ†ž~ÞnË56_wÚé5éÏô$ø‡ôŒkرÏX×ßnÛ¿ó£ÔŸ_%|û"ú÷y«W湉7Ã|„@Þ@yúIxÝ'ô¤<7Ñå…/#a7žP/òã{Ü?§£ÁÓË(÷Ëè¯gÊœ}ߥ\|·ߺswT¯´Ã€÷lÞ×{3ã–Ò¯Û3Þ‡>kÛ¥ó'dü_X!å§ÿážG=ý=(|>fœÞåÇ5ùPßäkøæ·ñ]Êç¹ß3Ý’ÒÍÂëÃhçˆË×ÅŸa¾qÒ¶Ûrû>õ~vôwÝï_1òëÎ-…IG¾è—Á—?+úâóè7ò_jËåý Œ#¬¯1ÎÅzqw>hÎÃò¼Rò9ù '9¯^íÖ/?‹ÿùžò3¿ߤvzì'§8ñHyáßxîy í _Ç9]\Ù…øüÍñ˜òÓO§_¤ã=Ú-ù(qŸñf_n²Þ”Ÿñð%ýãßÙ‰|àÏíø|¥vä¾åù>ŠòÌð7õ¼}hi§’ÏËèðvªÍ·ãêç8XºŽ8ˆC–ƒ~D?þ¢­OwîvTæ…ô³ÊkûæÁðiø©¸ׂ?)z¨ã~é¹úÑómÆëä?áÉø Ýèæàçà~J|'þhOïÏÒý<¯Œqhh¿ëñ–ïdy‘W¬¯ð=Ê Þsü€¿vÛ÷ܯy¾Í™¶\ÎðcM}³ÛWÆøÍøB½‚/»x»õ}êµÂ}Q­ÿ»=gÄrl?òÿ(¾O{S>òÇ/!ãKÇù‹æWÖX×!IÆ·f]?ôTø7âŽ8îÉïÛtîWÞc{v øì†Ú‰v ÏëÒ5ëUK´'¸kÇ!Û‘ùþ—-޽>z¥ý¾q‡ýþ ]YßÀNÅxF¼Ç«Ðwé7ðBþôüÈ5ù1®€ÏK-^¦ã¶¾“ß…—h¿Üç ?ÿ-Þû¸m?ó ãðíÕI¾¶è=üò<©5QÖ¡(7û39‡û0ëd7£^äßÍøíæOø#÷~Öö‹ó#NûÆ9We%ê±øP{âÏàs½xïq^$åð¹A¢È êË{´;x²ŸˆÚá%ßWzúŽÛ?´|úIP¢àuSù"áÞs|¥]á*ÆGû'Šf<1ê1€#}üð>üÄz¹×·õÖïó|0ŸßíqWíáøI'Ç û^ü¸dœy¤ôöƒá:ÊþAûЯ«º¦>kmþ¾^VzøIòfë®(éèÇ<÷‘ñ¿Yø•ö¿Ú.ÏúýBû}­÷X·’¿ŽãQá/.Ö£Üܧ<ŒgwÔö7Ò}Úxö»ÓwX'ÿàiC×·•~$nõz°ÚàÈ|¾i—•h7êËzñ—‘Žþ`=€q¦‹AiwøŸvBÎ0þ0¾À¯ôã ßýãmÿŽñVqXÒÞìþ…¯(òšq=rƒÏBÿmҢ߉ÒÄgc¦ùã"xAN0> à+ô ú9À:üÈ8ú‚ör Oíïr‰þ#¾í/ã)ߥÈ~#=ßOÐKhgçv ¾àüLÔ/ã¤ð=Öãð«L¾e|#Ýòöf¼g|Ïó)á?âÌ1.Âg®¿h¬¸àÌ~Ãzîy’Þg<Íý9žÑÈ7ôôZέ…ïà[ðšëy´#ãÖ7m9ÝŽð-ýÞiW¾‡|Cæû”/ã[x¼Õ5ýBþàþ¡|è´ã@œß=Õƒc ¯}Ù~ßéèOÇù…/½o$ðSoÆCøq%úò‚«Ó‘/ã:q_™_Þ5¿·¸Èõé¹£ÑþØž*ýsø3øþ€Ïñ÷Iûþ޷Þ@úà#Ú…öEŽ_i¿ïyíKÜÆKìTÏ”¿_ø‰÷i§u=ØâÞ¸q^–ùôæ·–ÿ<¯Íó\™G÷*íN}U.מjóõü×ã•òŸu.-ò|)¾§vó÷ࣽ—à_n;É#=‡¯¾h¿o{v[ävµïÔN¨ò}Ò¶O®W9®`Úë–ჶ¦çG«üرÂnëöB.X¯\ô |EûÄùW–ë£üÂã>3töWÆpKûg|4ê±£tØ5ÁrSíâú‚Ç¿V}¢(ŸÛo¡í¯éüQù¬L®ýÞZ[>ß§Ÿ¨ù1¾æ>KøyÁóÚ÷œÆ'ŸX‡7?Ûß¾åûî|.ú3×é߇QÞ/Àï³.BÿÉÙüȸ‘þe¹þ„œ÷´'ãö=•Órs†ßùNmO…OH¶ÇøƒÝ™vÕxáu¨hW——váýÄ)úú ö3Æ ¾óñ\ùc§`·¤ï8~Z”çbô×~à¾CO~ïø&ë¯~ÎõÚÄSw>Øn<§_2.$íñõü½Ûüºõøñ.åßñ]ÊÉ8I¨ž./åˆñ¦[·Œut—Wõóø ¾Àc~|"/V¢?¨ú唚ñÓö£ü|ôûñ>åûGÛ~^¡ôÓ¿ŠŸç>Y.½Çíw­?¨\^ŸÚoù×úèBðÅ)åO;„¿M·NM;SžŒ;EúY~Ù®´'|´Û¾gü2¿—‚Ï¡ÏÚòzþúTç7¤vð|3Î+âÚõ\vç¬Çyw~/ú»ãÚ•qšvO>O”#ý²¹~é³ýµé:¿ød·­o×!§»ûÉÿ”¾¤¿³Üãšò<=ºìo>ÀCÈ3îwç~ëÚüÃwyïT”+Úil¿É¢¿Œvü>'3ã¿1-Î?ö‡ægþyø~÷#ߊ£Tô8ÑNÒ5¿<÷<ãVæ¹æï—8ß™ïd\(?âÉ-z¨õø¾F¾ ‚ï3NÏô¾øÿ@÷ÑgÉ};ç ùf=PùŒÝNE‹þ”æ:«ý`ÿ"WXZa~§kŸÏÙÎÿ¬oa¯fžŸøBÞÄüšø7c·SÑ¢ n2.ëð¹>h=]ÛWéñG`ý ÿDì´§Áe+¿¼®Íz뇬 ¬nŠ?Êú¶×M‘;Øí'7Ig↱.ÎìŸ&¹…üÄ'ßé?Ò᧤uÁ±Û©hÑ7È Ö‰YÆÞÿB׫¢ëð¿(úzô[ä–(ùÿ \à—n싼c·SÑ¢ nX¿gßr½ŒõSücŸÀ뼎—1Ig¼e|Kü´ðûÄÏ¿­g­=ýnìv*Z´Á ñȰg¡W!7ð÷`s_é±àßǺnîDïtÿ^ĉÎué:ׯèq¦ßÉz×¢îËn<3~rçwƒ½ÿ·™·LýÓ”/8Ù û3~~ø1Ê~7v;-úSš~MÝy—;ºß4ò`¯}Þ¸Ýâ§ó N2.Mç/¤rÝNE‹âåQðýv\k~ѳÉ}Ög¸>ˆ|¸æ½Yç‚'(åzÔ~wìöúwÓ­AíC½i÷ƒ–æ¯ëŸ‡ÑÞ£]g´§ý,ÃÐßyý”ñRÉ/ôŽÎ/QåèÊüççÊÏ×J7ó:õ|åçý¹‹ñ]Ú%ù8Ûzï+¿•vݾ«W´·Û÷yÈ›mžë½<ý…ž§_éö£œ‰Û§ÑÔƒúEù»øÐ/Z9×ù¡ò>ßG.RÏàÏþ¼Üè7Þ‹reüHû›îE9Ò_?â Ù}¿mÒ¡G¹ÍG—Çåæ»´—ÚÙz÷³ ¼q£2N²óûk”k;’®ù>ýö2ú=üŸ3~Mçß8ïü”ÓÿøeðKò_Œ_Ý>5Ê|îu}ÊC?0îÐ~稯hwø‹ûô#ϹO¿ïG¹E;%ß?åû#ÿ¨·óå9ùc爸™ç+qo<íF=)Gú)E\žnÿ|Ìúq̧ûAU^왹¯ëeÔ‡~ôþ¡¶}½ÏŒtØ]s¿&íí›ñ²ÜÔÿ‚òZÚùýã§E>§Êãú°®?¾×Ößß]V;ÃWø ðÞŶÞݹØÁS·ÎíîVô|%ÊK{eý¼ >£ÜºÏ:kÄñw¨?ýCÜ ¾ã†÷3>=îÓO´ãªÇß§Óõ]Qâ¥ÀWáÏ—çxݘs”Èç"ããœî«<ÓsËô\,)_ðA?ߌ|㼯ÃeÒo”—q€øŒÄuàûäO9(ç×Ñ®ð!ñž«DÝ^ÄXg<¢½•îºòcŸ7ãï1nç¹:´GžWFþÿEýàð$ºù£¾ý e_!|LüÆ)ÆmðÄý÷¢ÝÀ'qŒxO¸÷x Î}.¤îSÿë1^ÂÇÔë¦î¿‰vįŽvÇÔ¹ýUôýœƒ/À=üÞ¿8_¾L¹q2-‡"þ¦ó‡Ïð„Ï^Ð*õ`Ü…¿3>ã åqœ·¨?íü­(ò>Èõø6êŸ$?“?í?øÜYåG{Ð?ø-s¾›Ï¤}õœq~ã}ø‚|g(úñwÑÄ #n!ã-rÒñ¡ô\q6üÜñt”>]v€à“8‡Ç×Ô'ã‰~ßëùjŒ¿ÄŸeÜü Ú Vú)ýó˜žráçG=OöŸ>HyK{ÒÞ\SÚ<Oà@8^šÒeœ¢Ôsáÿñù6|ªç´ül}žû1N¯•(WÆ;¥=Uþi¼`Æm=g\g„rÁÏœK͸ŸñÝ.Å}Ÿ#\P¾w¾Ÿ\ƒä9ñÿ2ŽõÄ?€¸–ÄaD_¥ßH—qW]Ƶr‰þú¶­¿Û¾"_ã–qYÏ)×­(·å’Ò‹/¦ñ?u|ÝÞ|Ÿq@ßÍø¢´/ã€üÎ=߇ߘ’ßi]+]Æò<þø$ž#—èÿ˜ÇLÏŸŒtŒ“à\ùLãm3.€_ú+øM÷=]ˆò2>P^Æßñ|ùMŒ“±oŸ8M9ƒŸ˜7¨ÍWŒ>Ï ú3òŸµýéqÀ纑>ø‚ù(ß]ö`\$¿µ¶žæw뇪ßÎÑx¡=†!ú•ï ÏNE?’ÎóË¡ù™ïéø þPÿû»È!®¸UœÃ™vkÇSÿkä—ñç‰_Ci§°‹g¼mÏC9=⹤ÞÖù•¥Ý…q+ìè–ÌDZ[îEýhŸÇ¢ô/ãÕgmù}>¢Êå¸>O•~óà,ï)7zó Æ•kѾ¼QÞðíÆ¸ä:'¿´kwñcħž'Q_p¯òç:§åDW?}—tØ)s=‘kÕ/ãCNõ •'íÞ|/Ö‘Gø~/i_‰ý¦NŸërôëÃà÷8G-û1Ïep{cßT=Ý_|/×ýhäxøCn'Ú•÷)ï™–ÿºzqM?nËוþ¸ðUà¯ãK¾—ü¸xJ>Eÿ ~OÛò¸?c}Ôñ¹¨_úìµüåu.ø0ηq=^F>yžìRÛÎ'°;Wðƒ6¿n“~<ã$í@=Ç{/¢~ôƳ©‚ÊKzòƒ/É—ôà/ù•v¡ÿÈyÀÝúmŽÿ”ƒúS?ø"Îp>›Ž_©/ÏÉŸr©Ý=_§Ý"}ú%¼Œü¹Ÿ8|¾xÚ~oˆ_®Ûúý ´;r½~I}ƒrñýôW`¼Èó"áOÚ+úßå#ø=ÏãB¾SþÄuâ`;®³àÞ§}ÁC¬¿tq*¹†ÏNÇs¾>>hû¥ó³¢Ý©õ¡]ô=÷ó~Ô#ýƒ¶åÛ?î¤ÓÎ_"ý)ÿ–‚ï’¯?)¿î;ÙÏé?Ãs®ÁÑïbÜŸfÜàο ~4?+]Äííâ†^ÛÅ]ÍqŽü"açÏô¼Ï퇉Þyªåûîœjô¾…vœÉó\Çæ«“N»8ÈŒ§è±ðUÎW9.gÿ[¯;;4?ë'Ëâ‡ôgr9rœÎr‚ϧm~ÖÁ9õxï“?åC®/E>à‘tÛ!/Rï•>ä~àþ™o¨¯ä’Ï‹ ùéï¼lß/úv¨ûƒñ} >s=þoùcKýfÿƒÉµqóÏ Rb<õùžÊWã«í#1>[„¯—ƒÿ¶ë,˜¯½ß~Ïz–ìð–C¬Gâw ül¯þ²Í/ýçÜÈ/áØö¦´_£Gª½W;äþØ|uÒ©ùÊú+ñ-ìç?ªß-?‚HŸòÆëUâÓgÁ¯|5ÖCñßÅÎûºsÐà7ïëµTÏY§ÄÞË:Sž“º#ëÏ>‡Gùdû1Þ8þ”žÛÏ •«Ý½XãÚ@;|íçúpl¾:éÔë’öS°Îa¿e¢ŒçøK¿=d>§¬C€Ÿ'$Êù¦qî÷ÖæDQ²þ'ÈIü$É÷TÈ1ê‰~æð5qñ`Ýÿl\çÍ猋âwJùVDñ7c3ýÐ8Ï 9I;E¿ è9íI?©Ææ«“N-'#¬¿ÛŸ]ýÂøˆŸ-ü~j?ÝÜ GœNÒû>þmŒû·àc•ƒ|ñÿµ?²®Ñ{¸Ïuœ#c?[ä ëìé¯É¸=ê·òrçºNÿið¨_œÿe|3þè;ÿÞù¸^‰z WcóÕI¥SEµ7ã;ëóø{Á_y.'|¸"¿¾iÇ=ëñ¬¯!·/ðü ^Ó€œ`žÔ#ø œr|Ø?l×uçGG¾éOÉsæm‹ºFž‘v6ò·ß ÒÛï8äVžWès°U<Ÿ |ž-ܼU9Ã>©gðWô{ìcq:ø–ý龤|V[yŸLý³ÁÛä½çðx†/ÉŸóÌÁ=ú$|‹¼Ñ}Ò9ÕÇò„ù òLxîÖE$Ï£àï'âcä'ö<ðÉý+ÑNPì.µín¿’m}ôŒkÈQæe·í^ôßK½®‘û5c_mÆSðúŠôŒ\ÿK¿+Ûywôœutû“éú¯m¿çøÜ­¯ê{Æõv¼¯tw ÛÏ á¿°w~™Ø¹Zßãûá7×½‡üÿâî\p–~íKzùÊïö¬xpo•vëeè+Œ³¹¾Ÿç¼2>ÓÿÏ!üq,—fñ™ø¡óOƒöõ .¶'¤WýòüèYñl,ÿàCÊýq”üaçFïS¾Æ!vŒ‡À:åÂÿôY+3¾ïÔ¬ÕóÒ¿ˆ÷Çæ¯“J»s*_á{Æqø ¾Wð}Æq‚á£<Ÿ9Þ÷{{mÿûûð/|ò$Ê ÿS¾·¯ïóÞ?â»YžŒ/C9ö£ô½ÖgèÊû¬mŸn=+Ê×Åâý诌Oé÷s¼…¸ÞnË‘ûþº¸Q;m»mñŒcFy?õ&åËùFúEBi‡Øä÷hÏô[Ûoû¹ów¡~Éß”?ã q?ñÞgù¥Eûåþ£ì7ç\ ~ëÎUßç¹Ï(âùtr=0÷€çÐG¹Ÿø ³î{=ùtŒ é'¼õO?sÞ ÿÆ!·§Ç5=§ð7|§ß.ßá»Ûm½»xïE¹s½œç|÷ÑÑßsùwÚt¹ßÅéBø>ã| …~Õáày›ÎùE¿¸_©8¥?xv$_øüTŒS9®Q.åëö¤=˜O~ÒÖÛõdü ?Ÿ/®|_èþ“à›ø¾í”áÇO>þ®Ò™?rÂï[þq9”ßLÜ0;£ïÓšGç¾ ç Âo7ÑzlìÓs>ø1.Ò´KøÉvûöT×W¸ëâì¨^¶_¥ŸÊÙ¸^n¿ëôKªgàËó!Ú¹þ×ßëƒä¿¬÷W°cÀÇÔÜÁÏ‹ÇSêÏ~E¾Qùò=æ7Œ'Øéhÿ5QÖc°W«<Äûè䬸Þã1ýÌ8Å}ô;ìëáŸÖñ夽|Gû?d5ðIýÁ÷åÀ•ÚyÖ9(öÇ X`ÿmð¤t¤gr³~MûâÈþhä&ýé¸Fjáf§@éŧÓõIµ«ÚÓvYøv½òœ’?þT¬ŸPnµ¯ëI{3ŽäþGÖƒÈÿ™!žSoÇ iùÁ~žì¦Üà}úoÓMÇ¥VN7„õ}ƉlßkqŸõ+ø”ýýû´ò͸*àIýÚí›ÏýL±_ÛíǾðßD»;½ý•t}šòò¼ÕoøåþñÄcÿû í¿`_¤6/ø=ÀgŽ?¨ôÉï›ß«u½ >ô]Æò¿YO/ÊÅxÇ÷®é9õ"åäþ)¥‡_ðoÁ/¾a½þÏø^›ÑŸØQ¿0žñ^¬×¹¼Äq"^ëáŒ>Ç0Æ âu!çÖUNÖMð£ýY÷`\x£ï(¯ýOè#ðù‚Ç¡Šûœwÿû¶_ð›£àäß½ÿø œºï¸\¢âÿàþr‹‹Œ¿êûK‘Žøwwv›òuëç^/SùàSðÅxøFù­gªÜŒsZǶþî©r I¾Ó^ôüO{ƒgä¼ã°ÞÉñ”q‰úSoä(ãŸàÝÇÏùËùµŒŸG»òÞ5pÀ÷c<Ào‹q4Ç9úƒó iwðv&®‰kƒ/êÉ8|>ÊÁ8°åäûè%ø½Âÿ+1ŽPoÊ©òuqIðÀÿÕ¸§È ò ~¤}V¢ýñ«b<£Þ/òžú‘q[z_'„ï麴¾Ã¸þío¢ü(ïõàWÒ¡¯Ã‡‡ú¡RNügÏ)G¶gèýÝ~ð8d{Fyøã.ã!ùÚ¿—vŠvg|Œx´Öi_ÆÊÿg\ç+ñ=ô#ø¼§3z |Œ\¡ü·¸ýh½AåE®]Œñ\ÒïèDZ/aw˜ö_zkøà´Ò#ÿ=^êúÑào'úIú§ºÛvó;øâ{aOð¸Gÿ…¿»ó¡¬wë:ý¤¬¿G=è/Ú‹ô™Žö@ß/©.E;ªÜà?¬´Óx? í ~Doõ÷ññ9#n|oç–ÊÁøÿàW_8L8Æ ìP{ŸÏZêy›ã›M®Ë?+ݾÚíaÔ›ïÆß¶ÿ²î3ofœð¾®Áƒ(ý NùE»àÛqTU~Êiù¥çôx ;=ü7Ä/ç÷ž'1Ž!Ïð'üí ÜdÚ+ÏÓ "]gßÊûö/WùÀãüCùÁó'Ñ.é¯Í¸u“û“|Ìÿôë![¹?ž´8pûÎðåùLû3xGþÁgËQ_øû…èKÕëLôûrôíÄx¼"Ê÷7À rêtäsöèq$ë—ë,|'ýó¼‚\gK»´Ç'ì:ô3~$ö?Ó}òUyºxSäÇxšãù0¾Ã8WÂrŠù¦æ÷æïô‡þ mÇÎâY;þ¥ŸŒÇGÒ‘oì wº½vH;¹íé×ËûŒ:¿Iþ¹“q ü½ÀQòÞÏ|»ûŒK|öõÔó<Ç|ù‡¶\n_ðC½èá®ÓSÏ®­wîåÞnû;Û#ûË÷yüƒ“¥è÷œ,„×ùyñ^àr‹ü·ãyž'ò2ý)³_<ž1_d¾¸ÌxÒßUÞ5ï(ÚRë7ô ãóó¸ŸÏ3Þ |£t>qˆ»ø²éŸ Nó\ Œ¯çšO¯ÁÍŠÒQ~ê“åƒïÁ-õJœ€£Ø7çr1‘õzã íñ„Ó¯‹w›ó÷‡‘ïÓ*WîKëô‰ˆ/UôhêóNàÓ3ú9Ï­ãÚçŨŸÄ/æ[®Ñ{Ñ/fÄr|±/Ý>®Œ›ÿ´ýîô\•Sãƒ×£™ïjÓû{ìŸËqßçPRµúrè©§»•ÛÕë‰zκµí×*z,ùdü4ÆïsS¾iïûCàdµ½gcóåq§noÖ‰WÛñßë|ø%0ŸÉu9ó½®YgaÞ…¿ ~,ðvdß-~½nåøiʇõð€];?ënyîLžßC>¬×ˆ?-('~€<Ç®Áz<åÅÎß#'?mëß«Íõ™‹´wðÿ§-Ûïn»í—.~Zú½\ ÍXW)ÚRóz1ë&؇îÆ5þ8øm"7á×u¥‹sˆ½NM¼/Ö™áð~îéþåüŽî³Žêu#QÖo9?&îg†ucð‡¼CîÀ¯àÿ·Å¶\ö'ï/è9~Gà†qÿÖY¿â¼Nâ/°•~/á·o?3Ÿç¦|ïü8¹f}íËÀ‰Î/öõJ›oÑ£©õÚ™ñ9ãÎÀÇëÑöŸDßQú[¢¬°ŸÁç›Á×Üǯëvȧµ('þ>«È#ݧ^ø3>à÷@ü´5øZïi½Öã8N\ê.ˆSÃø>ñ[¤|¹m9ªû÷u|”?¬ç¯Éëv¬ûç¹áŒSk“õÀŸü+ÇæËãN»s©óÜ\Æaô Ÿ«* ~àwü{r?xƒ|ŽüýË5øa}<ÏOó9§àS÷%'»s Ñ+ï¯Nò½åd~>w¬½v¾à-Ï›F9>¡®ß <Ä8’~7¬#Gœ_ðæ~¤_—P×øgPŽÛ?¶ò¼…ùØ|yÜ©ý“Óï~‰þ œÐÎà)ýR×SÏŸëÁ7‹ñ}ûƒr_¼±ÎÏ|ùIÈ9ò‹}%Óó"õÜþùº?èþºî³¿ 9‡ŸvÆ3ƒ_ÁòŒýlÏ”íE}øí‚>†ÜŸyþºê—ë,îô†ð?²Üü4ä ýFÜßë“ë±ùò¸Sëñ>w[í‡^‘öÜ5µ3þ!ôKÊ“MõïNðOÆí„?ÅÓýŸ*GØ—ø-æùݹ2ö×W¾|»ŸýMÀ¿òETý»sÁ¼o4pHy7ÛvéüT Âヽ/\wñ®é>ãCìƒ2ÿ3>…«÷!>ÔõBà†öe?€Ê36_wšñ]àË.Ò~Ûߤó<ƒñ<üÒ»u ø<ÂÏØÝ"ŸýǶ•ÿ)ÝÍ8Þw ûÝ9×Ôçi”ËûËu_ãDÆG@ŽæùêÝùgPÆ•!¾_£Gœ'¯[R.ä>r+p“þ–cà:âJ7œ+L{_mó-z4…ßøu~$ñÜéž´ãO$ý´âß³\Ôwô=ËIð‘çCƒ?•Ãý¸ßeüŠsµŒKü,hgÕ“÷ÇæËãNó¼Ð-µ[Ï \¼ˆñ½9ãjÆ#„‚äÕ©Àaòç~ûN¦<Ëó1ÅÏ^'}yt¹:¿ø›õø.¾;ã<Ór‡~Zxµ|‹M­'Dü4÷3||ù,(üóøœñp†p‡Gø‡q}î´ž?ŒïP®‡mú<ß³ãßÇmºÄ»ËIþ‰ûçmzã(âüú»ÈæznÜî“iïYã_—z2c^xv=¶íTôhê} ðWœ·•û%¼n]må„ûŸô‹ÊWã›õAâØ1® 'ž§2^‹ºxlè1Oƒßò|‘¥öû®×AËg©ÙÞKýÁ8†?3~[ú¿-Ÿ¾ÞækÖQó¼žKGó7ås}#ØñY¿ažƒΙvò,¿ï/µíæ÷y>#ÎLÑ–z|fÜsê¶¾ûqrŸusøš¸Kà>€YŸa]”õv®o‰oyCÜÆaüfä7õ§Ÿ”CùߟʇuDç®××*ë–à”óqÀ£×s¨78DNè:ãóÁ÷Wƒ?oÓ>zßçÏ)Ÿ;º¾®ò\þà;kqŸ8_KzÎ8ø­ò¥~×u?ö!x| ¿Ï¢GSóñÍv|ösÖ¿é÷›î3þÁŒ»ðkžûÊz¶ãçÀß/û9N¾g¹Ÿ%ãóŠî_è)ºÂ1no*û÷ßOÞ÷ùµÊñâRÜÇï…ôèiŒ#—C.ø|m}ÿ†(íÁº1þŸF¹}n{ôrueä)úxç}ìÑô/þëmy‹ÎÀ zzÇWÑÏày„ð9~zÏ~P¢èÕö·×{ðúÔÇÑo·”õ|ô™ðç±¼t¼E=¿+9¹Øò‘ë-‰"Oˆ÷‡Ÿ8&ü‡Ò_Œö£>ÁÇþî'Ñ>øYÐÈOÆO¢?hÿˆc¿RòGO¦ß›ÌŸÀ%8ÂðB›oÑ£©ÇkúãVðö—]/·rÉþ’ëêø;ÏÕÌóqZ¾˜úÇ«·Å÷ï½ 9‡¿<¿Ñ¾ïz£gៀ½b¹Åƒí%È-ßÓøz;"r2âKú»ì?Ê88Þ' r„5í/½÷×ÀøFï£sÿ~ÒŒ{ÈmüÖcÞTôhÚù“€øœý‹ÏÔÎèÄCz¢ûð òæRËÓsÔá]㯈ÞÀ8Î>ì¹_Þñ²‡ægœæyïC‹ÛÍ.á]aOõ|ò ÜgÜí¶]¨·ù[å̸þy¾Pú¥û}ú%ç'ÈáŒwç%ÙÞ~§jŸô+ÑôÏfüÌÿ’;§Âr&üDœ ¿Ä¸9•gGö+ïë9vîŒ÷º†/R~ /c|Îrñs\É“<§;Ï€ñâ½(¸Q}§¸‰ñ$ÎÑšÚÙ^_Ê}Ýî'ÆôU¥3®Ñ—X§f<ø¬pó:òÆíþ¸å³.Î Ï·Ûþò88ìâÃíÓŸê7õg羆ŸZ~êÎ÷d|æýà[¯óHnZ~(Ý¿\74=ŠüÁûé¶½Ü.¶òÂrý½vŠö°ßïý6ʯöìâîÄþ'#¶³+=réý–ÆæËãN»uùçÒO+ãMÚ~|JýÄúÙ¬~å~Îsú¸?"·(Çnè5”‡|ÓÏŽü(?|> >óþrÒÕ+Çô—¯È¿mwÞŸyhœ‡äô¡'PoúÏé"^¢Ç1êãËØ|yÜé¿.N×;m¿xÆ_ä¯AµÔ|Âsú ù ~³þñlNv»uýGñ„\e\Žq6ã€vþ6àoÆ9‡.Ïn‹“Ä™å)ÏÁåÓßå½ÿŸ½ÙëJÚvÑé¢-“Ur-Ù2i˲,Y²äCùPõþ¯½Ì…Õ­‹ªÛø¯£Z¼¶Ùb/°‘  ÆÞP¾Ï›_¼ƒS"%QIŠ#;‘ó4Žq1bD¹>Ú³íØ:¹¾Q>ªñ[4^^tØœC˜/ø<ÏãÚúYàO{þ$žƒ›õÚxBy| ÿ¶”‹ÜoÖÇÈ­ôGNüÏ8f›µœ†/ŒùõA¿|ôœyÉ\/ån×þ´ù>kÿý^ì¿e¾Þô_hð!è®Ã“á<»ÆuÌ/>œëröcøùzNÆ‹œçË«ómû0÷¡Ú%¾ìõâ%å\£<=ç>çYÀ§¥ª¿X®²îدïg|Ùô+5þ1>¬G —ŒÍ:~cOøQIW}y•ùXÕ¿Ì+2J7»ÏÞ¡Æ•u"ûß_~°_Æú9#ããªæ…¸,Ø›E/¶/³_C½Ø“E' Ä.Ä~Ìý(>ê÷ô:çíÒsµÓø‡,ý éxÿ{ÅË&oSú¿Ñ_ìö¬O¼?õ8ŽÚvãÌKû©¦û¤ßÐ;±Û»á0ï¼Ã Ío™§;ïk~? <o?gÿÍþRº>B7äÙ[‹ïÙ§/áÃø[Qû{ÄQ‰G%ü°_ q?ȧC¼$ã#ô.üCà?Cž:âWdüœÜ×w»UÎçÑ.ò¦Ágð“x$È8òýzÐ[žwþÛ?м÷ýU~ _ÄóoNn÷¢ñò¢Cã øßc¾Ø_†âÂþ>ò¼}(ˆ? üúC~Wø9"Ÿˆ#¾é8d«ªºËø”_‰ýÊÃný_Ofÿâ7áWÊþúOÿœÕ ýãÇþ.þ@ß;nãÀ8©ÇðÁ›zùKüò9Ao×hGÈ•§’SÐ;òœñ&?ãçõ;ö‡}-~´h¼¼èÐûÌðñObþ°ËîÄüÂÿ?O¾Fœ2ðœ<ÒÎÏ©ûì‚÷|‡< Î öSè¼X únäßß䉸ŸÖÿ¡'òM#Oá+à-íC;~ZÐÍJí_Æõuÿˆ›}¨ûÆsÕ=3ÄEŒsRŽßu=ê¡ßÈEâ$RúÏ}U¯;<š­j<á³™g…çqnÆtåóbO}ßñòTNú×$Þ×û<§ðoôðúDîá/ÄúàfÅÏyüt]ƒ·Ðã_¢þÿT»%—ú÷´ö×ã ?¸ãù‰šüÁÐýmÉʧ«#õA'·7: zgܲœ»õºÃ“¡ñ{¾¯ùÕ¸6yœïZóz¤÷UŽ×-ضëüŸYÇ;ߤ®ó|ñ›#ùª`Æp;áûà ñÓXOÝï¨OúJ“od'Þ< Ö›4.^¯C—q~<ý‚Ònœùá¼NËøÐè­ð“ˆg=ÿ&æmu]NȱO†ïkˆ_ú£äyzóKð}uûçàßAWLJàÑTóšv<è!üÒæç”U.rºÊ¸M´;ñø¦¾W;ÿ9üYC;¨øÖìëþ»Ž¯ËcÜà™gMﻞøÎõÑ^ÆûYžSÍ|ÝKQî­Jž 3nKÏ቞O4߯&N!|ñIÅÏÌÏi~ ÄŠýðí°Ö›~£~Ûûzþdä:óî\Côã8Þ› ÒŽŒû±_ù‰ûE9Èö»vj½–ÇïF=àùîòt˜q¹Ðû˜·íZó¹h¼¼èÐûèð·?ÔëÆ/2÷ÛY¯«œ&ÎxF9Ó¸†>(/æ±)/éšvÆþEæ¯Ì<½ íDþê½ô#sý{ÑÊarxíμæŸXôËü!ü­M—ÛµÞÆÏ¾Èõ¬ÖùŸÇ= ¼ÞÎöQ^èOª/××¶+ÐNí?Úß“uúÕTßµýy^!ódZþ²†Ü~x?±£¨>·OõÙN€¼†ÎÓ-çéÏ•lÇL?Ü “î}:èùÁ뫊G™/Óz?çÁ#Ö÷ŸÅw_VüœçïÔwøY:߬æ;qæãe”z3ïý ½à‘è|ÔïûlÒ'í]U¹ðØWw;o òv}\Ú ¿a¿gMýg^xn> þ0¦Oô±´·«=̃ómÕ~tys:˜ñ^š¸‘b¼¡üMÂ/ÙøÁþ)ûÔÌ7þ4ø}< ºÂï‘ýìnß¿ÇOëqà5ñŽœŸ:Ösüðßñ~«¾#nüvÐüøŽýðõ>øË~û²øÛ|õâoÇþ瘙‡Œ;"èyÄ€ýåô§Y‰rŸŸ*0.‹ÆË‹½ïv\ç‘f_4ÞgßžyeŸ¼Åï#óƒÐ×ýcöx °ÿ༲‚Ðxú0ðòñ·_Ø·§=?êûàßÿ+èãgÝGÞ·ÿNä~ì 9¿º õßL:Èx´È%üa"ßI¯‹üPÈ•Œg~ýû:èë›Jž ­gÃ#¿qæ72iþý=~ ð͈Ójù”ù5,§ô{ëµ=Öã˜øý zk¯ôÝÎì}o¾Ï‘ÈÁˆ5ã§÷®é½”«Œ'ûôÐt;~Žü~‘õCw±_äõ&tó ž#Ÿá‡Èaѩߋ<†ž çòBór·ÎÏ<ž¿æå©ÆxìÒGš|‡‘·Ìòæa¼>¡/¢·d|¾ë<;þë'ðÙñÔY7C?Ð9þ×Ûqÿ~ô÷g=ûë!/œýwÔÚ_òÅë!ä–Þ㻌ÃFù´ÿà ç¯õ5ó ¿#n÷—æ>½¯ã:ñ_r¾9å8˜z¿G.ÁçÑg°ež>Îáàï8¿·ô¹}Nõœö@‡à%x‹‚þb¿ƒ>·œ?@.îªÙß<§©þ¿p_‰qy:ÒþˆÒÄoLÿ¦õ~“v Þ¿Û†¾âi‡'CË‹8·ïù…Gœ?×÷¦'ø$x÷{à=x¿ûS”Y¾†<3ž·kýÆ?ô(è;äÎ-ÕK}øeÀw*5þÓzm}>D.Eü½Ü74_Õ†Áó¿žS_ÒåQO¾‡þ”qvà7Qïh¾_úu0r½Wû¿èùêðbÀÆ?n2<ûÙ^üü¸Ò“ï#_ îSî¯ÿš¸‰ÉßSoã~Ô?æÏœñ>:>ŠþL†òKw¦Ãÿ ›¼ÓèðcÑCÚùæq“†g?Ûˆ?ƺ8ýÓð‡‰øÖ¾Ÿƒnr?ÇëöÓ‚þ¡OâOpS×ì÷c?cÿ3÷ÓþÐõ©ÿÝ8žßðìg;/v ù½Ø‹ý ÞgÿGön¿Ç¾âªîOÅß]¾÷uTŽÖíi—kâúcße_‘ý}ü‡ 'ö¯r߆ò°BgŽ¥÷o ÊohÑóÕáÅ€öc!_'ûƒÄ§yöÞÿð“Oáÿìû¬ â_€À‚ß«|ö“Ø÷¸ú!ñ¤ÈŠ¿xLœ&ü7%,/xžqÔÈg…ÿš¾'ïþJÔÃ~•éyöÞ¢ç«ÃÅBã'þ‰ØQÉÿ¾áŸÆ¿¼ý,è¾?ÿ èæV|ÿ¿ÿ%þ®çÿýÏÙ}äqš~ªøÛìG‚ïÐr*ýfÐÃØïG_ãü?ô¡?=ézZ‡Î“ìýð|ïà÷ø™Âס'â*ng‡ï‘ÞCßÁ_¼….<ÏÑ›ˆ ÿwžE½žGœgû»¬®£'ê;ö#éþŽ©r—g׋ž· ½ÀÏ?3ø/ø þG¼?¿>"X—³ŽÉxlk³÷¬—玪÷dÁ³_*vü¡‘Itá}è‰þf>Nú½æy>ǧžÝ_ô¼u¸Xh9ãuÁðìg1ðu¢ûG÷çùôÞGQ®Ö1óó5úÎñõž¾÷>Í®äמðúºõéÁ8ŒägïðjÂ&> úÐFð¼ ú™ã×ì½A¿&¾¢ð³¡‹ˆ‘ç*š<ƒ¡¿%]ïG;T“GT÷yÏ~ƒúÞza?Óáóè¼ÛªøÊóA¿Qù’ø}4”_ú}ù~Òå RïztŒÿ)í¢Þ‹û^ߨ^÷Ÿò€z>æ'ôdÿ‚‰¾Ë}]ä7òvmÖqîðr@ûoe¾õwFè&åïóœë[Ç3ŸÇh¾Qá÷}ú‚ni×aÔ;U9‡Oi¯Çú ;ÇX<Í&ží |äUÆÞ9íèðrÀ/5Ÿ1¯£qÄ_Ñg„oœ¿÷}üð¹&|b½žñª©‡çg^g±ß G~a#Îömìé&åÏ¥Vy“qè|Ÿ}%깉|ÓûŒkèƒÝÏúr´Sy¿1òZŽ À—ÙOÁ/½$â%zÿH¼µ-äð‹v°ŸÝÑ®¯â»7zø»®rÙ—a¿;{Ä1lòkàG‘ñ8/K¼ù‰ÚçÖí×ÊûÄ=ˆs뙺ÃË7k¾Ù'ÎXæ{á>û-ì‡|+øXøÀþ<ñqÈ×É{7¿?ýí^à;ø qŸýý[СÊÅ/vààüŽ•ÞÝ¿Ÿõû¯ÄoʸôxWåâ·D¼*øñáà3´›|¬ç³ÃËGðËûUÏjø,þ^컃çàïšî㟟ýO䊾7þéPè8ãË_—÷È+ˆüÀ'ýØð{À ÿñý†/àÊ{I_â¹Ú;Ͻ©<Æ¿>øq ×vtx9 ùÿ‰/ì{ìj¾‰'ÿ‡ŽÀcèüýÍÞßÀÎÃ< ù…_ q§œ‡7äñ#×Y‡AÏÄ]Ì<î±_å÷#oºÏ#‘õãè~é{üÍZŸÝÇoÎtYõÀ/lôôŒ;/¬wáÛ×áçä{#îó®÷\þ žáW–ñ¡$O¼¾Ï|Áœ ²ÿ˜ê=®ë%û9COŽ{+èøŸ*ÿ ö'ÏyÎÏSè=âù²¾²_9ú˜Ú™ñðü¼ò§/ô:¼Â¾¶]ñÅûWümè#ñºZD® ÿ“÷þŽß>vätº"<Çþðó?gï=QyÈ ìwkµ?Þ/ž±M}*?ãÛݯëû‘Bć‚Þ¡oäïQ>ç'8—ÔÏ‘^Jh»ÐnÐÉd6¿~ïýŠgóxƒú|Œ<æM~ž-áøŠÞ=² ß6åÜ ü <Íxó¼·z:‚îÕOç]àšóÐÉM•—q WÖaðÖ‹Ð þ¨áŸ”r½Ã˽/˜ù›B?âgüɸH[6ùÜ€“(o¿êY¿jžg]×kõýÆo”ï£?™ÇÐôŠ|ø¼ÊÑ_ŽÔ>ëf?úBþ„“|müc#\‡—2ï£yß ƒ‰ÞÛyOøÕÄ{ƒöƒ¾TÞõ§?MúÏÐ>Úƒ<Ê8šjûÞC™_Øþú~'è=ãG¡òý~Ð!ýß«ýlò·1}ÿæRCãórÄó /»U.Y/úSà¯ð¾‰Çô[Åç†N¦z/è­‰§ žrÿéÉtÚÈ3èž÷ K®÷jÿ›qƒ~éê1ýüíÉñÚêòæ2CË ÖÌûAà?ózŠËAßùsà?ò |….¡¿”oSÕ·Uñ¶)7åÐN@á½õ$Öcy³¡?äô>²~÷{|?Q;ñKK>³tÓã²]jæÚvè‰u½ð"ã"û;ìËáìu;ü½Håù<ø=€ÿyž z >šãÉWºfÅúû°¬ãÙ‡t~µ#éúàdüöø\¯ëûù¼t¿ÔåÍÛ›81ìk„]Øúýûï\NøÛ~$ºœçé­xîò¡·ÕНÆKöW =§^ðÖùiôû™Ô3’·„öRî}•‹ÝøN´—~mGûâ<íò¬íòxý©Ë›Ë ½¿ÿã?gxò(äyöˆC€ýH~.‡!þ8ìãÓ.ÚÂÏODgzŸ~ð]Äô¾å܉ñó>k•ËÄ÷Iù¼èùïðå çÿçõª× w±>á_r/ð¿è»³û.÷§ÐÀߟô~Î\ƒwÄ $¿¡ãˆê9üSáeúoú=ÊYöð=r÷Ç´þ—ýDnQß²àš ~®™ïîë7_wº¹Ìpãïð[á ù(åœv(û‹}ë"ð=ýüáëÞÇ×sü)¿ üÅßýçË„~y_ßÛÏZïg\PôBô2ø?òùfÝ'>éH^N¯³ð»F¾à®|ºßôw =·ÃË›xÊŽïZ×ïö#[>Eþ\Êóþâ5}¿¿­òÀ[ü{àïÔ >£ß±Âzv¡§äÉBN²Þ€®rßÔqÔh§žcOd½yé-¾ÛäËÝ~Íõ~à)t±9Ÿýðä߯ |û¨Ö;p_°ñOÓß™~@÷Ø‘©_ße|Ÿôױ܎8#noì+e\ÄEãC‡gƒCüŒЉð5ó¢ó¾ñ¾Ž|A~Lfïmð>ÏáÿàÓTÏSÿ;ÏL¿ÈÚÁsèb¤|·zz?è¼æ»'UŸò÷ô3룽Œ[濦_{AÐ[ä¿Ê8=~ÿýÛ<Ú…å>û¬Oæµ~çkôã%•ÃxÔqÈó"M~[ñ¡ßb­3ÿèáO+ôz}5ê(|تó4÷ã¯ý±½VúDï ¾Ïz¾_¦ÜÄËŸ¤/îÓ>øÿúý¶ê÷¬ó›xO·ôœó ؃×+=æþkã϶õ]«úØÜO­ÊYÇ ÞŸj\4Îɯ¼nbœ~«ýöûAwg¦úCüž¬ŸqHºg¾ÀKø`æµW?›üà@•o» ã ¾Ÿ*ý6y¼i/íÇξÐOÑ‹õ ÊC¿bÝ‘ù3Áã°9žó´ŽÓ¿f=½0~àËê84ñéßõzÝèWIWO‚ÿÐ^êuþ¸àƒÐôA\k¾ ;šñûë•ÏcܘïÌG ¿ÍxAÌ?ãB?ÀGð$æ;ãù¾.}#󈛼óÀ|¥ßPž“Ÿgø»ý4tûfÄ?r?c~Ä_ÒÏØxÀ¸3~Ø£˜/Æ“ò oæümVUïN´¼ÚªøÔä¯Dÿ¯¹IýøPïA¥÷Æß˜y oêš8ïÔ}>üxšø¤È›½G¹Kµ}^/nŸÌ—ÒÖ|t‹ùE®Í~¯L7©ÏÀŸgÍû`ngØaò¼ˆßc^Á§c¿qû¦*÷iŧ±<áìï7í=Ëú4ë‘cµsU×AßM}à{Ú£ ×èOSÿ¡¼Ýz<ŠvD¹æC›QÎQ}ßûš¼Ÿù°ÁÏÈ¿A½šËÞùö¸®«Æ>Q»3_7ŸvÿПƒ?$}¾´¼¡ýàä¿ÛG}›÷[µn/úëÝÚÞü5üëóZ~ó~Êýhx 0_7¹­ösLÌó`ÖKXw§|ÍñÛ©ôÛðÕ”y®r³>w{3?UèAéírÐïžžŒo͸½úþ$žÓi}Þø¬FùšOÓÓd¤úÞzt¬þx½Àø ïVbÜ"ÞÃËÒå~€ðï}ø²êç=è‹q¡=)±3€Ö4ÐÁAí_®?¼düÓ•:s=lD_‚^™_æúÍüêèÑŸcAô9Ý·žÇ|âïk»“ þÔOùðkè¼j;o |t¼A•ü¸‰À¼Á/h/üõÝf”G}¬"N“éRãKÿ]¾ê³^B¿x?ô®ÜÿuûYO¥ÞÈø$ÿ¦øÊ+ÆûlÎE}Tëiü(G ÷£]qŽ)ýŒ¼Îa^ß©ýÙøN÷gÆà°[ØßIñõŒ‡´‹y»Vá<„ÚË<€WÐþZÐ/ö[É#ï÷3ßàÓR}ßt‰ß&øžB7kUnÍãÃ]Ç9˜´ÿûšýxð[ôØìß0_™ß*òHy#®†Ëg\ð3Ã>„_ã‚ÿ¨×11ŸŒv%žGœ*óÛuÜ~ýšÎ‰_oT¹m¼„ß­ªÞ© ãöÑFbü ðrüÑ8À&ª?Ï›$?!~#z3òéƒÚó{ð¼“|µüÏÃÑt |iä-ýbþÒ¯ú„ßmUh½r/ø~œ6½€{•¤Þm¿Òåß÷£Œã­ “§Ø#à«Ñ.ð¾pg(¿F¾¿ýgܹÿ—¸¾F;Mgzßí¥\ô‚ƒ×D7è Œ/õ1oA¿¹.0Ý0¯¬ó¸ÏøB‡à窞ƒ·|ÿÇZ¾ëø+Æð~žÂgþP¯›ódèOÔôÙìW²‘øû³Þ÷Üè~ºV¿3#OÞ|ˆýªÜ¿iü§±#Sñ‡snßvÐ/û/ÐEèé÷`z/™äõAï‡z> |Z <`]É8¢AŒC¬Í'Tþ+Ó úû$ÚG?á!GR?÷øp.„õåAÿ‰ŸÔïçû²µ~óɱü€ÔŸg^—FÚ»_ñØßó]È·ƒúxõ:tJ»ÔÞF~Þ5ãÇ|;Ž™úýÇè7åæ:#ÛÅ|ÑžÜݬýô:=vZçÝr-Ïk;Ž© rþZðèê¦ÚE?rþýkðqßÂÎ÷ºö=Sïp»éOì_·þ€1ÉO2ŸÉ­˜gÆ=÷ÝÕO×C;ÀèŠ÷+3¦|ÿ"úyð,g©oJ?ÓŸd›~E;è?|›qR¿sŸÜëè!ù°ê³ÜžYOHøR¬›Gý‡ÇÍà§:÷ÏÜnômø0õ^£ÿ*g%èúˆ8Úcþ(ÖË–^/x½a~Ã?%óªfüžfŸ üà}Ÿyˆ¼uM\<êW=§îO´ó¬ûº¯{|¯´ý2ò0Zî¼øþÅ<§|r9àÇv߯½àóáÏ©û _Ù­0×ç¾ÿIÅëÆ?sÐ8LéOÆñÎuǵJ'i—;ubÿíEï´÷ðtïwø|˜öƒF_ }Ãr:σ£¨<—¿UñÏ÷s?+üŒ^;Ýø|yð{ú¿\ùð†Ú…Üt»ÕÿŒ+ä}@è$í”È•Ð3^¶¿Ðñ çw¿Ë—ó€¶'gÜ7ö×X—¢cw{ZßÏýßæ~àG®ãsÿ÷µ÷=ûëJ¥Sôór¼G‹sª¿Õþ[U?3ž«Ë{Iÿ†SŽSÏÏýz¡çy·Ê?‡ïW:™¯»oFðžëFÞ€+õ»óÊSج«£±u{7ãz¢öEÿæû×U˸–ß#õ_Œx‹Æ»Ë½ÏóéçWÝzøˆÿ~ú]$Ýd\´ôwà½óÒ+l×@Ÿ¢>ð\øïv@Ø‘èt·YÇÅûèm*×ö‘/‡çþÎ?¾äú©Ã“!ó•댆O¡Oˆ^ü]ÒÙú<ëÉûi—Ïýé׎?è[ª/ó©x½:k'q¬2νã.JNz_ »¦ãE}ìƒhÿõI×\÷lp¯Î»ýÖÑÃÂÏ/×Ûé§âu2õŹÕ×-oŒ·é/ñ¥,Ÿô;ÎÏÆiYB„œ;®åz®Mßr=§§ŒÃµh¼»ì°ñO¿ì7rƒyKÿmæ5ýUm¿E.¡ÿOõ|"¸×ç·ÃW‡ioôËsãÆç•Ê›}ë­xÿœì¾v¸PºÏáÓØ?·‚> £ð¯7_O}›ëÍÎß;|{`sn}:<û5~ºo}ýKÑ òd©ÒGƧ>/¿ý;\ôzn2<ûyÍ>Ê.×Õže?õí +­KÉ3eûï)í™vxà<ÞhÝï° »þÌœ/›]6粚üRäU||5íð¾Ð~O…çËÃ³ßÆ½ºž·=“¸ø=:þ(‡|··:ÝtøöÀÿžýœïSùcÿÿ¯EÈŸÇzÎ>ñœñ‹ù&äÎ_úú¦Ã·n<Üžrƒü´\g<{üC2¾yª9¿õ]§›ßh=8ØÈ]@÷‘;‚èqÐþ¸:b}í£¾ÓáÛGãGå9è„ó"ûÕN=èç}žjŸ^t?;ìðµÒ ~ìoâ¿ÌýÉðì7vkžg)äÖ9Gî°Ã A7Èüv«iòpnDvìѼ>O:ݼ Ìq÷|mU¿‹Ì¯ì÷¦Cù½ðy–;ÔzýþT™?"÷ñ²Ýì—Ã_Áøì‘îïþ×v½ŸÁ¿ˆ#çø†™Wýj9ÚE{C¿bß’và{s^r22ž´“÷GΧeþ…æü•Æ©É_¤õQæ—rýø'd~Oê‹Ý_Îãø‚84ÞWŽþäùò&|rl>7ƒŽÀwá“ý¹3O'ûåà[ú-‚oMÜY®wϦç¿ ‡ÔŸ(7ýñ3(íÈ|97’þ0¾IGqޤi/ý§¾:îno䙵]‚þE¿=O‘O•ùqù;µ>ÊxìüélóñÆé&øÎ˜ÜvpøÌQ¥ç‘Ðsô—+>ÕÄEˆ¸iƒð>ãÑMêý<¿–zL“—uZË1„Ÿû©Ç-æ¿áû‡µüÌßÞäÑáüßÇÐEäo7ŸÎó.['ó¿&NXðIû»1ÏÆë:^†ø%ÜŒy†>žž¼ê}Yì€ÄÎ8¡“³ÍÇ›†ÈËä£cïyŸ€ý€È‹1&Gæå?À‡Ÿyþ€4>D¾k¿OÜæO†?Ôr<_äW‰óß§¦›G¹‘GÈq€3è%Ð üzb< £Ì››ò+ó„ªÚ3Ö^ã}ðsŸÇ¢Ù??¼¥r8¬ö ñ£|Ï#rùŠ| nϵ³Íǧ›§Ùß&ï9ûË÷‘?ÌÿˆžàúØç&~xòð€yþZãK¾8ü°Øß‹|¦ëÕ: =Côžq½^8nðcñ[dz¤Ýì¯d^fðz =SAè†÷ÓI‘‡7õφnv£=)ç?©å;¯›Úåy¦ôçV-Ïç(÷£üÜEÿÿá^ÐÍÇÏÇ£ECãiäÅMùc>ñƒ3>î‹âÕ6çÎw¢>ðÿÞ̃€ábämºÍÏFþ×äËüκ¾É¸W]=:nÔO>ÖK¿F{Ñ{në¹äƒãÍq @vœ:øšÆ‹þÁ߉NœÉÈcêö2žÐãjàuæ'fˆÇ'ùéó Ð+|òNà ã’rúýIíAû(Úñ^.4ß¿¹¼Ñsð=èÊï}UÇÉø³ZËO9ÖèÁð%Éyòì™îh|]|ÓôŠß/úøtæ¹çgü?e>„ÌS‘yd›|ꓹþ©vÁÇñOF¿ƒ_“§yWï©<ÇËÈ<ºØ·"_dC7Ž»)>?U¹#ù©Øq_T|?7æ‹õ tŒ<¸žM¾ŒŒÛvÁ×7Ž?¸Sù˜ŸÃgÀÓ'ëð¥Ä®½NÞŽ®_ÑW†ú›¯SbþVk¹Æ?ò˜ƒ”›ùx™gÕó¢ñ¢=–S¬¯&ª‡vÀG Kè…8‘´'ô—q‰Ú¼lÑ_ôØO¦Û sè>E9ŒïRÔk{€žƒ©ãéö“oIól]BgÊrï‚ëi´w,Ÿ€ñõzÕCüÝTýïòÚåí÷'ów—û¤â“éNóÝø0¨óìò"ŸŸç)ò¾Ï°n‚^ÕNãøE~Wøòò/ÏA§-Ç%óVg¼Ë”‡‰ß^gÝŽqÛÕ{»3Ïuÿ™uŠèÌí¥ôMôä#|Œùޏj‹¦Á±¸&Ö2ÿfê;×ê86v²½¸ÿw+_iòƒ€'±ßéy¾{ý¿ú ¾Ÿqírñ´çë3OLÆoDÞD~Y·k ~¢ç‰ÿa×Ìú­]CŸâ+M«|K?­ÇÐÚÁyZð~`‡„ß3ï_ƒ¿ñtL?à+|‡ü >60ðEðžöÛ.ªûð/øtÀ<²ßp»¾ïzÖkÿ­×¡7ܨõY_Q{ýt+{ŸõwðyÂü@/ÀØwoäž÷Ô>á¥çñvÐû㊗–'÷ÀK½~‚]ò®‘#àó¼ ý©\·—ùDîA‡è]Œ'ò.ã83ŸÈ3æ ¾“vB¾Ïüœð¿ÊB—à ãÿÃþ ] za?ù¡ùIûúeXߘè>vdõwŽº½3Œv§møŽæ%öÕç~‘*>¤s?ª<ät ?Kû-ß3ŽÈôBúçèÅÌtË<ñ>üù Á³µzßt·¤q¡a™ÛSôã•ôz¦ñƒqxü¦¾‡¾Ø·s~›Ùwýù¼ò ×^Â×V£½ì#ˆŸ6t„ŸèÔ| õ_×\Ô÷àñL–k»lw_wÆ~ ß¡?_黸—žçzˆva¯á'¢Ë¹]EíG._Ó{±/úœùóþç<­FyÜgÞ3?Eæ9y ¨Ý“ »ð£q?°»>­óíyxõk\¹:Œ|÷^àë~Æ;â£çy)Ï7ãžÀ7áçð“;µÖ ií¤ï_ª^äNúi ‡~4ôñQ-ßë˜,Wóàõônà!x{¯öÛô¹ô½ðý?ãj…ÿ?óyä(ø½°ÿî÷ê÷žWèîë“ñÄ|3öÝÏ÷¢_Ô_^“¼¼?{oˆŸå·ùŸÚž¦öå¹°æ0ÊKû›ù¹ÞkΡíBêv›uüRÏô8Cy.Zønþç0Ïùüé{êSýæcð è…ö~ó¾Dô>z“ž[ž1oŸÅûÈ}ä¹÷]+=˜ÞD¿BŸv¹ò3¿dÿ:¾­ïÿ{61–·úçì»ï(GïRÛ±ñw•O¹5®Œú7~0?è{äøÈ~!ë¬ïô>í¤Žv¾íA/´}Ruô1ÞŒ?zqúå>%|‚yå>x„¼(/õ8ã¾ç=öÛáà ëmèžñ¡\úÁ¸Ðƃòáà…×óÔ è=è”z°Ò>Ƈvb=Šñe½?ú}a7ƃ~à7t'æ3Ûùym‡×3¬ËRî1Ì;ïýª¼¯büÑC©ï:ã§çÐ øÍóÑÆë§(ÿïÐÞÃÿ?'âæA_?ŠŽY§ƒ?¬_©÷ãh׷൮_êeÜÁ7äÈwÐ=ãÍ8éù#Ú'~yÆÍ÷4Ö‡7êƒßÿ¨÷é·øŒézYïü•þƒ·º¿¿ˆñ†¿Ø?yÕ}Öùi'OñûCïLÿøò½¼‚ÿA´¾ ¿á{Æ]úÿÆ÷ºO»Ò¯ú¾èu øžvDøÒ#=ÞêšuúºD/®1Ïz¢÷4Nóu>|K߃ßàó Ÿ`ÜÐg¡øåÁבÌûßþ9ëoÚíxÿ¡ðô:Ó{à÷£À7ø‡¾ó|Ðþ¿2zùŒçç¯à‹ª:PyšW»æa ÿÖ—4Ÿ»³zýü“ý•9W½‡•¾ÌW½/óŒõ½ñÅt'˜çüà¼]0Ìûâs–7ö/ˆùZq7ÚÃ8Ý úƒ.ç_åç~2N¢wž[Þ@»AŸaÏhüˆØG¢ýôïëhÇ1ïô“8±ÿëöÑúÍ>JèÛÍþ"¼gœ2¾>üº€Þˆòà—?ÿsö>ãþlsº„~à{«Ñ/•o=šùÆŽ·í¯ÀCöër?šyX­óÝì÷Û_BÏ¿ üGžiFüžú×ÄCXŠqå>šûJÈÉô>ãÄ<³ž{ ÞçS}Ï8|øfû‚êcÿ¿;è3í^ðäííáÄ_žÏkìU´|ý(äþ©ðWÎlÐ ö¥ƒ ÆþvôÿÒ¾îýÌèó¸׬+'®Á‡ëµ×ÅðyÖû¼OÿòœèÀý?½¿!˜ü•vÞ®ô=÷'Ñ}ô,ðŠ~#_ãü}ú¡5çäìÇRéÂõbïo‘o©ŸÁ_RþÜþ±ÿÝÜ/g÷=诱êqDÁo [ø+ôy£–?߯¬óiþ%½±ñg¼Ð7iý`¿úa7âs³nǾp;øø‚¾Ëþó˾z%ò~Â<¢Æ9|Ó-åp. <§Æ5ÏS}Ïÿ*ˆ_ãÀ{Ì[ÚÒ^°Rùˆé-ö5›|ÚУèÉãˆ|b½EyÈʱ%ÚüZÕsèº`þGìùöÃA@àAú?@ßÌ;ë4Ɵ<Ï _d^é?ë|¾Çoý°Ž õ,Ì_:Ü æzRû;×g×CüÒ×÷áÓÛu¾šïy>’OÏ2TÚ3Wã7 >/ÕzÒ.~V?òÆ›q‰r-oÃ.ÚáÅ„M¼»ß+]7y©ÁGð}}$øRò±Œ·ÄÏõ°opxEyÐ3ôÀz.Ï/@Ð)r+☠#¿Œ[xÖ<ìM\Ö#A÷ù»èç±:¬óký ù ~f|KîŸGà—ù$MËõ=ôàæ}Ú=‡œs=['㞃6?GïÅ~¨ò,OwCºQùÃËÊ›&®Y죻?“ú]‡ú¼øŸq^X¿bï!ŸjèC¬Orþ3¾iž?I„Ô¬Ÿ³Î~·–ŸçÔ\?ò }{tƒ]þçÌž³þ¹K»‚Ÿœ1®*rÖãÌúþÁúd½ÊAÚ¿h¼èðùÐë8üÒÿ;þðmÖçÖãô=öðamvm} °¿h9£ûØ5ïDùÈ)ìÂÈ“æSÈäïÿµ®Ëš¸]ìG`—¾:þo:ý,úË>~\ØÙ¿€¿ˆ¢ŽÌ/~&ìï²ïÃþü˜uŪàƒÊ­wù¼¤®ÙÙ·® Oäí~'ø½°?Œœó…½á¯Ñ.ö9OÝÑžïÕ?ð}üYOÉÿ-¿ãÜ¥÷/ÙWcß"ϱŸQìðÍB¯Ov™ÏX„ŸŒ÷Ÿö*=x}sSåàw°S×»>W†}|â9ç+¤ÿÁ³;µ]¦7øwÄ™ïC ò>òê¡®†Žb< ×ðŸ?õ¸ÒŒ¸ãšñ*¤,?:™_ðqIó¿æ>zç\˜ç뱎‡oÃ7Š>?î×ûMü®ÕÃù?®Už×!‘§ˆòÓ¿dîg©ûO¡çÛµý^÷¬ÇµÏ]Îê{Ѹº¿èƒqÎÏ'ú‰}¢ëiz_d"x4”ßh|ñÀ«÷+LüHû&ÌVàë§©žÇùÞl_æƒûÍÏ¥Örü~Ÿùb4.§jt\¯ ÿod Qñ/b¿–ߢñ£Ã“aÿ1ý©ÐËÀûݺ8ŒçÀÍxü—ÝËïMõz< ú ¹ey½lžŒw~?êÍòÁãkA—)/õüEãêr¡ë­´ïßµ—¹Ã· 6ù‰öêµßK:ƒ^ ð+é }êOõ¹õµÄ{ü¦õ{ËÅŒÓñŽ©7㔤ÿÞ¢Çý´Ðã(ºmò€rÍø§ÝŸñUÿ}N"ó{ ¦ÿR“§c©–×Ä£š¨½{µ}‹Ç×N7ø±i<°øù‘ƾ¦¼ünòn‚÷Ðã»Yç‡rŒ/Œÿq}ÏôøC¹\Ó¾hÏ¢ÇýÔó³ýžz|o û ïÖ~7ç6ϧ3h¤ã“ñÞvø¡ó5èþf?~‹Çó’7ì“äóÌë“ñVûõàçth?®ÈwhºšÖùóüF¼ZÛÝ|.XõÃïvâ;ðH~û™ß÷¢Ãyü1µ|†Ïc¿¤ŸøiéyA~ü¹ÞŸç‡«öÌ+çöä>0ó¤yt^Ç)º\ãýÂùÈsÄàßjÐIä5ñý´Ç­ÄŸmªköÙY×xØÏæñO±÷å¹nö}Âòaÿ›kAo‘¯ê¢Ãæ| ㊜FïÚFÎhüÄ—šýmÊ‹ùiò G2¿ôÆ>ö¤ WÓ7|ìŒþ´6ù)íoüe½ÊéFnƒ—q^Õñ:Øß$žÃ—A—ŽŸ%ˆ_~6çysEñ?Í¿çø]–OÔ_ÛÑaï›óùŒGú'1þÈcüÿدþ>)xz È8ߊù‚ï#oœå x]=¾\ã>:ø/Oß2ïÜØ·»‚ȫոÆß%âAä¹ﻳ¿Êº ¾GèŽëŒ'è}Ôз™Ç£ŠocyÃ/*tü%ñïAýqüWøã¦ûÈcÇ Ò5ë]èI:¹åŒå“$.Ñíºn2~øœr¥ÃEç+Ï|˜ñe¿4ärórÉzW•¿ö³Íq{ }Ïya1/ö¯$N÷ñƒí×x¼¹wÉèÆçÜ5>øûá7ļ9›Æ ~ß[¯ÐúFÆÉʼŒMþgÝÿ4è‹x!ÔÏ|½eþFÏ䳋ø÷ÆÿÒx£ß²_\F`\ÿ;ô*â›±þÄO†z–uŸ¼ÆÈ)ä í Ž"þ¢àÍß×…jøÃû_\.=;ó£zƒ|8ßö›€./ô/Î_1î?2îzNùÌkØW÷¾cü‰·‡¾ýõÛ!g€¶£!¿áÛŸ=ê€÷f÷çùõt”þe–+ºFŸÈ8‹È= Ïåè{ø%üŽuÙÏ3Â"£×¡ÐþwSµ{ç’Ñ ö ú‹Ü¼ _Ðx2ÞÐÑ]}G)Æ•õ¤óWTùíy]ÑýXZN~Š\Ïx:<Ïú™ç#ó× ÿ}M\‚iÜ'Î䵊÷MÞGè%ô#Û‡5¾ûµïãd^ŒË…ž ÆonWךwÛcÅ/Ýúf5ÆÖû1â+â;lkê¸òãÛì³ÿ1âÍø»½J¾Îòª¼z[ ÇýýÚ¿Ì7û2ŒËè|#/ÐÇàwŒ'r&â’y65Âó&.ß§Cùù}äLæW!n\ôë¢Ã/™ú‡|e<¯×qÊø±¦§UßnÆ÷Z®Ûs\õ Æßþ¯È/Û»Ÿ'— 6qÍnÕþe>Ê&?ò`ód½§ñÛ‘H?3ƽñÉ÷Áø#þ`õ=û#ðþvðáÐ×/:lâûÐæ|g¼ož3ÈmÊá¾Æ©‰÷}Á&z9žùš"¯2õœÖÿümƒ™µÃçÃŒGh}þùJ¼~ yn<r Îÿ4ú5vzÑQÚ½~Å®Æ{ØÏ2>5õmÁ_%GXwþåävø{Γ=ÿù¢ç­ÃÅBóÛÕáÙÏôâ¼.ÁÃÿa¾Ÿ&ü$ß î§_{ãwɾYø$]aO0óz^Ê£5AçO¬za³^¦Ø3?ªrÇÏß’}_ ZŸuÞOAì»Ü¿YåAúëyŸ4zfާ݋Ɨg°ÉûÀ:u;ëÍ[“;ó ¦?3úÏ? >ëðßx„~…ü`ÿûôBûäßžùûܧYŽz2?uøoeþ€EÏ[‡‹…毬&ó_sž ¼ù¨òóÌWa¿¼¿$Ýé¾è.ñÑöÄýÀçå ìÿÐ;tÃýÕ—ñV†zþΦ÷ÈçãçØÂÿ¾Ã« ý ½)ò0’ÇHøïuüšuëο°¾X |å}âWÝ ýHt=Ï rævÅçÔ£l÷G¥ž¯¢ä d=½½ãðy•—ç ý'VH;¯‹ñ›Ð|Ù/ ÿçåÞB7ß âg‡Ÿ*þ“ø „×ë'èñÓŠ'M\:ÖYø?q[c—Äo;!þqÄÛƒ¿×}üwïD¿×ß,Ýtx1¡ý'‡Ù¯9§²ªûàùKX¯°¯»ÿ?øºø¸ñuˆô°Œƒ±1è=ô©w£Üð»µ!ÏúÜf]ï»]ì¯PÏm• =àgh½P׬_Dï¶Ç}òÆçt¢ÿø,Ïà¢ç¯ÃÅÀùyÇàÛàþ|“áÙÏçë»o*^7ñHX·Û®0+Çö9è ÿ<ÑŸñŸõÆ ï$ÏLçè‰à9ç3/ï*Pý„nX×@ŸØ©‘›¢ÛM"ÿø¢çï¢BMW3>ÖO˜ßÈì}9ð'ø®õÁô»v9#öÐSÓx8Qyà©ö'ÜÄË;ÇÀøX^°^I=nªú'µ^_ðý¶®W3%ïÅyè±~ø;øBìÛØ?û(ÊÛ¯óæòÔ¾Eãçe…Ö—b~?­zÃ\Ñ}üµ"ï£?í½"ÝO]/|Z÷Ô³|r=éoÒÐ%íFŽ@/ÂoãåVÅ·ylµô'•Ž2ïWÆÓ!Ý ¯i‘¯þnªú'µÿ^W¥Ã%‹/tÑ`î;›ЋoݰþX?ˆðÔòá%ù[“•v°~Èó0#reìüÏ@ûáç™§Xth: ºÉs•nÇDåRõÀŸ€1.×(ù›ùØa­×ö‹,óÕëAï!:Œñ>›ç›sW‘ç`w ô1ðáqÕ¼o’qÂFðù…t _†>h/z?í ý#ø0 '߇ÞyÞÄ»‡n Ûi-Çß!OÐ[ÙAïÓ{Ž»9­å¾HÞ¤¾×ÄCž åçþáo“þŸ·Næ#2>u¼ž#WØïÀw¹^Ïãê¾òëϰƒW}ÉëÙ˜·S·Ÿu××A·k?3¯tƒwŸyöŠ?[ÿ¤_ɇ/È#ô3ä¶÷õuœúó\@3ð‡èÏ‹òráÎú[4~^4hþxdý†uõTãˆ<Á¾ïx5¢ø-z̪¾‹s…~uÈv½>uûÁ?ô¾kº†繓OžyÝ÷é7t¼ø°ŽŸíÆa‡òþøÇ;7ãv ûÅI¯r}×Gô4ìaÄYÉ8È7+ý{iû±á·°h<½hÐûjÆÖ™È*ÇíoÂ~üÜçZ‚ß3Ž?ªï±²?ãltã}ôÛU´<äþR}o´¼‡ß}ŸrNýGä+~ŸŸÇ>3ýþ^qÉüxö+`ÜußçÍtͺ üçþÍhõ¦4ã¿Ä?§Ÿ[;O¾Gü”Ø—@¾à·…øÂ{Ðï¬3À›ŒcHœ¢;g›§yÜJ•²ÏGDè™s^áFî“ß—snÐ+z•ô(ÇwÂÿÅôZåõ)ò#GÀwö3©¿:øýÿ¡#•û Æ3õoèºÄï[}O¹Ÿ×ò§ zÿàiŒ¯æÛúãì ²®÷ºX÷Ñ÷WcþÁøâ‘¾ýñ³Æ%²~w(ýé8Ö[jå£_å¹~ú5¿Òå6ûAif}FœLø:õò~ØÑóÛÁøÁÏßq®'õR¯7÷TPóo>tMíëçoNÆ;×<Çìç皟Æßv%æý]øëqGÿ¾`üÀ?’ïÿNM÷’3M\0è}*ÚÝÐÃn|¿]ñÍ÷¢|ì¾ú!¸ã&úp9“¡üš¼)‘_Õí¥ÞÌù+çë•Ú_Ç·Ù 9íóüüÞåÍsñ/ö<~éµóšù=À“5]kž]zKÄÝK>}êvÇ·+þzúFNìÝdûí'\ÛÑä?%ó{·Gý7cw„¿‹¾Ð{óüŒíéáàòá;+µ=™ÓãÅþô¿„Î5~ÖFìvÎ`Ž¯ÇŸýDgîk¦ÿTc'c^ß©øâ}wðƒïB_|¡¼/i_ØçèWW—÷¦zêÚ~ÍØ³Ð«Ä¿›<Œ´Ÿþˆ>-G‘‹#ùy¿Sú#¸¡÷ÜŽÕ|ôÀüÑþ[úN|«‰»“ò*èòÜùö;¯`ý\óèu­íh•ž<ÿâ\¿ªZʯ °ÇÂçÁgøÁ¿ÿêýŒ“íçðüD'ºüÃã½òœv Ï?ìXÄÇaÜx¾íòãêø<ªö§cýE‰kŸyCçN›ùÜÛ>nŸo¿çñÕ5î^— À µÇøÍº= ¼{Eþf~Ì>Æ@{T¾ýOußÏC_.ØÏœê>øNœóÐÿRoK¹8?g£òÔo׋œXúXÿñèÈz•ýutœ‡¾¶t}ˆT9ìKA_¡œ;¾†=wÑ0óß¼~y£qÇŽšqÅl§Ö{â¶ð<òR¾´¼™Tü0ßý0ð…úÓžøÙø‰‚×·Ùtô¤ÊŸ9^¨<äïAÄÕ°.Æ‹~@Ð ò >@ÇÎKÁ<¾ã~w¦³ÍóÅŸ« óüUïë¶ž“÷–û™?}"ðíÌíÿƒßÐ1ûzƒðë½Àˆ—Ýœ“@ŽìÔö»ÿÿ<ä|æhÚ1Õ5ã"}ËrYãÒäUÁþÌ>ò8nÛÈ/µ ~B{‘ƒØåÈWÍ{/é÷tY¡¦Åxznò&ò°¦ˆñ†ù¹ôõ¤Bøñ«¶Çøy—ÓÞ”qÓ7ã_ê/´y >‚×ôë°öÃó§‡÷Ù‡„Þ-O‚>i·ã¥«<è=Kír;y?uÇ[Ó}Ñ«Çáùý:|9hþ§yñx§ÿ“øfc7nV~æv€¯è'È…•¨þ½2Ý4úSØcm‡ÇŽ|†^£ÿ×;Ñ5rHrÏöø×!'<Žð5}½q·þñ^Ä]3DßtD½Åül¼îñ·zmõ€WÖ‡˜×Ê×7ð»Ï®¾Z;ÍoÉ3~©^_ˆŽšõ3|÷VÀ»úî–Êãy“ù2‘K³òÝ>ŸóS9Èâ„„üs»ð³Ã¯i9 ö µú³\CŽ:‡ŸLTNže½ô–åc;-{=¶_iœ¯#ê|ÌãÕy3âOy^OÝêƒï—ñƒ¤ZoÍóù _¦úŽõ‚âÏdžlçÇ$ßùwЃÞÃ3üª¿ŽÃ¡ï¥/_3ž:~~øÏ¦>g¿'½Ÿy,áKœÓÆ¿ŽþŽuæýhÇýl/+|ÕõÁ©ëÁ¿3ø-ü MÍC™óe'ãÓËò ó[ô>ôÖßOƒnœ×Vïe<—u}çsú= ºD!ßÖ*¾Ñ. øŒŸé5éyÔƒ_*zã»òˆs:ì#…žèñ¥}ìϤ^†Ý䳘µó¥›ŒK½(8è7vNþµõ—y͸^Œ7ëι1Ï×BÞ€«õùYÛÐãÅjàGÄKã:÷u<ŽË*:œè:XG ¾ý øñc(gªrŽù^åQ/ãËú†÷èû¹wõ>r‘þC/Èû÷b¼ÃîÖÆ¥¼~5äÍ›‚öÇØªxày‰<ÑüÒ/Ëß#âüõ©Û3QýÐ1ræ¦ÚñD÷ÈðxPûº†®oÄw”Ë>‰ðÓrü朲ʛûE=™7„õ>ßíªÆréïuèùSùãÞä“‚xÿMõÚÿ½¶÷Üø¯Ú¹h|öøv¾í1¾¡‡Ö+*ýø;Î0è'—וñ/MàµðÞü>qÐsߢ9׳øÅ>t~fÁ<1Žï·1îðë5½Ïø³¯½|~+ú ¿Ë}nÆ<š¨|ô§äcKÁGõ½ÛqbÜoæ—ûà1åæù›¡–Ÿy-:|;¡å¸ètÀ ð yŒž =ƒŸÐë׉Ê_Ó>½¦_áíI~ëx÷‚¹>¤_ðUʯ!7à±—í±\`?_ôíkø}?ïq% å2ëKèý±à£_é9öÀÌ;GyÈ[è‚óÌØl~ŽVøx€ü‚Tv£ŒOŒþ„¼œ }6qžh—åÞ_Wÿóœ í¢ÿÐmsw% ûV¾Îx¿ÜÏhòû`ŸÇ®þu•CynÐøûqÅKËÕgý»$ò+òÝYÞ¥_ ô¢÷Ðû›sÐ1ý~'èXtÕÄÀÏ1ú¹èyíð|as.:Áްî€ßG\8ß¿.ü™èZqKº¿q·'ÎצÝwÐÏö|첑7ÙýQ{l¯A^rŸýìô7^«å[Þ²þI?ìLê÷¢çµÃó…©7öyö5ÐkÀ7ì|¬rݲY×÷Ö{8ïÂzéÕ^ÞN::âûAßm‹~÷j»çù‘õíGÎÁ Œ_ŽÞxSßÑ/ÆãÚ¿ölÍî/z^;<_˜~!Ö÷ñb?Yz¾ãí —aüA÷‘좗ᇂŸõ°nù2ÚÜ{÷o󾞋î6¾S½È3ï{ë~æ©ø°Öo{÷©'㹞³o¬Ã·Úïôhg¼üÛú ?X÷8N¬®Ñ{ Ó‡®sáD¼âb=_gzœË¡þïTí€N°ßq ÀŸ‰|“ƒXçÃ'—ø­³Ï<ƒ¾t9s•à|i†gƒ~¹·¡û–ø=d<-öÙum?$ð]ï³Îç=ô&âÙŽ0»ŸtC;m/æ}â9¢Ÿ¡_ô4üT +ÚÝÐ/ìlص9²rêœý :¼XÐx›ñÁÃØ7Þx ÷WgïeþSã‘ìÎÞ/öþ§¾Ã?oªúô|9êÿ â»×ÈÇA0Îiy=¢ú ŸBDZnºô*;D/2ϱW¹H{=¯ž/tœ°ˆ/aüCcÌ~‹ät2ègüV9'¥ñ#Ù®øÖÄ•È8`èoȾþñäöXÞ`w£¿;UîÍãÀÔö»<Ñ“å íg¿·ï{^ 8ÿ0à óäøLô|³âoã÷q¶æúžžƒ§“¨=þÿD÷oHßE>ËFnE|Á!~–c\GÜÛ›Ct½éß=ÿ¡ÓM‡š¿ çAïTº{Yûsã·ù1-Ÿ‘oÈǧÁ¦³v˜þ-ÇõžÊO~uÑâuøvAãú&øÞï¼$Ý¿ý,ß÷£üéì¹÷©"Φå"íD?Èøhè ЗÊ]ôøvøvBû;,Ï~Þ§½VùýK—»$üÎuö˜õX¡¿ß!WN¦—ô?Ï<²vø:¡×1àÝq]åy“S—ûN]Z^ ÂÞþ͹ôÈ‚®÷r½©ï¦³ëEo‡o'LûIžG¶ÜøËÙèÆß§Ýº¹5Ãû!~Ö¡ã ¿”K܇¾7ÝŽÑá9ÂA?ë?›§q}jzDŸ§*/äGs®›ëlÇV\c?À®‘ò¬çUêð¡× Ï®‡&NÆÍ?u¹ø‰*.“÷Qº®ÿ]?ö¼”{”—~Þȱð_Ùxvx*üÆ¿æiÕoæqZuÿÓ³Ñ÷—¡ÃÌæ¼™AG¬cnÅþkäMlâ§ßU¹Ë‚׺žÖáùÁaöËuå×/·¾ñ>mè]~žû9ÈCìzõ~­øýevÖk緢ë Wo˜ýìŸÞú¹y¶õ‚ý[#Ïš÷A‰C«úíJ¼ô¹O+ýð³þˆH{ûù‡Ïzv+žú¥ÿЩËO?9êÌ|¿é9×¼‡œõ 럕;Ñsö°CŸq=Öa‡§æçÃì×èK¬{°o•n<ìÐÐôÁúlÖ1´»rpYíŸ=·*½e>ÂϪ߿ñöI?ɼ©¾þÂzýúÉüØ~*ÐÖ%/‹‡½,â/¸ÐSæóÄ/gªkä£è¸‰C7¡½Ïw¢ÓA?·çzåöÇþÐíÙ/çôWžóíÙóEµùö<_«ëëKáÂwmyU/ËuÉK_ÆŸM¿€Œ‡^†žm×~ñ3ýÅûMkèñ¹¨û´ùöy§›×‚§A'OQtÝäGÃþqÙò\P#X',~¿$Ýx¹>¢—}PïÛ€ó|GÿhÚéþóÞv´›ú‘{zÏq®£´síåú}Õ!óâxžGßx¾¨ö¥~û/{ž€ñµ×i<3/§åR´ßñ†–ês׃œ„N²Æç¨¾oúÝ©í\4þ½-0õ|Ï×dßt{2®¦ñüÛ©øb>ç¤S>¸_S•ÿ’ñ:¯ÇÑΧN†òÛ ^è~7ô+è˜~¦nÖÏ{o–O¥Ÿ~ÆÝÈø9¿=/š8·Ä5žžšß°?Fþ’Œï<ƒÂkâq´ƒ÷°£ß¬ãÞğϼÎK•N’Ïä>UÏgöjÐó¶z²<Ùàù‚âõ›ÏF~nŸç‡ÿ®ÕvŽÙWÍ÷¡¯—Ó>ÝÏü%?›ÆÙ~ ±jùÁûSîÇx`/`žô^Æ+°\e¼z¼¸× Ó®^ñ[Ý€àÉT×O+þXo[߀?”³WñòÔòÆë$Õ/¾ßð!ä›è ñw`ý6ÑsôÌë•>\í ~fºÃþtãöÀ/ìÒa‡o´}1ìÚ~¾t²<Ïx&™ß=ó€Ù.’öPøØÖóù^‡^$˜q­oõ¾ß½ðÜô•þáÇ”y‘›¸WÈÅл;ìð"Bã/ò¿¿eÁa?Âù›}VÖoØ%Ø—•ü²ËzúÚ¬ë…;¼ˆÐøÊzi2<ûå>é&üi]ŽäÒ _gŽò©u)ë2ô¸Ï»¼éðâBóýg×ÿ#þèS¹Žïã~ž°½û—Š=9öW‰kezbÝÃúžü–qŽj/U÷¡#ég=ÎU‡:nø >ÿ¡â¿ýÝ8'±\å…é}‹÷%7¼O Ý!w–u_öÇí9£ßS‡¾Qºá|B®;ö+ý4þÜÐ~©œÇêë«=;Ï?4ùèzüë/0üåœÛÅýÒÿÓëüû žSÎd(?î;Îö2è„ë©ÞÇ. ï_Ø~èl+Ú…="éœvißÈt¼rs2Ò½Ïõ¢ç¯ÃÏDïÐÝAÐ/û¨ÃìgzÝz‚^ØWz¯ê…¦3Îw±þ ÿõEC‡ž‰nX ³Ÿõ¾¢âNô:`ß5äk–Ïý&ozè­‹‡;< ÜXžý¬×ýü]|Yõ@Ÿ+Çžñ×ÙwœÞxt²_‚íèØÅÉÇ¢}®Ü·ê°ÃË­7!GtNyã[á9ù(г°_Üî÷¿)ñç±£Ëþ½ñ­Þû;÷ðìgûß²®—Â.ÀºéHÏ¿ÖûwUϧ]OëðòAô1ÓÅZØýD¦ÙÁѯ6Ö¿Ðýë:ßòæ§áÙÏq!”—oãq§›/ô¾ö0Ö/_ëšøGÄG¹;<ûYñþwºÿ ÒÁÆ·únMÏï B‡÷:Ýtxù ñWë ëiZ×äù· E ò>¯“åÏíÙUŸ[t¿;ìðUà ßÜî¬u;ô¢ýPìiMÜSâW>¡›cô2½·×÷k:¼üÐò@ëËô·éðì—ùO6nÏî¿(ORîå¹Öaä»;¼ÈÐësèûçï/»ÿ›¸Yï,G|•óÛÛÕÞÖa‡o3Ì|È©A¿Ì”þ7™?‚Ÿãƒã?ù 3®•Û“yøðûY]Zn#ÿ<2>´þÄýÉì½…ÍïqõlÎ3ðËßãZí·¾Â|~8ò>ú?û‚yÎ,æ»É;Ey\g¹×¢ýŒ7ûøŸžÌÇ'*¾·˜·Æ?5®±£ù}äѪÞÏx‘ô½ ¿Vè+ñŸþá?®~Û¿g¯–—zäÇ»GµïFÔ£r3^šÛžlÕ÷3_¢íÄŸœÌÇ ß1ùÂ/óŽé}™o¬¼ü™ßL¢Þ_C~1þÅ83®{'×Ã;æE|¿?÷3Ú•ýDYݸ=;'Ïs“÷ õøƒ ä-ßMkù¹Ïnzä9×ðãä§Ð[àew0ót‘—¼‰uœËzjžoV|û5t·TÇ)åˆïÓ>Æ;ð;ó²Ž}ïqˆuwò¹±ö¾)¼s;—£ÑÎ&oè‚åMÓþ¥ÐsB®˜?ÄwÝuçäùnú?2¾FLzÉü A¿Íù²È‹ÐØXOíãOgåžv›<^+‚øƒbùàävl|£ùøDï­êšü^ðìi¢/OžöI׋’¨‰Ë ¿d¾iwæ¿,8¯E®ë3à÷™7âi€‡'ËŸy>Í/ßa'¯R^ ¿ýŸñ=Ò{bœ)/çùv-Ú¹øÊ|\?¯øî´zo£çn1nün"¹é~¥þÎóPF?’Ï0^]›8Yɧ§ë×ë†^Ç1ÏðEð'ó¸«Ö׿X¬¼iô‡ÐS¼‡¯±¾~Ú~J9Èæñ·¸†ïo#§tüÀ>-ùí8Q” ýàG ÿ6¿Õ{™÷”¸lÁw3c3NwÊßÏÚÅø5ÏÃ~j¾1ÊÏòýýóà'׫^רeÔŽŒ?2¦.ZÞ¯V‚ÏLÕìPèóÌûouœÖ~Ÿ+Ôü¼|Xxk~¹¯+¿hôì󨽏ÿaÅ·&î ×™¹õQ­Çr‡ïy|<¬í°}¼ƒGäÍY¡ûõ~ð%øDîWlFÿþü+òç}—ûŸÈ'Ó/òoÁyï2NªûüÖñ±|¢_#|ìµ?øVêÛ¦øøÍxŒ_ü£ªgà•zŠå-å­Ôq±ÜÙ‰÷‘;¢¿¿TÇüa܃Oe|C÷{UßÔy|UºqùÂwó¡IwÓÏoµ?þ>éƒþíTþãç¢ÏÌ›ŒÝjáôqîšqˆñð8Dþ¢…õþŒÜÉ8,ðGìQÁÏ®?Û‹röbÌ/ôÝq<¸Iæ?Ð)ô†Ÿ˜üø¿Ñ…íHè‡È¯§µŸ©OÑÁ Çs;ä rPøk9z†éŸñßißr­ßó°Yûr{¾ß[õã…á[Æ_Å?>€Þ"¼rÀÆóÉ‚å%xN;—+¾Ùÿ…yb>à‹è7ïÕyöºüßu¾ŒÏèoiƒ/²ïévi|Áƒwj»›õÏ¡³äÐOÌâõæ‹Ó^ôÂ÷ÃÿiCße>ÈÌKésãëzo7ðŠù\Uyšç±ý‚„Þgþµ¶cŒ?vØá«À‡gãçÞ÷'Ÿ„ä§×ÿ—'üRmß*_¶žŸžêú”zôÑØ·?èü±Ã×ÇÎÕÁA¿_Ñ/nžŒçÖˈ ݱn~§Ê%ÓÏié&õþ‹Õï:|»áYõÕÌSçu%ë4ÖèËèû¬sØ_¿}¼g½öœ¶ ={îN—3ž#ÝŒøM¼ˆÎ2o„×§TúiüÚ‰?žý¬÷±Ï1Õ}¾»ñüö¥>gº]°_[‡o7ܸ{:=ÈxŠ}9²Uí|¦«¡þ,On†]p¹–cÈ:eëùr£){Ãf—7¾F:A>Øhxö;õ÷aON;¬õ¥¥ªoÍ÷ãôý6òjvûM^ßLžß¾f]Ã9Ž/ÏÖ¯;|>Þc¯žý°cúûAß­ bG#.ö騝¶^û}>/þß•œÞî<_ßÂO)÷=½ïÓáÛ-Øÿ~xºuÀiín¦ÖÿØ£¤‡¡ïa‡&>6ëä៟ÿÿrìOgÓ?;ìð4xý˳ëù~å é|^Ê/ýh6¸Ï:}Zß߸/úø=är‹kèæ/ÏÇÿÆ?çtÖa‡/óüôi¿ô›çi­ß7~Ciwûðdzõþ~Æ7aö‚<@¦gìx”¿ßíi¾~xV=Æëô¢?TùâóTûì£T»òÆ=Ý_Ö5z›å‹ q*°3èýÑvaG£^ù¿/ê¼Q‡žlÎãâ×èx0aOÞ¾šë”Œ{ÖœgbwD~ã——ò<ìû®=a?êÙ®ãïï»_ >0›±ï3d]4Ñõ)ý:ß68—b3èºb¿‹ñÅ^¹ªïBv=”ÇxǼl×õãYý²:|=Ðç!¯ÿœj^}þd÷jËûí±³£ÇrÎqYã–çŽ4®{•<ºöþç§ù.ã'mVºëðÍ@ÎCnü,È|¥yÁΆýaéŠÒÍTýÇÎ8âïº1hÜÐsÿzûÓì§] =mZÇÝrJåÚž#¹Ã9ÕEÏUƒ­zù<W]×l|)xçjΓó¾*’óöÝEÎÌÆÅyeá3ä×¼+:¹-È~ÚG•nÌ·Ø×»«ë;ªÿAÔÓÏe,ä`ƒ¥ºþÍ8ÆãªÀÇê?y–±gb7ä<0Ï7a¿ä>qE¾ ºÑ~³ÏM‘o“}Î{ >¼šó±hè<Üÿ ^h>ág?ϸæƒ_^Íy²f|Àcð÷qàù]½Çøf> äÕWUïõý‡z<³äg~Èwz~·Û‚èÄ{ ëo4OÄ5ùQôóÙÕ\ߘϳÄ.ðýkv_ö¯;ðëc=C^få‰uyë•müüÏYùÔóXð[AÙo¬7ß»š|lÑpãÿ=|§y’ó]õ+»s\íŽ^¬Ï~Þï=Ò5ÏÑ·¾Ð÷+!?ÐËäoúŠsëóøbz.» ô¹èñ¹jÐó$}!ãÏõ3=ß»šüÍv.ñ•A?Çýá¹ìfÖçVïå×Ä«?Ê8d™¯É÷Yo^ët³|ØŒý€Iîûõ¥ìÏÞÿf1Æo*È> ùš¡“ ÛðóÕøÏýÑUôµ]ß[ôø\58‹XׯIW–C¼šü-ã•y?f2<û™Nö+} úÏt͸ÆûÖϦñÞd8ñ×ã§] hùþÏæƒ ŽÓ{Ù¡óUWØä¹d_Ut•çsÇüà;\ 4ÿCÿ@_€ïuþöJÐñÕÑß òÁJ®9_AÆŸ–~7ß7êzÚE€žOì¤Àï5O#yì;<œçW¬üÈç±—!OðO ¾4ñv™—¯¦}ó¢Aó¿Ÿ5O7ƒ/.8ÿÍe‡ögZžýìÿ÷qŒ3ñˆÏÄñ¯yyô°ëÍÚäï‚ìï±_~¿ë¯4¾¿o5®Š'a:b§aŸFþ4?¯W;Îìq_ß,z^ág«š/Í‹õéå>O¯4¾_C/Â{üB‘3÷ñÛÀ>p¤ùx ïð·ù¼ëÍÚ^s_0óh}Øç饯?fÇüJtôƒàOÿœ½Çº?‚¯DG|÷ã¿f°û \h>ˆ_¼ü8í·øE§›—×/CN [îâgð³ÆýGéeÐÍmAäÖÝÙû‹îßU…ßÉ>ú´êc¶{îU;é¢Û{Ù öç3Áßü;]sg]ïm‡þÆùüÙð›îy;¯ªŸˆïñ‹ºO·èö^6èñ=šoc7cŸf·Ê#ó1å=ô³ºŸ#X(´ÈAØI™GâwvþöRtþ v°Õ¡ülGó¹ÝgçÓ:þö3¸¢ço/ ´¿;zwä%µ[ßg{)h?6é¹ösCž ·{ö¾ÏÛâGÀµègÑùQìÇ þñkâî°¿KûáÓ»õ=~ö;zQ¹'ÏvºÜ¸ÿÚéh¹–Ÿí}áxN_Ð_ð‡ñ ?èÖïãïãl|„¾#ßÛªôŸ÷Gû±YñÂþGâ÷Of#ëÛ­ý³]9ž;O/õÉîïq‰zò½…Ó |€y=Žqþmdþwâ;ä)×û1^ÌCâx ½(óÍž×xÐÏ^çÓÒûI¿éWÆ3â~ŽOÔës\;ñ=ãtà¸0ŒŽ÷‹è†z7k}þþ8ú5ò~“ï|a_ìý“ùfÃ'‚Ž­7ç8Zž$ßöê¸ØoøË:MÞløÎ‡u<Ÿ,ü)›<„ä«=%þ¾6ù³¤þŸÒžÖÌ/x5Qû­Þxüöê÷‰O Û®ãâï§Cùyã…úó¾óó^Ì3ó7­ýóóƒÊܾ >ëufʹIíÏÂä íÑ<›X—Ý×ýoXÔñôüt2_s|ºRÞx½vtö>àyÛ¯xëüŽÐAôÓ|~ÁÐCŸèñïáÛÈWî¯T~þ¢8÷çÎOñÊø;΋_ч!gð ×|ÙOe]ðó:¯àAÆÃÏå>Ð÷ÄíB ŸÎNR_eN—ã—#õƒõðeãï³½Æÿ—ý>xjü†ÿÞ¨åšOMê}Ï+v^æ—8#«õ»¦ý¢ûSâÃþ㗂컬ª~í§XÁ”OËñ¶ˆÛp‹~è>v4®‰Sðƒ¾g¿¿è7Ì?Gé¾Ï8üUíÏ‘?ìO1¾¢3ãIÜæ›òÑ·à«”Oœ:Þ‹<oÚ~Òð·átõ¯E¦#®-b\ñ#Q܃¹Ý¨â“éäNàqäƒ#ž¥ù<ô÷qç1yÙÄmºSûøœ3xÎþ ýÃ/z>ˆþ(΃ýœˆß½}YÛ½h?[Ësè9À¸=Ò}üŒKÐý=õ‡xJŽ·%_/'œ«p<ã4Æív}ïÑ ý€owºú=ïÈß?Öyö}úÿQŒø ¾7¼¿©vàõ£Ú¾ù¸¿*ýúùiüÇo™yEÏd~Ðßïêšyæüôι4ø|”þ} ^¨Þo‚î|n'êY°¿ ýPOæñ€¯€÷–»êÏ]£wƒ7ø‰£·1ÏÈ£»/ã<ƒ¿Ý|³ãäv|¨x9úqÐ7¯‡UÞÎljòõÝ#õûçÌäΔñ/‰ƒ ¾_å‡ëå\˜ù´¾ÿd„n˜Wæ ø­Êƒîÿ=Må‚ßÌ;ø ße‘;«ºOûÃ/ÒýïõüœñýôdyùÆäÍ“Yý^çÁ8¾­ög\kôfâÄðô\䏯Ñë<ôYô|ò4'èðãsŽû—~4æwàÉõçë¶«Ä:Ðò\rÂ÷w᫺Öxyý ¿â žZßbÜ5~Œ;íGÞAoèC÷NÆ;Ëý'Ô£ï2¿°÷ùõ>ý‡^ᗔǼ£‡xýªö£ŸªÛÑÑsñ“fö†õQ=MãáþIOó<‹®xKïÁÏàŸ'þàsÍ9þI¼·TéÃrnù|Ç)÷ÑŒ×ðͬoÒ^eþ>ˆß¿2®;x¨s&yZÇÉö‹Ã˜'gžÓŸÇg±Gy=¤þƒ·ùó{‘/ÊtůsOÏ3ãã—ãèkÎY?}þ|¼1y³ó”ûs;q­ñlö'¶ê{¶+þã´=2N¹ožó~gÚqçíQ¿&õyó=ø£rO/ú ="gFðÞûàçôä÷ýÝV•ó͸²^_7OOÏ+öñÃô—q½´/ðßüáF|vzÇñ„žÄ7}ã'<\´ºÛÁ¼«ÎÛó¤Žs­ÚŸf^¡Æ™÷ç §lgÖ÷º!ëa÷'èþ9:Ž´/ä*|;ÆÍ㸯ÙÇšê9ãñüYõld»öΗvøvÁäÓ¦Oô6ä„Ö%ÆSðÒxX×ïÍþ÷0ûÙ.€]‘¼Z¼‡>x½¶£±Ã;Ͻž£7"yÿ òMOjÑˋ֛vXèf2<û%žåþgúuoÌéßeû¶Öéi»Ž¾oö °Û€×” ý`Wäü,ô‡ýõÑŽ1ÿ*èØã@vxh<{z ñnö3ý¬Î®skð;ý•¡›Ì…ýóÓ€õùƒÝ û׈éýòê{æSÕ¿Vû¡nöó7ž Îã% Ï~^_ WÞ¯ò¡áÓèmGõ¹å뉞£ÿa÷CŽQžðØrüýp×~¬Ž[O}¿U=Ívò…Bok]ÞtxºAŽ,Ï~͹Ö7Cý幞›ÞVÙWaýƒÝZû%ós±U¿3B—è¿×ï]/ô†_§¾Gž¹¿´KzÛEóFvx6˜ù2š<èØ?w*_oìhà3x¾Yñ±9?=îÞ~×)¯ôåÄTïAgЗúc¹vô¶üYétÓá‹á\? >¯uŽý¾XGˆ.ü÷µ¾™û…„ü`=‚Ø ½ŽõPØëLÇèc«ª_þIþÞò}KvFÜ:·sPyË‚·»=­ÃSÐ þ™ÚGô¾ xÄsüonǺû³Àgð|¢kìVðuΓð{û|è_ø}â/º¹p'ÚGÜMžÃÐÇÂOÛtF¿•þòvx"Ý 'ã—õ.à.òcxö3½@'Gº¯r¼ÎFîP.ôçç“õ?t‰œÂ.ñyÅëA¿&î“ä¦Ïðå`¯fÿ»øg]Oëðt#üô3ÿGï’~äur|dE~ú^—ߪåfœ—ƒ|ÏÙ¿|/ þ—œwËø4´}~@Ðólÿ{aøÝ-z^:¼ØÐøƾ•çŽÑ·Ð£ÀÛA?žŒÇt-èûè_qnÚåež ü9‘Gèi¬cVƒþϦÚæy©U/ò {ÇA×Ó:|14]xý"|åœëþÄk ôçAÒOG¯Ï×ÿøuBŸ‡÷èwœ3ä¼7t ý 'šýä¡ÚÝœÖ5ëÖu×ê:Èã4Ñû“¡üš}«ÝJwÇdÔï•q£®[1Ž»•Î/[Þ>ð'÷×?Iøì+Ÿó7íðbAèk`¾5¯é_møqÐqÄ7ã_dÇ¡ÒÏXœ™ËÍ¿8 }ÞãñwçE÷£ÃÌót(¿¼¶Üe_i³ÊŸ—Ú;Y.dœˆŒÇÐÄù9ŠöLfpÑãtêñT?¼Oq/ôô ¾Þ¼Ô0ñr~NPzã;•Oò¿Y§–þ¹¦ï°cdRâ|ÿ|½ò¢C¯39ï˺àçÎúϺ¿Ý•®E÷£ÃÌ3ñªV‡Ù¼JßjÎå/ë9òz‰óãòÁü†Xg"§Ð󉃢8/ŠzQ¡í<Ž›¢ñ¢ŸÁû Œç—]]h»ø ˆßçùÂÿ^¬^°ŽÍs…Þ%ÞÉâœò¢ãò¾,üåhÖOëc÷CoÃ^ Œ}ÅôoïðbB¯G¿>kÅïý'ñE¯kÑãâœÄ éþúWð¥ÚÍ7þ/]ÿ¬z/i>rÛoÙG¸«þ‡ ½”¼y>W2{oÑíïðtÐú¶ä׵ؽÄkŒõ vóQ<úFxóXå'}`ìíËzó²/'ßµûØÄ]ùZãÈxð\úð¢ÛÝáÙ`î§x}Îþé˜úç•ïFñèG}‡}@¹¯ûa•k‹Ÿ3Ó úräïÿ=±þa<w.g¯*´_©æÛ÷µÞF~žïýèiᯀ~ÒØ£9OÁ{_N=-óÄØßq-øCäU°Ýä‚ÄñîðùyÌó>Ü7>lW:Jyï›n°ˆ¾Æò·¾7]ä}ñaòFÙ/?ôO盀n2þöÇ%ÑÅR¥G÷OtÕÄ×ÌûI~Ÿs8ìƒ`Y­íË<³‹žßÏzýx»®G×à%zÓA\'¿ûfæ­›ŸãÔûðéÐÁÈãNÞ—ǾðG¡‰n»/çK‰Ýá·òf4¾¨Úoú§=}í­†–+ÿk}†ì'C7„'w+~û<~@«zßy7E?¬‹œ÷Sü³¸æçD2® çÐÀ{ü'îC®ð^ä‘tÞRúÿƒ¾Çïòë ûG ²žR¾“Ÿþ5k~„=~Ú[ -7&Â#ðsÏøé® ¢¯wÖy§Tü÷?ëzÈç"àÿØC§*—sUÄoBŸCC.ÌÏ7W{®ûGýŸÐOü˜ Ÿ87=§3=çÜ(ü…ñøªŽÃ¢ó­ux¾ÐóNNò›>Dn>‹çë‚ìÏf>ižãGýq rî,äþíÐ%yv‘7ÄwÊsÐ樂˜ÕÛ¬®U¹gyÆ8ÜŒ÷ÉŸ‹ÿýrБÎ_»_·+ÝuøvAëWècà7x ¾DþYÎÙÎF^KçCu.ÂqÓœWXïAä7Fd^hô(Ç[ =-×1Êë‘ùƒæy׿¥_ÐuÐßÑò冿àÆ÷jÇ£®§½Í0ã„ úy}‹?þMðiè:üjyù0,78 ]°ž"·ä×êøáOäòÑ'Y©]Æ÷ÐC}Ÿ¼ÇŽªòiWäQOÿ~Ëä9q=;|; ×èiKÂÓMÝÇ<Æ_›uÉÑP~¬G¸ÞˆûMžä„×)ú.óK^¹É·f_éÝÚóì [!?XÏ`ïȸS×+Ý4ûQð•ôcAO½Ûéæm„¶ƒ‡!_Ð;ŒŸ›ÿloÎü‘á§î÷w*^æ¾QÊ‘ÄÓÑ8R«ªç@í Üw£ýúÎíE~òôñ¦<^´y ß!~õ@ï/ÈÙáå„È‹&/ææÉrÃx½tó$ ø›x,þíý¾‡ÏÓ=·|¼4=†Žïƒ¿‘gÍz'|ù‚>]¢7õ{×ÃõnôyÝã§tx  ãÉE<0Óx Þ‡_éº=4t–~ÐÍDår_õ-z\:ìðypˆ_ú¯9¾Òñˆ–ú%vŒå“åqæÛ1ýèþe«ÔáÕ€éj¼E?ã>úØòð쇽Ãå w…žj=‘ïºÒ{SAÕYÏux5`Æc´ß@èOøÌãÍ®)gcÐ{‚–S¬û­ôðË‘ÞôùdÚsIÏwx5à<®Ö#Ä%ÿøGÄg`Ÿ&ýnØçgÿ–ýUö‰Ø?b“ë¯ôügèQp©ÓM‡z_‰}Öóì_â¿&:±~u£®?LO÷u=dÿüðûÁîÝ®è½;ÝžÖáÅ…ösÿ‡?ütø—}Råé㾞;Î¥®¿÷’zðãÁzºÕé¦Ã‹í/‡_ñÂÁsäq„? y=¡‡‡¿‚/EG:_`¿WÊ»¥kô»o:Ýtxq¡×ùÈŸÒuäoó:çë ôºU=r½ýTìä?´œ\îtÓáÅ…¶?»žÿì—3]ÛÎÅ:ÅçÞb]ß7ùd°ÓmV9æzígÚí^\è<[ÓáÙÏøÍ¾ xøžù¶ì¯£røYžh³É?ÝDåléý?ô}Ï/.4¾C'ÂÛÌc¿³?Ä{Uï²ÿç^•cön=ê=~yîô²Á ú¡þѯ±¼VޝÀ>ó²Uå±Ç5øþˆ~qõüè>óš~ÀÉå÷/7´žÊ~nâéTù|¨É‡׃~‰÷®ÿ•ßùýIÔ‹Çz¥§E_‡Wú\”ö¥9 °n*~;ÞŠ®íÇ„ü¾7ñÞ¹¿ôÅz2⵸½ìã)Þʢǯë>Îy÷ÐÃ|®ä/¿ùýr4ƒ”kzA/Ó{>ïu£êÛ<·\ û÷±±w.ë~œoï°Ã7B7‘'Öçß±?®ßg=±°ò‡ýgâU°OòÁq$Öôœ¸Ôÿ^´‡}öÝb¡ÃßÝ€÷†Ä~ØýªW±_e9áxŽº#Û!¡;ô/âî]¹ƒ!tG;ÈÛþˆÝGq^=Ž^-hý ÿü•–„·ßêùýj·w¼£ûzý‰8ƒÞ{¨÷ˆy4l?c}dßí¶®‘Kı®ÍêYô8vxµ ñŸx-ø»‚—èiö“¨v}Óß}«ûø­ËoÏñ‘'¬ëÑß??èšxE¼‡<‚®ä'¸èqìðjAÛˆÿˆ]-×=ès¬GœWGnAWècøÇ¢Ï=@›]S¾ýlW ½?;ò }‘8|?þ³”Óa‡oÚ®l¹ ü¼;<û5qèé>öéCÑÉ4Þc]Â:þ¯ZŸd^´£¡ü¸¶¿ÓÓÚ.·y·Þíi¾yˆþ“ñ𛼲'7yS"¯ïC_M~kün)/ãíÔrlà9û?ëõ½Ec‡WÚŸüŒ8yüü\ëyË ð»@ؽø^å5ù9‘_Û³ï]Ÿô=Û#C|ÿ{Õ';ì°ÃSÐ{È9ûAßÐód(¿S—¿u²ØÄ“œô: ¹­zGó}óœòöë>آǷ÷6þ½“áÙ¯ÈÁ3ú­gÞWß§\ê‡~¸¼æ9zéTÏÿr6û±]×svø:¡ã3Ow_7«8k>ÉQyƒ]bV­Ï-6q•ÒïžöD;UÌq¥=¾¾Ðû??¾® ΀õ¤³æÅ˼ä¾’80+Âwä t‚ý0í&ìW]«v™”O‹ßßNˆ_ÏÜïûwÕƒ6†ÙS—ÿÞÉtf;!y˜ˆWñyÐïͪŸÙÎ/:sœ ½ï÷z^˜Ï“nð?Pü"ûÃA7a'<«¼‹—Ÿç¿ ünd?úù¿ÿ!»º®?©í]ôøvøvCóoð9âR‚·+g¤›‘x+ŽD¾å5Aü‹ˆF|KöÉä…á}ùu~s¶vvØá™è…øªäÇ$ŽëÎüM|ý“3êiwO~ßõâ/Ž_y/ñ¿x\ý–WöV]ߨoè¡®åÿ´èñíðí„^WÈ4ó·4ùŒv^÷zDö1¯ïe·3ݰþgÝ%º±>ùnmŸË9èvÏ‘n/œ 9ïÃú#ÎÁ½j½ƒ~Õº¼§é‡Üçýf¿ç ÒQæ9\ôøvøvÃôÇiöå¹ÿŠöÝÜᜃñ«â½ýˆ2¿ÙX¾3è>â™wØák¥øöNåû‰‡ƒ~œ3zÙú†‘ŸéäHõ,ëþTPö·“ýàDß-uýìµâvüžÀ''1ð;Ï/~ÏèýÌ3ñŸ¶ësÛwñ ¡žˆcçï©<¨¾<÷Àðë ®õ¾ÏÇ7»ïR¬tíó:ÔÏúƒxøù¼g<÷êøz=œv©—Kÿ2®ýaÜŽc\ñû&Î%ô–ñê˜?Î÷­U¼ð8Ñ®µèwй×WŒGäƒjÎbáíBoe|˜ÎG:Îíùê£WÔã Þ\×5ú>v$òg£W,…þB9ŒÛRí—ñ›y¾t¨qoè‡û‘¹‰Wb'†/€ßŒ3v[æ¥â÷½¯B{éøJ¹øÅÄ÷¦?ú >ƒïD;¡oè <á|qéþýbºø½–çøAÄ}¤|êÕ|6ù2±ÛÝŒvÓ?ðz`ÞÀŸ•h×ÓÚ~Ÿ³¥<ì€ðWæþ â9ó@¹‘ïàuCö¹þ€§ÇÑoÆüû0Æ>•vÐwã»ku><Ì3þ._Æ5ï¿íú-ÊÍxlðoÚ!û±çüôþ¢žsNÎx[Ûa>þ Þ£=Ä3XŽv¼íßÖ¢<à]}O»‰Ÿ€½y…¯Q>õ­‚ŸoÍ›ûÁþý¾§zhãÉx0ìk!8ÏK¼-Îo‚ö×á¦ê×5ç‡gùQxßy'ü<7º!¿Õí ÑoøøNÿ‰»ñ@ÏWÞËý:øçše'ÊøO^Ç2.š§Fà!ç±Éƒ~0ðqôæ%õú­óÒÆ;ö%Á—ܧÿ(Æò°ÃWÙ¯„ÿÀ¯¡[ö(ÿF¼gº¿›}ßzÑg(?ùò‡q]c<GÞgÞÀïŒ÷ò|=鼤äôKþè:ü6ŒWê¯õÃȃøÚõ´kÆæ ºvóDÞø(ó¿; :‚Ãǘð=—yÝy<,ŸÁ'½3Ê…ž]Cß·¯°ïÒoðŸþ.àæ|a¾oW|2ý@à3x ]ñû–¼w—þ R?ýÊýúÉ<Ÿpÿ2n óth|]Ïýñ*yœÈçÄø"OàKÐx;Ɖq?àŒ/tGþOÆùöð ~«ñ;7º½®Šþ€—<‡¯ ßDœËŒ“i¾¶õ<ÖýŒŸ¶Ãüž '°®š‚7àaèý>?v ã ë¢mÉ!ðŒòÖëµ×'¬ÀÆùGN‚ÇàÍnm§×9”§òá n7xrÑõÿ©Öãù£ýâ‹>§ðI½ßèÛ±Ž0ÿ§|ðúþÌ| ¾C;àÐz r }…ñ†¯¯Æ}Ú“ùv×jù禧A·è™Çô;µ—x—èuð­‘OÐóßA¿a\ÐCàWÔÏ8#È{ð1ô£×gðQ•ãóüvº~?Ê_˜úAoê9y+Wé zgúµÀ)ùF×\8®\Œ|9¾€§ðÆ‹ußÇQqzëú®¿¢Þàc_Eù+ðíÿSÆÙôp?è ó­}ýÁÿ‚çtýqÐóç‚—ô‡÷¡3]‡|Íy97ºa^À7ø$õƒç´ýôvŒ/ëÈh?ô¤ëÄ;ä7xLÜZè}Œyz¤k𜸅U>ã ½’Ÿû.x T}´;ëa> OâY­GûX?1nàr€õüü¦=”çzôÜñI£´¾¢8>.Ÿkèºù»ê“3§ø å "‡‘o<7ÝCÇUîYžÀ7ð¯ûAÏÁò>ƒWæ¯ÐWÐ óú­žs ß$¿'øÉ<Ïn4ŸÍz™ö0~Ö³«žc½ü‡¿#‡é?òãF|žo¹_CÎè}ô®™Gꃮ…~?`|ÁOéå~:ÂÀú}[í{ãB}èƒÇº?Tz3EÞ$óÜ—Iý¼´ÜÑsø| Ö[¹/ÔØ)¡Ë1»òäV´‡ugîO…]ØóÏøð>óq/Ê~ KôÖÕ´ŸvY¾ó®5îçg‡V=‰ïŒqDïý5æ'׫7ã=ú>ÂgÓüw]3œaßd¾UéÓx ß•¾ËÏßå:“u3û“ gô Öº?§wµ“yâœX¬Gæã5{Ÿvñ}SÿÓ']#Ïáð/Ö{á‡fúŒ¸^O"ÐsÏà3ï…}Àü±ÎX‹zà{Ì7ú'zGîçPîýÊ›óNà§äac<ï¯nb]l<_èÏ»1ïâoÆOæý¨BÛ á§“¸oy!Â÷С'æ¼’\°ý~íóþ¼å€ž3îè]_Õþ4û}ŸThyÁ8 ¿ÃŸÓ~^F¿ säôƒàO±xntƒ‡ùßÁOøÈj}oãÇÍÚÝÿigÓ!ò•ï¼ß¢÷Á_ÆOôhùûXžÍ»ù)rºF^Ñ/èúŒ¿Á´_T:3>_¯íkâ¼}TÇ/õ6¿\ûÓì[®_ÉyË}[è‹ùd\—êøXNh½aüŸ¡oÆïX·ÁŸh7ã²ZÇÏû,Œ#|eµŽ›í:ØÀ‹[õ=ë×ÔÿDßñüíÛ ?ßáô#:õýÍ€ÌÓv/ãüMøÄ¸S_Óè˜òUîK÷Oøh}}$ÿiú³Q¿ËÙ©ô˜ùËÍ/?­ãÉ}×>Â÷vc|©GüÅtç.L÷¬ãÜÈåIm‡éú·“ÇÕòKõx$Ê_4Þ.š_…Ÿ¨ç/ð=ãZNw»Qï!‡ÂÐàyÆÜ{5þÖô+âüæy~ôÓíâ=ðr·öÏïíU¾@}\opŸöÀw6ó½Z¿ÓûÆçÈoœô‘û-Ö[‚nÜ/è4ø‹ûÿŠóñ¶@ócø›ä„Ÿ³nÜ©ój¼ÿŽ+ŸlÖ'QÏ(ž3_ÌïÖ«Í“ÛvÓø@ûtŸïÜ.ðt·>Ï÷à#^m×÷›|ç‡U>ñ³~šzôÓÀoäŸó}©?ð‡i´zü·½:F/cœ^qÞ6èùÌq„_AOӘװûr?ñÇó®ï_䇞q®ÏzN¼òuàm³®½[O ¹érXw0àßfm_^ñsÿ"ÏCóÞ$ í :7ýA¯qN6ûáqx7æk³–Ÿúœ×Õ+~Ê8~TÇÑóǸíÕùmòOçFðÜzß â¡yþg<·Fû\^úûƒ÷Ob]„Õuðé\‡d½\ƒ¯.wZßKºñ{qÎ÷÷ëuŽ×‹î»_;uÜÒþšöŸì_cïÉý=ìjÝ.0/ðFøìý-üaó||=‡ù‚Ïý¡ÎOúÅ 0P>|6èà…| ììæ»ðQü1À'ðŒë1~ç6O–7É7°ƒ¹ŒÛDã³\Ÿ{}²øªv&]º=´ÿ)ýÔx«ÏþHØÌ?)ݼWÛ³h¼]½ ïßñN¿ð-Ï}²½©÷±‡îT<÷sðb,ž&õóëwùëšnÖÔÎð«¶ýWzÚÜZïƒ'‡µ>Û‹¡cðpªv²^ ~ïïÙOÿƒØOlΙÕ®´Ûàÿ’ùÆ/ðÜ~øÍ°ÿ‹}}Mü¨rÆü¼2ß»*Ðüøn§äÿÆkäþæÁ¯VÀƒÊçíoäs9'ÓMs.¼Ä÷ºNWŒ“rÙ¡ñ|Až„¾ûqŒ¿ŸÆüä¾€Ê÷¸øÓf€1öäåcäÜEú«ƒ?àËïµÍ¾JäWköå‘AÖ·>ªã2?G¡ûyÎô®ÚâÏÊ<¨þ†¿=­òo”ÏAÄ#³¨®™¿{g›—·Úî“ç…ÐÛ¹^D¸©÷oUº˜ëåõý<ïÐÈ ð`ûl|-ã¤7qmY‡8þŒÞÝo½Çx)?× ”v¦1?Ñä óóFA_´9‡ý :ÿV×Ð7å µ=c~Miw0»­ïñóÎòf¯]ÙõMƒwk1NèßCÃ6ßXÓ5ãžçXó¼ôž€OÌ»ãKžm~¼Ïü»_õ—=cÿÝv!g‘/ØãSÊõ÷Qmo³ïˆ¾_y7Æ!ñŸó1ŽÛß 1Þ.Oó玚ñZ‰ñæ|ô =“ß»Úf—7'ñMGÏ|®ßëùvÌ'çK §<×fþª÷/Áë?ž<ߣtƒ‡à)í…À3ä$øò~}4rŠò¿Àýˆ|¡^GB?‡UÎÍã–ÍÊiâë乞©êߪøkýzû°öctÞ5?®ÏzDå3s¾VçíªCïïmÇüñ>Ù§ÿSËxž–7œ{o7Ô <ãú³É£Ãþ-ú t©¸|MÜ2äÈ“Šç´¿‰CþöGÊÏÀ÷ƒø~;ÚE;ÇF0ã ±)ýËå©?¹Ï‚ÜhÆKókz#ç×ÖÕþ/bnvySÆq·ŽÏ™¿û+|ê…ô*¾o|ݪójºšÆm·Ò£ëŸÁCÖaÐ3í¿oT|ŒWäñyò–kätþ¡–?¦ ÝW{ì'´SÛ—ù±­‡øÅ4~ Ø/ê85öÕN7ïˆoôðåä0|Ð×§Œ¿ÝÄ÷ƒ¯FœÒÓ òDß;žŒ®)L>RßmèCϱ `gÂO…u3ö.Ö‡ZWù<µâZ9wŠ>Eü èøm×===*år?Ñý}Çub¼9O(~b9&½r—uvÑøzQ ñ ü‰¿ò5ñÞÇü¯Ä<ÈãµãJê:¾ó|:ö:;óßéúAåÿŽFeâ倊e>Nüâó÷ :"¾Ú3.VÄßô÷Ž“Ï}µ“÷WõÞM• þB¼O}¬ÓàÄy¾_ÇßtŸ Îcè^å8p-oÑøºhȼ[_Oø…y]Ã|~xtWx{Ä÷Ò0vnü¿õ|º³CØ>p\õ¨Æ¿W÷›xÃÄפ¿à y/ô¨]ð8Þ'>ò¾]B7¼ÇwÖ³Ô¾wj?M?È!ÚÏþ”ô†Qÿ è ¿#ø r 9t]÷)ÿÞÉüôªAãÛöÉxàûøb/OÐc°1Îé À¿ÑÀ{è0í¾×ž?Oè=ÐEÆavù΢v;ô¢çÐ?xûüÈcÓífÅKó ú "ÞdÆO›j€Žã£rà'GºÆ~¾tE?CÄ«‰¼AîÇj-ßó„)þá÷iOÏÇ8›wÖ¥â7ý/çëŘWÍcÚm=îØ3÷‚ÿïÖòŒçÃÉíiÚ¯çæ³ø½Px³£kÖÕôw¢käøŽ]ý¸–Ãz&åÇ‹~d<«Àÿ&Î㆞í´Ý#ãÁøç/,?V‚n¨{Ýr­yæú‘£nfó̺6Αx|·Uϧº–e}%ö×ó|uãO°üqMåÒŽÈS5Úþ´Ë¦*t´WñØúš÷ëõ>ú]æ—ƒŸÇ:-Ï5ñËhòUãgûÕnw'òâzßv>è9ã‹òýjçŒ7i¹˜ùa2n0|ù:çskiG7D ¿O'ð3ð¶Éƒ&~g½&óO2ïØg&Æþ·í„Og»b¾=ÞÌúOôÏú›ðÙý¦Ÿôë¦Ú1­ï½þ?¬ãáòéoŽýCI?¯›à ûu|ÿUèz…>À÷ÈïÒœoŽ<cû¬nß~Åç|Ïò5é‚qH?nÚËûÖÇÏ™nÀCä/|ºE.®k\+_5~fþËUÁ”¯à¥×zy‰¼¸žgÖï¬sߤ·ÌÿJùØõ¡ë;Ñ®ðojò°RûÔxpêñN|ó•Æã_ë¸{ÿã ¶3õAãïA—ßiã} Ák¯ËyOôf¾çjùÎå'ýŒƒ×-È¿<7Â8ä9ºä«›•/—þc=å½è×Ó:/é¿ëyÐüx?_|Éú©ýífåy>ˆS?›¯ûáÑÄ‹x 拚ÿÜ—6ñ}äÓ6ÿ¤´w¤?§¦ðw7èf«â‡Ç:È}ƈ/œt™çý™È»Üœw&/ ãÝGyY.vfôåƒ:^™±ñóØŽïà³Ð“ù¯ÆIxhÿ×3ò±3ÓË’ÚÅ<`¥<ý¼&N‚óh¼Â_bž·[åÂ/'ô»ò ã t‡{Ä÷7> —rB9Ôvão–'<ô¸Ü®ø7Ïç£rvÎÆ×²Ç´O8f—&¾ßv̇÷Sª\ ÜôóiίnV~c}˜vDwÓåM™Oñ=Ó›çc(¿Ô‡Ý®ˆ›ë~ OD0?qymúYêU7ïB¯ã›¹ïØŒtCêù•¼ð:(ì´»Áæ¾Å>;ãŒ^rCôŒ½ÒøšøÃ8ǹ”fgüÑ{D9Ôütl¿å¬z´Û^>­xéòŸýã±ã|Íúö@äŽèÝö¹ˆ?e|Ã>Ä|e‡¬küWðÂù‡ KAÆ!ýÓ9§d?‹úÜí¡~ü<~ZŸÁÈëâráwÜÏ<·|Ç~è÷´ñï=ßûUlüôÏZßmðJÏ5?Æ?è!ùãqÆ6¾Q¹ø¯e<¥Ÿê|Ùýiô[ó=ÏòÍûú*¼"¯¨ò–Îý}b¾ð3ã}è÷ÇÌê!?ï}=g|Èà ?þìtóqfyCÿ®W}Átq­ößô†œ9œú©ç|Žýã%yÈö8Ïã¬ÜÁïƒ÷Èá•íEzýJûKA'‚–Cº†¯~ó†\T¹kótóÔìgb§PyÍ~næ×Šó—M~bç_—ÜV}”ÿ$øÓõÀûUj÷SÁ êa<2¾Ì6ô¥ûÔ£ï-¿¡èñFþó=öÚïs}•?o¾ªüäµÉæaµö?õçÔ›x)qÞ9ÒìsãH¼ ›ñþ^ '¢çNôüùÃZžõìI̧¾³?ÌT×Ð øþ“â«^g0_ð ½ç~ß|áúFüÖ×ô|ÂÏîPõ¡€_¬[+¿ðx2î¹ ^Áà'wFîs~ŽqY^äyèÌ7¹]ñ×z2ýdœ·ô~žC}[?Êý¹›u-Oy®êÌòæ³:/ó|z‚ÐOØçݾ[Cùñ¾ñ~~cqÀšøe‡µ¾&þ?tëüƵ\ï^m“çSó?§Çzßåñ>ó§þÅ‘nÆ~~ôéáq>‰vÓ^äÇ´Žã7ö—G4ïÖâ<\cwæ=ä݃:>™W4Ï©5çÑÿTû³Q§±õC¿!¿Vƒÿ¾SŸŸ—=Íz+ò“öƒ?9¾ðGƉiâ_A7ð!æû¸Îkúï5þ>áMùÕã Þ„}ÊÏ3¯&tƒ^·\ÛÕœW¿¨Ò ûÁð'ðKã5‡?ã˜0ŽðiøÆÕó£yu\?ø¤úÛÄ9‹àì›°2Ÿç—£Ù÷.>‹]Ÿý¤3æ5¹,0ãM6qN¡üj2–ã¡„ž<=7ß:e|¤Ñö“ÞUGòÉ ïíÇÔøwU}«¡›Œ?‡¿ižËyËâ0a÷ØøZýû« þ ìÓÊÃãü³Æ¶UÝÿñ‰ø‹¾¿Ç¸é½ˆÇsÚýÁUþÝN7¯4ßÄéQܘï¿Õ}üû¾×x3_Žìÿ±9™ÇÌóÞß_®kþ\ñ£™Ÿðóµ~.h~ù–é×ö›ßuís«¬oØ¿dr¿®c¬_|§Ž—íÈ#ùeGç9ÖY‹¯Ëÿ%æ3óda¯awd}“çc«^ð²ùç.:4>ÿ)ð?—?UzÊñôkÎ[Áw$¯òœäiÏáç9ÚE×e‡Æïí:MNû¯×õ}CSÍOäéõ{WeÑýÝã8è—ô÷›|£æW·ˆ‡ÕÄ¿’ÞõË‘ÞkŸçíïuxÊùf¿@zµç—yÒüf\Æ´ÿç¹YÊiÞ_º¾°˜ùFnÅ<å¯ñ›óœ f>›ÍŠ'~<_ÿÈý©&…ôŸ&ÿø“ÊÒqžïUü>Ϻ$óeп;K=`RßoòZïD¹¼Oÿxy5©õÙŸv22þÐëqÔÏ}ÚÍøÿúžV¹æï6ë÷‹Æã…ÑãÂ<Å:´™—x?ýJý>ãr°Ù‡J¼>ˆyä=ÍSs^„ùs]M^sÊ ï(ÇþÇOO¦ÇÙŽ£ú=ñ8 y”ãK?ú“y/ê‰8a¾¾d~°]ŸãévDü¯†îù>ö™® dœ¼Ç8fÞJÇÌçÐÁn¥?þØOz%/lažÁ øržÛÂß+ãw€ÿ¿~%_P¹Œƒ÷á)WøèýfÖÔ“ü;åŠèÈ~³àsŒ“Ï.Õv¥]hž?U÷õ¾íѯÑþ%äKˆóTM|˜iôzR9ÌþûÑïEãñ›†Ì'ùnß&ÏQÄÏiô…à»ÆwÎ!}xð¸Ò¡Ï¯ó]ä±¶œ¿ŸÓ£Êûy}†ªßx /±oqÈy u|Nz„Àsè%ós2¾«ºFOe\"¨ëåü?~m–wjß½JÏÍylâ~°¯wXùS4ã•:.ãTûáöÇþìUæ[ŸT9±ñ×:Ïïˆûdþ¾ÀŸ8?ˆ]Cód>ˆ¿ÕÿªüŽzˆ¾¯é¹öÝþ¯ª\±¿ýoiçµÁ³[Ñžä·ì0NÐûº ~à笟Dý‰þ'tI}ŸÆt¿ñØ7Çþƒß0q·"ÿ÷ÓPûð¿Ëñäõõà§À¾+íúøjÊ›¹ž¢ñ¹«ñ Ï|üßÿOƒ.Àø9quðwÿà›õ\qs¬×Á‘'q®Üòü$ošðÆ|8ã÷›Þ¡ÃÙµÇvÝ­å ä qkà/kÐmîÃÝ}¢?áE¼ƒ©¾ç»‡ÌOíŸùôôˆþÑ^]£z ³Tþ†¼‚?1_йãÒÝ?§øÚÿ=ˆùqÞúà77á×zžñÏ*™Þˆ3µ\éÑúDÆ#&Ÿç%À7ø]àýÆë½ûw<ÇŽßgþcÿÊüú@Žü¨kƃñB^A·ø¡g}#ˆ}¤k¾{PùÅÆ ç¬[àGÈñ¯¡Sð÷»àW¬×³ÄÁƒï°H»¾_0ßz޾àü*´£ÎÏ¢ñøÓ |=›¸YŒ/㎞Ëxƒ7ßTükâî?^ìÆ¼‚èàIømYÏ >˜õ8µ‹öDüÏï-]_ºä¿1èóË(‡ûÐï¯ B—´ ~ ½¡e>sôEøóªßÈ˯*_7žœ”q yˆƒîïê>ëTÚù¡ é/ãH{éú¿fpÑxüÆé†¸P¦ŠÿÖèe¢«Œóbü%ÞÈAÅ¿ïxyz.ë{äG惚èý-]«\ÊôkÎ'ëzã½O<¢Ì7’úç ÿXÛ±ñy¡çŽÃ0ã3‚·Äó‚°Ÿõ¤ö;×esyå:næ1é–q•Þà~Ð>øó¢u×¢ñøMÃ&ŽxC¼GæççٿϺGò#í=–;Ð佦oN—¬wóšßñ¾üÄßà«æ1ý¾Ì×ɯxâ~F|ªÜ_ŸÛ1¢¾ÈèöƒO 3¿í]½¿_ë·¼§½S½ŸùŠÑ“W*½ä¹6—Ë>ýÜ­ãnyÝ0þ™/*éFå-ß8Ý0™ »ã½VÇ‹ñ3Þl×ûMü6ðb¯–ëu1ú{îóoÖú]åÐIàcÊÓÀã xÈ:8ö›uxä>ãBý™·™vSîq´;ùó‘ùö"ž¦Ç/ãÙíÔ~g>±fÝûrͼÒða¹ò³7Ž¿1Ÿ©ç»½Ìâó•|j©Îgƒo#óÕ¼Ô{M<ª1z‰r›<–Y>ó‹‚ögÿYÿ$Eûùnk2Ž¡Ï7üu’#£çôü¤>ôšøÎã”tté÷iß}dÿÀÚ³óÄó½ÚÎFŸà=ðúÚªåñ[ÝxŸ ý‚õ^æ[‰qØ­ãd»0øñ¤À‡ÉÉß›Þà;<ߤœÊGý>y8¶ëû®¼Ø«ß¹œÄ/æ=þϺávÈÚ &}l¤]ô{¯ÞÏõ·ßƒ^Á3Ê ½2Çßó÷^´#øJãGϸgþͯè¿í{«õ}Ûw¨:\ŠvdþÓÍ“éeÑñÛ²=¹ÜÌ/׌‡ã7kžS?`¿€kν1/¬wƒÞ>ªxi»eÆW»šñÉÌßëç1~s»²Êy\?«íiðf{ä>ß3ÎÈæ ºÂî¿ÿ×ä÷Œ§äl³ŸÄü® >4ùFèmž¿]ï¡·ŸL?‹–7M¾ö8×á}Ü[zªñA^É®éõrëý:Öã…¯Þ×dŸ<Îqeßü;Œÿ4ðf'æ‘õ0ô›ùGÆõgÑñ¯o·(_ÏûTàí¿QÛéñÀNÁ÷™g>× Â«Fg¿Àoüoò•Æm4èÊò ù@|Iæ™xßô“q¦ÞëÑïõà“Ì·Æ5ã?›þCÿ9eü—s£ÚÁþ¹úe9B¾#âçkœçñõ>v0ü+ÈŃÐ|ãq”§|s?ä²ú…üÑ8¸>ð~¹ôÄ~ãý¨~àŸ3/ø97§lîwªçðMÆ}|€ž¤Ï,LÞO:?3Îø%i\¼ž`½œŸôxr= ½ømðWüfðÏ€?>P}K*ŸúiŸób©aï2ý¢ÏUôâ|¢È“À7ð¼üNð¿¢Äa_=—~ÃÕG|&øø_c>À;âáA×øSâwÁxÙ¿+Ú ýÃ8ïð$Æ‘y²ÿvmç =¼˜¨]È[èÄ{ó ýÜ®í1Þ¡—2_ƒÞã}èÆy u_íO¦§FûÁWÉùþÀoôÔ¯ôž¿£¿ÐëŒ”Ãø•í¿?¡Gèa;øÿ»Ñ.ø;óËü3ŸÇ|ÄùHÛ‹ÈWË÷ËÑž¿êùŽÚ¿ô*hû ïÑ~ü÷Yï}üDtû¸æàÕªîCøýs ¿ð|éùÓÀúÍøE¼µÆ/=s¢û–gÿ¬ýGOƒeþRìÔ[zùE3Þ^æíyãt>d¾ÚÿPýÂBó=·w>àôˆß:óŸûªÐ |“y{ó–~ެo¢>øø´[Ûe¹ñ ú =€?¨<èËù”ÕŽ£Z>ãçuGÄ©›ŸËÔ÷ÐòÞëíh÷V-'í÷óüeô»â£åöRÆ!ì]Í9fôÞõ wóÁðã±Ýíi”dÞ3ÎýžO÷‚,Ø?­ñ§ïnÇxÒßx<ž5yBW4î©óŸçúýþMÍ yõö¢¾I}/󷺽g.Ÿ¼¾<§ÿêW³ß ½À¯? þÂ÷I·CàË“Zîüœ±ÞÛ9 ]†zõ?ë_êóù| ~Zë3|ã!üÜÈñ„¿a/ÏþBÇSõ#ÎK7~zÈðù¦¾Ü‹ýÁEÓ |Ãýa=Q{÷Nî‡å=ûSG9£z/ó"0.ñ~ãŸéyQ9CÅ£FïaŸvÃÏFâÓo!ês·ÿZà=ãxþ”é/ã’ù›xôþ@Ÿ”íH?f×C¹éW¾3Ò®¬HÿàW'%ùNã7GûBþ˜nG»‘Cw‹¢—FþÅø5qìFò>\V˜yc3ŽLã‡Å8黯?$ãÛ=7~ôSÕÞ=EŸüß’>…÷‹Ç« óœ‰íÁ+AGoY¾ ûW'¿9Ÿ`={ÕR}Ïûñà9ßC'=~~É–;”ÃwA¯WÕþ¢À!~^‡ü;æ_r~Ñí}mtƒýzyÖoëíCà푞gœåôOƒÿ°îyãýD®9']ú>aDÞwy³Püa>…óxrÂìö{òvÑ ö&⥭>‡¾d;2ר‰¿ÈKëñ¼}ÆúÞ~3ج? cäØD>¶ÓéfpÿNøƒ_ûžØÙ÷~ðvÍ“÷ éûH?ýkF?ô]xÎþ.vrö!à3ß ï‘;ì{°¯…ß r„ýLô>ì|S]Óèî¾¾#¾ÕÝ·k>. tœ‘8wë}rÖ;ì«ÉjÑí~å~Ó/öÕÈÃßGOÂnë8ºf_ò[ðX÷‰ŸÆ:)õ:öY‘kað¾ýWuŸ¸4Ü¿­ò~z;æã²AÏ'|ïïÿœá~Jð[öáÞþf9‹¼@~@'­ý÷x¡¯â¿BÞÔÿú úßÝÀÆõqØ”ïÏþÕÈ{üLþ¶>û}€÷u»ÀBèÆ~†š?üƒ>ŒOo‰=m~.Nxˆ_+~ìƒÆ¹„z~‡ø¡ýÏ‘#Ž«ò> úÁô;AùI¦}Á~M´?ÍÕ·ËNsYàØùóGÅä¾,ºÝ¯ÜoðýëʇMœŒÈCo{Àª ü¢›ó×O¤·¡¯a7“]aîG¦ú‘ÿø«"ïñ§¡\ö?x;äÿeƒöË’}~;è÷Ë‘æ ÿÓߺ±=ë;äèb¢þr~¼&9ë Öë¹/¬uׯ{üeX÷PÖK¶Ï9ޏæƒsF{•Þ²üEçUƒÐ ?ãóúeàÅ[’§ÇþYéWº#üýsà3~’K¢¯ Ë©®¡·ô7Ù ¼wÞµGåš®W¢^îߪümÑãyÕ zIÆ•ô¼7s*xøvèÓÞÏ܉õþ«õ¹Ç#ãm?Ÿ~ìÀýÍZž¿ã<ëèh¢ç@ÉŸÃXz;äÿE…M<<Íws^$æµñßÖûé7â÷Ò/|2”ߘ?ù¿ÜôýˆïÒÄ磟{÷!/ ùù‚k¹¶?ó˜5~ª#ñö2®Û©ñÉó_\ø»ß”›q£ß~/Ê=ˆöå¼2ŽðUìä!3Zㄜ„D>OûaïT~qÀ›8UÛçË7šñ8®xb½lMp=ðž~gÆèožã/r¿›qߘ?ÖÏ‘‡€òŒ_ôg/Ú¹ô>ð<ã®}åÑO¾x>ö¹íQ;Ò¯ÞíOoú >DûíWNûùŽñ‰'ÛÈÇÜ—KyI¿·j»›xKÑŽiÌsлýÑ¡;õÃë<Ê9f¾c¼OÎq1~@Æéœ× ×IíoŽ£Û}ãI{c^r~ìÏxmÖqÉò4ORŽc„? _=Þ#þ€üÎo£öA÷È[æ~>ÜGÿ'¾vÛýÎóð’Ó^ï§ ?-ÆŸñƒî7Ê[~Lk¿ÇæüýÈùÀß…8,àçÞÁèøU[µ~Ó1ò•õßÑoÚ¿¸)¸íc#>bsž<|÷¼Ââœ×G´‹y¤ÿä÷áü6å2O¬‹5ÎÖk®Ò‰ù6üGûÍþÿoèþ©këÅqî*ãB½vº‰z Ù§aœñ{bØw#‹ì±ósnzüó~ŸúKœÑ­÷ÓÁ3ô[â€Á—ˆï]yŸ¥Ò¹íÐ5óEœÓ‡æ‰ú·†ru|Â<`Ÿ’}ôYæúùé_µð}~â˜x<ôzåBOŒ_¬§ìg#h~˜ñšTñ¸oÿõZ.r;;ãˆ]¾BüüK˜÷Œ›G<"ökí?¡ûŒ'ïÑâË ún=ø8ç[ð×>œÝ€o‰wø —oA?º]x?.Æ yøˆã¸¨ßø¯Ðoæ>þ0O—Æå°Ÿï¼lª7ã‰BçÌŸó] oë[úîVm¿é—ziô†z–óñUþšyÞ—ÂqußyqÁ‹Àó¿ÅxÁ÷æúÔ5þ äÅ}Råù#z‚ýjÿÝöïØ·â;çÕ5ã‹<‚ŸAÏô|úYõ*÷~ô?áÉ¹Ñ þeø‡à§Á8Fœó;ÇsÑ5çýwáSj?僎/¤ûà;åÂGÀ7çµDN€—ÈXwXnåþ<ó>Qy}ÿ4è<'‡èÉúíÄÏUql6þ®öÙß¹|:WŒW ¼„>Àæ¿uúÃ:|$Î0r5âO›¾OâR_ž‰x'ð{_^ÛíqŠø[ƇAïÀ/Ë-ð èÑ~„ºþIõœs(·>öaÓoê ôóxÄ<>Òw±ßàx&÷Èx‘ù%™Wóïàkðâ첎øNïA÷§˜s0ÐÕ¶êC/#þ£å–Ûý¦à1ãb~ÑÏ'¬#V©×z ããáù©óhùGü?ä+t븷Ÿ?­znòŒB7™˜òÑ+ «ˆ£m;|!ó~þ±öÓúŠó¬†œÿVÏ7ò+>Ò¹ÑMäqt?ѳ6uŸö3¬WÁ7æ5õøóË~¼Ê5&^1ã ߃ž#®Ã<¿½ê/¯é}úËø¶ÐqCvõœñïã|¦ñ)ü*s_È彚/=QùÈÛÈïi= ûôκ‰qÊ<ë࡞۞|å¡êgÜ€Ô|ž >¡ò5Þ;@Ôßäwô9#è[÷YQâÛÀ83އXË9ï}Oãë?út_a\¬ç³.a~ôxÁøD¾åf‡õ>ë)ÊÙ <¤<ø’ò{_ ú(qW»2ÎVæ½2^á‡L±gM4NZ'0nîã'¾âz¶ÏÙ¿‚?^5ûB·TŸæÍãò—xÿzÐ1íZ‹záGð ð>¹í;¨õ¸ÜÛªy‡¿e\økÚÓvë|ÏçØß1¿OÕ÷èϹíßLÕ>Úƒ~LþIÆ+ãt}ZùK³Oñ„¨'÷óá¿‘ÐûÐíƒ}ó–ñº>©ó^»^è1Úmù³ý£œ¥à'Øà ‘?Áí?Ìùö<©ò&óU4ñÂî’ôØÌ ã”ûÏ”‡þçJ3î§éþ>Ãxz :Jü°þí¡}ó}/½^€/™O‰yÐõ¹ÑÍDíMæÉøíƒïòÞ~Ð ß±î`Þ2þãÈ<íÕz2NaƒÏÔO½/úF»÷â»Ü_D£¿G^q·yxêçQÆF~M|4Ɖkðx·¶;õA—÷¤öß÷¿Œ'G=›ñ~ô³ñ—ËýQúͺ–qg> ƒÍ“ËówÇšø$ßeÜ>éAg¦Æ7Æ©É_ïy\˜‘yÍý'óð,ìÿM\0ìo[1”w ÷9ÏñžÇkdߨëƃö@ß·tl“Žà÷´˜ó ?¼»îGðËfÞ’G>º¤W—Ã|SÞfmO3Ÿ¼ýi\›øÁÐ?åÑ>ê¶f~ÁƒèåÀiôËsÆ™÷¸~ó¥ç§¦Æ1úƒüõ8QïnàÝŸ‚ò=ë@Îw¦_VĶž ž±ïË|ðû@×T.zzÆé4Ÿ¿¹ÿNÌ‹Æ3óu5ý‡^«ü¬‰ç¹åƒ_@Æie/‚o4~€;ùî÷˜GÆ)òqÎ×A;QOà•Çã0ø&ýÚ®0éÌüˆòƒÆ…ã½'1îܧ݌åÅ}·'ë×óSÓ íú5úEyzžþACüçžöÒ?ð¼È<Û*Ïë$ì¡ØE‚&÷º|ÀŸ}=»ô‰} ºƒÐΈ+kºEn Y`gÄÎÞÒ/ônìAà3ëîÕ˜WáEömÅøaÿ¸­úX_€7àßSåПÀ'·;_Ú÷꥽©Ÿ„pÿ™â0n¹ODO™7Æ!Ö7–»¹_~&Ðë©ícìû ÏêxÍÏ)ê>óÌ8!Gàsôcø]ùçÎîã=þã€?Å÷ÌëjækI׌×WAŸ¿ßt³íZªü£ñ;{{ãWÀ>ðÿ7Þûù¥|Cö]ÁÆáŸØ'üÁï3Ɖ± vKíËe>xûSÀä·4·ÃÖù·]>'‰ü\Îë]ª¼[ôG×쟬ÒNÊ_ôþg1û×ì9óàüWø~mð'ü ð{b܉öEýnãÏúe|ÏÔ_—‹_ñkØ—tAöãœç¨ò7Çɯð“uþÊ_góqµƒøSì¿@oÌó)=Àò‚çìÃg¾nç5S}Ä9O å²?ûŒ/íô~¬®Ù?æ{ü°ÀgæÛû¼‚Ìß3üó¾óω7û1Ðû¸¦=ø»ˆ?i7ïçÀwðzÀO »<|zÙ/‘OÌûwâ—ûQ¯ý*˜oÕKÿØW†^þ ªæÎ˪òð?Ùú¡òò€§öçS¹‡AŸðüB‘ëŒ'ü|µÖ7Ïï^è=ÚËøËÿÎ~ŸëÿçD|±ÿ&ó„]“~ g,é¹÷ãU/í„ÿÓ/É·‡öBwÆ/ÁO¢ð+ø ~Ðôx7êA®ÀOOè0â*ñþ©éý^|Éü¾ã<”ŒSŒcúÕ°/Þf|(ø!y€„GÆ/èŠøØëñß‚.X×0¯ÿ›çú.ü)á3ÂOëCô|c?b¢r˜ßwb<À ÚGü%ðûàÉÑ_øýFŸûCŽ€WöKÕûÜGbÜDþâo{?ð¼Dž!7ðß@. þ³$¾2ÿßSŸ®áoÙú‘x_bžÀäóZêÚσ¿²>Æïþ‡'ü%à3ìC«ÿgö7ì k xO{Áoð„ñcÀ/üZá·èkà…öï-O®«ä»õ1äø ^3ï*ŸuÀÄ|P|òN”ÿ…þÃn`ûÞ1ïë~ú…C_èaÐ#ü½Èçu‚Þi'úÛj´ÿ“(—öþüOñ±ó•CûF9’“Ž»JýÐ)íG`ÜÓÿ<§ÝÎåæ95øøŸr}|rŸs Ö{ÁkèIð6õÒoú7»>5Ý|\ûÝì_>f~j;r_Úëψ`zZ­Ï½.ÞUýÌ3ãÁá¯Ð-xŽ~ð£ ú8çiÀóŒkýYí‚ÞRv'æ‹õêAðkæ |†‰œšn˜Ü§åþTüÆ>¥öÌ×Gj7|—yå»:RT®í…Œ7ãìókª/óþ}†§óýS•ó$ðAç»L¯Øéè‡ý<ô~î÷ìÕú{;í~\ùL“ÇÙñÕè{–Þ÷¸f^ÆýVô˜öà&_3tƒ¼:köY)—÷˜'á•ù!t?ÏoÔyjâìëýi­Ïûgß»ðÅåoG¿Òÿc; æ+í¤gÍÇàú¡Kúõy|¨7òz}?9¹?é¿›çt{;üi2”Ÿñ/ñ*ó¯Rï-ƽÎCóþ±ÚßH°ý:¾™ÇºÙ‡Þ(w+Þ§ßÈ]µÃßC·ŒoŽ[Žß£_{õ½Ô“ÓßhˆŸùhä½2¡ÿáGÔ쯀¿´iÆ%ÆÝ㿤ï~«í6ßå;ð•~®€o7ǨøÓøÍ©¾3ûÙPô³]Ûk¼ÍqeþâÚvv®¿Žy…OŸ3_OixÀ{ØY®Uüjö×Ò/`ª÷¦ÑîÓæ›ñ¡|äXÆ‹#nlÆ1ÉöùW5|’r6k?òg|^Ù_y'ÚIÿÀ»ãh÷;•¾=:Ù©åøý­¨7ý’˜ú¹_ñÄí¢ü_GÚKù‡qM=|㋞qÞç :¼Ü0õÂæþTºêõ˜^2æÐÔŸçÓÀç Ó” )×FýEóz¯¶#ùÅ¢ç£ÃËÓÞàûG³k¯ÏV$·X÷!Ò¿4é¼ßoêŸê;Êÿùù¤=øÇ<©åÚÎqÁÆüg¼x§ÓM‡§‡ö³ üküŠÑwÀï\²>@ÆN‚}u·Ê3×ÿaý¾‰_ŠžËsô߈æçyþè×hÏŸƒÎ†Ù/Ïå/z^:¼Øp¾?4<û™nÂ>é÷¸ÆÀ¾3ëHÇÑ{³b½ß—õ7篦³÷ÓŸ;Ïøœ9ëô<ÇT½Ëz:ý§ŸíÜ/èd¹Øa‡owªþåû“áÙo`vÝœïÅÿ+ì›Ægö÷ß;YÊx†Í¾rÄÈx‹czc³HùéGË>/þ #ù›:ì°ÐÍtxöËsõsá/vçÌW }\»Wž‰»ÜØíÑ¡“ô‹`¿ù’ô‚>FÑÍ|ÿ´¶»ñ³ºÖåM‡§ é'‰×O×ërá—ñq§Ò…åÃDðçZšýΩ¾;¨ßy=ƒŸ/ûo™¯!Ö[ÔƒÁõ¢ïAÔ»2}wØáÿ„Ö¿¦3h¼‚ïOf÷›8‡©±NÁ^ÞCo¿ž¬§yÿœïÔèÒúXúÝû<}Õßòü÷(¿ ½êŸåÍ9ÇëìðrCãuì?›ž†Ù/ÏÛÏ»@Æ…B ¯A7¿U|lί¢GÙ¿yöÜveì~ȉðslÎч¾•õÏã‘ë}ü ׺¼éð9t¾¢ßìTþlû0øŠõ³ÏëÔëy^á%zÐV¬ŸTŸínÈÛaç:®ÐxþÇÚ®A¿Ñý¨wøEÿr¤ò ã¹Øa‡ÿo›s×7*ÿOÿØ&®FÄ›±¾Ä÷±/j¼Å_{2»ßøó°¾¿ÏÃOÎý™ê=øAä#jôPìÜÐ9í>ªïuØá‰tã|t’Áç:˜ Ï~ÞgÇŸ|:»ßø‘?©òÀõçzH=è}kQ¼çò’®x_úXælü ñ^‡W6x†~v&?Ï}HÞwžÝ“–_œ<®òfž¯Cp]å'i»êYö@ž­=lž¬W5þð‡{õ~c?ϸ~ÈŸA¿&bș̿ÖÄYw|©Z_ÆN?ñlgÓþ©Þ—>çóOœcù®ï{vø\ºÙ=yôkâfB?Vzáç¸qàëµJG–[ìŸb?ŠžšøÒÈìágÖôy4Õû›öôcÑóÓáÅ‚ÆéCcú|õßíŒo™§Áv²ê÷yÞÐqð¥žãªú<µädú1»¼‘¸Å®ßù¬f÷ÝïnOëð$ºÿŸTúáyžoüžcýÑœ#ȼðõåzmúB®p¾=ëê» ß§µ]M?ÃO-ó!å¹x·÷œó°wx9á _êM ]mUúòw!‡¸ï¸(ËCùå{ùkÊß ºÛºÝªò‡_Ó¿‰`ÈŦü̳ßé¦Ãq8vþÒþÉÈöQìW)<;CÓáÙÏô†;úVÆ#Aþ°nâùd­ßa/ ^~ ¡W5~>’SiÏà—íàþ¢ç§Ã‹ ýºa ëuèe:ûÎv²°Å;˜Ÿ³?…Œý?ý-óÔ°nºQí¦›ðÇÞà;è =yöäùv†¯L»-t1ö¾÷GÀ«XGØß†<y.f$þã§™ï,òBfœ<ÛáVãýôãV;­7BwúÞòMòožO®ëgþ:ÿÞŠπ>vXõ/Óvë•ú^î·4y¦"Ï‚÷q–‡òs<â‘óu^-Øø—„ÔÒYàøé|^‚³Ïçô_‡‡_X‡üÏ|lzß~¡mžÿQíºUû¡f yˆŸÇúœÔ÷ó½¯&=÷²{²¾f?ü”s¿zY‘Çš÷ ·ëýxçûyÏû›±Žñó!Ê}ר!اù¸ŽƒãálÕû|ÿºçÁûMÄ©&/|‡øÛø›ãÌ÷Ä¥'1ñ}3z-v”UAÞËsí{Ùدü§ÉHûYçJ¯pœbôÞG¿à"çyñ'æû[ñ>þùSÍ/zï3~ÏÿFø(ú;x‹úCxã~ƒÿáwæqžÔvz߃qEŽÜ >­ûGâ¡~UÇ«É#Ožæ]qÁ›ünÈ¿£:ÿÿ ãL;®¡Å8*ŸÐÜ>§ûàÑÝs¢›ðK0_!ßñMDÿä]±~ùQGò*x\,÷u >ÜÊÏñU†¸ydGüF@Þg3uÆEExÕ¶7AÿÐ3åÓè•s*›•®ÿ‘·,ó®&þ7q…}~Œþ©þôãyäeu;ðK×:øzî{¦>x þ«ßM~/*?ñ¸üI” ’<3æykƉù$n?ß/©Þ_븼vº!<ùdð‹>èþ#÷ÉÅy£ýÀÓ›j?üü£‘ÇÑø>ÔrŸÜ‡Nп¿2¾´æÅóK^ èš|>·k}óu²¾£=à+ÏÁWæ¾éøá•X߈üÌÔãv‹Ÿ›?Inúù¿ë¸æù”Œ+ÓÄÝ¥ÿèM‘O•z2ž™÷cö‚nÐGð߯É÷ÀxÀÏ  ø.ë§È¿êõï_§ºñëg:Ú÷Úé>Þ8â×œÛæ>|ƒûàóòAí¿ç5ó³CwðãÝZóíT<Éý7¿Ï<ÁgŸÆü< <¤^·ñ‰üA«zv‘Oz½ícÞ —­hïˆßc“”ó`¿Õñð{´{»~?‡ø—ß÷˵ÿcyžçv„à“Ðõót;‰û×£ºÿ°Ëeù‰´ÁÓ¥t½ºNû®ùFœÇ÷:æ×:ž™Ÿ·Ég žÅx¦>˜y2ï·× è‹´›ïb\SÏ‹<ïþô´¶Ûõ §„\kâ¡3ÿÎySùžúgÖŸÐú(ù*ùN|éµÛgöÿc¿×÷éãAûß8äïÀæ]å6üxRß÷¼QxîÖùmâÓ1Ÿàõf´+÷«oUþ0Ï«Pßó|ç90ñ?ã yßXï1ðÉà÷MÜ øì'õ:ñÜíÊq§=¢óѼ´?ø£õæ\ÿÄx6ñž™OžçøÀŸ#ϯá#Øs„¾I;¶ C ú{nö4ÖÈwÆ¾ŽžC>3ôþ5½G¾:ä-ö2Ö3Îw\ç;å«õÝÏêxZ^@Ÿð“ÌwŸëÆ´§!€yþ¼Ú©ãçæ-wì?¢çÐr#ýClQýèð£øÞã2¯S^ºü¢¿èG¬O™—;Á_(½ÃíÐ}ô ø&ç@ƒÞ]ë`çy ¼ >(ë_ìßÂûÆÞJ;‚ÏÍñ¶Î'õ¿vy~8_¤®YßW?ÒN„^NÿoœŸ9ž7瘠;ðü®žoG=¬L—*—ï9_È|ò^ê ¬ïoê¹õi}Ï|§^3©óíu2åÁ°¯×¾GÈwH;ï½Gü=ÊsýØ(=—qFqh}Ǽa!<íuü¿ÚÓ?t‘ëJô'žç: º#ojƵþÙÿøþó}@7Œ7ëZè>áüÏ3øÚå ôŽø…ízëÛâ{¦ïÌ«´ur?<ÿCýe¼ü˜öýÜ€®në¾úÿÚåÍfàsôÓü÷|>VÇÕëðàQðë*{$xÀx3ðqæ=Æ“|Áß:ö'ÚÍù&è’ö§õÝ<^¿¾#¿÷ãhÿjy;ìÇõÚøë%ãkîÛÒŽ‚Þ7Ïá·ÐO®ë¡çXGæ~НÁïŸ×+?¬rÏôcÿê(÷šžƒOè Ì |?2è¼>4yàñߓë°Ì ýÚå ûüÄmû=ƃq„ßÂw‚ç|7ùYáÄmD_Ù÷TyžŸôK§}Y/rç“ʯsh4ÿ ù4û¿Ç{‡àCÌø ~0ïÐ%õ"2ž¸Ï+ê=øûMÇU^yÜ2/ïQ…æwÂßôÞ ýà9ôšyW*ß¡ßn÷çÑþŒ‹n{³î3ŽŸÔ~z=¤öx|¡ú=å~÷Y'hþ^›œ¡_à | }ÿÁÿ!~òþμ0ÎèUA?¦ äïüEßÁ?Àôæÿ¶îkþ¯!~¶[hÜý=óÝ!(z…Îñ+‡­í™‡œõ„æ7ý¦2ïŒñ‡þGþìF~hn|‡îÒߨë•‹ÿý¿™GÚËú›s½þC/ðEè†u‰ðÛô¹SçËãˆ\¡—/¸ý†ïB?èè½Ø¯&u\˜Ÿ×-o:œÁ&ÿWØ=Òþëõø‘re¯Ò¯ùÈNÅ“æ<#tóÝä¿|òrøq-‡iÿ^åGÆKø |`»ö;ãË4ï«^•Ÿç—=ŽßW?3>®õ¥sZ¿txJ|BƒNÀ/æyݪxÔÄ™ ;ø)ry¢r2oõX|Ö´—@wgîçVm·ñ}¢öWºá—úl£?CŒGØÕ’?5ë…°›ù~Ú)¨ï5ë_¾´Þ _CÀ‡#ßWêWCü66ç!¡ð+òÊ4ñ5G±¯~fºßÃ' ×𣠉ÿ^ï,×qqÙçe'ä.ëÚ—s=¬ö«ñ/:ªíZ4Þ\uèu‚ð³9—ŸùðXÏ/؉·ï,gôžäPÚOÓ>Ÿñ1›ýþ½JW§¦Úƒ]Žúè×R´¹ þ®VºðºŒñ¢½Ðgž«À>ñxÓ?ØíMÕX?-o®:´Ý*ô‘&®8üó/AÁ Óò«‰3¦çÈ5èüþ¸ÒëËÒ‹û‰}@øçö£g"'Ä×›üNØ»¯Œkñ7MŸð ì&q>ÕÏoª\ä ã‚þ‹\êym.L?ÚA¿ÆÞ̾ë‚ôs {}ÚýlwÈó ±/”þeþþðÕôúæ¼Ü-µçnЫωΞ»~è ~Âzikd]4„@_#xßø»‹O4|mçÕøG‡¯zžÁ›ôŸ>¨óÕøƒO?´>Éø­æ£ÀðCs9ÿ®tœçSÏÚ?—÷4ä ý¢=›Ñ/äø‹¦ïØ7°½$ÏcÅ}﯆žýâç£q¶Þˆ¾ŒÕH<…ß,Lþo=ŠýOôüDá›yž„ý§¥úx8÷BîTºÌõ ~)®ï%㳸ýqþ©áÐ×{#r„ö0‡µ?Þ‚ÿp^ z ¹i=-α5y­Ñ—÷»žv ÷UñÀ½†õ üD/ágþ,|Hû•ç~¬úó\2åy½ð‚¸O£ýÃ? :A‚çï ½1Î_º=ØÓ‘GÐÛDÏ—+^ÛÎqü<γÎóƺf¥¶sÑxsÕ¡ù]ÊÎÑÀW…ÈSt†^ÆüGØæ<4å×¼‡ßFã·ör|ÖúæDõB´;ÎXN¥_PÚÿÂÿ3ýÑ8oè~r%è&Î}z|ÃáOÔóÚ\ ØÄÝÏs§È‡Xð³ÞÃ{“ú¼9Ç¿Ïxe<‡~â|×ËæÝ³< µÏ÷£ÆgÚ%ùÙèâ™ß0Ïdô»3ËÖÛA×M¼Žé z\¸Oý¡¯ÍãžL÷MÞÑÔ·rÝr|r=¹®{U{|‡žÈ2ÑAÐûnÕÏ2¡Ë ¿É ¾ßéxÛáÛÓÆû«O*™ï£ôK?Ÿ\g½ìº«Ã/´ý-÷S'óŸõJìØ»býÔÄ™áœÍ;¾èðíƒ>—Ëyšð jìkº¿ïa§öù Ùý_ŽfÐõ}Öé¨ÃË7†ÙÏq„اü±Mþ èâ¸Ú·üü¶Ê‰üN秬Ãß$Ìó¸¶|ò½+ã:²Ÿ³tC¼†ž§¹Ã·Îó! Ï~I>'Ž}šu?öã°Û¿Ìñ»^ÖáÛ½®â€ܺ zÛû•Ž|çŽ2Ž÷¢ûÙa‡¯•nØ_UœÁ&îòf]ç7ñŠ7±é}˾_ßá[ýŸ-âîür¤ç‘ÂtG£Œ_¸<û®ŸSîðm‚¶›9þÝðìç¸cÎú[ÒÍG•Næù¶$¶;ÝtøöÀ&~¢×7óŸãXbož †MÆ‹ß9w‰_ÛÑìþ¢ûÝa‡—â§`:Î<êa¿¶ßùÎÈ}ü‚>3O]ãŠ}°Û/:¼0ýµ3ò‹ŸåVÒ t zi·"Oñc¸vóˆëµèqé°ÃçAöY}}­îûø>þ;Ä…f??ç~ä5ðsÖq‘Ï•r7e¯ÓM‡6çÞ"Þù<„èbmxös¯c”÷²‰Ó}³ÒϢǧÃO‚Žsšùk„÷޳Fzì·êþþÆÝÙûö£Û ½ýÍßã»ÌW®|™Ýÿ´Ã‹ ô8ô'ì\ø™‚÷èkÚ—t܈/ϯ¡ô2½×øÛÑŽƒN7Wnü¸>›ÿØ¿hòKO†g¿_ŽáÃÄûÄ®»_× ì;ZÏR9ü7Mú”ù<ò‚s wõþݪ™ÿg.`äIõºduöûû[ô‡õÑ£ ¿uèPõ~Õõ´«çùÞb¾±ŽfÝðnèù}§î{˜CW¢7Ÿå- ²® ~Î+ê~à¯ýeªœ°]Lípþè_üÁñ¹©sy÷*½¤_gÏ/u5¡ýHFüŒOÈ‘Œw†Þ/}Étÿæü¦ì¹ƒ~Ö¯Àã'õ½Œ ¼q·Ê/ÖŸê;ìwU>õsz\ªômýŽý躉øÕÎ2©ýXô¡<è<ÏǽôöN´“zV£_·cýv«¯o®"Ä‘÷‡øù\ØD×àùwÐë°W·èuû!ÀçÈ¿ÓägܯøùæýœúXÏ¢k¾;ùþ2Íùú¹«ç[ôOí¿ƒEÏc‡oïcþ3ž¦íjðYûϾ÷z€s^ä÷Åÿe©êGæßתœ0Ÿ'Ï"þÇàoØ÷ü>zß!'¾P¹w‘c*{ú%þÏ´óV¥g~Ÿú×åÍU„_3ÿó_ƒ·*ÞnÜž)þ¦õ)ìÅèO¬×¡+èIz¡ïã?Éú‡u t‹þÄ}ÖY}ž7çÝJ—–Ðõh×j”ƒºþ4è=ú»ŸÍ•„ƒ~–º¶¾þCؠٗš}Aäë’ïõøqÔ-wÄç½®ÇÎ}4”Ÿ×Aï= ·hçWñùr³Ê/ÛÑðgƒÎˆ;Jlèò>rªëiWn|)¾ G¯Z×µüV2ÿ&?