foreach/0000755000176200001440000000000012154144526011665 5ustar liggesusersforeach/MD50000644000176200001440000000661112154144526012201 0ustar liggesusers5ce77c278033c7ae7cfe50113dc1f767 *DESCRIPTION c32fc6487cdb79913750f7097de2075f *NAMESPACE c4b02ef0b5c0765c12c527e1ca1f70a9 *NEWS 47e33082104d2bc4bbf6903a8f5ee69a *R/acc.R 5027fbd0eb0875545deefc4e77df3085 *R/do.R a7eea424b2f51e3fdc52da6a58a0c278 *R/foreach.R e0b326499355bbf084ae160b01ea797f *R/getsyms.R ba7e6bee7fc596e6ee08feaa2ee44a62 *R/times.R 85b4a5712555f13aefa4d723ba78fcd9 *R/zzz.R caa28a573b448cbd60f22052c2bca7a3 *demo/00Index 515798525e9e08e68a66ab24df3d17a0 *demo/sincSEQ.R 114454e06e155812fbd7de0001ef5dc2 *inst/doc/foreach.R f8ac22a80a28c04f29ae2a88686d07b7 *inst/doc/foreach.Rnw 3f375e8e57a83bbbaa22e03fac92d510 *inst/doc/foreach.pdf 509eb035fb2bee0b47433e2a00960b50 *inst/doc/nested.R b58f77e7ee3b70d93050f5bb19502b5a *inst/doc/nested.Rnw 10e9cc2adb28045d7ff23ed776eba77a *inst/doc/nested.pdf 3380c6bfe2789c1316d36c368d968bc1 *inst/examples/apply.R 500fc0fa2cb4b07b809e974bc99ba4b9 *inst/examples/bigmax.R 4549e5165479d323e9348b2d726de9da *inst/examples/bigmean.R 31be8c935f6fef084c3b9f69148d9d95 *inst/examples/bigmean2.R 20be562ced9134739ff69cbe09a20b7c *inst/examples/bootpar.R 53e2a90eb9cf9eb9f6a02f1658b87b7c *inst/examples/bootpar2.R 00f17395946b1090a308985cbca56515 *inst/examples/bootseq.R e0be352dcb9674bd2e97f522ae9a4bf6 *inst/examples/colMeans.R 40c1d5c69df84a9d96c21091999335bb *inst/examples/comprehensions.R 684705c4a63eeadc8cc37f25a2606269 *inst/examples/cross.R 4fb83e90b01ab5da4e25805cce489393 *inst/examples/feapply.R f99bbd4ecd00c5558e4c130c6b453161 *inst/examples/for.R dd6d1bd8f4bcc4555b900b9c00955c33 *inst/examples/germandata.txt b0684796a1576e974134f62b8fc5e6fc *inst/examples/isplit.R f0e946d73e7dea4c65dcd1d2754b7ad5 *inst/examples/matmul.R abf01cf248cf054f26c0a29ced984e8a *inst/examples/matmul2.R cadff38eb4c9fc2fa385d600e42046b3 *inst/examples/output.R acd652ebc9903fb4a039b09f3ac102a9 *inst/examples/pi.R 62900b80c46aa3fa40b69edef2e51291 *inst/examples/qsort.R 81fecace2a92963972db2adb2fc9fed7 *inst/examples/rf.R db5fcdbddb502aab39e82d17a10b0c1a *inst/examples/sinc.R 23d155b4116b87e6304a954d630371d3 *inst/examples/sinc2.R 4aaa9d9782f8d0b331e3dcc021bd9c14 *inst/examples/sqlite.R 80d22f8c75b2d99335d8f09c9c22dc34 *inst/examples/tuneRF.R 3d981a90b7471c26347ec0593ca55167 *inst/unitTests/combineTest.R bdc6faf27f9438670191fb0e9571bd01 *inst/unitTests/errorTest.R ff12ff3dd5c50845c81e15178de13b36 *inst/unitTests/foreachTest.R 1f4ee6f110624a1678ba8976ba7aec1d *inst/unitTests/iteratorTest.R c14fa871ff9d9fc719fdce467f0d717d *inst/unitTests/loadFactorTest.R 9321ccd8b46047e704893cab4c5c6795 *inst/unitTests/mergeTest.R e8cdce27b2b33bd51fcb021f9034d276 *inst/unitTests/nestedTest.R ddcfe0035e22f2d6c2f9e454b439cffa *inst/unitTests/packagesTest.R d96e58771409bee69f000df068219695 *inst/unitTests/runTestSuite.sh fb0831e84e6f8d7b062bc7d2c3cbd892 *inst/unitTests/stressTest.R 802149beb60028bba88d9206d6056118 *inst/unitTests/whenTest.R 3f8eb3a21cfa4ca1720d247a89dd671b *man/foreach-ext.Rd 6d93867afe82453e171d5dbea2814347 *man/foreach-package.Rd bd6f8b6d151c6bfb91f493c8d9d3beb2 *man/foreach.Rd ccb36ea1d3b7a8df1b3507663fc2a8b8 *man/getDoParWorkers.Rd 649d347d1fc6c8bfcce655b70e7ff43d *man/getDoSeqWorkers.Rd 807d977bb241d21ac67742178d24c4e0 *man/registerDoSEQ.Rd a2b2665ab547a5ceb315dd36a5dcdffa *man/setDoPar.Rd 6c3efff477172db6a6b8ac789c125f74 *man/setDoSeq.Rd 810a0add5503c91c3cf9c01561397af8 *tests/doRUnit.R f8ac22a80a28c04f29ae2a88686d07b7 *vignettes/foreach.Rnw b58f77e7ee3b70d93050f5bb19502b5a *vignettes/nested.Rnw foreach/vignettes/0000755000176200001440000000000012152141726013672 5ustar liggesusersforeach/vignettes/nested.Rnw0000644000176200001440000003250011741344141015643 0ustar liggesusers% \VignetteIndexEntry{Nesting Foreach Loops} % \VignetteDepends{foreach} % \VignettePackage{foreach} \documentclass[12pt]{article} \usepackage{amsmath} \usepackage[pdftex]{graphicx} \usepackage{color} \usepackage{xspace} \usepackage{fancyvrb} \usepackage{fancyhdr} \usepackage[ colorlinks=true, linkcolor=blue, citecolor=blue, urlcolor=blue] {hyperref} \usepackage{lscape} \usepackage{Sweave} \usepackage{float} \floatstyle{plain} \newfloat{example}{thp}{lop} \floatname{example}{Example} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % define new colors for use \definecolor{darkgreen}{rgb}{0,0.6,0} \definecolor{darkred}{rgb}{0.6,0.0,0} \definecolor{lightbrown}{rgb}{1,0.9,0.8} \definecolor{brown}{rgb}{0.6,0.3,0.3} \definecolor{darkblue}{rgb}{0,0,0.8} \definecolor{darkmagenta}{rgb}{0.5,0,0.5} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \newcommand{\bld}[1]{\mbox{\boldmath $#1$}} \newcommand{\shell}[1]{\mbox{$#1$}} \renewcommand{\vec}[1]{\mbox{\bf {#1}}} \newcommand{\ReallySmallSpacing}{\renewcommand{\baselinestretch}{.6}\Large\normalsize} \newcommand{\SmallSpacing}{\renewcommand{\baselinestretch}{1.1}\Large\normalsize} \newcommand{\halfs}{\frac{1}{2}} \setlength{\oddsidemargin}{-.25 truein} \setlength{\evensidemargin}{0truein} \setlength{\topmargin}{-0.2truein} \setlength{\textwidth}{7 truein} \setlength{\textheight}{8.5 truein} \setlength{\parindent}{0.20truein} \setlength{\parskip}{0.10truein} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \pagestyle{fancy} \lhead{} \chead{Nesting {\tt Foreach} Loops} \rhead{} \lfoot{} \cfoot{} \rfoot{\thepage} \renewcommand{\headrulewidth}{1pt} \renewcommand{\footrulewidth}{1pt} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \title{Nesting {\tt Foreach} Loops} \author{Steve Weston \\ doc@revolutionanalytics.com} \begin{document} \maketitle \thispagestyle{empty} \section{Introduction} <>= library(foreach) registerDoSEQ() @ The \texttt{foreach} package provides a looping construct for executing R code repeatedly. It is similar to the standard \texttt{for} loop, which makes it easy to convert a \texttt{for} loop to a \texttt{foreach} loop. Unlike many parallel programming packages for R, \texttt{foreach} doesn't require the body of the \texttt{for} loop to be turned into a function. \texttt{foreach} differs from a \texttt{for} loop in that its return is a list of values, whereas a \texttt{for} loop has no value and uses side effects to convey its result. Because of this, \texttt{foreach} loops have a few advantages over \texttt{for} loops when the purpose of the loop is to create a data structure such as a vector, list, or matrix: First, there is less code duplication, and hence, less chance for an error because the initialization of the vector or matrix is unnecessary. Second, a \texttt{foreach} loop may be easily parallelized by changing only a single keyword. \section{The nesting operator: \%:\%} An important feature of \texttt{foreach} is the \texttt{\%:\%} operator. I call this the {\em nesting} operator because it is used to create nested \texttt{foreach} loops. Like the \texttt{\%do\%} and \texttt{\%dopar\%} operators, it is a binary operator, but it operates on two \texttt{foreach} objects. It also returns a \texttt{foreach} object, which is essentially a special merger of its operands. Let's say that we want to perform a Monte Carlo simulation using a function called \texttt{sim}.\footnote{Remember that \texttt{sim} needs to be rather compute intensive to be worth executing in parallel.} The \texttt{sim} function takes two arguments, and we want to call it with all combinations of the values that are stored in the vectors \texttt{avec} and \texttt{bvec}. The following doubly-nested \texttt{for} loop does that. For testing purposes, the \texttt{sim} function is defined to return $10 a + b$:\footnote{Of course, an operation this trivial is not worth executing in parallel.} <>= sim <- function(a, b) 10 * a + b avec <- 1:2 bvec <- 1:4 @ <>= x <- matrix(0, length(avec), length(bvec)) for (j in 1:length(bvec)) { for (i in 1:length(avec)) { x[i,j] <- sim(avec[i], bvec[j]) } } x @ In this case, it makes sense to store the results in a matrix, so we create one of the proper size called \texttt{x}, and assign the return value of \texttt{sim} to the appropriate element of \texttt{x} each time through the inner loop. When using \texttt{foreach}, we don't create a matrix and assign values into it. Instead, the inner loop returns the columns of the result matrix as vectors, which are combined in the outer loop into a matrix. Here's how to do that using the \texttt{\%:\%} operator:\footnote{Due to operator precedence, you cannot put braces around the inner \texttt{foreach} loop. Unfortunately, that causes Sweave to format this example rather badly, in my opinion.} <>= x <- foreach(b=bvec, .combine='cbind') %:% foreach(a=avec, .combine='c') %do% { sim(a, b) } x @ This is structured very much like the nested \texttt{for} loop. The outer \texttt{foreach} is iterating over the values in ``bvec'', passing them to the inner \texttt{foreach}, which iterates over the values in ``avec'' for each value of ``bvec''. Thus, the ``sim'' function is called in the same way in both cases. The code is slightly cleaner in this version, and has the advantage of being easily parallelized. \section{Using \texttt{\%:\%} with \texttt{\%dopar\%}} When parallelizing nested \texttt{for} loops, there is always a question of which loop to parallelize. The standard advice is to parallelize the outer loop. This results in larger individual tasks, and larger tasks can often be performed more efficiently than smaller tasks. However, if the outer loop doesn't have many iterations and the tasks are already large, parallelizing the outer loop results in a small number of huge tasks, which may not allow you to use all of your processors, and can also result in load balancing problems. You could parallelize an inner loop instead, but that could be inefficient because you're repeatedly waiting for all the results to be returned every time through the outer loop. And if the tasks and number of iterations vary in size, then it's really hard to know which loop to parallelize. But in our Monte Carlo example, all of the tasks are completely independent of each other, and so they can all be executed in parallel. You really want to think of the loops as specifying a single stream of tasks. You just need to be careful to process all of the results correctly, depending on which iteration of the inner loop they came from. That is exactly what the \texttt{\%:\%} operator does: it turns multiple \texttt{foreach} loops into a single loop. That is why there is only one \texttt{\%do\%} operator in the example above. And when we parallelize that nested \texttt{foreach} loop by changing the \texttt{\%do\%} into a \texttt{\%dopar\%}, we are creating a single stream of tasks that can all be executed in parallel: <>= x <- foreach(b=bvec, .combine='cbind') %:% foreach(a=avec, .combine='c') %dopar% { sim(a, b) } x @ Of course, we'll actually only run as many tasks in parallel as we have processors, but the parallel backend takes care of all that. The point is that the \texttt{\%:\%} operator makes it easy to specify the stream of tasks to be executed, and the \texttt{.combine} argument to \texttt{foreach} allows us to specify how the results should be processed. The backend handles executing the tasks in parallel. \section{Chunking tasks} Of course, there has to be a snag to this somewhere. What if the tasks are quite small, so that you really might want to execute the entire inner loop as a single task? Well, small tasks are a problem even for a singly-nested loop. The solution to this problem, whether you have a single loop or nested loops, is to use {\em task chunking}. Task chunking allows you to send multiple tasks to the workers at once. This can be much more efficient, especially for short tasks. Currently, only the \texttt{doNWS} backend supports task chunking. Here's how it's done with \texttt{doNWS}: <>= opts <- list(chunkSize=2) x <- foreach(b=bvec, .combine='cbind', .options.nws=opts) %:% foreach(a=avec, .combine='c') %dopar% { sim(a, b) } x @ If you're not using \texttt{doNWS}, then this argument is ignored, which allows you to write code that is backend-independent. You can also specify options for multiple backends, and only the option list that matches the registered backend will be used. It would be nice if the chunk size could be picked automatically, but I haven't figured out a good, safe way to do that. So for now, you need to specify the chunk size manually.\footnote{In the future, the backend might decide that it will execute the tasks in parallel. That could be very useful when running on a cluster with multiprocessor nodes. Multiple tasks are sent across the network to each node, which then executes them in parallel on its cores. Maybe in the next release...} The point is that by using the \texttt{\%:\%} operator, you can convert a nested \texttt{for} loop to a nested \texttt{foreach} loop, use \texttt{\%dopar\%} to run in parallel, and then tune the size of the tasks using the ``chunkSize'' option so that they are big enough to be executed efficiently, but not so big that they cause load balancing problems. You don't have to worry about which loop to parallelize, because you're turning the nested loops into a single stream of tasks that can all be executed in parallel by the parallel backend. \section{Another example} Now let's imagine that the ``sim'' function returns a object that includes an error estimate. We want to return the result with the lowest error for each value of b, along with the arguments that generated that result. Here's how that might be done with nested \texttt{for} loops: <>= sim <- function(a, b) { x <- 10 * a + b err <- abs(a - b) list(x=x, err=err) } @ <>= n <- length(bvec) d <- data.frame(x=numeric(n), a=numeric(n), b=numeric(n), err=numeric(n)) for (j in 1:n) { err <- Inf best <- NULL for (i in 1:length(avec)) { obj <- sim(avec[i], bvec[j]) if (obj$err < err) { err <- obj$err best <- data.frame(x=obj$x, a=avec[i], b=bvec[j], err=obj$err) } } d[j,] <- best } d @ This is also quite simple to convert to \texttt{foreach}. We just need to supply the appropriate ``.combine'' functions. For the outer \texttt{foreach}, we can use the standard ``rbind'' function which can be used with data frames. For the inner \texttt{foreach}, we write a function that compares two data frames, each with a single row, returning the one with a smaller error estimate: <>= comb <- function(d1, d2) if (d1$err < d2$err) d1 else d2 @ Now we specify it with the ``.combine'' argument to the inner \texttt{foreach}: <>= opts <- list(chunkSize=2) d <- foreach(b=bvec, .combine='rbind', .options.nws=opts) %:% foreach(a=avec, .combine='comb', .inorder=FALSE) %dopar% { obj <- sim(a, b) data.frame(x=obj$x, a=a, b=b, err=obj$err) } d @ Note that since the order of the arguments to the ``comb'' function is unimportant, I have set the ``.inorder'' argument to \texttt{FALSE}. This reduces the number of results that need to be saved on the master before they can be combined in case they are returned out of order. But even with niceties such as parallelization, backend-specific options, and the ``.inorder'' argument, the nested \texttt{foreach} version is quite readable. But what if we would like to return the indices into ``avec'' and ``bvec'', rather than the data itself? A simple way to do that is to create a couple of counting iterators that we pass to the \texttt{foreach} functions:\footnote{It is very important that the call to icount is passed as the argument to \texttt{foreach}. If the iterators were created and passed to \texttt{foreach} using a variable, for example, we would not get the desired effect. This is not a bug or a limitation, but an important aspect of the design of the \texttt{foreach} function.} <>= library(iterators) opts <- list(chunkSize=2) d <- foreach(b=bvec, j=icount(), .combine='rbind', .options.nws=opts) %:% foreach(a=avec, i=icount(), .combine='comb', .inorder=FALSE) %dopar% { obj <- sim(a, b) data.frame(x=obj$x, i=i, j=j, err=obj$err) } d @ These new iterators are infinite iterators, but that's no problem since we have ``bvec'' and ``avec'' to control the number of iterations of the loops. Making them infinite means we don't have to keep them in sync with ``bvec'' and ``avec''. \section{Conclusion} Nested \texttt{for} loops are a common construct, and are often the most time consuming part of R scripts, so they are prime candidates for parallelization. The usual approach is to parallelize the outer loop, but as we've seen, that can lead to suboptimal performance due to an imbalance between the size and the number of tasks. By using the \texttt{\%:\%} operator with \texttt{foreach}, and by using chunking techniques, many of these problems can be overcome. The resulting code is often clearer and more readable than the original R code, since \texttt{foreach} was designed to deal with exactly this kind of problem. \end{document} foreach/vignettes/foreach.Rnw0000644000176200001440000004775711741344141016014 0ustar liggesusers% \VignetteIndexEntry{foreach Manual} % \VignetteDepends{foreach} % \VignettePackage{foreach} \documentclass[12pt]{article} \usepackage{amsmath} \usepackage[pdftex]{graphicx} \usepackage{color} \usepackage{xspace} \usepackage{fancyvrb} \usepackage{fancyhdr} \usepackage[ colorlinks=true, linkcolor=blue, citecolor=blue, urlcolor=blue] {hyperref} \usepackage{lscape} \usepackage{Sweave} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % define new colors for use \definecolor{darkgreen}{rgb}{0,0.6,0} \definecolor{darkred}{rgb}{0.6,0.0,0} \definecolor{lightbrown}{rgb}{1,0.9,0.8} \definecolor{brown}{rgb}{0.6,0.3,0.3} \definecolor{darkblue}{rgb}{0,0,0.8} \definecolor{darkmagenta}{rgb}{0.5,0,0.5} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \newcommand{\bld}[1]{\mbox{\boldmath $#1$}} \newcommand{\shell}[1]{\mbox{$#1$}} \renewcommand{\vec}[1]{\mbox{\bf {#1}}} \newcommand{\ReallySmallSpacing}{\renewcommand{\baselinestretch}{.6}\Large\normalsize} \newcommand{\SmallSpacing}{\renewcommand{\baselinestretch}{1.1}\Large\normalsize} \newcommand{\halfs}{\frac{1}{2}} \setlength{\oddsidemargin}{-.25 truein} \setlength{\evensidemargin}{0truein} \setlength{\topmargin}{-0.2truein} \setlength{\textwidth}{7 truein} \setlength{\textheight}{8.5 truein} \setlength{\parindent}{0.20truein} \setlength{\parskip}{0.10truein} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \pagestyle{fancy} \lhead{} \chead{Using The {\tt foreach} Package} \rhead{} \lfoot{} \cfoot{} \rfoot{\thepage} \renewcommand{\headrulewidth}{1pt} \renewcommand{\footrulewidth}{1pt} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \title{Using The {\tt foreach} Package} \author{Steve Weston \\ doc@revolutionanalytics.com} \begin{document} \maketitle \thispagestyle{empty} \section{Introduction} One of R's most useful features is its interactive interpreter. This makes it very easy to learn and experiment with R. It allows you to use R like a calculator to perform arithmetic operations, display data sets, generate plots, and create models. Before too long, new R users will find a need to perform some operation repeatedly. Perhaps they want to run a simulation repeatedly in order to find the distribution of the results. Perhaps they need to execute a function with a variety a different arguments passed to it. Or maybe they need to create a model for many different data sets. Repeated executions can be done manually, but it becomes quite tedious to execute repeated operations, even with the use of command line editing. Fortunately, R is much more than an interactive calculator. It has its own built-in language that is intended to automate tedious tasks, such as repeatedly executing R calculations. R comes with various looping constructs that solve this problem. The \texttt{for} loop is one of the more common looping constructs, but the \texttt{repeat} and \texttt{while} statements are also quite useful. In addition, there is the family of ``apply'' functions, which includes \texttt{apply}, \texttt{lapply}, \texttt{sapply}, \texttt{eapply}, \texttt{mapply}, \texttt{rapply}, and others. The \texttt{foreach} package provides a new looping construct for executing R code repeatedly. With the bewildering variety of existing looping constructs, you may doubt that there is a need for yet another construct. The main reason for using the \texttt{foreach} package is that it supports {\em parallel execution}, that is, it can execute those repeated operations on multiple processors/cores on your computer, or on multiple nodes of a cluster. If each operation takes over a minute, and you want to execute it hundreds of times, the overall runtime can take hours. But using \texttt{foreach}, that operation can be executed in parallel on hundreds of processors on a cluster, reducing the execution time back down to minutes. But parallel execution is not the only reason for using the \texttt{foreach} package. There are other reasons that you might choose to use it to execute quick executing operations, as we will see later in the document. \section{Getting Started} Let's take a look at a simple example use of the \texttt{foreach} package. Assuming that you have the \texttt{foreach} package installed, you first need to load it: <>= library(foreach) @ Note that all of the packages that \texttt{foreach} depends on will be loaded as well. Now I can use \texttt{foreach} to execute the \texttt{sqrt} function repeatedly, passing it the values 1 through 3, and returning the results in a list, called \texttt{x}\footnote{Of course, \texttt{sqrt} is a vectorized function, so you would never really do this. But later, we'll see how to take advantage of vectorized functions with \texttt{foreach}.}: <>= x <- foreach(i=1:3) %do% sqrt(i) x @ This is a bit odd looking, because it looks vaguely like a \texttt{for} loop, but is implemented using a binary operator, called \texttt{\%do\%}. Also, unlike a \texttt{for} loop, it returns a value. This is quite important. The purpose of this statement is to compute the list of results. Generally, \texttt{foreach} with \texttt{\%do\%} is used to execute an R expression repeatedly, and return the results in some data structure or object, which is a list by default. You will note in the previous example that we used a variable \texttt{i} as the argument to the \texttt{sqrt} function. We specified the values of the \texttt{i} variable using a named argument to the \texttt{foreach} function. We could have called that variable anything we wanted, for example, \texttt{a}, or \texttt{b}. We could also specify other variables to be used in the R expression, as in the following example: <>= x <- foreach(a=1:3, b=rep(10, 3)) %do% (a + b) x @ Note that parentheses are needed here. We can also use braces: <>= x <- foreach(a=1:3, b=rep(10, 3)) %do% { a + b } x @ We call \texttt{a} and \texttt{b} the {\em iteration variables}, since those are the variables that are changing during the multiple executions. Note that we are iterating over them in parallel, that is, they are both changing at the same time. In this case, the same number of values are being specified for both iteration variables, but that need not be the case. If we only supplied two values for \texttt{b}, the result would be a list of length two, even if we specified a thousand values for \texttt{a}: <>= x <- foreach(a=1:1000, b=rep(10, 2)) %do% { a + b } x @ Note that you can put multiple statements between the braces, and you can use assignment statements to save intermediate values of computations. However, if you use an assignment as a way of communicating between the different executions of your loop, then your code won't work correctly in parallel, which we will discuss later. \section{The \texttt{.combine} Option} So far, all of our examples have returned a list of results. This is a good default, since a list can contain any R object. But sometimes we'd like the results to be returned in a numeric vector, for example. This can be done by using the \texttt{.combine} option to \texttt{foreach}: <>= x <- foreach(i=1:3, .combine='c') %do% exp(i) x @ The result is returned as a numeric vector, because the standard R \texttt{c} function is being used to concatenate all the results. Since the \texttt{exp} function returns numeric values, concatenating them with the \texttt{c} function will result in a numeric vector of length three. What if the R expression returns a vector, and we want to combine those vectors into a matrix? One way to do that is with the \texttt{cbind} function: <>= x <- foreach(i=1:4, .combine='cbind') %do% rnorm(4) x @ This generates four vectors of four random numbers, and combines them by column to produce a 4 by 4 matrix. We can also use the \texttt{"+"} or \texttt{"*"} functions to combine our results: <>= x <- foreach(i=1:4, .combine='+') %do% rnorm(4) x @ You can also specify a user-written function to combine the results. Here's an example that throws away the results: <>= cfun <- function(a, b) NULL x <- foreach(i=1:4, .combine='cfun') %do% rnorm(4) x @ Note that this \texttt{cfun} function takes two arguments. The \texttt{foreach} function knows that the functions \texttt{c}, \texttt{cbind}, and \texttt{rbind} take many arguments, and will call them with up to 100 arguments (by default) in order to improve performance. But if any other function is specified (such as \texttt{"+"}), it assumes that it only takes two arguments. If the function does allow many arguments, you can specify that using the \texttt{.multicombine} argument: <>= cfun <- function(...) NULL x <- foreach(i=1:4, .combine='cfun', .multicombine=TRUE) %do% rnorm(4) x @ If you want the combine function to be called with no more than 10 arguments, you can specify that using the \texttt{.maxcombine} option: <>= cfun <- function(...) NULL x <- foreach(i=1:4, .combine='cfun', .multicombine=TRUE, .maxcombine=10) %do% rnorm(4) x @ The \texttt{.inorder} option is used to specify whether the order in which the arguments are combined is important. The default value is \texttt{TRUE}, but if the combine function is \texttt{"+"}, you could specify \texttt{.inorder} to be \texttt{FALSE}. Actually, this option is important only when executing the R expression in parallel, since results are always computed in order when running sequentially. This is not necessarily true when executing in parallel, however. In fact, if the expressions take very different lengths of time to execute, the results could be returned in any order. Here's a contrived example, that executes the tasks in parallel to demonstrate the difference. The example uses the \texttt{Sys.sleep} function to cause the earlier tasks to take longer to execute: <>= foreach(i=4:1, .combine='c') %dopar% { Sys.sleep(3 * i) i } foreach(i=4:1, .combine='c', .inorder=FALSE) %dopar% { Sys.sleep(3 * i) i } @ The results of the first of these two examples is guaranteed to be the vector c(4, 3, 2, 1). The second example will return the same values, but they will probably be in a different order. \section{Iterators} The values for the iteration variables don't have to be specified with only vectors or lists. They can be specified with an {\em iterator}, many of which come with the \texttt{iterators} package. An iterator is an abstract source of data. A vector isn't itself an iterator, but the \texttt{foreach} function automatically creates an iterator from a vector, list, matrix, or data frame, for example. You can also create an iterator from a file or a data base query, which are natural sources of data. The \texttt{iterators} package supplies a function called \texttt{irnorm} which can return a specified number of random numbers for each time it is called. For example: <>= library(iterators) x <- foreach(a=irnorm(4, count=4), .combine='cbind') %do% a x @ This becomes useful when dealing with large amounts of data. Iterators allow the data to be generated on-the-fly, as it is needed by your operations, rather than requiring all of the data to be generated at the beginning. For example, let's say that we want to sum together a thousand random vectors: <>= set.seed(123) x <- foreach(a=irnorm(4, count=1000), .combine='+') %do% a x @ This uses very little memory, since it is equivalent to the following \texttt{while} loop: <>= set.seed(123) x <- numeric(4) i <- 0 while (i < 1000) { x <- x + rnorm(4) i <- i + 1 } x @ This could have been done using the \texttt{icount} function, which generates the values from one to 1000: <>= set.seed(123) x <- foreach(icount(1000), .combine='+') %do% rnorm(4) x @ but sometimes it's preferable to generate the actual data with the iterator (as we'll see later when we execute in parallel). In addition to introducing the \texttt{icount} function from the \texttt{iterators} package, the last example also used an unnamed argument to the \texttt{foreach} function. This can be useful when we're not intending to generate variable values, but only controlling the number of times that the R expression is executed. There's a lot more that I could say about iterators, but for now, let's move on to parallel execution. \section{Parallel Execution} Although \texttt{foreach} can be a useful construct in its own right, the real point of the \texttt{foreach} package is to do parallel computing. To make any of the previous examples run in parallel, all you have to do is to replace \texttt{\%do\%} with \texttt{\%dopar\%}. But for the kinds of quick running operations that we've been doing, there wouldn't be much point to executing them in parallel. Running many tiny tasks in parallel will usually take more time to execute than running them sequentially, and if it already runs fast, there's no motivation to make it run faster anyway. But if the operation that we're executing in parallel takes a minute or longer, there starts to be some motivation. \subsection{Parallel Random Forest} Let's take random forest as an example of an operation that can take a while to execute. Let's say our inputs are the matrix \texttt{x}, and the factor \texttt{y}: <>= x <- matrix(runif(500), 100) y <- gl(2, 50) @ We've already loaded the \texttt{foreach} package, but we'll also need to load the \texttt{randomForest} package: <>= library(randomForest) @ If we want want to create a random forest model with a 1000 trees, and our computer has four cores in it, we can split up the problem into four pieces by executing the \texttt{randomForest} function four times, with the \texttt{ntree} argument set to 250. Of course, we have to combine the resulting \texttt{randomForest} objects, but the \texttt{randomForest} package comes with a function called \texttt{combine} that does just that. Let's do that, but first, we'll do the work sequentially: <>= rf <- foreach(ntree=rep(250, 4), .combine=combine) %do% randomForest(x, y, ntree=ntree) rf @ To run this in parallel, we need to change \texttt{\%do\%}, but we also need to use another \texttt{foreach} option called \texttt{.packages} to tell the \texttt{foreach} package that the R expression needs to have the \texttt{randomForest} package loaded in order to execute successfully. Here's the parallel version: <>= rf <- foreach(ntree=rep(250, 4), .combine=combine, .packages='randomForest') %dopar% randomForest(x, y, ntree=ntree) rf @ If you've done any parallel computing, particularly on a cluster, you may wonder why I didn't have to do anything special to handle \texttt{x} and \texttt{y}. The reason is that the \texttt{\%dopar\%} function noticed that those variables were referenced, and that they were defined in the current environment. In that case \text{\%dopar\%} will automatically export them to the parallel execution workers once, and use them for all of the expression evaluations for that \texttt{foreach} execution. That is true for functions that are defined in the current environment as well, but in this case, the function is defined in a package, so we had to specify the package to load with the \texttt{.packages} option instead. \subsection{Parallel Apply} Now let's take a look at how to make a parallel version of the standard R \texttt{apply} function. The \texttt{apply} function is written in R, and although it's only about 100 lines of code, it's a bit difficult to understand on a first reading. However, it all really comes down two \texttt{for} loops, the slightly more complicated of which looks like: <>= applyKernel <- function(newX, FUN, d2, d.call, dn.call=NULL, ...) { ans <- vector("list", d2) for(i in 1:d2) { tmp <- FUN(array(newX[,i], d.call, dn.call), ...) if(!is.null(tmp)) ans[[i]] <- tmp } ans } applyKernel(matrix(1:16, 4), mean, 4, 4) @ I've turned this into a function, because otherwise, R will complain that I'm using ``...'' in an invalid context. This could be executed using \texttt{foreach} as follows: <>= applyKernel <- function(newX, FUN, d2, d.call, dn.call=NULL, ...) { foreach(i=1:d2) %dopar% FUN(array(newX[,i], d.call, dn.call), ...) } applyKernel(matrix(1:16, 4), mean, 4, 4) @ But this approach will cause the entire \texttt{newX} array to be sent to each of the parallel execution workers. Since each task needs only one column of the array, we'd like to avoid this extra data communication. One way to solve this problem is to use an iterator that iterates over the matrix by column: <>= applyKernel <- function(newX, FUN, d2, d.call, dn.call=NULL, ...) { foreach(x=iter(newX, by='col')) %dopar% FUN(array(x, d.call, dn.call), ...) } applyKernel(matrix(1:16, 4), mean, 4, 4) @ Now we're only sending any given column of the matrix to one parallel execution worker. But it would be even more efficient if we sent the matrix in bigger chunks. To do that, we use a function called \texttt{iblkcol} that returns an iterator that will return multiple columns of the original matrix. That means that the R expression will need to execute the user's function once for every column in its submatrix. <>= iblkcol <- function(a, chunks) { n <- ncol(a) i <- 1 nextElem <- function() { if (chunks <= 0 || n <= 0) stop('StopIteration') m <- ceiling(n / chunks) r <- seq(i, length=m) i <<- i + m n <<- n - m chunks <<- chunks - 1 a[,r, drop=FALSE] } structure(list(nextElem=nextElem), class=c('iblkcol', 'iter')) } nextElem.iblkcol <- function(obj) obj$nextElem() @ <>= applyKernel <- function(newX, FUN, d2, d.call, dn.call=NULL, ...) { foreach(x=iblkcol(newX, 3), .combine='c', .packages='foreach') %dopar% { foreach(i=1:ncol(x)) %do% FUN(array(x[,i], d.call, dn.call), ...) } } applyKernel(matrix(1:16, 4), mean, 4, 4) @ Note the use of the \texttt{\%do\%} inside the \texttt{\%dopar\%} to call the function on the columns of the submatrix \texttt{x}. Now that we're using \texttt{\%do\%} again, it makes sense for the iterator to be an index into the matrix \texttt{x}, since \texttt{\%do\%} doesn't need to copy \texttt{x} the way that \texttt{\%dopar\%} does. \section{List Comprehensions} If you're familar with the Python programming language, it may have occurred to you that the \texttt{foreach} package provides something that is not too different from Python's {\em list comprehensions}. In fact, the \texttt{foreach} package also includes a function called \texttt{when} which can prevent some of the evaluations from happening, very much like the ``if'' clause in Python's list comprehensions. For example, you could filter out negative values of an iterator using \texttt{when} as follows: <>= x <- foreach(a=irnorm(1, count=10), .combine='c') %:% when(a >= 0) %do% sqrt(a) x @ I won't say much on this topic, but I can't help showing how \texttt{foreach} with \texttt{when} can be used to write a simple quick sort function, in the classic Haskell fashion: <>= qsort <- function(x) { n <- length(x) if (n == 0) { x } else { p <- sample(n, 1) smaller <- foreach(y=x[-p], .combine=c) %:% when(y <= x[p]) %do% y larger <- foreach(y=x[-p], .combine=c) %:% when(y > x[p]) %do% y c(qsort(smaller), x[p], qsort(larger)) } } qsort(runif(12)) @ Not that I recommend this over the standard R \texttt{sort} function. But it's a pretty interesting example use of \texttt{foreach}. \section{Conclusion} Much of parallel computing comes to doing three things: splitting the problem into pieces, executing the pieces in parallel, and combining the results back together. Using the \texttt{foreach} package, the iterators help you to split the problem into pieces, the \texttt{\%dopar\%} function executes the pieces in parallel, and the specified \texttt{.combine} function puts the results back together. We've demonstrated how simple things can be done in parallel quite easily using the \texttt{foreach} package, and given some ideas about how more complex problems can be solved. But it's a fairly new package, and we will continue to work on ways of making it a more powerful system for doing parallel computing. \end{document} foreach/tests/0000755000176200001440000000000012152072757013033 5ustar liggesusersforeach/tests/doRUnit.R0000644000176200001440000000626011741344141014536 0ustar liggesusers## unit tests will not be done if RUnit is not available if(require("RUnit", quietly=TRUE)) { ## --- Setup --- pkg <- "foreach" # <-- Change to package name! if(Sys.getenv("RCMDCHECK") == "FALSE") { ## Path to unit tests for standalone running under Makefile (not R CMD check) ## PKG/tests/../inst/unitTests path <- file.path(getwd(), "..", "inst", "unitTests") } else { ## Path to unit tests for R CMD check ## PKG.Rcheck/tests/../PKG/unitTests path <- system.file(package=pkg, "unitTests") } cat("\nRunning unit tests\n") print(list(pkg=pkg, getwd=getwd(), pathToUnitTests=path)) library(package=pkg, character.only=TRUE) ################################################################ ## BEGIN PACKAGE SPECIFIC CONFIGURATION # ################################################################ if ("doParallel" %in% row.names(installed.packages())){ library(doParallel) w <- makeCluster(2) .Last <- function(){ cat('shutting down cluster...\n') stopCluster(w) cat('shutdown complete\n') } registerDoParallel(cl=w) } else if ("doMC" %in% row.names(installed.packages())) { library(doMC) registerDoMC(2) } else { # default to sequential registerDoSEQ() } ################################################################ ## END PACKAGE SPECIFIC CONFIGURATION # ################################################################ ## If desired, load the name space to allow testing of private functions ## if (is.element(pkg, loadedNamespaces())) ## attach(loadNamespace(pkg), name=paste("namespace", pkg, sep=":"), pos=3) ## ## or simply call PKG:::myPrivateFunction() in tests ## --- Testing --- ## Define tests testSuite <- defineTestSuite(name=paste(pkg, "unit testing"), dirs=path, testFileRegexp = "^.+Test\\.R$") ## Run tests <- runTestSuite(testSuite) ## Default report name pathReport <- file.path(path, "report") ## Report to stdout and text files cat("------------------- UNIT TEST SUMMARY ---------------------\n\n") printTextProtocol(tests, showDetails=FALSE) printTextProtocol(tests, showDetails=FALSE, fileName=paste(pathReport, "Summary.txt", sep="")) printTextProtocol(tests, showDetails=TRUE, fileName=paste(pathReport, ".txt", sep="")) ## Report to HTML file printHTMLProtocol(tests, fileName=paste(pathReport, ".html", sep="")) # printHTMLProtocol(tests, fileName=file.path(dirname(dirname(getwd())),pkg,"gsDesign-RUnit-Test-Summary.html")) #paste(pathReport, ".html", sep="")) ## Return stop() to cause R CMD check stop in case of ## - failures i.e. FALSE to unit tests or ## - errors i.e. R errors tmp <- getErrors(tests) if(tmp$nFail > 0 | tmp$nErr > 0) { stop(paste("\n\nunit testing failed (#test failures: ", tmp$nFail, ", #R errors: ", tmp$nErr, ")\n\n", sep="")) } } else { warning("cannot run unit tests -- package RUnit is not available") } foreach/man/0000755000176200001440000000000012152072757012444 5ustar liggesusersforeach/man/setDoSeq.Rd0000644000176200001440000000131311716316520014452 0ustar liggesusers\name{setDoSeq} \alias{setDoSeq} \title{setDoSeq} \description{ The \code{setDoSeq} function is used to register a sequential backend with the foreach package. This isn't normally executed by the user. Instead, packages that provide a sequential backend provide a function named \code{registerDoSeq} that calls \code{setDoSeq} using the appropriate arguments. } \usage{ setDoSeq(fun, data=NULL, info=function(data, item) NULL) } \arguments{ \item{fun}{A function that implements the functionality of \code{\%dopar\%}.} \item{data}{Data to be passed to the registered function.} \item{info}{Function that retrieves information about the backend.} } \seealso{ \code{\link{\%dopar\%}} } \keyword{utilities} foreach/man/setDoPar.Rd0000644000176200001440000000130411472542406014447 0ustar liggesusers\name{setDoPar} \alias{setDoPar} \title{setDoPar} \description{ The \code{setDoPar} function is used to register a parallel backend with the foreach package. This isn't normally executed by the user. Instead, packages that provide a parallel backend provide a function named \code{registerDoPar} that calls \code{setDoPar} using the appropriate arguments. } \usage{ setDoPar(fun, data=NULL, info=function(data, item) NULL) } \arguments{ \item{fun}{A function that implements the functionality of \code{\%dopar\%}.} \item{data}{Data to passed to the registered function.} \item{info}{Function that retrieves information about the backend.} } \seealso{ \code{\link{\%dopar\%}} } \keyword{utilities} foreach/man/registerDoSEQ.Rd0000644000176200001440000000101111472542406015401 0ustar liggesusers\name{registerDoSEQ} \alias{registerDoSEQ} \title{registerDoSEQ} \description{ The \code{registerDoSEQ} function is used to explicitly register a sequential parallel backend with the foreach package. This will prevent a warning message from being issued if the \code{\%dopar\%} function is called and no parallel backend has been registered. } \usage{ registerDoSEQ() } \seealso{ \code{\link[doSNOW]{registerDoSNOW}} } \examples{ # specify that \%dopar\% should run sequentially registerDoSEQ() } \keyword{utilities} foreach/man/getDoSeqWorkers.Rd0000644000176200001440000000224511716316520016020 0ustar liggesusers\name{getDoSeqWorkers} \alias{getDoSeqWorkers} \alias{getDoSeqRegistered} \alias{getDoSeqName} \alias{getDoSeqVersion} \title{Functions Providing Information on the doSeq Backend} \description{ The \code{getDoSeqWorkers} function returns the number of execution workers there are in the currently registered doSeq backend. A \code{1} is returned by default. The \code{getDoSeqRegistered} function returns TRUE if a doSeq backend has been registered, otherwise FALSE. The \code{getDoSeqName} function returns the name of the currently registered doSeq backend. A \code{NULL} is returned if no backend is registered. The \code{getDoSeqVersion} function returns the version of the currently registered doSeq backend. A \code{NULL} is returned if no backend is registered. } \usage{ getDoSeqWorkers() getDoSeqRegistered() getDoSeqName() getDoSeqVersion() } \examples{ cat(sprintf('\%s backend is registered\n', if(getDoSeqRegistered()) 'A' else 'No')) cat(sprintf('Running with \%d worker(s)\n', getDoSeqWorkers())) (name <- getDoSeqName()) (ver <- getDoSeqVersion()) if (getDoSeqRegistered()) cat(sprintf('Currently using \%s [\%s]\n', name, ver)) } \keyword{utilities} foreach/man/getDoParWorkers.Rd0000644000176200001440000000237511472542406016021 0ustar liggesusers\name{getDoParWorkers} \alias{getDoParWorkers} \alias{getDoParRegistered} \alias{getDoParName} \alias{getDoParVersion} \title{Functions Providing Information on the doPar Backend} \description{ The \code{getDoParWorkers} function returns the number of execution workers there are in the currently registered doPar backend. It can be useful when determining how to split up the work to be executed in parallel. A \code{1} is returned by default. The \code{getDoParRegistered} function returns TRUE if a doPar backend has been registered, otherwise FALSE. The \code{getDoParName} function returns the name of the currently registered doPar backend. A \code{NULL} is returned if no backend is registered. The \code{getDoParVersion} function returns the version of the currently registered doPar backend. A \code{NULL} is returned if no backend is registered. } \usage{ getDoParWorkers() getDoParRegistered() getDoParName() getDoParVersion() } \examples{ cat(sprintf('\%s backend is registered\n', if(getDoParRegistered()) 'A' else 'No')) cat(sprintf('Running with \%d worker(s)\n', getDoParWorkers())) (name <- getDoParName()) (ver <- getDoParVersion()) if (getDoParRegistered()) cat(sprintf('Currently using \%s [\%s]\n', name, ver)) } \keyword{utilities} foreach/man/foreach.Rd0000644000176200001440000001671611741344141014345 0ustar liggesusers\name{foreach} \alias{foreach} \alias{when} \alias{times} \alias{\%:\%} \alias{\%do\%} \alias{\%dopar\%} \title{foreach} \description{ \code{\%do\%} and \code{\%dopar\%} are binary operators that operate on a \code{foreach} object and an \code{R} expression. The expression, \code{ex}, is evaluated multiple times in an environment that is created by the \code{foreach} object, and that environment is modified for each evaluation as specified by the \code{foreach} object. \code{\%do\%} evaluates the expression sequentially, while \code{\%dopar\%} evalutes it in parallel. The results of evaluating \code{ex} are returned as a list by default, but this can be modified by means of the \code{.combine} argument. } \usage{ foreach(..., .combine, .init, .final=NULL, .inorder=TRUE, .multicombine=FALSE, .maxcombine=if (.multicombine) 100 else 2, .errorhandling=c('stop', 'remove', 'pass'), .packages=NULL, .export=NULL, .noexport=NULL, .verbose=FALSE) when(cond) e1 \%:\% e2 obj \%do\% ex obj \%dopar\% ex times(n) } \arguments{ \item{\dots}{one or more arguments that control how \code{ex} is evaluated. Named arguments specify the name and values of variables to be defined in the evaluation environment. An unnamed argument can be used to specify the number of times that \code{ex} should be evaluated. At least one argument must be specified in order to define the number of times \code{ex} should be executed.} \item{.combine}{function that is used to process the tasks results as they generated. This can be specified as either a function or a non-empty character string naming the function. Specifying 'c' is useful for concatenating the results into a vector, for example. The values 'cbind' and 'rbind' can combine vectors into a matrix. The values '+' and '*' can be used to process numeric data. By default, the results are returned in a list.} \item{.init}{initial value to pass as the first argument of the \code{.combine} function. This should not be specified unless \code{.combine} is also specified.} \item{.final}{function of one argument that is called to return final result.} \item{.inorder}{logical flag indicating whether the \code{.combine} function requires the task results to be combined in the same order that they were submitted. If the order is not important, then it setting \code{.inorder} to \code{FALSE} can give improved performance. The default value is \code{TRUE}.} \item{.multicombine}{logical flag indicating whether the \code{.combine} function can accept more than two arguments. If an arbitrary \code{.combine} function is specified, by default, that function will always be called with two arguments. If it can take more than two arguments, then setting \code{.multicombine} to \code{TRUE} could improve the performance. The default value is \code{FALSE} unless the \code{.combine} function is \code{cbind}, \code{rbind}, or \code{c}, which are known to take more than two arguments.} \item{.maxcombine}{maximum number of arguments to pass to the combine function. This is only relevant if \code{.multicombine} is \code{TRUE}.} \item{.errorhandling}{specifies how a task evalution error should be handled. If the value is "stop", then execution will be stopped via the \code{stop} function if an error occurs. If the value is "remove", the result for that task will not be returned, or passed to the \code{.combine} function. If it is "pass", then the error object generated by task evaluation will be included with the rest of the results. It is assumed that the combine function (if specified) will be able to deal with the error object. The default value is "stop".} \item{.packages}{character vector of packages that the tasks depend on. If \code{ex} requires a \code{R} package to be loaded, this option can be used to load that package on each of the workers. Ignored when used with \code{\%do\%}.} \item{.export}{character vector of variables to export. This can be useful when accessing a variable that isn't defined in the current environment. The default value in \code{NULL}.} \item{.noexport}{character vector of variables to exclude from exporting. This can be useful to prevent variables from being exported that aren't actually needed, perhaps because the symbol is used in a model formula. The default value in \code{NULL}.} \item{.verbose}{logical flag enabling verbose messages. This can be very useful for trouble shooting.} \item{obj}{\code{foreach} object used to control the evaluation of \code{ex}.} \item{e1}{\code{foreach} object to merge.} \item{e2}{\code{foreach} object to merge.} \item{ex}{the \code{R} expression to evaluate.} \item{cond}{condition to evaluate.} \item{n}{number of times to evaluate the \code{R} expression.} } \details{ The \code{foreach} and \code{\%do\%}/\code{\%dopar\%} operators provide a looping construct that can be viewed as a hybrid of the standard \code{for} loop and \code{lapply} function. It looks similar to the \code{for} loop, and it evaluates an expression, rather than a function (as in \code{lapply}), but it's purpose is to return a value (a list, by default), rather than to cause side-effects. This faciliates parallelization, but looks more natural to people that prefer \code{for} loops to \code{lapply}. The \code{\%:\%} operator is the \emph{nesting} operator, used for creating nested foreach loops. Type \code{vignette("nested")} at the R prompt for more details. Parallel computation depends upon a \emph{parallel backend} that must be registered before performing the computation. The parallel backends available will be system-specific, but include \code{doParallel}, which uses R's built-in \pkg{parallel} package, \pkg{doMC}, which uses the \pkg{multicore} package, and \pkg{doSNOW}. Each parallel backend has a specific registration function, such as \code{registerDoParallel} or \code{registerDoSNOW}. The \code{times} function is a simple convenience function that calls \code{foreach}. It is useful for evaluating an \code{R} expression multiple times when there are no varying arguments. This can be convenient for resampling, for example. } \seealso{ \code{\link[iterators]{iter}} } \examples{ # equivalent to rnorm(3) times(3) \%do\% rnorm(1) # equivalent to lapply(1:3, sqrt) foreach(i=1:3) \%do\% sqrt(i) # equivalent to colMeans(m) m <- matrix(rnorm(9), 3, 3) foreach(i=1:ncol(m), .combine=c) \%do\% mean(m[,i]) # normalize the rows of a matrix in parallel, with parenthesis used to # force proper operator precedence # Need to register a parallel backend before this example will run # in parallel foreach(i=1:nrow(m), .combine=rbind) \%dopar\% (m[i,] / mean(m[i,])) # simple (and inefficient) parallel matrix multiply library(iterators) a <- matrix(1:16, 4, 4) b <- t(a) foreach(b=iter(b, by='col'), .combine=cbind) \%dopar\% (a \%*\% b) # split a data frame by row, and put them back together again without # changing anything d <- data.frame(x=1:10, y=rnorm(10)) s <- foreach(d=iter(d, by='row'), .combine=rbind) \%dopar\% d identical(s, d) # a quick sort function qsort <- function(x) { n <- length(x) if (n == 0) { x } else { p <- sample(n, 1) smaller <- foreach(y=x[-p], .combine=c) \%:\% when(y <= x[p]) \%do\% y larger <- foreach(y=x[-p], .combine=c) \%:\% when(y > x[p]) \%do\% y c(qsort(smaller), x[p], qsort(larger)) } } qsort(runif(12)) } \keyword{utilities} foreach/man/foreach-package.Rd0000644000176200001440000000264211472542406015734 0ustar liggesusers\name{foreach-package} \alias{foreach-package} \docType{package} \title{ The Foreach Package } \description{ The foreach package provides a new looping construct for executing R code repeatedly. The main reason for using the foreach package is that it supports parallel execution. The foreach package can be used with a variety of different parallel computing systems, include NetWorkSpaces and snow. In addition, foreach can be used with iterators, which allows the data to specified in a very flexible way. } \details{ Further information is available in the following help topics: \tabular{ll}{ \code{foreach} \tab Specify the variables to iterate over\cr \code{\%do\%} \tab Execute the R expression sequentially\cr \code{\%dopar\%} \tab Execute the R expression using the currently registered backend\cr } To see a tutorial introduction to the foreach package, use \code{vignette("foreach")}. To see a demo of foreach computing the sinc function, use \code{demo(sincSEQ)}. Some examples (in addition to those in the help pages) are included in the ``examples'' directory of the foreach package. To list the files in the examples directory, use \code{list.files(system.file("examples", package="foreach"))}. To run the bootstrap example, use \code{source(system.file("examples", "bootseq.R", package="foreach"))}. For a complete list of functions with individual help pages, use \code{library(help="foreach")}. } \keyword{package} foreach/man/foreach-ext.Rd0000644000176200001440000000231711472542406015140 0ustar liggesusers\name{foreach-ext} \alias{foreach-ext} \alias{makeAccum} \alias{accumulate} \alias{getexports} \alias{getResult} \alias{getErrorValue} \alias{getErrorIndex} \title{Foreach Extension Functions} \description{ These functions are used to write parallel backends for the \code{foreach} package. They should not be used from normal scripts or packages that use the \code{foreach} package. } \usage{ makeAccum(it) accumulate(obj, result, tag, ...) getexports(ex, e, env, good=character(0), bad=character(0)) getResult(obj, \dots) getErrorValue(obj, \dots) getErrorIndex(obj, \dots) } \arguments{ \item{it}{foreach iterator.