glmnet/ 0000755 0001762 0000144 00000000000 13574220223 011540 5 ustar ligges users glmnet/NAMESPACE 0000644 0001762 0000144 00000004217 13573535152 012774 0 ustar ligges users # Generated by roxygen2: do not edit by hand S3method(buildPredmat,array) S3method(buildPredmat,coxnetlist) S3method(buildPredmat,default) S3method(buildPredmat,lognetlist) S3method(buildPredmat,mrelnetlist) S3method(buildPredmat,multnetlist) S3method(coef,cv.glmnet) S3method(coef,cv.relaxed) S3method(coef,glmnet) S3method(coef,relaxed) S3method(deviance,glmnet) S3method(family,cv.glmnet) S3method(family,glmnet) S3method(family,relaxed) S3method(plot,cv.glmnet) S3method(plot,cv.relaxed) S3method(plot,glmnet) S3method(plot,mrelnet) S3method(plot,multnet) S3method(plot,relaxed) S3method(predict,coxnet) S3method(predict,cv.glmnet) S3method(predict,cv.relaxed) S3method(predict,elnet) S3method(predict,fishnet) S3method(predict,glmnet) S3method(predict,lognet) S3method(predict,mrelnet) S3method(predict,multnet) S3method(predict,relaxed) S3method(print,bigGlm) S3method(print,confusion.table) S3method(print,cv.glmnet) S3method(print,cv.relaxed) S3method(print,glmnet) S3method(print,relaxed) export(Cindex) export(assess.glmnet) export(bigGlm) export(buildPredmat) export(coef.glmnet) export(coef.relaxed) export(confusion.glmnet) export(coxgrad) export(coxnet.deviance) export(cv.glmnet) export(glmnet) export(glmnet.control) export(glmnet.measures) export(makeX) export(na.replace) export(na_sparse_fix) export(predict.glmnet) export(predict.relaxed) export(prepareX) export(print.cv.glmnet) export(relax.glmnet) export(rmult) export(roc.glmnet) import(Matrix) import(foreach) import(methods) importFrom(Matrix,sparse.model.matrix) importFrom(grDevices,rainbow) importFrom(graphics,abline) importFrom(graphics,axis) importFrom(graphics,matplot) importFrom(graphics,par) importFrom(graphics,plot) importFrom(graphics,points) importFrom(graphics,segments) importFrom(graphics,text) importFrom(shape,colorlegend) importFrom(stats,approx) importFrom(stats,coef) importFrom(stats,contrasts) importFrom(stats,family) importFrom(stats,median) importFrom(stats,model.matrix) importFrom(stats,na.pass) importFrom(stats,predict) importFrom(stats,rmultinom) importFrom(stats,rnorm) importFrom(stats,runif) importFrom(stats,weighted.mean) importFrom(utils,packageDescription) useDynLib(glmnet) glmnet/README.md 0000644 0001762 0000144 00000006257 13555633674 013052 0 ustar ligges users # Lasso and Elastic-Net Regularized Generalized Linear Models [](https://cran.r-project.org/package=glmnet)[](https://CRAN.R-project.org/package=glmnet) We provide extremely efficient procedures for fitting the entire lasso or elastic-net regularization path for linear regression (gaussian), multi-task gaussian, logistic and multinomial regression models (grouped or not), Poisson regression and the Cox model. The algorithm uses cyclical coordinate descent in a path-wise fashion. Details may be found in Friedman, Hastie, and Tibshirani ([2010](#ref-glmnet)), Simon et al. ([2011](#ref-coxnet)), Tibshirani et al. ([2012](#ref-strongrules)), Simon, Friedman, and Hastie ([2013](#ref-block)). Version 3.0 is a major release with several new features, including: - Relaxed fitting to allow models in the path to be refit without regularization. CV will select from these, or from specified mixtures of the relaxed fit and the regular fit; - Progress bar to monitor computation; - Assessment functions for displaying performance of models on test data. These include all the measures available via `cv.glmnet`, as well as confusion matrices and ROC plots for classification models; - print methods for CV output; - Functions for building the `x` input matrix for `glmnet` that allow for *one-hot-encoding* of factor variables, appropriate treatment of missing values, and an option to create a sparse matrix if appropriate. - A function for fitting unpenalized a single version of any of the GLMs of `glmnet`. ## References