ëcCا÷¶ÒãÆ7‚ÿ1ƒÆùY{¢ûŸ„þG¹ŸD{¯…\d¿zç½Ïªžg{‚õÊxÿ“:îߣZþ¢ç±Ã7 m‡Ž|Ô͹•X™¯#§X7°N‡½~ˆuç˜?ü—œôsýÈ Ö[Ø“—õúÆÞŒA.à߆üÌüÒ´Kôczò9Õ =³nмÕ^ Øàé'ã'£Wáo|¯®‡l¯ÚSyàwÄnì]¿×öxEüv•óË‘ ¾ŸÛD'ðƒ‰ÞC®Á2ÈMô1]+ßõ@çiOïçÖÞNèõ†`ã¿qÍýðqÐ/óÏ6qÐѯv;uxù¡ù9rÿ-ô-ö!B®DÞx˟ͪç7ûë›]oéðòC¯/X7CG@ö1–«]hn'¨ôb9#=?óÈó[t¿;ìð•è¿Kô¨'•¼¿?ÖòHôa9å¸1Ã³ßØy–;¼Œ°9w…ß v!èæhöÜß±ž?~.WëcÛŸ®÷ýŒ/?L½lЯѻ¶BÞL†òÛà;ì^È«b_㓾¾éðòCûc&Ý ·E¼ ‡!ìÔü¼nÂ×íh¾E0ýêm˜ Ï~ÞÌx¬c> »þdOÙ}-º¿vøJô’ûá¬cvO–;™OÓþi·9OÆ>vƒØß\t¿;ìðUà ŸÏ'>­ú˜å„üšóü‰ýN–UÎÒÉz÷Ñ»¼éðòCÇÁˆ8-ÿåê 6ço&ºßÚt(¿yþ¤JO‹îw‡¾Ýàóìzþó> tç'½_ÃsìqÓ(;5ôøÇ.o:ìð•é–ý!üs°ßí® â¿ÿ^øñ@ŸœËáœ)Ï«ÿ©å#~?ÓÙ{n×Dõ`üsý¾‰KE¼Cñû)õüžÝ€¿G°‰À>t5Ñ}ޟή›x€ßé7”ñÜ®ð»Ëxé¦Î/è¼ŽíˆØ#U‡¾ºAN ³ë !~È%®¿ºOÉg#Ÿ·žoq"ýîòœåLœ?MûºÛǹϞg­Ãó ›gðœs#ÞÓð\taû8r»zÖNì;‰>¼NK;!~ª«³kÇOƒ¾X÷¥ÜQ{—ù]e~Ä:Ýtxtsp²ýÎútq xßø‰‚ó›>ªò OèEò¨‰·ÝB\CŸ¡×y?˜¼:”_tÛ퇞ôóz>×ûàaœ»Ìý!ßߌï‘;U~ø<öˆ ‡Ì;eÿ¼|u×aèi” ½ .z¼;|;`žÿL;6¿ úÚAàuÚÐÓT®×)¬oX„ÝÍñiÂoÈz ×ÇuÓ´×åV=rÑãÝáÛ‡)òÍxý‚k§Ê‘ü%¿7}h½ãòÂþÜÈ1Û™uÍzŠçÈ•ã~`§FO$®¯äVÏ·Öá넃~–¬#Øg‰¼Cü|.ŽswawkòtD|·<Nyþ>ý…ØÏ ºÎ~ø=òö¬wyÓá«C¯«Á³°c9®æC=Ç®ünÅÛA¿´#ür¤òCÞd>ï»ÿ»Úµ àJ¥SÇíü¢ÖK?Maçî°Ã—¢ô%ø}Ѓ×âçÞg>çy¹Ì»á÷‘CÔ‡ÜY¯òÉyÙy¾Vë£Ó9ö8ô8뛵]Ž»ë±;|%úaŸy1žý,'8—0™ÝÏý’A¿_ŽôñUNž÷¶Ý:…iGä]£ÔÓÄÇÊúÙ×Þy®ö,z¼;\ lâÔˆßzŸ%ö?Œ™ÿ“r ᙯe¯Ê<:çÍv¸\íU{×\®éz/Ú“õó|?èŽkèú;‚é3싞¿ø¡¼_ñÜv1ð/òÚ4û™Èû» Ï~ÆSÊÙ ¹ zúJùõ4ð~/žÿïAw™ÿìºßø«›vÅ~Ñ¢ç¯ÃÅÀaö³þ¾€Wà=x˜úʤ¾o>=:¯ùžòáßéŸÌº(ÖA†Ä™F?ÓúÆë|¾ÇÏ€uù©wUý ßÚýÕ÷_kÑó×áb ù:øýxÝ0<û9>9r)㥃ßÄO±Oa/†+¹óe„!v_ѯñ7ó€¤ÿ'~6_‰žÕOŸ·Ã“ö€ò#ïbòüq=.Î÷%/  Ö7àü\~4Ö¯”Ät÷~.x=,ø¶ôµ¯T/v/çÕÔ}ÊÁ®L*ÕÇyžÌŸk¹rÆòs>_ *ïH×ôütÛ×7WZ/úsà“ä×1ày?ðaè¹äýáÙÏûìäoF¾!7Vëµ×´‡uô;è9rƒóȽ?×ö5ö5è÷6rJåÅùrë—ÇuýD}‹ž¿­}PñÃ×à%|ýOõ}çïÀ^KyïD9;Qü_ú›×ïOë:ÄßMfï¹þ\Ÿ@È#è–kè1é‡úéwä‡GÞ˜n€‡]O»ÊÐüUù,­_!À'®s} y„ž†<ÿ‘7±šö2Óúò€ïâ<ó×@'«Cùù=ü>¡·”{ËzŸþâÿ<Ýw~]䨽N7WZ_ù¬òQã'z x±f?ósñgßG¯CÉÓö¤Ö—y=}®«>÷: ûøœvtµÃvëÈ#åþ4÷• gôH ò‚.zþ:\ ô3>£ÝÕç¦+ðûTê?ä›Å®û½NåíWùaºš²žÑµíq™·öôr‰~¬Túq§‚´»3z"å?ªã`¹ÕÏ}^ihý ~¾ô|Ûò:‚ç|—z߃ßèA¬¦ún3ø;t‚ÛoQ/òâÓ_ªÏò…ú9Àþ-üâF<‡?¬ªú÷[}¾èùëðÍBïׇ½Ìø±ô`ÿÈ™XGc7@¿C/Â&z²ò1ò»¿‡¡¯ñ<ü~=.&‚àùÓÀ?ø;úÕŸ*þ4zúø&üôÛ¢a_@~ —×væÏk=¦gèuª÷¥¿¹=¬{âÛ|?3äÏýdœ,-‡fï/zþ:\ ôzšuë{ô6ÖËCùßП¶o?®t’ñAÍÏ‘×UÞí¸½zUå~^ù¾÷û?¨÷3vÚËr=fý:¾[õ°fKô¼èùëp1Ðû.èmÓáÙæ<r òFÍõ!½]±~BïƒoÕûøç4~¢ÈümØ_ÅNÍ:ˆïi'çä>Œr‘ÇÑ/↑ß·?ëŸ[]O»Ê°Ù÷DCï|Ûf¿æ\Lø!ëµ¹~ÝLô=ô¤ï›øL¼G9Ôƒ|àú ¹…Ý‹¸:ÈÓÌsº¾A;‘?·ÃŽ!}=uÑó×á›…Þ„‚7ÐÉaÅ“ôë7~bXªøÖÈ áÙ ŸÏWnUz5ý<­rÍxý›úÂ.f~°å ÿ2~äÃÆ½º^ð÷±>q{[±ÏÂo®Æúù6U9¬çá¬Ë¢¿¶oÓ¿ôoÉûÛÏ­]MèøäÒ›æû$Â7öuVgï5yÉ»±[ñÕëpé1Æÿ;úî'ݧ^ÉfýD9×+þoPÿˆ€ÏmÒnüã¤×¥NcwXAïT{žF¿u^®Û®&ô>Hž;ßÑ—#ð{è‹õÁTß^‚÷éoiz¨ò£ñ{†–k;-Xçà¿€\Á{MïÓß´G¨¿¿©Æ…ñ²Þ‡¾:Ôç^ ØðQá¥ÏÏdôðŸó.Ÿ‚ÿúüŸÖkû¯áwÌú$ò5¹=È ük"îíÆ´½ñ£*\ÿJ]—4õ g2¿Z¬ËÌWz¾Â3AóWÆ/õú½úœ_sŽEó—ß[ÿ˜ nÆw¼ç}y½Ç}ÖÇè/؇ë<7q“UϨ?Œô›ôõ{à3ò<¥‚~?Ö)Í~éDýË87ØÅÐëB_jüIUNæóýýXŸÁb¿Éó‡ìûžg‚™¿ÎxÁ§à¯¼7 1ŸÌ3óŠ^¤÷;,õ¿|Ïý­Š÷ü ãåf¾>Ú½^¯×i—Î}PÆÁëñÄã O—Þ¦Ÿr»]œ7ËxLÍ>í´ö?çÍãM}#üÆ×Ìsð¡O†Æ/ø;ãœxq‘Ç•_y>BîÏ÷µu'ê¡äx9~d4üŒ·ê<ÿÂ/ÞýH9Cùà÷iò&ýò÷jýà­Û¯ç¶S¤ûÄZ•K–·ïÐ í‰÷=?;'÷—þ9îå1¼¿ÙéæTtÃø‹nŒÿÌ/ãŒÜ?‘óÐöÝ?^ÞÒ5üu%è$ü³LÇÐuê‘z¯¡›ØïkÎ ÄwÖOÄŸm¯…_ïÐ?}Gýàãj”ß ?Ð9þþzÏøÎwÈsôÑ7ŒwÒ#óDû¶ê81Ξ¯<þ~ŽàLÐúoÄ 3ŸÔuú7ñ‰ó;xÄ5ø½&þ¹ÎkÆ;Îõ6Ï_7£=àzÚv¥Ó!ê±}Gè6ñ÷±[?­ýç½yÜ?]³^Ïü3ï×þï¡_Æçµó|Qºž¨}@æuµÖoú%?HŒë¢ññ²À±<`¾> X/؉ñçZþÅ^g@—SÍ£öÅÍ¿o å7GzbÄgJ½ÓågÞeèFúˆñyzÌ|Eº&Þåh|¼?‚¯äºg³B÷7Ûçu–žS.ü‡òÔ_óèƒñ˜Ôçó8¾‚Kz/ü :<Zn³_ßÚ‹ù|ZñÆú1óƼ0à ó }q¼€¾ øöN”Ë5x¿„ž¸¿ß!¯x®v»_›õý&N߈ŸqcG¡àß&tTûïë ›fÜÀìÐ+ú~M×ì­Fû’?¨<¿G=Y/ã¾ßõ´SÑ ü }|?2ntùöº‚¯F¹Ò?ÌÏÙÇC/b¾­¿¬V¼Ú_ƒïZ~·Â7ë=|7ÿô}Ú?Žjùy޸ɵ[ǧ± R_œKnÖEô9y Ó®Ÿãí3ý©©§å9#äí¢ñò¢Cã7øüÒx´[ÇÙëhôwö9÷õ4ÖðCæs;êÏ&~3¿úžòÇüÛ®rÄx'èvGä&̧Q/zñ9èLønyù[m¯ñ: üv{—‚îÄú…u úó=Þ§ßÑ?÷“uÖu½<»ÓåÍ©èþÍ:`Gó _ÂïÄþÈ#ð}]åå9-ÖÐߣÁï> úÈ<ãÔ^잤?%ëüŒg™þÿ‰ßȉ®'Ö;«Ñülׯý5Ÿø5Æý‰qºÏ÷ª—q͸„ÐYÐÏ|½6Bw´WñâMwØ{4n‹ÆË˹!óõ4æu'æ ê…?‰n—šÏiçù¿3~>z |‹x,׫Þ5?G¢ò±'@—àך_Ósäañy€kÑ^ôýŒ Þ]¿HÞfœÓ¯Ù¾¡üæö2AâlÕrýýg¯_f˜y¾šøbÈôuø*ø%¼ÈxÈ–Ø£âÜÖ ŸåOø6ñŠ"žéFtbùÆ®Žÿ‚èmCõŽÒÍHžKêqûà÷ÒÃ; r9ö‘³‹žÿ_f\WóÇ͸¿_ñßß/Å5çW"¥ék¨ÐtóaÅÓÆÏ9Ïa½[Û9d¹IŸÂï1?ÓKøºþ•¸¾Qß³z|òu#??éòæ2ÃÆ¯3üd¼¿¿Sñ3ù´ñ¸x:e}¿øÿšÊO·ëIðçAq&ãò5þŠÐÍHžŠ<OùóúGÚ³z¬ói¨œô» }­ÃË ­÷`ZÕ|#‡Fü:s¿;å‚×Mð_àTåƒÿ9™ïnÌ^›ÓQîß§ÿý‘Ê%OÔDí†ïhƹpSïEÿ-G±›£'.U¾Póçú+ò©Û«Þ ˜û éÿâù‡¯îUþÍsãû­zßö²Ì«_¾ñüõºÛ‰üØ©íË[‘~X¬?FË×{M^fä­¾7]±_³ü†8ÏÜGO…?Mëxux9¡ù!~±Ê/ìuø@^åÛÕ^Õœ¿Á;öГð«Á8ô±ŸŸV>mýõÖ»Éwž#ÿŸ_ǃ¸–ëjçšú=ì𛉞#wCœ·¦<ì+=ŸÙ[_iÞ%O<ÏøÿÞÕ{kÿ,Ÿ 3â» ‡wØíÀ#òJ~v:}ïBåA'×CÞÜÕó•ª7Å=j馮ƒ¬ŸqŸu ë ¡×!ï/½G<çX7ux9¡é‚õz桌¸AyqãžðEùT?û‚ð¹9Œ\Ú?åy`ÇYÚ¬÷½Î@ŽŽœŸ­ç‹ ƒØ§± rú„^4nÍ>oœkZô¼wøj°‰o~Mþ½ÜWoˆ;ðm|'|³\cÿ’ýù»³ç.ñJÅ Öh7ø‰÷-r)úõù)åÚšêIÿäúë5øÅÿ(òÏqÍàè©§¤ß/6lò&1ïºßœ_™Îî7øœù1_ð§dÝ|ËýÄùcû~¼èqþÆõD}˵ÝîÊÏ[*7óeÒäGîG<äΆÆÇôwJ}±Ã‹ s¿!ý”¬¯ gLtÿšðHüÞv&Öá¯Ö—°CQ¯Ö cxìvŽ´|Žu:?ëSa¿p¹¡7Aw¾~¬~à¯À¸°¾Aî\«í0Q{¬§vºé°ÃW…óu˜ø@ð­fz©®“6†zß~yÇuýåïïýŸÑÞØa‡ZÿÌýåÉìº9o€G/ŒünÍùè }9y½Êëî/×áe‚^§±Þ‹¸·Þ®çr­?jÝeùô4èû=ú#öÎÍv?†/4¿ßu!ò†u#ëKävKÎg O"Púýr¤ûïTz±<ëzZ‡—Z^°þkOÄöLä òd9¾ŸÌÞoâ®Ý±ï oFì˜vx‘`žÓà×ä{Gû*ô±éì=ÛÛóü7r‹ç’;ÔcºÁ.Ñíã^è}(ìê¬ÏïKN`ï'÷‹9×êx›ºÆÿƒý%ÎÁ²+ºôÛ´¾Øé§Ã ›82àûmÁ¯¹ÖsÖ+È)ö¥î„]9µªï–õÝo•Ž2×Iœ¼ÏÕa‡6yC7Ä'x¤k­SlGƒ®¾žýìwŠ_ÐD÷V=Ïç?Øoæ\‘èÊåŠN=>vx̼)ö·x,|·Òƒý±éýÛzÎùVÖÿÐþÜèkë|§z#Ž•õÀ»¼éðâBÇ9u^‚Ù¯Éö®Ì3m;™äŠŠ™Û›%Gæû›ú>ò¥¿Ý¢Ç§ÃO¤ö#—g0óпñ`?»Yìs6q©X¯dÞØ÷´¿)þ°‡Ý.pÈ8Û?qMãÊüDð¹ÜËxRÿŽûؤGøœ³æ7Ï1gžß?Î|8ÆCò'c"ÏÂ<~ÞŸFÜÄŒ;èv°>‰v[ŸÒ9Ào·ûjïׂ?¨}¬û3Oû5O(óK¯èšñv|GÁG‚´ƒs·Ðß7]O;ßï8¾§?GÆ'~?æs9æ#â³ÎÏ_ XOUÞµÊçìç¬ç¾ŸñrÙïf¿"õôÎ߉>|?è¸ñ_'Îx ÏøÎë/Õoê¿ë/¢ŒràHßïG}ä9Ü­óåñƒ?Àï¾R½œßEž×y[4^^thý>®k~Þ·füWu_û ¶câ?=(äËåE<ñ<¬™7Ù÷}þ@Ï‘[[Á_#/ˆë‡SNæ%ŒxÓÆã{œÏ÷xn^Þ¨t`þ—ñ½§rƒÏ¥œÉûÞ7gKyìÒnÑe“‹û*oŽ7§¢´3Íã?R/ÏSîF¾Ç1YäyäM1=,Õy±>çwè| ùõ¥žÃï>ªãë§O†Ö—ç:ïƒ~™9ãÛ{]~sö^óxù¾Íg?ºÙª×—£É+¶UËkÎA'Û#ý5~é½kI×Ô?U¿¡/ìÆjÛ±YÇÕrg©ŽW£weœÚ}-U¾Õôû°ö'õóŸÃ‹ÆË‹ïk‚‘W½§‰³Æ<›ßiÜÑ{2~_ò]ôðGå¹]±ÿæø_Wùa}+_ZÆ;È}DÛÙðËg€\¼­kü\nÔö5y8YŸÐOä|9!yØäóD^c‡sܬÚË%ÚþhÖó<:ë,è¾å¼u—z>”WÂty‹6î ®¿Ãú§:ßæÃÄoðG¤¼ª^e¼L»¯ðkãrAåàoB;ïE;Á{ð™öÒoâY³N§]ìÓƒO÷ƒŽy¿†Þ ʧ^έ o'¢›´3ãÇù€ï w}ç<œ*û̺ϸð>ź~€óЭž///:41Þä•”|÷ú|€>WÉóõƾM<)ðCŸõïÛÕùJ»´í¥è¬—£\—? ò€ûŠ÷iÿ¯ŒcÈsð-ô4ïså~?ò3õ#äš×wzyÙÍO˜èºF_{@ÿN.ßüÅ~Ðô_ý€îàÌÿ­Zî¢ñò¢ÃÆþ/ú°þ”ç ÷Ì×iù<Ò<ðtˆ^Ç|±ëð?¯½_(úõ}äÙÝŠ¿Æðøkô+×iêíà›Âïc}O^äò׺þ[¥3ú•ç`æûúO¹ÐÕÝ:îæ+ð)èùºªþb¯c¡?ç#U{‘ŸÝJöý›ÓAø’ñ>o˜øèN½o¾ÍºvR¯S>X~Å>¡õ²'!o–+¾X¿VÛãùWšüêàaœ6BÏ™Cx?σ ~ §Àû¥Š÷èsŒ¯¿¨ï3ž|ÅtßOô¦`ØÇ<´Kï5yµn´t•ûž ½îÏ<ðÃëÍ9^äø†üIyôç:o.|C.0ÏSÍãz½6f^]ñYäŒñGøa=Š÷ѧàÏðå»úýón|~«ÿÖ£8I»¡«¥ Æ=‘uËž ø¾ý¿{'êN%_ÜïUAøòù߼ɏЋÆË« m÷ {šñüG¾§½ËtyÔ,„GJ×^oAçð]èy…ü}4ý¡üÃÚ/ã¯í#zþ¯Ä{‡}6üvl7x¥nÇNÈiÞ?¨íp¾aÆ‘vEíN7‹Mþtð"÷ý™×eÍx½,ż#¯G‰çO+¿õ¾=åñÞDϱcA¿|ßݯøÓì¿S?ú,r`»–›vf·/Ö#ÖùnRë³ý\åÍíÑNèŠò4®Ö—±«ÑŸ‘|Ž‹Æ£«­ßi¾æù=4_¢“ÆNt­ÊÓtw½âáÆ—”§ûöC‰õ~7ðWô¯Ø¿Í¼§Úa¾/úÍõùÆ}=_­å›OȯÒúšô»y¼kÕ½ür~Às­KÜNÚGžÆzYªô7_ßhœBÞuøf ÷Y÷¢_ß| ùAÏæ9ø‡_(ö*¾ã½µ:¿¶/±ŸÂ~éOÏ‘_áÇb¼’¿rÆÃv¿Ö¡7}?&ù´X¯ÓÚ½¦röC©9Ý#Wìh‚ܪ|ÆíÌ<¥¬¡3ôZʧÖw_Öò:|3ÐøÊ~û ð?æé;Ýg_”ùþ~‰üÐ{Ø—'ؽ‰{ÿG\³¾ÿ¨—¸Žg©ëo*ßw¿ «;A”‡ ò@òÊû²ÐtûšŸEØß%ÿÝTßAÿØaÝ0¾w£¾Œs³’ãQéÑxtÕ ã?—?èi‚ßiþÐ~üçlÞ°ƒÂ§Áü«Å7¾Ä¿¼XŽz?”3è=Úó=)äÐ÷àÝì}÷ƒz gü~ ÏU=G(ûìÆÖˤ×Yÿ4ß×ó¿êšûàÿãª_5ãÍø>Šò8WýÒzàZ-¯Ã7ÿ@é!ÿëuþÁgøúûG¬‡x¼½xöhóOáÉ/Gº¶ßXÐ!ûM¼G{"¢é|‹|l.ÿ±Êg=‚þ>St^gùþ¤ûïÇ÷ì#/øþVoÕäò¹Š¾èõ™îG^•ß L?ªÌŸn=ŸybŸç:ó?{îu<~ûzÎ<£á?> -«Ñ“õÖéÐze¶cµâOãï…ßÊ6rO×[êwæ¹^7ùÞoD¿ 'øòàøŽñ“ÿƒ×÷œsƒ@èœ{Ðóù9!Á®§-„_¶Ûl¢ok¾#¯„íÂà!ë!âí¨èÇü_ÏU~æmõ§ #ì»Á×?¯øÓø¯“Î¥¿¹j¯ùˆøîÓš¿@?kºþ]C׸ø±¾Ì<§ì2>¼¿‘¸h<ºjpî׫ùÀ® žÀß øpœÃ6ý€çâÓÞ×Àÿ¼œ€µ¾±¼ƒ–;à1åÀ§g`húõHϱ{ñ=øü}ò· =Ǿ},©Ý_T¹Ýœ?gœž¨~—Û™þMеý7ñSµ>Øéf!t3͇¯ë¼g<"óEäÆvðy•g} »•ðÕx磑Oƒ~æ÷à5tÞMôÞf´“ý”h·å øN;X/E<÷#ýëh7íB.ÃwÂ/vEå1nðÚã¼:ºf]–òyrpÑxtÕ ùcìG[O¸¦ùÙ ü/kÞzÉýÌwêûç©É?šqÃÀ³ôÛ^ZÞç¢CßßvB~ ïÿü‡ök9)'›<…”G97jû=ŽÔ2ÐÝýú_4]t˜çÿ2>Ks_óÚ¬…7ß,ýÍç7£<ðBû¿a¾^é} õlÆ÷Ùnè#Îmgü´\Ÿ5ãt8Qý©¿Qår_ï{´WßWÆ3ÏóÅ<4q8ö«ÞæöQ?ãücÑxyÑa®;ò\»Ç•ùÞŒû©ç™7ð€y‡n(~Ìòù9¶ïç´3Ê¥à1íåùN´/òb¦ŸïŸ¿ÁãI\gÿhÏNôc·¶‹ríO¤ûÌŸé-ôÖ¦>æ5ϯ1ϼ·ÛéæTt~$__™ßÀÛ&îòŸu(ßkž›xàIجÏïÕy´]–uí2·cEõ®VúõzÂçht ]„žf:ç¹`ž6Þb×ÏéßH}ÞŸ]­ý³~…½k¥Ò·éæýø~|PùI³N¢?ê§ý¥…‹ÆË‹S¿ñ~´ý"ÁCæ ;q®?åâ¸Ü_S9—ÂÏ¡ƒkQ?öŸØ_lü‚ixF?ÒO-Öí^Ç~ý {瀠K컎¿!=q;ë3ʃï$ÿŸh^ìos¿Ökº¡ÿ¬sh÷M}ö¼ùþ«Êg\÷ð?èðd8?? ^^üüÏÙ}çYÑ}Î×3þŽ¡kü¹˜oÊ¿÷ïéšïˆ— ½@·øye|@êÁŸä[ð&ðš}%ü܈S9ÕsðçnÐ%þuø³1^éçs+ðþ‰ÞwF•ÿíÌx ß«\èå!òKõd~(ÆòÀûÕTyÓÄ/¦>üº_ç© çí˪—Íé‰ñÔ5çëÁóˆG±ñ“ž£¯€Wà+xþ?ÒsêCN™Ž±WƒÐ-çûíúÍ@ùgß Þ|#ÿ õ”Ïùäí»ÑnðÿhõËúÞïñžüM­—Ý¥¼3Ô<Ïo…\d¼(Ÿx)Œ¿üImû}Vå|ÝéæTtÃ~3xj{oÕ/æü“ù>ìBGz޾´^éÑxÿå¼×Tõ^¯åšŸ/þÞf^%êÅߺuMú£ò½O.ù°_ûÛŒüÙ÷Õ~ðöã_?rÜg}žºÎüêŒú.õÁ·ð[c¼éz)tE;¨{zžO§ÐÛýN7§¢ø³×-?,3ÐÙ‡èyŽ+ìƃôk¿ÛgÁêÃÙqŒô=øÿ….UŽ×%Ðý`=Ìó!êõþ¼®ó4r–z¹ÿ[Œí¥¼›ÐIÈäòÔù>y¾¦zÁÿ<'@?¡Gøã?`}„]///:ÌxÉæïð_èü¾Õ{àÍ—1o¢#Ûë€aGó:]xëzÁôÁ8Wïùμ–à“ó¾¨֣ؕ~ì;ÂSøxâ90ãf‚‡ð åÕd\2þUÚ±ìO±‚R;ñÛŽ8^F¼mËøÐûÚ-úv»g˱\4^^t˜ñ¡ó×ÐKÆû>Ð÷Ðøu¿~çò  ÖÁøm:?G­×qÎõí]@áCæµ™Óꋼen§ô+Ú7ï¹ že|ži·ÌãÜäuà~òì&jWsþÛt¢ç¢;/íMû!ûȵÌ/¼ˆo,//:lö¥75Î@ø"P|ªÙGgü…?–;/Â÷æ¼üDß«¯'–£<ê×û^ϳ_òïŠOM»#Gî zò}ð›v ?3oF³Ÿ”ûø´ 9§?ãò~žÏ@×ìÑžÝ?ìÜ\gž-ÚG{÷»¼9Ý€WÌ+ãžoÅ<Â_™gð:b>vöOÌó0òÝ‹êQ»š|ïV9’qeÿŸl'ïÅù†Ñq‚Ÿ_ï3߉n½šÏ¿ÕﱸŽÍ9½ïþ]¤ÿCò¿Eãe‡ž:PÊ7ô®wN‡×ù]㿆^°t8}~¹vxa“ÏG°‰°<ƒ£ô§÷šxr”\d}ƒüFÞŠž=vxØœ£@/[ªúaæ;1Ýñú$òf2<ûÙN¡rýLOÛõþ¢Ç£ÃO3/bÆÁôcÿfŒnxÏë—ðÓu^Bç•P¹Øßz~Ï/´ þ?žKŒÒëúŒkp¤ò°?³ŸÊþyW®c‡îö´/>lö_3¬kÀoûiœL?ÖϦ³ræùíD/×w,?Ü;]Þtxñ¡íÑìw:ïšð˜ýYâˆ~x2^ú5ù£ð'Ïó!ß.ýŒ=.vø<8Ï¿>ƒ¶;#gn ²_¹[åMæµôkòk³~âzªzWêþ~m‹—;|œû· Ï~ó|Âsü3Wõ|:ƒþþ{‚èûöµ‰¾ƒnÐÇ$gìï‰\[ïzZ‡z}ßò÷qÍsì]ø‘Æ9…A?ÛŸ#¾Ü<ߪ®Ñßâ[ËÑáe€¶O‡g?û“ߪøyŠmgžfÙ¿ÛAW”³[éoÑãÒa‡Ï¥›Ý üÈ„÷– œ[Š<¶7gDìoøîWùÓÄÚêþ6ûp±Ïæûûu¿ÀçþÁ§‡¿HÌo7<àù4¾vùÉ·³¼Í¸O½[q?ù9rÁ_äHœçhÚÅxÄxy¼iGŒ[ㇽ{²–þ²‹ÆŸ« =o¿ÖùJ¼ÀØß%^nW=£‰Ó?å9߯û<§¼éP~M\Ãøî Þ÷wÉ6ãšúB¢\_Ó^ê:e|x¿ïýoú½õFÜÂfÜ·O~Þá›9Þ÷ÿŽfó˜qU3¾^#¦únYxq‘}þ‹sÝ7*½x½@9yvS/åÒnÖ Ø£ˆ3àsaÒЧ&*7Ë}¸œXÿÏóè{è*訑Ó*ßç¯õ3âm5ß3ž‡EãÏU…÷…ذw~^ñ´¡·8éý9Î_åyNö 3þת÷›óa^/W|oâ„×zÇ.E°_ :ÂŽµ¢ë;µ?nëèü§·j¿šñ†.½w=ê™èzÄÿ,ó/®*t>³ÇšÏ‘ø„-½é»+¾;øì8PzýNß'‰üÑìƒg è<zN¾çI¼G}ÿªÉç3»=?p/ðþ–Þ'í¦¿ß "/ÉK*91†ßî¯û£ëÌK5F7÷êx-®*ôþñÓÈ7~W×#çØ‡Ì?ôWX—~·Ä‰¾zÿ‚û”ÿ(ðº†>ïÄwëzkâ^B?Ðï‡Ñoää kÊÁŸ†öór : ^Õ#Á‘¼Nö“¡?èÐ'ñ§¾wø†âM-®ô|‘geªyÞ ¾¯ŽÌô‚ÜÉ|Oä'„ÂùŽx.à]ÄÏ0_¨kð÷ý(—úi÷²àÿ½»ëÌòƒÎSå*—T¥ª’-—,Ù²ýɺX²e[÷›%ëØ®êTw»Ó$Äô?0^ïÂ_z Øó9‘äÒ›)ç=:ƒïîÙ´ïøRÊ÷ü2odü`Ë£V~ ôJþÉ·¿+¾3íò?¼|u=ªüä¦û<Ñ%9×ô»ú޼Þ=éi+¡›mÁ«×†ùŸÍÆxü¾!ß<0ÆŸ%?6ù#o`^Ýóæ}?·ugûÞ&ï…·S/:Ùjè•™{ÖËoöVð˜Ÿ,ÏK÷¥Dn-ò¼§]åéaéYè½Ý³]õ˜ÿƯ*¯UËOºj<ú¼AxÆo„¿Îò×ï—]ZøõŠuÞ ›Æú_ÏÇRy׋"w–ößmt ?g­~øO^ÊCßщ~û¿ì¥Öÿî?÷=¨^íòçýʘßô¦»¥ó øë&øÉÂ⣷fŸ¯K¿ï©¾ ^ͬw»7¦žÛ=åç‡Ï=-Ýgå÷Æýªö•ƒo´÷½¿ø…qkïåF7/·þu\¾êC÷ã×¥?Ÿ±ï‹îµƒ4>°tÏ7yŠN_èf%tÓïy¶žÖéå1~Öwï6<î|¹Ç­Àgx‚®È/Ðm9O˜r~ß ŸK÷¶~Uý—Ù)­Ý·Ûó+ã÷Õ~§oÐ8k?h,§—æ¥ñ§j·Çm´òUîµ±<›àÕaáýhƒ¼]ü²õ=ܾ¢|´øè-MžtþWû”c|+;Û{zÖ¦ü._mñÑ@¿oK½ìpøÉŽÀÇùÕvŒÇEσGsøôÊ«Üîñw× Ë7NþÇÖÎRÞÅ·6°ozÜÅ­W/W¿›GúÿÄ×&ysMtÿÃï²9xÅžd/ëEýü`Åil@7óáçòwÕ{íõ<µð®î µ}öò?¡#~³[Z¿Ëo0.Wó¿w½çÖïx¿ßçn~–â?{ùÛ«¾¾úûþµ¯c~ð•×??ø¼ÀâÛüJoõõÌïk/“3_ã}¿°ÊÛWé÷æÙoh÷u,OÜ6^ßÊÿÂþN¿+?sð¼äZÕ“úƒŸÝ^XòÛ‘“臾´÷#Ê›†¯5ϳô«ßo¨¼ñ5ü6®…Ü|º®qõ|ùÝ\ÛúÁ÷ºÏ³éí^Ö¥ï@~ЊGãcÉ3÷GùÎ~¹Eþ¸'É~L»WgÉÿøÓÞÈ{ûø|üÆø¹Ë¿Â+z]ÇË-‘nÈ¿¶ùh|§æÙ€ ÿ¿~õþ.µŸ´|lö•W—7:,{úíàüÇß÷d_jz?Я׳ßÛñ±ä”ýq!›ò¼»µoŸdgÊ5|/zQ޲ïç^ÒçZÿ«ŸôÓÊúyµ•ûˆùùúþ}ñq>éG­Ó›Mn~³õçkãß»^YånÍïêc=šüàë[~®Â«ÐË’½ÒòÍgy&?ZM¿§©ä›80ë¼)=ÞþÍ»ê ^[÷­­|»­ìû€›5þ]ôF?rŸù|ãºùÔ øËXÿêþ².7J>˜ïî§i÷“XÏ¥õ¿OÚWnùBW—7:,¿Sð®æ¾áCw5½k{Öÿo|ëVyò„¾A„?øÏúþ ù·tÏ|'¿¾puüèý†g‹~¦;¬Ý×þ‘çÛ}ZÍOV| }‹'2÷doMùî˜å½ß7ˆ—YÚ0¯øÍèwÌ|ã×í\X߃OõÝ7Çó^üŸ?ºácùµé[èƒ\{+ðí†Ö“|â?†'ý~Ð[ÐeðƒÒýVúÛýRâÞô«ùß>¶ùÖþ®Fÿô6ú§þ„¿,ñ5þävÿNÍO‹Ë(~‘zê;ó|÷D7×´Žô÷çÚüámŸ¥¾c‡Ðóvd~8.·Ä75ý-ÅƒÌÆóY~äv³û™ _ñÿ~¿f÷óCGþÔ}ï¡ëž§¿äþ¶¼¥·Ìưøí;c¼Ú¯?¶ùî÷ÜêWæþ^ÏÆø¿¿Ùös{\÷’?Ãû7Í—ùþú$o®iÛþAß§èùíû~â̺ӣ:ÝЧ_×Wë¿.í_ç÷¾?x{Ã#ü“üøB{_Û÷@/}¾ÙÚ@}äùîyŸûyé7Úxî¿/½ô[ãñ”œ®¸‹@z@óSèÏÖ”Û@_˜àö{&y3ðØü¶8—¢«wÇøVõ‡^–ò«‚ÖwW“#ÖÙùJíÂ+õÒÉMõ’[ᥩ‡ÞÄ%„?÷yùØèƹñâi¿ìÈí/dúùÅ}PãyïtÔ㥖Ö%ü¯ô×·ÆßŸ1/ú¥~|L¿–ò‘´~/ÅÓÚí|äÍÖNøaÙá¾{sÌÏkžð‹7Û÷øús‘ß­þn~.·yéãÑ^Ï×­žFG=OE•³No Ÿ1-Ý·§]óo]û:ø]ÿz¾¾ î»\º÷WÇóº4/]~ùݸ¬“~™oßÁkñiʽÑú¥¾Þ?믟Ú7Oøùûz+gžÞ¹z¿–òæÂ¯nZ׌·ø®ñ¨_{ÝŸØïÅ&oá»qã/·Œñrü(¼†?¾3øOæ³ó—â;ôÍì}úüîë¨~ëgÝ:]uúèó oÞA7í}—[ðäå1¬yaït|Ñ/ß¿ÙúiÝ”ëqÎÊYçþ]Ç7íô~ë—gõç ãñÔ8;?~e6ú«õð;¼¢ÇâYç%I`ÕcÐ:üÆx^–ôtoè¥Îݦ?ô`<-oPAû è¯öWÆý/¾ƒ>ÃûùøR¾“¢Ñgíï›wøqûø}ùgñ#t¹%åôÃüâ/ô·Žç¡ÇÃÕºõ<±æßª·å*;Üwô*ø÷µñü/Å÷ÈõÕÖãѾ< áü‚%ç;ó´á}ïÚµž·Û+ü²®G. Ïì®Ú ¤ß?XùÚ¼¨~°{{üãÎ<¯û_ûõö÷øYöä;ûÜk`Ã{å+oYúIÎ<¨\å…h¿Ã ëÖóVT~†§òÏ<`~ò;~rßxú>Pͳ}Œž?  3øÊ.3Þ]åÆü®ê×î_²N»6ho­ÕŸ’ßêaÁCü`6®·Ÿ×›ïOûò4ÁgvP«Î3<².-´òš4¾²´„áOÆoÿ¡ÍWÍ»~YŸGò^ü¼3¯òvÁ'r­ñ™â»µzÐçòJ†ÿT|cü#Kq[»¾£å*oQ óûÊ£‡žwé‘Ù˜ŸX·oµïñwðÉ”CÿÆM~íkómÝöµõÅŸînýá“y?¶s<Žì›ÝÈx<÷}U|úÕV~_ }Wû<ú‡ÿáÛ/¥\óÕzíͳxñ‡2qþâ:ѹ/£+yðOã7ÿ·ç©ð>˳sGk}™oxÝãÕ{|¢uÆá#=]Ð;îoõj¯åSéùG–ôòüÝ1¬õþBk·û•äy1ìíw[;øMkôάkßgè~ê}­_ßjý€ÇÖcOÊY÷µ¼ïãñ,Ÿõ_£Ÿî¿À/ïhP¿È üÓ¸ÐÉ­_æ…|ß5æçKó¥þ~.Â~$þ’re÷”ܯ[ÇzY’ËøM£+|ø[ãöªü~øÝÆcü7:TޝÍ}¾úÿ¨¸xtrø–znmýêñ…ê©|"òÄ’øþØõ5íà¿ÖÕ9€Ê/4æï¥ÝÒè¸ËXҟеõ'Ï´c¬Ã^ó÷ð $GÉ_øbü]¾“oÖ§ø<«ôróˆ>ðKõÃ7òÀ|5¿NÍ—u4.÷>Yot§?ôóSxo¼ù?€ïô%ý*þfó{«†ïøœõ‚ÇÚ¯8Ö@zDçËݯ”ú–â­ôc¦_)×ãO­Wæ±çÿ)zùjë'zS®Ù¥‡ÃçZÿ1,åé6ÎÌó¾Î÷‡ŸÊßÕæ³ò¸æ}÷3´{¿ÊOÑÏn¯ïR8èî`¼¯}©×—y‡Oi§ô‡ÛÇÏ…÷ä£}/üd-õ£ƒÎ—Í—õPO?7^ùÜÃ?{>±Zoô†¯ÒÙ[Á¿¾ÔóˆùýK­·o0.óˆïáøh·§ïmÏôã:§˜~oÊ?ÚùÆ¥ý?øŒ]|)¿£¿[_Ø4®¯ø­vÉÅÊ šy°Þ³¯Œ[¿È‰Š[·;(í¿=†5NëóR£×¶¯Uú¸ïZ^µê_ÇÇ­mý‚÷³¶žEÏêÃÇØ5m¤çÑ*þ­õÎ8j]6£ÏüûüOÙ!øL«¾6{­æ©Çñ½ÐÆCÙOÐkÞ£»§Øí®¥û`^·ÓÏ/ù/õ>…_÷<{5ôŽoµ÷-®ªâ«µ|+=¾6ç"Ž»á­~·s–}¿¸Ê£?ü€¾U÷o¶záÃ—ÛøÍg›‡ún£8!ø­=xuûxÜ=¯\Ù=o~³+í™Gãlq8}·ôÆíÞXwŸ·n-μŸÓXÚÿÛ(?RÚYº‡Å<¶sY…⎴ÓñF{ðþ4=uéžHõéçåqû=OÌÒ>{;ÿÙÏñ/­Ÿù¶þð?Éï…‡o¶yèr«÷ûµö]ßÐÿ—Ûú¿>žŸwŸøóî˜/Þm4¯ä´xíFwKùDá]»w})¯ÜË­?íüxÍc¿_J?_nõX¯Œç½Ç™,α7>ù\ƒ/µñ?{œm»(}P»Ö¯ð ÏÊ7¾UôÚã:š}Ñí´¥üw/ßW»úcÜ/ŒûY|¯ç»Ó¶oÛó-Åwà_jx©_·´úÚïÆ¿q×ËmÞÞÜ ~ãÖoøb¼nð|K»¿Úž}o=¿ÑÚëöØ›ãöjÒßž ø¼ñv<ÕOßuºÉw«Ž›¼ÙáRžIøÒñ¯ÇMYÆåÔ;³þîªÝ†U¾ó¯þ]ʯzÞ&øù†Kya_É3ú@/=¤ríy©þF7³ü-ÉùW[{~ïñ×/Mt3ÁÕïÝõä¥óc`Óg–êÝ Ž±ìì®w½ˆ~ßÓ“z?îó2œà‡µÿXþÖÀ?PûéyÏÏ·AÞÔž¤ç \º÷|coÐÓ[þüžo‚\ Ýš­ÿ•Ÿ»ß?¸…ß/ÏèÈ>‰}¼F?ñÍ1=Ô~¸}?ûÕmß~>K;=Î⡉n&xãÀŠ×ÙÑ ¿+Þaøü&‡zž<û‡â%Å­¹‡¶å¥-ºmq_oñ!ó™Mp‚Ÿ(Ýlžâÿíüí£Ý?–/e‰Ó"à}Å­ÓS¯zz¼½1ß-âc†ßW=Oœàˆn6ÍÖÿ íã·sžEèé–±ÿ«ô)ñ°•ªíç±_ì‰s¿öîÕå º\õ|Mp‚W`Ù³áÏù¶Â_ñM¡“:·ýöP~£{ÆŠnÚ>vå­xsì§^ŠO›ÿV=Oœàˆn‚ÿ=ORÏûPq¾kìûêK÷&Ó·ZÞ¥Šëa?ñ§¡¿—ÇúÛªçg‚¼*ݼ2[ÿ«ýMð¹1/Ås廪¾‹G!ORÎ_éw~ß(žjÊ÷5Á.ÅG‘7è…<ˆœXŠƒkûŸ=N¦êMù™gúÙ NÉ£IÞLpôoÅ»²/Øëå~ÄoöÕ¦GÕy›f¯ìåZ\ñR¾Wç&Ø/íª} ü.nX¿/Ûëy}kžz>ûYü#-.ܼ‹»XõúOðÃÁ¥|ˆ—^åüÁùY ß^oôî–=ÓÎ-n7ÚïåXØ7©G|6º˜µvÐSÆYqé¯ñº`˯Xq io¦þ>žvž©Æßòe~\÷Lp5°ø5þËNϺ¾Ìòü«sµ¡—~^¦Ÿ{¨zÜ[D}½á»×fé|7ùpç¯+¾Í÷[Zyò´ÅÏU<ÜË­¾ òú=¡Ðwï49­ÝÌgÑM»x‚7¬õ­x–¬ËÃØóá÷ó4‹¼MÁ·íMëy#àwϾ)P\MË´$'ô«ò…´þ½’gò´Ÿ«¤O¡CúY§Ÿ;[?È×~ÿ~´{}–îmlqu¼¹àR¥óÚïÀÓàOðt)ïQ?ÿ仞oQœÀ¶|ßó®µ¼’Kyä¡á¿vÞ«ß "?üuL—ý~±ò7ßÎ6Ž»Çßû+ºSþ­6ÏûùqçgŸàjá’ÞϾ‘çË ?oë-óYʽÐðÞuzÓKññÃ÷õ]ËÇÙóÑ–¼Óßô#ݨ|õ¼yŒ×õݽ”~õ¼>Ú“ïL?vŽùúŠ>é=os¸ïNôóY€u¾½ç‰`÷|t‚oÁÛÒÇz~âžXùmnZ~îêWÏ{Õó@¶|•w¾Eþ¡ zû†|iy¾k¿¶ÑÏ"¯WÚéþ´³8çÜúë9t¼êuŸàGƒÅGùÏàù»c>»t޼Zø,:8ØôzS×ÃÔÃ^ykŒÏeç³n÷³üý¾)Ïí^ÎÒ÷Èåé›äaÑŸ_Kùašœö·”‡à¼oþÃU¯û?,>Œ^ÞløHþ¼’õž”?Œ?äèü¸óotÅ_ÝåRÏW¡/ãz«ô³èRwúÒÞ´Wt“çOÚ£‡ÞÑô;ò=VÞ¦<¿‘ò/µvºØüe—mûú’wÕxÚ>ÎoN¸äÏ‚Oô~¯D»—³ì‡/5ü¥×¼>ÆÓ¥üÂð~±è9ü¼¯µþÕ=~©—œëy#gJï|½µSy[ž·ò³›§&?j|Ú§—’ŸMNûŸ Xrƒ~ï™°AÞÐú~À§ž8øRïÛý´‹{B›Çx^ú¹’ï Vÿ=5û¤ô7ýA7ïŒË÷<œµ¿Ûåmê)»«Éí’{è ?XõºOð£Á§ŸÖåAóo>ôüü_ããÒý·ŒÛ)úá¯ûF£#ôŠ´÷¥1•¾¤}ò*òd–¿Å={cyZvɯ¿«þo$ßlí¶<Š%GñrìÝñ³ó®ì·ZŸ<—Ükû@ÝÙýá5?øÎ»ãï—îÏžâæ®nÌ+º°ŽíÜKá/~ûņOèÂÓ–ªÖ¯Å±ôüèKzU£Ï.o–ò™¾3¦ƒòG ò >¢‡ÎºüürÃã×¹ÔímÜï¥ûÍׯŽß/åï|½ÑÍ;c:[Ü–ïß·×ýyÕO|,ó¸j¼¼ÑaÑÃŽÌ/}]‹oö|ì[^ø.tÑ÷)+ÎFÜ}ˆžFÏÙ6¦Û~/IéUí˜~?pµ·)Ð{t/Ñ/º¸e\oÉ%tòÅÑMðo‘'+íºg†-ù9Æïšo훿í¾K¹/7:éñ¢ýäÖOý¨òÚk÷Ø®/ot¸tß­û ¬§{¾¬+}¿ûÙê>/x›÷ô¯~¿‹ïñǯ5|•·Fû³ñóRž|ô&¯=¯û½ùûú=pµŸÔäj_ã]Åýôû3œw®ÿí¶q»ÅoÒÎB =ãú¹ṡºžUòÃ8ÙkæÓ|·¼vEÖç®q}Ü€nzÜ‹yfïîÍ:ZWt€ú¿-9Òè Ä÷Ú}ƒU¿|5â^È|qWÃx]÷FçèªåÇYòWç^Íšº§.í ß.?fú‘ïÑs—Ãû}Uÿó~+¼îz_­_óÏ-ů–ß|ÌÏŠnÌïäÚy"'8†ü-Çò¾ûY_Éóù?‡§ð ŠWCîÁÁ¯Õß÷ûÑ£ûåðUü}¡cx /·¶vô>ÓóR•\É8ƒ•ç-zØ"»ñ?TøúÂx^kþžK=æ¹î©I?ÒOãªõ›]ý¹äMÝ?–ƒK÷­_«o‚W‡µ~odý¬#=~üP£ƒv®¥ô=¿·xûÂOrâ ãõ\ÜÓÙðGý-_Ô’œê÷Þ²£»ßN|s§3ãýZûR7åûŒgáçH?Ôßï¥ÇïÑ!¿Ù«©'ô_|#§à½yÙ6–~¯góDîá?¹¿mé^ü½ß2®‚W‡K÷mÁ×mc|+þÔò™¾˜wüùå¦ágîßc¿ÀxŸ^I½ì{xÌ®€‡Éö¤mCçyo\âhà½û#û=Ãò“öû1É?÷µ£·~O¬þãí^òúþ„u¿æ×Æã]Ê#ßýä>¤ÿý~Yþ=뎿¥?«ÆËÿ„çðÔ9­î'Æß½¿>4:êq'Êõx®n?/÷7¾L¿y#åèáŸÚ)þª]ò ^ãKÉ[xÆnC§•;ÜÙÖæ‡¼#gú=…‘+5þǶˆ›N=öê¼k~ß<¦“~oIÑÉ­þŒ‡|ͼV|žuÛ5ÑÍ5Ñ >º}6ú«yeWÛ×{w¬ÿÔ:ãWÍ_¶¤G£OõÒÓð=y@áYâ2«_Ö—=Ñε”|a,–âÈQz\Û]º¹î7Î3»ÞøÉ=ó†¾èeoäYýý¼)z#Ïk|æY¿u¿€y3/m­Æ¥äsùíÇõMðê°äuÖµð }Ð;à+¹qÛŸKOy·AôÐé¨ì•1>týni_¥Å#”¦_-® ðøkíû×Þo‡‡ù>¿/âçÆõw?Wá=?¹ùìy€Ñ_Ï[Ðïc%¢/V;Ε×þrÞµ•óÝ?=Wý›Æå¦8 kƒ=NdiÐïìmxÓïŸÄßé¯ùxÇ‹¥}zOW'äD‹©õ§×¿6ƇÏÒã-{ÜÜÒ>bÛß]øÓ?xg~Ðq»‡¡ø‘þ±Ñç+ù®åí):îòvûÔ÷Æ«^tc]µûÒÕùɪñòF‡ýþ×>ïåÚÞÖ§ìïà;ßí÷±ÑüŽ^è+¯²¯v7:¹«ÕG_á¿V޾¦>ôLþÔ¹ÿô£ùû½¡E'æÃxw6ûûåü½~ÞÌp±o|ù• ð¸öéÆzÈâügžá¹e?Ç3=ßæ_#/º\x«÷ch§ç}+½Ÿ½Ýå;[ùðñN7=ÿMÍ:ö]æ¡ünÍ?õóŽÎÛ>æoXë¿»áÅ,pk`£¯òŸú½Ç1ßÞ¾»oLõ»û<È/q7•W-åÐ×-;Æý¬ügï4y÷ÖújçuJB·¿Òô5rÑxñ‘mc:¿ÖóœìóU¯ÿ?,=‹{ÜÍm­}x‰^Èz\ìÖ%¼¥ß;=‹ûêyØzž õ&.uIÞËÝoLî6yôó>í“ÜÔ°â1è9ø¸s3oä÷·¸LNmÊï[á½g¿ïkòá@ð_ê‘´9õÊSõú˜~‹>Åͼ S޼$Gf­åH=è³å=4O%7÷õÔz_ùwßß^éqÜ«^ÿ ~8ØÏG—½ã×âQb——=¿éme§¯ÈøÊNÙÜʳ;êÜIðŸ?}¢×¦ß•\[K;è¡å/yŠNÉItÖòö8зW~n|%ó³á|çÞ_t¾êõŸà‡ƒKz}„?ŸßkGð‚wð ^Ã{ò¡Ÿ?~©ÙE·ñ­ð}°Ûé][Ó>yÇ^rÞGœÊ ß—î É3û½h§ò²înßõߥ8ë~¼òêkñ?¥çñGç}Ñ“|q»&º™àûþfù½èG}ß?úRŰGĉnntc—¾¦¾Êÿ<Ô3ß‹^S¯ývÿǪçk‚\§~^ç=É—Ê:üÕþ Ù–&Z>Å¥ü5ìçS£§‰/H3³~GÏ[³êùšà¯À¥|6}_¥ß{¾œr/4øfð¾çƒmç *¾ ´{Üj?4òlÊO6Á –}ŽNÄ3¿Ì>™­ÿõ|5KçHá9»EžŸ7òÝKãz—ò‚Šß~®ÑïRϪçk‚ ö¼Ë=Nx)žò•”ƒ§Ñ{.¼÷ÊÃË^^¹ êëyØ—âÃz@þ«_kxÝô£É¾˜àÇB7ð³óEôðr£+°ñåzV^¾ õ¡ß¿HÒõ¥@ýÏZûè=êw»¿½ç¹\õ¼Oðæ†KùXeŒgóÙðWötËó¼QéÎï{üWÙãä}Êyÿ7RÏ[c<¯ríwõ×¾ç­i¯ù§s–ü8`ùI·ߨ·›Ú{øX÷©O•«¼ü³õ¿Ú§÷»ï7‡.àñŽ¡üÒ9cçr²_ýíç¦ÛýÍ=_g—;Ó½HüXèÆ>Ÿ}óv¯€{8ùfëý>È¥û¡ì;nJùY~W¯}@ù9û=2›ÆPþ¬±œ¬}ýr¾fgÞ«ÿò4Mp‚×D7¿6Æó’ö^jò¥åOëùÿ+_!z"¿¢—U|WåÉD/âX.é®èæþÖnÏÏI?£–ÜK{·í¥ NðÃÀ¥¼ä…8¯ºO(pWð~kÊÿJãóì–.Çö7zßäŽóÆ•OzLwÕ_q™äz´¿§Ù9äŒóS^æ ~tz¨}¹·‡çŠ/!G¾ÕðÑ>c÷#„®zÞ–’ck©_ü—É%ç.¿2¦ËŠûò¼Áý•ÉÉè‹czí÷—M÷ÍLð“ ›¥x*Ïô.xz™å¯èB=ä=É{õ²£|ßî¥íx¾D'¯6¿Ã—Z{Mõüi«ž÷ ÞܰöáeÇÿ—š¼!º~ô\ãëáÿKñÚy%åØ1·´rðýÖ±üéq^¥ùžœ‘pƒ~­zÞ'8Á›.öwgë=N¹øÁ[nÉ?|¡ËQ~’no½4釼ùaÙg>Šn^Éïo¾ÓäØËMŽ‘ƒÞ{¦ß†>W=î Nð£À¥xwM¤'v;¯Ý‡Ýý=/ûªÇ;Á ~,tþyìß«ßߘ­ÿÕ~Õ=¡þvÕ–æW—7§×^õx'8ÁV>ŽÈ›~Omù%Zü[ùÑío97}Û¸žò÷}s²k&øÙý^¬w]ñEâZÙ7¹7aéžñDâáȱ îšàoFXþ4q¡ëï$.·cx_zš8ØÛÆr§üôâ_+®tÒÓ&øÙe¿¸'ç‡cZåw=•ü˜å=úéù§gcØýtœàÍ kß6t±D7•?*tõJÊñÈ[Ã/‡Ž¶·¸ŠÉ/0ÁϬxïvã}½Ûô0qáîá—Îù„Š“Ûšç)n‚Ÿ!¸”?ÍþŒgqýÞ4òF‘W†÷׺¹í‡¾:ÑÍ?;°èDâdø§Ûù†òbÕ¹¹YÊ%^}­z¼×=?/ŒõÌâ3Ïe^âW™ÍÆïëY¼„ø#ßã'æÏï¯õáÒsÅ)‰w².íücÏ[¤Ö£ç.¾¨_Æ«—[½ð„~¯¼ï_jï7À“ëΟÖï 4_/Û¯s¾k|{)ošrÆk­Þ.OJOc§Øoéñ7ô4ó6šúÜ—Ú8_jãÕ_q ä—ú^iýèëôÜÕÛ]:g¡?_nßû]¿¼ïùçZ ‹O´yן×7˜·çZ½Æå»ö{áý¦Ô_y–R?¿gÏoÔñ>ÂWóÒòÔ<¾ÐÚy½Aõ}ÒùÓ~­õ˸ðùÞ^Ÿ_ýDG«_}~^iïk=ÆëZÏ}Ƈ®ûy!~7ãy¡µ §réO÷,Å‘{îça/·qç-Á£ÙÕËÕ½oíþÄ%þ£?™ïù¾VÏ­y¶ϵyºµÕŸõ(~ÒèdInèO_oz²¼/ù®çã®ñ[wýRÎïÆ©œö{~±œoöݧ•?­óÕ:Ÿ¦Ÿð×û—Z¿û>¼u‡7Þ·s8ÅgÍ÷m­_¯Ç[ÏÆóVëOÑKêûÂø»:Ÿm¾Ú¹ŸÊ‹Ðì¡¥¼?ú+ÏÉ-m],»Êww´zÔÛÎÃ÷úàßýùÖ_ûWöµB½§øŠŠ«htªü-ãu,¼4âáƒþÒÛôžíϳ{]ïgA‡ùžßžãwŒÇó©åOC§ú}¹CÿÍ‹üi[Û8ñë ßáyÏßi]6XŸšó-:ú Ï%_ÕFùØjÞ壒?ñWÛøoiýnt[ëO“¿§úaÄÿ´}¦šWû®øÆ»­æ¹ç-ñ^Þ¢y–W _ht7¿7ë£}òÜÞÚ#'™¿V¿ùíþqÛÆ¿Ë‹ÔÏ}T½ð_†w¶qoÏïöà?ºi÷%}ÒùÓúùÎê¯}Çà}­W¿¯ ?iyоvùSgûx\…ßø˜~©/ô1ÓOõ'bÉWø¡¿ðž¾œþ‹óÄWà§| Æ-ߢü>ø^è¹ø z(>eÓß[ÛºâsîõÁ‡Ðóýyo~ïhíßÝè®ßs¢_ä8>ïèåÒŸî½·~Æ]÷xeþÑC»o¢Ÿ«ïöZåYÊ{ò§ÖéÎq¹ZÏ;Æã^ª÷ΟVõîJàOçæY¿Úü/}>ãÐâ›)nÄ÷£Gtb~Ðz7»Zý÷êgÞ£x«[[¿C‡%B¯Kþx‡nK?høèžEï{~¡W3¾ø]ú±3¿W¾ÔFgäƒú­OÓÏ«_ðÛü?~Èõ»GR¾±¢³@|•¼Û1n¯ôZ¿WÞ•1—ÿŸªqñüíÖß{>èç¶q¿?±üi{Ú<ëò¤u{žÞ¼”—Ó8è %GÆtWò¤ÇØ×îÇ„g¾oyv‹O°º½¦ŸÁË%½Ö:æ>¶%{µÚCgè;vÆ|Ož¿<ÆŸ¢»×óÝî¶Žøú5Ïô‹æG«õîzÕWÆõ›Gã1ßúO®¼ÝÆ‹gÜ ;©­»õj益žá›ùÐ>¡_··þ¾€>›èqVèXü»v^ó¿=Ú+©·ß›¹e<Ÿ}ß` û÷‘E? ý²ùñú}6Eï·4<þb[/ûUõu:Å¿”7Ÿ}á-¿{ém<]¿ÑêǼïú–ñ¡ó×öG:¿ïûRði–¿¥üðok¾#à ¾&_^Æ_ãÖþ­m~äAF§ðªûñ±¯ç¹ûM÷WŽñ¯¯ï’¾mÍ[ÖÿÏŸö*¾“ùiürÉïEh÷oÔ86Ë×zö}Ëí­_èOyõšwò]ZGßonãîýf¯¡×7ñó­]¿›x¾­#¾ÝýÖ™ßÿN9°íGÕ|JÏùzû\µîoû[ôÔäG—Çõ]Ãë¥ý ¿[Ÿ- ¢;r¬É³Å}’é/ºÓOt£ÿø¾ÂÞ7OÝïpë˜t¿Sá|·®èéCæOëyk¿ÔʵqÖ¼7|{cŒÅïn÷¿û§ª¿[Æý¯q£o¿w?>>Î/£]÷¬yF_ø¢~Z—Ù¸þ…þœþ¾>îwñüÿ}kÜâð8ã©÷]¿êùå^׳´¿Ûõ‚®>UyÿÆlô·´¨Þ¼¯yBê3Ÿ-ïWáá­­¼y¤_yÿJwëg—g5þî¯½ÜæÛ3¼þ°ùÓ~µÕßã‚?U_ê¯úà¯gtÔì辯¸´Ïi¼}ÿZ½/ŒÇ·ä×F?·¶y¡g4¿ÏR¾¬Ëmžú}#ú[þÕñxkÝÏÔöU‹«‡\ïtÙñ¼á‘õXšß¾ß™ï6¼ÿK¹7Z=õ£ó‹m Ÿ[zõ;ëVúR×ÿÔÿæxÅŸ;þó—ÇýúÔò§iÇø”‡‡mÿp‰Ÿ¼Ñêmt Ÿ–èX;èø¹Ö¯—[»mý ÌgÇÿô§ä9ÏËwÊ÷÷ú•y-;¹ã™~7úXŠ3²>ÚkúúyÜþªãã&øÙ‚…¿ðÞ½2[ÿ[Š—~#ïá;ù‚Nó{•iŒ·µ? Ýž×}hÿÕöŒž:ŸËï5.ôÚò,Lp‚\ŠìqxèéµFO^ntÕãÓš|ZŠoó]Ë#\vÙ»­<º(?SÊ¡+ýÎÙMð€…ÇëÏ?¢‡^ÊÞxcø½ð÷â.{¾µ*¿ßnÉŽÓúØ:~^ºÏûõq;ý÷UÏó?[°üì‹M³õ¿òÏÛÇé~žf§.Å“ú¾ïûìfÿériŸ Ç Tüc`߯!wb/÷ø¦UÏóoNØï­®÷ü#üT;SŽÿ½Åé–¡ÇQ¶ý¼ŠØgþn~þê8ßHŽ¡þ4ôà>H~zô#¯•ø¢Ã﫞ÿ ÞœpW4àS½¿oŒ ZÊÛWÞšgø»90õ.ùC;}ÝÖè5r®ö?[¼Fùiéyo¤žCµŸÚãgù½å‘›à?ý4ü-:hñã‹ûC›^_ÅÛŠ%·ê\J~ß\qÝù^œåZÞ“+ô´—ÆöNÉûÞèþ°õ¿ÅY¯zÞ'xsÂùløƒOÞo”?j<Ü”ïá7zêqPô5rÆ÷ô4qh9ÐÏ÷–½”þ”ÝBDŸJ’3­¿;'ûf‚ýŸê “v.·î‘ï÷¾u?r‹ß)¿@¯¼Üè„|á{.ïÙ=Ñ×z>ëÒ'ùû^EO¡GöÓ·&º™àG‡å?£ÿl­ÿ•Ÿ÷•ý—Æ…®_ißÿêß¿ÙäÈ —ò¾Ðú×ÚYúþ•«¿Ÿà'KžÃ‡ÎÓoÓI?gÞóñôûʪ¹µiü\øÜÎñè×Òýíý¼±¸ýÏ€|£õ8-ôÁÎÐNÏ´µÍÏ=RÞðϵé5¯C›¥¾Ê‘÷“>vCÀÊ·Á®…×ðfÞ“/èl-ïÉ ë½5ïÅ= ~ÉzoûÝþxå‡D—)‡Þäÿ²O!ÞqOžãÈÀ+Ÿ}síìMùcùVq0ÉóWö‹¼@{[;öïC?ù.ôyÍóo?]ìO}ú¿/ÏøL;¿¹jüù¼Â¢çãñ[òCÜ ýkÏ-ŸNáÝ἟(¯‰¼j{àI£+|[~øoàwűäý®Ö¿»þ©ÇwèUþÓ’“­?ûò¼·éeú//~°öáäÀ|oäŒy'7Ð~›¯ºwÒ×VJ7ð_|>×â>ÊþOrk~Ÿæ¹ìˆžggoÞ÷¼·ô)ñWäYÅk…žÙ-‡ÇôÐóç”z(ýy'õÝÚðÊ‹îqúôPz_Ë“Úï[÷ýuÏÿîÔƒ¯œ¼4̇ø›Ó>º·yÒ×VJ7Öß=<¾,åq¡'móɲìc‡ÎŠÞÐÇZ`g$ȧž—_ïñ”Òî[;ž{8r«õg±Ï˜÷ðÔü”¾šòÆ÷FÞ?ò!íö$þ‚îå ¤·šoó™~¬>¯°öðåÈ¥ø%ô8?9o¶Ú/-åßèq¹Êy~%õìãÓR¾Œ¦¯fKñ$èLyûïêÙ‘ïÒ~ÉÉûÇý®ùÀ7ÈvŽìzç¿ÇÔ|:§ _äp»Ÿ`Õøóy…e×Gß™µ¿¥ý×ÇzÛÒþ3?ý'ë»tÆÖ@rã‹>_ž8g¿Ô£?ÚŽ^˜gxή±¯ˆ®Jmõÿ°Á7Çãèù뻼½nº1}þÄÓ oüæÝñüNùgV—ò÷½’ç¿ír!øâoißß{Ï=ï¹Õîk®úÞiíöøbø¼é_;UŸqõq´rUž=Õïñz­#óÄOÝ|‹Ÿ¼ÍûÒ9óˆeœÓy™ÕÀ¥{„z~x‚O7»~I(‡×ÇôQå½Ç·ŸãcÏ?]ø~ùê|z±Ÿ9¦Ÿ%~ðr«×³z_níiçÔÓúk>®{þ{<³yÙH¡ã¹Aâ—gð!ýŸµ¿ž¿jÞ l0åozãêåz|Æ?/|ÈsÏôJ+ÿAq+ðÁ:½ÐøósíùÕ1ŸŸâÓÒßO(>­Ÿ¯YâkúiÞZ|ö†qQžû<½:~Ýýox·”O¿=w:`/.Õ»=ëÖøù†|~õñ¾Ú ¼û<³7­k·O¦ø´1}›÷WÚ÷7X|ÚRÞ|ýmrwÃ{³«áïG¦›7ưêíy@¼g¯Ýuu}³òë¿>þ]ž‡¥yÌ|mïµtoè;™—~¯†üøú×ó­¼Ó`ãÏ5¾)>møî‰O+ûæ–q{åGpÞ3ó[óm|ðç…†g¯^_ÿç‡òý×ÇóUö'|9’~Ü3¦ÿÚ—7!ë_þC÷ÁUž…”³Ì¿Ãoê=ûP^’žÿ^Ãû~¿h»£ö!´sƒÅ§•]~0ŧ¥->­â{”3/o¿_²ûÌg»_¨ÆÝò)\«]³¸)í[ï½™·C)wϸwµk,wjþè7z|(ïí?8®oêit™û‘Š^·éÊ·{]ËïëyŠOÊmÖ~ƾ{£Ç§Õ|Y·~Ï—÷Ö­íKW<Ñ>óy}ý/½$ôRò­çyb=Ÿ;˜zn5¯ùÝww4ü³Nï4zêùÚýŒEi¯ö-w´y@™¢CòcŠO¯ËMŸ¶t 8(ïÅSà;æg–öÈúGÖášûÚ~X­ËÖÀ­CÚ{ ωOY?x@?S}ô¼=úoá}—ƒM^T}Ö¿AúÛî3âÓRßMŸVúbå³A×Á zÀþ†·æ½×™w°äͶ¬SÓ§k\ðÊ<þå÷~ϨõÎ:ÎHyò½ß[Úï …¯Û4~öö«©ž‚ÿ¸ïítú3ŧ ý^æýMŸVö¿÷ú‰ãŸ`Ë[µt_|ðüzýh5ßì~õ¾ïôn£Wò}çï;Ú|hòážÖþȾˆ<[äAê›é/üÉTó,(½/ôy½~¾Ûýv]_.?Ŷ.Ñ#ýçîñ8ë÷;Þ¾—â·ÂŠnÔ OðoŽû¿”O²Ù‘S|Zê¿IãÓj¿Ç3:lóVëbâôß8Cg×K7×ú·tO—®Þ^ÍG˧Õ÷i–ö«ÚýÔ}?·øzÊW¿à_ßÇñ{à†÷˦þ)>-õß$ñiKqLè´Þ}}ô¥ëGáýˆ~òÂÕçui=ÞàÝ´û¸»ß¥Ÿ_ÂÓ&Š˜§´[ó×÷èœâÓÆÏê}¹µ§óÝúk>®[Þ|Lñi=¾aC4þÖë©ùìxôÆø}µ‡®;Y¯ âûJŸdo‘Gú¥^í¿ÕÆÿNÊð°õ³ô·–ß¼êÕÏÆï—øÚ+­^ítzî÷‡û]ÿó]éMæírûN¿ÐÉsãvkþ_ãÍê7|Üßõïšå¦{E¬ÛFøû\ëG`ýî=>A¯ãoªx“”£Ü:¦« ý~·¢|oþzÜHãWK÷w¼Aô½WÆý[âW¼¡µë¹óGýî÷Èúî9t™÷¿ÏwÞÿ†ŸKq]ð~¿|õ÷K|µÓø+í½zº>Ôã3ûïæÇ8úüã#­ßå×è÷º½=ž¿’[Úíë±vmò¦äûi¿\÷ë-ñ%ãmýYÂt‚/4y°ÔÏ7Ûxá…y…·Ÿzü˜zÌSÓïÔSþÜ®O£cý~g(7ƒçð”?eûëwýÈ8Jüâx\ݪýõ¼:.Wåû÷úÝÆ_xÕó)Ço°Ä¿ûýìÞoÓIé‹mj¼íþœê‡ú¾>žÿ.WûGÏ›m¼êÓz©y¯S_þ@9³µë‡ãu[*Ïÿo^È9þçM­¾n§WNêùb›Gvÿ5¿¢ý~It€ÿ½ÙÖ}{Ã7zþ”y«ú¶èÃ?üm|¨};Z9õnÿ^ãå/ûÕq{µÓèÀºÝi¿ÓEó/Í‹qò#Ÿnx ¿vŒñ°¯ûÒ~Ÿú³>¥‡Ó7ôãsêó;ÿrøMµóÆÿ|ÿ˜_Îû<ñ/~i\Oß¼f»?Þ6nwc:Ó^ ?8ün~Ï·_ü’¿ÝzŠë°O°©­‡ûìÑiÃëúîÎqùÚ/Æ¿”Ëú–c>­³ýÏmß§ð§ñ›’ÛÆ?ð tÑî­(yøöÒý­;ÇügÇGÒÚ7¿%7ƒOèJ¿?S|_Cßo4:·.ä<†¿Æ…¯¬µñãƒöÍïmóo?áå6Þ¾ŸËO ߌÇ>ØŽñsÉgñ‘ðñŽ÷Çûü…±æïµ6?_iëàþøÂ~‚ç›ÚxÕcÈ|ïZWzúK™ãžÝôù×ü¦ñ×’ïèI½ä†~ÓñåO^ôc^á™z*Îlü²ùKº_¡Û[]o®ñ7ý ô)ýÄ¿ýÚm¼~µ>Ï™Ÿ´£þ~šyérð•ÙUÿJ^µ{Ñjœw^½ž¥}ó×îå]ªÇ|‡Ÿ^³?×~ÆûAû‘ 9>Æ«%{Í:àø§úKÊãgwǵ¸×4ÏêeÏhÖçu¬_,ìÓñ:,æ¿É zÁãrKq=éOéë/ä{r¥î™Ìïè©ïÃÐ'áSó–^¬¿äg毠q·ýÑ’wèÉû¾/°iÜn·ï‹Èiãéü¨é­‹xâ1ßXØ÷ù]¼ºumz|á |Ó_x]ãó⾿Î{ ëûÆülÃò_—+¼ÜŒÏ¤_ì@ó§¼õ¡·åûy¯ùKð'óé¯m¿h‰ŸîÊ{øÿ¥¾šgz |x%ýkõösc=޳èw=Ö:·¸µ¢ëžG=5~1›ûWõonß9×tyL'ý¼f«ï‘“ÆKΠ3ã¦ïZ×îw†/ñ½úQúYê·þ}_+ëRtÔΡ-“…ð¡ãKôÍ륛ª÷‡ïÿ}÷‹.í¯à+Û3ëØâ´køkÐ_øQµ×÷Oá1­û¿èIHo›Çó»tãåñz-Å£u;åW¯Þn—·Ky(6µy‚Ÿ¯6Øß—ÿåêtÒり.ÞiãƒO_ix¢½.'Aãï~=ó‡Núw~×ß¡ýD/Œñbé~ξï<­ù×^ŸãïëØ÷ýôýî%ÿ¬þ›wýïr¼ÇYèW»ëqˆúÝ×ç =üÒg³[þò{ÿñõ÷þwË{ÿ»øÞÿÞÓ¾ð{Þƒ?~Ÿ}aö¥Ùæ÷àWŸúéG~îç~ᑟzâ§f³/~c6ûÃß½VÊ›àçå:‰8D^ F_ Gz±<®¡˜òH´ù:9ùz¾ÛžzÎr±8 ÿÅâ0–ð7*¬ßÇžðRÆ…yÿÀÕÇ1?òô i8I|"ðÁh GÑ2?:ËÉÔù¾õrÏÌi©Ø£—†öó{íØîË4q*ðáÀ™ia‚€øÕñÌs ´Þ‡³N‡òþѼ·Ãí„ôCùÝóÑæbe´Øèä~ep Ÿ~(Ï" Nj'ý{(ýE‡‡ƒ§àÁ£‚—¦œúN<ý£íýrïžQÿ/^žÈ÷"NîÌxó^}Æ{,¿;Q}6ý•™àD~0ßmtrz˜¿z6ž£;º’ÑÇ’~:r’/ ]”¥ÈÓôVÓ#Sìå³¾{ë„o়á׿¬çΉßMp‚×L¯ã“ÿ;à¡+‘´ýä}ÛQ->úÍÈ;l=2$t^ž_;8<Ôo§Üí{ô}gêWÏ+)/³At%§‡q¯q·H̲[xšíPÛaE~l°ÓYvQÆUï[Æ­zÏ#:Ù77$œ§eýŽÅ8D¿ ¾‹¾qüÒ°þ'ó^Æ´4½ì‰”?‘zE/:¼==¶‡ËðpÞÏ{ôǾ 7žÏóüN_•‰ætô*õ?–÷ê{$í¡¿í/ÍÓéô›½óhê£wI}±6œoíœL=G'º˜à‡‡ýDKÉ­³õ¿¾“QzhÏT×OZ”ÿ«é¥ƒ>úbé¿•I6¿ï ýªwgä9ËÏFžŠH½½µ+Bn{~'ï"Ï“±ðŲ×nŸèéºø¿ÌÕ{ð¿á¹~¿­çÁ®|¦ì{d&?Âoe>µ.ørü@Uß¹¬¿r6½¢ìâü.Ã-<Ü›þˆ`=qihgÿxülÀ’Ÿû†õ-¹8ë^þ ±ú©÷“~ä„,üå7Ÿ×ùUùƒŽŸ“¡[&_~¢òצ~ðjå TfåÐ9p4úÙÚ˜þó¾sì¢?¥_õ^ý¥6?½Hµ ý~4ßѯœˆJ?æŒÛàgÎëŒÍ/.ìøsiøÞ…'Á3åᓌôäÒÃð-ߨþ…"î ÁS~\û‡òû~tšß:)àä>Fâ/v’àäÓÃxÙ32î:1ÀŽXËïêkt\|àHèì¤ryÏ)3p"ý™Ãùûõ“]udÔÿ…?Z¦g¿?–u±ýcÕø5Á›ÎÏ úèüñàñá<Ÿ >>¼zÏj' â÷½ØOPD?}¦Êu¿wÏø8øÑŸ)?A? çýÞölmGú%G„¼ýþom ²W·¶y¾“žÛä˜r×y‚g‚ŸMXûäƒ'üüWè©g€÷}ò«ñ_ñ«8™ïSϪÇ?ÁÏ7,»äþØSÛ+Î1ø|Šqéʇ xx6¼?¸;õÊ÷âw¦~BöÔ£‘{n€ytÌŸKSÿñèk쎓yæ'Ä®;ßì¯SÑïÄ=ù#(~ˆjŸ¼=š~Øsòè`úO¾hò˜:˜ñ³ƒøIé¯Sßü—ò{ʱ“Ø£ôß'Ÿú{!ër6Ð~ÜÙÈÁUýÒÞcùý‚yÉ|Ìó»}-õK;âžH¿Ž§ŸøÞ¹|w:ß=žúdݰÄoË~>ÿôÿ†þ=SåÏØ“ø6;Þ>xÁ#ùî|ÊU=)w,ãdßò«Y/7°Iÿùùµ*®-í}g>À3é'?¹pd$ž)}‡ÿ!þ­ÒkøÇŒ“ßA»'éOæŸD<ÿH÷»Yëg=ùO¥Þ3·þñK>˜qšq{Zíe¼ö•áõ··¤]x8”[5Ÿü¼Áùcè6ëÏþ²Tž¿¨â.SÞ T7¬‰ Un-ðlÞ{>…ßç{øuG+'ŽŸžFðUæýJ½Ã>þ‹‰¯e?iÕó?ÁÏ' }¼XràS:GPöKøwÅ­Ù¯¢ç¸½Ä/NOtƒâøsÑí2I?Ôü{c½hú~°êy›àg.ô»ÀÙðWçsìOŠ_¾«•c§Èà¸5ïùá¹úû9þêÔ_ýb?ÝÕÚ‡F¿Oá|ªø¿lýÞ1ng‚à…yî7 íÌE%öƒü²Ñ_«xßÚÙ=¶?k_gWû>ˆ£aïìŒ[™ýò;½F\£~mN9°Ç/ÿ…Ïw4<ßfüð1í;ÿp‹ß›\h™uZ&ÑgJþð×ѳoT7ko‰ÆcÝö6ºá·£_Ðø‰àýÎÔË^à¯å—â‡ÞŸòè‡ßŽ¿ªüÏðäêþ¢òsñ¢þ.ôÂ,†ß“¿âx³CØCèŽ?Ë9V~>þÑsùýÁÌSémù¾ü´c»o#;°ë_å§¹¬·-äë$o®‰nv5<`çâ‹gòž¾?ù©áwôç²Sů==¡ëóð,çAŠnNyv-º.ÿsžë¦÷ôÏ>þÙF‡Ãù›eü¸¯õÝØÇOoñ•v~¥èɾÅàÏ{±ú•s͵?$žÎ|³ëùñ•;žùªøPë‘ò‡Çx^ú¿àýíYÉ·ãþ®ñæœ Nðšø »ãÌlý¯ä/z¿Í¾'çøÁ _!gÈQçäÈßû#gÄ¿žÎ÷öi:Ý„OU?µë<¹kÿV6ùõØÓãþe_sÕó}£Ãò{_Ï|Š«’ߢ'[rÈ~>yrp¼ž¼¹`ñúæö¬?9È>=èõ?ÆÎÐío‡>Ñs—ëSþÖè?üúÎÙºáÅþö¡Ð¹óWâ¼ùkìß9H³+á»8üM©·ü8y~8å7Vœ|Êñûãwìwú„zîµ÷LÙÇÆ'¿Ë üØx/ ßWþúKÊoú?‘ýzýžèqìß~Ï8Îg>k>ïGM»I§ô0v7¼ ×ÜÑ~¿¿ýnÞø§¶¦ìwëÎÎß׿A&¸høu¼=x°5ëx×ÕåIåÍG ÞŒéê™ÊK±9¿ïK;ίD®¸™-ÃûÊÓ´)ýç^kW½[ÒïÍm\ãâŽW>¥~“€› ÚM"‡G½5ð–1¼ðvúiÿt–gt’þWwö(~gßóŽñ|ëWµó7\óúkSñÔéßþôogúÇÏßö5ä'ñ½ó¼ä#yoˆ;?ülø:>ã÷@û+ü&ø‹öÉq³öð_q¹žõB.ñ 8ŸBΈë?‘ú=Ëô»Aã"—Äu÷Þ6žâ³ùŽ—þïœ2}Ýc~ùÁ¬ ýŸ}BNšÇCc¹RvZ·á©xhò‚“ÇD~Ú¡3úº7þÒ¿ÌKê#§à‘þðÛˆo®qîI½æ§Êiÿê|l‚7',»~àËðV|³xlqÑô|ùví;âså ¤¿ÛBÇø¡óüMôUvþSóáwvŒ8ênß;¯bìºOùƒM®iïÐûãuÅUjß;OÁ¡9ŸPåZÜRýäýð|ê©ý·¼Ç×÷…”ßñß”¯›ŸóŒ®É+ç]­sÑûåá½ï:2ßüeø»R^<~ù‘*„u†áwê#oØ?øžø©=ÆÃ_ƒ¿áäù ŸØä>gžù±g©—ªó$yO?3^v$;šßÓ9›ÊG‘÷ìç†g5åÏ´~y¯Ö ?÷;}€Ý¤t)?ÉV<©?™ïã—Gr ÎÁ'òú¾Œ>Ì3z·Sv^úÇ÷@~ßàÜõoNXøé‡ô¡[‚gñC•ÿ…ß ÇÝšçvsyу<¶üÇì*úüäß’ç:'ïèÑífðŠÛ¯øþ¼G·›½mÍ{ô†ßõ|[Æò¨ú#^ãà¸?U®ùµ'xsœ7~Ñ~v½g_ØŸ¢'‘ u.2¿Û§§ˆ{±OO‘#G[ýâѺ^F~‰ç#Ï¥þÃäƒré9/.O_礪Ïy]ü¢â”È÷±|Xœ'M9ç¤Å=‘_ì¾s?}´ÅLðƆå/³ßÉM&_ðOúâÝ‘ öKoúÞê3 ?÷Ž”Ã÷ëæôÀò;å;þ.7°Š£°ŸÝóžwƒ~é7ý"§è¹÷´ßÛ~e=ëŸù!W+:ôà=Ü~Aù[ò¬_üÖ;Zùûè}ü&_´s¼>ûó»}âcáçžú#?}’ÜíóuôÒW;ì=ùþäå¡ßåÉxÙ[{Z¿Ø?ÎÍÃüІ=Òóù™?ú³xK|ø‘Ì#û~áÏ[ÛºzÏN¬|–Ýζ/OïÁÇáÁ]™oãéçì\ñòâ“Í;=ËwâŽw¥û½±èeü~ì~߉߀Û;°âVïnraŸ½Èk@¢·‰¼ ?É/þ…}¡ íUÞé@úà‘ô—¾Æ?xºñ«ØY«æ£ŸXü‡~~_[ø‰Ðɶ‘Ü8Vù¾í§ r£ûÏÐ3|¡ÇñdŸ¤úÉ^@¯Êµ}Õê×Z~G›Œ'ýtø›)_££)o|ø7¾Ç/ý@Ú±OÀ¾±O‹®Ùyæ™üÁ¯·æ=yAþÑ¿ÂÅâ+=+ý]5>Ýè°Öß:ïoë+t·«íw“ŸâÕNæ™|”Ï™\&—ì£Ê­z&8Á›¼m¾ŸïAwyOž=z¥‰Ÿ] ¤·±—È)|þØå{ˆ].þýÛÇçg¦‘[öĵ{çgš>H£Wû^ýìüÈ<ñ3;ÏpïXÞÖ<óg¸'ˆý’ü÷«ÆƒÏ;¼ðvÖ•\¢ÁË›ò~x~¦òÆn¦|Wöü ¯ÕMê§<Ö·V=üˆxôʰ®«îGùmøcð¹MÑÛà%þŽ?³Wø1ù?؇óŒÊŸXçØSŽœ`§ìnô‚Ïïm¿³ðY~­!nä™ò'Ø7A·Æ)®ë–ÔÞÄ9ñKñ‹±OzþÈ™ºÏ?†.vû†ë@îhŸнµo,/ªÛúï,Ïä ¸~‘­Ú˳¼ž_›øËo|˜} ‹KùŽDo²Otx¶þWú¨¸ þú?çí©W^(þ?ñ)â ú9zoü×<Ž òÄÍjÿUõÃúý± ôÇv~»îàÿ°fúá<Ë|lÜŸº—Ÿç—<~yÌÄaíló"n£ÇÑkËŸ•÷;ÝWIžàûYçèG‹/¯å;üXôŸ¾ÐÃé÷ø)§µØ×ÆGz;á³ »›à?>‰³>ú¢¢×Š/çGȳýBôÎÿÀ¿§ñ_ïù/ì·ÓÃÝÓ¨~úOÏ¿Äâ¼]øÆªçñ³Ë;Ë:l½ú¼/Å÷ò'm˺íizxÊ_x=ë?’óŠUN\–ø-çƒßNÄõóðOÿá ?ïcge˜³ò/—)ån ݰ»øÿì³Ê_–ø¬:ǬÆó…”¿-vOì½ý(öbÅ©™×èE5;Z¿Ñ‹}#yQÑ!È/PñxÍ^Ôò»â¸ô§­‡8©º÷*ß“ó•%}zÛXo˜àÕaá¥ýï㟬sË~çÇ ~/Ž‹ƒ/Ê[ù{¶Àƒ¼Þ,“¶þýœ¯{áKÓBãsRuaáñí­ßäÐàO^äå¨8ÏÀ”Óß*×â{À¢_ýÙžþ sóÝøEÅñàKøWË£[óz­óÚÖe­¯C~Ï8ù³W—¼6XvýxþŸºg:ëm¿Ywû.ëOŸ?‹ŸóßÙßïþXþ(ò?±î'{v€ìmq“üuî½¥§é/zöž_‘ÿйPqÉœûtŸYıÒCűªG¾,çð´Ï¯¸wTÿ÷êü‚ø„œCX5>LðÃÁZoñÞüïð”<¡ ÷âñãŠ;†×üÛô'|—??'—èEü½öU•ƒ¿ô¸Scy8Áë\÷[³ÖÇ9á¯øÆ‚ÙÏÅoŧÓ_ñ_ûôüµ¼‡Wö1Ü3‰Ïž 8OEobËÏp6õ;·K£öáÄ]Õ}ŽøÚˆï=SþMñTÎOáÿö­ä£8ÔÚ—¥~rÀyû#øª}"ñh?|Õþ-òÈ“[ÖI‚qÒŸvF³Ï%ŽnOàŽ”ÑÏ9´^Ú1®Ô¯~„ö‡ô—ÞÛãÊw(E~¯ü&©Ïyz¢uð݉î'øøž}wtB¹ž··á¡säz¯ü ƒ{±â<ëžÑ¼GWòž­uü÷<¶GÊ^k÷¢T=ø‘¸¤F'E·ø5»•>HŸÓ¾ÀYñN—†ßñÿSá›òÆ‹[pÞJÜ×–Çü¾ûGñ‰Gÿòú_é¥â›Üûk_Ýù¦:gÿôhÜ ¹•~Œó-,Î/9ç¤ý~à›[åY±ø }ì‘/æëñ¬{åU´n)?ö¶ßk?Žžˆ¯‡záuò&ɳ$¾Íþ üÁ¯w¶z­“yظ?ãwŽ‚}“þ•/Ÿ°ü„ä+|§ÿ‘ãôˆ¾Yô–ßw¥]y°*ÿ1ù(¾œîûžÆEßpþd>?5þÄÞC=j?טýÜ¥zèóý{ú×~ÿ²+ë‡ÆG¢·Õ3»Y¾ÎºŸrÀ·ÊkÁn O¨Ñó­·óòè¹ôF|Åzác—Çz½ªø¾ ï+ßéˆÏ,î]Â¥œóše§xÈ_†Þ×àúÏïu.^âô<ß×}œùŽ|:›~¯oÝmüøýìë×¹Pý´¾Æ¿oL姘üi7,¾×ùgå… ŸôL¾‘7ô"û›už>Ïä@Åièã{E¿è½äIÊiǾÒ-y&¯àÝ–Àm©ÏyT~|ù*þ/P=öIЙübÎ’‹ö¥º]I¾šþè­Ãï5ßÊËUû6äì˜/Oð:ñ™¾{ Í;ûÛ½åǾœËº£ñ2ìî3꥗¤|¿¿L;4þç<<ùÃoA¿D7Îåã«OäY˜:—ŸçÒï¿wUy?Á Nðø†üçüÙìwçãøéáü¢¥7ÎÖÿÊŸGߪüfá3»"O^Êó»=¶®§Nç+o2XüœÎoaÝù‘ÙìMû#ü—âÜéíuOPê“¿µî1 þ‘7÷õõ’küX´ßéa•/4íºgƒ~Ï_³‡]•ò¾OPù_Sž^S÷Ú—¤×õ|²ÆUy>FzâÂÿÂÀ_ðhô;ö•ù=û¾¹-߯ ß-­'}Ö¼³ÿÑ5ÿQË{?Á ^¿àoØŽ¾ð…ÐÿŽÙú_éwðí‰ùðì~_¿‹ë?ßôYçªø'È'ôåžÀÓÏtƒNô'ù——øºâÿ“ǽ„ß7ÿ þv.íËssxÜÞW çóŸÖ‰ß3ë3?µ3r¥ÉþÇ#Á/v‰} v¶¼âØÄÁÀ z;Z>ö;¾…^ÜϾêy›à +Ž?ÜÈ®¯x®±†·žåIÎo^óy™Òûå-üæ¸ NðF„µ_}¤âhéÛôæ–§âºÛ¡ßó“ÒûÙÏžùuùk<ßíÜØ‘gý?=çШ\éó‹ø™ÀгÎ÷ãs/Ö¹}qüÀu?\¾s¯Ñ#ãy¬q‹ã™â&'8ÁŸ±ÿñ qì1ûÄö™ö½¿>I¯í|«ž/<=Ò#Êob_ß_}Å4s(7¿ô£ýYìóòû\ȳøùøCÄÕØ¯üùNžVvþxÿ$ã`ïágö»ëžßó¿\û[§<ÿ—ïù—샫§üg)Ç$¯ÿSÙ¥™'ñ {Z?*Ͼzò\÷B§<þ\÷‡åùÑç‰|/‚oß^\*¹ïÈ)íÛ_R¿øý“™—“ìû<›ñÝâUùýø•'a_ù4|ÉïG3~qMü£üæî Ü_5ÿ¸Ña»oê—çšàõÊ3~Py2Ñq¾{ È:Y_yoë¾½èeð> kvùÇá?|D?[ó|4xG¯ëöþ ÎàÖ|Oÿ:dò¼¥=+§_ÁËÅ}Çé‡ûsÌ—y¥OâΧŠGÄß*-¿û¾â×RKœtÓ=Ò;Ñ/>žïøKçXy‰Úyà n@7æÝïþ?.Î9¢+ûƒ•÷?°òoÉ9û䘸çbÐ<Åo¿íÏÂõÖýóêÇ—†zWM·7:¬y³r6ÏÖ•ü€âë\@`ñ…†ÿìÂ:W÷øDÅ7|°Ox0xAß©¸ex ŸRþ|øšvê^æËÃ3ü‚§ò ÐßèAÝ®,>ïë>…|OoB¯Çüóó‹ŸÑ£ë>àÌ»kžcT^ ò*|ªü»Ûƒü®ü£•§(߫ߺŽÏ.îÙ ÿ­ú÷ööÓÎΔï÷¤¶¸Ú‚9gpáíöžý“ü¥ç¡#r¸ÇÃô|Òô¤-øtÆñk©gSo§µ÷V¿=N qhìuï+oGžéiä<¾ÌÚ<šÇÒój~¼'йøhr̺£?ëå;íáâ¬3¿ ü̸ÌËWR®ç ’ŸàP¯þÕýE\5ÝMð£ÁZgç»ùCëþ½<ã÷gÈ“†ûÁ¼G?øJù Soôš¥þœð´žéMè¯ÎëOë¼2:ã¥~¯l~Ï?;ô·îßù¹–“×õ–>Hïí÷]ЫôOäéH9í/áz­{Eò^üB÷ÃÓsÑ­þ”þžgz5|eò ÈÐïÉ=8šÿç§µ7éi¼¹{[ðŠüsþ†}æÜ¶{Géu[(tGÚä¶{šÇù«~:üþžFïê£ø8?Xøâ…7Ò/ô‚¾øWø…ß­É© ~Jxg}½ì ‹ûÆë!ºžËOÜô~ö@ù­SŽß}oÃ7z“<ø*~¯?•‡*øï|ÿí_ä7»‰^w0ôU÷x?¹’òîÙ ×ÜÿAŸãOOÜAµgÿË>…v{6ýËïâ5è;äºàg_a~Å“‹o!×N>;–³佘àÍK_ ]Ô{úÞÎÀµà}¾ìoz¬8Pv{D=ø>z¡ßªŸCŸÂïÙ+ä~N¥WÉoPyÕüî{õ5}—Ÿ›>V~¸üN&wô³ûçõë`+Ç?O=0žï Nðºè–=e¿]ÈÃ~o£³žw—~4Þï}q±žrä´|û&¼àÍ+þ«ß§ÉDª|§ì–ÐCÝo:*¿ÈÛVþr´é]uÏ[ÊU>Rr)Ï~'¯è­]^’·Úû:·‘ïÎ p1ÞÉ/ðY€ ;ÏŽ‡ïöAÅÓ“ì÷ö{¾<À oç=¢<þì|û0ô˜{C'ìî쟖_Î÷o·öz³¯¶ñˆÃ¬|Ÿy_ûêùÞ“íÜ`µû@§ÿ¼w!þáP«¿šàx)®Š§âöòþȳ±²®ðÐüó+áwîÛ„¿î—<|hy8ÊþÝhßpk§Ç»ÀGôRûH­¾ç"/пº88ö}ü¸«^Ÿ Nðf„å*Z {Û9þ~/û-î÷VçvvåO¥œ|S'óÌß|.õú~-¿óO<¾äþ`þç˜Äá𫱧v¦ßò‹¼’7Ÿ*~ÁxF.8oU÷Ï\žíûÎï{àUô šÞ½wl/—}À_&~ÝyÀÊCnÁ§@ñÅäyÄ¿lßø¾&g+o&»¾Ñ{¥âš¢žùž$A\ÅiW\…ù³–ïéu毟GÏì°Ýo]ózx¢›O„>êüjÓ“ê\@[·Ò›ÙÁ)G߯}óO>±~G[õüMð³KÞóó䞯вO‡OŠ×Á¯+n8ü±òWæ;÷›ÑgŽŒø«ýê‹Å¯çÅ7Ù9ò…=@i|—}}êRê ôýåáö][KÿÒ^ÙùÆÉ}ñ[7;¬û"_%Ÿ2?ü'=ž‚~{×­™?Ü„o‰»ðv~_ºW2ýx'í“«Ö¿Ç9',íÁ±ßdiœý2zD»ç´îpßCü§^I?ÝkŸ²¿V÷T ›ùÝ~„8®ºW#Ïæ§îeN¿ìoÐ3à§úù›È+õ¡ÊO®_MO©|›§~з¤ž/пFþ€Ež†~ÿç—áCžss.>©_œ^__ûª›SÞ|(/>P}üp‰{sßçlÊ÷-oºñÔ3àÁÔÏß?åªéöfuûÞ°OÌs¿×ù¶6ïunxħ÷Ü8ÀîpŽ©¸tè{çBígÔ}ÍyÏŸÆ_[÷š¤žG‚ìnïÕK¾¡ß²+ЛyÈwì:°òMå»ÚwA×è×<Úg9úô÷Ç]ë$¾¦û ÙÿåŸÓ/~ãÁoŽ_`?§ü÷Ä}~ÀùÐoò“.ýn^ñëhÝè-Æ%ŽžñçÆ[õÊûc>ñsöõÇÑï÷vÞ à»}?Âsé-)w8ÏðÀ}ä¹ÈÎAgOäuÑ>û~×~¾MŽÁ¿¼×/û~èÓ>cù¬G›xzW?ü:‘rú1–‹ÇkœÖY\1þÑã&ùÕ·§>øŠ/ Wú£øüÉwü%ìHúùtG£/óP~‚‘_è =tëûÓÁ'x3Ã’›øyì<_;ä'Ï‹Oìó­Ê“gz¾É/ˆß9ô£î Ä/òº–¿‡¿rgÊá»%·óžÝì{v¼*å¯o0rªæ)ûåõ\çÜS^?í£÷¼ ôó‹o‰w÷wþj<)G߯¼a‘?öäIã&G/äùðÕåuKÞ)rÆ>DÅ?çw|Ø~»ádÞË›BÁwÙAôEëCž“»ìÊš§ŒÞð3Ô}kùÝ:˜§®‡V~¼&7õûh漤ÇN}äYô‚š7ùˆÍ;¹Df¿£ïÅuV£cï»>Ì|ã?æÍ<Ò“Ng=ÙÓô«3Mÿ'÷­—|}ø üÇBŸâíåï@Ÿ§ò;~€¯È#e?“_lê±ÿ!.útøû‹}€ï°¿ËnÊ<ÐÃì÷Ям>‘ùbŸÈØòB•ý-ï!~%~ß"ýunVܽ«ß¯åwyoê¯ð y ÙÆI~ c°å÷œàg .å¯pž~±‡zÜ2¾þÈgq›ã{õö| wä=yä=>DÏ¡—$ŽiiÁóUÏç'¾^ÎÛ£ó:_5ž—²ûÙíøaå O=ü9•'-ïÐ3òL·ïù^è>‹ÊO›çƒÁx³f]Õ“÷ƒ¾òbÉ zý®òF¯Ý྿ŠßÀßåa#wø7ìó?˜ñŠk«qç½ü²âòáõî1Þ-ÝcÜîý¤ŸÄίrü^÷·uøöÜ/œþß׿å«WŸ‡ ~6aÙcüF›†çÚ÷“7b[žáó@þ$ûÅORž>°{ôübÙ'=oò]x;õk^Ã׺-õmM9ñŸü‹ìJv,{ýBn‰·VoôTû$¥‡*Ï^°c?‰>†¿Ø§e_Ù—b'õøXv¾e‹êy~Ùeö‘úº¶¼«Æ» ~2pqßWÝŸOmܧÇ|dé÷È?óSïÅ™“ßîs;1Ò7÷ϳsð9~¡ýc9<ÁOyýñKùgøèWø0½‹ËÀ¿ù'È5ëËOÈŽ±oß?ïû;ôáÊï“÷â'»üó½8z\ÙÙöµô_‚}~ržzîy züH÷'>ºhq ‹þ¦<¿#=€O»üÝ?<åç˜àûѵü•Û±¿ÄCð3 ÃÇòÌ_w$|ÝþÿñIú<Àò±ø…ñgøá^Nûîçaϳ;œ#iyjª¼÷'Âçj=|ÔþÍÀ“ùþtú‰¿ó§”:ý<}ixωøÜS`_…ü¢ÿó·¸Öµü.‰\¿øyä˧ ¯~>¿ºVãØè>ò™'÷ò.¾Ï:{ô´~ž‡ÜÚ<–WóSé_Û'œàÕá">*ð\ðŒ?µï$^z~>åÙµÇ/‡>Rþqþ¨”;IÏÈ÷ü[ò6¡#÷µÛÑî©Ð}о¡<ÿåÙà‹ø$û½ìu÷Z¡»íí÷ÚÏó‰@ûTç›þdÜÒ¿'Ó~~t­Ÿìt~4ߣsþÔó)_q})gže¼¤|?gÄOÂ.2Ÿ~¿€Ÿe]Zž® ~LtVç ñá<ó‹}¿äùÃN8þί ßöäwöJÛdÇ®Šã‚ÛRN¼€oú%ŽÂþ¬ø~_ÂÖ†_ú£}ÏÎm²cvêw£Cû 'jüyÖþ2qëø‰ý懺j|˜àGƒÅOOd½ùmà×±ËÃså1Áø‰_Îòûî†ò·ÀSõ±ñMþq›ü¶ÎQÖ¾y 8z+¿Äãß~ zþòw“oý^Í~Ï<:×¾8rá¡ñ÷KóÝöQû»íýöLÏ¥Ÿžoãkñ¡¼±à"N9뼯ߓÇfŸÎzo $?väy³þæYœZÏ3(~§è2pǸÞÅøB·û[»íœ\Å/4?ô†ã©ó}äx sZ‡Çõ(·jü˜àëYvx“â¾àM“È{ñ ÷/ÅM¬K9ú<k ¿µç¾û”èÁýXý^β‹Å Ôý›ÁýÙÒì±ÚÿÍïâÔè½?°ÿKO£gÞ2¦§*ÏŸ³ݦ^û¼ô@ziìÈUãÃ'ø±òþMþ:~²~Žÿ!_Æqq 9NÚç:ů’ú7¸/õcOôÞz®û˜;lüŽ_Ó=Š ?ؽ™/ú;¿¥g°'ø‹íÒßëÒ‹{rÎÏ{û(ç¢/<õüP?­} û ì’ù›Ã³rµÞùÝþÇ™´ë¼5½âü¥´|xjèo޽óPä}ÙQW·&8Á ¾ߨ:´Ï(Ÿok½4@ræøå”ÏwîOäÇ~üòÊ—³¿ûâRþŽc¡[ñ˜žù½ß´/ÊÎÿSç.ŸØŸïìWÛG%ÏäÝ:˜zG꾪Gµ}á’§éÿܹðAq öcÉGþ?~v|vw«—³'åëÞ禜Ï<Ø/gÿìiÐoÁ—º÷³éKèÁ}~ô2ûOâ Ž¶zÙ±{Ò_åÊ–rôOþ6~±a_óÅùéË‘ƒ©Ÿü¯{¤Òûf–ßí›íÎüßßú£7”÷~?žu5_ôÏoµ~£ŸÄéÔ9“Ó—ÇôdŸ›Èn:•ïíCߟþг­<%åM=ÎY8ÿä¼nåKyô%Þ ŸïæÑ}^öÝñ çÂ6§>ú{Þ;j÷ûuîxlw?S÷y9ïá<™ùåG­|J)G¯>›þ9_)^JÞÏÝ­_e  üýÿÌGÝ‹kýv¶zw¥<|F¡Çâ·äM?gs0ß¡gíoktÞÏ­ôËêW¾wƒá·ƒôFßÐ>~×½º©§äÚ¯{]ÒÿUãÇ'x#Àëç-= _“W}nÉïä;ùKº_z-ï•ë÷àìÿpt>Á ÞHp)®´òû¯ÑGÅí}-rUü8¿ý•ý.ÿû]N÷{^ۺгø1ØSøÑ¹ècì~öÑé¬}]=θ§Ø9~yÊŽe] /Xý¢ß9Ÿs<ý`÷{_÷¤¿§RîtÚã—GÔ="üï•)¿‹e¸w“žù`ë× v‹ç´_ç5Óû}|.nawÖ½Áã:/úÄÛ8•sš5_ü>ìdò£âò^;ôÜSOóg¬/otXv¤}çšÄ58ߨó÷Yø/*ÍlŒ§B=ŽüaŒÖuÙFŸöaø-à=ûþL`ÝÓ4¶ªßÆÁÿ¨ÿÎqË÷Ë^çÿ€_±óV½~ü|Ãòo±Ï+sè·òHç½ü.ø+=þÜlýoq{?ÏöÉ×ÚwµO€~Ržÿtwû~ÿÄ—'8ÁMïöœpü[Mï´ÁoÈïæÜ+ÿeÅq¦¼ýž:ß7[ÿã¨úíóT¾ÎÔÇß×ã†È×è«žÇ ^'Þѳì#y>õ·¿É|Ÿ9¿¯Ò¯ê\h곯Vy´S®äJ~¯stÚmrÈ~ˆö|_ýÈ3z¨û&Ô›÷;Óûè‚]eŒüOðШü"^µù¿z¼°ù\õ:Op‚+ßàs/¿W³!×úyéò+\ÝVßíOù&:úXÖ Os ÛÑy/þB<ñZô†Ý#>{1ñ ÇËþgp´ñÉk<¯8Á Þˆ°ôeþ%ñ_ìoþcñVü—ã{(Ž—?Ž^Íÿê™Þ립@z=Dãõâ«ù}S¾ÛžgñmC\åÅä÷¦òšé‡ñÜ™~ç<öB?Lyñ1‰›¬øycÄ%êÿ®¼?“vÅ9ù!nïdúKÎðCnã—W»âÎÌcêÙ×ì(þï‡Û¼ò#î7¯ásg3>ü1úâªñòF‡•7 ¾œ}z˜wv€{fÉ ñ®g­ý"xÁo{.Ïðâ±WÕ#roòOÝH°ßúq×;oq¬}üÐ=Qžå?íçÕ·æw÷ ˆ#u~I|aÝ[;<×=»ìMßë×-©G>º|Wåìƒl¾¿ð«y/š<ÒÿcX÷ÛÑßÄg|îâ…çòÞøôÇü}s¼>ΑÍòWó-®Òáí ÿv4~jŸXüqüDµŸ'?þ°C¿R^?ì{æû ™]”×H»öE‹oMý ÷Ù×®¼ŸéOíË‹“óýÞ¾:^Ú¿ªgq>ü^òb™û¥›ÇßgÕ³¥ñ÷žÔy¦qìO¯¯ntXç…áÛé<;/v6üªîû ä¿ç2ðlÖ{$|^¾Mú>{òRž#§Ž4º±ßh_„]U÷"¦>çëÜp™8!ç¸ÅÕ=œïáß°:Ý36Á ~†àüÇCïO†<ùò@÷óù•³Ê¾UßÉ,¯‚üÇRþ×]—?=–Wœà'‚ÏG›ü#¯{¾Š÷ɳ|%ò¿ÊÛ霿æ©gc—E~ª×¹qæG/­×»êùø¼ÀʯWöGÖU<êþ¬ }›½*>Úwö­7ü¨s»ù½ÎIÙµ‹ûŽò½sšìù:÷™úvõ¹²—à±xv;!öNÅ™n ÊßÍ_À? ™òÆE“³ä&ÿŠûHùOäOwiŸòLê÷w‚]’ç¶Sö£ù6ù}Ž==Èaß\æ·82–üdaéÕübò.•¾‘uÄ?åpÎ-q›U_åë Eí¿½q-¿ÛŸ´ßó­¦Çv}Ö¾’ûâå§×¢Wq©ÛÑ{ðž$þâê÷£MoÕ½˜¯ç½eߘß#¡ó{Û|òSÒcMòæªø-®—=°«Í£ýKv½÷+ÑØ=ÑÏ+ŸM÷»ò慎<@_ôð­ù]ùû=Ð÷ù¡è#EWùÞ>­8µí£~+¼/nàmøÛîóßôóxá£ñÜ2¼¯rì/ro÷¸¾òŸ‘_='»H|6¿\ÝÏÐèf-ó`Ÿ“°ÇÉòÃË'~ÛýSÝÜò¦âáÝ t>ðLà)ü'|Kü"ù~_Ãïnìù(z“¯¦â¤É+xXû!™û÷ølÝû/ŽäÁ"ï@ç÷»¾ÁzÐt‚\¦cö ¾ƒNÏ^ºR`qi³Çæß‰~FŸ:û%ûJKíØŸ•ÇæÌÕõ¤Ê×=xÕó3ÁÏ&\ä¡&o›þ/NRž ú ¿ºx”ñ¾ìB?tNðþØ âÇì¿ìÈ3ú£ÿúÞyq0uÏ›öÔ÷ôØ.t^Ñy6ñuï5ý-Pœ¿ƒýOã³ïÉÞû„âlÊ·Ýï)c7ºoüÌ7¿ ?ºù¨üÁy/…Ÿ°îuLyùöä÷ºÿ9zŠñËÓç{ý”w¯Ûµ¥h7å¬Ë6xFN9û̵ÞúØî%«~ˆçÝ~Óÿéïð­Ý«\þ(v;|Ü6¦‹ Nðf†…ßν{F§ìöM¡Ÿûš}]~…ÆOw†ž·¿;¯Y|„Ÿa–çîûFë¹B>É'Ìî×ÿ´WqC›‡úrn´òyVÿ׌w²‡&8ÁÌOÄ—Ñ+èøCÝcKoL9~ ô]÷I¤œ|Û›œ¦§¬¥¼¸…Ã=¨õ£_¹7‚ÞXq+ч­¾{*ü|Gô{z·¸JxPû‰Í¾ ?ÒÓŒôÚÅùû/ö)åùOÀïîãÐ/ñ>ðE{â³Å9¯rÿHŽ}¿ò[Ø/¢òoÚ×çŽ\¬ñ•ß{¤.ôà#™ŸÊ{­ßy–—~_÷DY¯Ì»{¦íñÓÓƒù£ùŸù»åßV?½zíÆö»Þ(°ð]_áÅþüN¯Y3Ïö ÂßÊε¬7>ûPô2t ŸÙ¿÷Œúñbí—<šgöWů¥ÿòDzí鿻ξ§}Z÷ܰ£øÐ'½­ß“KÿcŸñ£“ 6º*<5þ”¯{jòñ8W7Ý—6ÁBïu.€œ^Ÿnú‹ßí#n ŒŸ©òâØÿè¿òÛ”_K<‚ýÔʇ–ßá5zÐ;‹\ÖOþ,~&ò™œªóB©ý“›î¡ŸÑÒÿÒçZ¼Ù"î(õÚïS;'2Á ®”ÎÉ-ú <¥/eߦè³äd¾sºiþʧàçào.~AOéƒÏ,òýä»èu«ž¯ ~>`émô[yJ’ôDtaEÜ¿8 ø¼-vÊþILðð‘¼}¥týãÖ¼Ÿu®fé| GÝ{—ú+ž.õ|¡ñsv9;Ï>'¿ypwžéaâÊøR®ê¥7¹'5yÜŠþ úãÒ¼Ô½éý½¢O~ yãêœ;k W½îŸW8|¼ÞóS;‡uÙc½<{Uþ¹ðÃ]CûêìvñÍÞ'¯RÕsdx¿a?cç×3»`GêcÈ¿ÀNï7/öçÝ›Mnð:÷0Ô¿”ß°âýë\zèçäx~Ê/Qqåmžéyܧ3Á ~`ÙåC<È‹ó3ÎåœÉïîo»º•ýØÂOøíù»í‹ÿãà¤ïMð³ ËÿÍÈïÞσ줊;µ¯EO—ÇŸzÚ°}rÒ}ŠCÞO,pù%Ñù8pqž»öûÒ/÷ÐÙÿ²ßü£u¯9>%îžžê^!÷Bš_ò¿âÓòÌ¿cß͹-ûeÚå_¥ÇØ/£7Ó“»<Ô‹?žL;øæ‰ŒË¾¤ó‘Æe_~°ö¶ùt/ý^¿Üô.|7ß;oZybòìü$ÿ’y«ôKc¼[:o¼3õñO‰¿¹3ïw¶~ö¼¸u<Ïòµ‘ë›]/¾€¾â¾è}Yy ÄeÐËì—òó¹ßÝ“ãsâÏ”ŸpÛ$o&xãÃòÓñ ãÿO×ü|Þ?Òè®ò'à/ˆk×gß”žKOÝxã 9?^qXèŸßþtôìž—ôKùι’3‘wÎó¡ã/§ñ^êˆo}+ýwŸËà7}¦â±ä!ÇÇù=½·ÿ+ŽŒÿÒü™ÏøMü±Õ?rÿ5/ä€óñüúêß!ŽÞ÷Î}¾Ì,në±KÃ3¾(¿Ù¡È%ã«uÉwûZ=Æ‹¯Ã·Ê'“ç²ßÌkÊ›gãùZÖ£òä»™ù&/óÌ^²ö;ídzµg¾È£½mÞÉô¾_çžœ«ßÃúË…ÎwíorŠÝl^w´y¡/ðï·x¤Uó•V”üø˜s1É[\v·8zá¬ë#Y'úwíkä¹î̓÷êI¹¶ßVøVù^óøcô‡ê×cé¯óú]úJ ÷蓞¹–ßåA—öÿòcµýŸ çþ¢;òÁ|ñw óýYžW¤Å?³Ô^Å»¦þ~.Hmü «ÆÃ Þ˜°ì®‡}Ðæwù×È=rš?¬Î)„^Åy¡k÷4Õù‡ÐG«È{úÌ™ÀùÏ|H{GRÿ¹Ôo† ãg«sy/o ?+9,/¾{§À#Ïß?5´»êõšà–ŸÖ¹“—¾*/?ÿ4½‹>Üåýb>âÛçß~vÀ¿c©ït¾w~Þ{ޔ߫ÞÔïéÉògœL9øGoâ÷=ÿô€ï%Ÿò]Ý?Ÿzù»ÜpþÙö~¨iþÜßÐΟ×ïÑëùCæ `_\x.ý§Çg\þÊ^r>–ÜOœRâÊ/Λî÷³Ú•oŒÿ©î9éŸß_ºg(zÄ…—ýN·ãÖk½ï§ô ýº5|nëxþ+~þKãþÔw¿ø…̽†ý`¼üOwl°Îð‹½;£òêko'}*íôuâcçnëë¹WªâÚjþ^O9ß[þ+p~.ó=äÅþ劳¡7Ó“Ù¡g²ŽÎ+a/ö8_ñ=ä(¿;yåዼ=Þø˜ýòd?Ï'øY€‹}xzÎXÿ­x2÷àÒgŽ¢»Š ýœ ¿=Ôè-þÑ¥~ÐÛø½écê'ŽŽÞÄΧv:üûðX™à'x|Á>©sÈâHÉW÷ù¡Sömåó!Góþtø {X<è¾Ðë‰Ô/ŽeØO¿Xû[çó=±þ‰O~<íñW‹w7[q¿W×çê|µýk÷×±Åà3™ú~Ê/pSžG™ÿdÕýZ5¬}ãWŸºÏ†ŠŸ‡Ÿø[c:«üQâ8Ž}:ó<ÿÎþ¡_âsÄýóó—ßžž1Öj}oã+îI^ÆQ÷lyv('¯p݃è<Á‰Àâ‹êõ}ã_økî©ø ~›ÓáWÎÁó'9¿Yq8é—ûTì‹k·òtµ÷øª}A~µ¬{Í—8”‡Æ¿Wœ =ïÑ1¿¬}šêOÖ‹ʯÄ>³c}ÄE_ñ@™'óÁ¯'~Ìûc‘7ö%û=%ðäðûãm­?yD_íç_w]ÝÏZqÊ—ëña«æ7:\äYAOÁ'qWâÌøýщýkçy­GÝßšup¿ÙÑ1TûüÔÊ;ÏâþsùÈð[qÛ~§oÈ{Vçœ6ÀŸ~_Œø3ã׳=õW<`Æ¡¿Þ‹Cð}®î£ ,¾£¿©ŸÿÜxðó~°áwË—½4>ûŠúCd¿V¾¨ÔÏäùá÷¯‚ŸMXrðpäç~ò)øh¿ Ÿ°¿Áˆ_¸ö¹É5òWœ€<ýü9OþȯˆýU^Ó@çcøQ*Ï ri_‚çî/ïg¡ç Gý¢· ï{Æòp‚76,yá~iqüyä"{ݾˆøkñ 膾UñÇ©÷r"x¸c¨oÕãŸàß—>è1ô:û=ìú}»ÅƒT<ä¡Vx†£—†gòÅ9Ft²þ?Á¶Nô·ãá?§ÂŸÈerÜùñÛú‰‡woÉÛðÇc#9ÿbÙ·ä;½Òþ…sz•×h„Çç¥~òÙúŸî;qÃìxþ€j'ýZògþ+»yõ{žù9*ïxÚñ¿‚8 çxÎ{nß»ÏQü¨óBöé_'R¯ø~ël_ŸÁ½ˆ‡3~ç*Uêóžf¾ê~íÔs:ú–~;ïu:ížR~çï`?Uõæûž§öÙ‚u~j˜ÇUÓíKÙ“ù·ÎüMgèÍy¦7Û÷t†ÅE¯·u$Wêþ«<óS‘Gè–}Ë„Ÿ°çÉþWñø~%¡Sû¸ü_kìžÞ^,|ç¿âTŸøWôÁ þ[>ÛÌ[Í?;‡Ý‚OíovÉÑö]貞·gt`½è·k£þ=S~Aü<|pÕxy³Ãšûrð›Ü0ßô'ò‚\†Ç‡þœc!ߎ„ß=à9x¸þjŸüßžöv7¼8›vÕƒ~Ð=ùÒíeq =o§~Õ¾a ¿¿öþ”;™ßé™Ù'Xà¿zS.ç&–æ½åhëq‘¼Xú½ç_ WøÖý=Þäàž«×;Á Þ̰øÐÑȉ3¡[r¯äýååw¿\ú{uŽ^ºRálþÄ›?Zß÷?(¿éo,¸ÈWKn ëWzÑÃãõ,¿pÏS)_»ÛóXÖý6i¯Î…¤u~áÚøoÙ•§vhw1¾¼ß¦}ò(cŸ£ä¿9{nçò†]Ư¬ž¶ŸUqEÎñíÏï?`½‹¢ÿÓ‡‹rÿ7¿/=Æùô~. ¾Ygvÿ†}Lq ì#çü­;øõIo˜à?9ú½‹Ûäoà¯ÀìGîltÍnK¼Nu¾¿ŸÀ^pNt-ÏûÃOv†ßÜÚø‹x çáê~OåRŸý&y|ØSGüä™òßà[ý¾©:ßÌÛ]e÷m`ÿLðÓå7Û=šûH_·¬WÝKŸR.õT¾üΞL.Ñ;Äï‘w•_ >Å¿ÀŸ\çÖ>õ¸7tµ+åwµzJNú®•ïù¨ì'Þ§¿âÛÐÿŠûêù!Üg îëÄ7*rÞ¤G ý«u«|¾N¾_k|Nü³ß¯ó`ü=æc-óÆßYþÅ<ÏøG+?=9ãæÇ•·øÂ³>²íGØw ¿Ÿ…i·ö Rý‚ÚgR>í×ùfxgCö™ê^Í”sO {gÅqœïãÌ{öDÅcYwí¥^~\þ5qfðä`~·.¾àçC^‹åG¶ß5ÌÇ3µOÇ®(ÿl֜ڟúø¡ðû[ì‹Ú/I=èGþg~?qußü™¯”ãßOäQÛnœì?r8ß»ògðõÚð‚\©|FgåϦâC凨4[ÿ[ª¿!רò‹ìûxô°ÊSbúhÚc¿j—¼>1n¿¾Û>¦S|ê›ø}vÌŸ+VãÿúãùÁÆ7*ž™Þ‘rö%é Î7Ô9ür$~vûC šy—ì÷éû¢òuo¾£ÿÐC´÷•ãTúaÿþ± ìg²Sœó—7Fz9óUãûÞ¸>vÃZà0åìËšzæÞ6¿ä,½’Þ2Ž¿¸È{;žŸò¿Á?x³5í’;3OòEë¿}9òÖx2ÎUó“Ϭøyü^Чé_ôúý¡¶>ížÊù#yýo)'>C_ãÇÛ¼¢onϳx÷üñÊ›þÆN®|KÎ]Ã7y•ðøEîøVùeSÿÝÑ›øÌ; ýÔyÏ<4^ô•ßåkfçU|Eë‡sø?%~j~§Só/\cþÑ Þ˜°è¾“[ý^¾íí?å’÷¨òwç}ÝGçÛ¾óWñ¿Ë†¾6:—ôux7Ô—'¸~výÆoéwE¾8¿Â/Qçðƒoø½s!ÖOþWqQ§.õË—ÖÎC½Ø—㇥?ÊWßãcè5ø79å\œ¼cì|õáÛò’Cû‡yXõ:Mp‚+åè¬Î±5»Á~~ÁŽ"gðm÷©…^/¼F^49ÆŸ©¾Myæ÷ìñbä‡<–å£_ ¾æß¾ðvê§§‘Kìãým\Œù»|Õëôy‡'#žÝ^ç(²¾ÎQyv(·#ßñÛËʾ©|#ýÿûñ¿¾XööZÛcÁ~õò§?ü·üô)û*öKÊ^‹\&‡í пœÿÇCn:ow"Ïü&ÇŒW»ìýãW6/Îí± S­CåMH}üJÍ\5¾|^aÅ}±gá?=ˆþgßÎïìøðÁòCnMyxè|2½«çs¥—ÝÓÚ§÷ÁÛ[ñÿ|Wy`Ò/þ7~5v îmc91Á ^}ØçÇÔyʲ¯+ïòlý¯ì©î‚§è‰]¿]ýyî~vMÝgy¢zàgº¯}·¥ùÛ*¿zW »ŠŸ€œ#—â·(:C¿{š>Vúb z'ÿØ…üõk©ŸÞg>úýèº×CÎÐO}ôÒ­Oü|«Æ¯›Òƒò$ëñ`{4z€¸†Ç†rõ;½¢ò/e=»?Ô>:ýªòWä;úŠýùvÅ ç|¾¿8·›rèÏýeðisèŒ?„ÞÇ~¯A_"7Å»’_ôIûðî+À7ŒgGÃsç‰K¿Ò?óþLè]¾3öø û{æÉ8Åoô{ Å‘ðëœLýÚmûœàGâø1ûlú Ö=õÁOr«åmª}¯!îga³3Èr…}h[Ü9‡ÎO†îú½ný|žóåt~˜ïöŽû;Á ð¡â½fýðUùJNOصûáM¾?’÷ììcÖ5ÏöEÙéüÅâG¼¼X|^™üâ øµèüÏò0Èi_tOêqn~UüIÚgÊ^’'¡î¥%oò½<ô"çÇøÕÄO˜·~ß­úÓ~èJüêcy&7ËOÒä©þˆ;‘g›œª{#ólßvžrò7dýV—7 ,{äÜå±ÞñXæùT øÑs)^Èù“™ÿÇòž~OŸÚú°~ø"ýƒÞÏ?ßðÝqüï3Ňé5gÓtI©8˜ôsG곟ïñû˜}¿âDéAèoÌß÷÷ä™>ç>RñuŽ åî̼®å½¼Xô­Ã#ü_Ä-ìÞ×z&ìÒ:£¯–×¶â6È×8Án˜Ï³òÆŽ4<'ÇÎ…o~çÍȷЧ{2ë~^ò!xÈ_PqâäEðëðÕño‚œà y€FzÞÅÒ{?Þ~ò5|Cœ²z¶õ,µwhl÷Lpƒu¡<ÜìÄØõL’gýl։ܗŸL~vEÿȳûc§üœà çó_Ó«}ö'~ÐÏœÇs®ðô¥+ÎæóØoüÝì2ù`Ø;§SŽÿ]t>üƒô”z·ŒíÓùý¯¸<öð+ŸMýü§¿ýòðÝùËc=µâ.Òϧòüíôçtúç>êyÊýDÚá'<=îÏ?a–úù—ð=q{ø‘¸ß»LÞ¡ý£zŸ)?¿­ø¦=yo•ß?ÏGÒOý£O‹Û‚‡uOúŸ{j¼Î}Õ{¼äƒsXôøµ”w¯©üƒâžù᜗æççÍßí\?›ùâ×ã?(ÿVÆÉî¨óòè>ýq~ŽŸñà¨Ü"oÀ…üNÎð;×&>/ñëKxcÝÈÙcÑ«Å%ð³B÷m>¦}ϕ¾ßöå÷7ü´T>Þ¬oÏÛ!þ Î•æwqö%Ñ>(~Š{÷sŸúSN¼Úö<;Dz§•SŸþ“SöØ…´gýt´Ÿö{?Ÿã{çEë<:zi¨÷¼Ìû‡›^&Γ¾L^ÐçÜóPû“ìmú»¤î©~’OâÒÄ­Õù|»µg\ôœÊ;um|ºògÓï»¶Ÿï¼ùTù8òÜònW½æmKÊók’¿Ñk—æ›=ɯxÏUãå'x]|Œ=„Îç¿»jçˆ^JN”ß‚^x*tpbç˜É7%Îô‰A ®zÜœàuщø0~áÇCñCW¹ ‘#ç.]y1›?vy(Ëwäì/ïù«”ãùnê;:{bx¿êy™à¯‹ŽÄ>~éÊ‹Ùü'‚ßülOÿÏE^ˆ+u_ÖÙÀ'q ³ ©G}óÔ/ÿüOòf‚7LÞÖ‹ó'~f çcàùScùSû]âOE±ëüN>=>ê9›ú ]I}?±N7SÞ‘ ÞTp~>ø-¾„NžŠ¾%Λý/?¸UñüîÅy<~r¨êIýô8çóݪçe‚¼.:²ßIû±ù•fK¿;tôÒúï7xáéèg‘GŎßÑ û‰ÿá;?3ù'xÓÁù“oxLŸÂÿŸ Ýüø–A®râêý öÈlý¯ì ÷{Ö9éØ9ò8'šsŸuï£üè(þ¸U‚üPtãÞžìoÖ{òÂ>fWG—®\ÜG žWèiûžâ<òþ\ä“üÃunbýqŠ˜àM çOŽ÷!ëž±yüiäHöý#·ž)?óüÒð;º+½.tôS±¯æó¡\~_õ¸'8ÁD7?=­ü¡qÎð' þëã!ƒYù ì ñ £§CÊåÃU{‚üHtóÄ÷~”ŽU^®î‡–OJÜíÉü.¯šøkôá»§Þè¬ôÁÉÞ™à‹æÁ÷§~~Àã§~iì ‡Ùyâç‡ïЇó²'/ýØOæY|èå{÷ü=¹“}œù“_z‚Ÿ}Xy>Ÿx~€§í{Îòþz<ýíÛyú“ëdr±äPʯz\œàG¢‹Ÿ`wDnˆ`ÇŸž |!o.C‘3ò”|[OÊÿ”÷ONt3Á›ÎÝåÿgßsþíÀ'çW ¼gŸˆÿdïDn8W nÝ:˜ŸWÏÓcû‡ßA}±§V=œà5Ñ‹}”²cbï|»Å œ¼9Ågqk'Æx?ÿvèŒß`>ÚñüíÉ0Á›Ö~ŒüºÎÅ80ÏþЏÍ³õ¿Š#pûñ<»_ݹ4yޜǖÉ= ߎÁ9Òv^n‚¼`åݲŸ)o:¡—9OPyµúsèD>ôd_T>(qoÎW‡^W=œàûÒ‰øþ3—®¼˜• äç‚ß…nœ‡_Ã^©û osÒ~OäÏ™À#yÿëÒ>¿ôcS¼Ào8ÿñ!.yþô–þøóW~˜Í}àß,qÐßÜp>@~Tqösø™³/“ú¹âá~à ïÑÏ?=Ù;¼é`éUô1qhÎËð‹Õ½\ì–ÙðüXöiÜO$ÿ€üR ú~Ýóëß­zÜœàG¢úYù‘çÃóã¡þfþ4ñ™G^ûל³Q^þkçwäƒÿî/õ´³“ž6ÁÏ.,»>y¢+ÿ£{ùÓä `÷ð;Èφ嫎[õø&8Á뢇“±GØùâ—í·ð«UžÚ¼-Ž“žçœÛÉ”ç—>¹ôäð~Õãžà?Ýгàémy>œgòýˆw®}𔇿=ýÏþMâV=î Nðºèät“'%Ÿˆíôlýo~’9z—¼ÑüÊò¨É %ŽàdèñB“7OMöÌo~¸œß–_Œ¼‰]"ï:¹#ߺýÍáþ÷‹‹û‹b¿7âœïAǦ}Ï ÞøpþÔlý¯òhŠ»D/?×S¡ç:OK‘'ÊoöÔ/Æþ÷œ¸cÙÿùîóëïW=œàG¢#ô@><ú¡ÏÑߎ5¹ã>)ùkè}öw܃"îŸíÛ¡;÷ãžâÓ&xóÁ:¿\ûšâ7OïÝß#ÎÆý<fC9ïùÛèaîUÌýCÉ#ýËåÇ><”[õ@÷„ˆ«–েöV=œàG¢£óüi³õ¿º'^õcÏçý¥Ú·!wÜWêÜè…ÔG¿“W`½nˆ«žüμ©aÅižžç›grç@ê;<ùÓ&xóÀÜ{ýb·/ÊoÌþ8|?žòûší«)Ç_ÀO-Žàñ¡OûFkù.÷‹¯z>&8Ák¢÷EG.,ÞÇ^90[ÿ+?ý~~~èmè‚|á ˆgã¯C‡ÛùéÆòm‚¼‘á"ŸÓ¥+/òFþYt®wf_‡ìÞÐù®q¨¼Îå|ûÍa_uOÊžâÕ&øÙ…ÿ).Íó>~èÐ…ómέMyçm¾“¸ù‡°êñMp‚Ÿ݈“90[ÿ«xš»B§zêœ4}MüZîÓ]õ¸&8ÁEÉ^ÏOþRüÉ¡~dù8ìgº×fÞ³—ä)´_Ê¿íœÛwñGýoÇݲêy˜à?Q:7`ßÓ3»GþZtä}ù£}Ÿ¼«×'ø¡èátøÿÏÝ+à>r£òÓ\Û;§/ ¿ŸÏ{¿“_ös~âÍÉ0Á›–}îžq7¿.xþxô-yÖŸÚ2Žˆ®ö?å›F¯sgÐ÷ŽÏâéÉ0Á›Ö>¾}Í'Çþ­º7ê|ð¾Î DÎx¶_z*õ9ׯ¯}4õwòLðós?Û‹•ŸæÜˆ^ž©óîñp¿Ô“üÑyþÉÄíœÉû'':šàkÿò±Èþ2öȰ/s±ÎÈ«ÁÞ÷^<ÍîÇråxžË@…¾Ü³»Ÿ¿zг™àgÖþÌ£³õ¿ùý‘3ÎÔ¹ÐÇÉf}'ô%ßçñ‰n&xóÀº—€ü‘¿ùÜ8î¥ô1q9öoŽÄo°/ø¯ùUù È›<ç¼ÁªÇ?Á ~$ú™ó“Ñß.ègþÝèeO\ºòÁ"ŽøµøâŸ“׿øå±¿€~öääO›àÍvMäÆüù+?,â<]ð'³oì[îOùƒ®yvq¡¯¡/þ8zÚÓ“ž6Á›–=Òîé¬ßÙûð¿òÎÖÿê\z9~¾×ô´ø_½êqOp‚‰n*ïÿ–ø˜ïí{yoäy§É/Àž¡¿‰³ÉyÎÊ's£«÷'ø©Ò™}y œ#`ÿØ·Qî0ºÊ~(ûÇù“ÓþÍo~XyoÙ3ßù™Ä9Û¿Ù'‹óOå»!žíbщ}ñÑO’K©?~ºU{‚¼.:‘‡æÉ—üþîüʳĥŸ‡?Íþælø=ã)÷{’;ò:/z!ÏɵêqOp‚Ÿ*»tå?ù9æo‹=#-¿Yüs#ÎfðC\WºêqMp‚Ÿ(Ýþ³ûÙ7üÐ'þS¶süÐßnt•ûDW=® NðºèÀýègƒ÷ÎÝ8GódöEϧ?ܾȳ—®T8«{ ã—g½Îù…ó|êêþï Nðf€uÏ`å¹ ^÷ >³¡‹ÊË!ÞìÒ•Šf•ê±È•Óù=‰OCw''º™àgÖ>'úϼ;tðP£Ÿ yv>Ç}8좻ò>ynV=¾Îd¾÷Æ?9Ükq~›ùÏ|‚à[Ñ¥œü[G²â6öDÿ>½Ã>]Ýãx,Pœüž|?ŽFO¤}y(v§xà^Yýuì™”“Oö` ý=C¹ çK¼þZ øÿÞŸOÏ¥y øËº:ýþ±èMüÄäÈÙK£rKõÍïÆË_à¼Áî´#žÀ¼Õ>jæs×ðýªñòó ¯í¯ÁÿsÑg½ÜC ZoôtwðxožäiÝü_K¹ožN=Ι8B95àSõ÷þØÍðn-å¶æ;øµG?å—=¼CÇÇ/è§ø}EñËÑoÚ=þñì7Î÷¦ß­¾Êc»Ÿ>7¦š÷o}<ýø¬Ã¬ß÷ü=üóަ/?˜râ6y(Wò ÞD>y†_·Ï5òÑ—îlzRÖ»ì‡cy¿/åÉOòòþ¼ß¨ÜÝÁŸÙ¸ý=f\äáÁÌ#út¿ì=äsÞ³·nøz®éSèäh ûÏêgƱýýùI­Ïá|w[êy4ëy¨õgÊO~› =ËúÝÈŽ`óOÐ+É ö}Cÿ÷¦ü}y~$å D‡ôɽc|\´“rîÙÐSC¯ÆCïÝ‘ïÅ)ãïèéxÞ?xX{ù^»Œç¡úy4ãfâ3í~ð­ãìÅzOŽ riÊ×y­xëœ ÿΗ‚/{áÛ‹ãõwÿðÁàKå}hòcW¾{"òf^C.‘ ÍN½­­ë¾Æ—õGÞý/òCÑ[ø È‘2…oÆó…|w}‘<ÉóîÐ]ëoý]Ë{~à'~iLgô¸£éç©Ì?¼G™§ªÿÞ«Ë›ò;œÌ÷§-Y߇ñ#Ïiï.ë=<¯ot¸ð‡6ü §EˆþþLݯò ½'óŽÏ{þNt–øù7éô쬯8zÚÖñú‘%?èç^ #v ¾»þfô*ýãG‹~X|cgÊÓ“÷·òôæ;òžº7ßïןŒïtèí@Ê›§“c¾±jHŸ®çÛ7 StÉþ³ŽöQÈ8Å)t{‹~9Wví¦|g½¿œu wÙ•øšõÁÜ׸§õ?²ø&}‚ŒTüRÓkñË=y/ÞïkøpÆÃ|.yrOÊ™çv·öSÜ‘çÃé<úŒédÁ?3Nö8»áÎôótÚ#Ç´Ë`ÏÜkœ)gpWÊÃãàÇ…·2?êÝ“çÃè&ïÕë¾³#mÜ7s(óxvçX.“oöóñ-ýb‡Øß´Ã1?Ö»äM vÙ™uÏTà‘6/{Çô2Á«ÃÂ~ûwf¾í‡²ßé;ǃGìÖÚÉzðÛ×øvÊíÍ3¿|w÷§Þa½Ÿ)út%þßï‚©ïöÀã)/ÿ„þ¯¥<ýžü(5/ô>z û¿ð=;…„àCƒŸìbÕKÝC³Ñ¹h~ºÓ©ÿѬËöqùâ+u;zOÿj}BOôñaßóxÍÃÚ%÷&øÉÀ’ø»ûøì7ÒãßÄM²·Ñ/ùNß¼-åù ÑmÑþž÷ü‘ò+ ý‹»$äЮûè«?1Òs^¬{nÜÿ´_¾â6õKOú~‡ï4ùžûožá/]õºÞ,P¼ç ïßÂ×JÙèœ,¿=‰ÝKO#7ø}÷hÖ‹šœº>Âÿ”ß•÷ÛàiÞo´¿zòé•cߟoÇÛ8èµô¹ôï›c}¥üüyìBqJìzÖÎ<ãã§B‡§3^úÙñÐWÅYÏÙGäÙ…¼ÇÌÏ£©ç‘ÀÃ)äÙqÿÙ öoö_>èû«ÆÇ ~8¸Ð{èãy†¿ìAøŠŽØ;î}¥Ç³ãøÙ ÷G^ÁWöþ–à%y`G\ýo¾ç×fWè¯ó1¾Ç?È'tv’\!×R^üþ€Žì³Ù§CÏGÈôŒ𝿇®yß2´û©­ó.úBú…ásü®žÍ»¼Vì=~£ÚŸ£·æwr–C\?~ü­|¿Hÿð¿CÁ+ûðaà7³.ìF~‘ÚÇ~°‹Â§J¯a+ô&ú¿†y©ýó§Çr ^?ºÙ~7¿öIýÉûÚOñ^=Úor•ÿ­ñçÒÓj]Í¿1z4ÞòŸ<=–£¢ÛÔ›X¢+v'ûŠŸ†æ´uÊwòB£z:Ôy¡øË¿1”[5ß¼ÑaÙ·ƒÖéëMÏ€Ÿâœÿð={•ŸÐzÁwz¿u׆žèuøê½mÝíë‘ÖÜ>ÀžèçÌï_|e°#¾•q¢[ãg_ó×ãï¡‹šO|]?’y9•þó+šçº=õŠ÷Ç—È[q{½=û¬µšzâ¨ø½û‹NÓŽxiô¸}¢›k¢üæpæ]\ÊCY÷µ”Ûd}ȳ@üˆçÀ¿žìlòï¸çÔÈkv-=G{öY´·9õˆ»G?ì"þoqBäy o2î ¿–vøÑèìrOMñóÌ—x‡y&wÙßä1Aê]Zë’ûÓ–~g¿Ñ؉ü†äâî6û¶Ý²g(·j¼¼Ñaáþnáå}Yçý#~üýEü½Ýå;úšïܯg½ðkq'âbìÇkŸ\‚ÿü»w7|°of?ÈyFqxöCè÷Ú7þ£^–„?ÀCôÏq÷¿JO¤ïÚgBïèÖ> þTqè'ß×¾ù˜ù>ØÚwˆÌ;>Fžê?9üP«‡}¶AÂ;ÝÀoxšyžå™ÿF<®ólâàýŒ>;¥ÚÎ÷.üAì&øê^ÊGÓ¿›xÑ:‡xoäÙSoŽù;=ÃÉ/vûÑ{qkä‘ñÓ×úþ¹ù⟾{<UŽüKû"eW<þô˜îêÜÄ«ü½í¹ûù|GÞì·[qöMÙgâLt³:dψ—©8„à;ýüPÃñôø3½­öȉÈq3ân_íÝú:ÐÚ9:¡iwgêcÇ‘¿ûÚ³þ°¿ø¹È rðøçÇ#7ð÷GÒ¿ã©ïÌ¥zÓÊ¿,ߺóHß"_2¯~ÙìKòÈ=9âõZú¯ ?k_=Ïüig³ŽðqGÖ—žÁ¯'ÞØú°gáíÉQùËÎ%?ÔC¿rÞÝ9# øÙYkMè/?BÑkêÅé—ïÉ#qSÙ7]ÂKr³ôÈÀ£™/ú‘ý(úžù¤Ÿé¿ó2ý‚/–¿ñ„yÉïåW¤\èïøÕåYõ›~=øó^Ü(.½¯/?/°ì˜Âÿà!{U<ÿÖ‰à ¼º=ßñ#GN-è åì¿ÀK~'rÇ}ì܇ÿòú_ùù ô“¼P/9AëþyûŒðš}Á>ëû3éwÚ“ÿÀ³}%ôw&rˆ<Ò_ñ1âeÈó3_ˆWåOà_3žqÕ²}“}¡UãÓk¿ ÿïÁŽ”'ƒ|ç?—¸uôþÅŠ§šÃë”ëëM/‡+.3ÏÇšúŽ/í§ Ã“è¥ß÷’ö>ý£ô¼Ø*?WÆYûCùþhæcÉ~Ð~êåw.9šßOåùþ)§æ?åì»°;äyz¸ó‘&ùWêSêão·¾ô\ûzg³nì˽ï/·&xsÁÚÁ×ù£Ùükg‚ÇðÑ9Xú=íh~ßÓê!Ä¢StýHä?ݰﳈÛÔnùÁ¢G¡÷§¡Sç3º=r†ü¼4ôƒ;Ô䄸8þq öÓÈiq6ø’}]ߟHù“žvMø?ø…è7ßhóLnÜÓø¼¢o‘7©§ÊñÇíoßÃÃcí=ûå@ »ˆÞ'fwÞ“7ø=½+ìú‹zìŠ×q¸Ã<4üeÚϬ}ßöl_”?»Î=e¾ås¶_ZùFó°8×»h1oè•üNùMè ·åŠ| õÌS÷[§?è—ÞJ%ÏÙ_'•~œ'ßÂ/j_Þ¤øXç–Òž}.yŒä‰‡'âe+î6ïÛïñöŒÚ?^þaøóh;”þ!^ñÇ:?i×òž_È~%{ƒþÌŸUø”~T^„|ÇÌÎåG6?èuÇ¢}ƾÿ¾oËÎJûöyðaøÍÿ‡nèc⨬ïžÀä(ýó0z§/5üªõBO)ŸŸÚ2@þy<ä©|vÖ3ãã? ÷’ŸâåÈgëÏoØQÙ¯[5?ŸàGƒÅgÉq"ø :$7Ø3ìbøÌo _ÅCÚ_$'ѯý t½3tLÿÂ/c¬zž>1=Äù ?ˆo‘‡ì9|߯?œ³÷]ùèÚúá³[ð‰À:ÙäÅþàƒ8z8¾F^¨_{ø¹Yçyñ»g|á'¿h‘œª}Ï̃8õÇàižùÈ1vyÏÆû ߯8RvµsÃÚ‡‡ò}ã›~Ç_Éïá¿q?xüòÐoõ‘7gšÜ¢Ÿ:ÿ*ž‹=Ã.ª|žä‡qÂ3ö5º®<ƒú›góÏ?ÒãØ÷ôBr’]¯ÿƇ_ØWà¯4>ñ6ü3üüäLùë‡~®šn?ë°âA+?•uD¿y¶îücüÅô±Á+zOð³ÚÁïÔ‡/ _XËïgƒ?ôú:—ú’ÿ‚þÏ/ÎNƒ¿ÝÏè==Û¾áùKC»~?šgþHrR?ÄMà_ÊþãKé¿}Pq­ð>~Ïšöý 'þö¾$Ž©ôð<ˇžŒŸ_Ž^‹›oëx²­ûX’Gu ÂW–Þ—5ëÅn"·ž|~x.h~ÇÚ<•>AÞÀ~â²ð¯ð“ûÛwÇÍç‹c¹{4üvgð9ù j<æÕú²‹øqà ½¼Î ˜ßün=òïTž·ÔoN¦žg­çg`·‰3oÊ9ßOß#‡È[t¡>qèöp¾«ü~y/.›ÿË|Ó'jß?ý(½'¿ÛB‡ðX:çÑjÿ6ÏäÊ9xgòñ@ê©ó…›ÍWê'¿÷\¿'8†µÏÁNB“/F¼>[þÞ<ӟ䟤§ÑwèÁE?ùÙž÷ò”;¿Bþà#äLOI{ôÐs¡ôIÎЇìàïüüÜÓÞZê«8Ÿ¼‡ïè«ò¡¡«Œ“ÃïѺe‡©O~|…}WçoÆtQëˆ~Ñ«ñÉOBŸ><¦ ~”zÿ[5^Þè°ø yu¦É[y¿à]ÅOßìOÀ+ñžä7»>±#Næ÷‚÷öOÅ…ŠS&_Ø ì~Ô}ãõŸàtí#Ћ­;9±?ë¼=¾{0ë²–ïŽd]Îæ;û â"GaoËwƒí±—èW–gþþqtVù–SNÜdÙé—8Fü‚þópÆ·6úþGâÌW~çjçõKþÙ¯?œgã3óE޳ K~§¿ôÃ:¯1|·7é_Ö§Þ÷<Â,áC‹·žàóÄ^á§oÄ­ø]|¿}þõ žú½Îéàûð%õØO`G£ö†}çôù5Ù?ä½’}Ãî®}ÎÔã¼eå©Êï=^Ò8‘ù>w´éIü¤âœBêEgö÷+ïAÚ¡—ñÓÒùñê|îðû‚>üžzzÜ~îa×H¾/èl:GpS…ߘ¼!G¼Ïú¯²·Ñ—¸/ü¼Ç °Ë쳓+î!õÐkìïŠË± ÿO§’Ï)¿»=wy'Îæ,ù‘~‰G£ŸmöŠþeŸtÕë5ÁНtN>ôQåJ^ò{ÂSv2>;öC}?~êK~ñûÁwç¸ðïvÿEõ„®ùOê@þ1ñiâ†è»¶ñÅΫçóè½É‘òK6½ž_€š}$žHœ©~ìʯ&øá {k—†õçw·Â®&.4|ã‡âŸà®|<Á«Ú¿nõ±›Ø[Î×>û‡š~Ö½ŽôªÐÉãÏú:ªóÚiÿ1r&tMÏCŸüüG¯.oj_F›¸ÀÚwÊïôÐÌk}o\›†r^γ}]úô2sžÂäíûåùW3ò-硎—>,îéÖ@yd<Û××ɹ{ï·Zç|ç3;òki’ß+ïDü`ÞÈ<½zÔkàŒ^œgxd\É»UûÏôû©ÏzºOǹ0y‹¿I¹ ¿’~½–ïá±øÄ­©/°Êíkí‘C¾Ë<&ÿó"_wåSú}á‡ÃïÉ?x¼öÿå…W/üz%¿ó¿Íòìܨ<íæQ?ùé­¯vÐ'ùg~èŸì“»ÆóWë*î®ä¦yË{ë²?ã|=ë;ñcçƒå ^ŠÿÛ<^—*Óßz¿Q~wtÛ¼Áôh}¾4ÀOŒÿoùdæóóËïÖã“Ýó‹O¡W~½;ÆøStþòXN=÷<"-¿à‚_Në<Á€Ïß_´¯´c¶þW|“œ`§»¿ŠÞu˘_·kßóÈ„§×µ.»äøR\mí×~WÓû£w~`{ö÷Ü[¸mÐ?ê÷íä}ðƒßŠ^Þû»§éiðŠžnfKÓ3ìgo£—ŒùàŽÃ~$;Wüc×èƒð[œ*ü|.ºØšòџÿ/–>Foõ<ÐÃÅâóom ?˜oöÁ]Mï oÌ‹y¥o8G+¯NÓÞ9ÆòèËcü¨ßËÏžvìjý©ü¥ôø´{ôÒð½<÷ŒæyÁG̯8¥½?ûO\Ø©ÈSxYç{ólßîœùÉï•/1ïí÷?²¯ÆÊoRydáuúÕó?²+®¸Ñ;Ñ9•®g{S瓵Ûè…=y6óá¼SÅY?=¬?>ÀÞ†ÿÆo?ƒ~»'ëôÐh¼?rEÞÓgØW—G¯nx§ßw´ßŽõ•ÊïÔó‹OŸ‘\Ñö•{ ê¾Cx˜þ‰³±ÏÄ_Qy±ROÏ t$xÁï`+ï\Úqÿ üÑ?q÷âÛÆ÷j­ìöòÏÔ|7>B^W\p~=XöñâW踧Å:Õ¼…žfú‘r•÷50ûÕoûöîe‚çðhw“wk)g?ÚþƒøÅò'åwyUê\ßÕùô†óÚ󇙟;—ù¡ëÞøá==ÕzÆ?XzÎñ±®ß³_½á÷·6þõ­Fu8º×WrÅÉezDå}Ï{q‹§S#>¶ÈgËÿÓâWV=ï×¼>öùÍCË[óË_H¾[âøÝì3ÑÔG³§ÄÿÏWí’ÿòSÁ£ºE»Ãz¬z'xcÃ’“ôøJ.Ãkr°¿A?OÌž¢—¬gUûäû®±ž¶à“øý-òûÀ˜N§Ž×}·è`_øÒþÀMé×#M/¨üA©·Çéà·ƒ}3åú°ø†OU^¶ì ÷Xþß©‡Á®s¯ãõ»æþñØwg»¿ Š[ûêÕõÁ ¿zuùò‹s\èHü%¹üÅ”ÛÒèaëø¹îá‚ïìGrš\©ý±Vß]W—EÇêÛÔ¾û=x)Ÿè‡\ ~¾Òön ÜÕÖ‹?Ÿ…çýÞ´[v{Óé3%WÒû€öOñW~òä'ü"¼ô;}3í¢×ìŸwº)½‰ÜCöóÅ»±o÷…ߨD·î·^yçÒv)¿"ûGèú@ž¯Å•=¿×ÇŽ7ýþú(?¹o^Ëã‡Û‘÷‡Azoðÿ‰Ü­{ë¼ïr>óÊŸGÿ׆}CîãÇ×ßä~Xñ»Æå}¾_,O‚úĉ'€'ø¡õ'ñ­Of&8Á›Ö¾!¾)îùCÆ7”þ$®"úW틋äG±OðØ!îï¼ðv~LJÙ÷±ë+~‡\šî½¡`»ÙhÿêÓîOéô•-ð'^zÿðÕû]ô¢^ñZ·}¸qÖ÷ƒ¾u±è†ÿû¨ßkŸ5ø^.¼º`§)—ú&ZqhE¯±#jßó…¼ODï+¯Û-¡ÃØ9«Æ· Nðf†eG±·ø1È¿žÿ|OÞ/Å;†ŽÑ¯¸Ú[š]f–½ÿ¡8Z|gÃþâKì:ûö¥=û=¿Ñ÷áxٟٟ^®¿ÙöSøKr.}Õë6Á ^}o­ÿ}P9zm}·éêßÑOêÜú¶yÞÛ-ÿŠ8óá犟¯xgûëâ”´÷æØNø´ïÏ®ql ßÚœ~ç§qoM[ܘñÇZ>\x;óWû9ãy¬y¦g¶øwߟŸt.C\Dâô9~ïÅyz°uä—áOÑžçýðBòì|È«M>ïÊ>ûzÖ«Ý]ãœîñȼýoX~sÃóŠ‹Ìüß¿ýbýŽ r´âzЉxaqƒ[Çøñý⧬ø¹1~Lp‚73Lދ㋼«³õ¿ŠåG@_ŸÓ}¶Ú“w°òY7{¤îóÎïù‡ìûˆshyÑkþë¬fw8ǽË>ÁjýQ̺9ÇþБxçôÛ~õ¯s~·Î=ù>Èz¯zÉõ¯5¼qîÚ~6üƒ'wŒÇ;Á ¾/]:ïoo ý¼¼¿ Ëà2<¼5tTçÒÚ{qnî%]K9rB¼†¼£~—' ½ñÛf¿¶ö£œ'âWhùk+þ#ñõÝ|TÜR=ócÈWgÞÇT~ñ®-Ïõ/òÆ£{ñãæ]þâ3Ï|kÓx\7 ,~&^èñèë'øƒ2îäyYu'8ÁÏ3,ÿÜûHo=Æn ߢר_$Wð[þeçªÉúœ}€{"êÞ¼”sþN=ìûÒŸß÷LÅ%>ÚÊíH½k¬÷•xìO,¡VÞ¹œý :Ë_£½Ø÷œàWJ÷k¡{tíü.ºE¯Gtûý%úò;:®ó„ö*ï`Þ;‡ížûp÷éñf…uŠó+eçåŸe7‹h÷iW|†8t~˃o‰ïë_ÏÔþ ~ó7õõ|ü~‚œà5ÐyåCæß‰‚æÇÚ`uÃú7ˆ/¨¸Rz”{fÃ/q–é‡x|–?Š¿6çyê»é~ò?äK©óåÿ>^ñoî9q®ÏùZ÷’Èߺ'Ïä<<§ó^ždçyœKº?íÑc+Ÿ@ê­û]²þäùå> x-/lÝ#:ÂïgJp¿Šïø‡äéq/ ÿ§}:þù3èýôõÞº«{níû©§î½H?Ì9hÞµãüš8Jí>šöø3ÌÃþ´§œóG‰K©8ov½Ê¹,ýäW«ûžS¯ü6îRÝÛ°s˜yÙåwùUä=á?³Ÿ)ÿ ¿³órî»r/ümyZ>¯°âë7ÈSVò üu–¿Šc"b'oØÎÇø°!¿ÙšúÅ l}ÿòÈ¿ä)vÎþy–sŒÇ/¼ö6Šãrî&þ‚úîqÿ–ìü/ÍFå/Ö¯ŒÏ:TzÝÜäÿ®¸ÅÍ©Çzà;îÍÜ4î_ù÷·~ÊCà\쎴#_\› fÞðë[Æri©\í£fþë¾Ê<ßÑø&¾ü¨<…Žõ©9¼ªü­ãõþÀþ;ï:¾'g݇ƾ†Ÿkyf/ß* <2nq·ƒ½¸çXøî;t«]v¦¼]•W&õÚçwN–ÞbßæŽñüT\çCùξÍÚûÏcÅÓ[ë³/|ÊúêýÄâl+O‰q:÷KÞmþL_ªçýãòå×4>ñâ vfí+áCÚ§Ÿ ëõ…Ò#ĽˆW²îü¦·6¼qÿš|(ø ~(¿‹Þ•véEìþøû•«ãã†óEÿlù5*ÿÆÌ<…ÃSxž§pK›ï£_'ÿæÅ:7Žã8{èbÉMùÙÑéÖ¶nüÕô(øB_®óîÑ‹KŽ—ÆÛó;¿•ïÄÈë¸+tÓï?–Ï*z¤xíOw¿_è¡üŒ¡Ÿº×Ⱦ'{äPæ?ùˆ÷’^/ŸàÌçö¬cÝ·˜õ´O#Ž JžÃ¥zZ|~ù!àñá|¿ëÓÅß f=ä­t_žóøü\âÞð=òÞ{z ¾µíØø;¿Ó7Ø»üPgÒŽøzüz[á_÷g³»ÉQvù‰ðyßãCøômM~$^tiÓ>‡~‘ÏäùFðÊ}^÷2*—g~û/=_‰¼UÆÅï(Îõ襡?òœV^Õ‘~·XúˆxGç8õ—Bþ*_þ§Ô×ò"® ÍkôÅ’¿ÖI^^þ'üÊþˆyrŸ9[þ™¶®Ö|£_ÑON>ý£rú™%¿­¼ÉüXÅó½üØòQzϧŸåÊ÷å?„ß©Ÿ¿Q?»žO­|ÖiŸžHïq |Güˆü‚ôšØ)¥GÊ'`¬Ý‹T÷%ñ—ñÙgôØò“'žöxñ™=É¿:?ýìðû󈯿ütòPã'§­Gúíéø»…Ò|¢Gxp`(_x»oÌ>uº)ÿlƇÿòOÒ/þÌÈ墛ºO7ës!t‹?à·ø<<Xö¾§““ݾ~3?> ®8IvÈõèñ{Å—r^sÕóøY…µî›CÅGÃ÷ØáäÁþ<ïÈúñoI=ò÷ɧPù÷ñ·@r×ï…wä[ê!—àÙÑKÃ3{¬ðÿ!¿2rЍüœôrv™ñ+öwîÏ|œ =ÑàyåëoõðsUÞù¦/ò}ëï¹Ë‘;y6Nr¯ëiü^Ö3ñùuž¹ö±òŒÒcéòSˆûò]ñMò%ë@îÙï9M¾*Ÿù#/Ži?íðSÇêÅèaöá£õćðo~·ëÌ×=?›ïkœiŸ^ŸÍø­£û¹•³¿Wø¼©x¡ôûÉ_Æ1O9þxãO<9òŸmò–žg>ź7ùÖ”³®ä3ÿýlϨþgvˆyÎïì ñ…ö;íG~g>À§ö¯ÚxùEΆ^ä;Vzù÷ôO^vzyäÞrýsÇyÓá#þAøC/ƒßü…ø¿l[¿èþ`æ ~£{ý¯{‹‚O§SŸõDO§éçÖóØå¬s¾§×Â?ïío¢x Ÿ¬}Ò½Û…øÃð~Õri‚76,;«ßãgdOðjKð‘=E>8§H®áôŠγ•ÞÎncOíÄ'Ò~Ý×B?È3þ,_;®îKýÞ˜_íiãä§@WS<ôßæœÖ3öï—ðYÞÁÄ T¼Úúï =Oþ¡Yþê¼è[Á×yú¨<7üÚä}þÒÉÕÍäF`»‡h©ÿîCv.V=[B'•·xx_ßÝ2|÷±ó'rÕ}ÛöÙÜxˆšßíáCü½[õ?Þ!^ʹ~ÞÊcn~ó»ødö~ƒ¿K}üwô óiÝ£'N ßÛLO¹5õÒãèuüµ ½±Æ“rìsü›ž¡¿ô\þì[Ó/xÅNcǰ#å£ þ—¾ÈÿoÌ;~NžÀGëD¯×bÌcåK·óRÚ·nöKw·y–?”JŽYódõþq;%gz~Â~?³yÝ–ßùQj?8¿‹ßoù¶j¾öY…5ï΃õ}!ûìîÝíwçz_ÍûYÖS=ö?è/ø#|iñ áû‹<.â¼6¸¿ãšÇ¹Áùéâ{•8Ïkô*xiüü(èšßyG£¿óÇE¿R®ç‹ÀÿÐ9=p÷øû Nðcáìeü¾ìŽ1~–ýÂqÇØnYº·ƒßhà÷S¾‹ Nðã ×}M^ðçõøvMå­Û7µ_Alç…ñiäýŸ~Fÿœ­ÿ­z^&øéÂÅ}=cþ^ú ¿’gö€ø$q[ØS±GØ‘â7wæ»àiùØWôWú,}Ý$šžf?G\IÝÇÖô®ŠH9û8ìâÍ©ß>•ßÙE¥ß¥þø¹Ë‘ñ¯z'øñ²—Ýwýű}Svo?Âo;¥Î×87Äkß·ì˜q=œà¯ƒ^ùðýµÀ,âÙò¾ò®íiô‹>wµzÈþÔ[òÁ~öþ¦Ÿñò—Ô¹ýå—È÷âº]vïÄ&xå\ælý¯öÏé=ìú²óƒOä ¼B'ЧšŸ?Þ¾&:8hÿ@KÅÅ¥ùŸÜ“*ÞÉ}Ÿú#þî¾Ðÿ¾8jvKÝçÙÆ{ÀxSßÁæ§t.Üþíž±_r‚Ÿ/¸´¾i¶þ×Î1¿ä¾Œ>Ø=ìrF}µO?¼¯óɱW.¼òünèüÀï_¬ý›º/.¿÷<™uOk ý±ø¯k<ü€üáÎI§¿U_îý®þN÷0^žñ¯¸¯…½`ÿÚ¾X;‡_|™½ÝÏçÁ¿–u±?ÓÊí ÙçÑn—ã•ýú‡ýPû;ö=í_²ëí{ÞšþloõÛ?±oŸýß²‡ô‹? ]ÚŸ©{ÍWåÅöýxàþ$ãGßäþŠ›íça? ¿õ³u_RæÑ¾…ónö3àYßk÷ÛV|öÞà'|°ÎôŒòïŒñ¾êé~XþYúüäÃÇrâÅŠk6Îðÿ¥öØâú}WÚ8ù«Bß?cñyúÕyQ&8Á ~¾E®Ñç<óÓßJή…/ÕùìÀ[üN>±cû9=y;·Ï«ž›–<èú}bWÓ—ðyûlü¾îµ×Nヒݸ–òö5î¹:î÷¾Õû¬oÝ›Jß°_r8Ïã8Æ…>#^†œ"‡j\ÁGxzǸ¾ê‡þ'.¯òù“‹›Œ3Ïòm±»ø+œ“ª{jFzÝÅÚ§‘/§çW%'wä{ý¯DÏûÅŠ Ý\x{ÜßUãåç Ö>žs4òßÊ{ç˜åó†çôú“Ïß9\ù óÝþ¬»sq'RüJ@k#GÇ~?z´‹Ÿ;ç£Þ–'¹Ê;'®?g՗ÿ[}ÎW;g#ÿß‘fÉ›èœÔ™·‡Ã—ÈýÈyœê§xQçtä;¨8»Àí™ÇãéÏpGß^5Ýè°ø¹m½=Ÿ…_æøUÙG³nèãᬼ9ÐÚáwužïhÃgåê\b~§§<”gçÂNrá!?1ýÆùq+â¸ÙMø1y!O‚ó£â.å…÷ä‡{ËØqð›¿ÉëÊ~Œ_«æ*õOñ+Ÿ)Xx~ ø`#ùÁ+ܽ ÏÉú¹x\yÈä+aÿV¼”cÏ÷{œÜ§T÷L5¹Ãî¡·U>Þ”“÷Õ~â¾ô>«Ÿ½,‚¸hyUíÛÒkÔ·6jïŪÿ¾|OW^ç‘Üý^åq6¥¿gü‡óÞ~¥ñZŸøÏkýú³óÙücæÿ‹^[åíÉ«}vÕxy£Ã…È®²žGÚºÂv’}ú=»ïøå¡=ž}#Ÿ"yƒ~*¾á»€ãù÷ _íÿ³·Ä‰‘£ôHt@β·á—|b[~Õýz©÷Pè…}…ι6¹bßeÕë?ÁÏ7\äme_ÍÖÿ*¿æØ¿³È+M¯gê;ú]öo«µü®¼<Åè¾íO–?¢ògNôòY€Åw ߦ·ï~ð/²Ä¿Ô9øàßë>­ÔWyþS}ßÊ=–ì©ò“+Ã÷Õ_vø+òG|}h|ÓÅŠoÜ?