} \item{ex}{call object to analyze.} \item{e}{local environment of the call object.} \item{env}{exported environment in which call object will be evaluated.} \item{good}{names of symbols that are being exported.} \item{bad}{names of symbols that are not being exported.} \item{obj}{foreach iterator object.} \item{result}{task result to accumulate.} \item{tag}{tag of task result to accumulate.} \item{\dots}{unused.} } \note{ These functions are likely to change in future versions of the \code{foreach} package. When they become more stable, they will be documented. } \keyword{utilities} foreach/inst/0000755000176200001440000000000012152141726012637 5ustar liggesusersforeach/inst/unitTests/0000755000176200001440000000000012152072757014650 5ustar liggesusersforeach/inst/unitTests/whenTest.R0000644000176200001440000000203611472542406016572 0ustar liggesuserstest01 <- function() { actual <- foreach(i=1:5) %:% when(i %% 2 == 1) %:% foreach(j=1:5) %:% when(j %% 2 == 1 && i != j) %do% c(i, j) expected <- list(list(c(1, 3), c(1, 5)), list(c(3, 1), c(3, 5)), list(c(5, 1), c(5, 3))) checkEquals(actual, expected) actual <- foreach(i=1:5, .combine='c') %:% when(i %% 2 == 1) %:% foreach(j=1:5) %:% when(j %% 2 == 1 && i != j) %do% c(i, j) expected <- list(c(1, 3), c(1, 5), c(3, 1), c(3, 5), c(5, 1), c(5, 3)) checkEquals(actual, expected) } test02 <- function() { qsort <- function(x) { n <- length(x) if (n == 0) { x } else { p <- sample(n, 1) smaller <- foreach(y=x[-p], .combine=c) %:% when(y <= x[p]) %do% y larger <- foreach(y=x[-p], .combine=c) %:% when(y > x[p]) %do% y c(qsort(smaller), x[p], qsort(larger)) } } x <- runif(100) a <- qsort(x) b <- sort(x) checkEquals(a, b) } foreach/inst/unitTests/stressTest.R0000644000176200001440000000042711472542406017156 0ustar liggesuserstest01 <- function() { m <- 1000 # number of vectors for (n in c(100, 1000, 4000, 10000)) { r <- foreach(x=irnorm(n, mean=1000, count=m), .combine='+') %dopar% sqrt(x) checkTrue(is.atomic(r)) checkTrue(inherits(r, 'numeric')) checkTrue(length(r) == n) } } foreach/inst/unitTests/runTestSuite.sh0000644000176200001440000000320211741344141017647 0ustar liggesusers#!/bin/sh LOGFILE=test.log R --vanilla --slave > ${LOGFILE} 2>&1 <<'EOF' library(foreach) library(RUnit) verbose <- as.logical(Sys.getenv('FOREACH_VERBOSE', 'FALSE')) method <- Sys.getenv('FOREACH_BACKEND', 'SEQ') if (method == 'SNOW') { cat('** Using SNOW backend\n') library(doSNOW) cl <- makeSOCKcluster(3) .Last <- function() { cat('shutting down SOCK cluster...\n') stopCluster(cl) cat('shutdown complete\n') } registerDoSNOW(cl) } else if (method == 'NWS') { cat('** Using NWS backend\n') library(doNWS) registerDoNWS() } else if (method == 'MC') { cat('** Using multicore backend\n') library(doMC) registerDoMC() } else if (method == 'SEQ') { cat('** Using sequential backend\n') registerDoSEQ() } else { stop('illegal backend specified: ', method) } options(warn=1) options(showWarnCalls=TRUE) cat('Starting test at', date(), '\n') cat(sprintf('doPar backend name: %s, version: %s\n', getDoParName(), getDoParVersion())) cat(sprintf('Running with %d worker(s)\n', getDoParWorkers())) tests <- c('foreachTest.R', 'errorTest.R', 'combineTest.R', 'iteratorTest.R', 'loadFactorTest.R', 'nestedTest.R', 'packagesTest.R', 'mergeTest.R', 'whenTest.R', 'stressTest.R') errcase <- list() for (f in tests) { cat('\nRunning test file:', f, '\n') t <- runTestFile(f) e <- getErrors(t) if (e$nErr + e$nFail > 0) { errcase <- c(errcase, t) print(t) } } if (length(errcase) == 0) { cat('*** Ran all tests successfully ***\n') } else { cat('!!! Encountered', length(errcase), 'problems !!!\n') for (t in errcase) { print(t) } } cat('Finished test at', date(), '\n') EOF foreach/inst/unitTests/packagesTest.R0000644000176200001440000000065711472542406017416 0ustar liggesusers# Try loading thye package splines and running a function from it. test01 <- function() { # First unload the package if it is already loaded. # eachWorker(getSleigh(), # function() { # pkg <- "package:splines" # if(pkg %in% search()) detach(pkg)}) d <- foreach(1:10, .packages='splines', .combine='c') %dopar% xyVector(c(1:3),c(4:6))[[1]] checkTrue(all(c(1:3)==d)) } foreach/inst/unitTests/nestedTest.R0000644000176200001440000000461011472542406017113 0ustar liggesusers# Test nesting of "%do% and %dopar% in 01, 02, 03, and 04. test01 <- function() { y <- foreach(j=seq(0,90,by=10), .combine='c', .packages='foreach') %do% { foreach(k=seq(1,10), .combine='c') %do% { (j+k) } } checkEquals(y,1:100) } test02 <- function() { y <- foreach(j=seq(0,90,by=10), .combine='c', .packages='foreach') %do% { foreach(k=seq(1,10), .combine='c') %dopar% { (j+k) } } checkEquals(y,1:100) } test03 <- function() { y <- foreach(j=seq(0,90,by=10), .combine='c', .packages='foreach') %dopar% { foreach(k=seq(1,10), .combine='c') %do% { (j+k) } } checkEquals(y,1:100) } test04 <- function() { y <- foreach(j=seq(0,90,by=10), .combine='c', .packages='foreach') %dopar% { foreach(k=seq(1,10), .combine='c') %dopar% { (j+k) } } checkEquals(y,1:100) } # test05 <- function() { # s <- getSleigh() # y <- eachWorker(s, eo=list(closure=TRUE), # function() { # library('foreach') # foreach(j=seq(0,90,by=10), .combine='c') %do% { # foreach(k=seq(1,10), .combine='c') %do% { # (j+k) # } # } # }) # wc <- workerCount(s) # checkEquals(length(y), wc) # foreach(i=1:wc) %do% checkEquals(y[[i]],1:100) # } # test06 <- function() { # s <- getSleigh() # y <- eachWorker(s, eo=list(closure=TRUE), # function() { # library('foreach') # foreach(j=seq(0,90,by=10), .combine='c') %do% { # foreach(k=seq(1,10), .combine='c') %dopar% { # (j+k) # } # } # }) # wc <- workerCount(s) # checkEquals(length(y), wc) # foreach(i=1:wc) %do% checkEquals(y[[i]],1:100) # } # test07 <- function() { # s <- getSleigh() # y <- eachWorker(s, eo=list(closure=TRUE), # function() { # library('foreach') # foreach(j=seq(0,90,by=10), .combine='c', .packages='foreach') %dopar% { # foreach(k=seq(1,10), .combine='c') %do% { # (j+k) # } # } # }) # wc <- workerCount(s) # checkEquals(length(y), wc) # foreach(i=1:wc) %do% checkEquals(y[[i]],1:100) # } foreach/inst/unitTests/mergeTest.R0000644000176200001440000000260311472542406016730 0ustar liggesuserstest01 <- function() { f <- foreach(i=1:3, .packages='foo') %:% foreach(j=1:3, .packages='bar') checkEquals(sort(f$packages), c('bar', 'foo')) f <- foreach(i=1:3, .packages='foo') %:% foreach(j=1:3, .packages=c('bar', 'foo')) checkEquals(sort(f$packages), c('bar', 'foo')) f <- foreach(i=1:3, .packages='foo') %:% foreach(j=1:3, .packages=c('bar', 'baz')) checkEquals(sort(f$packages), c('bar', 'baz', 'foo')) f <- foreach(i=1:3, .packages='foo') %:% foreach(j=1:3) checkEquals(sort(f$packages), c('foo')) } test02 <- function() { f <- foreach(i=1:3, .export='foo') %:% foreach(j=1:3, .export='bar') checkEquals(sort(f$export), c('bar', 'foo')) f <- foreach(i=1:3, .export='foo') %:% foreach(j=1:3, .export=c('bar', 'foo')) checkEquals(sort(f$export), c('bar', 'foo')) f <- foreach(i=1:3, .export='foo') %:% foreach(j=1:3, .export=c('bar', 'baz')) checkEquals(sort(f$export), c('bar', 'baz', 'foo')) f <- foreach(i=1:3, .export='foo') %:% foreach(j=1:3) checkEquals(sort(f$export), c('foo')) f <- foreach(i=1:3, .noexport='foo') %:% foreach(j=1:3, .noexport=c('bar', 'foo')) checkEquals(sort(f$noexport), c('bar', 'foo')) f <- foreach(i=1:3, .noexport='foo') %:% foreach(j=1:3, .noexport=c('bar', 'baz')) checkEquals(sort(f$noexport), c('bar', 'baz', 'foo')) f <- foreach(i=1:3, .noexport='foo') %:% foreach(j=1:3) checkEquals(sort(f$noexport), c('foo')) } foreach/inst/unitTests/loadFactorTest.R0000644000176200001440000000071011472542406017704 0ustar liggesuserstest01 <- function() { x <- c(1,10, 100, 1000, 10000) y <- c(1,10, 100, 1000, 10000) d <- expand.grid(x=x, y=y) foreach (i=seq_along(d$x), .combine='c') %do% { r <- foreach(icount(10), .combine='c') %do% (3 + 8) foreach(i=seq_along(r)) %do% checkEquals(r[i], 11L) } foreach (i=seq_along(d$x), .combine='c') %do% { r <- foreach(icount(10), .combine='c') %dopar% (3 + 8) foreach(i=seq_along(r)) %do% checkEquals(r[i], 11L) } } foreach/inst/unitTests/iteratorTest.R0000644000176200001440000000376211472542406017471 0ustar liggesusers# test matrix iterator with foreach test01 <- function() { m <- matrix(rnorm(25 * 16), 25) x <- foreach(col=iter(m, by='col'), .combine='cbind') %do% col checkEquals(m, x) x <- foreach(col=iter(m, by='col'), .combine='cbind') %dopar% col checkEquals(m, x) x <- foreach(row=iter(m, by='row'), .combine='rbind') %do% row checkEquals(m, x) x <- foreach(row=iter(m, by='row'), .combine='rbind') %dopar% row checkEquals(m, x) } # test data.frame iterator with foreach test02 <- function() { d <- data.frame(a=1:10,b=11:20,c=21:30) ed <- data.matrix(d) x <- foreach(col=iter(d, by='col'), .combine='cbind') %do% col colnames(x) <- colnames(ed) checkEquals(ed, x) x <- foreach(col=iter(d, by='col'), .combine='cbind') %dopar% col colnames(x) <- colnames(ed) checkEquals(ed, x) x <- foreach(row=iter(d, by='row'), .combine='rbind') %do% row checkEquals(d, x) x <- foreach(row=iter(d, by='row'), .combine='rbind') %dopar% row checkEquals(d, x) } # test function iterator with foreach and %do% test03 <- function() { func <- function() { y = NULL repeat { x = rnorm(1) if (x < -3.0) stop('StopIteration') if (10 == length(y)) break else if (0 < x) y = c(y, x) } y } ## XXX mean is not a reasonable combine function ## XXX removed this for the moment - sbw ## r <- foreach(v=iter(func), .combine='mean') %do% mean(v) ## 'r' is NULL if iteration stops early. ## checkTrue(is.null(r) || 0 < r) } # test function iterator with foreach and %dopar% test04 <- function() { func <- function() { y = NULL repeat { x = rnorm(1) if (x < -3.0) stop('StopIteration') if (10 == length(y)) break else if (0 < x) y = c(y, x) } y } ## XXX mean is not a reasonable combine function ## XXX removed this for the moment - sbw ## r <- foreach(v=iter(func), .combine='mean') %dopar% mean(v) ## 'r' is NULL if iteration stops early. ## checkTrue(is.null(r) || 0 < r) } foreach/inst/unitTests/foreachTest.R0000644000176200001440000000075311472542406017244 0ustar liggesuserstest01 <- function() { x <- 1:3 actual <- foreach(i=x) %do% i checkEquals(actual, as.list(x)) actual <- foreach(i=x, .combine='c') %do% i checkEquals(actual, x) } test02 <- function() { x <- 1:101 actual <- foreach(i=x, .combine='+') %dopar% i checkEquals(actual, sum(x)) } test03 <- function() { x <- 1:3 y <- 2:0 for (i in 1:3) { actual <- foreach(i=x, .combine='c', .inorder=TRUE) %dopar% { Sys.sleep(y[i]) i } checkEquals(actual, x) } } foreach/inst/unitTests/errorTest.R0000644000176200001440000000162011472542406016760 0ustar liggesuserstest01 <- function() { x <- 1:3 checkException(foreach(i=x) %do% if (i == 2) stop('error') else i) checkException( foreach(i=x, .errorhandling='stop') %do% if (i == 2) stop('error') else i) } test02 <- function() { x <- 1:3 actual <- foreach(i=x, .errorhandling='remove') %do% if (i == 2) stop('error') else i checkEquals(actual, list(1L, 3L)) actual <- foreach(i=x, .errorhandling='remove') %do% stop('remove') checkEquals(actual, list()) } test03 <- function() { x <- 1:3 actual <- foreach(i=x, .errorhandling='pass') %do% if (i == 2) stop('error') else i checkEquals(1L, actual[[1]]) checkTrue(inherits(actual[[2]], 'simpleError')) checkEquals(3L, actual[[3]]) } test04 <- function() { n <- 3 actual <- foreach(icount(n)) %:% foreach(icount(10), .errorhandling='remove') %do% stop('hello') checkEquals(actual, lapply(1:n, function(i) list())) } foreach/inst/unitTests/combineTest.R0000644000176200001440000000245311472542406017250 0ustar liggesusers# test cbind and rbind via .combine option test01 <- function() { m <- matrix(rnorm(25 * 16), 25) x <- foreach(i=1:ncol(m), .combine='cbind') %do% m[,i] dimnames(x) <- NULL checkEquals(m, x) x <- foreach(i=1:ncol(m), .combine='cbind') %dopar% m[,i] dimnames(x) <- NULL checkEquals(m, x) x <- foreach(i=1:nrow(m), .combine='rbind') %do% m[i,] dimnames(x) <- NULL checkEquals(m, x) x <- foreach(i=1:nrow(m), .combine='rbind') %dopar% m[i,] dimnames(x) <- NULL checkEquals(m, x) } # test arithmetic operations via .combine option test02 <- function() { x <- rnorm(100) d <- foreach(i=x, .combine='+') %do% i checkEquals(d, sum(x)) d <- foreach(i=x, .combine='+') %dopar% i checkEquals(d, sum(x)) d <- foreach(i=x, .combine='*') %do% i checkEquals(d, prod(x)) d <- foreach(i=x, .combine='*') %dopar% i checkEquals(d, prod(x)) } test03 <- function() { x <- 1:10 adder <- function(...) { sum(...) } d <- foreach(i=x, .combine=adder, .multicombine=TRUE) %dopar% i checkEquals(d, sum(x)) d <- foreach(i=x, .combine=adder, .multicombine=FALSE) %dopar% i checkEquals(d, sum(x)) d <- foreach(i=x, .combine=adder, .multicombine=TRUE) %do% i checkEquals(d, sum(x)) d <- foreach(i=x, .combine=adder, .multicombine=FALSE) %do% i checkEquals(d, sum(x)) } foreach/inst/examples/0000755000176200001440000000000012152072757014464 5ustar liggesusersforeach/inst/examples/tuneRF.R0000644000176200001440000000231011472542406016003 0ustar liggesusers# tuning random forest over mtry parameter in parallel library(foreach) library(randomForest) # a simple iterator over different values for the mtry argument mtryiter <- function(from, to, stepFactor=2) { nextEl <- function() { if (from > to) stop('StopIteration') i <- from from <<- ceiling(from * stepFactor) i } obj <- list(nextElem=nextEl) class(obj) <- c('abstractiter', 'iter') obj } # vector of ntree values that we're interested in vntree <- c(25, 50, 100, 200, 500, 1000) # function that gets random forest error information for different values of mtry tune <- function(x, y, ntree=vntree, mtry=NULL, keep.forest=FALSE, ...) { comb <- if (is.factor(y)) function(a, b) rbind(a, data.frame(ntree=ntree, mtry=b$mtry, error=b$err.rate[ntree, 1])) else function(a, b) rbind(a, data.frame(ntree=ntree, mtry=b$mtry, error=b$mse[ntree])) foreach(mtry=mtryiter(1, ncol(x)), .combine=comb, .init=NULL, .packages='randomForest') %dopar% { randomForest(x, y, ntree=max(ntree), mtry=mtry, keep.forest=FALSE, ...) } } # generate the inputs x <- matrix(runif(2000), 100) y <- gl(2, 50) # execute randomForest results <- tune(x, y) # print the result print(results) foreach/inst/examples/sqlite.R0000644000176200001440000000202511472542406016104 0ustar liggesuserslibrary(foreach) library(RSQLite) # Define a simple iterator for a query result, which is # just a wrapper around the fetch function iquery <- function(con, statement, ..., n=1) { rs <- dbSendQuery(con, statement, ...) nextEl <- function() { r <- fetch(rs, n) if (nrow(r) == 0) { dbClearResult(rs) stop('StopIteration') } r } obj <- list(nextElem=nextEl) class(obj) <- c('abstractiter', 'iter') obj } # create a SQLite instance and create one connection. m <- dbDriver('SQLite') # initialize a new database to a tempfile and copy some data.frame # from the base package into it tfile <- tempfile() con <- dbConnect(m, dbname=tfile) data(USArrests) dbWriteTable(con, 'USArrests', USArrests) # issue the query, and then iterate over the results it <- iquery(con, 'select * from USArrests', n=10) r <- foreach(r=it, .combine='rbind') %do% { state <- r$row_names crime <- r$Murder + r$Assault + r$Rape data.frame(state=state, crime=crime) } print(r) # clean up dbDisconnect(con) file.remove(tfile) foreach/inst/examples/sinc2.R0000644000176200001440000000165011472542406015624 0ustar liggesuserslibrary(foreach) # Define a function that creates an iterator that returns subvectors ivector <- function(x, chunks) { n <- length(x) i <- 1 nextEl <- function() { if (chunks <= 0 || n <= 0) stop('StopIteration') m <- ceiling(n / chunks) r <- seq(i, length=m) i <<- i + m n <<- n - m chunks <<- chunks - 1 x[r] } obj <- list(nextElem=nextEl) class(obj) <- c('abstractiter', 'iter') obj } # Define the coordinate grid and figure out how to split up the work x <- seq(-10, 10, by=0.1) nw <- getDoParWorkers() cat(sprintf('Running with %d worker(s)\n', nw)) # Compute the value of the sinc function at each point in the grid z <- foreach(y=ivector(x, nw), .combine=cbind) %dopar% { y <- rep(y, each=length(x)) r <- sqrt(x ^ 2 + y ^ 2) matrix(10 * sin(r) / r, length(x)) } # Plot the results as a perspective plot persp(x, x, z, ylab='y', theta=30, phi=30, expand=0.5, col="lightblue") foreach/inst/examples/sinc.R0000644000176200001440000000123311472542406015537 0ustar liggesusers# simple foreach example that plots the sinc function library(foreach) # Define the coordinate grid to use x <- seq(-10, 10, by=0.1) # Compute starting indices for each task nw <- getDoParWorkers() cat(sprintf('Running with %d worker(s)\n', nw)) n <- ceiling(length(x) / nw) ind <- seq(by=n, length=nw) # Compute the value of the sinc function at each point in the grid z <- foreach(i=ind, .combine=cbind) %dopar% { j <- min(i + n - 1, length(x)) d <- expand.grid(x=x, y=x[i:j]) r <- sqrt(d$x^2 + d$y^2) matrix(10 * sin(r) / r, length(x)) } # Plot the results as a perspective plot persp(x, x, z, ylab='y', theta=30, phi=30, expand=0.5, col="lightblue") foreach/inst/examples/rf.R0000644000176200001440000000116011472542406015211 0ustar liggesusers# a simple parallel random forest library(foreach) library(randomForest) # generate the inputs nr <- 1000 x <- matrix(runif(100000), nr) y <- gl(2, nr/2) # split the total number of trees by the number of parallel execution workers nw <- getDoParWorkers() cat(sprintf('Running with %d worker(s)\n', nw)) it <- idiv(1000, chunks=nw) # run the randomForest jobs, and combine the results print(system.time({ rf <- foreach(ntree=it, .combine=combine, .multicombine=TRUE, .inorder=FALSE, .packages='randomForest') %dopar% { randomForest(x, y, ntree=ntree, importance=TRUE) } })) # print the result print(rf) foreach/inst/examples/qsort.R0000644000176200001440000000055711472542406015763 0ustar liggesuserslibrary(foreach) qsort <- function(x) { n <- length(x) if (n == 0) { x } else { p <- sample(n, 1) smaller <- foreach(y=x[-p], .combine=c) %:% when(y <= x[p]) %do% y larger <- foreach(y=x[-p], .combine=c) %:% when(y > x[p]) %do% y c(qsort(smaller), x[p], qsort(larger)) } } x <- runif(100) a <- qsort(x) b <- sort(x) print(all(a == b)) foreach/inst/examples/pi.R0000644000176200001440000000031711472542406015215 0ustar liggesuserslibrary(foreach) w <- getDoParWorkers() n <- 10000000 h <- 1 / n pi <- foreach(i=1:w, .combine='+') %dopar% { x <- h * (seq(i, n, by=w) - 0.5) h * sum(4 / (1 + x * x)) } cat(sprintf('pi = %f\n', pi)) foreach/inst/examples/output.R0000644000176200001440000000154211472542406016146 0ustar liggesuserslibrary(foreach) # define a combine function that writes the results to a file. # note that the first argument is not a result, but the file # object, and must be specified via the .init argument and # returned as the value of this function. output <- function(fobj, ...) { lines <- list(...) cat(sprintf('writing %d line(s)\n', length(lines))) writeLines(unlist(lines), con=fobj) fobj } # create a temporary file to write the results to fname <- tempfile('foreach') fobj <- file(fname, 'w') # use ireadLines to create an iterator over the lines of the input file, # which are converted to upper case, and processed by the output function foreach(input=ireadLines('output.R'), .combine=output, .init=fobj, .multicombine=TRUE, .maxcombine=5) %do% toupper(input) # display the results and clean up close(fobj) file.show(fname) file.remove(fname) foreach/inst/examples/matmul2.R0000644000176200001440000000142511472542406016167 0ustar liggesusers# Less inefficient parallel matrix multiply using custom matrix iterator library(foreach) iblkcol <- function(a, chunks) { n <- ncol(a) i <- 1 nextEl <- function() { if (chunks <= 0 || n <= 0) stop('StopIteration') m <- ceiling(n / chunks) r <- seq(i, length=m) i <<- i + m n <<- n - m chunks <<- chunks - 1 a[,r, drop=FALSE] } obj <- list(nextElem=nextEl) class(obj) <- c('abstractiter', 'iter') obj } # generate the input matrices x <- matrix(rnorm(100), 10) y <- matrix(rnorm(100), 10) # multiply the matrices nw <- getDoParWorkers() cat(sprintf('Running with %d worker(s)\n', nw)) mit <- iblkcol(y, nw) z <- foreach(y=mit, .combine=cbind) %dopar% (x %*% y) # print the results print(z) # check the results print(all.equal(z, x %*% y)) foreach/inst/examples/matmul.R0000644000176200001440000000050611472542406016104 0ustar liggesusers# simple (and inefficient) parallel matrix multiply library(foreach) # generate the input matrices x <- matrix(rnorm(16), 4) y <- matrix(rnorm(16), 4) # multiply the matrices z <- foreach(y=iter(y, by='col'), .combine=cbind) %dopar% (x %*% y) # print the results print(z) # check the results print(all.equal(z, x %*% y)) foreach/inst/examples/isplit.R0000644000176200001440000000156211472542406016114 0ustar liggesusers# iterator for splitting data using a factor library(foreach) # let's use isplit on a data frame a <- foreach(i=isplit(airquality, airquality$Month), .combine=rbind) %do% quantile(i$value, na.rm=TRUE) # make it pretty and print it rownames(a) <- levels(as.factor(airquality$Month)) print(a) # use a list of factors to do an aggregated operation it <- isplit(as.data.frame(state.x77), list(Region=state.region, Cold=state.x77[,'Frost'] > 130), drop=TRUE) a <- foreach(i=it, .combine=rbind) %do% { x <- mean(i$value) dim(x) <- c(1, length(x)) colnames(x) <- names(i$value) cbind(i$key, as.data.frame(x)) } print(a) # compare with the standard aggregate function b <- aggregate(state.x77, list(Region=state.region, Cold=state.x77[,'Frost'] > 130), mean) print(b) cat('results identical:\n') print(identical(a, b)) foreach/inst/examples/germandata.txt0000644000176200001440000030716011472542406017334 0ustar liggesusers 1 6 4 12 5 5 3 4 1 67 3 2 1 2 1 0 0 1 0 0 1 0 0 1 1 2 48 2 60 1 3 2 2 1 22 3 1 1 1 1 0 0 1 0 0 1 0 0 1 2 4 12 4 21 1 4 3 3 1 49 3 1 2 1 1 0 0 1 0 0 1 0 1 0 1 1 42 2 79 1 4 3 4 2 45 3 1 2 1 1 0 0 0 0 0 0 0 0 1 1 1 24 3 49 1 3 3 4 4 53 3 2 2 1 1 1 0 1 0 0 0 0 0 1 2 4 36 2 91 5 3 3 4 4 35 3 1 2 2 1 0 0 1 0 0 0 0 1 0 1 4 24 2 28 3 5 3 4 2 53 3 1 1 1 1 0 0 1 0 0 1 0 0 1 1 2 36 2 69 1 3 3 2 3 35 3 1 1 2 1 0 1 1 0 1 0 0 0 0 1 4 12 2 31 4 4 1 4 1 61 3 1 1 1 1 0 0 1 0 0 1 0 1 0 1 2 30 4 52 1 1 4 2 3 28 3 2 1 1 1 1 0 1 0 0 1 0 0 0 2 2 12 2 13 1 2 2 1 3 25 3 1 1 1 1 1 0 1 0 1 0 0 0 1 2 1 48 2 43 1 2 2 4 2 24 3 1 1 1 1 0 0 1 0 1 0 0 0 1 2 2 12 2 16 1 3 2 1 3 22 3 1 1 2 1 0 0 1 0 0 1 0 0 1 1 1 24 4 12 1 5 3 4 3 60 3 2 1 1 1 1 0 1 0 0 1 0 1 0 2 1 15 2 14 1 3 2 4 3 28 3 1 1 1 1 1 0 1 0 1 0 0 0 1 1 1 24 2 13 2 3 2 2 3 32 3 1 1 1 1 0 0 1 0 0 1 0 1 0 2 4 24 4 24 5 5 3 4 2 53 3 2 1 1 1 0 0 1 0 0 1 0 0 1 1 1 30 0 81 5 2 3 3 3 25 1 3 1 1 1 0 0 1 0 0 1 0 0 1 1 2 24 2 126 1 5 2 2 4 44 3 1 1 2 1 0 1 1 0 0 0 0 0 0 2 4 24 2 34 3 5 3 2 3 31 3 1 2 2 1 0 0 1 0 0 1 0 0 1 1 4 9 4 21 1 3 3 4 3 48 3 3 1 2 1 1 0 1 0 0 1 0 0 1 1 1 6 2 26 3 3 3 3 1 44 3 1 2 1 1 0 0 1 0 1 0 0 0 1 1 1 10 4 22 1 2 3 3 1 48 3 2 2 1 2 1 0 1 0 1 0 0 1 0 1 2 12 4 18 2 2 3 4 2 44 3 1 1 1 1 0 1 1 0 0 1 0 0 1 1 4 10 4 21 5 3 4 1 3 26 3 2 1 1 2 0 0 1 0 0 1 0 0 1 1 1 6 2 14 1 3 3 2 1 36 1 1 1 2 1 0 0 1 0 0 1 0 1 0 1 4 6 0 4 1 5 4 4 3 39 3 1 1 1 1 0 0 1 0 0 1 0 1 0 1 3 12 1 4 4 3 2 3 1 42 3 2 1 1 1 0 0 1 0 1 0 0 0 1 1 2 7 2 24 1 3 3 2 1 34 3 1 1 1 1 0 0 0 0 0 1 0 0 1 1 1 60 3 68 1 5 3 4 4 63 3 2 1 2 1 0 0 1 0 0 1 0 0 1 2 2 18 2 19 4 2 4 3 1 36 1 1 1 2 1 0 0 1 0 0 1 0 0 1 1 1 24 2 40 1 3 3 2 3 27 2 1 1 1 1 0 0 1 0 0 1 0 0 1 1 2 18 2 59 2 3 3 2 3 30 3 2 1 2 1 1 0 1 0 0 1 0 0 1 1 4 12 4 13 5 5 3 4 4 57 3 1 1 1 1 0 0 1 0 1 0 0 1 0 1 3 12 2 15 1 2 2 1 2 33 1 1 1 2 1 0 0 1 0 0 1 0 0 0 1 2 45 4 47 1 2 3 2 2 25 3 2 1 1 1 0 0 1 0 0 1 0 1 0 2 4 48 4 61 1 3 3 3 4 31 1 1 1 2 1 0 0 1 0 0 0 0 0 1 1 3 18 2 21 1 3 3 2 1 37 2 1 1 1 1 0 0 0 1 0 1 0 0 1 2 3 10 2 12 1 3 3 2 3 37 3 1 1 2 1 0 0 1 0 0 1 0 0 1 1 2 9 2 5 1 3 3 3 1 24 3 1 1 1 1 0 0 1 0 0 1 0 0 1 1 4 30 2 23 3 5 3 2 3 30 1 1 1 1 1 0 0 1 0 0 1 0 0 0 1 2 12 2 12 3 3 1 1 3 26 3 1 1 2 1 0 0 1 0 0 1 0 0 1 1 2 18 3 62 1 3 3 4 1 44 3 1 2 2 1 0 0 1 0 0 1 0 1 0 1 1 30 4 62 2 4 4 4 3 24 3 2 1 1 1 0 1 1 0 1 0 0 0 1 1 1 48 4 61 1 5 2 4 4 58 2 2 1 1 1 0 1 1 0 0 0 0 1 0 2 4 11 4 14 1 2 2 4 3 35 3 2 1 1 1 1 0 1 0 0 1 0 0 0 1 4 36 2 23 3 5 3 4 3 39 3 1 1 1 1 0 0 1 0 0 1 0 0 1 1 1 6 2 14 3 1 2 2 2 23 3 1 1 2 1 0 1 1 0 1 0 1 0 0 1 4 11 4 72 1 3 3 4 2 39 3 2 1 1 1 1 0 1 0 0 1 0 1 0 1 4 12 2 21 2 3 2 2 1 28 3 1 1 1 1 0 0 0 1 0 1 0 0 1 1 2 24 3 23 5 2 3 2 2 29 1 1 1 1 1 0 0 1 0 0 1 0 1 0 1 2 27 3 60 1 5 3 2 3 30 3 2 1 2 1 0 1 1 0 0 1 0 0 0 1 4 12 2 13 1 3 3 2 3 25 3 1 1 1 1 0 0 1 0 0 1 0 0 1 1 4 18 2 34 5 3 3 1 2 31 3 1 1 2 1 0 1 1 0 0 1 0 0 1 1 2 36 3 22 1 5 3 4 4 57 1 2 1 2 1 1 0 1 0 0 0 0 0 1 2 4 6 1 8 5 3 3 2 1 26 2 1 2 1 1 1 0 0 0 0 1 0 1 0 1 2 12 2 65 5 1 3 1 4 52 3 1 1 2 1 0 0 1 0 0 1 0 0 0 2 4 36 4 96 1 3 2 2 3 31 2 2 1 1 1 0 0 1 0 0 1 0 0 1 1 3 18 2 20 1 5 2 2 3 23 3 1 1 1 1 1 0 1 0 0 1 0 0 0 1 1 36 4 62 1 2 2 4 4 23 3 2 1 2 1 0 0 0 1 1 0 0 1 0 2 2 9 2 14 1 3 4 1 1 27 1 1 1 2 1 0 0 1 0 0 1 0 0 1 1 2 15 4 15 5 5 3 4 1 50 3 2 1 2 1 0 0 0 0 0 1 0 0 1 1 2 36 0 20 1 5 3 4 4 61 3 1 1 2 1 0 0 1 0 0 0 0 0 0 2 2 48 0 144 1 3 3 2 3 25 3 1 1 2 1 0 0 1 0 0 1 0 0 1 2 4 24 2 32 1 2 2 4 2 26 3 1 1 2 1 0 0 1 0 0 1 0 0 1 1 4 27 2 52 5 5 3 4 2 48 3 4 2 2 1 0 0 1 0 0 1 0 0 1 1 4 12 2 22 1 2 2 2 3 29 1 1 1 1 1 0 0 1 0 0 1 0 0 1 1 2 12 2 10 4 3 4 1 1 22 3 1 1 1 1 1 0 1 0 0 1 0 0 1 1 4 36 2 18 1 3 3 4 4 37 2 1 1 2 1 0 0 1 0 0 0 0 0 1 2 4 36 2 24 5 3 2 4 3 25 3 1 1 1 1 0 0 1 0 0 1 0 0 1 1 4 36 2 81 1 3 2 2 2 30 1 1 1 1 1 0 1 1 0 0 1 0 0 1 1 4 7 4 7 5 5 3 2 2 46 3 2 1 2 1 0 0 1 0 1 0 0 1 0 1 1 8 4 12 1 5 3 4 4 51 1 2 2 2 1 0 0 1 0 0 0 0 0 0 1 2 42 4 60 1 4 2 1 1 41 1 2 1 1 1 0 0 1 0 0 1 0 1 0 1 1 36 2 20 5 5 3 4 4 40 3 1 1 2 1 0 0 1 0 0 1 0 0 0 2 1 12 4 15 1 5 3 4 4 66 3 2 1 1 1 0 1 1 0 0 0 0 0 0 1 1 42 2 40 1 2 3 3 3 34 3 1 1 1 1 0 0 1 0 0 1 0 0 1 2 2 11 3 48 1 4 3 4 2 51 3 1 1 1 1 0 0 1 0 0 1 0 0 1 1 4 54 0 94 5 3 3 2 2 39 3 1 2 1 1 0 1 1 0 0 1 0 1 0 1 2 30 2 38 1 2 4 1 2 22 3 1 1 1 1 0 0 1 0 0 1 0 0 1 1 4 24 2 59 5 2 2 1 3 44 3 2 1 2 1 0 0 1 0 0 1 0 0 1 2 4 15 2 12 3 5 3 3 2 47 2 1 1 2 1 0 0 1 0 0 1 0 0 1 1 4 18 2 16 2 3 2 4 2 24 3 1 1 1 1 0 0 1 0 1 0 0 1 0 1 1 24 2 18 1 5 2 4 1 58 3 1 1 2 1 0 0 0 0 0 1 0 1 0 1 1 10 2 23 1 5 3 4 1 52 3 1 1 1 1 0 0 1 0 0 1 0 1 0 1 4 12 4 14 1 3 2 2 1 29 3 2 1 2 1 0 0 0 0 0 1 0 0 0 1 2 18 4 13 1 2 2 1 2 27 3 2 1 1 1 0 0 1 0 0 1 0 0 1 1 2 36 2 126 2 3 3 4 4 47 3 1 2 2 1 0 0 1 0 0 0 0 0 1 2 1 18 2 22 2 4 3 3 3 30 3 1 2 2 1 1 0 1 0 0 1 0 0 0 1 1 12 0 11 1 4 3 3 1 28 3 2 1 1 1 0 0 1 0 0 1 0 0 1 2 4 12 4 6 1 5 3 4 1 56 3 1 1 1 1 0 0 1 0 0 1 0 0 1 1 1 12 4 14 1 5 3 3 1 54 3 1 1 1 1 0 1 1 0 0 1 0 0 1 1 4 12 4 8 5 5 2 3 2 33 1 1 2 1 1 0 0 1 0 0 1 0 1 0 2 3 24 4 36 5 5 3 4 4 20 3 2 1 1 1 0 0 0 1 1 0 0 0 1 1 2 12 2 13 4 5 3 4 1 54 3 1 1 2 1 1 0 1 0 0 1 0 0 1 1 2 54 0 159 1 2 3 4 4 58 3 1 1 2 1 0 0 1 0 1 0 0 0 1 2 4 12 4 20 5 4 2 2 3 61 3 1 1 1 1 0 0 1 0 0 1 0 0 1 1 2 18 2 26 2 3 3 4 3 34 3 1 1 1 1 0 0 1 0 0 1 0 0 1 1 2 36 4 23 1 5 3 4 1 36 3 1 1 1 1 0 0 1 0 0 1 0 0 1 1 2 20 3 71 5 4 3 4 2 36 1 2 2 2 1 0 1 1 0 1 0 0 0 0 1 4 24 2 15 2 5 4 4 1 41 3 1 1 1 1 1 0 1 0 1 0 0 1 0 1 2 36 2 23 1 4 3 4 3 24 3 1 1 1 1 0 0 1 0 1 0 0 0 1 1 4 6 3 9 1 3 2 2 1 24 3 1 1 1 1 0 0 1 0 0 1 0 0 1 1 2 9 4 19 1 4 3 3 3 35 3 1 1 2 1 0 0 1 0 1 0 0 0 1 1 4 12 2 24 5 2 4 4 3 26 3 1 1 2 1 0 1 1 0 1 0 0 0 1 1 2 24 4 119 1 3 3 3 3 39 3 2 2 2 1 0 0 0 1 0 1 0 0 0 2 4 18 1 65 1 5 3 4 4 39 1 2 2 2 1 1 0 1 0 0 1 0 0 0 2 2 12 2 61 1 4 3 2 3 32 3 1 1 1 1 1 0 1 0 0 1 0 0 1 1 1 24 2 77 5 2 2 2 2 30 3 1 1 2 2 0 0 1 0 0 1 0 0 1 1 2 14 2 14 3 5 4 2 1 35 3 1 1 2 1 0 0 1 0 0 1 0 0 1 1 2 6 3 14 2 5 1 2 3 31 1 2 2 1 1 0 0 1 0 0 1 0 0 1 1 3 15 2 4 1 2 2 4 2 23 3 1 1 2 1 0 0 1 0 1 0 0 0 1 1 2 18 2 63 1 4 3 3 1 28 3 1 1 1 1 1 0 1 0 1 0 0 1 0 1 4 36 4 79 1 3 2 2 1 25 2 2 1 2 1 1 0 1 0 0 1 0 0 1 2 1 12 2 17 3 5 4 1 1 35 3 1 1 1 1 0 0 1 0 0 1 0 0 1 1 4 48 4 36 5 5 3 1 1 47 3 1 1 2 1 0 0 1 0 0 1 0 0 1 1 1 42 2 72 5 4 2 3 3 30 3 1 1 2 1 0 0 1 0 0 1 0 0 0 2 1 10 4 21 5 2 2 3 1 27 3 2 1 1 2 0 0 0 1 1 0 0 0 1 1 1 33 4 43 3 3 2 4 3 23 3 2 1 1 1 0 0 1 0 0 1 0 0 1 2 2 12 4 24 3 4 1 3 3 36 3 1 1 2 1 1 0 1 0 0 1 0 0 0 1 1 21 2 18 1 3 2 2 1 25 3 2 1 2 1 0 0 1 0 0 1 0 0 1 2 4 24 4 39 1 5 2 2 3 41 3 2 1 2 1 0 1 1 0 1 0 0 0 0 1 4 12 2 18 1 3 3 2 1 24 3 1 1 1 1 0 0 1 0 1 0 0 1 0 1 3 10 4 8 1 5 3 4 4 63 3 2 1 2 1 1 0 1 0 0 0 0 0 1 1 2 18 2 19 5 2 2 3 1 27 3 1 1 1 1 0 0 1 0 1 0 0 0 1 2 1 12 4 21 1 3 3 2 2 30 3 2 1 1 1 1 0 1 0 0 1 0 0 1 1 1 12 2 7 1 3 4 2 1 40 3 1 1 1 1 0 0 1 0 0 1 0 1 0 1 2 12 2 6 1 3 3 2 3 30 3 1 1 1 1 0 0 1 0 0 1 0 0 1 2 2 12 4 19 1 1 3 2 3 34 3 2 1 2 1 0 1 1 0 0 1 0 0 0 1 1 12 4 35 1 3 2 2 1 29 3 2 1 1 1 1 0 0 1 0 1 0 0 1 2 2 48 2 85 5 4 2 2 3 24 3 1 1 1 1 1 0 1 0 0 1 0 0 1 1 1 36 3 69 1 3 3 3 2 29 2 1 1 2 1 0 0 1 0 0 1 0 0 1 2 4 15 2 27 1 2 3 3 2 27 1 2 1 1 1 0 0 1 0 0 1 0 1 0 1 4 18 2 20 1 3 3 4 4 47 1 2 1 1 1 0 0 1 0 0 0 0 0 1 1 4 60 2 101 2 4 2 4 1 21 3 1 1 2 1 0 0 1 0 0 1 0 0 1 1 4 12 4 12 5 5 2 2 1 38 3 2 1 2 1 0 0 1 0 0 1 0 0 1 1 4 27 3 86 4 3 3 2 3 27 3 2 1 1 1 0 1 1 0 0 1 0 0 1 1 2 12 2 8 3 3 3 3 1 66 3 1 1 1 1 0 0 1 0 0 1 0 1 0 2 2 15 4 27 5 4 3 2 1 35 1 3 1 2 1 0 0 0 0 0 1 0 0 1 1 3 12 2 19 1 3 2 2 3 44 3 1 1 2 1 0 0 1 0 1 0 0 1 0 1 3 6 2 7 4 2 4 2 1 27 3 1 1 1 2 1 0 1 0 0 1 1 0 0 1 2 36 2 48 1 2 2 1 4 30 3 1 1 2 1 0 0 1 0 0 1 0 0 0 1 1 27 2 34 1 3 3 2 3 27 3 1 1 1 1 0 0 1 0 0 1 0 0 0 1 1 18 2 25 1 3 3 2 3 22 3 1 1 1 1 0 0 1 0 0 1 0 0 1 2 4 21 4 23 1 2 2 4 2 23 3 1 1 2 1 0 0 1 0 0 1 0 0 1 1 2 48 1 36 2 4 3 2 3 30 3 1 1 1 1 0 0 1 0 0 1 0 0 1 1 1 6 4 9 1 5 2 4 4 39 3 2 1 2 1 1 0 1 0 0 1 0 0 1 1 4 12 4 7 2 4 2 3 3 51 3 2 1 2 1 1 0 1 0 0 1 0 0 1 1 1 36 4 54 1 3 3 2 2 28 3 2 1 1 1 0 0 0 0 0 1 0 0 1 1 4 18 4 16 4 5 3 4 3 46 3 2 1 1 1 0 0 1 0 0 1 0 0 1 1 4 6 2 13 2 5 3 4 4 42 1 1 2 2 1 0 0 1 0 0 0 0 0 1 1 4 10 2 19 1 3 3 4 2 38 3 1 1 2 2 0 0 1 0 0 1 0 0 1 1 3 36 2 58 1 3 3 1 3 24 3 1 1 1 1 0 0 1 0 0 1 0 0 1 1 2 24 4 78 4 5 2 4 4 29 3 1 1 1 1 0 1 1 0 1 0 0 0 1 1 2 24 3 70 2 4 3 4 3 36 3 1 1 2 1 0 0 1 0 1 0 0 0 0 1 1 12 2 13 1 3 2 4 3 20 3 1 1 1 1 0 0 1 0 1 0 0 0 1 2 1 9 4 13 2 5 3 4 1 48 3 2 2 1 2 0 0 0 0 0 1 0 0 1 1 1 12 1 3 1 5 4 1 3 45 1 1 1 1 1 0 0 1 0 0 1 0 1 0 1 2 24 2 35 2 4 3 3 3 38 1 2 1 2 1 1 0 1 0 0 1 0 0 1 1 4 6 4 19 5 3 3 2 1 34 3 2 2 1 1 0 0 1 0 0 1 0 1 0 1 4 24 4 29 2 5 3 4 1 36 3 1 2 2 1 0 0 1 0 0 1 0 0 1 1 4 18 4 11 1 2 2 1 2 30 3 2 1 1 1 1 0 1 0 0 1 0 0 1 1 4 15 2 13 3 4 3 3 2 36 3 2 1 2 1 0 0 1 0 0 1 0 0 1 1 2 10 2 73 1 1 3 4 4 70 1 1 1 2 1 1 0 1 0 0 0 0 0 0 1 4 36 2 9 3 5 3 4 2 36 3 1 1 1 1 1 0 1 0 0 1 0 0 1 1 4 6 2 30 3 3 3 2 3 32 3 1 1 2 1 0 0 1 0 0 1 0 0 1 1 1 18 2 11 1 1 2 2 3 33 3 1 1 1 1 0 0 1 0 0 1 0 0 1 2 2 11 2 16 4 2 2 1 1 20 3 1 1 1 1 0 0 1 0 0 1 0 0 1 1 4 24 2 40 1 4 2 4 2 25 3 1 1 2 1 0 0 1 0 1 0 0 0 1 1 2 24 4 19 1 5 1 4 1 31 3 2 1 2 1 0 0 1 0 0 1 0 0 1 2 1 15 0 10 1 5 3 3 3 33 3 2 2 1 1 1 0 1 0 1 0 0 0 1 2 4 12 2 8 1 3 2 1 1 26 3 1 1 2 1 0 0 1 0 0 1 0 0 1 1 2 24 3 21 1 1 2 2 2 34 3 1 1 2 1 0 0 1 0 0 1 0 0 0 2 2 8 2 14 1 3 3 2 1 33 3 1 1 1 2 0 0 0 0 0 1 0 0 1 1 1 21 3 34 1 2 3 1 2 26 3 2 1 1 1 0 0 1 0 0 1 0 0 1 2 4 30 1 75 5 1 2 1 1 53 1 1 1 2 1 0 1 1 0 0 1 0 0 0 2 1 12 2 26 1 3 1 1 3 42 3 1 1 1 1 0 0 1 0 0 1 0 0 1 1 1 6 4 3 3 5 3 4 3 52 3 2 1 1 1 0 0 1 0 0 1 0 0 1 1 4 12 2 20 1 4 3 2 3 31 3 2 2 2 1 0 0 1 0 1 0 0 0 0 1 1 21 4 6 1 5 3 4 1 65 3 2 1 1 1 1 0 1 0 0 1 0 0 1 1 4 36 3 96 1 2 1 1 3 28 3 2 1 1 1 0 0 1 0 0 1 0 0 1 2 2 36 3 45 1 3 1 2 1 30 2 2 1 2 1 0 0 1 0 0 1 0 0 0 2 1 21 1 16 5 3 3 2 2 40 3 2 2 1 1 1 0 1 0 0 1 0 1 0 2 4 24 4 38 4 3 3 4 1 50 3 1 1 2 1 0 0 1 0 0 1 0 0 1 1 2 18 4 9 1 5 3 4 3 36 1 1 2 2 1 1 0 1 0 0 1 0 0 1 2 4 15 4 14 1 3 3 2 2 31 3 2 1 1 1 0 0 1 0 0 1 0 0 1 1 2 9 1 51 1 5 2 4 4 74 1 1 2 2 1 0 1 1 0 0 0 0 0 0 2 2 16 4 12 1 1 3 3 3 68 3 3 1 2 1 1 0 1 0 0 0 1 0 0 1 1 12 2 7 2 4 4 1 2 20 3 1 1 1 1 0 0 1 0 0 1 0 0 1 2 2 18 0 32 1 3 2 4 3 33 1 2 1 2 1 0 0 1 0 0 1 0 0 1 1 4 24 2 46 4 3 3 3 2 54 3 3 1 2 1 0 0 1 0 0 1 0 0 0 2 2 48 0 38 2 4 3 4 4 34 3 1 2 1 1 0 0 1 0 0 0 0 1 0 2 2 27 2 39 1 3 3 2 3 36 3 1 2 2 1 0 0 1 0 0 1 0 0 1 2 4 6 2 21 1 4 4 2 1 29 3 1 1 1 1 0 0 1 0 1 0 0 0 1 1 2 45 2 30 2 3 3 4 2 21 3 1 1 1 1 0 0 0 0 1 0 0 0 1 2 2 9 4 15 1 5 2 3 3 34 3 2 1 2 1 0 0 1 0 0 1 0 0 0 2 4 6 4 14 1 3 2 1 3 28 3 2 1 2 1 0 0 1 0 0 1 0 0 1 1 2 12 2 10 2 2 2 4 3 27 1 4 1 1 1 0 0 1 0 1 0 0 0 1 2 2 24 2 28 5 5 3 4 4 36 1 1 1 2 1 0 1 1 0 0 0 0 0 1 1 2 18 3 43 1 5 1 3 4 40 3 1 1 2 1 0 0 1 0 0 1 0 0 0 2 4 9 4 9 3 5 3 2 3 52 3 2 1 2 1 0 0 1 0 0 1 0 0 1 1 1 12 2 12 1 3 4 3 1 27 3 1 1 1 1 1 0 1 0 0 1 0 1 0 1 4 27 3 51 1 4 3 4 3 26 3 2 1 1 1 0 0 1 0 0 1 0 0 1 1 1 12 2 9 1 4 4 4 2 21 3 1 1 1 1 0 0 1 0 1 0 0 0 1 2 4 12 4 15 1 5 3 1 1 38 3 2 2 1 1 1 0 1 0 0 1 0 1 0 1 1 30 4 106 1 5 3 4 4 38 3 3 2 2 1 0 1 1 0 0 0 0 0 0 1 4 12 4 19 1 5 3 4 1 43 3 3 1 2 1 0 0 1 0 0 1 0 0 1 1 2 12 4 14 1 4 3 3 2 26 3 1 1 1 1 0 0 1 0 0 1 0 0 1 1 1 24 2 66 1 3 4 2 3 21 2 1 1 1 1 0 0 1 0 0 1 0 1 0 1 4 12 2 14 4 4 3 2 2 55 3 1 1 1 2 0 1 1 0 0 1 0 0 1 1 4 9 4 31 5 3 3 2 1 33 3 2 2 1 1 0 0 1 0 0 1 0 0 1 1 4 36 2 38 5 5 2 4 1 45 3 1 1 2 1 0 0 1 0 0 1 0 1 0 1 1 27 0 53 1 1 3 4 2 50 2 2 1 2 1 0 0 1 0 0 1 0 0 1 2 3 30 3 19 1 5 3 4 1 66 3 1 1 2 1 0 0 1 0 0 1 0 0 0 2 4 36 4 33 5 5 3 2 3 51 3 1 1 2 1 0 0 1 0 0 1 0 0 1 1 2 6 4 9 5 4 2 3 2 39 3 2 1 1 1 0 0 1 0 0 1 0 1 0 1 1 18 0 31 1 4 3 1 2 31 1 1 1 2 1 0 0 1 0 0 1 0 0 1 1 3 36 2 39 1 3 3 2 1 23 3 1 1 2 1 0 0 1 0 0 1 0 0 1 1 1 24 2 30 1 3 1 2 1 24 3 1 1 1 1 0 0 1 0 1 0 0 1 0 1 4 10 2 14 1 3 2 4 3 64 3 1 1 2 1 1 0 1 0 0 1 0 0 1 1 2 12 2 6 1 2 4 1 1 26 1 1 1 1 1 0 0 0 0 0 1 0 1 0 1 1 12 2 12 5 3 2 4 2 23 1 1 1 2 1 0 0 1 0 1 0 0 0 1 1 4 12 2 7 1 3 3 2 1 30 1 2 1 1 1 0 0 1 0 0 1 0 0 1 1 4 24 3 30 5 3 3 4 1 32 3 2 2 2 1 0 0 1 0 0 1 0 0 1 1 4 15 2 47 1 3 3 2 3 30 3 1 1 2 1 0 1 1 0 0 1 0 0 1 1 4 36 0 26 1 3 3 2 3 27 3 2 1 1 1 0 0 1 0 0 1 0 0 1 1 2 48 2 110 4 4 3 2 4 27 1 2 1 2 1 0 0 0 1 0 1 0 0 1 2 1 12 2 79 1 5 3 4 4 53 3 1 1 2 1 0 0 1 0 0 0 0 0 0 2 4 9 2 15 1 4 3 2 3 22 3 1 1 1 1 0 0 1 0 0 1 0 0 1 2 1 24 2 31 1 2 3 1 4 22 1 1 1 1 1 0 0 1 0 0 0 0 0 1 1 3 36 2 42 1 3 3 2 3 26 3 1 1 1 1 0 0 1 0 0 1 0 0 1 2 4 9 2 25 3 5 3 4 4 51 3 1 1 1 1 1 0 1 0 0 0 0 1 0 1 4 12 2 21 2 4 3 1 4 35 3 1 1 1 1 0 0 1 0 0 1 0 0 1 1 2 18 2 9 1 3 4 2 1 25 3 1 1 1 1 0 0 0 0 0 1 0 1 0 1 4 4 4 15 1 4 3 1 1 42 3 3 2 1 1 0 0 1 0 0 1 0 1 0 1 1 24 2 18 1 1 3 2 3 30 2 1 2 1 1 0 0 1 0 0 1 0 0 0 2 2 6 2 146 5 1 3 2 2 23 3 1 1 2 1 1 0 1 0 0 1 1 0 0 2 2 21 2 28 2 5 1 2 3 61 1 2 1 1 1 0 0 1 0 1 0 0 1 0 2 4 12 4 13 1 3 2 2 2 35 3 2 1 1 1 0 0 1 0 0 1 0 0 1 1 1 30 2 25 1 5 3 3 2 39 3 1 2 1 1 0 0 0 0 0 1 0 0 1 1 1 24 2 9 5 5 2 2 3 29 1 1 1 1 1 1 0 1 0 0 1 0 0 1 2 4 6 2 16 1 4 3 2 2 51 3 1 2 1 1 0 0 1 0 0 1 0 0 1 1 1 48 0 46 1 5 3 4 4 24 3 2 2 1 1 0 1 1 0 0 0 0 0 1 2 4 12 4 12 1 3 2 2 1 27 3 2 1 1 1 0 0 1 0 0 1 0 0 1 1 4 12 1 34 3 3 2 3 1 35 3 1 2 1 1 0 0 1 0 0 1 0 1 0 1 4 24 2 13 1 4 3 1 1 25 3 1 1 2 1 0 0 1 0 0 1 0 0 1 1 4 12 4 7 1 5 3 4 1 52 3 3 1 1 1 0 0 1 0 0 1 0 0 1 1 4 6 0 12 2 3 3 1 4 35 1 1 1 1 2 1 0 1 0 1 0 0 0 1 1 3 24 2 19 1 3 3 2 1 26 3 1 1 1 1 0 0 1 0 0 1 0 0 1 1 4 18 2 4 1 1 2 4 1 22 3 1 1 1 1 0 0 0 1 1 0 0 0 1 2 1 6 4 7 4 4 2 4 1 39 3 2 1 2 1 1 0 1 0 0 1 0 1 0 1 3 12 2 23 1 3 2 2 3 46 3 1 1 1 1 0 0 1 0 0 1 0 1 0 1 2 30 2 22 1 3 2 2 4 24 1 1 1 1 1 1 0 0 0 0 1 0 0 1 2 4 24 3 42 2 3 3 3 2 35 3 2 1 1 1 0 0 1 0 0 1 0 0 1 1 2 9 2 20 5 4 3 1 3 24 3 1 1 2 1 0 0 1 0 0 1 0 0 1 1 2 60 3 74 5 3 3 1 1 27 3 1 1 1 1 0 0 1 0 0 1 0 1 0 1 4 24 4 27 1 3 3 2 1 35 3 2 1 1 1 0 0 1 0 0 1 0 1 0 1 1 12 1 21 1 3 1 1 4 29 3 1 1 1 1 0 0 1 0 0 0 0 0 1 2 4 15 2 38 2 2 2 4 3 23 3 1 1 2 1 0 1 1 0 0 1 0 0 1 1 4 11 4 12 2 1 2 4 1 57 3 3 1 1 1 0 0 1 0 0 1 0 1 0 1 1 12 2 17 1 3 3 2 1 27 3 1 1 1 1 0 0 1 0 0 1 0 0 1 1 1 24 2 16 1 5 2 4 3 55 3 1 1 1 1 0 0 1 0 0 1 0 0 1 1 1 18 4 53 1 5 3 4 4 36 3 3 1 2 1 1 0 1 0 0 0 0 0 0 1 4 12 4 27 1 5 2 4 4 57 1 3 1 1 1 0 0 1 0 0 0 0 1 0 1 4 10 4 12 1 5 3 4 1 32 3 2 2 1 2 1 0 1 0 0 1 0 1 0 1 2 15 2 8 1 5 3 3 3 37 3 1 2 1 1 0 0 1 0 0 1 0 0 1 2 4 36 4 63 5 5 3 4 1 36 3 2 1 1 1 0 0 1 0 0 1 0 0 1 1 4 24 2 15 1 2 2 3 3 38 2 1 1 2 1 0 0 1 0 0 1 0 0 1 1 1 14 2 90 1 5 1 4 2 45 3 1 1 2 2 1 0 1 0 0 1 0 0 0 2 4 24 2 10 5 5 3 2 3 25 3 2 1 1 1 0 0 1 0 0 1 0 0 1 1 4 18 2 27 5 4 3 3 2 32 3 1 1 1 2 1 0 1 0 0 1 0 0 1 1 4 12 4 14 3 4 2 4 3 37 3 1 1 2 1 0 0 1 0 1 0 0 0 1 1 2 48 1 122 5 1 3 4 4 36 3 1 1 2 1 1 0 0 1 0 0 0 0 0 1 2 48 2 31 1 4 3 4 1 28 3 2 1 1 1 0 0 1 0 0 1 0 0 1 2 1 30 2 120 1 2 1 1 4 34 3 1 1 2 1 0 0 1 0 0 1 0 1 0 2 4 9 2 27 1 3 3 2 1 32 3 1 2 1 1 0 0 1 0 0 1 0 0 1 1 4 18 4 24 1 3 2 2 3 26 3 2 1 1 1 0 0 1 0 0 1 0 0 1 1 1 12 2 13 5 5 1 4 2 49 3 1 1 2 1 0 0 1 0 0 1 0 1 0 1 4 6 2 46 1 2 2 4 2 32 3 1 1 1 1 0 0 1 0 0 1 0 0 1 2 4 24 2 19 2 3 3 4 3 29 3 1 1 2 1 0 0 1 0 1 0 0 0 0 1 4 15 4 34 4 5 3 4 4 23 3 2 1 2 1 0 1 1 0 1 0 0 0 1 1 4 12 2 16 1 3 3 2 1 50 3 1 1 1 1 0 0 1 0 0 1 0 0 1 1 3 18 1 14 5 4 3 4 3 49 1 1 1 1 1 0 0 1 0 0 1 0 1 0 1 4 15 4 15 5 5 3 4 2 63 3 1 1 1 1 0 0 1 0 0 1 0 0 1 1 2 24 4 39 2 2 1 2 3 37 3 1 1 2 1 1 0 1 0 0 1 0 0 1 1 1 47 2 107 1 2 2 1 1 35 3 1 1 2 1 1 0 1 0 0 1 0 1 0 1 1 48 2 48 1 4 3 3 2 26 3 1 2 1 1 0 1 1 0 0 1 0 0 1 1 2 48 3 76 2 1 3 4 4 31 3 1 1 2 1 0 0 1 0 0 0 0 0 0 1 2 12 2 11 1 3 2 4 1 49 3 2 1 2 1 0 0 0 0 0 1 0 0 1 1 1 24 3 10 1 2 4 4 1 48 2 1 1 1 1 0 0 1 0 0 1 0 0 1 2 4 12 2 11 1 3 4 2 1 26 3 1 1 2 2 0 0 1 0 0 1 0 0 1 1 2 36 2 94 1 2 4 4 3 28 3 1 1 2 1 0 1 1 0 1 0 0 0 0 2 1 24 4 64 1 5 2 4 4 44 3 2 2 2 1 0 1 1 0 0 0 0 0 0 1 3 42 4 48 1 5 3 4 4 56 3 1 1 1 1 0 1 1 0 0 0 0 0 1 1 4 48 4 76 5 5 1 2 3 46 1 2 2 1 1 0 0 1 0 0 1 0 0 0 1 2 48 2 100 1 2 2 2 3 26 3 1 1 2 1 0 0 1 0 0 1 0 0 1 2 4 12 2 47 5 2 2 4 3 20 3 1 1 1 1 0 1 1 0 1 0 0 0 1 1 4 10 2 13 5 5 3 2 2 45 3 1 1 1 2 1 0 0 1 0 1 0 1 0 1 4 18 2 25 1 3 3 4 1 43 3 1 1 2 1 0 0 1 0 0 1 0 0 1 1 2 21 4 27 4 4 3 2 3 32 3 2 1 2 1 0 0 1 0 0 1 0 0 1 1 4 6 2 7 1 1 2 4 1 54 3 1 1 2 1 1 0 1 0 0 1 1 0 0 1 2 36 0 38 1 3 2 1 3 42 3 1 1 2 1 0 0 1 0 0 1 0 0 1 2 3 24 4 13 5 4 3 2 1 37 1 2 2 1 1 1 0 1 0 0 1 0 1 0 2 1 10 4 10 1 4 3 3 2 49 3 2 1 2 1 1 0 0 1 0 1 0 0 1 1 4 48 4 101 3 3 3 2 4 44 1 1 1 1 1 1 0 1 0 0 0 0 0 1 2 4 6 2 15 4 3 1 2 1 33 3 1 1 1 1 0 0 1 0 0 1 0 0 1 1 4 30 2 48 5 4 2 4 2 24 2 1 1 1 1 0 1 1 0 1 0 0 1 0 1 1 12 2 7 2 2 4 3 4 33 3 1 1 2 1 0 0 1 0 0 1 0 1 0 2 2 8 2 12 1 3 2 4 1 24 3 1 1 1 1 0 0 1 0 0 1 0 0 1 2 2 9 2 3 1 3 4 4 1 22 3 1 1 1 1 1 0 1 0 1 0 0 1 0 1 2 48 2 54 5 1 3 4 4 40 1 1 1 2 1 0 0 1 0 0 0 1 0 0 1 4 24 2 55 2 3 3 1 3 25 2 1 1 1 1 0 0 1 0 0 1 0 0 1 1 3 24 2 37 1 2 2 4 3 26 3 1 1 1 1 0 0 1 0 0 1 0 0 1 1 2 12 2 7 1 4 4 3 3 25 1 1 1 1 1 1 0 1 0 0 1 0 1 0 2 3 4 2 15 5 2 3 2 1 29 3 1 2 1 2 1 0 1 0 0 1 0 1 0 1 1 36 1 27 1 5 3 4 3 31 1 1 1 1 1 0 0 1 0 0 1 0 0 1 2 1 12 2 7 1 3 3 3 2 38 3 1 2 1 1 0 0 0 0 0 1 0 1 0 1 2 24 2 44 5 3 2 4 2 48 3 1 1 2 1 0 0 1 0 0 1 0 1 0 1 4 12 4 7 1 3 3 2 3 32 3 2 1 1 1 0 0 1 0 0 1 0 0 1 1 1 15 3 36 1 5 2 4 2 27 3 2 1 1 1 0 0 1 0 0 1 0 1 0 1 2 30 4 42 1 1 4 2 3 28 3 2 1 1 1 1 0 1 0 0 1 0 0 0 2 1 24 2 19 1 2 1 3 2 32 3 1 1 1 1 0 0 1 0 0 1 0 0 1 2 1 24 2 29 1 4 3 1 4 34 3 1 1 2 1 0 1 1 0 0 0 0 0 0 1 1 18 2 27 4 3 3 2 3 28 3 1 1 1 1 0 0 1 0 0 1 0 0 1 1 4 18 4 10 1 3 2 3 1 36 3 2 1 1 1 1 0 1 0 0 1 0 0 1 1 1 8 4 34 1 4 3 4 1 39 3 2 1 1 2 1 0 1 0 0 1 0 1 0 1 4 12 4 58 5 5 3 4 2 49 3 1 1 2 1 0 0 1 0 1 0 0 0 1 1 4 24 2 15 4 4 2 3 3 34 3 1 2 2 1 1 0 1 0 0 1 0 0 1 1 3 36 2 45 1 5 3 2 3 31 3 1 1 1 1 0 0 1 0 0 1 0 0 1 1 2 6 2 11 1 5 3 4 3 28 3 1 2 1 1 0 0 1 0 0 1 0 0 1 1 1 24 4 66 1 1 3 4 4 75 3 2 1 2 1 0 1 1 0 0 0 0 0 0 1 4 18 4 19 2 3 2 2 1 30 3 2 1 1 1 0 0 1 0 0 1 0 0 1 2 2 60 2 74 2 2 2 2 2 24 3 1 1 1 1 1 0 1 0 0 1 0 0 0 2 4 48 4 116 2 3 2 4 3 24 1 2 1 1 1 0 1 1 0 1 0 0 1 0 2 1 24 0 41 1 5 3 4 4 23 1 2 2 1 1 0 0 1 0 1 0 0 0 1 2 1 6 4 34 1 3 1 4 1 44 3 1 1 2 1 0 0 1 0 1 0 0 0 0 2 2 13 2 21 1 2 2 4 2 23 3 1 1 1 1 0 0 0 0 0 1 0 1 0 1 1 15 2 13 5 3 2 2 3 24 3 1 1 1 1 0 0 1 0 1 0 0 0 1 2 1 24 2 42 1 3 3 4 2 28 3 1 1 1 1 0 0 1 0 0 1 0 0 1 1 2 10 2 15 1 3 1 2 3 31 3 1 1 1 1 0 0 1 0 0 1 0 1 0 1 2 24 4 57 1 2 2 4 4 24 3 2 1 2 1 0 0 1 0 0 0 0 0 1 1 1 21 2 36 1 4 2 4 3 26 3 1 1 1 1 0 0 1 0 1 0 0 1 0 1 2 18 2 32 3 2 4 3 1 25 3 1 1 1 1 0 0 1 0 1 0 0 0 1 1 2 18 2 44 1 5 3 1 1 33 1 1 1 2 1 0 0 0 1 0 1 0 0 0 1 3 10 2 39 1 2 3 1 2 37 3 1 2 1 1 1 0 0 0 0 1 0 1 0 1 4 15 4 15 1 3 2 2 3 43 3 1 1 1 1 0 0 1 0 0 1 0 1 0 1 2 13 4 9 1 2 3 4 1 23 3 2 1 1 1 0 0 0 0 0 1 0 0 1 1 2 24 2 38 3 1 2 4 4 23 3 1 1 1 1 0 0 1 0 1 0 1 0 0 1 4 6 3 17 2 3 3 2 1 34 3 2 1 1 1 0 0 1 0 0 1 0 1 0 1 2 9 4 11 4 5 3 3 4 32 3 2 2 1 1 0 0 1 0 0 0 0 0 1 2 4 9 2 12 1 2 2 4 1 23 3 1 1 2 1 0 0 1 0 1 0 0 0 1 1 2 9 2 10 1 3 2 2 3 29 3 1 1 1 2 0 0 1 0 0 1 0 0 1 2 4 18 4 32 5 1 3 4 4 38 3 1 1 2 1 0 1 1 0 0 1 0 0 0 1 1 12 0 62 1 3 3 2 2 28 3 2 1 2 1 0 0 1 0 1 0 0 0 1 2 4 10 2 7 3 5 3 4 4 46 3 1 1 2 1 0 0 1 0 0 0 0 0 1 1 2 24 2 12 1 2 3 2 1 23 2 1 1 1 1 1 0 1 0 0 1 0 1 0 2 4 12 4 23 5 5 3 4 1 49 3 1 1 2 1 0 0 0 1 0 1 0 0 1 1 4 36 3 45 1 3 3 2 3 26 3 2 1 2 1 0 0 1 0 0 1 0 0 0 2 4 12 2 8 1 3 4 2 1 28 3 1 1 1 1 0 0 1 0 0 1 0 0 1 1 1 30 2 24 1 4 2 4 1 23 3 1 1 1 1 0 0 1 0 1 0 0 0 1 2 2 18 2 12 5 3 3 4 4 61 3 1 1 1 1 0 0 1 0 0 0 0 0 1 1 3 12 2 34 5 5 3 3 3 37 3 1 1 1 1 0 0 1 0 0 1 0 0 0 1 3 12 3 22 1 3 2 2 3 36 2 2 1 2 1 1 0 1 0 0 1 0 0 1 1 4 6 2 18 1 3 4 2 2 21 3 1 1 1 1 0 0 1 0 1 0 0 0 1 1 1 18 2 25 1 1 3 1 3 25 3 1 1 1 1 0 0 1 0 0 1 1 0 0 2 4 12 2 15 1 4 3 4 3 36 3 1 1 2 1 0 0 1 0 0 1 0 0 1 1 4 18 4 38 1 4 3 1 3 27 3 2 1 1 1 0 1 1 0 0 1 0 0 1 1 1 18 2 36 1 2 2 4 3 22 3 1 1 1 1 0 0 1 0 1 0 0 0 1 1 1 36 2 34 1 5 3 2 3 42 3 1 2 1 1 0 0 1 0 0 1 0 0 1 2 2 18 2 30 1 4 2 4 1 40 3 1 1 1 1 0 0 1 0 1 0 0 0 1 1 4 36 2 31 5 3 3 4 1 36 3 1 1 1 1 1 0 1 0 0 1 0 0 1 1 4 18 4 61 1 5 3 4 3 33 3 2 1 2 1 0 0 1 0 0 1 0 0 1 1 4 10 4 21 1 2 2 3 1 23 3 2 1 1 1 0 0 1 0 1 0 0 0 1 1 4 60 4 138 5 5 3 4 4 63 1 1 1 2 1 1 0 1 0 0 0 0 0 0 1 2 60 1 148 2 5 2 4 4 60 1 2 1 2 1 0 0 1 0 0 0 0 0 0 2 1 48 1 77 1 4 2 4 3 37 3 1 1 1 1 0 0 0 0 1 0 0 0 1 2 4 18 3 23 1 1 4 3 1 34 3 2 1 1 1 0 0 1 0 0 1 0 0 1 1 4 7 3 8 5 5 3 4 4 36 3 1 1 1 1 0 0 1 0 0 0 0 0 1 1 2 36 2 143 1 5 3 2 4 57 3 1 1 2 1 1 0 1 0 0 0 0 0 0 2 4 6 4 4 2 3 2 4 3 52 3 2 1 1 1 1 0 1 0 0 1 0 1 0 1 1 20 2 22 5 4 3 4 3 39 3 1 1 2 1 0 0 1 0 0 1 0 0 1 1 2 18 2 130 1 1 2 4 4 38 3 1 1 2 1 0 1 1 0 0 0 0 0 0 2 4 22 2 13 5 4 2 4 2 25 3 1 1 1 1 1 0 1 0 1 0 0 0 1 1 3 12 2 13 1 2 3 1 1 26 3 1 1 1 1 1 0 1 0 0 1 0 0 1 1 4 30 3 43 2 3 3 2 2 26 3 2 1 1 1 0 0 1 0 0 1 0 1 0 1 4 18 4 22 1 3 2 1 3 25 3 2 1 1 1 0 0 1 0 0 1 0 0 1 1 4 18 2 11 5 2 2 2 1 21 3 1 1 2 1 0 0 1 0 1 0 0 0 1 1 2 18 4 74 1 1 3 4 2 40 2 2 1 2 1 0 0 1 0 0 1 0 0 0 1 2 15 4 23 3 3 3 4 3 27 1 1 1 1 1 0 0 1 0 0 1 0 0 1 1 4 9 2 14 1 4 2 2 3 27 3 2 1 1 1 0 0 1 0 0 1 0 0 1 1 4 18 2 18 1 3 4 2 2 30 3 1 1 2 1 1 0 1 0 0 1 0 0 0 1 2 12 2 10 4 2 2 4 1 19 3 1 1 1 1 0 0 1 0 1 0 0 1 0 1 1 36 2 32 1 4 3 4 4 39 1 1 2 2 1 1 0 1 0 0 0 0 0 0 1 1 6 4 20 1 4 2 4 3 31 3 1 1 1 1 0 0 1 0 0 1 0 0 1 1 4 9 4 24 1 1 3 3 3 31 3 1 1 1 1 0 0 1 0 0 1 0 0 0 1 2 39 3 118 2 4 3 3 4 32 3 1 1 2 1 0 0 1 0 1 0 0 0 1 1 1 12 2 26 1 1 2 4 4 55 3 1 1 1 1 0 0 1 0 0 0 0 0 0 1 1 36 4 23 1 3 4 2 2 46 3 2 1 2 1 0 0 1 0 0 1 0 0 1 1 2 12 2 12 1 5 1 1 1 46 3 2 1 1 1 1 0 1 0 1 0 0 0 1 2 4 24 4 15 4 3 2 1 1 43 3 2 1 1 1 0 0 1 0 0 1 0 1 0 1 4 18 2 15 1 2 4 4 1 39 3 1 1 2 1 0 0 1 0 0 1 0 0 1 1 2 18 4 19 5 3 4 4 1 28 1 2 1 1 1 0 0 1 0 0 1 0 0 1 1 4 24 3 86 1 2 3 2 3 27 1 2 1 2 1 0 0 1 0 0 1 0 0 1 2 4 14 3 8 1 3 3 2 3 27 3 2 1 1 1 1 0 1 0 0 1 0 1 0 1 2 18 3 29 5 5 3 4 3 43 3 1 2 1 1 1 0 1 0 0 1 0 0 1 1 2 24 2 20 1 2 4 1 2 22 3 1 1 2 1 0 0 1 0 0 1 0 0 1 2 4 24 4 22 5 4 3 4 3 43 3 2 2 2 1 0 1 1 0 0 1 0 0 1 1 1 15 2 11 1 2 4 2 1 27 3 1 1 1 2 0 0 1 0 0 1 0 0 1 1 4 24 2 32 3 5 1 2 3 26 3 1 1 2 1 0 0 1 0 0 1 0 0 0 1 3 12 4 9 3 4 4 2 1 28 3 3 1 2 1 1 0 1 0 0 1 0 0 1 2 2 24 2 20 1 5 2 4 3 20 3 1 1 2 1 0 0 1 0 0 1 0 0 1 1 4 33 4 73 1 4 3 2 3 35 3 2 1 2 1 0 1 1 0 0 1 0 0 0 1 4 12 4 23 1 1 3 2 3 42 2 2 1 2 1 0 0 1 0 0 1 0 0 0 2 4 10 2 16 3 3 3 2 4 40 3 1 2 1 2 1 0 1 0 1 0 0 1 0 1 1 24 2 14 5 3 2 2 2 35 3 1 1 1 1 1 0 1 0 0 1 0 0 1 2 4 36 4 58 1 5 3 2 2 35 3 2 2 2 1 0 1 1 0 0 1 0 0 1 1 1 12 2 26 1 2 3 1 1 33 3 1 2 1 1 1 0 1 0 0 1 0 1 0 2 1 18 3 85 5 3 2 2 3 23 3 2 1 2 1 0 0 1 0 1 0 0 0 1 1 4 21 2 28 3 4 2 2 3 31 1 1 1 1 1 1 0 1 0 0 1 0 0 0 1 2 18 2 10 5 3 2 2 2 33 3 1 1 1 1 1 0 1 0 0 1 0 0 1 2 4 15 2 32 4 4 2 3 3 20 3 1 1 1 1 1 0 1 0 1 0 0 0 1 1 2 12 2 20 5 3 3 2 3 30 3 1 1 1 1 0 1 1 0 0 1 0 0 1 1 2 12 4 10 1 4 3 3 1 47 3 2 2 1 1 1 0 1 0 0 1 0 1 0 1 4 21 3 16 2 4 3 3 1 34 3 2 1 1 1 0 0 1 0 0 1 0 0 0 1 2 12 2 28 5 5 2 2 2 25 1 1 1 2 1 0 0 1 0 0 1 0 0 1 2 2 18 2 28 1 3 4 3 3 21 3 1 1 2 1 0 1 1 0 1 0 0 0 1 1 4 28 4 27 1 5 3 2 3 29 3 2 1 1 1 0 0 1 0 0 1 0 0 1 1 4 18 4 11 4 3 3 3 1 46 3 2 1 1 1 0 0 1 0 0 1 0 0 1 1 4 9 2 13 1 5 3 4 3 20 3 1 1 1 1 0 0 1 0 0 1 0 0 1 1 1 18 4 12 1 1 2 4 4 55 3 3 2 1 1 0 0 1 0 0 0 1 0 0 2 4 5 2 34 1 4 3 4 1 74 3 1 1 1 1 0 0 1 0 0 1 0 1 0 1 2 24 2 113 1 3 3 3 3 29 1 2 1 2 1 0 0 0 1 0 1 0 0 0 2 1 6 4 19 1 1 3 4 4 36 3 3 1 2 1 0 0 1 0 0 0 0 0 0 1 4 24 4 21 1 3 1 2 1 33 3 2 1 2 1 0 0 1 0 0 1 0 0 1 1 1 9 2 21 1 3 3 2 1 25 3 1 1 1 1 0 0 1 0 0 1 0 0 1 1 2 12 2 15 5 3 4 1 1 25 3 1 1 2 1 0 0 1 0 0 1 0 0 1 2 4 6 2 7 3 4 4 4 1 23 3 1 1 1 1 0 0 1 0 1 0 0 1 0 1 4 24 4 13 4 5 2 4 1 37 3 2 1 2 1 1 0 1 0 0 1 0 0 1 1 1 42 4 34 1 1 3 4 3 65 3 2 1 1 1 0 0 0 1 0 1 1 0 0 1 3 12 1 6 1 2 2 1 1 26 3 1 1 1 1 0 0 1 0 0 1 1 0 0 2 4 12 2 19 1 5 3 4 3 39 3 1 1 2 1 1 0 1 0 0 1 0 0 0 1 1 12 2 16 1 3 2 3 2 30 3 1 1 1 1 0 0 0 1 0 1 0 0 1 1 2 20 3 26 1 3 3 3 3 29 1 2 1 2 1 0 0 1 0 0 1 0 0 1 1 4 12 2 7 1 5 3 4 3 41 1 1 2 1 1 0 0 1 0 0 1 0 1 0 2 2 48 4 51 1 3 2 3 3 30 3 1 1 2 1 0 0 1 0 0 1 0 0 0 2 4 9 4 12 5 5 2 4 2 41 3 2 1 1 1 0 0 1 0 1 0 0 1 0 1 1 36 2 18 1 2 2 4 3 34 3 1 1 2 1 1 0 1 0 0 1 0 0 1 2 2 7 2 26 1 3 3 2 1 35 3 1 1 1 1 0 0 0 0 0 1 0 0 1 1 3 12 2 14 5 5 2 4 1 55 3 1 1 2 1 0 0 1 0 0 1 0 0 0 1 2 15 3 15 4 3 4 3 2 61 2 2 1 1 1 0 0 1 0 0 1 0 0 1 2 4 36 4 111 5 3 3 2 3 30 3 1 1 2 1 0 1 1 0 0 1 0 0 0 1 4 6 2 5 1 3 2 1 1 29 3 1 1 1 1 0 0 1 0 0 1 0 0 1 1 4 12 0 28 1 5 3 4 2 34 3 2 1 1 1 0 0 1 0 0 1 0 0 1 1 4 24 2 27 1 5 3 4 3 35 3 1 1 2 1 0 1 1 0 0 1 0 0 0 1 1 24 2 48 1 4 3 3 2 31 3 1 1 2 1 1 0 0 1 0 1 0 0 1 2 4 24 2 27 1 2 2 1 4 29 3 1 1 2 1 0 1 1 0 0 1 0 0 0 1 1 11 4 39 1 3 3 2 1 36 3 2 2 1 1 1 0 1 0 1 0 0 0 1 1 1 12 2 34 1 5 3 4 4 35 3 1 1 2 1 0 1 1 0 0 0 0 0 1 2 1 6 2 3 1 2 2 1 1 27 3 1 1 1 1 0 0 1 0 0 1 0 0 1 1 4 18 2 46 1 2 3 2 3 32 3 1 1 2 1 0 0 1 0 0 1 0 0 1 1 1 36 2 36 1 3 3 2 2 37 3 1 2 1 1 0 0 0 0 0 1 0 0 1 1 1 15 2 17 1 2 3 3 1 36 3 1 1 1 1 1 0 1 0 0 1 0 0 1 1 2 12 2 30 1 2 2 1 1 34 3 1 1 1 1 0 0 1 0 1 0 0 0 0 1 2 12 2 8 5 5 3 4 2 38 3 2 1 1 1 0 0 1 0 0 1 0 0 1 1 4 18 2 20 1 4 3 1 3 34 2 2 1 2 1 0 0 1 0 0 1 0 0 1 1 1 24 2 29 1 3 3 4 4 63 1 1 2 2 1 0 1 0 0 0 1 0 0 1 1 1 24 3 17 1 2 2 2 3 29 3 1 1 2 1 0 0 1 0 1 0 0 1 0 2 4 48 3 72 5 5 3 3 3 32 1 2 2 1 1 0 0 1 0 0 1 0 0 1 1 4 33 3 28 1 3 2 2 3 26 3 2 1 2 1 0 0 1 0 0 1 0 0 1 1 4 24 3 47 1 4 3 3 3 35 3 2 1 2 1 0 1 1 0 0 1 0 1 0 1 2 24 2 31 2 2 4 2 3 22 3 1 1 2 1 0 0 1 0 1 0 0 0 1 2 1 6 2 4 1 2 2 4 2 23 3 1 1 1 1 0 0 1 0 0 1 0 0 1 2 1 9 2 7 1 3 3 3 3 28 3 1 1 1 1 1 0 1 0 0 1 0 1 0 2 4 6 2 12 5 1 3 4 2 36 3 1 2 2 1 0 0 1 0 0 1 0 0 0 1 2 18 4 12 1 3 4 2 3 33 3 1 1 1 1 0 0 1 0 0 1 0 0 1 2 1 18 0 31 1 2 2 4 2 26 3 1 1 1 1 0 0 1 0 1 0 0 0 1 2 4 39 2 26 3 3 3 4 3 24 3 1 1 1 1 0 1 1 0 0 1 0 0 1 1 3 24 2 52 1 4 3 2 3 25 1 1 1 1 1 0 0 1 0 0 1 0 0 1 1 2 12 2 10 2 4 3 4 1 39 3 1 1 1 1 0 0 1 0 0 1 0 1 0 1 1 15 4 15 1 5 3 4 3 44 3 2 2 2 1 0 0 1 0 0 1 0 0 1 1 2 12 4 36 1 3 2 1 1 23 3 1 1 1 1 0 0 1 0 0 1 0 1 0 1 2 24 2 12 1 2 3 1 2 26 3 1 1 1 1 1 0 1 0 0 1 0 0 1 1 1 30 2 36 4 5 2 4 2 57 3 2 1 2 1 0 0 1 0 1 0 0 0 1 1 4 15 3 10 4 4 2 2 2 30 3 2 1 1 1 0 0 1 0 0 1 0 0 1 1 4 12 4 12 3 3 3 4 1 44 3 1 1 2 1 1 0 1 0 0 1 0 0 1 1 2 6 3 12 1 1 3 4 2 47 3 1 1 2 1 1 0 1 0 0 1 0 0 0 2 4 12 2 31 1 3 3 4 3 52 3 1 1 2 1 0 0 1 0 0 1 0 0 1 1 4 24 2 38 1 5 2 4 4 62 3 1 1 2 1 1 0 0 1 0 0 0 0 1 1 4 10 2 14 2 3 3 2 1 35 3 1 1 1 2 1 0 1 0 1 0 0 1 0 1 4 6 2 35 1 3 3 3 2 26 3 1 1 1 1 1 0 0 0 1 0 0 0 1 1 4 12 4 19 1 5 3 2 4 26 3 2 1 1 1 0 0 1 0 0 1 0 0 1 1 2 27 0 83 1 5 2 4 4 42 3 2 1 2 1 0 0 1 0 0 0 0 0 0 2 4 6 4 12 2 3 2 1 2 27 3 2 1 1 1 0 0 1 0 0 1 0 0 1 1 2 6 2 4 5 5 3 4 2 38 3 1 1 1 1 0 0 1 0 0 1 0 0 1 1 1 12 4 21 1 3 3 2 1 39 3 2 2 1 2 1 0 1 0 1 0 0 1 0 1 1 24 2 30 5 3 4 4 3 20 3 1 1 1 1 0 0 1 0 0 1 0 0 1 2 2 36 2 90 2 2 3 1 4 29 3 1 1 2 1 0 0 0 1 1 0 0 0 0 2 4 24 4 16 1 4 3 3 2 40 3 2 1 1 1 0 0 1 0 0 1 0 0 1 1 2 18 2 13 1 5 4 2 1 32 3 1 1 1 1 0 0 0 0 0 1 0 1 0 1 3 6 4 13 2 5 1 4 3 28 3 2 2 2 1 1 0 1 0 0 1 0 0 1 1 1 24 2 31 1 2 2 1 2 27 3 1 1 1 1 1 0 1 0 0 1 0 0 1 2 1 36 2 55 1 5 3 4 4 42 3 1 2 1 1 0 1 1 0 0 0 0 0 1 1 3 9 2 11 2 5 1 4 1 49 3 1 1 1 1 0 0 1 0 0 1 0 0 1 1 2 24 4 12 2 2 3 4 4 38 1 2 2 1 1 0 0 1 0 0 1 0 0 1 2 1 24 2 12 1 2 2 4 2 24 3 1 1 1 1 1 0 1 0 1 0 0 0 1 2 4 10 2 13 5 3 3 4 2 27 3 1 1 1 1 1 0 0 0 0 1 0 1 0 2 3 15 4 24 3 3 3 2 3 36 3 1 1 2 1 0 1 1 0 0 1 0 0 1 1 2 15 1 68 2 1 3 2 2 34 3 1 2 2 1 1 0 1 0 0 1 0 0 0 2 4 24 2 14 1 3 4 2 2 28 3 1 1 1 1 0 0 1 0 0 1 0 0 1 1 4 39 2 86 2 5 3 2 3 45 3 1 1 2 1 0 1 1 0 0 1 0 0 0 1 1 12 2 8 1 4 3 2 1 26 3 1 1 1 1 1 0 1 0 0 1 0 0 1 2 4 36 2 47 1 3 3 2 4 32 3 1 1 2 1 0 1 1 0 0 0 0 0 0 1 3 15 2 27 1 4 3 4 2 26 3 1 1 2 1 0 0 1 0 1 0 0 0 1 1 2 12 3 6 1 3 4 4 1 20 3 2 1 1 1 0 0 0 1 1 0 0 0 1 1 4 24 2 23 5 2 3 1 2 54 3 1 1 1 1 1 0 1 0 0 1 0 0 1 1 1 6 4 6 1 4 2 3 2 37 3 2 1 1 2 1 0 1 0 0 1 0 0 1 1 1 6 4 14 1 2 3 4 1 40 3 1 2 1 2 1 0 1 0 0 1 0 1 0 1 4 36 4 71 1 2 2 4 2 23 3 2 1 2 1 0 0 1 0 1 0 0 0 1 2 1 6 2 12 2 5 3 2 2 43 3 1 1 2 1 1 0 1 0 0 1 0 0 1 1 4 6 4 7 5 5 3 4 4 36 3 2 1 1 1 0 0 1 0 0 0 0 0 1 1 4 24 4 55 1 5 3 4 4 44 3 2 1 1 1 0 0 1 0 0 0 0 0 1 1 1 18 2 32 1 3 2 2 1 24 3 1 1 1 1 0 0 1 0 0 1 0 0 1 2 1 48 0 71 1 3 3 4 4 53 3 2 2 1 1 0 0 1 0 0 0 0 0 1 2 4 24 2 35 2 4 2 4 3 23 3 1 1 1 1 0 1 1 0 0 1 0 0 1 1 2 18 2 11 1 3 2 4 1 26 3 1 2 1 1 0 0 0 0 0 1 0 1 0 1 2 26 2 80 1 2 3 3 3 30 3 2 1 1 1 0 1 1 0 0 1 0 0 1 1 4 15 4 15 2 3 2 3 3 31 3 1 1 1 1 0 0 1 0 0 1 0 0 1 1 4 4 4 15 1 4 3 1 1 42 3 2 2 1 1 0 0 1 0 0 1 0 1 0 1 1 36 2 23 1 3 1 4 3 31 3 1 1 1 1 0 0 1 0 1 0 0 0 1 2 1 6 2 7 1 2 3 4 1 41 3 1 2 2 1 1 0 1 0 0 1 0 1 0 1 2 36 2 23 1 4 3 1 3 32 3 2 2 1 1 0 0 1 0 0 1 0 0 1 1 2 15 2 26 2 3 2 4 3 28 3 2 1 2 1 1 0 1 0 1 0 0 0 1 2 4 12 3 15 1 3 4 4 1 41 3 1 1 1 1 0 1 1 0 1 0 0 0 1 1 4 24 2 13 2 4 4 3 2 26 3 1 1 2 1 0 0 1 0 0 1 0 0 1 1 4 24 2 31 5 2 3 2 3 25 3 2 1 1 1 0 0 1 0 0 1 0 0 1 1 3 21 4 23 1 2 1 1 3 33 3 1 1 1 1 0 0 1 0 1 0 0 0 1 2 1 6 2 14 5 1 2 3 2 75 3 1 1 2 1 1 0 1 0 0 1 0 0 0 1 2 18 4 36 1 5 2 4 2 37 3 1 1 2 1 0 0 1 0 0 1 0 0 1 1 1 48 2 78 1 5 3 4 4 42 1 1 1 1 1 1 0 1 0 0 0 0 0 0 2 3 18 2 30 1 2 2 1 2 45 2 1 1 1 1 0 0 1 0 0 1 0 1 0 1 2 12 2 15 1 2 4 1 1 23 3 1 1 1 1 0 0 1 0 1 0 0 0 1 2 4 24 3 20 1 5 3 4 4 60 3 2 1 2 1 1 0 1 0 0 0 0 0 1 1 1 30 2 64 5 5 3 4 2 31 3 1 1 1 1 0 0 1 0 0 1 0 0 1 2 3 18 2 29 1 3 3 1 1 34 3 1 2 1 1 0 0 1 0 0 1 0 1 0 2 4 12 4 13 1 5 3 4 1 61 3 2 1 1 1 1 0 1 0 0 1 0 1 0 1 1 24 3 13 1 1 3 2 1 43 3 2 2 1 1 1 0 1 0 0 0 0 0 1 2 4 24 4 20 1 3 2 4 3 37 3 1 1 2 1 1 0 1 0 0 1 0 0 1 1 4 24 2 16 1 4 3 1 3 32 1 1 2 1 1 0 0 1 0 0 1 0 0 1 1 1 12 1 6 1 3 2 4 1 24 1 1 1 1 1 0 0 1 0 0 1 0 1 0 2 4 48 4 89 5 4 3 1 4 35 3 2 1 2 1 0 1 1 0 0 0 0 0 1 1 4 12 4 10 5 4 2 4 1 23 3 2 1 1 1 0 0 1 0 0 1 0 0 1 1 4 6 1 18 3 5 3 4 2 45 1 1 2 1 1 0 0 1 0 0 1 0 1 0 1 1 48 2 70 1 4 4 1 1 34 3 2 1 2 1 0 0 0 0 0 1 0 0 1 2 2 12 4 20 2 2 3 1 3 27 3 1 1 1 1 1 0 1 0 0 1 0 0 1 1 2 9 2 12 1 4 2 4 2 67 3 2 1 2 1 0 0 1 0 0 1 0 0 0 1 2 12 2 13 1 2 3 1 3 22 2 1 1 1 1 0 0 1 0 0 1 0 0 1 2 2 18 0 23 2 2 2 3 3 28 3 2 1 1 1 1 0 1 0 0 1 0 0 1 2 4 21 0 50 5 3 2 4 2 29 1 2 1 2 1 1 0 1 0 0 1 0 0 1 2 1 24 1 36 1 4 3 4 3 27 1 1 1 1 1 0 0 1 0 0 1 0 0 1 2 2 18 4 19 1 2 3 2 1 31 3 2 1 1 1 0 0 1 0 0 1 0 1 0 2 1 24 2 30 5 5 3 4 4 49 1 1 2 2 1 0 1 1 0 0 0 0 0 1 1 1 24 1 15 1 4 3 4 3 24 1 1 1 1 1 0 0 0 0 1 0 0 1 0 2 3 6 3 7 1 2 2 1 2 29 1 1 1 1 1 0 0 1 0 0 1 0 0 1 1 2 36 2 124 5 3 3 4 4 37 3 1 1 2 1 1 0 1 0 0 0 0 0 1 2 2 24 3 47 5 3 3 2 2 37 1 2 1 2 1 0 0 1 0 0 1 0 0 0 1 2 24 3 16 2 4 2 2 2 23 3 2 1 2 1 0 0 1 0 1 0 0 0 1 1 1 12 2 14 1 4 1 3 3 36 3 1 1 1 1 1 0 1 0 0 1 0 0 1 2 4 24 4 26 4 5 3 2 3 34 3 1 1 1 1 0 0 1 0 0 1 0 0 1 1 2 48 2 40 5 4 3 1 3 41 3 2 2 2 1 0 0 1 0 0 1 0 0 1 1 1 48 2 68 1 3 2 2 3 31 3 1 1 2 1 0 0 1 0 0 1 0 0 1 2 1 24 2 32 1 2 2 4 1 23 3 1 1 2 1 0 0 1 0 1 0 0 1 0 2 4 30 4 60 1 4 3 2 3 38 3 1 1 1 1 0 0 0 1 0 1 0 0 1 1 4 24 2 54 5 1 2 4 2 26 3 1 1 2 1 0 1 1 0 1 0 0 0 0 1 1 15 2 8 1 3 2 4 2 22 3 1 1 1 1 0 0 1 0 0 1 0 1 0 1 2 9 2 11 1 5 3 4 3 27 3 2 1 1 1 0 0 1 0 0 1 0 1 0 1 4 15 4 28 1 4 2 3 3 24 1 2 1 1 1 0 0 0 1 0 1 0 0 1 1 2 12 2 29 1 