áí'ø¡ù:ÞÆþ™­ÿÕïì|qšäЖÐcå?K9÷¯•šýtsÚ µÿÁCçï'¿í÷°¿>âcÏ,ø~–g~zñJäsÖ¡üPÖi¦@r\ž ~#÷lÓÿgX÷ògÕ=’c;¡â•ôŸÝΞÿ´äM»w½ì ~³[ÞõûžÕcß¡ò„Zó>’W‹û:ê>ÇÀ])/œ}b_Ϲ3ø@/Ûšòürì4þ ö"ºqC•‡oyÞžßµcý›ÄøÉWûÕuùhœ‹< Ýo OøÊÌïS~ ~|˜Ý?ñ'|]Š sÎ]¢ŠKD÷ä—ón‡ó;=”ØÑð¾ò7¾È‚ߢü‘ŸS|ȤÇ^ˆÓµ.ìZüM\3þOÛé÷ºÚw¶_ÍV÷º¤^~7~¼È·ê×=­þÊKMÞ©'ßíÌå¡~oÆ_<ø©Ÿ©xò¾Û×%Ü¿Ã?ÏŒC|3¹y÷ÇÔxùÕÝÇA:Iå÷;>\ýŸ8Õ=5éogJ¿ç??üîGÝŸ–ù;9^ÿª×ýšÙ/©÷ó Ê÷^¬uµnð^ð³Ò#ìÿÑOà|£§U¼áE73ÑÍûÒMù?r/{ÕC%·¬¯ýcë´)ý=”úÌãƒãú>°ßðÍ>Ääe¯rgÒèÝ”õ¡G³›Èwx@Oç¶ûêí—|—ϺoI{ä>;«îKK9ú»ü,ö9à-º¸«1ÿä}ÏA?°/">—}÷À¨¾ËÎtßbçø³èô#øTó™ùÙžræ…ÝÈ>`W²Óà;ª­C+µ¾è»ÛoîÐŽù{(íÓŸîÍÏ‚þ¶5þ0¶_ûiwµvÙeÖ·Çßâ#ÆÇOï¦ÙìK_œÍnùËï}òõ÷þ÷ÞÏ.Îf_ø=ïÁ¿Í¾0ûÒló{ðö§~ú‘Ÿû¹_xä§žø©GþšÿÍ_÷³¿ýþ×ï½ýÆ•ÒóÛþôC¿ñO?ô¿˜úï®üý÷óCÿÈÏþ‹ÿñÏþK5›ßH¯ÿ¾¿ô7üØ_úæÛþ™àÞ¿êì õûÁç¯üý… ^Øû‡~|ïšßþ͇þÈï¼ôæüî}àøÍ?Ø?äÿù¿å¯úóËüÑÓ¿á¿ù½÷þ™ú~ï¿þÐþ¯?ôêüáßñî?üè Í|ç?úÄÁ¿tû?:ßþÇïøßþ]GjµüOþàÿã?ùƒ/Ì=ñïßóÞ¿ú~÷ýW*84è¯üÿíÏü¹ÿb¾öwÿuÿÝoþ±lþ•¿ëŸ:ûÞ¿ùÿÚÏýñÿð«ççóùwßû7?ðÛþПçÐ_=ßuËðû£ÿã_ûàoûM×|ûßö“wþ¥îo›?ðûþÂ¥ÿìÝù=ϯ¼rúo¿wÑÏÿù?ûuòŽ¿¹žï}lÛ?÷Þ¿z>ô×þÖßû_ýÖß·Ä Öþ¡ÿÅ×ÿ¦§æwüöïÿ-Þšo}âï=õ“ÿÖ?5èwÿÙãÿÓ¡= mà½ÚÿÿÙwç»Ó¿7ÿû~ωùžßþJÇçû߸p˾4¿óO¾ðíÿèõhÁÝ~rýo¾÷ßÿÿÈßþõ›¾û½ÿ?øg–ÚßõÝõ¿E?ÿÏ·]ù›ï¹4¬ëþÿêî_ÿwü ÿÕ|ÿ¿på?þôüà¿råï_ïø©+ þ·ó½K¤Àÿaýo¾ó¾íO<÷Ûïšßue¸¿÷¿š?”ùßýºò÷÷Îwÿ|¤ÜËÛÿž‡¾¸e~Ç{ƒüéßýgíÿÎC¿÷øç·Ï÷ýîßüƒ÷Pc©¿·ÿž?õûßþS`¾ïÊhêO-fÛî+ß|õù¿qþèßùO^Y¹ù½ño}à/þ­Zð4úÿ¿Å¼þÉÿݺåßþ/ëù‘?üú?}ìwÎÿÖ?ó"Þ7ßÿûöÝ;þÄ|ïïÿ§ßûû¿Ïwýöõ…˜¯ýô?ñ?¿÷oQïúã_1ßubÇ/ý§î7.¤é¾ßõ›þÉßõW͘ÿG¿ðõ?ñÄüþÌÇý·¬ÿ-ï‘/ÿäýïþ•?Xz¿ÿ¯\ÿ›ï[G‹Ÿ^–f¿ïáÿò»¿ãÿ[Ï[×;öðúß|÷¿³NÇõ~ßoXÿ[H§ç‡u û•ÿþüóã7-µwxó¯þc?þ«ÿØ|ç=ë· ÷ÿÕ‰?þÞ¿ùÚúôÿ¦ž}íßý×ÞûWÏÿË·¾ôGöì|Ïw¯0‚¿c~ï7î×ñã¾íy÷÷¼GqÇB*ŸY'øÅ¼\øû¿ðçÞ~c¾÷ 6ýø¿<ßõ'Ö'z©¿÷<ú䯾÷o~à¾õÏþ§ý7–~ôøóÿêk[~Ë¢ü~ß³ Óu2¸{¾'ZÖá?p…üäüð:ÛØ:ÿÆÖÙüÎ[þº÷äùÒ†ZÇáÿóõl´äß¼õwüÔ_üæÿØýWþ–µð¿éÐÎ4?ô[\áówÿ·¿ý_ÿïZ¬ãƒ?ù§þ“ßþf=ßýÂ:ÜïùÙ³W&zþð•Þÿú¿s±Îïéßüß>ßýwÞ«øßšßñWÿÿã¿a1þû¿ü™µsr~h}XûõþËëŒs~à'öÿ‡¿óýìüÀ¶õ?þ¹ù¡_¸‚€Íüþ÷ð~ß#Ž?§¾ôžñïùCïŸ~ùÀ?ò^þñûù¿ëöùCíïþg×þÍÿ몭° ®ÎþOÿÑŸû[ÿ™ÓóC{Þ“Î?÷O,è4xrðÿöÈþÆ¿çÿ9äw}ãþ×ßøÇç‡Î_a0ÿÞ|oäÌÁX}ë\á·ž˜ù~å·}ëW~Ûüà{Hû¿ÿ‰æÿ¾+ìç+ó‡þè:ÌêÚ|?>ñÇ>}àÒ•†ß³#Gý½WÔ”ß9¼ÿÖYg4Kóvç:›Ý2ßÿ¿\ÿ«÷d{ÎôËj¸û/îø—þÈî?°TÏ×þ®¿ñ/ìúÝKïoû7×û±áºÝ½>}Îï»Â¿ùo,äì¿¶¾>~wð?ô»-?6è‘÷üÕW¡¿0¿ó·ü7{¿òù-Æ1Æqðu~¸øþëWÿ7æ_{oVnù]ó»ÿéA^ß~׿øû¿ôóv¾c ó{¾øs¼÷oY>üÂz 9óï]QCã|ß¿³Î8çwEÎ|ë{ö©íoþËß¿‡…ïý›þÆú¼'¿ú‡ÿƒ?úO/øs´úûϬÿ;Wû{ Fý~×»ò÷Ççûÿ¾õïãzëÊßÿ´ÔÞZäÐ}üÆÿâ½¥‹–¹wЃš¦ÿ•÷4ý_øÙßþ{Þ³¾1ûÊõªÉ|‚76¬$¯œ;š›÷•L’3Ã&^K嶺\b[û]=’þ½ÐŒå~9ŒÍ Î&›~Œæô³ÚãÄI»•䉄É&+'÷[>œSm‚Ÿ/XÎθîô\À-R›ãy¿wLu¨Ñ&§'±Ã7œã;ò\Is8Ñôpæ¥Üع·8\Û.Ÿ-'&g·÷êáÌ\·6Ñͯnê0rð©’—åÙ&‡MøŠŽZð}ß´^–NyøiHpŠË0ü®¼M"tå¼Íô ÿ%Û¨$y¶‰#ØHð–C6ÇŽLt3Ák ›£Á?ô!Xß!ëã1‡%ërÇ&ëñF'Gâ–9®Þ<Û„õ½C@•Ì0Ï6]}'¹Ë‘Ôg3S¿ô3—ÍO¥|Ú¯~Òn~?úÑΉôãÈXOœà¯J7ç‚O’xœ ž ~ž ^^>ÎÖÿ–ê“ìðü¥õßçgƒŸ§ÓÎéüŽNà³d˜’{œj¿ŸKÿÎäý™ÔsÚóПùc¡§3ÍN:³sÜÎÙ”—4ÔxÏ>=É› ~0Ý\^^€ïÁ¯ ÁÓÇóû<øùøÓ£÷Kõ †õ/ÏŸx9õ\ºòÃlþxðuþ‹Ãïó´snç¸þùó)ï÷àõãóôó‚ïvŽÛ¹º{b¾K½ç/Ÿ%¡=ßêy|¨gÕë2ÁΟxþÊÌæO¼< žÃkÏOüLÞïž^ÎÇúÙÆí¨~ïÕ‹žžð^9t†fCçéïÜsêy½êoè~þK¡·ã÷O _ýÃ.­×»êõ™à ø¹¿á|Âß~ÀÓóð{ˈ_/Õ¼›?‘ï´C~‘G 9Pí¯É—ȇ žÑ¹—zÉŸ‚è í\Èw%÷П~¥¿‘W«^Ÿ Þ˜pIÿyŒ=Þ˜­ÿÍ ž±ƒÎ_7°ß_Zÿ~ñ>øÉNQïYïÙUÁ{ý¡G•–~±s”cרÿ¼þ«_9Ïù]½gµûâdßLpcºÉ¡‰²÷Ù×'£ñ{ >Õá‚”ÛÀ_[Aºeßç;þ+õœ ³ÿOä½$›’By/yNù÷. ý¯~]€'óžÂ!LÉ?½×ï㓼™àûÐð&a(u9LðÈán—VÒ×à]»4°öKsHc©=û8 ° ûö‘@íØ¿©ÃJ¾Ïwuø&õõäXµ? ú.õ=ÚêÍþìª×g‚7&,|g"ŽÅ¡™$©8ÉlÅÙÜ5–7u¸Øaý~ÉfÂI½âmb±ïjÿgžõG\ÏÚ¸ý:ü#¾!‡a*îFRP—ˆö8!íyÞ~mþŽ Nðc¡ÃêûA.³ýAÅ¡ÍÖÿ6:$ü|“]x5z ýýàå^x3xÿ˜Þ«¼ÃhèN¼Úf?øµ|ú¨x7ñx_ŸäÍ?Eºg¹i¶þW‡%æÜu>^qhä…C§• #õnM½u¹û¸¼ú.¼Œ^š~—8µúý›þvû±êùœàçÖeâŠÙè`ïÕùxÙ=¹Bémy/^“½"ž¬_æÙâM«è§’ªÖ1†À$[[õ|Nðó OÑ‘ätñ3,•w¼J¼¦¸5q¥í;öê’IŸ6;Ê¥ê•,½’¶çwý«KHÇÏ«žÇ ~>`ÅEòïŠGyüòÕõ´ò §¼xfþfÉáO6ÈÏv«>—]ó{žOžH{âå\N›øTq£«žÏ ~>`í3Ú·<üO¹Á~bí‡>¼µÿ ÏOå}íoæ÷scü®ý[ôú¸þ\`Ås†^ÄTÍžë?uŽç\Ê5ý«¾óûéÐ$˜§gC;¯–ßÅ =–~8”óBßó˜zSŽ>xvÚ¿™à§H7üQç¾îrêø¿ª¼ó™âÈê²ì­sé[Sÿlyó–âuŽ÷¼xží¯»”¿§·Hbßâ-ë=zؓ匿¾/Ò[RNûÆ©q^ò”m _†¿Ë›–x–¢ïN‡=N[¼2úÜÔô½{ÇøþƒWÒ¾FÿÛóô¶Á%üx`ÅKÉ·?PÞ1ú½8Ay÷àýÞÓ«ïnß×%yÞÙ¾¯%¾K?´ Ù.çPè²EíÃσùNÙú±CýùN~5t…_ ;öˆK-zYõ/íˆ+z5ï ßÛ¥-eßÔ¥>m½¼7®vyü?!º©s]™~χ³NÇò̯ÿ'â\XÎ.êϳ<|ΑYq!â®* ¼L»òûñSÁ+q^ò‡=œòâ\<‹s¢¼z*þ¬Ñ‹¸ËC)'ßšKZ¯âÓò½ysžŒ_82´_ë!Nçˆþš¯Ì£ükâxÌ“¸µ“œùTèF|«sîöäã•ÏÏyáãùÞò×:¯ë;þTôUþÚ†â±äÛ‹u~*¿oý9–ßís8'­ñ\~—ïÝ9G-Æ8NoµyÐOýw.}èoŧá Ú5ÎÌ[ö‡ë‘ßÁŠOS>ý9•vj|øÃD7Ÿ ÝÈ£'.ã|ÖY\‡ý5ô$ʾú8÷â˜ÞÔ+Ÿž}tx*ïLåK9ø+_’Ëþìû‰3±Ïg¿Q>AyÊjðéqyô§¿èÓ8ÏŸvõ?õh§òlø>ýÓߊ'Ónê­ùI=ÉãQ롼8‚3ÆmžW=ù]¼ÁéIOûTèF>.ñPò~ÉÃUy†àû/ë?á}å+ÊúV¼TðE¼‰øÊ·(“8x"Þ >éÇ…Ô'~¥ò/=?¼—¯éqßéoêGSy ñFWú-”þV|™ùù™ÔŸïôÓüá 5?ú7ÆóE¼Z~Ÿv®Í‹<6úë}Å“^žäÎ'I7ðëÉàG­+¼°ðþ ƒàu­¸Dx ¯^Î}¯½†/…'ß¿W®òoú=€è­É ñ\ò6U^3ý>6¦í*ï÷ÂOã'ŸÈí}o„¿‹ýî Ôoq¾ï€^ÓÿçųèGű¤ÝŠžk_ßï{[¹Äç<Ǹ ¾Ó޼nö•³>µ^¡q=µ_kœ-Þ`‚þ~‹3â¨^ã“8¬<7|÷|âZ.ˆ#ÌwÏßÚðöãzÅ·«ž‡ Nðz`åµïA.´{b‹~)åÈ…—ó;ú¸¯Éñ,%WB¾‹\Xõ¼xMûÊâ+OJ`íãG®Tþ”<‹¨8ÔWq öMòf‚7 ,:¨ûê‚ÇùQq"¡ƒŠ£!¯¼'‡:½ÌÒŽïÐ¥ö&=m‚7¬óô4úV¿WO<”òâ¡äõªø¬”÷{écM_£ÏÑóNMû7¼yà"~ŠÝÎ_ÎÖÿù½øÝòì¤ó•ü ümâ¤@qlÇR®Î)Nt3Á›./vî½îcɳ}ñdâ Ä•ˆ›‡(~ʾsó¾ï"¾äáɾ™àÍk¿~³x€àµ8(qd;fë7ýÌ\Nyy›/õ¼ø¯–8„¼ßå»m¢› Nðšéö¥^~ðzÓmÅïkèOxß[ò~–gñq³áO^·‚iW¾´›ðý¦á}ñ íÈoöÎð^þ·çÓ¾çjç•¡ã~¾ñ ñGÞN{¹ŸóùăWÞAù¶^¸º^+~P?jžÓOqÕÕ®yÞ ¾ Þ˜p)®­ò?ŠûM~¼ŠÏùrÃcú`»o¹è€Ü”w)ñ=ògÂ×ê9¨}t³Öú“ø"qÛ§âüÚý™úUø+.œß1Ô/ObåkS_˧Võˆl÷^W\y§×Ýãq®&xm°ðÁ9çT*_ð“Ý¿ØO•×oŒ/uΤîÍïðʳ8ü~FÞ4yÏäõd—É?øP£sñzuo總ŽßKø«¿Îï ÷:÷ÄNƽ4ŸâöŒ¯q<ÐèÕ¼Oy¡n*XùÄ’—¨üpoâ/(ütÒïâÜœGã¯ðx:ßó牣sÞK>>~Á‡[½âŽäqS¿þ»Ó¹:q²ê;Üðø‘ö\ùÜЯþ¥^í<2îÏÒ|×ÃM“Q¿¶ñ¸ºüšà +žíº©ü‚ ßåUsؾ‘|âæœoFg?|–gêø¥/ùÉ߇糊“Ëû‚YÿŠÓ Þõ88ùÊîR¾ò&yŸçs)_t§ý†—ÊêW£ƒêg£ý”Ï­úÙÇ×ß§¿ú-¾Oþ§š‡±Wý®þ÷yšèæf‚ |Æ'à‡÷æ=~ŽÃoü÷òoÅg÷ç’CÚÅçÉ£Ðsáí¥á¹¾Ã÷óþtëåcjöFµ¹•Cwm^ŠN½zü}ltPã0¯KÞ ß­&xm°ð…žæœ½‡~_zØô0åè§‚'Î?”]CßI;òïVçü^y—S{¨Î#¥êó»ø½ÁKöR‹¿[Äí¥\å©6>ßéÿ3cxªµWñ€æÌïo˜vkÏ<o¢››–½ÿh[_÷QŠ›sÿ»™ÿ‰=ÿTÅÏñ£ñT\\ʱ¿ØñÕŽ÷âŒøñœÕoyãÄõI{ücÝÏ æýá<;§.ZùóRXù=ÒNµ;n¯æ™Ÿ­îiÈ<š· üs¼1aíOÈ¿æ> ù™ÄØo±?"¿A»·m±_“úÄÍiGœœüöo*/Ðså3˳ý%ûû¿Úê³oä~ªÊ«–÷öMíoò_Ûwñ½8>ßÛê÷X­µ~Ë£uk¾ÿdüÛWÿÌ÷$on&Xùr¬ïÝc||~XÞYÝãfŸÞ>ä¶¼ï÷ f¿_Ü^>¢3q1¾ß’ßÅ׈ã·#_bâ}ê¾Á[Ô—÷¯ÏÏóf~ß9ôãyû¼òÁÙÏ4®´S÷Äe\u/câ*.I\Âí­_;š¼AG‰ß©|p™÷ç·ŽËOðÆ€ÖýÂÁ‹çÆøü¿êCåç«ûŹß*ž%y)+ž&ûä~¯¸™My|~>òéoç½¼p¯å»×ÆíÍ¿òy/VÞ·êwè´è%q5þ×Çøí¹ðûc¾/n¬âoCçòÔ™§¥ù~Uû™¯)?ÝM +á­cú(|#ðýàïê¾ÚžÀ÷’áçâH|÷ü,åÂÇ«ž<ˇNŠà]øyñûô«îîòH{ä•~íirCùÈ“¢›–GŽ<¸ðÜX—|ýúÕé¡ô±ÈótkÊßp“ÁÒ§veÝÉ rB^Wz„xcòFþÜM­9¤~ù@û=ÐÞÃçÈâÿú¡òÁá×éGÑ~È»ÛóõÊ GŸd×ûM9ùœw5ùƒ‡86q§·é¬¾s/õŽñ8V¼>è>òùCðKCözørÙ)žÅSúž½/Þ³â9So»ƒ¿)§yÑ{šýÎÎ÷Z¿ÿY=è Ç‘º×TÞôÔ³á<µü‹5nvåoË©¥zøMÄßíšèæf„åµþîÃàÏåuîT"ÿ©xÊÃíwþeq”î©8”g~WþºŠ‹LµÛã>¤þ;åù©Å[êŸï—îÏÍïüÊâG78ß:t¨·žõ§üõÚ5Ž«ÓÃÂOž~LçioJ¸ˆË„GYwqœâÝ3ë>˜ì‡V=ö3+Ob¾·Sû‘©¿ö5S¿}÷ÓØO©{{òŒ>ÄsêøÊ“i§îïM¿´Wíäû³—†ßí‡f?õçíX«§öSÓÿìë.æçé6¾ôóèµµ7Á Vž›Úÿ|­ûÛò{_Å“Ô~z~¯8gGôVtÕïCëñ<çˆÞ¼ÏwÕžzµ·³•ϸz>Ÿ¥¸œkÓ›ûÿÞ/î[3ާÇz݉qÿëýÉIO»áÒ½àuo2<³Þ¡xXq,Ê7|®8‘àUå«zqŒ¿ðI|~,¦î…O}ׂ޵£\~?ÑŸµ£­ê×XNl¡³íãväEªöß Þë—¸±[ÒßìË‹#(ü/óRÊ=¼öþÍÖOtzk~M¿Sn߸~°òωO{uLÇâúw·ÖòÝôqLp‚ןœx=Ÿ*^ìòXTüOð^¢qœUß³õ?t_ñD¾CÇ-žW>ÆÄ5<ïÔçÆrôyñ>éÇóâ/´ûÊÐzžn󊃘äÑߊoÄÇÉÁŠÓ|i¬çTÞ1÷™F-­ÿU\êÛóxÌŠÿqn@|ü.9:®~£ÛªOþn~xqhågO½uOÊμG§Æ›ïÒ¿U¯ÏoLXñoöïå”—¯ßÿ+^Áy|ñöë+aðQÜ€¸2õÙç¯ûó½8!qòˆ+«z´sièí›f^Þ q–¯ùeå¹Û€—~!þÞÞ;^§ªçå1ß+~m_»åÏ„'ÊN<óªçw‚ŸMØózU¾­ÊÇ2[ÿ«¸¬ºß/åfù]\Iø`ÅÌ{qý@t„>èOÎɬé¬ëâ²êÙ~ùtÎd‚Ÿ$Ý옭ÿ•[ÿ›Ïqx_åÂÿS ¾;¯Cã=ºK;è2ï«RïãÁÿÐãÝ(7O¹l˜ÏO?ÑOîÍ\õüNð³ ççgë%_Î5ºÀßýÞéäñ”s¿¬{lÏé£êÉý¯Õ~ɷЕûaÏÿÏ“'­tXåž÷ç˜î&8ÁO„~èWîK.}+xê~Ì3~§±/òì~sq“uoë÷Æ¿×=Æ^ÄžTþRʧ÷ç>äêÿ¹”;3ùÑ&ø)Ð €sK§ü¬ûó¾îÅÌwò:‹#”¯âÅ&^Ù÷'¯®OÝV=éÑgÇtÃïpdLOœà'B7-ÿPчøGûŸÎî ´ïl´òÝ….œGÞ{uÿV¿o£ÞÛ¿¯eßӾуMÞ¬û»êyàgŠ‹’ǨöYvOwÂÛÙú_åeqîݹvñ4âaÄ/Š/¨{Ǿ;W_÷É Ï´'¾@^@q»;Ýäû¸Wf‚77¬üt/x ÿÎÞðA|­x••Ñ•{^_úWñò]Î8žËóúw?’o|-ø.—{}ÿnÚ‘çïö½¼Mâ–§]q¿âä6ʯ×ãr~þþàݱœª¼gá'7´9í<×~i€g™ù™åÏïâ+µã~Üê_¿§tSú—ñô<ƒu¿£ùt¿bæï­½yúSyÍ÷+ég‹÷»Ñ`õM|jÅ%¯ ÖÿSëgâááMåsÝÜèH|qäQŶü]…÷äù•zjü[ò]î!¬Éߤ\ã{u`ÛÕñ¾ó©º/T½[3ÁïÌU÷¦ø%ÿ•õ¢W¨ç«ãþÜh°â±ÄïãÏâÆjé¿æþõ­†ô±{Ú{ùgÙ%èE}ηxg¯>ÏâÝÍ ½½ÑãèƒÖ¿ññ>ïõl<_løk=îO}ôÐ~o(:¥W–¾™rÛZ¿¶·vú=éw¶òðC?_(x¯]÷=²÷œãXy©ÅãŠO¼ÿêóv£ÀÊ_Ÿ{ãÊÞ•OnOÞ?¸bº'é\£8fùýËþGïÆ“ß¶qù]¾"ùêþ˼ï÷Xª;éžN~vÎÿR¨uØÓô~ùÌÖÚxáa??éý¾1Vþ²‡[;í~ΊÄWðñ²ÎZçDÝSp°õǼV½ÖQÿ÷ŽÇ¹júØ>=ŒÿÑô÷°ñg^ø…ǵ²~Š?îù„äïâo&ÎòX~¯sñù®îqi¿;ï.Ï—|d•÷+í‹uÎÿŸ½¿IÖ«:ÒÆïSvUª§pÉ–96¶a!}!$$¤#·5šð4€š¨ ¨å–N×ôÜ¢çG(‚7ª‚ ‡OÅï‹îëwÝÿG·ûtòì}¯\¹2×Þ{åµ2Ý×ý¸ø»¹0Ö{çþÇùúî›Ë£‰ßæ9 ¿çò»ýòÆ'Èïö'›÷çîÒNÎkñج§ì¶øÕðKžð¬Í;:ýçÕ#÷ðwz)/çÇwmÔG~’æ Ëxù!—Gœ“oœ?þÉÆEŠ\‹Ï ÿâ·ˆ?$?Rã½WÊ‹w1ËÏßùYùÉ'¿+ûN¿GÆueè)ÿÕå±îý•Ÿa7«tqÑ_ñ¯øäo2þÛæE\®‹í·ùNéuäÓ¼s¡æG|«Æ‡"×±î¡S^õÛ-åó¤Ñ­3¾÷rÍ_?ò5~ãüÁ¯\Ë<^‹\‹ È|ÀéÀç¸?ñœÖä³l»ô¨¸Ov@¿R^¼1úvmôoÚ< Ë÷¡Žë½ÝoÇ™v¯/×Ù΃þÊú“ÿóÚþ’–oóK~÷—üN<ìäâ3ÈU\¶®W¹®œ­gcžØOã?¹¯œûËõãI£]Ï¿j¬;»¶›©ô¹x™È¹ëgÆSüyë,½ Wæ¯záyå¹ñÑòÚºZ¾Ü§·ìjÈó½¥~l×÷庽•¿òÑ[ë8\ýl»Æa½Ç§õ¿Ãî:ÿžÏã9Ý8‰ã9=óŒâ³q•Sßs2vV>É[{ËõãI£ç¹i#§þž|Þ;ã¯çbÂߌßÚó6‘{ß”ÏóØx¯c>ÍoãÍf›Gv©W}£wÑ3ïU#¿yù87í&ý\vÓq¦ÞŒwÖóCY/J Ÿ®ÄÛTüò»ï®ÆÃÍýó¹îwþð;ž/æ£x'|Oú?¿ì×öñH½7Ëw8VÎ_Ž}—oœ?ß—ÍC‰†oûaöŠù`iÿêõ;6õí›uŸ ÷íWùî·×øç¡ö zþ4å%ׯ)C#çs£Ÿóãùdÿa~ÃÙÏòýŽOø<û=ö5ÚÞèûˆ³}û`ôDœµ¶½w­Þ¹!ß3©gÿÉ~9½±œ¿'öÜ>¿ÿ€}Ùçwk÷õ Ìx4î‹÷|[ýiñ£´ø3þû«â”ñëðÒ‡“ù_âøÐŸ“£]y’´ÃÁfÿûÇãšãDêÛG¶Œ~åøYð÷ýQžß„¿ßøÅü? ¹ð[òOiö§µOŽâ?Ø÷t惪<_J9íÅÿ¶kûx->$ñ­àKf|»Ù ò³‘+}|nÉwí*~ýæ5/Ï,õ¹~ÿý´Coàvþ’û©_¼ üûÜKÿ´Ô ñ˶yÄr¾öö–ã)Îä·)?âš5a~/>Jœ2y á\R®ù5Ù?p®‡_ž=_”úð?Åi yÁEoÊïÿ]ÊQ½#ú¨¿<ü÷•~ÅöÅŸÏ®¬Çp sÝ’]Á‡h‡Þó—³Cú_ÿiÚSòœ(Î`<žO9Ï›]êiõÿ®½ / ~=wùõ­äñoË÷†Ê%ëOㇳžl®[^û±—æçä8³Öóü…×!GòÅßßú«Ý|#ÏÍ?Ózjžø£_H9xøv5ñ;pË–òôÞ÷”÷úè»âÉÒ·ÆaK¹Æ‡ Å'œ˜ç)>æ{Ü–zVûò¼+~{´3ñ3ÏÄŽj—¡ô~®;Öã°žôý+íªÿ|~ÇuíØÒþVúÕÒí{{ä§ñÓ1ôß}8.8ïãÅWi7×ô”½À™ÐwëÿIõ­óì8íi×5ýd×ó9Ã.á´û“Áoq4£ÝWôH¾Pý²cí‰Ï8ã<ÿh´ÿË!å~9ä¢ÿâíRÿ$yŒþNm~ßµ~}ÛiõÊ>ÇÉ¡oöq¼_Ñ_ûhöàyPûxÅW¥¾}8%ûoâ¶½6ôÊ>W÷ý\GÏÇi~‡³?ÅŽŠ;ãƒÏ+ä4êÙ)îîÃ¥\؉u‚œáoz=Æ¡íà ‰/§}ýÿ·¹¿k½ú¶Òê@ó¶dº¿œy:Ï^2Ÿô£ñÐR.¯ç­•K;í7¿Ë3ßd?~G=ûÔÍC=©fðíw~’âÓ>Ì¿‹qÚÖ¿ý|voa(ûâÏé>7{`Ï£r0žÖ쿳/þ§÷q¥_±ÝÔŸ™ùà·äO+~M¹èÿ|ˆ¸›ÅS¥<…x„p)Å卵üâuèŽÎ¥yÓ)œSqté§y•»»´×é§/N%üÎ<€ÅMwÊó'“94ï”ò,ùkµðQp(<Mý®äa¾ÒÞÀîZ¿¾­´xú\ý¡7ôûÎòZ¹êæ“Þ·{‰^ÀÇÁa)/þÓÄ»µÿÜ/ž-õ´“ø†m§ø±»£=ýÓv’v¯…ßâ óû{c\Å‘¹ù‡Ä~´{I‹_sߺsw9ήW~׾ثq×íÕn¾N»)>Œ½˜ŸûKýl|OåÙ•uïâòwëñ˜Ç#íUoµ«|Ú¿6Ú¹>ø»>ô°87ãI¹ê»Ðî(§ÿk£Ÿ¡Ÿ•ß‘|µ®‡]ô¾~üOýŒç¾=gÛηvóüÞµ~}[ißǼïÀ9wréáÏý¾Ÿ4?3}v4ó%×>é}cWÞ·>XêQqýÑkïùïŽûÆá÷žópm<¹žø³Ë£ç¼]vÓ<¹á»y>#— ¡øožÐÔó×óOøÒn(üþ.’ËxO+pÉçJ¿b»é9)ú–ù±e¿*ø«#õ{.-í–kúÖ8í©ç»–øî蹬”³/g_¯ß÷©ï»Áù®æ½÷íßÙ_†çÒ.jÁ¾›}€ûêþ†rö숻e .N¿öÓàæì_؇(.÷{³Ï§ódŸâå:·Ò¯Ønø/›'ó{r<_^]êKï;wÌïÉAïOå>Cò§UŸÌ»}T~8û¯ÎYókðu?6×ðcôŠŸÈ>²zpsó<;‘z#Ž[õŸúƒ/à_±ÍÉïÅÃ_SüB(ÿ ZqnénŠZ;ü^Æ7ü¸+ýŠíæGCîŧ†îçwþ¸Äƒhý“£*{›y!¿›w¿Oü%}™yÚè5ÿç†>M?ëßúÆÃ¿߀OþÉøå;^ò9¾¹ó¿Rïø/ÜCp2 ¿wóiê?T>ÏS® þS¿~\žô8P+ý|z¸ÿÍ®{‡/nôå0úy˜u‡Ñ×ÒŸ+·Ñ·–N¢í©¿?ʹÎsú0öÇNúûs¯¿ëùYé“IéË7Ö_Þ“óžr˜÷¤Ã<ä¡'ð0ëûažK‡?z®^ž£÷þ¼¡m'ø±Ú¡<Ó~ÏúølÊåùs˜çù®çg¥O&Ïðë/¸Éü‡9P<ÿobÿ2ž?òŸÿ1úž÷¡{¿O{yÏ«]xÊsE\Nåî¥q[›O}¼·íz~VúdÒöë¦=O»í9ØMã{Þ_þÞsˆ]Dï‡é÷‰ïß©×ï”öü5îoê·ÿç7¿ïz~VºÒvjÁ>¡ý¯Ñsûöçì9j_˾ý†î;¤Þ‹úÑ~·h?ìqWºÒÚ |ð/Cá¨ÅÝ·Àþ¡ýj¸ÈøgŠ›nùÜwn‚ßêôÞƒ¿âA¿)*×§W»Yé“Gë?¥§ü¦üºãáún¨ëÍ Õÿ¼¿¡oÏvÒ>¿ê¼/¿½¸⟤½]Ëi¥+]Ø ÿú™è9=îóaØ »€ßïyžQÞkÿMå?XÚ™zoúúÙq|£•®ta/g‡½ðãñôýmÜw¾už3õýãúôÞƒ¿âôã=¯q¤BÛþx|îb¥+݉Ý8?Ê^ìønßžg_àæŸSn¥ñšrßþüï~q<à"ààcà~8Ú×ï§ë÷ÍJŸz°·ùë~ï–zZ¿}fñŸþ´)ßüjñ{Öóý\+Ÿûü2Ú?<žëc'ü?â7‰3õ‡ÕnVúäÐúõ¼ÔÓúóábòü¨¿3ûÇÙwž¸ ÃÄÁ)¾€¿ôDêÃ#ðÅ.ÊÏ¿)—ûȃµÒ•~ô`oów$Þ œä'›ëúƒ»©ŸS|%ñ–ÄÃÌóG^OÏ£â <Çô7óz¯ƒ'}&í ¿I}øåŒgŽS¼AüX¶þÓ´¯ñäþëáí­ô»M‹×žy"å ÍûXß›^Ø{ðWÿ£òð×ðÏi·8ß§^óhæºqÓb_ìˆÿ”?>;´øiñÒ^Zþ~dœü­ñ§6^ç^îÃAÛ¯ð}·ž#XéÃ솿çU†ŸÞ>?%¤øV¾ûáNEßøIí'8ÿóâ°3×ÚgÎÛ8Ñó£]|ˆÃþˆ¼‚Ûøh¡p Î+ð«:_äüÔ™ÕnVú»q®’“eÆarN’_¦ç+CÅ+ãÑN㪥=v5ñÎi6¿kî7.ÜÐkûÖåK;~ŽsŒëܸoŽ_ŠéµÕnVú»w©q•¢7Í_êþÏ*ì9×ßøMÑ߯»Ÿrê»V.ýŠÓt>í×Úsàá‡ßŸøi¿š9j7ÚuîíùòÔgOï~~{+ýnÓæ ¼=l<ècóûå>}JÜq?×&´ùäB·é£e;ý=ú,ŽxR'—ß“Ÿ°ãç&ñ£ŽŽŸ)×ü\éW☈ûsåáí­ô»MïMœ¨÷£Ç7¢gâ´5.}m>P¿«GÿRîÚ°·ÚEʉK…ŸÑ[ñ°ðçZ¼¸Æ·R©çÛxvìÓº0øl>VüÞ]ü¾ëyZé“AÞÞѓƤïôˆ¾y~¤ü•©×.Û£ŸìäÊhÿH¾à;Ÿ1¶·»F¿÷r©Çmç:ýÇïížÀ‘8Yó9øîra›¯×ókÓÿ®çk¥Om¶æÝ{ð·Í«œëæ}Þ5Yê7¾lÚiü4×÷—íÍ8kâÆ5~:ô¿ùßÕ Ÿî_J½‘ǶãjœAýácôÓü£Ë÷Ò]Ï×JŸ Z¼ã¢íý€\7>úýe9ßéöŸì¯5^™zö½–ï;ÝkÜ@ßÿ¾Ï÷üm_ï|ú¯ÊùûpÑÜŸùOWýΦ½æýÌøŒSœ¶·?Zíf¥[»±ŸÛ<ªÑôÅ܇§íTô•ž¿çÕ½ü.ò¶Ÿœëlÿòpðˈ“æ¼tñÏi‡‰ÿÅù7~|ðÇðé_òD9ÿÍCÊãkÉ÷J¿ÛÔy}8šâ‚S†Ï,. 8´æ„«¡‡·Òü¬ñû߼¤ì*87xÑæU;¹i¯v&ßéïÓ/\Œ8…p1Ì}qáðýÛMýÃøUñý\úïíÄr\‡#îÛJ¿›´q0ÄÝ‹~§ý*ÞEžÝ?¥<ýeo?ßÕÖñè[qoZ¾§­t¥O-¾ë/ÑûW4ï_ô½væ9à=j<‡šß^ ÞíÇë{ÎJŸ~Ú8ÎÞã}Wô{Ås$×èéÔƒi½ØÏŒÛ[[êY¿¯WúôÒí>WôZÜ™™ÿ@~€‰ËþUÛ³ÿôÚò=¬x7ûmo¯ß +}zéÖ»§¯þŠ–~û¹òßÈGÏÕ|M¡ö“ù…Ô÷îj7+}jéÏ;¹~ç³þ?y÷rûü×boWò;œ;ƒ/hž¸Ô“oðÚúž¶Ò§—܈~߈>ÃÁ¥ÝDc'×]Ç>àÆÞ¿óYƒ{-φ¾?ÞçÆõJWú4Ñâ!oÄÞž{ž/†Þù¬â^ñlžOï=Ê^R¯øLõ×}è•>½t›o=zoVüf¨|—½糆ö¶ùÝÕ¯–r}{p¹â#WúTÒ⾜'k>Ñ\Ûç=Ÿ÷ºžG»³iNÌyΑ_³ý^\÷ÓVúôÒžÇ/½ù=áÌrýÒ('O'ܘx€âkÀÉ/𣥬ùVú4Òú/áºàÆ‚kü¦àÆàךWó¿öüG¶¹Ü+læÅ·I»¯¸•î@ï÷—z·Íç½=1ìâ§Ã.ÂÍxîÈÓ伌uvo|ŸxNürè›8gΫx¿/ þ&y4ðËþ˧ï£7ÒûÄ穇?/¶íï¤ÖO{ÉŸðWåÇNå9°Îønßj®Oo>Þól¥O&…'ë5ü×Ùè8Nîl®ík5®YÊ9ÿxqè¿ëKCìC‹‡æœ§k¸qÌ¿)õÄ%»þ/jÇý ¿GÆ{6í^º¿iǹTñ áK/Ý~¸Ý¿»”WãKE.ð?Í«“ûgÇsêÕnžfJz=÷‹éoÏéG/Š#‹^«WüY茗1ã5ñÓ觸³´/nFô¸þœw6vQÿޏkq{i§=¯=Ê_ÒÎç•Ïßw¨ŸJ?Wö6|]N{∣øÎr»žÿ•~A{ᯇoáG<ø …¹=;ÈýÆaJ;7£§”òüš7£_“òâÝÐ/8ö ýâwrÿýÑnp7Å-àÃ8oäú}ö•ë«cýxÿáÏ›#r,>‚ËwÇy¾ÿ@l«¿ö)£ÿýúwðŸ›kös+ó|ËýÍ| =®¹¾¿Ô÷[‡›z·è;L9xš›Ñû[é‡ÞÓOv¡\ÆqðëðïÚïé_;·Ž ~CoívK¯ËGqyä©}vo¹Î ì®õ`¥_ŒvÝϼ³¿Ñ·èýf~ïóJ{ôD½ñ\`¯7¬Çú=•zÿ¹Ð³–Ã×uÏI÷/.õ÷†õáÞ _·>^ØÛ–ãû¡7ˆ/ãÀDzü®õ`¥_ÐnGÏù•¾¯äýa_3¿Ïøš}JùÆïK½~ŸDÄûó~'~rã\¦=ç ïÏ{¢÷ ôÓx²~÷¾—ë#ñ5ï¤Ý´ß÷È´ÃŽ¯>žÝlÏA¹d|ÆïÚø¾ÊmêíZVúÅhã}ÑGñÅÿ/ôBôÍ÷²ï óÑ?çÒÄ%/þ,z"N s7γ‰hÌ÷¹ïiûuâ‘ûn/Þ-¿_ _—sßþØ;ƒ9—öôiØÙcÆ=oüuüÙ'hœwrŒ]vßoCw­+ýb´qûè'ÿ‹ø^ü âý‰+Ðóý¹ÏZJî7ŸE(¼Ú[£>ÿNóCvùCÄSââO…}-¿Ÿ^êeñnöÇå·Önóð|ð…žÅ޼;ýÜ*—ÐÈo×z°Ò/FëçƒÇGfäÓ«S'xúZ¿}®å]¯¦8”´ûÒhWyñjä'㟤wñƒÇ&_4¾~:Ú}Tž'|ŸÄÿ†ÊOøEýøòô§\Ã+±§—Æ}q­ÈÛz¯ãwø&ù·§ßØ|XOž µn‘ËK¹¯>ü=8žrüÖô~é¹ÐàE:NxÛ“iG#óÿa~åó6.ý¼²·¼•›y¦?]Oñ½i¯ñùèÈ÷‡¾jO¿ÖUãÑù¯©úþÙ œ‰õߺîwíÒãzaÈß<¥Ü6_æ× ®SÜ]³üûÆü‡ñËǼYñqðgžkì–ÞªGO^ò4îWÇz!/"½„K-ž;”~7ý ÿðr‘ë¡þæz»è:‚Oqáƒ}ô>Ä~Ý·þÈky&4ï Ç©1.íÓ¿Sc¾ñCOÞúiÝèºíý)ö§é>ù“›õ žÇµy©½ë‡}¥=¸ö§{95ú·~Ó[ö?×<¢ÃnŸgÏÖ‹ü>Ÿ+ôÆ{-þäõíøÙ+û1ž¡Ÿú³Nè×{žùœx>ø‰3ƒÿs¡Þ“é³ïY¸ öÖ÷ï±Àm¨ÿÖà߸ÅŦ÷òR>ã÷1.ó¤¾y1¯ìËü&îWõÒ{2~ñ×(<ÈÔv‹íßÉ\Ï|™øµÞ±;ß%/Íõ‹~ä¾çPã1yeçÕÜ?žkó ¯cÞé/ý¡/äEžêÓGr÷üî÷—õaè·ï"|Y?Nëo¬'æ‰\;Oô†¾ßÉż4NÖGK=ž8óaüçîlÚK>øîÓø>µB.S¿yÙÙýô>ôÃnàð<7Ô¯\ŒÛ¼ÒCãI{Öy|‹ ¦¼}qèÉÉ÷éùÔóªü’›ñ›ç²s•ö¯ØWqVù]=‰oó’vÍÙ´ßý!óMßèyhÇóár¼®í¿Ñ88×ðgÖrz}ØË9z>ðc=î|+óJƼ³+Ïßæ ßC?;Nó™ßµËÞèÿëcœæÉþžóßöÿÌ¿}G¿Ûoì~dÊÃ5ážçÜøŽé’v‡‡”òöå!1Å5}0Úzwqè}ñ[)ß¼)á—½”|¦ÿ…}`ëŒßá¼ð}eÈkÆ+ëøÆýâ Ç<+}x‡¸o<ÚM9ò²n·ýÖæ·ýÉGS'Ÿ¹†¿»I~ÆŸzÍ+9ôxòÏß<õk泤‡ð}ÅW¥\ïçº8'zªþ+ýÃAÁ“àÿê7•rSníO9r …›rg°úH>—¿ß|6n¾µgœä í’7¾‡œo¨¯¿ŒÇýâCÇ8{=å¡ÝýeÅQ}6>íLJËö\¿7êY\ô§ý±.¶Ü#ìÝúÓzs} Ï®­Ö;ý\\öcÞ­ÕÿÜ¿2äaýêóbØ÷õÁÏõ9.íãcØñÄí^r*î–Þ þf~Êâˆõ7Ö­÷F{Gì#×âd’?~•c§æQ•ë‡ËvºÎ²crA­c~ëüµÁgÛzS|Í·ù˜øéŽkoY¾84òëiߨ!{%r Ïüî½Ã{¦çñå´ç½«ùs-/¶çÜŒ—E_›7’=åwïÁïŒûðÍË>•ëy õ̧qeœ¾<ßÛn~g×Þ3Œ‡^4+;ü´_í±“ÑÏ;ƒí6®rÚk>ðÔo¼YãÒnÊuÞÉa® øµ~äÚ{ýÕÜ÷=7ß7½Gúé{÷à¿x®ŒÓw>›ßó<߯NùÓöH®Ú_pG}ÿh9ÆSy„Òóêߘ/ã¶ßc¿Á>„ý'û ¾Ã.¦ÞŒWo¿Ì>‰} ß©ömìÛÑãö£ßÈçB~WÎþÇùð9òDÙð½jßÕ¾’}Yöä{Ô÷²rÚm>KóAž)×ý-üæºû©Gߺ/å>ù…_ßóöû]¼¿”ŸuËwk¿»É=üØW»4äoÕ<—äøÑ’úHN®_rÌøø%Ícód¦½~Ïç¾~ÎOy|¸ç}ÿáòn¾ÏðÛq’£õ™<èù’vü®šòõ—¥½“¡ü ösíÚϲŸl_nî³òï‘#?€}P~E×ö3é—}uþ?û¾Å/„¾4ø­ÿ!´8£ünŸß¾9¾öó»}Mòà·±o‰_ýö¼îÅ¥\õÃ/h_?õŒvøøûøí³5~YÊÉËTQúÃ?¿dóÖ„ò³ðƒˆWñú#ä¨þ©P8z/¿ÃG˜ïúÉŒc´§œzü5ü /ùñ{qp£=ø óHOÌ ?½"'åè5ÿÜ¿iã_™ò}1íêßʵùsàJŠ_!Wø8€ôóÏK½,Þƒ’~ø±é Ê/Ì?ÏïÎ>àmôoþø‹åû4×üGÚç|yÈ¥~ÿaôkÊ­~oónþBÕŸv_b#ÏYýÑC~<öNo‹v:ñ?ÅOåºùdC‹ïã~ž¼B'N†~¹~Æ|ZÈ#×ÑÃ{Ÿ ½Äûãýá(çyq|ÌÇŒDîÏ®qŠß5J¯zÍ.~ö·ÍGí½Íügõû½·Þ4l®¥»ès/å¬w®ƒ¿]ûž›¯Œq¿°¼^éJK¿='ºþÿmz´ÅIí=øëû¤õÔºïýËó*ëé·•zÞ?o|¼>Ö{vä½½ø´Ü÷ÜòóR~÷½¡ßóg¼÷9ø˜ówW»Yé×kû?¾×ásì'yî¼ùåÖåî‹Ùoƒé>YúaGÕç½ _Ý7T/û—R®ñÑüžzöñìë9/Ùý´Œûâ°Û ëóg¥¡×ô¸û»÷c7ÑÇì‹éöù3à¸êÇH¿ü*öù1.+糆Šój»üBÓÿR\ûJ9þ¼ég˾ý®ça¥OÝâ¢GÅ»Ñë/÷S{à7Ÿùçï#_ÓW“ò×B§¿|âû΃vŠ/¸û¹2Ú)~æößôºÒï&m¥ây¢WŹ}¹çMq[Ås…¶Ýèyñ:é¿x»ðQœß¸ŸxdÛxhwr~Š'ý—W>×¼„+ý2vS¼rhq™-ôù‹·KÏ=7\?\O‹³b_ çv$ž™çH~o¥ðï5p”í÷úú=³Ò/a7ðç}ï÷Þ½|ïÎg¿ðûÿW}-.œ~{¯J¹«.ߣŠóÝ“òîO|\Yñ†)ïýÍ{áÕ¥ÝÂéízVútÑâdáÒìÁ^ürëñö¼ž}–û`ð®Ý_Û{ðWœØùÔ+N‹]‡Â}ö\](|û÷ýo§8ñ]Ȱҕ>T¿áÉàר ¼Ýé½_¸]þ•—G{ô÷ÌÒ/T¿>œ-¼œzüœü£ü§øwžyÖç?:•ßÅw@ÅçxkýÎYéÐï“c—Ÿ}àú¾x»{þЇƒocŒ=ÖŸzè÷Äg5NÍ’¯–ƒ×Á÷óiŸÝÂèÿçÃn±~ç¬ô»Ck¯ ûõávPÜ›8Tð´Á×Î|“ÞüíÃ÷Iެ?ìWþ8tàïZÉzð\Êÿyïã\‹ËÓ<¢i÷¾ÜþÍJ¿›´xçýèÕ‡>þrßnÉÇ/—vZüúŒk¿ Ï,~Ú'ìÉ{dÊ·Þ¼Ùâžzo…ûûñú¼\éÐ×W†Ýø>{{Ør÷¶÷à¯8œ~?}I»™ß‰=Ïê<“ý—âÄÃWã§åþ´ç§ò;üsVÏ·>oVúôÕ9ÊÆ/‹^]´Ï±÷à¯ç(c,ÞÍþC~?÷ùúçüî‘ûð@øOÑùø9¸»K÷Ãw~‡3ê¹Ð\Û|{Üw®Ñ9þ]éJ?×nßkïÁ_q8=?Ÿë'ªñØò{ñrã}ëòxnå|ü>z>;í±Gøžæ-Õoì¡ñÈrÆ ÈuãŽåZü€ÆC¸»¾§­ôñí>èj(Üÿ(<„øÅ-ì=øÛÆ·¹³¸nû×Ç÷þ{Ã®Š»÷w$ý7/¨~CÅ­âg†‚σ_…Ÿ°8Âe?»ž•>Ù´y=;iÞÏýDéiólžÚÜo^Dúšv>]꿼žâ¾|¼´£\7_aóoFßá‚ØWšnó†ºf¿øÉøf¯âþØ¡þþþ¸Ò•.ìþ>ÂÓ5?ïxn4/hôM¹C¯cg­çþõG|×̼ÔÕïûÃ~Òߌ ÉŽ¯4Ú‰6þܰsyO‹»Û_÷Vú×í¦ñMï|vc~§¿÷ý†þyŸ‹ÞM¼[ó‡~þûÎ|jÿ×çýíWTÜ\úõ~é;ÆûXó›†/ç<´ë½³ñá¾Ü>àJ¿[t‡2úôˆïâž_ë¾sôìH\¶;›ßÿÊ9=ßÿÛkí…ñîìK üN÷ÓšÇ3öŸ7ãæ‹ç¼lãéÙ÷H¿™?t¥ßmÚsÕâtœ}øzë~ñr3§¼U#îÍcóá|¹}a~ÈÆ·Jòúœ´ùKRž_F¼/ø¢ýP~(ñøWj×ó²Ò'›'ÃÿWâU5ÞÚ Ëz{ù;øahÊ=6ì~&x…æ÷ N¦þþÒü€8jÉËÙ¼zñÏÞûSø×­y=Óü߉/Æ÷JWúUÒ›ÿíù=…³Þo£·+(ÿ?ûñœøþøîç$ø´Ú‰x‚â×隷<Ž~~ðùëÆJWúuÒâ¸áÇà\œ;ðœ+ÞÛû¢ûÑ㓞c¿Â{UóToÚ¹ùû´çùÙx½Ãn^H9ï™ðA'ºÒ•~£v#®Tq2¹n|ðØü˜çÌé½ýž¢Ï§æ¾Àh×ù‰7—å·y-7í¶¾8Y¾›œŸxsµ›•îÐnì[9_gß­ûWÙßÍþœ¼ò;øn—O´ù2³&/Kó~°ü½ø´ûK»“_NÔ~àë_l?c¥+ýJíF<ñãìsóó̼¥Ê‰ÓÖó屃úYr.­ø´ÐâÐÆóéÊØ÷–§ì\ø¸Ìn?ÿ|¥+ýZí¦ñ}bp.üüõ·º½‡;hÞ±Ô—'­ù+S¾y$µ··¹nµÔOü‘ò§|ñiß_éJ¿Q»)>&ú^ÜYô´ø¶”ƒw¹yç³¶vÀÎn>âºø´´Íï›õ¾ylï/¿gwïÁ_ãÓ5ßìÍýâÔÆû¡û×–ïa¯öîúž¶ÒÚ‹ü Ã~ç³¶ùüÞ¸ðöÁ¢ßÎk¶|ìǹææñŒ=‰#×vR¾ù]õ3ÞÓÎÇn.,ëíZ~+ýnÒú+OEù'_›~Ë”ƒÛ‘RÞWùzfÞNø4¸8Ó3¹>›ßÅãOq¸Š£ãOzuµ›•îÐnö£‡Í{˜kq/à)ÿ1úÜ|¹ÿ\̽ÿ—ë—öü¦}y<áÎØÕÿI½àΚoNp Í¿¼´«•®ôo²ƒÄKºù?ô3z÷|ôðÿ,é½ßï=ø»ùqÊÛ\'v"í$â½àÊnþ9åàr´›8 ‡ßïY/j'ååcþ—ÐàÍnþŽ=mêßd‡žCÇ=¶~ç¬ô+°›‰n>ê܇ï³zËNRoƸç–w.à…´ §<ôy›¯7¿³—¿ÆElþèñr¾@¾Fq£ö—ï“+]é—²ø2ùæésßwBáÍàŸáż—Íüô¾G\Ãg‹‰£ÆŽ^ÏqÝ_õ½“zoxïc)W›ó4ƒæ~Ú——±ñÕØ·çÊxk¿áS¼¶ÆU[÷VúØsÈΕÁ9—œóÄçî|Vao›WÔ~A~·O¥¾ö.çwqÍ.¦Þ¹AáÖäYœçDocÇÊ7®š}‚ü.nšó¨k^Ò•~•v# Ü¿Ë~î¿ý«_'×ü‰Î9ÓL}øÆ!Hy~Éé'¿‰¿âðñgÊ«(¿«öåym}Þ¬ôo§7?ÝèÕ½ßFÏþ)úGÏÿyó;Ü׽ߤ¼À±”;‘zìJ^´ßEo‡žzþšW0ý‡&/<Úó{þàšwí¹Q_øjÞÒMý]Ëýi¡ô`/ÅaÀ GgR=‚ Qî…Ô7/ð[òF>›ß÷—í•ó¼cïÿËRß(ñòŠW„Gù‡Á|ŒvðK¯÷Æõ¿…O84üŠ/&NŸqýxŒ÷Ùåºï^“ï󣽆3Ï8PåBãgg,ô¬åè÷Ƚ}Þ_Èeûòñ\vä¹îýà½1ž>÷ÈsȵãÃ/þÓÎ#Ö­•>Ânú>ù¡Þ£½G9'òîxžÐãËã¾÷›#å§Xÿt{t.+å½6ÏåXWݧwïd<ôþ¢z{¹Ÿk83ßkWÇýÆaN{Å·¤ãù ·ßYÖãH½wGûm‘÷µÆ•žý’9Ü]Øoq=Þ{Û^Ê_ZŸ7_Èn|;˜ïÌ-^*¿Û§É>Øöûr”ßÞþÒùñ¼qºú½í»7ïãýݾÜ×ùðQ>SßµïißýÝ÷‹ž÷•qOÆnB}wkß:bŸ>íüÅe¿cŸp;òPîîr<ò~¯ó¤pröÁíø½|¦îof|ÅÇ…ç?õCo_\ØÙJÿŠÝ4¿J(|?¿}ËÆ• /¹æð;öÉa7§–÷ÛÎŒ/vjØWýKÑûÆÎ×û> çë—úP? Ü™qñ—° ûÑö¹¯ø´–ÏQx†àÏ)ïú¿Ò?¦kóÀïÂo|rŒó¥”ç—á‡*n-×õK…ÂAð ñ¿½²ÏJÿŠÝP¼ {§Åóƒ?pè·õ<÷«·üúLJÞ¼Lïz8ó‹å÷âGÄ ®ª~|þ§â®rM?ᔃ7y.÷ùQùãŸzÇŸŠ~o´{bs ÇPþ›pÓîÍ¿¤<9Ÿ\þ~¤\ä¸C•zϤyáfžãú‡!7óeß´Ò¿b7?‰|̓õÔ: 7uëÞýÈ™¾†Šf>nþ9¿[_áxé£u’^G/ïÑ“ùüà÷ç·£?ìÙz gõ’þó;<‚rѯÊÞŠ¯I»ž³Ç´ïy N”ç¼¼ÒOÆ8#g¸Kùj‹Ã|uðåyAÿñõú(·7ì_×ù{aÔ/~j}î<–ÝxŸò~ÇD_ø±ášà™¼À}ÎüÄæYü!úOÎ,í¬ë©çÄ™ñ^Â~øñµ§ýS°ÇSÞûÙ|£7ìŠþ{oj¼¦´ Ÿ€ïÞ«¼/y~)Ÿõh›77ãB½w7ä o÷ò|ž-í£ëÇ™qßsñùqß{sÖ£]ëå“N«ÿpc¾w}?Чâ{¨¸•PßÖëSCŸè¿}í²O¸1úÖ¼“ìX=ýà#÷½/ú¾b·ö3èeã„-õ£8 ß[ú«Áo¿/BÙCp?m/ßå½VÎzG&îó¼Ÿçr¨ïß]‡ñ¨ñœöa^ÞšåÍÿú¼y,»¡ö“ì÷Ø×´_T\Gä^üKê¹o§ço/×Eöh?ŽÄþèùÑ}&|اkÜ¥Ô·ot–=¥|q5©§½KãyCâûÛï°Ÿ†¯âXÒoñ,w—üÍ}¾æ÷4¾;YGðk\ißþ—õÈû²ýì‹Ã.Ïû°×ýÊ´S<ϰ|¼±>oËnèÿÉuú¹7¿¤ùÍ5¿gó½° z–v®¦8æ±ÈïõcDŸêg`ÇÚ Ußüxô·|Þ]Úé;Ëuºr༚vð«?ûÓüEWå3åÈE¿ì¼ù=SÎÆ:%~Zã³¥|㤡Ãîçµõ¢ysôgžÆóêò’Ÿ]ëå“NohÆ9G£ù#£òF6¿W~ç·¾}n>ÊôÃ)ž ý¼6¨ø+ìøÖÁ¦üÊCÅ1*.&ýˆë—pãáz1qB-oòò¯ÎoËnè_éáfž~•y¼u*zûﱫè¡x`~¿Ëü·½”o^ÊÌúì ù*ÙýL=ñ¾èï­´s+ú- ÷u ¿èyã• =»ulÓNùH;â*ÝãnÜ%ëH~wq•÷‡K9Òoãhœ6å²Sùz?âžmóƒ²|²ÓG¬ß®õòI§Û¸sÖ;zJ¿–úv+¿ß¢ïžÖez6í†^¡ôœ½ÑCë|ø:R»ô7zusèwãû©ŸzÍC;×ça¯žž«žÇ]~½|N”/|ÎõÜsT{úÑ^êyž°Ÿ[ä:žû7fûYO¯íþòySÜgÊÉëùmŸ‹K¹¬ôQv“ùñ}0ã¡¿ož•Û_êAñš·þ^à=Ãs@{Õ£”ÇGñš)¯ŒZ×ña½÷ÞÖq¨—ûðkW—σò“ïîÞïûÒÞFßÞ|¹ïÚ÷ÙÕa—¾k¼ß]íûéò=©ï¯øî÷RÊsðt½žxgr/.Öï³Þ†¯]ëå“N·q·"Gߣ¾#»O}ñŸÛøÞ)gÿF=¸ÊâC3Æ<ú]2û =/–ûâ€Ù¯Â¿ýˆ#ûsúM9ßÝ©W9Çø.îþ;¶¿ïvi¶sq1ÎÞŸû]ö·f|õ‰įýôîcfœ‡¼/ÍvÈkÈ£ñÝÆ:1ÎÝ­ôvÀŸÈc_ŸŸÇ~(ÿ€òÊñë öeõc”¿Ÿß¢ç§sß9áú—ò;ÿ‹sÎõK¢C?ùWçÔÒ.ZŽ=$/æ‘úüBÊÁ­ñÃ-(wzØß=Æ'ý*îeè;ŽýÃÏÔŽ~6ø#·à(›ßó/ìhÈ-ã¿ùv><_~0žpJæÎ3öwó÷¹&ÿÆ¿[Ž{×zù¤Ó#84rìýÌ<¦uÛóΰ¸ÇÌ;‚áæsâðéŸù<­Ý܇›dÞg<‡à6½G“øbÛ÷—a‡Þ=/ñã9çòê°›‰‹ó\Ú|ŸI}ïUøžñžÌCÇj|Ö7ö=â7õ9ƒýz~&¿ïë/ôäú~ö…ìf¾—ÀEù>9ë>ù»?æn îÒ<Íó1Ú¡÷Ê{NyÏêyz”ûøé÷NÚ󾨿æ}}Äó†]ù>²°ßáöŒwÆKô\v^Ìs‘<ŠÓË}ã:;~o<é\ó±øó3ú»Ÿñ.×…~÷ù.‚;3øpnÍwÚ©õ9ó…ì.ëüÝ<áíÃøž¶S\VænL;ì­¸¨Ü§×Þ¯à{à1/ÎöèO(\™sŽöéàªè·ç8eo?ÂnºÏdüÑË‹i·×i§x·û ýÚÆõÇoÊáß=W›rðjÎ{§ÂÛ\Æc}(Î-íMœ]ñs÷—v'äšœ{ntÙÎJÿŠÝØ7½œù w~zmÖ¾/ÜfÏçg~/ùï~qæçRæ³qǢũ—r=÷ÿá²ßÆ/Èïü#ö·‹Û¸ÝˆÐøMÆ™vùmº_ŒÏ©§øN;Åã‘'¹Dnöïçxç-ýv_:í5žÂ÷Üïn<åÉ'í'?×¹½…üw­O ­¿»¸¥Ì7þµü>ñgüŸ_R`hýz¹6pmæóÚl?÷á-ùÏ‹oH}qqàÔ¿¡üG }87I´k£?,;‚gùc·~ùý%ß®ÉÞMþ3×üŸüýêÏ8Bõ‹†ÂLœZåÚ¼Tæóîò÷«Ú¹»XVúWìæVæ Þ¥ø©O#ßÜ/NÍš¿Ò¼åwx·æýc™¿âa”ÿ÷Ìcô±¸˜Ü‡;…—CäõÃÇr=’ç¯ø6ý¹þt©w½¿1Øm{Kûì8ñ SüœvÈ;r…:’§ž‹|—|¨W~´_Sü»ÅŸùÒÏŸVúWì¦ódô<¸¿Ô¯ê;»½œGóQœûχâ Ùé¥>M>Ìñ‰£^ñÎô„žþza¿ÛçƒßÙ';ÓßXÏûüÐï±a‡úú\|9}ß_¬ë•Oqo‘_ñi)_\Ÿö‡|žlûœõûxþÁ§×Ž3oëóæ Ùu¨q#ÏžGÉ|6¾`îû]ùÆ·‹^ø¾h¼Iíz1¯ìi”/+ý÷ý$å‹ûú^\\êå=¾ãíù˜ôß8›¹ö}UÜ™rû ÚöÄSëù¥1þ«cÜzg9Ž÷Ôy‹ë£}çd*Çýå<5îªyïy¾¯¬WW{ùRvÓó’Ñßý¾?}¯Ú7êw0šòÎaÙuÒ>Αxä.ëÁaÙ/_Ò>]뇯âº>\òÛ¸è¡Gâºã;ú3ÏÑù~·ŸQ\\ø´om_Êþ[ã±Oäàûý<9èoÈïH¼ôýeÿö锳_f~”ó»yªœÂ×ÜÍ<ìZŸ6Zÿ™}3x2yøSø#f|µâ©òûÙÔãŸ0ßüpX/¤~}þUxEýðgðòkð?Ô¿“ßùƒÎ„žJyýŸL?üHò[ž…_µ?+>ÿŠöNzÌï)/þqØ<ŸüÈüÿä9ã{øî¨y8B·rOûÊë‡_)·k=|Ú(?uó–Ñ x óçZüþA~5åøéø=g–‰Ck¦Ñ/¿$ü\"<ÿkqtìzð=q?ð3ìq?”¿N_ÏÓï´§ü«K=¼ù›ÜŸù‹OüŠ+#–¼BõCoè¡ømü¾pðE®áدz‰[“ϤmžQ㸶•®ô«¤ðað‘‡ßß\ßû4ôO½¼÷»qý?=íýàÑîÇv;¾÷_{þàæº®%®¡¼ªS÷ü¦¼øVåóéï÷ù=ü±ü—ÆÞñ µky¯ôÛAá!åné<§÷òw“þ¥<û?³yª·Ôgqoþ¿èwôù&Ü'{Hýö—ûå“}¥ýöË~ÿ{ü.~ªö~³>VúÕQï=}nX¿c?ÞC›_]­¯?^ça¥ß>ZÜî«Ëu¯öÓ<²¹ö^üÏù½üép»ßJWúµØÍ {þ¶yYc#®V¿+ÙÑk)ß<¹¡ûK»ÛõøVºÒ¯Ånœ˹ÈîÿØÇè‡Ëûâ”Ám¨ÿÖòý{¥+ý6ÑÆŸãÇs¾Y<1ûªÎó3;gë¼>ÿyã­Ï›•~{é6^Cô¾ù170Gâ<(×|J¹/þCã¬Ï›•~{é6ÎVž/â­4žÓÞƒ¿Æ!Géýy?ÏŸk©·æW]é·˜nãiÞùìÆ6ŽÐÌÜxž)'~”¸—òü½·|íz|+]é×b7ïÝù쟽ÆåjžÊ½ÍýÆ…Ž}ˆó쾸kð½ÍÓ·ÚÍJ¿½´8rñð/ Ÿh¿Ì>Bp¼GÚ³¿vnõ߬ôÛK›_ÐùAûÒ® †ûÏè§K»è¹Û×Öïš•~û)¿çÄ;õ<<œ¡óóp€â™9Ï.žš|M?]Ÿ7O3ÝžÏÞèGýÙðÙüã¯uVçÇg^²‰‡3}ÔsNú.Þüø«C߬ïÑçúåùWÏûP¨|\âhÊßê<ºvÂwãÙ‰ï÷âà_§s ¯oÛ¸„¹þá§q©ÿËÁ‡sõâjî îÇ}òõÞÇÿóAÅ£Gð'îñ²wíwåG_BÅÍÔ?q:&NI;Ο|¤ûã½ØüÿrüÏôÖ¿õìÕAéÿ)z1ôöÕÑyÜ¡ÿ¡üÞÍÏH~¹Ç@>aç{—4÷é-}žyÁ鑸Æ'~ióƒ }Ò¿u^ß!µÛüîšý‹KÛü®óûEò ÕÏu„ªÿæ]òiþËQþíÁ¿ñú^2_äJþ¾“Ä•€ó1^ç°Äw¡òÂWO‡½«_9çÚºeÞŠ'Òï¨Oðûæ¨_\’yó<ìÍh¼ìu¬oÖÅ®£ô&ôyöŒ/z‘ßÙ«òì ñBÙK~·NЯæ{ÏïÎß5^‰öünüô#ý\¸³¹†SçĹðæaÌ}úIŸÈÃ9[ò'ÿ♈ãÐ8ÉùݼŸ£7ÆmøÙ_ê3=`'Î'j§ç Í»Õþ(׸Ãäë¹JâC°#ë™zGM¿†ÜØ?ûÒ?¾Ø-}Àç\ß̯yð¼2Ïæ?}þYOó»ùóܑ5î¶y·ö•§'C¿Í“¼ä8×!xøBòï¹Nv¯rH;Ο6î{hó㥞üsò‰²ƒ#çÂsm¼Ú9ï÷ô×%þÂÅ!§ÆýUŸRŽÞ:î¹l\ž;—Ìo~wn;gË^Äõ—§¯çâó{Û!—ŒÓ¾[Ï÷¦óƒoë¥q¾Ë®Øcø¶_]y]\ò‹å­#ÖÏây´ËnÈëÃ1ý‘k~o|㻳´ûŠæ£ù>µŸòÎý³_ë›y¥g/pŒ3õ/9°úo^èŸö¦^Ó« ƒ?üšGöDoÌ_ó¨¤ÿ÷ÌSÊËSÂ/!ï‚|"üüüWÈÑxñ—þÞÕÎÞ²ycä¿#OõÍçz‡¿\ÃÅ\ã3¿øº<Æ _v%õàfšÏÂøCágØû»£?ñŒšOòöRNÍ'™ûÅç„?õëÊ8/zòË4þ˨ï¾ù2æU;äKŽæáÊhGžNybfž|Îñ5iêÕ¯¥ÿüŽOëÉÌJcÌOó{ÒƒÁõ*¿“û”£ñY—¯Œßñ)¯" Å~$?cÚ“?ˆüƨM½”—ßèFî£ÍŸ”úò½7úç——§‹ßnlâ^š‡(¿—ÈÏüÉ'Óü}ÿ¹©çºù—Òp2\¼ìêºñëïÎr|ø—Ç’_õƯ¼MWGÿ¿´/¿Tù!çðo¼ÍGE‘OóD ùÁ;4O~É-ý°Gr!?x%rè|úÕþý¥\è¥ÌÇËëæÓ3oäÚ<Ÿ·—ò«ÔGÉ“žãƒŸÞ'óxûáו‡uÀ|DÇÿÆóáÐõ”7¿ôiÌÛÌ÷èºùJÃWó¦’çègÊiæ1¼9ø3^|á³õñg¼³þ°“Êkê%~ï,iç…ží/åˆ6OãÔ{í}¸§yíü°#ýÝ]ŽïÚ7þßåáÌæú«Ý毜ze½$§Yž¼µŸzÍÿ¬ÜУʗ]×йn“GõßzC§éÌ_íõþrÂkõÈÙsâÚ#äß|.ëã³øXãò™yD­_ÍÓM´?ô›\<—§|º>Œç`óZÓ£S‘~ÒþµÔ÷^Ø÷ íäwߞþš71ü¨¯¼çxñøCŸÉßû+œ}ó’§œ<ôÐûxß³î.çÙûFqbøÉ}×å'õ|_g߯rÿúGå‘úí'|ù>hûøÎ}便ô‘}ꟹßüãêå~ÇgY~¾×é_žLï/Þßßí4æ=H;Þwð×ö3.ßµÍû©¾q°«a'GÆo\¹ßïýäºó_òÕ¯ùóèÚ|»Ÿzö?.„ÆWL—˜ñt,¿7ÿä‡Ëzö±ü.>£ïlò·¯Ò}ó§~®Ïvña¿Ê>‰y‘‡Ò¾¦ïHñˆgÞÊ‹—ã*)?ó[^&¿”ï9µý!§YÞ:1øò½ëûØþM¿ÇÉßü+GÇúc?íÝÙ?þðmÞÓŸy²oÕýú‰óˆÏün×~âÌïé{¿y7CõK?íï*?óŠÒWóÂJ¾ô…þÏ¥IéK®çþpãÞ¾§¿Ï¾8?ºýw~ûîümöß:÷ëWÑ^ʵ|ÆÍ/ÕøŽä~í£óSè§þ¾´o?Þþhý&ùݾsýQhúÑ¿¿¿J÷«Ã÷ÙÜç°Ú8üøÓŽúø ­|Ó?ùòçñwàƒÞè·ø óA~cÝPŸßξ8¿ 9ë·ùLÕwM/BÍ›ñ¹¶¯n—Ÿ´þMú0ä£~ósš?z:ývôæd®Í_ýxìI;ûK½ç¯¦ê›¯Ê1¿³ëÿ4üvðI®üMôµx úªÜÐGùx”/.%Tž¸~a~:zÆ¿F/›G‚œBùåC™~eþÐâ üŽï\ÿp´rŒ«q"s]˰#þDrÓþôWŸ±žå¾~\›GþГc|Ú×Ωqß8øã›G”ÜÇxà¬/p&æ‰=j¯8åØC~‡cx}è~á’ôg½šxññ‡_þÙ­Æ—ßݧwÅïÒ+ò$§ô—ú»ÆÇ­ôɦÍó$Ï’u@>³èc˼ۙúð®ÖOíZáá´/îœõmÆ ùžÚ_ór‡ñA_tØùŽó^TüÙxVÎwKífðá;ªÏ¥”—ÏÊ{¶÷ÑSKº]7†=¿±ü}¥+}¨ÝØ_²Ðïê½¾‹·åS®ßëÑ784û2ó{k<_z?Ô¾¢}Ôî zÅîo~Ç¿ï|vl_âÂfì¹íôû*íÄnw=/+}2i÷ó‹Ëʵýu¿óàGpõ¤ü…´çwvÙvcoÅy¦½æoËýKi—ßcÄÕ:’JûöŸµcŸÚ¾wó´Ý_Ú—}ö‘/q¥+]Ø  ¿#¿&<-|Ö•a7ü-Ŧ!«ëú…£çGâåºþúÜ/î4õÞ|Oç÷Püó_ÃÏ{'à7ç_w×ó³Ò'“R|Ú¿Ç¢OpaÑ¿Ö+N1z§Pühô¦ñéBà[¢Çúk¹Ô/>iðQͰøâU†ý\g¿®S¿¸ÓÕnVú9vC_¯í/õþˆ¾-õ¨z]ëÏ~øÿàëcWׇÝÔ®èg~‡¼1õ:öXÚ°›‰w¿>Þã®ÍçÓxN{ÆßµV»Yé£í¦ï7ÑW82¸ ïGÁ{mëÅ>¼õüMôÛ÷\Ë•©Ïé-n?õáõï=òÝa¿¾ŸÞ}DÿWÆ÷¿÷R|Ǭwuio+]éÂnàÁŠã‹^/è{èýÈ·°Åýù®w?õµg¿­8<×£}û¨úc¸xÁæ‡ps†½Û7è¹ftïÁßvÿâÃÕnVúh»ç‚K„?éþqôêL(?#\MãŒäZüšâ{”O}þ“ÆÊ5<}éÓøb§¹æ/·€Ÿþ ¿)ßñN,¿ÍÄÏ ?ÑJWº°þÅ£—âøðòkŠ×£½}e¼Á©ÐKþÓÆkëÿ£p<‡)¯ç¼œÂ»=úƒÁŸûð§ppŒü«?Zò3©|¥Å]²GqšÈñùñ|ü޳Ǚ_¸ùƒ¥ýï§ÿô#¿©üÛvÂï ƒ~Þän¾a¸+x¨à˜n~¼¹¾÷›ÜׯëçBÍú‘Ó½ßç¾8gò?3ä)2¼ãrß|Ïõ^®ÓïÍÁWëµ½¥ü›GÞ‘\ág4ú9¾”¯ü±mÇü׿½Æ÷Èo k~å—•wö yp›×1íßsMî/þàÏè‰|Öp¿òGNù«×<Ø¡/¤þ‰/÷\™öU»ƒ bÏ.õô ÷ÃnÄ;$gú°?úð…¡ô÷¥M{Gú9ÉþG{ðKYnþ™Ü­³¹¾¯ó<×#úôã%ß9ιÅ]7~`îk§ë5ùŽuž>Â'jG»Öý_—¾Ã“MÜ ;}6tÆ[S®8uv‡¿ÑŸuÛsÁ5½¡ÇôμqCá¡Ù»7pmøo_ðgðÏ⦒|´rÚßO{ûËuù ?§½Gö¼ ½Iû¯õýµ‡ëí#û©~˜×ðßó¹vŒÿ̘/úõæÃÇ»}ïÍxNù:5úuPúƒ_¸ ¿÷}ÚüGÊ7®´yýö¼ÅR~Õ?z¬¾ò¿úpz9þ-K¹õ{¤8íïèÇ{=ƒ{sÌû ‡;—zôÞy¥“c¼=±ü½ób¼GjžÈ'Ôy¢WÇø|é_K§Ür\­ÏÅ5¤ÿâ}noúk\­ý/e—í^¿öUœO‚/‚Ç{}ÈÙïλ¼ùðç_ë7n×Ý¥·1rn<´¬øa¿Î9÷eß…=GÏ»¥|ÏCåwûTöŸðcŸÕy6åÏßrÉï=ç7ìæ¾Œ7ý£öÅ&Žë¢ù°nÑÇÜ×ß¹±nÒ ßÑŵ¥ÿ~ßÓWrLûÎ}ê÷Üÿ%¿‡_ç‰ð§çöz>4å‡n)¯žÓí¹Â/§×Û¸Xá£çÅÓnϳn®¿´Ý\zØ}Oó—ñÙ'¤ÿäh¿Ý~cÎíí'í:/N_{þ—\ï.ÛëùhòŒ®â/í:ÿî¨/è<ŸÿÎh¿8´ß¸vé×ïÊ9·û¾0ôØ8Ûzàœ}Ï9§>|˜ý]¸“ÎÇWÆÑþŒ³qäBáU§?—ý7ªy<ȹçÊCéMåk~ÉYÿ¹n<@úvêo"÷åúóØú — .ƒø\p:â¤\[Êí ÷Ó¸`iŸ¿‰^6þý\ÚEý×ÎÁßX®Ûøê§\ýÉ£ßk£|㸥œ8,â:G>šW-õôÃïÌŸ¨žò3NÙ½Õ9 þêÇϰ›ÆcKý¯¬xÔøÈÇ|Œçà£æ£ñS¢?óá’_þþÆm‰¼n ¹6._úƒ¯iœ7r —æ#õß)í'd~É?¿_ûröÒñϸTpJ·Ò_ã0Ý^ÌÓîçÚ’ß-Þ"òl\¯GØÅˆ;v¤ýÊ‹üõƒÒk”>e‚“ÒñS‘·þÿk9oÿ;øÏüžv~ßs¿åRÿVúíøðOÌÿ±ÁÇrÞ·8.õÈ‘}šgóI¯­—,ËÓçæ7v3ã 5>Zê¿?ø˜qëf|¯ÆD7rÙÎÿ°‹#qÄÂïÁaô7ã5¯•ŸñÜ_´ÿ…õÖÁ#qô¾"»¹þx|nqQ,åV¼ÝÅÅümÛvþÞ˜÷o©qo/åÙçÊíåzÒòækعçôŒ§IŸðÏ~ðåúHÜÉÑïõÑÎõ!ŸÚqÊyhÜ1ë„v†^{^{ît}SÎs\ÉmʃÝç’ßí:9ì«ó‡Ï1/µSöÁ>óàš}~´œ—Æ™ûèoÓçêiúõxÕóÕýåzó…ûé÷FÚoüéÈ£ñ†3¾+C/ëƒå¼Òw—vÝ÷nÏ÷Æ å¼ÿî} õ‹ÏŸk4óÓë´ÓþŒÓs„“{î7>ZÆ?ñðÞÑkËyïóœ¾ö}8ý‹O‡óàwïuýž%ã#P×g–v|ûÎñ=ÒyÅŸßÙ)y±ßð‹o¿Ï¸Òâ•ÏÔ¯\µ»\ÿÖsÛ¸ý·ï¯ÆJ?¿œÝtÿhž¿³Ïr~ô7ööûE›rGöœ“7Ê~MãïçºqÃŒ3ó׸ÿ)oÿÅwx㩟ù)K?ƒÚ—³_éûuÆ)³_4ãÙ'²ŽÙ¼8äÓxn)Ÿ¥ÿÆßOÿç3žÆoãmží_îÛïªù]È‹<LqMä9é‡?á叿þÿ¶ýÈMÜ þ6þ ~Ó)÷Òàgú!”C›H{©Ç_ßr6×Íë•zö»íÃe½9ÊÃiðo[_ìÛ7oY®ù5šç(ý)ïRÿO®ùËôÛ|HÚ_ø´ÿËÿ¤ýÆ¥Ò^úç<¥jþñ•~Q¸ õÄÉxyôÓüsú¥§igÆÇj~Ö”ãýÅßh7{á—?×üÇ®¯Ý~p.7?Ýðyï oTœOüÔÅ!EÞm‡=üӸϟ|bÔ‡‹z>ã0ÎçÈ/¿?rnèæŸ†þœÈ5ùðoÃWðsŸÌµßù_é9½&_úeÀ§vá¶øÉŸÍõ±Ô3ŽâvrâK؇vSß|q<×êïç~®‹ûc8±ä÷æÿ ýó’Ïíü†?rŒ]Ó‡Ê}ì9ÉcÏ`Þá6à%N,Û?‚#{~)§/«×+ýziç;óz=¸iý@ÿ¸¹'võàû}Ò¿/õ®¸º¬[‡±Ãìs‡±·Ãðq/¼Ý!=ןõ%x6ý×t=d|÷²Þ†¯{á¿ülšÙk?ÖøEëPøT×úó]¥µ›Ÿ-ç³82ÏÑèɽÿYÚOß'Íï÷sßzë½ÅsgæùýŲ|ñ¨žOÅçwú”~Š¿Už¾çyÐqêß8?ŽYŒÛó noÚAñ‡égà"ï}2Ö8:üZ>ñ;ù¦ŸÿÊøcGå»yŸsÿï–ã[é7l7/.ç½ÏïoÍ'ùõÜð½Ð¸®ž'Ñß)ÅkåwßìÉ{žï‹“ãwvy2|x*þ?×o >g³~/ŸGýNÜzÉñ«ßŸÍñùÕ®Ò¾ïGrýùà·y™+4|áÿ—KyîZ¾«Ô¾G¯g|jûUÍ{{ó»ý’Æ#sòΛ‰Ÿ¯¼ûgè±ûé×¾cñgw7ô­¡÷ÅË¥>ü$føê¸Äé¶ÿa?Åþ—}Œæ£Íï͇škûøz}<׌«8¿´‹?òé¸rÿlÊÃÛMœêé1îÓËy[é7l7p[Û;˜y-‚çÚÖËüÏ}ìæåH=8+åà±ì÷ò£tßW»®µ³¿lß>/>Õ¿ýšx5z:÷ç/³ãü²cþâWÙõÐo|ÖŸjÿÚý#yaŒïƒ[þÉÏzv{ñœ[é7l7õ?fþøUoÂõþr]m~¯Ð⻢Å×mìm›O+zQb®—F{é¿yÁð‘ëæMyü\^^^êUËñkòsÖ?šþêÖÿÞ†ÿæK¾¿äçò”KÊÕÿ~›÷)õëç ÍÃŒ¿a7—G¿WV»Ù©ÝT¿éKæ. q\2ÏGô;zQ|ˆz™ßâqr¿¸Óè‰v›Ÿ-ýçšúÍ ˜r~¯¿=í±·kã9ÀO_üÄ#®µÛ¼hø%‡ÁWê·ò;’GN;äÚ~µgüãyye9®‰c]é7l7ÖçGéKŸG~§ŸcýgG‡SÜý çôP{ôiyýÞR?·ÏÃÑNùaçMÚ³Îw}§ßãùR<÷£ô?óA^™öyw9NöÕçæxîLUŸK>¶öHÎK~w­?ßUÚ÷ï9p¿”kß®/åÞEüfëeÏa°ƒün½l~MïIC}w]¦OÞ¿ÒNûÍï=ÿcÃn|õÜŒq¥Ÿž'Jû•‡kü ¾GÒNñIé§8 ÜŸùû>þ½Ï±ëŽ#÷{ŽÇ¼lƱkýù®Òî‡Ù×q.Ò>R÷ÉRξ—sÞÅ«±£èüWóQ¦çÕ,ú5óÿO;ÅŸ©Ÿþ/*çZ{©7ÏiãÛ>×Ìgàûÿl¨s§ÊÁ±‘“ý9ø/åì¿Û7;;Æïy~´û©§ûˆäÛ<’Ëñ­ô¶8¶ÆEÊ|ÁIñ{Î8%pU#_Ø6þEôëdê)OÂo#N ¼ÊįñÓ7ÎÙÐW~¤ø:N~øß§]þ!þqW_"å^L?Æ?q…ü¶3îÙþh—\6äÇoóýÜ'—âuB‡¿Fü•]ëÏwnã#mèað$÷~»™ç N>îfpµ£øéùûÅWêïüüâÞð»ÇÉÿ_\½ßñß•=×Ð8MâÓ<³´?‡ÏWÆ{?4ã*. ú SœÃËK¹À Þƒg$rüdCÓÿÍÿ ÏtüÜOqkìià†ŒãKÏ?¼ïÏÆüÔïñ½”ëâsÝ|ªcÝäæ÷…;'±Àëi—¿[;ÇFÿâ4‰äwøIë/¹þo®åwÔ¿këô©qŸ~Íçˆqà{®³Æ«]ë&¹âß|¾0äAÏáhÄ„#0>íà׺ÿ˜·â}r¿¿§}xÐâÆ5‹òp/äb”›ù‹So‹çI½Æÿ =9~‡…禧SNêë¿×¡žgÚUnÄûÂv#^";†ç óÏn>~<äh<Ö1ë!½À¿x5Æaž¬«ÍwÊNèû¤—ôtè¹Ð{8—yÎÁ¼÷½> ½‚gÿ—‡ëÃ6¯vêÁ¼<øÕ¿qÐç$Œ[}öêýþøÐsüНÄ~á=õz_ó¾ôó!‡—}ïö]\çÇXçz~ ×'é >ÿ³_òúéà£ö5Öeó®=ön½²ž4¯ô²ý/m7ÿɾéy„ø ”>ùNtž£ö`z"_·qé¯ëtÚ=ý¹ÑSùÎg~ñžóaçÚúï·òÆ'{"ïž·óÖ¼ßc½==Ê[/~:ä‹ZoécãŽá‡œéåcã3‡znãOýÚoø‚òݯ¾õ¡ßC)ïܹÃÙô;JäÊ~Øù#ÆÃ“~õ‡ßãÄj§G¾‡ô3ð=_ØnΦ½â•ö3ï䢟ðk§qµRß8è‹}zŸ$N\Ï‹ {¤w¾S{Î.åíCí㓜ÈÍ9Hó åùo?Fü´î¥¾8~·OfÞé›ý¯æeMyço,|¼5äMõËnìÃ×FØuÚ!_óa}2ÞâÖR®ûZÆM.ʇoëþÕ« ~ç¾¢},úƒ^ãíùDýϘ§ÆŸSŒÿ˜ozHNåÿo´›æk̼\|Ù×ó¾Ðó¸¡ön\Û?¤úagÅ;¹úÖó¸ä—òüö7ß™ãp¾‹Çò{Úƒ±[„ú¡çù4ذ›æ›󨼔êå¾ñºß<®å¿€·*..ãœç†{¾ÿC¾Îsã£y5Ì#}eÇäÂOÓ8–¹_Ü;ÐŽþÌCø ü_Õzá¾yúC{<÷‹[ö¿´ÝðçêŸê½ÐæSÍïÅ)—qðÓñ7gdœãš¿êZúŸñþw{£?z¯<ýü7þCáYŠɵ8 GR?>}3žð_¿;~ÆøŽà®R®¿§¿æL{ð5øÿ¦x6ããÅuÁ}r&Ï«ô)îæQ®þÿôÓþÃýöi§ù@Ç|u\C.—§^é/¿ó÷ÃG¨7ûé¸n/åÕñ™¯Íï_Ún?iÊ7ã`7GïÌïÐóи"¹ö;œbãŽþÉuöSü¢ûC_'L?Ê7nÙÅ%mü0÷ÓOùIÿâ‘uœ©×x„¹.Æ5ôH<·ÆÛ _wf¾ñ;úožKòß_¶ß8‹.©úhófž‹ç!?í™§—ã¥â1у÷…º1Ê7îùd¼3çÌ+Z9š_r·é}âWûúߌ÷ËÛÍGC>äF/é˘çGÒY?íÂE_y°›Ú»1¿¡žOä¨\ó!§âñc¾ÉMûÑ—Æ·¤o¹ß8iúvoýšzZ»0ÿÊ‘ËÝ帬S]ôCOFÿSOªOô䣡'ä<Ú÷ža=2o¨öÚïx~G:ìÕó€^Y»÷Å¥|ðéyW¹±õ]½ô¼ÒŸöÍ3¹Ïf|_Ún¼Ç6¾rÚŸq€½ÿ4þ}vѼr-Ÿ›ã<Ê7žtúƒ³j»¡ð&ÍÓ¹x^{¿¥ÏלzÅÒí¥>|Ú÷ÆQžw1ë@ã*»¶îX—ð‘~û~2ç}è·vé-¾¼™7í6þsÚ¹J®©çû¤øÌÛC©×ø×ôƒ^è÷örpgôV»Å“âgèƒòÞÛ¾è¥q’+~ÝmqõéáRN_ÚnΧ߃ôÞ¾‘ïpßßöŠk ÿ=ß—ë–Ó~Ú)¾)íÛ_èyÅÛËy§Ÿöu|ŸÚñÝi?£x­´[;Vnؽyi¼®ÛËqõûýîòzÄ»ïwk¿Ï?\Ê­õ­/ôúöRNïŒqá£û úëSÏAOêu_Àú“rÚÑO¿Ãsm?ެóeÞCéMÏÛ¥ëñùÑ_õ,ã'GíÙmžòMý‡­çåð‘ûÝÏÓ¯zôh#Ï/m7ö³í#ž =•ûü öçùÈÕ¾"“}bç»ï~í7ÚWæ_±ÏcµqÂð—vðá>ÿ ¿Aýa)gß¿ìÜ~õk£û¡üú忳hŸñÑ^óHæÚ8ÉÓþ¹ãŸÎ¾¯ùyuêG¶zŒäÁ¯~ÎŽûæmæª3å^ýÑ“æQrà·i\¸Üç÷h¦1ÆY?©úä’ßÏŒö‹[r¥OÍ´¹þÒv3ã$ðÿó?ó§ÑCþìgBù¿ø¡ñ},í<;Æ%;S2ÎÆÙJ¿ôM øŸŸ9‰—„ïWF=þXåÌOqøvÜùÎýŸŒþÕcï¯ >Oùñ'òÃzŽj½P´£Ÿ§oÆoƒ¯iÿi÷§£ónðWRÚß'OãÈ5ü~ÊïæþÍ?¹ðYßèœCñ¹Ö½0pKð)¿üá¿ø¡Ôwÿßþ6»Yé“E;Ï3žÍqÏÙÐæñ£O)çy4â9Áã¿òô’þÄhß:aý{n¬oô^ÃYŠ)>›þÓî9X¿__êûö=ÉósÓ^ﳟ®[Ö•Á_ìq×ó½Ò¯†v¦ßü±žGôxÆ-Ïô½÷h'úâ»®°qa‡y¾°ÏÓÑ¿£œç@q“ù½¸–”󼟸ۑ7ñˆŠgôÜ\Ú×6Oðò¹Ñ÷ý\Í6ðf\»žï•~5´Ïø‘‰ãò½Rý çôz¼ÿ©Æseè}ãËìo(|ŠçNó{†Ú·éwèxïjœêÁ¯ï—– }}è}¿ëòû#ògv)ßËÛúËvËø½Ÿ¿½¾§}›è6žZæ·ùrnÌwBqhýé~çT÷ñRßþb÷µüžz¾×‹+c/ÚÝxÁíÁÇâoî7Âmi䙨ê=þØÍ#ÞãŠÏ¹»|Ok»á‹<íߨÿ’yVúdÒ-î*zQ¿ZôõʘÿÆW‹~(¯ú•R¯~©´×üAw6÷›_5´yNC‹o‹^_Åoê×?¢^ìÓþ7{½¸¤ã¤ü;×ïmÑûË÷·úoŒ—e<ü#ŸÒJŸnºÍC ÷ÓxQÑ·é'ç/î õg¾ÍÆOŠþÌÍÚÏÐß#|æº|yîímúeý~°lgæs.w\ßïy×=Oô—q×±õ9ó-¤GðŸÅ/F_÷Ö{T®áÔ¼Áyïîù}‡{ÉûPû÷=P¼lúiܲô3ãä—7Þû8Þ¿üî{d毇+šñã·qÙÏV~Þ3ÙÏþ²|ã@.ǽҧ›ÁQÎøôµñÕB‹ÃKy8­âTÕþ=jöPx(ûás®<šrð¸øxg¼?¿§½ðüXË9¯z1ãÒoÏ«é7õg?¾“ÎGŦ]¸¹‹Ë÷Õ>t¿,óË';ã¼:Ê9g}ÖïÑ·æ)Îýž3þh®íd®á¸øYø3ùáùâ¯é8N/ß›zÎçtê§ß#åðÏï&´ø»ÐŽ+´qäÂ/¹¾5Þç^}8Ÿ+}ºhýøp/üޝ=˜þÆúáS¯ñØ™öèUê ù¡f~Þ“CÅò;>‹;]¶×vñIï‡ÿ¿ù­ p6ðrÆGÇðÒ¨‡O1ã(>ÿ>ŸÏx¬GðoiŽhßz’rÏåš¿>‰œ”O.ÏuÅyj/xJù&á/J=ëyˆƒ§_qÑþ<Æ×<]øÚܯò‡úÅrž»¾Ê»ù?C>òà}LNùý_—ãÙæÙ5ïäûòKÒ“×­y¯ó;{‚»|i)Ï#øVóžñÉ÷×¼Öãào“½ æ›ž¼rìZžáOñ™ûð¨ÁiÒù±ù|sMŽ)_<›ç\ä×<ŒÖóJÃwó&ÎxŸÆÜë»1Y¯ä+…l<ìòN²÷Æ{,ž;×pCÕï¡'ò’òp¹/¯~—í×~>ô^wôëý¿ëPô}òOÏsägý5¾äiÝâõs_<6|Y7Ì·÷ŸâÉ­wc]¤ïæ›^À¿<øå‡7~ñÎ_+å¢ÍoIÖyòbWÖ›ŽwÈÃüÀ¥Xïɉ½’“q³÷¬ó÷~—kóOõçùÅ^‹Î59Oô­úËî¼gšßç&Ÿú]®{Gìfâ„wJû¡Þÿ¼z_<›kr¾pgCé!{wô\®åU-þ(å=ï|’ÿ¹1ø¨ù>ŽO8\¸i7ðI{zrÌû|?†Kqm¾ÌGãy0ŽPöá}ÿú±ÞЋ~7¨?Ö ç–ÊGhãm…î ù¼˜úÚ#×yžnß9$óç{IÜHÏó ž”õLü%z‰/r÷Ý5¿ßNß­§ôÊ8ávðí;Çw™÷0ö OcÜű »ù%k7ÅëÝß´c£yooÚ±_áû€C²_ÒüpûK½.~"ã3Î#ùåÒÎÔWzè|¦y˜ñ±ÚNÚ‡')ÞŠœÃó‰=w˜ñØ_qpÆAêþ ùŒú®ÉG;äd^Í|½t.Rý׬rH}û]=×™ùœë[ãòçZ}r³Õ<éÏ5þÉÍùׯ•s?ýè÷Âèæè¾ÙÝå:êœ;yZŸØ~.MþrÝó¦iŸ¾ÓÇ®‡ìpèqâç±›ž3O¹#yBÒŽûÍkB"7x ûýÝ¿zyU?©çºûœúcgioîθö]K½´ß8L¡-ÚsêûKþø#®“¾g{ú‰šwF»æ7¿7îÁ¸ïü3¿Wã!ŒûÕ—Ü¿’öÄE°?]ÿ ¾´—ûO¹5ŽW~Gg<7í‘Ç%ó`] _ï¥^瞌ùê9oíé‡~|´Ô·æ™J¹Þ7^òJ{Ó¯düÆkoÜŒÍõ»áÿ)^'õ‹J»üP;–ß÷#¿7Þr¹Ïï ¿Ð8)iŸ>°ñ†Ržÿš¿«ñÌRŽ_XâÿÀ?ÕOH¾©×¸()Ï¿}-”½þk÷s}}È­þé̳qV釱x2óà÷ð‰¿Ó8”ò—vÄ­€[¦qžÒÄO_\ûKýúÉ÷Ãåµù¸9Êׯ¹·Wq Ÿä‡²_ã#Ÿ—ü¿?ë}´”?=hÜóL¿†^6.ÔæúˆÝoaþÓ~á”Ì[û¿³´¸¾r¡·¹†ÿ1.ýÑÓÆKy8©Ö3¯ä ¿èxLÅqÜYöÛzÇïÿýËï·ØEä þ¯¢Ÿ·Òþ¯ð÷é’σôkýIùåó{åùëN…ÓºT¾?ýÞúuìÉ8õ›ñ½?Û½³lŸ|nçþ²<û,ŽÅ}ògÿæÅïÇá §ÂÚ%óÓua¬_S/n9ÀÉ?G¿†²{í·üX‡Ã绹6Úïx¦†6Nyàkô{$¾ØÝ%¿­O¿Â§ç}ûKýâŸr_ýâ Ý¿¿œý›·>‡¬Ú5~väyBÿþ3íºN{Ç—ò+kÌÛÁËœWöEŠO㟸¯ê÷´ öi~¬‡ÆËno/Û¯<­gæ)×ʼnªOÓoq_øÇ7þRÿâ¿¡Æ7õˆ]·zŸkíM}¨þ»¾[7èr¹±ú<ñÝÍš~½ï7^><o/ß[<×mÈeæ»6^Ïãk£¿âˆÒžûÚ›ý5~^葼²¡{F¯Øoø™ùÌÉ£x°Ñy6¿yhó¸fž”o>ZvL^ÚÉ5\ÍÌÃÞ÷êÜoœDòP>ýV¾‘{ã‰ÍrŸïûƽÕþÈ/´ß©ÿÎh_\´ÆwzÖ÷ïð×8æ_-ÛÃo¿ÏҮ߽Ï7_ôü];C/çv›'r9Îù=뻦q·Ó¾ï7ß«Ý0߯‘vΧ~ãde¼úiüÀüî;ÔïðV3N°ùâÇPÞ~Ôåȉý]Ð~Ê‹ãí;R|°êAÚÁ}òÝ‹ïÆ¿3^ý¥ü£òÆâŸæÁ>½Äo÷´?äÂì¯Ú¿é¾^Êã«û,™ÏÆi?öCì[àÆ>ŸýûŠ—ŒÛøÒ¯ýÀî/ñ4.>éM¨¸}†}—ßÜ?G_¹î¾î~uŽ”¤ø¼´×|é·ùOÜO¹žÍý³¹¯<¿‰}ßS£<ÿƒù¤çõdâmÍx ú·oÉnäß°_zôË/Àx2×=·nœÚMý_9¨Çocÿž?¥qâÒ®krÐ?~ã/¥ÆÙËõÄWñKØ‚«?3T?ü#öÁùÉ‹_†¿©ó~µÏr*”\øgàNŽö—Êüh/íïãS¿ä<úqþ»yµF?[0ÆOÎüÂÍß•rìŸ_÷Qñ@‚3©Ÿ_˜ŸúDîûÝ<À}ðwÁŸ÷÷7õµÿòòþÄC7ÀŸGîüðÍcšß´l_ùÞSüwüöÇCùåð™ûõ§Ó#ü7^X¨üj/åš}μwÍë~ôÿ/C/öRÞü6>Ñr|wå›ñÒ#õ¬73ÎYøÙâABá•ȽùCÿeÌÇ £ÿøïï™Oø‡ yà“ýÓ;øë¾ƒÛµ¸¢ÉœÑÄ%u~3îÿóÙ8wK>à¨vK\éWCÇÉ:òã±^Ÿ×ü»îÛÐâýž‰žÿæáz‡t÷ó÷i÷OÑGøBzŸ¸Kp_òèʃ{=o^ÜàFä÷=ïÍú;ì:ÿK~àæÈcòÈNò»ü¼Ê‘Kóìj'x.òÛõ|¯ô«¡}N4côÃügÞû»ç\Öã-Î2úgýÝ_ê œýéûDô·¸²Ÿ ~àÁþni7Í{ë¹'ˆßçrÿù%ß}‰Ý²Oãðøå¶{bÈ›Ÿ·ñä¼WüÓ²ß]Ï÷J¿Z=(®n¬ËÍ L¯é…ûÑ×ó»\¯ä‘ö]¡}x\ï¡Î4?òxoœx~ßÚÇGì£ß‰Þ{ÿai?Gò©þ|ÈáÔ÷OßW¾«ú5ޛǹ¡•>Ýt›o5ó?òéÍü”ý>†s´h¿cä=ܶ“ßíëtÿ!åíÙ·°_b¿«yLó;~|7Ú÷ñÝÜü­©oÍ~ ;;¾š/T{ƒÿó©«<\<œž}ˆì7ízžWúÕÒúàíŸÛ·~wè]ñi¹oŸ›_¡ypÆz=ósŠ;h¿Öþ{ùq~ì_Û÷\è¾phóĆŸæ =ý†?ÖÞŒ—¾Ê¿}o¿Ï<'óûÀ¡9¾ëy^éWKëïæÿkÞºèCý ÑÓæeK¹âÆRîà×›ßãoÞêOÊñs6hêù?ñH^=ý¥^Ë…ò[7ïZꟗkþqñ9f=~î÷†Ý´ÿqŽå?æ¯ ÿ»žç•~µt‹O‰W•yŸñÿŠ÷Éï³ ¼Dû™yOßú7óˆ/“ò3o`ñ—Êgmÿì*í+WœJÚ™y]ÛOîWʇv=Q.íŽø‹»žç•~µôH^Ï™·³8÷ap³ÕÓ´SÜø#ìæý¥~ö÷#ñÚÆõµ¡×}Mý÷3®;>kwî‡ÿâ¶ô§}Ïñ+ù½8²ý%ß•ãúžöm¤[¼ÛøžigïÞ¢ΟЯÆ[>GÚsEÍsêý&×phÎáôüRô¼ý«?¾wz‹Ý¤8¼ž“|ÀŸ7c¼ï½âSÞwZóyª‡¦Ü;ë{Ú·‰nÏŸFàÒ|÷6nX~o^Î\/—rÅ}åþŒ3æ{æõ]ßsÎiþJ~@õÜoýÇΪÿw—ýÙ„§²ïqfôg?­ãIyûçsÆwk~Ú‹ËßÏ-Ÿ»+}ºé6ŸYæÙ9ýèQËñ“4¾Eh÷ƒs=ýìêçÃ.ÔsŽN9þ8™ýñ›¼˜ò3ÉôßÀ:ï/Þ¿˜öæ8~6ø…#âgz.T\í7ßêj7ß& ÷R<È_6ó'S½W矗ó?ýéG´¿,?P¿ÿosÿÓèüMpmâVÝûóæ¿½ÿIúã¯?¾¹_ÜáKc<ð8p¿ß´?ïWpAƒŸŽþ"v4Û[é·‹ŠÛ/vÜŒû½Ž½æ9·UÜXp›‡yŽ&¾Ùað0‡Y§áfc¯ð.‡p—?í¥¸³CvR¾r?vs˜çÖ¡8aŸ.íù¼Ü–Ÿ•ϱ´¯¼këÀ?Z¼—þÓ²üízžWúÛø‡¿¥ïÑ xóèÅ}Ë{ œeé÷®¿µ£è}Ûc·®O¤>ýËóà0ïEôöžuÿK=®>úɸŸçؽØÓap­‡ßÏõ? » Þ𜭿·´ x}xøÃ¿_íæÛH½ô¹=p>ƒžõ¹=ØË|°ó[ûòœÈ{Ëÿ,õîæÐçC8å\{ÿéy |ýi¼O…¿¾/…ñ-=o¼–oï‹ÞûbßÚ«xï‹=¨ßó,±ç‰w½ëù]é×Cûá{šž˜ÿ?.¿ƒŠ‹üáò» øÌÿ³|¿ïyœ<'gU{y¾8Pœ3=Žô;ã/ËçÁŒ'«~û‡G3ž?¤ÿØGÏ9—Úö}÷¸ºÝ_y>÷[p.âØúœù6ÓîG‰SiŸÍùÇîOEün_ªñ„C»ÿ”ß_Ô~~ßÏï=g©ô¯¼úÊ«ÿÂòyÓûöÛàøgœd×ڃdž¿>¹_ÛŸã;™zCúÊïÉe;+ývÑú-ø!àüánÜÏýÞ‰; Î)ÿ‹ö\;¯ wÝ|®Cá˜G†¿†“†ÃÎ9ñò/Á[£þù§àAµ'_|¶ñ¿5ì_ö×ñ Mç´óˆü!+ývÐúõøûo7zÇÏ(.-ý©?0åÅɸ0(¿"?$ܲûm7å]‹ËÐøôwò›vàž›:åÇù†mãÔŸë»Ëç ÿfã“‹ë´ßÍ~..ÛYé·‹nñõôÿþòyP}ÊýÆoöÒzã¹3ε4ž²s6ôŒ^jßyÏ÷Ïûµ·´ƒxñj§Ú£÷Æ9¼¹|Nlû7þq-Ž4>¯|Óþ®çw¥_-íû÷¾'y_ïIgsÝ÷®”OÃy.ö ÞIïEÞçríü™÷'×#ÿRqÎ5OÂxÿëù8ú=žOÎcÂÝ”ש?ðGòÑá£çÔBŸ\Óî®çy¥_±Ýøö=ÝïýÜ/®$÷Åßá§wnZ\ßÏö|‡ûþ†«agòýØŸWÆ~}¬G©ûû£=ßéìíåÁŸóÚ³_qì«ÍêÇʵ8ÓO[üÏ”çðŸ®ôÛA‹KÉ:Ìÿ^ÿ#=ŒýTO~—ߟËïyîÔo Op|©O-?óÃqÿXîÃÕÀÑÀ!įÏnŠP/¸–æwd÷ÿ:ÚÑ.Bðq¥ð1êá7~ÜŽGœž\÷þ³>óÛõ<¯ô‹Ñâ<âï¨~Á¯ä>£uò0þþ÷Ö㇌¾Þûó¦ýÚKìÏzßkvñòr]‡»i?â¢yÞW.íÁí¼qýliÇÅ)D_›?RCÏö¼tŸ¡ž“ÅÕɋエ¯^Ê“KñŸîÿe}îÜ {wñ_Ð{—u\<Ìæ×þÝcWù¾è{ÒoS/v^{„G`7vœO€Sm;ø /ëÃ'~O{Êå{fâ£Ï]…]ëÃJŸ/gôòHÜ@ßÍûK;˜ø«Þ÷ýë\NžôD{ýîðÝ#à+CïÆ÷Ñ|¶öb×Åë87 ï®}¸çw|§;£Ü܇˜ø|ˆ7òÜ6.›vO†ÚÑnð8»Ö‡•>¦Ýð[Û'µÏ ׂÒO~ú!.4ý˜qÌÏ„Ú'nÜõP8™æ ÆGÚ…KGP¾|ç>ÜÌÄïˆ/6ׯgŸ.ˆÿiÆÕ·h_~À>uó妾ýnûåüÂÝO÷;þÈgCw­+}<ÚsÈçA›?8Ô¹`þçžéKómæšß³ycïlêË/R@Ê×ïžkz×sÍi¯~Kú*¿FñúWOùÔïµ~Ó_óóªo<¹_šq9Ýþß=Wrü:ò E.»Ö‡•>mþñûÄ©hÚü.ÞFóçú½Í|7ΠüVò_iO\ÆÇý4>aÊ5ÕÅ¥¾‰_(¾™xƒ¡þø]|qÌÄÕh<4ãJyã¯Ã¸ÅÁ¿¸%ÿ–ö¯¤¿æ}ÿéòh'ñEv­+}<ºÍ7FrÝø|ÑÇ™ïÎxM3’¸jÍÏšúË´¿Ôü4Î_úi<¥–v¨|óÔ©§üçwq›_™¾k~zÚc¯§vµCžì~\‹;H®+µio×ú°ÒÇ´›Æy íúg}÷«Çž+ÖMz >=aôm¹*|ø®õa¥Å^œþSæS<¯à4{ÿxæõÅÌ·ýhþ½ï‡ÊÓÇ/Ñs”Ú‰þØ'†ƒüé('j_™ÿ„¦þŽÔ‡3ƒÏÔÏOÆ}í³?íÎóœü1/¤}çžùkôÏßã÷“îçšÿæ™´÷\øš~ã}aý¾y(?û‘øð0ð_òñçÇŠs9¶¹_úóÑ›ø'‹oqŽŸÿýù]»Ñ¯âÚà%ÓÜ@‡‹“'1¿O<]ãüWÆ ·ó‡üξä?œýŠKs?뉸ÿ³ì·×Éõ'á÷—÷ëß…Ï×'òìuõ‡Ëöš¿1ý6¾uMùÌ›ùÚæÕr°~j÷·ËõÖ<‡õߣy­¯7ÕxßüÉûøçèeæÏ<7Œïê§_8Bëê¿.åc|Saþ³^6®ÅÈ?Ùrp¾á£íθÖÕýñœ²î›Ÿa7{K~ÿÎ9úXÎÿ]ʱñ_ø÷ÉW»ð¥ìþ“¥ÞÎ83äuX|BÚñœ gøP¸8ˆ}r_þuØiäSùÑÛãi§yt—úýØvã9õbêg=kœDqäsôÜuéGËy®|ñ÷ƒ!?×ìþ‚ý©÷lîÓÏyöàyîœyμÁð~±›mÜÔe9ëiÏÀyx®ÓCøëå KùÕ.æ¹ýzßÀ'y˜Ç¾„þ`ôóÚÐ8í½jÜå'ýôNÚe¿Þ¯ž 5~ëªuÐù׿…þOÜPã~Xrÿ_?ýÝ:ñ}hÜWŸ÷ƒ=²C|çNA¹èácÛMóÅ¥¿æL{ν:Æ×øÃä™úξ6ø6/’vÎè7åá2Ì+}ƒ‹pN‰ÜÄöÞ~rèÉ/Ó^ã-ç>ù›÷“¡¾£éG㸠iOy¸÷é÷É¡Wä_Ež?å_í{îéǺe¾O+¿\÷¶ç0Åq™ò …Cq~Òúh}šãq>Ù|ÚW _ãš¿—Ÿ¡ô æÁý·F}ㆿñèû>®¨ã4÷Ûnœ;Þþ‰þìc¼±l[~ó;¼ü…ý‹Ó£ãîþËיѮï`ç^ÏŒky+{ž<õÜ7OÎÕÚ‡i¹\7¯Þ§} ÆËO?øwŸþº¶_e<è…;Ëù·ŸSþý®}òÏïð#pfö̽ŸíÊpþîæþ÷Ù1¾7G»p0Ö¯@¿Å‡åþŒƒQ|Í+|Oãî¹ ù4îFÚ%óÒ|¨ä¥ü°û~9þØvs9|‹+r_Ÿ¼‚üFÿìûÙ¯‡±Øýü‹ËzÅ[¹N»ò”\š4¿×¿ûü„ö㛯By|æ¾k8|ò§5_&~ò;œ—ÆPø ùõFÞ¯âF’_oë÷õ»zé_™~בúò•ÁsÜH98 㸡¿´7óyÉ«wuðor5åé#¼‹ù;â?מßñe\äné·óôárʧö÷Cøõ‹+K9x2ýLyÌ|PÆÛ¼jøã6®â]ÂGóVi‡ü´C.äMÿn=3Þð/Ïcçƒþoî?¶ÝÜL¿Æ—~¯GnÍ»8ôîFø¡oôyó¿ÍÙy M>ÅæË»™~þcCåi<ð;{Jú‘òFøÓŽöKß|}Ísùë\ÿnÊÝ:µ¡í_}í+ÿïáó r ó“ëæ±ô;9 þé?¹›ùµwÓúáwë;r«¼Â—y÷óŸÚ7ïìmðk½1íW_”מv†\nÌq =›ù›—1㢗7çüçZÿpGôáà0íêŸ~nú}l»±žê§ùKÉãö’ŸæsdGæÍx†ü¬ßÕ—¡÷Úï|ë\ßõg]r}oôÛunÈÑ|зkcžÙKóË~°ä¿òq?í\òº¶¿×GÏãë ¼eŸ£]vX=ÒŸõǺ;ô»õŒÛ:«¾ùÃw®=+¿iç“?õÇüU?Ô›z3Úyw§]uþ'÷G{Xj¿æesýØvã½uâX=—›MÅ÷ENÍ—úž¾—¼—«ß\¿7ùÈøZ޽„Ÿ•þŠÌýæ·ã1ÞâìÙÙäŸøÑ¯ñ‡NÜXß·†œZO{áǸé™ï¦Ž{èŸï-ï!ì…|‹û2þ\ûÞjÿ¡äxi̯ïÅâÉRÎ|úÞè÷Aø›ç®ŒþÜ¿n~'üË Ê.z¾ ×ï 9¿;ú#Oï¥c=«^ë/f7—"_ß‹¾Ë|÷‰GjŸ¢ñICíGôû2òh|Äð}Þï_¿ÇǼùÞ³_dïÒhß>xó4ªþõÓsUÆ¡_¿³oój_ÄþÀÅôw1í7~kèۣ݋C^Í3™rÍ£‰ÜwÈžjÇ~F÷EÒnÏ—í/ÇÛ¸³i×|_6)?÷qúŸö¯0ý4ž&¹Ly‘¾é‰þÌ=ʵý4òwž³qnµÇŽ>Xök¼Ý÷ÁïÃóè÷MýǶ›wÚ~ûÜŸ<þí‹×“zöaíÿñ¿Øÿµ¯þÖ¨Ï?b_›_€ŸŸÂ>çÉQ¯q#?(Ç~Úå‡á‡àç°ÎOÐ~rÍÅ%®%ÿ‘ýfýó/è÷åÑ<Šy Ÿü¦ü+⚟Íïü}õ§æºã'Ñ¿€ßñÃ?4ÏKóÛ#¿ ?ØqómRïåÉϘŸôdÆA¬?nÔ¯ÿ'ׯ ½jœÂP~TãáW©ŸhCÛnø³¥ÝòOè“Ü×?¿«üÿ ? ¾>¿|Hq./ŒûŸnú)®‹ò+“\Íôs×Ožòpä£<»ØË5íó¹Fùë_\Ž£8î‚ÀÀm°c8‹ðÑùÓ?ÿºùÆ'<œù"?ã„ÿûÍhÞ…?šä¾æ[Û -®Š~eû;ýýß±ÀïýWæñ™Ô§‡o÷oc½És´öwýnÿâ­ÁþÝR_ºNêÏúCÏé¼ *îÜ™8Tât†¯Ú­¼mìÆx_J{Ö_ò².’\ û*WñC?Y®Ãµ_Ϲ‘t¥»¡Gp½ð#ôþeâíäí„7ƒ¯ò¼bž'ÁéÔnþuè…çÍÌÛäý×û¡÷*ÏOïôyâʼ_Ào(¯Ï‹ï{>§^ß·‡ýynÂayïšë ù5>UÚy©§œ÷Ç—‡œO°›PñxàÖ8P߬½4®Ð˜·S™â«2ÏGEç÷Ü!;óþß¼céÏ÷»ð]ôÚxÞô{fôW$þÒŸï×ÿçû®Ê8}§õ{N¿Æí>»"/ã×äàûÒ÷1û-î'÷}ÃÂ'ùžy{\ŸYßÏvb7öwàåºFr­œý$8)û?Å+¥\ÏEÞŽ^d¾í£¹¶Ot†ÞD¿. »±_gkÆy‚ûšù—ðo¿ ®íüx.Ì|4ôÒ~«}HrПqÂÙœ'ÏÔgs<ðLö/í«ánËþhqb·j'ö[v­OßZ? ?<\ÿÿœÿ¿S÷ÁsÍÁ/cºñ2BùsìUù¬_g–cOùýê‡K}k¼©”kœ§è=þðûÞ°~üÚ¾9؇W¿8³Á¿–rü6õ[ácȱñŒ;å²Ï½kýù®Òúù‡á &nŽÿ.¥q’r¿ø»´W}Wèÿiþ­SßóûÄ]»¦æÙóÓzYm~/.k¼µÝÿú£í{®Ñgz}ò¼˜x׎'íNœnŸkøeWúò˜õzïƒÈ×óÎ}ü»6ìÞxŒÃzÅŽ2®Èc×úô]¡Ûø€Ñ›â73/Åϧ\ñðhîÃa¯=v“û¾§Š§÷÷•Þ¦]ûó\Bã¯á/÷{žÁý;›û=4~÷2㇯~ŽàýÕËï=÷¡üOñkê=BîÅ3jÏú2Ö-ßk‰w¸k}ú®Ðžë´ —6ñX¾ëíƒ]\ÎS÷×òýÚûÅË¥½âÆÒ^ÏO¦]ûLöËà¸zzì¤ß᱋îo¥?û{ÎÍʧ«¿îóáO½´S¼Xî÷|Ú¦ÝíøÓå“úú=o¼‘‡qúþ/¼S¿çþÒþägÄ…ßµ>}Whý%ü Ååš®>ê…èñü~vÔçGå_i~Ž”wäx(\Kû åßãÿã?á'yyÜçWB'ŒŸ.îÄ' ÿ ?Jã3„Ž8Å—ñc6~@Úáã?Ò>¹ÂïÁÇñ3ó½”öÔsŽœ\_^íæµzÏø×‹·É¼Ñoø°gò»ú¨x9I=ø’ï§<ÂŒ«ÃŸ¾Ÿòúž¯q²øù›?-õžO»â®ý6¿oÙŽváZnþ9õøÿ÷rýl¨qGâO—Ðø8iNæO¹ÿÜÏßðði÷G}rÆGpGæ1¸‹]ëÓ“N‹Ó0/¿bݶþEîp\®å/ƒSå×/î6óGòó1ïY§w-‡•®ô Ù÷+öá¹Ð¼÷Öoï{þúâùÀ࡬oÞ·¼Ïx?{iµ›•>½´úßsB¡•kçúà}:Ôw€ç‰÷ñ“ì-åàpàÓ^Zß§WúôÑî 9ï׸ú¡âz9oúö¸>—zðZgÒžs‹ö“f^IûS§7õw-‡•®ô ÙM㺠}æ‡a7üö=Å·k\6û«©W¼¡zw—”]e_t×rXéJ¿Ýð;ò{5ŸßÞƒ¿mœ°Q®qÏb/×Rn®qEBá<]ÿ¹k9¬t¥_Ènf<°Æ÷ÊsfÞo¼¡½Ûxr¡õWçwxÌúµïlî7NÞº/°Ò§nñÊÑ{ø¸˜ÆÿÊýƱc/¹nÜ«Ü/Î9õ‹£ÑÏæþ®Ç¿Ò•~)»aÞŸšGu¼wy/ë}ï[¹nœç؉ëG¬q[ï¯Ï™•>µ´¸2ç|‹'³Ï½wn°qÅbSNÌ~›ó“ý]»içíuÿy¥O/=’Çy`çõ{>=´qÚÔã§Ù{ð×vÄ¡k5~žÐ“«Ý¬ôé¥p0ÅwÁ5òƒŠ¯ÕâL¯ÏtüáëÓÄ6.ÔŠë|*iãቷÇÆ.̳÷Æâ“‡>ÁÅË[êyê¹×¼¡â³Á#×^sMï{^‚^†êÿµ·PÏeÏqù_hžÈÔ7®ᑆ=Îçyì`w5åó^}DÎÅC±×å:°k=Xé£ýnšñÙ‹ï%øQq«çsÈsàÕ¡¯/ýg7Ö[ë?ü\ãÑç±Nûn;›kï«ðDžì ?ð|~gŸp´ÆG^{M;ðQ=“ßßã>õp;¨Ù?¹?¸k=Xé£Gï¼ãéÌïÙa7â9÷xvè ªöœót-~Yó(¸¯ÿQŽÙ'œve?’ýªßßs-¿kã§eŸQ¾û›ø¡×öSšß?ÆGøOù7a7äiŸGÂ_>üù´Ò'›nÏ?gþ{î8ú'nž}íK)ÏoD¯ùšSù´+ž¡øÏ‘ròSʧV<]ô¢qÈR¯ù r_^4ý5.Ÿëè“x ìI\Æ»P/ú+þEór)—ß›?*ÔxÐËì:|Ï|fïöñÇ^ÅÏÉ8ŽÈ™\ÄC|/r[ýÑOÝæ!¤ßÑŸâßèC®›·3ú¤~ó²æwø8x¸âçò{ã·…²ËæFSþýaoý=÷Ùkóˆ>ðÙßcÇÍϨŸÜŸùH›oÐxï¾ØËG 9•7þ?XÚÝÌï¹ÒÛMõÙºj}fOÖqú7õw¬×3,}jÓÜoþmë÷\ÏÙ1þô“ûÍëH¿ñ“ûCê9£_ö;ÐnóßGKy4öxŽ5*ûEñžfižpÏÝõûæi¢ÛüŸÑ/ïß¾#šÏsùÞå~ó¤Ó§èMó^¦œ¼ÞÓ܇»GI;¾+·,×òK6žTô>Éû%œžïÏÑæ‡üÈ“Ú8o¡Þ§´ï;©ñ·Ó¾¸jÅ.Ÿ7ÛxÚøBµ³i×ú°ÒÇ´ñôíëˆË~.úÕ<hô§ù=£§g_K>ËægÕO~·м¬¹ß<¥¹¶ï ‡dÍ>™ó|¢ÿÚë¹ÚŒ«û.ÇÕü¡~ßɾˆþºŸ0Æ×8iÃnºŸGŽiÏþùõyó4ÑúiÄÝk^ÐÌó~¨øömë·Kù™w”TÞR~~åì_Ë[Óø ©Ç¿.¦òö‰§ß•Ÿ“_¿|À)œJ9yjf¼9ýð3ñoÉÃúÚ ªý‰[€'ä?Ö~üÁ»Ö‡•>Ýú½éMôƒÿ_ÝõIóÏnrMÏé?8Às¹~yÜ×><\?¶ø„ü~$¾Ðæ÷]ëÃwÊgÙëÌû=zõ}ú˜ëÐæþSôæŸS.x—âGè-ÌÿY¾‡T?žI;âþfS~×òYéJF­³½ÎúÙ¸‘Öá-×QëoóÆZŸ­»¿Y®Ÿ}¯xvïÁŸçFûmüÛ´ÿÉj7+}zhß§à‡}4¾ÚÞƒ¿â’Oy\?ŸrÅGj'v$îøÄaž\¿sWúäÓ~4¿fö|¿²#ûP¾ƒáËè?ü•ßßÊ}ß»æï¹ïÝ™ôóöj7+}zhófðo4ŽZèùÜoœ5öpgSž«8¬üÎžà±Ø? {ô{ö—w-•®ô¡vÂ_ çèºyZCå‘åoä§«ä/¼;i\Ø? 9ÿݵÑoó3Ýè¾ÁJWú$Ðêsq‘ô6vѹ2ìîêJìeâógWûë¾ÀJŸ\:ã¡mÏ!Æ\;çØ8k¡½ï;È>@hóxÚ'H9çaœK³¯fâÜú}³Ò'—nãEEoåÅqž†…ßž%øŽ->,åàVÄ™€Û²_}*íÂÙü Ô9ýÕ³Ò'˜òkö:vpï/ã¾xEâ&ý)×ÿz n+ø˜ßnÊÝû8åÓ»;Â|%;ýñ²ÿ•>Ý´ñƒþn7óZ}Í:^œ!¿=ÿ%¿;üâïrí9 ¾ËÈËÚç‡xKððeʉ¿¼!<[ŸCp¼ð—pÄøcgžsÉ÷Z\‚ç ¸cp>Á·׃ÿ‘÷¶åÙû i/ùx›Gš¸NòÅ·xpÚ{qÈc9»¶#ö·*®\ñ½ßìûDq*p`è3¡Þèií'÷ás¿7äN•s^E<£æ ϵ÷)8ýŽûÚ#'ø]¸ýõýlô;í«ñʆ=Ì<ØÍ>æ ~™þÁ±sö;â§]?Çv¼oãþéÐ{r´.½8Æ¡¼ö~6Ú³®‰$NÕzŽ ò}ÉŸøDßΟ8ç"ž×ë‘㹡Ωˆë%. ó0p2Μ UOê5ÏçÐKß5g_ž/S:ϸ'M;gðê;‰þûîr~Áw–}ri9íçwçÉô뜚õéô#ìÆ¸¬[ìÝ9Ÿ‘ÿ´ë9àÃ:'.·óCÍÛškvÒ8à©—ôÖ“ñ¼±Ôëqîpg|Ù·.F>Üî_íoäÛxeô$å.¸ŸvèýùÔ¿œyqþò’z¡Å٤܌ûÔ¼¹ï|¯ý6åÄ5êyÈ;K>Ïñ¾Z/íY?Ά^öÛs¡ÖPûƒg?=,¿(Ü}ÅžÓÃïÝÁ§þ2¾â˜2ΞëtýáRŽÆuáóùÜ™žÂ8ÇOra7ö³·9ò#ŠÇÅßXL®{.=zå<å>è‹òø;XòÇþþ=ü°×Л-é~ÒNå9¼ÿWìFùö¿|ÿèú6ïÓŸòE.ø÷· ßÿ>æëöçò¹kºÍC›y)¯ßŽÇsFü¬Ê•žýµ~Ñsë©øôM¼0z¥^õM»žKc}4ÏÕ×a3ZãùçSíœ^[´ï9h½7Ã~é­ç‚õ`ÆœüDŽ}>Ô7/ø2N÷³.[å=Ç?Ç5Úñœë`ìv×öñH9gµ>û}uõÃñày9Â//iRâ-½¼¥ym|¾´ã}¡ññr¾¹ñ_½_øê§ÝùÕ¸)/¯ï›Ö-ÿä°œ§#ñÉÑ÷NqÜúM½÷>ßæ»Oû3žÛÌc9|½3øò‰oïugåÌLj³ö¤Ñm¼ªoö9³í?rçëbæ¹qÃ#OqÅ|'ûÞö=j?ªy>3?öŸ.¥|ãî¥=ßÁÝÇK¿âáƒâ^S}ßÃö´o¿Ïy¸‹ã¾öšÇŸ·—|7^9¾ó»}®‰¯³/×úÚû|}Üž¿ öíûáß~¾ýØîŸ¥~㵓ãfž·ý ¹ÛÇ´ozáóùÜ5í>úŽòŒtÿ¿þÈݾjý ¹gf_ qƒÞí)O¿œonÞ—Üoü€\£öGë/åÎäÚ¾1?Ì/Á¿ýñÆ#ýðoÊ[ãw”_P|ík.ÁüžZò[ù|4Å5Ô¯bÜøM?ú%ús?þ0ãå_ªùvƼŸzÂíŽåØGŸûüþÚú7/læçæ§¹‰ÃT{(žRùȹyð"ov8ãÚµí¤ÞóôtÔÛÕ;{6åálà6‡þlÔçGßÏïòAÁ›¼”v#‡úáéqÚ¿ù¿£_þy8 gR¯¸…”7ÎËy>’ϰùåð›vÅE‹žt¼?|âkâšþnŒ—á:”3ßÏ?Ùv³Ò•~FóþÁaì¯q®bð¬ìë0ø¬ÃØ“¼‹÷¯î0¸´ÃàÔ¬‡‡±ëÃçÒîóû—öÜöþ{ù<\éJŸ$êyм£žÁ¿Þü¯½𚇉zèù?þܲÚÕïÒ®òâ/oÊ®v-‡•®ô ÙÍÈ/Ý÷Зöüyô¾å}ìµñ»÷Cß/¯¤œsK¾à?Ååze7ß +]é—²ßãö9š¿3÷‹?͵ïEùBíÓÈjoæ …Û´Oç;êÍõ{f¥Oí>¸}æ™Ïvæ»m~Üï¾q~¯ íÈkb?ß~8ÿA®ðui}î¬ôÉ¥Û|¢Ñw~Óú›£çÍ[•k8ÌG‹?´øº½[uÊ_›~å[K¼Æ]Ëe¥+ý\»¹ý>‚ω~Ãû/ãš¾³¯Ôƒ¯€ *~HùPøkëûÙJŸ>ºÅEŸ‹GŠÞ—²¯;ŸUÜæÇ.-÷ájàÐÚÞÝe{žGÍCª^®O·Ò•îÄn®ì=økÞÒ+Þ¯ñ€c'ðDÅyK=çjœo‚ì¹§Ô÷¾weýžYéÓC»ßÕý€è=\Rq2ã¾xZ9ÇÜ}µæ9µŸ{²ŸÖó²é÷͇û5ßµ|VºÒ‡Ú ¼Œ84ö›ù_Äá—á‡áï9:ýîýa3žŽCÞ½ÿùENÅQüp)ÏÊûxäòIäùBäõ¿©¼å½OSîOY2?êi¯ò„oz6åÂWã€}<Êe§´‹ý7¯gæ‹G0¿Ã…þ}hp‡ôê0x’ÃÄUªÜÉ/¿“×!½yA‹ËR.8ÎêYâ†f܇ñßW¾ÑÓÊ?8QqÉ¥òMü²ÃøùG\Fó^=ùËø]|7üýÄv<Ö‹àèöŒNéûÃnà–èáÿ,ç³ú“öéoëýße{ôΉ}«8fòÜúýæo—óÙö²Ž)o½,Þ:vÓߵÞôÿËëêõóK»‡®z™yO‘ðKOÈ•žr´~e¬]?"7ýtÿý’?öË&~òȵù‹^ß›ýE¯šOä ß>ôÌïôÓû›ù#§oê¹{ä>ü‘¸«æ+óYŸù<9ˆóøÓa7}ßM¹O–vT9œX–ë{ï‹CïÒ_ßÅôþì}ÿÏ…O×3­~ʼn”:zX;q#­Ÿ™·Öc¿žƒ/糸ƲýÈŸ®\㊦œþþuyݼÕÊû¾Èó¯ëÀŒÇ¹?æK>^üŒçÑÌ<óönå½ýu¾œ?P.ö±+¸ä»ç5è‘øŽâ„ÒÃz¸>åvó“¥pÞ“Åtêô˜Wçšz.Œ½„ŠKw2ý:?å|ZÏK)—ßÃ÷­saÎ}ø.vNË9³ž›AÝŸ/ yØoS}òØW߃?ñýœÓ!WçuœR.ïŽOï*Ÿ!ßG¹WÆï//õ“YwGBûÝŸküã ~Ó<Ñ3çì~2ä@^ø}DÜí¯Ün^yøsm{ž–ž„:Ï8󸾽ä{î öÜ¢ó˜ö!G|»müºýM¹‹¹o¿RIû ojgÙ¾}Mçsù Ôƒ#Ô>;ëøR¾üúýöæ~Ïý’‹vñI.~¿½´ç…µë´õÊþ.9£âîi·qûŒŸüÂxö‡ÏÏúòÁâºü'ûsØýëc~ç9PzßIÞä">¤þÅé$?r™óûºrìÐïê=ü9ð•ÛÍ[xÞ\?Î¥ÓÛ‹á¿çês-Ÿ’ýöá—ê¹qñÅ—è¹ü´ÿNä)þ\ãf¾CïoúÍêgCó{ñRã÷™×Éùÿæ‘Êïð…ô¹çáSÎùwõùë..Û?"ßþžvZŸôgáÃ:Ðy2?‘9^P?íº¶®ˆš¸åOû°i÷‘z”ñ÷~“ܬO̓ªób}KyñŠuJ.Ö‡K÷røÚìEüŠwþ\«þ5n"}3_¡ü»â’÷Õ±þ4Xæ³qSд×ë”oíÞ^–Ðõ{ø¹³¼_|ˆò¡×m\vk¾éwäÐ|·.¯‹C ŸâÒ°ÏÆa÷î§9‰OSy½Jùâ$ÇzÔ~Qü¥|\Ù[\oízÌç•1ŸWÆó3ëÒÑù¦'i‡}4~èËñ›ïæµc_Æ7æIÜTóùîÃõù+·› ËñnåfB#|Ò#óÑòÖ·MûÛþÆ:3å×ûi·z5ôÓsÃü_ó_=V.´¸(z5ìJ¹>¯n/ÖámþAzû3žmãÞz>Œu¸åÇx.96~­ë±Þ臼¿r»é÷ËÃûÙÆ÷ õ~í= eog>¼§Ï÷åž§ ß”qqÚï¥È¯8 ýæ>»÷÷^1åëšž6~ñÐ{öq!|iO¼¨ÆŠÜ&Ÿô¦q‘\ÓçÁß…qMOzź–~õã» ? Ú¸íùÝyró^mžŒ÷°ü‹Ÿu~<ú>¨ÿý%ÿÕrÍu¿oèטWãèüg¼øñ]¨¿Æ[×Ï×l7¯¥ÿGågð~*üú>¯Çüùζ¿ÑøDùÝù<û!êÑ—ýžú3?>G\¢~O6ÿ¹Ò‹ÐæËò=;çüF¬+¾Wßý×äCÞ úîû¸ñþÿó;Ù>¢ïÞÓK¹T¾Íj¼ìL¹Ñëî ¦ŸæÙôä»^½¹ŸùÖà»ñ±†¾Ð#û…æéÕQ_\¬3£œúæA»3žÕkä÷5ÛÍóK9ù=ãâçë¾±8JÎÃÊ„ÎýIûˆöÙ›/eSž_®qˆìDZ'û Çs_;ñ‹ìE^ú·Ïi?Ö¾eã®åZþ+zÓ~ó»xgÆ+?“¸süàÞŸó»uåÄßsé?Jû¹_çSž¿‚Ôû—¥^‰e?Þ¾¯¸MŸ¦~p õ ñÓè—¿ÿHœ¦Gùw~KÎi×¾<ŠùÒùñs¥ýúwØõ–|ó¿×ïGÞä$Þלÿ?ëQ¿!>Oð$ÅÁdœòÔñS[´QÜ\ iî׿íú“a—ÏDOáâGæw¯_ðã”7O©W?9{^ný€gë‡?ö0Ç1qÿ7ÃïÿôS|ý5võ›1ÎØ%})Ná÷ƒŸŒ»í2øÌx;¿ÑGøóZœ|щe»üÉp@Å/‘÷RŽމáRþpâ Ò>¸þÿÛó¡ð p$ÞÓŸ{Ä{ß÷SÎó¾¤yTÙÓj7+}úi¿}gv?Â{òÞƒ¿mœïØIãI§|ñE£¾}‚S)ÿúj7+}ziq…öaèyq4¹ÏaŸÉ~ }6ûhö£í?Úƒêþãj7+}ziõ\<5~P8+~<åøáøGáøêOÌ5?îÅu_`¥O/-Žgæï½¶¿yÞ•rÍãuç³öšo ~Î@<¨ë©×ûËßw=þ•®ôKÙÃÀãÆÿß|mÏÄžÄñøÓ†Â·µøÓßC\’]ÿ»BƒË…»-Û<ÁÀyÐ óùìæº8ªO£¿O¹ïxÞIú¿k>VúÕÐÃGÄ?i¼+ù¨›G{ïÁ_ãëgÖÉâæ³¾þ5üù·•Þ\íå[IûÞ0â/ö܉÷kvàÌKãwçZœãñ!nåwÔnV|ò·“öœÔ K½îþ8JÎGù.•ß^×ù1x¬_ûzù»¹?:ã;®ôÛA»sz9¿=ÏÝóÌ)O(n`÷EsžÞðï¶Þˆo¶k>VúÏëù»}¿0ÞÓŠ#ŒÿžPÜñ(ß‚Ÿ!þ9õsî×ã\éJ¿R»¿åÇn¼8~éØ;iÜ¢ØÅŒWÄÍn®,ßõx¿qù¾óÝ~Þ~ÛiýÎïäyqñâÒNŠç€÷P>÷7Ìófoù{â‚ízœß¸\×üèßJºÃ ÷‘çsTÓê=lïÁ_Ï‘4^¬ëØ™8fÁ‡ìzœ»[ö×ý´o!íyÜŸ­ßõ¾÷cWÎ!ŠÛe_Àþ8b¾ƒN}GßÏœ‡>ýÝÿ·Ú_n¨±ÿÓsïâD8/ß7W þ¾râ„%ŸÏ®ÇûÉÕ¸G¼·•~;hóµýf‰èïW(î]ãñ›Â #?Ö®ÇùMS8#ùïvÍÏJ¿[´y‘䉓J¼Q÷á½'žðþ*¿Ö™Q^þñ”Ôƒ[>©\ê+?ðIøÙµ¼VºÒú˜¸¹Íw ‡Àï*ïÜŒóKÿùuÙxÛg‡]ðÛj_98ˆÆ‹ …7zDžË•®t§vç#n¸} ûÎo±ßcçïf?0õÄ—o~@å즼väh¾¸Pösn}ÿZé“K·q¢·â'ñÓò¿ºÏ¿Ô|lö׳¿§žýô¶gsí¹ÃÏÛ¼Eü±§ø‹w-Ÿ•®ô¡vs5öÐük¡×b⿈$ÿ•8ðÎã;ï/îÅõà#b7âÏ4ŸVî‹suõˬôÉ¥ù09¸™uÿF¨xHÿ¹¡7b×£×7ï|ÖÀÞÁõЃƒ ½–ëêÿǦüAžSú¹»¹»9ø÷Íõ­c£üúÜYé“G>ŽÓßèu€@·òû-¿ÿ:÷CÙËAìä–ú©wp'¿ï…²ØãAìñ–û±³_Zíe¥O=8Èzïy`¿Iÿ='¬ÿ¹¾‘çç‰kÏ‘ƒOc{þnznÜÙ\ûÝ󆽰ÓÚïðsýjy½Ò•îÄn¼‡ù~i>ßè³÷±÷CÅ»ôýs=z.Þ¥÷µÆëÓ^~G³ßOèÞ¦ÞµÛ »ÜÚ÷±…îZn+ýnÓâ­Å»dË÷úÞæwñ”›§Ù¾šïþ¼gÙ°lŸZ|òw–zß~ìKÀ»6àêç\é“G«ßoFÏE_›_8T¼þûÍâ÷‰ó'Ïmóøî=ø;x+T<2~øÕä“)ÿÿõõ½l¥Om~møñ ~šûìG|ƒW÷üÉÿrðr®Å³9™úpp;ð<ð7Ú==Êi?y¿îüÍO m°ç#WyÑ‘³<Àòaß*ßẫÜüsòߦœü§Å ËǸ—ò‰‹!^œ|±7ÿœßõבz÷~~ƒË”WÞ^|¼úÏ/ëÁ­ˆæ¾¼­O“q7nä">xjâFu¼òÃâ뇺ŸþÈEÿòÈ~’ò÷—òm|¶ÌCó/Ëc-.\ÆY\[óÙ¦ytÓoóg<úñ§]rïü¿˜vŸ‰|ާœ|¶§ü~Æ>åÁ½g\ÿ›ûéïÐ<ü1í‹c./ïÇ_WžÖ-yߨKóZçw¸'q_È™üg^ñÓNäý_)wyu n¸8Bøsåä§ÃŸù‘ÏQ;Á6 ÷ŽÆW5î´+Ï3;ˆöËþ{ŸŒ?vmœÅKë?òh<6òùåÒ.j‡â߇<ËÖ+òF³.ÐköÐuźóì˜çWrŸü_v‰_ö/Ï»üî_×Qç&Ì‹¸Y)oÞq²/|…ïê‹ñåü†<Ù•/=”§þÅî¿òçMp‚Wôº÷_ÏéÜ÷Þë9]¹ä¾÷8Â×SîÅ”ë9””‡‹ò~àš~ÑÃWCñÑ8KäC¿´Ÿþå„;<›ë“ú¥úO}|œ²Œqxÿ1'QüŒõÞ³wü³—WÇ<£ÎÍŸó>ôÛúæ<˜õÍ8¼/àß<Ÿ|þ|Pãöe] Æa>Ôƒ“SþçC¾â;Óöf|pwÖGzå;Ì|wÝÔ^®½§VŸÉñëùî:Š un‘~±›³áßû6| <‹ÍØk¸@ãR¿ùLs­œþÙÓ9üi_yvœûçñ—v|'·»j~|W›—™²|ú=õΧæ_Õ¾ùÃÇ Å[¦žøû=jÜùÝw7=>5ê™ò*ßäBïR^ܪ¶jŸ ñᆔ;û>è‰<•»y‰¼È×:aÞ”—ÿöíAÏÍñj7ãQÏý׆>~Åß[=·{>|]Ì5½‡‹Å·¼ âÑSû¢ò/8Gï¾ýšæg¸³Ô?ýË*¿cÏí«þà ásÅ]Âoñ‰ô1÷ÅÇ`/öeáÛ_®å‘l<ÔxÃç%톟Ɖšü‹q¦ë‚øä·I//¥Ý §þ&ßâ%¼“q“£ù,îsÈùâ\gçÉõGËñû½z3ú3_ÍÛIžê«—ûð¨êÓÓÊW9ëaÊÁ¯FÞ_™Ý4ïhä./½1.~€æûÉïÅÃjMyù¯„Ê×h¿ŸËtùýŠr‘Ç»¡æ…;¼‚’[ø½’zý=|ã¯rãÓ}UÿÝAÙ¿Æ;à“Ú9ñ“þȳ~4ãh»Ç”¯yÒü²öñ{™<µãšüÉuô§òáç‘Gm\¬ÛËö‹SM?ò§WJ¾ôQ;ø‹ÜÞí·þWü¼ÑŸ¼U_üWúçG¾<~‡5ïW?÷ßzã>ÿ\ëù}©µ'ò'9¿æiØ{•ßîªyÕyóÍ/n<ï Z~ñ?ô óOn)wM¿êå_³¿w'ßÐ/zGÞäÐuëβ]ýO|s푞êgÈ¿ón¼ÚMyø„âÌ>ŒwØqË}¸¤ú/ŸSÏÜw½Ô³¯Ìn¬ÍÏ;Ö[óÜõŸæ}ÌOõX;ãyƒÂyôyFÞ-×Ç®¿~m¼²¡õ›}©|Ý7ï(}¿3ôÔ8è yÐwó4ú鸕O}q×f½êáàÎýðf7ꛟÎùjW{÷—r«çF×#Ï+×éßs«åµ«½¡'úaG½f_䢞öÍËh·qŸ½ìùÙ”ûÊßÓ¼_:è=­¿ÓÓñ\ê{vø#Gï™#–ö}Ì÷ï ¾|¸îwGø9?úÑ¿÷Þ¶gÝ?Æ×¿ìÔwÏÅÑNßGS¯ï‹C¿j/¹Ÿ¾ï¸ÖþÐ;úØ÷,ý›ã&Ç‹Ëv}/]ívÜcžŠßÑ^èÅÑ^¿/ÈUyýŒñU/è»ßÉ=|ôœzƒÎ“ùËÅÛ)?¯}§9'hÿáœò¡úg¯¾+Oi/õí·œÜì;ø¾ï>^Ú+.„±óû£]ü©‡ª¾ìל˼´ÿ‹K~Þœ|’#½À}µžÐïÔGÉã,>S¯ûMú'w4õ.¤ÿ~ãÃz”vìÿÙ—#oó3ç¯|á7¿k¯û¹/~cóo¦û±Ú§?ì±óeÜæE?iï¬öµ—q7îýWl7â-À[ð{ÚÿŸñKì#ó›ñÓÙg§ïâ6hǼÔ/—ßùÃk·ŸÏ`¿ž€`¶÷Ï£]øþ$ãäŸâ?ᱟ¬¾qñ¼2ÚÇåÅÜçOà_áw:‘þìë'¾ùUŒÓ¸È®áy˜/ã …ãxuPóiŸ\ûö½ñÍïÄ/Å´7äã>¿¾ÕãG™þ"ûÖú«ÿ.×øä·ã'£ôŽ>ñ?Ë×õoäežò;9|,_…_h¿üìÙô/”?«ùŸÙðoP2}ÛˆÞͼí÷çË~‹ßùdÓ^q'ÏoäS?~ï§½ßoîÃ]À¡wçÀ^á[Ø?$¿qòsç÷âBÜç?‡‡€¿·?üx~š·ðOùðç‰Ó&®= ÿ7;æÇ:¿r?×Ö´ÃÏ^ÜÑsæ-÷3žâWFÜ7óVùG^‡Ú#Wvdp3Ỹ!v;•²í×t|Èá?ù§u3ë 9ìÏö¤SvUü–y²ží/õ¾zß‘ù«Ý{žÑ/õÿy軋}TOè©rôŠ=DïúÀùóõ«~Ö·ÆÍzàúßÖ 8Ï­c£?ë=??½ûùRßàÓŽ¼·h7ÏÙCòó\õ¼óÎ:YuÖs2ëØMvk<)Ç>».zO3?ìèøÃù^é˜GïU¨y<yšŸ‰ë Þ£ÏMïKÚ1¯-Ë÷=‡~œN=öÁžà<__ Í{rùg'?|xïñ~É.à.Næwï™ìÀ{©÷¾“£?㇀Ÿyc”‹þ‘7y¼4ÊÃ9ô= cý!ø‚W–ýl¿ ò»zÞÛŒÝøô½ð‹%_+}„ÝÀ•À×ø^·_C®çÆïöAì'ؘqÓ}Ÿõúý|{SÏ÷ÕÙÑ/|Jã÷ }k4õ‡¿}'„S²Á~ŠÊýó£?ß;§G¿‰ÕrÙç<"o¸¡séO{ä…Ÿ7ÇïÅå¾ý‹7–Ϲ-nÅzîáö¾Ò1sÿÔþ‹}]öÓ¼4¹î>tæO}ûGð+Wé_æÑ~Xã–eþº_ŠŽv/…μnÅËÄ‹J?ê5~Zøè¾nø°_!ýÛ¿›öp9åÙÕ#öo•d;.ü„oxþ˜¹?F®Ó1â°ußþùÄMÕ®>òÒßú¼y,»©ö£Å<¼Ÿûü’=WŸûðÎå;Ïÿ>ñõ˧~ õ{¾?úT|ziÿòX_g¼3~|Ö¿>øÐ?}ý¶iG<€w‡ÝçµôS|Áòù¢Üy×OEÖëI~¿2Æs$¾÷—ÏÃâMò;uýÔúµ®„v<·÷•Žy¼9¿ýÉ}ñPqÆndþÄm9ø4íDþ7‘y¦¿§û/æýè¡þÞ×~æ÷`觸Ú»¡>šñ4nͯ—ü÷ûÑ+냸gצ݄ø ß7‡þŽx5½ß¸:úÿhðI^ù=ýmÛ æçæÃõüàÖ©¥üÄ)©|ÿs¹ÞÜÌ<ÜXŸ7e7·ØGä(nѯ¢·"çÆ3Š}ˆ¦þ­Ü¿}úUæ¡÷S_\2q˜neÞú»yýhü®½SËçM㜱ûc£¾vcî7šñ}°¬_>Æó>êïÖAøÚ´¿ÕïGèó¾ö1þÈ·ñÞ¬™§›×ïÆƒë8S®wÆÑøV÷ã\é_±›®_·—rn\IzBÏè{¡gäýt-^Xíd¬û7­ÛCèGõÆó‹}Œç‰¸hôƒÞµ|ú¿IŸÏ"ç›Ã®¯+Ÿ~&ÿð·3:æ3qàv­—O:='Ù{”÷ÏwßïGϯ«êwï×ÕÃÔ¯^çþû)ç=‚ýX}_ô=J»¹îïÞkÜO;g†Ïôï;"ï_ãœï“âB¯‡ÏkS/GùkÊ »¹þˆç>|'õ}mI¯ºŸrÞgß¿Ï÷¸wç¼gêùî9ò]9åûs×zù¤Óî{ÙÏš¸âK‘kq¡ÅOfžæ>Qã„åºç” 5ÏöìŸÁûê¿øoTÿù¾´çËò»}*ûhÅuâoðõÎàãAÏ¥ûŽÙ×:"×ËŸ»/9Á +9د/~–çIñ›i߯‰óTüé‹qîZ/ŸtZÿ\¿„óÞîó×ñð3Öÿ—û=Gžkþ!þ ×ëCùƒøyàÛz~>÷ùyø7_ÊïÆ#o¾õËïŠ?ç á\øOÞ˜üj'¿»O>é¿r=³\··í¥æÛI}|𳯖zø:3ìäõªçõCñûNü¶þF~¬]ëå“Ná›ümã|„£Á«ñçÃÙÀÀ‹Á}ÁÂÀ£<›r/ßá[\ã.ë{£_xvâZÜö¯ò܆§ŸãcœêÇŸ..Rq;?_ö[=}nèó—ú·Ë2ê7ûÖ>< |??¹·ú/DN‰7/ؼ«Ï §\y,DZÒ'›ÒË{3Α¸qÃ:ñÍÖmzF¯èÓ°‹â.ÿ0ôø•e¹>G]Ãé4NVú§ïð+]WÒ?½ÿÉÒþ‹S~ä/í_G»žädÜìþ~I¹âåÇóк¶ÚÍSE;ŸƒEïèïXw‹ÿ·¡OìJ|¸½Ñ}úåxNx®ö|»d7Þ«ÒŽu»q¨Øù°/884í{ÿtnÀïìL{Þ‹“}ã+ëFŸÊŸò<¾´¯ŽÛ8¼´Û•>Ù´ó<ã8ÁwÒ+8*zc¾O§dãµr¾«<Ÿ^ë.½G ž κý‹¡—ð{ýnÐ_(¼¼™ï+öæ9F¿áùœ¿ñüðÝéœ\óNú…ëœñýœ·4¾žwJý¯øÜÚJ¿^ÚýøPñ‰è«ý$úÔ8L¹ßø_ôƒþF¿Å‹r^·ç=ï.ß‹.܉^¥üù»K{Å'ÜeÏ»æþ™”ƒ'sŽržî¹Ù´ï|§}KçbÙÛkƒý^rh\ø¥tß´çoÓÿ<‡zz}O{šhã^Øï~ræ¿ùh£ÝOùwÇüw7ú[üjÚm<‹ñ¼‡„ã‚w,Ž2ýŠs`·û¿¹î>zìKÿÚm7åBñgŸ™ýu¿ÞøÃã(¤^÷ÓÉ…<È+r„osžºñ°..Ö‘•>Ù´~ÄÆ7¢gÑ;8þ?þRñZøUëT>åà<ùCÅ=š~ÃÆ·ŠÞÑCþÞÆÏŠ¾Á©Á­ñ×_Ïïë4ÊóÛ‹oT¼\îϸ7ú›~jþÓ©Ç ‡Ð¼¿C®Á_tÜmo}Þ‹Kû`ÉŸý7ûgô—ßç~ZãÀ»O¹ïœh㹇ŸÒ”Oû»Ö‡•>¦ÝðšGçâíÃò‡òGØwV¯ùt>Xê\<?"¿åÙÜç/¯8µ\¯òm7åäÓò{ãÐÍòì/÷Õã_±oÌ_srðϿԼ(~ñà šç(÷ù±šo$åŽ`¥O6ÝæE¢o™Wþ~ú%Ó+C¿fÞ+×ì çø¨÷Ò¸‚ô,”ž6ÎdôL»®ŸËõ‹ÚÍ}ãàŸP´içü¹‰_u瀸Áý”ƒâ…wx~Ô+iÈå¥!Çě۵>¬ôËÑêõÞúNé5½§¿ç4ôNàÙ´ûýÔó<£?ð3ôœ^Ò·ÆÍ¤·úI¹èó®å¸Òï-ަϓñxkØuÖûŒx²âgþ‰]DßÙ“÷@ø8øâc].^l¼5^ààsõ»¯tvãýÝxþÀuõ=ÝshïÁ_¿+ÄçmœAt¼ÇÁqynx¿£ñ}ßãýÈ{#{·_g—û +]é7b7ö«àß^®ãÛ¼ÙGè÷}(=Ÿy$'^ m~Ï3õBááxìOÀ•5_éú]½ÒÚ ýœqö.ÜÉuô^Œ¿ç|öSáaºì:zÎ?2ó7Á‹6þŸz¡Íߓ߻ϛ߳¿¼kù­ô»Ië·ƒ»=¿ûàWççá/çïTŸŸn§qï|ÖÑ^ãdðsÉ‹·—rø‰ð»Â£ ü®å·Òï&­ÞÓwÚ8Mô5´¸›Pøv×8|)_¼Éäw퇲 xKíÏùÁ²ÿÿf¥+ýFí†ÞÃSÏ5ì£ø+åî|ÖÀV¿‹÷ú ¿ÖçRÚƒã).-×µcv˜ûìÏó(øÈ]Ëo¥ßMÚó,ÅÑG_á¬fžjvÓ¼·êGŸ];ßÓ÷1ïgéÇ÷Jó„ß_~ï4Žv~Çgó»¯ß7+Ý¡Ýøny{è{qWöÕèo¨s¡p_Å‘¥~óç¾}…æ·U~ô£=ûØ=Ç™zÅŸ­ïi+Ý¡ÝÀsÁ§Ñ[þP~¸‘#qÛBákì#7ÿM®ÅoSž¬þÎQÞïð¯®v³ÒÚÍħý|ØOó©åúd®Å³ñ\€“8î÷´GöR¨vÅ}‚ëjþÙPvTé’]Ëïi¥÷’?²ùrÿ¼™ù$åÑ<|.¿ÿïæþaâ`7×7óØfþ÷òwø|hÚsÝz¨~äIýMʧ_yX›‡7øCã9 þʵqÝûÓFo²½µÍÿ›öoþWøù4õþ;í¦žëÃôg\ò»¢Å1þh9þæþ8í¦|óáæþMýăÃéøñŸñ“wÇñIêg+Ïï§~â¿õÚü÷ ‡'Ò_ø„o«ü¦œÓž8æ•Ü*/ãNyz îbËÑ úú»ÝÚýŒƒy/rw¿y€çxÈÙ¸ÿßÐ÷ÉßïȸµKoÈÅ<==Ë:ÚüÍÑ;òï:ûwé/ú$>û8ÔŽùd÷âwêï{ËrÅ‹¥ý¶KÂOóLG_ËïφžG¯ŸSžíôc=i~gýd]êz@Îä:æÉçr|¾Óv÷~Žð/þ©ø/dœâ5¾¸”SçùgKûi;=gažrýÊho¾§k^þþ'C®'‡|Å5_øeŒëù1nøLó£ýS¡ð̾àŽ·ò]âÚü‹×§õ+—ðßl¿€ø~2~ýô{'÷õKÏÍ«ujæ±öù{"¿PruôÓ¸Ÿæ-¿“gÏSèÏ8Rþ¤ëЉ‡ïÞ<Óúñóe¿;³xDû?Íœq‰»hï×õ¨Ïèþk£ܽ8röy\‹wo^N«‡¯Ü'o8EûFâCÚoR¯yŠsÿÑßÌ¿ì¾ý¯îkM¾r}&ååQžq)í‡Á#³'×äg>ì7n`Æå|¤}4çÈÙyÐÊœño^s_ÿÍã@NC.ø3ôà̯ùMÍ»íÚø´c~rýö£kúWí†îÌnzN=ãª? rè9ùۛߛw%ååuqn¾y—SN<ñëšæ£Ñ^Ú‡®Ÿ"|ð_´ßÁ>›G©Wšþá1µç¼û¥ŒÃ¹yr‘¿ñ¼~Òžß›wgôw‰oqfžœæÁÎuç#÷Õƒ‡¾0ø3îsä¹4N€ñû]}ó‡Ï\«waði|ê‘Góc‡yóež/O¾ŒËïø3?ôc3®ÙÍó~ïò˜çæiʸ¯d>ø£ùÿøÁÅ[lÆô£þå´'Üoó6Ý_Ò¶¾ð}uÖOyý²üâ£íŸkãfw—vÛüáô<í5nÌlßÆÍ®>rvŽu.€¿ÿ!—ŽgÎϸßx3~GÇïC3ÆweÈ¡qA‡>TN~õÛ¹±oã6ìÕü烈ÙÍ»c\ø­>×þRÕ÷ŒƒŒÛºÝõÈ‹}šþîÚù°œ÷·öÍ7»Ôýv2úŸÏKúÖuäθÖøküØ!íY¿ï/Û­/=ãWÏsHüý4> ½g¯ûK¹vÝ×yóV}¾=øÑŸkåÆóÚ„ÿ÷Äw±ý%û&öЗ”Ï5ÿ8œ‰ïKå?hôã¼ðÙ\ûžtß>M¿çó»ïfןÏÜcðs$ÏD®µožÃüã¯ñŽÒžkçþíØ7³Ÿ„æs¿ßígønÇ¿qáÃþÝÌãAþ¾ÿó1Þ7†<ðaÿ`ÆUÐŽ}/ýøžcÌ—}Šæ‹L»ú¡Gô€¾éÇçUí?ò³tÿØ>eóðeßÏuâr±?a÷yí/¿Õ~ÊOûüOækø‡ëG5^ý’³ñ§=ý·žøì’?B=ûÐüA?Xò×~ìó³¿ý¿ùiÉ´{l·vcþŠˆýð£×ýñ†ÂÍÔo8p‡c¾Š;ø$¿ÇNŠWá«—{©÷ߣúIŸÿ°´³ú¡?æÁ|¦ÿúÕØ}û1þß„¿´W?ö³á3üÕKÙsäY¿ ?,=Š?œŸ–œèíö—|ÖJÞ MùÖSfÌWÇyç!ÿ|ó>\m'ýBOàÐ?-ù)Î+|ñwwÞ[Ö'ç]ÙÍJŸnZœŒué¹¥¾õù湟õà0ÏÃÃ,õ›Ýz‡?ZÚ“÷ø>Ï­?|xŽüïòù@ÿùKñQÜœç6þî/û1î]Ë¥O'í{1=õ´›zðPö+ßœüoúݵüWútÒúëÚ{ðWÜÄezë:öÄO ÀŸ2q—R¯qÝ¢Ïü–Åg…6o¡réïòxÞ4ÎÁÝMùâN\‡oqÎç~q›qîZþ+}ºhõS>Mö#Ÿ†8lò!^÷ÅÑagêË8ó6búG{×Ò¾¸<ò¼¥|ùo~ÆØÁÌj\ò(ÊÛøYËöVºÒDzq¤äÿ¼‘õ[ܧêkôLœµæåTŽ„|šr¿ÞÐ[êÅŽnJ9åSNÞC×Í ¾n.¿GnáK{~n ¾oýû†jç ö9ìp¥+},»±Î7O¨÷šèÕÁÞƒ¿­=äºz9®­ãÖÿÚÛ±è}ÊUÏ-ŸÑoùOôƒ?|¥¼8sµoý†ú]»ìÝuÖ]ÏÃJŸ.Úï‘æËŒ~Â‰Š£Û¼±³‰GnþÑè«xoâÀÉÊ>]÷}Ð{ ÷¿<ðá{IžPq{›·Ô8ô—ûø—‡¾yPSîÝå>ÃJWúxv3ö›à=áfáÃàßì?Ûßê~Yè‘|±‡Kùݹ—ó¹·i?ŽëO¹si×þ¼ëÄÙÎóPoïmÆQ<ð¦\ÇŸ}Ä]ÏÃJŸ.ºÍ˹÷à¯8HþþN~q ø-ç¹ìC›Ï'åùyzþZ¿¡ÎWÃÿñOþd蹸TÅÿ†o×ÚÁßqýæ~ðŸmoÇñVútÒÆ;9¶Ñ«Cø¶£‡ÎûS®86øN¸¿ßï=øÛâX£§òv¦ýâéÇ ý}²©7q‚p {ò‡ØÃ3á'´¸µß¥üŒWòÃ¥6^Ü<Îÿ¦ô£\× ¸‰Kþ;~xTã~>ý»&¸Sö ŸKNÏþƒÇ(îîïFÖ'xW8ŠŸ-ùëøÌóÀ ¿j]*nû¹Ôsÿ/¡olý¸ÎâjßâB©¿m½þÉà«ñ-–zRJã€äZœ íÖOÞ¡ÖÿÌKõ¿ô>ZûÆIþ‰_ÓùÇ'=gþÞ‡y¯<ñ÷ê(7qÝäwÀ^ÍyjžÐOøgãü·¥éü„8ú5ßäÜ|¬ƒ/Ïg¿ÃÑÛfôfXóùþVù”sÎÃsݼÃГOÈy‡¬?÷“Î/½Ê5;7zÒyL9ïKÞCôk]vŽî…¼Ôƒ“o¡w3²ëŸ þŽ9—÷›Sc§F;ÆËžÈùÕ!vÞø?i¿òJûƒ„ŸÐŸŽñˆ7Ô¸¦Ëup›Ï7Ôyï‘ÞCé‘ó\› ¿#ÎÉ/Æø]÷\ØàsÆ;1¯pÎ…ýlð=ó…ŸòtþJÿìB¼“—ÖQížü¸¦G=_FÏBµ÷A¾'ÙÙî£ÎSo5ì©ycÕ#oëí˜G|½0ǧ~êÁ³¸6¿óœ_¿3R®q¥sOø­ž‡#gåB+¯¡Ÿg7åï:×ÎÃÑKúA¾ækŽÓ÷|Ì«Cž¾ûk5>¿;ˆ¿3iGyûö Þòp¥·3μñÁ‰Ûsv´ß8;äxó»xAìÀ~‰xBø´?â\¡qÑ_㶯â\¡q9·(>‰yÆ'ù˜?øâ¤rß:~!ãÕ¯qàgög_ÉüçEüù8üæ˜ßß|Ðç;ç>“s¾æ§ó }åôŸñ½=Æý¨ù«}'y¤9¾>ätfŒïBøpîÞÍ<ùüÈ>ôœ69˜¯Pq6Z.ãì¾]äF¾äJÆk~w ß)g_°q Òœy·ßg_R;=?~{9®ËéΨq–ò»öŸ)ódÆÙx$é§ñ9·ø 3þI÷)ÉÁü²›ÐÆqøpÉÿ„ç¦v´ïÜ{ã]„6NÑGón‡~•·úÚ͸Ï9G㥜¸!3^UåŸöÅÇ!OzHzŸän\øÑN®Å_1ó4ã|4o)ýÕ/9˜õ§á7T¿3þ‡8>¯3ø¯(室ù䮎rð:òmñÁK4.RÊË»Å%¾¿VñJi‡?‹¿¹ýú=íñSËóÕü`ä¡|Úi^¼ðqc”«üÒNó$åšß®Ä¸Êêã³yÇfù”“÷Œ<®©?ÆEÞøâgô;ÿùàcæAëxf94íÌ|ƒGr‰É­þÄðÉÿؼT¹Ægñd®‡žÉ/:ó³éÿƧê뜯1îæ¥ ÿ7ïæ½ø…±þÑW㯽˜öÛrôh>7RÞýæ1žv6Ö¿>—'¥Ýæ™tMîÖuí…6¿^ÆQ=úwcŒ¿Ï_ã·®ÐGã$ï¡ÇsÝ™úÐõm¬æ¥ë }TÿÊ_\Ηõ©v•öŠ3¦gã9€ò“~ÈÛó°ë…r,Ç÷þh·|‘ƒqù}oÈ˺9Ë›¯¹NŒqyþ »éû‰õÅõ¯ó—…#ò^Ðøx¡Þ{›¯\¼?