4 2 1 1 27 3 1 1 1 1 0 0 1 0 0 1 0 0 1 1 4 24 4 19 5 3 2 2 3 33 3 2 1 2 1 0 0 1 0 0 1 0 0 1 1 2 36 4 28 1 2 1 4 3 27 3 2 1 1 1 1 0 1 0 0 1 0 0 1 2 4 24 2 9 1 2 4 3 3 27 3 2 1 1 1 0 0 1 0 0 1 0 1 0 1 2 18 4 11 1 5 3 3 1 30 1 2 1 1 1 1 0 0 0 0 1 0 0 1 2 2 12 4 31 1 2 3 3 1 49 1 2 2 1 1 1 0 1 0 0 1 0 1 0 1 4 9 2 14 1 3 2 2 1 26 3 1 1 1 1 0 0 1 0 1 0 0 0 1 1 2 36 2 24 1 2 3 1 4 33 3 1 1 1 1 0 0 1 0 1 0 0 1 0 2 4 12 2 21 5 5 2 4 4 52 3 1 1 2 1 1 0 1 0 0 0 0 0 0 1 1 18 2 20 1 3 2 4 1 20 1 1 1 1 1 0 0 1 0 1 0 0 0 1 2 1 9 4 28 1 3 3 2 1 36 3 2 2 1 1 1 0 1 0 1 0 0 0 1 1 1 12 2 13 1 3 3 1 2 21 3 1 1 1 1 0 0 0 0 0 1 0 1 0 1 1 18 2 12 1 3 4 3 1 47 3 1 1 2 1 0 0 1 0 0 1 0 1 0 2 1 12 4 22 1 5 3 3 2 60 3 2 1 1 1 0 0 1 0 0 1 0 0 1 2 1 12 4 4 1 4 2 3 1 58 3 4 1 2 1 0 0 1 0 0 1 0 1 0 1 2 24 3 20 5 3 2 4 3 42 3 2 1 2 1 1 0 1 0 1 0 0 0 1 1 4 21 2 16 4 5 2 4 1 36 1 1 1 1 1 0 0 1 0 0 1 0 1 0 1 2 24 2 27 1 3 2 4 2 20 3 1 1 2 1 1 0 1 0 1 0 0 1 0 2 1 24 1 14 5 5 3 3 3 40 2 1 1 2 1 0 0 1 0 0 1 0 0 0 2 2 6 1 9 2 2 2 1 2 32 2 1 1 1 1 1 0 1 0 0 1 0 1 0 2 1 24 2 14 1 4 2 4 3 23 3 2 1 1 1 1 0 1 0 1 0 0 0 1 2 2 24 0 42 1 3 3 4 1 36 3 3 1 2 1 0 0 1 0 0 1 0 1 0 2 4 18 4 28 1 4 3 2 2 31 1 2 1 1 1 1 0 1 0 0 1 0 0 1 2 4 24 3 39 1 3 3 2 4 32 3 1 1 1 1 0 0 1 0 0 0 0 0 1 1 2 7 2 23 1 2 2 1 1 45 3 1 1 1 1 0 0 0 0 0 1 0 0 1 1 2 9 2 9 1 3 2 1 2 30 3 1 1 1 1 0 0 1 0 0 1 0 0 1 2 2 24 1 18 1 4 2 4 4 34 1 1 1 1 1 0 0 1 0 0 0 0 1 0 2 4 36 2 33 1 3 2 2 3 28 3 1 1 2 1 0 0 1 0 0 1 0 0 0 2 3 10 2 13 1 2 2 2 2 23 3 1 1 1 1 0 0 1 0 0 1 0 0 1 1 1 24 1 28 3 3 3 4 1 22 2 1 1 2 1 0 0 1 0 0 1 0 0 1 1 4 24 4 45 1 3 3 2 1 74 3 1 1 2 1 0 0 1 0 0 1 0 0 0 1 2 36 2 27 2 3 2 4 4 50 3 1 1 1 1 0 0 0 1 0 0 0 0 1 2 4 18 2 21 1 2 3 1 1 33 3 1 1 1 1 0 0 1 0 0 1 0 0 1 1 4 15 2 13 5 5 3 4 4 45 1 1 2 1 1 0 1 1 0 0 0 0 0 1 1 1 12 2 7 2 1 2 3 2 22 3 1 1 1 1 0 0 1 0 0 1 0 0 1 2 3 10 2 12 2 5 2 4 4 48 3 1 2 1 1 1 0 1 0 0 0 0 1 0 2 1 21 2 34 4 2 2 2 3 29 1 1 1 1 1 0 0 1 0 0 1 0 0 1 1 1 24 1 36 1 3 2 4 3 22 1 1 1 1 2 0 1 0 0 1 0 0 0 1 1 4 18 3 18 1 4 2 1 1 22 3 1 1 1 1 0 0 1 0 0 1 0 0 1 2 2 48 0 122 5 3 3 2 3 48 1 1 1 2 1 0 0 1 0 0 1 0 0 0 1 2 60 3 92 5 3 3 2 4 27 3 1 1 1 1 0 0 1 0 0 0 0 0 0 1 1 6 4 37 1 3 3 3 1 37 3 3 2 1 1 1 0 1 0 1 0 0 0 1 1 2 30 2 34 2 3 2 4 3 21 3 1 1 1 1 0 0 0 1 1 0 0 0 1 2 4 12 2 6 1 3 1 2 1 49 3 1 1 1 1 1 0 1 0 0 1 0 1 0 1 2 21 4 37 1 4 3 3 2 27 3 2 1 1 1 0 0 1 0 0 1 0 0 1 1 4 18 4 15 1 3 3 2 2 32 1 2 1 1 1 1 0 1 0 0 1 0 0 1 2 4 48 2 39 5 3 1 2 1 38 1 1 1 1 1 0 0 1 0 0 1 0 0 1 2 1 12 2 19 1 2 2 1 3 22 3 1 1 1 1 0 0 1 0 1 0 0 0 1 1 1 18 2 26 1 3 3 4 4 65 3 2 1 1 1 0 0 1 0 0 0 0 0 1 2 4 15 2 20 5 5 3 2 3 35 3 1 1 1 1 0 0 1 0 0 1 0 0 1 1 3 6 2 21 1 3 3 2 1 41 3 1 1 2 1 0 0 1 0 0 1 0 0 1 1 2 9 1 14 2 4 3 3 4 29 3 1 1 1 1 1 0 1 0 0 1 0 0 1 2 4 42 4 40 3 3 3 4 1 36 3 2 1 2 1 0 0 1 0 0 1 0 0 1 1 4 9 2 38 5 5 3 4 1 64 3 1 1 1 1 0 0 1 0 0 1 0 1 0 1 1 24 2 37 1 3 2 4 3 28 3 1 1 1 1 0 0 1 0 0 1 0 0 1 1 1 18 1 16 1 3 3 3 3 44 1 1 1 1 1 0 0 1 0 0 1 0 0 1 2 2 15 2 14 5 2 3 1 2 23 3 1 1 1 1 0 0 1 0 0 1 0 0 1 1 4 9 2 20 1 2 2 2 3 19 3 2 1 1 1 0 0 0 1 1 0 0 0 1 2 2 24 2 14 1 2 2 4 3 25 3 1 1 2 1 1 0 1 0 0 1 0 1 0 2 4 12 2 14 1 5 3 4 2 47 1 3 2 2 1 0 0 1 0 0 1 0 0 1 1 4 24 2 14 3 4 2 1 3 28 3 1 1 1 1 0 0 1 0 0 1 0 0 1 1 4 60 3 157 1 4 3 4 3 21 3 2 1 2 1 0 0 1 0 0 1 0 0 1 1 4 12 2 15 1 2 2 3 3 34 3 1 2 1 1 0 0 1 0 0 1 0 0 1 1 1 42 3 44 1 4 3 2 2 26 1 2 2 2 1 0 0 1 0 0 1 0 0 1 2 1 18 2 8 1 1 2 1 1 27 3 1 1 1 1 0 0 1 0 0 1 1 0 0 2 2 15 2 13 1 5 3 4 3 38 3 2 1 1 1 0 0 1 0 0 1 0 1 0 1 4 15 2 46 2 3 3 2 2 40 3 1 1 2 1 0 0 1 0 0 1 0 0 0 2 4 24 4 19 1 4 4 2 3 33 3 2 1 2 1 0 0 0 0 0 1 0 0 1 1 1 18 4 19 1 4 4 1 2 32 3 2 1 2 1 0 0 1 0 0 1 0 0 0 1 4 36 3 80 5 2 3 4 3 27 3 2 1 2 1 0 0 1 0 1 0 0 0 1 2 1 30 0 46 1 3 1 2 1 32 3 2 1 1 1 0 0 0 0 0 1 0 0 1 1 4 12 2 14 3 3 2 2 2 26 3 1 1 1 1 1 0 1 0 0 1 0 0 1 2 3 24 2 9 1 4 3 3 4 38 1 1 2 1 1 1 0 1 0 0 0 0 0 1 2 1 12 2 7 1 3 3 4 3 40 3 1 2 1 1 0 0 1 0 1 0 0 1 0 2 1 48 2 75 1 4 3 1 4 50 3 1 1 2 1 0 0 1 0 0 0 0 0 0 1 2 12 2 19 1 3 3 2 2 37 3 1 1 1 1 0 0 1 0 0 1 0 1 0 2 1 24 2 23 1 5 3 1 1 45 3 1 1 1 1 1 0 0 1 0 1 0 0 1 2 2 36 3 81 2 5 3 4 3 42 3 4 1 2 1 1 0 1 0 0 1 0 0 0 2 4 24 4 23 1 4 3 3 3 35 3 2 1 2 1 0 1 1 0 0 1 0 0 1 1 1 14 2 40 1 1 3 4 4 22 3 1 1 1 1 1 0 1 0 0 0 0 0 1 1 2 12 2 9 1 5 3 4 3 41 1 1 2 1 1 1 0 1 0 0 1 0 1 0 2 4 48 2 102 5 4 3 3 3 37 2 1 1 2 1 0 0 1 0 0 1 0 0 1 1 2 30 0 42 1 3 2 1 3 28 3 2 1 1 1 0 0 1 0 0 1 0 0 1 1 2 18 4 64 1 5 3 1 4 41 3 1 1 2 1 0 0 1 0 0 1 0 0 1 1 3 12 2 13 1 3 4 4 1 23 3 1 1 1 1 0 0 1 0 1 0 0 0 1 1 1 12 2 9 5 3 4 2 3 23 3 1 1 1 1 1 0 1 0 0 1 0 0 1 2 4 21 2 22 1 5 3 2 1 50 3 2 1 1 1 0 0 1 0 0 1 0 0 1 1 2 6 3 10 1 1 3 1 2 35 2 2 1 2 1 0 0 1 0 0 1 0 0 0 1 3 6 4 10 1 3 2 4 2 50 3 1 1 1 1 0 0 1 0 0 1 0 1 0 1 4 24 4 63 1 1 3 2 4 27 1 2 1 2 1 0 0 0 1 0 1 0 0 0 1 2 30 1 35 4 3 3 2 3 34 2 1 2 2 1 0 0 1 0 0 1 0 0 1 1 4 48 1 36 1 3 2 1 1 27 2 1 1 1 1 0 0 1 0 0 1 0 0 1 1 1 12 4 48 1 5 3 4 2 43 3 2 1 2 1 1 0 0 1 1 0 0 0 1 2 3 30 4 30 1 5 3 4 2 47 3 1 1 1 1 0 0 1 0 0 1 0 0 1 1 4 24 4 41 2 3 3 3 2 27 3 2 1 2 1 0 0 1 0 0 1 0 1 0 1 4 36 2 57 2 4 3 2 3 31 3 2 1 2 1 0 0 1 0 0 1 0 0 1 1 4 60 2 104 1 5 3 4 2 42 3 1 1 2 1 1 0 1 0 0 1 0 0 0 1 4 6 4 21 3 3 4 2 3 24 3 1 1 1 1 1 0 1 0 0 1 0 0 1 1 4 21 3 26 3 2 3 2 1 41 1 1 2 1 1 0 0 1 0 0 1 0 1 0 2 4 30 4 45 1 4 2 4 3 26 3 1 1 2 1 0 0 1 0 1 0 0 0 0 1 4 24 4 52 1 5 3 4 3 33 3 1 1 2 1 0 0 1 0 0 1 0 0 1 1 2 72 2 56 2 3 4 2 3 24 3 1 1 1 1 0 0 1 0 0 1 0 0 1 2 1 24 2 24 1 5 3 4 1 64 1 1 1 1 1 0 0 1 0 1 0 0 1 0 1 4 18 2 15 1 2 2 1 1 26 3 1 1 1 1 0 0 1 0 0 1 0 0 1 1 4 6 2 15 1 2 2 2 4 56 3 1 1 1 1 0 0 1 0 0 1 0 0 1 1 4 12 2 23 5 3 3 4 4 37 3 1 1 2 1 0 0 1 0 0 0 0 0 1 1 4 15 3 15 1 3 4 3 1 33 1 2 1 1 1 0 0 1 0 0 1 0 0 1 1 4 24 4 51 1 2 4 3 4 47 3 3 1 2 1 0 0 1 0 0 0 0 0 1 1 2 36 3 99 2 4 3 3 2 31 3 2 2 2 1 0 0 1 0 0 1 0 1 0 1 4 60 2 65 5 3 3 4 4 34 3 1 2 2 1 1 0 1 0 0 0 0 0 1 1 3 10 4 13 5 4 3 2 2 27 3 2 1 2 1 0 0 1 0 0 1 0 0 1 1 2 36 3 29 2 5 3 3 4 30 3 1 1 1 1 1 0 1 0 0 0 0 0 1 1 4 9 2 28 2 5 3 4 3 35 3 1 1 2 1 0 0 0 1 0 1 0 0 1 1 1 12 2 37 4 3 3 3 2 31 3 1 2 1 1 1 0 1 0 0 1 0 0 1 1 1 15 4 10 1 3 1 3 2 25 3 2 1 1 1 0 0 1 0 0 1 0 0 1 1 2 15 2 26 2 3 2 2 1 25 3 1 1 1 1 0 0 1 0 0 1 0 1 0 1 2 24 2 29 2 2 3 1 3 29 3 1 1 1 1 0 0 1 0 0 1 0 0 1 1 1 6 4 47 5 2 3 3 1 44 3 2 2 1 1 1 0 1 0 0 1 0 1 0 1 4 24 2 23 1 4 3 2 3 28 3 1 1 2 1 0 0 1 0 0 1 0 0 1 1 4 6 2 12 3 3 3 4 2 50 3 1 1 1 1 0 1 1 0 1 0 0 0 1 1 2 12 2 11 1 4 3 3 1 29 3 2 1 1 2 0 0 0 0 0 1 0 0 1 1 4 12 4 9 1 1 2 2 2 38 3 1 1 1 1 1 0 1 0 0 1 1 0 0 1 4 18 4 18 1 3 3 2 3 24 3 2 1 1 1 0 0 1 0 0 1 0 0 1 1 3 15 2 19 1 5 3 4 3 40 3 1 1 2 1 0 0 1 0 1 0 0 0 0 1 4 12 2 11 3 3 2 4 3 29 3 1 1 1 1 0 0 1 0 1 0 0 1 0 2 1 48 4 63 1 5 3 4 4 46 3 2 1 2 1 0 1 1 0 0 0 0 0 1 2 3 24 2 14 2 5 2 2 4 47 3 1 1 2 1 0 0 1 0 0 0 0 0 1 1 2 30 3 25 2 5 3 2 2 41 2 2 1 1 1 0 0 1 0 0 1 0 0 1 1 2 27 2 25 1 2 2 1 2 32 3 1 2 2 1 0 0 1 0 0 1 0 0 1 1 4 15 2 53 3 5 2 4 4 35 3 1 1 1 1 1 0 1 0 0 0 0 0 1 1 2 48 2 66 2 4 3 2 2 24 3 1 1 1 1 1 0 1 0 0 1 0 0 1 2 2 12 0 30 1 2 2 3 2 25 3 2 1 1 1 0 0 1 0 1 0 0 0 1 2 2 9 2 12 1 5 2 4 1 25 3 1 1 1 1 0 0 1 0 0 1 0 0 1 1 2 9 2 21 1 3 3 2 1 37 3 1 2 1 1 0 0 1 0 0 1 0 1 0 1 4 18 4 6 3 5 3 3 2 32 1 2 1 2 1 0 0 1 0 0 1 0 0 0 1 1 6 1 12 1 5 2 4 4 35 3 1 1 1 1 0 0 1 0 0 0 0 0 1 2 4 21 2 25 5 5 3 4 1 46 3 1 1 2 1 0 1 1 0 0 1 0 0 0 1 1 9 4 11 1 3 3 4 1 25 3 2 1 1 1 0 0 1 0 0 1 0 1 0 1 2 60 2 140 1 4 3 2 4 27 3 1 1 2 1 1 0 1 0 0 1 0 0 0 2 4 30 4 76 5 5 3 4 3 63 3 2 1 1 1 0 1 1 0 0 1 0 0 1 1 4 30 4 31 5 5 3 2 3 40 3 2 2 2 1 0 0 1 0 0 1 0 0 1 1 4 18 2 15 1 3 3 2 4 32 3 1 1 2 1 0 0 1 0 0 0 0 0 0 1 3 24 4 31 5 3 3 2 3 31 3 2 1 2 1 0 0 1 0 0 1 0 0 1 1 2 20 0 61 2 5 4 4 3 31 1 2 1 2 1 0 1 1 0 0 1 0 0 1 1 3 9 0 13 1 2 3 2 3 34 3 2 1 2 1 0 0 1 0 0 1 0 0 0 2 2 6 1 4 4 2 2 2 2 24 1 1 2 1 1 0 0 1 0 1 0 0 0 1 2 1 12 2 12 1 3 2 2 1 24 3 1 1 1 1 1 0 1 0 0 1 0 1 0 2 2 9 2 8 3 3 2 3 1 66 3 1 1 1 1 0 0 1 0 0 1 0 1 0 1 4 27 2 26 1 3 2 3 1 21 3 1 1 1 1 1 0 1 0 1 0 0 0 1 2 4 6 4 2 4 3 2 2 1 41 1 2 1 1 1 1 0 1 0 0 1 0 1 0 1 4 15 4 13 3 3 4 2 2 47 3 2 1 1 1 0 0 1 0 0 1 0 1 0 1 1 18 2 19 1 3 2 4 3 25 1 2 1 1 1 0 0 1 0 1 0 0 0 1 2 2 48 1 64 1 5 2 3 4 59 3 1 1 1 1 0 0 1 0 1 0 0 0 1 2 3 24 4 13 4 3 1 4 1 36 3 2 1 2 1 0 0 1 0 0 1 0 0 1 1 2 24 3 64 1 2 3 2 3 33 3 1 1 1 1 0 0 1 0 0 1 0 0 1 1 1 24 2 20 1 3 3 4 1 21 3 1 2 1 1 0 0 1 0 1 0 0 1 0 2 2 8 2 8 1 4 2 2 1 44 3 1 1 1 1 0 0 0 0 0 1 0 1 0 1 4 24 2 26 4 3 2 4 3 28 3 1 1 2 1 0 1 1 0 1 0 0 0 1 1 4 4 4 34 1 4 2 1 1 37 3 1 2 1 1 1 0 1 0 0 1 0 0 1 1 2 36 1 40 5 2 2 2 4 29 1 1 1 1 1 0 0 1 0 0 1 1 0 0 1 2 24 2 116 1 3 2 4 3 23 3 2 1 1 1 0 1 1 0 1 0 0 0 0 2 1 18 2 44 2 3 3 4 3 35 3 1 2 2 1 1 0 1 0 0 1 0 1 0 1 4 6 4 68 1 4 3 3 4 45 3 2 2 2 1 1 0 1 0 0 1 0 0 0 1 2 30 0 43 2 3 2 4 3 26 3 2 1 1 1 0 0 1 0 1 0 0 1 0 2 1 24 1 23 2 4 3 3 3 32 1 1 1 1 1 1 0 1 0 0 1 0 0 1 1 2 10 1 10 1 3 3 4 1 23 2 1 1 1 1 0 0 1 0 0 1 0 1 0 1 4 21 2 32 5 5 3 3 2 41 3 1 1 2 1 0 0 1 0 0 1 0 0 1 1 1 24 1 25 3 3 3 4 1 22 2 1 1 2 1 0 0 1 0 0 1 0 0 1 1 1 39 4 142 5 4 3 4 2 30 3 2 1 2 1 0 0 1 0 0 1 0 0 0 1 1 13 4 18 1 2 3 1 2 28 1 2 1 1 1 0 0 1 0 0 1 0 1 0 1 1 15 2 25 1 1 2 4 3 23 3 1 1 1 1 1 0 1 0 1 0 0 0 1 1 1 12 2 13 1 2 2 1 1 37 3 1 1 1 1 1 0 1 0 0 1 0 1 0 2 4 21 2 52 5 3 3 3 3 26 3 1 1 1 1 0 1 1 0 0 1 0 0 1 1 4 15 2 30 1 4 3 2 3 33 3 1 1 1 1 0 1 1 0 0 1 0 0 1 1 1 6 2 4 1 5 2 1 2 49 1 1 1 2 1 0 0 1 0 0 1 0 0 1 1 1 18 2 10 1 2 2 2 3 23 3 1 1 1 1 1 0 1 0 0 1 0 1 0 2 2 12 2 8 2 4 2 4 1 23 3 1 1 1 1 0 0 1 0 1 0 0 1 0 1 4 30 4 58 1 4 2 2 3 25 3 2 1 1 1 0 0 1 0 0 1 0 0 1 1 4 12 3 16 4 5 3 4 4 55 3 2 2 1 1 0 0 1 0 0 0 0 0 1 2 1 24 2 13 5 4 2 4 4 32 3 1 1 1 1 1 0 1 0 1 0 0 0 1 2 3 6 4 13 1 3 3 1 1 74 3 3 2 1 2 1 0 1 0 0 1 1 0 0 1 3 15 4 13 5 3 3 4 4 39 3 2 1 2 1 0 0 1 0 0 0 0 0 1 2 4 24 2 14 1 3 3 2 1 31 3 1 1 2 1 1 0 0 0 0 1 0 0 1 1 1 12 4 7 1 5 3 3 2 35 3 2 1 1 1 1 0 1 0 0 1 0 0 1 2 4 15 4 50 5 5 2 4 3 59 3 1 1 2 1 1 0 1 0 0 1 0 0 1 1 1 18 4 21 1 3 2 4 1 24 3 2 1 1 1 0 0 1 0 1 0 0 0 1 2 1 12 2 22 1 3 3 3 2 24 3 1 1 1 1 0 0 1 0 0 1 0 1 0 1 4 21 4 127 5 5 3 4 4 30 3 1 1 2 1 1 0 1 0 0 0 0 0 0 2 4 24 4 25 2 4 4 3 2 27 3 2 1 2 1 1 0 1 0 0 1 0 0 1 1 2 12 2 12 1 5 4 3 1 40 1 2 1 1 1 0 0 0 0 0 1 0 1 0 1 1 30 2 31 1 2 1 4 2 31 3 1 1 1 1 0 0 1 0 0 1 0 1 0 2 4 10 2 29 5 2 2 4 1 31 3 1 1 1 1 0 1 1 0 1 0 0 0 1 1 2 12 4 36 1 5 3 4 3 28 3 3 1 2 1 0 0 1 0 1 0 0 0 1 1 4 12 4 17 1 5 3 4 1 63 3 2 1 2 1 0 0 1 0 0 1 0 1 0 1 1 24 2 28 5 5 2 4 1 26 3 1 1 1 1 0 1 1 0 1 0 0 0 1 1 1 36 4 81 1 3 2 2 4 25 3 2 1 2 1 0 0 1 0 0 1 0 0 0 2 4 21 4 33 1 5 3 4 3 36 3 1 1 2 1 0 1 1 0 0 1 0 0 0 1 4 24 4 22 2 5 3 4 2 52 1 2 1 1 1 0 0 1 0 0 1 0 0 1 1 3 12 4 15 3 1 3 4 4 66 1 3 1 1 1 1 0 1 0 0 0 1 0 0 1 1 24 2 14 5 3 2 4 1 25 3 1 1 1 1 1 0 1 0 1 0 0 0 1 2 4 36 4 35 1 4 3 4 3 37 3 2 1 2 1 1 0 1 0 0 1 0 0 1 1 1 18 2 35 1 4 2 1 1 25 3 1 1 1 1 0 0 0 0 0 1 0 0 1 1 4 36 4 57 4 5 3 2 3 38 3 2 1 2 1 0 1 1 0 0 1 0 0 0 1 2 18 2 39 1 1 2 4 3 67 3 1 1 2 1 0 0 1 0 0 1 0 0 1 1 2 39 4 49 1 4 3 2 1 25 3 2 1 1 1 0 0 0 0 0 1 0 0 1 2 4 24 4 19 4 5 3 4 1 60 3 1 1 2 1 1 0 1 0 0 1 0 0 1 1 2 12 0 14 1 3 3 2 1 31 3 1 1 2 1 0 0 1 0 0 1 0 1 0 1 2 12 2 8 2 2 2 2 2 23 1 1 1 1 1 1 0 1 0 0 1 0 1 0 2 2 20 2 65 5 1 1 4 1 60 3 1 1 2 1 0 1 1 0 0 1 0 0 0 1 2 18 2 19 4 3 3 2 2 35 3 1 1 2 1 0 0 1 0 0 1 0 1 0 1 4 22 2 27 3 5 3 4 3 40 3 1 1 1 1 0 0 1 0 0 1 0 0 1 1 4 48 4 28 5 5 3 3 3 38 3 2 2 2 1 0 1 1 0 0 1 0 0 1 1 2 48 3 62 1 5 3 4 4 50 3 1 1 1 1 0 0 1 0 0 0 0 0 1 2 1 40 4 60 1 3 3 3 4 27 1 1 1 2 1 0 0 1 0 0 1 0 0 1 2 2 21 2 12 1 5 2 4 2 39 3 1 2 1 1 0 0 1 0 0 1 0 0 1 2 4 24 2 63 5 5 3 4 3 41 3 1 2 2 1 0 1 1 0 0 1 0 0 0 1 4 6 4 12 5 3 4 2 2 27 3 2 1 1 1 0 0 1 0 0 1 0 0 1 1 3 24 2 29 1 5 1 4 4 51 3 1 1 1 1 0 0 1 0 0 0 0 0 1 1 4 24 2 31 3 5 3 3 4 32 3 1 1 2 1 0 0 1 0 1 0 0 0 1 1 4 9 2 23 2 2 2 4 2 22 3 1 1 1 1 0 0 1 0 1 0 0 0 1 1 1 18 2 75 5 5 3 4 2 51 3 1 2 2 1 0 1 1 0 0 0 0 0 1 2 4 12 4 13 1 2 2 4 2 22 3 2 1 1 1 0 0 1 0 1 0 0 1 0 1 4 24 3 7 5 5 4 4 3 54 3 2 1 2 1 1 0 1 0 0 1 0 0 1 1 2 9 2 15 5 2 3 2 1 35 3 1 1 1 1 1 0 1 0 0 1 1 0 0 1 4 24 4 16 1 5 3 4 4 54 3 2 2 1 1 0 0 1 0 0 0 0 0 1 1 2 18 4 18 1 5 2 4 1 48 1 2 1 2 1 0 0 0 0 1 0 0 1 0 1 1 20 4 43 1 5 2 4 2 24 3 2 1 1 1 0 0 1 0 0 1 0 0 1 1 4 12 4 10 5 5 3 4 3 35 3 2 1 1 1 0 0 1 0 0 1 0 0 1 1 2 12 2 75 5 1 2 2 1 24 3 1 1 1 1 1 0 1 0 1 0 1 0 0 1 1 36 2 93 1 4 3 1 3 24 3 1 1 2 1 1 0 1 0 0 1 0 0 1 2 2 6 2 6 1 2 4 3 1 26 3 1 1 1 2 0 0 1 0 0 1 0 1 0 1 4 12 4 9 5 5 3 4 1 65 3 4 1 1 1 0 0 1 0 0 1 0 0 1 1 2 42 1 93 1 1 3 2 4 55 1 1 1 2 1 0 1 1 0 0 0 0 0 0 1 2 15 0 18 1 2 2 1 1 26 3 2 1 1 1 1 0 1 0 1 0 1 0 0 2 2 8 2 9 1 2 4 2 1 26 3 1 1 2 1 0 0 1 0 0 1 0 0 1 1 2 6 2 5 1 4 4 3 1 28 1 1 1 1 1 0 0 0 0 0 1 0 1 0 1 1 36 4 96 1 4 3 4 3 24 3 2 1 2 1 0 1 1 0 0 1 0 0 1 2 1 48 2 31 1 3 3 4 3 54 3 1 1 1 1 0 0 1 0 0 1 0 0 1 2 1 48 2 39 1 4 3 4 4 46 3 1 2 1 1 1 0 1 0 0 0 0 0 1 2 2 36 3 74 1 3 2 2 2 54 3 1 1 1 1 1 0 1 0 1 0 0 0 1 1 4 6 2 13 3 3 1 4 1 62 3 1 1 1 1 0 0 1 0 0 1 0 0 1 1 4 6 4 16 1 4 2 2 3 24 3 2 1 2 1 0 0 1 0 1 0 0 0 1 1 1 36 2 159 1 1 1 3 3 43 3 1 1 1 1 0 0 0 1 0 1 0 0 0 1 1 18 2 13 1 3 4 3 1 26 1 1 1 1 1 0 0 1 0 0 1 0 0 1 2 4 12 2 11 1 3 4 2 1 27 3 2 1 2 1 1 0 1 0 0 1 0 0 1 1 3 12 2 30 1 3 4 1 3 24 3 1 1 1 1 0 0 1 0 0 1 0 0 1 1 1 36 2 27 1 5 3 2 2 41 1 1 2 1 1 0 0 1 0 0 1 0 0 1 2 1 8 4 7 1 5 3 4 1 47 3 2 1 1 1 1 0 1 0 0 1 0 1 0 1 4 18 4 38 1 2 1 2 3 35 3 2 1 2 1 0 0 1 0 0 1 0 0 0 1 1 21 4 16 1 5 4 3 3 30 3 2 1 2 1 1 0 1 0 0 1 0 0 1 1 1 18 4 40 1 5 2 4 1 33 1 3 1 2 1 1 0 1 0 1 0 0 0 1 2 4 18 0 42 1 3 3 2 3 36 2 2 2 1 1 0 0 1 0 0 1 0 0 1 2 1 36 2 83 5 5 3 4 4 47 3 1 1 1 1 0 1 1 0 0 0 0 0 1 2 2 48 3 67 5 3 3 4 4 38 3 1 2 2 1 0 0 1 0 0 0 0 0 1 1 4 24 3 24 3 3 3 2 3 44 3 2 2 2 1 0 0 1 0 0 1 0 0 1 1 1 18 2 12 1 2 2 3 3 23 3 1 1 2 1 1 0 1 0 1 0 0 0 1 2 1 45 0 118 1 5 3 4 3 29 3 2 1 1 1 0 0 1 0 1 0 0 0 1 2 2 24 2 51 5 5 2 4 3 42 3 1 1 2 1 0 0 1 0 0 1 0 0 1 1 3 15 2 23 1 2 2 3 1 25 3 1 1 1 1 0 0 1 0 0 1 0 1 0 2 1 12 0 11 1 3 3 4 3 48 1 2 1 1 1 1 0 1 0 0 1 0 0 1 2 4 12 2 9 5 3 2 2 3 21 3 1 1 1 1 0 0 1 0 0 1 0 0 1 1 4 4 2 6 1 2 2 3 1 23 3 1 2 1 1 0 0 1 0 1 0 0 1 0 1 1 24 4 30 1 5 3 4 2 63 3 2 1 2 1 0 1 1 0 0 1 0 0 1 1 4 24 4 26 1 5 4 3 1 46 3 2 1 1 1 0 0 0 1 0 1 0 0 1 1 1 36 2 52 1 4 3 2 2 29 3 1 1 1 1 0 0 1 0 0 1 0 0 1 2 4 21 3 30 1 3 3 2 1 28 2 2 1 1 1 0 1 1 0 0 1 0 1 0 1 4 18 2 19 1 2 2 4 1 23 3 1 1 1 1 0 0 1 0 0 1 0 0 1 2 4 24 1 16 1 4 3 4 3 50 1 1 1 2 1 0 0 1 0 0 1 0 0 1 1 4 18 2 34 1 5 3 4 2 47 1 3 2 2 1 0 0 1 0 0 1 0 0 1 1 2 21 2 40 5 4 3 3 3 35 3 1 1 2 1 0 0 1 0 0 1 0 0 1 1 4 18 2 68 5 3 3 4 3 68 3 2 1 1 1 1 0 1 0 1 0 0 0 1 2 4 24 2 12 1 2 4 2 1 28 3 1 1 1 1 1 0 1 0 0 1 0 0 1 1 1 9 2 14 1 4 3 4 1 59 3 1 1 1 1 0 0 1 0 0 1 0 0 1 1 1 12 2 7 1 5 3 4 1 57 2 1 1 1 1 0 0 1 0 0 1 0 1 0 2 1 20 4 22 1 3 4 2 2 33 1 2 1 1 2 1 0 0 0 1 0 0 0 1 2 4 24 4 40 5 4 3 4 2 43 3 2 1 2 1 0 1 1 0 0 1 0 0 1 1 4 15 4 15 1 3 3 4 4 35 3 2 1 2 1 0 0 1 0 0 0 0 0 1 1 1 18 1 14 1 4 3 4 4 32 3 2 2 1 1 1 0 1 0 0 0 0 1 0 2 4 36 3 109 1 5 3 2 3 45 3 2 2 2 1 1 0 1 0 0 1 0 0 1 1 4 24 2 15 2 2 4 3 1 33 3 1 1 2 1 1 0 1 0 0 1 0 0 1 1 4 10 2 9 5 4 2 3 2 40 3 1 1 2 1 0 0 1 0 0 1 0 0 1 1 4 15 4 33 1 3 3 2 4 28 3 1 1 2 1 0 0 1 0 0 0 0 0 1 1 1 15 2 40 1 3 2 2 2 29 3 1 1 2 1 1 0 1 0 0 1 0 0 1 2 4 9 2 36 2 3 3 2 1 26 3 1 2 1 2 1 0 0 0 1 0 0 0 1 1 4 24 4 58 4 3 3 2 1 27 3 2 1 1 1 0 1 1 0 0 1 0 0 1 1 4 18 3 22 1 3 4 2 3 28 3 1 1 2 1 0 0 1 0 0 1 0 0 1 2 1 24 2 24 1 2 2 4 1 35 3 1 1 2 1 0 0 1 0 0 1 0 0 1 2 4 27 4 45 4 2 3 2 1 32 2 2 2 2 1 0 0 1 0 0 1 0 1 0 1 4 10 2 22 1 3 3 2 1 25 1 1 1 1 1 0 0 1 0 1 0 0 1 0 2 4 15 2 22 3 3 2 4 3 20 3 1 1 1 1 0 0 1 0 1 0 0 0 1 1 1 18 2 24 1 2 2 1 3 27 2 1 1 1 1 0 0 1 0 0 1 0 0 1 1 4 12 4 33 1 5 3 4 2 42 2 1 1 1 1 0 0 1 0 0 1 0 0 1 1 4 36 2 74 5 5 3 2 2 37 3 2 1 1 1 0 0 1 0 0 1 0 0 1 1 1 12 2 7 1 5 2 4 2 24 3 1 1 1 1 0 0 1 0 1 0 0 0 1 1 4 36 3 77 3 4 2 4 3 40 3 2 1 2 1 0 0 1 0 0 1 0 0 1 1 3 6 4 13 1 5 3 4 1 46 3 2 2 1 2 1 0 1 0 0 1 0 0 1 1 1 24 4 14 2 4 3 1 1 26 3 2 1 2 1 0 0 1 0 0 1 0 0 1 1 4 15 2 9 5 2 2 1 1 24 3 1 1 1 1 0 0 1 0 0 1 0 0 1 1 1 12 2 36 1 3 3 2 2 29 3 1 2 1 1 0 0 0 1 0 1 0 1 0 1 2 11 4 13 4 3 2 4 3 40 3 2 1 1 1 1 0 1 0 0 1 0 0 1 1 1 18 1 19 1 2 3 4 4 36 1 1 1 2 1 0 0 0 1 0 0 0 0 0 1 4 36 2 36 1 5 3 2 3 28 3 1 1 1 1 0 0 1 0 0 1 0 0 1 1 1 9 2 14 1 2 3 2 4 27 3 1 1 2 1 1 0 1 0 0 0 0 0 0 2 4 30 4 67 5 4 3 3 2 36 3 2 1 1 1 0 0 1 0 0 1 0 0 1 1 4 24 2 78 1 4 3 3 3 38 3 1 1 2 1 0 1 1 0 0 1 0 0 0 1 4 24 2 93 5 3 1 4 4 48 3 1 1 2 1 0 1 1 0 0 0 0 0 1 1 2 30 4 22 5 5 3 4 1 36 3 2 1 1 1 1 0 1 0 0 1 0 0 1 1 4 18 4 11 1 1 2 4 3 65 3 2 1 1 1 0 0 1 0 0 1 1 0 0 1 2 24 2 41 1 4 1 3 3 43 3 1 1 2 1 0 0 1 0 0 1 0 0 1 2 1 12 2 8 1 2 2 4 2 53 3 1 1 1 1 0 0 1 0 0 1 0 0 1 2 2 24 4 28 5 4 3 3 4 34 3 2 2 2 1 0 0 1 0 0 1 0 0 1 1 2 48 2 157 1 3 3 2 3 23 3 1 1 2 1 0 0 1 0 0 1 0 0 1 2 4 36 4 66 1 5 3 4 3 34 3 2 1 2 1 1 0 1 0 0 1 0 0 0 1 4 28 1 78 5 2 3 4 1 40 1 2 2 2 1 0 1 0 0 1 0 0 0 1 1 1 27 4 24 1 5 3 4 3 43 2 4 2 2 1 0 0 1 0 0 1 0 0 0 1 4 15 4 18 1 5 3 4 3 46 3 2 1 2 1 0 0 1 0 0 1 0 0 1 1 1 12 4 22 1 3 3 4 2 38 1 2 1 1 2 1 0 1 0 0 1 0 1 0 1 2 36 4 58 1 3 3 4 3 34 3 2 1 2 1 0 1 1 0 0 1 0 0 1 1 4 18 4 12 5 3 3 3 2 29 3 2 1 2 1 0 0 1 0 0 1 0 0 1 1 4 36 3 89 5 4 3 2 3 31 2 1 2 2 1 0 1 1 0 0 1 0 0 0 1 1 21 2 26 1 2 2 4 2 28 3 1 1 2 1 0 0 1 0 1 0 0 0 0 1 4 12 4 16 4 4 2 2 2 35 3 1 1 1 2 0 0 1 0 0 1 0 0 1 1 4 15 2 22 5 4 2 4 1 33 1 1 1 1 1 0 0 1 0 1 0 0 1 0 1 1 18 2 42 1 3 3 3 3 42 3 1 1 1 1 0 0 0 1 0 1 0 0 1 2 1 16 4 26 1 5 3 4 2 43 1 1 1 2 1 1 0 0 0 1 0 0 0 1 2 4 20 4 35 5 2 1 4 1 44 3 2 1 2 1 1 0 1 0 0 1 0 0 1 1 4 36 4 105 5 5 3 4 4 42 3 2 1 1 1 0 1 1 0 0 0 0 0 1 1 4 15 2 14 5 3 4 2 1 40 3 1 1 2 1 0 0 1 0 1 0 0 0 1 1 4 24 2 13 1 5 3 1 1 36 3 1 1 2 1 0 0 1 0 0 1 0 0 0 1 1 12 2 11 1 3 3 2 1 20 3 1 2 2 1 0 0 1 0 1 0 0 0 0 1 1 21 2 38 5 4 3 2 1 24 3 1 1 1 2 1 0 0 1 0 1 0 1 0 1 2 36 2 37 5 3 4 2 3 27 3 1 1 1 1 0 0 1 0 0 1 0 0 1 1 4 15 3 36 1 2 2 2 2 46 3 2 1 1 1 0 1 1 0 0 1 0 1 0 1 2 9 2 32 5 3 2 2 1 33 3 1 1 1 1 1 0 1 0 0 1 0 1 0 1 4 36 3 45 1 3 2 4 1 34 3 2 1 1 1 0 0 1 0 0 1 0 0 1 1 2 24 4 47 1 2 2 4 3 25 1 1 1 1 1 0 0 1 0 0 1 0 1 0 2 2 30 2 30 5 5 2 4 3 25 3 1 1 1 1 0 0 1 0 0 1 0 0 1 1 4 11 2 21 4 5 1 2 1 28 3 1 1 2 1 0 0 1 0 0 1 0 0 1 1 1 24 1 32 1 3 3 2 2 31 3 1 1 2 1 0 0 1 0 1 0 0 0 1 2 2 48 0 184 1 3 2 2 2 32 1 1 1 2 2 0 0 1 0 0 1 0 0 0 2 4 10 2 28 2 3 3 2 1 32 3 1 2 1 1 0 1 0 1 0 1 0 0 1 1 1 6 2 149 1 5 3 4 4 68 1 1 1 2 1 1 0 1 0 0 1 0 0 0 2 1 24 2 24 2 1 1 1 2 33 3 1 1 1 1 0 0 1 0 0 1 0 0 1 2 1 24 2 33 1 5 3 2 2 39 3 1 1 2 1 0 0 1 0 1 0 0 0 0 2 4 18 4 18 1 3 2 2 4 28 3 2 1 1 1 0 0 1 0 0 1 0 0 1 1 4 48 3 127 3 4 3 1 3 37 3 1 1 2 1 0 0 1 0 0 1 0 0 0 1 1 9 2 14 1 2 2 4 2 22 3 1 1 1 1 0 0 1 0 1 0 0 0 1 2 2 12 2 20 1 4 3 4 2 30 3 1 2 2 1 1 0 1 0 1 0 0 0 1 1 1 24 1 69 1 2 1 1 2 55 1 1 1 2 1 0 0 1 0 0 1 0 0 1 2 1 12 1 7 1 2 3 2 3 46 1 2 1 2 1 1 0 1 0 0 1 0 0 1 2 1 18 4 10 1 2 2 4 2 21 3 1 1 1 1 0 0 1 0 1 0 0 0 1 1 1 48 2 103 1 4 3 4 4 39 2 3 2 2 1 0 1 1 0 0 0 0 0 1 2 4 30 2 19 5 5 3 4 3 58 3 1 1 2 1 0 0 1 0 0 1 0 0 1 1 1 12 3 13 1 3 3 2 1 43 3 2 2 1 1 1 0 1 0 0 1 0 1 0 1 1 24 2 17 1 2 3 1 2 24 3 1 1 1 2 0 0 0 1 0 1 0 1 0 1 2 9 2 17 1 2 2 2 3 22 3 1 1 2 1 0 0 1 0 0 1 0 0 1 2 4 9 4 12 1 3 3 1 1 30 3 2 1 1 1 1 0 1 0 0 1 0 0 1 1 4 12 4 5 3 5 3 4 2 42 3 2 2 2 1 0 0 1 0 0 1 0 0 1 1 1 12 2 15 1 3 2 1 3 23 1 1 1 1 1 0 0 1 0 0 1 0 0 1 1 2 30 3 19 2 2 3 3 4 30 2 2 1 1 1 0 0 1 0 0 1 0 0 0 2 3 9 2 7 1 3 2 2 1 28 3 1 1 1 1 0 0 1 0 0 1 0 1 0 2 2 6 2 21 1 2 4 3 3 30 3 1 1 2 1 0 0 1 0 1 0 0 0 0 1 2 60 2 63 1 3 3 4 4 42 3 1 1 1 1 0 0 1 0 0 0 0 0 1 2 4 24 4 68 5 3 3 4 2 46 3 2 2 2 1 0 1 1 0 0 1 0 0 0 1 4 12 2 35 5 2 3 3 2 45 3 1 2 2 1 1 0 1 0 0 1 0 0 0 1 4 10 2 15 1 3 3 2 1 31 3 1 2 1 2 1 0 1 0 0 1 0 1 0 1 4 24 2 9 5 4 3 2 3 31 2 1 1 2 1 0 0 1 0 0 1 0 0 1 1 4 4 4 15 1 4 3 1 1 42 3 3 2 1 1 1 0 1 0 0 1 0 1 0 1 1 15 2 18 1 2 2 1 2 46 3 1 1 1 1 0 0 0 0 1 0 0 0 1 1 2 48 0 84 3 2 2 1 3 30 3 2 1 1 1 1 0 1 0 0 1 0 0 1 1 1 24 1 33 3 2 3 4 4 30 3 1 2 2 1 0 0 1 0 0 0 0 0 1 2 4 12 2 29 5 1 3 4 4 38 3 1 1 2 1 1 0 1 0 0 1 0 0 0 1 4 18 2 15 1 2 4 1 2 43 3 1 2 1 1 0 0 0 1 0 1 0 1 0 2 4 24 2 36 2 5 3 4 3 31 3 2 1 1 1 0 0 1 0 0 1 0 0 1 2 2 18 4 36 1 1 4 3 3 40 3 3 2 2 1 0 0 1 0 0 1 1 0 0 1 1 36 3 21 1 4 3 1 3 24 3 2 1 2 1 0 0 1 0 0 1 0 0 1 2 2 24 2 41 3 2 2 4 3 28 3 1 1 1 1 0 1 1 0 1 0 0 0 1 2 4 36 2 110 1 1 2 2 3 26 3 2 1 2 1 0 0 1 0 0 1 0 0 0 2 1 12 2 19 1 3 2 4 2 29 3 1 1 2 1 1 0 0 0 0 1 0 0 1 1 1 24 4 12 4 5 2 4 2 57 3 2 1 2 1 0 0 1 0 1 0 0 0 0 1 3 30 4 37 5 5 3 4 2 49 2 2 1 1 1 0 0 1 0 0 1 0 1 0 1 2 9 4 12 1 5 3 4 1 37 3 3 1 1 1 0 0 1 0 0 1 0 1 0 1 1 28 2 40 1 3 3 2 3 45 3 1 1 1 1 1 0 1 0 0 1 0 1 0 2 2 24 2 31 2 5 3 4 4 30 3 1 1 1 1 0 0 1 0 0 0 0 0 1 1 4 6 4 17 1 5 4 2 1 30 3 2 1 1 1 0 0 1 0 1 0 0 0 1 1 2 21 3 24 1 3 1 4 2 47 3 2 1 1 1 1 0 1 0 0 1 0 0 1 1 4 15 2 36 5 3 3 2 4 29 3 1 1 1 1 1 0 1 0 0 1 0 0 1 1 4 24 2 24 3 5 3 2 3 35 1 2 1 2 1 0 0 1 0 0 1 0 0 1 2 2 6 2 5 1 2 4 1 2 22 3 1 1 1 1 0 0 1 0 0 1 0 1 0 1 2 30 2 17 5 3 2 1 3 26 3 1 1 1 1 0 0 1 0 0 1 0 0 1 1 2 27 4 25 3 3 3 2 2 23 3 2 1 1 1 0 0 1 0 0 1 0 1 0 2 4 15 2 36 1 5 2 2 3 54 1 1 1 2 1 0 0 1 0 1 0 0 0 0 1 4 42 2 72 5 4 4 4 2 29 3 1 1 2 1 0 0 1 0 1 0 0 0 1 1 1 11 4 39 1 3 3 2 1 40 3 2 2 1 1 1 0 1 0 0 1 0 1 0 1 2 15 2 15 2 3 3 2 1 22 3 1 1 1 1 0 0 0 0 0 1 0 0 1 1 4 24 2 74 1 3 3 4 2 43 3 1 2 1 1 1 0 1 0 0 1 0 1 0 1 1 24 1 12 1 1 2 4 4 29 3 2 1 1 1 1 0 0 1 1 0 1 0 0 2 1 60 2 73 1 5 3 4 4 36 3 1 1 1 1 0 0 0 1 1 0 0 0 1 2 4 30 4 28 1 3 2 2 3 33 3 1 1 2 1 0 0 1 0 0 1 0 0 1 1 3 24 2 13 3 3 2 3 3 57 3 1 1 1 1 0 0 1 0 0 1 0 1 0 1 2 6 2 8 1 3 2 3 1 64 3 1 1 1 1 0 0 0 0 0 1 0 0 1 1 2 18 3 24 5 5 3 2 2 42 3 2 1 1 1 0 0 1 0 0 1 0 0 1 1 4 24 3 25 1 5 3 4 3 47 3 2 2 1 1 1 0 1 0 0 1 0 1 0 2 2 15 1 13 2 3 4 2 2 25 3 1 1 1 1 1 0 1 0 1 0 0 0 1 2 2 30 4 84 1 4 3 2 2 49 3 1 1 1 1 0 0 1 0 0 1 0 0 1 2 4 48 2 48 1 1 3 2 3 33 1 1 1 2 1 0 0 1 0 1 0 0 0 0 2 3 21 2 29 2 3 2 1 3 28 1 1 1 2 1 1 0 1 0 0 1 0 0 0 1 1 36 2 82 1 3 3 2 2 26 3 1 2 1 1 0 1 1 0 0 1 0 0 1 2 4 24 4 20 1 4 3 2 2 30 3 2 1 1 1 0 0 1 0 0 1 0 1 0 1 1 15 4 14 1 3 2 3 2 25 3 2 1 1 1 0 0 1 0 1 0 0 0 1 1 3 42 0 63 1 2 1 1 2 33 3 2 1 1 1 0 0 1 0 0 1 0 0 1 1 4 13 2 14 2 1 2 4 1 64 3 1 1 1 1 0 0 1 0 0 1 0 0 1 1 1 24 2 66 1 1 3 2 4 29 3 1 1 2 1 0 1 1 0 0 0 0 0 0 1 2 24 4 17 1 5 3 2 2 48 3 2 1 1 1 0 0 1 0 0 1 0 1 0 1 4 12 4 36 5 2 3 1 2 37 3 2 2 1 1 0 0 1 0 0 1 0 1 0 1 4 15 1 16 2 5 3 4 3 34 1 1 2 1 1 0 0 1 0 0 1 0 1 0 1 1 18 2 19 5 4 4 4 3 23 3 2 1 1 1 0 0 1 0 1 0 0 1 0 1 1 36 2 40 1 1 3 3 2 30 3 1 1 2 1 0 0 1 0 0 1 0 0 0 1 4 12 2 24 5 5 3 3 3 50 3 1 1 2 1 1 0 1 0 0 1 0 0 1 1 4 12 2 17 1 4 2 4 1 31 3 1 1 1 1 0 0 1 0 0 1 0 1 0 1 1 30 2 39 1 3 1 4 2 40 3 1 1 2 1 0 1 1 0 0 1 0 0 0 1 4 12 2 8 1 5 3 4 3 38 3 1 1 1 1 0 0 1 0 0 1 0 0 1 1 1 45 2 18 1 3 3 4 4 23 3 1 1 2 1 0 0 1 0 0 0 0 0 1 2 2 45 4 46 2 1 3 4 3 27 3 1 1 1 1 0 1 1 0 0 1 0 0 1 1 foreach/inst/examples/for.R0000644000176200001440000000557311472542406015404 0ustar liggesuserslibrary(foreach) n <- 10 nrows <- 5 ncols <- 5 # vector example set.seed(17) x <- numeric(n) for (i in seq(along=x)) x[i] <- rnorm(1) set.seed(17) y <- foreach(icount(n), .combine='c') %do% rnorm(1) cat('results of vector example:\n') print(identical(x, y)) # list example set.seed(17) x <- vector('list', length=n) for (i in seq(length=n)) x[i] <- list(rnorm(10)) set.seed(17) y <- foreach(icount(n)) %do% rnorm(10) cat('results of list example:\n') print(identical(x, y)) # matrix example set.seed(17) cols <- vector('list', length=ncols) for (i in seq(along=cols)) cols[i] <- list(rnorm(nrows)) x <- do.call('cbind', cols) set.seed(17) y <- foreach(icount(ncols), .combine='cbind') %do% rnorm(nrows) cat('results of matrix example:\n') dimnames(y) <- NULL print(identical(x, y)) # another matrix example set.seed(17) cols <- vector('list', length=ncols) for (i in seq(along=cols)) { r <- numeric(nrows) for (j in seq(along=r)) r[j] <- rnorm(1) cols[i] <- list(r) } x <- do.call('cbind', cols) set.seed(17) y <- foreach(icount(ncols), .combine='cbind') %:% foreach(icount(nrows), .combine='c') %do% rnorm(1) cat('results of another matrix example:\n') dimnames(y) <- NULL print(identical(x, y)) # ragged matrix example set.seed(17) x <- vector('list', length=ncols) for (i in seq(along=x)) x[i] <- list(rnorm(i)) set.seed(17) y <- foreach(i=icount(ncols)) %do% rnorm(i) cat('results of ragged matrix example:\n') print(identical(x, y)) # another ragged matrix example set.seed(17) x <- vector('list', length=ncols) for (i in seq(along=x)) { r <- numeric(i) for (j in seq(along=r)) r[j] <- rnorm(1) x[i] <- list(r) } set.seed(17) y <- foreach(i=icount(ncols)) %:% foreach(icount(i), .combine='c') %do% rnorm(1) cat('results of another ragged matrix example:\n') print(identical(x, y)) # filtering example set.seed(17) a <- rnorm(10) # C-style approach x <- numeric(length(a)) n <- 0 for (i in a) { if (i > 0) { n <- n + 1 x[n] <- i } } length(x) <- n # Vector approach y <- a[a > 0] # foreach approach z <- foreach(i=a, .combine='c') %:% when(i > 0) %do% i cat('results of filtering example:\n') print(identical(x, y)) print(identical(x, z)) # Define a function that creates an iterator that returns chunks of a vecto ivector <- function(x, chunksize) { n <- length(x) i <- 1 nextEl <- function() { if (n <= 0) stop('StopIteration') chunks <- ceiling(n / chunksize) m <- ceiling(n / chunks) r <- seq(i, length=m) i <<- i + m n <<- n - m x[r] } obj <- list(nextElem=nextEl) class(obj) <- c('abstractiter', 'iter') obj } # another filtering example set.seed(17) a <- rnorm(10000) # Vector approach x <- a[a > 0] # foreach with vectorization, limiting vector lengths to 1000 y <- foreach(a=ivector(a, 1000), .combine='c') %do% a[a > 0] cat('results of another filtering example:\n') print(identical(x, y)) foreach/inst/examples/feapply.R0000644000176200001440000000114111472542406016241 0ustar liggesuserslibrary(foreach) feapply <- function(X, MARGIN, FUN, ...) { FUN <- match.fun(FUN) r <- foreach(x=iapply(X, MARGIN)) %do% { x <- FUN(x, ...) dim(x) <- NULL x } n <- unlist(lapply(r, length)) if (all(n[1] == n)) { r <- unlist(r) dim(r) <- if (n[1] == 1) dim(X)[MARGIN] else c(n[1], dim(X)[MARGIN]) } else if (length(MARGIN) > 1) { dim(r) <- dim(X)[MARGIN] } r } a <- array(rnorm(24), c(2, 3, 4)) m <- diag(2, 3, 2) MARGIN <- 3 fun <- function(x, m) x %*% m expected <- apply(a, MARGIN, fun, m) actual <- feapply(a, MARGIN, fun, m) print(identical(expected, actual)) foreach/inst/examples/cross.R0000644000176200001440000000144711472542406015743 0ustar liggesuserslibrary(foreach) NUMROWS <- 500 NUMCOLS <- 100 NUMFOLDS <- 10 CHUNKSIZE <- 50 nwsopts <- list(chunkSize=CHUNKSIZE) xv <- matrix(rnorm(NUMROWS * NUMCOLS), NUMROWS, NUMCOLS) beta <- c(rnorm(NUMCOLS / 2, 0, 5), rnorm(NUMCOLS / 2, 0, 0.25)) yv <- xv %*% beta + rnorm(NUMROWS, 0, 20) dat <- data.frame(y=yv, x=xv) fold <- sample(rep(1:NUMFOLDS, length=NUMROWS)) # the variables dat, fold, and NUMCOLS are automatically exported print(system.time( prss <- foreach(foldnumber=1:NUMFOLDS, .combine='c', .options.nws=nwsopts) %:% foreach(i=2:NUMCOLS, .combine='c', .final=mean) %dopar% { glmfit <- glm(y ~ ., data=dat[fold != foldnumber, 1:i]) yhat <- predict(glmfit, newdata=dat[fold == foldnumber, 1:i]) sum((yhat - dat[fold == foldnumber, 1]) ^ 2) } )) cat('Results:', prss, '\n') foreach/inst/examples/comprehensions.R0000644000176200001440000000132311472542406017637 0ustar liggesuserslibrary(foreach) a <- foreach(x=1:4, .combine='c') %do% (x + 2 * x + x / 2) print(a) a <- foreach(x=1:9, .combine='c') %do% (x %% 2 == 1) print(a) a <- foreach(x=1:4, .combine='c') %:% foreach(y=c(3,5,7,9), .combine='c') %do% (x * y) print(a) a <- foreach(x=c(1,5,12,3,23,11,7,2), .combine='c') %:% when(x > 10) %do% x print(a) a <- foreach(x=c(1,3,5), .combine='c') %:% foreach(y=c(2,4,6)) %:% when(x < y) %do% c(x, y) print(a) n <- 30 s <- seq(length=n) a <- foreach(x=s, .combine='c') %:% foreach(y=s, .combine='c') %:% foreach(z=s) %:% when(x + y + z <= n) %:% when(x * x + y * y == z * z) %do% c(x, y, z) print(a) foreach/inst/examples/colMeans.R0000644000176200001440000000076211472542406016352 0ustar liggesusers# compute the mean of the columns and the rows of a matrix library(foreach) # generate the input matrix x <- matrix(rnorm(100 * 100), 100) # compute the mean of each column of x cmeans <- foreach(i=1:ncol(x), .combine=c) %do% mean(x[,i]) # check the results expected <- colMeans(x) print(all.equal(cmeans, expected)) # compute the mean of each row of x rmeans <- foreach(i=1:nrow(x), .combine=c) %do% mean(x[i,]) # check the results expected <- rowMeans(x) print(all.equal(rmeans, expected)) foreach/inst/examples/bootseq.R0000644000176200001440000000100211472542406016251 0ustar liggesusers# for-loop version from Wikipedia # http://en.wikipedia.org/wiki/Bootstrapping_(statistics) data(iris) x <- iris[which(iris[,5] != "setosa"), c(1,5)] trials <- 10000 intercept1 <- rep(0, trials) slope1 <- rep(0, trials) print(system.time( for (B in 1:trials) { ind <- sample(100, 100, replace=TRUE) result1 <- glm(x[ind,2]~x[ind,1], family=binomial(logit)) intercept1[B] <- coefficients(result1)[1] slope1[B] <- coefficients(result1)[2] } )) hist(intercept1, breaks=40) dev.new() hist(slope1, breaks=40) foreach/inst/examples/bootpar2.R0000644000176200001440000000121711472542406016335 0ustar liggesusers# foreach version based on for-loop version from Wikipedia # http://en.wikipedia.org/wiki/Bootstrapping_(statistics) library(foreach) data(iris) x <- iris[which(iris[,5] != "setosa"), c(1,5)] trials <- 10000 nwsopts <- list(chunkSize=150) # Can use the following "final" function instead of # using cbind as the "combine" function. final <- function(a) do.call('cbind', a) print(system.time( r <- foreach(icount(trials), .final=final, .options.nws=nwsopts) %dopar% { ind <- sample(100, 100, replace=TRUE) result1 <- glm(x[ind,2]~x[ind,1], family=binomial(logit)) coefficients(result1) } )) hist(r[1,], breaks=40) dev.new() hist(r[2,], breaks=40) foreach/inst/examples/bootpar.R0000644000176200001440000000104411472542406016251 0ustar liggesusers# foreach version based on for-loop version from Wikipedia # http://en.wikipedia.org/wiki/Bootstrapping_(statistics) library(foreach) data(iris) x <- iris[which(iris[,5] != "setosa"), c(1,5)] trials <- 10000 opts <- list(chunkSize=150) print(system.time( r <- foreach(icount(trials), .combine=cbind, .options.nws=opts, .options.smp=opts) %dopar% { ind <- sample(100, 100, replace=TRUE) result1 <- glm(x[ind,2]~x[ind,1], family=binomial(logit)) coefficients(result1) } )) hist(r[1,], breaks=40) dev.new() hist(r[2,], breaks=40) foreach/inst/examples/bigmean2.R0000644000176200001440000000157411472542406016277 0ustar liggesuserslibrary(foreach) # Define a combine function for the partial results comb <- function(...) { n <- foreach(a=list(...), .combine='+') %do% a$n means <- foreach(a=list(...), .combine='+') %do% ((a$n / n) * a$means) list(n=n, means=means) } # initialize some parameters datafile <- 'germandata.txt' nrows <- 100 # germandata.txt only has 1000 rows of data # create an iterator over the data in the file it <- iread.table(datafile, nrows=nrows, header=FALSE, row.names=NULL) # Compute the mean of each of those fields, nrows records at a time print(system.time( r <- foreach(d=it, .combine=comb, .multicombine=TRUE, .final=function(a) a$mean) %do% list(n=nrow(d), means=mean(d)) )) print(r) # This is faster for small problems (when it may not matter), # but becomes slower (or fails) for big problems print(system.time({ d <- read.table(datafile) r <- mean(d) })) print(r) foreach/inst/examples/bigmean.R0000644000176200001440000000255611472542406016216 0ustar liggesuserslibrary(foreach) library(RSQLite) # Define a simple iterator for a query result, which is # just a wrapper around the fetch function iquery <- function(con, statement, ..., n=1) { rs <- dbSendQuery(con, statement, ...) nextEl <- function() { d <- fetch(rs, n) if (nrow(d) == 0) { dbClearResult(rs) stop('StopIteration') } d } obj <- list(nextElem=nextEl) class(obj) <- c('abstractiter', 'iter') obj } # Create an SQLite instance m <- dbDriver('SQLite') # Initialize a new database to a tempfile and copy a data frame # into it repeatedly to get more data to process tfile <- tempfile() con <- dbConnect(m, dbname=tfile) data(USArrests) dbWriteTable(con, 'USArrests', USArrests) for (i in 1:99) dbWriteTable(con, 'USArrests', USArrests, append=TRUE) # Create an iterator to issue the query, selecting the fields of interest qit <- iquery(con, 'select Murder, Assault, Rape from USArrests', n=50) # Define a combine function for the partial results comb <- function(...) { n <- foreach(a=list(...), .combine='+') %do% a$n means <- foreach(a=list(...), .combine='+') %do% ((a$n / n) * a$means) list(n=n, means=means) } # Compute the mean of each of those fields, 50 records at a time r <- foreach(d=qit, .combine=comb, .multicombine=TRUE) %dopar% list(n=nrow(d), means=mean(d)) print(r) # Clean up dbDisconnect(con) file.remove(tfile) foreach/inst/examples/bigmax.R0000644000176200001440000000227111472542406016055 0ustar liggesuserslibrary(foreach) library(RSQLite) # Define a simple iterator for a query result, which is # just a wrapper around the fetch function. iquery <- function(con, statement, ..., n=1) { rs <- dbSendQuery(con, statement, ...) nextEl <- function() { d <- fetch(rs, n) if (nrow(d) == 0) { dbClearResult(rs) stop('StopIteration') } d } obj <- list(nextElem=nextEl) class(obj) <- c('abstractiter', 'iter') obj } # Create an SQLite instance. m <- dbDriver('SQLite') # Initialize a new database to a tempfile and copy a data frame # into it repeatedly to get more data to process. tfile <- tempfile() con <- dbConnect(m, dbname=tfile) data(USArrests) dbWriteTable(con, 'USArrests', USArrests) for (i in 1:99) dbWriteTable(con, 'USArrests', USArrests, append=TRUE) # Create an iterator to issue the query, selecting the fields of interest. # We then compute the maximum of each of those fields, 100 records at a time. qit <- iquery(con, 'select Murder, Assault, Rape from USArrests', n=100) r <- foreach(d=qit, .combine='pmax', .packages='foreach') %dopar% { foreach(x=iter(d, by='col'), .combine='c') %do% max(x) } print(r) # Clean up dbDisconnect(con) file.remove(tfile) foreach/inst/examples/apply.R0000644000176200001440000001066511472542406015741 0ustar liggesusers# File src/library/base/R/apply.R # Part of the R package, http://www.R-project.org # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ applyPar <- function(X, MARGIN, FUN, ...) { FUN <- match.fun(FUN) ## Ensure that X is an array object d <- dim(X) dl <- length(d) if(dl == 0) stop("dim(X) must have a positive length") ds <- 1:dl if(length(oldClass(X)) > 0) X <- if(dl == 2) as.matrix(X) else as.array(X) ## now recompute things as coercion can change dims ## (e.g. when a data frame contains a matrix). d <- dim(X) dn <- dimnames(X) ## Extract the margins and associated dimnames s.call <- ds[-MARGIN] s.ans <- ds[MARGIN] d.call <- d[-MARGIN] d.ans <- d[MARGIN] dn.call<- dn[-MARGIN] dn.ans <- dn[MARGIN] ## dimnames(X) <- NULL ## do the calls d2 <- prod(d.ans) if(d2 == 0) { ## arrays with some 0 extents: return ``empty result'' trying ## to use proper mode and dimension: ## The following is still a bit `hackish': use non-empty X newX <- array(vector(typeof(X), 1), dim = c(prod(d.call), 1)) ans <- FUN(if(length(d.call) < 2) newX[,1] else array(newX[,1], d.call, dn.call), ...) return(if(is.null(ans)) ans else if(length(d.ans) < 2) ans[1][-1] else array(ans, d.ans, dn.ans)) } ## else newX <- aperm(X, c(s.call, s.ans)) dim(newX) <- c(prod(d.call), d2) #### ans <- vector("list", d2) nw <- getDoParWorkers() if(length(d.call) < 2) {# vector if (length(dn.call)) dimnames(newX) <- c(dn.call, list(NULL)) #### for(i in 1:d2) { #### tmp <- FUN(newX[,i], ...) #### if(!is.null(tmp)) ans[[i]] <- tmp #### } ans <- foreach(x=iblkcol(newX, nw), .combine='c', .packages='foreach') %dopar% { foreach(i=1:ncol(x)) %do% FUN(x[,i], ...) } } else { #### for(i in 1:d2) { #### tmp <- FUN(array(newX[,i], d.call, dn.call), ...) #### if(!is.null(tmp)) ans[[i]] <- tmp #### } ans <- foreach(x=iblkcol(newX, nw), .combine='c', .packages='foreach') %dopar% { foreach(y=1:ncol(x)) %do% FUN(array(x[,i], d.call, dn.call), ...) } } ## answer dims and dimnames ans.list <- is.recursive(ans[[1]]) l.ans <- length(ans[[1]]) ans.names <- names(ans[[1]]) if(!ans.list) ans.list <- any(unlist(lapply(ans, length)) != l.ans) if(!ans.list && length(ans.names)) { all.same <- sapply(ans, function(x) identical(names(x), ans.names)) if (!all(all.same)) ans.names <- NULL } len.a <- if(ans.list) d2 else length(ans <- unlist(ans, recursive = FALSE)) if(length(MARGIN) == 1 && len.a == d2) { names(ans) <- if(length(dn.ans[[1]])) dn.ans[[1]] # else NULL return(ans) } if(len.a == d2) return(array(ans, d.ans, dn.ans)) if(len.a > 0 && len.a %% d2 == 0) { if(is.null(dn.ans)) dn.ans <- vector(mode="list", length(d.ans)) dn.ans <- c(list(ans.names), dn.ans) return(array(ans, c(len.a %/% d2, d.ans), if(!all(sapply(dn.ans, is.null))) dn.ans)) } return(ans) } ############################################################################## # # Something like this will be added to the iterators package. # This creates an iterator over block columns of a matrix. iblkcol <- function(a, chunks) { n <- ncol(a) i <- 1 nextEl <- function() { if (chunks <= 0 || n <= 0) stop('StopIteration') m <- ceiling(n / chunks) r <- seq(i, length=m) i <<- i + m n <<- n - m chunks <<- chunks - 1 a[,r, drop=FALSE] } obj <- list(nextElem=nextEl) class(obj) <- c('abstractiter', 'iter') obj } # Simple test program for applyPar library(foreach) x <- matrix(rnorm(16000000), 4000) actual <- applyPar(x, 2, mean) expected <- apply(x, 2, mean) cat(sprintf('Result correct: %s\n', identical(actual, expected))) foreach/inst/doc/0000755000176200001440000000000012152141726013404 5ustar liggesusersforeach/inst/doc/nested.pdf0000644000176200001440000043115712152141726015374 0ustar liggesusers%PDF-1.5 %ÐÔÅØ 31 0 obj << /Length 2609 /Filter /FlateDecode >> stream xÚ­KsÛÆù®_‹'àÔ\cX9µéTgšfb«ÓC’LB¢j‘TÊŠûëû½ö ´e·‹‹Åî÷~ÃUqSTÅ÷Õ™ßï®.^]º¶0•òÞÔÅÕ5,=¬}ám£Œo‹«uñKùa¡Ëñx wðïfñÛÕ¯.k›_ô­j«ÀÒK8¶?ÀŸ¡‡?+ø·áKSlm¥joÃ¥¿ã¥ÅÒÔåþò £ í”uÞàe§•í\±tFù¶ã‹oáô‘}X˜¶Kk|ù¯E ;ã‘€"á ®5Jë®XêFuÖòõµàõåêχ/ÝÁ¿ŽÜï‘ý^ÄÐãÛÙÛÕ.ö[ÂÈ,°·´µÒµÈòÇDëÒj8ý’צ‚5>[oS‘F׎ø6ºRm ŒûJU^30½Xjm\ùšH²@ÊyåúaE„EæY”ZuuM¢¬€0«\à®6ÈyÔlvÎ8Õ´:(éúœf§Àu­á^¤¶Z˜¦|¿¨ë²¿!lKÛ¶ô–ÉÁ|@A®é%Zèñ§!e šRͽ ’¬öòLJ?ˆî@ ôözO›´þ@ «\µœ7Œvñ­±My7ËГͭÅN>.ZÚ_zÝ–¯çmbb<[ùÅ+ý²1ÊY Fé”sževEv¶ý šÚq쀛­(´¡QÐC ×rvsl¨Y¾t§º¯R ¤×L5ˆè×J[òÍ‘)º¶ ÎÐ@–Òúyrmí9¹6"VäF ö˜¤uLd{SÉÆcc&Ë6zàxdÀÈ KHÜ düa„Ègºº|܈§±GV¯©;ÊÂõÎ Ò¶îž… dY&xy[!`ŒõŽ,`Ïo€v7¥„:eÍÇðÍ8ÈõÖéø@úF9Ž|ã(NãõG޾͎RZ„ˆ#‡¾Ú5åwê²FA$bÇå1K+ãl¬±Ô@Pç}qP¶ÞŸ Êc¨¡D±¨°æ£,eæ´áœo¸þš‡ÇðÌ‚c£‰ŽËQ4d|ƒõL3Üœe€ÛUºyV^«*{–BÍtÇÄÆšÞÝgÎq/ASÔAd²:`™X|<-¸ðmÂIö[«¨cºÜóO¨RŽ"ÄÓÒ,Q&S{ð,3u,2¬XvØ*:‚e<°Ãr&€d/ùmty$öè=]¡<ÈÁCX~ õŽsÔ¿ÜÊ+"YàE „S›$b%+ò°J©IN®…Ýû¬Xõ§ýe`,¹¯ z‘\0dì cÆ ¥° â*`6Á¸XxÜ USG‡p¬r1!‰"B„VÕ;ÇP_ÜfåtŸ±øŸ |0»§àrUJÉŽçåw“A®8z0BÖ¤,»"§©~ UºÞÞÒËÐÖ­EôÕ™Ìe°ªõW¤V_wgÂzd‡ =© AmÜT7AÔ×rI}»jc}äN–0ˆÁÉwYû).%ærsÒ a¾›¢éùgŒÇîDm°)u-œ}¤öù 2Usíl%8óg¤½Ú ¬¦.wCð»Û’Ò8˜dâ Â[WUù—/>ßçþeÇ^z±5Dt:v=„(‘âG²ß¹°nZëîËí¤ó±LÈBÊ'ËX Ë.fó"€â¦$ºO-ì!pG@¿€œýšY_%[¢çI²ž%RîD`Âi°Æ#jsŽy¨‘R§z–<&CœaZVX»NÑ­dyhöÍI¡Æ×Ð!ª*v…°”D²X%ñƒ’Çp®ÍÖçYö+âB &§9”£XÖ2EŸ´‡¦Sö¹=¬Qró6Ѫ$ó”lfû=åì ÷¡}q–?÷Y•Ž!èÖQU²°JSÄ©Pé)6õ H°¿¿Yj^Šú­ƒ˜Óž†Ó0ÕóhÓ¸¢¥“Jfy·ãåÄã‚ £Ù` fµ_1HHc6Ä–^Ûòßœ Ñ&|­y´Ôµ1ÁŽ{~žiƒd ÓiL¬Wm¥ÿ¿TÒ¸Ès5*³¢–gE±!C‚8!±tÎ+†n:ÉÃ8>uʃò¦5¡èi®ßqÚ†ê솜Ǯù7kmh63ë eÀH9 Çί„¡VÿW(þ³ù.$Î˹i%îëŠÉ¤9½uâÎLn†Ô6Ïâš…¢Uãu2ƹ´6Úà·ÏŽÅU1¶¶¡ËƒqøýÛÕÅïZ @÷‡.§»®Xm/~ù­*Ö°ÿCQ)È÷Å#Ú¦Òª¦¾æ®x{ñ3§n H, âº.|4”¦†îºÉRÁ«Ë¶è “2ž¹ràÛK ¥¨ØÔô€í 1m)+u6OÞ Úð«’’œÓ×¼'H!¯uMÌ dôpLHö¼Lm=<Äzsêœçì·÷Ù'h9*Ÿ Ùƒ‡@NœZʨ*C÷9ëP³»áþŠæ?ˆo‹Øhyªoþ5H‘?Wв‹Â’­UÖeÖqV?é’Èh0óp“§0Rö§ez,S2EÞNÅÆEb½hM~†fêÇ'R’ôá?¦‚BᜠÊ@otFJgÿ+xÉñÊG endstream endobj 50 0 obj << /Length 1984 /Filter /FlateDecode >> stream xÚ­YKo7¾ûW,‘P‹ásAÛCѺMPhã¢LJµ´²Z–«‡í¤ÈïpfÈå®V‰ãô°—Î çÅoÖ2»ÈdöóÁ'/ŽµÊ”•s:;™gÚæBê"+´º,³“Yv:ú­YoÆjtÏ <㳓×/ŽI7Z-rY[Üq dËüijø3…ç’6u¥°Jé°éW¿i<ÑüU£[xÖ~ÓÁO'ÿ( ’™ÊœÍ U ëòlº88=“Ù æ_gRTUžÝ#Õ"sÒÂïuöæà÷™ž¶(SùÀ,/p¥! ¾Oœ6£úù4˜ÐpCo†›âž·ÒIøñÏQ^ûCGCÑŽË–Ò3¹c’)M«Go>ÞŒ?`(8åDYamÞ9ÍÍêõÆWæõŽÞȧ8ô¬^ÂóJ Ÿ‡tùf:ðé×ϳ{êW[ÆÉCWXapjê=ºnŽü[Ž Z‰ÿ÷X—£©=!G$ pbC•ËoXoB„7]iLŠEq½åÐÞ´*pðûaÈîWVqÍâîÇP.YÒ” î&“£åM2žêsËü—·>)0\W|/òCC'k¦þF“]‡ †ž²ªByòR.8ž)üÙ´E{{Ågí땹`Ádz íȪ~nËÇa²»±s£ è¶¥÷š©¬r8bY0÷CŠk-ŒÊ]€]Íj¾Ê;·Å+¥¡} ÚqëÄÛ†V–Ú:+r˜ú”u•„Ë<*Éw1Ìe«j¨lMWûÕ’ v½“Q¨|È»Q0ÞŠLpÍ÷zN‡¸J+‘‡­!oï8éPôú“€eòx¶ù#D¤²i¼ÉªÍ!™CÌQöz±Ï¹ €:ÓÈÝ%æ(Ðw€å(/·1̯݆INÛ Î51½j€Â ˆ¯XˆO,¨û Ëé̸2ÀiÒø‹¼Ø!œÜ0øƒ“’Ü©ãÐÌ¢’UºŽ¨ÒަËpEJg9Û†¶ô«!NÚ´4£šÙÝa-žn‚Ë×þäU9ºE}ê .‰¸¥DÝ`ñ<³ÍŒVCI-©ZlY! j î5nÚñJ¸­ãùÒºîýjÌè—Mòœì/‘°½§÷Xjkœ½ŒvÃÕ^ uÈš¡ŒÒ²•ŒåÐC°Ã}µÏDØN„—Ç*ÜXx¾DôN°}uÁøýŸ…™¢*¤â&ÀHgSGà ·÷A;4T>(<ô5ù~èþ(JiÑVÐýnð2Àüºäxï„nEËy§ —PðâíòœIÊÞèT ˜öφ˜%ŒÖŸeZp|È ûÒ_k'te†±ò# V³ÁêÿÓ`•ªÅ±Ø—\èÜ>Ñ@áF8L ¸¸´(r»c+¸’Š}CÒìkÙ‚µ¿åIéöºlÔŠðýªáÛƒV¼gôÞ“®ÄR-"~ÿl7`‡nÆv4 ö‘À;mR'¬t`¥V_МtNO€H~µå¨Ý„û¯ X¦[Èϼp&¶)Ä‚ÉkfOýCÛ-$ã… £hm´ÐÆöÎpYÎÛ²¼ƒº&N–t^Ü»ÖD—8¦øRŒU­b>öl˲ø¢Jo'ߢx#Ýã6DõQ§•xÊv{F‚ù-ÆG‘@ît]䣷ÊX¬:$Ã#ˆgcæ9òˆJ"@oakee¢À¢}_ò­éÇ=ä;äH] S¸§@Ö´EòÊ2ÔÑ1Ö‚­}7 (ýÊÒS…€íŠ^¡h{ªhÀºc=œžÓ­@U±dPuÓ·×u¸g!0aˆ¨Aä^G!D²£Ts ±ŸîàÊÀ#­ÂÏhz¾eMCë³ ½¢‹‘ ’ú½m\¿Ù‘æÉ×uÚDåÔP ©ÞÓD²õ<‚îM謠½¨×hs' ï)å𬹠Fû…rŠÍE°Ð†ÀjLÉê´èê×ÿ8‚ LŠßŽÚ7vëŽ@(oܤ}ð Q ¼v5ëb`žš¨éA׆“É¡BÞbÐ_'Ÿ ƒ5>4³ÐuFLÙÿ¤¬r-J½OÊÐUÄOÊ?xµ†ÏÊô9€CU˜!D!,`;åœ0²Lì‹ã2«D•C¯ìó¨/Êbô§—;Çš‰éM¬sÐpu/šé%Ö[J2-9—*¬´$ò ¬ÓÇ€º-˜ÀÀ˜ècÚº½@îF“´0ðÞø†®^ÜÆ`Ä}щ—!ó ÁzÖQßÄkË,B1^专°Öû»ºö±ÿ0ø·ü@¶ð K÷ê?aeð³ endstream endobj 57 0 obj << /Length 2806 /Filter /FlateDecode >> stream xÚ­Zëoã¸ÿž¿Â_k£H‘µè½C÷ŠC(šâPìíÅVb7±½kÙÉ¥Eÿ÷΋ÉJ“-ú!E‡Ãß g†#—³ÛY9ûþâÛ«‹o>h5Sªh¬Õ³«›™6®(u=«µ)´÷³«ÕìãüO]\¨ùþvðw»øtõÃ7l•O4ºp¥¶4ãíð¯káßþÖ"¡|´…¿þqóÑšjæßÑ&E*¤ê~–õ·rºA¨Û`ñÂý†»sKPÍy UMÄRHÈ V8†­>åû`OÎm|—]Œå[Ÿ#‹ÂIfƒQ2y~N¢ Ñ\Mäúu“î (UUÆLÇ":Kòˆ ì–y€_ñÈ&Í~>@—o¬¸üSÇ;mn¦À0z¬ˆ „Ï,rG“æÀª¡w¨Î?kZyöÈó’'x9I¤åÅûÔBÚÄq ˆ7·Å3+Yˆ¤ë ‹Óz è'Lô²m±ïôñlyŸ;\IØiÙ›SðáêÉüç2¿a’Œ¯ç‰[ÏSÈø‡`$’ÍCë4e5iòƒHäÅNzž“i;ò©Yl£»«NþW½ºvç9POû0šôÄïË6 O@wBÓ–9íÅ®ò´¡òñfXeNiyÌíßóv³9Çüv|^FPEe'k(geãU Û'£1)$Õð–ó(÷QâOÒe7Û ï3U|ÎÉ™äÎͨüñb‘«.J÷\)$!žûZ~L_ê?w¬NÌc ÕTCk¨Ô¦J‹u¨9¹$@ÿ°$cÑìt Üï2•[Si ¬+|cÏJZÓjö…¯ÜkÔl]ªAØaÁÃ=1y »¯åF˜q*‡i•ÎÒ*+E£Nø?†[00xEaˆ cÞ}”˜æmQWj|÷C—$©ï|•+´r_kh®p¾™´4¸)9ظ Öè•|(W°m厭¬_8Àª,”ñ¯Ö®¶&О™z‰qs ]4þÊš¨©ŠRE«{ÇWڨƒCôAÚËéñ|ÿ-?ú|$ØöŸÅ˲Náz2É tS•2ç,±•ä®%äá ^SØÔ.$6§t}Šáe—e°Ï™ë{†®ö9t¿t]˜F±h¿æ³ñ3?~ ³.§ÂÜ/—ÊÖŠM4¦–#dw?•¶¤ã§æ¿’çƒ-9Ä% y Ñé:C¾£©,´¢‡¸U}¿Ú—+”!d9b¼šbŠÑIë™Øžâ-P ¦ pj[èè‰mL;H‘_X+€µÿOÀÑ¡ùÄ&¸€wræh%"çú†‡ÿ%¸)]ÔΜZå\:Û!N‚É5÷ªgL•ÿ÷Ô`4÷)OTµ¶Ãã‘rÊ;¸GU¡wá<™GPKúÙ‘*‰™Ž‰æ²v.ëGVïàß'*–û¹Âj×s¥CƒÙG3µmd¥sV:c¥+±ÒÕØõJ™aôg)[;™vH¿úNêÚtSGÇü69:íª”]žr×õă!çˆ]†˜ž¤ÊÓ{îÞÆ//ô°o|ƾM˜jþ›Ï¤ñ6Í !ÛgEóÀë#ð²ëûÃ{Ú¼ÍËuA¶PØwϺ{æš|=ˆpGÉ$5Ú–qßw, ïªìöÅï¿°™EŸÀaÝYðj\zN+eòçX/ÏBI~PA×µ iü䦂à37Š!@bô覶pK=~ƒ9…ÛeTw­Dü‰µ„C¯¿>©Õu¾pöÑ¢ž? d§Iô&ª$$á:«†)A‹µž¬³3鍊‘7î×Yµ7ÖÇ Û¨ŒA ô¤@€a§„`œÓòcª>–Žøþ´çþG,Yv9r`¡#Di™üö&‹ ä¥ küaÑø÷IΪ¬^ûó¤‰aÁ£Àce+x4á§I£%ÿ^|´X endstream endobj 62 0 obj << /Length 2809 /Filter /FlateDecode >> stream xÚ­ZëÛ¸ÿ¾…p@‘Ô3èh‹æšC/@›E’Z[k»ëÇÖ’³Ùîï¼øV›M€~%‘Ãr8œùÍÈi²NÒä§‹¿\^¼|mt¢µªóÜ$—×‰É •š2)M¦LU%—«äýìmÛõs=ÛÂu€k=ÿxùóË×¹fFiliÄk ;žà§màg ׆ ¥°Z7è8h¾0%üêÙ-\ºøÛåÅ/4P¥‰Nò,)u­²¼H–û‹÷Ódí?'©ªë"¹#ª}’§ÜwÉ»‹^¤¯˜•Uimx(g}¼‚ŸN®=L©²³öÓÜT³ö€ofv}$RêiøÖÅ*ÂÁ÷p-Â…4Ø®˜t'+-üJÕ|‘ézv¹!ræw”Iœáê·4¹“üþ(÷Híx_\~{øyýµžÝ‘€ž6NÌå~.J?ó;ö5ØÆk.3˜ÓÑ`Mn÷`ç@í ©,+X½¢3 ë~ kò, û÷È qdÏDØŠŠéZ6¬¢ˆ7VÛTeÐ$–Õ7Ý ÉÓÙrs>Ülë)k,jemíÆ(ZÁBW¹ÊÒ…  Ç£¬cÙ¢™‚â/#«C‚eÖ‰®È®…¿Ÿ®(HÖàœƒ¨Ldh(í‡T8j+fr@>=CVÀ,»[‘!Óê=déìšÐs' &=·‘‚°ã¦ã£W–Õì¯rÒN43èÙ™áÇÃPVPè„S4u¡ªàW8·ðóë»)û³9ø0ï ¯dIs7â{ÈhYgÙ÷[ïFNbRèh‘<â s·Ö¨j¸'«hŸ‡#¸a®À|è}+’#’•wWlkÐtçÈ6SªÒÖªÚèoUUª B9âWLRV1ÉBœX8¹6Sy]2éŸæ‹ÜXï_D_ØôGôÖü¸óÖÍÒ<õaLô÷NH¿ˆ¡þ—á!zÊŠüÏ±Ì ²?Ì:/5[²ìmë ‚§!³º©xÿ$dKvø(BÉë‘"“mýÆàPÖÝÐ}VàìJ§ÞçSê-”Îýn-GŒWSL­VÖ˜'™:‚hþñnm#ÃâÓËÏwòþ㈾s›AÜžÁÛ+¸ž±µ“+SÛº7ÄâoÐ}#›ÿ§îëLéºþåOp)”)²oÖõPA«H…(àwÿ&zÓF•Eö@o¶(JƒöC=‰N®¦G>Ôüï_=9΃Ü;éZiÛp.g*®QÛÙ©»àEGö±÷øÀ‹=™xL‘Ïõ=tëðóQG]Í46Ðs9ÓÆ=0{OM-Y™˜•‰XÇÊD¬Œc5všgcoøæ]s£öâ'ç¶k2Ö£` ÝW3ºÀT~#ϼ•¸»á(“¥±i@D¸¤zð cÅÆˆtwŽ«‡'Ðø(Ln÷(äˆ Ú S!—“péƒÖ– ïW¡Å-¢ ºÜº·ÜªÜšáÞ?  jW òMÀ d+ÍìßYiæ¶ x͆åv¸[“ù ?W×÷LçêÐÓ— !Ý“èiaK$¼Á¥Å'ÄŸ™YãÛ¼ôy!“ÊÂëƒ !ëó‰æ7¦ç¬bï7ÉÛyŸ}l¦!ƒZ; =§T!¡yÃa/"¶4¡vÈng™2™+ƒ3>¿qò¦ÇlI Œ—ó»c ¦Œ°8¾¼­k×DûËÑÂðu -R‡óî_áSbo˶[(—Þâ†ÅЧñI¼GûÅ$¶â8Ê£ˆÉ¾IÒZÍ>yE?DQdâ ÎÎÁ­X{GÏKS’ Ôë(AÇ|”}Æ#ÙJ‡ó¼v(WHÓ¸ç]õùªžUŒŽ¨µ„%¥ûz”*3Ú–d˜äŠðNp™\$nò$G²eÆ“[t]¶DHûsp„£Í1l¤\¥9­¥\ó¯Ÿ.^¾¶iRªºL5y|ȉŠJ'$Ûª3ÉušqˆXØÊ(Øv0}HªLRpg¬€B´õ¹"öø@€Dñ1Ç®+Ù#|µýdb§³ZÆ×V>›ŠopZÓܱcØ‘“Û|Úi4l…œ”sÒô|t ûäóôžçÙ0«¦L͸´ª  QRä'gUªnYØwˆ†d"MÇ’Ÿ* B²Ânã6˜ûƒÒê@£ªd©Š:·iE{`ítUR[Ÿ´»õ<â,›R¤blÔCe_håN³Ì∆£cCïç.#ËØ!bž_äå(~û!Y~°ái£( m1û mݨ:à³Ûö¤ÎYëÃ4Œœb ÆeGy S§cà7µxþ*As-÷¹$iÍ]äÇÉC¯i5rõ³Ž l?#Ç¥ '\k­Gµ¤ÉºŽ©‹ALfêÅ×Î “‹—Ö˼âuÕ)Yw#ÖI ;aÛ¬?çH›ƒœ‡º£•GJÔ ¢ˆ­kzRË…„)®Ä¸xÍq´,I…Æz[76@ vÂõ×WÞÓž«EW´EÆŽ‡11s:.§QiwÞÚpO2ë¶w¨Ecã(éJ4ÝìëvgÅdâ·p­«YŒµ=ò7]¨wyC’ˆÝ„˜;øІöÞWöÔz²#sl¼ðm4a´@NT:(žŽóP‘æÙ‚`‚Ê}‘!ޱl5xgX× °4¥›|HÇÏË£¯Ï£FìýB8¸ç`(žd9àbÃQÃfr@ŸÅABßÉY)á«®UòiH <Ècž¤¨”Ní·þ¡dê$¹Qˆlr ·zªª"ÿ¿ß%| endstream endobj 67 0 obj << /Length 1413 /Filter /FlateDecode >> stream xÚµkoÛ6ð»…P,˜Å,ŸzK h†E€¡ö!Í?cgq”JΜnèß‘¡¤(Òdk Ö‰¢æÛäcïõ¥Írÿ| –æ‚Ђ[Þ†Š ÒL?C»¼Õ¢4â³þÆHÄúŸ¨¢0M`üƒ S»Í4ëpîI"eПíПÁrŒtõL`,`Tø¾FâxÞ#Œ3dçÁû\¡•¦-èc‡õOíYã— O^‚ì«gÙQª ”º0Þ£‰˜WÄ¿±oÖuÍR“zãS6»ÿÅÌõÓ`ÈTÆ<¾»vû -¡OP¼Ú¸Kâ–Âø`Æ2qW{|ÂgÇ1Ÿ=F%)ëo> stream xÚÅÙŽäDò½¿Âí—–Êqž¶‡@šFƒ†•–é7àÁutwÍÔÑ”Ý4ÃjÿȈÈtf•{h»<¸l§ãʸ2"ª*nŠªøúâ««‹—JRŠÖZU\]Ê8Q©º¨•ªiŠ«Uñ}ù¯u?Ìd¹k×ÍìÇ«o^\Z"%\ÕYĸ°Ã~Öü,áº%¤œ0k¥ H¯=Òl®jø•å\½GºxyuñÓ…¨ª…5E-[a¬+–»‹ï¬Š¬ST¢m]ñ€P»ÂVîÛâÍÅ¿/ªt·¹ÐµFÛÂ5ZT­")~™Í­Ôeço¦\ÐÛÚïåè¥)æ²A¤¹4ÂGH’Àd¸2ܤ5²¬±bK(Š@U¸ŠšDa.šAu†¢EN¡5Ša5e^̵¶ ö÷öÖ³¹n›r@cÊÒv ¥>qŽå ¿¢3¬üûÑ/€‰¯'á:Ô3øØ=üìpÝÓUØ¢10¢ªuùƒÔƳ? À/àá}»¾Ây™7HÀ/ ‘ ú’`æ}èŽDxÇ$Êdz¹‘¶|Eh¤ XÿÙÿðFúõÀî‚êLm’lY¶.H.%¦ÚÂ]ÈÖN¨†„~ªbµL¦ÔpF§‘ù¥´7/§Œ¯+Q+€ѾºEÙêI‘k/Þ=¼%–T¬©ûÑ^•h|õê¿NhõLkë5}B®ã îÙ€q²a|dâD°OL±ÙíO…$ã¸Vh×䑹c[cÒ#‘Mä‚Sb£åHï=½{ë—NÅ2'Ž Mj~'@d=I²RÂÖÜ1¨gE¼>Œ¯×ããqÅÐG°°Ñªü*ÂB®#Ýñ&6ìý·„âc¸oÈ€¹§G÷˜A>÷¸V•7­Õ˜Úq'ÛÜ_ë-ûµË£T–nÚU¨¸.|ÇBRœÌ½Î(\×KúC%1ÃÃo"¥Ú3ÙŽßW›¸±Rí“¢S(¸ŸÖzQü4>¬‰þL^¶š‡:’w¢k0”ï1CÚj6zØ:ɕޠ“Å%s Õú@6òKŸbNÎdè‚ù.ÙŠA_ï|IN–ç³™/Q'øÛŒÿ*å9!æ?}µ[K2,okσ¥Z0Wÿ™Á–”Â=‹·ü9€‡dÉÞPÞˆ$àÓŽç?Dïª]Ö‡Y'c‚O~Ä0™å±R;ž^MÕRÀ‘þdš‰ü©‰3§æ£Ñ??ðûg'ðуÚsxû®ç”ÅtU ãê3ƒAòkŸb°ŽvÓÛüÿ æ+ÉúéÊÍLz€¨ló»ô䄵b¡Âº[%ñíµ=\¯9æ^žYh•Ø0$çôù?ÁpÒŽ:3œvŽÎs¯µ·gÙ OÚ«Ä„,üâÉ&ÐÎOIr¿ë$y…¦‘©ÿ’x$‰$Ëðú„“œúÛq)(ðøÁôûc +8ö?M'+Á0sH»rTl¨¥û×*ÜTØ¿wP*v“¾5…ì=ç……I @GGDCˆûˆ}Zóç-ÏËch)€Ò"é¾à5™HæÈsÏ <Þ±4‡´ÌÞ¿>¯ÀB,zdÍjš*ȉ—ÓJ¶UIɱdzM.¼´UEE\¬ x®Ú6Ne<ÔcC‡ ªš°K8dö¬§jœTYÕì¿lCS@]^ï;ZèS¿í¸¨HËË*év#÷)C v¡Lĉê‡çUõ#î|`o·y1²fíQW³¾›Š„LBîϸUëßÇAökis®€,›óÄîþKÇFO ÎŒ.ƒÈjÍÓÉ«tNTîlòª!þÂäUUⱎÓWœºÖpTµµ¯gáЪñÀ—¶î’ ÷ÅeS´¢uÊa PP[ká$'•W>š¬Œ ‰UISûžÒÉ]Lîö~›ŒŸõ€“õåŠ&8Ûí{I/ܶDb‰0xVö}ÂÄy‡#¯#¼q~9Ñ!o=h?ìnTÖœL–DgÔNØqîaa!x^]'JXóbýß™Œ¤}îqL”¶~\i‚¡j ‰ÙOÒ0AÓàuºµå]×Ó`+®<¶e•’bÇjÉ&îø>Ì:ö7Ä;TNc™Áì[&ŒC]Ú?ÄXû*¡C‡B(I¢@h~‘ /üâþ0Pÿy³’¦•Q°CÉŽaèyQÒëÐ<‚Åœ–aøÊí/¤¾ãÉ1$;³åâ>´Ñ6n¡ã\^YáÿÉÌZ³]H#hÔÍ!ÌÜ´"’=ã\î›F˜F¿¼\Æ„¯Õ¨ x^­ƒ•nºÎ¡Æ–=óe¬hjóg‚¢Ë|ë>ïÖ÷¨ù4 >– ]#d¥Ÿú/ÔÄmpƒÞVí%‰Üiþý Âó?w endstream endobj 77 0 obj << /Length 985 /Filter /FlateDecode >> stream xÚ•VÉŽÛF½ë+úb„FíÞ¸åè À$ÑÍðCR#Á’8©L&_ŸÚš¤f;T³kyõêu‰F=+£~X}Ø®Þ?:«¬Õeš:µÝ)2m\®r´+ µmÔ§ä§¶Ö69Àu†ëyýyûñýcêçŽÁéÌ–<Á¬»À­­àVõg§Ûl¬´.:ýˆNëËán“¸ztZ}¿]}]Y°2ʪ4¨Ü–:¤™ªO«OŸjàýGetYfꕬN*5žGõëêç•™W›æÊæÚYùáž^›Ò1‚l½±Ö…ä;p®×˦Å|£6Þëß°Ô6Kôø²øXéŽéYé¬ÎÍÈÈQÉ’Žér|‚”·¸ °„‡Kj„y’«;Ï^bÏÚå*Í`»pI…[ ›RÔ–3 ×ŽŠ‘8upLI)8ê¸}ÔbR3 °¹Ò†›É‡r`A–!1º¿ÿ…—}}‘ /d0µIK—©ÚØ CH™¨X ¾˜p¾ñºž‚/)Îå(šÔBoà³’„mÏŽ»Ž<ÉúEö/x;ÊÕÅûèzˆÕëõ&Ïm²ÝO8®‘Á8¥NÂØÉ^½†£°gƒ·ýňæ2†ºGÓNû©àîë#¢Š‰ÊlQs o]ò?Ùoã àíñY&¯±ý6~[»3àÛ¾m¥×âT 8€v uŒS¢á=)â`Æ'Æ2Bl`uä/dÑ"ܪ“0‚jÁÔH²$›Q U˪™ªìøgóH¯™l{^·¿Ç€A˜z»eê0åœ+¹aþ@y¤h—9í²ì¶£ú¦&pÿ4}kÅ¥ûo®¬ÐÖøÿúɵða _]©‡GÉXòû”sásÓ endstream endobj 93 0 obj << /Length1 1868 /Length2 11740 /Length3 0 /Length 12904 /Filter /FlateDecode >> stream xÚ¸PØ- !8‚ì`ÁÝ îîî8¸w—àNÐàîîîîî\ƒ;ÌÌ™{ÿ¯z¯¨‚³ºWw¯Þ»{S@J(§HÃoh­±¶²§a ¥çJ ¨10èé™hééáHI•Lí-@ÿ±Ã‘ª€líL­­8ÿÅ´íßlB@û7¢´µ@ÂÁÀÀ``åd`㤧0ÒÓsü‡hmË :š¤iÖV ;8RAk[Scû·:ÿù 7 0pp°Qÿà·Ùš­Ò@{å[E @ÑÚÀdïò_)ȹLìím8é蜜œh–v´Ö¶Æ<Ô'S{€Èdë2ün ´ýÕ-)@ÉÄÔîO‡¢µ‘½Ðx3X˜€¬ìÞB¬ A¶€·êEq)€¬ ÈêO²ÔŸjÀ_‡` eø;Ý_Ñ¿™Zý 40°¶´Z¹˜ZŒL-@Y)Z{g{jÐÊð7hagýtšZõßHDøåÀ·ÿêÏÎÀÖÔÆÞŽÖÎÔâwt¿Ó¼³°•¡ µ¥%ÈÊÞî·>!S[ÁÛ¹»Ðýu¹æVÖNVnÿAF¦V†F¿Û0t°¡S¶2ýêú‹óf‚ûÇf ²°ÐÓÓ³±r@_ gºß”\l@8~›ßzðp³±¶½µò05½ý€s³:‚ö¶ ·;þÁ10 M ìú cS+¸²¿™AFâ·û·5uhÒ¿€þ÷×ߟ´ß&ÌÐÚÊÂåúWL'£¡,%"LõWË;¬n4,LF€…àñßyþ>ÿtÿ‡Uhú—:ú2Š[Y8þlâíôþÓˆã_“Aþ×ÚPþ»‚ŒõÛ<ƒäÿŒ¿= ½ÁÛ7†ÿç%ø#äÿoögù¿Žÿÿ*q°°øÃOþ'áÿãZšZ¸üÅx›gû·Ý¶~Û«ÿ¥ª‚þ\hk Ãÿõ‰Ûß6„ßÊØâïc4µ1uʙژü9Dÿ¹…·ä¦V 9k;Ó߀†žþ|o;g`þö¨Ø½ÝÕ.ÐÛJýwIa+kÃß»ÇÈ ÚÚ]àèߌ‘…àÆð¶¤† ç?f@GkemÿxkÎ`dm ÷ûFYYtü¿M"6à߈ @'þ7bgÐ)ýƒÞâ”ÿFoqÀ€ÎàoÄÂþ†¬-ÞüåwŸt†ÿ‚ :Ð?ü·ªF¦Žÿ20¾¬lÿðF1þ|Sfò/ø&Íô_ðM›ù¿à›‹Á7­–ÿ@†7eÿú¶ÀtÖCæ7îÛÿ/÷›2›¿!Ó[!íÛiÿ/Ê›¶)gxÓf÷OgoN»·íÿÇÍ  û'øm[èìMlAÿ:Š7yöNÖÿ x«éð/ø¦ÐéÈøFÿ3ûÍŒƒ­í›È?¶úm þƒÿx¼A gÜ✵Á³*ÿ–» ~'š1îiÒÕD ·EÛV‡‡Ðñ婾ë¶7üñƒ]È+ÛÂä×|KÏnG5ÐAM±òÍîOºÑ “;Íp }ã9GüÕ½x°¸4J|»îÏ_ÝU|Ì!ÁÛ%H3¾:°ËB½sêu®î-Z œÛ‘ß-g•„*š¢ WÓòÉŸ!ÍÔO›Å"‚²§Áƒ¡D9wFš¹¾™FI%ˆ¦‚ó8gÊuÓØ`Œ¸Ÿu]-Qb´ëÀ&ÁÖÀƒ¸F™üì&°Ÿ 9ïV)šg„§3WÏÓŠüÊ\IؾÈU4<¾9Œu ë#X„´=i ¿E*0x`¡˜Þ†…’QÍ–?õÌ › g'ß¶÷ŒáZ:“jëÇÛgn"Ç”ÔcïMÎ Õ¶´Ÿ0Ϻ€Õ×Ëá9EVóêŽÀ¨Ÿi¯ÙétF)^4q ¦ãôM©¬xD,$tÆV̤›ÝL;2qÙ.A‹Á:_6ƒÇ•¨„-=xLTËão‹EŽ]"ãÛþ#aË8…§^ìóÆ$k°–*QùÅ©üõ×6ÜS IÔÏî‰-­MUZÁ\r•)­3™Ý]܌֮¦ gøy/,t‘í: ¥åêo‹àÛ"\Œ] 6çÚõ7>Žvëq8àÙDôÝÈm DUÈ8ØÎQHq;˜FÌúN -f6uÊÍ„êä{`Õ7@vtÌÀý¤)sU¦]Æg*Ùó¼ÙËuÂôsÝ‘ç|7;ÝLðans”6nÝÀ¹©#Ûë{Ñ'òd_. ®Ö…dÉå™äjði*×§¢­™ôà^¶ê%±!œóåhƒYàˆ…™lâ*³>Ïs;ª¯) Úˆµ©=)x–î˜ÖþA•Q>ƒ¾âZ–2`žVIq‡;'7ØôZØÏFR)¶ïæÞÇ·øÈö¼zÂ,­ŽžD¤”v C|÷'"[Ú%ðùÞiT釸D—k úÝO(±ÿ»€ÜoèA¡\ ©À¿i 5ë}ÏâT{ò‰Í9j,áÞÊ%Gu˜€›Mã£0u%J›êÈ€¥­™4û ʲ–¦r}»cƒ9d1NEHƒ¦<¡³,iFuI2Á¦¶á4«¡.ÓSÉá6÷|Nö¨š=º„ðÞטò™9Ço2ì`eª½šš»‰j¸HEÓ`—©—©b»ŸÝ¼ÞäXòÊ¢}ß &j˜¼Së[#ÓÑ8ÓÎyž™¯™D2šnÈ9aj€>—dö,ø(ÍøSo„ŶL*ò’3ëguÎÀÃFiÛ¨çÆ‹Aʼ´lÁF0*¡‡.Üa¹ŒHNáM)äÂn"j|]"ô sl »+è2 •Ö ä=¶ùGl.j1Ï2âpežrÏ(kžï90DÓiÐtý©Æg‚ ¾3ÞµDY&›îÞ¥1€ÙVÆ_õòhŸŽ¬ñŽGŒ²oÉi€[îGA[‚„ä®&“ ¾±6áDÇÝsä9r›w誑÷¹DÊÜ%B“s|ÊßÃ4d™ãÊZSc.‚lfA%Œl$ÎylD8J˜±‚¸%ph¯}íê«ÕŠ™Y²§@—dËœs´„!ýP€1 –2/âä5pb!‹Ð¾ðªÑèÅ·˜Ÿ¯Ë³-ç‹ú"IÅ’Ñ@àô , ]¹eõÈUÇÞ#K^ÊŒ´ê Ðáy9•1G–A“ÒðÞ{Í{Eä®ÍIZV)ª\ÈN"qX§©æ¡ÓÏ öѧUi­­þбL;ºLÆn}*âñÉ«TÀoÉ$ìb™wžzó’'}7èÓ¥õä÷%"±´ñò3H€†bÆ1äåQ62‰Jòº³f¼þ”É‹R9ñÕ¨Í[Z‹ ùp³AR³ô¹8†ÓfW}ÆÁ²JUï5i*KÉzÿƾ~#j¢:&Ïìžò/7 lYtl¥ÜÃÖ4{ ¤Þ!»V ¸u¸|V»à¯¬üô]&h "éJsnQäYŸÏIÖ¢¼8‡¯LÚ?ݾ^GJ¿šuìA¤#,à“F‰¼ÃTñ]ú&º5àXï Å«§È¹qÄ)²Qè©DºóÚâH) Ë^åR¿Õ´ø^WzÕ¿ö.âmz£msÎý䡘3Á2kŽ÷ËhÍÈ?3!2,}¾ ¥Ð·AÎ G¸–#ÿzœD¦Ù‰+ë¹àõ‘™d³šij´í§…Cáòšã´Y©'¢}ÂcJ#,ªBpeþàèñ¡wÔ¼L(ÛÎl ¿X‰qÚ_„—!Üß¶‰PŸáãr1Cõ³èb×EÛ«Wˆbr·Z…Zzú›Û³$7¶Üm£¼QtyŸn9"¸R¬Q”‘ÙÊh3X ·±ê¶ÄIÕ¹@",BÔíÏxÎŒwóJ¾&šÇs'‡Ñ4ZÃË[VÅ4ÏÊ’Š!šù¦²Mêœö¦\ˆŸ “_ßu Ÿ"“Ú ­{¦hA€îƒï¦µÉ#Ζà8w.€ŒM9¼“¨++n;Û¢és?`øª8û2-Jz퀻ìû‹m¢MS*!FÍW[2WÚŽrGÄÁ¹ôO#hxO¯µ¿Ð\a@‰z(’àÝn7­æëÌÈΜRŸË¿»ø€‰&ú¯Ùt×0â£5ÆöxˆS®Õ` Žó¸ð&Ëê‚C¶0GyâÜŠ¯ÔÞËPÑög¨›R9¿×§ö# ’´¡7Ô~j:Æ~I_3bÕ)1!wÛëå\ƒIª}YÓ¦IÔ/èŠ6ð™åE¯L1¼µ£BËò yèÓ­µKùѧX…™¶G ´/p1¯ü59bûÒHZs!„ýdŒœ›ž»ú9KÚca¹`€)]È|ÀD/\+ÝÖÁgý×—[ÓF~ݶÓ`t8kÝÉ$ók™”™Ð;+½¬ÇyôY Æäøå¤˜Ÿ$Ä'ˆ¬÷“n/g0OÅ{[euZ"Ž×ÊǪxðíÞ§p¤ÎšÆ53È'f¬ž¹(‚ð3è+D11:æ‚Ug.HM+¤¸/¤Vuª³"©²t`hÒÈI.¥^ƒh3{ž—_[O —Lų|HòÒ‡•R(ýŠzµ‹ö(®LÓÁÁí™5RTÀf´-w‚}T¦Á¢—dc}¼Ë®[(ŒÁL_á.HiÞI(÷ehU(©±ÍÐÑ~ 0ÂõQ~ÿúÖ„íŒ]:‹yüÖuŸƒs{¤zÓìÅÒÖñ:Eî*‚‘'&FßÛù¢y[÷¶9oXª»¡'Þ¥8°(Ö¯âjœiRÎÍèH^ð—G±áPÌÀüç¶mõa9sósúdÔus˜‘\¶uý‰w»ô4•uâ‡SV]ºeU7“…ÑÁ³AºàÉäó½jE©—‰ WøI»ÀÙºŸ!›sf˜°kÕž®)Rn_ùµÀ¦LH(B9]e%¤V]pÍt~ôÄõÇàÕ‚GõáâSL)MxNHj@ð£?ÈÑCFúBIÈax’óxrl}îÎ]sìÜÒy%‚ñƒl£h RcÙÃá6™òÊ /T’†3@nÍ9B1¬;òîy3³V³ùˆÝDc¾\ÖÊ\=wšemÉ2ã´¢-¶é¯¾îä4†ƒÛgŠ\¸\ìVï\ÿú|ævé$¯I¥"“õµŽªq“þlÛÒŠzÝLÚJØHÁ¾@A¯\ù}iú‡rö®ä;™Ì‚ì×4IäN힢^L^o ô³=²y~Úó7.¹®ï¼;$túYÛ¤ 5>›V-„ï)ý¶/’39ÐÐØCVdt•Ò“ê>ŸRB‚rdt>ç;ˆ»_ßûS½ÎÑÖÁsƒGb*BŸ—w±–);]Ë Ï?záMœ_q‹Dvsõd Mj8Ó£}Ü~†OºÖpsó ï¾Z# õÇB8aî'«Ó€­éÕ’"z6{EéoïKªÎ)g¸^€ßd…ɤfÝP‹&@§¦°{ï,xêžöJ7 ¶³; ©è,2&=Ñ \niv3àÛd SUÑQU šm#'P‚1Ãx½ºT¨ ½ÁµH¾ä•Øã*)t¢I³w {5LH¥Û©» Õ3Ãßù ¹ µÌ¾Ô“Xå"¥“ŽJ #$ÙÄî §ñoVt?b‚3Ì~øð4ôþ°ÂLԞǥy8XâÉæÍFºÐ”´çmNÇ(^gLVšï¡Ï5"rãÞÿE}+¾¬Ý¢CÄm¡ˆý&u7—•ŒšÇÏâ7[ãëW¾ =Œ`,4ÁЊSê¬ØKîÊØûUšŒý…nw #;»nWºÕ¸!oÃm‘Ö¢ÙA~¸"\²•ú¹F’–Þþ€¢$7 Ùèüzvæ’-*ÂbÒ*YÚiG+Þ}±ý.³á|Í ‹‘¸yˆÓ}x¢…u-sžYì¾"wÆÜö—§¸?˜pD®åÕ̯dÇÒàr}ê.Ídç"_ŸÍdõ¾úÄ [\)Ìú²¦aN½\~6ÁHO5*ÝÝÄ6bÑŸü*=öÚ!Bk†ˆm5„°sôÞ[”>ëË®Wú?1+|+pŽŠmÕ'OòªdB*ÒëH/'±aÀ.>)«}6ýƵ Û¶wù°1£:ÆX©³„uþÁU´üä `*“15VüüìbÔª«øJ´ÈóHk¬wóI€UtîyàH ÿiÀPí4ªí:¢QMج2õ$ `¤ŠÒ¬»Ÿna!_ˆÊú ej]àï#ÂUõ‰i&éIâeuK†cMJÇi kÕ/´Û-å³pig–97)øçW2®@Ae½¸{n<\ºçìRJ¹‘d¡©¹s. òÔµÓ²¶?Íô°Xíiyb§M“ëU¿mÛ,Vyd—°¼ô¤‘¿SRDû^û¥S3‹‹°Ý„bÐížb¤)†^d±È´ì3¤¹äÚ÷¡—•æ§þœßœ@½o8¤uÙÎjžxR>³Ð±ßøI¸‹LtVy õƒQM¾ Ÿ7›šfr(8ô!Š*k³Á£èµÝ<‰§ ^aÍ–Gâ¶÷{iÉjxþz Λ ì¶NÄèhk´‘2ùÌ5ÎPÅ0ŒØz9EhŒ±Ý%ÇÆçdålÓjpöb¬¥³VmÛ¸sñ‘î–’X?¤Êd®Îõ‹­:¢3NZˆ#ϱ¤;˜Ï¥‹µJ°q`R82Õ¢žÜTÀ±V`&ÝÃ|`3y Ü+\;ÄÐô«-G‘IÃøÀ.ÞV¶Uë)¼¤'×ʰsâ–ƒ P†ø—¼&û„Õ=I‚¦nžoWiÓ‹S`°²f§´áÞÉ‘|[ÒËšQM0ôD­çê*ñð‡ÏÚûÒM_R(ëY£¯Ÿ¶t¤»¦\E ¯¥póY «Hñ%×l6¢©“·­l:1ð¥lˆ‡bÈU¶ªkH&ø¦Ýz8ú€}*†ÑÚ¦?PS£’~¸E Æß~èµ»à[Pî\…>`‚2…4 }-Þó}²d$É £[¯‘W€œ]ÊØwäÎ~Ì{–ósÖ 1º6']¹a0·Ô·”ÚC{ ‹ìN©x|TϤUáÙ@Î ½NE¡²tê*ús¹UôJs³‘uÄoJ?OðR]!'Ík÷|˜®zø ÷ ±1 .¢ÁH™Ã,D êñÚ…Žá­£EŠ®ÜYÖåGø¯lT²½Ýcëqòc å’‚(ÌÑ©l´‰F ´SÐÏ…¿àSÖµ½Ã2…«‹rnó©ÐÕè•1‰ 'ÍU´oIzÔÙ¡ËnDÿ5Ð qqhMöÏòªNÇ‘¥gƒYšá­‹6éwà—òð|m†<4"/s‚>R˜[à;k¨Ù>4áþ¥È:áJa}/=¥‰¶"¼¢¼Fã?Ý«þ‹ô„üœ6M”DPXý„¼‚Ó˜·“Àg‹%¥<×’ÑŸrÿýfËØËVôLÖ¥¬§„V¡šíuÙ9“ȧuËÚàsya¾²²WÙ ¹Á¯™ ….z7Å×óÎ|"éº­Šž×ÅÂ.ÈùkÙ”èý¾Ï€&‰’ÞØc±ñoV°áÓàr{HŒ·/µšZ9'0ñΦGÕNÜx²KÍÚ´líDšçl(­B–§¦#®™U1» ­~È€]ê½ËRå°‘,oO3Ø×dZ+9‘h%›û 8w\ƒÊvNcx“@*ÌŸ9øE”¼sç4JpÊÁÚä-¸ï “>/{»ˆÁXKT}#¦2s~±ÏpRu'§¾·±g˜¹5µÄ hp%~‡ã@µÁZZ,Ü+µ’˜ûDB«×>®Å/6…Õ(ü »4²´+Ûxq}­çÑ v$÷ç½¹Ýì\ùb'-l £MXŸ cûñtFFMÒÙP¬ås9ˆÇ·¯ú1€º5…O$1²¦;Þ¼Ömžk_‡;]im‡(AíQŸA^°ÙÀñÃÎV·Jw™J¡˜1Š#Ÿa_C\mÕ°?HëXÝî^ƒH§TXøå×bǼDw?l‰cs7÷ínQŠ-9?óÒâ–ĽˆïƒÛŽ ê¦R—£Öc :ˆ¢Ÿ=xy¿fP·}?~ö/5zTa0“üÖXòŠÎÐ’Øå£zN2_”OÁôy Ô§*½~ÊXWT “`™-2ñ+‹»ŒZôé'‚R»ï"ï(‘Ê©.HoY[rĘ÷ÞïX3À"ÈB*§y¦ÎÄ|à`ËRcÌЇø¢C÷mø™Õê)Ûz(?æ|œ1"Ø3Y€çb<Àâ\Y,âE¦ßvED^®Ræ(ÍbßÕ‚w9& çNÜùeæ,?*ÁCO¿4ĉï\§0`&š´Õ¦Úúñb㵬ÐÀÍVRi*ˆZ& rg«’m峯°óÆú&é¦#×b¹§í°à7²çJ·ÖõIìS(Œýkc¿#õ'±/¨(²½p†Û‰ËʼnX‘D†Æßg#%üÄ)ð£EPÃ>Z Bfq^ŽÐ@uLÖŒ¦_%²ÎVeB”‚VŽ1tWTð³¥–8!*é‚7/ŒU…r dŒ©ÍSJsd6Øp7±°žFì¥W<îxx:í¿XáÝ) ÜMé6¿ÅOÏ!Ñ öÂN“ÞØÿ8ŽÉö©‘M^ïi’íOÐãäÕ°ëvº„2…KÆoäÔÀad‡Kªf+¥v³f‘ ås˜¨ZYbuãàXYÊtº×/uÚ )˜ðKãkÊ$è¦T‰+kávÛ:ì™`É{ ¨*xë ɳH›Q ¿Ç*ßZ©"ýJ‰Öô<¸+òÊbbÂ;h‘¢Š vÔÐWáö}} !ð/)±X›òÞ¯¥ šC©(9ü¾,žûkàÒ8m´nòuvM礯P9öç=š§NE3hKªikàÌó÷þ;NpÖe5W>â.FFñô)ÖBW]W™És-²ä3>xqPEfo§SlÜlfá…4 ?õñ>7M'`yÃÔI“º7êUeúkØ“;^¤  . èÝG¨¦§)|#¿…3¦çúÎü L!2(Æ92~k™<+’ãèþzYáÇÝ­n¶3ËkØ!ÕÁ>Óh¨™µÜkŒ¸Kà U«‹–+Gé²Î·e8“#zÇ/£ ÀÙ趸€D?ò÷¤8†rÑÉV0¶Ÿ…Ô8Æ¿¯ £ohÚ.Ȉ­úE¿Z9ãÎn}$¼… èýÈ×X·µ_€¯:à7c;Tæ(& PÊÏÜ-wöb¼(ü”ŒÌë—š‹R†âFƒÏkuºß¹M!÷¹¢ŽÝ„ÉÝ$W<6ÎA¯bMQâ5Oð±<±7þl*e©oôkd®^<·P¼f®#|ºÆ7ÕÁ‰Y­ÆÐŒ:\Lø²Âh¾ïÊ@©Žç¥º…!ȲgÌV媼2P>-oq-™w>nõÔʼ®²<%‘>e;fFÜ´&Âä è6O¡dÈ`+xDžăœ>iŠ)q,à{Ä}èù`ž­ÇRNèêËͬ,¼œ[ÏLã5ЧhŽ?(sxpô(Î"’ò¹¿o4Á”">̰›Þõ¬¯?ŽIvjtûŽÇ›}Àöìtk #°Ž¾|™îýÒ¥Õ‰¿™³R_šµ¯ãR ûŒ\zpÆÍš\F5[H%¶UËlÿ ÞIG2Iêþ4ÕCf;¬ÉKÓm° /&ê³´éà`ÐÐv­HÚùíPì/7ý·Kê_¼ùø*TÏsÀ×y²rfÜp¹o©PØ ˜%ƒv©MtS~kÚ¢ÕF~7Ïv^cNž_üvPšÓéÐIVü*£Ü6#GÄôò¾3§Ì OB“ì½ß{¹ä>é•ÇY“I·ÐY÷Žì…}'}o) ²tËü8c()ö$y6L:Ú:aÓ«=—üJ9Cµ8´sE!ZFé\þºFŠ¥ñÆÓU3+P»¸(åÊíƒÒú¹Ù§‡–^bÍ\}DMdÕ‡n8O¶86 ×z)ò¼–f‘o; ÔèŒ =4òaÍSNÎiD÷·d¦â' °- „´|U­aÍ «×wÐÈLu³Æòþêmc®B­3}¾ü/ÔŒ”°'*ÚÍijœ›¢Æ·zr9ÍØu•.ÔL=«6ßX±ÊMoê²™ì5“GA»„î÷” ‘P !,Ñw¸ŒŽ@‰³Ö‹Eäiwz/³:àºË¨£X½tî5†ƒ.