ºö»òWÃOã¹é'õ<Z?ôêh¯ñ)SÞüÑãwF½Æ½¿7^dæ©q*S¾ïSÆŸkü6Ïæ¸žñ?}'y!ß«cÜìøêhõ½Ò÷»Œ§y;µ3ôRø+ßäcžÉmòq)—â¶È1÷güÐâÕÆø® ù{î“ùVo–'Ç\7~2¹¤¼ï ï¯ó½¸íkÏïôlðmŸÇþS÷;rÝý•ô߸Àkû.öMì‡øNµ/8ÏóÙ/²Ÿ9Ï^|4~qÆo¿Ì8º¿‘ßË¿~Rî­Á×›sœáSÿpTÍ£™úâŠÁ9éǵý÷õ{~”³`Ÿ†¿úîR®ôÔ~‹ïZóÒxžw†<ÒïŒÏ\¼ùåºû"ÚU?ýV>ä‘~ÏjßägœéŸÃl=ËïÅ•¥ò´H쫹î>™çÜW¿§^÷Ù†\.M½Hyøûÿö¿ù-ù1O/”ß§ySÎþz÷Ùµ›röãù3ê/ñ;ýN9þ ”ž×oâ÷”7oûø÷ùç›—"õù¿G0õøSØ5;!~>û½äÁ?V?T¨}èÊ-×ü†õŸä÷ÆC í~~èŒÛhÎŽñ“Ó‹¡õç„–O×)ç÷WFyz`y3fMû{©§?øˆð߸)úoÜý†Î¼é½u‡ÕŽéï¦~ãZï_ÂÇлâ‘Ó/<yÒoëœdæ»ù7g½ÈøÍ›y¶¾±ωô_\£ç.üyÿ]·½áßüdûÚí†Ùúå=ͼYÉ«|‡ßæ÷Ö{˸u?HÿiÏ>}õýéûQ{ø£ÿý~ÓÞh×üØwh?óv;ÏeöMN¹ÆOqci‡~÷óµÛMãX…ßžë ŸÂ>‹Ê|ÐOö@¬Ó×åúþ²\ç7Ô>QqFc»Ï9ÙŸëùÆýåý·—òÜæ¡/)O¿à„f9¸@ûmö}Û¾Ró±‘KÊ5Ehó¶×íås´¸+üè/ÔøºŸ¥ßŒÃ¸ìã›Çî™?íeœÖ»âÁî/õ£øý 9ÿb<¹ÏŽº~æ>Yóá;ו¯yó5â«}ívs1ršø#~ûëöQíÿ_"O÷ém~ç(~ MyúR\Wú©ß%ò±?ßýÖPø&¸‚ú=BùËì O <¿hýiO»Åµe¼pO•—zá³yäÜ<ê7úÎ?ÂÏ[¿Ækó_¥|ñ$¨ù å/ŸyŸêWÁyæwûÁ׌C½Ü/ÎŒÝÓÿ1oÍ‹…ÿ»c¾Rž<߀~ä~ý;©W?`ê[/šÏlSîk·~ØâžÂgq¡õëEnüÌW3ŽúÅSŸ—wâŠ#ˆœ‡+ôz(¿¹ÕÏv>ÝÈ_ýVÆ!n û¹•òð47B—(´x¦ô[œñ†âΪþóŒÅüÞúô÷qø>Üü^¾É=å‹ã!ŸðSÿ}ʉ¯Ä_^úßuÂü‘Ÿñçwr™8 ÷éCñ7ê뇛Gòº¿”ÛÄsÝL½#ãr.¾Jy|†~CñlÊoqDCž'~É1åé‰8ZÑø¡ÆóIùÆñIûâ_FïôëZyó“z¿J{·¢‡âzý*õn¥ÿ[®BÃÏ-õõcü‡8]Æ¿ò˜õè y†_í4ÞØ¯—|«×þØõÁÒwÉ8Œ?øŽ|§ŒÜéåÁ’¿Æ!;>ò»ñu~ÉëØ²ü¯ö†\ð‘qZ'G ?Y÷z_Úö¥Ýƒ¹î-çåk·›ó;ød¿ÅãÑ‹agÏlýéüD®ÇgÝ­YO\¼\WG|ÇÆËú=ʼâ÷Wé·óaÞÓnõì׃_|Ò÷1/]G2nö×ç˜ç‚y%Wrr_Öãö;½¤¿ù½øGz¨ýŒ·8½ñœèóëîR_íä>õg)§ÝÆ7KùâWsíû¤ß;c{dÈÇýæéí¹zûáÒ>:nò½»äÏx­ú+NŸikK~ø$Ÿ–zá;)í~ívã»­û>äz.üÌs|öf¾Ø÷ªû`ì)×ö›ìŸÚϱ?m?¥çêF¿Ú÷þÞs\ùÿͧ‹?v—~.‡²ÿ ™¸®™‡¾qÄsÝý´k\K®}|…6¶ò¹î¹Gסųihä‘ëw‡\ì÷:ÏÙ}ÓûKy9ôî¶çóÍyçÚ¼ò‹ð›ð5™ùòysµÇŸ=ÏCÓ+ãµ]ÿè‡Ëu“è­!~äèi(?gýŽ~ßÔûÚí†ÿ\|—ß…Ïð{óÏá'þ2ÅÑÀÀ̸6ü¢ÅÍ„²Çç7íÔÎy$ŽQ¨züw~‡C9ÅŽñßµ§|}fçÚmž×PþÄ >é[ã6±Ë´·£=þLú¯_ëýÓžûâÞÌ8Jp Æc‚£ ƒ7›¸ÊÈǼÁÍiwâBŸMùWß¿XÊMÜ®Ê îfèû{~ÌpSÅâ£Ôøó{p!_·Ý¬ôóiãÄÝgÇ¡™ŸæyÝÏønpbÍKIo¢×ÅýÁíþas½—¿æ¿ýKôLÎüÞ¼·¿]êKãâ+í¿5Žœqü)ü„ïæ¥U^ M;‡ÆœXó}>>ŸÙÔëz{Œý-û;Ô>œ1¹“ƒë¬£»Ö•>œöyb·{žºþ~hô£Ï§¬óų;øËèWõNÍs[\¾OÒŸ÷ú ?ü¿ËþÊç›ç,¼”çý5ëü¬7éyE.Ú÷÷ª¶›ßÉÕó.íß–ëLW_9¸þã›~v­+ý|Ú÷µ3oð‹Þú½C2Ï3sã³÷7zñ‹¡'ônµïŸ¡îGú^æýß÷ÊIü§|ã¨e¾{\÷ûe”3¾Sig⑽Wz_õÛ|¢ùÝw¥ï9ròÝãû Þ—¼áSßXíæI¦Ý÷93æÕ¾ûÏ–ß×,ó é;}žoñÏ„žM¹sÑ7ûppp’ÚíyÙÔŸñ#á íÇàn²çÞrßwKÏÁ¦~Ïá¦}üÛ—3îæç%—!û‡Y>í¯Ø—doo®vó$ÓÚGÏëfþº¯žûý-î2廯œûðZ='}ƒn\´\Ûçµßî~Û ?ÓÜ=žqåì#÷¼u(þ‹7LûÅŸ¥~‰ £ßžCW?Ú7.×ø×O~Ÿ8Dõ.n×ú±ÒGØ ?.\ã«™×ègýo™Wøˆ^ç÷Æo‰þó/Â{é¯x·ô×ú)×x ®Ó.|#?/ý‡;lü”ûËvù½ë—LýÆÿ_7rÍoY?$~Cà6C)å¿-÷g?üäüÍåûîú¼y‚é×™yl¼¤ÌgñÑ“‡ªqÉ¢‡Å¹EÏ‹7ú3ñ”O†¦ÝâËÒ~ãÓrðpPmßuú)Îß-û?ÂÏ—öf\¬ÆcKùÏlâ ß|4ÞÔ¦Þ®õb¥Ånf¼®ÆE³N¸|Ž4›ò¹ßøqìj”Ÿ88°kS‡>yîyîïìù:qÜ?çùG¯ñk£>/ñÍÞ&ÕŸzìh<—®Í~Ù?{sßsêâúœy èÏ•ùlü³Ìã»ËùÜþî}%zQýÎï/üáR/g\¼ž7I?¾W7ÎûXúó½2óxú~êù£èå唟qä/Õûþ2ý÷}œRî¨ñìR¯¸˜Ôk¼?íKÚ+N.¿ç=s×z±Òϧ=_èûß¹Ëæ} ÏѸ/zæ\´ïÝ‹ù½qÂò;¼[q\iÏþSÏÕª=Ä×ÔÇÆÉuž¶ñÂR®ços]þÒ<˜rpj=ÿ©ôo_±ñîò{Ïû¦=ûsð|;æ÷ʉ|>Zíæ ¦§2ßÿý´»Ÿkø~ѳ¹†w+ÎFýè“ýÞ)w|\7¾>rÔoþ›Ð“¡§Rž¿ˆ?”ÿžÞ¥~¢ü®¼ýdøþâ-ˆ+Ôx[éÿGãš_Ó¿Åoöl~w­+}„ݘwþJ8’cì$4¸âþy©7p8Í»˜òÅmýëø]?ô˜¾ÃÃü!¿ó³nºÝkºøÓ‹¿‘ŸQ=üùÿâ5}’öÄéß,ã–ß³å^òš|‘Ówq@áCܽÊ?ù}×zñm¡Å'ÒãǨñ¦6ןÏšx[ëeÝîúkÝ åÏ·>6nWÚ§ÿÖmÏ%ë1œ2\vŸ/içG£<~Šk =þd¯»[œx(||Žç2\è‰åûWëýli/•gãËF>ægä«^é#æçtäÎN^úå}ž¥ï3©çùÑ|ŠËuîH&øïG/Ò‹1ïg¼Gá/å½Çø.‚?a§üÿÆE<_àò_zÂíÆ¸›—‘ ¹Tÿ—ÏËÊùì°xíÆ …ËùÙ“-—'…ö;‚}À{À[Íü‚ΓÀ£œ õk{uüÞ<ª¹÷®þå1¿ž+ì…=úîo\¹ü×OÆýîùÄž¢w»–ÿ‘ù°Î°ÿ)ÏÆI˺qz©ç=OC#®Ó‘óQÎm)îɔ˓F·ûY™â¤"ÇæûTnó»ýÚ wò;{¸½™ûfÎ6/iÊ5~Zú þ¤|Í<Åe¥5j–ãØæ‰%?óÐ}Å‹Ëy±ÿöúj75O=7<Ö{~òåáQoæÓãéùß\ó[ûrŽX¼ƒÚCÊ·Ì·ýbñÔøGðevâÈÄ…{çÉ´—ÊÝ:Ð<7‘GÇi\™ŸæëÜ_RþŸ™¿§ñ%ƺxy¹~­ôóÔ<ÑOñUĹ€»G¥þíÌÇ\‹Ò8ÑSþo8ù›àcç#í5þ}É<‹[SœM~WÞuóÖ¥½ÆÑÁ×O¶ÝÀUÌü³ïe×s]:ƇÖ<„-Û1ŸÍg©Ìp »–ÓN·qºèæÁ5œÖ­ƒÍ}qŸØ×­ÿÜÈ»qÐF=ñ\7~Yú=È<7Xúi<+| ûl<µåúg¶_ôGœ§ƒ'[/¶ñÌ¢Çønœ,ëß#Ž/òm^È–ëVÛÙ_®{Í[xwñÞ±ÒGÌSãNþçRÞC¾Õw¿›_ó‘y¬üoùüõò9Ö8qEn|´ÆQÌ|7žåx®4ýØK»w‡Þ±›ô“þw-÷GÏÇxîoJž§ç üYîo×ÜŸùT7K{)7òÚîZO:Ýâ7úTnß—#׿'ü‹K}ß7Íß9ßÒNó[§þ|Ïhþu׿Ý{áÐí7ϱ÷¾”»º|/ó½´k¹?z>È{ùÜôRü[ôü*yº6Ÿ)Wy¤ù7Þ_æµqå6×»–ÓN{Žê\ä7óÛÂ]Ù7¾ùö¼”ïД÷YVÚó=ß8ý)×x_w6ýøØ?òÝÚ<£_ûð^~·_ØójOözÚ}Ê‹Ë÷¥î?7'¹’Oäwgß ¸»”/n.õìÛ/·ìw¥˜§Æ ˼Ø?k¾¦\Ïóöü1âÌýžkµZ?K®óç7âwc7òҜϋìC÷N‹ßãTÚÍydûϯ.Û{Òh÷ñÉ£ñø2ø:þ5çÌíï[çìÛó‡ò'Úøq¡O¨_ëI£õ+˧Fïùßù§g[~góÛ8aæ'÷Å€ËÙO9~¸¬i?ììÅa7ìíôЇø5[޽7ÿ]ÚýñÒîž4Z?pä]Ü‘q¼4®‹ïÈ}ò…}qÚ ùX—ó»k9¬ôɦGòÎÎ<Úâİk8gølë?*Žáñ\ŸH}x¸ïÄ{l¾â5žÙJŸ"ÚuúÙ½¯Ö|£±Ÿ‡Y·ÙÇ+Ã~š—×:ï¹à~¨çùÏ×u~¥OíûÉ ã}Ð{bã_Gïá­kïƒëé÷‡÷ÖÜe\Ÿ׿x²ßWºÒ…ÝÀe½±Ügë~Bã·çÚ¾Iã­í=øë÷¼ï†æëû⥠¼Ý®å°Ò•>–½4ÆÏnl÷¿»ö{ã˜röy›g6vÐøn©Ï./ÆŽF¾ ¿ïZ+]écÙÍ•½Û8ì%ú-¿Òðÿ××ød±³ÆõH{ðfõkê÷îú¼YéSC·ñ¤¢¿ÅEæÞ…¿½yîRn應}ñ×7Ιz)×øQë{ÚJŸºoÉ>¢ïðD}D¿áSÔkܶ”k¾ÊÑSó¦WÚµÚƒ?O‘Üc·šÏÊW^Ôyù×¥¼WúíFÌà7“~å÷›GÞp±{ôƒþîç¾<“ðYòcÂY[燱 8®ç‡>vóÏÃ^ðý³¥~Wü²?zyS~]ñ=Ù»£wʼn/õ¹|ãò\Á½fúc—惼´‡ï±®™Oö%©xwƒ_ó¸ký{ZiçÃzL_çŽýäúx®áÔéÓÏ–óY}1Ö9x¬_ŽvGœÈò6æ¹÷镸†/¥?z‡?ç^úèúùÔ£—=”ß½_ßËß'rÍ8¼ßÉ *ž(¹±'¿ã‹‡qæ|À‘ùœç3Œ›ÜÙQÖ]ëßÓJ‹W—®×9&ö£}§Wö—Púå{Ùw·÷ü“¹¶ÿôê²\ùÂOÏÍßÅtιý¼<êÉ5nb®Ï°\;ÇwzÔÃ7|YÇê™þñÏ>z~/×=wFži׸?ѸBÅ<½|þV.=ïg~Bß&ÇôóÚßW+}L»q..‘¾8KÏü.n]ãF¦¾¼æÝ¾”yì~íÝ͵ó—=O½Ôƒâ"µwn¹>¶?¸1ç~ÙCóVŒþåË€#³/¬úå~Ï‹æþÌòöhWö™ÿð£%¿â$êožK5~ûÝÝ×ßÝÅ:R¹4oHÊõ\ôþ’Ïõ<ôßf7ðXæ…ÿ¯þ½È[ü;úи)×óý¡=»<îÃq9ÿ~e£Çå .’~Î8âæé?Q\ÊÆ3 Ÿ('þ×î}å'¥—Îë7ÿUøQ¯ñÉ3´ñc·â‡ßåáæÿ“ëü<âyóÎh¯¸ÕÈ1íìZïžvºÍ9/’ùE¾/øGv7·Ò|¸Ñ+ñ?ßF½ôûþ´ü ¾à'‹ ?£“òüñ_ÆSÜ >>Xò'?ÙµQîÊGq8ÃnÙÑÀϔόc{?åG}×£ý«Ÿÿœ¨\»n˜7r¸¿¾Ÿ}vS¼IôÇzݸ¶ž;·—vpuØÚù¢¿©G/è}é ½y$_]é-þ¬÷ôlüÎ~j×ìýûGð7ã¹Ôubô÷î[ígo©·}þ±³¥=t½¸:ä}e)¯GÎçŒû{e>§—v»Ò/i7Íw?Þ3ú¾•yhÏ”{{ô§½“áÓ~¡ïwyð£>¾úû°_¿Û0^r<ùÚ—ÓŽræ¯çVgÿ,ûYó |5vÓ|N™·æ)‹ü÷ýþáòyÏ/c¿íDêñÀ¡Ø?¥oâR¼˜rüöÅAï‰?ƒ¿¨z›vùÓù åˬß%íªÇ_Ô<¡)WÓ}÷ÜeÔkÞNãÌøç~Çí:”œ§Ÿ‰¿‹¼í‡ï‹£=x†—ú¿åÇøsM.p?\Ÿ7_‰Ýį}ï>ý‰|ù ù÷àDÈŸßÙ|‰›$¥rüý3ß'{à?‰¿4zZ¼ ýª=”ñ ¾vè ½ŽßüãЧé×ø²›I}¿³öI§ó\¨~ø5ƒ€_èv÷¼M¹—‡}5ßó°gÏÑâBÙ¼¶\êsã;¶Ý ÝÚ‡çí|Îzžç¼Aó^§¿â'rߺ6ìq¥+]Ø÷x‚æ7ïI/í=ø«>z~½:ì ñLsßû;r®`Ä ­}éwÆå|qù^Õç*¾¯-õáÙSó@z¦<»„!‘_w¥+]Ø÷"vcÝõÝæ|*^ìÀ»ÎxÊ}ïÌ÷wñg¾;ŠÏñ<ó>¹|¾lñ{ã}¬ñ¢Qï,»MÿÚa?ìîÇwy¼¾>oVú9v¯b_®ûn¡ö­ÄG³pÎuhòŸ¶]úª=ïSì¨ûöÅØQîÛ¿ÓÿËÃnì Ú/kþÓP8ýÛŸ´×8ìá‡Ùß\ñž+ý<»©%zd?üÂí åϲÏÛüº¹/Iö¯Û®}fíÒãÖÏïôØþó¹½Ú¿nûp>p±öÍ›‡#÷ÕWÞ}85øûÖ—ÂÏzn{¥³ø8¸…Æáˆ>ñÇò+òûówò³6nZêß ½Qžÿ¿þÛÐâwRŽùa7pÅè½ã+÷áløy‹{åg-.a}Þ¬ô!vw&Ÿ¢xfÍOæ~ô¬¸¸Üo¼´èéÀ ”ü²ÕOåõ/^œ]qH¹~o–gøL¹k³ýðÇ^Š‹Ú{D»®c?ág×ó´Ò'‹zÌë-½¸|.ïz}ê=ûùh©žËvgS¿ù7í”vÐøžúñ¼v '§=öY\ë‡K;.¾“°ï–×#¯ãJWú@?/ÜùìŸíw|ñÞÞÿCá2û´©·Åy.ߋڞïïspi¾ŸŠÍ}ýWª<;ííÁ%ÁÕy?ë9 |ëÏwÌàÃ{Zq€ûë{ÚJÚÍù½Ûs-¹.3úÛïiß×ù½çXS¯ø2õ¢öæyºói×w½úpn=Ç–öàÎìËÁÑÙ÷³¿ ¾[ñjú ŸÆƒžL{ű­ß7+}ˆÝ8÷OïÏ{ ¯oŒ÷(~Hú ÿŸ·j_W?Ÿ–þæ9s¸í:ŸÎsr´Ëïϯڼ¹žy?ùêÇí¾>Æ?pˆ+]éý?Nï£/ÅYÒçèÜ |ýnœ‹aW3ŸÔŒŸ6ñ2ÿ8ôW~þÔ‘‡t—&åøû0ëåžÐøàh\ëp ÁîzžV:ô…‘Ÿú¯äé;’WúìÃËo×ïÍüoóøêw©Å™ñ¿çÌJWú$ÐÆiysù>Óß_ý|½uîdÛÞ¸v>Èyöc]>3öÓ¼—Y¿×ó)+}éviÿ¡zÜrçî|öÏ^¿ŸÅʏÜïq¾®×ÞïáÏ úæ°Sßž§×øH+}iq*üöyÞöp9岯ûÈöìßÚo½0(¼Œý^û®ü3rüÙoÞµ¼VºÒzÎ_8ý~×–zzp=ïUüÚû’ëÆÛˆ܈ýÁËð¿_ ½žòü”7CåU“Mûï?ü9¸Ò•îÄnÞ¾ÜùìÆÞÁØ=¾½?øÏØIîÿê?B?Þ”¿Å^ö6í¸¾û9ø÷M¹ƒÃÍï¿ÞÜ¿©ßa§áãFì(õw-¯•®t£Ÿ±vpkïÁßÁ­\„Òß[§R>σ[‡›ò¿ ½•önå9ñ«ƒÍýö;ÓïÁ§¹¿|ÿ;øUÊßúõºŸ¶Ò'ŽÒߣ÷ó|HⴿߺóÙ?{ý½úʾòܹ•çG~?ÒOí-íºÎsp×rZéJöñ~ž ×=òî=íúÿNj[V~€âÿóžåû$vuãöâ=®åúý²¿´ÓâÃW¾‡v-¯•~·é6޲ïwûhÑãÆût¼G5~n¨¸ Å-§¾ýí+{þz>«q›ó»òÅÿ«wgSïÝÏßÇ[éJ¿»97ôútÖwùœv^ë|ìçõáo)~2v Ÿÿ¿ªúÍkþP×F¹Äݵ¼VºÒúœLñޝ ûpþ~âk‚‹ìµvØÍÛiÎ þR¼|ˆo(NÍ_Á)¬t¥ÕëCå3‚—w%ñ[ï•¡Çò="Ø#û‡+„G|ui/+]é“H»^[—å ƒG‡Ç<9ìä…ñ<_è'_Lï»îÿrùÞµk¹¬t¥Ÿ«·¾3w<ïý=µ÷àO®Ö{k¼_ù¾xý‹é}¿;ÿ|Óß®å²Ò•~®Þ:×ë<¡}¨ w>+°×¸.†_EÞùà0/>¾«qŒœïmž¶M¿»–ËJWú¹úkW>~Ž‹¡WŽ×ÚÆ}@á&ï=­çÞ»œþ×xD+}‚éÁÍè-|2|ØÍ½ïç~p]Gê_–çÆõÐøÿjÿp–ð•ðœ7V»Yé“K·8®;ŸÝØ+½< ¼Xp‘GëGßoåy?><å_ï?vÒúéïæãÙÝJWº»¹™÷0Ï‹ô7vãytãþCß»j'7?\–¿ùðòGë§ßÚkø¹±îC¯ôÉ¥ïGoß»óÙ½¾/5_³ßa7ð`âÖ]ûbïWí¯ïyw×ýç•>ñ´ç*Åßšù»Åþÿ±÷7KzUÚø]ݦÝV·ºÛÁ¸À ¶eËÈ ©da}X*¹§>NÀ'À è8Ÿ' #Õ”¿#FžA„"ˆ`Àî p4ñ÷A÷õ»îg¯’°0·$ÚûΕ™kåÎÌuåZî/Ͻ' 6â·~nýWõâ;w·Ò•îToØ÷ùš~ô§‚?¼cùá¼øý:ÿ×}/jçTÏ;«½s¥?w¯ÏìŽüâÕ/Ì_^5ýé¿'P\N蛫ެôÉ¡).»ÿÄU>ûxï×—–KñÏÄñä¿N<Þ×–zÛø²K­Bù åoJ¼Ý5îßSMëïµq¼C§Ÿ>¸ÏWOyØâ¬Óž—7|6.4?‡üò7(N!¼´8Øühê~jÅ+ƒÛƒƒmùð×ðv÷|³Ò/(oü¾Â§‰ßwn¹_ÙúW~Lõ†>¼´wï¯ñÄÜ+xkȹø|3~gýžç¼C¿ðs«ø9¬ÿó¼·ïûÁª7O3=¼¹1þâ=ô9òáÜíçk;ã¿~ÿ£ç†<·=Îýœãi—÷‘÷ƒ¼ço¿~ùêç?éô{tâp(÷`Ý·=´q`œ;_z"^Jãá=^8˜úI»þ§/ü¾»wﯔ?”ÿAþدfP÷¬•ïþµóûœ®÷®ŸNZ?p/‡C‚{!g»æ÷ÿ7#ßüÀ× ¿M—Àâ$è;,?‰ü²ñƒ¿„Ûü)O9+¾î+AoFNPþýÞüñ³GvãñÚßÔÿiõ_øérFè¿lï/DÏøsãgލ~ؼ7¯$_ý¾í¯zó •7ò×Y¿d‘ø±á‡i×´üU¾‡¾´}‘wòßç´n…‡G*n5zÕïŒ~Iyï­ß›¯í}óåÕåz|¿ø1]§M?h䞟¨kùþˆokÿ"n´û âkÚ/É?ã:»wÑ8º¡öSÉ·ë~Yé#–;q-ë—l¹ë½é‹çú£÷ßÜ[uv!òϿԥ´³q›£ââ—ç<À¾?騹œÓ97ãߊ_÷K÷Š9~_éÒúzšhíçî¯=ß}ãñÚ×”¿âì"·âÌò÷ÄŽr:íà‡D»ÏìÝû«Ýåí<7_ÒñïÃî)ß~Ê;ã÷œ«½½êÍÓDŸ1î‘«×7òÐßÙ½_|L×iì¶ü®±Û{ÿBÚ÷ÍPxRò~ Mú‰Ç)ž ”5ñ2oüOÊq<Ëß©Çs¾YéJWºÒ•~5iñpù®oã°ïÝûëwÏ÷ò•¿üýŸ8vq€û|v]7®t¥+]éW™þ0ß÷Ý‹jüR¸»¼?ç÷ñ}9·ÜoñŸýÀzW?©+}iq£ñÛØx×üË]‚#Œþ\çìïŒu؇Þüåó çô»î‡•®ô¯Ò›ëp¨C_àäÄ÷…Ãã¯NÔKK{kÓ5~ö=²='½=…×»rkñûJWú$ÑâCáSÑâFáï¤ËóˆW·ozãçäõ+´ž—¯ôÉ£+mïÞ_õ¤~L?ߤ‡+½2ö7¾GpD×–víâ“ê/õñă¬t¥QoàáÄk´>{Êï·þœaïð2}¹ÿwâðrÒe}vøãèÏ•ñ]Jy»nÿJWú…ôƽ՞—ÁAD?œ›å÷yà¼í`¹¿o܈à÷ŽÕ{q]Ÿ­ôɥŠÕüS(ü<Ôp…Õ³ÿZíš+]éßMÿyàöøµâgë?éqô38„ÃçóÌÿVâñžÈ3?ZÊáçäÛ{÷þ¿±ÄùÕ?Ù¿ò¾¾¡7~™÷_Ûä¿ñÿåw¸ŠÄý«Ÿ–½P~Už|{Ö~Zö6ÏG©·xMøE~Àø;‚ï¿Gÿ’|ü‘…Ÿ;¿IzõücÒ}7éà'õ|ä~êK¿iüeý¥<8í~vŒÛ?ä½~×Ný’q¾s7T¿S¾¤+žS{õgžµÇ¸âWÿ|mÙoõ+ÿj7þþÌxÜøSÊ5åh¯¸‘'Cµ÷Ôàç™ä«¿ÑŽÿ ý¹ãó­ü.}øj=Ú¹8"_üÏÉ—x“w´‡ü踡7Éï»—†~~=úðòüOÆ)”ß.ýé½vð7ø‚yD;£×ô˜¼Kã@nÓþ¿Õ?¡ôåÌx7ò{z9í_|‰m3Žp[äæ¹1núõyíKú¯Z„¡ßÓŽü®]_mÞà÷P½>Æ?ôÒx=Ƈ>t¼óŒ¯ôSç_ãŽOþÍÛê3îú×¼Lɳq#¯õ/g\è㘇ÞJ:þ·È‹õåè{~Ÿ¤Ã³Ñú§?*§ÉGa~|›ë”ïÞÔ餋œW®ña>6.Sž—<í¢çÖÍÖÓgò¾r¬?†¼¸ç¢}Ê5ÏùnžNz÷[è_ñüÆS9cœ­Ûç|ƒ?ýDÿÝ'¨Þ‘Kz1ôÞwÉ}£Æƒ'?yOŽ|—é1yvOGùö+æÙŒþÀñæŽÞÒ÷~øïžó>ÿ¼/„’/ò¬ÅóD~Ï‘óä;ïýЇú'ÏÉç™\ÅÏøá÷ó;<y;HzùÈ»8³ÚsînôdðÑñ øã‚?x&÷½{Ôï¾–{ŠÒá£þÇ&ßé/õxTzúsnô ='ßpUäÒ9¿gÇú)ÏâUó÷&Ÿ{jôÍ8Ñ3|vü?X¶[ÿŸ»¹òœßµëÂ(¿ûróÌÁ²Ÿø­?·Ñ?ê“Þ¹—tú˼}€/ã¨}áƒ\óI~܃å'Q½æY÷WµSÿ^J:÷^õÇÅPxŸøk\ØãŸtçSŽóAz×óÃð_ôNÒÓ#þé‡Ösh¾OõW¼’ö áç å«W|΋óÙ¸'=?zÊMüŒ¶C| zãþï;C?ßÕ¿yÿÎàKûäÃWÛtýŸúaŒcýüÝõ*7|ñ@ÎæxâSºKê“_yÆ_=£½í¿ýåø²³<€_ï/ ùjûRžy§÷¯§~ó»vÏ—rÝ8)ùÝ=qú¥ô‹ò®ä}q?‘‡ú™#/yæ¿¡z•g~÷ôë¤õÓ \íI;ro¿éð§>þï‡)ùÊwžáŽÜ«wOž?<éØÇÌcúAúâ—RßµQÞ»óYù)‡¿ ùŒyä§O9äëJúÇ87.þÈ;¾Æ8Áˆ¿s}ô~¸šzå3.øaGWí‰w—úÈ¿ÆQÿÕ_Gò_ýðÞèOãQ{}ÚMïÚß,óIWnäÎsøÕÏòãÛïpkí'r¾¿ìçú;Ñ¿,û•½ò‡ý…ý¥ÞÔG~ÞÓNíÖÿêãW¿Cô%åó/tmð­žâû’O½W'M}~çg¼ÁsèÏô§~ÇGËú¦ß>ü´žÑå3ýÖvk—þÅïÐË÷ÂWqY#_å2åkOùSoÊ©ÿ3ïÉgù†ÜÏþ¯ÜÝZöÛ{ó9í½î=>B•/Ÿgéô‡þ5~ŗѧÑ?¼¿ìÿú¹2.)§zBŽ¥#Çc<:¾I_}óûœWè±þU/þéçâ'ð•z‚/Úê­yC¾—rêýœ_´§ó yÇϘ‡Û?úo™ð„Õ‹1_ÈOï›nγúcÈCùÓïõ§~‘ÿ`ÙîŽçÝe¿»kƒïúwÂ÷Þ²¿Ð+³ÝC§OíïwR»ÇøwœÍoÆÓ¼6¾·ê­¾ê?åŽy¸8ç™Þ¼c~¸½ì‡úñ%äÜø$Ÿu£uïõ\oøîXoZß+·éó»õ—u²õqý,‡ßæË{û½ò“öžç®_ÕŸòìãêÇ(ï»~ýÙö)O:¿‡ŸËø ú)´íz+ý¥ÑOýÞkoÆÁ~Ç:®qFñ™zºÞ ßü9Áe©ÏxÛïÔßþR.¿ëƵrüÖ‘ú½þÙC»ßÐÏÚ?ýO´/ÏÖ§Ò‘Oý‚jG÷ êÑÿÊO~|V/È—ôyïÜä|Ê%¿Îñœ‹÷#]Ê·ÿõ¾ç'y¶Ï•ßÙwØ'œ›{vÏ>á\òtÊcs~î¼Ü9ºóäWF9ÎQk‡I9ø3ÎÊgï¬ÝD¹žÃýš~ŠØ½Ø±Ä;=Úɘsaç¿ìmììvìßü:‡•^ü$çêÚÿrÞ³S;g'ì0ì.õO–r;*§q¢’¿öœ<«ÿ{£÷Í7ú‘‰\¼2ÊA7{µqRžvxVžö²›á—„°ö©PvÏÚ¹’\ÖN3Æîå•ü^{þe/šþ±žÏûòJ®^ò%¾˜òØOÙÓôgʽñ r>ê‹Ý.×>,Ž!ö³m<°¤‡c+ ç(;{à^Þ³wÇ.{ãyÏž§½ú1vÉâè¥þ¢÷ä‘}¼ãŸüþòèr]\Jž‹¯Õòrjð­|ãNîØç¥7àãÔÈbÌCÏý}yÙ¯µ'}”c>KÂŽŽ’íåoíO£_Oç”d\ÙÉ­òÉû<;:|™þb§¯þä¹Ô8nè®ñq;…σÓêøÿç Á±Á­ ý,~ >îO:úoœ«ù#ø¸¦ÊkòÁsU¿Rîß‘û¤ûß”‹Ìƒm/½<Þù4r¯¾ðÕúþaÈ¡v>›ßáðò|ã“ðñ›”“ç¶ãî²Ü£g’.|ëú1<±lWÛg¾ø‡e¹mç×Fÿà×¼áûà™>&ß®åòq§•ì3ŠošxÐ)'ù‡f¾Ë|Üï§ùÍw2x½ÖCîÈ…÷ÆwâV³Nlý‘Ëcíú—!O¾—äßw#zD+·Ö_¾¯ð‹¯,õ²ß!óyô,ÿþèO¿›_|áõ|ç¬ÏäÓßæµo>`~°Î~1ùží(Î-Ï£œ•>@o9ÔzºâI­¿}ýTq€yžû4ãg¼ÔGð1qk~·£Ï]ÑÓ¼'Á7¶½Å«~«ÏáËzßþÐ~’KoŸg_hÝgßCO¿7ÚõÊêÕoæù_ï­ëÌ/¯Žù‘ÞÛ‡xo¿d¿jÿõÖ²¿Vú½WƒS"'Î÷à ¿ڗg|’¿¸·Û›ôÝ'Ÿó§3yçTÎgÜgû/xúíãÎqÌÃÎ}ÔoÿüÆhþcÙÏ÷u_tgÍøÅÏ(ÇyŸþvNÒxºi—~1¿œ|é.ëo;ßí+þ0üÓsýw.ïßZ¿7¥7ÅÕe\à ÙèKñ]éçè›ñÁ¦ÿû^¹‘çdêƒ-¾.å/šçóyvžJÞÇ7|9g-nuYNÛ[{ChùÎÏ/¦þž§>ö…žëJ§¾üî}ž';Ïv~Mÿµ‹äü(Ϋý«ýúÇ8mêß¶7¿kŸ~sÞNOÙ™2»–ËÇný=¤ß=7nhãÌêgùBÙíèûmí¯Æ5ãX»¯|‘òŠùÊú#_ìv±‡nÛ•z/÷W“¿ñrG»ñóî(Ÿ}”=’œáG};•|ÒùýJʃ,^$ò —Àþ{I?'_í™úhÒ7ÖàW¿•?|é÷ß­•>@oÈQqtcxœô«q¯};ãwDŠ‹KùìûÅù}”Süáþr<Ñò«>z¾ÙÍ‹+Ñ|ú=…)·ø!ò*¿ôyu¬ÊïRŸ·|çýÄeO5¾ÚÕzé©ôú%¿Ãßè_¿O™|ÅQ%]ñ;«Þ<”ÞTŽÓï 9¥—Zyýp9.Å“›ï ßæóéÏhÒγ£üâ˜>ZÎ÷ýþxO>ö—üg>Ê«ù}âŠ;/¦=×èñþ‚ÿ]ËåãN·8°Œ{ï§ÃŒ“õ°õ\½˜tÖݽïd½“üÖé}ë™Þó™é3îÖ…ÖohÿQ¼¹My'H/ñŸü)·q Õjß2â5nïßȇý¥(¾Gù½”ü]¯¥œîôHûô#~’ÿúMû‹wÛÐ]ËåãN»oµÿ‡Ó°ÿtþã¼À>¼x·ŒË¹‘îu`?Ü{¡Éo_ìÞ¦ýk÷ùw8?ûïÞM~çSç’_»Îæ÷~ì×íŸéÕùåz¥ûoç{oõYqy£~ç pZ½—}èyLøpÎÕ~ ?ð4Îóœ‹õþaúUz|àþÍ8êç Þ´˜Vú—iíÎ9ç½}öãÆN—Æ®PüVž³?(Wú’ž}>kÆd‡p®ëü^æå<³Ÿ¨‡}ÞFyøTû »sá¶/¿w”¯^øõñ‹1ýø]Ï•÷ê×êU{ný ŒßGüÕŽ/üÍ>š|ú±öUJožÝôkñì…({Üsÿ¯q ì¡ìxäœ\$}q<äþŽå¹¥<ï—C?ê‡&õyOÈGø/ž¥ü¥8öÕõ§ŸjÇŸÅÓH—ú[;ÿ‹úióûéÍ#.hñ3p ³~þ‘þ˜~‡+‚7úEÊ~¦íÖ?§<Ÿ\êÛJ?GoÌûõç”þœ8Þ|_Žè y.åH~8ÇO†~ÔXž¿7ä$rT¿kcÞ¤wúÏËršÞ< ÏS|è²ÜÊSýû,Ûql¾þΠ/ŒtÑÏò1p,»ï•~9´88•¯/ǹß߸§¬ ú2o½8æSöwzSÜǘ÷þuèÑØ?ô=}¶/úÏû¯+ªïôÅ|ýú2}÷+/ }Á¯ö[Ÿ½’÷ô׺iÜÙêMÞgý¹ëñ^é—C»N‡Ûª­P~§ÜW!öß½o”çî‹Ð±Þ·ïu>ðê”Ç<ÈŸýÁ¹¤£GÓô~ɵ{AôÁ>Fùôǹ‡sýà;†žN9Î%²?)Î?Þ\×AOÝâ]ö7tøkºÞǼµ‘§ƒÈCÏÍ’¾õâæƒt잘sZçHÅå,é¶þä'Ç=?ýàþߥžGá#õÀ¯8Ÿ›þªzy†›ƒÓqÕ{³I÷ƒ±¾üÑRVútÐÚà/ê÷ho#O¾ ŷ䙽ƒÍýôú¥ì>ì6ôî¢ôIÇ®‘÷å³þ ’¿ïÞ_.·þðÊÎÁïƒ{÷삽gÿ¼¯e½[iû÷Õcv‘]óJ¿\Z?HüöD ¯G^Ø•¯GŽŠO‰üòt#ïÙé‹/ˆœÍ8“üÕ~òZþЛüŒÿ©«ã»T¾RŸødÇü½ø=é‹+Ê{¸"v_8”âxRNý6åý{ã{suÙŽ•>ôð0ã~øiô&rróöRnþ<òŠîmäþæO6rv3růߥ§wüžþlQïV?ZÈó–Oü…¯›øüÙHw2rœß齿WI=7ÃOÊÙòùÉæ=œZß§üCï‡s©Ç‡?]´o¥Oíø›¿ù#;$ä,úEO¦ß?åÔ_™rèÇ­\Mÿv‡ó»¢ÞÛK}Šüµ¾êoäØw¥rœúé ê»sz-íº>øêw$íâL?µ_R_Û;¾7™wv=Î+ý’õƺîrú}-þÝú%òw i‘ßå¯ÿÀ”£¼wÿòúå˜XzQ¿¡¡Ó£zá/á4=ÛG5NlòÃKÖ¿]Þ×ÿ0~´/í·Ž“nì»”³ëq^é—K·þ½"GõÏù¨µÐé·¬þâCßòç<íb¨s­qÎ$Ý1þœSÍs…â$ñ›÷õïˆoõ¦=ø­ÿÃü^ÿùÝùbýºçÙ¹{ýÉåùBúqú¼´üþ¬ôé µ·°ÿLÿ[µ×$MÞ׿[äYœ qrj?ùh±þ/ì™ÎÙKù™ÂþàÙká»Øezù]{ÏŠOåºÏ}:ÏìQžë.ï÷ÉûÐaÏYéÓAùe·o0ÏßWýÁå’wróâЫ‰¯™~W¾;ʇƒd×TÞKƒøÈW–zXùßú4ãé5Î_hñ¡pfüë4.c~‡{ ?7~Ÿßµ·qמ½©#øAÞŽDÆâýÒ2o¥_žK?±‡ŸÈxÁße>,>ü‡6Ïü/Á­ÔïÕóc¼‚ƒÙÛSïrÜnü*åÃ9Ö`Ò‡¯#xæW_õa~M>ø4ò÷y®Þ…ŸÆÍôj<Ó䣗ä5ïàÞf\Õⓟ^Àyªgo”ÿü IÔ8”7Æ~À§Ñ x„áŸÉøÝ1~Ò S7~ö×wçô\»éõè_í#?ÑÏþ>ýæèïð/E>PòšvÓóMäùèär>*Î/ãdžŠu^1ßYhï æ¡¤kü»<¿úW"¯äûãå:E>ýA~àŒÿyÔg¾6ïZ/ðùëÁý8™?¼×>ýj<µ7ýÜz3ÿß1OXïi/ü£õ¹$ž}÷^N~þŠô|¯ù .ÁwÐøá_½úÓ=õòK滪]õ[•ßÕÓû yþÆHßö&ŸúfÜܯ~íý‘ŽyñôtäŸqsÏðÃ¥\×ö…·†oí%—ú3å7ÞiÞ;O®¡×õ#…¿¤'_úÉy²ßÙ‰ðÑûõ)¿qóûG:vŸžG«'ïµÛøtSŽrýn|'pðÅ.w,Ρ~J¾úßJzþŠo pWðap4ÚQ~/N-å5N_Þ7®">ôûèWvßÖwkYNû}ä7þ7ÆïåCLEž>â˜Þ%ßO7啦œ÷O§^åëíÂ~À7=Ùd8¼y¸·c¸“ƒeûá£nJŸvH_|ÔáRŽgÜOéÐÆóK;Š‹ ÕîߤÞÔïûüÉæ™~áŸÅ§ö£è¯âiÈ·öEÏÚ¿yî¸ÝZöïÍ1>ê%êÑoÅ«)Gû?‡Ÿ.ÇÿÇÚ…ßÁÜ[Çÿi—~ÔÞÖoõL9ýÉèñ¬^ó‹òWTùÆ=ò^º©çø÷FyÒÑ1~ðXÆÙ÷ q`Çï¾SÅ÷…¿ÎwC.Œ'qäD=ýŽy¢zj¾6OàュžùÓ«Oóú(÷Ú(_ÿw<‡|ê¿÷Fû•ÛþÕo·Fú©ïøRÿíe=•cã}xoüÞñýɲ¿ÛêS¿~ÒŸ·—úg¾ïø‘ãÔ_9ýyú™Þpÿ~)Nÿ«OûÌKê 5.ÕÏ·–íןý¾é÷1–ãr\oRŸu“õVý¢¦žâ¨’®ñKCû½µ”k¸¤ÆoM9ÖãÖKÚQÿ–y¯žîðƒ|&Ÿõºxõõûww´,Û{u”w5õv?zÌïÝþ2?þŠÓ Å©Í÷êË{ýÕü)¯q}ó»õUýfüê×U}Ú•òàÊœGÔìçO×ö’—ÐÇôXûcõ;Ÿtnçž3Ü}rÎÕsíÓÞ¼¿”gãßôyï|¢þó¾ç[Ú£?R|ú?­´Û>¨éŒ“òñŸôöÝÒã9?2.Îuz‘rz~ ¾ð#zïžå‘£™¾÷÷Œ÷H7χ¤sÎf¾uªž¶_{ô³öå“Ó¤7?4®iòç|ë˜Þ8ïw^OÎØ1·!ïÙqÜ“ea?8•çÚÙ“ÏyqãzæyÞ¯WŸsfç¡ó—òØÁ”ËDùôœòÙcµOœ¥OüžúŠç ýÑà¿þÔ“üÚ-=;‘s_åŸÉ{ý·öbhãHŽùã­Ñ¾Æ{çÀpÅE¨O~üçý+ƒ¯ÆI=æ©§ÛÚÝ’Î|åÜÞB¾9ø`·!ú‡Ý]¥¸Á¼Çÿ¿ÍrµÿÆ/ï(ížv2çõìYÀÓîåwöiøv]ñ.G¿’}yY~ýýi“þÎò^úgRþþ†öÉÆ5c×å @;ùW‚J9µÏ%߸¿Î{x"vp8x"íÕ.vkýÌ^ÊþNN+¿ìŒGœüp ßý§ÚõÚø]ÿèÇ—òû÷Æsq¦c<§ŸDóÍŒ5ðfíï#ÝÄm$ßßÓï¡_!ž«ñ'‡ôéý¹yD>ùŸ»;Ú£ý¨ôú î‰]|àwj÷8®]ãáw §u|ÍQð^õ£·éî=¸&éàÏî÷x4âLš?’}þ õÝ+N,é‚“:V~p)»¹€“RÞQærrç³ñþîR"'G™?´ã(ó‹úéy?:±L¯?ù;zvCw=¾+}4´ß%òiþø·;Á=Ýùuä'ryûõúñtúM·ÿÑ>ûIçAæ‹OøËzv=¾+}Dz㼞•ÜöÞeäåÂrÝQ|tãfl&âÒú¹Ìïp‘ðn=WŒœ5ÎDêÃó­â]óì¼Ù9'œ.|±ó~ùÏæ™ý¡øÝÔ+ŽHãĦÜúKílÜ^ý—ôÚ•sÁ]ïJ ÝÚO"O½gŸ÷µ×FŽÙQüù+^3ÏÅa&ÿ…Q»zØ‘j?JþÆq UÞù‘¾íÈïõG€ïä¯}nðAßÌêgo9Z¿ ÊÕëúì«@k_„Û®;òÅ.X<³çý¥\6¾näN>vòâvC/GîÞénmä.ýÝQ?\Cß§>üW¿üŽ/z¤½ÊQîþò÷÷°ý½é{|K¿ù}×ãºÒGK·÷"_3Þ]ãÒ‡¡¾+•r4åmþ>ô¯q§¼æù©Œß§{ßѾÞïH¾‹ãûÓï”ïQêïü°Ñmº¥Þîz\WúˆõÆý°®;2þõ‹lýcýBŽ’n©ëë ¤·¾é:M¹ä”¼õ_ù’>ÏïŒò/ù¶´;7ÒŸíè:-|Ö/¼ö…*§qS¯}‘{`ç×uÚWVŽàJÜÛ‡Ÿ9yè}èünŸí°ç·’Ϲòç9|’zØûᯜ«‰w?"½ûŸ½›÷öéÎ麿OºÆùü÷žqÊuNOÃÀÄK¼¹äc×ãºÒGKk‡y1Ô9,û{Ë~(ûÌ/óì¼–½qÆ]z!Ïð[õ§²©§ö_'½ólü°Ã°ÿÀ£Á]±~–t¡Å¨W{à–”S¿)©¯~k–ýÀ¾U¿ìFêÿmò= ŽÕJŸ.ÊþWBOØ‹‡ùÍæ÷âhÈ';)|<̯’ž<ÿ~ó^9µç'¼Mõ~áDÒÁ»|6øùtC÷ò0弸~‹àR/|Ìì£èÓÄ%ÀC8w>}:¾7w>YöŸqlÿýqCkÇ2™?ŸÉ8?7äŽ$v¶âEŒkÆI¹æ££”gÜK3Ãgá‹\™ÍŸ‘'ó¦ø¬Æ­vþWð|™¿±”åô»3ò‘Ÿ~ðÑøžƒO|›ŸÙÅ>á·öúÙïøÝ žaò[ÜèŸÞ4^©ú|'µëÙôïÝŒòÇ÷ú(ýiœ‹sH9í'8ò÷BÊegÕùnÖ¿šz¿·ä§õEŽ|÷é·ñíúÁ÷Zÿ|Ðød¿—¿äŸ8×àr‹‹¶N†ãðl½_\F~7k¿úŸ5>äÖ13Þvù åOkú±bßg«]|Œ{ãø%}ðíßïÏrGº—𫼯ÿÌP¸ûë9üðÇŽ~ŠË†c°ÞÒ¯à/òÿëÑ/Œzà²õ¯}ÿ…p ô]?Gva8mó€ûðî XÇÒã§éô?¹uÅ—ç÷á?°÷'5ôŸÇx¨„|Çú!–.õyžþÉ‘}ÝùÛ›ç·ðZýHyî97÷ìKk¯öû¨ïÔèwûfþ´´}ý´ñK½Þ»áÞyýþàWûøS²ÿ¯ß,ãj?ï\Ê~÷Ìà[û{o$ù¤;•gýõÖ ìööù¯Œúáê/.ÏüiíùáhÇǸ=€óCý,æwçÿ0ýV_çnôâ\~ïù¾óìœÃïî‘éê?RûÈë­´¤ï9ßȯ>ý4ýŸ uNâ\³þ°"ÎÛR.ÿKôÇ9+¼…sJåN?aî9êßÞߣù]}½÷™rzjÜÔ~ÉOý¶yÎïõŸ…ÿ´÷Âà[¹ú¥éôwÒ»÷ØxžI¯=î¿Î÷ú_¿°Çô<,¿³ûÔVê«ý];’¿÷DS;Œñê}ÜôÜþ~ÆznmÜÉzG¹Æ_p6½79ú—|˜çêONzïÕ“üú½ãAîÕGn“®ö%ý¢|¤ö®)'½{k9Ÿ±ßÁYð÷ã^¾òëG)éÙ‘R¿,߯¡¼Ð+©Ç½sí«^ùÊK:ýWûxòÕ™vô9ù¦Ÿ¨ÚÁÓ®ϦöÁÐúKýîñëŸúi e¿l¿ioÞ«§ñ`ÆW·_´Kù]ÿ¦<þŽ”ËÓä_>÷î[^òñWR¾ÈI~oüå¦÷ùÛÿÊIúÆÛñ^?hŸòÕ;ÆWûÙ—ôïåYŸöà‹ü’ýLȉñN}ÆU¹üƒÔÏNòó‡r=ïùª¤ÔË¿ŠøŽòñ#ÒøC©·ùS^ãK&5õß”r®zøé¦ÞÆÝóû,ÿ`¤K=ý¿øËx¢‡é‡Ñý—÷õ;#ßO7Ïü´Ÿô£v‡òÇRÿ%IßüioùÎxׯ–ôù¿~dð}Ì_’~Lýõ6Æ“ß~-ø{â¥þjô~>^öãˆj·öÉ—÷7ÐýA^:néï>“çùŒyÖ/ô¥ño-å¿üôÔ_YÒ‰_ù¾tøLºÆ•Üå¥|rÅ/–r;ÞøñŒ_ýœ~¸I_ð•t7O'½÷ž•£^ã3ôïæÉ%øxòþ|?éµë¦òÒO-W¿Ð¯ôÇûþÕGóÃe{÷pôû±¸ˆ£7•o|ñ§ø2ΞÉ÷úýçKýli/9ÅWä í"òy¨ò‘ö”ï9¾Æ5ž£~~¸È‘që8yÆ—rÈü晟~ñgü›ùØx}°¬¯úòɘ¦~ªß|Œ妜ÊÁþ¨/í˜q'ûÝRžëO/ü×/[ÚÝùļ©¾Ã¥÷»&?½žãszY~åx¶S¿Ý”|‘§Ÿ,û³~¾FÕ_˜q×óÑè‡ú…ü`ÙÏõ76õjŒùý×ïÆö›ñõûÉÁ¿yrögÚucðYªÿfùú#ÏׇÕ?¢zŒ?¹Òoƒ¿êQÊáßËz³þ·Â_ýÙæ½õkãCæ÷«©§~¹’®ë{éÓŸÖsÜõe¨z?ÒøË>ëß ÿá§~ÕBëWK¾”Ë_Öô‹\ÿ¼ô7í©ß-Ïú+åëWõðOV?\Ú‘ôõûšú•kBÞë×7ùGýM&Ýì'ó@ý±éPãmYþÈE¨ýU×Ñê“oŒÛŒCjßU?ÈÆM?þÌ Wã“çúå í>uòçù£Ñß·—õv¼ñuw)ÿäuâÿÜqžÇTÿÙ©¯ûýÔWý)ß9‹}¨sˆžÓHŸçÖ›úŠoÌïÊ-Ž2|(÷ü(¿÷_Â_ýÔç¹çÚ•çÙžú÷¦÷ùÝþT?ôþJò¯z1éê—mðkß;ïÍÔxÊÕnó„ó>ûêé/lú=sì¼¥þðFùÎSí«µ»þÛSoý›%}qmcœWT?é·ÑÿÎ/áS;S¯óaòB{ê¼M9Î_Úw—ýÐûIú ŸäG?¥>öºiçb‡sïœÛyþƒüW9·o™¤¯ÿ©¤sÎþJ(»ÍéÔßx1ÊËsãè$»Wãåwv=öüŸÒŽ”Ë~ÁÅ‚oö"ööçöìjÅi†ê?磯 >Î ~õÛ£½ú‡ýÚy¹rjïŧþ e¿cÿÑoµ‹àÇ8äwv‹ÚoB§=Îùÿë£äB»ÕÏž¢Þ׿µÿ$öë¯9^oŽöˆßóæ(¿~匃rB÷jÈ•{´ê‰¯þOø­Ú¨á‡Å_ý!éÙ[ù¥ÿÎûØk‹¯yy™¯8öxù‚;¨?þ’¾xDrÌÏ >àÔËžÜ@ñ%îÕÏøsì÷ä*íÑ?õ˵¯¿ò ×0ýŒÁkGvl÷ôÙÑ÷ßÏä=;6?øÓoð úëÙäΧøJå(—ŸcÙŽâu¼W¿z_Ì{8•_§|øíß,ø›Æ¡Ôõ ¾à:Ò?ÅE7vØâòûó£ÿ_íÖoü¨À]‘'¸SýU+æ‹ä7Ϋ?‘'šÖÏ9ÿÚËoùˆ\u^2_œH:rC£gŇ’cþu¢»î‡GÞÏÿ4úçk«Þ<É´~:Éù³K=€;›þ‹óÝH¾âl_È<;îgoú?_ ùiùîüj´ûi¥Ûõqäݺ.‘_&÷}¬­#‹[¶®ë"¿KÿìXϼöÕŸã~†7t×|­ô ŽgãÅF®ßÚ»÷W½9›ß½Ÿç=pÐöÍgìóÞù‡ýök#ýé§{Ös¡öSž³ÿÝ5+ý‚ã 7 § _ê¼Ë¹¯{ÝÅ¿Fòþ·ö€½M9¯r{“Î9¿ó¥ O·üÔ^ÑûéàzwÍßJ¿à¸ò?îQÿOhäœ=érô¢8ÊüÞøNÉW;RÒ] ­Ý%ùÞyÊ¿7û›~«_º§{¾xÚ(üîVo2žW#çô¦qÏöîýmq¼y_{:}òûзÆQKº+·6å‘§”»ë~ydý­ÍOpï>Ýí~ÚèÖÏZäÚ=ŠÞC ï=ÉxOü“|ô¢qóÞ÷¦þáä{º÷ÇÛ¸“ioûãöSý}Úhñ!õfÝ`‘ßëgÐ{z½ãg­¸ë.ûõŒtðMöSŸîó´m\ÎPø¤à‚vÍßJrÝ_n|ÒÈ;|Ê…[›÷Ýç“ó¤s/×}pï݇›i¼ÔÈËùèç¹ä«?öÍó®ûåÑõwúŽÈ}õ·Ÿî}ÝÓF‹"çΛù˨ÿŠP¸+ö˜é¯Í¹rq?ì{¡ð_§F:çÞÁ îº_™ÞèW8Ìú#yºÛý´ÑÆ­z6rœñ«%~Zž …/›~^È{è°ƒó Ötì©üDÁ§Ã?Ú®ûç‘é |äÒþz:Ûû¥÷_ä³þŸó6ý®5Þ®|ÏoÊ«F^ëo3߃âc÷’~Ä,ââN®Ò{ñ‰é<¼ÙÀ]ª‡¿¹æ;iÞ …‹ü]žýŽoxÛ´Ÿ^â¿~é>K;”ü]ýÑñS<êÖ?_ø»»”ëú{vÙ_ü¬õyôGñæ•áëiÏ3ë:í¡ôÆwz?ýG¾ù%‚ï/^8ýËß™ñ„Ÿ†ç†÷†K†~Åû<«ßúê‡Þ˜ÿùµÎ:y&Å©'=ê»E^àˆ¿9ê÷3¿˜ò´Ÿœ’oí,~[ÿ þáKõCý¹yé¿?æë'üòs¨ß[ʹy¬Ïí÷ÐçFyðìð6ß]ËåãN»ÎŸ÷‘Øç‹sIºú[“>Ô=x ûå¹g$}ý­ }{sŒ»ò^’ß¾„<äùô õã‡/ùRŸ{Yð9ÓãÛƒ7Gþ–Ÿö8§8µœïë—>È7p<íóUæümùÈïüK½>Ê93êWßô/ãæ¥þ·×uÚCé{3þž{•üøÕ?YÞóËu@Ï2Îέzï2ùÝ«åÎ=H÷ñ‘û†å?78å»÷H¿Ý³ë¹PêiDíÓž´þF>÷k/ ùsî䜛ŸHýæ¼Ûy 8 gôÛèÇŽò•ã\xÎ+ÎÏþ¹0ô;íêóÙÔ P?|©§þÞnßw¾Xéô†½¤öô+? îíºÎ_|KÞ³CÖÿýHzv—Æ“Jú˃þxÈÁŒŸæ^rýÀ¥ø¿³ëÍøjü °çðÏÀŽCŸÙSé Ú~0¿„/÷ƒ×)ÿÓÏeý]Žù#ö£ækÜÃðÕ¸qY®õÇññÕŽ´K;w¯?¿þbù+M¿ÖOWúñºçô3ËõôwýUd<ùçà7‡ý™ ~ ø‡€ïP^ý¡$}hùky©÷A~>ðMß=—J—òÊÿȇ|›'ø+©ÿ‹üίÚ§?ùᧃ¿šk£?ëwdo™>þZÚ×FÿÌç+ã{sÕ¸„¸#þqê·Äx­zóPzÃSý-ýdÓÏõëtr3~ürñ—T?R‘´~#õ¿¤ÜŸæ½ß3nüÕ¯ |Iß÷©ú«"ê¯%üÍòÕŸvó3Æÿ`ýj‘³ü~Ì^ä’_«÷Æ÷¦üþ,|âC?.Ë)_'ïßßèµñ¬‡³~é•“z´¯þÇÂßõåúq¥Ð›Ž‹ù“\˜§ÉÙÇÊQæM~À꿹­~¼Ì'÷¾Þû¾˜§ËÏü‘‹ŸŽö|¼‹òé»à{ÂVýyú.|0æ‰ÈuýÀÝý´ýžã3|ôûIßF·_?Z~_é?zíåwi;¾òûžŒù¢þÖ2¯][õæ¡ô¦ë¤!GÝwä÷™®ï#ö—'yzW¿lô€\%u<³õSóákðk>…{®¿é–åØwóWWÝ8º©gúK¶òÜxÙ)§ñ°7ï·ý›|£üã'í¨7üéפ«ßô”;ð«ÇÇwôKqàê•_ožw-—;í¾Õ>•œ]L¿Î¸·3NmýÎ¥ÿ‹Õ[ž·=ùœ/5nÒ—üÎÏšs9å–<óÃæÜ¬Ï©×y×ù‘~úu³o¯ß~íN>÷D?7éêÿNúÐ ƒ/ïé§~vþ⼯q#RþÙ¼wßÌý»Æ þx9>íí[êÃ1?~¥ë÷æ¡ô†ýƒ?6÷%Ù5Øiê?.éùs0¾-Gú<7_äŽ=hú;c矙?0öö–·’îÌàƒŸ€úU e·ycÔ7ãbñ¯×ø@¡îCî§žúËïì2쳯ùœñ ø]⇠.ì3ìòkÏKÉÇÿ\ãpiOhãq…ÂñÆžËo;×k÷ÿn­tI¿…?veöÀúï¿¿6ä&ø›Ê »xììõ?Ã{:üüŽ8„I_<Às›úëÿI|³?ä÷yW@ÄüD=©çi—|Á;ˆY¼{ýóùýá/î 8Uí«½?ùZ^(9ç-þ×ON½âøé'x¦g–õ¥¿øÇ¢?ü»i/<ÆÀ<ˆîåï˜|Ðk~ÿÔŸ~,ÿ#^eÇß/ä}Úw”úüÞø£é÷Æýõ²¾ú„_$™7øç;ªŸÁ1.‘Ÿâ²Œÿƒ©§ýQ?y©gàýŽÅÅ3np(ÆÅ<íwãôì÷¯™8®ê5}ão‘¼?]½x~ÙþêÅþr|ŽÈ³vÀÙÀsé×gémÊ%ÿ±Ì‡ñt«w¿OýðvâêNÿ„¯y"ý×øžÑ;ã¢>ãÙö‡¯Æñ¥øÕæßû‡Ä±nñF¡ðCß[ÖÛïyôÝ´^xQ;/ç÷ïÔøt}‘gr_|<9Iyüåʯ\ïéñ©¼·.Iû¶ó}Þ[wÓx¦Å•à?ùF<ÊÎ#ðOÖ_Úa½÷ò¨¯ø´Ð†^~gÔ÷ÂÐã·–rY=&Wojž™õ›çé~6Ÿ[Y7é·Æ÷\ÊCõþîGõÀÑL\ªñ²ÎÒ_Öw¾óä„¿àW¼O>z­}plø¬¿×<ølÇõæLÒŸ¿½©ç­Á¯vÔ_p~·î…ç(Þ'å]¸•ßõ+šßñ«ÿÏæ™¹ŸU~Ô“üÖåõûÊ?ð÷G:~`ôOã{Žñ´î·ß=3ÚGÒ¸ŸyŸR?ÌÚ—÷]¿~søÚúEN~óCÛ•ßáºô'¾Ì#ô¿4åÀ3ÚÇÐ3zÎïuq8Æ!ϯ~͹@ù·OÓîÆáù”7ã¥ú<o~C(Æñl|ØüNn¼/.j™þáÏ“R®s¸*~àr3TžŽ·Ü^òßå<ªñ:éU~oÜIí m<Ç¡¯{ªýIŸÆHÿ÷ó¡8GžqnðËŠx.õ“1éGK~ø¿h|ÏÍïÛq¡wÚ3æ£iÏÐOÅ×~h9ú-Ïs”rð©=?Ïsñ/Ú•vã§ñ=Éqø©ý'”Ü‘‹oãÇ£Ÿ¯O|ÝZÊaãqh½žÉ¹þòüWê ;qqžSû3ûšx\ìUÚÃÎÇþÝx›-gn<«”S{}Ú3ãl]Ë{¿³ç÷9”‘¸ñ!óþzÞÃ_°w7Nfêk\3ü¤]ìÜïÊÞL®ÔS»æÐë¦O§Ÿ;.줳_‹“ýÎŽßv‡–íœq0k¯×ø'ÿ£¿‹ãSïÉeù/úIøS^ÚÓxˆÞã3ýQ\…ú渦œs|F»à˜ŠÐÞ<‹‹Ÿ—òZoç1å5ÞåaêýlÒŽâ­Ž’ïÓð­=Úw°lOËM»´‡|4¥ò=Ëïý­e5^žôø2>?ݼ¿ùÉrÜï2ü7¾`ž‹ ÃyÐùO÷ƒß›3ݦžŽ ½o\ÄŒSãaê/r’ò'2ý},èÐü‰gÚ8§øÕoŸŒþÁ_~o\Í—å4_ôE{Ê—rÂ_ã…’»É‡qÆïþ(_ú<¿7û_?hÏ_©7竽øÉxvÞ7>i·qq•›N»ÍGôKþ¤+þÈ3JÞ~¶œ¯ŠÃ3Œ~ô}iüϽ¥Þ—¨|˧Ý?_ÖÓ÷ÒÑGõë'ï?XòÝz´+üõñýõ¦ýªŸGÿtÞN»Ú?‘×~ÿÕƒÿÈKqqƒï¶?ýè;ÖybèYõ5¿üdôy%êÃ'ý–^;Æ|P¨öêã•rÌïÇâ§›¯Ð½¿RoROã%†ŸÆS ¿ž‹[Ê{¸'ë]¸®âÊÃo÷y5éêÿ-ý§^\–r×ÒõK‰&ýÕÉúÃwñfhò[—jgãT*'|z.¿úQý-ù,+õá§xÌ–zsyô{q‘ê ç«üÆ|Ûw·\íÔ?Þk·ò¼7®ÆO~å¦zOÁïÚùáò¹ëÑ1¾Ê}oðk_V¦-Ó7~ç£ÊuÚÙtyŸv?´Þ¯”üöÅöŸÅa¥þâò»}³{²pG)§÷#ó»{’¯˜ô~w^â|ιšûEõ“—çž©'ïýî|m⬊+Ïö™öÁ‹ù r=,Û©?4|6ži(ö2õ±Ÿ°{Í{õìÓ>Ã>ÁÆ~Q¿ú!éµ³qD“O?ÁœÍ3ûQÓ)'ï'^Œ™ý-ö¼­ý&¿³Û°»6+>òem|M|äY½ßÏ{÷Ù7Ù9´óÌø}gö÷Ëó}¨~‡«Ã—ñc÷Öß/VûÏà¿qeÉy%ä/ôeãŸgx<÷îîsñY¿KyÚû|qìò/„O8ªï./ãD~‡ ~£8¦ÔW¿1pH ‘8‹;Ÿ¥¼õÂI$Yíæø}6í™88B8¦_oÊ+Žcâ¾¾¬§¸8ã?5ã{\DqeŸvr9ß±ƒG£ßŸåD_ŠK pI±ÿßP|AhqAù=üñßõâèý«\åáë[Ë~à—­~è9ÓoìÿüÄÁ1|kô |JpþŒ{ñrð1ø×OÏ/û¥+}¨uGô¤8šéí·æ‘üNþF\]q‘«o¿ß»÷Wœ£rŸÛ¼/îMy§"ß{Écþ ?¾ÏožëîËò¿ônÞã¿~ŸÆ|³ÆÅ]é_£7ä§ò cj]bì»j}–uƇštÖm½0Ö¯t¾Ç?G¾Oç=[õKºwï¯üZ¿JçY;¬Wí#òýÙõx¬ôÉ Û}Bä­xÍD½ÅJ—gûc¸8?~¯¤‡Ëƒ“³íþ1ùì«Èsquê‹~àË>æ­”çé¬|ù]9x!çöóð‡9—Øõx¬ôñ¤Î¡úì| ŽÏy ü=rŽ]üàH‡Ç¯ÛéUäÜùÕ<;H>埿½y¦¯Ê•®8º”Sü[hÏ-SÎ¥¤ëùkÚSüåª/+}½‰«Ïïùê=ÿèƒsjöö£Æ«ŠÖŸAÊëywò¡ß“rŠÇKþúHýµ~0ÊÛKýIwÙûäŸ~ àÞðOßÿJ|ÚJ¿šŽ Ïpìœðì„põýª>ÏÅk(/¿×¯ÏÏ7銯‹|W°YØmí£ÊMyÓ_Vq)¿õ†/ï“>îÀ„Þ§9-îäFžŠûpÈõ'K*ÿá§‘×Ó#}äóæç–ï÷ŸæwåÓ?é~yÞ¶—ò’¨ùé·rÂWq‰Ú{ë^9»—•>Þ´òZ|¡y—|“û<íöÑR'¾ñÆXÇœïKqÝ-멞zÆ×Cÿò\<µvàc™o~«çêÿtýÞ¬ôóõfúmƒ?s¿©x®Èaý×îÝûë>.oú#³¾»jÿàÙþ"ù{Áï)q®×†Ÿ¶ê3|"~§Ÿââ Íã}êÛõ¸¬ôñ¦Û{b‘¯úg M\„-®.r]|Zä¾çR‘g8¹úKO¾âÕcÿŸ÷ês¾Õ{©ù]½Å!ª/é~<Êï=Ô<Ã^HùÎãŠ?\~WºÒ¿¨?p‚pdîõ‹wÁŽr*zV¼Øx_dÒ¡IßÈžÂn:üŒ4¼"œÚ[á‡?ø¶×?µû„²wÖ?‹òSïÙeþ]ÇJŸ Z¼×ð—Å._ÜœÌÄïÁ§ÁÇÁñ±Û{†Û‹žÁJG¿&.4ø³—BádN$½|ù½¸Kõ4~©zÂ= în×ãñU£ä€ÿ®£Íð5nhñ£¿ÝüÞ|Á5òç=pwþ°g¿ßøcäæ™”yõþ(ø¯ú SÊÓ‚ ;:¹)÷(øËÖW»Ù.×ß|dËž¦üÂ÷þë’¿cé·loñgÿ±ä÷P?æ¹ïá©¿Ó?Ñóúgó^;ÂÿSð¼ÆeÆ]飥Å/òc˜qj¼bòýYäϳqrT¿Ÿ-å±òå{0ô¥¸æàÐëÏ‘¿N¸æÈ#¼ñÑð«Xy\ÂK7 çžúÛ.úC#Ÿü§¥ÏöÂ}¿ Oýµ¥¾õû‡~bÉgóÁoó‡™q*.Îïÿ±¬g×òôU¡Å!Z?X÷Àß’ëoy‘.ß¾ç?3ß…®;¬_¦_RÏÿ>ê³>ùú ô†ŸÜß ¾¬{øqtÁzÌúç™ð9î´òk=õOËrµ÷…A­#ÿc<»¿¡ßá>ë_0TzÏÒ×/a~÷þµ%_+}Äzì>‡})?wÆé¥!WÖ×Ãßeq–üdÚÇOæÞØ(¿rb¿~z”çyømýõ[žríà0ɵözïÞ ¹V?œsý¼úà—á:É¿òÌGp£Ê™þá{2Ͻ§‡¯Ñ~çÃ/ë®åé«B·þë2ð¶3þ+=jœ×½{âS4s!éQ÷"Ã;·%?Êu~Ë ?šõ¸ä·õ»¯ì~­ó.~á<á“8äžòLø|{¤ûÁ˜?Ü»ÔîÖ›ôc›tmOÒ5þohñÜ·6¿ëÞ·¦§yoü~¸êÍßUoàW&ã;Ʊô—2¾pÂ#kï÷»·ß85‘v–æOýîÕ׿"~äÏ3?õwyw9ÿû<]¼»Ôþ¦?Šï–|²ãðß ¿ØqêW2ùØsF¹ú­þ•{{Éûhý]„Öç½þÓ¯ºkyúªÐmüµŒ ÿ*W†>\^êÑÖÏÔ›äoœiò’ño=~§ä+ÏüÕÎ.}èˆ×úë¿sYîôÿyi”K?‹oF#—Ò5ŽZô–]¿þU“¾~_é‡öå÷ËÚ~Š{ ‡c^y7õi·ù­þy–ßÝ•>b½™~xÅ$õ×ûù|w¬[.ñîw†œ’—È“yÕüKË|Kù)Ž)/[¿6,¿•_ü…Îxmô§ß%ß;z1ô­åŽï½×ŽÞWðž|°Ôƒúɽ»ìå7®¤yü³êÍßUo¬wêg‰<ß_޶òI~ÈgÆóBô¤åXg(_¹I‡òËT¼‰ßÃßYë&ó­uQÊëý°ÔËÿyãú%]ýÔ£HW?úÊ5Œï#?ãôF{’ß>Çúµ8úKOó\\.ùéºR}úõöª7}±¿ þ´"§p,ö¯ö¥ÎŸÈ©ûÆo 9s~Ô}­|y¶Ov/ò­‘Žÿ$ûrûxçüÍÍ}6?VÒ;¿ÛO=Ó–s¬³#ŸzÝwÖ?çR}ûŒCã¾ý‚å½óçWþŸõ÷w|$¿~žqE’×rõ´ÓÆ«¬}$ýŸxEMçý³IÇngðÛŒ#?ì'òÌ.è\—?3åí…öÀo~œãµ4ÎUž÷¾8Ò³Ûà_&ö–釃ߩi/ÒÏÑ?vÕm½ùý_åWŒÝèżgŸÑ.ÏÊynó¾qØòÜstçöêÿ÷Uoþ.zc\N ®þC>ví;ŃŒôù¦8ø‚»‘gåÈ÷›üþYä„ý=r]¿Kü4…/|¿ó§¤žÔŸ*ßÿ.Û…c|Fï”ßS=ˆ>gÊ_ëUÞ7ý£ßîü>ïó;\@q4á»x ¸Ÿ»Ëþص\­ô‹Qã~´!ýn™7áŽ2O&Ùžø¨âvE>àhÈáQæû#~Ïò½iº“#Ÿ8¡äyàÏè×Qäÿ(ß~ÔŠ‡Ëw îç(~3«gʃ«ù4éãOðˆ_´_ ~þáqŽòo´x@ý2ùyȸ¸+}<éôËY}Êw>¦r¼pqoæÑÿ¿û.Ñ?8̯ô—ù§¥Wð™ïAå<ß‘~Ç|ÍûiWËÅOòÃö;òÛñý‘Þ÷v~}Ÿð›ï þŠs‹žôûùɲ¿Wúdѹè{~-í‹ì+àÐFè®×¬ÿ3w½/ÞzäèÎô—ûbžáBé¹TþK)ß:púœüÂ3|kqšÖqá¯~gœîç—åOÿÇ­ÿ[£|í²âww]§=É´ç ßzc¼Ýƒ·‚s#ßNþâÃB݃áWþTžÝSž÷p`ünºF.á»ä›þ©á&[¾S_ã݇:Ÿ³¯ŸqÚ9üóèž\¾|ðóú²ËïÀ›®ôÉ¢=ø6ç½ç2îαÅcéï¡Å·yN¹gC‹ûJyÎÃÛ›9ÿe7áOð£|ÏÎÍáÚœsŸ–üÅ£å½óoçÞÎÑ«·É_¿„Úƒ¿¤›ñc¤?{S®zä{{Ã÷®Ç¥GÙåúÌ9â²líz¡nmä“=Ý=þÚï#O½÷ŸtõŸ™üì‘ìð\ìžs”r_&|̸àÓ/§ßá ŠkK:¸öJüÍøåì•íùµ#ùÇ9ü^ùÙ™ÙAõÏÅ»ë÷æ ¢ð$[½É¸_ïg;rS 9½„¦œúÁô>ÏðmÊk½I×òÈ›ò’¼JWý$¿yn|g|+'|g3亸üÑcéð‰ïÔ×|-ùԾ韴ü¬zó$Qã¼}&7æÃ<£•—ÈCq+ô‡\›çQï•GÞ}'>^ÊkçëÈYqäpäŸr]œÑø.\š¿½hüúñªþì-ë¯~ç}õE;ÕCORÏ»£]á{×ò°Ò‡Ô›éo©ëë 늤³NšxÉú)<œéùÝ·žzg<Ûÿ·•ß•ký¤\ë¶úeùr¯¨q)ëw‰Þä÷Æ‘TNòß–tpp“˜r.ŒyÇü¢ýXìã™ÿ©¼ßµ<¬ô!õÆþø-rÚ}qä ÞÍ>Ú}¯âÀò»}·ó/ûs÷ÀÞ&‡yO_ì§á·œ œÉ³s7çPâ¾9ù“o´«ø²”s6ùÞüÖ/UžÅÙÓŽâîðßQÛzzð­¼q±kyXéÃÑâ?øƒçâ_ãOwçÁÎoÙEþwùÜüì=Χá‚^NyΩáÆzŽßc÷oBv"ø4ñÏàâœO;vŽì}ãnžÙ{Î,¾;’÷3ž%~•ÿÜ’ßúG`ýÍèGöý©'>Z¿7O­Ýü‘ÓŒó1<úLäà×›ñ.Žì“¥œ×>ÿ»”Ã>þYÞo–7ÇðqÅÉÀ¯¤¾úcJ¹ÅÏD~Õ/b·~œðAo†Ôü¡¾úµJ¾â ÒOÅ÷DÞ›_p>ú‘7ýV<~ Ÿ»–‡•>™´~j|ï~³|®Þ¼ï¹‡¯¼ñǤó=Pnìö[|BÒÚü¾ëö¯t¥_Ho¬[ÜW°ž ¾²ûëE~gëk¬ûàØñá^È{õ¼¾®“VúäÒî×ÙùáìÛá]ØÛGÁÉô|!¿;¯ oöóöéî©ý`ýÞ¬ôɥŰÓÃó¸o<ã8Gv¿Ò}iøñ7ëO'åñSÓûÜw×ýÅJŸ8Z»iãwF®/…^ñ×Ã~Y¿y/þ|Å%ä}q©oàvÝ+]é_¥7âÙ^¿õç{•ø—‡×¢Oï=iüϬÚôÊKú›'7¿‹ÏÖøhë9ÖJŸ\º—ùéFÞ‡ó“ %÷â–þl©/ò‰zóöH¯|ú´®ÏVúäÒmüØè‰ø—âúUoöîýõ™¾”FÇwI<ÞÆ¹=÷?[×g+}biñœâ•7æÞ½¿ÆÇ´¿±¯±ïáwS¾Æ þ‰÷n='^î{ë:m¥O.Ýú¹Ž~ô^Lä_üÂâ*omžÏ'|jïÿ$=eñΞ£?×uÚJŸ\ºï™ï¿|îa7GôÂ}î—óž†]ƽe8ËâK“_\‘·Ös´•>¹´þ àÅ~yßÛüõ÷àË¿ì3x›Ðâ,“?ïã÷¢ñèàO£g»nÿJWú×ÐâIÿ¿å>ãpoóW?5ðjÁCÖÏRp—ÇüL¡üRý*éCù;k<¹Kœ ¿‰Åaгw7úýÇÍïò)¯þù÷™þñ=~ßõx¬ôÉ Óeåö™¼ç—Ž“?¶?DŸ¼Oðùüî;4âl¶Üà“‹gãßÞsøÃÚú¯Ê{÷âï©¿‹‡ÈÏSô±üN¹ÿ¹Ì·ëñXé“Aû=ù‡1ßÏýËÉ!ÿî¯ðåþ ¿P~§7~ÿnÞów6îå”zOoáJÝk›÷p÷3Ïü^ßòÅO;|©û:iï®Çc¥Oûþ¾w?´q2#gðÑâƒÂoòW÷,Nè›3}~çÿÌýÑ·—|OÝ8¥ËýPã2zæWNTœT积Žô#ÎéJWúõFüÁ·Çþ¦~Êò{ý2EÞÄi¼ÑP~èsk~ÜãwcÆ3åáLÒ¿r’îÜÞ½¿cq:üÞ¸§É×x=)O;à¹áN´®ÓVúWè ÿÏé9òI_¦_KòÝÝP~gê'ùë×ìÖŸ+ÞëïÅy†ÖOG¨¸©õ›ƒÏ{›òøÿàoªí_Ê/mÜÐ%_»•>´öþ.“ó!ÏpÍâ/ÖÿùÏòÕßRä5ñL[žøšõÏúî,/éàŽÅ7 ­Ÿ¨Fú”3ã—ò»–÷»•>tëgìÖŸ_ìm¿‘÷Æå$Ÿ{›tŸ9ô¤÷üN¾Ñýå÷ƒþõûññHw{©3ãA+Çóøz߸»øÑÎUoVúWè  ÿdõs¹ëý´Èmß[Eþø#C{ÿÞús…[ÜMã¢)Ç>ˆß8ñíò_)ÿÖgõß»·©§þÒò\ÿrÒ‡~¤/®û›•>„¾gûyûæúK·ßÏ3¿ýüùóƒf__ëy®¦û~Ïу3Òåwþ r>P~ݳöûô«~fÐú§uÞ†ÂýÀÝ}©+]é}õFü ç½ß‹¾9«Ÿ½{õƒÆ¾œLí‰ß^¾¯ýå#_žÙíÙYøá?Mþg“¾~ÙðÊnƒŽx@µ£ž u¾ÍŸâ,õt¥+½mܦO"7±û7~ÚÄLjƒöYÒå}O“‰ûß"¾?…(ƒ¿[ê\Mq1ÞãO}É×÷ZêË1\vÿŸåºLûv=.+ýÛhñ!¿ÞÈ_q’Ïdük>ÌøkÁ§×EŽ“o/ÇâͪOþÈûü6Ž[ê ?õ (n`Êá'³~Ø‚7àW°ådÞ¯_M~}7´7ß5ú^¹§i‡÷õÓ¨ü/Âóˆü‡uö4Ю‹ÌËp`ÖWñØ+Þ‹ýÛzèÄR~»Þ±ŽúæR·ðWÖGyb¹Žéº†ï/¿7å…«³±NûEžám¬ùã}~ù](þÓ:ìäòûP}þÆRþgüí®÷ømkÜöõ{ó4Ðâ¨Èû©!‡paÞùH¿BŸÜw±ŸyeÈ¿ý??C^ •Ž_rúz:å¾<ø,^†þÚ_ÐGõ¥üï,õ ïß\ê[ûËyÀ©¥ÞÐëâæœk˜^Á÷ú½yhåVüçIÎSë÷?rPœ–ß#ü‘oç\=‡RNžS%O)_z¸²Æ5ü`ùþìàÃùÙÄ¿8ÃwßçÙ|y.?gñ³¡í/çÉ9·ëûö«×ý;ýôúª7Om\ö þ3'&¿ó蘽rÚS¦Ý„=±q óû;#ÿùÍB§õÀ­4®ÍHÏÚ88I§þÆËz'~Ž÷ðoõW}9H¹ÓŽÓ8ŒCoô£þbâ‘5õîzÜWú7ê ;ö•[›ñ­?ŒPvýúý“>rv9òà÷+‘vr¿{vÿ¿¸õ†6žYÒ]N=âüÁŨ§x™´ÃïÞóû¡~úRüOêÿðòRÎ[ÏÕ[ËvÂщ«v5§qï®ß›§€¾—ñ¿–qåð*9ã_SœN¿Óùø›ñ|m”w%rÜú"wðcžÉôW’>xÉòO?ø³Á§òëç&íTÞUåå÷«Ê¡¯øû›ò½¿¬ŽS}×ö6õÁ¥•¿uö4ÐÊMéü~˜ÍßC?:ÿÎçÈ)y‚sDg\\ó{åVºýÁ~>^ê›òè5ýóšü–Qnõôþë©m?Ív¥^ø¸+£Þòs{±¾[é“E»x7òzi¬3feïÅÓ~Ÿ9)ÞßsòÛ7‘¯â÷#wîØçØGÁõ_T^òIgßqiÐê{ÊmœÓ´{¶k쯎õ[ñ i7¾­/áÝÊ_(|Ü¥ûëãJŸ ZùpÐ}ìØß¢ö·Î™à3wÁ—5^=òŒ&ý¹ùœzÜ“tþæœÎý³ÆË]î³{Öz’Î~ÎñàÛ´C½Úé\¬÷èn-Û­ßÎ'}Ï•ŸzßtÙž]ÿJ¿­œ°³Ày±C¸GÌ.òb(Üü%û ?ì:ì.Óîç±òQõ²) v‘—åKyì#§ë ò›÷½_ÍîóÝÑ|¼¼©§åH/¿{Ýì´Ïi(;Óë£ü—å®ôÉ¢ìy7þ¸Çâ®îf|ÿq9Îõ“Aé{;WÊéï'6òÕrGœYï‹{y&ù‚c(Ží—‘ÓÈgýJý.ùþi©÷m'<û#»kp5ân6>âÉÔ~ŠƒÐðuÉWü<ÍŒ³øõÑ?éï]ÿãN;ßêOó–ùÞ|9>"oñ;dþ†#ä¥8ªW’Î÷À¼î=¼È³z4ð%µãóÛÂÏDø)&åÇÆîÎß‘ïAæYqkÅm˜÷¿¶,g×ã´ÒÇ‹v½"þžùϺ"zS¼0\×w—óTõ!8øÆg/·^ÃoÝú þŒžðK¯à\àe²0ßw^·NɺÃ÷ªøEõúNI?î´^]õf¥÷Ñó+ù¬Ÿ•¼‡?á· >Ä~óÕ!ŸôϽ’ïç=»¾u5Üܿʾ/ö ößÖ5øycä'ÿòÃeá ŸÓ}:»I¿ëñYéãI{wú5r/¸Ïw7ræœÈ½H¸úR^~wž|ÆyNòñ8Çq:ϯœ+9‚£rÞæ< î ^R=o'ŸrƒçÚâw´;¿ϳyÞõø¬ôñ¤[F¡äœÝ™>°Ïñ!ÎÅå‘ú— ?õÃ’gç¿Êaï›qcëgÂûÔ3ýg òÕßRÒ×oEê­šü^¿I/žw=>+}åˆK¾[Nôt–K?nÐçýQ¯ò?IºÔ[ý¢o-§Gôü0z"§ù!Ï»Ÿ•>ž´rIŽÈëû䙼þ9Ã^㼊cY¹TúáЇ¤§yÄQ®>xVNå?éå#ßêõ=¹>ôÄïh¿¾ƒž}|7åíz|VúxÒ®g¬§®Z߇?i=¹.žØú+ÏÓ¤õ_ãbîÝû+n^<óëÞÛoŒu˜zÓúj”_œ|ÞÛoÁ+á•í uþñÜäJWzOoê×.´~&#oΗœoI_œ`ÞÛOŸ»µyïüêbä°þS>œÖÄÊç¡éRœbýø…ÂCòGæ¼WÏÏRný2ç÷úƒ Ÿ©o×ã³ÒÇ“Åþâ<—¼±3Â1¾1ÞòÌ8–g’ž“ýF¼v}vr 'Æ>Ãþ3ïù*‡ß³ÆÑÀgò7NEžÝ«ÆÏ›Ëï ¿|»Ÿ•>ž´8™»‘GøšSC?&~ñD~'ïìŒìîì˜ûI7ü¸T¾¿3~÷Ì®y2éÅMjºä÷øóbwÅ/¿{ðDÞã—~¾øáº¿YéJÿÖùÅw­øä¦\ú•ü»î÷•>Ù´~üê'Ô:Ê~"rÙgû ï“Ͼˆ_Në<ë7ë/¸;÷ƒøÕì¾&åÚ¯(¿÷ˆÂ_ýoZ/¦^ûå6^µô¯z³Ò¿]oz.¹eqŸï­?'Ü+^NÎ~Þ~û ¿Ãõ9ÿrprêo=åÀÑu—rœCó£X?ò£~çâñ:_“ß¹í¹ç»ë~_é“Mk×`ïdo)Ý»÷Wü¿jðyð|ì/pqü›ñgòVÞ;Çf×<•göq³à ß|œÉïp‚ðGûyŸôjÒÔóêú½Yé— 7ÏF®^ …_kœ§<ÖN/œëËô.4öÍâjè=“>x¿£‘wþµ>ò? þTühÿ„ü¹/¤íye“nÆi[飥p¡âZ‰£y:7ö·‘ùþ´Ç£Œçßg¼“ÿèär$'Gæßü~çÓ¤Wÿ"GŸ¤¾_&pñw4âx6mäÍïæûú#Œó{u¼ ÜYËûdY^Ë—=“gùÒ_GÁÝhoãõ¦}GüÂgÖ8£ÑŸ£ø%Ô/~ïøI÷ÂòýJ--Îø…Œó¿.å¬þ4á Í“™Ÿ—9r_oòÓú^¡Ÿ‘þ*‹»Î3¿—¿K½ü¢ño˜ù¾qg³”ãÒ»K>¯7r«]•gqq¥×nþ4Åsþt9Ÿ´õÒ‹øylœhõ¦_«_æ‹w]Þô«þПÕÓ_oòïZž¾*´ë’oñ²~ 'Y7¾j½`>ßrŸõ ¿®­Ï¾@:þßø?ó¾÷òŒò7êÞ‚xÊäþ ~çìž‚ò­Ãê¯pì+fz|À!Ëç>†öÔïnÒù½þœCÍÖoúAçÜAüP÷Ÿà¥éÃ[ɯÊ)ÿyÖ~çî#ºgðÚø~ÃFw-O_ÚsUþÍêðÖfÏpSwy{9ÎÎU73ùĹè¹ìÁ’ö¼5ÏÅEÒç”ã\Á ÷\÷@;"‡ÎsùGt~m~Nýmgø”Oü xjç]úOúæåÿÔïæãOê¼î`ÌCÒýpÕ›¿«Þç˜ñjü&4ãÊ^q9Ï—’.±ñœ2Îür^^ŽgqXü òË1q•âlïÚx—êÃç‡ËgúÇ^É.Ó8VyÖÎwS/|%Ê~ÚøgiGý‘л¤c¿i)|K_z­ü¤/Î3|ÑŸËCoÊÿ‹õÛJ‘¾Ày\Í8UN‡œÌx¶p#®díîäªvî»K½áÏI½pÕõ$»|ãò%=û}ý†Ÿcñ=Õ£]Éwe¤£GÒû½|¢ø×Ní×áƒÜÃ[Ï~à²ýLÿßþ¦Gæ•Ôlú´ÒGC·q+Ísï¾'¿ã¹òk~–ÏüMÏ̧C^ŽÉš|ô¤z@žóÌOÔ1œ 9 í÷hèñ1þÍã¾øWÏÁ²žË£½~Ÿþ¯¼oüêMýí‡wG;æ÷¿žwÃ7?XÁßlõÆø}¸èç•>"½áÝ=”®/†¼›7É—÷ÊÉûÆ›4_.Çó˜\/rcÞÇõPýLÑ;ù’Þ¾çR~·¾jO뵤ïýõÉçýÌ?ÖmäþƺóBÞ7ŽèÁòû`ß7ï«Ù÷õ~OÒÑ—ó¡â‘¾³\—ák×rõ´ÓžÓt?šñ— ûû<»÷(_ãDŽœKñæ~ïÁЛ–›üó™rÕsÖûACL¿müÀ‹_âüuZÜ|7¾ç¨Ç³~é9CÞŸœ»·ì\°çeyïÜú-¿‡íûáøÝ9¢sü×?BÞŸúxvù¼ÒG¤7µ[d<Øqœ7ÃAÕŸTžÙ1Ä‹bqìœ÷…M¾cövö!õ£ê{y<óßBîœ{ÔK¾ø«Ú ßììT/þÙI´“½Eù/'=?ì“Þ‹Ç;nâk݈]µøŸ“yf/ÃßËËßá%Ïëùð¿sí×—–óÓJ‘Þ¼”þ?‘ñˆý²öõO3ŽÏäý¯òÌoÛ/3ž¿ÉïpU±kKô€¸•ì—}fÿ#‘§â}~>#wÊc/¯}>vãèKqŸ.iãjwä²þ> %¯yÏ®ÆîŸù~¢¸œ½e¿‡£ØyFÈ_üÓÐ#þ£”ï°k¹zZ©ùެz‚ÒèKã»’'òy0ï>*~‹»„ïúí£­o¥+½¯Þd¾>zf©âÙv=Iã1ÃÓXW<¿üýQñ[½¸Ÿ]÷ãJ¿tëßqìW­Ë=¿çýÈ)|'ÜÜŠuý?<Úù¿þ+Õ÷õu=²Ò¿£Þ¼µwï¯ç\âbò“g¿î\Èy‘ý7ù…?qðÖ£•cç[»î¿•~5iãi8Wf/èýàèEqeIô’¾x¯ùßõKvû^½»îÇ•~µèÖDôB<[þ$à;ÞÝÛPöDv>8Î+IW~f¿Q¼ |Kp5»îÇ•~µèÖŸPèŒXÿ{h¾?üñCÄ?¿HÈÿЖ¿u¶ÒêMõ€¼ßúó{}ÇHOO:ò[£ß¾”߯½^õf¥;Ô¸G¸18§Kö)¡pøð–ų{¾µ¡ï>â}ubðž»î¿•~5éö~UæñÞ—Zž‹mßGná Ýÿ„¿:÷¨ÏÑ>ZÖ¼Ö®ûq¥_-ZÜû¥¸.îÁÃÁ¥å¾zãMÿòhí=ÿ~y]§­t‡zï|ü"œÀl~¯Ÿ–Á·Àß<¿Iãã¡è+ÜÛ®ûo¥O­}.þøå÷áÈw x_þ·Z^ô¤¸áø+ÛúY¸ƒà žËïÏ/¿Gõ÷ÇÜný!½¸Ô¿â˜å{>åÆÏLqt¿Î{ßCxèúßÉóôÏ÷íU¿Ê´ëªÈ{ýAò3t*óõÀAÂË÷{òõ½{ÅÇùgoÿÍ!ŸÓŸ™g¸ß³®÷ò>÷cŠ{£oüKÁýd>(.?ðBîј/èµçúá±þ =³®û¾Ê´ûó>¹÷‘?$þÜ/9yâwÉy€ï ¹å¿È{ñYát^I}¿ž÷3î+}ã÷(÷Fê×?ômÆa÷Þþ̼à|‚^º¿ÃÌYýò^^¿3+ýóySäÃýÃâÊ"'î1òÿÕ{Œ9gvNÅQýå=¿øô…þÁ½O~””çå™q^ÇŸ9ÿ.Bù²®¬?¶¤wÔ½J÷Aáçœÿõþ¥vÜZ–óˆñ@+}2è·ê~½¸vçöîý5={{ÆîÇ7¾%ù"—‘¿ÞÓOúsK9ÜÚòÜ{ÌÑÇúKK¹ð9îå»÷¯>ö#÷­ùA¢oõ•ö¨Ÿ?~´7|Ô/ª?_eZJü²4.$ýÉïoyšñ&áfêÿ%òMÎø‡¡Ÿò7^¬ü©΀>ˆØzåÇwÊ-I_|ƒüêÛÛ<ɯT6)Ÿ}W;éÛÕýUo¾Âôðð§y¯N\¼›‘£Ã£?'Ü;¼™÷‡ûK9½yz#GâL’ïâÂRnãý‘óÈßuz‘ôâññÛt}Ô×ø™ŸäýÝû—Co'Óï¡ð7m÷§Ñí¦/ù]¾ÆÑÜ´g×ã·ÒÝЭ¼fž¿æ™¼}´”Oò$žkóG®Ä/†[w²ß1éòì}ˉ^(§ñ“'ô@:ú9ÊÅgõT{ö6|ùn+õ}£7G÷òízÜVº[Z¹´¾º²\·wÝt9rTÿ™æõ¼¯¿@ûë¦È›uOýç‘Gß—¤“Þ~ˆ?YõÖ¿çØ_µ)—ÿAüd]ÕýKý‰&gû2~{µkøÕÜõ¸­t·´ûpþÂêŸ9ré*çgÍgŸÂ¿|Å£ÝúsÂÿ'Ž¥}zÒó÷Uÿxò¥^çðeõß—÷Îûìû/ª?Ô}¸ø)/ßÎßêÇZ¹yæ?±~ü>XþþƲ¼•~5é᩽{µºï<í$‰#Ù|ì ?Xοµ÷ˆoáüZœñ>öCá ^úÀÉž³?ÊÅç³)Ÿ½‡]Ÿß½Ø£Žñ}ÿÚ—|? òã/Ïo®z³Òÿ+G±ã‰wW="‡ìüü ¿°§³{²ë‹ ·ÂNúŸƒN»¨÷ò)÷_—¿—ïWRøJ⿊;ó’v }¯_ÂÔ÷‘ŸT»áW_^¦Ûõ¸=j*Ž£x†GiÿQìÌõ×<†øz)ŽäÉ”ó»¤Ë¼&®ÛQìÍâ+E.๎‚9ʼ)ŽâÑ«#_ð*üÖež; NG±s'uy;:¾ÄÉ7ïËv¨ÿÎSŸx—/DN2×?žþ >e/ɯ8’¨þ“.ü=Ÿüü þ¡âõá/zYÿRÁåˆkÉßQp¥ƒù«ôÇ'K>”W¿ú_ÿä{×ø™/çùÓå8´_ñý_c\É[âLßùý¨'ßóú›K»‹4ù.ò»Uÿ‚CۯυŠûÉâˆ?Zªß2/oqcø+4.Gá«~éÌ/øGNHòkÞ%çÚ#]p#õãhüôû·†^½úì igýHÖÏã²ø¬ÆoÕîÈÜ™|Ås=7~7Ïi\ÿU\Ê_§¾o,óß0Žú#zØx•Jyp â«_e|’ë|o§óÕ!ï#.fqii¿§¿úíÔÿú[Ì—–|v^øoã¢ÞÎ/âØ¾à}òe]Út_zßßOä™ç{/¾gñçú'åë?ó9¼yõC?¥¿û—ú·ã'R¿“~Q»žÈøêgímüÊü~7¿[÷Fîù#müHtÔgÞéûÈOå"ù?•<ä»bþ4_©?ñ£†¿×–KÞ?gÖõâ¹òϽ¯_býl]d]¥¿õ£rÍ£ü§øµí/ãB/Ã÷v=hCÉ|(ÍÖ}«¹ÑÞ¬»ê÷õ·ƒOû2òy,þü­[f`\:OÔ?vh䫸Txrü†?ñ«ÏóTê‹^vœÈãKƒOý,=\ßK£\¸=~àáí÷œÙZÏŸÉ{þÚ_ùO'¼¼\–~ÇÑþ~Ò=/íþþ(׺;ßõú+ëz]º™~”g?þ¦|ä.ﵿq0•£ý~ÿÊÃ÷éÑNq*íï=ëåŠ[ Öx )ìl(ÿjú îNG=p¥Îà5áÔð©ßõ:1ÎÈë#}Ûé}¨û ú­qò¬?Ô/¿{{štäØ¸Íø§â cý§Ýö{úûÑo¯òȉsÉâšB˜ô3ŽˆûñÎ!ùù:{Cá³Ò|ÁIŠÙóÕ½ñ¬Ÿò ·¨?›þƒe}Úã÷Æ{LýÒÃGâ»ñ ñ›v5žÆþR_à¸È›öˆsa¼zŽ|{ÙO=¿Ö_)ß88_7oÆk).4Ï΃Šeß}g´«~§Œ~/yPy!£SóëOíÒÉ÷Î(OÒ ·–ãÖ8¨žÉ‡~J¹Ú?ã•’‹âùFÿyOî.ŒñGTÿáž4.QÚË_Ãð±ó¥ŸRþmHã|kù{㥜Æ/2nw—ã|éôò䛼$?>Åmj|ÌðË™zá.åc/d¿ýÞø_ô#ùÕßøáþ’ÝqÆÛ›qÈú{ú¡íðÝ_–ÛxV©O9“Ïï’ãôÁèÁOãA©ÿ£ÿå‡+.Î8â#í+Ž/õ_í…§S^åUÿ„Â#¶}äJ§Œ[å |Õ¾œ÷pQµ{ï-û¡òª½{Ëñ_¯r}0(¾Pýâ9é÷’>’«¤o|Ô!WäǼWûøþ²>þ˜ü~-íñ.úªqýÄ~ßøž©×¸ÈßúõSønüKï‡]é7“|Œrµ ž`ÆÓ,?~O9ÚÑ~õ‘O|WG}G|%ýÕÑî«“jò¼ßýbðLô~õùýýá’ÿ«£<óý¸4êé<yð}(UŽgó =N¹Åõ†Oß±ÎcÒÑë¡—ø,¿ÚAÿÆ÷N¿µÜ´ß÷ˆžÛ_ÏêéèÿÆÇrßø—ø1¾ò9©éÏæI|Œþ®\x?ùÕ.ã¥þÑ^éÉ…òÉ练¿ÆuÖ¿Ú¡<ã3ä¹óü‡K¾Ê/y 7ú÷ãåø]žï§Üë‡1OLyí3~ð7ê?Ößô{êIž­s­c|/Ìûs=çûZ‰üÞ+ßûÔÓ{!Òå}×÷ô(ýPœ=Kº–ïwãGSuëŒ÷ݸÛC¿ÎòºþÓnå*?ôWŒv*§ëUí¡×3¿ö‘“[ËùFù]/½¯ú°ä¿ýfžÒ~åy¨ûý<Ưñ;É“~J¹õs­ßôÇÝ¥ÜÍ~i{ô[êQùÔoêµ/|g´³þìüîY¿9jR¿'Ÿ{{ΜGØï:ßè~,é»ÿŸîÚÿ7_êƒ×¨ß°ôû’ö_ÎåΦœà§zP¿dÉ÷Öà¿~Èü.}øÁ‡sƒŽö¨×ù‹þi{È×Ëþs^€ßú%Ãö©o´»çÚ>æý5åo÷3Å•ñ<íï•vüþÃðã÷íNþ £}ÆW»‹; íyV¨öõ>,yQžù3éÔ{Ž<êoåäwø ý£ŸÍƒæÇÆ1ü›*÷ú›|Ë—ráAžOzçyì…λû:çt~Ž_ç‹Î7ncò¹×î|OýVNÊgg€ãÏ{çîì¯Î?×מ‘t/¢ùݽ~åœÌ3ûû¼‹sbÏÊ×nõ°¯è¯’þ»£?µÿ4ö6íÚ uÞœv6þ¥sxv´7óž}‚ý‡=I¼òªßØ[^åï¹À?»? üz¼4úcÄ%m»ñá\šþñ#„ýo¼¾>ê3nÆÙøâƒ½ƒ=2vÞö/ÿ)ü54‘ò6¿Å–l{G)¿¸~¾î&»{ú´xüØðUû¿úb_)®€]_}p1i÷ç³Ô»£Èmñ3ïâØáP2ÞÅ«°Óýf“¿ö:v÷߆þ!õ?c\Òì‡âj¦œÆéôLӵ߲ÃÂK|–úè{»8”úùI÷'ýþàJÒŽ#ö@í6õjgý?å=»¹vÁ „¯âØïÓ¾âUÄÕLùÍÇžyÖî-n$ý ?I>8/óÖðóÖø¡úéî²ZΈZ|9|vٵϳgG®ØWw{Rhíúæís¡gðAƵržqlÜNãC"‡Å¥$_Çë÷ÿ—–ééOq!¾'¡3nãÁ¦žâŒ~•úáeþmPò“tŵ…ÏÆ“½»”¿âé™yñù%?•ëQ~ñ“é?ßӎ˧ËgøErßyäùPó¹òÍR¾•cþ|ÄqïžV:ñ'ð&ÅãÐ/8®Ípí\\q!æ}ëÔ÷ià;\cåˆþÀù.ÁÉg½lžÅ7\aä©xð”SýþÍRµ.¯ßIén°zK|çò=oy¯Âÿ~úA¹ùUoŠ+L¿FŸ«'ÿºÔ÷®÷õƒ~6>ù.µÿµÔÓ•þeÚýÙËçž­£»ïɳuq÷)ÇúüÞ*Ïö/†Ò#å£öäľÒzÙ~Å>RùÖïöö³ö™ä¿pÙ™ùqKyÕ[õ†¶ÍîÕaž¿;úaîcàm^YöGË×ÎUô¿yºÙ>ë¥Qnô²ûl÷F¼eýÞüUzã¼È¾Ü9|“s£3é_çoÎõÎf|à·œƒÁSÀ{Áµ¿úòìPyêsΈ«9Wë=»¤/^-¿;ÏtÎU?pyV¾cøÅ´W¾×Æïü·Ñ³·ò §?œoõ|ÿɯãùõ¥÷|P{'^KùžáΜßáËùë™e{w-‡O eŸë³~g¿„›jüšè½jœô?ûû;CíTÞ']íÉ_œ›÷¨÷êñ>ãÏ>v¸Ú]–õ×Ζtì%½G}Ÿ¸ÀK³I1¿;×–Îü }ʽ0Ò„?zã÷óCo.Îü)Wÿ¼3Úƒ¯ösò³[9Ž]g×òø¤Ð­Ÿ˜ô¯ø‚Åwd<ùwa/Åï¡ÅYe\j?7>©ýž~]Nºâ Bé¥úøÇ(þ õñïQ?y®?¤+®(ÏìòÅ™åY;ÙQñÇûnú^¡íÕ/æõ„o~ƒÊþÃ'ÿ"æ­àK:^õg|R¯üŸðU<Ö í¯Ðð»ky|Rèáû?Ùô›ñä§éFžùƒâwPüAúÅŸXÓgêïLþ<óŸ6ô®þŸ"ü5ñǤœú åÏ nîšß–|Í8‹õ•zè›rÅeT¾yßC^¯üüa]íªŸ9íS~ò\>èeý>fÜÐö‡yˆ¾áË|´Ï]Ëã“F·þÓŒy%—äéÖò}åòÃ¥¼TNɇñ$W-å¯úè½y9õ]ãL^Ô7ç{D¿ä›üµ<é§ïGãÿ¦~ßÍéWM?tÞåWñ+Ý÷Oçû?ü-nõFÿ„_úCûýÒ^ÕÏv|¸êÍߢ?]Ÿ¤­/.Žgë®ÞKÈxןç®c>^®oä/~q–s{YOqÐox38HëÅ®·¬«ò^>øšâ!Ã凜g„Ïâåò{qùÞËþ©¸9ùåSŸõ\ø+þ4õhg㒦ܩ?­ÑŽâþÃGï}ÌöxÖÏé÷äßµü=)ô˜1ë÷ƒô§s¸'÷¯àç½À.ç­îãíßåsnÕüyï|ɾÂùQýš…’oçîgõ\)å¾=ÒÛ«¯ûûä·Ï†Ó*0¿»OêüÍ=9qO.Dþé'œ_ûO;Rsø¾³I7ã(œüÿh”£{¾&øÖ>çxÊÑ_©w×òø¤Pø°>Ã+ÂI±ÓÀs½œgxòÿÂÁR®N|ÎmÙà§b7©_ò® >vvçÑò±›ðcà<˜¾Ž=èôà=ȽíúoËó³ù‹ý…ÿ83õO»•þ¬}%¿+×}uv-8¸éOáßF?¿ŧ)Ÿ~îdò±ÿ§ý×ú½ùkhqVp‹‘ÿÚ“Ó¿ðÅÍü6ã7ñƒÒ‡R{eä£þfbç+þåC>áÑüþËÍïó™¼Âé”o¸7´íUÿ¿üÿ3ø„ó:‘þÃùSè'yÏNúíÎÀÛÁ Ö/Jú¯þy´ƒÞ ýËÍ?nÊñÌÞZ"i·tÅ÷DO&¨õ†øýTÜfÒ'øŸäeÔÿÙèÏ?„Ÿün|ŠÇ‚S2n¿[>ׯ‹úõÿ/p˜ämO?ÀÝWò¦•kœ”ÇoÕ'Ë~)ŽñG|{ý~_V<Ûw–ã×x©Æ®WyüéåûZÿtÑÛ£|§›êù¼7îioñ<Ó¯Tú­úʯ ñÌ÷¶|[7À¹ú®ó“_1âÈv>¦÷Ñ“Êñ'¿\¾/^–¼üϲ:oòmÞÀטßáŸ*/‘Ó->>4ë‚c¸¥?òò{çóÕo—óŽþ®œáÓ<¢¿éíÐÓ♵W}cÙ®âá¬oþeÉo¿'¾CúáëËüô¡õ}J®"GäÌ=ˆú[Êaýó ü›öoižùŲ¼~Ïȯïü<¿Žæ­ð ‡ÏÎ_äé¹¥~_ã{§¢gõG†úÕ{y¶ÎÕÿüaYGN\ó~œÑ鼇‡"×Åmå™ü¸a<'ŽÊ½‰WÆû»,Þë~’þç÷y¯ã¥Q¾~ì:[„Z/xÖÿ¾ƒø³/Ñ.íþêÈñBù]¤G/ŒrZÿRºÞóüÒøÑßhq˜™Ï§ß¹¶¯÷XòÞ¼LNS¯õ^ÛaÜ~¹œgª¯üþqoñ×ùgà7oŒyªþ§ÿ>ò`Ÿ·×ý¨ç!¿•‹¼G÷GûÉ=}±¯k<îÔ£~÷Íða߉ûH8'÷”ºoÎû—U®ñ±ï#ß|h?¾¥Kýøwï«ø>4ùáÉà O~ô‡~rž0åèlÊÓ/æåã[yü{ñû¦½Æ±þD§~M~8Ç—õCÒñ§¦¼ÆUÞÐ3ãg> Ÿðt½ç7ÚoªŸlóÙ(–>üjŒÿ·¿O>ç0ƾÛßÏûqîc|ªŸ—ú¿½™rïãÆÏ|ŸöÃ'öt~wÔ½êú‹óœtÎAàá çýÚÖŸz½kðIÞßùñ%]ñ“¡½×=ëòë\÷Løì¹dè¹ðs€¿Ðó·CÓ/üÖŸ[~o?âk–?ùG;ñ9Ç?ŸÔ㼸¸Oýs°ä«÷‚ÓÎócýW¼Zèf;óì¼™üèWí2>Åo†Â©º'm~3ŽÎõÓ›c\õ«ñí=úÐÞçN‘ç‹£»šþb§â߀߉ú3H~ô­¥Á5N|bý¤\ö¥úS@åO¾ò¹»˜ßá¬Ø·êÇ^†¿úåðûíe=£þ¶3éë×,ýR¿·G{Æïm~ó¾~SþÅÙÞÔÇÞVÿøN=ì‡å+éË—ü.ë¿8øo{•«Ÿð÷Ñ’¯ŽwÊg¯zg<û}ú)ñ~âEëO¿“éñ9Æ}æ`´‡ºþ’ð7Æ£òóÑRNÙGõûlývlø«}¢þNôÇ(gâ ë_O>rtýÝsø„Ÿkû¤Ó?ÊÓŸyÏþ]¹&·/ÇÏ<]ÿ~ÊÑ?/Ûi¼~<Þ¿;ú¹þìäËïÅâ+ï§?¤r‹+H¾éGëÙú%ï/üõ7¤>ý­ö–õÔo^ú¥öéRNùJ9õeÞ}P0ê׿~W¿~VŸþÚÉŸL×NýdžÔ¿Éo¾ºŒ_ýIŒŸqÓŸ)¯8Œ1t¾”žüâoŒÛ1}í­ÿ$|I§ÜÛƒ*7é;ÿ%½y§ñùŒ+=5?†/ßééjú¥?å÷ãe{êÏm9ÏlûGyä@ú1OMqõç>ïw|Õoœv$ßü¾ÔŸ‘g¿k96.c>h?ÉGÑ!÷]Ÿ =é¼6øÒ_øï³ôäl´³|I§¿æ¼;õ‡\Œù þŸü>ø:OR{–ýÒ{y†ÃèzfÈ]ýD§œúõ¿›çÞ—Hùýþ§œé÷·ñö¯õV×CëÿwŒ|Fýñæ=>­Ã}÷”Ûu‘þ×þÔ×ß¾ãçY ¾/Žñ8üw]åY?*Ý[þÞúÉòo/iýO‡Ox™ú=ý}Žž í3ÎÒ)?éÕSüŽrö—ýr`ž4/h‡~òR¿ÙIg¼Ý“#õ'>Ç{ô_ûE:ýª¾¼·/r>Sÿöi§}”}U÷Ñy¿ž›ä½}ÜÙ”coÿjÿç¾]Ï ò{ý‡…?ùí×ì[ñùæH߸yyV_ýb¥íè}È”;ýµiG÷ùyžþæz®ª\å8WêþU¾¼ïþ5ïñ}vôÓ…Q~ñfÉçļ ¿N'Ÿßùå‡ë½Ò”[¿nC.•§|ràžöë£?Ý#ýáh=<;Ê#g=ßãŒoýõ½!7ä¸íP>†<¡ä·øÀèQÏ?ò;{‚s;烞Ù湪s=úáwç²3ŸrÙ=ÈsÓÆßÐßy?ý¦Éç<”ý„ß1ç”üŽ9ß>•rW_ü8Çwï<–Ç88¯ÕΗSÞ<§ÿÆà›} n îi?å°w:®]!éØcÎÍûÚKàМóâÓù0»ÉgÉ_?æ™ÔWe¡ÎÅõ;\ý äyÄ£i¾ZüNý™¥>ýf|ôÂù8ù&M;S_í4Ó?AìµçÀ§üfÈÇ‹É÷æh¯¸mìC¿ÜÔ׸Zð"Hzã(þÝóËú‹½ îcø*þ….ö,¿ÿçò}ý±;ó³Æüی˧ù=ýVÜGžkÏøߢ=æœë’úÔÓó~ø¸¦ß/Ç£ãòâ’ÏâÍò\|Í,¾(ãQ?NŸ„Oø-8öxåÿ:ÏìƒÇúÕ`¿¸»äï¨xŒKÊѿőöûß/å¹vMò„ß”Sÿeé÷Ú;áXÄWT.|Í]ò™v\@q<Ï-åæhÌ[˜ñ9ÚK;#ÏÅŸ°+‘£_lè®q“+]飠ÅÅšþw©æ5õó8ðÇüàe^ÚuûVºÒG¢7ÖÖIÏDþ}}ßêW8ï}o¬­?ŸÛ”c»ëö­t¥DoàŠìƒáí_éà Ñø*÷yìËëÇ-é_Y¿7+}ziq…Î×àÞz~œgçYÒÑ7çËΉá9ƒcÜuûVºÒG¢7ËýiÒ͆çXœø v!ø&ú5üîº}+]é#Ñ›ú‰Ü×½)ÊûèÉŒ[Y"Éî۷ҕ>½iÑÐ7´~mBáuꈾEÿWtÝ߬ôé¥Çâ•û~4.-=ÉóÇó•[.hëï³øÙ ÝuûVºÒG¢7Å+FÞ'.íž3T>¸Ñ‰Ã ®p×í[éJ‰Þ8Oãç Î Î î²þãöîýõ¼Íùœ âÖuÚJŸ^ºõÁ޳ÄÕ^¿ÅN:ýBÀGº÷ýüÞ½¿]·o¥+ý2iñwüëÀÍð£•ßïÜK¿ÅMű>·IW¿f¿z¸ïÍÖ?Aêá×Þ•~–xw¸ÜÓ¡ð´ô=÷¯Žß ö¨ýÐçSï+ã¹q´òžÎö­QŽßáÎÙ…ÙÅøg ®©|ðw+=ÿü ýB,û‹ÿ®Ú£ë?rð£_á~ÏyÃOqŸ¯ŒvÿnBÍ“ú½ý•òõ»ú©üΟÑ?v‡WÍO\9Ü2\4þÙéá˜áGë¿%¿Ã/“ç_çý3£ßù[aÇOúúéqO"xýúõ>߸$îwåP;àæ‡¿¦ÏÕß?¥ýÛ8ê¡ÚŸu_ñØîcð³¡ßß2>ô |‰l¾Àwå3õ¬S‹[­ÿYz§ü¡‡î«Ô¯Cêm´ÏzØ}ùÈùrOnÝ<âwúV¿:á‹þ°¿½:Ú}vŒùpÏ€ýšßëy÷Ü÷á§ëÍÁ¾öòÌ/Oï·äwó =poáû#;îñ˜gÝ«bׯôÚ>$zßy¿ã)Ÿþï'Þ¿qå†^ã[?ÖßHÊ£×äÆ>~à!ãnýª|°œ_É þØWµŸ>¸7ëž•ûKîE»§dþµÿ¢wÖ§î“6®\òëã{>òî{‡ßóì¾™|Ês‰kßú]þ”çžÙÅÑnòè~ÞÄwL¿,ü¶w÷Ïø…1ÐWznÑ>åvžÒ®¼w_‹\Ã;’ozK_•Ï~nÿì{¯ê÷<ýn?`ÞЯîo—ó£ÿφ*‡Þ×/’vÇä×ô×}b÷n{ÿoŒ¿úz/tŒKï%=OùŸ«7ÎñÈIï½f|{4íiœ‡Œ{ý®äù ¿×?MÞ+wúi\¾ôƒ~é=À¤¯¡»Ëþéýê<_Òy¯~òZÿ=©×ýæwFùäÀ=ñÞ‡Ö¿ä*å÷¾¤vª'túkâ—>„?€çÀ<Áo~äÏ ÷Ç8ÒóŽGú³ñR~ý¥œé¦ñýRïŒ3XÿÉïþjÇ_>T¿|¸,ßx²cÊ_bù_‚7E;•K>{|´5ñ«=û\½w¥~%ò\ÿ,igý:ä÷«ÚoÜÿÇâÀ$ÿ•QOýðøîH§_µ[å÷ú½ãTÿ-yf?®?ôoŸ?í•oÈ÷ü L*m?>è£þI9—G?â{ÄåÛúñõÖ?Ëh§8IæÁÆ1”ßs¨xVìäÆóÊ(¯þÂ?{cãI))âÖ5N`žÅ£RnåÅsÒó”tOþÄýQÏŒ{#Ž–8DõWDïSŽñ¾üz#^œ8{‡?ÝPqÅÈ}ã÷…¯ÆÉó>ùÅ›»‘|‡ú9T|«ÃŸ¥ýi—x~âþÝ âj5žŸò¾ÃÇá'›zÅß»>äaãúÿ¦Ë{éÅ7»™÷7ÇöêíV^Ò5^`øÕ^õˆ¿fÞ8<ÜÐ÷ò|c¤S/<Èûáûfø=T_òßüyø0Ú÷“”7ÆG½Æ¡üéÇÔ÷ ñRÎá§y6ÞêM9ú_þÃÑÞI§¿•×qWÏGËrZ¿qH;Å£»‰Ï»Ëö’³›y6žøŽÜ|¾Þè'õ¥?»ç´#pë)øÏøÝÔÎ1>7µwŒ3=¹é9r¥Ý‡ôe<—’+z1úC¿ªß7½×þüþ¾þõþýCŽoN½OµøÔo³œ½åsçƒôãÍ´§ü~ºä§ú~wè{ÒµÿõsúéýŒÏû~×/ô_ôsÊyÊ3´ž¡ß-wÎ)ç¿G;’¾éÈ>>ã‰/ãí½gõkþ×?ÆmÃÿçêMù"çä#ã£_nÌ÷i‡ùºýJnºäÇü¢ß´«ó}¤Çs~rU~Égêé|’ú[þþ’OzT½ _7FþŽ{úyö—qèüc¾×úièkÇqŒsãë>`ü[vŒùªüþtY~åœ<’sã÷érœûÝÓýD¾ðûñòwï¯þé<¦òJ_Âo¿ãÉ/nqçüjÏxßþÁ×èÏþùzßø…†ïÏÕëDëgqX5ý,Îp㉦þká|^Ý_¦ó=)þÎ{é“¿q]ó^œGëëùÈeó%ýL㦆ï¶3õ[·ÑçÆ O>ýa]e_Òò“ÆcUÿ «Ê#GÆ+åÈ×õ¼zR¯ïÐÁ¯õ¾Þ³rõ·ñüxÙ.ýc\ðiœ;>Ie´¿û±”ßx´CŸðÓ8Ö£?O{´»rhÞÕߣ¿ð‹Ï®×É«ñ”N»7ù?Woê1Ô~·~Ãÿż¿~§¿Vçdõ™üõ/üá²Üúc ~þìC/à/¿;'±Ïvª>çšÎ¤+þ/ípþdŸí¼LûŒ»÷õHþ’®þ'“^¹Î7ô[ýoJ—÷ôµþƒ¿~Oúúå”Î8§Ôç<Òys¸úUÍ{ûrrÔs¡<÷Üaô¯ówç‚õóL´GÿãK½¨ñW?>G9íWý>Óõ|gY>~õ§vÌs×—¼}®Þ8çíyo({@qsƒÿúÌïì6ÎÇϳ۱gg—tÎùÙ9Ø5f>v~÷”Ósû´Ÿ¤~ç“Þ{vBçþÓ¢\ç“ì2?ídw™vÁÆGH9úµ~÷F»^å9Wf—dïcõÞ9uëO9§’þûƒ²c°ÛN;Iíx·—ã4íxÞ×ïbú‰NÿÔN$½zCÉ »§þÁ§~do£§ì†Ú;å–ý‚Áe¼œzØÛ'!ü±{…ŸÏÕ›½äg—U>;¥q`ÿîø%Ý+yðë‘.øŸÊ \dz©νZ¿ð+ÈÞÍ^Ï\ûÿæ¹þKà{žO~vxx|5ŽÌ¦ÜðLôËø7^Ož_z|jü^…ê×Nõ™oò;ÿ]Åß‹¼oyyÿÌзúQL¹ä¿þóþÅ1®æ8-ã ¿ >vûú/4Žq#GÚgà8È/{ô‹æ z?ú1ãÛ8mì¢ÆS»;®¡â¥ÁmF~U9hýa†F^wÃ{RhãŒÁqkó³¸{ô×ü¹j\¯—–ý^Üœ.ù£¾ÁÿðÙtÅãÑÓüîùD(¾§?NòÉ/(¹~nÈ“všWøµ4?¥]Å'ÂÏ(Ÿ¿ÉÑwÈïüþbóܸ‘ôŽÞÂßÑsñ 3?¶ÃGñiò›‡N¦œàóÚ^ó=ñ#w-;­ßÜo/å©¿gÔø™Òù‘GrZ\õÌó#?¼ý0~äÓ:†œÓ¿â®–ú\°ÖqøÉ÷±xFßó«ïù†÷¡¿]¿¤\õ[“kë]ó~•þÍeyõÿ©?êùÝ:Î÷ëëc|Ì#ü‚þŽž¤]ÅS¥fœSëcß«ôÛ®åòq§•ßû3Ë~ÛîOÒÏÖ³s¿Óu]h×]¾/ûëöâSSý©/¿Ó‹·ÿe]ä;D?o1鬛ìGñIàeŠºµI?ýJÛ‡: öÅʵ?².³¿(5¿[?¾5øROö1ŸÆ]úDßÕ«>ûû¬Æo4ÎËòWú½)Î,ôí1.Ý—Fn¤+>3ýÞ8 Iï|ÉyXñ¥yvŽ ¯êÙ¹“ýí¹½å{ú[|Q~·Ÿÿþrü·ñZÔ—ôÎËéçYçÆï3>‰ß‹›Kýæ…ƒ”‡¯Æ}ɳó%ø@ýwi¼7oÙO_úQœÙÇÆ;ð>ío<†ôË÷Gû¾¿êÍCéÍŒOFÎß3Ïæ¹ñË’®Œ} ¸¸»Kù:ùwÂ}’߯7Ëø]L9µ|°ÔçÊ“§¼¤coª]Ü']q]á§qãòždêíJøJy=Vú§çÒɧŸï¾Ô/=‘O¹›öoÇO½©O9ð±=ŸV߇K>ÌcµlÊÙµ\>ît‹Ëxß¹¨}4ýZ;fÆ“ý“ýôjäºvÒüG ǨžiOe'¼žgvD¸80|“Oöuø1¸5örå²s²{ÂuhGû>%=œÁì§Ú1SŸg¸2úÇ®{}<_Kù×GyÕOéôã¦ÜŽŸñPûþµ{ÚÝÛ¾¤¯}ýÞ<ŒÞ·1ÆíýÓ›þ.êÓÍïÅßd<Šg9XÈuË/%ãU|LÊ+ÞnèCñ£ê9¹”_øâò;>|/‹[J9òÃ]/DÏðùóè¯òO/ùÔopMÅqä98¯mýÚ÷ÅͦÅC¦ð ŸŸ„nøoÿVß>Xö},n"ÏôÃ<Gpm™×rù¸Óc¸\x˜âò†œ·¼ñ½‹~¶}Ï¥?†×ñ]ö¥çƒ?ߥ¤ßµ\>î´ryeÙo]?]6æ+”œé÷ŒÓåñ½‘Þ|÷7×Ʊûë•–òä;da=ÖuQÒ¦ž<7žsê!gW×}Lùí¶¼jÝ£ÝIo_".xiø”¯øÆ<«ßï½W”÷½'©úKzïSŸõµß£ó—Æö>é¯,罕>@oìkç4>túñ ráÜ̾ÕzYëÿóã{Ó8ÏhÒ«¯ñ¹Õ“ß'®«ø¯Pø¶yÏÍù•ó€Þ+NùÎÇœOÏÅky=°¿wÞî|±qoSœ~Ňó«ž3¤\ü´ŸG»½ÿáò;°½ï«?¤_ú§ñzo/Ë﹨v¤ÿr®¶k¹|Üiíììì¯Žï» ;œcqVË~¯}ÝÄ91ËËyO‡Å®ÁnáwöP81v˜ú ­¿‰ä;f¿È³síÆ ÎïøfG…ƒ‡s®Î>ÂÎÈ~È~oÐ÷¡õ×’zßJ¹ìÄ~ׯo½a—BkÇJyÚÇ^ª¿ëÇ&éôKã‹nè®åòq§âJßÂîg\É÷7y…GûÎø=^€}ŸÝÒï'Rñ„G€çã·é#?{­qgw,n+éÙ]'^ŽvWöQöOx8òW|Üæ÷úÇ’O¿éGx¹ôË1WôÌü•~©­Æüõ_Ëtm¿öÀÁ1%NhõH{_ãöõ{ó4Óâå‚mÞg7ã~”ùŸ2OüŠtËrŽ¢§wâ§©qiáR‚[ƒ+küÜ<E_Ž"GÑ;8%ü‹ŸÛö˜þ}•Û•>B½ .±ñ”Å­Ž^ùÛ¥\Ï §•ïÈQ¾‡äYüñ;Ÿ…þ.òÏ/æ6éùoäíˆ^ýÛ¨wÌãòŸwbù=YéJ‰ÞØOË]êEï]øNX·e½V¹Í:‡?IzÒ} \fÊ©¾ñ»Ü}ÍÞ½¿â»ŽZ懟ÞêÒó'ú½åwh¥+ýRõ¦¸ÐÈoñ›öã{÷þº¯wNPôœãõå¾¥+}$zÓsÖ½{=ßuž×sÝýÍsÏ_óþ`”ã¼Ýùrý†:?†ç„ŸÄó8çËÁ§ã¿|%ÝÀ9¯t¥Doà·È1{8;Qý &]q‘‘÷úðœôì<ì6ôЉ£þ'”“ßßë0õ\çaê-4z{Ô®ûw¥O­]þ þe"wµ']ýqæ¹~)#Ïð ×äÏï×U?1{Ëú®Žs±‰Ï†£¸6ô?-g]§­ôêÍå!§p4õóCO>ZêüMýTïœ :ïø>Л┛÷ô±x0ß“ÛK¾//¿+ð»îß•>t‹§Š>Ç6ö—"ÿü&ÁmÁ»Xu–üîËÕµr¬ß¢—õ‹Ÿtü+©úíq3·x¦ð÷Ϊ7+}„zcÔø ‘c÷9ÝÇä§é¬gçä>tÞ¿¬?,û}çw©ž‡ÿ,õžß|¼ý€ó4ù´ž ¬ôêÍ+{÷þŠGãG®G:v8›¢ΕGœ±ž/Ãûìohã<±±Û(ïDÒgìc؆¿‹m|8õÜ_¯VºÒ/ƒÞùÍF¾Ø÷ùE*^à“È9rp.‘û;÷ÊÙÛ»Z|@Ò_Zq2¿Nú_¤üÔ—sù‡3€ËÁÇ^þŽÍðdßújèMç ~ÁøyãH¼´œŸ:oyoþ18¥ú ‚£„ÛËüv'ãËNΖ¸”pSÅQF®Ä?=‚‡"£¼úEL»àLŠÓâ,íd?ÖOæ[óùÄwjð)åûdžáfØÓ‹£}fÙ/Êmýìü ~gÉwÓ±ÿëoß—ÆwÂ÷éùð£=pŸß\þ¾k9}\è6>bú‹‰§8¹”‡ú›Ë<×ß»>0þ)çå1/%_pk /<ýQ’Kúh^ü‡¥<4Ý‹ÑkrKN¿±|ßyœ¿»èS×ÁÛ–¿úÿKyæ ë&õ??ú…Ý_?Ôoaê‡{&ßôïµ!çI߸¬î#|g©7ÅϘÿôëÄ!à Ã-›gŒþ||Õéžqä×Ò=zà^‡{ÆÛøû~'åÐøãüJ~§§äÏ|O.øÓ{~Ðù]ü×Q?y…;×Nò=pZÅh‡{"ôÇ<§®_à¾÷8åÃóëç¥^»@~éçÔ›ÿ¿k_î=[/ÁÛ·×Gy/$ñ,Þ&ÏôæûËïÞWVná›Ü«úÁXðÛ]‰¡Í§œŒ§ûPÎkz¯hÌoõGî9ùÉ­ôoŒô§–ó`ýhÕ/žrð©œ!¯î_í™þ åwn¥]ôæüíÍ{ú£<÷àœƒÕo½ö¤Ÿœ£òŸvnùH~åÖüøŽ¼±lÇÖúWçl數é†<|ÕiÏ#Ý?Õ¿œqåwLÜ ç™neÜ¥Ï8ÁOUÞ"Åaå½rÙz_Q9¡î!_ü5þòàWýîÿ =«Ÿ~Ïi?ظ_»õs©û‹t­×¹ï扫Ÿf)'ú×z§>à{ž3—úýË.3ηíоÑïôêÒ’¯¯:=†oâ¯ñf3þìpÓŸ_ím¡ïŒqaÇk<Õ”W?tù½ñ”3^õ@.–σ¿úÉK¾Æ]Iû÷gü~a¤c7 ¬í¨¿»[Ëú·Fÿ%Ý¥¼g´[úißçã˜=q<×~oTh=Š>àç`”Gý^|šqÒ¾e|Õiñõ[b3pIüí4®‘ôäŒ~„*÷Ê ø&xúe ­œOãOóy 7ù]ýüR´=ê!÷ùý¼ø®ü~eÈWãÝ^–×8eôAûÍ3.û¾·’tÅw¡É§¾âÃPíRÎí%Ò5ÞšþÀOÚYü›ùO½û‹ïÜJ‡Þ³úQ1ïä¹ýJ^ÈÃòY¹§ÊI:þ/û]óÝÅ!ý®eœ‹ß¥w©n¸ñ¿ä“.¿·;ø«<ãW;ó\?LÉ×å;S¿²cÞ(^ÌüòÁHOŸ“çÆÛóœüÎù«÷ÂùQãõåwñÔœ#4ž^(~á½/ñãå:Ì9™}´vœ|êéW`<‹K`ßoŸ#ù¦åì/Ÿí»àÖ.ŒöuÿnÞH¾ƒQ^ÏQÂOãþ¥ç‰ã|z¥Ÿ£7ÎQÙôãËyßóßÐïŒçžc'ŸóLvTç®ìΟÙk&® ë{ã}ý#å÷S.;,\;»Fãì¥vvvËWG~þÃf|™ÆwÉ{v%çÑì‡gR}>5øÀgý·…ý„Oó›úN~2à¯ñÇüòêÈg¼2_“1¿¬4ýb|';å ›÷{ùŸ“¿•ÚÓBoü)ã!NÖgôl“¾~#Äqd‡qëšÿ™Ôœ#\UãØÁqý.å=·ùýŽúàøµÐü“wöRú@¯É­y„\‹“§vXö×á^R¾gCO¦¼çS¾zðÛø¨yO|Õ§z¦?áø3Ï?㬾—–ý´k¹\éß—ò‹ßx¸yÜ~WÈGð6[ý¢CÉÙó)‡~yOþ£õ¿'¾¯gßËý”¼QùÆ×‰¡/¾·øË÷¾úJþ“¯þኢ?p„ì·o,õ¦øÃ_¦¾OBŸrƒÛîü5ç+xÁS³ù}âÙ¡ÅO>1òåû\*>þqÕó/EoƼÜïVãUfܬ“àåÄñì÷#éá‚ÈïÄuú~úuj]xf”ÇϦïÄ߉”G~Øi_|ÑÛÆ •Ž>ÍïÒÄíXoð{C¯á7üä;6ãmO½S/ü‡ü¯Ž~Чýžò^|j—ï§uõÉuù¥èMý0g<àØ¿íߺïȳýšüo÷ö!ü(ÁóÀñ8˜8òH/àO3Ïä‹ü8?€÷$gòÛ¯hýªü¥ýæz{nóþø<“|p…Îè%¼S÷}y¶ßêþIºñ»gü½•zô·s ý­¿p9¶_†Ÿé•~A½qîç<Ìy”{¿Åío¨síúÃÏ{çPü•9ržûöoçºô³~óóÞù|ϳèGÒå¼yÛŽðOß|ÖoSÊ«Ÿ¨ðëO¾ K}i=üúW¯Ì3y†G„sêýÒ–üÌ{ªõ~œ/š¯èkÏõSÒë¿Æ—ýŽïÔ³k¹{Òiã{¢ä‰½’>°°£\ e¿a¬]öVÊÍïÅ)„²Ó¼»”Ï­Ý'õ£—†œüxÈ {~q@ù]¾Y®÷ì›pìFïÞ_¾¶¸ úŸöéýÂ.jþ¹¤ÈùíEùÅÃé¿ÆùÈ{öÞÖoýŸv³—³ßÕ>¨þUo¾½áÿ¨výô{ý-…Š/u5éŸ+ò–¸“߯WRÞæ}ëm¼ªQ¸ð3žè{øHþÆÂOÒ_Ïïð@Þ·‘Oþ¤Êhãa¦Þâ#F9õ¥ÞðQÿQÞŸŸÆüÂGÀe4Ž`ž'4ÏâÅ)G\­â3ð¿yÞµÜ=é´q$ù k¼Éý¥üŠC(Ξ¸gâíõ÷Œ›¸|Ê—Mµ‹^'}ã"¦¼~oð¥RÏô+ØöK§ýôjÔ£ß|¿¤ÓÅ•Žï¶ï5}oÜnóÀü~k—þ¸»,'8Õ]ËÛÓB·ñ'ɱõIä}â-‹çOzq+­çáѬ¯Š{N¾âA—óßV~•;õ!õïìýÝå|~y9oñÍ¡ö9m_¨ö]ZêɱþÒÎK#|é»úS?…oûŸËcýT|©ßS¾ý?½·~u/cúÍëFû¶Þ÷øËíZé_©7ð©OI.Òß=çŠ<ÀÚïÖß^Ò÷ÞWÆû`”ëyÞë+Ž”\ákè…s8øµâ^ÃGñgøŽ<Ÿræ÷âC‡^]Ü¿z÷þz/å7~gäú ïcÀÑu¿þñR¿{þ—r~ ]øb€o—Óy}2žõŸß–íYéߨ7ì ÎoÏfüØ æýnçªìqì0§òþ­Œ«{ÇÊaa'ä'À9kýü%{ üùqNûÖ¨_\À‰3óüêà‹}G|œ£?°¿Nv¨÷Å”W;QžÙmÞtú-xuð3ý¾ÈW¼vJ7ƃ}jøm[é—CÅÏã7¬rõ½!‡ìÍžÿkÈÇ´·K¿Â>ÿµ!ìéßzD^øß™þDØåáŠ+#Ï¡êe—ÿ§Ñ>8·yÿÍ¿¼ži=i'œañ†ôçßÕ®ø©ß ýôÊà ®æãtú ß¿güîü*ïÅ]üÓòû¶Ò•>M´ß§—ÿ²œÃx.>ʼßdžáñ7CÏ:¿E¯¿±ê×JŸ<ÚõÖ«Ÿ£7¯ý‘ïܺï¿û*ùþÖï¥ïë\7¿r+]é“@íW>7ݹ[þg‹³°ÏƒK³³´ï¡—Î5ÎŒôkÜ·•>ÔyÞoÜ–ß›âîB+ºìž;\žóç~g×s„•>y”^<ð÷úë´a×Ùú¹ˆž±9og‡r>.ßð£µÒ•> .é¿§´Ü‡ŸÄí¹¸ÁM¹µ;ÃS°Küîûa¥+ý«ôæðsÎÁ÷îý;npk[œ\¾#ðMp ׆žÀƒÒ£àÛvÝ+]é_¥7×ÿò¾|âT§¾mq×чkÑúaLþÍÅÏÿßááO6Û_ÏVúÄѹþ:ö{ý†æ»RŒ¡ß+]¾Cî[¸7D”cte]§­ôÉ£óœìøï‘s÷7‹Œxî{é¢/î‰ *ý…Õî¹Ò'~Þ=æúóà·î4; ;M(\hp=õÒx@yÏ. Ÿ7üé¬t¥O%¿ü¿(þê?.Ïüñ·7ãóñK7qˆpµÏ¯ö›Ž¿yqúÛ„›âÿkøÚË_'ð£æQå¸ÈÉEÞ›gŸK¹Ò?›tp’pÅ#NZqܯ >^òÊßÎÉÈégæõ¤ñ`•_<è?=Ü<çú¹éðGÏþkœ¿=Èßè×z§´zcÝÿì>¿/äšß4øw~{Ÿ!ïáÙÇáá¢9áw >øy†ÇR¿{/¯$ßé¥\7î›uPãë…üŠ—G¿Ü¨ŸÐ³yG9p.­W|Iz7ü7UŸ{ï`ä×õK>Ú5ñmgV}yèVn2þÆ™?'÷³Ü#áOO6úFî¬çÏyáWéÜ痒Ͻ2÷Vêï ?·RoÞÇ/}Ûq1|ª÷åeºÃ†ºow&”ß©úÏÏþî¥þœ>XÊ/ûýþ:¹®>ºHÏÝ«ª_¨P|¬¸šÇŠnã˜÷ÈwÞ»ÇKÝçu?žŠ?¿Þü5~HÒ¹gÙø)O9üO9w—ûÞôãÝ1/ׯR(ÿUγzŽê>(YÇçY½¡âí¸Wë>øôWVÜÌ&ݱ~Ÿ~¤ðÙxHÈwi©¿+Ý ÝÆsÌ8Ö¿×Þfü.E¾Ðÿ ëò|Ÿñoüºäçÿƒ?±ÆJºÆÊûëI/{aý€à7ÏâêL? 3•zø€ság¤ñçö—ùoè‹öŒ¸~îwú>Ø;G¹Ûïér}·ÒÝÒÊmý5‘7ï#üHÔKä&þ(ÞÿɆÞüÙ&=ÊoÓÍü^?V'7¿¦\Ïõç”òoFÎnD~ÙÍÃ_Ë;þÃKý/ýd¹¿8ü$ü|¼ø}ëÏ iÿͼGé/ý<†Ÿ¹}ßu[ñ4‡·–ý ŸoŒþº¶\®tÇzCžnfœŒûaä®òO~ü>åú§›÷ï'Ýûÿ÷#ÏïGžå»IOÈ)¹%¯~?JþÔû>yR~ê¥W•ïÃÈãÔ‹Ÿ-äïð}zôô¡ükêÿoíýä¾óû1ü<°ßoî¾R_õh©oÛþøð¾ß£•þ}èôïU9<Œò·'ÝMrï}ÆÛ:ªú9m9G‘ùÉ÷§‘÷ÓËòé©ù—¼*ŸÕï½”ýóÂGÓ¼¤ôœ<ö;þ:OHŸzèi*Þêþå{Àzk~oo ýðýÒ>óKç½E½+ýûÒ®ø%ã÷Îú«þð¬×BëðÖfܭӻ߸xȵßS…â@×ÿ_øà/Ô~ƒ¿ÀâíóÌ/›ýMýæ¹~ñ™üÝ·¨W9ÖËy½~­G=ÏûÅ[.÷!Ö»Ûgûý5Ê¡÷ø{oՓljnï#F>œ?ñë]俞D.ùç·¯ñ‚“^üç¸qp#Î_7|Ô¿_žù;l|èü.]ãP§<ö!þÉœ8o›çW´ßóþÿe¾¿¹ÿëÿ-å^Z~ŸäWýóü-®ôÑÒÚ+œÇ²_²«°ð%»¦óföñeøQ;“ôΧù{â_L9ì=ÿN¹§ó{ï ‡žMºÚƒò^<õ²Àuñ'ÇÿÕÙÑNvMñPRþ#ëÿƾ=ì²»–“•Žqa¿Dùkܵ¡'ßë}ž?)ïÙù[ƒÃ‘Ÿ’¾ÐG¸ò‘ßáfÜ?¸¸Çú)K9ðp âÔýOòÃCˆŸËÆ›Ÿù¼8ƒ“ЛSÝû•®ôÿ¥GñëwÿaG/Ü>Š¿Â;ÿgóûQü,Gt”ïæQpBGÏ­ò·Ò§—ÞùíFîä;q”ïàј§«7Ÿ%=zw©oâ +w×í[éJ­ŸÙ¬‚Gö’®ñtŸž<“ïÊÞæï?~I'Žô®Û·Ò•> Z¼¶ýü<àœIºè‹ýԌøÚ»nßJWúHôÆýFqœÛ9‡€¿v>ážÐŒgÝ8¡ßûûìÿWºÒèMÏ‹‡}Ãyœ8"?Ø»÷×ój÷Ûœ³{ïÜúíu¶Ò§—nã,Ç®SÜ=»a~‡ÃOüª­?‹ØuØUÖïÌJŸ~Zü‚ïEý)G/.øEoz(ÏÕŸ[.poÞ?[éJŸ&Úýˆû¦ç—ûø­¿þ¤ƒs`÷¯¿Gάv›•>½´x8‚úAZîKêß…Ý_>qÛžß»÷WüÀ÷Ö}ÍJŸ~Z9¾ñ»<ÿ[ôàĆгtãyþßMzqù£'Øu»VºÒGAbç¤'G‰7:ñ1Gìœß Ž@œÌ;ÿËþ™üÿ¾Úm¾J”½¢¸Dvö ~ŽÈÜà‹¡ßŒn’1rW?fp™p”p—â(Çnÿµ{›g¸Pü°§ˆ›ËÙ3ÖUù]ü>~Ĭ»ò¹3Ûzã×#½8µ{쥡Ï'ßÅÑÌ÷§~u¤ûÚp•ðáð­·Ðø»Ÿ¦ž¿÷Î'ú'åèãûlq©¯õëçÖsÁ‡Ò›ág¬þõ¿¸—Rû ¹ÝòK¾Þúòr(cäå§ÿ¨â¢GþsËqnýì˜Å_GÈ1û ü4´ø°)ßz¬¿ÓWõœÍ{ñ¨ÙCá¨áº•Û8ìÐå¾vÿïVç‰K}ìï¯ÆçÇS?žŽ>ÿf©ßÍoþ Wú½¡ö½âCÖÏp(y4ÿ:gWò­!gÎ¥Þ¾ç¼î£¯W—ãÛû6îÀÿ³7žãîÞ?mâ(¿5¾SôFº3¡¾7î h?û'*ÿ›žgãÿ‡æŸÁ×ë÷ŸÏ;oÝ_nÛôuø‘î<¢=ôxúQ3?\êïÖŸãÝûêíJÇxð»×¸éoñëŸ/ÏÈIÒ¿þöœrÜ»t’ݽ~Àò»|üE]åÑöHþ5s?±÷?ñ5å½åP~/ú}?|ä÷‹á—~Ëß~ÑÉÏÿ›sm÷Üð1¾ 7‰s‹Ïíz üòz°ìç¦corßÖxiWýÏáwèû¡CŸVú½áïÏýàwòÌ€~çßë݃¥òÓÄ?šçÞ{½lÜÉ•úäO}Çüõ%òÜf·äͽjþù øñ¨ßýj÷¤•+¿v^1Ÿ÷Èaï?ùÅ=îKI¯<~/-ûùØ8˜f¼[ò®œò½?úÍó˜êíîòùÝåw¥÷Ù/­zóPzÃOü»ÜÈx]ÍxòOs5´þ*"õ‹qw)Ï×2ŽüZЗ÷ÈÁ¨§~¾ò,ÿ/«—rñÃïTãñ¥üCõ癊+c¢WFzò¦ýÚÅÏUõŸ¡?’Ÿ÷–ýÔz§¿‘ï¬þ ñ&ý_ü<ñÒñ ¿Ú¿$Çä þ—z»Òè [õ3–~¿™q?æ/È8ç}ý‘Sï3^õëG??\–[¿fêËø‘ÇÖó“ð™ô7ÃÇû)Ÿ?(þ’ê0r[S)Çï7µ÷gK}~ù­jýê¡Ú“÷í¿“Ë~~ÊÊOÛwr©WͽÝþ~˜÷ãû¡úŸ_ Äsk;n¬ß›‡ûÞ¤_ë‡)ýk^'·ä¯~ÌòÞw©r“çú飗Êó;ùмÖïåé¥^ÿ`ù{óÓ‡Y.9:ÚÐc~Ëò{ýI©o9ßw~7o“+~›ø¬úýÓ|ð£¿ÈïûöïÁ¢þ­^è—Ÿ.ä}û}ó]¿_£ßø¹z@¼è®àt¥³¿ÒßÖã¾ë]ççÙ{~‹®Dn¬gø¯µ.™q¿ë-鼯3å&ý)Yç|´צïú ©—ß6|ÉogŸV¿h¡öwWÆ{í'_õû¬¡ü\ñÕ~Õ?K¹ÜÎWËïбõ£õš8œïŽrñË5}ç7þ=ü.õ²õè«ë÷æ¡ô~>çÝwÛO;Çr^eŸZÿdþɤSnÏ{T¼ çaSËϳóµò•ôô{©_Ú1öÙݯ;o°Ï"gÎ9ì¯Õgÿm?í<Þùþœ§Õ¯Û(¯¿oúi+¯Ë~<6>ÎÇf\ö“vêïPýS?vyÎùßq9H=9ÇÙµ\>î´öòà×½.ö0vvqÇÄ_j|™Œ¿i~g÷sÍ^ÄÎÉ~q!ÔýKöv?ö"ç½o$?jìGðšo¦ü³Iw:ùQçìøúáèqvðÁžuf¼‡P?{#û͸?Úþçg*åvvbþÒî¦SŸógv¸—îÕe¾æ?…ÿûëÕJG%îWã‘é¿o§ÿá]ØóÿeÊI¨{ø™ò^Îûç¥wp_'gô(å<>öBëo-ùø+«~'Ý ä4ïÙMá!´ëI¯éØùŸ þŠ ~hϘr^Z¶÷Xÿ³Ÿž¾¿Þ}}Ùo­Ç<¥á=žßüÞø‡éÇÆ÷üξ7Êyqù][éýé1{¼y¾¸ýŸtÿ0ô îìÄwrg^—_¾ê‡ïNÞç‘‹Ôwð­ð)Ÿyy_¹K¹©žÐ×៯ß?ýA”{jüÞù{|WèañJc>0ÁaÿQúüî{ ¯d‚›yÁ÷1ïõZ¾ÛÇõ3ùáÐØSé›ïùwW½y(½ysÈcýfæýÆø[ב'þ\Š“ÉûàkŸW.\ù˜ë5zå>Xãz¦<õ‹§F¾é)?¯ÖiæsëqñkGÎñÁßhõFýæßÓÑžâj†ÞêGå™§¬Oåó;9ÖÅ¿Žu±öùþýÃr<¶ãœ÷ôÏ÷ºëQýµ®ÓNoÌïéWrWÜHÆã‡CÎ슢Wä-åLÜZËÏ{¸-údo?R1ɯwbŸQ?ÔËñ?†G“þ‘wrd>æOZ}¾»æò~f´Çº¾†̸º¾çm¿þ¥÷Çæ›ÑÅá$½~xc)ÿ­ï£=ôßxýh©o+}€ÞÀWÁ]ÁI¹?ïÞ=|Œó²ú©Èûó·#/ùݽ{8þÍÑâÓ’OýΉŠS¾ïIÒ9Ï++别+]qfyOÞÊê+þŽÞ¤<ÏÎ;ÄQð,yæŒ~Kû;O =tî7ãLóâwóTã'½ú|w[¾>Zö_ã¥ÞZö½WÎzßûáô>̹/ù½2ä‰=…¼KÇ?õîL—rŠÓÊ89.Î*ÔùñŒÇ1ñnË‘ñ×åâ(¯ñCäÏsãƒÞíK9³¼‹øßâ|Ð[õH/¿óឣËG/=›ä ¥o?ý‡W¾ðŸrŽõ“ßõy$Ï-ñZéô†}üj(üü•øH›÷p“â#ÁÔ^¨ÜÈ ;${»ví‚ÉÏΨ>òçׯNÎNz9hœ©ðÅÞÉ^)ýŒu%í„—ƒsûñHÇ£}í§»KÊžÚ~Ò.õk·~WïÐKòÎŽÚ~R/þôoÚïóƒzá‡ôã«~°~oFoŠ‹I¿5î_ú¤¸ãŸq€[i¼Yé•ë÷+ù/^“~ì-ÇÞªø±ŸD_~š÷ô c(ßøü)¯qqÓúg~)nsÌ'ÅEæ÷ÃÔßv('ímzõ}´¬OûÞ够è­ùeoÉgã*ÊçYlÒïZ.wZ| ù|oʇñ!—Þ›§È9ùñû”wé¿q¤C¯ú _ã;R<å˜Ç[ÎÈW\éà~à·ÅgWÞøÞ©¿¿+Wº—ýÓï¡ï=H¿¨¯zŠ/éÆ÷¯üë_ü? òé)\œq ß»–ËǶ‹¿ ½’þ…£÷\†K¾î«SÏÄÃIç©}²}@ñl¡Î5¦ŸÍÞMùÊíyFäή½«çry¾°É×~•_{Ïë¿ðã|ë`ÐÞ£ÅGò9ŸwîåÜ[»Œ‹rŠS3>Éß|iOqmÞožw-—;-®©÷gÓÿ⿲¿ÔžÊ®ÇOyjÜØ<¯–zœ³Û³ßÁÇÐ_89õñâþ3¹U/>ßõozjüÎ.ž¢Ü·G{Õ¯¿Ôw&ïáØC”Ç>Ô|ù]ÿ±³²×°‹ÕÞÊ.ŸÁ^S{vå={»¼@qÉWÿ£ùýxŸ•½Ñpcg‡œ¼¾ìÏâEØãØ'›ž‘S4ï_Iúú«ã;í™ßãÍ>^ÿ0CŽØ‡Þüí¼”ú‹ͳöÀÔMÊ%wê'÷ü°ã{¦Gì/æ ýÿ¡zèþÝ–ÃâàÝ^Ì3ª}üëì+gè[㓆ã»ï®åòi£G/¤ã§ž†¾Ž2ìë/ñfo‡7 ^§ñËÈ!}>9ô3ø°âã‡æÆä~?‘ÿ‘G´ø58øUß8þnÈ'œÜ؉ÐgF¹øà_í÷›üâw\Nç5z¨\þµàr¾½®«žÚyìåå¼T| ?†Ó_™ù·8ÍPx_øjzõúR.Š«‚‹„ ø'ú廃¿¥^—ß-üšoÍêÏî:'¿÷í¶®zeÈýÄ·žüÀש^ÿ¾SÞÓÏ~‡7ý°k¹XéçèM㘇’÷†|Á3Z_À?Îux'WÊõûFNZ?|Õ+#ý¤uPñÊ#ýô׿»â»Ö}QÚeÿ5ïXgýh”{†ž&ŸþšqÞªoyŸfZy¨}Ί#{¢hý×Ù7O¿|p…=×ú rgÿ ƒ”{>ùà?èœýt^äüÁ¹E÷É‘CúYÿjIŸæÄ9tžýnÿ 7G/ê-Ô>ų|Å%ãêÜ^ÖçüÎ9`q¨yv~Üé®åa¥©7ÆÕ½ÌâÊ2ž¿–óÙÚê·/ù=_Š|¹ÏKŠÃJºú3S﨟œFÉ}Þçñûæ<ŽÌ9|q¬Òå÷Þ×N;œ{ãŸ=Äü0ïa;.>-”>7Þ[òç­ûš'‰nq”‘ŸÚÓ3žìpÅUåwvNvvË™Ž]T¹ô¥þ+ò;;'<*<Âeåå={9œ]í‘ïÚy“Îã[x?Ûȼ ù(-éŠk»½”grâ}ý&E>7Õþ?ør%}ä°¸ ÔK>ëߊž…¡\ï‹—ýPüþ~¶äß+ø±âTõ_Ú[?fúE=/Û\Ì®åa¥G+Wri|Éeäá¦ôæwß'ãO¾ÉMžëÿS=ä>Ïän¾/N^Ñcé†üÑŸâÃÒß Ô÷‘ÞÔÛËïKõ!ï‹ç“Îïã{ÝßÓ_—¢oð™íç ݵ<¬ô/Óâ^¬ƒà³ÌëÅGYgX_ä¹~¤#'î#Ì{ʹd]d]3ä¼õZß ¾¬ø»jO&uý˜ý ~¬K­Ïº/Jzë*ëÐw?p`]Ï¥^íÒ?·æ{{Ìoö&ÿ®åb¥Ÿ£7½w™qnüqò˜ñ³ËóK y#Ï« ‡Ã.Zÿn¡io㢕ïP|ÇstbÙnqzÕ³k¹XéßFÅ‹-þn¦z4äéµ!§Á·TžØÙéÓ©¥œL¹-î²8úLïð“gx5r /»~åÓ÷áÕQî+I_j^ÈsüN•߉Ïëût“®~ùÃσ+}.åòótfYÞ‘ùà•åwˆßDÏ7IŸQóÕêwp'të7Òzо˜§3NÖIß[¹ä8ù­¬gØé7Üšõ=úÎËú³Îßë:úúÖÈÇno=O­=¾og†Þœòû‡”_ýz¥þWG{þÿ£|óÅ?Žr†ÿÜú'Ôßõ[¼üŽîZ޾*´ørÏi?b}_œÉÝŒ›}L~·¿è½ópžíÃéÿÎöéôÌú«þé}‰œó‹¨<ëKûsö{÷rê? Ÿ)þEý3ŽàЛê½{:¯ŽïDûs¾çÇûÞ“z’vnÓi÷X6îçºþÛ‰þ8ïéyùÏó¹Œ[ã H7äî„~9ßâîä¢ßSOïµE?{Ouè­ó½Þ uï³÷Qñ•zŠ3ÊïÎÏàsFœÐöKÚÓç_´qKÕ—ß«ø.ö\qèƒôÇz6ç‡}.N.éá ï]õæïª/½¯¹a§©ÿ²üîvÓGàsf\Žy?Ÿ}Ä=éÆÛÌ3=â üз¤Ÿñ›Ø?'õ—rêÿø¿âj°Ÿ¶ã{3ÚÑ÷ïŒrèIûE =lûÆûïfß3éÍ#µG­ë´¿«ÞÀ×Ô?YÆ¡¸«Œ¿x3ÅÃø}P8vÇ›?Ïû”‡ð€8GÛøoákúSc—g÷¯™¤ç_êZô¢Ïøm<Ãð]ÿ=©§~€†üÖ¿ÎЛâìò»~Ô¿õ7ËÓ_cý6âv>PxW·kyúªÐƧ¬ä"qGóq+éóLg|Bq?oŽ÷gŠÏü~,žiäzú¡»ùiÒÑßñèïáO<Ðús3_È=ìï£Çq|׎­¸ºâ›öïÛ_»–§¯ =†»lÜYò>æzBΫW‘ׯÇôÞüM¿|î/¿Çø;ŒœN9‚ÿªŸÅƒEºíw¿{›ö4¾§ù;Ïâq6=>‡ÞTS^ãs*žúÎŽïıÑþ¿S?nŸõŸ~Í<G»úOûûè‹õPqñÖi‘‡âóûÕŒ—õÎÄ=ö~uy"¿ä'é»nJ=WG}WÆzæÝ)GÊ ¿ö÷½zÉÛôc[?nö øÆOøqß·õë¿—å]‰jGñye)ß]ÿÂÁáÿòHçÞFýßʧ=K½[é#Ò›¹¯í=¬ŒÏ<·šþÖ݃qŽäœÉº¾ñAéSÆÛ¹–óûo8¯Ky0æeçpÕËÔo^ÿäÞ“«¼w>ìœúbø™þÚÝÛñÜó9íÒÊÁoÊGµ³÷Q“ÿÂ&_ÛU?j#ÿôëŸ7ý¦õžÜý¿×+ý’õæí!—î+ÃWºÏ^r.Tüå†~µ?ÂÏ…¿üý-üÎÁ“»í¥8ÚÍxìZ>V:ÆñXÜÙŒã»{‹ñª½„]!öœGÆ; ¼éåÔOOاÝèÊàûòr¾®Iúøåضs“¿vSq³jO¢§·6éÞõ_^–÷Àv5^PÚÅ>Í¿ƒrühç§•~AùdÇæ·©vùå¼Y¹½–q¿é|÷°wï¯Ïð¨äzâ0á!ê—&r8âÞÎö÷¹xý@®Gs~uê'úõÞ²Üm?JOÏð•vUŸ—|ïZNV:Æñ 9Œ|v¼òLÞè \ðåûËÅ—ÆyR_õ záû׸Žã»qåþû¯âFüÆcõÖU깺¬§¸ðÆMÌ{¸žÁOËï=ßQý¬ÿé)ýZ÷7#Ý®?2ŽÖÖm~¯?åŒoü™=:¾R{dïæ¹~¯—ü5Ÿûpõ=ö7òYýxìWèÜoïÜ_~·qo/ÖqlWù …oj¼ÇÑžwíw}¥_Œö¼È¹}ªý³s'ûrx„3ûÒù:°ßŠÞÀ Á¡áûõ|W´cà»¶q•w¯¸í~ÈyÀŒçðƒÔÓø¡þò÷¡÷oÅõ¬-ã0ôøìú½yií('BÏ„Â}ðOñˆíq[ÿR¡p@p2ò`;ÉsËß‹{—ßž‰âŸæ•¤;•t/ y†3cgaOz~ éÙ_·ÉWZ½;a·? ά¸”»á+¿ó—v'p2rùIò»~íÿ{K¹l:~~ž[–SüDꇃñü ö¥åkÜCÛõ«¥Þ°ûîZNVzº{–ùõ›K¹-n2úRû=|õôãéû¿é»Á•ïû>|ä³ò']ì›·9üÖÞéû¡þÓÄMÜ‹žÔ¿Thôƒ?EñL§Z}pÌÿ2Ò½ý€ï ;'¼&¼€þ~>¿û®õ»º®ÏžÚõØÄõGûþËÈÓ餷Ÿ€ËáŸÏþ ñ83_ÓGø÷ì³^åѳ·’ž*õÿ`ÈcãµÓ¿Á‡}Žûp5¯|ú޼ñ ½?oÝÿ»P½ýîò»Ö}ï½ùÁº.{’h÷©ü~ù^ðƒæŠñ¦7ü¯x/½}µ{.äŽÿç×GyäÜ}!øšý¤ã'Ý=/ø¿Ó#÷t´Gþ»©?¿7ž!=J:÷_ÜkhüÇÁoï¥ÜØÿõ+üEëÕoä;åY¿­ß™'‰ö^nãðENæ=QrR|JÒ¿›ñwîv!òRý¡î6]ÊS~ã†ç³=çõ{ò;ÏUnïq†?zÁ¾ßxŠÊK¾úyíº¼üŽtž ¿—’îÒ¾7øh\ÇÔÛ{§£}ñ÷¶kyXéCêͼ÷\¿GwöqjØùÄI¤7ÓŸÞ´þcêW#ãÈÏÿ»ýû'7”_©›ÒG>n&_ý‹%-üì4î›ß“žÿþ6ø ¹–ôÓšòø‘ª?«”Wÿ=hÊ»yrY>?>m×Ï–û’Æ1Œüó[sãþò^\Rýàü$ý¬>|§œûYéãMë/ŒŸ$ãÈZýDùÝsÆýý¼§Oä¿~¥È‡ß£§Sžß>ü7¹T>ä U~ã‹’Oòýiøúé’¿÷S¾öø_©÷Sþô÷~껩~íºu/ßñ~5?|<ÚmÞù`ÙéŸ]ËÃJRoꟾ<àûÐyzÌûŸéÅaäž²üÝw¡~ É¿z~–ïWä¬q4#×üLU?ó{óçÙ|ÐzÈ­ïÑþRë_0ÏñöÕú¢Ýæ…» ýÚö«~о´‹Ÿ¶ú]¤ßÞ·œ•>žô˜½ÃŒ«õS÷-y&¿õh]FÞBí'à‹í[¬¯¬ïá°ùµ¸4ʹ>‡4éú{ÚѸëáNY:øLõu=é}ò¿·\m×iÿÕ%¿ÇúU{ù}lœÝð‰/ý™ßw-+}8ZaÅ5f/fÜÉ«û7Οìw{oD9‘;~ÈÝ[q^çü¬þÝ“.»~Û£Ρœ3Øÿ³+9Ç-^2åHWÿå)Ï9Þ¥Ô£øÁ¯ó0çzO ž¤sÇ/šrå緽î}.t¥­}…ÿ#vþðà§}‡ýÝ“ÝíýåäcÇ8›÷î»7ì¾6;‰8Ò³‹²yï´zÅÛa×T?¿µÏhWžùp/|ÖϾÊ~ÄŽzf´Óïµ¥|¸qOáدÎ/¿o+}¼iýõÇi'ßp8ð&/? û¼ønð˜ìð'ò.nç›ô2”ÿŠýPù^rÈŽœ |jõ W?oøIº“yOrÜxˆ›tð{åoÆ/Ä?ÜÑ y†‡…ÇÐŽ‰g.g×ò°Ò•~©óË©è=†#qÑŠCƒ—0/Ìø‡ÃPqôèµåï+]é“H·~€£?¾gg†ÞøŽÀµŠß>ýz üfqFâ9¾±ü}¥+}i÷AoíÝûëþeúÿᇊ_ëÕsCo¤ƒŸ«_ªÔ|Û®Û½Ò•þMzãÜNÍyÙ¼¯Í¯SÏŸ-Ï˶çqÑ+¸¸âë>^Ï×VúÄÓžO׿Gä{øÙú uÄq¬þ@œG‹tåÖŸ®ß›•>Ñ´öÔÆ¼ßßøx68¡à¶éöîýŸ üƯ;½ž ¬ô‰§3 §Y\ÙЇþ½‚û ¾çxºèañj'7ôý¥>®t¥O-NôýÃ?¿ØÆÿ,þz¬ÓŠ·‹^l²í‹JO’n´8»M¾]·¥+ýBz_WÜ]¾ðz׆Æz«x´è£žíw=åÁ½¸º+]é“Dë7nO\O¸58<¸½úwÎï—¢Oê é•[‡I—{ª»nÿJWú…ôæl䜟x3ö}¸þü~!ÏΗŸcàkàÞè#ÜÜ›ë÷f¥O.å×G¼¹ú£×¶8Í“— ®”ÿ‘âUѼÿÆ£µßìåÉÆmŒŸ8ñ!ûûŸ6ïù©»ñ‹Mú£g—ëÔ•~Éò÷Lä/ý}CüÎ?d\6Ëü—qºóÇÍø*‡¿ËúüeäTùü¡ýŸå~¿ÁÊGÊ?N\ÀúÏ ž¬~5ã³~Sù&oÊ›íoœPõ~6ä4í Ï“ÿ/}<"ïÅÛ%£8ŠâPÞ0>üOê¿_.Çq×òõ´Rãb<ê?Âø!¬d\ùãÝx‰âZMy‘çá³qœ_$/ÉGOø;ã· >6.艥¼×o¢z‡_ÜÖÇýõ¥–/ý¡üèß—6üþ‰û.òŸg])ž÷ˆGÜ篯ߛGª7æ5ë›Ïœ\E¿ÌïÖ?-^òdòKgÜùKëœÖÿÒ¨ï;ƒ÷w¼§gîOð3ŠxÏ–{ÿõUïˆï®N…ºg@Ÿ1Úþ©ø9÷“܃p¯ètøz5í¤Oo¬úòwÑ÷Ŭçë/7ãa]Ïg÷ÝËñ©Ü)‡ü‘øýÓ½÷†Ìú)„w¶ÏÇgýéæ½ötŸßÏÞ_žÚ~ç~Æ} í8õhÖiõ£ —úý´Çù„û~Î3§1éáPWüÜß…öþ¤{Íü÷ñK 7Ùx—›qm9ðöâãGç]nmä åló÷È¿™pÉç†\ŸË{úß_¾ÓéÎ-åìXûÛîÐÆ!¿©ÿ¢~¸µh÷—6½·Êo£ûòü:8O¯ÿĤ‡£s/ýݼ÷þí^éß8^ìüƒò;xÉxE~à‡ç¥ñ½“qxŠ»l|ЖߓŽwÊï̸7.Vò_N:~ ܯ?€¼¯¿…Ì/æ-óNÚW»­ùaæKëÇ5Žï£Ñ›¹êül>Kÿwý>äŸ鎗ùÞ{r°˜ÿ¶ëŽùýŠˆKØ8CnšßóÇËvÔ?.¹#gÚ•ò—pÊ£v'ÝÅG#‡[Õigï…zo<Ü¿›þ±ßY~Ï·ãsÿ÷+ý¢ãE.ìCn/Ç<ò›^ÿNã{c½ÄÿÒ…)Ëõض~¿ïE~éëòûÔy¿ë锫^¿‡¶|úf^Nzñ àv¤ÃOöqݯ]|4òW<‚}øÎ'Ü7õ»óç)õ'´¡»–«§v¼øwÃüÅ¿}²o?·¿”qØçÕÏ”r–ãº[:Îè[埡ÅÑ„ò ·zíïé‡sr9ï‹Êï<Ày9þ>¾´qà'Î!ñìê¯èµÑÎÄW¬gœGïZ®žVÚqê9nÆC\L~™œ³_ÔÓXo±·±‡ˆŸÉ®ò¬ùs|o§m”§~ñ©Øù“c—y9ïÉÙK¡ì<¯äÙ¹¸üäþàO)G;N†š^L¾ý%Ÿ_½£þؽŠËøÍ湸 q7ÍÚkœÅØ×Ð]Ë×ÓJk6Nð5¿ˆœÄ~xã›ñ)æ›q’®øŽ_']Æ[ü¶;Éç—ú׸œÞ¿°Ô¯ú[3¯Â‘Á!GÐx‰'·8mð>Ÿ…’ËØOág¤+N'åÁµF>ïh߯V¹\éƒéQäõˆ\‘§Ì§u´I¾g¾®?@øÃä? Þ¥ø·è_qd¿ Þå(ß?ñhéUë G/-çgß©£|?TWêk<éO–útøµ´+íÃç®Çg¥í| gœ“ù>“ÜÉ'îrñ5âÔ’÷”g]qã^¾ÿ+‡¿ßЮ×àâþuÌÿ¾ƒßXæ+ÞÑ÷â×)ïß—õUo&N”ßNß9í„SƒO³N}ÄñîWúdÒ⻾>äEüóÌËðRÍ÷ŸK½éúkßþ$òo½4âd·^úú½eyÅYú}ƽ~&ÏÖŸ¯-׋åÓ~íÅ䃣¤ðpüéîzj]§­ô>zÃ¥ó*¸šúqÎ劉ÞÀ¯IOÎà —:/°?·oÿ’~âÃäsN†Oþ¬¼1è«Co”ëw÷vàñNz¿·Ôç)»§•>^þêðüí\‰k ·U¼Ù'çÐìç¥üÁ9çuÞì÷ž ç=9† † =yŸxa8G89¸··—ëªò/é\ºñ£GyoŽük|é•ÞOoØ9g|ñŸá<áÅÁa·?ˆü]LºÆ¯‰|Â4^tʇƒcßTã=û=ù/$ûLí¦ÉÇ~:q\-ïî’öÎwR\Mô»ýóÎRVºÒ{rQ|ç­?¿øâ4ý€k+.-ï‹\ÂM%òÔ']ô>mâÛ¦ŸŒâwRNñ1Ëü3Þuýnä¹xãÉÿXç |ÑJWzO.|_à¹}ïÞß7ì;‘tï ¹¬¼&}¿ò‘óä«_çAá°áÔúýðݸµäkêÏ¥ùœtýžªÅï²¶ý³©o×ã´ÒÇ‹vcýb}çeïî½õOŸ#÷ð9öEö7÷/W=)¾q죬óä‡rŸ®®|Œrûœv7ݲÜöOòízœVúxÐÞ‹„ÿ¢?ð™•ÇÐÆ1ŒœÙO;v.—æ>£tê‘ß½Nx0éÕÓ{ùýôÞ†?ñ ù©é=âQŸýÏ ‡>¸g9ã:Îs…Ô¿ëñZéãA÷ÙÅIÇìÕ¥ÜçÅÌŸ’o?ïc¬½_¹Î•Ù[¾òáßbG©¨õçwv%vKùó\»¥t/%ß+ƒÿØÊ7œüÛ¸­=»¯•>^n¬þi"ïÅ—ímþê×é·‘3xxƒÐ;ܤ?:™rO$Ý?/ÓÕïGì«GÏmò•rüÌ&]ëÿ4ù¼ÿÃ&ÝQìBð3pp p>}ÿ‹e;jÇ}~Õ“/$G¿Ùô_qRéoãsh|#WG±{߯"Ï'ÝïC3¿Á‰—•磯-Óµ<þŠ~™zB‹«‚&·Þ“8™ðËoß®ûy¥O­?°½Í¼SqÁX‡˜ÿ*çñ#t¿ûû”_rb)ÿæÇ–Coç|_ò¿Žìçæû®“F>óì®ûy¥Oí÷ ´~ô¬ËOŒùÜgý²—¿âˆ;Ö=Ñ'úw¬úd]Sü$ýQþ/í36Ïô¢ëxIz¦œáp¥+ý2è1ÜŸutðˆîMùŸ<ó{pùõg,]îïÝøãæ÷®«ì·³Ï(ѺÛþxî«=¿9Êñ»ýõ )çþøVºÒ¿IozO0”¾ÀYÁ:G=í}ž‹Ü»÷W<®{„ð‰üYúý[£^øC÷3á+ÅS~s”ï¼¶÷ÎéÛr]æ>ð®ûy¥O-¾Ž=. ~ñ˜cïÞ_ñ…ì䜅‰{dïPŽzÙ1ÞJyêga'„ÃäÃý{ø«á®k×ý¼Ò§‹Ö>]?'‘ËKC>/F¿&±v礇÷­]qoCÏå™ýºùéIʸc|ðçÂ~þÎàkø›Yõf¥To*ß‘c~^Šûõ{åØw&r[­¾'èÞ¦|ÏüÕÿ¬tòKO?ÑÁGß½›þi£Ÿ»îç•>]´ó»{ôÈúÇ{ë«Þë(÷¶à7àIèÁôÇÄ?Qý[Ç…Ÿ®çR_ý‡?ß/ïãéXû²NÜu?¯ôé¢[?ü¡ðOpN3N öÎìÓíûË9pïÑýBéœ?ˆGá`|·¤?«~çùýC_'ndÄXéJ¿½ÙÛüç?ȼRým‰³ô§<çÜ.¤çÏpSαÅGzæ`±nš~–zç\¹ñ¼Ï3hîç§Þc÷þ_XÖ·Ò•~´x8Áç÷îýñ÷@žÙ3g<¾úñúÃ&ãþý"¿‹Ëø›üÇ9/n ùf<±âl~·,þ§úL¿émô»îç•®ôi¢Å×ïêX/Ö®”ßùaµå‡~žZδË>›y¢ó@ò±gù¾òëÁ?‡ò×kù=-¾.Ûwߺ˜]Ùúú{ƒ¿×ýàJ?Ÿvÿ•õ\å‡?[û+ëGzõÖÞ½¿êÅéäsO€<Â787±_t? ~xÇ>ÑzÙýöéÿü$]ç¬ Š£°¿í…e¾êÿÌß^–·Ò•ÞWoÜÿ"—ð¨Î!Ømáà'|ŸœS87,ž!ùÍû¾[¾'gèIòI7ýJ©‡þÌûo3.">_£7C?ÄÄ_ýQi÷ú½YéCè {Pí­ä2rîÙ}Qé‡ ï«»§IßÎŒòZÏþRþò§Ã~Lœ_:w3¸‹¶§÷U“žþ³oýpPúë<ÿ­UoVúz#þLã&噥ÆÉno“®~¡ÐÈ«¸ ü^ÀQ¤~£?„ ùFÏ þê÷ å^¼»óËÑkxŒÆ7Lúú© ô‡ŸªQÞJWz_½¹9jÁÈÏ•ÈÕ¥ü~íÖŸ3ìU¾ø‰ºù¼ʯÔÕ½Mzþ Ä{{/ïë*éßKù×Èy~¯ÿ›Q.¿UWå ¥ÏïE´ƒŸ*|\O9ô'õîzæ¼L<Îú Ìûâjñê^Sïe„=wQÿÒÊÉsqèÒ/é®Çe¥7íù1JÜŸcaG™ñ8Jóž}ž€†=Qùîw³ç°“z¯~õ±Ë­î'÷§ñ‘÷¿Â Àõ±ï°ãÄŽµëqYé“Ak7'W§†œ±Ï¿Léƒ÷IÿÂŽ' ~jè¿ ìôS¼)þzþ¿!ïî§¿´wï¯õâ@ÜPü|kðMïèï´ŸçßùQÔpE~g_bGî½ö<+Ï=`éÍ?pùpÑÿúWñþÕÑ_O>ó¿üÕ½>Ê7~îɰ‰#—/þøü}Êw…|—Ÿ÷ìÌüKþ<˜÷6ïë?? võÊáø½q•ò;œ³x“úõÛc\Üû#©=>Ô¼¯ŸÌÏÆMúyOîÌ×ì€ú>E?šßÝð] ú¿þEF»ñ×úË1Îð¯ú%?}x>帥^ñÚÎŒö¿h¼2~ð¸ø®>Óס—ì¹ÅDž?#_¡òùÞÁ©³ÏÂÛö¾Õ˜/à*·I§\ýßÐ{Z£ve~Ø“}¯Ï¾'hól쾘ñ7nîuúN7ÝÐþ‰Éï\ŸÐßÊSÊ7Þ³ßOrá½è ܉ù q•Bãg£í3þõ'B.–òÐûŹ$=ù£‡Æ ŽR¿šWÍ'½”g÷ñÌ·ðæv~üùÞàÇ8’ƒWFy§Gw9äí$=Íïp øƒ‹Ã—øUÆ“¾ù.œýå>¡~)>!éê'"¿Û_Ñãe¿ÅÞk|w°7ûnwò¤}öuúÍþQ»¦ÿy8ú÷j?Ûv ½ÿÑŸêzè]žíW/dÜÉÍùðûÃQnõë÷äë>Xÿy†ó:7Ê!öÁô~Ùïš_ȇqô݃¡ìñæ»WGûì›Í䙾˜§.Žvº§Z>½Ï¸›w{_Ö¸êò4Úï¾íÁh¯rŠÒ/7ó$|€y‡G”÷;’ò¦_ørÒs”üî<¾Áyzi1N‡”;ãåøÝûÆ#Ùü¦\ó\»;~WkÈÓÕðÑøXú9õx¦âÍøWìPWÂǵQ.ùº<ä¿ð§5ê¯Ý å²·]ÎsìYòÙøaû#_Ò³oÓ#ý„¯âC–ýz%ùØïÄSbO@7L¹Òúð£=3®Yñ.æ©Qžþkýéçi?4ÞµWâ_¹ú'é‹kã×q'_{ËtúiØM¶ñ§n/ËS¯~Ô¸^Á‡ñ ß—!§žÍW‡\ÁÜ eÕ_žÙy¥SþMùp ×ÉMòÃIÀMdAzx3åÔ¾›|~×Nòm<? ÿêòqø³‘þäò}.^ÖÞÌîuc¤¿yrYÎûúkÓmçáÑò¹íL=ú­8Žð{˜~½AnBñ'ýõ‘N;®¤ßo¦þ›áófÒÓÛ›?ÝPú~#ù²|V~ùK?{¯ŸÛå¤|ýcä¯Ü¨?òp]{G¿ÃÓçƒ&_q1y–ïÆèÿŽ=Ñ?äáôRÞÕ{Óû!ú¯íV¾v¦ßá„ôïM|¦ŸÈKÛ­?¥‹|é'åßüt”£|r¾;îùýð“P|å¹òJÍ­Gýêñ»yÁïú/ùÞ§G)ÿ¿óûûáãýðñ~ê}?å½Oß—rª=ÊÓOúS?ßêÃËyéÐûðÙ|iÇûÚ‰OíUŸ~ú¹?å½ÿóÌsÆCúèï¡÷ûc|<Ÿé~6ø×ÎÙŽ¼ß{íIßüdäGÕszÉ·ñÕ¾¶—ülYNå›<üd)oääúà·õ C«c\û}!Ïøšã”ñÀ‡qÖNóCñNøÕæUý@µWyIßßÃù¼ü¥žÊCÚƒï–GަžäwúÓzQóèïÎäÙøŽþ6nä í®¼¢ÆCyô…œé/|üt9^úoÎOø.~Ëx+Ÿ|„¿ÎÓ/Ûo6å Ÿgçwo<ë¿O—õÞHÌõ”që ¦GñŸ|oZùÌ{øºë)¿øÑ”çûå»í»pc¤/Î/¿Ã͵R¯õžu¶ñ/.<ý §g߬ܫyß~‰Ü§'ÿÝ%_ø.®Ü3>"OW‡œï¨ôŸïþÍsq…·—åÇë}øÂ·öÌõ3¼Vù•N?Ü^¶Ë8[ê™_¹WGyÝw¨¿Æ•܄µYgËÿî?õKßuPÒÿœ÷s¿OÝ}_ò)\Ø—Ù÷´¿Céµ}Ó{£Ýø$î9/î9VÊo<ëün_Ö}[Ê-~/¿;÷éþ>òãÜľË9nÏ=P~qKÆ/ù/æ½ó8rg\œ(Ïy£ßíÅCží·Oìyœüƒ_çÚiüìÓGýâ&ß±xÆ)Ç~´ûüüÞóé§ó£¦#§Úi|Çzz¾™qšqÒÉ]Ç#åhçܯ;ÿw^§ß.ŒöÍûmΥŞç\ó\̸;ëyoÚ¡=ŸÓnÏI§ßznˆor›ß/‘ÃPçÒοÙ;œ{ŸË{çåÎ=ßékÏHÿ8ï‡ojœÑ<³·ôþ¹ß“ÏïÎãÙ‰áÙ¡ØUàœÃ²K±›LûÉÆïÞ³›Õž˜zZ^¨sõ׊?v<övvĶ7ô,=O{_H9ð\øsîÏÎâ=<@ýx¦>ö-ýÇÄ®ZûFòŸÊïÚËŽrFÿv±ƒ4îôy¯üÇx5~­þJyøšxé{oãÃ_Mý£’הǞ¡]ÒG4ês¾Í~TÜö¥¼âZò;ÜNí®¡µƒ'ý+yßöçwåGrãIÇ>Ï¿Opõ×w"åü×à‹}n?>¤x¼—r{»¸Lů¼œt(û*y‡'T<“v‘ç×F¿èã®?<³C×>Ǹ“/~'ðmüè}QüÇgöÆ·¿ôŸ•¿âÈþR?<¹#/øÇJ?/åÂQ¼9ø9=ô½>ýX|VýÍä÷‰Ó2®øä§*üÃÅè¯úQÍ39€ë!gßå“OóÔé%ßÛø,y&73.‹þ(6¿g¾- >­zrá_üo§VܹóßkCoáùÚz:Ê7oÀÇúWÉ{¸ÁGÿdGmúQ§òÉ#9€ÃŠüv^Ñ¿pnôÊ÷KûfœãÚ¸Îæ¯!Ϥ\ø4ò£ýôàû··za<Ôg¼žM~òBŸÊÏ†Îø¤­·^œó-\9‚ëó¢ær­*ïú/Ïæ1ãl%çùž§xjô|„ï’ïùîzáÖ¦¼3ä›>i—ïQê-N3ïÍ3ÖMpkæern>é:~'ý–rÎåÙºiúo¶Þƒ#egן¾ôÕwq®×êÌx˜ò;{wõ$ÔxûèGž­›­‡ûÒïC/á˜è}L;ê߯ߧ<›Oå7ßÑ'ë¤âwCáwÌ3æsú„¯QžyýQNqBÆmÎ_ÆÙ|=ê…§$ÇÅ+…Îï­}ùSŸ÷p9Ú[üBäåÀ892~â«Øÿøþwÿž÷Òÿ‘rÌKg•s7ã‘rð‡¯ú3¹»”çö-ôÄ-ùŠcH>çlÎ/‹‹Òí÷>¿ôA9p2ôA?_|9—$Î9*å6ÿí%_Î7éÏïñ­?Xö[ÏG¥3æ_ÓÔÁàäðѾúo2¯Žqƒ't.8q“ä_ýÅ¡%ñ€ÆgÌçÆ»çÊô‡ÜšŸó¾vˆ”ãœÜ9¾sìâ~ô~þŽÏð_? ©ß¹?;‚þŽÁ¸9_¦Oì•Ò9öŒúL.´³8#ýJÞBÕÇ~Xÿ á—]ÌüÅÎPü“~1àW:õâ›~›_RÎįõþ}ò³/À×9÷¾¬Ý¡?ã>û¾MÿMµ£í/ûÿÅ¡é¿ÑÅ âgÔ÷îè'íwîýãQNý ä¹öüz?äÄûwï96æEó7ýðž\œÜ”Wû÷éÈAÒ¯¾‹wó.{Uñ áSùÒ±Ûª~E?÷ƒŸm~g;”?”ýj⪔_œö~þüžüæ7õ/s´¬ÞþD¿y¯|öÎößOÓOô ?øŸ×ðñɦ½µÿ¥]úY>vgxø´ý1Æ©8ýq°ìGöÆâ&R~ñSÉ]9é§iÿ®(/ã]\œòN.Ó‡çâC’¯vyùñ‰šÏ†<à_ÀCÔ¿•úÆûö—gógÆé}ò¬ÿÉKÞÿ÷Á²Þ÷ñur™¾x(õd|*‡äÙ¸OýLS_ñ”úßïC®½Ÿ8œ‰7‚(¾'—ýVùLºÿ¦/)Ïóg\«OôÐ8ú]ÿ=Ñþ⮦þm&€êYñ[£ú¬|óÚЛÎs³_“®Î<Ò~2®c¾8† $_žñ¡½ÚIŽô—ö¦}ÿm\~²¬÷}ã¬~Ï/ç¿ù»ñ¯\¨_ÿŸÃåüÖræ|EoÈkê-Ú©r`üN¹•n”W¼Ý­Ñ¿C~¬£Š7ãW¼2¹üù²\ø|Ol~L¾â¥Èöàÿî²]Å9æwýõßæýI®ŒÏÓÎôYû2^ä°rüýž©Gº)úS? äÐ8ÏøÖ/éïâ¹ð1Æ¥åû]ûö—úaP¾µŸ~ï†ñ˜ã\y¢g~—ÎO·Gÿä÷®g”¹&÷mGòi¿uiñTy&·Ýd¾¸>êÇ-ãj`}Hnݾøå”¯aŸ\Ü\Òõ~Kʵ>­:ý¢]éëQû¡kƒÿéÕº¾øÍ!O½/ Ÿf…*§ë›–üX·¾7hýîiOøè½ŒÔçÜ ø»ä·nñí}ÏÖ#)ø-K½©Ï¾tîÛÚü ©¯ã–çúAKyÝ~¼”‹úã¼µlŸq´?3.öõOýyw9.õ8ø..3í"ÇÖÁÅÃ%Ÿs³ ©¯ç@ä˜^åyú‰ëýÆðMþïÏ$ÿ{ç0~/Þ*åÓ£ÞÎ3ÜsVõãîéGó9å_µ¯ì¹bžsÐ?úÏ&ÏŸópû]ò­þé7ìÒ ÆC¹öµÅi‘ïОãá_º—ò„ßž‡&¿sÈÞ‡4>áÎyƒ|½šòPç‹ä žÎø:? 'ò9Çëïø&gyîøëߔ㜸x´Ñïå_?kWú©÷Vå'ô„晽½…ýÆ9~ï§§<ç~ìgò~ÆO˜ñcÙÑŠ? Îßåkü…äs.\;jžÙ³ØÃà:ü^»Ô(—}¬öíÏ3»C“¤ƒb—Ð_ìì†ÊûѨW?8Öì7úù…¤{s”ç\W¾7G½oñ:;Æ«¸‚”_bøLº·?õã ~å„N?*ì)ŧ‘ò¥?òLŽ~4Æaúm“ÿlÊe‡;µwþ_;rç<Î]ª8?zªóÜxÇÒ¥íc÷ßí«9¿7®ŽòòÞ8ÁŰ³Á¨Ÿß’ðÛø¯âQ²{*ÞëåäŸqŠØ³Ï,ëÿò˜ß¥ú?J9~¯Ÿ&í#ß¡3î—þx%¿{Æý?IÊ/Rãáñ×®ÚÅõK¨÷ú£~úÿð"o/û»ø‘góÞ¸³¯Ã¡L<ƒvOùxsÙsWS¼áàG½ð>Ť<õÑr93õÃCžCç0ùÈÛœ§ô3ü@pB»ök÷¸ÓŸnúõ(ñ(ïпē…£:ÊóQü¼ÝødóÜx¹¿X¦?ÜKº?lÆ¥ñmµ¬çèk£üçÇsÆû(ø­=å¦^|ãçè_RŸzÅñÿ>óÖQôè(~ÎŽ2ßMþŠ«ÿW½áãNüKÁ›¥¾òÿÌæ÷¿v\ð»kùXéýiñ„Á‰—Ÿx"rýš?²£à¬:ßóâ<ó½¹1ä‰; Ï}>ªg©—|ÞùSêù'z¾#Ÿ‡ÑüT®ƒ3„£¼>ªÑ|Wo~¿)¿zóYú%ú^ýL;¤oœìðñWÏgÿg÷gÚøéüò=9WÞÔŸ(}ò]±ÞÓïðÖù^ôžCqÞK¹íïæýOÆ÷‰ŸÉè‹xï]÷’ë?nžÛ®ñ½0?¨oòÞûÖõôÿ·£~ýæ»—zûü§/¦7Ö÷»–•>`|ìK¬çɽý³ûÓ/²ýžrì_6ùé§Î^Uò÷ÇwÏþF~¸÷PûÉçÇïÚçì~Õ·G»_ÒÎÑ^|Ú_š7¾3Êyv´÷ù/¨7ûë÷æq¦Ý98{C÷À;t^Âï(Úx¬‘›yÀy¹w¾2ýÙÒ[ç ½§–òêO5¿;œ~4ë§5åõüS9É7ýƒÿp”ï}ýJ¯}úÏïKýþ«ÇåÍUogZ<îAä£xÙ¼g·aOª¿S¿GnØÃêO!rëÙýú%_qÒÑSç髜ô)oË÷­MþÞó_Î_{O?å²£Õßéþ¨Wþ‘Þ½iøáƃýQ¿ªúáÖ¢}»ç•~¹´ö²úoˆ<Õ_Fä ~A#—ò{ýœ&]í“¡~gÇ«ˆ[ËôWO_k甞SÌÎz¬½ì”gþÈ=û¬~hæPíÆGï…Ð÷ý¥¾^übß›•>Þt+cÞþñ”“<×þ9¹ôyò{õ„Þø~}¼¬¯zEþ|/æ3=šééùé«WôÓw'ùÜëéýò¿·ÉÏŽßv(Ç÷)¿÷^žïÑÝ/¤7Ú½kùXéÆg®_øq²±þ°®i<¼ÈÓÁ¿®³¬oÈch×eèXWÕÏOê³n’®ñü”>p”ÏÎNžíw²žj?œK9î]Z¿ñ;^üÅGËçÚíSOã?,Ë_éÓE»¿Ÿq™Œã¯Ø§çyâGÎ*ÇûÈ¡ývã÷¤\ø·F¹ìöp=õo’òêkÔcßÿÆx†[˜ñˆÊwhq4áïÍQŸö¿8íGçŠÒ½±üý¡Ç#ç»–‹•~Î8ñQ¿Aç¨ü<8o¯íwIïüJ|1¸ç²ð'óÌÎ Ÿð«%í¹ïó)—]æ7yï¼8å²°Ç6~,±ƒÖ¿ ;»Œv?—ôÞ³_±K±;…oçÍú±v^üýãò÷‡o}1}[éß—ÞžƒžšÚ÷b,N*vòâjØCŸeï‹=ýœý±8?lꙸö}vEv~8¸åÕ>~Èoñ pÑ»£Èõ?nø(> ϵ«âwàZo¨~Ä_í§_'ƒï]ËÅJWú8Ñ£|wᙎ^úËúÕùå÷{÷þÌ/æ©Î;ÏåÙüñɘ‡Ì™?à K£¯òíºŸVºÒÿ——÷iä÷s¾/•wúó¿ËïüÞ\¯/˜uD¿»ù}/]À½þfù]éJÚ}\öôáA黯²Žþš}cÊ9±ÜOu¿g$ß Ëz·¸¤±o{i]'®ôñ£Û{37¯÷\ƒ¼9wNè^ZiÞ;—qŽÈ1¼žsÿZêÑ®ûi¥+]èóø×n±õ£¹vîî>è¼_êÝùÿÙä‡ÃsŸ”ÝÉ9¿{»g¾ØyÆJWúHõ^¡8…ý¿¨?ÛøØ¡ü¢ÖŸkä^¹³=c¨Ý8åÔOlhã/ýe~VºÒ¿«¾ÀKԯƭ?ÿð¹öÍcø§âò~âß=éª?êÍ{xÄ‹Ëu\Ô®ûk¥+½'pÛ—óûçæƒC­_$òîû0ôªþ´“ï~Ž^…‹¯u³ÒLJÖïNý¤ÿe½)Þͺ‹¿÷¤0ë¯Þƒ°þ“ß{éR=¶téÂz½ÒLJ6Nÿ?§ÿò¹@ÏÅàãà†œ‹ÁCÁû}Yî6~Ýr¿¿‡'Ý8oû‚¸º•®ô‘è 'ü„=÷—×CµÓ ÏíÝû㯣öö˜áÏ¡þØI1ì¡pðw9þ¢þVºÒGAáãøãá?çAéÙý¢Å¿n–a¿}š¸šú½úÆN|BñÒº,×ýµÒ•þ-´¸þHàØ]ø½Êw¨ñQáÈ£Íï{'¾ä³¡'}ßöîýíºÝ+]éߦ7ÖS¡ÖaôÉ:뿇+€S·O²?¢'Öyüò'ôõ{³Ò'ŸW7îûqð1üZÁ øÑ/~ráÜãëû½{îëíºÝ+]éÒ~ÂÝWuçÚ9ZãAïÝûëývÏÎãêÏ=Ïò7~tÞ¯÷MWúÐÚUø_h|ñØ_àÊ<ÃßÀÏ”²ç„ò¿§Æ¾šx »n÷JWú…ô…ýþbô^¦qÊooô¥ño¢âûˆ+ÄïOý]%¿¸»ð8â_Z÷7+}riã`¡âp7ÎVä¼q¢omÞ_ÍûÆñÎ÷èÝä/¬ñ¶£7âÚ¥œ]·¥+ýBzÓøî·þüâÿ‰WOŸ"ï⻋W¿vÑ3~éYõ'ïG1ùâ‡r×í_éJ¿ÞÔ°õUô¤~êò¾q$­³–ïÅO¬_Ѥ+¾:”_¼wV¼ÀJŸ\Zÿïô¿C÷Óà5BáA‡’ž…:7ã_ñÜ8Oûáª7+}riíì7ì4î5³×°W¢â7ÖÞ™÷/äýþÀ¥9§‡å•õ\`¥O.-žþNæ?—úÓ8U#ÞOãeñÿq7¿cïÞ_ã¾Ò#~ þ}Õ›‡ŸÌgõs)ž+»2»³¸›/.ûwõãð9ýËOhô qQá;#ïõscÞ7ò=ýN<Ì?&ß÷ÆwîŒÔ_'݈#W\uÒíºßwZœü†y«qÕÒ¯{éoó]ò‰ó·ëv<®´ë#q¼sÏ¥òKnõ+?3ü9¹·ã{ãûóíå|e«ÿaø´ÆÏï¿M~ó^ã¤'ÝêêáÆÕúÙüÃ_Š}©ûPÖÍñ_Tÿ)§×ùé/ö¯ùßw›|ŠÓÆ¿v㯇Š{Çÿ|ñgy~{ù½izþä•レñâwžŸz÷Öðwvj\ÅËßåGéOq/zî’~—þÜ:/=TÿŠëæ\˽fÔù˜ûÍú.íTÒ_þÞzfÜñLœÇñ â¼Í9=ÿçûë<øPãʃxjôåZúÑyfý¦ìmhÎûwÍÿãN·q…ôcä´ñ¥Èu~築œ/¶õƒ“ü#®TýlˆŸÇSo\Ó¯‡é×ãÍóÍŒçÍŒÛÍŸož?M¿ßZû÷¡ú7òx¸—~>™çO6ýJÞ’çŒÃõÿ?{ÿ’lWu¥ ÿ'_òå…7•™Ø²edËNŒ@  BB·#ÿ«tÀp²j@v€d(¹¤Su_É%×á"á‚3œá°#_ü?Î~~ÏÎ5Ž`'°uÄÚ•±×Zó>ǘ·ñÌ1ï~Úÿ>~Ï÷ûc¾¹9Ù'7¡ò½=äó~(ùº+Ýuñ…úUÜ ½«/¤?G?Ðëþñ‹ÉMø^ûÞñ¼œ··óÃàã}|Nžò=ru$Ÿ;äƒüDþÌWäf¤Wù–é®ô˜~½kýeö»µwø+~P»ÃϾ¿¶ïj_íx3üLNîX=Ü|/µë²â6Óþ7Æ:Íú˽‚;×–ë/xPû#帙pü¿¿œÇVzL¿ò×ìü¦þ ÓÞWÓŸõg›þYí¡~Áö Ÿº?V{iGçÎ æ}3v6·Õ^ôÙe<éÖÿvâ5?åH^I:üA{Õ+M¿Òk^LÿÑÛЗ9×§{%ýòòºNûÌv¥—a÷â|ÚO{Ÿ …{¹pÚÿ¥¼×Þî7?Ÿ~b'Ðù4¿¾îQó_ÀÏ*=ê”KºòKø—×ùæ õoÚ•¿ºö\aüèÁ1}wmßÏlWzäÓáOø™øÛ-^€š©çLû°×”tê÷ˆßâ<ÇÎSqké¿âxô'<y ^d×í÷¤ÓâbÙ“„·1>‚³*>Š]¡ÂìH×àBÈÛ™¤Kîô3¾‚ŸúÃRk¯H?¿jÜNþüXç°o‰†æòÍ3‰'<Äyé.ÇßýsyoþPÏ—ò¤Gðçß|Ç^>²¾ÿt\#ü£ÿ*ÏôÝänÊúÃxIn'îªøö!?ÖûÊENáHàÁ¾7äÐ=–§Ê—wvÈÙù!§çþsì;¯ôé¦]ÿâGv¹à/àÓàmÜëxcïðW¹²>‡£r_ŸY¼™pôÔ‘«ð}ËG¾Ì'îWá{òÎn’ùÀ<öÊÃâÄì×òlž=•÷ì¼\ûró̹u=óM¦ûï„?®|´á |Í®ýeý>à§ðÜšt.å½sç;öM¯ïå}òƒ—rN÷Îï¥ÇÞ|";,ÅÕ%}ópãþb÷Íõw*þÕQ/x—·ó,^p‘»î¿•î†ÖÏDÎ+éÌ 7ÞÉ9*½Bý‚å¹þø¤Ÿg÷Ûá“ö»÷£\îÉ_ nŽâJâÃi½»œz¾¤v-òž] ú–k£¾ê·Ú¯øFÓý{{‡¿ê3á<à;n…¯àÈ}ýý)>„‡ª½r÷p“ŽðôpÒ½5Ò£çƒ_P^ø9zEßÙ»­Ü›t[_¸°êÏ“/ûdêKþèïéßß„Ûuÿ­t7´ø xÎâœþ°á'߸)…÷(4áÈQðkÏXÔÞæ;ÜGqRøôìòy?á᪜ڤ³ÿï ÿÉ2;òù`¹Nkú‘ñ÷#?Å‹ýkƇ¤#^ñ.ë|óM¦[Sø´¸è½Ãßœ!~"_øL:äâŽtF|ïá@îJgÆ'gÊ'Ÿ–||ïᦜäÄüA¾î/ù»é)Ó7O%;|䯽Šâ+7ßwÝ+Ý Ý⡬?ÁúLºÖq ×õTÂÃKIÞ§ë½kKyƒ„Ã÷^9Zë²”ÓþÉzðýÔSúוCý­ã”c¹?Úuÿ­t7´ûoç­øæ½¼^é>;¿x¨PçPÎÓØùÞ9˜{‹Óîs;üîÜŽK~=oÈ{ööø¿æÞ{¬?eñö6åbOyžgÀ}½;(½kÎ×vÝ+Ý ­£öÂGõëJ_Ãß*}äÅ„§ÿ¡ïqÞ+ü+#8ú¸)þ–…§§ù~Ò¡W’>ýæF¹Üÿ ü ßú&zvÄÞJ<÷›ù•Ï}üUïù¦ðRõ—Ê~ J/JïOgC_"½§ðg’}<ÜÛÙPzÄïŒ|Éëé¤W¼Wâñ‡|>ßéUñ?9†ˆ½ª–ƒ¼©ÏKã=yþߣ¼Ê}Ô®ûo¥ßlJOϯkçŸSä9ü Ÿ@._H¸„¯Kñ᤻1ìW¡ GÎ&^ÜÂK'‚KÚuû­ô›I‹÷„‹³¾"/æüM Ÿßi}g"'¿Ì³ôàèåߟwjïðW\y)®-ô[ëzm¥;”›³ƒïáêá‘ûp@ÖUÂ] æë®±n4ŸXÙçÿ áž³ûvå¬Ó~¸ž ¬t÷t‹ ÿ:ã‡Òyžó x™+9cGܹÿŸéœÎ<Õ{Žùþ¶ç³›ïìþ 7ìñ9—Øu»­ô›M{\šçð»ór8Nö¾èyøIâ×Î ~”?çÓîïÃѸ_ÃûÈݰsÖòÿ³ëv[é7›VJIO/»G[{-?¸ÅsÒ÷³FO ŸP\ZâËïNhõ²Âç}í\¤õŸ¹®ÓVº{Zü \Kq1ùÆÞ|þ‡ûÄ÷M%‘é7šüjW‰¼&=x×»ë:m¥»§ÅŸ™OàhÈOq£á_¸6¸PxŸÊÏÃOÞkºä¡éÉç0ØöžÜ»LõƒižËó*7+}h×Aðeŧ…¾?äþRøúQNøâܬßÂ÷üfÂ× ;pÅãÔïlÂ[ÿ±3·îoVúÐÞC»üðÓ{åx7ößñ=ûãõó¹ßý;çsîÉ]“^¿·Ü§líå»s¸8÷¶/mʱëv[é7›V¯ —Éþ< }(;bðiô’ô3/pðqγémj'.ÏòsÚ=k韖çóë:m¥»§Å±Ñã³Ç·FÿBÞ³W |=þKyOîàÒàÔØ©OcJøi/*x¼­œ/õ9+]éJÿ¹=~ïÿ×Xÿ<Otÿ›ïÁÁÝÿMä“=ø!~nz˜Þÿ7¿*ýûÿ1ô²ð/$ü©åü¸ÿbÞ¿¸Lg¥+ýZå¦óTæ±-ùq{/"òõÿF>àCáFÍ£æAöÍ—ÿ‡| 993änœ}¸áÍß?Z×›+ݼ\?ÃïÀ¹½¾wøk8û*tÞëqoÁý¡×B¥gÝÈoç´oeŸOg ÷ÚßûT«Ü¬trs)| O‡Oß| _ÇN›ûµÎû.:ïËù9ÿÎï¤ GteyÞü«ðÓZ<Þ'ËùïÒãåi¥+ýZä¦÷Æ÷=öÕzž}#|]¡ð¤Åß%÷Ä{_;rðî»pô©pqµ›ðáãÏ©ßÈ÷‹¡ßÉ{þ…j÷jó¼ëö[é7“²Óñèwø3| Ww.ïëOkCë§Ž¾“Ü<Ü?Šp¿y_û;Ãßjí9ÂüÓæ{íc½˜ø«]‘MÛ¿/„OžÉ3;Lá›ÚE„¿<;ÂáËgÃGp)§ŸžÝð>‚'«ŸOãyøÅâbàaN¡É?áýçrßP\hË•ðáûÊþÏ \ÁÙüó*O#íxËϧ~g7ðûƒ¯N'| ~d¿éÇKþ«?ß?'÷ Øa³¾1N[×;rj=E®à¶É—z˜¼a|‡£éº)4vSkïj/åˆ]88Ñʯ{§m½H®N¯û˜§‘v½Ÿy ûrñÒà|ŽÿëÿZüð\—y®rúó´?1Áñê~δç+}òc_B§=7òç~¼¥r¨{qìa+&¹cß:ãKÛó1ÿüx•›§‘Ö~ûÛá3ø*ø,öÍáöÐÜ?c'íîˆý4ÏŸ,ómø<{GÆžºó® ÊxÁYVÞØwèÒˆ/ý·–ë¨ýËmâ³§h0žhöà/uáÕ‡›ðê÷Æ2ý•>´v•ø vÒØ?»>¸’g~;‚ûjzÎ_¥ã¾tñ[hâóWRÿù.}ö ݳ¦ß9²pphÂÕ?p¨ò°cÐóh鑇!'õwšgçÓÁ¶þ7F~ÿéJŸºµ»þá'êVø”>>ž=ŽiÞðý½Mxökjï&ù°óÁŸÔô{å;»„ô•õ››rVŸðµ2äGyØÃ©=·±®º=êU¿Àò åîý1ßÔîÎÙu}öÓÚ-«ßÀPüŸU†7üçÅáÝÉÂ… W‡â‡ÿ7[ÿˆÅ…Iÿ˜øý~ÅÏ“Óú/•~䃽·Úe#ä+åc¯§8ÒÔ+¸¸m{*gÒ n×ý¼Ò/‡nýÞ†?ØAÃåÏ×–|¯UþZޝ[<#þÞÛðYýŠ/]óÒ'C.Œÿø¿Kçá&Ýi'±éþ¯ßÒ”§ó`Ò-NTzc>žþOß_®ÃÄëó½óÑJO6íº¥raž ŸÀgÝZòÇÑõ~¸I]´Ú{Î{ë7÷¬‹wÜ„kùàû•Ϋéç»} |ZñÿÖiÊ›|ë§>ánï·–|Þr²Ç®üÎͱN¸3v°wÝß+ýrhíýÃUMöÝï >íy9°O8çfü\N<çðdö×îoÝüz%é9—p>å|™]©ÜëÜú/á¯äÙ}Lû~öÚ‹+{ü~¤åw¯šßþ®}øØx+}:éÖa(½ 9y-T¸s¡¹×[¾¥¡¡ï˜v¡ð»÷ô2΋éaø7…ïB_ ŸN½*=}hõ0¡S_OFŸÃ~ÆùÇóõ°ÓâУ6üëËç•>]´úÁ祗‡Çz6|ÇŸûgßÞðGõƒð:äÞÀ3þƒ ‡ôõÒ~‘^þþÏS.ñN/ií>ýbîþŸ’?œÚÙ|O½àq¶8Íǯ§G;)/\\BÒ;ø_ëúl¥O/emkO‘\GÌÃgBÉùÒøqäÈød2¿Á#ýh•«•ž\zä~õÜ…0O’¯——ÏÇæs!r÷Â*/+=ùt»ïÉüážÍ›{‡¿Ê¹2Ï8w`g-ø¹#é ï^Îk«Ü¬ôäÓâÑàÜøi¼’÷oçœÏyÜðŸp$}ç}ì?]ZžS¯t¥'‘ö®íZäƒ=6ó ¤ïFØ1¨=´»Në9:ýÏõÏ^Ï­t¥O2-ÎàVøú›»¹·ùÎ?/;ô¼µ9ömšOýq%ÜÍÇË×JWzèþý‡ŸþÙ+n >oúcô\\PžïïwŽY§Õn”tn¥+= tkg-ü_ûšcÞ)^4óKýŸ†½œoŠ/…-nûìc祕®ô$ÐÊ ¼&|žý ;…Ý×8?ˆ<¼—x7‡Üô^DÂ׿éºN[éÉ¥Û{u‘vÎàçê×4ßáÓàîÜ/½úpóœûvMß}ºÚqK:ï<~´Ò•žZ½ =>¼Ý%x¹½Ã_õ:pvðBð{üá ½LÏô/ëyÚJO.-.]Á‹¡p§±CR»lð|p{ð7p3ìyH÷…½Ã_ñŸp}?\ç›/¥ÿà‘á¼Ô‹í¿žv?³éÚ¯{)ý’qŒ¿Êâ’á ¿?(»,븷ÒL‹‡§ãQí¸œ"/¡ì1röÒÞá¯v¾Œ£S~.¬r³Ò“K+ç­¯—üÜû0opp!ÖÙö©î—X—¿.ž}ï2þ®ë¿Ò•þMrsÅyKøü1ÀO9áOÏ}ãÚ»O|÷¯9/ܰ§ÿfžsŸx×õ_éJÿ&¹© rWÈî…sÑÚkJøÜ+®½¢yž¿ø«›I—Ý€Ø÷ÚuýWºÒ¿InØI¢_ã/îƒ]v—àj÷îco“^±s±Õ[ç=û«É•ž`º¿¾ßÿ÷ÄÞÖþONmøûÁO7ßdÞØüÜG?YÆ»;äoŸ|E^à©î/׃+]éI¢Gý´†¿÷ÿ-ô_óýÂRÈIíðe^ºŸtà§Ä'gµÿµÊÍJO.-Û·Üyøé‡ÿ†Ì3\àmûᲞ›vÎàÖ}¯}³ÈSÒÙuýWºÒ¿InÜgrÆn^ï99GË÷ëáûÆ‹|°ó?u5é¸Å^Yí—¯r³Ò“KkWŒ;”¾&¸§ú¡ð\ý ùqŸýÒü.ÝÄÿ§õ\`¥'—ÂCÁÉô=;)p‡žùa‚£zeïðWü »DìïÁ|'ï¿·â£VzòéþË{‡¿ýo…ïááuÍ/áÿ~øØ©<¹ûyâ³ûõB‘'¸ÄÈMåNøàÖÁç°(üÙQrÌî9}fÈ5û|ßZ–^²~4…²Ú#äú»#ÜÄ ñÃöìæ¹þH§´ØçôýÑŸó?„ÇÕÞïïò¬ý/Hw詵3;¡ÿ¸,oË¿¡>Ãã®ùòI§ÅŸ±'„?ñ;ÜÌ ƒ?ñ;™p·ù~?²K[?€y–.þà¿SºÖwø–W|—@Nà‚­;ÉÕ©ÐçF¾‘ŸâóϘó z~´GË—ï³>äãå%_·>äþF9:n‰OŽðwžµ{j/-çïŽä‡ÿ7x(íÁŸ¨ïÒ[ñÒ_Lnæú‹_@~ôøõc7™¯‹ƒØûÂWÒÕÿ/å;{ÌðlpôÆG8œ×F~-ß/­ɽyß×ßߘ§”Ówù›—ÞíÁ§u(y&§üâs8Yãÿ¢¯ïõŠ¿G;àgrÉûñîtÓUOÏúO?é_ýhüx{o¾ÜÀŸÁ™½ê¹vöÓ¾WÒî“ò¿é<ŽŸ ã³ñ nmÚ÷º>ø‚ý0xã¶{ÄÊõ¹ e·ß;÷›~Ü‹¼œð©;LÒa¯Éxrùá&z1é˜/i'éòðch¹žô}''ê}m´{Ú­ýÙ{£©Ÿzé‡úgP>íH^W¹ùBr£ŸøÙÄïëϼ¯ß—ôÿüúÕßLÚ¿~1“Ž÷üîÕ‡øI® _“rï¿•[ÿ yvï˜ý¤ú¹”ŸïIÿÖ‡Ëgé²W¦žä¹÷ù^úÓ¯&ÿ9=‡×Žâ‘Cí®~Ÿ,ëÇ¿ÉÍQîú!ùdÁçmÇâ®ñ“¯ò‘wán,篕#7÷Ò¾ì¨Ô_^Ú÷vúÝ3~äÿ¬~ù’ýgý_&]úOü ÷6ýi²K1ýcÖ¯*¿ä/Ä_§üj')üDÿZ;0Éwâê¤CÞùƒÃ_M´?jõ‡&Ÿ¤Ë~?lìrÔ/bÒÇ×ÕÿlIë·mCÛŸÆ~åËÎ}öýQßÚ™úÙBWzŒÜì§½öÉçƒM{öùáß´;<(¼>®¿ô÷¾ðø Ÿ$[ýu~¸”[|†ðWñ>)|òáó#þ=ñûÏ–åk=¼'/ò—¾vÊ{õ™~ùÙ$ÏÅëJ~?M» —ôÚâôš~Ê“ô·ý©\Òó¬þÒW¯Y¿Í÷]óå“NËßÅ?ã«!ú±¸Nò€¿ÆøÍXùåBÆI߯-û?ïþ3~+Oùÿ oÒÿêaüU^Ty?\æ7Ÿû^yÕK;àç!'GÊ-rfÞ âéòüÓåüzoÔkàÊ¿þƒS®¹.˜òÚü×ùæ ÉMí¥¦½­OøŸìz+íÜõEúÁºAø÷f<áCÝ#˜÷ ðõZí~ÉWÿ§œ·GúGÖ} ×{C Ïþ˜u™pì‹ÙO¨;dÂßNzüwÚ¯)¯}^÷‰/|ýÂ{Ny­ŸîŒö·Îjú‰ßýÙÇËuÚÍ‘žzÝIùí3ÖösÃÏîJ‘ûò+é¸3ü_¿˜ioûX83ûàëiÿžC%=áðëõ‘^ÓÁ·ø?ÔùSíí%?åxW¹C{ΔðÎ5j¿<üÒs…PéJ¯çiöÉ[;wtÖú¦פ÷³e½ÚI×þ¾þIÕc´›sðúUŸÑ®×Fû¨/?¦Åj·¤S{n.Ö}+=Fnè§é œ‡Â‘Ñs°ï土ŸKñø?º8Ò£? — G8JÿÆï ~¥‡aÿ㇃œ WO8ÊKOB¯?G?®Sr)ùÑ»¨/}ˆô^åƒ' OºüÉ™úhÇ©'õž=z›øµéwvžä#ÿêg.v"¶þOõ“v.ñ”óååüµÒcäæÜ¦îÿqô½£öv½ŠËÀ?çÒø›Á™Ìxø¼vñðçÈ_Ñ»×ïlò›ÏüØÒ—ŸO:üÏÂ=Ȧª_…§û‡Q?íðÃe}øù<‚¿)îbÈõÿùÒÏàk¸&áä«Ùe×í±Ò•~!¹±ÿwcøÒÞáï>ºøÙ|w~ã\盋Ÿ½sþ¶ëöXéJ¿ÜÐKÀ³ÛY?­‘“†‹|8ÿ‡Ï¥/o†·…ß Ýu}WºÒ/Enè ‹g~øé‡­~›]Αz<ú8zÃy†ÿõþfžo¬ûþ•>=t«Ï?»œgè—«/÷^ø<×NÍÃMxzgrFî"‡»®ïJWú¥È Æ\W¹ßÔ{Y‘øâ5BßÉ|ãþ˜õœô³žÛu}WºÒ/EnàKÜ㵿Gá/à9àWèåáÜž~<ظôøuÚô²Ò•žZÜ <‹sf¸˜aç¬v+ö6¿Úµag…ý ¸™ïö9ÿm»n‡•®ô¯’›çöµ¿=Kq2ÿWŸS|=hðû{¡ÿçsô6Ï­ró$Òú…I?¢'ÿ}úî DN^>úÓ&<|VíS=j<~6ßáéÓ™ô_Áy¦_?à' Ÿ‡<ŸzÁ·À›u>ˆOx˜G¿N:âeÞy”ñ_>7àgþa)Wðlôýä.ípÀÎö’^äS=Ú®äÑ|¿)';‹Åð…þM}öô¨Êo^ÿä=\’þ¸ÒîøDø¦§úw#]ý§ØÛšíî{Ê{ðBhp¢ø¾úix„ƒ‡*ÞãÅ”÷…e;wܤ'‡ žV:ð¶­7~¤'ÔŸp´Ï/ëÝö¶.Þº†ßmõ ¾¾ý'?T8øWòþOê§œê—gx4úþâiÇêG߯\øR}ÒÎøcÿïG“í¦Ý€/nÚ8Q¾ggÉ8D~RÎêUO¿L¯øaüösùkŸPã¹Hûádž×_½/xÚõ¥Ô³í1Û{ð ;€äÖúøüh‡9Þf(Î#ã™öÛò{ÊÁ/õï—áj'«öæ’®÷½Ÿ!¿¤ûÒ²¾í÷jg.á{#ÏÝ'‡jG8túwûdóŽ~u¯®Ü=|×R{yÿÚGöãï73ß+—qnÞÇ©²¼'‡ð5(ûKÆé;WøþWï^Ký‰'Ú“$ßÒÓn£ý^ñç½ühøã‡v¾št.(g(ûjo$œ{¢o%?÷·š_â9·k|í­ž#åv>®½kß,é±{Öú&œ~'?ÎçÕG¹”W¿©GÉŸvŸöæzŸSøÁòo;vëýÓ<¿=ú•^@¿)9¹|v™öe?>¤ö×”7ù¹÷Úp¡Ò™~*´»òã[õ§¿ÞõYޤÃÏ,>¾2âÍ|‹sI¸Ò¤/>ýý•„§§Á7ÕÇŒ÷ðÚ¿x›ä/^í€)ç'ËöTži/Mû+Ÿ{½Âé‡ÖK¼„ƒûÑô°ø]ùဦ4åe—]5ùÒ÷ªwí¹IG½´óµeý{oû“%(GÛýãåsõiÞ'ÿ³=Ÿé¿#öé„—þèø*ö ܳ¾™ôÙ•¨„äSû‰_ÿG.ù±÷îó^8÷ÑÙC`0ö'šßȇ¬Ú»H8v”×}ûÖçì2=õc‡‚ÀÚ哎tå§ÝRÎ[Ê­½R>v*Ø«Ý áÓ>îé³³6íu(Gýëæ¹8åM9k¯ õ½¡½¥ŸzÕŽ›újŸÙ‘7߇<ê×iÏïÖàýÓ~ÿx´ïì×ÄW~õÔ¾Å[ˆ/üãýàé¨×{£þì”ÀCé?áÙG¬]»Ég©{(wÈQâ±·‚Ÿµ¿z°Ë×~Í{ñð »)wf¼ÐÚGJ:µ×§Ôóú~Ó/åßñ“þ–¯ü^=ZNõúÙHÏ÷ä˾̴ÛW{1Þ«‡çÔG?*§þe¿Æ÷™ß|ßv›r6û_ý_û+Oí*'>øx䯎GÊןŒô'Õ^c<“nÛógËöĵ[3úW¹oŽvšönšòŽþ×/ø@9îŒúâçŽëÞ+÷ßò­zãÇ–éÝíw„Žñ]«ÚëÑŸÆ¡½å8ÔçÄ«]¢—ß;oéý>ÊÛyøÃå¸ßþS^ýçýè߆3®%ü{£½nòÛèϙޭÙOúˆçùìè·ŸñFzÆÿ)¯ÇÕ?ùˆ§Ýj×jŒµG5ù JçáèáGy[nåÙ[–§v±”cÈiË›ç‰ßíz"ïoxŸçIë¿Ïû¤ßy4å©}áÁµs¬\ W¾ra}ÐõBêo=£Ö±Ö;ÅUúžtä[ûÃâIoôoq›¡ðŸäϾ xêÑ^Ú¿µÕ÷á²>´cÒí:jðÅ{ã}×mÊ©~ÒM»Ô>4>Ò¾ŸŒïúW»‡´‹újoé ~ÑÎmïQÿ®£’nûQý¤ÚýÙàcíõÞ,§vF“~ãúW{®ötîÀΑs3û/ûÎâS~ç Î œCÔž¼úxŸtä'=éÈO;x¯=ä;íÙ×ÎVÂ;'S®ÚÛWnéåI:=H=ºÿO¾—?^ÖŸ°ž·ä»ýílÏ+3^¨óéÔ~~žë— å°_mºŸ,ÛÛ¾]?;?j}µc¨ñ6ù|°¬—ô[:wkúò_¼¤÷ª½åg¿®ýûiåè9gÚÇyšòJ¯|ê{Ë¡ÜÚ?õªÝ»¤{D‘zÒ3ÑÐÃ8w¦·q¨½øc¡ß©Ÿ—¤wa¤C÷ÚÈßý.|_û]ù^}Ï ÎW_ʳ|Ùõ¢?©_˜|§·¢7£¡‡ÿâ(gõ GSÿ/ WýJhí’%]z±êsò~êCð=ýÂÔ3UÏpÊ¥~ßáØ!Sáô§zëoýá_{hoúšúmÚ”£zú #½ê3óLŸ¢=èuõ¿zëŸÞcO¸³Êªÿ^ùûR}èìwú²Øí*&xzWv©à-ªïŠþ½öèßÙCúyÊWpz®¸zóèëÁ›ä}óõž^Où7éUÿ­eúÕOÊ?é*Wë}5=yõØü&ÿƒè‹ƒoCø‡e»Ô¿Ù™ä¿!_¸ õÿã²ý›^ø¾¦õÁ÷Ñgƒ/•¿M\ôñgƉâG~±,_õí¿Êûk*¼°LÿÝÿ}ꉾ³l÷â´ÛÄ»çŒOôõáø¥¦ƒO¥—ðpiÇG©/|ÍÁ©Ñ>Ú[;$߃/¸ÒÿŽC ÁûÔÞ›q%|ßxç–üSüJøªx³¿¬|¶Ò§v\6ÏZ<¦}œ—õЋËõXãÙÛ7ˆßu\Òýî2ÞJWú4Ð#öÜí#œ[½¸¡GâÁÁõ&Ô¹ œmì:ﺞ+]é—*7Îq{®<ž//×YÕ8ï¯þaïðW|ÞÕÐø‘Þu=WºÒ/UnŠÈüQ\EèÍ%ßW_H??J¿Z½òÞá^{×õ\éJ¿y)Î)rP?g‘ƒÛù>ýÊw¹šøŸâlrnôw]ß•®ôK‘¸E¸r?C>nŒuÚ-ßÉM¨ù¥8ÑV¹YéSG»¾º–yNðb䢸¼Pø1ûò·V?†‰üÏ®ë»Ò•~)r/ßäÞ§ó±ÚYÄÿC.…Îû™î[×ÞÜzž¶Ò§‡çýí5À·áçÌõ çöí±ž žf×õ\éJ¿T¹9½Ä­ÕþÕï÷Å…ÁÓ Ê¾TíÀÀðƒõ_«¾s¥+ý²(<å£ßF¾Ðÿ\Ê/¼¿Ó<ç´ç¶Åûføyèaþ{{÷—¤#ÿà!ZŽÿZ>Ãß>úÕºî\é×Ok7_†ßë·.8øÒÊKíÿ…¯Ã÷[ûpKþ®]68Sv#?[œyÒùÇ¥¼ö€r±ÿø‹UnVº¹qßÂ~éÌà_öÙ¡Þý öñ3¼ÿ³#½—GºîØ—¹_CáòØQs/Èý§Óëºs¥;”›—öÅÁác÷ýœ;ÔNføØ9Ý¿ 9:›gçyî§]ÌsýB„¾žïµW™t<»§Öò.Ï=VºÒ¯UnÜ›v¾Í^ïQŸÝðyí.ϳ{ÏÝ=þi°~‰PçåÑ?y–Nï?’ç¤ÇîZïÙožwÝ~+ýfÒÚ#d”¾”ýšÚÍÿÖ^\øX:ì Ö.K¾³ÒgéE~jß%òÈŽým픈·Î7+ݼÔ^_øxÚgªÝ§ðñ´#·S;RøŸç;|jíI/á§=ÊʹLøÛ çý­UnVº¹™ö¦*?áO8v§ðížîå½pÒŽáÿ¤ÃŽSß“ïÅKú•rJ®Ï®çh+ýúåæJø°v¤÷]eÔðü ‡Úýl¹Žƒÿ©½²<׎•|Ì#âùùDk×-óÏÕeùVºÒ¯EnØÝrô’ýyø²~ð¿ýxäÌýR÷S¿9pþÅ?Ã…ßyCý„²¿Ç›sçoì]­÷VWºzðlø~ç;ƒ²ÿûd=_ÞËûèU*‡ptìÒM;Zì>±_v*á´,Gq?O:ÏŽtè‘ÎlÞïºWúÍ¢µ‹·Ù>Ô~Yý¦Ñ?OP9‹}<úšâ~±¡ðp¿ Mú÷óÝÛƒŸƒ¯©Dåñ^¹ÈÏÞRn­vyVúߨñµüÂ_fôóø‹ÝÀâË~¾\·Ôïé {‡¿ú]dg’<|k9o[®ä{yfÚÓ9"—/mò=ØúM­Ïg’NäþæÑÄ·%íRÜ œÎ/ÖõÚJ·ëxÅâL¬sbï³þáÊþ¼äŸú-…g9yaOíKþÿ<œ×ôÛ Ïßwåß:oøæ·¸å…ÓáçS;(7{§ßZåe¥ÿ?ÙÕæÿ’=4ûv—íø‘?¿\·/Ã/îÙ<³Ã `¿qá³åàˆÿÏyü|sÄŽ¯gþ+ígàrØ'wŽÀî›óå…÷a¯;ö®wÝ_+}2èÖÿC(?šì@±ëÏR¿™K¾¯ýxéÁ—ÁÕÀ³8§zósæçÉÃ/Æ‘pÎÙȃzÀçð«à|®~óžŸÕkù.=õðýíÏ–ó•~³hõ$p.õûZÿD ‡£Wl:ð.ôóìtÔO(þ¼ñ9rS?6Ÿ½¯?Žé§†Þ†_ž~\ð7z]}„Ë{¸ËyNü]÷×JŸ Z¿üÞÝ;üÕ>sõCþî¥éðãW˜ Ç.Ôíäã}ü<[.å¹ý9á&΀ßר©j¸{Ê}v¹/«?½ÔûVò½—òÞ\†_éJ7ü¾ÉBkÿ^Æé»á¿ûá£ý½Ã_ýUÞ_î7öï=Ü|—žçû‰woðë½ÇïWú}ÿ§‘ãÏ™oîF^•›|ÜI9î*ÿ¦¥3žzñÛz_|õ]ÏVúßøîNøìÞ˜oîfÞà¯uú¾3ö7ì~Þ#oÒ5þ‡Þ]>/øùsä‹×;㜂<(÷½1?ÞSÏ”óî²^•?ã@ä×ýµÒ'ƒnñûá~á%'’Á›ß'7øÈÚ»µŽ{¸y¾ùÑc塸xÊÛŸ½N*^®yì‡ÈsŸáBÙG,®óãÅó‘ñàsöc+ýfÐîãWÙ_ËM»ið˜ÞñÇ™tàÂ&Þì˜ó°£åJ9ìë¯~Þ¹[–øÎ½k1åqŽÖ󵇛vïÛ£~—ÓNoö¼·Òo­ÿM÷ðé-ཪçÿ¸§Ï^ÿ¦ü¹Ò/²ÇF/äý·¿ Ü¸ç,Þçøìýö ÄSå¨ÿÚ”Oxö àÝàzøÍâßó_Öùf¥ÿ¿üçõóåûâK~½wøó\¿§ÑÃ×¾ ?³§?éÁá|n¹‚·<øö2ÿãÂ?“|àjª·84þFáÚj'êùþÛćb¿ã™u¾Ù%­.ý{:Ïy_œJú©öÓÏø´|ùçô÷o®ö^’îŽþßüý­eúôî{ùóÇ” N%xœÚM:óÅäãI¥•þ€É[ê§w]Îo=â?ÃIAÇúƒ$òÄîJÖUõKËOà—rUܱxÖ-ü;‹£ð3ì‘™Ÿžë:ãû\=©´íÄ¿Ûÿ¼ÊËNûÅz¿Á…Y7‘“Wóþ•%/†Ÿ‹; eÏyÚÿ²®?ê½õ¿{e±wÔòx&è…P¸.û’s î³×WO*í¾íbÚãÕÔëüɬÏÓBk× Î ÞþË~üêÙM]ʳs®#v’ÒÏðXðUÎøÛäoàâ×s£„w¿ñÊÃMøœ#Õ™ò°«tI¹CÅ{ídŽÏÛöýòÖÉžGO:í=ùø…é9ïõð-ü”ûðp+7§üjòÃYûEIÿ³çR¿‰çÞ=ü•ïµÇä9é4\žÝǧŸq ·F\Ø®Ûû¯îíAßÄÎZÚ×åû¦Òâá´êWóÃ¥œÐ¯³ûRœXžo“«Ä£Ç«~?Ïô‡p·?zø¾/®+éÁk±Ç¤ÜìÀ¼?øëvÂ+Ï­:ßhŸ{oß]—ï›J‹ëÐ/ð[ðR¾ï?ܼÏÅßýû‘ƒ»yÏï‹>–.œÈŒWü&þáÄ—Þ}4r˯'ü <ÌL/xš]·÷î—â€Ríî}Úa×åü¦ÒŽóø“Úà‹“º7äŽ¬ÏÆÁð5ü²çò|„øiA¶øKxF¸±–Ãüe>1%¼ô•«ã´qádÏ[|šq!ípÏó*7;íxxªò{ø‘=½â'ñ}(»“µÇ—çú‡ë9ïáù§}ˡ҅§iº)‡uš}Wý·?ü´b[{}ðl'ÏÕö¿5êvÚuù¾©t{.f¿½wøÛÞ·J¿¹'é¼ þË=ÄÂå;<¤óvù¦½½iϽ,åaœ?¸Ïëžó¾ëÚÈ÷„ž£µœSN;ìïœÌqà¤ÓÞ»¿¾£ï€ï¢·qþ|‹çþ¼óQ¸)úKú÷“Ý—®ïüÆ(‡{ËΑÏ%\íü…þ0ßk—/é Êýã“É_µ›@¯†¾ž÷?^×i;é—gçúãLž‹›ÙôÏý?¥ŸÂ§õ ¶—÷§ÉÓ&^õüÁ‡'öO#?ùˆÿ£„ƒW8•gù¼˜ø/Œ÷Á;Ö>Ò/þæ„âàŽØ¯2^üÝÉVz2iíI'ÄÎRí’s8žç÷p£psÞ¿´÷áØA+NNéùÇóû´Å.Ü®Ûk¥+=äOøŸŽy þ˼h½ ÿ/žùñŽÃ_×Ö¯gòž\‘¿a/÷h¹Ìû‘¯ïœÌyr¥O'­=¶iÏÌþŒ¼ä9ááÄ~4ÖKö}psðyì8»OäÞÜ?wV»jëþe¥O-nι߅Á×p¡ðsõ#˜ïp|èÕ¤Ãλ€p}ÎÁø¸rÌ|çÇßçÕu¾Yé“C‹Ã»¾ÙÐô<~þ´ßÞ¹»{Ù=_O8¸8ö á÷šNäaøÕi¹®'~Ï××}ÿJŸZ¼ý)})œ=,¼½ýûƒÒÛÒÓOÖZâßÎ÷â#Æ9=ð¤·úQ[éHØccŸ þ…kïa ¹È¾g· ž®¸¢ÇïWj7ªö×}ÍJŸ<º•—ÁמkïÍ<÷V¼Ý‡#Þó\æ°×Ùò˜‡Fz»n§•®tÁ§Ó~ZýÎZo¡ùÞ÷Öi ?ï_°_í¾CíXÛç<~ýuÄ¿ô{ë¾f¥OÝÃ9Ú8Oc·­ûüð±ûvµÇ–xîÉÕ?s6çã\Ì9ÙåcæáË]]÷7+}rhõ0ô#ô—ì"¼ýÊþ« Ï/ ; âÕn[ÞóJÿCoîÈKÇœ?³×À~Üw¯ßYéJw"7ìäüa×ðlµõ—<³óq6üý?œÅé°Sr&Ïðx¿‰œÀ“=›ïÇèÿ/å¹ÿ«uö•ôìŒñƒ×þžþŒÙ7ëûô'¼ |&»eÿ{ÉÅgÂü}ød}< õ3ûâºÏ]éîiñO¿jÏò¥¼‡†³:¹ .¸~Xá­2®Ö.$|¿øì®ZŸð·ù9xÜÊspÕ»n·•~³iù¶þ#Cá­àçz¾öάëǺÜ|ôƒ!'¾ŸÏ3{Ëÿ÷ñóHñ^ìƒÇZéJ¿V¹©Ý±ðå;a‘á^Ï3»bΓâϲëtvÊÜK†3dNËý³7/û—òýÍ„¿°®×Wº{ÚóR~.?üôÃ^í„]ÞÛ<³OÆæ•ÈÃõPvÜ3v ŸU¿ùÎ?…ø×…‹<^NzîU×ßëz®ºÒÝÓý;{‡¿ÚÑ`‰>îVÞÓw³+vëá&Þ­ð7ýö ïÃÿÒ…³"ïç{ý:%}ÏCo×|o¯ë´•îžîï‡_á á›ø‰¬_Ëð9|ÈÈÿ˜üÖ/`Â×Þ˜ïÂ'þ½ÈGýö%öœøå¬ý²UnVº{º•ƒÌ/ø¶üL®Â·ðRäæˆÿÕ½Ã_ß×~Úv¼Ø[+5¿ýlYžÚ9Û¤¿ëv[é7›ný>Z/…²;æ}ý ~~Í{öžÞzïÃeøâ±P醲ûÄ^YÖm»n¯•®ôPnìÏÙsÏéšýyÞ³wÖ}¾s±ÄwþvÉþ=ñ{îïâ½1¾×?ÁØ÷È÷ÝÇŸS¯t¥;‘vÜÃ-ŽjïðW}Ë+ãûéð·ófvËà¯à©Ü£gÂ}z8«á¯È¹sŸÝ»?»ž?¯ôÉ¡ð/¦¿?xþbÉ}?;v/'ü <y¬¿ÀM¼ú¤ žêˆVn2ß–¯Âßõ7úÂÞáoÿ¹Pó%~7ÿþ¯å>lú.¾¾™_þOáøàš§¼F~úþԳߎu.\.ÿÕ™ïÙ#,^ ñ¼ÓJWú8ÚñØxî \ý¾žû2û·o?žïz_€ÜØ·ÁZÿ žYæSÜì·F¾±ËÛuò´·öñ¾vˆ—òÖrüh•›•þrCNàë.-ù§ßƒàË×Çø~.|Ênšý¢{iõsê%Ïp±î‘º÷FžøÉf°þmŸýxåã÷Öù {õp´/¹qôýUnVúWÈMì÷õ>sý‚„×þÙ†6>üÜå6|y-üyio^ºÎñùû½œïîYó·ÉŸ ÿâñK{å£ñ9«ÿ’¼wÛ÷a¯pëGåƒu³Ò/.7ìkTo¾e¿ÿ(rÃ//\]õ¾ác¸Xþn„/ù½¢†‡­þYøkKùƒ¥†Ûcg­~²ò\ýuäÝÂøó­¾W¾ñoºëþXéÉ ÅÇ:üÅÖïûŸÍ_Å­Â;L\,»Nä¨ß®uú§#Óð´ÿ$éÔ¿\(ü®ôkÇp•›•þrc~¸9ø‹ýKãô%_mý+çÍWc>júá×Ê•x3—ó:ý`˯é}<äD¸äë}ý¦>^”o×ý±Ò'›v}b½bò®u׆Þ=$ë·ÏÁÿTÞì—ܳ°N«ÿPë½Pö¢¬­çà™úÝzo¦/ÞX?öžTäÈ÷®'7t×ý²Ò'›v¿=©}ûսß{t÷ïò›Ù{­öûÍ/ã¿û²î·²çäþÞ+ÎR®7S®Ú_¸yvnæ~lÏ#"7=wK|õ¼”ðo/Ï VºÒÇòµsÚ÷ÎiûýÇãÜéÌãç—êe&þîèÜxO/ôl(¿RΙé‰à›ÄçŸíl¨sîïŒü…¾âþŸRÏÓÊ*ÿØiÙu¿¬ôɦô~½wø+žnóx¯òÌR®¾húµ‡\Bí§ÑW§Åå„ß•§vÑþ˜p¿ˆ<üj9ÿÁóËG#\ítÁ þ<ÏÏ~öºói¡Æ•ú;M¿V?MÏEO—q±ýóËåxT»fô|ÆÇøÃ{¤}3î¶ßÙ›ç4NÙM£—>³åÓzë¢R.õ1žêvvÔ[ù†ßWz=ãyq0Ò‡cåoP¹éí¥k¡—¤‡‡;øã˜O¤¿žüO«Æÿü\ûB§Æ|¨þúEŽ|Û?ž‡]»]óõW.7pRôÉ(û¨ì(ý`ðû2ì§}?Ôzƒ¾Íº¿áÈQåÔwò¦ÿ¬Ëåo=@?~~È‘ú ¿àå×êéóü\ÊùÇWâMùb×MyñÍ‹IÜàã—Fýµ\\¸rÈWºê #œÌ\¿áæ¸bÜøÞx¯?å¯^å1ν2Úá)·‹[Æ‹Ëö+¾ƒ;ýÅž“ç ‡oÝ›ÿpL»Â‡L¾t¾Ã=óÂ…ô#~@ÉåkcPî×?à+å#ÏÂÕ¨Ç÷G}ì‡áSê÷2”<w.&ýKÚK½Ô_ùóþ‘/ûsæ;å´ß¯OñÈ•ö2Þ,ëÛöx}¿ïßù(Ïù¤/ßׯsÛ}™ÞÓF{®¢µ¼œSýGŽpñoW‰û™øŸ^ürâó‹çüçJÞ»¿ ÏÁþZÎešÎÅô£ó¢k¡Íÿ£¤ŸðW‡Ü(ŸøÎåãœê‘ûýÊ¿ù„Gq>ÕxêŸxÒuæ¼Ì¹•zʇ½¹„k}”×¹9ã— öè–ã̶ÿSÞËCnàiô›û³Ú÷­ÑŽ­‡|6ñvÍß_™ÜÐ7À_à ø ~"j_)ÏÞãwÏÒƒ_¢?ÖS¯&<==¶|”ƒÞàzøŠ>¢ø•”¯ïS#z“¼ÇïôÂßL9ÉIÓM¹ágàTø—©=ƒÄWß›£ÝZÞжsÒ+.'åîÚ²Ûq ñÔÇóµÏ=òáǦù†nÛ)õ‚7«ÐIÉûÇËö;Æ_èÓJë÷‹œÜí\Ʋ]Šïà—’]þòî‡N{LpüìÝ'§Ò!ÊCþÂìF½ŸôÑÆüÐüÂìág~þ¤Ã®ûSw“?ûTm¤K~sÔ¯~9.Çõá—Ývwî%½âvƼP¼ÎÙE¿Ô¾|n%Ÿ[£ßèÿc¨ïéÿÕ¿¸·<è7ya‡(áwÍÏ_›Üïkç,ýV»MøÎwý;øßûÿy9Ø´ç>ùH?ßO¸ý–áØKc—<‘?ñ*?M8å@Ÿ‹Ú]ûÙ²>žÕû^øäH9„ÿp™/;pÒëû!—â±+×t¾~:ÉïäV¾y¾;Úçîˆ_y?»?÷£¼õS˜r½Ÿò6=ýmûhÁ»æç¯MnŠ7ÒÿÆ»´›qQûUnÒŽÚ~iÿàÓ„ÛÏ÷ûøfÈCý·J>Ë/ú?¢Âù²r­Õë£%Ÿ°3:åè¾ò#ù 7ž§E8¯Ê­ybòûLo¶·v2 ?øúöÈ¿ëïÉÃ_Ôú í|¨œÊ=Êÿ9xÕ§…—T¼TÚ­ësë°|·Ox/ýÔu€ðá ëëxtíoýrÄîùK:Ö õ7~vI‹+ô^ù>ü`ü ß°³+žq½öw ìw´‡õVqb¾KÏúƸ”ïÚ£8þ¤ws¤W;¿c\N¹ôC÷[òKý¬Ùé‚w‹ßÏíúM'¼x¹°µ_§é7ý~s9¯=m´öÇ‹8_˹È6\ÞÃYÕ®¹ç´£óç-öÝÂK‡_Öú‘LÎ'Ø«yéü®äYùßNzÎל_ýtmÉç=wtØó…¤ïüÐý8çƒîÍó¹§öÜŸ¾Êù¯çy¶zœ¼oü¼3Ïçò|1Ïôôú“¾Ãù6½Î…„sÞíœÌy+ýý½HÏgóLOwEïã|•ž‚Þñ¬r áï×C«?’^ÞÓGjŸ‹ƒª/ýÐ+£½áÜ{¯]^Ÿå¥·×εGÒW®—¾zù\[Î7ÕËŒ~z1ñ铨ÅS?í—òîš¿¿2¹‰^·öWþ˜úë¿çÓ^ì¦ÐK[{&ÏnâÁMµéËÈ}¾öæOÊ}|ýIÿª”gجUožpôñôtÅ»„ªÇ™ÄÿþH_¹ék}§~ð“xp(Êœ ÿW×õç¼ÿߣÚþáÜro<õ _äþGº/$=·xêó­eýÛŸi¿æw:ᤣ½à;ŽñºÒ¯†ÄÒAä¦vÂÒúKÿG^ÉQà …µ_ôëðkäªø:öàKð[pV÷ÿ´¡2®À5N¿±øªõ¸®Ú9Sžÿüü̦±gÞÙÁÀ•µ^/lÒ¯ýט7ÈKâdÜ*>ŸÈÿX–{oo™îÁ°Kõ(íQù8¼GX–c¥_-ÅGÇôû¹%vB³Î(ÿn9ÞÁUuüdï‹ývÆðƒu'<\øýÑo­WÆ<šù@¹Ë_¿Ozò¯|†Ö_cž_Ú„Ç×Å)‹g~xÕÖóc¼èøŸt“vRÏÌ_ì™6ÞóÊì§ÎÛ¯yðÿ}¼œ¯ôË¥]oÙ/™ç‰|%ýuÁsÂÏÏ>°¿±~ÜØOÌ}¹±°²?ù—¥ÜNï,ËÙ÷ð…¯ŽüÒ>ž=â圳ÏÓN}ã“ße¹àcwÍWO;ÝÚOJ»W¿9€‡r.Üsì|7ñ#ç¼·é7>¾Mxúªžƒ'_ç©õG’|_O>ÎÃékèCœOÓϸwß÷ê!ý¤£^ÂÓ—7®/ù±ãMý›|°”'çÏÆçäÎõßÄ¿¾;äræ{mÔ×8@ßtm~¥_ ­^Žžºú½ðÕôŠŸèOùýŒþ¿6}úÙ#v\ä—~?òœrÕ¾Kžkï,éT?‰’Žò+Wë'ÝÔ‡>¶ö–ò|[8åÍ÷៴ù?r[ûÉ·~¼´×‹zmÛ+á•÷æÇæ÷³e}ª']×i_‹Ü÷†/Ò/Å—“ô{C¥¾“±®€{©ÜàSü!>!'¡ ŸøÅ9È7é‘rÞùxùL^ágŠ[Iºþ+Õ?[Œ­_ñ4Cž:%Ý–_=Éó1éÖŸÝòû¶\äEúÚùñé­ôË¥[ù³»1ÒwG>ÖM7ŸN{e)÷¶~CÞ‹÷±ËwñÝ—*NhY¿#ý“znŸÓÖî%õ~ÒºNûZåŽÌ¹Œý,<•û WÒÏΑij?½<ä¦8¶ðøÝ{ŸôÞù9'xgäï<¯|˜pì£Û—{†ÇsßÚ9®sD¸¯âöÔ+åçhÛvÓ^‰ïÜ͹¶s:÷ÉÕÃù¡s‘k£~ÅÇå»pïŒtàõÞZÖg×üô´ÓÚ' 7gw€^†~¾~¦¸©¼§ŸxkÈ  <\—sÙâ¶’»ôÂÓï(gïûç™Þ…¾é‚py>—rÓŸÐEÄn“z·ü/mò?¶ýø‹¢×¢¢wÒNpjÿôƒñ½í’püRi—‰GzOý±k¾zÚ)~>`ìwé§ôÜIù•}2úîÿ"w‰GÍžXÒ{ô§Íû⤧ÿéí¥C^á~±y†·)Î,8x”–ïùÔ‹ŸB8À”£x›Ít𳃄/ní—Kù?¶ýà\à\á̆µúKäî÷›rH§ø³ïŒrM=”OýN¥žàà«+ýöbøñ¬q4ôô²?+Æ-x±¿ä½qΞfâ/áDgúƒß*ôûæ ãé™ñݸ*¿3#œò᣽Ô?õØu¬ôdÐÊ <‡qžž×8n|ö%·vÄ2?ü:ñáP¤3qððÏòþóÈÇF<ë{øóZíN%]ó‚y­ëFëÉ<¿ƒ+]é’ã±} ¼Ìë{‡¿òyrà~5#ö7ö p0ì™"'[¹Éw|ùÅ>£û‚„û¿ãÙ¾Jùçü5Ö++]égÊMïg´Ã_Ï[à—ÞÉ{÷ÛÜ3uï°vÇ: eÚÝ»2Ó7„:cÇß9“ûpî»Î÷çCáÔ¤7ëŸåæ¥u¾Yé_!7=¯ _y¦w»õ^A8ú‰â»>ÚðíµÁ¯½¯ûÉR.œ×Îû¼ÂõœXù„OúòcGž~ìêÔ?éÉžlø#Üu¬ôdÐê·é‹É{zëÛá/zÂÚ ¥®¾1|;ýêѯÑû×~aò¥_¤¿¦×c'¦x„”K>ìÀÀ“ ?åQ_é'ÖuÚJÿ ¹©]¾ðº9¨üj'¨öÊÂpgµ§”pÅ…'>íý‡Ÿf\¼ÖF÷6ßÉ!{jµ»”ükw*߇£âej—)õ¬ÝÀPvÃb'j×ý±Ò“A·8«ðÕ-rdžA¯-økk73|ïX|×Þæ;Ü&9·*^‘\å=üWñ“ɇ¼¾?ä¬v߯wrTÜ©|ÇûàÐvÝ+=Yt‹¿øé‹½-~Þú%žiâî»Î³Ïû†Ú³?’¾õ“yb¹/ßÚóšrF>ǺëýYÎ|÷<ïÃÔîëòy×ý±Ò“A»Of_»v·Ã¯öÿΟ|/¾KøÐy¿p†s¾Öû yž÷Õàá³ìûçùsŠú7Ø;üõ>˜{‘ì§Iïºt7ávÝ+=Y´úçµÎÏècà·<×>XžÝfÿ îÑ9õŒG/4ý¹¼4ž_ñè[KÏ{ÅôNpnüáHG¾ôžî[¿±îkVú7ÈMpÅ7Ǹwø«^´þ^ó ?Þýä°S³õ³”ôN ?øþÌx¾0òûÑ«—Ǽר<ôp_ìDÅ^Uý]}•›•®ôi¥±uqîÑï6rðbÞ÷Í~]ip²p«±ÏÅûnÁQüŸå>s¥+=Éžù 8îƒà`bgñ`ØÙô}/?¸îv“»vp×ÇÙI\éJO"ÅïŸ÷öàÏÍð«¿\ÎîOÔÏ5»ƒì™þ6ò#Ü:߬ô)¢ø»öQöŸ#OìíŠWœù¹ìçØvOžÝóo—ûÆ•®ô$ÓâUáÊÝótÿÎ}Œœç4žsFx]v@áÑáЋ¾¼ÊÍJŸZ{î±;Ê®§óùyO›=âÌ#ìÂÃÓß­öVúÑÞ» /µ¯=0}Ùôƾ»'Å«’÷-ß_]ÊÝJWz’iqîeÀ[¸wDnÌKÅGxrÆŽNñ‰yÅ­ô顽WK¿Ü{€á÷Y/Œù¨re_³wø«²3Þﺾ+]é—A{žlÿ÷àœŒ”úãÛ€›È{ø ç?çoÃÏJWzéýŸG/™óbö¶è)ý9zÏœ/?:Œ·µOôè“Ä{~™Níi »O†ß·•®ô$ÒâeةˠvAc—‡ÞR~»n•®ô É þ>5ôñÑÛ¿r:üΟvÖMõcíû“ú§>sêókó[«Ü¬ôäÐÚctÞ³K~žvI»/w¿|ðûkŸOÿiìëÏýüj7q¥'ˆÖo¯{?ð/α^Ú;üõþßäw¸rGÿ_ÀùÎê´CÇNÜk«Ü¬ôɧõ3JÿA?Rÿ¹7ßá¾ÞŸ¿3ÖYpbâ¡ÃŽãÄÁì_JþoÁ¬úÊ•>ùtë·)ü\¿¸ásváè彯¿ÝÄg?±öãò¾ø˜6ñj÷1ñ¥ûr»n•®ô ÉMýÇ…ÖYøºþkÃïì ŠWÿ„‰W»B‘þêØk¬½Ä™îº>[éÉ¡µOEnê‡0üÌî(þ¿¹©?DïÉŸyKºK¹h¸ÊãRNwÝ+]é’vªí;®ZWíþŠ«œïÙ»F~¬ï"ÖsÖgìówX¿gë¼]·ÇJWú…äŽÒýûxûô7Çók{‡¿ýKâ9'°ÏÎ9YäEü—ß=v­Þ^×i+=9´úçÎÏíþzÿ’ž…çżÆêsèKÙÙb·êEçо'½©tÿeÕw®ôäÐòï3ZÜ@ð^üoÖϽ&{LÏG>è?Ï'œspàèOã÷sÿ…M8öhvÝß4J ÿÛñŒ]-ýÍŽ ¿€p"ÏŽñ~›þ<üUýwø¦x’Yï3×~„qú»Ëõ‰ñ¿ñèåù‰ýMžù1Ýk¾±õåç÷zxé#cãÑo7ïá•íþR~oÿ¸ÜŸÔ?6ùH»Ô.dä²zÒa¦8gõãÏWy¤sf´Ï¬rø…äæLú=üw^}7ûBᛎ£Ñc×ß±{!ü~ò§iCÎð™÷üŒG>Ë÷ìÚ’_übÜ~eð¹ .²éžNyÔËú‰=\~ÿiI+§ç’Ÿr›èù{ß%ïg|þ¢ùG´Þzaù½õ`ç´þµÇxÄÿ¢u]p9/?ò`œAŸK9ŒìŸÏûQž•#7üáÖNlúƒuëxò¥_{/*ß/ä»ûQøÒýDëu|ózúI¿YÇK÷¼øËq·vx_üæ}ýL“¯±R~þG¥¯¼öµ/pìÁœñák´ù²o·ßÁ—ð3êýÃQí%ÜG½œG8_˜vµOÀá|ä§=Ü­Ýî„_ñ:_LnØ;q¯Öýtç§=çÉûËiovQàIÜ{×/âÑ—ã;ýÅ.ÄÛyßó[é~ùMüwò^º±Çr¤ð,o&¼s[çÂÂ]M¹ñ;{òøN9Ø—qOŸýjåóž¼ÈŸk|^ÿ ÷ör]Ô{þì\õvͯjêÑø×F;»y_û3Ý|¿¸®Ó¾ÜÔO¦þ?Óë±ã ½éáØ?¹þæçðzÚŸŽë#}øzŒÒI¾üݾ›tø)n%ßo ~»1ø’^þƒžDyéKê·&_ñ¯©ohñ0c\€·Qþv®„^ÕÞäcè_ê—åç”?õh;~´œ¯´£q©é)_ÞÓ¯¶¿Ï®òòEä¥~ÔÂg·Ò¾üœñçGO};ýT¿háñù/£Çžþ ëç3ßù¤¿•ü„»“ôù‡’ÿj·¿ðÿÆŸ[ý¬%ÝRé©§gò–g凹£œƒÖjÒ—ÿÝQ/é+Ç<¿¿ä×úc|į¹ÑOñkÚøâi_íÙrçùÞ¨ïužùBrƒê'3”¿Ë{ùGr?ô^ø÷^Âóïy¿äù^øû^øO?Ý^þ§Ÿëg4ùìï'?ñ“Oʽ•ò¢üÊ—üï/ãµ÷SÎû#ÿ†ÃŸÊ©=´ƒúá?|kz:çÑgϹ/}£{¼Õ„ÒÑ?ðgøbÒ§ç„s¼˜ðô)ò£—PÎé‘ÞæÕA_é9ßuNL{A¹ó?³æGC¿òíQíKÓÓ+Ãá(ûŸç„“Ÿ÷Iïü2ýö«t¤¯ÝègÏðî—¾´|¿ÒcäæÔ¦]k×îi_í 7òË -Nå£Îç}Ò+þ?ÑWžN¸àuúî…|J'úXv“ö÷ò=ö”\O}+9‚—«¡Œ¾½øzúZæÿO ÏŸOzi—–óï•S}Bé}3NÅ´ø¸Îûç÷#v=ÌÇÆó¼Èwv]Ï•®ôK•óŠutÖsG™ÏíKáàÝà™¬K­'WÿÚ+} i÷?ÎU¬“Ïý~qhäÇsÂ×ïÇØ/½óx9\éJO2Ýž§9/‹ ;Pû—÷Å¡9÷Þys:øº7ÖuÚJŸ>Z»9αé¥áÕàôúüpó½8ÀÈûð¡ïžÝ¤{coVúôÑ-.â“Ð<Ã_ÐÃuÀ±ÑÃÀS3ø‚;ëþf¥O-îþoâÖöC‹‹‹ÁýÜÔ{r·ø¸âÔVúTÑ-0ð^æ‹â_…Ë{áà‘ŠMøâÏ.ÎVºÒ“L·ø?ë«ð;üÙ´ë § §ç^„ûCÖw½?•p·ÖýÍJŸÚóä«Ëó®âÿŠ£‹|¸7xõá§·÷ÿœ›ÁÛ¹?zm×õ]éJ¿¹yÎf©¯©ž†^®öÍ|gÏ^€¾“žÓ½xúÑ—×ùf¥O=‚=¾/0|O®àÙØë¯)¾6Ïììx~q•›•þü6ý–ÃmÃeþ.| Êÿüä÷–|U{Kß™|œ÷ø´þ×àF—áŠÛüÞR߿ҕîTn¿•xæa¿°8iã7{m䎼ïç8n܆£ä¼²EþàÄ*wë8¿Ò'‡ö¾ÀKËqØÞ3 äå•|wÇý‰óŠ{.ðÉäK<óŒýûkpÈì›ý`¹ß_éJw*7ø™=3÷×ì³Ù÷¯¿Ì„«ŸÄw­þ7…··Ø;üÕ®"¿žì°]L<~Ý;¿Î7+}rè4ÎaÙ5+}¸ ÷vøÛy.ÿ6ì#:÷í½ì¼çWPüëIoæ']÷«Ù{¼´Î7+}rèþ{{‡¿ý›¡µ×¾-ž1ßÙd—~’^ðZæ‡úWCó¾v:<']úFxJï“þ®Ûi¥+]ÈMý â×È ¹¨™ÈQõæ?[ÊCå/ÏôòðÆìÂÔ>PæñÙéa?]õó+}éÖhäÆ<ƒÿÝKyïá§ö¶ö|O…zH¸¬Ú©ÈwöÎØ]ü—|w¿3µñ­‘Oí­-˱ëvYéJ?SnàÏ…ñ5ÿ?”Ý4áéGÙ{+ ”Dñà¼çíÜÞáoæ×r¾´ÊÓI¦õOÈžß‹éozôøµ;âÀ“àO8Cvýø…ûzfðqìõÕïá^Òãgöw‰ƒ“¹ÿÛÄg¯Düþ|ÊýËå{þ.ÕÇ3?¥Mwø”ë*å 忳ô/ùÿ¦\ ÿèwã;¹}^½ÒÏ¡ùÎÏê°ØvVžÔ»í¢>ßõòþ¹õ|ﯟƒÿ࿵v\é»á©Î,ù¦ýa¼…¿2¾Â¡èw~%…ÿѲŸ+·ÆiýËNgýknâWöF<ó»›ä.Íx0ëMnÔkà`Ê_ÖaÆ xýÓyþÇ!wø|âšQíÕtÆ|xf)o•¯Ócþ‚¯«?ÅÄíQÊ~.œôéuþû«äF¿’úqëó øeŒ·ÖCð'úéõÑ/äé¬|ò^úøäÇË|ê_Y? ¿ð•}~>3ÓÁßC®àÖŠóõ…ÓyeÈZä·÷ÊÔþ†?ì“ì¿´;9°oúñxVNû+÷f~¼äóöƒ}yßø'_öÔú>Ï«¨¿Nn.¥Ý´çôï ‡ryÃçü þ ¿ô|7ý¤ìÇÙÍïyT¾¿Cn}å€s_ÿÔg¾×_À òƒ¿qÞöz¨üz–ðøÊyÙù‘¯ò¾6Ê]ÿœ Ç?‚|ßáÙC“.þç§×ù¿¤Ámû#ßù5¨¿ÖÑO—f;é¿åüµÒÏ‘ú8+úB~/†Þ¼ñàVŠKIÞÏõkñAø'ýÇEÿH^¯æ=}ý#œYýz¤\ôŒø¥vÆÐ¼Ÿú÷ö¥ïÞ0ý'²øŽ¾…ßá¯ðîí_I>ô>õg’gúí®>ô>âó+$þðºí—áèª_’žqJ¿~°hç]óãI¡õTÿžißúËsü>mã…¿ù?‡ûúÃ{|>{ðWýO-ó©¾.…¿°ú M:ü‰ÕŸ¦ò'\ýx¦|ògWŒžÿð¯¦>òãÏŠ(~¯êïiäï™ß*~Ô´oË›÷¾ßZ¶KÛ[=”?öÒ¶ßå#ÿ”¯þ´ô§ôCÙ鸹Î7_H^Žø‹ ?ð»É®»] w$ú×L¸ý³K>€Ï·õçɾ _ðx{™ÿ¿·•÷¤s'õ⟖ŸDüDÎ[?råYùñµ|Æ8R?šƒÿjw)éò¨œ÷F¾õÿ)åühù¬<Å»-ûc[9NŒq±á’žòåy×|ù¤Ó­fòƒôÛËöOÿmûiŒ“ÆÃÎOÆû1îâoãjýS‡ï:®~°¤Æ÷Ñ¿[¿‡øN||.|-<9õ]9ÄO~ðkõ[:øÓüÑyM½F½+Ú\J7ùÈ—{šMgàB·óòH_½µSÇý·œÇvÍ—O:í: ¾×<^¾vô“žó#ûjßëÇé´÷Ï”'ï¯ä½ó"çeÒsþ䞘s­ì«·ûð|wÞ×}{ä“Ä×¥ŸtZŸ|_ýø_tßM¾Î…wÎõö¨—|ç¹/zuÈv§ë=;õÏ{çóüíò2½•#7õï™þºZ½Ež_ÝôÓ‘x±g$]çÁÎÏ%=÷ì‹'ÈóÙ—üàÜ—^^…f¦\Bq/ôôyüѪWõ=¡çó]; üùU¿’ðSOéÜxê]蔃ž¬õJ¸‹y¦–ŽúÒU_9ú…¿RzíÊ®=®úÐ;üxY¿]óå“N‹;ùcÚîLžÑï.å£|6ü¬ö»þz6ñáeäƒßánðû©Ðà/ë?󷉺õk¹)GÓú÷¤ ÷R|üöRxz~8vnØë ç/$ßßüá&®Í8}éýO||ÏŽ;9pLø~Ú™‚SRîÔ¿í”zmq6©çé<¤¿úù\é ¤æÓ>Çž Ÿ“oóQƵâÒÌ'æóúåÝÐû¿Î³qëÅ¥ü’Ó]·ÃJWúWÉÍ\_ÁÛXW‘rC®²xdž!öEYgw4?Y—f=»ëú¯t¥“ÜØŸ¸gßa?Än•óûû#ûRþ¢á’àtÜ7rŽñZÞŸ_癕ž\ÚóÉË?}±W»nîÏ9Ÿs^oã<²çyùîÜL¸·òÝ9å›{›|r·ëú¯t¥¼dþ˜ö È{:µ’ðÕWå;;×=‹ÿÑ&}œséw×ùf¥'îß‹¼Ü _W/™÷Gð‚ù~wïðW¿i·2Àq·”øðü­¯¶ž£­ôäÑýýÈG¨ëw0 ¤âdëÇ3ÏÂßÏûg—rC>àiøû¼Ÿ÷ò¹·ž ¬ôäÑò7<)Ðû? °·õۉ߇<›»C¾:ï$¸Î¦ÿ¯ ¿ù¾ëvXéJÿ*¹)ž5ó‡õÜhíFàÊàQ{ï@¼¤gÝW˾(\œ}Î{ë¹ÀJOí}=ç`ðlîù¹—yyЫ?M`¯v§ÁÓÁÃÁÖ\äÉùÜÀ®t¥'V?É>{nô7BéÿáãØw ÷¡ß¹8ô§ô žáöà_^÷7+=y´zN|?lì4ñ ÷Çð9<(œÚéPø¼½ÍôþŸò 'GÙ ùÑz½Ò“K‹K‡£ž¦ßÙɺôøù¡8ïóKy+üT⳯\ýÁ­óÎJO­ývÖØmâ®÷>Ž‘›Zνwd=æÂ¥äŸ3p¥+]éI Õß»ßç~Ìë{‡¿Þ'd—æâ˜øYà—±é%÷øÜW$WìQ{p+]éI µã7S?‡áóÞÇþxq.Ýøì¹¿ýîrþè¹<óµú9ÙÐ]·ÃJWú×ÉMæöظ¹©ý§óLã¿ÿpó­v>"ÅÛD®Ø—£½µêqVzriñg(»Zûôý×·/ðààÓ{ûû¡pðÈKèþOƒ;Ø|ßuýWºÒ¿J^üë†ï÷—ãþþƒÿ«æýý?D~NEî"~`oÿ'po¿Êû<çý®Ûa¥+ý«äæ~ö3ö[9€Ûüéb~8^n²¾#/÷Qéü{äÄü´œÏvÝ+]é_%7µëùpC³nÚÚ ½óÙç^•öá Ùù¼—õ;ÀÒ½»êoVzòèö<,ü\{‰Ë÷GâMñïŽóixÏi¿çsù~ýãu¾Y鉡[¿ºágþtèaèY†ÿ¡Æ‡í=êÌ7ì L;rì TOúÊŠ·YéÉ¡½çœ%?ƒå÷Ó×ç×î üæ‹I=(vÓ„«›È¼Í?­r³Ò“Gk§4¸ÎâjØüsž/.÷!õÏ g6ý&žYÊCíà38ϳ+Îf¥'Öß";Ÿî Xo±{vaàð?Žphðg3üYóL»‡°Ú¹]é ¤½?c_Ã4þf7þêÀϸ×f§)ü;CnØ—·^»˜øÃïáJWzhïAÃñOûõõwx}ÈûhüŸ\Kxé¼»”‡âÝœ°Cõöº¿YéÉ£•›éGôæÞáoë¯hÈÁ­ð?ê|¹þ´Æþ†ý'ö éu†_Ä•®ô$ÐÚwbgƒŽú5ô<ä`ÿÓ?[uð3ôŸ·—zŸâÑ„gíÞz.°Ò“C÷Do³îúao‹«y¸yfOíÁƒ‘³ä4é hñ7ä}°ÊÍJOÝßÿ÷ ¿óWË/qø¸¸µÊé% á"wµG˜xcÙßÿ·¤ÿðÓ{M78Ÿ]·ÇJWú…ä¦~lÃ÷õçþ¯¿÷ÈÇûcþ¨ë|œÔßîÝ1?õOò­?ÝÇãxVºÒ'‘nýÝFnàÑÜ+ã“=5~A{ŽïÎjwrÆ®;ëÂå¼n×í±Ò•~!¹¡an€}x5úÊ×÷Åç8¯æŸC:ÃÎSý±ÁGv¨âgg×í±Ò•~!¹©Ÿ¨½Ãÿj{yÆïì¥ÁÉû%Ü·#ì¨ñßÉoïK GnøÛ¥_=µâNåOöѯҿ/lú·ßŸÏ{þnÃG÷ÿ>`ŒÙÚëÛ„¿ÿ—ð~ŠÿWþbïÿ¿‰¾løé}gÉ_ޤüM¿Ígoð#?»ü¾ Io¼goÞýs¡ñ‹[¿Á^ê_ø-ä_x/饾p£}Þ,ÓÖuÚ ¡Åc=~xqÙõ ×übqŽü=¿”øçÈIø„?evøÎX·$ð9¨]LþbÅã/š¿Mr öÂ'þ²ã'ºõÏ÷gœ~¥[óù5´’þ·.ï+׿O½Æ|dÚ5?¬ô‹Ñòõø÷‡Üè~cñ)þ…³wÏÿñûòÏN¬g|ŽOá+_åRή{^źéüÈGy‹×\·å{óMüµW^Åóž½Í3áñ”×:ìtÂyºí$Þ°»k~Xé”ûÞK›~>òKû€+á‡âóþBø…¿×¦;ø›ßË7òüÊH}s~eÝ[¹d¾K|éÁa¾œ|íëÉ«ý}ê×r½.|žù»­½Û„'ŸÊ+Þ›£oúò§ ßöêh'÷ЇÞ|ß5?¬ô‹Ñâ¯<¾ßà÷ßJ?Ã7^I_Ï{~_co¯ç­WÎù.?ίäý<ïÅÇìdʇ]L߯âû”Ëù1Üñ•ÐØÃ¬½?åÎ=Í˳¾Ê-Ü'§mÇPﯧ<ɧ¸Nõ]盓D÷ß ?±yk)?ŸXý}¿Hü+UOøÉ2üͤ_ÿKÉ—þƒ¼Õ¿lâßÌ{8Kz÷ÿÝï—ÎÍ¤ßø‘å„«¼¡>¡7ÞýþqßU^ùJ'ÏʧÜÚ‹ÝÏwG:·Roã@ýR­rs’híIÂ1Áûúž~¯~;rà=;—µû’ïìëIç&yKx鑃†Sž|gïò9È{ö/ËÇÉ·ùàç¤G¯;ñï$=ü\?jžÆå¾¶¤ð'¦_|ûíKáétŸŽóýŠô“Ný]$¼÷ôêÎõzž•÷Êç|áò˜7Õ·~5Õs¤ÇNÜ „ÊïüNù¤ _SÜÍ(¿s·‹£½äû®ùb¥ŸM«Ÿ@ßLÿ9‡¥_9Êß‘sSz•³#ú“ÒðµpÅ—$½³øÓ÷<³Do¢<çòÌ¿ýü¾¿ ßú¾¤Ü OÿùòȔޮÆ{xßÕ«~Óò|jSŽâøv¡è?¿»œçWúdÒâWèýô'¾|6ý©¿é×éññ3=¤g8ÆïþùK¾ 7ôñMç™ÍûûÈ÷ç’ýkhñ {ËòÝÿÅ2\ëüØ#ßéIé!µCðå÷ç‡|‡Óïp9 ÷èùþ»ÔûçI/ïëï!õP®]óÅ7…ßõ­ðþ¸˜ò)¾„‰|ÜÿÕàüŽáGþqð#ý`Òïû3K¾¨~>|S»~ø2r\ù‚[!Oÿ8èÿ]–§ágýÈCðdÚçÑ.ó9ÒžðòQxƒÓ¡‘ÛÖ{o)-ß³cþ{~Ôã-¿¯ô«¥×­cÌ#µ—þ!?Æ{ýOÎÂo]—˜Wð ¼É‡|4ý9¾yÆzl¤SþÁ‡Ÿ|­ƒ¬«ð¿uŸò‘[óÇ|n>É3ê»ùëì1õ±ÞÓ^ÁÛu}j^þᨷõÜùPéÌùϺrôÓ®ùé›B»/±oˆäâ9ôsqy~ ¿†â«úƒügýfŒ›ì޽2ø‚Ý1ûv*{%ïñ¥}Añ6Ê›|ÉÝG=ÞüùzÂÛ‡Ìý–x?\Æk¹µ—ò¾<ÊëüÀþäÕ!wÊo\z5åxu¶øù~qo¾yqn{õá¦Ýõ¼ˆóÝ‹¡øPx8|Ç~¸ó¦·?¼•þMü¾‡[ycðÅ; 9NëÊ›ðo-ãõœ ~æí|¯]¾Äsþ¤¼p1¯OyN¾õOûÉò;{êoŽr;çrn÷FÒQÏK¡ÎÓÞù:ÏS?8›´_ý1êûú:ß|-r3üJÐWŸE_H~àhè9è=¤óÑB^¶ršþzz½¯ª~…¾¥úŽ”‡þž®öû¤Z=Jò¿–t”‡¾¨÷ ¾çý•e}áÝú\? Oï"?ú£ÞwÖΣ½‡~¦ã›~¸¶Î7_‹Üg’~}/ý¿r—’þ½›÷§BÿÎß}`íV$þí½¥ÜÀѼ?øâ¶t“ßmù%8ùâwïñ«òѓҿ²oÁ4ý»òV/ _£<7G{Á  œ.ÛùH}R.íyGúäB¹‡|£ÿV¹ùZä†=¼{é'~ÁÈ»*ðW ç»ðé¿ÈKÓ‡/þêîKù¸‹/Ç|Ót}HçŽï¡øÙÛƒ_o Ÿú￸¹Äkþ¡êÃß™òß9†ÞÕNɾ¬é$í9Ú©rgÈMå,ñVÒ_ÜÌ~¯ý¢ô+>Ó÷ÌÂûŽõãX·™gÊ¿C¾ŠÏœ|1ä´å3N_[¾7àûâ:‡œL<éÌ·8Ô1¿4¼qþãe»Ý–?¹¾O¾-¿ùP:ÚW;’3óÞ&þ¶]Ï.Ãùh¥_ ÝâÙǺ¦ë“ô›õVñÎc}ô~øáÖR^¶ó9Kz}Æo<~bÝn½RÜü’O¶x.éç»u Üg÷CIN¿þóÝúÊ~ãÝ¿øQë±´£õœZqÚòM»Á™õƒz&\×]cýùÞºß\öß®ùêi§=ÏÁ/ΗÜëê}«ÇcÝW¿GÂéWçlÒíþ=ýyð…{Z¥ o?^|£t“sõp/Íù<šs2çvêÃß ü[ðt-—òw'½Ä¯ßÁ¼¿àY~¡äWû÷~Þµeú×>§ý‹§ÛÄß5_=í´úzúç¦ÎS霫NýßټϹï‘|èùÏ'½7—ý[=„{ôô?¯&}”^ö•Qö—ªW ½˜ïô5ðlðdêE*_zQå•ÏÔ/åsŸºvR.éÑ‹Ñg—pÚ]ýê·pÙ®Õs:O¯^vY¾•~Ers.ý8ñ^ì<ÔĦ_Š—I¿Ýÿ|îñòóèO~(þ~€¼áëÚéH>ðŠpXI§úHú}¸úWx!¸¯gF½^Hyþ¬üIoâmÈŹcÆ|M>¾7Òƒ[ —Å„ÂÇÿ°y_œ;6~¼<´ßà5’Þ®ùêI£ð&Å÷iÿé?ÒøK_}ý£ß,ù^ÿ¶èÛO —øø€>]Ÿ’þæû£Ÿ'ò‡ávªG_ösÇýỼWŸðÓÁ©eyZç–áŽÌøÎæÌ2~í–ý"áÈ“x‘ƒG¿å½ªþÚ‹ü’ëâÓ’üŒ+ÁDÞ[~òwÄ^NêñUn+7Æ{ó2»/Y'ÔŽ‡u~Ã7Á¯<ú‹u…õB(\ üÀKÉÇúNÍ3¾{$äóÅÄ÷žœÝ´‰ï·^zy–g¤o=ö!ßYÖs;¿æ=üüËkËñ¼ó>×ÎîÕOØ×TÞ×ÇøÀ.Ž|ÍßC­Oá©3½O0Êe^Ž=·â$ä¿®ÓKñqŸ»ÏM;ÕÐkÛŸØWéÀƒÙÀ­èGTÿGùìýªôŸ}‚rLŠ.'ü”ë‰?‘ÿ–îq±'÷f?0ñ ärÞ;Ãÿ¿–s„†Ó^ö%ìIi÷Ñú>éÂݰc#ý‹ã½s ò+žóç SžµvÔ¿Úiœ«¬T¦}Ü_ŸöíÃÜßáJ®å{íá§œ³âß·:¯!—ÎÁzî“üzßøá¦_›_ÒÞ¹«ó*ç²êw%áç½eüvcÔgâÆš9O¼wSNçgê9ïu;g$ß=÷Ò®Êí{ÒS/ï{6ñàyzžò_ÿd<“ƒQ/÷`këìBîg»æÓ'níW ù¨}“Pþ†<ÓŸÓ·é_z5zùâ:Â÷ô ô¾ÓcT_)ÿ<ÓcÐÿÐGà÷ÛI·þ`ðUÒv]ŠóQï¤OŸzsð½øê©üô÷Åé(߈¯Œ;µ§qmY¿iW¡úïG»7¤þ)Gõšií>í‚ÈG;Wè‰‚ÏØ5Ÿ>©”¿­íóO7íöà›ö¼—~å÷޼#þï„ûUúwŒowÓ?Å™$½ûø;Ïòî~ø~$þÅ꯯~ÄÒßüYÂõ¨Ï¾òzŽ<À£Ü7. þâï Ά³âƒä“rÞñùO#_Êû ñù;“ÿõûxÙÎw“ÿÝÔ{ÿ_ÿÃe}\H{\[~OûlåY{¦mŸSËyðž÷Æ£ô‹òŽùi¥i7ëaø×i߯~UÃ÷ÆúƒÀåZWM¾+.:鯜ç;Ö!,×#Å_úž|쟺ž³ù`)7Å'ç½}|¶ý|¤|³Û®/ÃÊYÜi¨ýDö o-\qÍÊ;Úƒ×ϺôÉAâ)Oíö~´àó-Þó£eûöÞ…ò*×ÙE½·v —ãÞJ‡ü8×ywðKý¥¦ÏÔÞcÚ·öíÞ¾ùJú­÷Öò é\kâÚ„sÞeíÜèÖ(ò?™gçTó¹÷·Ó¹ˆóEõ»þÉ2]ç‰Ó®ÚÀ}míªwÚ­xRí)õI¸k‰ïO=Ý'U.çÓŽiÓí­^Î#áó®yŸv¿¶'W:ä.qžï×ú5úŠ#ßéSœcÒãз°7@ÿ@oSœVžáèãà.騠—“.üèù„ƒÏ’½ =“rѧ¸oýæÈ‡Þƒ¾G¸Ü߯ަö –óMÛI¹„£¹8Ò§OÖÞ7¿PúvèmPú[õœújíK?Ê?½|Ò/»æÏ'—5ìþOXÿMËv,®‹>‘›~Ú¿c^D>§ón³öóòü\òŽþ½vó<']x4ö;~°¬Góo=ò^zg“Þ‹›ïÅ#ÁÉœK8é¦|m¸ùÀ¿©opì™5ü롳½ŸWåÖ~Ú#ôLÞÇŽ |OÓÃÐ~ÂOȰwsÒè£?¤=†²Ú‡ƒ‡äßñ×{‹?ÅC=²Ûã+oïÁgGìù‘Kx¸¿_öÇ®Ë¿Ò ­]:òA~ømÍxÕñиÿøÂÞá¯8Þg—óÊJÓÎwà++7¿Oû™^Ì3<Ü™u=ó$ÒâîŒoøßz^ŽùWÖ9¡sýñÃu\|l;kß½±>šv˦Ïï¯ró$Òí>aðÿØwl÷{öƒ#ž}ÂKk??¶ œrÿùúÞá¯û|ûú­íù$Ò­†qÞR|oäN²þ!ó¾öä>X|ßu½ž4Z|qðÜ}¯Yÿ™g7Ïî-_^åæI¢ÕOÀ=Ö¾]Þ;owïð×óbú÷ïáƒsß|×õzRé¶ýÆùSõ.7í<ý{Þ\ÛõI¢[¿[£Ÿ¦Óú1ÕïËùd‹7O¼Õÿܲ‹³NûM;8µ˜vžvßxø¼ëz¬4ýUré¯Ú‰ÝôSï‹Ôž©ù'ñè›Í[ã>ÕJÓνO —í´õ÷lü1ÏdݶâQž(º½O”þ¼’g÷±|·sŸ N‚>¿þïÖyæ±í s#ò‘öìwãPíD¯nžß[Ï'Ÿ$º½? 7RHääüX—çK«Ü<¶í÷k¿m´£ûÆì•¹÷|}•—'‘'×ñÝAáŠØqÍÎAô8çÖsŸÇ¶sÏéC_í 'Gÿóæ*7O"Õ?ÅyüÓ¦ßjO(òRÿaÏ$üÒ¯ÏGï>YÏŸGù½ÜßK{jßí˜ö+n©úäM¼]×c¥+}’hqp”ìŒÑ;{95Þ?Œg¸ÎcðÏF.᩾ÿøq®þO½wøÛuû¬t¥£ÅýYã8hë¸S+»öCïüãå¦8øtñê·:ùIº«ßÚ•>Á´ç0ìw¬ÏÆ>òå1¿˜ŸàÌO?~üùLåñt½¸wøco{.ï´ÊÍJŸ\º½–qßüï4ðlçÞÜû›o#7òq?çRÒ}È œéÅõ\b¥O.í=c÷=«£/ûèñrèþwí ³oq/µv7‘/÷¦¯ž]åf¥O,-ÞéZøùy‰Þ0v?ïæÞá¯ökOpêU“» üƒ¾wÌÃÕu¶Ò'õwùðÓ{=è¹Zžßùìó­îÞòÆoCñ†ÎïòìŽ3þØ.­ë´•>ytk n-üË¿ÛùÐ Cè'Ù‡‹³~??³CõLâ¹?ý”²wæüée:+]é“@ËŸÑ_'€Ÿé3á ànøœ~hù ¾° ÷è×{‡¿âÝø…«ÏÍ3‡«ÿÀ•~-üÏ.âð{Ûïì?ý9| Îï%¼ypµµÿw&Ïä¥ï7ñØ‚-^'öÖŠ{#ä’}6v!O%þ„ù¹==æ?vÁ†==õgߪþ'áྷLo×ý·ÒÝÐÚ½e'ôùqîe^ŸÁ“ó„ùå}~ÒLJÈi(>ì|"?ò™xp;ÖcÖ…ìsº× <|©ùÉý‘³C®Ç¼ÙgrBîíÓÜ_yi“Ï®ûo¥»¡[ûÌ{‡?všûÝ>âuü™pøÛ¹šûoæû+Cìƒàø±ewȽö­áÞì£àrø†»qÿP~â±7}9ñ^U¿Ä÷+oŒùÖ¹‡rÔëÙÏ<çXéÓM{^Õûœ-Ö[ÿ™Ÿl¾÷ü,çWâ]ÙÄ«].÷¥ùíd?ȹyqNæ™ý(~ ¥KÞÜ/½>žk÷+ù¶\Ÿ,Ë#và.ïþêÇ@=Ågߪ÷ê?\åæHË·Âì¼·Gkg«þAòÌÿ™ð4ÅÕ„ïè)ÙMáÏ”_zöUê¿#åaßKüÚJºµ’pÊS;F‘~Fê?5ÏôOÕ«&öZ¤÷FO »îÇ•~½´~›êg*|s÷g ~¨_+áùçeªïÃgü6y†‹áªé…ò—Y?MyŽBg[Þ¼çOJ<éÖ?Uò¿—÷ÓÖý|¿ãùá§ìmý_úòo$ßøÝu?®ô륕“úG<µy®ßÃ|¯DßÅ Ÿõ†_ù?çüÒñ÷&ܾô“Ný&|ý%Ê/ùä€a[ÞŸxù®žõƒšðü6|ÞÇßíÖã(ý«þt]§}iÇaþù'ôl\ïx>ªCrò³å¼e~Áç•›½M:M×¼0æY®†ß3ïá*£MûŽü}òã Z;Ýž“oÏÂÇðoî¹±ï6ìµmíR&ö‹CM¼ÖÓx ¼.Ïœ;´}6ñwÝ+ýziõ–ô*¯ïþz¯’ž$8Ëž/Ó£Ð^J|ÏôŸñwZ?›ô3çä—gzzÌ‹y?ý©þ(éÐ#ÉÞV|ö ª eß å‡âBž•Nˆ_G¸z*á£7Úu?®ô륵C/6Ž…½ÆßüAÁDÏ_|½?^ìÖðcø|âŸN|ÏðÊõÃå:¨ö Éœ\€ô¿»,WÃÁÁgpç¿Àny%WpÁû|eýo¤ðèßöî¯öíøIƒ+Šÿ´û¿Ü”ŸßÈö³öWÒŸÁ;$½G¿Qÿ´ |Ö¹e;>ÒžÏmœJ¸;)äöIgâRÈ¿q4ãçñðX~^òqëk˜þÿŠ×Êû9>Ã#¿¾Iÿþ%Ü·“ßj'鉤]ZwÂA üÆÃ_XoáÉ›ôà(àôà†à¬—kO}É'åÛyïÉü_ü^ÞOûÈø.ʾ×zÝ{ò /7o}Eާ0åV>¸­ïÏúæý«K9`iÿUõ }cYþ]óÉJ‡ÜÔ>ý'›~‚ º–÷pIüxÁ}\J_tvÃÅ ¾·oåÏæb(~ž¸%þ )ו‡‰—ïöÎSŠƒù+??~Î[œ']óÚ}ØYZé“E«ß…7¢W¢Ÿ¢ï¥Ç­=“ð#ÜQß'ý“ôîJg„O¾-=_ñSâ%<¼TqR)íáÛ„»#\žá2Ôn¥Gùóƒ7¹µäçý›‘éãígywÙ_½¾xÚk9¯­ôÉ¢[|Pú}ÿ_7ý¶>ÙÿÕ†Â=Ü?“ x àç¶r q'ÏÅYˆ¿·ä»ÊIò))éÜù¢ýžxÅq¤’>Sñ†K>޶˦>ÛçŸ.ÛC9ŠóJ¹KS¯¶OÊWü‡öRÎô¼Lâïš?Vúxz'‡î¾4nß6_àr‘géÜNÿOÍWûùnÞAÍ3ÖGâ‘#ø§Û#Ü93o‘|{aðõGCîÔ;ñÅM’»ŸùI}?Z–ŽQyÞ¼Gþ¤»ü¾kþXéãé÷”þ†;·^°é}†ð‡ý‡{øÛ¾Á>Á:G:pFÅ·Ûg„ÆÏzïLû’öÊç¹ö½Rø-|lŸÔxæ·„g¯ëÀ„SŽÛ/ø˜}¾-žK9å?òƒ+žkŒ?ÅY®=v\é“A{T|O¨ó x ÷ûܧsþæ­÷õÂ'ÎÓì—¥%ü5òG.œW±ÇÝ{‡Ê•xÅ+ 9ƒSªŸj|>Æÿ-oÊw}Y´zØÏ*Š‚þ¦~m… ?Ð[8Ou?|â¦Ø™;?â_ =›|è-é‰èyà¨à²ª·I¼^¾ÇøŸn¹É+üˆxôN¯çýð¶ÅE%œðÓîÄ[ÆõË{ú[í=qcÇø3[é“Ak'Ž>åÔ¦ÿÕ^Oú•þ›çêニ+¨ròlž…K:Õó\ ÿuű#ÿòò>úHzvv‚jŸˆ|ÐËÃOÁ?œ^ògËKïz.ù {BÅ{ý9é²k¿~Å hOx.å.õO€×xvoVúôÐÎ+p:S½‡ÚÛüÿCNÍ—ÆçÍ;cƒW ׊ÛàoøwÆ#ãE(\ß™„3®á_Ü”W=ý|”—œ—2ìº_VúdÓâsŠSÎó\OZo~gÉWÅÛ„ÿ%ÿÿózÒƒ«g߉<õýXW*ß¿ ¾¯=&ëÑ„·Î-Î(ñ§Nó°z û¸+]écå†Ý± áû4v¾ìàÚÞ| ·cžÈþ«vÆì'¿¼9ä~è­å:në‡pìO/ŒpÎsÞN8rDþìÇ®>ÜÔóÕQ~é^4N¬û°•~¹q~ïàØzÏ1ßݧ̹xãÿ|ûWÃïÎáÉ|PñjI¿x¤¤7t#ù˜ïÎóœC'§ÜÉŸüÊ×ùÞ;CîÈ%¼à¨ßJWº¸9úšÞÇ…ß»Z¼ÏXçLü[í˜áÃÄ£ç!'ÕóDèƒø”^õcI§ö¯~¤¼—NⱇôÞ˜oªWÛ„Ûu¿¬ôɦ[œCø«vÆÂð5w‡ðw7ñšAí3%~íÌ$|CñO过^.òUû/äïá¦Üp·…÷œzÔ~YêÁNLÊ¿¿O~ó=ávÝ/+}²éþƒðéƒð#œYù8|WœpKþÚðÓ ŸÂ'±÷VûcHü¤W÷ üû ù*¾~ ]åŠÎr³›VyüÙH/å9î_“ÏO×}ÍJ?_nà:á8Ëï{‡¿­ý±ðmíóýA퀙Ä3?™¿Ì-ø´xBù'½ÄŸvk§Ì¼ñpSn8ÛÚÌ|’p-·z•.ëµÒ•>Vnî„_ެӬËöÛuÒGKþí½‰„“žð½a\÷žFò…C·®²Ïº3ÞÛ·Üœñ?YæW\aÒ¹5÷QÒ·ïì:߬ôóåæFøeÚ÷fÌ9ZïÓå=üþ„kßõS›ïöÝì‹_M:Gî÷%ÝÚ9çÓn ó:çîÑÁGõ~j¨sðÚEóœï×>\åf¥ÇË‹ûÿÕÏ䙞…‚ ¡ð6ìÀ§ºOJJoHOz)´ößü)9ÿu¯›´a çÉÑkö}ýßÈÖC¼ÚðoïÓ†¿ÝË}3üí|‚;ß…¿–pµSF>Ž89÷hsŸx×í±Ò•~!¹é9zø»þ=óì|ýzÂÑáÿ÷Æ3??ÅßmÒk~ìUÀå±q}]§­ôäЭ]¡Œÿ÷>XžûMû|·Ãïµã#^ø¿~ÚöÅkÀ÷?º° w{]§­ôäÐâ|jgîß6ü?ñ;ðpDµ¹¹?äàAÞwj)_𠷔ו®ôI¦[|]ä§x£ǼòðÓ{[?žC^¦½#ry™ö.k/óãUnVzbè{ÄõÃÊ0»qö-ðHõïiÿy‚»s_>ÎÏ=ˆâçV¹YéÉ¡[ûñι~úa¯~ØÍsŸ”ý­ú™ßÿվe¾ÃñÕî8G»¶®ÏVzrèŸ~æOŒÝ¸:x!~8áàèGéy¦}zzó /|Sô¢»n•®ô ÉMô÷~þ}aïðW»“䈟F~I¿ðü|N»Žðzð}p9ìPýïå¹Ù´¯µÒ¿²Ϥ]ùM…Ë Çf÷%8¦GȳxÁK±V<Õ©ô>øþã×ѵ;;MõÊ~ ¾Çb÷Æw8ã(;†p¢ð,ì6Âo&ÝâDá5Ùßßzuä÷Ê(ߎ©×?Žt•çtžÓ>~ŸüØWƒ‡~Ú›K{×\,ûŒÚI?’7”ݬâWG¹¾·ÊÓÿðGÚï{ƒ/ð)¿œ?XòË}òò²?îÿgÂK÷Å1>Â_‘?8iv̬c¬/”GyÙ_2þŸáQ^^–»þv_J>ì!ZçÀQ’òn=¤äˆþ~ŒûGÆÿú_$ßIßø_öÃQ_ñÈùàÇ´þO—ù´ÝÉ›ò“#ã™úχ¾¸I×|ù¤Óò£ög?]3öËØeÖÏF¿[gè/ýr̸Üu8»€íç<÷> ~N:ìnã/ëzûûò$}òR¿¦ ïeÜe?”½ªØu꾿’3íõörœ.^L»À‰¹!_ó‹yUò£k·MüÁ÷üdÊG:ö;òÌ®ÜÅÑ~o?~XéíÅ% ðQî3^ýƒŸÄ#O³6íñ¹ÉN`픥Ù+“ÿ;y/Ÿë#ž{rµóg^Rþ!wâ¹O*þ•‘?{kæ7þÞé? Í÷Í1^ô¾hêï¹~UC¥KîÚ®¾zè?çl¾k7õì}<åSÔëâ*7_Hn´gÏCó|kðÙ»iÿéÇÃ}`öûà…«]Á¤Ïo©óVöý®£,ËáÞ1œbíÊ?é²Çæ¾hý~„®+GÂ9·eOÀ9­tù÷™~TáÊàî‘ãM¸¶ký¨§|Ròh|š8Ïú;I~Ê×zHW;äyâÝ´Oß'<\›yÕ=ów—õXé1rCßLNè“ÙÓ ocG ?²CQû~yϯ{û·ÃôoøûŽôBÙýƒOd—ƒ]¿úILx8,þâèÅÕ£ùæ;= ïõOšpõ_§¾øK¸–ü§]èõo/Çé­Ÿ,õI|öHÞ—oÒƒ£ÇÔ.ð±Ï8qkúÁ8Pÿ®ÞËO}’_ë+Ýå¼¹Òcä¦x¨´/ÿ‚ì&ÝK×óÌ~¤Å‡øþ¯á ï“9¸ÆâÉiíE)Gú·v£ÈUÂÝéÔ!úá²ûƒ²‡£¾·g9“ÿ1ùmÇ£G9F¼éñˆýÂÐúqÔîÊ/ùýpù `œaÇjÖÿάצ=wÍ—O:Ýú Õ/Æoã£q>ÞÐûÈÑôšŽxúQÿá;ü£âã[òø³eùš¿pâéÿO–éÞ[–·ãû¸Å»H'òhž ?Å‘)ò™óMízšŒÚÙóàçÖC8ò—òTþó|gôSýMšoÈ͘ÿ§ü6þ*7_HnjYÿ¦Ù;¶ÞêýŽ´¯õÓûƒ_¦=ç®'Ÿeé×o°r$û‡†#7ƒoá³ä×r&½úM µO±îQëNû†éoþÖ1ïkçê“e;ÜHzçr[»‘[4á§ÿTï­ÙÑêzX½“÷ÖsÖmõ÷šòÊÇ:P9o-ÇÁ•#7sŸ¯íCìëßI»:ë½ÃÁ/Îeœu?&ÞoÄÏÒÇy%éÙ¯ó#z-ák§,åêyCÂ÷\/übîœãÆ(—òHŽ¿:¯å÷€¿ÑÙò“î;É·ûúäßzò]N¹¤Ïî”þ(~M¹Ï=PþRëU¿H'áæyΕMø]óå“Në_Ô¹}…sQzAýFÿGOwñÃÅøÔsböÍ¢§èwçžôxôqü™æ½•ö)ŽLþ¡ôÏÂëŸ ùîüΞZ¼—F¼7FüøÅÚ5_>é´zÉïè¿´»ö¦?×Þø><|»MO¿/Óéwéâ þË~8øò“Æ? }&}!~<7øéÇ#=õ;¯C4øß½2øŽ\¾<¾k?x…3IO¹•ƒ]å†ûÑ^ô§Ú;úÎGôÿð §öÏËð-ü†þªÝ8ãG¨v£o}n9έt¥ŸE¢ÿ;‚ñÿ{<äÁ³¾‚×9žìѯòûˆÁ„o‚¯¾ù=“|bŸéàù‘\¦ø‘‡G^ŽC+]éNå&ãöAütO¹`¿ï`óy¿~ÿÃæ{>ï ÷è?2þï-Çqö2<ŠÆúß¾óŽÃ_÷ÏðÌö燼À¡vÿ0öyM×~(é»×öÒHϾéüRþVºÒÊ{γà#áNù5èyÛÞáok0|Ýøy¾˜xomÂ7?çwÎÜžÚ9…slù¼µÊÏJwO«ï(5rC¿qÃsèÔ‹ô^øœ~HüëËõÕÖ/Nҡߢ/ª~,ßåûî*/+}rhñøöVÆ{¸iútúxx‰ê‰#wÅK'}~Òm~SßZ;5I¿v9¥/ÿ³ëyÚJwN·ø|óBÆ÷›{‡¿âÜw 7Åd~"/¨ôÌS×—òSœüÿ~“Nó‹|¯y}hq¿Ž^5zÐû¿^¦·Ò•þ5´ãzíRežðþ|è°—V=åé|‡ã×¾„¾ŽÞ^¾SºµKZ†ï¦…{¦7%·Æ‰¿ù¾=äÒ} í@¿úú2Þ®ûw¥_ í} ÷qìǽǽ_j>qŸŸâ;ø˜žIÌKâÓãÓKJßy›ùÃýŸwF¼‰€¸,éŒï×ÔPç}ê=íº]å¸4Ê‘s¾]÷ïJ¿Ús°žó~°ìÿÚ5ÛðAïYö¼7üR;ýy¾žð¾×ÎUÒ¥_=LË%^¨óæÚÓJxçnÊéž·ràï+ GÓû³Ê­¼)ûW×–óǶÜI—jÇ!g+}ºè;õW™þ¯¦ðYi»çÖÎ@ø‘öj)|6í+IŸ^“Ý8úÒÚ—J¾SoJnÔÏ÷úÅI=ÙƒèsÂծ²œÛvégö;n.×u+}ºèÖnSøÝªÚ³ °«V{Pá7ökêÇÏû¤Ë; Òa¦ö£þ}.@é­³ðmí+…_ù¬½§ÈSý>žv©š®|nêßöH>’oÛnʳŸtÙó©ŸÐ³ë|óÓú§|~!µò%;Oì·M}ìY=øÕ&܃<ÇoßþƒðqíÊ…>ˆ|< /òÏûl<¶ßQù‰Ÿrõý/rð`/”|¦\äK½“³Ëò±»•úoÇé¨ïO.ôÁ*7O3ÝŽïá玿Æur3ÆWöÔø‘5¯H¯ãnøµóψG®È ¹¬½Fé¦<µ›(üÃM:õk;êa”žô[¯S£\‘»Yž#óÍÞ&_áÈ¥v‹}¸]÷ïJ¿ºµ÷‡ßÒÿö+µkk½>S®ÝÙŸ-¿ßLüÚgËû;ÖMÖkI÷–}‹u|=‡ÚÔ¾cÒ¯ET½Rv›NÞ³“[»‚cY;·›ç¶›}{Æö…ï/ë½ëþ]éWC{~ÄΛý¹s¤Øï9TqÇä†v¿¾›öÔíÓK;ÿr®å\¬øå”ƒ²ëÖû)í™+_hퟧ¼Îµç9œïî5H×9CÎÚnìµ×®öJù®/ïô颵ŸW™á§óyOOá\š_ zÉê1òžȹ1ÿG>ô.ìŠGYÿ‰O_yÁwÏ¡-Oâ±³Hÿr Mxxõb§.µ8í|Ÿþر¢çªÿޤ“öÛuÿ®ô«¡ÕâGø|L/ùƒb ß~wðï´cFÿîY~äž…M8øúÑú³MxøPå&Ãbñ¢ô­§“{jì ²Ó¦žìÍûx¹NƒO€—€7@WéJO½ÿû½ÃßqþOËï÷f>‚ :•gö=Q¸n¸#8½úòyÜu»¬t¥‡|Ïf[{§{‡¿ÎŸ¯ÍùÁ¼zfÌ‹¾›Ïbÿ­vAå ÏÆ^¹1ÏY‡¾²ÊÍJŸºõë:ýÚߨÏxïi½çûÕåzªø6x òùÖÈÎŽŸµú™L¸+ë:m¥OÝúühCç9|]ý†¾=øÜ9Ø<ïkºâçÙ½kçtWí½ðmɯGì݈¿V¿DÒM¸úå‰ðŸV<yÉ÷ê¯>Y×i+}bèvaçô’üÏpvÉïô˜ðmÒ¡…€; ï…/‚?¨¿¸äç;ýíÀ½íº½VúͦÅ[G÷‡ ¿Â]ÂÍ϶ùÞøpjû¿Jü¤W¼ïÒ9yŠ<gy-. •Þ¿¥œÿºÈ¥+ÝÜd\¿?ÆõŽï™àQø6ŸàÿÈ…ç{ø~„+^/ÏÅÅå™|=øiä1r•ï»n·•~³iqcpaäâ-ßùC‡ƒ_{¼Gëï6Ïü¸Úrçfg˜òŒ{ »n·•~³iq¡ð;ÎËœoÕîg¾;'»–ïpvî}^›ßÃïÎz΀FŽàøŠKËsíô&üõ9ýÏùeùVºÒÈË{‡¿¿5þý_-ù¹ø3x¹úÍw¸O8ÓsƒÂ¿Ÿ°)_q ?Zåf¥_£|°\dýÒžÅ×ùîùÔæ™ÿÁÚ }mÌGµŸ–ôNíþv]ß•®ôK‘ø®——ü_y‚cˆ+;:ñiõ³úu>XéÓC{íBä.Æý÷qØ„ #GîÃd]×ï¯9L:»®ïJWú¥È͵ð=~g§ÌþÜ=Ëžƒ%üÕ‡›÷p—ν®åœË=8ûþœ§íº¾+]é—"7õE¯>'ÓþZýKå=êÞtï[G~àÉÞ[åf¥O­˜»K}{í»ÝÞ…Ý82òUû6ôš‘öÍî.÷=+]éI¦[¼eæ…{K}{ñ5ð6¥‰Wü¼Ì¿-ÒÙÚ#¼°ž¬ô©¡åïÚ% ½»\Og9ä«8ó;Qp1Å5/籕®ô$ÓâTàÅn†ÿáXàÒÜ‹ag×}—;WZ{kYÇÝZÏŸWúôЭßð÷ çÉöù‘›+-¿“·éÏš¼¸ïY|Ú:߬ôé¡Õg²ÇôÆãç…ÚÑ`?}™ó‘£7‡¾ó"=ÏÞá}«]×w¥+ýRäÎ’Ûàîÿ&Ïä…_@~¢kiïð·9Ó­ý´ÕÚJÿ Z?³ü<Ÿ§R>‹}±ƒÿ+\Æó<<þ;p±'xÿž÷ÿcóýÑ,ù•_Ú¦Ë?í&ýg"‘›ƒàfbí~üw¡ÍúľÙý|ßiS¿ûÈ3¿»Ã¾šòñ¿(~¯•'8ÐÖÎ-vØàFïÿ¿›÷ê¿ë~_éÿŒ²3Æsq“ÆøŒQxȬŸø‰®ÝWrõê†OÉcý€zþEÂóÇ^ÿº¡üçÆ^&ùäGºr~Œ]ÁÊ \'Ü3;ƒ¡üY·¾ì‚ÿl~ãߺö@ÉÉ™M9ú];ÂQG¾îÿin×ý¾Òÿ­ýÙÚ© rc? <ù` ÎË: Ξ½[~§3Ái6}÷]È{±Öað4ìg²·K.‡ŸÛ¦kÇ~ œÚë‰÷Êãå­þ?Ý €ÿ¬ŸSãBÊ÷æþÁ 7zaožº%ýyå£M?³gžs¦m¸ðÇÛávÁ®&|ñbΫò]zîoÕÏíÃÃtš¾ý¼s.ÏÎÑÜçô^zî› 7ìý×nZìýõ\ír¨s¹·–ü¼M/ùÖÏhÒS?¸6÷HáÝä[»„Éçâzþð4Ðý÷Òÿµ÷•~Ì7·ðu±£äØ=`öÃøñpßþ½ð|= ¹«=2ß“Ž÷ü{ò"9`÷,ø³–Û}æÞ_FϽè[Ÿ¶õK¼›)Oýƒ¤\Êç^µö$¯Ê}c9­ôdÒú‘e7ìþÞáoêÏ‹W©=°ðEý±…/ª—ßóßÄ.FíV,×Gÿ¾|ò\{f-iýŽybú ¬´ÐØOëwò7ü9i‡íóÃM»°ó1ý“jé§}Ò®«]ŽMËß"7µöÓM?‡nù¿†?Š/ü]ÿ–Ò9µyæW¿ÅOfÓŽ³úýCÒý·¥œ5ÿ„¯_Ã)ïÊóï)÷(ßþã×MÛq ò?ý{Ö®Óçé×Ð8TˆK¹]éÉ¢p^[92N¦Ÿ|ß°³4ø`ˇ§ü»Å‹=ܤëyŽûæ§ò59óÀÀa¯†ÞóÏœ7jðÔB¦ŸzÀåÔ?§yyÌcü‹’Ÿ–_{üëcçÙ•ž, G¿åÛÌ;ú}®Øéƒóº½§»^ywŸý°#ù¿?â×ÁýÛ/ØOØOÁ£Y_¾ïÙziÌ7來]µ[ø\:¡7÷ÝÏÔïgò±»£`wß9ÿ}ä§~1óqçxð™ÎÜsî9TÒsOZ|ákï,áÆ}Íæ+þ•Q/çeü€\}¸)oÏß’óæ—p¨ó4÷JŸñ‹x%ﯬrs’éÔ#Ô¾ûEpaü‰Å~Qí ÑGÀÑßп\Ìû ‰ÇN{ÎémèéYø]¢W„OãG“^…ݲÚíH<ú¢ïŽðÊIDïC?S}Ïxæ/~ŠýúSzNv¤ä«\/…ž[×i'™î?»éÇG¿ßñ#öü¦¿«ÿ?“pp/ßI8üôÂ7ñ¿ùH¼È ¼ÌÁ^â=³ ßó(ø“û _½|‚€K98½‰W<™|éçñiðð/÷ÿ<Ƈð·üý%áþ´)_Û#å(Næw)WÚ ŽèÑRŸQ†þNbâVúõRýÒg|˜þÙ.ìQúñà‡KþɱØÏýnÉ7Å£„Ö.Ÿç_.÷øø¸r§•oOüàҌ۱‹w6éþÿ^ò}qfÒ ÿ’§–ó—Ëyá>ùøçe}ýÆ|µù.ý¦C>VœÙ‰¤ÏŒþÄ_¿ZòEÿ°|žöùö7Ÿ÷ÊŸYÇOçüÓ|¿L÷ȼö—ááº:¿üCò3_xμQ<›yèô’¯ëgÚ:òPÑ C¾þiÔ'òe’~åJ;Îx±Ò'“á üƒÿð•ygôs÷)ÿ0øS<ë óõÙ÷F¾÷Ùüƒ_Ë—™çº¯x9鳑㬇ö¿ïî àø8óc÷¾rÚ' g2åš?]~׿5ÚíGËöØ5¬ô¯£[û{ƒ¿Ÿ ŸÁCÿeð‘}ø™|wOÅ9{}öÃøtìkísŽ-ç¸×Rd÷ÙI÷Gy¾˜rë󡯆š'8Ï®ó„yîá¼€ßÜóÉgÌŸÝ÷;¸8Òq¾p~Y¯•ž Ús¨K¡ÎmØÏgöõÇóuñ»pˆðšðÍo'¾|.´y?Òû<œ¢x}vÎ\¿Ì#Ÿž×¦>Å]æ»óé«7å}c”÷íÇ—gÞçl9&..•}÷Æwþ>Öû¡'’nõ!áv*Ùý?+ûï†ï®ŒyÞnñZ(ýcý'‡Þ8LæøýÍõÁwWSnøÊ+‘Gú!òY½I(¼dË—øõóœø7'øÉ·¼šúÓ?ÑãÌôG;—=ð£+=´zr¸búð¡·–ãü‘øì_Ò›×ÏXøˆžûý„«Ÿe|žðïm¾›Ï°Sü5ü&}ëÍä÷YÿÌ×–õ¼1Ö}ʥܷö[žâ ´“q 4å©?èäËôh§]÷ÿJÿ6ºÅè×ð»¯ï}ξîãÆàÏâåѱ.Ãç¥ËùêH>ïÎùŒ¼¡æòÿÉBî[®–S=~šà^å©önÏ×[üÿ¬Ÿví)ýŽCæŸÏ®ïJŸLÚuîgmýå…oìW¬ÛboüH:¯RšÿåÇóQ󿾜÷º/—nËi”tç}:÷â¼Þ:µíñøõSó».‡ o½hgešò^]†Û5¬ô¯£Å§¸'l}î±s0¸‘‹Ç¬÷ÙãÞ~xØë~é1ï\z¼¼ô;¿—ÇºŠ¿@ûn¸0ûý¡ŸíyÁ¨Ç¿þ6^\Þ¤ßpÎKà{^OþÎÍœ8_~mÖ3ï/¥V¹9‰´z v#œ§ÂmÞ¼§ç®]x|à\9ú zÀ#ùÑ—œòtŒŒ~—¾òòãGos>éºï<~‡>ýö¨7>wnN¿ôÒ²û{y7§\Õ£j‡e»U£\ü»½øøvZé“MÛŸìE?G¯I¿_9 Îëà¹ð }fì¯WòÜR¾šßóIgø!ÃoÇ–®2z×#zYò ·ò—„#ô±Ì÷ß~v~Ç–ƒÞôGÚüBá.ú>ù¿Çn•rüò³çÙ•®ôi¤SÏoa >³8¶Ÿg<ús(ùùÍR~à Šßüݺž[éÉ¥û{›_qopÚáóÚqËz¶ó/;næËàŸ»þý¯ezpnäIz»®ÿJWú?’vrÏŒõ ;¥äÊ~îüx&pkÝW%>œ{=·Ò•ž$Z»„än¾íãâšð9ÇÛ-éˆïœî\äÅù |Ó+Û~l¥+}’hÏí':ÿfW“~†]Dçòì+ÂÏÂÏ×9¹òÑæŽîÚ:߬ôäÒê5ÙA¬}Àðyñ}› OqÅS仸ôÌðôÇp×Ö}ÍJŸZ<\ñä(òQ¼’ïhäáVÂ?‡Fþà“†½“•®ô$Ò-ŽÍ¼a^ÙËû<Ãɽï}äžÍ÷âä"Wïùéú*7+}zhùNíêÞá¯ïáÝàÿŠóËsï ½pquö9ëyÀJO>-Î>ß9Yph=s®æœÀ9\qvÎãÐ!_ìÆ ÿ'+]éI¤ð1•#zx3¸6ú÷Í}‡Ó9•y©¸µ|ŸúБßJWú4Pö³Ðâú~½wø+^æyÿûÍ{vÏàqêQøÇÙu=WºÒ¯’·³֮Ü6»Upåð¯pÏ'ܩ弳¿Ifµw³Ò§’ÖšuWï=³‘8së=vy¬ÛÈ|è×ýÎJŸ>ºµW>gW ŽæûähïðÇ^Pã ï^ü›s†ï­r³Ò§OÆÞºó±7÷û—BÝ/eŠ-çkÎç¤gú—UnVúôÑâÖ®Ó¿DISJÿã;œNô7—òþÿÞ×Öóµ•>}´v@Ø%©]¸ïÇúŒ_,¸vkç$r5üñ¬t¥O­½©[?}±WœÿržoD®à?…/Þ3ÏäæÖ:߬ôé¡[ÿó‘‹ÚC$/{‡¿­=¹„c±87ë5뽄g×1r·ëú®t¥_ŠÜL†ö7GìÞ^[îcÜ0︇p5ïÙ¥ªÃåún¥+=Éôˆ½x¸5÷Ôœ“Á {ƒûïìþßyÿî‡^^×i+}zhíðêܘ]6zOúöéøkpÏ:øµé‡ª¸·áOd¥+=Étk¯fó«¾>næyÿ–z˜iŸ®vëØ‰;õÅÖgõÿ–|àÜvÝ>+ýj)={í£w÷6¿~÷ž^øã3K~ë{Ï(üñ >=½äwñ§?ÇâcäO¯7@žøÕ Nº~n“^íHM;I×så!xOånxþJƒ/öWútÒòÕoÂÖ'ìÈò§ŒÏñ7»dä…Ú½ÐsC~Øù¬]¦„þ@»¾Âÿÿ{ð5¹á¯¾Æ{8Mxµé‘Üvœxü<Ôgë¾3K¹ìwùüݲ~»îו~µ´ë~óŒû)ø¿ào÷\^ûüENØ+c Û—œ|Ú¿|oð鋉W\ZžùEdíü¨ù6‘ÿç§œŒóõG_áÕ땤{q•›o­?~:ùÅœ÷&ÙK‡Ïç€?N¸HïÉ‹s.8ËŽxð–ü/8'ãôürÝS¼¹'‡¯+wòc/Íy€{žI÷ˆœÌüØWžáµçuü¸½µ)Ç®ûu¥_-­]±Ë›þ®}1øÇ«åû~v^Ë_¡óÜÚK8|ä3|ûfô#äŽL¾—¿/ßúíL¼ÚOKz쪩Wø¸çÓø®í­¥ÉïÕÄ»úø}KqìRï³ë~]éWK·~ÓÂð]ì–ñgU?Qy¦O¤/¤—¿–÷×?Ù¤ÿ¡[ÿX 'zGþJo&<»gïŽñ]>ñgÕòC~ÛZþO–ùЧ\×/Íïê²G¾ÇhËýþãíôé¢õ3ú¾þ7n†_à·¦?A~ÿŠsñ,\h훑¯<×Säµù„ÖßáÃN;gÅs¾7ÊQоGNo˜’ìDÛ>7ï8½ÓïîÀ®ôé¤å£÷ñ¾ÿÁiáŸò¾7o|¼”£âÀò=~·ÏøÖø?¿{¿¡Ûò~¼” ååß“½µ9/™w†ßGóÜöyÊr³nd_wøéÞu¿®ô«¡Å/^|Èîœ#~¿í_þp¬ÛÂð_ü}Úߨ±cvmÆÏwë¡kƒÿÀ]ñïY\ZÒ«]èPû°«£¾ìBü|Û6¿Ô{ø»ï÷ž«$ÝÜ—Ûuÿ®ô«¡Ýÿãûkû~ßíç¯><ä‡ÞS±‡ƒdŸÌyœóÙ‹y~}ÃOÛó…|¯þ=åyº2æçeG9œó½1ò«ý´äûz©çå„sŽpñ˜õØÇÈ }”só3›twÝ¿+ýjhùš>ƒOz‘WÿŸËóË{‡¿ê+œÏžéÑ_:wfÏŒ¾Çù®ócçÆôB¾wŒÿä’¾Ó9¶gú ú$ï¿3Òu®ŽßÅ#pòö9öòó¦8‚àÔŠ‹!GðÊE~‚Xí®ôi¢Ó?tù>zØ9—öÜÞáoûlJ^È/yøÐ•®ô$Rø¹>ÉY§ýó’Ï·8ÔÈ\[×yÖ‡¡ñ»V<Äð˻ҕžDz'óRø®gâbàmàtìÃÜß±_ë=|e]§­ô顸¼ÏÎåàÐÞÞ;üõ»û÷9×Û,Øz^ç¼ïBÒyc)Ÿ+]éI¦Î—û|D_3¾³óTýRäåú2|õKᣇÝu}WºÒ/EnnŒýMñ?‘ŸaÇ©x„Û‘~ÙàØ•º“gx„÷W¹YéÓC÷o?üôÏvVœ]äáöÙåþæÎað½Ú‹b0òµ'ÏwW9YéÓKÈÅû‘~to.ù¿rW»æ•|¿góÎíUŽVzòiýqÞûû”ÞÈ3¼ïMDnj×>æÃåúÌ}ƒ«Ü¬ôäSþúìüؽ¸7ÃÿÅîþzÏÎ=6x;çiõ'9ƒ—{g=‡^éɧӿÆþËáÿ—öµsCŸÓûÙptô›y†Ÿ‹µøž×á|–z •®ô$ÒâàjGj‰Ë,>†ÿ5”ßÂO/vŸjgí»Cž.u×õ>)T{íåWÿÚótè³›p÷O8ýJêoöc’~ñìrýåñú6ö%•Gù&ŽýÑ/–ãdý\~{®|œ%<æô‹_û<ü˱£\©ÿ£ðséÏ—õ,¾Œý´™ü fpœÅijoø™àš}×n­÷ïFM¿†i§iÿi¥Ÿ#7çÓŽé‡ú]e×Á}vÇøiÅä̺^ŽêÇé/¸à‰Ã?Æß×Öyâá£,ÃÃ7;e?ü_­_ðÍ«c1q”Ö3Å!‹*?8–Ž+i§S£Þìܰëtj”>†Ý2åõüBÒÕo]¿ —ïâiÿWG¾úËý¡ó›x»æÇ“B{Ê}>÷¼Ø_ag¨÷¾B_rUÿ]£?k·h<˼vŒÜ¼’þwƼõÆàë)¯-ùóÈû ¡-ß»xöÙüþáûó£ÝÜOcWêÍ®÷y´§rŽüµçk‰Çþyqeòû(åŸý—ðíý“ïoŠŸü•s´ëJ?Gnê"íëü¥öTòìþº{îîñºï ÿÑsœ<;ït¯åGìcäæJâáÏo¾Žß¾>×NÒ¯Þ3Vî„›÷†/ç+ÉŸ½%õí½ÑQ_¸/ç^ì¡]É{ömÄ+M>ìⸯ]{Nò?›~ ÕìSµß’®r8o¾<óW¾åø³ÒÏ‘zç[é'v$îæ™½‰;y¿¡o¥ÿª‡#/ú+|ÊýÂeø#åº>±ÛrmÈͰ'Q¾öŠŽ”ƒ¾ƒ™ÚWé ‡ïÞO:ìràÛêKR^úyü«]Õ£v£òž½vhèoįùx¾¶¤ —xõ?•t‡½žÉ»æÇ“B÷7 ìÿgÿnÚý~Úù^Ú?Œº¿Ÿþº‹¦ýé›ï§Ÿé³ï†?nç9úèòÓ]òúÉãåæNÂÑo7ßeøý;CŽÈõ=õ/åC•§å#ocžâð^Ò­¾=ï•ëNæ!~ïIO~¡ûg—åPOí­ÜÂ˾ÿnäò®r¥ïë„ËAFÇ;ýtw¶×²}vÍ'…î?ø·M?ì§Ÿü44íþÀûß<“3ò%Þþ"_éÇýôï~Òé{rxç]ôcË…Oó}ÿ>9þérµ?äèžüÂ'ÙÐ4_éàOé«Ç½ÁWƃûá/éyÆŸhùX~Ê‘vn=þí±ã{Ûõ>¹m9Ò®÷BgúÚ»éÇÆ<ú ñî­óÌß6ßü*íy©<à?rƒïññ”ý Ÿ‹äмéwü{Ì|c¼&?/Æ|pðƒñx?rüâ–ïRnòugÐÌ“ÛôÍ/Žv"7äͼš÷F;Èwðëþ=ß§\ŒùËx$Öï“‘ïÇ£½•ëÃe:cZé”›ëÛ®cÒ®ð³Ýßä™}Ê÷#'Ýß$=ëë?ý[û™ÒM|å°Î³žóÜuQÒ+~ð_ýÆ&}åQŸë)—òÂ7ZÍýz´¾¡ïe_a¿Ør„²Wøþ2æs{”Ç>ìNÞ«oqe)o׿ú'éß‘OÚQú]7*ÏãÇ­•~AùqÎS»yfo\óÍûÐmzy_{ÜéGûá·Æ³s ç<øÒ¹Qí{ >Ⱦ¼ùÂi9ÿsçþ–óBö”'¾qÚ³tî§>Îí÷:'s®ûîlŸ”Ÿ}?r;ìÇ6¿ËIŸ=4õt.W»î ×þÊsóûdÙ®7~6Ú!Ï×–í·Ò/(/ô)p‚µkŸö¦/ '`¿žÞÒ¹fôM÷ÍÁgSÏÀ®ýæé‘¿ûóðWô-ôCáš^ÞÓ#ÑÛÌ{÷ôÒñ~Øß«þŠÝ3ö¥ècØG;›÷ÚNŒ¾‡^†~çµ1ßÌvþñ²\ Ç®ÿ!’ÞÀ—UO%|ý&<=ì#ÞÐ'­ôñ´ö·Ø¡cw?Ò7²k×D~>áà5¦•égŒÿ=x›òÜͲ¡÷•÷ðWÉ·þÓŽà¸ߟ]†+ÞŸŸJ|é«ï³›pp2Ûr‡¦¾÷¹IÿQhËï3ñ”i¿øíF¾„‡CûtBOkÏ”£~¬òÌœzJï9åò:õ¼ãûJWú$Qø¤8=ãðëÔð'È)|&¹ÞËü6^¾“¿ŽÃ_!|•rìº}VºÒÇÑÎo·äû‰wnøçÃÿ¿óï3‘#óô³c½|Æ|“ùöIç×ɯë‰<ÿ¯eü•®ôI¢]·MÿÕ±—‰ÏžßQ~Iá¦É‹ï?ûé‘ øPû@r¼î®Ûe¥+ýL¹±ïwžAŽ^YòuÛà®k¯=ÔyÅk#^íF~È›}¬|Ù<»®ÓVúäÒžw]Ü;üU^<¿>æ›âD#péÂ{žxÖúI8öÒPçqW>Ú<ûÙ+]é“D·öïÕG…^ûz(¸Ovê×3r½MãÕ¯UÂÉ—>¬~Ô"_×Öùf¥O.ÝÚ• ÿÂ9'=Ö[7ò^øë{‡¿â΋[ˆ|ñ#G¯[¿¼yAo çpŒÜ•®ôI Ûûï‹»8» GÂ×_¨ùéÃå|áþEñŸ<^ù7½¹wøÛÊíG‹yn¥+}èÖn³õ•uYÞOÿŠýžgx ÷e¯>ü4á½­ÿZ뵄ƒï™~>.ßÝï뼕®ôI û—ÂϽ—jï< ûø xáÈ×å½Ãß‘ûìöÿÙïoïa‡ÎüW¿·+}iqGô(ðEpdüƒ~‹>ràž§wÉû÷ÅA±‹R»QzÿO G_ôGøo/ãíºVºÒÿNá¿V;hÁͰ/WS<½¿t~¹H8ø¸ƒà ýaóþQì^Õ^Ô#'ðt‰ÿ(ß‹kc…¼Â'¹²—CÿÃ)»*çò]zνkß$éy¦— Þ´øÉú!Îsí¾%|ÆŽôÃðÀôUÆóñ° V»KÊ;?Ƨöƒq‰>Ùú z´”WzÆGõ‹¿/ö¶þ^ûgÕ×8÷ã‘ÿ^(;.ôrð¿ôÚY;ê·ï'¼/;{úílÂÃAÂKª·õ ܪúãâªóR}ÌÏæY«'`'ëâ¨þXÖ·öµ´Ó(WõÑ£¥×sÔ–áÝS®=ÃЛ£>-Oâë/zòkÂç™ý©wõ›vÓÿg—í}CùñEÞ¿7ÞßéºGéÜV¹”§÷dµŸqsðIýo¤¿è%½Ç×ô×Oz—Çûêeð©zzŸx½¯›òô;xmoý“ï½×®Úô¯vb§ö¶¤/Þhz$ýÃNUìxmÓM:Ò%oô¼êyKùG|å}O?ë§ä_?vòÿdYž÷ÔC9_û(ÿmõÓ>ê=ä“}"öÄ´ƒûúÕcçÙûÞïõ>ÏÚµ4üEN´óÉ{öèo«ÿ ìL» åäËNÇ͙߈_ûsú)ížSý~0øjðKù†¼ê_ñ’~ûAúÚçÚ²Þ³óT{ ê™ïp;wGùØ•¨õN;³oÂîÇ~žÙeQ>ù×Iòe7Axv#jgèÔ†ê×;¾«WÊ7홤 [;+òK½k÷LùÎûÚ #É_úµ—ä9íÅþ»-µÇ”gvÏj_åÂ&v_äǾÚþh~ô¤§>-¯rèï”óv9Hü¼×>RvEj—ç_Sþ´gíÀ¨¿ò+·ò¥ÜµÇóïËöl;ÉOÿ%_åïóÃeºå£cêÅnFí¤}¼ì7íU»Bø=é?å4>(—ö¿µÏ“gíZ»7,ë!íÊn˜~Õ^ì^áüT~M9öõ—ràƒ–áË'ê9â7Ýä¿OΕ÷ß–õiÿú–¿jgíû€<¦~~c7ígýŸ~~ ”ƒœágÏòž\¥¯Ý´KÆá…{ð«<+OÊßtµç’ÿ?ÑŸ¤\?I>Ú»| “Nóß_ÊÁ´×Özë/éú.Ý”ÿrŽ|[?åýß|¿t\$?‰ßö‘Ÿô•Ïx9ò©JïÕŸ¼täÛrèWãdÞ—ŸßøÿÃå8]»p‰o¾ï< _ñ·øâ)_êÝù'寺<ßQŽ–å) o>ÀøH»à÷!7Ú¯óµö”þ¯–üªü-þ‰\±*]ý!ý–ñ̳ž; äÈó˜;.?Z–§ã4yVÞ¾|6øý¿H_=ÒŸíãÄà«9~–/–ïË'øW9ñ¡~Vn|˜ôÈuJío¥>µÛ•ðµ+•ünç»uÚô×kk>·Ž4¿zßu¹t”+é4¿PûšÚ‹M»ÕÎiêk]+žuŸuaíe ÿ³e=ñ§uq×ûâ²,§u€|ŽØ³ïÚ2=ëâ®Wõ“þ÷>é¶^ÉßúM8å®]Wáµ»zjoõ7>ÈW½RÚáU¯¤?ì¶>í·¤S;iødôóÝ™žüFýõ'>îþLÿà[|,¿‘¾÷숶}Ôcðù¨ýäçüÃ9Nq¦iOûåâLîzÊQš|ijŸ—žýyóM8ç“ÎAjÏ;é9×¶ßï¹`Ú×>ÛþÓ9¯r;/­=r哯|Ͼ¼÷9Bo~¸,ו‘NÏÎ>Ôùê\ÊùOí²%¾ý´vt¾IŽk·<Ïm¯Ô¿ç£|Æ)õì¹j¾×>`ò·wž2Ç9ûiç¶ôì“á«ÞÐ_ÊáUnõÑÏÒ˳r8o~Òí7í·÷ú‹ _{p)‡÷ôô ôø—ÞA{;?wÞ{y”Ó97=ÛÔ3^ß顤OoGïá\Qxz öÉ軫Jxzú8å¦Guÿö­Qžú‰HýêwE;&<ýÛ…”ƒÞÅ9wí®%½6<¤v«´¼§'¼„&ßÞoÔßIW¶½’¿ú¿5ÊñÖèw|p6ôâhG|V=ZÞ·^y?í×Ñ;¾1êC,}ù+où*ï雦ý´ê-ó¾zÏPz`õao‹¾ö;£½Ý÷Æ_ðpð7åŸ| xáO-Ãñ«·¿ç} Aï~n”¿¥~~—÷ø_ª/\‰v|&é?R¿iÅ ©¯öVž*Þ4|Crsïð·õ“ùÉ&œðµÓ$~¾¿ûÙãõöžò¹‘øWnò«½ÐÚkJ¹ÉGín$¾r$|ósNM¾ä[ܾôCßû£Œ»î·•î–nõ´á_ú=úÏúÉ ¥O).3Ïôô8ôœôý·/?ŽÖW(}å­PïéƒÉWñ¼ù.½ú³zxXŸæ/Zÿ[)'ü&}}ì°_CŸ³ë~[éniñ²ðÕχ¿ŠË9µy..+ïéÓï„‹oYÊÓñù —øp Ò)Ž5åž¾ÿ^ÞÏøêqoÌ7Þ×_y{¸©Gq!i—é÷íÎ2½•~3é¯ 7ÿW<ºyéá§·øšò—pø>áï|Î: ÿ7½½¤?æ…â¦Ì‹äÊ|8ä¾8­My›ŸùËý ÏæÍÞ#½3ä&ëÏ]÷ÛJwC·~8Çú¦÷”>4rpä¾ÑÃOÜk|üHŽn|ü™ãóÿ’ô»>Ã÷gŸuZïëXo%~ïéŒùfú_¾¸£Ô§÷óFü«Ü|“iñ‚ð&ÎŦ=dã/\ïOæ¹8ÄPzÑËy¾öÙûîïëÉ¿÷Ž“¿ý:üª"Gîߎz5?x«ÚU …ßrú­ÇÏ“ðH»î¿•‚ßÜß§·¬}‰ð•pΗßáØ»y}ïsˇEã<™‡½¸!çÇô+Åyåù\¾Óï°×¡üâ9¿>•ð(ýÔ/ÓÏãJ¿Y´zx|7q.ôíøð|¾ã· ~£7%¯|öú¬å`÷ N úÍâeر‚ãd‡iúUN~¢ØGbï(xv¢Šà÷ô™Äû»‚ìªíºÿVúdÐû¿ß;üÕ~Øæq¯~ûþ”ïÁsñ‹Inj×ïùÍûGÙ¼ô«<ÿfóý üù(üW;‚Ÿäýõ&?þ=‹O‹´ÚÛK~µ øò²,¼0¼ì^Õ.aâÁï>Š|±Ox/·ÊÍJÿe³ø.øðPv-ÙU$µ™çò_ÆóƒØÃ+?þ~oñ«¼ò~å”ܰóÇOõïÆüÊîfÓ1¯ç<wGþ~±œÇš~ÚGú»î¯•>´ë4ò÷8ì4÷>…õ’uÙÿ^òeí“Âg½ÔûÒ…ÃfÙó¹ñ<ýÐk™~ítÂq¿”zX=›ï?é f9ÿ±i^ª|¯÷Vúß対…t?}Ìûâ0»¿bßÞ¤{GöîÁÀ‹Ö^iÞ×rèÙ|w~ñRÊÿݧi|é…žå…ƒvËyû`™ßj'š×ç6t×ýµÒ'ƒÏÙ{½g7|ä/|±s\÷uÙ­=SéäÙ}‚žßímâ9÷­}^é&ß‹Ëq½÷Ç^”|9çS÷C{4ßkßtÔžÔù†tÉ£ûÍç×uÚJÿ›ÜL{ªpÍõOöIÞçðSíA|þK¼Ú1Í÷ÚUÈûÚsM~µ÷9¿oâ·œµûùɲœÕ?