‰ºz=vpê2v‰)ny«ˆ¦>È&á¼`¹½”Z/W¿´“ÆO?U¡ŽÓEÆnìäë…J$&èm¯ÄÔjÉÃ+ïó…ESÚ&s|zFOØ ÇOƒÓ)¢¯X‘„Òìá­(ù4¼ý¦Yž®ÐºóUf^_tŠŽn¹âœ€aæ_8Ò9FÍ\]Õ-óUùäÍæø>ñVï·ž…5x±Ü'K_EŽö:¾ù;[ÀBžg{Ëdœva]Ÿb$q¬ëOÄÒ¤PH’„!â’`‡Øï2÷`ž¤&ˆpç„î(Aƒ,é}Æd¬ ²ÚdbÓDŸµgn Á¨Ÿj)¬‹v5¤wqèÁ/n¥Jñ î,gàhž{!†ÛEµ€Ä¼@<`þ¸—…Ø][“¥Š¤ç7Ú®úðˆ ~8g´1ž'Õ‰éo„PåkÎÈxSaý) }¡ä<½w[ϳ{Zì˜Qsº—#ˆqǪhTn¦èǸ"Ûl—wSp-ï+©~îÈÚß³²kå$õÍÆ‰/iIJ²«ºØÅO‰´ûý$F j¸C…ô¾Ô³¤4ž]Þ29§ AØ=éÖ†(s"):,<¸#œE=cÒ ¸Å_\ø°_ym3Û(ß%•IæN»m|ç?кüè25E™‰¿Ÿçšá££ Sìå+–†dí¼MÕU¸a}®\C»úú.<ØàçO×ÁEöÉ.{(?àI" Ç!íÈCËWçLˆû:ßÛ ð†¨ ×~ÆìË=ê·ˆó°àx0}-Ø r ¡2>¯nWvö!£`G|¨WYg’b¹@€ëždÕ8GèÜlk£Y˺*š¥öuý€µ|¢ N׈Te¼èšÕ3PêNÇYC‰5cvÌÝ¢†LW´8†DÒU´óò ºw‡|EÊnýèxH¶§ÅG’3˜„¤”·ó¸Æzý&ŽÈÕ÷H&%q)ñJž¥È¿†ŽÆÜ?$ô\Kf’´¿ŒLXßf¯ô-\·T2˜.Ú ã™«ŠL¯%;÷m´èYEg£+(¶úº. N¾\œ´Y„Ÿ < µÑÄ J$g.šSTÓç.ìóµp4—ý Ä]—–î7.>B/æ§"~±ò6ß_`ß$¤¾ìúj…žP¿ï:)Vµ4þî’ùu¥B‡‘rÞèp#€^ÍTe;­U‡‘‰Ðä4+µÚ9ÎM¶½ìcͲ%vfn$ïô6ÝöŠR~1GÑ^¿E›nÀø}bNÚé {¿êy»£fwEÀ’ØÁóyÉ>a ròüίX_@dîJn UžÔÎÑ$Fe„'ý¬g3°N"„£èW”“ `C»öbK܇u^Q5œ¯s©6xÒÃ%RžV¦æÊ³ÚÚ»òaïÞ_1¹=twâßž¿f`‰& ¤Ó  ­ò«É‘ Ów‰o…†ŸãåuÎ †®%ÇQ?nµÉøuC›.@ÍÆ {D'Þ:¿,à}åÛ|ýž¯öò8­œêOëï'‹I¬ê®Ym—ϱË=rã Ãø°º"‰qÙ{(.sœÊoi—åØñ¡çÛСMuâÙÝs†!Pc*êðÔrvG#ï3’üÁÌÖXû„!pá_ÓჼÏßQ¬ºÞX G8C^ÍAÛ¶µk*©s„8ÓÒÛ&#;ƒ-\'‚â—™dÈVò¦Uñäì—í€U.wÿÔ¿·Ë¯¶QÕ´®“ð.o•åØe{Öº¤6ϲÛ£êôŒØnè–Ðw×·ë¼»b"3öÄ–zzéöÑGžCcÃØ U1Ýó‚=(s`}QbÇì”è]_¦Ïk½gtSißý9î.ÑÁ\“u6ßTî4è!I^nEJñ÷˜U°E&‚~c»q$_=\4¢‹õ/gæ¿©_#GY¾8MæèÚ)¬…¥ký·ç*m endstream endobj 95 0 obj << /Length1 1429 /Length2 7301 /Length3 0 /Length 8270 /Filter /FlateDecode >> stream xÚtTÔíÖ/(RJ# ¥4C§H#ÝÒ1   0Cƒ4ÒÝÝ%H‹4(HH ) Ò! ú¾ï9ß9÷®uïšµþóìÞ¿gÿöÃL¯¡Í)e ·€ÈÃaHN. (@FUU‘‡òq¼¸ÌÌ:P¤ä=.ó+ˆ ‡‰þ/'y§“!ïUá0€’³€‡À#(Ê#$ x@‘áN¢Y Ô ÊP‚à \f¸ƒ»ÔÚyWçŸ#€Ì àâø²‡8AÁ @„´ØßUƒìÚp0‚tÿ,â6H¤ƒ(7·««+ÈÁw²–`å¸B‘6-âä±ü† PÙCþ†Æ…Ë Ð±"þ2hí® 'àNaC`ˆ»g˜%Ä pW ­¨Pw€ÀþrVùËð÷åx¸xþ•îïè߉ °?Á 0nCaÖ+¨ .¯Â…tCr@0Ëߎ ;ü.ä‚Ú,îþ´ÈKi@wÿƇ;A.Ôî7Fîßiî®Yf)··‡ÀÜßýÉB à»{wçþ{¸¯apW˜ç?’fiõ†¥³·. êè Q”ýÛçN…ûo5  ñ  Žˆ؆ûwwÈ#ÏoõoO¸ÀêÄj¹ûÃõD€\ ¤“3ÄÛóþSÂåáXBÁH€Ä Ãýwö;5Äê/ùnþNP7€ðŽ~<àïß¿N&w ³„ÃìÜÿíþgÄÜzz*ZzìCþ—QZîðääãpò <@^A€ÐÝÁû?óüëþAÿG«‚þÝðßaVð»<¡¸»¾¸üM –¿÷†ðŸ%Ôàw„†XþÍc |÷áùÿÞ‚?!ÿ7òÿÎòÿäÿw$ïlg÷ÇÎò—ÃÿaÙCíÜÿö¸#´3òn9Táw+ûoW=È_­ ±„:Ûÿ·U º[)˜õÑ9yø¹€üé¡y¨ÄRŠÛüE¦¦qWà ƒhÀÐßÏ]ø_¶»Ý¿¾{\w3ûËBÜ-"òÏxË»UûÏ>ä``¸åï䀜œ@î¸w”¸“ž‘ß°~bñ~âöú÷XÏS† ‚´l½i:ÑB§n4 ÚpÂvœ–ÖÝÚÌ^Ïj:§b]Ÿ’É )µ¨µµW¥©Ñˆ¼Ú^ÒB6Zôé¬ S<Ë\² X~gš¨– ,ÞvŽãZI¸Ø;Ð7KÔEû9ÜOÉÅuŸ)I$'ÖG#ËUùj6ÿ*³Ðåg ±§…‰ ™¶j6½nŸLN\ã…ñ#–¾mZ¨M,îO ‚Öœ”õ|¸oâ9Ÿ@G€pbæw†·Öaž–âsòZ¾m“oFÉO§,¬Ø=lnfIcô²)+:ôyóEJ;Ü6©lÈÉ¥—™ Éî"fsž6*ð$Š»etç&µ‰êBG§cŘÚ?VuRo¬à¶´ÖîiNv=¾×ÖjÞƒˆí^÷&âZë®J:†‰• 5#Dâ°ââãÈ—v£¼¸Më_ÄFÙàd¤=ÄAP†œ­m 9º I»¯/¬¬ëÕ­ŒãY-®<~Tã1ŒL|Ó6Ü9iôó,Y¸‰XçD*„ߪrͤ1#op”r€"ópF9Üè9Ó[~9•¦‚§[—ãÖÉã«O…?•8¼©»eIÁñަ5°ÜèãÈֻЗFä|d@µŒ¼€M‹TÉ¿Zl¤?<¬_ï¹FojíUîr<ÏãéßâÆCTÙk&ëð¤ C´L9™îŠv/¥73™Ûâ¥y„ÄÑö%žlêJ…-"W‡œÊèþÆžö‰¨¼×ª½X ,Çݾ@º¹G¬˜(Öa©3?• žkrsâ%X±*wÎÓ3«(©~¿ʪXÐ*%8úæÅªÿÍ …ðh2 ÛÔâªW ¨ GrÊeøt:5ø.J Öå cööâó¦7y#/ö<ÊéP¯.59õ’ &yÈ8å–WJ‡Ð©vt+-PõwÄÅÂþP¹)\Ú´KA\€k›’d%T«Æˆ©Â;jÁçë,‹lUÖæŸYË2D´%‘Ë鬫^4w+©£E%o¹„nìk¬£d©ãº‰ió‡÷Ñu禅=$~Â^ÛîaÁ<ä¶X¥é¸œµÕúBÊNñâ©ÓRÔey…5®•4õr”÷p+W–¶òe›ËŽ1NzÙWa[ÀA•á'¼²Ú±Ùs Êe‘ôέ±Oº(kãÙ(À>Bg³ˆÄ°²F*Pd~¾çá ÅÔûga¯:Äq_8¹’+Ð=™Ôw~äE•Ç8dQ‡¸¾LÌÖlÀ!€F3!ÏIM¯M”°„G¹¦¸É4œÇÞÑËL\TÅzCuS„ I®2Æ(ÁÒ1,>ŠYÞX¦Î¼l»ŠoyŠ‚[ÖK¸Œ—J–>§œRíÜaÜ[¸" ÁššµœŽJV9[êÈÄÁT¶÷ÄqUX¦ÜÖùŽÝT”B»/·«€I=@UÎ>«qˆ\Ü=:Âs½ç„?*©ô*®N€ì>éï!~À_&³BóRg}hÿíÕÆ@jì#”ÔµmÆÅÀ&6ÞAîIjÁ¬HËÔ'?Tþëƒfƒ}âröûؘµNˆˆ.«¹ÙÙ/<@µ%³ ÔL£Yh;œ™µÜPa”›=V|Æ67o³ýk.ѰѸ1°å+r³ŸF¾‡¾{`9ƒœrfZPI¸Èg¤ö˜Òu<Þž’ÑoF ùÂcÜ}pæE$ópëf¢^„aéÌáÑ[Æ3¹%w-'Z“B ä±Ô'Eîqüd«8=zü{Ã(QÛb7Ãô(.šo1çÒK«Úí?áÈ ´ºÑ½ 7ßž‚É ³C‰¨çu[’.'$É ˆ“‹1åí~pÛ'<"UÁ˜Á®ûÄÜ9TûXüxñ§­BÂ­Š²J͹ËñŒwÄ×ZßrùK9ÊÁ ƒqœ£®W^С›•1ÿ^O–/HìRÆtÿ«[ÀžãZ ׎ù“*ňNݤ˵ Â&L–ý#CÇ|¯eтޘÆòô†gž:áqŠÊg,ên1x!Ö‚ÏSq80×s/¦}·í5µ€’=K’:ÊÔUvÉMkA_&Šã¯¨ÝOàµÖè¢ûår{6À‰ªE98AØÇO¡~ú\³&Ö à´Ê…A—7òá–ÐâE!׉è›#VNU˧‹õ÷¸Ÿ­ GïM˜>å©_Í“%q'W¹c' ƒæ³ad/à ³wé•cOH&Ó×ó29¢™ÛJö¡ÔGhX£®o8²%¥ ­’²ÚÎB}†ßJÞôÐ?6A†Òí5uNhJV·„pV›Û¡çŠ®-3Yüú€»Oç…®aôYSEµßʽ̧'EÙ[-UØ™Q)ʯ&oÚ)g0Eò1 ¢4]‰×Í£3‰(ØõýþŽ‘ü o]¶cOÇÆëÖ¨žñòÓ•Ÿ'²$WÊy™óL£Ià"`ê¥Ä‰MÖ½¶,DÀ'<†Ælø»Vú«õ›®ilZ"}¨•ì€züƒz?A¼¿ ŠîéciJj}¶s¶@WÆx4,Dø¼©Ësôžóã<”&öÉ qdˆŒÝ .Äwy®òøV 5˜%ÙhÜ'ñ-Ó¼nr°ºå ÞÞ€óöµr̓iyìבmP'O«N°_ŽL•“°]œ‰îaòÒÊŠW¢$’/©¨©;¸¸˜$|7HõˆÉåš_€KÙ»y—ý$.pÕ­(«Ž}%5A˜¾”‡†9u<]g‹¡ví€ï/ϨÕÙøU8@¹.À”Ú=^yIBy@‘{‰`=EÒÆÉ–¡Xté¡/6½þÄd/Ï<ûľgË«†ùB8\/÷ª _¸]Ü#Ù¼>cQ«&ŒÇ i>Ã=ÔgáŠØŠ{ kE,öö‹ÁhàÕû52šA®‰ùÚ«š¨}æ~¸öç+†r®Pt|ZE"¡Àçä0QýáR å ûÊ/£‹¨Ð½Ù‹éÕj·\Ø·©]ã:ž,®ó“ }Œ uVÞü¦@Wtù{¶ÕØÜãÞncºèNhL|"²!S²Ùq¸WÀôu“hHrü(2†Éicï¢zékRRÉìážîvïÁt±â’Å©'b7Sõ*bz-¯¡iùøŒÖÂõtIa¢ø4y@‰}ûÖÄïe#×MZïX1Ÿm«ÕÐŒ9õÏöyiêì÷ò;Ì>(’q\ÅÉ“ë Ö¸Erž+›Só˜VG,vtîá¼ÇJ²‰‡öÍ£(à.JÔØgǿѮê¤*…p~o.þÈ´¢„Öª¢f š$bFë%ͬdˆ‘o½‰É·WlÁE_ñ:0v‚ÃðæDè4o\ÛÇõxÇ ŸãÖB³ªÒÅ´Âî­ØH×sâxþ‰2Ÿ5Ñ'Ž7ò¨ƒM6¦'ï®g­omëƒòaÊUŠÔñÛ&zµ^ò“ÌB?Fú/u‰ì ±+¾v>6BkÁø{¦»ôùès2º£8ef:b¨§ÎÜ®«B*©?æm¿ °ù ºL×±äzHÑ Æ·Éew»uƒ¨ž­ÐÉn4¨€WŠýô¼KM?I5MŽù]ìg¤ÔPjI$áì ?éZÁícälÕ Vîß‹¥óó{±¥6W…ßóI1$XÛÆ}²ñ¥œ¶îB%æ-Ÿ¸å€Þ Ãð}ˆ¶óç‚…Jíü*bö±0ÏY8¡Ü?̈,pEzû–9W·í¹äŒ¼ü¢cûI´Ýšlêšu®¨[°[ÈoøÓFÅhDÕ>|üØÆþf¤<ÌíÍ‹k Rõt49/w÷ÊÃÒ— š;L‰‘ÚS‹žÛ‡Ý"ÁO‰JC %²NYo75l/f2~îaj…J7²úK3NÑ †?ãÃ'Bž›^/Ц€xðö ÖüÓ’Ê5ŸíâÏ…)A -ŠõIøÖTÅnV4çDûHnª_‚b¡ýº:h¡ÙöºœÓƒ,÷Gìn%¿“Qg„e|V­5 îÉíÇ ¤½?ޣؼvr˜¡]I÷3ÎȇExùõÓ¤&YŽSÌs¨EZ€_Ô*mž OrÜœe*Žb.ýtLrCGc½% FÙð¤U÷&šm?—6N¨Ò(&VÖuxUñ¦‹Ë;†AøD?ó€ÑV1õLJ™–ïo*ú®£m­ž%;ÚôÂ>§!H‹Ú¾At” îТ©ÛðwtfØ}â™R®­ŸïãÛ[j-ÁkÞÁÍ­-–èðÖíç´çäÛŸŒÌUeÊ›唕¥8…XÐg.{:Z}ÒžžŸÑ 5~`OªJ½îÄ»Ðm;ßwÉùµwßýbù.2cÛc¢‹ë)'{Ò 3ÁwA(kÖÎ cPÈ®7Zöv‘Q%V/›Îÿ(Rñ»²çĵ`/¥ù©yJ0õ¢‡Ü;$\DA->m¬ wüî­þ¦n·Á½Ã–~žËhŠ(ÑÏs´ƒjÕåÁå?«&4°´æ×šÂ9èøIl‘ªìJ Ô­?…†­Çå­™´W¬ìœe —|ØçJÆoCK™ò i{£“¢¹žŠÝ_k¯Q8,Ëgoå¤ã×ÜÒ~$„Ó²LÌ©a|z³Ð9\ƒXŸ|6.+öcì0\í\²î4ŽvÍyÊÈHoÕz„I±ˆök²h§åþÌ^‰0®Ñ·oØo%IFýíˆÞQ²˜ØbÌ9æunSÝÂüä($ûƒî½²j[7Žê9ˆ'B»ef'NϪ\$M‰A{;-ùˆî‰ï àO¡Ó×2Ç<äÞx(œÑ[Ëž0>ŽZ,¬ïÛšáЯS]yTÞØöÄ—ªrÄ›Ý";ë üZøãò½ì–JàÀ³™X\kZÏtˆz¥3ò ã¸À•Ý›lJ𮣒* —`9VuMß(âßúMRòupBµÃ¤ëvÒËÒZw†±Õü)ª´}¯D[Gn~ ‡Þ‡¶½¸†å—›‰l옄àD^èõ‘y+¦ÕEá(}cvégY0×oIqNßi ¨ÇVÉj†[ð©„}¾^KV©Y…ÜölðöX«÷îšÞ'UΙOJ›)ž•&R_ó‚]3sFÄ}K—äÀ÷‰¦«®ÆxˆLðÅ$˜Þ®5ód/ÞêmÇm(Žú1†HåoJ?¸Ã®‹9Çù2B¿Oëh=¢Ègã}$à;&Ý•õmª*¨XoÿB¡³¡OVò¥Þ-~®x%&ǬÕ"|­]lR®*jHŸvÏ©ýMÂWi«‚ƒ¡¨Gßuàðíl€¨®¿FÏÙvç9‘¢IÕ G!¦S†¸žmúšøÛoVg§T¹-sßý¹–yc’Ñ^l¦×êï$:}ÊO¬HƼg !Ült¼qõl¥¨˜Z°d¿~Ÿ™üSÜ:ƒ»ì™Õ÷v÷MÚyδÏë³n6æîo?z̧UÍ—hAßgt5¥»“™µçßA»KñE-ÚÓ¢ÂÁ“…­ç%ý«ÓY?Ëzúz_1Kþ,Í”!³ï@qÜók°aÑÜŒZFCßÜ-rÑç3Õ•¸úãËhVÈvjùy1=~Fp‚d=Tfëõ£A˜n2Þãžl¦d’8‚ÌëÃAY›w2¼m›û°ÁÌ,÷9ù+¯÷9LM5j¢cÄ?÷?ª‡V®_½Åwi=ÿq£=0OéIs4à ›dhk̉_Ièñú”€:4ôW[")`Žgˆoqù,öÆp¶ð©NZ™,½6M@d²:p”à‹S7¦Ž%{Μ÷5Åļ_óT´c–°¿hÉ|˜÷ƒŽ¶h’ Šå¢|ÌMÔë¦oóÙJŒ»ûÆïVнæÏ‡Øëú˳ŸBæ® ,;Þ&lÈ©fp¤Mä‘ÓQ°úíˆXz¸.;ò£îc[g/N¨¹D¬ØúF®l\¼E°P*ø’©—2´Ž„ _`– 9œç]$Øß¿z[¶),V·ïh¸ÄkyDôáÛ«îàèB¬7‚jw3]A­chGµâ•HˆST–¢Õ­©K Dç›‘ŠŸXïÀáh«ôXsåX¾CK/Õ\…Nu“†8›‹0á]÷Ö¦œ¯`!¤—â¥Ábc8Ÿ”ùå[°¿CsòUMA%ŸÛi¥ú©õ|!ê`yâ%]%Ý›7\k³kÅ/îSزöæ9[»‡¾JĹÍ?ÆI"nÉÆˆá}1¢h”ü¥Øö¹L_£ªœ´êUë«“ L9‘ªÆ(t󆂛®%¿Ü{Û‚ØÞ‘«_pkïÙ[>¢Ýör-^'c¨Q{\¸ñ›ýzkÉX=z)Š‚Ô?%À_¨Èô7ÁÉ^idOR¥ÞÒ»þPe\ŒýIˆn¨ƒt  nfâEùèéV/Çp®’ÔLnW€2~<„öSDè9ƒž¯e¼§CŸ‹a÷ ™ÒÙ¤ÌÃêd­É.æ²4餧´Þ])ÓØªÏ ŠJºÐò„\\®ûá Ôv p]hJv*Q3þ ¥E'ö+â¦)Þüeïé(i¡›€Õóè9!ÿÀ´éµqü¯²€rú÷|¥¨·–^ž×©•sg)lU"1­kJ ùMÒO„œ÷»VÜ©ÀŽ­äKø·ÝYåpò¡žn•†ÑI*¡:Û0ÎÏI´"g&‘ÛÒ Òýp{q½Hå(ôWímó#f "¤=#Þ„Â|ú¿Ä$º„Ç>R£Û†××>žw :øÜ•bRbÏù±86•5>ŒPZ©¨|çV[Ê©1ÊÇ(qŸã¢n$ˆ‘6oã‹+ua¸×Ê µAh¦týüæ°-x‚µ+!¹MÛßßp½!OÞõeXy§Æn´­Ðí.ŸCR_˜sYS>2Ø?sj]kÎð@Ö×p!"%¬¿QÌ)ÔíM0iŸ:k°Šù®,¢†KÚÆ×íyàê1Ru;Þ÷Y…¿>U»¼gqzºìöhŸ9,æ˜o*w}°æ™ Q¼}¢{Ìí ð`ŒX­ÙÝ2^…·˜±¢ÓòuòØ(ÝáüòSzåÙÀÙ!Ù1xýa6&ÂÿëTÚw³…û¦“ÀKŸh0 ÁàSá/cµH¶ÍÒšÆØPÍöÜ«Y~ ¯‡1ÞÝ"‹éÞ‹ÊtÒÑú˜Ä~-²a·R`Ûæ-æ÷]+pn£æ²ø›“ƒR„¹êUGÉr?ªšJ›·½óf¿ëPòYêÅȧ`?KÁý‰µ7σÅFn8_µjJmbí´…n;H˜«·œùÒ©Ò :|ÏF°.j>6Y( á\*÷8eo×ú¸ŠWBQ sÛ4ã´\€Š™jަêc"ÖÌœ\d5_?äȾ²²cQ€ÓˆÔŽõE`¤?ÕÆ4÷%Ix£þfÎ|ÂØc-Õ«ßË ÒO§È+´ˆZëK~KËp.Oï@~ óÈáôÖÏ#¨ÓÏa©ym¥ûpÍÎÏ'Ǹ¾Ñ˜«¤‰¼EG÷øú dìxÕëåËy4j΢”=âˆ4Ž75dÆz8¬i®åg„ŒiºÉü‹—Üó> ”œ.b‘ÞôÁ"!4š¸1­×)lGÑß„YÞ{¶eùÛ+àð …‹ üpÁ¾ §¾'[¹X¦õ=y#&"«G8L„²Eë+*?@NÎøx¥?gyë 2>°•,^ÚÛ™:/4œ¦èqü5$…øt •2Få® átÔ ÕuLúåíÊèRUÄM­­d²u¬”ÍW8ž„ýD¿4¨Q¨>Œ-¶Ì2ŸLÍÔwÎ!Ë´jbAk3¤õ±»p ‘ qpêËpãuËÜ, ñ±•Ry/ýŒoíþ¤ÏËËÿõ@ endstream endobj 97 0 obj << /Length1 1877 /Length2 14761 /Length3 0 /Length 15923 /Filter /FlateDecode >> stream xÚ÷Pœ[Ó† Cp ®!À@pwww×à2¸»w‡ Á݃»»»»»»ö~eçýþ¿êœš*湺{õº{­îg b9Ej~Ck} ˆµ•5= @PZž@GÇHCGÇKL¬dê`ü·–XhgojmÅñG€ PÏáÃ&¤çð'mmp´Ð3èY8èY9èè ttìÿ ´¶ãé9™¤iÖV@{XbAkW;Sc‡mþó 3 г³³Rý½Ào ´35гHë9˜-?v4г(Z˜\ÿ'—‰ƒƒ -­³³3ž¥=µ19ÀÙÔÁ ´Ú9  ѳþ«2Xb€’‰©ý¿ìŠÖFÎzv@À‡ÁÂÔheÿ±ÂÑÊhøØ (.µZý+Xê_T€Ÿ €ž†þ¿éþ½ú¯D¦V/Ö30°¶´Ñ³r5µ2™Z²"R4.T=+ÿõ,ì­?Öë9é™Zèéü­\ Â/Ðû(ðßåÙØ™Ú8ØÓØ›ZüU"í_i>NYØÊPÐÚÒhå`û—>!S; ÁDZ»ÒþëfÍ­¬­Üÿ F¦V†FaèhC«lejëúwȇ ö›1ÐÀLGGÇÊÎÚ€.&´¥Wrµþí¤ÿËüQ§»µ À裠§©ðã ÖÝ^Ï p°szºÿéø_‚¥§š8ôƦV°ÿdÿ0þÅ—ogêРûè=zÝ_Ÿÿ>i}´—¡µ•…ë?áß/­ ¿’˜ å¿*þ¯O@ÀÚàNÍD f`¦ÐÿÕd¬žÿ›æ¿ðŸâÿ¶Êé™þ[ÜÅ­Œ¬ìÿªáãðþS‡Ó¿Û‚ìß#Cøßd¬?z û§õ5é˜é >þÐÿ€¿—üÿëû¿²ü¿µþÿ$âhañ·›ìoÿÿ[ÏÒÔÂõß­ìèð1ÒÖÃaõCUÿei ¡©£åÿõŠ;è}Œ¿•±ÅÑÔ^ÄÔh(gê``ò¯úÏ-|¤·0µÊYÛ›þõ²P\Øÿñ} œùÇ Åþã®þv?æé·¶2°6ükð˜Yzvvz®°WÿAÌwú 5ºüÝÚZ+k‡%€ò<FÖv°Ý( €Vè/ÓßÄÊ ÿ‡X´Òÿ;€Vö¿ÄÆ Uø‡>Ö)þCLZ¥ˆ@«ü_bÿÈ©÷}ì®ÿ}ì`ð_búÈòñ^±ü'ú¯ó¡5üé´À?ðC’Ñ?øá4úé>$ÿÙMþÀ‘¦à‡Jó?ðC¦Åø¡Óò>TYý[ÿªlþ)Šåƒ>ºÞú2è?¤ØýRìÿÀà‡2Ç?ðC™Óø¡ÌùdøPæò~(sýÿ§… íì>Þ­ùGý‡ÿ~‘.@ØÅ9kN³*ÿ–‡ßü8ÎÔ»cÜÓÄ»ªIäÔî‹v­ŽOP?É+~ù®ÛÝñÿìBZÙ&»å[Âu?n¬ jŠ“o~öxщQ˜Üm†]˜ÀèÏ=æ¯îÅ…ùJ­Ä·çñjë¡âcÖÚ.AœiëȆ —úàÜ#êRÝ[¼<8·+¿WÁ" ÷RԸʢz4;BYôŠf0T‡JFs îA›‘ÀjËJ§‘Yâ×%ö©êwÀÌgu“cï†N÷çÛÕÁ¡>êûÀĦ‡Áú¡íNOÕÞ^Þ¯ÆÎôÂ&¡+Ë©¸‰Å£Ÿ:TâhHTKN?Ù^ ô¸Ü}/ž¾ÐoåÒÑ}gƒèùzÆœéqéYV{!Ó¶1ƒªéëjöÈžCs¦R¦ÜÍœ#O°sF=zPë3 àÐÃ~gx°uWR" ~h­òxQæ,0¹©ÄêŸÒ¦àÑa/›,Êö)ÿ~{¶FÿÛ©’€e}¢ª÷ÓöhGþ‹3U±¸1iÞ¢t¯ä!WÇ¢Ö‚P^7öoo>ŒÛzo†ªVÙ2ø_H«‘Ä¿ö–Á¾é´Ö«\¾}ÀQTzÈþæ¶Ò=?5ºM0<¹MänQ¦YÀÔÓàdO³ˆ!!˜ßöN¹^ç& }3 mXSvæ¯YúZ™:Ó\?øÕÊH‡Æ3v"È-"ýµ&•G‰ö>—n¶å–Æ÷„ÕÀ]n¯Yµ†vËP­١J´.Ĭ|3±÷Âò3cÊE4KÞª¿'%{Ç´‚x.>`~VгR#=ùf;ï9A¸Q€š/´Ár4È6×,)Ú@UTÂ¥ª£p?5G%2)òÆÛ?‚b ÄbO• Äˆ„C1I·;+d4K%ì7•‰î‰ŽãÙ9±Yœ¸ë0Ú¢!‘ycgBæø(çKÅ`"Šwky®±ý±D8¸I]¯:®4éó¿ýô°–†ÓA›NTE^ûÓúÙuGúàÅ»$³R»õ^Ï!šO–þ8‹6 Dä?¾ŽÑï[ò¶¢´ôü„hï÷×U 0ËÒ÷&·ñp‘0(Å%„]<å@ð(U¯žû*äÑà+Š˦ØTYç>kç ( y­Í"ý`Å­ri4­Rà“Þ.àùX:cj*ÁȘý×7ò™Ÿ•äÞoü2aCT±6oK_üì~˜Ä=5Ä9b\Fû‡ëRZ¸¾ÊßÏEëða²0~[—ÓsštÃVE×ù1ŠÖ÷½„¢x§?¥"Jš²_߯;Ó}µxƧLžã@E…s!«e4xá3J¹,lú†)U [ÉžßIw`€q·&÷¡ÈÆ“¤ÈƒR–þsRL›ŠO¤™…qygÚ’þTYÄ*AÃAñlÂì°ææë£“<=æï/@ û–­J^CÁH Ö^Ûü4ÛÞ02Õ Á-¦ª,g?—cî«Tº¶V$òE±\h^v±Ÿ“ŒP[˜´(+;‘¸”éIÿ‚1Φ•‹+hL”ˆlí—$Ìî±Üh®l$??ÖS`ܵ)‹l’ýÚõÝùÒÅ1Õ¥‰]?’Žl:IÀ6z ­)Œéâ”#Œ~ú—.AX¶þ7~±¼Ù FPXWš+L—Æ­Uz~Dzâ4xþq ¦Å}çxJ€CQî™ ð –ÉW¡‘ªU¸^Âd<¯NJVÍ\glõ-QXíUfáòÑ•ƒ8t”¯:+ ¢µ÷›‡Þdxüðõ¨“gôº+lŽ4׎”gÛ‹„O×<œT?Ük&‰a­›+Ö3]Àè’ì}‘ç°QTéE\ÆÏfׯo–1µ.*®·µKÈ“i„Zßܼ° lœ®:?§áÆ$ß-ôÒØ °‡¡[5¨ – Ò?õ8ò}»/d™0— š “ü š9Í™Óq4gá#òD ·.sšʹ±™gøVÚõ| [†ô²NÑÊÕ—Ÿõs»Õµ̾#Ÿ«V4ê³ °n€Êa¶ÉFë`1º|ܘHžµ\kÏÖ$²ß¢âèVÂIFÆ–{9öyö“ïöìA ¤ºÛexŸOì–T9dâóNì§oûãëñù üài㪮009£Y¸ÁíÍ0¨ž£V9¯ôȲë¿çìÊæg ªvSˆ h­Òæëº‡ËWÂÆkÊÿì¡(^1U¸Œ8ЖÜêäHëúå*+UË4I²FU@S*$ÏhØå¥¾ ¨ßö¢žªÛ=[*¾Âç…Ý/¨É=ÝÀމ€* gŸ\¿…_LKúuÌ"Š…“VÕò€~—çC_Üp ÎÙyOøÕ¡QHÎÚCÒö’i2f•_‰}¨N:³¬×U§Ô}Iªf÷cf=™ÖJÇê'˜„T4YlÕ~æðD lY­ ®»¤Híúò…¶yªþZ—Õ‘Æ©®TEŽô²^®rhc¯ûK0ŠÓÖ¹ÔúJÓ^6SÜ }ÑT;Kþ÷3ûŸh]}×WVß×Á(’›¹‹î‡ìo/¬SÑôùÜc\çà  ñÃÜ1  iT|¯;9Çۣô‚Ûз 0¶—K2$¢žÔ¼«›I%‘â²iGi@´@…÷hôJ­a;x¢ìI¨£4ëws-tòÃßÔ©p+ ʼaàuši†üttÝr;Ô­ª—CÀ†=›k ›°„eì¼H ýÀº+£Î窨åuñ)¹ìÑÂZ`î°4?!͉€îñ >T$Þ~uýé¬Hx]O#Ø×èAÎ…É[, ÝãJõ¥†sYo I•Qà†yñúeïaSL“pºDò>a,ùÔ€Yæ½Ø†‡U¢YàõºÖžì,´Î˜ì¦È]ž ÁG£|‹m4NÔ¾·Á‡_ˆ]‹$øÉÒµœÜ´;ÔiðЬëNµ0LªGA@WA@Ï¢ýØ¥Z's^=£ŠYº |}ïlí< 5²¹ ±çGá3­YnÀFïbçšnüÙ±‰êWïâ9yµF"H±õ‚}Äñܲ˜³4‹ê_/ù¬ÐKìtnN¬V|º ?·É¾l;ðË@PK}¶JKä…ÐYÃÐÖ X6F‹­õJÇè‹âŒÐÅû=qZ()´vÁì©ë\Á¯ˆi€å‰?°h—·‰ üR’ýcš¼#°.í±6ïŠ6‚J›^»ñ–cÇ\¢ÒŒïÍ¥¤ÚO˜ŒNtˆs¬ }YÞöSdQ¼¹iãE:g:W´-ŽÕÂŽ£ƒ…” }œZ€yôK"¬mÌ|íTžïNØ„½ "eÇ×9ún/<àà'E†Q8Ɖé¥!ÿŸd—ÓµDÐxMÀAù]ZKfIVPÕW`¨y÷òš^¨XBÙÆ÷Æé &ÇeÏöÞžýî›BH4eÀ$Áp‚úÏ“#G‚PqèõÝÂé lIâƒ<ኆ¼çTnÅq-oEHú{À·ëé&d„ ù@)“buê]_/E»7W=f€´œºhÑì';xÄW-ð¢ILuŒ°>fïØÕõI²/°¿bxàÒºýê…ÄÌ‚²‘¶íÑíÐ}]V`÷hºx–&æ**²ÆÍË—,z8I*¾qí/¥ü¾F“M¥êÖ÷×ófo‹€ð)Š‘$p½C´Äž¬@ØP}ÒD|¿jn«T3ö^ë•ñ¸º¶ls\NS¢¥ä¸\@$øêK¿Í…lÒy2®'¤ç÷oŠ% —í“IÛOBÍà«©*¿z¾ÜÕÖ7¨÷ÔFhÃyÏÌ›öˆµ‡ÉнCŽFâë<Ö…qU]ýˆÙ’hpÊB¨òÑZùK´UŒ¸L*hÂëÜÌ寈õŠÛ|:ü»ó’/® + &E¯´Æ›-™ÿ‡Ahà¡…µ*h4ÙU¤H}Á·eÝù +uw³e]F‹ON¸åºM¤â™¯?6* vk^²n§åº†NÜã³!…+’ιÇlô´á|LŽeÍÁtÓêÏR·mžàËØ]Wˆì®V¯:ÂyØvS2wºz¼®jͦ=áí%œ3Út×Ég]½‹,”üÏ¡c¡HºSm#Âé9]Î_:!Nôðpà³ÜöL¯¤ôü1Q<͆~ïò=ç„îzöþpAÜ;W­ƒ€JÞµ ²L¢³¢@pG¨°àý^ävös%Œ§aŸí߆Zj’d çì\R— [SHÜ¥›}¶Ú>h_ÌÛä4Üܧ­ùB‹>÷*?´Y(£o@¹ÜÒ¶æŸnM±X  Óâ6ym|d<ª·íX#’9™ÌÕªöäºÚP\:ñ鉢åÓ€ñÝ;¯ƒVW4S¡XÊhvêüUŠvç„­кêW’òéµü}^lì+Ï y_îu²˜Utú§¦Â2~VÂCw¡@.Z‡WéÞþ›GûÝ|ïgsvqµ›X£œ¢_“`[ïã¯Ï”¨‹ùjÂ' H4G›Ý„ËŠ¬KêxÐ_ ÎÍ–?ã’L-òHÀS–ì·76C£,¡pß&Èdí±8U)~QRGù¶ŒU.•øÎ4Vp¶Ï› 2NzwrßýøCÓPETjŽŠrýTô-wC›¶¡È¶¦|ðÔ$¼±ôññ;^©›¿P‘<ã=%%5ã@zÇŒœKÕDwGº%˜ç}>{ðÝk¸qª"$1ë‘ØÔ¤†è9Y h:€Ù§4À?pg„õú))'6^Γ"”pºEònúÛXŒRf=‚Èý“æþ—×{í™80Ü/`pœÉ0G !ÍßÏbŽ3,ïò½¯I¤iòŒúœ.ß"ñ¯ñG8ŠÍô‘O—‰$b hy†²dßÏ~áÚ©¬ùta»hýn„lá!ß:Ïè¬Õò¶H{c¶nCÒØÏšáD¢’!)$E5- Õ¬”‘ï¿›½™ÀïàUâ8å[9ÇÜ—y‡ƒRTë\¥«ä*%o6ÙPƒôie2jª7‰Z¦Y¨VúD®­1I`åìùJü]¦A}Bô¦âN.BXëÖ5swÁØ2¥ [·àpúö¦¾É¬…)⥓êÒᦜîFª[Ûä/ʇ¨<‡Ä"§‰Ÿì¿¿rÇóÂ1¨¢óüig6ŸBœÎcºV“Ð}úœQyÉ­ïrÐqGä—ØÈbnÀ­Üzá¹pt0¢ï‹rÞ¯'gòò cÔÐatÛŽ C³oy+èÁ&P¶ýpy¿Zì­?S7òÅÂJ‚‰²Fm–yÈO}Ú+~Ú|¿r³÷ðõÌ鑚­QD Íãð6*žµl)èâg<š»P„cèáÆŽ™Ó¨6¬_ˆ{‘ø¥¹RWöõ Ãàd ËûåÑrء͌~²/•ßî-½¼c²ü {D©‹Jßæª&`ü§ÊZtô/ؤ—Tyÿ•5.åN5ޝà¾K˼”wÄ•0§2Í+ŠÌì~Õ Åé„Ýs=¿ª”[Vw´õ‹T{¡!—ɪ(ˆáÎ¥äè¡áqÛÚh2veÝêny\y$˜v‰œü†â‚8º´Á>ž°ÔfP7Ía‹+Ä‘×Ð_’L_(F}$©±çWUówåÂFËù‹EIýz0zVž0«'¦F„Ï&ÄäX;1+ðNÕwT©«DQ„¥cæµRB¶2ˆP@´.ˆ¹ä÷¶¼öÀL´7ñ¶GN~ÿÈéÿ¶Ôïn˜oã<é búdz„o Ín7ªìnå6ìÉ¢¨uÍ-§³}ŠáR«h‘W²‘Ï“QÐ(½—µÎ}U•e)¦1ìÛ,ûÂG°?ŸxÀ¯ý¥s_®|E°ž“Øaed. ™bO‘²AµO_ãKµ€ypÔ7KÕeÚïrÕ?ÖU©ô¹s¿<{›¦*)šTXœÏaˆüÀlÖØOúÕÜþ>„uéð{µm¥þë9«*rqi£îTóx‰Ãà‘™l˜¨¨_Ò©)“ò-L”ø»˜í]¢=­ò ai7¶v4_ýZÇAÿÛ‹ wéñ«Mþ¨üLs"ø¬øpœ×ô Ï5ê’Õ‹òtR(Tx¾UCäQ87Ô÷¯÷r¥£vb±P‹¸ úN‘%Ö.\â¬ñí(r4à/ 2W`xf žÆ®0Í®žÊlTy\M¤ªîÅ€=Þ1Irå¢þŸ6‚óŽÆñÙK„~ÿ-׆ޅ¿ ÃÐóª ÿ¦”¬CDòÜWïkIv á{86»/Â@Eq/ÎÒUK¡æ.[K­Ìçà=¬nM½½Šm&øÂBš~‡·zð¶³ÒÎ=iu ƒü¹ý™É™Xûî«:¬¯mÊÒ!9ÖÓ¨öÛ5ɶqýÉíú–¬•vTÅ)»µI.I;ªï§=joð^ÈúÇ¡û4Ü/Ìokì0KÈ @UÔ¤Án‡Õûü‚ܸ¯L›c¶+`æ*T-úì ¡"9¬GŠAõprœ^L£8ñ?55 š‰•`ž;ú®Zäj¿þ€Í•ìô§vê)1e2î„ ƒ}eSË›*ñ‰ÍÔ`¿Ìù¹mþS;|Ë=\Ò*LÂÄø²ã7ÚV†v´É§ÏüGwEu¾ÕBõ+ñŧeï°}pßx––’ù´J"ö=g§ßG)µŒèé\“|ÔgÞ`çÔïµrJ)(ŠöZˆX¥Bˆ g¸¹µŒ£ Jµ¤÷í¼r ¡ û¯í "9§^—0<1[ÜÀ,CO•ÔQlK;½ãu Wøf*DXè¸WY ‹Ea:³ȪOHv­÷v"‰ô¤ý›¹]A è2þТÄN òàs/P±¬u‡%°°x;ÄðË}B K±cÈr#¥;§@0]¤×v8ˆ²Éár@Uæ‚[ö ;ãö!ì‘;ƒ Ül¬ùuqý¸e¸ÈH—ú“ÔžkP5ÖUâ;(îøw‡ÛùM,Züiî[eéBVŒ¤jE‹»8#Þ íOj®nî1¯~1]?júUn4XΟÉù¯îQ÷ePȇóAû3ÍÂ#þ¬¹ ÁO²¹ÎdÂyXHáÊb…›Àë†BÇŸîF¦Ì’ºðøêËYY¿¸¬éQ6œti¹Ý¿ç›õ£¨Ò!™/ÙÖ—¬lr§²7¯†Ô‡Ô%$ŽžÉ1ÃÜJËqYQÈtÍÕ\¼Z†}¿Ã¡3‡5=‡T´]A¥z•ý0 ×L|½IäwE°xnzGN\õÇx«ª‘n†k{[{{üž ŸƒÒS*3|a—BW‡[AiN^Ú¿i-r7j7¨ í‘]âþ 7½!SY¾¼¶=9Eœ3†€ÙM£• _@`èàÓãP¥f¦‹‹íáÒê¼_Ís`Á1÷–GÄnqWiš8ž¥¡Ìó1Ú»£ÙO¥Ëæ¢[!¿ÎùÞ±yU­ü¢•sÞ©ŠO…X="5’  ”#Q[l'Æé_ ˆØ Øá¨Q„°™-Ÿi¼ºlx؈¸ 0ɱu¤§ ;N[š¢ÉsðTâB¡‰`w¨ -Îío1k¯…;çXD¼„ÐT¨Ì½=|=£?³ V gý™´ŸcíݵøÞP‹—žb_ëÛòg ¨I1 ²£&ÊWn-Âe¿0¿Óà×â·‹«…ì?8 cK¿LEÈÃ@U·Ê·ÍzX .h®]zc®b‡{BæI¾ÙréoÆŒÄba8E(AѨ¶ýÔ¥(VñÀAs!}[¦Z¼$Ò¢Ô–‚k¿’ç脃& d«¹7D¹ŽÅaqàp"#&.Nþ@ÊwVìD=&´Z~Ò%Ò;í€ÏͶ/îQj# ?HaV™§¹fxŽÇ>Ý!~· ½¡vÝÛÏ ¬ÍÈe°•_É¡leˇ¦Åzý*O?@ªé·¡õÍÇÔ«0 O¶">Ú‘ngFî¨"±‡óz³, ‰`tsžƒåì™ZPTuÙæCvÝãnâÄ •ñ Nƒß ÍЊŽ|rÙ8°IÚH™Ò Î;”æúÛ;Èå¤Á\ T¹:ûmeD_È5Úa·¬Ž¾ojof´7_®t¬ö–~ LÊ.E§~b Òûµ,'o«qz¼j?#E{o€›Ä7LÞl«| ×)„+P‰ÓœX©‚1»] ‘¦‹*ˆF0Û˕ѫ.>’V$Êæ Þl>³ÃÐõvDs¨¢&¾¿Ü x·_|‚/¬&O“!{-Utˆº,»šD¬ÅùÑÄÆø{S64‚|.ý±®]·X¹kÜ@ÖŸŸyæA(£îþ7†lXéhZoôzj²ÃèÊçàý‘¯E£Æ×í²¼}®Q¹RI|š²}tfüjbMˆ÷†¢^&E>,†ÐÄ`K”âݲ³6£e|©)Y’lûÖ’Ì„ãlò^ª\f‡ÍS=H'Á¬e HkôfdC÷ƒW—l×°¼¼(æÁ :‚2'v8¾=†˜h®¦ç~Ø)rP›©ø"ÇÍ9©Ù/˜-îÃEÕC]$QT/Œ–4Ë©–b„(O‡>{Ê÷·•§+}ê…[‰‰ÖŸÁD‘BF/=šÅAµó–ßú¤€@Õ¿ùr”$F…f¦ò~)d!1biz™utïÁXÐû½zÈædbˆXeÛãú“‚àk›•ß?Õ¾ÞA>ô]·P>ˆ•Á¸:eºM}ÄT8úÄk…e‡DqE}d5X(G˜@†óÀ–ðRY¶‹.Ô®óÄ bYBϪxÙD ‘ù­G–!vm¡… …¥ÇKGtÂ"ÊK—/éÞŒ”鮋¾AV ò ä²fR‘N†™…Ç–«ˆäLÀòIR¸n‡†þð2zÎÔà÷5JlS[å/Óì<[Ðr’ZîI‰X¯=²Ï³€.ˆšˆ*Õf±¯)ïhÊ™\}±¡wgL?Sã§”K‡ýMIR3T‹`iˆ‰öFXõ*áͯh•¤T×Þò?k‰Üð¶ª5D…{V¦¶ „›‹b4‡iô^)  ´~‰Ãd{<ÌIš¬A<„‰KtmžR…JäÀ¥4é‘ò+ø\g©pÀKTݨè('¹€,z­25$Ô¶f–™!óUz»‰s˜Í¦(Ä#Xýú*1îÙg™„¼…^-õ…Y²ÁEÑé!Z)oWU`jüéöŠ¡®º!ÀÜZmR§ì©B1­§F`Qþq‘ÅHǽ&–ç,Øh¸‡[EÇ`oN(‘ /¬Ÿjž—„“m¸_ÏÞJ|+ë‚•Âp¾lÚR‡Y´aMÜ h˜ÝÜ”P7!'K~M;ìiô>à°‡š¸ a¯ ‡O‰ÕV J›Â‹S£šá¨¬‚ñ<õj£Ý¬ò©‡㽂£? PeXõ0[% ,¥tÓ$™¦'Ê%ýüYë— —ˆG¡±SJ/]\› CæR4¥ß¤öbàM³ÂgÔÉÛ·̤ŤÀ+…ò‡@áéšYÌÕ`¡w˜O±âÑuœÊBƒøB§¼<[>\ZZÓ§©õ–Ð¥¥eÓ3Œ0¦ß¶z-ÅÅ“¾Æì¯qô¥m¹$â¬⸖º"F4ÀÀÝSÁsjPm&)zÓ [dQhŒ¼‚¸Ì¢g÷v2reA¿ðóÎõÛÕ5ñÞG;Ë €™Ìî!ù¬ gaÅË™€båþ,ëüÌ£m¹Xàxé[ÊqW$/SƼ:M&:/!úªÔywr‰€mü\ Þx ÉËžRVÂɆøœ%I(a™·ëjòšM•5ÜãXKv¾Óy‚ãÒCóoÞ¹aó¶{I¿ã‡æM¦ìÑzéÖª§D€PÁæÃ­³<§/yÒ¡S¤™]k_6R+t[ž‹7°*Á _ƒÿÒÆ§Z>" ² åe%æÆÌôª²×ü&»ök󶮫­‡°|øÃÆÎÑä¹]ž6=ˆÛéO•Œ;Æ‘r¾üm>b¤³2ðÄØOñ;Î/s MÚs)[<õ¦ðó!kÄ‚žMHˆ:ÑF…²L _¢ªÄÀ‰î`”à yó¶iñ<‘ Ò´û,¦Þöá5{o ü0ž…²„Ô";ØÕN_¾UÃ-‹»wµà€ÐݬêG GN q²F^ž‡i¡l\K=KÁ‡„@ÝYÁ”ôïAí%÷öãõ¶Ž Ä‹õ+ƒmžt$š·Ø‚éÜeà÷f¿´›ssÎN㼬Li Šé!¦á1•ŒËŽ$(h˜ßõBaV<‡ÖUk¤}}wÓ~l*˜ kê üÑFd7t”ÃïƒmV+øJÜ}1ÔŒ{G€í„jÇp¢Ž³B.)º‰qöÃûÕÛ}ûvö¶üS¦å®”mC_TÉ…-y¬ž©<ÙW±Î¤|°UW¼SGVìêæaÇ»B÷ãeÊ·Ä)Q”’TœyŽLx>IÜÎv˜Übú´ÐU,-2¶+YñÜ·eõäó/y?hªp­Ñúj{!² Æ•¹í¢>)ë×úLýÒt°%5öS!h„˜â§(½~Fv-\ê˜6˜æ Þ?OnÅÝ©úöÆ¥‚vøµ']Ž ¹2$$Lg³J!cuH¿)õkTcì%ß{„yëÃe=RÖKéÏ/8=é¸SˆÆ,*<8,Ô”kZÇ5sÁ»‰Ì̸?æuÔßqc^z.‚—Æ•&Óøq²`±4½ú‰ÂyK—†ÍÑô,ÛRAºý£ ÞU2“bê’Ûü¸|ý'v½µúU#¦Ëô©…#µqE¢] 8ÐøîoëÏaéÀ-£%¹õX3 Ü}t~‚-9Ìз֦ 9eA²)0¤…%LlƲ·еïRgɧöYqˆJéÑæ¯D~b³¡l£¬ç.4ý–' 0ô¤-ïI7Rìä Eªí±;+-6b8#íëÞ±¬LÈ ÚŒTtËÓnò–9ž/§r¸¾ŽöV~;–,üvLÃ'”ND‹D~™e½’såSE™f7 jŠ…$`¼Mɤæÿ[~ÿ—±Ú,gîy¦ÅŒV%ò]b¿·´* ÁW- AaÊ'´·9‘‘Ð/2îÈ2èÏ6’èi?Ú³qÉÛpßB%*° dH”¶ºÀa'a²ú?M`ÝïrãˆÄô5›¶‡Ð<™=BÍËyÙQ8ÍÌx²Ÿ“^÷ӜƵ=[³¬†ÀâåË0 öCË¢ÌeÔçR¯0Ðþ˜=ºG?_gœ^#×Ñõ.‘´°¡ÁùæŽM÷™¹*Úäó]Šá'Û‚Êë°§ì¬/ПÊk"’™ÑE¥—­$9çJ‘ ¾ØÜДd„8¥kL Çc&ÉXdM;X†Š§g#' :omfP™¥.X?QãÑ$ *4¯˜Ž2‹S{låNÝæz|%Ö¥+{Cà“”¶3èØ ¾_(ÿ¼›>¡$+Á…¢8ô_ÕË SXì¬D<Ã)7ïÌò/“mû‘ùG>Äû›LËž•ÖšmÕå#!œ:N^?¼DþZ¤DUßëew§+Ø ÒܵÂÉðÒ™òÓl„šSüJòŸU‹•± joo^ìÞR˜‰1#Rˆi•\*ÂÖïÌ=špWÖů󗏀e³P·}<Î…B›1nÒ7È`\\JhL"EJ:|€N ½ Ä—ɵ~fI=ú rQ\~â³ó_ììFšy†P`›ˆQYZ‘æíÏǨ^W53(ñÛÓ3”nð_ØzPŸð-¿yôfHÙÅ4¾õñ€3Î]ãÄØ})F¿,Ë@fT“I‘F~ÚÛ"p˜È%4Ó°C×$+Ý„b³vœætUŠÐSÍõä%ì.…¬iD©J QgÔ1 NÅsœÌl­(‹Êî@MÀ’"w‡eŽ-`´I÷‰¿•èšî³xõ«d¦ˆíÈŒW"&ø—¶C|Ûr™aµö€*d„ì㩜ª ÂÅOA@s”R¨†~â /–ͰPkÂØg»[eqf¸Aä³ø"ËB,[ ¤§£Ôó]§þQà¶•¡ÜEïSÇÆÂe—J©‘-Ã0ùÀbHú§»”Ô«ûNz( qâ¤j4Úó( Ñ`+¥äù Í•¹Í¬µj£XKÍlø;ÅÖMºÜÆÑTÒqÇ ˆ¢‰Vãš(S§Æ\D‹¶L`„¿Âyªá°x­¨ÚMÖƒ¥/XóËdh~()Á.u iél_9ÖZÈÒ"Êc¥ãdBÉîu›fU6ìr“{Šô°+¼Z4 íÒx'„ötu.r,»MɰÓÏ2Œ¢»DÉ7RR¼† ³+þžðöAõVàÈužÐB^zú|P¼‚¿Øjônbjõ8 €Ží)I’¬‚§Hð_”Š*è(µÆ;¬ŒmTí¬ÖæèlЭ绪™Mw¸Û«'‹äö[)KŒ¦üÌ>U+ùº`"e¡ö%¬°#ú×¥x\{+—¹¸2íQ½VÇt¥Y\sW­°Àv3ëÉØ÷ê±+‡8 ȤG&Šà½‡¸•—&¢.Zįë¿Ìß¿¾º¶Ý]_/¨Þ¶æ6GA ~âƒ[¸Où}"äÇɼ‹„Ï)ùñ~›rø¦“=×v­èáK7#üFeëÕH®±YÅ/êwIº5;к|Ð5k »ý•\¤ºÙNR¯”GÓN÷LÂe*È[J‰<7ïN’r”–c žÌ ¸Þúœ+-nÇæibõ™qs}ÑVp"ë§ï3 ³¶[·…¹«ª‰ <¤ª=Ù|3êã ‚/Eœ8ZÄ­¸Ù ¾%ßÏD+L&ÔIp~æBf›Nø|Tóg}Æû{v®Ej­p&5þœ–¼M™Ç4}Cö{/Çï!êv• DG–óiFf'iÂ^OZÖÅO¥¿,\üS 84O„òç!!´mmŠ'f\|¬á™‘Þ¥Z]/\";? âÙnµQÏì$í eÃߥ`ÞÁrI½ÃÑüeg×äk;áõѱZUnòƒŒÐVçH<øÖ‚€|áÚÙV]ùå{ ‘Œ$_³™¯ïÒH5î庶zå[ÊÚâ’–ÒHZ ¨ù6[›šžp6Æ Y Õß‚±"Cd|Séf[œøœ704Â乃ÏtÉo ldÓMË>k¬ÿ* ¿™BåXqÕíV"¡áÔΙÞO!¡„²DZÇÃê€þô…Õzaï[²må¯^FòñãGDq ê†Ût§m!óå}ýžïš°ÝŽ9ïãO’Ý|#uoº=ÓÍíÐF<ü§†Ì O1„ ^ñN†²–>—Jgì¸ Ù‚Sìï$Ã0Œ{¹Cïökê\ðl®eç¶‚n1`F¼½ˆˆ´Ñqä^NÛ\fû7O¿×àEßÖÕ&uõvôD®Ì)Û9à–lMÖ£kšIÖ&² ý ?tùÜÖJtÞÍî7lÙWðsƒén\JôâÛg¦ß©ô½ø]Ic÷ˆÎ*|©Ìñ4¨(=Òäšr’”ŽJ _â¹”Üô²øú’s½“Z£PV¥gÄÈw5æ—k÷+ó½ÈQaIèû¯äˆVÚ0=Û]%’hëç2<¨ÂºmRè‡èhí!Šˆüæ§RQ’» KÊìèt ‹‚0Oe}ØÊ²>áÆ¡Mîɳ¶Ç@¬Â¿2;’Ò'¿îXd@¾ÅöUþÂAÇø%Ì‹pv’ŒB€]ƒ>ÄäiÈì½ëY~f”d¥Ò‰JІ}¼>ñ(°¾:Ÿ“_£Šc´(_’/*;]#nÙKïküðœ¸ÌRÇ·1³{|ϱ&Y̰'É1×dN[¬ÿ€Ñ3rÀfË }jõ„Q}íè´o ŸnX-eóÝ9â<ëõ.êåý½`±û{1Ä’Gµ&#%ú±æ®·ßó¢^‡Ý ¹j;"ø¨K{@¾;³S˜Üä…ÚGÔë ëEfö‰ ê÷%±–Þ{q#y¾Ú³–r¢ÙÇ/þ3¯¿ŸÊ½}©.*‡A‡‹m5ÓÌêžU£ž´ç»_ØYœÌµ@G*ÜdŽaèvá®›o^“NYZr©„žû, «ç$ì‹ØX`e¡d#mÙ–í­‘Ø¨aw[ÿ–ï0ØR³ú8Ñèûd(ë§HZþQåJhÿËÔß2^6š>wd]Ë¿üN±³"Yù~+dür×OQfZˆÇ{EïùjÊñmHI‡€ÔÉ¢©Czs3 âZP¼+fº¼—EÏ»™µcv ®rÒêÙØÆráÒ‰§`<½W–Gt nÕä5í©ìÑ·¢ÕÓxMÐ.Y\òj±å‚+ DÂésþpÿ'†rêp™›Aá^ÀX~-F‚oܰ_qÓfÈJ˜Ó~5\‹Õªý÷vl$Úw×ïuì ~üã–›*/“ÒÜ’¸ƒ–|øÙ³±_FÊ@«(”©s²'*¾›e éBÀÝ%ý±ƒEuD€|aÀÒ+ldF—)ÕuŸ½ÊHÚl焦œBÑ3ƒy'ÁuP7:þ|Ü[³ºæ8§ë,ÌáñÙxðæ(x¥©Pž Ùð³ÌJ’Ýrrk …y{P®ÈTýŠSÓÕ1tSñ‰ì”yfä·Ÿ_{+rA"ý×"ò!„¬þnYõÓ»â¤8θ„i÷ÚåÄËZÜþîÝ4d¨ _9Xl “2ü$Ó¶Ñßàc6A Ã&è°ìnÆñ’+“êý³äp%8u¤Çc315¾ƒø0 äÞV¾›"1¨Û·P¬%t˜ëXcž 7ž¼Z2æ©hmwyÇ9‹¦FÐÈÌì&-oH7ÐJæ’9ª®—H¥Úkr]º V`ñÍUHÁXkž ²]j×ù8Q˜Oõ~óÛr!aQ²“ ó#WE~40¬öd´§ÁJ‰Áȉ”Ûè¨x]z™@åþ[$ÈNoû­,± ±³KK¿"5g1õ‰V¢K¤¼$d¶Ÿ'¥È,ïìÒÔqrÂýÎÚîïian^ ‰@G)ôzÒHŒÒïšÛš6ä@&ÿÉD‘¢ù«®*g˶À-ä¥p¾#ß•æ°ï\µ*ãa¨í1‰]Ý{2ç W{L¹u1Pot7ü‡ó¿të&Kh BÝ!©äçT’a¤ŠFÌR#&E Ž0y¶"}æ¹Í~Šn÷™û®‡èƒ7Ô0v?ç{Smë’&/<{´j¼6œ¿¹l€´þ¬ËÞO‚¡%ðûÞ‰§æ´$î2YÙvÇúé R³mp_NuAK.O!òÞÑ7’ªð^Õ¿øŠÐŸ?²¿à§µ¤3ŽÑ÷3Zu¯µuêÆ;®6㚥•’¦Ô" ¸µ|IV졃ˆ|i|åv¹C >Y–fõ>$ú>½Uõî,«åý°7ÉžQÅ(꧆2>•DÚ¼6Ùô«Þ: \-lþòOfe?ýÉZ ” œ—0uûîE‚3oØk/«ܯÀYï[yúÞQìÉQ„¶:‹>Ø’|Ô¢mum‡áÛ*adˆ¼%‹ïy]ä½*ý ‰•¸x,lñŒ•ÏÓ墱†qÂû[óaøÊý§!&»mŠmಠÞ¢oñÎ[Wþâ«!ÇQûÕ¶ߌ Š1ÛÏœ†ûà-çùaM…ظ‹^êò¬@Ôá,5ÍçÝ<ŽÒËÙ—Ïá= „Êašÿl'É<ئ½)vðïõ´ÄHÎéJòŠyÆÕ%ÚЩäÑTç4Es"žÒ³ ¶­›Ÿ˜ÄžÒЍ`æøÍ³7Õ©ÆwóŸÞ'Þüù•gÑ[.Å0«mƻӲìg&^Zö’¹å´Äx±öü«¾#Ý©± SRç&7 Ç…,]EPr˜,[ru˜{'‡ŠˆÞf™—»À9õ:öÁ㔞²±ØÙ€>]ÌoJA5•¥ådÖ€c·ýŸžTÊ#*o:%7´³r¹%°)Ç&4<'³ýz­Ìz˜}yGSâéxrv“v›¹²¥¶vyW-šou5Æ÷5$Ó-øG*šž£8a¼w'á©?\ÆØ ­"eˆÜ.BÕ„š‡ß^žrØ’J„e‰4m‰%ëv¤mßcƒÅ•ü ³ñ2zþì ç¾Ó)ÞÀŽT&(šdk>”¨{+ä?”Wq"(”Êæ=ä/†vß@a¹c—‚Žî‡è±ÑŒ¥¹È3¡|%@é8⯤ Џ“•,š.{$Ë!Mº%](Z’· &! Ü áix’ÓɵÛQŒ¼„m˜_Þ’¨sv_l^¯úšzÛ â˃٠œ ~Û½ÕXƒø)’á”Ù8±ïYodFÝ»+—™È3ñ VŸ*,&e¼¥™ ƒ›ÐÄ㉴µ<,îL~Êò7Žábÿ÷Ýè]\Û?¯gpZ”¹™*,7^À«#è—>)GC2=!#¡î. së“ÿ¦a # endstream endobj 99 0 obj << /Length1 2363 /Length2 17531 /Length3 0 /Length 18914 /Filter /FlateDecode >> stream xÚŒõPØÚŠâî.!4îîî‚;4NãîînÁ-@p‚kpw÷Ü‚Cp¸dæœÉœÿ½ª{‹ª¦×'kïõÉn %US;c ¤È™…‘™ &¯Â `ffcdffE  P³t¶þÇŒ@¡tt²´ñþ+@Ìhäüf7r~‹“·d]l,lN^.^ff+33ÏíyâF®–¦yF€¬è„@!fgïáhináüvÌ¿¨Mh,<<\ô¥DlŽ–&F €¼‘³ÐöíD#€ª‰%ÐÙã(¨ù-œíy™˜ÜÜÜlíÍièn–ΠÐÑh ø- `d ü[#@ÍÂÒéo»ª™³›‘#ðf°±4‚œÞ2\@¦@GÀÛáU9€¢=ôw°Üßô€ÿÔÀÂÈòݲY‚þJ621±³µ7yX‚Ìf–6@€¢¤£³»3=Àdú;ÐÈÆÉî-ßÈÕÈÒÆÈø-௛$E”Foÿ#ÏÉÄÑÒÞÙ‰ÑÉÒæ·D¦ß4oU–™ŠÙÙÚAÎN¿ï'né4y+»ÓßµÙ¹¼þÌ,A¦f¿E˜ºØ3}Y:¸eÄÿòfBøc3:8˜™™¹xØ@ÐÝÄ‚é7½š‡=ð/'Ëoó›/{;{€Ù› ¥ðí‚—“‘+àìèôñú·ã ÀÔÒÄ` 4·!üa3ÍþÆoÍw´tè0¿Í €ù÷ß?ßôÞÆËÔdãñ'ü¯þ2ɈTTÔ¤û[ñ?>QQ;w€;€•ƒÀÃÍ àâ`øü/Ë?úÿ«ý/«’‘åîÆü‡Pdfàù[Â[íþ+Ãõ?SAýŸ¡üï vo£ Pÿ™|]ff“·–ÿÏóÿWÊÿ¿±ÿÍòÿ6ùÿ÷B’.66¹©ÿòÿÿ¸l-m<þð6É.Îo[!o÷¶ ÿªü{“妖.¶ÿ×+ãlô¶" s›Êhé$ié4U²t6±ø{„þÛ…7zKPÉÎÉò÷[``afþ?¾·}3±~{OœÞzõ— ø¶Nÿ{¤ÈÄÎô÷Þ±rpŒ<˜ßÆ‹•ƒàÅò¶ ¦@÷¿&ÀIJs~K¼Éó˜Ù9"üî('€Iä·éoÄ `ýƒ¸Lbÿ .f“äÄ `’þƒØÞFòzc‘ûƒÞXäÿ n“ÂÄ`Rüq¿qªüAoœª;€Iíz»õÇ?èí?èSëÄóæ3ú£èÅÈùóí2ÆÐ[¢É?ˆãÍgbgóÖ—ÿZØÙ[lmÿÐýn“é¿ € ø/ø¦Çì|sšý ²ÿ†–ðïà?ƒí7týÃÆñÛoçâø/ú·óÁ7B‹?—}«…‡½ô¯ˆ7Û¿d~k“Õ¿à[¥¬ÿßôÛü ¾Çö_ZÞ„ÿ‹ù·6»?g¿Å¾ý þËývwû?î·síß6ßîOåØß¤ØÛ¸8ý+åÍâð§o¿‘ Ðé¯=ù§_¬¿vÎ@Sc ÙŸ¶¾½ÿ8þ~~þñðüÇó¿f–ßÍøWeYÞ õç.¿Ðõ_•äx wz{³ÿ$¼IúC÷öÊ19[8ÿÕ¼·r9»Ùý+á­Ø.ÿ‚oÅvý|»¦Û¿&ã-û_‡±¾Ñ{ü ¾•ÁóO%ߘ<Žõ?/…‰‹£ãÛ/è_oùÛ3ò_ü×Ï5è4AX^°3á ¶ª n¿«!tcؘ¥ØÕøDÃàµìØáò€›BS¸áøK$e¸mm[‚úFx…øÙ븥6¬5I¹íÑûÉ Aez· ai g`òó±H]?ü;5á=ïgoõkÈðNYŠ<n¥Ì;·>)÷ºþ²Õ±Ð…]å½jΈOe3 1£uJæ(ò³çñHaœˆàh1ÎÝQçn~ÍbäN¾Ë&Ð!øüŒa+òÒþÁ{?ï¹^¡ÆêÔ…OޝGyƒ16Mé%z*‹»èõ¥hÃq,m§c|Ó6™Åæ€ÚsWAåÎñðRŸ’b’— K&*z£U:Ѷ„$†=û|MvÃ]æ’«ÅØ‰^1ÑòUц«ŽC‘g·û!·Îó–»V“6LÅ;¥ŽÔËFž[G‰^¸k>øƒû]wÐd}d«¡™ÅP‚¨¥ÃË<«Ö-àp]dxÍ}HfîBÖs&Üõp›ÖëüÚ$Ón soÜÉÔ_<…¢¡!Pà ¦5%W‘Ž0 §.›ÈåO !4A YJVF^ [ƒâ ^íî1"MfõA[¿Â]xÿÑ6VÙDzW‘êÊ<î,ôÏðÒ°q±÷Ma›ã.8RS›¼âß1Â6eÃc_¨C ®4*{®Æ¿]é20ó3–™«Š¢")Ø$cjç(ÆËÍæÇrêóÔ÷b½ð–|h¥…ö>•D ~õꬄù—-HÐoàç<:´Cà vX1ë§¹§Ö*÷¿Piöžø†D´[â# óá{h+Ý87Cm@à¾~]Z³ßÏ ª^î7È[Üõ½Ìèʔ٢oÑËÏßfžÕíd,7õ!;ÄœcÀ20uè á>è!T …´ïäÉÕ ?›ê4rˆig9„l/Ø®Ü{Ú¨›N Âm~7*–<§€+}q×ÂÆè´,F©¾zUP»»öÙéçDÏÙÌGÆlÕ¨$ùkbšÐUþá¦èS×g¥Y 2~2Eƒ]§õÏm}C’·æ.5½Û'8Æ?¬VéœaBï^“óÏ‘sm•ÊiÜ©¶ã(Y9½ íÍ,P#po'ŸÐ`c,¡žÍ/ˆäË'uÛ`+®P.ÞRÏø2ƒë>“© <5!´·,ù€ÔŽz˜ÆµÖ#¤ü‰'“¢O»oŽ&íå3A„­r&çæ’ L÷.•xÄ4)±&sáÅHsÆ=ÝѤ麞èa*Ö ²Ð`¢y‰‘Gã™Hqí´þNS™!LÜ Nã¡e ]Pô7Yh÷j$Þî½µÉ3-•ýIóÁ]ßê©CçC›Øž$ezTaŽBB´fÄwÞñ󿦩 $®¥º:…¡ÛÐAÖ™¾žÀ“•ÈþBÅ_‚½ß·es¢ëDrir&>•‡éôÁôU`e}Œèx†ö8‹Áã¸Á¶O>oVÉýxÛ|‰I9ÈÜÞú3>*•áGfi-7fÊ´³Ì«ˆ;íX!ù&Éš9± $ž´¿*Ø»r>•nu°“?ü ‘ØÇÈ/WL³šc*¬2b…¨õq%á=4ºM&ùѵ@‰Ám䥪cqéoYgæ”ÞÈòU˜ #(t%Ó^!/ÇH½ë*þücÙ;3q®÷}øÇϯ&ãU(Ã_læü6“8g,28¡uàY—7¦rãßkÿpýx±eÓ®äMA£>ØŒb{ÞºXžM„!@Ùn„°_s-Ûëô)Ø€¨p¬61Ú#Öo™ÀÛK%° †³¯>g$M4-ŽËJæ–67ÌèkÁsVÄS Òë'a.vDáW0ì#vêÄwíŒà§€qbÜ *ûŠ™m:÷×qMŸÐZ¡¨1t©6tq"Þ´@ýƸ†üÙÜxZÊö û%Ç-÷˜§M äû¼8} ÔLká Uƒ±Ø]b1}}˜1Ÿ•FáÖé àëwxá¯m/ŰyMÞ‘nò‘ŽI&X<JØÔ;9üÖÜm°Õ|)e\ƒÒLI…Mìi*+Òxmß*gýav?6`/ÒK¾ó§] ІĬˆ4"Þµ@Á RPEšÒ!¡¬„ÆŒ·ÛOîç=kK!¨Ö1i]³ wèèR£%,Šlr™Ð0¤"@Uæ&ºv“b3'òákG4-‚i^³±ƒ'ha}FJú¸yuãÒŹõIl!Š‚ _Kí†Jå:zÀj,×n…H¾ ä#÷GvžÄ«øÒÀ4fx+´?›;»‹ †=ÌÞ[_.‹€,Š56D^®e4_# /’àgÎŒ#£œŒÅÿ&íÑÕ›ÿ„vNjyGØ9ÆA34Zps8Î^·’¢†ú½æµkÊÈ—K=¸M¹Hõ‡•*pbÎ"t¸ÔT½¤n4ºŒ‡_m® 8±¯¨Rñ§ØÖ ­iÕ©«JõrzQ99T–tº©%*ŠÈ’°9ñBiE ŽÖ Ç µ_ʆ$œê¦£mëM¦Ê.Wï‘ÂzÂg/³•;Ã([SÝ«vÇZn彿 ÚgL÷0omý~ÔonF‹f_gN‡›,m_³bØÙ ™Œ«^R¤ÿ‚ü°ÚöÛ~qyø5 \ÑbRVd0=£®]P¿ƒÇ5w6Þƒ––JÆÖ¹y¶Š×Tì,-°0Yn–pÏHÅ=¯—$äÉ”¤C<9Ó/<£ö"& s‡g/Wµª_ÜÓz©— ј¼æAýb0´Lß9•ÝÇ‚˜ð]Z!ܱOºR¦ˆ^± –“êGþæ$ºMAqh&Bðk¨‚âÞ ™»üˆ¢Zœú.Cu‰lC“ö7Í øŽ/$zÕž‹k‹Œþ¥÷ØH'`“ qIârõŽËÒ»‡•æ%ÕLï÷KÑÌÇ«•(’¢Ü¦G©]îys"Ï&ÇýŸFZ'ó ž´LשƒiysîìbL à D䔌ƒ£C@ŸÂ«¡õÈŠ"lÌ)‡g_Ò*QR9L1§i%à9â‘¿~T³xÀ_·qíäi#4 ¿ŸÃ#·ËÌ8&B££n–…Ÿo_QzTJT´Ït63lÏÛbÎŒí«õ¯âæ¨Ð¡î§:L g‘Í@¤A"¨ÆLž IØÇÆn9 DêVßQÑŒ°/}óù •_M×`º ¨oò]=ŠsƒYB{À™~è Ÿ¦Âò$РH\W9›ËB/&´äåx¡ÝNsÿê&î–x„WzlÍ’cÉܬþÔo-w!j• bßåX“ý¨rê¶ïݬOê}ÞtnÈÆ!Zí"1`´Ïö™:Öz=™"%nÓ'Í_êÑ-5&tDŠ­¢z¶Ü€Ð½ ™U~~¬êüpýŽžr>`å¸F—` 2~mgª€EN´¦|ƒLv§¼á¼ëê¥÷¢™È—{€6¡"‹žðK[NœÔ¨0åÚlO†åË;¡9+ç^ªan^&êh™©üÜX°‘ÎÈA(ü°OÈüAtùµ¥Ž¿wYî9KV£áõ~Õm<»ž½2ßH ŠÑR š ö"©ì0ôŒùÌÀßÇ0ÈñîGß2aW¬TÙc-¥Â¡ònO±¸ß&_í&À¨w¥\PJH@ä5š á¡,Üa!‰­¦ ¦sqÕ2.“CUWÊ»nÀáx×…P:õEO Uqj’ô™“L'Ãt’ÜÐw‚@ÔÁ¦Ë±ivsvÄ·%!?“íXQ¶ù×ÛÊà!¿¾DîF…xæ./Ó©Ðq]©Cn*®v¤½€v4ÓkÕ×ô#0ÉÒ[‘q_‚ÇÍX¢Õ©_Ö3~s!c¨ž¤!ƒÕüâóÂç´«ãư&ŽŸˆ[.W4XPüDH7@šc, àmì! „€DÝŠb 8 "¥›<¸æ'úîãcÔÐîõ}¯+9~ïkºWœ¹qÑ|r¯dbÅG‚“?Et–gw’Äã C|‡ö'Õóo”ÄêìïJX–PÃd²U±ä‡/îqd3Âa<î'yo¶•8xÝ©šE©í¥N¸V³jðŠ\†ò£¯¤)-]Ã!y—%i‰#×#»Ž ©uF½u»ºäz¹¤¥÷2 0V_Ò‡€˜LI‰p/¶ÙŸæéÌ7•À¶××ê<9+NÒõú€8âÃù#¬.•VÁ¯ØkíÀÈ\Ì¢ˆðï= JجŽ~”ïfŽ\¨›þÊí¾ &€G„2Æî “N$DÇ;<¤@E` î“à®Tß$b‘'ØCµ•Òh5½•Æ~@2ŽÊJ• W½ò϶;+[„ÐÈ ¶\’µs|ÇÄàc‚KøC4C—>n’Zr‚:¨/÷?¦?)Žðùú¬~AmF¿3 Ž"€AK½G&6oý nóñÉεè92—½ŽT™ÂS üËG0pþ&lYN©´_#õkca®¶ßwêp)nî{Ûrëf°ô*”Ä|‚ŸÖ X×笟o°0) ù€_¥¸¡‹dRï¢;˜•ͺ™Z~ÁG>ãoœeæIT·¼Yc“$§øbâAØþl¼7RVña·4¾Ö)cËòT"Q%«*‚bïZ7äõ}ôBMåD]š©Ý> õSæ¥diQÏæ¾©Æ0{cˆ¹ØuY*DûVþ}ŒõéÖ¬ºogý>ˆõ{ÍçËÇ|®ièPŠw˜î‘ÓãìE\Q'Ü£M'Áþ_Æ 8¬}çy_:²ÅÝìIËù¬.jD *á' UUtµ P¾2θ)üÀ}ûš`½ëYîûÝEšìšeR«àŠºÁ$ƒûÑœï ‰YÞŒÀk)ñQ’>)&HÕMdï#þ•ùöáøÚãfÇÈìsÿ—,6!‰_±Œ*h¹¢(àлiÐ&“½/¿Ðµ|$"¯wœX‹ˆ¯"Å?×ïsŽ¥ÒÿØdš;×wäã"àY:GTÎRX”Ò¶„ ªØ¸ÍJ0O µð 5@Jgž“¤­wÑè˜-òôÎT«ßV—‘ß®6£Ý( æìÁ†3Ù¯ZÑçOËRáwep«¢Ý•G]Š ¿¿Je T/(F² Ú)”5 ÉÃÏ>&R)†€µôÚ‘&«g·@¤Ï#4ï÷mGàþư»xÒ1Ž%|Gíó3ï)bG- F Q>-+X©òk á™ý\x¾¡g´× UfV¸;RÄ6]F"Â(.ÿ)¿ób"BÆr÷؆Œ4QÞºSv¯À™µflk ÷—ßgÙ‰²RژŚÎR9ô¦¾'Zóá%_[k3×/bÜë#ƒ˜Á¡ÈÈ.ùp<랥Az©h¶§+Ô™á;=±ÃA=ºÿ€éèÖàzhÚ ‘û†ª]yBæ–öÐÛüEÝñ¡»âÕ«Ø+ÛVu„Rú"5ö+˜Âå£à3ª~ÇØ•oËMtyŒ‡Î 3ôTþÅ=J4+WS%9Ž´³è›ì!ö‹äyˆï>z1D7~™ ¼äF‡8¬ä¥ *Žy;lG˜~‚Îÿ¾9ÁvH9ÛÛJ¾yÄtå=#¯òÐÄ`Mø£©”sOþÁ»?·×Ü÷ÒÿV àR¦óÕæ’Ú®}ùf.Àœ ÝFõ§[RSs÷B0´ŸýµéJ¦ Vœ¸¦ 1VAŽbË{cVy`%òn-pqñnÃReUÓ»Eä M¤Š‘¢«‚“ç‘&1»‰Ù™ÞDh5ù¤ÆÃ‚w¦”TâXݸ|­§æÝ7íœîùCC>Ru_ &> ò D¾N4cyŸùÒœ‹¡?ˆé›¿#)\Ì^²®g2Ö½Ù>¨u•Y¿Ý†hB„ÌWÆøŽq• .þuîèêÑúÎ)µÀB°1Ã0$!×(¦T©†Ú׊B©*´yhX¡AJÃ&E.`Z"=;l§áü¾øÔzB)ew¤…Ë eÇ{ðPr´èÀ˜9ЇX]%$R)jÒïHý[e÷Ï7 ¡›?¡‡»º±RfÐÀˆ‡8]-pƒOJ—?d¯BÈ_K§´œçí³¤[µUz‡ôÚsŸ‡,¿:  Í´‡`6 HH § ·8s>ø˜±^¸%è ZI7} yAHËI+{vjiœk¾„L‚ýö¤Å‘Ññ8ú¹4nL~©Zåzbñ4ÊàÏí1>ÿõGãËé{sK§Õ®hbGêl&ä3 *7•zx˃v„3wº6ò uxr˜ü2iYwRZ`«œ•úD}'h<ý1¾NºÆù[Ò½Œã‘/õ7•ÏiÒ$ÛMØÞôùhÞò£>0šŒ¤3$XåRö/!ÍôFzlGÕ $O ¥t´GYj,ÚóÊâ`eíèu¼oˆ¼… †îŒw6œ¸õ+”3Tã+?¢J£ë(¨;YáWo1Ϥ”¿É €)4j¬IèÁòÇ*NUΨ¡'ÇÅúHÌfšÌ‘}0À’<óS·ø©°s3¶ç×:‹°ÇA¨ÿ ç¡Éåz‚‹XÎ`´Öæ+]_ÙrL 6àÔÊWÖQÉQ?läCÕd¢EL7Q¹ÏÀù¼€*Ïq`ß$È\Üœ¿cð Ú5AŸÇèèÆ#Å›öj² ‡žÈ@9u A£VõàhkˆÅI&Æ6ï)ËG5zÙ"£¯É\‚Á‘aÕPq|VF²€Ÿ_Æ™¾IœdNš¾1äî”8—§ÜÛâˆÏÆ¡¶Üá÷ÔYxÊ Eþ¬Ñ.õÈ™©€É{Œµ»¸+ÜŸutŒÒ÷DLjÄ?µˆ)5­‚$poÓýCgΗßc¼¾Ò•ÝXÐpLžøø)WE0C ï Å=øÏëe¥±E»`¹hG»a´àmãžtŽýC £e\ê=ã””Rs)øèñ>&7µÒÐUxÓa‰Œâ:›>ôe1z6”¹6Üá×ë®ÞíMf¿bÉy¶õMÃhÏ\*–e0¼ØÓV¾œ‹Ø û­|M›ŠÞЉw‡åE/ˆ_ÈÃÔüU7Þ-qÐOPu™ÀPØ!5ÊÅùƒ×îVrðÒ§n®!ú£ÇC&¦ftµYåâ0.à=ªÃb«£Æ0H^ÓÎv£»Ž·ÎfAå£Ú·âPGŠ_ƒZd7wï°BÀèçîxlIñ1îSáR9€ùä}²î³j›f"ߥkù¼‚Ylª«ñÓ)n¼è«ã/ÌÎð© Ù6u_,ŒtE Õ”)×´Àb«á-9”dR|aÝÉŠ¼öØR3ÒUÌeèåÌî© *ÇMhžÈ‰IwŸÞ{ñr3ò Æà«V.¶0‘O>U'P1ýÛɱ ÞKš"g8ˆ_1%½ŸSÚUÄ3@Jî3Ñ-ï]4•Ë>­ÇU¼ÖLT´”üOûбêb‰¥  ƨ.yíY÷ºëK1¼½ëÎùNQ"ÑÝ.{_öÙ„åÄSÏ$£±Õ–x^Qo¹zäFI**akýQÞûÛ×.¨¹Rrt-c6* íE.!ôË·Æp=ý‘ïêî ÌGbšzäðT.S­,hÊÚpq¼-çµuá€4‚q’çNH¿2¦ð'z䛪>ðK‡¶™-Á£é9¥Ïî¨ ŽiÞð`19…ÊŸ2²U‡¡›¶ÁÈ‚*­ãpîiúds3H‡Fô©&xÀ]-u¼­èø»í»‡«T²‘æI™|e½¿¶a¾w'‹ÿÂùš¦"ö˜-Yç°éï)k«{(>9ê Ž§(w27.S$™—öÎ\œ½…­TÛŽÝsBE!cÆœ)Ph}¹— ¶yÇÔØÝòŸ9ØþúŽ7ËNl1‡¬`mG£ÜßK’|ÌäW5ýUB¨~üNV }¥²D³x‰ª:^©O×›>ixÎ= P:f Ä™Fóý%ó–s­z'ÍŠà Ñ……Ÿ–±ëþK»y¼Ž°¸»Ï4÷Ô#)2YyŸ§/š]BŠôóWWf»8±Ð€q½o¹™Å¾sP¤L˜X<"7=5w1ç•P@÷ûJƒÈž¼ï&H ›Q°»ø@*Œáh]•fG`âæŒO?`g¯øü6nxór ˆj·óêH`ùLÕ óèb,cÇK™ÕEÝègƒ\}H~ýõÅ•\G¬®j°25ó`Ò¡ù³Ü(L“ÔL æ™%îÞi4]âÚìæ·Ü3ÃÔ¹vùžÇlg³6Ù†¢î/1S/™ïÛÎ»í¥«ä¾d¡Z÷Ȳ_þš,y‹q[uÉ̈x㘄íލûë:““¼W/Lã3’õù9¿KxŠÎ­·D[Yª˜…ÕƒA©í8Û}Ë%z¾ÿ̈X‘¦~¹ßB¤¾VÝ^—geÚ¨¾ òW‚ «§ø ÅÇÙ$±+™÷e+&iÎÄj4ýG7÷%è}×ú; 9\##•g»ŽôZ7>DŽ)ÊÑë|ô³?êúî±l?3SÍŸ¦T°æ)/ä¸Ý‹ä(|Š#£!jô¿gB™].Eú•¶úkƒù+’‘Žã?8Ð%2Cà“d^yÌ^z‡Y>¨w¶ÊòÒj`;µýzßr»ÿ‚_DÓ²øÈ2!ø+ËÊš_¯¬­&;pbó¶5”•Z&ªcï~tµw¨a0Böé+)ÆÌªH–새‘°Ô©GUð¤ËÛ¸»Í¼ÐTE¦ßÈVü1x̾s/ñ0v?R!õeôÛRÒ@µRB¯\ÞŠ¾$|ñ\]Ž¢´iêa¾”ÀÕÌ—¸ñ«æÃ¦ à’ë(&½w2úñÐûEJê»P–(Ö¦мw_);ð(?#òØz@CÛÁs°wÑLëA¼¥«Šƒs¢ä'ëcÐYC€h‰—.p¢ö[wû®Ïœ²»Ù¼ÙAÌ.*´E£vÒ¼ÝÖmù݈Æ%–ç1ɮӕòR„ÑRy;$~ñÔ†?—´hÓðéb ï'uÈ˧§{,à7ÃÀ×1ÀìåûLƒä p(Š‘ ¹9Yô¶ <æáv3ÖwFP«Š:xĽ‰RB| œßœ-o¾ïã ÿ(áÄ¢©y†lãýnµ¯ƒÙ%»ŠSXLvì¶~µa>SU[Äp ãgdS½9´lú|mdWÞóZ„CCt"Ÿ¶²$Ðp &õÌŽW¹=[GjÓy€€™Ç|·q—æn(sGˆ×^ET’8é»-ZTý ÔµÈu%®i¸…x4²¦Å|¦ü±F‰;×±0e¥÷56)Ÿ=F`Øï+9÷²ÆvüÀ[ØKNмrÜýñœ¥ÌO~-Òh„›Qs|sÕ®¢?ͬÌÚÅ•=~‡·RPˆšè§ÿÈtžÜÊž<•§˜Ä~Ç6D_ ¸az£H0T­*BÍd@à)ºJ©”ÄÍ:^“Ÿã9¾Ñm”X—¹U.7RÕÄ|1Ð;zqÞÄ€˜…èðÈD‹L2ÀGGP1T…g²Í5æé£1‰ÚW‹ ×rö|-rèa®9ƯÊQFKÈ7:ˆ²à<¨-O¸x5ÿ¦Êk­ý–ßøÚY8rùJÿ$E°öˆ‰b,æbÂ|åœôη-WF=—S©Æ œZ©8QBXÑX%Þë|UjÒ)ŠÑ‰¨­ô:¾ŽD^‘Éj'ÈέÊæ’>SËUŒT³hæøš0|ü§$~JëÑHXаקyB´ ÃmÕ‡åŸÑ‘󛂼÷õVj ÙdsC£¦N<ô.¢GGDS…õfbYûEOn&µ­¦ÓÈæÙ ª†žqß}íäqõ{ÉKðñš@¬Ú9íœ\zi|—7£ÅZÒ‚GWÒ[a(¾8lWÖÈÉ£¯`NBµ ùJ¦ ¨˜˜§÷­4YÞ{ÜëàŒæ|#Æ­ »O£íuØH±Ò®lC¯ké¡õ7"º¨4{rµ¿ÎW‚•u%’çe¼RÍQö'Üe¥¸¿nx4.À‘üšéŽðIÈB[sñœÐެ‡óìš>q7ûävDò¡¢ÎËî87S8› #¦%Ö³B*ù,;,³vwcBn…ȵf4Ù7GÎïì[*ç)º¶À¬ö +<6ý˜–ËÂb9“€ZƘ-³Š’Y E¢¼ÑÖ½IžöOj™õááÿ´,Ý„š;^‡Øã‡ŸÛ*4È1£(•ú昙¬‚™ÇØ1¸(ÈpéKíhô’ºå«ÃÙ_™ƒ© J¬W­aY’¯–l^éÄE¸tanze¦»²Qê³ä“pÜéGS’æ,r]T¿;³j["Ýõ#³‰|ÈXÓŸ¿ró•\rÁ_b(ÃúÆ]ã.Ÿo<ÕÜBËv[ØöÒ6=&ˆf¸nÈýcîy4‰^²¸Þ Ã4ÕÎ µÛ!Q¡¢ÂÜj³&}ø(ï‹…­M“ŠG–62FÒ˨üòd~(¼6Y»¯Š?ñζA¶‚>Eä«ÐùJÀ½«Æë)t¾Õ/¤»V¼:®LÌPšŠqƒ§ð”¾@ѯ‹ÅWed~Æ.ÝJ%ÞÊÌãœ_Wj{r§±ëÃ+ÕÞ )ëžY ‚0bÍ{’ªLs’Yu˜°=‹v Úè,Ÿ¯âÀîG–Q9$xÂGL“ÀŸœ/¾p!1HkîÌÌußo˜Wq 'üôÌ鹸ÙÀ ÌF‹äØ=Œí=‡Åå_LG$ W"©g<ƒà:³I,Æ{¼ å‚]¦õø›íƒÎ„ñÝšÎÂ')˜KéLÇb ÈÆ˜TàJ¯¼É½æ–á…l-­}¿º4ÁÁµ15ƒ\A£@Ì^ôôÝù%WäÜ›¶º‹ Sü+íÔûhmÜ>â¹-ˆ^‚1XÉéÅÇòŸÉ’)†"k<~¤;ŠCL­›Ioñù"Ã1¶D©ü–èÖuι¾ Ôä¼i•àOÑæh‚;šï^z໎àõOr$‰f¨_\ ZaÆñónÃ}|ºR¼,PTLÓ¹ž0èßWqvAä2³,Ü!æZÐzD/ëBu9Þ6›oùuÝèéÓÑ3@“T Ô?%§ÿ†Ð%ËíÿΠ-½A€–‡œFÈÍ>Èw!¬±bÒðêòÃø—bf&þâ³lÊÜ<^l:Ùk1×Î* e 8¶ì€Uûù™ò–O›‡¤è9°Ó™ÉÜFÈÚ²çÉ ™eûFÃ)ŽZùcý ñ™× nE‰7U¿îëÙQÌð…úµj…>{¶Ó’ñ{ü/ šíñ^FX†ùÜekmvLaž¼OÑ{ í—aèÑø‰½£%å#jó„y\y²ç;/2RÒV÷”GosÐ^&Üç~Ñà¥0D¡<ñ/ÍRö™’}ÙpÜ…µú—±`Ê7ÌCŠ•ÒÃWËä :ûFÎÒß{;_¶Ùɱ·?¹5TöZø}ðÞçÎR¨rÒHëÚe‚;aEëïiºW>9OÀ$!yJ(ΗXó–à§ÊÎ?6”˜&š®WU‡I02> ãaÜyuÏC`~8ukÇ»88ƒ!tЇñ"pïrªÌ!é¡‹r9\‰].Ö0|µ6 b€6zGŽt¦3Œíÿуp ÿeÑâi|¿Üÿ™ydoñ:²ÖÁ65V>§ö ·­£À ~¬„-*¢&û.Cp #@öOˆÛ3¿á4ÍÜÀ8­Œˆ5X2GÒ»Mcuÿã‰ôëôë_6>=ïHµpê’:žöÑÀ¬km5É¡ÙóÉ0|»çÖÌš› !›H\:æB|»§:·ÍXò»7?¤ìÚ“ ÁxÞ:‘ ï>gSºÒg r(ĩ޲ufÔ9á#N@¶ßRcL"#ÎÎÔVºÇy$,¨46×½íô?|¦O“¶Zu–i´Ö9Ëß 4–ëöI>â¾”Rk:ZOŽø‡˜È  3®žúiác0ß$Ë4KæÓ˜‘Agßëî‚à‘<1†Û²&•[ÿŠ3K¤¦Èܽ©C+ ÿ³[}åðƒXÝÁÎhœ‰t##‚ói¶sÜ:UÕH¿ų݀IXˆñ-Ï^¶çþ÷VÉÍHʵڴ»Fli&S?h¬iyo7ýOë¼p:«.›épŒ½–°·âV:zhÄ„ˆËQ‹VÁ±ò‹òIÌŸpQUSÕÛܸ,D/`·¯ã™¿~é1Ksä§…ZjÁûÑ#v*ÅŒŒâ½ÏÈü%Ÿ÷bE1 «f}™ÞIúnçÆ“u:Ép"ß Ù£s³`ñ›B¿e22.btBdñn#ë¾z-Ã6QÉÞf .õѪJd'T4®‰Æbx±":Z!¸MRy¸Ó±yä{ôuÊÒÉ\ÿ0 €¬âÜÏ»6¨<5J”SfzÁºÔgÂX.¼ýÕ̘v6æ…®x‘‚èjÝéñ$I™•ß{äÚŠ*ìt£š?`øˆ£^ƒ5à➊8F&@Ä)妆pïöÁ×:ä¨Ûl¨è”É r$uË`y Ó³†«ÝD³°D±©ÊPP¹H)CŸxtò{‰—LnLQU¨çlÈøµŽ%£|jÁ¬Œ'/€øQ¿ 7²7›÷ÑÖ’§$¸•ïu"”IáÝ‹ŠÕè¸[ør9vI!¤'Áa!kÚ®B—tE•Ò$ÅÁÄlèÕ$¿Óý®}]&ü€.H!ýù¦žlS7f|”¤-qâ1šDci½:0¶­ý(¯ÎúŠV¹I"¹õ![ GÆ „saI„ þTWذý|§&,ŒV+&ò‰bÁ =ÅÖ‹cMi9æÀ)¿®˜]ü 0)š~p'œkRAövH9õq;÷¤­õäž'væh™ëü†‚t®öv±AŸÄDظ'„4Ê®^átº.«¤= E7༉2W"OuóÉRRÕÃ+&~ö¨¡ñÔÒ›ø*¹˜n˜ù"ÒC`*0NÜ,yÅ6¹¥:©¼£-±ÛZ’4¨ÒH¥g¢Ì#öW8$šû€ž7ö=¢ Í±¦„ŒãÝt³~òDåix仲¦JqÝ b{¯>ÚŠÏ2r¾–”dž‘ëž]|kÁ¯}6L'™U"Hì©• u{ÿZpá0²ÜEfä òœªð†$$Ïzè# ùˬ¨ã°éÍfÙƒ6Ù_oýÞ‰üŒõÌqÿ!OïÝ¢Wš/»ë†ªØª4>8ùMIJµIa«òUì|Èú£¨ÄìÛöl~ùMªÙså_Y<óFúfÞñTQˆöû­FŠUÕ$G¹ezg`#­wLÛ¡äßW#Þµ—Iàˆaù÷¬t„÷DÓ¶„Gõ½ó«Päøå¨9yÄbË4³YzÕîõ³“:?‘p/ÐxßËJ{ oÎÑø’Æwy !zpZú0¨»9'çæ?08(¶jU×E׳•ä¹X#…ý¢·ýÞÂ+q¼@ÆÍÐ"`kÀˆ†ªFÍÊ;ó€úñ`o²Ü9³Ý…‚Uúó‘4õ§4ê Qw^)Öï¶% ïv¬œ?ò{Úúëç‹Ð«ëÁ­LËᜌ$†Rrß"Ðe~´æ'1œ\÷•·áP^q&öŽž.?aó¡Í!bÔ }Ñ´ÿÉÕÊžÁ¦øPel²~c»o²¼R@€vjÊnïÀËj$|¼'V?ŸÞ&¡DÖj|i i¸JŪ¬óµKÑÅ¿àËÁþw1|Žû÷83ã>Ø2~Og¯S×ünt{¸Ì{OPøÛêrs¯‘¹!i…dZÍ*†µQvFCAëÕ§?‚ð™Ðü8g+Ãô‹šš€âÖÔRl¯ iD/ŠÍ¼_zI{ÜË õç3ÓŸÚ_|Áh¸1 Ä5F(ÂUR»C Î\iÛ[¾DøL„U 'x¤bgSpC=¡x‰1Ö„ƒì%²µX‰0䇛Î'¡<:]$1äÂ¥->¯áõ•]¹Ío€†D^@Á¸Ë씓®×ct¯;“祑€ÊWFí\ÜD¡³lb­ ûÌ æwSF%Îá÷ñ„ÊdI¶àž‘9®ɼ78i¶«>/ZªpÜ*{s=ÅeŠT¢·i] ¦%Tqà\$Ú·Š))NËkÛ.´ALêãQs@:BñÍ#UºÇ]'ÁqòÇ&€žb8VßE¸Oès›LÆ{÷#"©Rs½÷ÅÂt) %p¾%.Äøå×zÊêŽäYêÿ‰®d߄ҫ­ã´lS3ºÓïgÞ®·—ÇM'5˜lJ c¶ $¤(ª£>ÒçN¡½ŸÚÁä7Ââ›Ó’'d¿íâ ÎÙœd&&ëøúq뽤Öï3KÀiš‹ q*…´¾Y•é ³tô‚zL)]­‚Rò¿†§áPî>¸² ¾`S»qó`´sgeÑ£¦(i©ðy?Wht Ýó£÷ÊóÝ\Ô Ún ìuèl=¯­ã3ÜkÀšBâ)‘Qb1§¨tÔµ­‘Ÿ,xß÷ÊËË1> –¤eW‹yÇÚ…+Ñý2üýJa™ŸðXôƪ¼{pÒÆKÎû„´Û§Îf¥J´¶pòf+ÜžÙ³Løí›ïñO[L4jÇxïm]§ŸRBuå8]¬#wWÍ Å°¹’¾b0'¸¢Ð 0׫Sòê{~ ¤#9‰ô(…γ‹ü3%“È–¿ÁaâSîŰÇ-êïöt¨¢ w4¯ [Û „œ‘º¢}«¤QñŸzrý¬ðT-NÁi‹r†Ð€ç‘/Gåq¯ÖÐã1 Ékô’‡yQå/Ö¡¸ÏPxZ´£õm^S_ °Qñ4ý†ÑʽônN‘Ý‘2@““p¾½ÓCŸ ãYÕºñ‹ŽFLÒáÒPö“Jb7wÔ£9oÁõ|¤æ(mZžV4o·VƒùÚ×÷ïÿf&– !iÚ~ëdõ¢G<\0ÎÚ÷«•ãÂÌœ35šÎýªºñÅ›§a =3dA¡鲂ì!ž´åÒ{ågâ5H¾ ¿Ôì¬@6WKÓ}äa•M””ØÏÃq÷£ƒ¹º¨¿¦¿*M,}\ƒ Mè ©ÀèÄ7Ë—HE¥a¡¼WP„7Š÷ðjÉn5tì…Ö=,h¯–®øÎøÍýig¨hÊ#¡ÝÓ›ì@Ü‚*|e\õ‚o¾…²ýÞ‡Ÿ“–›;ÐP¶2Œmùï§PLÒV©e„#el)œ-ÕÛGKeêÑ ¨k_e±±à½³‹"r5ê¾Ãíöí¸é}è*É›I°Ô֔ޠ¼û ¼ì?Áð5ðð¹†5Ì_ Ký¢£ºA{æ•Ìu¸kÔÏ1ôP–Œ.¬ŽF ÉЪBd•Ë×ï·m©ŸN2ƒ6…Qƒ²v©Æ·¢ÇÉ’§þ`ñ¹Ç‹üÓ3×Õ¾×Å÷K×|b9žÇ»@"ÒßP¢ayG~.SLN›Lþù ¤ï¤•Ùêý§JE0oÇ^êc:õêÍîÌ«ëòÂçλéëÛ Ö‹Y$$-Kö~Ý«C÷ìúÞ/­€÷€î”ü«óYÐ1°Å;e±©#) íßmå€UGʈr°=A)ÁçDÞ©„ö[¼sœ*?Û5ªV:ç,Q+"ΗD‘ÿÖÏ.ää´Gr³;*µAŒÅm#¹ú~!g|…¼dÏË7ÑP&cÏrÁ©?ã„AŽ&`âêõ$š¥vU¼wmXé¡©6]UÅ~LóBåPUÇënE2“¼k{ÛV(‘®Ä=¨ÐÖg䪮ʋσ=°ÚÓ¦šn¤V8q¨"gî™ b¾Úp†ÉZ®wœÿšË½<¸t¿üùÝbÐ*ðbÐâ‹ zC${IÑXÚEÁÅ¡Q}upDtQqÑþq‡Ü Ї1ñQά]µ%5¤Ú¾›ÄˆÓqüL!Ù o{6–%žR ÒZk¾+ fÄW,\ ýû¯á`‰m*ý¯¢±jp¤Í'뇡…·ÉtyB︠ÖhFFÌÄUÚSœz®šÖñìݽ¥È§x^ …­R‚{sæ²_ú.“%Ó[vE»”˜Ø‚5aíãíE7ú¾àx:ÒŸ"H0E%îå5›6¾§ÌÇç™KªL’ˆÝçÐ«ð«œØªE "ˆ«ù<äØÿå¸V.Hsiý6&‘„kðtéÛ¸@²ö¸¼"Ø·ú¼Ç®*þòèû\ÃP*ªŒH/w…t”KŸ\RPX³ÒîYôjqp š‹kC¥†êtó‚Ö±j¤ŽÑ¯T·¯‰¢kö Õ¢izPo5®±¢Ë~•Ï5³Ç´âŒ†øaöœ¿O¸3Ësòu,’ÀN}¥LÒb³v3iù`¤G¼â‡éˆ/ie!*ìmœ: ý"ÞéÕõžõU°5V=Lhð¼Õ~©²¯O±–úv¢‘\3«`/+p!Ù´i™­¬IêÙv&d'Ø7¥JrѤ­,$6}IºN¬6¿öê} m˜á°4¤( œúÜêÝœüÂ1¡²~ÀTÖ°øú Ü; ª¢ÙÕ¾ üœ4zhžõIZD¸Uö.²mxÀG1¦Ãª…ܨã)×̵g£Á,*iAÉ‚UvUA« »0‰÷8ªTY}Y–8M94Q@Kº¾·ö¥1̺SI ÁáÛ)”»¢orÒæ'ýléŠýKÓ7®Ÿ(4¬ø±ñd‡ÛÔ,à.f«Ð÷Ò¤zE}ßt¶ñ‰¦=ª÷-e >ÎQ§. 0¡ˆ÷h¥ùÔ9[ýÚ¿¤>¹wókž¿5ªÔŒ¯—râ$ÏCz¦øaκÀ¦L¸â oNš ¾~h”ZñÞUε”¼õÅèõ%²lfÿ…sŸÔÌÞ}ïD Ê6ª)éØxTPÙ‚ Aa¿ýKîÛÊž#|æ§[šH˜naûùËžd’k'0þûví3"/ޝ#èC&'rý²O¶W*Ý­"zû÷‚&?Œ–¹¡é(†û×\EVq&»k{ÿ#}ñ®ÊN¾;a t‘(]CàÌ~<Ç}&å »Þ }2íö¾üüЩ–f±@óÿA¾÷B¤Š%Š­2‘îÎ͸{g"i<:1µÎõr-H ]žVdÙÆGúÕ›úY‡h#›ÀWõ%P·s¹ aįòµ CÌѨÂh형o³&ª7CU7˜nhÙºZ=ó­P»7½?@Ãjgp·‰bòÐ?* ã?×Ü Ü¯—úáóòŸÇÆ<{ñ|}šöûËÏ«=;µjCõÝ|n"Ù‡-@h/«_»@Ý€¢Û˜4ôÞºÞ$@Û*¼º!Q9›yO’¾Ã^íû9‰œ“~’žÍCÔAªl²Ûñ|)-t# B¦P“ìR¶í·—z”°1¦)±n:t—õ†fÐsìݨ¸^·Üìä$oÒh²JÒ ësÇžaÍB SfÕkÜ0Ѭ kâœÛ†B»××}Ÿ@²œaî# ŸèçAçôñæw÷ùÙ¥î] †¶Û)Ø–~Wª5ëÆgÙb( Óîyà½Ç ºÀ",äR®‹ 4-D C÷ó'kÎàoðiÒöA @¬Þà=²­S¼öTæw!NçzÉ…>¾Àâßâ[ÅXˆ\Ë0•®f-V€Î&ráÜQtåµ^hÏð”cì„»ÝÀh ŠU(›¬‚E‰CçXnädGØÏëÝü{w7\¤Ÿ.‰ƒ;`Ó \A]úH/AßÑDëíÿ«¢öïqxjçÌÕŒI‘šzíCÞtN•žØ!5½mß·h) D×oŸÿT!›Ù·É‰SÒLøÎ_n¨•&žo×Çè6€Òu,Ò°á—ÆÆ_e|z8®ïå=—÷¢š~ò¹;g~Mr¤;qÛéÈ‚”]®×m%ÿB'¼ãºÆ xYXkÉA>«-Æ{¸œˆfIÓÅø`g-ŠWÍÑ@%­¹¦ëA°ãá(c»Ò\¶ZlXßôÓÝüŠ9Z!?bVaòvÊSw·Þ>£ÇOE!GmîZ“âmYRøÓ”¬>–Žú’Ù©T"(.€¹÷úf9•Ÿc+DÒ4s(ïù×Ô9UÉÞ`È¢wqhÊ侦ü ˆÔ?üa}‚CWb%…L¼/g^D·~ŸJAE8xú‘ŸûW„ì`.%½ýƒkk”AKC4Ò‘Z¥!¶+Þ6¾;o‰d¡›HŽoÚmxNË0…;…¹5êIEqìßøùÅØý´^õΚ{†ïŒ´|¹­í1F ÇîêÕ9†©DŒ>U]Ê9'Î’ÇÓó„oø¯z»N²•Ó/½¬åQüDÑŽ§tj³µNÙ¿lO?ÜŲ%Y… /Ãû†(E8s³Ф¶Êå3•÷ß58$cKûèm·Âèn¹Êôtjw¾;X¼.Àœšm.ççé±íàï|]?i㜚¢Ø/„>ÝæaêR×K*ü˜rC–:¡âãœRRçrÓ'D ðâ«o¿&3r=Æêˆ¿I\²bäPãr¢yV=NÅ–?Peˆ8ÔÙX‘!> Å/†Þ%^þö+Ý | ¼…æv o™öC„WáLFÓ±"¤äÈÚ.†4“—l¯1K͹$*oâ =\EÞ:íólÖãÊ´©šH0/|¥±ZŠº =eÙ_ƒØN\ì}I–F™‘‘Ý>K]S é!DåUwïèb…ç¶Èˆìo•ÿt!sH ½;8cUÝéÊ«J.UPm sšvHIÚûzå±D=’’œÂÕ˜áÉVvåìÆŒ¿ÖèŠm¯ë‰ýYôNmÅÛ>O‰ñÒ¦áwWmöíK{jçl:¼ò0E±ÿðû}ëkâ$ºýb3d¶ƒs*.€‰"žò·ËÜiÓþ[ïÕ&²—X–Á0¯¦èߤ⥶Í>+e˜´sÌ[vɹ¥µbô©¥õQ3ÊêÍüè2—£}çÙZ:º´Ù´ç'T/å?ÄÙ)¬ˆÓ§ª—ͬ³èר”ÊIi…kÌ~>ÔÞ7æ#BkŠÏ"ºb¶)±Àc7ò@¶Ú)hh±þI²;q#dãeø´ë,_N Çuyzz“Ð -¹JWeÏUçàÜxcë‰é†gº‚Ìá? ¢½ ýëIÅ":&‘ ­ &'T"œ2h•×øIú†ìFö€¯½º D×…_-‹*8ÅÊÞ48¡§Í´Š [<ð7›*•2“ãÅ­,{ •tGÎÒdÃuÙü?ù1?ü‚TGn-ÂC{%Í 9„7NFfdÉx>tÃdCÉz¯vý·þå±ï‚M3hÚ&ëzK®›ûg3åñÚ·¤•‰ýJÄ ~òFš4ÔÆ}÷L0R¼f1Pª¼ ˆ˜W®N]> stream xÚ¶TTß.ŒtIKH Ý0”„tww×à Ò=€„t—‚JwKIwI‡"’Ò%ýõÿûÖºwµæœç­½Ÿý>ï^Ã@£¡Í!i³ÉÁ îÜœ@a€´ª·äåy0tÀîПfL=«þW€´+ÈÒýÁ&céþ§ ƒ”< n^÷3ana À ýsÈXz‚mªœ%ä†É söqÛÙ»?,ó×'€ÙšÀ-$$Àþ; ér[[Bª–îö §‡­-!m˜5äîóŸÌ"öîîÎÂ\\^^^œ–Nnœ0W;1v€ØÝ r¹z‚l¿Ô,@0ãÄdèØƒÝþ°kÃlݽ,]A€l ‚º=dx@m@®€‡ÅÚŠ*ugô`•?Øž €›“ûïrfÿ*†þN¶´¶†99[B}ÀP;€-¨Ë©pº{»³,¡6¿-!n°‡|KOK0ÄÒê!à÷Î-r’šË‚Òs³v;»»qº!¿(rý*ópʲPi˜“êî†ùk2`WõñûpýÑYG(Ì ê÷'°Cml‘°ñpæÒ…‚]<@Š2†<˜0ÿ±ÙÜü@ P@ˆr€¼­í¹~•×ñqývrÿ2?0ð÷s†9lH€üÁ¶ ‡¦Ÿ›¥'àîêò÷û·ã¿“›`¶vXìÀP̪?˜A¶à‡æ»‚½ÆÀíq€¿ž¿¿LäeƒB|þ ÿÝ_.E]I5)¶?ÿí“’‚yü8xy<ü@€?@€Oàÿß*óÿ‹ûo«†%øÏ½ÿ)¨µ…„þ ðpvÑðüSÌN à¿+¨Á¤ 0ÿ£| ?Ðúá‡ûÿYÿ¿Sþÿdÿ«ÊÿMùÿ»!9ä·›ù·ÿÿã¶tC|þ xP²‡ûÃT¨Âfú¿¡ú ?&Ydöpú_¯¢»åÃtHBí #ØMì ²Ñ»[Ûÿ!¡¿ºðP†‚4`nà_w €ƒüßüY;>Ü'n½úí=ŒÓ—”…ZÃl~Íÿ3€¥««¥&ðA^<üü?yÿV6€‹ sH<ÐóØÂ\1uTà€Kå—é$àRûq?¨ ô/È à²ûäpÿÜ@ô_ð!ö/Èàrþ|Èuû|Ø…ûoørÖ®®Cÿ[~Ìÿ¿oÈd¹0 ³~æPÖzY)Iîű=*:Ű­ŸÎÂá·àÚæqƒ–Âò!;dÕõ\2åS7ÞÒ¦,ó™Ä"õß÷¦Z´ÈæWš-7/n͵&¶[0çljûÆŠ¿KÖôRbPpèH|yqçòB/Ø©éQ‡C¾‹‡ ŽF!á¥W¼wMoÙçáˆÙmÍ/ž)cÝ–MrÄéÆš—L3XåÌÒ¢ºsP¢³yãNŸOäÝS+%²aúïÅñ¾ö3Zãyy5ã»\®ÃãÖIFOfDJ‰tF0<Áè'µ“ªD2çWú&¯‘sˆ§ðN)Çt/s^‰†Ùl;裟èršÌÞùœÑÑ6ôå"ÈýÈW®Uº=æ‹~¸¡¼w—h³“&,ù>§5"žÑyÇ‹Ë}¥‰’Lb°UÐãa`ûJüå×4"Lfa=£Ü²voíùâ®ö#»BÙÞhׂuR†ø†8»«Sâ)ò‹…ùx(Ÿ52Úq—³º¾¤‰YĘ£ÿhm!#ˆ{Žã"r;+§£ºq3¦÷ºTUqnknÂÇH¾-Ùú8–F§Ò`=íÂßÎÑE(G€dï1qâ™_Å—¤_Ô¥Øe„VøþQj7ã¦þÌî_ðÎ9«÷†ýdë*_d¥¢WªóãÁ$‘\ÁÙ#C^=’ÏÌþ‰÷wŠTœ·á·°ñå(ÝjSU¹õì·«»ýÍúí±¡Çì:53ÔVýè+œƒ:¶¨äÏ®ñ™m®)µ„$DXÊfo‹~²‡QtjǾºªe˳³]Ô: }%rä$”ÃH1µ^ƒû´¼Û\°×ûƒ,˜Ò„SÖnïÇdíÁ׬Áh ·¯Ï‘œìª>´f÷,zËjÇg$ŸvúÒÛ%HØ6©Açq²6,ß𨠻³y`•Á ­f]£ôŠþUùºï¹ˆ [/¿Ø}¥jÓØc„¹Å4ÿ€‹ú¾5¥®@Zžœ$šôaݽ~•è—¸„_áŠz.pˆ}z,DDÐK шc—a:bªôt•tèe[­(fþñ¼øhŽJáqÉY&±ZW¤å™¬íad ¼Ð4gFfoŒÃÏÇ,E³™(yÓ‰—:È+AG6p [¸m'óÅSáN³¥'gr¾æŠ^ùƒó¶A7_Ö‚+nDÒâõ?ȵ™F(VŽö’_=߈uó¢KV %PgRœ¤E¬*ð”"Œ={ß».Æb[’ 5õ·™ˆ–Z¬y þÙÍãMž%TpxžëîA!©¦íÿd+<ðm!©Yñ£?Á4K†±rsåJó^ItK”"™çÙ¦›fq=Q$bŽ…/uk^ˆžÀÌãû—=|}iÐæÛÈp6r…óÛB†÷,((ñyÞ<׸•iàÍ:–xᮎòt’bÜݔȱKW"7WÀ–×ÙDUægL–ÚøÞ1·¬ŠÃhÔé»´·¹œºÖ‰“iUÃÁ$0uhq±NHk–{Ã|®+&qF^²íü7±èõ§–”R¯}CÐÍ wš/¦GíØÐXÙ'îæ…p ì}øßZó2¼Æ·ÏÜ'_p`W÷žŠl8[J×ñˆj\lWþ¨©™âÏtb ¨û!Þ9€¤ôqPÒlJ×Û»¾ÉfX˹óÒ¹ên°gò ´l©ofO?2Ò¦Õ…¸…c:¶|‘d×Ã'¬?«Ns¼ùÙ‰ô³NÝ6KŠ¥ IwBÚVV³æ±¢>Ðoe£_~úÍAxòF¡TÕ|$\ŠP‹Ì™Î¾eg·cCÙ|5ò¬Cõô|á…® |%ãÝL ëÈ>kïÂQפ†·S{n¥+Õî“õÁ1.ƒA²'mZaR\DØ^—<Áúƒz1U€æP³ {ðîÚ®P6µÎóRã"îvª™MIÅvåׄšÜÇ•7È+!V-zgHCÓ`­õú¾ŸECÃ[H±B÷tLä¨&% osq±œGwË•øùßU¢Úù" $ÛÉ+TDI3¿\˜ºY¬ çä(PY#C!Ãl‘QZY0²š¯ ”Ÿö&Qgl9@ ÿÔkØ·)º†ßw;'¹ûØ­‘ôYÏLÎi)Z´è Œ:øúú5¶$Óq˜óüðf[æ 3°”t™OÂ@4h‚×úGËý²`õPí6º#m÷¥Ül~‹5¡—oGã}Š Rkâ‚)‚VÇïMþ™Ó7ä8Í-üÞ݈{eRÕšlL«áŒ¶.¡ªG¯¢Ýt oí‹Ö©œÂMm–»EÞcóVŒŸ•ÅLjþ,j:Ïõh2Õ‚L[” }]Éy¯w5óôµ=!—˜o½•ÀBî“ÃWE2Töhzð6l‡ïfb³»sqj˜§˜EB¿¢ˆIM÷Ýf8ÃóAøÉbR8PT–¥Œ•E#mÁ¸ÈNRË:«½ŒprÕïÕšm˜DœÑÔŸöa½±²xÀ7ÜY*HÇ*J7&m°ieûý倌æìÉ„5'çA¹S µ¾„…JIäò`|¶=î É"œ;ìÉ>ÏP®Þ1Õ´F@©©™VŸºèÈᤖ¬»8/B=c½µW\we@ÙÆÍ%rÙæ]¿kp/™×¨zi ²IÛ)ö6}¹‰K<ZÛ¸½âÚ^9suçU)³JåAònELagI9-‰0’æ 7Õ7ôÏY+ZhW-»%"óäØ\4û z=ÉAކÜ&.^«‡y'oL›3"ýœ¾3° µÌe¹Nsò5fÒ$}Ċλ“NÛ±«ÆÓLëa™H!Åd)ô©Â c.éÄ uqzš,a݇Nd?öŸË¹",Ÿ*b™qϨfAú–ÎB[žÉ˜í'‹FV>Ïi€>ŠýúK¸Zq¸}Óüx1¡æç3³í<)bÃw¡G‹Ïjr²¶ÎJñý†C€ág-9¦Œ5d©Éza壓†6Kdj É AžÓ=ŘÇ*t‰ Ø(’»¶»{;†cd8¶¡ºÜòõy*XÇð±·rKwjâ»ýŸ˜¬Å)Í‘êg<_Y{é<ñu1ˆªÛ±ÊS„>iØÆ4£F›[Ò+tk%Œ‚©‘û ÀÉxÍ<ÍIû/?8·448×-•gL[d%R-T|EžPÞ\o”"8Iª€¢ ©öL}É,Ç(.ÕƒnVÀíÖ]ùcÒ@ÚU‹Ü>‹0 ÕMj®ÄÏ»2,…!ýS¯—ãå×jÜ'oW ’K"“­‘ßWÔ£ž"¡KÖŠõ̤aj=) Í j‹ÖnQí¬j>û*¶ˆ³ƒ‚¢¤@”F40!òT^]—ÏÁ¦¢µÆFð“ Ŷ‰Æ:¸«áï†pšF}Ú€Z@Ú"Ý»²Þ ­jþ*ˆKêÓfêž³ØÃ0ñ™é¹éuD?Øä:ÕÆOtá¦%§HFŒùôðqÝ÷iœÍÅs»¬= ‚Ø1F¢Á+ùÔ¯ûEÞDͲ“P™ë¾È8“ªÅÛ×– õZ ýŒBïp¿¢{Àôù´%ƒò±‡ê`Q`JIŒcà­S9Ür¹íB~to$>'dVeyä•í‡Ë=ujùÆðM¨‡¸<€7E%þE×ïÍFªèêé@[|ÁÌ­§Ñ+Yu$ÔæèOvëI¿áÚÆ~;1˜àÙxÏå"TïX»V½"g¶ñªb×´Žx'ÓdÉt²Ñ…­ý8Šxª–]:*-^×´¦€Ì,KSg#'"Ò§š¸¾sö¢K@ÇcÐÖJ¿nc½Yrß /Ùÿ ß{¬ÑÈ™<8}ñaY^:¿‡R”, ÙĪêEÞbFk Q‘àã1ÏÕÝ¥_¹Ð,s=ÂÞè ÕT9F±™“i䊗›h ,%yF$ÒEE©ã…Õ¾TEÀNCÈùÎ 8~¡'I[‡Œñ]ñÑ ;Ýé \EkëMI$¦C"çrÝaØõ,–óǬxïÕ ïwÚqN^¸£û¥›Œì3xöuu°ä1Ÿ†ZS£K0’ >û^ý[lÜÇPIÕnŒªùà^ä[MGüpì@!•´O·_$_æ5H +yž±ne:k&éÍg¼›^jûrõmÑ{õ¦ÉÆ•Á‰ ×q ò}ß/ 3Ò6ìãhc¾&Uwè½W5žÑÕ}~V¦ñŒc³©Næùum°/ºÝ™ÖC™ jï Â;Ë$´R,´8,¦ *ܼÌËI% ßÑ>?)ãg*%=Êt×Rçdêeò.AÓ§+GŽÑí,NÜÞŒÚo‘3¨¨kº' “ib§†ÖÕ"Sä¯yPØ¡jð™h%«Ò1lÐ}ëAGü®~´R$õö£ÑÓæ—™fý§ÆX«`*©ÅÄsØá¦<”J‡ª´/i5žÞe@»oõ†=—Åê¹åÓilµ`;tÈ)†(¦¹õÓý·Í]:L§2ª³%ûD«ÛŒGíïœY[¾Š÷\¢©-f–®¾õÅ8©TwÏòß=K¤˜†Jö¬v›w'÷±QÔˆ^hÕÝ¡9‘´æ­áUŸ$qÃç@åVïC§üó’¡-rñŠnw_Äö=Ê«Tì Cú³ÒÄËjž«9ÅwŸGR¤jâ%!iÐ’|eÿ¨ó'laÞ. ˜Í¾&þ¹›ñ…êÆ[µ?äggšôYºùêEăâÉv–{F#TÉ’tß²[³·¢ØòzežôE¯ž’dm:œ‰Œ mCáØ¢ð÷b‡1½¸^ªæê×…¹Hj¶n=GáÛÌÆä®üç†9ýˆ\RçÏ«£².-œÖK=EÉ-3¶ÎûKd±jÀUÏÕ@Ošó¥è öcvQè0U­µÃ$.bäH9/—c¹­Å#è²HhàKR¢¨U§?û6LIîæ"…Qä¡×µ2.ÉßQoU‹˦5÷”¬ðF3ß›édMÕat°ý1Z1¤?+icâ>P¡˜"6dA’%˪9Χ¢Grs&¿R†xÜ(´?eG©è&…³×3ïækê+–vH:ÕrÕXÞðLË$9[܃ÄY;=ó?³Xh¸ó ê­HGTr }ÄÍ›¹ö Ä}ñÂéÝJõÕõ˜½Í©ÄJÙ¹ÐŹ dKGŸ1*?í­plD‰PXâ÷z¿ŒÍÉVTm'ýš/iA¦ü´1w®²ž ÛQt×Ì‹öÇÙ=:<%ƒúf¡Œ6J¥è€´k>©¨c—·lé>ŽE¶d‹¬!û¹\h4Ÿº»†h´tzc)-ûŒì~H°gìM†p¾=¸[~,›’„G‹~Ÿ~Ì–2SÔ|ô^ÐG¥käú—Þy ˾¹Ï£èÝø\wZ 3)´¢:½iº @ßés‘©ÜLÆêË•F#e­·>3{6R'Cz%CÝà¬\L’öž]«Û Ó¬D”+EVGÛ?7@¼¶·{´‘~{T­ýØ/Ø´%y}„ÀBh ^ò”ZE‚üçhغånsa¶5MÉ£ä‚#`ÙCš·`"qN:•óÉm’*íþ’¶¡ é§dýÊôl º‰ùÄŸFá¾D’eèÈyÛ}¦õµ¡n±F°¶‹¸Ò.í½_õ÷ý|6ºFY\Ô 'ã9ª83Ì™‘¨I†Û-Ó[‰}7¥±Žéžóêvd¾×Ÿ¾ò(¸’ö8Sœ šŸ]|B­ñó0b4éVD ñPXw1˜ÿqҩʰûçI.uâñZC„ûÌ/<>¥º|èËA£,—^náß+Sh+‰­‚¿Ø€p‹1e]¿ÊÙƒ^ïôT–+0îÊÉÌñÖR-ªÔ¨78ãï¥;Ó—Î"0ÄRÌ”1N×z´s•3DÐ@hå‹¡oßl¨ÍQv«öˆéÇh:yâµ–Lé_Ó…†ÊCG²†´œ§)ì?}Q•3ANÑœfîÕÆÍª9DbÃ:êìOu;¼‡7 @§3­8£:‘.¦¾ÆÂ›;W}vñ6odÛX‰ïÈåÒˆÌùÏ-q8kÌ̺=~Ve¶×2Óì7bñ­ ¢^¼ë%¦L›—‘C^Ľgq^-ô­äNW áö8¿Z”¬l#?—‡?ÕeÈ1……}ã¯éxÉeh äø„ø¾$œ%çÆÄãÑuÈxä—KÇÀÃËþŒyÊeÓÇÁ®Ú8±|=/µÑÇÏ–Eͪ4xG\>Ë‘-ƨ‰^^9R¾h3饶ÞãZ­O7e;+Ÿ˜õ{5,¹…¡š‚Ë>DB¦Ÿ<ÕIK‡ >„~ÎLž£K{Ò*Ÿ0—³Ør¬kˆroD 3-?á•Â\êVšÈ:×’UqXToyvÊG æë“w$¼gŠã¬ë ‹‘—¾ÚB¯Ý(IÇx[ÎóvwçZg‡õ‹üç8ŒPo{^<ÚÆ›AÛ&Cça´Å`¦ }¼°½ CAß|«}XÌšP®¼@1Ä“ßòƒ'±=†¿S“Z!§¿\<`%ù^åC ŒúÂÇãHßãRáÞ"Îî^5ù‚Á^åyÚIßÚwŒû# ŠUrßõ¹vV¾P‡eÄ«Z¶øéK9)3“*ÊŽL⺜TžÕ=‰J%¢B12Ò“xçyçÕ¡rΩ¸NØ1n?©"mØ…ŦФµÓ:ò›_âª?¢CÙD­UœpáLÒ»½kÓlÿ~;Œ?^ä>Qn¦„(è-ÛBȨÒÏáB–¨tç½d^ Æ›i•ZÝœ.•Öãhñ°˜â SN/ÜÞ.eŠå£ðÊ@fW1î9Ÿœ¥uî0n.5?  ݸ~ÜíóE¹áRñ¾dF1÷U7}ŒÙlJdKsœqYp†x« îiu‹H)j²ð·ËŒ+Õ™Îbáq9p”³È6à57U6× ¶ó.:V:šã‡J5U¶6±œ-¦ãMÑ'x8óå¡d–øã͵¯ „‘,[«‰‰ë Šù«ó'1˜çT7ò¼$ïXùɪùž}:ømÏôÙÜ|ò+I<©Sà»ØÁµOnàÄTÙýh‚K®ÆŒ‹øÑ²`ÍCüÒ#v;$x ]@ m2ê#›$ÂãÃßåO­:JË]æu‰Ì©fì˜{ô™ÈñlÊóƒ ¾»Ï@×.ÿ³?Úq‚óµzŽ´Áî”:oÝ÷¬%¢:ŒÂàIò¥î…S ™QËÍO¦:ßîiîyi‰ø¾lé­Ó#¾b3m’N ˆÉ¤ÔÙüB:DGknZÿ>/‚tîM7ño-’Âc-ƧNWôøað¹)M³dÏ[ Js?6·kòwŒ·¥“qz¦×‘b1ˆ5$Ç£-;Çî‘´ q}°¢ðàj)ñŸŸ#ý'3‹˜ Þ3å.}“í *Ñ)ÑѰ· ê<ž"·BäŽ& /o¬ŒJì7¨ßlJl;»ñŸÕÝYJ3M½©1ž£< £jf/ÙÂ>Í0ÐlÌ:1¡FvÓ\”6ÇÁw'¦bù±”>ZƒñœÆWÞ¤Á›r<«r§´P곦ÕY··ÄT ˜ägH°þ^0\ŠÌC±{(¡îÅãmþÔÛ_' w—aUZæe Æ+Fœæ'M«P¤²Ë¯©äb˜ó#ëŒcïj!—ÞÆÒ iÕº¼´“F»ÓË!³¶ ù;ûa¿ˆ^ÿìN¤*"Û3ò§ÉáVÅ©áÛ$œ5'¾¦gYÈgËz‹»Gµ†—õ“'ä¶8;¦î·œCmo©L3ùjqX°O^¸Œ;ÿÆ([ºO—ä°Sr2×l¢YÏ—Ô£<6ͪÁo?×:ØŠöèõ~Šy¯´ßá¶H§«•€q<ãêìÞ󬼭PÜ‘²T«¥ôÖ>ž@Ó¹ p‰TmÜh¸ÄöZÂÎYA( —TàRó¥Ø~_àÁšM¹þ Ò)µäJrýHì;ا*×®—ÿÐ- endstream endobj 103 0 obj << /Length1 1447 /Length2 6643 /Length3 0 /Length 7616 /Filter /FlateDecode >> stream xÚvTìÛ>%1FZ&¡4 Ò)Ý)5Æ€Û#H(% H‰(©´ˆ"Ý% RÒ]J*!Í7}ë÷þþÿs¾ïìœíy®;žûzîë~Îxnš);!aHF, ’ªêKA 1aHÀÃc ÇxÀþ@<æ0´7‰ý»*Áà05禇Dµ}<€`1 XR,% EA ™¿‘hY ÄîÔj#0o*€†»¸bp§üµòBù€`)Áßá@eO… €zŒ+Ìw"â4ABá0LÀ¿Rðʹb0(Y???aˆ§·0í¢À'ôƒc\Æ0oÚæüE¨ñ„ý&& àšºÂ½ÿ€MÎ?Äp( á ðA8ÁÐ@ÜÙ@-]  †øÃY÷AàŸW ƒÿN÷gô¯DpÄï`ŠôDAp„ Ðîhè cü1‚@Âé—#ÄÉ‹‡øBàGœÃïÂ!@ e# ÇïOvÞP4…ñö†{üb(ò+ î’ÕNªHOOã øUŸ ƒân=@äw[ÝH?öµ3áäü‹‚“JÄ ÷òi©ýéƒÿ`.0 PIÉ€€0/ Ìê*ò+¹i öÛþãêÆ¢( 3Ž,î Ãý°Þ_ƒöcÿÓðï :Á¡ #ÌŽü“ÜÿØã:†ûï‚pÂA¿>¯lqÚrB"<þqÿÝ\K}5s5ß„ÿ6©¨ ýX!Q) ¨‹Š¥p‹àgù›ÿ_Ü£†øŸµþɨ…pFeþ €»»¿høþ© Þ?Ç…øïô‘8À¼ÿÈÞ$‚â¾ÀÿgñÿùÿiþW–ÿEöÿ]†‡Ço+ï/óÿc…xÂ=þ´ãTìƒÁM„7ˆÿvµ€ý1Äz0'¸ç[µ0Üd(#\<þ¾D¸·ÜædÇ@]ÿÐ_=À¥÷€#`†Hoø¯g(þˆ›5¨;î)ñÆuê· †¥©Ž€"~Íœ¨„$‚FC¸Æãv@,7œN0ÿߺŠ#\G/èŒD~õSB (â Ç ‡þˆâ¤úo@\(‚{ÎþqE0®hØ â‡ü½ÿWqP47°¿Åƒ«ü¯ýï×ó‡AcHèíûnïî7•+³ú ­ôËó¬X<åÂN }N(IRøÞ<ŸC*§ô´QO/©ó(Mrœc7jß“DÕ%ÕŸÙ'­ÔƯ}x¹¡\ÑÉNÆ&dª´tîdæNX‹ß¬Í“íå#Mi˜Kwäסé_ÑY<õ)rlÅhõ¤ùYñg¡Gfq6a#<9Ž/F™8‰1Bì¤ü´»þT#‡Ã´Y—Ú‰€àÍGb¯°Öó¢GgJME½[˜¹™­™Ø h? Ýά§j3~Á¾šÍ±ñÉ›nÁ³Õ [$“’ €'J¿Uì&¼±ê²ðs³™¼¦!¨]6™úrõ\°ä^Š@buí tÕ}z;Æ^L[õ޳ù쥔êÑût†EɘPm®,òò·’9vÑ'}9&94÷™SËnDŠ\å0ºªA©÷>¤ÓYÄó:+ü!o&ç xQk@'T‚N¢3ïŒÌ)IPÛ®¤ò+3‘àî€m¸]. p‘‘å3?+ÙJhw×¢a7¿õÆi¯M²]÷›‚I«öŠ¡éŸ.z¢¡×9“Їùý£ÑI|™I©£9èZXúÙ óɹ·§®Æ¦8l=²~]Ü.²oB{•<•¿O1¥’ø4ˆd9yÅ¢ÓÙ”¸x>Êò±ìc+\Úæ}ÔTnD?¹ßS'Χ‘“xLç[óñðY¨!…ùöJáµñ„Ü=±ÆÁmgtwÙ¡%£²U½ÄŒIºý­Òb—ÜMEßùaëTKM„aiÜ8q]þgˆ=÷ÎWê×W{|Ôœè#ÇÅ‘¦©0[›8øˆS¬gú·Íç×-Ì éË]dÅÇY?/æX.¸§H1keÔ*𰞭ߌߚZ1M¿ä+ aàÖâé¿ôšb¨ÅU!¤G›4°nîïÞOÙæß¹©4Û02õœÎzN[Ò5tçõ⤼«òdù\ÿ'bYêf®¤ã˜oÝ,=ÖdsαO•³…ß–ÓÉJêY¿r5|£ˆídÉuÆ“Ÿ;ªrÇ~›Ñ|v ÛþÒ¢äÔ¯`‰nJQ+3°N(TïH˜–ßHâå±+l5o©aä«ibyñísg×2ïÜî–çN³s3ÉZ6ãÇ¢ &‡Ù˜jS]Ï}üÃe#ºÇºO>²…_ Ô×c÷|ËÑ÷êí«ç»gãdv_kÆ|•+HõÞ MŽb_¶Í-Ëj-e‚ž=‹÷Y/IºOFü'UÛŠ›7$†ˆ"’÷wnøå Û}M¢8¦ïx5î›ÌK¸?$.(”kûÞ0\ŸGª(b³´™¦øX­Â æÕšÚFóâQ i…PNv!©¿úÖ6û`úé£k ¹übȆ…²§áV# ¬€¾ðÉyeh§Â@tô-ùì°ê.-íS¶v€³í§(UNo"¼<[4L†;‘W?›t+Û ?±Öÿ( À{s ÂïV§x¿íåú6WêûìH"™b–Ûû€÷DÊWøžP’KEOÛUzú°jl?ï=‰ÍI.-÷ñ”l#–3·Óñ äè4øYö’Sý•4•&õQÎjçrGuG“J´[#åZCl»ÉS‡;*–Ëg§¯l3¹!–· UÝ’'5I”a+nfÇÓâª/ýƒ)Ow(©²¾l°ÝYuùâ|FÕ. _L°s†YéýôÜ6IìëyºYð ò4G)Žlï.¥æŒ­^·„Ì»gUÁpTdŸä4û(„óc3p’Ω“ŒÆÞ6s–‚Í5M±žrîgc±ïßMÌ—¼Ùb)IJƒ^ŠyÛŸr¤°\BÅ!~“T³SýÊ&H2£2½[—æ×–Ï”8ÝþTE=¢’]›ÊÌ{Ðê ÈH›¿ñ¾T„õaÖ\oÏT¾N2åŒõ³°SÁ+ºõb†÷œŽÉê^·+4fÑa¼o² ˆçC{Œ7ÙAqN°™fÝÉQ^•OD¼_ý(?ÑX3™Ýõ”o# [éýF~ÝÓ&<,<¥Ù‡ÆÃNÓU¿›cœXétcž—--Áûª?Qý‰$CÒÛ["ǽ¨°[´üßH«nçwJ®(.¯l š•³k±Ï3ËÓ9ëÓÁÑØ õÃèMá1cO}qæ:÷¹U^z!Û+we94UCe÷ßipêS‡YîmDY?õdNSÆ(™ mdyN È—›wÐÝ!¶È6œûtJòLqÖ¿j2s’Z«úÒÄÜ}×Ü2s'E8ÓøFãcS0z´* Ö*$;ï=“ódeãà(CwÄQ ÇÁM½y£ùdž½;jxËûº4¦¨.«(í¥C æh{è¬Ñ Ùí9<·¤¯K…s²£'Àþ’Ììêõ^ YK³! [,qÆœ —í…WåóëšÂÄ¥úÐg­½ˆáálUÂë;œ™1¤ïܸº»ºmÒǰI}É÷RÖŠSl© ŽòY¦üÔaOP¤æ§{§AÀ7AgZ¶ÖN¥kÏA••ȦU'smn¥² ‡×#ãÈù¿²4eøí^;§¦¡ÐÉ¢¸ñ#w”T¶¾!vDèåK”&¬QfÏn©œš£|øPÂB%ÀŽ€:8ÎBadX4Ð Åk•¨ àžWyD^+g&ðÁZ«'¤gšƒ»@Á{•dvë ø ¨ÜJ©ð¸®»Pâ¤hº«Õøxœ@îSÀ•µðwÈAÕ÷3›Ê¢ò-*ÇŠÛy ­œÆÑ4å€VûÁªÓŸ^ÂêA@òÓ@š©äm¸¢e¬ã'ñˆ™ý`ÌOXfË!ÁÈäeµî8dãf’®“u_ð¾h¤Å^ð†xÁãáíz;ž>þWƒì×zÕ&‚v¬+¶îKÝlÞÅMÁUMÎp Üëf{3O¨ÝDw”’=Cüí‰ûwz5–,ECûËÌ 2§oO'6%A7ö´8ö šï`–lšm.*û¡'½ ±}«Ð‹¸q® ÄÇ·ïõ/Þ5®Læ>LqØT*)!«úG®l» Â#æc3½~bt3YiË|Æ–T\ì5ùǹ2¯¼Å¿[Æp¾ãr\¤ò#ÔÅfBñ"5Bõ_ãá-¸‘ÞÊø—m;’ˆ©=d;eýb:‰ÙÞ*‰ÞoîeM *¶ï¼N·Ë4—Psá>ÀûZãÒ€X’æÏ¸cöQVùÚ‹¢‚Ú†êâ#Ã÷Ž,¯X‚|FFÃ9¼¹Wü¥Ê¶®¾cAß7R©ÔñÂ;Wë¬%èåYÚ3ŽÓHÒw;ÇžÓåq1Ô»šÐ+Wl*ˆvÌGŒ*zPqzÍòR ©}3ˆŒ:ðq? ·æ˜êÊä*¢À{å ß}Ò/! §®·W])P‘[”/qÙÐ1 ‹œ@ol݈IâuÐî}ý…YF8ªË8¯·0LâF’ÿÝ‘¦[ñÓáÄùxàZhq8Óë±¾bŸúXí·n~jL`™Ýn; )ÝK|ÞÊÏÍîwÖ¥Ñ÷7UEâ®uÛ“>(ù:´tƒŽ¢ñ~$Ø¥ÝÅXýÙñû•*ŸT²ªÓEs'¤i­}‰:wdA$pˆV×Zu#Ìñåkt ZLÓ²S£¥ Ù}€•!æî‹GùEäÑÐãk5…ÐGÏc €U´¡•WU5;]›3+CÖ¸˜,?ÓHÒí ‰õvÌÊ«‰ù˜{+Vº‚\êß.|#zÇÎk¤C©”å¾Ò\z*í´ß¶ØVs>ÜlµÆØ"5jgŠêú®çÐ4a)8Ñsˆ$ÌFF1¥oYx1}JL©j²›‹rënî¾´éÀFw2‰ ‚çòLojï¨úÜ$;Q{ÄUkêO ê= ¾®}zÿëâ°òSF A¿•iªªí*|¤Kää÷S ³]e~”1¤[õ:<G|áe-É}‡‚¨­Û¥ Õ™ÞŸî1¢Vwæ©“4¹7´':F’Ò *t®² hLí “óèLoå^~±˜¤¢œü:ka}…"ÅÊfD{:jü˜>?aÍô%8³ò%pFa½q˜‘ºw[cðºæXÁ÷[çMì²ï:‹òœ6¯YF ‚´lû óü½DÖ˜À¤QguÞð|}nGTjègTµœ™ãˆ«'±èŽÆÆîqÅ­®i|+Æø7݃‚½9y×>†·™æß’®ïA¥¼ôz§ˆà…ÉtÈ+ŸÉŽÜSu´!‘É¿ˆAÜävï,ÓÍz=ZKŠ\ðç¿Nƒ¢¯‚ŒÞ°Ùjátm¯ÝïK3AÓÎ0 ¯’‘ùXOé5ùª¾³Ï½1D^²ÃÞ¿L](ª’ïló;Œóîl3^Je· –ÏÎ8Ëõò‰û8r$Ì6·jÇM¤mîÞÝÚmr˜Ì‹ú¶ÅÝŽÀ¦n²2…p¦oÀG~N@g7ú˜î¸»,<ý>%/Ò» véˆÅã¾émÇoÿøx½Bä¡ë”Í̵nFϛ֮úa$·I*ª¸Þ+kJª(Vqtv‰Ð^ÂìnÐßÌ'<Ûˆ±/ÚH£œPnÄo½“ߺmzêºC£ÂáGx]J 8‰¢£¼þH¦#)‚NŒ?I-Ító[œ]¦9è“X%ÿ„YÈõì›Üôè]ó1+„bècÛ…D:{U$¼ÉÙÄSûßjBÇWGX‘ í˜kÌ‘çÊCxlñLå uŠî$p7áüᎢªò®c%™¿å-0ì“äâ«Ða#ݵœ+C µÇ¶Ñ$Á™ ‹Ö?ßñ•ÆK£ÂóïFQú}­éãç-ᬿ{³Ä'W¶‡Ÿðú™Ï¶PY¬üÓÂJN´ª ÂÛe”õðþîó>—á£Ä»¢bõÀI9Çwý%ò½€À‰¨EVÚw¸ÿ8—/F¦D4ēַ#åk%K‘o K¿¥,cwé³OJ°ÚhYÞ)â/ЛºCˆñÛbƵ>%å >öÝë˜l€„¨äÛùCÅXBìSǽP{á³2Hd¼xÙ-Éæ5-¡k-™ÙÙ«;ø½EñÉZºáFcgr\ùÖïé÷÷N][*ÖQ Ubòí—®ò;ÊJ4Çèmf>[ N :Z±Ö¯7ëúùxã×ÜU£ÏTªå©™ZÍ€ÚU$ëOr`P&Qì"·˜Ñä/ó¼.zkTæåÉ,Ä0¡Òñ ££ˆ3ç1“ (^ñÌYUè) $HmÖßÍäBðú©ðš¦Sî:åÃPeí5q2¹©ÁBá1:{ÑÞ­d‹J·âz'=ƒöfŽe¼Ø“)OXkg{ãù€|®'~±LR,tϹÇ1èA”âÅJJÀŠÝˆX©%‚À6ãà=³¡¨ë+‘/á|–ß}§š“¬=g„?&Z’n#tžÏÉÔ膵ÒÅ•ñÓ—8Ô =S„ ¼%lý‘–±ÃTæÖ9øiêÎ= ŒMÜÏíƒ?4[´#œ=˜7Wš6”Ó8ï;+@$ÔT©¹‹$k=\šÎSªøÅwDrøéž²-qëͳ–ä_x.:q“T$rÓ‚âˆ`«cRÈôYYôU^Öm?±h›¯é6–™KÊÝÍ÷Ä3>Ù¾ÙJ Jò\Š˜7óÅ“gž?Èrj”$–Ò¨sW]™ÇkK8e¬2Ážk¶¿9a‰ð /K­ åXÀó 7ek™ËÔïXR²iä!ü@ SµßTh§ã¶<†ªü¨¹åŒ¥x•…È2ºþÎZÿšÌ¸"‘•lܘž%Q ¼ºú5Ñ~ðyÜ—gkmkBTäêyîn«ÓžwÎ'¬_$ ÜEDãBJ—ƨ—=Ù‹æjÕHõ´š*Z ÒWC½N3e3•´æù~:x‡ J}Ö‰q+þ(–õ|҆ȟL]!ªc{%cÌ~7ãC®Xû¨È<ô«øÄXñV"žÎìÙ»Š{ä bŽ;<*,JÜÅzNU›ÜÒ¼ÞI ?Z@ó­.weES†ôoþð¢!ê›zÀ(4·ò­hûp§Š¸–Ñά‰&PŒ/)’ìYVXôÆîÞ¬.+RºjHC±|úŽkÙŸöÎ5ž8_ë ƒGŠæ¤bb„úä†ÃžË â“dîrRpÖW¢=KaÏ£Ó6žöbÇG.Ät9X¤â×\ž¿èªHkØ0&r0Ò‘~Ëas´»=™ê r=È~ •+»”¦Ïyp5 bü@&º×¦ÁpîxS-²ÖîuXwüé¾Ín<êrÕ& Ç==#üÀGÂu½‹9»ZSoðÊ¥kœ})J„&úç x&3_„ «˜š?!b¼S4eÅ(ЂÒ6Ìõ¼óD5i3‹EöX=8‡äzSÌdµUò›YéÖ©Úß ¿cA¤BÛaäâ¼ tØmb a¥)|¼y×ÿÓa¼Aj è› '¯QÈdöÿH;Þµâ3Ø‹²ëhRJçòñ”_r¤¼âÉ\ŒzÝö@?[?­­ä¬Ÿ=ïB™#ÌîàÄÙYAËTXŠ&_\¡gñF׉K0Ç™µ›Ñ÷P3Úû?#˜¿tø¤ÁE9·Òœ€íÇ‹—3›-4{å »ÇÏ1ˆ|«Ó>4•ÏëîPzò¶Ú3„°\öh)ÔyÅcû8y¡OLR(ŠÎ£dD‘1lw"ÂöÅ(~çû½›±Ñà½Ú>-a½tƒDØÛFOrdrËòÖ:×ÏSÆÙÉ÷NŠPÂw—·ÍÞr¹…pQ)ŠXñÊÚŽÎIpŸLÇpõn·B¸% L-yÞBO‡6,9²Æ úáOÏ%ÕxoIÏ)caQÌuÑn}|á\DÅZŽP;Ñx!¥ÏLЋù]¼¬r Rz´³ãò.q ²rî´v”šƒº…Fx3Ù4®ÇåLÛ® „°`Qt¦sû- d]w•½Z9›sE_\+FWt]ãÕ”¹ÄƆÙÌûN4™­ ííΊ÷Z4®$¾]æ~€ÛºIw¦p}oºYêâç3MÚ0%m™ówÞUñv3d LŒkÏÂܲ¬Š­jµÕO çí÷B@ÒJÅ‚²lMuYN)$–î9®n]I†y ƒ M¨ë  R†&ü',êqßûùU—îÿʃiõM„Q@SœÖýf2%´–› mWJ0¡jòÒ¼ªÐÎæ)¥ÐOf“ÓŸ4µí<Î —7ôé¢Þݾ)£¾Ã)¸¥í™i:`¶ ÜÒ>Z©C,Üx=‰?0÷D„JŒ5„\ˆìæµc’kKHÍ}HÉ.NÇ•š¨’ªc.hÇ›­üä-oJ¿wX±Û|uæ JÍw"è¿l­ÞÛ:…ÑÈ6Ý[¹ÑR’­ÀÜ%fQÐv;;ÚäýöeÎíAm1‰¡9ë=§^5z:–Ü⫽ô]ª'÷ƒf˜½¨C4Nš´Ø>Æýä3¦ŸióÅ|9†\@ÚÅËôiÑPÓæ¦ænéÄÏŒ®@R9 ÷åæwŽ!•骨B§–6E÷‚¡ø­#TëÙsüL‹VlÊ~?CA·ˆ6Ǫ’‘‡Êé ¥ÃæœÊMËéOW‹}„÷7¦iŠMÖµä…"ש${. ìW“’²Véc2éõÙp¼§Î–MV#Wá7‘™ýýü˸báMÁ¹ëZ7çXí뱇 UYïHRyû5ö¡Š>j‘î-ÈÑGþK¯6¾2<~Xb§] ,á=7¹5NÒê‘v;Ø‘Œä{8=|& ™¨jžTGf .­‚5†ŽØâŸl‚ÒŸ =-Y=º|2ñ`̱œ—TPä/‰çqcco3×^ÍQwšÿšŠèÒ[Vñ†LhèBeò" ¸„mlª/‘$0^3Nÿ®2Ѐ)‰aènõ#ö:€áC’o.yPe󛊜6ìÈÒ•¯ç_üì> ¿¿Æf »rRëßËÝUv’\¥ÇSŒ­p#!'Õëú\´9~±«’cz+åÐäu¾ôªžA×¥$?uQ’í½¢Œ² ¢¹3WÌŸ/îöÁ¢Ãñ]ÜÖ£âyµ„ endstream endobj 105 0 obj << /Length1 1447 /Length2 6638 /Length3 0 /Length 7612 /Filter /FlateDecode >> stream xÚtT”]×6]Ò%)Cw ) ÒÝ)’ 30 Ý"Ý%’" ]‚t H7¢´Ô7êïóþÿZß·f­{ιvœ}}íÃʨ£Ï+k ³)Á ^ Ÿ€@^Sï!@@@ˆO@@•ÕŒ€€~£x¬F ¸•ø»<d…@b V¤›& Ps‡€B ¨PLB@ ( þ—# .P°òÛ4ùj0(È Uæâ Û; §üµpØp€ââb<¿Â²Î 8ØÆ дB8€œ‘'ÚXAú00áý¯ ~~OOO>+g7>Üþ1'ÀŒpèÜ@p-à']€–•3è1>ÏDaÀ³±Ès¦Ì}t5LâmA¡‡ó `,@ ¯¹ªòs›6;±© Â¡ï‚³Ã4‰óùþÂÛí>‚’n™c\6/ rzÊåZÒ‡x/(æ|í­êDè–5‚>L{²`Hi7hPÙØ_謽ÛóH§4˜é󃂕øyéÉ ßM„vÿ¤õaHuxû§«½=#ܲ`u‚µ$‹¦Æž°‡Sá-85+:CcÂÖá 9/cÄKm¿L¤K"ªð×¶š›èo?pÖ ±®žjæ¤å¯™©S8°c/8VÚÇ­)Žìf~]Ês!H3Biðÿã[_ôÈ”„‚N¬¦ý´ôñð´:©q©I;]ËþÙP$é«êJ@öŽI ]É|êèA!Q¯a¨B׸³4šÐHÝ~É vœýKêˆöü¦µb2#âQn½9Ú@å—o…ût*£^¾.A¤6”yç@ÏÖ÷틤4=‘¸J»šZöú¨Qk€pé)NŒýfiÉVM²¡ü9­åråvãÓx0ÑŒŠO S9§ßú^ßxAÓÔéËYL¼ýÓCDVW÷1Ù;C jéÄ£ãv‚Q9ƒßÄÎÏ"™ƒ¼ QvºÛœ›ãÚNŸ9¾µpªcq—hÄÒ+%Ÿ +n6·L¿!~ýh¿u­~šÏâ)Û»W at °%Zq·Ç—ƒÝ-í‰Í›xUÛ}¨U'våÓXa-“×eqÚЇ´ßõì™_J*´¾¤Í#LäPã<ö›ïÂQÎJ.Ú™>ÈúB¾â$>_3B~ òΣ!¹)æïçæáµòl’p!†æŸ=»· $9øâ3½šßD×øövx²„ÆÐûÆÀåG'böª1.ò›åuª pñ¶•è„[qRø6%#Ö”v&€y<òTk¶"{ìgIðI)6#tDäF<…Ý \lM N]˜Œ½ý ïAÑÂ1–^¡¤­;–Xh°ŒL¿^a%«˜Ü䜫W]ÁÍgõ «;ü ·ÇHû 9xdk;y¾”èA³ß¸·ó9¯ð0/Ïà·¬{v¡Jg^O~ƶ•µýëâÖhÌ+êÊÿB“ˆýìæMoüü2ðCÏq³›×Àªúùi™=Y¤FwLŽb›BYŠ=Œ°ÒÓ90ò ,ÕÏxóœ¤c¾ |͘Lâ[•´õåœ^uÁ‘s¸Ã-\¾ïnˆ{«¦lmUâ‡sò[ÉGô¬nÏß1òâ½]xhœ9ÌíÂ&|æ˜N±A]¦mÑ |÷ÖÀÅ#V!Ô"-¼§›!&càÄ‹åÕÜv“ ¯¤Dê7[b]URkÔ@}ÑÇ´GpŠš´á>á•eó;‚´üaãôPùÂ¥ÁÏ d{]¸‚Ô˜}Í–nw"î å?Ø¥×—qoA®”;Ø]?N‹0ñ«[9Èîã´]N&Ïé*ºÛ±z½ßápfÂAE•»Ça w}êJíŽj>R¦Boÿa®…ªÀE,79¯BâÖœ®,…-jëAØôôÓÔoÁ_u8ü(ÆÞ[žêçó÷ž?´J6ºìge‡Í{0 Æ1–ï9Ñ;ˆèJÇ¿)åÜŠJµgS{ÃrÈPDN45ȳòaÁQßœ‚í#p_Éulˆ«kaÀ8ƒ+.\ ÿ®o§•B–æëjB‡[ÅŽ.óaÅã ¡oô½aRïQ8ÉC½ëÍÀF,<'º/žqgì/ìÒŇtYŠÉ¤˜Ðö”´ó¿•µiæ#C)‘í2¦—Ôšô­Ãb¾;xs!rZ¾Ñ©QÕ5'Åh$Âw¯=ÛŽª¾zEOùÖõù†~::»Þ© ‰ö„ª¥°¶/Õ!uÐñM†R¢Ô·µ8zI.“×-±/–ºr£ˆ•a1 s<ŸYY–}Àèñ«©Ë½"dkº{©×ˆÞwg†à¨‰–`È­Rl ág}ÆãLYV ÎÙ'ÞÒ_Ys¢¤i>†/n%äÿ0Y›~M‰µo‰PË.£pýÞ…­v’ó&Åɽ_놙»´º¨²¯aõÅú£F e32=ã[Èéfß½'Ö Õæœº±$³ŽvPìøA‡`âMDEºäˆYÂ瘳‡{<¾55R7èjDŠ!‚¦O*š}zÅ>·Ð‹wѲ«-åœm^1OFŽiãPîSLå<žÙÞQžTŠM²@ˆÛ­Pëâs%Õ;••xºÐgI(gYí©_J6¥X'ù¬¶¼QÕÃâ#+¼5å.¡ŒmúîNÞL"ï|ðfŠ>Ó² Ó œ/ ¼Ðõ#`›)nîïœlhÖ£²rb›lSËÍÅv!86ýÔišÜïà7bNŸE&²±<„'®VßÛô ÿtzfO ‚pzýµý÷ ê.K<:Oèj‡ïn«®l&½¨¤IÙ>YUåeŒ9¶"Áe5áq",°×(û®a3¨UX‚#gÐlÝ à)¶Û£ŽÚÜÆ•—ÝZMÒ+xš¯ûñvÙ«?ZÖóf°a8Ë›y¸¬Ò_”ŠÔW¥[ÎP«Üñ¹Ëj Þ/\9޹Þyëž‘·õìéòeËGÙ»Õ ch~ëjyg|¥òÐ×±Qžrç´uÅ¢½FQñÇ©“×Åb*a4²iÓTm ñ“ ßõ±ÊÜXi£ÉA­|3ƒä%ÈÈë{vö9’ª·mË]©ÒyLé r“3“ Þc5øûšñyz…m gºüvñhü #17¥~lW“×{QX« ^¢µF]YlZ<9Ç0”5«ôÒ Q0*ª Ùñ‹ ê á;f.} ¬›‚Ê )Me¨²QØú5§r#4k‹°f­bŽl}À¼ÉiÆÖ'òG³ÔQ/Bʃš3å®ãü˜Ä ”IKBÒ³ñ}ؘ3dd´n ÕÙ=ñúþFYbÜIW„?Žƒ=Fqn„/:­~.ùÆØßAõúã¿@JÌä»釬ºÝs›—…_gJc¥ýÙȉ­ ^5ºÎ‚£…y%:ߌÄ_^™ˆN*žˆåÕÊorK¨'NíE&¿[½\ P²Åв/â(4o±ž¡'¡ ϧü±¿0º´Ñ»ô^«½¿´‰UF1ìÙ&Á<Ø*-—3ä TêÒµËb¬ô¶D§Š›¥~Ý“yßš¹Í€6¿ÉÑAWo“A§H1V{ÃÚøŽßNÍ'rhÝâÁ½Ì:öÔÚ´£=@àp|˜Õ‹VÊ!y‡OI gÂLߜܘЅLŽÛ‡ÚvãŠOò¯û½9™4m3°$¥\d£a±Ì,§ •¦_ù(Ï*¯z}ØÁçG‹dª©/¬R:?…a×>âáJŒ­ºÿéŒhŽyöé7جIJ[‚£ü"UpUï[÷ªSõ¶g¥Õƒîïã0çÇèügYî?<­±9­fcÿóㄲ{«79M¨1×¡ŽŸÂò"(‹Ø¹@z›¼D±|È‹%c°4ßÂú>•ÛTÅžõzýà`8wREyÞk¤¸Ôjt_KýDpöÀàð'AªµYÔ`”þê¶€¥+æÈ”.É.acä`fÿåS·'”Àsa'µ–#þJ}íÒQèS53&ç~šÍC_à›ZLÚØ”?n1³6¹Ð1#Ô®Õç’ü08Úó ížòd3€~á64GËö6år’%¾ª§q×Ö¦GMj[‹R©ŽÄ¸˜ØQ‚FF²ËI/bÙX¾ù*_ÆK?ƒ´¿î.å ‰‘dóóÓ$¤jƾèìÎ1;Ë!Ô×ÇQÌ'Ô€9íðÝDôŒkåÐÆ²ÉM™VŸj“•¸n˹÷Š…ÚŽÚÞvÈDÏuz[ŒîCΡő3Ò}UŠžþì0ƒƒ«¥tÂñåcù¨4 —ü@Fñ²*iv¹5â îˆf“öĵý$mª fxäj»:™ÿÔóðŒ8£®î3°/„[¦t#ä™á”Û©§ wR=“`ŒûÚ­Ù›ã U±"µÈ¦™|PͺÉ+‹âóíÓK"àš`U¨ æ©m7ÜÛ Óéë §-tÄJQ’ª]L°£ÁÀ5uúêû,äÉàõló&­¨Ûhô}Ê];Ä­“¥Îï~äIÜè>ZÁí ÜRr‘š”$çžv'ØçE®VoÃcDé—Ëeç3TÕ¢Ùã}ye!5,’_™+tˆ0ØÚ и q—2ÌÈÛ—žšLŽGOù;äzÌ%·ˆêWs "T7û·G/·îûr$¼®gÄÖ¶Ù%,ì]î›êQLŒIwæíó’9F›\øï6aÚ!ˆÒ‰£E/?gýòw>x+°%3{ æ¢lJâî¿’ý:¦ò(æÐÒJž’¢ð‡Ô€%zŽä\Óg.`”ôšxÉ\dâ¨*ù‘¾÷fÖ†¦èû`ö>“NQŸ¸ýÜ •íàpôr[À‰W¥_‚ÁYõ$óHÿBÌœîGº*iK€»Záºü÷ÂFQç£gßEã ødfñ´ŒõÕç­·'­¸º!wÔÚòˆˆÍëUíþ*²±EÎON G'Y1ÈWb1_þ™÷ÆèR“±¡YŸuÍtwAò*N¢™ôwÎ,cÕ=Ã=¦.e%U—&æ¤ê_tÓ ”‹ýg{pCæö­&4^޲‘J'† ò"ð57n²ø°*^åº v~ké«r,Ù(œæ˜Y¤;¦µm;R"7Ì>¾}Ö*—wG¹,(<ÀôU‰¹`I=«BãN‘Kn×¹„î³ç½¼Ežjž×˜íZ¼Xo¹,kˆç¦z_ívè¡àÄ2Ç¥ë»5Æ…raŸ8–²¶õõ¯Î\ÍîtÃ]7_«Ugw$Ô<¯&ê Þ üxN½‰}®²ŸVüì3‰¾_ê)»£˜éÙŒ [Ÿœ‡ºxˆ°oÀp»bÊ}ÈÆYáò⥜8¾¨ýû(¨>›ÿÁ’F¦èo¼“Ý"-9ªò¡j™^G›KQ˜Õrr#X×;’ŒÌ lC 9úè¿|*9Vo.ÓöÆÒñ«‘ÂqIdyt\s&EØÄV“÷c„¤e‘ã3¾††Ô=ŽKñšÏk×¶¸ŒE)’ññ/ùMQ{¢3»ÂÖlã̳µwbIùðr–Ý•ÕÛÒ_Ú?øAƒp4¦kp¿­+Å+ªLdš@Øiï'^$ ’7­~û:²™à~µ.jX*ì½­_®š¼=^!]7V®Ô6¼Ó¯2 /ÉaÏ`SŠa>2]•1Š9ië‚c\‚´8—EK‡‡ˆOr:P|é­WcO· µôÙ“}+)C ~Ô«òìÚÖ7£jÇd.,¥ 7k‚Ñ$þ07Ê| ønØèæÞ&åÛ¡½àˆæl¶¯1µéûµ=ä…xE!"£UM«e‹y:”Þb7Ÿ#^yN$¢ÞÕW=iK“f:"¬ÁbxN¯·2A+Tô`Ñt@o“‹1þо×÷¾Ã#²‹½íÒGï Îq‘f“>æäTQ…ÞkŸTüÓÆn³üU‚믧Wk¹GBäÊ4–Ö8T_3E>µì\¬pðd{4h"¢OJM9Û‰–+4J%³Êh}¡£&Ú#>Cö•B §ÜL´cFÓØ :´ ê› `îq>Ùâ®]$Ò8ù©‰£ìe4W’]–`‡Šì;»p΢ AÝÔ°¾s¿Âu  c—GŸ*ê\Lkc‰[Î-m²Š¨eÇáÕ.ÃS‚ñFÉ »8/÷Ô·ŽÝp¿ÙÎ%¿•gÈA ¸è£˜§ 6HÀγý溔CL#­¿ãC!}&jCÚÒÈ"Û×3÷v]ņ£;.GùvÚ^ ­àp5‡«øÞ™À£·N92èéwÐ]2k›[rgÍu¾Ê¹QÉÒfCïÀÖEåòD_ek æ+ø>Ù‹€<—È—» ò9Y1¾7ò3VÉÓr0ø^ Öù;&H.™Œ>®îØdðpå}T"Œ­' ôQºêU)¶²JÜ|“î.UDY2“j|Œ~J!àÆþÞó‹rŠ_{àCâ=TæÞæ‘ š"ƒ&‹¤Bò2ÂP|ªitEvy7tfïA%;e‚~E ÚyU~Rq¿Ý^»Ú<Ó =†ŠwENæ…š2,¤Ý†ácæ*Œ¸)5ëß3¶ó_5ƒöi¿3xÙ T<(¨$I Rßj€½'ŒíóO<çÌ(7zžsc°¦½Ç/üˆµ±%¡£,OâØ×Ø,nŰ:nýí³¦^ÝR¿;èzT ÿ:Q*îÚ&ÄL§Ä„" _³4¼7h¼<ÉEµRy±U×Hv´Ôp)b}ÀŠä­ül²!ûÓ|SÏd»—m ‚1(1£KÚçK” 㥞ÐáV™¢YVJʦµÓí$išÄ¡|š%þé-ŠÊYûôFS”’HÝÍçO-¥f=¤Ÿ°XHmwãð%¼IC¥ë£RŽ2:ïÔà«ò­ŠÖ³æ6Ð,2i%ÌMŸSËG¿Ùc?–e<¤P­±/Šßé•’L»µëO´¸î¶ö áWÅ~²µ’Zù?àQÞ Ù)˜®î{v)qWˆµ)kdgµf8XÒk)ìáIYÃÖ©võuJ{°ê¬µ©úQ‰°$î|Ë;š6'#«’ñLíÀæôÂPkÐS»T;9Ó"oFunl Ðܵº˜öSáùlR—ÚÙ/LÌT¹h™lø5ÌŠì0úÙhþDzË}8¥äëO}¶+YI»–„Ü>i,¬,?~ö¯Fa¶½½»»ø}ðE䓼±ÜÏÿBÕ= endstream endobj 107 0 obj << /Length1 2256 /Length2 13568 /Length3 0 /Length 14900 /Filter /FlateDecode >> stream xÚ¶eT\ÙÖŠ×à^¸»»kpw/ ww.‚w'XÐàîîÁ-äUwßÛÉýÞûñFQUsù\{­³™Š:“˜È ( rtcbcfåH(ª+hh°±XY9˜YYÙ©¨4lÜì¿5ˆTZ@W#ÿ6.@S7°LÒÔ lªrÈ»ÛØ8lÜül<ü¬¬vVV¾ÿ‚\ø’¦6Ef€<ÈèŠH%ròv±±²vgúï_­9€‡ñow€˜ÐÅÆÜÔ hêf tg47µ¨ƒÌm€nÞÿ‚VÐÚÍ͉Ÿ…ÅÓÓ“ÙÔÁ•äb%LÇð´q³¨].@ À_´J¦ÀÉ1#R4¬m\ÿQ©ƒ,Ý´¿U@ð‚ýoV)GsÅ_›ÈÎÅ 0uq1õFd;À— ¼²@¯¿§ÀÂìr»À ý– Ä¿Ž–› À"ö—èÄ`‘úñ°X¤#‹ÜoÄ `Qøx,Jÿ"^°¥úoΠù/âã°˜þF`?³;ØÑÌÅÔh´tûCÌõñ?Cõ¯3Û?b; ÛÿØóqü+ÿ?`væÿ".pns=¸ñÿ•prþ%qpø]ß_'Âbñ/ä“¶ÙÛ›ºüa®ø»!gwð<ÿ6`°XþÁÕYý¶+­þºX€†×aý»*0{ko'k ã`™Í\—íÜc»? ˜èïz¸ÁŒìÿš¨ßzp[~Cð“…åTà§ èw1`[ð­÷‡LÀé·ìë¾vÿç@8Ùþ#ýßãà—ét_/˜rÿ-³ýn:'¸aNöîÌîÏíb7ãO-8Äï€à½aqóý¡guÿ‚›ãñóóücòÀÞ^@0ï? ˜»Ïï:Á‘|€.ÿ¤úŸ5ww“wûûq ^àÿ⿯N Ð hޏ²2³m븯#ôdÚŸäèãÖ¼}u'åDŒ³‡Üe†úª„gWNșۖ#©2f-\£­ ‘H(ÇãiÇ'ÞÉ ÷3ü-”l4Ás£ ?òxÚéKÖ>‚¤X¼ô¼c ïAÙ ²Ê[]*a‰‰·ê ì@â{½Ã#geXB’ÊÂjå£E:>œÇïʲöªü°ó#]’¬¶!‘éHòÝÍ34òzHÍgw˜ÕoMûÅQ¸ç#dÝ~˜ê–óðwMt³?Zw¾í‚ìa,ŽùDsxÍXŒ9ÃÁÒ3ø´ØZö{¼O.OùéH÷œ,íEÞÛÙn›ÙqŠ}˜<¥÷‚8ùr”‘ËÚ1SVDzábm-gø·¯öIûÒÜIFÆMøºO ©CnÛ¨ˆÃAòZ•‡ç@F¤7.ÐÊ’½s&ïLõ ‰Îý¦i?޽ÛYÄ ’ÖÐçí`k3õJÝ¥Y)\à7ïŸõ0ÔûÑ[uPãÑ8¥8ÃÆT®ãs6ÓHâ1Åa"Vÿò…R(]Ìpzò¾€äñrNžXÝM†ŠŽmsõù[ŸÛéùòÀœ,¤›^/Äk…Ø8­wŒp ’yz"ƒÈÁÃ,ŒÅ µù²>–ÅÆsô1ºNh:¯Éä«aù*ëÆm\抧óÖ)3ŽMÒùd±t-ôEþN< êgf¼7p³˜(Þ'~duU^éƒM¤¡LôÅdŸiˆÖ¢üšöÑùÐ{QQGTø ¦û£='°c±ÜX˜?Åå%ˆ=Ç̵g+$¼“§ñÍD”‰‚¸¶4VÞ^ìÈå7¬Î‰{úó½7Eü6ƒ¥ìÐ8ÔÒµ>ýFëg¶ êCœá H( ݼGó†Åpn~˜Ÿ OÙbÞÞuH2£«ë#'*ëËIå]ÔMIÓÛým+Lw®‹r+N'dÍdB—¾ óÛ†ëÀýôØR_h.<„š–³'™4~==GUC EvÔO¾°ÙéÅ0ÊYÙFaЋ´E¿Î9& ¬ÏS-m­ä„xWXÔll£êPW*³MB)R¦zðÅA³íyiùëµRg[Q¶HóKE/|IT¬+E†‹K>¤e§Ã¸õ{Tý‰9‹%Ç'´ñ(Ìë†Æ& Ö¸0>FúópRByS§‹ ¡ôÕx<(W*FXËã” Ó[Õ°«™[ÈPKH7óå¡ÝŽA.œOB/{æ [À¹ø„îϽ†˜&%U´T2Œª§øë# 96´ø£X+O=hã1Õ6C$±La-ËÎãÌꡊ{iž¸Ò-S9JM o¡H´Þf˜+½TT>s6íŸäF¥ø°p·l'h"踱@Ú.§Í®³«U|¾—­ûÁ¦ åõ/™¥^ø™Ù”L…«œtðc3ºw§Ì>bô XPùP‰ƒËæ:G *oµ4㧘I<4ô{.*â¶åT .·h ãT¬HEVŸË¾mXËKsž54iÁ8û#Ÿ¦«Þ`ä(‰·ðg-ýò"™!yùõy߇öùŽOQ¼ÀÙè­°àìöĘćçÃ[N®/^}šóÚ¯•›·¿`êY]‘¯¿~÷³wê"ŠJÆóV YûÐûÑ#­ÓCõeÌÜVš”že¬áa=^úI_?„Æ øÈÙ¨9‘–í-•YÉó„±ä‡ú rQÕ·7½‡Kn×3hFåÈXA&üp—ÔŸáÔ0T½%ªd÷=Ó¶ÈYpó+4ôÍ!:Ð-’4Ìc-Câƒ"Iò|˜+s äDå`ŒfºŒ¿”¹}&ଗédw%íxúªð"VÅ—rrÊÉ|^ZýýȼH¬—’o&O-É#&iCª³×~XåmphN^aKªõ· ñh€é7Vç [ãpüÏÂOP~8Nbì1TŽ™ªÒ4‡Úœ‰\_TÌi°ñ~Bä‘<d+DO`3¯ÕøòCT¯è–^Eá ‡“ v_®õò„ ]„P²/¿×<+IDÓÎ9Í=ŒC@|ýXÏês|Q4ãð!f¦W_ܦþ Q£ˆ¹¡õ ?¶q±ÈQœgÖƒlé±”b6Olëu.UÓÅ ¸ýszïC gÌ5æ×NvöžAÄÏDkfcOÚ¦?픣Z§Ž[PF”pý ¥ÒýROŠÆý2>J=µi¨Œ±/ÒgNŸÌ¡Ht8Qa×™M™¾à RÒ4zx=«=p Ô2b½á5ÖDoÙs­g ŒZxrw”B&‹¸jðžqÚöê•ã"g*13\õî:¦/r2\7‹_~½Šá£¨lfà€É‰jUº®ÀÂêf*Ѧ>?ÊH9[›eù±†) ú»s^¼†®ðTàÀÝÖ ˆ#\Â÷#>æÅËÁ§Ç‹ÚóºþLøgšš‚i¼w üšÑW½–ÅÁÂ'­á×¹éåÈ‹ZÅ” õhå«öÏðVdÍÔ~ b¥®Ç¦z«c{°åK nø‚«¢Y‹V?÷»\ªè|ö™ñÉ·\VžÆË  ÏèÊΉ¿&OÝ’•ªaï>2ãÓd\– &ÛéQ®„U»4"â[?JÆléX . ¼"sm—ùä§ÏºõÄð%ÂU¨>zåDj§-]£,hŒ¤ År#º*;æ˜b9W$V›;‹cΨ,.ÿ\±ÈZã8‡‡Êhˆ§NŽ”\Þ ;%ÌÌÑDuM¸ »ƒv!ê×va²5*ÐlBÐ".<—iqÅ¢ÿsêB#²ÉÿÙ áì¹ üN#ݾóä‚d"M®úZ%ï¡Þí½<¸5Î#Ò˜YõM`aÅ­­1¥nã Ä4t„¿¶g¨îÆhѵœ¸î±+‘˜E>ì!oe5úsËzÛ?W{W>÷˜¸H@}Šã¡¯Ù€®%È"9Ò®Ê@|;lþG¡/º‰#ïÞ•…×U0»#4‰ÌY/Ý·vÙUa¯òCM¤NæÏ~z\”ú&6|Ϥ"öÌØH[of}q1sdºÓÔP.ÆèâΦ™rnBÛ÷NP’e9'*;¡‡­—ñǼ¤Lq^ßë[8Ó˜Uuh“Ný¹A˜¸72Å™ˆ!'C†²êR¾W©’iV®Æ~"pšSÙۚÀÀIš»’³°¡ÁÁ‚g{W©âˆÆPøíqvYUÇ\Ñ )ý´H’!;¢6GT«ÕþèaéÊýU´Åœ”qe¦8gtêÜ$w°Þ€Â…P×"m…áZqz¿üÓ€ ’d3¾ö½«Ù3צ iÈݹcn:M¦-è»é.–-zÝJô…Êgòö˜7Boz^0£ ©™ƒÍG^ÌnK݈ÛbûBMÃßm2$òWàHŸœ­%CîñÙ‹ªÄ ¼7ûHÃýy«$b&5;M«—À8× Ò…äGšúWàÍ«»œ0lëd,y«”Åf‘==¼¹Éláhüý8T=Ò±Ùzmfzÿ¼ìä—JY’È”S‚÷Xi»ŒaeþnC,[ë>ßã\e=Èòit=¹BÍW|M7é,:x.·9(Ú¯l%_Ñ÷$# )¼± wÂ`¦CÌÊà‡7¤2ïœ~n÷qbø)"3W)©ÝÛ°£Tó_W Ú6]h”¿¿à¨’vš¿(Meÿ:>òÝžën"Ì€›¥#z[¨j&Å(‡ ÃÁáç”Íȹ+¢QõÑ86ÂyúJ8» í»¡I|Sãòî+@sØ:?-Àë9eâãB8Eu‰ÀûÝ›TµÌàì¬i*o¼ÏxžÏ*ïß¶e~ÄWh÷™mBEæqKZs{2Îìõê”ÛGJåM* JBRǽõÌ„áépß«? þD-·»¾'·õÉ÷ŒjŽaÍüâq4oò‹´´W\tÒóˆ+T (;ÿ¸ÍD›/­ôhYÿ=Û7.VÙ”/a!?PNL0på¾K,î „‡ÞóŸ‹–_zº¯R¬ïutZÞäúøŽ÷~–V«ÃdONœÇjY½^ #´×¢Àé v ¹£#Ýp Gjçj.œéÝür„Õ8¥ÈU  Çð×/!j½tڜÆÕ.·¤”sDwj(më!…u[Ë1Žñp¬§.à… ½Ú¼‰ än\]N‘›Zê?ÜV¡œK#§: ý r™ZE˜1ñ¬wº,êShjÑÕf9V~YÎ>¬Õ¹íÿ]Ù{9N?Ðeß¼|»TDöõ+’ s†0*’ã×[~ÛÝtÓg]Û¤óýÂ"€¸ É'-÷`éeËÅš,Ñè£õ;Œ·½VìÁƒ=xØ‹þ¤Zk² uáwÍ{€¨S‚8„/.—o'6®[ “¯©[@í÷î6«SGµ-X<Y[• Ü1ºß›!÷“98€Doú;#H*“‰¶­õ‹'°úع7Z7S'/¡tÍb™V2°[ì\Î}+õÌØ¦ãD„uOZ ezÂ×W3~iæÁöZ̽n8ÔoOºþ•û ˶°¸>‚'è%0Ç”¼¥Ϭ}jTØñ#ø‰òì%*AØ… ÕcvTPãåî|“ýˤDù‘Dx+}€Â£zìà(×£Õ_,´L›À1³Ñ¨¦m⨽¿êþŒ&ã~A~ºKºº‚(H»]!Uf‰¼´%Pk½•¦ <.ŽqßÞP‹ÿÐ* Ù¦zvyâYr¸îXƒŠ[táÒ&ouC¯Sû.B ï~ò5 ×¹äs¾ŽTaÀö<¡p["6È^öžÀv¨}¥_$7Ì?íÕbÃl&ä2õ¡'ÙÈK) σÑ„ïòÚØ˜oé¼ |ø[*Ñà7·2–kWòÙöʨ¯óùÉd &½z\Þ#ÔËBÅ[(wq÷"×böî™[É•$õŸã\œiU» †{B¹ü0ßÜf—"é™äâ•tË“3í`ª‚L`ö)6Œ¯†úÚ^kéñˆ–B3˜$—g¶æ”eÆ…25)`–'a¢ÎßZðµ6&ö™ˆºéíä¢Ä´tëÆã7¼ð|x(€Îjáè<Ÿa!ɆiÄ}«²×ë&6Ý âäÊ•;MFÜçfNõþa4là³Zi}xLÁÊÙ1¢•_Á‡FïÅRš:8È-l›ÕS _ÆûHu˜n2¾•eø7°U9Çž¾Ø-+øß”8OX¸ÿµ "™ôÛ¸Í×i‰øÅâ£(÷17gwnØ#llDsUÔ}“? 3qÙ¶tÇ€ˆrNÂlýÖŒ?vÌ+‰<³=}Ԥ듧TR* êü‰ä÷Lp¨¶î´´ÚkZѸàpÃÃJ „O‹ø­¸ÃTBêÃG™Ñ]Òýz€ ¯ˆ_¸a‹¼§õ^v虾qÇÉÛÖÓtõEíâPLuf²ôøzM%‡Ü-ÙSï'‘xי˾q>¼ðf,Ì÷öeØ”où Š\ç5̱[a²PÂÉcêœôµ“ª+P”ýA¥ÏÇ$l)Oì1'û9¯®XDl‹âFeH{AŸÎ/×ôíss*/»;4MÌeK1_N’vD~ÀŠ®ª…’0W/ÛÇM¾W³h¤[ø(·€TâpVâÅÍ÷Áy®%Ô¯Ž¸OßkÚº¸šÏ•Úòåaf—ÉZ+NS¶NëffHí/ÞCb7ˆužJS%.[?¤l®»&ïÃ×Êšv^)éÎ…íÃP‡š@ùÒáOˆ¹¤8ׯõ„;7îSÕ¯„¿8ÉßmñUBÑU}¬úz¼zä%¨Ûµƒp&w›ÎqôY.¯Å‰Ü’1ºÈ3â…ÉC$Í g’Ja°'“»%àªí!<ž,ž4ñìˆßá22 |òäz™†Ùª‹ªÚ·^w“ßfL{³«vî×.´G0|?XyòTföûìOɀ䂥ë'è§’™‘8W‡µ6¢Ñ4í5Ò$È<ç@8x² ûuǽ>›¼¹l¢?@¥“D*T¿ôÁ%𸸛–™è<ߺÅϸò‚dÏ¿Åϧ³Nœp#Lþ8ðNV¨œ‚(⠘п'õðœ_î\׺Ò²T[‰ö¾Ãù&êDÚ.T‹_ØZ[eÂôCÚÍüdÑÉõÓ 5|ÓB'§ån[Éêb¦—yu¤áÜö±HÕÔD=H;“ÈÊy0cOú}€q¡;‡O¿àË]ö2V®”çX¢zRu ºz1@Œî«TcpŠX ZË©2¾–ŒC§Ï Y‡%¸«7:í`µ:’Ï—Wú“ÿãÀzÂ2[—ÑH´Ç`ð7gÍñ\ðÛee¨êÁ„P‘çUÈ ­¦ÃnL¼h¸.7žÏ^¼tÏÔg\ܨ‘¸8$"m䯕ÄäžØÛbŒÐ&µrõ?WµöˆXIìf ‰á¤­ÒïeÂUÅ‘@]Ï–û"Ô%i÷Ò †2Õl*†¤W‹ã(¶TWv­€dšF S"¬Z "ÅÔcÿö•êz)†/µH³( ¥Q^œ4ùƒ*nvª:¸z_&8¸>p¬Å§ÌdDþìò®Óww;Rnňw=ÚbåR´Ûí:\tŠ’€ ïì¼Y|™À³_P«r!~Õ7g=/wT•^Ö£1Xðž ‚ßùF+4kÍMCå§ÚÀ×ùåµ8Àñy4ƒ0Ô›«öBƒsÊU]ôÞ¹H(t’%¬÷:wÆÚv\fv;F’À'ªKœ§‹ô²´Xu5lÁ˜ûO¨»b²ýUGÏmÖç Ï4i(Z& Õ[vÆœ„ùÝ V~<;IQ˜ û}ü}ä䟡Â9Ú„Íé¶c>–ë>SÏO)ß^™p,)â]™l„¯bU m™Ï QÔ{Eb/#?JÓ íw ÍÑžyä½SàK®…?®)È¡¿g«ËÞõ­s†0ìA 1¾bˆgÞ៨"{F„»²„/ÂââB@ó)îAxB^Ø@¹VßCäMކº`àhTMæœÀ·2«÷…J¨T_¼dCtœ~ÔB@þU.qWµz5 ­ô°&yÀ?lª9t'½N¤´ZóätâÀ]“š5¡ùxaø=z¸µ¶#6+‘óÔ;u•ßaZ€2>À²c/¹4Ý0yÚņ#P¦&jÓ!âé^Ï}fõ5lZ[N5BÖæÅܤ‚ÚÇÝ¿ú‹ÁK¨Ü€±÷»43Ƈ Ì±àª kúØaþÅ,iø¼tÍÀ,Ñn¡•j¦¬I/BX—ÃOm°t0H mäËâ¼Ú±D ¨AЀĘ́Sø‡2V¡ê÷›ß£6óc©Hßï ÷ Ê¢ÖÿÒã¦Ä×è¶ =úrÖ™zÍãÇj™!~ÍMÿÖÛ–•p¿p $qº6Ì@èFÏâ¶M¼9›ôe^–˜†p£e’·>˜4*«²©î¶>Âål.·qP!ÛEb„çH]4—êv¼€—5KËO,ûkedµ)лƒÛþPD¸´è}wY^«­/3˜V%)÷þœ1ã?ƒ¦Pá÷6šÅWJ¸-±ÈX¢RïŸòq¦^ïƒÞ—êWZÑ7zBv‰Nœ…Ààô£‹î¡ÂêÑJñ {²ÁTóyR7÷b–½«¤ßßo&UsL&$;…? ^"FSy[“z‘äŸSÿÒ^3ʵÿ>êÓN¶“8ª@ Š õ±ñz*j¬9Ý&•ÍDÿ]ztr¼:¨' NŒÏÓiNô’û-²-ܬÔêŒÔâ”.29˜G¢3aµ¦ÏJ ýŽzv;èoM ±;"#푚P`I ò1ôMðì‘bÙÛŠUbUJË ÷×û™BüÞô0ݺM/O±RÎó]B/ CÕ­Ëd’wJdoŒ+ûÂc&Ç |V…h”Ÿ8š’ŠÙLfwÂfüê)OL-gþ½}Õ&fANÿ«¼=Ê`ì-í²·¸?O¤DÜù{Iu« /èŸAÉyo¹¤âêäš_Ý?G= WZiU!?!µ}0+*Þ±]#‹3±4…Ì »ªÃY4x\L’„Œ¡‚CËw7Á´ÊÐÓ ^îx0¢žWWÔƒúvk÷Ù¤WD\"œi!g\ŽÛævœ>ìÙÒ·«ÆâÃǤ3bnG(iY)Ð9M)BFKÁÕUÄ5%þ3P”®« ©¾h_ÏÙptßà»25Ç~ä«ÄW¦Ç¶Zli­!öIþ×­9’ës^}ª¼óÇoWd„­3©å]¸XM ¶&]õô¸IXˆ+7è[bK ÏUÚ2*ÈÌŽ+ìJÌÓË/80Nê2˜ÒŒ?¯ ÖüIK“V°÷ý%+n19¦ƒìÌKyΠS_#Ô­Rʉ_ãÒcàëÛSæ¸ótÎ Bsu]±«Qº;%Ç÷Õ@jLd®šõ‡ì mD°úIϨ»º'8+D¹ˆØÚXš« xÞ;­_ttÞÖ¼y£þëÕ?ÜG©PeXì]d-¼\D(ž’7ª0óx“S™õDVÞ¼.u PÒãheÑü,ÝCô=(ú{Ñ–kʃôo¿KºIß‘§-(H×bs–èMâÛZ‡I¤ùcûá «dZ`WÞª@÷Yt¸Jiû:zFø Â"Û7È%zšpDžxÚJ ð~¥kˆº’ŽHWÝ,äâ«,´’Ä´ÓqRC‰Cë3±~‡5$Œrä¶Íºh]º‹­’$÷ë ŠÈ$JGPñm÷çVTc»÷îLW4päP YëÓÂïÏ}⎲Ð|jBàv¡gžÆuXæe‰´ÇØ×ª^¡P”Øôз®ûõµ `¶#ÐâÐØ(òŒéÎ×>’W²ç—:Gu¼¢ÕD¥.dÔ1oõndcå¬[ó§,“7n[Ô£¾ùmrçöOÀ2½ÆTß̵v,mÚ1w@z¬ÛRŽtGßåÖKôOhõž2\)Üu¾oºd3q&Ff–‰¸„Ϋ¿y—Tb%ËÒ¥õßÿP*ÑKIï<)5§ˆ=¼ýžQ ¦F§Xµ/ûõp%e!e–!^w³èW˜\‡E0„é®2eC8Õ•^ü‚ýñhpH‚4J”8ÃÏéècPð•™´‚ă¹<Þ¨f­íÄUãó@2ŠU%’d8d{ë;æz(<±ž®"E5t¦ØNŸtòá‡wrO£À{B’$Ö¢4φ!¸bãŠ\¿lœHâç‰{/Œv|–eIy={ßÀ.‰rPžÊXùèäKv†BX~š,Œ!QýJi®çÈ }E¸P.rõœ{bA †¿lvE³r®ÉSÚhù]&+Qbs‚_¯`y‡ñò±¹ ŠÑ€ñØ÷Lã2ˆš°SëW«™>iž$8üKýE†ãát·º} ÞÊ‘—:u¡¤‚1%ö®t>rF”0fâ…'kÈ1UΦ¼Q1÷ÌÞl…N†JÍ~5Ø´%­_¦¸œX­xJ_ÎnUxûc°º#áŸpÂ…õ'D‹®åÉ  .@÷ñFÍWI´MIm¢|>ZZš7¿ÎÖõ"!‰nó<§ßÁçÞÒùÌø¿è¼›˜­)—3Z®¥¦ÀngH{↿ææmÑ‘´ï…šlœ’¢˜ÊN}®‹ÁÅ1ñGq§ë¸Ö;X~ç(J6¯þ×tµf/9‹¡zõ,¢%ðGîÅŒºÝMƒÃ?çi³BK{ƒ’yW&ï›ÎÖ ÈgeNÐÕ|®â}óè//ê{4/­<¢,«zQ¡ö”}AþpÅÉt€hú ª¥ÊîÙ}5TômÀ‹! ¢v}’ä;ó9v¨c2Ît‰YÊ3;뤪]Ò;ì Ór¾Á;¼¶/Z¼XœDœÑXuPYš‚ÚÉäWq]B²ë¿ QÐ’G£°hQÜ+@Œ¿(²c<1ªy­íÑÂI™mÐÈiXÆ##mLt„¹=°‚¶Ì÷³áZ¿ ÆíjÂÕ]!¤ }h³®•0¿Ú•ö˜²Þ7±Æz¹EK´’ziHYÐ%<1_»=ÓSô2Ìà8qïE|‡‰¸ßüÒÀJòÓ- ½¤¨Ï0KÁ)nÛöÀç+¬˜¥Nuû­‘:ºÑCC]bc«oòwÓ²Vn®56î~Í;x9Õy8­Jz·êŸœÉpu¯Á bFŸæ‡AƒòÇe#‹âb¯I^Æúˆ„ìc^Gkg¼1¦lDnõÑ"#¹zÌñ³ØÀ&’¤AÖ'ϯLÛ¸ÈzL˜I5w=áÂ@ñôÍå )DK…©ÑUé¸H•ª ^R‘ÉR»Þ5ïsÇ®G¡8f‘Åy•1ûæµÒ®®t¬Ù3ÞPQG º:w¨ÿá6¬i&åÄ«DÒ˜É(*²Ÿ{#Ž!yH„âZßSkÉ ¶.3Æ¿X~ë‘©%"+E†í˜'ÎÆí5Õw‰¹àζ{a¸KÝ0Óg6f¹cqȈ•KuŠpªÎÿ&Þr¸û\øP¦ýx–þ…ÊY? pŒõ éŠÂÌI’-¡Ì·Ül¦ixa_k@ˆ«· ?¨bîGÚAncÅñ[­¥ëRÈ@£xP+•ïåÝímæh&—)òC4nï÷Df´ƒ¥³Ñµ×aƒô¢_”—|ð]”¥æ=¦Ÿ[KK3c€é„&º}No/¿nÆúƒ’N®9êTŒ™Õ8QÚl+tY‘­ùŠÛî7ç|eݾ‡åÝç–»¬_4lRS¡¶Gü´FâÃR™ðz©‘T!Ùn± x½\F3²KÔb¾­|yQÕ}Ž3¢ß)}£úšc=‰M gZ:lJ©ÿj›™•esÓ±4@a15ƒà¾Õ¨ou™¼G4ù{^6 ?}E6‚Fë”åíTþz¯âªìV٠Ň÷ÄF¢»<îí…øó>&Qš§sp™μ+é„E•œ[÷á•þ i@BK<ýkr W—ÊPÕ#dVAÌP(G ¹N§o…Yã>´‹ç ïÊo$ÙøKÏßÙ|8¼§.â°1þ9æ¿!E6æI#]Hu®´³bN¼:LPDI vvå_íÑ&6ÅXÖ¹¥‚œ¾wÅ.,ÆÉû$Ä,9Ð-ÈÈ8Àq¦KÍ=A„³ß(D}’ÏÓP*ñL¬$>ã–Ýß·Úú˜ãÑZb¨í̀ƳÑñ‰”Š+RÝY8÷j»ý!Eý£|Ⱦ².æûcrø¯Q'Âc¤ä4cŸ@¼'†(‘éfxT‚ÐÊÏ&w²í8’˜}q¥¢85gÚ‹Í«òááp³cjO ü‡¦ìEe±[7ê?7šx7§ï¶ÛQg)Uü©§nK/I†*Vû`}UŸ>&ºeØ‘è`gTJ¿u_Eo›™N>87OÖꉙ6Ñ/Â×–ÿ¸,Wí«ø#Ô¨‹°J‡O&6ZÛ¦s¥T`@·Ð÷ë¦&êïȾN¥ëQÅE»Þ $šØÆ9Kèêµf¹Å€^²¤-¾KX48=w4„Mü‰Ì õh¸Šdyøîë÷YX³Jx˜¬XÛåÒVsýhQòŠÖ/&z­Bî QŦ:âѤ*¥ä’}JFï8¤½e‚?J`ˆ¾ ˜Ý• ä8)Û7Ö*RXØ]5/ýøþÁbŸ=ã‚·B¸­œÞŠN ³Läöˈc»4«ƒœ Þy˜²-Z%,ŽûàM«·¢h)}Š;ô*º‰WÍ;Ò> ¢7í§Ãh´ÍRŠ8Õ V 9Ò€ç Иܛ¼®–oåðE=¯púfvôu~˜Qìq4š¿Š=w òžY6’hð)§e•Í´•{ó-NÄKŽpœ&7ÙbÂUW¨TUáýÜ(û—’ RÈÚ^«¢G¢<ú6•] ‘…ŠºSÕÍ9ä¯y>Ø»LÚ\?¸—X3S˜!Žp||€5îoøž5öù§ÓS à¶ý²±ƒ´<=¬üšò ÁÚÕ$bRÒ™7GA _©÷.4àFœ@‚—}'ñÕuÐ’Z»Þõå*l<]òJ“YÙzù/q64ÙžÜ#FcLjg .ÃË÷dåÝÒœr—h5×ÈYNS· ŸwÑò§ÔP|TqÚe¢r]Þd2ñ{(önY^æjÚÎÕ|SÇ®/CD»_SjQâ‘\ïôšÑå{DêÐ}ƒ§½)Fø£­¬A˜Š+ÚªVÊiPä,Én@ÿÍF~¸ˆ G¯qWUJ+‘eýKûàâæù\VßÍclˆè#Á<@zw#ð1pÆÿeá¹–_ï!©ç+çEæÝOÌB+ ²|xÞÊfÁG l}ë0r¾e› v0¼‡|±5ÇG£.??m»¯³i ±@<÷°m~±ÞÂÜf/7î„GcŒóýÝ ðG—è[MZšÄ%«UÇ'ö|›/×JÃÃÖù³>‘!¼g«?<†ëØ“²’Џ”z¡­’xƳë­ÕÁ>¼ŒŠ±D?Z¥ÂUô']Ç›†“üTyž-AøCq(´wCš´ƒËþ¤.;øˆ*'\eÆs„šˆð‚˜ å¾…¶ ½´éJ‰¸±(â¯+ Œ…Œ˜àÏÔÕÖé ÝsËBêÔön£1»lr¾ð‹²ÜÔS:ÍjÌ­ùøŒ›Ïlçì‡koÙ,d:Ò„ÝÑäÛ0[ÞxY …#n¡Ñ c‡Cj¼ï~:¿ùR=xpÙÖ—ž@p5A¯ðuZÔ™X$Røä6• Þh¥4eåQƒ>¥¹‹äcF½’a"g®™m€Kæ#ÊÒÃ,ý·ˆõL™5?ê¼g€+¯‡vmá>½žœ‡)ŸªRZCß‘p—d“h…O,‡Žú‹Þ1ŽBX§ýTõçvixlÌ0äº]Í:(íMg"°;ç…)V9âS D’„[»g!‚W*†d`=Št ^Ço^ëažØ»¨ÂY|L^ÌKêøïLEصÅSSÐÅ¢‚ŸÏw÷:!ƒ¨çGÙÖë"ÉÖDìíÛßávôd^¾\òDÒ9ážÙ¯üèô…Wu¥mÕ/xXÒ©Ëçó°„À= UláÙr¶´½ú"h¤_¶àô# èY“Ã/gCjÈMRÑ«1™á$ g/Z·§òkô„sZà—IÁ_ì †èe7£ÆÁkýGF—Z&C‹,ærüo†‚4¥I|ªáT3FJŒÎãàcÂDÏÉFX0˜`­?Ù2Ò¤éSföö?Zz ›ºeôÆ/ú•}s„é9à1î-0VË)'µ¾O–\ÄBݎƱ=¯(ï×4?.ºøV6¢%±­‹JF-2*õÑÿ Kv ~Ôñj¸;:m Ë8^ìºä%$(=ÖŽš*“IùSöÐ …©&âÞ§þïºY_¹ô2à‘ƒ^0S¸È£'¶t»dy3Š-hzdC“C]œ 0fö›ƒ[;©²ºxt›ŽzpIrRöxã§H+Eó2ÃFlÕ×ÏÅX¡­¯ƒYžµ…ÌÖ–ý‰f+¦â’_;a.òuí€,,ÍðîrÄ…÷v"Ð-”$g“åm2L,Óž8+¸{é*gI”4—Ëâ¬ýÄQ¯ùã{Ì¥·²et¯ééÃUãl¨–-5;¬ï¨äܳ|ïø=kb®4$V‘‘Qê°§#èb†A°˜Ëh¤ÞÿiÖ8°m•ÑìËžh RJαåàðÈyR·|zªiËÏfѸôy|ÞÆ¯’p¢íåbmMåãΪ”¯‹oÈpĈò¸ÜÖ³"±:¬ºDIT Gl&“³VA_QzdîrÝŒ¬Ç"º’ßÛp'À/§]ŸGM·)¯y—¨,­œð!4Úvüö?r¤Õõ*Ì:Æ¥T #º¹_;ý¥CÝ·ì©­äж] ÚØýââ×d‡4§ã×»¶{’,¹7 •¨ýb¤dû°Šh„óh¨cŽ¿W ¾i ÀšòvÇd‚ÆwêY…èpv ¾¨e TðdSBa#wE„„™Ôé¡YÖ÷2g¯‹ø¹^¹M› ØàõZ<Ÿ¯G®ñ¿ù²U‚L·rÆSYÆFº!œsûA˜½,ŒM*4F–’Ã*äûã’ÌsÒK³ 4é‰Ñ5ØaÐ&/= ÙjÍúi9a8rB(KXa‰kL˜š*{v~t:-ŒÜs^v4A'dH/Õˆeµ»ç€w«Ý»yvŽ•kQ@}@À¬Ž››&ÜùkÅ…¥¢õœžõŒÙŽB•ÝdácôÐ ³ÄŽ÷û°7ìâ¢Óß¿Á.Ï2¨(À_2J¼$'ZŸìF •á>•„\ÝvLBWª”" ‡úzè@µÄtì8n\WèXÒ‡kX7ÂmH¥Èsb“\¢¯Dzº¶È)f|©¡¡Çc|ï@>þö›Ü*›ˆÏbƇ¯×Ìyô?R t”‚6œ£. †+‰@‹ÞN8>HŸ½¨íB_ÌÛTõ–¯¢®çŽÓÂnâÚàpÑâEPŽB¿¾jÁŽ‘xB­ck™rQ´z×M¶_“ß#jvj'­Ûö{öààÍR6 ÅàѼ¯ ¤æ€´dÉdp­ Ã’±6žñhöyãB¬a~<Ñaêv‡sW´ ìÑ¡¡DBDÙ;{ú‡ld¨‹|r§/Xúé(ôüò9£”맪ƒ¬Ãéô ?ùû‹àqJ9-¢™Ï™›[à«!$Ð"Ò%SW‡³iv8vs@kðÄÿË@x64c®r;JÕˆ€´ƒ^\2§ÒàRd&¡:ÏÕB{©?M¡WVsVbœržÉ#{<6Y‹KV®ÙzYp÷ÄÍ®CÈÃYL@up~n‚źåMë°NPÎÎuþLÝ–²Î[v˜ÝW;!ÕÈÛª†œ6bÃ}k‹û^˜Ù*r!·|_ƒ½~1’¼u¸Šùfµ-¼p½ü‹èò>“LÔ˜ë^£D5iS¼ü„ÅÛg tÍ¥s®ÐëZéáâ»|ÏaM¨ úW ï°Š^—ÜgrøqÝ0UFzöýšÕÂjêët˜q¡{–΃fPµÛ~ÿÃky¶9®ÔÀýç.|}_3ȹHÕH‚”©ü`¹Ó_‰“F/ï½Òð½ÒÝ|ªí†,59eÛM9‚ƒ/d—k(wˆÊtrl@©J(eÏš-‹ý §ã/ IvClÒi¾àBK¤¦SöñâioÇì0@²mI=çÎZ‚5šñÉZLÝLÆ@ÃÉÒ6d½` #^qä!G¥6k_ÿAÝe.Ê™Êá©=['¬Ͷ¡¹Ã,6¢‡¦x>~Ã'ÈÚÃÌ篓‘Â+Öã^&§ïÙ`ZµnH„™ßðOU}Wù ’óä­N§ø2é_(zy-_“”^Š™›öØÆ ú(:©7#Q‡e/‘àéÞå|¾¸wñ„¸mô‰`~ã(ü*@€d#—q?Z8’y‘1*Œ®lq1±aº2:$ûXüddP¾=¢ú¾YîÑ%jÑ(KK–ÒTyÀßEÖ9º³^Ž%rÑôÖšK‹*;^Á:¯ÙSö•b<Jî¡a;ÿµ8+_+¯–E΀è8Œ ©pEñÉ”4ò,ׄ°‘ªµ¿Ú$Ç€òÕ¥µm}Bd¸‘Ogç;>Åk´É½³>«¼’z“˜Ä¶USrpxû^Ò```\ŒŽ+Ò»"º¯åŒõ«úó¿>Ìw°¾û¹9/ endstream endobj 109 0 obj << /Length1 1547 /Length2 7891 /Length3 0 /Length 8915 /Filter /FlateDecode >> stream xÚ·T”[6 HI7‚ÄÐ C7Hwƒ”€3À3À Ý)´ RÒ% ¢€ÒÝHI+- žxÏyßÿ_ëûÖ¬5ó\wîkïëÞÏ]90Ü¢ ‡!yøy-C5~(È  à°°B‘N¿í8,O!n(&ñ¯7yoS!ïµà0€º»€_À/"Á/*€@ñ¿ánE Ðâ¨Ãa‹ÜÅÛ jg¼ïó÷#€Ý†À/..ÊýG:@ÎâµÁZ ¤=Äù¾£ È `·BÞÿU‚]ʉt‘àãóôôä9#xánv2ÜO(Ò A@Ü< `ÀoÊm3ä/j¼8,C{(âO‡Üé rƒî NP qŸâCÜ÷ÝjšìÏ`Í?¸m€Ÿ—ÿ?åþÊþ] û#dcwvÁ¼¡0;€-Ô ÐQÖäEz!¹ øw È ¿Ïy€ N ëû€?–(Ëé@÷ ÿ⇰qƒº ¼¨ÓoŽ|¿ËÜo³ ¬wv†ÀœßëS„ºAlî÷Ý›ï¯Ãu„Á=a¾#[( lû›ØÝ…Ïuu‡¨)þsoÂùÇfA„@ ˜€8â €xÙØóýn`èíùÃÉÿÛ|ÏÁß×î°½§ñ‡ÚBîp| éæñ÷ý·ã¿?? µA¬!vPÎ?ÕïÍÛ?ñýù»A½æÀ{ùñ€¿?ÿy²¸Wsòþ'ü#æÓ5Ð5z*Ïõåÿ8ååá^_A€0?€Ÿ(üÿ»ÎvàoöXuAпVü§¢Ìÿ“ÄýîýMÄã/e°ÿ56€ÿî  ¿×3ÀþüŸ…6÷_üÿÏCðGÊÿŸöWù¿ÊÿW¤ìîäô‡ŸýÏ€ÿä uòþ+â^ÏîÈûÙЂßOìC!´ uwþ_¯t?#r0»{óð ñ…þ´CÊP/XŠ´±ÿSKÆ}'( ¢ G@ß;÷Y@àÿøîGÏÆñþnAÜÙ.Èýdýw_%˜ ü{„E 777ð^gÂÂ_þûYC¼þ8€GÞ§î9úlán8¿V\Àúmú‰ølþƒøïåÈùðÙý øìÿ…|ÐÁûÂŽÿ@~ €ö/xŒøð!ÿïsÝÿ€ÿÅÕÆÝÍíþ:øC”÷ñ7þãî@¼ 68³SpÉ0‡š°Öó*¹Çž<߇„ð{Ž¢O°×•¨<6õB¤.Žócfä:'6b.–IvŠïM(€Ž–ßü2b$(fëZ1l­×¸ýFH¤/wšîfÏa`;Šýú}ž'OÆ9(¹]¿Ofm«H±~¨8+·ßÇbkØãÅCŠ‹Áz$&&ˆ‡Ö&—ÕV!_-7>Ѯƌ8z2ô#™Vyû"ãs¿€ðjÏ\)7*t%ãñξ‹ÆIÖŽÌ«­"ÔÏGã,ë•]½d9i f·F H}Ð×OàÕL·ìx¬«½ qQãŠÝL?L:7)¬å¶sT »œHñ]°y'׌å™i1ì¿¶;@)Ó˜ª²ÇÌÈjÜ]ElssrªÎ}Ó)}ÝvƧݴ$;½äÔ7‘ Ñu(w羸ßè¼Íþ0}-jG¬£žÌ&â—┕Êh‡bæÙa‘<;üޱ¢O yŠ™A›1™æi“íqó†NÜ¹ß åã\ ”—×£‰_)`å«•ŒÉÚ¿B g”¥¥^oÙmÏI>Ì«3TmÛÓÁz*½à;îü„áÝL¾z8óŽ“Q_MQrc ucëö»Ñä@’zFLF’* †Ð+,›Çzïµh\%؃µÆt¦8ý˜±©hK¼¨b{åDÝ1½Ø{[ÊÕn ÂvTüòÔ¨PcëM$ìÒ™&”vK¿ÁÎ!g\þ8 9\à§?o“_ÂJyÛrÍG+{è…–Ô¬&&¤ºí¶…önaèðõ‚—rO jœ?¥ì­dÕľñlÍzg„M›-CDÌGýÿ[bN¨áb˜C>ã™ú u®{• …A±yñ›ï•‚–*±¾mÙmØÆ1ZãÞE^ ìµ_~Y'§7þY}áXGϤ¦w!þfü¸äç›Z¯e—bª/¦xê-É©êÍ”¨:$W ý¿Ø7w±´Èƒ@ŠÓ. E¤qºXÒ~L¶³šëO¥n¨Ô™àGDf;§¼(ÌF¥!ìDÅ&Ò/¨›Tx¤&4-ÞÂ…‘uÙ5&7"¨· õ8ÅÇL}R±ÅSÎf—ü!2Ü£&ý…ÇîïØ–eGÔÒ÷ªë1A#Iü,9BI¬týÌ­?aú|Y“ô$Ÿ)gå*¨ YyJÞÛ-ÐôbY=;˜í¶ªlL,kÇÎ jsr;ñžþ¢dJÃ/Éo‘D•N:Ѩe?Œi™ûµ “:‡`!cÞ ¡yó ­ŽI–š—ë1­ÍÚ“0Û8´ïâ§Q;µ:ëÀæl ,kòÆ“›pu#L¢+Ù¢2eˆ( sÌÃ…Vb´‘C!}Q0k\‰´µƒ2ÅÝs±Š<-\%ÅïB¨–Àka!¬¼ÐÇB®…Ńkjt½aåqu’9fæ1]¯ 7Ôœñj|‰g'̵~ur=âTýŒr1Åh[I®nã~÷ÿõ{1bœÍÑ଻ñG!_,\z È—¢×Z(åi¿Z Q½ÀyhMK“nH§HÌ¿;Œö™àªÄ{)ÂýÝüÆš5ô¶ŽÀ«íOFÝq³ê;‹•j±Ê‘=>ËšPÄ·ºejœÅX=‡"Óùqþn邊ÌÈЯEªf… Ÿ1^Óxêô…æ+¢g¬Í†‰g($3ˆÅXì4ØqÛ<’›ýH“_–Mø9ö¦¥Ý¡ëBV2¸Ní=e®œJñËUSÝ ò/E³wMÝ[òG«õ Qcñ¹•ŠjJßönŒihçTs BåX!!%¸è¸eMݼp/¼•n¦>VTƒf{EÆã2aßpuO̯â(I_^i‰¨ÙJ ¹ä„°íËÆr#(Þ¹ô‹_7¼Á«Sžûw"¸hRÁQä°‹5²Ù§ã#\A;_"cÓßω%žTé㮹¡U;#Ü i B(@“d»—êkÃÔ ¨Ww¯bSĉÞ«ÖDq”ª Ê ÚHI:Ò¯ž]3¾î9h$Ç©aÈDoA7–-õ55s“©·è‘NµŸo©Ï¦ªdêX˜®Oêß×.>é•£²sl:2°Ü2 çÖxµ¢oaÇ›Óíàáv½•Á–çƒÙeÖ©–0ó³)£³0Hy´9÷£Ák†‘Z–?‡rÃi%Ôfs¬ ,f­·ÉëV=ZúXe@ß §NÓ{Ø%å_ûwá´N-t,¾Ã >ðu'wÚq(lïaÁÆínÔ“-9)’$éFU·hü, à RÚ+!hay°aTGjۧЈô/·x&å/†ÌẨ¨èêHy”äMó]¦©q ’ã½N¡„tÿ6“¦$è÷fL M5?òjÄU€a7…,wÔgL\ç}O?—{l—‹z=?ŸÓ8öb}ÔO…„Ç_(QJª-? òy²A·7O¡ßÐT(·V>µÞÆ”“R:`Lò“ZpeØ?F¨•2¹ŠÛ!Ê€<žÊ¾¹chÖží/±Ð–¹çqÑ—ÍP™B×gÅwuWˆÓŒÇv¸Ü¦C§C7&+(Ô#GÓvpýÏ€DTµ/P—âV!+œ_r»"Ÿ‚¬ªI¾£.ʳ:×<5:­™—V/Ê$‹oòqDâ‰Æ¢OŸ À¢ø´¹ÜÉÙV¬Cݘ '…0E+yç'HŸÅU¨Õíe–82õB'ªÌ-«ô]áͼ$ÀŸÃÔ*R¥¡^ûœº9?‘rZ»Og´wåB=t¹à+ìXXµ6¶˜syN_âòþ.ðQÄÍâ]Æ80nGËGÈ{{ÌÎu´º+Ÿ©hKòM8 h ¥BÙãNþyª* pþõ¯š>ß{³ýÖ ¸¼¬1BÖÔœÁ\‰éd¹±DÊÚm=QF…y XÎ8µw§•d lT{d× _XÇŸgD¿0Áí}š„{tÜOéøÞ™u9z#¨Q~-öInÐÐðëAÖ)ãáDj>!\SK«˜n¢Ž¼ç0´ö™5˜~š’Uœ“-‘òÞ™)¬ÖèÆâ":Žy”ºà߯â×i¤·^p•âf6É·Í]ÖÍ„¡ýŽmmAõã|ï …øi­0Ž‚_ß~>E«Ñe°}q\êöå•ã4øÀ–^ûåÏ©Ýggð~ž4‘õµ¯Å'LúžÏèÑz_ךּî_ÒƒW®Î"88Ê,öͪPÄ“k “>—ÎÌI¾ÍQÌ]Î „‡„JG3é÷¼2þTpÜ1$“¯aq:÷ùä¸pgäYt}Ò6Ýùæ³@F.óÌšóe'nN‚kå~Ň‹ùr®àÐ|÷Ï›ýÂò‡?>wnFf ö–©ƒF9(Æ:¾=”^7g ·Å/Ñ÷ÏÞ°8BÓ^mË¥ðI žœæ`útmì?h‰Rˆécsˆ„Ù±ÚÍÝ´AN§æ?þB•‹½¬„Q€ ßÊ «]¥?ÓPZÿ5ÿu¯ØEì Aö·òdÂ×î™aËBlÈŽ˜Î`ÀZ ³+”1ýÊîtB©B’Zmdy !‡½ð®+k¥§œ@,ÊÅ/²føkwm‡%£ÛNñد—£H+Ò§‚ö⩌Y{Ìï¢ß¾¥°9gµñîû §»\3­.ØžOF xÅ•¿¾ŒN9åäÚ·¯›Pê‡õÓ¨á›a…Ä}TV.ÒÞºu Vààç¼ØÓZTƒãàÌdòâW­­¸ «ä‡6µañ—1¨ Ý žë4‚KR€qƦ£Ï´Aæ5%[¥¶8"»×Žxp²h´à©FÏwÔð‡$ÉV] ¨(Ÿ»•ÎçâˆÂg^å¦"™?ðïõþÔœKš°æÇ" jhyó+ÏÅH…•ãg­©gZõFå?‚µ‚ïñ4Ígï´W•Û4‡- Já÷æÊ›fˆœÏƒ0*­¼ÉÃU²ñ%3)‰¼/tÜ¥¼o™7 ‘ÒÅÊ3VT#.J(«>ÃKn!þògðÞcí½èÜøÞ–Ïf8×´RZ ÐwÝ^¹ùvòaÃ.Ä x/Ÿ8ãã’·M·HJ&­£¹o/òµSÑ´ê¹ ¶(È2ööW"t?Ë{„“΃ä$X[^ž†L•qd¤å˜Aæ/Ò¸û“ÛÍp¼9+1d‡k“”ÆÞÔóY}1ÓÞl'¿S²aŒÉÚö-i^AsDQ‡íî祡œÇ¢~t¤s?ýA­Y iÆ`gtÑ¢~<¬QüN#Õ˜0êÕë—î'ý_å¬ÕE Êëú=ö!y–®¢8m+ÜOY·Y>¬'šéS Giì-M”ÐßaQ´ÑvF‡ºÊçÅg¡ÄN—×tQ³+IЄ°^âè4|=½ÞKÜà½zj’üDÇfjþyn^1kb•)waGb©_7©'‡Lá>O•ë.*¤¯HÆ¿È×ÚÓôm ‘´CgM€'Õ$¼L>9åFûÓ×LI½³‘³ ökñd‰¶sð$žïú½–ºÁ¥Ia½"ÎÜÈYËùžW_­®¡Ïq‰Þu–½Ýr¿qS»™ªRa{ט|¨—ÅÊt]Þ¦øÉ½!5ZCv¥_g¼ætŒý¸!ݦóÚKãØLVz½åØv¡c‚û#jFhªºŽ½­rÉ“½Gó¢ù¶–ø[Ià†G[ÁÿsŸŠOǽ=d.Rle òñV!/ˆ¤)MùvÎÂ<Δ1õ6îb{îIÆÆõÒgñDôœ”ÂA.kæoñlö™÷¬1Jãtk?Ƕ#.Ä÷–ø'~ø3¹2®èŽE m½¶N§ƒsM¾¼UŽM@xðŒ¯=Ùy&4W®í¬Ëm²÷«ŠúÛb^G`K ÿ ‰=Ü^™ _àùbÎ;ÈÆÓ ÖˆÅgí–#›íëS Tô­?Љ=åM“À ±±©¹¸5Äz£‹>=½5ØËÅ~¯Õ÷œMˤ±o‹B[¨j$ß#äöþËF:¦©ÃQûZaïÓ0j "&G¡¸ïcI5ui¨ÿÄéDµ>¼+}¢9Ð/¼§ä'®2ßJÁý ]Tpûuù‰‰D#=~Wü!­æ«.ºXZ"¿¢×-Ï~±tãªÁ«'ÖYó=rœY„Ç Àm_C0ÚÚÒøÊ0€âÚ¨Ý]2꥟=ÐiuhÀW…l¶5£'~UHªŠi¤É|.ûý\ä·K^_óýÓLKNð@¾Tób•ú§³ËiGN¿š…Ôû«Ÿáxÿ³W•Ì%ÏK‚pœNëá½â3€:#0Ò…DÖ ¾´wýVE œ7–¢†­búBjùÌ!ö± [­¦½w’gþѼ*¦2š©Xü<”ñ8Y$[zþ¶«»Ï픟’:²lÆÖÖp&eE-—%$ª“[¨=o&Ô½)OuµÜ$D9¼¥yŸ”ÜÆêäíó*xÀš„ÕsS…zÒ"²bµÝåBæÑTlÅ,`™Y˜Ò³ñð{u©:èåš'–ô6¢uå õÛIt*Oz’z[Ù>PMó‡x‡]¿ `!ŠBk£§¬­Ö:øÄUâ)§{/‘}S§DIIÐ}ÙèYó³ òÃeÈ4û\8¢û&û[-§¿Ö·M ŠÑ°8Õ§Þß“ºÊðª$ËbϦ¼fAPqÙ0|½Ê` õ€páhB¯Â–x§¦ù?ùÛ|jäZ}(Äjçyþ>'ppy®¯y­Û•¦-)c¨X 𺳈›øF'œ‡´•Sͳ 9×tBJ¹k¨õ­C˜Ö0 ní²e’q²1:®ÉjºT&ê‘ažxD•™ÅwSª2jŒsØÐë3ÌM¹y¾”*ƒ—|”¬w~Kpú)¹Èªñ¤`Œµaý‘#ÐõéU‚¹nÝèƒáØç¼ÂºÕ6¶að]ûOOÍ‚^Ö>ös©ëÚÐ~kƒ¿›FðÒz¦OÏΘó1>Í_Ñhžê׊²#¨H줂ÊÛ…ÀW£˜O¹2™RiêyÈ“;1†¯È,4QåFŦöÞV+ [MñüXáIògTÜ­kW?’4<»4~Úã|®Vòñ±t2ÜœÌh}„ÓhSV Aå¯Lö(p#ЙæY˜`N©–ôëÇ×ñ`¨Šƒaãû"U}1¥S«†L_±4™2ý†ôþÝYõM»]Ôzüni*KgÛáYƃ(w.`,ù]Rºì„ÃcötáKÎZõ:A¡Ð¼nBºäê-îi²GñÉé4;*ΚòÔÇâOE’Þ8¨yk`;¼í³äד[£€¯¿" ,<+ RÂå©ýLs¹ý‰³C£ä²!×Í!z-½ÈmF ǹžÄ6¹þÜK‘‹¨´Ðë?÷jl]š:›a!K´J@kjf®ÿZüM")‰/Ûºö–üWª8¥îk@dÀ'QÎa}óƒúîpV‘·/ß±ÂwÉYç¦"¡šòùÂÓ~4ºhÏI¹¹gª‘é­ Ï?žóç¶>=`^*-¸9L/OÔÏ~Æ¿M¯«¯RMý_ã>ªÄóJ+!u÷Z¼‡cy£:ûwŒ¸DóÖz…p Ò–qD]ÏB~J­¢2c2æŽhÓ7˜¸üü<=¼‚‡ž>üºþ˜ŒV^9¾ŠîØëßò¸ÇfyRS¨ÁÞãßðpó“<0¡“ùЭ¾ëÓL)iB–awÎÈŸ×Ò X‰ÓÝÅý®ê$Åšê3•6¶1h¼_ƒ›lKrÎêlW»[dZ7Έ5hìËÝнˆD'tQ<ÜÕÁaÐÕIµû‡Ëóõ3iÈš‡Ãz”<âƒßB™ÈȲvB$S‰¨êR†æàéÌÃபæÖÑ7üwù§ï?£¼ÝPd;2h×môc@}Ó³1VÀRùD1³ôfî}Gÿ€<4+ÿ‰7“éûqbº Â~6—¾Òûšyû‰e³·œ×Øn—‚;Ô·'Á(1§oÓ…Á>XJbkPP ÓÚ~íæ¦7NëÔìyGqîç¢à3^€Æ@§&‘6pÐDEÒ0é€!¸)bxæsˆpaC›,P$„ò·Öp6³õ‘åóçc$•Ï=Jpšß%wo^pé‰ U¦¬Ï÷¸n’øÖ[× 8Å™šklçñßa;ˆƒN.7x¢gF'¶êUòµN¸WCTIf €ˆºl­žF…ŒD”¥ ¯¢e¿eV‡Ö¯¬ˆÃ¶H°(/¬œv”å¹õBiÉ×ùúÏ«–̟ƸžÞÍËlè‡ìÕi8fÐT¯3XúçT*æŽn&¸†á§¤JMÓfä/Âxì,m’}†3ÙjxʲÛl±G‰<`iùÌV7$0œ#a[·v*ϯ¯ñva©èÎFÑM{Z&µ°»lÞuÙœSàÖ‹Šx 9báDÁ^3Îê}[ª?8Zƒ+JUÏù‚xó;i ß$’â+¿ÖùÑQqA£Þ§nlÖ€2‡ÒéåD@ÐðëTÚ¾KØ<‘HÁä(µ Õ'l™:©Ò¹%>{“ücF‹m„Ëè“_f©Òøñ]Wø ¥µU'ƒ^·ŒöÖœ~»J&º)XGÚÊ,*âº%) ÛBÞâÀ\xÄŠ;â 橘†Yö'g¬é¦7÷ïŒ)XámƒK` ‹Ëov¸DPÜJrê"ûL%eõš´UÓä¾sê¯Óˆ á¿–OñÑäL1˜U^H´XZ=’™W7ùŠwë è*ÄÈÇ|OÉd?[ÜÉ:E‚9×â 屃v¼ò‡,e®.[r/L¸à%^xÛ#Yºc‰ e—3uµ: –+È žE´‡ÒQ¸R=!kÿ,·¸WÚýtŸ3¯ endstream endobj 111 0 obj << /Length1 1524 /Length2 8759 /Length3 0 /Length 9769 /Filter /FlateDecode >> stream xÚ´TTm.L(HwÒÝ]Ò)Ý0   Cƒ¤€”t7HwHI#Ý©H#”ÒßúÞïûÿµÎY³Öž}Ýù\Ï}Ý›‘NK‡CÆfV€A<œÜ¢9u]]n77'77/&#£.áþێɨ†»@`PÑEÈÁÁ@ăíñ¨ƒT\<|AQ!Qnn/7·Èß0¸(àÐ b Pç¨À `LF9˜“'bk‡xèó÷+€Äàbÿ# ã†C@@(@ˆ°;>t:0Œðü¯Ìâv„“(—»»;'ÐÑ…·•da¸Cvm° î¶ü¦ Ð:‚ÿ¢Æ‰Éеƒ¸üéÐÙ Üp0àÁà¡.)®Pk0ðР£¬ÐtCÿ Vû3€ð×åx8yþ)÷WöïBèÉ@æè„zB ¶ˆ © Æ‰ð@°€Pëß@ØC>Ð qZ=üqt @Aæ%øÀð/~. 8Ä áÂéqøÍ‘ëw™‡k–‡ZËÁÁP„ æïó½€ÀÁ ‡{÷äúk¸¯ 0w¨÷ßȵ¶ùMÃÚÕ‰K qv+¿ø+æÁ„ù›-àæææã€`×ﺞNà?œ<¿Í|½`N›`_ˆ øáÓÛè à®`_ï;þaòð¬! À l bþ§úƒló'~˜?â0á~€û÷ïŸ7³…Yàžÿ ÿcÄ\†ª/•äÙþ¢üSVæðæàpðòñø„‚"‚ßÿ®òÿ¿¹ÿaÕBþ:Û¿ê)Cm`‘?)<ÜÝß4ÜþÒó_KÃøï°5ƒÌÿ¿)·7èáÁóÿ¼¤üÿ)ÿw•ÿ«øÿ÷D ®ø™ÿ øÿøŽÏ¿"ÔìŠxØ uØÃ~@ÿ7Ôüç:«ƒ­!®ŽÿëUF6DjëðÏEB\ `k-d÷‡bþÃCu¬süþÞ8x¸¹ÿÇ÷°r Wß—‡aýá?lÔw”‡‚`Ö¿WW@„Þ˜Üúâxó<ì¨5Øãi¸8¡0ÄC à/ÀÇü=R!ð·éO$àýƒxdÈþäpÙü ò¸ìþ\Á‡RŽÿ›Àû|È…ÿ >äºüÿ‹ÈØû?ô÷ÀüoüÇG öƒ0¿ÌÁ@bÁöµÁ/«e(Ý96Ç$¦7 RX8¼¿ÀÛ\¯qÐYª2Wàç2‰ƒÝx‹òÌgÒ ´¿¼÷›ëÑC[â_¶ÞøÜZÄjOn¶b~ž é/Ø—©ûDAÅ¡+½åóËÙG?àj3r‡ c޳«0ŽVá¥{¯¢Gݧү#!s›/·ªU±nK§8¢ô"MŠfs­2gÉèÑÔOX Ž=pgÎΧ ²ÇïiUbÙ0}¢øÞ{¯òF_Íz-•ëòºt’3“Q£žŒL>÷–ÝIR!÷..Œ\‘˜ÏâfáDZùDë3ÜA÷]ÔDM™€”ÛþEDq„Á·µŽ+À°ç)FÆ¦Ž¥k­Ó>Î<›»»‚bžfSa¯ùÖ@(ÆEœÍZÝíº†§÷ÖÚ—GgFûgªûßkÇM¼†LlÖ10׉e—^ü uö%RG£ú¹%ÜéS`Ÿ^ÂPãÝc?~à4í±å¡ÓÖW&芃‰^˜Š‹GXöAˆq0ö¬†ß£J¤Õ ô‹Åd|AAï+§óÉÖÿ÷ÜãaÕ/wwªO‡„ñBe+‚FZ{PìwcârœÔpöx¡ì‚¹ÁRÕÑËgÒ*_­+¥'[GÕC·/º,Jso¬ñŸÙ²Õ^ïK4îHî‡?š1Î ú55&P…kœ…+ q-lˆ×öìä†~ŠG&¡”}o2<ö<'J«›göâ;òZ.™Ó+›Æ0 “Š FÙÛÁ¡Ó*…n)[íTÕ’:³·£1â:ÓZM÷¸ïÊßKœ•®›ŒPõÄ1«~ö:eÄxºËø³çÇ@UdmhM€Áó&±Ó»HéÏ 6[fÅèE¨Zßhù^ù¶Ç®tôLÏæì9-~Eå, +Ñ6,A·¢Ì÷.ûÜß N«7N³z86Í’lU&H,bsÂ7 Ëcœl¼¹_túJ—mgïfŠ™íqUµÛùŒOp^i˹ƒra6u/FAõµ2IÈ{!i]!™EõM-œpN±è¥˜H¥!6HˆaM–˜omÜeÑ–ý'#Ã3ùy×2Úùý­N_cd•?®å†ëHnKr„œ^¶Eñsƒ•Rgfù]M°ÝÚz’Ò²63y?š &¦‡’ò#ë3¤ì~¦†7Ye¬Ý±~¡FaðÇ´î{oÎÐzóôMú[Ñ<úÀœ“–è½É£¾’ýHR´«2 ˆK¼ëäòô ÑýØ(?Ú u1îC¤ï“IÖ ðYÈ‘'Æu¹&œÃ(ô'vk.bšyòãSKyÒØ“yþ¤<ä=ùµ æÚRI™‰™§Ý…Î$Áèæt7‘(¬<¶îÛ¼¹ü\…9ÙM|Òeë¦ÕB^_^{“§¨®ÞèÚ+5»ÐÖN/•{/÷ȼJà—ȳŸ2ßר¤úe÷¶ûYö¤ãjE‹˜ ˜¶ØQC‘îd?)–>%ç€Çèæ†$Î’Aüá˲¿ÊD-Þ~Žç7V&OŸîzÒúÅhõºÄòHÒÜ’©ž9±bš Í1õšK• Wu}›I2?C~UKƒ]T}Ç;\‡O‘WGZÐ4{UŠãxÖœÄ0ŠÉÿëΙŸ §³]JÏã #ÊìÓ‡@`i±ûÈJ=§Ñ"ËŠŠŸëiê"5hß,ˆTl§¬ÜéÖ“ŸŽ|té ÒJ@ªxщj8(jàLgæéËuo·¼ß)(y„É´Ùm¹jgŽÖýTW÷rTé-ØáÛ‡<ü¶Ñ¸Ó苞K‚¥ó¹€ÿóù%S1SØ ³Ä£2#žæ­ó²·9z“åÅ\š×u1-ŸPy3“©~å”;€ŒªŠäux(}â t[—¿á÷°  Û|—ó¥å6<­—ýgV‘õºƒ“Õ°Õ’3{’Ò9'@3¾zGøÓ††ô¸Wñô1º³ë(McÍœzJûÏ.Û›Ýk.TNtØ÷׬½mIk-í¸C`"§ËáLžÃZ_®¿*ÒsÒ‘· Å„‹úµ¥ÿiVð/9žÁiA±ùÔBóÍO‡[¶:²áígû:ýG?‚^ Hìõ=O7Ê=€Ð|qÿ2ìCZL–â&W¡öÚPxT³µk©´®‚®I×YvçÕ—Ûß“/ÏÉ"œ/“°dKƒí}ÙKxRYíäEd¹EçsçWd­µÞÖÊy„ΉP¦²sŽ¿ £aåFÍq>ôo©ñ¯’ÜÖ î×ÃøÄ×G;ðnU·×_DñÁ„Ï'êXÎú£Ù©ïóÝÍgaô•Dƒ*çjŸÚ>F{/~·¬%аvO ô™ÆVT¹÷âjÌØQbj7f~û)õ³úXpTÁjô»>c¼‘°hä‚'âB+ÞUjNËø=ú,Œ„k;¯†ù‚‚Rua·rP_~ÉFã{ø@µw+œ´KÏø^D¾4{nF±rÍ5–_dArÕFîÜ>ÊX°özÇc=éΟ Úùr©NÃN×YE+ù[Nw±›7©0öN Ò÷²j¯^©6x£‹Ø<±µ½eGvØõ){þ‘ÒŠ G}Èš?Ãpþ–ºÃíÙâÉ!½ЮßhÏô2$¦F¢Ph“îDêOdÚv¡Ár_Ùzñ—{ýŧ%)®hl"÷ ¸üBøžŠ¸Ì“Ýw++ØÅØÝáô^Cë80Ín‹Ÿrñ•—lÁVt£±¿ íRûÕª40ì‘´Ii%³-I?Fœˆ|?ˆnÔùæè0cŽôí®n¡­l½Ã#Â/Q"z¿öTª¤è LœÌº±9ÙE~îÊëŒ+> ÑCöŸ÷ÊÝ^nW ‘ªó¿F‰'½¥Q«<»Î5¸g1L>{Äð9T”ÔjPÄi£^ÁÜ:MvŒfNE›YЄC—õ;?]FÔ¤§’%“zÃ/fT¬Š'Uß‡Ô Ë´džõÙÄúëÒÛPEÒ?’_$ß=Ónï•ïßÇ2+æUóß éE|ôôDÊŽEøù1—,Ï&è<)žŽ´…;¬áר.þ)ÕÙ«g…A¸Ñ÷&À@|…Ç~².$¸ý‹¡¿Œ\]_Ø.QÛdwËÕu}¹k]:•8ñ¥n¯.fÞÐåæŒï¨ŠæYfÁ²¾!‰zöcHmT¬Õ_ËŒ” m°á¤™D¹ã.ñv'±E•=~@*=3>à|ÃJ6{|làv^Øgñ«âxÖòÒ‘©X‹ÒSLh߈7l¥ÊƒÖp (‡‡NJt•x ¿9iñŒ¦g•Dбyò"Ñ68\§lâ•– Ezã Z±cI¾~qðÕžãúÍ“àÞÍ`A·3/ׂi« ŒˆOzPß’%ü+Ásxç66ŽòÁÁ;òw Í’øO°ytöt¬ÿD"Û4b8|cÉRÐ]q6ÙK6/ú8œä°#ß ëR›ÀlBA¹R÷•Çqº½­U–R¼õNfQÌ®õ£² *ÎÈ ”dÆ'çŽÒŸ’$~å’æ»^ì Þæq£ 3xúº ¬²1¤¡ù,w`¹¡¯»(÷k|¨)6á¼`&|Å@äÙÔ(Sƒcû{KØt~(g`(\~òe= b¼bÀ!¸.½FX»ä‘¤Ë!kx>´¦Ý (¾õûÜÝ”ìñFPÏX—Q ‡o˜Y¹x1u ˆnŽ dêKS%ùÉØ0¡ ¸®H¨Ðèž^WÄ+…# ­5’@›'ƽok8p?^^?ÉBÜOùjÝ$ z‰óŠT<ê…禵©¾®q’šzYº.Ý›‡QÒ6ýdÜmæë {wûF¨Ût ÑP¡mØ»‹?Mý•£Pñª¼«îñi»¦}GrEåÊÂ[=º˜bvÂ¥D}V?9‚¥ô2%éG×*z©Ê‰‘þÉpºpýA'O×/4ëg*j<$R„êõR„ôŸÒ­ŠF^váPµ7Û€'¦³áõmUX⶯£Ž’cŒªTÇ%t6OÌö­1¥Ã ü-Ðf•\VoΉûö¸N×["F^éS-¹nÙ~óKø•1wˆçËÄï8‘°)}UÕa¡©¼Ò,Dž>ÎåcþÈË“Ã>JæmC™Û6B{M ¤²29wr(»Ù%\Óøð«oj4V3Ä]ìU¶šP&aâÁÛÒŠJ:R ù™&1ê»7<$€ÐŒ!?&ò@ã>€Ã6Uñtù¹Ð}¿î”týKÊw§1ûtâøY;Cž‹:1¦³â‰Çõæ…θâãÌG?ü®»;±‚ÁÂx1À1s,JZ ëd6‡2]zoˆ`µ…\_ó+I^Èä´¤íìÀR» [®TÖÜjÉï}Óz¼R§¶r‡D/ʈž9aú)£«š^} coŸ¾I9ÒÖ¡E×z¿0ÐEÞŒ/ˆÁ^Ý· CŒi†Åiõ¥9Œ¼;×õf5åÖÅ¥a]ØÌÑÈyZ+õ˜;!Ù‰üþûÚq}‚a} öÂòÕ‹ Ú¦$0€þ‘>~Všüʺ½4¹+aÛ­J€¨e¯%CLÜûÂF›­$¡A¹w)ûj+L}—63áèáŸöUL¾¢Jm¯×,CɧB'¾»º&´ðìl ½£èør˜º¾hs»º³µ·Ôa笖ò*u0pQ|¬#ˆCr¾u .8ìê ãCö"k¤k‹—òm­Æ—D7W˜2–]6ŽbCœ>c›]Ø:swlXhÁ†HàÉåe‘™Ãñ^)¾<ÚÍWçÄ–{i±¾.IÖ™×Þ´f¥ÝvÐøNúù¡ý`h Š{›«Å§"T2*î2¾÷Ž=¨\;+~/O~Ö¹Úü\ÏÃBg¯³=.EÚãæÐ†â‰D®˜#G) 'vH˜"|rê¸7"­®ЖËè7wL±Ï‡.¢Ç r&“4ðyðqÖýÒMíj{ŸŸL¬—šÿ¹úg*¥¡•µ¢¬]–×÷DŒEV&øšR='ŸÄˆ³µÝCWšûå+ò¥è³ 6}üÅf+•£P Q˜L­ÃwT¯~ºøòF’{¿”aq§PÙC ®FCø\#µ øPtÓb­|h^ï_ljïòÞt ‘[Éø¾ ÈN¥x¯f8£)¸}Ã…Ç„b)J;>sÒ†RßQ[LÓ‚L|"l©ŒÌp¦Èžx?¢né髸W˜A:$ÅŠ[|¼ü#)í^hM‹NXv¨-Úysñ) ìŒfœ¤aÖ5Ì Sµ1XGj”ÛX¼”ú㩺yLemî([Ü0ÌVÅ6Ý¿ÚèφA‡Ó¾*î¨ØìåiË-"YTOOó[øÝ´„ª2ÿ.A  ª˜ICØW=ŒM^Ô-3|ˆ>µiºô¨Äo-XèA"6nô4Ú²ÎñéEÍX8êô訄ÞÊeâ,ÉÞKa ¢î)NçÛêŽOŒ0¿¯±íû »)$þ`8оj¼Ïn¸[,¿~\•Í„º®" ²/å+ ´áÅÔˆkå““‹ÓÄr£÷#¨“‘‘è˜ ÆM“ x]_«·†8î«¶uÍ,ô#{Ïÿ5[ßdd•3ÏâÕ^1â¼,†góƒïà\ÿthò¶Êû[™¸xºÛÁÅbÓ Éˆ×ÜÏPñk¬Q¤“¤‰ü%$‘8Ú2YC}†U âCêP ƒçîDé\®þÀÌ ‰¬{njF2iƒ5 ÿÌV«@6®Ñ€•ÚXn°/=\3kO'ÀcŸ»n×øŽ´%pl®³mS'¸F`,ñ‚ÃWèmà“™>’/]鬤MÊr•ï¼yšCdÂSVŒ»<U¤-{TøªÇõ'©ÝHPŸZc¿E­UQ×–ß3¼8/M›É×õ]λ_ã1ú÷Ê@v ¥×Ï’2¿Eë~Å^ Œk¸U2½ô¢4O6O¦f]–©Ÿ±Ä¿Ë…ñåÉë%ó¡~°xj+#äÞÖ%E6?z‡¥<ü˨å}:øuÜ—èt¾µÂyôvcö¤àX—§ưrö«9§“[lç)b¨T¨+‡qORÅÜP{˜§fmCý–¾'ÿòÉrYVwÔ˜v:*ó65›2eÖŽUçeœp ªîˆÖÄ3Šâ^q \O Šò™/ÎΤ p:uòNß"ãî þ©Z~Êðd#SàßkÊaÑxý Î Î7íú´Ê®7ß­¯‰Ø/¿eŸe"óîçl*2¼TIZ¼ð(]Ay¶à  ñ£D Îækb ç“ZFÐ-Öý|ñibJêeÔãƒÁãáÏ¿²º”ªdå;¶ý×Åêèô]´ÑÒdÔ&9YÄ/2H™y÷Ø¿©â]çûi7nl†|Ÿ™‹ž>.œ50 Ù}Õ…–l ,îË-âqÀÙØÕ¸~Ü,ÑJL·¦&!1éi8µ3éŒå5äæcbNCe¡Î®y´qiú&Ñiª/,óeÓG³÷s•fª× öq¹9 ,|¿î-2,9ëýˆé2–”b‚vŸ@-$.§ml™=]ñ¾ìk¹»^©}SlØ÷ªøyWf­æøbr G§ƒ~A}b•æFÇ÷:ØÛ«ð(—yRÕ`?KWÑÛ…NÊ<ýe—Ûˆ-¾ä½·T3T¢#…쮀 ]Ç8äçE”O·X>ÔÅ5“S$](tÇ`|ƒ–hÎTßs$¯Î.ï;îËÎröX!j«ÞÀózIÕÁ—†wò*7I´v¡ãX,ÓdÏq?ò(‡ÐKeõ~5Á9=2¢8<¤ø¸±É%€Ä®c¹‡e¶ŽE{|ø¤­˜Nó²_Sl &ÒÙ‰ç÷£ÓMõLmÊWw¾2!‚rDÃþd-ѾM»ÁÈ„Omà@E¶o4%—êlÃúãXî’Y@^âèžfð;>dL"ávFá4Ù· &þ]šäQ-^‘Ò›Œü‰ø #«ä òI4÷o~µ?ŽXô:èij* ™9î©•=KK“ão¿ŒaxjiåV§‚ÐùÂ[ù¨%’6ã¶Ø˜¢Þ— s£Ì|1ÍfŸN;?Îþ²ÒPÄ­Õ#:ý9¯fÁÛõ¯D%Ýk™ *äó<Ë™Mmò#¢‡*×;‹?Ö/Î7ÍygFÏìÛ5¶ÉM´ììó>iç» 4w]¦ªi5vÀÅdpäËZõë¼­·ð´nc'¾$==¾ …ßk O’ëQD°ŒÜ¥¹–c°2_¨ƒbÅ’ “ÌŸÅA¤>½ÛšZ$ÛWCéëëÙ¦l}ñ7@8,ÒôfÍá¿@ú ×?¶XmŸñ§°6óZÙVGLÒÆ¹Dûù²T—µ“ï¿“ûë²[Ú%Ë#^?¥‘‰kÔjRœ,'ù)¼÷Þb“u8@ºå¸àdUµ7Øj*Øzu/ý”m)¦|¼n!œ¥öš{éš ?çsæy^¶ÅV¢ÕG¼»19º=" )¹r×'Ruß TòÆî ÓÞãèƒmÏÊN)qæ ß™*5ê/Õ®E×1«˜ó›]\«ñ¤¨F¢›û*P:ºì ÇŸQg´éK2x§ÉODW>ï,r9²Âѧµ^X:6VVžVÐÒA†ƒ6ƾƒLÕò­ 'J}ÞÊDU]Ëeôÿr’0Ip–È:ó¿g©QRq¥WµZ#7v°BÕÃ'¶6Ø¢ÝïùSBd‡Ët-Žón¶/äµT>Ôþë#Ô°<Êï?‰K 9¸H1Yü4´kE(j}æQç'äÖ¨’x·uÔ…Ž*šlêí/wŠÄ8Ý6³?ˆ•‚Æ¿=ZF15áÙò~Nô9kÛKì®MÁ¢›ñš*Ü,rÆ-–$µß”‹Óã&gU_`yŒ,÷?Öðšîkè¿Y8m:yîF¢J`d‹‹Ö¿|Äy¸µó,ƒ"j.!¾wŠ˜ª›pv!&<®ü¹î£Y^ÅÛŠVwH?é7£ å OD8….l‹‘Âe¬µªìE]K9R1¨¶Ÿ•åSó4Äî²ë2…&®õ˜ÜÐñr´lâ-°®†¶‡6ˆ¥ØLц©6{ñÓõ''¹vߦ:Ô‚KÚ›¤ÂÎßÞªè”׊‹»à+o"c¥M•djV·k[áâ ¿TÜ™/¶²¬+ÃýÊïÖøª2îW^î˜\šyt;TŠb%¯ùäŠXWE¦®^¦K|^ЖHþUò­Gñ?õ¿o·•qŸ@n; ôë£qVÜ— ô¨N é¶kȼJGÓðüz ¾|SÙØ¬ž„Eæû¯·ìÝŠ7ª°žpÀ`Œölå#ŸÙÁYÞ,Ï+jT+¹ñȑڽ’*X©eH£õ롹^Á6ªáœªVH²1KTŒCn&iI‰j…öW¹º$n‡…/p<üÀGÅp%E>‰W0KÞ'ݧ>Q\Bw%tÙ«ws·QÇþIî[Da“-6î‚Ñ1Ü=ñç»¶}¿¬/Icï¥+— f–„w@eÂúm®7ßµ…ë&ÛbKPuÓó¿íÓÆ“¨ÒY#åÞ6;õ›túÏý($ k3øIª— ɹ³¨ša!^¥UåÖn8X›>!d2OåXãúÖ÷JAŠå=æIòG´ÄìBý.",ȯ>fV ]‡j!á®:iØ]x³)b¿ÊˆM䑨¶S¼I>î 9­èÇz±':~[‚ÍÚðÑë67ÿé-ö34†Ö%‰~‚‚‹Xý…¶_1žà HøFKO¯% FTgB•­¼AëŸâ›íDíÎY¨YL”©‹HÝýÔêö+Üf†+H$<Ö~Kª÷{ºôp^†££i©Ú‹W•š ÜèÑ9„² $ÿ %“™ô‚Bm£j?Ç®EV"9õ¿þ?? "ù endstream endobj 113 0 obj << /Length1 1979 /Length2 6403 /Length3 0 /Length 7591 /Filter /FlateDecode >> stream xÚµTTm6¬„„Ò "‡n†–în)i†F`†¡;¤$¤¤»‘N¥A”)i‘TAà}|Ôçýÿµ¾oÍZgεûÚ÷Þ÷aeÔ3à•·CØBUp¯¿ ¨mh( ðó ññó â³²ÂPÎÐåø¬ÆP¤; —øËB £Ð2%0 m¨€΀€ *!p[‚Ÿäçÿ×””Àž0;@›Ð@À¡îø¬ŠW$ÌÁ…Îóï+ÀáÄÅoóütä] H ´Á(G¨ :#ì  0(Êç?!8¤Q(W ÈËË‹ìâ·@:Èpò^0”# u‡"=¡vÀÊ€Øú‹>+`èsÿGa€°Gy‘P-p†A pw´‹ÜŠÐÙu-@× ÿÇXëàWs>ßá~yÿƒÿtC W0ÜwìaÎP@WE‹åâÀp»†`gwÚì †9ƒmÑ?K*òw0šá/~î$ÌåÎçsþÁô# ºÍÊp;E„‹ ŽrÇÿQŸ … ûîúu¸Np„Üï_dƒÛÙÿ açá 2‚ÃÜ< êJ¿lÐ"ü?2( áçç nÔâú‘ÀÐÇúS)ðCŒæàçŠpìÑ4 0{(úßÏì PHh€ßߊÿ"|ÀA¶PÿOt´jÿFŸ?æ ˜ó£ÇOàÿñûýf‰ž0;ÜÙçùÏ#j+h*rÿ¢ü[© €ðüx^A!a@DPþå7ÿ¹ÿ”êa¿jãÿOnÄÿ¡€îÝ¿4<Íǯ¥áþ›Ažf(Àñgø-øEø!è‡Àÿó ütùÿ›üQþ¯Ãÿ¿©x8;ÿÔsücðÿу]`Î>¿,ÐÓìBo†6½ðÿ5½ ýgµ¡v0—ÿÕª£Àè ‘‡;8ÿn$Ì]æ µÓƒ¡ Ž?'æßc@Gw†Á¡zwØûààçÿzå Nè;Å}X?UPôFý7£2‚°û±z‚"¢‰ûàó£çKPDð@ï¨Ôûçh >8…vÐì{ÿÇ‘ŠŠ ù¢8Rþnó •?HiýAbHç7@Ðmt÷7G#ð„ö³ýƒÐ †8AÑ·²=ê\è·üŸú­@ùDÐÁ gtïþ• ÿ¸¸üIø£© »¿ :%ô/(€ìÿüÈ¿ô耎At»`AtOîýÑõ8ÿÑźüèBàAt!ˆ?…£mÑ_¿ÔèR\C!t]¡HôÝû§¢?e0Ä_ìÐåþU½º\÷¿ Úã?zA(G$ôORôP^ˆ¿Ði=þ‚h~ž  ÚÜûO9h¥/ù÷fâD¢ ÿy ø_üó[…zC!ø3“ˆdø½Úð¶¯Õòt^¼k#‚Â}QG¸wW•i<7î„*J};Ê‹ž–ï_þ¶Dº#X|ÙèdBÉïdµèŸ-A9S߆mo»Âã?J*}ºã®å!¸®ÙÙif#·s ÜkÒð:’ã¤âqÛ_›ÈØR•bkªüRḇÃÞð‘ïÆHl4µ˜˜Ð ŒðvùŒöJ…ù±ñu÷¹‘Ý$z•­oi½C‚"úfKy®Â–Óè¶· \52¶eR7_ˆÒjÚŒc¬«/”©Ïâ9BÚÂC8lÝ_ëÅÓÚ4îxè2…‡ ›vkWÕÞ”• ®¼“=2Ôÿx;œËÁû­‘É)£QN¡2§]ý C$,/qÿèSn5vdÌòÁé´ÿiŽ«\¦†j]ÃÊ Ñ!ú¢<8>`î\~v¶ÀñÎû¶­i*¿ýÃ#“/¹¹ïs@f\Õ Mê-ƾݗ"‰ò¦V¹ù‘Í.%s2ÔM ÉÄ•ªë%c-U¥O.Ðs]í³×‹%…”Ô;,M‡ó\gˆÃ1ÕR²‡]O3½„æö'ÊŽCÖóM¬ÊÇX›*š}ß§aÖ¡º£7ñàq'wy¤»z:ùnÌÒÖ4klwDîa2j‘4œf~¨N7©¢‹xC=‡çñØÑ×Íì^Y¶E¢G%†îÛÜ•¸-Gò>‹%?hàÛ‘¤=—E5“­\*ûú§'“oeª™åY4ô®¢ ‘‡÷Ãퟆ»]ž‚Dæ,ˆoI˜°§7¾…,’ãmth¬???*2F¿_óÀ¤ÕÊ7ñ +çÀc‹C6k= 9ª÷”<_Îo s‡À½B ð¯ä¾ýÄ ÊšSûÎ6¥\¯Bs±¥bgK–Í“š;W%éíÖ÷äøT#DÀ÷rúØšÌÍ«ºÊÔ EQù-R÷ è[Ÿkï‡g! ýkò½)A{Oh‡:2[íÙ%´Dòkz×wÛRU_n¿Èa}¢ïN~ÚÕ"ÍõÕ.c 4š' •bdïÌì+Ý›^ß•ªQªÊs ™ÒÏNVïð }´Ù._TVË>|ì3x7Yƒ©Ö}¡ê=¸&[NôÅ<³»ÒZ 0͸Ï:Ÿ®øøÀQóè±lwôU%i5³æû!ú+§¤ éóXÛQWj ºKµ1I$AÓ;dú'vµ« ü”ºˆÏ𸫠ŽCÝ,XY9˜ÃfòØ£ ÜôMú˜ý²Õ|V”f ë.ƃ*¹dëé{ƒþ©Û«k:½qù"ö´ôFµe4ÁÎF¢âþgWõÇæÒlx»²¶·hd§ø=àÝä@ˆ+бU=5Êį¶¹§BÚٶ›vê?¹ô]CÒº•PœÙK`]¡W,À*ë÷Tv‚ÍJðÆì/ÝÔ81WpÑlqƒuOvï¯Ø¹Òøov¦xŠóoÚÎc¿ú šµ½fþ¾¿q§Ê²Y¬rdÇs¿öÛúªfC¢ýÅ„hÕ<2Ùaе·éä iIH%F­¼RµuOòNÊêk=uøL˜"ÃÝÏFOò÷:+—…Ì;R$î–vû½Ò $dzÞ»U¸÷kPᤷŸ-X«ï>A^ñíFQ@³u¬*îXäAN"tl¶>Û*KÇæ /RÙV½ RèÑI4ôúq}§ô_èVi™|Îð>`É»nS,ØqHž9•¯6|!ã˜7ÊÀÖÕÅ-¶*c¦½¿BÝ1ÒY[ëñ™pÕhmzY:N9(u0zxµ¾«ê¢›æ¯mk{Zr¥°³3!ñjû¡u=~Cf!Æ]µÈV ö“íû©t•ÜÌ8Z{ñ”W£Šw¸%èM(êÉ ¦F•D¿ÇÊn:ŠÉî0éx6×:aq¸|íí}{k³¶¶¢;Œ57ɾq"ŒX˜qÎÆïç©ï¥Lv´¹†‹WвÛW #¼ç’€ê7 Ü5áÞ2”4US,Z‹ä#¶ur—g¥JWjÞÌ}òù¶Ž,}Ä×¢fÓâ…bnYò×K¾bÅVo*NNÖfx2ŒJ‡$+­Nšëøå<½íùÃÛ‹ÁqõúŸ¢)ǘUµMë^3ȉwá6lÖ™1 Ìv½}GWñÙùY Ý%ƒ¹ÎûJÓrÙ™W°²i•sâ p‹¹õãP*5iž8EñV–N ã³J˜óÏ‹}qØŸÍL÷[©e¬î©øŽ¯ïE“5àä¤M„Z<Ÿ³·U­m¿Ñ›Nẟ»™·ÂA!ÈdΟÖR|¸©Œu¥wçÛgqì}•4ñä>[q›2Ò2ìšö˜‡jpé QHÙj¶}ó§¼’˜Ú2V¤çP÷¬Ny,5±0â}Œ*!,ddG»Âí„j1Ð.ʺ¤ˆqîÀÌ únsZßhKÍà^»@Þâ#ú¾&ÈÝvX2ý9dz2òØ‚¾ó½V숵¾0BMB gž±¨÷NTbÃà`z€f΀Gùó]µšœœJED`)÷¼Á‡6Xl¶U¤w<ÔMäë¬ ÒQqØ6EWòXÁ£ÒƒhÈix`&“ÝLyš†uzÁi™íú.µ2B;ÑtOI„m9`]Ø óà˪‘üŽÂE_-¢4$TOEÑõJÍúH¬ãCO0-+éÚtd†ÍgƧiõïÍ„•;›£/^š!2Xè1©T5ö¼­qbeÆ´õôÕsJ‚íZ\p ØT-ÌäûÑ—¦wZN8‰ÖBŸÕ—Lµ,a˜BO·âS-^€q7U L>=ìÈ/h´©úŒ˜È-6bÎÖŽùô}ÄrW—Á£ W–âKHU^q8Ø„O‚ØÃZ¦dZ^$…ú,›zìœ }U®¹!É«fvbëyë-)÷ãhØSò6áì–Òq1œ” LÔ¸4¾?ˆ–q@daCÃá^¦yW9±Ò_éÏlJ÷Â[jÞ=ﻜŽLá!9!j tã9~žÉ>öÌcþHlØp®x°b·4MÆ1¯(8ï+…¼kqÚ•éÕ°s>wôY²pa®o¿4§^”JâòVP™`óœc~‡ÿFu—”’7ë+–<•¼%¤zWÚë"€¨fîÅ C0΀ý`FC²ýw¯˜>&ëD¹Ï·ø™Ò}Þ=dpU'e£ø<¦Ÿ‘@ÉðlÑ>'üpÍI óv”N–nÑy>c·0¦ù~†¬ I¯Í£öÛO^|R­i-H.Nq¿£Æ’sÉq¿¨ŒvU]T¶IŠŸ~€°ÍYÆP¨ýBB,€Ú º6&¾×$K¼ÊÁQ¤§=ôjS±{¥ôZá¶E•ÁKm«íik®Ü¤d=iÎ&Ðn½ëÒøæó[½•-¢á ñ¾§â•Øå}õ \oÄ•y“K¨¢S}û4»[…™½™Žj•çMC"oJ¥¥Éw·TÉηCqÌ)–Óö[<…i'%ŽBçC““+“XŸHÙâïOX4i²ç%UêZ6Ež·­_Õý†ÅO^±LÎB˜^ßAq'P–¦£¯ŸVåe˜[üPìz4F'˜"ä³÷×Âýç[ýëšBŽS.g¼˜9-¬¼žÅ_uà\»;´do%ö©˜Ë†bj W?I¶@Ù™IO’Vý^á;™¦¿\Þïf— *Åêóãv’½/ŸŽyjÒhjzpÔÇ£ý$5 Þ+KqµÔV:·žöû…däx–[+5œÌê¸g&MÑ õK†¬ðÈÝ~²bRÓø§Xƒ+' Å—>‡†õªä7§vc¤é»},ÎÕKNå–+oã±&Û ª©‹½çĹ‹Ç+ÊÑ2LÚ-çèÈóˆN”ê8oÐdp³?ð`Ô½™~ÏÖªº™ò^\¹<2¨ìQ•—õ sØzEEkÛ¬!¡»°•å}þÞ£È2¥Ì™4l¢PÉÅYOÕ´¾Üw™¹RK¼4Í‚ê¯Ü¢º.™tJ?¢W›sÔf¸ŒV–•˜+ðaTPÌñÓüÚr6ìT=t½üçåi½[)ËÔ1fï­¦XYë²\u^–’˜üè3 ~Ò­^’G¼rG'¤0TÚ¹ŸYp]ntžàOY“6]Áç)àQ­Ñ8À,£§v‹3î£Æ76z|\Oµâ`‘m”IŸ­SŒÿ4HïàÕãsë[tYwx1Hçô,³b.ô¯„ó=k›G¤s©WëȈ?Ù?ÕYÊ0ÊHbÒB帪 Íwµ¨Þ“×5r5¼þ5UÆéu$Á¸¬pˆkôdNR´×¡0™s[úVǃ±+FAõ6˜¾±:†¡LÚ×( Ý)²V§@Õ>¯ä zŸcÉ"ZjÞ¿E‰+ÛG(º-°ç§ðòˆ_‹bÒ<`áu‡ELS>}6ÔCú ÷" nBoøl{1sÏ7´öY›&ãWûmì7¥‰y_¾ˆ^+á%t3øäÛ[½aëLÀ‰?°äàx‚WšÛó5)šÕøæ^åÛoeúg8Îzð[" ¼‹ ß±je‚:2ó‚·ÜÈZ|ž¿VÇÚ·þ–j/B wô™‰j§Ò,”äø§n›Äxú­Úü­òýcÖ™ë]"NS†óÄ„U,'ùÛ¶ž¬¡Ú 9Ë´)Èåsù(bPòøô½Ù>’Êp¢}IØuÓr·Ù޶!5Í¢šI ½ò¼|¢Æ“X}¡¨ä¬Í¶µ˜ µLoÂŒñöN]†O8oîàIÊÒ\­™£ºCZ‡Qâ¨ß•ã«Nó°ÌÛôŽRu‰ItGÇžKq¤Ã'~snª³pP§1ÿÜ£wÚ§º¼÷×îrëD̈àwÞ˜ yd/mJÐ<Š4§É±·»ÒâŽ(x`HVdãÚ?d+!;×~Ø]É’€\†j[^Ÿ‚¾êÐgO[Np¾792CRX<Øc¥ ×Àƒ»Ž­Õ]4¶0ƒêöU´Œu:0ÉfiÃ]¼²‘/ÛMÇ¿ÇR-X¬šõÆuß Ú‰rÚUÙ‰ ÃmÎ?pUL¤Ç=`Œz\Ñ` û¹K0þûýo\%Ïz>¸P¹×Öi{¥Æd$ƒš^àæ)n/k°“÷Ÿ•ÎÔ¿£êöØâ²«á3ƒÙ~É“Vâ“u‹ŠÙ„Æið癟— òÒÂ-â'e Rå} Ž¯Ii©š|-Vñ¼Vž ñ¦ÒtC%ÉûK¯½ý‰n 8Ä54G;´"ßy1õʤIçD®EV³%H<àP½Â ¸ÜR¾N¡V˜5‹¶ ïVXðê "¯ÞœK3'™šI;ùuó§ ùqß“<èòÎ1?a ×YõQá"kÏ:< ¯%¢LÍi·^Ö:ˆ>ÏC´“.òÂmRkÛ¤ŒlªX”1}^®ßvmOy>äºò «‚% oclcÉèõ {ÚÜ,ù»‘qþåý¾’Íš‘$‚ùa‘²¹W­Ò6ÒÚÆÛq¨[†!ž‘é¯0Ö1‹óKW’?©‡j½yØ„ïRcl9Á­k¤OUr¹ºñðµ+ns¾R˳AÃõbAËÚ'–¦›çúbþdÉ 3²ã™ Ö­±UEn:’ 7ô}7_»•j6iWÚKÁ#«_GP¬éữ Í+Ý ;¼øØÈ}Ur?]rÐ|Úfk=ék ûLÙM–{¹^ ßz¬+÷ïê½i  –cI]røäì§ ¿± I_ ,›“‡í§Ùj7Çu¨ÓIéè¦Iุö'„…pŒØká¼"¸„‰÷âšœA¢‡‰ÊÞòÀX?“£ÍíoŽ ¹yP²]Ý4,6êK­Æ°•Dº²ÁL‰‡´(ÍäPÓ¨¬Â}_Ü}©Àp¶~Ó¬!½[§|ä¿63hÁ0+’寒ϥ˨{¾f+l=¯Ué^!ñSK7» ­¾qø”©€#‘·« eÿû5ìeXáÓ¡AÝ3Û¥~°^õakÇá³9qéÒ Ñòî*2uÎj&¦ØX·l­À0°¼œÀŠI'¥wŒ±ÝWŠc(fšûˆR±ÇNèÑÜ0ƒöë¢Ø÷ܚɪÐDÏ1DŽ›Þ¹W4I+jçÕ’/©_[1¾ÌlÈôçõÍ8.|£›G> stream xÚmT{4”i’š¦\ÊQ/Ž—1“ä’eBŠAEªÏÌ‹¯ù>¾ùf\:B±érdS«ë¬Ë¶®©t¿œR)*ÅÒE-V´)É%i?¦töœ=ï?Ïó{žç}ÏïyÎkbèAà” >"V›ã<ˆ ‡8l[†‰ „(…øJ”‚ Š@Œˆ  S† àÑñ$E3!kAbT„I0bBŽ £€“\.ÿ^.•±IÙ 6]! ¢ ˆÀÄð|ýÖ{ñ=™'?xB’¨øÉÂŘxcBˆK! D$+ $p6ÎIÊž €Ë!IÑÄ"HB|Ü®¾|pçY xÅEÀ{]ŽSR: ¥Ôxw–€š´Äè¤>iMFÉ8¥Åf aB „ÃH gXëæ…GÀN ‹dÑ_C4!)͘Ѳ€FÐÙ2±˜J 0ã’hIàCˆ ‰ƒqícIl £8ÝÉ×T‚‰ãÿ·èK†…Ò¢¸â‘´ŒVËÙ\;%ŒI=°8(òÃ(Z{Š”A% •sò"L&Q^i}è ‹\ÿåUº­‰7­ƒB<¼CB,&b"ìŽ †G‚ŠÖ%E“ÀDØÅ”Û8ß®›ð‘o¾J‘Xå°Ç×…3~¾Zaß²Ü܈¸­VÈR.°²µãÄv)ìm–'þ‡®PF’§&@÷òÕŸX,ã ñ´‘:¦nɾðcÑ6÷üºb5‹º›-•¦û×{Bµ°ÛQ¢Míïôúz9±Lƒ‡)áÎ-oÿôê;o„îƒÌŽšÚ½†éazC'Œ‹#·•½ñÏ>“¾±{Z®DÈŸÖ³«—:üìév?óZîQÅ›²Õ1ÎZžÈÞÍ…Wnªi¾Ì|Rÿ÷d…™j cÂ6‹“šuQiyÝá.C­OUwæìhaö˜ènŠÊ+J‰nß’Óö½¢ÕYªó¾mêP¦¬¨Ê×T5Ô$ëVYœ.ªva;žCæJí´—Í~•têŠéÚÒì©¢§ù)½¥Q:ç{™¹·O£>XqÂkÇùI®kæF6]¾åÞ^8ܦÛU·X¡­yò’[s6!áÌ%lº;¦.¬_¹.6î~¡^Šÿšä¬Îdc–ý¥¸ë±ªþϪ ÏfáùÙêF üÓs1ˆQô³>úQXé¼Õ03L8À u“'™ ªî2Æë$YbŠ·Ý¦ZÉ–ý«fÌãgg ì±v}5çãœGƒ]•‹ßœÖã½ú¾ë+IÓ¼çó蔿àn©°Ïm<`~e!iÝÄÜ_“ZÇ <¦‡ŠúÎ\‘æ‹úm?_ì-¢îõ[[\Ôþ+÷ÓÑk£Ä›¿³5?:¿Öì6¾¦xtv¡ÇÇX0e»Æ…»&õªe‡fŽt*’G»™~‡ÿغÁd¸Ã*#çR /)xi`˜7ovåmÇLs®Úäïæ.²|Õ²Žë)CÿÙÄ* endstream endobj 2 0 obj << /Type /ObjStm /N 100 /First 798 /Length 3306 /Filter /FlateDecode >> stream xÚí[[S9~÷¯Ðc¨©´Zwi*5U\†I6ä²$$,4౉Ý$™ùõû©ÛînÛ€yÚIÅj]ŽÎýIÝB°œ¦rf™6,0g˜Èñ?0¡ðÍ„³ø1™ãá™”ŠIÁ¤Q=)™tT<,S€–Ž)m™ôL[´³yΔdNa@1ç4SÌ»cÞÈž–̉+MŒç˜]xí˜Ú3#À‹×Ì€ âè„Ý€#BoжAöàH CLcž>wÌ¢?@& …„°$MF[ňQ mŽ'T`Á¿–ªÒ™5xÈ@R‚c‹yÎ@àñ!gŽ…àó Gª€ºœÇ3‰‚”éµ’öª>/ñQqmBDå!7LkzÂ*|y¨ÿ˜‡R5û…YÝi“+Ï @c¡ÜÖÈhACD ¢€X°Þ“]Á›0Ðja ņI€—Øõ¹=‘{ð[A ª8ðUÀ¼P£DÅ‚ œÁ*HãðA¶ ÚŒ+K4í¾\@n Sä ÄT$cA"'íªÈPjöCÞHx Ï ù±CÜ“‹È`asGÎB¦Ä«Îa,â^[¸'dŒ šg`j¹‡A Ö?õ9Í&Œž\…fÉ\ÙÞ³gŒï3þÇø`Ìø{2-NÊÁx”‰ öÛo½'/Fåd|zû6VË|pQ°Q1-£s6¾*&ýr<ù•ý'׿W*VÏWiþû)ÍœÁ³ƒò"6OÇWýÉÍ(tB±}q=úJXÊþôët5¸Ià›£qyQLXñ³y5,VÃÛ ýxt2¼ž.SÆ‚#gïß”ÇüìYüyU0þ¶^ô8æ–Ũœ"^°ÇßÓñõ䤘RNˆ=¯ŠÓAkü“Q‡äò¸Ì$ψ`›#°=eG”ˆ$<ŒǽÕÕãû×_ÊØÞŒ¾öøÖxrZL"þü˜?ç/øö‘ˆ bè¤dGFÚ,·ð8¯2ƒtc”ÌÂQ—I°MÖÕÒó³ñ¸µ¢r›GáC9•y_Öy7¦´‘™/6èj¹‰Ùd¤aÃOŸYLk&Ólt=¯B‚Ä!{ ˜É]扷€)!³1}˜YP´*©, ³ÝT+2N t®u³‹Ü†¼”üb#Û¤:ò…²u¿£ä–êX”¯êðJ꺤ėêŽ2\ªÆ4XõjJjTüíd|²_ÀŠðþ]ÆŠŸe×A;aaònXh¿°Ðî1ãA©<ƒZ´ð0Ô£\F V"sÁÜ↪ã†:4-¸Â Û@ÉÌVe´P­0sËœ 3cuƪ³hNÈaÔßlN×5§1ë˜s®cïº- ]ƒ°p·a£°º·«µ1MÏÕzO¥YÙUš½çÒ`uMÐ:d[6Š,ÌØ™e:§]°Î°+½%t'¬¸C 4`(ìÖ²\Þ 6Kž&SN¬kÓfæ[nÓvµ|`IÝ×ÂÆÞ3lì­a³^þx°s»çv÷tnû¨Î“BFG7íE¦mÌœç€þ oñnÓñnwïvKÜÖÚÌãÔ¶¦…ZY}…ÛþMÞ-¸ª»›«ºÐqUw— ïîá×IÝ7K}d„ΰºc;lØ?¿¿ý÷¸š&l8¾(ì9Lf«Ò+êI¥t.ÃÖ8£ôz¥ós†Îè:Ó©…M6|8Ρv@Æ “¼À6½ê–’@™y­ ¥¼Ç¼TFôͱ{Ë[õ“ \$¬Úë©L=$šË=ñ”IJ$…ÅéÊb­!Áœ×™‹pÊŠ 'À†œ ÂVãU_œ[aW–fD…WøMR'Ò쌼¡¬@¨ç‚vk Dd•5õ†õbo˦rŽ£2…iC'°‹Gñ%ƒ4F“©Kò+2øØòò8æ ¤[›)ªãŒÊËK7Ú¤_]Wù¼­òy[âç#÷s£Ç¹8VbGß@Ö¾pF1ÌÓ»¸4Û©4V¶ÆÔ¬–FRVS©%Ű7%§¶×¤/Ù&Âz̦´ïa‡Ó4½ŒÓ:µ¬âúrr6g2z¯fÜ'x¸üÓzBë^Œ’¯:/Ô[ሰVVÕTZïf\¦6šm)PHËÐv| ò,¥|(ÁSo-ì Š¼,ö$«Äy3Ø4ŽÝÙGÇú*Ž% Å:y v ðH­ãÏ [+ }"Ð}ÔØŠÒ)ø&×.éÚ!Èkï‰fd»Ôq»zQ›×æ*Ú&•îù˜Äi¡ã!eÍ ý*¾-8•©‡¤´ÐWíKNÇ$…ý•dV%GQJEÚÌUœ)cN‚ÆCœ¥j|if…[Rª#ÝW¸ *¾ùÍí¬a‚o Ü®Í[„&™c^kš‘zç¦5H*>¶IõqÆ *ÕF vS}>–ØMõTFz)a–Êÿ¯2&„1-Å!îPDˆë»'·Nuzã èœÒò­­ SŒ¦DÕè1ØI`I×1\'_¨7{fSzhÖ%R¼oÁTsSܤ‡}¨ç6qF‘Α\uª73tTØ)¦'“ÁU9ž¤£Ãëþ%F^~¿·ûû/Û¯¶…ÄÀ°>e:AlÅSÍSœ(žJúdGŸ¢°›¡3âô„Î66r»õ¼œ_ é-/E{*hðEÙN6GçÂå8®–Åå:söøa5 Ûà¸èOèhò„oòmœZø{Þç'üd<ø)/øÙà; ½ø9¿àþ•ù%ñ1 ~ŝР‘å>åÓÁO^òòbR¼ü1æ×üÿ¹‘dÚ€“ šg²ÛTôñãÞ»O¡¢W/V©H RQÜöÙ[T¤nRÑS¡k%YÓБMõù—–4fi¶·6ž€4ïD¾\×Âäá!ÂÌìmÃJQv`ìWü Ç÷+£‰f¿¼ì'³ó³³‹GkÆ§ÑØ%Ìû Ìÿl)Å­£”;ïß¼9ŒJYea‚ xÿ8:YmÞM¾… دoö × ý|䟠£~Y©‰¢££¬³³ÿ›ñrñçÕE1‚ÿ»,pH•WÃë)ÿÆ¿]Ó'M`ýv=.‹Ó/ÃaqVÎb7µR5F[ñ¨c®2 ÿ‹ÿULÆ-Û„µló~óðõV´[a•6hlu¸³mÌ ÛÕ´M޴ͬQ@¥ƒÊáMÉpJ^G´Ã×;o>ìh+$“® E!壸[Šs!ǘY²-ÞZ‰ó_Ÿ_~ú7‰çWÎÖ™Æå#ž}˜xkeÒçûÛ›”I÷÷V%SIÉj…ƒP¶!¡- ©9“PJÙYÂ’é&ÿiãEtÒý*™~™ôOŠı––ª_‹rÖzèæ”ÓñpØŸÀã‹o×ý!§T|>)úÿŤ2,¦Óvf¡ ‘F¬% õ:ÝL;)ß–5à$ëXçíþÛ÷(m¬^µm½±¡CÑã¬Úê†Uû$¦Ž´–ÒÒÕp­¼xørçç´s[í|:ùžQò½»¬ãI¸³(Ü%<&m‰&ÖÊ‹¯¶ö_n'ÑVØŽ6\tú”ñåøÃE3·DUŠ©³˜ºSøÄ%™RÎEŒ’å;ÖÖ^¦½€þ\ ±Vþðywïóç_öw÷¡È|…—?¡kkB!¼l, yS—ù\“ùªìdò•KgÜ6Ð¥'ºzÔ”hIÒý}t2>((ÎÎ dúâr¤BËñ¢ĨvÜêO‹ø¡dá¤ÓR]±‹_sv“iIL3…5y¯_5 ½ÿ88-/¦t[o© n"Þ=CtˆÛ.ñÐ$üœ¶]ŸvgÇß!í»¤)br‹9m½>íÎÆºM›®/ÞL\Έ‡üÄÛ;Ç.qÙ%N»‡9qaçÄåúÄÛ{».íoÓ¡A›6 µÒÍú¤Ûû®.i{gÒn}Ò‹{¢.ùS-­K3§­wWýu‘ßh‚ü¤¦îïaóÎ’Ü¥.o¡Þ]­O½»jv©ß=ñ>õÅ¥¦KÁñTÓñ¨Q _Ý­Wº–¼À}ŸŸÒúkZõgŸÛéúpœürp:]"¬.™U¢ª{4Õ‘t=áøìböô•þ¦©®Õ±°dÆ›ër8Ѥ¨VŠTCWŸc£–³ž8Àöƒnê§»"LV®5ã³ ³·“â;Ýšnª/MõÔ販µÑ^Ó]©ñÔ Ùdµ-Ç#›x–ðSíkO~ß@#ì"šPc±7 ÑM$rÉL«b9’8±•h·#?ÙŸ<Ý/û“rƒþ6‚ Þ¾.¬e·SnÐßJt:Õ]úètê ú»†N§Ù ?Vˆ.Å÷—ƒ²ÃE ô¸Ëî\•ØR[± ŽŒh´‰ßhªÑ ¶9n7èï(:,Õ”jÈÊÿD‡ endstream endobj 127 0 obj << /Author()/Title()/Subject()/Creator(LaTeX with hyperref package)/Producer(pdfTeX-1.40.13)/Keywords() /CreationDate (D:20130531173757+02'00') /ModDate (D:20130531173757+02'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX, Version 3.1415926-2.4-1.40.13 (TeX Live 2012/Debian) kpathsea version 6.1.0) >> endobj 122 0 obj << /Type /ObjStm /N 5 /First 38 /Length 234 /Filter /FlateDecode >> stream xÚm‘MoÂ0 †ïù>ÒÃH4P¤ i7 'Ä!¢ŠmE³ÿ~N?PÃ8ÙyüÚŽm1 €J‘M@x_(±·"aYÆøZßL ÇQ¥/f<`šRâFµ9;[cŒ@†D($2Ä%„Tˆ¡™G'ÆWöfݰí@ubóyðµ>4‰@È׃àÀÖXÚœTØ6¦ÁãÎbgÿÕ[”ç§ïî}½…©IæJy=Ü?*üK;}-/Œoi&Ò`³%Æ7¿îj‹†¤-ió×hž^ÿ]æ†jÓ‹)­2ÅgÓè\]·?KÅ}‰ endstream endobj 128 0 obj << /Type /XRef /Index [0 129] /Size 129 /W [1 3 1] /Root 126 0 R /Info 127 0 R /ID [<34B22238904157CB2735381D62FEE21B> <34B22238904157CB2735381D62FEE21B>] /Length 317 /Filter /FlateDecode >> stream xÚ%Ò7NCA€á™‡IÆ$“lrlc‚“sÎ9™TÓ"½K  „šš q.Aþ‡æÓ/Íjµ+ˆÈ¯#âˆ:µ ¡üp Á)¤ª! é5p™p Ùà….8‚ðA.äA>”ªH¾=¨ a v`–` 6`Ö¡V`J`Pe*Þ[»>›° åP •*þG;RõÐ u*Uß6h€&A‹J(bƒVh‡0´©D<6è€NˆAD%~gƒ(ìÃ"tCôBÄ¡`0Ã0¢’xµûFU®¬ÆTn’Vã*ï^« ÕÀ¥Õ¤êàÿ/§T÷>­¦U¯}V3ªÏ/V³ªÿ_˜Sýy²šW'øfµpçp‘ÂMíUø‹#.Ûä²M.;äzÔé¼OM£1ù '*G endstream endobj startxref 143410 %%EOF foreach/inst/doc/nested.Rnw0000644000176200001440000003250012152141726015356 0ustar liggesusers% \VignetteIndexEntry{Nesting Foreach Loops} % \VignetteDepends{foreach} % \VignettePackage{foreach} \documentclass[12pt]{article} \usepackage{amsmath} \usepackage[pdftex]{graphicx} \usepackage{color} \usepackage{xspace} \usepackage{fancyvrb} \usepackage{fancyhdr} \usepackage[ colorlinks=true, linkcolor=blue, citecolor=blue, urlcolor=blue] {hyperref} \usepackage{lscape} \usepackage{Sweave} \usepackage{float} \floatstyle{plain} \newfloat{example}{thp}{lop} \floatname{example}{Example} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % define new colors for use \definecolor{darkgreen}{rgb}{0,0.6,0} \definecolor{darkred}{rgb}{0.6,0.0,0} \definecolor{lightbrown}{rgb}{1,0.9,0.8} \definecolor{brown}{rgb}{0.6,0.3,0.3} \definecolor{darkblue}{rgb}{0,0,0.8} \definecolor{darkmagenta}{rgb}{0.5,0,0.5} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \newcommand{\bld}[1]{\mbox{\boldmath $#1$}} \newcommand{\shell}[1]{\mbox{$#1$}} \renewcommand{\vec}[1]{\mbox{\bf {#1}}} \newcommand{\ReallySmallSpacing}{\renewcommand{\baselinestretch}{.6}\Large\normalsize} \newcommand{\SmallSpacing}{\renewcommand{\baselinestretch}{1.1}\Large\normalsize} \newcommand{\halfs}{\frac{1}{2}} \setlength{\oddsidemargin}{-.25 truein} \setlength{\evensidemargin}{0truein} \setlength{\topmargin}{-0.2truein} \setlength{\textwidth}{7 truein} \setlength{\textheight}{8.5 truein} \setlength{\parindent}{0.20truein} \setlength{\parskip}{0.10truein} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \pagestyle{fancy} \lhead{} \chead{Nesting {\tt Foreach} Loops} \rhead{} \lfoot{} \cfoot{} \rfoot{\thepage} \renewcommand{\headrulewidth}{1pt} \renewcommand{\footrulewidth}{1pt} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \title{Nesting {\tt Foreach} Loops} \author{Steve Weston \\ doc@revolutionanalytics.com} \begin{document} \maketitle \thispagestyle{empty} \section{Introduction} <>= library(foreach) registerDoSEQ() @ The \texttt{foreach} package provides a looping construct for executing R code repeatedly. It is similar to the standard \texttt{for} loop, which makes it easy to convert a \texttt{for} loop to a \texttt{foreach} loop. Unlike many parallel programming packages for R, \texttt{foreach} doesn't require the body of the \texttt{for} loop to be turned into a function. \texttt{foreach} differs from a \texttt{for} loop in that its return is a list of values, whereas a \texttt{for} loop has no value and uses side effects to convey its result. Because of this, \texttt{foreach} loops have a few advantages over \texttt{for} loops when the purpose of the loop is to create a data structure such as a vector, list, or matrix: First, there is less code duplication, and hence, less chance for an error because the initialization of the vector or matrix is unnecessary. Second, a \texttt{foreach} loop may be easily parallelized by changing only a single keyword. \section{The nesting operator: \%:\%} An important feature of \texttt{foreach} is the \texttt{\%:\%} operator. I call this the {\em nesting} operator because it is used to create nested \texttt{foreach} loops. Like the \texttt{\%do\%} and \texttt{\%dopar\%} operators, it is a binary operator, but it operates on two \texttt{foreach} objects. It also returns a \texttt{foreach} object, which is essentially a special merger of its operands. Let's say that we want to perform a Monte Carlo simulation using a function called \texttt{sim}.\footnote{Remember that \texttt{sim} needs to be rather compute intensive to be worth executing in parallel.} The \texttt{sim} function takes two arguments, and we want to call it with all combinations of the values that are stored in the vectors \texttt{avec} and \texttt{bvec}. The following doubly-nested \texttt{for} loop does that. For testing purposes, the \texttt{sim} function is defined to return $10 a + b$:\footnote{Of course, an operation this trivial is not worth executing in parallel.} <>= sim <- function(a, b) 10 * a + b avec <- 1:2 bvec <- 1:4 @ <>= x <- matrix(0, length(avec), length(bvec)) for (j in 1:length(bvec)) { for (i in 1:length(avec)) { x[i,j] <- sim(avec[i], bvec[j]) } } x @ In this case, it makes sense to store the results in a matrix, so we create one of the proper size called \texttt{x}, and assign the return value of \texttt{sim} to the appropriate element of \texttt{x} each time through the inner loop. When using \texttt{foreach}, we don't create a matrix and assign values into it. Instead, the inner loop returns the columns of the result matrix as vectors, which are combined in the outer loop into a matrix. Here's how to do that using the \texttt{\%:\%} operator:\footnote{Due to operator precedence, you cannot put braces around the inner \texttt{foreach} loop. Unfortunately, that causes Sweave to format this example rather badly, in my opinion.} <>= x <- foreach(b=bvec, .combine='cbind') %:% foreach(a=avec, .combine='c') %do% { sim(a, b) } x @ This is structured very much like the nested \texttt{for} loop. The outer \texttt{foreach} is iterating over the values in ``bvec'', passing them to the inner \texttt{foreach}, which iterates over the values in ``avec'' for each value of ``bvec''. Thus, the ``sim'' function is called in the same way in both cases. The code is slightly cleaner in this version, and has the advantage of being easily parallelized. \section{Using \texttt{\%:\%} with \texttt{\%dopar\%}} When parallelizing nested \texttt{for} loops, there is always a question of which loop to parallelize. The standard advice is to parallelize the outer loop. This results in larger individual tasks, and larger tasks can often be performed more efficiently than smaller tasks. However, if the outer loop doesn't have many iterations and the tasks are already large, parallelizing the outer loop results in a small number of huge tasks, which may not allow you to use all of your processors, and can also result in load balancing problems. You could parallelize an inner loop instead, but that could be inefficient because you're repeatedly waiting for all the results to be returned every time through the outer loop. And if the tasks and number of iterations vary in size, then it's really hard to know which loop to parallelize. But in our Monte Carlo example, all of the tasks are completely independent of each other, and so they can all be executed in parallel. You really want to think of the loops as specifying a single stream of tasks. You just need to be careful to process all of the results correctly, depending on which iteration of the inner loop they came from. That is exactly what the \texttt{\%:\%} operator does: it turns multiple \texttt{foreach} loops into a single loop. That is why there is only one \texttt{\%do\%} operator in the example above. And when we parallelize that nested \texttt{foreach} loop by changing the \texttt{\%do\%} into a \texttt{\%dopar\%}, we are creating a single stream of tasks that can all be executed in parallel: <>= x <- foreach(b=bvec, .combine='cbind') %:% foreach(a=avec, .combine='c') %dopar% { sim(a, b) } x @ Of course, we'll actually only run as many tasks in parallel as we have processors, but the parallel backend takes care of all that. The point is that the \texttt{\%:\%} operator makes it easy to specify the stream of tasks to be executed, and the \texttt{.combine} argument to \texttt{foreach} allows us to specify how the results should be processed. The backend handles executing the tasks in parallel. \section{Chunking tasks} Of course, there has to be a snag to this somewhere. What if the tasks are quite small, so that you really might want to execute the entire inner loop as a single task? Well, small tasks are a problem even for a singly-nested loop. The solution to this problem, whether you have a single loop or nested loops, is to use {\em task chunking}. Task chunking allows you to send multiple tasks to the workers at once. This can be much more efficient, especially for short tasks. Currently, only the \texttt{doNWS} backend supports task chunking. Here's how it's done with \texttt{doNWS}: <>= opts <- list(chunkSize=2) x <- foreach(b=bvec, .combine='cbind', .options.nws=opts) %:% foreach(a=avec, .combine='c') %dopar% { sim(a, b) } x @ If you're not using \texttt{doNWS}, then this argument is ignored, which allows you to write code that is backend-independent. You can also specify options for multiple backends, and only the option list that matches the registered backend will be used. It would be nice if the chunk size could be picked automatically, but I haven't figured out a good, safe way to do that. So for now, you need to specify the chunk size manually.\footnote{In the future, the backend might decide that it will execute the tasks in parallel. That could be very useful when running on a cluster with multiprocessor nodes. Multiple tasks are sent across the network to each node, which then executes them in parallel on its cores. Maybe in the next release...} The point is that by using the \texttt{\%:\%} operator, you can convert a nested \texttt{for} loop to a nested \texttt{foreach} loop, use \texttt{\%dopar\%} to run in parallel, and then tune the size of the tasks using the ``chunkSize'' option so that they are big enough to be executed efficiently, but not so big that they cause load balancing problems. You don't have to worry about which loop to parallelize, because you're turning the nested loops into a single stream of tasks that can all be executed in parallel by the parallel backend. \section{Another example} Now let's imagine that the ``sim'' function returns a object that includes an error estimate. We want to return the result with the lowest error for each value of b, along with the arguments that generated that result. Here's how that might be done with nested \texttt{for} loops: <>= sim <- function(a, b) { x <- 10 * a + b err <- abs(a - b) list(x=x, err=err) } @ <>= n <- length(bvec) d <- data.frame(x=numeric(n), a=numeric(n), b=numeric(n), err=numeric(n)) for (j in 1:n) { err <- Inf best <- NULL for (i in 1:length(avec)) { obj <- sim(avec[i], bvec[j]) if (obj$err < err) { err <- obj$err best <- data.frame(x=obj$x, a=avec[i], b=bvec[j], err=obj$err) } } d[j,] <- best } d @ This is also quite simple to convert to \texttt{foreach}. We just need to supply the appropriate ``.combine'' functions. For the outer \texttt{foreach}, we can use the standard ``rbind'' function which can be used with data frames. For the inner \texttt{foreach}, we write a function that compares two data frames, each with a single row, returning the one with a smaller error estimate: <>= comb <- function(d1, d2) if (d1$err < d2$err) d1 else d2 @ Now we specify it with the ``.combine'' argument to the inner \texttt{foreach}: <>= opts <- list(chunkSize=2) d <- foreach(b=bvec, .combine='rbind', .options.nws=opts) %:% foreach(a=avec, .combine='comb', .inorder=FALSE) %dopar% { obj <- sim(a, b) data.frame(x=obj$x, a=a, b=b, err=obj$err) } d @ Note that since the order of the arguments to the ``comb'' function is unimportant, I have set the ``.inorder'' argument to \texttt{FALSE}. This reduces the number of results that need to be saved on the master before they can be combined in case they are returned out of order. But even with niceties such as parallelization, backend-specific options, and the ``.inorder'' argument, the nested \texttt{foreach} version is quite readable. But what if we would like to return the indices into ``avec'' and ``bvec'', rather than the data itself? A simple way to do that is to create a couple of counting iterators that we pass to the \texttt{foreach} functions:\footnote{It is very important that the call to icount is passed as the argument to \texttt{foreach}. If the iterators were created and passed to \texttt{foreach} using a variable, for example, we would not get the desired effect. This is not a bug or a limitation, but an important aspect of the design of the \texttt{foreach} function.} <>= library(iterators) opts <- list(chunkSize=2) d <- foreach(b=bvec, j=icount(), .combine='rbind', .options.nws=opts) %:% foreach(a=avec, i=icount(), .combine='comb', .inorder=FALSE) %dopar% { obj <- sim(a, b) data.frame(x=obj$x, i=i, j=j, err=obj$err) } d @ These new iterators are infinite iterators, but that's no problem since we have ``bvec'' and ``avec'' to control the number of iterations of the loops. Making them infinite means we don't have to keep them in sync with ``bvec'' and ``avec''. \section{Conclusion} Nested \texttt{for} loops are a common construct, and are often the most time consuming part of R scripts, so they are prime candidates for parallelization. The usual approach is to parallelize the outer loop, but as we've seen, that can lead to suboptimal performance due to an imbalance between the size and the number of tasks. By using the \texttt{\%:\%} operator with \texttt{foreach}, and by using chunking techniques, many of these problems can be overcome. The resulting code is often clearer and more readable than the original R code, since \texttt{foreach} was designed to deal with exactly this kind of problem. \end{document} foreach/inst/doc/nested.R0000644000176200001440000000616712152141726015023 0ustar liggesusers### R code from vignette source 'nested.Rnw' ################################################### ### code chunk number 1: loadLibs ################################################### library(foreach) registerDoSEQ() ################################################### ### code chunk number 2: init1 ################################################### sim <- function(a, b) 10 * a + b avec <- 1:2 bvec <- 1:4 ################################################### ### code chunk number 3: for1 ################################################### x <- matrix(0, length(avec), length(bvec)) for (j in 1:length(bvec)) { for (i in 1:length(avec)) { x[i,j] <- sim(avec[i], bvec[j]) } } x ################################################### ### code chunk number 4: foreach1 ################################################### x <- foreach(b=bvec, .combine='cbind') %:% foreach(a=avec, .combine='c') %do% { sim(a, b) } x ################################################### ### code chunk number 5: foreach2 ################################################### x <- foreach(b=bvec, .combine='cbind') %:% foreach(a=avec, .combine='c') %dopar% { sim(a, b) } x ################################################### ### code chunk number 6: foreach3 ################################################### opts <- list(chunkSize=2) x <- foreach(b=bvec, .combine='cbind', .options.nws=opts) %:% foreach(a=avec, .combine='c') %dopar% { sim(a, b) } x ################################################### ### code chunk number 7: init2 ################################################### sim <- function(a, b) { x <- 10 * a + b err <- abs(a - b) list(x=x, err=err) } ################################################### ### code chunk number 8: for2 ################################################### n <- length(bvec) d <- data.frame(x=numeric(n), a=numeric(n), b=numeric(n), err=numeric(n)) for (j in 1:n) { err <- Inf best <- NULL for (i in 1:length(avec)) { obj <- sim(avec[i], bvec[j]) if (obj$err < err) { err <- obj$err best <- data.frame(x=obj$x, a=avec[i], b=bvec[j], err=obj$err) } } d[j,] <- best } d ################################################### ### code chunk number 9: innercombine ################################################### comb <- function(d1, d2) if (d1$err < d2$err) d1 else d2 ################################################### ### code chunk number 10: foreach4 ################################################### opts <- list(chunkSize=2) d <- foreach(b=bvec, .combine='rbind', .options.nws=opts) %:% foreach(a=avec, .combine='comb', .inorder=FALSE) %dopar% { obj <- sim(a, b) data.frame(x=obj$x, a=a, b=b, err=obj$err) } d ################################################### ### code chunk number 11: foreach5 ################################################### library(iterators) opts <- list(chunkSize=2) d <- foreach(b=bvec, j=icount(), .combine='rbind', .options.nws=opts) %:% foreach(a=avec, i=icount(), .combine='comb', .inorder=FALSE) %dopar% { obj <- sim(a, b) data.frame(x=obj$x, i=i, j=j, err=obj$err) } d foreach/inst/doc/foreach.pdf0000644000176200001440000044405112152141726015516 0ustar liggesusers%PDF-1.5 %ÐÔÅØ 41 0 obj << /Length 2511 /Filter /FlateDecode >> stream xÚ­ZOÛº¿çS½ÔbEEJºš"ŠWìÛâÚ[^»¶¶–}ùö¿$eËN‚ö°1E ‡3ÙgFÉgO³|ö—wùßï>|²fVä™÷…›=nf¦öY•û™·UVøzö¸žýsþaaæ»üó´XÚ<Ÿ?naÜ-þýøWXïÓõM‘å˜Óº PõG$máŸümeÍhÏ:Ïœ/tÑß…Ÿ3= žÎÎÛ§¸]af¦Ìl `é²)3ïêÙ²,2_7ÌáW >ኯ‹¢†uK Œ~[Ô03à|ä˪̘f¶4UÖXËË×D²„5«?\ôga¾C*4IKÜàß~KÞ®Ðjú=í›YogKë2ãÄ´k‘ù7”ÑÍ­ê÷<.rã³e½Ë|BÆ•¤waò¬®ËÙÒ•YQ”ÌÌ,–Æåü3‰dA”#ëÃõyE‚åÙ”&kœ#Sæ ˜ÍÊŠYý"Z¡õJGÚopXÎ`øGøøÍ^ –…gKöºÍ™ÌE3:ý“ØŽ,:0«]d³’äÍ-Cçx3¯Ô´p"‹6EúªÛ„™l±,ëšÝvwAÙÛgr’d_Q„çH‡JïHANbX |!?’4Ñ¢áÖtä`TðÖ²ôlÕîw}‹8ãv(D' À‹rþ¦¶Øòó+€ÃÏBB¾öB"Àº·gÈ)~zfª“:²“SQ~4õ"û?Kà\Ë«VدÎ2 ìÉ®—¬E|â}/bâdÔFt ñÁëû±IÚËø ŠÊSXÒÙ½™(rR3»ÁħåXhÏA"ë‰ nÆû L¼ÃÂôÃQΔƫiÉÂ}@ ܽCCF¡d°™×àúˆÖÚ02Âê&Ú³"§jØ©zF\’¡4fþ†$Ï)ùhâÕøÏ‹Ä<ÿ+7¥Dóš—´ü‚øu:}†Élz §=¿z=H~B̶)¿-êýÛÛ±_b½¥}%¥¨Ùˆi,©Ou‘Þ‚UÀzmšT•`x:ð#ÚÀóCVW¿T@ÖÞQ€hvJ^p ¬ÙÃh"ãâ4Dƭ؃ŸŸ4z¾\^;Q0Åe É„ ã¬*ubw„Û¡‘«I#_DÑÈÀ®î×­ùY•‚!áZ·R9;žmùg Ÿ x 83»dÍ×…s B,÷d$RKI-¹_—ž>ÑÁä“lŸâ,Ç P òí@t­•Іv3Åü—#‹¼gì©è²ÿ"ÎÖŠÅ&ÀŸÃM0D·ÃI'`sRè¥Ä#I”C’AÜ7‰pR–måk¼É.Ý_@£Ìòˆß;½+ÆÈÍ+J£¹š«4¹$Z!ÏÀ÷Q¡³ú’ÂaÑ$A‹v:¬õ8V£D†ÿÈŠXçBkL£Ìr<¤ ûö9Â=ÎÞ@„XuyÇ#™¯¦€Y2V4–ÏÑD`ˆÒ5i„—^Å ¸NõÓ5ÈAïüC\Ö TÑFú¾¶ÕüÚ]¯€SʤD7:Ðà%$ ‡\W3¢Ê>TLtÚaé}{˜Š ‰¬p¥b‡\°ù‹îIÙ £dÊ–£àÀ+Gi¨•ôêÀt_"L]k†<°M Hü¤9tÄùVöÝÅ}¢b]80Z <õüÛªªw·§1÷)o¦w”¹>³£MØuH‡ˆ×‚Ã~÷êÃx‡Hô"zûÀŒVZ#]Jx8·0⎹ô1²ý8Hr—ÜWaí%³C]ú×± ¸t„8i²°:ÅÅáün<çB/‰÷¥t»¸”*’^®rªö쇾*ç!¬µžNª2[•Y^WõDùVجhB=R””K¤a.ºVPeöê ï%OÝJŽGB¹à5ÖùQ~ ›V”Ú%Xà¼^C……$ÄØR3Ì×@eæÀ×9+0N “ëRúm(ÁnÛ(­ÒnÌšÑ`*x¬Ï|•žó+Éñmòðò¬*J%~?ůÊ\íÓcÕX¯)–>‹¡{“£ óÿâdì~Œ£oî²\ºl㯑àg]eÆŽ"÷'Y†Û*)Ïûà©Ç˜Ô.½ÏJÔ!½SoC hj›ïö1/`¥Êl½jÓ ïÕgº•4€G{T=¾ý*n¾ÖÞf@øS3N¿ñÔKÒ$¸ÆU ¸‰«Ä*®¹,ØF|jº±‘]R|ðÌòÎÚùo±¬#ë×>3e}£€gì‘Ôý-”µâèþ¸[b"¼a*ªLvz£X˜;™¾]$ºqAå£f.IªBz^'ÙǽÈÌ8 Lž»c´„‚®7Ú¥•ÞÞÄ£ô†éNSyF˲¬îéX5†Q“j’èo.*Û¡×™*ȃcº ÒÌ æî_ß„ä|4¸¶:³þ‚­,ëû $iÏ»8¤,ø5Tj¤ÒI›#>¹Ñö‚½‰Âþ.Ÿ·GúêtøyÒˆó(°ÐØqo¥ƒ’ˆVçÓ®?ÜÀ’¢( Ã`*<öÕvZ::× 7’\W¯H¡çÑK[çnÄöýß!¶{ÙqÔLSB½þe¯ˆ~ˆf+‚½A‹ÌáÃ*¸ÀÀôI/‘㎿$è'´ÔÈñCZúš´Î(İ™ÜÔsme7œµMþ]¹!»æ`Š 8ð¬¦< Å+þ„Üd}‚(Šùg!ìÚ¤ä"1&ÚàI³I4Ÿ|æ¯dyÞ$×Ï©û€l¢I#&HnM¤}> stream xÚ¥Ûnã¸õ=_¡—Ee æð"ê²h ìA‹¶;›¢(fó ØNœŽe,g<é×﹑¢Å“ilJäáá¹_(Ýd:{wöãÅÙ›·ÖdƨÆ{›]\gÖ9Ui›U¶P¶®³‹uö!ÿg»0ù=ünKg}~±…çÍâòâ§7o]™î÷¥jt Øiã5€u{„máo¿-oZÀ&cæ,l•3<<|\xŸ·7á¼³¿\œ}:3«3“ù"«L£ _f«»³—:[ÃüO™VMSfG‚ºË¼.`Üe¿žýr¦_f•µW¾vLG¤»ïõX/l~ &LÞøýia뼃‰G~¿ƒG”ÖÍh…ϸ«[,'ï7‚¯ãñ1™Ãý‡á8‚pÀ¿É¿àßê‘ÖQ"´ð‰NçcEf´wóa"tªCXE"€œ2ßì™é¬?G¸’4ÑóAGD.4vG?zï7²° È-( ¤½4…*Š’¥ÊTQâF c-ò)™Aäæž…hrÅvS€Ö+e è 4¨‹JØíbiŒ-òwÜp ƒ×Êç¿â 2²'ÂÖsFÈÀö‹Š‘ýŒpüa¿azÉÇ †¦€wv#Ý~ k¬ÆæËøŽdÏòÛð)«_‹¶˜ºkáÍx¡õµ2…ùV7¬T劰éAè™z¡Z,K×ä?ô}ÐRjX e­ð>òx§5œûœÈñ$;K§½ª+?¶¤ÿ)¸¼Ä›`पÞE qž³Ù2?üò›6Úo¢)D°A?]‹™w<îĹZ™¿¿üž©.ëËB6¸”òÄá?/–Þ:B„›¯äàVÆ'øý¦½†áZÎ"ñD–YÄbæ…²•óÄ þ†(ac+x„Í68?#öõ·Ë ¶>l Iœä„ SsÒû€2Æ aŸöƒÆ&åC­Ü ¯Gq§Õ8·!ûD/m f-b|ZÔ–Ü h# êûIœ…%Az‡`q£ŠãÄãÉÐ`ÖðÝw²~$º* Å?2žypƒß·÷ƒOïCzx'»ŸÐ÷ÜöL oÙ Ç}wÄ´h&ø8n8¨í6‰Hs Ï»X}¡’‰k¥ýMïßA郕“j*mpW ÉÂg…rN‘}\+=3.¨|>‚Y%$ç¹ö…‡?#K~üJÄÒ"?ÁÏPÐ4¤ f„à;ñQDòO‘­ ÎÃO‚Óò$Ò7#\=få ù€´\^Ž0ùaÙ\:ãòxøGÝØd¿}¾¿œÙ¯àó %kèí%”îu$!Ê ¥ˆ$hOr=„o*þoÅxËÑcËÕ w–Z £µxLìb¥×}ù ûZÙ„¼jÅ_¨ú)¬fŠD(øS y?“xè-Wou¾ ôÎùP š€qÄ vVU>ÖK =)#Ì€ˆ"ÊÊÎÔÓšw#â"¤Á%PŽk¡Œ«Æ–s•È”j”€wÏ*~$+¸Ü9µš=sIršibn!·cŸ›ØM‚BÓ«òvغóÁ{9t¤" zVE54§•}•†ÊÒŸÒŽ&gÍFuT—ç @¢}Å#L¼o‡­i’.L@$…8ÕÒ¹iÛ>îÁÔ0”¦j¾ÉråC z@ÖË5 0Rák\¢çNÌï>´¬µ ],`vÕ“M+Ænùy¨O{AªÃZ$Ü2 öÚA×v/TìS”J`Æ\c•ìðõ=Žob1s *Ù΂J9í^iè2¾ °,…Xmèz/|¡Ï (±©°™uVª§5ÐëÒ'·oÞÖxšÒ–|P”PÓ8UQËß¹È+¬§Û÷‰‘Veº¹Q®GïØ¤?;Éú´Ê“¬^Xl è0¹D–Ñø/ê×1î<Žcˆh w!Œï áµ.î:ÊK4[œ¼Çcây{ž¤’¨ÝI£‰3ë'©=\ã€sTÐxÿ(í ‚¦ßJ"MÇp~zÄÙó¥2=o;„8òË¡“QÉ— r(]ƒ·Yä«Ö‹ÅbÐioÐ(ãFÁY‰Œ+êqŠ÷:¾©¡À¼ –â÷1‡ßˆ`")©Gš7•VM1Î ³w>ÏÌÀ•Ênˆ3©¼äp˜ ¼òËàÜAh»ðS“÷*ø‚zàï¦9· endstream endobj 63 0 obj << /Length 1112 /Filter /FlateDecode >> stream xÚÕËnÛFð®¯ØK µ6ûä#h{(ÐÉ¡hQ=8:P2e •EW¤œAÿ½³3³|(¬#$ŠHîÎÎûµC%n…?Í~XΞ¿4Zh- ïXn…±VfʈÌ8iò\,oÄuò{³›ëäÏí|aO–w°®æ«åëç/m:¤÷©,T Ü‘p hõ1à–ðÚÀsGDc¡ˆ´‰D¿ÌM–>,þœ{Ÿ”·QÞìÇå쯙\%´ðNdºÎ§bs?»^)qð×BÉ¢HÅ[ĺ^9øîÅo³_gjhzšTw"Í­T…!=¾Ÿ/¼±É;ú| ,h‰VÁƒ†ÁÓÛ¦“7Ê+}†ç<ž+¢^óQ¤~è©¶ê1-èøAà3ØÝ°ÏÔÉÄÝ7½¤§Å í¤sé™eTk¤J¡^›ë Áj5Å)ë°Ó6Ñ,“ËÄ£Äàæ&(¶jè8)¢Süp*£ªBTà…Lî8¸Çð’ó…³6ùcžw› qË=¬›š6§°f¤5KÁüªšdÜ8i[÷¿ÉÛSñ„ôÕ>û8›‡¨¾C gnŠû/Mqý¥)n¾ZŠwÉ–çcL²ý”7´<_Äæ[N²W2ËMBwÁÍ7c¥K»þ¿þ4·®¾Õo#%ó¬CݵÕqîÁ–vWCí8•%åqW®÷P—‚ #±‘ú*P˜¤»Ê6ì¨@+`Ãú ðö¯$F ìÊ5:—ûCž{JN·Ù±¢5ÞjñïÔáå ¡JNîtòba´ß¹q µ+òä>t­+Ô2‡¨ áTïÂzÂ"R$5ЭR—Cl{ü("šTdÉÛ`ÝÛó¬°yµ#3¶*>ƒ@‰À6öÌ{Úï¸C²kÉ%›¦ì©ã8í§ô äÍÙqõžÎÊNÙ Rt­¶nãlr^|O‡«P½L5Žˆ/Ñšn= àfàüê0&Eµ ˶©ØJ•F!þ9ïCŒ:†ŸŒªŽ„2{Kh]êî9ö …PGg¦6Þ°¢o”vñÒƒãm£©>éÖé©9æ d_d;v~_dà›œØûÞõIЇçªÇû:¢ûh"m:×Âïæ&È“¼bçù´Oy@ªÙ3A¡÷jN\h±Øvð œÁšÉ“zhß( `Nµi§%\ŒOvÖTjh }¿ Næ$ØpŒ£Lß!°³8—I sÿ(Hhp=@æé¦wÎB‹7º™ÏÝüå£[úߎnÝÿßùo$XC€/ü‹œøq†Ô§Þ§ ùö\ä?­xw” endstream endobj 67 0 obj << /Length 2105 /Filter /FlateDecode >> stream xÚ½YIo䯾ëW ³“érí$,€8qb+ða¬C«EI“éEi¶¬É¿ÏÛªXä°­1‚äÐ\ª^½zûûŠ­«‡JW¾úúúêËo¬©ŒQ]¶º¾¯¬sªÑ¶j¬W¶m«ë»êmýáÝÊÔø=¬ÖΆúúžûÕÍõ·_~ãb¹>DÕéÜiá=OH»Ë~¼hº©‡EƦE[Ù¦fzxx¿ ¡Þ<¤ý®þt}õ¯+´º2UðUc:åC¬¶û«·7ººƒño+­º.V/Dµ¯‚öpßU?\ýýJ—ªÏD÷UŒ­Š>²oaÏ·.77¸3,[¯¼ã´¹Y­ƒqµ±Kj!uöR]cyÍ_°èܯÖÞuõ™ÌaHÕ3ý{eÛúøŒ/m½ÝÑiâ Ÿ][ï‘ßw4fjôÏ“¼#{¯ë§62ßïñrÀeø:0×ÛÕÚÆº?ãð »ï¼A’­O„¦>‘KzdûF#ø#âŽ\”ü™¶ËRáÌ@áô !UJ†f^³ÙÈÔâ‰áœÌÔÏ*®Óôx„Ƕ«‡ ªò3ô<ÉÑ+ Åi/wb» ÏõÏqbL¿—=Ðy÷ü¸=Š £c„É;„UÔj!]þr-ÌrÄŠ:Ђ{–<_ ÃáŽbRœÙ ƒlô 8j˜©‡ôX¯Xô…sÌ¢ã€ÊŽºÙQ·eÙn›5LµÈ%ˆÈÀô…ôÃ8r =& l¶õOÚ8rBáG"è?àÈ6YtbI‘RDdC á‰Çv Ëñ)Y·d(™X–Ô×Ür’mޏëœqHƃ¸ìý’=Éf¨Ð 5Ûž%zиÀüøBáI"i7»œ±|Ã4/ÉÞ¸é£ RôÈó;Y°ã÷dÙaKA3ðè.Ç5n¦¸By(›²ŠT(Ðk/ëàVkc¬‡â^Tö‘Jc&iµ2(·)$ú¥xô¹|‡ÃŽ=,UL°iPM×@ÕtÊ7¼èIíÆÖ÷Éth©Öç,Ýñt âÆM‚£‘ÐÚ9»Ky ´\„!.rÍ€AŠÎsæÂaØß1» ßvÉîçÙþ–ã`(K4ƒŒ¯“we÷ü˜Ù>HK`ÒÅ'©_ò3 EVnEþE1…ã7—ÈM X±ÈK•ðMý=ßÒ>¸úŸ=Å:¨æ»¶þúye)a€f8¦ºDþN/¨©OµPRìŽW$Qß'/øIÂ×{mj„a$=2§T’Æ5‹ŽÊRQ9¤¢·O™Ã™H¼8@¶g©L)Á‚tL»zh17 9uNÌßQ ©O©ÊÐmr ÐRÞÏ@Úh»œfu§¬k_Oçi‚§tÈé|ŠRw>.¢C ðÊþZt{Ÿ}Å$±Ô ¼LÁÖ B­«?ðíwÀ~Í÷…ûzqÎVŒõ“Z,ð{xðû ~Ž=«•P§.y[$_OËHÀ¦›@ÁÎ+ÓuI‰/–”ˆÊŒõu»Ä%*ý«<¨bXäÏé ÈŸóJúAÜWèLk…YcUg@,›tÁ·Z¬o¦ðØhÈt‹Fkp¤…‹¥‹L58åp¤ƒŸp‰ ª- ¥ð‚³g\ói8û:Õ @róJLƒ)åBü…ú 0Pè6ͼ>`qˆ"aÔl(SE´²ºÁj†¹qVju"É÷K6wÁ¨ØÌbff­Üx÷ Îm§Xun‘¸¬(AªL?Ê”ó¬ßDåc·ØU —µs/o lÛ&–Ü6‹à,×ûyõ&(([RÿbÁ3m§Z“ƒâÿiÉ`֨ƅW †ÒNCGp*N\ “ÏÅá‚J‹mØë Å…Mtȧà êžèºç žS Åô5*̲÷•† Œ³¯…’öîõPZ@¨sGÒ`‹7|»œ\öãäâÑ„¹àq—löm1i„T z%§LšM@C'þ‹ã¸3:ÍŒž¤*¼"Ò÷ö§ÔJø\›¬Ó‹ñË7<¿T.Œ•£gPeä _Ò·‘|n2ãÙh·G:´M{ÒDcª?F/Á™aÔœ·Æß™Üóá—ÎíßMËôÐic\Ž0Çq´t„ %B*ýu”c"4±¯`fÝ’jwKñí¼ŠÖ¾ßæ1]£\Óþï0ˆÿÿc)ç»%®Î(7í¿%©û&ÃìGcø)8qja×O'.ª»S‰PÆÃDj. Dƒs«TŠqJ ^§r%#ô%XŒ4‰ÍÝQ¶/Å%€ô?/jk‚;ˆv𛣵âùÁ‡°pÄrÀ^´ÌäF \ gµL¶ŒŸ¦;x|h´,ðÈ-,]PD[Šh„ @øL3^Ù;q–ÃÝ;G{œ[§Ýäb ¦›O“pNä÷‘4¼ œá&úÓÒ ìm#8Ó(Ò8šti§æ5@e„T;z€¨ºoHmðìù|i<›D®Ö$D\P²ŽÉ-vê_€°rWænFA>¢„CfÁý àœª­ ÔI©¥R3Î_“eö¾üÊâü¤ŸœF&©E/¬8•ˆ—«@€Ú¡Qb‰=ÒÅü퉩~Ü÷ž•O™u>6ƒ8´2!±½4n\#Ý©»ßŸoΞü' 0Æ|@÷|Û'l—›gú4'Î 8"¾~\µ¹w–f¤a–_Šík0XèR¹^t¿ýl[åF<Èy‰þMKv¿ùv—{ë0Cñ’wGô—Âif?jÖùoŸù¿G±UF»Oýóháÿ2¸)üÔÜäCªŸoùï‡-o endstream endobj 72 0 obj << /Length 2194 /Filter /FlateDecode >> stream xÚíZ[o7~÷¯(2B#vx›KÑ.ÐÉ6Å¢Øm܇"̓,bÁ–”jä:þ÷{nä\LÙbmhñrxxx.9.²wY‘ýóì»ó³/_i­ïMv¾ÎŒµª*LV§L]gç«ìMþs·™é|åÝlnÏÏ/¡ÞÎÞžÿðåK[çûR5E ÜiâÈö¤]ÀŸ%”Kž4^ÔÁ$m¤ÏL•3=T®fÞç‹wa½³çg¿i -2y—UºQΗÙr{öæm‘­ ÿ‡¬PMSf·DµÍ|áà÷:{}öŸ³b¸õ²‰î²²¶ªh ËñÙÜ›àŸ¯A‚9WiWPhcPú½éü×ÂðƒúúІòå9ÏVB¶P.„|'ܾa UÍP6Ý8¥›&¨èÓŒå/•ö:P|‘âR*SºGyØŠf‘?±V"òçÜu‰ƒ¶ýÞW5òÏæFUÁªsí”såDµ *`N ¾ç˜ô jñ-Ðk›kÔÁjTn Åã¨Ë-T”Ø-ׄQ›JÌQ¡|-h>ÍŪ*‰(h‰†8%¼72–ñ—YÍš¸™Í-òå‚´Cu¬^CéöÜî þ~67eÞ.