‰/ßQ~z"vä;ïÓõÞ~òygYž•~³iõšôŒµ÷¾ªýŒ|¯=Õ¼¯>ü[|2úðÓŒö¶¸iñÃ×µ—‘ðì}H¯ö@¤/ÞÇ#ߤsC|ßå›÷Ó®®rÖ®²gã@hì…캿VúdÐòkí@ÉQø²÷rÆwã|íÎCó¾%æä[·âù®óùŸüå‹&<¹î|4óËsí“+õ^Ž'»î¯•î–nù$üi‚o¬·ÈËÅð3{gûžÚ½·Oò~oI­›ÜO«ÿuãü&ݖ׺PºÂãkûë7öhê—AºääãeýÙ÷™ö‹jOiYž•~3iÏ‘^ß;üuï~%9²¿†w±/ïþ;ïëÿ*ïÓ9ßb§vÁ„KzoŒô§¿ç{ÎÇÈñYé‡ö{¨ûÜÊÓsQOö˜Î%¼ó9õymÝ߬ôÿ“çÀôΜÏ¿°ƒQ»[ Ò÷œ ¥·‰>³zUúKçÖΑáŠÙ<ÃT.àrè+ÙµIøú…‚{ð]xçâìŸ=¿I÷þŸ6ÏÅÈ7õ®^çï7ávÝo+Ý-­þ‘Þÿ×{‡¿ò=þß ~f/¿â~·I§øšè?ëGÓû߆é÷é5#wp7µãÇ.Gøî¦öÓè?Ãÿ÷åóËeùá”çþ Ò+Þ'餄Ûu¿­tð1û*Ö µ“~©ý¢1žÖÏ™uJ(û2ôŠì&·ÑŸ~Óøl~0NÓ£œN<8PáØý#gæ1zF¸¸„G=ÍI~¬óuÓÙð{pm?rn½öÂøþâòy¥Oí¸Šï­ƒðã´Ãkß`]E¿þÖ’¿ß~‚²ŒuˆtèÙñé ɺë"|¾‡+÷ò·/"ïÒ±.$Ç­ •˾ÅxñOC.¬3ŽÌö]ñÌO'Ýúüû½Áæþ°íS܇aÍþ—œ9°xe¼'¯âÛÇ“3ã>}`÷á)‡ùмq1ßÙm"ç—Î=† c>{c<¿:êKþ"÷m?rþæã×Sôþ»îç•~¹´öÏë×ß…œ¿Òoûþözç¼ÎUÉQý̆ö¾£ü’½Çå|ï¹.þ}}į]²¤¯<µÏ ÓsëäW¤IN†^öµ¥¼´ýÜã|ç¹¹¼ÊÍÓH·ú·O"?ä(ür?~-î%|Ã>`í’áã<¿;øY|úF~.øó˜þ6áðuõ á÷úoIøú!I¼úy¸,'¿Åç¤õ ’ïäãÒR¶í5ÞWùxy[éɦåöÌðkù7|Ćïõ§”pìáoßk¯%áÞ¸I¯þb“.¿;õ+œüÈÙÿÙ+¬ÿ§äW»5©§ô¦_/ùIWùÙi븒øµ ’x7—û˜Ú︱œ‡Ø]Ûu¿¯ôFË7wðú»r1ù:|twòiÆÝ»#ÞäÛÚ$‰Ç® ?…µëDîÈeÒƒ#/ÓÛÝQÚAï…¿?Ê白¶aikOJ;O.•ÌCï¯ró4ЭßÃ1×/:¹Á'C¾j÷K|r`~É÷Êù#án ¾Âoõã8ÖŃñ¾þ óL~ñwý4æû­eþo̳ҫŸ»³‹õVå];t>óÚö­vÝï+ýŸÑâk×,üej§ ¿šö6ü6í¸â»iß¹ÏÉïÝñÜuuYÊWœfÊÕ}…õPžùi¬³¤W|rÊQÿŽò·ßI}êo0é {íͯv¡?Z~w™þöýÏóÖJOÝÞùh¬ßCÙ³ï·.òŒ…ë>Ú|`_ \â¾¼’üñ{ñËÊ÷pnž»9g¦ßtN}¼%}NÔ3œ[Ïf½#gÎ5êG0鿞x9/8Ò¾W“ßå1ߤ޻îÿ•þm´ú ç´ôôüô}p½µ[ZýMâ;w–.<$|@ý_&Ý7ß“§7_^ùÒ³ÒOÂ}Õÿ|“ߣ>ôSêÉŸ"=MýæYyÏ…Â#Ð{ýø¹¡7ç×ôb»îÿ•þm´zòé°÷óÃîéÓ ÏN~þóì™>ߟÎóK#½ÚÈ÷ü÷|Â?«¼yæïô£¼ìæL¿¨ô™Ò#—ô¼ðìÕüŽü„~çñë®ÊówÆþíÛÿy”}‘ÚÑùㆲsUûUôÀgR¯ä_;?¿Ù„ç±ö Ôÿ[£á(^Z¦WûVÊõ§ÔÞI~ù~ ýÿaÙŸðxÚ¥åúy诓îÀß²oÄ^<ÕïIxù†²Óu¼Ií üvC6Émñ¶É§x\xaø­´?ü${*µ³ûµ#—…ÿµ·ðäAû±ÿ’tŠgL¿i÷ÚQb‰Ý1öjþqY¿#öp”SùÓOì“I§¸Ðôxú·váv´OÚï óÆžrè¯OÒßZö‡vþ x¼âáàØ»yáñ|]ütìwÔn;ðQOáëŒp®[?ÄÆ™<“{øÂÎóÉ÷Û#|É¿Œt'«¿¬µ·•gã1ü¯ñO9RßÊ©ñßx¼{ñµÖú‘ü³×’òhWã\:>°.‚3–žò²7‰È뿌päB}Í7úíïÕ+ñ‡|Õ·üÞrŽƒåoáÕ[þê¥\içÊçï•+áÔG}3Ïmó }iÈeÚ­öñ¯vynÙ¯[;Vøj)oíõ°n|yÙå ã.~›÷"Ü+ÂOæWëKó½ùRýØû­]ž<ÃS(|>¶^•;§ø^:äźNE9´Ÿñ×:ÿˆ÷Ê(¿~œþÍÕƒ}øå‹y? Ÿl?a}>ý +|#þxeÔ ß“WT?à·é'ÿZ—Íð/|Ž|Ïsï±È'áÙ£®~Ðó\¿ì‰‡ïàÍj‡mä/ä§½~4ÊkßÔ{C)§ûwÊ¡?õSëðÆiýV<_ž'nîG?Ø·]J¾žñ-êüEù.|´>†“*>)ßÙ¹è9ßù‹|ÛûÄŸxBþXñ{BÚ}î{ÝûSx‹#<üTï;Ê7tâÃÔS8çMì»Ìý´ó#çaÓþ÷•ÒÏ ¯Ä{{”×þýµ‘®øÂá× ³„óŒ?NªŸqãMåíiäÜ î•Qž £üÚIÿÿêœQ¹/ßÊ{|á|D{‡§ã=þìy¾Ñ¡WnÂ7®á‹–üáÓùåõ”ÿêxï|N‰<õzÂà ¢ðQµ¿ é‘_óUž‹5Ês5éÔ.‘r¦¾µë ß”§õR¾”ß½tv+àk/)ïõ¯vsžÜsÖÑ.ÎQýxmôKãyœ*‡z$}çÔ—æwåÑ §œµ¥^v$ç‰WýÎÃ%?ÖŸ®~üªõÛ©]ÈKâÕn@ê_ü©öü‚Ë·Ê5û}´£géo—øµ“ƒ¦|ôKÎñéÏê/5íS{$y_=øòÃe¾ÞÓgO½.û?p$ðU(?ŽÕ‹)·ú$>ý™÷ô̵7¤~hò»)üÇË|¤ëû­Y^é«Ñ®ôˆôpe-'9 ­_ÙQ/ÏìÏxÖ.Ú©åõ¢ÿkýÄW.åå’ùÓ®äO¼ÚÑß,)½¤r–ßô«ú«gžëGJûjåÄŸ£]ÕËûêaCËòOxxõ¬ßЄ§Ÿ¦oÖå‹P8¾;i[òOú·f9½rGŸTÿ\Êë9åE¥‡¥?áPê?L»“³!‡päÿÔ¯˜v ½­œùîyúoÕžõ–ü‹ÿRã…øÚm´CÃr•Ÿð‘ö^üäÿþH·8åT.åã_q?ÉG|ü[ùãYýPúÇö9õ–>þ)^HxñGÿ¡Ü£õ_Ë©ÜøógK¾ªßÏPø¼Ú•ó¬¾c¼„cº5ÚI»§«}½7>Œq°8Bí÷wG»¡~ÉÿÝ‘Žv‚ã gÆ%å4~HÿȸHîô 9Ò>cÜ1)gLJ!sþ,¿ÉÿãG|>äeòEçiãŠ/Œäm”»ó¸vP.á½7>+—þÑŽ£\Íw–Wzä3éê§Ž{¾k¯‘NçI|¡ýð¡øŸ<>Ý9~Ìù¿øVõ1>æ¹ëû”£öÚ|Gõ[â[÷Z§v¿¢óL^ŠÛÀ·úçY9”?Ú_CëáÞ AÅËwëêÚÄ¡µc÷ñ2Ÿ¹>R>ýÐõAò=®<Ú±û¶Ÿ-Ÿ§ýÉwG½Qù*õÑ\69ÇOò|:Ç û‹âßðƒöÒ_Iß~fÚå´Ÿó\;™ê™÷×g}´9åm;9V‰Ï)«×'ËôÛI·áS¿ÚUžPç Î;œ×Ø_:Wé¾:õs¾eŸ'œýºóˆà–Žèo»ïúd™~÷™ê÷=’OÞ_ší%\ÚÓ9ÛåPûøî7Ó—g=”_{äyâ¿„{k”§~(ÉÕËöÕÞp]öÛâ]šõͳò—œG^Ó~áóžŒ~rÎd_Í~Ø´ÿ'9¿švrŽ ¼ú©íz9_ìy–úŽzÚç+ÇéŽüÄ×oŒþsž7ñAóüàïÚWL»]ùi'åÑ_ôˆgSŽêŸoê'œS:Ï¿J¿Cé\Þù½÷=ÿLøsyvnLߣ~Î}•Ã9è3¡Õ%?ç¹ÊO@ïR¿x¡âI:ê%¿ø­;‚S™öÅèM^ñœÇVZ{|£]õéᇉCjþ§Nýé¿äÜJq!ð(áŸú±ûxyŸzÃ_ÐûW/þ|ÒvÙ~õ“RûI©vÄ·ôÑp0üO²'yi½¥÷y'ª?Axõ7à‹çð—ñ"ùþ!íðsé'œ~Sþç–´þµ¯öHýà™Š;¡¿WÞ©ÇOÿÁyµÜ䮂ý4õÕ/ÓòÁÁµý>|üB¨þկƫo/ë‡_ŽÅN<Õ7y%ßÂM9?#¹å2®7á³èÿyYÎöËàÛ#åÇg?üìz~aÜ¥~TNãùâlø ãÌ’WšžöO0~µ—qÞ8ˆ/´»yÕxÛydÈñÚWêúbô§gògþûÑg¼WùŸ]Ö÷kÃÇÂ!™÷§ý4ãþøÄòþÓNõü9rW ýŒOB;NXOiOëx‚r¨ß©<ŸòdÿѨ7ù”^íðmhà Âs?Hߺ™¿‹Ïã‚v† |nYަKo^»iä2ïÏ“×Ñ~µÏD^òLÞ¬ïá¤ÈOqOƒÿë/-ïõŸzg¤?íá*¿ç×ÿgíþ7÷þvÞŽà¶­¯ëO.íHnÌ·Ö…Ö¥Ÿc·°ëdãÕÑ®Öéö=ì yÿæønŸn«ÿ­ëÍc¯-ùâ¼÷:–åÚ–)ÿãþÀ¿öeð$ðÓ>¸ð¯3N»àúE½hãºüjg\~Ê¡=Fÿjþß>~‰\‘3ò`¾³ÁÓ®àŽü’u/3Ö-·zÕ~›zä»öê~4ï±ËÖô38‡qäüÂ÷ž }¼ W;ï¡ÎƒŒ¯ÎU„+>Mä¹çU#>ytîñê/é½ùÙãÃçöƒó)ç*—’_Ïg´SÊÇ'õÖ˜ßýè|R»©½{Ï¡>Ù´“þÐþ¾;÷rÔ{£Ú•Ü'|ýˆí-ûÓyTñ>ŸŒ~Løâ\†¼ÂãüÛýoî/r<î±nû3ïß|ÚöLýê¿c´ß…Ï“›¤GŸC_Öóî¤×û¯,ûÏy~å,íßóláða¾÷¾yÚßù`ùH~ùÞsùÑ>ÃoÊßÜêq#套 Gs>é;½@ôPÛtRïêÔ+é×_“vLxé¶]Ðä{}¼¿:ò©]2üJ_#^ý6rÏ“tŠ«ýP½Tžo,Ç‹¯MnèßÊ£ðKï‘ã£kËú•“^í+|ŽÜLû'ôøµ¯‚_’~qi÷ê£nâlJ‡\Ò'—ôoç»tà~ª?ýh9Ž¿ÿÑgÖï ÷{F·RŽÚ•Iûj‡Úiú`Ùn}þpYþâsF;·¾äSüe=‹;;˜ökú=ákçE8é(‡çôï­Q.ýys|'WìÞdÜøÚå>åýô‡q-zÿ†ƒ?¸«)wq†¾çý{³Ÿ6íxl9¦½®{Io?í_{Xúéì²ýjŸnôkíj‘'õM<ý©œú¿öµ<“ß”/v†ZþÛ_Îx·/å¸;Úá~ês/å¾—r¡ìÝOø¦ã9å¿ÚöTí<âµ_ä7äyÚMkºCN<·È?¹R_éÎ|>Xö«ðòÿëo¶ãzêÞrsw´_ía—ü´­×²½Žçí’øø£ý8úƒœ{6>“ó‹y‚œuÜ=†/È_ñ{Ò!‡âö8ð·÷‡vP>|‰ß®-Úsÿ¾öñjoþh>c|鸠}ô7y(ß(ïÙeûNþè¼)þƒ9ßÌ|k'sðCÆí¯MnÌÇGøgÈÍÄ©¶}®-ʽíç9><¾ÿ¶é§ßj‡KúcÝ`=?ñ°µ¦<¡ÅŽïU¼hÒ-_8ÏI/¸¡/½?&.¹ë)ïC»^I»Ýýe¹±ä§)ïÛtñ£qÉûÑŽÅkWåK~]¯|¼,çÄíö9éu=–ðó@ûH?á®ÿì+écû ózêûî’/¶vØÈµ~Ë8Óûøÿå»úc§°÷¹zß+ùõžMžkç;é;O*>Œ<¤üÎ7z/,ù%\Òo¾y_»_IÇyó¤áçþKëâ³ðMÚÑþ¹÷Æô[ÂãwxnS¿£ûZí™úM<¥ó-|à\¾}ÞÏ«?ç”Ó¹§sŠúødÙ®ó<¤çÒáœÛ87¿øÕôDZýÔ{¸¡pq×G9¯¤®Œv)Ÿ¥žÅé /þ‡‹q®ùË>À¹^ý-äÙyý¼×ªÝàèz>žgç–ôSÞ;g–ï…Ôƒ>Á9+=7ý4}…sÅ—_¿¿º?è#ê÷b”ß=äžÓk‡¥\´=/}6?5]ú'ø õtŽZûi Gå^¯sð©=«üø;ï饦6úåWÏK#}xõ"7¾2¹I~GüR)7= ½Œvc/Žîþ ÕåëÍó‘üá0àT¤[By>·L§¸„ág®úºï.Û±úõgRÞS›øµßGFŸ F §õò’Ûß_òíÿ¸_èÝ‹3%Ÿy.ã×Qß3¾÷Ç3ôÓ[äèwø—BõßFÿÐWÖš|G¿©'>”¼\>c/çůw~9Ò?Æ8¸çR>¸ 8‡ÚwJxíWûDy¦ï•Þw¾\¾ZéJËÏÆÏŒ‹Å/á)ñó°ßÅnñÞÆ©6Ï»®ßJWú•ÈÍ {‡¿®#Ï,×9Å)ÎyÑ:ãt¨yŽé…ÝÎo+]éW*7ÖÕ3oXo^ÿ[Ç×._ÂÁß¹ôRâ½¼ÊËJŸ~ÚsçIÙ{špŽÎƒ.{¹rþò%á§VºÒ'™öÜ×¹7=û(ô ×ò½¸ÄkƒF®rþ}$Ÿè½v]ß•®ôK‘›#v›"µÛå}ä©v³þ 8Š]×k¥+ýJåÿÃÿ· g ·ÿ·Sÿž›ç]×k¥+ýJå¦8âÈGí’íþ¶øyrôpó~âët•›•>ýtkw,óEíÆÙçD>àwj‘<%ܰƒ¸ëz­t¥_©ÜÀÖޞ󵇛÷ãžeãÁ¿'™çË?XéJŸ&ºÕïÃ÷ÐÓ ½ |{ô p3â½¾Î7+}zií°OÈ>{fµ—µÄ Ôã´ÿ¼ä®ë÷´Ðâó‚wª¿Dv½y_;x¡µ ô̦ŸøÏ<`o.ýwpzù}/é ?•éçG±(¼g~F•o×í¶Òo6­ý/v/ÿ˜q Žpâ^Ù/ îšÉ8ìSËïhýÿÊõ{zÀî¦ñó¹MþÒÙu»­ô›M+7ÖËì%²ÿINà ÙÑ›öÉ \î? ù«ßׄ#?ðû§G|xu8ü<³›ºëv[é7›nýÌîþjçÕ}·éÇ•ýCïÝ3‘Nï_‘“P8Ä#v6ó\û™âý/ùúñ*7+Ý=í=l÷©ëÃûÈ{‡õšg÷\k_t<×.eøß}m÷Yk0éM?¿Ó¯ïð»ëö[é7“níúEnêO(úöð脯XïnâÕN@ž…«?¨¤w=òâþ}ýßJ?r%=z‹ú%‡hò‰ý»]·ëJŸnºµ[þ<â—.|Y¿z?¸µ¯Q}69½5Þ×?eâOÿìžÔ¯¢ï#ÝÚµô~9ïÏ]·ëJŸnºõ+JnÌì"±Oc>º¶äÏ­º¤3ý ×_á‡Ç¼÷œ|ØUªŸÆ„›vk…¿¾ ·ëv]éÓM·ë/|¹wø;bï§Ï7ß­›jèÚr=×uWäý+û˜ú¹Ësíbu!ûMµsù°O’Ï•u¿³Ò¯QnØ÷©¿ÊP÷ÑÙ=ªýª¼gçÇ9}¾poìþ¶þ5œŒpìXñ÷#|í‰%œs6öš.Žò¼¶ÊÍJ¿F¹yqïðW½Jýå™=7ú—3áSxv¦è5Oçùù<Ÿ ­ÿÍħO¥‚3ømÂ;§®_Å<³3Gò÷¯û™•~í”~þˆž2ôþ'¡Øð7œÍÿ•¿ _'<¿§ü~П¾°‰Gÿ/ÝG#ý½üþÏ›ò±·ëöZéJ¿JJßY¿¯õ_MÏ™çÈÕ\€y-óYñ9Ñ›6=óØôù±åÈxp0ý Ÿó—ò¼”gãÿ¼üÈ®zו~•rÃ~.»,Ó/xì˜Ö5¿žøî÷\ø÷çöGyo]y Þ÷ˆ?Wû#8xëEzXxëы֫ܬô+”ö¼ì“œ?ð‡Ižœ+°V¿€ø|ïðWyªTóFÂsžÖû*p;äùBžÉ ÿ{Â9§¨½íå>l×í»Ò§“vÜæ ÏKýÊÖ~ýËsgvЋÿÉ󵄇[¨_Ôc䆾§é&þEùytÎW½SÊ-Þ1~GWºÒ/UnèAo¹`Ž_þkð-{-õg“çêƒò>zÚcË1Ó­Ÿ ù>óË»#_v0àˆÞßÐ]·ïJŸNº¿ON2Oä­v‰Ø[á/œLÿ†âñÈO{awBá îù¬þÔ’ïýÈñͽMzBù‘Ü\ újOf?ùó[yç³åt¥+ýÉ̓SK¾Ûþdïð·ÿàW>ýÉOCñíæ@zÿ'—á²@+_?Èó}r)ÝëµýýK9~¶”ÛlpölòiøÿŸt”û_“ïÁæý½õ\`¥_¡ÜàÓý½Ã_ý=î?Ü<Ì? W~>^ò{ª]rã»y*ò°-¾O9ø«­¿bñ"¿Д“\’¿¬û›•~urc\¯ÿùðœ³u?¶]õTý'¾ýÿ³õ'›xwÆ:œÔï©ýRÒç·XyïŽt»®Ìsê±ëö]éÓIáû÷¯ìþŠk®?_çY}þ8ςǞçmð§üºÚÏK¾»å _Ëó°â©[®‡ËtÉã•¥<®t¥_‰Üð ×I?ãþ´{Óî_ÓC _ÿ¤yf'Œ}#øP8S÷¶ù‹¡G"¿p¤âÑÑ+½Ê_'ÿ–ç×yf¥_ƒÜ¼¸wøc§¦zMüL Gp*òBÿO?I¯ ǘGü©²ÏGÎিTx…ç7ïïÿ%éI—œ|o”ûµUnVºÒÿñ¸y…GÝÿAžÙ…ûsä®~v7á:Ž˜Ïà^ÿWè™Pã@ä{ÿï6ôÑ/O8x\ßSžö~›øæqác¨¸]á^xüøP; Æö‹^:Å5Íñ,8à]÷ÛJwKñyñàæ©sžCÍwño}ÿ?Æ<æ~ÿ¶ð=§­Sól¾eoÈ3¼QÂÕ®ùÖ} ëbëXåƒÿãß:óì¬oåJºì§\rÃ~WíïZ'lÂïºßVº[Z¾ïúÚ?åÙ¼b†Ç³Ïãg¼YÇÂã]¶ÿKøK¾çýò4øùÕ!'ìsyOŽºL¸·—ç&­/;BÝOŽò8?xÄW¤ûxy\é7‹–ŸÝóÆGìí8/„¯ƒ§#/ý¾wøë=ò·¿ö±òý’ü¯þ<óÜ{åɾÏ9û ðyÎkœ¯ô¾ù1ë´yÏ]:ו'ék÷p¯/Ë¿ë~[énéQ;V¡Î­§?š›{‡¿úd'áZø—^êÖàÇž§‡ÞL8çîÎëé¥j+ù8¯‡_½žr‘ïÚ1J~ÁÁ©/}€ú²?D¦œüY±¯ÇŽ×ǧ»Òo-®@~8ù ,>5| WGOu/ánŽðwînÂÑÃÞ}¸ÉïýPÏôÆw•KüðqÒÙÊAÒSîÆ?f¾¹òÁ'ÑWßÚ[–Ξ®ðö*7+ý¿sjÃG÷Ã÷~úa¯|·s/|gt—|å½tàXË{y~ôáf÷ÿ=éŽgr ·Z\mÊ¥üä ø¿¼ÜÀ+„'?p­OòSîÔ{×ý¶ÒÝÒâ<áÚð#¾—ó¾ø‡›x• üœððehqt‘rY¾-.èÃ!§ÿ–y'ù‘¿Ô.öþ1óùîˆ\Ü6o¥üûy~`^J=î/绕~3i×õÖ9Ý'|¼\oñWë\À~Ç>€ß[éð»nÝÖýƒïáÛà…¶þoóÞ<GÛu^ò³Êz¬ëJ¸¢÷¿žÚ¿iÝ•ð­ßØçÈWù¤›úíºßVº[Úû§öï݇?ü4À³Ï»·y®à³Ëý<»¾ð?ÎÁ®„?¯$=ç]µ÷¾¬ÝHß•+ñìËáúœG°ÓýNâ_Mùjg{ì‡ä/ö(/ˆ×t–ó–p»î·•î†ÿOGOÃ.»pw¯'üý= ý#»¥ O@_t!Ïõ·’÷ô$ô¨g•#ù+{ ÊŸóèÚ bïñür~¨~‡^æ\ÂÉgà"Ü_oüß÷¦µ³ˆo¿³wø«^ž]©çó~Ÿ9v¥àkàãè/^‡/x½âç?ñêg2ø„Êýë™Íó½ôûð9M>F}žÝQþPå›ö¸^X>¯t¥'™–ïÙ©{}9O÷jznïðWù8»”+þòv]Ï•®ôˤÇàÓ²nì÷Çþ|×õ\éJ¿T¹¯{sïð·ÓïöUîC¹ÏäÔ…±ÿ‡¿ƒWû¤•®ôi åï+mä çnýÎ^;xüUÀ£^ó÷pÝë=Ù•®t¥+]éÞ§¸³½Ã_í¦Üë´ê13ïÀгÞÜÄoxvNŠ·[×i+}úhq3ÅóœZÊ ¼PíCænîöМ\Ñ®ë¹Ò•~¹r“yÜL{§ðlðÐw"/ÅùIøû+>`¥O/íz þìæx»Úí¶>ƒK{øiÀí:íýͳûD»®ßJWú•È *îݹOZ~ÞÐ>-Wú_yõ;ú•ÍŸð=™÷à‚&¿–Ò.ü<·¿Âµ/÷‡eÿ=Âßü^âc| ?#µV¿µyçËž<9y:³,_íq²W7ø^ÿüŸe?(ç#õbWo–—<“ûôgýˆûwâ<–q¢ò~fð[Â×~ü°ücO´ò{j9ô~@ðÔí¯Œ7­7~xNû%Ü3³_O:Â{ÉïÆ±òy7~(—þdõ=^.;~ë?õ«ý¶”ã™e¾_ºÜ°swúÝ‘?\„v"zâ¹´{ìq5>?¥¿Cµ~ãXqIÂ[³ÃÿÊ_¦v«üH'áO-Ë×uJ^§¿h¸{raÜ~vôóÿ]ÊeùzŒ·µù‘Nû!tÄëû³£žø.üÚò±oÉžYüø·ï{Çͼ×^ÚŸD^´“öTãÛ1ö7[† •ŸöÖ.ÇøÑn~øÎºO¹¤ûûî=‰ú]íá^`îu`]Y*¾Î{òr.ï}×úý_Ÿ\ƒ7BχºWõãÑŸ’Nï?å»zÁÑj_ø@÷©jO½ÉÇý)ã 9uL?¾”ø//Óݶ÷àû^åÓ~/¹q­~©GýÜcë}®1î©gínj÷ÑïÚAÿ¼<ê§|ÙÏ·|/-Ÿå7÷fÎr©Ç…”çârÞjü×F¿¨§tõë1v@¿4¹q/?ñ®|—nÊÅ>¿þŠÅý·ðmÂKÏý&¸;vëÜËu^Âîtð!ìí¹Ÿû†x ÿúÈÇ=G÷ݧÕì;ö>aÞ³—÷ÎHG~ìü‘gþq_Ïsë!\â½1ä~—=KåžÝÀW–ãeËǯoË©}>ØPvÕ_{_Ò~ɯ÷£?X¾gÏO9ÝC6nŒöiùÚç÷†sß[xíŧçËçûòÑ›#~í~²¡o~19þ›å†ýù]œ°÷^ÚëZÂ]Mýð±su|ë~9{‹ìG°£È~;‹7Òoדšî«³»%|üCï¿—ô”¿~g’ž{öóÞ»{î-±gé;þ¤W gPßúÅ™í§}ä?äæú¨/»–ôì\rs#åª=í¬½Ò.-ïÃEþµÀïù*GÒW>éÆ~ßV¿òð±õÚ–óìgŽó•CõÐ/ø¢ï?ZÖ_ÿמ€òéϼWkŸ]Žÿ¹Ü¤=Ø?ÄìÔ±›HOEØw@µ/;üƦ+µÓ˜z²¯"œxøâöhgrÄ>‹xôÉM'éÒKßÐ?³Âç}ý¢ÏúŒ~•O¿§ÝjŸmÒ|ÕðÇÙ«|wð û-Õ§?\æwó˜ú‡´+¹Áoúå½Ù¨p¡×>XÌ+Ó>è±üvc¤G®ÙÑη渡ÿ’OùD?)ß²^_ܤœæƒ9²cÒñÿà/|BÎ¥çû¤c|¼e|ɳynÔ»r+?ö~j×”ˆ?øX}j§eÈÑ»£œ}ß|×/Æ÷Ù~C~縩úßøÑy÷g—7é’íØúêtŒêa^í¸vmYŸÚ¯A?\¾¯ÝÚ%_a~{w”ÿˆÝe‰w}´Så}Ôg´û—.7Ö›WÂõÏ~V^ó õ¸ûDWñ}¾×Þv™O;Ï&Þ5ý%ÿðQ×{ø.éX7™o¬Ï¯ŽøÓa×W wy–Ó³|¤/=ãÁ“ú=Lý­Û´ÿƒ—Ǹ)|í†KŸæûÀ‹´½ðïeåÓNÆ…<Û§t ½F?_ží =µ£òÉï‹ãÇÚKgªþBk׉\lòÛÆ›ý=Ê©ýkgê³ç½ÿ±ÜØ?¢Îwô ûóöýçSOÔþ±þòüFžõŸøÎMì íó|w¾Â¾ü;)ÇÅ|¯}£<Û¯úþÆèñíßÙ1rþÖtòÞýÝéOðµ‘s’¶CâÉßy•û‹ò³zcÔómñ~žW9ÿÐÞÂI¯tÈ£ó üä<Äù¯sTý®œûhoÏo<^ŽðUÎw޼g¯†þv¤ßÔSùh/í‰ßô›ô^_ŽW_ºÜÐ :·=7úËù–sõsyvë\Èy%»BÎÅ;›úÓC°W"ÿœVÿÆžÑô7è<Ïyª÷M—|ç½tè{œÓÓÔ^Xè y¯~ÚEùéeœGÓ»Dÿ^}ˆv{)éÊó £\Ɖê/ò}æ–ߤ—x߯'Ò už_ûf¡¯Œþ8s }&é8Ï=3êqŒ^å_ýx”_{±cõ¬ôóìY8rŸø—ü»Ñ{£]ÚŽK>þÒå&å¯Þÿ/ÇŒô’?ß”ëÑfx+®¿TŸ}:ïé×ÒÕ·G6ñG{iÇð×¼yÑŸøþŸGþß]¦KÖüà~ð ~ËûÚƒW?J}÷”“^>íR<Ào’nʧ\ůü:ñéUõÿß÷êß“oÓLJ‘Ëig©8¯A驵GË7¿ÿ"ù?¿”ƒ#üA/šþ—ðލéi¸™O–|(ÿâ¹”3ñ‹ü×~øå“ïo:Õ//møèÎ+ü©ýÂÇú7ø•ƒÈÏAøWÿ¤ŽìHþ‘+~.¢×TŽƒÈƒü;Ný>å#oJ¸ðý£cpZpnÁßÁÛ—tžKúNzpTÚC;å{Ë9„/kùµOÆ3å;8»”?r,¼z*ÿÁ”ÛÿZòù|Vä¯õˆœÈ·õJyŒ¿c¾^éã)|â#|o‘qÐ8ßþJ8¸—¸§ðoñ™ðTÆÃ?<~+N5߯xß|ð¥ùdàRN‡¯Í¯ÇŒóWñiø“•þײ\ÅÏ©ç^ÚÁ|:p»åÓ±.@‹«KºÏɽùáÏËz(Wë1å&rZ9´Þ!§ä*ãØÄƒo[éࣴW×·Ö¿öÖÅ(œ´uÞ° {d]g½ö—ÇÿÖWåÇ\òCÇUýœõW僜?“rYÿ ~k~ÿ°L·|úëŒs‡žZΧmù_¼¨ýÖóË|¶ûëË´—uVä¿ë·‰·óþì²¾ýçô­‘¯zXÿŸù÷»æË'v_ï<+\sï-ùäH~öËóÞ—tíë½Gñ™s3í¤œìŸ{¯Ü/Ó^ÎìËá윇9Ï8½¬GϽÔwàsz^öêh¯7Fy&Q½W{·_LnØ»œ~ׯ×ÒžøÁy,˜sÍè/šýü—sÚãüW’xðdÎqG;/¦˹qÓ#‡»rL~ҧWsNN_õÆ Õw(gâÃÙ5ÿÔç¢ôµ£ô’ý='=çÌÅã ¹ÐþC_°ýžò—7ÚÏûâ}OyÞZç›/$7Õc‡ÂÜHûÒŸÂÐw“ïôŠôÅkåýuß^>WgzžÉéÇrO“pWïÑó÷;½zõçÊ©þòO>ŧ¥ÜÅÓ ¯ÞÚI|ù¤ô¥pÅÛxŸðÅŒòL;›¾¿»,×¶?ÓîÅ;%ýêµ£ö.ñÞ`¥ÇÈMý(§Ýn噿°‰ßêsÚ_¸#áÓ¿üŒÁ+ÈçýðÕû#éJ§~Ë„K9Øß»í»ò/å¥õ„¿*~,éßÊ3¸øW;T^ÕC|é¥Åw%ù_Ú#í˜÷ò/ÞLü%Å×…jõ)..ïá¹Z?éÌz­óÍ’›â¼´oø]¿â/ãþ¬ÿò´?¹À7úÑøZ¾Àg.Ù/¤S|éµeºÞ—¯È#>:FnnŽxøõ†ù"ï‹W•¯ù ¿qŸ7†jÏÚqðuqƒ“ßå³yTþÍêc&wÚYº¨vã[q­o¿•~‚{‚ûº–víz$|‡e>?‚gM»Ÿ¶•Ké†ÂÁu‚?„Ëó¼?Ñu¤þM¹äßõ[â]üf|°Ÿ¯÷(’ï¥!'½ÿ@¾´Gøòòˆ?ï‰g8ê‡Ww¤<Úi9þ¹G$â“Ï\÷¶ýõWêaiý<Úm¥ÇÈs)ç/—ÒÝ×ç;\Ëć]/´xºÐqÐ}÷F>öé΃Èòõ~NÞÛ7ÛgÏ×|æ³ý¶sŠ·¤þ)M¸<;‡r.ðbâ9‡z}¤ûƈ×vô~Ô~ ^ÐýQç}Êçt!õvW:ðŠoÌòäÙ9‚sÎöÓ(ß8‡Xé1rþ“óæ¡/«~&úzuç™Õ‡ÐÐóœyüø…ÿŽØÛp>+þÄ›9¯¥/Qî6é[ÏÓIïù”>Ïy±vpŽí^úéQ?8ºg“/»#ŸŒrç}íf°0Ú§öKœ_³çô—<ÓOÑ#§½ö÷R>úí7ò©}¤?¤œ¿H|xïŒrÿýg·ãJ7´8ý¾¨ÞùK¾¯Ý ß-å ¤ø®„£W=*¯Ëô›ßðÿ"^q~ä-ñÓ«¶ÜpAôž¿N~¿Qßð_êQ| üOø´ö’"'‘C8•➉\$~m~ìáƒÈëž|Ò¾pâ“xÅѤþð9ÊÕpÿg­ßá€þ`¥ß Zý(=*=ü\\Žõ=}¯{BÖUÖ‰gκ_µOƒ“°o¡Ï¿H~…Ï{ùºGQ|þUòëy¤Sy5>ˆÿöû§Þ›R~ò³ ¿Òo­¸gSû;á÷ áÞ|GÔû¤lž|ð+ý½ó)ûmça½_çyÄ»4ÊeÿN¯?ïJÇ9šóïéq³L\…ûÎûäÓ{®›ríºWúõÒÞ_wß;ß½††On >ì¹yøªßÏ}îÞ›ÿÓ{™ïœ³×€t÷’÷ø;”ÞF>ð9¾Wuv™OínäùƲÞmŸÚõIüâ5’~Æ‘]÷ãJ¿^Z>¢7¯žÒûðõí<ßÁ-Ü ÿ¼ŸïµÓƒ_“ÞûC®ªWJ:Ã?`å¤úá„;bß$å©>U:y¦çWÎÖ+ù°s¤þw—óGõÖpò¿›ôÒ>»îÇ•~½´üz/üÀ¿ßýð)þàÇ3ïßå￲û¾‡ï%ÞýÁwwÃǾߑþ‡£Ÿ,øzý×ÈóˆwO=f>yŽßÂÆ{ð‡Í÷¤×öQÞŸ¾ØÛ¿gíuo9?­ô›A÷÷õøêþ ø ÿ>ø·ðÙ…ÈYønŸüï“þþþ†ïŽøôýßG9¼\<øiäÿ*r#¿ÈÕù&žrí'üƒ—t?ùí‹·œ?öH7´á´Ç¦<»îÇ•~½tË߯ç½Ãßþ~ä£|¾¹o0þ›'Ì7æ—¤s$|ÞwÞñÍ•¿‡I‡|ãßÈ­ùI¼Ê—pÒãp·”÷“…´*—Ê·œGwÝ+ýzhùÝ:êNøÉzßúÅ>ƾ Wœ·÷{ —ðö=·ÃŸöKÒ-Óûäk?BÎì¯îä½ô­o“»Yþ±žTá=[Þrs{”?ß÷oå}ü·ïº?WúõÐây{ÿ%ÏÅ‘nø¡çFø»¸û<{-ÅsßÜÛÄg¯ÍùÖ¼gtçœ÷½w”x7F9”Ë9Zïëä™=Çâ5“oñêÉ·v8=/÷+ÛûBÉ·ö:“~ÎÓwÝŸ+ýzhõ‘ôöó^*{ôâpΫé-É;~ÓCïg†_é Ï%=¼¥xüHÐÑÁ/ÔŸ€ðyO¿C?óZÒ)~4ï݃%Ÿðë½ÚòŒðð¥ÁEìº?WúõÐâ¨ñ+½=;ŠgÃp«¯÷ôþÒ¡og_Ž´~gòì^þ´ßX»…ÊCþòž½@¸| ?tŠ×„W€Ce7€=ö=Ãó¼4ž¥óê(ïÿŸ½÷Y®âȺ¾«7 nÚ˃- è¿ÄßSør}Ü@߀. o€é7è`ä‘jê¿#˜áE8ÂwÐá°£O|Uë·Î›[ÈÆÀq¡bŸÉ:Y•••™µweVî•{sßé7 ñÏb> vpøYð®½8äÁ¼1‡'&¹Ù÷þzo÷݉‰¿IoðÛJ0æÌWæuœ÷3ó ÇSšy•ã •ïQ3‹¥žÄ8m‰‰=¯Yd¾Îwór¥ñ[ƒ>)®Ë‰qùÎ'Œ_ªëá{ùF™NL<èxPæ{i½ge[Ç…ðÈØ/^–Ëá;Úñ4X/"­qÇñ’”#Ǜă‡cÿÒ›ÛU—Þã·Cro¿Êù~°GدŽÊå>wÊë"Ú.o{ŸÒØáS™O¢ówÚÃãñ»=vyótÝ]é!<6ø+âÃô݉‰¿IoêGA¾5¿‚ou_òOÄúóLÇ•Ïü™ªýíᙘ‡SwçÅì»ý‰‰¯¤7æGJîÅ÷ó çºãæÿNëÊæwÁ 6_‘t©.¯Îõçă‹æ[Âkä;䮎3þÀ‡4¿Yù_n} é=÷½[ŽG‰‰ Ç<+}wÜÚ~~b·Ýþ]•õ0û·Õ8ä8ÙÂÕë…óßþe{hbâی旱O» |ì•Ø5í/Pß=ø €G¿ æÊv‡øXy±>%&$4_ ?LðjÌ×R^<ødöOQÚa̘yñw çûnbâ/êüÇ)é~gˆvXDZ÷ãÿÌüJåGð‡ ßÿ‰‘÷¨¸dɧI<ˆh?µÄ³?>¥á {œ@þÃxŸ¿gøáå:}<ªógs|I“ÒŽ$=`]}"ãß—†umÖ¥CÜÂÄă„cÿØ]¤ÄÄ®‚_ xdøÿ —w+ÇÄáãØ <˜íç'*óað—ÞW~óo„ø´ÿ=ô/õ(qxh¹'®-ˆ>ë…ô žy8ÒühÞ-ç_{y6¹~–xp‘ý/N3_³0é‹äÞ~Ìì7ŒóºÿM·¶ŸXy^g¿Ð‹õ„Äăˆãx°Ò‹%ÖÕ8.$~çVÕþ¼€Ÿ/Öáü½¯4û:‰‹ÿ±•_æu&&¾ÍèxGÄsÁ?“ý+é8ñhàÍÌb¿Q~ì>¬Gã ¿iØU‰‡4—ß;‰í¿ëöGÉ7q÷à (^­¯;®ã'ƒÝÿNðoàã8®“þ͇©?¯‚ÄûmŽx¢Ä?%n²ã¾’þ¦{. qZ‰/ú½®ï rþg:ÿ£ÊýIåý ûs=÷!^«â²6’Ç;U¹¾ÿáЮSâFòA~_H÷‘޾ÕyÕ³O…8¹Ä‡%޲ËUýˆÛü±Ë¿Cy_–åì|ÝÝ—¸°Ä£uûè—?¨<éãõ¾_¶—x˜#õs#Þ™Ÿ/ý¡ã㸯Jëy4Š»Ü(®fs\çi¯ÊqZ¼·=ÏþSüÚædÙÏÄámô¾p\[žûY]§öÃßóó£]ŠGJ=y¸>Ä'þº”¿±|)Ÿîãâº^*Ïï-ÕÛqH寫ß ý°DâŸú£²\¿á?GYçùY?$/µâö:n÷ûAŽ¿(å‹ö9±žãXžu=Õõ®ýc9Ó{˜xâ´ã¥|>d”ÿ=ùߣ_$j§yšGh¿ê‰Aâ;óü¾-Ë'^4Ïßñ—‘/ÞêGÚí¸åÈÏϪÏ{e=üœ%÷1î3úÉóªBýy/!7¹?©7ïârëy9Ž(Ϲ"®<ñèÕ>Î8o= ~¯ÞÿžG3®3€O‹ÿ:øSÌ+ÌsW>ôˆ}#?-¤žÌ'˜¿è½Ãsò}§K=p½> úõò®ë(ýÐqÆUæ-ŽwOùÔÿ—èÏñPŸ³´Kùà‹ ýŒ?Á“e=¼/€ëÍkV>󦕟úÑ/ÌÓ¬çá=Æu§èo‡4å#ß1.5õF^…vÁ?å~ðOé_xÚä?KZ÷¡‰MûN‡ú’ž~ú‹ïDžý€ÜR/ä}&” O¿sø› þÍ—BÎùît~Ç/iï—R>øQŽ‹Êy!ómöQ]ÑqöWá׿®ÄÆÿ7q‚ù¾y¾|;®ªp.œ§ß(¿à<¾×á‹QoÊ!~½ÙGF?ð¡\ü賯†8ÏK¡<â#ÇòàcÎ+ÍûëF8>îã¦ó¼‰»Ì}Ziø¡ñùòþC7ÇeV9ä£<ÚKð\h/òH½äGÑiÞ/èõ¢½Äµuœ_ž¿ÒôëŒÄ˦?àÉRx䎋*ýÇ丩:Nâ‹O¾ñL}Ê'n鲎#'«ºžõÒ•ã®.ë<ùñŸoÑþ÷¸Žzq=ÒNüZú:Ýi·l¿ÛÇ{Fõ'¾í#Î*í‰q%ˆ·º¦rðè¸Ìô ýÏuô·®7Ÿ“çGÿÐÿôkèÚÍyêKØô#õæ8ï;êå8»áy¬†þsœ\Ú£v ß<âäÒÏ\Ïóã=Êó¡ÿÝAžhrÌs\ýã8½ôûn©ÇŽ÷Kÿ©\ìg7Uþ-Ý×ñ|”ÿ¦îK\!üÞ9òãÏÎqLT/üÛá_"Æ#ÂÞ‡}ŽëìgOùáàWÌõ:Ž÷Q>êéòx_(ß>ÇOÒõ\g?fÊGÖ;!íø«\§óøÓ€w¶ޝÓ:|;îR(C×Óxl´{3Ôø2Ä_ºS•å¹½ô+ÏëyN<_Ú­ë§–zÐÏÈ÷£~ä×ñ»!?å:>¯Î;..õ£_‘3úmº” âäÒOÈ)Ï-ò¹¹O}sx„ö¢ë—NùðÏEãÇÎq°x:îr…1$åÜFŸ(—ëÔ÷¸þ«²>Ž£J½u=òírVËö˜I=ÐÊÑ}G¡ì¯z‘/ôýWë8õ$žŸã¬R>×Ó?¡ÚýÒ/ô‡ãÃn—÷…/àç£rÌwC–÷±Ÿ5úMå¸Ü?Ö7öÿ혟þ _(Çü:ôŸúó¾ _(9ä8Ïþ¢Èïú‡þúæ~¡¿©÷¡ßiG|~‚|ó)'<'îãĹŸ¨”ÚËû)!{vD¯GŸ"?òÊÁn€ß±³ÂCºžçŒ]‰õYú™þ¹ rO„r(;)åq?ú;<4ìøå > õÀDðÜXç ýA½‘Ö±ó}þ;ªr±‹M…çÇz2rE¹‡C‘{å«~Øq]>v%äïB¨÷1=wì™Ø§x¬›óüd×ÄÎŒ} ^ˆù5ß•òd~Â7ªçOÝu`¥_ä`÷…‡‚}Ñü Ý—ëwt_Òæ‹üÜ7ÏDýe;?ü ΫßùSÂÞm^…äþvjøæaPþ±²ÎSOÛõ¿ ò¼b'ÿZýoþ@Nè=Oó’vË~j@xFï•å˜_C¿¨}–Õ »½y´GÏ>×¹ÕoæG=Òoz/š¯£ö7ÒgóŽTOó ô°|JዸǕï‡òy»"ˆãÒcóD¨?|µ;®ùXªß¼¸·ýžã}=ž÷1öJ=‡†÷òOŽëõÞƒ÷äñŽqq“÷á¹²¼†÷8ù±÷ò>ý¤<Î{ÀñA‘Cì÷áýÆøeù…'@=fB~Æ)xÑîoFzÁu¼'=¾éýÎ{‘þçþæGawT¹æWò:$Ô8ÀyäÞÏõ\Y?Æ/ówx.æÏè¾z}ËåÛŽcž@ùÞ3oàRùt?3¯«”ç ã~b_ç:æð!¸ãz¿Á<žp_â#zïî™w3.Y.uü\SôA<ó‘˜g2Á<Ü<!ícF¿˜ÿ^*åÝ|«Cý> zß =Ÿ*å›y¸Óðw˜÷ª_ÌÇ‚gŸ€~Ð{¢o¹|ÛqìLϾrÉ÷1ߥŒðK¸9âû ½ó÷…޳¾áøµ*^ú„#|¿ñÝÊw€ÇEä\x$¤£ŸCêoŠq–ïxP|SoêA{fB?Å}F¤‘Oážþç»g®¼¿óÁ/òzNЛ…¦]ðˆìo[iÖ[B?†¸§‰ûè |óF„øWbˆu7γ^ò<á•À¡ÖUð³¹NùJ¯©¬wF^!ëNÈ3리DZ…¼Âó:çãRVUÎj¨7ës´‡u»ká:Þ/æÅ„û²nv=ÔåA9.°þeþÚÏzë©aÿëªN¯t×ÓÔƒç òèWžã"í~\´«o¹|ÛqlŸb7ÀþŸ ;v&ôÌö!å˜ïôUY>ëܬ§Û¡r±S°Ní¬#_ظ?ü,·Gù±WqçT÷µ}C×±^Ì:µíCè÷¡|Ê£¾:¾^^çþwÜîòÓæI•ÏÉålqžëéÕü.¥oé<ëÔ¼·6J½NÜGoÌ'Ñs"N¼ó9BÿßáüÃp=‘Ø?š^+önì¥{ønANáÕ˜Ÿ‚žr^h{¹òÓ¾Ûªíí’3x@\g> ÷ç~ȽÚk^Gèó‰t}¼ï(Œ´Ó<%ú÷Y¸íºʩɧrê¿wåÀk }Žk*4 9èòõ-—o;Žý—ý«ëwÅí«ïÿS¨þ¼¯ç@Mâžñ¼—Siü™?мôóX©Ÿðz̃C>ȯã<ïûºž8†®Ï±RÈO=ȇ¾¯ð>÷§Þè÷·×¼7òS¿ér\qüÑR.]_ú9¶ƒû¸ÓEŒËÑó»_«~´_ýãú Ç‘þ']”›¸ÞŒ‚|ñþ´>”ïÉñó—^ÁÏbü!mž(Ï‹q }˜.Ç˳òsžò[ëY¨'úe¿†Ôýâ}N{¨ãD/ì×ñò‘7ɧû ýÖ}öèm™ÏýyˆŒ®ÿ?ÊvÐ~õçXo¾*Ï;ž#z­ö¬Ÿé½¡òy>·ñåô†çÍøÎ8¯ßæÌ¿¸ÎûTž¿ôÜnîsÜþÓô\ÍOSù”Ç|q?>¬÷wP_å÷þÕŸïß_òB;퇊|jß+‘OŸ‹zú;†~yXöúÇ€ý{þË8¼±o;ß´»üCìE‘'†ÝˆúáGû¡í’Bì?ö÷ ëXÏf—}‹’ŸK ®Ã.ÿû$í:¬4õœã:ôö(ýÖq°„Üvú‘ûP×aßd}œr°KaGÃN†ýŠuó e}û–Ë·±ã™OípŸ–òŸÏ¼CäûsôK¿øb‘_kÿ:Îuè'<ê;&vJôy2oQ”zsøšè¯y¤BøCäC?§Ëû˜gt”r”¦^çËòí_ú‡|ë¹ØŸ×Ñ‘?ÊuøËúVçuÜüšÓe¿X¸þxy<ñõŠ÷äcçGÉ9ýü!'c¿ÏxM;>Îñæè ¼úŸ÷¼­?…ã’ó x/¹eljË<‹ù<æŒS|_0^1\z#¹…÷8Žÿä™÷7ãë±}æ[è;ó£èg ýb÷Y)‡è=ï•}û}¿ø×WC;yÿÄ÷< µ›qü|uÏùLŽ7oDoð+…ß(øì²ÿ$áL¾3xŸóýÌþ+ôñÂqÕyÿs½ŽÃ›AŽáí,½@àÝ0ÞÙŸUgÊc܈ß{ðéx?8N©^ íf}b.È1ï ñoöï÷}ô†z¬¼øzüQ9ÍwüºÙx>ôËrßï ú€ü²>Ã:º/üû¥ÑyìòØcé‡WŽz˜O óÁ>oþî³ç¹P¼‡{Aon–úèöFÿðœ.ŸCßòwP±þy•œ‚u#ùÕùúI÷<àG™ç!4f;Èý?užrt½ý¹)¿ý´*ïócÝõ÷ƒ<šõ°Ô/x,ÝÞûÜ_õFOá§Á·1O÷1ˆü’gø|æ©ßàÕq?ÕÛõýºç¹Ð~—S«Ü0ΘÿªöD¿Yµêkyÿ,žWßòwPqÌ£Ôs1Ï ù rÃû“÷/ü_ç rÅuæg†÷²ùÃè…ò!÷®Gi~”ò±.Œ…uäÓz®øïbß?úF¹‘g »'|ì°Ø“ŸC ÞÁ•ò½j;v›È«Ã.Èzºý*è~ðx°‚ñ:ì¹ðßÎ…q‚ûï—Ôüì@²ÏìÉGý±“âWû0ýÍó¢ßf_\^âKê ü4x,gÕßøI±ŸE¥á½ÀWäzÒðÅàuðœÌó"§è‹ý/* ¾¥ý€ Ÿº>úáàþÇȯúÂ[‰öÚÏʼô\¨zý+©ç×õŽS¤óÇ»ó{úýR©Ï>Îû àg¡ß¢ÿâNuù§û/|9û;T½ß 1qh^ï é…ß¼‡ÐSÞ{‡Gá÷ZÕþ\ÎTêMâðÐã=ãϹr¼qüÒ!ã/ãøGázöu0þ~úâñ.1ñ ãžýRÌ·ø¾ä{’ù&ߥ |éz¾(ï±ÅW%&dûk“œÃ„GÈzë}ðqígNãë3ðRYw <ÔÄÄ!à8©ôÄëÖÒï;—>yµòÁ dýÚqR”^Ëñ&qxh»Ö)Bø·wȧùÙVÕþÌ_Å^}ù¶Æ#ññúngbâÕ›=q%ÿèÉ=ô¨jæI ðÕÌ'âxy¾ïv&&¾Q½±ž0Þ|Uê‘ùÚ:OœQó¥4ŸƒOÏÝqh;컉‰oTo6$÷öÛ¶ýüÄØotôm?nÊÇwŽãÞsòÞ^bâÐñ'TãÉšô¿köÃÆy!ûT½U×9þênÚo‡æù`Ÿ7¯ã¶ÓÀ7R>øNØ{¸;ŽãåzZâpÐr¯ø«Žã§á¼ýž|øuð àËuƒ„ŽëŠ?ÅÇtüYâºÊŸq2‰ïëx¿‡”ï]ÿÒ*gô£òw–¸¶Ä±ýVõ Î.ùÿ6þ ÷uú©Ê9Ò!~â¡â—ñhù¾ÇÛÎOªÚµ_Îèúç8Örié¾å!ñ圎‹_>ÉAó+ïAÇ·•~á¿Ír\òó´Cü^Zÿ¤?Ž¿¬û¡§1îìžúK.‘óèÍqF¹ÿÕ¾øC%5ý€ß3¿¾x±|ÂqÇ? q¢i§ý{òžù6õæ ¡ýàJ^yŽ1®|¼Î~hC|uËò¡÷8ñ˜ÑGøöŽs®óÞOs¼¬Ï~õ·ß?—úâö¡OÒWû·Õý\OüŠòþ^;N/¼Í}üjz>†>àwôdÐcöUÀ&þõ‰÷sâÛ‰æïâ/3ÆUÏý;ìoaß‹äÅqž%_ö¨rÆ~¯u_®ã<~D?z±|îÛäð\xïó}N=øÎ ~È1ûsØ¿â¨ã wç÷܈Ÿ…v\,óûþìgb¿Ñß~[{ûAï³d=‡}‘ìß<ä‰ý‹¬#ézü ²^Ä>Fö¿qÊ¿Êñ~GÇ?ì…—û®ñ>ΰot|^ÇÉG\ÚÍúVð':ÞçªóŽ£ðâz×Ǹýôƒèób®$ûÕâŸ3î—Æ^£ãºê¸â“{_½ãdw3Ç¡!v üçÂ#&®ÍÕ—{ÿúþ®çn!×c äÛ-ïC<]ÛYtÞûø›ÝÓŽàg#ú½ÇËUû¡Ô›z(¿ãUóÞPý6V_|Úo~t9žŒý©Ò¥^%¾Ý8ö«ÂsFîyŸò|I½°>H^ȇ¼q½Ë“¼í±“sœ÷¿ò/¿Ü{ØüËw˜§á¿ÖþI£Ô³ÒqÊ£ä ãR°ïû‘òè¿8ÞðK½O|»ÑóÞ{Äd?£ý¸3ïÐy®ƒW‚?#ÇóS>öm±¿Ë~u¸¯ò3r|¥¯ý²Þxž¸ÞçA߯ûÌh×vW/ôû1Ï¢+BüpÇŽ8Ì7ÙÏæ~a~Ƽ4Œ‡ðm–Ô?!žNâÛ–c}¼ŠGáï|¾Ó½~ ô~_åc¿0ûæíGFi¾³‰kA\ ¾£ñ¯Dz¶œíÛŽË¥ÜÁ{qúb¨§Û«û³O™8U|¯Ó^¯‹©ÞŽÃ£úRžýOézß/Ìçð¿e@e}ßnÄÎg»ë£Gºçˆ};¡íø3:Ú·ô åc}•u\ì1•äÅqAu»vÖµ¼œ<ÁW°ýDþ”¼~ ª¾¬÷ÚŽ„¿ ü]Á“¡^Ä{ü¦l·y6‡„¤ÕìNjveûê3úEõÔ:|ßòør(·ãc öq=Wx(ä®Á>"{§í‰?J.ž ±ûT¥>Á§±½S÷Ç®j¹’|6'_n¼‰ˆ5Ú;w¾ïîcþ‚í’ªî‹Ý¶!¾©êÏûcê Ç÷‡W¤÷’Ó*ßí¤œC¯ÖÎw‘‹†÷öwâò~—=¹+ÿwæè9ûyHnxñÜð·ç8˜Èž{CW]«ï~JLüÑ~ìŽTÅÏþ.áÙJü~Ô{ßq‘ïeç¶HÍ—¢ÝßöüSå{ÙúuLåJ½I|ûÐq¡‘c¾'±·ã׎ïjxðÏùç{”ïÌiÿ,èÉY¾•&¿ýà*?|™œ?$¾}èuLÖ5YßY ëUŽß©|!~ê\^çÝ-£_¬ÃXÒy¯ÿ _%1ñmÀ±}\r‹½€ýèØ¶¤7Ø£±;à‡Ëñ8¤è‹íŽBótÇñ¬t\åRÙýúî§ÄÄBoˆ¯wSrN¼3ü¢(Æe þˆki?*}ÃoúI<3ìúø-"Ž ñ™¶rž–øöa]Kþ‰èøBÇýÓyâFÞ#@ôn$ýp<5®×ýW½Co•¿x£\H|ûÐñþWüi9¾°Žã· =@þC\cû¹³ü‡òI;n¦îg^ÛÏ+6Žßz'õ&ñíCûMå{†ù~¹n2ÿ"­üðw™W1?#>ñ=™¯q¬Û%&¾ h~Ö¥€ì¯Ä~ß}ˆðØW6¥ë°ÿ°Ÿ’ëàSbÿ ¼ƒ¸¯}¿x}‰‰ošŸ…];(|Bxð ±OÂó®yX×Ë„W‰¿ñ*Í'”ž~ìò›¯áƒÔ›ÄÄIã8Ž/ã£ôõL¹®à|¼àKÏ„|§ÂøJZöàxºœ?ÞŽCË8«óò[ch¼‡\¾®gÄÉð^a„æð3Çû ”o*Ô^öl@âËOIßÏ3ñ÷AózØ·ƒüE¿2ð‚ˆgÉ>0É·ó1…òà;À«`Ê|5î{A¯ÌÇÐqôö|¨/ûŠÐË‹á<þo.=á}€¿NöïÐó:Îþ æáÄ5¤^Ékz§ÐòÁøÀ{.|o±/¹ ñ,ý=ÇþPüyÀ#â½Í{z)¬{ ÷¬£ Oø1¹ÕñyÒ’oö©çž}t‹¬Ïy§|öyÂb_ûY¹~9Ô½^ÉõËw ½ï9Œû†Ù·°¯Zë‡.‡utûÑu¬ r~¹»n0èׯJ¹?þ Ø×O~ëù¬g^£=×}ÖÔü8^¡ô òœ6TŽüÖDÿ5.g9õæ]Âú¦äÞiâÁ%Wæ I^nJ®°WÝ–|aGÂÿ r}[ùàåQ.ù°cÇâþ·ªNOàåÙ/†Ò›AÎÑ›:¾¥ë©ç&úFý©÷ÓqÚI=oªô›8S[¥>%¾èøbðFÛ|Ü“ÜÀ‹»+}¨çÊ÷.q2¹ù¯«.m¾ž°~¢ûINï…ëáõ‘‘Oõ„7Qëü}Ýç÷—œ›×AûT.ü w;(gŽÃkªÿ%½¢\ú¥K÷ýóä$WæÛý]rÆqÉxoõ}áçÇ”_×Ýÿ{(ý‘Ü#wèA~¨üûèå?$§ÿT9M'Ï÷u½²¾/¹uùºÿ}®S>ßOíñ}¸}*ß ãëÈò~ÑùûÝ}ú~ž‰¿Z¾Ñäy‹ús_zb=’Ü0Ãø`=Ð8_ñž¬óï–rký¥¾Ê›µþ©žŒgÜÿ^¬—®3¯–qI÷1·R=§K½óxSŽO‰ïÖ·$Ow$Ì÷ý½Á÷‰ybĦÒÌ÷˜·QóšÛáû^ŸâcúûêÖv'§Ä¥å~Ì¿˜7RþpüÙ[¡=ŽsK}¨7÷Y}qš}Ü?Æs×wNßÏ1qÂzÂw;ßÓ«’ü\²f?™:n~)i]Çw=ëf|ŸóÍ:1¼<¯“©<¾Óá×Q/¯Çís?×Oi¯»©Ö½NG=…ìd]u5ûÕ¥(gµ¼žû?£‰ÃDÛ%ç$/Ø3±GÀ3%í8ºÎû»u~1¯‡ë±£`ïÄ^Ïýñ{Æñ¥åÐvPû9T>ìžØ—”FÇʾsìC1ÞÀr(ømàzö¿Sß‹9Þ¼ hy–ÞÇcþMðc>*<‚¹ªý™z\iäÞ ¼üþÈ›ãfš/«4¼x³ðjÐã+¡²÷¾¥\å‹þKÐWꯆã1Î zD¿qêu¢ìŸÄßñ³=7Çå|&ü¾“#üÿÏÓñθN<üº‘¯Òÿ{öÿö®Sùøñ“7âyúþ⫸â§8ž¨ôŒ8£üo:©êåz;^¨ÎO•÷mð¨~ Îgø=öOˆ_¬]•/=n$÷Žëx’þQyS¥Üo±¯ÖõþŸò½2î‡Ô›>ÐñiÕÿö+ø¥ðÛ€ÿò}XïÙ/Ëó–»ïô¾”[þðû³îK¹J7Äí‹õáü¡Nnð‹é´äÓõPýìïSõq|L]o½ñá•;¾§ôÂq‰ÇKý~ ýó粞ößI{Uûû•ÞÒߎú´ë7?·o¤7‡ržÖÂ+Œñ*-’sÏxŽ’OûAÆ¿!q¥õ\=¿ùc©'æI¢wáþÞ/t¬”#ó’%göSͼ.ÄïÛo=ú¸,ýD±ÞŸ¡q>¶ó©~ŽWŠžP/õ—ù¤™'RÒoøÉ>QŽ7~.¿1.câÒôaFÏïäÊþ •–ÿgÇÛÄO>óyæççuž¸—Ää;™ù>þEO+åòÝ€¿txÌ”Kþsá~|×8þ¦Ž#÷|W°O îÀŸ5íš ÷ ñL½¾Þ?z¿ú,í ¡]|w9ŽzE¿uõñs;[¶³o9z×ÐëVޝ!4/XÏßëKWÚñ+…ð4„è!ñaX¿Z’\«'Þ!õ€/}mŸëbêkû%zŠ|RòIÎm¯U½á18_¬wWÎXÎKù·—z ŸJ¯òÞ »vޝ§ÿJ=MüôÆvï€~ÏJy®Ž_äÌûG8¯ãkA^ýÞæü>åZ/•úéñâay?Ÿ×qÞÿAŽÇq4yï‡ñÉiîô|!.èXÿûÝòþ.Wzî|è å0‡q}=èË{ãMz³¤ç¸äŽy öiâÏ® _\§ãÞGÉü‡òå7oD×Ùÿ”ò1¯â:¾c¼MHÜs¾¯]iÇÑT>öOÚ¼êÃýì'‹v‡r=Ÿ£]ÓeýùÞp=Ôo‹ºÎþ¶¸Nå8Þ<ó2ê­ó7Êöø¹ñ]´’zÓ‹Þx½ïfïë¹±¾åï[凂œbo7F×)Žëø;YȺßÁÞg¬û°NüÝP9Þ/L½Âý(ÿ´ò³ŸŸï~ìí¬Cð½àrè×?ô“ýg…㬯±.ÆyÊGß]ŸpÚÁ:žÖáüÜx!Niâ„õ?+Äiã9³¾ŠÝà°ðPwœ8kØá"ŸÄö»Jç§t½Öo£=eOœÍ“Ü_ç•ßëĬKã‡f* ô»¢Û‰ÿ ­c§t9äÃnB?°}e—ûµîîv}«´îï8vÄÅÏQÚ[ÖÃöØoÔߪ§í[¬KãçKv¦¾åé]AÛ¡” Ç<ﯻóðPl— ‘]»¿ù(ðCàÍÀƒ‘˜Àu?•rÜÅ뢾º<òM•åb÷7?Aúÿ§‘üï£ò‰«©zbÏo¤—æ?¨Ž ?á˜òŸõ“Þº^ð{*?ÂüóqTqAÕ?ìnÄ}é÷%þ#y/`/:Q¶Ëvbõ‹ß¶Ãê¹o;v_ôüý²ŸüœŸ”re{õ"^ ï·ÂûCïxÞï¡ÈWÑsñûRýn{õqd‰Û‰üñ³½›8¡Øí°—+ûÇïqÉ¡ý‰ÿ;:öpì§’S¿‰ø½ê¡òlçç>ÁŽîxÖÏàrx¯«½n¼î~Œû“q‡qíã>Óåsòx@¹äǿڟC?0nðÆAêÁ¼€v‘O×½´Þ`‡†¡úò~Áþjy¦ÞÌ3á“ü\>÷íãyĸÚèÛe;'“ùÄÉ 'è5rNÐOÔ_zŽœï™?M…û1oÍã(õÞ|2µ›ù™çWÔ;>?ú~åh¼Š|ËÏYýÎ<ÇrÏsá½Ç{$¼×ÍËù8¼‡x.߆÷MœÏ §´›v õFOèoø1̯ÐC¾›àGpÜì‹¡¿X?âù³^f9Ðõ¬sÑ/Ô„s!?<3Ö¥"¯ þ úI»¹Ï>õP~ iž;ëdב]Ç{vsÚËzÙ]Çú4òKÿ²~Îsg}¾ý~áÕä}lØ-®g}þ•õ†uTûI rA9­óØ1X/…wåøËë±\-ëk» öÖi±gÀÇbý{ Ïû v êC;¼1ê¹´Ýwýtž˜í z®Ø-@ßGù©7v îO¹Â®ãzp?õWô³Éyô û~5yÈ÷ǯ&Ïö“uf?¯ÐßÔuiîwƒ|:މã<Ç¥ð\VÔßÏe‹÷ õ(ŸïKë σ8®±<µÇ÷íçùðÜT_Ëcxn–ÎÓoj¯ùFºŽxhÈÓ­P?ú=ú—t¹¡¿¨7~L¨ïMÝ)ô~Z|Ÿæ99Nå#_•íw¼\·?ÊݲøqázLJ í¡~è·ÛA9´v)?íôõB®w{©?õæ>äï!xu®iúEùh‡ãSÒÜ~à=IqœöÒ/¡ÑO§ýwò¼¸î7êMÔ¨Çè­ãñ½7ŒòËsà=Éû- y¼ç‘s•ï~±ÒÈñÇí£~\ÇsFïyNôwЇ­ÐÚ¿êéë‘+žãƒò¾´ÓzËy®òKùÔÇýÞkö÷ªúÝ åÒŽ=<ÓðÙÏ+¾Ÿ<‡z0>E^*ùy_˜×I:"rH?Ð_A}?Òñ9Äþá¾¼¿Vc=Bÿ#Ï‘—¹ú~ówMê·äÁý«ûxž‰œs¿²Ý/­7ð’øƒ¯Äºã0YÇà;õÖ‰¸ŽïLó´tž}I|³îìuågÞßg÷ëêæ…)?öôÚíQùØkX‡§¾”k;‘òîK¿Ÿ õ±ñh'íÃÞu6ô3v-ì›ì›f½ßý­ãŸ„óØ1χþœynBú‰þ@î°"܇~9$4¿¹ý¨ò^ž/ òà±ÀËÀ¾¯ä™îO}Žu÷«ôsœL¥Í§ûZø¥Êy"ü±Ì‡}ÍvsôžJà혂½û~+(‡~S;#¿(æ±rìÌø›P;|?ì «rà ’æ½Èó´_Žp=íæùÃߌýF?³áb¨?<`ž ÇB?ÀÇæùÁ‡¿o¿ íD®Âýf^n\²?4äÒû Ä+ýFÇB»ÉÇ¾Š‹¡>ðØ‘_ÞðQÏ—õ´¾rœç_¼ëÉóFÎÐ¥£ŸžÏ‹} ”Ëx?Ãs¡Üðž¸òÑ.Çûây…rì—˜r‘«ÐNô„~¥ÐÚÍ|$ú«eò§þ5¯zßåƒ7L;àQSOÞsöÿÂû!ÈqÜbÿ;´'¼o(Ÿü/žÿg/§7~_³?ÉñÀ(óAÞxŽË»|ì{â:ï» Ïk.”K¿°¯ˆýHì7CØ—Âþ.žÏÿ^Ká8ýÁ~­ùP®÷§¨|æÅøiaÿ–ýí(ÍóñÌìW]ç©'ãópÊeÿ^|ÎWB!'<ŸK¡]~nôò­ë™Ì¹Æ/Ïý£½ñ¹À»gÞt-äã8ûÑxÎö{ÚÏþ4úËý¦z¢‡îw•Ã{ƒ~à>ȡߛ¡ßȇ|qœçù’þl¼_”vx³}§ýô“÷Ë*íý«*—ýÄì›ôþDÒª/úÈ>=ò³ÿ“}yè Ï…~âz³o™~f?#ûoñdÿNºŸãnÐ>ÕÛï •?$îÇûžzã/ýáy±¿™zá×…þaÿ.ýC¿²O8î÷>Í ®?ýž—ïC9ô‹Ž³¯˜zÇ}§¼oé/üÉ9þý¡riû—íOJ×±ÝòO¿ñ<ƒ~8.ÏõAy|U÷ñó¦êO?<(ÞÏ¿ª7öËžGÜ÷í}Ûºù£§5]Ÿü%pÜþ›¨¿Žã×ùµ!î¯ãöï@Z×­…4ûÉñsá8Jº¯÷Ï#·W½ñóëÃ>~Ö9íŸ}xTÖ/®“Ò¯ö[ªžŽ«®×Âý‘üæ¬ÄréÇGe¹ö«Ÿ¿ê‡ ž›÷é‡çŠ?"÷¯Ð~˜(—~¤Þäç9P?î+DoñŸÃsB~ìW‚|An|òÌs@¯tŸÛÈuwþWõæŽÚGõ¾K9A^ñ rç«2ÿ;£úÝU½îVe»·B=o…ënëü=]g?FJs¿»:Nþ;*ÿõTy·ÔŽ[”ÏùP?üqåݦ=”§ëœ_õ <ü£ÜVšúP›ô3í¢~”«úÐÿø¿º§çtú„þç¹QÞÐÏÔK~nÜOåóž¡ÝÜŸòðû‚¿%÷»êC9¾ßvÙž»êŽãgçžÎƒö»E¹´ƒúsœvr\ý8â>è1õŽ”¹º£ûê>¿ª7ÜWbëyÒ}ïò¢<òüé'ä]ùîÅö’Ÿòx^á¹Óž‡ëñU¸Ï>ÏÍúÊEάßËzÞS=GjO·üÿúüˆüá½0â|x®nõ§^ȉò»~A_yÎÈõ¿§règôó¾ižrÞ/Ô{òÝ£¿y¾±Üéï„üÔÓý<]ÖŸ~F,w´÷«²§žñyÐ_á½ãz½¼û­”ß_Õø9Òn•Ë{ŒçdùC¯9N=©úêÇsà}ãëÃs }È‘Ÿ+ï%ÚÏû$<ß—ûPoú=GÞy¾<‡ø¼WË~·ÞÒNä,–äçèþ⽩㱽~Q‚¼îƒ¾Ý¦=Ê4÷gÁ¯#ïã[áý…¼1~{\¦^¡ßâ¸ìñœr‘3Ú¾Ä4ÏùáýôÅï‡ÐO~ß#GBuù~}¼yXÖŸz0^G¿‰ÃxÁõž§„ÿÀ¼Ïù‘î«vÙ/'õ@.èoå³?OÊ#ŸÊÅoŸýøäù2D.]žŽó]c?ž”Ëó ?õÇ=Ïä=P…~¢è'áÍpÜrÊGoèÿ›ñzÕÛþ3–hÿ…”C»iïv)ö?Èyú[×Ù¯£Îó]Åsp¿ ÿ*Ï~yÎÜWi¾¶Kê«~§^öÊs åߌíáyv÷ùU½ñ÷"ý¦zÙÿ±ê»¢û8~1ý¦û²?<÷z›Î³þãx®ºëö›Ç}tÞ~9I«\ÖXÿc(úQv\d•úTô§hÏ*ßþ U¾ý>,Óè¹×é/·Ÿ?ÊU;ÝߺŽz¢·ö»­zÄøÍ1¾yðŸ·7þ®òû=¦çáòUOûeæyª|ûÙãyÒÿÔ3´w#äÛ³Î󰼟ý7"ºžuÊ?—þt¿ÒÏ´“öí#O^ÏÒýô\~UoX§wü]Ý×~â„ôÓ¢õFÖõçB²¾Š½”v³Þïug¥±#à‡ßö•ƒ=“ueìØãO@ù©?ë³1 vì~ȃý-ê~´/ú¤]öwÆóUÚv&•ƒý;›ã™Ð<‡Ð/¶Ÿë8öú;EŒãA=®†~Çd;R(×q„䛣?h¿ŽG;%ÏçE?sõ •çlÿƒÜv*ÿåP.ýjy¥Ÿ…Ø¥àM`ÇÆN˺<ò)ûÛ¯êýØ ‘ìðœ§~ØcÉBv6û1ƒ·€¿/]g?\ø»ÂŽî¸4BøEØÑàm È-þã«ê‡üØÿòÍR!þîài '\Ývš7ÀsD^ÉG½y^*ž<žûYú+ÊõSyÈ%åÑÿ1þïÛS•;¨ãó±ûFžíÅŸŸy(Jsú »}ôch¾E/ÎSo¿„Äû‘ëu_ú/òÏfBÿðÜé_×z½¢ž’Ÿ¾yyCÅñs Ï žrõy¦{N.癩ã¿}€ï…~òž¾å=ÈÇ‘ûãA~c¼6øl”3…~pï-¥Lùx¿8>,ùT^ôW ÷ªy’¥Üú}ƒ¾ÓÆú“þcÂølÿ±áþ³á>çËó}Ë×ÐÐrÆó1ÏQýÏû”ùÏÅü´.=Ö›òyŽýO}àýÌ|yãþÌ“Ï$ïöÓçŒ;‡ƒR.óDÏGÔ.æu¼çI£?æ™*ÿbèóÄB}i·ýíRŽóþ(çU?¢_]æ¡ó¡ý±ÿïRo&¤7z~ö/ä»Å˜ß+ÿ½[ Ï›q‡rÑæcÌ+™Ï3ñ^õ8¥|Èiîçmæ1 i'òŽ~x} Ìwà×0>QOæÙ|Çð^°¿sô_ˆ>ùûYÈw üC®g½ÅqtÜqÝ(?¼÷hßJy<ñ éÍÊv'Ž!¹@¾Xï€ÅzzÆ:ŒŽ»\x*¬ó9Î r©ãð~X§òzrRÊ…×yX?¢žŽ‹¢ú¡'«¡]¬Û9®!iÊWšò‘_úÉqNt=뙬wQoóôT_Ö©êíõOåñFW‰~Ô}Y…·Æz§ùˆ*ÿZêÍDô†uÇ{R›/§çêuðé9¾æ \¯Ì¼7ÊÕu^÷–œ°½—uXÇŸR:Æ¡Â^f{õÔý±ûxß1婜=q›H«¾Øù6C¹ð¬Ìg£?iÒ¶Pú›zè8ýB?Ÿ[\çþä9 ‡Jc·V¿ö-gCÃ1OBÏÞ‚ùzJ›¥ç†ÞŽ 7æëéù¾T]ƒ:¿Ãç%'ÑÎy+¶Ÿ mÏWýwÛßuž|È¥yº¼ó£È§ãwC9nŸî«‰­ûóÖvyÿ;ª¿y ´3”‹=½~¢óªyºžþÂþø}ËÙÐÐò /­þg÷<ê¿—ÏÉ<· ¿ðê¤.w¤çjÞ®sùÈz"¹P9æÏqß‘äžô~¼¬: ×Õÿù)ÿaÙ>xDæË©ðÍ\®r o©~Vö÷©©Þ ÏÓ~ÒºŸùfè7çéWé)|Hú_÷ë[Ά†õ}ž³úßòÈ{yB^‚<¢W÷Êç3.‡÷ôWáú¨ñþÈ/ùy96ß”q(ä‹ÉCäR?󳸞zé¸yx*×ñª)‡ùè£ò;ùŽËá~´9_-õüPq¦éóíVËûEt|jõü;ôŸz3?ä{þžøp}ËÙÐpü¯çáïY=ÖgXióÂô¼âº€×‡T>ràx÷JÛ/˜îï8ÊJóíõ*!ëdÞw¨úzžö9ž/íÓqÖ‡½ORå¸|ÚKù:îøÅ:ùqæÆv¨¿X¿£?¼ßQ×y]ä>´Wh$ÏCõ`=P<»¾ålhh{öâðb_Á¾€Ÿ<ÛÝ8®|3Ao°/"çð˰·À;àþÈ‘íCJcgÄNĺ°ý5(½¨ú±nŽe9Ô“}ë¶wê<|1ì!Óấ/‡òÝ.á¬ò_ ×cOÁJ»íw…|ºÎq|—ÏÁ~RTí ~ðÓèÙ‰û–³¡¡yƒ<8>oOx2ðn°o"7ØÅí yã9’Oiž?z†{,ò„ý#Ôã´Ž7Î7(ûQ¢ÝázxDö¯îƒ=Õqƒ¾£çøåP»Ís¸îO“þ„_ä¹L É¿àbèÿ#Ýýû–³Äa ã!*ßÇ•~ÄÞ¯wç‡NΫó?ë¼âæ6Gº4|à_­‡®súË2½RÏÑ©÷7]»ðsØw'ŸûY©7;,ÇßI¾îòí8^¶Ž£7’SóXWí¿‚;O;ôý‰s®ò¹ÎçCèq|é2ñ¯íôT8ÿSêMâÔ›A¾ß÷„âA{\:^µ¿Ñºô„}P'¢üëø_Jýd¾¸§^Ì#ÿPžß7?¼jæ­§J½gŸBßý8 ï»’¼ù»§jþþ>¡ôÿº:!È)ß=Èsø.Ë;×Sß%º_ä§ó½f^·òñ=4£toØßÐw'lôzëøôþZg] þ²÷3TíÏëeöÓ©ãóAn)ïrÐÖáXŸ„_Í>ÏÅP>ûDí¯UùAÖ áu³Žwµ¼obâ+é÷ñ£7ÝÍØ?„Ð<êé.¿ü?¸ì&Øw°—`çâ8¼ÐåÇå< Þ´ý+Ö}íSˆ]ÆþTC½áƒÚÎF9Ó9Þ$¾¾Þ`O„wm;«ôƒãæ7£è‰ä×þCÃw û!à•¿±ãzè~æg?|áù=õ·ßOÚ¡ûÀg`…ùàåø—˜øJzc¿BAÞì‡wûyÆÊûœ½Y-Çû™Qz-Œ+G‚Þÿº{êI}ö”_æó^\^ÔÇÄÄWÒû1gþUµ¿ñ¾5·_zæsaÞD>æE+á»Æûï(}{¹ïô_‹#0.Ÿz„õ7¾×’g“ø&ô†ïlÖβžä{»ý^•ß÷ãx,ñ{_çÃúÀ¾õ ~ öÍ7G¹¬ p]ÕþX·s~Öæ^NOQNñ'@\)âKëÌØÝÍS#^Þ1É#ùO¾XÞY/žX;©>â'ÔGƒÞ³Î}|²õH|7p翼Y/°û·ç« ¾üä³y¯Ì7R9;_öó>¯ôƒ¯`½¦ž_«ÿ“ß7/õ‚7‰ÿBÇIÒqæ)ðwý?öÃ×]·ó5iå·ßFÿ4Ì f(çÅÏÉóìvÌO˜×`ÿs9Jë¤]ø3³Ÿ)¥Å[±5ÇÁS¿j /9º˜ó›w ±Çí9n;ózÉ“ã©*m? œG~ù.üÉ®íòí½ çÑÇT¾ù.Ÿùò烾Øß¨ŽËï÷,÷½ô„÷õç;f¾¬×¾ýø’qʇ…~ÛOä»ë1¼—ñ#dÿË:¿ôÅvò0Þ°Îäø²a}iQǃ¾8Þ¦Ž_×a×'þ0å0~Q?êìä'ƒ?ª_í¿´¾Sh}Ž¿ ¹q|Éö½h·ßôKú†ÿDèù°³aר*åÎöûã>JÛnÇyÉ¿ã¦ò ßnYþň›È{rÑOÙEÆõêÚ×÷sKì­Žû#9ÄßzÄ~_ö/;΋ò9žÌöó‚+ïçÇ.È>ý;È1åp]XßÁŸ÷q<é­ý‘)_$ìߎ[¤ûØOÀWeþ/ò–ꋃ­7ø×èûù%öƒuý¯RnðWsÿX'7ö¿¤´ãJŽc:Æ;³_0Éá½ÏgÆqÅt=~kÐÇûÏT¯¿wõ¤ÞÜúÚŸ˜ÚcÿR Úc?bªŸãC 9þ’ñ.ß-´ÞÿW)ŸÿGrx_òûùU}_òXKîîKÎîK¾ñ/t_rw¿ê®³ß¡g/œçÔ5z&¹¶3ê'=ªÑ“ ÑkÒÔƒë¹/ú^êüçªÿç䣨OêMâ ôÆ~ðx?? r*9ª›çTõçU‡–sÆÒÇÊëîï3¾Ô]9ãzpôf[÷yXÞ?úßÃ? úE}œ_z‚žS>úE»Ño0øML,å—ùˆÞ»ø¹sœTÉ›ãíò=!ycþÅüÊqÞ×û~|àO-ú Ä¿ß%qÞ‡_?Ç{fþõ°˜Wíîòì_,ÞWípüÍÔ›Ä_о»Yor|UÉëjŽ[ʺȺ€ä2ìã`]À÷Cn7‚>±>_—|èنγÎÀ>•–u>ï/Qý¢±­ ¿¡/ÝïŸøn íÄ×°ÿ0ß/ž&ñcˆ›fYòöþj=æuô“}‰ó¥;ˆí.ÊÏýíÇúÑ>¥á°þNüSò¡g/éGìeÛ—8,t|³A¾à 8.¥Î³?ãðm‘Wü…×o¾âž8yØS/…ûŸŸð÷ ½Y-õÕñÙtýi!þ0¸ÏÑPÚýéËÍÓöã %& Íÿ‘_ ø–>oˆ÷ÈIéã{UûûƒQšòðƒÿ¥CºNziÏû*W¼¥è7Í< ®›¦¾*oJ牗üa¸Ïaÿ8Ô>·ë«ãgU/xTæe'L4??•—Ãx_¾ãã)þg˜ß2æµ"‡ìC`<äþŒ‡çÂýá gÑq¼uã%ùüà0Î{üíå<|[æß Œß]y}?§Ä· ý½¿m±j{òÁOƒ‡w=\ß”ãð‡ÐøAä·?ÇOFàƒZÑ ®G®á¡âGÛíÐñe}Ÿñ}Êwü#~ ññÓ³œãMâ ôÆ<4ÉeŒ‹°²ýüOU¯ WKy²ÿïc&ßtW®ãpò—õIïÿŸ.õ†z±¯}@¾×¤o ýè|ŒKO—õÂUê­ëh/×ËÏzßÏ)ñíBÇA4O-¼ïá¿Á·1?.ÇžÅ:¸ããH.‰GÅõ·uÝMå'¾Ð÷wœåG¾§‡ú„zwÇqm¤oðüŸˆ|*Ÿ8"ØÛT~ßÏ)ñíBÇt³RNÆöUôJix >/½ˆq±ãÂO€·‡}Ù<ŒcŽÂýá;Á¯Ã{Gõ1O£~~A5æsüSç«î8ü)ǧSyÔ÷¾Ú㸊åù¾ŸSâÛ…c^›äæó¹RnÍ»{ÒÉ‘ùo¤·Ÿg¬¸~\.×Iox;ŸKOà÷™§ú¤ï|=ò¬zÂ[åþð‰ÐCøuŸS>ç¥?Ö[òÑ*÷sΗóÆÄÄN/gäiµ”âgÂKEàQ[?3ôjûyÿo¹g÷+^Ýøþ\'y޼Tßq“úÄzHÏÉg¾åÐáû®N½I|Þð]àøÐKyæ{€ïâ±ÃÓc߄㎪<øoŽ»Î}ø~xPÊ'z(ýðqÊw|tæi|·ð}$4_P÷1ßzlwõwñíG©7‰{õfMòÌ÷¿âèú¼ýpVíÏßÝðâà!áu±·ÿ[PçáÇm…ïÖàÓ±>Ǻ~£YO£\Ö½ÙŸŠ>ÙO®Ž³Ÿ=³iêÚ¿^Ž‹‰‰­\àÐþùöïžLŒ+uVåpÿ“Ê7îC}ñ“F}ðç!ÆÍ™*ïwÐp(ñâÌç"ž~ÉÀÃzŽâoÓ~%%çŽoFyS:þß 7Dž”–ŸÏzr¬ÃJ?ßOroŒ8±®/ü²£*>ÇñK¨vø¾´}‘¿?üºÞ·ðèøTGÊz[¿þ¬úþPöÇyRÿ¾Ñuj—ß Äýù`ë rÑw=^»Äãý9Þ÷ø]’Üù9òÞDΑKüÅò~&îŸäÇ|mðDÐ;Þï§B=à?Â÷D¾‰ Í8Â{>ø‰P_ô ½BÏÈÇ{½Tœ3óCyŸ ÿŒkðC§t݉P>ýô^§Ð‹'jï'ǧÖõ=ØïkÆÑ¾ëñÚíເù|cøÿð!y¯2°_ /ì{˜‘Üðܹû N†ràQR>zL¹E©—ã¢ëzüC£oð:Ñá¥Pãó¬Ù0£\ô=ˆþG™ŸÁEŸùNâxä‹ÒïÞ¢|ðP¹~þ`ʼվëñÆÚƒÿ2¾Cù.‡×h¿…znוö¾4ÉûÕøÎ†wÅ÷0çùNæ>|{ßÞ#åÏd_ûâØ„ÿß‹¡<ÇýCþt}ã>ÔÃíQ=àgÿc½W¾(û ùîg¿Tä‹j_”ŸíÁO©ùÒ:¾XŽO ½lyúãuOûýÔsr<g3û/áE——„ìæöS_“\ÁSä~æ[Jíãº}…‡¹R>ñ:.rª|øY¤þð*o„z°ŽÍqÊå}±¬òh'å³þÌõÞ—K{¨×v׎¥¸ò‹¿ižöú×öÙßž>ãåžö`7°]DÏ}ýŽß'9‚o ¿ø;ÀxSåÂóÅ íßhí`›ã÷€ä+úâ¹ñÞÜ rÄüÁǃ¾À“aþæyšúÏó?æ1JÃc!÷q—á§8Ž,ówÜhî£ö¬…4ó:¾wÐ?ø8èýÃ|ŒòÍÃQ¹þNR¹´ï+ÊqAÇûÔèæ‘È[wŸ¾åå•åŒõ¥ƒ=ÞŒ¿_yÎzþ¤ãqÉûxáWñ}Œß¶eäGrãõõëT¬·ñýmžK¸/q¢-W\/yBÎH³ÎËú÷Ó~k×ïZ¨/ëm–[Pùøng]Œõ/äumûR=ç–öQ¯ 7¬š¯£ëyWËyÝACû!ú䀛<Úƒý?Ø;§„ðQðcÆóůççt¹!îö‡“¹pÖ]c9s’wì8¬7{=[ù°?aÂ_í²}‰ûê8õã>øÇÀnrZÇ]•ƒÝ†r°ß`·å8÷§Ÿ.©ðbžézΣçðq~Òqø6´#–‡¾Â{Ûå}~…ëÿêõaÀS¡=ðÐÄWp\RßùAù…æKÐoGöxsÐqçÇN?àAíxß–ú@<Ùï:lŽ) ?L|‘ù9.ý“ß°žôÂqj¿%¿®×84zÚ]ïz~­z|[¾oèMƒ¾¾äïHY^ßýŸx0Ñò+y„‡8ú"¼Oyo/åÐמ±yŽÒ#æK£/¥‡ñ:xf¼o·à-ó~ŸeçI—'ÄSvý5®p?´çèÁžç$ö‹æA2:­4ó,æEÌÓ˜¯sžy9ó(æ]æm†ùóø’øå;¦û²/€óÓºžò¸_·Üæ{±\ôžö껢ïþO<˜è÷0ë?ì£òñrýf¼Lò=¯ü|÷s^ÏuJs_ñÇ\oóÕTû.)õÛ¸Ž -ijNLüMzÃ>|ø—¶ê8vEÇÏQ¾UÉ#öAì}¾^ù°sÂËâzìĶ“ë>¶«ªÛIÃ< »%×9ÎŽÃ7µO¡íŒÓù]“øêzãLÃ/3ŸFrl¾¦ò›ÀqôJióg”Æ¥ÓUW¾ïÏ}T<Ÿ[W~ó,)‡û?,ë ßż†sž–øzcž®ä•´y.’3óJô>‡‚Ý ï÷=ããúó¸Ô®CîáÓ Ç‘Ÿãq,èÏ3¾„zšü(Ç›ÄW×ø.ÌÓ˜÷0Ï2?Kòîùò©ãæW1ß“\3C"Ÿ9g^Èýˆ›È}ùމ~ΙŸyÿ óNæ™´/|ÉSßýŸx0±^ªÚßx_bXˆ|-¾ßo”ù\ò ï†ï ÖÑo¾ÓY7€ŸÃ}Ì#‹×owõ5ÿ ½Z-Ëc½‚õø.çs= ñ è q¿XŸuœ%É#öÆè/à¤òÁ¯a= ž~.Ø?£rÐOÖ·vhÞ |3öӳ߻)<.øcÑ/ö¥9•ÇþüOuÝtÎÏ_á[ÚôÿÊ•äÞŒýÿ3 ~Œþ-¹ÿVr+>›ù7Ø)áë|MZùž©î>Q¾ò›—#}5Hõ…oC=\.õž{H×ÿ뉿ññMàÉ4øCî¾”‚â½À;k$ÿÍÙò:—þIðóÕˆWƒ£æÃòþè ÷A/ññš¿”z5¾^õRýÐøvðëÜñ ñ}ßÀßG~óé‚ß?Þ'ðãÐoûsR»\½78Ï{‡÷ÏT󪟔ÿ§G':¾|¡ç©ù ÏyRs¼{öÃ÷C©Wæwò¼tùô¼ë©äö°®G¾Ä×±|j·Ç¯z"eø´ÜIΨ/z³#y݃ªåY~×Ðç>2í2Ÿ»ËçþS9;êGû9¤Ý´½CþyéþÑßzLû<¿•7xx.þŸúýê[¾†Šæ·-å¾²Ÿ«òíÙÀw‡ø^æsêzïQùÈ—ý2ÿBŽ$§ŒCF÷üêÃò=K9Èãˆý”Áƒ·¶LÊ×÷п ‡týJùÞûÃ?áÇ¡¾ø'<Ìw"ßoºnªÇìŸòùŽ<ú4~Ú¸Ïß÷õ¶£¿÷í?Pýκþ¬XGÃÏÝ´Ò|ÿ³N`šò|ŸÏ yÞ¬›qç‘'êÁw?þ9o¾[¸Î|7݇õ ä‹õ9äë^¿P9ô“ö­¹ÿXoÀß¹ý«“V¹ðI)—záñj(w>ô#ýK¹Ôk.ôûíÎ¥ÞLToØÏ‰ß.ö)Ã7cýôþo!ëÐËK´_>=gïsF_”fþû}‰°ªò½Î­ëÉ¿îOÇñË‚>öIóØT/ûéÐqóåTþú¸ÞõâÇ {'íw¼îOýuü¬í–òmÔ“~TyØeÑ×+ô·p\®ê¹%½v{u;°ý”P_ß(ËK|ÃzËþšô<í?LÏ!úÙƒiHJÛ¯‘ò¡'øW²½P.~–àÅ¿{ã¸Ê§<é ü7ü•mÅ4ש~öÓ¤ónò¬óöõ ¸Îýçþ¡?ȯû˜ÇõU¨Oè7ûÙâzê‡~ë<×™÷§ãn×£o&©7ö7Éóå==([þ¼ø¹Zž‘ɻ߯*—q€çÏsgü±¾©|Ç‹zÃøò¾å}Œ¼é8ãÒ}g¼@î釯ÊëU÷Ÿy|ÒóFyÏ Wa|pÜ÷pò1¹ÿéÎ oÅö0~}UèwâÖæ ö—¬ç¼Ìøÿ¸”sä¾—çyA^í×™rô|á±1Ï@ŽÍ{ ù]÷‘¼á¿Ý¼µ0?¼Êežÿ†z“^÷á8åé;bÜoôzÚMð½H½é7¾£øÎÿçvóž‘>ÒN޳/‰çåï5ò•úø†õ†õ0ß*í¸y:Ž¿/¾ïùžÅ߯‹B¾SùŽ`½ 9ñ}% ßã û܇ý£øñ7_N÷aÝu Öëø>'î<ÖÁ(÷rhÇÕ2=î7ê«òCá/Šu:Ö_Xƒ_´ |ô/ú„ß-¯g’çC9:N>Ö rž6IÄǾã±}EÏ>Wô€=áX‡¶ƒ|ÉsÕóÄ¿†ø¶gÂÓº±í7?vÇm':«ë±+á~ëà þ5°ÛØî¿ò}X¶ÇçáÓѲOYo°Ÿh}ÙöGÖ¹gÔ>ì:ðöàE` ~ŸlGû¨,;´yPÿ)ûßþ¨ï_r¼™$š/†<ê¹ÙÞøDiɳù?)?öNéCsHÏÙúוOÀ¼€î²±]ÿ©ÒÊçû{:÷…¯c|xoÔGí‰<ó…¾×q]×gQí„_ƒ^Ðo‘d»è™RÆþ³ÔO_–í¨é‡À0¯àçPžÒðl'V{͇ø2Ç›7ž‡a·œ^óÞ³ÂðÞ²^2öÌsAnxoÃWfÜÂßó æ1Ø7ñ·¿‡¤y¯’{"¼û Q}N—í´Mî˸„]»%öÉ“BƳÐýr¸•`QÏ•õ4ø1¬›ß£4r€^"ÏŽsH;$W¬ÏR¾÷}*ßj(õ`ÚA?„q’õ@üb-—ýæö:ŸÊgýØû[‘gÝwU÷E?çQhžå‰?âx‘*‡vÐ?×Êñ0ñ7ê ~_ÔÏ>ŽÄñ_ô<ð'€û3vÇÁA^ÉôÆ<=_û@¸/ò 4vsÎÛ/ŽòÁëÁj{¿îcêwS×SÇÁQÚöÖpÜöQ]=Öþ©ª²½¶ÛÐ?Êo? j7vÖxžòy.Ô»”íž¡>´ý„¯°‘zóFôçNÙð=œ&Οã¨éùÜÞÓó%.!vé{«eÚr&9rÜA•ïx†ºî÷Sz¤ç[xWå‚÷TŽãª|êIšúÐ.§¹÷Y-Ë¥~wÂq⼇ðžÊ3/FX+÷aøÇqç(G÷½CÿP¯Ð.OåÜQ½Ð;®¡WÔ›r»ëû–»ƒŽÊÑyÇ Eï„|Ïñ`=~Xê³yÛJïñCJ¤\× 9EŸuû%?zKýu?ói©?õ ,‡ûÒá:ǹ/ŸcâoÔž³¿ÇõÖ^<Ž¿ÿƒþ˜‡)¹àû×ûZ”^Ö}àk!^÷’<ð×¼Gh£ò³~ä},J£Ÿq]Ã|Qµ‹z²®æu(É£ýJS_]Ç÷:<8¾ß¼ÿFçi×™«~ƒæv)¿×OtœóðA·—þ#õ!]>ç¾åï b}]Ï‹ç-{À¾ù±ËE»ëÆØ °‹`/±=ýQšûGû(v ø ð±ó`?¼Iîˆã¬óbwd=ø#¶êzì,ó:¯þ€íˆÊO¹Øq°kÒ.xØŸè/ì8ðIC¹Øk°?aB¿Ðë¸ûR¸ÎûTËó}ËßAEÛ“±§ËN¸'|ZäñxÐä=îãGÞxžØ)±'b'ž Ï’ëçÊú˜¿ƒ=Þ/õ:«4|ÇçÕñÏÂuðNð1äÞ ý/âTêMâ|X/Ñ#!ü1Ο*Çeë#ò*Þ~؜w«0ŽÙãi¸Ïa7oOé?îH©>Îû ýr$¾I½Ažç$æ‘ ™÷™ÿ£4|PæM’ëÈ;öûžù¤ýê½d¹ô=3OUù®ý€ww!ÜŸùßùòxbâkéͲä¹c>…¾«‘?øHWø‚þ,†ã|7ñ=żï?æUÑüðE¥áÑPž¾Ó|ô]üwœºR_KȯÙ~~`Ìûr<6­ŸÈÒ8nHxß{]r·/ˆÀ:=ë…¬°Þàõ3ÉùZ)ïc¿:ªÇjÐöI³QŸ_KoìFrŒ½ÑqâÐÇþý4á$ø[²>Fèyuº¿&FåÞÅz÷­ ·”K>ô;ÑVY¯ÄÄ×Ò›ZúM½Ýaäõ˜/‡I®±ÏG¾Ì}¯‘wðFº~$9¿£|æõHß°óÖÒƒ{a\3OàY©/”7Ç›Ä7©7A—¾ ×’ßûÿêΛwT?/hÌC»¯ëà#ÝåÁ›»ÿDiÎ?)Ï×è¨ò/¿ÿÑKçW»\ïü¾I|ƒzƒ\Ey5o½š“¾H>áÅÅqȼ=®“Þ1n¡gŸ3IáeF~ç=þ|Uè±Ûa>¨î{_õ üÓ¾û;ñ`£yað*oKà—šçÆw…ÒæÁm?/¨Ï»¤/ðÑâ>óWÃw|Lêãûr\×Á›ƒ÷©y›ÛcÞ,ׇï´;Ó©7‰¯¯7öK*¹ÄܲäŽu6xx›á{‚ë½Ouûù‰±ßfôÌþ´•¿„æïé8¼5ÖŸR¹—~l”ó®ñ¾?Öý¸^ùÃú[bâ+é ¼-ûGP;vx,œ7¿LDZ¿Øoˆ;©ýêzö•›G§4|øMq_8×cçßo~‘ùiÒÚq©Ÿ_Io°»ƒÑŸ r‰ÿ?ìöŽ«‹¼*?ú+üsêÍKÉ<+ühƸIð1‰ xXùy^â}8î-χòà"wä ›ðK/J’òðã/ù9òߌ¸qð¨‘OäoV(Nî7ä^%÷ÿ?m§Êã”ã8½‡h—ÊÁz /òá¯Ò/ôýMûyð;’OçÑoüÅÉ/hßrù¶£õ„ñ9 ~œìgù‡wÅs€(½°¿Ùy=ô…ë™/Xîtžçg^²Ò¼'á²¹à}ã¤á'¹„ç…Üχ4þΨüü·ñþf¼™ ãiê‰<;.\)—îî‡Þ|ê‹Ü£_xNBé~;ý^C¿àÿèýáû_ ýªçÑ·\¾íèyƒy€znöëäŸ÷<¼¨è/{è#iÞkäg¾Ž>Ì”rå|³A¼¯$èŸçç¼ßÑ?îCyè¡ÒsAŽÑcûSšöÁ3>[^ïïÞ'GÑ«ðý`}B_ÑSú—úºß•滄vPûx¸îJ@æƒ|1D_函o¹|ÛÑþñà[ñ] ézxÎŽ÷÷ ëwÖy(ùZ~Ü!ü-ô}`=gQiøXÄÃ`ÿ˜yˆJóüYÇŸ™÷Ÿù@îáoÙŸ`¼íÑq¯›ñ>Ñuìïä{ù½äü|ÿß(qO^ ýÀ~Aôý§~ø[c¨ãEÒè3åªýô‡×B;çË÷Hâ>zú&ü+ÖSo«_égÖ÷åïÌzÅ:¦ã.鼟¿ÊøŠÜ>ñZ¨û«Ù?l¿e<Ú£|^Ï ÷·E×y¿´ÊÅ߀÷c«<ÊÅšãR?]‡2ü "·ðÍ¢œ;~ïú‰ëè_Ϋ]øI³4Ú«z°¾í~¢ÝºŽx'¼Ç´îÝ·\¾í8öS¦þ³_ ·ÝOýî8êgâbÿ¶? þ,Wî‹ÞÁ¶ä[DZÚÙÃò~rȾǔí‰*ÇvCÎëzûÕàþJ='¶úÅ~`T>ïün8. ÿ!7…Ü8ØSï“úQ/Ý»(öÐ{ô³ÐÏ~¡]‡¿ü3Úσo^Foà'Âÿ€xJõýºÍçtä•pÏþú„>øŒöC¦|ö7¦r?ûs¢\¥íŸMõv¹’/ûW’Qûa£œ¿wió3uxœöïD9ázü¹Ùo÷¥ý”Ë{)ôõq=¢þô£ýÅqi·«Ýò~ö;%¤={üÀå<í¥ô†çƒÜAžŽIN—(¯È!ý(ÛëöSŽÊ¿êã÷Àòüè¿ÓþÓTŽýÆtg§QO9>]¦í”q#ô³õšz…çRÇz§Þ¼Ü<íA9?¡õ<œÏqTyÞBòÇø«Žßª4ü)Wè¾öÆ<ƒ|Ô‹çIý@ê¡çü3¯¢^Ìëñ·Æ÷ óÆ û—¦ÞÜŸöÐŽÐÎwÝßSÔGåðbÿe*çæ£²ÿè=qtéî'ýã;Ëñ„u½ý§¡§Ô‹þØ-ÛåxÂ]þ¾åòmGóœˆ#ýn- Yoòw°ž‡ã®ê¼×«È'9ñw³žëUøûbŠû‡Ùñ_•ÏqlU¾÷?*×ó˺ßëŽoËuÔ_å!Þ—©òhv!ÖÑíwIå8nƒò³¾A¿¬„þqÜêËù 7޳ÁóÒõ+¡~Ž{ËývK}öº¡Òä_-¯ï[.ßvÜãGû ë8Ó:Îyì%ð3ðë…%Æ£‰q\Yo…Ï…]¿Ä !?åb7ázÖy±Ed¬¯²î=êm^—ò³~>̇ë¹vBÖ›±“À °ýŠ~ ýc;£Žcgâ~ÄÂ.ƒžbÏ9©4öÖ©i?¼6Ö¡±›a—†/A=Y×·]¶Ô×Ä}ôæl×_Äó¤Ôÿ<ߥ±¢Oö‹Äs r¹wü?ޫܩpä ¹ÂÆL+î{1ÔÇöv¥áAW“ûÓòGÿKïSoÝ»(í_æ¬êÏqøÈ)ýA|Þ³èµîOFü⟺ô†zÀkâyÀOš Ïã¸ê…ÞÐ/œ§§So^I£ó¡%׎÷JòAüUókÌ/ëÒ>Îs¯„ø¬È'qn­_ðÈ ž3ã<ä‘x½Ä}æüûeÚq¨©|2îã“R>î‹¿%ôcªlñ]Ê¥ê?âèŽùeJã—Púî¸Ó¡ŽÇ­çâúîÚqºOwåï9.}î[ zœA˜0c>Å{Þ#¼HäTãƒå†÷ìQ!åxÜòþÅ¿^ŒÿSúëyÉÉ×{Bôœ÷8zòïp=÷%žûÿ0¶GåÐ/ŒCÌÛyÓNô•rx1 íeÜe>ïŽq–q’üQO•òŽî«71?ãÙ‘RŸEo§™/xÞ/Œ|)óA•†OÉsf^ÿÐóò+¼ð^¦<ô“÷/ãú<ôycžÅ¼Êó5äžyP|¿=à{c^÷A®hGäåã¯y*´ùóKÊ¡¿8O½8OÿÒŸÜý„7Èûd&Œ÷Ñ›Àgóñ åx•ø’zÃúïqÖw¼JÇí×\È:û«¾ÃY¿Š¼kÖsÌ å°.±ŽÛ?žäÔq]•æþ”Ëú<ÍË! ¯-Æ¥å¸ãð†ëøỚu ø—gý€z·3Lõ†Ïé8¼¼„ðUßVåƒ×K=aÜžçl¾nЛ}ò'þŠÞÀßbÝ»úÄúïzÐöý²ŽËõÞÏû »þ%ë»Ä§e=Û~ü¸^å³>MXx§æ±Q/]‡>³ïwOœ[7OMׯÆvM—ïäy=\ïxµ1Ÿîçõ^Úó¨ÌG?°>ìû)ÿµp_Ê¡?x¿„õcç~ö7XÖ×ù7r¼y%½±ÝZýãŒa3ßLÏÅþ ”ϼAŽë:ìªØ=¹ŸýêI°[rüöÙÎM}¸|ØC±ÚN+t\•o»,õ•ÞÚÞÊû‚|J#¿¼WnÆrVË~Üå»>JÛÞH¿p_ô_ùé×Tþ[An‡zšÿ©ãê?çßÊñæ•ôÆü-=xN‘7cÞ†ä"ò>Ðx)ð¤¬*/ÄÅ3¿ÅqÀTþÝx½ŽÃ/‰<ìñð8íf»”[Òæõ BÇo+åÒòèrÃu·BÿÀS Íõæßèþö?ÛKû(ú‡zÜýÁ{Ê|‡ÐÿÂñ{s7Ç›WÑÇUF?Ïð<í—9 rƒ¼;N4zT¾ç,_1Îñí˜/¼Go•ó‰ñxÞû/)_iǃæþAß‘/ÆÞÏðbh_G½Õ/Œ'>¿Z´Ç<5ò™·L¹´Ÿò‚ÞqœqÓq ¹Ÿêþ~õžç¯ûö-‡ Çω~g\g¾Ás‰i=?ï_n<,ËC<Ãñü#¼áwí›/ÌC£=ûVK¹á»ÄóÁ ‡|ŸqÞþ”èÚ)y_ ýÁwžãî–H½¢>r?îÃ÷íÛä~JÃÿ±¨¯B=©õ§_§‹úºÝûÄŸLü½á»|=¼ß‰AÜ>ó®ô<øîæ»ØëlºÎ<*®#Ÿžäsñ=Ìóçz¯;P]ç}¢’[ølÔu2î·¤ëÍoÓqêO?ÐnÚÇ>Ë9¥Y¦¬3ò=ßïwÖ½Vt|Ï~SÕ?ÆXV=ÇCùYWóz å¨ÔËý®»Þ!ÞGâKê×õ¼X¯ENXe;ë­ØëÉþ vöûb7o ¹ÂOƒÏ?ûƒý’é>Ø7°3RÎc‡ÂÞùÇ/ vÖ£çÂ{™ö°>Œ½ûӂ޳NÝ´ÿ%?©ë°QO_¯òáïaï:ÎÏRÿП‡•>ª4ýÈó¢ý³©7¯¤7„þG^Ax3ØynÈ vuìx:o^öÄznØá`'Àõ¾]ܼåÇ^ ‡rñƒDýƒ_0_?ÞCà›ÚõÇþŠÜS9‡TøÏhOW½oFÿÑuð&xOM“?ܺl¿¯G/àžÑèk¥áÑß¼g¸ÿGeÿ$ D.öGNñ÷Åx`?RJÏ”òfòÍ8c2zÃx£óðY#?AãCßý”˜XèÇÔ‹år,·¥üú;Šñ }aÞÁ|ðÓð^f</=b>̼¢.Ýw?%&úægc½Ažù^FîÑ“ªý™?Ç÷ ü4¾cì™ñŠùãóE¾Ï…ìG»’ó˜Ä·÷Ûgh=YªÚß8Î¥äŸu/ø(‘—Šq¯·Mwh?Tä{Ü!Ç#&¬?%&¾ È>ý=ÇÅóëW—Ç©•¼c?a=ÞŽý‚é<ùçrûyÁÕ8ž†ô »ÉZêKâÛ‹ÈïžãØAí¯¨Í6öu«»nìMÇþs4~¾ |—È;pÜÛƒ‰‰oÂÛ{\òld'—RhÞ˜Æ xvä·ß$Ž«\âFHÁYßý“˜øB½¹÷bùó5?‹þ:÷ðIÑ3ɽý*~áÿHæUêúÛäïÎ÷Ý?‰‰/Ô›;/þŽûu ó/ó‘9Ïw‰ôž©yö:_ùǹÏÚn9_ÛÊñ&ñàáx™äۼƪý¡ÎÏú¼Hx;Þ—&}C?X0SåÃ÷Ò¾¼¾û!1ñõd¹\W3/ ;¿ý¼I¾|Bóí”v\'½ˆ{ªã&ñ yeóÂÇͼìüöó'dŸ>üKìœæ‰é:ÎÓŒñ8¹Ï>öØÄÄÄ·ñ1ñPùEßq ñSñGñkÕŠº#X;ßwù\þ¡®Ü&ý§%ñKˆÜ#ßæ7‹÷¼#=jà…ëüèiÕþàk£gŽc,^k¥åôÝîÄÄ×AóMñËýÐÁ§Ãï¢ùáäW>øâìãø,¬§Øÿá‹×5z?Ýéªýù«¬_ð]Ö;ð¯îø Bø±ìo³¿wå¿ãMâÁGË¿ù¦Z/_æø¶PiÇá¸ÖÛñ£Æ>rö‰³_×û¬»ëúnwbâ+é þ—Wrû;Án«ãðÄñÛƒ?콎¥óØÅì'äA® $X4_þo=Á•ý­Á;Ú~^Pù²ã¸nè å”úÔwû_Io‡Zz€ß«›a<ÙªÚߨO›ŽGý2ê¸ùIºþÖv‡[i¯J<¸h¾þæ‡PrÏ><ó¤{ü§þü#Ê•8ßW×÷ÝþÄÄWÒâ™°_{Vr¯¸öSåx äW>üy9ž§ô‰uʹR®ŸÁ_ê»ý‰‰¯¤7Ø/ñ¿uºjö;…߬š—$”]ÓöÏ#ºþoÊÿYЛ“©7‰áìüÜÉùè;ñl¤OøE3O éªûíüÔ¥9nTy£Ýr ù/‡øÛÛQœKû¹ |Fân6§Êþöqâs~©òă‚G¥ÇXùº/òù$\´=â´>Ѽ`¦|‚^á‡Óï9éq)üJŸ|Ý3•ó,ç‰Íw óÝúJØ >>|&æÙš›OE\rñwí–ûœ-õ21ñ ¡ã=²o‹},«¥ÝxWùà3qÝÅ wìaÙŒòOë¼ö“õÝþÄÄWÒÇÉØ-Þÿ¶·±žI\Nìð¦V¶…Zç„/…@x‡Ä“ÅïßÕo.š¿±Yڻ짌8GÄ[ãqqá7¡_{üá'nì¦Þ$X´ÿ>ù[òñûsÜ;.¥ôË|©‡á<úù :îø*ÇqùRšßü„Õ#éƒãp‚—üßT=Wåx‚œG8žú’xp¾àÞã’ü*GÌÁŸ³ý*­j>æ8’Uû3oŠ} ëi¿I.šE¼ ûùß9'ÎÞ¢®»Jó7âÖ\üê…úš˜8´=f¦´×À °ÿ$âF¿MÞç«4vŸ©\OK<¸ˆÞÓ½‘ýÒöþÿ½!>&|ÁªûùºŸËã°ïv'&&îÅñ€vþSò~FâÍ5âå5'Ê÷|GüŽá‡ ýç:ü(¾Ð{Cþföð*•÷ÊŽÞ?;»º¯Æé&Äíõ{K< xMÔgü^Ó}žvˆß4ø†Üß¼¨÷Ãý©]ǺëñÏÖ÷óKìá“6’Wüò!·èQ¥iä­9Ù!çG?•ú¿ý„¯Œ<Æüì iœf܆‡ïÙzÿ¤¼ã7úeî]ýjɽõ曲|Êiäªøì¾îrþü.£åùAÞxï¢GGªö×à‡Œyça}é8òL9æ‹_Ä}ñSf¾>z…*åÙú.=pšv0OÖýë“’wé§çÃðÿô‡øì´GãŒÇSêõAêÍ»ŒŽ¯Î{UþôÌ3E¾àmÿ¹”›zZix¨z/ïIo_ÖM,¿–ó¹úTÕþ\.<¾y^d½dÝ…uøµø¤}ø¡Ÿ)˵Ÿ4Úw,ØN¨Þû~~‰ý yqÄ'˜SšýÇö¿'9ÄÏ:ò¼ œ òÈ>cü¯³žh^¬ÎÃßûì—õâWÏžû«5ê8q³±\Rý± àgòÐ#½çaö—ë“8lthï¿ï&<ŽK^±Ïžxëø»¼äùq'oð\oè8×·š8 ä‡ßz=¼ÿÿ—çE®Ë}Ð!þWTüuàG€ø@ØÍÀÅÐnßtŽ3‰ÿŸýô!Oø§DžáŸÚq¥„ðPác¯uþÕòz£ä~¸ýg>.õfMùVEoÐxn×K(oz(~8ÑÚCyøó =Ê×÷óKì-_ì_Àÿå äEÇñ»„Ü ¼ß•žCot\+m–_ôÿMÈ#üïÅð=±Îuè—äZû0öè ã þ;9n}à~ÔƒãjiÚ¿Rê‡õ=ð@ß-¬™×3²ŸÎñÕøžQš8SŽ»F~æKá{cAÈ÷È>£E¾{¨úŠž¾XN]Ï•Fñ—¿iÏ>'¥¯=,õ…ï6æÞ·¨ôb~ß¼ËX_œ9î…ïø A^XXr‰ß¾÷YŸcý‰õ­Oƒ\ŽrŽ}EžçÊqÈõg½l¶j^×cýŒó|÷£^ éwŽãgU¯_Y§H6šÿƒœk»ºíâ `OLjåTþËÌ `}›õìc]ùøeòuè ëÑOßÝø;Ãþ¹§þØK•÷óyôvª¬ÿžöËèš]ÙÔá= ûö⾟_b?ŸfÔ¦Çqİ_Ø^(yn$ï¶~×Év|ótãb_ä:òcß‘Ý{õk>úeù´¿´¿í£Wðv¾ïÚ‡>˜pDÇ)Gzæ8…zÀ_€_ÓT/ÿ_›sôo÷Û#§¼wO–òR+?ï3Þßæ“Àƒï"y@A¿Çá“Q>öùçû2ñíCä=úy4ßÊþY•f„^é}ìü¼¯õÞ³ÀsÑ<ÅïSÎk¿‚y’ßä¼<ñíEûE q‡Íó€ßÅw8ùÿPêý­i~mq,á½Hoì×ø”è'ü“_™÷$&öª7ÓûÌ·ñŸv¼jæµ°.{ZÇYÇÁÿ¼u(ÖÃçUǧ…ó”—óñă‹õÒ®ÖYƒ¾Àãåt¼ŸšãJ£oØ/®ê8ˆ~Âs‘þôÝþÄÄWÒün\¯ÚŸíó‘‚=8”è›ù(JÃY•žÀ#Áß~ÛVÊï¬Äㄎ¿ ¿eCãÇÑ“xD/”¦œ­pÝævWÞǧó»&ñ­Ex%{Ž#ç¼ÿ‘wôd=èɆ¾oˆ«Òùª®¥}®[ãΆî+ý컟 ý¸ðâïoóá?-2¿’|ÄŸk~òƒr=Þ;ó²¥rýaì?—r”Ïq.¼°~‰‰½êÍGû¬£Áëb=@ü&ç/€’{Ðû»È¯4ûÊà Sþ²ôeõ•Ãþ–…üÎI|û>ƽaýø°äý,vI!û-ám±¯XöÛ?¹~^ùÏëøñp=zÉ~GxšÇr=:ñà ÷éÃC<*Eî”ðŽ5~ÛŸÓÏÌcUûjÂ{ÁòÃ>"ë®/~°ûy)òû òä\ýmžáùp~9(ëey‡?Š<)¿ûÙûtž~C>èWžŸÚk>:rKžùÕßîö‘ÀgA¾èüȲ„}¼ô]o?›þá|ö•è}cþ=r|&è/Ï?e¾ÎÇ÷ý§ù•þ;ó4ž¯Þ3Ž‹¨ïøÉu…¾SÝOúÔpòŒ?î‹| §È¡ß«:>O}u?ö»ñ<‘7øø×ž“Þ ßšpùyÐÎ{ÜŸ~¡^ñ<í ýŒ¼ÝCÞèw?€ªßž÷¥œpžrî©ÞôóM¥¹ßÝղߨý> úPs]h/õ¬Ñ‡P/ôàŽÎ#gô;ýåûê>ĵäú{Jý¢ß‘êï~Qºþgwžrïòüyô}å«u=úær¸Žö„ûß{\–Ëyäz ä»Lr÷D÷ûWwþsõïý¨~:^?ëÒÔó>ÏAÇéä¸ï%Îsÿò‚ó~Q;ï„~C¨õ¦}´›÷iŸ×}÷ºQ¿«ä¶>V¾oï…ú¢·”‡‘ŸrGj7rZó~â9Ñ>ʧº¿åB÷­ÿ®rHÿ£ìOËrô°ÔoË;í'ÿjÙŸÎÜ?.óy#çÇ©ï£òùû}@¿Sožóvyûáåó¡¿‘sS”õ}~P¾AîÒ¯Ö‹ø|ПªìoÞWñýJ;ý~¡Þ*ÇïµðüÜ_ÔGõg¾äçŠÜóœx®<Ï–ùâ{‡ù>õ"®8ç™O0¯uÜãé²y:?íENÕ®Ûô·ò1¿§\ú½ñóÒyæÛ>Ž~†÷ö-•»Iý$7…z ù^`^fýBoȯúy~C½uæô7óHú•yµç‘´ÿAÙNô}CÏ·Ô^æÇñýÄûŒñ:¶›ù¤ç<ågO»ynæasú‘~ ýI>xÝ|·ÐÆØ´9DŽ…ój¯¿O¨õV=nÅû„çÇ{{3­ Yw¤}¬Wù{_iûK}PÞr¹ï†Ò ßã|ÇS/¾—¼®¢ûÀó\òŒ<±NC}ÜïêäNiÖ½xïÐo¬“²¾B}YߢxÎæ†ç¼Ê¡=¬Çl„ã¬[~tÞiÝ'ê§ÛÁó|\Ö›û³ÎµúÕëy ÏGi¯ éþ<'Öx¬oöuȽêÉú½íÂóBÖ]‘7Ö?Ù—È:8ëÖ‹:ÿÞ!ëë j7늬¿²Þ‡Å~‡C>ÖM±¯`§ÀŽiÿŠ:ÏzõX ùYÅ…]ïr¸ýcÿeôÓo‘JS>ÇgCQ/úûv ìªØó°Ó°þF>ìCØx~ذçŸÖù=ö¥±¿b'¡žöëÓʇ=rYçÆ^…_?ü!8þÏ|Js½íºô/íÖqÞSØ+éOâ£Æç‡\Ð/×tíý,ÔùòÌó=*œÕuÁOÄ8®ˆ?q𰣎;¢ôñ®ð=Ì‘]ͼœ:®Õ÷ʇß.]Oë\cª7ö;ó\º4ñîÌÛŠþ-h/ïJ×OuiûY¢Ÿè7xðàE»>|ô^ ömürüÄu:P®ýkÒõ#ý…¿¿i•ü Ú®L¹3:Oýxþ3ÊŸAxRØmÅðÿx#´9=×ñ è/Îc¯¥^è9ýOÞ+´[´>Ï=ÀÎ>[ÖÛí¢´›~ǞʸÂs£o~\âÁÂçÏ~¯x¯à·íËîx¥ïÇ ýAH9Êïû|§÷ïÓ]ÉïTY¾ãÂß ~<)¯9Ü]Çý©7ñãì_+Ä?†‰¿Ax’}?‡Äƒ…ŒkŽ/Èx_—q¿ŸO»ü‘÷K9æ#Â3:VÊ/üRû‹Ó¸h=Ò¸QéG|Å臋ü1n/ù<ù±+‡ë<¿ÒõèsßÏ!ñ`¡ý2o‡/ˆÜë=¿g¾çƒ|¿1Œ<ö³a~éù˜®g¾ÿ’r§˜W•òm}ŒüfôŒyíép÷y¿‡ z½þ#ë |÷ðýÍ÷ËœäÞßðqùNsœD•Ë:׳®ÂºßéÜ—ï¤y•?WÎÓ¼Žö½z]ÀëEÝõ>ïïg_CoðËfÞ£ä ľùž¬zÝ[ǧjºøn󆅬벾jž¯;Aˆw5.óÝqó³÷ĵ*¿_ü~XN½I| ½AÞÍn ±`ï0˜ãÒì ë¥¾ø>[a¼0ÿRˆû"v4ê…]Ç|LôõQ('`ð›e{–ìj}÷âÁBóÐøðF#ÿÔ<å‡÷üúøƒ¾Ç±ÓÓÒÊï—4åã—ýÄÞïzý2Ï9Ü—öÞ,õ81ñ¥ôùA-·¼×%¿7%§7ƒm•ò7Ö·Ë#r>¾ÿWAO¶»rÑ?ókÈÇ8òU©OÞW¡zÙ¯#ú†~é<¼¯ O‰‰/¥7ÌÏ–ªögÞ‹÷Å–ÜÙ¯äÖñž™W•ó+ßÇû˜Â÷»÷U©<óˆ(Ÿï¾S˜Gª<òÛ°ÚÁyÊ7ï‰rÕž•Ô›ÄWЛ¥ ðZØÿOŠõfÖËàÇxi¸.Ägö÷úRyÞ÷ƒ?㸽Uû3É÷S>x5ðíNoh9Ÿ÷Iÿs‰¯¢7ð[ð3€~Àgß‚]䤎ûá<ëÐæCÅuaÉ·ì;æ™?¦4|)îƒ?’£áþØìoƒû ±×¿>Öa¥á?žH½Iüíh^ q3%ÏÄõ4ïä½½®ªÿó™ŽW^ãÞ¢_ð_l•=È|8âp’¦Ü]É9|žo•O÷/¯­ÒÏñî~讣<Ç+Ý'>obâ õy‡' ÿBèEäÙ®âU™ú…äSòìr*þI‘WWŒGöƒ§4¼LÆÆ'Ùù=žÀ×Á?ã×1>Á»=Æ8ZÖ£ïç’øv£ý›!—ÇÊ÷pŒh¿]Ñ^.Èç‘ çœg^ÿuðͳ2ßb^Ïù×a>7Í|Sé³ÊÇü¿ì½ðÄÄBoSx`|¿àçl>|Ÿœ(åÔÇu¹e¿ ú€\²o üöiÌýAþY€·3ò#ÿ¬°oˆrÌó©ÚŸ÷—9¾Çó;'ñ%ô†}u¬+ÍWíÏëaWÂ|lIrx)è û ã>?öÁ³ÿ5¥¹ܯO ÞÚ‚ò±ÇúžýÞé¼y@:Ž_»Uå_ ÇÙß¶¬ë®–ãkbâ õÆ~êªöçõZì,âÙ8?~©à»ì±³è8vJäÑvî£rì?QÇmR~ö³Çz›ñ~h¡ù=Ôk»Ë¿¦rwKiê‡ýs#çi‰¿ /øÿ0¿¥jÖ Îo†yÚ–òÙš®~]ìONr|[iü×à'Ã~Etÿ9·¶»ò¹üüºQ~tðk„?û{ í´ß8êG½¨çƒ\HÜ_o¢¿,û…Bî‘ã 7ö†|J_ðs…^ØïäÜþ츯òᯠiΧòí7êAyü:Ù¯Õv‡öG·ZÞ?ú«¬Ãyß?çi‰¿¤7Ë÷ï-ÞÿȽä7¼Çþ7È'ôû?¼×ñÿÄxbýwËû:?ãzôÛ~Z©?å<*ïËõû=æ>9Þ$þ‚ÞD¿ÊÌÏðW¿RôèR™ÏýÀ8¯Ä_C¹Ñ_ú(½ï[žÞ´œŸ Ï;8òHìàðZgü¯àï%úÁEðcÁ{>¿çU¥ÞØo zÁ|ŒxrŒ#ì«!}9èãZòþ^z¹÷´õ³’¾Îtèó—BÀ?8­üŒG³á:æièýjÿÄ!?ýÆsà=v:çi¿«Þð½0«ç†üáßùgŸßÑ{ü!ùÆÿ±õEÇùŽà{y1ÜŸ÷?å"ó¡\üa#¯ŒŽO©ü|‡sþ³P綾Ôö¥] íG~í÷;è H=¢_âržýièÍbÐÿÈ/²ªo~W½aŸdŒ¿ÏÃò­çýª°îËz’ãcªû¡—<à€ýÌðV߸㠪èÁšòo„|¬ÇÂïZ¥|é;ënöÿ$Tœ€_í§oÖ|5ú…ú*ßíôüíÓ—«óÔ~ý²Vêõ8>-ùÑ·R'¬7øKÁnÁ~vž§ý[HGüD`´ß"=GìØI"ïÊ~fTžãÏpò¦û Øÿ°sâ¿ÆvÐÇÅ{×òˆ¿ x6Ž#òËòæxØOÜÚä{ëÇôïÙ›Æïõ»Ï‡þÝ ã qo'FíQ?÷-Oï šç±'¾§ž q¦¶ô|ÌGÑóµ][çÿTè8ŠzÞÄ/ÃSýL×ë<ötÇýT}l×õµÊ§þŽG©4öxx1Ø ¹žòîþŠÞ˜_£úq=vOâÇÑnûË!¿Ž;]ÐêA;kú™ç°Z¾ßSå™W4ý‹íH|³èø…r¨ã÷r8ŽÓù¯ò}í¸°á:Ë'È}ÑôU÷ùG¥œí‰êxµèi9~íÛ?OtÿØNó*c}yϨŸ7ŒAã88×é7éý}ÚǸ“ãÍïª71¾§ùRBâ¾ßy/ê9"Ÿæïë:üî9(ó ä5ÈqD¿ž´ä•ï Ç“Gžtœï(ÇÕyóýUíÚ*ë¹oÿ0¿sœÒÇ…¾ã!S¾Úé8°JóÝ¢yܸ|]ïøžBŽÓO¬ƒ0ï£?øþ¼zó»êãPêy8n¤ä€}^øãƒµ%ùtÜÎð}˺ßõ|ç³þCÜO¾÷Y/ã;—õ$ÇӔܒßòÏ}•Ÿõ ø˜ÔŸõvÖ£¨ÇʯŒ7+¡ü¢ŽÓ©ú8)ýªüìks|V峟CÚ©ü>N½UÞžõ6õ×ê/ëâÖö½³®éõ`=9_œa¯ŸU>ììûÅÎâ}òzîó*r¼ÒØ%±ËàŸ}ÿ¬#±þ‹ÿÿeÉ]ä `?!®õ"îÇeþ=ýãøž¡Þðİã,Ò/ÊGüBÖ£±g^ õàzöWc·Á΄—~Â.ÌópÜÂÕbKœ°ÞÀ;!nÑY=ü¬¿?.ø‹ ŸùB俍Òð«§Ié†xµ§ƒü!?ðKðOϽFNeguû¨÷i]Ç{"ÄaÚ·x?¨}æÃaçÇ/| ñš¿•rì¸U1žUŒ[uLiõ‹ùô ×ÃsBŸ>,Û˜8$„ÏF<ÏF|ÍÿœÒâz¯¹‘4û)<¬ë‰šq׌ŽßÉxŒ¾|©4xnø;OuŽølÄí»‰‰ÑŸÿW?ćmÄonÄSmä/­ϳŸµïÆ(~u£xŸÍÉ´{&=ž0^ÀóD"¿Só³Fñræw·\NŽ7‰Fö5X/ˆ'­ùšã«ë{…8ÑŽ;Mšøìøû<–ö›Äá¢ý<³æ­‡±I<3÷ÃKûkÈÇ>â¶göÄ#~¤÷ ñˆŸàø Uûóz3ûCñÛËñÙÔ›Äá¢÷}Ãׄ§ o?§ØG9Îþjâê°ŸÝûÅ»tßíKLœˆÞ,IÞñÏ‹¿ûá•ÞÀ€ïl¿Áœ¯ºó«Â•Ô›Äá¢ý—X¶ŸŸ¨Æ~«‡tžq‰óø×ÁoÎJY^ßíKLœˆÞaQz± ôUéƒã( ÆxøkÇïÏÕªýõݾÄÄ7ª/Äb= ¿:ø•Šþ}ˆ;Â:웎óÿðL® $áÓì|#;Íw²W©ÚvÌÑ]Ú~jd'5ÏFöšÑ¥±þœz“8<´?'É#¿uæ (^Z#†M¥üòÃÑÈOǘÏ&½RÈæDêMbbbbbbbbbbbbbbbbbbbbbbbbbbbbbâAAï;#Žü4ü«—€øÄó ¾ûE…}·'111111111111111111111111111111111111ñí@ûO—_tû%ÄÏúœÒÄ%˜©ÚŸyk³¤ÓŸM⻃#Å…ª·°–?§Å·i*¥åoø8µü@9Γäu&¾;H|(â¬ámç ¥ë<úñLþ åoÐñ=«o‡‹#â â?PqŸˆ»†Ï6UíüЛ¿”×9èñÔ›Äá¢çeŠë9zZµ?æYž‡çS~m瓸ëÿZøSÎÓ‡‹ŽC¨qbôsØƾ4â~ÄwÖˆKx¤jþ.’ßõ¾Û—˜8½™!þ†ô€õ³ BâÈO´óÅõ4öÊÏt}²Ã¾Û—˜8½¹L|éüÒÄ/$΢ðšô‚üKUûó:4çç»ó}·/1q"z³:­xi;y_SzE¸.="þ ñÙ–u~CzBz•ür] q°h9_×ø²!½Ø”q|]iâ®Wí¯Þè®ëµí.½ù@ååzZâp±^“€ŒkÒ‡uô‚q„üè‡ÎoÆñéq~ß$ëkÌ»¤Ä¿u¼[!ÇÉÇwÌ’Æ¡ë|÷”Çûn_bâÕ—K’oâu.° œ×ñ¹ªýÕ BÖ >¾±Îö~×XgËõ´Äááè߇†]ûì9ØiÌÀÞy²´sŽà¨\òõÝÎÄÄ7‰;ÿ z ¾ÀÎ3éCàß'w§½þyüNñmþ§ä«5'UÞñ._ßíLL|-=ÏL¼[É·$”=Óé£ÂSïô¨ùã*O¼‚æDÕþ(¿ïv'&¾–Þˆ?ƸïÒã ãÆÇiÿIç¿.;îô_uþå×<¯y?힉áùû{ä;¾cªöù7ïìh9.¾W~åã{h´«ï݇量ۘø:h=Ñ8àõ/x›Ÿr\úrViâüMÇÏ(¿ôÉúõ^y}ê»Ý‰‰¯ƒæoŠ7V/HÎ/:Ï~hÖÙ/}1 ¼ÏËè™ò³Ïú|êMâÁÇúŠä} û¦ôdIÇ—AÙÿmU¾Uû«¯* ®èø¼Ò×Áü¾I<øX¯JÖ„+J=YÓ8a~'zôê:iå[’ÏüÏÝԛĖoô„ôŠôÅüôiûù…•½Ð8âýQ–¦s] ñÀc}MrϾ™9!ß;ÞWSµ?Ï˼G׃ó:í²ò]ÒñÅîxßíNL|-½ùTò®õaóÊØŸyQúÃþ³™°~Æz›ì¢µìšø‰ª§tžòNçº@âÁEì.æÏ< ¼š`ÏÁni{Œ®3oàDi×Ä.jåÿ1×.6Gªö×hy‡—ÙÈ.Óh|pžüsØßÓTÉÓ±Ÿ5ñ£]ΩԛÄá¢y™²s6ú>iΕã’ÇôNÖ÷Šô$ú#ô~¯¥?øýÄÿ`ý×ä§%ëªûÙ æ[õ1—Áÿ4 ¾šÆ+ôÄå¼×åï»}‰‰Ñø›¬SÂ:4ëÒ:o ><5ü¯QŽynUûë»}‰‰ÑÙ'ëEøJÏWíÏþÒà]U„€ýóFÉ+è»}‰‰Ñ›Ò‡åªýÙ_ þlð'h¾ô¾'|4üÚÀƒ[IžMâpq<> '?à¡Y_t=ã:øm«è›0ý@%ýýÂwÊeæaÒ‡èãø‰b¾†¨9éÕbÎÓ‡‡æ“±~ÿŒõxhðØØ÷v^çcüÓ¬ϤÞ$ñGƒ}¿ÄK³µ?–vLó"¿MvÇoK^gâѼ3ø1ò7`þþä÷É~nàÑÀë|Zµ?û˯s5y6‰‰‰‰‰‰‰‰oíšýkÓúÎÁßûÕXW`]à#x6\Ÿë‰ï:¾'q<áװކߧ™€ÄÑeÝíãü¾I|wÐþ¢°obŸYT» ~ ®èø¬ŽcÍøž‰ïŽãDI/6¤GËâÑ,q^¸.~À å‡7°œûßÇí/ =Zw&=Z×ùõë3Naâ;„õªæYFôeûy†Êq¦ïý’^­&¯3ñÝAÏÃìPió<¥7Ká{†ýøa´ïö$&þ.zs½jæw.° \^°ÎvóaýíR® $¾;X+ž”×—Å›!>Žýˆ·f¬C‹ŸS©Ú_ßíILü]ôFú€¿AüÔà¿cçûªýq½ýØw|ªos=-11111111111111111111111111111ñ  ý ÂK“ÿÀzNlj{^x¡jö'íý¢]ºïö$&þ.zC<‚óðÔijo¦Ò?iµâF9Þ~ŽtùúnObâï¢7ò³YPòÔˆ£F|)ÒðÖˆ+åxkÉOKLLLLLLLLLLLLLLLLLLLLLLLLLLLLL<0èøòÿdœ ñsñ£? ÞÚEøié?-ñÝAâևşQ\ÏZüÇÇ9Rµ?û[;'½!>î‡Ç#ñÝAÇ¿=ÔÉ}sDú‚ÿ´/¤øü[ÉãŒ~×únObbbbbbbbbbbbbbbbbbbbbbbbbbbbbb⯣ý¥Á3›©ÚŸùh §Å8+^ 8&?-ñÝÁü:ýW|áŽâ{îÈo<œ¯«î7Ú-ù8}·'1ñ÷ÀæHÕþš¿vrßœéÒ;ЇÛ|¤ãSAàµqü/ÉëLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL<(XÿYüš/Å«o¦>?5ñÏİ?›£â«TúD—¯ïö$&þØ(Þm#Þf£¸Í‡ÂSðmä'Jú¯8†Í±Ô›ÄwÅnæ¤'Š+4Ÿ §¥7ò;hœÑñ©äC'&&&&&&&&&&&&&&&&&&&&&&&&&&&&&¬ªöç8ŸŸÇS¼´¹’'PŸ^ÀïšÒ—ÒŸMbbbbâþ؈×ܯÚ_#ôο¿sI|é/KlŽéº?¤ßÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄゎÏIOñjù©ÖœM~ÒêãJO•þÖúnObâïøo²´?¯Pé³:¿"~çûâá×ó™ŽJ^gbbbbâ^l>Ö8ßÀSWþÒš—™ßy¼jÌÛšÉßï»]‰‰“Dó™ŸTZó´Ñ·Vú5GʸÑ#Ågßù^çÿ˜ß7‰ÃÇ‘ü;ï<Ñ:€¾[êÃŽ8Î~5}¿x=ཪýÕÒ3ü­÷Ý®ÄÄIb}Qz0#=`'û=Y?»ÖÏ>j|ª5߫ӯzâ;€õ‚ä}^¸ }Ÿõú²Ž_!Ÿôçz&½™Óñ˹o-qøX¯Nwr¿ö¸Ó í笵Þ\/+½¤4ú²*=Y®¨œå9Þ$ëõªýÕ›Ûn W;ÃL½†^HoV•ƒ´ò¯“¿K÷Ý®ÄĉêͪƪýÕKÒ“5gZ} ýÑøƒž¬ëüºŽKúnWbâDõfIr­ü.ñør¬Ú_½(}âºë:~Eǯç÷Mâp±þ´jö{v9ðÓ>Óø1+}¸¨ôiå;«ëϱæzZâpqç›NÎw¾–_öÊÑÓªý¾“}óO²ƒþU@vÒÑeÿT9Ø?ûn_bâ$°‘]³ùÞŒÒâÉ4²ß4²kšÏkð?á…O¾@bbbbbbbbbbbbbbbbbbbbbbbbbbbbbâAAï÷„Ÿ†4öq~öQ¯Ú_-Þ€óŸL^g⻃Ļ…73ŽO(~ÍG q K;ÿ#žüuôÝžÄÄßEoÎTí¯OºQ\éæéÃYéÕtÐ'øjŸêüéîú¾Û“˜8IÄÏþàCפÖü ¾ô¿Ëyþn'÷›o‡þžÑw þÐüýr†}9úŽ9Tê…¿ðUåþ›Äác}&¬\~\ÐqÖØ·Æ>µóUû³Þ _39Þ$ëk’û«Ò üB±ï}a?ô%ÇoÔ¬ŽÏJoô}Ôw»'ª77ðó$}X–>,UíÏ~ V8ù鸪ü”#?}·+1q¢z³)¿g7ñS³ýüDUoI68Ž¿éÏ&úô¸Ë·.}ZÏýž‰ÃGëËmÉýôhûy†ª¾©ã›_¶8¯ã­ÝBŸúnWbâDôe9—>ÜRzKiôýá8þ ojœA_nJŸ6¦So‹þžY—¼¯2«ÚŸõÉþ•Q¤ùÎÁ_áJú¹M.Ú_:ëd7$÷q=mQúýâwí’ÎÏ«œËöݾÄĉè ñ7ð_{Œâyg½óˆ®£xÊï›Äá"ñàǘW#žÌÎÒâª= üñoàÝÀëÜù.ù‰ÃÁæ\)÷;âÓÀk6?瑪ýÚ~ CÂæX—oç']8ס‡ƒ1>úŽüÓ:^ç{BÍ×H‡Ðq< ú§qiôLãTŽ7‰Bü@“í¢Uûk:¨{°Fàu~PŽ';*‡ãõTŽ7‰ÃA¾ãù~á»d¤ï§¿jü¨?†×)ý™*ÇÇÍýDùOåx“8ôúò) ŒÚ¯æñâ4çá{ Y¾RŽ'Î…uìo>Ö%×K²O^.廞C¤—°ß(q ç³O|=vÓÕÜG˜˜˜ø.b}=Ø+á\y±}’}5N¯kœZm-ÌÓ8¾Yµ?ø7}·;1111ñ÷Eöa:ͺ²ì•1?ëÓÞÇÉ÷Î\à ü¨óçɯ|³ù}“x𑸛¤±Sî<­ÚŸý9Á8RòÌôçRÿàÀÏÁGôw“˜x1ú3#ž-|û„_Cü[­W£7w9JïÈÎãø H½I>6â17²[¢/Ö¯¿•ãÕ˜—Sµ?ëÛQé[ÈŸ˜8DÜùBãÆ·¥ÜÃo}ÆôãHÕþFÌûàíü9õ&qøh¹‡/#½áû&~Õš‡±_Ç<ñ=ëÉH>Ö³’÷PëcŸIB|ïOÃ_¡ôÞZ¾ƒ‡ˆæ­ÍKîá£]–ͽ™ƒ¯¦ü3—s9y‰ÃÇzU|€5Ùý—;{¿ýq,½ÁÁš®#Ž•ü¾I>â·iŒð3¥7«ÛÏ3z{¬gð>•¿8ɳI|p,÷šo¡/kèOÕþêeG+è‡Î¯í*¿òåx“8`ô>‚%鋸Ÿõ’ô`¹7êëÊ¿¨|7B¾èõ\OK.ÚÏñ.ñ/ü4ðÚàŸ±OëÏ’_éOSo‡‹ìo¶? ùÝÀžSG¿5ò?1[Æ[K2šŸ&æË¯Úqp?QðÒ¤_ðÑÌ×IûMâ;€æ›¡?ÁÏ .|h7æKŸêŽ7ò”¸ øíì»]‰‰Õ›ï«öÇ>âtò¿¹–~°o€ï¡üþÐ¥+ýúnWbâ$ÑüLÍËð¿YŸ®ÚŸ×4ƒ7mž´xÐöûùŸo‡öˆAÖ—áo²¾Ìº5çç•&>î°;Þw»'ª7ð1e¯´¥ªýÕ×°ó'·^®#½‚šq£ßû±/@¼LëÑ2zQµ¿q\ôGú´‚þuùúnWbâdôeûùŸÿÕä^ú@üAô½Â-çͻɗó´Äáb}¡jŽËÉ~µ+Òƒ:¿ 4þ¡ð÷D>÷î®ë»}‰‰Ñât°Ÿ=ú(¬—±?”_›ZöÝ~NßíKLœ6ÄÏ {%<ìØ?Å·i¦”_<ò³>Ýëò÷ݾÄĉè ñæñ†¸¸ñøI—~1NõÝ®ÄÄI¢ýÊÎo¿›ò µ#Þ³ùiâ=7ðÄDZÿÏ¿=1qˆÈ>ñÒì_ãO«öW‹§f?Ò‡;4ŸãÇsž–8|4OfZzÃ:›¾ÿ?iìSã<ëjZG«¤Þ$Í+Ó÷í0æ«)M¼ŽÙªýÕ—Ñ'á|¶œ§%Í0ß ¾€Žã¿ÞþàÌÃ3P¾k¹.8\óÊw¸,\Ù~ž¡ª—à§ í¯fW<!úF<ÝåÔ›Äá¢õ ú±å8ú€~9_Õþ¬Oø…Z.Ǿۗ˜8½™“àWOÌÇ® ™‡ÁGƒ¯æ}:ߨÅ\H.ÚßÓù€â Ôgªöçõð´ô„x¬ÇÁO;“ë‰ÃE왣/eç$îÓ×â›açÔqûÝ¿Äÿ´¿Ro‡‹Í‘ªýÙϼŲß'ùM³ø4ð Ä5ï3힉Æ‘üÐ4Ú7`ž3<Æñð'ØTÝÏ|ûSã8|šÀ#XÓõŽ«[bßíKLœˆÞ8.4<5¥Ñô¿jä#ÎÚ:<_?-ãâ&ë%ødèOÕþ<žXotœxlðЈkhÔyñÕún_bâDô†}7 ÒüÕ^ ó.ü¨]ç¼òsœôæu9Þ$½Žv:¬ °À:ûÖ.:Îzëpä›áºªýõÝÎÄÄ7‰øáÀ^cZÕýj8…Ä·!ÿÓî¼ã{åõÝÎÄÄ7‰ vüâÿL|ûUCàà÷F|ôÆñ¥ðó]êMâp»&~hàÕŒÄCÃãÇþ@àß8¾Ô’g“8\4/¾ÌTÕþ¬'uÞ|G?˜Ÿ±/^AúëL0Ösáû¾ÌEéÃy‡v! üÖxþAÆ#H0z Þ ëÑWªöç¸øºÆºšÒøº¨üsJ_Èñ&q¸8ö»!{ÿRÕþlß„³øðnVƒž­Š?°œö›Äáb½©qcSú³¥ñd]xKú³±ýü‚ªÞ ]uiίK¶”o³Ó³¾Û—˜8Q½¹©ñã¶ôà6Ç«öWßÔx³)}º)=»­ô–ÎßÖñ[ɳI.Ö[’sÆ›[Œ zJ¯À[ÛÏ ª|ÝírÜé»}‰‰Ñ¾SÖ4^¬Iî™m ÍÛ„Ï šãBøŸ]ºïö%&¾Q}aÿÙ<ßùUûóúÀ¢æi‹:_„¿ ^•>±oçZêMâðÐvÍè/ðCŽÃÓÔyü*NT-QØ7¸¹S©7‰ÃCÛû§fçkñЈoÛMßÌû„WãE™/ 8¸£/”ÿ½´ß$ÿv^¼NÙ-›O«ögÿj§”ïÃÖøâ8¹§r¼I>ZÞ‘ÍÛñ>w¾Q¿œø»=VŽWŽÿù§äu&Í»ðSk=a¿ó6ü 2 ñ>=O;Rµ¿¾Û•˜8IôwŠä½þcøŽù‹ÎŸ“^(»y ¤—ßM}·+1q¢zýâGxð?çªöWÏJàž×qü¬é|ßíJLœ¨Þà»Ívéü?1þÚþŸ„וŸñfy[iñonä:tâpÑû4g«ögdžÆ¼ïx9|Ç,°|ÌÛr:q¸X’œË~ãýвËx½ìÿTiòøa#ÎÇ霧%›¿Š ¾šãÊn‰ÿ'Ç÷„?ç'å“}ÿjMú³I06gËïFó6ónΕ¼ómÀ#Uûs\Ðéò|ßíKLœ¨þ¯ÚŸãÚÊ OÀüK;Ïtþßåø‚_ÂäÙ$¾ 8ú6Ì·H?Ñ÷‹¾ƒðËé8¹â¥™//ç‹Ô›Äácý×ò{ÆûrØ_s„u‚ªýyŸë¤Ù§s.çi‰ÃG¯;Ï“‘g€õ´Ë_Îê8q H¦|Ó©7‰ÃÇz¾vMéÑ•hï”^À«GpIéåu}·+1q¢zƒ¿ éÏÊöó•ýܬ*Íñåç<Çí·#¿o‡‹õ𯋠ñÑЃMÇÏͺ?6ø!ÜTz]ã×o<Èñ&q°h?›Ä½e¼Á_íúöóŒã‡ãåÚ_”òá/jCz³VÚ…‡„æqî‰+}XѸã8¹:N(qu/„ü³ù}“8\´=ÿOO«ög¾'v'%/ Òo$Þ€÷Yîôhô}w¾ïö%&NÏSvKó;á£Á·ùAüÅ)„wƒÿŽøŸ²6é?-qÀHüN˽øèãŒõãË’Ÿfýƒ_oír] q¸8ú:ÌÓ¾-ygæ§áógéÇ¿Ký‡Ã¼ P}·/1qhÿ5úޱ_4í0ߌxÑ'u^ù7WzÅø•ûÖ‡Œöÿ4+ùÇÿëe üNøkð>ñßÿìåx“8\ôº3~ˆw‹¿§¹pÿ Ò—«J£wðÙ.çx“8\Ç»…g¦4~¡V…ËØGÅ ÀÊyx ËäÏñ&q¸X¯ÀŸ‘¼¯WíÏüø«BâIÃË!?ùÖÅ'§ïö%&NDoà¡á/Þ¦Çô…q¤Oê5?æ¯I¯ǽïö%&NDo$ïøÄŸ þ:ñ+h¿ƒ¥]Æûq¼‡ù\Úo‡‡õEÉùyÉ9ëæ§Uíϼ3ü ^ zƒ?5Öá(ï|iMLÚŸ†x5Ø]—ðXi¯Áïþ:(gôò‘_<ò÷ÝÎÄÄ7ª7ðà§©ÚvþæP'ÿðÕÌüøö7¨89;©7‰Fâ¤YOðŸv¬ämšF¼5éÏN[NUŸÐq Ó_gâ€Ñqáq¢à«™GS•úÖÇ»ó\Ï|¯ïö%&NͳG£ý3>>%įà´ô?êø‡‚ÏvRüç&& íí²ô€}žøu‚ ¾Ö˼¿¿iŽoXµ¿¾Û—˜8½¹ŠýEzq{Žð*ö›`ÇYÄþYµ¿zNùo(}5Ç›Äá¢ùeØû7dÿ_Ù~ž¡r^y7Uw~S¯mM×­æ÷MâpÑþÑ65žà7m ¾šÒè¼4ò=(SNúOK0Ú_ Çø™gÐõÈûÔùM®“ÞlP^Úo‡‹öŸOs™yšôÞ&û–¥ðÖð³†?5üH'¯3q€è}fø?[¨ÚŸ÷«]”ü_Ôyâಞoí‚®sy\—ß7‰ÃCól°×È>c;ç_°gvz þ ~FòÏa¿ðr~J½Iš/óµx4)ù4ô©ÁO”ô„øƒÄÉ…€_ÇËM?P‰Füsâ_°Ñ¾€FqÙ­Gâ«¡GŽC}H׉‡c½:’ë‰ÃE;š·±O€ñ„qÄ|èo¤'èxmuÕýðǶó]êMâpѼ4ì¨O”¼4ǯÚûløþ©ß Ç3{â€Ñ¼LÖǼSòOƒ¬›MíÃëÄá©ü¾I.:~~ÒàuÂó„ßIŸâ/ÍëÙðD«ö×wû'¢7ÄÂO ~žnWe÷$þ­ýsñu­j¶Ÿ*ßíKLœˆÞàÿ ù_XòlàkÚ”ôle»»n=¤×TÎj® $í?ñf> òþ 7‡Èÿ^'þ WÒî™8\4?µ‹šg]z²Xµ?ûI»®ƒç†ÿ4íÃé»}‰‰Ñâ°o^û6‰ÿyžïå;«ôô>ëp39Þ$G»²ÏþÙ¨=ÿ¿ã öÏÄÀÏöRì=²ÿ ^NßíKL|“è8Ò û">çñªý5Škcþ<›c%ÀþŸd·¡ü¾Û™˜8Q=B_dß´´oÊñÎŽøÎðiâø“~ßdžfÿ›â™Ùï-|›ÿ=yZµ?Çÿdž÷eÎÓ‡µâ¦Ãˬ?ïVó0ûG;^µ?â:Þgð³Öw»'ª7ø?;'½À_ÿlV8ŸðCñGx"çi‰ÃGóÒfᣡ'¤…—•4öÖ§ÊëûnWbâDõÿËÛ^“,‹°$=‚·fÿâ,;©âNõÝ®Äĉê˪ä}u[iéþjÐû»Q>üÝÀ%½šãMâpq¯SryhÖxlš‡ÁÆ'~?Ñ?ñEûn_bâDôFûdÌ/Ã_4ó1ô‡y~¢™—í‰ïÉõ¹.8\ô~͸íxkìcÿÌëpøQ#¾ç…œ§%ëªûŸÓvÎÃ’ÿã²w€Ïâw@þpl¿Éxk‰Fô¡y¿äÕØ¿öÐt^öOó t…ø·GÐwû'õ‰rÜ€—fž¼éã üèÑ]ýVݯïö%&NRojñžm÷?©y—æoæÝà÷6Œ7õi]Üœ§%½0Sµ?ëǬ}hÚà}l¬°pFןQyòoÓwû'¢7óUû³ÿ&û{’~\úqEùá߀¬¯à³\OK.ŽýHÞ¯a·yPÚg8Ciì8Kâ oKºN~¡ún_bâDôÆqÕ„Äó\“üo€Pµ?û¹!>›ýÛˆ? ëûn_bâDõ†8[nj<ÙÑ 7ßÚ~^PU¯K_¶Èÿ8çi‰ƒÅqüNÉ=qq×÷AÆü®ßssûy•ãâ®ç÷MâpÑß7ž ™§­IäGpÌï„Í~ƒíî:¾oVs=-q¸èu3xâcÚoú|ÕþÌ÷ÿ“ü¬¿ u]ßíKLœˆÞ`¯aß3vãð×à À+¨ºŸ÷GçOi÷L.ÚO z {?~8ˆóI<6óÏàßˆßæx‡Ä M¾@bbbbâ ñ?j‡ßɸäq?…GuãO{ÝÿŽ;9Þ$=OûBòÿ_¾wªö‡hg_ô£Fo¤OìË©ÓÏmâ€Ñ|hø˜ìÿ„×9p¦j‡ˆû ošxºï•ãVbâ°>/}8Ïú²ÒW„^g®Ú_='„ç9‡Þ‘VþÙo‡‹Ž¥8Oö—»æ’Î?Šx¸Ø;(hÚ=‡‹æ3¯ûÿÿiUû³~om5ð¢áˆOÐwû'¢7øôx³Ý!þÑÐôjIó1üÙF}Ãÿ`úëL0Ú/ôPr½jÞ‡Ã|Žý9ø_g܉ûÞ®å÷MâpÑûŸ/» <ü©?÷’ÒëM|Nâz6ŠE¼BxlÍéªý´ïö%&Në¿Ioˆ‹{!È¿ã~*Ÿìœægâ¯7²9Þî¹8\„_C¼hïUí‚øKc^ÖÈÏšõEû?÷¿¹.8\¬§ô½/šãÜþ ~líÿùôåH—Ÿy™ÏŸNžMâpÑ|4x3ÓJÏHŸHã7]ó8Òè™ýãžÕuåº@âpÑëÌøí4?­j柑ýÓðÖôÃ>‚zQù/çx“8\ój¿hë:Àˆ~ûãæ÷MâpÑþ×ÑéŦޝiüÀÿÓŠÒðmˆ³†?ÜMßH~Zâp±^«Ú~›ê5鯋±ŸNô~ôžÚô¥¼®ïö%&NDo'ˆãyCò¿,}a|Á?þÑf«öWÏè<¼üF/§Þ$½ž†üÃC›•üg Äÿ´?(Ù}ꋺž¸ ³¹.8\}£õä`×´ì ò³ï¦Ñ¾jxõ±­O_æ:tâðû?|˜Fþx7âŸ5çBš|ŠÍyì7æã¤ÄwÍC;,ùÿK°kŸ‘~ï“ëÍ‹&Nè“o‡uÕýßó¾SŽè8~7Äþ™y9Ê/§ïv%&NToðßô‘ô…xƒØ3ÅS¯#½Á/ô‡/>Ÿ˜8DôþfÖÅ. g¥Ÿb§©Úq=}=ã¼¶s¼I>Öó’{ü`ǹŽ_ï“õkâãOg!õ&qøX¯ËžéxQUû«7¤+G@<)ø9×B¾ô•ø ãÛ‚ŽW(="^®âÖ›âÝléøŠôÇq s¼I>:ÞíòÏ ¾'ãÆxkaüW½’ãMâðÑþ—™oÁ[Óø±Ì>éüNγïf[W^ßíJLœˆ¾\>àWð:<çªýy úpµœykÂó åz[bâø5õñªýÕòeÿØe„ìëäzü¦9(û©%Ï&q¸ýØìHàgOm§Í_Uä³Þèzók¾Óõ_§Ý311111111111111111111111111111ñ  ýpÂ;»Tµ?ûUcû¨á£±?¾ÛÅÜGøî þÒïVþð³?Í~Òį©OKoà·ý)õ&ñÝÁï«ö7’§Fq ðûÔ_jWzó§íÇûnObâ›@ü3Ù?­ü79>áÑrœÀšÇôGñ¤kùñ܉üÎ/r¼IÖU÷cüðx!säÿ#ÿŽÇþßÀŸöy]¸œ¿õÝÞÄÄ7¢7A®ëñ/(¹ÿsð‹†ŸÁ/•ÿ„¾_¦ªöWËï­ý¦Ÿå>‚Äá`-?ÏŽÃ9%=P\hŽ;¿äß~ ñ¯v ûÖðK8•û=‡ƒ^Gže?³pVúq1èÏëºK`Ø¿AÇ÷L½I<øX_‘^\߯t7.ÜÐø€?Žåªýùº•.]_^S~p%è‹ã>È}Ò‰ëùÁ/ éeù§YÅSø¾‘_Ç_s~éËšÎۚίäº@âÁÇzEòŒß&ô„ñ8…ÁS½¤üFéǒƛՠGèÏrYNbâADÇåį3¼x4×Êïç»!}"nô0‘ÿÑWÉW~'%&Dô:˜â©Õç•þÞYÐÅSózÁœÒ—ÃõÄÃUÜOÇUÜܾۘøZz#» ñ ˆ‡F\Nü£9¿ìœ¶gŠ_c¿O?‹?€èŒÊÁÚû¹ž–xð¿hæ•ýO°ÿ?+Çx5Ä%„O`ÿjßH~Ðyòëx¥_ßíNLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLüuô¾xœWÅ·¹Qµ?Çÿœÿf!_€ß™<›Äwë¤/ø<§4û«ÿ¢4~äÇûBÉ&õ&ñÝÁ'¾Y-¿OøI«ß“ž7WûnObbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbâ$pô´jæÍÈ”ã·Á?”Ðqpˆ÷q,y6‰ï6òOØ(~T3ÕÉ?ñ ù#Ü!n¡â­øWkþ~Õ ÚÿÓñeðï4'> x¾jõ ç•&îç…ô•øîàŽââ÷ ¿i£oÅ£‘¨Ñ÷Uû#>¡ã€+ùk}·'1ñ÷ÀF~ÍG“ìHoš#J~šyŸR¾?¦Þ$kñ/›ªû5ÇÅë<Ò¥‰½>íŽïü(ü²Ôã’8\ô5óº¾Û—˜8 ¬ÏkߌöØÏ­ý¿–z“8\¬×%÷ë:=Ø”>¬îvú³.=X{P_Vz#èϺôg­K÷ݾÄÄÉèÆ—Má-É?ˆméüºôfcºÓ›:¾¡ã7u|3Ç›Äáb½Uµ¿zCxs[iôEz°¥qýZ×ù›wП-éÛÆjŽ7‰ƒÅúºäÝó/ÒUûóqþ=•ó$õ&q¸ˆ¼ïˆ¿Ü|P¦£¿Nô^šÇ¯¥_œÿ¾j}·/1qXWݯ~_z¢xÐÖøkðl˜ÏI|~ ãÓO9Þ$ëY}Ÿ|¤ïyñ¡Í›™‘¾ÀGcÛ':OçS°j\ßwû'¢7¬Á«YëfðÖX/»Vµ¿ú¢Ž³ÎÆyxm3i÷L.ÖK²ÃÀ›!½"\zXÚu°ã,ÿ‘óJÕþê%Ù–:=ê»}‰‰Ñ›­íç*ónI?6+×yø6:¿&ý¹¥|¤áãl¦ý&q¸Xoj|¸%½¹ r\x»jæÛléøéËMáéÍ­œ§%=^0NÜ–>ÀS»Í8Äø2]Ž+w”¾£rnkÞ&~gßíKLœˆÞ,Iàÿ{ÿ€Òð8á¡­±Ï@ãÎÇá±m?/øçm©7‰ÃEïç\”ž G|çÏK®*M¾K:>§ë/³¾V®ËõݾÄÄ7‰Ø%ë¿`ϬÚ_ýžÆü¡MÉþù³ìÏd×”}´ïÆþ°½Ÿß7‰ÃÃäÿûªýíü(¯l§›®=Äšù3ºÿ„æuÂKƒGðu®§%›iñ;å£?ƒx6Íñªý·‘?ÏFüû-<Õåë»]‰‰“ÄÀ‹nÄ«Áÿ¦çgO¬BxjŒWÄ£î»]‰‰“Dö°¿ÀÀ3óþN¥Ù'}QiâÈNêx”C\ói¿I.p$^Í<4x4ßb |€Ãe~âOЏl}·/1qh=˜o¾Œâ«™wCÜίæPw=úÓ|¤òÒ~“ø ­Ú~9íŠqç»ü¾I>bß·ÿ3ÍÛÌ›Á”üÙZOþO <§ïv%&NToà™i>æõ€3Ò âââ'u€™ªý™·üªõÝ®Äĉê û4W@zÀ:Úgðg„3ðØ„ç«öWÏêüg9Þ$ÍKÃï v˜øhØwªö7Ž÷©ó—”¾®ëóû&qøX¯Â/“,‡´øf¶s.ÃÐqò¯m?/°JžM⻀ð1†g¶&ÞŒâÚo q>ÍO#-ÞšÒ}·+1q¢z³ú¸Ô›õªýÙñ<ÑOþ|êŒ'ø ó¯˜ö~æaž§‘–Ù/tÕþà³õÝ®Äĉè ë_WƒÞ\–¾à ÞëYwÓqâøº\H.Ú.ƒ½ÿiûøCÃ?‡ý b·9­ôÉo‡‹ðd¯“8kßWíoÿ‚²‡î|!^ÍOÒ“#]>ô6ø#ì»}‰‰ÕùçlÀ 'æMÝéƒyl_ê|[ÎÿêéŸr¼I>š¿‰4ñÓÌß„G£yÜŽô´_Ü£Ò¯or¼I>z~Æ÷‹ö ø»çHÕþê3Js>ç‡J£?Ÿ¦Ý3qøX_¬ÚŸyf_í¬Æâyžâÿ‰ôy¥§s¼I>š¯ ¿óšÒ JkÚü3ü§ág€õh®K~Zâ;€õjÕþìß þÙ:öMxkð9á lw×áÏC¼âGõÝ®ÄĉêÍ|#_•„ŸSß3|×ÒñÓ©7‰ÃGóÏàkjÞVOé8|Mxkìkƒ—6êºS¹.8|û š×)ý`þÚ¼Žc¯aýùŠÎ/$¯3qø8¶{Jþñ;¸¤ã×±gVíÏüÎÕé’º<]ØOûnWbâDõf9ðˆ¿†¬l?ÏX™O€Bø\çø¹©7‰ÃGÛ?—«ögNðœWG„Wu>ç|hñÒTâ;€Þgs¹jcž™Ž/2S~Í5忦ó”s5×Ó‡‹µâ£ÕŸVíϼ´iágðΔux5guÝ!ër39Þ$wðÃñmiçaÇÁO”ì™ÍŸ…oËyn÷”þ͓ԛÄáb£¸hü6òÃaPÐÇõ?ÀzÏ€ëÅ#è»}‰‰“@ø3Gˆ‡ ?ó›p\~kÈÚ~ Ÿ”¼ƒ¾Û—˜8½ù&ðÏ„ö3(=À?ó7ø›ø%´?\ñ?‰ãÞwû'õ§Z7;^µ?û}f]€8¹_’:Þ§®c}þMÆ)L0Öçáϰ^¦4ëj¬£‰]_b½Mé Ê?‡ò´ÎÖwû'¢7ðɰc^ ¼3â}Îé¼ã€ê:좜_ÚîPv¾Û—˜8½Á¾¿&Àö~ŽcÿÂ_[Ršø…ËÛÏ ¬Æñ=“g“8\t<5ünVn 7ðÖ”v6¥7᥉o³)”µ¾Û—˜8½Q<Üz­jŽßiÿ‚Bøi+JÜÞ€›Œ[¹ž–8\ô÷ÊJÕþü}¸ïùß3BÇ÷œ.ÓøSÓ<¯ïö%&NDoØo†ßtöÑ\ 8+d¿Ú%ãUûÇùÌñ&q¸èxžâÛ`÷´ÿñiÌG“ÝsôcwÜù‰‹ƒ]GöϾۗ˜ø&ÑñÅpÜÁï«ö‡~˜ovX<âãêzüŽžåöÝÎÄĉè侑¿‘³9+„Ç©øÐæ§}ÜéI#6üq4òïÙœê°ïö%&Ní/Pã…Çɽý§1>ýO8?UŽ?Œ[ðBûn_bâ$ï ÷ÄYÇ-zeþ§æcö+ýµÎ ëÜG8`ÜÃÏÄOšæaõi—~ÔŸ鼿oÄ‘fÿçûn_bâDô†øð8‰k{´ôþfô«6_µ¿úœò],Ëë»}‰‰ÑüØ`·vEiüªÁûäø<5‡ÿIü¨k9Þ$Çú‚ýûù‰Êqrá ðnÀ3 ÿFÇ—So‡‹ö‡f›ðªö7æ? íŠü;4MǯçzZâpÑ~Ðæ5¿ºç]J_fùØïJ¯.òÝ“ãMâðÐþNWí¯þTò.¿gÞ÷<x4|ÿ³Ž&>×áˆë1•ãMâð°9)» |3ì7Ç«öG<ljªóØC±o’~MÆJ"š/ƒ>œÂGÓ8ÓÈo‡ãjÜi4^9.üÏOѯo‡ð¡m¿Äî‰?æcÌÛªîgÄ[ßÍño‡æ`•ÿNÇ`%Ÿã´‡õÖ>N»gâð‘}fæ Ì)M Ùçv™u¶ªýÕ³ ôæJ®§%mÇ$NxžÒÄYcý}»Èqø6©7‰ÃGów­jõ ì˜Ø?•þÀÒ®Æ_å|® $ëMéÁ¦ôD~œê-ôA¼üÛàjKljó‰¨õo‡‹õ†æ[7%ï75^ÜÒ8²)½ÙT¾íçVõMéÍ-]·©ü7¥W[©7‰ÃÅñ8#}±ß@ÆGå8ÂñÕ '·¤_äÛ~~ƒÜ·–8Hôw þ6'ZzŸ[û!Tšø¹øûÄO®ãJ?Îñ&q°h¿ƒö¨4þÕ‰wË>üD/TíÏüÏ%¥?7힉ÃEïÛ$þ-ñp¼ÿSixâkÖŸh¾FƒØwfòû&q¸XŸ#ù‡_#¿Nö+¨´ý Ä8Q\'~ ¼è¾Û—˜8I$^4q:í§½9^¢ãžì®µåü?ñÚÒŸMâ;€ãø„7ð_s¤jæiœý¬ýèüNöáü5ùi‰ÃGïcg¤èþ¢Îžq O‡ïž‹ÉH>zÿ3ûœ‰3€_'ô¸ø…b]á“ Oçr¼I>Zoà7_ ¼Mü à Þ'ùˆ§‹^]I½I>ŽýÒ`Ç‘ý^€yŸUû³›Uì<ÒüÚ,åzZâð±^•ÜÃØ@/¶Ÿg¨Æq>á è<¼®_—ÞˆÝw»'ª7ì`þáÝÀ³Y)ç_ã8ÔÛºž|9Þ$mç‡?ãxëG˜¯yßM¹Nf?„ø·½úU‘¿ïö%&NDof$çóìó,בío0úd_4ëjs¤u>סŒæÉØôÿ‚à”Î+žq?ë?“Ozíd®§%‰WãxOøs"Žçø4âÝ<+ùÖ3Å×%Î'<ƒ¾Û—˜8IlwÍñ<•|µo”–ÞØÏçÓªý'Ôñ ¥?}·+1q’8ÚÕ8óG3O«ö7’¾—Ýq ÑøøQ;¬óÿÎyZâðÑþ:™§-¿S¼€ïxkøcg_ú3“z“8|ôº~ÒàͰ>v¦jö§ï󼎟UÚ|ÐÔ›Äá£ýsÂSƒw6_µ¿ñqøgBöSÃï¼^žï»]‰‰ÑâvâÿÌ|xðÒà}U¦áÕ8n¡øË»ÉH,ÚÿÌ:ü4ñðÿoÓþj”&ÿç)Gz³–ãMâpqÌ'ƒÿÒæ§iœ!~'|6ôl]ùíO*ùi‰ÃEÇໄxžðÓ–¤ø‰ÂßéUûó<-Äsï»}‰‰Ñü?Á6«4qmÐ/Ö¼þ¦|s:ÏúÚlòÓ‡‹ö¿!ûŒù3ØcNUí{&~oF?vljçéøºÄg;œãMâpM#¿Mðhà«5Ò+Ç»ý^ù~êÒxŽŸ[‰—óŸo‡ƒŽß /@þ›"¯ÌãŽÆ¡úñg¤O;:?’~øº§UûƒÏÖw{߈ÞÀƒÿ¯qÆú¤ýæ=k\Á|g+ÌÓð%~qÜûnobâÑùŸµ?Aâwš__FixhŠÛ>Ž/­|øM þ<ñ3Ýw{߈ވ7V_¬ÚŸý¨³žÆ>NÒøOû˜õ2å·ŸAÎ+ÿY]ÿQÎÓ‡ƒõ"¼3 øK#ÍzòëˬK+_Ô«Èóô~ꜧ%|Ä íšËØ1Æ<´íçVæ©}‚÷ ¯~'vÒë9Þ$|¬W«ög?g ý †óðg–ƒ~0^-þÚ²ô^¨Êí»Ý‰‰¯¥7+Òƒ•íç*Ë»ùËJý@/ìj:ðqÐ'ÊaSy¯únwbâké |²kUû3oæ"z ùÇÔu¥¹nžý7Ä)$Þ!~£s=-ñà£ã `¿ñ~ΪýÙ_ /8žøSûTiÖÕð5Ëzšîs>¿o>bïÇc¿Oø;#N‡üÚx}ù¬xâììÊ.*{(<¯Kc?ýsêMâÁGxeöOƒ~ GØý•ç+ýÐxiðÑFß å¿ÿP;ßæ:tâð¾LƒÿÀgÒŸªoЧÑ¿4®˜oC\ÐÝäC'ë?IîáÏfüg ¿„ö£¦ñÇó=öÊyZâ𱞒ܛŸx4|Á£!.ûÔ"ß&÷­%¾h~ ëf󒯣±ÞÆúuàß°o”} ß3ñ@ëÍ‚Æì9ö£VÚeìG¼„½GéÅœ§%‡Ðþh„ëg`~€òo‰+µV)ßn® $ëªýÕ’ÿ-¥×Aé ~Ò6Å»×Ãñõo‡õ*ãKÕþÆãôÁñnÃø³®ïÆü®æ:tâð±^b¾%´ßAxžÛÏ3VN‡¿·ì;ÀŸÚrŽ7‰ÃE¯‡±Àz™÷¯é8xEùY?ƒJ|Pö‘*ÞgßíKLœˆÞ|$y'ÎÍ1ðÍÎÀ-ùæéaZç±ß(hßíKLœˆÞü©ä›EÿƒðÌêãUûƒ_c7ðm¸îßey}·/1qˆŸ³Fþ›ʼnv|ϯ…ß•|èx6ÿ¾»~(þ ûn_bâDôFzü³Àþá=£'ŒCÒ·q|ϪýyüJ>tâ€Ñûn¤/Æ)Í¿ä/ýÞ÷Æ÷|Ï“*çxÕþØ¿Öwû'¢7â‘yÿ¦öiÆýœæ=ÏIŸX`ÿçi!å}œó´Äá¢yeì›&¿'޳®6_µ?ûÀÏñtÙg½|èÄá¢ýÊ逸Ä.Š¿øhÑ¿Írw¼ïö%&NDo–¥øIׄ×Ù?Λ—#}#®.q?•î»}‰‰Ñ›•íçª1_”>,´~I?Öt=|¶´ïö%&NDo˜]ß/KBÆŽß^ÿºÒì×¹Zæë»}‰‰ÑÖÅðC8+¼ ãøG;¯4zFüöS³žÀzÜl®C'Í7“ÿójˆ“ƒ=G|ü¥ÙšøÄ›Âoñuún_bâ$м˜ÿ–ü°Á¿šô ~ýþ;œ§œ¯Ó~“8lþ*}À/Ú³N¾ññ ›u\ãyk åhþÖh¼ÂÿZó—Ô›Äá zOš1òÏ‚Ÿ4ó@ÅCkø:¤ëŸVíoç‡ü¾Iz¿ ß-ø Ä?šÆ!ûS#>»ôÊ~k|Ѹär‰³ûq®§%ÿ–8ðËð{Æ>Nââ¢WÄ»…·6UÎ˼À¾µã]¹}·71ñèÍUÉ5û Y?&nó.âv²šuiâ/—q†øì—¾Ô]×w{߈Þ/-Æ÷$¾Úòãî<~7HÔþƒ? ÿ×sž–84 „/ß žÌšô^§õLlj{x ÞÍöóTãøž¹ž–8´§ÕíçÆþ7‰ï¹ô?œèš×Éz5öÖ§±o¢7óØ„ì—ÆÞ3Ÿz“8|¬—áÕÀ®ìcÅþ ?ç*¼¿žó´Äác½Rµ¿±ÿ4ôH¼óg¾*õi•´ôg­Ô·¾Û•˜8Q½¯‰Ÿ'§¥8¯ñfEçwÌSËyZâð±¾"} ¡÷ 0OÓqñÎì'mQÇígy\Ú=‡‹ŽÀ¾5ö«Å} æ¯éøŒô…|—âuöݾÄĉè ~ÒÞïžš÷S³?šxPO«öWwPáÿ©>£ã¬WËîÓwû'¢7²sÚ/šìÿæüø : çþOÎÓ‡ƒŽK(Ä?@sX¼´)é‹x2ø}bœç /Úú„¿(•‹þõÝÞÄÄ7æeÊo­ýn¢Oèzƒ~ý­gØ?€^Õòëi¸ßåx“8ôæËUûóºòyÒ:ï}ÓJ·óSÖ£9¯4þ >Sþ9¿”ó´Äƒö?³Ç® þ~:à\ÑuØG±{âw ž'|ƒÅԛăöëd?hBój„ðiV¥/Šok?QæÝ(?<xløU[ÊyZâÁGëIÔäý†ô~zd½úªÔÇž–þèzôI~@ûnwbâkéÍ"ó-Éõ¬ÒìW[ó/xgÑšËÑuW”Æûq»rúnwbâké úÁú1ü2ÖËøÞ×~3ç³~渟BüªUyBy39OK<ø8úAöHÙõñëdGeÿÿudì™BøøGûIiì:©<쟇»ã}·;1ñu°‘?øfæàMúOû§ù4Ò'ütš¯ó}W®ã{rþ‹o>bÏßs\ï»Ý‰‰¯¥7ûÄ©…¯æøêðp¾¯ÚŸùgÇÊù~r=nÁ³9¤ò¾~ñýÖ'öoô]b~ß7§…è |6¾wàããÚwÃ:DßíNL|-½™~ñ÷†ùdø=c} ^ŽüÖ'už}¡¬›ÁcÃþÖ>Êï›Äƒõå¿ÿ½ÎÌ~hÖ™±Ã°ÿ™óö›†ÝGçñŸ†g>ǛăûÙïë’{üטPµ?ÛÿÍcÓqâ{ÂÀ ŸíFŽ7‰ëÕ}¾oì_”ÜçÓþÓ¦•Úš®3¯ôã\H,:..<4ÇõDOà±é<ù§Ð3üÂW“¾õݾÄĉè ß7 ÒøfÌÃØWùþÒìwMÈ÷Ïb~ß$\„G¶ç8ñ7ˆÇþ°¯õ4û['Ÿ®³ÿ4Ö„¬Ëͦý&ñàbýÁ‹¿klÏ$Þâšo&?ðÍìJöLóÔž)ü´ãUû#žNßíOL|Ü/^ ùÒŸ;ÿ“’gÖ7 ÿ5ðÛtzC9ðr(¿ïö'&Nxjò¯a?QßWí¸…ðΈ§ýRúÓw»'‰È?þÏÐû'”ÿZûOƒŸÆ|oªœÂ÷ì»]‰‰“Ä=þ¡ñó$^›¿cð5ø6ÁïÓ~뉉CBûu:/= }Aú‚~8.¡ŽÏTí8Ÿ.o>\bâÐû£ámbǹ{ ¿f6èÍÕ´ß$‡Ðþlof)‡7°&~@ˆ•ñÖß´~¬i~¶.ä8hþšôg£ä©ËËyZâðÑqq‰Ó¹,Äàêvw?ƒœ_×xC]Çù|ó´ÄÁ£yšÞ ù‡×yãUû³ßA®SÜuóÓ®åx“8\´_5ü£×–ýkðÖˆëɺâwš§6 ?u‚Ô›Äá"~ ðw†ÿ&ì6õ_ÅÇ {§ý§}ì6Ǥ?‡r] q¸ˆ]?PÑŸS£8Pøåp>ñ?£ßšXNßíKLœ¨þˆÏ‰ÜßÌûÖð¯@üš=~>ÿz“8|ôüêtÕþð{ëó|ÿŸÖøóÒÄo»¨ëðos2õ&qøè8…Ò â±ù<|ÖæàÝp\h¿7ù}“8|$îF='d_tôµ¤óèÑå0ŸÃ?ÔÅÔ›Äá£ýïÿ5Øeˆ‡³´ýü‚Êñ£‚ÿ±_´{&ë éŦôžÍ¦pMãËüåß ó9®_+õ)1qˆXoJnJOnKþ·Ä¸ MÇ7Ë|.ç¶ø[9Þ$=Þl1Π7×x³)½€Ïy3ÌÓnéøFŽ7‰ÃÇz5Ì¿WÖ™Ÿé8|éµíçVq>f¿Ÿ«¹ÿ&q¸hhøDPµ¿úºò]—Þ,Àãä¼^çÕ´ß$kù¯©OIÀYì1ÒüžÔqâz»Í¹ÒÔwû'¢7ðÉÄׄǹ'î´ÒãøkUû3ÿSúd¿8Gs¼I>îÀO«º|5ôÀ~¿èÒø%tÜBxž7Ýw»'‰ŽŸ.ަǑJiæs‡K´ùœògýâöÝ®Äĉê r?%=à{…¸ƒÌÛøÎù´jõyáYx¡ÊŸ<›Äw½.vIr?ÏLˆ^°ŽÆzþÖð§v^ç?ÉyZâð±¾,ùÇ¿ññ£FOÖ§½N­ëXφ·v%×Ó‡ŽKh”g]öPûW“=PUû³5xlŠ¿Öw»'ª7ëUûÛÃ?³?5øšÂí.ÿ¼ø7Ò¯µœ§%­èÏšøœÆ_£|›Bømë‹q§ïv%&NTo–%ïì»a¾ÆüŒ}5«U‡ž·IŸ–5.¿}%õ&q¸èx|ç×~Õ•^(¿÷½Î†_ÖÙ´þÌ>ê¾Û—˜8½™Ö¸‚Ý; <3xhø¹ ®ºöÍh÷ÄÏGßíKLœŽÄ‡Ù_ÆñqÏ“x…Ä %|ÇÇ¥œ•/ý§%&&&&&&&&&&&&&&&&&&&&&&&&&&&&&¬¯Š_s¾™p¾jæ«ÍâÿI8Ž_Jÿ‰ïÖâÕÔ‰w#ÿNõ)—_Žú}ñoà§N+ÿ‡É‡N|wpôLüMøfè…ô?6ðØð“f=ú¶ä}öÝžÄĉêË®äþ‡w¤Ž-4ùvÿÓéoЧªýq}ßíJLœ2^8þú4'4ž¿ÿi‡¤/ÒÆ'û‹ÂÚOɇN.ÖÂ÷Œü=~Æ_šôýù¸ÌWÏ(}ºjŽz!÷ß$ëYé ~ ˆw{¶jÄÇõw¿â Ô³ø_Wÿiìÿœé°ïö%&NDoˆ¯~Eò ½ ½Ï>jâyà/xºø)¸‘ó´Äá"ñÆþžªöW/Iþ7„øK[ÙîÎヸkè˺Ò+»i¿I,:ŽÚºø„øOÃï ú€_AŽ¿ÐþÔПü¾I.Ö’{ü¡9!z‚ÞOÇñeÿi_¥ßÁÄwý]ƒÿZüÕ®0ÿ’,‘Ö¸Äü¨w€ëçuݬ0ùi‰FÇó<)y—Ý“8‘—†=Óþ¢Ä¨?U>ì¥Çóû&q¸_À|ø2Ò“ü£‰Ðü¡Ì‡ÿ´šãâÀËé»}o;Úï©ü:Ú~v¹j¶«éýe?w¼§ÎËÏü<Ú$ï¿ÿLÇñIœ#ìp:n¾üìrÄÃ/+vò£Áî}HùU/çã8õ†Wò­ÎcǸøËï[xnç”îsºœßð^wú”ʯÔN½ï›#Ýqüº~܇öáwóç×Ï|âA1îÀÐx²#=ª—ýàøÒ'r¼y)½!Î=ú2£ô%ô(Œëž+r zÜ^ç¹)ý™ÊÁ.‡^pü+¡^Ž'¦ã|ß2_'rYå!Ϫ×Η¼Tíc~oþI—Þ·¿à«\U=>.Ëu¾…îü8­ûè=Äx°g¾Å¾Êuÿ”ùöÔkJúçrÕNìžâØ_çåwŽË úŸ¸\æý<+}£|>–Sø7Ôï¬ëðýyIòÄw(üäõÖ.—ÏÏåàœ4qÅ—tñøÐ{ô½b?ÊúÆ+ô‹ïjÊ;÷+zÃ8çl%ÈßRH3nÏë~ ã:ã1ú§9¯ôbYî½dšã¬©üEÕ—ùŵ²ß]Î_n¢úÉöcžÿv×ÏŽ×%}Y®è9¬J~WÔÿ^ÿÔõÄeÙT¹W”uŸ›\¯ò¶t~•òT÷÷ºªÒ›ºv¿eµýO¢øaŽÃz-×m„vl¼X.Ý_ØCˆk_FõÜsõsû”æ=ëÅqÆ]_Ø;÷>GžÛƒ²Ý~^:Oÿ÷ãjÔ›o^Jo°ßVo G<_õÿM!qº°“ÝA”¾M~=/ôæ&ú‰Üë8vî[ºú³Éý¨åM—úrKé›’3ø&7)?\O|¤;Êën©þ·”¾ýây~}S÷½ƒžQ>õ~ðâë¨ïVoôÖq›H«~Ø)}Ÿ²^õ–êMÿn=*¯§^¼§°wÞT=–J=©7So^JoêtÏ뮞Û}¥ïÏI>ôÂõÔOå0ÏgþÇwÎç;ä6òöUÙ.êïöÔ÷‹ûž±¿ÿ˜§©žîWúGÇ·‚þªœ=ÏïíV9ô×]æmÌÇ”ÞPûÈÊÝï».1ô»¿SÕ¯¬Sñ½½¦þEžV•¾¥ëø¾'ÿJÙïþžñ¿]ŽÊe€¸áÈ?|yÖ¶¤W\Ÿ9cŠü^'£*wùÑ}ÙB=YOd]üØC–©/ýB=ü‡ú‰/9æós=ý«ã¬Kª½.píÅòìó¬o:®´êÍ:ë¡Ë:ïû„ñFñsû–Ë·m¯aÝÖë¹JcW/‹½e>\7§ç¾Tö»íØ´~ã8¬Ø°k"çØE¯„|”Ã~ÅKá8v(ì*Ô{å`×`]–ü´»vê‡=Êv ¥§…—‚Þ\÷%´gb£^çÃ}çËr]þ\¨ñoAâ}bfß4ö´+¡¾³9Þ¼”ÞœÖs‚ׇ=9˜ Ïÿ(ÈÏ; ö» *€ìÙæÏ >Oyºžz`7¼ìÄåºyÝyÁo%òrRÇyÐnøð!ðÃG½±£Ò/\ÿI—¿Jõ™ðÞ€_CÿÁ—€Gsúë8þd·o°ûŸ*ËuùôüÊï þ’yg(¿Ô#—÷·rüIL|ŽZü_9šåýÞ¥Íæ½ _>ü/ä½<äý庿v¸óD¨ûDÿK¼Ï~ó{ý9+}ù…‡û©^é¯3ñ¥ä {¼Þï/…ñ½bZT~ô‡yëùð}wNç™Çj>µóò3Þž ×}µù’õ?PžgJO¿VúÏ¥~xüœN½I| ½á; ý`Ü€O^zÂ{ý‘? ö‹¹|¾¿˜Ïòe4èå›ù®°uóÕø^2o½ÑµË×qüzYÿÄÄÊëˆìf½Íë_¬kUíÏ|4ÖíX—bý*ì3öu¬‡x½Kå³&ÞÝk·z¼¬4ǽþ£4ï ÖùöY·KLlå þ ëÝØul‘<³>ìuzÇÂz2ÇáßaaŸõlì+¬kÃó ë׿¹=ð ©õÆ~Ï><;x²^wÏyZâ/ÈöÕºé{#zƒÝ4¼ôåž®7Ïàa‰ð°«šç ´ùºoàÏüæöP¿[Ûjõbwµ½Y÷Ç~E=¿.1±3ä¾¼¢ ú`¹GîþUG>áO˜¯'„¯d^ß?tÒ_So¸Ÿîc}”>Á׸§qÇíQ>NòÓQÎÛúùÊ|7x/ð©=.èü(è|JËé?Ërœ_÷1YïyóK_ï=ïûzÜcQú¶ÚO½‡gg½êÚÛ÷óI|;Ñûsà·1Ÿâ»€ù‹ùnU—yš÷é(Íþ%ö·ÜR¹øÏô~ •ß¹¾ûšß7æó­–ßWÌ3oë8¼Ÿ;BÚÏIõìûù$¾èïwæýæ§I޽Ày¡ùiÓ¥žÁO[ß~~ƒ±L®_)Ç“1O}eÝîÕÆñý¥¿¬Ó±NÏÑðûœO˜ü´Ä_’³«’Sxwìã& O ¿øU0?Mß Þ |ì2ð”æÂ}(;«ì.¯Üûs²¾,û©ù8öCD;•>܅׫Gâ°Ñþ§ŽJná‰}Zµ?Ëü7ø^Ø=ñ?"ù_ðjÄ[3;)òy<Ø!ÅK}åö Ǻzþ]ê3~ÑÌ#z îðëÕã]AìÙö[Ç{‘ç‰ù×ÚÙå}¥ã³Ýñ~ÓÇA΢'x*³åyêãx®äƒ/o”÷üqÝ_q)á›â­ï~M6š!¼.”èøw¼×˜gÀæ½ Ÿ÷ÿgïß–ô*®tῺéÅÝZ½h«)7¶ŒØhƒ@T%ùT7À pÜ€.€à|:ò‘tÚ|G}Ä™#:BŽðA¯à ‡;ºcÅÿÞç÷¼kŽR°ÒfÖɨ9ßÜŒÌ#3gŽ'Ç®¶ûéÌÃöÓ_œ¤ýOヅò×ÿoÞ¶>¬þWúcè ¼¿{pSðü¹§ãÞ ;3\$”õÉwÁôV¿øIÿêr}ØÞ§±þÙÿ¤œw–úQÖå­z³ÒAoœ¯¸gÙs™èÿ€îŠó5ï*§~Âò;<–ý¼¤sÏ韟´ú£o)ç½”ßø/I—zº?WútО—:Çw>ËŽ¿Ø{ù‘kø*v 8¬é'­~¼’Ïyný†mê)?ô _ÎiÄ7 Å•-ËYéJP½+áÏëúþ†·ý¨¿•ÈiqX‘çúÕˆœ³Ãñ?ľHس/ïõ± ²ò£Sÿ0Ç¢ï)ÿ¯´·¯t¥ßMo¾ÜÈÝÈ#ùüMÖ‘Û‘óëä8òÝ|ôçÖ×ÿÿõ/éoìlžáUàRê¿iè œUýF/êj?ùÿQÎJWúÃêyüTÖó7=ùmô#ïK#×ÅY)‡>äù^òã!ÿYÇ6;õÿeÿ7˽¦Þ¼¯?ÂMGÝŸ+}:hq±õkÿ”ùÝ|oÿTù\O¿vü;]ùá´ÔWœ–ãרý8ÉâÝóž³ø;êþ\éÓAû¿§E~Ý„gª?óÐú-ÏïÓÿÿô&=O¾ëù-“ß=«úËû‹ÉÇ¿˜ó…¿òÞ×JWúô¦öûÛ8¡ü#‰ÃO\{ »NãâD®Ù7ÅÙabÿ þäl(»ü>Õ{Rèjï\é©7ð1Ï‡Ò vF8vKø¬Ê±ß#¿üZˆGXœVò‰ƒöúxæÇ¬~ú’΀1ñõøg:N¯Ö}ÚJWúWÏ/Gg´¸Kó@ðswàéaÖ½½Í{óÀO—ùŠïáñ';÷ÿÄÓÜû·¤W_ô¾qjŸÝ<ß…Ãü}òŸM|Ðú;L\Ðâ3­»/mÒ·Ýâ †ï½÷k|ÄÝå¾–ß4í<êñ[éÑÐÆå ­¿=ûNò×üÂR¯*oÒÃó?gµþòGª|åÂ7t÷9ëlÞÃóYç­«‘ïâáX‹û_®³õ—HŸí—ã·ñsÿq¹¯­¿Ð¡O+}ºhå´þpÇ~Ð÷]÷}IçþÍÛyöÝf]!Ïprâ3ÂyÃíÁç×oÒÓWû\ûÙSô+éáháÉ}WÂM|Ÿòáûø~Ç~6õ¾»Ô·î‹WÿiO%­@÷ËàOˉÞ8·ƒË N®øÆÍû³Ê!·©GùgG½Å¯Þúš±>ŸË³úáðÞÙÙ¼¿poY®ó¸Yñð9ï‘z¯ÜÉ·y`Ä!-îðíu½yiñ¤Î×Åó¸¸sÿ¯òÑûøyW'.ˆø’®ñJÉqò9wþ>ãi:ççç ¥¿=ÇäÝ=j¸#å 6îªrõíM:ö0çùõŸæ}ÒK\à•>™ô€½UÜ?¸9ñ4Å[‚;à—ƒ?ö^ñcù³¹¼³y¾šçÆõÌ{~×Z^êaOf·­8´~sòLï÷*åðöÑX/à/¥Þú§ÒŽäãÏßæqU?Z®_+}:hñvp û;÷ÿg°ñ=óûõÈ<¼(üxg—˜üõ»$½­Ÿ(|D~á™®¾Ä#œñä¤kÔ¼?çóæ’Ïò{l©w×Ðèþç÷³ÅwÏJŸºó¹sÿoo”<’ßýüNÈ¿ùÜ|}k“Î:♿5òÝ8›‘Kx"媧ñœ•{s!¯õc6õZ~¸õ‡³õ6(<”u­óIÊã?Í:ý?êq\éKû]b?ÿcßäûÄ÷¿gögð;öÿ¾{ø!›~ÊP÷àÜR¿ïâw6rm¿‡ûÉÆé<¿l‡ý[ö‹m÷å[›ò4åO?j¾÷àúìëú~Õ›§‘6Ž€ï\çYüŠùŽ'ßõŸFîC{_¼ò— N¢òœC÷¼ë“e¹ï÷Ô›ò|Ç‹‹à|.ÐyÒ< ñ>_¶§q BgüÏÆ]¸¹îÓžBZ{à›‘v vöç»ÎÙ=ø„§cGa×<­Ü<Ãϱû4~cò³IÏÎx~ÕøA{M=ø ew}}ìÓä×NñLùÚM>þ¨ð#÷±ïõ8®ôÇ¥µò? ß¿oÇ2ýбó7·÷Ç<ÃÍœ MÜÍÚYáqØëÓ×<¿œrßSyùÞ ø¾»ÿŒ¼ÿ›eº¶>áX¨tñ/TþÍ+õÏ•gqG-õñi£[cæŸMÿ5Nê¦_ΩöµÓæãåølå3é‚Ïè¸ð5çcöpãfuÈyeoo¼åPöõ“7ó;y°ÎðÈ?•tädÆó3_‚Óªž¼Ác[W^ýi‚+ WÿÏ!å·_’ÿücÁÁfßwèøëWú¦ŸþŸ1“vO­ÿ&÷èƒyPܰ®ëä*ÏôéÌ!ãëwúiž'¯ä¤¿‡Â}Ð+zãwß)ôN›>û~‡W!'ìáä•_ªãôC»’ô îå•o‘kõÀÏØßiÜ‚ý¿W¹WÁÝòñE¯ëöó…žè‡CÇß|Ó{ôϺƒŸ±|å)×øªwéIú ~ƒ<“Có(áõÿôàñÙÆ× •\/ré;šŸ)üÐÛÆr&œ»}ãjÒ£´‹|øÞÐNýçæ¸ëÂ!ßÇ•Gó< ê¾à |Ï·ßÍ'‡ô«{EÖUãcþóþ·èùFòÏUüјW}W ÜÎÓFÛOðüæ÷>gžá¶ŠÉï܇ó éoÍy•{ÎΉĻ¼9³nH_?R­Ï{çCð1¿80|èòMîRž~pÛxƒ›ò´»ç_ÊIzøç]ð/êßþåÏêýe==o.Î,ϳÜ¿y]ØâxÔÚ8¥ÊMÿϧ×YfìxÆ£~Î2~žÅíƒSùèùö ¹My⪰_|˜rÙ9ÜwžvéÈ«üìñSÐzùéPû; ü ùT?? µÓ„^ ½štì~ÚsõÞåç^EúögÞ³7ö>ùËö°lÿvÜô—þSþ¬w9¯ÿå¸Öoƒ~6,Û«¾£–ß]_øcb×n¼­ô7\Rñc<¾ÅÙx^‹Gè]Æ£~r’n¬øŽŒ+9«=þØRžÙÍo|–çäú½õëv~Éß¾ôéöÿâSÂ?œÖÞ!óÃïSŠh4þª~Ñïô#éŠÏú*ïóûCæ[~øYã¿Ìû)Oü4Á£ߟèÁ~ê/^„Üÿ6òýó|#Ï×gºß>Pîë·­óEž[ŽúÿoÑ·òXÿS)§xšÈiñi(}§ÿ»‹÷Ûòñ“|7ôã—Ë|ñŸµmßíñ¬Þ9Oj'¹H¹æÓ§4¾ç¶ý‘§Î'äμ7çcò&ÿ—œÏªOòHŽvÇ8|>Æž|²ÔúÝøÌø£ÏÑ'õïxoÙ®Î÷sþÿr¹¾\ŸïÍÿÖ#Ïç‡<þv9ÕUž­'pgžÛîÝe}cݨþá/~Ì‹{Ëyí€þé§88õ“ƒ¼×ß{Ký{Zèÿ”~éú9­¿1rf·>%]ð\÷i)¯û‡ýŒKÊ›øøî‹B¯†^ùíÓì}¯ßNïŒož'^¹þÚnü‘ñýÒ~9Ïsô <~ãejÇçËt¾ÏúÝ(ýXG‹ýd)ÿÞ_¶}¯þÑÿÆûÒÐ#íÅoïOȇÿ¼/~nYÎÓBë¾Ï÷ ïïyžä¼ÀyK¿C<ï´ß¿ð‡Æ£ø¯<×/:>üž÷Ww©<÷°z/+¿;ºD^óÞ9ÑÅÔSœXž?éÉ{Ï)ÐȽïgçpfü¿i—vë¿‹#ŸsKåö~çP8²ÞK>ç`½ç–ß9÷ÜâKñ“r»Çwq”÷-çÛO*ÝÚ'ŒWžÙØÓøG’ý¥÷~Yof>rôÖ(‡=…ý…Ÿ5çÃo†¸0v—Þ[ö>õ±ËiŸsíw?§’OûÕ«hOâןW<‘|æã1äàŸ—ý¹ÒG›Âò+V|ãñ!·Ö xGx«à‡Š»#/üòŸô²ç m¼Òâ+—ómãÑÑ{üÀ‹í晼†~Ò¶~œòü̆Þùcê¿õŸöÊà;qU÷þ+ô¿óþÍå¼¶÷§ÔrÔ÷÷KýÚÉßþ‡ <þt®7+->~ªóažOѾ,ÏÇ–ãÝu•^Gy翬#‡è!¹yi¹.užÇþìÛ^´ÿË{úåý²O˺\nîÐ;û)úi}Q¯}Á‰¥Þ¯ûÕàë­e{º~ýÏ‘ßz3Ú¿ÒG›/m¾ì½—Pû=ß1Ö8L¸¸c¾·?ª>æ¹ñAólÿò³±Þøîð]cý€S¶¿‚ƒ¡/¾×ìCg¼R÷{ì÷ìµ§ûű~~s©ßo¦^¸=ûÃÓC?ÌïŽvÒû|·µ<¬ôáhñQ÷¸ý®ßl¨ºÎ8/r>ä|Àý-ßåÊß|{<;Ÿ‚s¼poùýá|£8×›Kþໜ/Ô?Y¨öô¼Aú´.Õ=³éÏÍ:eÑÞ·­Þú½þÓv—éÞYösßk×™7­ôѤÛóÙÈ |1jñ›C~œÏó^ï{þ9½rÙ—ä«€äƒkƒß.Þ4Ôù{qš¡ôýF|’žË“ïÔWü%þ¥÷LŸ´úÐþ£ÿøéÌO½©ÿ´M9G-+}8ºµ#FNØWÉÃþfãuOÆN wP»fä€=”ý‘]–}ˆÝ—=²vÅÔ o GÏê7&ÏWSOíš;Éï}ø©}X>å«7¿ßyo´ë‹Eýí¿Æ;M¾ú¿úQûöÐ'öá«ËrWúhÓ-ˆ|D^ßó·ùý³\4¾gÒíïlž§?¥âN-ÓÑ'x¶âåè!}Š<_÷iô-¾¦þÉ”;ô»õÈïijÑCxLx(øˆâà~»ÜO_šßéùÄã—:ôæ};¶Ð³•>Út‹ ˸Îyøn-rR|å •×èQñwÑ›¹nÇeÞWÒW/È;¾¬#ôû³åºY4dú£xYúàyÈ}ã‚ßéGºÆM]êßvý[~7­ôѦ•Køx•Þ#м}´”‡-îKþ±ßócŸæ{ãÑÎ~ªþ£SËsï3%½ý›ï2÷ßäo}sŸ6ÊçïL?ø½~¡ÓîìÇÚõkmÞIþâîÒ¾óü^¿l©7÷…ŽZVúp´ø(çVäÞ¥÷U3îΡ74ùê'ÜsäíBÒM?èð{¾—û=®^é#WÎwá‹|·÷<Ëù9MºÞWû Ž®çvƒž õ¯–úœWÐ÷ ³ü¡_gó»öñ»æv–é?íäà•_>ö˜é? júÉ¡¯ÇÕ›÷ì.Ú×8&êIyìªüý°ûÖ¦Ÿ×õæq¢µ×ÜÌxŠC¼É~âúuÜùUb%Oì¤Þó÷—@átØåÉ3ùäGi'õÂÿàow“ïÎïó;?Mì¸ð'ò»ùá¹Ñ^vØáðîŒoš8ˆµ»ÂEhç )OùÓÏšòáÌ#ú3x¤£–‡•~?tú£ÚÆ™F#OÅWFÈœ£ù?ñ.‹[a¿‡Oí¼nÉ{õü2Ïð¡åïŸñÊÿ ývó|ç+z½\ŸZŽõèEíY®+úIûàƒÌGø†Ókoz>~µ¬¥78«îËí/Ìëö;7ܸÙô;Ç>­xaz¹²ßé¾kì‡èí¯‡¼¿5øâw ;©×>Œ¿=ÖëŸýañèËþhzzy"åóÇeßiþ°ÎWÞü¯<¸Ü•>ž”üöپܽßEp]âp—ٿ½E>C}‡Óz7s>å½½ÜwÕ?bòû^-—þ¸GóÞȧ^zñΘÞÏï%ýùeôw÷n|'ÕZʧ·õƒ8ôôܪ73ñòœõÙù®{ŸüÂuõÞ^äCºyžåÖùšûžÎÅz2åÃí87çVõ³&(>‹ËIyçnmÞ;î½?r¿»ì‹‡¬7S¨i<|œ8ã~"œÞQÿJÿ2:ýƒ¹'¿•È…{Öì7ΧFº[›tõ·–÷õGy½â9”Ý…¾Ôÿ@ò89寿'ïÓ³”1ù‹;KúÞ Ü7ÎŽçel瓤«¿6óCêA/-õ¾ù?\öûJ/ÊþÝçgþÓØ¹ë7&¿×OGÞ×Ghãk&]ñ/Ç6Ï›¶³Ñ³â"Çpg-ÿ³E}å·ñÎnŽz"÷~¯Ÿ·{ËßÙsg|6ø›ágg;¿¤¼úߊþ·iŸß‡öå£ÿ•þetŽßþ7òr}#?õ#–ùsÿ«ÈK䫸réùÓª¿'}ý»%ý ¿çýð_¿TÚ#ßî²ýÁ±è·â‹Ò®úKþ‰;:ÄÛQÿJÿ2 §µÕ›S‹q.>¬øHrG¬w#7ù½xÎO—ór× ëVèõ³u |\ûú+Ã~è±v쇿èKñoô騲>ïG|Ïm½Ò¥}Ús`}Õþ¥žÀ¯õø¯ô/Ô›Çþ¡óþÍ!ß_,Ÿáèá'áíwŠ_³oKºú“NúúIKyðqðc¯6¿¿œ/H?ýÚÁkÓËÆY'ç›ß[?Ó¾W®N¾=ÛO¦¼+£?ü^¿n;ËzÆ|µÒNjڧ÷Ùw,üpjOù=ŸgçJüŽÁ±9Ç‚»$ÿý.÷{ò_šgçÈpbã0öi“Ž4x9ü×›÷¾Óo/ÛÝ8Ëu ç„õ{Úøù]?hwó¥Ü÷áâ²+}¼hÏ_ù™r¯Þ=_÷ŽÙù•b—äç­ñ^Rœ{ ùg×q™]ȽgvÒé?Ž?ªC®Ï$ÿéå~ªvH~àÕzyÈñŒou2Tœííýíð%=üÄ©‘ú)ö¢•>^´þbà_àU_vèIãÜæwvrç8ñ6¯ŒráNàg1ÏÒÉÏç/¦ðgo†ü¼±L7ûa漢=î¾ íÉóñÑ.ù¼Ÿñð†_¹ÕÔCÊ'ùᯋ™Ÿöeãç(>`äø®ø²ä îÎÅøÂЇ)×;y?ã%›Ÿ­CÅѨ'Ïð2ŧ%ßK)ß| ,>3\šþøGíT~Ê™x.úL_ŽZ9Myú/øÔúƒÒÿáã¨åb¥ßL»Ïy{)¯•/ó·ù«þŒÈù=òC^é 9‡$ïöIõó4äó@Út{Ï$ã —E.{/j¹ŸØÆ÷ÜÝPø§â¬B}7xïž—{gäðä7ï«[¯¸†ôÝ>Þ÷ŽtÖß)æ{þ–øw†õž+.ÆwùƒŸ>þ©|‡ëO÷͆ߥ­¨ÙO›rZVúzÃoÖÅŒ\•ó¦úÇ÷;9ñyè¹ß#oîßún=›tÎgÏ…ö<,éfö’òá½z—#ù_F¹Éç~?; þàÂð5qh™§ŽZVúzs}#ä qû~»¡O–ñ­Ÿ¢Œÿ´›×Sä¤ñ?³ÔÏKʯ¿šOrS;º¸®ŸOÃO»úôwS;{ÚµŸòf<7¿ë‡úÏI½õóÅò÷ƃíåÇfú¿)?©§ñãN­zóÑÆµ¼9¾‘ñýMänêÆHÇßyþMÆ¿þÇÐß.õŠ<Ãg5žå—Ës€ÆW£/Ê£ß_æ}ôàzôi⾊oÁ·rRoË¡?‘ëÆWÔ®ðßø†Ò¥þâeò{ã…Þõ¡á¾æ7¾ZVúzC.+™/;¿“ó!_ƽñ]å¿ùÙ]Êuß“grL®Ègä¿ü¥þÆe&ÿ»Kþï×úb}"§i…p¡×#÷ð:üLu]ùtÉöðï×øÚÖ#|YO´O}ôÛ¼ql՛Ljv>¼:ä¡þïìO"•“1¯÷}ä¢~wRÞ¨Ç÷Cå0å©·þÃð1öKõ—ys©3=ýãÇoÆçÄ÷¼/s®ìÊhŸï&´~¦¥KyÚÝxó©~¥ŸZVúzÓïÞŒ#¿e½_¹,¾*ôò äðBä¦þÎRîÅÈ‘s&åMÿy~‡Ûâ·¬¸±üoUfÒ5îeøèyþµ““÷´ÓyCÏ3Rôü¸­]êx3çÿ™üÎIzn°IÔò°Ò‡£â]ÔÎ÷3$¼—|ìšì3ÎQø®3_,ß³£³ŸÂ'8g®_³¤C×2úÀþ8ã{ªwà¾ŧi;”vñOpÚóhü܉Ðò“rà-رØà‚ØSG<š•>Ú´xøòÅÏn?ÃÎÍß?yõ˜tìîÅw y‚WQ>¹/þ,ÏìòêçW ®½ÿìöò¿þøÕþGH÷ÀÿZý´å=ü?oõ¯„Ï<7NÔ(¾ç×–ÞÔn¬½ÆqŽçIý2Ú%ÝîæùοIŸ÷ðú7銣 nånâIníÍä5ô™¼Wï³›ò7ŒŸE¸–ãÆ/”¿;þ²ÚÎ<ã7~öÚã»>Ä#k|Ýä ~ªüèÏøÇ¼ Ç’8›õ7_3û³~6óû‹iï¿+_{ð•gë|ÙŒ[Û8~I/þ2Î/¤¾ÿý£½üŒ)ŸŸ>þ¡Š¯r„ßéWP{þf“OÒ;ÿ'ùåƒC 'Æõ¿Ö5ýúÜè'õ¾°lßÞä½yH{OûM½7 wÚùnóþΗÉo>â·.åÜù]~Ï>¡~ÉUý©Ò“ü®<ýßž~ª?ɤ—Ï<GŸ¤ò¯Y{õKòÛW™w‹{Mü!¿Û‡tÌsçïǼLÞµ¿òC®Ì3IGÎé¹³"ï/Ž~Qo÷icáTàAñ7ýÙfÙêG¨þ³²^˜÷Žñèø&|ø·Ïäg7òÕyËýŒKå—Ü¿,_Ê{Ijw¨yZÿëã†oýlÿm?Éœù ~}»öŒríƒÉ˜ǺVNÊmœ¼Ñ¿p%pZÚÁ/½ý±ùGûÝÛ0^üów…OõßÞ<Ÿ Å÷éðOk¿®ò§¾3£­{ôľßøÇϼìûXÿºB¯”?ú˸ï¨9Ϙ‡|LJS#_ëM~8/òšy}«·C.£ï{zi=äGêìx¦Åo†ÂùÔïzÊoÿ‡rl^3Þ³<í§·ö­æ;~¢´×w“qѾâ“ÏþØ÷¡yÖ¼Iá"œoˆÇ¯7D.‹‡Jýõ OŽô“çüî¹÷ ÕC¯ROÓ¥ÿ‹ãØûYy¯Ýð[õG¯þPçAä îDW–rΦ΃œ?Õï~¯û<›/|Çç™÷üÛÃgÑž<Ã…©ßø4þåà»ñ0µ3ãU¾ÉGè{ú9¿_ ŸçF;à_ŒSûK?¤ílœDã7äªãL~ôÓ8@åhŸ~Ñ~ó|µq¹8êUŽóÆ ƒ?ç’ô_ú_yô}ƹªþPç†øý0|]R_ò;—Ôÿw’tõ[%_øê½oõ+oÌSpNð„pLÊA‡6~%¹—ÿî•»ïÛ{ÂhÒ_&GyÏß}p®ëÜ™Üâ»ý—÷ìå[?å¹þÃ>_ö?¨óqø­Æíýfüœƒ›&¿ãâG]”Æxi·q/N?‡JgÞbß©\H¯<òJÿÇûž×+WÿñšòÕúB‹Ë#7ÆmèÛ•Ñv7ö¼ûªß+ïÙ{Ï1õè§â˜ò~ßûßnÞ7¾Vøbw§·­O?„²§¹`w¬]QþÝ¥|ó÷#~|;›vÔ_WÚÛx|y_;zÚÓôyn¼¯ðÇÞØ8—äJ{òž~”ý²ö̤o}ŸeH»n y/®ÿðiì“úK¿¨goÖûeÞ'ÝGƒ_ólíªI§½p í´Cý퇤«Ÿý®üô/\Aýmø}ÔÓ¸…ÚùÕr¾õŒý~œcòê9õ‘Søßï/—rZ9O=Å'‘CùÌÇäK½á×x^÷üå²¼Ž{ò™'éWë½½ä«ïñ«~zóÕ{ýc>ðL/Ó.|ÀØW~ƒß´ç†yGÿ¤œâ­Ž-ÇW½Åᤜú7‡þK?hÏÄgŸ¦\ýB>Fûù{:€1Ú›~nyæ“/—ò_¼¾OÒÃ#ÔÏZÒ·Þ1Žú¹ø´åsñ9_,Ë)®hÈ1¹«¿4ã­ÿÏèçâ>åä÷ßèõGÿn(çæ²ÜŽ÷˜WÉœbç妿:nÚG¾èkú×úXù÷Œ¯9ïùh\U|DëGƒßŽ£r½_æÝÊãÐ÷£üÊùËú•Û~ÄoÚ]9ÔÆ/åÕ˜yøæò÷9î¯N-å¼ý%ÿÐ zÒö‡ïkæu㲿¤c›v×fê¯Þñ®\¨ç‹%_çŒÃô‡Øx¤#ŸyΩr>ëÏÍüc~3?hgú³ñ­Ç|Ý8Ú×âŒÂOý§¾ÆÑÏZá·q¸Õ~z$ïëï+ï›/Ô~uîôsã‹£ú-õÁCñ“Õ¸àiöê×®ã_,·Ï(îkÈu÷gúYù÷ÜåkÌGäôR~ï}ùõGžµß¾3îùü‡ßM7òù¾2¾õ?­¼Ôo¿ÖƒKò=¦þúa›ò’ü½ÿ£]Ò~ëÍ8§õ›âÉ©vynvžYœ~"‡øRŽq”Nýô!õéÝ¿ì}MãMN“O·|ãŸ÷êÑ¿Îë§ûçÞ¿ǤyYNíçøUoýå9ø†½ÿ/ùñ/îÖÿùÔ§ýpYÚ«ßØ©ÅÉÓï§õú’–¿;úG;ðÁžÇŽÈîßV¼H(»:ÜTqkä0ïÍ3ø8™gó…q¤¯ÚÝ8døN¹ú]Y}ì¸ð ìÚÆ¹8ó¾ñ“rj÷—Oožïî„?ãdܤ+ÎmŒÏOGypP¯þõ/{uú÷¨ñq:í8þÝ¿‰ûÉxTßGÀ»æòV¼9óÎ+Ëq.þ¾’“‰ÿx~Ìô·_9‚/ÁOðgÅ»LmððA¯ŽzÌ+úA}ð±ÑÏý­Þ?lòñŸÖvŸXækû/´8­3KùÞûÓæ}óѧgRnø¾ó¿ÍáÅU.ç¿£–ËG_a_¨É©y¬øÀ¼‡×"—ŸLBíw'Ù~Åü>æGõÛß¼:êk|MrúO£ÖµèñÞÍ«)·ñÙ—õ·_È¿ýmqŸy¶¯íþgôÛðoÛr³¿ÚÉ_×cóLðDM=ê:¬¯ =¡·æ ø¶âÊ¢Ÿ÷ò»ñi<ù¤ÿùƒù^éÇÊQúÏþºññnoÞ£Ö¡³C®è}G¿ B˹Q.}(>2Ïs_C¿|àÞ þNýü~žû™Þ{I¾ñÕ~ñïDïɱïM¸z ujÈ7™ïißU'¼?Úâx‡¾†¯¦Óÿæ“Þ«Hùî •ï›Ñw|†¾»êÍCé ùþÏœ³Ì8–ÎåÎENàœœg#çjí+B»8tNàüîŽjú5ô]ÞóÍäó ÇežunÇVü\ä¦ñ:o.÷ióôBòÕ¯[ê¡/úËy…s©ö×HïüÃùYôéÀøôÞ_ø×îð±åW½ÆÃx7õè÷¤3Oºúöª7¥7Ó/˜syvã]œWƯþËüžñiɼwÎ÷伸çÜ~WäªxÀО'óÔâÞŒ¿g¿ãç“å|v)é/ßZÈmqQµ$}ÒðG0ë‰ý¯åÍ{×=Ÿ§—cýèýôÔ§ÿ[ßÐsýªžâ÷F?õ>|úѼéüúƒ%ß+=Do&nìúþfœÐÆ—Lÿ³?ïå9ôJÆ—ÝŽ=òZ(¹c—fmœÚÈ'û«ñ-¾åãMùðêó¾ø¸ÔW{¹÷©G½åÈ¡úÙ¿Ùë寿´/ÓÒ}–z‡ÞŸ6ú^loèmíÓ©?úqò«\óúä³¾kwqkÆU{w|¬ô½)Þ%ã·ö›ôgñi(9Í8ÀYÁ‘'x£â„"'Å­Fþ*OI_9Q^òM|Nñ[¡Å+*Ÿ|«Ç{í‰þÿÖ~)®–œ)?韖gÞ M¿lûYz|Ó·”{cêtúm´3¸鋳½·ì×úµ¢ß™ŸŠõþÓE?¬ô0½1žcþ­Ü›ß3.ðRõëi<”C¾ó\œ[Þ%]~'?Öþf«oÆŸ<п!-7úP\ÜçCnÈ¥ö}¼\¬Wõƒ5æñâàÒ|FÎ]×÷FzëÇõI?k‡þHúOºíS^ËO¿êO¸žâ.óÞ<•ùæ¨åòQ§[²éÏî·"/ö[õ#–çW³¸ª‘> þjúk¼òÈ奔cŸVnêUùŽ<ö>Nò5Þg¨ïéÌÃÅÛDŽàànÕ%éëNºäkù_,×øþÆñÔ®<_YêÛÿ˜~ß}+c}º<ò_ãXþÆ~­÷un/ÚwÔrù¸Ðž§7•~„så;•|Ï8•=KþÞËJ9óœn–ãÎw¬s«ÞÏ˸Ëï°çgá³÷q“®÷É“úñ›|øý0z£?æ=eçðiCŽ{¯5éàÇú¡ÿ|ß÷>òî¢þmúÙΔ·æ¹÷„Ç8y>·ä{¥‡è {†óÛâÔòžýÄyèéAÙ?j_e/€_+^.nääÈß{óõ£ÅË%}qUyÏ®Ï.¯s&î^ì½Ô_|Úh>ÞýÔ¸t©·~¤òþÍMþö3>õ7{¼Á[#=þŠ¿K:våY>mì[ú®a7ùájô—rÅ3Œ}÷¨åòQ§õCÇVÿ<éoöpvpvøâ2ý.}òã ð_pä°x»ä‡ÿb}iä.éàtðÏ ÇùrÒ㬸‡ä¯ß¨PõÃÀ£ˆ[Hé#?4ÏŒõâå!×—ôê²½MŸ~¿óç”~{~9Úe^ŸÀoôeë¿+﵎/xWxÊ£–Ë•þ°´82ø98ZòÀ]äºòö|ä^«q87¿—SœgÝ1ßÛš÷=ò4ü”m˼6h¨}&9æß ΞÌw¢ï†êMê=?ß]øËïÒÓҧ3^o¶ßOɧ\ûn8'~ß™z~2¯õ¸®ô‡¥=çƒ +Ž1ïáÌŠÏÊûy?7rßr{PùÉ_g~O½îÑ¿Á9ß“p€Êyo#¯[?l©§ú–çàÛôƒó”Ö›çâñR¯s€éOþ|èÛÖË•>Y´ö÷êáLë-òóá}qÛé¹,;û ¢\øÏúõK¾úkËïΟ?åÂÛ9o\Ó<8_—>üθ¾9o?ÐÎáñÑóöð9ï½ó'à^ï…Ô3ÎÏWúdÒ­¿°/#Ï‘Ûú%‹<6~¹ÜÈ7ÉžÉî gà÷ø¼<×oZä±ø»ÔÇn[Ytë'é³Í¸ÃÑúŠüO–ß‹¢ò}¶”×ú]ú8¿Gß?7åJwÀšz¿XòYkgùÇϲܕ>™´xÔ)ÏÅY~ö`9­>rýÛ¬Ö§¤+>ÍzBîé×îò=½€sÙÿj©/õF¿ÇºX¼uhýËYç–r¿Õz>׿Px¡Æ£ŒžÑKë͵e¹+}2év¼ç¾#ò\Îöùöc·"Gɇú¾®¿­äsïˆüÙÖ]ê­?lõÛä¿:åÚzps©oòÁ¯5ncʽ<öi—FûàßàîÜ“êý£óË}]ýIß^÷iO0ÝâÃ"ÇîuÍ{÷Ýk¬ÿ´ÈѼ¯Gß ò[z¡õCõɃÓO?mp”ÓÛ¸·6ÏÎÙê‡.åÃÿˆÇó¹öÇùÁóÂâÐÒîÞÿÄwÞé{¯+}²hñrð8ülÀÕœÎ{öç­ì ƒ“gvþáØAØ/ÙQÇ*éà¼Ø7gÜRüÕž’ßù÷à‡dÆû9úú¨_žÆÅñ{žùY€Ÿ›qî&.öÕØqŽz|WúÃÐú„Ç"g䈽ž¼4ä®q#/ðwäêx(Ü ÿtõ{uõ›Ç>úÒàŽóù¡ì–¿\æ¿ËîçwCßø¿xkðG)§ü7¾Û’ÿ‰Ã;êñ}ÔiíÇü±¯ÍxnpŽÆ‘}9¸Îm¼Ð/Öuþ¯ú»k~È3\QìºÍÇi²~˜èùÀרÿ—«Þ<Ô8Y×ÙÃáàáúí+ffze~äGh]çÿÊñHÂYë_roô·}œ}—õÈ}ƒú'^îןGW½ù.ó[ŸÝ)>#ýï{²q omÆÉw†ïÕCüí­ô!Ǩ~£?â ž_öwqtÎ+è‰{8îÍùŽ:»œß¶þòî­zó0ãtÈý¾í=FçOé÷úËï«°³¡ç×~ÿ«Æ§þÞÒßüÈÕ/Vúý˜·_bóûv<§eÜ.ÝŒ‡¸¿Éøü&zÔߣ7ô­ñ=—ãyÔíz\éÖ¿âWéïßf˺Q¿qIWÿpy?qiÅZ®+×3^ׇ>¥Þ£î‡GnñƒÇ–ý?x[}9 ?ÆÅºôéÚïßËxD_nd½Ø5ngÆ«þå¢7õó¶ÿu;Åmœ3ÿˆê¿¶Ü·­ô°qJÿÖÏ_æ¯+ÞçnñT·6ùŠkÌø­û´¿n<ê7ò^\¦ïÐe?÷Öï˜Ï—û;ù®.Çó0üæaã¾ÒÑO=¿I?»ÿté~ý`ù{ñ‘¾W/>8ßJ¿eܯs>Ù¸ΑCg|éÖ{ϧ‹Ëó3ãv€ ëzóPãÅ>àœŸÝæ½ó\7Äë|og3n§óþ½{k¿ÿ%ãÀ^Ãþ 'Ç*nNý„º÷| ¾gôžhà8»ÍžzÔýñ¸Ð⼌Ó‡ô+;´8‘Û»žÃüUýÏ\hä|â—ŠƒO3§2üãÀ™Â¼´)«gø½£î•þ8´~šàÍËð•ÅoF^ÄÇׯ~?“O¼SøQr G _ürÞÃEò׆úq åíOzWýÏœ_®ð€æ³ãy~6éÏŒúù?›ñ„ù“Lð w ÿøÑÚ]õæi¢•[xûo´~¡ÈüýÐφÜåo™tüå¨×ïüaÚG™ï¥Î¥ñx±”×-ž;ùNZO’__˜gé^H:qÝÛ±¯Þ9DoÄ+<±¡G=ž+ýqhñ(onÆî·òrb<÷ûÌ÷„tÉï{Ÿ&ßåÖ™W—ßÅ#¹gçgÿT?l‘gÏõk–ôâ+6žír\™{j¿¿â ¯ÑßEø‡g;?øWþÙåû•>Ù´rKÞòÕøIÇYqx·7ò ‡çžhãp*'ùê*nìlÊéýÉO–å7®ƒü©G}¦>éÃЃ‹)¯÷DCÅp¿ÔùZã6ÌþØ]ìÇößO½ï-߯ôÉ¤Ûø6C/G¾‹ÛŠ\ˆÉÿ\JãÄ„òOÐsÜÐâ»Rs{ïá-ÙMÜ÷W/ ùnùù^гêºçþyßö…ò =s3ò5>=WŸölòõ¸®ô‡¥Å'НX?i‘ƒâ´"õ[æ÷O7égÜÏâº"ÿüàÌx›üâ°ON?Lø©§cËüõ¿”òë-éùŸ™ñ²JS¾¸qømºÔGêç³¼O=Úÿу¿VúdÑmDò9äß&ï·é÷7r.½x¥õÖòÈUã"ÞÝäãÿ©ñ “üz¾._Êi¹Ñׯüí&îjäɹ@ýFo~o}W"—ÊísÒ×?tÊ›T\\zFÎñѸÀá³ûŤãïŒßÍ?µ8ÃÔ3ö_ý~ã¿°~¬—ývÔãºÒ–öž¿€î3ú>÷ìÜìbÒÃq‘#¸»úQ‹œù¾æŸÍùpý¡%½sµÆ÷$çy>7ÞÓ¯ÆMyÓ‰õ¥~Ïœïµ]Ñ÷Õ´¯Ï)·÷E—õ´?s®vÔãºÒ–Öîr:rÿs&òÑû÷¡ì$ò9O’žä-4rÊî8ËE§þ ÙMQv£ú{Ã_ø?dúÀÿMžù+>-úÉÏ?Sü[ÁC4ÞɆßöç©Íû£וþ°´þ¿ØëÉ+{9¿üÃÀ­ˆK:ü…m㓆¾”|ì¨ÿ2ô“¾ø¿|Á4¾oÒó‡ÆÞ8ù.AÃê‹|ì¸ÞŸÂo~‡+H9ïYŽß?_|ÏèŸoüÂ?WÏ¥¿£ïwø}ãÿJûžÝü¾÷‡´ãÅ<ÿ.ÏMŸrá–ß5j¼Jqïà5àC2¾wÿ.ü‰ó%.Ÿø´Æ™Ìxä0óØÝÿ'éw“~'¿?zÛx|á_ÿ¼Iç¿ó»ù±ñÍÈGžùToäYüËâÊàÉ´—ȃg8ÂçóÜyÃxiwžÍCüK’Gó„ñ0/’rUªøIÿ’+û óæk£?õ?ü92Ïñ)ަyØïÏÙ_hÿ#¸0ó¹öѳ_Oþ<'?¼¼y•üšO=ÿsæ-óRý¼…Z§ða¼ÌWäódž¥³ß2ŽÅw©GjOÞ¿™q¸—ßé£tø2úÙ8ª¼ý¿“|æe¸8þycæ©úõ"oÑÃMoÎŒöô¾QÖ?90¾p¬öÙp·pFoEøkćuß:þë!ʵ¾?ùÈ»ûü+‹ûÊ_!>È ùžrŽ÷nmÒiÇ\w¦eùé“ï”öK~÷½÷k¾‡ïGÚ³rå'ÖõâºnGOñª¼úY¿µl¿ïóÑé!Ÿê7M¾é™õÎ<¦ßÞ _Ó6¼šòñá»MùpHwêýF4½Çîløvòœþ…Gj\Èô·ûboþ|oÈ'|UýÌEßÎ¥x*éô/y5OKç=?v}z*$9ê3¾ô{hýÜyÐ>ç:ÚwQ{R¾s#üÖ¢ôé/¸ßÁ¾çßN:ý¯Ÿõ[ý¿é¯¼¿0êkçÓÚë\Þ±þÇRî¥1>ì;Åuâ?õ;÷Ö_=ß•_½#ŸþÇìù1½Å·z“nŽ«q`šý¯ŸÄ﹤œðíüݼ§¾œßÿhzïÅ_qú(í‚o0îäTœ 8¥úUH»Ä⿌Ü6NWò³²“Áö¼ä/Ž*å°›7¾]ú—ݹx«¤¯5z¤Î/Û;ãL²çW‰¿¼Ç\fãþ©Oÿ¤¾ëÊIþöcòë·ÚCýþqú?Ò¥žËú)ùú{øó^?Ô¿\ÊŸq¢j¿WNøn¼ÀÐâ5G?ã«qo/ǧí’nȉ~€º:øqCp½Á_qvø#Æ7í3îä·8¤»Ky.Þ(ãë¹ãeüÈÓoS~ÊkVý;ä…¼]ßOþ¤kÜËäï³ù ´|ç÷¶ÿ“ñ^½ÉWýLýÅ5’«ü>ñ+Åså¹ýþµ‡=¼q/É™þÒîô'¿díwýkžÐ¿ôw´wŽÃÿfÆñÞèí3>úc”ƒ¯/—å”’È~¬ý¯>å©wSÞ¦7æã[ü‡ùŽ<ê÷¤k\ãôS×Ï—ý`^*Î0å˜?ª·C.‹ßõ>õ*§þñ©ÿ>_öoñRä ß§–õ×oy¤ÿÆ_ÖŽ¯–rÝøzøVî±åü.¾úžüÐçÝe?ÖÏåзâÒò¾ë€õcèç¿ä7þs>¬'¿òõWã^¶œ'ŠSúAß«¯£Þþ.ý¿îƒôϘG¢ÿ?ÞzþŒ·}Ûµðc¿o?í=Ü’õüJÚ'¢½ö-7¿ð×L_R^ËÍïÝŸ½ñlŸÇN¯•c>è~A=öá·þŒóܸ•Ú¡¼1ž¾S|Çù.$_õ+–÷ô_»™÷ã™ô¾7¦Ÿd´ß?é/ß)Ú1ãe–æýŒXœÛè·¶ÇøŒ~Á÷G£_>å·6Þ«§åj÷îƒ÷¥íÍï?šÞð?î{γœWðï;×wûy¿§ß½ðpPäÈ÷'¼“óá~‡æwçIîû9ßÁÇyù†\9¯9—ç ô*Ïgž}gj/¾ûý«½yöÝÚ8ÉGNœ+iŸïãò«þ<;ÇxðÓs(ü˜oÒÏÊ÷Þ¹Nñ]yÏÞáÓ¹Á¹/F>ó_ê+>mÒ”ßs°ðAž¦èí¯ÿ4ý¡ß“N»{¿tÔW<\ÊO9?šÞ°ËÀ!9e`ÿ çÎqß‘.ÏÎqû³—ÃU9—<•ß—2Ïì ­7¿¿ž|ìaÒ;ï–Ï9ñ™Á?;»ª|gRÞë㹸ªÔÏn¢½pð ìzß’ô¯þÐîÚqüžrOæ™øàßïìo~=;eí2ÿiB§=¿?ÊnÇ^¿Ÿ†6®g~'7ì¹Æ Åÿún€=·xíŧ÷Ÿÿ¨ë ;Û]vrvÞgÃWp!w~·áëÎïÃçô÷³›öñßOþË.ürÞÿüI=Þ'?~b7¯Ý’Ÿ¢ŒCñìrð+ð,ä¿'†^±â ŸÚs<éPrwOAÿÈÿMð2ð ì¥üÐÐöW¸¸¸ öa㣟ٛQöÏRÞ3£?ÔßóåhoýD‘ßQ/?SøcŸ+sSÎ]õ›?‹ñ(®@?~“Ž|‚Ëù±ôf¥?,íze=ûÕSrcÞgÿ'ôŽ}>蟇ÜZwÈzé¹urèAù¤ÇÕïÁ¯y#x9óhõßôžš_þi¹(·¸DëŸvÃiI÷ë|ÒÕaèK«Þ¨ñ”ጔcÿc}´¥Wö™¾k¬söC¿rÜ}¡}Gòõ~Â&ßÞuÎȾìDêmèÓ¿ =µ.×ï"=ͳ}Ø›c_!}ñŒÉ÷ËUožºõ#9š~À|/ýøn±^û!ß9¾ûœÛÐrÞó™Ýå³}y Žm».¦|V?CñC|÷VßR¾ïí>%߆¨Ïwÿjg–üõ£ç)Ïw zÏ®zó$Оÿ9Ÿ#ÎÛzOòÞRàýä»8ò“çâBëO-¿;rNUüÝîr½é9eä´çbÉç|lâ§ðíœXýp™ÅõÝ\ÈõÖŸ[Ò9gu¾Vÿi7—ë4¾œOéŸ÷–z¹ÒÇ“V?Ÿ2òÏvùÖF®ù€Ûq^oæÆñ¹â9rŒ:'oœÍ<»×?âa–?¿³5>Jø*Þ,õ²ï‘_ø+çÔêeŸi¿$¿óôú‰K~õÃß™ØàO‹o»½Ø®ôñ¤µcÖOÒ—y€S/¸±¿‘—kIW¼Käˆ}vÚÿù»Ùå5N™r>ÞÔ[{ä®x…<ÃÀÔÏZê©]Ÿ‘ïâ3’žµ¸“ð1ñ-ß|¯¤›vmý`¾3ùh]ožºõ#¹«ÿ°ÏB#‡‹½"÷Å“Dè œ¨¸¤-ç«Íú7ôÍ-´øµPþªÛÞ<tûœquþå\«÷²"ΡzO-rQ¼^äÊwrýŸç¹ø?éÉkøp®[Ü\ä×ù”ïn³ßß)ǹÆå—üðhqƒêIýÊI¹G=î+ý+õ¦~2¾ì,ìì‹M—ñwÿ—}„އýÄ9lý ¦\÷–k7TNÒã£ö¤c?*_©ï×ã={Mý >Ù?áÎð7£v\xHùÅk…ûkª¤;•òלßQûJÿ:Z\@ýÖ#ò9 'ð-ôˆýnìtòÁ¯À9²’Oþ@àqà&žnìd(û¨ô¯|p8ä—~ÀWŠïùïÚ™tø-.f”ÿb(»oð:õ  /§¦Þø‰9êqÒhýïŒ×]þ½ø­1Îìêæ½_ ¹gŸßÝÐú©j\>ò §ª¼â1“<üËÐzG 7 Ï ¦Ho’¶]yæ?ïòŸßñ|¼ï¯–zwh¿ÿäÁòÜyãoBßýœqÚû³þY–·õ¶êÍ¢7pðæÉâùŠ<¸a?B~Š m|M¿§û•î[ò;û:ù€ƒ,^F}¡ÏÒÇä'_ð(Ö¡â´Õ7Ö£îó´7åÙ¯™÷ña^/þeó\ù=ùÍòZ|ÚéëÕÖ¿[(¼ù¤8¢ðW¼©~…ëË>î¨åìI£Ý÷øÎ=“ñ°?·ÿñý€—â½ÌïC¾ï;ãÙ÷…{êµ?ç‡Ê÷„u„ÞÒsë•üp1‡y.ò6ý>Á’çÞ_»½ïÞóS>ðëûÃ9Û–ׯg?}ˆ^éWþðÙzó _£üOõ;̸ÞþÆuo¥¡Þð‹Ós™ô»{®½‡˜ñr^ô^ÞÃG¸'鼊üõ~âù¥ü:/k<¾È‹ó§úsÃgž‹;‹|ô{¯Ô>òzŠOK»¦·âr´#éÛþ<ÿF~åÞ\òþŒÇÄÝÕïÔÇËþšxœâ~¾ú{lÕ›DoÈ-yÕïäÚ3¹&äxʹñÜߌ7-ú†ïúƒú O—”þ>j9{Òhå¶~[3þöGõ F?_ާ÷¾W6´ûñ¤ã¯ìÚ(¯ûBò9¨Ÿ2ë–z"_—Cç2éà½àb|÷Ÿ–öÕO0:öA¾c¦Ÿ¸âõé¾úµ~zwG=çûµ­ŸFtèOñœŸŒþQ^žûøÉª7?„Þô»;rt)ýN{^”ßû]}kù켬÷ÉäÏûé×zÆ©TOñcwç\ðYü·Ã›ÍïîÆ÷LþúwOúúmO:ç½õƒ—òêçý“e9ÚO¦ÞúÙÏ{éëo]¿©O¿-׃ökû[yòkWÚ3ã‚Îø¢éÿ£–³'…ÖÀÈÎÇþç=;Šx0ïåw÷ßÙmØKá Ø!ÉW㙄²·òk&nhýÞäY½Î‡ÙÙUù)<ã9¿ó[À.úæ(¯ñ?G{ØAà}fœNõðÀžÊ^¥ŸÅïôî,ýÕqi¾”ÃNÃ>s2ùØ¡kï5N7—ãùÆr=[é_©7ìàðaï”þ®Ÿ½1Np.p^ìØô.Ž…½9ÞËœüø}è y“ïÔ¨ç¥È\ ¿up³¾ÇníÔH—Ó¸R¡–rP¸ŸSù]o±I×8qÊ­ÿÀѯo¦]»y·‡slÔÇÞ G¤ŸŽ¯zóPú@NàËàÂP8äàœê§‹^düŠOƒWÃqû{ýÝå÷àÍ¿„žÂ·˜ç•Ïÿ(y†;#/pÀðä’ÿÁ’ž|§½ÅÉáÓ:e]yy“®ýè½òø3,Ž-ïÃÇÞŸ7Ïwþs“o‹»ÜÔ×ráðàÞvF½ñ µ÷¯©ßúBoáMƒ‹½#Ý/–úQ‘»Ëõl¥‡èyÊ:MÞè…y•TŽòÞ¼Ö¸¦yæç¾>ÅøØW‘7r¡~û±ÆU´N%¿¸pæ[úcÞ† ›r5ãDjw×ÑðK¯Þù´?~€·ý˜÷Å«u)û¸½¿óÇy:õy†?²>_Êõ6^v~×Úº3ö»{ÿ¹ü½å4žãR/WzˆÞÀ1Òûzß-ÅyŒy×÷ùð`½·Ï‡S<˜ý¸ùѼÜû*COðf´ï÷½nØQNhïЗ<˧¾£Ýå7íyq¹N¶áè—üôsâõê‡;éotô¿þ¤7Ó_›ùÄ<ÔûB©§÷ŒþÆzcÿ¾Z.uZ¹àßËw;ÜSÏsq™yßx¥äWúŒ»sßÖ ¸0zÐs£ÔGåžcéÍ<8'r®ÆŸÙ»CŸà3wÁ­áûâÈï^dϯBÏÏöÞ\î—ܳô]Aúðs>õô>gÒëOóH辶ßÈ»õjúOkQý¡¾äoûõ‹ùg©å÷¥>­ô½)Î˸eÙëÉÏÄW9Ç,Ž,ãÚ¸“ô/ãÖóWãýiÔ!7¥É?χ×ö¾3yÍïì?Kªüð]\]ÞO\òèýûƒŸàØÚmWÊïýkùR^ㆤ¾ž«Ó'ý¾écý¤Ý[Ö«=Å¥¥|ý®¾ÆýLúÇzY¿tK½\é!zÃιÿÕ¦ÿàEj‹üÔnZûÝCòWûcä>“ýtÆ­? òžüp-ä3åñ÷r5õ—ïcÊžXƒ©nŒ]°8®Ôe¤«½tÌûg¨}Éßøyy®X9£ÿà-êÏã‹eÄz°ÞüÎ^/àwúCŸ”“÷Áíµ\>êô@|Oøw7Ïü–ÕWÞ×ý‚küA¿“ã•òàJŠ_Iýhýÿ ½©²ð#nbýœ¥\þúŠÓ"—‘ÃúeÛ]–W|Xôsò]c_,õ¦x×ÈoËût™¯x<|¤}7¤ÓÎü^ÿUúáØ²Þ¶ ŸæÔ¼0~oœÆÌ+Åa|µêÍC­7äuÈwqdôżn<3ŽðU׬c~$'¿Ižè«qK:¸™«#]ý†yŸ|Åi’Û/–åO:ÖÇæÃ×çËö7cÊ뺠þ¡7Ó¹×]3¿´=øG?ëJžëoQº±žMi3^y×QíSÿûkËuh¥‡éMÆeƉo|ÐȉýIqYÆ!ãÖ}Eƥ镣û+òøùRΊ» ó~ÍÄu]UNÒ]žõ¥Üú7KúKôB{“núU¶ïlœÍå~§ý¨]p/Êï¾5ý¢ôÒ¾±÷/ðŸôÖ1ýÛ¸õÆ%Ï«ª]òiÒû>¬?µ<û~ý‘ã{>®´ß‘Å-¥ß}Ïzßó¦ŒS¿w“ßsïæ}¿«#‡¾s‹×’.T>ßA¾ó{¯+åákú9;¹í¹XÒùNöÞ÷8=ó\~ÓÞâ¸Âoñ)yn|‚Ñhã{zVöàKû“¾÷OÕ§Ýyßx¢ùݹÝä¿íNýú㨷õoúï¨åòQ§µ+:çD§²°7°×¼™ññž^J9ì:ì&îÙe'„ _õ36¨úkwÁWò±5î©ö¥|¸çâÎeg|LöÚâÞð¥=¡ì¢ì®§’Þ{vý5ýwhÿôó&}ñn)‡_)öœÚi´3ïßK~öh8 x xö¤‡ô¨åòQ§íÏgŒWúý®øô/»zûÈ?û%{÷Kr¥>öÀÆM¹'“îÑ{¸‘çòðµÿ+/å°—òwC_Ù«¿©Þÿ»y×Ã./žÏ .bÚûëï/ï•W{çh/|ÚŸŒCÒMÿiÆC;ùyƒï€3 >§í4ž¯š8 G-—:í<#njíô/q¸àfàO¬÷»KŽóžþ4nn~7ÿY?È ¹†§¢7â¼ÒëUÇ=éà_^4¯†Âc¢ŸÚøžô9”?%úyˆËÊ«yã§ËùZ;¿uàç&Þ™þÁ!ýÏñ»ùA?ýz¶só,}ñ…'F9ÆmÄA\é!ãež³ÿéz÷ö/ÏÚ$Ý©¥ùSŽó>åœóûÅe¾ý¯çsâ j/}°n0ôæ¢þI¿4¾aÚíÞ¨sÌÆûM=æCéÖøž§7ÎqkHÿ²—M¼Ô¼^;Éù¥ü³ƒÆmIùðlä•}âRÊo=×òGòÞ3;Pã{J~êO-ïÙ1Ï&ùá|ø‰ÒŒõæÚhóìËC¿ØU>x°þ´¿¡¿õ~ mœÏê×__,ó·óL¯ô‡y®ã·Ôû•¢7û_mú‹ÿŠú_ùxÓ¿‡Å«Ý\ºŒ?y«]ú·Iï÷Èiñ y¯¼–›zèÿiõ£¶¿)‡½Þæ~S~íðŸ/˯_4¿G~úþXô1ïSÞþ«?ü¦½û9õÎx å÷Óô¿v›OÔ>gîßéOqéoå±ßâû£1}þÀv®tŽ{ú~†üý&ýXœGƫϟú#§åJ_LôT\Íâµè«ñ4þʹ¹ü]|O|Ô/ÛлÊùò§Ü韭~ØÒ/Ň¡ä\»=oøÛö¯þ"¯)ÿFê¯7õâãËeÿNÿpÞ—_ý¥Ÿéƒy@¹Ÿ-ÛS¼ÞR¯Z.uºíGóVúþT_È×§CŽC÷æ8œ_êtõë7ô«ã˜ò;ïµ”×úÿ:¶¬®“òÕOfÚS¿jÊò ×rF?é“ï›çéCýN€Å‡ÒÐú{ë{õ9í¿6ÊÃïÕ%Ÿ[=·î/ÛÔrù¨Óâ2?rP¿Éx©kƒÂ…ö¾@¨ýGÓg¼<·™ñ³>L\YË»½LG/ëG6Ͻyi<óÔë»Çw >µo~OÙ'fÛ~ëwQä3ôÐ~ÖÞkCžëWøéáüÊOê/-ão6âªWoà—4é|—®÷Šö¾“ïÓúÍK¿:WªßýÈgïQ%}uqQùÝ9–|¾W/Œqs×Õïé”×{U_ßÿ­?åÖZÊ9Ÿ÷üÿeõˆ_4z£?¤ï¹wÊQ\ØååºÓs ¸½â>Éqøëy_Þ÷<,å²W¿–z‹oK»é½óãÔ8¤Ê5îêK=V½y(½qOß9§óâÆ}L²¿Ô^ÊRÜXÊs®Ê_Aï-§ö öxöWçÞÒ+÷tÞ×nã?©÷TÊãçìÌhü»êÙ‘Î=ìwG;Ù­à¹ô{çŒ_ÖxL¡ìµø¯ÝL=ú]úÑ^¿ŸõÂÎs~zz2åÁK±cýzô ü]Æå¨åòQ§ÅW7ÎÆ5ïÙ«õñ`Cžà Ï/¿ïæýËy²OòŸ@è \$<&üXý)\&ßÉÁ\\|õ‹6ÚÑ8rùýgc§„xá›å­íx}”óúhOq›rï|©ý© ÎN žîÿÆ ~ îÕü¢_á9^XêÿJWú Z¿HÖ¡èÍÞåÙ¼±›çàÊG…Ç·„§ü»<¿Jü²ÝÙ,çŸÜߦ½?óû[ÿn)Çó±üþÖ²þ=ú5üìT?3ñ×Ö¸ð<ü/ÆOÞQËJmÚuÏzký…s…W3¯ÓëÍKI/ùþ±ÖóƉ&¿Ê}m<+ÏºÑøÑô=ÏYë/q®Áîä¯xìÆkÍóÏ×õf¥¡7¾Ïì—Üsè}ßyÿb(¼·ï÷Áz_éyß>òtÒÑ?ëšý–ßOê» ^F}ýܹÿ7ãènïÙäwßCcÿ¸âlVúôÇy@qZ·7rXjäª~Ý"§p”ð¦p™¹{ ùkÁçÑËú‘ËóŒ[[Qø ¿Å㥼s·îó³­7¿;?Q><+~Þ^õf¥ß 'WÇ>&ç·ÛçÈQÏá‡\ãõÞuä×yð•Ë_ã눗[\lÞ;O„Wm\ߤkœÓûëyÚJH·røUäÿëvÄ›.æÞR?&Ú:p}SÎA}ùj¹^l’ílý¹E_àƒŠgÞm]ºµÉ_<Ú²Þþݬ[­žÌÖ¡±]éJrì;ÎŒ\Õ¿tä±x.û´È-<‹û9paÅÑÜüf¹­Ú¦¸´úÿý|”Ÿ|ðeò]ÞÔÛúFœÎ­¸”kýñ½‡3ÊYéJzSÿ董ⴆþL—ói8$çÎÅz/öÞRná¤÷}NŽëï-Ôýté—«çܨÿüò»¤xCçk½ïôî™Â»9÷HùG=>+}4éÖ¯Zä–î«þJBáéØéÇ*”Ý}à„ZÜ?Að;p.gBáÒà˜”ÈNúƨÿ×ãüŒ½æ#|¼Í™ÁÏ«>ÏXéJïË»¼ødpðƒ¹‚›a}mù{q9¿xð÷AýôÐxÆI eÿ|y“î.\ÍK¡/Žrøçš¸ÒgèËæ÷;ÿFOµS9£ÞXêûJ‘ýWÒ8~æŸô§ø›¿3NËñšq#ëO†}^ÎëµQNp%ÅOEnj—ÿå òü¼zÇ|KàºøÝûyøI{w–üß¹÷ßI?ýŒ)‡üÏUù >­ýÄÖñ¥<Þùý&ß]òýwúiÔ7&îîߤ<ëMô¾íÀøÒqEÿ}¹þlÓåýOW½y(½áÏ>N‘Ùßâ£CéyÚ¼9).žœÙ$>fëCÉÜXãjy⯠ŽkøËÛ1åGnª×ö'ô> .Z{ž¥÷Ë}KýµÐ|Ö¯b~~•S¦üÖ~3‹Çγ~÷÷Õe¿|›¿@xš½?%ßô_øú²Þ£–ËGnãp§?áŸøì=ó\ÞûÎ…+»šûqÔºsövô)ù­kôÉ} ßž_òëþŠï‚Ü#©\~Eïéþ½ßîÇÐ#rlß?ýÀ¹Pýí½¢ñÝŸïûIÿøÎ9=ê—î4=úQÿræ/å,õòÀ8×[ÒÏøžîY~\é!ýéÞÖÅô'Ü“{—îÁgõ¼'ÏpMpR=W u^4Ï¡êgßsä®çE~¿µÏOÓýK|s Ê-Ùù!wî¯òçO/,õ>­å6NhòÑÔ{‰ûØøs¿¼x5ùúÅøéoýÿæþ7;>ã?­íê½öu½y(½a/ÞË8ÜØßPþ:è?(ÅidkïÎ{éëW"ã‡ÅÎÆOùÇã—ƒÞ÷ðY¾ùEb祿Ûá“.¬~Æè¿÷‘·ú±zÓ8R‘C|7¦Ÿð¹¯œ/–éÿ3ùàø}àgaÆ—º6ûÿTڙߋc0Ÿeú¶K{>Z®ë+=Doßr#wõÛô›O7Ôï¿9¶é÷éÿúñ ½žñ­_¢¤ãï¨øCã–úøišþóªò}µ\O~¹‡tÌŸârŽzá/Ä]¤§äû“e¹õ—•zg\Ö«}Ò«gÔ+>âõÙ?ÑŸ–“~®ß.íÎ8•~œt™§¿¡ú{šóŸô·ý¼ÒCô¦ãöÉr~ºžþ6Õ+úôæýâõ?½RŽyи_êWñ‘æ½”3æéízƒ¯èÏð“¹m9º½(ç@<ÞúMëeæÿm¹ò}úÙ˜"¿ðm•çôGõyæ›ü›§ô_ê“~ÆCÕÞÎ3é¿Æs”þ“ezýSÜÏržXé!zC^êÿ,ýgŸpéóåþ¨qÆ—òÜ}MýŸǤ‡Ïï÷ˆù|èGý«ßþd9v‚ßá÷¯û4|ØÏùÞ)N?ï¯$ýyü‡KC_áÙàÔŠOK¾‹iŸï ¿Û¯é'óõ”su)¯Ûx«Æ#Ô÷KëׯÒõïJøí¯ÿë”Ã?×zà»éïOßíä·÷ý¾»'ßý¾[Š«ò>zQ`¡î=Ö›÷Éï;×¹ÔÅ!Wõçþæ½3ßçÎãúzÛå§Þú#gÒ‡?çZgG:ýÔx™ùî5;ïjüOùîö¥žžïe\Î¥\çsò<ã©ö¼-üÇê÷ó³Þe?®ô}aßx{9>Ò—â¯2Þ™rÜ/fïqîÉNá=?ì|ìΟÝfçð;¹å7ŒýÇ=y~Ÿw,”}‰ ßorõÿVìGì4üŽ?Úxnù½þÑÆóŒ÷ÃV㡎þh\ѼçG§ö­CøW;Z{oòÇÏ[ÇyÄ[é!z\Lq%Æ•¼ñÞϾ çÄŽÎ>W?`¡/†—˜qƒ‡„Waç#§ìã?ùɼ@ýå¹8²¤÷ÿ`µ¿ó³T¼CêÇN¾¥þeBÅ÷ü×üÿ£ŸàÄS„¨¿ýA¾ó~îþÓ(癡»cþ9žßŸÏûɧ>ø4ã9â«­8›£¡p[Ô¿2Ž÷æûÉržƒó:P~ã }^åxhë_08—Æ­¥/‘«Æ~ü¶þȆ\‰c _@ŸÛ´oïßR¿y!¸68²»Iw7z_\hô²x8¡ß…þ1åñÓ¶;ø;±,§x¡ô|ç~å—ðغÞ‰Þd±“?û™Ê·}FñÄI×8µò ½‚#¯p@ðÌöI§R>¹Êzr‡Þ¨—Në–y›Üâ·q¦Çºe‡/ëô¯†[_¬+©ï?g?øÕ>ýBÏÃ_ý£iï«ËúŠÃó»ýqp4{¿O¹Ñ§òy’.û}¥?í<7ï—ÀÛúžð}1÷ƒäøäX^Lz~—í§|×ÀÁñwi]ð=C¾}oÌï%rc?4ã`ún(Ÿ†ÂÓøÞð=2ë{e<Ócûº~ÿØ¡áŸiý8ü–Ÿ¹oþÏŒ|Úuf©O+ý‘ôÆ÷hýçgÜ&®Ê9‘ó,8²œ/´\xŸŒ÷ó"ñyOÿÈWã¤ò£çp¦Îḿџ֗üg“žì½QþÙÍû¶C9Ú=ãܪÎM9‡p)îçùÑOÎññÞhý©½ üõª7?ª¾ÀàçéOÆ ®«r9snZ»Mä2çÈ-¿ñAR<ã‡ÉÏÞC^Ù}z/Y¾¤ó;»Eý’å={Œô;ÊžR¿jê¹·Ôƒú3Ó>Ϩv ùv¾ÜçȵöêYŸómçÍìì÷±»Ø¯;ü®­ôÖvPv8qt—8LðÖì‡ì7ìpì¡#î×o•ò®%; û:|Vñiyfÿƒ ì¸ì²ìFø¡'Ò]JºçÚ>ù¿qªPý‘ò/ùÅwã[O}N~þ8®½¡ÿ'¥]i¯ö ¿“ߣ–§§…_Ó8ºä9ã çX\Ièx˜ÉüÀVo~ùMy£øqô#åKWœLhqpä*å\ßO9Ÿ†¿Áý‹EþŠ_[¾ßÎ;ËòZïçK=ÖŽÆ‹Ëï×F}ê/þmèûœ_gíÖ†¸„Î_yÿÑÔWõ.û}¥?°Þ7E?Èeä¨øÇ¤ ¾f«äÒ¸ŽýwqÄ߯ߵ‘Gr˜÷«>F<ÎʹréwqÙòÑ÷MAÛ¸¦Ÿ,ë‡G³ž¨·øoóÈr½Ø¿>¯.׃­þâ‹ÞŸ_Ôs`½jCõæý•ÐÔ·]gð³,o¥?,í¼3Êsn%¿û•~ÿpÌ×Åw%]ñf)ŸÝÆýLqœ÷'¹Ön¸ çaøpÞßÖsº¤Ÿ÷\õoÎéœÏõ÷óé/õèOï[nøâ§¡é—ûΕþÀzÃ>ÏR\VÆçdÞÓ·“÷ì1ô„]F9ð'‡Ê~©‚ûûr~vS^qôM{èCüIoœ[q;úÁ<§|öÞãëz³ÒoÐóÈWýñYÏÌÃpïz|Î ôeS^ñw™'ê¯møA»óUô"ò F/w.éŒydø}*ÎŽð‡H?3‡7g^üõø¬ôѤ]Ÿà\๭7ǬöC.Å?{içþ_qqÝïŒyÝ~38ïÆ÷äѺd²î¸g0ânZ'ûüÂ&},Îî&ûÇêÍ‹Ë÷í—V½Yé7è Ü}¿·"7p¥ðnî¹7D¯è|<\üؼGSüØØ_Z¿|¾2ê™~CG<Áîo{ï#?î M¿îiÿéuŸ¶ÒoЛyŽUi‘~É=¯F/è‹ßSžó<ø<úV?n77åòßî÷âæÂ½siø;Ÿþ{ΆüÁ òS¯ê~¡ç³yþàWºÒ…ÞÔÞ9W¦q4éy-^åÖ×mÏ‘§}¥~Ì"Ïp«ð{óy'å†?ëØûc}Éù~Ÿ/ßÉ_¿hž“Ž…ÎIwaݧ­ôô¦~É"Gììŧ_Ê9ÿ!ìœìŸìöp=µÓçùòL—ògü)õ³‡²CÒãËCO&. N®x¿´Kýæí¹>.¥]ìÂé—£Ÿ•>š´¸x™ë‘×âx~»‘3éŠ;–çÈ!üPñdÒE.ëÿêî×oýj5>®ú"çõC¥ÞÝE¹åú§j:zøÉ²|z GP¼SÞ׿κެôôÎlÈ[qÍ»C¾Éÿ­ä#ï»Cß>éOmžëÿ/ù'þ»ï£Ö§âÓÆ÷LÒoŸÃ'œ9ÜÛô#—Ýù@ýŸ,òõø¬ôѤ[<¾ýÑr¿ßIîìß>Y>Ÿ–t¾säo¾Èiãu*ß~Ê~,ïáê§jèMðF}†´¿³_ë=„Íïŧùîñýäûkyþ°Ò•.ôÆ÷³ïrCîêßüÖ×¶þ×Ü¿ì=Òäo¼MryåÝww¿ÛSN¿ÿ£7ÎõÞÛÙÔ+Ý™¥<÷ÜÞÌù˜{«žáØàÐæïM~ß[~G­t¥÷åÍýúžÓæ¹ñ=ó ·Õx9¡ü¹½1ò±»Ÿ …sŽÌŽÂ~ßœOýÒíÜÿ«}•=Fܧ?çw¸7ø;öYåÃ÷½˜rQxö!ía'Šõ¨Çi¥­|“;þØàÄØ ÙëùM7<ŸØ¹ÿWü×Gyp;µG.å³ñ«y†ç ~áîK©‡?¨Ëïpsâ&ÚNþègýØT?R=ª¿®ÍïG=N+ý~hÇÕ¼úÂFŠ Ž«rÅàó‘›{æÝä¿›»ÓÚ‰”{o¼þŒÿ³âb‚“)ŸÁ‘mq`)'¸/¸³âÓàEŸYÊëþNøO<^~©ðÕtÑ—;ù½x†ð]œÛs›ò¶8œ”šŽ­ß7O=€o±Ïçù˜}KäÔþ'þôŠ{4¯[ìÛ๎/çíxx2x³¬åÓþK=ÖþI³ªÿÀ·v[Nê›qŸzc³ý{ò¥Å턟;ÿ>¢§Å§ñ'úÒª7Oí>‰_2¸®é§9ßÝ7Ñ û3ß)¯ ¹rß…þùþ‡wñdýéþjÈqýHÓ»Ôs*ϾcàÓ¤Ÿñ°}Ÿ¸`_ufè×+£z _è«ï-éÍ;'CO,Û{Ôã½ÒïIoà®"7õ£TäûÙ¹€s$ïûù«¿qò9zȽ8 Î|_ÃÕÀ}5î@Þó»ÆúÅ”;ãǶ»8_8Ðn|Ô¯ZÊq^Ñ{uI_?ðyßsCé¿XÒ³cŸ6øXéãIkï`‡a—x'rÂ~ÉN2ý§±óœN~ö‹úCËóŒ£Ù¸ž¡üЛÚIò̾ÏÀþÂïÇ©Qnã¦Üøck»Ù;Oöðo¥<~ÞíÔþtøªŸ¹üþæRoVúdPøú/ƒ`§c¿ç÷E¼×‰³|1éÄ7›qüàxØåéAð_Å«ÔObê Ž¦ø~›~6žé+Ü \ ‰‡Öv‡ß»Ê™qñ÷̆$žãWù>îæ÷çp¥)—pä‰=½8à¥ÝÍx7ä¡þð~>æÅâT–ùšßüÇXüQu¿<­Þï¨ùxÔi÷ôãeûûÝo˜—_ûaû€úÙÌ3=d??n¾ùÍ{ü—ýË:nG*?_÷mÕOý~عÿW–8ypp&3îfü+oýB'ýËu£ûë³ã½ôÅ›=x]ZéJ%Z<Ó…ÍÆ¹ç.ΑÜk¬ÿûd»ï9M¨û‡ï/×â$§ß/÷ ‹Yõf¥>­?0x«‹™÷Ù›kÏHºØÏš¿qg’ž$÷Ý›,ú±}Ÿòù#ûpÕ›•>ú´ömòoGâ=ûû8hcßÅÞV?-ô)ë ¼$ûù•¡‡­ß7+}ôiñ]×7•—ù›O7Ï7<ïÜÿÛ¿1Ö‹wï¿ßêáþ&\ÕèÉŒ'™¸žûû_®ëËJ;Z\SñŽù®©ß<ëPè±¾L?bð…ûCOöƺb»~{]_VúØÑâûêÇ1úQ¿§Ùw]WýÚ¿Ãï_ÚýÆu¤8üÄ=ê~XéJ¿“Þ¸WÕû^¡ð‚îU:wó}BŸê/üóeºáŸ^«ÏÁSuûWºÒ¿Hozž½fØmØwfÌÓÃÎ3qc¿éßç ð,¿ZÏVúøÑâ ŸÛ¹ÿW?ð[p“ÂYÒ;þfàv^zóâÐxGqþV¿]ÝûÝr^«¿x;ø?¿¿¹áÏMÄŒëÞ¿*oC‹Ÿ#7ülýGòG.ïª÷…¼¿ ;Þ<ß…Ûó §Âgü=›ç“á+|4Þêðk´ÿrøúㆻâQz_6ã\ÂÍìà3Ïð5m_žµ/ñ3ë¯L?‹gϸ»ä÷®ßµW;è×ðó´÷ï)×øïàyà>›NòõßIW¿1›çŽ«¸ƒÊÿ·e}Å›þӲܽ/ó^¼Yéâ·êν´78¾úÃÜçó‘³ðY¹‚ûî³~ WƵñ„ÿ×_òh9÷;êg Þ~Ê™rÝKy+å æ³åÑOtÈ}á¯Iœ/åó(yÑÿÇóþ­‘O½ä#õv½ÐõŸ–|½—3øµn¸Ÿã{5zÁ¿ ö½Gƒv„òÓF¾ÞãZù¤_ø¤ïIGÉúÞr¤|~®Å#<™ßµË<â{S:÷ßêo=ù¦ùúçÊïâ!Öû¸¬ÆyË{øß ÊÏû÷Æsï ¦¾Ö¯ŸäK=žËOÞÃw)÷ÜÈ/g¦ð§3.žs4푯åŒòÈ{‰Ú£}æ%탳n¼ŸüÊÿòÌ7ñj/‡Ì[ø¤÷ôºý>æç~ÎñÏ=9wH{7`ô[ã{†¯÷F¿yßq1$ùV¾7 >°xÀÊ™qå_8ÚeÜÍúÇüÃ_ü“ûæâœ¸gî~¸¸#â‰ÔÏÕ'Kù‚·Âç…ðA´çò¨‡Ÿ+÷c‹sß©_ÒŸü‰³¢rÔø’y_¿`ás¶žRûű€OÃ~ï.~¶ŠGÃ?[ãTÈ?äÂ{÷‰Û®¡×õ/6ò»lœoSûÃ_ï#“û”wI¿$þõ91ÞäuÆ¥©ß±O–ý"`ÇûÖ²ã_ÿnúK;É‘v&}ã‘êWý¯Þ´_¹Æ·þÜR.¹4Ï5¾çæ÷žß°×±·ÕÈ© m¼­ð)Îbå/ïùú2Ò5îOÊå'«þ!ò; ìü4Ê»’t—ßü‡•Ÿ¤o;ÉñçËzø¡Lj_}õ;´³loýÑ«üÎ?Ëžþ wé7|¡ôî£Ñ¿ñ±å/ï»~Œtë§%ϵߎrø‹ñ¾8Ô¤Ÿv_þÅêcÔÛxœá«qÒŒëø]Ô_LÚÕtá§ñÉÿèÇ–?Æå燼õŠ¥*?Æ'õ_ùô¿@õ‡•ràªnèoüäù@Ü,åŸ/F=á3ø«úå).Åø¤¼äöãðOïòLΚ)/õôÛðõÅ'íÔî¯RNø»žòà:oä÷Éw#ïù%*þL>rÏ—üò·§¿¼o\Ê1‰·WÜró;>ùcº6ûK¹ê1^ôV)/´ü§Ü)?•—”߸†øøbôïîèü®¾ú[ý`ü*GÆíXè”|šçüN>É[~¿&½ßg? =1O]?¬~ýGÞBé¥ùkÆA­\·”‡ÒçëÚuo©ø7¯‡l|¦Ü¹Ô'ó^ý‚™GÈ-¹úírÞí ¯Å­¥ŸªWÉïY¼×)Wõ ¦üÝåüa^ê:â÷¤o?è/¿Gí¹¹'ïÍ·üî~î8î,iñÜø g£Ü¶›ÜÝZÖcý®žI§êßý?äº~Ú´[ÿ¡ôjèÅl§õžŸ)ýY\:¾ÿ¾/¦6òx%娇×/U~w?å2="÷ÆMº¡'ÞóK¤\|Ú§*߾ž¿ñ'•k>Ë{ùìɽýõÜG^ùÌ'Ýßà#å\¾µ|_¹òÔ} ~äõÕ«òð>|õ»`´Û|ruô·v+_½s­Ü_úÇ÷¶ï„qï¨ýä{°þ¤“Ž¿ªé?íÒ÷Îÿyîøùë~;éÝW*Þ ?ø¸µ,—¼Òíº2úÁ÷”ï¶úiõ}çüØw½ñqŽ$gçÎÕê×ËïáÃ÷«~õ=ïþ—ó/~ä}·:_{'íz/ÏgÈvç½ñwîä\€½Äù”~æ_«çG·—éÎzNzß©¾Ë{þ4ô²ç úU{Ï/ÛÙó ýHŽýnœ´O¿|…ú#˳rœÏÖZ(ÿ糩ÒN¿+Ï÷¹~Uà½ó@vŠé_K9ÎÓ¥sŽÞø©—œ³O:Ge·Šý¹íÀœŠsYç¼ìì ììwìZεOI—rœß7Îd¨zØj§Hyì$Òiëíc/ÐNör~r”k¼^ü(çDÞ×®cœôsžÙ…jï5ŽâZðO¦Ÿõ?{Õkc^H¹ÊWÞ«£ß¼Ç/û8~&nI?“Gö[rÜøŸI‡ýÌ.Df|Ï7ÆïÚi\Ø+áØgÙ«_Y>Àçh_ýg…Æž·ÿEw•{oñ± çr|“?õ£ôLÞçù.½?aoCóþ‡ÿ¥Íë­ß/8ò œEý±³ÕŽ¾Ø¯Û>ò‘ô/æý®qüW°Å“$}ã }ž_¡øK#wÇÈaÞ›¿”ÇnúÓÙI/^¼†vÁd\kçf—6Ï¥½s¦=Ê3nú•?³ßãÏ<‘ßõ_äí®ù>å–òÈ^­?‚Ÿ€ËQ^ý§MÜSãzêŸÍïG[é÷C+'Ö8À¯–òºïBá¿È5½ŒoñiËýAñMôKù0ß ½ þå¨ûi¥+]èõÎú¯ó7CŽí“­“Y§âÓò\=L¾Ÿ.÷]è¡õξÏz÷Ëuž^é£G‹ô}g}°Olüʬ páäÞw½ê÷J~·ï†?õÝã^’óx?ûõq_b¥+}”è¹íùØoòg8Ï÷œMÿýðaÅåå÷s·6Tý§™tï­ëÌJ]ÚóáâÛn}ýÃö<.¥÷½ó{Ï©éYhã×DØ5àù.…6¾gôʹ>{OκVºÒê |{}ã{F¾á4ØAÙûØÍg3¿³¯‰ÃÆ>^üY(;4ûzãmæýˆË¹Ò•> t×/rZ|Zô^noêÁH×4qeŹývó\|Pž[?zjYÏGëz³ÒGnñ‡‘{8®ÆÙŒ7{jI‹ïÞÿºÀ-NL9ÅyeÝ*N9å¿Fïò\|ã±õûf¥íw <—ùn îªq0Ç>­÷Báó>ùßS9¡Å'ÚŸ…ö¾Ö¦œ£î§•®t¡7ÅFÎ/F^áÓß3ïsÁÍ5ÿËï{¸ÀâìRNï‹yÎ:„ÂßôÞðùuŸ¶ÒGއ/çu†ßï¡Å]íÜÿ+¾® žË=|x.¿³Íxspbõë÷¯¯z³ÒGgÅ.Ïo?Å« »&¼û&\|Ú‰Ðgóû‹¡ð{ìŸÏlòÕŽúÒÐ×—žLûMqŽp†üÅNñð›úï™ÑÏ·â“vCq€â ~×ø¼0Æ)ï‹ó‹ß°âñÅÿ?ø˜ñaÙÅÕ—\ \àÝòvý§täÒ|š~¼ G¨¾”sNëåPíÕOðeð/ä®ðù”ß—~2^ü)ýrY.œlq³äžøxøÅ¼íW›÷õ3D¯àoàràà+ñAñ©üàeë_H=¿ìÿ;_¦½ÏE·~7Oübä'¯pG‘£úu“.ˆß¨ÈÿÞŸÓòïj\øYSñ3¤_ï’GþàôcðJÅ#‡;_-åwÿµ”wrð¡Ÿõ{ô´~ÈÒ_ÕûÏ/~o¼ã…~Ö>ó=¥OõÿDÞF{ü.ß?Žz²þ•óùn¼gz þe{šÎüðâ(Wûê§k¹~nï“ cÓòE¦_@ro]Ònã=î]tžë~xÌ[g—ãÛõŽÛøš§í·ñÃÿ¹Óï½/²Ô»òcÿ­?à©øã2þ¿ý¡^÷Cèü–ùÁxÁëë7räwû¦î{B}7ðÓD^ʳû'ȇõGþü®åןòñ‡¨½ø°>ÛgéGòþ¼~6~ê …¿ï<‘gãEn¦>ß]]Çõ¹ãjè…~y3¿ó{¥>å'zP?jÊ }kÔ£|÷ÃÜ‹ãïÆ½,~ÏP÷†ú»rò^ɸá[ýÎwÈ…{žïæ÷Ó)×½=ߣî£ÂW¹Ÿ¤ðŠôyÞSS¿üøPœ¿Yê…GñþÑ~zO´·~ø´'Ïü’¡øpò9I¹p2ä ž¥~Òò^ðóî¡ób÷.Ÿy†œ÷ž ¹Ã_ÊõÞü§<ýìwëÛgüëGõê/ý­ßÞ …%gg’ž??åõ~ZžÕ¯ÿÏþv?¶ñŒõWÊ­?º1?ðçf}(>)ïùè½Uï“Þù~ý›…¯Þ/öZÜ`Ê9‡ÿPçš+›ôî¡Ó¯óCÎÝ£EÕ/û»­/ü¸ïÍœ¢öË?ýè¹lžW¡îû:¯=7úS}üº¹ok{¾«G»•Û{éƒ_åÑ+ãwA¹÷–úáÞ´ûÆõǧyßv¥|éøk GúËy4¼›qv?š¿5þÒŒyQnã§\rm> /äMÿò‹ÕqÕïƒö÷ÐÉSêË£_îS;¯ç7]Œ²úIKy×ÂOýSè¿”ÇV{WÊWž÷Ó¿? Žò¯ê¼¯…´‡] þ#äÇý‡¤Ö?ö†ÏâŽE_R<ûòá3õÕo='÷–r Rxžõï õÃ>÷?ÝÔÇÖõ¼Ç§~„c)ÞR?㛼ÓÇ´_zõ'3ÆíꨯþÔð—~œþ•ÈKq4òç¹~!O…þ6éRqlä:í:௠•^~ýª†|×O“qM{êÏ1ù*¯æ‡ðßr>íH=ú»þÀæ8Œ~­_³1Ÿê?ý«ž‰ÛÛí÷;9–ß¼Ògò‚oõ%_ý^JGŸò{ýªgÈ÷ÕQù†©?=ò˜zª¯úݼ@žŒÏÎRÏ*žéIä´ú›ü•/ó—|Ê×c^Õ¾ö¯üæy|šç†þT~çü€?é†üð›I®R_ý^ŸÏ—ýÑv1Úcýò‡_ï[î迎³ùÔ8L9Ä÷˜W¯¾ôCë%/äþÓeú«ƒû€ÎG_,ù·îò·Åš}D×ãÔïwë0ý²îÕZÒùN麈¯”WýIÿÖÿ™ôä^¤¼úq;¿ä³¸ª[Kz‘¾šo”«_µ_¾Ñn|\òZÿ¶£Óßœ~ë~O9ò§Þ~w=«ß4åâ+õ¹W`¿a¿ˆ_ãÐúÇø÷^OÞwß»»œ‡ê'›<乸òps™_}WÆøÚ‡yÿá¬/Ͼ§ŸçúcõÔržñ«ë—Í<›ò¦´é¿íw¡|ú%ùášú(Ÿ÷IßïÂ<Ç”ôgG}¾Óêß?ã¦~çx•£¤ƒÇ:“öøžuÞW¿f)o~gÏïeßÓÝW'Ÿó÷%õãûƒÏÙõx_¿lá—¿±ú«Ï¸ùÞ'wú{ú/?Æ)ïµcâÓ|·×ožõcý¸ç™_xò =Î{>¦=ôN¾ô«ü=ÿ¹·,oúM#Gïí,ùnã•|õ>Z¾úÈ¿qGS®sr{n´“=Á=YçõΧ÷:_ Î-¥kÜÏ¡«£žPvç’íçðíœÒ¹ºv9oeçdd¿9‘ôÎßœ—ן›ßCÙ7á'œ×Û'K=u>ê÷iÇaOrª|ívŽë\›Ý ŸÓn¡=ôNêoãõæhoñ cœgÏ¥µ×øä÷·gFzýÉ>å\¼qjBÙíêÏ̸å÷“£ÝŸ¢>úÁ.£^ãÎŽ §§~vçÊÚ¥ý§>ý%½snü=K.7”Ÿ âØãbwƒ/(îéW㙜°«§Ðx}~‡7ˆÝ•½¾v]vágBá8þa¼ßÍ{¿³¿Å~[œ»³þ}>Ïìáð ê]­qå?.íd_d§KyäÛ¸°S²+×ïZÞ³G7–|úI½pÆaø[ª<ð×Á>Hžø§ao?žôð ì‘ðÅw¤|þÓ¾ÊïúsâAB‹§ðž÷åQ_ò7}q'Æ#éb‡®_îI§Æó.¹:¶éÿâ è *Ý'x™»y†3k=ð¿"¯æq5+¿K}©üOÜÓ‡ÆýÛYüU¥Ÿz„ò«˜ò:/k÷™—ï¦ü»ð†ð`ðKäžß¶/3ïþμ¹ìŸÆuž´ßè ÿ’óQønúg–ùWúÃÐŽ‹ùÕ~źôêó§õæï–rÙùsø#ëüªü3K9Ü⥖ëq²ÿ‘ò­?ŧ$¼šæõî+RõÛþÍ~®iÆ/¤¿Ã/îåk¿uˆ¾*GýÖå”Ûþ±îýnÌ7cŸyç÷á׸ ?¢ú÷¨åêI§ý~±?eȉužÉ÷,œŠy¾¸6ò3æÍúO˸÷»/åÁ‘‘ß¿|ì’÷¼?™üõ»–gõxïûmÆ÷¤w¾gÞKýÅßiOÞûn|ϤóhßÏÓï£Aá7ÞúáûÌw²}\šï#üú¾õÝekÕ›EoÎÞŽÜìnú½çWøç'¾C'>Í9™sœOlë¹¹)<öü(”\Ÿ6þyOOñÙüyï¼ NPyâtž§ù½8¡äkÍ”û®v{6_¤½Å ÝÛ¼o|ÔäƒGðìûž;,^H}£ßµ»õ„?˜öwgþYêãJ ½©ý ôÒX'œk²ƒ±Ÿ‡•|Ñü~aèMñkô%r¢\v xÂÏ´þÓð™÷ì0ì/µ÷ þèYqMô,Ïר?àáÚÜË•¯¸²´Ïù1» {Ÿs÷iGªß8åé’]§ø´/ýuÔrõ¤Óq+W)ÏõgFN2®WƸ7]hÊm=µ›‡²'“Ïâ#ò\œÁà£þ;Â;øŒç9ýo\òv5åN?!Þ_ýQÜ þCÙcá ôgí®øQOÚQ¸ŸÆÕü4ò¹˜x’½!·Ÿ™zñwUüXäª~Øè!yÇÒÏw*é÷Ó‘÷Æôþ§Ÿ+|à 6¾gúUº‰_ì8„šG>鋃Rÿ‹ùj¥ß³¾L½è8E:¾Iw-ïg¼åÆÿ 5~W—û…-þ“ž‘7ùnE^n.Æë/ŸŸyÁ=I¹p*•'r{~©¯Å§\¸Wx¥‰Ã„*¾mô×G#}ã{î§ño}Øý¶”ÿm¼Ñ¤+žÕü£^ålê?jùzRiñhæ-òÐø”öö7öö y.Îm仸œ÷¶8Yû°ÈCãœG¾ìkŠ7òÔ¸÷ö)hÞÛtŸ™rºŸ±J=ŽöùN·ô]Ñøžø%ÇôiÈwýé*'õÁoéÇúÇö<æŸ+øMy¾o® ¾õËåuŸöƒêÍÀuõ}ñNï~Wg|æ½58½úùÏsã{¦œÆaÍóŒ—é{Øw.<_ã˜>z+ùüîûÜw=Þ¹nã¶âs´£çIWÜ^Ês.VùààMÈ 4ãÖ~O½Å…¼`üñ“zàÇv™¯|ßðÏu—œ¥_ÚOø›~ežÛлäW¼WxVí%;CÎàPë·Êz‘t¯Æ6.Ï-å³výÈ}q6ð­ÂwÞÃ)(‡?úpŸõw“þû½gå䙞wãM^àäèûü=õÁÅÝM;wðA®éÏú‡#çÑŸ­ÿ´ðe]›nÈYqƒ“íï¾ Ï)ÿ.9‰–ÿè÷]q—ÓIÉ-½5NèÀíurW½þå²Üö“úÌ“õ§hží,nEyÑOúÑ8{C>ž›|d~¬Þ/ù­Ÿ4ýø/ƒoxã\¿TSþòLÎìÏô‹õK?ØÏ=›üú“?ûó´vÙèÇÆú×þ ÕN¸"ü¿>ÆÉþ¾koöGüN|ÚˆƒØu ×o[äë?Fûñ™ýdï¾2Ô:MOíûŒ÷Ü“wý}rðc¼ÞåÑ'¸ ûRå_¸µ)'øŒê¹yÀþX9¾_Kï¡ä÷7óÞý˜âõB­§F;õ÷iòè=~“ïg£x/8Œ7Fû¦_eý2ý„)_}Å}åùäè÷Œ÷䊾(×>?ö;úu~OøîÂ'y6Îÿ4ú ÞÆ=§úAL~rç~"~à‡f=ÒßqÖÁ¾zdœÝr?Êw_å$é´Óxº¥œ·G}ørÏyλƒöb#×Å‘ËyïþJýÎyÔ_¿Wê•?|Ê_|Rêã_ŒÞÔo–öñ¯?/ù¿s¿÷þ™÷Ê =;ÆÛ9˜ôÎ[¦Ÿ·ײç1ütáßùŒó3üöþjúÇ}@8õ¾3ÚOu&ÏÅÛ ¾è±ï~ýª\rwnôƒv;‡šãª|òT?d£ü’Ÿ3ù];;Þ¨ôyvn8ïIžÒ¯æãÔ×~òå>måyo¼Í~×oÅñ¤_à&¤›ñPz9üõÜpò;ú‡ÜN?i'ÍïÊ/CñÛûÈiý¤<ï{?—\†Öïù!÷¡ê-®)éÙÛ_ñ\£ýµS$_ï§ëç”[¿Éw>ù.¤ÿÄ×tO[«Gº>'=ÿgê'?ì½ÿL¾Â—ûôÎÓù10>ì.äüÜȧüâÓn.ëá'Ìy¸y¢ç÷³=C÷7üà†\7õyî=ùô¹×>öûšÆO e7bÇ-Žá³M¾âÂ/¿/ìÆµË%?»ûUýM¥~ö?vqøˆúóÊ{þC&>‹¿„úóÉïpÞ+?iÿäØüQ¿]I¯®†ŸÆL¿h;{Û·³ìvñiOÃòÉwýwåýôßÁnG¯ë')﯑#üêÿô#ÊßTqby_?-Ò‡ÿéO¬vDúo^1ÆSù¨þS®<³sîq¬ß¾Ô£ÿŠHºúÅ:¶”Gã%ß%ã¯_†|«—üñ·ÄXñTôåËÍ{ãÒx‘äwô·y¸ñëÒ?c—vÁSM?HÅiWø»‘|çUœÅÎà7õG¢Þ´¿8«1^ÓoSãøá?ýs#ü_¿»IwãËeÿ™n¤=×?_ö£öÃi÷’úŠßýQ?fú5õÀY5ÒëŸâÆ~»œ_ŠkSNÒ“ø4ýÐøžÆíÖR[÷Ÿ,ù•®ò¥?”küRÎÄÓ§—þºnÜÕ«<ýi<2N•»´G9ÅÑЫ1?Nù1>×Çï7òì=yÅGñRøz¼7žñSœáî2õê†þK½õ‹H?ͧê=µœo:.c¾Ó_Å}å¹åß^¶«ë®þM}m‡þпô†|µ¬·òsoI›nü¾7ú‹<Ôaø3¯è‡ã®ÿ?YòQ<%y¢¿ç—´~SoçõÛ#¹"çú9ãhþŸë÷”x ÙNéêçŽüjþ_ëýéê—ϸ›/ÒïøÇgï;È—ßë§4ýÜøõ¡½—‘üõ·•gûIß]ד¿û®ün¿jŸb?S|ShýÄÊŸôöyê×ïpOs_m]ÿ±)>£å'ÿôoÚ{&©Ò_Nýüãµ=·—ý×rñ¡ÿõyõ{òÙWÂÑÌtö߯‘¼Õo›öþ|?Õ?œ~Ïûsyo\º¯M¿Øwâ³8¼´ËwŒý\ý®¿Û£=øÛ]Ö§ÜâÓ>YöK¿[Ô“rÝ;*Î-ï§ßfã©,ǵöíúI ~£úý(]Þ÷>QÊíwbÚcÿ}˜_®yÏÏw¿ïºâ°RË uNõáh·gxç'ìÚã\À¹aý~…ç¾G{ÿ)õ;o~Ï{Vøp.Uÿðô |9ë}²<ë_ßûιêÏÜø…ß±ÆÝyi¿³õgøÃ¿s ýY<šß½GóþMý•üä þÕÉQžééô‹×{kC_õ_ùNºO´õÏóƒžc’oïåK9çè¸.iõ†Z»ÙÃϤüS㙿08¾ÚiÈghã@æw÷{;å:‡ep>x:ÏÎÏé‰sýÚió^¹~wNÌnU;]ÒÁ[ÅîR;Rý }±äã­QÏ+£>v-v÷ý¥s]ÿ9ÆŸ÷p'ì~ì"äÆxœô{ž‹#óŸ£ý­wŒ[ŸµS¹yf§aÏ3Gã-½qo¼ÄÐâÇF¿çáªrÙ8By®½gó\»%;þŒû 9¬ß´ä«¿ºä7ìG'’ŽëµQïN(;39ƒsù·”[¿ê%'¡/„>¿©GܹòË®œ <Í{ô"ò /BŽ‚_¨=ž}Vûõûnêe÷„“à?&vð–CÎØåcï®=]¹ìûÅsä÷Æ'4ny–®þÅF}øc¬½5åÔ/½J;‚ +ÿêaäÇÆø™ô;}Ò^ó';ì±Qîî²_Šëâwf¶ëÅ!/ʇ0n'–é‹‹Ñßä_¤ž»ú38ÑoäO9ÁÕ˜ö¿ñâÈÿòhWÆ÷¨ñ:%[Å•ÑÓÿL9晟.å±å’ßà{ൊ{yÑü’rê_)õü!铯þÓ¬O?rDNÄ+}&õÓCëò”ëÈmý3š7à^èiô«x?¸<õðÃ9¾;p¯Õ¯¿í ÿÅfœŒcõ¶ëYÒÁMEø‰Òßô1óþQËå£N‹±Ngû·à7º>¯’§áÏ«ë'½ysÈy†ï æ?rÔ}džá`êŸ8õϸ¹òMÿiå’+û:õÂyIoßðBï˜÷öŸžõ§ýå©ðcžúÇÁ?œ—ùË÷€ñ1?íùÇ÷Œ{m?›q> 7ö{úá ý½ëÍŒo9ýDõÀÐ'ß¾ƒzß%ã0ý"Û·Ÿd¼B‹7#?CެWð/óž ¾åçWÏwFqŽêÅ¿òRýŠvŸ5ôž~œíò]A¯OÒ3íËsq}ê÷>õ¾1úA»àÒò}ÜqôY[c<ϤܓK½¨^ö{ÃÇQËå£N{Žç\Ìy œFñLy߸ äå^hÒÕÙ픳»Gçðiyvîè¦þÏòüÎàï‚r†¼ã»çE·6ÏôÎ9TÏ«ôƒú¥SêqW|^Ê=ꜲøDíJ==ŸÔßò¥<ç˜Î7­úOŽ{™Å¿…¿Á÷;c½ÛÕO§—¿¯ô½aÇa7p¾ ÏBØ•ŠÊx°ÏÔÞ‘çžSg‹2Žä õÔŽçÞ[N~ç¹µ $ý¼ßO>O2é7;Ÿ-ßáç’òò;|Lï='}ã á#ýOX»Jøf‡i<ÆÑÅâŸþÜ\öCãbâsS~DZq•‹¯ä«½i¹žt¾)¾qÕ›‡Ò›âòÒ×ÑÈ ûYã’†ÖŽz–çé/Œ±—’×ú‹œÀ‘÷ý¯Rϱ ðì‰Å-…¿ÚÝS»4<\ãâÉ”ŸüÅw„¿ú}ÂoÒ7ΟzCû»|ú!ù‹Û _yfgmœ¸¤ßû´âC´+ü6Nfèô¤ôûÕe¹+=DoàiŠCûx3>¿ùt3^pi}•ïÆÍ¥¾Á™À¡\Ïxï—zŠ7;µ”_x¸„â~v–ùnà[½ê£Ïô)ü¶¾[›rà}ŠÃ ßÅiEO‹GJ;”ÿRMê'¯7¢ßÅ¿%}©ò’>±ýÚtô!ÏÁ'mõæ«eûŠ£3/ä}æƒæKºíóºÞ<Üz“qƒC#oÕ§È 9¨ÞŒq,ÞÐü©œÈÙÄÇUn¿XÊ+üùÕ¼¿šúà:ñ‘üp«~ß]ÒâH“þªõ^X÷È-=LàޝþéÁX/OVû’®å„Ïæ“ÛËôSÞ‹CýU¿ÖÛ¥^пñûJÑûŒÆSO¿Û'7Niä«qSí+¼O¾ÆýNºîÛìËRîåQ.|¢}RñDã÷Æ· ßÝ7ÉŸv4ÞèçKþú‘rë‡-ùœgÔß™ò’®qsóþrøi<ѱ¿ÒÎg·q®ñ¯?’¿~yÇvŒïœŽcïÐO|©7ü]ùÒÛ}Ûr=Zé!zßÖïÛ¼¯ßþóËtõ[~s)ç#y˜þÃ{¯S}yž÷øÔ?ý¤ùÞþøé×ÅÔï<©~Ú’¾þÏ•“ô¾Ó‹ODó;|NñÚz!õõþ[ÚÙsÊð¡øÁúwÓÏ)§÷#Õ“÷燼O?ê🽧ü›ËõåìØ·[õæ¡ô†>‹Ý†½÷Ó“Ž=Á¹nï¿ç¹þÀBÙYà¡àÛê?$¿;¿c…ã)î+ïË_ø‚c—aW->ÿÉ/Èo»‡gö•úqȳ~*N-¿¿ò”ÿÆà‹Œ=”½^ èôŸ öã´¯ãØ¸§C¿‹/ÄþõæXbÿÊOÿݸÀâˆ~1êc~&ïé×ð{µm§qÝÐÊà K}\é!zy+>Mÿ¿:æ3ñ7#ÿ}Ÿ~/žÕøþ÷Ð#ò~|ÌÃæÁ༊£_Ò¾”¯Êó±<“Ç—’>íÞ²=ø+®Ž…Þ³Çö›ô ç)®'ýúCòÿa©­÷«´3òÝøžÿi>Èxü>ü8µÆiŽcãçÂËÐz”vÞI=øí8š—ž]õæáöi/óÞOÇü“ùûΟ3/ñ1_›'£G]'ø!2.æáé? ­_¯<×?á ð&æQ¸ví¡ðiÿ5ÚEOìÿ^XÒmœÙQoñ;Kyìúó¢çÐÿ5êßóOÑ—¯F9äîé•¡wôëø(7ú}ÀÏýZöãü„*g»?K½?[¾_é!zfUç7ÉwŠïß¾èG÷K¡öqöü;‘ûúKËïÕú“ßí}œÈ{õLÿi;~_æo»È¹ï†×¼q:CÏÐÏåüP|+\Žï1x´9D>_rïžÊ›¡ô®ûïå÷DZ÷’=½×í½©Cæ‘_/ûi¥¦=orOðì'ßùÎÉÎ Z?lž3~ÓÜ!<§ó¬ñÂ{©ôL=õŸ–|(=$'ï7¼ÊûcœŒ§óÚâŸòžß…âº2^·ºçÞ{È?ç²îÏ×}’.òUÿk#Ÿsè󃟞'?xÝúQ ßÓoDçü¥<8øÉÆÅW~¬7Å÷ }ê}qå¤Þ‰ßdŸyÈ=?£ªÝ)§þÃ便~´?/<¸ŸV:ä†ñú˜—Ù!ë?-¦þܼü±?6ÎWžáÙ÷à§ÝŽý•½¦qÃ'\œ%»?~ñ ÿre´‹þ]óûЇúñHýµ?¦öÜÚƒÃWýå÷Ë7(‡ìöø¸:ôvÚ%nä/^O»Â¯ñh¼.ý7ú{ŒÓQËå£N‹ª¹cËõÆï72×ɱô/~çà£øw*Ž+ã2ý‰gòñÐ?r(_Þïï¤üÔWsy_|gø,þf)Ûy¿©§8ÕÐúURÚU?môœž¦ÞâÝ6ù·óTÒ¥¿·ýœôõcµlÏ6¿þÚåFïøÛ2¤¼âfÓ>ü§º\ÇVzˆÞTŽ?Mÿ7ãH_ò{ýý[ŒßV>ïæ9ãBàÓ2ž-'úUÿލñ4Þ_ ¾È;¹½5ø!OcÞžxLüL¿VÅ}=¬¾†Ÿú+ül¹Þ„ïÖÛøšÊ½·,§ëɃ÷K“í8¦ŠJ¹3½\O¶8ÔÔËÕŠO{8½1O_ѯû„ÎScÝ·¯*^>¿×ÿÛx®ß1û!åå}ý„…ÞO‘nìcê?mèY÷#Éç;ãò³îƒ¤ÜÀÏ\¿»Wte¤o|ÍÔ/Óx›CoŠ÷Ónzª]Êó¼œÿ‹£ù`´‡7÷‘zOC‡ߥÆŸÊ=d_¹Ò¡7¾ËÉ‹ï#'ŧ%]ý'†öÞVÆÇù•|õ+Žª|©'õöÞcÒ;w‚³2¾û™ôô‹Ÿ­ yvÎ7îcïúÍË|Ðs íð;½Ç™ú‹ËËûúã[êMëo¦¼ó£Ü÷¼Þ4ã…†ßsø|ÔOZžç¹èÙðQÿu÷ÈïJGÿÃ_9ß=“çâÎ"?pO»Z¿I÷ë<¿9ƒ›j<–ü>ýÙL|šzØ!ŠGÁßÈÿÊàƒÿ3ÏÓ¾Ät:”ýÃsý§É—zÙuØ¥ÄýûQþˆïy ßÙKØ‹OªF¿5ÿc¦_Ï»£õŸ–÷ìºé¯£–ËG²ãÕŸÒɱ¯`d¿ññ¶~[òûijÉ,ùøŸaÏ„¿y>tø¿ÛûsÒÁ(=ÞeúO㟉|ÀûüÃ’¿âøÕ[HþÆËü*¿“¯Y¦¯¿œFÿàã—ËzêÏÎŽN¼´i÷]õüÏ¡7ʃïãÏ+þ¢¶åg|ÿ˜ô3¾§öÀi_õæ¡ô&óZñ‚æ9~Ègp‚wÉ{yúù.ù…#GßHïà§p&wáéüLãðæ÷_-ÇWþâì†\9j\U8´¶wS_ñ*ðbѯƥ¥?Y>ã§ù#×ðqæ;¿^À è?ö|¸Ôèym‡u“¾õiÇôWÃßcÖ|ƒç’.ô¨åòQ§Å©›—ë¯5ý˜y°ñ_ÌïïÎÃôhÊýZ׋±_kÜÜPóž}\ü5}xwÌ¿pŸöQô3òWyuð —3âIwýµ?³¿!Ïö‹ôò€¥ÑíÈþ­þèÌÖ™Æg µ~Òkøï‰úùrßÐ÷½÷}ýò½qBZ.uz ŽiïqD®¦åú+Îûø§<û>!/öõÿµI_>¬õs­¾!/ü;Yé×ðÇ]¿Áõ·œô¯òÉ•ïúâ;ï ½¥_Ëú|Ï·=òÕáXgõŸ8„½çDÿé¹|IéÏ©å}²äÃ÷&ÜÑÀÅm÷Ò-ó¯ô½©_ý{ÿô¯ó0ç¾×›>ãÛ¸¢Òínhý'ÝÜ”W†)_¼8¬ÞM=üIžÜ¤œú?#Gô7´8±P¸°æ¿¹,·þÿCùys^Ös¹[›vã¯ø²¡7ΫÈyq{©¿~çn/ù¼8ø¡¿o¾'¾¬ý±»Ô§³c<Þ9D¯´càáVzˆÞ¸OûaôÀ¹(;¹fŸ€OsŽË®ÁÞP?fIw~¼§/äµx®Œïã}㡆OzH~k' ¥ïåS¹ä'¿×¿ÙÍ%µ;¥]â‘÷–rØwÈqøl¿â‡^ëâûÌÉ·‡¿ßÞèÒ2_ëñ?·ï¿)·¿7^/~¼[éÐv|þ-àHØåÈ\?\ìwW2.ÓߨôÿU¿ÉW¼Ú½Q^ä¹ñOñ…¼ggç+>+é&N«å†vQåñ;V"žSŽþ0¿Ô‰ö yeÏTÏG£ŸŠKH}Ó/Gí·ÊO?°‹~4Ö•é'®x¥¼‡¸4øì8é§åº¹ÒÃô†Ü¡ä4Ïp#7"/õg çrÀo×§›ñ*nTyÒç÷Æ!ý|ù¾ñf•‡&ýP}5ÒEÈmqq§¢'Cê§é³¥|·¿–|ø¶ºbß“r²Ÿk¿övâwÌó9Êm¾ün?ËoTƧõÍ{Pú£ã§ûÒ”oœ.ê§MùG-—:íwí?eé_8ªÞL:¿7–ßë?ãëûž°þÏäK}ÒñÓ_|ZÒûg[dCϯ å4Žiž] Ú­ú“ßåƒOcwêybÒ§ô+Ü\ý½áÏsÊï}[íKèï÷F»§ß³ò«üóËñê8âëÖ¹UoJoØÕø `q¯žý`Æq:9Ò±Û87…ŸzcägŸ`—Ùùé» »;pq/ç¹þ£ò> ÿ÷¾j×}3|áG;[N¨viçˆï·µ×¤x¤i?ÚU?~òž=eÄ‘-#åµ>í3~Û™gõ°§Š+4ïabßYéÐqÿ=ýÎ>Ø8y†c‚_„‹: #=ûàˆó×zÉ¡úŠS Gyæ ® Þ`âèü»>{&œ»<;/\ÃÄ×é—Ëó¬¿ñ;7´ñQß’ö×Ú&]ûaâà!Ä÷Tßó›tÅ=H—Ÿ½ª,8*ùf¼¼_ ~ޝzóPzù+¾ÑüDþ^^ÎGÅÁ©GÂ/Wý ²ïÓ·‰s$/õ;9a¯ç NE9ô”¾µ¡•#?yVoðj‡ÖøžüXÁLüéðÏW?j‘×âÈàpR?¹¾óç ¿w#§Õ;ëÌ3áGÿì¤}-w9.ÅqÖêXG2¿ˆˆoñOw–ùVzˆÞÀQÑ—Îßy?ý™Gƒ[®œ|Zý|Ù/ÁE¾‹Ã‹¤'‘£í~&ééu ŽàÙ¼·^Lœ‰¸Ü÷’N¨¸ë¥òó OGÏÐÝÐ×G=¯ŒõÔz¦Ýð<™êŸ>ÒkùÌÕƒ”Ã_Ý\·²ÞwßðÒàïÕ¡7ö ú5zf>þÄø]ùð+3®»ïŸ_çú‡rë{ë€þä}ñ³ô'ï}ÿ˜|¿¹Wc\ä£/Ó{8©çäàÏü Ÿµû¤ùN?núë¨åòQ§½_è^%<¢ó_þ'·ð`pZžÝ'ë}Æ”c¼}W_H½Å‹EnÄËäÇŽŸôN¹øtŽ6îo•ox0¸µÞoTß磼ÔëÜŒžŸOþ៯õ¿¹³,¾é7ç…î¥j' œ þt/Îù~'®SùgÓï/îwçí¯Ðw—õµ\>ê´ç¯ ¹aoìýtò“ñm\ɤgï ÎiÙàßf<^å—•çœ3—ßóC~kç!W¡ê#‡=_N}õ»&øeq>MÏ~b÷hÜYý§œÈ7?~‡Sžó`íi|ä‡Ë„ÏÓÎÌKÛqT¯òn.õºñVñ¾ì+ŒÓÈ·ÒCôfoì+ŠI?^Îø±oÖ/Z(ü@í§þÌØ?ëgƒ¾ù=õÉÃÞ3ý4øc·o\ª”—p)ü×¾~áÜØOÉÓ•¼ç¿vüŸ¸ºâ¼ÆzÄn\ÿr£½Å)ÐOóþB‡³åÃK˜ßFœÎm|`¿¾|f÷½´œ§VzˆÞÄ¿ÙVo>ÝôcãR~>è©èIÆïúíezx™ú ËøÃ‘ÿòUÒ%_ã{[êÍÄ‹ÅÿΖß7¿ÃßÀ§L?NôîåjÒ7~4å?toÙîú‹¾Ç¢\úŸôüšñ¿$ÿµÑõ;…_ùGÿì ½¬:óÃ&¯?ü¦Ü¶ïü‚Ÿ£–ËGv>6>õ_–þ…Âwº¾9ËûŽ×©Ë?cðm•‡óKýjÜJò‡é­Æ—üš¯ÉéçKy/?ôœä=|cñB©çê|Ÿçú‹üîK—÷ʯßÄôƒ|Å3§ß¯>Ûnú2ú§|õ¤ý`=^Ê×[ë~ã†*7ëÎQËå£N·þf—óÔ¿ÆS9÷AÆ[9ƒÚ_ Å‹_êgý±¦|û ûõâØäOºÆáL:ßYÅÑ¥žy/¨ø¯Á¯ûfpnö1ököUöQðC·˜üÌþKúîëìR^÷_êÏûâÊÔ—öÛïÚoJßû6So´_ÿà;å~°,ç¨åòQ§Åùþ÷šš®~·ÈGÆÍw~ã dœW9w ¯îqÕÿþ(§÷“Ï=R¿Ãs9—*žngS¯s#8­yµ÷³èƒò“nú;/¾+íq®ÕxhÊ+.ow)·½w™r¯_á[9å;ÏoÏßC{œí›÷sÏ!ÏÆÛ88x÷Áã¿Ò¡=·M?¾}ˆÞ8…+CŸÖZÆÅ}eçÎÅwåwövAv!òÂ.çõË‘ßø³²ßÁ³L<šòf¼OçÒ§ò^ÍsãЄθ>ì2üÛ4iêãGI»§Ÿ‚ÆÛI:öOø´´»8ïñ÷¦tÉ7íÊpPì»ÓîÛxU«Þ<”Þd|êjÄ)j:ãL>êw&ã1ý¬?qcç>–g¸1éàŠwI:8¸þ¿Ø)“×!/ï™üìòÏUü»*»üˆïYþ¦=?rXü ÜÃËËýNñ/n~/®F{È/;ið5w_\ò_\ÐÏ–éš/x»é/ªñDÿyÉßûmúû¨år¥ßÞ%Gô Þ¥þõòþ¥!×ùýÎï"/Ö¯gó;\fæÙ½ÿØü^ô òW¹#ô_ðyô“^?“yˆœ¾>ÄK wÅKM¹ÅkjßsÉg^I\Õ)ÿG=^+}4håÑwĉûÅ…Y7b‡¯Þ_û&~Hÿ;óí=ëL¨õѺö¼ùyS_q®äø—#ŸõNÕ>®Õºi²¯ËºS|šuÛü@Oëgʺr­÷?]®+}ºi¿“È+<%ÿ±§É¹·?ëƒõEþ_Œr‹o£C|Gõ;-ï_Ú¹ÿ×ý}‚/*?~}u<Ó£Ÿ½ßa¾_¤×Žú¹Zõf¥ÿ—Þ8OóÝ"?*ßÙ“9‚#w¾³C)NÎyœsBñÏÞÞ¤+®,ÏÅ%ýu®æ»Üy•rÞ9¤<úæ< ø¸´ã>-ü¿»îÓVúéséÞgŽ|9%W~wþ|‘~ÜÚ<³KôÜY¹yç~«þÖ’Þùýª½&õÒ£úIKù~?Ÿç‰Ã£ï·ñÙx¢©Ï3Üžû็}ÔãµÒ£¥[;fä‚ÿ÷ðùÝ«ºJoò ¿Ãß?pvÓË® ÀNÊÎé™}‘’Ü_ÆróûÀ§Õ.©}øž~4>åT¯Ã?ÿsø_ýœ­ôk½©ß6zC®C'gÿ«Í{8”âgÈmÊ)Î&¾„þ©N­ñD-õ®þ§n.ë™ø´úeSnÊ©_4ßi<[ýXÝÚðS||ž7éŽzÜVz´ô€¶†öý­¯3ìLùéúD/*gäPy‘×âÝДWœ·ô)^Ô/\žëï-|ÁéYwèÁÄ›ÖÏ'}¡øS^ÞÓ?8ÐàûŽzÜVz´´òS¿LöIö%ä*ò×}]òÉç_YòóÝ8‹;›gû±Þ·IºÞ³‰ÜW—gß?½¿zaæS¿ýš}ÚhGãÇßû»¤«?éð}j¥Oíw0¿ÿôŹ€peõ‹¶sÿ¯xÊÞ7 uŽÕïnååÙý²ÞOM9½O†æ=œNñb©Ç}Iç]Ê«+ÞLù¡=ç.zT?jáëÌø=¸²£·•-­? zÓ{øy¿ù}}çþ_qpìé+•tΫkO }%ùŸVn¨ç· ^gúU›öOøxŸ‰çÓ.8vÞÆñÉûÆ-M½ñß0ãB­ô馵÷“~¿þ´‘³âàÙÉœ"9ŸqjÙM…ÂáH‡°»”çÆ]ƒ¯ce§„ÿú]~‡kœÓPvKñ@ÿ˜rê‡.ùà ‚¸;üX©ç¨Çk¥&=€“>±”z¶7ð*ÅÓÀ<½#ÿ/æ÷àÉîÐGx››úöè\MÊ? wÖõæùðñùþ㲜;áç®v$>\Û·“üÏ…þͲ½³¿Ä mþ——í¬ÿ4ýÐ8¸K½¤÷G=þ+ýn´ó9ÿ±ö;§†ÞðŸöLäµ~Ÿ"pÉäØün^·ÿï·ÐüCƒ¯,¡ñ;óþNp:ñ'LΫO©·í›þÑN$ý?=XoÌ3ïE¤».jß)üÚï®zó8ÒÊ£û1p63~´õÁwÁiò›õźCïø%'ô§ñ=Ç<Ìošsßýp›/ç¾Í9Üë#¿}"ÿKÞó“æþÓ¯†ž¼1žù‘{{èWý<½oÕwàßc©ÏyKï…ÆÿÕQËÁJ¿Ýž7ínÆ·çNC..l£ç]ä þC{3å8ƒ§qnÜ{¥¡ÓŸZã&¿ôŹ‘»P8 ÆC …Ç9?òç<¤í‹ö™ß¸ŸÐ¹zãè7ïõ_ÞÃÓÛ”¿õ—÷`½\éãAk'¹ÊN2ã½4Þfä`Æ÷dOqßþŒß·Æã‰¼Áçð£ïs>ï‹;K9ì*בrœŸóƒ'3ýÀÁïÀ×½?ÖÓØ…úÌ.uyôCýÀiòÔ~øËrîξå|\ûV»ÐcIëGŒŸ<_ó,¼ {&œLý‡('ùÙéù{ã§À{|4¾ižëO$å]ËïÅ7DŽýN??ò‡€Ïà¶ú ¾ÐÆÿå4Σv¦þ½eúö»*<Å•ð}uÉ÷QËÁJ¿­ß²«™ûõ!/7NmÞß8ùœìÿvó¾ñÿBg|M~¨®¹É7ý¼Õ™üô,õÒS~­Š£ÛÙ¼¿þÙà+í¹þñò»…Þ]ë˾rROñ{Ÿ-çýU¿uÚ©á·x¥”Óxá«~¹>]×›Çÿe}ýØúôÙgÏ~'_,ßWŸ"w•'úr{ȹŒž\'Ÿ?ϔޗŸ/õlÛ›ò'—þæý ü'ÿô»ØüÖ½±þ(ǺÒßéë­ ÿmïîºÞ<†t‹ÛÈGý©í-÷[ÿ„ä%ù¦ßØúÍõ=¤\éìÏòìû¹~h?_ÊýLýùª'ެ~äò~.¸Ñ¶£ñØí“|ÇŒvõ;näoüÔðg?Ö8ÇÊO»Ý»¨¿ßÔW?u÷z½Òǃ֯¹sÎóÁØÇˆàž›ïãÞ/ËïžáDûyó½rqÐÞ3“>Ôù¸ó³ú}KyÂOï¿…Öß>B/.åt‹‹KypwüœÍ{{Ë~ênðƒÏs£~ç+â«í+}‡*ïÙqÜÏ.ŽoÙÏ+}<èÖO`Æ‘½òxžáYfüÏÚAó^>åÁ=K’82þ:àÌÄùüSž§œØåÇ Ÿ/EGü2öÒ½?ÓÍs8ÕúÅz1õò7Ç_¡=Ï¥\xºøõ¨øúŠÂ_ò»Ò•>ˆÞ}>òÂ?Tð¢Åå§èëò>âc6NæFB‹kûj“ßïõŸÆï£úàYéaæþëòå¯ Ջݤ§ïÏ/ë…‡+ÎOº¿]×›•~;-þÌúÂHýŸuBüØ7–r×tÖ ëܼOðpw§_Mú 7g=©_Ü”Ûø×^îî$?œ¸ø‘¹qç¿G;Š×[×™•~½ñeßÕøžyÿîÎý¿ÆÜûßKî“ñ›öö(÷¡_¾[fÏúwû/õœÉûw–û»¶§÷–BéÍŒc Ôï¬Ð—r¥+} ÞÀÝLü™{¢p;gooäªéonä×{çâ!Hç^ý=òøy’¯qòþtÒ7.ªrR.á×óVžé)yµ®XwRnãKßå~ª¿_| #Îôÿw½®7+}½¹|ëëvŠß²Ï÷ÝÓø cßc?æ¾j⎶œüÞ{ôÍ:0¾›êÿvgùì;æÒø¾ñÝå¾ÒÜgâÇ÷ ¿mðIåûüª7+ýv½±ï‡çzÿÖ×?ìlqlC®œç§‰¯9ý²ÕobžëïÍwò_H~ç½?š÷ðgÎÁϦœüÞv¸§-=¿kî™Öœß£}²,çܺެôô…ß8Í鿌]S\v÷öá»üÎþ); ¿Nì6(¿P/Žré¥|ì²Á¹Õ®Ÿøm<¾áÖ”ÿRÊg§yeÙΖóê²Ü•®t¡7±¿oÂß\ Mâ]ÖÿÿTü¯V\Íó¡?ú4ü¢ÝQ/?W'ó,}ø¹Ë¾]ã´OÐöDÅ_,!ø…âàôèÓô›ÃŸþáfm¨¸¤ðBõÛ'÷ÆO¬=þðKþ‹Ë‹ ¶'ý]üCâÖíý9|=›|Êá÷ˆý>jÆíÃqŽ£â¡Äuý×Íï;ù+>Þ#8”Ž·~"G/„¸Jvpü‹Ë¹(¿//ù(~·å›§SÿËy&§üºÇ_žÉå3y¯ŸÒÏÕíŒ\·ú£¿á:•Oßð»“rþfÙßòµ½Ú%½~ihé–òÝzOåwz ^râ½v‘Gë"ù€Ï;>Ú¯Ðx‹É'ÝkCïN-ׯ‡Ö›9Þø‚{0þú›ÿI|7qÞõvÝåZwgí&ßôÛýûÁ÷¼ýa7qÿk8ôæ•ÑŽ“øUŸ}žßSè;Içrî!¸× êµŸ á{ÛøNSïƒä>ü÷@fÜ=x)ãé~GñEyÖ^ãÅo}äY¹ÆÝïüÑ~ÄêWŸ)ÿp]ü6Þà¨Wyüi{2½B~“ÿíÊó[¡ïå½û$äPúwßÚÝû7øÎ3;úÙÛᓼ¹~”Ü8«µ7Ô÷Ô|Ñ.ýxj´“ÿ58ùøÁ:¹s¡>¿»·„?þ®àràwœ‹hWÏ’Þï‡àäþb}©,ò¥½i‡÷ÆG?O”gç Ç1ïÎrõCÚå¼§ü¤<÷ûÎ~ಜ÷Ôÿ~’î|êï=Âðg|ÕÃ?RqZÉgbœ•Â¥Ð_çT䞥íKùpZΜS9/×s3x”ö÷h—siz©œwGÖ›÷áÛøÌx çÇøèW¸|gõw“NÇ9œû¦Ò;×ë½Î1?:/l“”ïüûCã–v4>Jò_J=9ŸÿÎzã|ÝŒ­ÆOI}ÎõµïCúê¾7¾ÊwÚ÷Áh;Âeé>_ÖÓs|ó…rô}I9ì úWùúî3·œ›Ë~æ×‹?³úñÊïò·\õx¯ÒO~g?i\Ar‘ö^ãʯ’~Pî•Á‡{ÒÊÇþ6~úyâað§ÿÈ™þÃ/;Š~7´>å‡^ýyi>'ß•Ñ/í_|¢æ§Ô_á³ñèüž||ÂCëGýS…qåêWeóüѬ/éŠoJþúI?óg—q ŸIÇ ÿ+ðìÝû;ËzŠÛø,ùÒ¯ê©ýØ{õ|º¡×ó{ãç©çز¼«igíäIç÷úSÑI¯}§æ½þÅßÇ¡yÏÞ^œŒvê—{ËñØW>ªBÙõWÇ7åÌq+ŸÚ§ýé×ú‡"ê3®ø»µä¯¸7ýŠß´«õ{?øÖÞâæÈ‹þ 5^3nbû¿)gÄG<è—jùûA½I½üÁÅ?Öþ íÐißõýeû;ž‘{þ¼ÚÊ—>å^'ÏôT>õ ½¸>¨~¸Ž†>ßÍsú»õÑsÏø4þá÷†òî.Û·?žë§é«Ð!_õó¤>z#½zï.囟&ýÖö{Ÿvàÿú¬W¾cËù¦ü~9ÆA~ó]Þ7ŸqVß'ƒŸÛËô蘊WS/~ŒÏ”{ÏøÒÚëwòD~éËRªÓ¯Uø8To:Ÿ¡³¿´ Õ®9¯‡ÿê—ö„ãW|9I}p­]”OŽ”«?ÎòçÇ£êѾ©—¡mr•3ä¹4õš'ÇÒ|"ŸtêüÌunúÝ3ß¶]æõ«´Gù•‹/\nýŽü{«>Y¶oÊ_ûG»”§=Ê¡'¡ð¢·›çÆûÄç\§“^º®÷Ÿ ~R¿vZW‹ÇI~qKë+é²n}ë>­qµå ?ü}4~÷Þ¾ØúYÿ«i/ümý^¥ßà–ð+]÷£žÃ‡ü¾ ì7|wY÷Ÿ5å–¯<Û§ŸŽ¿ä×ýí¾2ÚY_·G½)W>ß#³ëì‡k£Ê?ýýU\~ú£x²É_~/ŸéÇÆßD“žírê9€Ó7®;K¾ê_M½á¯þp“üÂáçŠþÓnü|±”Ÿýÿù²_ôwÏQò»{o½7ú~êË9Ï·êóçEÎåú}Z¼SÆ¥÷‘R¯ïãÆSͳr/¹×§}ðOÎK¦­~g&ªþž/x¯Þäï÷kÊ-ÿ·—åkŸïKx(çqÚç÷úã—îÞ2½öÂI:×rnPþÉOÒÏúù;›ýbœô_¿Ã•‹/íÔ©Çù£û›ÎÛî1Ê9§ŸR_û…|ä}ïá?õ²Ìó8ùñ_y#_hÞëýï\³ñM“¾þ¢’®ö…¼g/pÎýãÖž1íÎÙgB:õ‡žu¾9ýf±Ã°k°wÈÇ^Â^ ]Î}ë÷+åIW»Èä+åkŸzßý oøÖø=À¹¬~Çÿdõ/¦ÿÃÇ{yÇÁ®‡åë_v>ö^ü¨Çy®ú¦]äÌh{YïëñšöaùßåJ¯ý§B5ú§v¢”'Ýô;Ðò‡°c時ÚýÈÛèGö#öq8“ØwòW»0»á!þu–·1qÁßÂ/ ¼Êóô%|=›|ü ÁÍÀ ±ooPœ»»ôð (»oúAܺ½ß'Ÿq„Ó€—ñ ïQü‚ô£ŸÙ±áGØÇŸúG"?‹ráUà<à~:êƒ7aïg÷fßfôÿ/ÆïÊ7üÁüÝx–^?gÜŠÃÈK£_éµ~P}n¿åYÿ½œ|pú_i7¼†~j|м'çÓ›|Æ'ü~ïx@xŸÍzÿu?ý¬}Çóž$ò} žä¿k<öÁ—¯Œ¿_Ýž_<¸þoÍ÷³¿,ßJ—´úöÏËqë|nÞú¼$<#ýïûÌä¥ïÉ96ñ¯Ö¸1ë#ljÑnóºy`øáª¾Á‰ï”çSyÖÓPç—<Ûüæþ=ОGè|'V½ù^ä©ñ@‡\[ßí¯ŠO[~¬}÷3ä¢ëßôó;ü‡~oí´/†‡Îw„ý²ï_xß5ðFð+ôîlž}‡8¿þÍMºò‘ç­_¹¿¬½úí[Ó½ýÝôq¥ÙÿæÇÓc|}_ö;ñpz¶Òo“£È3|ÚŒ_Z¿k‘v™âÑ,ßìLÛq#—·òQΩÙÁ.?Üþã;··vÛc9þs¶vøÐúÙ µsÝ[¾/~hè;ö¡¿§œoÁýÕífÇþè‡YÇŸ6ºµÏ¿1_‘±C³÷î"ý}ìÇŠ‹ûø‹ú¹"Ç7ñÝân}ýbg‹OúrS?<•¸“3¾]õ-í©ß«<Ïø“pų¤|ø¦âwŽý ò¼Å­ëÍ÷ҟŽ‘Ÿ±N·ˆÒ¯Œq=~Oyׇþ™Ç¯-ç»-Îîãȹþöiå?y.5ëGq\;›vY¬7ô©ó‡r’¾óßS^qRôoÙŸߎ¿l=†3;j¹{ÜéOfþëDqîçâœÇs×¥OòØrŠ×žzùùr.žüûÝ·lñSá¯x¥È±û ðgYG·÷pò»ýi÷“c½…;€g²Oý{iÉÇ÷g9/=t¾à¥ŽZîwzà;äÊ×ËãwrÑ8Ÿä‚œ-åp[îNä)zÑgùó~ø‡ûÞÚyàÞ\äé\Ú5ãHö>àù%­­”3ÏœÏÕßÕƒ¿+¶øºï¨7ï7½ÙžþeëÔJG^zraȇûœîgÂû8ƒcƒsnžÏÂóÁ×õ¾nä.8¹-ß³Þ8߆cã—hÞw.ÄÞã\.ð­‘°gÂW±‹Âw—|g¬W‡¶çÔwL?âaµÜ=î´ökãØx;éç‰7äÿÁûâ׆|°ï°žL:ø,ø#vÁ·ÇwOäù{k'<|Kãý¤~~±îå=ÿ-ðAü= wôʘ¢pcÅK½”òà—Ô{lCù“zèö¼ôõ†ú_þ²ýÝJG’‡—éI¨ñ…xiì×¼ß|À zÜZq‘ðp~ð^ÆóÄX÷~¾¬o¥+ý‹ä»øÂÈ\Ô‹y_ÉßÔÀ“mý­…Êü!?nGÝΕ®ô{Ñ—XÎÇ¥ð‰ö?ðöKp_ôȺçn_v|¹Nu{WºÒïEo|ø®õÊï"<±{>pT¾#àcà*é ¿¢oz^×›•>9tëÿ?òï\ǽBú—Ë_ý Gî%Ò?ç?ðÀ9';êö®t¥ß‹Þ¸?|açþ_Ï9{Ï:ô|ô¡ñ3¢Å:ÿ•žÞ8?Ý”Ôí]éJ¿½áŸÃ½}xÜú åç‚ݰ8ܼŸqwëæÖ×Õ/ÀQ·w¥+ý^ô†ÊÆS‹¼ÇñÉRoê×&ϵÃýjœÜó‹tGÝÞ•®ô{Ñ›úçþx.®Å~Œ~DoàXŸžY—èߥÕ¶Ò'‡ö^|?âîw]ŒÔ/•ïù|ÝúºÀúͲï«´›ë>m¥O Ýޯܹÿ×ïxªÓ‘{x)÷pï3z%?ÿPÊ9¿ÚåWúäÑêÜ» {穼矅Ÿ(çÕü¤ðWg_¶ÆÑ\éHëg,ñ=‹·aÿ‡»å—®þÜ’În@¼:þiþq]og*ž¦ç;ÿžq‡|)rÿwó^|Ö»üò¡äêyöõ|Üù*å—[ž¿îý.åñ—§¼–òUœ—zø-$¯Ï…_~ámÃ/¿{igý.þ÷¦œÆýü2ùƒã½ó¯ÊúÄŸÞß>Xš/8Î;¿ý ©¼¬k™öÜß@õ3ö?—íÛÏïs<ïê¯gÂ?œ²qŽþ‹w{Ôrù¨Óm|äÈ“¸¼ü¸™'3>úUº»üJþlŒ‡yؾÆ>¦q7CƒïÚ£Wp»æé—rp î¦úŸ|×Ÿéæ¹òFÏøÉ„¯$wÚùçü>ýEÒ{rë9ýw ñ·öÓ¡7Ñ£â™G\Yþ)¿™žÂ“þlÙNõ_ý:üv?iýüɺ>”Þð3Êÿ{ ìÙâd¾œçIß[Kù©Üˆ›úŒ×‰åx·>þ§O ½q î‹0ß ¯ yâO·q‚ñ9ôÞY>÷[ô‡üòÙ·ÁsžYòy Ý;91ÖOúb~™þgOŒz?w”£¿Î,õf[ü¡óÏ›áó×ëzóôѹOïÕuCüL¸GþÝ܇%Çî_ÁŸ4.kòñßÏ#?xîå½}ó/¿ëê…ûR¾ûu§Çû÷"mßÍ%Ÿ¾çýî|L¼ßÓøT~Òñƒž{¹ú•^Á±8²õÃoÞ ñ‹SûüU¶՟߇_µÖsnŒCýç'¿ø²§W½ùNzC‹¿J?êgz!Ž,Übq\Gö ÷~W"å²6nqò7.®÷ôrÈYãÇf¼¥g§ qo?_–ï^qã(æ÷ÆQ mÚ”'qk‡ÌóÛkYÊ¥sé>÷¾4~Ò?îç{Ï?åÙeýüëèó\ÞÓ7ö¤Õ¿äwÓvq~ðصÉ5#†’[ñ°ØÇ/f\Å«á/¢ø­ŒÿÕ1^3®nóýHãOá3鮎ò›.|5žSžË>ÉgžáÄÇiœeåçý!þúÊ~‡ÿ”–s n~>Yև߯ð<—–ë^ã1—oùŒWè•Ô7ü®ô[ôD¼/~½×¯ü%šŸ÷lŒßÕQÞôË¿5ã£ÍxÛ׆4®19‹ÕÐü?y?ã¿5Îßà«qèèÇËüå[¹KýÞö묶'¿7.¯vèwíüðc4ðmú};ÏGúi\”—ù¯íÙYõæ;éMú­qñÆü})ý.>¤}AåÞ×{‹q=÷¯ó£tÖrj\§œy¹rÏÈÝðÛZ¿ªÕëÐË“â#é;_“ûÛËz‹Û\êÿ½éº3öŵé7åj—üú{®W7¼?ëßÖßí‡Î_÷KÞo®ô½©\düê>ýkŸnœ/ä¹xø¼¯_ã”c¿ÖýP~÷=bÞ¼”qk¼=z`¼ÉóR~¶~Ã’¿qCëoŒ¾‡ïÆqLy£x{)_g»’n­ñ Õ;ôÜw¢r.ŽþzÔø–»ËuåÃ%‡Ž£ö·]Úã9¿·ƒ¿Côp¥‡ô÷»C.|ûþwô^ú]<¼ù½Ùx )Çw¬ï$߽Ωw5ÏΉÈãÙè%yïw»rÕ“÷Îûœ£;§ÓçF=—È{ü›œSáOúÆ•LùÎ¥ôß¹¡7ò·¿ÔwoÉÿÙ¥>è‡>;¿sž§Ÿ—3üÁÅ9Opn©¾ÆïÀï½e=?P<‚'•ˆKʮȟÕÉ<³GÀ¡ˆ÷C.ØWœ/óoä<Ö¹6»#û{9÷…ÝuÏŸÞ5¾fÞ³¯Ö_XžÕ_»K¨z^ü¾9ò±Ÿ°¯°²_K>òÍŽä÷“C/Ø•‰oÆnU;Îëß,Ïõ£W¾7ùû;;4;ÝËyþõàëWæg¥¦õצ_ƒ/©ÿùÍïüríIÏnÆŽ=â¤6]íÛ¡ð J>þ.Ø?áMRÜk7NjãXÒvûòÞïâ¬þ[ÊùcÒ7~é&]ñ0øÐþÿXÊwíò±úÝŸßáxô¯v¶¿ó{ùæ_Áµô/ÿ}懿_¾o}‰÷zÎI9ôûÅe?ƒŸŽñýùRè-þRnûM;þ;ôK9*î~A?Â5çϤ¿Å¥5¾Gí,Ž?¡)çNø,ïàË»ÿcÉÿ݉Ú¸ùáQ2nmÿÄ©‰ÃŠßgGº<?’öµȧ~Õ#nëiô·|iå:|‘Çö[ž;/ünÉWãÌF΋Gò~góÌïdõý÷ËöŸÊµñ\UÏÕoœþ}”G¿’ÿΗK¾*§Þ+_?ˆÓüç<ÿý’¿úëãÎ|r¨Þè‡à‚îZß²®ÝQy‚³2Ò?-û“>vÞ$÷ô ^PýäM~éÌ‘£Ž_pH•#|ËŸúîˆ;­œçROê¿S|ZÆÍ> ¿ð’ôì߆\ÿlÈ[ñÁÉÿ“!çÇGzóé/G{ÅÇop;ÅkÒgóž¸ÃѣΣú¿Ç#?äeÈwõß¼ŽOó±~Ó?ʇ Óí}~9v¼ô—|ÿ°ä£ë¿ôø3?Îùõ¥ñ»rÍ_æ!z¨ÿf¼÷z¨Þè7r?ûEÿ™×ìÓ³ÿ®Ü¦ž®Ûæßyyv)ãþO£ßèÍÏ—ééÅvžÎïC.ŠOëfË'—úÍ>Ù8ú~€sÔî—é}rk<ìЖ—çgF}Õ›Ñï¾Oê3´ñ‘—ót¿‹Ô£Èí‹c<‡ï û'ûLí¢ÿäŽÿ'óƒï õM>ÈÇOG¿{nö弨g85éŒy?1øå/ѾÖ}ýf~Ì÷Þöœ ïßû½éý¢¤÷}7g¼ç—~.