Ñìë»@7w¦@Ú¢Fç·ñŒ£”VX®i%Öÿò(Dû38’QXŒývfꉃÑÈQ¼Ušô»îF$ÅÁNÍæ•«òïq„†Ÿa/’³¿‹(8òa!ö/ Â"—GöÖÛÐ ‚’‚ý¶c|YPƒqvpǽ©-èÂo,õW)ŸåG¾‡!Ø+2âQÅÂ}#î¾ë]}чõEðzjý­Ÿ¡ü‹ n¿­û?¸Œu—àh¼*|õt†Ÿj¬VÞ×5b2Z´Øãaÿ#JtDo´MtNvøQ׆B'±~UªÚÙ‘V*̵*mÄæõýøg?¶¶Î(ÃNÛI Añ´g’Ås6á–±HBè»Ê>pÆëÚ) ¹ÁGò•*ª'ÉÅÖF‘»G•+ê_£uÎþ`½VD¿‡9‚—'¬‚š.{£$¶¾ë¢)ž'-«t5 — ŠÂUŠ›-TeìÜjÁXŒ…”„jLñð{§Jƒ·¿`ßà…¶³èhyqr„w|€Ë,Õo7‚Á×Ü^.†íº7Õv@ÏÔ¾á#«Ç=ÿj>Ÿ•†) .x |ØØJ™jb{–v½·§ƒ­jAJ¨VìÐDà9WY8ïâÑõ{Ð)ÈùŽckB­^Éà -˜oŠü;‘ãØs]su’Dõ‰$§cG¸t\íBš!T¿ñ²]ñ°(Ð%®w)‹ŸŠ Wzeuô¤Ï€î‹Ï’HY+gÇi$P¶ ù ™ÈA²]ùIJ@«wÑÒ˜q÷âßµ0¢Ñp(£Aïxtàæ‘C`MÙt<äV`¡²6ù+6ÉP‚–›'m€‹óù5§àÅA§×"£ó˜F^B(3‰ì>îOßUÚŽ² ´a’XÁ›¡…!77® ¯ñ…<ž­¸_vì(ƒ¹’Ü’ÀÃü:L,ÆÉ£›@Xp7`° OÕ—Éù]µB}ùWý’qëF•õä~Ó_Lp»äÇa’y$”€Ä± ¶®–7‡jߌhìwz~—¾›~ÎÉ7 ]ôA¬FÁQ‘zÔpªÏ)ž#gCû¾ékV‡Šu žÉN½Œ]Æ< ¼÷ªúè î›Ñ)å ê\ñÊ OLˆÑÀEk|T=%\æÎ;U;=Noâ½UÇœ ±" …©ãKÔK˜ó-þë?X(d^äßR6‚Û—»Ü¡0€Ÿñ[‰“ hä4 ™8ôA¹O€|?¸úa›ƒZxµˆºíòfå!_¨ô(ëªÀé‡Þ´ÃݾíBž±ˆ'U$¢àåWׄÿ¤¥QE1à˜´,qYgSïØ8àbbÕöM¤¾‹GÚå~ð(¶K©žÄŠ 8~×€±Û ƒ]/MˆÝDe0ܵ¿ ˆ²™h€ìŽ8S Îlz9cÕòvd±(r—m×nF•Ð?DJd3Ñêp=`u"ü†ê{‘ü0t[1àÜ4–4³§-?òF!±}%Œ0YPÈÄ[u5‚- %áÞ‡Ï*]7Ìèº~†¼áVaZ¿ôw¬úgKýÁ 4z-˜Nût<¶_óï1„—,ÁP‘PîDŸíóÞ(!|\ò+è{@ˆïµýýĉ“ø8 Î<¤ŒÎ[Œß)Ýøhf“Teþ=+ãY¿þ‚-÷Ñcƒ‡±RWÌ-ý-k²×…áS1½Z,_rY>y_Ô¥*½M_#åbt~-¼ ñ*I‘Wá¹ìWòÓ7ôR^ö$Øè‹é½9S¡»büo„é?5”µÒ…}êÿ4$þÃSîì2‰·oxë~ºäqä»G endstream endobj 76 0 obj << /Length 2109 /Filter /FlateDecode >> stream xÚåY[oãÆ~÷¯àK°R»âÎdÐØÙ"AÄy(6û@K´-T–vE9^£èï¹’C™Þ8- èÅáÌ™3ߜ뜑)n SüùâO—oÞ9[X[61ºâòºpÞ—•qEåBé꺸Üï?õÛ¥]ìá¹Y®¼‹‹Ë[hwË—ß¿yçS>?¦²1 ¸ÓÄk ;‘¶…Ÿ5<·£VîDŽ$WYm;.Œ±ñ´GQáÙ ó®Û0Ÿ“ð»Z®\Rd9Ê_pJ‡ÆbS¢Þµ(/°ø å'Í2z-i-`£ÍÒ«nªÝžÖ9ìÉø(}ñ6Åë†âXZŸV®ŒC¼‘CãSv€ÜŽGDM".MX·aç ÞCá–®ëG܉§ýòºVÍâ*ó„£T^Y]{ʪ¿ÁrµøøB½%«|æ×€rõâzº•Js;(~œr7’…±ÌÖ[mú”UäRGü'9xiSúÕjÚŽù”ófŽ«·¥wîåLç‹l)¬[ÉtÀô<Ó ª˜‹R¾¿™—£(M-GK‹Õs 8Êjç!¦› ElÉÕùsCA¢—,Ÿ; Uدáç—×+h¢ºK¬lê$÷+T@6°€ÿ´rSP!‰Ã¯ GWäć#NNÃäz¶8l’XŒiM5gÖÎÍkte„àÙ< ¢ lD@ °£F|„ Šdá\ÎØ“¥ Ð@êÔ<ÎÏ£í:eÐ|XrF$gqÔW‚ß„3É™ZvÑÐöÎ%çUä‡Ã³àÂsjN~€sŽG+ÅïÏÀUVÔZ#¿ϵnT²´½øîg4*7i(» zÀÉÏq6…þ{:”\KìÁjÊZÊmÝž?6z’ÚeáFó ¾wzçr#YVhq¹Ã}~ #kkkÒx6i9_¤àß=© µ%¶Y–9`òz`ù¥‡2Öó§ ¦"yæNæ†e )9{ÃåòjØ: ¬ }GÊ>|šóÞ-ZDêí&ý¨%ÎÞjlxüJËO¬ =žé¨ïðqÌäg× r{œóÁ[ÆO“õ›j/ì“,°Íóª`o3)óú×SV¯˜io>èŽF!ŸÝZ>'`º/Ÿ¦—XÂï&ƒºÏaÓÕúƒ-“^Mì ŸŸÜ¯Éý×Nn¯ôXñö Œìq jÀ‰—b|%#í*¿v¤N òº—“š°:Ü肃¾ônLnßÔúñ¼7\ýµçç?'u5ßxáÕ>þ9¥ÿ.ÿIõ¾…àñÂÿ¨fþ–ƒW‰WqÑÃK.ÑÒù’ÿÜq@ endstream endobj 80 0 obj << /Length 1459 /Filter /FlateDecode >> stream xÚÝXIÛ6¾ûW茌©‘")©hz(ÐÉ©‹{JsðØò‚Úž‰å‰3úßû6J”£‰'hm´$êm|Ë÷žœ%«$K~ý0=it¢µªœ3Ét™˜™ïFoÞfÉö_'™ª*Ÿœˆj—¸ÌÂu›ü6úe”ÅG÷eÏt›ø2WYeØŽïÇgò´!Õ:=ÂR°Â3®¬?2—ÁEÃ2°rÞÒh,hšh«¬õ=‰øòPNø–üë r;oµòqë¬í#–]Gfa}ÃBçBq/ÔG‘€–fÑ"k[.%ªoEîèÜ‹i/8€E».Ï ‚mÔ¯˜¤ï]¯´ ×C2¼2Þ=YM?“8 ÁÏxkFÎÇLUÎ8‰;‹Á@òB¸r«\%iÿõv<ÑÎê´R⮪€O? Jçé½—«àYQ((&:ƒ ÖV2'#&CœHŒ¯Kb"áøÂáOáHÕ@¡àAú6R%n(-἞‚M*ÏïÇ ¢Æ$yàÒÝ =fÃqKA¥}Œu½ õú0. f¾i‹.¤ÌNâ[Í.­ßI®áÞû±³”²¤aF™ìH¡"æ£dxÍT[á¹E–S;ÑÊ­UY‡5'”† ÛzÈuà4oZŒaÐz{·ß¥Û$¯ LÙwøWDwöâÐÈ=ˆsçýr¿€6›OäfŸ¡>IL6!v¼-êZYtzóqHÃ5VR¡*;×|¹€n7ˆÿô¼›žøÇ˜ñÝ_ŸÏÿ1Š2‡±¥Ô…½‚2`†Ý—რo¨^j¨f¢ ˜»— .ª|âi¡(£:𠮸º…IùMqËš´‚ÊlGŒÐÞæGÑŒBøªt/£i¢X³ý«:´´ÃL ¹nÎ ¦c½§D…Qh=(#¼ítq´ée4˜ËAN/õ•Ø.*›Z„mƒ H¹ÁžŒã´æÒ°t ð‹Àû_Ìnâ;‘àóòÓQ‘NViZ¬ï0yFÌ Yá䍸ÞTxx¢c†î “7´nÁ?’þÁ¬Â}úç•òÁŸôÆè|ÑŽ*S:Ó±Ç^k ©¸2È.u.w-^ö¿]úŒ­âü2¹nS¢9²‰ã™TÌ]WHP#-%w¹ª¬ïÏ*Ôë*ã @_Xßbô>’Ïd¾Í™UoÉÅuh1%:.Û.¬ø¸ë :°õ‰éHõŠ/çs2î5aN~j´xê6jˆ¥=k$ÇHo#CÑMŸa ÜïÛïa¡¥Ô@!Ñ ù,ÑÈŽ›èK[æmÿ„-¨ÐÎÚ.±}¬¹¾_ø\øCíü9_ æOý[nàŸH¸À,f€9í*¶¦8Wù7—YžÚ endstream endobj 85 0 obj << /Length 2233 /Filter /FlateDecode >> stream xÚ¥Y[sã¶~÷¯àËÎJÓC€/™¶3M'ÛI¦Ó´©;}Hò K”¥XG’×ö¿Ï¹ DÙÞìƒM888÷ó*²Û¬ÈþqõÍõÕW­ÉŒÉ[ïmv½ÈlYæua³ÚºÜ6Mv=Ï~ýï°›ÑþnÇ“ÒúÑõÆÝø—ëï¿úXVé~_åmQwÚ¸²Ýi§ðoKÞÔ?ÔÁ&cuӿǶ1= îÆÞ¦·zÞÕ·×W¿] -2“y—զͯ²Ùæê§_ŠlóßgEÞ¶UöHT›Ìžëì¿Wÿ¹*RÕð¨sk€ Šî²ª)ó¢µ,‡OŒ±ä) ɳÇküëh0)k?ú†Oø>{8¢•vÛ! ‹l†u5sþ29’5`ÃÙ5˜æÄžÜP¾=}œ0›’ó&¶­G7ð¨À’ðÒ€N4‡çºÅë„33Ö¦QH<gG^]Ev+ÑãÀ wcÛŒe ·­‚j°pü+lP\¤`uää{xøÑŽÀ=<½ƒ÷“ÇÝÖ*!Úò‹¬u?6ƒ/›¸ÊåeÕfãrçðDY¦k ¢nÍtdì ü»;Åp[1^>†c‹Ñõ¸ 7ÂðmÔñÜTmöÌïb3•J,®âY>ÉI;9Y”èž½ŠD²ÆE†-¿®tè.h)Oô}Éi½–ä-Ï(/$½,i?L|J´bƒ¢í 1zÅFWóš:Øß4Áþ†ã¯SÈ£ƒ!ӘܵN½ÿèæhŽwC‘b›¼¬C2>®BðµUöœï½ZhðåÇxÝ„Ž/‹Ñ7¤”„4S¯ÂëÝjl)fæÑ0üMü¶Š±Ìô ѶíE-“Ì\4ȯÇ$d¶}»/ÅÎ"ê#Ò½‡‰àO P·å|25To3äÙDˆgŠÑq)ñ´G^­ã4v×¢9îx/RM(xø²AAÔKždíâ\upEƒ †”Ýì<=! ·Á÷2$Eë.¦>¥uU6£/Ÿä5ý´–³VsHw¸´š˜‰$йÈÅÈú–cZß©*<È%~F‹|ªV œØˆãöRÜ«h¬NjUŠUµî%Ë 9M½¤é´?J}è4Ú;ñ'oé+ÑX¬J¶.å$Œb·’n#Ã#3%ï…n2vH…; Y|1ÕVŠUÐ&ñBìÞ‹Ó`a+g]0¦Êþi줗d F˜-C”Z—¶…šbæD¤Ük݆q”©Û3ah†SkÊo`'ªDe¬D¶T#‘:Z…`|Z/pC¬,pZ(,¥qÃVØ+Oy.°ê,çL¬gýåøÆÅcßBbø ¡> @ÄäÒ˜Ä}Tsá¹NJß-iø!2Ž.en‡c’üǃîø RîbްgÎ÷çµ7ç‚(P‰«i:“7N1,™7Ù)æ, Í|C-ÛqÁEK¡<ÃØÖ¶yéÜþÕ8JNÚC(8A±¡ÍJÄþÆxí m¤áº&Ã- á“Óv§´/÷¯áÞÕ&Sg²Oùñ¸V‰~4ÜQ™A$×B[ÜžCCÓ E‹!ˆ“ªzø@bŠTT`þ4[Lérã… OC¯€"€‰ÿ¤„R”/c*/¦hÎ#w†!V’²ÂïùÕ¿fŠªI)&b°°Ÿ€¾•‹ë_Çç‰ &< Æ“±=ÌèçÂÉ•G{Í".aFòS†Kò4§+©3}O ç3n%äÙú–§¶Aö}­ÿ7…ò²XÍû,hM›Î_ÍyþÅ›–,lÌg_µ|^—veWA…Ô'q"žT|"!¯‡¡Ãºn΋Ç?IÁé[k«ÜÙ X,TZ¢?¾^k`áÛ×ÔŽcW™ÜØv0Ž×Ž7 (åùÜܘ‹Z[Aê6SÙßUR׿ÃÊê¬ø!OSØ|iR+# gj?*ÆÂiÊ3ñ±/8HÀhta¸QItÔß.¹“¥lCjQ²u,a®ê•0 Ië®H}vM'ìä¤}˜p7ò‡,™VôYpn©m@/µ _TP¦¦lÄT³©Ð’ΧðÖ¸Õ!EZúaE/ü;‰µÞUêÞ¥‡=ô ý,µgš{9ˆ º }£ xáz„Ò\þ^µ¿-ý—%¢&~qÔ²=ëwzùzc!·N®›‰¿&ÎWý+‹„‡kš^h9ï_©"Ææ¶Ud«}·ë†T(¡¿Õ¡çRVߊP›äCǺc<Ç"c· ì„ÑÐûq.Í‚v)­¤‹ä0Rœ}vQ#ìts¾I\›Ð-ã+{J¯ãg¨ýÔJà‡&/›‡ü±(¨ó&~ná@ŸørôkGp wiOÁ¼}чϩ¿,6{R]ü´Ø/0”`gµÌp-3I„Ÿ^ÏÅÏ óá¶Ž;{];Ô¹ë¼hCK ù(‰ÕØÜ×õà:„ÞP}Оܘ†ÑUFšŽ5y¥<ΰ²Ôû]3§Iɤ‹Ut1¼þ\'åïP¡ œ<åÜ%´„nîxâmß̤zؤ½ï9mOáâ¤sG€šþ6A²üý%y¿ïKE”0Ý’Íåô~â3ï—Ö‰qz—ÀwC·›?ÁÝÔ×·‚Ù?(¦ÃKöš©³OÒ¨è»ðï!ñÈércù¼ºtšxã@`x”ACãèÖ3²ðüŸÛf’u•%MƒšM•¶íKvñzÏ[åÌöüU ÞÒq=¢}ͪ¯™z¶f Ä ­n5ë}âN ¯©N„ø¦ESÇÍîDŒcpÙAOs)ªc¤WÀ•}?"Û]Þ熿{LéÚ7UD$ß‚m¸Ê]çäÛnNn8´Dh,@11„¥ß*õÇÆÓß,+€,Þø“åÀ¯´ðÈñWK_£eE›Ó#kÆÙ÷ endstream endobj 89 0 obj << /Length 2395 /Filter /FlateDecode >> stream xÚ­ÙŽãÆñ}¾‚1°°„Xí>xq€$ÈÆk†ãŒ›yàêØV—Eiþw×Õ%J³äAb³º«ºª¨³™Îþ~ó—Û›¯ßZ“£š¢°Ùí"³Î©JÛ¬²¹²uÝβ÷£Ÿ»åØŒ6ðû8ž8[Œnïa<ßÝ~÷õ[W¦ç‹R5ºètpÛ¶{ÜÛÂß~÷|¨4‡CÆúC?Žm5âý0ø4.ŠQûÑã»ùÛíÍ/7öêÌdEžU¦QyQfÓõÍû;Í`þ»L«¦)³GڵΠÃs•ýëæŸ7ú2ëe­røsJ7–)¹×@ÿxb›f„\I ôz ^ÌÓP´-ãê†ÈjWð·"úùùnÏGÈÝœ¢hç¸>‹Ð·¼B¨ SËò¿ wkrUäA†oÖþÞ Ét[Tß+ô|L‚'ÇÄB'‚8£UæñlçlˆÄ4ßm*£rk_o-E¨G,(îÃRPnðL6É6 d‚Éó’7O[Ñéc6D“³Ê乇®:QóITúqN «¨•uþ hÐæ9 çŒ4¼_ö£J›¿V"…jÂo{gÞÈ‹€¼M÷è¡?ñìüIKè».Š—–7bÐ Dr[xf`¹ÞŒ^bÜæV¹(¿½·x²â5üÞâ`ÏÒGÚä0ÉV¶4¢ôâ%8[’% ävÆÜP|WÆáVD0c+¦9ïžpéy¿éQÌ]àvø>½Ýâ˜ØÝó¸¶`X@¬};'ñ~)QÎ%ÚÀ×+‘„Hy@!ÖŠì,›²Ne£3ðrU†…ò§ñ¤°ŽÀ.xøGNx¸™ìW4>3ú.´\‡d þ¾IÞwq«…_?ͱä¼jâŒ^Û$¶nØ×Ö0»„â൲­#P$€©Û7¹*Ë`~_‰°T¦èÙ§àŸ%t½=]b«}„U¡L•6>’±ø&Á˜Zlj{50WõãÞïÇSTæ•T >E?Çá%š'ò‘>Ý'¬g†QÁ[-ïþkp2q8yà‹q#°4)LôÂÃaæ™gdáù+~nCód=¼£ËºTÚ6}ÊnÑõwìÙxt+®Àö¤“¨ZNH¤ȯi÷%ÐvÂÐ÷-§>¤K@"\©ê²éÇÂð’'ÿ™Cp+d‚Æ:-ñ\­Ù¾Œm”Î]Ÿ7»U}hHB\¶â¯+Võò\J&sr'ááä¾£%$h·Ÿ?ˆ ìЀdõCÝ; È•%hBåV²Œ¸;yq®7ã§ÀŒ`ý_Š qƒp™¦Ûµ8£¿b¾Ìù^%öÉúÔ_ ._„n»ágËRùÑÛ…{š0E;×|ñV¥qÛÄåéÃ…û„»wQKÙ·!Dí$ÖTçgW¼«]¸a8‹C/IÓK›}=ºdp™N—"ŽÕ¸û“еº˜HhÌþ+8ŸÌÃ…¼3‚çTnBAó<ÃPÈ'¥.}…D¤s×±gÒŒ¯„Eâí€ïvt¸˜!¹¡;Ëðw½ à,5¬T©c†}V§Þ%¥CJÒœì“d¸R¬V…µýH’ÒmË*¼o}P¢e`²…äy½~ðšëøW{É>á s÷6BÙ»­šDW=¬>Å©{‰bÏ ñ1dH‚bÆ¡ÚäÞÝ–¯ßÀ>†irÓ½ÿdÉ‚‰_D\{ïeëdŸ¡DØ;¼J%7p#R‰Âu”‰w}ÿ¢§µÇeÈ)é½MÂÏvd"ºl{ ( o»÷…_R²­ñ]K}gzeBcb8ë•T«ô|ê)Jk¤ÜǤ=eh!ÅU‚ÕtŽ*o*¹ÎùèQn½9ïMhå‚qLÜ‘JxµtIátšmãµsRôx'Ùð©y0hÛ¾±W ußF‡BŒ…ж~}\¡ §×§ Ð6ÄM—e$öà{óSâíPÄHØOC*i»y™j%Æ*˜kL!]^rGÁi(§ª.A“9ÆjVY¨©ŒÍG?ŽÄæc|}ùÙŸ‘†Ýj0oUA2íŠJ’è-Úå#¸«–hz¬ã¹Câ%O´qï–ãø'œÑt)ã“/äc9ÎÓõpI_ê¸(y0šÆE\‘R†0ˆ¹à˜ä›æl$¥Ÿùi°ùÖÊÙ&MÌvHÓ°ü\i‰y)·¡XÍ•¦5õê“Jò%äy³/º¼‘†{_ÂøfQ²‡†Ãf“dÇ¿®’$z{” ã>IL§¼|iP>°©$ñfC™Ç¯«´½âa-ø9e[›ùð3„ÙQܲ±O#h|…1¯LK Y>„06aùö4rì—1g6q…TNWNðà*»aªŒ]­ÙI¡¦¸ñí ýÑ[{4{d¶´DâS ‡+;I³pž‹C)}?F„‚•^`@d”5³æ¥Vg}ò¡Æ¾Ue<"‰ hÇПu §óºfKÂë2¡~Ýë ±fjˆÏæ¤É:õí–p²ÎÃ<ÞlB%qîoUºLî“{ÃG²Ðõà8`½¢»Ù =» 3ú^”±Oš‡«Áhðé¤*é‚"äçß±3†í´Ÿá÷CœšI#4yõ-ÏÔf’åÍ…-ß`Dðù%ÝOÿ‹ Ãÿå¾#ØÆ¼õD›gß[°þE¢gß.üâœß³Æ_ÑÇ¿8‡¼dqh¨eú@¯òfKÃ_ÑØ$OyK$XÛ$ÁlÅV.hù=±É¬ßý_tzÞ ï©ñ ”­ER—hD Âc‘e­c—ÞôdM‚Y}Ÿ°zw&Êꊕýúy&8¼ ±ü:dC¯öòÀZû+ù).{{Ãgyí«Å:ù@²éo<=s¥¹-A‹dÀïî†$ËæN:ŸŠ¾©à÷pÿAûô»xY+£Ýç~øePáàÑ0 Í)ÊßJUk endstream endobj 93 0 obj << /Length 1189 /Filter /FlateDecode >> stream xÚíÛnÛ6ôÝ_A ("a“*R"% ë ,ÃÚa·ºÀ׊-ÇAb«ó¥v0ìßwÈsHQ²xhЧ=P&©s¿Ë »e ûqôz°w£ßG‰¯zOôŒ)UÄ*S(ÇxN<¦SÍÐ"žÅY&Û×|F’§Šá -”(⢑ô”ˆ:%Â8ÛNCß„Q–ÁM Ô³ŠØm‰½³¬j-ÃÁ0¬ ZüP"ú`–á8kVpøH—¬»ÂW;<­W¸7ܽJxjíh×W`_À#Z™­öG„võëlóÉÄðÉ3ÇÒÙÐ8ÓÕGR:6Ô˜à9û†³ô=©J$É PÃýQ?f{"]XOÛ,æR@ËÏJ㪕uÑ8?é €¬>la÷-Q…O”†ÊÃs QŠþïÁò"54?z.~„õÖ”/X14øw°p» [“ýüÈÄ# ƒëOŒT} Û÷°~i¯æ°ÝcL´+O[ïõú È+"¬üL‹Ðüà 9Þþ=TI¾#.s޾"sÔÄiF¡OJÞSn|À*-‡tÛ­+"øâ g¡xÙ1q²xÚ?ž·ôÄhÂMŸÅ®Fó¦ÖDƒþ3ôî?G ÓtEríDkxl_[/è_ÕÊ›h°ò<ºîöqR:éÖ|ÓNøE}Iœö$þt‡T_¶Cò§;¤úüùKh”æ§M0‡†g#bC9S™Ñe‰¿KÁ¹Ûï}‡Ó”Ù×®ŸÞ¹$ð¦HTœ¹1Ë&Ò€:¢Œ“”ûeyƒù\IjÞ°m{¶­8'€µÑHÏfÑÂx™ú±éåfM¶0m¯vê{¢é§"+o;NH"d<QgZ‡¥>!#Óœîñ­±^=GwjÛ0¿;W5g¶¡í)¿×HJ›@ÿZjØn ‰ÃB˜(å¨O}…-\cÚ!ážÆ1+pc‰™qÍ]‹Ô I èæ dkîæ¶UCùatZ™äm¯Ô$MÀîüny2¤_[3é¾ÀIžâ .løÀ²µ&tƒ'½ïÍ9.­nl謀ƒ‘Á®ñ"UÑF;;KV;× wéÊóàš¸˜Á¥µ¸^¤KWèÛ*Oc™µ€ŠœsƒÐiú zÆ)èHLà üiܽ_¡Ëò²Ó8rgí×ïÕ[UÌÝ\=#)‰q^fÓ¢YáÒ.ÒD>Ç wüBÚûtïÿßì> stream xÚÝÙn7ð]_±/†W¨ÅðXîQ4}PH‹ ‡pô H+Yб®$Ç6Šü{‡œá’+Q¶R¤}è%.9çâ y2OxòcïͰ÷êZŠDVi-“á,‘J±‚ˤ“e™ §ÉMú~·è‹tcÞ(©Óá-ÌëþhøöÕµÊC|³Šç@Ý"άÙØ1üL`Ü"R—iHB:¤_ú²H&˾Öéxîøõ~öþì €å‰Ht–¢b™Î“ɺw3âÉÖß&œUUž#ûZfŸÚüñ„+«ØõÅ)çvþc䀬±3x¯ÜŽ!K€ƒkñ‹oy þL8í¨â(‡¶—¾#ðã_Ãô=Œw~ɤ ÙýdD;Œì`{sä56 ~¦AhŒP˜+ ìê_1•C$t!°Ðk“±H}¹×ò‘˜.È*+ÊŠ>¯¼¤uT±Mt×hä¢ê”¸P£–Yæ’ÕeÌr&´˜ÄˆäLæúl¸wv–4Ÿ“¸»S"š‰âe‰E§îŽš#Bóè#.áÅqPª“{Kó§.Õëo(Èè«ÄÞ±wÂí™8û|bó¸QÑÿ¯F%ÿ}V£"¿V£"þ½F%o°Ÿ¹lKV/æ¯nœ›F¢ ±DU1¥\°…Q‘d¨<¬Kȶ ™z žå¦%“òˆÛO1ñg•wŠÐ9UoL§êgÔŸ MšHÉèP¬FÅ!Ês%ID ™q&!7w<â1vvÈÐY›¢MŸ‘É O•U§&W²tmVnÛï™°?ˆ$¤`ºgúAÉÀm¬½éÆÁ }…’-¨G”e«–¥n‡ Ø<»ÎGúÊ1> stream xÚÕÉŽãÆõÞ_A†BFt­\ŒÌld’1bÃŽÛ§ñ8lv·`-=¢ä!ð¿ûmEÙT/@.9P¢ªÞ¾Õ«'•Ü$*ùçÅ7—_½3:Ñ:«¼7Éåub¬Í e’¸̔ery•|HéV ná¹Y,­ñéå-¼·‹—ß}õÎæ1¾Ï³Jå@¯l·GØ>xniÌÔ’6éÇ…)R†‡—ßÞ§õMàwñË‹Ï`U¢ï’BW™óyÒl.>|Tɬ—¨¬ªòäž 6‰W¾×ÉÏ?]¨Xu4ŠÌh ƒ¢»$/m¦*Ãrä‹¥ÖÆ¥ÿFå;x |áÓoQ© |Üí[Ô¨Ýâæj‡&êæÔSɬê &ûþz±tZ§§…)SD:Âó ²ï]£úÈY¯á©÷¸¡ÒûÉv¤ßüÚãýxê·AÆ-ÃÜ mäuƒ/x` ŽEkÙæ%–ÿ,Ãv³0 .:1Ÿ[Â…ß¿£f"Ñn±4yÚ4G‚”¼„ßñë ñØ#½êÃTÏ™˜ûj—9ç_tEæ ‚îNsK[êÈ„¤›á ÷;èvbÏ6HgL98¥–8*BÐpG˽UÈ´p%Ô~UÚ¶¤× ,TPÛ=s'èiplI\ú‘¬·™’u½êÐÚ à„øÝ~áøj7ÚU•åe !D²ôJeE.>É%è·(ãÀnP<ˆ'[U;6·™µþ¥Å¤Èr]<ǯžv0ä»ÿNkdý8r3³ÇwßPòófS¯»%콌rPd{琢…}L•éÒö°!¶H¡[a‰J ûª-gá*. RÖ^óëÈ P®œËJgÆ>Š~0Ù‘³3VŸÂÙ©<½åfƒ¿}øwô`Ah·qŠ`mBË#î‰ñ6¸pŒ”Åŵ`þª ¬¤H€_µu+Ö,/Ó¿ðbC…í(…¼e1™?gÈõjÐ(0å ñdq>‚¹oÅád†UÈ=ä– …Mß-JC¤÷dc51î—¨0ß…zÍÇ-GþÑ„3cMáEkPœ¬ `CZè0úVD¼©ÅüMÛ2<8ØLq˜!RൖH7>] ì$X=‚ ¶êàL"Xë2÷ã‰PÂÚ'M-ÕX]ïDäu(Ñ÷Èùk&õ)"²´¹ÉJ¨N¾€3Ñz»XzcÓ/üõwÀ]òëu¯[n(³Ø Tذ… ¶Ýqà9«2•ãÀ»ß/ôP'C¥êI‡Ä¨ÚóögqÃjèZ~ׇ>W½¨„ }ÈVZ+šz® ˆÚ„6¿ë˜ ý«îøLåRJkȤ÷šúlYU³õ³œ‘ä3ö5]Ó†BRü˨4üwîýÜÖ|AOx¬£âsóSÚ•~© –°ys®|“Ñäºâ:tŽ×L  ­)»íIšwôîæ:ŠAïípÆè9ø1ýN(ÕÑYÛòqÿòCó$GÚþa²ˆ_rîñþKÏÓ ï›p*°A€GÏ Óc>iµ—HûhåŠÿ;½¹ÿwÖi C¿u>ΦÑT²×çŠNO{Þ?=ݧªÀg6‘ëìÞÛ'%ÚGõ‹Ì¨c4…{pGÎ4¤êÙF…Æaâ”´!ÐËŒ·‰¥1·в-.Ðõ{˜ªÂÇFÛ„+bUDÛØ9#\¨rÕd;WÒDj•Üœ)Q§"Ö‰‰­Þ:î¼p±,Md b©r\Pba²¯u“m"ŽÚk8l—0¤bç1q2‘lMÖ­æŽ23~âºv2_³f:2Â¥÷<„£¹c³Ûô×y «1žô{¸D½Y¸^‰pcÆ]šmÖ=É‘+üÏl[å+¸‹õó.4n‡3ŒÂõ=ع٠ݓ oÒo†6´8¾T©y¹¿wT¦6”@zÈÍ´íÓ{(]Ù,9Ÿq î³m|ž±K©2ýò•Íàú>¢MGÓKm,äy]fÁR1h!êoÉ‚Íú8Ì¡ŸCߌ+ÃßxÕÍè^ßá5Ã5»È@Ǩg“¶ß¸Jb³e¯!Å0Ô„½pdLPBÔ’½Úk> stream xÚ•UÉnÛ0½û+x)"5ÃUË5@S §uÑCšƒlÉŽÛr¢¸Iþ¾3œ!½ÔAÛƒ¤!5ë{á ¡ÄçÑÕdtym´ÐZÖÞ1™ c­,•¥qÒT•˜´â6û>,smàYäck|6¹¹Ëï&7—×¶8´÷…¬UÞƒáÔú'Ômà5ƒçžŒŽƒ:0Ò&}ÉM™‘>¹÷Y³ˆñFŸ&£Ç‘]%´ðN”º–Îb¶ÝÞ)ÑÂþP²® ñ´ÖÂ+ß•ø6ú:Rï—ΊÊJUÊk~ƸX@ƒR.†|ìl‘VðÚâÚgo¹©²~G Òâ°õÈcúM W[öÜOYµ[“~ümÙU7ëø|„ÝÂxT½ø¾XcyëÐÿÌ î«TVíφä)C‹6æÃëå^/±ßÄ~ø†ÿ W:¬”Z˜7!?Ô#Ý]Ü‹“ì ׳§ÆZ$Æýï4+¥ªRCl¹Kà ›×Ù}óÚ:[,‰¬*ë6´3ôŒpǤ¬¤Òúø€,ƒ‡X3VYCøö±áh÷ˆ@p¿Î Dÿgý1›:{¥Ž'Îk GˆEr.˜á_¥šZjOWªì*%U&æ.öî2F¼›%‡Ž<Âþ†à*Î ŒüÂêá,ø$€——eš'ˆ­:uÖÞ4…w –)â@F1¸—Ã]‘ý†¾/hÖ ÂȼÌI\sö'W,ß(6{Í„sØ2ËR, ÿÍw|<ÀtAŸùBÁnâ ·ìñ(tñΙcHuj“8ï÷b¼¦ã={z]•ÔÊþëm}ö–†)­*»Ú×D–†°ö4ìo÷# “ endstream endobj 120 0 obj << /Length1 1950 /Length2 12468 /Length3 0 /Length 13666 /Filter /FlateDecode >> stream xÚ¶P\Û-Š»»Ó¸»wî¼n ¸»[à$ îîÜÝ݃CÐáqäžœ{ÿ¯z¯ºª{)cÊšsí¦¡PÕ`7·7ÉØÛ¹°p°² $•$t98ìì\¬ììœH44šV.6 ÿÈ‘h´ANÎVövÿ²t]^eR@—WC%{;€¼« €ƒ ÀÁ+ÀÁ'ÀÎàdgçÿ¡½“@ èfePbÈÛÛœ‘h$í<¬,,]^ãüç@oÆààççcþÓ n r²2Ú”€.– Û׈f@€†½™ÈÅó¿(è…,]\ØØÜÝÝY¶Î¬öN" Ìw+K€:Èää2üQ2@h ú»4V$€¦¥•ó_ {°‹;Ð xØX™ìœ_]\íÌAN€×è 9E€ŠÈî/cÅ¿ ˜7ÀÁÊñÝßÞYÙýé 43³·uÚyZÙYÀV6 €ŠŒ"«‹‡ 3hgþ‡!ÐÆÙþÕè´²š¾ü™: #®¾Vøw}ÎfNV.άÎV6ÔÈöÍk›¥íÌ%ímmAv.ÎHä'eå2{í»'Û߇kmgïnçý¶²3ÿQ†¹«›–•£+HNêo›WÒo™ÈÀÃÎÎÎÇË9@f–lÐôtý©äøCüZƒ¯·ƒ½üZÈ× zýAòvº.N® _ï+þ!qpÌ­Ì\¦ +;¤ßì¯bø/üzþNV}ö×ñã°ÿñùçÉðuÂÌííl<›ÿyÄl’**ŠRJL—üRBÂÞàÍÂÃ`áäápppñøxؾÿÍóOþSýŸRU ÕßÙ±ÿf”³Ûøÿ*âµ{ÿ)ÄíïÉ ÿ{mÿAÙþužAúßãoÀÎÃnöúÅñÿ¼ºüÿÍþ,ÿ×ñÿߌd\mlþÔÓÿeðÿÑm­l<ÿ¶xgW—×ÝP²Ý»ÿ5ÕýµÐö6æÿ«“s¾nˆ¸…Í?m´r–±ò™«Z¹˜Yþ5Dÿ9…Wr+;ª½³Õ€…ƒýt¯;gfýz©8¿žÕŸ*ÐëJýwHi;3{ó?v“‡trz"±¿'À›ãuIÍAÎ6€ÕÎÞåÕðZœ/lï„ôljòòØÄÿý…ø^‡ë7â°IÿƒøØl2¿€Mö7â°ÉýF¼6Åßè•Eåôæ•Eõ7â°©ÿF¯,¿7€MóÄÿšð7zå4ûýÑ76óÁ×Ü@ÿÀ×u`[¹ýKðlïêô/‡W‹Á×È–ÿ‚¯-²ú|`³ù|MÅö7äxMÅî_ð5û ÷«íë;â_ê×T~«_ûæðºöÿª…ã5—eÊñš‹óïJþ@ 7Ðï€<¯æÎ¯÷Éo‡WN—ßê×t\,@ÿjÆk¾.îöÿrxm´ëoÈùªÿç+çŸð¿¦ÐÌÕÉéõ†þóžxÑÿà?_ È iiÞÞL0ä}MHÛ}•8±;ËÞ¸ð ÍžN*‹÷’S»ëO4ød†ÊÏAN·âÉC=«;Òô7bËäÏÞÇÍuðá-‰j­>OÆñêS{­H‹“xý_ÅkûHIX4Åö}ž}´­¡›!;åi²]ß ©æbß»÷ÊzÔö•¬Œ†Íï©íWò* ?•L³|ÔŠ6,œ¥É1Íœ# „sa!E`ĺð@Ÿ½¹ÁÊšx!—gBò=ùȕﭷÉó0çµV¦ÉéÜEHM¨G@ }ƒ5:Eë-q˜"¿à]T+U&5šoiG:rWSt. •ŒLl|7”,Aß™ ‹5SÛ¦‘ún£‘ÕA€•]ËW8ýÌaœ‡ä¬ÖqðŒçU>ûÙ)X´ßÚåT•3<í[‚ YÈ ½(\ÇaøaÊï"an¿ß4]]‹¿Xü"§iŽ‹~·7Ðõ´ŠïþÒwbBÖá‹þµæ»SÍI’!*à0‡%E– œÉéÁþ ¬kHââSP ïG«7ä;½Ð^¾)96 ]6ÚCÚ\pÔÜs Y4/ÑMŤ¿ﶃQxŒ¤âÔÈ­ÒO:îË”0Å-S‚ ²©á«,¿¦DäÒ5…[\Þ©’ Œ×MO@þn^)ažà3%W2yúÖÈýƒzEéˆJJêœ#³”K'1¯+‚utòG§<+ïBÅ,©Pª&¡ÒÐ e½Hˆ=a™rÐî—”í`ª ‘F½÷Ý·–¹CõL©Z¿Ü+_.wžê¨ãv¿Mnlé(³JæÓkOœ+ïï“d·÷4qa¢ÁΊ‹^Ùc8w+…©6Þ• wÄx‚5<‹¶æ;M71Ǿ™ð»’:ÄôߪnÆU)»:Í3( »ZÇÌMJ/å´t«ÎFú46‘ÃvuÍ"í²{i1Ž­q•øÝî¼ÍwÇöÚS€š‚o%G›ßcMšÂ5óh)ÁËs#øTBDŸ„%¤'É»˜Î£°2›^ 9Ãäõ„)ÛžÃÉÐåïô®,1R`¡gÈ,Oµ8‡ON{.ðv~/[ç¥9Cݵþ3/¬ž^©­¾}Hxu\àPœm˜2D˜Ÿ]ZÒÑÞ)Êm6!»á3X%à fq&¹-P¥÷Åaymì4&£¼ Z2„~˜nyŸ<ðS7¸:õ‰-ßLçS°TêÀ3aÑÈàáŸêýôèE!-ãØ¹0½KÓéOÔ؉“”¤«?øk£ÕÂ|zW¾ÅŸWã ™Ž½@¡ÚðúiÈDp¶õ,Œ;]›Ü8ÔKIÚRz,•)Ýi³:Ë )õ•(g¹M 9~š®wùó*ǵ¸ñe$~À Z>î¯Á°ÑßW§;ûà™…[˜FJ´eðÍö¹ú¸ªFÞX÷![žÞÂÙ´âˆÛ!ÄmÓ÷êƒo•»Pg;.r õӨDzÌ&­ÌpçÓÞ?K>*qò8U(ÆþÈ#Ø­ý:øs³¼cÌoó—Y6Ö‚’ bÑf6˜ßXDõ¨ÒAækñm¹ìâ~*vrC*üwbé/”“<Á)ì¡5&!Šó[¿ £ÒAH-‘J?L¬u?~üÙ,㦉Ùp¸Oœ÷mq¶éVûã™NÕÉÅ'×}"z¥g£ë¢1co¶Uõ mãà¨lARª×SéEx[ˆã“ø Ü„-¥»Œuéû=ã”ïSáéù‰ ðÍyæ…r×u¹K`[y°)b/Pt%3તÉäocJ;1 g uspZRÈê*2ž–l›fG‰Þ‘Ô³ˆ8 ñÝ&7)¶<Ö ,ê}ô«°¹y¸)‹Äj5Oãø:&Àø`AÁŒ3€Ô¾êû1MmœéžŸKÛБ¬öÑfþX¶¢¾a•‚B ÒÓ‘ik¿ôuZ¾.Ù_üqßíî=›ÓäÜòç`=RU î*ð<“Šƒ®ñ?OŠ~¬ºµe¶äº{j;ùå#·ª8v’»¥i§ÿÛ.+iß z}ô|Û¯»duÜ{jÒ™'h}élnoìÐ^/u6‡ïh,ˆ­E@c9ØýúD[ËÄøŠ®­)à@ß1£±5s^’Ý•D+÷Žô¤¶do…Y| Ñ…’‰»–z=_dºùkª0UHLQªM:¢ÒÆxˆE¾=iÙ”tÈY}vIµ•(ÔÀíÙ<5 Ñ|o#¬dµyÝø[Ô¶5anB^zjÄFŠsìÊGêŽé·+Œ|C®Š*mã¦þc~gOÆkòˆÏ’Ar¢B<—ù°Èš(^Î…u§¾®Š&)J‹%”|_:f¡ÏîZ¯vÃÖÞxª¢¼¯®â¾úd»™0õ°J…‘på,í'+P'âä"¦µ˜¹ükÒS¦×œ¿eJá·nΨ¿D$æ÷h¢6ŒšU×ržÄÓ>yJ(Õajð¿]¼PûØ6—é¾–-4z2àá O¦ÚYrÃÕ}7QÇ€{€§°«‘oDRçgלV®D¤ûÈü†6ˆÚoNýëÓZ2²‘ ›Và¢çD§g/A!Â2î&5o†%á1ˆP©6s‘V{"ÐѲ^†ÃR2‘U ]L5AñÅ4Ö§ì–Ê–’·Sá#š"¹ªîȆ—)ZA–^˜ÙôïKà) ¾â¢X…}­"p{@¯<[§WÉRziwòÏŠ¾rEQ/möŒÖ´¶Ái¡Û¬y{:ƒ²Î?Ä’ÄðÐùèZÔåÊ„cSg~³Ë]ÿ½É«ØLÑ9<ï^SN_¶Ìmœè)t?ZT'Bù>J —±µJÖêüLü,3ËV(Šœ1šd1>j £È^EÝ–8r1¼ñ 2hÇÏ€-[ORgKsâþz|xŒ§ô³(o"cAÆÝðÄCcxå_§×¥:Fæ0³°ÐPàT):¨ BWL¤c&îCš0ÃÅ,‰Z½ã’õÍׄ$< K_Ήµë¢4ŠÎž§ËfÉh‚ XX•¹ïpWRÑŒ«”r–OQ#n©ûÙì øØ®¹ÞÑxÍY¡M_¡ì¼1óx…îßA#¼l}µBM²À¼õC$k?œè‡ýw…OË”o3'*ÑfѳM¥œãEZc|tòÕô ç­¤SWåfªrkq[w¬6Ùj³ï‡dhÞg©Ö!qœµz™rUTë¬+1Ù*4†4÷€™)WÙ¸üòz+oSørÙøºË…GìYÔi"÷7íRHä%HÄìö!_xÅÙ¿÷Xvá¨ËðWeiΣxÇÑçÒ¦^Po„Æù Œ\[vݽÜÄ*½¼ï:€/ÊBY$>¡‰“Â×yYþ »=èÖ'j¢!°y, rPïmB¿÷ßæÏ(…ˆÎYzw§o7ø©¡üz`*ægf³ck>øÍõÏN*J¤0Öœ5)2é%x’“5‚\UT‡¢êN,]Ï_x3A­Ü²,”û\ôòò½.l«®3ô³’Ñâ‘teÝIæœâå!Å #˜€)ƒRK<"~b …Y” «kǃ/咗ЏóHñ#RøÃÕ öã3òPòk>~”in[â†lgí*à­êA±‰éÖÎõ­“pØh[ÑŒP†=¶„ÆÑñ_k6OñDÃŽº ­6ŸHI M½CKêÉa±_x\æ˜j,œvÍÐãh ûXÙ¶öVÿ¼"}WÝ¢á&6gõ½Áý`Ú“êÙ<ýªgä< ƒÆyxÃ/Ãôq?cHs¾Œ$°wälù*:…½ºêš½·#›5ÿA¬F ?ǦìgŸ3pÿÍáR‡lË´v$¸õZ³-gµã8TRȤù,†EôìÆPåÇ1œ¬¯5ÐånËe¡ÁÚ•îÜ=ã¹ò“g „ÌQjȺ÷:N2œæÄ^_9Æõ:| É OÑtã!HØ6îOXOÛÉÕ¦ÒÙÚ†! ÓÚ¦ÌÁ”á ö2ìæ¦q@¢–—Ѭu0·¬Ñh™u½÷Á·1U$„´ú_ë†, ùÆES¢ä³À9QÜ꬧QË¡;g&¬ñ\ÿÈŸýÆõÎ_ú5jð3I™.EžVÕ—S£N¿šiê®d¸Ÿ,0ò³ò×£hs•|Wй²¤¬-M>d9¹š‹l\ ÞY5‹wœEà"ÙËO¥™Yß(gÌFݓۙäþt[ÀcàLO^IKØ¥¦:Eå}˜òþuŽðTz°]Ñ` ãv£u¢CŠÜ`s†Dã«oQ7‹qúž×/Kyw•2!ÁÈÚF²æÜ½e•†ä9Ã$]ƒÎœÌg6%Œ4Ïrÿ!œÙ¿zŽí§ÅËäVr¹¡ÔY’#šŒÁ%}†%) ×äVY.Üz)Ú³†¶{Ú3ñË*‰7m V¿š‘®hX äµú³õÁUšº|³l¬D¡fáxQZ0˜ï,ùÎß(årO‘ zò ìŒÖn½ÿeëäv“¡zC…*’`àqÕºc|×Z0¢ø­©7 Ù³4¬$1¸êz‚}J]ŒÍ|¬&yé[j>Ü…0¸pë·¸ãTû¢š»õ9k*î¦5¬šgßxЩ4ÃdDÇœŠvÆk̶¢ãm¹86t>Ä1•~4úþ VÃwúש|¸ò”sXä\ÃnäÖü{|Ä¢õZ?¯ EoGqõiKj†(/e yÅ5O’÷F_z“Hë!ãúIȦ5'ý&ô Åqª²ÃÆÁÉ«âùÑ‹øñoÓ~Ë_wëÞ6z¡D†í`h×å9 ¶„Vž*c,ÖÓ|ä€ÝžwƒãXµp=àæ­å |{wLñëG½òõs÷ûÜmnÒ¢vœ¥Óµ—½¯Í!]rd®<¯ök÷n.iϽ¸«é3éEÊ'ä:6!15o‰!ŸïØÚ1o¼W²“Ë¡Ø"©Ë’VjÁ”×½C«|Ó“~¯Š_”÷’©€)@lØûU‚¢¤_Y4@7òü€nAœõÖºË[Hu°ç“è5›iî™z]`Ø–] cðÎUz?ΛHòUetWcÍÌ£tŽrÚ3FXÐWe#ÚBW9Ÿ›‡¦—yöâzJddÈ8s| ø‹òÒÞ -÷Jé…GÒÉ‹«ca™ØoBýäÙèSú”¡ì8˜;ÏÈi7zÞÞA¿]¯“³† œ¾ kÐC¬ë3ÒX˜£úµúÇ™î*èÌ–ke{…]AÞæF +g†åÞ2Ë&AgVˆP6" Oå[f;ya]°Ll6ÙS~8Ð^¡w,ûÙÈʰŸup±uÌZb'±¿‡FàG‹ú÷h3›@P ”¹hªwÑà(½é–:ñošTÌr~ç!UGÅ|,å ,6x/ØHm—a>œE76¦ ’B縇œ!»]5–Äćä˜7GC{~JK£­rSvé •ùÂòðÑ,¶¤X³qÊ5XGЕºC› J$cÝú ¾ÛŽG®è´é’ñ^,aƽý¼ŸÏ„MÇ,lsL’§çè(Ve‚A€#UuÆŒÆK¸ìs¥ExX£Ï9Pì}ß4º·ï}m\Kù:Ü6™mú]ô7©«Òe;¡qŸië(XÙ]¾3”åÇa€/næfð%ÃÅØLÙ¥+¹ïé }FöBí¼ÏiºXw'à¤jð™lã]ÏYà~ûP•?kíté'!“o{={™îVQiÊÜ£ŸîQ¸5ˆñ.T¬1uÓ‰D¿±‹î'9׈€I¾8Ÿd¬Ÿ.“ñ~j‡:•쮸v¯‹a¤Ôº9jGâ<{À6c ëìŠ×µé.~UPjñq©Ó»©Ó‚åȪ¬šS„WƒDZº´–cxãU:~üÜœÕç¬6Z&¸ƒDó’­<}X)gO—>?{‚Û5^(—DY-Ln‰$xež%’ÉžÍuÏâêqnbšu¥}!ª?Ÿ††îƒt°Z³llÔŠ±yŸá¬ì‹Bd„j㈸fÓžô ­m+Óà­«Á¹¬G}óΠ•.ȵ G|'¾L'‘(ªn”óÉOFÊò›[Ψ+[Y{äbϼºmë›È3\?—jýlO­‘ÔóXòýwœZßV;§,G,?éî••°Âþê6ÄÏ¢hÀµd|óÉë¿Å-±Y ãZ Öß÷êGëcÀž¿{.lMa>4Ÿ 7øÑÉkÿ1õ´rv±ë°™Hºç „ìœ>Æ46¸®ÐS,€OW?# þ»9–o«¼xÑ£ì<Û92µŸ$i Eݶo6êNŒ’B-²x£žÀm6aG7j|¼½/Îh…ŒZκ@”F4^b£ª¥<Þøþ²[ósºVžU-ä›R‚åó:^C£»¤ ¹Ñome‰Á®è¡ŒéêBÝWÛ ”ç¬ÐÇ~ãi÷´åaKõšˆIŠÄÊüµ²~ÂLÀñv`ÛÏ…°Vú:¤¤Nèá™'þ˦‰Á}Òí<»öid?¡ÕÔmWO 2Õ¥šþ›I»ê}ã‚ žò–_îaZúÝJæ§Çji¿ÖÁuð“õîkkT#h´†‡J-‚Œ¼ñ7OÛFJ=Óž²æÍ7Š$…¼54d ë›ñÌé;vÝxdŠ~:RL>ÎÃæ:²¼5žð¦¥8ðºÜ° ²ù5T½g|S\s,NxñÜ”v¨ãâ)ò?–°ˆá’·ÈqYý c¥æ GVíƒô &óÜM=~´ãS<…ôè°Ù&÷ wö’Þlãp9ÇÑÄw3DâŠRš»`2â½[œ¸³üÒ×AQ§á/·©¨ÙT€ô“Ó3ˆÅ¾d¶’µ惡i…›“`ûOÄuõv‹WlqËw•ÝÏõͶm“Ç\YŽôL*¤œÈE×Ñ!i × Ç†8Ψ)Q<©0è Š¦6éJFú6¸Mc ¡ß€»x0äpy½¾lû+ºøðCî6;l”¾°ÈôI n.ûÉW}FÚâ¶%‡À=šŠsÃÊfCåÐAœùó†8T~‹o†¶ŠÙ´Ïeu§ùSG&yFY|Zt™’á²~w–þ\G#[3´ê>h”ЂÝ/û>Sä—…®ä½Ž8!ðzåÔâÊ…Ó^„NR¸qÇ4×K/zÚP†«QùA9äÔºÙ4)JQà0¶t‚„rÆZõÿPWpK že¤È»ÓóX_Í/_9TYQ‡D”pl§R<`Ú.·«ïºC¼i.N\ Ã0jæ`ôI1êÛpyòüL¸Ž9D6NÇåïÍí5ÇŽÒh 7;äõU­éˆ tÒRɼ±ÚA4âÏhJŒ† qŸ‚1å°Ú4¶Kä˜ÎpÃ>Ù•(†ãtØ"Ó§ÄÇûAð~Ø_™Z³<r¶þÅ͇].„~]n²°`ÿ%k*^Ñh‘††¬<¹¬°8€’ßWû!ç¬os}óÁS.è¹×ÓĺGï’j™ŠÞ޲ô;|× 8ñ'¸èM—O†$s¨0¤ïDÜÎ/(…›Ë àÛC>+Šû?T°_š·ÃƒƒÖÚ Àv5ÉhÄ÷X$l„â4ÚÓgÙï–¿*\N/4xuå©¢ ›Þ¿cMíö…iqj”lÙ²–±§é&KLX~GJ+Ú„h:ï/< ó1oÃô—>u¼ý¯ï- Œãí„-ì&®»ø©už´>±CÙ›^òœPæ¤àÞÞaƒi3ÔŠý²¥šÎo"Tm6´øø?1)Ç(¶ÚK¤ÙpN'«F$¯k×> 6H™z_$HûRwmK””Ș¨eŒlÈ…öåG8th,1½e©­©´Ê x›qÌG\àZåã²Ý2Z8í<‘ü¹§Îßí¶L· Å‡Î6ìËlÄDQr¦©­üJþ®S’è¤Öóúñíu‰¯ÿIZ—Jgéˆ!ìr¥b{úçn-• £˜Qû$ea„0¬ÐŸµXD 3ÓÅjà)¡“ÎýšÕˆß(`í2 N)…BZ>d6\H…&¥4’ÄT…L”kíR§wÒ¹Ý0@–ÿ ¡²ìû’f„ôû…55â¨/cçÖf#¤ÊÜüy»KÔh€ÑõˆŸ¹Äõ‘Dý€jêÔõÁóÓ£ñ­„ô!™ðê¤;ß›T¨ÆP9wލ21gF{oâRYhªÞ|.‹Óù1%'ŠOf¸!"8c_hõí]ÂŒj]/÷¯)æÃ©A\þÃR±IÇúñ]öf}h²´5±.tYzNIŠ_”0§ê¢‚2ÕïI,FçæBa›ý¯_¼ï¤õ%§y¯‹Ëï=®r‹ >ENR\ †ªXrc7¯rcÛﺼh­*J–Â3RÝÄÜzJž;åã)ÝT’¥©¼iðç®mÃ40‹D{Q± [X /»de!€?kƱL`sîö>s,ž¯ÜKöÕ3Löí¥œò'gibI1<Š~pæTç:mö3>¡ÆutesÌ%sDÒðÒ çªE‰3gÑ…ÝÀq¬å¥"ÂYòýÔ/cñÃKîXapÄSEÃM4† ÜA £ERËÚèyó4öÒФQõy ïõ·ë+ ÀCë´ðÐ6 ¨“Cž_|âè4Á?vºÝk`“§Nyç®èð߆Kt„Õ”!qüšz–ÂêØÙ~† 8-]&|%h›|ŸÝùÈ)t÷ˤ‡9 À[[UIƒà‹{êäQP°aF™æïýLn¡†±7–8ƒçÛ;LkÉf”6¼+3p‹þƒšÚÂò,™Œbõp´—ªM›ká)O}ÎQ~t öޱâ 5pO1ÑðH¤íáá šÜIbššø¢‹WâW›ÃC‡7œHwßž1±»¹.n8áoîÊoÎçÜl‹9ÁD€ü@ÅHwjéîíy!ÚÒÜ•T‰Ü5rì¡L»ÈŸÁWäs¹Õaû¨rCK;ŽTôékyÉu•ÒFý/ÀKøÖAí%o~Úç>ZÌÆõç“è4±öú´àj%L“’¶(%ÒÈA9üþßÊâ ×³Úˆâ‹½­h9ÂéQ÷ “Œ‚VÈúzV»Wöá›óz›Ȥ“Å«éÙ³ä.cü—l&­z•AË?÷Þ)~ϤP"’ášž/Ÿ¡µUÓâDÆ ÖeŽxfKºo€JªŠø8A¥3±(ñ©¬è›¸æÍú&Vá'ƼIY‰D9èId¸ãæë7\fø…ÑÀ¯ŽÆ>ámu«YÔòüŸMb(½ÃL ½LŸ›n¿Ûû‘÷Wc±½+<1|§dRg¿êȯ¦Rކ |†îŽÍiMÞ¿'·ª¬ß‹†-¯éP19Ûi¦Ð̬U„‹?Nø:“HN¬_Ñ.äâ?bHë“j߯iĆ,ÿv§ÿ>Ž%ü­±bZ?±‰À\÷E%Œû)ÅÅ ¤µ]ϹB¤ÿçàꑉƎ›+³Qe¿[Ì|a) Ûš¢wÔ_®p 7imEj È»¿D•aXS„ 4ŒÂ"…Ó²'ÈÜÄ¿.y8>šLë4ïꡌ§aFö©oߌ¤¬Šª ©ÌgDš„BÝÄâ:Æ»u~v¿3kÏ~G¾Å£îM·ðµ© ö£Ï&´grwÍRäwca­œðØÏáÍ'ïª>©Ö”×i^¢9ï̫Ԙ·«.b²”í?jí¾I½ÿ’;θsË!ºsÒ ¹ˆwf"yæÕOðá™üXè  ]ÇR‡…JÓJð:*©¾>sëo¬ëƒïî×Y§ ««ŽkÛB^뵈¿LDÌ¢1Ñâ¡mš;Óäò÷*|AT.¯Hu«_z Ÿ€¥Î6¾‚Fq`%BÚ㻯£÷̥ݽu¼%DTJ:þ*U˜?¿`\æhÝ%ƒŒ Üß'èJ™€5¤Ö”¹vD8—¹ =̹ò÷xýWü^á“ʇ±CQGŒï¶’ß+Xhß,]¯Ëë?í¿ßüÄ„wIÞÊÄ@r/±õyз—#ƶ'CÇ(ˆqBÅE6?TÓ×Ò²U5¤-;+<Ù¥#°£JÖî“.VÛ~’ü Yιž½ÎÜ­G÷%E7û̼ RQÚßâ¤ÌèÏu°”É«AëÐíHÌ•ö¡T¬¤Â.CIóiEÂýþyV“ ÅW¥Ònxq?hüÒvVƒ,¢Hò]BÝÚW¯±Ío車àOç?§ Çéçòó<£0¦…º8s+¦«¸Þª–í…áˌ÷WÃV®D}e­¸`gˆÏve:4J8ÄqÙ§;ñ‘èüiDj›ƒ< í:JÂóyÎ,ßpõ¿¤Ó¡: ]œž°\°…I‡d$êÚ€ñi8F2hݨTư©l‹ÏO µw=Yq…BVfzEózßèÏ> ÝæíŠI“ÿBddùή%œmwr¨ýVœ¦ká¸ëó½ÎµeìãÅÔFôˆ_Û[¼ºç*¹yÀd7ÕÔ!>NçY)hòHN58­\süsiBkë'ˆø±Ãâ€Ïš_—qËúµÖÑLä>]áBÔ×ÜóiëDž„à&9®äž> }+Þx;na¸2†—Ÿ½Óe©vKNjŸÎçÓ<(Å«×ó|’ê~±UÃ@[EIÊøàih=äд^ÂŨùϬ;¤0m¯‡0 ï–®ß@>Ê‹[Y¸¶Ö’®dcf!)¿Û¿Ÿ@%Ë®½Â RÔâU IÏ%(¿(ßÔ£/ë¶]ôY¤o#—DþÞ?,ªÌÉ<ÊçÖRù=ªÂcp‡׋ÉWkZ×’ÉËr ý ªàûÇO±)4ÑŠÛC‘ë¡)ÏGz.ô³ÏÃè¢K/of¼2É™dé{o¤Xûäh¯aÅŽ°³èvŒïšïϺËsŽl\œ!„æ¸ÝŸ2ˆXÞ<á²±ŠE‡ ,N¸Ó—)”䜼9çkƒ³ÓÑô‘ ·4Ö®¯j‡¥¶Vjg!aùÀ(={#g  f´7‹¿ü5YóÄ]ˆÀnÓŠ ²ä®%”ÊDªn.l!„nh0pËJgºÁ…¸{7˜œZHÏáÔ²$Oj5ƒE`YÔKá§?$KôœWRz²ÆŸÎÒxq¨ô^Ò¿¤š°)ÐÅ¿žÌdJn+m’±¸®Òar™ù¨ %4Ór§Ì#ä ¶µ&QÐtïœ/星ȣ¼¡" gùyæ¡¡ÂÉ>q›%£Hï4ç #T\ÌáŒWõ#•M¹SÍÏ·|Ç3ËX­ÝP),uÑ4o%·áük[‚±Q*w A(ý{ºpZÿ:9F^ Bj4ïE_n;®Æ4y¡€‡Pž¤Uùx†AžÆt¿®ÎÂyÈ÷¢qÇÇÊ‘ü’J”m]<È«&ÜÍ9Á«é*æû ˆeekiNˆf ˜G*ŠPºÜwj|‡¤ÅòyMÚg?î0rkŽlï0Ø, æQ¿œ—j}ütaɤ]xsÇ G:3Aºi›j™]©ALa—øC·]/¢T”î«ü–cèí²I¶‡©àQp«Ãö”¶:ôkÁS\ö´hó>)4Ò…øŠz8„SÞÐ/KýlÝGsmERQ±ùYW¿Ü¥\n—r3Ë7$co+Ó¼s@ím¦¶µ¦þ4¼ÄW¡'çxsäf=˜v‘ÕêwÐùiŽÿ,þž®¢‡VµÊv .ùöKÈhHÝÖÎó+·Úän]Îݧõ$³(#;R‹Xe7Ø[p©æpgl·m´Åù·fÍÌ7\ÿË7£ƒQ|…ÛK¶TyŠ ˆVRø.¾Þx«M¸B¨(Æ8º«T…hœƒôn)F”µ®`n¾—iÖäi¦\x·§·œ+Z2{èSTÙc¥`¹é*Y¯†éžÆQ»ŒÁ€«cÞ­E-·r¦xÞ³K°NX¹f­–Êœëž2®e‘ïîfzˆ ´é'e¦Ê©BÿÒ„Ô•öY¬ì¼ É£3N˜WúpW¡†ýÑ¥|Ô Î*Åy·Á8þ7VâËÏNiuÁ;½ò“F“+<•JŠAƒ˜ÎRÙ™KQÌ«/é§ü•ØÈ…h_lù‚ìÆ#é^Þ뽿W±}¸i>æIg¶„ר¶Ýxé¢v­/ºï£ÙlÈÕ—Yì«1ÒÅDíÁd‹DQZóÏ®P÷Ÿ€n+¡¿£Å}L ÐÚ#ۆѫ‰URù.l ‘Ša/PFÆÍŒ½ÐsSÎØß6ãYF¥.¹Z#þ¤2(ƒƒ¥i Íiª¦- scÌ´çr¤|¹×ŒÌ­=¨¢½àfvS^|”v9^Ù¥OìnŽé© ˆC6rÊ×lÉ-Òñ<ßpq±¾c;}Q”…©¸ÃûË€˜Ýã*cÛ½UÈ]ñG@%‘O°þb¾ô³7qZ0Qk+AAr5ÆC‚ëŠÞù{Ø÷¥»«E3ÆC¬u:Ë{óiŒ°Ÿ¬ I‘­®&x5ÒnJ+ûô¿k›ò;RÜ ÕàsN¯vå$Ók`än¬Ea›,në€x>ØýDø|µzsY{ÑÚÂx#¦õŤ ÊXÒ2§•ÓnóÝ¿U`š¨ø¢äv'˜lØÞ©'j^^°UûŸî×8›‰)¢ú'}|¦H_GˆGÏ1¤Íî€=@$„¸üî*˜|œ†Ž‘9«±Á=>ηSØÀÖÞ&’ãê‹ ã䞎ϭՓÞþòM8_GZ†)¡óÇ´i;jZX™¥íº$={¦&CWͼÈOÿ¤HÚŸChðäm¾üVëõÞé‰'Òì…Tw§’èÚ¼ŽJí›9Ÿ#ˆ]<Æ"W±4YKæüÄ—¶[~ñiŸ¯/áo‡kxÍž’9–Sƒži…ñØ‹¬g±oqaeR[­ŒCñì, æØ÷±]ó³›UÖ{ }=ú0‡(©›nLÑE\=S6ƒ¹ùÑB?1ŠéNäë¶¡7ßîî®ë öèÕ;|ˆŠ  öY$1 “uC9XËuó@A{­˜ æWSP`Ð-DoÈãÝv½|y=)Þǹ ³†ùTDœd.®êÖ9áñƒ1D$ñ²úè‡7x±à{…²Ñ¦ó‡³dÝñ¤ÎæVa_`Ä”Ìé9ë¬_»ñöU+®r‘mË¢˜Ä«´ã“?Í ¤Å®~É/k·%…W|Ð2&šäA”³Y92<¸ÙÓyaÅÎH?ÆØ&©\’T„¾ââ‹Yöeð/±bãº0­· zo”—ãˆwêöá´.³ð*´«ì#eV{GÎW“ÃEÒÕ¹¡FÆ­ËH¥ÏÒO}Ä…aå;à'a<Œ¨cBo„ ÅÄyÆØ>g_ÚcÃgŒ3†~w7¾™]ÊûÍ7š¡ðe­•È£+O®"Ÿ÷\£Xks˜iñ07WéL„ÂÕÍÄç"…Ùæ Q˜ŒÔR%ó³Œ[ýü×è»à/Ÿvl¦” ÝŸ'ÝûJ7×ýDË£÷ÏæºzÒqnHrf§D­6Þx‘zVk¾ÃÛ¿"lÔ®&åç!´Â3å×»Ä\ȪTãèÉ>˜l=LPTîÅÜZt&tæ`g’UzZ­+OJ|“XŠgªËI Cðû ‹SˆÁå&?öŠµÒ»ç/®>`Ðà þ\àåRý‘õb÷Ò>’îqÖZ MôèW,ŸÑµ^KI· <¼ö0˜áu¢Ë¸ŽQ‘ÏÏè6ã…éã]$;Û¿‰lätðy¨õá1ü…óÅÇ€2Â#ƸmV‘\Û߯½TDe넃§ÝÃòq“¥YT‘:‰ úç9N®L*1®/w{ý¸®’ z ‰x—$“§[ì² ‡€£Êkvã.ìi60Ÿ^Lè?Àž1ë½Ú%¡°ñ¶#§¯yùc¦Ðt*tþGï%c´ìƒÀrº(ƒà·Nֻ͜ŒÊªipN£¨L«M†ÜZŒ|ü6Ž 3qÃ"¼`òˆë·š ¹wß&ªF&µ>uøx=ö Ëð#Oé¤ö¢k‘!û´’ÐlAÁÎ>ó^";¬cI´Æ1ë2þ¶Îb¨˜>SO¸ÙÀEºÏsá©®Ñäµ"9ÕMI’»@•:Å×IŸ’×úL­#ëÑb­y&l™ú ¹CÝ‚ƒoÑaÐ9¢n´ÿc< 5_74 …‚ùÑÚŒ!¡Þ#“¢žAa4È¢º„èÛº™^«U‚Ñ;Ð2ó’Q ‘©ä ù¼¤ù „'×é=튉Ý:£ký\kk>·ý·adƺ¦=ò4“—Ï<Ø“…œiŸ]~ævùcAJ@ ÷†Z|ðÚ•JŸ]Hlç94" !î(±ð2=«øÈžùáùÝ·š#:‹ÆN_ƒÖO˜V›E!™9´ÒÀc,Ö›3A“=UT>Ü=@q•’6œîyp™¸Œ®GBM#õÛ1Â`º®ñTûñ"ÍΕ“*ȉ™$˜áž|´½V½Ž`?Ãô?©Jô×M›×¥xö§ýÄ‹q/uƒXE¸Ûiž²T=“ÔÙñ:‰¬ãø ‘Õ‰úiü•”!¦_ 4PQC©kSA([Ž“=T3`ŽÌ ¯B‹ro#y‡ç"?è'ІTºb:ó¥ðD\$&NÞké#K½jÎ4Ÿ¿ SvŒa;ì iÔNŸÙ´ÑÏÝ$á oFrVÄ ©IâìÙù ÓÁcK&øyüˆ”d:¬•iTÉ%FÈçwα¹‰ñÄWó­Õ¢ñ ýì†GEò±|Á^Cpº`˜¸¥»íbèvìØq§~¿3¦u‹)ªX†ÚØÍnlæ:Áˆ¥¤:6˜1¦¨p,ÐPVZeÍn¯K"é+—j¶üD½°ýgÌ4怬KH²EÃ«Ø Þ­uµ¤7]á-î{—ÿ3F“R endstream endobj 122 0 obj << /Length1 1757 /Length2 12328 /Length3 0 /Length 13438 /Filter /FlateDecode >> stream xÚ÷PÚÒ ãîî îînÁÝÝœÁÝ-$ îî·àîî<¸»<ŽÜ{Îýþ¿ê½šª™½Ú×îî]5Td*êLbŽf@)G3+?@BQÀÊÊÁÌÊÊŽ@E¥aãfü[Œ@¥tqµqñÿË@Âhêö.û`êön§èȹÛØ8lÜül<ü¬¬vVV¾ÿ:ºð>˜zØX™rŽ  +•„£“·‹•µÛ{šÿ´æt6>>Æ?Ýb@sS@ÑÔÍèðžÑÜÔ îhntóþŸ´‚ÖnnNü,,žžžÌ¦®ÌŽ.VÂtŒO7k€Ðèâ´üA dêü‹3@ÃÚÆõ/¹º£¥›§© ð.°·1‚\ß=ÜA@À{r€º¬@Ù úËXá/FÀßw`cfûo¸¿½ÿdúÓÙÔÜÜÑÁÉäm²XÚØÊR Ìn^nŒSņ¦ö®Žïþ¦¦6ö¦fïVn S˜¾ü›ž«¹‹“›+³«ýYþó~Ë’ G ÈÍáú>ظÍ߯ݛå¯ÎÚ=A¾K…å$,ÜX4A6Îî@Ù›¼‹þ‘YÝ\¬¬¬<| 3èenÍòGx o'àŸJ¶?Äï ü}–ï$€þ6–À÷_WS ÀÍÅèïûoÅÿ"66€…¹À heBø'ú»hù~o¾‹@Ÿõ}öج|þ{2|/ G½÷?æö—EB^UG]œá/ÆÿÕ‰‹;z|™8YLì\¬¶?†Œçýàÿ¿aþ{ÿ!ÿ§TÅÔæïâþQdéàû‹Ãûåý‡‡ÇßcAû÷ÊÐþ7ƒ’ãû,´ÿŒ¾+«ùûÛÿçøÓåÿßÜÿåÿmôÿoARîööªiÿÔÿÿ¨Mlì½ÿ6xew·÷µPt|_Ðÿ5ÕþµÊŠ@ w‡ÿ«•u3}_1•ý¯ÑÆUÊÆ h¡bãfný× ý§ ïáím@@GW›?Ó{Ãþî}áÌíÞ×÷^ý©¾ïÓÿ¦”™;Zü±xì\ÜSSo„÷Ö¿#.€/Ûû†Z½þm 3ÈÑíÝðNÏ`éè‚ðGG¹¹,âˆþD<|åÿ">‹é?è]gþ_ÄÉùŽÞ—òýÕ³Xü ²X€ÿ‚ìËA‹Õ¿à{8ëA.‹Í¿à{!vÿ‚¼ûàû °€þßó:þSç;?§÷1sü§2Žw"ÎîŽï=þ³•ÿ8¾×àò/ø^ƒë¿à{ ¿—äþ/ø^’Ç¿à{ Ï û{IÞÿ‚ïWáó'üŸV𻻏¼¿q.Û{Ÿÿƒÿ|P@/ 9ÂÒ¼£¹@˜mmXÛ}µ¡'Óî¸Ð Õ®öw:&ß%—v÷GدtUé!.·b_‡ºÑV·%ioD—I_|šë`#ZU[ŸüžãÕ¦v['qú'òÄ~ôÃ1iˆîù½8ûiÛA6ƒÿ”£ÊvvçEQÉż÷ì•öúÑWº2úq~Wu¯Š[ñ¹tš)V3Æ ¸h–*Ç,cƉŽãÜ uöæv#kâT.žÁÿ8–£ÀWo“ýóÜÏZ¹»k'>%¾1ä Æèµ¯øA²î‚oqÁjÿ¢W³`i2ã·U&4æö´*µhPcOÇèRÛNöW@ a?æNbMI#–± ¹2vU«q4¦[ ‡ø ÃR|­íV«ËÒöÑ2ßô7À,²®õQPS—ïSóÚÐp?ÓÝÇo-÷CÃÛ]þÚE"}"DVžlô’ÖúQ«+üiÄß KÝÆ :µ²XhŒË_yŸ¡MÃ}C.Ä ضòYYõx¡{ÀG‰N¹²ý.>ûWÔŸ+ul΢/Ø{b†¾…r+½™ýüv~žoÍ!i’þ‘6'M²ëSÎzª@-°~6´”å|³‡ùC‰7©BÂ×âÅe§¬tÏîBåP”Aˆ·í_ó©V…fë®›`= ÓcÛd#SÛ”¾öEœ½M®˜Hûxj²…í Ô« !Ú˜¨W˨¦uMO±ºe¢š´Ù~àÆñà(”8l;+–ðø± ¿„&}]¡€ëm>1ÓvË'Cô‘4®I¨ÒÕ vëF0¼LÈ SœrãƒH¤æ!üäÞ3÷׬i/éUÐ@ajþŽMÕ|R&Ù‚;n~f*úõvA YŒe¸Nœùz4ضà Ö`m\ò…¦ ‡dY : úæë¤Šj3ôRo­„Ü8˜œ[)u/ÌîŠ`­ÉžÉΣ¹y™9ÂÄ«h–’a©+Or)®¤8Ï õHJ¿ª·`GUÁñýñoˆˆS& ‚$l¬%~p)o‚­¿ÎêÓׇ¬Ï׳Ã6*~ÁÕ×WW§‰ ᛈ\ñ$á fCëí¸âõRäd›#¾r›¸—[FEàNinòw‘wgûÍñ”ª)m“ŠS'ãVQ;5ãëG2ÿ`NBe°á|dÐҲǩÌéA¦Ÿf|'Û’[}ö£ê»Ï<š€uƒ¸ìRQîA1K—µ|4Î×{/iÞà¾á’å<”JÎ/t™”¡1­+ϼ*w8D×ň+=,ïk)¡'.ÙŽ@Bì½B‹%Oó±‡]™uFë[%·¬ %¥ýÓïÇò&¦DÜMýN¼£YàØPôý¾üè5;•U’Y•OÄÜ(~ £»c€b9{/žÏº{BJvÄ,7}j+}!r_7rÙÔßÏñâ ‘Þ<ù$s:¼‘‰»_çVYnÔ"%ÛŸ'z¯Ÿ@0Gží‰{m”ÙJMiùãËÊ·ó¢Úì^¤¼Îd Ó•Û„ŽG;lZ,1ƒâB¢5×'d¬ ]º9Ž>”'“wAT½?§†°=­ÿb7t,íÙT¿ˆÈZ ºäˆ;œJÁàò׳¡À-&[À• zsß…t.¯ˆ¥‹Ãð@\ê—žÔ%LG3ÕU™Ò>÷Å|‡xBƒ4 ;´£/m²ÏÖJuó¾;Ê”ïl æsØÐ6õ…ÔƒäŠÇ‡½¢Ús+ðò+VͨX—¾CÓ?š¤Áöæ$n$²XÞôdØ·S©H²çð“h‰Ñ©‹+°ì –âœra–JdŠåmÜeØ TúŽt"ÒR´,ê@ƒ¤`Èá¢Á¾ƒ…ñúª-:& wõjàÒîkŸC˜‰½Êû9*"cÎÏ|ÓFßx%ŠoGöÞQhW€š òº‡*Ä3Ö×ÑŠDǸºVÍ®BÖPy»ñÍ~@3&8½.„ºZ'>6%ºã\| ‹1a°÷%€»ªÞÍ1µÄåæ ÙP1õ˜òÁ×Ã6®ÎÃê×+c#¡/݈ŨŠSd0s ú(à»V: \¡Ês ¥%°˜Ó69ƒ‚ŒQ©Ì¬œ¹iÃØÆË[6OzÜó1Ü*KÈ@hS”\jóQ^ê^#Çìé{|‡Vðg{Z{«Ê®Œe³éŠØ5²¦ƒÒ¹ä¹ƒ_/¦œªl¸Õ£€2¾-g­‚¦¢Ñ@‚«‘ÝI®«Åç4ŠO|lEÞ~>ÿ<‘B¦¾ágôóRĨ‚ÜÒP¥ÑŠÒ<|”² 6¯Ô‰b‹V„¿@öÜÞàrðqRÊõ—‚òð»G*cùÊŸÅÄð†=>&®OÛçRï×ßëî.ÔÑ,ƒi/Oî†Rwæ²Ë^ñ±SYlàm–¦ÝáÍ2 º%xz}Äd æ²8À¼™/õ³½š·ÖÜØÄÜ+J3œÄ&˜õ9óÔÙÍ<“Ìn%ù§J@åv±¯˜ÙEœï%6¨IW¢B‚í±×­ÔB”⮘lÒN)b6Z¾<{F ¯óp6Ñ>Xê‘q1Fé*ª\`óWÅky÷Ó xBÚó}[”`aÎ×í>Ì0ÌRH×ÎB>Ázé8d I“p­ß¹Ö›íC½Tت‰ãRŽ*í½[Sè¡”¥_Úɧ88ÚîTøøŽõb]ù"ÀiL¶+H]–µø•’ Ž]gn’IEa,C‘Òˆµ×©Ù9=1Jì}÷(gÙµÏ0k=×Âû•ùÌÞòvÉ• ³0‡Ç´{è¥0 ×X M¼KcTkà#‡’ T¿vJÑ—®Úhà\Ä)n-ŒóMBó?ªSiüPj‘牫‚cPK™?Öw)H{Ô½éÃ<Ñuú·Õ,!Dß-êF¨<^#ŒKkJæ_½ÆœÏȇvΡÊÄÐÔÖ ƒë©ŠŽ£Ê.mºQåí¼%§wêÓñôRwÿ»<ž49ÃŒõá 1J*)imãñ´DrÃT?2Äò^Å‹3H&<ÛïVû¹N`Ešd M“œCüškéêyïþ—ŒùL™>Ì=[òxʉ9—Ò=_©“0;\«øËU½+ äiTƒíu‰¶*#Š›°~åïX¢´k_S0?©%Ÿ!7u䣃w%M=~”ÇÐoÛî[íâh…^5q#b5qSûŸG^?Œ³t3øk¹‹ª 6öNW°Î¢`1?·V Ö?±Øæ‡oö-åù¯›$} Ö& ,Ý™WÕi¦„‘Ù(ÚGu“ͯhƒœc^Ò%º]a—¹$£_ƒVƒ»á;”Ÿ·ÝÄ” ™AÉÑßD ×qŒŒÃW¬°ê2qúãbMHª'OŠåÅ#ÖϹ½ ]«¤UñMÂIö?Uâ?”åÎÐu~lÈx¨/¸d‰€UǧA2j¾áßqƒ’«±=Äò*û*IË*=,0Þ‚½¢ê ñ¹d ÉNƒ¦ù<M Sð‹3!hqÇ=ØÍ^A‚-Q§À5Fð Á9~¡×yº Xd'zÒ‡MB¡“(O…­'€8¡Î>†ÈQ&—¬¸<öÕžöb¦žޤ8¤ºËâà¤Ä%Ï®ýŒò£ëYY\7’I®ØÔkž©âtÕôÿÙ×»ßs] ƒ¥ ˜"IÖýz|ö@6 . 7«»[<“…/Ou`^ YÕtLò”&$¾4*kH¤Ãv ¸šiA·FÕWý¨`]ªË´ îòêmÊPTÑ•.™› ჊%2„*™ÂÕÉå JXÛ˜¢%@¸OFÌè mú c‘‹¶íŠí‚ⵚŒ°ÇÜ-¼<9_U•3a÷­rÙ¾W€:¹ŠBp9µúø…ÎrjGÊ'ͤq Q$w[ÖLT]†:Yð º-á èãÅ Î !2ØÖª)åè»2­#óönÛæ¿˜aÀÊ4'Ëó:‡N1›P|ÿô‹ÅÒŸc#9íh¤p`›\º$½bŸÆRÑu v–TG[óÅÿù¶¾±I··>Ö1hvÊvl€L¦ã,ZYæ nhì3©ñCC´ÀADíøe`ü–\“GJm°á*ål)ê „µH0WŠ`˜:Þ qëÉHu×…hb^|ªiy]VŠX yÔÇßöŽÚàuŠ´—q0.`E+& “ ]_Û?{âJ“Yûì—ÀͲݺ眛•îácߤ\ɪïgBãN¦FˆÁ‹ÖGÊv&§iÛN÷H¼îÞ«”.—ÉkW_Ý,ýÍ{¸º¼È^Ö ç2 ï;Q4+À;ܲéöløe.³;”Ã{Wh+ÊÁ¿‰¥´:^'ap„ËÝ6{™¤ù#]ôú„f†§ÉèPÅižx,v‚‘ OúlámŽˆÇzS)il55páUêmŠ´9`É%Üã0Íp„ÝÛl/Ȉ®~ ¶œ}±kRc>J»yñ  p`Æ SßîþÐ:ºdïýLŠÇ“ˆ“‹¤{3/ñ£¢Ïáw½QC•´;—±tì}ý[áªKÌ,âëfìèÖ9Â&ç§¶ P¤ñÓa'†=ËR+>kJâÇâ>pCÑ3Å“E£éfiù[®2˜|Ï£V¨Yç3±bK± ]t÷ò îµžËö©³ãi ]´ßÄnnùãb—-H`Õ ×‰bnèHGL¥_±è¶ZLKó‡Z¬·&øôg‹ÜßàÔ÷ñøäðÃÐ{5äKLu(w<­†”Cõ· ¼¢ Bó¼¡di“ßÚlѸŠJe;Íëýý¬I:)ã}>lajNtñlÕeh)×ã?ÛïÈïKgûyYo¸ì$7q¿… ðƒ*?&Åž_<¨Kí7Zæ&6%!DÊñÙ³¹T0 ÃÅð·®Þ}Ê‹Úõï ôBÝ;Ón€†MÙE¸~þÎ ¢GñE©²Ñ+ñ¹Šþ:Œ-Ü´Ï{BêĤ0E=˜÷y&o" 0©+¦ê6IÎ=]û9äZ*Òâ1ÒÚodðü‰>{þEuøW±’™e8ÃJ[ÇzX¦#9|ìR‘&|›ÏÔ•Õ¡Õ˜éÎç/îuRÙS)‚=˜:ÞkM¥å“ômƒV·oœ":ì†Ý_8‹eRÇrÓ.Sº&€Žµéß5O®î &y„éúó¯Rd@_2!ZŠ+ÄxÈû~ø¨&ÈÂîö¢Ø7pýàº[ôdÇ'«s`™W’>¹õ6ñòÄ€¹T¨#y\”Œ6È|ø‹¬s²‡œ^nE¥sY—¤ ŽèúÌv™˜zzIì@‰¡l/ògs+Æ2†ÐM²RÎ.%·G­:†.ú'мJ…ooœãE§û"i`4·Çw=R¸ZÒ óŒ û8®ØåÒ¯ù›F,M%Îu=PC·àÖ1}¨åz$å>aJÜD‘8iYŠ‹¢Â¶t‚ÚÖ&;Šm‘Âo ¹Co¿€›'Zäæü¾µ´è úOI¸D âök Š  Zâ½@|ÏKHRñ€Ž"Ÿi“¿¡×ÈnD‘º{4Ø'x¹3šM„$&€DHïô;T|0è A–qŸå~Sí{™üN“¡Ê1h&àEÑô™”ãŠT}”¿ÔÖ ýd…ªÉM.–Ex8Gùí4ØEk=¸ß˰º¦M˜në,««Þ0È>ã’˱M?gRJQ‰º˜Ó¦$Ê FIµKöRfvìz’´SDƒÿDtQê w_é V]§kµF°œ®ÕzS{&¸Ó²YêC£uÜ óâ :#uè)&’p§ÿ #b¤žR“$ö¤øuÕ¢.b¬4°Þ§{ööœ£mÚ¡aÑíäõU÷—I®T€qšWWl(¤f¦_4NBý@D˜´(ªæ<·,¢iJØþê­ð3ÿ–ñÄð\!½,«?ÎL½¹ï"6܇æ²OÿÅûŽTº%äèR~øÊFñ0ä—H^ÔgÍ‚ôGOºÊs+̨lçYþM [Š‚æªUìHkXçÄ‚ô6WGd¦fÑyHiž¸mò ?ÕɈ½ÒÇ]€Þ¥«_xˆ^¯Â\:fTeéœC[Q·ÇYÜü¹:"{¯~ü¼þ‹ÆÅÄg¹tƒÕ8$D—8æÇËxAϨ~0#n¶lSýibû.¯QØ•S•¯ø£rÝŒò¤~àð—uá_µÖ¿|IGøþœ¦V§¿º.¨Ù¥ÃO²¼"bÎpKµY¢Ôº*®ÎÅ÷ñ>´ëxli&yÏ|oú«ßmk;Ff%Ú}p0+´µô”€O˜òû:쨘Äíp#,%2—Š]ŸÁ‚Ô¸.ßÄ,d%MX"ƒý˜làÜ>#ö—¨£/QéòœôcÁòLø kÚê»*Ñc•b¥Ò4¡½8½«¸?&§G%ÏØ'eTxºp«HNtw´‡˜j¥†0$ã SÅ?meQb€^°S ª6ïmìAZý"Ùþ=z\˜7@±<àkQèä9F fóhsHêÇç’8¦é òñçV7¼R1Þ>Á þT¯hSÕpR-PRÓ/ŠºSvÌÑVæ.e¶èÿUA J¶¿ðí@̈ w_±rU¢Q€Êmut>¼•zO¡I»ßLŸà‡¸]d…ƒö ‹žÊÀ mF3¡|‚§ ›4r uë*û³y©@ÜVcèýïé­ýPoÃxaáÕkcDg<Úè¥åÍ&Ó­enC‡¶ÊÑÒÒ Ñï'6œš÷,ðq²o2,·¨®,š«äå=øF_D×;šÄ^Ÿ%‚Ê^œ ÇTg[¿AÍÉŽ$̬ _a.ƒž5gªÐ¤ac AMŸc„`õˆîTÊÇ\d`—‰Í<>—é;z Êò$ýÄPa†zVƒQ2Ÿ„¾„”#±uKö·ò†oõö×äe,l¡Ñö-쉌ËÓi– |Eq’Xp‡±JÊ]F!}ÿ·\uó:Ï&¢-YÍ ß€Šæ¿¯Ûß–âõIôþxÄö®|ÃG¶H1ÇTZ'•I¨b=­¦_Tú°¶5ýrø"ó+9ÆFqt‚å·{EÃ|ÝFæô¤2º%ÒEqN]>%§Ã{3z½¢Þ¶j<¾ÙØRõ”­…’ÛSõPK 6‰Åû¿=©èrgÏG ÁÛØ j>ëÂZv]ãhêýíaôÕlÅ?m覶Z=.¹6î³4}š°xê—û’€> ãPI÷‰:³„ÖØH¯epùZy´ï(C †œE¼܃ýAÁàÃóopLbmÕäÙoE÷ŽeqIGóõTq:„{Ð9“ItXù©'[·$q‰¸¬˜—¹“ŸÔ¶¾é Á>Ê]ôVÃÂø9/å¦ œóã/tÏ(Ë ?4Ѷvп8×¹cD›Uòúf%øYׯª‚挢5ì vm…T}Ëå „$¤‡s`K!3Åh, åF³|ÂÔM¯æÁ§Ö‹‘ûO¼ñ¥,ž&Çó8O©]´\íwÙ\ûõvz Mh ñCúQ2Hc;ífÈ®¼ÍI–°yÄžµpp¸Ó²÷6à tu‘ƒèÌ(•ZŽ*¸Ê½ñÈ®¼ç-µ]¹q²'N ¬žL‡q¹%Üøº ž¤Ô‡ ÃùZˆ¯pѹh¢O4—‰Î÷’k踎tk †’ "šÒbˆÕìðïλÑ_ªo´Ì¿¼þTÅP¤Aõ9â­`kJüzT0S¾sBgôsÂC’Àö~`+ Ky@WãjåÐh[÷x §ö»¦â2^XßJpM}‚®©éýM̵áá‡YF÷È2Gïÿ2ò{t‘¡à‡ÜL]’‡(?ùÕ€:¦è«hŸæ$G„=ïZ¥ü„ºEx@.r}¦cGëÎ¥w½|#¢¨éíÛÊkp)e #;æãd¡Û9]°¹›8ž&äDѳHrЦmiÇj9Ô¶à‚niïªõ,AÃAœVcÍ; ©E ›ú­,t”´pqxÁbÖú=اj¦µ±*8z4-ç?ëcšì™ÂîaxÔØç6¤ ‡N—2ª(m¿t¢ÛµxŸÀ»±YÒúæéóÑ9È2ÐPk\Ò8·=k¹ Þð¥sfò7[¥Á«¯‡Û‹ËÐ×? Z3&‹ØÃÍ’ˆ$$+È©f'¤¥E¨}Öîƒ×, I7úÞÎ[£(­ætcªšÞ³á±†”P2§!#Ö}Çe—ôÏm¦Sòø‘¢¬¸«Ìô!FÃr³qh€Ýâ·¹%Mr\qÅçGIÖ ‡M/ð|ù¶†©§ mäk08IÑ4ÔGƒ0‘«Ê·@¢¸óãS+[·µàƒã¥>%Œ–QËt …Ø,ùV=,wÑULžaž8¡ø¼·2ª‚“Â’N-8g7·C_ÕXw‹’jßê ʼn®W2 f”Rô) G²Ò3¿ÑéàônùFuZ{cõëŒø=.D`›&±Æv"ïS)Í«³9nì÷îR”€Â_ûV.2”¾ùÀæ“Gä®ÌÒ»ŒN ØÝ¢í*£²•â~Bƃ¡õMÊp–”cp1a¢ó0õ[{6™ñrþ9‰Vq¨òÕÿ–]ýï‚ö«*·ß³É“ÐÑ´Dì¾ÓxÏFífX¦l.îðÚŠ^1’¹v5ØA ŽÌÕ2§¼ñmÝýõtìJAX0#*Š_ʯÆy(‘c¶ÏÕV޼Ÿu/ÆÄ¬é€ó~ò‰§I•ßD’kÛtéU¡ NˆSÊfˆ_ iªµkMkaâ‡-¶Ü[0@ôÜâP¾†—޽»QŸYæ"äÒ—0ÂR‹v ¡ 9`Üi˧ðL0Ú—È0ÕÊ{ª~“fm†\bö£\°º<†| ÎáIç‘NRJ;„Hs«­G[ yÉ„t€ B±ý^`Ëö˜eY§vkùZV=+¼vG°•ˆÄÅ^襁3.ùQà˜Ð(¦LŠÄ$×HËÍÄMõ+ô §/A5lZeïì‚rÎÍÖ}A–î§|”Äò³ºœ SùÞ`&¬Ý¡ Æ2tZÃ9Ŭ߶¢´Rkb×Ì{‘ }"ÑÃã<—†<\a, 'ÛýÔáû;R¤hMúÕÞ}¼§Z«³‚‡Í¼üu\ßÍV ð‹ ¥(»4rÃüÈVàqx„Ý6×ùHd ¿Lpø.zT r©Ù|ã>ÝâìÁ½Š„Ø3…G‘Ú¬\d5góŽYHb -(ïÄÌ×]I”— tȺl‰£Ôǃ@Ä”pÁåÒñ±I&TÐÁÒÍ…Cù.? @m¶SELÕ°%cj@VSÌâh‚FÂâ¤$Yá"ùÈÔ'1.;RŽ¡9Êp¦l"ÆÝC¡zÀWÖôª¯ã„I gW.IJž zBã¨h·¸à÷²[Xõæ´¡*ò$#z!S°lKÐÜU¯ùB&%‘ïû@³Á7•+Äp¬‘5»Àxá¡qˆcàÌr{ã¢v}‚P?["vâ}æÊò,ûÒT÷“`ÅB@.l]üŽŽ$¨µ‹å§BYWÔÜ6_·áñ£äÎ+œâC0Gø=\ÏODhÚy³i #‘s‹’Ð5¤¤'°K–x…€¾qVס¡¯pv¯Þ¢±ÁÍŒWBŸŽ£dØ챬ÈpE¡v³'^W\¨Ã {kÈ3ƒè/~ YG'“Ø«õÞY]Â=QýèKQû<’éR—¦û•Añ3¼¬’„¾Ý^á(Crfk']˜¨5À›wr#ÍÃݳ¯–6òô¹³’Í?>êû/õÜZ±î•Φ\¨ “×ð ”‘ã[¶¥ø¦Ù¡-£AY*ê( 1uRqÚj®ƒé¡JaÅÞïoâ%šÀ,T"¯)zÑâÜtœ<ü°­@𢠯Ê4Zm/eN²#)­fƸ~ÃÇ™õ@ ñM•Q;]cpëѨ¢=•º'«¬…(ßÔ̈—•tsñIª§«HMAM}"oCùeÉq-í(uJq¹P ØO 0¡$øÂr³îžòÛ>¦.<Ø8•ÓN®èñ}àÇÙýäÁÊÝ¢ƒÕêÞ Ÿý–XSs_¬‡»´ö5oýDFÃZ@¹A8ïªc–¼u½‰÷I2‘[CÝÒ!NöÎ »@$ñÃ(^k-¥ùFòˆ=uš· Õ©X+»VqЉ).ÙÜÏMpÔ‘Ë+ª3o È= ïO3ùö»(Ÿ-þÃ<Äïxær}§{¿Ÿ,Zw¯¯Æ}—ç›Ôh~‡KÕ½ìj™ôåìݬs%ÌnlŽIeÚÒ;h•èÇPp?°Û "©(KmδùÚ·óî/ŸEµÐÃÓ¹ý/9€Œñª¦ßõþV°íÅhå/÷³[ŽÉeÜÓÄ4ÁñÉ\¶ÛOÚéfŠaé¹·»÷<òìã$BYC•Ðá™$}ÜÝÕP`¢‘ÓÜÏïÖËfw×5º(Ã<€T˜ g)`#¼Ôk`+mÿ•n(±~èµöõjóx¯î ÈÁA1íE­ç½Çvzúl÷݆ëêÞ=FÏÔ¼ÏM éBl8èLöÉYæ`&MÍã³#Ù\pê!4v í@¦ù³»áÄ—OJ—„—Ä9‚[Œžþ,¿Žr€¯SÎn¥äüVïÒ^üù/[DTq»ñahs¹ÇÙÜè‡ižýôœ.xO"h k ïuóé:õ™þnÕ¤Içl0§¹uõƒ¾E²ZW“oМԯ1Q ϵ«Uq=v^i5EõÝ4Ú~ËjD/Àõóä™#E|ÔÌÔ¸žØíÍw¶h,Ð%2$ƒ(ø\–Èð¯õšhƒ(PÉ0€ÖÖ.,uo7À1ëÚ”kLDâ 6ì%Ç”lÒŽîyàK F*žÂl…m^À¯Š".â㣳üW÷µmÉ7óù³@ W£ˆÇ…Ž™î{ÿ¢,S1×%‘‚ÆÎ¤}o‹NêíÊÓ8® .gM8õD™Ž0·1¦¬§º“ºWص›Âj,ïÛ7‡¨ÿDSWBÅÿÌ»ô3²ylrrÐËØIBzžÌ>µ>ë0~òð…áãAQÞnØÑÒþ"¿ «M¶r¥õÚ¾Ä/ˆÏRí%Ä1‹MtÙÈ¢÷°Ù‰Bó-~ñ¢Á#c­½ô/±ç˜‘‹–ÆR;HO›?\{Ic‡Ó’Ï"ï 1¸H…ÖµoãJ±;±±ãžž2[‰tOŸ¸IkJ8Ûµ&nyõåÜç°e›†P3?ÖâÕz+x¥Þ™™^d“/o0ÁoVtÀ! èSù3ŠÚxA‰3ídU¨CÝy‚)ã»# Üagš_0ßö.CÚ4.ø¢åG©ƒDsèA_ÔjûXD^±?¸õa·¶%x'ê•”m­á íw ¯ñF¾òüía*¶/ÏË,úm¬˜ j3¾ñº¥ëÍ%oM”´ @`2 ±Ö»-C“Èûm`ž“_ÌéL) •õ’¼+x~oög«kÛ Ó¢Ì3¡q|ŠI)0ÌW‘KWÁ<Îu䳘qÚË| ¼šÔLZšßЦpÂ’¹l†¯oèö­–†Ù¸,¡E×BVSRo –mRÖbE<8ó ©á¡OCº1מa¢4kc,“Êv6õߟsÑx³ðï9‡w¦>®—!Ùé¸W†ÇÒ‚Oê%9[0á #ʧ– ˜ üa(”-OrkÔ*¾Æ~D: ‰ðiƒ#óF|!—år;ýæ$ÖXÏ/T=°áÀ‡è´×ü¨xØCÐ`E•Á¸¼sƒ˜éÆïWp¼ºw&úËžMž’†eFX—êÈàÑâÑ&¢Ë ÁôFK®¿÷gb]V R¾ËK¬3·´î¥ÃYl`™µ7±;êb¬+„Cd„ñ±k—ê}cÌáïAâ©§‡I æ  …8d÷ʤKv©¾E£ý-æ@Â8ç ¢`:âåJ[µÁ›öGèçåúïÖ;1ß²1Ý —KÅa¼ø".¬nuÉ¥ªlúý’\óîë„0¾³åfA'µØüÛê\5ZA%½Òä¢zþÄðA¯OU&›È~¢ožjOÃñìÝV8 ¬46C%‘טžH çÉݼ^?Øöx´ê‹rBh‘Ïm¥ee)Fl uK©¯È/Ë̆¾d¥C Ÿ2¶ ŠÄ—èõyÃji‚‘i¿¶`‡Ã'4¨ÕD@"˜O7ú!A£ëmÄrëÄQyc0#"ƒ­¿e¸ØõåÚf4Nâ;Ì€#3ôN@3ñ\ ˆ‘o-|†dã?žPþ@ÄJ¥=¡ßÕÒ’.™óÝ_‚p]ž½¢çëj_vàºÑ´ºßç«Nl¦ŠŠP9 BïJÔ0okxÇ’‰¦½{e´4Úv”OJywo±æÝ櫋܇ ÔäI xpä6ݼ¸ÔHû&ùs7Yÿ³BçioÄ&¹¾øüVÆ^²7ÕŒ \êÚa…5Ú>€·¯j)8e×™nA üTZ9íF¹š!=³‹UR=‹½h TnE—Š…´Ó©è•ßÙ…ˆ;¼ÛÝhWÆ—èQÖ^ŽÆ,Ûg§  N÷{¡„Z¦$H£°cæK¥aE0¬x;¡¹9¥(rDç˜òåOÔ Ž“«òË$ê>Cy4éÅZ*Z\éð'aÎGÎp:ï6T ï?É—$9;n}ý¼Q`F3õ4ÚѱT×¥ZH’y®—ËÒ|xâª^ëöf\ްÚšôMôèà8ägF‚å20ɱú¶æç½-ïØ±ºIØÐǺªj6ÌK¸º¸/&ò=úQ¡—Â?PCe$¢¸y‚t¥³ØÔ šª+2×Ëî]V|´P"w~6zÉ㬕k»(=T©>{Tt¿Iªò5ÇÌŽ:pw²ú™P½·=¯H ¦„‹²—ì¦ðŸó“-ÛݽŠMä²f¦&uvzhb½D(2§ Íð°±pù·¾’y–z)8áÉŽO~&Zn¡ò’B+L÷´^Eìœe§}òæÝ''£¢Pé¦éºTä`ü"E•1 -z+ÌáC/£gÇ[–Ú¹F\;³ua/xìúÁä•´žc¯ >7Ò*Øu‹±E‰6<”ºË·Rhš> ´&| ÉñráÖ¸¯ù5äú(R†&«Ë XÇ*â §ÑW-<ªS’/é,['­a\W×»t”¿h—ÒµõD¶õ¸ Œ/T¹ï ÏBÃæ¿ñ å3´!G‹›ß@̬5M+}’]Ù`û4±'x¹´úE°‚™Ú(£=ècñ„N±;l&ç‰/Ô1¸¤$ ?µèÏ>.M+<æl$Ÿ"£%,|P`Ì®£nèoeÉMcª¢ï#ë¶š-–YŠlS®…/äCÎSk¥£,§Ü\/r’1F㊭b dÌ_iF‡¯¾„n5y]þ­”ƒôôÝmø‹R8¿CxÕ¿ˆ(ß~€[J#Fëÿrn‡æfÏåÉ^ôÍTµa¼:õ —rt·págZ²oÏ›f¬”Å Ÿ÷ÕhuíÞÔ%ãéOßñq_¹<(®«bŸü1Ù Íâ'ØÙžg`e8£Ò^zÃ&ïî¸pîÓã±iœÌ×ùl¡sK|jG‘ÂÃ+`Ó¡Ämb_×:~=#~Ý`´}òèöÑ k;]½|NSìL[ÅÂ16+g˜iˆº:}‚ø« í, u°žšS=¶º¨\šðÜ–÷­Ö<›=¼3hYè9Ó°:±YZäÓLÌÈ›' 0{²¥ÐÚNv¿QsåÒNRêÏäc)£_ìÓúšÅõÿ25 endstream endobj 124 0 obj << /Length1 2478 /Length2 18731 /Length3 0 /Length 20159 /Filter /FlateDecode >> stream xÚŒ÷PœëÒ ãîî ÁÝÝÝ]‚gpwwww ÁÝÝÝ$‚·w¹dï}Nöùþ¿êÞ¢ fµ¬~Vw?ï;P’©¨3ŠšÙ›¥ìA.Œ¬L,|qE5V6 ; %¥†•‹-ð3¥ÐÉÙÊÄ÷¯q' ±Ë›MÂØå-NÑsµ°²X¹øX¹ùXXl,,¼ÿ ´wâH»Y™™rö  3¥¸½ƒ§“•…¥Ë[™ÿ|ИÒXyy¹þJˆÚ¬LAEcK Ý[ESc[€º½©ÐÅó(h,]\ø˜™ÝÝÝ™Œíœ™ì,„hîV.–5 3ÐÉ hø- dlü[%@ÃÒÊùo»º½¹‹»±ðf°µ2‚œß2\Af@'À[q€º¬@Ùú;XáïÀ?½°2±þ—îŸìßDV ¿’MMííŒAžV €¹•- ,¥ÀäâáÂ0™ý4¶u¶Ë7v3¶²56y øëäÆ)QU€ñ›Àä9›:Y9¸839[Ùþ–Èü›æ­Ë’ 3q{;; ÈÅá÷ù$¬œ€¦om÷dþ{²6 {w÷?ÀÜ dfþ[„™«³&ÈÊÑ(+ñOÈ› áÍèàdaaáæå@SKæßôžÀ¿œ¬¿Ío |½ìæo"€¾VæÀ·?ÞÎÆn@€‹“+Ð×ûߎÿE¬¬3+S€ Р„ð‡ýÍ 4ÿ¿ ßÉÊ Çò¶{¬–ß?ÿý¤ÿ¶^fö [Ï?áÍ—YYKS^\ƒþoÅÿõ‰‰Ù{¼Ù9Œlœ¬^7' À÷Yþ«ÿ?Úÿ²ª[ýs6–?„² s{ïßÞz÷nÿlÍ?7†ð¿”ìßV ù³ùX8YLß~±þÞÿ¿Rþÿ­ýo–ÿ·Íÿ¿’rµµýËMó—ÿÿÇmlgeëùOÀÛ&»º¼Ý Eû·»ú¿¡ïßdE ™•«Ýÿõʺ¿ÝQ…íÛhå,eå4S±r1µü{…þ3…7z[+PÅÞÙê÷³ÀÈÊÂò|o÷ÍÔæíyâü6«¿\À·ëô¿%%A¦öf¿ï'ÀØÉÉØåm½Ø89Þ¬oÔ èñ×f˜™@ö.o)€7y¾s{'„ßåâ0‹þ6ý¸ÌbÿEÜ,f©?ˆÀ,ý±˜eþ v³ìôÆ¢ðq˜ÿ ³ÒÄû¶ÊÿEÇ?›ñ¹ÿº—ÿݶßF{ ™‰íÿ”~{Þþ×ñªóþãù_3ëïáþk4¬ovþÓžßèö¯Qp¾…;¿½#þ+àM”³­±³å¿(Þ4ý)ðöœev±tþkýÞšæânÿ¯„7×Á·ù¹ý ¾Üý_»÷–íñ/øFïùç4o©^@§¿¹ÿçádêêô6—¿^oO®ÿ࿾!@S„åE{Sþ놮»:QBwÆÝÁÊÝ÷´ŒÞËNÝ®(°©´µ9AN7¢©ãh«Û’4×"ßIŸ½Û›`Ã;’U;}ž Õæv;¾}Æ™ýx,Ú8L OĨ!²çóìè£hÙÞ+GYàèʃ¢R„yç>$íÑ8\±2¶¸«ºWË%øT1Ï«ó!°ô e¡IîW¼w0.ŒÄptg¨_®o0òg_Iåé|ObÙK¼u7Ùâî¿z­Ui°9÷áSàëâC^cLÍQy‹¤Éá.y—•l8M¥ÅéžÞ²Kaµ= ñÚUR»s:¼0 ¢œå£ÁÇc†Ä’ŽÙèI²+%K‚áÈ=[•Ûð½àn7qfPN²zU¶ånäTCäÝíÈoô:€¥ÁnЦ W³ÄNm$ r†ƒç7R¡DïZŒ>Åâ®5]›XÃjnãE1’$nïøa‘Óàx¸¦A6¾ê1&ûå\Îk>Âíp›ÎëìÊ4Û~¤woÚÙÌß<•²¹9Hð ®#5_‘ž0§1—Øõ†·š –<5'« ½YqÔP¿a÷‘6»ö sØá.bøh«B³âU´¶º€'ý#¼ l|Ü}+DøÖ´+Žôç->‰uŒð-¹ˆ¸š°¢Ë÷Õ—Ó=—¿ô‹Y˜*,ÔÅP‘”lS0uó”~-Æqð6 b½ð•ÊwÐAûü”B yõŒ|¨X”dØÀÏ{tì‚Àê¶f1H÷8NkP~¡Ö<<õ? ì²ÂGçÇ÷ÔW¹viƒÚ.‚Àz­ÿ¶ê°O¨®Uî?Ê÷©o½ÂøÒŒÅrhÉÛß_Àæ+›ûéT~ÚCv¨çˆdPÚØ/0„û`"B^é Ë€¿ÙÓË/´ìêsxÈ¡f½•rƒ`‹¸ $ŽtÑ×½”„¡ÛîÔ¬ΗJnÅ-1yh9LÒCMê .Ý_??&áx-d?2åªG'+^‘Ò†­Œ·Æüt{VY° `•%W6Üu^ûØ94&ukáZ7¸}Šc²i½Bïv÷šœTxöˆœo§RIëAý°OÅÆåmä`¾h‰‰{;û„kõlqN¬X9û¡S ¶ê圤^X+«l×c>[øÓ”ÐÁêÓ„u¸“ð£09éÆOÂ×›9š"É+éþ‘^èN$tM¶Ÿ×ðô{Ôp±òÐàú¶\^L£h>mÞLFe¸Þ}Ü\öÉNú2H¡ùñÕtºf£èe¼Ìö‹ÿV2×¼e´<ÛòFóçüRÝM7Í«¬¶]*>”´Z£m(vgK•¹Ä‚T]ÆûU8WrqƒÎ!†ÄÅS I™ÐžqþË>ÞjAE±\CMyébéñÜÖ²·°¸ácléÏÆX‘O¥”H¯"܈"¯`ØG4ID]L‚à?Ó¤Fyó–ÔUóÛô©nÓÚ¾a ÂÑSèÒ‹ìèÄ|éA-ñÍ… ù tTíçßœ~xÄ>mq!I â ,Q³mDÎÕ §âvIÅm `¦|¿·0:òŠtÌm_×áEê;_>Á´úD¹+F9%›bñn¨`Óìä ØðtÂÖò§VpÊ0'·r¤«}—Áëäì©^€YÜÕlÆ^b"ò™¦[ Ž Ä¬Š2&ÝuˆDÁ VRGú¬GFU ™@´;LáïóõÖŽBH£{Ö¦n îÐÉ5´NGDÕê:óÞˆR˜U•‡øÊ]šÝ‚8à…¿ Ѭ¦mÕvÂ~š í)YsëòÚµëG†øb4%Á°ŽÆ5µÚUÌ(õs9FÚÃÒe8Ð3ÝXXÛê8‘XºÆÏ³ó±•¸,Ÿ/{RJe’¹ Ü8’þB9­ë”bR\@ñÆ+ßâÏe=˜$Õ» aê(ÍÐË¥l×bsQPœd?& zb‘; ÞÎÖA‚‚¯¬ë˜4vRÁ®Ãñ¨*ÑÃyv¿ä{ÕçJÛGðöM}yg€[} †öÓ#ÜG—Ì`µÇ]Òxɼ~þçx«•ÝkN,!³IÒë 5Aæ ¤üÊûn7úùÅa}`¥²å¬œèhfVc—A)¯[þB‚'!,µ¬KÛB Ÿ™ù¯ô â…Â=c5‚A²Ð'3²n5Dð”lÿˆ¬fºó˜ÀÞÞ½\õša 3L›oƒI&uZç£a.i¾–œÀÄu¥§!™jÙåVX.êÍü­YtÛ¢FÒ°l„×0%å#¼ïäÆ`ðÊypZ»Œ4­drÍ­º=žÚðÝedúµ^K«"KL-å÷ØHœ§‘`³ŒñÉ Mœ†NË2»‡ÕŽA¥µÌ$Nû¥AhÓµ*”ÉÑ€*³£Þ´>‚/¢Ï¦Çó…EO:fk4!t|ywö±fFEE¢Š*&!1aŒ ‰á‡µ.PIúäÍ%‘#¶Tã À²ôjÔƒ4N3Ì9:eIxÎäzM Ëü5[·^ÞNBCZðû/øSâÙY#ÇÄhôS4mŠqð_»¾«cD !ì»Â"òÍwá~‡Á­¦×éäÁç-—æ\â•>2CV@×™SƒwÉ“RÒ6Cò¼È…>ý·–Äî(ñT¯ökº7Ô!‹Ú‰fM¯üy Õ×À¤uFªVw>±*ˆÕUÎbËí4€7Ÿõ]¾ ž·;àâ²`O°Àf´Cå0Ðå¹u$Þ§^™ïɲ– ±v¤çác¦‰‘Í“.Ìÿ 6ÑÌ5 …ž,L_ØPît¸ËñÈûf8)Ñä_ÛÉÛ»ë5(ÛCõi¤Å (­Ô«­ä ™Æ£é¬oÂo‘N˨À·sËŒ]õ½fÊÓø[*ßögVûÑ”‹±£D­¾Ôs*IIˆü@áS4<”Å;,$ñ•ôÑLnîF£Ñe ¨ÚjE· Ø#â#ŸÆP*硘¤.m²! rÙl¸^²;úNH ˆ&Äl9.Ýþ‹=ém©aèIŠ=ʶÀZg˜m½îã€Õ¢S!÷t%Q¦GÔÜ4G wô)ÏdëiH@}øX§ßW¾—î\ w‡w•üÖçu¢PÕð3FêjZt Pê™æÝ•6qŸÅëmv=1+ýÖ]eÈixPf•¸n¨̲¸$ˆüÉ,ŠæÞß’¥Ø‰á“cƒÕÝe@¾õ,§°ÇWž×;ÆæƒÊrDÙ…%oâ˜ÔÐòÅPÀ7 wÓ¡Mg5}”/ÊèÛ5‰)šœæ—Ã#jA ÏMûœFS©Å ›[Ì_Î œø9… x'¾¡ ©æ(-IëZÁWmÜæ$Z¤‡9z‡-¢Že²|‘™¢™lr}ß½Pâå“­1Õ´­%«¸]kN·QÂ5€ ;eº_óÝ@ =GsÚѽ†nWõ[|ÄýekVÑ'$«pᢠ91óÐüÜcbµO°VÞ;2äM–ˆ4¡à„Ã~]<=Œ‹qKG¡ÝÓX"w4¾'ÙxO‘{890ˆŠé9!*ÕõAF¿¾DyÅx¿PgçDx Eþ¦ÏJB˜Äø)ಔÜ?µa++C\°æœ;(øËˆZ7õc ÷Æÿ#«ÜLE9]ìR]o¹‚^fëP¬3©ÅµÈ7?;s·2qžµ‰QÌ0dd^ ]‘xôà©ÈÒ+n‡ÖJ¶–Ô U…ÊFî†}È­8f"û´júý¯–ÂßõìB„ÉO<ŠÓY Ü÷„í½/²[Wád¸*‰É RŸ€7žÅák½¯ÀŽ!ÓæúÌÒî¼dö÷u¾óœÎÍ:¥Yñåe<íféÛq^Έ‚¹u…ŽÜ»Âݯs-–FöŒøðWüB¬€6j£ÏN1’’j»`ª6ë”hoÿç© nñª‚b…RŒ9±v–ëôël5¿ûb»W.þà¸jx7•´˜ÒµOÛ»*x”¨ æú”ñÊ.þñí»Ûx¶æ]¢6°? 1„ÆóC·šI}[D" g[¶_¡Ë/ßcQí—ÑB“ßÏ,ÔeÅ,>ÒâRŒ'°íYf–‹åz¹Aý2"Ò?Õ7¥?œ‹éi‚¦ ž¸o®ÙU$diï »-\ú0=öc?Bºrwiס…PÎP¢¡×u S¼¼hò‹zØ)î{ÏrëŒ }Ó¡‹aó<uÀ§Úï—ŸKóœèз8Þ‡:,Q iz3Æ´”͉E^òc¿d!)Où8nGše@®oͰ@. vPl1_úÌ+ª=´2ÅnÖ"•ósí)>ø çZø]Üê\+ôêm/hì»–_a¾ZdÚJ¢ž¸'·¶õ/†ÐÄø;\™}oÔ¶ÅŠ—Ðv%Å*Ê“Fl'1aS„V#ïFÒ—–î6¬ÔV´=xÚEÒ%Aê©Ô° a <Ó%¶P³ 3‚ ­gŸ4xYñ~©$—:Õ¶,_ékø ͹²dzm¾WŒR߬KH†¼‚¯ÏÛdßg¿ Å¿Ä2Ä}½#-^”ÊýfÓÄlòázû ÁMvívo¢²Pcã2\¢þËÑå£ÍsZ‘¥PK–Qhb¾ql¹JŸ5¥JMXÛØ¸*B³ô{ÛT…À9aˆÌÜðæ³ûO7Pk‰åTýQ–®×`TÝ$¢àah1A±_(âxM?¨ ½“¦y·Ž4ü£âþùº9lëz¼¯+u Ì+Š(&?þ]òNaÖ÷¶à ­2Q™I×ßñ›cY¥¿çßÊxDýÐAí:Ôh˜ž¯wN`tP©ìol(päC‚äåõšÂè«-x{‰×C†w{*w¨/2íÑoj=½û„±I̱aÍÚ¥" 6hX;ÀWóš4G¤gòûBœóÑLœ4ò[Ø Bô°aÁôž_Eʰסsã>‹}ý©§CÚÖ•r _EÌhô„“™’x>HVRÊèS~­¦¥èÄoFn{[é^$È﨎=¥¡d2bº¹@véKF0Â;óÈ;¸iбîZPA^s+@µÜÍrнÝÖºrÄËržû€»²+ÒèŠ ˜‡iTnæ«Vñ—~Þ*™Gž:¶ñ³èìçE3Kþ_³¯Š‚™Õ³`èÇpE¨P»£? Íé÷åš¼ß($+RZ/qXÆ6üÉ’dße¿ê\@”ˆEjr€=wâ;¯»$Fßýr¢Š%X¼–x€õc*÷}3!$7I¢¸æ·VþVU—Âí\½š(Ý t둬&HUÒ±=ql]àì·Ÿ¸ö;»¡Î—‹<à³2•¹+PŠW2éígûì`§™Ö¿:«}BxÎBI_Ñ…ç»B1[%%Q€Ÿ!…~påÉúš³»'ê YK·Ö‡¾ ¤ç¥W<;w…¶|k»€JƒíyÒJˆæL†è~œü8ÄOš6¡¸P¯q;µ|šd àñœžL¨ßlyùI"xfå¼ÒCêD“ËŒü ˆ ÆC­Ñþ ©ÀÂÍ“©€µ†V6Àß“:pQ5œæÏØT­Ž„}Á»ŒÕYZŸö­˜õ‰S÷+Q(†¥Œm… µ¬¦¶`§’V-‹|Ö7ðépA´–ÓõníA€œ1P<‘L×YZXÄëa‚V¾TˆÙWŽ«©g¤ÿç r)^`v› È—†Dæáö+|b1bѽ‚]D¾Õšôgö1öh…ºñô™üI‚˜eiã¸Æ¬x@Çz Ü?§ÖäM‘ÝËr+~ƒ)L¢¨Ð_Kî`q•òÙ£øü—%ü×ež Yuƒ«úx‰'’‰§’ ä<'>`@Ü_ £ý«G§ù"·™+}Öö8~x«ú™Ú<¶k! ?I'}i0o¬ÿr!•«þÔ§®Ý?z,Hk»ä"h=Z\†5~Ä€¸áásè»»pé …Œg<=¦¸ u}Ô1W%Cï÷4IwÞ½°bÒ‚,½‹\¨¿_oýD!åløêA¾Tߌ>¼B!g²8òZ(ÊÒGÒlþU˜± ]*!ø>LÜ'ÙiÏ àöC9bw¾0îÁÆ_ÚúÞâ;b‰¿ßxZ´S79ü¡ I¶ÝNœj¶‡û7ÄxÁk^EnÒSµ6Õê†QÊ‚>GJ£Æ³ö}döñpó}qÙ»4ƒ'}V"Y&…êÙÚ%FŠi²q¦ÄuñÊRÊ#™“WÅÙ`æÕôÅ“­ç2~MÃ! áãV%iñ«o•Ñ-¤=ÀÕZkz '¯˜ºSh^­$øaqÇAhj¹Óè·íáùЌŠ>¿¸†ÉEp¼º-±_ ( ?)ÈYΦæo/}(V¯¤Ùk‘—@×àgL›O'ËænÉ›Çj²SäìB`šVlqÁúat6›Ìv(4ÇÛÀé–! ÃP`&¯üA« %þJ ¥ÏÞ²º½#áÐ,Ö@«’_/=Áo/5wÓÛ}.öŒðói2Ê^B.4ëG²£·¤ue<Â5ÜätZ3ˆßde=`¦<Д£ó12Ø È¬;¯[þYêÒLãêØá»èÑ\ŠØü!Ñîñ—ú'köiŸöó熟ýÆV•|,ô)Fù7—¬ŽÝºlÓž:ØÇW¤|½RÑMííò÷ÕÝ‹£¼*ö¿jiýãB°ŸŸëæ/²è]“«¾àµ4)qIîAÇݳ¼KšÚúÔQ謪FŸ¥V«ŸvØuóoí.K¯H×D ¼žäìkb0E_›Ííi@ÄB¢ÜðÚêsýý;,öÁf0q±´•,ÍÐ{*Ä{àA—m_Ù"hÑ£rdOß“§*º¬Ô¿› Û©Ò ´æõr»,÷÷±+/ow^kYÂ`~ÙÖ`Atî^4êÛ;S*ôÇy4eÄÆÂ}Ó–ˆ!ôAC|_„†¹×PžÆ„pË ­ÀjKçJ‹T aæôP”à'—<ʤÔ¸I“A÷Üf·Ú;i(.Î~Ü»º>¢eü´6C;D[aæcïhC›It˜)ß#±ÂK0î REù\Zk0ç…®’_¾Ì×tæ¨CíÓõFDG)‰Y6Ú§76õ µc—·j oßNÅnSó¨<}IÝ=Ò;Bz/„#Ûç®·pw7\x¢Ý­>PD‚s{R\­U˜·ž> ÁR¹®cze a7˜xmÊH9CÝÛMÓ³D Vhø‰Ý]‚B‚¾%1XTK_2ÍTŠ•,07áÒi2X½ O·ÐúvX¼ˆJ|ÏíE ß50IÈ j9MV¤Ù)8’‡©Ë¾àÎB¬ä‡||œpvHB4„˜£ŸòO¯(…¾^ÃßñÓÙÐV^17¼FUD=i^ £àÙÀ$ÝvØ;ÐêeãY7QIÕmцÔùv=Iðð/Ɔò øÝ¤Ó¹áìäWS”¡ëÑÏRu#ŠfXy‘{¢wÏqÔ£‰2XÝÓ‡»ùýcõ4›¥\†_´>iÑ zçN8vÜü¬½b¤f‰Æqt²Žÿb«äâ–Òs÷«±/OÖ(ÇG©³.?ê3„n)Ðè¹dU»™Ræ[ˆàÐPð‡‰Có¨£×¢”«rA.rU…Ç6 4_x3?¯Hy«nYS¹sòæDãüØcU ÝJùæ¨ÂïkKÙ7T‚ “Ä“_DƒJy8ôwERù}wúi§0ó¶ô:=À2£a4¢o;áÙT¼ 7²ü¸ {Û<­²[ÕåMÔ]Ф˜®M4‘FÄòµsh¦Í q^?~åëX>§«"úb*Ú4¼S‚‘܈ñ]‚ ªÌ¹­3;s([pòÁâîÈ—IZmë¶¥øoWBo,5¿–çs‹D>A¦”Ô.|ìˆI¥Zó2á­í9 ø‘|ijß©;ΗNäþ ýÞ_ŽJZJ©— D ‚u»¹Ê„ʪ!JbŒfý»µ‰Åaì))6´ßaå„9>ݶ‘‰ûsÖoù§¹‡œ‰œz»¨Ef&#Qÿ‰£mzZûwKn_7¤k"Hƒ–b£…Çá²!ú…YÕ×F•E‘q7§€3YO<å$".†t´øîÇò$;—#–Ü…ó—Û%з¯åÑ1T$òô`þ縓t¿–ӫɆµ*zzDF²ö¶ëËUŪcèk·×0Á¼Vúä‘iÆWs•òîH&4Ý K„BQQR‰@4–LÙ˜)h! `Üçx¼\% % 2¸”ÝwN"ÔpŸºXCBb¥_#­$¨ü¦ïOèùû Õ{ѪCͪC‘´ ùgÌ™’ ¥ ÇÞ`m’g/°‹O¶-u.‰Z¼ù"˹!GBÕlj¢?»%’(ŸÆ´-Åk:_«+×±O/Ls£•…j›˜ì?<ûÞš(›î¡ãC³;M…“´ô9N¼D>’©BÌrÇ“!±}q›^RÊ%AS[Ú“¸É t S¾{bá ú¹ÿ ‹ ³'[äèÛAÖ”Ž?À¢ ä‡ïc/SY3&¥~Ê—Åx¬ [.ÙÇ ß üö9+«ªŽó&Læ—ïÏž $ˆSfïÏzÞZ˜³žh‡‰bR³ìà´ÚIÙÃ5ªâ”0!‘"#DV;|Ðwœ.íy´ëL„m~^rÝÒ™ŠL”jH3¨”Ö8~JôXŸg>l8ì.Znaòún-6ÞîA[ÿJ¥•ÉÇ©zè¶Ê¢!E™‰Ó#“þº2ôÑ}kÄÅs¢ÿœ>Mþþf›ñå¶âE¨–*ǵ´¾Õ±ºp3…Æ9%òGq•,óý&a^ŽZ¤~Ä„Iv‹jX\Ô`Pï‰&u·Î7_šUHª\¢î¯SnEJL;òϺj0¹WâÓÑ ;q:ø¿šs× ùAúÅîÞ]°ñzsëš’QÔ»Ç} ó(Î4{Ø-FVëh„•öûŸ×ÁRuíô¡pX7‰Jãï´ÐâOÚ"#òêPU—rã Ttyü[|ñöVÂñ3øÈY9cº´ÊtUD¾­ñÓÒÓQcðX«:†ü¤Ã6{ ‡A'[+mÚ9š€º»“aI}úÌ['ÖÝë”Sã6Æ]FÿuŠv:“\E—âæ¸ä) Çwâ–]”he—>–iÏK1Û=#‹ze/¯ÑuJÐpÎp¥ ”Ý׿‹Å§oÑ—sŽAÖaQÊvüCƒ5Ï}ïÐ8W”~¡D³èÈ¡?!‚DOÿÉ iªVY+ĆÌ)?ûë´€ÂÏÌ'Rs˜¦ð–÷•'‘tU¬ë г­¯«É1K.<[I’fbé:¾K†‹y{®w7h‘+$Š1¼`Øž-zšI#Þ``JïçhfC¹»Û3ãjih)ÅvxM¦Ò[ªí?%ƒï4îf*»³{LÊ)§:zà3e×(|ÁˆP^PÀ.j3--ÀÍQ+\ŒÊ Ó;Bçòß2äÄ=wLKW»&ÉS ].WF÷']7"Ïž–'Nuò#KâSê5·^7#dËv!º–•çîɃE]x«ì’9éy€’Õ°öU]£HWjì?@˜dÏL9mÖn°Oá­êUÉ•}7ø!FË\Ïß‚Þ'¹ w÷¹ä§þ‰öåÎ;h÷J©ÐØsʕӔV'ƨ‰1›UuTdÝ&Ù\¸Z¾#jçM2Of3Þøvÿ"w×ܵ—=“ù;?©¼Y¦Rcȃæ]:,É l7¸ý…hY¹®÷¦B“øàÍâXv¦åøDÈ&öKpÑZöç”ÄÏÓŠØÆ´!ðPJ?ó/,e$ÖÚñª8c¤ÏVAhÐY Äiõ’ÁÐ(Ó®,ÜgÄ·=rÀ¥õr0±{ËšúÕÖ·÷!ð-m˜ç <´Ú=Ø@ó.q3ƒÙµÏ½ž²Æa&Û_¹ªÎú°BBtá/n›dë>ÂgoG\eóôe[Ìð?.×J‘{ ÒHVñÛÖðÁû•‹qpøy/ß™£µ©0Àèk­Ã¨£ÕE×BV 4£:§x+ìú«¨áWcDŲ÷ên> Eó6UwŸŽÚ”¾CÅJ3 = Š%Â’kêps‰øÂ'Ý$î 2TèSJÁ‹þo ù.ˆ†®^Ÿ!—(fd|c²XòÅ М4®‘²òØ °„ë9È_é†)ÿR+ÐA²¢‚Â2¿´&‚C[jIÎs—O|´Ù¶¢f1Lfû¾÷ßø%*2P†–A•ÑÂO9íµÞ¾¸­v-Ó£ÕÊrÜ¿Cn ]IÍ`ÒD‚#¿ÐÁg+·£Ò¦éYÊN£*`?Ic>{©Ú|„çè ñyVÒI1möÒ¯E±zÀÚÂXyPÄ¿`Z¢ƒÁïZZK'¶<Ú˜N~p\à>®ØC‚âþAÈÃÿK°KÑkżNö'ÏB÷pw>efJ$—WË#’È—ZnˆÒ!ùAWøï“[<Ñ‹Kl&ðøÚ-#Qè— »“a†³Y:>Ü%xÿlŠÀ”QÉûÉ”NJÎÉ[;Þ#ãI^‹Ú×þ9ûc£©1º€òÙž‹3Ib½y,Ï }AAσ¬¶ÖƒtÑ»³ÔïsÅ÷ì¦ÜŸYAa¨õˆ£’B£8e¢Q©IëŠ{)Ii[¾IÆzq³Øû[à%ádxtÊ«ôåäõlŸ%Tñú&D0ît ìh‡Šid}ìßYý˜xÈ6Ó¹ß1ÿTŒ®Ø©XŒŽM»âóÅÌ¥‰Ss'˜lËÿ5¥43\‘ìYXuù„¡(ZÇ7¸î¬­´õÑž¿±("Œf(Ý]CúŒÐ‡ÕûÇå,N¶a¶÷×7"†®Î¬£ —Cbw‹q²Ü¢ŽÄSâ¹Øa™e¢w”*ˆ·NºÞ³ Í™6«Oý‹Ÿ*HßûD2Ý’P_%|Ø™‡¹1#È£2›Y W¥~ ùiÌo:=™ÎÚ™w¿Žk¡«hDâ ì1”1в3r-3ã#Ô@¾Þ'ÄŸ²"Ú hCÚ±îûgÞ¼é ²¸óWùzWK°0BQEÿÕ°âm¼£m}¢)’R&+1vF(›O`þaÕ­À«M^ÊÑþ@Ìf2‚ ”„*˜øÂù_tciK ì›ÊŽ6—оqÞj7†w”SØŠëS±†ÆddU§N¨X°-貿z~¨æúÉ ÂWZncÕ>¢Gì²Ú,PÕãü\ÃYJ]n; 0Å,œÄM0;Óéè8pokËÕwzzWF#àPâ‰FoÒ,£©þm×<´ÏOØ´#¬‰«¿¬MbBæ'†®¢ü«û–{FXä¦â‰ðÁ#òôŽvQYÒryr¯M„h»pþóB„ÚH›ÿ¢J”›Ò2 <“výÚ•CФ-i@<¬Cg|:·®· ¢›ë½@Öžnä™TY~B¢¤Žº©Åè,ž ‹²‘Ó'a¸óšãRÇi‹-8½‹Ï‘ä^Su°Å ý¹Ï²qî1ªn‘~9h£Gúc'D@wðïÙÚ§C¿hy¤ýQ¨ÈÇ?ŽS~HÑê0 ø¦@ÀlKåD.:‹Z$%k&Ÿ¦)^{U¸x“Âg–¯¡4_‚ž]5"xyñ¹&âT+ø½m½qAŽèB) é“Û˜*…Ì·l¶-° )´~wµù2Ù›ŠNAú’„èbÍG5‰ÕA&¥³ÛEjœŠÁ°sgÞ¤Ž¡¹Tâh!§iæŽU,Œ‰lg^$769Ý6ZiŽ·à!¢FÇQýN™N*RÀm{ ¦@©]©¸~[[³]Ý.‰¾÷*å¹édœ6ÇðÆK>"Á ئ4„†¹_îæ;!Õ7²F•H„¯Í¸ï¯+SsD6CøýòÚÚ\§!ºÆHö 8uáÄ©1xÌî+ƒµ^ÃlEëYJ ¯»†_O¯µj‘8yRm)uSðÉ*JdSCY¸Ì5lL—Ü;,-›¿% é $¤µtˆõ¢wðlÿFâü÷¹N–³†ý#‘IVåxZ›’ý ƒ\œÌ£;µ5ÌSµõ͹WÉò±ÎáGhO3¹}¹¯,ŽÝ¦ŸÎ¯ kºåô rž‘ç—Ó•êZ¥ÓÝš²!ÍušH}ô߃nÛN>RŸ• œE:Š:q{×~¥ÜõQè}4ø´ûeµs±Ôòr= Ÿ§isz(]#,ÔÒ.õ­ÿ@‡"šêe|Ètå+“õ‡Oáñ4˜ Y{»"ïç*,D áŒøi¦ÀÑœ õ‚Ú€ë*«crm„Ég°¸°æ’cð¢à¼NJ)¹aiË„ÿƒ/èÔÖm¶èPTš³&&­~8n-^Ô„AæËƒ2Û$t‰Ø F ÚJo÷[‡Tœ’pëÉÅ›=ËZO äNõúXÐ!F&Û7yÂ%t›¢['´ _RKƒJ±Ò9ëSrâãÞ/Ó{ãÓ*@"µ½_Ÿë~€Î“a{FáÇC/¶s„ïèHÿÔε–Ó˜;¤Ã” 6{`“ÄPå„Ûu%²hšÊ¡dK!‘†Ý§â•Êüã0±xlY&NÉŠ‡·–±l@Ô™ž¾ †Ö˜K}ŸGÛíÇ·¨]RÙxò}´½«ÞtÂ&MèzZ×È·ëI’ßMÕ¡ÚRÇô4¤ÕS^Ó®NÞN™»®Få꛼z5&û÷H*ŸÜ=Í£ãuÞÁbý+Žò‰øgŸ0í«ò´F\è œŸá‹‡`=ÚUIŸÒ§h8gh‘Ö.®Ðú×ÊIÙaKo$Ô= ÷ýð>Ê–î¢|GarõpèŠñï+ÂÜ·M4=œæÓÚ–gZF¿¨“»cÂÕ&JSžïÀ}Ì–vŽ}$Á/IóŽ* D½?Dê{_ƒ¬úù–WÌÚCßn° ¯7 åæMáI~°Åt—/¼ÊXWÕÌG|áü»» átФ ÊЃº¾Ý^Çñ•›þ•}o¡ð™‘œ}ëë?æ8ƒ;i +ƒr™¸ºª´>^UU+³ÓIª‘ÞwtëíÃg]»cºMDÒ€Â>k;¬oSõq òÄ©º–ݲ])ÏøÚ¸ÜUêâàóƒžê2§&Mœ4SÏ%šr7Jø¸0óמ!Ï2xüî3÷åâÊš£éŽ9o•j†}/áî£mD¾C„ Ú?LÆÅ±mB&Žx¨³˜µßûõÛŒi³'öÓb°Z{Y~•´š”A&f¡gºˆd«ƒÄ$Îúž^æ§!œJ²-Ý^;f}j×,õÌ-eÈL`Èu3Eß¶°ËÈý-¸¯ß®Gã>fBä÷pAÛÅjJlÙ•®üÙØ™Å¨¨¾Z᱊Ï6êa%ÐNpÁUÂ9xDŸ}¡‡Þ!¥7ò´æÐWžÄzµe„^²!Õ8:†Æ?‘/2ÂéQˆ¥'íÒŸMd‘Qi°WQÞ'á´É¾AÃ[²ÆsÖ ß)í½åò~aÔ]~ÔQ*!‚„jsÙNc¡:¾Ák÷8•šz¾ÚÞƒ¯Pèüõ2<Þ[Ðɽï§³ò³E£ô­ Š=ªÁ’p=½y)éQ^àc¨¨çüGâôÙÆJçœDlßô™o>q÷çè œÇ_2înÖŸ ÿH4ϠÜï³§=w [Õ\¤ õŸžž*ŒUÀÛŸ[ÐôZ‡ì’MsŸdSÄmî%šæ±ô`wéýÖhZÁZÑh€HÀŽ<'_ª^OíM¢?%ŠÙ×e5CÖ)h€T éNyWÂô~ßÞÅ`€í¸§ú@Þóè¨æžÂ¼oæcbÓ>â’ÝQO2mÿZ‡§Ô%^­¤§êNP)jæWëGnkø¸P~ŸÒ:ˆg&ð¥¯$E›Dd*‡Ä¸‘çZÓ(±›PQVñ½0——Ñ2î~ýVDú”º…ú0·„U›—¶Ì£IžÈE]^,ÐÂIð_qÅJY«ŽM¾dw#«ƒl3ó–;b H÷Ëe‚ PÅÛÁ)Ïc(¸O3MçBÖi@‡E7ºW޳0lp!v–q& ñ(9C†Îû!!{oÕSŒ5-¢³S ™ŒÄøÌ+XÃ"vŒ3-–½³¾Zxð™…CË4^rÏ;«WÁ¿yx¶$Sº‚›ÝéYD’ .ˆ×•Cï `C…)KŒ•wWÔÈ‹oJ(¿ +U!·:´'Š?ü,3êÓ 0\JÙáé6² sÎhÌÜÓn6ºÜËe “ƒ¦Pä„E-)™rÜ•Y? ó Ki…ÛôS5k3ÑËsŒ"n@±Ú!¿$oc%s¸ø5} åýI¿¬~°í÷½]*Š•¯ˆè¼q{ôqÜçe¸†Äb°,õOz…óæè-§zÀF)TÆzÚš)öéàùVTÈÄÁ1Ô0‹$ËĈ¡GƒHód­§’¸¤·‰à2š Í?ù´ùi›ãÁøÂ8-kÔX¾k N‡+%zê’›í–~Ü·†Ó̓tPóƒƒè¤8oëÛG³(¬¿|?Oç'Þ”7ƒ²¦Å¹Ë!PŸ3×ÞgMßݹ(˜G°Jã~?/ï•ô±P.’v¹¿›£P‚} °Y-È›x†—מ7lpg çlºz÷5ÂŒþšùeIÌFtEŠ-¶Hy7Ív"ÚÖHãDh%8À홵LÅ=T©4oº> %|ôS$ÒÜéw5‰Ð(·IÑŠ x´}Œ6‚¬TTŒ21ë50G²oãŒÍɰUº›ÕT¶Mï?­FVÀ,öŽu­ÂíÍ}?>¬Ëò<=ûgÒ²è@S섯r–Çot¬Ò/dÁrL®ÃÂŽO4cw¾ÛÙùI-ûÛ>SŸ³§dð#žÀ¿?Þ…iû´UõÃ锼b™ô…J>¥Cí´VÂÈwŒ‡mkžù+ýÈió¨Dâò’HlNévÿyxïM·6Pq fèrÔI}i!,ÑTêyL?¹k©'‚:Š> ŠB=q“”ÅÊ2*~æOúS…ØK),MÙJxJj7]·0fOØýdü ƒY}‰·NyUU)X?S%ù=Ô*-¿È4âHžb?s«Æ'öXÆ!¹T¹K9ñý-ùrЗÛ÷üHçÖ*'ë¨ÏÅWï¨KÒéM›¶UúÙM³Š‚Ùü˱» Rt«>†d‹J°f±ý*…eˆ slÓ¤wÖ{b9íç§:Q’;R3) VNú KøÖÃæ}ƒíz ,hïV V%=Ûy½Æ|ŠÜVlZõ飹±ÀŸËJmŸ¿l'Ö(`ÂH~$‰I‚›C3š1%àv¦ËhËDSù¢ïk#„J»ÛèyQ\RÕ]M!H—F4W¥*@Œ ¥\\(5ÅùøI–&i‘æ9{5J9KÃÕ€À]B²ír_g\П!I\„ãîø@H˜ÃÍ8ë\nrë`$âå¹Å(Ø"ä¿âUVžøSJJV19Li‡4Ð)r:Ñüµüã7ÐêªÎÎfQr„—\˜Êº^â"€&õê‹FL>©×»óÁAM©åÔvsNx6‹ê]ª‰ìXÞ0x5(Ü· ˆrbµœ—)~^£æ øEB¨x‡9“ñ†.ìÜá³7è#ÄÓYGs–° ôßq«dd Oб€äê?¨)ò¨Švº<¹¾dÙ}8¯L t€¸1œâ:œ-ôÑ`›©Ž¢:÷Vð"ã=€“Н’´aÐÅ<Ÿð9@—ãY~Èjô˜D§ÉÎ)ÛÚ~oZÓZwœÝ: œSZÞrýdÙ”qMÛ")S:¸Z^vDÍìV¬Ox𡇸£Êê5<kPw#o]Pšx|1EbBtR;@ášÿÂæ²Ÿbv—¤ôd]Â4Ѥz>Î6ã–+o }â úÜÀ®b!m1^ô˼Îa¡g%+ü<³¢¥…†äÐ6~˜"ôÀGE„¯Õ™¢ó¦uzGÿ3Ú^«Õ·D~‡ŒJúñgÙ9,W}·1ï.øévæâô5ˆ¡™¾,ʽ4 ME=´á×I°Ó:ãu ~á¾¶rèX?~ÿ:å2wÎ3¼Yî–w>§@e‚ ɪ%âûŸ|0nvõ£Ú¨ÐÀBª˜æB>øòÁ¢Aòßä/=~ O¡ì)jÅ€ÊÛ5¦‚LPž02’²2ÇrÓÊò|pöñ9å J4>QƒU—Ba¸ëBáª{ãÌÝR¨Rß‹lÕ‹P,Væ>sY²åÿ' ÷ò?6?¬Þgƒæ0ÌlÔ:ä˜Â‚Jò{MÞç{f¨(ñ?åK:!<ò—^`äf}ÿà|ç¢Ù‰A–s WVïtÂT$ˆ¨ C?™Dòÿ— 'wt¡âJØ#€¥=r(þ‘í¯½L'˜AE¡)Mß¶è€ÌX)¦¼v­‘¦½âZ€î-Ù©3}Ò7Æ ÇWJ’¹Á„Rž•Ø·¥ô^¶åºó$8WÀj±Õî|IRò•qº{2s§|ßX²Õ;ð¸®VèIIή…åç“e\…7>¶Œ!åªwæ‹”Ëí¨­Ê¤u½8ôÉú>‘IºìGTÝŸ{BÎi/®Q‘-‡·DmÄÄð !Þ¸Á_†}Íqê\~I ïà¢Éè6#¸§VóØÏö׿½WotŸë±íó°ù°5‚h½`Åý›¡ ü´j[6z×3óƒçŠRxIôX˜i‚ù.ĵ õ^îƒÊ{¹£’ê×»Ìé§UßÍìÝ›'|KÍMèm%Ù™^·þÿ\”%*˜é ©‚7ô‰Z}ƒùD‚XF9T›fj9xª•šcqÿè Qÿ0Ë¿(ì;%‘«½´ïïBpúSåËF¦>¶Œ¤‰lÊ ±t:ÀÙµga÷>Yò˜F“ÕÉê·T†0ÎÙ´–m”ZÝЀb ÄÅïP’£©ÿ9lÿ©è7·ðA˽ÅÊÈ©ÂåhŠc@>]“~¹RXN¼í9n.kh¨Ó¿osÝÉ 6b‡Ñ@§¬KSǶ]û‹•!g_Ñ5Øðo ¡“\!¤JŠñy™YE[¢šÝOìn;g£¹l]˜`^­ÙçþŸ)ô±ªÚ P‹ì±‘J¨ÌoxšC{näkqrŽ+QÔ !°X{ú’ðÖ9*Šyôý¹ãêеÿ”èL^Zwt2`ÂIÇ\ÂJ¼É¤‘/ û™n Ã6àu «,´e—Rs-ðvºöEå· ~˜'õò¶ž|’ä…7½! ¾úvE˵öosp=æ q»LΘfœc%A÷ TöC{{O|’½‡'ââ”SkÅáuöz/ú?‡÷ØœQ+ôn^-ĆSÂîŸ3¼çJNU%Ïwt[µ^YU`³i”œ¹M.ч‘6¸ã'qëR9Dµ/‰n>G @ôwð»úÆÄ ü‹*NŸrH@’ ·J ÔÑ8#i¥ðö’¢5a£" $²’Bž ·$jâ G@ä¨ D%¾þ=Õü¿”_ •:Ì£°¹¦É¾Þ½)å@·ô#>»<É;K¡Ôj•©OÃ'rŽAèI|Åg-Ê5E4¬&ú|MÞÓ2„5Àô=ý3›PX­Aÿü¿A¨o é^G®ÀÌ Æ {‹W}£¤Ù¹Å*ˆ×ß….p ÿÁÔ‰½‘*g*f¼éKÊiõϘî=SR´ÆÞü³»’ŠÚ×&jT*#¨P©Z[QjŸÇs æíXÈÏÅKƒ—¹ùÚpî-ë­òXŽÝ¡¸È³¾Ì¾¼Û²<ïîZ\€Òõû ÇHÌ—Ø÷à?€§±’m{N3$csÝü¤Þ×§‚Þ€sx»àÆ|‚•Åo?‡k¢¤çì–z|2‘† ~_™¤û> ÛÎoÊËJô”å—k{l{ÝVM€S(µâ¾§g²_,šƒ^-ˆÏ¾ÀÓTŠ´;Q5ô» Ï ¾›|y©˜ÓÎ\”ÙtÖwŸN¾Ö†ˆt‡þS‘ÏsµŠ{íc  Î àÞ=d++õŒ–6Š9ØTè„“´¿ËPÅ!sf÷bn\ˆ{ßyËò…¢®JůÜÅJj…:ôÓæ~žˆ˜xé:7ƒr_‰·á'<<+,ú™ð»2)3~¤¡–Sy¾ìÛ•.QØ&ÝZQ€&ëÇø½¶Yö^GÔ–%窡ä?ÒÑ4‰xÃkC¬`«´lîG_ƒãF=#šu„¢gýC°8šD˜:Jª6›Så½fzº½ñÔ_ï<#pQÅ'A¿,È2©F ¾³úå>Æ ¸4qèà:†«ÇPÓnïVÂøYmÀ“¯M.ýo…!EÁÔÖØ FßéÖ †IˆVÕÚÓÛXé 2IÏÀ‹ÄÚ–û&?Öw™¥Ú±Uœê+ À?^*©ì“¡V°u”::*° ºà–^r¯ÒvÆóɤVW¬EëÃR 3E›ìF«‘Á^‰Ä”æcÔW N‰ôÍ–h1J89hQís£§ÀÛDÛ+¢È"v䥯['"î0²ì6'BY±®æ®7’>7 äÄ%ÆaÐõT·º³±ô”ó”JNVÿ{f>ÝÓ}H˜3|ÒÑÁ1@‘ ¡¯.Uø§É@:¡_»:,N¯oþ0VÉÐeˆñ÷8µ" ïO6ŽóZRåŒa«¹fÙøB@5ƒlÙ˜ Ç–Þ`«*ó4*¡ Ë“\hæ;šôãCË{œÄX +Ê/²ääx(à ùfËEÖÍžJ (ã>رUX S§k¿@´£¢Z]—ÒlAAF¸+ Aòñ„¹Iú<‡m&mSÜou&Då6QÔ­¡]çf ØVI\ں曼I:>ž¯{dr±Ç58‡¸›]8¤l¼´$T½]IvÉâÕ0 Ìš_@ÎóÕC6ÝŒ\ØG¢€ü+r­ìÁÔƒïA°·•4ã¡ë‘ú?­=äT飭»¹»ë ¸¥]A§ÒÉTFöÉ:É5æƒ÷"¶BU2cÜP£»Šl®Miãi˜bøÔO¼”@5PÑV~ðü¸ÄQy5’¼¹áʼ}„bB—;Iì`¶¨|%.$’—ˆjý£k²ýf¼÷.ó ïªÅv‰ùëõ¬ ,ƒmå$ün™ºéI¢—° a¹P 㓬ó_}÷ …Zò#p1«ƒù‚^vÛòiwÒÚ—IäÀ¸´r>ú’?䆋„4@ÀÂvCmßX8”ÞÎÉdãþhc^¤Î#^ÀÆRH’Y‰à½@uUôuàPðßQ¿¼bK<º!-0ùs3lJ~wð0GÃË"¶3·8Õõ‚¿jüÇDØî³o<³élæ}*ÉÒOêò?Úfµ¶Šuk[ú+ìZ„LŒŽßuè*phÅÝÌô úåÁS ¼±VHsX¸QŽ|¯½¡wÒN c‡xÏDLÒ«ð¨ÅuÇò‹1¦sm¢»ê¶×Æ¿tO0åwNaÚµ`æØàáza ¦ÒÇ®ãö•½ÒC1Q;(Tª'¡¬Â[ܪ¤iÃÑD?'¹êftSoyyåÀ AשoI˜¶¬þ¤ðõ»÷!S‚-‡bÊÅl¸ávÜJaFÂuø<|ÏØUϧFþ@hv®¬º¾šyCB6ïÉ3÷$FŒÕ9É Þ¡ÝPÎEŠ2%\O2K|˜°mðyy¼ÓÞê¡’4"² tüÜ_söï!5R¤<ÃN¦q8Æ’€UêÉFPk’ž>¹%’joÃÈY?9³Á@§S¨’#ÈiŠFcÜ£Hœô-×I“²:Q©õÏKNõ‘Þí‡Â'½DéQ' 37zÀ!ùZª,Ì\…•!|0".02`ÏMQ[h÷Òß$Ýi9„>}‰ÏÇhÍWít@jU¿—˂ժ¾—}‹ UÍp/n“ÁŸ#d×Ió+»–§›Ó{¬¶öX«ªÃ6Æá‡w†IŽÜò.3v×Ák@ªxûô’WCåj.ÀuØ_µ(wf–à»E¨Î* )…;%;ëàÂÇ/|Id½ž9p7Ìî„-Ç ¹¬Aðò-+\v^9wGEñÎ|L_YŒe4"]ÒËŠÙ% uå }šÝ¶Ÿ'zç¡‹†îß[ÓUz·32¬uÇÛ¥8fC,óÇX÷@#Bi7Òa£ÍV†å91;MûÆ*}ˆ,&8Þ]H>Àõ¦ÇGª.f¨ Ú67{5>=þWÙ‰5½í_=Q5ýÕpMÓ3¡³œÎ!HˆwËL7œ«”NÏʘSá×1Ý?t«ß‚×Þæ;ΆǴ,\ÚÕda´OÁ£Õ£d”žÌ:¼Õ.,­’×ßôZK{Ucm½x\¥ñÓ¨(ÈÖë%¼qŸ)*úædò9$d‰ç^ÍUÞŒþ=—6äçÇ¢—ÄÖ0¶³È…å}]Z_Mµogä2Å Ãè$ßiáIÇ}kÛDä»QekI‘ÉÏx­.׆}h"b3)ÄÛ/—1Ñ$„,¸¶5ø\§va½ßgEYY.±Þ?T§‰–Ãñ‘îºr¤ƒ öxXj‚Iž/ŒÇ=øý@¨"L( endstream endobj 126 0 obj << /Length1 1545 /Length2 8171 /Length3 0 /Length 9185 /Filter /FlateDecode >> stream xÚ¶T”ß-Lƒ t ¥€ÄPÒ]ÒÝÍ0À3twwJ7’‚4HƒtwI·¤H—^ô×ÿï[ëÞ5kͼû©sösösÞ¡§VQg3‡™¥aPgvV ?@BQr²èôôg[ðŸftz-°£åÿW€„#ØÔùÑ&iêü§ƒä\lìœöWüì<ü@ €äû+æÈ4u…˜Yr0(Ø ^fïá±´r~\æ¯GˆÀÎÇÇÃü; fv„€L¡ESg+°Ý㊠S[€: ;{ü§ƒ •³³=?›››«©+ÌÑR˜‘àq¶¨ÀŽ®`sÀ/Â%S;ðÌXÑéV§?ìê0 g7SG0àÑ` ¡N.Ps°#àqq€º¬@Ù ý#XáfÀŸ½°³²ÿ]îÏì_… Ðßɦ ÌÎÞêZ, ¶`€²´«³»33Àjþ+ÐÔÖ ö˜oêj ±55{ ø½sS€´˜*Àô‘àŸôœ@Ž{g'V'ˆí/Šl¿Ê6å/üûòƒÝÁ ô…YH غ:¸åºRŒÌe{ThŠ~[;…‘ÅkÁ±Õå õ-ãÇŒÀUÇK±·]8K›R ¢‹T^ŸjQÚU›ï¼ïÔ&¶›ÑçÇ {Ç Äjz(ž³hˆîx?8xkØ ~‚o—£ÏqpáÅRÉÿvë–q¯é)ý2:»­ºóñ•<Æ}é$KŒf´A@Ñ4}®Yæ 1 Š3 Þ7wìé‹Ë)¼ì±ŸTr /Ñ}c8ß{é­qÄÞÌx.Ðàpê ¡#Ñ#¦@¼Àžxî%¾÷NŽhΫ¸0 §‘uˆ#ïA.Óð0}^ŽšÁhÛÿ³—õ¨|'ªäáåZäswphëÐΕ¿ Ú7Oé‰Z´¨í]÷N¡&;UrXÒ.+Gï²ÝûzÆåHn¢(bæ9 l[ùûÌ1™_K/«4Þ‡ÙÅ]}¾ ³í›ežTO„ãgÞ:q]\]¬ýU•)‘·2‹y98È_TRyÚ°—Ó;w’…M¢ŒÑ¾·4“àÅ`Ù ^GÏJk(nÜi½/V|°N»57á¡'Óš:¦Ö¨ÔYO¾ò±´qàË|GtˆI˜páUþÀ&æ~-|ªrtCð®ëù¦öÌþWÀÞ%“û†ÕdË*WX…¬Û;{ÌÁ7‚Y’¼³ßt9µˆö\Óú&*d)YïCîaãËášÕ†ŠÒŸë™ïW÷ûš´Û¢ƒN™5jf¨ÌúÐLVX5,PÈ^Ýâ2˜ß’˪ñÁ‰ 2–ÎÞçÿ`&ïPN¼ò¯}™mi:º¨vL“(øÍNÆ?“Ñ|j½›ôC—±*~ûG)…«”åá÷ÉÚãÝôÁ§]D;˪-½Ç‹îRêq©Iç>yt–ñ¢Ÿ” óX馅ĀO̺]°Ê8ú£ÎQ:Ù ŸªþÍ 6‚<„–ëË]ÊV•Ãç0§±¨F߀ï‘Bž%†TåˆË3¶g ½ï¼"eú¯#o°…\X„0ùðúîñ|EQ£@8©†#†r¤«ÄC±­µBO¸ÐsNçÝ ßæ(_c]¤q*u†™^H™[œ„EEæ9gÎH® á㌱xy½Um"HÚ´#Ǧòw‹—Á’ò[{Êߺ—‰îMÊßa´ôìBÚÓXÖ-gpÞÂ_ôngÍ߯üž^09Nû£t«a¨låØyÙÍ+܉¨Q'7걤×ÄxÊL|Šƒ“4U¹®âøÑ=ëÂŒEï †>æqâ‹5¤­ÐlΤYü×ÖIÑÎ.äbJÁê>϶BüJòˆ à›ñ¼x“MéÇ>ËW/pŠ¡™"çK dnÅt‡ ÛäÅjÖx äÂŒãú–]<=O¨Qç[I°6²ø³ýZ‡ãMÈ)p9 Tî%8ÓOE½_‡ “N’;ØtjŠfeñXpÚ(J£aIQéÿ´ Ä.­bѵ;xÍ.J&­,Œq¦ñ°ªáxønhq±ŽOmÿé†ñ\gTÂŒŒXëå1vBþûæ·ÅnEÚº]+½A›þÇÎÔß½§G­ú_¢21O<ÌóaëXyp—ù8éßãZ¥‘­ðX3+»O…5\,¥h¸„7.¶ÉVU}ëóâLGVó=\œ½/Q1¦ÿ›Ù·%½“M°æKû¥12Åýפ;héRïÌ¡vX˜y‹a-2Ëtô‡E¢ là¾ô~C‰ƒþÌ”!ÑŲ•Ç»¤mž^©QpÏ.¾þ°gàCºA½Ú§ùÜç¿Í”פ”’ ÕH-èY –:[Ò˜ :IÞ²¹Fá™û<Í’[ø£ñG²Eº8c¢æ„„…/k ¦¬6Ðke£Ofºð8$iïI¾xÕUäHˆ8¾‰=­Uó2 .Ö~û†¼ñjØE»âùå‚·¦däJjÙLÓÈSÏ·ÎIw»¶¬JGÊýgëQ¼cl:ƒ$ÏxZÕ‚ÅÙ\žº]ëp\ùjjEUš‚Œ®¬$!ûßk;ÛÁTÅú{ùìm”3›b²mòïñUÙO+ïVÍšµ.‡¦!jë'u½?|󇆷£ù~Ò¾ C1(j(ÉÂZİÝÿ ÇÍ]V‰bé‰È`)óº<|L‚! vaên±6„•%÷µà Ú vo³¤ÜÊ‚žÙ|ŸÌ´;‘òóæcÄÀÝÞM¡5ÜÞû9±}LÔFrð-#i»¥¡üã`ª€ÛÛk”è¢4›aÖË“»mÉB`1ñ2—¨Žÿ'è{óÏeÞê¡Úm4š®kKéÙœf¾›g+KãÏ·/ó™Öà´ˆáÔÚ78ïr.ô^|uAŠQÝÂíÙý)O¬X“aŽn6œÚÚÉWßè’ᤡ{o%›¿æGibh¾Ü%Xñ”‹¿|ü¢ô".JèGþ§Ë,—O:£Bj°³i“"ÔÝ•Ì ­›Ò÷&tølžõf< Y/¬weIP˜#è Û°=®»‰Í®6ÖÅ©aŽFQíòüJše›!ôƒ‘g‹oB^…¤K™U’ôó-…lk™fÕ—áÎnúÜZ2tß¾±UÕžö`z3Òá8 wìé ˆ¾&§ rw­0_ ky«£eßÔ¦ŒÉø5;"ûAé•s¥Þø…J1¤¸/ÙýÅò±žúŠõºÁ±õŒ)&7R‰ Ø H4ÚTù߬ϊÐaIš‹ó‚T3 ­Ã‚ºŠVv6ÁëV÷úmlŸiÙŠÇa: ›4Â%)˹ˆlÒáþzTE7nc݉@‡‚¤VªŒh¥=ÄÚ¬Im¢yÌ$'¹ŒfÔÇ8ž ÷Mp¤{A‡ú‹ì‚osÏ£º¡‹ÛÎ-ÖÈþßU‹ÔgŽjOéGOäª$¦?/—õQ舋P×o+¿µ’O[ÝK,æbPè¦8NÚ/JÆÏf-ú@CÄ̶M¶Ö oš¬ËÞ1»v*ñø}þ¢•âþ{¹1)>d6 ßqY »Êfƒ$^ßT—J5 ¼Qúè/ó¤Oå’û}\7øTë.ê~{æÆ9¡‘³®¹Î!ƒ4å7Ô/»K¥ìp¡ôv¡|É$ãZk"Í–4#•çý+cE!m¢çò~tÞãs/XšGJ…á2Ôª`μ¸O¾A¨­í‘_n5´³"5 Veµ‘ª Ï»ÎÃÕ„>ËŽs—êÒ´;äØ*¾rf»IÐ×IŽ ýš*몚˜ŠÇ’gT·ËÚÁØ’(d`©’Qð!©áÔƒñ°‡èI=ÓÓpý6ËvúñÄ/Q4ß‹¾O#mG¿”{*à§Œòß9ZO¤P¶“…z<нáô~*“¼\«Þb’ç¥Óf »ø¤ ñ-ñY­—ð©¦àe=Þá_ѪŒHuÇxíQ5ºVMòJF¼9q5]ï±ë_‰ª«3ÅUv‰ƒ£lSÇýŽ(ÖxmëÛa>o¤)¾mdÃPD«/ð¶~òL•»~Ñ SÀ †G¡ä¸kx/5]sGžÇdÔö³E=3j œ‡lŸö¶Zc vï47NÔUñåÌlÛÇ[áᇠo‹x¯j2Ó·.Šp½†!Í™†ÏkHÞ%iû~ìÐ5_"QzÔàÿÄ3ÅU˜a¬\“€>ï%yRçv—~Oûo”d<Ë6T“]¦>[ã4r¬¿DzéAId¿oàH„±^Æóä¦!0âi=¢^±d’!¤:zÖ°jB ‡4µ|K±)׬Õk BêÃ$á4q4½9ŠýhßÜÐ`_·ô!uÚ$=r¡ü@iB~s½QïìM9…O±{j'íø½ù“ÙîWF‡f„Ûà=Êb¾Ú ø‰=»²êRò`ãꢉ€ÏÙ,àü^ˆ/­ÄâÂ2õbÞ¹ÐÎò8Ý;ËΉ؟|ÓË(}ÄÈLy÷.Kt!ǽ2ø-}Ê@›ÍÅn5ö³’U¼¤¢°$REy=Ê9"šX­p÷L2ºÚ³¼ 4ß~¾Ö¸P õfÅŽª¦‹]¾àE¬=dd¹×Éý‚¤2Êš\Öæå-5æ¼’äÛ*ëΆ2Î þd•úä~¥\žä+˲Ҟrµjî*[‡w¤MTÝÑ'Á"3ÓsÓë^°ÉuÊhüŸ–ìž?™O wÙ¯À¤¶7Éê¹êø3?ñµŽ€¬äP½ï, ŸÅg&¢2<ÕôN=/Â9R— r[ ú‚LgýsEóøÐã‡ÿ–$òç\Ûk“\C B,wzôáæ+ÛûN$øŸzÂKÂA%!†x· /¸hö©sÓBÝ È_îý· ñtÞ7œwï<„VÏû[ãrgî]õ¥”Qš",×áe‰¿b[D=Ó™àØ¨`sà«·©]«>“1˜»U1‰¨‚BË$ýM_œmt>UÇ 'ž+eO HˆÔ}ZSò}À EUg.-(Ø«˜°¾wáÝ‚Á£á2ha¦]iÚ,úÙYtô%òS¥‘5ipúê㲌DN7¡m~ê'f[ ¢VØ=z„Ê%.Ã\ÝCÊ-Ó1õ2üÓŽ U…³adó9ÉO€,‘*ÈKoÜ¿ h¢!×qÂjcáž&Ãe0N½µÄhêžÈŸ1ÓžÏD*¨­±…¡['°.×ßÎbØNs_Ýp/S±sõ>*Þ|îÇ<ƒcUWKêöh¨5Ô»† *à2¯áÔ—<ű SìzR5Ѓt¯jƒòÔO!yà~G,6»AtèRÎõ‚p/ÙQ3Ig<ãþ)VÝ“­w‹Î­'Y*¦4’@wËV®÷à:/5ÙwÃ*†&j÷Mu»V…|þŒ¦¦ÀE©Ê+ö'›Ÿò#I\w׸’P©Úìi\äP¡V^`œ‹4|3Ù<““\ š~aÿ¼ÍëláÌwxd›#ê—g¥Ü/Š G¿¥ºj©2Ó´Ò8— )S6•#§h–&çÖNeÇ£V[dô ʪÎñh$jº—)_ uµHä™k.ä–(*\jIŠ´ùô¾´_{¢Ð”¿æ‹—|Ö#mŠM3ê;ïÐÇ0Y…PŠ/&\ÂN6y"ƒ(5(‹{߬ÆÑ9ôK=íD¹cÎb40zqAB]ÍÛ²‹"ˆjj`øùusŸÝn…„òbÉ*Ùì>µÝFý€5}ËSî'›Ð»f#SGÏú¬w”¯rÊ^%OC%NºW;»’z_’×]©Õ= Úµd¯áTŸ½aœ—0«šòÉN‚6K‡ÆÉ:=ì¹|¨À+ ZB‡´gU$—•\W3 l=àÅù‰•àãDml“¡Eý¸ò>áßsçÏ^»_}¼‚¢7yødmÆå)ëoÕ~—œù¤ÍØÅU/(âG²·ÜózÔ/T‘äf 3ˆ¸þ2»GòYoÄê9Inšï³µ©ß #Ûî’&µªnÅöïZ¥K¿4Þ”Ò2Èň¾@ôï:§¤6¹?e<Êo³ø Ì³+t8Ã¶Ž¨­†òƒ¿f½Ÿ²[<.¯G0æ žŠHÿ8Šå±%BÕ«N‹5ÑðÄ_]—?:ßrPðÚzL+¦‡2—¡úûmž­tÕË.-þûž´Æ¤ÎÝÌ>6ñKêðô†k»õbW!2Sûԭ˾")ŒH•€˜4¾)GœNç(*Þw™]Ñ _=Xìø*Jš˜—õz9ú9;H$”6ˆ:rI\¥êüGïÆ‚!ÑÃ\ÿ ² /ô¶VÒ!iãå^1¿tZõPÎ g4­ÂH#}ªîégk‹ïãà]º‹¢ÖìÇ ´C¸¼†tÛ$±Òj–Ë©ˆ‘¬ÌÉÁ]Š@÷Ü;¢×m¤ÌÈå]Ä‘Œõ ûÙúªÚ²Åíbvµl5¦wÓ’oìM~‚E˜N:\s¾0š¨8Ÿrój~[?# ­ÒeçûŒ=sëê‡íímW¶R}s;fe~.ºRzÉwu©œÆÐÀ}ž“\ÂZÄœpP%Ö‚¢n§]³“ìoÈMõà(庰N{Ë@¾huš›Ñ­Ña«#§SßÄ—ÚJ!á›|Ë%~êÐ_ò2ÅÃ&ß‚¤‘)ðÈ7룵ê³gÞ@•æ—SŒ ¹e‘ýoúÌ©‡“¬%Ç÷ÓÏ¥Sb‘BÓ˜/3gr¡¼ªð¼*È#·§Øtö[ÈVM½.ù‰´ÇKÍiž´7Ay8¶ŠÓ+a† ¯ãé>Ùö:HVn&aôfI €Ó×[^½É‘$¾‘¤j°—/ J®`GÔj6ÁT+¤‹Q‡•QNÆõyn­,á7Rî¿U«cz6'­à™ðõ׋S)ˆ’•ѲŽ¢™î7åe€¨‹àÛ‘r¿Kçè“Ýy3S(íÏîß(Ò= ªËá;·KÒ®LÉ¥˜Oø¡â©B VІš½ÝkX_ àën„¨;ˆ8a!îÓüôª>8fÑÎyIÛ(…re§?Gc„>3>I*¨fXdAýZôÈIn¬}D¢û²ª ‰ëý—‰.¹7RÓ.²”ó³‹Ï¨äC Ÿ„¾)Ãm& î*€pc¾9Wvþ2ɦL8^«‹÷3m‡Ã£X“ mÀ«—îÐÃÎÿûoå[j¤JB³€s0v>º”ã®´øý^wå‡×Ï÷¥%ç#1ÖÞ™T)QmÀ±Æý”èHAXºÔ }"üÖHþÉùZ·z–|*ž *õÃâUPIá†ÒE—b·°v”ª+NKÑ”ö-mP`ž t$oÈZÍîdšÜêùÀŽ¢´Üð[Õi†uìôšDzaŒo}ïœN~F6ò@§Ó@ý¬vˆ×§ÖS»Ñ‘M«û8›wR­L„¯É¤“ Œ¹/M±XkŒŒ^w¹ü¨Jk«e >jÌÃàZãE¹Â+™ë!¤Hž—”FZDýÉh¿šçY Èš®âÃî¶;.H\” «l™#»”‰ÄÕdH¿>ðæ®ieÓ5² T…0fÞ¸Àßއí\{Øø\÷}ž-_:}਎ÍÕ«Ž6ÖxÑ¿,dT¥Â9âð1@šlh1OIèúƆ»ՠ‡Ê‚ÿmµv>Åðå҉Y¯Äa±­'Šo±™‡ˆH´“¦:hhᔇÐ.È25ñ`Ϻ‚d"'Œ¥-y¶lêÂDáH ?œƒqŠau+ŸH:Ö’±ï9ö_Ñ™¯OÚuŸ)ˆÕé -횟@o(ˆÇ8›/³÷÷çZf‡µó}æXôPî{|½á·qfP‡IÐ8ž[âÏ‘¹åùæ%fd™’ø Ýõâ1ÑA•!0|‡‹Ã†®Û¡Ü¹Y$„Ù¹jÒ›ÞJA ùÌŸkíàÉÏoOÈW}$É<×çÚ˜¸‚¬—¼WÕ,ŽqS–2ßÎL*ÈÛ¼Ñd¥t­îN+â㉒”˜Ä!¿Ì¾¬’¶‡m÷4Êée˜E0¿0âT¾„zr{NS,¶bÁÎ^Õ¬¿TÁ¢!%ÖÅ×Ñy!H“ApÆ ÏaÊyáÕ!ï;?CŃˆÁé„ÃÃ-þ‹r`èA²b•KZ#·³ÔEÑR-žVÛaFA5é=ª4ªqvé^#K¤ËT© ËwbØ<Ñõ†•1^áÑû0êgÒYóÖŒÏ%À²ì™(aV>×´¤!¬;gÜI- ³Í# ë6Ð<ûí6±h¼˜Îc¡~ì ßidá#‹sev­äMèªâ KöüÌܵÏãs¼ˆqê.;Iã#«z®–Þ³mà˜ä´Îëï;“ª°!¬A‹;5‰ oR œ &˜ åè— yc„:LòÔN…˜™óÇ ^Ü’” ©®d U/rY„èœ##¹INze¯ôÕN«|;œÑjèU‡gÞØQ_.üÌ‹š¢ér¿èËdgÔÏ`7É]a¥×‰ÉÛ…ª‹quã{€ñdÇ‚‘½«×ñG/Ý–­¨PØÒ ŸWÎv%Zñר gq ƒ#«ß"Ðzmë1e`×äz0€žÏ&—nœM©<©Ù°Ð0Ùëû ¸’[ø]Ê/{ÝIן!ù?µN ý'VêÕéuýLˆvç '1 ±¾íŒo7<-‰YU£)=šðAm”®œ–~¬]Ií/bC‚­Ã‚úvN¯¦/¶Si U3V-IÂ+&^³„¢_°zÙZi»è° ¦6è$ÖŒ3nQâÐ0F{&kÆ=«Uæy†Yù*g …|סîöS²}þóY¥„‡Uìx‹€bÅò»®Â:ý4‡w-Ôî3¾2àH·®Î:î/Qr§6É·ÅôNÃçT=Ƴb¦²¥tsÐ!ìþŠ$U=wÛç%(þÅ/±tvJ­1$Aç £Û-½ÁµV¶ÈjLaÛ{bWulÅ~9úÀœ– šŒwö×WhZ;«ºï#Æ”²> šc¡ñÅ *Ï|ú¥šç6Á"/áÙR™è•¿èæ4pmT«{Øz²lG£aÔ £ôTM]Ü%#YGO!÷I "ŽÙXRªµë=EÅæHôG1~¼Ç1}¢pØb—æÿ’SØðidƒ ”¿F¿‚oB-%.•RË>^_ ^·]šRÍ9a·¶¯óEL‚z¬* ú÷UgÜnßèK\¸¬üÔã"µcpháè„ aüÒÛìöþIÒb¤¬­¾yüŠÂ¨¶]e¤ðÊm›¶r³”¯XC?Q†r$ßrãɂڣ ³%I=çZ kôºµ#ë–WwJûjëýÍ@+Çäžvs{± /Î_µðkVVžâç©^ O ÇÊvÐã–¢tF=¾ØB±[,°Ø„ánÅTí ã=]líš;ZE÷v=ˆÅÂSâÁ¹Ö« ÷-OÀ4 …anþ­u'䎘k‚Ò  ¾î$ Ïi«F© ¿³ç}Æ}SìëÐ0‘²‡â¯“¦Ám½ÄtÃÑm“ØÂ]³ûÊ›˜6\åEuáv9²Öc(JAªnš´?zRÕœÝ ‡RÖþþÙ“òÅÔæ+AEüÖ^}'J*K¿,ÚË{±5ç nœT~Vþ¨67)wÊ=a°+B½¢—mÍð;ß}´!{”.½÷ˆëú9†wÝèøÁhaïÛ™AÍMš2’(§ÂQ%ŒwJT 2JÈéœ~ìYȶæ&ãwaæîî¾ XçÊ“TR#5Ô_²/”ˆò¼)·»ðÓ4ðU·»s( Å«Œ¸U„ëìð¬0#ƒ&#¥üâ-QmìEŒ…bN© ¥ç…Žh72œŸWrFÝHÊ‘F ˜-#7¡¶­\ÔK âd¸ÇOµ²}Ÿ8¹Óå––±-ÕðS倰)5jõ,Iì‡pÓ–"d—5ûxƒdð°.lÐ¿ß í\?ã¦rC÷Aâ ذYÈDÑž‡27\™íîþH§æÚ<9ˆæ¥26Ö]{Š}àMÅ›GIR‘ /jAõ#¡\ñ’-¢nK¢oö²S¦ëyŽ9uêÝÛÙh‹-†XÔú‘¨’©Þbòrñõ'¬n¦Š`#`…Å kdoJÜh @~ Êl—1£×dT&%þ^×sÎÆÚgìºÓ5‡\þ'³ØæÍNüùFÇK·*ò½z›øÖút*aa•ë~×ÏeZ.åÂe„bÃ@Oi寺X3¹Û">㥠o*+Ý⃟|N5¿¹zÂÞðu½øn$³Ô&£øÔµ½â²q8>§^)F¿¢0ÅÈñ²†Õ3RòsùåNÉaã$3Å“1Íš0w²¡$¿f_yø=R]ª—™;”ÎÏäÜæ™êô"Ø#˯T:çì¼á)úx©r^³¤1\³ú´ð=½ó{Þ/ x«»ž…£;F!…L·NŸÅ ï’ŠÀ­ýQæÙ-G}1_ÔÒÍ%€7È”«Ê!wvK«âæ3Õx€IdÀ€¤™nݼ‹jRuþÕý`  Œz:ûì kÌ·h³‡…<ê×rMÙÇ_Ñ\Zmt°×>ÑÊRØ’õ«¹ „9âþ¸’@æÄ0ºNx2 YÝ/!Å3;báÓ#îåã€À††·:P{AMŒƒŸIüE¼SÍðãÍäýv1ß CÛº¤|œ*ð€ük«§²3ÊvÆò{ 2„E%Òå.P;hëÖD¿ëSÈ—4Å‹9ŸA Q¥¡Žš«»ºNþnXîƒ MÞÞBìFþ'±·ú+_u/ÜUHß~U—Þ:Y£Ó7Úè°mŠ™À°_¦Þ2ÁºÕN â-öâ^W7Ùëã›5öÆ ~”N‚õë;jƒ××X÷/¿“ ³åÃÙ¶JüÀ ënpùÎÿôÀ¥€ÀL!þ¯Ù&ìŒI®^ÐYã&¿vQ |9& ÷v‰ñ(øŠ–Ðñm’®7é[ÃRnÏùP~¡=Äê6*.;Ñ”¸æ•Åm®ý»6òý_{âI–trä<·¿Ö«]EûËroÆ’e ¢Â4/áU±üTUp¨ßzP¾×J츦~ÉàÓƒÈy(KÜuqÈôÍý0gøû™ÌSpÕsÞèjoþð«ÿ†å〠endstream endobj 128 0 obj << /Length1 1379 /Length2 5946 /Length3 0 /Length 6883 /Filter /FlateDecode >> stream xÚVPÓݳ¥I ½HG~R”ž„*(½WéMZ$j”&*HSAªtEéÒ‰€H“"E©R”ªÒyѯ½ïÿÞÌ{“™äÞ=»gï¹»{'ÂçM-$ÕÝ0® ' •‚(𯿠"#Hƒ„…-‘8ÄV°5ëÄ •þ®‰EÀpD› Gt3Æ ƒ*@å•  J (þåˆÁ*Z°@¤`,`а&Æ7‹ôðijüµDà¢TQQAâw8 ŽB`‘p0†á<(bF8̰ÀÀ‘\È¿(D®xâp¾J`pPP å/…Áz¨ˆJAHœ'`ŽðG`nÀ/¹€ …ø-L $ Xz"ýÿ0[`ÜqA0, |pÚŸ€vC`bnÀB߸ê‹@ÿálô‡ƒðçÕP)èßtFÿ"B¢Ãàp ʆA¢=w¤¸ªc$… ÆI0´Û/G˜?† „!}`®D‡ß‡:êfŒ¨ïOuþp,Òç/åôù¥ü‹†xÉÚh7M …@ãüA¿Î§…Ä"àÄ[ÿ.«7„Æÿ±vG¢ÝÜIp ð[¡‘~}­?=ˆ&Ð?6ƒ@ Šá ‚ážà_ä–!¾ˆß ô—™xþp¼/Æp'J@„#ÝÄÞˆpØD8þ¿ÿÞ PÀ Ç®$ô;ÑŒpÿcO¬< \ƒ @~}þ^9{Ë ƒö ùÇýwqÁÚê–Fâ¿ÿ ih`‚¼¤´ )- Pii@¸ÿ7ËßúÿÒþÛj Cþy6È?Œúhw  ø‡âÝý%#ðÏžùs\Dg0ÁûˆüÓö9œøý7ÿïÿ­ç±ümÿŸçÑ ðñùŠü‚ÿ C!}Bþĉ]€#N„1†8èÿtµAü1ÄÆ7dê?Q}Œ8êhŸ¿/鯃 F¸™"qpÏ?è¯é}h„)Æùë™$¡È`ÄYƒ{Ÿb¥~Câ(ý;¥6Žqû5sÒrò ‹……€ˆ…'îä<”8œnˆàß} €¥Ð1 Ê Ü1XЯzÊ*`âcõËú1<‹%Ûï³þµÿ=ÙD0šÃÀ/ßôzyóõ^¥:Oäb¿ò°ð¢ÍQIü¶)à€*MôyVÔ vW=­§éã‚¶ÈŽÚ$ÿ1~µþUlCŠYãaØ‘s²ùÐb#h|ýÍÀ“Uõ* ¯¤¥ÚRر_˜õ oòzÒá\¿€K ¦ù¬{AºÁU„²©w1c‹fKÏå iÊÞKÞ±Jt¸Q<"œçúx”S€'ÉG-ƲÌ8²³;Ì’3pÊo, _»#Sˆ·Ÿ•¾»?úé©¥´+——='ùË»¡ x•tŽø’Â邇€¢x™­$Žºcó4 WBÉ—^¨v“Ÿ_ò˜û¹ÖB[׋–Ы˜L²t,Q~½Â—Lniù²“Ó}i?ÆWÆRóR å艂æÞ«‡gçåã# Ïs++ï\LåßÂÞž äW™ä×ÝæJ¯8¦ç7£×a0~Ap£Îñˆå!o‹d œG–¶å€ #åXUèG4n)NåÕ·x¸($¶£œòA¡ËÜïÅxh¾W‹Çy{–“y] Ziúè·FF³å}A"eÉY5òồž8ø9´ênQÿ¨M\ŠhvJúèm~ÖVî~>ò"š;ÞéK i.ëwìŸÕ¦v€·ïY°ÐÓ¦‹õ©¦US^‡‡Q}N]´!x`š“7’G¹ßV¼tmC^òDøï5Wš1"nö4ÈŠêä%ï³Ö½Ý}iJg½±XÂ>žÔê‹ôN®sñÚÝúìÒšYݦ]n%Š¡ÞøZm³Eë¥aâ~»mªµ.Ú´Ç2qœ²¡è=ÌYhó Ó3úž-7¶˜q™»fÔ»\öî!²t+Ù%Áí³E s3C&ûWNr¡ã<ïçólç¼Ó8†õ3ëU„yŽV‡¯ƒÆ/N-Z><-8+¤/Üê7{ßT_°JÒ˜%e`Å:Ø»Ÿ¡=˜°¦6ýzd*‹Õ~Æ@Þ3róÙü¤²§údåLÿ;J%¦Á$ŒëX`Ã4Ñìp̿͘·NÚžGàƒ¤ô¬œÙ›>ןóÝI”göjÜ  _?é>ºˆï€~hUsë׊±Å6§iU\µO*Ñî‘Hú¨¼š""ìTÒ–¶n­ã­kæ~üõ=¡ë³ÈÌÖ:j³Ë½‹ê ¯ù]i§Ët|­¥jLºûÙŒõ®Ñý·¼Qô¡†ãÆ|¨ü}…/ ³¶ŽÆiľÔªW½a´{OtƒùËy×ÖmkõƒÕÉz~ؼÊyBÕ}0ª<©Ù^Ö²*7Dº½y>(oØéK Ý>Ûxgáx`ªùö¬„dA¢ýÛëáÆjU°yüÂZ†ê]­*?„_[z;óã;å¼ÔU’y¹%ÔÁÚë€ÐÎÇwØ“òÅd0¯ç*DÙˆCðâ&RÇÕ‘•¸¸‹Ê¹7j»ô y;@îŽïb5ü}ÑQ•¹ÒQP¼Ì²öѤWÅ*™ìΈ½É[iÉóñ  ª'¤ÛìOV6Ó_åÆP(–q_Þ½¢P?#úÈ4„V!.ü£S5*€Gg#k¼Kú !/õiepJ¾òе“¡9¨õ½ŸO´ /1ê2íå->wÖv6kÄy51,¿Nè°xà’äàÄÈ}úèP¼Ð1[F°½hªé•:©K¥Ž)Ú q¹–Õ|èL{°ÉÀ˜óa•WoÉãƒûc‡¸rsÈæé Übï»,Ç™/'´­Â1‡yj‰4?®1è~r .è–S|ù¨&é[ Û¦:ÌÝ‹xÛL²ºh˜³‡iø|Ë4ç¸)÷~^nçþ­ä"ù ­¶’ܛ؅øýi{*ŸËùe/PëT±…aò™% »DAíEœÉ;hˆcG4’àËSÙ¹2·ÚA™³ç_=U‚ฌ@ç:òÕÏQMy…ãýdlœ4HJ/>þ$rÌÊiWHÒ퉆ŒÙtš¯Ü³˜S% `Ù'™ì¤;&[˰'ðWÖ¤ÅÝC&£_-Œ¾Užhª›Ìíz ºš‚¯ö®¼‚rˆº•ÖÀìã¤ëiÒÍ?N©v¸:+›‘äOLÑx 6e‚÷…ëqì‹,b_©k.’—äU?/®¢[ÔsëñYÙ•ù%Bãð™Ú»qkRcæÁ(Y®ï™%6’ ÖÌzˆñ>SyKÎÔÒœƒ6IWtºBöj†úáŽïñzn=ä ÷ fQeDŠ/>9g<¯µØmm+]ÓzX.•¾Òg~À©=Ü´AÚKïxãŽ;á`ÙúkÅhJù´—‚5ÌÖÓúcG@/¸>¼Î±TÌ#yãà,hWi™×õjÆÔµo¢ÌzÏ^S¨Û’Mj¯6¦vžÿ´òȹâ]íWLbÄÕQ¥Q¾4öVÌëép³'Ø~âE:¡3Íj“J()©°_†p™¯  æ¡wpÿ²`?—ÑÄ`˜³¸õÈ3õN`°#Š,UŽn}YL»±—^Û’xÙáÒ¦\@ÄÆâ5%~q]ÍH¥í—:â&L Áaî뫱öP\ê85‹°µÝÔ”¸re™u'«¥M®éà¬Ì÷°C²\_ÔCˆ@ca³•›Âr͇f®îkÖ¶Ù›iRE¸¦ç:o›Ã±£5!õv¹¯8Ý'«›G…ÏvGï…òïÜÒ5ž5‹Q¾kÚ»©5àCòyÛˆÙÒ·Ëî¯ÁÂ.Wœ3|Úì±ÒÆ ‰WÊ—…’¥Ñ ¿<;7ži¥×ANIÑÖjðJ 3ÏœñtÜ$³ñ«ÎÚ´¯+I^hŒ|ÔÖ‹ÎÕ$¼²"O½úÒKP¼k¾«Ûáá>¥/õzHÚrYšã`ãÕ½"î© mÄ}_jëÇaÀó°#}G{·§ËYêjLó’›µZEØæísM1‰´b_K¸›3C‚¶Ø™˜é sÎÏe€T¬¬Êì‘ûRdHéT8óÙª§çé„ïÞ–³Ñq"c O´Q–½šæ·DQ\|ݯ2º ‘G ¸u‚Õï‰èùÈ/T¬â¿D5½¾S@yRi§V²ßÐ]"wPºÂT‹×oº;N¦Âú.äÌrÔKÌ æ«OkÑüêÒÊ­ûª¯ÛÌã˜+AmÎ=5‡?ý¤´Ã4æÝ@†¥üe¤ªm‚ë;ÙèOÛḟˆìÖrN²‘ÉÓZ£hÄê…#7û¾ðmé›™ÌR«²Åw£¥6„ûÄ ùªØ{µ&Â6íU«Öo*ܼkÝ"}F'F¯uÅtÚëå¸?KjÐ̺—–û‰òë}¾olZÜ9ª¦Î§›¸AL^ßÄ´$£„‹ð²„Z>’iš¼3±¹·Qœl”*lm’ÇÃ’ïÒ]¾Þ?ÍJ¾8™;ÍeT­¦†©éGïyòn½–!X}Òï ’aý”“ñYÔÜ–Q¯®h?_±Ð?Tö›m¼ÀKA×yÆ r#|6œ$F'Òä ÉœõÅÌ7‰¹f #ɸú]Þ}iž–“èˆ ©õòhàfK/OZX™3áëçLR݉÷€È3S½pI,ûˆ×ŽDf_@ʃ$⋌…ÆøÓó}ßûü§/½¦ï_øCŸž†|P7ñEK¡¾‡]ë¨q¿â‡àâó©VŒö¡±)dâ[Š.{w[ÛáFçDÅ¡ø8ŸBú[gÚF³ŸÔ¡ÑæñôœH-ŒÆý,å°Ü\´¹´ëYëŽÌfþíÍj6ó­€­GNkõޝ¤cžµÄn=+°-ÖZh³7ÊU¤]ÍÜ´z«¤ŠyæGWÅdãÀxòöì·Eþ¿²"Ó’·¸+;g=IªÛ»úæÌ%Ÿ+ÜfÔv%‰",5ØË±)sï¨tdîgP=Ü"Œe±ížmô´`1W¯ZS‘Œ¦¾:ªêÃ(à7-Â8¤õõjLìN€÷¹¬s8ÿTW¶`)I¡‹IKÜĤœ*Š©ÑYsñ鄯•yårUë Pð¬éüúùØ‘ƒÞg¸¥b»Ì zKB T^TEß|ÐFU?]Ü÷Ø#Ë¢8ŸEô•4&¼ð Òà„*nu:Ù(’ŠT¿oñÖ[¹„%\çXÓ'²wQ:Sß*ÿ2´pž•®éf Ô£Ãè}ïúíLM@:MÍá¼µƲ޹\[(¦8b1²×\½áú•a–©ÿ^§h±`À ¢`åÓ,ÕŠØ•|&%!œ‡òô\xüí+×í_ÕBžnï¥9*Ôd, Wn§-µ0(3ÉÇï®Â#Î º<£À»ÔéÏ~¾¯«™À'Ìêß1oqg&}EeTOû¢"NegHÅ£iÏvK¸,ÕŸMÔ÷ýÀÏéà­ÝS½«ZæÖvwž³9ã2Vˆ¢l3y¯ûTLñç«é“‹p×íŒ$µ¿žF÷Ž×]RdT¼ò…ù¥ZºÙqóÑ|{Ýñp‹ÝFG«Â¨“$¶ë›±Kó„­ÄDÏ.†,´è Ý”‰cLÉÉÇCJM‹­|_×±Þá–îS‡î|Ü>SZ:S`yÁÀ|S3àÍ1XëŽ`%¢¹?%¬÷0üœÁáÍ/óÃ’˜Çœ™¡Wûí,Ó5—#]àƒ7_C.§ê¢X3JX·æ9d>‘ò2éÜ“Rª›.űë—AjU6šŸzzÇKÛéÍ2¥&é ­Ltd\­V1¿AÏ+®3õCŠVØðãzþé›IF†É/Ó6ögèÒà¼fLù‡£æwÙŠ’–-Ÿ@³«ŸŸT6±+Ñ»™éë ‰—uÏ鎻xÜ̧ô’PZàvvÝ6v¦ÿzDZ¯¤ Ø¼Ì ¥Ž=jðG™¹ú¦G¾÷­½båºìI.ÕÓYÝÚ¯ºØõ‘ÔŽãÞóîA‰âÞ¼‚Nö·Qí–E/5öø¦= üÓŠÁ$7;•)Õ)©G.ŽiºÚƒ©‹NâÑ„¼ åPÖiÿ¡;Ë)1sÁ¢ãç˜}Ùj`£çÖ[ù=›Ië·û2,°läŸÎbèihì§Œ›)5_:矀-c0ƒì’62ø›§és¥5Ê„¶± ]©ÁDB»ùœd:_\´u°rú“û•^QÙÀb·þ¤é–6ÊĉŒµ­kë[Í. Y™ÑÀÖ½ÄËÑøô5·«È‘ŸðéÕ>N=o¹ߦ”Á½sZôW<‰Ð'1ç»û+UàÛžSŸØ7…8Pì=MnP]¦ªª|¥®+¯¡ZÃO賜"œÎ³]("?Úw.]È`˜Po"mÓ+jÛ°¼Îø`êÔ©rùÕVá Lú²2œ»£X‹“€•§ŠC¨Æï§>ÍŸô Z“b>œè“[¢}‡›ËGõM®ùô.X•Àql ’`B¯†œ?-¯ŒDzÿ ]øøÒæuŽ+æXN}ˆ„÷^(§x¥øLû,]w ´›|vwSUS}˵ú,M°íE(âü|aä°¢™ÑrÞ˜©Ž‹Ö]Ç8ªðì³óö?“_Š>½wÉ7ªèZ,CЗº>1‘rÆkÊò•zÄÈclHöÑ$(?(©Àjj ý=Fyvoneõy ï  _––i‡N^q}Ù_£ý:;Ï#Îò’øç4tàñÈXG6%ie#F¹^þ)æEÉSŽïûOF*øÜGúœS’ìVÛ ¶z¥Â²•âÆSz丠uN`0±íö(µHø¾OäÎÉ×°‚c§`x² /^‚à:ð# ÒQò¨sOŸúÙ«hÁ‰…ܳžÆjÈ‹¦P´·³ô^ª¾Q”ÙØÑ’Ž$0Ê’g¦u&Û¤k`%LÍ¡I˜ü U BÓyM¥ƒUÈvç\ã{ÝEw<]a:ÇìÜK{“7Xóª{蜢pó¦$è4•F(ýÒ—‡΃Y‰-·/K2Skìx{- ¬~D¡½îó|+öÚK'F<]p½}oG»â–â8Á6t”ÝTérD˜‰–ï³ K^Ky{áo‡ƒz4p¦#Ϋì{¨LNÖ¤ÃY@,•© ià-T4ç»–ù&_¦c< ÿ";1V¶žLb8}ôÜ©ê:휌린·šP™±[ÍšÐ%‘Uÿ”Û¦omàEv§[JÒiC&¾û1Sô}”}°“$”*±¶ ¬j£WCYÏaDqébiÅUï•—Ê÷|V™÷Ço]¨­(U£· e¦û|øRðs0‹žž¸–pb }„ÍÕ;ªÖÔ2rZ[Ã7²I©rA×諱¨§ˆ¬¸ŒÕ½øñ‘#~n…{ËY»ª2^¯šS¸˜^zÁï°·µ1™éñÜÉ}D^©8½Ä–w‹>$zü H1®×áµéÌþšVL½Ó³.¨Ñ4ôÝM‡[B$L•šÍ:®›?|ŒÍHCïHñ7ôÎçméO='©¼TçHW.9Ñ?K&<™]xõư†¥õ} ½Ò);ñV_ƒp ÐLÏK”o³—LLIÝ­cX¾?ݧœvŠj1 3;£ SçkQz6,fîK€ËV3osÉݵkÁï¦Èï)ÈB|@ɹHÚ:•ÌP®à·,ã]‹ƒ½¾NÍj‚¯È.¸2IœA‰…—ù>k¿e’ŒotßÎÕŽŒSs7Éõ`È“âsq TG³p–<ÅÒÎ/2sûcdå¸-$;¬Øz˜8œƒ‘Ížº¼Ód˜YlIÂ÷“Ü»b5]bUè¸.Æ?ˆyaØ14U$âíRyð¢A^©´· !œñ™ÁßMë“‘—Œeõ)Q帱5íx‡Œn””ðêÇ…„8èú>}) ã‡W“/69P´˜Ô*îÏë+‚ßßO™ç¦^?(õ•ºöyÃê… W„ £*ØND‰ÜqltFNèàc¼`ïFLH~ÎÙZà/ù`híè~Ÿ}^öŠþû†—#É_yxõiò¿ò¼¡à¬þ¾xQAù¹žrb/™`®É§t_l*ά³kn·j¢褹"•W‹5ú¯bŠáõÇL 'Íû1&¢Òìa×:4ªÐ•Û®¯¹ê)˜— ‹€Fšì.DÆš¼1ÿð´Ë.ö~$¶é9Zª`ݶwòL &8—A\3YÔ>à•í±Çe½aÞ–'UWõìé¹LqsA·ªï¹]©©£ïûXšHœño ynéi¿V3ê`ñù€óWÆéÕ?&úJ¾ _ºÑTfî«Æ× + ”² ¡c/#=PT“cÁ*„ð {»Ë€l³„€Îæ›áÕFh®Ï‡ç7Ê endstream endobj 130 0 obj << /Length1 1379 /Length2 5943 /Length3 0 /Length 6879 /Filter /FlateDecode >> stream xÚTTÔÝ›AJ锥sèéî”Æf`fèé.‘ié”–nIQºwô«ýþ»çìž9ç7÷¾yŸû>ÏeaÒÑ瑵…[ƒ•à0—_ ¯©'àçäåç `a1€  à?¬,F`‡Iü7¿< B¡m :L¨¹A@APD(*ÁÏàçÿ+Ž(€Ü!¶M^€F°ÈÃ]¼{ºË_K» (..Êý; ë F@l@0€&åvFw´Aúpåõ¯ìP( >>^3’ްÌÁ ð€ z`$á¶ü‚ Ð9ƒã%`8@˜õáv( @ 0 ‰NpƒÙ‚to€¾ª@Û û#XãnÀŸWòÿ.÷gö¯BØïd ÜÙó‚Àìv( ­¤Á‹òDq@0Û_ (ŽÎ¹ƒ P5:à÷ÁA%Y]ïOtHÄ…äEB ¿òý*ƒ¾dE˜­<ÜÙ C! ~O‚Û oÝ‹ï÷X`p˜Ïk;ÌÖî[7>CÄÕ ¬ªðgÚDðÍŒóóó‹Š`WØÓÆïWq/ðoço3úü~>.p€ØbFÿø Aî` áöóùïŽï€@€-İÛC`ÿTG›ÁvìÑ“G@<fühâü¿~¯,Ðܲ…à^ÿ„ÿ.Ÿ–ºš¼6×oÀ»ääàžA€0?È/ÊE/üþ]åoüaÿmÕAþ<ÿ?Uavp€øÐw÷ ÷?9Áþ§\8ÿî Gó `ÿ‡öæüÂü6èðÿMþß)ÿçUù?hÿŸçQrƒB{Ù¹ÿ‡ä zýéG³Ø …V„&­ ؆>ÿ!bM°-ÄÍù?½ª(Z²0{èß—A*A<Á¶:”ÃúkèòP ¬GB~=3 ?ÿøÐZ³qB?%Hô¤~»Àh)ý»¥"ÌnûKsÂ"ò"@½øÑâ´{þæ5€G¡Shx~;8‚à×<…Ä|èÇê—‘à_…mÜ´Ø~Ýõ¯ýoeƒÁž`‚Ùi¸äsǪçͧ•²t<ëÃR,ëO^rðøÌ"ZÜΉpS8*2Ÿ-!ŽeSú?|þ¢È~$3Çxåó­¡7¬1I·éÂ÷Ò*Aol½‰àÓ(UÏHþ7Ùên|z™ ß+W_£ '¬Ì65–W71"\òS.eÏêî’ùÁÐéuÝ õ;—%ã<1†ÑæA…“,¯­³¦¨™qP< xœdûžÄ“GÇd¯FnÕ¸üvbßø˜. ÄžMy/” ÛiÒ˜R3`‘ ޱúÈm¾P»7ãSôf 1˜:EÕ2´âœ „n²{¯ké"¶~Z²²ŒH°ÓPóaQ¨FE/5ª$:2%âeíV[òTý)Ú`äÖN„ÜhCE«ˆ¬ºìǪ_¶ E$7R>è¤f¥ÖÔ—û¡È–Zàü$¸ú¼ë_R˘Fù5Ke•TÁ—d÷LÐáÓé¿H¾ÑH£ûÙ;£ªÊ†´^¤kÊ›ñH¥ÃñÕiÃrI¡Ò²Ñ¦¬[.;TxtôN®Ò¨çK'3‡CBÁˆ¥<)±ç­Ôìz_¼R¸Û‘\*KQ’_œ1>pÞ“þúX%³…9lE+¦IRŒÍú`O‡<Æ´3¥=ɺ×v™Ð²ó°¼~¿ñ0B "'#sêºW‚•8 ~÷o*׌ n2hºŸb±(kí·Îtßã/háó:qœ±ƒ¥v›$^[@Pl.‚ˆæ±PU~f³Öb'º6X0øS`fˆ6a.ÏÏ@týµ‡°¸SæŸÕ“’‚j©šLÌà9å¬=¨F˜~I#°wʃÍ[J»áPƒÚÆþTgõݶ{‚ø;¥ ïsJ’g%§¤ÏÁ¾WáÚ©|Ö{Á4a­Ÿ.¶·ðKƒÔ W-ê»BÅ&Úqh–·‡D‡~y„wËy ;¦Hrðë‹úDâr?m[ …©þ0Å×ûÎ:ÁvCB•“ /ý4#2t ú7íF« @û˜ÁU¥£á­t¢ï‹¹.„©Fu~?£}j ™‘RÒ CÔ´MJM c‘G’™¶Ò>Ü9^ '~Å\öo ÆÝ4ÍÆ¸E_<—2²[@œÏc¢Ð1æ,}Kp¸f§ø9ÞÎMxk^Ãj¹É—Þ,]€ò•K¶—Â=z•wO—@2 *ìÜ Góæ‡Ö…q2Ú.Êüz¥-M-{v}ÌÈU@˜ô$öN£´d³Œ&ù`Þ®œÖR™r«ñQœ„xNˆ»K¨óvV¿ùƒ¾ñ¼Âm3§oÇÑqö½f{¨ÌŽÎòw†–4Ò ûûÇì"ë³~ˆžG<ôÜ5ÄØìlqnŒm9zêøÆ¦ß©æ¡›D=Ž^ ÅlH$Dñ«a#IÓÔëa’WvšWk§x-MXß½œ¥‡/Ò‰#çž t6µ&4®Tˆ9¶zÓ¨NÌoɧ²À›&.KcÓµabt?õì¼Th~1@—=J"À®Ææg­t5ÐÆ´ÐÀ1l% Ì8+ÃïÒJ:ÒŒM —2¾òÔhlŠ÷wë¿oÜd566÷•“B|”·¿Df¢î~:]T/ü³'[õ!Yîgn•ÐH²7­ÝªsÒgïr|˹l,~{¯íMM·¿w”g´H[A€sR®ñ±’Qdò±¼¢¶§Zè9£’sÁsãþ¬×ôS£aQbµÁ½ Qs[/|¾¸ávF…Øäq®K €¥ç¬×—z1 Fe×¾'ä2ù]c<¤¹ôŽßdíVÅß·]Z¾®Æ'»ep1o[åH-Ä´eÔÜør \u„ˆ4uŸ4匇bKó˜ÞZØ}Ò­œsæ~3­!÷ßÚë™ ¯4Fh„ù¹âì»;;ÊO¯—Zkv‘IØg¯ìvt†ãwi£€ o|Mš+!¾_þÀwÌËù„Ghˆ‡{àG滥cÏ'çD1-¥-ïc\õÆL1"®‘È»"iëÃ1µâ‚'çpK¨l3ÎÍÿgUéæ­‰sç¤7’XÏÞ1ñ¼Yí3Îâra:vL£\£©=Ö¶l¾{càâ£b™OÑÕ…Ë>Oxèùðåû].;èášgbÍë ÑŽ ©U ¾Ècº}å¹&]˜7@hy‰ßâ†05oÈ8-D¾`qà3#ùv¾MÀížF+ä°›B™å9›ô—%ü+G°+Õé&nÇùQáí»•Íìä÷ðZÎ&’fuÝìXçÎl(ËT¶SèÄà ¬+wðº„c#2ÅžUíõÃ=ÆB ÒÀÉîåÞyG} JÖÀ%×ÑAξmÎù~ãtÎØ8H 4ì§¾V2yª«)=~–Lï²-ö) ÊPïsŬޥp˜‹yÓŽ?-„š70‰#¾'ž~cì'äÖ½ í°•I&5¥7ì*nå{#kÓÈ9JŽQ,Ûa.Ä ©5áSƒÃ(t³ûú[ø¨l­]£¢cVŠÉH˜÷Nk–S}å‚êë³5ý4,N6½s©l¢@‰Ö~”¦•_¶õMà,ÉUºR‚ÔÕXINÓWM1Ï;r"I”áÑàÅØnÙ‡;€‘ƒ—“gÛ»ÄèÑtvÓ¬èL' ÆS ÿ,Á˜S¡4QGËÇò”Û™ª´’½C²¡¿¼Šb¤j>† -lÄç›®N½¢ÂÙ±B©e•Rºö¦uàªf¿Nvrë“óªzÀURY TÙÑ}³þ¨ H^HKÿ|´Þsç‰5c¥‡n 錣 7nÀÅ!ˆdUž&9lÿ9úXLb›Û'¼ªJê KX1XÀìÉ[…F…nÑÏM âÇtlj‹Ù'£ë€‡#@ÇT‰1×Ñmå\î™îîÊuò(òZ°yá™’êÊrœ }ÈÓDŒãt÷ÌÖ”oÅëR,¼  /Lõиˆr/M¹3S‹¾›“—;³ð»yo‚éÂÏtlB´ý'KÃÏu} Y§‹ûÚ'êõ¨mX'šgÕrrî 9˜}j7Kêsð¶`È$^[$W«í‹i¸ßw45=AÀ_N4õå•ýÏ5š+zØJ›ÏV³®lÝmVaqƒ²}’ªÊ‹h \E³J¢ƒx@·QÖMÝz`³{Þ€ùƒ|F\䣶êœúåZ ÒËš¯úîîn±U~´ªåI7`Åv–7wwYa8-®­H³š¦Q%$½áu“Õ¸÷!NèíJæró[zîÆS“¥Iª¾¦²7+°¼.ו²ö¸·ÊƒßóEG¸Ëœ«n}Q,Ü®œ2qY$ªJ+›:EÝ;,÷ù2ú6'FÚhb@+ÛEçØ i:üêŽ}¶¤êuËRGŠt.sÚ¼ÜÄô„‚×hÕ]ÍÇŠ ÜÝB6Ó¾[´~ DáD·×¥Î¿VRÔyRZ«ï \îÝj޼°\ß³|r‚m(k$úÖS×Lù`OQmÐŽOSO ð®cÆb/QÍ$Læ–ñdº*+¥­oc úA³¶ íoÔ*bÏÒÌ9‘¥o|¢x4Cù<˜°,°1Pæ:Æw›¤Ž*qQPz&®'Ý¿ ÷ö49y>2¾2«+N?ÀÏ(S”+ñ‚èü È}Ol-lÁiåsñ¦¾6êWwý<R¢¦?ý‚Éz3k¶²-l^|cšvô/‰‘öc¥ ±6ÎYï:QŒ¼‡Eî™à|5wva*2U x(š[-¿Î%¡ž0¹‘ônålÁ_É[˾ˆ§<ܸÁrŒ•ˆ14T”ü~g~dq­{>èµZ}oq§”"|0È£Ez{w£¤ì]ö +P©C×.ˆ½ÜÝ•"nžò}[æCsÆWÆ[sëìÝáôµ–ÑéôŠ Ø£ÕW,õïØïÚ©yG ~±¼'£†-¥º ïÖ~¡ F`(.ô¼™ª78wÏ„Œh:Ô´þõá•)}ðĘ}ˆm'¾¡øßßׇF#-VdT ¬´­2ʨB¤€iÞäÃÊ3Ê+ž½›wùnE0WÕT(ÁoU?âæLˆ©¸÷é˜xöÁŒÉøŒÄˆ5ÞQ~:¨¯¢ûÛ.õ‘zËÓ’Ê·±·çÆX|Ç™nç ETLv3à”)ÐïÙA|é•«ìÌèËÇOa¡™áT…lœ`=‡uâÞûE’18šoà=ŸÊl*âˆGŽ»=ÏÙ÷!íÔ‘wê)Ï´ëÝVS>ß7Ø;‹—*Âl±¥½¼ÎX…½oFŸh¿6¼;½óâ\Æ 9í„p"ä¤Ö´/Ã÷V_»df¢fÎìÜG»¾çí|]}›.&ùýõíÌuN¬Ûáj—ê{³‰¾Øì­¹°Vyòéz@ŸP?ë-G«Öå2ÒEÞ “ØòKk³ýµ ±Âê}QNfV&ŒÀáá¬2²ÓÖ‡?|”Ïö ⤟B[H^u–pGK²úº‡jQ7âž¶wf›géëã)æiÀ÷6y¯Â»Æ´²ébXežb’Œë§G‹óŽj^ü¨ 퉢J­M±ÉÌX€´dßé…Ý=ŒÄlÅlmÙcfà<º.Âò¦`×bÏî¼(ÁJ{º—ÎNŠÓT2îøâ±|d*S¾?½hI•,+Âus¼e“úĵõ(m¦ a|äj»2‘gâ±wL’^Só™ØÌ%S²üÔ¯`ÆåÔÕ€¿3¡žA8Êu‰lDr±_`*–§ô¹B5“vý+YÖÙà¥qƒ¼>=z‰„œã, å4ÜÃÕ­†Ûkd³:=atŽ8ÉJƒÕ ñv´ØøfNß}ž?¸œi\'¤±ŽDÝ£Ú²C]»3+Qéˆ}÷¥HäÂòö× jç’’ ˆÐ¤"=ñ°;Ä=y,|±r-°T ;—®ªÅçÃ# ­zè ùÝùA¹ný}aF[[~Z7A®Æiy› ’#Ó ¢±¨I_`›\—…äqíJ¡AøýÊÆ1¿Ö¨… æíÎÃøWµL¸Ú–ýÂ[„’í"K=“]ª ÑiÎ<=ž2·&æ?Æ!ÇÍÚ0š#ð£µèãäg­_¼äʃl4eärõGŸ–ÎÁHÝü–³^E¿ÝÞs„6S$'+¼—ê·ÂÊÆó‹˜møÌ Œ”^/îGïW$=Ò÷zonmØo†µÑií1m×ñŽ­ÓÏWù´ ‰ZjÉç?ô|ëopÜE3ñ`¸o>zV÷#}…´ÀM­à‹üÏ‚zçý§?…Qcà¸sró8:¦Ú¶Ê“æëÃf|ÝàJmhYxøz—u¾ªv_ùèÇ''°£¿¬(-ô;‰¨ßôó;£ô)I¸°ÌÏ:¦;; ¹å‡QÌú›Ç–1êaî“g²’ª‹ã³RµÏ;io•‹üfºæñƒgw@ã/FXɤ‚xPw5×®2yqÊ_æ: v¾„»«i+r³08,ng’ao¶•›U—·lJ ?^3ÿøæ]h¦\î }Ä’€P?ów¥ù‹ê™å7Šœr[ÎÅôŸ=îä.Øp÷W:p¿zôÀ®É“åšëþ’†°PNŠ×ÅV›^̃ØÔ}d}l×(î¡c KKOßÊôÅÌf'Âuý•ZeVP[|Õ³J⎠5¢'4ë¸'*;©oƒž~Æ!Õ÷M9bQ2‰šO›²òʹ«‹ ùøU°)&߃®,-œÉ‰ß±ÿ Ó'fõÛTÒÈFýŒ7³š¤%GTz+–t´9…X¬&†°ƒt½"ÈyA\ÀÌàý~‹AG’CÃæú/¡êŠ2eYîátçë2Oâ®-ì²)G”EÅ6fP†Žo4xí2…KòS:>å-f¬KÙf?¯ú¼zi‹ÏT˜Ì/÷‚Ï ³+êàñWøªm¬E–öãv)oŽÒ›ÒZ[†Óû'P_X žÆTþ/JqŠ*ãæþP6º¢ñç‰ +?¾¯Ç»]|1,t_ì)¿•k…ÕÅ}P׌ȺÔf¸ˆN^.ÜΜJøÖi$í×öz.½æžÓUoz-ÃV³ÇÕîìõRxM澄Kö8e÷þžk“áS¯!e¼××þ4¬2C5Z(ÉàèœëS)¬áÊ;ûqsGðom&\%ê=óAq‘Jݨï.¾:o=§À€3 oîlh§¸àÖš;–±wK)bn¼.ºXëËÌ ^‡Õ¸så¹o“7~s“8ÇR}›C´ƒãÿêÖ>8-)uÊÌî²®Û\xœÃ¬§Û¾U¨ï ôŒ,àþº´ë7S~ÖjáÉÊ8”Bàôêe£°âeÛÝKïX%çÔó4‹òˆýÏÎ>#ÏÒ€]¦‘ /Ù{îW]¹g¢´ÛiïK¼vÍ¥¦É €ÓìwèÜøOæÞ-Ý|÷ *¹u²P½p=ì{Z}è¥*“Ëd·_§zX¨(’7Cú(x˜ká‹GfN:ŸUÐ.c­ƒP£a­vUi“¾L7'ÆIJ}Q#(9 Ÿ å*uFòUSªâZúÜí«¿ƒ(ÈQù¦ØsúEhþ@ÞTZ啵Ø'_ѭ΀Ím+ò².LÙŸ½ïevŸœbYÂÖ'‡Ãè`å³mO/(¢FšmÕ´ìBr+ÖDø{…4±Š$U ‰/½œ¸>Z&ûb¬üVÛðF¿Â(X¼8›-U)úÁ¾áÈŠŒQôaKû ¬Å±ˆ*Lÿh\24Hr˜Ý†áÃ`½s´«fÈšèYN¬›gô¥Y‘gÓ¶¾²Q; wyXRwµ*.EêGRåQ"¶BûÁWwÖ©Þt n…7f±~ÎÇ®Nsß©î¢('( ©hX)+ânSzƒÛx‚zé1ž¸‡xW[ñ¤%Ušy¨ ïæ>ºÜÈ/S3@DÒÝ .Æw—õ=öìí“oZn-yôîÛï±k>ámAAYàµúIÅ/­nt÷:ÓO%¨örr`¥šk8X®Te-•Ö%¢òºûQeô{¬é‘ïCup® §‰ÞˆN„avÙnÞÁõI©äĶ!ZÝ«ñÎq¾ÒÈÓ)z5ü9»Î‚3_,DlHd±ˆÆ©ùÝKëÎÅ@úg¨Î96Úl+çËì%ºÎvWÐpºDV&Å–ëžÙõìšû¯^¼ßÅPe>ø!’`œ­ÓñXR×Áݵ­æ(Ó¶­ÓórSƒ)ÔgÀÝ”—,ƒØ¼ÏLöâ½nõvãgB­ZÅúÙï-ðuµçg<ÿ¢QŒ½(ÿ².ë}EÛsA‹üælõéqñÒ‚€É… æ¥CœŠd1—Ô”ó¦6¦ü Û=–+¾ü{_O‚åü3#Þuew©‹=oý/P mà endstream endobj 132 0 obj << /Length1 2393 /Length2 14887 /Length3 0 /Length 16288 /Filter /FlateDecode >> stream xÚ¶uTúöJ Ò%]Cw7H7ÒÝ9CwwwwHHwH‡„H "ÝÝ-ÝõæœsïÑû{ï·Xk˜½÷gw|‡’TI•Qho’´·sadebáˆÉ«Ê©©±²XXØ™XXØ()Õ,]l@¿%” 'gK{;¾?0bN c0OÜØ •··ȺÚXÙ¬\|¬Ü|,,6ÞÿíøâÆn–@€<@ÖÞäŒ@)fïàédináöô߯SZ+//7Ãßê[“¥©±@ÞØÅd öhjlPµ7µ¹xþ š÷..|ÌÌîîîLƶÎLöNæ‚´ wK € ÈääþJ `l ú79&J€š…¥ó?"U{3wc'̰±4Ù9ƒ•\í€ 'Ø?@UF è²û,÷€ðŸòX™Xÿ5÷í¿ YÚý­lljjoë`lçiig0³´%å˜\<\ÆvÀ¿€Æ6Îö`}c7cKc0àïà’"ÊcpŽÿÉÐÙÔÉÒÁÅ™ÉÙÒæ¯,™ÿ2.´„PÌÞÖdçâŒðW|â–N Spå=™ÿm±µ½»÷oÚÌÒhöW*@Wfu;KGWŒøP`Âož9ÈÀÉÂÂÂn,Èò0µ`þˉš§èo!ë_lp¾Þö3p* _K3ø‚·³±àâä òõþSð¿++hiê0™[Ú!ü¶fƒÌþ¡ÁSàdéÐe!+€å¯¿¿éƒç hogãùþw£™EDå¥tèÿMú_±¨¨½À›‘ÀÈÆÎàbåpñr|ÿ×п%øoús•Œ-ÿÞeìÌì¼ÿd.ß3qûÏxÐüg{hÿëAÁ<Ö Íï-Ðcád1°þÿÞ…¿Uþ¿Và/+ÿ?¶àÿÆ$éjcó7‚æ¿ÿÂØÖÒÆó?ð`»º€—DÞ¼*vÿª úg·åA@KWÛÿ+•q1/‹ˆ9xày™8¸þa[:KZz€€J–.¦ÏÛö`ciR²w¶üëYÿÛ”eà 4µgpÓþÀ ö¿^%ìLím"'ÀØÉÉØž »?`žå$¸ÖàÜGÍNÒæ¯ý-WêÀ·ŠùÛàûÈlÿÛ; ~Gÿƒ#vø-ë:€2»ÿéë¸ÿÛ!vp˜ 'ðƒõ”ëož¥ýï>p€+ä`ãúGÀàçžÙñ·py]í]@@›?0`î5dWè·N°Ð|Ñ‹Án>€Ì.N ?úÎËÅÝþpì®à»ýA‚«äþÇHƒµÿpÆ6ïù;=°ªÈéÛÿs,L]À5sùû®ƒ/Éé¿ßpÈdа0koÊbUÒq÷Y„Àqç'{/—úÍ«+ B¬ äÔ7\ërŽükžÔq¥ Á]hyhȰ‰Xnwk^ÑN&8 ÌP (éHüc¦†÷ |HgoiÆÏYzñcpÓ?ˆyHŸ’VÞhS Šb¨†ÙcùÝéìí;*ÂWVÃ+îÏÒòb?ýR”¶ñSæƒþÞ%ÎbžŽ(ÛÝÍîz‹ŒÒÄ„ûnwÙóP͇ôs•‡^ú@#Ig0#]1i5áR„Oã/Z Êw%>üñ¾H÷QìH ×;Ì+QY1"w„SÍÉ 1ÏD»ñY<!EÂÎ5µŒÓ­]™üúÅ)Qw_Þh½a„Í‘¨wж ƒ-]Ëão4®²•PîkdôíRÑL¿ª_3ëOM1áQâª2§mœå(2ºº>r °¼œr“WŽÐF\—„1bì¬{™cº²sžv™sà;ð'©'8õ˜ÞÔ_úï¤×À–zCsâÂ×´?A0Kõ§òéèP«=(ë‹É³¡äyÃf§Ã(fes;Xæ'T8¼¥iGµnÁ'¦•gBÑ¿ëiPÑ6˜¢²Zó¨Á¸ÕO{œV»ÅrÛêèÑu.í šëm o¸Â'¬¼Ò#¸¤ce¨¤rõYÜR÷&¸¼˜D‚g¥Ë€u±‘š¸nõDxa 1ÃcSEFåM~aqV£å]ؾ¬oe/ƒ ‘ý‹$°Oë“Öë©ĺTòFL´+$b2¦Ay°+…É2¾1S5ðt·ÙꤴüõR¡³­ƒ0[¨ù¥¢‡ómIDŒ3y†“s>¤žY§í‹h'ÝÑ)àÊœÝêÌËú†F5–Ø^º“PY%c‡ÓôÅ‚·¸PΔZ °fÉG7Ê!7%øö-AÝLç{Ö*ø¹p^ñ=l™‡¬~'¢£ÚWÛõQ ʨ)̤èUOq—û@VÔ¸ýswhÃ%å6}D‘LA v³ÎƒÌêÁdò;IîØÒ5c !u1OpÔžf˜ ^S)9VÍ+2ƒ‚R—m®XÈJr×7jÀ8ú"¥+_£ç(ˆ¶ðeÍ=zO¿<6íxqÀ>ßòÊ‹8`¾ÿ»>:â%–ö¼A¯ÃÁ™ãÁ£K}Rû­rõÆÿ¦ŽÅéòÛ/‡.ˆ$\O… ¥4¿ž^è©nâ(/#¦V’$tÌ#õ÷Ë™o%Ÿtuƒ¨õ÷ šhX1(MJžG ÅÓêÅÈÜ„•1®?z–Ü,gP˲ØñíÂS5Á© +{ŠUI︧®‘1ãäW¨é˜Bt ÕLcÌ‚â‰?y1UæÈËÀLÔw~)siÂ稓êds&éxÚ –{C­âM><â`:)­þµoZ$ÒCÁ;ñI%Ñ-*qE¢³øvH #0¸ûSaKŠÅ×{¢a?ãMÇQ+ÃP¼&Áû'¨~l¶(J|=»Lå0Iê=MŽÎ/J¦ÔX¸WŸˆð³å"Gw±˜–jý¼ù ª´K/"°‡B‰ºÏ—ú¸ƒOƒ(Xˆæ_kžNÄ"i¦l‹¦î@@|ûXÇâuxZ4a›5Ñ£+jY÷„ VÄTßú…˰Xh?Ö=ë^º‹ä@B>›;¦õ2—²ñtf@Ôf—)½g†¾…£ f” óìµÓ­íëÌ{„&Â%r“‘'Mã³Ykňֱƒd¹ï 8¾úé>)‡E?|2>J<µ©)°ÍÒeŽîN¡ˆu8Pb}6)3~Á  npóxV¹gG®ex÷†ÇP­eÛN¸ŽÅ?bæÉÕN‰4ì¢ÞsÂaÝ£G†“Œ±ÄDѳGà€®ÈAÙ$nþô"º—¼¢‰ž-&ŠQD]ð²3‹‹±X›êô0Ådm–EøÇÆTè_ŽŸâÔ´Çüûo×íÙCu!¼?âaž¾làç=l¯iN>÷e¾}¦®)ÇýPϧyÑcV(¨vØz™›^Ž4«QLa¿©xQÂÖôÖ’ô¾ʇ>Úã>Pârd¬§: á+VƒliÁ5o`U$KÑÌbSŸÓ¹²þ®V“ׄWv>ä¼â8nI?]îhWvNÜ¥ YÊš´¸@ [÷¾ ¯:üD éÆWÅJX•sBÞåý$Ì–ŽÚ¡ÿ Rçv©<]–µ'ú4æ0gºÈ…C‰fÔ|4-ô²€â‚d³•Ȩì¨òù\¡M®,ö)ƒ²Øüù>Cp9ŒÝÏÐX\}\U2¼ý¤ ´nØ1A&öFj¨K‚UØ ÔSaŸ¶St£µaþf#üQÁ©Là³îÕØ©Zx ¢ï³^üñsø7dûÆ“¢‘,4™òk•¬›fzK¤çüÀzÄn¡†ÌªMþ™ef—¶?äÏ+ÇöŒƒûxKÛúª. À®ù„e·-±„,²!7Ysóá«5‹uß\Í-ÙÜ¢"~Õ1öûÞf=¸–`R¸ïT•žè6VÈôYüž7š‘Ïö%Ðã"͇šX긇v³[zQУ|Oñ+S“'…®‘%ï3‰ âÚ›IoÌé™îT”{ÄÓÚØc¿qÆœk[ÛàöíCú$iCŽÑÊNèÁz‹y\‚ cì×h] C=Gj“Ê¢î´6É”«‚„íïc è²pR¤È‹NåÛ•J™&å*l×AüG9•=­9ôð$¹ ùQ3+ºè¬a̸V·•Jv¨ô…›“óÊZ¦ò.ˆéyÐB‰ælÜìÜšì‰P,æ;Ã{¥ÇÈw‘À) ÃÊLQŽÈ”©Ÿ\:ýf'm ˆÔúKùñò¼~)Dñf<Í;g“9&ÎU)’ /ÚS\´êŒkзã]Ìi-:Ýè t…ŠÇ²6j˜×o¾¾`FèS1š~1¹)u!j‹BDê«6ý°JŸÀW-yx¼L˜¹Ík(¬ó^/Úä#- WÓZIØDJvªF¾a®'¤ñöT´o ëWWAØÖŸ1d­ÀÕ0Bº·¦F“Ÿõ‡ãî~@Õ!.×f¦øNKŠ©”&O>Â~—ºÅÂ_æë2ȼ¶ì…þ+ÖYÚ ^É!ŸÆAÛ3ØtÁÛx•nØÁ}¾ÎÞ@@†×|e-ù†¶-îIî±÷®p#f<ȤìíЊDæ­#ÈÇå.V¯?Yhâ"¹ ¥{ÝvØrúÛD[ýªµâ¯le’Nc¢…±ìǃ}ïõ©îö'‚ ¸IZBŒBe $¦0v‡lŽ-!µª‡°†‘ïG¯ßc桽WÔ‰®kœ>|¨Yä§úy<'ž Ÿ &ë¢Ìá{~x“b‹¬’˜5Né‰äÇݤÑ–IðO®Ýk²i‰ïÅ%qÉåÉ0³Ç£Sf1…'y( $ Qç2Ø=†»Ãu»îPh840Jfky[f-Ïû˜rŠ~Éô á š'éERÒ…362ñù»3T¢}vþ=QËÑ VoÉá²¾;ÖMN·éä/!AgȇFñè82›b³[ü¡Áw|Çz ¢ù—ƒî‹d9‹;-­–7¹^Þ?@ÛG…¥Õª0Y?~ŽžÄh˜¿ž ·×"ëÁè t º¢!^³‡kæªÏë\?ÚÁª‘ç*øÑ¡ûê–¶ž;¬Ž÷݉Xàhƒæ[’K@9Brñ{5Vu‚Ú­åè¸ØcçôpHE¯Öøo„¢ü¹ç“eÆæúöVU¿SL¥’Qî’¤)§TdŒ>ë\@Ï {Ú »ÚÌF ÒÏËÙ†4:×})zÎǪòù;혖¯— I¿^¾ gÄœ†!ˆˆƒdÄà³ÚJ7~†Ñ¶J<Ù),ˆçi¸JΛÍÖ¤1G¢Gý‡ë6nzÌÃØØÅÙÄú¿vàf`Íú’h,IÏ|½m^ÙDáÇZÂq:Ç]¹l)Lº¤j±o¿sµ\Û¯myÇÍžµÖY9Ã¥ý«r'‰Dø¦¯3Œ¸2‰pÝB·x ¾—k¥u5å§Üì9”¶é} ÓU%£pã|j³Ô=c–Ö5q1˜ñ OWÅð¥™Ëc6÷²~O·=ñò1wË:3»üWÆßƒŠ1iM!ŽIóÈ0 °ã,”Gqü/hŠLŠâ69ü^í%gºÑæå§Xù¾XèWº.¹[õÈ ÀNæ«F_±ÀœŽQ&NA» !)Ó¦*Àf‡|Åðb°·íµ–—pf.8ƒQ|~bmJQê‡@¦:9ÌüO˜ˆ okCüû^#a\䨖n혼úÝî´ûˆ¡¬öΓРfѨl˜ ¥íþ€ñ^?%gÎÜqR¢^SÊèûáþ&•ҺШ‚…ãsŸÏzi ž³¥n5+´pjákX–‹GäÞ wáª0ݤ¼ óoßÀVåº{‹aµ,à~|S¶¯ç8 týk„V2éN×qš/3RðñÔŠE‡‘ï¢:¯o]ȱ¾³²NUQõþÔ»"ÈÄa]Óz!È8²öY0œmM+=±>}T§é•¥PP( è¼BôyÆßSYv˜[l„5®h˜±½æfÁWÀ#ƒ‚EØ,î0“ø`ûQêcd—dŸ`Ô#ì'dÖ爿ÎÃ-Ó;ö iÝbœ¶®¨]Šñ³ ¿4]žNcÉWKöXôODže¦²MŽg¿žŒ™)¢ž¾oô«²-MöáË¡|¯ú9Ö Œ@ìOŒ?½-DdjG øå¥Ï(uymÎe‰Ü¦¤›>}.Ycƃ؅QÔœÑeóÉ5ÆxnþŒÂÃæ MuÞRÌ›“¨–ï· ­ Täìaý¸Êûj‰¸`õ6ÂÅ/…(”…hv5:ð“sÉ(Õ«ûÓ&CM[gó‰B[¾,ÌäoYC8’¹ŒçØy Í—×â}€DjI„žeˆµçú„@’AÆ(‘Lo%J*sƒÏYñCø+ÑÀÁÏ"Ða#ïá†è-ž;ÈÃ8ÄJUXÙ¦õ²ƒŒìí!IƸ'› `ÃönéTó;ºwšž¹;wefŸ×Θ”½L dÝOº±$&DŽ„Ù!ÕÝHTuµT1R÷éx{l\éúÏ=^«ý<¹¬i‘iPéÄárÕ/½0z¤ñÜN®ÆeFZÏ7.qÎ<öÒ'›±Óé,£‡ð?Ïv=“ä*ÇþöäqïõÑ~%öÁ0Ÿœëo\Ö:ûÓ0WƒZ ãû·Áy'è~D\/T‰›Y[YdÄôAÜÊÌv2G\¹ „®…±sZn×ÌO'zH¿†?ƒ[?ª­³×Ì$tG€rÈØ–Œö3,te÷ê{ÿr›=ÿ.G Ê}$Aµ±ºMµ B»û®Tm`Œˆ?Zñ2®–”]«W/I‹9°«'2uw±:œ×›G2Ï÷¡9~…›‰5ˆÓà{¤Û@জ‘£ú\ð¯ËÊ`åÝQB÷3eÈ€µƽnLÜH¸.#î&?ÚgªcrN.”p 6±P™a%™;Öºt§Q­LÝÕ¢Æ6! ±õ4œ¤yúT¨²¼(¢}׳َ|Iêݽ$¿œ¾”5«’>ÉÃÅìd+[Ê køV@õÐXŽð]-:¡|ÊoûBuý—ZÄÎIä™Òtô~êü%ešŽÎ—QvÎ4ö¥¸ä‰Œð«.ÏϺ¢.ûŠ­èqÎûk,œòÖ[]{³b¡×³/£¸63*UND¯º¦,'åvʲÏóC:Ôz3ž£”o76ib&-¸¨)}”ëy;¿¼ûÙ=' ³Á{rU^ƒ¨±¸#ª‹¢‹‚2‡ôAçNXXýš\Ç÷Šèåî"ÉC’©®†-q½‚º-&ÝYä·s_×by^qO•”ƒ¢a*ß°1äÄOoYøp­Å…a*lvðvÕ’®‚s4 šÓ­Fн̖½ÆžŸ’7_±ÍÈãœ-ï/bü•üõ¬˜Žõ ‘U{„böÎÃ?JÒ ìt NÑ»}ú Ç›Tûö´$'MˆÍú9{Ëû³#„~‡RPá}ÓßhEé3Ü…ÙÛ¢wœœðƒ"^ß‹¿Â?¡ ά _ªn#ð$EBÒ³7('qŒâ™›ÔyCÅWªÎž3ˆ 8Œ?hÀ#=–‹ÝV-^ŒCC+Ü/‰ïò «ÞJ.*,Ö<9ÚrÕ¤dª?œêÿŠj­íˆÉJà8òLYä³秈ós…ìØF*²¯ÿyÔÅŠÍ_¦"lÙ!ŬîZÇulþ-d\SF9LÚòÅÔ¨‚ÊËÕ·ú‹ÞK°L¿¡ç‡T†û€Ì± ÕææZà¦Ejpkî–ýË~m(D¿åÅtàµ]OrÐE«Õ¬ò0=äRdf IŦ©¶L:ŠfsDÎÜMв†!Ï̈”8Ä»KäÒ÷6ÈíÉ :1ã êf«ëdU†rš12³Ú?Cyâ¨dJ­T ¾c]›Iâ€â‹s6ÖaËÇ^xJý܃>MZLIų-·‘ŸKû¦¡·›Äâ‰%jôí»Ù ÄÇ,©I&²Í|õ{Š$ïþà8-àüPØfêžFéGn‰§™ïîìk‰ÅÅ}¹Pµo)ñ›ùkÏEozF†=¹‹UûûÊ^k­“²G}rC} >ô·pÃß ’ŠqN®Úçbè×·)Œ û”­xÍ…¢ÒÇi¤k+5ê˜ÀEG Þ5Ù¢ŸË¬ WTL:΋³ç†ì}¹ ¸ôA¬}°!Ùbµ¥Ïq (·Ë÷¥6ÝØ`Á>ŠŸlM¿„&ñ­ø‚· × ùé‚÷2/tÚùT—}JúR¾}{g{nçÕªFYk¬°µŸÅûüÜñÃfÁšk†ªè™‚ðÄ¡)ç ¥_ÉDš¼ÙƱä cû¡£¾'’Â;È]ú…±0G–‚2Œ“bØöqkÍä!ÇÈßP tð–o~!'_ ¤˜ó+ 'Á@o×ðEA¶y«³Íd®%©ß¬bÇxN A«vp)"Cë|“æïp¿Œ!S€¾2 n–}jð1¥Ÿ~Âp¢Aã‹þŠÌ‘ª9Cþ–ÄÏHýzV^>~Šš7·È•‡ÚG‰¶1¬ÀÍ#ÓǾíÉôó]ðN R'úª™ƒó„‘5± .êAÛ¤yË›JEŠÖÔ :ƒ‰|:n“—ÛÌÙ×ݰº±q ¡ŠìiþE戔ÙÅú¨’ÈG3æ 兀2¹Ît€ïô[}Ì)¼æ£î{–bŸl²gtH.ÉZMÏ0µz§¨â1wÇ —‚·ÚµšjÊX-†+ð{Ѧ<x'Ÿ>W(¹üT>ÌVƈÙE¹*áˆ^½Æ*—*¯:{ÎŒu¿|WÐó©Pš}v¡ÀO8¦ Šá$˜üM°m¨Ã¹Îj›1…#Õié%—[È}Áá ’ŸéLKJ7X–´MtDK¯Þwâ²ÌäK'‚:ïy_4|ôž˜ÀI›qíœ}Ž {£jÂè¹ËÁõ[ŠýWeu4”&-£á Å0¬·9és „cÙ!÷è¾²µ—:¢Wèx0õªœ·:(JѲ«¾’Áp–g?BÐ-¡²“Ý Q=ç÷Geåst á"Æ™L¨®q.+>!_Á¸|¯åÄlr6¢·ÀàufϠ̇Y$“ã@ªú/;äŸ6´ –a‡^™ì¼Ùåx'+Õ ‘ޛզôZé—êRB×m¬-èxÊæn… ETclËáGûüýKeŸNÆèoÎÎ.J´êå¸Ô)Ì…‘ÑÈöiZ=š@YË…^?H”%¡5®<Ûfàëäb­‰†ÆP©‘ ÷vf+í,ø§R×ï8Éj£ß¾WqúI­Ð%)—»gBûåã¨Öv9ìÖ^èBœ ‹T|¯51pÙSì¤7s}â›k@Ø– ‡€1¿-Fߎô Á†=ˆibeÑ¢)+jµò2ÃÓéu@b9þ„=`¹©9+nÙYøÞ^P±Ï’RÌÎ'DS£r%”ÉËq¬wEHRÏ×…=Í5H1ºDâÒ<øõn£IÐýòx…qø}WT'>µu°ýgªZJ4GæiêÏ#ªçI¶Ínÿ›¥‰Ï›¹g‹T_y¨1[;<ÓKÕµ``\TLÓ¤ßü0˜ zZ§®ÉsH)¥%†m•qüÒ’‡ü£©z%bŒ¾m+Ã×x>à%ÓƒÀ”ÌS~øL²:ýîùçØ»×«áV:`JÔ>ÃÒ†ˆ¨‹ÐLà<0Á˜[üV–ÿìÝÏpŒÄN+n̦œ"õÛÙÕ…õÅ%©Vª‡h¦¦~ÓÐ^§¨'Ÿö{—0µ¤ÇèÑX+¹ó ” ç”vk(MÖ†ñÀ7~¸T»“ÉÕ<6뜘«8 u66™‚©ö¼9ÇôŒƒ»ãfOhޱ¼ÛLkÙóH·f$ÉRÃ0s›¨n¸…E?è>‰¹qŽ1 þrµÇO³?¯ƒ8)¹+m_ÙT¬‹“­JK+(˜Þùì½=äR€5î^'ÅõS}ð©n— ÑTJçþ5º‡Ù÷®Ü1c;)ºþE#ð6éžUÃG‹ã¦âv¢´c9Êðiy£!Lu¥ÿØpE’ð:Øšf Õ\˜Øš1£-•¡<ŒŠæ×ÝG²v#åü³ÓÃ2þšˆ+Þü3Ýæ°°Ý-¾Ô DAóxÑõøOvÿ®-9t§ê–c)‹i…zS®qsÈÐö“í¤OZâøÙ·Çød1²ºÌjp³½÷š!+/;² ž´-µ[.Kûä,ñ^$W u•.¸zÓ”|p[4–i¢úŸka6åî`Ÿ~ÙØO—IuËûÕ${>ƒüÁºò›­_£cl ôå®™ìP¤N ¬î†Ì-¹ëhÖö_,Ym­Qí+U?"±j4>¸ŸkŽ!û8˜nòù†È]?í$ŠI®eàTÀ~³Å3ÇëɱŸðt®v^eù¨Ñ~1l-8îþƒû»’~ ‡OS/ÕDŠüªaª²”êîvª¿×Öfí× För P%çéüɯ¡R´Òs/–K«Ä´®ÅS¼þáë˜(&:ñ4)R˜%,Ñ7=Âî\Š ¥h H ýú…à0:jCuo vû÷_DÅÞD^޲ØHˆ7E*»ëxÞ‚õðýªøßæ÷aÈõ3YÆš”×Û–¦99ù­×¸/²ÅÙý1¼.êUsbü¬.ÎÉs}û²ÄTE‰Ë-Ÿ²R±AÞXnä•S4—¸n2ÓŒC±¦ä>Œ Põob(7KîÔ~ï”>U&¶:g0÷}›´A4B«¢¸®83ÈÈŸ(‚ۉߌ‹¡ÃÓ*©Òß^¯˜l!Ñ~²_ÖÀ"_–]ˆÈ¨¢kû†1S´4ž}dÔa†R—ʆܴµ$tà´•š°¸7ƒ fº£î´]+”ge-¯b•Œée`¯®½v¢n¶±[EÛé”Ù] ÁÌ|~CãØL4oïž•iÎårL7‘'í ·z¤¶8@’¬ ;¹|ŠB]E a4ùÜâÄç6*} 9L9ž¸$å w+5²Û仆Æ~³’ăÙç½é§VH‡ÁtßæŠ"Ùñä3ê*…»Ëʈ„62ˆ‚AQÎø‘‚9À‘«­&X¹tßk|¹·rd£&q«•ÿºLiéÉOôS¨Ûž—zϧ:B˜*è¸réazBfMJ4{{¥Ú xžBF›%ÑtÍÉoGÞ;]»9´gHQÜ÷ÕP‘âÑ¥wñÔodó*ü“e~ÄDòd\z8P_EÍ0Àæ\—˜{/õúz6lß’ §(Auú½*®,ˆj¼õ‰OaiÕ a¬u} qŸÏê”´ƒÀž`Z@Eâ€KÔ2šp¸ÙŠÜï’Hƒ²° Á§Í]7áŠâû®)ÙI÷êÂô6Ü­åü!áã¾0;C ÷&’A9‹²ÌF›OÁÈ …:ºE‘ß\ä7¤èËJkhíîMòjNõ»mƒE®„ÞÓg©È‰ƒjÏKª7JA)8Øïñ„ÆÕ%”4FQW6c( ‹¡ÅÙŸÖl…d°)3~“gsŸœ.–ìd«ùpßÊ%q™Z)åxQ¨™VØ¿ŒJ‘ª3I†GnM©ŸG3Gè><üŒW#p5ÇSÙ(XÝB@lÍKÎ‰ŽŠD"|ØÁ–.œŽê©/r‘pmØJA ë§f¨cœÝmKC,þ¶Ó7ô`£‘UuO ã1æ‹<ÌùÃî™–wB¢´é¾c{Y°¯6Dþ=&µäŒ²c<‘êCwÍ7¨ž4ñzäÁÃõh…Lõ¸o6=dQ ãñW™¿FÛs ÜãœÞ}ˆèxF¸µÿšîóNã³rd{aXã=*³bõªüfyo¦®7Æ»ÛAþMֺʕoFQ†á,ÐÐp¡d¤´÷Šü\È$¾Å-ÆV•­ ÃR1SÐ|°ËFèÝ”h3½+ÓN|¾,îÔP½þÏ"™Y4 žÏu<¦é^¯³û¬®˜•xEaŸg‚ÔúUUö)vp—³Vø=Ò·F4M¥K6Ü’òl\¡6„“ïïnb´>ÅØ~Ñ ¨Žu5aÞA¯®ÏC·¯­ã—;òîê¥f Mé¾b—ÿЄ+CîÏsÄhâ<9H+pïm$üt›?—T1õs¿“ÚÙL!\`ï Þ‹jïž ¬¿qt¤¹ø'¤—q%¤u­¼ÞPßʺII»¡N¸ö>Ņר¢*yêËÙ•¦¦wâ–xkÕÝÕwdptèþÇÙ!Æs[ã§RÔGSb…°äúè"$TTâäÉ{±':ßeé­š˜ÃÛ†3ÓÒ»-ˆ>S‡·'Ù)Õ^yHâÞ°xS‹µ·ÐâÞQªQ6qä˜TRIï[ç§l%à誱äŒNÞN¿£¥Å³ÞèUÇ ‡OåTüE}6òÓ¾nQÍWæ‰qYóàuÊõ‡ïz:RÞTO”,1XŽT¼Yj¢øÂ§Ïú'CªÜ9äiÞgºw:nN£^ùz]ˆ2vt‡) N`ªNÊÍIÙM Í Wž1#L|Ç-ŸÈ¾†j¿6 ý$ì ¨?HŠ1¡¤ŽhšÞñØôé0•ô¯”r%îø>ÁÂéÞ<ÿZgÁE{þ¹ˆÑöí“ÉOäÀñÉúñ4oÿŠÀ»ú[Un3œ¹¾X!â w:Þ߻ Iùêu2ŸÀ¥öqÖòlpNP°ÿ¯æ°´'L¦bŒ3üÐ¥ÐN’GÙB_ÆfÓOÍë Åeˬ˜Ük&îˆj6œîû^«É D#‚8ÏÊv·WÇ@µbÃhÄþï£õÄuí‚DàW  5€á0_ð›#}vT€ì&wbaßÙxU¹aŽ ÄYa¥àÜÝ“©µÍërÆÃ –|ÖOi¦]nœ5‹1Ž^šÍhÜ¢¸tNU`¯É]Î)ä½oã¡¥pã¥b1†•GQ‡Ñ-äH'(öf„zuš¤“Ñ&Y©÷ì ¿öîj (1œ§HmœïŒZ*C¾²½ÃÚoy)#G*’‚ôÙVH¶s{´ö7"E¿ÎŸe-x£2XÛ¹e[gƒÑ#^åá7ë>í[øéIÏÐ^80ÅI|•œ²Þâ¡f‚ÌJñ€ ÀÖŒ—Žæ+×*zžåAó¦f®­±,Ó½u僆[¾‚dNI%”d+´öˆO1 6B£­ßQ !ä'àšWå~š÷湊½pnîØu/ÍÍ÷w†8ªâã^îÈŠ 0Ç»”%Ù¨iÝËñ~¯ï_Ô¢%ß·úQA?Fûäa[®_ÈÐQ lG¬ý¤žx©Üqù’ã¹2´®þÈ÷(eó¾:UËܼ,è9«Úöc9Ìg ÑG1tõ¹1u2yXÒ 7RÇ×h.\YF/µ÷šµ3U“G®Ä²cÖã ¤ˆkäRfþ´ˆ½ÎJÈ#:#£YýQõž–+õQ”™Ïo]ÈŠêTÄé[!‡—ôJ\c¹Š‹‹ýögB9áð ½C}¦×©¯@ͦÅCæÌèJkì°KeÏL¡hª–J›WéRYîÕVÕeR².A Ƨ;mP¨0 JÐ3t½üJe·žH<®‹›|y¸K)|ÜËkH|’T¹‡ÞŽë@Uç˜Î…6‰]ƒã‡«Ÿ¨tdl¤ìŽè#ù÷ØÃ颋h‘BòFŒ(¯…L¡´µ_öá=[¤½ FÙ} ;  KžæŸ ¤·=ƒ’ŠRÉF‘{×Ѳڷ JæË®Lj‘±r¿[É\Q£GŸ¥Ž ®¶ ­c>kj¼½‘h"ë!>Z¥:_Eúgëøáœ8sƉ—ÉçL‡WJ-F2Ù¸Êbݺ‡EáÉß²)=šP4n$H…Ý;›íÊÓIû!é8ýñ‹ŒóUNÈ'ÒjæjAˆÏÂ`~xÜÈ0<ƒUžµ´òg æø~}kCmŸVéÙ¾ôÖóyÃYs´LTª»’õŸc$\ {ÎÊ{£6?0ÛïªÆat"ÞŸž„[,vï£+¶6Jù”?î&/TÔíÒ͹xYeŠXRÞ¿•ÆË輟üñäEa5̜ԉ-\±¨µl‘ÈÚ©¯©2cWPTúaÈo-3å{²ž¡ i(„@ŸVïÜŽÉŒ_x=¢<‡bSrjŽÏ)þñW¥§{Ë£{-uuع/š‘™ Ù²jƨ•Ÿ¾DË"Mc=+LßP7ðɉGö±|’«?ÖÀ –~­àú˜@'qÓÖÛ½ÙÔƒe¹£sc۪̈б2™æ¹6ÜŠ¸¾9ɱu’N¢ö rû†:°Ú­–xðâ²nèÓSªvôѯz¹r¤×"è¸4ŸÕƒž zT›ÌlÒ‡,«ácß90(¼"ö]3 S˜%›âA³‹¥ ²ê'ŽÁ§;’˵@hû:#‹…;è7»=ßÎðÍTl0r¨Òš+Ë2Zl7I)Q|'Ë’úf¬ˆC3g+Ѩ×tCà,½ŸXXã‹à¸L§õZtÊ5^SàÎ M³Óà’ň&r¨ô$&vÉ2˜šfH‡”Èw¨UÚË(möÞB#d• —DKN³cÚ}s#7¶i?½[+KgŒ<1"d¸û~Í$¡ O¡ßbCAtâÉòÒ`*ÖH¸G;x‘M„Ã…ÒÒÜ‘bïîˆSÔö] ¢ä)7¦ìHéYГd¿âl‰«²+œÎAM>úhžµgašåu¢üª)9¦å[5=q‰*:Ž)²l+«|ž‰ eûUø_íH†“tŽ–Ÿc]b=ð,h”rÚð‰f1j%‚75dv‡¨ >ïâέøMs… ]«Tï{†–›þ¨–”ô?ã/‰kg&`¯>ÊÏtÍ­å§ï yå@ÔÔ™Ù™;¢:¹A™|݉Q~²!Y–Îbú\g¼ÝÊÚì'u=¶À #ëØåй eK2ý»xƒõª‰Þï9³x|ÓRÇw-õ™âkwgÝbM,¨Ø‘‰£YÂýàçH%劌Õb–eêIräZã0¬GêË…Ï9bpòÔz©W°u³ÈΧ‚²  à‹Èd)“’—¤uxÓWRp+ÜbÜYi<ŸÅ¼^‹P¼. OpˆñŠJ£«Ž–S\$ß_~ì ªŠÔ†Í£•³2àDñMÙvù\T‡¦±ù@”;Q¡£nsW¨úÖ…Å—ì-s‹g«©h&å—º÷7• ‘³¨™Õªd¿šü§a3y{ï,vVðR Ý+ßa§Jý‚˜«9»voPýü]½4—AÏJÀ/†ÓÒ¡ÿ×´ÉR”õÔ'5‹¹! k˜&–5îH´dĹÓ]U¡14N<æ,¨‹3šÀ;ù¼ë™!h+âšSéfŽ]$«ä ¬/z·O¾{›–ã‡2ÚÎ^¤g5@iàs=Z4È=H3nƒ^G\¡ÿ3,Á;Ô0K#éÁ¥¨)hzQÕEºBKݸHÎ…·\£­Ð?•…û~ˆÝÚhŒuÎi9µ¡ Ÿ×àÍ ëãËÔ*ëh(¦Ÿ“ÈyL¢îàäõne×±ÁfXà¦Âf÷–X-_÷6òËCÉ«M˜%˜ò˜”±2o5K•±U†|\ÁF¡ÖiûÙ/ýÝ‚Ÿ¬/˜]³,–ûà”jÈv$ðYþþ;Î|V— f4a·‰aÂ/Ÿ›·~•ª'Jø¬Â/É’ƒËQ|¸FõÙ²&iÓ/l-ù矣Íî„‹ÑàXFú¬Ói3Bë¶®‹§Ò°âs•ƒu5¹mOùŽÑ«’üÐ[jJHÚ"樞ۼ–Vý:(1èy‡d„##DRäÎOÂ$K^Ûy¬5‡¹.¨Æaù–÷̬ˆ2ú+g_`SÛd °•·×AÎüÊö+Å—‘•åÐÊö-E×À–@ýFu]í6‰Ògb:7z´N|`(w÷Q¾5pƒkº3•œâÆ—é˱ *¤8‹Ò‹·¼¬,t'|0«šSßE´ø+Ϊ¯ýWat8Ôã&{”ÝöÝwóä„¶²ª/ƒ*ºØ : ÈFÌ&%h™ƒ>\;âkäq¬wMa|…\<ůì0Ê1œ;êãäS©ö,k.#9x7qW?Q+h[”Zíi›¸[sè`…?ݱ+ÿìDë„Ph2_©²%­/‘¬Çk4tÉ{kˆÖk…÷ñ$—Þ<þà{‡=Ë'¥Ô†èÚx-ÅOoòõâÍŸ,3¨lO,Æ*¤~^ZKÚ=x[=‡ gôãN×+$½Ëºô³&ÄÒG.¼WÅ_ò¨‰2‡•ya¸Ð£¡âØr©†bg>¿®&ÑlÙBw×äî‘U6MX_ãœôºrcËŽømn¾@šZÍ8.¥kc¨èçóPÃÞºr•D“<Œ•U=`Â’:n‡àôÄú‘~n‹GúklÌ>^¦ç³Å°:YS ‹›Z¿V?j¬²p´â7‡–Û e>d#p¯J ­ºë嘬£…Ö~—<ÉüQv¹²ÝO*×Xô±4†‚Ÿ¹åÓGzª¢¯ ã³Ê”1¾ TÉ{$­¡kÅ‹7 ÚªF¿k½2²tT9 Mþ¨QKÍ'‘˜>ã OÙÆÔ~;Ý`íþ *¥«ˆ —÷=ZBxTÜή–I¬ EïOºŒí—¸u­¸µØ+‰QUÝiãâi+pwɰ%gtDÁ¦U=Êv’¦p&ÓåDƒ\X}ìÇ Ù/h<2²AªÑŸÔ!…ĵ:cZK;“œìvËRr)³)ŇzÀZŸÁ÷/ÐR‰-si|IN„VO;-ïœç^áÃr÷8Ò–¯Þ>ìªïG¢úü‚® Èêî:§.u6š(mW ¶×H˜ÜŸ%øù«ÂËàÓÆFÔ#î4#dtêä£õWmÙ2‚¶ÙG§Ä×vÿìLIàBΓ»Õ°E8ªyz×^ÎYžRpÝAÔê†|¾j¢Ó3&½Ô8¼ÒéÝdŒOe5L6’[e¡±_›‡•$$LÜ\C ·ò›†B©’U©þWêÜÙîÒâŸùz71…Ëp^=uF®“–êÄv´ry‘ÒŠ¥¼úŠ%„3¨Õ} ãeÈÉuû8!»ZîËöC„·4µfl>úOìê(§¦¿ß>GV¨Rp²¬e”³ÞŽH¥XuÎ?†l@Xú„ÕÀ´¾ÇUN Àé˜ÿ€øÎêÔDP»{ÝBÌQ=zEó-b"ÿíØì°ëU¦}‘xñÙÞ7…Œz“Õ7ú#‡O’´eÝ鳇!m{J ;ù SîÉ3jñÌBÁóJ;žÄ;-”½|Œ´£3ÐK£Ÿ×_àÅ­sã`še`+ëS?.²4or¯WM¡ÿçòyþúÿè4ÔC endstream endobj 134 0 obj << /Length1 1636 /Length2 8978 /Length3 0 /Length 10036 /Filter /FlateDecode >> stream xÚµT”m-L‹”tÇHww(ÝÝÄCÌ ÌÐ!Ý!-‚„ - Ý)ÝÝ)H+ÍÁ7¾÷ý¾ÿ_ëœ5kÍ<ûÊ{_÷¾žax®©Ã!e±ÊCÀpNnQ€Œš®/€››“››ƒAwþmÇ`кÂ@°è¿"d\–ðG›¬%ü1P (»9xø<‚¢Òúl?>0Kw îêôóù·ã¿Àd Xí@`Œª?š¶âÇûwyL¸åÇàþýùϓ٣Âl `'¯Âÿ¸b.CeiEm]¶¿(ÿÇ)- ñøpð 8xx<<Ü|!n€ß×ùÏþfÿ‡UÓô×é¸ÿ©¨¶…Dþ$ñ8½¿‰¸ÿ¥ æ¿Ö†ðßÔ!z˜ÿ‘¿)··õãÏÿóü‘òÿ§ýßUþ¯òÿßÉ»99ýágþ3àÿã·t9yýñ¨g7øãn¨A7ü¿¡À?Z hrsþ_¯ÜòqG¤Àv:çàáçäæÿÓ‚Ƀ<6𠏵ýŸZúû2{8À@M ôû½ó˜ÅÍý?¾ÇÕ³v||·À¯ìðq³þ»¯Øbó{y–®®–^Ü:ãøð<îª Ðó‰¸8Áøc à‘£ÀâŠñûbE„\–¿M"a—Õ?HÀeýÄó(N.à¿ ?€Ëþ_PÀú|¬äô/øXÊùÈà àÿ >V†ü ò¸ ÿ‚\ÿÁþ\ðÁG>nÿ‚Çpÿò>öõüþ×­Ý\]ß3¨ýqÂã?^j@ 'Ðcnb-âPÒtY)EáÁ±5ÌËÝsuŽn°)Gæ¾£$#~uÆ—=+Õ6¹}µŠÿ·è¡ÎјÛÑ|Å7=Z”x®¦ ÕÖjƒÝw_âú;LÕw[¥µÕøØÆŽø¨^»Ïã\r‚…„Ýådk*sOAœ±¾üW™ýѦÚN,¤áØè'¤ÂÂ|XH!ÍR™ÍåÒŸ¥&&[”èa§’ÇITò{Wé݃¼ë=óÅ술µtŠý}l¨Êyæþ‹·»‚ä*¯F ›r¤7o˜ƒÎ›B™­`ßtÄëµµã9U“^Û4î{øo*½ ‚*ò ³Åì¤$^š/Xʬç´°T@ÏÅyƯ𙼒ªÆsÕžïŸeØ#”¨LWÚ£¥gÖ}_‡í±²°*Îׇ¨ g4‡üâRÿºürfÙ©o2^´ýDêÁmé¨ÎyùiÚFä¾pëBë\⟲‡:‚,áòH'­&Y!@Á\;ìÖñ®繲ïv¢ß™ˆ¦¢NµÄ. ê:±çl=“ŽuÉ—_ÝŒÂs|+ó$O©Lgü¥ý[JzIjÊUà®ýðÞ¼ØÓÜ]Åæ'úüQ‹>Î’Ï?Îæ)‡ÒïKÐhµ_ ÉŠmo nï"ë¡Kzÿ…¿RôyðÍk ­R5JQæ@µqi–:_ztrªOžäÏcz¥„ÜÐ<™{Ë”îtBö|s•ÈÉÑÏ´&ㆨâ‹;%Þ£gãŠÐ®vŒƒ‚Nyh.›¥—Ÿ$h¼å¢zy≔ؠ$̯¸çº‹ôqqø$cÑS>’ã5b¬‰ÎË{;ມ}ݯ «ýQ&u¦tAasH@,ù!öJBv°îRˆCí/ ”YòL·J>b"“¢÷[|åæ 1>ÍYÍèѤM±#®`ö´ê(Áý›D4?>_9ÖÐÐ)i]„‰¼Ÿ³¡øôã}µç*´ˆ¬ßK¹1)E¹Qÿ&¿µvð'óÎwt=5¢KÙhm!A¬æ _:Û¹mœ6ÕM}ñ;2e:È) ®ñþg½^q3n‘a¾D8ùWñIUs€³`qtóå+.ÈË|‚¸ã6ðÒk4o˜ótû«v¾ …ÛG&‡Õ—£‹JiŸ¿È¢YŽ&ò0dó'2RÒ7ýkseNÑàw“ÌIUø“:9>•Ú-R÷?C °(4=ž|ÙiQQ—PÒ‚žÐìäzî5Ó/g†HÉ#Æc–H–F0V§f?‚fž3ßFž³˜¾ ß°sƒTC÷’œ “‚ÊzC2Ä6i‹4n±M­­ÆÆ„é9ð–¨î›á]¨²îÍË*Ü ;[By %}ôÓÅ&<¤ÑÃá ¾H°¦hêÆq‰ì÷Káò\5L9Ù-~Dsî[þ'¹Áüu.ECùJÔ½!fe±5bÙÆ&Ñíokó—¶•œ±ª|ðæ&M(†›_8¹‹³*v#\MÓÚV)[»=¼ÂÎ(ÆÃØ Ì|˜ ê7w‚öä-Gm4’HSm ™!‘…c<µ¢ÂKÔ¦'äÅ=¿Žð Žžd«À’Œbß2¹³"B|mù¡dzùë…²ãN僅b‘© 6ÃØJÍ*9ƹlŒ–C¡ÑÂO§D~ù»}•ˆàBEã‚øn´o”}Áy²(és!‚xxé2IÏ…£ÍökíØ­I¥æ:(3!«/㌿olqh¿z)X£TJ’#¥PôfÝH³UE…¨¿pîákç®ô)Ìb3`Ì@¤U*¼B–WInåàÎà§ŠzögV><(ç& fÉ×NNˆ'ÖZ']#¢Nƒ½,íY‰€O(˜¼'úgQ$ƒ˜§„hä\…Ÿ™TR|ÈÞu]™ëR"üç]>§hàú´‡;êу &’x`$øjƒÐÿ¥þÄ([À~DLZé¼pÂy¥6æ†+RE 3Ì”Ïÿ Û0Éîòê¹-âÍÃÛ˜d¼ãRŪH–b…o|ºR#|ÖâbŽ4kÓ[ÚŒžã†×DU´"a9S((ÒBÅ>FÆn!/¾˜õH¤Ø/Ô}É"« k]œù’8x¤^tÞ+1,LfçøõTÇ|×x8hÈ/§Ê³ e'=ÎøŒúw ³ýà té .°Ý»ÅOô'ào!.I3:Wéë]T-H(¾#ŒùêíÇŠA™9GãDr©³¹1­Y»ÒëNñ£ Up.L˜Æ–+q+Û¿Xfy§AK^“†Ý-½×dÀz)3úí'Ñ[ʧ"K¯Û¥ôÏ¡ÞÙgký øJ ƆÖåÊßË\©<{~ÜØ©¸uµ­±ö ßôO+k–.~‰.ý¡‘>V0 6¯/ÉŽ†Ž_¯!È—Exv'Ϩ4ùíÔsˆ xýŽáÀšhD´q„±Z"0†œ|,þ+½#6W†[† â‚é]ê :~X[ji¿|Éô´–ûMïÆ“yí’5ì~T³Pj‰òà°'‹,»r¯rS†‡ÞïÄ)=WþU` %5È3›êNs+ÑuD;ÐîEI‡I»ºÏÍwŽ6¹ÉÿRPãÀÇtú¦2b†M8ùå**ÔBx6T½·z³|7uØ<­Pƒ6`ä¬@¾œ¢ßf sbpåÕqš{"õ rkÞ8cT?\TÊ0‘šÝ.ö3Nœ½J 7ÂìÕOÄ<=$q,uf\Ú¨“Þˆ‘Ì Ébœ6I çâÇ42׸‰îÄm=ÆzFjɱÖN•³ˆuD¢Â•?øe®×¹2@…&ÐNSýš|Ûôdc7óo’]§¸öØKB:éPÕ?ò m,*v,Äs†ËÄͨ…ƒYò®ü@BªÒzn~VìÚÿÖqÆæØ–FýÍéï¿jMA9R7[•ŠÎé´=Lidz3ö×]Ž®ilÖŽo~…±ú³”˜ÇW"ˆ$Uë&vÏ΋}È–ÍY}÷,E§ÝSÊoЕÖ:ü"O5Ìì6x¾ûü¬`cÔ4êKâµÝåÎ>=ozýì ’ó.IfF¼K-ÉQy=òRž”‹Mpž[÷Nú @¹ôÉa7^ÛNDæPo‰²å ñxëÊS‰M¦P[ìOÚ~YÛf—aâHêëÍ9ÄÞñ£S3,t‡Ü.uƒÇ‘ |¼Ñ}La€;F»ù»fàÅôBÇOD©˜ë 0±eÁ‡(J7i¦ÚÈÅ_ò2z…¯bΉq²VÊ’že¸½ Yåg‚·F·6ªè]@´i7v“råbäJ£«ßj³™ Ú3×zÊp„#¡~XU#ÕÍ,æ´®ûEã‡×cp }>T{‘ÚÌúQÞX&39g6sùõ‡ŠP_o}Îß[HAòË’¾½ŽJ¾`eûnÓ²hH¢2H©„mŒ~S8À'/_¨¾{ ”aáa½:ÐÖ/¬Âpp¦3 ÿY­Då-ÂÇ(6ì®N®‰×?‚RÏb¹ÌÃØÄxig­[ûŒj_d0U¨‹à²zíð†¦ ÇòõUz¶CŸâ'9X´Ç#"twÊ]ÎÇâ†Î¾ÍIÓ×sMLìöþPOœ´âyò, ¶ñýÏ\¨ž#êj#ÔÏÛï}qê«ùJ±TMæÔ׆ä›UGÌ€r¡æŠ» ”7r™ZîT­î:áIJ±¸hn?5{1çúø±D‘Žƒü¬Ù(Ta}Û{dÙ5ȯ\ú¤÷L½§…ÛËüÕé,+߆Zr#ô1µÓ3'ÏN:dŠ'ƒõFÒ“ð²yj!HL,qÉmo«Œ›ƒ°…Œ²IË…¯Qæ%mï`L³[Ú=”àda˜oe~}â?]Â’žšm \¸JeL|ÝbáÅZúrd©:Qnüý.‹~cõZ›¤rÖ´Ñ™{>ŸÖÜø”ÁGcG¹©ç1ˆŽÔn‡äªùb&þé6¨Ì´P5rŠ•¢*)xÏ"ßf¼q;²RÌ/;«t?"…s,ßD²ÚVÔº]0î1Ôo&âj“ Dª,O~¢yxBìßLÕì"—‰3SV“ßNÎ,'JÄx¡Q;pq7r°Íy£o˜$©a=½ð*'·ˆ1¡ÇB­Œ~û>Z#ÞNûœÀqb•Ûgagë÷ÙÕsždz þ(ÃùÚi•½«‚‘´T5*; S])÷Ø 5=]U¯IÙI.jß`ÖÖ%õÙRû«ÉX‰ð`kÓ¢ºÏQ¢¸V`N!zã,Â07drÁ[-˯ð·+ÆcÓJvŠoád_ãà]µ@ÝÄ,)óÖBÚ,¥àºÌÂø.ùvÔ³ôSåÛ³³¯ÊIAÓ˜¯R¤: )ÃÜ7øýÒÕö”}»üø- 9CîóÏøœtÞÙezG3·ît‰½sÛs2öq„ ¶óD÷ž-bí^sÍÀâÄ^Agvøœù7éž··| W˜u¸ÛJ>ì»Ý¹*ŽßMW*0}¬K:ÑÊd¤»-k–írk…‰UÞh×l8¡SÔ¦Y£ÝzJ£ž¿TÝîF:6_ib†ŒŸ)n¢ï)\sdP†7ÜWã­|z½ÍËÒœÃóÊ»¼ëŒ¥·‡ôÅU²íKœ<¬u`8®‰Ñ ×þ¯³%t½uGcè¿Äâ âNq{)‰²!Oµœä`¼éÐ “ÖXÖGôV¨Å±šCÕÝÑù|-°+‘ƒežÉC?úSÚ5ÍñÈá]Ü «4jÛÔ›¡{ù˜x˜;ÇĆä¾)ÿÂC™º³& ºáNìÏJò•¥ÜÖׯý†,ðùí!öòdØ"I2f†LÐ~_ò¾ÁÙSôbQKi!:¡¨Á*<ð&â¯ýÚïÂÕ}ƒ<ÙïwÃ9Ð|rÔ7ŽO‰SËÅà6ØÕ¬–´1GÞÏ^#8ðZªÝk¬fA“V¥kÁªÇòA[pÖ£â«Ñ‹Ëü^o°ÿ—\௠mUO-üJˆ3U qÒ}B‹^G&ËÆ®"ÜUØuJ:v¯ó=6½T­ï“ša]ß.±:åhž;jÐýã,Á¸ªKu†ÌA×âkY4– 1%|e ßäÅägmH¦üu]Ô=A¹0 ÏŒÿU{¢Î\ò9£œ˜ÈU!ÛÚÐR{ž ò‰Ngµ/òÉ}”"î̼ŽwƒÔ`—ÓMˆ%t*ÒÀ«•’¾T\…˜ ¹_•Ê›˜Kõ ¥É\jø»‡ëÐPžú‡ãw“r1ýËñ^“—³3'¾TëÛ §v.)ùÎzƒ_ai¬X¶‚œª*hHfØ|Ñ/BÕ z‹¨°ùÅ>®.Ê7Ñk]Óó:y$J<ðZ0òÕTÏjÄ÷VœœçÁ½¿(”C0^h¨çD``Z —¦Óî ‚OæF•mž£¬%¬.ìöÞZž’茣Ær廚O0JUaÁõ²·­¶+²_(ø¥)õ,hiÁš©I‡F„%Á7M¡º]¸/É—«‡–º±MJ¥,Ö±] €”œNÞæ 2óq ‘_ƒÕÔ†vzß;HõÓ%xVŠíïú–?£{ÙÍôÙm3+"WJîU!½Šò=“Ë+Ä>t%gxÈÒ!´5:‘Å"-åÔqx&)$}Y˜eOí Aî¶²íYÿjº½ÿF˜$MAçÙ{¾Äö̲Áø˜€ÈŸêË_l Ùk|(ø%ƒõ>q~êå!rb|¯Ù¬‚¹0]ªåã<Ãtn}‰TA¶Æà#w%!i «<{N”4¥çŽÁ¹Ç!ÝhJu2T%gãÒ`†¨ÿ1Í^»ŒÓÖfésÄΕϓÌi!æ6ú×u]Ü 1¬»vu‘ÎÒk1åºt8ËþÙÙCU6¨ŒÑñÛ$¿äO\ç‘k·Æýâxk÷v‰¶&ÜÅ·@=‚Õ¹+³¼(^{÷h<qÛ|ELz%³–E·“ê 0ó^w£/=Š¥}´HC4 Þ¦·tHâËBÎ x„m½Ú·¡c¸(ä,ù_vÒ5zOòö‰×,–Tý6(°+ç+"´ÐDÆþEˆoï½UÙ¹¡h v{Ü •ÚÛvê* \ß*ÜŒFÓŸÌ£˜JÏSN›ŒyîÙÎ 0•ggϹ÷|tm66à.Üouý‰oõZÜÄ"ßøŠÒÐq;­óQ œkJï‰[篤ýj2ŸU:±òÍ\¥×GÁäèâ9>«Í·Zlñú¥ åVgèEkö ’··™ø0ó£¯îÄ éÛ úO¯>>Gf¹˜ÑÂäöŒKçÖ3,&0pÅ#}´(¬e½3ÒmÖæWÊc¡²‰ß%n2ê}ûåÅ©`ôB5å IF&~Ý®–Ÿíú÷Wvrޝt vbªøªX3#WK┉̔L'ê„Æ¸ãk>ZÊO·7ÞÅG:| ,MLjftòò~øÍ ŸÑcG|Ê,¢|½ºã»-² ç5Wܳýtës‘²e= 2¥¤9M˜µPMY<…v ¾FÅyOboS=Ù OWÈíÜH¤fJ›äµ“jïØ ,ù4¯e„äxÍ7uÕÑ?Ú‡Ða]‚¬K°Î»¬•jV?™'+;Þ*Äc!±Šú^[‰í%X•b%1¿¦=ç,A"/C¬±µ*Q•ýC‘øß†,sê=œ¢OÏðtùYwÕ±­?åg´óЏ,Í~=´:ß×°ÑéBY…”˜>\$ ÈøŒVÈŽw'‹ŠÊAPŽÈªäQŸŒýú+:ˆ€ä»®ÚJ«•nÄ ºk˜~´=6¡ Íüz-Ûó‚~’”ì]&×]±Lòl°ÆIm¯÷;ÉZÄårÊ ¬¤Ó$­Ë{œ‹®¤B‹ºóüqzÄÚMRGný›xÍš1䑘WœšŸÃ¬mCŽ!ß­8»*ô'%RÊBèaß\jO<6¶+;—±e.ècf ©iÉõCòdkƒ.Ÿ@ïÓr¢Ðý˜û¦%É _ÌŸé!úVw“ÚTôcgzdz€†tkoë¼×œÉB¨iz @z CNÛKúåHšYæGqOйGP$ÇÚ•H"D„g¨‹ Pî.w<ü)Î¥;nË`Y¾iÿ+¨Zlÿ|ƒ‘"¼6HçãVQRÜ ¨áÞX7èÜ{’çQââ{aÖÞ¢}M̆/¼Ìµ4`·×-L!`T=JZqÀÒoá)uãÒšc ¨ùyÆRxæîænD\ø,l’ÆcÂ}G™‘L÷'ÏHÅ,ùW/(š©ïêsu:>T® ’„R¿Ãæáå[´’}á#á„ËŸÝâbëºÛÎ÷§º¤}ߥy)ןÂu!“?rßÜc ʈ¦™—v÷ÍÅ¿ %uŠ~àDÇ1xI‡J}t!+š˜Â_AJ+ó Š#×j4¾Í¥µUžé#mqûsljQ_ÙѬ“åÉC‡ ªÏq-ŽB“=“!"p?]âý1m?¥r©þ„W²™öc%'G˜xâ­ƒ‚‘ë9)J ©e™ïhV–®H[{öþÔH\l¥Ž“,Yçveø¦i—(ŒgÞµis`c»AlÞuŸ¯Älؘ ã²CxVfFÄ(ëÚqañ‰P—Lu›b™Œ±LŸm«Íš¯­û¶„Ün%ÅîÕÖ”äÓ-˼։pþVMÿ¨«‹7Fº:¼;/âý}ÒÑü”꛲;$sÏB‹TjU˜ž±R}´³?ÛlÍ,YÖ+€Œ«Ø÷óp¸†>qû°}cq*îx•OÏDÎ<œbLž'$³ä6ì%Ð.ð|TØv ¤ :Ž%ãíLèè"Õãdì:²¯ qù0ý(öKäc•Ôž|[RòÉúÉ)íý<¼Vn±W&%´Uyƒ×J™š@ý£Èœ{–/hB:Ó5`±¤oÎR× „¾Àò®æ¿E7°;eŸê{Àר¾8:s´ÛªÆ6Cþ3ñ顺\’-ËÇx)8=šy¡eÁZW0Ë^¶BŒ\ì/JðÐß7uxÃzìò#’ßù^(cæYæòCë›\òà¡6«&‡±÷+·*o.(‡)u½ì:ßºè ¿©Lë·]M«ÿä½²Í bDÉØ›·0l)(1;ž ¶làdf¢[Ⴝ¬p Õž—æàÖ#×Iû.î¾Ä¯‘’‚]¦ð7TKš ¡æ#Ã7`b‚­"bЈ‹ýUºã;$|BP~eÿFäÇ/oS×ZfbCWÞ€2Ì/ ÕòºÉFJÐ÷“A;˂ۤž52Yaî± :xÌ(ü¯‹ñ6ã“§@ù bªWŸøéŠ ›;9n™¸ñ'9¾D%¸Òh(vñZ¦–H8‹Õ…ÁôÅç×_ö#²%ǯ<­ÿÜÈޤ腣îCÊsëA#KÕúx‚Í•ù ƒ!½Q1Ô)¥íY/Ó—îë÷è€PŠð1÷~F;ŠF<_íìõ!ly’@“ÌÚÙ¡¶Ž)¯z¹Ì;ÄcÍÙ³ wA…hf¤Y]Ûiµˆ%›ZÙ¶Dî ¼T8l· o­-MâÄÌqÕ‹QЗ.Ô:5¹t=ûV²ÌÖòE}Ž‚åtÀ.;ΗÔ:ÌÂFŽ“h%PÝMè70%wW¿ð¦úsž1¯éæOxa¯ýR’óZŽV4UDä"#ÌóaôݰJTp„¸çš˜nÊž­ ¦ã?á¾Uûʼno ç¼$!S;†L¤ö¾Ô³/¢—OÑ·xKÔ]n´dltu×ôAõfÍ·˜u/Ñ<ö%X6kƒF3¨í$pÇzMWLód¶ŽoÓä&@N`þ ÿÔ—Žn1†O!6)ÝmÞ¥¦îÇàÙ]‰ˆÝ-Ý{¥vÑ{˜‰Ÿ ÎPW"Â8ïEë“z¥œØ˲KùÄÖ’˜!¦‰Ÿøñ>ØÔŸ¶¼Uöû % 2û±Gg¶]Äyœ>ï™™”ˆ7i$ô¼mF¡([Y‹€ÞKbÌ5fÍ:Q2#Yûlªê© ;)€‰–Ü×-:Ìs$p•·Å·éªZ+tê%•ž)q­Ï“E ‹þÈDô+‡‡dhÕùVÈ€Q"Vé»6ª mnïF9@H‹9lT.¤^‰ïϱcÛøª@™›¤‚^&üŒÝ=8îp,îÍ“¿’@%¤r¶©gs»UîTNC+Ÿ"óˆ…%Ki[hûÊA![‰qºj´-n–¶6^÷ðwo66·óYEèbœWjëm}Ž ¦Ã¼‰rôù„,z§ú–NÉ©)n°»)±û¢Ñ5~;aÓ¨ÛkzFyÌð†èKá dÅHw†+òU×ÞÅ–fe øÃFšU4Êm“ÁZ£«óÒJÓXÄ¥/hç°<46=[w¡ÊÔ›Ýþ#{Í*aþêkæÓäô^i­Nµø„Õ™LpéŸu&{/Ù§³ï©àÚ°ßúµÊÏê‚ú$#ý/"qIE —`Þ:¸‰ÿ×ëñ™2w^ ˜%ŸàÔR#š^XYÄ™ñÑþ0üw=¶}ãñ®vg]µ…¯:î÷þð3»ÃRlÆÖ,ù«ô&¢]ºK1ñ€Ñ“ÑÅ.dáÒQª/‰¡´ÝØd¶OÏøSÌ,ÏÆ$?–r?Oà"`¨JíÈlA£j%Ë \Èt gÇoKV^/…³O>]ÚΟÑqT bø"ÓæþÆc¹+×÷Z’€Åû¡›r”gø1ò9ØGÓ3u-x'^²”¾ýR<µê_ƒ°3qÕKÏ™ðŒ¸yEÐí'Ð4ìóEç¼âóâY1à™;+ß:r}BÄ,+Û5ã¾»Ÿ÷!S©ñÑGïéûÊÌP¢¢®”—½¾ˆ'vn4vìQü¶ó+#Nú󺢩ßC¿I:‘"³ÑVªõ‹íyôúw ݾóçñç²V‡þ›QT߉P3üÄØ-ž²ù+¬ð|xSŽgÚð&Á³¦0]³J°ðØì"ŠðÃV‡DC8ÒsvœAe™¥%níe_{S¾ðý]Bü ¶ ÈM¾È©b‹ÍÃ$q:dв˜ErÌÕžrç—xcà»åáR¸¨rÝyÄ}ø Ögª¬¬î–‚Xß‹„ç ^ñ2fÑ%½O÷ÉYÃ^ö¼×Ÿµê¥øÒãnQxL!UÖ+Ö31½zËAʲ‰ã@øY‘w*BmAr¾Ý§™Êû›áì‡KÜAk¼‚RÌfFFóìœg'nZ†ã¡ ÑË#'ÈrÎJÚkׄ- ¹Vag#ÄO|¨èeŠ<Šg"î¡¡XγÊÞ‡ßÌ]gÜ»˜OYZÇX)Uv—:÷W·R«c„‰qD‹åÓ:5ß´z´¡#þžf) endstream endobj 136 0 obj << /Length1 1524 /Length2 8528 /Length3 0 /Length 9532 /Filter /FlateDecode >> stream xÚ¶P›Ý5Œ´P(R¼x ¸·âîEŠ $@‚[q)î^¤¥8ÅÝÝÝ­X"EÚâöÑ×î{ïÿÏ|ßd&yÖÞkïó¬sÖ>z -vI0Ü "‡9±9¸„ÒªÚÚ@.7&=½6ÔÉòw“þ5á…ÄÿÅF@@N1ÓQ(9Û€< ¿0P@˜‹ ÀÍÅ%ô7ŽÈ€\ `€*@ ƒ8bÒKÃíÝPK+§‡uþ~0™3€BBl”$í ¨9P9YAìV4Ù´àæPˆ“ûµ`µrr²æätuuåÙ9rÀ–bÌlW¨“@âA¸@À€ß’j ;È_Ò80éÚVPÇ?Zp 'WxØBÍ!0LJg‚<¬ÐRT¨ÛC`’Uþ$°þÚøO»¿ª7‚Âþ(™›ÃíìA0w(Ì`µ…ÔåT8œÜœØ ø7d먹€ ¶ ³Â¯ÈI¾€þ¥Ïѵwräp„ÚþÖÈù»ÍÃ6ËÂÀÒp;;ÌÉó÷ûÉ@ó‡}wçüëpm`pW˜çßÈ [ü–v¶çÔAœ!Š2qB˜ÿ‰YBœ|\\\‚<܈âfnÅù{mw{ÈIàïðƒoO{¸=ÀâAÄjyøÁôt¹@Ngˆ·ç¿ÿ0@jî0ƒXBa˜ÿéþ†Xü‰Îur=ØàúýùçÉèÁa`8ÌÖý?ô?Ž˜S_嵬‚ë_’ÿIJIÁÝžì¼vn€_ˆàýß]þÑÿ·ö?¢ è_ïö¯~Š0 8@èO {÷· —¿|Áô×Ð0þ{5øƒ›!¦ÿ˜ÿ —ùÃðÿyþ(ùÿsþï.ÿWóÿïÉ9ÛÚþ‘gú“ðÿɃ젶î1Üììô0ªð‡ù€ý/Uòç8«BÀPg»ÿÍ*:&DfiûÏFBå n°ÔÉÜêÇü} Ým¡0ˆÜúû¾°¹¸þ'÷0ræ6wŠãÃaý‘‚Ì(âö‡µœ0¸ÓC àA7ÀŽÀü}¤BNÐïПHÀiþ>Øò/È à´øäpZý>xþ/Èàtø| #þùœŽÿ‚üN§?à‰3wF æþÿ=(ÿÿqÉ@ nsÌ…Y¸¹H ue`óE¹$¹+ûÖèË)ú-ÝfvÏD‹óz"sY†ÿ*âL2q óÙò¦,Ó©Ä"õ­ç~C5zHcü«¦k¯“X͉­&ÌùqâÞ±Ü}ɪJ vm‰m¯[¯×~6¨ ÈmJôÙ΂8.\»åݪzŠ–†ƒg·^m—ñ+?½)šdÔ‰xã—?MŸcö~æ9-š;åüc7ÜéÓ³)ü¬±{j¥XVLïƒHžOžkÜQ—3+%ÚÜŽí¤t¤Ï)QOñ‡'<¥¾%)‘ÌyäE¬¾œËäbæ@Zî¡öj£ù.l¨¢ˆOÂe‹X’¦ónªâôÓëÂÂÈØÒ2µg©´ßÇ™{Îjáê*'ÿA½>¯Ûx»?ã<Á Vu‰FWs÷Ü^_xtª¿ª¼ÿ½rÌÐcÐÐbsƒh¹NjEæ6ÄÁ›Pâ×¶`»W®uz!]…g—õØý”Û¶›VKo±ì¡3&znb*î3‚Ü´ZúØÓ Þ7eBMfHo:˜ Håt–8N¶ïx¿ç ¤*_{¸ºRÔ¸Û&Œå)ò™á×Q[›Ç~7 *AÁI c‹ÈÊ(R®¾x!¡´þ,1Ñ$w€<¢²sÞaR”s Æ{aÉZyµÿ²î›Ø~Ø£iƒ÷! Ÿúºd]Š0µSÂ0>}ÎÅMQƒÊÞÜo¹9!=ñÈÄä²#Ÿ ‡F²#Ÿvò~›9?ÃŽøŠ–„ûÜÊÞÆ¢.TͰ4ƒžXêf`ðG™\§¸¥fªra•Ñ»‘Q­) ÿúö{Üè’O/O‹6 ‡)ºâŒÊ_¼M6˜ê0˜wtë/‹¨ ©èóÓe1ŒÚEJgÀ¯Ùjœ¡¢h Òð¾ôn]mëšÎZs˜ÜŽFf/)P׬À¶#÷.z]£¦Të¦XÜìêgˆ·õ?'‹,cs ¶Jbì-<¹dÚ½ø%Šw²vß‹íq–µZys\äkJ>ú2P®Tâ>™xƒ ™y"tH›iÜ!”Lgy\n·â<¦˜à$;æ?Y·òA{âƒ/ ´ëc¥œ±¦xûûÄ÷?:óˆÑ3h®#PX€–®ç;Üí9¼œyÙYõrÄV)]Ïõɳ~\ÛúƒŠ \‡Ô>ëØä›––þÚHSª@ûjB¨d9iæJ³‘Œ5ÜìØí7¨=™€T*ÓŽjæ? ¬ë@cäíÍqmŠ7½ÿ–[ø=‚q«ÓtÍÊ­K[;Z±¦ðbûµö^ËHܨó®lSü•³ÙM¿ß³¹c•}è*ÓËGÅúÀ†í³âwÙ:m%œêWµ1éM(<™ž+÷sH@G”…>´¹)ô°¸lÈÞLóº™ðQ…nEg/4Þ„¥u³ýÊÌoØò1š ™­8°%)œqÔãË¿ ö¬c¨©ÁÎ ºåNÓ½£lsy±\+v  s`¾ë3ÒU‹^ŒÄX‡B«WÃOF¤íäé~é-¾C/X¸½ŒU˜¢æŒÆ*t¿ˆË+€î.Ë4Ñy·ºŠ]à‡ÝÙF[ê1¸Wï4Ið*17¸£ðÊݨ3ð•¤^i½\“}„¸%m‘›‰ÇìˆÑŽ%"ß ë·fÌ’¼ÛÕ㔪¶}D°)¤s+·§T&N‹ohoÔùtññ ý¨UÄ|Göh{\ÁI°Š ïØL¼GÎΗV•`ñ*ß+”x’a*åp‘ϧW9º÷ôÃz §èæC„IÌ„ì7«åŒÁiR£T³JšLÈü†ìÚ,ßyi2"'Üõ‘LUkn™PŸ–>)û>¨JP¬!ù¢×"ÖW›Ö‚"‚ö‘8ä<ùN/Ÿ!N³µ[¶oÿ©Q·Šï^p7ÿ#¬q+fA†a"N)Ð3‹€³¤x’F®Ðšc§guª¢=á¨z\È-ÀU:~:¢:ïk?]ÑU õtC€ç–®•·‚\^]Ø)TÙbsÍÑv~õ Þ ¼òãå‰7elõPÓ¦ÖàÐG|[Yð óSð5qxÀ‹ŸƒŠh#"M¾F$ø-5' ÄšÈmw‰7ßQÙhûÅÓßÇûmšIeößÌ z-/Ée~Y9z#Ò¨€… ë]G3ç]-s£ÖE#ÌÒˆ ¯­ã5$m=#vzAÕµF,Nß0qžh¦Õ1ôHË‚Œ yW­˜“¯d°P­Ù¯‚žv¨ò»œz8çÆH˜`„÷`@ݪÍ{WLKø ˆö lŃ=4ühÒèÅ1¼'~Ø@­=-ðã_HÏ·ôéƒL™s;KO'ºŸÏ ?#>lKÄ3zz¡‰o4.§øYÛÆí8ÝÚÒ,S!ü„ƒI³cã¨8ƒ‚#b%™>×Þ¡­è—±O‰˜ñ®‡Û¢§q܈¹"}ƒþ¹.¸¦á4§ÿK‰“B¼ö²ôíØ Q]dÜaÃÏHð’ŽÐ½¾N*®‚Àöõ|iÑ^[BÇ»èñf9  ¿d ÇÁ¿*ºr;~ N—FVó0¯mJË¿öç“;â3ßYŸ ìq‡SNƒ‹)ð‘Ã6Ì=Ûú…·Æ@º’ÕE©b¼ÏY1oQòøœW_*Qiÿ¸*W%B,Ð_¯#†ÕŒyÞT°ûá6_\=ÉtºŸôÖ¸9Hpê&ú¯äV•(8×?¥I±´ÎAòÆsÐÔyåÞ(”œº&ÿýnOGhôM@ç›Ì?XM‰ºfï.|ìGêm¶\©MIåÓªÇ?ZÕ­Û’[È>¯.n³V£ëBÈfÆ Ug^'‡3]¤$ýìXC/R:Ñ}2”.X}Ðì¸E¿PR‹¨V÷‹Ðö¤›å¿êÀ¡8jm°0¯ŸÊBT·”=µ´}y”˧_¦<öÒOkëÄhŒ)šëk‚Î7£à¸æ}ºLÔ»Çùc£1|Øæ5ÅŠó¶åWŸ„ÛœðÙÃgÞŒ¼¶‰ã [—em&ꊫ ¤écœž1Æ<ÜÙÁˆ‘çnØä9-ÃÔWøJ«³'sSíçÕZï 7³ÈÈ=M™Ûh˜=yÛë‡4É•SÑÙu‘7âA¾©8UJˆ­P®YD7Åö‰Ê¿à€3û›RîÁ†ƒl š`GUjß*†«ÎyÆoòüb7[Æ4/Dßtµ2o¤ÏéðK56—¥îýÛFòvåFÑ/î~:ÛÒãÁÉúƒÉ³dŒ‡Víœßò_{«ï’Êrh›ÕàÍ4¼MÃ3á {ý¡ú4­šœWs—6š’8·r¼fïx»¬”¥ÛÁÐFÔà¥kÀt¸7® ‚1 ±2*Vïú¸=è  ŠýAZ¶\J’)ìHBîBÅB«*:ŒF•â¾;·a-¤¦øæqJ/_¤ÕÌ .û›ø°Ë¯*TfÓDle–ê0FA¢›þ¢ÒÏ4$d²ÓÁŒ"”wA@b@ÈfpÆ #éOA/Àv‡¢`ªäLà’6gÔÌW{R"‰öy‚«ý¨u:QüŒ•ð¼J„ñ´`üqµqž®èÓÑOŸ«>ùö§Ág&1 Qã§äÔ&àdVÛbmZO*(¹‰ âµúñ‡à'È1hI;YþEV«–œ©nM9åjß{§t¸ÅXJ¾ò+&|aé­¯ˆ®lèÙÊÖ:u.™r¤©1L®a=×ÕFÞŠÏÁ^Û7 uUÓèM³Ž>ÓödyÃ¥ýt„о_jq+[-«Rü1WB²=éý÷;•ãê½ê ìÅ/—2 5´-1>¢™w.~F‚ôÜZ”Ü‘°ãRÆGX…²×˜Á!ê–±Ðd­3©E¹w,^Ò‹¤¼K›·³ ÷M[‘--SÙë6ÊPð*ÕŠï,¯©¼8íoCoË?¾¢¬ÎßÚ)ooêÅ-²ÝÁ9­$¿LÝôŸüÔâÇ!¾ Û>†äv´Ñð û>‘Ò×¶|–òm­Â›X;G”2êšU<†bA”>m™•×4}w¬—gÂê”Ìáf–œÅñ\-¸8Ú4˜+ÏŽ-.ðÐ`y5T˜¬5§¹f¡Þ±UûN2mF`=RHˆâÚâlÒ“úœ‚kõ9Ï'“6»®—¨œßV}^üªr¶øµñó„QCíч¦ ñ뢓TfÌÁ¨ý´©JÖÌÚIü¾ Êqć¦B~…ñi¡Y;Äc¯.D%þOùKzáJˆ»ZÑ/LÅ–òÆÝÕUoËÜ4vÑŒ}•7¾L“’t¬é_éÉ ÅÓ^Ô'Њ[Ô P%/¦­zã5Äé }… Ýá¹É`Ü`Õ‚x œ¾Ír»’k›EŒ$:c¥$@7ŸX!a ©9á‘RÆ ù79CÍ·G¾*ùºbšxÕv>¦“î7œ ‚†ÍAŽžNÒž#]W®µöŠñxIÆzÈ­ëóžé¢ÏkQ( ¦(­çgî2¿½'¤ÏÈ73lÃSï:é!ÊÒt Ymè“-åû(N›©»åå+2óY‘ÿ0%A…ñ 8ì›òå/GoîRÏW’Ì®dJ{NèzkQDPçM|ít¾X3/ª·ûWq¢»Ü×í¤f’ÞA~Y©dŸTô¦Õùw®9Ÿ1¢˜ SMŸ´ T·UÇP5"ZF("Óʳ%Þ«šº{Ëïåe Š3›Ç-?þò3)í^`]ù) Ô`K”-òÇ2 ü”jŒ¸fÆ9ÔS¹.PK|„Ë@´ˆ²ù‡ªq&\e}ö([T/ ‚(c¿í[«óeÅ Ái]µ“op‰t·ä˯¦¥îæ}S -Q¬ÅÒrÄRÔ®‹˜™vù¿ùV“C¡ÙdãbKçU =?àr°?nÁ|å†4€o*\½ ­Juñ8ÙIï 8†„.œðF›ô C ÍÎSÅ‹_3–ÜŽ‰¨°:YÖGˆ1úr›Þ†«nIKÿúðîsÂ)×$-"Ü1}TKúó6ÊËÎI÷A¬kÃéëicQö< ]9ŸJÂU<UXöÎïóˆš/é4/ëî³jî–K®—e1¢n( ›[ñäù[pcªÅÕóHKLj¨?t¡õ!zÙ6Š›zÞïIxu¥:ÔV{Æà­² s~ŸçóüïRÖkÃá5VŽ&Af{tNgÅ1À=ŽZïÙ¾©ó‰›2ϯŢ¢é.çËõ«Äó¿BD¯žŽ $õ\AF }y^ãG›aæïT›:˜Bç¾;^4›óú`¤›ô¼svrZìãÊ&j&Þ©µF®T\. ¥ô@oz˜zæž–Ÿ/Æ>WÕ®ï (š¤Ñt¶½mK+°‚o4ñœÝ[àÿ“é^âöŽt’zEéÏÑžÀþ†`ɰ”UÃpE¶äâNb[>,¢¾¨"‰Š†Šu®Y°^<Ï• ƒ*Ö<ϱäÿ[(ºÈà-ÅgŠ?ÿ8J8ŸLг› C‘/¦êá ™ª¿8Žó÷"{Ê•%fym¥ÐmqE½NY‘Yа`Ý“j-ë½ïI™d õ)è¸Úݸ\E¨>'A=÷”lèP¤nxØÊÚSÿ˜ ÿ}Ñ ¡D³`ƒ¢àyP麇Njô xz¤p²ýtlkóš»°¹uøŠ™e«·† IBë'«ütlXaø3uÝRlή¹©lóÞ…¹ªÊ{°Z¹‘æ{‹…0 l©6ŠÈ(Ù“uì®k}¢!«?íÅ-Q>ýSý»ÁiЀ`²êÏg5hQÄž0<ÿˆdšÂÝ0¡ÙOÒ4íùiýïdž¸L²¤+ÝYdr–“vV*²pûÊ †ªWÇáØ“ö2r®¢+áÊÇGÄuSWž&\vC+νÄ%ÙÑÑ6Â9_øPVîbsƒ ~j|vðˆÚær¡ˆµLUÕË`ýZ*KO“j…ôþvéX,nˆÞRmú«ê´<½Ïæzƒù5CôÁÝ»×þ}š}ŠÚÕnª—ïlc†!ÑÔ6ÇT™Ÿ¢_xt+FÕV½Yuox¡¾¸ì ™Äoۿ曈N—˜Ï88_¼ ’Í×±Fýb€×TS£~ž'¯“Bmò rÙÊ'ÛYXݤXˆøõžçüSž Pgç†7eØOKí«À·a{›Ü®‰‹ŽÇ¯!ÆGÚ¾Á´i‹Ý‰b‡ç~:EeÖd£påÄñ˜‘û($²ïyûzÕ×Ï7;Ÿy¡¿±#rÉä›(¯Ï|ÅÊÎõŒ‰öc@Šzã¬)nmçÑSRèÖ’]ZžUz+3?q‰Møl3Ä/ÔúçýR(jPõUÓÊ\4^eiXºA0“VÎ7,ÔÏ´&uó8 ·Ã¨0 L$T“™½0E»<ÛÖí ñ]Ê奯ëKI×¥–)]úºÑÆ0öÍG¬ËAÔ³êAÙÐiì…ñ¼Cæ4õ¨ŠR€‰úQâ¥xèrôáUÓùXÇýºYö r#“*zš7ÚüÜCI/ ʇ!ïJ_ÜΩè@ñ«©ŒM/+Ðò{Ô}½*ÕN¬(÷›_Xûö?1(P€(Óò?óžx÷I8± i‡ü\ð*²ÅØÔ}hvµÞ´}øòŒ=©£¿Ø:íóû\µûÌi²åøbcØ8¸:å¹{o Ù—DÓhV{qî!üG¢g|1-·×gvXªÈGW™»ô×09½Û•¤ÔaLTæ„m츈ZBg{FtžYɼ1ñ%*ÓðSÀc¨üz¸©Ñd=ý9@z‘ÂéèÓ§$úÑ…BÕGFF¯4iá&¬Ä: 2ÂxÉ,â/;¡9«@Á7IŒÔ}VSæ½Ô€ðOxQôí/°m®¯XÆPÒlžŸÂÚj½ê{éþaim³Ã!?Oùµ£ƒjFðø&û0 G%¾=z$;ò6n!*g=¯‹÷åÑ÷·¨>S?ô ¸»WYÚC]¬‘].ºÄ°M­± hžµÂI®«)ÝP)ú Õ–ÅrêÏ¥¥Çþy®£©Þ[ïå¶Gä$Ô;¤‡8©dआø@‡¼tv)_,NÔ§ý³‰¹S#̯Ͱœe:4³k1=Q¹„¸U‹Ù‹I{ü”á¬Ew¦ËŒ¾Ú̧“«)#èx¢RÐã£ûÝ*î œ)“Bj"šk‰GIF ·½ÔÆ)Ø@vª0O(úyExÁ ®nùCgcë$òL› Oµ]ôI qWDÓ£ß04MMÐ(rñekÊÇÔ0ÀÆ¡eh¿m>¸ùDœœe—kx¦ä¸lŽ‘.þÌ4› æ| &bÐ2Q92¦*ùœÛå6]Óƒ”‡£ò»Šn³ƒÆ–G|ÏÄŠ)¶÷-\O ÿu~”ã€ZT»…e”XÀܤpâ­³,Åä‘óâçHðÙ€=f~þŠmk-ï¥øÔ§Ò¤!„ƶ€"¿Üç$²'Ä) ½4ƒÀ%®äA1öGëZ+M·ÊeÓ›fÎö&"Iì#¾—/g1´ÞãzBæ&Œ¼BlOšÄ?ÕnÂ1R'‘Ið°¦.Îîßa7ïzþêRwøÊJ½ÝXBLàU-fÍnˇ*c²ßo(à[& *{ èÑd‰ZÃç7Mòe’7pF»ìŸå W›ˆm1ꌟšY/J|ÌÐàÁ¯4aDfŸyU®M{½oŸÔÙ“¯+.ìo.1Ô®0j’ÆL²µz=#{ ­T’ÎäY€qMÞQ—äóò¶rH­@¶ˆï¹Ý)¶Ô­DZ0 ÂP?ù>CijSJøqÉ„hfÎj²ÿÈÇÙè€?;¤hÛÒk ’n¦)¡nîðíÀ<ä— ¦Ó}ÜíÏù7µ:îì{PЦWœŒºQëÞÆ˜ÛeMöNrÿÛV1Ùk—ƒ¼¶¸‹Ã6«²±I½Ôü¸í» ˆØ—¡_¿)¢™o@õO|Œä%. 3QöÞ‰ËÔ‘}ØÏtfÎ&6]®ývü­¥ØkÌ7 õ"@‰ƒwUŸîVð¿ŒÌÚ aïSíüìÄ·S6þÀŠqöJZ˜¼"†v˶Œ«Òä7½ìêüCÚĈ‡\šZ iŒ”¿ö}õL««–Áµõ÷3‘,Ÿ¦ý•½:9è ”[â<7¨‡¤T7Âά§ÈÕê¦jÙÓ×3•ô5â "–y"Àò¢NVy4!ÅÔŒã¸Æz5—û—˜6U 3žçÆ (XAgio Ð# œfÂoÝÁ·N¿b3Íxq„–Á’¾žïÚ÷oí±(0†Ékt-¬¾'…ÀRÊgÞðf4ß½lò&ç¡’åGöâY/.º9Hûå¿È6ÍO–ª9a™Ž=!¢Iž¾R $gèåÑï´í!n°T©ÒPÔè¿#þøÅÂý«Æ^q3)N;“&_umÓÌjŸj‡vˆ¦7Ъƒ¤oÒ‹tUW‚‰Î±,I#¡Žßª nÕz:û>µUAòî›]pâÅÍæã̶ȔÇU®ˆw.ºM†aã…Ç S²ô-šh†îêj|¡v=åõ] ^ºéŸÔ/7*(?lÖö}\”¹tˆoé颛Îö!“:-ÓçúHòãÖu¢C³›‡v·xßlÓ•DœzŸŸškÕ\+¿ûU±…e+Æ÷›­æ'æ9 FŸÉÕÕ­ ݱŠ#:;aH¾ÖQë¤XØš.Ö'DÚß|%/-z›®¶zHðŠþ‘0NƒÄ¥¡Hh#yl é¸ -F¿FýüêÈÂ1Aºo£•9eqÝ+V,dåÏÈÞ‚µ/r¦µð<éÓÞ” z{iÏXJßý.üÙN‹RÝ`ÕïËÑK´‘»7ßGŠ–¾ŠQ1¿{JßZ] }î c#6u¶Ê6Îb„Aî͵ ¸© "N“S¸"É“ºù ýö3 ´'ÔÛv°¯Ñ‘Å]RȪ!†~·7ˆ¾ž ‹þû> ŠÇ…A<¹Ë%·ÕôHœþ Qù}n< ÌnkÁÜlœoÛwþNU‰Ä>û58¢$:¿—ÌþÖ8ö> stream xÚ·Pl.Lˆt7K7,Ý-)HJ ,°À»tH·”4( ) Ý]¢€´tI’ÒHçY}ßïÿgÎf`¯»¯;ži5´9e,aæ`Ô•“‡ ( SÓÑáá|\@ /#£ÄÕüƒQììAEÿ°sƒ\á²Ç W¸¡ Pq³ððxEy„D@/(ò!ÌYð䱨qT`P° £ÌÑËbmã ÏóÏG‹+€GDDˆã·;@Æì ±Aj W°<£È  ³€€]½þ‚EÜÆÕÕQ”›ÛÃà äàÂs¶–dåx@\mZ`°³;Øð‹2à)Èü75. F€Ž Äå/…6ÌÊÕä Àö 0Ôîâµ;àÙÚʪuG0ô/cÕ¿ 87ÀÃÅóo¸¿½‚@;ƒ,,`Ž ¨j °‚؃ê ª\®ž®Ôò—!ÈÞ÷¹ƒ ö s¸ÁïÒAMÎðo~.ÎGW.ˆý/ŽÜ¿ÂÀÛ,µ”ƒ98€¡®.¿ê{ q[ÀûîÅý÷pí 0¨÷?È µ´úEÃÒÍ‘ûâäV~ü· \„q/³»€@ 0ì{ZØpÿJ ãåþ­äù%†sðõv„9¬à4À¾+0ü†· È puvûzÿ©ø/ÂàáXB,\æ`kã>:\ ¶ú Ãçï ñáëÇþúù÷Ósø†Y ö^÷æ¿GÌýTIó©¶"ûß”ÿUÊÊÂ<Þœ<N^>~€/?@PDàûß(ÿòÿ‡ûo©òwmÀûxÊP+@ä/ ðÞýCÃýï½`ùûhXÿÍðßf0€å~ù@ ø/žÿçøíòÿ·ù¿¢ü_—ÿ+Rp³·ÿ­gùËàÿ£9@ì½þ¶€o³›+ü2Ô`ðû€þ¯©ø¯sV[BÜþW«ì ‚_ˆ ÔÚþßFB\ ž`K ˆ«…Íïùg ðèö(XæùõÞ8y€ÀÿÑÁOÎÂþ¦¸À‡õ[†_Ô3ÊC-`–¿NW@rvyaáûÅ+ ðæß¨%Øó÷j¸¹ 0W¸ ÎÎ`sÆø5RA·Ì/Ñ_HÀ-wDÜòÿ"! €[á ¸Uï‘0|'ÿE¼n­{ÄàÖ¾Gün{ÏþìÁ£èÿ‹DീþEüð˜ øX .v÷&pó{ÄGÎ ;0ü‰·r½—óý+ÿkÿUÀùYü‹àÁ,`öðAü›“ÿ—ÄÁᾊ_â¶üÂS‚ï#À{þOÁ_z'7øZß»À‰XÝ»Àk³‚¸ÿã—ææü‡ÜÄú/Êæ¾Dxm¼mÀÐ?,à2ÈÞG»? œæŸåÀ{àpyàüîC À]¡ð5üC'»Ïw†ýG ¯Þñ^ æÿÖþgü<Kÿ; >x.G°3üÛåSÁß2ì¾åüðn8Ú»¹ü‘.qºo“ÌliþK¸ô–òÀ;tAà»ÿÑB¸¹ üQ¾w€r_üãvµqÿ158SWØp6n@xÓÝÿ€ð¾yÜC^¸÷Éxáá½î Ã]_€ÿŠýŸÓ·ps†wÑõ÷ë þÁ¿¿‚Á`O°ÆìÌB,Ķ:¤õ¼Ræ‘çÚ0/?vÏQä1šÞª<¹û†fœøÅO¾¼¨™ëQß¶yßß5Øé“íL–|ÞD‰’ÌÖ¶¢X™çð!¸ÜvQuã]ÒÑahƵ´&ÙoÔêõ8–g%åp:\›ÌØRgj,?+³ÙGe®ßáÂBމB%æÃB i“Éh+—­’ŸhWfp9’ÞM¤RغxÓ=À+°Ò3WÌY~óèÇlÇ'Ç?$_o~¤xb6g\ý(OvÇtÜÈbî2¨—ÏOa¥sÔ°ï¦Nèܸ[½ªô¥¤”÷û˜Ô±ŽÖŽP›µQü,ZyóŠ3o=ZœK«¸§üË?Yëò¡Ó|)zéleoýŽCfêá©ég#,¬|¾<„v»Z“4/!y ‡Ç{¹•(/£—.g|.s¥ßª(ÖÔïÇý ÿþ9:9¢ÿпœ}µÈ2湂bnðhµO«–›;ŸÃmÈV¹S _k<~*ŽéI¦0L¹Ãd™üv*Èé±3Ûku‰hSñÈ -"ž.L¥ßd“_k24þ\`»‚ýÇV,&ŒøöÖƒ?þëá¤oɱó€éBc˜Ié8ccvÓ‹ùäcä×ýQ›èÐW§š~ºui;¸°æ(ªšT~㵿ÜG¦Uů¿|»R™®_ñ(ü ÙWt§ð›N†¶ù„YÆ5rnåH꣹ß_mÙõǹ{/ŽÅ¬°ÙŒ+éÌ¥_3¯ï¥NÝŽJVÒË0<áÑ@t-pþb•â„0mñ2W{QdWÔð”9½©pgÔb‰}£]íh½îæ¸P×ùd~Í mŠB5KÄ(ÐÍ÷Q) :Ó+ç†ÕØÀãZw±›åw¾ ö@¨G Ž6Bîè+wæW¥k¦iùZòÛð-KsÂ,Ž×¹_+Ä4K°[f¬q/p/à‰Ó2w¼í)ÞŸY߯’¨Ès œÖÊJRnwŠÝl“), ®f:ñê×KR¡«vY¬˜Õ“gI ~\ wy¼–Œ ˜¡=d\H—K9²yrœ"Õ…øXB5p9Zœ?¡Ñ 'MªŠÓ=}ã8}JË.ÍïÌc÷ä¸ê `I •MqÐ]DJÑ¿ƒlù«f i(8Y¾ 5VxšóÓp|nÀóÕ ¯ÄCž¾Ž² (f£g™n“kÔÄãð°wN2œìX4–³cÉZ‡+ØÆ2NÊXß+è ¢ «01W~‘ÈŠÚ\ü1 uª©mŽ´V+mKôÝ“ˆ{)Þt8W'&š>úââmÂ…q~}¥ZwçÂ@¶1°»Þlo4ŒF5$XÜ/JP¡•Wytòãñ«½OÖZÛE´Š¹JvcÖ˜dëk˜B>¯2óÒð»j5 }x2/«¶¾,ûwJtÛØl‘öΣ(¢$Øj™™]!ê@ÝS2yåË8?/EBw{! 6xsD¨$‡ÝæwAâ3«§…»Î×â9Á&ª>/³Ù~Ö!޾‹eEËþ"bEÕW›ÄÈ"HÉR9Aç9à<ë®è`©lŒÝN_;x‰ÅÂù‡ÝJ‚ÞO+%S1*,ZÖÌFøêpEÕº¼¬btl ³°d#<ó‰²Y¢ì·ü½À¼æŒU=iÓÊä•Ì,n~/=0œ{’Q·DFª·%Ì5·.Äp4oÒG“Ê6&•¹H6dx?Èdª²HO¤†ì†&ßf=j¢6‹…ÖÄxÏaôƵyø Žè‘N– =Dß½Dò–)èK¯õ…K›íCXq$íCŒ¹Gé¹\?@YÞ¶‹¥¸ÙõÓ?š±¼zSÇûšùAj—Ös~’僚N7ßg•wŽÌ‡ã³oÒŽ–/Ë‘Ð.šxä ÜLòôEžä…zÅiÛt䎇i~¹í|¿ :T|› Û…檢—?™ð?,b¢â$º|ñ*ïYò%ÕYàþ€j¤Mî'»£"Jçµa !Ñ\§ïúé®vJè5ÝÙ„Â) KCñ­åŽ]9Ò¸+I7ÌÊÒ ÛÒÀwiãΤCê²¾%n­yý„…VßKëS,žçþ }«÷`)Ðé9íg3ü"û ýC ÔèU#~uJ6—ê©ø1}c`­Š3‹¶ëm0!M”P©¨*&º†¯WXâ½±îÀóºHª‰‰0ÅÝ£CçįA`ŒSŽ#ÑJzz»žýøt1ÄO–k.Ãuí{€˜;ç#ÄÏʬl$îøã˜µÃ¢ 'šx.öÝ2Òk±|;ᶸʱ‰`ö„ηç—RÈÅ,i‰ÏG]¡-y©æ¯ôVAʾ}ðlTmŸõ4Ó¦¾Ú^y7ÞR‹L ˆÏÏé ëT0rH8·º*KPé…±"PàÜ¡Úw9ìK¬Å;´<Òc^Rê%h“£ßFbÏ ÅJI^˜¶îÖ]è ó²rºøh&äütD¥|¥f)-9<Ü÷S K¥Ž-–ÉÞüÝéASšGqöR ͼ¡—¹¦#„m­ðú#ʰ,A='âŠ4,F4h0ÜPmÝvöecÀú¨‹ès±íÏÖÄÍ_M.û­g¾ è‹,W°<Z *æw(4WJ] ith¬Ú¡I>Û믕Mƒ½þ¼t)ÔژąCë'ù< XÀÝëîûBv5¨ÐÝ×’NÄ“ºéÖ¥%­²–£×ø®·ñëšó°QØL…¤IS«÷²èöÐéjt“rc}nH½¶´‘AÝ{ª‘]Íû-å Äÿ®B¸G€Xº%ȶ¥`rÃY—ÑŸ*WPÀ¼²Û%_ªBr•+†*P@:Õº2––QeLWµ+;ƒnÊü|ÄÛ¦ðîûAY,žü›ëd²[GºÄ‚§i?ËsBÑU¢@š«¤?/- —ž´ :zbx¸ß |ËÚù°;9a×òT ìÈUgäR‰´5/a˜ê¿!†— yru Ì«ë0nãǘCi¿7ÕåÏ™Ä&ÌÍï°[ýö‘ëaC˜—ƒÑ¥Ÿƒ¼„þAÌ^NõÜ֔ĥ&‚&A03ÑkxÝì\ã§‘ ¿h{½£„·w“õ&0¨usIìݹ­oÐCâ¥Ø©‚uY…ÚÌÓˆ™ÛIµº!Í8,wjºGh!hìUÏÍØ„E–¾°T ðÛμÑ|£õ¿¢éS³Xµ+•Øv)Ê—®Úó9ÎHŸ÷*,€ýqÞý)ÊsŸR2‰x²Ó+‰:)Sºtõ¨a·ïôMaæý!?p³ Cü˜Ò_»ŸHmÆ_sçcí%Y%k½ª2ëWWÛ &^òóB@’eÝjãàzW#»ââŠü£²ØHE;™ÜíÁÊðîÊ©òrŠïçLcÌ[¾‡z H=o6ä÷}ÖYýöµ§¤ÕG§7÷êç= /M[7éÑ}QYªãò£/"†=ûòæð§Ú}⌠L¤Ðåò¨U¸}{‘Ì>$ibSá l‹áåòÐIتĄô|(ßæ=Â0{0øm€p/Ê Ç¹àÊ­qê¡Ó—ÞÚ«1‹K!5¦»º'õ²ÛcÀ·1]õSb:-ö#P«„B÷|¼p.Å—C¤îNAOÔŸÊè y€ÉÆÇÆ•M‘hxÑߥ;¸—^Æ5[jñj 8rlazKø”j÷&íÍq~:Áø*=q {ôá©ÙÉtgéÖïf¢¯sf%0q[E>|6³mQvÊó<“ãô˜o Y§ »®ß0UdŒ-š¢ôe.’¨§ny§é1Ô™i è&:SBË>¶ éäÙ»_ž¸Ãß i<æ9C?Õh!˜‚n_3Õ D± «N_W~,L uÝ¥œÇ·_š~ãJ¨0«mhTàÒ ‹~7[Ê«Ÿ&Ý,I©Ó€3™kZÏ»‹ÅASC%ú*õù{>£ªèc4®ZLñˆRcûecwM«j°ý(ξ†%†žß§Þ½†¾Rt\YòšØÜ^%vøÌ®^è7¯2ú U¯,Q~Ôù~B‰º]DéâL,›‰ýVv'u»Úœ”Š`R)7ˆYæ¿-Cwò³ëGÅÏ€£¯~¡\.¾[Aì·ó‡ƒüâQçíýÞ=Ú*o6SºÌÄ ¶)«¾fÌlŸøþtè”ïi5êÄ`ë¶©•¯ñ¬0 )Ñòµ@ÿ“Ëel¨¹ªÝ`=údç"ž ©cM±wª}ˆvÇVäiÕOÓYsZI{­b;äb?ÈÜJesé»|¯t5˜ØZ„–n‘°PýÒ¡è¯ûu%ÄÈ>ãÄù8£0æ`H—kDž(1ò“ ‹Ï¸Ú „LÒPHCÎ9m ”¦eTãD>˜×YQYÉ,?¤kâxŒ,OKS·OužòLsm)b;½*cQ‚‡*Èû„æÃ¥ÿ*<&É0!ŸûrìûÝ9D‚_‹mk|}”Ô1‘Š^¹cÃÖ 2gçÙp>rd¸^uFw¿V‹¾@CõÝÄËÈ2Ž™*¼ 9Q®^u„ŸªY·ÉþX·ìÒ¢KPÿÌÉ™™0ă¼v¾ÃÐŽ9иá’|Zâ•õˆAY×›¤Ì‡CtP#ïQí§ÔÒ$‘í¦ÍÓ±Ö·‹^ÚVþ£Ë·ƒ*2Zí˜#§áÈPㅢ蓬Ÿ]âšN¹V&JdlÏ_ÒÕ;à$Ȫ ªV>@íEEB*²ŒU÷CÎóQÌåz*-—jÚüpÓìU?-›ÝTÇCŽm<ƒVÍÊÑI YhÒz i©N,8œƒ&*áݱV½Å†õè4öbv]žçÂ’¤úÛúòû—ûʳgù¡ó{ýêÍ—'R–L ž^FkM7ËL‰wüo„51—î5¢b¥eÌDD3¬vlˆ·a ®þ]ø2áòüÙ×Úm‡Î7ëKv8³_­NÓPÃÅ‚šé²{R›<8N)t^ïR²Šû´§.ùµH·ZÝØüýAÜù7ñYš<¦ª6ŸU‡¯þË|7³M¤v¢ª£Éú꺂Q»¡*-„VzEVküiŠf éÓú»Çtº!u¸VæØz™6yî±îBwÙ:H›â­$b3µôÐ?(2ê-}M&?W´Ç{Ü(Bm_Þ>ÞŸ°­¨Æ¨Ùh°½°í.ÇÕêë©Fd|íC nSkñ#ùZU'A˜(`V½gNZ\Í Êç˜rí0’Ÿ©—‚}è%Ïa”v%£Ë*k!aH’.Ç2£(@ªé¨êÎGy‹g*T .ŒØ/§o ûæT:p¯«ÂpœAèÇB[ °TÓæÃ»ØÏ%ÅO<ËÃ~pÛ¤Q —T¡%i«yú(·)#g¾þ-HYÆÕ´øêÀ\uúpðð´ÏFÜ–(§üS2èó $·> © ï%Tª/ˆ¨pÄ6¨ŽgÈwqO®²‰Qlrr¿Ó"²át»¯ÿÁ îÚŒ:!ñ‹özWp+n¦)DÃ?$Ævç–I”æ”( çl%·ìâV»Ä€rÉu42ºÀhà°ó‚oQ>ù{/S­8%¹gñp ‚­/_êÉ+ÖÜÓlsMGÇ̱HÖC\/­šˆ¢'ÂQäê.,,Ó\Ÿ8pÃÕH>®—]ÓIˆþÊjß¹C˽ëÿ=.mz\"ò<÷“²‰Ù«5%Yµ!ŠÒ sõëöm 24·0çA¨kžviˆ€T¯ô2 í݉¯ë?•¦Ýƃ*>¯Ò‚NaU ªqç_~=È@|ÄžA¨Uœ|µ¸7DöÈ=ëîìÙRñNÞø¬¨³Gå¥DiqG“{Rº©}·©ýYhÏþŠôùû€x=²y‹H©O®QR?¨aï2ÞÉ?‹xï]¥ªŽiòn)óͰT:eÀc.Á³R`uöq0_wÑ“å›.Ôo9‚ÃD=¨ÃDe‘L¢¸Õ@HîøW ‚pÂod]2Ìdl_äõÁýtÉ=¬¹Ÿ92&xöboxusüã72ÄP@œdß4 _ F‹¨T†ìš‚‡Ê¾^ŠGµîOKWÃò?+L+§mwÙ[”èÌgK ¥ÎÞá7~ç“'z!æ€Þm[LÓ¤D±zèÃ>Ù$¾vˆ_கiHF “¡È2ÔÁ}k:x¯¦½CÌ/ðÙ&¬³=Myê­µÙÚH•Ò<”‰Êm³u¤xIcœŠ[Ä2l¨=rÑÙNõÐßNqƒ˜Áùv¡#èÕ$®9O6Ê)ýüþj÷—§«ŸˆhN°ß胥S™_®›½¦Õw|²«çª”hÂChw&Á\“õíäSQ‰<—œ‹ñJvWÄP‚EPÙÀu®g"¬w–ÛP¥ES¢WzÈM’ßž†rV¾ŠÃ Áö²Éí± ¹sã3´O×ê%@3„zM±~õl7þKÀ6SøÔö6sL ¡¤.FME•µ³6ÅTsÝ(Öm¥špâ7R§ŠÚ9ñ«Nª%:OäøÝú~ ðŒ!)ãæ%·¢D ™Îi¼˜"yuÌŠùJ.AëãÐ@r±õ”Ý“º÷Ps65#{V*ÚÔ…Á} óTFq­w×XIÞ¶¤âýÙOb/M:­ˆÓ¢ÖÀóçXÇÉ º‘‹ìÆU¾£^èêÇžmü±M»7†L¥ïd†ÑA¢UsÙã@)DÐorm +Mô¾zŒ‹î,˜¦-+;Êv™§¬u'\Ñl¨>š·j;=[^òWª¬µ§0xñ¸38°,ãb’jÚ‘ÌAtW%?ÀÖ½ïªÕGÁ¯·{ ±B,S2›7¤v?#ò¦ QUf7†._êU+žIïe³òó,šÈÅüj ™Q›rõ*¾^0Œ×7Ö»ÆI¸mCj¢:óÛ$˜‹ ñz”>D˜®O£?WÁxqUë)TРf]òg%N.ÆŒla%z=Ç@ !Ny¹a1j »’ÂFªê¹¾ÍŒéí’îÆÒöEñÅ{[nØA€¸!òÛ`ÈdÃà€ë V¨µ¿®ñqD”s²ùy”TfT YdàTkWÝQÊã™Ð¸ Ý›..ÍC×rÁëjma‹I">rÝ@йվ#óuç2Í´5¢ùFï·]a°ç‚b'4¤LñÿÆ4Ýðu]3A1e·¨3EÃVÌ¡I4õyÒ^/¾ãb›$!YÔ‡µº•ÉZ¼²¸:dC<¶°>wž* ôÝ) nŠ{/ž,£ìØÐr³àyò6g4¿ß[Á8Ü—Wbp“6ÒÚÃ1œâ’e¶+§Z”ŒC-›íÖ èÀƼMÙŒ³jéÕ?â¬zSøî+?¨ Œ·‰*,±dýÃÌÞRª zÖ9‡Ù-o>û•eÌ2»´Ô}†ÍRýsD\9H %è‹7tÀC[«¨„–ú-²²Ža€¼Î0è?ûÙ‘è¼ãÐQçtüê¶ç8–‘¶Ð®ƒÿˆ1ñÊozúÇùéNèDqÚ€”àND¶«;Ñ©haØr‡2ÛfÓOí-hÛ[ݺ‡‡‡¶«V[®¹Ç:£JÖn;3üz¢NcÙYq(ŽÐ>Êg’ƒMj±Ÿ‰x7ê—kÛï#x+¿íÛ»§¤>ð Ö÷ΩHÉ”àÇ Û&w÷)‚¦86OŒåž£sæ‡ÉëÔÚªs–Ë ÞzH¤½ì•ÖÙ-KI‘O ¾Ó>+keÅì}eVµûc­RÌõœ}aMg:ǃÙγçË]c(ðæ;mé 2Ÿ¥/-Ú+CB¯¯%rjÜN£ÎóæÍêí› YNÏ7ÉÒ4…†Ž=m{8ÄØQ°p,¡.7þo¿>)”Ò¾æ:Þ²ps|ý¢º ìý\=œ”`{ãBñTêye¼ ïá¼wQk·sò ኃ‰Äñ[† hLrâ¾æÕwgçUJî— ë†V³Üþ¡ØŸ!hgëz]R§_¤ê¿2‘Þ±Ð/„“<>ÈCàD)·`bó–Œ%#õ¤|â²>gñB™vàÆ€ÂW“ñiˆÉ'<$Ä6!m¿úö‡zzX‡Á±kü»©úÁ¦JOTDÿaê>e+XU4Úí“,“f’O‘èZgMnzÜ7;ôâ?úÓŒ «´Òÿ8&”BÛ*Ýôn¿ŠYȈS¨jTý(«Š`ÐÜøt[ÛÎ/Y…QñRÝDÀ|¯ñÙʸ8FETH]t„“ÉþáKZ¿p$$ÔhKÉwÑëŽîéLeÞ3&â›+¼$G0xÙ€öÆ?ž«##áý“Ã/¦ZЫñ¯5 Ejo&90…ºÙ9Ðå«¢çy»å˜z¿… ò±mŽ·Î¸Üògtþ¾øØBl>þåòÕô¾+&þÜO òÂE£ð¥yXÊãíñʼF‡ìbÖQ)M4Sýó5RdÏ6š4©ûç6!H ÛÄdvyJ€¡ÓK!MâÂNõ ÒÅCsž!qóÔàžçØ&ÒFt.+3¸Œª µSê%ÃÌ?ù•Ý+ÂuG( ?›ç–ÝÒRV†1í°J…¿ëbÅeXb‰h€ìý>Û¹¹™6 ÿ G‚ææŒÕ$¿¡½#–4Ñ%4«$l2¡ß«« ö•e\.s{pÔ±™­û€ ÁOI»•÷4ƪfóu!‡dŸL_ÚvçA­ß[3ZP–çAÔjVšñ²B¨+N s,½‹…‰ƒ÷z?öû°/>o·õ“{?°¾HPVƒ.ƒÔ`ª†xû0ó5YÖ)%µ¡r†¿`ü³ÜİÈ×ýýZf‹„ðë=0új,‰ÔΖ§m|©o(”ضï+; ¦lfA\sþ.ÉÑš/‡~7Hš®¥Þ¹Ößú²ùª¬nvÿÍAiýbi¬[ q•—í `s¿y}­õÅ^ü 7~»yÇŸ’Zƒûs-;•nŒ±Iø Ó»s#³Ø‚†›è„tSÑ;[’tWéi‚Xø†‡‹éÅDªÄ½Yl—ÅxS péÀäMþ ¾ƒM›Ð‘½k¥TPÙÂ#9ìÑ”¯ºÌ/)š4í›É^òïÛmåžbøQ›¾÷ó4¬«`}kÓ¢¾¼±î°‰¶ ׿¬è«wE‰Ûljqê¤^Äö¶d¯¡eª³‚1-‘Þ§Ç޸̎Ð_¿ï¦tÜxÐís¶¾vW‹·ª¡zY´ü^³àU1¿ÅGÂÞ¦$C$ýu§1ÚÒ÷öèŽVSÓ&¶åâÄ„¾Y¨aüÁ? ³k¸tO7ûò8÷‘YÅ<Z2Ê5äô9 ¤-ë&J‰ÅGï ={0ñ5»?Lû>&v¢ÂE£½ù@Ýw’³/bx]]¯Ê:x@äý9ªEÂŒü¶ # M)Ìé²ëá Bñ› Y¡G‘+ÙoJË0õT©}ƒÜC$Sëb¿r°u‘/Q¡)´<º³[Æ÷«<*•`&yÛ‚9õ³ÄÙO#c0ì.QþLvÁ1펱Zö RèPj2E½†CÕ„kÝuN•ªø…Iãé³,;¢®ZËþ¶‰³¸&ìž’µãZóÊ »sÈTuòíûn É+½ª¯ý›I¤¦ÂI‰.©ž; È|“fÞQ’M&î'Ô—ï)cÝ|¹Oc` Y\7Pî ÈÂniÖ,ý‰ãú¥ŒŒ-ôŸÎ8;¡ÝV žR ¨FLd TaðQ_>ÈÛë=°±ÞŸ(ªó gãz¢é U²áŽbzxÁà[‘ª-Áï£cþ°YÃHš &(ùySí´0*Þ19€sÃ]•¼w¨9TkŒêÙš=!ö¬AfqúDµü:¡0w™›#ùÖ*צ½¹˜^”owš^]þ³cËÝ)¦À³‚*Uuí›Ù¬¼Ú!²FŠÇoØÉIë#ÁFç«¢=±òÄzéÁjdý´&ý©Øñé·?PùÄO®a#ø¤³ÈõÅŠí{ܺx—ݾ%ž©ß*„¬6†Ñ¨¸ @E´ßXJG‹j­æQæºJXÎãù¦×ÔKƒ'‘ oñøŽËs:ø»)‚•J°G\'ØÃ ŽMJ°åÚ&v­²>v¦v[÷#HÎAOcưW»°=6òû8$cK“?[nÜ<É&OÏs´Âß¿C‹ÁØbþæ{†â•6lF\¦1#¬ÀmBN®,)…½þ0À<€ ¹×Ôô¢Í¨’h nÈDaÔÆðT¿Þ´¥d†«[ÄDÇ繞ˆ™yÂýh¾-`½i+iû³7UGƒXÏäGx+x2R:)`ºq½ý.­\Csõ¦KOK÷àÿ ï7¿l{Ē椓ÄPÎøpŽ{,Æ:¢ASD^-©úìiÒv3 2‡Ji»Åò±dÅ©ŠÌjÐw™¾ñù —Jãèíˆ3ÞæÑûA—~ïNo ÏŽÐBSWŒŽ]7û„nörq®ÄÉ3Ò‘OCŽÙÌ4ý<óvž¦b™XµŸwèˉvX`j“Gúòf"b{Wqß’‰V5óæ&÷äv¢©Í6´³­Dleß«(uÑB‡l™Ø÷)•ãŸ~³Nëøní].ꢶ@à­ÛÒÝõ*@ô“ÿ?ú)h endstream endobj 140 0 obj << /Length1 737 /Length2 969 /Length3 0 /Length 1537 /Filter /FlateDecode >> stream xÚmT{4”i’š¦\ÊQ/Ž—1“ä’eBŠAEªÏÌ‹¯ù>¾ùf\:B±érdS«ë¬Ë¶®©t¿œR)*ÅÒE-V´)É%i?¦töœ=ï?Ïó{žç}ÏïyÎkbèAà” >"V›ã<ˆ ‡8l[†‰ „(…øJ”‚ Š@Œˆ  S† àÑñ$E3!kAbT„I0bBŽ £€“\.ÿ^.•±IÙ 6]! ¢ ˆÀÄð|ýÖ{ñ=™'?xB’¨øÉÂŘxcBˆK! D$+ $p6ÎIÊž €Ë!IÑÄ"HB|Ü®¾|pçY xÅEÀ{]ŽSR: ¥Ôxw–€š´Äè¤>iMFÉ8¥Åf aB „ÃH gXëæ…GÀN ‹dÑ_C4!)͘Ѳ€FÐÙ2±˜J 0ã’hIàCˆ ‰ƒqícIl £8ÝÉ×T‚‰ãÿ·èK†…Ò¢¸â‘´ŒVËÙ\;%ŒI=°8(òÃ(Z{Š”A% •sò"L&Q^i}è ‹\ÿåUº­‰7­ƒB<¼CB,&b"ìŽ †G‚ŠÖ%E“ÀDØÅ”Û8ß®›ð‘o¾J‘Xå°Ç×…3~¾Zaß²Ü܈¸­VÈR.°²µãÄv)ìm–'þ‡®PF’§&@÷òÕŸX,ã ñ´‘:¦nɾðcÑ6÷üºb5‹º›-•¦û×{Bµ°ÛQ¢Míïôúz9±Lƒ‡)áÎ-oÿôê;o„îƒÌŽšÚ½†éazC'Œ‹#·•½ñÏ>“¾±{Z®DÈŸÖ³«—:üìév?óZîQÅ›²Õ1ÎZžÈÞÍ…Wnªi¾Ì|Rÿ÷d…™j cÂ6‹“šuQiyÝá.C­OUwæìhaö˜ènŠÊ+J‰nß’Óö½¢ÕYªó¾mêP¦¬¨Ê×T5Ô$ëVYœ.ªva;žCæJí´—Í~•têŠéÚÒì©¢§ù)½¥Q:ç{™¹·O£>XqÂkÇùI®kæF6]¾åÞ^8ܦÛU·X¡­yò’[s6!áÌ%lº;¦.¬_¹.6î~¡^Šÿšä¬Îdc–ý¥¸ë±ªþϪ ÏfáùÙêF üÓs1ˆQô³>úQXé¼Õ03L8À u“'™ ªî2Æë$YbŠ·Ý¦ZÉ–ý«fÌãgg ì±v}5çãœGƒ]•‹ßœÖã½ú¾ë+IÓ¼çó蔿àn©°Ïm<`~e!iÝÄÜ_“ZÇ <¦‡ŠúÎ\‘æ‹úm?_ì-¢îõ[[\Ôþ+÷ÓÑk£Ä›¿³5?:¿Öì6¾¦xtv¡ÇÇX0e»Æ…»&õªe‡fŽt*’G»™~‡ÿغÁd¸Ã*#çR /)xi`˜7ovåmÇLs®Úäïæ.²|Õ²Žë)CÿÙÄ* endstream endobj 2 0 obj << /Type /ObjStm /N 100 /First 798 /Length 2862 /Filter /FlateDecode >> stream xÚíZ[sÛ¶~ׯÀc;ĘÉtÆvâ8㤱›&ñøA‘i['²èŠtêœ_¾(‰’L[²=gúÐ \‹]ì·€¢Ë™a*g–iÃs†‰œÅ>_ú>¸x|“ד’Iå™4L:Ťe2à.0¥IT_PÍt.™rL+\<Ó©ÓÎõ´dÆ‚TÌæ–¡ÅÆz¼fF2ç-ƒ3XJIXJî3X‹ÀZÀÕ¨ž•X°˜µ{Á,ú5l-&Çü6ÏÁŒ+VbaŽ…M%œs &…8°„ÜöÈÜ,ÃÌ=&ÃL[ÆJ\`R:Ï J*L)uîÖ-5–‹…KƒõðYi{’ ‚R«Ë5ƒHé‚f!gÒ3ô0¾Æ•CX”0–+ƒ%)éUX+…E ©ŒÏ#äD`¦¡n̰äæ¸Æ‘_¡]yI8BV4\Áæ=‘ò ²šÐÆL A=!B(A„6ž`×DŸé`iˆ¼ òÖ È¹×=¬¥pBôX¯d /,<ÕœΑÃáD‘Ï=E¡`^;¼&]˜à…$|„—=@ :îfÁcª€»G 0"¡^‰Åh£+§pÒpœ!X 9‰J¯uïùsÆU•Œ¿`?UÅ –ãLüÌ~ýµ÷Óëq=)O¯cßÏÌ21¿*êz8>g‡uR§Ýü*ñ],”—_‡ã‚½»º[‡nT“~]NªnN“8ß÷'ýѨ±—7ÅàºCøõ×Ù¬©É³yúãÓò’í–“¢ªï™+—æn]]~t/Ñ&öýaU³òòjR\ã #w˜åÒœr<]W·™sŒpÈÙÆw‡õ 1?ÞãG?® Æß÷Ï‹Çܺ×Â{üCQ•דAQQ=Š=o‹Óa»¼aÇÔa‘.È“L09ÙÙ-•Ÿ>aÑ®L¦Ùøz4:ébÒÌ—”È{ØŒP™AF/°íÂFvï"oàÉ^k{¢‘|È€DÃ*äG¢QEµ4Dñ÷“rpXÔìؼØeü¨¸©ÙLË­ Á¼%ÐŒØ4¾5—sLåžÖ±¤.÷øáõ×:ÞïÇßz|»œœ“(8?á{ü5ß9ñ†V2€ÒËÌzÔ' XQ°EdT¦µê7ø¶ØrPí•e uEõs'`Gš9Çím3‘CÊh½‹Í‰,(*›!“¹îrjÛym§¶‰mÎLû)L¦üŽê\"=Uæע:?ÆívÅíV<,W¬¼/WîbÁøÇF´u+¦™šf׈š69θ̅§ŠH²á1`8¹ †{`MtâiýüxÓìŠiú¦™5üÜf2t€Ê³ÉO‚À×tŸ¯ ã×BÆËedÂ?ÌéÞ,›æÕÃLóz §·™âo2œ=ïc3ZepBšxæÜ‰CSTˆò’CZ£É€D§6j¦ÐÀæCD‰L=}¨üû]+È›8Çï”Vùü^åó{I?GïÏ“&Î2£_ÁÙȦ^›¤B‡ŠãÆ>¶MršVKĘÇq>ÆOÓҽ׈+TÀ@qy=fS‘óˆP—;Ä£Gzw LˆX/ЗS":“Ñ•Ö!µƒGÀ"w­'Q‘ö*`”òØy ¡ÞêÈGŠ…À’ÈÔZïf«&=m4Úm©ˆ‚@2^eÂ1Ô5üÔ;µ?öE{‚r Çœ7kCëÐ:Òs®8–Jtl)&œ œÕ:~½°ñ+ñ**J¡¸u´Ž^7`C™ò%ÄÊà”Ã{Òy0õGÙn:ƒ´Í©9‡ŠJm#{>&-1—ñ˜vºú6ë¶äæÔ¦²Ò¯iD9˸µ ­Já¢"—2ŠÐÄfM3e¬Úž^©Ð,5•—f6²%m„}#›¸èe@žÛÙ ~ÁàEj~Gb’;æTÛÔ;w­Á¾äã=AgÌ¸ÒØÔ ´ÜDÏÇÒrÛ“tÀüÛ[jVz jšsºœJj®I¥š6MŪÕcpÒô†’ÒxŠöºÝ“$뜊C›–(ó~§™›úãé-õ8œûÄtn[fäQX¡ ÷}t¤™Þéôü¢¨“áU]NÒiú ‰‘wïö_¼ýeçíö'!10êŸWL'Žíx††ù3ß«R¡”oU:ÉÛÎþÕ^1<¿À­·8Îiì™ Á×u4lÏGË{ü°..?¢n„ÿÔLÂñ 2.ú:¹ÿÄ·øÉwù+þšïówü=ÿÀùïó?å?~Gƒ'~Î/øø%ó’—ã‚_ñ«b2,Où„W¼*¾c^ oxÍë‹IQðúï’_óþãçdÞî‹2o?ŒÜ ×›ß?n®"¿-<}=“ñlœß‡–Z -ÛK‰6XÛˆ€”——ýOË7C°4€üu]Ö  "bS‡ïüoþƒÿw ¹ ï>þñfç(bÑ9ØbäïŸ Ó ÅÀ ¨Ù‹qó–´bçþ'ÿ  ú5ÿÑ•ãfQ;£ÏÇÙhg?®.MCþŸˆ,…Üxˆˆ›Å=ÙŽŠ³:Q i`OÍ|/½žLî8ý:Š3¦7iÒ’§æQ\úÕÅR,“oȋŤ\t¤ÞÄ‘o^lþò*:Òu8R¥ ¦7íN‡µi:iTÛ‘yÛ‘ï£Ã(ª‹Y,Eóì&æ½ümëðhŸÌë°Nº&e)ž"N]wÊ"^Mñ›˜rtðæ·wdŠïp”V—?)vmSÔF•tkûí«ƒ/0åpÿ訫˜J*¦>+ °-k„X°†ngÖH)­yÖ(¦[qßyƒêq0«Ÿ¨jT”Õ7ÔŽ¯“þ ˆI©”¦D~+êY7è4pK¥ùëº?âÅÍ`Ô¿¤‚ÓÚËÎ'EzÚµ†*ͨ¨ªÅnJs5º®b¹I…%’•°³x¨vO¿mï} ]àèuç6`§zèxxP>zæGÕéÇ~,òÅÂéવíÝ,»Q¥ü¼ÿñåÞ{2¶3duŠX£±ëìþ©FžÁÐÞŽ.š¶Q•<ØûýàðU2­Ã‚L£ÿáÅŸ°oÚ]»y:Þ“‹ë¦]ìOÉw¶t‚\ȶíë·f[Çá³;ç6Ú>~ÙÝÿòå—ÃÝCø*ïDaŠŠþ>§ ým®µkçmwåsgå]eÓäûu´»Ò„‹ô-»ÁËñ <+4ÏÎ Jï ŽUhK9YE¡õGêD¨l÷«"¾Xy€Y-þ½0¾“ØNªšVÍ4v´ý~sƒñÿsxZ_Tñ:áNõ‹ËÚÕ²v´Ë–v±¹ö¥#ø²v³¬2³Ãv·¹ö¥sã²v·¬Ýçmí´´‡Íµ/ë–•‡··§›™n¹¹îÅsØ’n%Ö×­6×½zpZÖ¿tjÁímàgÛßÿk]É endstream endobj 152 0 obj << /Author()/Title()/Subject()/Creator(LaTeX with hyperref package)/Producer(pdfTeX-1.40.13)/Keywords() /CreationDate (D:20130531173754+02'00') /ModDate (D:20130531173754+02'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX, Version 3.1415926-2.4-1.40.13 (TeX Live 2012/Debian) kpathsea version 6.1.0) >> endobj 142 0 obj << /Type /ObjStm /N 25 /First 195 /Length 808 /Filter /FlateDecode >> stream xÚV_OÛ0ϧ¸G*Äâ³;–X·•ÂhÇ6&B›•H¬Am:mß~ç8 NŠØCåÜù~|±Ê(È5Èx$A1‚4Q2æ 82   µ%Ä"¡ 6<L„Àc*两‘88£0`\Ò$”¤'aH‚h¬6 cT’ÓOi PjÀe¨Ô(‚‘Ž’Š#œóAR‡‡A8ùû”Bxž/Š ¯ï‹2´I “d•Ú¿}<\Oöû“ȃ²ü4]M—ÙS‘/ÉRD½¸¦|¶\ý‡d Fá0©ä,¿f³âaE«rµGGoÿ>¼9\Yù ²y½[•'ÏÞ.?|ß;ù®Õ›My![«GO>~»üÍíùðöv|>&yÖ±~‰[ŒgÀµ>«¼ž-¦ù,[ÌínÛvt•ÌÓUöó5éSó®’eJOv —èOÙl?ܺi¯—ƒªUÝP¾ì»ÿa׎=–n(]‚q"Ɖ c¯ÑãKôÈä«XQËÊ ¯duôr] <178C9B27ACEC5FCE427DB6F8637D5FE7>] /Length 398 /Filter /FlateDecode >> stream xÚÒ9SSaÅñç¼, *Q‚`$BŒhP\hP‘ÅÜPü6¶Ö·Õ-±¦³ÕÆÂ¡c˜áSØ ÿÓüæÜsßûÞ퉈øŸ"R(–‚tbŸìI Hw”ÔÍP¦Ë‘Z .ÐuÀA¸Bw„Ôí0Lw˜tœ®ÑùЋ½KÎWøF~‚):oå‡ì„q®Ãˆbªân&`L1»ånnÁ Åâow7an+–·ÝMBî(VÝÝåæþ¡¯aîÁ}x³ðæ``)Ö~y«ÇŠÏßœž(þ|qz*ÿ:-IõªÓ²´òÉé™ôaÇé¹´ùÏé…´ûÕé¥Ró’Ó+¥Úw§¥é&ÿU¦.cê2Æ"c,2†!c2Ov7”ê?÷G¾±{I:ì endstream endobj startxref 148891 %%EOF foreach/inst/doc/foreach.Rnw0000644000176200001440000004775712152141726015527 0ustar liggesusers% \VignetteIndexEntry{foreach Manual} % \VignetteDepends{foreach} % \VignettePackage{foreach} \documentclass[12pt]{article} \usepackage{amsmath} \usepackage[pdftex]{graphicx} \usepackage{color} \usepackage{xspace} \usepackage{fancyvrb} \usepackage{fancyhdr} \usepackage[ colorlinks=true, linkcolor=blue, citecolor=blue, urlcolor=blue] {hyperref} \usepackage{lscape} \usepackage{Sweave} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % define new colors for use \definecolor{darkgreen}{rgb}{0,0.6,0} \definecolor{darkred}{rgb}{0.6,0.0,0} \definecolor{lightbrown}{rgb}{1,0.9,0.8} \definecolor{brown}{rgb}{0.6,0.3,0.3} \definecolor{darkblue}{rgb}{0,0,0.8} \definecolor{darkmagenta}{rgb}{0.5,0,0.5} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \newcommand{\bld}[1]{\mbox{\boldmath $#1$}} \newcommand{\shell}[1]{\mbox{$#1$}} \renewcommand{\vec}[1]{\mbox{\bf {#1}}} \newcommand{\ReallySmallSpacing}{\renewcommand{\baselinestretch}{.6}\Large\normalsize} \newcommand{\SmallSpacing}{\renewcommand{\baselinestretch}{1.1}\Large\normalsize} \newcommand{\halfs}{\frac{1}{2}} \setlength{\oddsidemargin}{-.25 truein} \setlength{\evensidemargin}{0truein} \setlength{\topmargin}{-0.2truein} \setlength{\textwidth}{7 truein} \setlength{\textheight}{8.5 truein} \setlength{\parindent}{0.20truein} \setlength{\parskip}{0.10truein} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \pagestyle{fancy} \lhead{} \chead{Using The {\tt foreach} Package} \rhead{} \lfoot{} \cfoot{} \rfoot{\thepage} \renewcommand{\headrulewidth}{1pt} \renewcommand{\footrulewidth}{1pt} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \title{Using The {\tt foreach} Package} \author{Steve Weston \\ doc@revolutionanalytics.com} \begin{document} \maketitle \thispagestyle{empty} \section{Introduction} One of R's most useful features is its interactive interpreter. This makes it very easy to learn and experiment with R. It allows you to use R like a calculator to perform arithmetic operations, display data sets, generate plots, and create models. Before too long, new R users will find a need to perform some operation repeatedly. Perhaps they want to run a simulation repeatedly in order to find the distribution of the results. Perhaps they need to execute a function with a variety a different arguments passed to it. Or maybe they need to create a model for many different data sets. Repeated executions can be done manually, but it becomes quite tedious to execute repeated operations, even with the use of command line editing. Fortunately, R is much more than an interactive calculator. It has its own built-in language that is intended to automate tedious tasks, such as repeatedly executing R calculations. R comes with various looping constructs that solve this problem. The \texttt{for} loop is one of the more common looping constructs, but the \texttt{repeat} and \texttt{while} statements are also quite useful. In addition, there is the family of ``apply'' functions, which includes \texttt{apply}, \texttt{lapply}, \texttt{sapply}, \texttt{eapply}, \texttt{mapply}, \texttt{rapply}, and others. The \texttt{foreach} package provides a new looping construct for executing R code repeatedly. With the bewildering variety of existing looping constructs, you may doubt that there is a need for yet another construct. The main reason for using the \texttt{foreach} package is that it supports {\em parallel execution}, that is, it can execute those repeated operations on multiple processors/cores on your computer, or on multiple nodes of a cluster. If each operation takes over a minute, and you want to execute it hundreds of times, the overall runtime can take hours. But using \texttt{foreach}, that operation can be executed in parallel on hundreds of processors on a cluster, reducing the execution time back down to minutes. But parallel execution is not the only reason for using the \texttt{foreach} package. There are other reasons that you might choose to use it to execute quick executing operations, as we will see later in the document. \section{Getting Started} Let's take a look at a simple example use of the \texttt{foreach} package. Assuming that you have the \texttt{foreach} package installed, you first need to load it: <>= library(foreach) @ Note that all of the packages that \texttt{foreach} depends on will be loaded as well. Now I can use \texttt{foreach} to execute the \texttt{sqrt} function repeatedly, passing it the values 1 through 3, and returning the results in a list, called \texttt{x}\footnote{Of course, \texttt{sqrt} is a vectorized function, so you would never really do this. But later, we'll see how to take advantage of vectorized functions with \texttt{foreach}.