õò€Fãé™ÿ9ýë¹ò˜rNµüH÷;ÇY}âP÷é¯]½ògçR¾›á1áÏàë_>ÔøÀU9g˜ç oqV~{kŒ?àúÙù^ý‹“‡Ñ.í<=Êkùú_9ùÝ÷=¾ÈÅ[Æ%é•÷ëù^{ÖoÊíU?|œv6¹öä÷S¡o÷ï)_{ôw~/–¼ä½sçAÎãßÿf}©Þ¼“üÆ[;œûÁÿ9?"ÆE;ŠÌsñ‚øýëœÔ÷¬qÕž·Ç¸9Or®z&¿Ã+éGç ÎËPýæü uÏ‘¡÷{£GðgÎ;ƒžÇOòiσӮsÉ?ϋϦœúC½O;ŸŠcQœ§~ü:‡m<””çœÿλ[~ø‡£tþÞrSŸ÷Ê3ηkÛ—þñ¾¸Ôeý䯏8ïÇ~'Öy¿öê7ë†qqÎî<ô¢ñYêÉÃÆ‘ÚâªRßÅQnqKx“ò{qSi\ÐÅ´S:v9x(öáÆ=ùB§=eÿ…[šþ¿ØÍØÅà+.…ßÚ Soq1¡âð{$}Þã¯ö÷¤kûÒ_ð*ž'Žªöm|~•ÇNxY??ãqsÙ¿—f½ÊI¹Oý=Æ®³qS{pùÉsýq/ýòÙ%ËŸú“_ä£öXã®ø!?ø ÇÆÑ{ã£]Æ=éGœ²CõFÜ´â'&¥?Cnàð­?Œ#ù%Ÿ,ó퇒~ñ^ÿ‘g|ÿA~Æx°·«¿8¨<‹ƒ(Ž^㲦¸-ï?Êø‹—wÅsò7}ò³ë7Þ‹Ã8ñ+ʼn¥ß®Œr¦?³âv”wk™®q±o/ùª_&ééÿçK¹j~Tú”Sœ½ã×òÇ{8¾úkóŒï~Pýa^&?æQ|éŸ!_³}ú}Ä=|½úÚö+—Þù}âFª_øúG¯?í*îdŒ{ç™eÿUÍ7ž“Þ¼IOàÊñóá(ǼAŽ+ï)¯ñ±ÇüP¼XÊo<Çù;90ŽIoœðóáà³ýI~Ì“ÆÃ|ykÙÅc™¯ü®ÿ•k^¢'ú/ü£ÿÉ =G‡<´\|_íúRœÌùCÞ/ò0äg®?ÝYŸôçÔçÁoõjÓߪ7ö¥¾‹Üs¸rrb‹—H}ö'üþØ_Ù—žKzûkþ¹áPÞW¯|ú[ýöC|¨ÏzŽÚ×ö9ý×{/áG¹Ý·èGù¿XŽÛûƒÂyÒËâÕv–ÏÅG%]qûŸ/÷îßÌ|Ý÷’Oú ¿þÉûî»’Þ8ØÿàÏ÷‘ïú?KþöÓè7ã]ùãP?RÊÓOÚc¼üžrÈùï}Ÿ1Ž•r·»ä¿÷Ž>üWr<û_mÒ«Þ¼—|Å3¥ßÓgÒnßc¾ó{o.ï'î¤ñ C}ßû®uÕúS¯óç5øòê<Ç÷žs¯â½BûýŸò|‡¶]Æ—^%ÝÙô_ë5nC/}÷ü#ãÕïÿ‘®íQ~ÞŸ>œ$]¿{“ß³vívŽÒó”ÛËö'§^í»µ,nÇys›ÆŸýÚs¿êûÜy9êùSÊw~¬}sœáç¤7ÎÆÉ8ßÓã÷ÞGMþSKùýV½q¾å¼Üù,n¼O÷Ú霒ɼ€/çÞ=_m¿¥ÞÝä{1ùœ«ŸÆžÙ;~2úU?½2òkþì9Ê­}%ÏÎw‹?Ë3œ|ø5îÚ£ÿÙæ8÷ü_ê?üŽq%gì?õ³Gü|RòšgvvXöÕuî¼›ýL {Ρz“üÅ1‘ߨ!k¯eÇz!õòóÃÏ {gèNþêÇ$ù[_äªvWøÏÃï ïÄnTÜGžÉ_ñ<á£8ˆú±É3»4}dϯýÍsÒ┳¡wŸO9ðÏ&û+ûfä®xíÂgË}aYOñ§êO¿×î¬þcc¼2Ò§Ÿ*wøûéà'éØÍµ×<—þ,~übÈC~‡‹ª==.Ƹœ >ÈÝ´”kù¿kœØ§•VîÙõÍWÓŸ‹ß3^ÍÏ̉Œ‹õÞÀzc³¼òàñ9 ¼Ò•>J´zâû NÆ÷—}›}MöÍ_\Bè©ä£¾|Ôž»sÿ¯ökû‚7óÞ÷áéUVúèÑ~ÏÁ°S;¯ðÌßQÖ‘æw.â;ÛwžïÜÞsËûÚÃóL?ìÿk_®k+]é£D{WGäxž«õ~âÍåzSÿOô.åLÿEÕ‡Ðç©çÿ_+]é£Dk/pϼ¸ú³sÿokŒ^L;\q#~Oþ‰g)þ#å²Ç°7~°êÍJ}Z¿Cõ+”ùn ~aBg¼±B¯Ñ‹ñžÿxx’|mýD…¿Àï|´\ßVºÒGný‘Ñ“Ìÿ{ymœŸíEè•tô€^Áéìçk;÷ÿö÷èGô‰³áÿk¥+}éjÞO?‚pu{C¦¿úí£WôâÖ×vŠk›þôèÿhYwŽºVºÒêMý¦†6~kä¾÷ìÓvçÂâ&ÃãÖo ýZÞl}‹~Z¿.Ïò—çÞ+]é£@‹óƒÏ*~óüò¼ Ϊ8Dß÷ÑçîsñçUgÒ97h¼ÙMýø‚g~ÿüºî¬ô‘£µÛ4žF䛽^1øÑæã}‡ý²xKö˜Q;Ž{¼âà°»ž[×—•>ú´v}øA÷Ãá¬ë·a)ÏÅ=ÂÀ×ðÇ wU?†ô$ÏÊHüàJWú½Êÿφ“™×á΃S®?øÜ¿ò]š|õK“çúKI}pÓ_üÌÏ_ð9¿z¼öaÅÁ;žöülPýñ/ãýnèN~Q9)×½øÔÆó—|ƾðäúÿ—ëyåý~ƒ['ÇjœáÃà_í«à[àÿÝ;po`Æt¯Â½„Æ›Ì{ë?Uð¡ôÙïð ¿x¼Ö™®—üܸ'ðfÆ¡þg¬ÃyߪýæýöÚèwïÉ»þr_ý{}è‰þvÏÃ8¿ütê }èó«K¹+ŽE?žIÁM`úÙ=úÖïß#ô(Ïõê^Výû~!ò…ºßsò1Ó›—Ò³¿àù¬?ü—kç£_ÜKëïcž:=êi\ÏÍûòc¾Ó¿îÁM?×öÅo<^ëû¥7~‡Óoõ;d½æ>£{¸g¯ù¯ç&½Ï™v»×î¾^ïQŽþm\NývkÓ¾/óRú«ç0cÞlÜ„1nÆÝ}Õóø]–Ôýydã8q–΃̓ð3ó8äžžÕoAžObÚûÿ©·q3•—gzâþ»òr}ÔýøÐýÍ/€öÖïCä>¶ý¹æÏ¡þ >_ÒÆ M¿9Ç÷¾~¡†Þг9§šòê_ ãð”Ÿïó£rà=¿]ì˜õ{–÷ü¨4ÎVún€?¨Æ±ËûâÓRný4åwöúõI}õÿ’÷õ·õxßÖß]hýöä¹~ÛÒõ㤿Ó_õ‹”~a†»h<.ùÓ_G±õßÊo œÆ¿eyÿÑãµ?þÞÇ‘ü‘ïøï9ð{ý’û<“÷úM˸í'ݵPxé®FNàÙàhêÎûä¯ß3å.õç¨ûñáû{´ê DÇewÙòW”ç}Ïò“ïä¯?®9¾êU¾q0o~±ìÿ–ùŸVº¯ÌßéçÆ³Œ^Àó×ï˜ùŸüëߤßË8÷œò½§'•é­KÆŸ|‘#óòã9~[<ŸùǼNŸÒÖÆ¹]¶ûÀº£Ÿ›Þè_åõ¦q‹Ç~¢~Ç<ù˜­ï?Ø8¾?æŸÆõ¶ßµÏõýñÅb_WƒòÕßœï¼÷]3ýÕv?’q©Ÿ¾Ðú×¥¿ê{ðþòQ§Ý‡6NzÚé;¢q@­Ÿ[T?è'å诤»2ú{Ä÷ÜÞ[ºµ)ïƒÑßöyõ£¸Ô»§•Ö®™ïÎÃôªç`Φqß‘ði3NίøQÏ8Õ¯zRžsØúG¿·Ì6ôÂã5ÿÕ?¼Pý–§ýÎOûœ·H¯Ÿ¥sÎи¢yV®ó8¥ø{ÛŽ¯ñOyÎ[·tðqöñ\ç¿÷qäào–¿â †¿˜Ú Üó¯_À¤¯&úãžFºÆï̳ûÒ;‘gç·±ƒuÿ}÷þN?Ô>’vé_ç˜ÆEÿN;ô/GzþPœg›Ùw†ÀÚ•õ3ÿÊaÇ®¸eþ§VnGÜEãy =û´~äÿÍûóÞ|Ê~YIÒÁåðÏwðó‘žÿ<òäwþÌÈ÷Ŀ{Ôè6Þnäpw´¾^Bzvfú—T;húsú—ãÿQùpüÂ)¼tH¿ó?xb¹^=-”¿½£æãq¡üü‰§Y?n;›¿¾ÿ§åz]¼ž¸3^Ûñ¥Þ×/ã±åxº£·•-ÝÆ9ò k?ùò3ß-pw¾Èç+C?|þjÈ£ý-œØë‡ðÑø•ôÐûèÏįÍx}ø…›šßAúA;Þ|ô»tù~¥O'ÝÆعÿ·W9w~á;zúù‡€ŸQçfõ篼ÐÓCOrrÎÖßáÕàØœ¹Oûî¨ßÎçÎŽç÷Æ<à\³ñv—zÅ_ÞÛ«Þ¬ôësZòy?ê=íûÅ‘‰ëQüYžÏGþkŸI¹çGúóS“ŽgàÂzn<Ïõ7'ùØ×?GºÔ/þÒKýi=Ú!ù.ŽßÙm/®z³ÒÿÛßN䉞¶ø½Pr7ãI6iäœý·ñ#—‰¶•GéRþGC¯ÔÃàŒó×úð~‡5úTÿsC?.é>ëÿ(——ïWútR~ÙèQñZ‘³â€òž?78—Æ)%—;÷ÿ¶ø¼ó‹rZ_ã>ªo÷ÁüÔܨçêK>?ßUâ¯ÞÚðueì«·)¯þë<û}YþJŸNZœ)\]ñÝËùy+_‘¿âǬOK¹ßâÃ#·ÿoÝ/[ž÷K}Øþ~~YN×å±\¯OõVÚ3ômâÞ÷Wû“î}MùÅÙî,ø_éÓI»¯"ÿý¸õu‚âÚ¾qN#{|o¹»h_7Ê+>Ì÷SÊ+®m¬G½g±~|/yŸúðÓïš[Ëô½ozå+Ž7ýÐx»ömò‡ï{Ôã¶Ò£¥½ïïUüWäi~§7.±sñÝîüž¦qK „zßgåønœ7þl~oæŸõ³…†ŸŸ˜üú±Óüꇔë½ç5ÄJwþ/ÿ3΃ëw$ϧÇüw6ý''ÊîÉnWWÆOVý$œ¿&/ßá'Vyù½¸'íe·tž^{Sò£õ¯’òÎä=ûÎëËõw¥O'->+x°Æñd¿Œ=¿ég<ÚçCÙïám~6~!åñ×0pa[úU~‡ ìúð9ây*wÆ­=žgüœp:p@ÊûùÐ'ø¹óþÅe¬ôáèÿMNÒâà&^rñTÇ6ý Uú‡ä·>ì˼ßɸîä½ò‚»óŸS—ã^ùöŽŒ¼‘ÓãËvÖÞ½]®7-Ì:ò\ø&_âGëŸç—åìý{úc³íù¤ôwËvµýüsѯ¿åýñÁëÀ^ú«óAú÷Àï÷ܓßNœ_åƒí¾Þüg?'i¿"ãnßlC?øE„ãåo¿/þ%í#ÈýIú•ç†<À3¾2øÃ—}•ú_YÊÇ·¶ßwˆïíçv•üùî°z™¾ä½v›ÌS¿8D?vyOoÝï85ÖzóêÐküœú4ò¯ôù˜þéÄ¿…‡rŽ÷‡ÂgùEá$¥s>D|»9ü§U_ùŸÂß鑎°ÉÇô×îý;Ö›ÃpŒý^æ×ìÔhü%<Û™eùmGÓ…úî/þ’Þç9÷Ä~ý>Ý,nô“ó¿÷†>‡SC߇­ô½i\çŒ[ÏI#—ÆŸ/ç©ï‘ÿ{Ëßë×.éÎ'œ¤{¿½w=ƹç¡Ñ+xżߦ ¿êq~LÞ¿%Ë9ÄXñküùµýASÿ䝸ÊгøI~çÌíý›z“o–wèøÕ¿à½eö^ûÐýLOù¹;ûàýìJG¿×¾—ñ¬ÿŒ¼o<ú”t¥Ïïü¸×Þø¸~ϸ°òƒS¿IÿÈ^)=\»9{žøºü„±3¶ž<ædkçL9ê+®rð÷Á˜Ïåg¿¬=t䣟µC¦>ýnþJ;ò©þ´à2·|Ü^¾¯ß•1Ž×}ÚCé ;5½/ >±ödã]?5‘ljC©Ûï)Ÿ¿*~’ê¿pÈ›ré¡tµ{Ó#z~ÊGø­ÿ£E;´ÿxˆ[ý¼·l¿þ¢ÇøúpÈeç |ÒüŽ~†§Áÿloñ£¿ËŸßÇúmþ¸4Ö›Ö?Û³®7¥7õSKÞÒ¿o/×ñù{×+rAŽÎ/Æk»^Œy•‘‡ÆwW>=¥Æ9õ˜OëßÒïøÉûÃôæ¿HÛyÚ¼L~Çü ÷ÒvçÙûöOøë_û­ó’~™ëµ~›ïÍ3Êë~¹¬Ô¯ßo/ù9d]^éþƒà=È·ý˜}|‡}”|ü=Kç;£û™”ëÙþ¾ßå÷Ô ×R¿ÈÒ-÷[¿³C¾ñU¿V‡èÇð?7ßoq*Ú‘zàgÎë|ôçÇz ÿV¾<«/ü+§þo.ǥߡÆ)óEîmÇ—¾êåá;¿{BG-—:=ð]êÖ¹ô§ï窾k“ñ“6ürõªq ’Î=-çu-'rƹëùƒtžS~ñfÉç^¦ø ó»YºúuC‡¼ÕŸ¿ò"×ÎÏߌœ:¯zg´Gû|óT|™ßõGÊÉ9[ùÐçƒúû׳¼ð÷îr½h;è·x”oöé÷w—õ¯ô[ô§ç½¡'ÓÏìü‘v~$^N>çÙâNÀA5~Rèîx?íŸê 9–ò_Ìsù e‡„#Àש¡ìQøÒîá©çË~/.%ïáÃØoà#ØcáÏøËòÌ>žÉÎD/ÄÃá_¿ü  ¿õ³cÍseýÀ~4âܵ?³8^GMïÖ¾ú|ú™¼Â[‘cöO¸Ã¿Íûâ¦6ôÎÿ'Þ+~E½Ãy(~çßCÿOê#ˆÿ˜-mè“tdž<_ÊMq@ì„ìšp<ôÿ)wïÏÑ ¸œôËžvÇpçK~ŠG¢_ò̾úL(Fú·üÂ%¤}{J~|Ã3ýŸÁÿœ§Ì7»œ?~°yzõ7u¤´¸——‡\˜g³®Už~º”ÇÊ7½€[÷y.òJŽÿy¤ƒ‡›8rk>yáÁò[¼¾­;ð7pê7¯À/Lœ\”yê…”£}æ'óÌqó>$½Yq×GJ+ßäË>Þ†þ˜—ù»´®ÚY_gzú(=¹SOý .÷7üJo?i=³>Ú¯Â[X_wȽôõ§–ôô¡÷’¯qy‡ž4îè²ß~ðq{ëÇ©g¥‡ô?Kñn‘‡—"Wpk¾w|ЇW‡\þË(®¦8ÿ¥žt}˜ßãÎQèeëO>÷s|?’û~¯„úZ¿jy†¯‘¿þÓBO¥þWÆó›)÷tÞÃùÈÿÎRÿWúdÒí9\䉜“+þÉf\NxñÄ©m¼ÓÈ‘ó,çÅÅåý;ËòË—s+ú×{œ»y&ç©ß¹œsBþÑßüÁíœåjŸslívž8ýÅi÷[£]o­û§§ÖNÃîgük÷‰¼Àÿ°“'¹aßt_ÜPžù5cbO:ÄîQû+=˜|ô:|º]<=J:v®v¤ÐÚe•£á£öš”‡8>v»i¥OÝú ‹œð“wÿ6ã¼] ½’|õù›ø!8þejg—ÿÖF.ã/fË_ê½4ê©å‡ßú§Òõ¥|ø›–«}òù=ô£™?”þ«Ú;iÇRÿWúdÑúý¢䀾øýZä§ñKýî9¿ïE~êï,rV¿i)_9Þ×ÚÍÅ<} Þg~?èOMýô åN=Wn—Ã_ËÑ^íØÙü~uò‘ç½Cú!ùz|WúÃЭ\Œy¶ñH½¿¹”§ÆÍóþô/FOŠ •ïVêÍï]o6ÏåϺ×x§Ët[¿fä|¬shý© ½*>ö“Qü·œŸ>vþ ôôöºÞ<Át;rAá(‹Ÿ$¿öïyßû ¾s|Ež3ÏÅaFþ·3ò;ð¡[¼¬ï/é¿Xò‰ÿâT}¯„oß꯿ëñ{qÖÉ?qì·½ÅÃʯÝKýÿÞÇ-÷–ŽZ~žVZ¹¡¾ƒ+ù^v¯múQ;Ÿ|äÐ=˜~oKç9ùë?-ùœ·9çr®PÿgIwv”Sè¡õŸþ‹ûKþ7Sžó3çx¿›ß}çkßôÓvM9Úëü"þ׎z|WúÃО£²Ï¸¯ÏîÇ~ÂOÀÄÕÁѡ쒧“Î}f÷ÙIØQØcØ‹ØÙëGM=yV¼~Õã\˜=‡}éõðîÃ~t*õ³oÂ{Ò³úOÏprê+ߟü°ëMì]G-?O;­_vu”Ñ8x”—#'ðhτ֎¿É·÷ßIG'>)¼ü |‹÷p-ìó»êå⃔ÿب—ÿS.<Á?vóW2ñtåŸÞ˜F{†ÿ“•®t¥G8¿í ý‡×ÈüPü yþý»FŸW?‹+}”i÷£¨ý+¸uÞ>È~"ô¯æ#ërŸŸ[×ו>ºÔ÷\Ÿ}ïñGÕï3ß™ãûñô_&ß½GÒ{dyþWºÒ•®t¥+]éJWºÒ•®t¥+]éJWºÒG‰nýï\ÿ=ü`Á+ÁmðŸ•󵿚·×sç•>>´÷ÐÙ;áœO¿\ü(À#üžôæ¥UoVºÒ•®t¥+-nN±¸É%~ò;—k}‡×àïž™_%8G¸M¸Æ¿Û¹ÿ'®fãkâ ßpTÇ“~êø_Æ÷JWúPò]<(\|q¡ÞdŸ»ÿëèÅóöÉ‘k¸ 8þW†^Èbà£~¾sÿ¯ïùEƒSVÞÏ×ýñJ@½q/Ä=/x$¸£·ÿB½áwšß/úã™òÝ[q~ÃO”ôõ–rè½s¿Gœ8íxuÕ›•þ€zSJ·¾~±S¿aîº7|þ»éOåXüŽúSº½y߸€©%þ—ÄUtOò|è{á³~™”›ôîuæþçQ÷ïJŸLº½¿žy]¼'þ"zŸýÖý÷].ywžþñoä>ð•ÈïÕã#ùêßiðGùéhœžä‹¦£îß•>™´þc>Š\òŸâýþÇ:üÀ|k¹ûÉÏo¿4Y8ZŸtû‘÷Í©ÿ·Ï×Ðè.üÍøÿüçù¨ûw¥O&ÝßÿíFÎJ#×Éuäqÿ;îÓ”Ór?‹>l>¨êŒ~\Ïûý¯Rßݯ ÚÙßÿtó|>}9ôMú”¿÷ùBºWúdÒ®{ÖƒÈ)yÌüýÝËüîÑ»èE×3z“õŒ?½}ùvîÿUêÐïÖ§¤ëº£ÜSß+]éCÉ÷ô7‰ò9üà=t¹üäù.á_°~Sïß)êõãû‡ÿÀú)K¹Óÿmý®ß7+ýôŹ¿\üwϸ¯ü…%žëC—?ýŽùŽ÷Ì?ÚŒS;ÏÉøw®Ð8»~¶þÙnmžù;ÿ ÏÏWºÒo”ëÓÑ‹3‘Ë_/÷cµ¯4þËwü¾©ý'zÁÞÂ®Š²Ïø_1q™ÄÅ`Wb…ÓGWœÍ“Ùþr¥+ýF¹þå_þHv#ÇÇÈiÞ¿øÝöi{ÿ™rÄçSß‹ã™À—7ÏâÞùCÞϸgÿ+úçœMã Âéüì»éùJWú(ÑÎÿpdüvŠ—ÇÆ¯}~ìm¶aŸÜùÝÐxøvøùé<Θ'öþw~çß?89xº¯³Ò£Ð›·‡¼‹7#ÿBüfò+DÞ_rMë×~0éÅS‡»á̾Ïý÷M”$¾{p¨GÝ+}ºhqf×—s†ÆŒ<¿Ú{„‘ïSä9Ô÷¿wü™;çHÜËú›nÜÂäw¢\çôÞí%¿GÝ+}ºhq:ppÿ9/.-òì|LܿƤWyîÖ×ìôüO\88ïÅp>(®r.¤~ç{‰ÿ'ÎáQ÷ßJŸNº9ú"θLðkâš±»À©5þ_~©ñg¼—>úÑxƒÊ>ç&}ÊS¿x›ìH—Ö󸕡ÞìÝúúŸÆ?+ rZΧ¹.®'Ïpâ \ͺƒƒÆã„Û©5é,Ø–—÷×SßÄ5×sÔý·Ò§‹Ä™‘ëÏ6rMޝù½•çÈïõe>x¹ëôLú”w=åµü/“~w™¯åì.é~ôpðqÔý¸Ò§‹ïÖu%ó8<'Úùþó¥üÊG¬{ù®­zr,ëLÖŸë#ëÏïÕcë}Äï½uŸöÓ£º‡²ÝOíÜÿ+.Ü7žröUð˜×’Þ÷ ÛGžó»8¸ökWoå9úç6ãÎ6N­ýúÇwÑG«Ýæi¦Î¯~ôzÅ™…'s?Îý28²‹·¾Î°Ó¸îmß6¾Û$¾mÏÍ<«ï\òÃשï\ê'·ñw»ùýh曕>Ýtk¯ eG99hퟑ_vJøø3ñVøà‡€½G|ÚÚm’Ž]”•ßIéjgÊsê=ê~\éÓE‹wáçI|Wþ¦ÄÇ­Èuü?Ýù÷¤ƒÃ#€×?vÆïô¬>øùþGÊ;1ÒüšôÁÍu?®t¥3Ýû×èÛðSÕy⟖zVÿ¯¯.ß7Îî±ûÅ¥þ)zû|ò톚gàaá”^XíK+}ôi×;89øÔãËu±éG|̾·®¾lM~x:å[/áïÜ“xsùûQ÷ËJWúzÓûA;÷ÿú 'wj)Ç[¼ÛÐ'~âÎæ÷·óÌß¿ç·}¿å»Í÷¢ßƒ:ê~YéJ¿Qoœóÿ¶sÿ¯¸ÒwƺspoÛrrŽáþ«tç¢îÞÏsýÂåÙ¹àŠ7]é#Lœ§ÃÕ}÷ÎÁßúÑsóÝåzã¼Ïýïú±‹Þ|xëë ;ûÒÓÐ+Ë÷GÝ?+]éõ†þÞà ®±›’çÛËõÆï ½á·®޽VyüÄÁëÁŸŽüGÝ?+]éõ¦8SôËü֯⭯îЧm¾ýÍûæûÏ¢ôæXžw6ééiýÊå}ý2¦¾ý¥>®t¥-¨xì¬ðrp×Soà‰öƹÀôw-úÝõ„ž$½Ý[æ?êþYéJ¨7îÑÏ—³oŠßìâÜ®ø®ÉûÆ9Ûeé“¿~ä<'ýÊ ªÜïèÏn¥+ýQõ¦þßœoEÎÏÝú:ÁÎÿ–÷gœ“åý¹ñ}s1û3÷[ÝSu¯õbêsŽV¼žzó|~]oVúèÒú!€×áÇR<Øââòž]”¿~ø‹ƒ‡cÿèù¢§üdñoòF~s¹ÿ[éJ%º÷Uäî…ž°ãÿs(Tp0âÀ‰÷“Px½¤«ß7þ¨vRŽòÔsbÔóÓ¥½è€¾ËüÏŸçŸvð7„¾º¬ÿ¨Çc¥+ý!iñæô‘¿:ú Çs,.|Ɖä?uàˆVºÒ'‘vÿÄ/œýß©ûõwÌïÕ›yoŸyöÖýç£nÏJWú£è͹û=·hüTïóü^Î#Ä•t_ɽ¦w×uf¥O­ºÞ‹u~—u¤÷[Qç€YwêgîÞú]³Ò§†ÖÄo?rµ? }úpçþßþ¥¬;ü;Я+ß|±Ò•> ´úÂIpr[<Ý­åûàë¶þÙaSΕu¿¶Ò'Ÿ6>]ãuGáú5õ|ëëvö/'ߥ{«Þ¬ô©¡õô¡ýVô^ßî¾Ozùà$¤ûpݧ­ôɧõ'ï^©ó³sÑx!þäßÛ¹ÿ×{xâ2œ]í+}zèþ«Ñ 8öËÆ}dׄ 'ˆ]t÷¸Ò§ˆ6^|Ü Ü?rÞóƒÅ?uk¼¹•>tÿÅï¶>T_^ß¹ÿ·ÿB(¿S¯Dï~9žáòà]á÷þ9é~²ù½ø»—’nø¹»û·K~[~ü\ÁÕu¿>î´xÄ÷–Ÿ¦Ž“q†[8Ŧ{&ãôâÈ÷wËù¶ñ@á*_[~'7?|?‡pbð’:üŸíýWò=÷ _9êI\ïé¯íÛú«Ïü–Âu‹[|áö¿ûë¿NÛþp¢öwü½ÁwãÂýð{e=³¾E?º_¤?ë>ñûÑòrÈ9xsçþ_qXgÆ85^{Þ“ÏÄñl¼Dxãç\ÿOæÑPñáÍÛ¾¤Wޏ¥Cг~mèÛð“V¼Ìk–'qìí?íkP~rÞÎ3¿SÁ§mãK¦~þ»Ïæ¼:þ±Z¸Ò;oàGK>¸¹¦K=õ;l\×ýâ_¥7äÿô;~ÔùK×–_éÆ%ò|>éŒOÇ;Ïï¹õ]m\Ý‹1Oò;ýö¿“¿sKùî|ÌoÚ»äv´ç—rÚßßò›sçé>X¾ßÿð^ô õÖ}Þ_ÏüüÔþXפwŸOœHãïóþ­è‘ñHÿ4®¥ç‡[_Wú-ús~ŽÓSþ™ª/é÷6îjë¿,ù¥{Œ'yà¿ ~>R|^÷7ñU9Kù±«lùWïÓO¢þ †_¶þ^ûÊc·lœÈÈ#ÿ—SÞ‡‡”W¿WÉ'„ûÝì§ìDê»4úáÒè?ÏÅÿ ~‹Z>µÜ=nt;Α‹g£ñ;ù!ë¸xŸq7‡_2qo>Ì{x~Ìäclòˆ&ÿÕ¤O|Э¥òT»Ûü¾7äåZôðú©¤;¿”úÒx¢‘òWy–/éÉGåõûÇËu•©kËö÷÷Ä™;´oÜÝä¿‘òoD~É1>ïôÖ²ßÇQ¿é§ôpô§ñöÒ×¥£×ù½ñ"Ãßõe½+ýËèþŒã rûÛ¥~èïʧt/ǃœ’¿úE#?ÒÉ=ª?3ïóܸ‰‘òw}þ9iüDåDþæ¼[icrwPo¾YÞ¶ñPï.Ò¨—·«c?| _ÓÞ®Géׯ•¤?çëÇ~¹6ßñÀõt¥ßnýó_ÈÙvÜ­#¯êEärŸ1N{‡Œ_Ç}¹ÏÙÆ)½¹ä«zkü­WŸ/÷)Óï'ÿ…ÝßhçR?*¯{ËökÿÙß¿¢ýÝþ´ßE©¿þ©ì{ñ~­óݯ†úþi|HÔ8Ñˤϸmõ{ù¼Ò¿ŒÖl¿ –ûû¾ï÷jäºñ=?ã98ðl<•Goüžq.?¡Åíç÷K)÷€¥\ßkpþäóò²}ýn'o¾—Æ:ðW÷ïù´[œÆÆ‰ Î?êÛûðå¾[ÏORžïBç2îѹ×Öó~µ}ï½ÿ`=_éCŽ«ïxç6—ëx¿Ó[5¾g¨ñ1¾Î‡œ÷ÈïÜ>øbêsîPùH=õ–tΙ§¿3|µ^ršôÎÉÐs‘_çäŒô¾Ÿ}LùGRü»ÚÃÆºîœÜù;{üÛ[#ý[áŸæì7çõ~wþyú»­§+=d|ÙÅàÝ“o|Ï<Ÿ’.ãðÖöDçÕì~gȃqÌ{ööë_ô§ò\¿fÞ‡²£óƒ/ùµ‡=”žT~çÜìRÃ~õûó¸~L=ìÀÏç™ø^×öO„~¦Ž¥=Ï.ù*^C-þåþWÊW¯ß‡Ý÷¨åîq§Å=Á«ÀUÁÝü}ž¥ƒ Ÿ"'pô`—Ü ù#†‹1þ¯ô?弜ú=“x.ïáyžI~T}ÒMÜŠç—V¹º/GìŸjÿå!_ð´æ‘x¸u³rù/Æ7òòùWºÒï$·'ŽV®º)žpÌ‹¯=ÜüVÜ#½Gù»u~\éJWºÒ•®t¥'=ªx=?½xëëÛóy®/ç°‡óŸïçõ9Ÿ=ê~]éJWºÒ•nèQÇ9-®uâìŠËòûwão‹_º¹ž¬t¥+]éJWºÒ•®t¥O í½óàß~üúÁoÁWÁU½üÝðPÛ{ý+N`¥?€Üòõw;÷ÿ~ôúá©à§Ä³ßÎî'ß|N¾lÃÛóŠXé“G«ð‘ü\ý|èßÑvîÿ5~+½’ïägWLÊ{-ùëß,>çŸNÞŸ/xaq–á:­“ððÉÊß^S>¸Kü½þþìý=¬ž×•/xž*¹TR«,›6-Ú²‹2%J”(‰_¦DQä&Pc¢ÀÁ“¨£™Äô öN&(ÀAwÈÈèx‚I ¨#c=0PF/TðØ¸Æ)ñýÿþï}ÖáÑ—%½üx@,îçÝkï½Ö~ö³×¯%¿lõ§f¼‡µ{jà9áúàèŸã7pKåÃú³ÞZù ¼psCéÙñ<·>¸g%Ÿ÷༷eèhýÝzá»4ùŸrÎÏšxÆÇû'÷Þ:~üºc¼Î'?þå»°Ô»•~Mzcüù±s/–œ»¿•ûŽ-'ßùñÜ=@÷õøctŸ¶þÅnlÒüN¾8äÓ}J÷ÑÜwl»ê¡iÏïüõ5î+9 u?“\NþøÛSOý²i?ù¯ŒvÎ…ñ/.å¹{Ç3—ó{üíuüè/Ü“þ]N¹ó£ŸçÖ}ÚNôæ²y å÷N¼ ÷’{oxÈYʵ>÷Ý+î½sz™ôUò¦ÞÈ•ûÁüî¹§\e©ß=iü»w\¿~I»WÜ8HÖÔã¾1?W†ë?Æ^·þ §§ý鸄ׯûÆx_Q^¿é_Òü¤þ]ËÑÃFë/‚»ú­ˆ]‹ò?ѸÊE®ø•P_ý¶$ýäù[ÉÏ_ÿ(ÓŸŠßë×?¡õ?I“Ÿÿ åøµ¨ÿò>ðÙ~¿»Ìï¹~×vÞã¡ÏñŸqxcÉ_çƒ¿Æ Løñ±Þðûöúª7;Ñ›éW…<ó¯X?™ÏúïK>~[*—)‡¾•z¯u•:~þ¦¿½ú‡Iûä©þ—ü®þ´?ùàÿ«ý¢wô"õÃÑ•ý¤'£^þ/á ßÈïo~égýPªãb=0×GÿZ¿õaÓ¯]ËÑÃF;OÞ3ÕÌ‹ùµ¾VîN.匿¢Ê÷ùåéSýkÒSòä÷“Ky£Gä½þƒ¥ß_öçÍѾ÷ˆ÷A߇i§ú¬ŸáO{ü8§¾ÿÒÿgô’ÞÒÃÖ—üׯû¦þž.-ǯz¢]ïËõ}³½i¼ÔÈUýYçy÷ec¿f_Äϲ}|ýÎ|æÙ~Ç÷Äk³È>Üÿ~’[Î÷ýñ=T¿eöCI¿¹Å_¿›ÂOÇ·öǸпגÿj¨ñáÿÙ¸µ=4üÖuÒm×:¾º.¤>ßyÙ/ìZŽ6Úó.þê—+Ô¹Sýe^ç8g2ßý^–õø^¿z>íª¿ü$í;|žðO'~DÛE“¯~¢ð“v/]Z–ïyGøu®×s퇶žÔßúÒ®óbýn|„è—q0NÎ.[/ð«¿ô%Ô¸ç\n×rô°ÐÚ-Ø#±K°?°¿°w²£³?^Œ¼œßŸÏïü#±k8ÏuîÍ.òÔ¦þòÅ>¢?NçÈäÆ9¹sc󳓰6>Rø`ç=þ•Ã׈OTûÑÿµO…¿F9íÎ8SµË¼¿äÎA¿ÏŒöô—^®þž^½÷8mþ3p⦲W³¯œÈsr÷!Ž;*<¿bÏ’Ÿä'gp0ìãüÜñc£‰oì¹ï4q<[ÐkzÿÒR®[¿s|Ì8»¯h'´xðÔ úôª7÷-ްñ/n,õ~®ÌïÎãœo)|â§°÷wñ0œGÇ™z_6õ8—müÙ¤{ÃO:Ÿndë@øºçη{ŽýÔãþä»H¯“ß8\Zî£ÚüáúÕóø÷–üg›üác×ró°Óâ«à ÙeàÇød_`ß(Ž1ù® ya¯¼’|âx5®ì»ËöØOñ¡^vJ¿³{Ì8DÚëï¡WQý‹×^«ýô«vÖä‡mܪ”£ß—ñýނߎÕåóòP¼)}~É{Îÿ]ËÍÃN·qèÈMä¥Ï3ïµïGî^]Îÿ¡zÉWìè[=õœÞ¡äöÚ ô®¦ñš‡Ü·?áW¹â>µs{Ù¿ö?rüzôNæê(×ø~Æ }w9ŽÅ[è¿u„þ«Çïô-íÃäù®åæa§[|ræ·ra='çc=/>Gš|Ñï'r;ë%O)§^ëûŒOÞ÷ßæ÷öÃz?ñ1ÍOïFºøkéèÙÄ÷{øœ¾ŸÔg|ô+õÙoÎq¥wï–çWf=·G¿—ëÐJ¿f}ñ`žì‹ºOû—×"/ž_šó?ß#äÀþ(íýdÐ+ƒîW´'ôÂyƒýbñ7ä ?Å·„^Îóâ‹RûEäÕ¾÷B˾úüär]ñÔ¸™ÚËï—2žMvŒsï·mú·kùyXiÏœïøîµŸv^vaü.¿yî}ÊÈk¿›ÉA~¿xcSÞ9¬ó÷$'ù—Ÿ¼ø®îýË!—¨ûúóK;øë½ÒÔë¼îâè÷Å‘Ž ~Èy!»Nï½Fþ:W)Nȸ^Z¦ÝÿV¯ç#¾æ®åça¥Å{±ÓœóoV<È{Ëyuí\—qÞ³—f¿`‡tn\¿ɧ~cüξá|Vù3ɯ\í)¯_ÇC•W; » ûûû§zê$ùé PýÜàÃønhÇŸ]ø©ä‡ëÁGýh/íÄN»kùyXé!ʧßð53Ž)º#{+ýl´ë¥õ;rR9|nè—õо¬ï‰È»a×÷±®[oá$ùa"Ow›òõ;6øð¢—Ïl}'—Ër-Oòûõ?%q K¹­ü—¿K>öb|>–ôÄ?ŸÊs¸7Ïç©1ŽßZß7÷"­&rnßaÝ´ïxqêÍØWøN©Ÿ±ñQÿºc]µÎÚç‘ëµ÷Øé¥|•Ïí#Ùñ}ÏÙ¿9Boô_¿éiý™á{è¯ýî)ý“¦GIÏ÷¹~jW~û@¸u÷-ŽÐ÷•î–Ö>Ý{3æ?Ï}Ÿ¾2öMä›Ý»þ¦ÞMþ”;;¾—|ÇÃëøž÷'3ßWýÞ~w)‡ä\yízÚ_^Xî»¶ï«´×@ߦ?m¸ï±3ò‡Pi¸öRãê<‚~ÀÛÕ¯šòê½q§ž]ËÉJ‡Üöóïü Îåòí…ÜÕŸYϧ¥£GΓàÇȇó1ç³îõíxïS¿L·Sn¼oÈ¥zá¿8³%ÿ‡úá[Ú}7þ«<§×ÎÙŠ×Iû½ÿš~8ß¾˜zÐòzÂÉ©o=O»'ií“îóö~æ•}ñձߨ?³è»tñ)ê‹|ÔŽ˜ö¦Ý¿vþäg?b'¸–CþÞ]Rv¢k'—完þN»Lõ”¾·|^ÿnø”ß8$;E/ٵأàiz¿IÇ®µk9YéЛú¹É<±“ó;F^ßòÊÿÌ~Ê]W>ùù5â÷¥~^RýÀ(w{ÑÎÖÿEêáÿæõ¡¿ô³~qÒ>ÿ0õóÞò} /ƯMñ0IóƒÃ_Nq c]((é×G¬×G9õo|¿6Ê¿¾Ô÷•Þ´r[ÿPCªOCîøùâ·hÿ瑳ÈK¥ä#õñ?E^èÑþÁF¿ÄÅ×þ‡)7ø oE¯Ô[=Šþ§žm¿éWÊUOò|ÿ£¤ó{ý´igð=ýžµ]ú‘üõï4êmûøWϲ¿+½7è!¿aoç›Ky¸6ß7äõ^!ä’þÝz¹ò^ÛWnPüðøÆÉ»óQœ—–ëzåöÝå{Š?´¾É5yÏó«øzÓ÷„÷¡qÔÏŒ[ý6Î÷TÚ³?­»ùþ]¾_WzoÐ-Ó:¹©ß¼Ì«ûÖqûö鿳~å#/ä‡ÖýL=ÅE’ëü^ò ßS¿ê =>Ƈ?8ý€Û'‚›Àÿôc¥½êmÊ?½ìÏ®åd¥÷…g'óúŸBá*‹\OúñÈáð›tý/›´rÒä¿í©G|Oz—JÎáêàD«Ç‘ûL;LZ}ðlâ3Îöáwà<¿w÷|+]é'ê ¼ôÉÈ¥8ÖÖñ)Ïð]Ösï)¿{ŸxOØz¿Ái?™tñ–ɇíO?hό߽7à´ëo*tø¯-þÔ{yàÏw=+½?è!¿bÓï“}åÄAóÛæ>Yý˜Ùï|¾/àåžOú¹ÑîÙ#òó?—7ã{úîÓ>¾§ÿ¨ú³ í÷ÕÉUoVúÙõ¦8°ÈÜÜZã$9qd{/Ïyƒs‹ú‘º½‘gx² #ÿOÆsòç]¿Rißyšs7ñ.…oôÊØ§9·›÷E_¹û÷ÙJWzW½©ÿÈ%»†siç¼ü¿Ìøžõo9doçÙm¯þö6õÕßBÊ_AÃGýŠ i¿ø¸¤ÏF?ÂïÕñ¾açO{}©ÿ+]é'ê‹xSÅ}EO4rȾ^û{hq‘göÕÆcKyùgp>O~ö{x›ÆW¼±ù½8ˆäƒ— ®hÿ—›z¿pè­8Špsåg}߬ô3èÍþÿ³W9"¿ÅF®—3rÛ|g6Ï›?úÓ8šIgÃÔçoGNµ ‡Â©Ò#x¹ýÔ÷Vêiùüþ¶þü|ÓÞÛÇ’oÃoûýv~ßÇ=¼½ØÏ­t¥wÕë¶õ½x¶KËuÝû¥ï‹å:~çyʯé}d§êzAoæû¨úscó¼õÜ\êgõjÿN¾íz‘|Õ÷õ=³ÒÏ¡7ü]Ö¿åØÞg¨ÿÂÈ5\Ü—}ûò·üÞ¦¾ŸôÐýú™|êó_ÿŸ7ß![¿§¡ö‹ô¶ûÉçåñífqqÉïÜÀ¹\ðy-çû½þßÃGýͧ÷©ë/nð]¿…ï/ûQ?Ø{wþ¶þàôK{K}\éJ?Qo—0rz6rÇÈ?;"û§ø4p7üãÔ_œß“VOñ@¡ì”ì5ðtì•ÏŽrÏŒçgeß™ö¦ú}Óä¯?‘ä Îg×ó²Ò{›£À‘=¾‘³ëÿ9iþ—à^Ž÷Í#) ¿úác‚;½þûÔS¼Aʳ¿N¿gO.ÛmúÛƒzÞö“~4õâïä’Ÿæ;ÂTõ.G=ôrà êßG\°#âîný5¦iþZð‰ë”ñû—Cßë_տƹÝô{×|®ô3Χ÷¬÷½™óœ÷pq}ðçÖ£3wŸ÷Cñˆ½‡Ÿ m¼9ïûå y*þʺÁïÝ3Ëõh¥÷í>ò¥±î7Ž[äÝþ•¸s¡Ï²\W‹[H;pyüçÙWÚ7Ã7á¯î~£[\UúY?_Æûôa£pBM7NdhýæçœÉyGýr¼ëº¹>òÑøv7ò²Ã˜ßÑ— }é8X‡àI|ïÂy­q½î+ºÕ‡ÌgýrE~7ò¿ÐsýÌwî¹Y¿òêsÎï\°iú¥þ›Ô:¼/ÚûÍÖúð°Ð-¾(zPÿ[‘ßú%Éïpvž¿@‡ë~¼.õ¢zà ;ÙÖú{È×xzï®zsÒC~»àùê'%éâ’~ë³íË«oðõS—úù¹kܽèÑ›ØûFáJàß\õæ~¤Å Õ}¹ñq†½ê¹~k)ÏŸ†{;„_~‹“õK¾kÖ÷rqÀo-×~¾vÍßJ?ç|Ö¿pö /œtýI‘ëaÇþðÕÏÿÕô7Yÿ<Þ×–ù…aÇo¼·é9òÍ/½otú7ƒkžøb¸¿©â·ÔÓ{ ùÿð“õŸ–ßO®ûè™?(>ì¹¥<õ=â=ÄŸêýÀOnãÆ‡Šé{U=ßz· Wt*õùn=$ß©§òŠï!ïϧž÷ Üðô‡Wya|WÃC6~¨ïMÏÓú¿U»žß•~5ôÐýK~ÀÈ;ù࿌?2ç2üóñkÆïYqƒ'rØó"úá½F?Ôï=ÄßÙôןx)åá_zP‡cŸwaô÷•Pý ŽìP=ðe/þÄÓUßsë>íA¦‡ììfpåâb° 4ÞEò]‘¾½ùÝs8_Ï{/YþÈYíÚ“í½åäŸñsñ¿·ºíŽ÷͌Ҹ¸©ïÊпâ.Ó¿ŽKø³.\]Ö³ëù]éWCk7nœ§ÈÃ!?{›çðâJÍø™Êñ7и·iGœ¥+Úõ<ùøÛ˜í³«K7ަü©wÆu»r„gœvË?~G=üÖaꅩߌÓðû±Ò‹nñKä.ó^?-ä4rFî‹/¼ÿã÷ä#røúM½ü¶~¿“ú“vÅ _­8HíF~ëwðör?Ö8ŽK9Þ¶Ÿz¬¥CÏà#‹K¦7/qåZßò½·Ò‹g^|{ôÁ{¥z”÷¡xÑÉW½°{_DŽŠÇ¢oêõ^RïûK½ò^¨~)~”ïûfèÍëGþk·zqŒÃ©eÿVú`Ðúzf)ǵwžA#üë±g²·7>YÒpòókôO©_¢SZ~àwàà žíñoåj·OþŸÿ<ê‡ë9ÊŸ›4¾§=8¡‰c0~ôVÜÕ÷YéJïEZü¼ÍôJ¯ùíûû±oóž£_Õû¡ÿüM¿£3Žî‰õ}³Ò{ŸÖ?˜8…ö—ßrOΞ¼87û@8 îÿƾÎûÞÇ>í¹å{l×ã²Ò•~¢Þð/÷üÞ¿Ê/ynÜ÷гË}Ôvšzà|/õÝEOB}¿ù΃S;ã»—•®ôõƹÜYηø½„/xzrqïÎ_ñDçÜM½olò/—ò/¬ß7+½÷é¹¾œôåñþxmïÎß¡8 εë·/i8ºúýK}ðqôÓ¹4»oÚßõ¸¬t¥Ÿ¨7ì·âkò·OF_à‚÷Ù–Ï{¥ñ¬nlòó#Tœ@ôêõü/ÁJñ ›ßw=.+]é'ê œ‹8¡ðküìÁÍ76ýhmß»ó×|ôƒ¾]£—y¿ðVRønm×ã²Ò•~¢Þoy¾}!Ïoy¡7S/ú^J~ï›Ò´£þâô¢×–õ¯t¥÷"­žÀÝÁͽ:ôÇ}†áG|‹‹S޾ìÝùëï½'z^ù¯,õk×ã²Ò•~¢Þ çæÜËsçjüøÁ©õZÒ½=(.uo“¾¯ñFC/9[õf¥÷>ÝÆ cOaÇ u­vÌPöRvŸâöBáàhàâê—aØqN_Z¼ÏVºÒ{‰nqvô#r 7öäÞ¿âkàÈ?ÜÌwSü¼Îôû¤=øø~³øõ9ñÞ}ý¾9„ç{a¹lýy û1Ÿqb/†w~…ZîÄfÜš6ŸìÈðõC”çpT„?D+]éת7ÞÃp¼ÞÇp{pµÞÃ÷=ÞÃÊÙX¿Î};»Ô§êËŒëÂwX­«?”•îRo¼·ÝŸ ÿç÷îüwî>œ:|E÷Çö±yþÒKy/nÃ=/ß“ðMîU¹·å^Ö³«Þ¬túâùä/Ë{„ÿ« COœ8ŸñGÅ5ñÛ4휥qonÒõc>®àóÆÇ÷ð¿ëq\éÃEù‘kÞŽ.8#þ{P÷Ø{o<åø‰ÈùüVoÞ]êÍk# w·Q¿Jž‡v8«Ëë÷ÍJw 7ü½9ÞõÛ=©¡èÅ[Ñ—á7èÈv÷­é7†¾Šçx}“oÿºv£/ø¼žô›K½Ýõ8®ôᢟÈOÿVpzðñ·U\Ó[yNÞ›^îϵ“ò‡~ûئ¼ú÷¶Éßx§KýlÏO‰¼Ò•~%zS?zÞ;‘úÂÿ¢¸»oDޝï“ëŸ,¿Õ«78'ØO;pºÕSú=Ú~ â®Çq¥-^ Þ¨8ð±šû*r;ýF¾6ΗùÑþ,ë¯÷[hýùEê/”>¿¾îÓVº½©,çbÑ8£yo ®âÊУWïþÙ¶ó)ï#þñÜor.á^<`q…y>üá¯t¥_‹Þˆ Ѹ%{wþz.í^ ççÆþŒ¿/çÙî¾oj;‡ÐßÝŸ'¢ñ2RŽŸ¯óÑ+ø¨óë9ôJw 7ìôð,ìžâ„N=G:™|§’_®·‹‡–Ÿq‰Î ½}fY®þàÙWŸZÏVºÒ¯m8õù¾‡f¥>‡—ƒ›8µwç¯~ľý¶YOž ÷¡Ö~ÉàÀõ­t¥_«¾x_ýøóíëàK=o|ÏÈ?Ü=üðc{wþê? n ˜ÿÌSCÿàþžY÷Ÿ+Ý=í÷ÚsŸo·<ôÜ÷¿ÇÞc™ß¥ùÁ}qì?½_|ßù~{~Õ›•Þ¿žôÐóœôûÌ{îÔù$<*ÿGâý‰³yqPñÏïÝùÛuÿWúpÓúý ®í³—;âü«øÖèGãÏ„Âó5Môß¾âü–Ïw=n+}¸éþ[‘×Ä/ûìåŽxß´¾è ZÿHìÁÑ×Úmý}Ç©ö^¸ŠuŸ¶ÒÝS¸ £ôàh½y÷®ë~ñ¦_™4}¡3&œÐuz”røãìÚzξÒÝÓâsÞøœçÐ#îòö¹÷ =A½/²ão ~üP[õØÏ%½Æ½\é=@û}q„|a=l<Û¼7´Ã¬ûwü‹Áݽvc“¿S¿?¾ýo„ßûjß«m÷CNŒ_ÆçúŸÂ¹þõxNþŸHúOK}¼9§Õƒc¡úm=ż¢r-õ±q Éáñ´‡Ÿãêòùë¼ëÇSÏ·ÓO|“~"¿™çÿ¸\ŒWåõ;á7é[ÿyÔûý1ž¡Å×Ð;zðG-ùñûœ§æÇ7==ABÍ‹8·.å½þåä³îZ'Œ7Üû±e?ê‡2ãnœûüÉQÎïøüÇÁ¿vŸJÎ5ýùªôÆ|7/8ãÓ'ýâ§Tš?AãÄïfôi·[:åün<Éçñ¤áz­OãýSJÏÄçÏßO¸Iòƒýð»üÖOûŸ)7ú>»^˜ç-ߣÞcíÏñ‘Öþwg}áã¤ö’Ï|à—¼[á¨ùƒùÌ=åßÔ¾€ŸGíñ;[œõèïwðc¾´›´ñ;™´ï4å§ûä\¹ÏýG£_ñw\÷çðð‚úãþ˜}6|íóÉïžW﹄>;~‡S4îüÊœîþéä{iŒësô›>'¿ïäúçV.õ¼€¯ä÷»û6úϧzÍ·zÏváôùAlÜ×äóâ{¾çc|}÷[GÔO^éùÔÞ˜/Ï­[î=7hço¤ù~!åé/¹°Ž‘óÁªq2æßôË:vÖø„«º·åœÃ½Füü’·~}N|úçÖxAþ2áq_Jú<þø L\Ó¦ŸádÆ+ü;O=Ÿçä¯õÞØÐ 7“/üð«©~qäw^ô²zÂêžè¥ä'¿üwº·=â´î_ÈïΡŒÇåðã¹ñ˜~DåÅ|×üޝ³c\Î ~;~øA“Ïóâ;OèKɧ_ÆÛx5ÎÆ»Ë~êWÇ/õõ÷“Ëvø7U¯vÛyOùÎcÆóü¬?rpiÌ~ÉOýV†òê¼=í~ezÃ^/+ 7Øt~¯éô¿>¸¨úãHùËöqN^»t÷üÚ…GäðJÚåàµò¡\êƒ3=mŒ¿öÈyçéÒr\ée×qëkÚ«œ }ñܾ|½I»g5ô¢qåÒo¸ rhæºWù2Öï!ô²rJ¯öF¹÷—ãöòƒ1ŸÖ§é·¦q솒ëiË—!Çó½ñ“Ñï+£žâ_Œ'þ­ÞÛé‡ýÆÔãÓõ]ûò½?ÆÙ{e®ËøQ^ÿ‡\÷}`”›ü ý«É?ÊW_Ç8Ìñn?ŒÓ˜ÿ®+á¿ã¿)ÿ•é ¿âÆÓ|]º´\wýn?黥ùÍOæÕýéÚþ½r’òÆxh_=¾›Ì¯}{ùLJy˸_üÙ'Û7¨×~ZþÆ1@õK»Ê¥qö:^™ç ôö½¥¼›ürÓ8|~×NÚ÷×ñM½ús~ö{Ö7Æqö×÷R©çƒŸêÛH/ãi¾Ç0õ?ôÞ’?ón^;C>ñÑïSó»)ÿ•éïùs¡ÎI|úÞòêûÚyÚÙ<)Ï_Ìsßmž;‡‘ß÷{¼ÎY^™ù2¾;}_O܉v”SvÜ#Æw¿çC‹8'p.óÂè§ö}Ç>?ÆK¼¼ž ¥¼ïzúéà•1^ÎÎà+i8çNÆ™,ßóçµ7æ¯ç=Éç<ÎyfçS¾#æÓ¸÷|„ËOžRÎøàÃù—yS_Ï n,çaòo¼œã9o3Îø}ñ+~ß8Og7bpîï<^Ày${ŽóNçìÎM§Ÿˆžß'ýÌxÎN朶í >Ø{Ø¿ð+¿óÈþ4Nžþ¦^vòS£ü8Ov_ÿ»#?»Ã¡ìBôÔxí…P¾œGO{•þ±g×SêõÃÙ|oðË.ç\›Ѽ³çàž€]¤¿'í|_ê1ŽÓ^d<ñeü›zÙå¾?曜±Ë=’4{Ή‘Ÿ#v¤¯LoŒããþÙËðÅþ;t¦ïîNƒ½ú7Ëy(>‚=ýéù{4Ïÿ’zÈšq‚S©Ý:å‹oHþârèë?ÌúCÓßÚg͹&?ìñì€øe·7>¿ ?ø£?ÑOøãS\ÎÀ7±Ö.i€SIoý>Ïñkœ<‡£¸¥?/Û£ŸÅ ýq¹ž˜ïòùØr¾‹Ó!Gìäȧ?Á/Ü?ïGû ßG3©ßéדCqÊísf%Ï·é̃zÞüŠß7û¿\òÓ~}´\ÚB¥#ûã=*þ"¹Û<Í8«W‡ÞìGÞf|È·=òܸ¿ 5ÎÇF¹Ô÷æëöcÌãÛiG½o¸äSÿÄÑ{;iÏß>s×qyØéþÛCNÄï|ÛüE¾ÞÙϸf~•ÛŒû6}ü?_ÈåWߟ¬ïÚ}›E¾Âwû÷vú—ü‡ê{gÈá;‘×·Çûæ­ñ~hûCŸ«¯ôeÙ.¹.ßåo®KôJ~ã¬Ýô¿ïÅòCŸðñNÚóý°Ñý·÷7ãHŽÄƒnœNã4ß3æÏúf^ÉßÔ›K#ÿò÷/ÿ}Cn¬ÖÑôWÜSëîõ‘ïÅý%ÿ­O¹ÐŽ‹uYÿæûW¾1.•÷´ß÷"~´ç}ti9þ}?ül1®×Ž·rò[å?6ê±ÞDºîÝ]¿6ÚøÎöÝÙ/ô÷á·uÿÍŒ3¿•sÂoßõYÏÉÅþlÿÚR~¾ü~Ù§y¶Ø·û®›ý|}ðÿVúÍOç5ý±oKZ{o,ûW?‡õ«›våç×®û­½M{âÏ÷}]¿WôC¿¢'¯‡_óÖý\òu¨Òƒÿñ½úUï³ïuºÅGg>'~~âs{O Ï}ß/ú^ã^á7ñëþÒ¥»ó·=/P.ý?4^É7Îó[¯sºâ¡g乿9Ç.µxOý _p§=ç3¯ÑŸâã=}õîz`Þ?_®+­] ö™PvAvOvLöÞ+òÁžqa¬ßpð“/Þ}>¾´~5®hä‡ÝõôxO²ËÀKÎ8p˜ÏÏqˆü÷Þq舃SûáéPøOùÛþ’¶<;qï{â'Ôýës©×8³{²[«ß¼³CeÞÛ^ó~GúÕÎß½N·þLBÙËájcç‡÷ªŸ¿O¿ §3ã‚Â>½\O¿ô~ÁoÁ;²óÛN»ÿ©%ŸüÔ´>xø¸SøKx»ãIè%|úTøƒËDGüÓâöŠHºxU|¤Åkê×x'å¦ÿ›ÇR¾çÇcŒÛn½¹ß(¼aq—ßzÉß Ü| œ¥çð“pÏ'†œó³ö—Íóúg‹|õùG£ýøáiš\âëXÚ%§p°ÃÚÄ…N=>r|¦ÿ3ús„߯ââŒþ¬§ð„ôÎóo¾Úuo¥_.-^:òjý<´>{¯Á¹ øHë©÷¹&op§ðcYÏ‹gxä¶\fÓö·p×Þ3'óœ\~{èmñúC~g{/ƒ¼~º¯ñä²\Ë÷¾…÷iòë·uÅ>ñéåøìZVúÙhïÍÔßìf>ÉÛÄñÂY>7ž“x²g–zÒý™{JÒôrâ%O¹†û„³„ƒ£?ð˜öOÚÇoýœÝ]NñµM§>´xÜ#ôôûË|[Ügž÷^èÙUoî*Ÿ/-åñ^¡ýžvO1øÒþî{}ú·ê½Í”ë}ÆP8ÈyÖ9åYõ…gvˆO÷*{¿3õºO}Ÿ÷^«vSž'¸Í?y^Š·Vœûù#øÄWóÝÜÐsy^¿ó“ßuŸv×ñ¿to®'[¿_‘çŸ,娸I8N8Iúß üwý6mäjë¯+ò]¿i·~ N.ë»8ÖýúQï¨þ’Ÿ‹K©çнÿä»´|¯9>ú[?èÝËOÊ_>êo ÏùÓƒ÷Œ‚]ËÃJ?ÝÚ‰"Oׯ>éüÎÎûjãA±·7UÒÍ—zÙÙ!›úÂ/Sümù¤§Ê%-./;;hýjyž|õ?ù½¶”׿oÜÞðSÜçÉE»‡ÆS\ÆéŠ]‹=\‚åj×òp¯Ñ{-Nå6®`摼¾~c)¯âu¾EO’†.^!òAú{ž79 þ¡¸É7Æyý ?•{rÙ8‡~GéÕÍ¥^Ç|â+ê×µåþôÐ8U—ý8”ß}‚â´•ÏsëñjÓ»·ÿ°Sëé®ù8,äˆü„ŠM¾*ŸC.È1zÕÃ÷–zO?Óäª8ýñþ°n_òwU~zùã/ÏûpÈí¶ßŸm>ªÅÙX_ît÷.zC_Ò|z_Uÿ½ïü¾~ßÜuü³ßß5åÇþÌ>Šœú~x}È3y©\x_Ù?…Ö¿ß»K½°ßoÏÈQý·ï¥à]¶ü¦ÜôX<ŽúC‹ J~ýåóõÏ&§[ÜPê½dÿu÷ò[ÿ¥—–ãÐûnúñþ²ÿGÔ÷°Sç*»æ£ü\ˆü ¯,÷‘[\Vä ß»y^ÿƒ¡½Gy˜~ãÝ_´~©Óþ87QOÓp>ŵh76ò¨~G^{?•/Û;rœœk«þ§¸»ŒGýÁ…žŒñ™~þq>÷°Sö²]óQ~Ø ÙO¾­¸vFç¼Î™§]„ÝÆù/ü»ŠÞ}ôågñ×CþãXÇ?'.kúëk½~ ,yßõPܽ½eùOóXŽôXœË_Ñßãw¯O?¾²y4OW¼œ—Ž+}²^üíH/ë¤ùκ×x—Ö7ú¨ÞÆ L}ž{oÃ!‰{šñ?„Ïó×÷¨ÞXþaðí}d\ዸìõ¦q—ëUýu~^ýQßæaÄ£î<óý”ýÒRîééãéÇô7Øx“C.NŒô¿–‡úŠãg×$?nö“úÿâX½§OŒñ±N±ù­;Æn˾¼~†ÇºWüS¨ß'ÞþGƒ?íþjÇí 7ÿ®ãžB÷cg†ÞØè·ùøÉÖcݲßø¸#ùò]ßóÝOÖ»â˜É y Öa~AëÔ<&ÿsc|wßWöc§–õâëÙ¯gÿ^Uq>Æ;ü¿2ÖßÎ-z)ù;=„:›ßù;×ÿvòõÞUÊw•ô~¹šö=ðŒ÷ ÝÆXÊsÇí¥1.ägÆ]PÏ…1Æžë¥O–£Î'|™ó«éï°ùÆx“ü‰›êüpž˜÷O¹WÖsIrU¼_ê%wg‡Þ5žÃW3ÿÛsÐðç~œ’s¾ø¹;TÞýÛ‹cÞœ’稽g)m|“†‡ªŸ½”oœr2æáâ¿ÆÿüzÖÏ?îäóär¾É ; ym¿3~Æ«ñ{n,ûßóâ»÷ÿhØí¥>ôÜܼd^/Á·yu~Üùó5íHGñS›q@O.éìÿkÆåîrûWÏŸ{÷ðEìEµß†¯×ÇxÖÞ”~\ã®\?u©¯q°òœÇÞ‡Ï85~ vò¼ö¬Pö¿K£ýÚå–|ß+tkoÏø¿•~_•çÅqI¿»¤ÓÏ%¿ µ_·Oyï—f¾2?p ¯ 9¨ý6ü™§â<×þЗ«)e¬»ðjì°pS—rìÂp•_ù¾šuó<Ã/Õ_HÚsŽWúum9Ûñ˜úŸþ»ò!\^ç'ùŒ+<¡qº:ö ÖÅâ+–rt¯ÑŽŸq~}Œÿ!ÿœž/×±ÊËè/üÌgæ§íÑgífÞ^Gx/ÔïMøykì›F¹-NŽžNù™| Šó=ñ>Gà¿´ù+NŽþŽu°¸¡7å?ýžrܸ¥ä_;Ëug[Oò5¾kÆ¥~Q¼o¬¯{K½4Îmgùû½F½çÅEß»;í:Nþ–òqÈnãe&ÿ•ù^ ¨yý`±øÔ÷§ñ¯\mø°Þmùò4ßcõKtiI‹ë‘ö¾£'ó½uûùþÂó׸ãég÷UËuà^À=ÕOÑøŸrßMg™r‡pRùn£ñ¹3îÅ}øýSöŸï±3½!ÿÃoxñUÝ÷¤ßõ£4ö=Å·˜ã–ú÷sÈÓ•±>+ß8´cü›¾»nï¼;äZû™7rn}œ~ÞÉIýBI“ŸÑÞÏݺrw~ÿêù;¿éWÓîïÁùîœß¾WG¼†Cõ×ÏQꇱñÒžû‚g"OS‘þ7¾IžŸz:∹ký8rÜá­öÉ3Nì¹!£_Û¸&æ)éKwŸ9ÏÛyÊøf>·ùŒ{ôõâÝÇu'÷ƒe?œ3½<Þ7üܼ<ú×ó£Pç¨Åéá#å‡ÜНpþ«‘ƒžŸ÷>ýd7qŒ²‹ Õ¡zI>çÆÎõg|JñŠ¿2ù&‰ÝÓ=óSG´{"|?wo¾oêGƒ=Æ8:On<«ôó(;8?JìÏ,ëûÜ|oöBvYë\ûËçûõ—¡ÜÙ!Wæ·þòûÉ!ÿõcüÚgªtèÜ\êÿªæ±ö{óÜ(“ÉÞøhhìÈÅ=|¸ì÷;oìtmçñäÿóи›Ç6ý½þÛô?í‰Ê?\ΡþüfSºk=™´ãºõKC2.ôŒã\—'u–{ôó­³Ãzûîå¿“Ä#,Þꩱa7=„;˜xòÿ8’óè\Øë7îô³8koøvaöìÆ)¾´Ô«ú»º¹ÐŸ¶ÿÆúþùZçÛ<ñ³s5rÞy7Oc}|ýˆ÷ÍŒç]ÿk)/.ÚÕë}Sœuq'—ëEýÝï<‡×­¿Fï§ÔS?‘IÃ)՟׃5ž÷:ÝâÊ3/}ï¼»Ð-.Œ>ݾ»Þ }hùÆ…×Þƒõ}SœüOýÓú”ß‹_Oº~ªŒ—ü7ROòׯñºOÛ­ÞD?Š5_y^\ZæÏïGà9áÕ¶ë09!IÅq¿öqtÎìÞZüÇ÷^’óç$üqy—Ç/ü¸´õëê\ó=_¹×é?fË|à :snê>å~ë믬~ß–óº½Ç¶ig×ýÿÒÆÑ9½ó{öMçúì`îŸÓIÃgÎûÓ3Îâ‹ã}þ€žçßët#óË.x&óíþ2yqRGÕù´üÏ.ç}›ÿ{ß°K±ßGø¸›GCÙù¹æ«þ3’>»7ø›]÷ÿa£Å ð;Ä^ ï1ñT•ƒ#Þ7ð8äè{ë¼Þ—ó_ñ•Ïf|ÙCÅ£˜¿„â^Cé#ÿ*ðzó½|Fëcƒ›m¼Õ<ç¯þç‘<‡ç_Ž[~ö8øŸú{I¹àëçîTÚ¯¿Ê´sbô³xâÔë÷oŒõD?Çûúß~<µ/Ž!<ù“¡ÖýŒ~µ¿É‡ŸŽG(¼:¼@ýo†N¿Eô„ß øµøç)n„]Žnqâ·Ü™ãG¾ÄOÓž8ÁÆAÚ8“¯¯}HoÄùö]â}nkz*Ôü4ζ÷¿ß½§†×ú%zÕ{!©Ÿ]Ûû^øÂ˜'vorˆòzj<7/?íÇzÎ~vPýÇ—x•Æ‹äÊј÷Mè¥z|‡ÒK¸ûÇ­ igÄE¯_3òJŸ|ÇÒK¸{ß9æÅ½*íÚ×7Î}ÒÁ“ß^½S/½L½ÖûEë&~Œ§z¬ÏÖOóJß[~ȹ9"îáW¦7ÎWànœÀ˜¿~?Þ̸§î æžUïgÕÏçä1iój|}Çž5_ôÙ8fü”¯¿åü^9øÏºÆ®^øß»îY—½_íë×Å›´vÝk‚ëy 9ý/îE~ëÊXWµoœæºb>ÈWç)ÔwªõÐûÏúQ|ˆ÷»~†íö>™ñŸÔü 9 §ShžGýæž¡rc~¤SÎù”y1î™×¯Moœï;§d÷-|¹ŸÊÎŒ^&GúMÎ’vÞ=ýOyÞ{²ùÆ?—FÚ99ý€è}Ù1ÎÇõý\úîž7½sÑùúôÇÏž¨ßÎóé£ó|ý¦·î™;¿uŒú;Ï5{ÿX=ÚÕÿÔS¿AáÿÖ#ãÝû½ò…Ú—wžNŽqÒžßS/=e÷_ñüè>“Ï•ßÙ5´'Ôûӣܜÿ«ûÊõæÍô¯vàP~KÄóº~r™Ï9¾4{êé÷¼W×1í¦ÞwâÿÆ…1¿™'zm¾_OºñÁÈIÊŠƒ„/éK~éEÛãÒø{™¯×G=âH±'ûÝ:Ôø5©Gü´é×èªòC_Ÿ-íÏøhüdÔž¾õ·~9Œñ ßüîèç•1ŽõŸ’|?™íYFýõc>;¯äcÈ ½¿Ô«ýŸ-õ qôÒ¿ëæ'õí¸ùýíci/ùÅ+ƒW¸žù¾žqÛ§·¡øUß~êÛoŽu`?õê_ãx%½ÿ<‡'i9¿ëqP¾’ï3ß_.õ¥ýÖ¿÷—üM>Å[k>ã`|ñ¥<þŒ«qúyÆãƲ~ñ;^äâÝåühoßïô8õGrÑy×–ý¦Ï•;óŸúåÓΓßMúëÓ›ðñvúõöãÎûÏ—ãdÞÞVÞ<Ïз£G€ý·ÉíGK=h¾_,å“–’ß”iï›wŽN¾ô·z¹~;”\v=Q>È y%—ÚQ.ü”¿w—ãö¶ñÅ=CÕ«žä«>¦¼z®ã3¿wÜ­+éWõE?Æüîrog~Œ×;Æ'óa½Ò^åhæûÙ²]rph}̸V.ÌK(½IúëÓãªÆ;óÿwÈqæe®{o)g^Rþ ý'§yÞ÷u‡œïõJyãZ>ÉÉ¥!§ú•yyGyz‘þtÜ÷–ý}Ûüj_¿ÈÃãØqÐNúSù'ŸY§Žz?6¿|ô ¿ï~˜‡¤«'Gýé—|}†oû´ökŽ|øJ>ë=°Þ¶üÁ—ñ;¶œÿöƒ\³÷Æxx-ëûÚô¦ñ[ÃOõ=ã3ñèúÉ¿'ü§ôkcüíÃç~Ï{¹8ëä7Ù~Ü÷R'©ß÷€÷x¿ò¼þ2µk¼“Öoß!×’ßsûÍÆ«5N£?Ý¿üâÏ}~’ëŽGò[7fÐsýè¼å¹õî ~O»§—ã´ÿXÚ‹?½üŸVüL¨uŸõ4ÖíÁ+x¿ˆŸK_¬ãô^ŸGàR¿>½I?ë'ܹ2/öAÒö)Öï3ïWrU¼gÒöC}¯õÔû®qª’ß<‡¨|ø4o>ÞcæNÔºl:ãÛ¯Gëoq.©O{Öcý·¡p:ö­Åý“gë~ò7Ùпÿhä›ëýõ>Ñrh~àôà(ì×Ä-¦OÖ=íY/žëÙÓ£ôìÙÑOóh?küŒ‹v}WØ·A¿¿_šÞøŽ5¿ôƸÁxÏø^ô]âûº8*å2öµ¯Œqö»ynÜÂÐî¿É =NÚþÞ÷Nãv%Mßá_ê?<ÏÕ‡oúè»à’vÒOë=ë÷ ¾éOÊÁéô{Iû¡pkÞ‹úA.zßL?RŸq¤gÅ1ÿÔGmÌ‹ó†âèðc¼™~g~¬“Ƨ¸¹÷–üØ/{šGòÓ¸Šä#ésÆÑ¸Ý\òaÞŒq îggz3ïÃ!ÁÑ8ÏpîRûÖ§”/.+ý‡[j:å{>FŸ2nίÔ_眞ãòàS;='ZŽoùQoý%%ŸótíàãêH[gà¹´ßø&I;rnZ^øe)®-ãP¼›|ê e¯˜þ˜´ËîåýPÿèÍe{ʤÜcüØYêb”oÜ·1Oã3ƹþ7çÀÓþÓvñ¾¦ÿú?Ÿ×>c¼R¾ñÁ.6âg~ízÃþûÓŸe~Ò/´x¨¤§=ŸÜ¸³Ÿó³ÆžlþŠÿH9x(öb8Eø¦¶§žü^\Mê+N$ýP»îÄg‘·£ìàä]˜Ý²õ¯Ô§ðNø˜vyvuëOq$ÒùݸózGñiô+å&®¬ã÷‹”Ï<ÕŽ;Æ¿výä/oŒ܃ùbï,À<y7¯ì«oëGòÕŽêwrb—ã¿3½)NêK=(>F¿3ů¤ðKMÏù2ÞÒûI“¿”œi/õ¶ýÌ[ñ_…Fü~7õI×y->Íø‹–ü‘ßöô—þèý{ö›<ã(ÿ/–ãoüõG?ñKïè•u+óÚu!ý鸣Êg<šüOóÿáréx“+ýŇuÅïŒöͳñ“ߺ´áwïóð³åºÝñûòU|¹Ë¼ÿäwú'½·”ãú†ù7®äóûëañi£ÞÊ©y$×{C/ÈÙÏ–ýíûüÒüÝXÖG\\#þÉåÉe=‡pnƇüHË÷ÑÈ7Þ?ðDÞ Õ ãõáx?¾»GãÞüã=ÑuNÿ¢Åå…ïéý>ûž6¾ï-Ÿ·oãÙñ2?󽳡;Ó›ùï¾’ÜdüúþL¿{_f>×oÏ3^öE~‡?ïþÚ¾!óZ\–ùKyû`úÝ{)Òʽ¿lO?ûóÞsËðßó£ð…ãKfû¯v}g;w®{†¿ÔëûžmâÇ;åzÍxi7åzŽ>äsÔ¼iÆ—î½`Ïñ›çŸ?ù+×›úÅ=÷ôwú'dO`a-ž(ùØ)&î«vuí¨/iö‡ó™â¢2_Å©…/vçÚÓ?vŠŸ{wÉç+ƒN?gRþ,}Kšƒ}Âïõ¿€|©/´8²Pö 8 |[?ŒÛ´X‡´¯úcØ7Ù›)å_|Ô~,¿y?æW}ìaì¬#.ïö:= ­¿ã<Æ×:PœßŽõ†ýüŸñ¾žÈs¸²úãã¿‹~Ó˜_xŠ'C§øTžÃaÔΜöàØ÷ÿ޼á#éÓ)Ï §`ôƒ~Ÿ†Pý€C`&—õÛ ¯`þ_í7 ý ¿ìãúË.ÏŽú”qýž~ñŒkãò&¿qíøçw8ö|óª]8¿«¯ø‡ ­Ÿ(í³oÏùµ¾Z´¬§¸“çSŽõ™ÁßÉÍó]éÍÃJÅ9}fÈÕĉ’Wój!_äÃ<[wávê_*ùá4éKq´ô{¤áNû~ߤw=Ž+}¸hßOp3öIC?öyò{oZ¯í‡¼OìSë¯êƆÖ_žz½'¬£)Ï(Ý}nòÁÇ8œ+]é×¢7ö¾Î 9…£ñÝeAþ·1zÓ8~©ç⨯~êS¯úàg{Ÿ?¾Cò»úèÏéÝîïWúpÒêCÏmÈ/9Íï¯ßø¸Àöœ¨÷"“¾çP\€È½ó¡ÆÛð==qNr9åz¯6|õvÆúORßÉõm¥_Ÿ¾Gø7x™ÞŸt^ù†_s«çc{wþúý_œWêm}‘ûÆ?OùúmKÚù\ý¾…¯×Òœdý¦­z³Òèûóü¶Í{ôü4ŽQ~‡“™ø48¸þ/œ_ÃÕœËó3ÉWûOž³×ÀÁá—ß©5ñJ¿N}©84ò ‡Ç¯»>\"»~ãªI§<¼Øô_6ñä¾ñSî”ö“>ä?íÒzðuÈIýÓeÜGœàúG ö`/i~È”‡ïûVž“¯G7õÝúUòñ›‡r2”üñ¯ªÞâE“/x“ë¿rGIîà@ŇýûÔ£\úð÷ƒúC×ÿ”ç§Ç8Á‰ñŸ÷7iT¯’]_¿è<?iƉ?Æò…/~ÅêÎûJ9éÁ7|¥qÖÞœÇrð>æ÷÷©ç{úE®RnïÉÔ'ÿZÖõNüÅwF?:ò¥üÓËú¾2½9KnÇþ.ŸÞÔoÜä{ôçù!¯öõ7äZ9òiœñSÿ°)o\Ës÷¦?1xxþµàSð?ñ³ÓdqÇcý‡ßô~¨ÿ·¤›7ûºÔÓ{£|šùçï^ú§üÛ¡¯[*.æÄ‡§œß•¸œ­²±žõÞFò¥Üõÿ4äÖø¼<Æõ©Qý•æyïcä¹xå‡ü§ }7nÝ[ç6Ï¿2½ñÞà»ñ8“¾~øÓ´šãh~øKë=•›‘ã®´KÏÜQÏÅÈÓÔãÆLù1NÛ}ž×/Z~wO þŒÜú¾ð=áw838cúÌß< ½†‡·^7éúO#÷#_ëËïpÎpräêP|ÏÌ›~'ãß8‚y^¿Ÿúv;çKøÄ9åfüQü¾2úíýë~¾Ôï;’ÿ¼ö/éúÏåó<ç*_™Þø~5žõç“ñ¨ýðËOXý’åwx«ÞçúFÎèƒó¡ÆûL>çHΙ§€¾™ßäw.efœÌËáÛ=Ïžƒá[ûÖò6ú«\ã~&Ÿó7ϧÕßXhýj'õ¹GéüÍ|Ø¿Ðã¡ñ-S~Æ](Ž-íÃ×É_¿cÆ)¿ówåþXýÑáïäÈrù»u‰?¬CñJg¿É“qK>8§Þ%ŸøÎsãg;ü^~ez_UœTÆ¿~ÎÒú% _îwó{f<{ŽÊžÐ{½I—ׯøÓç²îI¿!~ÇbŒ«ó`ø0v˜úOÃÿè'Ü×ëc^µ…þ¤ÜĉŠ#œßÓk#劜å9?VƯx·ÐƽLzÆ•á öõŸ|¦ãê¼¼÷ÊóÜøñkVÆCÿýn~G¿_ý¨¿rc|Ò>ÿÚe§šãçÜÞºÎ>ùùÊôfú¯:ä7$üðçR¿ éÿ$‡”ßëÇçÃÔ—ñÛj|¶£¾ÐÆ{˸쓤ëwåXò‡·ú«IºqÆ”O»õדôô?Öþäwú˜zê¿%üÔ_YòÁßwRª|ñi~þò΀_ŸŽÛ~øœóðóôW}~7ßùý_ Œ[ý²ñ«ÿŸðŸÆY¤ÇÉ_œþÓNí¿øë ¹#õÿB.ÃÿôsóÇ[ÛâÂG)¾ß/Ǹ|”r,ǵòŠoé¡Oõ¯fÞÓïæ3Ɖœ“3üd¼ßIyþžøK|'íøý§æ?õ‹‹ÉßÚþ¿×Rú_V?Vø¶à3ýkÜÄðýŽq°^¤Ü;ÖÔ<¤üœ/|¼£ã@^ë˜?òÝx›?[¶ƒ¯CÏ­ô.|ðŸ6ã·?iý!OÖüŽùîºj<͇ñпý¯VoŠgÊ|u^PãrsIß¹±üÝû¾ñIÉþyOò(=òϸ¹ÓèÄuUÏS®¸2õ’£ô«¸ä›ËßÛ_|GùÈ…ßµûË1Ž‘ø´âÏ–¿k—ÞWžŒËG£Ý¹îË?å5õÁýTßéßXÇúÞ0Ïi·ëúoý—ß8ü|YO׳_,ûU}ü–z@Ÿ2¾ö±m×z•~òÛ–ò_™Þا׿Wø°ÿï:þ}wØÇÓoû'ïW´ñ6Óx«ú›LÚ÷Mãh¦^ïwûëwý}‘ åò¼q2µ›ßáÉÿÛøGÏxð½oþê—1¿ã¯ñM•ϸtê9y,.ÿê1Æ)_ÿjøÐï<'w¾ç4ãhüúHüžö§–Üèy2~Æ+ùCã³ëßèOýç¹~½9æqâÉgÆé+Ó›KßU=Ÿ ÷áÓ¹Sýy…Oßñοzž:ãô~Wž;wpÞëûÒy|ý™ã3Ï{~C>ýŽåßιo3içQæ«÷)SOÏ5Âgý‹‘Oóf\È~éOÚ+>-õ4.lúá¼Hÿ'Syã—|äZë«£~ßÓõ·>zž—tã$¤½«ƒ/íö~_Úi¼åÓŽú{–%m>ÈaÇQÌyRÎ8I›—Íó¯Lo؛ؿœÿ7~Køq/ÞyoñZÉgü{¯>´þ†Bùr.é¼]’}@{3&~Ù/ù]cOrŽ_ûAò³¿Ì{þWz6¿7ÎNæ×ïµ;d¼&ކ}‚ܼ2òµ_Éï\}Žûü'mœê$´ñ=õ'õ8ï8'Ýx^c¼”côû9ã–ô”óV{—ß3_Ó?¹a‡ªÿº¤ñ{1õ[ï-õw¡ÿÉÏxö+~ߘŸÆßLúQü†²ÏË÷x(Üÿaìäððì«õwfü’†wÝœ´ñ>CÙ9Å» N¦öë³#ß)õ¦=ióÀ¯{7?OòÃïÀÁÀÇ4~˜çêËó©WðCú÷ÜhŸ½Ñ:ÃŽÏ>iá•<çǾ¡ñD“öœÝ_?§Ÿ*ññWÜEê›~òÌGñ"øÐþ†Ö>ÈÇ©ñܺ¥O…õÁaÏçGô;ãñÙq3äaÈùÇ8Çþྊç2_©‡}ZÜGøró/c¼ÜTñEæ5鯽L»ôîÆøOëüÆ7Sù2ÞäïùÁ¿þWŽ\%ÿ#CŽøÝ£/?|Óúu2iëÌŒ­ðgÆx6ò3.j^èçpCÅÑ_óJ¾ñŸtå iø4ý/Þ5iúbÅ+¬_@ãFþ’¶’‡ÆÇ¶N*zrÆ䊞À ÕŸÖçԛʯþ†>šú½ï·nä¹÷dq[ÖÅ¡Ö}ã:õÎÂüÛÔOß\/´ãyÒpHöäÞûÏ>Íû>M~ò`½'¿•ó2ÞkÖzHÏ&³ïò•|ÖGrbkŸ3âðvÿi|¬«³=å¾á=•|çŒOÒ3~,þá®É³q·OjücòÚx™æ#Ô|üƒßéûàç”ù·N{>ôûÌà›žÐ;ûSû>rޝÆI\òñ™õ†œÂiÏz)ÏýN®àünü®ä÷‹7–ò_|ySúÕ—|ÍŸßëO:χuÇw¿ýJý>[§RyŸßR?ÿÂp¨ïüÛwócÖ÷”÷ƒ~'ñi·#¿ô)õú®òPyS~ŒcýQ'ßô÷j]îwçÆõä’?z¿âwÂOßÊç¹ï2¸?~§}/£µ7—ý¥Ÿ¾ëÌ—ñî¸'?GýÁ‘ã(ø‚ã1žøkeù6Ï?³Þ”Ÿ1^Òø4NÅqioðí<¥¸ ú‘ç­wôÃy”õ”þFŽÓ~ý¥žWGyç&óšç·èuñTÊyžöŠ |’—K£]ãÒ¸‘Ú Ÿp!ü£9—£W·ŠOòçc½1žäÓ÷¾óÉâÁÆ:Õx ©âÆœ³g–´uä>-¿7è˜ïžKÇð¡ŸÎãÅ÷4/yþêà»8Bü~°푳ÆÅ/ýÙÔ÷ùqg©÷Pʤó!?^ù½ñpó;;Lýx¥Ÿ=çM¾k£ŸÅ1™_åR¿ñí9bò]Ïß3ýB¯¦¾žoã3¿³3L9ÕOç©WuŽ;ï?ã{Æ·q>í¹¸7|¾·l¯çßÉ÷Úègã~Öã[;~’Ï|O¨ý¡ŧáW>zÊnk}èýïÈOÏÕé«ùÖ/ýåŒã–úãU9~w9~×è}Ú/žî ê {={½™ñ·j7ÊïµO…ïúñ"Ïô&ü6~’öҟƇ¤¿i—ý±öPýM}µÿl“.Æ3ü±;6ngÒ䧸‹¤‹¯:–þ…7'¿¡]ROý’‘7Ïk~ŸqjýNNO0ýagdG×ßÚÍÃoíú{ƒÔü™çðQ|ØGá×ø%Ÿqg·í¸^Zö«¸@ã…õgë¹|¿•zj6žÊåwxƒéï¤öêô§ã­Þ ?Ÿ7S¼…ù1i¿ñLå£7ôý`Œ§þèo~§oï/塸 í$_ãÊŽyÃïþ˜¿ÊÏÏSß 3~&üÕ;~ÿeÆÊG?‹wûÅr>?/å*OÆùƒߎsÊÕÚ/—¿—–üO>ÚÞ‡¡g2ÆI}êãDçºQÜŒv÷ÍeŸ3¾jù×ÿÌ_ñpy.Ÿù Ÿä½øCùñi纀¿1o닟¿Øû¦üßÔWÜéÏ–ëöª÷¡M=ŸqšçºÜùÖïŒkñº?|à·ñ”#/}Wóù‹¥ÞϸËÕ#zŠÿÌ—tÇ]𼑓¤Ûž~é‡q5ÎyÞxÏéGñÙÚÁ‡zð/M_È•uŒ>“Gò7æOûÖIó\œYÆÿÍÉWÒ]W‡t=#7c¾í7Û^ôøüyŸh7ë‚qïûI½·GþÑ||ÁxÒ[¿Âä:´ïͤí[»_K?à™Þð~J?ìã·3ý꽜<׮?³ß1/WGûsÿ®Ü#ÝýÑè¹›8­â²Òný…ÿâ§òÜ~A~|ϸ¡×o1^IÈ·qLý×G½pYæaâÇzßæõÒ˜ÿ÷–íÏøŸúÙñM}½ç’öÔÓö†~Zß|ÿñ'ãwÿ´×ûO¨ùØ[Ê“qÀOýa“Ëå¸|þse¹~·÷œ)õ÷|,Ïçy¹ïýºôÓ¹LïfœœKï–þ÷üC½Ê¥>çªðTÎ7ûÝ­¾#ø˜÷×Ô{5õ6.¨þ§ßÃߨö>Yê™q6‹‡J~çRÖŸž“Ü^ÊÛˆp¨¾yßîò¨§çIøUŽ>åw¸®Þ·#g~Oý=75¨~˜w—í8îýÁðgžð×sZãŸz_áæß1OÅï™ßОjÏ|'åcSÏg·ß|°ä¯ö›qˆÊ±»‘?ö(öâÆs$Oö¾Œ÷gÖ›ÆÕK}ìˆìôì´ìi“9ä‘ß”3¡ðìžÿÊ?»{ãoæ9»~ùJ9öfý„;š~¢~<ú¡_ÊM¼ ?ì䝸%〯1ÅŸéWÊÿ¥¼ù =IÞ­Gä*õÀ©À;°Ÿ[jϧ?Iý†;b/‡{xÊ8$ßsc¾àÚàèÈaíëyÞñóÙ~©ßøã?´¸ò´)ý/ä0åÙ]µk<á€Ì~á3ª½¡¿'?ŸÞ¬ôᤷ~»wç|v…»åGMÜ`øÒãù]üÐc›ç·>Üä»þëä,¿ë“åñú¦©2ëçAüÊ]ÿÍX§v‹' Þ·~òŸvÚOýƒWüæª7+ýt:qˆ‡ôÆ{ùÉ!_ÞëÅ­'mÁï݉ÈÿSËúññÝ”óÞ®ŸÓ¡·ôÐþçÉeýÕ+íÓCxáMõ{Ûþ'ßSËuc¥+ýD½û¸>÷Tÿ»öÅö‹äù=¸Ò•ÞUo†¼>¯¿Á?Øâ/_$òØ{Ø‘Sç»ðaä÷Õ»¯ë•çâ?#ÿ |iYñœ‘ûé‡ïÝ!ÔùxýÀÑg|Ÿ\¬+]é'êMíÜK¹9d->2òZûaäðÿÈiýÿ½{×}ÚÖoJ?éŸö’.î0õ×GÒ×F=ð‹Ó¯¢ü±KízVzÑ-Žhìû‹ã;¶‘·âº"oÓÓŒÿ[¿C7>®°¸¦Cí·Þýä;¹NùÆk<³”÷êOÚ+n_Ç–ïÏ·îþ>)~5~¤v=+½¿(\×6¹-^üÆÇ?üxº_D>¹”óâ#Ïõƒuûîß7ðmÅqçý7ñÀÅCÞ^>/®[{òòw˶è/×~ºžð£\\ØÜ§Ù÷Œïåê×Ê~ìæØWÙ-i뿚ro¤x¡úO=mß÷‰ï1¿G/Ë_Êǯڶ¿7éísåß_ß7+ýt½¹ì{øˆïuçUðnα&žª8ùò»óçV—çmgÆ—p>§^¿ÃÕŒ8Š[übôIûÁÝ4ßÀõ¾ÿ¥U_Vú9ô†¸žïï›éÿ¤¸«ÈïéÈü ÿ$p0õ‹”ßÏÞ}ß´"åêgÉOí6§Žj'ùØAk· UÏwÇ>ßßuw½^éJò /Ãþ7óøFî®ÿ!ùøGã7*åü~ý‘Ï'ŽÐ#âÿµ=8“K~nýÇÈÿ£Kù/ÎgâI¹?¥>~õzÃ}zµÒ•Þ‘“cËõ”\^ÿwß§ÔoWpbòMÜLqbOnòÓ¸·Ê»¸ªÿ9…öþ€{€ßñÞxþ"ñ?ß/ß>JŸ½ŸV½YégУá·òÐïäÚwEý—Ùw‘7ßy÷â=Fàuà¡áÉOú=õÛgÁK?7ô}Èwý¾=;ö™õ£:ò{nç;Î÷Ô³ë÷ÎJ?AoÎ}²|lï!F®ÎïÝù«\Ogìþôqú]FÝߪ_êAå{eäg×÷tÊïÀñ‰ëÁÿ[–ç|+]é]õaàIø;œÞÜøøÁ6€û°Î£ê§L>çi¡üù¹Ÿ9ã7NzÅÉ$ß…ü®<œÍ¥´ßûž£_s‘ü½gzw}Ú®7×ýÚJË{ÉQ¸~ÆêŸ!rY{Oä>‡¸úÕ¹nüÍ7´õËÖ¸£Ñ£âxÒ»? ü¯vdÿnèÈñxõîõ¬t¥ 9i¹#ô¦þ^~¹Ü÷ðûSû|ä÷P\½Øk;p,¿öáFÅMËïõ¯£¼çÑ£Æ}ÍïûwšÛî×䋟¬>¯Ÿ¤3á#í\ÿlúµÒ•~¢^Õ¿aäóÈwý·å÷Æ/•_:rûSòû³Ðè?mï¼?êzÓü¿úvcÃÇ›Ÿí»D|Ç]ëJ *>êa9ûÙb½ÞúÍ{ƒ·Æ%Ïô!zôSïï½;[ÿsÞSô%åš_û7RîÒ"ÿ‘ýjdýÈûeø,¿o/Ÿ¯t¥wäã­åw¿ï’#ó‹—i¿SüZôÅw†ïû6Ïùiƒ×ìý‚›z¯ß—T=É7qÐökî%L¿Îi÷SÇ£þï¾?[÷m+½#W†Þ\ùäýMÏ»'Ó¹Tž»ê¼ ¾Ò9´ïÿ>wŽå\+åë—~ïÎ_qp3^ÿzâ2º?ç~hð¥Ûþ%Ÿûjüê½öÁ]ûͯÚQé•>œþªéÞÿD¹ØÆÍˆÜ¹WÌ/?Mðd¿y?yæ7¿)õ²÷ðƒÆþXi¡üC5ÎgÊM¿dìH/}q:·ñ=?¹ÿ+]éyöò£p5Í¿ Ìõ;¿ïmã™ñ7ÿLõ§#.å÷RÑ¿ú}ª?ú—üüy4®j(|ϱ»¿?>u<†›¯}>àüN¤Ç“¾îÖí<çg0xˆë|̼|¸Éwð­äOýñ³W|ßã¡æ+þ‰à¡àøÄË5ÿæ5ñ$oý&σ›Rÿ­ß¥^ø,þ„2OúýÑ?Šä ^Qûð‡êƒ‹üÏËñ«°¸û¸–/òøHèSùpc'†ÜgŒÃï“æ¯Ì8i/|\ÿ3}Èsø–ï,ÇéÖ¯6´þ˜àÏR®øÏèUåDûü>‘zg;ð;ü×ÄïTýjïïGûÇF=ð@Æ‘ÅÌçW¦7÷¾àk{ù´ž„’ëïù€÷6ïéWã<ÃÉz?«W=§R/ùé:%~×>?F#þsýÔñ+_¥rj>÷Èq~·žEÏê7”þè'œ—}ŠõùQòc~éç'ã.®,}¬¿ÌünÜŒëÓƒýÇŸ~˜¿é÷T;æÓúoÿD¯´GïËWê%/'ÔŸ´q7Þ3ž°÷]㢎y–¶¾¸Ç`¼ù›Õÿ¯òG_ì=öéú’úëŸ7üH»ŸÑ¸¥ùÝþ·þµÆ<+ONèeç-Ïå3NÆÅ¸Úï>7Ú­ÿÙünÞ{ÿ"üÔßÑÉMú´þ¥}x÷É÷‹£üžó\¿¬¡ø%Gå/í›oãBßðízvôóéQãyqä'üì(×xìc¼¬ƃþú.ª¿á”;=êk|ûÑ?û8üº7×ø¿ùýü÷€¤ë‡Ü󔃇 ýÒõæâ;í5ÍÜÝóáüŠÓ£âò’¯qeÍW~ç'Îs㢟ô·þÍ“ÕýC߉æ¡~·ä¿‘ü¡æÛï¾cÝGlœÝÐKù]»¿´ã¼”òƒìžb¿Ã“ö=.ΧzŒ~àÆ¦_ñŽ{Ú)~Q>íëŸùJ½õÿ>æO½øâߺ÷9o/õa|Ÿ—?qA§ŸýÞ½½gúúÒèòÆÑø9Oëø&ŸøÎåðÍ_;üjÆãK×›ú©2þCz^¨Æëýñ\>ãe<2^³Æɸ’ÇæËïâë4^Cè¡z2ŸÎWå§[›|3~Hãͦ\ýí-Û—þ?K‹/ùÒ¾ñiüòvÚOý¾´äþ«~ÍR®q.BÅç¸2Ö çÄâÎ:OöüÕÑ/㣿ò5Þ†úÒßž7§ýÆÝ½1Æ-N ŸäJ?¦ß¶Æ 5?ä`Œ¹G'ø¼/]oØ©Äå¹þ‡3ýkÜÕðÉÎu”_«·ÐüÞ8fIó¯Å?Jãmæ÷Æ Ëïü¢°§ñGT»WÆ«qB“}múÚ×?ýЯä‡â‚–É8]ãÖ8H{K>sãšqÀÏþLgžfü>x0qª:i¯q—†<Íxªì“;æU;ׯxÖß ~SO㻎~k¿qóF{õ•òø®=uÔWþ"_ä³ñM?øjô>©ñNÓïêùÌï׌³q£cÜgüËâù>Šåù!^3qh¼À¤ßθ6ÆqÆÙlœÌ_&}&”~4þæÐ×C8Eó¥½_ŽþiG¾ŒçÛ³_§Cñ žqÔþAʇßCq SoãÒÿÉÿ/–ãY>Â÷À±гÛyEÕóá›Ëq¸>ùã@‡¶-?ø$OÒùýíýå¼w|6óúåëÍX?úÞ¸½LÓïúŸ#oôżÐ7ú3Þ;j=P_òÍ÷‹r·<Çϼ’—ÌÇŒ/Ýx›C¯á´*ç¨õ@¿Òÿé‡Ïó®S-ç·åñ¯ü¨·ñ,ÉÁl?rÚtú­¾®ƒøë»÷aûkÂoã¹Z¿SÎóÆ Õ߯<£Þê™óµ?Æ/õ¶ýÑï¾ßn.ówÝÒ¯åø~ézc_ÕûIÏýdãç%_ýû&Ÿ{—r‡ÑzÓ?ñæú=‘qèó“ËúíÃÉG÷»)çá~ êûæjÚç¿kâCÐéß«ñ1“ß~àZø›û¹oÕn㌦Þî§ò{÷9úß»_·Þ¤¸•Æ=M9óÔßµ£žQoã9Žv:žÆ7åŒwïó¤\ãžjW½©§ûÛð9>qIùG,UƵãvrIÉSòézãûïRøt¾â¼çTáO|¼WæóŒ'¿Ü¾gk8ÿQ¯óçÎU·/õhÇwwÏò»ïjñ&ñ/=¿çŽ»˜ypP¿÷GðÓó’üîûyžÓ•ý ŸiÇ9‹x¢õ?ž|pXørì{¾çMú¯<÷=í;Û:ä{¾÷1“¯ó‘ôùÑŸËc\êO _ÉßóýJ¹'ÎùÌ“ó°žÏÏ´cü{q 'äÍ|oêûÒõ††Æµiv+çÄìÎùÙ%Œ»›çΕÙ;§0ÏÝ7‡{:ßÙ)Τ]窵«ø=å¥Ùœ³çL; {‹8—ÓžÔ¸|ú;êaï1>µk¦ü©¤'~Ësvý>7ø«kÌK©vCùÑ€3ŽÎ'Çñ¿ñì˜Gö¬ŽyÔOö–³c\žýÖžómý5ïì?äeƃ4ÿúUÿcüjK¾—Ÿ§/M_N¤]¸…Ú±7üÁ‹ÀÍ7û<»ÿõKþÃçc©‡Ý;ò¯që_Ó/í{/¼Õ-8v`8‹GBO9ö½à)ÔýWêÍïðú},ÏÙÓÙ)ÙeŸLšÝÝøÀßL¼Á©ñ;¼\€uȸ°¿³ãÃ›ð‹„¯“¡üîý`Ùnñ2äüPÿR/¾öÒœÿiÇǼÈÇQ–rÚ ù=ùkßÍó‰_:>~‡ƒx|ô[ýú‰x/óÖ¸¥y®ß™Ç¯·ö°Ñ[Y"—™Ÿ[‰>±™‡ƒïN¹Øü×òÁS$N¥ù?€_y4ry9€# îl»Îåyð[{Ëß?+ÅÇu0TüÎë¿>¶¬ÿ ëœÚ-zþá‚ó(N-ú¥~Ï"ß÷?lÚåmò+ÎçAô¸¿ÿݲž•î†Ò“¾Oó¾½N²®ìE¾àTà‚²îÁWäý[\dÞä¾ï™ìÛþŒ÷jÿ}ú4ô‘û ë4}õ~±/µ~ÇwÀO¡ýDq½Éß8›Ñïûû)ï™È9½-_ÖŸ¼Ï:ðÛÖ-ïÑQ~¥»¥[²ñËÉ_~÷ÄÙÕ»¿>µýîJý¾Wྮ~²ÖÛµð5ö[­·~¨Ã/¼ï§Æeÿ`ùþˆ§¦}Gv©Üríù)~)oŸ»ðiÚqž{¨G—O¿¿söwŒ <›ó/ø僯jýÎ/-ùØâÓ2þðg—¿Ø{w¥_²Þð ÃÞÐx{™OöŠÚ9öîüõ~åT(Ü$œ Üû"¼¼û  »";ÆÙ/¨7ã”zàÍN£iïû{í4p,ÇÀÊ€rõÃÊN h|=‡73ÎüXœ0Þ«ÞÜ ´~’‚ »õëÌ{ýPm~/NŠ÷B_àkÔWÜJìîõ«>Ê×]Yõf¥ÝÚ3£o„²wò“S#I×.›´øRp ­ïæú}³ÒŽný …òwv}ÐâÕ~±xlq5Ñ—‰Ó Žh×ý\éJ¿T½©ß»ì³®÷¼Jñv?Ëï7>®à¿ðƒšý¿hŭ>xt{_‡žØ—ÙoÙŸ…ÂãùÞ‘¿þåò¼þñn|ÜÐzž¶Òšöþ(<Ü?Y¯,qõÏÅoxpjVûÍJ5Þcì®;ÄN”4ûìkCùhžÔW¿vÑ¿¯(¾çJWú¥êÍ!?5nôÞ'ñA·¿ÿ"x…ÈùŒSÙxr¿\–7¬þ†B¯/åÞZ¿oVzïÓý·>þÏöÅ;•Ä—ºþ»àtþ˜vàïĿ⧑«á×j¥-~ëørÝåÇœÎrÅ_Š3xçù6ný }"¿ó¿˜8Äü¢-'~àï7i|òkè9üKÛÿ§e=‡ü8ª÷öØß‰ _švª§ð8éoõèëûæa¤ë9püâÇò+x¨¼cäªòiý*rýxžÛÿ|{)ïÕ§¿rÊÏÔ‡óoJng;â|â_·“¡}$ßÌç&?~§_bû¶/t¥í¾ãûËù¯\üËRŸú;¹¸È~‡œÞÔ·WîyòËïê93ò‰wêyåš¿mþnÉû“C/ùƒ~~èµ~‹GúìèÏŒ ïÆïµï›3ëûæa¤ûÏgþ_û–Wò~ñÂÍå÷3?êg#üý¿èûí‹KÌ_Üð£¸Ò‡ƒîŸ¿#6{âñö9–8š—#ŸüˆÃ+Ní•ñ\¼Æ C\qsá(/(/ô®qPòœ>ŠOªòÌ^ƒËyÞ8)76í9ßn¾Ô¯ß¥ô%¿óƒ0ð +}8hñ‰'ÕçoEù™awä7íõPñyØÅc÷Š}ðZÚ‡,ž2õˆÛùê(W;å{K½…לvÈÆ-ߨò©O<ÑàÑÚþEô‹=µñKSîõå{x¥m¼²øoêóÆÿ»´ÜŸñ‡ÆïÓ›Ê'-Ž`õ.òV?iä0rËÿàôdäó\½oŽú[.ϧ¥×ò¥½Æ–/ϵc}ÀÿŒÚ¸‡w²­çíú?pV•sþ5¯Ú:<äøÍ!·Öø®Æoë=ø˜½äƒçy"éo|ô/þjʼÍÓ¼[ÚÙ*Ïáþq}ß<ÈÔüß"ŸÁû6NçãÚüðgyßðGvÀ¯yòþø›Ô³÷Áºß_éC}Wo8aëî—ònoú´}ŠòYoáì½·²oÚuWºÒ/EoÈ»ï‚~/ûNÙ8´÷Èø ƒ§ìùZ~uè{ZÎÉ^zÒøµ{wþÜCÛuWºÒ/EoÜgfg; gvvØ=Ùiܳwß8ñ_šï\ôéÜŠXéƒCë—næûůÑÀ§·õû¤ù×@¿ ¶wçþl×ý]éJïgz¿Ãßß“{wþü¾j“>ˆÞŠ~òû·ÿØæw~Öà2[žþ&îtq¡ÁSó³ÿ3ËÝúKðzð§ñc#îç­?¥ýãižžÔ:óäº^¬ôˣŭñÓt.òöŒ}c~ú–÷"|>ÿL/D>Ÿç}â½Ãñëä½ýÑÐíÿÓRŸë'îÎ=”_+x"ø¤gV½Yé—¨7ÆûÁ½rÇO ý¸óòˆ¾œ|ü›ÃÉÑC÷Éàí^ò½•ôˆ¿¹­7ôÒMýõû”òîËõÞ\žÃ%]Jû—Öó•~‰zÓs:ú’ó¼Þ“&ŸÑ—Þ<;Ïsù'ž£©ß½ìÆñ¤{wþêç©õEàïÜæWÇ}ÕÞO^I»¯Ò›“ ½\éJÿ*½©]'”ßœ×#×ðlר•œkG.É-?ü2©·~ROãmFÎù³©¿'í¥~¸;~GäCWG¾´§]þxÞ\íV+ýõFÜÀÆÏüÙ&Ýx‚gÜkµw~¾‘ÏøÚâ~¹‘ÏýòüÃÔ“|pDõO¥ÝèIp ûo§ž·£âŠŸÖzò{q}yŸÄþ{D|Õ®ô¯Òø·w"·Á¯íÿôFhäîíz’õü§Òù½¸¸Ô[J®SßÛ(ý ?ÑÏŠŸ<ÇçO£o½û¯Î„ÏП.¿›VºÒ/U~ê½pãã{ÕŸwöB³~“ÇÊ7½º´¤äþí¼wú{ô§øí—zHÿŠcõþ‘o?üÐ䇺z.ÿ‡«Þ¬ôË×ß/×o|ü`¯þü|çÀÉù®‡³¿²ß²oCßN=×÷6åÝðýaU¿›ã;©þ“Oz_Z{áG}½?¾ÞX¿kVú%ê ?†ÎËø!w¾å<̹œ?èü^Ésç_W£OüÊw9Ï/§~þÙçÁåñ‡Æ¿bý'æ¹ó5é«iß9ܕ幙ó»]÷J Zÿâh6NGäðtžóCÈ?!;Oí0y~.iþÝÄÓ7ííó{ØßSï+ÚÏïüÀ‡PÿjúÃ~óª7+ýòhý‰ŸöTä?ÀÇöîüí?’|ß‹\ò/…³ÄNëvê?\GW¿ƒO¤þ¶›rõ[Ê¿ˆü¶ñ»†~ù|nÙ¯]÷JwK¯ß¡ÿ.÷ñ2fŸÜø˜‘½Ê¯8ίÕw1ÏéËÅü~iè™ó㟜\ò¯^í9¿8úůœ8 ¯ZR¯|—×ó‡™_É>(§8dì&ðÇðÁŧ|qÊ‘3ú?ÜøLÊ…Š›&ž“ßá3Õ÷úÍïð¡ñ¸¿>Å{*ž3ýj¶¤õG½úá9»ü'ý]i×ó·ÒÝÐÆñ¯³q8ÉMä±vtò.üóùb×'wâÿoœz[.ÏÞ¸õˆˆ¿7£êŸñ=ÿÞ$ÿ~ê«ÿDåéYèˆãX>á Wt×ó·ÒÝЭÿZr¹cÈyãmz/‘ß”'çÞï™ßßRþÆ&MÎ¥·“üZßÑ÷–ÏßüVg?Ôê9½oð7Þ+ÕõZ76ýÚõü­t7´¸÷´ì‹Äí³qžž¥û¯±_?³ßöcž+—çöWöCp/öyöÅß$ßeõ¤^ñá=×®x£¾»¿3ù®Œ´ï6ûI|øÎ ÿ»ž¿•î†ö»ú\äéüØëwðŤû½9ò}ï|É}cç§óÜ9.<‹ûÊΜ4íwç`În/ë_ªíù[~wÞw>¿»omøÉh·íçwã7ôòÈ/þèËë¹ÀÃL·q4#ì$Ç#7gòütÒì<ü«±¯HŸÌïêcW©Ý2T=ì*Ê9Gfgay,|9¯ÆÏw_p=ÁðŸS>ô¯í$ýÐ'FÿÕ#Þ.;Ï×‘VNND."ÏìøõŸ×õè&Ÿ¸…ìô×»Ißú·¤ÿ˜úŽmž_Ïs8~Ÿj×—¾†^ÅÞzGÃ/Ԍxrå›ßåÄïüSøOn}¾Òö?ì¼'ò<ö\ýÚõ<®ôÞ Åm—BÎĵíúN¾…’'r /à}À¯á¿Fî—çêIýÅá¤Ü—–úb¯¯?§'—åáN­x¸8»úiÜüÞqõ>û§õ}³ÒÿBo¼àóícàN~4ž7ž;:ögp.öƒî ðW&ÎîS¡ìôð;§ŽÐ~Ôâÿ¯÷ ß})×Ý_‰»Ot”¿´¤[ÞwÎ Ëvv=_+Ý =äš|À§¸‡Ò{4y—â‹ïz¸›çöîüí?—ß=÷}î^ =ð½.i~Òœ/<ŸßÉï¼_ÿµó‚ É6Ï{Þ‘úÛßüþò²_'ýì¹ÅíÅûh¥'íy±øŸâ:/†G9¹wÞÕs¶È[ý %_ñ;ò']œØ¨W>ç½â*8O¾¾øG“¦÷Ó\ ?kÎgÏ|Χ‹3zoÙ8œ ï­zóÓÚ‹§‰|°ë¸_ §RJÒì‰ï‘òì“ð0ì1p2ì=ìµû„²Ÿ¾šúɹvýÞç'—û2v%v$v'ýjÜÓð¡ßÊñ׆_v'öÝçt¥…giúí½;[ÿamä¦þ,"Oü^Ð#¸xq©êw#ÏsqgÏ*ÏÅmƒóÙŸ|¨Çså’†¿y#ù¥÷™öÒî¾úÓÞæ âÞú{K½õ’rñƒÓqj½›~ìzWº[ºÿ¹z;ò×x…ä,rÃOJõ_F®o|\ñÞ–FgyrHßê'£¿ýÙüòCïøu*ŸáÛúðö~ê9³l¿ã±ÑŸú±ŠßÂ]ÏÛJ¿^Zy¢Mç}ÒuÜÝ—½®ÓõÃé=“rp™•ÏÈqõCþ©/ùúõ¾ñžòÞøEžß\¾ÇZ_(œü©ñKU=º´ØgmÛ ¿×“~û ýØÆI݌Ǯçq¥»¡Å]ÂûÚ‡õ»Æ>&ùà9}‡÷)êô}S\¦tê[¶ï+n3ò g9pÈmÏ÷UñÛ¾gÆ÷KñÑÉ_|¶}Þ¨÷%‡Æ-ãµëù[éniϹz>¹rÎæ»úµ½;Å9ºÿéܪ÷Ø’v%íOέ¶|,¿ó‹ÓôýïœëbÞ3=/K}î¯õ\p´§3Žiï菉‰Ãƒûìó›‹÷ÕJNZûÜå³{wþjá—ìÙ‘fa÷`—9“´zŸ u?¿ö¡Pø¯sêW>|°K²Ï°Á°±›â“IØ]ñÍß;+»çðP}T_îkïzÞVº[Z?ü9ý:òY?.‘~cø½€‹á׿ññ;{þß/ë¯ß ~?&.3øÍâÅà\è%{ÿ“Ú =9Þ_O%_ã¬%Ü)|Ü!\þà@áðñÔºOû:éÁ#›y?È<6å›ù9 7‘'8È[ÁUÄÏÒAp+‘ë[‘óƒàRn}ù’į= ¯ä)x—ƒðÁoÌÁ?„õÏyý _ß^òO—Yü¦~ç=q< |åÁ76õÀ‘Á‹ä}U\h䙟´ö«õ¦ß?*®è|š~G¿;/õ•ñ ïé7¼Þ®åéa¡û{™ó g\ú¿vðü4Ñ£ÈIçÿo–ëtç›_±ø·$ÿø€ÿ-Î&8NúYœ>y—I»õ£–ßù+´^à ÷o™ôÁñðG©ô8ïøOãrýOáûôr\ª7Á-«¿ï¯¼Oá7ù'<Ô®ø¹çâõ΄&}=åw-O ­_#ûy÷Tøoµ²‘ÿù!ü†ÕŸW~§/ü% ýár}ì>Ý÷úɇxšøƒÏt/ƾílø•ßw‹}—û9ðgüÚœL~8³gFýÏŒq²¿ª_³Ðç–zÓzí/}—Oãì;Î8©Ï=<8Tø¸sIû®{a9ž+ýŠõ†ÿ¢‡îÉsß­ÎΧœ{•Τë,åg©7í”òÄϘz/o^,Ûû‘øÁ¿49ÄOÒ/¥üè/9/×úPPÊÝ^ê…ñ+þm“îïÎ'Z>ùøòܹßôCÕx á˹¢ß‹]õækÕv ö…ŸDÞ¯dþà á·è‡ôÕÈ£|WF}'›ù¾–ùO¹òá¶ø±¤Ï)Ï¿¼Xý>áƒ<'Íχ{ÿä´~’foC¿ê-ý½2ž[êïL}iO»ðŸ=G7Ž£?ÅÏå¹üðiÖ•ú±ZõækÕ8ŽéŸˆü6þkž³Cš_ö½ÚCáÙ'‹+K}ÃNW;`ñcÉßxI?Û´S?Iô0”|±ÖNªáC?ñ¥¿ì©pgô‡?¸vITÿáŠM9þ;øŸiÜÏäƒxÃxå9¿<žë'>ÄÍQ_êßµ<=,t‹c‰þÀ§ç9…K™8—âZÈEä©õæ¹8•‡peäR=ʧâc"—Åý"õ$ÿõÉ÷†Áê[ñ0øÿ0tè)\KË“ÏÈwË¡Úýå²ÅsêWÆ÷­w—ò^Ü›vß)?rñó»ë9£‡mOýCþý^\´ú£Ï~‡ciÜhrŽ?ï™±þ÷½þßú|¼7ôŸ^[ê½)ßch=Æ¡ÞW]gô7ã¿j»–§‡…ñ·ïòþŸþ"íÓûÜ|Žü¾/ì{êwÓ¾Ê>„\Ú‡D~”ƒã²ï»â÷ÈíôÏç>¼™}’zäëw…´}Ý(g\zïÅø,õ¨ãˆßC×Ò~‡çðo®Žüöe¾cìóŠ«Ã_òÕî†îZžtÚó©K‘ çYÎà à¥.EnÎr¹ÿØzáÄœÿÀW97êùy\8jÌ”sžÆ_™ß}__õÕÏøe½3ž`Ïù”Ëïò»_Ús¼÷—ãQ¼YÚ9Ÿ~¸¿¬>çiõç–zœ¯X¯Äu^wÖs:ü—<~Ýv-W:­ß=ö—Ó¡pWÏŒ4¿bìúì™ñÓzá°b7m9õ±»°£²CJ×_@ʱoÀ™Ô~”üÁ´^öP83~4ô}’_%vŸ“øLZœ(våg|žg–òÚzøaw1ÏŽçÆ߯›½ç©äczRó_±3íZ®tJNëO‰_0ñ÷þœyŽ¿²Úßÿ²™/ö~ø•[LùØÛáQöòÇ?XñÁðóT¿|¡pü9áóDÒøvûƒüÎ>ß8‡â® >¾~»)/·S=I¾85ý…Kã¿éW©žH{ê _ð Å»ÁÁ¥žâ‰”‡ß —±+Ë¿k¹º×)97®cY?y¡‘ÛéÇ"ò›¸€Æ%K¾?-çµó—ùÿ_äiòÙ¸|âW’»C-×ozyÔ8À©4ý—Qþ£%ô¦q é]ô¦ú~ô¿å×8š÷5­ÿ®¬ƒÖ¹C¸“o.ßä¤x¨”·*ŽË>å‡ÜÙOÕÞøýÄØ·À{ydÒ8¯›f·û6ø^zûkûûïßéeõä÷£ý'Gšß²¾ßÆþŸÖ…,û·Òû›G'x:ó Gbÿ@¾É£ûó»Äwˆx•pf³™z¦°o ½yz¤Éþ´cŸÁoŸöÈó™P÷dNmø>4O ½˜ø°Ó#í{θÀ…ñëûÃ÷ÔЛ5ŽæýMëÏùÊÙÌ¿s›úÅÏï/ ùþ¶ú}ê¼Éùùõ}|q”÷¥àØš>—úÜÏrNuvðùÜOç\úùÊ²Þæ;3Ê ¿üζëMÚƒ‡|eðJ_­ñ»¶ëy_é_G÷/g>²œ×Ú!ŠûËü;ÏtŸ÷Êñc.Ež.'_ýó…Â{½öÙÖÝúéÃÏô¨>8ßž/߸ÃßÖßÞ»wß§Ñoq6¯¤¸ÒÞƒÎúáùbò;¿³÷›ó{ϧïÞþJï/ºõS*Íözæýjä®v¼ÈÁÕñ^àŽ =†Ý®¸ËÏ&Gm~´8Ťñ͉ÏúÓ»ûwMëgǤgW—ï…Úá6Õ/þàEÙ·)4Ïw=ï+ýëhñõß²·‘8™£âû¸•­ýý­ä¯?–<‡ðû§ø¹;¯’L5Åi†ßúÙKûûŸQ?§pö+õ¾9Ûõ|ŒãŒ_ë÷UoZ|‹õîŽJI8‘©'äNªøz²,·i]þä÷ÀVnÇ{ª~—ð¯¾ðÛx•ø:ù™Î}'¥ÏáPÞãÔö—嶸éÛËq¹¶îÓÚýIã|ýÜÕ•»ËÝ6~eêñBnèÛ!ÿÅIÏýÐß;Ûû!76õú~¹:ô©~•ó<8™Ï<—–ýÜö/ýèý¢¤ù“‚ƒÂß«ó÷庳Òû“öíBäž ŽÌ9Úù÷ïª7­Çù›ûœÎ¯à».GŽòݼ•ÓqNuîîíôrýt…²—Âw5þQòÃýx)Góœ»Ïù]:þœï² ¹§ÏîÈÿûäóG¼ÇNöáØðm<žJzÆeò>â¨8Tì ~ˆNFnøA9¶y^üÊßy+`/g÷ƒ‹a¯lÚ7§þˆ8yü˜Á»ŠG ŸF_Š»¼û:¿?üáL|?Nû§?KÈ_Îã›ß?ú=üV­t¥+ýüµ¸¤§Æ:eÝÊúÖ¸¡OîÝùk\ßè)ÝÞ‹ˆüÖ[hïcDOä÷½U¿ÔÑ3ùÜ[€G…ï«ÿj¿§ü•UoVzïÓ~Ÿ»Oç^ªó5îνVø·Ü/í¹Bï†:—sÎàœàPÜ…›z^Yí6+½÷ií3ðtìpqO…²×À zïßWt&T}ì£ü!ÀÍñË{ ÜÝ®Çe¥+ý$*þbq{ð¢ü ‰[slïÎ_qƒümÁðë&®ZüZ7_wÐx¦I¯¸¹ÏEãÁÞò¯ëÓð—vð­å|7îêïòüÑ̃yä‡é£¤¥¾G6éÎëð'Óx´ÉW~O¦Ô_ùgP¹!_õo—>ëGŠüýÓèÇðGX>O½Yò-"‰G+hÆ©q9ù]ümÆ=¸€ÆK~§8zuë›òõë(naÚ»•ú:üBV/ÃïíU>“Þ|'óu|È!¼|}‡æ?íËù…;6oŇCû÷¬wÓ“ýÈw‡ÞÔ/lä#zÛõÔýô—rÔõÜzà¼ÖñQ/œÊÉÁ‡ñyb)gÕ'í=®ž´«_Y‡ÚŽq±ÂõG={C«ñ—VþÉôoøwìxÏ“ü³ÔË•¡7öÏ䃿ásoó ×$Ÿçü7Žx~?‘yRyçŸøô¨÷{ËùÚÿqÚÿ—ñüLêíýíÓwr˜òõO=øÅÏ¿Œ´þùÎx¿C^{(ù^\¾ßZ^}ðcÆ»÷‡´êw÷v¬+üÅM¿r'‡üŸµ®oéÔ×ûHøÏs÷ކ¿«•¡7pMâˆ++n%ÿûÎaÜkìýÅ<—öý ÷ä¼Ç¼ÀYÁOñ×7un¬çò‹§©|áŸ\¼’ü(êð+Ê?ù¡'~÷ÝüÜи±—F;ô÷åÔ§¿ÆÇ¸ºïǯڹѮ~Z'ž×Ô3ïÕJã§?ž¿4ô>´ü/ßû+=BoÜæß˽hþ•à¦ÄUoµçŸÉ'Æ%óôî&?â¾j§ñ4Òþå±O»´\W·ü¦>÷úñá5¹Pï¥AÅi|‹ÐÏ‚ýDýÃïYï}“Giõ³§\Hýøó»qŸq9Ã8f¼ù9/´þØ”Kþâ×ä×®ùÁO(=¬?†Uo>“ÞðV¿c™'þ.®ežÙ¯å+Þ)ó'%Nlý¦‘Cú—zøI*þj©'êßò™zØÇùçP^ûô½]ñÚH§UÜ—úàáÃovð£¯/¯}‘}¾ü¤Ý7’Oü©Ž_Ú/>MÿäK}ŵ¥vËúsKø£âG¤öÏäç«ã§Ëõa¥GèMã°fÜá™Ä‘­ß4óÚ8h~O=õ ÿtm<¯¿)éM¾­žlæµéúmËüj÷Á=×^ýš…Ê­çI¿5êóNlú…ª5ùÆxÁïòÞR^§·é'«þàò¼ã¬SßÔ;Ö9|Xoê_nð÷Ö’ÿ]Ëå½N;n£GžÆ{áÚ˜Ô:ßø‚ôĺm}ó]¿Ÿ7í–¯äÛÊéà¯xà±>kö«iò!ùWoñ]yÞ¸'—zMïŽòŸV¹N{Õç›K~¬ó3®u騿~ÛFûþÒ>þsêi¼ìQ_ýä-û¹Ò#ô¦~¾&Íx/e_q¯Ÿ°Pßöïõ¿–ú^Ë<ò³†Ž}Ä–¯ç`ÎË^Ô¹”óçŒøôý}qÔ{ _©ß¹fÏS¿Y='3ÎCΧÞöS»ùÝ9^ñoé¿ó”—ß_ß7ŸEoØ5Í ê<™] ñ23ÞOf~œÿ³ëò?–üO%ûvOä÷“ËùrŽÜ´vœÇ:ßea'aŸe·aÇ`¿ÁÇ™´ûìàß½{çØâó<•ò§’5ð2ì4ì—§§Çïì¯øã¯­ö¤ÑOþ;Ø“Å#Òö°ÚÑ’>žòøåïã¹Ñ¿Y®_+½;…sǨŒ°cóÿgKhüÿiüΞøØ²žëʼ±ªW¾Ç“Ž\ÖînÞáŽ%?{:ÊîHnäÇß7Ò>¿1ü¾ÀÙè¿8ˆ¿|øo‚§)^'üÏòXêÿÞ’ŸÆ©cÇo|ÏÍïÚ+†¸'RŸ8 ¿Ö¯üÿn·2ÎÅáàßxk׺õhúûÇåzµÒ¯—Öï y÷ ßSþGœÀêÙŸ‡ÞÐx´ß,õ¦ú?üV_"¿«¼uŸ˜é¾|wÙ^q+-ûѸ§ú—ß­Spfô§F»âµýÝÐqë²n5?\u¦?ÆÕ|yXéפ/On湸D¸‘òö7c~ÉYqòÉW?¶Ig?Ùv¬£Ömr“õ¾~7íw¼—¼'®sêMã¬'¿}¬rÚ…¿±‚?ö{ä½|[ïé¡qÑ<Ñw—ý™íàS<Þî쓳?¬Þè'}Þ˜§•~=´óiÿMÞí ìó}_È…ù#?öÝÞ¾?ärÔ;Þ•ß ¾ä£ŸpÓöOÏoÚo¿|ïÀ‘Y§é§ïyý=3úqš„žÉsiýô¼xÀüN¿}hoâ÷øùþѨÇwëħùÕNpG»–£‡ö»Ýy’ó3¸Brz)óT<Ø»›ù= G/ ?å»Ù¹UqdÉϯ¹rÎà…È‹r9?*ΡΎý~9¿Â|~=‡7sOP?œ—9ç“6.ïç\äÂÍeýÿƒý¢_×êwãáœî™õ}³½)n,óΟ]qY¡ž7NFòÃM9×&GÁeÙ.ûÅùÈ{ÓÅè |–s`çÚâÒ\Ž:gqj¶qEÓ˜sÞâÁÒüÀåiÿ'£ë¾èÅô8íD—–ülÇ?íñφß+©Ïø²¯Ñ÷âüV½Ù‰ÞŒx[{ý‰³Û“#vÉÆ‡Êïì*‡ð,‘ö<~•Š7Kš¼8®È ¾jgñ8ÛvÕÄ.Ÿp~¯]^¿ÂçÕü^»¼v2.o ~jÍïplÅÝ…Ž¸¥­¾@~vcúR|šüy¾âÓv£7ü½5ä¹þ»2?piÓ¯Qñræ7ix®ë©÷í”Û÷;šv”ÇGäo?ùÈõþÏ–ëøËz¶ÏµGOg»ù½üÍ~'ëCÚoüÐð+Ýx©É×úC¯ç÷Æ)z1q>oŽúÞ\®+ýºôÆ|e>®›”> ýªœŒy½6äâ­ÈÿzüíÁYZ·‹—$—ä䆼†_vwùé:p}ê9¹VÏxOW6ÛÑïñ¼ëÈÍÁ/ýï§¶«½÷–ùêÔ¸$½9Àü/ø[® +ýšôæÕèÇÄŸÁ©Ù÷ÙM?¯òÙ‡ÿÄïä,õw5俸.íI‡ú)®ÍïáçBÒÇÙø§ÉgÕøžá¿Å…_íuEÎ¥ÑèãÕ' ‡æ»Ê÷™ñí~X9|eõÒè‡q2þ—Ö÷Í.ô¦8°ÈÙôGÅ~ïaEÎzO.òw9éK©¿¸·Q¾ø´”;Ú{Éç<¢÷Öò»rç—ënÛun®Ÿpgç­/ü9WèïøŠœÃ‰9OtÞ¥úáœÀy›óõÖ/ZúGx1õ;Ï+®0åáõ.¬ï›èͼOì\n ÌýyþeŽ'_äáP½peµÿ¤>vïÖ“ßáéØ+ŠÛJ=ΕáK7.LÒø®ÿ…üÎŽy:iü×ßYÊ7Nj(;æS)ÿÏ#Ÿ{éìRìÿú;‹_íã‹Ý…ïé8—¤ÙƒÊ×rþVú5éùf¯&ÇñƒS»";5yûÛQ.v»úu:–çä†Ý“ܱGüIÓðtp^ìžðtø€k‰–߯5K>éànêÇI\³ÆýÓßü~bó¼ñTñÍ_¾øçÒïð×ø…ú÷xÆ!éúå‚ Èû±øãp2åž _ôëØª7÷2í<Á—¯rp|)7ŧY'Å£ŽýüúŸÈãæ÷â+­çêl)ðcü?GžàPà‰é¾é\=‚#£ïžÓG~´^ˆïù;ï£åïÅÁ½ý~ù>ö©ÿ®âUS~ÄÞŽWèÄí®ø´{šö=ðÈò=ÔõüXÉ|Ú‹Ky«Üu?”zø½ü0Ïí·nz‡6õ? 7ã=Jè/}´Ï™~Ö¼ýnߘ~·ÞæïAû±o/ÇçÐú“ßëÏÎû¨ûÅñ^·.˜ëÌð·Ò{‹ßa¾èÅ“ã9|#¼™ø•Ör ¿õ/C.•Ÿ~ÒŠ£KùccÝwÏõ½Ó÷LôÅ~î¥ø´±O¤7ä^Ìw‰õ>ÒÿâI“>³”ë¾_ŠG3ŽIÓ›â;óéôèÇø>]é½E‹Ã©ŸýÌ¿ø“ðâ¹ÂYùÞwND^éá©!'gÔŸ|MŸL{CÎ݃|!|¸y”ÿ4ç ò‘ÓúsËïü©íyœþ&í¾­sAzMï^ïç–ðoú¯‡?çyÆ NþïÓË÷åJï-:ïã6ž<×+™Wéž«Þ^>‡Ãa—QÎ=ÿ™ìrêa¿(¾,rteÊgô¬8ºÔCßëÏ,¿_‘N}ðyÅ%}A¿’ß9sãu¤þâÛò{ï[ëOÊ߇¯´Ç?—smãs6¿÷>õ²ß+½·hí’ì„üC°Ë±ç‘·ú—Iúõ‘‡÷—¿³3^õ<õ/F®o/Ÿ+WüÙàO}ä“T?àáê§gä«ÐúŸKßå.öàîðWÿ5i§ý’?ãõêß7RžýŠ}õµ ݵ|¬ôîô0¾&ó ?V?}É7·#>%¼H뉼ЯC8›È‹ßáe²kû×Õ“öŠ“#ç¡ÕÏ“KÚøš¡piêm\ÏôúQ?WžŸä/ÎU}úCÿðsi©·ôí®G¿N.ö+½·èWhÞ÷6òY<טWrøÆirF¾É}©_¿Ñ^ýÀ©G»ò{¿½¿¬ç­Y.úuTÚéÿ¯¸!ùR¾~Üô3ÏéùÄ×ñ“6ãåN}·ÁUϼ–ïÕ]ËÇJïN{ï¥ø´ÛËýˆï+æsÊüädìSìƒìã½êß-¿kÏ> ~^ Þ Þ¬ñÑÃGïëäù呯Oã¨ýÑø¹WGûø†³sÃ÷Šü-7ú[¾ÓŽòÅ«e<ìO×8Ÿ÷$-^ žÄw­ïd÷ÉwÎ¥ZÞwyý†ÉŸyï}¸´ã|Îw¯ß•ƒ¼„†ŸâëèÇRžÊã2ÜýzÕßñ¹íýµ¤³Áïzžþ8?ë9É{ËvzßV;áó\(ÜŸs”áGo×r²Ò%í}ö'3ÿìÕìÎøx*ó{"鯥I>vï“I7®Tò±3²‹°w8V{ãÙQþtž×Až;ï†Ó>u.-žOñj©O9~ÕØuÔÃ.ó|(¿93^‘z+ë×Ä;ÔI¨óúá_n×r²Ò¡7ìÔÓnR|Z¨ç{˜çôD~z׸QCoàtàIFœ·æ|¿Ðø™ù}Äql¼EüÌ8qÃOàõ?EØ5Ÿ|§ý8ëÃߌöONè±M¾â¢Åý¨Ÿ]nŽxõg³ÒûˆÖOý~‚'€ß;²ž_§\ôé}dSž´øÏ_-©ø »•®ô³Ð¾7¾·”{zzð)¸Ëþ>?ÊûˆþÛè üZñ²pHùýúª7+½è!ÿrp©¾ïà>³?=TÞ>Îw<¨òîAù¾›ø4÷¡Nß½þ•®ô^¤ÅÃ9÷ƒOs.Q?p7ïú>è=ÑâuRÞ¹ŸóJ8ÕúOK{ŧ­ß7+½èÖâlý :O®ÿ´#ô¦ø·”o\Oå“nüŸ<‡G•ÿSüÔ­t¥÷-ÎŽ¿vÑèÁkù]¨#âÖŸÏÕèBñs—–úW ^;rì¡»—•®ôõæ­èÃŒóéyü¸§wýˆ÷Í[Ëß·øž¡pðnõ³åùÉõûf¥÷<=ß¶þ—ß•÷ý;?oïÁø½Û¸ºù…ë‘ÿìÏŠ·»±¨¥+½éöCä÷õÿ°õo oæ¾ÄôÝ8ž¡¯ímÊ÷ƒýž|i¯qMCᮬç+½÷é6Cô½V÷5{ñ×t~ïÎß¡x¡=­_4çi¡ÎÍ´×ÔöV½Yé½Ok·i¼ŽÈ/Ü ü;Np:OîÝùë¹5ü[ì™õÇÁZ¿mùýä²þ]ËJWú™ô‡Cþ¯>ÜÈïAôg/õs%¾gÒâÂ××ø£%ý› -^íxÒܤWœÍýI¬¯ðŸð¿pŒÖÓà—‹§<yû]ÊÁû*gýþ ž„Ü7|j#ŸÅ{ªçÉ<‡‹†ß„“„7þæËðÕöŸØÔƒïƒ¿YêEq¨‘ç¶ÿxôâwßGmã~¦œøiÆ1¸M|ÒÛGÃçc>v-+ý|´¸¬ú—%Ëù¯¿øàâTBáF"×ÿ4üIý.¥xçï$¹%‡üHá‡Ùú)#·)ïýa_e?ÄÏ/¿¡öYöMÚ×vA¿¿y÷÷½nœ_ë<{Dyøè¬»–ƒ•~>Ú{0üŠýh¬ë½w3ôªþœCÝkq¥qv=ré=òDò¿è{9Ô}“£}üžKº÷e–ïÅâδÇõ3¡pcõ_•z¦Þž=Jîµ>ž¢§¡øyæîzÑuæ…UoîGÚs ÷Ýãr~$íþ"ÿûõ¯ù 'ü’ñ¯ôbê@{ôdÖç÷â¼ÔŸü3n'þܧä§Ì½ÊÞÇÔ~øâ·­qò;½B/±Ïªÿ¨´«=÷Që—í½ÓϼGw-+ýœz'§5ãfÂ'ºo ·—ÏÈ.Ñ8—I+w%ùŇaq›ÿ¤â$ÃWïáß\Èqý ðsÆÿÀ¥¤gsðÕ8Ò©ŸôŒõ¦¿·â׆þá—Ÿ„ðyhÜëŸíÝõ}sÒÊ1»y¬¤Ìÿ5r˜çâ^œð{1ý>ÕŸGäŒ}ry•Ü%ÿI»”vêw'ùkÿ¿½¬?õ+’zÅ}ãƒe=ø ïò­ö~þ6àÕ´S?$ïݽ<¾_¿ûûh¥÷6­Ÿ1ò]?QIó%®ç~ô®«ñ-#/g¨|èˆã¹¿°I·þcKy>—4õÏBþ•ÏsþÒ®Óo|…¶½ý´Ÿr“:Ú _‡ÆÍ8¨§þ¥ècúûæR/ª_íßÉuŸvÒ­°–rXÿgä?鉳"Ç䈼^òN§_ÃÆ ¥Þ#y^ÿÊÑC|æyý¸Ñükg¼§¦ß8¿§©Ý»ËuóYZþéõ¦‡ô­ñso®ï›ûný§Eᮼ?fœOûò¨|ñYöUùÝ}~lù±´¿°~eó¼ñáí£RŸï øüWÞ¾‘ÿ²kƒ¿Æmû7ß_öwý®¹û>ª|â£~kõO½K½(^­8¶÷×÷Í}H{.å;½ñ=#ÿ¨ó0ßñÅeÉ—ôŒ“é;\9ßÛ­_¾È™ïkßéÏDùyƒ+sŽÕüôÿä2¿çÚS/œšvõãR(\Ù…åûf;ѳúKK½ÿ>^YêEýĵܻwÝ®ôÞ¤µÃöösþ#œÿ:>™4ÿdìöî³—4¾gÒ³ööv”Ú…Ò¾ó`õ²³<ÊrfÔ«}ivFvSvøÊÆïH{üD »åÖZÚuþÎÞÄ.ôÝÑÞÓ#¿?\ß7÷­Ÿ´ïy…¯‰¿zv*òÂnI>k— =žßyžzé½dþÊ”—ïDòwPÿ1ìú?õ‘ëèyãmÒzFÎùO{<éô>§ãß  N⟗ãÔôĉþhŒßŠøLÞIüÕÆ¹ÛËx>šß÷–ãÙ¸‚nÆ¿q^ÍÛ‡ËuË|“/íÜŠüÜúæ½úùJ¾¦“yM¾÷Öï2ÿò‘ñ çvè!eêŸ|êï­”‡?^ò‹Ž;üäAÖýŸíXOäoƒj}wvŽ­¿g<Å ½õ§M}Æ}×ry¯Óúw$/⸢Áš—ί8¶·”ÏÆióy¾>æn¬ú—ùë:*ì¯Sþ×Ëõ—\ßjÚðñDêýÑ8ú¬·üØRþéý^þÚßãcÿÖ_·Ÿi\ÒèCß·á§xSÏéñí%ÿ“ïϬ7oã ï o½k¹¼×i×3ãø­!ð†Ñ¯)7Ý7øå3.qqÊö[ß_Ö[ùùÖÝåÅúØý¹÷ <ôiÄ#?¤Úÿ~—ý²þn÷o©ç©ñø»¿N¾ô[K>‹«Ã§}êãÖ‹ðýô˜§ü=ùÉïÃCýé¼,Çc¥GŒüäÓGȇïƒìw,ÿÝýÞM}çtèûŽËþÞ÷ísäÂïI«Ÿ¾¹ÿÿŒNüôÓK~ú\ûÃ_X¿3žÂOò=¹”'|}áq÷æ{Üw<ûôH¿g<;æž}î“ß7‡Î'Šo]ß7Ÿiþá3îpbäñÒ/~ñœë¢Îc_ù‹OáœÊ9³óÐsæ}YOãq<ê¼ú•Q~Æ«ì}à<LJòn.×íž/ßÞ”·÷ÜROüþ…ÇÝ¹Ý ƒÏ¢7ð âØ'—ß_ï›Þ‹Ö¿»ëMÏÃÙ©Ü3ß$8Ó]Ëå½N’½„ÝŒ= ^òÕñþ`?¼œ|pÏ:敽„|ÃY²[49?V~üÔO}^ÎóϘrÓ>ÙøKÉ÷“¥ü×^¢_ç—ã²íÿÓ›âïÔ/Ž“8Qç>Ù𫯎~³o²c ~›O½poì:×å:²Ò#æ±~îÐÌ‹çW“x¿CñYÙ»ÙÙ¯¾÷yå·…Ýþªù#?ÚO¹Ö›y/ñƒåïê«\{‘ÏúñK{¯oÒ‡úÕþß=ßïà*ë°ý×ÏüÞ8júÚøoc>¿^½{×ï›®lÞŒËÞ—ÒÏV~:/敼™Ï©7ÿ‰#yu)Í?ãû¡‡ä}¼ïÄ3l\då–ó¿åkèWqÀäS}äo)_Ûø€ú¥ÿÜU?÷x[×ûþÔ/ã“véËŒ—Øqë \ui¬SÛöSîêR?Äiܵ<Þ/t»ß²ÏʼØÿÂo\zÓüö=™¯9ÔŽïøûCïßU½g#ŸýÛ{Ë}K﵄ùí}ä^IkxeôëœvRŸï…Ÿ|IzcœŠ îé—{hý=ü×cÿ¦>ýÆï»‹vÚþ…Q®ß§Ú¹û{j¥cÇùKq.¾·ß<7äË}ÂÇ~lž£9?pïÐw¾ûóâV:Gr_“Ü8?pÍ÷3¼–ïgç ¾«Õë»÷¬~„:¸0Öcò8üŒ}iãã¢çð4(¿ç§æ|$íœÃýÐÞïN¿sžÒöÕëüĸ¸·}Ä=앎y<–ñ;‘y;•4¼(üXð‹ò—Ì›y`çùÁÐ/çÂð)ü_Ä~Â.YûNãe¦þaíy6;ŒßIýô’½î扤áÔàmœ‡–|ßÿ’õ†ßñ ¾žÌó >ñ;YíUÆ›ýŒø{£ÿì\ŽòìÃÊÃߤÝ]Ëå½NÙØÝØo/õ£~»Ìƒù&ÊOû›ç)w@ÎÕ}©_¯ßæ÷ðP<ȯS.öíÚ7áÈ}l9ÿú?ƒÏëÚäkÿøqÒïÿ8ÞŸGøƒùÌã~ò‹V»fÖý4.pø¬}8vW¸›âRñn¨xm¯ciN rÐyÿcÊÇ~ÚuÒø™G¸¶§Uÿ̳y…?œ¸ë6yùÞà“¾[O3.ÅCeþà„*—øƒ{ÉøXZoÖÛú=qZñ_?e±‹ïå¯ýОu9ãTŽùN¿Š ³n?ý,ÍïÇó»÷½²nþýRkÿc4þøþöÐï7Î,úWü™ùò^ćùôžð»õÚ{ÞhÈ}åL?þ|÷Ânü˜öRzR{õËþTÞ¼gÛïÐÈGû_È]q>äG?²80ŸÿâZ“ÿÀ¸D~*¯pöÞÞŸêÃõ‹[ñ§"~0}°n =¾>ë©_$ã7ø …'«^Èyè{Ä~È>‹|?v¯cKýîsöh|Ð7òGÏÉ/9'?ÆùÛË~À)tÆ7=ʺ˜qÿÓR羯r>Þ»W|àÛþÎøkïø(g>µ›}X×ý¹„°®IÛ(g]/rÁOçÖmÒîeûåîgCé½Sõ’™Gûå¹¾ØçÛäžGÇ~ƒß98ç6Ùÿw=ÑßS©Ÿû~4í±“[zÕ{$I‹›úÛñ;¾íùß2]o†<“÷LŒ·òå_½ú?Úïñ4Oð3üïYÍËÉÑ_z=ã_Zï§|Eª‡ú7ðùÝGÀ¯Dn}oõ<Á÷ܽ çÆǫ́—¼/ïG”®©ßx{ŸX׿;ê=›tß/)GŽ´ë^’ùìø‡þxð?å\Ź‘zßh_½ó¼Á½$iú5ëƒÏð] ×QÿrÉ/Ž£´rpYúiýznŒyë½)4¿;Ñ/χvO= ïA>œ{¹7R܇üé—{_ü^¼Êúç¼ÌøâÛyûWð[p)ê“á·“œ{ÿý†#éyšöÒ¾yï|˜Ÿ1ÞúsZ}I›gëˆñ8=ÒÆÑ¸ËóâiÈI¨uÓyõølÒÎ?{.9ô ~Ð|ë¿òæK~ü÷èí _ìãÞiÏÓ“_¼±¡õG”ã^üS¨þÔ/Vž_NýäŸõ«‡<×~ëåÈ]ñè»~ëgoÈéù‘_ámœ{^6>éWïý¢yÎŽà÷ÆÄ7ùÑ~Ò½ÇüîR>à±”sÞì9~Ü7&÷½7qÆå í°ÓÀ¯ÔÞ“|·U\ 98·Îû‘ñ¬?¸QnâëšNû¿ü®ÝÞkN~õ²u\ñMŒý3¾ï.óÏ“z؃ØgkoMþú£KÿkOÊï³cÜ“fGR_íÖæA{¸0òt%ù¯$íõÚS.|ÀW–ßk‡Nýðeî™Ç.\\Åëƒ/8úqÈïø©};¿‹?Ä¿~.>ô|³ãÓ»âáô“<¤~þdjïå¯áOýáþçê(ß~þ›§â·òÜx‘Ëâð;ò±ç³[Êo‹À?>ÉýÎsr©~rU\PÊÕß[Ú3Ž•÷<מuãžÃø y 'šßù‚ã¨_ãBïÈ™zð“ôô¯Òþ’Wú™zäïø¥¿/—ß‹SÏ»#­?Úó;ù3ÎÉW¿GøH¿ù;⿨þð~¦?%¸.õñC„oþ\øI*5~ÆKþ1Ïü3ÕϘþÝ^ÖCžÕ_Qch?‡ü^ótÈ_SòW86ò§þiøg⇇ß(~ËosŒcó“ýšõ±Þ*_9ÀúnÞ½åÛ¿1?¯Ï4}™ë•çô3¿Ó7zMo&ž°íª/ýoܸÔk/~‘Y¯<}mÔkýÇGß#ãyÇE¿èÛÐ{ãIßÞš¿§Ýáï±zNŸÌoý™'åßWãÛù!_ø2¯æ+t®oÌòÆåƒå<Îu­|„Ò¿ú4ŸæÁøê§q5ÏCo=Ÿå̯õ§ýz…ï7F{s^­CõšrüZŸäëûžüyŸßí[»ÏöiÞëö9—ÃO÷I©Çþ­8ö¤í[ç¾ìRêUŸvЧÇOÒÊyOÕ2~Ò^ã×§>Ïíï»Ñnø²Ÿ€;ƒC¬­ô¿éÔSJ7üªÿÕÑûƒú'ÃGê·_—¿8Nrv®ÛÔƒïö#õáÓþ½øPãšòçÍ>ñ…í$íûÂüùŽlÜÀ´Óþ&MŽÈ}Çßæ‡Ü¤¾úuzoÉ>2ø”n=yNÏõøÙ×ûîž÷¦œ'8×ð弄œû®ƒgòÝî<@9ç%¾}_:'qtF}£ßßÎ+œÀgÁ5ñ‡äüN}§“žß›½ê(¹`ŸÑéw‰½Ïy{ïe'?~Ù'jgÕÏPüÐ/v.r®„²˜ö8öŽo,û{}âtŒ;>ÙS'ž‘žÀ‰è?>à©fܼ?†!õ›”úøù)N€¿rÅ>Jß=‡³¸þ …kR/;2y5_ѳƒ=ócÞèóÐkøötrcœ¾;ÊK³ßéÇScüðm|ƒ{(^Âsòy„³Ê».»?1Æ•ï˜õ)ù=‡K2OõC’úéqô´~Mð§Þ'M?Šc™ëy|<ób÷ó?öÙ÷Íç#á[ýìº3æ]¨þ—ó»kÜäýN­ÅÎù‰\ß1üßUÞÍ?}ƒcò\||%û}×ÉPóyÀ/|ê®Çm¥7õ^(Ntø+‚Gíû;ïúƒ—{|ù^)>×}‚¿¤þ₼?–ën÷×£>üîzÜVúpÓ~øn‚ ³¿¶¯±?¶è÷ÙÞ¿âËì÷—x?ÙרÍ{;ÅsÚ·-÷=ý~øþú¾Yéîéö\$t~—“ÿÆ]MÚ¹s¥‰S¾p3ù“vP¼[hñ¡Î9œÓS~O-Ó+]éNôÆ~ȹ°ófçäìDõCyî¹~wNLÞ{ŽªþÔç\ÖylÏŸÓî+Cï¦_·—V½Yé½C·vÅÈ3ûkñi{wþЧ”¯þinl~gšvÛ+ÉÏoœ=dÿ¯_š¡oo¬ú²Ò{6ÞäµÈ1üœFq,ù]œ¼·n|\Á7׸¶É?q:~gï¦/3nà[c¾v=N+]éBo2òH"÷ÅñEÎ'râóèCñX~O9zØø„{wþ¶øèÛË}ÚëË}ÛJWºS½±**úgU¿j㽡Üįկfêéý íäýb_VüzÚñû—äßl¥+ýRõ¦¸¦Èoïså=á{ÿìû‹s®-¾Ë÷|¨ó2¸*õ¹ ·¨øÉž/¬ï••Þû´¸,¸ v÷°Oäyý ‘wø*ø7ùá…Ø5á [³›²ã<»Ô¯]ËJWú‰zÃ~¹7(;&ûeý™„z>ü¨¯¨>úsÈ¿F~‡×ù”¸H+]éWIù¥‚;k<@øÁȵ8˜ì–ÓدRî{wþàë÷+íW›üüÄ5¾gp2ümñûw0ý >º©¿¼úáK=m'´¸Yýá·.õ5þá^ÚןߧŸ·£¯ðt.Ëñ{u\Dã’ÏðeÜg¼Æ•Þ_´ñ.'>>|øó+N-û«úc;ù Φ~¯¤£?ÅÛxÿÛèGýÂw_CêßN|Oz•~ô}eH¿¢·7lßuÙúÝ¥gðÆôV¿·ä»8ÔßåùoSŸz¾½|?òC¸ëù_é£Ý÷¸—ã}â»åÉ<þ·~ôRþtäsÆ×û«~Á¹ñg)¿ïùÉ-<4½ ¯½G@_ó¼þNñ›4¼›õ>ì…ýšßuúqœþ&¿{S~¯ÿ@ýܤ;î¹±ëù_é£='sßôôXGœÈžƒ¹—êÌ}Gú3ïU6g¨ó7õñSæþ¢ú‹W ôY¾³I÷žìh¯q “ß#x/°qCñ7ý¶==Ê»‡é{Oû§—¿w_\¿Ïîgº½|3òùå·ƒÖ/@žóï%í~{㪠‘›úÿ¢76´ñZò|ÞwÏžþ¹÷ ÏÓø8I_L½üÔ¯˜öS¾ñùð¯‘ÖO÷•'þgÆË¼8ú«—V=yhíîüeÁµÀ›ÕÞ˜çõ —üõÿZÜZÊOÿiôDýÒµÎtòÍxlüþ”ïÉ—çõ£”z^Ïïõû£ŸÉWfi§q8õ;ùðÛøg¨q”¶®èè«þ<tÿzæÞ¿4~ÅøQ«¢ÈÓ[‘“·Ôù„#‹œöÛ–úšïärCþëo*üÁ½ñ›¦~ϧŸ18Ÿâèòœž_×é™qõ\›ý°^¤<½¬_§÷–åêŸn¹_[éýIÍïµÈKýƒE¦²¦‡œÕO›räϺ¦|ý¹í{N:õ4N­÷y¥Ïô]½ô。¯{›rômÆ•å¬þëÒnõ|o9.üŠ3¼¡Ûñ^¦WzÒÿÛúû õ=b¿bŸT¿‰‘«ú]“Ï~˾g¤ëÇÎ>/òÇß]ýĦ^|Ê×øÈê•/íãÇ=ß/ö{õó»|lãÎúÝþ+éÞ;ûÏúMËïݧ-Çm×ó¾Ò¿ŽnýÅgÞë_>óî¼L|N÷ÇPß½¹Özë/>åë7,içTôÑy„óÜKÉçü«ßᡯŒöœ?ÔÏyê9÷Á‚¿­_üPßO¡­Ï9\ùNÝgŧ{¨/Ìü¡Î1øG¿°¾oZ?ðcÎ[³²‹ÔXž³çð3Èß {dì üœHšè±”g?Ï>­q>ñ™zœï²Ã°±—þxòßÙEɽ~>™vÝÛæßÊïÆIÿÙsà„ØsOŒ~ŸÌï§ÃÇW½yèg“ù¯öýÇ7´~ÌÄãó;ùaWg¿ ^'zQ¼Kôa/Å£üÛROÄÂËë)nM|Ýß'=ý~gðvŠcàOçwK=.Î'í̸r3.fqD…?ùéÕð·ëy_é_Gë·LP}â)ÿj©G‡ü·î-ë[éÝiåè·™'þÐ|Ào5ïÒüÕ6>p~÷ýCÿ]Êiïå|wÈÉô‹KoÉ9?mö•äÍ~ µ_óýc?©?»LW/½7Ýû3ËwK÷ƒðl¾»N§=ü'—vð«ÿüV“küj—ÿ[åÕ{bèÍw—ïò;ý×Â~wè >Ìû3ëûæ3éÍ™Œ§ø•¾ÇŸÁƒÁ‡Á—5ÎB承(~Èùw^¦~òà\ÿrþ×àÜ—Ôïæ5í9ŸznÐÆiM>qŠŸK=çF9ÏáʞׯÌOñqæ×ïÆ7ü8·<½¬¥Gèyrÿ½‚¼±O\Œ4žOò9¿ö»óâÆóH=nnæ§qIÔ£\êëýh4õ5ÞeÊ5Lž;‡þÉ(7ã}´œzÈíxn<øƒ›ãÐþá?õ\JûÊéwï…kÏ:¾Îöè™r¡¿q®½ãj¼ß]–w>®ÎÏsøÜµ\ÞëtÇ3óÃLã2EØ _*ù2¿_N~q¤Šû$oï/ëg—Ç >³ñ5#3ž%;èôÛ!]?k¡ì•ì¸WF;Ÿ„ÿäo-õ½9hñ1™ÿúÊï‡ð4~O?Ä9µŽ¼aQêqÛ/zÚ8„éGñDi·ñ.Õ¯ßô>õ’ÿÆ›zRÓpAÅ%Ñ õEoàžf<ÌÌÇ®åò^§[ù7ÎÆrkÞß_Îýù8„;#ÉÝx¿ä^þ#ä³xJï•¡w׆þ´~é´K¯5õÎøœô¡ñ—ú¾ÏÔoàuú¾Ó¯Ôóê·ò1õH¹“K½yu¦o/ùïû–ÞŸôßzÒõj“Þµ\Þët‹÷òžNzÆ•/Ž,ó×ûöy>ã¡Ï–yqÿ…¼Øï5ž¹ýƒz­·êS%÷c_RmÚOýüOÛg5^zžû¾i{üà7ò‡Ö8¤öUiG»¥É×qãhç»Ò~V¼Mûà CO.¿×ô¶ÿhÊׯ°vñ§Ü¦»–Ë{Ö?ºïÿÆ_Ís÷6ý^¿æIŸ–çÓÏÚù‘ßw«øpbÎÝܳ$‡ÅÍÉŸùžñ1'~Íw°úêú›z{^öê'Ís÷ÀƒKùÆMÚy>cïÁiçý%Ÿ½×šr/§ü“ïøžWnÊu>ñãÜOÍ“ó¿_ç–ùw-—÷:­=¦qB3žæ€=‚}æóÚøwù½8·Ì‹sÜõXÊ=:äA>í5Njê3ÿì!3ªsÜŸ“½È95lì§¾S^ÿN&ÍïÁ÷ÿøe/j¿µ“üÁ¹WÄfÜØ…ëW+ùàà¾;æž‡Óø²Ïi‡]Û8À%Z~°|­ôîŽE|¿Æýsèð§ÔqÕxGǼ¯ÆŽ^;6Üïóü£äg/œ—ò;ífžµÏLê¯=ö;CŽS®x ò½­=óÛËõ¶¸3å?ðE¿M½¿Îï¥_¿Z¦çúP¿=Æ 4ý/‡Ü‡?x ý­¿­ŒþÁG÷›¤ÿu¬Wì±{Kþv-—÷:5/Y7áÏŠgü½ç™Øç‚ÿª2ña#?Å;FègižÄÞ~0ý´}{É|·È¼–çüAå}sëOáO}âÊF~ø±Š=QºõþÓrÝ­~Ôw½8ˆŠÛø™Çý_Öõý~¤‡ô#8÷®óYÏÄóÌz§vÀ™õ“<À;E¯ªG¨õÔûH}p¤ôK¾GÉiÖãßF^OŒçÞy?’ãòõ¸ë´~—?õFŒSý+Fß‹çK¾®ç¿úlzP?…»®ï÷#…‡<°?²Ëú9ñý/ß}µû{K9ª>ªß~ ÷zŠ#†8ÓúÛûDï…Þ+ ç¿Mûêõ;|›òôƺ1páöÆiÞCèû'õÛoÑÃO÷‰3[éýEûí~šïÑS›yí>ø©ÐÇ#ßó;Öï¾'Üÿ‚{êý³ä÷]_©}÷¾|7iÏïÓŸè“£ÝúGõÁÂIâ{ø%Ýÿ~øzjùèú žGR¿ûxð”ÿðÙÞÎv=ÿ+ýb´÷‹I;ov^/æ| þŽ ®Êù癤á3ùó“þq¨ó3åŸÉó§G~çgÎÉ^ÌóâACéùQþìhŸ/Áß¹¡7ê}yÔãÜMýÏ®úð0ÐêGýüE.ÞÜȼ"{ \rãÑ$?»^í4‘§¦CÙ-¼‡á;ó¼ñuó¼öÃÔ«=ööÁâG~õz^ˆ£ÿå÷äBþ[ž_Pv˜8ãuäxǼëy_é_GkÇç^€=¾¸Ã½Ísr9ýÝg™zê¯F=ò§=8ú‹‘Ÿž$_q ‘kü¡4Þ½POò—iz6ꇹ<ø¼2諃~JõãòRß÷ÍUoZ9#wˆF>àGìSÉÍÔ¿<§Õ¯¤é |gË{_ ÑWòî½wyòGž“­~(¯¿ã=Y¿Ná§8îÔGPþñ=ôõò'ëÅï]ÏÿJ¿ Þ\ˆ¼9€¿ñ»ý¿}¼çs?Vêcßwh§~rG>SÞ~Îû žž\Ãшgg¿/gãž>ŠßI~F~ûXûEûÍscw>åàU2ž‡Æ»8¦O~/­ôÞ¦ýÎþáÐ ÷ý Ÿï÷!Ý÷toÑ÷ºûYpkÎÙÜ_†·::ï'òÃä»_þÙî™üî\AûðAüž9Çë¹>’v_²8œ´3ñ6ÏŽúCoßuÑÏ]ÏÿJ¿­?“ú©ˆ\<šçÚÌoí,¿ÙÌ{í-â þ9içÌEî¾7ž»—Ï_ÿÌïâ1ñÏô—%m=ÁÝ Å!ü:õ³»joàU¶çÞácú 8¾,7í@ÆÅ¹wí¡ØvœÚ'ý»Èkô¤vÃ_%ýa~-Ž+rUÜËß-óà Ôï“üü;En›/ò_=Æ>Ð?ŽòOläµxýãF¾ÇÃ×·Ø”ç÷G}ÆKÿŽïŽCÖ‡]ÏÿJnzÈ/ÓˆSMšoèÛö}ê½0pjµ“Ž8‹û›jk÷lyûѬ;ÅMÿý'ë×JWúuPï‰âØk#ߟ Á¿Óo÷îüoôÄòû¾û7þnáÜ€ë‡S 7øÊ÷¡÷ñ®Çm¥7­\ºà{È}÷QèÓ{wþú<ï~ÿ8_8=Þ7Þ'ÇèAò=ŸúèÕ3CŸ†Ÿì]×JWzGžÉ­{rp1gBÏEÎÏäwçìηèIÏë¤Çû†ß&8 í:óü,ý u¿uàwVºÒê ;\{Ž{ÎÅímž×/ÀÍM~~رØ_§_¿Ú]SOíEÑÚ£RÏùÑþ¥u¶Ò{‡nã‹ÞøøÁ^ý(ñsS.‘cøšúóH>øx†Æ%÷ÉïS¿5iß4~{Ç*õÆ?ήÇk¥+½£7õÛ6ôEºq=o|\`¯þ«Äý|+¿‹?èyý¦EOÄo¬Ÿ©Ôóú¨wÆ}cYß®Çk¥+½£7õƒFÎ#§Óoâ¡ø¶Ñƒúa›ú ÞèAãž*¯ÜÙÛê%=VOÊGw=^+]é½9ä·Õw†}Õ3î×}šýߛxÓ«{›ç—£/¾£ŠƒU>åŠÿÌïѯ]×JWzGoà<á*}§Ã›Á‡ò'æwzU¿åÑ¿éwÌy¼œs8qœ³¯šúá@áC/¯ï›•Þ;´vö~ÓÜ·æ½nT>øM8M÷[Ù}àDÙeœ{ÃͱÓüxœ_;ŸŽ]g×ãµÒ‡›Vžù;Ê_ßSù]ܶýžçÇB‰\ŸX>¯´â R/<Îð¿S|ϱ¡7'W}y(ÿ2Å5þ~)gÖÑâ"g<Ùäo|ÆӚþO2òV|eüiÔïÒï†ý^9´q Ÿ#NeýðÈ÷È*¿+ýôƺùØÞ¿m|Ï<'ÇYwáäáçဋ‹Ì:°—|©çúŸ6éÞ7àï .?r]}ãæ—rÞx»ñS?Sp”Þøæç*ýÓî®Ç}¥÷7í½ë1¼–}ûÄ)Zïé±ü ¹÷Âo’´}ý“ï'–úÓïúüÄ&ùõò÷£üúí÷áïi×ã¾Òû›öûW|KþÁà©|_óÃÄOÔŒké'œ°ûÆü5‘w÷ØÜ³W{gG}i¯ü6ΦöC}Ïû§“võéuŸ¶Ò/AoøEƒ£rŽË)þ ü¹¿xcó»ûøÎ_Õ#^„úϧ¾³£]ø­y¯ú•ñ} wy~ð㜾þŒ4qBr®¼ëq_éýM·q(onä¸ñ/Cáµ^Û»ó·õ³”4¿0â:ÕoÙÐ?~eØ7ćºxcSxOp“솆Þà—_*~v®æyユúsÂ÷íÅûk¥+ýBzS|Iä»q£â6Î`äZ|4x•âQ’¿¸ò«7¼Åq½&êi<Ê”{}“ËoÊ¿ŠÏÆõ£çž'ýú’ÿ]ûJïoº•/r¼wç¯òÖx“¡3ž&=‘~uäo<Ïȵ¸¬3ž&<—4<ò«ãû¦q0µ+Ÿ4>õcè{p2»÷•ÞßôPüGþb{?%r\„IÛ×ÁeÙ—ñ[æ{¥¸­±O»<~¿¢ÞðQÿh›zË/‡ðcü¹Gó“½Íïêѯ5ßJ¿ ½ñÝïôÈŸïhþù+ãWPÜI÷Äøå{>ÏϦ^÷*Ï£ù_2¸-çüµóùÜòü«õK9|À‘éxœ3žåÙõ2ô³~’Ÿ½^ìÇ~å_†ýóÔà—]êŸ×÷ÍJÿzÚ¸aäS<§<ßúÉ‹üímþj÷Ÿò},iq¤”¯é7‘_x¸˜ÛÉ'®ÔñM¾=í \OÛy<| ?†Õ#~ ~•öÿ°ù}×ã¾Ò•Þ´q<Û»ó'>[ד~Óã‡7¿ó(Ýú£ßpô~×ý^éJÿº¿·ùóž„Ë«ÞäýÔý£}iã˜G~›zè“÷aÞÕ¿'W½YéýO«ðŸã}Ðï¨S{wþ|ÿŠïûÊw!ý‚÷9¶êËJZso³ø8ç{Μ×97™ùàGùMû—õün¥ÝÆáawÚ»ó×ßÙœ³‹O˜“ŠâñŠï»šßÕ{vYïJWz?ÓÚAùA»