}: <>= x <- foreach(i=1:3) %do% sqrt(i) x @ This is a bit odd looking, because it looks vaguely like a \texttt{for} loop, but is implemented using a binary operator, called \texttt{\%do\%}. Also, unlike a \texttt{for} loop, it returns a value. This is quite important. The purpose of this statement is to compute the list of results. Generally, \texttt{foreach} with \texttt{\%do\%} is used to execute an R expression repeatedly, and return the results in some data structure or object, which is a list by default. You will note in the previous example that we used a variable \texttt{i} as the argument to the \texttt{sqrt} function. We specified the values of the \texttt{i} variable using a named argument to the \texttt{foreach} function. We could have called that variable anything we wanted, for example, \texttt{a}, or \texttt{b}. We could also specify other variables to be used in the R expression, as in the following example: <>= x <- foreach(a=1:3, b=rep(10, 3)) %do% (a + b) x @ Note that parentheses are needed here. We can also use braces: <>= x <- foreach(a=1:3, b=rep(10, 3)) %do% { a + b } x @ We call \texttt{a} and \texttt{b} the {\em iteration variables}, since those are the variables that are changing during the multiple executions. Note that we are iterating over them in parallel, that is, they are both changing at the same time. In this case, the same number of values are being specified for both iteration variables, but that need not be the case. If we only supplied two values for \texttt{b}, the result would be a list of length two, even if we specified a thousand values for \texttt{a}: <>= x <- foreach(a=1:1000, b=rep(10, 2)) %do% { a + b } x @ Note that you can put multiple statements between the braces, and you can use assignment statements to save intermediate values of computations. However, if you use an assignment as a way of communicating between the different executions of your loop, then your code won't work correctly in parallel, which we will discuss later. \section{The \texttt{.combine} Option} So far, all of our examples have returned a list of results. This is a good default, since a list can contain any R object. But sometimes we'd like the results to be returned in a numeric vector, for example. This can be done by using the \texttt{.combine} option to \texttt{foreach}: <>= x <- foreach(i=1:3, .combine='c') %do% exp(i) x @ The result is returned as a numeric vector, because the standard R \texttt{c} function is being used to concatenate all the results. Since the \texttt{exp} function returns numeric values, concatenating them with the \texttt{c} function will result in a numeric vector of length three. What if the R expression returns a vector, and we want to combine those vectors into a matrix? One way to do that is with the \texttt{cbind} function: <>= x <- foreach(i=1:4, .combine='cbind') %do% rnorm(4) x @ This generates four vectors of four random numbers, and combines them by column to produce a 4 by 4 matrix. We can also use the \texttt{"+"} or \texttt{"*"} functions to combine our results: <>= x <- foreach(i=1:4, .combine='+') %do% rnorm(4) x @ You can also specify a user-written function to combine the results. Here's an example that throws away the results: <>= cfun <- function(a, b) NULL x <- foreach(i=1:4, .combine='cfun') %do% rnorm(4) x @ Note that this \texttt{cfun} function takes two arguments. The \texttt{foreach} function knows that the functions \texttt{c}, \texttt{cbind}, and \texttt{rbind} take many arguments, and will call them with up to 100 arguments (by default) in order to improve performance. But if any other function is specified (such as \texttt{"+"}), it assumes that it only takes two arguments. If the function does allow many arguments, you can specify that using the \texttt{.multicombine} argument: <>= cfun <- function(...) NULL x <- foreach(i=1:4, .combine='cfun', .multicombine=TRUE) %do% rnorm(4) x @ If you want the combine function to be called with no more than 10 arguments, you can specify that using the \texttt{.maxcombine} option: <>= cfun <- function(...) NULL x <- foreach(i=1:4, .combine='cfun', .multicombine=TRUE, .maxcombine=10) %do% rnorm(4) x @ The \texttt{.inorder} option is used to specify whether the order in which the arguments are combined is important. The default value is \texttt{TRUE}, but if the combine function is \texttt{"+"}, you could specify \texttt{.inorder} to be \texttt{FALSE}. Actually, this option is important only when executing the R expression in parallel, since results are always computed in order when running sequentially. This is not necessarily true when executing in parallel, however. In fact, if the expressions take very different lengths of time to execute, the results could be returned in any order. Here's a contrived example, that executes the tasks in parallel to demonstrate the difference. The example uses the \texttt{Sys.sleep} function to cause the earlier tasks to take longer to execute: <>= foreach(i=4:1, .combine='c') %dopar% { Sys.sleep(3 * i) i } foreach(i=4:1, .combine='c', .inorder=FALSE) %dopar% { Sys.sleep(3 * i) i } @ The results of the first of these two examples is guaranteed to be the vector c(4, 3, 2, 1). The second example will return the same values, but they will probably be in a different order. \section{Iterators} The values for the iteration variables don't have to be specified with only vectors or lists. They can be specified with an {\em iterator}, many of which come with the \texttt{iterators} package. An iterator is an abstract source of data. A vector isn't itself an iterator, but the \texttt{foreach} function automatically creates an iterator from a vector, list, matrix, or data frame, for example. You can also create an iterator from a file or a data base query, which are natural sources of data. The \texttt{iterators} package supplies a function called \texttt{irnorm} which can return a specified number of random numbers for each time it is called. For example: <>= library(iterators) x <- foreach(a=irnorm(4, count=4), .combine='cbind') %do% a x @ This becomes useful when dealing with large amounts of data. Iterators allow the data to be generated on-the-fly, as it is needed by your operations, rather than requiring all of the data to be generated at the beginning. For example, let's say that we want to sum together a thousand random vectors: <>= set.seed(123) x <- foreach(a=irnorm(4, count=1000), .combine='+') %do% a x @ This uses very little memory, since it is equivalent to the following \texttt{while} loop: <>= set.seed(123) x <- numeric(4) i <- 0 while (i < 1000) { x <- x + rnorm(4) i <- i + 1 } x @ This could have been done using the \texttt{icount} function, which generates the values from one to 1000: <>= set.seed(123) x <- foreach(icount(1000), .combine='+') %do% rnorm(4) x @ but sometimes it's preferable to generate the actual data with the iterator (as we'll see later when we execute in parallel). In addition to introducing the \texttt{icount} function from the \texttt{iterators} package, the last example also used an unnamed argument to the \texttt{foreach} function. This can be useful when we're not intending to generate variable values, but only controlling the number of times that the R expression is executed. There's a lot more that I could say about iterators, but for now, let's move on to parallel execution. \section{Parallel Execution} Although \texttt{foreach} can be a useful construct in its own right, the real point of the \texttt{foreach} package is to do parallel computing. To make any of the previous examples run in parallel, all you have to do is to replace \texttt{\%do\%} with \texttt{\%dopar\%}. But for the kinds of quick running operations that we've been doing, there wouldn't be much point to executing them in parallel. Running many tiny tasks in parallel will usually take more time to execute than running them sequentially, and if it already runs fast, there's no motivation to make it run faster anyway. But if the operation that we're executing in parallel takes a minute or longer, there starts to be some motivation. \subsection{Parallel Random Forest} Let's take random forest as an example of an operation that can take a while to execute. Let's say our inputs are the matrix \texttt{x}, and the factor \texttt{y}: <>= x <- matrix(runif(500), 100) y <- gl(2, 50) @ We've already loaded the \texttt{foreach} package, but we'll also need to load the \texttt{randomForest} package: <>= library(randomForest) @ If we want want to create a random forest model with a 1000 trees, and our computer has four cores in it, we can split up the problem into four pieces by executing the \texttt{randomForest} function four times, with the \texttt{ntree} argument set to 250. Of course, we have to combine the resulting \texttt{randomForest} objects, but the \texttt{randomForest} package comes with a function called \texttt{combine} that does just that. Let's do that, but first, we'll do the work sequentially: <>= rf <- foreach(ntree=rep(250, 4), .combine=combine) %do% randomForest(x, y, ntree=ntree) rf @ To run this in parallel, we need to change \texttt{\%do\%}, but we also need to use another \texttt{foreach} option called \texttt{.packages} to tell the \texttt{foreach} package that the R expression needs to have the \texttt{randomForest} package loaded in order to execute successfully. Here's the parallel version: <>= rf <- foreach(ntree=rep(250, 4), .combine=combine, .packages='randomForest') %dopar% randomForest(x, y, ntree=ntree) rf @ If you've done any parallel computing, particularly on a cluster, you may wonder why I didn't have to do anything special to handle \texttt{x} and \texttt{y}. The reason is that the \texttt{\%dopar\%} function noticed that those variables were referenced, and that they were defined in the current environment. In that case \text{\%dopar\%} will automatically export them to the parallel execution workers once, and use them for all of the expression evaluations for that \texttt{foreach} execution. That is true for functions that are defined in the current environment as well, but in this case, the function is defined in a package, so we had to specify the package to load with the \texttt{.packages} option instead. \subsection{Parallel Apply} Now let's take a look at how to make a parallel version of the standard R \texttt{apply} function. The \texttt{apply} function is written in R, and although it's only about 100 lines of code, it's a bit difficult to understand on a first reading. However, it all really comes down two \texttt{for} loops, the slightly more complicated of which looks like: <>= applyKernel <- function(newX, FUN, d2, d.call, dn.call=NULL, ...) { ans <- vector("list", d2) for(i in 1:d2) { tmp <- FUN(array(newX[,i], d.call, dn.call), ...) if(!is.null(tmp)) ans[[i]] <- tmp } ans } applyKernel(matrix(1:16, 4), mean, 4, 4) @ I've turned this into a function, because otherwise, R will complain that I'm using ``...'' in an invalid context. This could be executed using \texttt{foreach} as follows: <>= applyKernel <- function(newX, FUN, d2, d.call, dn.call=NULL, ...) { foreach(i=1:d2) %dopar% FUN(array(newX[,i], d.call, dn.call), ...) } applyKernel(matrix(1:16, 4), mean, 4, 4) @ But this approach will cause the entire \texttt{newX} array to be sent to each of the parallel execution workers. Since each task needs only one column of the array, we'd like to avoid this extra data communication. One way to solve this problem is to use an iterator that iterates over the matrix by column: <>= applyKernel <- function(newX, FUN, d2, d.call, dn.call=NULL, ...) { foreach(x=iter(newX, by='col')) %dopar% FUN(array(x, d.call, dn.call), ...) } applyKernel(matrix(1:16, 4), mean, 4, 4) @ Now we're only sending any given column of the matrix to one parallel execution worker. But it would be even more efficient if we sent the matrix in bigger chunks. To do that, we use a function called \texttt{iblkcol} that returns an iterator that will return multiple columns of the original matrix. That means that the R expression will need to execute the user's function once for every column in its submatrix. <>= iblkcol <- function(a, chunks) { n <- ncol(a) i <- 1 nextElem <- function() { if (chunks <= 0 || n <= 0) stop('StopIteration') m <- ceiling(n / chunks) r <- seq(i, length=m) i <<- i + m n <<- n - m chunks <<- chunks - 1 a[,r, drop=FALSE] } structure(list(nextElem=nextElem), class=c('iblkcol', 'iter')) } nextElem.iblkcol <- function(obj) obj$nextElem() @ <>= applyKernel <- function(newX, FUN, d2, d.call, dn.call=NULL, ...) { foreach(x=iblkcol(newX, 3), .combine='c', .packages='foreach') %dopar% { foreach(i=1:ncol(x)) %do% FUN(array(x[,i], d.call, dn.call), ...) } } applyKernel(matrix(1:16, 4), mean, 4, 4) @ Note the use of the \texttt{\%do\%} inside the \texttt{\%dopar\%} to call the function on the columns of the submatrix \texttt{x}. Now that we're using \texttt{\%do\%} again, it makes sense for the iterator to be an index into the matrix \texttt{x}, since \texttt{\%do\%} doesn't need to copy \texttt{x} the way that \texttt{\%dopar\%} does. \section{List Comprehensions} If you're familar with the Python programming language, it may have occurred to you that the \texttt{foreach} package provides something that is not too different from Python's {\em list comprehensions}. In fact, the \texttt{foreach} package also includes a function called \texttt{when} which can prevent some of the evaluations from happening, very much like the ``if'' clause in Python's list comprehensions. For example, you could filter out negative values of an iterator using \texttt{when} as follows: <>= x <- foreach(a=irnorm(1, count=10), .combine='c') %:% when(a >= 0) %do% sqrt(a) x @ I won't say much on this topic, but I can't help showing how \texttt{foreach} with \texttt{when} can be used to write a simple quick sort function, in the classic Haskell fashion: <>= qsort <- function(x) { n <- length(x) if (n == 0) { x } else { p <- sample(n, 1) smaller <- foreach(y=x[-p], .combine=c) %:% when(y <= x[p]) %do% y larger <- foreach(y=x[-p], .combine=c) %:% when(y > x[p]) %do% y c(qsort(smaller), x[p], qsort(larger)) } } qsort(runif(12)) @ Not that I recommend this over the standard R \texttt{sort} function. But it's a pretty interesting example use of \texttt{foreach}. \section{Conclusion} Much of parallel computing comes to doing three things: splitting the problem into pieces, executing the pieces in parallel, and combining the results back together. Using the \texttt{foreach} package, the iterators help you to split the problem into pieces, the \texttt{\%dopar\%} function executes the pieces in parallel, and the specified \texttt{.combine} function puts the results back together. We've demonstrated how simple things can be done in parallel quite easily using the \texttt{foreach} package, and given some ideas about how more complex problems can be solved. But it's a fairly new package, and we will continue to work on ways of making it a more powerful system for doing parallel computing. \end{document} foreach/inst/doc/foreach.R0000644000176200001440000001532112152141726015140 0ustar liggesusers### R code from vignette source 'foreach.Rnw' ################################################### ### code chunk number 1: loadLibs ################################################### library(foreach) ################################################### ### code chunk number 2: ex1 ################################################### x <- foreach(i=1:3) %do% sqrt(i) x ################################################### ### code chunk number 3: ex2 ################################################### x <- foreach(a=1:3, b=rep(10, 3)) %do% (a + b) x ################################################### ### code chunk number 4: ex3 ################################################### x <- foreach(a=1:3, b=rep(10, 3)) %do% { a + b } x ################################################### ### code chunk number 5: ex4 ################################################### x <- foreach(a=1:1000, b=rep(10, 2)) %do% { a + b } x ################################################### ### code chunk number 6: ex5 ################################################### x <- foreach(i=1:3, .combine='c') %do% exp(i) x ################################################### ### code chunk number 7: ex6 ################################################### x <- foreach(i=1:4, .combine='cbind') %do% rnorm(4) x ################################################### ### code chunk number 8: ex7 ################################################### x <- foreach(i=1:4, .combine='+') %do% rnorm(4) x ################################################### ### code chunk number 9: ex7.1 ################################################### cfun <- function(a, b) NULL x <- foreach(i=1:4, .combine='cfun') %do% rnorm(4) x ################################################### ### code chunk number 10: ex7.2 ################################################### cfun <- function(...) NULL x <- foreach(i=1:4, .combine='cfun', .multicombine=TRUE) %do% rnorm(4) x ################################################### ### code chunk number 11: ex7.2 ################################################### cfun <- function(...) NULL x <- foreach(i=1:4, .combine='cfun', .multicombine=TRUE, .maxcombine=10) %do% rnorm(4) x ################################################### ### code chunk number 12: ex7.3 ################################################### foreach(i=4:1, .combine='c') %dopar% { Sys.sleep(3 * i) i } foreach(i=4:1, .combine='c', .inorder=FALSE) %dopar% { Sys.sleep(3 * i) i } ################################################### ### code chunk number 13: ex8 ################################################### library(iterators) x <- foreach(a=irnorm(4, count=4), .combine='cbind') %do% a x ################################################### ### code chunk number 14: ex9 ################################################### set.seed(123) x <- foreach(a=irnorm(4, count=1000), .combine='+') %do% a x ################################################### ### code chunk number 15: ex10 ################################################### set.seed(123) x <- numeric(4) i <- 0 while (i < 1000) { x <- x + rnorm(4) i <- i + 1 } x ################################################### ### code chunk number 16: ex11 ################################################### set.seed(123) x <- foreach(icount(1000), .combine='+') %do% rnorm(4) x ################################################### ### code chunk number 17: ex12.data ################################################### x <- matrix(runif(500), 100) y <- gl(2, 50) ################################################### ### code chunk number 18: ex12.load ################################################### library(randomForest) ################################################### ### code chunk number 19: ex12.seq ################################################### rf <- foreach(ntree=rep(250, 4), .combine=combine) %do% randomForest(x, y, ntree=ntree) rf ################################################### ### code chunk number 20: ex12.par ################################################### rf <- foreach(ntree=rep(250, 4), .combine=combine, .packages='randomForest') %dopar% randomForest(x, y, ntree=ntree) rf ################################################### ### code chunk number 21: ex13.orig ################################################### applyKernel <- function(newX, FUN, d2, d.call, dn.call=NULL, ...) { ans <- vector("list", d2) for(i in 1:d2) { tmp <- FUN(array(newX[,i], d.call, dn.call), ...) if(!is.null(tmp)) ans[[i]] <- tmp } ans } applyKernel(matrix(1:16, 4), mean, 4, 4) ################################################### ### code chunk number 22: ex13.first ################################################### applyKernel <- function(newX, FUN, d2, d.call, dn.call=NULL, ...) { foreach(i=1:d2) %dopar% FUN(array(newX[,i], d.call, dn.call), ...) } applyKernel(matrix(1:16, 4), mean, 4, 4) ################################################### ### code chunk number 23: ex13.second ################################################### applyKernel <- function(newX, FUN, d2, d.call, dn.call=NULL, ...) { foreach(x=iter(newX, by='col')) %dopar% FUN(array(x, d.call, dn.call), ...) } applyKernel(matrix(1:16, 4), mean, 4, 4) ################################################### ### code chunk number 24: ex13.iter ################################################### iblkcol <- function(a, chunks) { n <- ncol(a) i <- 1 nextElem <- function() { if (chunks <= 0 || n <= 0) stop('StopIteration') m <- ceiling(n / chunks) r <- seq(i, length=m) i <<- i + m n <<- n - m chunks <<- chunks - 1 a[,r, drop=FALSE] } structure(list(nextElem=nextElem), class=c('iblkcol', 'iter')) } nextElem.iblkcol <- function(obj) obj$nextElem() ################################################### ### code chunk number 25: ex13.third ################################################### applyKernel <- function(newX, FUN, d2, d.call, dn.call=NULL, ...) { foreach(x=iblkcol(newX, 3), .combine='c', .packages='foreach') %dopar% { foreach(i=1:ncol(x)) %do% FUN(array(x[,i], d.call, dn.call), ...) } } applyKernel(matrix(1:16, 4), mean, 4, 4) ################################################### ### code chunk number 26: when ################################################### x <- foreach(a=irnorm(1, count=10), .combine='c') %:% when(a >= 0) %do% sqrt(a) x ################################################### ### code chunk number 27: qsort ################################################### qsort <- function(x) { n <- length(x) if (n == 0) { x } else { p <- sample(n, 1) smaller <- foreach(y=x[-p], .combine=c) %:% when(y <= x[p]) %do% y larger <- foreach(y=x[-p], .combine=c) %:% when(y > x[p]) %do% y c(qsort(smaller), x[p], qsort(larger)) } } qsort(runif(12)) foreach/demo/0000755000176200001440000000000012152072757012615 5ustar liggesusersforeach/demo/sincSEQ.R0000644000176200001440000000161311472542406014243 0ustar liggesuserslibrary(foreach) # Define a function that creates an iterator that returns subvectors ivector <- function(x, chunks) { n <- length(x) i <- 1 nextEl <- function() { if (chunks <= 0 || n <= 0) stop('StopIteration') m <- ceiling(n / chunks) r <- seq(i, length=m) i <<- i + m n <<- n - m chunks <<- chunks - 1 x[r] } obj <- list(nextElem=nextEl) class(obj) <- c('abstractiter', 'iter') obj } # Define the coordinate grid and figure out how to split up the work x <- seq(-10, 10, by=0.1) cat('Running sequentially\n') ntasks <- 4 # Compute the value of the sinc function at each point in the grid z <- foreach(y=ivector(x, ntasks), .combine=cbind) %do% { y <- rep(y, each=length(x)) r <- sqrt(x ^ 2 + y ^ 2) matrix(10 * sin(r) / r, length(x)) } # Plot the results as a perspective plot persp(x, x, z, ylab='y', theta=30, phi=30, expand=0.5, col="lightblue") foreach/demo/00Index0000644000176200001440000000006111472542406013741 0ustar liggesuserssincSEQ computation of the sinc function foreach/R/0000755000176200001440000000000012152072757012072 5ustar liggesusersforeach/R/zzz.R0000644000176200001440000000164311741344141013046 0ustar liggesusers# # Copyright (c) 2008-2010 Revolution Analytics # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # .onAttach <- function(lib, pkg) { if (interactive()) { packageStartupMessage('foreach: simple, scalable parallel programming from Revolution Analytics\n', 'Use Revolution R for scalability, fault tolerance and more.\n', 'http://www.revolutionanalytics.com', domain=NA, appendLF=TRUE) } } foreach/R/times.R0000644000176200001440000000151611472542406013336 0ustar liggesusers# # Copyright (c) 2008-2010 Revolution Analytics # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # a simple convenience function for use with %do% and %dopar% # inspired by Daniel Kaplan of Macalester College times <- function(n) { if (!is.numeric(n) || length(n) != 1) stop('n must be a numeric value') foreach(icount(n), .combine='c') } foreach/R/getsyms.R0000644000176200001440000000562012150757453013714 0ustar liggesusers# # Copyright (c) 2008-2010 Revolution Analytics # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # getsyms <- function(ex) { fun <- function(x) { if (is.symbol(x)) as.character(x) else if (is.call(x)) getsyms(x) else NULL } unlist(lapply(ex, fun)) } gather <- function(x) { fun <- function(a, b) unique(c(a, b)) accum <- list(good=character(0), bad=character(0)) for (e in x) { accum <- mapply(fun, e, accum, SIMPLIFY=FALSE) } accum } expandsyms <- function(syms, env, good, bad) { fun <- function(sym, good, bad) { if (sym %in% c(good, bad)) { # we already saw this symbol list(good=good, bad=bad) } else if (!nzchar(sym)) { # apparently a symbol can be converted into an empty string, # but it's an error to call "exists" with an empty string, # so we just declare it to be bad here list(good=good, bad=c(sym, bad)) } else if (exists(sym, env, mode='function', inherits=FALSE)) { # this is a function defined in this environment good <- c(sym, good) f <- get(sym, env, mode='function', inherits=FALSE) if (identical(environment(f), env)) { # it's a local function globs <- findGlobals(f) if (length(globs) > 0) { # it's got free variables, so let's check them out gather(lapply(globs, fun, good, bad)) } else { # it doesn't have free variables, so we're done list(good=good, bad=bad) } } else { # it's not a local function, so we're done list(good=good, bad=bad) } } else if (exists(sym, env, inherits=FALSE)) { # it's not a function, but it's defined in this environment list(good=c(sym, good), bad=bad) } else { # it's not defined in this environment list(good=good, bad=c(sym, bad)) } } gather(lapply(syms, fun, good, bad))$good } getexports <- function(ex, e, env, good=character(0), bad=character(0)) { syms <- getsyms(ex) syms <- expandsyms(syms, env, good, bad) for (s in syms) { if (s != '...') { val <- get(s, env, inherits=FALSE) # if this is a function, check if we should change the # enclosing environment to be this new environment fenv <- environment(val) if (is.function(val) && (identical(fenv, env) || identical(fenv, .GlobalEnv))) environment(val) <- e assign(s, val, e) } } invisible(NULL) } foreach/R/foreach.R0000644000176200001440000004531011722010246013612 0ustar liggesusers# # Copyright (c) 2008-2010 Revolution Analytics # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # accumulate <- function(obj, result, tag, ...) { UseMethod('accumulate') } getResult <- function(obj, ...) { UseMethod('getResult') } getErrorValue <- function(obj, ...) { UseMethod('getErrorValue') } getErrorIndex <- function(obj, ...) { UseMethod('getErrorIndex') } defcombine <- function(a, ...) c(a, list(...)) foreach <- function(..., .combine, .init, .final=NULL, .inorder=TRUE, .multicombine=FALSE, .maxcombine=if (.multicombine) 100 else 2, .errorhandling=c('stop', 'remove', 'pass'), .packages=NULL, .export=NULL, .noexport=NULL, .verbose=FALSE) { if (missing(.combine)) { if (!missing(.init)) stop('if .init is specified, then .combine must also be specified') .combine <- defcombine hasInit <- TRUE init <- quote(list()) } else { .combine <- match.fun(.combine) if (missing(.init)) { hasInit <- FALSE init <- NULL } else { hasInit <- TRUE init <- substitute(.init) } } # .multicombine defaults to TRUE if the .combine function is known to # take multiple arguments if (missing(.multicombine) && (identical(.combine, cbind) || identical(.combine, rbind) || identical(.combine, c) || identical(.combine, defcombine))) .multicombine <- TRUE # sanity check the arguments if (!is.null(.final) && !is.function(.final)) stop('.final must be a function') if (!is.logical(.inorder) || length(.inorder) > 1) stop('.inorder must be a logical value') if (!is.logical(.multicombine) || length(.multicombine) > 1) stop('.multicombine must be a logical value') if (!is.numeric(.maxcombine) || length(.maxcombine) > 1 || .maxcombine < 2) stop('.maxcombine must be a numeric value >= 2') if (!is.character(.errorhandling)) stop('.errorhandling must be a character string') if (!is.null(.packages) && !is.character(.packages)) stop('.packages must be a character vector') if (!is.null(.export) && !is.character(.export)) stop('.export must be a character vector') if (!is.null(.noexport) && !is.character(.noexport)) stop('.noexport must be a character vector') if (!is.logical(.verbose) || length(.verbose) > 1) stop('.verbose must be a logical value') specified <- c('errorHandling', 'verbose') specified <- specified[c(!missing(.errorhandling), !missing(.verbose))] args <- substitute(list(...))[-1] if (length(args) == 0) stop('no iteration arguments specified') argnames <- names(args) if (is.null(argnames)) argnames <- rep('', length(args)) # check for backend-specific options options <- list() opts <- grep('^\\.options\\.[A-Za-z][A-Za-z]*$', argnames) if (length(opts) > 0) { # put the specified options objects into the options list for (i in opts) { bname <- substr(argnames[i], 10, 100) options[[bname]] <- list(...)[[i]] } # remove the specified options objects from args and argnames args <- args[-opts] argnames <- argnames[-opts] } # check for arguments that start with a '.', and issue an error, # assuming that these are misspelled options unrecog <- grep('^\\.', argnames) if (length(unrecog) > 0) stop(sprintf('unrecognized argument(s): %s', paste(argnames[unrecog], collapse=', '))) # check for use of old-style arguments, and issue an error oldargs <- c('COMBINE', 'INIT', 'INORDER', 'MULTICOMBINE', 'MAXCOMBINE', 'ERRORHANDLING', 'PACKAGES', 'VERBOSE', 'EXPORT', 'NOEXPORT', 'LOADFACTOR', 'CHUNKSIZE') oldused <- argnames %in% oldargs if (any(oldused)) stop(sprintf('old style argument(s) specified: %s', paste(argnames[oldused], collapse=', '))) .errorhandling <- match.arg(.errorhandling) combineInfo <- list(fun=.combine, in.order=.inorder, has.init=hasInit, init=init, final=.final, multi.combine=.multicombine, max.combine=.maxcombine) iterable <- list(args=args, argnames=argnames, evalenv=parent.frame(), specified=specified, combineInfo=combineInfo, errorHandling=.errorhandling, packages=.packages, export=.export, noexport=.noexport, options=options, verbose=.verbose) class(iterable) <- 'foreach' iterable } iter.foreach <- function(obj, ..., extra=list()) { # evaluate the quoted iteration variables, and turn them into iterators iargs <- lapply(obj$args, function(a) iter(eval(a, envir=extra, enclos=obj$evalenv), ...)) # create the environment that will contain our dynamic state state <- new.env(parent=emptyenv()) # iterator state state$stopped <- FALSE state$numValues <- 0L # number of values that we've fired # accumulator state combineInfo <- obj$combineInfo if (combineInfo$has.init) { state$accum <- eval(combineInfo$init, envir=extra, enclos=obj$evalenv) state$first.time <- FALSE } else { state$accum <- NULL state$first.time <- TRUE } state$fun <- combineInfo$fun state$buffered <- rep(as.integer(NA), 2 * combineInfo$max.combine) state$next.tag <- 1L # only used when in.order is TRUE state$buf.off <- 0L # only used when in.order is TRUE state$nbuf <- 0L # only used when in.order is FALSE state$numResults <- 0L # number of results that we've received back state$errorValue <- NULL state$errorIndex <- -1L # package and return the iterator object iterator <- list(state=state, iargs=iargs, argnames=obj$argnames, combineInfo=combineInfo, errorHandling=obj$errorHandling, verbose=obj$verbose) class(iterator) <- c('iforeach', 'iter') iterator } nextElem.iforeach <- function(obj, ..., redo=FALSE) { if (redo) obj$state$numValues <- obj$state$numValues - 1L tryCatch({ # XXX this shouldn't be recomputed repeatedly ix <- which(!nzchar(obj$argnames)) elem <- if (length(ix) > 0) { lapply(obj$iargs[ix], nextElem) ix <- which(nzchar(obj$argnames)) if (length(ix) > 0) lapply(obj$iargs[ix], nextElem) else list() } else { lapply(obj$iargs, nextElem) } }, error=function(e) { if (identical(conditionMessage(e), 'StopIteration')) { obj$state$stopped <- TRUE if (complete(obj)) callCombine(obj, TRUE) } stop(e) }) obj$state$numValues <- obj$state$numValues + 1L elem } # XXX make this a method? complete <- function(obj) { stopifnot(class(obj)[1] == 'iforeach') if (obj$verbose) cat(sprintf('numValues: %d, numResults: %d, stopped: %s\n', obj$state$numValues, obj$state$numResults, obj$state$stopped)) obj$state$stopped && obj$state$numResults == obj$state$numValues } accumulate.iforeach <- function(obj, result, tag, ...) { obj$state$numResults <- obj$state$numResults + 1L # we can't receive more results than the number of tasks that we've fired stopifnot(obj$state$numResults <= obj$state$numValues) if (inherits(result, 'error') && is.null(obj$state$errorValue) && obj$errorHandling %in% c('stop', 'remove')) { if (obj$verbose) cat('accumulate got an error result\n') obj$state$errorValue <- result obj$state$errorIndex <- tag } # we can already tell what our status is going to be status <- complete(obj) # put the result in our buffer cache name <- paste('result', tag, sep='.') assign(name, result, obj$state, inherits=FALSE) ibuf <- if (obj$combineInfo$in.order) { tag - obj$state$buf.off } else { obj$state$nbuf <- obj$state$nbuf + 1L } # make sure we always have trailing NA's blen <- length(obj$state$buffered) while (ibuf >= blen) { length(obj$state$buffered) <- 2 * blen blen <- length(obj$state$buffered) } obj$state$buffered[ibuf] <- if (inherits(result, 'error') && obj$errorHandling %in% c('stop', 'remove')) -tag else tag # do any combining that needs to be done callCombine(obj, status) # return with apprpriate status if (obj$verbose) cat(sprintf('returning status %s\n', status)) status } callCombine <- function(obj, status) { if (obj$combineInfo$in.order) { repeat { needed <- obj$combineInfo$max.combine if (!obj$state$first.time) needed <- needed - 1 n <- which(is.na(obj$state$buffered))[1] - 1L stopifnot(!is.na(n)) n <- min(n, needed) if (n == needed || (status && n > 0)) { # get the names of the objects to be combined ind <- 1:n # filter out any errors (if error handling isn't 'pass') b <- obj$state$buffered[ind] allsyms <- paste('result', abs(b), sep='.') args <- b[b > 0] args <- if (length(args) > 0) paste('result', args, sep='.') else character(0) # XXX these operations won't be efficient for small values of max.combine blen <- length(obj$state$buffered) obj$state$buffered <- obj$state$buffered[(n+1):blen] length(obj$state$buffered) <- blen # XXX put this off? obj$state$buf.off <- obj$state$buf.off + n # create the call object to call the combine function callobj <- if (obj$state$first.time) { if (length(args) > 0) { if (obj$verbose) cat('first call to combine function\n') # not always true obj$state$first.time <- FALSE if (length(args) > 1) as.call(lapply(c('fun', args), as.name)) else as.name(args) # this evaluates to the value of the result } else { if (obj$verbose) cat('not calling combine function due to errors\n') NULL } } else { if (length(args) > 0) { if (obj$verbose) cat('calling combine function\n') as.call(lapply(c('fun', 'accum', args), as.name)) } else { if (obj$verbose) cat('not calling combine function due to errors\n') NULL } } # call the combine function if (!is.null(callobj)) { if (obj$verbose) { cat('evaluating call object to combine results:\n ') print(callobj) } obj$state$accum <- eval(callobj, obj$state) } # remove objects from buffer cache that we just processed # and all error objects remove(list=allsyms, pos=obj$state) } else { break } } } else { needed <- obj$combineInfo$max.combine if (!obj$state$first.time) needed <- needed - 1 stopifnot(obj$state$nbuf <= needed) # check if it's time to combine if (obj$state$nbuf == needed || (status && obj$state$nbuf > 0)) { # get the names of the objects to be combined ind <- 1:obj$state$nbuf # filter out any errors (if error handling isn't 'pass') b <- obj$state$buffered[ind] allsyms <- paste('result', abs(b), sep='.') args <- b[b > 0] args <- if (length(args) > 0) paste('result', args, sep='.') else character(0) obj$state$buffered[ind] <- as.integer(NA) obj$state$nbuf <- 0L # create the call object to call the combine function callobj <- if (obj$state$first.time) { if (length(args) > 0) { if (obj$verbose) cat('first call to combine function\n') obj$state$first.time <- FALSE if (length(args) > 1) as.call(lapply(c('fun', args), as.name)) else as.name(args) # this evaluates to the value of the result } else { if (obj$verbose) cat('not calling combine function due to errors\n') NULL } } else { if (length(args) > 0) { if (obj$verbose) cat('calling combine function\n') as.call(lapply(c('fun', 'accum', args), as.name)) } else { if (obj$verbose) cat('not calling combine function due to errors\n') NULL } } # call the combine function if (!is.null(callobj)) { if (obj$verbose) { cat('evaluating call object to combine results:\n ') print(callobj) } obj$state$accum <- eval(callobj, obj$state) } # remove objects from buffer cache that we just processed remove(list=allsyms, pos=obj$state) } } } getResult.iforeach <- function(obj, ...) { if (is.null(obj$combineInfo$final)) obj$state$accum else obj$combineInfo$final(obj$state$accum) } getErrorValue.iforeach <- function(obj, ...) { obj$state$errorValue } getErrorIndex.iforeach <- function(obj, ...) { obj$state$errorIndex } '%:%' <- function(e1, e2) { if (!inherits(e1, 'foreach')) stop('"%:%" was passed an illegal right operand') if (inherits(e2, 'foreach')) makeMerged(e1, e2) else if (inherits(e2, 'foreachCondition')) makeFiltered(e1, e2) else stop('"%:%" was passed an illegal right operand') } makeMerged <- function(e1, e2) { specified <- union(e1$specified, e2$specified) argnames <- union(e1$argnames, e2$argnames) packages <- union(e1$packages, e2$packages) export <- union(e1$export, e2$export) noexport <- union(e1$noexport, e2$noexport) options <- c(e1$options, e2$options) iterable <- list(e1=e1, e2=e2, specified=specified, argnames=argnames, packages=packages, export=export, noexport=noexport, options=options) # this gives precedence to the outer foreach inherit <- c('errorHandling', 'verbose') iterable[inherit] <- e2[inherit] iterable[e1$specified] <- e1[e1$specified] class(iterable) <- c('xforeach', 'foreach') iterable } iter.xforeach <- function(obj, ...) { state <- new.env(parent=emptyenv()) state$stopped <- FALSE state$fired <- integer(0) state$ie2 <- list() state$errorValue <- NULL state$errorIndex <- -1L ie1 <- iter(obj$e1, ...) iterator <- list(state=state, ie1=ie1, e2=obj$e2, argnames=obj$argnames, errorHandling=obj$errorHandling, verbose=obj$verbose) class(iterator) <- c('ixforeach', 'iter') iterator } nextElem.ixforeach <- function(obj, ..., redo=FALSE) { if (obj$verbose) cat(sprintf('nextElem.ixforeach called with redo %s\n', redo)) if (redo) { i <- length(obj$state$fired) if (obj$verbose) { cat('refiring iterator - fired was:\n') print(obj$state$fired) } obj$state$fired[i] <- obj$state$fired[i] - 1L if (obj$verbose) { cat('fired is now:\n') print(obj$state$fired) } } repeat { if (!exists('nextval', obj$state, inherits=FALSE)) { tryCatch({ obj$state$nextval <- nextElem(obj$ie1) }, error=function(e) { if (identical(conditionMessage(e), 'StopIteration')) obj$state$stopped <- TRUE stop(e) }) obj$state$ie2 <- c(obj$state$ie2, list(iter(obj$e2, extra=obj$state$nextval))) obj$state$fired <- c(obj$state$fired, 0L) } tryCatch({ i <- length(obj$state$fired) v2 <- nextElem(obj$state$ie2[[i]], redo=redo) obj$state$fired[i] <- obj$state$fired[i] + 1L break }, error=function(e) { if (!identical(conditionMessage(e), 'StopIteration')) stop(e) remove('nextval', pos=obj$state) if (complete(obj$state$ie2[[i]])) { callCombine(obj$state$ie2[[i]], TRUE) if (is.null(obj$state$errorValue)) { obj$state$errorValue <- getErrorValue(obj$state$ie2[[i]]) obj$state$errorIndex <- getErrorIndex(obj$state$ie2[[i]]) } accum <- getResult(obj$state$ie2[[i]]) if (obj$verbose) { cat('propagating accumulated result up to the next level from nextElem\n') print(accum) } accumulate(obj$ie1, accum, i) # XXX error handling? } }) redo <- FALSE } c(obj$state$nextval, v2) } accumulate.ixforeach <- function(obj, result, tag, ...) { if (obj$verbose) { cat(sprintf('accumulating result with tag %d\n', tag)) cat('fired:\n') print(obj$state$fired) } s <- cumsum(obj$state$fired) j <- 1L while (tag > s[[j]]) j <- j + 1L i <- if (j > 1) as.integer(tag) - s[[j - 1]] else as.integer(tag) ie2 <- obj$state$ie2[[j]] if (accumulate(ie2, result, i)) { if (is.null(obj$state$errorValue)) { obj$state$errorValue <- getErrorValue(ie2) obj$state$errorIndex <- getErrorIndex(ie2) } accum <- getResult(ie2) if (obj$verbose) { cat('propagating accumulated result up to the next level from accumulate\n') print(accum) } accumulate(obj$ie1, accum, j) # XXX error handling? } } getResult.ixforeach <- function(obj, ...) { getResult(obj$ie1, ...) } getErrorValue.ixforeach <- function(obj, ...) { obj$state$errorValue } getErrorIndex.ixforeach <- function(obj, ...) { obj$state$errorIndex } '%if%' <- function(e1, cond) { stop('obsolete') } when <- function(cond) { obj <- list(qcond=substitute(cond), evalenv=parent.frame()) class(obj) <- 'foreachCondition' obj } makeFiltered <- function(e1, cond) { iterable <- c(list(e1=e1), cond) inherit <- c('argnames', 'specified', 'errorHandling', 'packages', 'export', 'noexport', 'options', 'verbose') iterable[inherit] <- e1[inherit] class(iterable) <- c('filteredforeach', 'foreach') iterable } iter.filteredforeach <- function(obj, ...) { ie1 <- iter(obj$e1, ...) iterator <- list(ie1=ie1, qcond=obj$qcond, evalenv=obj$evalenv, argnames=obj$argnames, errorHandling=obj$errorHandling, verbose=obj$verbose) class(iterator) <- c('ifilteredforeach', 'iter') iterator } nextElem.ifilteredforeach <- function(obj, ..., redo=FALSE) { repeat { elem <- nextElem(obj$ie1, ..., redo=redo) if (eval(obj$qcond, envir=elem, enclos=obj$evalenv)) break redo <- TRUE } elem } accumulate.ifilteredforeach <- function(obj, result, tag, ...) { accumulate(obj$ie1, result, tag, ...) } getResult.ifilteredforeach <- function(obj, ...) { getResult(obj$ie1, ...) } getErrorValue.ifilteredforeach <- function(obj, ...) { getErrorValue(obj$ie1, ...) } getErrorIndex.ifilteredforeach <- function(obj, ...) { getErrorIndex(obj$ie1, ...) } foreach/R/do.R0000644000176200001440000001623711742054437012627 0ustar liggesusers# # Copyright (c) 2008-2010 Revolution Analytics # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # .foreachGlobals <- new.env(parent=emptyenv()) # this is called to register a parallel backend setDoPar <- function(fun, data=NULL, info=function(data, item) NULL) { tryCatch( { assign('fun', fun, pos=.foreachGlobals, inherits=FALSE) assign('data', data, pos=.foreachGlobals, inherits=FALSE) assign('info', info, pos=.foreachGlobals, inherits=FALSE) }, error = function(e) { if (exists('fun', where=.foreachGlobals, inherits=FALSE)) remove('fun', envir=.foreachGlobals) if (exists('data', where=.foreachGlobals, inherits=FALSE)) remove('data', envir=.foreachGlobals) if (exists('info', where=.foreachGlobals, inherits=FALSE)) remove('info', envir=.foreachGlobals) e }) } # this is called to register a sequential backend setDoSeq <- function(fun, data=NULL, info=function(data, item) NULL) { tryCatch( { assign('seqFun', fun, pos=.foreachGlobals, inherits=FALSE) assign('seqData', data, pos=.foreachGlobals, inherits=FALSE) assign('seqInfo', info, pos=.foreachGlobals, inherits=FALSE) }, error = function(e) { if (exists('fun', where=.foreachGlobals, inherits=FALSE)) remove('fun', envir = .foreachGlobals) if (exists('data', where=.foreachGlobals, inherits=FALSE)) remove('data', envir = .foreachGlobals) if (exists('info', where=.foreachGlobals, inherits=FALSE)) remove('info', envir = .foreachGlobals) e }) } # this explicitly registers a sequential backend for do and dopar. registerDoSEQ <- function() { setDoPar(doSEQ, NULL, info) setDoSeq(doSEQ, NULL, info) } # passed to setDoPar via registerDoSEQ, and called by getDoSeqWorkers, etc info <- function(data, item) { switch(item, workers=1L, name='doSEQ', version=packageDescription('foreach', fields='Version'), NULL) } # this returns a logical value indicating if a sequential backend # has been registered or not getDoSeqRegistered <- function() { exists('seqFun', where=.foreachGlobals, inherits=FALSE) } # this returns a logical value indicating if a parallel backend # has been registered or not getDoParRegistered <- function() { exists('fun', where=.foreachGlobals, inherits=FALSE) } # this returns the number of workers used by the currently registered # sequential backend getDoSeqWorkers <- function() { wc <- if (exists('seqInfo', where=.foreachGlobals, inherits=FALSE)) .foreachGlobals$seqInfo(.foreachGlobals$seqData, 'workers') else NULL # interpret a NULL as a single worker, but the backend # can return NA without interference if (is.null(wc)) 1L else wc } # this returns the number of workers used by the currently registered # parallel backend getDoParWorkers <- function() { wc <- if (exists('info', where=.foreachGlobals, inherits=FALSE)) .foreachGlobals$info(.foreachGlobals$data, 'workers') else NULL # interpret a NULL as a single worker, but the backend # can return NA without interference if (is.null(wc)) 1L else wc } # this returns the name of the currently registered sequential backend getDoSeqName <- function() { if (exists('seqInfo', where=.foreachGlobals, inherits=FALSE)) .foreachGlobals$seqInfo(.foreachGlobals$seqData, 'name') else NULL } # this returns the name of the currently registered parallel backend getDoParName <- function() { if (exists('info', where=.foreachGlobals, inherits=FALSE)) .foreachGlobals$info(.foreachGlobals$data, 'name') else NULL } # this returns the version of the currently registered sequential backend getDoSeqVersion <- function() { if (exists('seqInfo', where=.foreachGlobals, inherits=FALSE)) .foreachGlobals$seqInfo(.foreachGlobals$seqData, 'version') else NULL } # this returns the version of the currently registered parallel backend getDoParVersion <- function() { if (exists('info', where=.foreachGlobals, inherits=FALSE)) .foreachGlobals$info(.foreachGlobals$data, 'version') else NULL } # used internally to get the currently registered parallel backend getDoSeq <- function() { if (exists('seqFun', where=.foreachGlobals, inherits=FALSE)) { list(fun=.foreachGlobals$seqFun, data=.foreachGlobals$seqdata) } else { list(fun=doSEQ, data=NULL) } } # used internally to get the currently registered parallel backend getDoPar <- function() { if (exists('fun', where=.foreachGlobals, inherits=FALSE)) { list(fun=.foreachGlobals$fun, data=.foreachGlobals$data) } else { if (!exists('parWarningIssued', where=.foreachGlobals, inherits=FALSE)) { warning('executing %dopar% sequentially: no parallel backend registered', call.=FALSE) assign('parWarningIssued', TRUE, pos=.foreachGlobals, inherits=FALSE) } list(fun=doSEQ, data=NULL) } } '%do%' <- function(obj, ex) { e <- getDoSeq() e$fun(obj, substitute(ex), parent.frame(), e$data) } '%dopar%' <- function(obj, ex) { e <- getDoPar() e$fun(obj, substitute(ex), parent.frame(), e$data) } comp <- if (getRversion() < "2.13.0") { function(expr, ...) expr } else { compiler::compile } doSEQ <- function(obj, expr, envir, data) { # note that the "data" argument isn't used if (!inherits(obj, 'foreach')) stop('obj must be a foreach object') it <- iter(obj) accumulator <- makeAccum(it) for (p in obj$packages) library(p, character.only=TRUE) # compile the expression if we're using R 2.13.0 or greater xpr <- comp(expr, env=envir, options=list(suppressUndefined=TRUE)) i <- 1 tryCatch({ repeat { # get the next set of arguments args <- nextElem(it) if (obj$verbose) { cat(sprintf('evaluation # %d:\n', i)) print(args) } # assign arguments to local environment for (a in names(args)) assign(a, args[[a]], pos=envir, inherits=FALSE) # evaluate the expression r <- tryCatch(eval(xpr, envir=envir), error=function(e) e) if (obj$verbose) { cat('result of evaluating expression:\n') print(r) } # process the results tryCatch(accumulator(list(r), i), error=function(e) { cat('error calling combine function:\n') print(e) NULL }) i <- i + 1 } }, error=function(e) { if (!identical(conditionMessage(e), 'StopIteration')) stop(simpleError(conditionMessage(e), expr)) }) errorValue <- getErrorValue(it) errorIndex <- getErrorIndex(it) if (identical(obj$errorHandling, 'stop') && !is.null(errorValue)) { msg <- sprintf('task %d failed - "%s"', errorIndex, conditionMessage(errorValue)) stop(simpleError(msg, call=expr)) } else { getResult(it) } } foreach/R/acc.R0000644000176200001440000000176711472542406012753 0ustar liggesusers# # Copyright (c) 2008-2010 Revolution Analytics # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # makeAccum <- function(it) { # define and return the accumulator function that will be # passed to eachElem function(results, tags) { if (identical(it$error.handling, 'stop') && !is.null(it$state$errorValue)) return(invisible(NULL)) for (i in seq(along=tags)) { if (it$verbose) cat(sprintf('got results for task %d\n', tags[i])) accumulate(it, results[[i]], tags[i]) } } } foreach/NEWS0000644000176200001440000000227112151466751012372 0ustar liggesusersNEWS/ChangeLog for foreach -------------------------- 1.4.1 2013-05-29 o Improved handling of implicitly exported objects, courtesy of Steve Weston. 1.4.0 2012-04-11 o Removed spurious warning from getDoSEQ. Bug report from Ben Barnes. o Moved welcome message from .onLoad to .onAttach. Bug report from Benilton Carvalho. o Modified setDoPar and setDoSeq to undo changes to .foreachGlobals on error. Bug report from Benilton Carvalho. o Moved vignettes from inst/doc to vignettes. o Modified DESCRIPTION file by moving codetools, iterators, and utils from Depends to Imports. Bug report from Suraj Gupta. 1.3.5 2012-03-14 o Cleanup from previous patch. Bug report from Brian Ripley. 1.3.4 2012-03-12 o Added support for multiple sequential backends. (Idea and patch from Tyler Pirtle, Matt Furia, and Joseph Hellerstein.) o Modified doRUnit.R to use no more than two cores during R CMD check. 1.3.2 2011-05-08 o Regularized unit tests so they can run through R CMD check o Added support for compiler package of 2.13.0 and later. 1.3.1 2010-11-22 o First R-forge release. foreach/NAMESPACE0000644000176200001440000000205711741344141013104 0ustar liggesusersexport(foreach, when, times, "%do%", "%dopar%", "%:%", registerDoSEQ, getDoSeqRegistered, getDoSeqWorkers, getDoSeqName, getDoSeqVersion, setDoSeq, getDoParRegistered, getDoParWorkers, getDoParName, getDoParVersion, setDoPar, getResult, getErrorValue, getErrorIndex, accumulate, makeAccum, getexports) S3method("iter", "foreach") S3method("iter", "filteredforeach") S3method("iter", "xforeach") S3method("nextElem", "iforeach") S3method("nextElem", "ifilteredforeach") S3method("nextElem", "ixforeach") S3method("getResult", "iforeach") S3method("getResult", "ifilteredforeach") S3method("getResult", "ixforeach") S3method("getErrorValue", "iforeach") S3method("getErrorValue", "ifilteredforeach") S3method("getErrorValue", "ixforeach") S3method("getErrorIndex", "iforeach") S3method("getErrorIndex", "ifilteredforeach") S3method("getErrorIndex", "ixforeach") S3method("accumulate", "iforeach") S3method("accumulate", "ifilteredforeach") S3method("accumulate", "ixforeach") import(iterators) importFrom(codetools, "findGlobals") import(utils) foreach/DESCRIPTION0000644000176200001440000000215712154144525013377 0ustar liggesusersPackage: foreach Type: Package Title: Foreach looping construct for R Version: 1.4.1 Author: Revolution Analytics, Steve Weston Maintainer: Revolution Analytics Description: Support for the foreach looping construct. Foreach is an idiom that allows for iterating over elements in a collection, without the use of an explicit loop counter. This package in particular is intended to be used for its return value, rather than for its side effects. In that sense, it is similar to the standard lapply function, but doesn't require the evaluation of a function. Using foreach without side effects also facilitates executing the loop in parallel. Depends: R (>= 2.5.0) Imports: codetools, utils, iterators Suggests: randomForest Enhances: compiler, doMC, RUnit, doParallel License: Apache License (== 2.0) Repository: CRAN Repository/R-Forge/Project: foreach Repository/R-Forge/Revision: 24 Repository/R-Forge/DateTimeStamp: 2013-05-29 21:06:49 Date/Publication: 2013-06-06 19:39:33 Packaged: 2013-05-31 15:37:59 UTC; rforge NeedsCompilation: no